

SAZONALIDADE E SUAVIZAÇÃO

Visão Tradicional

A visão tradicional de médias móveis não considera o processo estocástico, sendo ajustados apenas por fatores determinísticos.

Alisamento (remoção da tendência) e dessazonalização procuram expurgar fatores que geram perturbações nas séries, permitindo assim ter uma noção mais precisa da tendência da série.

Média Móvel Tradicional

O modelo de média móvel tradicional assume que o processo é produto de quatro fatores:

$$x_t = C_t + S_t + T_t + \mu_t$$

 C_t é um componente de ciclo a longo prazo S_t é um componente sazonal T_t é um componente de tendência μ_t é um componente irregular

Assim, calcula-se média móvel tradicional, por exemplo suavizando uma sazonalidade para mês de janeiro:

$$x_{t} = \frac{(0,5y_{t+6} + y_{t+5} + ... + y_{t} + ... + y_{t-5} + 0,5y_{t-6})}{12}$$

Esse filtro elimina a sazonalidade da série e a componente irregular, de modo que poderia dizer que:

$$x_t = C_t + T_t$$

$$z_t \equiv \frac{y_t}{x_t} = S_t + \mu_t$$

Fonte: Bueno, pag. 95

O objetivo da técnica é estimar a componente sazonal e em seguida excluí-la.

Considera-se a hipótese que a sazonalidade ocorre com a mesma periodicidade. Ex.: ocorre a cada 4 anos, anualmente em dezembro, etc.


```
install.packages("Hmisc")  #Instala Pacote Hmisc
library(Hmisc)
library(forecast)
library(readxl)  #Carrega os Pacotes

library(readxl)
IPCA. df<-read_excel("c:/Econometria/IPCA.xls")

plot(IPCA. df$IPCA, type = "l")</pre>
```


^	IPCA [‡]	Média [‡] Móvel
1	0.4645	0.4977708
2	0.2726	0.4989250
3	0.4010	0.5060333
4	0.3119	0.5002875
5	0.3328	0.4535583
6	0.1255	0.3816083
7	0.3314	0.3420208
8	0.4757	0.3410708
9	0.1619	0.3360208
10	0.2537	0.3167833
11	0.2858	0.3023500

Grafico <- ts(Tabela1, start = 2008, frequency = 12)
plot(Grafico, plot.type= "single", col=c("Black", "Blue"))</pre>


```
Inflacao <- ts(IPCA.df$IPCA, start = 2008, frequency = 12)
plot(decompose(Inflacao))</pre>
```


Decomposition of additive time series

Series IPCA.df\$IPCA

sāojudas

```
decomposicao <- decompose(Inflacao)</pre>
```

Tendencia <- decomposicao\$trend

Sazonalidade <- decomposicao\$seasonal

Ciclo <- decomposicao\$random

Tab_Dados1 <- data.frame(IPCA.df\$IPCA, Ciclo)</pre>

plot(Sazonalidade, type="l")

sāojudas

```
Serie_Tempo1 <- ts(Tab_Dados1, start = 2008, frequency = 12)
plot(Serie_Tempo1, plot.type = "single", col= c("Blue", "Red"))</pre>
```



```
Tab_Dados2 <- data.frame(IPCA.df$IPCA, Tendencia)
Serie_Tempo2 <- ts(Tab_Dados2, start = 2008, frequency = 12)
plot(Serie_Tempo2, plot.type = "single", col= c("Blue", "Red"))</pre>
```

