

UNCLASSIFIED

AD NUMBER

AD908998

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; AUG 1972. Other requests shall be referred to Air Force Armament Lab., Eglin AFB, FL. Document partially illegible.

AUTHORITY

AFATL ltr 16 Jan 1976

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

✓ (3) AFATL-TR-72-174

OPERATING CHARACTERISTIC CURVES
FOR
SAMPLES FROM A BINOMIAL POPULATION

PRODUCT ASSURANCE DIVISION

TECHNICAL REPORT AFATL-TR-72-174

AUGUST 1972

APR 13 1973

E

Distribution limited to U. S. Government agencies only; this report documents test and evaluation; distribution limitation applied August 1972. Other requests for this document must be referred to the Air Force Armament Laboratory (DLCZ), Eglin Air Force Base, Florida 32542.

AIR FORCE ARMAMENT LABORATORY

AIR FORCE SYSTEMS COMMAND • UNITED STATES AIR FORCE

EGLIN AIR FORCE BASE, FLORIDA

**Best
Available
Copy**

17
18

**Operating Characteristic Curves
for
Samples from a Binomial Population**

**Mark O. Glasgow
Russell R. Ratcliff**

Distribution limited to U. S. Government agencies only;
this report documents test and evaluation; distribution
limitation applied August 1972 . Other requests for
this document must be referred to the Air Force Armament
Laboratory (DLGZ), Eglin Air Force Base, Florida 32542.

FOREWORD

The work reported in this technical report was undertaken in support of reliability and quality assurance functions and was done during the period October 1971 to July 1972.

Digital computer services in support of this effort were provided by the Computer Sciences Laboratory (TSX), Eglin Air Force Base, Florida.

Significant assistance in the preparation of this report was provided by the members of the Reliability Engineering and Quality Assurance Branch (DLGR). A special acknowledgement is due to Mr. Thomas J. Psaltis of the Weapons Support Branch (TSXBW) and particularly to Mr. Cecil D. Cliburn (TSXBW) for programming the computations.

This technical report has been reviewed and is approved.

RANDALL L. FETTY, Colonel USAF
Chief, Product Assurance Division

ABSTRACT

Operating characteristic curves are presented which give the probability of a random sample from a binomial population being accepted versus the true reliability of the lot for a given sample size and with the acceptance number of defectives held fast. The curves can be used by statisticians, engineers, and quality assurance workers concerned with attributes testing of large lots of items submitted for testing or with writing specifications for such tests.

Distribution limited to U. S. Government agencies only; this report documents test and evaluation; distribution limitation applied August 1972. Other requests for this document must be referred to the Air Force Armament Laboratory (DLGZ), Eglin Air Force Base, Florida 32542.

III
(The reverse of this page is blank)

TABLE OF CONTENTS

Section		Page
I	Introduction	1
II	Assumptions and Formulas	2
III	Explanation of Graphs	3
	APPENDIXES	5

SECTION I

INTRODUCTION

This technical report presents operating characteristic (OC) curves that give the probability, P, of a random sample from a binomial population being accepted versus the true reliability, R, of the lot, for sample size and acceptance number of defectives held fast. The graphs are for the lot tolerable percent defective (LTPD) = $p_0 = .01(.01).15$. The confidence levels, C, used are .5, .6, .7, .8, .9, .925, .950, .975, and .990. The sample defectives acceptance numbers, D, used are D = 0(1)5, 10, and 15.

The graphs should find many uses among the statisticians, engineers, and quality assurance workers who are concerned with attributes testing of large lots of items submitted for inspection, or with writing specifications for such tests.

SECTION II

ASSUMPTIONS AND FORMULAS

It is assumed that large lots are to be submitted for attribute acceptance inspection and that sample sizes, N, are small in comparison to lot sizes. With this assumption, the binomial distribution governs the probability of a random sample passing the inspection test with acceptance of the lot. If this assumption were not justified, the hypergeometric distribution would apply, rather than the binomial distribution.

Sample size, N, was computed as a function of p_0 (the lot tolerable percent deflection, LTPD), the deflection acceptance number, D, and the confidence level, C. The number, N, was selected as the least positive integer satisfying the inequality :

$$\sum_{x=0}^D \binom{N}{x} p_0^x (1 - p_0)^{N - x} \leq 1 - C$$

With the sample size thus obtained, the probability, P, that a random sample of size N would be accepted was computed as a function of true reliability, R:

$$P = \sum_{x=0}^D \binom{N}{x} (1-R)^x R^{N-x}$$

The values of P versus R were tabulated and graphed with N, C, and D as parameters. It will be noted that all the graphs on one figure pass through or very near the point $P = 1 - C$; $R = 1 - p_0$. The need to use integral values of sample size, N, in the relations for P is the reason the curves do not always pass exactly through these points.

SECTION III

EXPLANATION OF GRAPHS

Appendices I through XV present the graphs for curves for lot tolerable percent defective (p_0) = 0.01 through p_0 = 0.15. Each graph contains eight curves, one each for $D = 0, 1, 2, 3, 4, 5, 10$, and 15 . In the top portion of the graphs, the value of the defectives acceptance number, D, increases from left to right. That is, the top portion of the curve farthest to the left has $D = 0$, while the curve farthest to the right has $D = 15$. The order is reversed for the portion of the curves at the bottom of the graphs or pages. The point on the graphs where the curves intersect is $(R, P)_0 = (1 - p_0, 1 - C)$. As an example of the use of these curves, suppose the requirement were made that a product tested should have 90% reliability with 80% confidence level. The OC curves, with sample sizes and acceptance numbers for this case may be found on page 99. This graph has $p_0 = 1 - R = 0.1 - 0.900 = 0.100$, and $C = 0.80$. The curve $D = 0$ requires sample size $N = 16$; while $D = 1$ requires sample size $N = 29$, etc. The curves for larger values of D approach more closely to an ideal shape for an OC curve, but carry the penalty of larger sample requirements.

1. SYMBOLS AND ABBREVIATIONS

The following symbols and abbreviations are used on the graphs:

- C** Confidence Level
- D** Acceptance Number
- N** Sample Size
- P** Probability of a Sample Being Accepted
- p_0** Fraction Defective, Lot Tolerable Percent Defective (LTPD)
- R** True Reliability

APPENDIX I

**OPERATING CHARACTERISTIC
CURVES ($p_0 = .010$)**

10/11/71

OPERATING CHARACTERISTIC CURVES

A10E 4 0

OPERATING CHARACTERISTIC CURVES

12/11/71

OPERATING CHARACTERISTIC CURVES

A108

OPERATING CHARACTERISTIC CURVES

10/11/71

OPERATING CHARACTERISTIC CURVES

APPENDIX II

**OPERATING CHARACTERISTIC
CURVES ($p_0 = .020$)**

OPERATING CHARACTERISTIC CURVES

11/11/71

OPERATING CHARACTERISTIC CURVES

11/11/71 1-000
 OPERATING CHARACTERISTIC CURVES

APPENDIX III
OPERATING CHARACTERISTIC
CURVES ($p_0 = .030$)

11/11/71

OPERATING CHARACTERISTIC CURVES

ASME 22 o

11/14/71
1-073

OPERATING CHARACTERISTIC CURVES

ASOR
24

PLOT PREPARED BY TCR ADTC

APPENDIX IV
OPERATING CHARACTERISTIC
CURVES ($p_0 = .040$)

OPERATING CHARACTERISTIC CURVES

APPENDIX V

**OPERATING CHARACTERISTIC
CURVES ($p_0 = .050$)**

151171
OPERATING CHARACTERISTIC CURVES

A10E SP D

OPERATING CHARACTERISTIC CURVES

APPENDIX VI

**OPERATING CHARACTERISTIC
CURVES ($p_0 = .060$)**

12/11/71

OPERATING CHARACTERISTIC CURVES

4114

12/11/71

OPERATING CHARACTERISTIC CURVES

A114

12/11/71

OPERATING CHARACTERISTIC CURVES

A114

APPENDIX VII

**OPERATING CHARACTERISTIC
CURVES ($p_0 = .070$)**

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
12 0 7

PLOT PREPARED BY ISAI ADIC

12/11/71

OPERATING CHARACTERISTIC CURVES

A116
11 0

PLOT PREPARED BY 1841 ADIC

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
13

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
10

PLOT PREPARED BY TAKI ADIC

APPENDIX VIII
OPERATING CHARACTERISTIC
CURVES ($p_0 = .080$)

12/11/71

OPERATING CHARACTERISTIC CURVES

A514
E1 67

12/11/71 OPERATING CHARACTERISTIC CURVES

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
26

APPENDIX IX
OPERATING CHARACTERISTIC
CURVES ($p_0 = .090$)

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
28 0

PLOT PREPARED BY TSM: ADTC

12/11/71

OPERATING CHARACTERISTIC CURVES

4114 29 6

PLOT PREPARED BY TSP ADTC

12/11/71

OPERATING CHARACTERISTIC CURVES

A114 31

PLOT PREPARED BY TAKI ADTC

OPERATING CHARACTERISTIC CURVES

APPENDIX X
OPERATING CHARACTERISTIC
CURVES ($p_0 = .100$)

11/19/73
S-CCD

OPERATING CHARACTERISTIC CURVES

A102
50

PLOT PREPARED BY TDS, ATC

APPENDIX XI
OPERATING CHARACTERISTIC
CURVES ($p_0 = .110$)

12/11/71

OPERATING CHARACTERISTIC CURVES

A114

37

12/13/71
1-000

OPERATING CHARACTERISTIC CURVES

A114 39

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
30 67

PLOT PREPARED BY 1621 ADIC

12/11/71

OPERATING CHARACTERISTIC CURVES

4114-40

PLOT PREPARED BY TSI, ADIC

12/11/71

1 - OUT

OPERATING CHARACTERISTIC CURVES

43

FILED - NEAR AND BY 154, ADIC

OPERATING CHARACTERISTIC CURVES

12-11-71

4134
42

APPENDIX XII
OPERATING CHARACTERISTIC
CURVES ($p_0 = .120$)

APPENDIX XIII
OPERATING CHARACTERISTIC
CURVES ($p_0 = .130$)

12/11/71
S-D(X)

OPERATING CHARACTERISTIC CURVES

A814
56

12-11-71
1000A
OPERATING CHARACTERISTIC CURVES

A114
50 0 1

PLOT PREPARED BY 1541 ADIC

12/11/71

OPERATING CHARACTERISTIC CURVES

4114
59

APPENDIX XIV
OPERATING CHARACTERISTIC
CURVES ($p_0 = .140$)

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
64

12/19/21

CP Rating Characteristic Curves

A114
65 D

12/11/71

OPERATING CHARACTERISTIC CURVES

A114
66

12/11/71

OPERATING CHARACTERISTIC CURVES

A114

68

7

PLOT PREPARED BY ISRI ADIC

THIS PAPER PREPARED BY 1831 ADIC

12/11/73

OPERATING CHARACTERISTIC CURVES

A114

APPENDIX XV

**OPERATING CHARACTERISTIC
CURVES ($p_0 = .150$)**

OPERATING CHARACTERISTIC CURVES

12/11/71

OPERATING CHARACTERISTIC CURVES

A102
10

PLOT PREPARED BY TEC, ADTC

12/11/71

OPERATING CHARACTERISTIC CURVES

A108 17 D

INITIAL DISTRIBUTION

ASD (ENYS)	1
AEDC (ARO, Inc.)	1
AFWL (DOUL)	1
AUL (AU/LSE-70-239)	1
Redstone Sci Info Ctr (Doc Sec)	2
USA MSAA (AMXSY-A)	1
USNWC (Code 753)	1
USNWEF (Code W)	1
USNRL (Code 2627)	1
Sandia Lab (Org 3141)	2
DDC	2
PACAF (IGY)	1
AFATL (DL)	1
AFATL (DLY)	2
AFATL (DLOSL)	2
AFATL (DLGZ)	5
AFATL (DLJ)	1
AFATL (DLQM)	1
TRADOC/ADTC-DO	1
ADTC (PPM)	1

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. SPONSORING MILITARY ACTIVITY (or corporate author)	2a. IN CODE SECURITY CLASSIFICATION
Product Assurance Division Air Force Armament Laboratory Eglin Air Force Base, Florida 32542	UNCLASSIFIED
3. REPORT TITLE	2b. GROUP
OPERATING CHARACTERISTIC CURVES FOR SAMPLES FROM A BINOMIAL POPULATION.	N/A

(6)

OPERATING CHARACTERISTIC CURVES FOR SAMPLES FROM A BINOMIAL POPULATION.

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Report, October 1971 - July 1972

5. AUTHOR(S) (First name, middle initial, last name)

Mark O. Glasgow
Russell R. Ratcliff

(12) 1636

6. REPORT DATE

11 August 1972

7a. TOTAL NO. OF PAGES

7b. NO. OF REFS

7c. CONTRACT OR GRANT NO

9a. ORIGINATOR'S REPORT NUMBER(S)

8. PROJECT NO

(14) AFATL-TR-72-174

c.

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

d.

10. DISTRIBUTION STATEMENT

Distribution limited to U. S. Government agencies only; this report documents test and evaluation; distribution limitation applied August 1972. Other requests for this document must be referred to the Air Force Armament Laboratory (DLGZ), Eglin Air Force Base, Florida 32542.

elk

11. SUPPLEMENTARY NOTES

Available in DDC

12. SPONSORING MILITARY ACTIVITY

Air Force Armament Laboratory
Air Force Systems Command
Eglin Air Force Base, Florida 32542

13. ABSTRACT

Operating characteristic curves are presented which give the probability of a random sample from a binomial population being accepted versus the true reliability of the lot for a given sample size and with the acceptance number of defectives held fast. The curves can be used by statisticians, engineers, and quality assurance workers concerned with attributes testing of large lots of items submitted for testing or with writing specifications for such tests.

UNCLASSIFIED

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Operating Characteristic Curves						
BINOMIAL Population Samples						
Attribute Acceptance Inspection						
True Reliability						
Probability of Acceptance						

UNCLASSIFIED

Security Classification