Bilevel and Multi-objective Optimization of Electricity Price Setting with Carbon Emission Consideration

Vikas Garg

Committee Chair: Dr Yongjia Song

Committee Members: Dr Scott J. Mason & Dr Michael Carbajales-Dale

Industrial Engineering, Clemson University

Vikas Garg Thesis Defense June 22nd , 2020

Why This Study?¹

- Electricity ↑ from 4,000 to 5,500 billion kWh.
- Coal Contribution ↓ 24% to 13% & Gas ↓ from 37% to 36%.
- Coal Produces 0.74 lbs CO₂/kWh & Gas 0.40.
- Estimated Emissions in 2050 from Coal 530 billion lbs & from Gas 790 billion lbs.
- Total Emissions 1,320 billion lbs.

Electricity generation from selected fuels (AEO2020 Reference case)

billion kilowatthours

What if Coal Replaced by Gas:

- Total Emission Can be ↓ to 1,078, 18.33% reduction.
- How Performance of Electricity Sector is Affected?

Why This Study?¹

- Electricity ↑ from 4,000 to 5,500 billion kWh.
- Coal Contribution ↓ 24% to 13% & Gas ↓ from 37% to 36%.
- Coal Produces 0.74 lbs CO₂/kWh & Gas 0.40.
- Estimated Emissions in 2050 from Coal 530 billion lbs & from Gas 790 billion lbs.
- Total Emissions 1,320 billion lbs.

Electricity generation from selected fuels (AEO2020 Reference case)

billion kilowatthours

What if Coal Replaced by Gas:

- Total Emission Can be ↓ to 1,078, 18.33% reduction.
- How Performance of Electricity Sector is Affected?

Emissions in Electricity Sector

 Transportation (29%) and Electricity Production (28%) Major Source of Emissions².

- Fossil Fuel Emission Contributed by Power Generation Sector are 42.50% (Li et al.,2018).
- Manufacturing Sector alone Contributes 38% Emissions due to Electricity Consumption (May et al.,2015).

Vikas Garg Thesis Defense June 22nd , 2020

Emissions in Electricity Sector

 Transportation (29%) and Electricity Production (28%) Major Source of Emissions².

- Fossil Fuel Emission Contributed by Power Generation Sector are 42.50% (Li et al.,2018).
- Manufacturing Sector alone Contributes 38% Emissions due to Electricity Consumption (May et al.,2015).

Vikas Garg Thesis Defense June 22nd , 2020

Electricity Consumption & Prices

- Industrial Customers Consume 61% Energy from Electricity³.
- Electricity Price Volatile, Increased by Approx. 20% since 2000⁴.

4https://www.eia.gov/totalenergy/data/annual/showtext.php?t=pt=0810 = + 4 = + 2 + 9 q @

Vikas Garg Thesis Defense June 22nd, 20

³https://iac.university/download

Electricity Consumption & Prices

- Industrial Customers Consume 61% Energy from Electricity³.
- Electricity Price Volatile, Increased by Approx. 20% since 2000⁴.

Vikas Garg Thesis Defense June 22nd, 20

³https://iac.university/download

⁴https://www.eia.gov/totalenergy/data/annual/showtext.php?t=ptb0810 = > < = > 0 0 0

Demand Response Management

Figure: DR Tools

```
Demand Response Programs
→ Incentive Based Programs (IBP)
   →Classical
      → Direct Control
      Interruptible/Curtailable Programs
   →Market Based
      → Demand Bidding
      →Emergency DR
      → Capacity Market
      Ancillary services market
→ Price Based Programs (PBP)
   →Time of Use (TOU)
   →Critical Peak Pricing (CPP)
   →Extreme Day CPP (ED-CPP)
   → Extreme Day Pricing (EDP)
   → Real Time Pricing (RTP)
```

Demand Response Management

Figure: DR Tools

Figure: TOU vs TLOU

- Should the Retailer Consider Emissions in Electricity Price Setting?
- Output
 Output
 Output
 Description
 Output
 Description
 Output
 Description
 Description
- Emission Reduced with the Choice of Fuels & Price Change
- Emissions Impact Customers' Consumption Cost & Demand Shifting?

Vikas Garg Thesis Defense June 22nd, 20

- Should the Retailer Consider Emissions in Electricity Price Setting?
- How Weighted Profits are affected?
- Emission Reduced with the Choice of Fuels & Price Change?
- © Emissions Impact Customers' Consumption Cost & Demand Shifting?

- Should the Retailer Consider Emissions in Electricity Price Setting?
- Output
 <p
- Emission Reduced with the Choice of Fuels & Price Change?
- Emissions Impact Customers' Consumption Cost & Demand Shifting?

- Should the Retailer Consider Emissions in Electricity Price Setting?
- 4 How Weighted Profits are affected?
- Emission Reduced with the Choice of Fuels & Price Change?
- Emissions Impact Customers' Consumption Cost & Demand Shifting?

Figure: Demand Profiles & Shifting

Vikas Garg Thesis Defense June 22nd , 2020

Structure of the Problem

Leader's Problem:

maximize:- Profits of Retailer

minimize:- Carbon emissions

Subject to:

- 1. Electricity Demand Constraints
- 2. Number of price change allowed constraint
- 3. TLOU price setting constraints

Follower's Problem

minimize Electricity Consumption Cost and Inconvenience Cost Subject to:

- 1. Energy requirement constraint
- 2. Constraint for energy bought from manufacturer and competitor
- 3. TLOU electricity consumption capacity constraint

Vikas Garg Thesis Defense June 22nd, 2020 7/4

Sets & Parameters

Sets

- K Set of different customers, indexed on k
- T Set of time periods (hr) of a day, indexed on t
- Set of different types of fuel sources available, indexed on s

Parameters

- c. Unit cost of fuel s used
- Maximum number of price changes allowed
- ξ_{kt} Inconvenience cost of the customers for shifting current demand
- D_k Daily current demand (kWh/day) of electricity from the customer k
- d_{kt} Current demand profile (kWh/hour) of customer k during time t
- ω_{kt} Maximum demand shifting capacity of customer k during time t
- α_s Unit electricity (kWh/unit fuel) generated per fuel source s
- β_s Unit CO_2 emissions (lbs/fuel source) produced by fuel source s
- m Maximum price difference allowed between two successive prices
- γ_t Unit prices offered by the competitor.

Sets & Parameters

Sets

- K Set of different customers, indexed on k
- T Set of time periods (hr) of a day, indexed on t
- S Set of different types of fuel sources available, indexed on s

Parameters

c_s Unit cost of fuel s used

Vikas Garg

- Maximum number of price changes allowed
- ξ_{kt} Inconvenience cost of the customers for shifting current demand
- D_k Daily current demand (kWh/day) of electricity from the customer k
- d_{kt} Current demand profile (kWh/hour) of customer k during time t
- ω_{kt} Maximum demand shifting capacity of customer k during time t
- α_s Unit electricity (kWh/unit fuel) generated per fuel source s
- β_s Unit CO_2 emissions (lbs/fuel source) produced by fuel source s
- m Maximum price difference allowed between two successive prices

Thesis Defense

 γ_t Unit prices offered by the competitor.

Decision Variables

- Leader's Problem Decision Variable
- Π_t^{ℓ} Lower unit price (¢/kWh) set in time t
- Π_t^h Higher unit price (¢/kWh) set in time t
- X_t Amount of electricity (kWh/hour) generated in time t
- Y_{st} Amount of fuel s used in time t
- P_t Binary variable, 1 if there is a price change between periods t and t+1 and 0 otherwise
- Ψ Limit set up by the retailer upto which lower prices will be applicable

Follower's Problem Decision Variable

- W_{kt}^{ℓ} Energy consumption at lower price in time t (kWh) by customer k
- W_{kt}^h Energy consumption at higher price in time t (kWh) by customer k
- V_{kt}^+ Demand shifted (kWh/hour) upwards from the current demand profile by cus tomer k in time t
- V_{kt}^- Demand shifted (kWh/hour) downwards from the current demand profile by customer k in time t
- U_{kt} Electricity (kWh/hour) bought from retailer's competitor in time t by customer k

Decision Variables

Leader's Problem Decision Variable

- Π_t^{ℓ} Lower unit price (¢/kWh) set in time t
- Π_t^h Higher unit price (ϕ/kWh) set in time t
- X_t Amount of electricity (kWh/hour) generated in time t
- Y_{st} Amount of fuel s used in time t
- P_t Binary variable, 1 if there is a price change between periods t and t+1 and 0 otherwise
- Ψ Limit set up by the retailer upto which lower prices will be applicable

Follower's Problem Decision Variable

- W_{kt}^{ℓ} Energy consumption at lower price in time t (kWh) by customer k
- W_{kt}^h Energy consumption at higher price in time t (kWh) by customer k
- V_{kt}^+ Demand shifted (kWh/hour) upwards from the current demand profile by customer k in time t
- V_{kt}^- Demand shifted (kWh/hour) downwards from the current demand profile by customer k in time t
- U_{kt} Electricity (kWh/hour) bought from retailer's competitor in time t by customer k

TLOU Price Setting

 $\left| \Pi_t^{\ell} - \Pi_{t+1}^{\ell} \right| \le \mathfrak{m} \times P_t \qquad \forall t \in T \ni t < |T|$

Profits:

$$\begin{aligned} \text{Max } & \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi, \Psi) \right] \\ & - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \end{aligned}$$

- Emissions: Min $\sum_{t \in T} \sum_{s \in S} \beta_s \times Y_{st}$
- Demand Satisfaction

$$\sum_{k \in K} \left[W_{kt}^{*,\ell}(\Pi, \Psi) + W_{kt}^{*,h}(\Pi, \Psi) \right] = X_t \quad \forall t \in T$$

Electricity Generation

$$\sum_{s \in S} \alpha_s \times Y_{st} = X_t \qquad \forall t \in T$$

Maximum Price Changes

$$\sum_{t\in T} P_t \leq \mathfrak{N}$$

Non-Negative and Binary Variable

$$\Pi_t^{\ell}, \Pi_t^{h}, X_t, Y_{st} \ge 0 \qquad \forall t, s$$

TLOU Price Setting

$$\left| \Pi_t^{\ell} \! - \! \Pi_{t+1}^{\ell} \right| \! \leq \! \mathfrak{m} \! \times \! P_t \qquad \forall t \! \in \! T \! \ni \! t \! < \! \mid \! T \mid$$

Profits:

$$\begin{aligned} \text{Max } & \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^\ell \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^h \times W_{kt}^{*,h}(\Pi, \Psi) \right] \\ & - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \end{aligned}$$

 $\left|\Pi_t^h \!-\! \Pi_{t+1}^h\right| \! \leq \! \mathfrak{m} \! \times \! P_t \qquad \forall t \! \in \! T \! \ni \! t \! < \! |T|$

- Emissions: Min $\sum_{t \in T} \sum_{s \in S} \beta_s \times Y_{st}$
- Subject To:
 Demand Satisfaction

$$\sum_{k \in K} \left[W_{kt}^{*,\ell}(\Pi, \Psi) + W_{kt}^{*,h}(\Pi, \Psi) \right] = X_t \quad \forall t \in T$$

Electricity Generation

$$S \in S \alpha_s \times Y_{st} = X_t$$
 $\forall t \in T$

$$\Pi_t^{\ell} \leq \Pi_t^h \qquad \forall t \in T$$

Maximum Price Changes

$$\sum_{t\in T} P_t \leq \mathfrak{N}$$

Non-Negative and Binary Variable

$$\Pi_t^\ell, \Pi_t^h, X_t, Y_{st} \ge 0 \qquad \forall t, s$$

TLOU Price Setting

$$\left| \Pi_t^{\ell} - \Pi_{t+1}^{\ell} \right| \le \mathfrak{m} \times P_t \qquad \forall t \in T \ni t < |T|$$

Profits:

$$\begin{aligned} \text{Max } & \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi, \Psi) \right] \\ & - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \end{aligned}$$

$$\left|\Pi_t^h - \Pi_{t+1}^h\right| \le \mathfrak{m} \times P_t \qquad \forall t \in T \ni t < |T|$$

- Emissions: Min $\sum_{t \in T} \sum_{s \in S} \beta_s \times Y_{st}$
- Subject To: Demand Satisfaction

$$\sum_{k \in K} \left[W_{kt}^{*,\ell}(\Pi, \Psi) + W_{kt}^{*,h}(\Pi, \Psi) \right] = X_t \quad \forall t \in T$$

$$\sum_{t\in T} P_t \leq \mathfrak{N}$$

Electricity Generation

$$S \in S \alpha_s \times Y_{st} = X_t$$
 $\forall t \in S$

Vikas Garg Thesis Defense

TLOU Price Setting

$$\left| \Pi_t^\ell \! - \! \Pi_{t+1}^\ell \right| \! \leq \! \mathfrak{m} \! \times \! P_t \qquad \forall t \! \in \! T \! \ni \! t \! < \! \mid \! T \! \mid$$

Profits:

$$\begin{aligned} \text{Max } & \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi, \Psi) \right] \\ & - \sum_{s \in S} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \end{aligned} \qquad \forall t \in \mathcal{T} \ni t < |\mathcal{T}|$$

- Emissions: Min $\sum_{t \in T} \sum_{s \in S} \beta_s \times Y_{st}$
- Subject To:

Demand Satisfaction

$$\sum\nolimits_{k \in K} \left[W_{kt}^{*,\ell}(\Pi,\Psi) + W_{kt}^{*,h}(\Pi,\Psi) \right] = X_t \quad \forall t \in T$$

Electricity Generation

$$\sum_{s \in S} \alpha_s \times Y_{st} = X_t \qquad \forall t \in T$$

Maximum Price Changes

$$\sum_{t\in T} P_t \leq \mathfrak{N}$$

Non-Negative and Binary Variable

$$\Pi_t^\ell, \Pi_t^h, X_t, Y_{st} \ge 0 \qquad \forall t, s$$

June 22nd . 2020

TLOU Price Setting

$$\left| \Pi_t^\ell \! - \! \Pi_{t+1}^\ell \right| \! \leq \! \mathfrak{m} \! \times \! P_t \qquad \forall t \! \in \! T \! \ni \! t \! < \! \mid \! T \mid$$

Profits:

$$\begin{aligned} \text{Max } & \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi, \Psi) \right] \\ & - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \end{aligned}$$

$$\left|\Pi_t^h - \Pi_{t+1}^h\right| \le \mathfrak{m} \times P_t \qquad \forall t \in T \ni t < |T|$$

 $\forall t \in T$

- **Emissions:** Min $\sum_{t \in T} \sum_{s \in S} \beta_s \times Y_{st}$
- Subject To:

Demand Satisfaction

$$\sum\nolimits_{k \in K} \left[W_{kt}^{*,\ell}(\Pi,\Psi) + W_{kt}^{*,h}(\Pi,\Psi) \right] = X_t \quad \forall t \in T$$

 $\Pi_{\star}^{\ell} < \Pi_{\star}^{h}$

$$\sum_{t\in T} P_t \leq \mathfrak{N}$$

Electricity Generation

$$\sum_{s \in S} \alpha_s \times Y_{st} = X_t$$
 $\forall t$

$$\forall t \in T$$

$$\Pi_t^{\ell}, \Pi_t^h, X_t, Y_{st} \ge 0$$
 $\forall t, s$

TLOU Price Setting

$$\left| \Pi_t^{\ell} \! - \! \Pi_{t+1}^{\ell} \right| \! \leq \! \mathfrak{m} \times P_t \qquad \forall t \! \in \! T \! \ni \! t \! < \! |T|$$

Profits:

$$\begin{aligned} \text{Max } & \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi, \Psi) \right] \\ & - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \end{aligned}$$

$$\left|\Pi_t^h - \Pi_{t+1}^h\right| \le \mathfrak{m} \times P_t \qquad \forall t \in T \ni t < |T|$$

 $\forall t \in T$

- Emissions: Min $\sum_{t \in T} \sum_{s \in S} \beta_s \times Y_{st}$
- Subject To:

Demand Satisfaction

$$\sum\nolimits_{k \in K} \left[W_{kt}^{*,\ell}(\Pi,\Psi) + W_{kt}^{*,h}(\Pi,\Psi) \right] = X_t \quad \forall t \in T$$

Maximum Price Changes

$$\sum_{t\in T} P_t \leq \mathfrak{N}$$

 $\Pi^{\ell}_{\star} < \Pi^{h}_{\star}$

Electricity Generation

$$\sum_{s \in S} \alpha_s \times Y_{st} = X_t$$

$$\forall t \in T$$

Non-Negative and Binary Variable

$$\Pi_t^{\ell}, \Pi_t^{h}, X_t, Y_{st} \ge 0 \qquad \forall t, s$$

June 22nd , 2020

TLOU Price Setting

$$\left|\Pi_t^\ell - \Pi_{t+1}^\ell\right| \le \mathfrak{m} \times P_t \qquad \forall t \in T \ni t < |T|$$

Profits:

$$\begin{aligned} \text{Max } & \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi, \Psi) \right] \\ & - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \end{aligned}$$

 $\left| \Pi_t^h - \Pi_{t+1}^h \right| \le \mathfrak{m} \times P_t \qquad \forall t \in T \ni t < |T|$

 $\forall t \in T$

- Emissions: Min $\sum_{t \in T} \sum_{s \in S} \beta_s \times Y_{st}$
- Subject To:

Demand Satisfaction

$$\sum_{k \in K} \left[W_{kt}^{*,\ell}(\Pi, \Psi) + W_{kt}^{*,h}(\Pi, \Psi) \right] = X_t \quad \forall t \in T$$

Maximum Price Changes

$$\sum_{t\in T} P_t \leq \mathfrak{N}$$

 $\prod_{t=1}^{\ell} < \prod_{t=1}^{h}$

Electricity Generation

$$\sum_{s \in S} \alpha_s \times Y_{st} = X_t \qquad \forall t \in T$$

Non-Negative and Binary Variable

$$\Pi_t^{\ell}, \Pi_t^{h}, X_t, Y_{st} \ge 0$$
 $\forall t, s$

• Objective Function:

$$\begin{aligned} & \text{Min} \quad f(\Pi^*, \Psi^*) = \\ & \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{\ell} + \Pi_t^{h} \times W_{kt}^{h} + \gamma_t \times U_{kt} \right] + \sum_{t \in \mathcal{T}} \xi_{kt \times V_{kt}^{+}} \end{aligned}$$

 Subject To: Hourly Demand

$$W_{kt}^{\ell} + W_{kt}^{h} + V_{kt}^{-} + U_{kt} = V_{kt}^{+} + d_{kt}$$
 $\forall t \in T$

Daily Demand

$$\sum_{t \in T} \left[W_{kt}^{\ell} + W_{kt}^{h} + U_{kt} \right] = D_{kt}^{\ell}$$

 Maximum Shifting Capability of Customer k:

$$V_{kt}^{+} \leq \omega_{kt} \qquad \forall t \in T$$

Maximum Consumption at Lower Price

$$W_{kt}^{\ell} \leq \Psi \qquad \forall t \in T$$

Non-Negativity Variables:

$$W_{kt}^{\ell}, W_{kt}^{h}, V_{kt}^{+}, V_{kt}^{-}, U_{kt} \ge 0$$
 $\forall t$

Objective Function:

$$\begin{split} & \text{Min} \quad f(\Pi^*, \Psi^*) = \\ & \sum_{t \in \mathcal{T}} \left[\Pi^\ell_t \times W^\ell_{kt} + \Pi^h_t \times W^h_{kt} + \gamma_t \times U_{kt} \right] + \sum_{t \in \mathcal{T}} \xi_{kt \times V^+_{tx}} \end{split}$$

Subject To: Hourly Demand

$$W_{kt}^{\ell} + W_{kt}^{h} + V_{kt}^{-} + U_{kt} = V_{kt}^{+} + d_{kt} \qquad \forall t \in T$$

Daily Demand

$$\sum_{t \in \mathcal{T}} \left[W_{kt}^{\ell} + W_{kt}^{h} + U_{kt} \right] = D_{k}$$

 Maximum Shifting Capability of Customer k:

$$V_{kt}^+ \le \omega_{kt}$$
 $\forall t \in T$

Maximum Consumption at Lower Price

$$W_{kt}^{\ell} \leq \Psi \qquad \forall t \in T$$

Non-Negativity Variables:

$$W_{kt}^{\ell}, W_{kt}^{h}, V_{kt}^{+}, V_{kt}^{-}, U_{kt} \ge 0$$
 $\forall t$

Vikas Garg Thesis Defense June 22nd, 2020 1

• Objective Function:

$$\begin{split} & \text{Min} \quad f(\Pi^*, \Psi^*) = \\ & \sum_{t \in \mathcal{T}} \left[\Pi_t^\ell \times W_{kt}^\ell + \Pi_t^h \times W_{kt}^h + \gamma_t \times U_{kt} \right] + \sum_{t \in \mathcal{T}} \xi_{kt} \times V_{tr}^+ \end{split}$$

Subject To: Hourly Demand

$$W_{kt}^{\ell} \! + \! W_{kt}^{h} \! + \! V_{kt}^{-} \! + \! U_{kt} \! = \! V_{kt}^{+} \! + \! d_{kt} \qquad \forall t \! \in \! T$$

Daily Demand

$$\sum\nolimits_{t \in T} {\left[{W_{kt}^\ell {\rm{ + }}W_{kt}^h {\rm{ + }}U_{kt}} \right]} {\rm{ = }}D_k$$

 Maximum Shifting Capability of Customer k:

$$V_{kt}^+ \le \omega_{kt}$$
 $\forall t \in T$

Maximum Consumption at Lower Price

$$W_{kt}^\ell {\leq} \Psi \qquad \forall t {\in} T$$

Non-Negativity Variables:

$$W_{kt}^{\ell}, W_{kt}^{h}, V_{kt}^{+}, V_{kt}^{-}, U_{kt} \ge 0$$
 $\forall t$

June 22nd , 2020

• Objective Function:

$$\begin{aligned} & \text{Min} \quad f(\Pi^*, \Psi^*) = \\ & \sum_{t \in \mathcal{T}} \left[\Pi^\ell_t \times W^\ell_{kt} + \Pi^h_t \times W^h_{kt} + \gamma_t \times U_{kt} \right] + \sum_{t \in \mathcal{T}} \xi_{kt \times V^{h}_{t,t}} \end{aligned}$$

Subject To: Hourly Demand

$$W_{kt}^{\ell} \! + \! W_{kt}^{h} \! + \! V_{kt}^{-} \! + \! U_{kt} \! = \! V_{kt}^{+} \! + \! d_{kt} \qquad \forall t \! \in \! T$$

Daily Demand

$$\sum\nolimits_{t \in T} {\left[{W_{kt}^\ell {\rm{ + }}W_{kt}^h {\rm{ + }}U_{kt}} \right]} {\rm{ = }}D_k$$

 Maximum Shifting Capability of Customer k:

$$V_{kt}^{+} \leq \omega_{kt} \qquad \forall t \in T$$

Maximum Consumption at Lower Price

$$W_{kt}^{\ell} \leq \Psi \qquad \forall t \in T$$

Non-Negativity Variables:

$$W_{kt}^{\ell}, W_{kt}^{h}, V_{kt}^{+}, V_{kt}^{-}, U_{kt} \ge 0$$
 $\forall t$

Vikas Garg Thesis Defense

• Objective Function:

$$\mathsf{Min} \quad f(\Pi^*, \Psi^*) =$$

$$\sum\nolimits_{t \in \mathcal{T}} {\left[{\Pi _t^\ell {\rm{ \times }} W_{kt}^\ell {\rm{ + }} \Pi _t^h {\rm{ \times }} W_{kt}^h {\rm{ + }} \gamma _t {\rm{ \times }} U_{kt}} \right]} + \sum\nolimits_{t \in \mathcal{T}} {{\xi _{kt \times }} V_{kt}^+ }$$

 Subject To: Hourly Demand

$$W_{kt}^{\ell} \! + \! W_{kt}^{h} \! + \! V_{kt}^{-} \! + \! U_{kt} \! = \! V_{kt}^{+} \! + \! d_{kt} \qquad \forall t \! \in \! T$$

Daily Demand

$$\sum\nolimits_{t \in T} {\left[{W_{kt}^\ell \! + \! W_{kt}^h \! + \! U_{kt}} \right]} \! = \! D_k$$

 Maximum Shifting Capability of Customer k:

$$V_{kt}^{+} \leq \omega_{kt} \quad \forall t \in T$$

Maximum Consumption at Lower Price

$$W_{kt}^{\ell} \leq \Psi \quad \forall t \in T$$

Non-Negativity Variables:

$$W_{kt}^{\ell}, W_{kt}^{h}, V_{kt}^{+}, V_{kt}^{-}, U_{kt} \ge 0$$
 $\forall t$

Vikas Garg Thesis Defense

• Objective Function:

Min
$$f(\Pi^*, \Psi^*)=$$

$$\sum\nolimits_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{\ell} + \Pi_t^{h} \times W_{kt}^{h} + \gamma_t \times U_{kt} \right] + \sum\nolimits_{t \in \mathcal{T}} \xi_{kt \times V_{kt}^{+}}$$

Subject To: Hourly Demand

$$W_{kt}^{\ell} \! + \! W_{kt}^{h} \! + \! V_{kt}^{-} \! + \! U_{kt} \! = \! V_{kt}^{+} \! + \! d_{kt} \qquad \forall t \! \in \! T$$

Daily Demand

$$\sum\nolimits_{t \in T} {\left[{W_{kt}^\ell \! + \! W_{kt}^h \! + \! U_{kt}} \right] \! = \! D_k}$$

 Maximum Shifting Capability of Customer k:

$$V_{kt}^{+} \leq \omega_{kt} \quad \forall t \in T$$

Maximum Consumption at Lower Price

$$W_{kt}^{\ell} \leq \Psi \quad \forall t \in T$$

Non-Negativity Variables:

$$W_{kt}^{\ell}, W_{kt}^{h}, V_{kt}^{+}, V_{kt}^{-}, U_{kt} \ge 0$$
 $\forall t$

KKT Conditions

Complementary Slackness

• Follower's Dual

$$\begin{split} \mu_{kt}^{a} + \mu_{k}^{b} - \mu_{kt}^{c} \leq & \Pi_{t}^{\ell} & \forall t \in T \quad [W_{kt}^{\ell}] \\ \\ \mu_{kt}^{a} + \mu_{k}^{b} \leq & \Pi_{t}^{h} & \forall t \in T \quad [W_{kt}^{h}] \\ \\ -\mu_{kt}^{a} - \mu_{kt}^{d} \leq & \xi_{kt} & \forall t \in T \quad [V_{kt}^{+}] \\ \\ \mu_{kt}^{a} \leq & 0 & \forall t \in T \quad [V_{kt}^{-}] \\ \\ \\ \mu_{kt}^{a} + \mu_{k}^{b} \leq & \gamma_{t} & \forall t \in T \quad [U_{kt}] \end{split}$$

4□ > 4回 > 4 = > 4 = > = 90

KKT Conditions

Complementary Slackness

Follower's Dual

$$\boldsymbol{\mu}_{kt}^{\mathbf{a}} \!\!+\! \boldsymbol{\mu}_{k}^{\mathbf{b}} \!-\! \boldsymbol{\mu}_{kt}^{\mathbf{c}} \! \leq \! \boldsymbol{\Pi}_{t}^{\ell} \qquad \forall t \! \in \! \mathcal{T} \quad [\boldsymbol{W}_{kt}^{\ell}]$$

$$\mu_{kt}^a \!\!+\! \mu_k^b \! \leq \! \Pi_t^h \qquad \qquad \forall t \! \in \! T \quad [W_{kt}^h]$$

$$-\mu_{kt}^{a}\!-\!\mu_{kt}^{d}\!\leq\!\xi_{kt} \qquad \forall t\!\in\!T \quad [V_{kt}^{+}]$$

$$\mu_{kt}^a \leq 0$$
 $\forall t \in T$ $[V_{kt}^-]$

$$\mu_{kt}^a + \mu_k^b \le \gamma_t$$
 $\forall t \in T$ $[U_{kt}]$

$$(\Psi - W_{kt}^{\ell}) \times \mu_{kt}^{\mathsf{c}} = 0 \qquad \forall k \in \mathcal{K}, t \in \mathcal{T}$$

$$(\omega_{kt} - V_{kt}^+) \times \mu_{kt}^d = 0 \qquad \forall k \in K, t \in T$$

$$(\Pi_t^\ell \!-\! \mu_{kt}^a \!-\! \mu_k^b \!+\! \mu_{kt}^c) \!\times\! W_{kt}^\ell \!=\! 0 \qquad \forall k \!\in\! K, t \!\in\! T$$

$$(\Pi_t^h\!-\!\mu_{kt}^a\!-\!\mu_k^b)\!\times\!W_{kt}^h\!\!=\!\!0 \qquad \forall k\!\!\in\!K, t\!\in\!T$$

$$(\xi_{kt} + \mu_{kt}^a + \mu_{kt}^d) \times V_{kt}^+ = 0$$
 $\forall k \in K, t \in T$

Vikas Garg Thesis Defense June 22nd, 2020 1

Linearize KKT Conditions

Non-Linear Complementary Slackness Conditions.

Linearized using BIG-M method.

$$\begin{split} M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq & \xi_{kt} + \mu_{kt}^{\mathfrak{g}} + \mu_{kt}^{\mathfrak{g}}, \quad \forall_{kt}^{+} \leq \omega_{kt} \times \rho_{kt}^{\mathfrak{g}} \quad \forall k \in \mathcal{K}, t \in T \\ \Psi\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Psi - W_{kt}^{\ell}, \qquad \mu_{kt}^{\mathfrak{G}} \leq M \times \rho_{kt}^{\mathfrak{g}} \\ \qquad \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{f}}) \geq 0 - \mu_{kt}^{\mathfrak{g}}, \qquad \forall_{kt}^{-} \leq d_{kt} \times \rho_{kt}^{\mathfrak{f}} \quad \forall k \in \mathcal{K}, t \in T \\ \\ \omega_{kt} \times (1-\rho_{kt}^{\mathfrak{g}}) \geq \omega_{kt} - V_{kt}^{+}, \qquad \mu_{kt}^{\mathfrak{g}} \leq M \times \rho_{kt}^{\mathfrak{g}} \\ \qquad \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \gamma_{t} - \mu_{kt}^{\mathfrak{g}} - \mu_{k}^{\mathfrak{g}}, \qquad U_{kt} \leq (d_{kt} + \omega_{kt}) \times \rho_{kt}^{\mathfrak{g}} \quad \forall k \in \mathcal{K}, t \in T \\ \\ M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{f}} - \mu_{kt}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq \Psi \times \rho_{kt}^{\mathfrak{G}} \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \forall k \in \mathcal{K}, t \in T \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \forall k \in \mathcal{K}, t \in T \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \forall k \in \mathcal{K}, t \in T \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \forall k \in \mathcal{K}, t \in T \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \forall k \in \mathcal{K}, t \in T \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\mathfrak{g}} - \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad$$

Still Non-Linear due to Decision Variable W

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 差 9 9 (~)

Linearize KKT Conditions

- Non-Linear Complementary Slackness Conditions.
- Linearized using BIG-M method.

$$\begin{split} M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq & \xi_{kt} + \mu_{kt}^{\mathfrak{g}} + \mu_{kt}^{\mathfrak{g}}, \quad \forall_{kt}^{+} \leq \omega_{kt} \times \rho_{kt}^{\mathfrak{g}} \quad \forall k \in K, t \in T \\ \Psi\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Psi - W_{kt}^{\ell}, \qquad \mu_{kt}^{\mathfrak{g}} \leq M\times \rho_{kt}^{\mathfrak{g}} \\ \qquad \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{f}}) \geq 0 - \mu_{kt}^{\mathfrak{g}}, \qquad V_{kt}^{-} \leq d_{kt} \times \rho_{kt}^{\mathfrak{f}} \quad \forall k \in K, t \in T \\ \\ \omega_{kt} \times (1-\rho_{kt}^{\mathfrak{g}}) \geq \omega_{kt} - V_{kt}^{+}, \qquad \mu_{kt}^{\mathfrak{g}} \leq M\times \rho_{kt}^{\mathfrak{g}} \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \gamma_{t} - \mu_{kt}^{\mathfrak{g}} - \mu_{k}^{\mathfrak{g}}, \qquad U_{kt} \leq (d_{kt} + \omega_{kt}) \times \rho_{kt}^{\mathfrak{g}} \quad \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\ell} - \mu_{kt}^{\mathfrak{g}} - \mu_{k}^{\mathfrak{g}} + \mu_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq \Psi\times \rho_{kt}^{\mathfrak{g}} \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\ell} - \mu_{kt}^{\mathfrak{g}} - \mu_{k}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq \Psi\times \rho_{kt}^{\mathfrak{g}} \\ \qquad \qquad M\times(1-\rho_{kt}^{\mathfrak{g}}) \geq \Pi_{t}^{\ell} - \mu_{kt}^{\mathfrak{g}} - \mu_{k}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^{\mathfrak{g}}, \qquad W_{kt}^{\mathfrak{g}} \leq (d_{kt} + \omega_{kt} -$$

Still Non-Linear due to Decision Variable Wariable

Used Bi-Sectional Search for Optimum W.

4 D > 4 D > 4 E > 4 E > E 990

Linearize KKT Conditions

- Non-Linear Complementary Slackness Conditions.
- Linearized using BIG-M method.

$$\begin{split} M\times(1-\rho_{kt}^g) \geq &\xi_{kt} + \mu_{kt}^g + \mu_{kt}^d, \quad V_{kt}^+ \leq \omega_{kt} \times \rho_{kt}^g \quad \forall k \in K, t \in T \\ \Psi\times(1-\rho_{kt}^g) \geq \Psi - W_{kt}^\ell, \qquad \mu_{kt}^c \leq M \times \rho_{kt}^g \\ \qquad \qquad M\times(1-\rho_{kt}^f) \geq 0 - \mu_{kt}^g, \qquad V_{kt}^- \leq d_{kt} \times \rho_{kt}^f \quad \forall k \in K, t \in T \\ \\ \omega_{kt} \times (1-\rho_{kt}^b) \geq \omega_{kt} - V_{kt}^+, \qquad \mu_{kt}^d \leq M \times \rho_{kt}^b \\ \qquad \qquad M\times(1-\rho_{kt}^g) \geq \gamma_t - \mu_{kt}^a - \mu_k^b, \qquad U_{kt} \leq (d_{kt} + \omega_{kt}) \times \rho_{kt}^g \quad \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b + \mu_{kt}^c, \qquad W_{kt}^\ell \leq \Psi \times \rho_{kt}^c \\ \qquad M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^\ell \leq \Psi \times \rho_{kt}^c \\ \qquad M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^\ell - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^b - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T \\ \\ M\times(1-\rho_{kt}^g) \geq \Gamma_t^b - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \qquad W_{kt}^b \leq (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d,$$

Still Non-Linear due to Decision Variable Ψ

Used Bi-Sectional Search for Optimum W

4 D F 4 D F 4 D F 4 D F 9 9 9

Linearize KKT Conditions

- Non-Linear Complementary Slackness Conditions.
- Linearized using BIG-M method.

$$M \times (1 - \rho_{kt}^e) \ge \xi_{kt} + \mu_{kt}^a + \mu_{kt}^d, \qquad V_{kt}^+ \le \omega_{kt} \times \rho_{kt}^e \qquad \forall k \in K, t \in T$$

$$\Psi\!\times\!(1\!-\!\rho_{kt}^{\mathit{a}})\!\!\geq\!\!\Psi\!-\!W_{kt}^{\ell},\qquad\qquad \mu_{kt}^{\mathit{c}}\!\leq\!\!M\!\times\!\rho_{kt}^{\mathit{a}}$$

$$M \times (1 - \rho_{kt}^f) \ge 0 - \mu_{kt}^a, \qquad V_{kt}^- \le d_{kt} \times \rho_{kt}^f \qquad \forall k \in K, t \in T$$

$$\omega_{kt} \times (1 - \rho_{kt}^b) \ge \omega_{kt} - V_{kt}^+, \qquad \mu_{kt}^d \le M \times \rho_{kt}^b$$

$$M \times (1 - \rho_{kt}^{g}) \ge \gamma_t - \mu_{kt}^{a} - \mu_{k}^{b}, \qquad U_{kt} \le (d_{kt} + \omega_{kt}) \times \rho_{kt}^{g} \qquad \forall k \in K, t \in T$$

$$\label{eq:matter_matter_matter} \textit{M}\!\times\!(1\!-\!\rho_{\textit{kt}}^{\textit{c}})\!\geq\! \Pi_{\textit{t}}^{\ell}\!-\!\mu_{\textit{kt}}^{\textit{a}}\!-\!\mu_{\textit{k}}^{\textit{b}}\!+\!\mu_{\textit{kt}}^{\textit{c}}, \qquad \textit{W}_{\textit{kt}}^{\ell}\!\leq\! \Psi\!\times\!\rho_{\textit{kt}}^{\textit{c}}$$

$$M \times (1 - \rho_{kt}^d) \ge \Pi_t^h - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^h \le (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T$$

- Still Non-Linear due to Decision Variable Ψ .
- Used Bi-Sectional Search for Optimum Ψ

Linearize KKT Conditions

- Non-Linear Complementary Slackness Conditions.
- Linearized using BIG-M method.

$$M \times (1 - \rho_{kt}^e) \ge \xi_{kt} + \mu_{kt}^a + \mu_{kt}^d, \qquad V_{kt}^+ \le \omega_{kt} \times \rho_{kt}^e \qquad \forall k \in K, t \in T$$

$$\Psi \times (1 - \rho_{kt}^{a}) \ge \Psi - W_{kt}^{\ell}, \qquad \qquad \mu_{kt}^{c} \le M \times \rho_{kt}^{a}$$

$$M \times (1 - \rho_{kt}^f) \ge 0 - \mu_{kt}^a, \qquad V_{kt}^- \le d_{kt} \times \rho_{kt}^f \qquad \forall k \in K, t \in T$$

$$\omega_{kt} \times (1 - \rho_{kt}^b) \ge \omega_{kt} - V_{kt}^+, \qquad \mu_{kt}^d \le M \times \rho_{kt}^b$$

$$M \times (1 - \rho_{kt}^{\mathbf{g}}) \geq \gamma_t - \mu_{kt}^{\mathbf{a}} - \mu_k^{\mathbf{b}}, \qquad U_{kt} \leq (d_{kt} + \omega_{kt}) \times \rho_{kt}^{\mathbf{g}} \qquad \forall k \in K, t \in T$$

$$\mathbf{M} \times (1 - \boldsymbol{\rho}_{kt}^{\mathbf{c}}) \! \geq \! \boldsymbol{\Pi}_{t}^{\ell} - \boldsymbol{\mu}_{kt}^{\mathbf{a}} \! - \! \boldsymbol{\mu}_{k}^{b} \! + \! \boldsymbol{\mu}_{kt}^{\mathbf{c}}, \qquad \boldsymbol{W}_{kt}^{\ell} \! \leq \! \boldsymbol{\Psi} \! \times \! \boldsymbol{\rho}_{kt}^{\mathbf{c}}$$

$$M \times (1 - \rho_{kt}^d) \ge \Pi_t^h - \mu_{kt}^a - \mu_k^b, \qquad W_{kt}^h \le (d_{kt} + \omega_{kt} - \Psi) \times \rho_{kt}^d, \forall k \in K, t \in T$$

- Still Non-Linear due to Decision Variable Ψ .
- Used Bi-Sectional Search for Optimum Ψ .

Vikas Garg Thesis Defense June 22nd 2020 13 / 40

Experiments Setup

- Aim to Compare Models When Emissions Considered & When Not.
 - With CE: Model With Consideration of Emissions
 - Without CE: Model Without Consideration of Emissions
- With CE: Objective is the Weighted Sum of Profits & Emissions

$$\max \ \sum_{k \in K} \sum_{t \in T} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi,\Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi,\Psi) \right] - \sum_{s \in S} \sum_{t \in T} c_s \times Y_{st} \\ = \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times \beta_s \times Y_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{s \in S} \sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta \times X_{st} \right] - \left[\sum_{t \in T} \delta$$

Without CE: Objective is the Profits only.

$$\max \ \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^\ell \times W_{kt}^{*,\ell}(\Pi,\Psi) + \Pi_t^h \times W_{kt}^{*,h}(\Pi,\Psi) \right] - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st}$$

Experiments Setup

- Aim to Compare Models When Emissions Considered & When Not.
 - With CE: Model With Consideration of Emissions
 - Without CE: Model Without Consideration of Emissions
- With CE: Objective is the Weighted Sum of Profits & Emissions.

$$\max \ \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^{\ell} \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^{h} \times W_{kt}^{*,h}(\Pi, \Psi) \right] - \sum_{s \in S} \sum_{t \in \mathcal{T}} c_s \times Y_{st} \\ = \boxed{\sum_{s \in S} \sum_{t \in \mathcal{T}} \delta \times \beta_s \times Y_{st}}$$

Without CE: Objective is the Profits only.

$$\max \ \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{T}} \left[\Pi_t^\ell \times W_{kt}^{*,\ell}(\Pi, \Psi) + \Pi_t^h \times W_{kt}^{*,h}(\Pi, \Psi) \right] - \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} c_s \times Y_{st}$$

Optimal Ψ Search

Profits & Emission at Different Ψ

- Low Ψ- 5% of Total Hourly Demand
 - Medium Ψ- 50% of Total Hourly Deman
- \bigcirc High Ψ 95% of Total Hourly Demand

Optimal Ψ Search

Profits & Emission at Different Ψ

Hourly Demand Distribution

- Low Ψ- 5% of Total Hourly Demand
- Medium

 Ψ- 50% of Total Hourly Demand
- High Ψ- 95% of Total Hourly Demand

Data Input-Base Case

Fuel Characteristics

Fuel	Unit	Price ¢	kWh	CO_2	kWh/CO2/¢	kWh/¢
Coal	Ton	3,925	5,543.44	4,086	0.0345%	141.23%
Gas	$10^3 * ft^3$	283	301.86	121	0.8815%	106.66%
Oil	Barrel	5,682	1,630.13	824	0.0348%	28.68%

Unit Prices of the Competitor

12AM-3AM	4AM-7AM	8AM-12PM	1AM-6PM	7PM-9PM	10PM-11PM
10	15	20	10	15	10

• Customers' Inconvenience Cost $\xi_{kt} = \frac{d_{kt}}{\max_{t \in T} d_{kt}} \forall k, t$

Computational Stats

- Script Language Python 3.0 & Gurobi 9.0 used.
- ullet Results obtained are close to Optimality, Gap < 1%.
- Computational Time Varied between 99 sec-3,800 secs.
- Heuristics could be an Alternative for Fast Solutions [40].

	With	CE	Withou	t CE
Ψ Value	Time (Sec) Gap (%)		Time (Sec)	Gap (%)
Low	3,233	0.19%	3,800	0.07%
Medium	101 0.02%		99	0.01%
High	1,127 0.92%		2,133	0.45%

Profits & Emission Comparison⁵

	With CE			Without CE		
ΨValues	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits
Low	241.78	89.49	152.29	246.79	164.57	82.22
Medium	242.92	89.49	153.43	248.04	164.57	83.47
High	241.54	89.49	152.05	246.93	164.57	82.36

Profits = [Revenue - Cost of Fuel], Em-Cost = [Emissions Cost], Wt-Profits = [Profits - Em-Cost]

- Marginally higher Profits (0.50%) for Medium-Ψ
- 85% Lower Emission Costs for With CE.
- Profits higher by approx. 2% for Without CE.
- However, Weighted Profits are higher by 85% for With CE.

Profits & Emission Comparison⁵

	With CE			Without CE		
ΨValues	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits
Low	241.78	89.49	152.29	246.79	164.57	82.22
Medium	242.92	89.49	153.43	248.04	164.57	83.47
High	241.54	89.49	152.05	246.93	164.57	82.36

Profits = [Revenue - Cost of Fuel], Em-Cost = [Emissions Cost], Wt-Profits = [Profits - Em-Cost]

- Marginally higher Profits (0.50%) for Medium-Ψ
- 85% Lower Emission Costs for With CE.
- Profits higher by approx. 2% for Without CE.
- However, Weighted Profits are higher by 85% for With CE.
- Observations
 - Considering Emissions Improve Weighted Profits.

Profits & Emission Comparison⁵

	With CE			Without CE		
ΨValues	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits
Low	241.78	89.49	152.29	246.79	164.57	82.22
Medium	242.92	89.49	153.43	248.04	164.57	83.47
High	241.54	89.49	152.05	246.93	164.57	82.36

 $Profits = [Revenue - Cost \ of \ Fuel], \ Em-Cost = [Emissions \ Cost], \ Wt-Profits = [Profits - Em-Cost]$

- Marginally higher Profits (0.50%) for Medium-Ψ
- 85% Lower Emission Costs for With CE.
- Profits higher by approx. 2% for Without CE.
- However, Weighted Profits are higher by 85% for With CE.
- Observations
 - Onsidering Emissions Improve Weighted Profits.

TLOU Prices

High Ψ

 $\mathsf{Medium}\ \Psi$

- Value of Ψ Affects Unit Rates
- B Retailer Prices Low during On-Peak hours
- The Rates Should Impact Demand Shift.
- O Maximum Demand Shift at Medium Ψ.
- Don't Seem to be Affected by Emissions.

Vikas Garg Thesis Defense June 22nd , 2020 19

TLOU Prices

High Ψ

Medium Ψ

- Value of Ψ Affects Unit Rates.
- Retailer Prices Low during On-Peak hours.
- The Rates Should Impact Demand Shift.
- $igodeligap Maximum Demand Shift at Medium <math>\Psi.$
- On't Seem to be Affected by Emissions.

Vikas Garg Thesis Defense June 22nd , 2020

Demand Shifts

Downward Shift

Models Medium Ψ High Ψ Low W With CE 14.50% 20.15% 14.18% Without CE 14.23% 20.15% 14.61%

Upward Shift

Demand Shifts

Downward Shift

 Models
 Low Ψ
 Medium Ψ
 High Ψ

 With CE
 14.50%
 20.15%
 14.18%

 Without CE
 14.23%
 20.15%
 14.61%

Upward Shift

- Max. Demand Shift at Medium Ψ.
- Demand Shift during On-Peak hours.
- Demand Shift Seems Unaffected with Emission.

Customers' Costs

Figure: Customers' Cost Comparison at Different Ψ

Vikas Garg Thesis Defense June 22nd , 2020 21 / 40

Customers' Costs Savings

Figure: Customers' Cost Saving Compared to Competitor

Observations & Sensitivity

- Not Considering Emissions, Retailer's Profits are Marginally Higher.
- Emissions Improve the Weighted Profits of the Retailer.
- Unit Prices and Demand Shift of the Customers' Don't Seem to be Affected.
- Shifting to off-peak hours, Customers Save on Electricity Costs.
- Checking Sensitivity
 - O How the Fuel Supply Constraints Impact?
 - Impacts of Emission Costs
 - Oustomers' Inconvenience Cost Impacts?

Observations & Sensitivity

- Not Considering Emissions, Retailer's Profits are Marginally Higher.
- Emissions Improve the Weighted Profits of the Retailer.
- Unit Prices and Demand Shift of the Customers' Don't Seem to be Affected.
- Shifting to off-peak hours, Customers Save on Electricity Costs.
- Checking Sensitivity
 - 4 How the Fuel Supply Constraints Impact?
 - Impacts of Emission Costs.
 - Oustomers' Inconvenience Cost Impacts?

Fuel Supply Constraint I

	With CE									
		Base Case Supply Constraint Included								
Ψ Values	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits				
Low	241.78	89.49	152.29	244.97	119.52	125.44				
Medium	242.92	89.49	153.43	244.97	119.52	125.44				
High	241.54	89.49	152.05	243.75	119.52	124.22				

	Without CE								
		Base Cas	se .	Suppl	y Constrain	t Included			
Ψ Values	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits			
Low	246.79	164.57	82.22	244.19	127.04	117.15			
Medium	248.04	164.57	83.47	245.48	127.04	118.44			
High	246.93	164.57	82.36	245.48	127.04	118.44			

- Profits $1.30\% \uparrow$ for all Ψ .
- With CE Emissions 25% ↑ & Weighted Profits 20% ↓
- Without CE Emissions 30% ↓ & Weighted Profits 30% ↑

Vikas Garg Thesis Defense June 22nd , 2020

Fuel Supply Constraint II

Compared With CE & Without CE for Fuel Supply Constrained Scenario Only.

- Emissions Still Low for With CE.
- With CE Weighted Profits 5%-7% Higher.
- 0%-2% Customers' Total Cost & % Cost Savings Variations
- Demand Shifted Behavior Impacted.

Different With CE & Without CE TLOU Prices.

Vikas Garg Thesis Defense

Fuel Supply Constraint II

Compared With CE & Without CE for Fuel Supply Constrained Scenario Only.

	With CE			Without CE		
ΨValues	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits
Low	244.97	119.52	125.44	244.19	127.04	117.15
Medium	244.97	119.52	125.44	245.48	127.04	118.44
High	243.75	119.52	124.22	245.48	127.04	118.44

- Emissions Still Low for With CE.
- With CE Weighted Profits 5%-7% Higher.
- 0%-2% Customers' Total Cost & % Cost Savings Variations
- Demand Shifted Behavior Impacted

Different With CE & Without CE TLOU Prices

Fuel Supply Constraint II

Compared With CE & Without CE for Fuel Supply Constrained Scenario Only.

	With CE			Without CE		
ΨValues	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits
Low	244.97	119.52	125.44	244.19	127.04	117.15
Medium	244.97	119.52	125.44	245.48	127.04	118.44
High	243.75	119.52	124.22	245.48	127.04	118.44

- Emissions Still Low for With CE.
- With CE Weighted Profits 5%-7% Higher.
- 0%-2% Customers' Total Cost & % Cost Savings Variations.
- Demand Shifted Behavior Impacted.

Models	Low Ψ	Medium Ψ	High Ψ
With CE	20.15%	20.15%	14.30%
Without CE	14.20%	20.15%	20.15%

Different With CE & Without CE TLOU Prices.

Fuel Supply Constraint III

 $\mathsf{Medium}\ \Psi$

High Ψ

Fuel Supply Constraint III

High Ψ

Change in Hourly Emissions

Observations- Fuel Supply Constraint

- Profits are Same.
- Weighted Profits improved with Consideration of Emissions, 5%-7%.
- Even with Mix of Fuels Low Emissions for With CE Model.
- Hourly Emission Produced Vary.
- Fuel Supply Restrictions Influence Demand Shifting Behaviors & TLOU Prices.
- Oustomers Costs & % Savings Marginally Affected.

Low Emission Cost I

With CE										
	Base Case			L	ow Emission	Cost				
Ψ Values	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits				
Low	241.78	89.49	152.29	241.60	44.75	196.85				
Medium	242.92	89.49	153.43	242.92	44.75	198.17				
High	241.54	89.49	152.05	242.92	44.75	198.17				

Without CE									
	Base Case			L	ow Emissior	Cost			
Ψ Values	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits			
Low	246.79	164.57	82.22	247.10	82.28	164.82			
Medium	248.04	164.57	83.47	248.04	82.28	165.76			
High	246.93	164.57	82.36	248.04	82.28	165.76			

- Profits Remain Almost Same for all Ψ .
- With CE Emissions 50% ↓ & Weighted Profits 30% ↑
- Without CE Emissions 50% ↓ & Weighted Profits 100% ↑

Low Emission Cost II

Compared With CE & Without CE for Fuel Supply Constrained Scenario Only.

- Emissions Still Low for With CE.
- With CE Weighted Profits 19.50% Higher.
- Customers Cost and % Cost Savings Remain Unchanged.
- Demand Shifted Behavior Impacted.

Different With CE & Without CE TLOU at Low Ψ.

Low Emission Cost II

Compared With CE & Without CE for Fuel Supply Constrained Scenario Only.

	With CE			Without CE		
ΨValues	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits
Low	241.60	44.75	196.85	247.10	82.28	164.82
Medium	242.92	44.75	198.17	248.04	82.28	165.76
High	242.92	44.75	198.17	248.04	82.28	165.76

- Emissions Still Low for With CE.
- With CE Weighted Profits 19.50% Higher.
- Customers Cost and % Cost Savings Remain Unchanged.
- Demand Shifted Behavior Impacted.

Different With CE & Without CE TLOU at Low Ψ.

Vikas Garg Thesis Defense June 22nd, 20

Low Emission Cost II

Compared With CE & Without CE for Fuel Supply Constrained Scenario Only.

	With CE			Without CE		
ΨValues	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits
Low	241.60	44.75	196.85	247.10	82.28	164.82
Medium	242.92	44.75	198.17	248.04	82.28	165.76
High	242.92	44.75	198.17	248.04	82.28	165.76

- Emissions Still Low for With CE.
- With CE Weighted Profits 19.50% Higher.
- Customers Cost and % Cost Savings Remain Unchanged.
- Demand Shifted Behavior Impacted.

Models	Low Ψ	Medium Ψ	High Ψ
With CE	14.19%	20.15%	20.15%
Without CE	17.07%	20.15%	20.15%

• Different With CE & Without CE TLOU at Low Ψ .

Vikas Garg Thesis Defense June 22nd , 2020

High Emission Cost I

With CE										
	Base Case			High Emission Cost						
Ψ Values	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits				
Low	241.78	89.49	152.29	241.92	134.24	107.68				
Medium	242.92	89.49	153.43	242.92	134.24	108.67				
High	241.54	89.49	152.05	242.92	134.24	108.67				

Without CE									
	Base Case			Н	igh Emissior	n Cost			
Ψ Values	Profits	Em-Cost	Wt-Profits	Profits	Em-Cost	Wt-Profits			
Low	246.79	164.57	82.22	247.10	246.85	0.25			
Medium	248.04	164.57	83.47	248.04	246.85	1.22			
High	246.93	164.57	82.36	248.04	246.85	1.99			

- With CE Emissions 50% ↑ & Weighted Profits 30% ↓
- Without CE Emissions 50% ↑ & Weighted Profits 100% ↓

Observations- Emission Cost Sensitivity

- Profits are Higher When Emissions Not Considered.
- Q Retailer Must Account Emission in Price Setting at Higher Emission Cost.
- O Retailer Generates Significantly Less Emissions.
- With CE Weighted Profits Outweigh in both Scenarios.
- Emission Costs Influence Demand Shifting Behaviors & TLOU Prices.
- Ocustomers Costs & % Savings Marginally Affected.

Observations- Emission Cost Sensitivity

- Profits are Higher When Emissions Not Considered.
- Q Retailer Must Account Emission in Price Setting at Higher Emission Cost.
- O Retailer Generates Significantly Less Emissions.
- With CE Weighted Profits Outweigh in both Scenarios.
- Emission Costs Influence Demand Shifting Behaviors & TLOU Prices.
- Oustomers Costs & % Savings Marginally Affected.

Vikas Garg Thesis Defense June 22nd , 202

Inconvenience Cost-Sensitivity I

- Inconvenience Cost Part of Customers' Objective.
- Emissions Produced Remain Same.
- Don't Impact the Retailer' Profits, Weighted Profits.
- Customers' % Cost Savings Impacted Significantly.

Demand Shift Behavior Changed. Low Inc 20.15% Demand Shifted.

Inconvenience Cost-Sensitivity I

- Inconvenience Cost Part of Customers' Objective.
- Emissions Produced Remain Same.
- Don't Impact the Retailer' Profits, Weighted Profits.
- Customers' % Cost Savings Impacted Significantly.

	Competitor	From retailer					
Inc-Cost	Total Cost	Elec Cost Inc Cost Total Cost			% Cost Savings		
Base Case	28.81	25.49	0.21	25.70	10.80%		
Low	28.81	25.49	0.04	25.52	11.42%		
High	28.81	25.57	0.52	26.09	9.44%		

Demand Shift Behavior Changed. Low Inc 20.15% Demand Shifted

Inconvenience Cost-Sensitivity I

- Inconvenience Cost Part of Customers' Objective.
- Emissions Produced Remain Same.
- Don't Impact the Retailer' Profits, Weighted Profits.
- Customers' % Cost Savings Impacted Significantly.

	Competitor	From retailer			
Inc-Cost	Total Cost	Elec Cost	Inc Cost	Total Cost	% Cost Savings
Base Case	28.81	25.49	0.21	25.70	10.80%
Low	28.81	25.49	0.04	25.52	11.42%
High	28.81	25.57	0.52	26.09	9.44%

Demand Shift Behavior Changed. Low Inc 20.15% Demand Shifted.

Models	Low Ψ	Medium Ψ	High Ψ		
With CE	14.54%	16.62%	14.54%		
Without CE	14.29%	14.79%	14.51%		

Inconvenience Cost-Sensitivity II

 $\mathsf{Medium}\ \Psi$

High Ψ

Inconvenience Cost-Sensitivity III

Low Inc Cost

Inconvenience Cost-Sensitivity III

High Inc Cost

Vikas Garg Thesis Defense June 22nd , 202

Observations- Inconvenience Cost Sensitivity

- Emissions, Profits, Weighted Profits Remain Unchanged.
- More Flexible the Customers More Demand Shift to Off-Peak Hours.
- Inconvenience Cost Impact Retailer' TLOU Price Setting.
 - Uniform Prices When Customers are Flexible.
 - Less Flexible Customers \(\precedex \) With CE & Without CE Price Difference.
- Flexible Customers Saves More on Total Costs.

Takeaway Messages

- Even Profits are less by 2%, Emission Efficient Fuels Reduces Emission more than 80%.
- O/w Include Emissions in Price Setting for Higher Weighted Profits.
- Emissions Cost Don't Impact Customers Cost Savings. Low Cost Beneficial to Retailer.
- Demand Shift and TLOU Prices impacted by Emission Cost & Inconvenience Cost.
- Flexible Customer Help Flatten the Demand Peaks.

Future Research Ideas

- Since contribution of distribution and transmission is 27.00% and 12.50% respectively ⁶ in electricity price, distribution and network can be included.
- Qustomers can also generate electricity. Consideration of customer selling back excess electricity to utility can also be modeled.

Vikas Garg Thesis Defense June 22nd , 2020

Thank You

Teachers, who educate children, deserve more honor than parents, who merely gave them birth; for the latter provided mere life, while the former ensure a good life.

(Aristotle)

izquotes.com

Vikas Garg Thesis Defense June 22nd , 2020 39 / 40

Appendices

Gurobi Log Output

[17]

6635	4444	2.3865e+08	68	454	2.0501e+08	2.4550e+08	19.8%	224	9255	
6783		2.1143e+08	84		2.0501e+08		19.8%	227	936s	
7014	4580	2.4549e+08	55	262	2.0501e+08	2.4550e+08	19.7%	238	954s	
7122		2.4549e+08	64		2.0501e+08		19.7%	246	968s	
7304	4670	2.4544e+08	73	341	2.0501e+08	2.4550e+08	19.7%	263	9825	
7362	4699	2.0667e+08	77	924	2.0501e+08	2.4550e+08	19.7%	269	1101s	
7422	4863	2.4243e+08	85	682	2.0501e+08	2.4550e+08	19.7%	270	1115s	
7635	5012	2.4111e+08	99	774	2.0501e+08	2.4550e+08	19.7%	274	11295	
7882	5067	2.0880e+08	114	752	2.0501e+08	2.4550e+08	19.7%	276	1319s	
8071	5163	2.1120e+08	143	648	2.0501e+08	2.4549e+08	19.7%	278	1335s	
8295	5269	2.4288e+08	79	684	2.0501e+08	2.4549e+08	19.7%	285	1356s	
8523	5374	2.0916e+08	127	907	2.0501e+08	2.4549e+08	19.7%	291	13775	
8788	5785	2.4501e+08	75	530	2.0501e+08	2.4549e+08	19.7%	299	1399s	
9352	6717	2.1060e+08	249	737	2.0501e+08	2.4549e+08	19.7%	291	14295	
10637	6933	2.1077e+08	67	1010	2.0501e+08	2.4549e+08	19.7%	275	1449s	
10927	7349	2.4202e+08	98	798	2.0501e+08	2.4549e+08	19.7%	280	14745	
11454	8016	2.0876e+08	95	982	2.0501e+08	2.4549e+08	19.7%	280	1499s	
12246	8369	2.0640e+08	150	921	2.0501e+08	2.4549e+08	19.7%	275	15245	
12701	8748	2.0889e+08	101	797	2.0501e+08	2.4549e+08	19.7%	279	1548s	
13171	8752	2.3306e+08	104	621	2.0501e+08	2.4549e+08	19.7%	280	17245	
13175	8939	infeasible	105		2.0501e+08	2.4549e+08	19.7%	280	1756s	
13436	9872	2.4437e+08	78	358	2.0501e+08	2.4549e+08	19.7%	291	1789s	
13603	9141	2.4546e+08	94	293	2.0501e+08	2.4549e+08	19.7%	308	1826s	
13701	9357	2.4534e+08	110	597	2.0501e+08	2.4549e+08	19.7%	320	1859s	
13985	9711	2.4529e+08	139	620	2.0501e+08	2.4549e+08	19.7%	332	1891s	
14446	9891	2.4523e+08	157	850	2.0501e+08	2.4549e+08	19.7%	334	1926s	
14721	10149	2.4486e+08	180		2.0501e+08		19.7%	338	1958s	
15065	10669	2.4508e+08	204	478	2.0501e+08	2.4549e+08	19.7%	344	1991s	
15687	11020	2.2302e+08	58	641	2.0501e+08	2.4549e+08	19.7%		20255	
		2.4525e+08	74		2.0501e+08		19.7%		2073s	
16670	11795	2.4510e+08	86	261	2.0501e+08	2.4549e+08	19.7%	354	21085	
		2.3233e+08	72		2.0501e+08		19.7%		2301s	
		2.1673e+08	73		2.0501e+08		19.7%		23365	
		2.1592e+08	85		2.0501e+08		19.7%		23785	
		2.1437e+08	71		2.0501e+08		19.7%		24165	
H18839					.083593e+08		17.8%		27365	
H18848				2	.101830e+08		16.8%		2736s	
	11206	cutoff	91		2.1018e+08		16.8%		27885	
H18848					.102661e+08		16.8%		2788s	
		2.4486e+08	76		2.1027e+08		16.8%		28275	
		2.4469e+08	55		2.1027e+08		16.8%		28685	
		2.3538e+08	80		2.1027e+08		16.8%		29075	
H21057	376				.454802e+08		0.00%		3017s	
21058	364	2.4548e+08	47	284	2.4548e+08	2.4549e+08	0.00%	374	3049s	