Model Performance

Model Name: SupportVectorMachineOnLocation linear Test Date: 23/03/2022 15:56:42 Creator: Tobias Rothlin

Overview

ML Principle:

Support Vector Machine

References:

- Sentiment Analysis SVM
- Scikit SVM Kernels
- Scikit feature extraction
- Scikit Vectorizer

Algorithm Description:

Support vector machines are a robust supervised learning model based on statistical learning. The idea is to find a Hyperplane separating the different classes with the most separation between the closest points. Before the SVM can classify a sentence, the sentence needs to be vectorised. To accomplish the Scikit learn, Tfidf Vectorizer is used. The Vectorizer converts the sentence to a fixed feature vector. With the vectorised sentences, the model can be trained. The best hyperplanes are found in the training step based on the training data. The flexibility of the hyperplane can be defined by the Kernel (linear, sigmoid, RBF). RBF is used for non-linear problems and is also a general-purpose kernel. This model uses a linear kernel.

Classification Pipeline

Metrics

Data: ClassifiedDataSetV1.2 with 10 folds cross validation

Split seed: 4.83819

Training Dataset

Classes	Number of samples		
Room	399		
Location	379		
Staff	197		
Unknown	181		
HotelOrganisation	141		
Food	129		
ReasonForStay	117		
GeneralUtility	45		

400 350 음 250 E 200 150 100 Food

Distribution of the samples contain

Test Dataset

Classes	Number of samples		
Room	44		
Location	42		
Staff	21		
Unknown	20		
HotelOrganisation	15		
Food	14		
ReasonForStay	13		
GeneralUtility	5		

Average distribution of the samples

Classification Performance

Classes	Precision	Recall	F1 Score
Room	71.07%	82.99%	76.57%
Location	80.37%	82.66%	81.50%
Staff	72.54%	63.93%	67.96%
Unknown	36.70%	39.80%	38.19%
HotelOrganisation	26.81%	24.03%	25.34%
Food	85.61%	78.47%	81.88%
ReasonForStay	55.79%	40.77%	47.11%
GeneralUtility	86.11%	62.00%	72.09%
Accuracy			66.36%
Macro Average	64.37%	59.33%	61.33%
Weighted Average	66.17%	66.36%	65.94%

ConfusionMatrix:

Normalised ConfusionMatrix:

F1 Socre by split:

F1-Score per split