

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Par	tent Classification 6 :		(11) International Publication Number: WO 95/31541
	9/00, A61K 48/00, C12N	A2	(43) International Publication Date: 23 November 1995 (23.11.95)
(21) International Ap (22) International Fil		7/US95/063 995 (18.05.5	BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/245,466 08/373,124	18 May 1994 (18.05.94 13 January 1995 (13.01		Published US Without international search report and to be republished upon receipt of that report.
[US/US]; 295	RIBOZYME PHARMACEUTIC O Wilderness Place, Boulder, CC	O 80301 (U	S).
Boulder, CO Court, Bould 4866 Franklin	NCHCOMB, Dan, T.; 7203 OI 80301 (US). DRAPER, Kennett er, CO 80301 (US). McSWIG n Drive, Boulder, CO 80301 (U Smuggler Place, Boulder, CO 80	n; 4619 Clo GEN, Jam JS). JARV	nd (es; (
(74) Agents: WARB 4700, 633 W (US).	URG, Richard, J. et al.; Lyon & est Fifth Street, Los Angeles, C.	& Lyon, Su A 90071-20	ite 666
(54) Title: METHOI	DS AND COMPOSITIONS FOR	R TREATM	ENT OF RESTENOSIS AND CANCER USING RIBOZYMES
(54) Title: METHOR (57) Abstract	DS AND COMPOSITIONS FOR	R TREATM	ENT OF RESTENOSIS AND CANCER USING RIBOZYMES
(57) Abstract An enzymatic t	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic t	•	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic t	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic t	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic t	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence
(57) Abstract An enzymatic r	nucleic acid molecule which cle	aves <i>c-myb</i>	RNA, wherein the binding arms of said nucleic acid contain sequence

Applicants: Jason Francis Conaty et al. U.S. Serial No.: 09/887,880

Filed: June 22, 2001 (Exhibit A)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Anstria	GB	United Kingdom	MR	Mauritania
ΑU	Anstralia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NB	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Berkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT.	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	830	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Karekhstan	SK	Skovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sci Lanka	TD	Chad
CS	Czechoslovakis	LU	Luxembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
	_	MC	Monaco	TT	Trinidad and Tobago
DE	Germany	MD	Republic of Moldova	ŪA	Ukraine
DK	Denmark	MG	Madagascar	us	United States of America
ES	Spain			UZ	Uzbekistan
F	Finland	ML	Mali		Viet Nam
FR	Prance	MN	Mongolia	VN	A BEST LAWTER
G.A	Gahon				

PCT/US95/06368 WO 95/31541

DESCRIPTION

Methods and Compositions for Treatment of Restenosis and Cancer Using Ribozymes

Background Of The Invention

5

25

The present invention concerns therapeutic compositions and methods for the treatment of restenosis and cancer.

The following is a brief description of the physiology, cellular pathology and treatment of restenosis. The discussion is not meant to be complete and is provided only for understanding of the invention that follows. This summary is not an admission that any of the work 10 described below is prior art to the claimed invention.

Coronary angioplasty is one of the major surgical treatments for heart disease. Its use has been accelerating rapidly; over 450,000 procedures are performed in the U.S. annually. The short term success rate of angioplasty 15 is 80 to 90%. However, in spite of a number of technical improvements in the procedure, post-operative occlusions of the arteries, or restenosis, still occur. Thirty-five to forty-five percent of patients who have undergone a single vessel angioplasty develop clinically significant 20 restenosis within 6 months of the procedure. The rate of restenosis is even higher (50 to 60%) in patients who have undergone multivessel angioplasty (Califf, R. M., et al., 1990, in Textbook of Interventional Cardiology., E.J. Topol, ed., W. B. Saunders, Philadelphia, pp 363-394.).

Histopathological studies have shown that restenosis after angioplasty is characterized by migration of medial smooth muscle cells to the intima and a striking hyperproliferative response of these neointimal cells (Garratt, K. N., et al., 1991, J. Am. Coll. Cardio., 17, 442-428; 30 Austin, G. E., et al., 1985, <u>J. Am. Coll. Cardiol</u>., 6, 369-375). Smooth muscle cell proliferation could be an overly robust response to injury. Alternatively, the

2

intimal smooth muscle cells within atherosclerotic lesions are already in an activated or "synthetic" state (Sjolund, M., et al., 1988, J. Cell. Biol., 106, 403-413 and thus may be poised to proliferate. One recent study demonstrated a positive correlation between the presence of activated smooth muscle cells in coronary lesions and the extent of subsequent luminal narrowing after atherectomy (Simons, M., et al., 1993, New Engl. J. Med., 328, 608-613). In any case, slowing smooth muscle cell proliferation after angioplasty could prevent intimal thickening and restenosis.

The presently preferred therapeutic treatment for restenosis is the use of streptokinase, urokinase or other thrombolytic compounds, such as fish oil, anticoagulants, ACE (angiotensin converting enzyme) inhibitors, aspirin and cholesterol lowering compounds. Alternative treatment includes the surgical incorporation of endoluminal stents. The occurrence of pharmacologic side-effects (particularly bleeding disorders associated with anti-coagulants and platelet inhibitors) is an issue with current therapies. Popoma, J. J., et al., report that the current therapies have not significantly impacted the rates of restenosis occurrence. (Circulation, 84, 1426-1436, 1991).

Recently, the results of a clinical trial of the efficacy of an anti-platelet therapy have been reported. Patients undergoing coronary angioplasty were given a single bolus injection followed by a 12 hour infusion of an antibody directed against the platelet adhesion molecule, gpIIb/gpIIIa. After six months, patients with the treatment showed a 23% reduction in the occurrence of restenosis than patients receiving placebo (27 vs. 35%; p=0.001).

A number of growth factors have been shown to induce smooth muscle cell proliferation. In vitro, platelet-derived growth factor (PDGF) is a potent smooth muscle cell mitogen (Ross, R., et al., 1974, <u>Proc. Natl. Acad. Sci. USA</u>, 71, 1207-1210) and a smooth muscle cell chemo-

30

attractant (Grotendorst, G., et al., 1982, Proc. Natl. Acad. Sci. USA, 71, 3669-3672.). In vivo, when PDGF is expressed ectopically in porcine arteries, it induces intimal hyperplasia (Nabel, E. B., et al., 1993, <u>J. Clin.</u> 5 <u>Invest.</u>, 91, 1822-1829). Furthermore, antibodies to PDGF have been shown to reduce intimal thickening after arterial injury (Ferns, G. A. A., et al., 1991, Science, 253, 1129-1132). Analysis of ³H-thymidine incorporation in the lesions indicates that the anti-PDGF antibodies 10 primarily inhibit smooth muscle cell migration.

Basic fibroblast growth factor (bFGF) is another smooth muscle cell mitogen in vitro (Klagsbrun, M. and Edelman, E. R., 1989, Arteriosclerosis, 9, 269-278). a rat model, anti-bFGF antibodies inhibit the prolifera-15 tion of medial smooth muscle cells 24 to 48 hours after balloon catheter injury (Lidner, V. and Reidy, M. A., 1991, Proc. Natl. Acad. Sci. USA, 88, 3739-3743). addition to bFGF, heparin binding epidermal growth factor (HB-EGF) (Higashiyama, S., et al., 1991, Science, 251, 20 936-939.), insulin-like growth factor I (IGF-I) (Banskota, N. K., et al., 1989, Molec. Endocrinol., 3, 1183-1190) and endothelin (Komuro, I., et al., 1988, FEBS Letters, 238, 249-252) have been shown to induce smooth muscle cell pro-A number of other factors (such as interliferation. 25 leukin-1 and tumor necrosis factor-α) may indirectly affect smooth muscle cell proliferation by inducing the expression of PDGF (Hajjar, K. A., et al., 1987, J. Exp. <u>Med.</u>, 166, 235-245; Raines, E. W., et al., 1989, <u>Science</u>, 243, 393-396).

When whole serum is added to serum-starved smooth muscle cells in vitro, the oncogenes, c-myc, c-fos, and cmyb, are induced (Kindy, M. S. and Sonenshein, G. E., 1986, <u>J. Biol. Chem.</u>, 261, 12865-12868; Brown, K. E., et al., 1992, <u>J. Biol. Chem.</u>, 267, 4625-4630) and cell pro-Blocking c-myb with an antisense 35 liferation ensues. oligonucleotide prevents cells from entering S phase (Brown, K. E., et al., 1992, <u>J. Biol. Chem.</u>, 267, 4625-

4

4630.). Thus, c-myb is required for the G₁ to S transition after stimulation by the multitude of growth factors present in serum. In vivo, a c-myb antisense oligonucleotide inhibits restenosis when applied to rat arteries after balloon angioplasty (Simons, M., et al., 1992, Nature, 359, 67-70). Similarly, an antisense oligonucleotide directed against mRNA of the oncogene c-myc was shown to inhibit human smooth muscle cell proliferation (Shi, Y., et al., 1993, Circulation, 88, 1190-5) and migration (Biro, S., et al., 1993, Proc. Natl. Acad. Sci. U S A, 90, 654-8).

Ohno et al., 1994 <u>Science</u> 265, 781, have shown that a combination of viral thymidine kinase enzyme expression (gene therapy) and treatment with anti-viral drug ganciclovir inhibits smooth muscle cell proliferation in pigs, following baloon angioplasty.

Epstein et al., "Inhibition of non-transformed cell proliferation using antisense oligonucleotides," 1918 publication 1992 discusses use of antisense oligonucleotides to c-myc, PCNA or cyclin B. Fung et al., PCT W091/15580, describes gene therapy for cell proliferative disease and mentions administration of a ribozyme construct against a PGR element. Mention is made of inactivation of c-myb. Rosenberg et al., W093/08845, Calabretta et al., W092/20348 and Gewirtz W093/09789 concern c-myb antisense oligonucleotides for treatment of melanoma or colorectal cancer, and administration locally. Sytkowski, PCT W0 93/02654, describe the uses of antisense oligonucleotides to inhibit c-myb gene expression in red blood cells to stimulate hemoglobin synthesis.

Nabel and Nabel, U. S. Patent No. 5, 328, 470, describe a method for the treatment of diseases by delivering therapeutic reagents directly to the sites of disease. They state that-

"...Method is based on the delivery of proteins by catheterization to discrete blood vessel segments using genetically modified or normal cells

35

PCT/US95/06368 WO 95/31541

5

or other vector systems... In addition, catalytic RNAs, called ribozymes, can specifically degrade RNA sequences.... The requirements for a successful RNA cleavage include a hammerhead structure with conserved RNA sequence at the region flanking this structure.... any GUG sequence within the RNA transcript can serve as a target for degradation by the ribozyme.... gene transfer using vectors expressing such proteins as tPA for the treatment of thrombosis and restenosis, angiogenesis or growth factors for the purpose of revascularization..."

Sullivan and Draper, International PCT publication WO 94/02595 describe the use of ribozymes against c-myb RNA 15 to treat stenosis.

Summary Of The Invention

5

10 '

25

30

This invention relates to ribozymes, or enzymatic RNA molecules, directed to cleave mRNA species that are required for cellular growth responses. In particular, 20 applicant describes the selection and function of ribozymes capable of cleaving RNA encoded by the oncogene, c-Such ribozymes may be used to inhibit the hyperproliferation of smooth muscle cells in restenosis and of tumor cells in numerous cancers. To block restenosis, a target molecule required for the induction of smooth muscle cell proliferation by a number of different growth factors is preferred. To this end c-myc, c-fos, and c-myb are useful targets in this invention.

Other transcription factors involved in the response to growth and proliferation signals include NF-kB, oct-1 and SRF. NF-xB protein activates cellular transcription and induces increases in cellular synthetic pathways. a resting cell, this protein is found in the cytoplasm, complexed with its inhibitor, I-KB. Upon phosphorylation of the I-kB molecule, the complex dissociates and NF-kB is released for transport to the nucleus, where it binds DNA

6

and induces transcriptional activity in (NF-kB)-responsive genes. One of the (NF-kB)-responsive genes is the NF-kB gene itself. Thus, release of the NF-kB protein from the inhibitory complex results in a cascade of gene expression which is auto-induced. Early inhibition of NF-kB can reduce expression of a number of genes required for growth and proliferation, such as c-myb.

Two other transcription factors, oct-1 and serum response factor (SRF) have been shown to be expressed 10 selectively in dividing cells. Both oct-1 and SRF are expressed ubiquitously in cultured cells, including smooth muscle cells. However, R. Majack and his colleagues have recently shown that these transcription factors are not expressed by the smooth muscle cells in intact vessels. 15 Both oct-1 and SRF are rapidly expressed upon dispersal of tissue into single cell suspensions. Thus, these transcription factors are thought to be regulated by their interactions with the extracellular matrix (Weiser, M. C. M., et al., 1994, <u>J. Cell. Biochem.</u>, S18A, 282; Belknap, 20 J. K., et al., 1994, <u>J. Cell. Biochem.</u>, S18A, 277). injury during angioplasty, the expression of oct-1 and SRF may be enhanced, leading to increased smooth muscle cell Treatment with ribozymes that block the proliferation. expression of these transcription factors can alleviate 25 the smooth muscle cell proliferation associated with restenosis.

While some of the above mentioned studies demonstrated that antisense oligonucleotides can efficiently reduce the expression of factors required for smooth muscle cell proliferation, enzymatic RNAs, or ribozymes have yet to be demonstrated to inhibit smooth muscle cell proliferation. Such ribozymes, with their catalytic activity and increased site specificity (as described below), represent more potent and safe therapeutic molecules than antisense oligonucleotides. In the present invention, ribozymes that cleave c-myb mRNA are described. Moreover, applicant shows that these ribozymes are able to

PCT/US95/06368 WO 95/31541

7

inhibit smooth muscle cell proliferation and that the catalytic activity of the ribozymes is required for their inhibitory effect. From those of ordinary skill in the art, it is clear from the examples described, that other 5 ribozymes that cleave target mRNAs required for smooth muscle cell proliferation may be readily designed and are within the invention.

By "inhibit" is meant that the activity of c-myb or level of mRNAs encoded by c-myb is reduced below that 10 observed in the absence of the nucleic acid, particularly, inhibition with ribozymes and preferably is below that level observed in the presence of an inactive RNA molecule able to bind to the same site on the mRNA, but unable to cleave that RNA.

15

By "enzymatic nucleic acid molecule" it is meant a nucleic acid molecule which has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave RNA in that target. That is, the enzymatic nucleic 20 acid molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. This complementarity functions to allow sufficient hybridization of the enzymatic nucleic acid molecule to the target RNA to allow the cleavage to occur. One hundred percent complemen-25 tarity is preferred, but complementarity as low as 50-75% may also be useful in this invention. By "equivalent" RNA to c-myb is meant to include those naturally occurring RNA molecules associated with restenosis and cancer in various animals, including human, rat and pig. Such a molecule 30 will generally contain some ribonucleotides, but the other nucleotides may be substituted at the 2'-hydroxyl position and in other locations with other moeities as discussed below.

By "complementarity" is meant a nucleic acid that can 35 form hydrogen bond(s) with other RNA sequence by either traditional Watson-Crick or other non-traditional types (for example, Hoogsteen type) of base-paired interactions.

8

Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic 10 portion of the molecule that acts to cleave the target Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary basepairing, and once bound to the correct site, enzymatically to cut the target RNA. Strategic cleavage 15 of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.

The enzymatic nature of a ribozyme is advantageous over other technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the concentration of ribozyme necessary to affect a therapeutic treat-25 ment is lower than that of an antisense oligonucleotide. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the 30 specificity of inhibition depending not only on the base pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme. Similar mismatches in antisense molecules do not prevent their action (Woolf, T. M., et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 7305-7309). Thus, the specificity of

20

action of a ribozyme is greater than that of an antisense oligonucleotide binding the same RNA site.

In preferred embodiments of this invention, enzymatic nucleic acid molecule is formed in a hammerhead 5 or hairpin motif, but may also be formed in the motif of a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA. Examples of such hammerhead motifs are described by Rossi et al., 1992, Aids Research and Human Retroviruses 10 8, 183, of hairpin motifs by Hampel et al., EP0360257, Hampel and Tritz, 1989 Biochemistry 28, 4929, and Hampel et al., 1990 Nucleic Acids Res. 18, 299, and an example of the hepatitis delta virus motif is described by Perrotta and Been, 1992 Biochemistry 31, 16; of the RNaseP motif by 15 Guerrier-Takada et al., 1983 Cell 35, 849, Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990 Cell 61, 685-696; Saville and Collins, 1991 Proc. Natl. Acad. Sci. USA 88, 8826-8830; Collins and Olive, 1993 Biochemistry 32, 2795-2799) and of the Group 20 I intron by Cech et al., U.S. Patent 4,987,071. specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site 25 which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.

In a preferred embodiment the invention provides a
method for producing a class of enzymatic cleaving agents
which exhibit a high degree of specificity for the RNA of
a desired target. The enzymatic nucleic acid molecule is
preferably targeted to a highly conserved sequence region
of a target mRNAs encoding c-myb proteins such that
specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids.
Such enzymatic nucleic acid molecules can be delivered

10

exogenously to specific cells as required. Alternatively, the ribozymes can be expressed from DNA/RNA vectors that are delivered to specific cells.

Synthesis of nucleic acids greater than 100 nucleo-5 tides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small enzymatic nucleic acid motifs (e.g., of the hammerhead or the hairpin structure) are used for exogenous delivery. The simple structure of these mole-10 cules increases the ability of the enzymatic nucleic acid invade targeted regions of the mRNA structure. However, these catalytic RNA molecules can also be expressed within cells from eukaryotic promoters (e.g., Scanlon et al., 1991, Proc. Natl. Acad. Sci. USA, 88, 15 10591-5; Kashani-Sabet et al., 1992 Antisense Res. Dev., Dropulic et al., 1992 J. Virol, 66, 1432-41; 2, 3-15; Weerasinghe et al., 1991 J. Virol, 65, 5531-4; Ojwang et al., 1992 Proc. Natl. Acad. Sci. USA 89, 10802-6; et al., 1992 Nucleic Acids Res., 20, 4581-9; Sarver et 20 al., 1990 Science 247, 1222-1225). Those skilled in the art realize that any ribozyme can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. activity of such ribozymes can be augmented by their release from the primary transcript by a second ribozyme (Draper et al., PCT WO93/23569, and Sullivan et al., PCT WO94/02595, both hereby incorporated in their totality by reference herein; Ohkawa et al., 1992 Nucleic Acids Symp. Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993 Nucleic Acids Res., 21, 3249-55; Chowrira et al., 1994 <u>J. Biol. Chem.</u> 269, 25856). Thus, in a first aspect, the invention features ribozymes that inhibit cell proliferation. These chemically or enzymatically synthesized RNA molecules contain substrate binding domains that bind to accessible regions The RNA molecules also contain 35 of their target mRNAs. domains that catalyze the cleavage of RNA. The RNA molecules are preferably ribozymes of the hammerhead or

hairpin motif. Upon binding, the ribozymes cleave the target mRNAs, preventing translation and protein accumulation. In the absence of the expression of the target gene, cell proliferation is inhibited.

In a preferred embodiment, the enzymatic RNA molecules cleave c-myb mRNA and inhibit smooth muscle cell proliferation. Such ribozymes are useful for the prevention of restenosis after coronary angioplasty. Ribozymes are added directly, or can be complexed with cationic 10 lipids, packaged within liposomes, or otherwise delivered to smooth muscle cells. The RNA or RNA complexes can be locally administered to relevant tissues through the use of a catheter, infusion pump or stent, with or without their incorporation in biopolymers. The ribozymes, simi-15 larly delivered, also are useful for inhibiting proliferation of certain cancers associated with elevated levels of the c-myb oncogene, particularly leukemias, neuroblastomas, and lung, colon, and breast carcinomas. Using the methods described herein, other enzymatic RNA mole-20 cules that cleave c-myb, c-myc, oct-1, SRF, NF-kB, PDGF receptor, bFGF receptor, angiotensin II, and endotheliumderived relaxing factor and thereby inhibit smooth muscle cell proliferation and/or tumor cell proliferation may be derived and used as described above. Specific examples 25 are provided below in the Tables.

Such ribozymes are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the level of c-myb activity in a cell or tissue. By "related" is meant that the inhibition of c-myb mRNAs and thus reduction in the level of protein activity will relieve to some extent the symptoms of the disease or condition.

Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or other35 wise delivered to target cells. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection,

PCT/US95/06368 WO 95/31541

12

stent, with or infusion pump or without their incorporation in biopolymers.

In another aspect of the invention, ribozymes that cleave target molecules and inhibit c-myb activity are 5 expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alpha-10 virus. Preferably, the recombinant vectors capable of expressing the ribozymes are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of ribozymes. Such vectors might be repeatedly administered 15 as necessary. Once expressed, the ribozymes cleave the target mRNA. Delivery of ribozyme expressing vectors could be systemic, such as by intravenous or intramuscular administration, by administration to target cells explanted from the patient followed by reintroduction into 20 the patient, or by any other means that would allow for introduction into the desired target cell.

By "vectors" is meant any nucleic acid- and/or viralbased technique used to deliver a desired nucleic acid.

25

35

In preferred embodiments, the ribozymes have binding arms which are complementary to the sequences in the tables II, XII-XXIV. Examples of such ribozymes are shown as Seq. I.D. Nos. 101-129 (table III) and in tables XII-By complementary is thus meant that the binding arms are able to cause cleavage of a human or mouse or rat 30 or porcine mRNA target. Examples of such ribozymes consist essentially of sequences defined in tables III, XII-By "consists essentially of" is meant that the XXIV. active ribozyme contains an enzymatic center equivalent to those in the examples, and binding arms able to bind c-myb mRNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage.

In another aspect of the invention, ribozymes that cleave target molecules and inhibit cell proliferation are expressed from transcription units inserted into DNA, RNA, or viral vectors. Preferably, the recombinant vectors capable of expressing the ribozymes are locally delivered as described above, and transiently persist in smooth muscle cells. Once expressed, the ribozymes cleave their target mRNAs and prevent proliferation of their host cells. The recombinant vectors are preferably DNA plasmids or adenovirus vectors. However, other mammalian cell vectors that direct the expression of RNA may be used for this purpose.

Other features and advantages of the invention will be apparent from the following description of the pre-15 ferred embodiments thereof, and from the claims.

Description Of The Preferred Embodiments

The drawings will first briefly be described.

20 <u>Drawings:</u>

Figure 1 is a diagrammatic representation of the hammerhead ribozyme domain known in the art. Stem II can be \geq 2 base-pair long.

Figure 2a is a diagrammatic representation of the hammerhead ribozyme domain known in the art; Figure 2b is a diagrammatic representation of the hammerhead ribozyme as divided by Uhlenbeck (1987, Nature, 327, 596-600) into a substrate and enzyme portion; Figure 2c is a similar diagram showing the hammerhead divided by Haseloff and Gerlach (1988, Nature, 334, 585-591) into two portions; and Figure 2d is a similar diagram showing the hammerhead divided by Jeffries and Symons (1989, Nucl. Acids. Res., 17, 1371-1371) into two portions.

Figure 3 is a diagrammatic representation of the general structure of a hairpin ribozyme. Helix 2 (H2) is provided with a least 4 base pairs (i.e., n is 1, 2, 3 or 4) and helix 5 can be optionally provided of length 2 or

14

more bases (preferably 3 - 20 bases, i.e., m is from 1 -20 or more). Helix 2 and helix 5 may be covalently linked by one or more bases (i.e., r is ≥ 1 base). Helix 1, 4 or 5 may also be extended by 2 or more base pairs (e.g., 4 -5 20 base pairs) to stabilize the ribozyme structure, and preferably is a protein binding site. In each instance, each N and N' independently is any normal or modified base and each dash represents a potential base-pairing interaction. These nucleotides may be modified at the sugar, 10 base or phosphate. Complete base-pairing is not required in the helices, but is preferred. Helix 1 and 4 can be of any size (i.e., o and p is each independently from 0 to any number, e.g., 20) as long as some base-pairing is maintained. Essential bases are shown as specific bases 15 in the structure, but those in the art will recognize that one or more may be modified chemically (abasic, base, sugar and/or phosphate modifications) or replaced with another base without significant effect. Helix 4 can be formed from two separate molecules, i.e., without a con-20 necting loop. The connecting loop when present may be a ribonucleotide with or without modifications to its base, sugar or phosphate. "q" is ≥ 2 bases. The connecting loop can also be replaced with a non-nucleotide linker H refers to bases A, U, or C. molecule. Y refers to pyrimidine bases. "_____" refers to a covalent bond.

Figure 4 is a representation of the general structure of the hepatitis delta virus ribozyme domain known in the art.

Figure 5 is a representation of the general structure 30 of the self-cleaving VS RNA ribozyme domain.

Figure 6 is a schematic representation of an RNAseH accessibility assay. Specifically, the left side of Figure 6 is a diagram of complementary DNA oligonucleotides bound to accessible sites on the target RNA.

Complementary DNA oligonucleotides are represented by broad lines labeled A, B, and C. Target RNA is represented by the thin, twisted line. The right side of

PCT/US95/06368 WO 95/31541

15

Figure 6 is a schematic of a gel separation of uncut target RNA from a cleaved target RNA. Detection of target RNA is by autoradiography of body-labeled, T7 transcript. The bands common to each lane represent uncleaved target 5 RNA; the bands unique to each lane represent the cleaved products.

Figure 7 is a graph of the results of an RNAseH accessibility assay of murine c-myb RNA. On the abscissa is the sequence number of the DNA oligonucleotide that is homologous to the ribozyme target site. The ordinate represents the percentage of the intact transcript that was cleaved by RNAse H.

Figure 8 is a graph of the outcome of an RNAseH accessibility assay of human c-myb mRNA. The graphs are labeled as in Figure 7.

15

20

25

35

Figure 9 shows the effect of chemical modifications on the catalytic activity of hammerhead ribozyme targeted to c-myb site 575. A) diagrammatic representation of 575 hammerhead ribozyme•substrate complex. 2'-O-methyl ribozyme represents a hammerhead (HH) ribozyme containing 2'-O-methyl substitutions at five nucleotides in the 5' and 3' termini. 2'-O-methyl P=S ribozyme represents a hammerhead (HH) ribozyme containing 2'-O-methyl and phosphorothioate substitutions at five nucleotides in the 5' and 3' 2'-C-allyl iT ribozyme represents a hammerhead containing ribose residues at five positions. The remaining 31 nucleotide positions contain 2'-hydroxyl group substitutions, wherein 30 nucleotides contain 2'-O-methyl substitutions and one nucleotide (U_4) contains 2'-C-allyl 30 substitution. Additionally, 3' end of this ribozyme contains a 3'-3' linked inverted T. 2'-C-allyl P=S ribozyme is similar to 2'-C-allyl iT ribozyme with the following changes: five nucleotides at the 5' and 3' termini contain phosphorothicate substitutions and the ribozyme lacks the 3'-end inverted T modification. B) shows the ability of ribozymes described in Fig. 9A to inhibit smooth muscle cell proliferation.

16

Figure 10 shows the effect of 2'-C-allyl P=S 575 HH ribozyme concentration on smooth muscle cell proliferation. A plot of percent inhibition of smooth muscle cell proliferation (normalized to the effect of a catalytically inactive ribozyme) as a function of ribozyme concentration is shown.

Figure 11 shows a comparison of the effects of 2'-C-allyl P=S 575 HH ribozyme and phosphorothicate antisense DNA on the proliferation of smooth muscle cells.

Figure 12 shows the inhibition of smooth muscle cell proliferation catalyzed by 2'-C-allyl P=S HH ribozymes targeted to sites 549, 575, and 1533 within c-myb mRNA.

10

35

Figure 13 shows the effect of phosphorthicate substitutions on the catalytic activity of 2'-C-allyl 575 HH 15 ribozyme. A) diagrammatic representation of 575 hammerhead ribozyme•substrate complex. 10 P=S 5' and 3' ribozyme is identical to the 2'-C-allyl P=S ribozyme described in Fig. 9. 5 P=S 3' ribozyme is same as 10 P=S 5' and 3' ribozyme, with the exception that only five 20 nucleotides at the 3' termini contain phosphorothioate 5 P=S Loop ribozyme is similar to 2'-Csubstitutions. allyl iT described in Fig. 9, with the exception that five nucleotides within loop II of this ribozyme contain phosphorothicate substitutions. 5 P=S 5' ribozyme is same 25 as 10 P=S 5' and 3' ribozyme, with the exception that only five nucleotides at the 5' termini contain phosphorothioate substitutions. Additionally, this ribozyme contains a 3'-3' linked inverted T at its 3' end. B) shows the ability of ribozymes described in Fig. 13A to inhibit 30 smooth muscle cell proliferation.

Figure 14 shows the minimum number of phosphorothioate substitutions required at the 5' termini of 575 HH ribozyme to achieve efficient inhibition of smooth muscle cell proliferation.

Figure 15 shows the effect of varying the length of substrate binding arm of 575 HH ribozyme on the inhibition of smooth muscle cell proliferation.

Figure 16 shows the effect of various chemical modifications, at $\rm U_4$ and/or $\rm U_7$ positions within 575 HH ribozyme core, on the ability of the ribozyme to inhibit smooth muscle cell proliferation.

Figure 17 shows the inhibition of pig smooth muscle cell proliferation by active *c-myb* 575 HH ribozyme.

Figure 18 shows the inhibition of human smooth muscle cell proliferation by active c-myb 575 HH ribozyme.

Figure 19 shows ribozyme-mediated inhibition of c-myb 10 expression and cell proliferation.

Figure 20 is digrammatic representation of an optimal c-myb HH ribozyme that can be used to treat diseases like restenosis.

Figure 21 shows the inhibition of Rat smooth muscle cells by 2-5A containing nucleic acids.

Target sites

5

Targets for useful ribozymes can be determined as disclosed in Draper et al supra, Sullivan et al., supra, 20 as well as by Draper et al., "Method and reagent for treatment of arthritic conditions PCT No. PCT/US94/13129, U.S.S.N. 08/152,487, filed 11/12/93, and hereby incorporated by reference herein in totality. Rather than repeat the guidance provided in those documents here, 25 below are provided specific examples of such methods, not limiting to those in the art. Ribozymes to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also Such ribozymes can also be optimized and described. 30 delivered as described therein. While specific examples to mouse RNA are provided, those in the art will recognize that equivalent human RNA targets can be used as described Thus, the same target may be used, but binding arms suitable for targetting human RNA sequences are 35 present in the ribozyme. Such targets may also be selected as described below.

18

The sequence of human, pig and murine c-myb mRNAs were screened for optimal ribozyme target sites using a computer folding algorithm. Hammerhead or hairpin ribozyme cleavage sites were identified. These sites are 5 shown in Tables II and XII-XXIV (All sequences are 5' to 3' in the tables) The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme. While murine, pig and human sequences can be screened and ribozymes thereafter designed, the 10 human targeted sequences are of most utility. murine and pig targeted ribozymes may be useful to test efficacy of action of the ribozyme prior to testing in The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type 15 of ribozyme.

Hammerhead or hairpin ribozymes were designed that could bind and were individually analyzed by computer folding (Jaeger et al., 1989 Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

The sequences of the ribozymes that are chemically synthesized, useful in this study, are shown in Table III and XII-XXIV. Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity. For example, stem-loop II sequence of hammerhead ribozymes listed in Table III (5'-GGCCGAAAGGCC-3') can be altered (substitution, deletion, and/or insertion) to contain any sequences provided a minimum of two base-paired stem structure can form. Similarly, stem-loop IV sequence of

hairpin ribozymes listed in Table III, XIII, XVI, XIX, XX, XXIII, XXIV (5'-CACGUUGUG-3') can be altered (substitution, deletion, and/or insertion) to contain any sequence, provided a minimum of two base-paired stem structure can 5 form. The ribozyme sequences listed in Table III and XIImay be formed of ribonucleotides or other nucleotides or non-nucleotides. Such ribozymes are equivalent to the ribozymes described specifically in the Tables.

10 Optimizing Ribozyme Activity

30

Ribozyme activity can be optimized as described in this application. These include altering the length of the ribozyme binding arms (stems I and III, see Figure 2c), or chemically synthesizing ribozymes with modifica-15 tions that prevent their degradation by serum ribonucleases (see e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., 1990 Nature 344, 565; Pieken et al., 1991 Science 253, 314; Usman and Cedergren, 1992 Trends in Biochem. Sci. 17, 334; Usman et 20 al., International Publication No. WO 93/15187; and Rossi et al., International Publication No. WO 91/03162, as well as Usman, N. et al. US Patent Application 07/829,729, and Sproat, US Patent No. 5, 334, 711 which describe various chemical modifications that can be made to the sugar 25 moieties of enzymatic RNA molecules, modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements. (All these publications are hereby incorporated by reference herein.)

Sullivan, et al., supra, describes the general molecules. delivery of enzymatic RNA methods Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by ionto-35 phoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes

20

may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent.

5 Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Sullivan et al., supra and Draper et al., supra which have been incorporated by reference herein.

Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-15 encoding sequences into a DNA or RNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be 20 expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokary-25 otic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990 Proc. Natl. Acad. Sci. U S A, 87, 6743-7; Gao and Huang 1993 Nucleic Acids Res., 21, 2867-72; Lieber et al., 1993 Methods Enzymol., 217, 47-66; Zhou et al., 1990 Mol. Cell. Biol., 10, 4529-37). 30 Several investigators have demonstrated that ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., 1992 Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992 Proc. Natl. Acad. Sci. U S A, 89, 10802-6; Chen et al., 1992 Nucleic Acids 35 Res., 20, 4581-9; Yu et al., 1993 Proc. Natl. Acad. Sci. U S A, 90, 6340-4; L'Huillier et al., 1992 EMBO J. 11, 4411-8; Lisziewicz et al., 1993 Proc. Natl. Acad. Sci.

PCT/US95/06368 WO 95/31541

The above ribozyme transcription U. S. A., 90, 8000-4). units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors 5 (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors).

In a preferred embodiment of the invention, a transcription unit expressing a ribozyme that cleaves mRNAs 10 encoded by c-myb is inserted into a plasmid DNA vector or an adenovirus or adeno-associated virus DNA viral vector or a retroviral RNA vector. Viral vectors have been used to transfer genes and lead to either transient or long term gene expression (Zabner et al., 1993 Cell 75, 207; 15 Carter, 1992 Curr. Opi. Biotech. 3, 533). The adenovirus vector is delivered as recombinant adenoviral particles. The DNA may be delivered alone or complexed with vehicles (as described for RNA above). The recombinant adenovirus or AAV particles are locally administered to the site of 20 treatment, e.g., through incubation or inhalation in vivo or by direct application to cells or tissues ex vivo.

In another preferred embodiment, the ribozyme is administered to the site of c-myb expression (e.g., smooth muscle cells) in an appropriate liposomal vesicle.

25

30

Examples

Ability Of Exogenously-Delivered Ribozymes Directed Against c-myb To Inhibit Vascular Smooth Muscle Cell **Proliferation**

The following examples demonstrate the selection of ribozymes that cleave c-myb mRNA. The methods described herein represent a scheme by which ribozymes may be derived that cleave other mRNA targets required for cell Also provided is a description of how such 35 ribozymes may be delivered to smooth muscle cells. examples demonstrate that upon delivery, the ribozymes inhibit cell proliferation in culture. Moreover, no

22

inhibition is observed if mutated ribozymes that are catalytically inactive are applied to the cells. Thus, inhibition requires the catalytic activity of the ribozymes. The cell division assay used represents a model system for smooth muscle cell hyperproliferation in restenotic lesions.

Example 1: Identification of Potential Ribozyme Cleavage Sites in Human c-myb mRNA

The sequence of human c-myb mRNA was screened for accessible sites using a computer folding algorithm. Regions of the mRNA that did not form secondary folding structures and contained potential hammerhead ribozyme cleavage sites were identified. These sites are shown in Table II and XII-XXIV Sites are numbered using the sequence numbers from (Westin, E. H., et al., 1990, Oncogene, 5, 1117-1124) (GenBank Accession No. X52125); the sequence is derived from a longer c-myb cDNA isolate and thus is more representative of the full-length RNA.

20

Example 2: Selection of Ribozyme Cleavage Sites in Murine and Human c-myb mRNA.

To test whether the sites predicted by the computerbased RNA folding algorithm corresponded to accessible 25 sites in c-myb RNA, 41 hammerhead sites were selected for analysis. Ribozyme target sites were chosen by comparing cDNA sequences of mouse and human c-myb (GenBank Accession No. X02774 and GenBank Accession No. X52125, respectively) and prioritizing the sites on the basis of overall nucleo-30 tide sequence homology. Hammerhead ribozymes were designed that could bind each target (see Figure 2C) and were individually analyzed by computer folding (Jaeger, J. A., et al., 1989, Proc. Natl. Acad. Sci. USA, 86, 7710) to assess whether the ribozyme sequences fold into 35 the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between binding arms and the catalytic core were eliminated from

PCT/US95/06368 WO 95/31541

23

As noted below, varying binding arm consideration. lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

5

30

Example 3: Screening Ribozyme Cleavage Sites by RNaseH Protection

Murine and human mRNA was screened for accessible cleavage sites by the method described generally in Draper 10 et al., International PCT publication WO 93/23569, hereby incorporated by reference herein. Briefly, DNA oligonucleotides representing 41 potential hammerhead ribozyme cleavage sites were synthesized. A polymerase chain reaction was used to generate a substrate for T7 RNA 15 polymerase transcription from human or murine c-myb cDNA clones. Labeled RNA transcripts were synthesized in vitro from the two templates. The oligonucleotides and the labeled transcripts were annealed, RNAseH was added and the mixtures were incubated for the designated times at 20 37° C. Reactions were stopped and RNA separated on sequencing polyacrylamide gels. The percentage of the substrate cleaved was determined by autoradiographic quantitation using a phosphor imaging system. The results are shown in Figures 7 and 8. From these data, 20 25 hammerhead ribozyme sites were chosen as the most accessible (see Table III).

Example 4: Chemical Synthesis and Purification of Ribozymes for Efficient Cleavage of c-myb RNA

Ribozymes of the hammerhead or hairpin motif were designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above. The ribozymes were chemically synthesized. The method of synthesis used followed the 35 procedure for normal RNA synthesis as described in Usman 1987 J. Am. Chem. Soc., 109, 7845 and in Scaringe et al., 1990 Nucleic Acids Res., 18, 5433 and made use of

24

common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at The average stepwise coupling yields were >98%. Inactive ribozymes were synthesized by substituting 5 a U for G_5 and a U for A_{14} (numbering from Hertel et al., Nucleic Acids Res., 20, 3252). Hairpin ribozymes 1992 were synthesized in two parts and annealed to reconstruct the active ribozyme (Chowrira and Burke, 1992 Nucleic Acids Res., 20, 2835-2840). Ribozymes were also synthe-10 sized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). All ribozymes were modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-15 O-methyl, 2'-H (for a review see Usman and Cedergren, 1992 TIBS 17, 34). Ribozymes were purified by gel electrophoresis using general methods or were purified by high pressure liquid chromatography (HPLC; See Usman et al., Synthesis, deprotection, analysis and purification of RNA 20 and ribozymes, filed May, 18, 1994, U.S.S.N. 08/245,736 the totality of which is hereby incorporated herein by reference) and were resuspended in water. The sequences of the chemically synthesized ribozymes used in this study are shown below in Table III.

25

Example 5: Ribozyme Cleavage of Long Substrate RNA Corresponding to c-myb mRNA Target

Hammerhead-type ribozymes which were targeted to the murine c-myb mRNA were designed and synthesized to test the cleavage activity at the 20 most accessible sites in in vitro transcripts of both mouse and human c-myb RNAs. The target sequences and the nucleotide location within the c-myb mRNA are given in Table II. All hammerhead ribozymes were synthesized with binding arm (Stems I and III; see Figure 2C) lengths of seven nucleotides. Two hairpin ribozymes were synthesized to sites 1632 and 2231. The relative abilities of these ribozymes to cleave both

murine and human RNAs is summarized in Table II. Ribozymes (1 μ M) were incubated with 32 P-labeled substrate RNA (prepared as described in Example 3, approximately 20 nM) for 60 minutes at 37°C using buffers described previ-5 ously. Intact RNA and cleavage products were separated by electrophoresis through polyacrylamide gels. The percentage of cleavage was determined by Phosphor Imager quantitation of bands representing the intact substrate and the cleavage products.

10

Five hammerhead ribozymes (directed against sites 549, 575, 1553, 1597, and 1635) and one hairpin ribozyme (directed against site 1632) were very active; they cleaved >70% of both murine and human c-myb RNA in 60 minutes. Nine of the hammerhead ribozymes (directed 15 against sites 551, 634, 936, 1082, 1597, 1721, 1724, 1895, and 1943) were intermediate in activity, cleaving > 50% of both murine and human c-myb RNA in 60 minutes. All of the sites cleaved by these active ribozymes were predicted to be accessible to ribozyme cleavage in Table II. 20 hammerhead ribozymes and one hairpin ribozyme showed low activity on at least one of the substrates. The observed differences in accessibility between the two species of cmyb RNA demonstrate the sensitivity of ribozyme action to RNA structure and suggest that even when homologous target 25 sequences exist, ribozymes may be excluded from cleaving that RNA by structural constraints. This level of specificity minimizes non-specific toxicity of ribozymes within cells.

30 Example 6: Ability of Hammerhead Ribozymes to Inhibit Smooth Muscle Cell Proliferation.

The ribozymes that cleaved c-myb RNA described above were assayed for their effect on smooth muscle cell pro-Rat vascular smooth muscle cells were 35 isolated and cultured as follows. Aortas from adult Sprague-Dawley rats were dissected, connective tissue was removed under a dissecting microscope, and 1 mm2 pieces of

26

the vessel were placed, intimal side up, in a Petri dish in Modified Eagle's Medium (MEM) with the following additives: 10% FBS, 2% tryptose phosphate broth, penicillin/streptomycin and 2 mM L-Glutamine. The smooth 5 muscle cells were allowed to migrate and grow to confluence over a 3-4 week period. These primary cells were frozen and subsequent passages were grown at 37° C in 5% CO2 in Dulbecco's modified Eagle's medium (DMEM), 10% fetal bovine serum (FBS), and the following additives: 10 Glutamine, 1% penicillin/streptomycin, pyruvate, non-essential amino acids (0.1 mM of each amino acid), and 20 mM Hepes pH 7.4. Cells passed four to six times were used in proliferation assays. For the cell proliferation assays, 24-well tissue culture plates were 15 prepared by coating the wells with 0.2% gelatin and washing once with phosphate-buffered saline (PBS). RASMC were inoculated at 1x104 cells per well in 1 ml of DMEM plus 10% FBS and additives and incubated for 24 hours. The cells were subconfluent when plated at this density. 20 The cells were serum-starved by removing the medium, washing once with PBS, and incubating 48-72 hours in DMEM containing 0.5% FBS plus additives.

In several other systems, cationic lipids have been shown to enhance the bioavailability of oligonucleotides 25 to cells in culture (Bennet, C. F., et al., 1992, Mol. Pharmacology, 41, 1023-1033). In many of the following experiments, ribozymes were complexed with cationic lipids. The cationic lipid, Lipofectamine (a 3:1 (w/w)formulation of DOSPA (2,3-dioleyloxy-N-[2(sperminecarboxamido) ethyl] -N, N-dimethyl-1-propanaminium 30 trifluoroacetate) and dioleoyl phosphatidylethanolamine (DOPE)), was purchased from Life Technologies, Inc. DMRIE (N-[1-(2,3ditetradecyloxy) propyl] - N, N-dimethyl - N-hydroxyethylammonium bromide) was obtained from VICAL. 35 resuspended in CHCl₃ and mixed at a 1:1 molar ratio with dioleoyl phosphatidylethanolamine (DOPE). The CHCl3 was evaporated, the lipid was resuspended in water, vortexed

for 1 minute and bath sonicated for 5 minutes. Ribozyme and cationic lipid mixtures were prepared in serum-free DMEM immediately prior to addition to the cells. DMEM plus additives was warmed to room temperature (about 20-25°C), cationic lipid was added to the final desired concentration and the solution was vortexed briefly. RNA oligonucleotides were added to the final desired concentration and the solution was again vortexed briefly and incubated for 10 minutes at room temperature. In dose response experiments, the RNA/lipid complex was serially diluted into DMEM following the 10 minute incubation.

Serum-starved smooth muscle cells were washed twice with PBS, and the RNA/lipid complex was added. The plates were incubated for 4 hours at 37°C. The medium was then 15 removed and DMEM containing 10% FBS, additives and 10 μM bromodeoxyuridine (BrdU) was added. In some wells, FBS was omitted to determine the baseline of unstimulated proliferation. The plates were incubated at 37°C for 20-24 hours, fixed with 0.3% $\rm H_2O_2$ in 100% methanol, and stained for BrdU incorporation by standard methods. cells that have proliferated and procedure, incorporated BrdU stain brown; non-proliferating cells are counter-stained a light purple. Both BrdU positive and BrdU negative cells were counted under the microscope. 300-600 total cells per well were counted. following experiments, the percentage of the total cells that have incorporated BrdU (% cell proliferation) is presented. Errors represent the range of duplicate wells. Percent inhibition then is calculated from the % cell 30 proliferation values as follows: % inhibition = 100 -100((Ribozyme - 0% serum)/(Control - 0% serum)).

Six hammerhead ribozymes, including the best five ribozymes from the *in vitro* RNA cleavage test (directed against sites 549, 575, 1553, 1598, and 1635) and one with intermediate cleavage levels (directed against site 1597) and their catalytically inactive controls were synthesized and purified as described above. The ribozymes were

28

delivered at a concentration of 0.3 µM, complexed with DMRIE/DOPE such that the cationic lipid charges and the anionic RNA charges were at 1:1 molar ratio. The results, shown in Table IV, demonstrate a considerable range in the 5 efficacy of ribozymes directed against different sites. Five of the six hammerhead ribozymes (directed against sites 549, 575, 1553, 1597, and 1598) significantly inhibit smooth muscle cell proliferation. The control, inactive ribozymes that cannot cleave c-myb RNA due to 10 alterations in their catalytic core sequence fail to inhibit rat smooth muscle cell proliferation. inhibition of cell proliferation by these five hammerhead sequences is due to their ability to cleave c-myb RNA, and not because of any antisense activity. The sixth ribozyme 15 (directed against site 1635) fails to function in smooth muscle cells. This ribozyme cleaved c-myb RNA very efficiently in vitro. In this experiment, 10% FBS (no ribozyme added) induced 64 ± 1% proliferation; 0% FBS produced a background of 9 ± 1% proliferation.

20

Example 7: Ability of exogenously delivered hairpin ribozyme against c-myb to inhibit vascular smooth muscle cell proliferation

In addition to the hammerhead ribozymes tested above, 25 a bipartite hairpin ribozyme (Chowrira, B. M., supra, 1992, Nucleic Acids Res., 20, 2835-2840) was identified that also cleaves c-myb RNA. The effect of this ribozyme on smooth muscle cell proliferation was tested. Ribozymes were delivered at the indicated doses with Lipofectamine 30 at a 1:1 charge ratio. In this experiment, 10% FBS (no ribozyme) induced 87 ± 1% proliferation; 0% FBS produced 5 ± 1% proliferation. The results of a dose-response experiment are shown in Table V. In this example, the control was an irrelevant hammerhead ribozyme. 35 irrelevant ribozyme control contains the same catalytic core sequences, but has binding arms that are directed to a cellular RNA that is not required for smooth muscle cell

proliferation. This control failed to significantly inhibit cell proliferation, demonstrating the sequence specificity of these ribozymes. Another control that could be run is an irrelevant catalytically active ribozyme having the same G:C content as the test ribozyme.

Example 8: Ribozymes inhibit proliferation of rat smooth muscle cells in a dose-dependent fashion.

If the inhibition of proliferation observed in 10 Example 6 is caused by the ribozymes, the level of inhibition should be proportional to the dose of RNA added. aortic smooth muscle cells were assayed for proliferation in the presence of differing doses of two hammerhead ribo-The results shown in Table VI indicate that two 15 hammerhead ribozymes that cleave c-myb RNA at sites 575 and 549 inhibit SMC proliferation in a dose-dependent Ribozymes were delivered with the cationic lipid, Lipofectamine at a 1:1 charge ratio. FBS (no ribozyme) experiment, 10% gave 92 ± 20 proliferation; 0% FBS gave 6 ± 1% proliferation. The control is an active ribozyme directed against an irrelevant mRNA target and shows no inhibition over the dose range The control ribozyme contains the same catalytic core sequences as the active ribozymes but differs in its 25 binding arm sequences (stems I and III in Figure 2c). Thus, ribozyme inhibition of smooth muscle cell proliferation requires sequence-specific binding by the hammerhead arms to c-myb mRNA.

30 Example 9: Delivery of a c-myb Ribozyme With Different Cationic Lipids

The experiment in Table VII shows the response of rat smooth muscle cells to a hammerhead ribozyme that cleaves c-myb RNA at site 575 delivered with two different cationic lipids, DMRIE and Lipofectamine. Similar efficacy is observed with either lipid. 10% FBS (no

30

ribozyme) induced 78 \pm 2% proliferation; 0% FBS produced a background of 6 \pm 1% proliferation.

Example 10: Effect of varying arm-lengths on ribozyme 5 activity.

The exact configuration of each ribozyme can be optimized by altering the length of the binding arms (stems I and III, see Figure 2C). The length of the binding arms may have an effect on both the binding and the catalytic cleavage step (Herschlag, D., 1991, Proc. Natl. Acad. Sci. U S A, 88, 6921-5). For example, Table VIII shows the ability of arm length variants of c-myb hammerhead 575 to inhibit SMC proliferation. Note that the dose used in this experiment (0.1 \(\mu\mathbb{M}\mathbb{M}\)) is 3-fold lower than in previous experiments. At this concentration, the 7/7 arm variant gives relatively little inhibition. In this case, the degree of inhibition increases with concomitant increases in 3:m length.

The optimum arm length may be site-specific and 20 should be determined empirically for each ribozyme. Towards this end, hammerhead ribozymes target with 7 nucleotide binding arms (7/7) and ribozymes with 12 nucleotide binding arms (12/12) targeted to three different cleavage sites were compared.

Ribozymes were delivered at 0.2 μM with the cationic lipid DMRIE at a 1:1 charge ratio of oligonucleotide to cationic lipid as described in Example 6. The data are shown below in Table IX. As can be seen, all three ribozymes demonstrated enhanced inhibition of smooth muscle cell proliferation with twelve nucleotide binding arms. Each ribozyme showed greater inhibition than its catalytically inactive control, again demonstrating that the ribozymes function via their ability to cleave c-myb RNA. In this experiment, 10% stimulation resulted in 54 ± 2 % cell proliferation; unstimulated cells showed 8 ± 0.5 % cell proliferation.

Example 11: Effect of chloroquine on ribozyme activity.

A number of substances that effect the trafficking of macromolecules through the endosome have been shown to enhance the efficacy of DNA delivery to cells. 5 include, but are not limited to, ammonium chloride, carbonyl cyanide p-trifluoromethoxy phenyl hydrazone (FCCP), chloroquine, monensin, colchicine, and viral particles (Cotten, M. et al., 1990, Proc. Natl. Acad. Sci. <u>USA</u> , 87, 4033-4037; Cotten, M. et al.,1993, <u>J. Virol.</u> , 10 67, 3777-3785; Cotten, M. et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 6094-6098; Cristiano, R. J. et al., 1993, Proc. Natl. Acad. Sci. U S A , 90, 2122-6; Curiel, D. T. et al.,1991, Proc. Nat. Acad. Sci. USA , 88, 8850-8854; Ege, T. et al., 1984, Exp. Cell Res. , 155, 9-16; Harris, 15 C. E. et al., 1993, Am. J. Respir. Cell Mol. Biol., 9, 441-7; Seth, P. et al., 1994, J. Virol., 68, 933-40; Zenke, M. et al.,1990, Proc. Natl. Acad. Sci. USA, 87, It is thought that DNA is taken up by cells by endocytosis, resulting in DNA accumulation in endosomes 20 (Akhtar, S. and Juliano, R. L., 1992, Trends Cell Biol., 2, 139-144). Thus, the above agents may enhance DNA expression by promoting DNA release from endosomes. determine whether such agents may augment the functional delivery of RNA and ribozymes to smooth muscle cells, the 25 effects of chloroquine on ribozyme inhibition of smooth muscle cell proliferation were assessed. A ribozyme with twelve nucleotide binding arms that cleaves c-mby RNA was delivered to rat smooth muscle cells as described in Example 6 (0.2 μM ribozyme complexed with DMRIE/DOPE at a 30 1:1 charge ratio). In some cases, 10 μM chloroquine was added upon stimulation of the cells. The addition of chloroquine had no effect on untreated cells (stimulation with 10% serum in the presence or absence of chloroquine resulted in 80.5 \pm 1.5 % and 83 \pm 2% cell proliferation, 35 respectively; unstimulated cells with and without chloroquine showed 7 \pm 0.5% and 7 \pm 1% cell proliferation, respectively). As shown in Table X below, addition of

32

chloroquine augments ribozyme inhibition of smooth muscle cell proliferation two- to three-fold.

Example 12: Effect of a hammerhead ribozyme on human 5 smooth muscle cell proliferation.

The hammerhead ribozyme that cleaves human c-myb RNA at site 549 was tested for its ability to inhibit human aortic smooth muscle cell proliferation. The binding site for this ribozyme is completely conserved between the 10 mouse and human cDNA sequences. Human aortic smooth muscle cells (AOSMC) were obtained from Clonetics and were grown in SmGM (Clonetics). Cells from passage five or six were used for assays. Conditions for the proliferation assay were the same as for the rat cells (see Example 6), 15 except that the cells were plated in SmGM and starved in SmBM plus 0.5% FBS. The ribozyme that cleaves site 549 was delivered at varying doses complexed with the cationic lipid DMRIE at a 1:1 charge ratio. In this experiment, 10% FBS (no ribozyme) induced 57 ± 7% proliferation; the 20 uninduced background was 6 ± 1% proliferation. results in Table XI show that inhibition is observed over a similar concentration range as was seen with rat smooth muscle cells.

25 Example 13: Inhibition by direct addition of a modified, stabilized ribozyme.

A hammerhead ribozyme that cleaves site 575 was chemically synthesized with 12 nucleotide binding arms (sequence ID NO. 127, in Table III). Chemically modified nucleotides were incorporated into this ribozyme that have been shown to enhance ribozyme stability in serum without greatly impacting catalytic activity. (See Eckstein et al., International Publication No. WO 92/07065, Perrault et al., 1990, Nature, 344, 565-568, Pieken, W. et al. 1991, Science, 253, 314-317, Usman, N.; Cedergren, R.J., 1992, Trends in Biochem. Sci., 17, 334-339, Usman, N. et al. US Patent Application 07/829,729, and Sproat, B.

33

European Patent Application 92110298.4 describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules. All these publications are hereby incorporated by reference herein.) 5 modifications used were as follows. All the nucleotides of the ribozyme contained 2'-O-methyl groups with the following exceptions: U_4 and U_7 contained 2'-amino substitutions; G_5 , A_6 , G_8 , G_{12} , and $A_{15.1}$ were 2'-OH ribonucleotides (numbering as in Figure 1). An inactive ribozyme 10 was chemically synthesized in which G_5 and A_{14} were substituted with 2'-O-methyl U. Ribozymes were added to rat smooth muscle cells at the indicated concentrations as per Example 6 except that cationic lipids were omitted. Proliferation was assessed by BrdU incorporation and 15 staining. Table XII shows that the modified ribozyme is capable of inhibiting rat smooth muscle cell proliferation without addition of cationic lipids. In this experiment, 10% serum induced 45 ± 2 % proliferation while uninduced cells showed a background of 2.3 ± 0.1 % proliferation.

20

Optimizing Ribozyme Activity

As demonstrated in the above examples, ribozymes that cleave c-myb RNA are capable of inhibiting 50% of the smooth muscle cells from proliferating in response to serum. This level of inhibition does not represent the maximal effect obtainable with the ribozymes; in each dose response experiment, the highest dose produced the greatest extent of inhibition. Thus, optimizing activity of the ribozyme within the cells and/or optimizing the delivery of the ribozyme to the cells is expected to increase the extent of inhibition.

Tables VIII and IX demonstrate one means of optimizing ribozyme activity. By altering the length of the ribozyme binding arms (stems I and III, see Figure 2c), the ability of the ribozyme to inhibit smooth muscle cell proliferation is greatly enhanced. Ribozymes with increasing arm lengths will be synthesized either chemic-

34

ally in one or two parts (see above and see Mamone, U.S. Serial No. 07/882,689, filed May 11, 1992, hereby incorporated by reference herein) or by in vitro transcription (see Cech et al., U.S. Patent 4,987,071). Ribozymes are 5 chemically synthesized with modifications that prevent their degradation by serum ribonucleases (as described in Example 13, above). When synthesized in two parts, the fragments are ligated or otherwise juxtaposed as described (see original application and Mamone, supra). The effects 10 of the ribozymes on smooth muscle cell proliferation are assessed as in Examples 6 and 12, above. As the length of stems I and III can affect both hybridization to the target and the catalytic rate, the arm length of each ribozyme will be optimized for maximal inhibitory effect 15 in cells. Similarly, the precise sequence of modified nucleotides in the stabilized ribozyme will affect the activity in cells. The nature of the stabilizing modifications will be optimized for maximal inhibitory effect in In each case, activity of the ribozyme that 20 cleaves c-myb RNA will be compared to the activity of its catalytically inactive control (substitution of 2'-0methyl U for G_5 and a 2´-O- methyl U for A_{14}) and to a ribozyme targeted to an irrelevant RNA (same catalytic core, with appropriate modifications, but different binding arm 25 sequences).

Sullivan, et al., supra, describes the general methods for delivery of enzymatic RNA molecules. The data presented in Example 9 indicate that different cationic lipids can deliver active ribozymes to rat smooth muscle cells. In this example, 0.6 µM ribozyme delivered with Lipofectamine produced the same inhibitory effect as 0.3 µM ribozyme delivered with DMRIE. Thus, DMRIE is twice as efficacious as Lipofectamine at delivering active ribozymes to smooth muscle cells. There are a number of other cationic lipids known to those skilled in the art that can be used to deliver nucleic acid to cells, including but not limited to dioctadecylamidoglycylspermine (DOGS),

dioleoxltrimetylammonium propane (DOTAP), N-[1-(2,3-dioleoyloxy)-propyl]-n,n,n-trimethylammoniumchloride (DOTMA), N-[1-(2,3-dioleoyloxy)-propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DORIE), and N-[1-(2,3-dioleoyloxy)propyl]-N,N-dimethyl-N-hydroxypropylammonium bromide (DORIE-HP). Experiments similar to those performed in Example 9 are used to determine which lipids give optimal delivery of ribozymes to smooth muscle cells. Other such delivery methods are known in the art and can be utilized in this invention.

The data described in Example 11 show that ribozyme delivery and efficacy may be augmented by agents that cellular alter endosome metabolism. disrupt or Chloroquine was shown to increase the ability of a 15 ribozyme to inhibit smooth muscle cell proliferation by 2-Experiments similar to those described in to 3-fold. Example 11 can be performed to determine the optimal concentration of chloroquine to be used to augment delivery of ribozymes alone (as in Example 13), or delivery in 20 the presence different cationic lipids (as in Example 9 and described above) or with other delivery agents (as Other agents that disrupt or alter described below). endosomes known to those familiar with the art can be used to similarly augment ribozyme effects. These agents may 25 include, but are not limited to, ammonium chloride, carbonyl cyanide p-trifluoromethoxy phenyl hydrazone (FCCP), chloroquine, monensin, colchicine, amphipathic peptides, viral proteins, and viral particles. compounds may be used in conjunction with ribozymes as 30 described above, may be chemically conjugated directly to ribozymes may be chemically conjugated to liposomes, or may be incorporated with ribozymes in liposome particles (see Sullivan, et al., supra, incorporated by reference herein).

The data presented in Example 13 indicate that the proliferation of smooth muscle cells can be inhibited by the direct addition of chemically stabilized ribozymes.

Presumably, uptake is mediated by passive diffusion of the anionic nucleic acid across the cell membrane. In this case, efficacy could be greatly enhanced by directly coupling a ligand to the ribozyme. The ribozymes are then 5 delivered to the cells by receptor-mediated uptake. Using such conjugated adducts, cellular uptake can be increased by several orders of magnitude without having to alter the phosphodiester linkages necessary for ribozyme cleavage activity.

10

Alternatively, ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, bio-15 degradable nanocapsules, and bioadhesive microspheres. The RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent. Alternative routes of delivery include, but are not limited to, intramuscular injection, aerosol inhalation, 20 oral (tablet or pill form), topical, systemic, ocular, intrathecal delivery. intraperitoneal and/or detailed descriptions of ribozyme delivery and administration are provided in Sullivan, et al., supra and Draper, et al., supra which have been incorporated by reference 25 herein.

Example 14: Phosphorothioate linkages enhance the ability of ribozymes to inhibit smooth muscle cell proliferation.

As the applicant had shown in Example 13, the hammer-30 head (HH) ribozyme that cleaves c-myb RNA at site 575 can be modified to confer resistance to nucleases while maintaining catalytic activity (see also Usman et al., supra). To identify ribozymes with optimal activity in cells, several different chemically-modified ribozymes were 35 directly compared for inhibition of rat smooth muscle cell proliferation. Non-limiting examples of chemically-modified ribozymes used are diagrammed in Figure 9A.

ribozyme (designated "2'-0-methyl") contains ribonucleotide residues at all positions except the 5 terminal nucleotides of each target binding arm (Stems I and III). The ribozyme designated "2'-O-methyl P=S" in addition con-5 tains five phosphorothicate linkages between the terminal nucleotides in each target binding arm. The ribozyme termed "2'-C-allyl iT" contains thirty 2'-O-methyl nucleotides as specified in Example 13. The ribozyme also contains 2'-C-allyl U (Usman et al., 1994 Nucleic Acids Symp. 10 Ser. 31, 163) at the U4 position and 2'-O-methyl U at the U7 position and a 3'-3'-linked inverted thymidine (Ortigao et al., 1992 Antisense Res. & Development 2, 129; Seliger et al., Canadian Patent Application No. 2,106,819) at the 3' end of the molecule (referred to as 2'-C-allyl iT). 15 The fourth ribozyme contains the same 2'-O-methyl and 2'-C-allyl residues described above with the addition of 5 phosphorothicate linkages between the terminal nucleotides in each target binding arm (referred to as "2'-C-allyl P=S").

Ribozymes were delivered to smooth muscle cells as 20 cationic lipid complexes (Sullivan et al., supra). this example, the cationic lipid, Lipofectamine (GIBCO-BRL), was used at a charged lipid concentration of 3.6 μM (see Examples 6 and 9). Active versus inactive forms of 25 each ribozyme were compared to determined whether inhibition is mediated specifically by ribozyme cleavage. shown in Figure 9B, the ribozyme synthesized with the 2'-C-allyl modification and the phosphorothicate linkages demonstrated enhanced inhibition of smooth muscle cell The catalytically inactive form of the 30 proliferation. ribozyme had little effect on cell proliferation; thus, the inhibition observed requires the catalytic activity of the ribozyme. In contrast, ribozymes without the stable 2'-O-methyl- and 2'-C-allyl-modified catalytic core (2'-O-35 methyl and 2'-O-methyl P=S) at best showed only modest inhibition of smooth muscle cell proliferation. stable core chemistry alone was not sufficient to greatly

38

enhance ribozyme-mediated inhibition; without terminal P=S linkages, the 2'-C-allyl-modified ribozyme showed very little specific inhibition when compared to its inactive ribozyme control. These results demonstrate that certain chemical modifications greatly enhance the ability of exogenously-delivered ribozymes to cleave c-myb RNA and impact cell proliferation.

Example 15: Dose response of the chemically modified 10 ribozyme.

Varying doses of the 2´-C-allyl P=S-modified ribozyme were delivered to rat aortic smooth muscle cells as described above. As in previous examples, percent inhibition was calculated by comparing the effects of the active ribozyme to the effects of the inactive ribozyme. As shown in Figure 10, the ribozyme concentration at which cell proliferation is inhibited by 50% (IC₅₀) is approximately 70 nM. From day to day, the IC₅₀ varies between 25 and 100 nM.

20

Example 16: Direct comparison of the effects of ribozymes and antisense DNA.

Ribozymes are thought to be more specific reagents for the inhibition of gene expression than antisense oligonucleotides due to their catalytic activity and strict sequence requirements around the site of cleavage (Castanotto et al., 1994 <u>Adv. in Pharmacol.</u> 25, 289). To test this hypothesis, ribozyme activity was directly compared to the activity of phosphorothioate DNA oligonucleotides that target the same site in the c-myb mRNA. The ribozyme used was the 2´-C-allyl P=S-modified ribozyme described in Example 14, above. This ribozyme binds to a 15 nucleotide long region of the c-myb mRNA. Thus, a 15 nucleotide antisense phosphorothioate DNA molecule was prepared. A phosphorothioate DNA oligonucleotide with a randomly scrambled sequence of the same 15 nucleotides and a 2´-C-allyl P=S-modified ribozyme with randomly scrambled

target binding arm sequences were synthesized as controls (by comparison to the murine c-myb cDNA sequence, the scrambled controls would not be expected to bind any region of the c-myb mRNA). Since longer phosphorothicate DNA oligonucleotides are often utilized as antisense inhibitors (for a review see Wagner, 1994 Science 372, 333), a symmetrically placed, 25 nucleotide phosphorothicate DNA antisense oligonucleotide and its scrambled sequence control were also synthesized. The ribozymes and the antisense oligonucleotides were delivered to rat smooth muscle cells as complexes with the cationic lipid, Lipofectamine, and serum-stimulated smooth muscle cell proliferation was measured subsequently.

As shown in Figure 11, the 2'-C-allyl P=S-modified 15 ribozyme demonstrated greater inhibition of smooth muscle cell proliferation than either of the antisense oligonucleotides. Furthermore, the scrambled arm ribozyme and inactive ribozyme controls demonstrated less non-specific inhibition than either of the scrambled sequence antisense 20 control oligonucleotides. In fact, the non-specific inhibition demonstrated by the 25 nucleotide phosphorothicate molecule completely masked any specific effect of the Similar results have been obtained antisense molecule. with phosphorothicate DNA targeting other sites in the c-Thus, a ribozyme that cleaves c-myb RNA is a 25 myb mRNA. more potent and more specific inhibitor of smooth muscle cell proliferation than phosphorothicate antisense DNA molecules.

30 Example 17: Chemically-modified ribozymes targeting different sites in the c-myb mRNA specifically inhibit smooth muscle cell proliferation.

If the observed inhibition of smooth muscle cell proliferation is mediated by ribozyme cleavage of c-myb mrna, then other ribozymes that target the same mrna should have the same effect. Two other ribozymes targeting two disparate sites in the c-myb mrna (sites 549 and

1553, ribozyme Seq. ID Nos. 102 and 112) were synthesized with the 2'-C-allyl P=S modifications as described in Example 14. Inactive ribozyme controls also were synthesized corresponding to each new target sequence. 5 Chemically-modified ribozymes targeting sites 549, 575, and 1553 were delivered to rat smooth muscle cells and ability to inhibit serum-stimulated cell Equivalent levels proliferation was assessed. inhibition are obtained with active ribozymes targeting 10 sites 549, 575 and 1553 (see Figure 12). inactive ribozymes inhibited cell proliferation. ribozymes targeting other mRNA sequences not present in cmyb or ribozymes with scrambled arm sequences also fail to inhibit smooth muscle cell proliferation (see Figure 12). 15 Thus, inhibition of cell proliferation requires catalytically active ribozyme that can bind to accessible c-myb mRNA sequences and is likely due to the reduction of c-myb mRNA levels by ribozyme cleavage.

Examples 18 and 19 describe experiments designed to 20 determine the position and minimum number of phosphorothioate residues required for efficacy.

Example 18: Effect of position of phosphorothicate linkages on ribozyme inhibition.

Ribozymes targeting c-myb site 575 were synthesized 25 with the 2'-C-allyl modification and with phosphorothicate linkages between various nucleotides in the ribozyme. One ribozyme contained a total of 10 phosphorothioate linkages, 5 in Stem I and 5 in Stem III, identical to the 30 ribozyme described in Examples 14 through 17 above (referred to as 10 P=S 5' and 3' in Figure 13A). ribozyme contained only 5 phosphorothicate linkages in Stem III (5 P=S 3' in Figure 13A). Another ribozyme contained 5 phosphorothioate linkages between the 6 35 nucleotides comprising the last base pair of stem II and the GAAA loop (5 P=S loop in Figure 13A). The fourth ribozyme contained 5 phosphorothioate linkages in stem I

41

(5 P=S 5° in Figure 13A). The latter two ribozymes also were synthesized with the 3°-3° thymidine at the 3° end to help protect the ribozyme from 3° exonucleases (Ortigao et al., 1992 <u>Antisense Res. & Development</u> 2, 129; Seliger et al., Canadian Patent Application No. 2,106,819). The structure of these four different ribozymes is diagrammed in Figure 13A. Inactive ribozyme controls were synthesized for each individual ribozyme. The active and inactive ribozymes were applied to rat smooth muscle cells as RNA/Lipofectamine complexes and their effects on cell proliferation were measured.

Referring to Figure 13B, the ribozyme containing 5 phosphorothicate linkages in Stem I and the 3' inverted thymidine inhibited smooth muscle cell proliferation as 15 well as the parent ribozyme with 10 total phosphorothicate None of the other ribozymes linkages. demonstrated significant differences between active and inactive Therefore, the 3' inverted T can effectively controls. substitute for the 5 phosphorothioate linkages in Stem Phosphorothicate linkages in the loop position lead inhibition of smooth muscle cell non-specific proliferation, while phosphorothicate linkages in Stem I are necessary for enhanced efficacy in cells. ally, these results suggest that 3'-end modifications, 25 such as iT, is desirable to minimize the amount of phosphorothicate contained in the ribozymes in order to minimize toxicity and facilitate chemical synthesis, while maintaining protection from endogenous 3'-exonuclease digestion.

30

Example 19: Minimizing phosphorothicate linkages in Stem I.

Fewer phosphorothicate linkages in the ribozyme will reduce the complexity and cost of chemical synthesis.

Furthermore, phosphorothicate DNA molecules are known to have some undesirable and non-specific effects on cellular functions (for a review see Wagner, <u>supra</u>); reducing the

42

phosphorothicate linkages in these RNA molecules is expected to enhance their specificity. A series of ribozymes targeting c-myb were synthesized to determine how many phosphorothicate linkages in Stem I are required for 5 optimal ribozyme activity. The ribozymes contained 5, 4, 2, or 1 phosphorothicate linkage(s) in Stem I, beginning with the phosphodiester bond between the first and second nucleotides and proceeding 3'. Each ribozyme contained the 2'-O-methyl modifications, the U_4 2'-C-allyl 10 nucleotide, and the inverted T nucleotide at the 3' end as described above. Activity of each of these ribozymes was compared to the activity of the ribozyme with phosphorothicate linkages, 5 each in Stems I and III (referred to as 10 P=S in Figure 14). Active and inactive 15 ribozymes were applied to rat smooth muscle cells as complexes with Lipofectamine and their effects on smooth muscle cell proliferation were measured in two separate experiments. The results are diagrammed in Figure 14. Ribozymes with 10, 5, and 4 phosphorothicate linkages 20 showed equivalent efficacy. Ribozymes with fewer than four phosphorothicate linkages also showed efficacy, but level of inhibition of smooth muscle proliferation was modestly reduced.

25 Example 20: Varying the length of Stems I and III

Ribozymes that cleave c-myb RNA at position 575 were synthesized with varying arm lengths. Each ribozyme contained 4 phosphorothioate linkages at the 5° end, 2°-0-methyl and 2°-C-allyl modifications and an inverted thymidine nucleotide at the 3° end as described above. Figure 15 shows the effects of these ribozymes upon rat smooth muscle cell proliferation. Ribozymes were delivered at 100 nM with cationic lipid. Ribozymes with 6/6, 7/7 and 5/10 arms (where x/y denotes the nucleotides in Stem I/nucleotides in Stem III; see Figure 2) all showed comparable efficacy. As shown in Figure 15, ribozymes with longer arm lengths tended to demonstrate more non-

43

specific inhibition (the inactive ribozyme controls with longer binding arms inhibited smooth muscle cell proliferation) when compared to ribozymes with shorter binding arms. From these data, it appears that ribozymes with 5 6/6, 7/7, 5/10, 10/5, 8/8 and 10/10 nucleotide arms all specifically inhibit smooth muscle cell proliferation, optimal inhibition, however, is observed with 6/6, 7/7 and 5/10 nucleotide arms.

10 Example 21: Ribozymes with different modified nucleotides inhibit smooth muscle cell proliferation.

Ribozymes containing seven nucleotides in both Stems I and III, four phosphorothicate residues at the 5' end and a 3'-3' inverted thymidine at the 3' end, were 15 synthesized with various modified nucleotides at the U_4 and U, positions within the core of a HH ribozyme. All of the modified catalytic core chemistries retained ribozyme activity and demonstrated enhanced stability to serum nucleases (Usman et al., 1994 supra). The ribozyme termed 20 U4 2'-C-allyl contains a 2'-C-allyl uridine at the U4 position and a 2^{-0} -methyl nucleotide at the U_7 position. The ribozyme termed U4,U7 2'-amino contains a 2'-amino nucleotide at both U4 and U7. The ribozyme termed U4 2'fluoro contains a 2'-fluoro-modified nucleotide at U4 and 25 2'-O-methyl at U7. The ribozyme termed U4 6-methyl contains a 6-methyl uridine nucleotide at U4 and 2'-Omethyl at U7. The ribozyme termed U4 deoxyabasic contains a deoxyribose moeity and lacks a base at U4 (Beigelman et al., 1994 Bioorganic & Med. Chem. Letters 4, 1715) and 2'-30 O-methyl at U7. Active and inactive versions of each of the chemically-modified ribozymes were applied to rat smooth muscle cells using Lipofectamine as described above. As diagrammed in Figure 16, all of the nucleasestable, chemically-modified ribozymes demonstrated signif-35 icant inhibition of rat smooth muscle cell proliferation. Thus, the requirements for ribozyme activity in smooth muscle cells appear to be a catalytically core that is

44

modified to minimize endonucleolytic degradation and modifications at the 5´ and 3´ ends which may prevent exonucleolytic degradation.

Chemical modifications described in this invention are meant to be non-limiting examples, and those skilled in the art will recognize that other modifications (base, sugar and phosphate modifications) to enhance nuclease stability of a ribozyme can be readily generated using standard techniques and are hence within the scope of this invention.

Example 22: Ribozyme inhibition of pig smooth muscle cell proliferation.

Of the commonly used animal models of intimal hyper-15 plasia after balloon angioplasty, the pig model is believed to be most predictive of human disease (Steele et al., 1985 Circ. Res. 57, 105; Ohno et al., 1994 Science 265, 781; Baringa, 1994 Science 265, 738). Therefore, we wished to assess the ability of c-myb ribozymes to inhibit 20 pig smooth muscle cell proliferation. Yucatan pig smooth muscle cells (YSM) were obtained from Dr. Elizabeth Nabel (University of Michigan Medical Center) and were grown in Dulbecco's modified Eagle's medium as described (see Example 6). The YSM cells were starved for 72 hours in 25 DMEM with 0.1% FBS. Active and inactive ribozymes (four phosphorothioate linkages at the 5' end, 2'-C-allylmodified core and 3'-3' inverted thymidine at the 3' end) were applied as RNA/Lipofectamine complexes as described in the above examples. Proliferation was stimulated with 30 serum and assessed by BrdU incorporation. Figure 17 shows that a ribozyme dose of as low as 75 nM can inhibit pig smooth muscle cell proliferation by as much as 60%. same chemical modifications of the ribozymes (2'-modified, stable core, 5' phosphorothioate linkages and 3' inverted 35 thymidine) are required to obtain significant and reproducible inhibition of pig smooth muscle cell proliferation

45

as were shown to be required for inhibition of rat cells in the above Examples.

Example 23: Ribozyme inhibition of human smooth muscle cell proliferation.

In Example 12, we demonstrated that a minimally modified ribozyme directed against c-myb site 549 could significantly inhibit human smooth muscle cell proliferation. The 2'-C-allyl and phosphorothicate-modified 10 ribozyme targeting c-myb site 575 characterized above was applied to human smooth muscle cells as RNA/Lipofectamine Inactive ribozyme and inactive, scrambled arm ribozymes were applied as controls. At 200 nM, the active ribozyme inhibits human smooth muscle proliferation by 15 greater than 75% while the inactive ribozyme inhibits proliferation by only 38%. The ribozyme with scrambled binding arm sequences fails to inhibit. At 100 nM, the active ribozyme still demonstrates significant inhibition while neither the inactive or scramble controls inhibit 20 cell proliferation (see Figure 18). Thus, the active ribozyme identified in these studies mediates significant inhibition of human smooth muscle cell proliferation and represents a novel therapeutic for restenosis and/or vascular disease.

Example 24: Delivery of c-myb ribozymes to vessels in vivo.

The ribozyme that cleaves c-myb RNA at site 575 was synthesized in two parts (Mamone, supra), the internal 5'
30 end was labeled with ³³P using polynucleotide kinase and the two fragments were ligated with RNA ligase. The resulting RNA was an intact ribozyme with an internal ³³P label. This internally-labeled ribozyme was delivered to balloon injured rat carotid arteries as described (Simons et al., 1992 Nature 359, 67). Rats were anesthetized and the carotid artery was surgically exposed. The external carotid was dissected and a 2F Fogarty balloon catheter

46

was inserted and directed into the carotid artery. Injury was caused by repeated (3 times) inflation and retraction of the balloon. The injured region was isolated by ligatures and a cannula was inserted in the external 5 carotid. Ribozymes alone (two rat vessels) ribozyme/Lipofectamine complexes (two rat vessels) were applied to the injured vessel through the cannula and were left in the vessel for twenty minutes. After application, blood flow was restored by removal of the ligatures for 10 five minutes and the vessels were harvested and processed as described below.

Half of the vessel was frozen in liquid nitrogen, crushed into a fine powder, and RNA was extracted using standard protocols. The extracted RNA was applied to a denaturing polyacrylamide qels and subjected electrophoresis. Autoradiography of the gel permitted detection of the 33P label; the amount of radioactivity in each band was quantitated using a Phosphor-imaging system. The amount of extracted and intact ribozyme was calculated 20 by direct comparison to labeled ribozyme controls run on the same gel. The percentage of the ribozyme delivered intact could be estimated by quantifying the percentage of label that co-migrates with the intact ribozyme controls. After delivery of ribozymes in phosphate-buffered saline 25 (PBS), 3% of the 33P label was recovered from the rat vessels and >90% of the label was present in the form of intact ribozyme. After delivery of ribozyme RNA/Lipofectamine complexes, 10 to 11% of the 33P label was recovered from the rat vessels and 20 to 90% of the label 30 was present in the form of intact ribozyme. The significant uptake of the intact ribozyme demonstrates that local delivery of modified ribozymes to arterial walls is feasible.

The other half of each vessel was fixed in PBS-35 buffered 2% glutaraldehyde, sectioned onto slides and coated with emulsion. After autoradiography for four days, the emulsion was developed and the sections were

47

stained with hematoxylin and eosin by standard techniques (Simons et al., 1992 <u>supra</u>). Inspection of the sections showed a majority of the grains present over the medial smooth muscle cells after application of the ribozyme.

5 Some ³³P label could be detected in the underlying adventitia as well. Similar density and distribution of grains was observed when the ribozyme was delivered with or without Lipofectamine. These data demonstrate that ribozyme can penetrate the injured vessel wall and is in close apposition or within the underlying medial smooth muscle cells. Thus, therapeutic ribozymes can be locally delivered to vessels for the treatment of vascular disease.

Similar experiments were performed in pig iliofemoral After balloon injury, a ribozyme, internally 15 labeled with ³³P as described above, was delivered with a double balloon catheter device (Nabel and Nabel, supra; Ohno et al., 1994 supra). After 20 minutes, blood flow was restored by deflating the balloons. The vessels were harvested after an additional hour or the surgical injuries were sutured and the vessels harvested one day Harvested vessels were sectioned, subjected to autoradiography and stained. One hour after delivery, the majority of the 33P label could be detected in the media, overlying or within smooth muscle cells. Some label was 25 also detected at the luminal surface of the vessel and in the adventitial tissue. One day after delivery, grains could be still be detected associated with remaining No major differences in medial smooth muscle cells. density or distribution was observed between ribozymes 30 delivered with or without Lipofectamine. These data demonstrate that ribozymes can be locally delivered to smooth muscle cells of injured vessels in a large animal model that is clinically relevant to human vascular disease.

PCT/US95/06368 WO 95/31541

48

Example 25: Ribozyme-mediated decrease in the level of cmyb RNA in rat smooth muscle cells.

To determine whether a ribozyme catalyzes the cleavage of c-myb RNA in a mammalian cell, applicant has used 5 a sensitive quantitative competitive polymerase chain reaction (QCPCR) to assay the level of c-myb RNA in rat smooth muscle cells treated with either catalytically active or inactive ribozyme.

Rat smooth muscle cells (RASMC) were treated with 10 ribozymes as described above. Following the ribozyme treatment for 4h, cells were stimulated with 10% serum (in the presence or absence of BrdU). After 24h, cells were harvested for further analysis. Cells, that were treated with BrdU, were assayed for proliferation as described 15 above. Cells, that were not treated with BrdU, were used for the QCPCR assay.

The following is a brief description of the QCPCR technique used to quantitate levels of c-myb mRNA from RASMC, normalizing to the housekeeping gene, GAPDH. method was adapted from Thompson et al, <u>Blood</u> Briefly, total RNA was isolated from RASMC using the Guanidinium isothiocyanate technique of Chomczynski and Sacchi (Analytical Biochemistry, 162:156, 1987). order to construct a deletion competitor and control wild-25 type RNA, a cDNA clone of the rat c-myb message, referred to as pc8myb, was used. The competitor RNA comprises a deletion of 50 bases, making it smaller than the wild-type cellular RNA, and spansfrom nucleotide 428 to nucleotide 753.

A house-keeping gene, GAPDH, that is constitutively expressed by the RASMC, was used as an internal control for QCPCR assay. A deletion competitor and wild-type controls for GAPDH were made the same way as for c-myb. GAPDH-containing plasmid (pTri-GAPDH) was purchased from 35 Ambion. The GAPDH competitor is also a deletion mutant, The GAPDH competitor was used to lacking 50 bases. quantitate the amount of this housekeeping gene in each

sample, thus allowing for a confirmation of cellular RNA's integrity and for the efficiency of RNA isolation. All quantitations for the level of c-myb expression were normalized to the level of GAPDH expression in the same sample of cells.

Referring to Fig. 19, RASMC that were treated with a stabilized catalytically active 575 HH ribozyme did not proliferate well. There was greater than 70 % inhibition of RASMC proliferation when compared with approximately 25% inhibition of cell proliferation by a catalytically inactive version of the 575 HH ribozyme. The level of inhibition of RASMC proliferation correlates very well with the greater than 70 % decrease in the level of c-myb RNA. This shows that the inhibition of smooth muscle cell proliferation is directly mediated by the cleavage of c-myb RNA by a ribozyme in RASMC.

Figure 20 shows what Applicant presently believes is an optimal ribozyme configuration

20 Example 26: Inhibition of smooth muscle cell proliferation by 2-5A antisense chimera.

By "2-5A antisense chimera" is meant, an antisense oligonucleotide containing a 5' phosphorylated 2'-5'-linked adenylate residues. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5A-dependent ribonuclease which in turn cleaves the target RNA (Torrence et al., 1993 Proc. Natl. Acad. Sci. USA 90, 1300).

RNAs containing 2'-5' Adenosine with a terminal 5'
30 phosphate has been shown to activate RNAse L (Torrence et al., 1993 <u>Proc. Natl. Acad. Sci. USA 90</u>, 1300). The terminal phosphate is required for efficient activation of RNAse L. Ribozymes targeting c-myb site 575 were synthesized with 2-5A moieties on the 5' end, with and without the terminal 5' phosphate. The ribozyme-2-5A chimera was complexed with LipofectAMINE and assayed on rat aortic smooth muscle cells (RASMC) as described above.

50

As shown in Figure 21, when no terminal phosphate is present, the active ribozyme [575 inactive Rz+ inactive (A)4] functions similarly to a normal active ribozyme lacking a 2-5A modification (575 active Rz). An inactive 5 ribozyme core with 5' phosphate-2-5A [575 inactive Rz+ active P(A)4] shows significant inhibition relative to the controls, but has significantly lower activity when compared with an active ribozyme. A molecule that contains both an active ribozyme core and 5' phosphate-10 contining 2-5A [575 active Rz+active P (A)4] shows even greater inhibition than that obtained by either mechanism individually, inhibiting the smooth muscle cell proliferation to baseline levels (0% FBS). Thus the ribozyme and 2-5A anitisense chimera together show an additive effect 15 in inhibiting RASMC proliferation.

<u>Use of Ribozymes That Cleave c-myb RNA to Treat Restenosis.</u>

The above discussion demonstrates, by way of example, 20 how ribozymes that inhibit smooth muscle cell proliferation are delivered directly, or through the use of Preferably, ribozymes expression vectors, to vessels. cleaving c-myb RNA are delivered to vessels at the time of coronary angioplasty. Local delivery during intervention 25 can be achieved through the use of double balloon catheters , porous balloon catheters , balloon catheters coated with polymers (Riessen, R., et al., 1993, Human Gene Therapy, 4, 749-758), or biopolymer stents (Slepian and Schindler, U.S. Patent # 5,213,580). In the above 30 examples, ribozymes were identified that could inhibit roughly half of the smooth muscle cells in culture from proliferating in response to the growth factors present in serum. A corresponding 50% (or even lower) reduction in intimal thickening will significantly improve the outcome 35 of patients undergoing coronary angioplasty.

Use of Ribozymes Targeting c-myb to Treat Cancer

Overexpression of the c-myb oncogene has been reported in a number of cancers, including leukemias, neuroblastomas, and lung, colon, and breast carcinomas 5 (Torelli, G., et al., 1987, <u>Cancer Res.</u>, 47, 5266-5269; Slamon, D. J., et al., 1986, Science, 233, 203-206; Slamon, D. J., et al., 1984, Science, 224, 256-262; Thiele, C. J., et al., 1988, Mol. Cell. Biol., 8, 1677-Griffin, C. A. and Baylin, S. B., 1985, Cancer 10 Res., 45, 272-275; Alitalo, K., et al., 1984, Proc. Natl. Acad. Sci. USA, 81, 4534-4538). Thus, inhibition of c-myb expression can reduce cell proliferation of a number of Indeed, in tissue culture, treatment of colon adenocarcinoma, neurectodermal, and myeloid leukemia cell 15 lines with antisense c-myb oligonucleotides inhibits their proliferation (Melani, C., et al., 1991, Cancer Res., 51, 2897-2901; Raschella, F., et al., 1992, Cancer Res., 52, 4221-4226; Anfossi, G., et al., 1989, Proc. Natl. Acad. Sci. USA, 86, 3379-3383). Furthermore, myeloid cells from 20 patients with chronic myelogenous leukemia and acute myelogenous leukemia are differentially sensitive to c-myb antisense oligonucleotides (Calabretta, B., et al., 1991, Proc. Natl. Acad. Sci. USA, 88, 2351-2355). Ratajczak, et al. (1992, Proc. Natl. Acad. Sci. USA, 89, 11823-11827) 25 treated mice bearing human leukemia cells with c-myb antisense oligonucleotides and significantly prolonged their survival and reduced their tumor burden. reduction of c-myb expression in leukemic cells in tissue culture and in vivo can reduce their proliferative potential.

While the above studies demonstrated that antisense oligonucleotides can efficiently reduce the expression of c-myb in cancer cells and reduce their ability to proliferate and spread, this invention describes enzymatic RNAs, or ribozymes, shown to cleave c-myb RNA. Such ribozymes, with their catalytic activity and increased site specificity (see above), are likely to represent more

PCT/US95/06368 WO 95/31541

52

potent and safe therapeutic molecules than antisense oligonucleotides for the treatment of cancer as well as restenosis. In the present invention, ribozymes are shown to inhibit smooth muscle cell proliferation. From those 5 practiced in the art, it is clear from the examples described, that the same ribozymes may be delivered in a to cancer cells to block similar fashion proliferation.

In a preferred embodiment, autologous bone marrow 10 from patients suffering with acute myelogenous leukemia or chronic myelogenous leukemia are treated with ribozymes that cleave c-myb RNA. Ribozymes will be delivered to the autologous bone marrow cells ex vivo at 0.1 to 50 μM with or without forming complexes of the ribozymes with 15 cationic lipids, encapsulating in liposomes or alternative delivery agents. After several days, the proliferative capacity of the leukemic cells in the patients bone marrow The patient's endogenous bone marrow will be reduced. cells will be depleted by chemical or radiation treatments 20 and their bone marrow reconstituted with the ex vivo treated cells. In such autologous bone marrow reconstitution treatments of leukemic patients, recurrence of the disease can be caused by proliferation of leukemic cells present in the transplanted bone marrow. Significantly 25 reducing the proliferative potential of the leukemic cells by treating with ribozymes that cleave c-myb RNA will reduce the risk of recurrent leukemia.

Diagnostic uses

30

Ribozymes of this invention may be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of c-myb RNA in a cell. The close relationship between ribozyme activity and the structure of the target RNA allows the detection 35 of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes described in this

PCT/US95/06368 WO 95/31541

53

invention, one may map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and 5 define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets may be defined as important mediators of These experiments will lead to better the disease. treatment of the disease progression by affording the 10 possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of 15 ribozymes of this invention are well known in the art, and include detection of the presence of mRNAs associated with c-myb_related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.

In a specific example, ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme will be used to identify mutant RNA in the As reaction controls, synthetic substrates of 25 sample. both wild-type and mutant RNA will be cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of The cleavage products the "non-targeted" RNA species. 30 from the synthetic substrates will also serve to generate size markers for the analysis of wild-type and mutant RNAs Thus each analysis will in the sample population. require two ribozymes, two substrates and one unknown sample which will be combined into six reactions. 35 presence of cleavage products will be determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a

54

polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., c-myb) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios will be correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.

Other embodiments are within the following claims.

55

Table I: Characteristics of Ribozymes

Group I Introns

Size: ~200 to >1000 nucleotides

Requires a U in the target sequence immediately 5' of the 5 cleavage site

Binds 4-6 nucleotides at 5' side of cleavage site.

Over 75 known members of this class. Found in <u>Tetrahymena</u> thermophila rRNA, fungal mitochondria, chloroplasts, phage T4, blue-gree algae, and others.

10

RNAseP RNA (M1 RNA)

Size: ~290 to 400 nucleotides

RNA portion of a ribonucleoprotein enzyme. Cleaves tRNA precursors to form mature tRNA.

15 Roughly 10 known members of this group are all bacterial in origin.

Hammerhead Ribozyme

Size: ~13 to 40 nucleotides.

20 Requires the target sequence UH immediately 5' of the cleavage site.

Binds a variable number nucleotides on both sides of the cleavage site.

14 known members of this class. Found in a number of 25 plant pathogens (virusoids) that use RNA as the infectious agent (Figure 1)

Hairpin Ribozyme

Size: ~50 nucleotides.

30 Requires the target sequence GUC immediately 3' of the cleavage site.

Binds 4-6 nucleotides at 5' side of the cleavage site and a variable number to the 3' side of the cleavage site.

Only 3 known member of this class. Found in three plant

35 pathogen (satellite RNAs of the tobacco ringspot virus, arabis mosaic virus and chicory yellow mottle virus) which uses RNA as the infectious agent (Figure 3).

Hepatitis Delta Virus (HDV) Ribozyme

Size: 50-60 nucleotides (at present).

Cleavage of target RNAs recently demonstrated.

Sequence requirements not fully determined.

5 Binding sites and structural requirements not fully determined, although no sequences 5' of cleavage site are required.

Only 1 known member of this class. Found in human HDV (Figure 4).

10

Neurospora VS RNA Ribozyme

Size: -144 nucleotides (at present)

Cleavage of target RNAs recently demonstrated.

Sequence requirements not fully determined.

15 Binding sites and structural requirements not fully determined. Only 1 known member of this class. Found in Neurospora VS RNA (Figure 5).

Table II: Ribozyme catalyzed cleavage of c-myb RNA

20	Hammerhea	d Sites		% Cleava	<u>.</u>
	Cleavage	Sequence	Target Sequence	<u>Mouse</u>	<u>Human</u>
	<u>Site</u>	ID No.		<u>c-myb</u>	<u>c-myb</u>
				RNA	<u>RNA</u>
	310	79	CGUCACU U GGGGAAA	28.5	0.1
	549	80	GUCUGUU A UUGCCAA	87.4	91.6
25	551	81	CUGUUAU U GCCAAGC	56.8	82.4
	575	82	GGAGAAU U GGAAAAC	93.9	91.3
	634	83	AAAACCU C CUGGACA	68.4	87.1
	738	84	UAAUGCU A UCAAGAA	78.1	0.01
	839	85	CAAGCUU C CAGAAGA	27.2	0.01
30	936	86	UUCCUAU U ACCACAU	61.8	60.6
	1017	87	UGUCCCU C AGCCAGC	40.3	0.1
	1082	88	AGCGAAU A AAGGAAU	55.2	89.2
	1363	89	UUAGAAU U UGCAGAA	11.6	0.1
	1553	90	CAGCUAU C AAAAGGU	87.1	92.5
35	1597	91	ACACCAU U CAAACAU	71.2	62.7
	1598	92	CACCAUU C AAACAUG	79.6	85.5

20	<u> Hammerhea</u>	<u>d Sites</u>		% Cleava	<u>re</u>
	<u>Cleavage</u>	<u>Sequence</u>	Target Sequence	Mouse	<u>Human</u>
	<u>Site</u>	ID No.		<u>c-myb</u>	c-myb
				<u>RNA</u>	<u>RNA</u>
	1635	93	AUACGGU C CCCUGAA	84.4	82.3
	1721	94	CUGGAAU U GUUGCUG	62.1	79.3
	1724	95	GAAUUGU U GCUGAGU	65.6	86
	1895	96	AUAUUCU U ACAAGCU	79.1	66.2
5	1909	97	UCCGUUU U AAUGGCA	31.1	0.1
	1943	98	ACAAUGU U CUCAAAG	66.1	80
	Hairpin R	ibozymes			
	1632	99	ACG GUCC CCUGAAG	92.8	84.6
10	2231	100	ACA GUUG AGAGCAG	0.1	0.1

a The nucleotide numbers given correspond to the nucleotide just 5° of the ribozyme cleavage site in the human c-myb sequence taken from Westin, et al., supra (GenBank Accession No. X52125). All but two of the sequences (310; I.D. No. 79 and 2231; I. D. No. 100) overlap sequences in Table I.

Table III: Sequences of ribozymes used in these studies.

20	Target	Sequence	Ribozyme Sequence
	<u>Site</u>	ID No.	
	<u>Hamme</u>	rhead ribo	zymes with 7 nucleotide binding arms
	310	101	UUUCCCCCUGAUGAGGCCGAAAGGCCGAAAGUGACG
	549	102	UUGGCAACUGAUGAGGCCGAAAAGGCCGAAAACAGAC
25	551	103	GCUUGGCCUGAUGAGGCCGAAAGGCCGAAAUAACAG
	575	104	GCUUUCCCUGAUGAGGCCGAAAGGCCGAAAUUCUCC
	634	105	UGUCCAGCUGAUGAGGCCGAAAGGUUUU
	738	106	UUCUUGACUGAUGAGGCCGAAAGGCCGAAAGCAUUA
	839	107	UCUUCUGCUGAUGAGGCCGAAAAGCUCG
30	936	108	AUGUGGUCUGAUGAGGCCGAAAGGCCGAAAUAGGAA
	1017	109	GCCGGCUCUGAUGAGCGCGAAAGCGCGAAAGGGACG
	1082	110	GCUCCUUCUGAUGAGGCCGAAAGGCCGAAAUUCGCU
	1363	111	UUCUGCACUGAUGAGGCCGAAAGGCCGAAAUUCUAA
	_		

	1553	112	ACCUUUUCUGAUGAGGCCGAAAGGCCGAAAUAGCUG
	1597	113	AUGUUUGCUGAUGAGGCCGAAAGGCCGAAAUGGUGU
	1598	114	CAUGUUUCUGAUGAGGCCGAAAAGGCCGAAAAUGGUG
	1635	115	UUCAGGGCUGAUGAGGCCGAAAGGCCGAAACCGUAU
5	1721	116	CAGCAACCUGAUGAGGCCGAAAGGCCGAAAUUCCAG
	1724	117	ACUCAGCCUGAUGAGGCCGAAAGGCCGAAACAAUUC
	1895	118	AGCUUGUCUGAUGAGGCCGAAAGGCCGAAAGAAUAU
	1909	119	UGUCAUUCUGAUGAGGCCGAAAGGCCGAAAAACAGA
	1943	120	CUUUGAGCUGAUGAGGCCGAAAGGCCGAAACAUUGU
10		Bimo	olecular Hairpin Ribozymes
	1632ª	121	5' Fragment:
			UCAGGGAGAAGUAUACCAGAGAAACACACGCG
			3' Fragment: CGCGUGGUACAUUACCUGGUA
	2231 ^a	122	5' Fragment:
			GCUCUCAGAAGUUGACCAGAGAAACACACGCG
			3' Fragment: CGCGUGGUACAUUACCUGGUA
	Hammerh	nead riboyz	mes with 6, 8, 9, 10, and 12
	nucleot	ide bindir	ng arms
15	575	123	CUUUCCCUGAUGAGGCCGAAAGGCCGAA AUUCUC
	6/6 ^b		
	575	124	UGCUUUCCCUGAUGAGGCCGAAAGGCCGAA
	8/8		AUUCUCCC
	575	125	CUGCUUUCCCUGAUGAGGCCGAAAGGCCGAA
20	9/9		AUUCUCCCU
	575	126	ACUGCUUUCCCUGAUGAGGCCGAAAGGCCGAA
	10/10		AUUCUCCCUU
	575	127	ACACUGCUUUCCCUGAUGAGGCCGAAAGGCCGAA
	12/12		AUUCUCCCUUUU
25	549	128	AGUGCUUGGCAACUGAUGAGGCCGAAAGGCCGAA
	12/12		AACAGACCAACG
	1553	129	GAUUGACCUUUUCUGAUGAGGCCGAAAGGCCGAA
	12/12		AUAGCUGGAGUU
	-		

aThe hairpin ribozymes were synthesized in two pieces as indicated. The two oligonucleotides were annealed and tested for activity against the c-myb RNA as described above. See Mamone, Ribozyme synthesis, filed May 11,

1992, U.S.S.N. 07/882,689, hereby incorporated by reference herein.

bDesignation of the ribozymes with different arm lengths is a/b where (a) represents the nucleotides in stem I and 5 (b) represents the nucleotides in stem III (see Figure 1).

Table IV: Comparison of the effects six hammerhead ribozymes, that cleave c-myb RNA, on smooth muscle cell proliferation

10		Inactive Ribozyme	Active Ribozyme	% Inhibition
	Ribozyme Site	% Cell Proliferation	% Cell Proliferation	(Active vs. Inactive)
	549	68 ± 1	59.5 ± 1.5	14 ± 4
	575	66.5 ± 0.5	54.5 ± 1.5	21 ± 3
15	1553	68.5 ± 0.5	52 ± 1	28 ± 1
	1597	66 ± 1	·57 ± 3	16 ± 7
	1598	67 ± 1	58.5 ± 0.5	15 ± 1
	1635	62.5 ± 2.5	64 ± 1	0

20

Table V: Dose Response of c-myb Hairpin Ribozyme 1632

	Control Ribozyme	Ribozyme 1632	
Ribozyme	ક	₹ .	% Inhibition
Dose (µM)	Proliferation	Proliferation	(vs. control)
0.05	86.5 ± 1.5	88 ± 5	. 0
0.15	89.5 ± 1.5	78.5 ± 2.5	10 ± 5
0.45	87.5 ± 1	66.5 ± 1.5	25 ± 4

60

Table VI: Dose Response of *c-myb* Hammerhead Ribozymes 575 and 549

		Control	Ribozyme 575		Ribozyme 549	
		Ribozyme				
	Ribo-	% cells	% cells	8	% cells	ofo
5	zyme	in S	in S	Inhibi-	in S	Inhibi-
	Dose	phase	phase	tion	phase	tion
	(μM)			(vs.		(vs.
	,			con-		con-
				trol)		trol)
	0.05	89±5	77.5±1.5	14±8	92±1	0
	0.15	90±1	68.5±1.5	26±2	84±2	9±4
10	0.45	91.5±0.5	59±5	38±7	76.5±2.5	18±5

Table VII: Delivery of c-myb Ribozyme 575 by Two Different Cationic Lipids

15		Delivery	with DMRIE/DOPE		
	Inactive		Active		
		Ribozyme 575	Ribozyme 575		
	Ribozyme	% cells in S	% cells in S	% Inhibition	
	Dose (μM)	phase	phase	(vs. inactive)	
	0.075	79 ± 6	74.5 ± 1.5	6 ± 6	
20	0.15	79.5 ± 0.5	67 ± 1	17 ± 4	
	0.30	77 ± 1	57 ± 2	28 ± 5	
	Delivery with Lipofectamine				
		Inactive	Active		
		Ribozyme 575	Ribozyme 575		
	Ribozyme	% cells in S	% cells in S	% Inhibition	
2 5	Dose (µM)	phase	phase	(vs. inactive)	
	0.075	81 ± 1	83 ± 1	0	
	0.15	79 ± 3	71 ± 1	11 ± 4	
	0.30	82 ± 1	68.5 ± 1.5	18 ± 4	
	0.60	75 ± 1	59.5 ± 3.5	22 ± 7	

Table VIII: Arm Length Variations of *c-myb* Hammerhead Ribozyme 575

	Arm Length (base	% cells in S	% Inhibition (vs.
	pairs)	phase	Inactive 7/7)
5	6/6	62 ± 1	4 ± 4
	7/7	60 ± 1	7 ± 3
	8/8	60.5 ± 0.5	6 ± 2
	9/9	53.5 ± 0.5	18 ± 2
	10/10	55 ± 1	16 ± 4
10	12/12	48 ± 1	28 ± 3

Table IX: Hammerhead ribozymes with 7 vs. 12-nucleotide binding arms targeting three different sites

Ribozyme	Length of	Inactive	Active	*
Target	Binding	Ribozyme	Ribozyme	Inhibition
Site	Arms	(% Cell	(% Cell	(Active
	:	Prolifera-	Prolifera-	vs.
		tion)	tion)	Inactive)
575	7/7	51.5 ± 0.5	43 ± 0.5	24 ± 5
575	12/12	50.5 ± 3.5	37 ± 0.5	37 ± 4
549	7/7	49.5 ± 0.5	44.5 ± 1.5	21 ± 7
549	12/12	48.5 ± 1.5	35 ± 2	41 ± 7
1553	7/7	49.5 ± 0.5	43.5 ± 2.5	23 ± 9
1553	12/12	49 ± 1	33.5 ± 1.5	45 ± 6
	Target Site 575 575 549 549 1553	Target Binding Site Arms 575 7/7 575 12/12 549 7/7 549 12/12 1553 7/7	Target Binding Ribozyme (% Cell Proliferation) 575 7/7 51.5 ± 0.5 575 12/12 50.5 ± 3.5 549 7/7 49.5 ± 0.5 549 12/12 48.5 ± 1.5 1553 7/7 49.5 ± 0.5	Target Site Arms (% Cell (% Cell Proliferation) 575 7/7 51.5 ± 0.5 43 ± 0.5 575 12/12 50.5 ± 3.5 37 ± 0.5 549 7/7 49.5 ± 0.5 44.5 ± 1.5 549 12/12 48.5 ± 1.5 35 ± 2 1553 7/7 49.5 ± 0.5 43.5 ± 2.5

Table X: Effect of chloroquine on ribozyme inhibition of smooth muscle cell proliferation

Ribozyme	Chloro-	Inactive	Active	% Inhibi-
į	quine	Ribozyme	Ribozyme	tion
	(μM)	(% Cell	(% Cell	(Active
}		Prolifera-	Prolifera-	vs.
		tion)	tion)	inactive)
575, 12/12	0	81.8 ± 0.5	74 ± 1	10 ± 2
575, 12/12	10	83 ± 4	62.5 ± 0.5	28 ± 6

62

Table XI: Inhibition of Human Aortic Smooth Muscle Cells by c-myb Ribozyme 549

	Inactive Ribozyme	Active Ribozyme	% Inhibition
Ribozyme Dose (µM)	% Prolifera- tion	% Prolifera- tion	(active vs.
0.075	55 ± 2	40.5 ± 4.5	30 ± 13
0.15	53 ± 10	42 ± 1	23 ± 23
0.30	53 ± 7	32.5 ± 4.5	44 ± 22

5

25

10 Table XII: Inhibition of Rat Smooth Muscle Cell Proliferation by Direct Addition of a Chemically-Modified c-myb Ribozyme 575

		Inactive Ribozyme	Active Ribozyme	% Inhibition	
15	Ribozyme Dose (µM)	% Prolifera-	% Prolifera- tion	(active vs. inactive)	
	0.22	42 ± 3	36 ± 0.5	15 ± 8	
	0.67	48 ± 3	35 ± 2	28 ± 9	
	2.0	52 ± 5	25 ± 1	54 ± 7	

20 <u>Table XIII: Human c-myb Hairpin Ribozyme and Target Sequences</u>

Posi- tion	Ribozyme Sequence	Target		
104	CCCUCCC AGAA GCGC	GCGCA GCC		
	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GGGGAGGG		
148	ACCGACCG AGAA GCCG	CGGCA GCC		
	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	ceeuceeu		
185	GCGCGGCG AGAA GCGG	cccc ccc		
	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CGCCGCGC		
528	ACGUUUCG AGAA GUAU	AUACG GUC		
	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CGAAACGU		

	Posi- tion	Ribozyme Sequence	Target
	715	UUCGUCCA AGAA GUAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CUACU GCC UGGACGAA
	1025	AUGGCUGC AGAA GCUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAGCU GCC GCAGCCAU
	1187	CUGGUGUG AGAA GCAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UUGCC GAC CACACCAG
	1532	GUUCUAAA AGAA GUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AUACU GUU UUUAGAAC
5	1632	CUUCAGGG AGAA GUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AUACG GUC CCCUGAAG
	1836	GGUAUUCA AGAA GUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GGACA GUC UGAAUACC
	1852	UCUGCGUG AGAA GUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAACU GUU CACGCAGA
	1861	CAGGCGAG AGAA GCGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	ACGCA GAC
	1993	UGCUACAA AGAA GCAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UUGCA GCC UUGUAGCA
10	2231	CUGCUCUC AGAA GUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAACA GUU GAGAGCAG
	2316	UUAGGUAA AGAA GUUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UAACA GUC UUACCUAA
	3068	AAUUAUAA AGAA GUCA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UGACU GUU UUAUAAUU
	3138	AUCCAUGC AGAA GUUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAACU GUU GCAUGGAU
	3199	GUUCUUAA AGAA GUGA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UCACU GCC UUAAGAAC
15	3264	UGCUACAA AGAA GUAA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UUACU GCC UUGUAGCA

Table XIV: Human c-myb Hammerhead Ribozyme and Target Sequence

			Biborumo Comiondo				
	nt.	Target Sequence	Ribozyme Sequence				
	Posi-						
5	<u>tion</u>						
	14		GAGGAGGA CUGAUGA X GAA ACAGGUUG				
	15	AACCUGUU U CCUCCUCC	GGAGGAGG CUGAUGA X GAA AACAGGUU				
	16	ACCUGUUU C CUCCUCCU					
	19	nennnccn c cnccnccn	AGGAGGAG CUGAUGA X GAA AGGAAACA				
10	22	nncencen e encennen	AGAAGGAG CUGAUGA X GAA AGGAGGAA				
	25	cnccnccn c cnncnccn	AGGAGAAG CUGAUGA X GAA AGGAGGAG				
	28	cuccuccu u cuccuccu	AGGAGGAG CUGAUGA X GAA AGGAGGAG				
	29	nccnccan c nccnccnc	GAGGAGGA CUGAUGA X GAA AAGGAGGA				
	31	cuccuucu c cuccuccu	AGGAGGAG CUGAUGA X GAA AGAAGGAG				
15	34	cuucuccu c cuccuccg	CGGAGGAG CUGAUGA X GAA AGGAGAAG				
	37	CUCCUCCU C CUCCGUGA	UCACGGAG CUGAUGA X GAA AGGAGGAG				
	40	CUCCUCCU C CGUGACCU	AGGUCACG CUGAUGA X GAA AGGAGGAG				
	49	CGUGACCU C CUCCUCCU	AGGAGGAG CUGAUGA X GAA AGGUCACG				
	52	GACCUCCU C CUCCUCUU	AAGAGGAG CUGAUGA X GAA AGGAGGUC				
20	55	cuccuccu c cucuuucu	AGAAAGAG CUGAUGA X GAA AGGAGGAG				
	58	cuccuccu c uuucuccu	AGGAGAAA CUGAUGA X GAA AGGAGGAG				
	60	CCUCCUCU U UCUCCUGA	UCAGGAGA CUGAUGA X GAA AGAGGAGG				
	61	CUCCUCUU U CUCCUGAG	CUCAGGAG CUGAUGA X GAA AAGAGGAG				
	62	UCCUCUUU C UCCUGAGA	UCUCAGGA CUGAUGA X GAA AAAGAGGA				
25	64	CUCUUUCU C CUGAGAAA	UUUCUCAG CUGAUGA X GAA AGAAAGAG				
	75	GAGAAACU U CGCCCCAG	CUGGGGCG CUGAUGA X GAA AGUUUCUC				
	76	AGAAAÇUU C GCCCCAGC	GCUGGGGC CUGAUGA X GAA AAGUUUCU				
	156	AGCCCGGU C GGUCCCCG	CGGGGACC CUGAUGA X GAA ACCGGGCU				
	160	CGGTCGGT C CCCGCGGC	GCCGCGGG CUGAUGA X GAA ACCGACCG				
30	170	CCGCGGCU C UCGCGGAG	CUCCGCGA CUGAUGA X GAA AGCCGCGG				
	172	GCGGCUCU C GCGGAGCC	GGCUCCGC CUGAUGA X GAA AGAGCCGC				
	224	CACAGCAU A UAUAGCAG	CUGCUAUA CUGAUGA X GAA AUGCUGUG				
	226	CAGCAUAU A UAGCAGUG	CACUGCUA CUGAUGA X GAA AUAUGCUG				
	228	GCAUAUAU A GCAGUGAC	GUCACUGC CUGAUGA X GAA AUAUAUGC				
35	253	UGAGGACU U UGAGAUGU	ACAUCUCA CUGAUGA X GAA AGUCCUCA				
	254	GAGGACUU U GAGAUGUG	CACAUCUC CUGAUGA X GAA AAGUCCUC				
	274	CCAUGACU A UGAUGGGC	GCCCAUCA CUGAUGA X GAA AGUCAUGG				
	287	GGGCUGCU U CCCAAGUC	GACUUGGG CUGAUGA X GAA AGCAGCCC				
	288	GGCUGCUU C CCAAGUCU	AGACUUGG CUGAUGA X GAA AAGCAGCC				

	nt.	Target Sequence	Ribozyme Sequence
	<u>Posi-</u>		
5	<u>tion</u>		
	295	UCCCAAGU C UGGAAAGC	GCUUUCCA CUGAUGA X GAA ACUUGGGA
	306	GAAAGCGU C ACUUGGGG	CCCCAAGU CUGAUGA X GAA ACGCUUUC
	310	GCGUCACU U GGGGAAAA	UUUUUCCCC CUGAUGA X GAA AGUGACGC
	392	UGGAAAGU U AUUGCCAA	UUGGCAAU CUGAUGA X GAA ACUUUCCA
5	393	GGAAAGUU A UUGCCAAU	AUUGGCAA CUGAUGA X GAA AACUUUCC
	395	AAAGUUAU U GCCAAUUA	UAAUUGGC CUGAUGA X GAA AUAACUUU
	402	UUGCCAAU U AUCUCCCG	CGGGAGAU CUGAUGA X GAA AUUGGCAA
	403	UGCCAAUU A UCUCCCGA	UCGGGAGA CUGAUGA X GAA AAUUGGCA
	405	CCAAUUAU C UCCCGAAU	AUUCGGGA CUGAUGA X GAA AUAAUUGG
10	414	UCCCGAAU C GAACAGAU	AUCUGUUC CUGAUGA X GAA AUUCGGGA
	452	CAGAAAGU A CUAAACCC	GGGUUUAG CUGAUGA X GAA ACUUUCUG
	455	AAAGUACU A AACCCUGA	UCAGGGUU CUGAUGA X GAA AGUACUUU
	467	CCUGAGCU C AUCAAGGG	CCCUUGAU CUGAUGA X GAA AGCUCAGG
	470	GAGCUCAU C AAGGGUCC	GGACCCUU CUGAUGA X GAA AUGAGCUC
15	477	UCAAGGGU C CUUGGACC	GGUCCAAG CUGAUGA X GAA ACCCUUGA
	480	AGGGUCCU U GGACCAAA	UUUGGUCC CUGAUGA X GAA AGGACCCU
	498	AAGAAGAU C AGAGAGUG	CACUCUCU CUGAUGA X GAA AUCUUCUU.
	509	AGAGUGAU A GAGCUUGU	ACAAGCUC CUGAUGA X GAA AUCACUCU
	515	AUAGAGCU U GUACAGAA	UUCUGUAC CUGAUGA X GAA AGCUCUAU
20	518	GAGCUUGU A CAGAAAUA	UAUUUCUG CUGAUGA X GAA ACAAGCUC
	526	ACAGAAAU A CGGUCCGA	UCGGACCG CUGAUGA X GAA AUUUCUGU
	531	AAUACGGU C CGAAACGU	ACGUUUCG CUGAUGA X GAA ACCGUAUU
	540	CGAAACGU U GGUCUGUU	AACAGACC CUGAUGA X GAA ACGUUUCG
	544	ACGUUGGU C UGUUAUUG	CAAUAACA CUGAUGA X GAA ACCAACGU
25	548	UGGUCUGU U AUUGCCAA	UUGGCAAU CUGAUGA X GAA ACAGACCA
	549	GGUCUGUU A UUGCCAAG	CUUGGCAA CUGAUGA X GAA AACAGACC
	551	UCUGUUAU U GCCAAGCA	UGCUUGGC CUGAUGA X GAA AUAACAGA
	562	CAAGCACU U AAAGGGGA	UCCCCUUU CUGAUGA X GAA AGUGCUUG
	563	AAGCACUU A AAGGGGAG	CUCCCCUU CUGAUGA X GAA AAGUGCUU
30	575	GGGAGAAU U GGAAAACA	UGUUUUCC CUGAUGA X GAA AUUCUCCC
	588		CCUCUCCC CUGAUGA X GAA ACAUUGUU
	603	GGUGGCAU A ACCACUUG	CAAGUGGU CUGAUGA X GAA AUGCCACC
	615	ACUUGAAU C CAGAAGUU	AACUUCUG CUGAUGA X GAA AUUCAAGU
	623	CCAGAAGU U AAGAAAAC	GUUUUCUU CUGAUGA X GAA ACUUCUGG
35	624		GGUUUUCU CUGAUGA X GAA AACUUCUG
_	634	GAAAACCU C CUGGACAG	

	nt.	Target Sequence	Ribozyme Sequence
_	<u>Posi-</u>		
5	<u>tion</u>		
	659	GACAGAAU U AUUUACCA	UGGUAAAU CUGAUGA X GAA AUUCUGUC
	660	ACAGAAUU A UUUACCAG	CUGGUAAA CUGAUGA X GAA AAUUCUGU
	662	AGAAUUAU U UACCAGGO	GCCUGGUA CUGAUGA X GAA AUAAUUCU
	663	GAAUUAUU U ACCAGGCA	. UGCCUGGU CUGAUGA X GAA AAUAAUUC
5	664	AAUUAUUU A CCAGGCAC	GUGCCUGG CUGAUGA X GAA AAAUAAUU
	704	GCAGAAAU C GCAAAGCU	AGCUUUGC CUGAUGA X GAA AUUUCUGC
	713	GCAAAGCU A CUGCCUGG	CCAGGCAG CUGAUGA X GAA AGCUUUGC
	732	GAACUGAU A AUGCUAUC	GAUAGCAU CUGAUGA X GAA AUCAGUUC
	738	AUAAUGCU A UCAAGAAC	GUUCUUGA CUGAUGA X GAA AGCAUUAU
10	740	AAUGCUAU C AAGAACCA	UGGUUCUU CUGAUGA X GAA AUAGCAUU
	756	ACUGGAAU U CUACAAUG	CAUUGUAG CUGAUGA X GAA AUUCCAGU
	757	CUGGAAUU C UACAAUGO	GCAUUGUA CUGAUGA X GAA AAUUCCAG
	759	GGAAUUCU A CAAUGCGU	ACGCAUUG CUGAUGA X GAA AGAAUUCC
	768	CAAUGCGU C GGAAGGUC	GACCUUCC CUGAUGA X GAA ACGCAUUG
15	776	CGGAAGGU C GAACAGGA	UCCUGUUC CUGAUGA X GAA ACCUUCCG
	789	AGGAAGGU U AUCUGCAG	CUGCAGAU CUGAUGA X GAA ACCUUCCU
	790	GGAAGGUU A UCUGCAGG	CCUGCAGA CUGAUGA X GAA AACCUUCC
	792	AAGGUUAU C UGCAGGAG	CUCCUGCA CUGAUGA X GAA AUAACCUU
	802	GCAGGAGU C UUCAAAAG	CUUUUGAA CUGAUGA X GAA ACUCCUGC
20	804	AGGAGUCU U CAAAAGCC	GGCUUUUG CUGAUGA X GAA AGACUCCU
	805	GGAGUCUU C AAAAGCCA	UGGCUUUU CUGAUGA X GAA AAGACUCC
	838	CACAAGCU U CCAGAAGA	UCUUCUGG CUGAUGA X GAA AGCUUGUG
	839	ACAAGCUU C CAGAAGAA	UUCUUCUG CUGAUGA X GAA AAGCUUGU
	852	AGAACAGU C AUUUGAUG	CAUCAAAU CUGAUGA X GAA ACUGUUCU
25	855	ACAGUCAU U UGAUGGGU	ACCCAUCA CUGAUGA X GAA AUGACUGU
	856	CAGUCAUU U GAUGGGUU	AACCCAUC CUGAUGA X GAA AAUGACUG
	864	UGAUGGGU U UUGCUCAG	CUGAGCAA CUGAUGA X GAA ACCCAUCA
	865	GAUGGGUU U UGCUCAGG	CCUGAGCA CUGAUGA X GAA AACCCAUC
	866	AUGGGUUU U GCUCAGGC	GCCUGAGC CUGAUGA X GAA AAACCCAU
30	870	GUUUUGCU C AGGCUCCG	CGGAGCCU CUGAUGA X GAA AGCAAAAC
	876	CUCAGGCU C CGCCUACA	UGUAGGCG CUGAUGA X GAA AGCCUGAG
	882	CUCCGCCU A CAGCUCAA	UUGAGCUG CUGAUGA X GAA AGGCGGAG
	888	CUACAGCU C AACUCCCU	AGGGAGUU CUGAUGA X GAA AGCUGUAG
	893	GCUCAACU C CCUGCCAC	GUGGCAGG CUGAUGA X GAA AGUUGAGC
35	917	CCCACUGU U AACAACGA	UCGUUGUU CUGAUGA X GAA ACAGUGGG
	928	CAACGACU A UUCCUAUU	AAUAGGAA CUGAUGA X GAA AGUCGUUG

	nt.	Target Sequence	Ribozyme Sequence
	Posi-		
5	tion		
_	930	ACGACUAU U CCUAUUAC	GUAAUAGG CUGAUGA X GAA AUAGUCGU
	931	CGACUAUU C CUAUUACC	GGUAAUAG CUGAUGA X GAA AAUAGUCG
	934	CUAUUCCU A UUACCACA	UGUGGUAA CUGAUGA X GAA AGGAAUAG
	936	AUUCCUAU U ACCACAUU	AAUGUGGU CUGAUGA X GAA AUAGGAAU
5	937	UUCCUAUU A CCACAUUU	AAAUGUGG CUGAUGA X GAA AAUAGGAA
_	944	UACCACAU U UCUGAAGC	GCUUCAGA CUGAUGA X GAA AUGUGGUA
	945	ACCACAUU U CUGAAGCA	UGCUUCAG CUGAUGA X GAA AAUGUGGU
	946	CCACAUUU C UGAAGCAC	GUGCUUCA CUGAUGA X GAA AAAUGUGG
	962	CAAAAUGU C UCCAGUCA	UGACUGGA CUGAUGA X GAA ACAUUUUG
10	964	AAAUGUCU C CAGUCAUG	CAUGACUG CUGAUGA X GAA AGACAUUU
	969	UCUCCAGU C AUGUUCCA	UGGAACAU CUGAUGA X GAA ACUGGAGA
	974	AGUCAUGU U CCAUACCC	GGGUAUGG CUGAUGA X GAA ACAUGACU
	975	GUCAUGUU C CAUACCCU	AGGGUAUG CUGAUGA X GAA AACAUGAC
	979	UGUUCCAU A CCCUGUAG	CUACAGGG CUGAUGA X GAA AUGGAACA
15	986	UACCCUGU A GCGUUACA	UGUAACGC CUGAUGA X GAA ACAGGGUA
	991	UGUAGCGU U ACAUGUAA	UUACAUGU CUGAUGA X GAA ACGCUACA
	992	GUAGCGUU A CAUGUAAA	UUUACAUG CUGAUGA X GAA AACGCUAC
	1002	AUGUAAAU A UAGUCAAU	AUUGACUA CUGAUGA X GAA AUUUACAU
	1004	GUAAAUAU A GUCAAUGU	ACAUUGAC CUGAUGA X GAA AUAUUUAC
20	1007	AAUAUAGU C AAUGUCCC	GGACAUU CUGAUGA X GAA ACUAUAUU
	1013	GUCAAUGU C CCUCAGCC	GGCUGAGG CUGAUGA X GAA ACAUUGAC
	1017	AUGUCCCU C AGCCAGCU	AGCUGGCU CUGAUGA X GAA AGGGACAU
	1037	GCAGCCAU U CAGAGACA	UGUCUCUG CUGAUGA X GAA AUGGCUGC
	1048	GAGACACU A UAAUGAUG	CAUCAUUA CUGAUGA X GAA AGUGUCUC
25	1050	GACACUAU A AUGAUGAA	UUCAUCAU CUGAUGA X GAA AUAGUGUC
	1082	AAGCGAAU A AAGGAAUU	AAUUCCUU CUGAUGA X GAA AUUCGCUU
	1090	AAAGGAAU U AGAAUUGC	GCAAUUCU CUGAUGA X GAA AUUCCUUU
	1091	AAGGAAUU A GAAUUGCU	AGCAAUUC CUGAUGA X GAA AAUUCCUU
	1096	AUUAGAAU U GCUCCUAA	
30	1100	GAAUUGCU C CUAAUGUC	
	1103	UUGCUCCU A AUGUCAAC	
	1108	CCUAAUGU C AACCGAGA	
	1124	AAUGAGCU A AAAGGACA	
	1184	ACCACCAU U GCCGACCA	
35	1203	CCAGACCU C AUGGAGAC	
	1223	GCACCUGU U UCCUGUUU	AAACAGGA CUGAUGA X GAA ACAGGUGC

	nt. Posi-	Target Sequence	Ribozyme Sequence
5	tion		
_	1224	CACCUGUU U CCUGUUU	G CAAACAGG CUGAUGA X GAA AACAGGUG
	1225	ACCUGUUU C CUGUUUG	G CCAAACAG CUGAUGA X GAA AAACAGGU
	1230	UUUCCUGU U UGGGAGA	A UUCUCCCA CUGAUGA X GAA ACAGGAAA
	1231	UUCCUGUU U GGGAGAA	C GUUCUCCC CUGAUGA X GAA AACAGGAA
5	1246	ACACCACU C CACUCCA	U AUGGAGUG CUGAUGA X GAA AGUGGUGU
	1251	ACUCCACU C CAUCUCU	G CAGAGAUG CUGAUGA X GAA AGUGGAGU
	1255	CACUCCAU C UCUGCCA	G CUGGCAGA CUGAUGA X GAA AUGGAGUG
	1257	CUCCAUCU C UGCCAGO	G CGCUGGCA CUGAUGA X GAA AGAUGGAG
	1269	CAGCGGAU C CUGGCUC	C GGAGCCAG CUGAUGA X GAA AUCCGCUG
10	1276	UCCUGGCU C CCUACCU	G CAGGUAGG CUGAUGA X GAA AGCCAGGA
	1280	GGCUCCCU A CCUGAAG	A UCUUCAGG CUGAUGA X GAA AGGGAGCC
	1297	AAGCGCCU C GCCAGCA	A UUGCUGGC CUGAUGA X GAA AGGCGCUU
	1316	UGCAUGAU C GUCCACC	A UGGUGGAC CUGAUGA X GAA AUCAUGCA
	1319	AUGAUCGU C CACCAGG	G CCCUGGUG CUGAUGA X GAA ACGAUCAU
15	1334	GGCACCAU U CUGGAUA	A UUAUCCAG CUGAUGA X GAA AUGGUGCC
	1335	GCACCAUU C UGGAUAA	J AUUAUCCA CUGAUGA X GAA AAUGGUGC
	1341	UUCUGGAU A AUGUUAA	G CUUAACAU CUGAUGA X GAA AUCCAGAA
	1346	GAUAAUGU U AAGAACC	J AGGUUCUU CUGAUGA X GAA ACAUUAUC
	1347	AUAAUGUU A AGAACCU	C GAGGUUCU CUGAUGA X GAA AACAUUAU
20	1355	AAGAACCU C UUAGAAU	J AAUUCUAA CUGAUGA X GAA AGGUUCUU
	1357	GAACCUCU U AGAAUUU	G CAAAUUCU CUGAUGA X GAA AGAGGUUC
	1358	AACCUCUU A GAAUUUG	GCAAAUUC CUGAUGA X GAA AAGAGGUU
	1363	CUUAGAAU U UGCAGAA	A UUUCUGCA CUGAUGA X GAA AUUCUAAG
	1364	UUAGAAUU U GCAGAAA	
25	1376	GAAACACU C CAAUUUA	J AUAAAUUG CUGAUGA X GAA AGUGUUUC
	1381	ACUCCAAU U UAUAGAU	J AAUCUAUA CUGAUGA X GAA AUUGGAGU
	1382	CUCCAAUU U AUAGAUU	
	1383	UCCAAUUU A UAGAUUC	J AGAAUCUA CUGAUGA X GAA AAAUUGGA
	1385	CAAUUUAU A GAUUCUU	
30	1389	UUAUAGAU U CUUUCUU.	
	1390	UAUAGAUU C UUUCUUA	
	1392	UAGAUUCU U UCUUAAA	
	1393	AGAUUCUU U CUUAAAC	
	1394	GAUUCUUU C UUAAACA	
35	1396	UUCUUUCU U AAACACU	
	1397	UCUUUCUU A AACACUU	GAAGUGUU CUGAUGA X GAA AAGAAAGA

	nt.	Target Sequence	Ribozyme Sequence
	Posi-		
5	<u>tion</u>		
	1404	UAAACACU U CCAGUAAC	GUUACUGG CUGAUGA X GAA AGUGUUUA
	1405	AAACACUU C CAGUAACC	GGUUACUG CUGAUGA X GAA AAGUGUUU
	1410	CUUCCAGU A ACCAUGAA	UUCAUGGU CUGAUGA X GAA ACUGGAAG
	1423	UGAAAACU C AGACUUGG	CCAAGUCU CUGAUGA X GAA AGUUUUCA
5	1429	CUCAGACU U GGAAAUGC	GCAUUUCC CUGAUGA X GAA AGUCUGAG
	1440	AAAUGCCU U CUUUAACU	AGUUAAAG CUGAUGA X GAA AGGCAUUU
	1441	AAUGCCUU C UUUAACUU	AAGUUAAA CUGAUGA X GAA AAGGCAUU
	1443	UGCCUUCU U UAACUUCC	GGAAGUUA CUGAUGA X GAA AGAAGGCA
	1444	GCCUUCUU U AACUUCCA	UGGAAGUU CUGAUGA X GAA AAGAAGGC
10	1445	CCUUCUUU A ACUUCCAC	GUGGAAGU CUGAUGA X GAA AAAGAAGG
	1449	CUUUAACU U CCACCCCC	GGGGGUGG CUGAUGA X GAA AGUUAAAG
	1450	UUUAACUU C CACCCCCC	GGGGGGUG CUGAUGA X GAA AAGUUAAA
	1460	ACCCCCCU C AUUGGUCA	UGACCAAU CUGAUGA X GAA AGGGGGGU
	1463	CCCCUCAU U GGUCACAA	UUGUGACC CUGAUGA X GAA AUGAGGGG
15	1467	UCAUUGGU C ACAAAUUG	CAAUUUGU CUGAUGA X GAA ACCAAUGA
	1474	UCACAAAU U GACUGUUA	UAACAGUC CUGAUGA X GAA AUUUGUGA
	1481	UUGACUGU U ACAACACC	GGUGUUGU CUGAUGA X GAA ACAGUCAA
	1482	UGACUGUU A CAACACCA	UGGUGUUG CUGAUGA X GAA AACAGUCA
	1492	AACACCAU U UCAUAGAG	CUCUAUGA CUGAUGA X GAA AUGGUGUU
20	1493	ACACCAUU U CAUAGAGA	UCUCUAUG CUGAUGA X GAA AAUGGUGU
	1494	CACCAUUU C AUAGAGAC	GUCUCUAU CUGAUGA X GAA AAAUGGUG
	1497	CAUUUCAU A GAGACCAG	CUGGUCUC CUGAUGA X GAA AUGAAAUG
	1518	UGAAAACU C AAAAGGAA	UUCCUUUU CUGAUGA X GAA AGUUUUCA
	1530	AGGAAAAU A CUGUUUUU	AAAAACAG CUGAUGA X GAA AUUUUCCU
25	1535	AAUACUGU U UUUAGAAC	GUUCUAAA CUGAUGA X GAA ACAGUAUU
	1536	AUACUGUU U UUAGAACO	GGUUCUAA CUGAUGA X GAA AACAGUAU
	1537	UACUGUUU U UAGAACCO	GGGUUCUA CUGAUGA X GAA AAACAGUA
	1538	ACUGUUUU U AGAACCCC	GGGGUUCU CUGAUGA X GAA AAAACAGU
	1539	CUGUUUUU A GAACCCCA	
30	1551	CCCCAGCU A UCAAAAGG	CCUUUUGA CUGAUGA X GAA AGCUGGGG
	1553	CCAGCUAU C AAAAGGUC	
	1561	CAAAAGGU C AAUCUUAG	CUAAGAUU CUGAUGA X GAA ACCUUUUG
	1565	AGGUCAAU C UUAGAAAG	CUUUCUAA CUGAUGA X GAA AUUGACCU
	1567	GUCAAUCU U AGAAAGCU	
35	1568	UCAAUCUU A GAAAGCU	
	1578	AAAGCUCU C CAAGAACU	AGUUCUUG CUGAUGA X GAA AGAGCUUU

	nt. Posi-	Target Segu	ence	Ribozyme	Sequenc	<u>e</u>		
5	tion							
	1587	CAAGAACU C	רוואראררא	HEGHEHAG	CHIGALICA	v	CAA	AGUUCUUG
	1590	GAACUCCU A						AGGAGUUC
	1597	UACACCAU U						AUGGUGUA
	1598	ACACCAUU C						AAUGGUGU
5	1610	CAUGCACU U						AGUGCAUG
	1617	UUGCAGCU C						AGCUGCAA
	1625	CAAGAAAU U						AUUUCUUG
	1626	AAGAAAUU A						AAUUUCUU
	1635	AAUACGGU C						ACCGUAUU
10	1649	AAGAUGCU A						AGCAUCUU
10	1653	UGCUACCU C	-					AGGUAGCA
	1663	GACACCCU C						AGGGUGUC
	1665	CACCCUCU C						
	1668	CCUCUCAU C						AGAGGGUG AUGAGAGG
15	1670	UCUCAUCU A						AGAUGAGA
13	1673	CAUCUAGU A						ACUAGAUG
	1680	UAGAAGAU C						AUCUUCUA
	1694	GAUGUGAU C						AUCACAUC
	1705	ACAGGAAU C						AUUCCUGU
20	1714	UGAUGAAU C						AUUCAUCA
	1721	UCUGGAAU U						AUUCCAGA
	1724	GGAAUUGU U		AACUCAGC				
	1732	UGCUGAGU U U		UUUCUUGA				
	1733	GCUGAGUU U (UUUUCUUG				
25	1753	ACCACCCU U A		UCUUCAGU				
	1754	CCACCCUU A		UUCUUCAG				
	1766	AAGAAAAU C		UCUUGUUU				
	1783	GGUGGAAU C I		CAGUUGGA				
	1785	UGGAAUCU C C		AUCAGUUG				
30	1794	CAACUGAU A		UCCUGAUU				
30	1798	UGAUAAAU C		AGUUUCCU				
	1807	AGGAAACU U C		AGCAGAAG				
	1808	GGAAACUU C U		GAGCAGAA				
		AAACUUCU U C		GUGAGCAG				
35	1810	AACUUCUU C U		UGUGAGCA				
دد								
	1816	CUUCUGCU C A	SCACCACO .	AGUGGUGU	CUGAUGA	Л	GAA	AGCAGAAG

	nt	Target Sequence	Ribozyme Sequence
	<u>nt.</u> Posi-	Tarvet bequease	<u> </u>
5	tion		
•	1839	GGGACAGU C UGAAUACC	GGUAUUCA CUGAUGA X GAA ACUGUCCC
	1845	GUCUGAAU A CCCAACUG	CAGUUGGG CUGAUGA X GAA AUUCAGAC
	1855	CCAACUGU U CACGCAGA	UCUGCGUG CUGAUGA X GAA ACAGUUGG
	1856	CAACUGUU C ACGCAGAC	GUCUGCGU CUGAUGA X GAA AACAGUUG
5	1867	GCAGACCU C GCCUGUGG	CCACAGGC CUGAUGA X GAA AGGUCUGC
_	1890	CACCGAAU A UUCUUACA	UGUAAGAA CUGAUGA X GAA AUUCGGUG
	1892	CCGAAUAU U CUUACAAG	CUUGUAAG CUGAUGA X GAA AUAUUCGG
	1893	CGAAUAUU C UUACAAGC	GCUUGUAA CUGAUGA X GAA AAUAUUCG
	1895	AAUAUUCU U ACAAGCUC	GAGCUUGU CUGAUGA X GAA AGAAUAUU
10	1896	AUAUUCUU A CAAGCUCC	GGAGCUUG CUGAUGA X GAA AAGAAUAU
	1903	UACAAGCU C CGUUUUAA	UUAAAACG CUGAUGA X GAA AGCUUGUA
	1907	AGCUCCGU U UUAAUGGC	GCCAUUAA CUGAUGA X GAA ACGGAGCU
	1908	GCUCCGUU U UAAUGGCA	UGCCAUUA CUGAUGA X GAA AACGGAGC
	1909	CUCCGUUU U AAUGGCAC	GUGCCAUU CUGAUGA X GAA AAACGGAG
15	1910	UCCGUUUU A AUGGCACC	GGUGCCAU CUGAUGA X GAA AAAACGGA
	1924	ACCAGCAU C AGAAGAUG	CAUCUUCU CUGAUGA X GAA AUGCUGGU
	1943	GACAAUGU U CUCAAAGC	GCUUUGAG CUGAUGA X GAA ACAUUGUC
	1944	ACAAUGUU C UCAAAGCA	UGCUUUGA CUGAUGA X GAA AACAUUGU
•	1946	AAUGUUCU C AAAGCAUU	AAUGCUUU CUGAUGA X GAA AGAACAUU
20	1954	CAAAGCAU U UACAGUAC	GUACUGUA CUGAUGA X GAA AUGCUUUG
	1955	AAAGCAUU U ACAGUACC	GGUACUGU CUGAUGA X GAA AAUGCUUU
	1956	AAGCAUUU A CAGUACCU	AGGUACUG CUGAUGA X GAA AAAUGCUU
	1961	UUUACAGU A CCUAAAAA	UUUUUAGG CUGAUGA X GAA ACUGUAAA
	1965	CAGUACCU A AAAACAGG	CCUGUUUU CUGAUGA X GAA AGGUACUG
25	1975	AAACAGGU C CCUGGCGA	UCGCCAGG CUGAUGA X GAA ACCUGUUU
	1990	GAGCCCCU U GCAGCCUU	AAGGCUGC CUGAUGA X GAA AGGGGCUC
	1998	UGCAGCCU U GUAGCAGU	ACUGCUAC CUGAUGA X GAA AGGCUGCA
	2001	AGCCUUGU A GCAGUACC	GGUACUGC CUGAUGA X GAA ACAAGGCU
	2007	GUAGCAGU A CCUGGGAA	UUCCCAGG CUGAUGA X GAA ACUGCUAC
30	2023	ACCUGCAU C CUGUGGAA	UUCCACAG CUGAUGA X GAA AUGCAGGU
	2053		GACUGGAA CUGAUGA X GAA AUGUCAUC
	2055	UGACAUCU U CCAGUCAA	UUGACUGG CUGAUGA X GAA AGAUGUCA
	2056	GACAUCUU C CAGUCAAG	
	2061	CUUCCAGU C AAGCUCGU	
35	2067	GUCAAGCU C GUAAAUAC	
	2070	AAGCUCGU A AAUACGUG	CACGUAUU CUGAUGA X GAA ACGAGCUU

	nt.	Target Sequence	Ribozyme Sequence
	Posi-		
5	tion		
	2074	UCGUAAAU A CGUGAAUG	CAUUCACG CUGAUGA X GAA AUUUACGA
	2086	GAAUGCAU U CUCAGCCC	GGGCUGAG CUGAUGA X GAA AUGCAUUC
	2087	AAUGCAUU C UCAGCCCG	CGGGCUGA CUGAUGA X GAA AAUGCAUU
	2087	UGCAUUCU C AGCCCGGA	UCCGGGCU CUGAUGA X GAA AGAAUGCA
-		ACGCUGGU C AUGUGAGA	UCUCACAU CUGAUGA X GAA ACCAGCGU
5	2105	UGAGACAU U UCCAGAAA	UUUCUGGA CUGAUGA X GAA AUGUCUCA
	2117	GAGACAUU U CCAGAAAA	HUUUUCUGG CUGAUGA X GAA AAUGUCUC
	2118		CUUUUCUG CUGAUGA X GAA AAAUGUCU
	2119	AGACAUUU C CAGAAAAG	
	2131	AAAAGCAU U AUGGUUUU	AAAACCAU CUGAUGA X GAA AUGCUUUU
10	2132	AAAGCAUU A UGGUUUUC	GAAAACCA CUGAUGA X GAA AAUGCUUU
	2137	AUUAUGGU U UUCAGAAC	GUUCUGAA CUGAUGA X GAA ACCAUAAU
	2138	UUAUGGUU U UCAGAACA	UGUUCUGA CUGAUGA X GAA AACCAUAA
	2139	UAUGGUUU U CAGAACAC	GUGUUCUG CUGAUGA X GAA AAACCAUA
	2140	AUGGUUUU C AGAACACU	AGUGUUCU CUGAUGA X GAA AAAACCAU
15	2149	AGAACACU U CAAGUUGA	UCAACUUG CUGAUGA X GAA AGUGUUCU
	2150	GAACACUU C AAGUUGAC	GUCAACUU CUGAUGA X GAA AAGUGUUC
	2155	CUUCAAGU U GACUUGGG	CCCAAGUC CUGAUGA X GAA ACUUGAAG
	2160	AGUUGACU U GGGAUAUA	UAUAUCCC CUGAUGA X GAA AGUCAACU
	2166	CUUGGGAU A UAUCAUUC	GAAUGAUA CUGAUGA X GAA AUCCCAAG
20	2168	UGGGAUAU A UCAUUCCU	AGGAAUGA CUGAUGA X GAA AUAUCCCA
	2170	GGAUAUAU C AUUCCUCA	UGAGGAAU CUGAUGA X GAA AUAUAUCC
	2173	UAUAUCAU U CCUCAACA	UGUUGAGG CUGAUGA X GAA AUGAUAUA
	2174	AUAUCAUU C CUCAACAU	AUGUUGAG CUGAUGA X GAA AAUGAUAU
	2177	UCAUUCCU C AACAUGAA	UUCAUGUU CUGAUGA X GAA AGGAAUGA
25	2189	AUGAAACU U UUCAUGAA	UUCAUGAA CUGAUGA X GAA AGUUUCAU
	2190	UGAAACUU U UCAUGAAU	AUUCAUGA CUGAUGA X GAA AAGUUUCA
	2191	GAAACUUU U CAUGAAUG	CAUUCAUG CUGAUGA X GAA AAAGUUUC
	2192	AAACUUUU C AUGAAUGG	CCAUUCAU CUGAUGA X GAA AAAAGUUU
	2212	AAGAACCU A UUUUUGUU	AACAAAA CUGAUGA X GAA AGGUUCUU
30	2214	GAACCUAU U UUUGUUGU	ACAACAAA CUGAUGA X GAA AUAGGUUC
	2215	AACCUAUU U UUGUUGUG	CACAACAA CUGAUGA X GAA AAUAGGUU
	2216	ACCUAUUU U UGUUGUGG	CCACAACA CUGAUGA X GAA AAAUAGGU
	2217	CCUAUUUU U GUUGUGGU	ACCACAAC CUGAUGA X GAA AAAAUAGG
	2220	AUUUUUGU U GUGGUACA	UGUACCAC CUGAUGA X GAA ACAAAAAU
35	2226	GUUGUGGU A CAACAGUU	AACUGUUG CUGAUGA X GAA ACCACAAC
	2234	ACAACAGU U GAGAGCAG	CUGCUCUC CUGAUGA X GAA ACUGUUGU

			D. D. L.
	nt.	Target Sequence	Ribozyme Sequence
	<u>Posi-</u>		
5	<u>tion</u>		
-	2255	.2.0000.0	UUCAACUA CUGAUGA X GAA AUGCACUU
	2256	AGUGCAUU U AGUUGAAU	AUUCAACU CUGAUGA X GAA AAUGCACU
	2257	GUGCAUUU A GUUGAAUG	CAUUCAAC CUGAUGA X GAA AAAUGCAC
	2260	CAUUUAGU U GAAUGAAG	CUUCAUUC CUGAUGA X GAA ACUAAAUG
5	2270	AAUGAAGU C UUCUUGGA	UCCAAGAA CUGAUGA X GAA ACUUCAUU
	2272	UGAAGUCU U CUUGGAUU	AAUCCAAG CUGAUGA X GAA AGACUUCA
	2273	GAAGUCUU C UUGGAUUU	AAAUCCAA CUGAUGA X GAA AAGACUUC
	2275	AGUCUUCU U GGAUUUCA	UGAAAUCC CUGAUGA X GAA AGAAGACU
	2280	UCUUGGAU U UCACCCAA	UUGGGUGA CUGAUGA X GAA AUCCAAGA
10	2281	CUUGGAUU U CACCCAAC	GUUGGGUG CUGAUGA X GAA AAUCCAAG
	2282	UUGGAUUU C ACCCAACU	AGUUGGGU CUGAUGA X GAA AAAUCCAA
	2291	ACCCAACU A AAAGGAUU	AAUCCUUU CUGAUGA X GAA AGUUGGGU
	2299	AAAAGGAU U UUUAAAAA	UUUUUAAA CUGAUGA X GAA AUCCUUUU
	2300	AAAGGAUU U UUAAAAAU	AUUUUUAA CUGAUGA X GAA AAUCCUUU
15	2301	AAGGAUUU U UAAAAAUA	UAUUUUUA CUGAUGA X GAA AAAUCCUU
	2302	AGGAUUUU U AAAAAUAA	UUAUUUUU CUGAUGA X GAA AAAAUCCU
	2309	UUAAAAAU A AAUAACAG	CUGUUAUU CUGAUGA X GAA AUUUUUAA
	2313	AAAUAAAU A ACAGUCUU	AAGACUGU CUGAUGA X GAA AUUUAUUU
	2319	AUAACAGU C UUACCUAA	UUAGGUAA CUGAUGA X GAA ACUGUUAU
20	2321	AACAGUCU U ACCUAAAU	AUUUAGGU CUGAUGA X GAA AGACUGUU
	2322	ACAGUCUU A CCUAAAUU	AAUUUAGG CUGAUGA X GAA AAGACUGU
	2326	UCUUACCU A AAUUAUUA	UAAUAAUU CUGAUGA X GAA AGGUAAGA
	2330	ACCUAAAU U AUUAGGUA	UACCUAAU CUGAUGA X GAA AUUUAGGU
	2331	CCUAAAUU A UUAGGUAA	UUACCUAA CUGAUGA X GAA AAUUUAGG
25	2333	UAAAUUAU U AGGUAAUG	CAUUACCU CUGAUGA X GAA AUAAUUUA
	2334	AAAUUAUU A GGUAAUGA	UCAUUACC CUGAUGA X GAA AAUAAUUU
	2338	UAUUAGGU A AUGAAUUG	CAAUUCAU CUGAUGA X GAA ACCUAAUA
	2345	UAAUGAAU U GUAGCCAG	CUGGCUAC CUGAUGA X GAA AUUCAUUA
	2348	UGAAUUGU A GCCAGUUG	CAACUGGC CUGAUGA X GAA ACAAUUCA
30	2355	UAGCCAGU U GUUAAUAU	AUAUUAAC CUGAUGA X GAA ACUGGCUA
	2358		AAGAUAUU CUGAUGA X GAA ACAACUGG
	2359	CAGUUGUU A AUAUCUUA	UAAGAUAU CUGAUGA X GAA AACAACUG
	2362	UUGUUAAU A UCUUAAUG	CAUUAAGA CUGAUGA X GAA AUUAACAA
	2364	GUUAAUAU C UUAAUGCA	UGCAUUAA CUGAUGA X GAA AUAUUAAC
35	2366	UAAUAUCU U AAUGCAGA	UCUGCAUU CUGAUGA X GAA AGAUAUUA
	2367	AAUAUCUU A AUGCAGAU	AUCUGCAU CUGAUGA X GAA AAGAUAUU

	nt.	Target Segu	<u>ience</u>	Ribozyme	Sequenc	e		
	Posi-					_		
5	tion							
	2376	AUGCAGAU U	AAAUUUUU	UUUAAAAA	CUGAUGA	х	GAA	AUCUGCAU
	2377	UGCAGAUU U	UUUUAAAA	UUUUAAAA	CUGAUGA	x	GAA	AAUCUGCA
	2378	GCAGAUUU U	UUUAAAAA					AAAUCUGC
	2379	CAGAUUUU U	UUAAAAAA					AAAAUCUG
5	2380	AGAUUUUU U	UAAAAAA					AAAAAUCU
	2381	GAUUUUUU U	AAAAAAA					AAAAAAUC
	2382	A UUUUUUU A	AAAAAAAC					DAAAAAAD
	2393	AAAAACAU A	AAAUGAUU					AUGUUUUU
	2401	AAAAUGAU U	UAUCUGUA					AUCAUUUU
10	2402	AAAUGAUU U	AUCUGUAU	AUACAGAU	CUGAUGA	x	GAA	AAUCAUUU
	2403	A UUUADUAA	UCUGUAUU	AAUACAGA	CUGAUGA	x	GAA	AAAUCAUU
	2405	UGAUUUAU C	UGUAUUUU	AAAAUACA	CUGAUGA	x	GAA	AUAAAUCA
	2409	UUAUCUGU A	UUUUAAAG	CUUUAAAA	CUGAUGA	x	GAA	ACAGAUAA
	2411	AUCUGUAU U	UUAAAGGA	UCCUUUAA	CUGAUGA	x	GAA	AUACAGAU
15	2412	UCUGUAUU U	UAAAGGAU	AUCCUUUA	CUGAUGA	х	GAA	AAUACAGA
	2413	CUGUAUUU U	AAAGGAUC	GAUCCUUU	CUGAUGA	x	GAA	AAAUACAG
	2414	UGUAUUUU A	AAGGAUCC	GGAUCCUU	CUGAUGA	x	GAA	AAAAUACA
	2421	UAAAGGAU C	CAACAGAU	AUCUGUUG	CUGAUGA	x	GAA	AUCCUUUA
	2430	CAACAGAU C	AGUAUUUU	AAAAUACU	CUGAUGA	x	GAA	AUCUGUUG
20	2434	AGAUCAGU A	υυυυυυςς	GGAAAAA	CUGAUGA	x	GAA	ACUGAUCU
	2436	AUCAGUAU U	UUUUCCUG	CAGGAAAA	CUGAUGA	x	GAA	AUACUGAU
	2437	UCAGUAUU U	UUUCCUGU	ACAGGAAA	CUGAUGA	x	GAA	AAUACUGA
	2438	CAGUAUUU U	DUCCUGUG	CACAGGAA	CUGAUGA	X	GAA	AAAUACUG
	2439	AGUAUUUU U	UCCUGUGA	UCACAGGA	CUGAUGA	X	GAA	AAAAUACU
25	2440	GUAUUUUU U	CCUGUGAU	AUCACAGG	CUGAUGA	X	GAA	AAAAAUAC
	2441	UAUUUUUU C	CUGUGAUG	CAUCACAG	CUGAUGA	X	GAA	AUAAAAA
	2453	UGAUGGGU U	UUUUGAAA	UUUCAAAA	CUGAUGA	X	GAA	ACCCAUCA
	2454	GAUGGGUU U	UUUGAAAU	AUUUCAAA	CUGAUGA	X	GAA	AACCCAUC
	2455	AUGGGUUU U	UUGAAAUU	AAUUUCAA	CUGAUGA	X	GAA	AAACCCAU
30	2456	UGGGUUUU U	UGAAAUUU	AAAUUUCA	CUGAUGA	X	GAA	AAAACCCA
	2457	GGGUUUUU U	GAAAUUUG	CAAAUUUC	CUGAUGA	X	GAA	AAAAACCC
	2463	UUUGAAAU U	UGACACAU	AUGUGUCA	CUGAUGA	X	GAA	AUUUCAAA
	2464	UUGAAAUU U	GACACAUU	AAUGUGUC	CUGAUGA	X	GAĄ	AAUUUCAA
	2472	UGACACAU U	AAAAGGUA	UACCUUUU	CUGAUGA	X	GAA	AUGUGUCA
35	2473	GACACAUU A	AAAGGUAC	GUACCUUU	CUGAUGA	X	GAA	AAUGUGUC
	2480	UAAAAGGU A	CUCCAGUA	UACUGGAG	CUGAUGA	X	GAA	ACCUUUUA

		Target Sequence	Ribozyme Sequence
	<u>nt.</u> Posi-	TAITGEL BEGGENCE	<u> Alboayiiic Bequeince</u>
5	tion		
3	2488	ACUCCAGU A HUHCACINI	AAGUGAAA CUGAUGA X GAA ACUGGAGU
	2490	UCCAGUAU U UCACUUUU	AAAAGUGA CUGAUGA X GAA AUACUGGA
		CCAGUAUU U CACUUUUC	GAAAAGUG CUGAUGA X GAA AAUACUGG
	2491	CAGUAUUU C ACUUUUCU	AGAAAAGU CUGAUGA X GAA AAAUACUG
_	2492		AUCGAGAA CUGAUGA X GAA AGUGAAAU
5	2496	AUUUCACU U UUCUCGAU	GAUCGAGA CUGAUGA X GAA AAGUGAAA
	2497	UUUCACUU U UCUCGAUC	
	2498	UUCACUUU U CUCGAUCA	UGAUCGAG CUGAUGA X GAA AAAGUGAA
	2501	ACUUUUCU C GAUCACUA	UAGUGAUC CUGAUGA X GAA AGAAAAGU
	2505	UUCUCGAU C ACUAAACA	UGUUUAGU CUGAUGA X GAA AUCGAGAA
10	2509	CGAUCACU A AACAUAUG	CAUAUGUU CUGAUGA X GAA AGUGAUCG
	2515	CUAAACAU A UGCAUAUA	UAUAUGCA CUGAUGA X GAA AUGUUUAG
	2521	AUAUGCAU A UAUUUUUA	UAAAAAUA CUGAUGA X GAA AUGCAUAU
	2523	AUGCAUAU A UUUUUAAA	UUUAAAAA CUGAUGA X GAA AUAUGCAU
	2525	GCAUAUAU U UUUAAAAA	UUUUUAAA CUGAUGA X GAA AUAUAUGC
15	2526	CAUAUAUU U UUAAAAAU	AUUUUUAA CUGAUGA X GAA AAUAUAUG
	2527	AUAUAUUU U UAAAAAUC	GAUUUUUA CUGAUGA X GAA AAAUAUAU
	2528	UAUAUUUU U AAAAAUCA	UGAUUUUU CUGAUGA X GAA AAAAUAUA
	2529	AUAUUUUU A AAAAUCAG	CUGAUUUU CUGAUGA X GAA AAAAAUAU
	2535	UUAAAAAU C AGUAAAAG	CUUUUACU CUGAUGA X GAA AUUUUUAA
20	2539	AAAUCAGU A AAAGCAUU	AAUGCUUU CUGAUGA X GAA ACUGAUUU
	2547	AAAAGCAU U ACUCUAAG	CUUAGAGU CUGAUGA X GAA AUGCUUUU
	2548	AAAGCAUU A CUCUAAGU	ACUUAGAG CUGAUGA X GAA AAUGCUUU
	2551	GCATUACU C UAAGUGUA	UACACUUA CUGAUGA X GAA AGUAAUGC
	2553	AUUACUCU A AGUGUAGA	UCUACACU CUGAUGA X GAA AGAGUAAU
25	2559	CUAAGUGU A GACUUAAU	AUUAAGUC CUGAUGA X GAA ACACUUAG
	2564	UGUAGACU U AAUACCAU	AUGGUAUU CUGAUGA X GAA AGUCUACA
	2565	GUAGACUU A AUACCAUG	CAUGGUAU CUGAUGA X GAA AAGUCUAC
	2568	GACUUAAU A CCAUGUGA	UCACAUGG CUGAUGA X GAA AUUAAGUC
	2580	UGUGACAU U UAAUCCAG	CUGGAUUA CUGAUGA X GAA AUGUCACA
30	2581	GUGACAUU U AAUCCAGA	UCUGGAUU CUGAUGA X GAA AAUGUCAC
	2582	UGACAUUU A AUCCAGAU	AUCUGGAU CUGAUGA X GAA AAAUGUCA
	2585	CAUUUAAU C CAGAUUGU	ACAAUCUG CUGAUGA X GAA AUUAAAUG
	2591	AUCCAGAU U GUAAAUGC	GCAUUUAC CUGAUGA X GAA AUCUGGAU
	2594	CAGAUUGU A AAUGCUCA	UGAGCAUU CUGAUGA X GAA ACAAUCUG
35	2601	UAAAUGCU C AUUUAUGG	CCAUAAAU CUGAUGA X GAA AGCAUUUA
	2604	AUGCUCAU U UAUGGUUA	UAACCAUA CUGAUGA X GAA AUGAGCAU

	nt.	Target Sequence	Ribozyme Sequence
	Posi-		
5	tion		
	2605	UGCUCAUU U AUGGUUAI	UUAACCAU CUGAUGA X GAA AAUGAGCA
	2606	GCUCAUUU A UGGUUAAI	
	2611	UUUAUGGU U AAUGACAI	
	2612	UUAUGGUU A AUGACAUT	
5	2620	AAUGACAU U GAAGGUAG	
	2627	UUGAAGGU A CAUUUAUI	
	2631	AGGUACAU U UAUUGUAG	
	2632	GGUACAUU U AUUGUACO	
	2633	GUACAUUU A UUGUACCA	
10	2635	ACAUUUAU U GUACCAA	UUUGGUAC CUGAUGA X GAA AUAAAUGU
	2638	UUUAUUGU A CCAAACC	UGGUUUGG CUGAUGA X GAA ACAAUAAA
	2648	CAAACCAU U UUAUGAGU	ACUCAUAA CUGAUGA X GAA AUGGUUUG
	2649	AAACCAUU U UAUGAGUU	AACUCAUA CUGAUGA X GAA AAUGGUUU
	2650	AACCAUUU U AUGAGUUU	AAACUCAU CUGAUGA X GAA AAAUGGUU
15	2651	ACCAUUUU A UGAGUUUU	AAAACUCA CUGAUGA X GAA AAAAUGGU
	2657	UUAUGAGU U UUCUGUUA	UAACAGAA CUGAUGA X GAA ACUCAUAA
	2658	UAUGAGUU U UCUGUUAG	CUAACAGA CUGAUGA X GAA AACUCAUA
	2659	AUGAGUUU U CUGUUAGO	GCUAACAG CUGAUGA X GAA AAACUCAU
	2660	UGAGUUUU C UGUUAGCU	AGCUAACA CUGAUGA X GAA AAAACUCA
20	2664	UUUUCUGU U AGCUUGCU	AGCAAGCU CUGAUGA X GAA ACAGAAAA
	2665	UUUCUGUU A GCUUGCUU	AAGCAAGC CUGAUGA X GAA AACAGAAA
	2669	UGUUAGCU U GCUUUAAA	UUUAAAGC CUGAUGA X GAA AGCUAACA
	2673	AGCUUGCU U UAAAAAUU	AAUUUUUA CUGAUGA X GAA AGCAAGCU
	2674	GCUUGCUU U AAAAAUUA	UAAUUUUU CUGAUGA X GAA AAGCAAGC
25	2675	CUUGCUUU A AAAAUUAU	AUAAUUUU CUGAUGA X GAA AAAGCAAG
	2681	UUAAAAAU U AUUACUGU	ACAGUAAU CUGAUGA X GAA AUUUUUAA
	2682	UAAAAAUU A UUACUGUA	UACAGUAA CUGAUGA X GAA AAUUUUUA
	2684	AAAAUUAU U ACUGUAAG	CUUACAGU CUGAUGA X GAA AUAAUUUU
	2685	AAAUUAUU A CUGUAAGA	UCUUACAG CUGAUGA X GAA AAUAAUUU
30	2690	AUUACUGU A AGAAAUAG	CUAUUUCU CUGAUGA X GAA ACAGUAAU
	2697	UAAGAAAU A GUUUUAUA	UAUAAAAC CUGAUGA X GAA AUUUCUUA
	2700	GAAAUAGU U UUAUAAAA	UUUUAUAA CUGAUGA X GAA ACUAUUUC
	2701	AAAUAGUU U UAUAAAAA	UUUUUAUA CUGAUGA X GAA AACUAUUU
	2702	AAUAGUUU U AUAAAAAA	UUUUUUAU CUGAUGA X GAA AAACUAUU
35	2703	AUAGUUUU A UAAAAAAU	AUUUUUUA CUGAUGA X GAA AAAACUAU
	2705	AGUUUUAU A AAAAAUUA	UAAUUUUU CUGAUGA X GAA AUAAAACU

	nt.	Target Sequence	Ribozyme Sequence
	Posi-		
5	tion		
	2712	UUUUUUAUA U UAAAAAU	AAAAAUAU CUGAUGA X GAA AUUUUUUA
	2713	AAAAAAUU A UAUUUUUA	UAAAAAUA CUGAUGA X GAA AAUUUUUU
	2715	AAAAUUAU A UUUUUAUU	AAUAAAAA CUGAUGA X GAA AUAAUUUU
	2717	AAUUAUAU U UUUAUUCA	UGAAUAAA CUGAUGA X GAA AUAUAAUU
5	2718	AUUAUAUU U UUAUUCAG	CUGAAUAA CUGAUGA X GAA AAUAUAAU
	2719	UUAUAUUU U UAUUCAGU	ACUGAAUA CUGAUGA X GAA AAAUAUAA
	2720	UAUAUUUU U AUUCAGUA	UACUGAAU CUGAUGA X GAA AAAAUAUA
	2721	AUAUUUUU A UUCAGUAA	UUACUGAA CUGAUGA X GAA AAAAAUAU
	2723	AUUUUUAU U CAGUAAUU	AAUUACUG CUGAUGA X GAA AUAAAAAU
10	2724	UUUUUAUU C AGUAAUUU	AAAUUACU CUGAUGA X GAA AAUAAAAA
	2728	UAUUCAGU A AUUUAAUU	AAUUAAAU CUGAUGA X GAA ACUGAAUA
	2731	UCAGUAAU U UAAUUUUG	CAAAAUUA CUGAUGA X GAA AUUACUGA
	2732	CAGUAAUU U AAUUUUGU	ACAAAAUU CUGAUGA X GAA AAUUACUG
	2733	AGUAAUUU A AUUUUGUA	UACAAAAU CUGAUGA X GAA AAAUUACU
15	2736	AAUUUAAU U UUGUAAAU	AUUUACAA CUGAUGA X GAA AUUAAAUU
	2737	AUUUAAUU U UGUAAAUG	CAUUUACA CUGAUGA X GAA AAUUAAAU
	2738	UUUAAUUU U GUAAAUGC	GCAUUUAC CUGAUGA X GAA AAAUUAAA
	2741	AAUUUUGU A AAUGCCAA	UUGGCAUU CUGAUGA X GAA ACAAAAUU
	2761	AAAAACGU U UUUUGCUG	CAGCAAAA CUGAUGA X GAA ACGUUUUU
20	2762	AAAACGUU U UUUGCUGC	GCAGCAAA CUGAUGA X GAA AACGUUUU
	2763	AAACGUUU U UUGCUGCU	AGCAGCAA CUGAUGA X GAA AAACGUUU
	2764	AACGUUUU U UGCUGCUA	UAGCAGCA CUGAUGA X GAA AAAACGUU
	2765	ACGUUUUU U GCUGCUAU	AUAGCAGC CUGAUGA X GAA AAAAACGU
	2772	UUGCUGCU A UGGUCUUA	UAAGACCA CUGAUGA X GAA AGCAGCAA
25	2777	GCUAUGGU C UUAGCCUG	CAGGCUAA CUGAUGA X GAA ACCAUAGC
	2779	UAUGGUCU U AGCCUGUA	UACAGGCU CUGAUGA X GAA AGACCAUA
	2780	AUGGUCUU A GCCUGUAG	CUACAGGC CUGAUGA X GAA AAGACCAU
	2787	UAGCCUGU A GACAUGCU	AGCAUGUC CUGAUGA X GAA ACAGGCUA
	2802	CUGCUAGU A UCAGAGGG	
30	2804		GCCCCUCU CUGAUGA X GAA AUACUAGC
	2816		CCAAGCUC CUGAUGA X GAA ACUGCCCC
	2822		UUCUGUCC CUGAUGA X GAA AGCUCUAC
	2843		CUAACACC CUGAUGA X GAA AGUUUCUU
	2849		AAUUACCU CUGAUGA X GAA ACACCAAG
35	2850	UUGGUGUU A GGUAAUUG	CAAUUACC CUGAUGA X GAA AACACCAA
	2854	UGUUAGGU A AUUGACUA	UAGUCAAU CUGAUGA X GAA ACCUAACA

	nt.	Target Sequence	Ribozyme Sequence
	<u>Posi-</u>		
5	<u>tion</u>		
	2857	UAGGUAAU U GACUAUGC	GCAUAGUC CUGAUGA X GAA AUUACCUA
	2862	AAUUGACU A UGCACUAG	CUAGUGCA CUGAUGA X GAA AGUCAAUU
	2869	UAUGCACU A GUAUUUCA	UGAAAUAC CUGAUGA X GAA AGUGCAUA
	2872	GCACUAGU A UUUCAGAC	GUCUGAAA CUGAUGA X GAA ACUAGUGC
5	2874	ACUAGUAU U UCAGACUU	AAGUCUGA CUGAUGA X GAA AUACUAGU
	2875	CUAGUAUU U CAGACUUU	AAAGUCUG CUGAUGA X GAA AAUACUAG
	2876	UAGUAUUU C AGACUUUU	AAAAGUCU CUGAUGA X GAA AAAUACUA
	2882	UUCAGACU U UUUAAUUU	AAAUUAAA CUGAUGA X GAA AGUCUGAA
	2883	UCAGACUU U UUAAUUUU	AAAAUUAA CUGAUGA X GAA AAGUCUGA
10	2884	CAGACUUU U UAAUUUUA	UAAAAUUA CUGAUGA X GAA AAAGUCUG
	2885	AGACUUUU U AAUUUUAU	AUAAAAUU CUGAUGA X GAA AAAAGUCU
	2886	GACUUUUU A AUUUUAUA	UAUAAAAU CUGAUGA X GAA AAAAAGUC
	2889	UUUUUAAU U UUAUAUAU	AUAUAUAA CUGAUGA X GAA AUUAAAAA
	2890	UUUUAAUU U UAUAUAUA	UAUAUAUA CUGAUGA X GAA AAUUAAAA
15	2891	UAUAUUU U DUUAAUUU	AUAUAUAU CUGAUGA X GAA AAAUUAAA
	2892	AUAUAUAU A UUUUAAUU	UAUAUAUA CUGAUGA X GAA AAAAUUAA
	2894	AAUUUUAU A UAUAUAUA	UAUAUAUA CUGAUGA X GAA AUAAAAUU
	2896	UUUUAUAU A UAUAUACA	UGUAUAUA CUGAUGA X GAA AUAUAAAA
	2898	UUAUAUAU A UAUACAUU	AAUGUAUA CUGAUGA X GAA AUAUAUAA
20	2900	AUAUAUAU A UACAUUUU	AAAAUGUA CUGAUGA X GAA AUAUAUAU
	2902	AUAUAUAU A CAUUUUUU	AAAAAAUG CUGAUGA X GAA AUAUAUAU
	2906	AUAUACAU U UUUUUUCC	GGAAAAAA CUGAUGA X GAA AUGUAUAU
	2907	UAUACAUU U UUUUUCCU	AGGAAAAA CUGAUGA X GAA AAUGUAUA
	2908	AUACAUUU U UUUUCCUU	AAGGAAAA CUGAUGA X GAA AAAUGUAU
25	2909	UACAUUUU U UUUCCUUC	GAAGGAAA CUGAUGA X GAA AAAAUGUA
	2910	ACAUUUUU U UUCCUUCU	AGAAGGAA CUGAUGA X GAA AAAAAUGU
	2911	CAUUUUUU U UCCUUCUG	CAGAAGGA CUGAUGA X GAA AAAAAAUG
	2912	AUUUUUUU U CCUUCUGC	GCAGAAGG CUGAUGA X GAA AAAAAAAU
	2913	UUUUUUUU C CUUCUGCA	UGCAGAAG CUGAUGA X GAA AAAAAAA
30	2916	UUUUUCCU U CUGCAAUA	UAUUGCAG CUGAUGA X GAA AGGAAAAA
	2917	UUUUCCUU C UGCAAUAC	GUAUUGCA CUGAUGA X GAA AAGGAAAA
	2924	UCUGCAAU A CAUUUGAA	UUCAAAUG CUGAUGA X GAA AUUGCAGA
	2928	CAAUACAU U UGAAAACU	AGUUUUCA CUGAUGA X GAA AUGUAUUG
	2929	AAUACAUU U GAAAACUU	AAGUUUUC CUGAUGA X GAA AAUGUAUU
35	2937	UGAAAACU U GUUUGGGA	UCCCAAAC CUGAUGA X GAA AGUUUUCA
	2940	AAACUUGU U UGGGAGAC	GUCUCCCA CUGAUGA X GAA ACAAGUUU

	nt.	Target Sequence	Ribozyme Sequence
	Posi-		
5	<u>tion</u>		
	2941	AACUUGUU U GGGAGACU	AGUCUCCC CUGAUGA X GAA AACAAGUU
	2950	GGGAGACU C UGCAUUUU	AAAAUGCA CUGAUGA X GAA AGUCUCCC
	2956	CUCUGCAU U UUUUAUUG	CAAUAAAA CUGAUGA X GAA AUGCAGAG
	2957	UCUGCAUU U UUUAUUGU	ACAAUAAA CUGAUGA X GAA AAUGCAGA
5	2958	CUGCAUUU U UUAUUGUG	CACAAUAA CUGAUGA X GAA AAAUGCAG
	2959	UGCAUUUU U UAUUGUGG	CCACAAUA CUGAUGA X GAA AAAAUGCA
	2960	GCAUUUUU U AUUGUGGU	ACCACAAU CUGAUGA X GAA AAAAAUGC
	2961	CAUUUUUU A UUGUGGUU	AACCACAA CUGAUGA X GAA AAAAAAUG
	2969	AUUGUGGU U UUUUUGUU	AACAAAAA CUGAUGA X GAA ACCACAAU
10	2970	UUGUGGUU U UUUUGUUA	UAACAAAA CUGAUGA X GAA AACCACAA
	2971	UGUGGUUU U UUUGUUAU	AUAACAAA CUGAUGA X GAA AAACCACA
	2972	GUGGUUUU U UUGUUAUU	AAUAACAA CUGAUGA X GAA AAAACCAC
	2973	UGGUUUUU U UGUUAUUG	CAAUAACA CUGAUGA X GAA AAAAACCA
	2974	GGUUUUUU U GUUAUUGU	ACAAUAAC CUGAUGA X GAA AAAAAACC
15	2977	UUUUUUGU U AUUGUUGG	CCAACAAU CUGAUGA X GAA ACAAAAAA
	2978	UUUUUGUU A UUGUUGGU	ACCAACAA CUGAUGA X GAA AACAAAAA
	2980	UUUGUUAU U GUUGGUUU	AAACCAAC CUGAUGA X GAA AUAACAAA
	2983	GUUAUUGU U GGUUUAUA	UAUAAACC CUGAUGA X GAA ACAAUAAC
	2987	UUGUUGGU U UAUACAAG	CUUGUAUA CUGAUGA X GAA ACCAACAA
20	2988	UGUUGGUU U AUACAAGC	GCUUGUAU CUGAUGA X GAA AACCAACA
	2989	GUUGGUUU A UACAAGCA	UGCUUGUA CUGAUGA X GAA AAACCAAC
	2991	UGGUUUAU A CAAGCAUG	CAUGCUUG CUGAUGA X GAA AUAAACCA
	3003	GCAUGCGU U GCACUUCU	AGAAGUGC CUGAUGA X GAA ACGCAUGC
	3009	GUUGCACU U CUUUUUUG	CAAAAAG CUGAUGA X GAA AGUGCAAC
25	3010	UUGCACUU C UUUUUUGG	CCAAAAA CUGAUGA X GAA AAGUGCAA
	3012	GCACUUCU U UUUUGGGA	UCCCAAAA CUGAUGA X GAA AGAAGUGC
	3013	CACUUCUU U UUUGGGAG	CUCCCAAA CUGAUGA X GAA AAGAAGUG
	3014	ACUUCUUU U UUGGGAGA	UCUCCCAA CUGAUGA X GAA AAAGAAGU
	3015	CUUCUUUU U UGGGAGAU	AUCUCCCA CUGAUGA X GAA AAAAGAAG
30	3016	UUCUUUUU U GGGAGAUG	CAUCUCCC CUGAUGA X GAA AAAAAGAA
	3030	AUGUGUGU U GUUGAUGU	ACAUCAAC CUGAUGA X GAA ACACACAU
	3033	UGUGUUGU U GAUGUUCU	AGAACAUC CUGAUGA X GAA ACAACACA
	3039	GUUGAUGU U CUAUGUUU	AAACAUAG CUGAUGA X GAA ACAUCAAC
	3042	GAUGUUCU A UGUUUUGU	ACAAAACA CUGAUGA X GAA AGAACAUC
35	3046	UUCUAUGU U UUGUUUUG	CAAAACAA CUGAUGA X GAA ACAUAGAA
	3047	UCUAUGUU U UGUUUUGA	UCAAAACA CUGAUGA X GAA AACAUAGA

			•
	nt.	Target Sequence	Ribozyme Sequence
	<u>Posi-</u>		
5	<u>tion</u>		
	3048	CUAUGUUU U GUUUUGAG	CUCAAAAC CUGAUGA X GAA AAACAUAG
	3051	UGUUUUGU U UUGAGUGU	ACACUCAA CUGAUGA X GAA ACAAAACA
	3052	GUUUUGUU U UGAGUGUA	UACACUCA CUGAUGA X GAA AACAAAAC
	3053	UUUUGUUU U GAGUGUAG	CUACACUC CUGAUGA X GAA AAACAAAA
5	3060	UUGAGUGU A GCCUGACU	AGUCAGGC CUGAUGA X GAA ACACUCAA
	3071	CUGACUGU U UUAUAAUU	AAUUAUAA CUGAUGA X GAA ACAGUCAG
	3072	UGACUGUU U UAUAAUUU	AAAUUAUA CUGAUGA X GAA AACAGUCA
	3073	GACUGUUU U AUAAUUUG	CAAAUUAU CUGAUGA X GAA AAACAGUC
	3074	ACUGUUUU A UAAUUUGG	CCAAAUUA CUGAUGA X GAA AAAACAGU
10	3076	UGUUUUAU A AUUUGGGA	UCCCAAAU CUGAUGA X GAA AUAAAACA
	3079	UUUAUAAU U UGGGAGUU	AACUCCCA CUGAUGA X GAA AUUAUAAA
	3080	UUAUAAUU U GGGAGUUC	GAACUCCC CUGAUGA X GAA AAUUAUAA
	3087	UUGGGAGU U CUGCAUUU	AAAUGCAG CUGAUGA X GAA ACUCCCAA
	3094	UUCUGCAU U UGAUCCGC	GCGGAUCA CUGAUGA X GAA AUGCAGAA
15	3095	UCUGCAUU U GAUCCGCA	UGCGGAUC CUGAUGA X GAA AAUGCAGA
	3099	CAUUUGAU C CGCAUCCC	GGGAUGCG CUGAUGA X GAA AUCAAAUG
	3105	AUCCGCAU C CCCUGUGG	CCACAGGG CUGAUGA X GAA AUGCGGAU
	3115	CCUGUGGU U UCUAAGUG	CACUUAGA CUGAUGA X GAA ACCACAGG
	3116	CUGUGGUU U CUAAGUGU	ACACUUAG CUGAUGA X GAA AACCACAG
20	3117	UGUGGUUU C UAAGUGUA	UACACUUA CUGAUGA X GAA AAACCACA
	3119	UGGUUUCU A AGUGUAUG	CAUACACU CUGAUGA X GAA AGAAACCA
	3125	CUAAGUGU A UGGUCUCA	UGAGACCA CUGAUGA X GAA ACACUUAG
	3130	UGUAUGGU C UCAGAACU	AGUUCUGA CUGAUGA X GAA ACCAUACA
	3132	UAUGGUCU C AGAACUGU	ACAGUUCU CUGAUGA X GAA AGACCAUA
25	3141	AGAACUGU U GCAUGGAU	AUCCAUGC CUGAUGA X GAA ACAGUUCU
	3150	GCAUGGAU C CUGUGUUU	AAACACAG CUGAUGA X GAA AUCCAUGC
	3157	UCCUGUGU U UGCAACUG	CAGUUGCA CUGAUGA X GAA ACACAGGA
	3158	CCUGUGUU U GCAACUGG	CCAGUUGC CUGAUGA X GAA AACACAGG
	3185	ACUGUGGU U GAUAGCCA	UGGCUAUC CUGAUGA X GAA ACCACAGU
30	3189		UGACUGGC CUGAUGA X GAA AUCAACCA
	3196		AAGGCAGU CUGAUGA X GAA ACUGGCUA
	3204		AUGUUCUU CUGAUGA X GAA AGGCAGUG
	3205	ACUGCCUU A AGAACAUU	AAUGUUCU CUGAUGA X GAA AAGGCAGU
	3213	AAGAACAU U UGAUGCAA	UUGCAUCA CUGAUGA X GAA AUGUUCUU
35	3214	AGAACAUU U GAUGCAAG	CUUGCAUC CUGAUGA X GAA AAUGUUCU
	3240	ACUGAACU U UUGAGAUA	UAUCUCAA CUGAUGA X GAA AGUUCAGU

PCT/US95/06368

81

	nt.	Target Seguence	Ribozyme Sequence
	<u>Posi-</u>		
5	<u>tion</u>		
	3241	CUGAACUU U UGAGAUAU	AUAUCUCA CUGAUGA X GAA AAGUUCAG
	3242	UGAACUUU U GAGAUAUG	CAUAUCUC CUGAUGA X GAA AAAGUUCA .
	3248	UUUGAGAU A UGACGGUG	CACCGUCA CUGAUGA X GAA AUCUCAAA
	3258	GACGGUGU A CUUACUGC	GCAGUAAG CUGAUGA X GAA ACACCGUC
5	3261	GGUGUACU U ACUGCCUU	AAGGCAGU CUGAUGA X GAA AGUACACC
	3262	GUGUACUU A CUGCCUUG	CAAGGCAG CUGAUGA X GAA AAGUACAC
	3269	UACUGCCU U GUAGCAAA	UUUGCUAC CUGAUGA X GAA AGGCAGUA
	3272	UGCCUUGU A GCAAAAUA	UAUUUUGC CUGAUGA X GAA ACAAGGCA
	3280	AGCAAAAU A AAGAUGUG	CACAUCUU CUGAUGA X GAA AUUUUGCU
10	3293	UGUGCCCU U AUUUUACC	GGUAAAAU CUGAUGA X GAA AGGGCACA
	3294	GUGCCCUU A UUUUACCU	AGGUAAAA CUGAUGA X GAA AAGGGCAC

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 Nucleic Acids Res. 20 3252). The 15 length of stem II may be ≥ 2 base-pairs.

<u>Table XV: Mouse c-myb Hammerhead Ribozyme and Target Sequence</u>

	nt.	Target Sequence	Ribozyme Sequence
20	<u>Posi-</u>		
	<u>tion</u>		
	10	CCGGGGCUC UUGGCGGA	UCCGCCAA CUGAUGA X GAA AGCCCCGG
	12	GGGGCUCUU GGCGGAGC	GCUCCGCC CUGAUGA X GAA AGAGCCCC
	33	GCCCGCCUC GCCAUGGC	GCCAUGGC CUGAUGA X GAA AGGCGGGC
25	63	CACAGCAUC UACAGUAG	CUACUGUA CUGAUGA X GAA AUGCUGUG
	65	CAGCAUCUA CAGUAGCG	CGCUACUG CUGAUGA X GAA AGAUGCUG
	70	UCUACAGUA GCGAUGAA	UUCAUCGC CUGAUGA X GAA ACUGUAGA
	93	GAAGACAUU GAGAUGUG	CACAUCUC CUGAUGA X GAA AUGUCUUC
	113	CCAUGACUA CGAUGGGC	GCCCAUCG CUGAUGA X GAA AGUCAUGG
30	134	GCCCAAAUC UGGAAAGC	GCUUUCCA CUGAUGA X GAA AUUUGGGC
	145	GAAAGCGUC ACUUGGGG	CCCCAAGU CUGAUGA X GAA ACGCUUUC
	149	GCGUCACUU GGGGAAAA	UUUUCCCC CUGAUGA X GAA AGUGACGC
	160	GGAAAACUA GGUGGACA	UGUCCACC CUGAUGA X GAA AGUUUUCC
	231	UGGAAAGUC AUUGCCAA	UUGGCAAU CUGAUGA X GAA ACUUUCCA
35	234	AAAGUCAUU GCCAAUUA	UAAUUGGC CUGAUGA X GAA AUGACUUU
	241	UUGCCAAUU AUCUGCCC	GGGCAGAU CUGAUGA X GAA AUUGGCAA

	nt.	<u>Target Sequence</u>	Ribozyme Sequence
20	<u>Posi-</u>		
	<u>tion</u>		
	242	UGCCAAUUA UCUGCCCA	UGGGCAGA CUGAUGA X GAA AAUUGGCA
	244	CCAAUUAUC UGCCCAAC	GUUGGGCA CUGAUGA X GAA AUAAUUGG
	264	ACAGAUGUA CAGUGCCA	UGGCACUG CUGAUGA X GAA ACAUCUGU
	306	CCUGAACUC AUCAAAGG	CCUUUGAU CUGAUGA X GAA AGUUCAGG
5	309	GAACUCAUC AAAGGUCC	GGACCUUU CUGAUGA X GAA AUGAGUUC
	316	UCAAAGGUC CCUGGACC	GGUCCAGG CUGAUGA X GAA ACCUUUGA
	337	AAGAAGAUC AGAGAGUC	GACUCUCU CUGAUGA X GAA AUCUUCUU
	345	CAGAGAGUC AUAAAGCU	AGCUUUAU CUGAUGA X GAA ACUCUCUG
	348	AGAGUCAUA AAGCUUGU	ACAAGCUU CUGAUGA X GAA AUGACUCU
10	354	AUAAAGCUU GUCCAGAA	UUCUGGAC CUGAUGA X GAA AGCUUUAU
	357	AAGCUUGUC CAGAAAUA	UAUUUCUG CUGAUGA X GAA ACAAGCUU
	365	CCAGAAAUA UGGUCCGA	UCGGACCA CUGAUGA X GAA AUUUCUGG
	370	AAUAUGGUC CGAAGCGU	ACGCUUCG CUGAUGA X GAA ACCAUAUU
	379	CGAAGCGUU GGUCUGUU	AACAGACC CUGAUGA X GAA ACGCUUCG
15	383	GCGUUGGUC UGUUAUUG	CAAUAACA CUGAUGA X GAA ACCAACGC
	387	UGGUCUGUU AUUGCCAA	UUGGCAAU CUGAUGA X GAA ACAGACCA
	388	GGUCUGUUA UUGCCAAG	CUUGGCAA CUGAUGA X GAA AACAGACC
	390	UCUGUUAUU GCCAAGCA	UGCUUGGC CUGAUGA X GAA AUAACAGA
	401	CAAGCACUU AAAAGGGA	UCCCUUUU CUGAUGA X GAA AGUGCUUG
20	402	AAGCACUUA AAAGGGAG	CUCCCUUU CUGAUGA X GAA AAGUGCUU
	414	GGGAGAAUU GGAAAGCA	UGCUUUCC CUGAUGA X GAA AUUCUCCC
	427	AGCAGUGUC GGGAGAGG	CCUCUCCC CUGAUGA X GAA ACACUGCU
	448	ACAACCAUU UGAAUCCA	UGGAUUCA CUGAUGA X GAA AUGGUUGU
	449	CAACCAUUU GAAUCCAG	CUGGAUUC CUGAUGA X GAA AAUGGUUG
25	454	AUUUGAAUC CAGAAGUU	AACUUCUG CUGAUGA X GAA AUUCAAAU
	462	CCAGAAGUU AAGAAAAC	GUUUUCUU CUGAUGA X GAA ACUUCUGG
	463	CAGAAGUUA AGAAAACC	GGUUUUCU CUGAUGA X GAA AACUUCUG
	473	GAAAACCUC CUGGACAG	CUGUCCAG CUGAUGA X GAA AGGUUUUC
	498	GACAGAAUC AUUUACCA	UGGUAAAU CUGAUGA X GAA AUUCUGUC
30	501	AGAAUCAUU UACCAGGC	GCCUGGUA CUGAUGA X GAA AUGAUUCU
	502	GAAUCAUUU ACCAGGCA	UGCCUGGU CUGAUGA X GAA AAUGAUUC
	503	AAUCAUUUA CCAGGCAC	GUGCCUGG CUGAUGA X GAA AAAUGAUU
	520	ACAAGCGUC UGGGGAAC	GUUCCCCA CUGAUGA X GAA ACGCUUGU
	543	GCAGAGAUC GCAAAGCU	AGCUUUGC CUGAUGA X GAA AUCUCUGC
35	571	GGACUGAUA AUGCUAUC	GAUAGCAU CUGAUGA X GAA AUCAGUCC
	577	AUAAUGCUA UCAAGAAC	GUUCUUGA CUGAUGA X GAA AGCAUUAU

PCT/US95/06368

	nt.	Target Sequence	Ribozyme Sequence
20	Posi-	242 100 2012	
	tion		
	579	AAUGCUAUC AAGAACCA	UGGUUCUU CUGAUGA X GAA AUAGCAUU
	595	ACUGGAAUU CCACCAUG	CAUGGUGG CUGAUGA X GAA AUUCCAGU
	596	CUGGAAUUC CACCAUGC	GCAUGGUG CUGAUGA X GAA AAUUCCAG
	607	CCAUGCGUC GCAAGGUG	CACCUUGC CUGAUGA X GAA ACGCAUGG
5	629	GGAAGGCUA CCUGCAGA	UCUGCAGG CUGAUGA X GAA AGCCUUCC
	643	AGAAGCCUU CCAAAGCC	GGCUUUGG CUGAUGA X GAA AGGCUUCU
	644	GAAGCCUUC CAAAGCCA	UGGCUUUG CUGAUGA X GAA AAGGCUUC
	677	CACGAGCUU CCAGAAGA	UCUUCUGG CUGAUGA X GAA AGCUCGUG
	678	ACGAGCUUC CAGAAGAA	UUCUUCUG CUGAUGA X GAA AAGCUCGU
10	691	AGAACAAUC AUUUGAUG	CAUCAAAU CUGAUGA X GAA AUUGUUCU
	694	ACAAUCAUU UGAUGGGG	CCCCAUCA CUGAUGA X GAA AUGAUUGU
	695	CAAUCAUUU GAUGGGGU	ACCCCAUC CUGAUGA X GAA AAUGAUUG
	704	GAUGGGGUU UGGGCAUG	CAUGCCCA CUGAUGA X GAA ACCCCAUC
	705	AUGGGGUUU GGGCAUGC	GCAUGCCC CUGAUGA X GAA AACCCCAU
15	716	GCAUGCCUC ACCUCCAU	AUGGAGGU CUGAUGA X GAA AGGCAUGC
	721	CCUCACCUC CAUCUCAG	CUGAGAUG CUGAUGA X GAA AGGUGAGG
	725	ACCUCCAUC UCAGCUCU	AGAGCUGA CUGAUGA X GAA AUGGAGGU
	727	CUCCAUCUC AGCUCUCU	AGAGAGCU CUGAUGA X GAA AGAUGGAG
	732	UCUCAGCUC UCUCCAAG	CUUGGAGA CUGAUGA X GAA AGCUGAGA
20	734	UCAGCUCUC UCCAAGUG	CACUUGGA CUGAUGA X GAA AGAGCUGA
	736	AGCUCUCUC CAAGUGGC	GCCACUUG CUGAUGA X GAA AGAGAGCU
	749	UGGCCAGUC CUCCGUCA	UGACGGAG CUGAUGA X GAA ACUGGCCA
	752	CCAGUCCUC CGUCAACA	UGUUGACG CUGAUGA X GAA AGGACUGG
	756	UCCUCCGUC AACAGCGA	UCGCUGUU CUGAUGA X GAA ACGGAGGA
25	767	CAGCGAAUA UCCCUAUU	AAUAGGGA CUGAUGA X GAA AUUCGCUG
	769	GCGAAUAUC CCUAUUAC	GUAAUAGG CUGAUGA X GAA AUAUUCGC
	773	AUAUCCCUA UUACCACA	UGUGGUAA CUGAUGA X GAA AGGGAUAU
	775	AUCCCUAUU ACCACAUC	GAUGUGGU CUGAUGA X GAA AUAGGGAU
	776	UCCCUAUUA CCACAUCG	CGAUGUGG CUGAUGA X GAA AAUAGGGA
30	783	UACCACAUC GCCGAAGC	GCUUCGGC CUGAUGA X GAA AUGUGGUA
	801	CAAAACAUC UCCAGUCA	
	803	AAACAUCUC CAGUCACG	•
	808	UCUCCAGUC ACGUUCCC	
	813	AGUCACGUU CCCUAUCC	
35	814	GUCACGUUC CCUAUCCU	
	818	CGUUCCCUA UCCUGUCG	CGACAGGA CUGAUGA X GAA AGGGAACG

	nt.	Target Sequence	Ribozyme Sequence
20	Posi-		
	tion		
	820	UUCCCUAUC CUGUCGC	UGCGACAG CUGAUGA X GAA AUAGGGAA
	825	UAUCCUGUC GCAUUGC	
	830	UGUCGCAUU GCAUGUUA	
	837	UUGCAUGUU AAUAUAGU	
5	838	UGCAUGUUA AUAUAGUO	
_	841	AUGUUAAUA UAGUCAAC	
	843	GUUAAUAUA GUCAACGU	
	846	AAUAUAGUC AACGUCCO	THE TOTAL CONTROL IN CIRC MONDONIC
	852	GUCAACGUC CCUCAGCO	
10	856	ACGUCCCUC AGCCGGCU	
	876	GCAGCCAUC CAGAGACA	
	887	GAGACACUA UAACGACG	
	889	GACACUAUA ACGACGAA	
	921	AAGCGAAUA AAGGAGCU	
15	935	GCUGGAGUU GCUCCUGA	
	939	GAGUUGCUC CUGAUGUC	
	947	CCUGAUGUC AACAGAGA	
	980	GCAGGCAUU ACCAACAC	
	981	CAGGCAUUA CCAACACA	
20	1000	ACCACACUU GCAGCUAC	GUAGCUGC CUGAUGA X GAA AGUGUGGU
	1007	UUGCAGCUA CCCCGGGU	
	1028	CAGCACCUC CAUUGUGG	CCACAAUG CUGAUGA X GAA AGGUGCUG
	1032	ACCUCCAUU GUGGACCA	UGGUCCAC CUGAUGA X GAA AUGGAGGU
	1051	CCAGACCUC AUGGGGAU	AUCCCCAU CUGAUGA X GAA AGGUCUGG
25	1060	AUGGGGAUA GUGCACCU	AGGUGCAC CUGAUGA X GAA AUCCCCAU
	1071	GCACCUGUU UCCUGUUU	AAACAGGA CUGAUGA X GAA ACAGGUGC
	1072	CACCUGUUU CCUGUUUG	CAAACAGG CUGAUGA X GAA AACAGGUG
	1073	ACCUGUUUC CUGUUUGG	CCAAACAG CUGAUGA X GAA AAACAGGU
	1078	UUUCCUGUU UGGGAGAA	UUCUCCCA CUGAUGA X GAA ACAGGAAA
30	1079	UUCCUGUUU GGGAGAAC	GUUCUCCC CUGAUGA X GAA AACAGGAA
	1103	CACCCCAUC UCUGCCUG	CAGGCAGA CUGAUGA X GAA AUGGGGUG
	1105	CCCCAUCUC UGCCUGCA	UGCAGGCA CUGAUGA X GAA AGAUGGGG
	1117	CUGCAGAUC CCGGCUCC	GGAGCCGG CUGAUGA X GAA AUCUGCAG
	1124	UCCCGGCUC CCUACCUG	CAGGUAGG CUGAUGA X GAA AGCCGGGA
35	1128	GGCUCCCUA CCUGAAGA	UCUUCAGG CUGAUGA X GAA AGGGAGCC
	1145	AAGUGCCUC ACCAGCAA	UUGCUGGU CUGAUGA X GAA AGGCACUU

	nt.	Target Seque	nce	Ribozyme	Sequence	2		
20	Posi-							
	tion							
	1164	UGCAUGAUC GU	CCACCA	UGGUGGAC	CUGAUGA	X	GAA	AUCAUGCA
	1167	AUGAUCGUC CA	CCAGGG	CCCUGGUG	CUGAUGA	X	GAA	ACGAUCAU
	1182	GGCACCAUU CU	GGACAA	UUGUCCAG	CUGAUGA	X	GAA	AUGGUGCC
	1183	GCACCAUUC UG	GACAAU	AUUGUCCA	CUGAUGA	x	GAA	AAUGGUGC
5	1194	GACAAUGUU AA	GAACCU	AGGUUCUU	CUGAUGA	X	GAA	ACAUUGUC
	1195	ACAAUGUUA AG	AACCUC	GAGGUUCU	CUGAUGA	X	GAA	AACAUUGU
	1203	AAGAACCUC UU	IAGAAUU	AAUUCUAA	CUGAUGA	X	GAA	AGGUUCUU
	1205	GAACCUCUU AG	AAUUUG	CAAAUUCU	CUGAUGA	X	GAA	AGAGGUUC
	1206	AACCUCUUA GA	AUUUGC	GCAAAUUC	CUGAUGA	X	GAA	AAGAGGUU
10	1211	CUUAGAAUU UG	CAGAAA	UUUCUGCA	CUGAUGA	x	GAA	AUUCUAAG
	1212	UUAGAAUUU GC	CAGAAAC	GUUUCUGC	CUGAUGA	X	GAA	AAUUCUAA
	1224	GAAACACUC CA	GUUUAU	AUAAACUG	CUGAUGA	X	GAA	AGUGUUUC
	1229	ACUCCAGUU UA	UAGAUU	AAUCUAUA	CUGAUGA	X	GAA	ACUGGAGU
	1230	CUCCAGUUU AU	JAGAUUC	GAAUCUAU	CUGAUGA	X	GAA	AACUGGAG
15	1231	UCCAGUUUA UA	GAUUCU	AGAAUCUA	CUGAUGA	X	GAA	AAACUGGA
	1233	CAGUUUAUA GA	700C000	AAAGAAUC	CUGAUGA	X	GAA	AUAAACUG
	1237	UUAUAGAUU CU	JUUCUU G	CAAGAAAG	CUGAUGA	X	GAA	AUCUAUAA
	1238	UAUAGAUUC UU	JUCUUGA	UCAAGAAA	CUGAUGA	X	GAA	AAUCUAUA
	1240	UAGAUUCUU UC	CUUGAAC	GUUCAAGA	CUGAUGA	x	GAA	AGAAUCUA
20	1241	AGAUUCUUU CU	JUGAACA	UGUUCAAG	CUGAUGA	X	GAA	AAGAAUCU
	1242	GAUUCUUUC UU	IGAACAC	GUGUUCAA	CUGAUGA	X	GAA	AAAGAAUC
	1244	UUCUUUCUU GA	ACACUU	AAGUGUUC	CUGAUGA	X	GAA	AGAAAGAA
	1252	UGAACACUU CC	CAGCAAC	GUUGCUGG	CUGAUGA	X	GAA	AGUGUUCA
	1253	GAACACUUC CA	AGCAACC	GGUUGCUG	CUGAUGA	X	GAA	AAGUGUUC
25	1271	UGAAAACUC GG	GCUUAG	CUAAGCCC	CUGAUGA	X	GAA	AGUUUUCA
	1277	CUCGGGCUU AG	BAUGCAC	GUGCAUCU	CUGAUGA	X	GAA	AGCCCGAG
	1278	UCGGGCUUA GA	UGCACC	GGUGCAUC	CUGAUGA	X	GAA	AAGCCCGA
	1288	AUGCACCUA CO	TUUACCC	GGGUAAGG	CUGAUGA	X	GAA	AGGUGCAU
	1292	ACCUACCUU AC	CCUCCA	UGGAGGGU	CUGAUGA	X	GAA	AGGUAGGU
30	1293	CCUACCUUA CC	CUCCAC	GUGGAGGG	CUGAUGA	X	GAA	AAGGUAGG
	1298	CUUACCCUC CA	CUCCUC					AGGGUAAG
	1303	CCUCCACUC CU	JCUCAUU	AAUGAGAG	CUGAUGA	X	GAA	AGUGGAGG
	1306	CCACUCCUC UC	CAUUGGU					AGGAGUGG
	1308	ACUCCUCUC AU	JUGGUCA					AGAGGAGU
35	1311	CCUCUCAUU GG	SUCACAA					AUGAGAGG
	1315	UCAUUGGUC AC	CAAACUG	CAGUUUGU	CUGAUGA	x	GAA	ACCAAUGA

	nt.	Target Sequence	Ribozzme	Sequence	_		
20	Posi-	rarder production	ACADOM FINE	Degaene	_		
20	tion						
	1333	CACCAUGUC GAGACO	יאה מותפוזמות	CIICATICA	¥	CAA	ACAUGGUG
	1366	AGGAAAAUU CCAUCU					AUUUUCCU
	1367	GGAAAAUUC CAUCUU					AAUUUUCC
	1371	AAUUCCAUC UUUAGA					
5	1371						AUGGAAUU
3		UUCCAUCUU UAGAAC					AGAUGGAA
	1374	UCCAUCUUU AGAACU					AAGAUGGA
	1375	CCAUCUUUA GAACUC				_	AAAGAUGG
	1381	UUAGAACUC CAGCUA					AGUUCUAA
	1387	CUCCAGCUA UCAAAA					AGCUGGAG
10	1389	CCAGCUAUC AAAAGG					AUAGCUGG
	1397	CAAAAGGUC AAUCCU					ACCUUUUG
	1401	AGGUCAAUC CUCGAA					AUUGACCU
	1404	UCAAUCCUC GAAAGO					AGGAUUGA
	1412	CGAAAGCUC UCCUCG	aa uucgagga	CUGAUGA	X	GAA	AGCUUUCG
15	1414	AAAGCUCUC CUCGAA	CU AGUUCGAG	CUGAUGA	X	GAA	AGAGCUUU
	1417	GCUCUCCUC GAACUC	CC GGGAGUUC	CUGAUGA	X	GAA	AGGAGAGC
	1423	CUCGAACUC CCACAC	CA UGGUGUGG	CUGAUGA	X	GAA	AGUUCGAG
	1433	CACACCAUU CAAACA	UG CAUGUUUG	CUGAUGA	X	GAA	AUGGUGUG
	1434	ACACCAUUC AAACAU	GC GCAUGUUU	CUGAUGA	x	GAA	AAUGGUGU
20	1446	CAUGCCCUU GCAGCU	CA UGAGCUGC	CUGAUGA	X	GAA	AGGGCAUG
	1453	UUGCAGCUC AAGAAA	UU AAUUUCUU	CUGAUGA	X	GAA	AGCUGCAA
	1461	CAAGAAAUU AAAUAC	GG CCGUAUUU	CUGAUGA	X	GAA	AUUUCUUG
	1462	AAGAAAUUA AAUACG	GU ACCGUAUU	CUGAUGA	X	GAA	AAUUUCUU
	1466	AAUUAAAUA CGGUCC	CC GGGGACCG	CUGAUGA	X	GAA	UUAAUUUA
25	1471	AAUACGGUC CCCUGA	AG CUUCAGGG	CUGAUGA	X	GAA	ACCGUAUU
	1485	AAGAUGCUA CCUCAG	AC GUCUGAGG	CUGAUGA	X	GAA	AGCAUCUU
	1489	UGCUACCUC AGACCC	CC GGGGUCU	CUGAUGA	X	GAA	AGGUAGCA
	1499	GACCCCCUC CCAUGC	AG CUGCAUGG	CUGAUGA	X	GAA	AGGGGGUC
	1518	GAGGACCUA CAAGAU	GU ACAUCUUG	CUGAUGA	X	GAA	AGGUCCUC
30	1530	GAUGUGAUU AAGCGG	GA UCCCGCUU	CUGAUGA	x	GAA	AUCACAUC
	1531	AUGUGAUUA AGCGGG	AA UUCCCGCU	CUGAUGA :	X	GAA	AAUCACAU
	1541	GCGGGAAUC GGAUGA	AU AUUCAUCC	CUGAUGA :	x	GAA	AUUCCCGC
	1550	GGAUGAAUC UGGAAU	UG CAAUUCCA	CUGAUGA	x	GAA	AUUCAUCC
	1557	UCUGGAAUU GUUGCU	GA UCAGCAAC	CUGAUGA	x	GAA	AUUCCAGA
35	1560	GGAAUUGUU GCUGAG	UU AACUCAGC	CUGAUGA	x	GAA	ACAAUUCC
	1568	UGCUGAGUU UCAAGA	GA UCUCUUGA	CUGAUGA :	X	GAA	ACUCAGCA

	nt.	Target Sequence	Ribozyme Sequence
20	<u>Posi-</u>		
	tion		
	1569	GCUGAGUUU CAAGAGAG	CUCUCUUG CUGAUGA X GAA AACUCAGO
	1570	CUGAGUUUC AAGAGAGU	ACUCUCUU CUGAUGA X GAA AAACUCAG
	1589	ACCACCGUU ACUGAAAA	UUUUCAGU CUGAUGA X GAA ACGGUGGU
	1590	CCACCGUUA CUGAAAAA	UUUUUCAG CUGAUGA X GAA AACGGUGG
5	1602	AAAAAAAUC AAGCAGGC	GCCUGCUU CUGAUGA X GAA AUUUUUUU
	1619	GGUGGAGUC GCCAACUG	CAGUUGGC CUGAUGA X GAA ACUCCACO
	1634	UGAGAAAUC GGGAAACU	AGUUUCCC CUGAUGA X GAA AUUUCUCA
	1643	GGGAAACUU CUUCUGCU	AGCAGAAG CUGAUGA X GAA AGUUUCCO
	1644	GGAAACUUC UUCUGCUC	GAGCAGAA CUGAUGA X GAA AAGUUUCO
10	1646	AAACUUCUU CUGCUCAA	UUGAGCAG CUGAUGA X GAA AGAAGUUU
	1647	AACUUCUUC UGCUCAAA	UUUGAGCA CUGAUGA X GAA AAGAAGUU
	1652	CUUCUGCUC AAACCACU	AGUGGUUU CUGAUGA X GAA AGCAGAAG
	1691	CCAACUGUU CUCGCAGG	CCUGCGAG CUGAUGA X GAA ACAGUUGG
	1692	CAACUGUUC UCGCAGGO	GCCUGCGA CUGAUGA X GAA AACAGUUG
15	1694	ACUGUUCUC GCAGGCGU	ACGCCUGC CUGAUGA X GAA AGAACAGU
	1703	GCAGGCGUC UCCUGUGG	CCACAGGA CUGAUGA X GAA ACGCCUGO
	1705	AGGCGUCUC CUGUGGCA	. UGCCACAG CUGAUGA X JAA AGACGCCU
	1726	CCCCAAAUA UUCUUACA	. UGUAAGAA CUGAUGA X GAA AUUUGGGG
	1728	CCAAAUAUU CUUACAAG	CUUGUAAG CUGAUGA X GAA AUAUUUGG
20	1729	CAAAUAUUC UUACAAGO	GCUUGUAA CUGAUGA X GAA AAUAUUUG
	1731	AAUAUUCUU ACAAGCUC	GAGCUUGU CUGAUGA X GAA AGAAUAUU
	1732	AUAUUCUUA CAAGCUCU	AGAGCUUG CUGAUGA X GAA AAGAAUAU
	1739	UACAAGCUC UGUUUUAA	. UUAAAACA CUGAUGA X GAA AGCUUGUA
	1743	AGCUCUGUU UUAAUGAC	GUCAUUAA CUGAUGA X GAA ACAGAGCU
25	1744	GCUCUGUUU UAAUGACA	. UGUCAUUA CUGAUGA X GAA AACAGAGC
	1745	CUCUGUUUU AAUGACAC	GUGUCAUU CUGAUGA X GAA AAACAGAG
	1746	UCUGUUUUA AUGACACO	GGUGUCAU CUGAUGA X GAA AAAACAGA
	1758	ACACCUGUA UCAGAAGA	
	1760	ACCUGUAUC AGAAGAUG	
30	1779	GACAAUGUC CUCAAAGO	
	1782		AAGGCUUU CUGAUGA X GAA AGGACAUU
	1790		GUACGGUA CUGAUGA X GAA AGGCUUUG
	1791	AAAGCCUUU ACCGUACC	GGUACGGU CUGAUGA X GAA AAGGCUUU
	1792	AAGCCUUUA CCGUACCU	
35	1797	UUUACCGUA CCUAAGA	
	1801	CCGUACCUA AGAACAGO	CCUGUUCU CUGAUGA X GAA AGGUACGG

	nt.	Target Seque	ence	Ribozyme	Sequence	<u>e</u>		
20	Posi-							
	<u>tion</u>							
	1822	UGGUGGGUC CO	CUUGCAG	CUGCAAGG	CUGAUGA	X	GAA	ACCCACCA
	1826	GGGUCCCUU G	CAGCCAU	AUGGCUGC	CUGAUGA	X	GAA	AGGGACCC
	1859	GCCAGCAUC CT	UGUGGGA	UCCCACAG	CUGAUGA	X	GAA	AUGCUGGC
	1892	GACGGCCUC CO	GUCCGG	CCGGACCG	CUGAUGA	X	GAA	AGGCCGUC
5	1897	ccucceguc co	GCUCGG	CCGAGCCG	CUGAUGA	x	GAA	ACCGGAGG
	1903	GUCCGGCUC GO	GAAAUAC	GUAUUUCC	CUGAUGA	X	GAA	AGCCGGAC
	1910	UCGGAAAUA CO	GUGAACG	CGUUCACG	CUGAUGA	x	GAA	AUUUCCGA
	1922	GAACGCGUU CI	UCAGCUC	GAGCUGAG	CUGAUGA	x	GAA	ACGCGUUC
	1923	AACGCGUUC UC	CAGCUCG	CGAGCUGA	CUGAUGA	x	GAA	AACGCGUU
10	1925	CGCGUUCUC AC	GCUCGAA	UUCGAGCU	CUGAUGA	x	GAA	AGAACGCG
	1930	UCUCAGCUC GA	AACUCUG	CAGAGUUC	CUGAUGA	x	GAA	AGCUGAGA
	1936	CUCGAACUC UC	GUCAUG	CAUGACCA	CUGAUGA	x	GAA	AGUUCGAG
	1941	ACUCUGGUC AT	JGUGAGA	UCUCACAU	CUGAUGA	x	GAA	ACCAGAGU
	1953	UGAGACAUU U	CCAGAAA	UUUCUGGA	CUGAUGA	x	GAA	AUGUCUCA
15	1954	GAGACAUUU CO	CAGAAAA	UUUUCUGG	CUGAUGA	x	GAA	AAUGUCUC
	1955	AGACAUUUC CI	AGAAAAG	CUUUUCUG	CUGAUGA	x	GAA	AAAUGUCU
	1967	AAAAGCAUU AT	JGGUUUU	AAAACCAU	CUGAUGA	x	GAA	AUGCUUUU
	1968	AAAGCAUUA U	GUUUUC	GAAAACCA	CUGAUGA	x	GAA	AAUGCUUU
	1973	AUUAUGGUU UU	JCAGAAC	GUUCUGAA	CUGAUGA	x	GAA	ACCAUAAU
20	1974	UUAUGGUUU U	CAGAACA	UGUUCUGA	CUGAUGA	X	GAA	AACCAUAA
	1975	UAUGGUUUU CA	AGAACAC	GUGUUCUG	CUGAUGA	X	GAA	AAACCAUA
	1976	AUGGUUUUC AG	SAACACU	AGUGUUCU	CUGAUGA	X	GAA	AAAACCAU
	1985	AGAACACUU AA	AAAGUUG	CAACUUUU	CUGAUGA	X	GAA	AGUGUUCU
	1986	GAACACUUA AA	AAGUUGA	UCAACUUU	CUGAUGA	X	GAA	AAGUGUUC
25	1992	UUAAAAGUU GA	CUUUCG	CGAAAGUC	CUGAUGA	X	GAA	ACUUUUAA
	1997	AGUUGACUU UC	GACACA	UGUGUCGA	CUGAUGA	X	GAA	AGUCAACU
	1998	GUUGACUUU CO	ACACAU	AUGUGUCG	CUGAUGA	X	GAA	AAGUCAAC
	1999	UUGACUUUC GA	CACAUG	CAUGUGUC	CUGAUGA	X	GAA	AAAGUCAA
	2011	ACAUGGCUC CU	JCAGCGU	ACGCUGAG	CUGAUGA	X	GAA	AGCCAUGU
30	2014	UGGCUCCUC AG	CGUGGA	UCCACGCU	CUGAUGA	X	GAA	AGGAGCCA
	2028	GGAGCGCUC CA	UGGCUG	CAGCCAUG	CUGAUGA	X	GAA	AGCGCUCC
	2052	AGCCUGAUU UU	JGUUGUG	CACAACAA	CUGAUGA	X	GAA	AUCAGGCU
	2053	GCCUGAUUU UG	SUUGUGG	CCACAACA	CUGAUGA	X	GAA	AAUCAGGC
	2054	CCUGAUUUU GU	UGUGGU	ACCACAAC	CUGAUGA	X	GAA	AAAUCAGG
35	2057	GAUUUUGUU GU	IGGUACA	UGUACCAC	CUGAUGA	X	GAA	ACAAAAUC
	2063	GUUGUGGUA CA	ACAGUU	AACUGUUG	CUGAUGA	x	GAA	ACCACAAC

	nt.	Target Sequence	Ribozyme Sequence
20	Posi-		
	tion		
	2071	ACAACAGUU GAGAGCAC	CUGCUCUC CUGAUGA X GAA ACUGUUGU
	2092	AAGUGCAUU UUUAGUU	CAACUAAA CUGAUGA X GAA AUGCACUU
•	2093	AGUGCAUUU UUAGUUGO	GCAACUAA CUGAUGA X GAA AAUGCACU
	2094	GUGCAUUUU UAGUUGCU	AGCAACUA CUGAUGA X GAA AAAUGCAC
5	2095	UGCAUUUUU AGUUGCUU	AAGCAACU CUGAUGA X GAA AAAAUGCA
	2096	GCAUUUUUA GUUGCUU	CAAGCAAC CUGAUGA X GAA AAAAAUGC
	2099	UUUUUAGUU GCUUGAGA	UCUCAAGC CUGAUGA X GAA ACUAAAAA
	2103	UAGUUGCUU GAGAUCU	GAGAUCUC CUGAUGA X GAA AGCAACUA
	2109	CUUGAGAUC UCACUUGI	UCAAGUGA CUGAUGA X GAA AUCUCAAG
10	2111	UGAGAUCUC ACUUGAU	AAUCAAGU CUGAUGA X GAA AGAUCUCA
	2115	AUCUCACUU GAUUUCA	GUGAAAUC CUGAUGA X GAA AGUGAGAU
	2119	CACUUGAUU UCACACAI	UUGUGUGA CUGAUGA X GAA AUCAAGUG
	2120	ACUUGAUUU CACACAA	GUUGUGUG CUGAUGA X GAA AAUCAAGU
	2121	CUUGAUUUC ACACAACT	AGUUGUGU CUGAUGA X GAA AAAUCAAG
15	2130	ACACAACUA AAAAGGAT	AUCCUUUU CUGAUGA X GAA AGUUGUGU
	2139	AAAAGGAUU UUUUUUU	AAAAAAA CUGAUGA X GAA AUCCUUUU
	2140	AAAGGAUUU UUUUUUU	UAAAAAAA CUGAUGA X GAA AAUCCUUU
	2141	AAGGAUUUU UUUUUUAA	UUAAAAAA CUGAUGA X GAA AAAUCCUU
	2142	AGGAUUUUU UUUUUAAA	UUUAAAAA CUGAUGA X GAA AAAAUCCU
20	2143	GGAUUUUUU UUUUAAAA	UUUUAAAA CUGAUGA X GAA AAAAAUCC
	2144	GAUUUUUUU UUUAAAAA	UUUUUAAA CUGAUGA X GAA AAAAAAUC
	2145	JAAAAAUU UUUUUUUA	AUUUUUAA CUGAUGA X GAA AAAAAAU
	2146	TUAAAAAU UUUUUUUU	UAUUUUUA CUGAUGA X GAA AAAAAAA
	2147	MUUUUUUU AAAAAUA	UUAUUUUU CUGAUGA X GAA AAAAAAA
25	2148	DAAUAAAA AUUUUUUU	AUUAUUUU CUGAUGA X GAA AAAAAAA
	2154	JAAUAAUA AUAAAAUU	AUUAUUAU CUGAUGA X GAA AUUUUUAA
	2157	AAAAUAAUA AUAAUGA	UUCAUUAU CUGAUGA X GAA AUUAUUUU
	2160	AUAAUAAUA AUGAAUA	UUAUUCAU CUGAUGA X GAA AUUAUUAU
	2167	UAAUGAAUA ACAGUCUU	
30	2173	AUAACAGUC UUACCUA	UUAGGUAA CUGAUGA X GAA ACUGUUAU
	2175	AACAGUCUU ACCUAAAI	AUUUAGGU CUGAUGA X GAA AGACUGUU
	2176	ACAGUCUUA CCUAAAUT	AAUUUAGG CUGAUGA X GAA AAGACUGU
	2180	UCUUACCUA AAUUAUUZ	
	2184	ACCUAAAUU AUUAGGUA	
35	2185	CCUAAAUUA UUAGGUAZ	
	2187	UAAAUUAUU AGGUAAU	CAUUACCU CUGAUGA X GAA AUAAUUUA

	nt.	Target Se	<u>mence</u>	Ribozyme	Sequence	e		
20	Posi-					_		
	tion			•				
	2188	AAAUUAUUA	GGUAAUGA	UCAUUACC	CUGAUGA	х	GAA	AAUAAUUU
	2192	UAUUAGGUA	AUGAAUUG	CAAUUCAU	CUGAUGA	x	GAA	ACCUAAUA
	2199	UAAUGAAUU	GUGACCAU	AUGGUCAC	CUGAUGA	х	GAA	AUUCAUUA
	2208	GUGACCAUU	UGUUAAUA	UAUUAACA	CUGAUGA	x	GAA	AUGGUCAC
5	2209	UGACCAUUU	GUUAAUAU	AUAUUAAC	CUGAUGA	х	GAA	AAUGGUCA
	2212	CCAUUUGUU	AAUAUCAU	AUGAUAUU	CUGAUGA	x	GAA	ACAAAUGG
	2213	CAUUUGUUA	AUAUCAUA	UAUGAUAU	CUGAUGA	X	GAA	AACAAAUG
	2216	UUGUUAAUA	UCAUAAUC	GAUUAUGA	CUGAUGA	X	GAA	AUUAACAA
	2218	GUUAAUAUC	AUAAUCAG	CUGAUUAU	CUGAUGA	X	GAA	AUAUUAAC
10	2221	AAUAUCAUA	AUCAGAUU	AAUCUGAU	CUGAUGA	X	GAA	AUGAUAUU
	2224	AUCAUAAUC	AGAUUUUU	AAAAAUCU	CUGAUGA	x	GAA	AUUAUGAU
	2229	AAUCAGAUU	AAAAUUUU	AAAAUUUU	CUGAUGA	x	GAA	AUCUGAUU
	2230	AUCAGAUUU	AAAAUUU	UUUUUAAA	CUGAUGA	x	GAA	AAUCUGAU
	2231	UCAGAUUUU	UUAAAAAA	UUUUUUAA	CUGAUGA	x	GAA	AAAUCUGA
15	2232	CAGAUUUUU	UAAAAAA	UUUUUUUA	CUGAUGA	x	GAA	AAAAUCUG
	2233	AGAUUUUUU	ААААААА	טטטטטטטט	CUGAUGA	X	GAA	AAAAAUCU
	2234	GAUUUUUUA	UAAAAAA	DUUUUUUA	CUGAUGA	X	GAA	AAAAAAUC
	2243	AAAAAAA	AAAUGAUU	AAUCAUUU	CUGAUGA	X	GAA	UUUUUUUA
	2251	AAAAUGAUU	UAUUUGUA	UACAAAUA	CUGAUGA	X	GAA	AUCAUUUU
20	2252	AAAUGAUUU	AUUUGUAU	AUACAAAU	CUGAUGA	X	GAA	AAUCAUUU
	2253	AAUGAUUUA	UUUGUAUU	AAUACAAA	CUGAUGA	X	GAA	AAAUCAUU
	2255	UGAUUUAUU	UGUAUUUU	AAAAUACA	CUGAUGA	X	GAA	AUAAAUCA
	2256	GAUUUAUUU	GUAUUUUA	UAAAAUAC	CUGAUGA	X	GAA	AAUAAAUC
	2259	UUAUUUGUA	UUUUAGAG	CUCUAAAA	CUGAUGA	X	GAA	ACAAAUAA
25	2261	AUUUGUAUU	UUAGAGAA	UUCUCUAA	CUGAUGA	X	GAA	AUACAAAU
	2262	UUUGUAUUU	UAGAGAAU	AUUCUCUA	CUGAUGA	X	GAA	AAUACAAA
	2263	UUGUAUUUU	AGAGAAUA	UAUUCUCU	CUGAUGA	X	GAA	AAAUACAA
	2264	UGUAUUUUA	GAGAAUAC	GUAUUCUC	CUGAUGA	X	GAA	AAAAUACA
	2271	UAGAGAAUA	CAACAGAU	AUCUGUUG	CUGAUGA	X	GAA	AUUCUCUA
30	2280	CAACAGAUC	AGUAUUUU	AAAAUACU	CUGAUGA	X	GAA	AUCUGUUG
	2284	AGAUCAGUA	UUUUUGAC	GUCAAAAA	CUGAUGA	X	GAA	ACUGAUCU
	2286	AUCAGUAUU	UUUGACUG	CAGUCAAA	CUGAUGA	X	GAA	AUACUGAU
	2287	UCAGUAUUU	UUGACUGU	ACAGUCAA	CUGAUGA	X	GAA	AAUACUGA
	2288	CAGUAUUUU	UGACUGUG	CACAGUCA	CUGAUGA	X	GAA	AAAUACUG
35	2289	AGUAUUUUU	GACUGUGG	CCACAGUC	CUGAUGA	X	GAA	AAAAUACU
	2303	UGGUGAAUU	AAAAAAU	AUUUUUUU	CUGAUGA	X	GAA	AUUCACCA

	nt.	Target Sequence	Ribozyme Sequence
20	Posi-		
	tion		
	2304	GGUGAAUUU AAAAAAAA	UUUUUUUU CUGAUGA X GAA AAUUCACC
	2305	GUGAAUUUA AAAAAAAA	UUUUUUUU CUGAUGA X GAA AAAUUCAC
	2316	AAAAAAAUU UACACAAA	UUUUUUUU KADABA KUUUUUUU KADABUGA K GAA AUUUUUUU
	2317	AAAAAAUUU ACACAAAG	CUUUGUGU CUGAUGA X GAA AAUUUUUU
5	2318	AAAAAUUUA CACAAAGA	UCUUUGUG CUGAUGA X GAA AAAUUUUU
	2330	AAAGAAAUA UCCCAGUA	UACUGGGA CUGAUGA X GAA AUUUCUUU
	2332	AGAAAUAUC CCAGUAUU	AAUACUGG CUGAUGA X GAA AUAUUUCU
	2338	AUCCCAGUA UUCCAUGU	ACAUGGAA CUGAUGA X GAA ACUGGGAU
	2340	CCCAGUAUU CCAUGUAU	AUACAUGG CUGAUGA X GAA AUACUGGG
10	2341	CCAGUAUUC CAUGUAUC	GAUACAUG CUGAUGA X GAA AAUACUGG
	2347	UUCCAUGUA UCUCAGUC	GACUGAGA CUGAUGA X GAA ACAUGGAA
	2349	CCAUGUAUC UCAGUCAC	GUGACUGA CUGAUGA X GAA AUACAUGG
	2351	AUGUAUCUC AGUCACUA	UAGUGACU CUGAUGA X GAA AGAUACAU
	2355	AUCUCAGUC ACUAAACA	UGUUUAGU CUGAUGA X GAA ACUGAGAU
15	2359	CAGUCACUA AACAUACA	UGUAUGUU CUGAUGA X GAA AGUGACUG
	2365	CUAAACAUA CACAGAGA	UCUCUGUG CUGAUGA X GAA AUGUUUAG
	2377	AGAGAGAUU UUUAAAAA	UUUUUAAA CUGAUGA X GAA AUCUCUCU
	2378	GAGAGAUUU UUAAAAAC	GUUUUUAA CUGAUGA X GAA AAUCUCUC
	2379	AGAGAUUUU UAAAAACC	GGUUUUUA CUGAUGA X GAA AAAUCUCU
20	2380	GAGAUUUUU AAAAACCA	UGGUUUUU CUGAUGA X GAA AAAAUCUC
	2381	AGAUUUUUA AAAACCAG	CUGGUUUU CUGAUGA X GAA AAAAAUCU
	2399	AGAAGCAUU AUUUUGAA	UUCAAAAU CUGAUGA X GAA AUGCUUCU
	2400	GAAGCAUUA UUUUGAAU	AUUCAAAA CUGAUGA X GAA AAUGCUUC
	2402	AGCAUUAUU UUGAAUGU	ACAUUCAA CUGAUGA X GAA AUAAUGCU
25	2403	GCAUUAUUU UGAAUGUU	AACAUUCA CUGAUGA X GAA AAUAAUGC
	2404	CAUUAUUUU GAAUGUUA	UAACAUUC CUGAUGA X GAA AAAUAAUG
	2411	UUGAAUGUU AGCUAAAU	AUUUAGCU CUGAUGA X GAA ACAUUCAA
	2412	UGAAUGUUA GCUAAAUC	GAUUUAGC CUGAUGA X GAA AACAUUCA
	2416	UGUUAGCUA AAUCCCAA	UUGGGAUU CUGAUGA X GAA AGCUAACA
30	2420	AGCUAAAUC CCAAGUAA	UUACUUGG CUGAUGA X GAA AUUUAGCU
	2427	UCCCAAGUA AUACUUAA	
	2430	CAAGUAAUA CUUAAUGC	
	2433	GUAAUACUU AAUGCAAC	
	2434	UAAUACUUA AUGCAACC	
35	2445	GCAACCCUC UAGGAGCU	
	2447	AACCCUCUA GGAGCUCA	UGAGCUCC CUGAUGA X GAA AGAGGGUU

				•				
	nt.	Target Sec	<u>ruence</u>	Ribozyme	Sequence	≘.		
20	Posi-							
	<u>tion</u>							
	2454	UAGGAGCUC	AUUUGUGG	CCACAAAU	CUGAUGA	X	GAA	AGCUCCUA
	2457	GAGCUCAUU	UGUGGCUA	UAGCCACA	CUGAUGA	X	GAA	AUGAGCUC
	2458	AGCUCAUUU	GUGGCUAA	UUAGCCAC	CUGAUGA	X	GAA	AAUGAGCU
	2465	UUGUGGCUA	AUAAUCUU	AAGAUUAU	CUGAUGA	X	GAA	AGCCACAA
5	2468	UGGCUAAUA	AUCUUGGA	UCCAAGAU	CUGAUGA	X	GAA	AUUAGCCA
	2471	CUAAUAAUC	UUGGAAAU	AUUUCCAA	CUGAUGA	X	GAA	AUUAUUAG
	2473	AAUAAUCUU	GGAAAUAU	AUAUUUCC	CUGAUGA	X	GAA	AGAUUAUU
	2480	UUGGAAAUA	UCUUUAUU	AAUAAAGA	CUGAUGA	X	GAA	AUUUCCAA
	2482	GGAAAUAUC	UUUAUUAU	AUAAUAAA	CUGAUGA	X	GAA	AUAUUUCC
10	2484	AAAUAUCUU	UAUUAUAU	AUAUAAUA	CUGAUGA	x	GAA	AGAUAUUU
	2485	AAUAUCUUU	AUUAUAUA	UAUAUAAU	CUGAUGA	x	GAA	AAGAUAUU
	2486	AUAUCUUUA	UUAUAUAG	CUAUAUAA	CUGAUGA	x	GAA	AAAGAUAU
	2488	AUCUUUAUU	AUAUAGCA	UGCUAUAU	CUGAUGA	x	GAA	AUAAAGAU
	2489	UCUUUAUUA	UAUAGCAU	AUGCUAUA	CUGAUGA	x	GAA	AAUAAAGA
15	2491	UUUAUUAUA	UAGCAUUU	AAAUGCUA	CUGAUGA	x	GAA	AAAUAAA
	2493	UAUUAUAUA	GCAUUUAU	AUAAAUGC	CUGAUGA	X	GAA	AUAUAAUA
	2498	UAUAGCAUU	UAUGAGGA	UCCUCAUA	CUGAUGA	x	GAA	AUGCUAUA
	2499	AUAGCAUUU	AUGAGGAG	CUCCUCAU	CUGAUGA	x	GAA	AAUGCUAU
	2500	UAGCAUUUA	UGAGGAGA	UCUCCUCA	CUGAUGA	x	GAA	AAAUGCUA
20	2510	GAGGAGAUU	UUGUUGUC	GACAACAA	CUGAUGA	x	GAA	AUCUCCUC
	2511	AGGAGAUUU	UGUUGUCA	UGACAACA	CUGAUGA	X	GAA	AAUCUCCU
	2512	GGAGAUUUU	GUUGUCAG	CUGACAAC	CUGAUGA	X	GAA	AAAUCUCC
	2515	GAUUUUGUU	GUCAGCUU	AAGCUGAC	CUGAUGA	X	GAA	ACAAAAUC
	2518	UUUGUUGUC	AGCUUGCU	AGCAAGCU	CUGAUGA	X	GAA	ACAACAAA
25	2523	UGUCAGCUU	GCUUGAAA	UUUCAAGC	CUGAUGA	X	GAA	AGCUGACA
	2527	AGCUUGCUU	GAAAGUUA	UAACUUUC	CUGAUGA	X	GAA	AGCAAGCU
	2534	UUGAAAGUU	AUUAUGUA	UACAUAAU	CUGAUGA	X	GAA	ACUUUCAA
	2535	UGAAAGUUA	UUAUGUAU	AUACAUAA	CUGAUGA	X	GAA	AACUUUCA
	2537	AAAGUUAUU	AUGUAUGA	UCAUACAU	CUGAUGA	X	GAA	AUAACUUU
30	2538	AAGUUAUUA	UGUAUGAA	UUCAUACA	CUGAUGA	X	GAA	AAUAACUU
	2542	UAUUAUGUA	UGAAUAGU	ACUAUUCA	CUGAUGA	X	GAA	ACAUAAUA
	2548	GUAUGAAUA	GUUUUAUU	AAUAAAAC	CUGAUGA	X	GAA	AUUCAUAC
	2551	UGAAUAGUU	UUAUUGAA	UUCAAUAA	CUGAUGA	X	GAA	ACUAUUCA
	2552	GAAUAGUUU	UAUUGAAA	UUUCAAUA	CUGAUGA	X	GAA	AACUAUUC
35	2553	AAUAGUUUU	AUUGAAAA	UUUUCAAU	CUGAUGA	x	GAA	AAACUAUU
	2554	AUAGUUUUA	UUGAAAAA	UUUUUCAA	CUGAUGA	x	GAA	AAAACUAU

	nt.	Target Seguen	ce	Ribozyme	Sequence	2		
20	Posi-							
	tion							
	2556	AGUUUUAUU GAA	UAAAAU	AUUUUUUC	CUGAUGA	x	GAA	AUAAAACU
	2565	GAAAAAAUU AUA	סטטטט	UAUAAAAA	CUGAUGA	x	GAA	AUUUUUUC
	2566	AAAAAAUUA UAU	AUUUU	UAAAAAUA	CUGAUGA	x	GAA	AAUUUUUU
	2568	AAAAUUAUA UUU	UUAUU	AAUAAAA	CUGAUGA	x	GAA	AUAAUUUU
5	2570	AAUUAUAUU UUU	AUUCA	UGAAUAAA	CUGAUGA	X	GAA	DUAGUAU
	2571	AUU UUUAUAUUA	UUCAG	CUGAAUAA	CUGAUGA	x	GAA	AAUAUAAU
	2572	UAU UUUUAUAUU	UCAGU	ACUGAAUA	CUGAUGA	x	GAA	AAAUAUAA
	2573	UUA UUUUUAUAU	ICAGUA	UACUGAAU	CUGAUGA	x	GAA	AAAAUAUA
	2574	AUAUUUUUA UUC	AGUAA	UUACUGAA	CUGAUGA	x	GAA	AAAAAUAU
10	2576	AUUUUUAUU CAG	UUAAUU	AAUUACUG	CUGAUGA	x	GAA	AUAAAAAU
	2577	UUUUUAUUC AGU	UUUAAU	AAAUUACU	CUGAUGA	X	GAA	AAUAAAA
	2581	UAUUCAGUA AUU	UUAAUU	DAAGUUAA	CUGAUGA	X	GAA	ACUGAAUA
	2584	UCAGUAAUU UAA	VUUUUG	CAAAAUUA	CUGAUGA	x	GAA	AUUACUGA
	2585	CAGUAAUUU AAU	JUUU GU	ACAAAAUU	CUGAUGA	X	GAA	AAUUACUG
15	2586	AGUAAUUUA AUU	JUUGUA	UACAAAAU	CUGAUGA	X	GAA	AAAUUACU
	2589	AAUUUAAUU UUG	UAAAU	AUUUACAA	CUGAUGA	X	GAA	UUAAAUU
	2590	AUUUAAUUU UGU	JAAAUG	CAUUUACA	CUGAUGA	X	GAA	UAAAUUAA
	2591	UUUAAUUUU GUA	LAAUGC	GCAUUUAC	CUGAUGA	X	GAA	AAAUUAAA
	2594	AAUUUUGUA AAU	IGCCAA	UUGGCAUU	CUGAUGA	X	GAA	ACAAAAUU
20	2617	AAAUGUGUU CGC	TUGCUA	UAGCAGCG	CUGAUGA	X	GAA	ACACAUUU
	2618	AAUGUGUUC GCU	IGCUAU	AUAGCAGC	CUGAUGA	X	GAA	AACACAUU
	2625	UCGCUGCUA UGG	AUUUU	UAAAACCA	CUGAUGA	X	GAA	AGCAGCGA
	2630	GCUAUGGUU UUA	GCCUA	UAGGCUAA	CUGAUGA	X	GAA	ACCAUAGC
	2631	CUAUGGUUU UAG	CCUAU	AUAGGCUA	CUGAUGA	X	GAA	AACCAUAG
25	2632	UAUGGUUUU AGC	CUAUA	UAUAGGCU	CUGAUGA	X	GAA	AAACCAUA
	2633	AUGGUUUUA GCC	DAUAU	CUAUAGGC	CUGAUGA	X	GAA	AAAACCAU
	2638	UUUAGCCUA UAG	FUCAUG	CAUGACUA	CUGAUGA	X	GAA	AGGCUAAA
	2640	UAGCCUAUA GUC	AUGCU	AGCAUGAC	CUGAUGA	X	GAA	AUAGGCUA
	2643	CCUAUAGUC AUG	CUGCU					ACUAUAGG
30	2652	AUGCUGCUA GCU	JAGUGU					AGCAGCAU
	2656	UGCUAGCUA GUG	UCAGG	-				AGCUAGCA
	2661	GCUAGUGUC AGG	GGGCA	=				ACACUAGC
	2672	GGGGCAAUA GAG						AUUGCCCC
	2678	AUAGAGCUU AGA	UGGAA					AGCUCUAU
35	2679	UAGAGCUUA GAU	JGGAAA	•				AAGCUCUA
	2703	AAGAGACUC GGU	JGUUAG	CUAACACC	CUGAUGA	X	GAA	AGUCUCUU

	nt.	Target Sequence	Ribozyme Sequence
20	<u>Posi-</u>		
	<u>tion</u>		
	2709	CUCGGUGUU AGAUAACG	CGUUAUCU CUGAUGA X GAA ACACCGAG
	2710	UCGGUGUUA GAUAACGG	CCGUUAUC CUGAUGA X GAA AACACCGA
	2714	UGUUAGAUA ACGGACUA	UAGUCCGU CUGAUGA X GAA AUCUAACA
	2722	AACGGACUA UGCACUAG	CUAGUGCA CUGAUGA X GAA AGUCCGUU
5	2729	UAUGCACUA GUAUUCCA	UGGAAUAC CUGAUGA X GAA AGUGCAUA
•	2732	GCACUAGUA UUCCAGAC	GUCUGGAA CUGAUGA X GAA ACUAGUGC
	2734	ACUAGUAUU CCAGACUU	AAGUCUGG CUGAUGA X GAA AUACUAGU
-	2735	CUAGUAUUC CAGACUUU	AAAGUCUG CUGAUGA X GAA AAUACUAG
	2742	UCCAGACUU UUUUAUUU	AAAUAAAA CUGAUGA X GAA AGUCUGGA
10	2743	CCAGACUUU UUUAUUUU	AAAAUAAA CUGAUGA X GAA AAGUCUGG
	2744	CAGACUUUU UUAUUUUU	AAAAAUAA CUGAUGA X GAA AAAGUCUG
	2745	AGACUUUUU UAUUUUUU	AAAAAAUA CUGAUGA X GAA AAAAGUCU
	2746	GACUUUUUU AUUUUUUA	UAAAAAAU CUGAUGA X GAA AAAAAGUC
	2747	ACUUUUUUA UUUUUUAU	AUAAAAAA CUGAUGA X GAA AAAAAAGU
15	2749	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	AUAUAAAA CUGAUGA X GAA AUAAAAA
	2750	AUAUAUUU UUUAUAUA	UAUAUAAA CUGAUGA X GAA AAUAAAAA
	2751	UAUAUAUU UUUUAUAUAU	AUAUAUAA CUGAUGA X GAA AAAUAAAA
	2752	UUUAUUUU UAUAUAUA	UAUAUAUA CUGAUGA X GAA AAAAUAAA
	2753	UUAUUUUU AUAUAUAU	AUAUAUAU CUGAUGA X GAA AAAAAUAA
20	2754	UAUUUUUUA UAUAUAUG	CAUAUAUA CUGAUGA X GAA AAAAAUA
	2756	UUUUUUAUA UAUAUGUA	UACAUAUA CUGAUGA X GAA AUAAAAAA
	2758	UUUUAUAUA UAUGUACC	GGUACAUA CUGAUGA X GAA AUAUAAAA
	2760	UUAUAUAUA UGUACCUU	AAGGUACA CUGAUGA X GAA AUAUAUAA
	2764	AUAUAUGUA CCUUUUCC	GGAAAAGG CUGAUGA X GAA ACAUAUAU
25	2768	AUGUACCUU UUCCUUUU	AAAAGGAA CUGAUGA X GAA AGGUACAU
	2769	UGUACCUUU UCCUUUUG	CAAAAGGA CUGAUGA X GAA AAGGUACA
	2770	GUACCUUUU CCUUUUGU	ACAAAAGG CUGAUGA X GAA AAAGGUAC
	2771	UACCUUUUC CUUUUGUC	GACAAAAG CUGAUGA X GAA AAAAGGUA
	2774	CUUUUCCUU UUGUCAAU	AUUGACAA CUGAUGA X GAA AGGAAAAG
30	2775	UUUUCCUUU UGUCAAUU	AAUUGACA CUGAUGA X GAA AAGGAAAA
	2776	UUUCCUUUU GUCAAUUG	CAAUUGAC CUGAUGA X GAA AAAGGAAA

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 Nucleic Acids Res. 20 3252). The 35 length of stem II may be ≥ 2 base-pairs.

Table XVI: Mouse c-myb Hairpin ribozyme and target sequences

	Posi- tion	RZ	Substrate
5	24	GCGAGGCG AGAA GGGGCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AGCCCCG GCC
	28	CAUGGCGA AGAA GGCCGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCGGCCC GCC UCGCCAUG
	122	AUUUGGGC AGAA GCCCAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AUGGGCU GCU GCCCAAAU
	125	CAGAUUUG AGAA GCAGCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GGCUGCU GCC CAAAUCUG
	216	UUCCAGUC AGAA GUUCCG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CGGAACA GAC GACUGGAA
10	245	UCCGGUUG AGAA GAUAAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AUUAUCU GCC CAACCGGA
	258	CACUGUAC AGAA GUCCGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCGGACA GAU GUACAGUG
	529	CUCUGCCC AGAA GUUCCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GGGAACA GAU GGGCAGAG
	551	GUCCGGGC AGAA GCUUUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAAAGCU GCU GCCCGGAC
	554	UCCGUCCG AGAA GCAGCU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AGCUGCU GCC CGGACGGA
15	559	AUCAGUCC AGAA GGGCAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CUGCCCG GAC GGACUGAU
	563	CAUUAUCA AGAA GUCCGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCGGACG GAC UGAUAAUG
	656	CCACUGGC AGAA GGCUGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCAGCCA GAC GCCAGUGG
	728	UUGGAGAG AGAA GAGAUG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAUCUCA GCU CUCUCCAA
	746	UGACGGAG AGAA GGCCAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GUGGCCA GUC CUCCGUCA
20	822	UGCAAUGC AGAA GGAUAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CUAUCCU GUC GCAUUGCA

	857	CCGCAGCC AGAA GAGGGA	UCCCUCA GCC
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GGCTGCGG
	861	GCUGCCGC AGAA GGCUGA	UCAGCCG GCU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GCGGCAGC
	941	CUGUUGAC AGAA GGAGCA	UGCUCCU GAU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GUCAACAG
	1040	GAGGUCUG AGAA GGUCCA	UGGACCA GAC
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAGACCUC
5	1045	CCCAUGAG AGAA GGUCUG	CAGACCA GAC
		ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA	CUCAUGGG
	1068	AAACAGGA AGAA GGUGCA	UGCACCU GUU
		ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA	nccnennn
	1075	UUCUCCCA AGAA GGAAAC	GUUUCCU GUU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UGGGAGAA
	1106	GAUCUGCA AGAA GAGAUG	CAUCUCU GCC
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UGCAGAUC
	1113	GAGCCGGG AGAA GCAGGC	GCCUGCA GAU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCCGGCUC
.0	1120	AGGUAGGG AGAA GGGAUC	GAUCCCG GCU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCCUACCU
	1226	AAUCUAUA AGAA GGAGUG	CACUCCA GUU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UAUAGAUU
	1340	UUUUCACA AGAA GGUCUC	GAGACCA GAC
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UGUGAAAA
	1449	AUUUCUUG AGAA GCAAGG	CCUUGCA GCU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAAGAAAU
	1468	CUUCAGGG AGAA GUAUUU	AAAUACG GUC
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCCUGAAG
.5	1490	GGGAGGGG AGAA GAGGUA	UACCUCA GAC
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	ccccuccc
	1542	CCAGAUUC AGAA GAUUCC	GGAAUCG GAU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAAUCUGG
	1648	GUGGUUUG AGAA GAAGAA	vucuucu gcu
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CAAACCAC
	1672	GGUGCUCA AGAA GUUCUC	GAGAACA GCC
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UGAGCACC

	1688	CCUGCGAG AGAA GUUGGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCCAACU GUU CUCGCAGG
			
	1713	DUUGGGGC AGAA GCCACA	UGUGGCA GAU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GCCCCAAA
	1740	GUCAUUAA AGAA GAGCUU	AAGCUCU GUU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	UUAAUGAC
	1880	AGGCCGUC AGAA GGUCCU	AGGACCA GAU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GACGGCCU
5	1887	GGACCGGA AGAA GUCAUC	GAUGACG GCC
	·	ACCAGAGAAACACGUUGUGGUACAUUACCUGGUA	UCCGGUCC
	1894	CCGAGCCG AGAA GGAGGC	GCCUCCG GUC
	}	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CGGCUCGG
	1899	UAUUUCCG AGAA GGACCG	CGGUCCG GCU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CGGAAAUA
	1926	AGAGUUCG AGAA GAGAAC	GUUCUCA GCU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CGAACUCU
	2048	ACAACAAA AGAA GGCUCU	AGAGCCU GAU
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	ບບບເບບເບ
10	2068	CUGCUCUC AGAA GUUGUA	UACAACA GUU
	1 2000		DAGMACK GOO
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGAGCAG
	2170		•
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGAGCAG
		ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU	GAGAGCAG AAUAACA GUC
	2170	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGAGCAG AAUAACA GUC UUACCUAA
	2170	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU
	2170	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU UUUUUAAA
	2170	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AAAUACUG AGAA GUUGUA	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU UUUUUAAA UACAACA GAU
	2170 2225 2276	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AAAUACUG AGAA GUUGUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU UUUUUAAA UACAACA GAU CAGUAUUU
15	2170 2225 2276	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AAAUACUG AGAA GUUGUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUCAAGCA AGAA GACAAC	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU UUUUUAAA UACAACA GAU CAGUAUUU GUUGUCA GCU
15	2170 2225 2276 2519	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AAAUACUG AGAA GUUGUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUCAAGCA AGAA GACAAC ACCAGAGAAACACCACGUUGUGGUACAUUACCUGGUA	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU UUUUUAAA UACAACA GAU CAGUAUUU GUUGUCA GCU UGCUUGAA
15	2170 2225 2276 2519	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AAAUACUG AGAA GUUGUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUCAAGCA AGAA GACAAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AGUGCAUA AGAA GUUAUC	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU UUUUUAAA UACAACA GAU CAGUAUUU GUUGUCA GCU UGCUUGAA GAUAACG GAC
15	2170 2225 2276 2519 2717	ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUAGGUAA AGAA GUUAUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUUAAAAA AGAA GAUUAU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AAAUACUG AGAA GUUGUA ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA UUCAAGCA AGAA GACAAC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA AGUGCAUA AGAA GUUAUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGAGCAG AAUAACA GUC UUACCUAA AUAAUCA GAU UUUUUAAA UACAACA GAU CAGUAUUU GUUGUCA GCU UGCUUGAA GAUAACG GAC UAUGCACU

Table XVII: Rat c-myb (Region A) Hammerhead Ribozyme and Target Sequences (282 bp; nt. 428 start; human c-myb numbering system)

	nt.	Target Sequence	Ribozyme Sequence
5	Posi-		
	tion		
	467	CCUGAGCUC AUCAAAGG	CCUUUGAU CUGAUGA X GAA AGCUCAGG
	470	GAGCUCAUC AAAGGUCC	GGACCUUU CUGAUGA X GAA AUGAGCUC
	477	UCAAAGGUC CCUGGACC	GGUCCAGG CUGAUGA X GAA ACCUUUGA
10	498	AAGAAGAUC AAAGAGUG	CACUCUUU CUGAUGA X GAA AUCUUCUU
	509	AGAGUGAUA GAGCUUGU	ACAAGCUC CUGAUGA X GAA AUCACUCU
	515	AUAGAGCUU GUCCAGAA	UUCUGGAC CUGAUGA X GAA AGCUCUAU
	518	GAGCUUGUC CAGAAAUA	UAUUUCUG CUGAUGA X GAA ACAAGCUC
	526	CCAGAAAUA CGGUCCGA	UCGGACCG CUGAUGA X GAA AUUUCUGG
15	531	AAUACGGUC CGAAGCGC	GCGCUUCG CUGAUGA X GAA ACCGUAUU
	544	GCGCUGGUC UGUUAUUG	CAAUAACA CUGAUGA X GAA ACCAGCGC
	548	UGGUCUGUU AUUGCCAA	UUGGCAAU CUGAUGA X GAA ACAGACCA
	549	GGUCUGUUA UUGCCAAG	CUUGGCAA CUGAUGA X GAA AACAGACC
	551	UCUGUUAUU GCCAAGCA	UGCUUGGC CUGAUGA X GAA AUAACAGA
20	562	CAAGCACUU AAAAGGGA	UCCCUUUU CUGAUGA X GAA AGUGCUUG
	563	AAGCACUUA AAAGGGAG	CUCCCUUU CUGAUGA X GAA AAGUGCUU
	575	GGGAGAAUU GGAAAACA	UGUUUUCC CUGAUGA X GAA AUUCUCCC
	588	AACAAUGUC GGGAGAGG	CCUCUCCC CUGAUGA X GAA ACAUUGUU
	609	ACAACCAUU UGAAUCCA	UGGAUUCA CUGAUGA X GAA AUGGUUGU
25	610	CAACCAUUU GAAUCCAG	CUGGAUUC CUGAUGA X GAA AAUGGUUG
	615	AUUUGAAUC CAGAAGUU	AACUUCUG CUGAUGA X GAA AUUCAAAU
	623	CCAGAAGUU AAGAAAAC	GUUUUCUU CUGAUGA X GAA ACUUCUGG
	624	CAGAAGUUA AGAAAACC	GGUUUUCU CUGAUGA X GAA AACUUCUG
	634	GAAAACCUC AUGGACAG	CUGUCCAU CUGAUGA X GAA AGGUUUUC
30	659	GACAGAAUC AUUUAUCA	UGAUAAAU CUGAUGA X GAA AUUCUGUC
	662	AGAAUCAUU UAUCAGGC	GCCUGAUA CUGAUGA X GAA AUGAUUCU
	663	GAAUCAUUU AUCAGGCA	UGCCUGAU CUGAUGA X GAA AAUGAUUC
	664	AAUCAUUUA UCAGGCAC	GUGCCUGA CUGAUGA X GAA AAAUGAUU
	666	UCAUUUAUC AGGCACAC	GUGUGCCU CUGAUGA X GAA AUAAAUGA

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 Nucleic Acids Res. 20 3252). The length of stem II may be \geq 2 base-pairs.

Table XVIII: Rat c-myb (Region B) Hammerhead Ribozyme and Target Sequences (262 bp; nt. 1421 start; human c-myb numbering system)

5	nt.	Target Seg	uence	Ribozyme	Sequence	<u> </u>		
_	Posi-	<u></u>						
	tion							
	1429	CUCGGGCUU	AGAUACGC	GCGUAUCU	CUGAUGA	x	GAA	AGCCCGAG
	1430	UCGGGCUUA		GGCGUAUC	CUGAUGA	x	GAA	AAGCCCGA
10	1434	GCUUAGAUA		AGUAGGCG	CUGAUGA	x	GAA	AUCUAAGC
10	1440	AUACGCCUA		GGGUAAAG	CUGAUGA	x	GAA	AGGCGUAU
	1443	CGCCUACUU		GGAGGGUA				
	1444	GCCUACUUU		UGGAGGGU				
	1445	CCUACUUUA		GUGGAGGG		-		
15	1450	UUUACCCUC		GAGGCGUG				
13	1458	CCACGCCUC		ACCAAUGA				
	1460	ACGCCUCUC		UGACCAAU				
	1463	CCUCUCAUU		UUGUGACC				
	1463	UCAUUGGUC						ACCAAUGA
20		CACCGUGUC						ACACGGUG
20	1485							AGUUUUCA
	1509	UGAAAACUN						AGUUUUCC
	1522	GGAAAACUC						AUNGAGUU
	1526	AACUCNAUC						AGAUNGAG
	1528	CUCNAUCUU						AAGAUNGA
25	1529	UCNAUCUUU						AAAGAUNG
	1530	CNAUCUUUA						AGUUCUAA
	1536	UUAGAACUC					-	AGCUGGAG
	1542	CUCCAGCUA						
	1544	CCAGCUAUC					-	AUAGCUGG
30	1552	CAAAAGGUN						ACCUUUUG
	1556	AGGUNAAUC						AUUNACCU
	1559	UNAAUCCUC						AGGAUUNA
	1567	CGAAAGCUC	UCCCAGAA					AGCUUUCG
	1569	AAAGCUCUC						AGAGCUUU
35	1578	CCAGAACUC						AGUUCUGG
	1588	CACACCAUU						AUGGUGUG
	1589	ACACCAUUC						AAUGGUGU
	1608	UGGCAGCUC	AAGAAAUU					AGCUGCCA
	1616	CAAGAAAUU	AAAUACGG	CCGUAUUU	CUGAUGA	X	GAA	AUUUCUUG

100

5	nt.	Target Sequence	Ribozyme	Sequence		
	<u> Posi-</u>					
	tion					
	1429	CUCGGGCUU AGAUACG	C GCGUAUCU	CUGAUGA 2	GAA	AGCCCGAG
	1617	AAGAAAUUA AAUACGG	J ACCGUAUU	CUGAUGA 2	GAA	AAUUUCUU
	1621	AAUUAAAUA CGGUCCC	C GGGGACCG	CUGAUGA I	GAA	DUDAAUU
	1626	AAUACGGUC CCCUGAA	G CUUCAGGG	CUGAUGA X	GAA	ACCGUAUU
	1640	AAGAUGCUA CCUNAGA	C GUCUNAGG	CUGAUGA 2	GAA	AGCAUCUU
5	1644	UGCUACCUN AGACCCC	C GGGGGUCU	CUGAUGA 2	GAA	AGGUAGCA
	1654	GACCCCCUN UNAUGUA	G CUACAUNA	CUGAUGA X	GAA	AGGGGGTC
	1656	CCCCCUNUN AUGUAGU	NACUACAU	CUGAUGA X	GAA	ANAGGGGG
	1661	UNUNAUGUA GUNNNAN	A UNUNNNAC	CUGAUGA X	GAA	ACAUNANA
	1664	NAUGUAGUN NNANACC	J AGGUNUNN	CUGAUGA X	GAA	ACUACAUN
10	1673	NNANACCUN CANGAUGI	J ACAUCNUG	CUGAUGA X	GAA	AGGIINTINN

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 Nucleic Acids Res. 20 3252). The length of stem II may be \geq 2 base-pairs.

Table XIX: Rat c-myb (Region A) Hairpin Ribozyme and Target Sequences (282 bp; nt. 428 start; human numbering system)

20	Posi- tion	RZ	Substrate
	528	GCGCUUCG AGAA GUAUUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AAAUACG GUC CGAAGCGC
	690	UUCUGCCC AGAA GUUUCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GGAAACA GAU GGGCAGAA

Table XX: Rat c-myb (Region B) Hairpin Ribozyme and Target
Sequences (262 bp; nt. 1421 start; human numbering system)

	Posi- tion	RZ	Substrate
. 5	1495	UUUUCACA AGAA GGUCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGACCA GAC UGUGAAAA
	1604	AUUUCUUG AGAA GCCAGG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CCUGGCA GCU CAAGAAAU
	1623	CUUCAGGG AGAA GUAUUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AAAUACG GUC CCCUGAAG

10 Table XXI: Porcine c-mvb (Region A) Hammerhead Ribozyme and Target Sequence (266 bp; nt. 458 start; human c-myb numbering system)

	nt.	Target Sequence	Ribozyme Sequence
1 F	<u>Posi-</u> tion		
15			CCCUUGAU CUGAUGA X GAA AGAUNAGG
	467	CCUNAUCUC AUCAAGGG	
	470	NAUCUCAUC AAGGGUCC	GGACCCUU CUGAUGA X GAA AUGAGAUN
	477	UCAAGGGUC CUUGGACC	GGUCCAAG CUGAUGA X GAA ACCCUUGA
	480	AGGGUCCUU GGACCAAA	UUUGGUCC CUGAUGA X GAA AGGACCCU
20	498	AAGAAGAUC AGAGAGUG	CACUCUCU CUGAUGA X GAA AUCUUCUU
	509	AGAGUGAUA GAGCUUGU	ACAAGCUC CUGAUGA X GAA AUCACUCU
	515	AUAGAGCUU GUACAGAA	UUCUGUAC CUGAUGA X GAA AGCUCUAU
	518	GAGCUUGUA CAGAAAUA	UAUUUCUG CUGAUGA X GAA ACAAGCUC
	526	ACAGAAAUA CGGUCCGA	UCGGACCG CUGAUGA X GAA AUUUCUGU
25	531	AAUACGGUC CGAAACGU	ACGUUUCG CUGAUGA X GAA ACCGUAUU
	540	CGAAACGUU GGUCUGUU	AACAGACC CUGAUGA X GAA ACGUUUCG
	544	ACGUUGGUC UGUUAUUG	CAAUAACA CUGAUGA X GAA ACCAACGU
	548	UGGUCUGUU AUUGCCAA	UUGGCAAU CUGAUGA X GAA ACAGACCA
	549	GGUCUGUUA UUGCCAAG	CUUGGCAA CUGAUGA X GAA AACAGACC
30	551	UCUGUUAUU GCCAAGCA	UGCUUGGC CUGAUGA X GAA AUAACAGA
	562	CAAGCACUU AAAGGGGA	UCCCCUUU CUGAUGA X GAA AGUGCUUG
	563	AAGCACUUA AAGGGGAG	CUCCCCUU CUGAUGA X GAA AAGUGCUU
	575	GGGAGAAUU GGAAAACA	UGUUUUCC CUGAUGA X GAA AUUCUCCC
	588	AACAAUGUA GGGAGAGG	CCUCUCCC CUGAUGA X GAA ACAUUGUU
35	603	GGUGGCAUA ACCACUUG	CAAGUGGU CUGAUGA X GAA AUGCCACC
	610	UAACCACUU GAAUCCAG	CUGGAUUC CUGAUGA X GAA AGUGGUUA

	nt.	Target Sequence	Ribozyme Sequence
	Posi-		
15	<u>tion</u>		
	615	ACUUGAAUC CAGAAGUU	AACUUCUG CUGAUGA X GAA AUUCAAGU
	623	CCAGAAGUU AAGAAAAC	GUUUUCUU CUGAUGA X GAA ACUUCUGG
	624	CAGAAGUUA AGAAAACC	GGUUUUCU CUGAUGA X GAA AACUUCUG
	634	GAAAACCUC CUGGACAG	CUGUCCAG CUGAUGA X GAA AGGUUUUC
5	659	GACAGAAUU AUUUACCA	UGGUAAAU CUGAUGA X GAA AUUCUGUC
	660	ACAGAAUUA UUUACCAG	CUGGUAAA CUGAUGA X GAA AAUUCUGU
	662	AGAPUUAUU UACCAGGC	GCCUGGUA CUGAUGA X GAA AUAAUUCU
	663	GAAUUAUUU ACCAGGCA	UGCCUGGU CUGAUGA X GAA AAUAAUUC
	664	AAUUAUUUA CCAGGCAC	GUGCCUGG CUGAUGA X GAA AAAUAAUU
10	704	GCGGAAAUC GCAAAGCU	AGCUUUGC CUGAUGA X GAA AUUUCCGC
	713	GCAAAGCUA CUGCCUGG	CCAGGCAG CUGAUGA X GAA AGCUUUGC

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 Nucleic Acids Res. 20 3252). The length of stem II may be ≥ 2 base-pairs.

Table XXII: Porcine c-myb (Region B) Hammerhead Ribozyme and Target Sequence (308 bp; nt. 1386 start; human c-myb numbering system)

20	nt.	Target Sequence	Ribozyme Sequence
	<u>Posi-</u>		
	<u>tion</u>	•	
	1394	GAUUCUUUC UUAAACA	GUGUUUAA CUGAUGA X GAA AAAGAAUC
	1396	UUCUUUCUU AAACACUU	AAGUGUUU CUGAUGA X GAA AGAAAGAA
25	1397	UCUUUCUUA AACACUU	GAAGUGUU CUGAUGA X GAA AAGAAAGA
	1404	UAAACACUU CCAAUAA	GUUAUUGG CUGAUGA X GAA AGUGUUUA
	1405	AAACACUUC CAAUAAC	GGUUAUUG CUGAUGA X GAA AAGUGUUU
	1410	CUUCCAAUA ACCAUGAI	UUCAUGGU CUGAUGA X GAA AUUGGAAG
	1423	UGAAAACUU AGACUUGO	CCAAGUCU CUGAUGA X GAA AGUUUUCA
30	1424	GAAAACUUA GACUUGG	UCCAAGUC CUGAUGA X GAA AAGUUUUC
	1429	CUUAGACUU GGAAAUG	GCAUUUCC CUGAUGA X GAA AGUCUAAG
	1440	AAAUGCCUU CUUUAAC	CGUUAAAG CUGAUGA X GAA AGGCAUUU
	1441	AAUGCCUUC UUUAACGI	ACGUUAAA CUGAUGA X GAA AAGGCAUU
	1443	UGCCUUCUU UAACGUC	GGACGUUA CUGAUGA X GAA AGAAGGCA
35	1444	GCCUUCUUU AACGUCCA	UGGACGUU CUGAUGA X GAA AAGAAGGC
	1445	CCUUCUUUA ACGUCCAG	GUGGACGU CUGAUGA X GAA AAAGAAGG

	1450	UUUAACGUC	CACGCCUC	GAGGCGUG	CUGAUGA	X	GAA	ACGUUAAA
	1458	CCACGCCUC	UCAGUGGU	ACCACUGA	CUGAUGA	X	GAA	AGGCGUGG
	1460	ACGCCUCUC	AGUGGUCA	UGACCACU	CUGAUGA	X	GAA	AGAGGCGU
	1467	UCAGUGGUC	ACAAAUUG	CAAUUUGU	CUGAUGA	X	GAA	ACCACUGA
5	1474	UCACAAAUU	GACUGUUA	UAACAGUC	CUGAUGA	x	GAA	AUUUGUGA
	1481	UUGACUGUU	ACAACACC	GGUGUUGU	CUGAUGA	X	GAA	ACAGUCAA
	1482	UGACUGUUA	CAACACCA	UGGUGUUG	CUGAUGA	x	GAA	AACAGUCA
	1492	AACACCAUU	UCAUAGAG	CUCUAUGA	CUGAUGA	x	GAA	AUGGUGUU
	1493	ACACCAUUU	CAUAGAGA	UCUCUAUG	CUGAUGA	x	GAA	AAUGGUGU
10	1494	CACCAUUUC	AUAGAGAC	GUCUCUAU	CUGAUGA	X	GAA	AAAUGGUG
	1497	CAUUUCAUA	GAGACCAG	CUGGUCUC	CUGAUGA	x	GAA	AUGAAAUG
	1530	AGGAAAAUA	CAUAUUUU	AAAAUAUG	CUGAUGA	X	GAA	AUUUUCCU
	1534	AAAUACAUA	UUUUUGAA	UUCAAAAA	CUGAUGA	X	GAA	AUGUAUUU
	1536	AUACAUAUU	UUUGAACU	AGUUCAAA	CUGAUGA	X	GAA	AUAUGUAU
15	1537	UACAUAUUU	UUGAACUC	GAGUUCAA	CUGAUGA	x	GAA	AAUAUGUA
	1538	ACAUAUUUU	UGAACUCC	GGAGUUCA	CUGAUGA	x	GAA	AAAUAUGU
	1539	CAUAUUUUU	GAACUCCG	CGGAGUUC	CUGAUGA	X	GAA	AAAAUAUG
	1545	UUUGAACUC	CGGCUAUC	GAUAGCCG	CUGAUGA	X	GAA	AGUUCAAA
	1551	CUCCGGCUA	UCAAAAGG	CCUUUUGA	CUGAUGA	X	GAA	AGCCGGAG
20	1553	CCGGCUAUC	AAAAGGUC	GACCUUUU	CUGAUGA	X	GAA	AUAGCCGG
	1561	CAAAAGGUC	AAUCCUGG	CCAGGAUU	CUGAUGA	X	GAA	ACCUUUUG
	1565	AGGUCAAUC	CUGGAAAG	CUUUCCAG	CUGAUGA	X	GAA	AUUGACCU
	1576	GGAAAGCUC	UCCAAGAA	UUCUUGGA	CUGAUGA	X	GAA	AGCUUUCC
	1578	AAAGCUCUC	CAAGAACU	AGUUCUUG	CUGAUGA	X	GAA	AGAGCUUU
25	1587	CAAGAACUC	CUACACCG					AGUUCUUG
	1590	GAACUCCUA	CACCGUUC	GAACGGUG	CUGAUGA	X	GAA	AGGAGUUC
	1597	UACACCGUU	CAAACAUG					ACGGUGUA
	1598	ACACCGUUC	AAACAUGC	-				AACGGUGU
	1610	CAUGCACUC	GCAGCUCA					AGUGCAUG
30	1617	UCGCAGCUC	AAGAAAUU					AGCUGCGA
	1625	CAAGAAAUU	AAAUAUGG					AUUUCUUG
	1626	AAGAAAUUA	AAUAUGGU	=				AAUUUCUU
	1630	AUUAAAUA	AGGACCCC					UUAAUUUA
	1635	AAUAUGGUC	CCCUGAAG					ACCAUAUU
35	1649	AAGAUGCUA	CCUCAGAC					AGCAUCUU
	1653	UGCUACCUC	AGACACCA					AGGUAGCA
	1663	GACACCAUC	UCAUUUAG					AUGGUGUC
	1665	CACCAUCUC	AUUUAGUA					AGAUGGUG
	1668	CAUCUCAUU	UAGUAGAA	UUCUACUA	CUGAUGA	X	GAA	AUGAGAUG

1669	AUCUCAUUU AGUAGAAG	CUUCUACU	CUGAUGA	X	GAA	AAUGAGAU
1670	UCUCAUUUA GUAGAAGA	UCUUCUAC	CUGAUGA	X	GAA	AAAUGAGA
1673	CAUUUAGUA GAAGACCU	AGGUCUUC	CUGAUGA	x	GAA	ACUAAAUG

5 Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 Nucleic Acids Res. 20 3252). The length of stem II may be ≥ 2 base-pairs.

Table XXIII: Porcine c-myb (region A) Hairpin Ribozyme

10 and Target Sequence (266bp; nt. 458 start; Human numbering system)

	Posi- tion	RZ	Substrate
	528	ACGUUUCG AGAA GUAUUU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	AAAUACG GUC CGAAACGU
15	690	UUCCGCCC AGAA GUUCCC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GGGAACA GAU GGGCGGAA

Table XXIV: Porcine c-myb (region B) Hairpin Ribozyme and Target Sequence (308 bp: nt. 1386 start: Human numbering 20 system)

Posi- tion	Hairpin Ribozyme	Substrate
1504	UUUUCACA AGAA GGUCUC ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	GAGACCA GAC UGUGAAAA
1594	CAUGUUUG AGAA GUGUAG ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	CUACACC GUU CAAACAUG
1613	AUUUCUUG AGAA GCGAGU ACCAGAGAAACACACGUUGUGGUACAUUACCUGGUA	ACUCGCA GCU CAAGAAAU

105

Claims

 An enzymatic nucleic acid molecule which cleaves c-myb RNA, wherein the the binding arms of said nucleic acid contain sequences complementary to the sequences
 defined in Tables II, XII-XXIV.

- An enzymatic nucleic acid molecule which cleaves RNA produced from a gene selected from one encoding c-fos, oct-1, SRF, PDGF receptor, bFGF receptor, angiotensin II,
 and endothelium-derived relaxing factor.
 - 3. The enzymatic nucleic acid molecule of claims 1 or 2 wherein said nucleic acid molecule is in a hammerhead motif.

15

4. The enzymatic nucleic acid molecule of claim 1 or 2, wherein said nucleic acid molecule is in a hairpin, hepatitis delta virus, VS nucleic acid, group I intron, or RNAseP nucleic acid motif.

20

- 5. The enzymatic nucleic acid molecule of claim 3 or 4, wherein said nucleic acid comprises between 12 and 100 bases complementary to said mRNA.
- 25 6. The enzymatic nucleic acid molecule of claim 5, wherein said nucleic acid comprises between 14 and 24 bases complementary to said mRNA.
- Enzymatic nucleic acid molecule consisting
 essentially of any sequence selected from the group of sequences listed in Tables III, XII-XXIV.
 - 8. A mammalian cell including an enzymatic nucleic acid molecule of any one of claims 1 or 2.

35

9. The cell of claim 8, wherein said cell is a human cell.

106

- 10. An expression vector including nucleic acid encoding an enzymatic nucleic acid molecule or multiple enzymatic molecules of claims 1 or 2 in a manner which allows expression of that enzymatic RNA molecule(s) within 5 a mammalian cell.
 - 0 11. A mammalian cell including an expression vector of claim 10.
- 10 12. The cell of claim 13, wherein said cell is a human cell.
- 13. A method for treatment of a stenotic condition by administering to a patient an enzymatic nucleic acid
 15 molecule of claims 1 or 2, or an enzymatic nucleic acid molecule which cleaves RNA produced from the gene c-myb.
- 14. A method for treatment of a stenotic condition by administering to a patient an expression vector of 20 claim 10.
 - 15. The method of claims 13 or 14, wherein said patient is a human.
- 25 16. A method for treatment of cancer by administering to a patient or a patient's cells an enzymatic nucleic acid molecule of claims 1 or 2.
- 17. A method for treatment of cancer by administer-30 ing to a patient or a patient's cells an expression vector of claim 10.

- 18. The method of claims 16 or 17, wherein said patient is a human.
- 19. Method for administration of an enzymatic nucleic acid by mixing said nucleic acid with a chemical

WO 95/31541 PCT/US95/06368

selected from the group consisting of chloroquine, ammonium chloride, carbonyl cyanide p-trifluoromethoxy phenyl hydrazone (FCCP), monensin, colchicine, amphipathic peptides, viral proteins, and viral particles.

5

20. The enzymatic nucleic acid of claim 3, wherein said nucleic acid comprises of at least five ribose residues, and wherein said nucleic acid comprises phosphorothicate linkages at at least three of the six 5' terminal nucleotides, and wherein said nucleic acid comprises a 2'-C-allyl modification at position No. 4 of said nucleic acid, and wherein said nucleic acid comprises at least ten 2'-O-methyl modifications, and wherein said nucleic acid comprises a 3'- end modification.

15

21. The enzymatic nucleic acid of claim 20, wherein said nucleic acid comprises a 3'-3' linked inverted ribose moeity at said 3' end.

22. The enzymatic nucleic acid of claim 3, wherein said nucleic acid comprises of at least five ribose residues, and wherein said nucleic acid comprises of phosphorothioate linkages at at least three of the six 5' terminal nucleotides, and wherein said nucleic acid comprises a 2'-amino modification at position No. 4 and/or at position No. 7 of said nucleic acid, wherein said nucleic acid comprises at least ten 2'-O-methyl modifications, and wherein said nucleic acid comprises a 3'-3'

30

23. The enzymatic nucleic acid of claim 3, wherein said nucleic acid comprises of at least five ribose residues, and wherein said nucleic acid comprises phosphorothicate linkages at at least three of the six 5' terminal nucleotides, and wherein said nucleic acid comprises non-nucleotide substitution at position No. 4 and/or at position No. 7 of said nucleic acid molecule,

linked inverted ribose or thymidine moeity at its 3' end.

WO 95/31541 PCT/US95/06368

108

wherein said nucleic acid comprises at least ten 2'-0-methyl modifications, and wherein said nucleic acid comprises a 3'-3' linked inverted ribose or thymidine moeity at its 3' end.

5

- 24. The enzymatic nucleic acid of claim 3, wherein said nucleic acid comprises of at least five ribose residues, and wherein said nucleic acid comprises phosphorothicate linkages at at least three of the six 5' terminal nucleotides, and wherein said nucleic acid comprises 6-methyl uridine substitutions at position No. 4 and/or at position No. 7 of the said nucleic acid molecule, wherein said nucleic acid comprises at least ten 2'-O-methyl modifications, and wherein said nucleic acid comprises a 3'-3' linked inverted ribose or thymidine moeity at its 3' end.
- 25. The enzymatic nucleic acid of claim 3, wherein said nucleic acid comprises of at least five ribose residues, and wherein said nucleic acid comprises phosphorothicate linkages at at least three of thje six 5' terminal nucleotides, wherein said nucleic acid comprises 2'-C-allyl modification at position No. 4 of the said nucleic acid, wherein said nucleic acid comprises at least ten 2'-O-methyl modifications, and wherein said nucleic acid comprises a 2'-3' linked inverted ribose or thymidine moeity at its 3' end.
- 26. Oligonucleotide having complementarity to c-myb 30 at at least 5 contiguous bases comprising a 2'-5'-linked adenylate residue having a 5'-phosphate.
 - 27. The oligonucleotide of claim 26, having enzymatic activity on c-myb RNA.

35

28. The oligonucleotide of claim 26, comprising at least 20 bases able to form a hybrid with c-myb RNA.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 9b.

100

80

60

40

20

SUBSTITUTE SHEET (RULE 26)

[Ribozyme](nM)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 19.

FIG. 20.

Uppercase=ribonucleotides

Lower case = 2'-O-methyhucleotides

H=3'-3' abasic deoxyribose

U = 2'C-allyl

=phosphorothioatelinkages

Oligonucleotides

FIG. 21.