LISTA 2 - PROBABILIDADE B (CE087)

Prof. Benito Olivares Aguilera

2° Sem./19

FUNÇÕES DE VARIÁVEIS ALEATÓRIAS, INDEPENDÊNCIA E MÉTODO DO JACOBIANO.

- 1. Se $X \sim \exp(1/2)$, encontre a densidade de $Y = X^{1/2}$. Tal distribuição é chamada **Weibull** de parâmetros 2 e 1/2.
- **2.** Seja $X \sim N(0,1)$, encontre a densidade de $Y = e^X$. Tal distribuição é chamada **Lognormal** de parâmetros 0 e 1.
- 3. Se X~Laplace(1), encontre a densidade de $Y = X^2$.
- **4.** Seja X uma variável aleatória cuja função de distribuição F é uma função contínua na reta. Prove que a distribuição de Y = F(x) é U(0,1).
- 5. Se X e Y são variáveis aleatórias contínuas, independentes e distribuídas uniformemente no intervalo (0,60), encontre P(|X-Y|<10).
- 6. Suponhamos que os tempos que dois estudantes demoram para resolverem um problema sejam independentes e exponenciais com parâmetro λ . Calcule a probabilidade do primeiro estudante demorar pelo menos duas vezes o tempo do segundo para resolver o problema.
- 7. Uma urna contém 1 bola vermelha e 2 brancas. Retira-se uma amostra de tamanho 3 com reposição. Seja a variável aleatória

$$X_i = \begin{cases} 1, \text{ se a i - \'esima bola \'e vermelha} \\ 0, \text{ se a i - \'esima bola \'e branca.} \end{cases}$$

- a) Encontre a distribuição conjunta de (X_1, X_2, X_3) .
- b) Determine $P(X_1 + X_2 = X_3)$.
- 8. Sejam X e Y variáveis aleatórias independentes com distribuição comum N(0,1). Mostre que $U = \frac{X+Y}{\sqrt{2}}$ e $V = \frac{X-Y}{\sqrt{2}}$ também são independentes e N(0,1).
- 9. Suponha que X e Y sejam variáveis aleatórias independentes e identicamente distribuídas U(0,1). Verfique se X+Y e X-Y são independentes.
- 10. Se X e Y são variáveis aleatórias independentes e identicamente distribuídas $\exp(\lambda)$, encontre as densidades de X+Y e X-Y.

- 11. Sejam X e Y variáveis aleatórias independentes e identicamente distribuídas $\exp(\lambda)$, Provar que $Z = \frac{X}{X+Y}$ possui distribuição U[0,1].
- 12. Seja X uma variável aleatória possuindo densidade f(x). Encontrar a densidade de Y = |X| pelo método da Função Distribuição e logo pelo método do Jacobiano.
- **13.** Mostre que se $X_1, X_2, ..., X_n$ são variáveis aleatórias iid tais que $X_i \sim Poisson(\lambda_i)$, então $X_1 + X_2 + \cdots, +X_n \sim Poisson(\lambda_1 + \cdots + \lambda_n)$.
- **14.** Mostre que se $X_1, X_2, ..., X_n$ são variáveis aleatórias iid $\exp(\lambda_i)$ e $Y = \min X_i$, então $Y \sim \exp(\lambda_1 + \cdots + \lambda_n)$.
- **15.** Se $X_1, X_2, ..., X_n$ são variáveis aleatórias iid U(0,1), mostre que $-2n \log Y \sim \chi^2_{2n}$, onde Y é a média geométrica das X_i , definida por $Y = (\prod_{i=1}^n X_i)^{1/n}$.
- **16.** Sejam X e Y variáveis aleatórias com densidade conjunta dada por: $f_{X,Y}(x,y) = 4xy, \ 0 \le x \le 1,, 0 \le y \le 1$. Encontre a densidade do produto e do quociente entre X e Y.
- 17. Sejam X e Y variáveis aleatórias independentes com $X \sim \Gamma(\alpha_1, 1)$ e $Y \sim \Gamma(\alpha_2, 1)$. Mostre que X + Y e X/Y são independentes e ache suas distribuições.
- **18.** Sejam X_1 , X_2 e X_3 variáveis aleatórias iid N(0,1). Defina as novas variáveis:

 $Y_1 = X_1 + X_2 + X_3$, $Y_2 = X_1 - X_2$ e $Y_3 = X_1 - X_3$. Encontre as densidades marginais das Y_i 's.