改变基和海森堡不确定性原理

赵晓菲

2023年7月31日

变换基和海森堡不确定性原理 (简化视图)

量子力学中的矢量 $|\psi\rangle$ 可以在不同的基下表示。例如,可以用 $|0\rangle$ 和 $|1\rangle$ 作为基来表示,也可以用 $|+\rangle$ 和 $|-\rangle$ 作为基来表示。在不同基下,同一个矢量 $|\psi\rangle$ 的系数是不同的。

$$|\psi\rangle = a|0\rangle + b|1\rangle = c|+\rangle + d|-\rangle$$

这里 a, b, c, d 是复数系数。在 $|0\rangle/|1\rangle$ 基下,矢量 $|\psi\rangle$ 的测量结果是确定的(例如 100

需要注意的是,这个表示法并不对应真实的自旋系统,它只是一个简化 的插图。

变换基 (另一个示例)

让我们考虑一个新的量子态 $|\phi\rangle$, 在 $|0\rangle/|1\rangle$ 基下表示为:

$$|\phi\rangle = \frac{1}{\sqrt{3}}|0\rangle + \frac{2}{\sqrt{3}}|1\rangle$$

现在,我们要用 |+>/|-> 基来表示它。

首先,我们知道 $|+\rangle$ 和 $|-\rangle$ 与 $|0\rangle$ 和 $|1\rangle$ 之间的关系是:

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

变换基 (另一个示例)

现在,我们将 $|\phi\rangle$ 表示为 $|+\rangle/|-\rangle$ 基下的线性组合:

$$|\phi\rangle = a|+\rangle + b|-\rangle$$

求解系数 a 和 b:

$$\begin{split} \mathbf{a} &= \langle +|\phi\rangle = \frac{1}{\sqrt{2}}\langle 0|\phi\rangle + \frac{1}{\sqrt{2}}\langle 1|\phi\rangle \\ b &= \langle -|\phi\rangle = \frac{1}{\sqrt{2}}\langle 0|\phi\rangle - \frac{1}{\sqrt{2}}\langle 1|\phi\rangle \end{split}$$

代入 $|\phi\rangle$ 的表示:

$$a = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{3}} \langle 0|0 \rangle + \frac{2}{\sqrt{3}} \langle 1|0 \rangle \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{3}} \langle 0|1 \rangle + \frac{2}{\sqrt{3}} \langle 1|1 \rangle \right)$$
$$b = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{3}} \langle 0|0 \rangle + \frac{2}{\sqrt{3}} \langle 1|0 \rangle \right) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{3}} \langle 0|1 \rangle + \frac{2}{\sqrt{3}} \langle 1|1 \rangle \right)$$

变换基 (另一个示例)

简化后得到:

$$a = \frac{1}{\sqrt{6}} + \frac{2}{\sqrt{6}} = \frac{3}{\sqrt{6}}$$
$$b = \frac{1}{\sqrt{6}} - \frac{2}{\sqrt{6}} = -\frac{1}{\sqrt{6}}$$

因此, $|\phi\rangle$ 在 $|+\rangle/|-\rangle$ 基下的表示为:

$$|\phi\rangle = \frac{3}{\sqrt{6}}|+\rangle - \frac{1}{\sqrt{6}}|-\rangle$$

这个表示法并不对应真实的自旋系统,它只是一个简化的插图。

Bra-Ket 上的操作

量子态 $|\psi\rangle$ 对应于 ket 空间,而对应的 bra 空间是其对偶空间。在 ket 空间中,我们表示 $|\psi\rangle$ 为:

$$|\psi\rangle = \mathsf{a}|0\rangle + \mathsf{b}|1\rangle$$

那么在 bra 空间中,它对应的表示为:

$$\langle \psi | = \mathbf{a}^* \langle 0 | + \mathbf{b}^* \langle 1 |$$

注意:在 bra 空间中,向量是列矢量,所以需要取复数的复共轭。

Bra-Ket 上的操作

现在,让我们来看一个操作示例。假设我们有一个操作 O,作用在量子态 $|\psi\rangle$ 上,产生新的量子态 $|\phi\rangle$,表示为:

$$|\phi\rangle = O|\psi\rangle$$

在 bra 空间中,这个操作的对偶操作是 $\langle \phi | = O^\dagger \langle \psi |$,也就是 O 的厄米共轭。

Bra-Ket 上的操作

例如,我们有 $O = |0\rangle\langle 1|$ 。现在我们来看 $O|\psi\rangle$:

$$O|\psi\rangle = |0\rangle\langle 1| (a|0\rangle + b|1\rangle)$$
$$= a|0\rangle\langle 1|0\rangle + b|0\rangle\langle 1|1\rangle$$
$$= b|0\rangle$$

那么在 bra 空间中,对应的对偶操作为:

$$\langle \phi | = (O|\psi\rangle)^{\dagger} = (b|0\rangle)^{\dagger} = b^*\langle 0 |$$

所以,我们可以验证 $O^{\dagger} = |1\rangle\langle 0|$ 。

正交性与归一化

在量子力学中,我们经常会涉及到向量的正交性和归一化。 **正交性**:如果两个向量是正交的,它们的内积(内积也称为点积或数量 积)为零。

$$(\mathbf{a}|\mathbf{b}) = 0$$

这意味着向量 a 和 b 在空间中垂直于彼此。

正交性与归一化

归一化:如果一个向量是归一化的,它的内积与自身为 1。

$$(\mathbf{a}|\mathbf{a})=1$$

这意味着向量 a 的长度为 1, 它是单位向量。

正交性与归一化

归一化向量:如果一个向量 V 不是归一化的,我们可以将它归一化。将一个向量归一化意味着将它的长度缩放为 1,但保持其方向不变。

$$|\mathbf{V}\rangle \rightarrow \frac{1}{\|\mathbf{V}\|}|\mathbf{V}\rangle$$

其中 $\|V\|$ 表示向量 V 的长度 (模)。

算子、特征向量和特征值

在量子力学中,我们使用向量来表示状态,用算子来表示操作。

状态向量:对于一个量子态,我们用向量 $|\psi\rangle$ 来表示。

算子: 对于任意的操作(例如向量的旋转),我们用算子 A 来表示。 **特征向量**: 当我们将算子 A 应用于向量 $|\psi\rangle$ 时,得到某些新的向量 $|\psi'\rangle, |\psi''\rangle$ 等,它们可能变为原始向量的常数倍 $(a'|\psi\rangle, a''|\psi\rangle$ 等)。那么 a', a'' 等就被称为算子 A 的特征值,而 $|\psi'\rangle, |\psi''\rangle$ 等就被称为算子 A 的特征向量。

 $N \times N$ 矩阵的特征向量: 对于一个 $N \times N$ 矩阵, 它只有 N 个特征向量。

Pauli 自旋矩阵的算子和特征值示例

在量子力学中,Pauli 自旋矩阵是三个重要的矩阵,分别是 σ_x 、 σ_y 和 σ_z 。我们来看一下它们的算子和特征值。 1. σ_x 矩阵:

$$\sigma_{\mathsf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

应用 σ_x 算子到向量 $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$,我们有:

$$\sigma_{\mathsf{x}}|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

应用 σ_x 算子到向量 $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,我们有:

$$\sigma_{\mathsf{x}}|1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

因此, σ_x 的特征值为 $\lambda=\pm 1$,对应的特征向量分别是 $|0\rangle$ 和 $|1\rangle$ 。

Pauli 自旋矩阵的算子和特征值示例 (续)

2. σ_ν 矩阵:

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

应用 σ_v 算子到向量 $|0\rangle$,我们有:

$$\sigma_{y}|0\rangle = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix} = i|1\rangle$$

应用 σ_y 算子到向量 $|1\rangle$,我们有:

$$\sigma_{y}|1\rangle = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -i \\ 0 \end{pmatrix} = -i|0\rangle$$

因此, σ_y 的特征值为 $\lambda = \pm i$,对应的特征向量分别是 $i|1\rangle$ 和 $-i|0\rangle$ 。

Pauli 自旋矩阵的算子和特征值示例 (续)

3. σz 矩阵:

$$\sigma_{\mathbf{z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

应用 σ_z 算子到向量 $|0\rangle$, 我们有:

$$\sigma_{\mathbf{z}}|0\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

应用 σ_z 算子到向量 $|1\rangle$,我们有:

$$\sigma_{\mathbf{z}}|1\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -|1\rangle$$

因此, σ_z 的特征值为 $\lambda = \pm 1$,对应的特征向量分别是 $|0\rangle$ 和 $-|1\rangle$ 。