Question Number	Scheme	Marks
9(a)	$\frac{x^3 - 2x^2 - 5x + 6}{x + 2} = x^2 - 4x + 3$	M1
(i)	x + 2 $x^{2} - 4x + 3 = (x - 3)(x - 1) \Rightarrow x = 1, 3$ so $a = 1$ *	M1(NB A1 on e- PEN) A1cso A1 (B1 on
(ii)	b = 3	e-PEN) (4)
(b)	Correct answers w/o working scores 0/4 $\frac{dy}{dx} = 3x^2 - 4x - 5 \text{when } x = 2, \frac{dy}{dx} = -1$ $x = 2, y = -4$	M1A1 B1
ALT	(y4) = -1(x-2) when $y = 0, x = -2$ *	M1A1 A1cso (6)
	x = 2, y = -4	B1
	$\frac{dy}{dx} = 3x^2 - 4x - 5 \text{when } x = 2, \frac{dy}{dx} = -1$	M1A1
	Grad of line from P to $(-2,0) = -1$ Same gradient so l passes through $(-2,0)$	M1A1 A1cso
(c)	Area = $\int_{-2}^{2} (x^3 - 2x^2 - 5x + 6) dx - \int_{-2}^{2} (-x - 2) dx = \int_{-2}^{2} (x^3 - 2x^2 - 4x + 8) dx$ = $\left[\frac{x^4}{4} - \frac{2x^3}{3} - 2x^2 + 8x \right]_{-2}^{2}$	M1 M1
	$\begin{bmatrix} 4 & 3 \\ = \left(4 - \frac{16}{3} - 8 + 16\right) - \left(4 + \frac{16}{3} - 8 - 16\right)$ $= \frac{64}{3}$	dM1 A1 (4)
	3	[14]
ALT	By splitting the area:	
	Area = $\int_{-2}^{1} (x^3 - 2x^2 - 5x + 6) dx + \Delta[(-2,0),(2,0), P] - \left \int_{1}^{2} (x^3 - 2x^2 - 5x + 6) dx \right $	M1
	Integrate curve equation (ignore limits) and attempt area of triangle by formula or integration	M1
	Substitute correct limits	dM1
	$=\frac{64}{3}$	A1
NB	No algebraic integration – only first M mark available	

Question Number	Scheme	Marks	
(a) (i)M1	Obtain the quadratic factor by division or inspection		
(1)1111	Factor theorem allowed only if values for a and b are found.		
M1			
(A1 on	Factorise the quadratic factor		
e-PEN) A1cso	Correct given value for <i>a</i>		
(ii)A1	Contest given value for a		
(B1 on e-	Correct value for b		
PEN)	Dry Factor Theorem		
	By Factor Theorem: M1 Test $x = 1$		
	M1 Test another value which is > 1		
a >	A1 $a = 1$ A1 $b = 3$		
(b) M1	Differentiate and substitute $x = 2$ to find the gradient of the tangent to C at P		
A1	Correct gradient of tangent		
B1	y = -4 seen explicitly or used in the equation of the tangent		
N/1	Any complete method for the equation of the tangent at $(2, their y)$.		
M1	Use of $y = mx + c$ must include an attempt at finding a value for c		
A1	orrect numbers in their (unsimplified) equation		
A1cso	Correct <i>x</i> coordinate of the point where the tangent crosses the <i>x</i> -axis. No errors seen		
ALT	for the last 3 marks:		
	Find the gradient of the line from P to $(-2,0)$ M1 Any correct method; A1correct	gradient	
	All work correct and a conclusion. Alcso		
(c)			
M1	sing area = $\int \text{curve} - \text{line}$ or $\int \text{line} - \text{curve}$ with their line equation limits are needed		
M1	Attempt to integrate the single function or two functions (ie all the integration needed) limits		
	not needed. $\int_{-2}^{2} (-x-2) dx$ may be obtained by triangle formula.		
dM1	Substitute correct limits in their integrated function(s) Depends on both M marks		
A1	Correct final answer. Must be positive.		
ALT	By splitting the area		
M1	Suitable split eg as shown Limits are needed		
M1	Attempt all the nec integration (ignore limits) and area of triangle by integration or for	ormula	
dM1 A1	Substitute correct limits in their integrated function(s) Depends on both M marks Correct final answer		
***	201100 111111 11111 11111		