

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

Trabajo Practico de Red

Problema 1:

- A) Si no hay un servidor DHCP disponible de donde se pueda tomar IP para un host los parámetros a introducir manualmente son : IP Address, Máscara de subred, Default Gateway y DNS Server
- B) Lista de órdenes para comprobar la configuración de la red:
- traceroute(tracert ip) route netstat -ping 0.0.0.0 -ipconfig -iproute

Problema 1:

Dirección IP	Binario	Clase
145.32.59.24	10010001.00100000.00111011.00011000	В
200.42.129.16	11001000.00101010.10000001 .00010000	С
14.82.19.54	00001110 .01010010.00010011.00110110	A
163.10.200.5	10100011.00001010 .11001000.00000101	В
224.1.1.25	1110 0000.00000001.00000001.00011001	D
10.1.1.25	00001010 .00000001.00000001.00011001	A

Problema 2:

Dirección IP	Máscara de Subred	Clase	N° subred	Dirección Broadcast
170.210.17.67	255.255.255.192	В	170.210.17.64	170.210.17.127
201.222.10.60	255.255.255.248	С	201.222.10.56	201.222.10.255.63
15.16.193.6	255.255.248.0	A	15.16.192.0	15.16.199.255
128.16.32.13	255.255.255.252	В	128.16.32.12	128.16.32.15
153.50.6.27	255.255.255.128	В	153.50.6.0	153.50.6.127

Problema 3

Asuma que le han asignado el bloque de direcciones 131.40.0.0/16 y necesita establecer 8 subredes de igual tamaño.

- 1. Se necesitan 3 dígitos binarios para definir ocho subredes.
- 2. Especifique el prefijo de red extendido para crear las 8 subredes: 131.40.0.0/19

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

3. Exprese las subredes en notación binaria y decimal con puntos:

Subredes	Binario	Decimal(Dirección)
Subred #0	10000011 . 00101000 . 00000000.00000000	131.40.0.0/19
Subred #1	10000011 . 00101000 . 00000000. 00000000	131.40.32.0/19
Subred #2	10000011 . 00101000 .01000000 . 00000000	131.40.64.0/19
Subred #3	10000011 . 00101000 .1100000 . 00000000	131.40.96.0/19
Subred #4	10000011 . 00101000 .10000000 .00000000	131.40.128.0/19
Subred #5	10000011. 00101000 .10100000 .00000000	131.40.160.0/19
Subred #6	10000011. 00101000 .10000001 .00000000	131.40.192.0/19
Subred #7	10000011. 00101000 .11100000 .00000000	131.40.224.0/19

- 4. Liste el rango de direcciones de hosts que pueden asignarse a la subred #3 (131.40.96.0/19). 5. ¿Cuál es la dirección de broadcast para la subred #3? (131.40.96.0/19)
 - El rango de las direcciones host que pueden asignarse la subred #3 va desde el 131.40.96.1/19 hasta el 131.40.127.254/19 y la direccion broadcast de la subred #3 es la última, que en este caso es el 131.40.127.255/19

Problema 4

Asuma que le han asignado el bloque de red 200.15.17.0/24.

- 1. Defina un prefijo de red extendido que permita la creación de 20 hosts en cada subred.
 - El prefijo de red extendido es 200.15.17.0/27 porque al necesitar 20 host en cada subred el rango tiene que ser mínimo cada 22 porque a esos 20 host se le agrega el de broadcast y el de la dirección.
 - Para llegar a la conclusión de que necesito 27
- 2. ¿Cuál es el número máximo de hosts que pueden asignarse a cada subred?
 - A cada subred se le pueden asignar máximo 30 host porque de la parte de host se utiliza 5 bits para la cantidad de host y los otros 3 bit para calcular la subred
 - 2^{hit} utilizados de host = cantidad total de subredes $\rightarrow 2^{\text{hig}}$ = 8
 - (2\dashbits disponibles) -2 = cantidad de host total en cada subred \rightarrow (2\dashbits)-2=30

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

- 3. ¿Cuál es el número máximo de subredes que pueden definirse?
 - El número máximo de subredes que pueden definirse son 8 al ser el prefijo 27, se utilizan 5 bits para calcular la cantidad de subredes
- 4. Especifique las subredes de 200.15.17.0/24.

#0 - 200.15.17.0/24 #1 - 200.15.17.32/24 #2 - 200.15.17.64/24 #3 - 200.15.17.96/24 #4 - 200.15.17.128/24 #5 - 200.15.17.160/24 #6 - 200.15.17.192/24 #7 - 200.15.17.224/24

- 5. Liste el rango de direcciones de host que pueden asignarse a la subred #6 (200.15.17.192/27). 6. ¿Cuál es la dirección de broadcast para la subred 200.35.1.192/27?
 - El rango de host que pueden asignarse a la subred #6 van desde 200.15.17.193/27 hasta el 200.15.17.222/27 y el broadcast es el 200.15.17.223/27 al ser la ultima dirección de la subred#6.

Problema 5

Router 1				
IF	Dirección IP	Máscara		
0/0	172.16.5.1/24	255.255.255.0		
0/1	168.192.2.1/24	255.255.255.0		

Tabla de ruteo Router 1				
Destino	Máscara	Next Hop		
172.16.5.0	255.255.255.0	IF 0/0 : 172.16.5.1		
168.192.2.0	255.255.255.0	IF 0/1: 168.192.2.1/24		

Problema 6

Router1

IF	Dirección IP	Máscara
0/0	10.4.2.1/27	255.255.255.224

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

0/1	172.16.5.1/24	255.255.255.0
-----	---------------	---------------

Router 2

IF	Dirección IP	Máscara
0/0	10.4.2.2/27	255.255.255.224
0/1	168.192.2.1/24	255.255.255.0

Tabla de ruteo Router 1

Destino	Máscara	Next Hop
172.16.5.0/24	255.255.2550	IF0/1: 172.16.5.1/24
10.4.2.0/27	255.255.255.224	IF 0/0 : 172.16.5.1
168.192.2.0/24	255.255.255.0	10.4.2.2/27

Tabla de ruteo Router 2:

Destino	Máscara	Next Hop
168.192.2.0/24	255.255.255.0	IF0/1: 168.192.2.1/24
10.4.2.0/27	255.255.255.224	IF0/0: 10.4.2.2/27
172.16.5.0/24	255.255.255.0	10.4.2.1/27

Problema 7

Router 1

IF	Dirección IP	Máscara
0/0	172.16.5.2/24	255.255.255.0
0/1	172.16.5.3/24	255.255.255.0

Tabla de ruteo Router 1

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

Destino	Máscara	Next Hop
10.4.2.0/27	255.255.255.252	IF0/0: 168.192.2.1/24
168.192.2.0/24	255.255.255.224	10.4.2.2/27

Router 2

IF	Dirección IP	Máscara
0/0	10.4.2.2/27	255.255.255.224
0/1	168.192.3.1 /30	255.255.255.252

Tabla de ruteo Router 2

Destino	Máscara	Next Hop
172.16.5.0/24	255.255.255.0	10.4.2.1/27
168.192.2.0/24	255.255.255.224	168.192.3.2/24

Tabla de ruteo Router 3

Destino	Máscara	Next Hop	
172.16.5.0/24	255.255.255.0	168.192.3.1/27	
168.192.2.0/24	255.255.255.224	IF 0/1:168.192.2.1	

Router 3

IF	Dirección IP	Máscara
0/0	168.192.3.2	255.255.255.252
0/1	168.192.2.1 /30	255.255.255.224

Problema 8

Para que la red 165.123.0.0/16 pueda tener 70 subredes se necesitan 7 bits de la parte de host que serian 2 ^ 7= 128 y el prefijo nuevo seria /23 que es la suma del prefijo viejo /16 más la cantidad de bits de red que se le agrega para tener 70 subredes, en cada subred vamos a tener 510 host disponible que lo calcule de la siguiente manera (2^9) -2=510 que es la cantidad de host disponibles porque el primero y el último

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

están designadas para la dirección red y para el broadcast de cada subred

Problema 9

Para calcular el prefijo para cada subred hice la sig cuenta: 2^(m) en donde m son los bits en 1 que se le "roba" en la parte host para calcular la subred y 2^(m) -2 para calcular los host que van a tener cada subred

Subred	Dirección de Red	Broadcast	Rango
#0	190.3.54.0/25	190.3.54.127/25	190.3.54.1/25 - 190.3.54.126/25
#1	190.3.54.128/26	190.3.54.191/26	190.3.54.129 - 190.3.54.190
#2	190.3.54.192/27	190.3.54.223/27	190.3.54.192/27 - 190.3.54.222/27
#3	190.3.54.224/27	190.3.54.255/27	190.3.54.225 - 190.3.54.254

Problema 10

Link:

 $\frac{https://excalidraw.com/\#json=p030o0VoSmwJhFZ9ENSDs,hMIEb8sQNTqeqLrw5yFY}{VQ}$

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

Problema 11:

El protocolo IP ofrece a la capa superior un servicio no orientado a conexión porque no establece una conexión entre el origen y destino para poder enviar el paquete porque su responsabilidad en la buscar la mejor ruta posible para poder enviar ese paquete a destino.

Problema 12:

Numeración IP para cada segmento:

RED	Dirección de Red	Broadcast	Máscara	Rango Disponible
A(18 Host)	172.16.5.128	172.16.5.159	255.255.255.224	172.16.5.129- 172.16.5.158
B(1 Host)	172.16.5.160	172.16.5.163	255.255.255.252	172.16.5.161 - 172.16.5.162
C(64 Host)	172.16.5.0	172.16.5.63	255.255.255.192	172.16.5.1 -172.16.5.62
D(eth2)	172.16.5.64	172.16.5.127	255.255.255.192	172.16.5.65- 172.16.5.126

Problema 13

Para diseñarla red 192.168.0.0/24 empeze desde las Lan's que tienen mayor host hasta las que tienen menos host y por último los segmentos WAN punto a punto.

Problema 14

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

Para designar la red de cada laboratorio que no tienen acceso a internet opte por ip privadas para no malgastar IP públicas de la universidad y para asignar a las 5 demás laboratorios y secretaria que si tiene acceso a internet empece asignando desde la red de secretaria, direccion y oficinas que es la red LAN que más host tiene y después por los laboratorios que tienen no más de 25 host casas uno y puse la máscara /27 que me permite asignar hasta 30 host en cada red de cada laboratorio y la /26 que me permite tener 6s host en la subred.

Problema 15

- a) 135.46.52.2 → El router lo envia por la ruta por defecto que seria hacia el Router 3 al no pertenecer a ninguna de las subredes del Router1
- b) 135.46.52.3 → El mismo caso que el anterior, lo envía a través de la ruta por defecto
- c) 135.46.52.4 →Este caso es igual al anterior, que lo envía al Router 3
- d) 192.53.25.1 → Cuando recibe un paquete con este destino lo envía a través de del Router

Profesores: César Luis Zaccagnini, Sergio Daniel Loyola y

Leonardo Jose Balbiani

Comisión: 1038-1-G14

Estudiante: Flores Rea Frank Matias

3

- e) 192.53.40.7 → Como esta IP si coincide con una de las rutas del Router1, lo envía a través del Router 2
- f) 192.53.56.7 → Lo envia a la red 192.53.40.0/23 por el Router2
- g) $8.8.8.8 \rightarrow \text{Al}$ no estar la red de esta IP el router lo envía por la ruta por defecto que es el Router 3

Problema 16

- a) $135.46.63.10 \rightarrow Lo$ envia a traves de la Interface 1 que pertenece a la subred 135.46.60.0/22
- b) 192.53.256.1 →No lo envia por ninguna ruta y lo descarta al no tener una ruta con la red de esta IP
- c) 200.11.120.5 → No lo envia a ningun al no tener ninguna ruta coincidente con su red
- d) 135.46.56.130 → Ne se envia porque no tiene una ruta para esa red a la que pertenece
- e) $192.53.40.7 \rightarrow \text{Lo}$ envia a traves de la Interface 2
- f) $8.8.8.8 \rightarrow \text{No lo envia a ningun al no tener ninguna ruta coincidente con su red}$

Problema 17

Una posible causa del mensaje "TTL excedido en tránsito" puede ser que al configurar el TTL se puso un TTL bajo y no llegó a destino por tener que realizar más saltos que la cantidad que permite el TTL configurada.

Problema 18

En el traceroute hecho se observa que en las líneas 12,14 y 16 se repiten y eso puede llegar a ser llegar a ser un bucle de enrutamiento en donde el paquete no va llegar a destino al estar mal configurada las rutas o no estar configurada adecuadamente las rutas de ida y vuelta de los paquetes.