The λ -calculus

Lecturer: John Wickerson

A tiny bit of Java

A tiny bit of Haskell

```
expr :=
      expr + expr
      expr < expr
      X
      \mathbf{n}
      let x = expr in expr
      if expr then expr else expr
      expr expr
      \x \cdot expr
      expr: expr
      true
      false
      (expr, expr)
```

The whole λ -calculus

```
\begin{aligned} \mathbf{M} &::= \\ & \lambda \mathbf{x}. \ \mathbf{M} \\ & | \ \mathbf{M} \ \mathbf{M} \\ & | \ \mathbf{x} \end{aligned}
```

The λ -calculus is ...

• The simplest programming language in the world

• A training ground for studying other programming languages

Outline

- **-**
- 1. Syntax (free variables, α-equivalence, substitution)
- 2. Semantics (β-reduction, confluence, reduction strategies)
- 3. Usage (encoding arithmetic, recursion)

Examples

 $\mathbf{M} ::= \lambda \mathbf{x}.\mathbf{M} \ | \mathbf{M} \mathbf{M} \ | \mathbf{x}$

- λx. x
- λx. **y**
- λx . λy . λz . $M = \lambda xyz$. M
- $(\lambda x. x)(\lambda y. y)$

 $M_1 M_2 M_3 = (M_1 M_2) M_3$

- λx. λy. λz. x
- $(\lambda x. x)(\lambda y. \lambda z. x (y z))(\lambda x. y x x)$

KEY CONCEPT

Free variables

- Let FV(M) denote the set of free variables in the λ -term M.
- For instance: $FV(\lambda x. y) = \{y\}.$
- If $FV(M) = \emptyset$ then we say M is "closed".

α-equivalence

- For example: $(\lambda x. x) =_{\alpha} (\lambda y. y)$
- int i; for(i=0; i<5; i++) x+=i;
- $(\lambda x. x (\lambda y. y) y) =_{\alpha}? (\lambda y. y (\lambda x. x) x)$
- $(\lambda x. x (\lambda y. y) y) =_{\alpha}? (\lambda y. y (\lambda x. x) y)$
- $(\lambda \mathbf{x}. \mathbf{x} (\lambda \mathbf{y}. \mathbf{y}) \mathbf{y}) =_{\alpha} ? (\lambda \mathbf{w}. \mathbf{w} (\lambda \mathbf{w}. \mathbf{w}) \mathbf{y})$ $(\lambda \mathbf{z}. \mathbf{z} (\lambda \mathbf{y}. \mathbf{y}) \mathbf{y}) =_{\alpha} ? (\lambda \mathbf{z}. \mathbf{z} (\lambda \mathbf{w}. \mathbf{w}) \mathbf{y})$ $(\lambda \mathbf{z}. \mathbf{z} (\lambda \mathbf{z}. \mathbf{z}) \mathbf{y}) =_{\alpha} ? (\lambda \mathbf{z}. \mathbf{z} (\lambda \mathbf{z}. \mathbf{z}) \mathbf{y})$

α-equivalence

$$M =_{\alpha} M'$$

$$N =_{\alpha} N'$$

$$x =_{\alpha} x$$

$$M N =_{\alpha} M' N'$$

$$z \notin FV(M) \cup FV(N)$$

$$M[z/x] =_{\alpha} N[z/y]$$

$$(\lambda x. M) =_{\alpha} (\lambda y. N)$$

• Replace e with 2.718 in

```
try {
   f.writeFloat(e ^ 2);
} catch (IOException e) {
   e.printStackTrace();
}
```

let x=4*y in let y=w+5 in x*y


```
let x=4*y in let z=w+5 in x*z
```


•
$$y[M/x] = \begin{cases} M & \text{if } y=x \\ y & \text{if } y \neq x \end{cases}$$

$$\mathbf{M} ::= \lambda \mathbf{x}.\mathbf{M} \ | \mathbf{M} \mathbf{M} \ | \mathbf{x}$$

•
$$(\lambda y. \ N)[M/x] = \begin{cases} \lambda y. \ N & \text{if } y=x \\ \lambda z. \ N[z/y][M/x] & \text{if } y \neq x \end{cases}$$
where $z \notin FV(M) \cup (FV(N) - \{y\}) \cup \{x\}$

•
$$(N_1 N_2)[M/y] = (N_1[M/y])(N_2[M/y])$$

KEY CONCEPTS

a-equivalence

capture-avoiding substitution

BONIS

DeBruijn indices

```
let x=4*y in let z=w+x in x*z
```

BONIS

DeBruijn indices

• λx . $x \Rightarrow \lambda \cdot 0$

• $\lambda x. y \Rightarrow \lambda. y$

• $(\lambda x. x)(\lambda y. y) \Rightarrow (\lambda. 0)(\lambda. 0)$

• λ_{X} . λ_{Y} . λ_{Z} .

• $(\lambda x. x)(\lambda y. \lambda z. x (y z))(\lambda x. y x x)$ $\Rightarrow (\lambda. 0)(\lambda. \lambda. x (1 0))(\lambda. y 0 0)$

Outline

- 1. Syntax (free variables, α-equivalence, substitution)
 - 2. Semantics (β-reduction, confluence, reduction strategies)
 - 3. Usage (encoding arithmetic, recursion)

Java semantics

$$\frac{(C, \sigma) \longrightarrow (C', \sigma')}{(if(C)S, \sigma) \longrightarrow (if(C')S, \sigma')}$$

(if(true)S,
$$\sigma$$
) \longrightarrow (S, σ)

$$(if(false)S, \sigma) \longrightarrow (skip, \sigma)$$

λ-calculus semantics

$$M =_{\alpha} M'$$
 $M' \longrightarrow_{\beta} N'$ $N' =_{\alpha} N$ $M \longrightarrow_{\beta} N$

$$(\lambda x) x x) ((\lambda x. y) z)$$

$$(\lambda x. x x) ((\lambda x. y) z)$$

$$((\lambda x) y) z) ((\lambda x. y) z)$$

KEY CONCEPTS

β-reduction:

 $(\lambda x. M) N \longrightarrow_{\beta} M[N/x]$

Many steps of \B-reduction

• Define $\longrightarrow_{\beta}^*$ as follows:

Confluence

• Theorem (Church–Rosser). If $M \longrightarrow_{\beta}^* M_1$ and $M \longrightarrow_{\beta}^* M_2$ then there exists M' such that $M_1 \longrightarrow_{\beta}^* M'$ and $M_2 \longrightarrow_{\beta}^* M'$.

β-normal form

- "in β -normal form" = "contains no redexes"
- M has a β -normal form if $M \longrightarrow_{\beta}^{*} N$ for some N in β -normal form.
- Theorem (Uniqueness of β -normal forms). If $M \longrightarrow_{\beta}^* N_1$, $M \longrightarrow_{\beta}^* N_2$, and N_1 and N_2 are in β -normal form, then $N_1 =_{\alpha} N_2$.

β-normal form

- Theorem (Uniqueness of β -normal forms). If $M \longrightarrow_{\beta}^* N_1$, $M \longrightarrow_{\beta}^* N_2$, and N_1 and N_2 are in β -normal form, then $N_1 =_{\alpha} N_2$.
- Proof. By Church-Rosser, obtain N such that $N_1 \longrightarrow_{\beta}^* N$ and $N_2 \longrightarrow_{\beta}^* N$. But N_1 and N_2 are in β -normal form, so $N_1 =_{\alpha} N =_{\alpha} N_2$.

β-equivalence

• $=_{\beta}$ is the smallest equivalence relation containing \longrightarrow_{β} .

• Simpler version. $M_1 =_{\beta} M_2$ iff there exists M' such that $M_1 \longrightarrow_{\beta}^* M'$ and $M_2 \longrightarrow_{\beta}^* M'$.

KEY CONCEPTS

β-reduction

confluence (Church-Rosser)

β-normal form

β-equivalence

Non-termination

• Some terms do not have a β -normal form.

• For instance: $(\lambda x. \ x \ x)(\lambda x. \ x \ x)$ $(\lambda x. \ x \ x)(\lambda x. \ x \ x)$ $(\lambda x. \ x \ x)(\lambda x. \ x \ x)$

Possible non-termination

• Some terms might not terminate.

Reduction strategies

 $(\lambda x. M) N$

- Substitute N for x? \Rightarrow "call by name"
- Reduce N? \Rightarrow "call by value"
- Reduce M? \Rightarrow not usually done

Full	β-red	uction
------	-------	--------

Call by name

Call by value

$$M \longrightarrow_{\beta} M'$$

$$\lambda x. M \longrightarrow_{\beta} \lambda x. M'$$

$$M \longrightarrow_{\beta} M'$$

$$M N \longrightarrow_{\beta} M' N$$

$$M \longrightarrow_{\beta N} M'$$

$$M N \longrightarrow_{\beta N} M' N$$

$$M \longrightarrow_{\beta V} M'$$

$$M N \longrightarrow_{\beta V} M' N$$

$$N \longrightarrow_{\beta} N'$$

$$M N \longrightarrow_{\beta} M N'$$

$$M \xrightarrow{}_{\beta V} N \xrightarrow{}_{\beta V} N'$$

$$M N \longrightarrow_{\beta V} M N'$$

$$N \longrightarrow_{\beta V}$$

$$(\lambda x. M) N \longrightarrow_{\beta} M[N/x]$$

$$(\lambda x. M) N \longrightarrow_{\beta N} M[N/x]$$

$$(\lambda x. M) N \longrightarrow_{\beta} M[N/x] (\lambda x. M) N \longrightarrow_{\beta N} M[N/x] (\lambda x. M) N \longrightarrow_{\beta V} M[N/x]$$

Reduction strategies

Reduction strategies

KEY CONCEPTS

call-by-name reduction (wins if argument is unused)

call-by-value reduction (wins if argument is used more than once)

BONIS -

Extensionality

- Is β -equivalence the best notion of "equality" between λ -terms?
- We don't have $(\lambda x. \sin x) =_{\beta} \sin x$.
- But we do have $(\lambda x. \sin x) M =_{\beta} \sin M$, for any M.
- Add η -equivalence: $x \notin FV(M)$ $(\lambda x. M \ x) =_{\eta} M$
- $\beta\eta$ -equivalence captures "equality" nicely.

and s

Proving Church-Rosser

β-reduction

00000

NIS

0115

Proving Church-Rosser

β-reduction

Outline

- 1. Syntax (free variables, \alpha-equivalence, substitution)
- 2. Semantics (β -reduction, confluence, reduction strategies)
 - 3. Usage (encoding arithmetic, recursion)

Encoding numbers

- $\underline{0} \equiv \lambda s. \lambda z. z$
- $1 \equiv \lambda s. \lambda z. s z$
- $\underline{2} \equiv \lambda s. \lambda z. s (s z)$
- $\underline{3} \equiv \lambda s. \lambda z. s (s (s z))$

$$\underline{\underline{n}} \equiv \lambda s. \lambda z. \underline{s} (\dots \underline{s}(z)...)$$

Encoding arithmetic

- $plus \equiv \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z)$
- $mult \equiv \lambda m. \lambda n. \lambda s. \lambda z. m (n s) z$

$$\underline{\mathbf{n}} \equiv \lambda \mathbf{s}. \lambda \mathbf{z}. \underline{\mathbf{s}} (\dots \underline{\mathbf{s}}(\mathbf{z})...)$$

Encoding arithmetic

- $plus \equiv \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z)$
- $mult \equiv \lambda m. \lambda n. \lambda s. \lambda z. m (n s) z$
- Exercise. Evaluate "plus $\underline{2}$ $\underline{3}$ " and "mult $\underline{2}$ $\underline{3}$ ".
- if $z \equiv \lambda n$. λx_1 . λx_2 . $n(\lambda z. x_2) x_1$
- Exercise. Find pred such that " $pred \ \underline{0} =_{\beta} \underline{0}$ " and " $pred \ \underline{n+1} =_{\beta} \underline{n}$ ".

λ-definability

• A partial function $f : \mathbb{N}^k \to \mathbb{N}$ is λ -definable if there exists a closed λ -term F such that $f(x_1,...,x_k) = y \text{ iff } F(\underline{x_1},...,\underline{x_k}) =_{\beta} y, \text{ and }$ $f(x_1,...,x_k)\uparrow iff F(\underline{x_1},...,\underline{x_k})$ has no normal form.

• Church-Turing thesis:

f is computable via register machine

f is "computable"

f is computable via Turing machine

f is λ -definable

Example: factorial

- fac n = if n=0 then 1 else n*fac(n-1)
- $fac =_{\beta} \lambda n$. if $z n \underline{1} (mult n (fac (pred n)))$

Encoding recursion

- Let $fix \equiv (\lambda x. \lambda y. y (x x y))(\lambda x. \lambda y. y (x x y))$.
- Observe: $fix M \longrightarrow_{\beta}^* M (fix M)$.
- [Recall: x is a fixpoint of f whenever x=f(x).]
- This means: fix M is a fixpoint of M.

Example: factorial

- fac n = if n=0 then 1 else n*fac(n-1)
- $fac =_{\beta} \lambda n$. if $z n \underline{1} (mult n (fac (pred n)))$
- ... $=_{\beta}$ (\lambda f. \lambda n. if z n \(\frac{1}{2}\) (mult n (f (pred n)))) fac
- $fac = fix (\lambda f. \lambda n. ifz n \underline{1} (mult n (f (pred n))))$
- Exercise. Evaluate "fac 2".

KEY CONCEPTS

we can encode...

numbers and arithmetic

if-statements

recursion

BONIS

Combinators

- Lambda calculus: $M := \lambda x$. $M \mid M M \mid x$
- Can we restrict even further? Yes, we can even get rid of variables!
- Let $S \equiv \lambda x$. λy . λz . (x z) (y z) and $K \equiv \lambda x$. λy . x.
- $\bullet \quad \mathbf{M} ::= \mathbf{M} \ \mathbf{M} \mid \mathbf{S} \mid \mathbf{K}$

Is λ-calculus broken?

- Define $silly \equiv (\lambda x. \neg (x x))(\lambda x. \neg (x x))$.
- Then $silly =_{\beta} \neg silly$.

BONIS

Adding types

- Untyped: $M := \lambda x$. $M \mid M M \mid x$
- Typed: $M := \lambda x : \tau$. $M \mid M \mid x$ where $\tau := \bullet \mid \tau \to \tau$
- no more fix function ... not Turing-complete
- add fix to language explicitly

Outline

- 1. Syntax (free variables, α-equivalence, substitution)
- 2. Semantics (β-reduction, confluence, reduction strategies)
- 3. Usage (encoding arithmetic, recursion)