ELECTROTECNIA TEÓRICA

LEEC IST

2º Semestre 2021/22 (Período P3)

4º TRABALHO LABORATORIAL

REGIMES TRANSITÓRIOS

Prof. V. Maló Machado Prof. a Ma Eduarda Pedro

ELECTROTECNIA TEÓRICA

CIRCUITOS RL E RLC-SÉRIE REGIMES TRANSITÓRIOS

1. OBJECTIVO

Neste trabalho realiza-se o estudo de regimes transitórios decorrentes do fecho e abertura de interruptores.

Efetua-se o estudo da ligação de um circuito RL-série a um gerador de tensão alternada sinusoidal.

Efetua-se igualmente o estudo do regime livre do circuito RLC-série.

2. <u>DIMENSIONAMENTO</u>

O dimensionamento deve ser entregue na aula de laboratório, antes da realização do trabalho, sem o que o mesmo não poderá ser realizado!

2.1 Circuito RL Série

Considere o circuito RL série representado na Fig. 1. O gerador impõe uma tensão alternada sinusoidal de frequência $f = 5\,\mathrm{kHz}$ e valor eficaz $U_{ef} = 2\,\mathrm{V}$.

$$u_{g}(t) = \begin{cases} 0 & , t < 0 \\ \sqrt{2} U_{ef} \cos(\omega t + \alpha), t \ge 0 \end{cases}$$

$$\omega = 2 \pi f, T = 1/f$$

$$L = 0,100 \text{ H}$$

$$R = 300 \Omega$$

$$U_{g}(t) \qquad U_{R} \downarrow R$$

$$- \text{Fig. } 1 -$$

- a) Obtenha o regime transitório relativo à corrente i para $t \ge 0$ (Fig. 1).

 Para o efeito determine quer a solução do regime forçado (indique o valor da desfasagem φ entre u_g e i) quer a solução do regime livre (indique o seu valor inicial para $\alpha = -\pi/2$, bem como a constante de tempo τ do circuito).
- b) Determine a expressão que permite calcular aproximadamente os instantes em que a corrente i tem extremos, supondo que estes extremos se dão quando $\cos(\omega t + \alpha \varphi) = \pm 1$, e determine também a expressão que permite determinar o valor desses extremos para $\alpha = -\pi/2$.
- c) Utilizando a expressão da alínea anterior determine os cinco primeiros extremos, no caso de

- $\alpha = -\pi/2$. Para o primeiro extremo determine a solução exata, através de um processo numérico ⁽¹⁾. Verifique que a raiz exata é, neste caso, bastante próxima do valor aproximado.
- d) Considere agora que se desliga o gerador quando a tensão vai a passar por zero de valores negativos para positivos, supondo que o circuito está em regime forçado. Determine a solução para i(t), calculando o valor inicial da corrente I_0 e a constante de tempo τ .
- e) Verifique que para $t = \tau$ se tem:

$$i(\tau) = \frac{I_0}{e}$$

2.2 Circuito RLC-SÉRIE

É dado o circuito representado na Fig. 2 em que o interruptor S é comutado no instante t = 0, após ter-se atingido o regime forçado correspondente ao estabelecimento da tensão estacionária no condensador. O circuito representado dentro do retângulo a tracejado descreve o comportamento do Gerador de Funções que irá ser usado no laboratório (Fig. 5).

- Fig. 2 -

a) Estabeleça a equação para a corrente i em valores instantâneos para $t \ge 0$ em função do coeficiente de amortecimento β e da frequência angular das oscilações não amortecidas ω_0 . Calcule ω_0 .

⁽¹⁾ Sendo a equação f(x) = 0 e x_n uma aproximação duma raiz, uma solução melhor x_{n+1} obtém-se através do processo iterativo $x_{n+1} = x_n - f(x_n)/f'(x_n)$ (método de *Newton-Raphson*). Pode-se considerar que o processo termina quando $|x_{n+1} - x_n| \le \varepsilon$, tome $\varepsilon = 10^{-6}$.

- b) Estabeleça as condições iniciais para o regime que se obtém para $t \ge 0$. Caracterize o regime forçado para t > 0.
- c) Discuta os tipos de solução que pode obter para o regime livre com R variável.
- d) Para $R = 100 \ \Omega$, calcule o coeficiente de amortecimento β e verifique que a solução é do tipo oscilatório amortecido (Fig. 3). Calcule $\omega = 2\pi/T$ sendo T o período de isocronismo (T/2 é o intervalo de tempo entre dois extremos consecutivos ou entre dois zeros consecutivos). Verifique que:

$$A_1 / A_2 = A_2 / A_3 = \dots = (A_1 / A_n)^{1/(n-1)} = e^{\lambda}$$

com λ , o decremento logarítmico, dado por $\lambda = \beta T/2$, e onde $A_1, A_2, A_3, ..., A_n$ são os valores absolutos dos extremos de ordem 1, 2, ..., n de i(t) – Fig. 3). Determine λ . Determine i(t) e $u_c(t)$ tendo em conta as condições iniciai estabelecidas em b).

e) Calcule $R_0 = R$ de modo que a solução do regime livre seja do tipo aperiódico limite (equação característica com uma raiz dupla). Determine i(t). Determine igualmente o valor mínimo de $i(i_{min})$ e o instante em que ocorre (t_{min}) .

- Fig. 3-

3. LISTA DE MATERIAL (por bancada)

GF: Gerador de funções Agilent 33210A.

Gerador de resistência interna, $R_i = 50 \Omega$.

OSC: Osciloscópio digital 'TEKTRONIX TDS 220', 2 canais, 100 MHz.

IMP: Impressora

C: Caixa de capacidades calibradas de 0 a 0,1 µF com incremento de 100 pF.

L: Caixa de indutâncias calibradas 'Lionmount' de 0 a 0,01 H com incremento de 1 mH.

R': Caixa de resistências calibradas 'Lloyd' de 0 a 1000 Ω com incremento de 0,1 Ω .

Observação: A lista de material acima descrita poderá não ser comum a todas as bancadas.

4. CIRCUITO RLC-SÉRIE

4.1 Esquema de Ligações

- Fig. 4 -

4.2 Condução do Trabalho

Monte o circuito da Fig. 4 de acordo com a lista de material do ponto 3. Escolha para o gerador a função de "onda quadrada" com período $T_0 = 20/\beta$, onde β tem o valor calculado em 2.2 d). Ligue a saída do gerador ao canal 1 do osciloscópio com o circuito desligado. Ligue o gerador. Ajuste a amplitude de saída de modo a obter a forma indicada na Fig. 5. Desligue o gerador.

- a) Selecione os valores de $R' = 50 \Omega$, L = 10 mH e C = 40 nF. Ligue os pontos A e B, respetivamente ao canal 1 e canal 2 do osciloscópio de modo a visualizar u(t) e $u_R(t)$. Ligue o gerador. Obtenha cópia em papel das curvas obtidas.
 - Para o semi-período em que a tensão aplicada é nula $(t_0 + T_0 / 2 < t < t_0 + T_0$, Fig. 6) obtenha os valores dos quatro primeiros extremos de $u_R(t)$ com a ajuda do cursor de tensão do osciloscópio. Determine o período de isocronismo, T, com a ajuda do cursor de tempo do osciloscópio. Registe os valores obtidos na tabela $\bf R$ 5.2 $\bf a$).
- b) Selecione o valor de R' de modo a que R'+R_G = R₀ obtido em 2.2 e). Com o auxílio dos cursores determine o instante t_{min} em que i é mínimo. Registe os valores obtidos na tabela R
 4.2 b). Varie o valor de R' de modo a visualizar os tipos de solução que pode obter para o regime livre.

5. RELATÓRIO

- a) Com base nos resultados obtidos em **4.2 a**), calcule: o decremento logarítmico, λ ; o coeficiente de amortecimento, β e a frequência angular das oscilações não amortecidas ω_0 . Registe os resultados na tabela **R5-a**). Compare com os valores obtidos no dimensionamento em **2.2 d**). Comente as diferenças.
- b) Compare o resultado experimental obtido para t_{min} (em **4.2 b**)), com o previsto no dimensionamento em **2.2 e**).

O relatório tem que ser entregue no final da aula de laboratório e consiste no preenchimento da ficha apresentada em Anexo, à qual devem juntar as curvas impressas.

REFERÊNCIAS

J. A. Brandão Faria, 'Electromagnetic Foundations of Electrical Engineering', Wiley, 2008. Cap. 7. Secção 7.4.

I.S.T., Fevereiro 2022

ANEXO

RELATÓRIO DO 4º TRABALHO LABORATORIAL				
R5-a):				
Valores medidos em 4.2 a)				
u_{R_I} [V]	u_{R_2} [V]	u_{R_3} [V]	<i>u</i> _{R₄} [V]	T [ms]
Cálculo de λ, β e	- wo			
	λ	β [s ⁻¹]	ω_0 [rads ⁻¹]	
Comentários:				
Valores medidos	em 4.2 b)			
		t _{min} [ms]		
Número Non	me		_	Auto-Aval. [%]