PENGANTAR STATISTIK Ukuran Gejala Pusat

I Ketut Putu Suniantara

Ukuran Pemusatan (Nilai Sentral)

- Sebuah nilai yang dapat mewakili sekelompok atau serangkaian data statistik disebut ukuran sentral.
- Beberapa ukuran nilai sentral yaitu: rata rata, median dan modus.
- Perhitungan ukuran ini dilihat berdasarkan bentuk datanya, Apakah data tunggal atau data kelompok?

A. Rata – Rata Hitung

1. Rata – rata hitung data Tunggal:

rata - rata hitung sedeharna:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Contoh

diberikan data:

$$x1 = 4$$
, $x2 = 3$, $x3 = 7$, $x4 = 6$, dan $x5 = 6$

Tentukan: Rata-rata Hitungnya!

Rata-rata hitungnya:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} = \frac{4 + 3 + 7 + 5 + 6}{5} = 5$$

A. Rata – Rata Hitung

Rata - Rata Berbobot diberikan rumus:

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

Diberikan data nilai mahasiswa sebagai berikat:

Nilai (x_i)	Banyaknya Siswa (Frekuensi: f_i)
6	12
7	15
8	13
Jumlah	40

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i} = \frac{12(6) + 15(7) + 13(8)}{12 + 15 + 13} = 7,025$$

A. Rata - Rata Hitung

2. Rata – rata Data Kelompok, dilakukan apabila jumlah datanya n sangat banyak.

Perhatikan tabel berikut ini:

No	Kelas Interval	fi	Tanda Kelas	$f_i x_i$
NO		Ji	Tallua Kelas	
1	b_1 - a_1	f_1	x_{\uparrow}	$f_1 x_1$
2	b_2 - a_2	f_2	x_2	$f_2 x_2$
3	b_3 - a_3	f_3	х3	$f_3 x_3$
	•	•	•	•
	•	•	•	•
	•	•	•	•
k	b_k - a_k	f_k	x_k	$f_k x_k$

Rata – rata data kelompok dapat dihitung melalui dua cara yaitu:

1.Tanda kelas

$$x_i = \frac{1}{2} \left(b_i + a_i \right)$$

2.Nilai duga (AM)

$$\overline{x} = AM + \left(\frac{\sum_{i=1}^{n} f_{i} d_{i}}{\sum_{i=1}^{n} f_{i}}\right) p$$

Contoh: Rata – Rata Hitung Data Kelompok

Diketahui data Nilai UAS Statistik Semester 5 disuatu kampus X:

Nilai	f_i
31 – 40	1
41 - 50	2
51 – 60	5
61 - 70	15
71 - 80	25
81 – 90	20
91 – 100	12

Tentukan rata-rata hitung data di atas!

Contoh: rata – rata hitung data kelompok

Penyelesaian:

- 1. Menggunakan Metode Tanda Kelas
 - Tentukan tanda kelas masing-masing interval <u>Catatan</u>: Cara sederhana menentukan x_i adalah dengan membagi dua jumlah batas bawah dan batas atas

,			
Nilai	Batas Bawah	Batas Atas	x_i
31 – 40	31 - 0.5 = 30.5	40 + 0.5 = 40.5	(30,5 + 40,5)/2 = 35,5
41 – 50	41 - 0.5 = 40.5	50 + 0.5 = 50.5	(30,5 + 40,5)/2 = 45,5
51 – 60	51 - 0.5 = 50.5	60 + 0.5 = 60.5	(30,5 + 40,5)/2 = 55,5
61 - 70	61 - 0.5 = 60.5	70 + 0.5 = 70.5	(30,5 + 40,5)/2 = 65,5
71 - 80	71 - 0.5 = 70.5	80 + 0.5 = 80.5	(30,5 + 40,5)/2 = 75,5
81 – 90	81 - 0.5 = 80.5	90 + 0.5 = 90.5	(30,5 + 40,5)/2 = 85,5
91 – 100	91 - 0.5 = 90.5	100 + 0.5 = 100.5	(30,5 + 40,5)/2 = 95,5

Contoh: rata – rata hitung data kelompok

 Hitung jumlah frekuensi dan jumlah hasil kali frekuensi dengan tanda kelas masing-masing interval

Nilai	f_{i}	x_i	$f_i x_i$
31 - 40	1	35,5	35,5
41 - 50	2	45,5	91,0
51 – 60	5	55,5	277,5
61 - 70	15	65,5	982,5
71 - 80	25	75,5	1887,5
81 – 90	20	85,5	1710,0
91 – 100	12	95,5	1146,0
Jumlah	80		6130,0

Rata – rata hitung nilai UAS tersebut adalah:

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i} = \frac{6130}{80} = 76,625$$

Contoh: rata – rata hitung data kelompok

2. Dengan menggunakan nilai duga (AM)

Nilai	Frekuensi (fi)	Nilai Tengah	Skala (di)	fi x di
31 - 40	1	35.5	η	ή
41 - 50	2	45.5	-2	-4
51 - 60	5	55.5	-1	5
61 - 70	15	65.5	0	0
71 - 80	25	75.5	1	25
81 - 90	20	85.5	2	40
91 - 100	12	95.5	3	36
Jumlah	80			89

$$n = 80$$
, panjang kelas $p = 10$
 $AM = 65,5$

$$\overline{x} = AM + \left(\frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}\right) p$$

$$= 65,5 + \left(\frac{89}{80}\right) 10 = 76,625$$

B. MODUS

- · Modus juga disebut sebagai gejala.
- · Nilai modus dalam suatu himpunan bilangan tidak selalu muncul.
- · Nilai Modus dilambangkam dengan Mo

Contoh:

1. Diberikan data: 9, 10, 5, 9, 9, 7, 8, 6, 10 dan 11, tentukan modusnya!

Modusnya adalah 9 (tiga data bernilai sama)

2. Tabel Berat Badan siswa kelas VI SD

Data	F
20	81
22	56
25	98
29	75
30	72

Dengan frekuensi yang paling tinggi, maka modusnya adalah 25.

B. MODUS

· Modus data berkelompok dapat dihitung dengan rumus sebagai berikut:

$$Mo = Bb + \left(\frac{d_1}{d_1 + d_2}\right) \times p$$

dengan

- Bb = batas bawah kelas interval yang frekuensinya paling banyak
- d1 = selisih frekuensi interval kelas modus dengan frekuensi interval kelas sebelum kelas Mo
- d2 = selisih frekuensi interval kelas modus dengan frekuensi interval kelas setelah kelas Mo
- p = panjang kelas interval

Contoh - Modus

Contoh

Tabel Nilai Biologi kelas VII

Nilai	f_i
31 – 40	1
41 – 50	2
51 – 60	5
61 – 70	15
71 – 80	25
81 – 90	10
91 – 100	12

Maka untuk menetukan modusnya kita ikuti langkah berikut :

1. modus berada pada interval 71-80 dengan melihat nilai f_i yang paling besar yaitu 25

$$Mo = Bb + \left[\frac{d_1}{d_1 + d_2} \right] \times p$$

$$= 70.5 + \left(\frac{25 - 15}{(25 - 15) + (25 - 10)}\right)10 = 70.5 + \left(\frac{10}{10 + 15}\right)10 = 70.5 + 4 = 74.5$$

Jadi modusnya adalah 74,5

C. MEDIAN

1. Median data tunggal

Median dari suatu himpunan bilangan yang disusun berdasarkan urutan besarnya (disebut dengan array) adalah nilai tengah atau mean aritmetik dari dua nilai tengah.

Jika jumlah datanya (n) ganjil, rumusnya adalah:

Me = data ke
$$-\left(\frac{n+1}{2}\right)$$

Contoh:

diberikan data: 79, 82, 86, 92, 93

Me = data ke
$$-\left(\frac{n+1}{2}\right)$$
 = data ke $-\left(\frac{5+1}{2}\right)$ = data ke -3 = 86

C. Median

1. Median data tunggal

Jika jumlah datanya (n) genap, rumusnya adalah:

Me =
$$\frac{\text{data ke } - \left(\frac{n}{2}\right) + \text{data ke } - \left(\left(\frac{n}{2}\right) + 1\right)}{2}$$

Contoh:

diberikan data: 79, 82, 86, 92, 93, 100

Me =
$$\frac{\text{data ke } - 3 + \text{data ke } - 4}{2} = \frac{86 + 92}{2} = 89$$

C. Median

· Menghitung median data Kelompok

Sedangkan untuk data terkelompok, rumus median sebagai berikut :

$$Me = Bb + \left(\left(\frac{\frac{n}{2} - F}{f_m} \right) \times p \right)$$

Bb = batas bawah kelas interval yang memuat median

 f_m = frekuensi kelas interval yang mengandung Me

F = frekuensi kumulatif sebelum kelas interval yang mengandung Me

p = panjang kelas interval

Contoh. Perhitungan Median Data Kelompok

Contoh

Tentukan median dari tabel berikut:

Nilai	f_i
31 - 40	1
41 - 50	2
51 - 60	5
61 - 70	15
71 - 80	25
81 - 90	20
91 - 100	12
Jumlah	80

Penyelesaian - Median

Untuk mengetahui median dari tabel tersebut, ikutilah langkah berikut:

1. Carilah nilai Frekuansi Kumulatif f_k

(baca kembai materi Frekuensi kumulatif kurang dari)

sehingga didapat tabel berikut

Nilai	f_i	f_k
31 – 40	1	1
41 - 50	2	3
51 - 60	5	8
61 - 70	15	23
71 - 80	25	48
81 – 90	20	68
91 – 100	12	80
Jumlah	80	

2. dapat ditentukan interval kelas median dengan menghitung frekensi kumulatif kurang dari hingga mendekati data ke $\left(\frac{n}{2}\right) = \frac{80}{2} = 40$

nilai frekuensi relatifnya adalah 40, terdapat pada interval 71-80

Penyelesaian - Median

3. Dari perhitungan frekuensi kumulatif kurang dari, diperoleh

$$Bb = 71 - 0.5 = 70.5$$
; $F = 23$; dan $fm = 25$

4. Median dari data tersebut adalah

$$Me = Bb + \left(\left(\frac{\frac{n}{2} - F}{f_m} \right) \times p \right) = 70.5 + \left(\frac{40 - 23}{25} \right) \times 10$$

= 70,5 +
$$\left(\frac{17}{25}\right)$$
 x 10 = 70,5 + $\left(\frac{17}{25}\right)$ x 10 = 70,5 + 6,8 = 77,3

Ukuran Lokasi

Pada prinsipnya median merupakan nilai yang terletak ditengah dari baris nilai yang telah diurutkan letaknya dari yang bernilai kecil ke yang bernilai besar sehingga membagi dua sama banyak.

Lalu apa bedanya Median dengan Kuartil, Desil dan Presentil?

Kalau median dapat dikatakan sebagai ukuran perduaan maka kuartil dapat dikatakan sebagai ukuran perempatan. Artinya nilai-nilai kuartil akan membagi sama banyak terhadap banyak data.

Jadi Kuartil adalah ukuran yang membagi sejumlah data terurut menjadi 4 bagian sama besar.

Ukuran Lokasi - Kuartil

Perhatikan Gambar berikut:

Jika n merupakan urutan bilangan, maka terdapat 3 jenis kuartil yaitu kuartil pertama (K_1) atau kuartil bawah, kuartil kedua (K_2) atau kuartil tengah, dan kuartil ketiga (K_3) atau kuartil atas

Ukuran Lokasi - Kuatil

$$K_i = \text{nilai ke-} \frac{i(n+1)}{4}, i = 1,2,3$$

Contoh:

Berikut ini adalah data berat badan dari 13 siswa kelas VII dalam kilogram, yaitu 40, 30, 50, 65, 45, 55, 70, 60, 80, 35, 85, 95, 100. Cari nilai K_1 , K_2 , dan K_3 .

Jawab:

Langkah pertama adalah mengurutkan data terebih dahulu:

 $X_1=30$, $X_2=35$, $X_3=40$, $X_4=45$, $X_5=50$, $X_6=55$, $X_7=60$, $X_8=65$, $X_9=70$, $X_{10}=80$, $X_{11}=85$, $X_{12}=95$, $X_{13}=100$.

Ukuran Lokasi - Kuartil

Kemudian mencari keberadaan kuartil dengan rumus $K_1 = \text{nilai ke} \ \frac{i(n+1)}{4}$

$$K_1 = \text{nilai ke } \frac{1(13+1)}{4}$$

 K_1 = nilai ke-3½ (nilai yang ke-3½, berarti rata-rata dari X_3 dan X_4)

Jadi:
$$K_1 = \frac{1}{2}(X_3 + X_4)$$

= $\frac{1}{2}(40 + 45)$
= 42,5

Ukuran Lokasi – Kuartil

Kemudian langkah yang sama dilakuakan untuk mencari K_2 dan K_3 2 (13 \pm 1)

$$K_2 = \text{nilai ke } \frac{2(13+1)}{4}$$

 K_2 = nilai ke-7, nilai X_7

$$K_2 = X_7 = 60$$

$$K_3 = \text{nilai ke } \frac{3(13+1)}{4}$$

 K_3 = nilai ke-10½ (nilai yang ke-10½) berarti rata-rata dari X_{10} dan X_{11}

 $K_3 = \frac{1}{2}(X_{10} + X_{11})$

 $K_3 = \frac{1}{2}(80 + 85)$

K₃ = 82,5 (nilai kuartil tidak perlu sesuai dengan nilai data yang asli)

Ukuran Lokasi – Desil

Konsep desil sebenarnya hampir sama dengan median dan kuartil. Jika kumpulan data dibagi menjadi 10 bagian yang sama banyak maka tiap bagian disebut persepuluhan atau disebut desil.

Desil adalah ukuran yang membagi sejumlah data terurut menjadi 10 bagian sama besar.

Rumus desil adalah:

$$D_i$$
 = nilai ke $-\frac{i(n+1)}{10}$, $i = 1,2,3,...9$

Contoh - Desil

Contoh

Jika diberikan data sebagai berikut: 2, 3, 3, 5, 7, 8, 8, 9, 10, maka nilai D5 adalah

Jawab

Karena data sudah terurut dengan nilai n adalah 9, maka kita tinggal menggunakan rumus untuk menyelesaikan soal tersebut.

$$D_5 = \text{nilai ke } -\frac{5(9+1)}{10}, i = 1,2,3,...9$$

 D_5 = nilai ke 5

 $D_5 = 7$

Ukuran Lokasi - Persentil

Kita lanjutkan bahasan kita mengenai Persentil. Persentil merupakan ukuran lokasi yang paling halus karena pembagiannya 1s/d 99.

Persentil adalah ukuran yang membagi sejumlah data terurut menjadi 100 bagian sama besar.

Rumus Persentil adalah:

$$P_i$$
 = nilai ke $-\frac{i(n+1)}{100}$, $i = 1,2,3,...99$

Contoh - Persentil

Contoh

Jika diberikan data sebagai berikut: 2, 3, 3, 5, 7, 8, 8, 9, 10, maka nilai P50 adalah ?

Karena datanya sudah terurut dengan nilai n= 9 maka dengan menggunakan rumus

$$P_i$$
 = nilai ke $-\frac{i(n+1)}{100}$, $i = 1,2,3,...99$

$$P_{50}$$
= nilai ke $-\frac{50 (9 + 1)}{100}$, $i = 1,2,3,...99$

$$P_{50}$$
= nilai ke - 5

$$P_{50} = 7$$

Ukuran Lokasi - dengan data kelompok

1. Kuartil

Rumus Kuartil untuk data terkelompok adalah:

$$K_i = Bb_{ki} + \left(p \times \left(\frac{\frac{i}{4}n - F_{ki}}{f_{ki}}\right)\right)$$

Dengan

 Bb_{ki} = batas bawah kelas kuartil

 F_{ki} = Frekuensi kumulatif sebelum kelas kuartil

 f_{ki} = frekuensi kelas kuartil

Ukuran Lokasi – data Kelompok

2. Desil

Rumus Desil untuk data terkelompok adalah

$$D_{i} = Bb_{Di} + \left(p \times \left(\frac{\frac{i}{10}n - F_{di}}{f_{Di}}\right)\right)$$

Dengan

 Bb_{Di} = batas bawah kelas desil

 F_{Di} = Frekuensi kumulatif sebelum kelas desil

 f_{Di} = frekuensi kelas desil

Ukuran Lokasi – data Kelompok

3. Persentil

Rumus Persentil untuk data terkelompok adalah:

$$P_{i} = Bb_{Pi} + \left(p \times \left(\frac{\frac{i}{100}n - F_{pi}}{f_{Pi}}\right)\right)$$

Dengan

 Bb_{Pi} = batas bawah kelas persentil

 F_{Pi} = Frekuensi kumulatif sebelum kelas persentil

 f_{Pi} = frekuensi kelas persentil

Contoh. Ukuran Lokasi – Data Kelompok

Perhatikan Kembali contoh sebelumnya tentang nilai UAS statistik

Nilai	Frekuensi (fi)	Frekuensi Komulatif
31 - 40	1	1
41 - 50	2	3
51 - 60	5	8
61 - 70	15	23
71 - 80	25	48
81 - 90	20	68
91 - 100	12	80
Jumlah	80	

Tentukan nilai K_1 dan $D_5!$ Letak K_1 = data ke-(1/4(80)) = data ke-20 Letak D_5 = data ke-(5/10(80)) = data ke-40

Jadi Nilainya Menjadi:

$$K_{1} = 60,5 + \left(10x \left(\frac{\frac{1}{4}(80) - 8}{15}\right)\right) = 60,5 + \left(10x \frac{12}{15}\right)$$
$$= 60,5 + 8 = 68,5$$

$$D_5 = 70,5 + \left(10 \times \left(\frac{\frac{5}{10}(80) - 23}{25}\right)\right) = 70,5 + \left(10 \times \frac{17}{25}\right) = 70,5 + 6,8 = 77,3$$

Soal Latihan

Konsumsi Beras (Kg)	Banyak rumah tangga
5 - 24	4
25 - 44	7
45 - 64	12
65 - 84	22
85 - 104	15
105 - 124	7
125 - 144	5
Jumlah	75

Hitunglah rata – rata, median, modus, Kuartil, Desil 6 dan Percentil 60 dari data di atas, serta berikan interpretasinya

Suniantara.wordpress.com

Kategori: STIKOM: Statistik