In [1]:

```
from pyecharts charts import Bar, Timeline from pyecharts import options as opts import pandas as pd
```

In [2]:

```
df = pd.read_csv('C:/Users/Administrator/Downloads/2024世界GDP数据分析.csv',
encoding='gbk',index_col=0)
df.tail()
```

Out[2]:

		中国	美国	日本	印度	德国	英国	法国	意大 利	俄罗 斯	加拿 大	澳大 利亚	巴西
_	年份												
_	2019	142799	214332	51488	28705	38611	28308	27155	20049	16874	17416	13966	18778
	2020	147227	209366	50578	26230	38061	27077	26030	18864	14835	16434	13309	14447
	2021	177272	229935	49347	30799	42189	31886	29374	18864	17755	19913	13309	14447
	2022	179632	254397	42564	34166	40824	30891	27791	20497	22404	21615	16930	19201
	2023	178890	273564	42474	39320	44560	33330	30500	21860	18600	21180	16800	21270
4													•

In [38]:

```
#为了后面循环构造数据方便,需要重构成以下数据集
df_new= pd.DataFrame(
    index=df.columns,
    columns=df.index,
    data = df.values.T)
df_new
```

Out[38]:

年 份	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	 2014	2015	2016
中国	597	501	472	507	597	704	767	729	708	797	 104757	110616	112333
美 国	5433	5633	6051	6386	6858	7437	8150	8617	9425	10199	 175272	182383	187451
日 本	443	535	607	695	817	910	1056	1238	1466	1722	 48970	44449	50037
印 度	370	392	422	484	565	596	459	501	531	584	 20391	21036	22948
德 国	2158	2158	2158	2158	2158	2158	2158	2158	2158	2158	 38839	33562	34675
英 国	732	777	812	866	944	1018	1086	1131	1078	1165	 30655	29328	26932
法 国	622	675	756	848	940	1015	1100	1190	1298	1419	 28522	24382	24713
意 大 利	404	448	504	577	632	680	737	811	879	971	 21591	18359	18758
俄 罗 斯	5547	5547	5547	5547	5547	5547	5547	5547	5547	5547	 20592	13635	12768
加 拿 大	405	409	422	450	494	545	611	657	718	791	 18058	15565	15280
澳大利亚	186	197	199	215	238	259	273	304	327	366	 14675	13517	12088
巴西	152	152	199	230	212	218	271	306	339	375	 24560	18022	17957
韩 国	40	24	28	40	35	31	39	49	61	77	 14843	14658	15001
瑞 典	158	172	187	202	225	248	270	293	311	337	 5820	5051	5157
西 班 牙	121	138	161	191	213	248	287	316	315	360	 13694	11951	12321

15 rows × 64 columns

一: 绘制2023年的世界排名

In [28]:

```
#构造一个升序的数据集
df_2023 =pd.DataFrame(df_new[2023].sort_values())
df_2023
```

Out[28]:

	2023
瑞典	5376
西班牙	12812
澳大利亚	16800
韩国	17000
俄罗斯	18600
加拿大	21180
巴西	21270
意大利	21860
法国	30500
英国	33330
印度	39320
日本	42474
德国	44560
中国	178890
美国	273564

In [29]:

```
# 构造2023条形图的xy轴, x轴为国家分类, y轴为GDP数据
x_2023_data = df_2023.index.to_list()
y_2023_data = df_2023[2023]. to_list()
y_2023_data
Out [29]:
```

[5376, 12812, 16800, 17000, 18600, 21180, 21270, 21860, 30500, 33330, 39320, 42474, 44560, 178890, 273564]

In [30]:

x 2023 data

Out[30]:

```
['瑞典',
'西班牙'
'澳大利亚',
'韩国',
'俄罗斯',
'加拿大',
'巴西',
'意大利',
'法国',
'英国',
'印度',
```

- '日本',
- '德国',
- '中国',
- '美国']

In [31]:

```
# 绘制图形
bar_2023new = (
   Bar()
   .add xaxis(x 2023 data)
   .add_yaxis(series_name="", y_axis=y_2023_data)
   .reversal axis()
   .set_global_opts(title_opts=opts.TitleOpts("2023年世界经济排名"))
```

In [33]:

```
bar_2023new.render('2023年世界轮播图.html')
```

Out[33]:

'C:\\Users\\Administrator\\2023年世界轮播图.html'

二:循环实现所有条形图并添加到时间轮播图上

In [35]:

```
t1 = Timeline(init_opts=opts.InitOpts(width='1400px', height='800px'))
```

In [36]:

```
for i in range (1960, 2024):
   #构造1年的数据
   df year =pd. DataFrame(df new[i]. sort values())
   x_year_data = df_year.index.to_list()
   y_year_data = df_year[i].to_list()
   #绘制1年的15个国家的条形图
   bar year = (
       Bar()
       .add_xaxis(x_year_data)
       .add_yaxis(series_name="", y_axis=y_year_data)
       .reversal_axis()
       .set_global_opts(
           title_opts=opts.TitleOpts("{}年世界经济排名".format(i)))
    )
   #添加到时间轮播上
   tl.add(bar_year,'{}年'.format(i))
   tl.add_schema(play_interval=300, is_auto_play=False)
```

In [37]:

```
tl.render('1960-2023年世界GDP动态排名.html')
```

Out[37]:

'C:\\Users\\Administrator\\1960-2023年世界GDP动态排名.html'

In []: