Regularization: Graduate Rate of college Ridge and LASSO regression

Heejae Roh
Northeastern University
ALY 6015: Intermediate Analytics
Paromita Guha
February 5, 2023

INTRODUCTION

Regularization prevents overfitting of the model. I will learn about the Ridge (L2) LASSO (L1) method which are used to prevent overfitting. Both methods use a method called 'Lambda' that gives a penalty to the coefficient. I will learn how to execute Ridge and LASSO and also compare these models with stepwise model.

ABSTRACTION

Data itself

Dataset is about statistics for US colleges from the 1995 issue of US news and World Report. Dependent variable is Graduate Rate which is numeric variable. There are 16 other numeric variables which contain information about admissions, estimated cost of college life, student/faculty ratio of each college.

EDA

I found the outlier which Grad.Rate is bigger than 100 and deleted the row. Scatter plot of Grad.Rate shows that Outstate, Top10perc, perc.alumni is highly related to Grad.Rate. I learned for linear regression or generalization, eliminating outlier is important, because I compare the result before and after eliminating the outlier, there was significant difference in lambda and model

PREREQUISITE for MODELING

I made a model except only one row which Grad.Rate is higher than 100. After that I split the dataset to train and test which contains 543 and 233 observations.

Ridge Regularization

Ridge use penalty equal to the square of the magnitude of coefficients. It means that the all coefficients may approach zero, but they will never actually equal zero. In other words, Ridge cannot eliminate variables from the model

LASSO Regularization

On the other hand, LASSO use penalty equal to the absolute value of the magnitude of coefficients. It allows to actually reduce a coefficient to zero. In this project, 9 variables are eliminated with one standard error of the minimum lambda.

Ridge vs LASSO vs Stepwise

After making each model, I check the Root Mean Square Error (RMSE) and compare each model. I also check the multicollinearity with correlation matrix and VIF values. I thought that LASSO perfoms better than Ridge, because the RMSE is lower, although it contains fewer variables.

As same as comparing Ridge vs LASSO, I compare the RMSE of LASSO and Stepwise. The Stepwise model's RMSE was lower than LASSO. However there is multicollinearity problem in both models, so I fixed it manually.

CONCLUSION

I learn about Ridge and LASSO Regularization. Also, about the stepwise method. I realize that I have to check the dataset and model respectively, because I can't simply say which model is always good for specific dataset.

PART 0. INTRODUCTION

Generalization prevents overfitting of the model. Overfitting means using too many variables or having multicollinearity. In this module, I will learn about the Ridge (L2) LASSO (L1) method which are used to prevent overfitting. Both methods use a method called 'Lambda' that gives a penalty to the coefficient. This allows the coefficients to shrink to 0 as Lambda gets greater to prevent overfitting. In this process, we will use the minimum Lambda or one standard error of the minimum Lambda. I will learn how to execute Ridge and LASSO and its advantages and disadvantages while making a model of predicting Graduate Rate of college dataset.

PART 1. ANALYSIS

Data Analysis by data explanation

- 1. Dataset is about statistics for US Colleges from the the 1995 issue of US News and World Report (R-DATA, n.d.)
- 2. Data has 777 observations and 18 variables. Our target variable is Grad.Rate which means graduation rate of specific university which is numeric variable. There are 17 numeric variables (including Grad.Rate) information about admissions, estimated cost of college life, student/faculty ratio, and etc.
- 3. In this analysis, I will find out the model which can predict graduation rate with other numeric variables

PART 1-1. SUMMARY of EDA and DATA CLEANING

Hea	dtail	of	Data	1
1104	utan	vi	Data	

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.undergrad
Abilene Christian University	Yes	1660	1232	721	23	52	2885
Adelphi University	Yes	2186	1924	512	16	29	2683
Adrian College	Yes	1428	1097	336	22	50	1036
•••							
Xavier University of Louisiana	Yes	2097	1915	695	34	61	2793
Yale University	Yes	10705	2453	1317	95	99	5217
York College of Pennsylvania	Yes	2989	1855	691	28	63	2988

Headtail of Data 2

	P.undergrad	Outstate	Room.Board	Books	Personal	Phd
Abilene Christian University	537	7440	3300	450	2200	70
Adelphi University	1227	12280	6450	750	1500	29
Adrian College	99	11250	3750	400	1165	53
Xavier University of Louisiana	166	6900	4200	617	781	67
Yale University	83	19840	6510	630	2115	96
York College of Pennsylvania	1726	4990	3560	500	1250	75

Headtail of Data 3

	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
Abilene Christian University	78	18.1	12	7041	60
Adelphi University	30	12.2	16	10527	56
Adrian College	66	12.9	30	8735	54
Xavier University of Louisiana	75	14.4	20	8323	49
Yale University	96	5.8	49	40386	99
York College of Pennsylvania	75	18.1	28	4509	99

Detailed explanation about variables

- 1. Top10/25perc: Percentage of new students from top 10/25% of H.S. class
- 2. Outstate: out of state tuition, it could be indicate estimated or average of tuition
- 3. Room.Board is room and board costs. Books is estimated book costs
- 4. Terminal is pct. Of faculty with terminal degree (PhDs or doctorates) and S.F.Ratio: Student/faculty ratio are about education quality
- 5. Perc.alumni: Pct. Alumni who donate and Expend: Instructional expenditure per student, these are about financial conditions and support
- 6. Grad.Rate: Graduation rate, I think it could explain the loyalty about school, because if you don't like or trust your school curriculum, it's very likely that you won't graduate (R-DATA, n.d.)

Summary of Data 1

	Private		Apps	Accept	Enroll	Top10perc	Top25perc	F.undergrad	P.undergrad	Outstate
No	212	Min.	81	72	35	1.00	9.0	139	1.0	2340
Yes	565	1 st Qu.	776	604	242	15.00	41.0	992	95.0	7320
		median	1558	1110	434	23.00	54.0	1707	353.0	9990
		mean	3002	2019	780	27.56	55.8	3700	855.3	10441
		3 rd Qu.	3624	2424	902	35.00	69.0	4005	967.0	12925
		Max.	48094	26330	6392	96.00	100.0	31643	21836.0	21700

Summary of Data 2

	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
Min.	1780	96.0	250	8.00	24.0	2.50	0.00	3186	10.00
1 st Qu.	3597	470.0	850	62.00	71.0	11.50	13.00	6751	53.00
median	4200	500.0	1200	75.00	82.0	13.60	21.00	8377	65.00
mean	4358	549.4	1341	72.66	79.7	14.09	22.74	9660	65.46
3 rd Qu.	5050	600.0	1700	85.00	92.0	16.50	31.00	10830	78.00
Max.	8124	2340.0	6800	103.00	100.0	39.80	64.00	56233	118.00

Data Cleaning

- 1. Checking summary(dataset) and duplicated
- 2. There is no <NA> value in this dataset
- 3. Checking boxplot of Grad.Rate and found 'Cazenovia College' which value is 118
- 4. Delete 'Cazenovia College', because rate

cannot over 100, and check other variables with over 100 in Grad.Rate

Scatter, Correlation, and Frequency graph 1 with Grad.Rate

Scatter, Correlation, and Frequency graph 1 with Grad.Rate

Explanation:

- 1. Highest Correlation with Grad.Rate is Outstate (0.571), Top10perc (0.495), perc.alumni (0.491), Top25perc (0.477), and Room.Board (0.425)
- Red box contains all scatter plot of Grad.Rate and other variables. Yellow box is highly correlated factors. The relationship between the highly correlated factor and Grad.Rate is shown in the region symmetrical around the diagonal blue line

Trends and interesting stuffs about dataset

- 1. Outstate & Room.Board is related to cost according to detailed explanation about variables. And perc.alumni is about alumni loyalty and budgeting
- 2. Top10perc and Top25perc are about the grades of admitted students. The two factors are likely to be highly correlated with each other, so I will check that later
- 3. In addition to variables mentioned above, other variables also show quite a correlation.

PART 1-2. PREREQUISITE for MODELING (Split the data)

Preparing dataset

- 1. Creating partition with the p = 0.70, train dataset has 543 observations and test dataset has 233 observations
- 2. Making train_x and test_x which does not have without Grad.Rate. Making train_y and train_y which only have Grad.Rate for using gv..glmnet function

Why Split the dataset

- 1. Dividing train and test dataset allows cross-validation which refers to a set of methods for measuring the performance of a given predictive model on new test data sets (kassambara, 2018)
- 2. The main idea of splitting the dataset into a validation set is to prevent our model from overfitting i.e., the model becomes really good at classifying the samples in the training set but cannot generalize and make accurate classifications on the data it has not seen before (Pragati, 2023)
- Dividing the train and test set allows cross-validation and prevent from overfitting.
 Cross-Validation is checking our model with a new test dataset to see accuracy of our model's prediction

PART 1-3. Ridge Regularization Finding the best Lambda

Understanding:

- 1. Ridge Regression has penalty equal to the square of the magnitude of coefficients. It means that all coefficients are shrunk by the same factor, in other words, the coefficients may approach zero, but they will never actually equal zero. This mean Ridge regularization cannot eliminate variables from the model (Goulding, 2022)
- 2. In this case, nfolds=10 which means randomly divide a dataset into k groups (which is folds) of roughly equal size and choose one of the groups and keep it. After that fit the model with remaining k-1 groups and calculate the test MSE with kept one group. Repeat this process k times, using a different set each time as the holdout set. Add all the MSE in each test and divide by k (ZACH, 2020)

The Best Lambda

log(λ\$min) ①	1.025761	λ\$min	2.789219
log(λ\$1se) ②	3.258571	λ\$1se	26.01235

- 1. X-axis is Log(lambda) and Y-axis is Mean-Squared Error (MSE). X-axis is not the lambda itself which has to be converted from log(lambda) to lambda
- 2. On the top, there are many '17's which means how many variables used while extracting log (lambda). In this case, we use Ridge which cannot eliminate variables, so everything is same as 17
- 3. The gray lines in each red dot is confident interval, and red dot represents the loss metric made through the cross-validation.
- 4. Left dot line (1) represents the minimum value of Lambda, and right dot line (2) is Lambda.1se which is maximum value within one standard error of the minimum. In other words, Lambda.1se is one standard error away from the minimum value of Lambda

PART 1-4. Fit a model with the best Lambda in Ridge

Model with Minimum of Lambda

glmnet(x = train_x, y = train_y, alpha = 0, lambda = cv.ridge\$lambda.min)						
	Df	%Dev	Lambda			
1	17	50.19	2.789			
coef(model with min La	ambda)					
18 x 1 sparse Matrix	of class "dgCMatrix"	λ\$min	1.9486			
	s0		s0			
(Intercept)	3.088712e+01	Outstate	6.318032e-04			
PrivateYes	5.096437e+00	Room.Board	2.176416e-03			
Apps	4.412696e-04	Books	-1.237375e-03			
Accept	2.049314e-04	Personal	-1.850562e-03			
Enroll	8.239522e-04	phD	2.940830e-02			
Top10perc	8.554154e-02	Terminal	1.326194e-02			
Top25perc	1.235753e-01	S.F.Ratio	6.397139e-02			
F.Undergrad	-9.038432e-05	perc.alumni	2.372240e-01			
P.Undergrad	-1.049755e-03	Expend	-1.739864e-04			

Interpretation:

- 1. This is coefficient of model with minimum Lambda. There are 17 variables which contain every variable of data set without deleting the variables
- 2. Minimum of Lambda by cv.glmnet function with train sets was 1.9486, These coefficient is calculated using Minimum of Lambda

Model with one standard error of the minimum Lambda

glmnet(x = train_x, y = train_y, alpha = 0, lambda = cv.ridge\$lambda.1se)						
	Df	%Dev	Lambda			
_1	17	44.28	26.01			
coef(model with 1se L	ambda)					
18 x 1 sparse Matrix	of class "dgCMatrix"	λ\$min	28.93609			
	s0		s0			
(Intercept)	4.097982e+01	Outstate	4.116596e-04			
PrivateYes	2.838922e+00	Room.Board	1.288993e-03			
Apps	1.699354e-04	Books	-5.793816e-04			
Accept	1.615573e-04	Personal	-1.366184e-03			
Enroll	1.731171e-04	phD	3.868448e-02			
Top10perc	7.559080e-02	Terminal	4.094918e-02			
Top25perc	7.498129e-02	S.F.Ratio	-1.100843e-01			
F.Undergrad	-2.800045e-05	perc.alumni	1.345650e-01			
P.Undergrad	-6.022945e-04	Expend	7.725665e-05			

- 1. This is coefficient of model with one standard error of the minimum Lambda
- One standard error of the minimum Lambda by cv.glmnet function with train sets was 26.01235, These coefficient is calculated using One standard error of the minimum Lambda
- 3. After changing the minimum lambda to 1se.lambda, coefficients of almost every variable get closer to 0

- 4. As you can see in above graph, the black line represent the coefficient of Private Yes. The coefficient of PrivateYes is getting smaller as Log Lambda (which is X-aixs) getting bigger
- 5. Even though have to check the size of variables, only at the coefficient of PrivateYes takes quite a while to converge to 0 as Log Lambda increases

coef(model with ols)									
18 x 1 sparse Matrix	18 x 1 sparse Matrix of class "dgCMatrix"								
	s0		s0						
(Intercept)	26.6092487126	Outstate	0.0008044048						
PrivateYes	6.0243476270	Room.Board	0.0025028823						
Apps	0.0013312971	Books	-0.0013928227						
Accept	-0.0014867628	Personal	-0.0017969009						
Enroll	0.0050149877	phD	0.0350196994						
Top10perc	-0.0143427758	Terminal	-0.0071864257						
Top25perc	0.2005783857	S.F.Ratio	0.1234007155						
F.Undergrad	-0.0005991068	perc.alumni	0.2624125308						
P.Undergrad	-0.0011104587	Expend	-0.0003702202						

Interpretation:

- 1. This is coefficient of model with ordinary least squared model without Lambda
- 2. Coefficients of this model is not close to 0 comparing with other Lambda models. It is without penalty model

Determining the performance of the Ridge model with RMSE

Root Mean Square error of each model		
train.rmse (one standard error model)	12.55167	
test.rmse (one standard error model)	14.54794	
ols.rmse	14.21157	

- 1. Use one standard error model whose lambda is 26.01 and log (Lambda) is 3.26. The RMSE with train set is 12.55167 and the RESE with test set is 14.54794
- 2. The RMSE with train set is little bit smaller than test set, but the difference is not that big, so we can conclude that we don't have any overfitting going on here
- 3. The RMSE with ols model is 14.21157, which is not that different from others, therefore with Lambda 1se model, there is no overfitting

PART 1-5. LASSO Regularization Finding the best Lambda

Understanding:

- 1. LASSO (L1) Regression has penalty equal to the absolute value of the magnitude of coefficients. It allows to actually reduce a coefficient to zero, in other words, we can eliminate variables (Goulding, 2022)
- Use also nfolds=10 which means randomly divide a dataset into k groups (which
 is folds) of roughly equal size and choose one of the groups and keep it. To do
 cross-validation

The Best Lambda

	-			
log(λ\$min) ①	-1.416374	λ\$min	0.242592	
log(λ\$1se) ②	0.6303681	λ\$1se	1.878302	

- 1. X-axis is Log(lambda) and Y-axis is Mean-Squared Error(MSE). X-axis is not the lambda itself which has to be converted from log(lambda) to lambda
- 2. On the top, there are many numbers which means how many variables used while extracting log (lambda).
- 3. The gray lines in each red dot is confident interval, and red dot represents the loss metric made through the cross-validation.
- 4. Left dot line (1) represents the minimum value of Lambda, and right dot line (2) is Lambda.1se which is maximum value within one standard error of the minimum. In other words, Lambda.1se is one standard error away from the minimum value of Lambda
- 5. Left dot line(1) has significance of 14. This model with minimum lambda has 14 non-zero coefficients in the model
- 6. And right dot line (2) has significance of 8. This model with minimum lambda has 8 non-zero coefficients in the model. This is the simplest model that perform as best model

PART 1-6. Fit a model with the best Lambda in LASSO

Model with Minimum of Lambda

moder with imminimum	01 = 4111844		
glmnet(x = train_x, y =	train_y, alpha = 1, laml	bda = cv.lasso\$lamb	oda.min)
	Df	%Dev	Lambda
1	14	50.31	0.2426
coef(model with min L	.ambda)		
18 x 1 sparse Matrix	of class "dgCMatrix"	λ\$min	0.242592
	s0		s0
(Intercept)	3.050567e+01	Outstate	6.933263e-04
PrivateYes	4.745639e+00	Room.Board	2.262846e-03
Apps	6.565080e-04	Books	-2.545600e-04
Accept		Personal	-1.651770e-03
Enroll	6.183751e-05	phD	1.019733e-02
Top10perc	2.047552e-02	Terminal	
Top25perc	1.771778e-01	S.F.Ratio	2.813225e-02
F.Undergrad		perc.alumni	2.657025e-01
P.Undergrad	-1.024760e-03	Expend	-1.819468e-04
•		•	

Interpretation:

- 1. These coefficient is calculated using Minimum of Lambda
- 2. The Accept, F.Undergrad and Terminal have '.' Which means these are eliminated variables in new model with the minimum Lambda
- 3. PrivateYes has 4.75 coefficient which is highest, but we have to think about the actual size of the variable itself
- 4. There are 14 (Df) variables with this minimum Lambda model, the model with min Lambda eliminate 'Accept', 'F.Undergrad' and 'Terminal', because is not significant or no enough regularization to kill one of them (Sergey, 2020)
- 5. The minimum of Lambda by cv.glmnet function with train sets was 0.242592

Model with one standard error of the minimum Lambda

glmnet(x = train_x, y = train_y, alpha = 1, lambda = cv.lasso\$lambda.1se)			
	Df	%Dev	Lambda
1	8	44.41	1.878

- 1. Below coefficient of model with one standard error of the minimum Lambda
- 2. There are 9 (Df) variables with this 1se of the minimum Lambda model
- 3. Minimum of Lambda by cv.glmnet function with train sets was 1.312 which is greater than minimum lambda

coef(model with 1se La	ambda)		
18 x 1 sparse Matrix	of class "dgCMatrix"	λ\$min	1.878302
	s0		s0
(Intercept)	3.660906e+01	Outstate	9.318131e-04
PrivateYes	1.674888e-01	Room.Board	1.439722e-03
Apps	i	Books	
Accept	•	Personal	-1.274488e-04
Enroll	•	phD	
Top10perc	2.730817e-02	Terminal	
Top25perc	1.401610e-01	S.F.Ratio	
F.Undergrad		perc.alumni	2.042931e-01
P.Undergrad	-5.260135e-05	Expend	

- 1. These coefficients are calculated using 1se of the minimum Lambda
- 2. The Accept, F.Undergrad and Terminal have '.' same as the minimum lambda model. Furthermore Apps, Enroll, Books phD, S.F.Ratio and Expend have '.' Which means these are eliminated variables in the model with the 1se of the minimum Lambda. There are more variables which is eliminated comparing with the minimum lambda model, above
- 3. The other coefficients are shrinking to 0

- 4. As you can see in above graph, the black line represents the coefficient of Private Yes. The coefficient of PrivateYes is getting smaller as Log Lambda (which is X-aixs) getting bigger
- 5. On the top, as the log Lambda get greater, the number of variables are getting smaller like 16, 14, 9, and 3
- 6. There are a few lines which are black, blue and pink takes quite a while to converge to 0 as Log Lambda increases

coef(model with ols)

18 x 1 sparse Matrix of class "dgCMatrix"			
	s0		s0
(Intercept)	26.6092487126	Outstate	0.0008044048
PrivateYes	6.0243476270	Room.Board	0.0025028823
Apps	0.0013312971	Books	-0.0013928227
Accept	-0.0014867628	Personal	-0.0017969009
Enroll	0.0050149877	phD	0.0350196994
Top10perc	-0.0143427758	Terminal	-0.0071864257
Top25perc	0.2005783857	S.F.Ratio	0.1234007155
F.Undergrad	-0.0005991068	perc.alumni	0.2624125308
P.Undergrad	-0.0011104587	Expend	-0.0003702202

Interpretation:

- 1. This is coefficient of model with ordinary least squared model without Lambda
- 2. Coefficients of this model is far from 0 comparing with other Lambda models. It is without penalty model

Determining the performance of the LASSO and Ridge model with RMSE

Root Mean Square error of each model		
	LASSO (L1)	Ridge (L2)
train.rmse (one standard error model)	12.53699 (-0.01468)	12.55167
test.rmse (one standard error model)	14.56093 (0.01299)	14.54794
ols.rmse	14.21157	14.21157

Interpretation:

- 1. Use one standard error model whose lambda is 1.878302 and log (Lambda) is 0.6303681 The RMSE with train set is 12.53699 and the RESE with test set is 14.56093
- 2. The RMSE with train set is little bit higher than test set, but the difference is not that big, so we can conclude that we don't have any overfitting going on here
- 3. The RMSE with ols model is 14.21157, which is not that different from others, therefore with Lambda 1se model, there is no overfitting

Which model perform better:

- In my opinion, LASSO (L1) regression performed better than Ridge (L2) regression, because LASSO have smaller variables whose number is 9, but the Root Mean Squared Error is smaller in train set (12.53699) and RMSE in test set is also similar to Ridge's
- 2. The model is simpler but the performance is almost same, so it's easy to interpret and easy to understand. Also, more likely to avoid multicollinearity and overfitting

PART 1-7. COMPARISON AND STEPWISE MODELING

Stepwise Modeling

step(Im(Grad.Rate~., data=C1), direction = 'both')
Im(formula = Grad.Rate ~ Private + Apps + Accept + Top25perc + P.Undergrad + Outstate + Room.Board + Personal + PhD + Terminal + perc.alumni + Expend, data = C1)

Residuals

M	in	1Q	Median	3Q	Max
-51.	449	-7.380	-0.367	7.378	51.207
Coeff	icients:				
LASSO	Stepwise	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	(Intercept)	32.7791997	3.3291914	9.846	< 2e-16 ***
PrivateYes	PrivateYes	3.5359337	1.6099868	2.196	0.028374 *
	Apps	0.0014322	0.0004092	3.500	0.000493 ***
Top10perc	Accept	-0.0009485	0.0006256	-1.516	0.129902
Top25perc	Top25perc	0.1627464	0.0321719	5.059	5.29e-07 ***
P.Undergrad	P.Undergrad	-0.0016014	0.0003611	-4.435	1.06e-05 ***
Outstate	Outstate	0.0010593	0.0002253	4.701	3.06e-06 ***
Room.Board	Room.Board	0.0017177	0.0005754	2.985	0.002925 **
Personal	Personal	-0.0016904	0.0007403	-2.283	0.022676 *
	PhD	0.1244548	0.0550710	2.260	0.024109 *
	Terminal	-0.0923458	0.0605889	-1.524	0.127889
perc.alumni	perc.alumni	0.2820839	0.0479949	5.877	6.23e-09 ***
-	Expend	-0.0004587	0.0001335	-3.436	0.000623 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.58 on 763 degrees of freedom

Multiple R-squared: 0.4664, Adjusted R-squared: 0.458

F-statistic: 55.58 on 12 and 763 DF, p-value: < 2.2e-16

- 1. The stepwise regression (or stepwise selection) consists of iteratively adding and removing predictors, in the predictive model, in order to find the subset of variables in the data set resulting in the best performing model, that is a model that lowers prediction error (STHDA, n.d.)
- The stepwise model has more variables than the LASSO model. LASSO model has 8 variables, but Stepwise model uses 12 variables to make fitted model. Since the step-by-step model repeatedly adds and removes variables, the model is created considering various factors

LASSO (better than Ridge) vs Stepwise Modeling

Determining the performance of the LASSO and Stepwise Modeling

Root Mean Square error of each model			
	LASSO (L1)	Stepwise Modeling	
train.rmse	12.53699	11.89416 (-0.64283)	
test.rmse	14.56093	13.72442 (-0.83651)	

Interpretation:

- 1. In my opinion Stepwise model is better than LASSO which is better than Ridge in this specific case. we can't simply say which model is always good, we need to see the details of model, data, question and outputs
- 2. RMSE: Root Mean Square Error is the measure of how well a regression line fits the data points. RMSE can also be construed as Standard Deviation in the residuals (vivekchaudhary90, 2022). Lower RMSE indicates better model
- 3. Looking at the table above, in the RMSE calculation, stepwise modeling showed a lower RMSE in both train and test data
- 4. LASSO model contains the Top10perc and Top25perc together. In the correlation matrix below, the two variables is one of the highly correlated variables which correlation is 0.89. The fact the model still keeps both may mean two things: either the model deems both important or there no enough regularization to kill one of them (Sergey, 2020)
- 5. I think the LASSO model deems both important. Anyway they are correlated, so it's better to not use both variables in one model

Correlation Matrix of numeric variables

VIF Values of Stepwise model

Interpretation:

- 1. For a given predictor (p), multicollinearity can assessed by computing a score called the variance inflation factor (or VIF), which measures how much the variance of a regression coefficient is inflated due to multicollinearity in the model (STHDA, n.d.)
- 2. The VIF values of stepwise model have bigger than 5 values, therefore, I have to manually delete the variables in my model
- 3. After I compare the AIC of possible models, I decide this model as best model

Manually made new model

Im(formula = Grad.Rate ~ Private + Apps + Top25perc + P.Undergrad + Outstate + Room.Board + Personal + perc.alumni + Expend, data = C1)

VIF Values of New model

ANSWER FOR THE QUESTION

2. (Ridge) Use the cv.glmnet function to estimate the lambda.min and lambda.1se values. Compare and discuss the values.

The Best Lambda

log(λ\$min) ①	1.025761	λ\$min	2.789219	
log(λ\$1se) ②	3.258571	λ\$1se	26.01235	

The minimum Lambda is 2.78219 whose log (Lambda) is 1.025761. Lambda.1se is one standard error of the minimum lambda. The lambda of 1se is 26.01235 whose log (Lambda) is 3.258571. The difference between two seems like huge. The performance of the model with both is not that different.

3. (Ridge) Plot the results from the cv.glmnet (Ridge) function provide an interpretation. What does this plot tell us?

X-axis is Log(lambda) and Y-axis is Mean-Squared Error(MSE). On the top, there are many '17's which means how many variables used while extracting log (lambda). Ridge regression cannot eliminate variables, so everything is same as 17. Left dot line represents the minimum value of Lambda, and right dot line is Lambda.1se which is maximum value within one standard error of the minimum.

4. (Ridge) Fit a Ridge regression model against the training set and report on the coefficients. Is there anything interesting?

On page 9, there are coefficient tables with minimum lambda and 1se lambda. After changing the minimum lambda to 1se.lambda, coefficients of almost every variable get closer to 0. What's interesting is that moving closer to 0 means that positive numbers get smaller, and negative numbers get bigger.

- 5. (Ridge) Determine the performance of the fit model against the training set by calculating the root mean square error (RMSE). sqrt(mean((actual predicted)^2))
- 6. (Ridge) Determine the performance of the fit model against the test set by calculating the root mean square error (RMSE). Is your model overfit?

Determining the performance of the Ridge model with RMSE

Root Mean Square error of each model	
train.rmse (one standard error model)	12.55167
test.rmse (one standard error model)	14.54794
ols.rmse	14.21157

The RMSE with train set is smaller than test set, but the difference is not that big,

so we can conclude that we don't have any overfitting going on here. The RMSE with ols model is 14.21157, therefore with Lambda 1se model is better than the ols model. There is no overfitting because the difference between each RMSE is not that huge.

7. (LASSO) Use the cv.glmnet function to estimate the lambda.min and lambda.1se values. Compare and discuss the values.

The Best Lambda

log(λ\$min) ①	-1.416374	λ\$min	0.242592	
$log(\lambda \$1se)$ (2)	0.6303681	λ\$1se	1.878302	

The minimum Lambda is 0.242592 whose log (Lambda) is -1.416374. Lambda.1se is one standard error of the minimum lambda. The lambda of 1se is 1.878302 whose log (Lambda) is 0.6303681. The difference between two seems also huge. The performance of the model with both is not that different. It seems that a larger lambda is not needed since we can eliminate the variable compared to the Ridge model.

8. (LASSO) Plot the results from the cv.glmnet function provide an interpretation. What does this plot tell us?

On the top, there are many numbers which means how many variables used while extracting log (lambda). Left dot line has significance of 14. This model with minimum

lambda has 14 non-zero coefficients in the model. And right dot line has significance of 8. This model with minimum lambda has 8 non-zero coefficients in the model. This is the simplest model that perform as best model.

9. (LASSO) Fit a LASSO regression model against the training set and report on the coefficients. Do any coefficients reduce to zero? If so, which ones?

On page 13 & 14, there are coefficient tables with minimum lambda and 1se lambda. There are 14 (Df) variables with this minimum Lambda model, the model with min Lambda eliminate 'Accept', 'F.Undergrad', and 'Terminal', because is not significant or no enough regularization to kill one of them (Sergey, 2020). In model with 1se lambda, 'Accept', 'F.Undergrad', and 'Terminal' have '.' Furthermore, Apps, Enroll, Books phD, S.F.Ratio and Expend are eliminated.

- 10. (LASSO) Determine the performance of the fit model against the training set by calculating the root mean square error (RMSE). sqrt(mean((actual predicted)^2))
- 11. (LASSO) Determine the performance of the fit model against the test set by calculating the root mean square error (RMSE). Is your model overfit?

Root Mean Square error of each model		
	LASSO (L1)	Ridge (L2)
train.rmse (one standard error model)	12.53699 (-0.01468)	12.55167
test.rmse (one standard error model)	14.56093 (0.01299)	14.54794
ols.rmse	14.21157	14.21157

As same as Ridge model, the RMSE with train set is little bit higher than test set, but the difference is not that big, so we can conclude that we don't have any overfitting going on here. The RMSE with ols model is 14.21157, therefore with Lambda 1se model with train set is better than the ols model. There is no overfitting because the difference between each RMSE is not that huge.

- 12. (LASSO) Which model performed better and why? Is that what you expected? LASSO (L1) regression performed better than Ridge (L2) regression, because LASSO have smaller variables whose number is 8, but the Root Mean Squared Error is smaller in train set (12.53699) and RMSE in test set is also similar to Ridge'. The model is simpler, but the performance is almost same, so it's easy to interpret and easy to understand. Also, more likely to avoid multicollinearity and overfitting.
- 13. (LASSO) Refer to the Intermediate Analytics Feature Selection R.pdf document for how to perform stepwise selection and then fit a model. Did this model perform better or as well as Ridge regression or LASSO? Which method do you prefer and why?

Root Mean Squa	re error of each model	
	LASSO (L1)	Stepwise Modeling
train.rmse	12.53699	11.89416 (-0.64283)
test.rmse	14.56093	13.72442 (-0.83651)

I think in this case, stepwise model is better than LASSO which is better than Ridge. In the RMSE calculation, stepwise modeling showed a lower RMSE in both train and test data. LASSO model contains the Top10perc and Top25perc together. The two variables are highly correlated variables which correlation is 0.89 in correlation matrix. The LASSO model deems both variable as important. Anyway they are correlated, so it's better to not use both variables in one model. But we can't simply say which model is always good, and we need to choose the model carefully in relation to the given data and what the business question is.

In this case the stepwise model have the VIF values which are bigger than 5 values, therefore, I have to manually delete the variables in my model. My final

model is the model eliminate accept which is highly correlated to Apps and also delete the PhD and Terminal refer to LASSO model.

CONCLUSION

In this project, I learned how to run and interpret LASSO and Ridge Regularization. Lasso regularization adds a penalty which is equal to the absolute value of the magnitude of coefficient. This eliminates the variables while making coefficients closer to zero. It helps finding best model which can avoid high levels of multicollinearity. Ridge Regularization add penalty which is equal to the square of the magnitude of coefficients. The biggest difference of two is Ridge cannot eliminate the variables while lambda bigger, because the coefficient will shrink to zero but will never equal zero. I analyzed cv.glmnet () and checked how several variables were used in regularization using lambda.

After comparing the stepwise method and regularization and looking at various cases on the google, I found that there is no one method that is always right. Depending on the data and the problem looking for, I need to decide which method to choose and also there is need to manually add or delete variables. In other words, I have to judge which method is more correct in specific situation. In this case, I used RMSE. However, rethought about what elements the model explains. I learned that I have to think about which factors should be considered. For the same performance, you should choose a simpler model.

REFERENCE

Goulding, Thomas. 2023. Lesson 4-1 — regularization. Retrieved from https://northeastern.instructure.com/courses/131212/pages/lesson-4-1-regularization?module item id=8227336

ZACH. (2020, November 11). Ridge regression in R (step-by-step). STATOLOGY. Retrieved from https://www.statology.org/ridge-regression-in-r/

ZACH. (2020, November 13). Lasso regression in R (step-by-step). STATOLOGY. Retrieved from https://www.statology.org/lasso-regression-in-r/

ZACH. (2020, November 4). An easy guide to K-Fold cross-validation. STATOLOGY. Retrieved from https://www.statology.org/k-fold-cross-validation/

STHDA. (n.d.). Cross-validation essentials in R. Retrieved from http://www.sthda.com/english/articles/38-regression-model-validation/157-cross-validation-essentials-in-r/

Pragati Baheti. (2023, February 3). Train test validation split: how to & best practices [2023]. V7. Retrieved from https://www.v7labs.com/blog/train-validation-test-set

Deepika Singh. (2019, May 17). Linear, Lasso, and Ridge regression with scikit-learn. PLURALSIGHT. Retrieved from https://www.pluralsight.com/guides/linear-lasso-ridge-regression-scikit-learn

Karolis Koncevicius. (2021, December 17). Ridge trace plot - interpretation. Cross Validated. Retrieved from https://stats.stackexchange.com/questions/557428/ridge-trace-plot-interpretation

Sergey Bushmanov. (2020, February 9). Lasso regression won't remove 2 features which are highly correlated. stackoverflow. Retrieved from https://stackoverflow.com/questions/60124199/lasso-regression-wont-remove-2-features-which-are-highly-correlated

STHDA. (n.d.). Stepwise regression essentials in R. Retrieved from http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/154-stepwise-regression-essentials-in-r/

Nizamuddin Siddiqui. (2020, October 17). How to calculate root mean square error for linear model in R. tutorialspoint. Retrieved from https://www.tutorialspoint.com/how-to-calculate-root-mean-square-error-for-linear-model-in-r

vivekchaudhary90. (2022, June 6). ML | mathematical explanation of RMSE and R-squared error. geeksforgeeks. Retrieved from https://www.geeksforgeeks.org/ml-mathematical-explanation-of-rmse-and-r-squared-error/

STHDA. (n.d.). Multicollinearity essentials and VIF in R. Retrieved from http://www.sthda.com/english/articles/39-regression-model-diagnostics/160-multicollinearity-essentials-and-vif-in-r/

STHDA. (n.d.). ggplot2 Quick correlation matrix heatmap - R software and data visualization. Retrieved from http://www.sthda.com/english/wiki/ggplot2-quick-correlation-matrix-heatmap-r-software-and-data-visualization

R-Codes

```
library(ISLR)
library(psych)
library(dplyr)
library(GGally)
library(glmnet)
library(Metrics)
library(scales)
library(reshape2)
library(car)
C1 <- College
headtail(C1, 5)
##########
# Split data isto train and test sets
##########
# Checking for NA values
complete.cases(C1)
which(!complete.cases(C1))
vis miss(C1)
sum(is.na(C1))
sum(is.null(C1))
# Checking for Duplication
duplicated(C1)
anyDuplicated(C1)
#####
#EDA
####
# descriptive analysis
summary(C1)
describe(C1)
corr <- select if(C1, is.numeric)</pre>
# correlation of half with Grad.Rate
corr1 <- corr[,c(1:8, 17)]
str(corr1)
ggpairs(corr1)
# correlation of another half with Grad.Rate
```

```
corr2 <- corr[ ,9:17]
str(corr2)
ggpairs(corr2)
# boxplot
boxplot(C1$Grad.Rate, horizontal=TRUE)
text(x=fivenum(C1$Grad.Rate),labels=fivenum(C1$Grad.Rate),y=1.35)
fivenum(C1$Grad.Rate)
Grad.out <- filter(C1, Grad.Rate > 100)
Grad.out
C1 <- C1[!(row.names(C1) %in% c("Cazenovia College")),]
str(C1)
##########
# Split data isto train and test sets
##########
set.seed(123)
trainIndex <- sample(x=nrow(C1), size= nrow(C1)*0.7)
train <- C1[trainIndex,]
test <- C1[-trainIndex,]
train x <- model.matrix(Grad.Rate ~., train)[,-1]
test x <- model.matrix(Grad.Rate ~., test)[,-1]
str(train x)
str(test x)
train y <- train$Grad.Rate
test y <- test$Grad.Rate
# Find best values of lamda in Ridge
# Find the best lambda using cross-validation
set.seed(123)
cv.ridge <- cv.glmnet(train x, train y, nfolds = 10, alpha=0)
plot(cv.ridge)
summary(cv.ridge)
ridge2 <- glmnet(train_x, train_y, nfolds = 10, alpha=0)
plot(ridge2, xvar = "lambda")
# optimal value of lambda; minimizes the prediction error
# lambda min - minimizes out of sample loss
```

```
# labmda 1se - largest value of lambda within 1 standard error of lambda min
log(cv.ridge$lambda.min)
log(cv.ridge$lambda.1se)
cv.ridge$lambda.min
cv.ridge$lambda.1se
###########
# Fit models based on lambda
# Fit the finla model on the training data using lambda.min
# alpha = 1 for Lasso (L2)
# alpha = 0 for Ridge (L1)
ridge.model.min <- glmnet(train_x, train_y, alpha = 0, lambda = cv.ridge$lambda.min)
ridge.model.min
# Display regression coefficients
coef(ridge.model.min)
# Fit the final model on the training data using lambda.1se
ridge.model.1se <- glmnet(train x, train y, alpha =0, lambda = cv.ridge$lambda.1se)
ridge.model.1se
# Display regression coefficients
coef(ridge.model.1se)
# Display coefficients of ols model with no regularization
ols <- Im(Grad.Rate~., data = train)
coef(ols)
# View RMSE of full model
preds.ols <- predict(ols, new = test)</pre>
rmse(test$Grad.Rate, preds.ols)
head(preds.ols,10)
#Train set predictions
# Make predictions on the test data using lambda.min
preds.train.ridge <- predict(ridge.model.1se, newx = train x)</pre>
train.rmse.ridge <- rmse(train y, preds.train.ridge)</pre>
head(preds.train.ridge,10)
```

```
# Test set predictions
preds.test.ridge <- predict(ridge.model.1se, newx = test x)</pre>
test.rmse.ridge <- rmse(test y, preds.test.ridge)
head(preds.test.ridge,10)
# Compare rmse values
train.rmse.ridge
test.rmse.ridge
# Find the best lambda using cross-validation
set.seed(123)
cv.lasso <- cv.glmnet(train x, train y, nfolds = 10, alpha=1)
plot(cv.lasso)
# optimal value of lambda; minimizes the prediction error
# lambda min - minimizes out of sample loss
# labmda 1se - largest value of lambda within 1 standard error of lambda min
log(cv.lasso$lambda.min)
log(cv.lasso$lambda.1se)
cv.lasso$lambda.min
cv.lasso$lambda.1se
############
# Fit models based on lambda
###########
# Fit the finla model on the training data using lambda.min
# alpha = 1 for Lasso (L2)
# alpha = 0 for Ridge (L1)
model.min <- glmnet(train x, train y, alpha = 1, lambda = cv.lasso$lambda.min)
model.min
# Display regression coefficients
coef(model.min)
# Fit the final model on the training data using lambda.1se
model.1se \leftarrow glmnet(train x, train y, alpha =1, lambda = cv.lasso$lambda.1se)
model.1se
# Display regression coefficients
```

```
coef(model.1se)
# Plot a Lambda graph
lasso2 <- glmnet(train x, train y, nfolds = 10, alpha=1)
summary(lasso2)
plot(lasso2, xvar = "lambda")
# Display coefficients of ols model with no regularization
ols <- Im(Grad.Rate~., data = train)
coef(ols)
# View RMSE of full model
preds.ols <- predict(ols, new = test)</pre>
rmse(test$Grad.Rate, preds.ols)
###############################
#Train set predictions
#############################
# Make predictions on the test data using lambda.min
preds.train <- predict(model.1se, newx = train x)</pre>
train.rmse <- rmse(train y, preds.train)</pre>
###############################
# Test set predictions
preds.test <- predict(model.1se, newx = test x)</pre>
test.rmse <- rmse(test y, preds.test)
# Compare rmse values
train.rmse
test.rmse
# Stepwise selection
step(Im(Grad.Rate~., data=C1), direction = 'both')
model step <- step(Im(Grad.Rate~., data=C1), direction = 'both')
summary(model step)
#Correlation heatmap Continuous
cordata3 <- select if(C1, is.numeric)</pre>
aR <- round(cor(cordata3), 2)
cor(cordata3)
aR <- round(cor(cordata3), 2)
get upper tri<-function(aR){
 aR[lower.tri(aR)] <- NA
```

```
return(aR)}
upper tri <- get upper tri(aR)
upper tri
melted cormat <- melt(upper_tri, na.rm = TRUE)</pre>
melted cormat
reorder cormat <- function(aR){
 # Use correlation between variables as distance
 dd <- as.dist((1-cormat)/2)
 hc <- hclust(dd)
 aR <-aR[hc$order, hc$order]}
aR <- reorder cormat(aR)
aR
upper_tri <- get_upper_tri(aR)
melted cormat <- melt(upper tri, na.rm = TRUE)
#NEW
ggheatmap <- ggplot(melted cormat, aes(Var2, Var1, fill = value))+
 geom tile(color = "white")+
 scale fill gradient2(low = "blue", high = "red", mid = "white",
              midpoint = 0, limit = c(-1,1), space = "Lab",
              name="Rating\nCorrelation") +
 theme minimal()+ # minimal theme
 theme(axis.text.x = element text(angle = 45, vjust = 1,
                      size = 12, hjust = 1))+
 coord fixed()
ggheatmap +
 geom_text(aes(Var2, Var1, label = value), color = "black", size = 4) +
 theme(
  axis.title.x = element blank(),
  axis.title.y = element blank(),
  panel.grid.major = element blank(),
  panel.border = element blank(),
  panel.background = element blank(),
  axis.ticks = element blank(),
  legend.justification = c(1, 0),
  legend.position = c(0.6, 0.7),
  legend.direction = "horizontal")+
 guides(fill = guide colorbar(barwidth = 7, barheight = 1,
                   title.position = "top", title.hjust = 0.5))
```

View RMSE of full model with test

```
preds.step <- predict(model step, new = train)</pre>
rmse(train$Grad.Rate, preds.step)
# View RMSE of full model with test
preds.step <- predict(model step, new = test)</pre>
rmse(test$Grad.Rate, preds.step)
# Finding RMSE of step model
sqrt(mean(model step$residuals^2))
# checking vif
vif step <- vif(model step)</pre>
vif step
opar <- par(no.readonly = TRUE)
par(fig=c(0.2, 1, 0, 1))
barplot(vif step, main = "VIF Values", horiz = TRUE, las=2, cex.names=0.8, xlim=c(0,5), col =
"steelblue")
#add vertical line at 5
abline(v = 5, lwd = 3, lty = 2)
# new model
new.model <- Im(formula = Grad.Rate ~ Private + Apps + Top25perc + P.Undergrad + Outstate
+ Room.Board + Personal + perc.alumni + Expend, data = C1)
AIC(new.model)
AIC(model step)
# checking vif
vif new <- vif(new.model)
vif new
opar <- par(no.readonly = TRUE)
par(fig=c(0.2, 1, 0, 1))
barplot(vif new, main = "VIF Values", horiz = TRUE, las=2, cex.names=0.8, xlim=c(0,5), col =
"steelblue")
#add vertical line at 5
abline(v = 5, lwd = 3, lty = 2)
str(train x)
train x <- as.data.frame(train x)
colnames(train x)[which(names(train x) == "PrivateYes")] <- "Private"
```