Intro to Communication System EE140 Fall 2020

Name: 陈 稼 霖 Assignment 10

Due time: 10:15, Dec 18, 2020 (Friday) Student ID: 45875852 Grade .

1 411, 2020	Due time: 10.19, Dec 10, 2020 (111day))
• -	onal subspace) Score: For any subsets $v \in \mathcal{V}$ that are orthogonal to all $w \in \mathcal{S}$.	b space $\mathcal S$ of an inner product space $\mathcal V,$
(a) Show that S^{\perp} is a sub-	space of \mathcal{V} .	
(b) Assuming that \mathcal{S} is fin where $u_{ \mathcal{S}} \in \mathcal{S}^{\perp}$.	te-dimensional, show that any $oldsymbol{u} \in \mathcal{V}$ can be uniq	quely decomposed into $oldsymbol{u} = oldsymbol{u}_{ \mathcal{S}} + oldsymbol{u}_{\perp\mathcal{S}},$
-	ite-dimensional, show that \mathcal{V} has an orthonormal the remaining basis vector form a basis for \mathcal{S}^{\perp} .	basis where some of the basis vectors
Solution: (a)		
(b)		
(c)		
•	formal expansion) Score: Expanset of functions $\{ \operatorname{sinc}(t-n); -\infty < n < \infty \}$.	and the function $\operatorname{sinc}(3t/2)$ as an or-
Solution:		
where U_k is the transm $f_Z(z) = \sqrt{1/2\pi} \exp(-iz)$	itted 4-PAM signal at time k . Let Z_k be indepen $z^2/2$). Assume that the receiver chooses the signal tection rule minimizes P_e for equiprobable signal that $U_k \neq \tilde{U}_k$.	ident of U_k and Gaussian with density and \tilde{U}_k closest to V_k . (It is shown in
point) at the point wh	erivative of P_e with respect to the third signal pere a_3 is equal to its value $d/2$ in standard 4-PAI t. This does not require any calculation.]	
Solution: (a)		
(b)		
Problem 4 (6.4, Nyquist	a) Score: Suppose that the PAM m	nodulated baseband waveform $u(t) =$

 $\sum_{k=-\infty}^{\infty} u_k p(t-kT)$ is received. That is, u(t) is known, T is known, and p(t) is known. We want to determine the signals $\{u_k\}$ from u(t). Assume only linear operations can be used. That is, we wish to find some waveform $d_k(t)$ for each integer k such that $\int_{-\infty}^{\infty} u(t)d_k(t) dt = u_k$.

- (a) What properties must be satisfied by $d_k(t)$ such that the above equation is satisfied no matter what values are taken by the other signals. $\dots, u_{k-2}, u_{k-1}, u_{k+1}, u_{k+2}, \dots$? These properties should take the from of constrains on the inner products $\langle p(t-kT), d_j(t) \rangle$. Do not worry about convergence, interchange of limits, etc.
- (b) Suppose you find a function $d_0(t)$ that satisfies these constrains for k=0. Shown that, for each k, a function $d_k(t)$ satisfying these constrains can be found simply in terms of $d_0(t)$.

(c) What is the relationship between $d_0(t)$ and a function q(t) that avoids intersymbol interference in the approach taken in Section 6.3 (i.e. a function q(t) such that p(t) * q(t) is ideal Nyquist)?

You have shown that the filter/sample approach in Section 6.3 is no less general than the arbitrary linear operation approach here. Note that, in the absence of noise and with a known constellation, it must be possible to retrieve the signals from the waveform using nonlinear operations even in the presence of intersymbol interference.

Solution: (a)

(b)

(c)

Problem 5 (6.5, Nyquist) Score: _____. Let v(t) be a continuous \mathcal{L}_2 waveform with v(0) = 1 and define $g(t) = v(t) \operatorname{sinc}(t/T)$.

- (a) Show that g(t) is ideal Nyquist with interval T.
- (b) Find $\hat{g}(f)$ as a function of $\hat{v}(f)$.
- (c) Give a direct demonstration that $\hat{g}(f)$ satisfies the Nyquist criterion.
- (d) If v(t) is baseband-limited to B_b , what is g(t) baseband-limited to?

Solution: (a)

- (b)
- (c)
- (d)

Problem 6 (6.6, Nyquist) Score: _____. Consider a PAM baseband system in which the modulator is defined by a signal interval T and a waveform p(t), the channel is defined by a filter h(t), and the receiver is defined by a filter q(t) which is sampled at T-spaced intervals. The received waveform, after the receiver filter q(t), is then given by $r(t) = \sum_k u_k g(t - kT)$, where g(t) = p(t) * h(t) * q(t).

- (a) What properties must g(t) have so that $r(kT) = u_k$ for all k and for all choices of input $\{u_k\}$? What is the Nyquist criterion for $\hat{g}(f)$?
- (b) Now assume that T = 1/2 and that p(t), h(t), q(t) and all their Fourier transforms are restricted to be real. Assume further that $\hat{p}(f)$ and $\hat{h}(f)$ are specified by 1, i.e. by

$$\hat{p}(f) = \begin{cases} 1 & |f| \le 0.5; \\ 1.5 - t & 0.5 < |f| \le 1.5; \\ 0 & |f| > 1.5; \end{cases} \qquad \hat{h}(f) = \begin{cases} 1 & |f| \le 0.75; \\ 0 & 0.75 < |f| \le 1; \\ 1 & 1 < |f| \le 1.25; \\ 0 & |f| > 1.25. \end{cases}$$

Is it possible to choose a receiver filter transform $\hat{q}(f)$ so that there is no intersymbol interference? If so, give such a $\hat{q}(f)$ and indicate the regions in which your solution is nonunique.

Figure 1:

- (c) Redo part (b) with the modification that now $\hat{h}(f) = 1$ for $|f| \le 0.75$ and $\hat{h}(f) = 0$ for |f| > 0.75.
- (d) Explain the conditions on $\hat{p}(f)\hat{h}(f)$ under which intersymbol interference can be avoided by proper choice of $\hat{q}(f)$. (You may assume, as above, that $\hat{p}(f)$, $\hat{h}(f)$, p(t), and h(t) are all real.)

Solution: (a)

- (b)
- (c)
- (d)

Problem 7 (6.16, Passband expansion) Score: ______. Prove Theorem 6.6.1. [Hint. First show that the set of functions $\{\hat{\psi}_{k,1}(f)\}$ and $\{\hat{\psi}_{k,2}(f)\}$ are orthogonal with energy 2 by comparing the integral over negative frequencies with that over positive frequencies.] Indicate explicitly why you need $f_c > B/2$.

Theorem 6.6.1 Let $\{\theta_k(t): k \in \mathbb{Z}\}$ be an orthonormal set limited to the frequency band [-B/2, B/2]. Let f_e be greater than B/2, and for each $k \in \mathbb{Z}$ let

$$\psi_{k,1}(t) = Re \left[2\theta_k(t)e^{2\pi i f_c t} \right],$$

$$\psi_{k,2}(t) = Im \left[-2\theta_k(t)e^{2\pi i f_c t} \right].$$

The set $\{\psi_{k,j}; k \in \mathbb{Z}, j \in \{1,2\}\}$ is an orthogonal set of functions, each with energy 2. Furthermore if $u(f) = \sum_k u_k \theta_k(t)$, then the corresponding passband function $x(t) = 2 \operatorname{Re} \left[u(t) e^{2\pi i f_c t}\right]$ is given by

$$x(t) = \sum_{k} Re[u_k]\psi_{k,1}(t) + Im[u_k]\psi_{k,2}(t).$$

Solution: