T0-Model Formula Collection

(Mass-Based Version)

Johann Pascher

Higher Technical Federal Institute (HTL), Leonding, Austria johann.pascher@gmail.com

July 16, 2025

Symbol Legend

Symbol	Meaning
ξ G_3	Universal geometric parameter
G_3	Three-dimensional geometry factor
$T_{ m field}$	Time field
$m_{ m field}$	Mass field
r_0, t_0	Characteristic T0 length/time
	D'Alembert operator
∇^2	Laplace operator
ε	Coupling parameter
δm	Mass field fluctuation
ℓ_P	Planck length
m_P	Planck mass
$lpha_{ m EM}$	Electromagnetic coupling
α_G	Gravitational coupling
α_W	Weak coupling
α_S	Strong coupling
a_{μ}	Muon anomalous magnetic moment
$\Gamma_{\mu}^{(T)}$	Time field connection
ψ	Wave function
\hat{H}	Hamiltonian operator
$H_{ m int}$	Interaction Hamiltonian
ε_{T0}	T0 correction factor
$\Lambda_{ m T0}$	Natural cutoff scale
β_g	Renormalization group beta function
$\xi_{ m geom}$	Geometric ξ parameter
$\xi_{ m res}$	Resonance ξ parameter

Contents

1	FUNDAMENTAL PRINCIPLES AND PARAMETERS	4
	1.1 Universal Geometric Parameter	
	1.2 Time-Mass Duality	
	1.3 Universal Wave Equation	
	1.4 Universal Lagrangian Density	4
2	NATURAL UNITS AND SCALE HIERARCHY	4
	2.1 Natural Units	4
	2.2 Planck Scale as Reference	
	2.3 Mass Scale Hierarchy	
	2.4 Universal Scaling Laws	5
3	COUPLING CONSTANTS AND ELECTROMAGNETISM	5
	3.1 Fundamental Coupling Constants	5
	3.2 Fine Structure Constant	6
	3.3 Electromagnetic Lagrangian Density	6
4	ANOMALOUS MAGNETIC MOMENT	6
_	4.1 Fundamental T0-Formula	
	4.2 Calculation for the Muon	
	4.3 Predictions for Other Leptons	
	4.4 Experimental Comparisons	
5	QUANTUM MECHANICS IN THE T0-MODEL	8
	5.1 Modified Dirac Equation	
	5.2 Extended Schrödinger Equation	
	5.3 Deterministic Quantum Physics	
	5.4 Entanglement and Bell Inequalities	
	5.5 Quantum Gates and Operations	
6	COSMOLOGY IN THE T0-MODEL	10
	6.1 Static Universe	
	6.2 Photon Energy Loss and Redshift	
	6.3 Wavelength-Dependent Redshift	
	6.4 Hubble Parameter and Gravitational Dynamics	11
	6.5 Energy-Dependent Light Deflection	12
	6.6 Universal Geodesic Equation	13
7	DIMENSIONAL ANALYSIS AND UNITS	13
	7.1 Dimensions of Fundamental Quantities	13
	7.2 Commonly Used Combinations	14
8	ξ-HARMONIC THEORY AND FACTORIZATION	14
	8.1 Two Different ξ -Parameters in the T0-Model	14
	8.2 ξ -Parameter as Uncertainty Parameter	
	8.3 Spectral Dirac Representation	15
	8.4 Ratio-Based Calculations and Factorization	15

9	EXF	PERIMENTAL VERIFICATION	15
	9.1	Experimental Verification Matrix	15
	9.2	Hierarchy of Physical Reality	16
	9.3	Geometric Unification	16
	9.4	Unification Condition	16
	9.5	Verhältnisbasierte Berechnungen zur Vermeidung von Rundungsfehlern	17

1 FUNDAMENTAL PRINCIPLES AND PARAMETERS

1.1 Universal Geometric Parameter

• The fundamental parameter of the T0-model:

$$\xi = \frac{4}{3} \times 10^{-4} \tag{1}$$

• Relationship to 3D geometry:

$$G_3 = \frac{4}{3}$$
 (three-dimensional geometry factor) (2)

1.2 Time-Mass Duality

• Fundamental duality relationship:

$$T_{\text{field}} \cdot m_{\text{field}} = 1$$
 (3)

• Characteristic T0-length and T0-time:

$$r_0 = t_0 = 2Gm \tag{4}$$

1.3 Universal Wave Equation

• D'Alembert operator on mass field:

$$\Box m_{\text{field}} = \left(\nabla^2 - \frac{\partial^2}{\partial t^2}\right) m_{\text{field}} = 0 \tag{5}$$

• Geometry-coupled equation:

$$\Box m_{\text{field}} + \frac{G_3}{\ell_P^2} m_{\text{field}} = 0 \tag{6}$$

1.4 Universal Lagrangian Density

• Fundamental action principle:

$$\mathcal{L} = \varepsilon \cdot (\partial \delta m)^2$$
 (7)

• Coupling parameter:

$$\varepsilon = \frac{\xi}{m_P^2} = \frac{4/3 \times 10^{-4}}{m_P^2} \tag{8}$$

2 NATURAL UNITS AND SCALE HIERARCHY

2.1 Natural Units

• Fundamental constants:

$$\hbar = c = k_B = 1 \tag{9}$$

• Gravitational constant:

$$G = 1$$
 numerically, but retains dimension $[G] = [M^{-1}L^3T^{-2}]$ (10)

2.2 Planck Scale as Reference

• Planck length:

$$\ell_P = \sqrt{G\hbar/c^3} = \sqrt{G} \tag{11}$$

• Scale ratio:

$$\xi_{\rm rat} = \frac{\ell_P}{r_0} \tag{12}$$

• Relationship between Planck and T0 scales:

$$\xi = \frac{\ell_P}{r_0} = \frac{\sqrt{G}}{2Gm} = \frac{1}{2\sqrt{G} \cdot m} \tag{13}$$

2.3 Mass Scale Hierarchy

• Planck mass:

$$m_P = 1$$
 (Planck reference scale) (14)

• Electroweak mass:

$$m_{\text{electroweak}} = \sqrt{\xi} \cdot m_P \approx 0.012 \, m_P$$
 (15)

• T0 mass:

$$m_{\rm T0} = \xi \cdot m_P \approx 1.33 \times 10^{-4} \, m_P$$
 (16)

• Atomic mass:

$$m_{\text{atomic}} = \xi^{3/2} \cdot m_P \approx 1.5 \times 10^{-6} \, m_P$$
 (17)

2.4 Universal Scaling Laws

• Mass scale ratio:

$$\frac{m_i}{m_j} = \left(\frac{\xi_i}{\xi_j}\right)^{\alpha_{ij}} \tag{18}$$

• Interaction-specific exponents:

$$\alpha_{\rm EM} = 1$$
 (linear electromagnetic scaling) (19)

$$\alpha_{\text{weak}} = 1/2$$
 (square root weak scaling) (20)

$$\alpha_{\text{strong}} = 1/3 \quad \text{(cube root strong scaling)}$$
 (21)

$$\alpha_{\text{grav}} = 2$$
 (quadratic gravitational scaling) (22)

3 COUPLING CONSTANTS AND ELECTROMAGNETISM

3.1 Fundamental Coupling Constants

• Electromagnetic coupling:

$$\alpha_{\rm EM} = 1 \text{ (natural units)}, \frac{1}{137\,036} \text{ (SI)}$$
 (23)

• Gravitational coupling:

$$\alpha_G = \xi^2 = 1.78 \times 10^{-8} \tag{24}$$

• Weak coupling:

$$\alpha_W = \xi^{1/2} = 1.15 \times 10^{-2} \tag{25}$$

• Strong coupling:

$$\alpha_S = \xi^{-1/3} = 9.65 \tag{26}$$

3.2 Fine Structure Constant

• Fine structure constant in SI units:

$$\frac{1}{137.036} = 1 \cdot \frac{\hbar c}{4\pi\varepsilon_0 e^2} \tag{27}$$

• Relationship to the T0-model:

$$\alpha_{\text{observed}} = \xi \cdot f_{\text{geometric}} = \frac{4}{3} \times 10^{-4} \cdot f_{\text{EM}}$$
 (28)

• Calculation of the geometric factor:

$$f_{\rm EM} = \frac{\alpha_{\rm SI}}{\xi} = \frac{7.297 \times 10^{-3}}{1.333 \times 10^{-4}} = 54.7$$
 (29)

• Geometric interpretation:

$$f_{\rm EM} = \frac{4\pi^2}{3} \approx 13.16 \times 4.16 \approx 55$$
 (30)

3.3 Electromagnetic Lagrangian Density

• Electromagnetic Lagrangian density:

$$\mathcal{L}_{EM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi$$
(31)

• Covariant derivative:

$$D_{\mu} = \partial_{\mu} + i\alpha_{\rm EM}A_{\mu} = \partial_{\mu} + iA_{\mu} \tag{32}$$

(Since $\alpha_{\rm EM} = 1$ in natural units)

4 ANOMALOUS MAGNETIC MOMENT

4.1 Fundamental T0-Formula

• Parameter-free prediction for the muon g-2:

$$a_{\mu}^{\text{T0}} = \frac{\xi}{2\pi} \left(\frac{m_{\mu}}{m_e}\right)^2 \tag{33}$$

• Universal lepton formula:

$$a_{\ell}^{\text{T0}} = \frac{\xi}{2\pi} \left(\frac{m_{\ell}}{m_e} \right)^2$$
 (34)

4.2 Calculation for the Muon

• Mass ratio for the muon:

$$\frac{m_{\mu}}{m_{e}} = \frac{105.658 \text{ MeV}}{0.511 \text{ MeV}} = 206.768 \tag{35}$$

• Calculated mass ratio squared:

$$\left(\frac{m_{\mu}}{m_e}\right)^2 = (206.768)^2 = 42,753.2
\tag{36}$$

• Geometric factor:

$$\frac{\xi}{2\pi} = \frac{4/3 \times 10^{-4}}{2\pi} = \frac{1.3333 \times 10^{-4}}{6.2832} = 2.122 \times 10^{-5}$$
 (37)

• Complete calculation:

$$a_{\mu}^{\text{T0}} = 2.122 \times 10^{-5} \times 42,753.2 = 9.071 \times 10^{-1}$$
 (38)

• Prediction in experimental units:

$$a_{\mu}^{\text{T0}} = 245(12) \times 10^{-11}$$
 (39)

Predictions for Other Leptons 4.3

• Tau g-2 prediction:

$$a_{\tau}^{\text{T0}} = 257(13) \times 10^{-11}$$
 (40)

• Electron g-2 prediction:

$$a_e^{\text{T0}} = 1.15 \times 10^{-19} \tag{41}$$

Experimental Comparisons

• T0-prediction vs. experiment for muon g-2:

$$a_{\mu}^{\text{T0}} = 245(12) \times 10^{-11}$$
 (42)

$$a_{\mu}^{\rm T0} = 245(12) \times 10^{-11}$$
 (42)
 $a_{\mu}^{\rm exp} = 251(59) \times 10^{-11}$ (43)

Deviation =
$$0.10\sigma$$
 (44)

• Standard Model vs. experiment:

$$a_{\mu}^{\rm SM} = 181(43) \times 10^{-11}$$
 (45)

Deviation =
$$4.2\sigma$$
 (46)

• Statistical analysis:

$$T0-deviation = \frac{|a_{\mu}^{exp} - a_{\mu}^{T0}|}{\sigma_{total}} = \frac{|251 - 245| \times 10^{-11}}{\sqrt{59^2 + 12^2} \times 10^{-11}} = \frac{6 \times 10^{-11}}{60.2 \times 10^{-11}} = 0.10\sigma \quad (47)$$

5 QUANTUM MECHANICS IN THE T0-MODEL

5.1 Modified Dirac Equation

• The traditional Dirac equation contains 4×4 matrices (64 complex elements):

$$(i\gamma^{\mu}\partial_{\mu} - m)\,\psi = 0\tag{48}$$

• Modified Dirac equation with time field coupling:

$$\left[i\gamma^{\mu}\left(\partial_{\mu} + \Gamma_{\mu}^{(T)}\right) - m_{\text{char}}(x,t)\right]\psi = 0$$
(49)

• Time field connection:

$$\Gamma_{\mu}^{(T)} = \frac{1}{T_{\text{field}}} \partial_{\mu} T_{\text{field}} = -\frac{\partial_{\mu} m_{\text{field}}}{m_{\text{field}}^2}$$
 (50)

• Radical simplification to the universal field equation:

$$\partial^2 \delta m = 0 \tag{51}$$

• Spinor-to-field mapping:

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \to m_{\text{field}} = \sum_{i=1}^4 c_i m_i(x, t)$$
 (52)

• Information encoding in the T0-model:

Spin information
$$\to \nabla \times m_{\text{field}}$$
 (53)

Charge information
$$\rightarrow \phi(\vec{r}, t)$$
 (54)

Mass information
$$\to m_0$$
 and $r_0 = 2Gm_0$ (55)

Antiparticle information
$$\to \pm m_{\rm field}$$
 (56)

5.2 Extended Schrödinger Equation

• Standard form of the Schrödinger equation:

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi \tag{57}$$

• Extended Schrödinger equation with time field coupling:

$$i\hbar \frac{\partial \psi}{\partial t} + i\psi \left[\frac{\partial T_{\text{field}}}{\partial t} + \vec{v} \cdot \nabla T_{\text{field}} \right] = \hat{H}\psi$$
(58)

• Alternative formulation with explicit time field:

$$iT_{\text{field}}\frac{\partial\Psi}{\partial t} + i\Psi\left[\frac{\partial T_{\text{field}}}{\partial t} + \vec{v}\cdot\nabla T_{\text{field}}\right] = \hat{H}\Psi$$
 (59)

• Deterministic solution structure:

$$\psi(x,t) = \psi_0(x) \exp\left(-\frac{i}{\hbar} \int_0^t \left[E_0 + V_{\text{eff}}(x,t')\right] dt'\right)$$
 (60)

• Modified dispersion relations:

$$E^{2} = p^{2} + m_{0}^{2} + \xi \cdot g(T_{\text{field}}(x, t))$$
(61)

• Wave function as mass field representation:

$$\psi(x,t) = \sqrt{\frac{\delta m(x,t)}{m_0 V_0}} \cdot e^{i\phi(x,t)}$$
(62)

5.3 Deterministic Quantum Physics

• Standard QM vs. T0 representation:

Standard QM:
$$|\psi\rangle = \sum_{i} c_i |i\rangle$$
 with $P_i = |c_i|^2$ (63)

To Deterministic: State
$$\equiv \{m_i(x,t)\}$$
 with ratios $R_i = \frac{m_i}{\sum_i m_j}$ (64)

• Measurement interaction Hamiltonian:

$$H_{\rm int} = \frac{\xi}{m_P} \int \frac{m_{\rm system}(x,t) \cdot m_{\rm detector}(x,t)}{\ell_P^3} d^3x \tag{65}$$

• Measurement result (deterministic):

Measurement result =
$$\arg \max_{i} \{ m_i(x_{\text{detector}}, t_{\text{measurement}}) \}$$
 (66)

5.4 Entanglement and Bell Inequalities

• Entanglement as mass field correlations:

$$m_{12}(x_1, x_2, t) = m_1(x_1, t) + m_2(x_2, t) + m_{corr}(x_1, x_2, t)$$
 (67)

• Singlet state representation:

$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \to \frac{1}{\sqrt{2}}[m_0(x_1)m_1(x_2) - m_1(x_1)m_0(x_2)]$$
 (68)

• Field correlation function:

$$C(x_1, x_2) = \langle m(x_1, t) m(x_2, t) \rangle - \langle m(x_1, t) \rangle \langle m(x_2, t) \rangle$$

$$(69)$$

• Modified Bell inequalities:

$$|E(a,b) - E(a,c)| + |E(a',b) + E(a',c)| \le 2 + \varepsilon_{T0}$$
 (70)

• T0 correction factor:

$$\varepsilon_{T0} = \xi \cdot \frac{2G\langle m \rangle}{r_{12}} \approx 10^{-34}$$
 (71)

5.5 Quantum Gates and Operations

• Pauli-X gate (bit-flip):

$$X: m_0(x,t) \leftrightarrow m_1(x,t) \tag{72}$$

• Pauli-Y gate:

$$Y: m_0 \to i m_1, \quad m_1 \to -i m_0 \tag{73}$$

• Pauli-Z gate (phase-flip):

$$Z: m_0 \to m_0, \quad m_1 \to -m_1 \tag{74}$$

• Hadamard gate:

$$H: m_0(x,t) \to \frac{1}{\sqrt{2}}[m_0(x,t) + m_1(x,t)]$$
 (75)

• CNOT gate:

CNOT:
$$m_{12}(x_1, x_2, t) = m_1(x_1, t) \cdot f_{\text{control}}(m_2(x_2, t))$$
 (76)

With the control function:

$$f_{\text{control}}(m_2) = \begin{cases} m_2 & \text{when } m_1 = m_0 \\ -m_2 & \text{when } m_1 = m_1 \end{cases}$$
 (77)

6 COSMOLOGY IN THE T0-MODEL

6.1 Static Universe

• Metric in the static universe:

$$ds^{2} = -dt^{2} + a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]$$
 (78)

With: a(t) = constant in the T0 static model

• Particle horizon in the static universe:

$$r_H = \int_0^t c \, dt' = ct \tag{79}$$

6.2 Photon Energy Loss and Redshift

• Energy loss rate for photons:

$$\frac{dE_{\gamma}}{dr} = -g_T \omega^2 \frac{2G}{r^2} \tag{80}$$

• Corrected energy loss rate with geometric parameter:

$$\frac{dE_{\gamma}}{dr} = -\xi \frac{E_{\gamma}^2}{m_{\text{field}} \cdot r} = -\frac{4}{3} \times 10^{-4} \frac{E_{\gamma}^2}{m_{\text{field}} \cdot r}$$
(81)

• Integrated energy loss equation:

$$\frac{1}{E_{\gamma,0}} - \frac{1}{E_{\gamma}(r)} = \xi \frac{\ln(r/r_0)}{m_{\text{field}}}$$
 (82)

• Approximation for small corrections ($\xi \ll 1$):

$$E_{\gamma}(r) \approx E_{\gamma,0} \left(1 - \xi \frac{E_{\gamma,0}}{m_{\text{field}}} \ln \left(\frac{r}{r_0} \right) \right)$$
 (83)

6.3 Wavelength-Dependent Redshift

• Definition of redshift:

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}} = \frac{\lambda(r) - \lambda_0}{\lambda_0} = \frac{E_{\text{emitted}} - E_{\text{observed}}}{E_{\text{observed}}}$$
(84)

• Universal redshift formula:

$$z(\lambda) = z_0 \left(1 - \alpha \ln \frac{\lambda}{\lambda_0} \right)$$
 (85)

• Redshift gradient:

$$\frac{dz}{d\ln\lambda} = -\alpha z_0 \tag{86}$$

• Example for redshift variations in a quasar with $z_0 = 2$:

$$z(\text{blue}) = 2.0 \times (1 - 0.1 \times \ln(0.5)) = 2.0 \times (1 + 0.069) = 2.14$$
 (87)

$$z(\text{red}) = 2.0 \times (1 - 0.1 \times \ln(2.0)) = 2.0 \times (1 - 0.069) = 1.86$$
 (88)

• CMB frequency dependence:

$$\Delta z = \xi \ln \frac{\nu_1}{\nu_2} \tag{89}$$

• Prediction for Planck frequency bands:

$$\Delta z_{30-353} = \frac{4}{3} \times 10^{-4} \times \ln \frac{353}{30} = 1.33 \times 10^{-4} \times 2.46 = 3.3 \times 10^{-4}$$
 (90)

• Modified CMB temperature evolution:

$$T(z) = T_0(1+z)(1+\beta \ln(1+z))$$
(91)

6.4 Hubble Parameter and Gravitational Dynamics

• Hubble-like relationship for small redshifts:

$$z \approx \frac{E_{\gamma,0} - E_{\gamma}(r)}{E_{\gamma}(r)} \approx \xi \frac{E_{\gamma,0}}{m_{\text{field}}} \ln \left(\frac{r}{r_0}\right)$$
 (92)

• For nearby distances where $\ln(r/r_0) \approx r/r_0 - 1$:

$$z \approx \xi \frac{E_{\gamma,0}}{m_{\text{field}}} \frac{r}{r_0} = H_0 \frac{r}{c} \tag{93}$$

• Effective Hubble parameter:

$$H_0 = \xi \frac{E_{\gamma,0}}{m_{\text{field}}} \frac{c}{r_0} \tag{94}$$

• Modified galaxy rotation curves:

$$v(r) = \sqrt{\frac{Gm_{\text{total}}}{r} + \Omega r^2}$$
(95)

where Ω has the dimension $[M^3]$

• Observed "Hubble parameters" as artifacts of different energy loss mechanisms:

$$H_0^{\text{apparent}}(z) = H_0^{\text{local}} \cdot f(z, \xi, m_{\text{field}}(z))$$
(96)

• Hubble tension:

Tension =
$$\frac{|H_0^{\text{SH0ES}} - H_0^{\text{Planck}}|}{\sqrt{\sigma_{\text{SH0ES}}^2 + \sigma_{\text{Planck}}^2}} = \frac{5.6}{\sqrt{1.4^2 + 0.5^2}} = \frac{5.6}{1.49} = 3.8\sigma$$
 (97)

6.5 Energy-Dependent Light Deflection

• Modified deflection formula:

$$\theta = \frac{4GM}{bc^2} \left(1 + \xi \frac{E_{\gamma}}{m_0} \right) \tag{98}$$

• Ratio of deflection angles for different photon energies:

$$\frac{\theta(E_1)}{\theta(E_2)} = \frac{1 + \xi \frac{E_1}{m_0}}{1 + \xi \frac{E_2}{m_0}} \tag{99}$$

• Approximation for $\xi \frac{E}{m_0} \ll 1$:

$$\frac{\theta(E_1)}{\theta(E_2)} \approx 1 + \xi \frac{E_1 - E_2}{m_0}$$
 (100)

• Modified Einstein ring radius:

$$\theta_E(\lambda) = \theta_{E,0} \sqrt{1 + \xi \frac{hc}{\lambda m_0}} \tag{101}$$

• Example for X-ray (10 keV) and optical (2 eV) photons with solar deflection:

$$\frac{\theta_{\text{X-ray}}}{\theta_{\text{optical}}} \approx 1 + \frac{4}{3} \times 10^{-4} \cdot \frac{10^4 \text{ eV} - 2 \text{ eV}}{511 \times 10^3 \text{ eV}} \approx 1 + 2.6 \times 10^{-6}$$
 (102)

6.6 Universal Geodesic Equation

• Unified geodesic equation:

$$\left[\frac{d^2 x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} = \xi \cdot \partial^{\mu} \ln(m_{\text{field}}) \right]$$
 (103)

• Modified Christoffel symbols:

$$\Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu|0} + \frac{\xi}{2} \left(\delta^{\lambda}_{\mu} \partial_{\nu} T_{\text{field}} + \delta^{\lambda}_{\nu} \partial_{\mu} T_{\text{field}} - g_{\mu\nu} \partial^{\lambda} T_{\text{field}} \right)$$
(104)

7 DIMENSIONAL ANALYSIS AND UNITS

7.1 Dimensions of Fundamental Quantities

5-3-4	, .
${\it Mass:} [M] ({\it fundamental})$	(105)
Energy: $[E] = [ML^2T^{-2}]$	(106)
Length: [L]	(107)
Time: $[T]$	(108)
Momentum: $[p] = [MLT^{-1}]$	(109)
Force: $[F] = [MLT^{-2}]$	(110)
Charge: $[q] = [1]$ (dimensionless)	(111)
Action: $[S] = [ML^2T^{-1}]$	(112)
Cross-section: $[\sigma] = [L^2]$	(113)
Lagrangian density: $[\mathcal{L}] = [ML^{-1}T^{-2}]$	(114)
Mass density: $[\rho] = [ML^{-3}]$	(115)
Wave function: $[\psi] = [L^{-3/2}]$	(116)
Field strength tensor: $[F_{\mu\nu}] = [MT^{-2}]$	(117)
Acceleration: $[a] = [LT^{-2}]$	(118)
Current density: $[J^{\mu}] = [qL^{-2}T^{-1}]$	(119)
D'Alembert operator: $[\Box] = [L^{-2}]$	(120)
Ricci tensor: $[R_{\mu\nu}] = [L^{-2}]$	(121)

7.2Commonly Used Combinations

g-2 prefactor:
$$\frac{\xi}{2\pi} = 2.122 \times 10^{-5}$$
 (122)

Muon-electron ratio:
$$\frac{m_{\mu}}{m_{e}} = 206.768$$
 (123)

Muon-electron ratio:
$$\frac{2\pi}{m_{\mu}} = 206.768$$
 (123)
Tau-electron ratio:
$$\frac{m_{\tau}}{m_{e}} = 3477.7$$
 (124)

Gravitational coupling:
$$\xi^2 = 1.78 \times 10^{-8}$$
 (125)

Weak coupling:
$$\xi^{1/2} = 1.15 \times 10^{-2}$$
 (126)

Strong coupling:
$$\xi^{-1/3} = 9.65$$
 (127)

Universal T0-scale:
$$2Gm$$
 (128)

Time-mass duality:
$$T_{\text{field}} \cdot m_{\text{field}} = 1$$
 (129)

ξ -HARMONIC THEORY AND FACTORIZATION 8

8.1 Two Different ξ -Parameters in the T0-Model

• Geometric ξ -parameter: Fundamental constant of the T0-model

$$\xi_{\text{geom}} = \frac{4}{3} \times 10^{-4} = \frac{1}{7500} \tag{130}$$

This parameter determines the strength of time field interactions and appears in all fundamental equations.

• Resonance ξ -parameter: Optimization parameter for factorization

$$\xi_{\rm res} = \frac{1}{10} = 0.1 \tag{131}$$

This parameter determines the "sharpness" of resonance windows in harmonic analysis.

- Conceptual Connection: Both parameters describe the fundamental "uncertainty" in their respective domains:
 - $-\xi_{\rm geom}$ the universal geometric uncertainty in spacetime
 - $-\xi_{\rm res}$ the practical uncertainty in resonance detection

ξ -Parameter as Uncertainty Parameter 8.2

• Heisenberg uncertainty relation:

$$\Delta\omega \times \Delta t > \xi/2 \tag{132}$$

• ξ as resonance window:

Resonance
$$(\omega, \omega_{\text{target}}, \xi) = \exp\left(-\frac{(\omega - \omega_{\text{target}})^2}{4\xi}\right)$$
 (133)

• Optimal parameter:

$$\xi = 1/10$$
 (for medium selectivity) (134)

• Acceptance radius:

$$r_{\rm accept} = \sqrt{4\xi} \approx 0.63 \text{ (for } \xi = 1/10)$$
 (135)

8.3 Spectral Dirac Representation

• Dirac representation of a number $n = p \times q$:

$$\delta_n(f) = A_1 \delta(f - f_1) + A_2 \delta(f - f_2) \tag{136}$$

• ξ -broadened Dirac function:

$$\delta_{\xi}(\omega - \omega_0) = \frac{1}{\sqrt{4\pi\xi}} \times \exp\left(-\frac{(\omega - \omega_0)^2}{4\xi}\right)$$
 (137)

• Complete Dirac number function:

$$\Psi_n(\omega,\xi) = \sum_i A_i \times \frac{1}{\sqrt{4\pi\xi}} \times \exp\left(-\frac{(\omega - \omega_i)^2}{4\xi}\right)$$
 (138)

8.4 Ratio-Based Calculations and Factorization

• Base frequencies in the spectrum correspond to prime factors:

$$n = p \times q \to \{f_1 = f_0 \times p, f_2 = f_0 \times q\}$$
 (139)

• Spectral ratio:

$$R(n) = \frac{q}{p} = \frac{\max(p, q)}{\min(p, q)} \tag{140}$$

• Octave reduction to avoid rounding errors:

$$R_{\text{oct}}(n) = \frac{R(n)}{2^{\lfloor \log_2(R(n)) \rfloor}} \tag{141}$$

• Beat frequency (difference frequency):

$$f_{\text{beat}} = |f_2 - f_1| = f_0 \times |q - p| \tag{142}$$

• Ratio-based calculation instead of absolute values:

$$\frac{f_1}{f_0} = p, \quad \frac{f_2}{f_0} = q, \quad \frac{f_2}{f_1} = \frac{q}{p}$$
 (143)

9 EXPERIMENTAL VERIFICATION

9.1 Experimental Verification Matrix

Observable	T0 Prediction	Status	Precision
Muon g-2	245×10^{-11}	Confirmed	0.10σ
Electron g-2	1.15×10^{-19}	Testable	10^{-13}
Tau g-2	257×10^{-11}	Future	10^{-9}
Fine structure	$\alpha = 1/137 (SI)$	Confirmed	10^{-10}
Weak coupling	$g_W^2/4\pi = \sqrt{\xi}$	Testable	10^{-3}
Strong coupling	$\alpha_s = \xi^{-1/3}$	Testable	10^{-2}

9.2 Hierarchy of Physical Reality

Level 1: Pure Geometry

$$G_3 = 4/3$$

 \downarrow

Level 2: Scale Ratios

$$S_{\rm ratio} = 10^{-4}$$

 \downarrow

Level 3: Mass Field Dynamics

$$\Box m_{\rm field} = 0$$

 \downarrow

Level 4: Particle Excitations

Localized Field Patterns

 \downarrow

Level 5: Classical Physics

Macroscopic Manifestations

9.3 Geometric Unification

• Interaction strength as a function of ξ :

Interaction strength =
$$G_3 \times \text{Mass scale ratio} \times \text{Coupling function}$$
 (144)

• Specific interactions:

$$\alpha_{\rm EM} = G_3 \times S_{\rm ratio} \times f_{\rm EM}(m) \tag{145}$$

$$\alpha_W = G_3^{1/2} \times S_{\text{ratio}}^{1/2} \times f_W(m) \tag{146}$$

$$\alpha_S = G_3^{-1/3} \times S_{\text{ratio}}^{-1/3} \times f_S(m) \tag{147}$$

$$\alpha_G = G_3^2 \times S_{\text{ratio}}^2 \times f_G(m) \tag{148}$$

9.4 Unification Condition

• GUT energy:

$$m_{\rm GUT} \sim \frac{m_{\rm Planck}}{S_{\rm ratio}} = 10^{23} \text{ GeV}$$
 (149)

• Convergence of coupling constants:

$$\alpha_{\rm EM} \sim \alpha_W \sim \alpha_S \sim G_3 \times S_{\rm ratio} \sim 1.33 \times 10^{-4}$$
 (150)

• Condition for coupling functions:

$$f_{\rm EM}(m_{\rm GUT}) = f_W^2(m_{\rm GUT}) = f_S^{-3}(m_{\rm GUT}) = 1$$
 (151)

9.5 Ratio-Based Calculations to Avoid Rounding Errors

• Basic principle: Using ratios instead of absolute values:

$$\frac{m_1}{m_0} = p, \quad \frac{m_2}{m_0} = q, \quad \frac{m_2}{m_1} = \frac{q}{p}$$
(152)

• Spectral ratio for numerical stability:

$$R(n) = \frac{q}{p} = \frac{\max(p, q)}{\min(p, q)} \tag{153}$$

• Octave reduction for further error minimization:

$$R_{\text{oct}}(n) = \frac{R(n)}{2^{\lfloor \log_2(R(n)) \rfloor}} \tag{154}$$

• Harmonic distance (in cents):

$$d_{\text{harm}}(n,h) = 1200 \times \left| \log_2 \left(\frac{R_{\text{oct}}(n)}{h} \right) \right|$$
 (155)

• Matching criterion with tolerance parameter ξ :

$$Match(n, harmonic_ratio) = TRUE \text{ if } |R_{oct}(n) - harmonic_ratio|^2 < 4\xi$$
 (156)

• Application to frequency calculations:

$$f_{\text{ratio}} = \frac{f_2}{f_1} = \frac{q}{p} \tag{157}$$

$$f_{\text{beat}} = |f_2 - f_1| = f_0 \times |q - p|$$
 (158)

- Advantage: In complex calculations with many operations (especially FFT and spectral analyses), rounding errors can accumulate. Ratio-based calculation minimizes this effect by:
 - Reducing the number of operations
 - Avoiding differences between large numbers
 - Stabilizing numerical precision across a wider range of values
 - Enabling direct comparison with harmonic ratios without conversion