12.520 Lecture Notes 24

Rayleigh - Taylor Instability

Growth of Boundary Undulations

- salt domes
- diapirs
- continental delamination

Figure 24.18 Figure by MIT OCW.

General problem: topography on an interface

$$\xi = \xi_0 \cos kx_1 \qquad k = \frac{2\pi}{\lambda}$$

- (1) If $\rho_u < \rho_l$ topography decays as $\xi_0 e^{-t/\tau}$.
- (2) If $\rho_u > \rho_l$ topography grows.

Initially
$$\xi = \xi_0 e^{t/\tau}$$
.

Eventually many wavelengths interact, problem is no longer simple.

Characteristic time τ depends on $\Delta \rho$, η_u , η_l , thickness of layers, ...

Figure 24.19 Figure by MIT OCW.

- Weight of ice causes viscous flow in the mantle.
- After melting of ice, the surface rebounds "postglacial rebound".
- Different regions have different behaviors (e.g., Boston is now sinking).

Figure 24.20 Figure by MIT OCW.

Problem: how to reconcile physical boundary conditions with mathematical description?