Correction TD 14 : Polynômes

I Opérations sur les polynômes

Exercice 1. On pose $P = X^2 + 3X$, $Q = X^2 + X + 1$, $S = X^2 - 1$.

- 1. Calculer P^2 , P-Q et P^2-Q^2 .
- 2. Calculer P(X+1).
- 3. Calculer $S \circ f$ avec $f: t \mapsto \cos(t)$.

Correction 1.

- 1. Les calculs donnent $P^2 = X^4 + 6X^3 + 9X^2$, P Q = 2X 1, $P^2 Q^2 = 4X^3 + 6X^2 2X 1$.
- 2. On obtient $P(X + 1) = X^2 + 5X + 4$.
- 3. $S \circ f : t \mapsto -\sin^2(t)$.

Exercice 2. Développer le polynôme suivant : $Q = (X^3 + X^2 + X + 1) \sum_{k=0}^{2n} (-1)^k X^k$.

Correction 2. On développe $Q = (X^3 + X^2 + X + 1) \sum_{k=0}^{2n} (-1)^k X^k$ et on obtient :

 $Q = \sum_{k=0}^{2n} (-1)^k X^{k+3} + \sum_{k=0}^{2n} (-1)^k X^{k+2} + \sum_{k=0}^{2n} (-1)^k X^{k+1} + \sum_{k=0}^{2n} (-1)^k X^k.$ On fait alors des changements de variable dans les trois premières sommes et les indices de sommation étant muets, on obtient :

dans les trois premières sommes et les indices de sommation étant muets, on obtient : $Q = -\sum_{k=3}^{2n+3} (-1)^k X^k + \sum_{k=2}^{2n+2} (-1)^k X^k - \sum_{k=1}^{2n+1} (-1)^k X^k + \sum_{k=0}^{2n} (-1)^k X^k.$ En utilisant alors la relation de Chasles, on obtient : $Q = X^{2n+3} + X^{2n+1} + X^2 + 1.$ On a utilisé aussi le fait que : $(-1)^{2k-3} = (-1)^{2n+3} = (-1)^{2n+3} = (-1)^{2n+3} = (-1)^{2n+1} = (-1)^{2n+1} = (-1)^3 = (-1)^1 = -1$ et $(-1)^{2n+1} = (-1)^3 = (-1)^1 = -1$ et $(-1)^{2n+2} = (-1)^{2n+2} = (-1)^{2n} = (-1)^2 = (-1)^0 = 1.$

Exercice 3. Simplifier le polynôme $R = \sum_{k=0}^{n} \binom{n}{k} 3^k (1-X)^{3n-2k} X^k$.

Correction 3. On cherche à faire apparaître la formule du binôme de Newton. On a :

$$R = \sum_{k=0}^{n} \binom{n}{k} 3^k (1-X)^{3n-2k} X^k = \sum_{k=0}^{n} \binom{n}{k} (3X)^k [(1-X)^3]^{n-k} (1-X)^k$$

car $[(1-X)^3]^{n-k}(1-X)^k = (1-X)^{3n-3k}(1-X)^k = (1-X)^{3n-2k}$. On obtient alors :

$$R = \sum_{k=0}^{n} \binom{n}{k} [3X(1-X)]^{k} [(1-X)^{3}]^{n-k}$$

et sous cette forme on reconnaît la formule du binôme de Newton. Ainsi on obtient : $R = (3X(1-X) + (1-X)^3)^n$, soit : $R = (1-X)^n(X^2+X+1)^n$.

Exercice 4. Calculer P(Q) et Q(P) avec $P = X^2 - 3X + 1$ et $Q = X^2 - 3X + 2$.

Correction 4. Les calculs donnent : $P(Q) = Q^2 - 3Q + 1 = X^4 - 6X^3 + 10X^2 - 3X - 1$ et $Q(P) = P^2 - 3P + 2 = X^4 - 6X^3 + 8X^2 + 2X$.

\mathbf{II} Degré et coefficients

Exercice 5. Dans les deux cas suivants, déterminer tous les polynômes P vérifiant les conditions indiquées

- 1. deg(P) = 3 et P(1) = 4, P(-1) = 0, P(-2) = -5, P(2) = 15.
- 2. $\deg(P) \le 2$ et $P^2 = X^4 + 2X^3 3X^2 4X + 4$.

Correction 5.

1. On sait donc que P est de degré 3 et que -1 est racine de P. Ainsi P est de la forme $P=(X+1)(aX^2+bX+c)$. Puis on utilise le fait que : P(1) = 4, P(-2) = -5 et P(2) = 15. Ces trois conditions permettent d'obtenir le système suivant : $\begin{cases} a+b+c &= 2\\ 4a-2b+c &= 5 \end{cases}$. La résolution donne : $a=1,\ b=0$ et c=1. On a donc ainsi entierement déterminé $P: \boxed{P=(X+1)(X^2+1)}$.

2. Comme $\deg P \leq 2$, on cherche P sous la forme : $P = aX^2 + bX + c$. Les calculs donnent : $P^2 = a^2X^4 + 2abX^3 + (b^2 + 2ac)X^2 + 2bcX + c^2$. Puis par unicité des coefficients d'un polynôme, on doit résoudre le système

- si a = 1 et c = 2: comme ab = 1, on a: b = 1. Mais comme bc = -2, b = -1: impossible.
- si a = -1 et c = -2: comme ab = 1, on a: b = -1. Mais comme bc = -2, b = 1: impossible.
- si a = 1 et c = -2: comme ab = 1, on a : b = 1 et ainsi bc = -2. Et on a aussi alors $b^2 + 2ac = -3$.
- si a = -1 et c = 2: b = -1 vérifie bien ab = 1, bc = -2 et $b^2 + 2ac = -3$.

Ainsi il y a deux solutions qui sont : $P = -X^2 - X + 2$ et $P = X^2 + X - 2$

Déterminer le degré et le coefficient dominant des polynômes suivants où n désigne un entier strictement positif et P un polynôme de degré n et de coefficient dominant $a_n \neq 0$.

1.
$$(X^4 + 1)^3$$

2. $(X + 1)^n - (X - 1)^n$

3.
$$P^2 - P + 1$$

4.
$$Q = P(X+1) - P$$

5. $\sum_{k=0}^{n} P^{(k)}$.

5.
$$\sum_{k=0}^{n} P^{(k)}$$

Correction 6.

- 1. On a : $(X^4+1)^3=P(Q)$ avec $P=X^3$ et $Q=X^4+1$. Ainsi par propriété sur le degré d'une composée de polynômes, on obtient que deg $(X^4+1)^3=12$. De plus, en développant avec le binôme de Newton, on obtient que le coefficient dominant est 1.
- 2. On pose $P=(X+1)^n-(X-1)^n=Q-R$. Par propriété sur le degré d'une somme de polynômes de même degré, on sait que deg $P \leq \deg Q$, à savoir : $\deg P \leq n$. Pour connaître exactement son degré, il faut regarder les termes de plus haut degré dans Q et R et regarder s'ils s'annulent. Par le binôme de

Newton, on sait que :
$$Q = \sum_{k=0}^{n} \binom{n}{k} X^k$$
 et $R = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} X^k$. On commence par regarder les termes en X^n et on obtient : $P = \binom{n}{n} X^n - \binom{n}{n} (-1)^0 X^n + T$ avec $T \in \mathbb{R}_{n-1}[X]$. Ainsi les termes devant X^n

en
$$X^n$$
 et on obtient : $P = \binom{n}{n} X^n - \binom{n}{n} (-1)^0 X^n + T$ avec $T \in \mathbb{R}_{n-1}[X]$. Ainsi les termes devant X^n

s'annulent et donc $\deg P \leq n-1$. On regarde donc maintenant les termes devant X^{n-1} et on obtient $P = \binom{n}{n-1} X^{n-1} - \binom{n}{n-1} (-1)^1 X^{n-1} + T = 2n X^{n-1} + T \text{ avec } T \in \mathbb{R}_{n-2}[X]$. Comme $2n \neq 0$, on vient de démontrer que $\deg P = n-1$ et son coefficient dominant est 2n.

- 3. Par propriété sur le degré d'une composée, on sait que deg $P^2 = 2n$ et par propriété sur le degré d'une somme, on a : deg $(P+1) \le n$. Comme $2n \ne n$ car $n \in \mathbb{N}^*$, par propriété sur le degré d'une somme de polynômes de degré différents, on obtient que : $deg(P^2 + P + 1) = 2n$. Et si a_n est le coefficient dominant de P, alors a_n^2 est le coefficient dominant de P^2 .
- 4. Par propriété sur le degré d'une composée de polynômes, on sait que deg $P(X+1) = \deg P$. Puis par propriété sur le degré d'une somme de polynômes de même degré, on obtient que : $\deg Q \leq \deg P$. Étudions les termes en X^n pour savoir s'ils s'annulent ou pas. On a : $P = a_n X^n + T$ avec $T \in \mathbb{R}_{n-1}[X]$. Ainsi, on obtient que : $Q = a_n (X+1)^n + T(X+1) a_n X^n T = a_n X^n a_n X^n + R$ avec $R \in \mathbb{R}_{n-1}[X]$ en utilisant le binôme de Newton afin de développer le terme en $(X+1)^n$. Ainsi, on obtient que Q = R et ainsi $\deg Q \leq n-1$. Il faut donc alors regarder les termes en X^{n-1} . Toujours en utilisant le binôme de Newton et le fait que $P = a_n X^n + a_{n-1} X^{n-1} + T$ avec $T \in \mathbb{R}_{n-2}[X]$, on obtient que : $Q = a_n (X+1)^n + a_{n-1} (X+1)^{n-1} + T(X+1) a_n X^n a_{n-1} X^{n-1} T = a_n {n \choose n-1} X^{n-1} + a_{n-1} X^{n-1} + T(X+1) a_{n-1} X^{n-1} T = na_n X^{n-1} + R$ avec $R \in \mathbb{R}_{n-2}[X]$. Comme $a_n \neq 0$ et $n \in \mathbb{N}^*$, on a que : $n \in \mathbb{N}$ et ainsi $n \in \mathbb{N}$ de coefficient dominant $n \in \mathbb{N}$ and $n \in \mathbb{N}$ et ainsi $n \in \mathbb{N}$ e
- 5. Par propriété sur le degré d'une dérivée, on sait que : $\deg P^{(k)} = \deg P k$ si $k \leq \deg P$ ce qui est le cas car la somme va de k = 0 à $k = n = \deg P$. Ainsi, on doit trouver le degré d'une somme de polynômes de degré tous différents, et par propriété, on sait alors que le degré correspond au maximum et ainsi on a : $\deg\left(\sum_{k=0}^n P^{(k)}\right) = \deg P^{(0)} = \deg P = n$. Et le coefficient dominant correspond donc au coefficient dominant de $P^{(0)} = P$, à savoir a_n .

Exercice 7. Soient les polynômes $P = X^2 - X + 1$ et $Q = X^3 - X$. Pour tout entier $n \ge 1$, on définit par récurrence les polynômes P_n par

$$\begin{cases} P_1 = P \\ P_{n+1} = XP_n(Q) + 2QP_n. \end{cases}$$

- 1. Calculer P_2 .
- 2. Calculer les degrés de P_2 et de P_3 .
- 3. Déterminer pour tout entier $n \in \mathbb{N}$ le degré de P_n .
- 4. Déterminer le coefficient dominant de P_n .

Correction 7.

- 1. Les calculs donnent : $P_2 = XP(Q) + 2Q \times P = X^7 5X^4 + 3X^3 + 3X^2 X$.
- 2. On a donc deg $P_2 = 7$ et en utilisant les propriétés sur le degré d'un produit et d'une composée de polynômes, on obtient : deg $P_3 = 22$.
- 3. ◆ Comme on n'arrive pas à conjecturer directement l'expression du degré de P_n , on va obtenir une relation de récurrence en utilisant la relation de récurrence qui définit la suite des polynômes. On note $d_n = \deg P_n$. On sait que : $P_{n+1} = XP_n(Q) + 2QP_n$. Par propriété sur le degré d'un produit de polynômes, on sait que : $\deg QP_n = 3 + d_n$. De même, par propriété sur le degré d'une composée et d'un produit de polynômes, on obtient que : $\deg XP_n(Q) = 3d_n + 1$. Comme $3d_n + 1 > 3 + d_n$ dès que $d_n > 1$ ce qui est toujours le cas (car les degrés sont de plus en plus grands et le degré de P_1 est 2), on a par propriété sur le degré d'une somme de polynômes dont les degrés sont différents : $\deg P_{n+1} = 3d_n + 1$, à savoir : $d_{n+1} = 3d_n + 1$.
 - On reconnaît donc une suite arithmético-géométrique de premier terme $d_1=2$ et dont la relation de récurrence est : $d_{n+1}=3d_n+1$. Les calculs donnent que pour tout $n\in\mathbb{N}:$ $d_n=7\times 3^{n-1}-\frac{1}{2}$.

4. Les calculs faits pour P_2 et P_3 permettent de conjecturer que le coefficient dominant est 1. On le montre par récurrence en utilisant la relation de récurrence qui définit la suite des polynômes. A faire.

Exercice 8. On définit une suite de polynômes
$$(P_n)_{n\in\mathbb{N}}$$
 par :
$$\begin{cases} P_0 = 1, \ P_1 = X \\ \forall n \in \mathbb{N}, \ P_{n+2} = XP_{n+1} + \left(1 - \frac{X^2}{4}\right)P_n. \end{cases}$$

- 1. Calculer P_2 et P_3 .
- 2. Démontrer que, pour tout $n \in \mathbb{N}$, P_n est de degré inférieur ou égal à n.
- 3. Pour tout $n \in \mathbb{N}$, on note a_n le coefficient d'indice n de P_n .
 - (a) Donner les valeurs de a_0 , a_1 , a_2 et a_3 .
 - (b) Montrer que : $\forall n \in \mathbb{N}, \ a_{n+2} = a_{n+1} \frac{a_n}{4}$. En déduire une expression de a_n en fonction de n pour tout $n \in \mathbb{N}$ puis le degré du polynôme P_n .

Correction 8.

- 1. On obtient $P_2 = \frac{3}{4}X^2 + 1$ et $P_3 = \frac{1}{2}X^3 + 2X$.
- 2. Montrons par recurrence double la propriété H_n : $\deg(P_n) \leq n$.
 - Initialisation : On a $\deg(P_0) = 0 \le 0$ et et $\deg(P_1) = 1 \le 1$, donc H_0 et H_1 sont vraies.
 - Hérédité : Soit $n \in \mathbb{N}$ fixé, on suppose H_n et H_{n+1} vraies, montrons que H_{n+2} est vraie. D'après H_n et H_{n+1} , et peut écrire $P_n = a_n X^n + R$ et $P_{n+1} = a_{n+1} X^{n+1} + S$ avec $R \in \mathbb{R}_{n-1}[X]$ et $S \in \mathbb{R}_n[X]$. Donc on obtient, par définition de la suite :

$$P_{n+2} = X(a_{n+1}X^{n+1} + S) + \left(1 - \frac{X^2}{4}(a_nX^n + R)\right)$$
$$= \left(a_{n+1} - \frac{a_n}{4}\right)X^{n+2} + XS + a_nX^n - \frac{X^2R}{2}.$$

Or par somme et produit de polynômes, on a $\deg(XS) \leq 1+n=n+1$, $\deg(a_nX^n)=n$ et $\deg(X^2R) \leq 2+n-1=n+1$. Donc finalement le degré de P_{n+2} est inférieur ou égal à n+2, et le coefficient de X^{n+2} vaut $a_{n+2}=a_{n+1}-\frac{a_n}{4}$ (ce coefficient pourrait s'annuler).

Par principe de récurrence, on a donc $\boxed{\deg(P_n) \leq n}$

- 3. (a) D'après les calculs précédents, on a $a_0 = 1, a_1 = 1, a_2 = \frac{3}{4}, a_3 = \frac{1}{2}$.
 - (b) D'après la question 2), on a bien $a_{n+2} = a_{n+1} \frac{a_n}{4}$. On en déduit que $(a_n)_{n \in \mathbb{N}}$ est une suite récurrente linéaire double. On calcule alors son terme général grâce à la méthode vue en cours, et on obtient $a_n = (1+n)\frac{1}{2^n}$. On en déduit que le coefficient d'indice n est non nul, donc P_n est bien de degré n.

Exercice 9. Soit $n \in \mathbb{N}^*$.

- 1. Exprimer de deux façons différentes le coefficient de X^n dans le polynôme : $P = (1+X)^n(1+X)^n$.
- 2. En déduire l'expression de $\sum_{k=0}^{n} \binom{n}{k}^2$.

Correction 9.

1. • On peut par exemple remarquer que $P = (X+1)^{2n}$ et on peut alors utiliser le binôme de Newton qui nous donne : $P = \sum_{k=0}^{2n} \binom{2n}{k} X^k$. Ainsi le coefficient devant X^n vaut $\binom{2n}{n}$.

• Mais on peut aussi voir P comme le produit $(X+1)^n \times (X+1)^n$ et en utilisant encore le binôme de Newton, on obtient :

$$P = \sum_{k=0}^{n} \binom{n}{k} X^k \times \sum_{j=0}^{n} \binom{n}{j} X^j$$
$$= \left(\binom{n}{0} X^0 + \binom{n}{1} X^1 + \dots + \binom{n}{n} X^n \right) \times \left(\binom{n}{0} X^0 + \binom{n}{1} X^1 + \dots + \binom{n}{n} X^n \right).$$

On cherche alors à développer ces deux sommes et à regarder quels sont les termes qui vont faire apparaître du X^n : le X^0 de la première somme doit être multiplié avec du X^n de la deuxième somme, le X de la première somme avec du X^{n-1} de la deuxième somme, ..., le X^{n-1} de la première somme avec le X de la deuxième somme et enfin le X^n de la première somme avec le X^0 de la deuxième somme. Donc pour tout $k \in [0, n]$, le X^k de la première somme doit être multiplié avec le X^{n-k} de la de la

deuxième somme. Ainsi, cela nous donne : $\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}$ qui est le terme qui apparaît devant X^n .

Par unicité des coefficients d'un polynôme, on obtient que : $\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}.$

2. Comme, par symétrie des coefficients binomiaux, on sait que $\binom{n}{k} = \binom{n}{n-k}$, la formule précédente devient : $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$

Exercice 10. Montrer que la dérivée n-ième de la fonction tan est de la forme $P_n \circ \tan$ où P_n est un polynôme de degré n+1 dont on déterminera le coefficient dominant.

Correction 10. Étude de dérivées n-ième :

1. La fonction f est de classe C^{∞} sur $I=]-\frac{\pi}{2},\frac{\pi}{2}[$ comme quotient dont le dénominateur ne s'annule pas de fonction C^{∞} . De plus, le calcul donne

$$\forall x \in I, \quad f'(x) = \frac{\sin x}{\cos^2 x} \quad \text{et} \quad f^{(2)}(x) = \frac{\cos^3(x) + 2\sin^2(x)\cos(x)}{\cos^4(x)} = \frac{1 + \sin^2(x)}{\cos^3(x)}$$

en divisant tout par $\cos x$ qui pouvait être mis en facteur au numérateur et en utilisant le fait que : $\cos^2(x) = 1 - \sin^2(x)$.

2. • On montre par récurrence sur $n \in \mathbb{N}$ la propriété

$$\mathcal{P}(n)$$
: f est de classe C^n sur I et $\exists P_n$ polynôme tel que $\forall x \in I$, $f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}$.

- Initialisation : pour n=0 : La fonction f est bien continue sur \mathbb{R} comme quotient dont le dénominateur ne s'annule pas. D'un côté, on a : $f^{(0)}(x) = \frac{1}{\cos(x)}$ et de l'autre côté, on a : $\frac{P_0(x)}{\cos x}$. Ainsi, si on pose $P_0 = 1$, ce polynôme convient et $\mathcal{P}(0)$ est vraie.
- Hérédité : soit $n \in \mathbb{N}$ fixé. On suppose la propriété vraie au rang n, montrons qu'elle est vraie au rang n+1. Par hypothèse de récurrence, on sait que la fonction f est de classe C^n sur I et qu'il existe un polynôme P_n tel que

$$\forall x \in I, \quad f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos(x))^{n+1}}.$$

 \star Cette fonction $f^{(n)}$ est bien dérivable sur I comme quotient dont le dénominateur ne s'annule pas.

* On dérive $f^{(n)}$ et on obtient pour tout $x \in I$:

$$f^{(n+1)}(x) = \frac{P'_n(\sin x)\cos x \times \cos^{n+1} x - (n+1)P_n(\sin x)\cos^n(x)(-\sin x)}{\cos^{2n+2} x}$$

$$= \frac{\cos^n x \left(P'_n(\sin x)\cos^2(x) + (n+1)P_n(\sin x)\sin x\right)}{\cos^{2n+2}(x)}$$

$$= \frac{P'_n(\sin x)(1 - \sin^2 x) + (n+1)P_n(\sin x)\sin x}{\cos^{n+2} x}.$$

Ainsi, si on pose

$$P_{n+1} = (1 - X^2)P'_n + (n+1)XP_n,$$

 P_{n+1} est bien un polynôme comme somme de polynômes.

* Cette fonction $f^{(n+1)}$ est bien continue sur I et donc f est bien de classe C^{n+1} sur I.

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que

$$\forall x \in I, \quad f^{(n)}(x) = \frac{P_n(x)}{(\cos x)^{n+1}}.$$

- 3. Degré et coefficient dominant de P_n :
 - Le calcul des premiers polynômes de la suite donne : $P_0 = 1$, $P_1 = X$, $P_2 = X^2 + 1$, $P_3 = X^3 + 5X$.
 - Ainsi on peut conjecturer que deg $P_n = n$ et $a_n = 1$ avec a_n coefficient dominant de P_n .
 - \star On montre par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: deg $P_n = n, \ a_n = 1$.
 - * Initialisation : pour n = 0 : on a vu que $P_0 = 1$ donc on a : deg $P_0 = 0$ et $a_0 = 1$. Donc $\mathcal{P}(0)$ est vraie.
 - * Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose vraie la propriété à l'ordre n, montrons qu'elle est vraie à l'ordre n+1. Par hypothèse de récurrence, on sait que : $P_n = X^n + T$ avec $T \in \mathbb{R}_{n-1}[X]$. De plus, on sait que $P_{n+1} = (1-X^2)P_n' + (n+1)XP_n$ donc on obtient que : $P_{n+1} = (1+X^2)(nX^{n-1} + T') + (n+1)X(X^n + T) = X^{n+1} + R$ avec $R = nX^{n-1} + (1-X^2)T' + (n+1)XT$. Et $R \in \mathbb{R}_n[X]$ par propriété sur le degré d'une dérivée, d'un produit et d'une somme de polynômes. Ainsi on a bien que : $\deg P_{n+1} = n+1$ et $a_{n+1} = 1$. Donc $\mathcal{P}(n+1)$ est vraie.
 - ★ Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$: deg $P_n = n$ et le coefficient dominant de P_n est 1.

Exercice 11. Montrer que la dérivée n-ième de la fonction $x \mapsto \frac{1}{1+x^2}$ est de la forme

$$x \mapsto \frac{P_n(x)}{(1+x^2)^{n+1}}$$

où P_n esst un polynôme de degré n dont on déterminera le coefficient dominant.

Correction 11. 1. On sait donc que P est de degré 3 et que -1 est racine de P. Ainsi P est de la forme $P = (X+1)(aX^2+bX+c)$. Puis on utilise le fait que : P(1) = 4, P(-2) = -5 et P(2) = 15. Ces trois

conditions permettent d'obtenir le système suivant : $\begin{cases} a+b+c &= 2 \\ 4a-2b+c &= 5 \end{cases}$. La résolution donne : a=1, 4a+2b+c &= 5b=0 et c=1. On a donc ainsi entierement déterminé $P:P=(X+1)(X^2+1)$.

2. Comme $\deg P \leq 2$, on cherche P sous la forme : $P = aX^2 + bX + c$. Les calculs donnent : $P^2 = a^2X^4 + 2abX^3 + (b^2 + 2ac)X^2 + 2bcX + c^2$. Puis par unicité des coefficients d'un polynôme, on doit résoudre le système

suivant :
$$\begin{cases} a^2 = 1 \\ ab = 1 \end{cases}$$
 suivant :
$$\begin{cases} b^2 + 2ac = -3 \\ bc = -2 \end{cases}$$
 comme $a^2 = 1$, on a : $a = -1$ ou $a = 1$. De même comme $c^2 = 4$, on a :
$$a = -1$$
 ou $a = 1$.

c=-2 ou c=2. Étudions les 4 possibilités que l'on a :

- si a = 1 et c = 2: comme ab = 1, on a: b = 1. Mais comme bc = -2, b = -1: impossible.
- si a = -1 et c = -2: comme ab = 1, on a: b = -1. Mais comme bc = -2, b = 1: impossible.
- si a=1 et c=-2: comme ab=1, on a: b=1 et ainsi bc=-2. Et on a aussi alors $b^2+2ac=-3$.
- si a = -1 et c = 2: b = -1 vérifie bien ab = 1, bc = -2 et $b^2 + 2ac = -3$.

Ainsi il y a une deux solutions qui sont : $P = -X^2 - X + 2$ et $P = X^2 + X - 2$

Exercice 12. Soit la fonction f définie sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$ par $: f(x) = \frac{1}{\cos x}.$

- 1. Calculer f' et f''.
- 2. Montrer par récurrence l'existence, pour tout $n \in \mathbb{N}$, d'un polynôme P_n tel que, pour tout $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$:

$$f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}.$$

Trouver une relation entre P_{n+1} , P_n et P'_n .

3. Déterminer le monôme de plus haut degré de P_n .

Correction 12. 1. Voir la fiche sur les polynômes. Cela permet de montrer que pour tout $n \in \mathbb{N}$: deg $P_n = n$ et son coefficient dominant est $(-2)^n$.

- 2. Calcul de $P_2 = 4X^2 2$ et $P_3 = -8X^3 + 12X$.
 - On note par exemple b_n le coefficient constant du polynôme P_n . On peut conjecturer que $b_{2n+1}=0$, par contre, on ne trouve pas de relation simple pour b_{2n} . On va donc faire une identification des coefficients constants dans la relation de récurrence afin de trouver une relation de récurrence entre b_{2n+2} et b_{2n} . On a : $P_{2n+2}=XQ_2+b_{2n+2}$ avec $Q_2\in\mathbb{R}_{2n+1}[X]$, $P_{2n+1}=XQ_1+b_{2n+1}$ avec $Q_1\in\mathbb{R}_{2n}[X]$ et $P_{2n}=XQ+b_{2n}$ avec $Q\in\mathbb{R}_{2n-1}[X]$. En remplaçant dans la relation de récurrence, on obtient : $XQ_2+b_{2n+2}=-2X(XQ_1+b_{2n+1})-2(2n+1)(XQ+b_{2n})=XR-2(2n+1)b_{2n}$ avec $R=-2X(XQ_1+b_{2n+1})-2(2n+1)XQ$. Ainsi par unicité des coefficients d'un polynôme, on a : $b_{2n+2}=-2(2n+1)b_{2n}$.
 - Si on itère la relation de récurrence : $b_{2n+2} = -2(2n+1)b_{2n}$ valable pour tout $n \in \mathbb{N}$, on obtient :

$$b_{2n} = -2(2n-1)b_{2n-2} = (-2)^2(2n-1)(2n-3)b_{2n-4} = (-2)^3(2n-1)(2n-3)(2n-5)b_{2n-6} = \dots$$
$$= (-2)^n(2n-1)(2n-3)(2n-5)\cdots\times 3\times 1\times b_0.$$

On a ainsi conjecturer la valeur du terme constant. Avant de faire la récurrence permettant de démontrer cette relation, simplifions cette égalité :

$$b_{2n} = (-1)^n 2^n \frac{(2n) \times (2n-1) \times (2n-2) \times (2n-3) \times (2n-4) \dots 4 \times 3 \times 2 \times 1}{(2n) \times (2n-2) \times (2n-4) \dots 4 \times 2}$$
$$= (-1)^n 2^n \frac{(2n)!}{2^n (n \times (n-1) \times (n-2) \times \dots \times 2 \times 1)} = \frac{(-1)^n \times (2n)!}{n!}$$

- \star On montre par récurrence sur $n \in \mathbb{N}$ la propriété : $\mathcal{P}(n)$: $b_{2n} = \frac{(-1)^n \times (2n)!}{n!}$ et $b_{2n+1} = 0$.
 - * Initialisation : pour n=0, on a d'un côté : $b_{2\times 0}=b_0=1$ car $P_0^{n}=1$ et de l'autre côté : $\frac{(-1)^0(0)!}{0!}=1$. De plus, on a aussi d'un côté : $b_{2\times 0+1}=b_1=0$ car $P_1=-2X$ et de l'autre côté : 0. Donc $\mathcal{P}(0)$ est vraie.
 - 0. Donc $\mathcal{P}(0)$ est vraie. \star Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose que $\mathcal{P}(n)$ est vraie, montrons que $\mathcal{P}(n+1)$ est vraie. Par hypothèse de récurrence, on suppose donc que $b_{2n} = \frac{(-1)^n \times (2n)!}{n!}$ et $b_{2n+1} = 0$. On cherche à montrer que $b_{2n+2} = \frac{(-1)^{n+1} \times (2n+2)!}{(n+1)!}$ et $b_{2n+3} = 0$. D'après la relation de récurrence qui définit la suite des polynômes, on a : $P_{2n+2} = -2XP_{2n+1} 2(2n+1)P_{2n}$. On a : $P_{2n+2} = XQ_2 + b_{2n+2}$ avec $Q_2 \in \mathbb{R}_{2n+1}[X]$, $P_{2n+1} = XQ_1 + b_{2n+1}$ avec $Q_1 \in \mathbb{R}_{2n}[X]$ et $P_{2n} = XQ + b_{2n}$ avec $Q \in \mathbb{R}_{2n-1}[X]$. En remplaçant dans la relation de récurrence, on obtient : $XQ_2 + b_{2n+2} = -2X(XQ_1 + b_{2n+1}) 2(2n+1)(XQ + b_{2n}) = XR 2(2n+1)b_{2n}$ avec $R = -2X(XQ_1 + b_{2n+1}) 2(2n+1)XQ$. Ainsi par unicité des coefficients d'un polynôme, on a : $b_{2n+2} = -2(2n+1)b_{2n} = -2(2n+1)\frac{(-1)^n \times (2n)!}{n!}$ par hypothèse de récurrence. Ainsi, on a : $b_{2n+2} = (-1)^{n+1}\frac{2\times(2n+2)(2n+1)(2n)!}{(2n+2)n!} = (-1)^{n+1}\frac{(2n+2)!}{(n+1)n!} = \frac{(-1)^{n+1}\times(2n+2)!}{(n+1)!}$. D'après la relation de récurrence qui définit la suite des polynômes, on a aussi : $P_{2n+3} = -2XP_{2n+2} 2(2n+2)P_{2n+1}$. On a : $P_{2n+3} = XQ_3 + b_{2n+3}$ avec $Q_3 \in \mathbb{R}_{2n+2}[X]$, $P_{2n+2} = XQ_2 + b_{2n+2}$ avec $Q_2 \in \mathbb{R}_{2n+1}[X]$ et $P_{2n+1} = XQ_1 + b_{2n+1}$ avec $Q_1 \in \mathbb{R}_{2n}[X]$. En remplaçant dans la relation de récurrence, on obtient : $XQ_3 + b_{2n+3} = -2X(XQ_2 + b_{2n+2}) 2(2n+2)XQ_1$. Ainsi par unicité des coefficients d'un polynôme, on a : $b_{2n+3} = -2X(XQ_2 + b_{2n+2}) 2(2n+2)XQ_1$. Ainsi par unicité des coefficients d'un polynôme, on a : $b_{2n+3} = -2(n+1)b_{2n+1} = 0$. Donc $\mathcal{P}(n+1)$ est vraie. \star Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$: $b_{2n+1} = 0$ et $b_{2n} = 0$
 - * Conclusion: il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$: $b_{2n+1} = 0$ et $b_{2n} = \frac{(-1)^n \times (2n)!}{n!}$.
- 3. On peut remarquer sur P_0 , P_2 et P_4 ne possèdent que des puissances paires et sont donc des fonctions paires tandis que P_1 , P_3 ne possèdent que des puissances impaires et sont donc des fonctions impaires. On peut donc conjecturer que P_{2n} est une fonction paire tandis que P_{2n+1} est une fonction impaire.
 - On montre par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: P_{2n} est une fonction paire et P_{2n+1} est une fonction in
 - Initialisation : pour n = 0 : on sait que $P_0 = 1$ et donc P_0 est bien une fonction paire. De même, on sait que $P_1 = -2X$ et ainsi P_1 est bien une fonction impaire.
 - Hérédité: soit $n \in \mathbb{N}$ fixé, on suppose que $\mathcal{P}(n)$ est vraie, montrons que $\mathcal{P}(n+1)$ est vraie. On commence par montrer que P_{2n+2} est bien une fonction paire: on sait que $P_{2n+2} = -2XP_{2n+1} 2(2n+1)P_{2n}$. Comme par hypothèse de récurrence, on sait que P_{2n} est une fonction paire, P_{2n} n'a donc que des puissances paires. De même, comme par hypothèse de récurrence, on sait que P_{2n+1} est une fonction impaire, P_{2n+1} n'a donc que des puissances impaires et ainsi $-2XP_{2n+1}$ est un polynôme n'ayant que des puissances paires. Donc par somme P_{2n+2} n'a que des puissances paires et ainsi c'est une fonction paire. On montre alors que P_{2n+3} est bien une fonction impaire: on sait que $P_{2n+3} = -2XP_{2n+2} 2(2n+2)P_{2n+1}$. Comme par hypothèse de récurrence, on sait que P_{2n+1} est une fonction impaire, P_{2n+1} n'a donc que des puissances impaires. De plus, on vient de montrer que P_{2n+2} est une fonction paire, P_{2n+2} n'a donc que des puissances paires et ainsi $-2XP_{2n+2}$ est un polynôme n'ayant que des puissances impaires. Donc par somme P_{2n+3} n'a que des puissances impaires et ainsi c'est une fonction impaire. Donc $\mathcal{P}(n+1)$ est vraie.
 - Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$, P_{2n} est une fonction paire et P_{2n+1} est une fonction impaire.

Exercice 13. Soit la fonction $f:]-1,1[\to \mathbb{R}$ définie pour tout x réel par

$$f(x) = \frac{1}{\sqrt{1 - x^2}}.$$

- 1. Calculer f' et f''.
- 2. Montrer par récurrence que la dérivée n-ième est de la forme

$$f^{(n)}(x) = \frac{P_n(x)}{(1 - x^2)^n \sqrt{1 - x^2}}$$

où P_n est un polynôme.

Donner une relation (R) entre P_{n+1} , P_n et P'_n .

- 3. Montrer que P_n est une fonction paire si n est un entier pair et une fonction impaire si n est un entier impaire.
- 4. Montrer par récurrence en utilisant la relation (R) que

$$P_n' = n^2 P_{n-1}.$$

5. En déduire que les polynômes P_n vérifient pour tout entier $n \geq 1$ la relation de récurrence suivante

$$P_{n+1} = (2n+1)XP_n + n^2(1-X^2)P_{n-1}.$$

Correction 13.

Exercice 14. Soit $n \in \mathbb{N}^*$. Calculer la dérivée n-ième du polynôme suivant :

$$P = X^2 (1+X)^n.$$

Correction 14. Calculons la dérivée n-ième du polynôme suivant : $P = X^2(1+X)^n$.

- Le polynôme P s'écrit comme le produit de deux polynômes : P = QR avec $Q = X^2$ et $R = (1 + X)^n$. Pour calculer la dérivée n-ième de ce polynôme, on va donc utiliser la formule de Leibniz. On a alors : $P^{(n)} = \sum_{k=0}^{n} \binom{n}{k} Q^{(k)} R^{(n-k)}.$
- Calcul de $Q^{(k)}$: comme Q est un polynôme de degré 2, on a : si k > 2 alors $Q^{(k)} = 0$. Sinon : $Q^{(0)} = Q$, Q' = 2X et $Q^{(2)} = 2$.
- Calcul de $R^{(n-k)}$: On a : $R^{(n-k)} = \frac{n!}{k!} (1+X)^k$ si $k \ge 0$ ce qui est toujours le cas car dans la formule de Leibniz on somme pour k allant de 0 à n.
- On obtient : $P^{(n)} = \sum_{k=0}^{2} {n \choose k} Q^{(k)} R^{(n-k)} + \sum_{k=3}^{n} {n \choose k} Q^{(k)} R^{(n-k)}$ par Chasles. Puis :

$$P^{(n)} = \sum_{k=0}^{2} {n \choose k} Q^{(k)} R^{(n-k)} = Q R^{(n)} + n Q' R^{(n-1)} + \frac{n(n-1)}{2} Q^{(2)} R^{(n-2)}$$
$$= n! X^2 + 2n n! X(1+X) + n! \frac{n(n+1)}{2} (1+X)^2.$$

Exercice 15. Soit n un entier non nul. On note alors P le polynôme : $P = X^n(1-X)^n$.

- 1. Calculer $P^{(n)}$.
- 2. En déduire que : $\sum_{k=0}^{n} (-1)^{n-k} {n \choose k}^2 = \frac{2^n}{n!} P^{(n)} \left(\frac{1}{2}\right)$.
- 3. Montrer que : $P = \left(\frac{1}{4} \left(X \frac{1}{2}\right)^2\right)^n$.
- 4. En déduire une expression de P comme combinaison linéaire des polynômes

$$1, \left(X - \frac{1}{2}\right), \left(X - \frac{1}{2}\right)^2, \left(X - \frac{1}{2}\right)^3, \dots, \left(X - \frac{1}{2}\right)^{2n}.$$

5. En déduire la valeur de : $\sum_{k=0}^{n} (-1)^{n-k} {n \choose k}^2$.

Exercice 16. Soit le polynôme $P = X^5 - X^4 + 3X^2 + X - 5$.

Déterminer les coefficients du polynôme P(X+1) avec un minimum de calcul.

Correction 15. Voir??

III Racines d'un polynôme

Exercice 17. Trouver toutes les racines de $P = X^4 - 5X^3 + 7X^2 - 5X + 6$ dans \mathbb{C} .

Correction 16. On peut remarquer que i est racine de P et comme $P \in \mathbb{R}$, on sait donc que -i aussi est racine de P. On peut tout de suite remarquer que i n'est pas racine de P' et donc i et -i sont racines simples de P. On peut aussi remarquer que 2 est racine de P et que $P'(2) \neq 0$. Ainsi 2 est aussi racine simple de P. Ainsi on peut factoriser P par $(X+i)(X-i)(X-2)=(X^2+1)(X-2)$. L'identification des polynômes donne que 3 est racine de P et que P se factorise dans $\mathbb C$ sous la forme : P = (X-i)(X+i)(X-2)(X-3). On est sûr d'avoir bien trouvé toutes les racines car on a 4 racines et P est un polynôme de degré 4.

Remarque : on peut également trouver la dernière racine en utilisant : $i \times (-i) \times 2 \times x_4 = (-1)^4 \frac{6}{1}$, donc $x_4 = 3$.

Exercice 18. Soit $n \in \mathbb{N}^*$. On considère les polynômes $A = (X+1)^n - (X-1)^n$ et $B = \left(\sum_{k=0}^n X^k\right)^2$.

- 1. Calculer le degré de ces deux polynômes.
- 2. Déterminer les racines de ces deux polynômes.

Correction 17.

- 1. (a) Dans l'exercice??? on a déjà montré que : $\deg A = n 1$.
 - (b) On a : $B = P^2$ avec $P = \sum_{k=0}^{n} X^k$. On a donc : $\deg B = 2 \deg P$. De plus, $\deg P = n$ donc $\deg B = 2n$.
- 2. (a) L'idée ici est de se ramener à la résolution d'une équation type racine n-ième de l'unité. On a déjà par définition d'une racine d'un polynôme que : z est racine de A si et seulement si A(z) = 0 si et seulement si $(z+1)^n = (z-1)^n$.
 - Comme 1 n'est pas solution de l'équation, on peut supposer que $z \neq 1$. Ainsi, on peut bien diviser par $(z-1)^n$ qui est bien non nul. Ainsi, on a

$$(z+1)^n = (z-1)^n \Leftrightarrow \left(\frac{z+1}{z-1}\right)^n = 1 \Leftrightarrow Z^n = 1$$

en posant $Z = \frac{z+1}{z-1}$

- Résolution des racines n-ièmes de l'unité (à savoir faire, cours) : on obtient après calculs que les solutions sont les Z de la forme $Z_k = e^{\frac{2ik\pi}{n}}, \quad k \in \llbracket 0, n-1 \rrbracket$.
- On repasse alors à z et on cherche donc les z tels que : $\frac{z+1}{z-1}=e^{\frac{2ik\pi}{n}}$ avec $k\in[0,n-1]$ fixé. On obtient alors

$$\frac{z+1}{z-1} = e^{\frac{2ik\pi}{n}} \Leftrightarrow z+1 = e^{\frac{2ik\pi}{n}}(z-1) \Leftrightarrow z\left(1-e^{\frac{2ik\pi}{n}}\right) = -e^{\frac{2ik\pi}{n}}-1 \Leftrightarrow z\left(e^{\frac{2ik\pi}{n}}-1\right) = \left(e^{\frac{2ik\pi}{n}}+1\right).$$

Ici, il faut faire attention car on ne peut JAMAIS diviser par un nombre sans vérifier qu'il est bien NON nul. Or on a :

$$e^{\frac{2ik\pi}{n}} - 1 = 0 \Leftrightarrow e^{\frac{2ik\pi}{n}} = 1 \Leftrightarrow \frac{2k\pi}{n} = 2k'\pi \Leftrightarrow k = nk'$$

avec $k' \in \mathbb{Z}$. Or $k \in [0, n-1]$ donc le seul k qui vérifie cela est k=0.

- \star Pour k=0, on obtient : 0=2 donc il n'y a pas de solution pour k=0.
- * Pour $k \neq 0$, à savoir pour $k \in [1, n-1]$, on sait que $1 e^{\frac{2ik\pi}{n}} \neq 0$ et on peut donc bien diviser. On obtient

$$z = \frac{e^{\frac{2ik\pi}{n}} + 1}{e^{\frac{2ik\pi}{n}} - 1} = -i\cot\left(\frac{k\pi}{n}\right)$$

en utilisant la méthode de l'angle moitié.

- Les racines de A sont donc $z=-i\cot\left(\frac{k\pi}{n}\right)$ avec $k\in[\![1,n-1]\!]$. On les bien toutes trouvées puisque l'on en a n-1 et que le polynôme est de degré n-1.
- (b) On a : z est racine de B si et seulement si B(z)=0 si et seulement si $\sum_{k=0}^n z^k=0$. Or on reconnaît une somme géométrique et ainsi, on a si $z\neq 1$: $\sum_{k=0}^n z^k=\frac{1-z^{n+1}}{1-z}$. On remarque aussi que 1 n'est pas racine car $\sum_{k=0}^n 1^k=n+1\neq 0$. Donc on peut bien supposer $z\neq 1$. Ainsi, on a : z est racine de B si et seulement si : $\frac{1-z^{n+1}}{1-z}=0 \Leftrightarrow z^{n+1}=1$. On reconnaît la résolution des racines n+1-ième de l'unité. Les calculs donnent : $z_k=e^{\frac{2ik\pi}{n+1}}$ avec $k\in [\![0,n]\!]$. Mais comme $z\neq 1$, on doit enlever le cas k=0 qui donne 1. Ainsi les racines de B sont les complexes de la forme : $z_k=e^{\frac{2ik\pi}{n+1}}$ avec $k\in [\![1,n]\!]$. Et on a bien trouvé toutes les racines puisque l'on en a n et que le degré de P est n.

Exercice 19. Soit n un entier non nul. Montrer que a donné est racine du polynôme et déterminer l'ordre de multiplicité de cette racine

1.
$$a = 2$$
 et $P = X^5 - 5X^4 + 7X^3 - 2X^2 + 4X - 8$

2.
$$a = 1$$
 et $P = X^{2n} - nX^{n+1} + nX^{n-1} - 1$

Correction 18. On regarde si a est racine de P et ainsi a est au moins racine simple. Puis on regarde jusqu'à quelle dérivée de P, a est-elle encore racine, ce qui donne l'ordre de multiplicité de la racine a.

- 1. Les calculs donnent que : $P(2) = 0 = P'(2) = P^{(2)}(2)$ et $P^{(3)}(2) \neq 0$. Ainsi 2 est racine triple de P.
- 2. Les calculs donnent que : $P(1) = 0 = P'(1) = P^{(2)}(1)$ et $P^{(3)}(1) \neq 0$. Ainsi 1 est racine triple de P.

Exercice 20. Déterminer le nombre a de manière à ce que le polynôme $P = X^5 - aX^2 - aX + 1$ ait -1 comme racine au moins double.

Correction 19. Pour que -1 soit racine au moins double de P, on doit avoir : P(-1) = 0 = P'(-1). Les calculs donnent que : P(-1) = -1 - a + a + 1 = 0 donc -1 est racine au moins simple de P sans condition sur a. On a de plus : $P' = 5X^4 - 2aX - a$. Ainsi, on obtient : $P'(-1) = 0 \Leftrightarrow a = -5$.

Donc -1 racine au moins double de P si et seulement si a = -5.

Exercice 21. Soient $n \in \mathbb{N}^*$ et les polynômes

$$P = 1 + X + \frac{X(X+1)}{2!} + \dots + \frac{X(X+1)\dots(X+n-1)}{n!} \text{ et } Q = \frac{(X+n)(X+n-1)(X+n-2)\dots(X+1)}{n!}.$$

- 1. Calculer les degrés de P et de Q ainsi que P(0) et Q(0).
- 2. Montrer que, pour tout $i \in [1, n]$, on a : $Q(i) = \binom{n+i}{i}$.
- 3. Montrer que, pour tout $i \in [1, n]$, on a : $P(i) = \sum_{k=0}^{n} {i+k-1 \choose k}$.
- 4. En déduire que pour tout $i \in [0, n]$, on a : Q(i) = P(i)
- 5. En déduire que P = Q.

Correction 20. 1. • On a :
$$P'_n = \sum_{k=1}^n \frac{kX^{k-1}}{k!} = \sum_{k=1}^n \frac{X^{k-1}}{(k-1)!} = \sum_{k=0}^{n-1} \frac{X^k}{k!} = P_{n-1}$$
 en faisant le changement de variable $j = k-1$. Ainsi, on a, en utilisant la relation de Chasles : $P_n - P'_n = P_n - P_{n-1} = \frac{X^n}{n!}$.

- On suppose par l'absurde que P_n admet une racine multiple que l'on note α . Ainsi α est au moins racine double et ainsi on doit avoir à la fois $P_n(\alpha) = 0$ et $P'_n(\alpha) = 0$. Ainsi, on a en particulier que : $P_n(\alpha) P'_n(\alpha) = 0 \Leftrightarrow \frac{\alpha^n}{n!} = 0 \Leftrightarrow \alpha = 0$. Ainsi, si α est racine multiple de P_n alors forcément $\alpha = 0$. Or on remarque que : $P_n(0) = 1 \neq 0$. Ainsi 0 n'est pas racine de P_n . Contradiction. Donc P_n n'admet pas de racine multiple.
- 2. A NE PAS FAIRE.
- 3. On a déjà montré que : $P'_n = P_{n-1}$.
- 4. On montre par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: P_{2n} est une fonction strictement positive sur \mathbb{R} et P_{2n+1} s'annule une seule fois sur \mathbb{R} en un réel $\alpha_n < 0$ en étant négative avant et positive après.
 - Initialisation : pour n = 0 :
 - $\star P_0 = 1$ et donc P_0 est bien strictement positive sur \mathbb{R} .
 - $\star P_1 = X + 1$ et donc P_1 s'annule en $\alpha_1 = -1 < 0$ et P_1 est bien négative avant et positive après. Donc $\mathcal{P}(0)$ est vraie.
 - Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose la propriété vraie à l'ordre n, montrons qu'elle est vraie à l'ordre n+1.
 - ★ Étude de P_{2n+2} : on sait que $P'_{2n+2} = P_{2n+1}$ et on connaît par hypothèse de récurrence le signe de P_{2n+1} . On obtient ainsi le tableau de variation de P_{2n+2} suivant :

$$xP_{2n+1}P_{2n+2}-\infty\alpha_n+\infty-++\infty P_{2n+2}(\alpha_n)+\infty$$

Les limites en $\pm \infty$ sont obtenues par le théorème du monôme de plus haut degré. De plus : $P_{2n+2}(\alpha_n) = \frac{\alpha_n^{2n+2}}{(2n+2)!} + P_{2n+1}(\alpha_n) = \frac{\alpha_n^{2n+2}}{(2n+2)!}$ par hypothèse de récurrence. Et ainsi $P_{2n+2}(\alpha_n) > 0$ et comme $P_{2n+2}(\alpha_n)$ est le minimum global de P_{2n+2} , on a bien obtenu que P_{2n+2} est strictement positive sur \mathbb{R} .

* Étude de P_{2n+3} : on sait que $P'_{2n+3} = P_{2n+2}$ et on vient de démontrer que P_{2n+2} reste toujours strictement positive sur \mathbb{R} . Ainsi P_{2n+3} est strictement croissante sur \mathbb{R} . On a ainsi que P_{2n+3} est continue sur \mathbb{R} comme fonction polynomiale, P_{2n+3} est strictement croissante sur \mathbb{R} et en utilisant le théorème des monômes de plus haut degré, on sait aussi que : $\lim_{x\to-\infty} P_{2n+3}(x) = -\infty$ et $\lim_{x\to+\infty} P_{2n+3}(x) = +\infty$. Ainsi d'après le théroème de la bijection, on sait qu'il existe un unique α_{n+1} tel que $P_{2n+3}(\alpha_{n+1}) = 0$. Et P_{2n+3} est bien strictement négative avant et strictement positive après. De plus comme $P_{2n+3}(0) = 1$, en réappliquant le théorème de la bijection, on obtient que : $\alpha_{n+1} < 0$.

Donc $\mathcal{P}(n+1)$ est vraie.

• Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

IV Factorisation dans $\mathbb R$ et dans $\mathbb C$ et conséquences

Exercice 22. Montrer dans chacun des cas suivants que B divise A:

- 1. $A = X^9 1$ et $B = X^3 1$.
- 2. $A = 2X^4 3X^3 X^2 15X + 6$ et $B = X^2 3X + 1$.
- 3. $A = X^3 iX^2 X + i + 5$ et B = X 1 + i.

Correction 21. Il y a trois méthodes principales : montrer qu'il existe un polynôme P tel que $A = P \times B$ en factorisant, utiliser les identités remarquables, ou montrer que les racines de B sont bien racines de A.

1. On utilise l'identité remarquable : $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ en prenant $a = X^3$ et b = 1. On obtient donc $A = X^9 - 1 = (X^3 - 1)(X^6 + X^3 + 1)$, donc B divise A.

Autre méthode : les racines de B sont 1, j et j^2 . Or on a $1^9 - 1 = 0$, $j^9 - 1 = (j^3)^3 - 1 = 1^3 - 1 = 0$ et enfin $(j^2)^9 - 1 = (j^3)^6 - 1 = 1^6 - 1 = 0$, donc 1, j et j^2 sont bien des racines de A. Donc B divise A.

- 2. Montrons qu'il existe un polynôme P de degré 2 tel que $A = P \times B$. On cherche P sous la forme $P = aX^2 + bX + c$. On a alors $A = P \times B \Leftrightarrow 2X^4 3X^3 X^2 15X + 6 = (aX^2 + bX + c)(X^2 3X + 1)$. Par identification des coefficients, on obtient alors a = 2, b = 3 et c = 6. Donc B divise bien A.
- 3. Il suffit de montrer que la seule racine de B, qui est 1-i, est aussi racine de A.

Exercice 23. À quelle condition sur $(a, b, c) \in \mathbb{R}^3$ le polynôme $B = X^2 + X + 1$ divise-t-il le polynôme $A = X^4 + aX^2 + bX + c$?

Correction 22. Les racines de B sont j et j^2 . Pour que B divise A, il suffit donc que j et j^2 soient racines de A, c'est-à-dire que l'on ait

$$\begin{cases} j^{4} + aj^{2} + bj + c &= 0 \\ j^{8} + aj^{4} + bj^{2} + c &= 0 \end{cases} \Leftrightarrow \begin{cases} aj^{2} + (b+1)j + c &= 0 \\ aj + (b+1)j^{2} + c &= 0 \end{cases} \Leftrightarrow \begin{cases} aj^{2} + (b+1)j + c &= 0 \\ a(j-j^{2}) + (b+1)(j^{2} - j) &= 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} c &= -a(j^{2} + j) = -a \\ b &= a - 1 \end{cases}$$

On en déduit que les polynômes A doivent être de la forme $A = X^4 + aX^2 + (a-1)X - a$, avec $a \in \mathbb{R}$.

Exercice 24. On considère le polynôme $P = X^5 + 3X^4 + 5X^3 + 5X^2 + 3X + 1$.

- 1. Trouver une racine évidente de P. Montrer que j est racine de P.
- 2. En déduire la factorisation de P dans \mathbb{C} et dans \mathbb{R} .

Correction 23.

- 1. Rappels des propriétés de j à connaître : $j = e^{\frac{2i\pi}{3}}$, $j^3 = 1$, $1 + j + j^2 = 0$ et $j^2 = e^{\frac{4i\pi}{3}} = \overline{j}$.
 - On a: $P(j) = j^5 + 3j^4 + 5j^3 + 5j^2 + 3j + 1 = j^2 + 3j + 5 + 5j^2 + 3j + 1 = 6(j^2 + j + 1) = 0$. Ainsi j est bien racine de P.
- Comme $P \in \mathbb{R}$, on sait aussi que $\overline{j} = j^2$ est racine de P. Regardons la multiplicité de j et j^2 . Ce sont déjà des racines au moins simples. De plus, on a : $P' = 5X^4 + 12X^3 + 15X^2 + 10X + 3$. On a alors : $P'(j) = 5j + 12 + 15j^2 + 10j + 3 = 15(1 + j + j^2) = 0$. Donc j est au moins racine double de P et donc j^2 aussi. On remarque de plus que −1 est aussi racine évidente de P. Comme deg P = 5 et que l'on a trouvé 5 racines comptées avec leur multiplicité, on sait qu'on les a toutes trouvées.
 - Factorisation dans $\mathbb{C}: P = (X j)^2 (X j^2)^2 (X + 1)$.
 - Factorisation dans $\mathbb{R} : P = (X+1)(X^2+X+1)^2 \text{ car } (X-j)(X-j^2) = (X^2+X+1).$

Exercice 25. Soit $n \in \mathbb{N}^*$. Factoriser dans \mathbb{C} et dans \mathbb{R} lorsque cela a un sens les polynômes suivants :

1.
$$P = X^3 + 1$$

6.
$$P = X^n - 1$$

2.
$$P = (X+i)^n - (X-i)^n$$

7.
$$P = X^4 + 4$$

3.
$$P = X^6 - 1$$

8.
$$P = X^5 + 32$$

4.
$$P = X^8 + X^4 + 1$$

9.
$$P = (2X - 1)^n - (-2X + 3)^n$$

5.
$$P = X^4 - 2X^2 - 8$$

10.
$$P = X^4 + 3X^3 - 14X^2 + 22X - 12$$
 sachant que $i+1$ est racine dans $\mathbb C$

Correction 24. On ne donne ici que des indications sur la méthode et le résultat final. On peut remarquer que pour passer de la factorisation dans \mathbb{C} à la factorisation dans \mathbb{R} , on a toujours :

$$(X-z)(X-\overline{z}) = X^2 - (z+\overline{z})X + z\overline{z} = X^2 - 2\Re \mathfrak{e}(z)X + |z|^2.$$

- 1. Racines complexes de P: on calcule avec la méthode habituelle les racines troisièmes de $-1 = e^{i\pi}$. On obtient -1, $e^{i\frac{\pi}{3}}$, $e^{-i\frac{\pi}{3}}$, 3 racines simples.
 - Factorisation dans $\mathbb{C}: P = (X+1)(X-e^{i\frac{\pi}{3}})(X-e^{-i\frac{\pi}{3}})$

- Factorisation dans $\mathbb{R}: P = (X+1)(X^2-X+1)$
- 2. Racines complexes de P. On résout l'équation P(z) = 0:
 - \star Comme i n'est pas solution de l'équation, on peut supposer que $z \neq i$. Ainsi, on peut diviser par $(z-i)^n$ qui est bien non nul. Ainsi, on a

$$(z+i)^n = (z-i)^n \Leftrightarrow \left(\frac{z+i}{z-i}\right)^n = 1 \Leftrightarrow Z^n = 1$$

en posant $Z = \frac{z+i}{z-i}$.

 \star Résolution des racines n-ièmes de l'unité : on obtient (à détailler, voir cours) que les solutions sont les Z de la forme

$$Z_k = e^{\frac{2ik\pi}{n}}, \quad k \in [0, n-1].$$

* On repasse alors à z et on cherche donc les z tels que : $\frac{z+i}{z-i}=e^{\frac{2ik\pi}{n}}$ avec $k\in[0,n-1]$ fixé. On obtient alors

$$\frac{z+i}{z-i} = e^{\frac{2ik\pi}{n}} \Leftrightarrow z+i = e^{\frac{2ik\pi}{n}}(z-i) \Leftrightarrow z\left(1-e^{\frac{2ik\pi}{n}}\right) = -ie^{\frac{2ik\pi}{n}} - i \Leftrightarrow z\left(e^{\frac{2ik\pi}{n}}-1\right) = i\left(e^{\frac{2ik\pi}{n}}+1\right).$$

Ici, il faut faire attention car on ne peut JAMAIS diviser par un nombre sans vérifier qu'il est bien NON nul. Or on a :

$$e^{\frac{2ik\pi}{n}} - 1 = 0 \Leftrightarrow e^{\frac{2ik\pi}{n}} = 1 \Leftrightarrow \frac{2k\pi}{n} = 2k'\pi \Leftrightarrow k = nk'$$

avec $k' \in \mathbb{Z}$. Or $k \in [0, n-1]$ donc le seul k qui vérifie cela est k=0.

- \star Pour k=0, on obtient : 0=2i donc il n'y a pas de solution pour k=0.
- * Pour $k \neq 0$, à savoir pour $k \in [1, n-1]$, on sait que $1 e^{\frac{2ik\pi}{n}} \neq 0$ et on peut donc bien diviser. On obtient, en utilisant la méthode de l'angle moitié :

$$z = \frac{i\left(e^{\frac{2ik\pi}{n}} + 1\right)}{e^{\frac{2ik\pi}{n}} - 1} = \frac{2i\cos\left(\frac{2k\pi}{n}\right)}{2i\sin\left(\frac{2k\pi}{n}\right)} = \cot\left(\frac{k\pi}{n}\right).$$

- * Les racines de A sont donc $z = \cot\left(\frac{k\pi}{n}\right)$ avec $k \in [1, n-1]$.
- Factorisation dans \mathbb{C} : avant de factoriser, on doit trouver le coefficient dominant du polynôme. Pour cela, on utilise la formule du binôme de Newton, et on sort les termes en X^n (qui se simplifient) et en X^{n-1} :

$$P = (X+i)^{n} - (X-i)^{n} = \sum_{k=0}^{n} \binom{n}{k} X^{k} i^{n-k} - \sum_{k=0}^{n} \binom{n}{k} X^{k} (-i)^{n-k}$$

$$= X^{n} + niX^{n-1} + \sum_{k=0}^{n-2} \binom{n}{k} X^{k} i^{n-k} - \left(X^{n} - niX^{n-1} + \sum_{k=0}^{n-2} \binom{n}{k} X^{k} (-i)^{n-k}\right)$$

$$= 2niX^{n-1} + \sum_{k=0}^{n-2} \binom{n}{k} X^{k} (i^{n-k} - (-i)^{n-k})$$

Ainsi, le polynôme est de degré n-1 (ce qui est cohérent puisqu'on a trouvé n-1 racines complexes),

et son coefficient dominant est 2ni. On peut donc factoriser : $P = 2ni \prod_{k=1}^{n-1} \left(X - \cot \left(\frac{k\pi}{n} \right) \right)$

- 3. Racines complexes de P: Racines 6-ièmes de l'unité : -1, 1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, $e^{i\frac{4\pi}{3}}$, $e^{i\frac{5\pi}{3}}$: 6 racines simples pour un polynôme de degré 6.
 - Factorisation dans $\mathbb{C}: P = (X-1)(X+1)(X-e^{i\frac{\pi}{3}})(X-e^{i\frac{2\pi}{3}})(X-e^{i\frac{4\pi}{3}})(X-e^{i\frac{5\pi}{3}})$.
 - Factorisation dans $\mathbb{R}: \overline{\left[P = (X+1)(X-1)(X^2-X+1)(X^2+X+1)\right]} \operatorname{car}\left(X e^{i\frac{\pi}{3}}\right)(X e^{i\frac{5\pi}{3}}) = X^2 X + 1 \operatorname{et}\left(X e^{i\frac{2\pi}{3}}\right)(X e^{i\frac{4\pi}{3}}) = X^2 + X + 1.$
- 4. Racines complexes de P: il faut remarquer que : $P=Q(X^4)$ avec $Q=Y^2+Y+1$. Les racines de Q sont $j=e^{i\frac{2\pi}{3}}$ et $j^2=e^{i\frac{4\pi}{3}}$. Ainsi, z est racine de P si seulement si $Q(z^4)=0 \Leftrightarrow z^4=e^{i\frac{2\pi}{3}}$ ou $z^4=e^{i\frac{4\pi}{3}}$. Il faut donc calculer les racines quatrièmes des nombres complexes $e^{i\frac{2\pi}{3}}$ et $e^{i\frac{4\pi}{3}}$. On obtient : $e^{i\frac{\pi}{6}}$, $e^{i\frac{8\pi}{12}}$, $e^{i\frac{14\pi}{12}}$ et $e^{i\frac{20\pi}{12}}$ pour les racines quatrièmes du nombre complexe $e^{i\frac{2\pi}{3}}$ et $e^{i\frac{2\pi}{6}}$, $e^{i\frac{8\pi}{6}}$ et $e^{i\frac{11\pi}{6}}$ pour les racines quatrièmes du nombre complexe $e^{i\frac{4\pi}{3}}$. On a ainsi bien obtenu 8 racines simples distinctes.
 - Factorisation dans \mathbb{C} :

$$P = (X - e^{i\frac{\pi}{6}})(X - e^{i\frac{2\pi}{3}})(X - e^{i\frac{7\pi}{6}})(X - e^{i\frac{7\pi}{6}})(X - e^{i\frac{5\pi}{3}})(X - e^{i\frac{5\pi}{6}})(X - e^{i\frac{4\pi}{3}})(X - e^{i\frac{11\pi}{6}})$$

ullet Factorisation dans $\mathbb R$: on regroupe ensemble les racines conjuguées et on obtient :

$$P = (X^2 - X + 1)(X^2 + \sqrt{3}X + 1)(X^2 - \sqrt{3}X + 1)(X^2 + X + 1)$$

- 5. Racines complexes de P: il faut remarquer que : $P = Q(X^2)$ avec $Q = Y^2 2Y 8$. Les racines de Q sont -2 et 4. Ainsi, z est racine de P si seulement si $Q(z^2) = 0 \Leftrightarrow z^2 = -2$ ou $z^2 = 4$. Il faut donc calculer les racines seconde des nombres $-2 = 2e^{i\pi}$ et 4. On obtient : -2, 2, $-\sqrt{2}i$ et $\sqrt{2}i$.
 - Factorisation dans \mathbb{C} : $P = (X-2)(X+2)(X-\sqrt{2}i)(X+\sqrt{2}i)$
 - Factorisation dans $\mathbb{R}: P = (X-2)(X+2)(X^2+2)$
- 6. Racines complexes de P : Racines n-ièmes de l'unité. On obtient $z=e^{\frac{2ik\pi}{n}}$ avec $k\in [0,n-1]$.
 - Factorisation dans \mathbb{C} : $P = \prod_{k=0}^{n-1} \left(X e^{\frac{2ik\pi}{n}}\right)$
 - Factorisation dans \mathbb{R} : A ne pas faire.
- 7. Racines complexes de P: Racines quatrièmes de -4: $\sqrt{2}e^{\frac{i\pi}{4}}$, $\sqrt{2}e^{\frac{3i\pi}{4}}$, $\sqrt{2}e^{\frac{5i\pi}{4}}$ et $\sqrt{2}e^{\frac{7i\pi}{4}}$: 4 racines simples pour un polynôme de degré 4.
 - Factorisation dans \mathbb{C} : $P = (X \sqrt{2}e^{\frac{i\pi}{4}})(X \sqrt{2}e^{\frac{3i\pi}{4}})(X \sqrt{2}e^{\frac{5i\pi}{4}})(X \sqrt{2}e^{\frac{7i\pi}{4}}).$
 - Factorisation dans \mathbb{R} : $P = (X^2 2X + 2)(X^2 + 2X + 2)$
- 8. Racines complexes de P: Racines cinquièmes du nombre $-32=32e^{i\pi}$. Les racines sont : $-2,\ 2e^{i\frac{\pi}{5}},\ 2e^{i\frac{7\pi}{5}},\ 2e^{i\frac{9\pi}{5}}$: 5 racines simples pour un polynôme de degré 5.
 - Factorisation dans \mathbb{C} : $P = (X+2)(X-2e^{i\frac{\pi}{5}})(X-2e^{i\frac{3\pi}{5}})(X-2e^{i\frac{7\pi}{5}})(X-2e^{i\frac{9\pi}{5}})$
 - Factorisation dans \mathbb{R} : $P = (X+2)\left(X^2 4\cos\left(\frac{\pi}{5}\right)X + 4\right)\left(X^2 4\cos\left(\frac{3\pi}{5}\right)X + 4\right)$.
- 9. Racines complexes de P: z est racine de P si et seulement si $(2z-1)^n = (-2z+3)^n$. Le but est alors de se ramener à la résolution des racines n-ième de l'unité.
 - * Comme $\frac{3}{2}$ n'est pas solution de l'équation, on peut supposer que $z \neq \frac{3}{2}$. Ainsi, on peut bien diviser par $(-2z+3)^n$ qui est bien non nul. Ainsi, on a

$$(2z-1)^n = (-2z+3)^n \Leftrightarrow \left(\frac{2z-1}{-2z+3}\right)^n = 1 \Leftrightarrow Z^n = 1$$

en posant $Z = \frac{2z-1}{-2z+3}$.

 \star Résolution des racines n-ièmes de l'unité : on obtient que les solutions sont les Z de la forme

$$Z_k = e^{\frac{2ik\pi}{n}}, \quad k \in [0, n-1].$$

* On repasse alors à z et on cherche donc les z tels que : $\frac{2z-1}{-2z+3}=e^{\frac{2ik\pi}{n}}$ avec $k\in [0,n-1]$ fixé. On obtient alors

$$\frac{2z-1}{-2z+3} = e^{\frac{2ik\pi}{n}} \Leftrightarrow 2z-1 = e^{\frac{2ik\pi}{n}}(-2z+3) \Leftrightarrow 2z\left(1+e^{\frac{2ik\pi}{n}}\right) = 3e^{\frac{2ik\pi}{n}} + 1.$$

Ici, il faut faire attention car on ne peut JAMAIS diviser par un nombre sans vérifier qu'il est bien NON nul. Or on a :

$$e^{\frac{2ik\pi}{n}} + 1 = 0 \Leftrightarrow e^{\frac{2ik\pi}{n}} = -1 \Leftrightarrow \frac{2k\pi}{n} = \pi + 2k'\pi \Leftrightarrow k = \frac{n}{2} + nk'$$

avec $k' \in \mathbb{Z}$. Or $k \in [0, n-1]$ donc le seul k qui pourrait vérifier cela est $k = \frac{n}{2}$. Ainsi on doit distinguer deux cas selon que n est pair ou impair :

- Si n est pair alors $\frac{n}{2}$ est bien un nombre entier et on doit donc prendre $k \neq \frac{n}{2}$ si on veut diviser.
- o Si n est impair alors $\frac{n}{2}$ n'est pas un nombre entier et pour tout $k \in [0, n-1]$, on a bien $e^{\frac{2ik\pi}{n}} + 1 \neq 0$.

On peut alors finir la résolution :

- $\circ \text{ Pour } n \text{ pair, on obtient : } z \text{ racine de } P \text{ si et seulement si : } z = \frac{3e^{\frac{2ik\pi}{n}} + 1}{2(e^{\frac{2ik\pi}{n}} + 1)} = \frac{\left(3e^{\frac{2ik\pi}{n}} + 1\right)e^{\frac{-ik\pi}{n}}}{4\cos\left(\frac{k\pi}{n}\right)}$ avec $k \in [0, n-1]$ et $k \neq \frac{n}{2}$. On obtient ainsi n-1 racines complexes distinctes et P est bien un polynôme de degré n-1 quand n est pair car le terme en X^n s'annule.
- o Pour n impair, on obtient : z racine de P si et seulement si : $z = \frac{3e^{\frac{2ik\pi}{n}} + 1}{2(e^{\frac{2ik\pi}{n}} + 1)} = \frac{\left(3e^{\frac{2ik\pi}{n}} + 1\right)e^{\frac{-ik\pi}{n}}}{4\cos\left(\frac{k\pi}{n}\right)}$ avec $k \in [0, n-1]$. On obtient ainsi n racines complexes distinctes et P est bien un polynôme de degré n quand n est impair car le terme en X^n ne s'annule pas.
- Factorisation dans \mathbb{C} : Il faut connaître le coefficient dominant. On utilise pour cela le binôme de Newton et on regarde le terme en X^n pour n impair et le terme en X^{n-1} pour n pair. On a : $P = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} 2^k X^k \sum_{k=0}^{n} \binom{n}{k} 3^{n-k} (-2)^k X^k$. Ainsi le terme en X^n est $2^n (-2)^n$ qui s'annule bien quand n est pair et qui vaut 2^{n+1} si n est impair. Et le terme en X^{n-1} vaut lorsque n est pair à savoir n-1 impair : $-n2^{n-1} 3n(-2)^{n-1} = n2^n$.
 - \star Cas 1 : n pair :

On obtient:
$$P = n2^n \prod_{k=0, \ k \neq \frac{n}{2}}^n \left(X - \frac{\left(3e^{\frac{2ik\pi}{n}} + 1\right)e^{\frac{-ik\pi}{n}}}{4\cos\left(\frac{k\pi}{n}\right)} \right).$$

 \star Cas 2 : n impair :

On obtient:
$$P = 2^{n+1} \prod_{k=0}^{n} \left(X - \frac{\left(3e^{\frac{2ik\pi}{n}} + 1 \right) e^{\frac{-ik\pi}{n}}}{4\cos\left(\frac{k\pi}{n}\right)} \right)$$

- Factorisation dans \mathbb{R} : à ne pas faire.
- Racines complexes de P: On sait que 1+i est racine complexe de P. Comme $P \in \mathbb{R}$, on a donc aussi que 1-i est racine complexe de P. Ainsi $P = (X (1+i))(X (1-i))Q = (X^2 2X + 2)Q$ avec Q polynôme de degré 2. En cherchant Q sous la forme $Q = aX^2 + bX + c$ et par identification des coefficients d'un polynôme, on obtient : $Q = X^2 + 5X 6$. Le discriminant vaut $\Delta = 7$ et les racines sont 1 et -6. Ainsi on a trouvé 4 racines pour un polynôme de degré 4, on les a toutes.

- Factorisation dans $\mathbb{C} : P = (X 1)(X + 6)(X (1 + i))(X (1 i)).$
- Factorisation dans $\mathbb{R} : P = (X 1)(X + 6)(X^2 2X + 2).$

Exercice 26. Soient $(a, b) \in \mathbb{R}^2$ et le polynôme $P = X^4 + aX^2 + bX + 1$.

- 1. Trouver a et b de telle sorte que 1-i soit racine de P.
- 2. Dans ce cas, trouver toutes les autres racines complexes de P.
- 3. En déduire la factorisation de P dans \mathbb{C} et dans \mathbb{R} .

Correction 25. 1. On cherche donc a et b tels que P(1-i)=0. On doit donc trouver a et b tels que : $(1-i)^4+a(1-i)^2+b(1-i)+1=0$. On développe et on identifie la partie réelle et la partie imaginaire qui doivent donc être toutes les deux nulles. On obtient que b=3 et $a=-\frac{3}{2}$. Ainsi $P=X^4-\frac{3}{2}X+3X+1$.

- 2. Comme $P \in \mathbb{R}$ et que 1-i est racine de P, on sait aussi que 1+i est racine de P et ainsi P se factorise sous la forme : $P = (X (1+i))(X (1-i))(aX^2 + bX + c) = (X^2 2X + 2)(aX^2 + bX + c)$. On développe et on identifie et on obtient : $P = (X (1+i))(X (1-i))(X^2 + 2X + \frac{1}{2})$. Le discriminant de $X^2 + 2X + \frac{1}{2}$ vaut : $\Delta = 2$ et les deux racines sont $-1 + \frac{1}{\sqrt{2}}$ et $-1 \frac{1}{\sqrt{2}}$.
- 3. Factorisation dans $\mathbb{C}: P = (X (1+i))(X (1-i))(X (-1 + \frac{1}{\sqrt{2}}))(X + 1 + \frac{1}{\sqrt{2}}).$
 - Factorisation dans \mathbb{R} : $P = (X^2 2X + 2)(X (-1 + \frac{1}{\sqrt{2}}))(X + 1 + \frac{1}{\sqrt{2}}).$

Exercice 27. Soient trois scalaires $(a, b, c) \in \mathbb{K}^3$ et le polynôme $P = X^3 + aX^2 + bX + c$. On suppose que u, v, w sont les trois racines complexes de P. Montrer que

$$u + v + w = -a$$
 $uv + vw + uw = b$ et $uvw = -c$.

Correction 26. Idée : relation coefficients-racines :

On sait que $P = X^3 + aX^2 + bX + c$ et on sait aussi que u, v et w sont les racines complexes de P ainsi P se factorise sous la forme : P = (X - u)(X - v)(X - w). Il s'agit alors de développer le produit (X - u)(X - v)(X - w) et d'utiliser ensuite l'unicité des coefficients d'un polynôme. On obtient : $(X - u)(X - v)(X - w) = X^3 - (u + v + w)X^2 + (uv + uw + vw)X - uvw$. Ainsi par identification, on a :

$$u + v + w = -a$$
 $uv + uw + vw = b$ $uvw = -c$.

Exercice 28. Polynômes de Tchebychev de deuxième espèce : on considère la suite de polynômes

$$\left\{ \begin{array}{l} P_1 = 1, \ P_2 = 2X \\ \\ \forall n \geq 1, \ P_{n+2} = 2XP_{n+1} - P_n. \end{array} \right.$$

- 1. Calculer P_3 et P_4 .
- 2. Soit $\theta \in]0, \pi[$ et $n \geq 1$.
 - (a) Montrer que $\sin(n\theta) = P_n(\cos(\theta))\sin(\theta)$.
 - (b) Déterminer les solutions de l'équation $\sin(nx) = 0 \sin[0, \pi[$.
 - (c) En déduire les racines de P_n sur]-1,1[. Justifier que les n-1 racines trouvées sont 2 à 2 distinctes.
- 3. Déterminer pour tout $n \ge 1$ le degré et le coefficient dominant de P_n .
- 4. (a) Pour tout $n \geq 1$, donner la décomposition du polynôme P_n dans $\mathbb{R}[X]$.
 - (b) En déduire que pour tout $\theta \in]0, \pi[$,

$$\frac{\sin(n\theta)}{\sin(\theta)} = 2^{n-1} \prod_{k=1}^{n-1} \left(\cos(\theta) - \cos\left(\frac{k\pi}{n}\right)\right).$$

5. Soit $n \ge 1$. Dériver deux fois par rapport à θ la relation obtenue au 2a et en déduire que

$$(1 - X^2)P_n'' - 3XP_n' + (n^2 - 1)P_n = 0.$$

Correction 27.

- 1. On a: $P_3 = 2XP_2 P_1$, soit $P_3 = 4X^2 1$ et $P_4 = 2XP_3 P_2 = 2X(4X^2 1) 2X$, soit $P_4 = 8X^3 4X$
- 2. Soit $\theta \in]0,\pi[$ et $n \geq 1$.
 - (a) Montrer que $\sin(n\theta) = P_n(\cos(\theta))\sin(\theta)$. Montrons par double récurrence sur $n \in \mathbb{N}^*$ la propriété $H_n : \sin(n\theta) = P_n(\cos(\theta))\sin(\theta)$.
 - Initialisation : on a d'une part $P_1(\cos \theta) \sin \theta = 1 \times \sin \theta = \sin \theta$, et d'autre part $\sin(1 \times \theta) = \sin \theta$, donc on a H_1 vraie. De même, on a d'une part $P_2(\cos \theta) \sin \theta = 2 \cos \theta \sin \theta = \sin(2\theta)$, et d'autre part $\sin(2 \times \theta) = \sin(2\theta)$, donc on a H_2 vraie.
 - Hérédité : soit $n \in \mathbb{N}$ fixé, supposons H_n et H_{n+1} vraies. Montrons que H_{n+2} est vraie. On a, par définition de la suite (P_n) :

$$P_{n+2}(\cos\theta)\sin\theta = (2\cos\theta P_{n+1}(\cos\theta) - P_n(\cos\theta))\sin\theta$$

$$= 2\cos\theta P_{n+1}(\cos\theta)\sin\theta - P_n(\cos\theta)\sin\theta$$

$$= 2\cos\theta\sin((n+1)\theta) - \sin(n\theta) \qquad \text{par hypothèse de récurrence,}$$

$$= \sin(\theta + (n+1)\theta) - \sin(\theta - (n+1)\theta) - \sin(n\theta) \qquad \text{(formule de trigonométrie)}$$

$$= \sin((n+2)\theta).$$

On a donc H_{n+2} vraie.

Par principe de récurrence, la propriété H_n est vraie pour tout $n \in \mathbb{N}$: $\sin(n\theta) = P_n(\cos(\theta))\sin(\theta)$.

(b) Déterminer les solutions de l'équation $\sin(nx) = 0$ sur $[0, \pi[$.

On a : $\sin(nx) = 0 \Leftrightarrow nx = k\pi \Leftrightarrow x = \frac{k\pi}{n}$, avec $k \in \mathbb{Z}$. De plus, on a $\frac{k\pi}{n} \in]0, \pi[\Leftrightarrow k \in [1, n-1]]$. Les solutions dans $]0, \pi[$ sont donc : $\left\{\frac{k\pi}{n}, k \in [1, n-1]\right\}$.

(c) En déduire les racines de P_n sur]-1,1[. Justifier que les n-1 racines trouvées sont 2 à 2 distinctes.

On cherche à résoudre $P_n(x) = 0$ pour $x \in]-1,1[$. Or pour tout $x \in]-1,1[$, il existe un unique $\theta \in]0,\pi[$ tel que $x = \cos(\theta)$. On est donc ramené à résoudre sur $]0,\pi[$ l'équation $P_n(\cos\theta) = 0$. Or on a montré que $\sin(n\theta) = P_n(\cos\theta)\sin\theta$, donc comme $\sin\theta \neq 0$ sur $]0,\pi[$, on a $\sin(n\theta) = 0 \Leftrightarrow P_n(\cos\theta) = 0$. On doit donc résoudre :

$$\sin(n\theta) = 0 \Leftrightarrow \theta = \frac{k\pi}{n}, k \in [1, n-1]$$

d'après la question précédente. Or $\theta = \frac{k\pi}{n} \Leftrightarrow x = \cos\left(\frac{k\pi}{n}\right)$. On en déduit que les racines de P_n sur]-1,1[sont données par : $\boxed{\left\{\cos\left(\frac{k\pi}{n}\right),k\in\llbracket 1,n-1\rrbracket\right\}}$.

Ces n-1 racines sont bien distinctes 2 à 2 car les $\frac{k\pi}{n}$ sont des réels 2 à 2 distincts de $]0,\pi[$, et la fonction cosinus est strictement croissante sur cet intervalle.

3. Déterminer pour tout $n \ge 1$ le degré et le coefficient dominant de P_n .

Montrons par double récurrence sur $n \in \mathbb{N}^*$ la propriété suivante : $H_n : P_n$ est un polynôme de degré n-1 et de coefficient dominant 2^{n-1} .

- Initialisation : on a $P_1 = 1$, qui est bien un polynôme de degré 0 et de coefficient dominant $2^0 = 1$. De même, $P_2 = 2X$ est un polynôme de degré 1 et de coefficient dominant $2^1 = 2$.
- Hérédité : soit $n \in \mathbb{N}^*$ fixé, supposons H_n et H_{n+1} vraies. Montrons que H_{n+2} est vraie. On a

$$P_{n+2} = 2XP_{n+1} - P_n,$$

donc P_{n+2} est un polynôme comme produit et somme de polynômes. De plus, par hypothèse de récurrence, il existe Q (respectivement R de degré inférieur ou égal à n-1 (respectivement n-2) tels que $P_{n+1}=2^nX^n+Q$ et $P_n=2^{n-1}X^{n-1}+R$. Donc on a

$$P_{n+2} = 2X(2^n X^n + Q) - 2^{n-1} X^{n-1} - R,$$

soit

$$P_{n+2} = 2^{n+1}X^{n+1} + S$$

avec $S = 2XQ - 2^{n-1}X^{n-1} - R$ un polynôme de degré inférieur ou égal à n. Donc P_{n+2} est bien de degré n+1 et de coefficient dominant égal à 2^{n+1} , et H_{n+2} est démontrée.

Par principe de récurrence, la propriété H_n est vraie pour tout $n \in \mathbb{N}^*$: P_n est un polynôme de degré n-1 et de co

4. (a) Pour tout $n \ge 1$, donner la décomposition du polynôme P_n dans $\mathbb{R}[X]$.

D'après les questions précédentes, on sait que P_n est de degré n-1, et on a trouvé n-1 racines à la question 2). Ce sont donc les seules. Comme de plus le coefficient dominant de P_n est 2^{n-1} , on peut factoriser P_n de la façon suivante :

$$P_n = 2^{n-1} \prod_{k=1}^{n-1} \left(X - \cos\left(\frac{k\pi}{n}\right) \right).$$

(b) En déduire que pour tout $\theta \in]0, \pi[, \frac{\sin(n\theta)}{\sin(\theta)} = 2^{n-1} \prod_{k=1}^{n-1} \left(\cos(\theta) - \cos\left(\frac{k\pi}{n}\right)\right).$

Comme $\theta \in]0, \pi[$, on a $\sin \theta \neq 0$, donc on a $P_n(\cos \theta) = \frac{\sin(n\theta)}{\sin \theta}$. D'après la factorisation de P_n , on a donc bien :

$$\boxed{\frac{\sin(n\theta)}{\sin\theta} = 2^{n-1} \prod_{k=1}^{n-1} \left(\cos\left(\theta\right) - \cos\left(\frac{k\pi}{n}\right)\right).}$$

5. Soit $n \ge 1$. Dériver deux fois par rapport à θ la relation obtenue au 2a et en déduire que : $(1-X^2)P_n'' - 3XP_n' + (n^2-1)P_n = 0$.

On sait que pour tout $\theta \in]0, \pi[$, on a : $\sin(n\theta) = P_n(\cos(\theta))\sin(\theta)$. Tous les membres de cette équation sont dérivables sur $]0, \pi[$ comme composées et sommes de fonctions dérivables. On peut donc dériver cette équation :

$$n\cos(n\theta) = -\sin\theta P'_n(\cos\theta)\sin\theta + P_n(\cos\theta)\cos\theta$$
$$= -\sin^2(\theta)P'_n(\cos\theta) + \cos\theta P_n(\cos\theta)$$

On obtient à nouveau des expressions dérivables comme composées et sommes de fonctions dérivables, donc on dérive à nouveau :

$$-n^{2}\sin(n\theta) = P''_{n}(\cos\theta)\sin^{3}(\theta) - 2\cos\theta\sin\theta P'_{n}(\cos\theta) - \sin\theta\cos\theta P'_{n}(\cos\theta) - \sin\theta P_{n}(\cos\theta)$$
$$= P''_{n}(\cos\theta)\sin^{3}(\theta) - 3\cos\theta\sin\theta P'_{n}(\cos\theta) - \sin\theta P_{n}(\cos\theta)$$

Or on a $\sin \theta \neq 0$ sur $]0, \pi[$, donc on peut diviser l'équation précédente par $\sin \theta$:

$$P_n''(\cos\theta)\sin^2(\theta) - 3\cos\theta P_n'(\cos\theta) - P_n(\cos\theta) + n^2 \frac{\sin(n\theta)}{\sin\theta} = 0.$$

De plus, on a $\sin^2(\theta) = 1 - \cos^2(\theta)$, et on a montré que $\frac{\sin(n\theta)}{\sin \theta} = P_n(\cos \theta)$ pour tout $\theta \in]0, \pi[$, donc on a :

$$P_n''(\cos\theta)(1-\cos^2(\theta)) - 3\cos\theta P_n'(\cos\theta) + (n^2-1)P_n(\cos\theta) = 0.$$

En posant $x = \cos \theta$, on a donc montré que pour tout $x \in]-1,1[$, on a :

$$P_n''(x)(1-x^2) - 3xP_n'(x) + (n^2 - 1)P_n(x) = 0.$$

Le polynôme $(1-X^2)P_n''-3XP_n'+(n^2-1)P_n$ admet donc une infinité de racines : c'est donc le polynôme nul, et on a bien : $(1-X^2)P_n''-3XP_n'+(n^2-1)P_n$.

Exercice 29. Soit $n \ge 2$, on pose $P = (X+1)^n - 1$.

- 1. Déterminer toutes les racines de P dans $\mathbb C$ et en déduire la factorisation de P dans $\mathbb C$.
- 2. On note Q le polynôme de \mathbb{C} tel que : P = XQ. À l'aide des racines de Q, déterminer la valeur de :

$$A = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right).$$

Correction 28.

1. On cherche les racines complexes, soi $z \in \mathbb{C}$ tel que :

$$P(z) = 0 \Leftrightarrow (z+1)^n = 1 \Leftrightarrow z+1 = e^{i\frac{2k\pi}{n}} \Leftrightarrow z = 2i\sin\left(\frac{k\pi}{n}\right)e^{i\frac{k\pi}{n}}, \text{ avec } k \in [0, n-1].$$

On a utilisé en particulier l'expression des racines n-ièmes de l'unité et la méthode de l'angle moitié. Comme le coefficient dominant de P vaut 1, on en déduit la factorisation suivante :

$$P = \prod_{k=0}^{n-1} \left(X - 2i \sin\left(\frac{k\pi}{n}\right) e^{i\frac{k\pi}{n}} \right)$$

2. \star En prenant k=0, on remarque que 0 est racine de P, et que P se factorise sous la forme

$$P = X \prod_{k=0}^{n-1} \left(X - 2i \sin\left(\frac{k\pi}{n}\right) e^{i\frac{k\pi}{n}} \right) = XQ,$$

et les racines de Q sont donc : $2i\sin\left(\frac{k\pi}{n}\right)e^{i\frac{k\pi}{n}}$ avec $k\in[1,n-1]$.

On en déduit que le produit des racines de Q vaut :

$$B = \prod_{k=1}^{n-1} 2i \sin\left(\frac{k\pi}{n}\right) e^{i\frac{k\pi}{n}} = 2^{n-1}(i)^{n-1} e^{\frac{i\pi}{n}(1+\dots+(n-1))} \times A$$

$$= 2^{n-1}(i)^{n-1} e^{\frac{i\pi n(n-1)}{2n}} \times A$$

$$= 2^{n-1}(i)^{n-1} e^{\frac{i\pi(n-1)}{2}} \times A$$

$$= 2^{n-1}(i)^{n-1}(i)^{n-1} \times A = 2^{n-1}(-1)^{n-1}A.$$

* De plus, en utilisant la formule du binôme de Newton, on obtient que :

$$P = X^n + nX^{n-1} + \dots + nX + 1 - 1 = X \left(X^{n-1} + nX^{n-2} + \dots + n \right)$$
et ainsi $Q = X^{n-1} + nX^{n-2} + \dots + n$.

 \star Les relations coefficients-racines appliquées au polynôme Q donnent alors que :

$$B = \frac{(-1)^{n-1} \operatorname{coeff constant de } Q}{\operatorname{coeff dominant de } Q}$$

$$\Leftrightarrow \prod_{k=1}^{n-1} 2i \sin\left(\frac{k\pi}{n}\right) e^{i\frac{k\pi}{n}} = (-1)^{n-1} n$$

$$\Leftrightarrow 2^{n-1} (-1)^{n-1} A = (-1)^{n-1} n.$$

Ainsi, on obtient que $A = \frac{n}{2^{n-1}}$

V Résolutions d'équations avec des polynômes

Exercice 30. Expression de sommes.

- 1. Trouver un polynôme P de degré 3 tel que : $P P(X + 1) = X^3$. En déduire la valeur de : $\sum_{k=0}^{n} k^3$ pour tout $n \in \mathbb{N}$.
- 2. Montrer qu'il existe un polynôme P de degré 4 tel que : P(X+1) P = X(X-1)(X-2)En déduire pour tout $n \ge 1$ une expression simple de $S = \sum_{k=1}^{n} k(k-1)(k-2)$.

Correction 29. 1. • On cherche donc P sous la forme $P = aX^4 + bX^3 + cX^3 + dX + e$ vérifiant : $P - P(X+1) = X^3$. On commence par calculer P - P(X+1) et on obtient : $P - P(X+1) = -4aX^3 + (-6a-3b)X^2 + (-4a-3b-2c)X - a - b - c - d$. Comme on veut $P - P(X+1) = X^3$, par unicité des coeficients d'un polynôme, on obtient le système suivant à résoudre : $\begin{cases} -4a & = 1 \\ -6a-3b & = 0 \\ -4a-3b-2c & = 0 \\ -a-b-c-d & = 0 \end{cases}$

résolution donne : $a=-\frac{1}{4},\,b=\frac{1}{2},\,c=-\frac{1}{4}$ et d=0. Il n'y a pas de condition sur e que l'on prend donc égal à 0. Ainsi, on a : $P=-\frac{1}{4}X^4+\frac{1}{2}X^3-\frac{1}{4}X^2$.

- Comme l'égalité démontrée ci-dessus est une égalité entre deux polynômes, elle est en particulier vraie pour tout $x \in \mathbb{R}$, à savoir : $\forall x \in \mathbb{R}$, $P(x) P(x+1) = x^3$. En particulier elle est aussi vraie pour tout $k \in [0, n]$, à savoir : $P(k) P(k+1) = k^3$. Ainsi, on a : $\sum_{k=0}^{n} k^3 = \sum_{k=0}^{n} P(k) P(k+1) = \sum_{k=0}^{n} P(k) \sum_{k=0}^{n} P(k+1)$ par linéarité. On reconnaît alors une somme télescopique et on obtient : $\sum_{k=0}^{n} k^2 = \sum_{k=0}^{n} P(k) \sum_{k=1}^{n+1} P(k) = P(0) P(n+1)$. Mais on connaît aussi l'expression de P et ainsi, on obtient : $\sum_{k=0}^{n} k^2 = \frac{1}{4}(n+1)^4 \frac{1}{2}(n+1)^3 + \frac{1}{4}(n+1)^2 = \frac{(n+1)^2}{4}\left((n+1)^2 2(n+1) + 1\right) = \frac{(n(n+1))^2}{4}$. On retrouve ainsi l'expression connue.
- 2. C'est exactement la même chose. A faire.

Exercice 31. Pour tout polynôme $P \in \mathbb{R}$, on pose

$$\varphi(P) = (3X + 1)P - X(X - 1)P'.$$

- 1. Vérifier que φ définit bien une application de \mathbb{R} dans \mathbb{R} .
- 2. (a) Pour quelles valeurs de n a-t-on $\varphi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$?
 - (b) Pour ces valeurs de n, déterminer les polynômes de $\mathbb{R}_n[X]$ tels que $\varphi(P) = 0$.
- 3. Résoudre dans \mathbb{R} l'équation $\varphi(P) = X^2$.

Correction 30.

- 1. Soit $P \in \mathbb{R}$, on a alors que : $\varphi(P) = (3X+1)P X(X+1)P'$. Comme P est un polynôme et que la dérivée d'un polynôme est un polynôme, on sait que $P' \in \mathbb{R}$. De plus 3X + 1 et X(X + 1) sont aussi des polynômes et ainsi $\varphi(P)$ est un polynôme comme produit et somme de polynômes. Donc si $P \in \mathbb{R}$ alors $\varphi(P) \in \mathbb{R}$.
- 2. (a) Soit $P \in \mathbb{R}_n[X]$, on cherche à savoir sous quelles conditions, on a aussi $\varphi(P) \in \mathbb{R}_n[X]$. Il faut donc étudier le degré de $\varphi(P)$ sachant que $P = a_n X^n + Q$ avec $Q \in \mathbb{R}_{n-1}[X]$ et $a_n \neq 0$. Par définition de $\varphi(P)$, on a : deg $\varphi(P) \leq n+1$. En effet, par propriété sur le degré d'un produit, d'une dérivée et d'une somme de polynômes de même degré, on a : deg(3X+1)P = n+1, deg X(X-1)P' = n+1 et ainsi $\deg \varphi(P) \le n + 1$. On obtient que : $\varphi(P) = (3X + 1)(a_n X^n + Q) - X(X - 1)(na_n X^{n-1} + Q')$. Étudions le terme en X^{n+1} afin de voir sous quelle condition le coefficient devant ce terme s'annule. On a: $\varphi(P) = 3a_n X^{n+1} - na_n X^{n+1} + R$ avec $R \in \mathbb{R}_n[X]$. Pour que deg $\varphi(P) \leq n$, on doit donc avoir: $(3-n)a_n=0$. Comme $a_n\neq 0$, cela impose que n=3 et ainsi cela impose que le degré de P soit 3. Ainsi $\varphi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$ si et seulement si n=3.
 - (b) P est donc un polynôme de degré 3 et ainsi il est de la forme : $P = aX^3 + bX^2 + cX + d$. On cherche alors à résoudre $\varphi(P) = 0 \Leftrightarrow (3X+1)P - X(X-1)P' = 0$. Les calculs donnent : $(b+4a)X^3 + (2c+3b)X^2 + (3c+3b)X^2 +$ (3d+2c)X+d=0. Puis par unicité des coefficients d'un polynôme, on obtient : a=b=c=d=0 et ainsi seul le polynôme nul convient.
- 3. Les deux questions précédentes ont permis de montrer que si $n \neq 3$ et deg P = n alors deg $(\varphi(P)) = n + 1$ et si n=3 alors $\varphi(P)\in\mathbb{R}_3[X]$. Ainsi pour que $\varphi(P)=X^2$, il faut soit que deg P=1, soit que deg P=3. On étudie ainsi chacun de ces cas :
 - Cas 1 : si n = 1 : P = aX + b : On doit donc avoir : $(3X + 1)(aX + b) - X(X - 1)a = X^2$ et en développant le terme de gauche et par identification des coefficients d'un polynôme, on obtient le système linéaire suivant à résoudre : $\begin{cases} 2a+3b &= 0 \text{ . Ce système est incompatible et ainsi il n'existe aucun } P \text{ de degré 1 vérifiant } \varphi(P) = \\ b &= 0 \end{cases}$
 - En reprenant les mêmes calculs que dans la questions 2(a), on a:(b+4a)

En reprenant les mêmes calculs que dans la questions
$$2(a)$$
, on $a:(b+4a)X^3+(2c+3b)X^2+(3d+2c)X+d=X^2$ et on doit donc résoudre le système suivant :
$$\begin{cases} b+4a&=0\\ 2c+3b&=1\\ 3d+2c&=0\\ d&=0 \end{cases}$$
. La résolution donne : $a=-\frac{1}{1}$, $b=\frac{1}{2}$ et $c=d=0$. Ainsi on obtient qu'il existe un seul polynôme P vérifiant $\varphi(P)=P^2$, le

 $a=-\frac{1}{12},\,b=\frac{1}{3}\text{ et }c=d=0.$ Ainsi on obtient qu'il existe un seul polynôme P vérifiant $\varphi(P)=P^2$, le polynôme : $P=-\frac{1}{12}X^3+-\frac{1}{3}X^2.$

Exercice 32. On cherche ici à déterminer tous les polynômes $P \in \mathbb{R}$ tels que $P(X^2) = (X^2 + 1)P$.

- 1. Soit $P \in \mathbb{R}$ vérifiant $P(X^2) = (X^2 + 1)P$. Quel est son degré?
- 2. Déterminer P à l'aide d'une identification des coefficients.
- 3. Retrouver l'expression de P en déterminant ses racines.

Correction 31.

- 1. On suppose que $P \in \mathbb{R}$ vérifie $P(X^2) = (1 + X^2)P$. Condition sur le degré : Le polynôme nul convient bien. Sinon, si P est de degré n, alors on a : deg $P(X^2) = 2n$ et deg $((1 + X^2)P) = 2 + n$ par propriétés sur le degré d'un produit et d'une composée. Ainsi, on doit avoir : $2n = n + 2 \Leftrightarrow n = 2$. Ainsi P est un polynôme de degré $2 : P = aX^2 + bX + c$ avec $a \neq 0$.

que :
$$\begin{cases} a = a \\ b = 0 \\ a+c = b \end{cases}$$
 . Ainsi, on obtient que $b=0$ et $a=-c$ et P est de la forme $P=aX^2-a=a(X^2-1)$ $c=c$

avec $a \in \mathbb{R}$.

Synthèse : soit $P = a(X^2 - 1)$ avec $a \in \mathbb{R}$. Il vérifie bien $P(X^2) = (1 + X^2)P$. Ainsi les polynômes vérifiant la relation sont exactement les polynômes de type $a(X^2 - 1)$ avec $a \in \mathbb{R}$.

3. On veut retrouver ce résultat d'une autre manière. On cherche donc les deux racines de P: montrons que 1 et -1 conviennent. On a :

$$P(1^2) = (1^2 + 1)P(1) \implies P(1) = 2P(1) \implies P(1) = 0,$$

donc 1 est bien racine de P. De même :

$$P((-1)^2) = ((-1)^2 + 1)P(-1) \implies P(1) = 2P(-1) \implies P(-1) = \frac{P(1)}{2} = 0,$$

donc -1 est bien racine de P. On sait que P est de degré 2, donc on a trouvé toutes les racines, et P peut donc s'écrire P = a(X-1)(X+1), avec $a \in \mathbb{R}^*$. On retrouve bien que les solutions sont les polynômes de la forme $P = a(X^2-1)$, avec $a \in \mathbb{R}^*$.

Exercice 33.

- 1. Déterminer tous les polynômes P de \mathbb{R} tels que : P = XP'.
- 2. Déterminer tous les polynômes P de \mathbb{R} tels que : $(2X^2 3)P'' 6P = 0$.
- 3. Déterminer tous les polynômes $P \in \mathbb{R}$ tels que : $\forall n \in \mathbb{N}, P(n) = 0$.
- 4. Déterminer tous les polynômes $P \in \mathbb{R}$ tels que : P(X+1) = -P.

Correction 32.

- 1. Analyse : soit $P \in \mathbb{R}$ vérifiant : P = XP'. On remarque tout de suite que le polynôme nul convient et ainsi on peut prendre $P \in \mathbb{R}$ polynôme non nul vérifiant P = XP'. On pose ainsi $n = \deg P$ et $P = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$.
 - * On peut commencer par regarder si l'équation vérifiée par P impose des conditions sur le degré de P. D'un côté, on a : $\deg P = n$ et de l'autre côté, on a par propriété sur le degré d'une dérivée et d'un produit de polynômes : $\deg XP' = 1 + (n-1) = n$. Donc l'équation n'impose aucune condition sur le degré de P.
 - * Identification des coefficients : en effet, on a d'un côté : $P = \sum_{k=0}^{n} a_k X^k$ et de l'autre côté : $XP' = \sum_{k=0}^{n} a_k X^k$

$$X \sum_{k=1}^{n} k a_k X^{k-1} = \sum_{k=1}^{n} k a_k X^k$$
. Ainsi, on a l'égalité de polynômes suivante :

$$a_0 + a_1 X + a_2 X^2 + a_3 X 3 + \dots + a_{n-1} X^{n-1} + a_n X^n = a_1 X + 2a_2 X^2 + 3a_3 X^3 + \dots + (n-1)a_{n-1} X^{n-1} + na_n X^n.$$

Puis par unicité des coefficients d'un polynôme, on obtient que : $a_0 = 0$, $a_1 = a_1$, $a_2 = 2a_2 \Leftrightarrow a_2 = 0$, $a_3 = 3a_3 \Leftrightarrow a_3 = 0, \ldots, a_{n-1} = (n-1)a_{n-1} \Leftrightarrow a_{n-1} = 0$ et $a_n = na_n \Leftrightarrow a_n = 0$. Ainsi P est de la forme : $P = a_1 X$.

- Synthèse : soit P de la forme P = aX avec $a \in \mathbb{R}$ (le polynôme nul est ainsi pris en compte puisque a peut être nul). On a donc $XP' = X \times a = aX = P$. Donc P = aX vérifie bien l'équation P = XP'. Ainsi l'ensemble des polynômes vérifiant P = XP' sont les polynômes de la forme P = aX avec $a \in \mathbb{R}$.
- - * On peut commencer par regarder si l'équation vérifiée par P impose des conditions sur le degré de P. D'un côté, on a : $\deg 6P = n$ et de l'autre côté, on a par propriété sur le degré d'une dérivée et d'un produit de polynômes : $\deg (2X^2 3)P'' = 2 + (n 2) = n$. Donc l'équation n'impose aucune condition sur le degré de P.
 - * On peut ensuite regarder ce que cette équation impose au niveau du coefficient de plus haut degré. On a : $P = a_n X^n + T$ avec $T \in \mathbb{R}_{n-1}[X]$. Ainsi $P'' = n(n-1)a_n X^{n-2} + T''$ avec $T'' \in \mathbb{R}_{n-3}[X]$. Ainsi, on a : $(2X^2 3)(n(n-1)a_n X^{n-2} + T'') = a_n X^n + T$. Et par unicité des coefficients d'un polynôme, on obtient que : $2n(n-1)a_n = 6a_n \Leftrightarrow (n^2 n 3)a_n = 0$. Comme $a_n \neq 0$, on doit avoir : $n^2 n 3 = 0$. Le discriminant vaut 13 et les racines ne sont donc pas entières. Ainsi, il n'existe aucun $n \in \mathbb{N}$ tel que : $2n(n-1)a_n = 6a_n$.

Ainsi il n'existe aucun polynôme non nul vérifiant $(2X^2 - 3)P'' - 6P = 0$.

- Synthèse : Seul le polynôme nul vérifie $(2X^2 3)P'' 6P = 0$.
- 3. Analyse : soit $P \in \mathbb{R}$ vérifiant P(n) = 0 pour tout $n \in \mathbb{N}$. Ainsi P admet une infinité de racines car il admet tous les entiers naturels comme racines. Donc P est le polynôme nul.
 - Synthèse : Le polynôme nul vérifie bien que pour tout $n \in \mathbb{N}$: P(n) = 0. Donc le seul polynôme vérifiant cela est bien le polynôme nul.
- 4. Analyse : soit $P \in \mathbb{R}$ vérifiant P(X+1) = -P. On peut tout de suite remarquer que le polynôme nul convient. Soit alors $P \in \mathbb{R}$ non nul et de degré n.
 - \star Étude du degré : d'un côté, par propriété sur le degré d'une composée, on a : deg $P(X+1) = \deg P$ et de l'autre côté, on a : deg P. Ainsi l'équation vérifiée par P n'impose aucune condition sur le degré du polynôme.
 - ★ Étude des racines : on remarque que P(1) = -P(0), puis : P(2) = -P(1) donc P(2) = P(0). De même : P(3) = -P(2) donc P(3) = P(1). Ainsi on remarque que pour tout $n \in \mathbb{N}$, on a : P(2n) = P(0) et P(2n+1) = P(1). On pose alors les polynômes : Q = P P(0) et R = P P(1). On a pour tout $n \in \mathbb{N}$: Q(2n) = P(2n) P(0) = 0 et R(2n+1) = P(2n+1) P(1) = 0. Ainsi tous les entiers naturels pairs sont racines de Q et tous les entiers naturels impairs sont racines de Q. Ainsi Q et Q possèdent tous les deux une infinité de racines et ils sont donc tous les deux nuls : $Q = 0 \Leftrightarrow P = P(0)$ et Q et
 - Synthèse : Le polynôme nul vérifie bien P(X+1) = -P. Donc le seul polynôme vérifiant cela est bien le polynôme nul.

Exercice 34. Polynômes de Tchebychev de première espèce : On définit une suite de polynômes $(P_n)_{n>0}$ par

$$\begin{cases} P_0 = 1 & P_1 = X \\ \forall n \in \mathbb{N}, \ P_{n+2} = 2XP_{n+1} - P_n. \end{cases}$$

- 1. Calculer P_2 , P_3 et P_4 . Déterminer également les racines de ces trois polynômes.
- 2. Déterminer pour tout $n \geq 0$ le degré ainsi que le coefficient dominant de P_n .
- 3. Pour tout $n \in \mathbb{N}$, calculer $P_n(1)$.
- 4. Soit $n \geq 0$.

(a) Montrer que:

$$\forall t \in \mathbb{R}, \quad P_n(\cos t) = \cos(nt).$$

(b) Réciproquement, montrer que si Q_n est un polynôme tel que

$$\forall t \in \mathbb{R}, \quad Q_n(\cos t) = \cos(nt)$$

alors
$$P_n = Q_n$$
.

- 5. Etudier la parité de P_n . On pourra s'intéresser au polynôme $Q = P_n(-X) (-1)^n P_n$.
- 6. Soit $n \geq 0$.
 - (a) Déterminer les racines de P_n sur [-1,1].
 - (b) En déduire toutes les racines de P_n .

Correction 33. Polynômes de Tchebychev de première espèce :

Dans cet exercice très classique, il y a deux idées importantes :

- Les polynômes étant définis par une relation de récurrence d'ordre deux, beaucoup de propriétés vont se démontrer par une récurrence double.
- L'idée selon laquelle deux polynômes sont égaux dès qu'ils sont égaux pour une infinité de valeurs ou ce qui revient au même : un polynôme est nul dès qu'il a une infinité de racines.
- 1. Le calcul donne : $P_2 = 2X^2 1$ et les racines sont : $-\frac{1}{\sqrt{2}}$ et $\frac{1}{\sqrt{2}}$.
 - Le calcul donne : $P_3 = 2^2 X^3 3X$ et les racines sont : $0, -\frac{\sqrt{3}}{2}$ et $\frac{\sqrt{3}}{2}$.
 - Le calcul donne : $P_4 = 2^3 X^4 8X^2 + 1$.
- 2. On peut conjecturer que le degré de P_n est n et son coefficient dominant : 2^{n-1} pour $n \ge 1$.
 - On montre par récurrence double sur $n \in \mathbb{N}^*$ la propriété $\mathcal{P}(n)$: deg $P_n = n$ et $a_n = 2^{n-1}$ avec a_n le coefficient dominant de P_n .
 - Initialisation : pour n = 1 et n = 2 : Par définition de la suite des polynômes, on a : $P_1 = X$ et les calculs ont donné $P_2 = 2X^2 - 1$. Ainsi on a bien deg $P_1 = 1$ et deg $P_2 = 2$. De plus on a : $a_1 = 1$ et $2^0 = 1$ et $a_2 = 2$ et $2^1 = 2$. Ainsi $\mathcal{P}(1)$ et $\mathcal{P}(2)$ sont vraies.
 - Hérédité : soit $n \in \mathbb{N}^*$ fixé. On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies et on veut montrer que $\mathcal{P}(n+2)$ est vraie. Ainsi par hypothèse de récurrence, on sait que $P_n = 2^{n-1}X^n + T$ et $P_{n+1} = 2^nX^{n+1} + S$ avec $T \in \mathbb{R}_{n-1}[X]$ et $S \in \mathbb{R}_n[X]$. Comme par définition de la suite de polynômes, on a : $P_{n+2} = 2XP_{n+1} P_n$, on obtient :

$$P_{n+2} = 2X(2^{n}X^{n+1} + S) - 2^{n-1}X^{n} - T = 2^{n+1}X^{n+2} + 2XS - 2^{n-1}X^{n} - T = 2^{n+1}X^{n+2} + R$$

avec $R = 2XS - 2^{n-1}X^n - T \in \mathbb{R}_{n+1}[X]$ par propriétés sur le degré de produits et de sommes de polynômes. Ainsi $\mathcal{P}(n+2)$ est vraie.

- Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}^*$, on a : deg $P_n = n$ et le coefficient dominant de P_n est 2^{n-1} .
- 3. On remarque que $P_0(1) = P_1(1) = P_2(1) = P_3(1) = P_4(1)$. Ainsi on peut conjecturer que pour tout $n \in \mathbb{N}$, on a $P_n(1) = 1$.
 - On montre par récurrence double sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: $P_n(1) = 1$.
 - Initialisation : pour n = 0 et n = 1 : Par définition de la suite des polynômes, on a : $P_0 = 1$ et $P_1 = X$. Ainsi on a bien $P_0(1) = 1$ et $P_1(1) = 1$. Ainsi $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.

- Hérédité: soit $n \in \mathbb{N}$ fixé. On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies et on veut montrer que $\mathcal{P}(n+2)$ est vraie. Ainsi par hypothèse de récurrence, on sait que $P_n(1) = 1$ et $P_{n+1}(1) = 1$. Comme par définition de la suite de polynômes, on a : $P_{n+2} = 2XP_{n+1} P_n$, on obtient : $P_{n+2}(1) = 2P_{n+1}(1) P_n(1) = 2 1 = 1$. Ainsi $\mathcal{P}(n+2)$ est vraie.
- Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$, on a : $P_n(1) = 1$.
- 4. (a) On montre par récurrence double sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: $\forall t \in \mathbb{R}$, $P_n(\cos t) = \cos(nt)$.
 - Initialisation: pour n=0 et n=1: Par définition de la suite des polynômes, on a : $P_0=1$ et $P_1=X$. Ainsi pour tout $t \in \mathbb{R}$, on a : $P_0(\cos(t))=1$ et $P_1(\cos t)=\cos(t)$. Comme on a pour tout $t \in \mathbb{R}$: $\cos(0 \times t)=\cos(0)=1$ et $\cos(1 \times t)=\cos t$, on a bien $\mathcal{P}(0)$ et $\mathcal{P}(1)$ vraies.
 - Hérédité: soit $n \in \mathbb{N}$ fixé. On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies et on veut montrer que $\mathcal{P}(n+2)$ est vraie. Ainsi par hypothèse de récurrence, on sait que pour tout $t \in \mathbb{R}$: $P_n(\cos t) = \cos(nt)$ et $P_{n+1}(\cos(t)) = \cos((n+1)t)$. Comme par définition de la suite de polynômes, on a : $P_{n+2} = 2XP_{n+1} P_n$, on obtient pour tout $t \in \mathbb{R}$: $P_{n+2}(\cos(t)) = 2\cos(t)P_{n+1}(\cos(t)) P_n(\cos(t)) = 2\cos(t)\cos((n+1)t) \cos(nt)$. On utilise alors le formulaire de trigonométrie qui donne que : $2\cos(t)\cos((n+1)t) = \cos((n+2)t) + \cos(nt)$. Ainsi on obtient bien que pour tout $t \in \mathbb{R}$, on a : $P_{n+2}(\cos(t)) = \cos((n+2)t)$. Ainsi $\mathcal{P}(n+2)$ est vraie.
 - Conclusion : il résulte du principe de récurrence que pour tout $n \in \mathbb{N}$ et pour tout $t \in \mathbb{R}$, on a : $P_n(\cos t) = \cos(nt)$.
 - (b) Soit Q_n qui vérifie la relation : $\forall t \in \mathbb{R}, \ Q_n(\cos t) = \cos(nt)$.
 - On obtient pour tout $t \in \mathbb{R}$: $Q_{n+2}(\cos t) = \cos((n+2)t)$ par hypothèse. En utilisant alors la relation obtenue dans le raisonnement par récurrence fait ci-dessus, on sait que pour tout $t \in \mathbb{R}$: $\cos((n+2)t) = 2\cos(t)\cos((n+1)t) \cos(nt)$. Ainsi, on a pour tout $t \in \mathbb{R}$: $Q_n(\cos t) = 2\cos(t)Q_{n+1}(\cos t) Q_n(\cos t)$ car par hypothèse, on sait que pour tout $n \in \mathbb{N}$ et pour tout $t \in \mathbb{R}$, on a: $Q_n(\cos t) = \cos(nt)$.

On obtient aussi pour tout $t \in \mathbb{R}$: $Q_0(\cos t) = \cos(0 \times t) = 1$ et $Q_1(\cos(t)) = \cos(1 \times t) = \cos(t)$.

- La première chose à remarquer est que lorsque t parcourt \mathbb{R} tout entier, $\cos t$, lui, parcourt [-1,1] tout entier
 - ★ Comme pour tout $t \in \mathbb{R}$: $Q_0(\cos t) = 1$, les deux polynômes Q_0 et 1 sont donc égaux sur tout l'intervalle [-1,1]. Ainsi on a deux polynômes qui sont égaux pour une infinité de points (tous les réels compris entre -1 et 1), ainsi les deux polynômes sont égaux. Donc $Q_0 = 1$.
 - ★ De même, comme pour tout $t \in \mathbb{R}$: $Q_1(\cos t) = \cos t$, les deux polynômes Q_0 et X sont donc égaux sur tout l'intervalle [-1,1]. Ainsi on a deux polynômes qui sont égaux pour une infinité de points (tous les réels compris entre -1 et 1), ainsi les deux polynômes sont égaux. Donc $Q_1 = X$.
 - ★ De même, comme pour tout $n \in \mathbb{N}$ et pour tout $t \in \mathbb{R}$: $Q_{n+2}(\cos t) = 2\cos tQ_{n+1}(\cos t) Q_n(\cos t)$, les deux polynômes Q_{n+2} et $2XQ_{n+1} Q_n$ sont donc égaux sur tout l'intervalle [-1,1]. Ainsi on a deux polynômes qui sont égaux pour une infinité de points (tous les réels compris entre -1 et 1), ainsi les deux polynômes sont égaux. Donc pour tout $n \in \mathbb{N}$, on a : $Q_{n+2} = 2XQ_{n+1} Q_n$.
- On a ainsi montré que les polynômes Q_n sont aussi définis par : $\left\{ \begin{array}{ll} Q_0 = 1 & Q_1 = X \\ \forall n \in \mathbb{N}, \ Q_{n+2} = 2XQ_{n+1} Q_n. \end{array} \right.$ Ainsi pour tout $n \in \mathbb{N}$: $Q_n = P_n$.

On a donc démontré que l'égalité : pour tout $n \in \mathbb{N}$, pour tout $t \in \mathbb{R}$: $P_n(\cos t) = \cos(nt)$ détermine de façon unique les polynômes et est équivalente à la définition par récurrence de la suite de polynômes.

5. Maintenant on a deux définitions possibles pour la suite de polynômes P_n : soit celle par récurrence, soit celle avec le cosinus. Cela nous donne donc deux types de raisonnement possibles pour obtenir des propriétés sur P_n : soit par récurrence double, soit avec l'idée d'obtenir une infinité de racines : tout l'intervalle [-1,1].

- On commence par calculer $Q(\cos(t))$ pour tout $t \in \mathbb{R}$. On a pour tout $t \in \mathbb{R}$: $Q(\cos(t)) = P_n(-\cos t) (-1)^n P_n(\cos t) = P_n(\cos(t+\pi)) (-1)^n \cos(nt)$ en utilisant le formulaire de trigonométrie et la caractérisation de P_n avec le cosinus. De plus, pour tout $t \in \mathbb{R}$, on a aussi : $P_n(\cos(t+\pi)) = \cos(nt+n\pi) = (-1)^n \cos(nt)$. Ainsi pour tout $t \in \mathbb{R}$: $Q(\cos t) = 0$.
- Ainsi on a montré que pour tout $x \in [-1,1]$, on a : Q(x) = 0. En effet, on sait que lorsque t parcourt \mathbb{R} , cos t parcourt [-1,1]. Ou encore on sait que la fonction cosinus est surjective de \mathbb{R} dans [-1,1] ce qui assure que pour tout $x \in [-1,1]$, il existe bien $t \in \mathbb{R}$ tel que $x = \cos t$. Si on veut l'unicité du t, il faut prendre $t \in [0,\pi]$ par exemple car la fonction cosinus est bijective de $[0,\pi]$ dans [-1,1]. Comme pour tout $x \in [-1,1]$, on a : Q(x) = 0, le polynôme Q a donc une infinité de racines et ainsi Q = 0.
- On vient donc de montrer que : $P_n(-X) = (-1)^n P_n$. Ainsi si n est pair, P_n est une fonction paire, tandis que si n est impair, P_n est une fonction impaire (\mathbb{R} est bien centré en 0 et les polynômes sont des fonctions définies sur \mathbb{R} tout entier).
- 6. (a) $x \in [-1, 1]$ est racine de P_n si et seulement si $P_n(x) = 0$. Mais comme $x \in [-1, 1]$, on sait qu'il existe un unique $t \in [0, \pi]$ tel que $x = \cos t$. Ainsi on a : $x = \cos t \in [-1, 1]$ est racine de P_n si et seulement si $P_n(x) = 0 = P_n(\cos(t)) = \cos(nt)$. On doit donc résoudre $\cos(nt) = 0$ avec $t \in [0, \pi]$. On obtient : $\cos(nt) = 0 \iff \exists k \in \mathbb{Z}, \ nt = \frac{\pi}{2} + k\pi \iff \exists k \in \mathbb{Z}, \ t = \frac{\pi}{2n} + \frac{k\pi}{n}$. De plus, on veut, afin que toutes les racines soient bien distinctes, que $t \in [0, \pi]$. On doit donc résoudre : $0 \le \frac{\pi}{2n} + \frac{k\pi}{n} \le \pi \Leftrightarrow 0 \le \frac{1}{2} + k \le n \iff -\frac{1}{2} \le k \le n \frac{1}{2}$. Comme de plus k est un entier, on obtient que $k \in [0, n 1]$. Ainsi, on a obtenu que $x = \cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right)$ avec $k \in [0, n 1]$ sont n racines distinctes de P_n toutes dans [-1, 1].
 - (b) On vient de trouver n racines distinctes. Or on sait de plus que P_n est un polynôme de degré n, ainsi on les a toutes trouvées.

Exercice 35. Soit a un réel, n un entier naturel non nul et

$$Z = \prod_{k=0}^{n-1} \left(e^{\frac{4ki\pi}{n}} - 2\cos(a)e^{\frac{2ki\pi}{n}} + 1 \right).$$

- 1. Factoriser dans $\mathbb{C}: P(X) = X^2 2\cos(a)X + 1$.
- 2. En déduire une factorisation de Z.
- 3. Simplifier Z.

Correction 34. 1. Le discriminant vaut $\Delta = -4\sin^2(a)$. Ainsi $\sqrt{\Delta} = 2i|\sin a|$. Les racines sont alors après étude de cas pour enlever la valeur absolue : e^{ia} et e^{-ia} .

- 2. On remarque qu'en posant $X = e^{\frac{2ik\pi}{n}}$, on a : $Z = \prod_{k=0}^{n} (X^2 2\cos aX + 1) = \prod_{k=0}^{n} (X e^{ia})(X e^{-ia}) = \prod_{k=0}^{n} (e^{\frac{2ik\pi}{n}} e^{ia})(e^{\frac{2ik\pi}{n}} e^{-ia}).$
- 3. On utilise alors la méthode de l'angle moitié afin de simplifier l'expression ci-dessus et on obtient :

$$Z = \prod_{k=0}^{n} e^{\frac{ik\pi}{n} + \frac{ia}{2}} \left(e^{\frac{ik\pi}{n} - \frac{ia}{2}} - e^{-\frac{ik\pi}{n} + \frac{ia}{2}} \right) e^{\frac{ik\pi}{n} - \frac{ia}{2}} \left(e^{\frac{ik\pi}{n} + \frac{ia}{2}} - e^{-(\frac{ik\pi}{n} + \frac{ia}{2})} \right) = \prod_{k=0}^{n} -4e^{\frac{i2k\pi}{n}} \sin\left(\frac{k\pi}{n} - \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} + \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} + \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} + \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} - \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} + \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} - \frac{a}{2}\right) \sin\left($$

Il s'agit alors de remarquer que : $\prod_{k=0}^n e^{\frac{i2k\pi}{n}} = e^{\frac{2i\pi}{n}\sum_{k=0}^{n-1}k} = e^{i(n-1)\pi} = (-1)^{n-1}$. Ainsi, on obtient que :

$$Z = 4^{n}(-1)^{n}(-1)^{n-1} \prod_{k=0}^{n} \sin\left(\frac{k\pi}{n} - \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} + \frac{a}{2}\right) = -4^{n} \prod_{k=0}^{n} \sin\left(\frac{k\pi}{n} - \frac{a}{2}\right) \sin\left(\frac{k\pi}{n} + \frac{a}{2}\right).$$