Warm Up: Unit analysis and vectors

Prof. Jordan C. Hanson

September 2, 2022

1 Memory Bank

- 1. $\vec{v} = v_x \hat{i} + v_y \hat{j}$... Definition of a vector in terms of \hat{i} and \hat{j} components (representing the x-direction and y-direction).
- 2. $\vec{v} + \vec{w} = (v_x + w_x)\hat{i} + (v_y + w_y)\hat{j}$... Vector addition: the \hat{i} -components add with each other, and the \hat{j} -components add with each other.
- 3. $|\vec{v}| = \sqrt{v_x^2 + v_y^2}$... The magnitude of the vector
- 4. $v_x = |\vec{v}|\cos\phi$, $v_y = |\vec{v}|\sin\phi$... The x and y-components of the vector

2 Chapter 2 - Algebra of Vectors

- 1. Imagine a molecule in an ideal gas is ionized and trapped in an area using a magnetic field. It moves randomly in two dimensions, beginning at the origin. Determine the final location, if it follows the displacements below:
 - $\Delta \vec{x}_1 = 3\hat{i} + 3\hat{j} \ \mu \text{m}$
 - $\Delta \vec{x}_1 = -1\hat{i} 1\hat{j} \ \mu \text{m}$
 - $\Delta \vec{x}_1 = 2\hat{i} 2\hat{j} \ \mu \text{m}$
 - $\Delta \vec{x}_1 = -4\hat{i} + 4\hat{j} \mu m$
- 2. Draw the complete trajectory of the molecule in a two-dimensional coordinate system. What is the magnitude of the displacement from the origin?
- 3. Let $A = |\vec{A}| = 1$, and let $\theta_A = 60$ degrees. What are A_x and A_y ? Hint: use Fig. 1 to recall the comparison between a vector and a triangle.

Figure 1: A vector \vec{A} can be expressed with components A_x and A_y , or the magnitude $A = |\vec{A}|$ and the angle θ_A .