Efficient and principled score estimation with Nyström kernel exponential families

Dougal J. Sutherland*, Heiko Strathmann*, Michael Arbel, Arthur Gretton

Gatsby Computational Neuroscince Unit, University College London

Problem: Unnormalized density estimation

- Given samples $\{X_a\}_{a=1}^n \stackrel{iid}{\sim} p_0, X_a \in \mathbb{R}^d$
- Want computationally efficient estimator p so that $p(x)/Z \approx p_0(x)$
- Don't especially care about Z: often difficult, not needed for finding modes / sampling (with MCMC) / use in approximate HMC / ...
- Want to avoid strong (parametric) assumptions about p_0

Exponential families

• Many classic densities on \mathbb{R}^d are of the form:

$$p(x) = \exp(\langle \underbrace{\eta}_{\text{natural parameter}}, \underbrace{T(x)}_{\text{sufficient statistic}} \rangle_{\mathbb{R}^s} - \underbrace{A(\eta)}_{\text{log-normalizer}}) \quad \underbrace{q_0(x)}_{\text{base measure}}$$

- Gaussian: $T(x) = (x, x^2)$; Gamma: $T(x) = (x, \log x)$
- Density is on T(x), s-dimensional "features"; can we make this richer?

Kernel exponential families [1]

• Use an RKHS \mathcal{H} , with kernel $k(x,y) = \langle k_x, k_y \rangle_{\mathcal{H}}$:

parameter $\eta = f \in \mathcal{H}$, sufficient statistic $T(x) = k_x$ gives

$$p(x) = \exp(f(x) - A(f)) q_0(x)$$

- Includes standard exponential family: $k(x,y) = T(x) \cdot T(y)$
- But T can be infinite-dimensional, e.g. $k(x,y) = \exp\left(-\frac{1}{2\sigma^2}||x-y||^2\right)$
- Class very rich: dense in anything with smooth log-density, tails like q_0 [3]
- But A(f) is hard to compute: maximum likelihood estimate intractable

Score matching-based estimator [3]

• Score matching approach here: minimize regularized Fisher divergence

$$J_{\lambda}(f) = \frac{1}{2} \int p_0(x) \|\nabla_x \log p_f(x) - \nabla_x \log p_0(x)\|_2^2 dx + \lambda \|f\|_{\mathcal{H}}^2$$
$$= \int p_0(x) \sum_{i=1}^d \left[\partial_i^2 f(x) + \frac{1}{2} (\partial_i f(x))^2 \right] dx + C(p_0, q_0) + \lambda \|f\|_{\mathcal{H}}^2$$

where we used integration by parts, some mild assumptions

- Estimate integral with simple Monte Carlo
- Representer theorem: best solution $f_{\lambda,n} = \operatorname{argmin}_{f \in \mathcal{H}} \hat{J}_{\lambda}(f)$ is

$$f_{\lambda,\mathbf{n}}(x) = \sum_{a=1}^{\mathbf{n}} \sum_{i=1}^{d} \left(\beta_{(a,i)} - \frac{1}{\lambda} \partial_i \log q_0(X_a) \right) \partial_i k(X_a, x) - \frac{1}{\mathbf{n}\lambda} \partial_i^2 k(X_a, x)$$

where β is the solution to an $nd \times nd$ linear system: $\mathcal{O}(n^3d^3)$ time!

Nyström approximation

• Instead of minimizing f over \mathcal{H} , minimize over subspace

$$\mathcal{H}_Y = \operatorname{span}\{y_b\}_{b=1}^M \subset \mathcal{H}$$

• Full solution $f_{\lambda,n}$ has $y_{(a,i,1)} = \partial_i k_{X_a}$, $y_{(a,i,2)} = \partial_i^2 k_{X_a}$; M = 2nd

• "Nyström": pick m points at random, $y_{(a,i)} = \partial_i k_{X_a}$; M = md

• "lite" [4]: pick m points at random, $y_a = k_{X_a}$; M = m

Computing the Nyström approximation

• Minimizer of J_{λ} in \mathcal{H}_{Y} is $f_{\lambda,n}^{Y}(x) = \sum_{b=1}^{M} \beta_b y_b$,

$$\beta = -\left(\frac{1}{n} \underbrace{B_{XY}^{\mathsf{T}}}_{M \times nd} \underbrace{B_{XY}^{\mathsf{T}}}_{nd \times M} + \lambda \underbrace{G_{YY}}_{M \times M}\right)^{\dagger} \underbrace{h_{Y}}_{M \times 1}$$

 $(B_{XY})_{(a,i),j} = \langle \partial_i k_{X_a}, y_j \rangle_{\mathcal{H}} \qquad (G_{YY})_{a,b} = \langle y_a, y_b \rangle_{\mathcal{H}} \qquad (h_Y)_b = \frac{1}{n} \sum_{a=1}^n \sum_{i=1}^d \langle \partial_i k_{X_a}, y_b \rangle_{\mathcal{H}} \partial_i \log q_0(X_a) + \langle \partial_i^2 k_{X_a}, y_b \rangle_{\mathcal{H}}$

• "Nyström": $\mathcal{O}(nm^2d^3)$ time; "lite": $\mathcal{O}(nm^2d)$ time

Theory

- Assume $p_0 = p_{f_0}$ for some $f_0 \in \mathcal{H}$; technical assumptions on \mathcal{H} , f_0
- θ a parameter depending on problem smoothness: worst case $\frac{1}{2}$, best $\frac{1}{3}$
- If we use "Nyström" with $m = \Omega(n^{\theta} \log n)$, $\lambda = n^{-\theta}$:
- "Easy" problems: same convergence in J, \mathcal{H} , L_r , KL, Hellinger as [3]
- \bullet "Hard" problems: same J convergence, others saturate slightly sooner
- Proof uses ideas from [2] for regression, but different decomposition:

$$f_{\lambda}^{Y} = \underset{f \in \mathcal{U}}{\operatorname{argmin}} J_{\lambda}(f); \quad \|f_{\lambda,\mathbf{n}}^{Y} - f_{0}\|_{\mathcal{H}} \leq \|f_{\lambda,\mathbf{n}}^{Y} - f_{\lambda}^{Y}\|_{\mathcal{H}} + \|f_{\lambda}^{Y} - f_{0}\|_{\mathcal{H}}$$

Synthetic experiments

- Target: Gaussians centered on d vertices of d-dimensional hypercube
- Evaluate Fisher divergence J(f):

• Similar results for density around concentric rings

Approximate Hamiltonian Monte Carlo

- HMC uses $\nabla_x \log p(x)$, often more efficient
- Sometimes we can't get these gradients
- e.g. marginalizing out hyperparameter choice for a GP classifier

- Start with random walk MCMC
- Estimate $\nabla_x \log p(x)$ from chain so far
- Propose HMC trajectories with estimate
- Metropolis rejection step accounts for errors in the proposed trajectories

Takeaways

- Flexible density modeling with kernel exponential families
- Nyström approximation: faster algorithm $(n^{\frac{5}{3}} \text{ to } n^2)$ with same statistical guarantees as full-data fit (n^3)
- Kernel Conditional Exponential Family: less-smooth densities
- Open questions: kernel choice, theory for "lite" basis, misspecified case

References

- [1] Canu and Smola. Kernel methods and the exponential family. *Neurocomputing* 2006.
- [2] Rudi et al. Less is more: Nyström computational regularization. NIPS 2015.
- [3] Sriperumbudur et al. Density estimation in infinite dimensional exponential families. JMLR 2017.
- [4] Strathmann et al. Gradient-free Hamiltonian Monte Carlo with efficient kernel exponential families. NIPS 2015.