${\it Class 12-Physics-JEE-Mains-Formulas}$

October 18, 2025

Chapter	Concept	Formula / Key Point
Electrostatics	Coulomb's Law	$F = k \frac{q_1 q_2}{r^2}, \ k = \frac{1}{4\pi\epsilon_0}$
	Electric Field	$\frac{\vec{E}}{\vec{E}} = \frac{\vec{F}}{q}, \ E = k \frac{Q}{r^2}$
	Electric Potential	$ V = k\frac{Q}{r}, V = \frac{W}{q} $
	Capacitance	$C = \frac{Q}{V}, C = \frac{\epsilon_0 A}{d}$ (parallel plate)
Current Electricity	Ohm's Law	$\overline{V} = IR$
	Resistivity	$\overline{R} = \rho \frac{L}{A}$
	Power	$P = VI = I^2R = \frac{V^2}{R}$
	Kirchhoff's Laws	Junction: $\sum I_{in} = \sum I_{out}$ Loop: $\sum V = 0$
Magnetic Effects of Current & Magnetism	Biot-Savart Law	$dec{B} = rac{\mu_0}{4\pi} rac{Idec{l} imes \hat{r}}{r^2}$
	Force on Moving Charge	$\overline{\vec{F}} = q\vec{v} imes \vec{B}$
	Force on Current-Carrying Wire	$\overrightarrow{\vec{F}} = I \vec{L} imes \vec{B}$
	Torque on Current Loop	$\tau = NIAB\sin\theta$
Electromagnetic Induction & AC	— Faraday's Law	$\overset{-}{\mathcal{E}} = -rac{d\Phi_B}{dt}$
	Self-Inductance	$L = \frac{N\Phi}{I}$

Chapter	Concept	Formula / Key Point
	Impedance in RLC Circuit	$Z = \sqrt{R^2 + (X_L - X_C)^2}$
	— Reactance	$\overline{X_L} = \omega L, X_C = \frac{1}{\omega C}$
Optics	Lens Formula	$\frac{1}{\frac{1}{f}} = \frac{1}{v} - \frac{1}{u}$
	— Magnification	$m = \frac{v}{u}$
	Snell's Law	$n = \frac{\sin i}{\sin r}$
	Lens Maker's Formula	$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$
	Wave Optics	$\frac{-}{d\sin\theta} = n\lambda \text{ (Diffraction/Interference)}$
Modern Physics	Photoelectric Effect	$\overset{-}{K}.E_{max} = h\nu - \phi$
	de Broglie Wavelength	$\lambda = \frac{h}{p}$
	— Nuclear Decay Law	$\stackrel{-}{N}=N_0e^{-\lambda t},T_{1/2}=\tfrac{\ln 2}{\lambda}$
	— Mass-Energy Relation	$E = mc^2$
Semiconductor Electronics	— Diode	Forward bias conducts, Reverse bias blocks current
	Zener Diode	Voltage regulation
	Transistor	Amplification & Switching
Communication Systems	Modulation	AM: Amplitude Modulation, FM: Frequency Modulation
	— Bandwidth	Range of frequencies for signal transmission
Space / Astrophysics	— Hubble's Law	$v = H_0 d$
	Doppler Effect for Light	$\frac{\Delta \lambda}{\lambda} = \frac{v}{c} \text{ (redshift/blueshift)}$

Chapter	$\mathbf{Concept}$	Formula / Key Point
	Schwarzschild Radius (Black Hole)	$R_s = \frac{2GM}{c^2}$
	Escape Velocity	$v_e = \sqrt{\frac{2GM}{R}}$
	Luminosity of Star	$L = 4\pi R^2 \sigma T^4$
	Wien's Displacement Law	$\lambda_{max}T=b~(b=2.9\times 10^{-3}\mathrm{m~K})$
	— Kepler's Laws	$T^2 \propto r^3 \text{ (3rd Law)}$