Problema 2. Caracteritzeu, en funció del nombre enter m > 1, quins són els elements invertibles i quins els divisors de zero de l'anell $\mathbb{Z}/m\mathbb{Z}$. Deduïu que $\mathbb{Z}/m\mathbb{Z}$ és un domini d'integritat si, i només si, $\mathbb{Z}/m\mathbb{Z}$ és un cos; si, i només si, m és un nombre primer.

Solució. Volem caracteritzar els elements invertibles de $\mathbb{Z}/m\mathbb{Z}$.

Sigui $\overline{a} \in \mathbb{Z}/m\mathbb{Z}$, $\overline{a} \neq \overline{0}$.

 \overline{a} és invertible \Leftrightarrow Existeix $\overline{b} \in \mathbb{Z}/m\mathbb{Z}$, tal que $\overline{a} \cdot \overline{b} = \overline{1} \Leftrightarrow$ Existeix $\overline{b} \in \mathbb{Z}/m\mathbb{Z}$ tal que $\overline{a}\overline{b} - \overline{1} = \overline{0}$.

Siguin a, b representants respectius de $\overline{a}, \overline{b}$. La igualtat anterior es tradueix a:

 \overline{a} invertible \Leftrightarrow Existeix $b \in \mathbb{Z}$ tal que $ab-1=\lambda m$, per a un cert $\lambda \in \mathbb{Z}$. Però això és equivalent a $1=ab-\lambda m$, per a certs b,λ de \mathbb{Z} . Això ens diu que a i m són coprimers. Per tant, els elements invertibles de $\mathbb{Z}/m\mathbb{Z}$ són els \overline{a} tals que m.c.d(a,m)=1 en \mathbb{Z} .

Parlem ara dels divisors de zero de $\mathbb{Z}/m\mathbb{Z}$. Fem la següent afirmació: $\overline{a} \neq \overline{0}$ és un divisor de zero de $\mathbb{Z}/m\mathbb{Z}$ si, i només si, m.c.d(a,m) = c, amb $c \neq \pm 1, \pm m$, i on a i m són representants de \overline{a} i $\overline{m} (= \overline{0})$ respectivament.

 \Rightarrow)

Suposem que $\overline{a} \neq \overline{0}$ és un divisor de zero. Per l'apartat anterior, si fos $c=\pm 1$, llavors \overline{a} seria invertible. Sabem, però, que els elements invertibles no són mai divisors de zero. En efecte, si A és un anell i tenim que xy=0 amb $x\in A$ invertible i $y\neq 0$, multiplicant per x^{-1} a tots dos costats, arribem a y=0, absurd. Per tant c no pot ser ± 1 .

D'altra banda, si c fos $\pm m$, llavors a seria un múltiple de m i per tant la seva classe seria $\overline{0}$, en contradicció amb el que suposem.

 \Leftarrow

Si suposem $m.c.d(a,m)=c, c \neq \pm 1, \pm m$, llavors existeixen $x,y \in \mathbb{Z}$ tals que a=xc, m=yc. En aquest cas, trobar un $\overline{b}\neq \overline{0}$ tal que $\overline{a}\overline{b}=\overline{0}$ és trivial. És suficient prendre la classe \overline{y} , ja que tindrem $\overline{a}\ \overline{y}=\overline{xcy}=\overline{x}\ \overline{m}=\overline{x}\overline{0}=\overline{0}$ i $\overline{a},\overline{y}\neq \overline{0}$.

Finalment, demostrem $\mathbb{Z}/m\mathbb{Z}$ és domini d'integritat $\Leftrightarrow \mathbb{Z}/m\mathbb{Z}$ és $\cos \Leftrightarrow m$ és primer.

 $(2) \Rightarrow (1)$

Trivial, ja que tot cos és domini d'integritat.

 $(1) \Rightarrow (3)$

Si $\mathbb{Z}/m\mathbb{Z}$ és domini d'integritat, no té divisors de zero i per tant tot enter 1 < a < m és coprimer amb m, com acabem de veure. En particular, això implica que m és un nombre primer.

 $(3) \Rightarrow (2)$

Sigui \overline{a} un element no nul de $\mathbb{Z}/m\mathbb{Z}$. Podem triar un representant de \overline{a} de la forma 1 < a < m. Com que m és un nombre primer, m.c.d(a,m) = 1 i per la identitat de Bézout, existeixen λ, μ en \mathbb{Z} tals que $1 = a\lambda + m\mu$. És a dir, existeixen λ, μ tals que $1 - m\mu = a\lambda$. Passant al quocient $\mathbb{Z}/m\mathbb{Z}$, tenim $\overline{a}\overline{\lambda} = \overline{1} - \overline{0} = \overline{1}$. Acabem de trobar l'invers de \overline{a} , és precisament $\overline{\lambda}$.