

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

An efficient process for sustainable and scalable hydrogen production from green ammonia

Junyoung Cha ^{a,b,1}, Yongha Park ^{a,1}, Boris Brigljević ^{c,1}, Boreum Lee ^c, Dongjun Lim ^c, Taeho Lee ^a, Hyangsoo Jeong ^a, Yongmin Kim ^a, Hyuntae Sohn ^a, Hrvoje Mikulčić ^{d,e}, Kyung Moon Lee ^f, Dong Hoon Nam ^f, Ki Bong Lee ^b, Hankwon Lim ^{c,***}, Chang Won Yoon ^{a,g,**}, Young Suk Jo ^{a,*}

- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- b Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- c School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
- ^d Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- ^e MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- f Hydrogen Energy Business Development Team, Hyundai Motor Company, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, Republic of Korea
- g Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea

ARTICLE INFO

Ammonia reforming H₂ production Efficiency analysis Process simulation Economic analysis

ABSTRACT

This study comprehensively investigates hydrogen production from green ammonia reforming, including synthesis of catalysts, reactor development, process integration, and techno-economic analysis. In-house developed Ru/La–Al $_2$ O $_3$ pellet catalyst having perovskite structure showed high catalytic activity of 2827 h $^{-1}$ at 450 °C and stability over 6700 h at 550 °C, exceeding the performance of the majority of powder catalysts reported in the literature. A scalable 12-faceted reactor adopting the as-produced catalyst was designed to enhance heat transfer, producing over 66 L min $^{-1}$ of hydrogen with state-of-the-art ammonia reforming efficiency of 83.6 %. Near-zero CO $_2$ emission of hydrogen extraction from green ammonia was demonstrated by-product gas recirculation as a combustion heat source. A techno-economic assessment was conducted for system scales from 10 kW to 10 MW, demonstrating the effect of reduced minimum hydrogen selling prices from 7.03 USD kg $^{-1}$ at small modular scales to 3.98 USD kg $^{-1}$ at larger industrial scales. Sensitivity analyses indicate that hydrogen selling prices may reduce even further (up to 50 %). The suggested hydrogen production route from green NH $_3$ demonstrates superior CO $_2$ reduction ranging from 78 % to 95 % in kg CO $_2$ (kg H $_2$) $^{-1}$ compared to biomass gasification and steam methane reforming. These findings can be used as a basis for following economic and policy studies to further validate the effectiveness of the suggested system and process for H $_2$ production from NH $_3$.

Abbreviations: Abs, Adsorber; CAPEX, Capital expense; CE, Costing exponent; CNT, Carbon nanotube; FFR, Fuel flow rate; GHSV, Gas hourly space velocity; HX, Heat exchanger; LHV, Lower heating value; MHSP, Minimum hydrogen selling price; NCF, Non-discounted cash flow; NPV, Net present value; OPEX, Operating expenses; PEMFC, Polymer electrolyte membrane fuel cell; PFD, Process flow diagram; PSA, Pressure swing adsorption; REF, Reformer; SC, Storage cost; SMR, Steam methane reforming; STP, Standard temperature and pressure; TCI, Total capital investment; TEA, Techno-economic assessment; TEM, Transmission electron microscopy; TIC, Total installation cost; TOF, Turnover frequency.

^{*} Corresponding author. Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.

^{**} Corresponding author. Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.

^{***} Corresponding author. School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.

E-mail addresses: hklim@unist.ac.kr (H. Lim), cwyoon@postech.ac.kr (C.W. Yoon), yjo@kist.re.kr (Y.S. Jo).

¹ These authors contributed equally.