06
CHAPTER

INEAR

HE B CL

- ❖ 벡터공간은 벡터들 간의 합과 스칼라 곱에 대해 닫혀있으며, 그 밖의 8가지 성질들을 만족함을 살펴봄
- ❖ 부분공간의 성질들을 예를 들어 고찰함
- ❖ 벡터공간에서의 주요 논제 중의 하나인 선형독립과 선형종속의 개념과 차이점을 예제들을 통하여 학습함
- ❖ 몇 개의 벡터들이 벡터공간을 생성할 때의 경우를 여러 가지 예와 그림을 통하여 알아봄
- ❖ 선형독립과 생성의 조건들을 동시에 만족할 때의 최소한의 벡터들을 기저라고 하는데, 이와 같은 기저의 조건을 고찰하고 기저의 개수인 차원에 대해서 학습함

06

EBRA INEAR AL

벡터공간은 실벡터공간(real vector space)과

복소벡터공간(complex vectorspace)의 2가지로 나누어진다.

벡터공간과 선형독립

정의 🔞 - 1 |

V가 벡터의 합과 스칼라 곱의 연산이 정의되는 공집합이 아닌 벡터들로 이루어진 집합이고, 다음의 10가지 공리들(axioms)을 만족할 때 V를 벡터공간(vector space)이라고 한다. 이때 공리들은 V 안의 모든 벡터 u, v, w와 모든 스칼라 α , β 에 대하여 성립해야 한다.

(1) u 와 v 의 합인 $u + v$ 도 V 에 속한다. (덧셈	에 대해 닫혀있다)
---	------------

(2) 모든
$$u, v$$
에 대하여 $u + v = v + u$ (덧셈에 대한 교환법칙)

$$(3) (u+v)+w=u+(v+w)$$
 (덧셈에 대한 결합법칙)

$$(4) u + 0 = u$$
인 영벡터가 V 에 존재한다. (영벡터의 존재)

(5)
$$V$$
상의 모든 u 에 대하여 $u + (-u) = 0$ 를 만족하는 $-u$ 가 존재한다.

(덧셈에 대한 역원)

(6)
$$u$$
에다 스칼라 α 를 곱한 αu 도 V 에 속한다. (스칼라 곱에 대해 닫혀있다)

$$(7) \alpha(u+v) = \alpha u + \alpha v$$
 (스칼라 곱에 대한 배분법칙)

(8)
$$(\alpha + \beta)u = \alpha u + \beta u$$
 (스칼라 곱에 대한 배분법칙)

(9)
$$\alpha(\beta u) = (\alpha \beta) u$$
 (스칼라 곱에 대한 결합법칙)

(1) u와 v의 합인 u+v도 V에 속한다. (덧셈에 대해 닫혀있다)

(2) u에다 스칼라 α 를 곱한 αu 도 V에 속한다. (스칼라 곱에 대해 닫혀있다)

벡터공간과 선형독립

예제 🔞 – 1

 R^3 이 실수 R 위의 벡터공간임을 입증해 보자.

풀의
$$\mathbf{R}^3$$
에서 두 벡터 $\mathbf{u} = \begin{bmatrix} u_1 \\ v_1 \\ w_1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} u_2 \\ v_2 \\ w_2 \end{bmatrix}$ 라고 할 때

$$u + v = \begin{bmatrix} u_1 \\ v_1 \\ w_1 \end{bmatrix} + \begin{bmatrix} u_2 \\ v_2 \\ w_2 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 \\ v_1 + v_2 \\ w_1 + w_2 \end{bmatrix}$$
가 R^3 에 속한다.

또한 스칼라 값 $\alpha \in R$ 에 대하여

$$\alpha \mathbf{u} = \alpha \begin{bmatrix} u_1 \\ v_1 \\ w_1 \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \alpha v_1 \\ \alpha w_1 \end{bmatrix} \mathbf{E} \mathbf{R}^3$$
에 속한다.

따라서 \mathbb{R}^3 은 실수 \mathbb{R} 위의 벡터공간이다.

벡터공간과 선형독립

예제 🔞 - 2

유클리드 공간 \mathbb{R}^n 이 실수 \mathbb{R} 위의 벡터공간임을 확인해 보자.

물의
$$R^n$$
에서 두 벡터 $u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ 라고 할 때

$$u+v = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1+v_1 \\ u_2+v_2 \\ \vdots \\ u_n+v_n \end{bmatrix}$$
가 R^n 에 속한다.

또한 스칼라 값 $\alpha \in R$ 에 대하여

$$\alpha \mathbf{u} = \alpha \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \alpha u_2 \\ \vdots \\ \alpha u_n \end{bmatrix}$$
도 \mathbf{R}^n 에 속한다.

따라서 \mathbb{R}^n 은 실수 \mathbb{R} 위의 공간벡터이다.

벡터공간과 선형독립 6.1

정의 6-2 하나의 원소로만 이루어진 공간벡터를 **영벡터공간**(zero vector space)이라고 한다. 이 하나의 원소를 0로 나타내는데 0+0=0, $\alpha 0=0$ ($\alpha \in R$)가 성립한다.

공간벡터 V의 원소 u와 스칼라 $\alpha \in R$ 에 있어서 다음과 같은 성질들이 성립 한다.

- (1) 0u = 0
- (2) $\alpha 0 = 0$
- (3) (-1)u = -u
- (4) $\alpha u = 0$ 이면 $\alpha = 0$ 또는 u = 0

벡터공간과 선형독립

정의 **⑥**−3

벡터공간 V의 부분집합 W가 V에서 정의된 다음의 두 연산을 만족할 때, 즉 벡터의 합과 스칼라 곱에 대해 닫혀있는 새로운 벡터공간을 이룰 때 W를 V의 부분공간 (subspace)이라고 한다.

- (1) $u \in W$ 이고 $v \in W$ 이면 $u + v \in W$
- (2) $u \in W$ 이고 α 가 스칼라 값이면 $\alpha u \in W$

벡터공간과 선형독립

예제 🔞 – 3

S가 다음과 같은 벡터들의 집합일 때 S가 R^3 의 부분공간인지를 확인해 보자.

$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x = y \right\}$$

풀의 (1)
$$\begin{bmatrix} u_1 \\ u_1 \\ u_2 \end{bmatrix}$$
와 $\begin{bmatrix} v_1 \\ v_1 \\ v_2 \end{bmatrix}$ 가 S 에 속하는 임의의 벡터라고 할 때,

$$\begin{bmatrix} u_1 \\ u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} \in S$$
이다.

(2) 만약
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_1 \\ u_2 \end{bmatrix} \in S$$
라면 $\alpha \mathbf{u} = \begin{bmatrix} \alpha u_1 \\ \alpha u_1 \\ \alpha u_2 \end{bmatrix} \in S$ 이다.

그 이유는 (1)과 (2)에서 첫 번째와 두 번째의 성분이 서로 같기 때문이다. 따라서 S는 **R**³의 부분공간이다. ■

벡터공간과 선형독립

예제 🔞 – 4

W가 다음과 같이 정의된 \mathbb{R}^3 의 부분집합이라고 할 때, W가 \mathbb{R}^3 의 부분공간이 아님 을 살펴보자.

$$W = \left\{ \mathbf{u} \mid \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ 1 \end{bmatrix}, u_1, u_2$$
는 임의의 실수 \}

물의
$$u = \begin{bmatrix} u_1 \\ u_2 \\ 1 \end{bmatrix}$$
와 $v = \begin{bmatrix} v_1 \\ v_2 \\ 1 \end{bmatrix}$ 가 W 에 속하는 임의의 벡터라고 하자.

(1) u + v를 계산하면 다음과 같다.

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ 2 \end{bmatrix}$$

두 벡터의 합 u + v의 세 번째 원소가 1의 값을 가지지 않으므로 u + v는 W에 속하지 않는다.

(2) αu를 계산하면 다음과 같다.

$$\alpha \mathbf{u} = \begin{bmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha \end{bmatrix}$$

이 경우 $\alpha \neq 1$ 인 경우를 제외하고는 αu 는 W에 속하지 않는다. 그러므로 (1)과 (2)에 따라 W는 R^3 의 부분공간이 아니다.

벡터공간과 선형독립

예제 🔞 - 5

 R^2 평면의 제1사분면에 있는 벡터들의 집합 S가 R^2 의 부분공간이 되는지를 벡터의 합과 스칼라 곱에 대해 닫혀있는지의 여부로 판단해 보자.

물의 〈그림 6.1〉의 제1사분면에 있는 두 개의 벡터 v와 w를 더했을 때 그들의 합도 역시 제1사분면에 있다. 그러나 제1사분면에 있는 어떤 벡터에다 음수인 스 칼라를 곱했을 경우 그 결과는 제3사분면에 위치하게 된다. 그러므로 S는 벡터의 합에 대해서는 닫혀있으나 스칼라 곱에 대해서는 닫혀있지 않다. 따라서 S는 R²의 부분공간이 아니다. ■

〈그림 6.1〉 제1사분면의 벡터 연산

13

벡터공간과 선형독립

예제 🔞 – 6

벡터 v_1, v_2, \dots, v_n 의 선형결합 전체 집합 W는 부분공간임을 살펴보자.

$$W = \{\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n | \alpha_i \in \mathbb{R}, i = 1, 2, \dots, n\}$$

(물) W가 부분공간임을 보이기 위해서는 W의 임의의 두 원소의 합과 스칼라 곱이 W의 원소가 됨을 보인다. 즉,

$$u = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

$$v = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n$$

일 때

$$u + v = (\alpha_1 + \beta_1)v_1 + (\alpha_2 + \beta_2)v_2 + \dots + (\alpha_n + \beta_n)v_n$$

= $a_1v_1 + a_2v_2 + \dots + a_nv_n(a_i = \alpha_i + \beta_i, 1 \le i \le n)$

그러므로

$$m{u} + m{v} \in W \cdots \cdots (1)$$

$$egin{align*} & \alpha m{u} = \alpha \left(\alpha_1 m{v}_1 + \alpha_2 m{v}_2 + \cdots + \alpha_n m{v}_n \right) \\ & = \left(\alpha \alpha_1 \right) m{v}_1 + \left(\alpha \alpha_2 \right) m{v}_2 + \cdots + \left(\alpha \alpha_n \right) m{v}_n \\ & = a_1 m{v}_1 + a_2 m{v}_2 + \cdots + a_n m{v}_n \ (a_i = \alpha \alpha_i, \ 1 \leq i \leq n) \\ \\ \Rightarrow \mbox{ 그러므로 } & \alpha m{u} \in W \cdots \cdots (2) \\ \\ \text{따라서 } W \vdash \mbox{ 부분공간이다. } \blacksquare$$

벡터공간과 선형독립

다음과 같은 n개의 미지수와 m개의 일차방정식으로 이루어진 연립방정식의 해집 합이 \mathbb{R}^n 의 부분공간인지를 판단해 보자.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

晉 ② 주어진 연립방정식을 *A*, *B*, *X*와 같은 행렬로 표현한다.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

이 경우 위의 연립방정식은 AX = B로 표현된다.

벡터 $X \in \mathbb{R}^n$ 가 AX = B일 때 X가 연립방정식의 해이다.

 $X, Y \in \mathbb{R}^n$ 이 위 식의 해일 때

$$A(X + Y) = AX + AY = 2B$$
$$A(\alpha X) = \alpha (AX) = \alpha B$$

따라서 $B = \mathbf{0}$ 가 아닌 이상 X + Y, αX 가 위 식의 해가 될 수 없다. 따라서 상수행 렬 $B = \mathbf{0}$ 일 때는 해집합은 \mathbf{R}^n 의 부분공간이 된다.

벡터공간과 선형독립

6.1

정의 $oldsymbol{6}$ – 4 비터공간 V의 원소 $oldsymbol{v}_1,\,oldsymbol{v}_2,\,\cdots,\,oldsymbol{v}_n$ 과 스칼라 $a_1,\,a_2,\,\cdots,\,a_n$ 에 대하여

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n$$

의 형태로 표현될 때, 이를 v_1, v_2, \cdots, v_n 의 선형결합(linear combination)이라고 한다.

벡터공간과 선형독립

예제 🔞 - 8

 R^3 에서 다음과 같이 3개의 벡터 v_1, v_2, v_3 가 주어졌을 때

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

다음과 같은 벡터 v가 v_1 , v_2 , v_3 의 선형결합임을 살펴보자.

$$\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

물의 $a_1v_1 + a_2v_2 + a_3v_3 = v$ 가 되는 실수 a_1 , a_2 , a_3 를 정할 수 있는지 판단한다.

$$a_{1} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a_{2} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + a_{3} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

대응되는 항들을 방정식으로 만들면 다음과 같다.

$$a_1 + a_2 + a_3 = 2$$

 $2a_1 + a_3 = 1$
 $a_1 + 2a_2 = 5$

이것을 가우스-조단 방법에 의해 해를 구하면

$$a_1 = 1$$
, $a_2 = 2$, $a_3 = -1$ 을 구할 수 있다.

이것은 다음과 같은 선형결합으로 이루어짐을 알 수 있다.

$$v = v_1 + 2v_2 - v_3$$

벡터공간과 선형독립

6.1

정의 ⑥-5 벡터공간 V에 있는 v₁, v₂, ···, vⁿ 벡터들이 적어도 하나는 0이 아닌 상수 a₁, a₂, ···, aⁿ이 존재하여

$$a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = 0$$

인 식을 만족할 때 선형종속(linearly dependent)이라고 하며, 그렇지 않은 경 우를 선형독립(linearly independent)이라고 한다. 즉,

$$a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = 0$$

를 만족하는 상수 값 $a_1 = a_2 = \cdots = a_n = 0$ 일 때 v_1, v_2, \cdots, v_n 이 선형독립이 된다.

벡터공간과 선형독립

예제 🔞 - 9

다음의 두 벡터 u와 v가 선형종속인지 선형독립인지를 판단해 보자.

$$u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad v = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

물의 두 벡터를 선형결합의 형태로 만들면 다음과 같다.

$$a_1 \mathbf{u} + a_2 \mathbf{v} = a_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + a_2 \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \begin{bmatrix} a_1 + 3a_2 \\ 2a_1 - 5a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

그러므로

$$a_1 + 3a_2 = 0$$

$$2a_1 - 5a_2 = 0$$

인 식이 성립하며, 두 선형방정식을 풀면

$$-11a_2 = 0$$
이 된다. 즉 $a_2 = 0$

이것을 나머지 선형방정식에 대입하면 $a_1 = 0$

따라서 $a_1 = a_2 = 0$

그러므로 두 벡터 u와 v는 선형독립이다.

24

정의 6 - 6

 R^n 상에서의 벡터들의 집합 v_1, v_2, \dots, v_n 중에서 만약 최소한 하나의 벡터가 나머지 벡터들의 선형결합으로 표현될 수 있을 경우에 선형종속(linearly dependent)이라고 한다.

이 정의는 선형종속인지를 판단하는 다른 방법으로 활용될 수 있다. 예를 들어,

$$u = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $v = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$ 에서 2개의 벡터 u 와 v 중 어느 벡터가 다른 벡터의 배수일 때,

25

즉 v = -2u일 경우에 선형종속이다.

벡터공간과 선형독립

다음과 같은 \mathbb{R}^2 와 \mathbb{R}^3 상에 있는 벡터들의 선형독립과 선형종속 여부를 각각 판단 해 보자.

$$(1) \mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

(2)
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

물의 (1) **u**와 **v**의 선형결합을 만들면

$$a_1 \mathbf{u} + a_2 \mathbf{v} = a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

이라고 하면 $a_1 = 0$, $a_2 = 0$ 이므로 **u**와 **v**는 선형독립이다.

(2) u, v, w의 선형결합을 만들면

$$a_1 \mathbf{u} + a_2 \mathbf{v} + a_3 \mathbf{w} = a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 + a_2 + 2a_3 \\ a_1 + 3a_3 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

이라고 하면 $a_1=3$, $a_2=-1$, $a_3=-1$ 도 해가 될 수 있으므로 u, v, w는 선형종속이다. 이 값들을 선형결합식에 대입하면

$$3u - v - w = 0$$

그러므로 w = 3u - v임을 쉽게 알 수 있다. 즉, w는 u와 v의 선형결합임을 알 수 있다. 따라서 u, v, w는 선형종속이다.

예제 🔞 – 11

선형종속과 선형독립은 판단하기 어려운 경우가 많다. 그런 경우에는 그림을 통하여 핵심적인 사항을 이해하는 것이 좋으므로, 여기서는 R^2 와 R^3 상에서의 선형종속과 선형독립에 대해 그림으로 설명한다.

먼저 〈그림 6.2〉는 R^2 상에서의 선형종속을 나타낸다. 2개의 벡터가 겹칠 경우한 벡터가 다른 벡터의 배수로 볼 수 있으므로 이들은 선형종속이 된다. 한편 〈그림 6.3〉과 같이 겹치지 않은 2개의 벡터 v_1 과 v_2 는 서로 선형독립이다.

 R^3 상에서 〈그림 6.4〉의 경우에는 v_1 , v_2 , v_3 의 관계를 $v_3 = 2v_1 + 3v_2$ 로 나타낼 수 있으므로 3차원 공간에서 선형종속이 된다. 한편 〈그림 6.5〉에서는 v_1 과 v_2 는

한 평면에 있으나 v_3 은 다른 공간상에 있으므로 이들은 선형독립이다.

벡터공간과 선형독립

예제 (6)-12

다음의 세 벡터가 선형독립인지를 살펴보자.

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$$

 Θ 주어진 벡터들을 바탕으로 a_1, a_2, a_3 이 스칼라 값일 때

$$a_1\mathbf{u} + a_2\mathbf{v} + a_3\mathbf{w} = \mathbf{0}$$

인 선형결합으로 만들어 단계적으로 해를 구한다.

$$a_{1} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + a_{2} \begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix} + a_{3} \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} a_1 + 2a_2 + a_3 = 0 \\ 2a_1 + 5a_2 + 3a_3 = 0 \\ 3a_1 + 7a_2 + 6a_3 = 0 \end{cases}$$

$$\begin{cases} a_1 + 2a_2 + a_3 = 0 \\ a_2 + a_3 = 0 \\ a_2 + 3a_3 = 0 \end{cases}$$

$$\begin{cases}
a_1 + 2a_2 + a_3 = 0 \\
a_2 + a_3 = 0 \\
2a_3 = 0
\end{cases}$$

이것을 역대입법으로 적용하면 a_1 = 0, a_2 = 0, a_3 = 0이 된다. 따라서 u, v, w는 선형독립이다.

벡터공간과 선형독립

貫◎ 이들을 선형결합의 형태로 만들면

$$a_{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + a_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

이다. 그러므로 $a_1 = a_2 = a_3 = 0$ 이 된다.

따라서 〈그림 6.6〉과 같은 3개의 단위벡터는 선형독립이다. ■

⟨그림 6.6⟩ 선형독립인 세 벡터

벡터공간과 선형독립

 R^3 공간에서 다음 세 벡터가 선형독립 또는 선형종속인지를 판단해 보자.

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 $_{a_1, a_2, a_3 \in \mathbb{R}}$ 일 때 이들을 선형결합의 형태로 나타내면 다음과 같다.

$$a_{1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + a_{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + a_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

그러면

$$\begin{bmatrix} a_1 + a_2 \\ a_2 + a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

따라서

$$a_1 + a_2 = 0$$
, $a_2 + a_3 = 0$
 $a_1 = -a_2 = a_3$

이 때 a_1 , a_2 , a_3 가 모두 0일 필요는 없다.

예를 들면 a_1 = 1, a_2 =- 1, a_3 = 1이 될 수 있다.

그러므로 세 벡터는 선형종속이다. ■

(**별해**) $v_1 + v_3 = v_2$ 가 되므로 $\langle \text{그림 } 6.4 \rangle$ 의 설명과 유사한 원리로 선형종속이 된다.

벡터공간과 선형독립

예제 6-15 $<math>R^3$ 공간에서 다음과 같은 세 벡터가 선형종속임을 살펴보자.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

물의 a_1 , a_2 , a_3 이 스칼라 값일 때 $\{v_1, v_2, v_3\}$ 이 선형종속인 벡터들의 집합이라는 것을 보이기 위해 다음과 같은 선형결합을 가정하자.

$$a_{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + a_{3} \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

벡터공간과 선형독립

그러면

$$\begin{bmatrix} a_1 & +3a_3 \\ a_2 + a_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

따라서 $a_1 + 3a_3 = 0$ 이고, $a_2 + a_3 = 0$ 이다. 이 식의 해를 구하면 $a_1 = 3a_2 = -3a_3$ 이다. 이때 a_1 , a_2 , a_3 의 값이 모두 0일 필요는 없다. 예를 들어, $a_1 = 3$, $a_2 = 1$, $a_3 = -1$

등도 해가 될 수 있기 때문이다. 따라서 $\{v_1, v_2, v_3\}$ 은 선형종속이다.

벡터공간과 선형독립

참고로 $\langle \text{그림 } 6.7 \rangle$ 에 나타난 바와 같이 세 벡터가 모두 \mathbb{R}^2 상에 있음에 주목하자.

 $\langle - 2 | 6.7 \rangle$ R^3 공간에서의 세 벡터

6.1 벡터공간과 선형독립

선형종속인 경우

선형종속인 경우를 영벡터인 경우를 제외하고 요약하면 다음과 같습니다.

첫째, R^2 공간에서 두 개의 벡터가 같은 직선상에 있거나 평행인 경우

둘째, R^2 공간에서 3개 이상의 벡터가 존재하는 경우

셋째, R^2 공간에서 3개 벡터 중 2개 이상의 벡터가 같은 직선상에 있거나 평행인 경우

넷째, R³ 공간에서 3개 벡터 중 어느 한 개의 벡터가 다른 2개의 선형결합으로 나타낼 수 있는 경우

39

LINEAR ALGEBRA Chapter 6. 백터공간

생성, 기저, 차원

정의 **⑥** −7 │ 벡터공간 V의 모든 벡터들을 V상의 벡터 $v_1,\ v_2,\ \cdots,\ v_n$ 의 선형결합으로 나타낼 수 있을 경우, 벡터 v_1, v_2, \dots, v_n 이 벡터공간 V를 생성(span, 生成)한다고 한 다. 즉, 모든 $v \in V$ 에 대하여

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = \mathbf{v}$$

가 되는 스칼라 a_1, a_2, \dots, a_n 이 존재할 경우를 말한다.

생성, 기저, 차원

예제
$$6-16$$
 벡터 $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ 가 벡터공간 \mathbf{R}^2 을 생성하는지를 살펴보자.

$$a_1 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + a_2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2a_1 - a_2 \\ 4a_1 + 2a_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

가 성립하는 스칼라 a_1 , a_2 가 존재함을 보이면 된다. 선형시스템

$$2a_1 - a_2 = a$$

 $4a_1 + 2a_2 = b$

를 풀면

$$a_1 = \frac{2a+b}{8}, \quad a_2 = \frac{-2a+b}{4}$$

인 스칼라 a_1 , a_2 가 존재한다. 따라서 두 벡터 v_1 과 v_2 는 R^2 을 생성한다.

42

생성, 기저, 차원

예제 🔞 – 17

LINEAR ALGEBRA

V를 R^3 상의 벡터공간이라 하고 v_1 , v_2 , v_3 이 다음과 같이 주어졌을 때 v_1 , v_2 , v_3 이 V를 생성하는지를 판단해 보자.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

를 선택한다. 그리고 선형결합으로 만들어진 다음의 식을 만족하는 스칼라 a_1, a_2, a_3 이 존재하는지를 보이면 된다.

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 = \mathbf{v}$$

$$\stackrel{\mathbf{\leq}}{=}, a_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

각 식에 대입하면 다음과 같은 선형시스템이 된다.

$$a_1 + a_2 + a_3 = a$$

$$2a_1 + a_3 = b$$

$$a_1 + 2a_2 = c$$

이 식을 풀면 구하는 해는 다음과 같다.

$$a_1 = \frac{-2a+2b+c}{3}$$
, $a_2 = \frac{a-b+c}{3}$, $a_3 = \frac{4a-b-2c}{3}$

그러므로 *v*₁, *v*₂, *v*₃이 *V*를 생성한다. ■

정의 🗿 - 8 |

벡터공간 V에 있는 벡터 v_1, v_2, \dots, v_n 이 다음의 두 가지 조건을 동시에 만족할 때 V에 대한 기저(basis)를 형성한다고 말한다.

- (1) $v_1, v_2, ..., v_n$ 이 선형독립이다.
- (2) v_1, v_2, \dots, v_n 이 V를 생성한다.

즉, 벡터공간 V상의 벡터들의 집합 $\{v_1, v_2, \dots, v_n\}$ 이 선형독립이면서 V를 생성할 때 $\{v_1, v_2, \dots, v_n\}$ 을 벡터공간 V의 기저(basis, 基底)라고 한다.

생성, 기저, 차원

예제 ⑥ -18 다음과 같은 R^2 상의 두 벡터가 기저가 되는지를 살펴보자.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 Θ $\{v_1, v_2\}$ 가 선형독립이고 또한 V를 생성하는지를 점검한다.

(1) $\{v_1, v_2\}$ 가 선형독립인 벡터들의 집합이라는 것을 보이기 위해 선형결합식을 **0** 로 놓으면.

$$a_1\begin{bmatrix}1\\0\end{bmatrix}+a_2\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}, a_1, a_2 \in \mathbf{R}$$

이 식을 풀면

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

그러므로 $a_1 = a_2 = 0$ 이다 따라서 $\{v_1, v_2\}$ 는 선형독립이다

(2) 두 벡터가 \mathbb{R}^2 을 생성함을 보인다.

$$\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$$
를 \mathbf{R}^2 상의 어떤 벡터라고 하자.

$$a_1 v_1 + a_2 v_2 = v$$

를 만족하는 스칼라 a_1 , a_2 를 구한다.

$$a_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

이것을 풀면

$$a_1 = a, a_2 = b$$

따라서 두 벡터는 R^2 을 생성한다.

(1)의 선형독립 조건과 (2)의 생성 조건을 모두 만족하므로

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
는 \mathbf{R}^2 의 기저가 된다.

생성, 기저, 차원

예제 ⑥ -19 다음과 같은 \mathbb{R}^3 공간의 세 벡터가 기저가 됨을 살펴보자.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

물의 {v₁, v₂, v₃}이 선형독립이고 V를 생성하는지를 점검한다.

(1) $\{v_1, v_2, v_3\}$ 이 선형독립임을 보이기 위해 선형결합식을 0로 놓는다.

$$a_{1}\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + a_{2}\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} + a_{3}\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \quad a_{1}, \ a_{2}, \ a_{3} \in \mathbf{R}$$

이 식을 풀면

$$\begin{bmatrix} a_1 + a_2 + a_3 \\ a_1 + a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

따라서 a_1 = 0이고, 이것을 위 식에 대입하면 a_2 = 0, a_3 = 0이다. 그러므로 이 식의 해는

$$a_1 = a_2 = a_3 = 0$$

따라서 $\{v_1, v_2, v_3\}$ 은 선형독립이다.

(2) 세 벡터가 R^3 을 생성함을 보인다.

$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{R}^3$$
상의 어떤 벡터라고 하자.

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 = \mathbf{v}$$

를 만족하는 스칼라 a₁, a₂, a₃을 구한다.

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} + a_2 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + a_3 \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} a\\b\\c \end{bmatrix}$$

이 식을 풀면

$$a_1 + a_2 + a_3 = a$$

$$a_1 + a_2 = b$$

$$a_1 = c$$

그러므로 $a_1 = c$, $a_2 = b - c$, $a_3 = a - b$ 이므로 다음과 같은 형태를 가진다.

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (b - c) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + (a - b) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

따라서 세 벡터는 \mathbb{R}^3 을 생성한다.

(1)의 선형독립 조건과 (2)의 생성 조건을 모두 만족하므로

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
은 \mathbf{R}^3 의 기저가 된다.

벡터공간 V상에 있는 벡터들이 선형독립이고, 또한 V를 생성할 수 있으면 벡터 v_1, v_2, \dots, v_n 으로 이루어진 집합을 V에 대한 기저라고 하는데, 이것을 다르게 표현하면 모든 $v \in V$ 에 대하여

$$a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = v$$

가 되는 스칼라 a_1, a_2, \cdots, a_n 의 해가 꼭 1세트만 존재하는 경우라고도 말할 수 있다.

생성, 기저, 차원

예제 🔞 – 20

LINEAR ALGEBRA

다음의 각 벡터들이 기저가 되는지를 좌표상의 벡터 표현을 통하여 판단해 보자.

$$(2)\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(3)\begin{bmatrix}1\\0\end{bmatrix}, \quad \begin{bmatrix}0\\1\end{bmatrix}, \quad \begin{bmatrix}1\\3\end{bmatrix}$$

물의 〈그림 6.8〉에 나타난 바와 같이 (1), (2)의 경우에는 모두 기저가 된다.

〈그림 6.8〉 기저가 되는 벡터들

그러나 (3)의 경우에는 \langle 그림 $6.9\rangle$ 에 나타난 바와 같이 3개의 벡터들이 모두 \mathbb{R}^2 상에만 존재하기 때문에 기저가 될 수 없다.

〈그림 6.9〉 R²상의 3개의 벡터들

55

생성, 기저, 차원 6.2

정의
$$6-9$$
 $V=R^3$ 이라 할 때 R^3 에 대한 기저 $\begin{bmatrix} 1\\0\\0\end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\end{bmatrix}$ 를 R^3 에 대한 표준기저(standard

basis) 또는 자연기저(natural basis)라고 한다.

생성, 기저, 차원

예제
$$oldsymbol{6}-21$$
 \mathbf{R}^3 상의 두 벡터 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 는 선형독립이지만, \mathbf{R}^3 을 생성하지 않으므로

기저가 아님을 확인해 보자.

풀 ② (1) 두 벡터를 선형결합의 형태로 만들면

$$a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

따라서 $a_1 = a_2 = 0$ 이다.

그러므로 두 벡터는 선형독립이다.

(2) 두 벡터
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 는 〈그림 6.11〉과 같이 나타내는데, 두 번째 성분이

모두 0이므로 \mathbb{R}^3 을 생성하지 않는다. 즉, \mathbb{R}^3 상의 모든 벡터들을 생성할 수 없다. 그러므로 두 벡터 \mathbb{V}_1 과 \mathbb{V}_2 는 (1)과 (2)에 의해 \mathbb{R}^3 의 기저가 아니다.

〈그림 6.11〉 R³상의 두 벡터

58

생성, 기저, 차원

선형종속이면서 R^2 을 생성하는 경우를 살펴보자.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

풀의 (1) 선형결합의 형태로 만들면

$$a_1\begin{bmatrix} 1\\1 \end{bmatrix} + a_2\begin{bmatrix} 2\\3 \end{bmatrix} + a_3\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

이므로

$$a_1 + 2a_2 + a_3 = 0$$

$$a_1 + 3a_2 = 0$$

따라서 $a_1 = -3$, $a_2 = 1$, $a_3 = 1$ 인 해가 존재하므로 선형종속이다.

$$(2) a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$
로 놓고, 이것을 풀면

$$a_1 + 2a_2 + a_3 = a$$
$$a_1 + 3a_2 = b$$

이것은 무수히 많은 해를 가지는데 a_3 을 임의의 실수 r로 놓으면

$$a_1 = 3a - 2b - 3r$$
$$a_2 = b - a + r$$

따라서 $\langle \text{그림 } 6.12 \rangle$ 와 같이 R^2 상의 주어진 세 벡터들은 R^2 을 생성한다. 덧붙여 말하자면 3개 중 어느 2개 벡터를 잡아도 R^2 을 생성한다.

선형독립은 주어진 벡터들을 선형결합으로 만들 때 영벡터가 나오도록 만들고, 그 식을 풀어서 스칼라값 a_1 , a_2 , a_3 등이 모두 0이 나오는지를 확인하면 됩니다. 벡터공간을 생성하는 것은 임의의 벡터가 주어진 벡터들의 선형결합으로 만들어지는지를 점검하면 됩니다.

네! 그런데 선형독립이면 서도 벡터공간을 생성하지 않은 예가 있나요?

그럼요. 3차원 공간에서 벡터가 2개뿐인 경우인데 (예제 **6**-21)에 나와 있습니다.

그러면 벡터공간을 생성하면서도 선형독립이 아닌 예도 있겠네요? 2차원 공간에 3개의 벡터가 있는 (예제 **6**−22)이 바로 그 경우입니다.

62

생성, 기저, 차원

정의 **⑥** -10 \mid V가 $\textbf{\textit{R}}^n$ 상의 벡터공간일 때 V의 기저가 되는 벡터의 개수를 차원(dimension)이 라고 하며 dim(V)로 나타낸다. 특히 영벡터들로 이루어진 벡터공간의 차원은 0이 다. 만약 V가 유한 기저를 가진다면 $\dim(V) = n$ 으로 나타낸다.

 R^2 상에서 다음과 같은 두 벡터가 주어졌을 경우, 그들이 생성하는 부분공간의 차 워을 구해 보자.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 Θ 앞의 (예제 Θ -17)에서 두 벡터 $\{v_1, v_2\}$ 가 선형독립이라는 것과 두 벡터 가 \mathbb{R}^2 상에서의 어떤 벡터공간 V를 생성할 수 있으므로 $\{v_1, v_2\}$ 가 기저가 되는 것 을 보았다.

63

이 경우에 기저가 되는 벡터의 개수가 2개이므로 $\dim(V) = 2$ 이다.

생성, 기저, 차원

V가 $S = \{v_1, v_2, v_3\}$ 에 의해 생성되는 R^3 의 부분공간이라고 할 때 $\dim(V)$ 를 구해 보자.

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

 $_{1}$ a_{1} , a_{2} , a_{3} 이 임의의 스칼라 값일 때 V의 모든 벡터는 다음과 같은 선형결합을 가진다.

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 = \mathbf{v}$$

여기서 S가 선형종속이고 $v_3 = v_1 + v_2$ 임을 발견할 수 있다. 그러나 $S_1 = \{v_1, v_2\}$ 이 선형독립이고 V를 생성하므로 S_1 이 V에 대한 기저가 된다.

그러므로 dim(V) = 2이다. ■

생성, 기저, 차원

V가 $S = \{v_1, v_2, v_3, v_4\}$ 에 의해 생성되는 R^4 의 부분공간이라고 할 때 $\dim(V)$ 를 구해보자.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 5 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 6 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \ \mathbf{v}_4 = \begin{bmatrix} 0 \\ 4 \\ -1 \\ 5 \end{bmatrix}$$

물의 여기서 $v_3 = -2v_2$ 임을 알 수 있으므로 $S_1 = \{v_1, v_2, v_4\}$ 가 선형독립이고 V를 생성하며, S_1 이 V에 대한 기저가 된다.

따라서 dim(V) = 3이다. ■

벡터공간의 생활속의 응용

- 벡터공간은 공학 등에서의 기하학적 모델링에 매우 중요한 역할을 한다.
- 컴퓨터 그래픽스에 응용된다.
- CAD(컴퓨터를 이용한 설계)에 널리 응용된다.
- 정교한 기계의 제조에 벡터공간의 개념이 응용된다.
- 물리학의 탐구와 구조역학에 많이 활용된다.
- 신경망에서의 변수들을 벡터로 표현하고 또한 벡터 공간에서의 적용에 활용된다.

LINEAR ALGEBRA Chapter 6. 백터공간 66