Workflow

Chemical shifts GUI

G1a Extracting solution chemical shifts into a single .csv file

(Note: solution ensembles must be seperated by an '_' followed by their number e.g. 'name_1'), this can be done by Babel.

Output 1

C8

C9

C10

C11

C12

C8

C9

C10

C11

My label	Fur_773.magres	Fur_1987.magres	Fur_295.magres
H1	7.0667	7.1157	7.0398
H2	5.9772	6.0097	5.9411
H3	5.7788	5.9946	5.7671
H4	4.7926	3.6364	3.4522
H5	3.5593	3.9559	4.2104
H6 H7 H8	8.6042	9.1213	8.0828
	6.4482	6.1864	6.504
	7.9956	8.0217	7.8727
Н9	3.1656	4.538	3.133
H10	4.6675	3.1557	4.5375
H11	4.8188	4.8634	4.9052
C1	142.9409	143.1234	142.4584
C2	108.344	107.9127	108.1467
C3	105.9354	109.8521	105.914
C4	152.3404	151.768	154.5729
C5 C6	35.5835	37.2505	35.265
	150.2973	149.8395	149.801
C7	110.6024	111.903	112.7887
C8	143.3685	142.1504	142.8847
C9	131.1223	131.3453	130.963
C10	133.7064	133.6889	132.7405
C11	103.2962	103.8551	104.5404
C12	169.1447	169.0953	169.7027

A .csv file containing the chemical shift for each .magres file is produced.

G1b Extracting the calculated solid chemical shifts into a single file

Output 2

label	FURSEM01_NMR_molA	FURSEM01_NMR_molB	FURSEM15_form1_NMR
H1	6.3972	7.7533	7.8685
H2	6.4241	5.9938	7.4615
H3	5.1043	5.9031	5.769
H4	4.6212	4.5214	3.6164
H5	3.8654	3.4992	3.4836
H6	7.9961	8.4557	8.0947
H7	7.198	5.0139	4.8844
H8	8.1216	7.9903	7.3252
Н9	5.7912	6.8906	7.2933
H10	7.0155	7.2458	6.1508
H11	14.1813	14.3412	13.2779
C1	142.5233	145.7456	146.6416
C2	112.3228	110.2586	114.9906
C3	109.5858	112.2776	111.779
C4	155.3735	152.2619	147.0341
C5	36.6175	36.459	38.9586
C6	151.7128	150.7127	148.699
C7	116.3592	116.6053	111.2057
C8	141.9728	141.5158	145.9296
C9	126.0016	127.9526	130.1407
C10	136.0487	134.3644	134.2614
C11	104.9061	107.0035	105.7995
C12	173.5453	173.6375	175.0075

A .csv file containing the chemical shift for each .magres file is produced.

Solution Ensemble GUI

G2a Analysing dependence of the chemical shift, on each atom and specific torsion agnle

Torsion angles are passed as a '.txt' file and each number corresponds to the number of the '.magres' file. Torsion angles are weighted according to their gaussian distribution in solution.

G2b Determining $\delta_{solution \ calc}$

- (a) A running average and running standard deviation can be viewed/saved for each of the '.magres' files.
- (b) & (c) The number of samples are calculated to achieve a set tolerance e.g. a standard deviation of 0.1 ppm, which is different for each isotope.
- (d) & (e) The number of samples to be averaged and used as the calculated solution chemical shift ($\delta_{\text{solution calc}}$) are specified here. Further a histogram can be plotted to see the spread for each atomic shift.

(f) & (g) In most cases, the spread does not appear to be normally distributed, therefore a select sample e.g. 1000 conformers are resampled (M = 1000 by default). This creates a bootstrap mean which can be used inplace of the sample means (from d & e). A new histogram of the bootsrap means can be plotted, in addition to a Q-Q plot, which tests for normality.

The red box in the histogram plot corresponds to the 95% confidence interval. Note the substantial increase for the bootstrap means, which corresponds to a reduced standard error for the chemical shift.

Scoring Function GUI

G3a Scoring Functions inputs

The scoring function procedure, which uses both calculated and experimental solution- and solid- state chemical shifts is performed here. The input .csv files containing calculated chemical shifts can be obtained from G1a and G1b. See attached example files of the calculated and experimental solution- and solid- state input files.

G3b Calculate RMSE

See Table ...

RMSE calculations using experimental and calculated solidstate chemical shifts. By default they are saved in the specified output directory. If there is a mismatch between labels i.e. a proton chemical shift is not averaged, an error will be shown.

Error displaying mismtach between calculated and experimental labels. Non existant labels are ignored, however, experimental chemical shift labels that are not found in the calculated form raise an error.

G2c Chemical shift against torsion angle

- (h) Torsion angles can be grouped together by setting the number of bins, or plotted individually by setting the number of bins to zero.
- (i) The rotatable bond would need to be selected, which can either be plotted or tabulated. By default the bins use the range but this can be changed to the st. dev. Further the plot and or table can be saved if there is an output.
- (j) Comparison between two rotatable bonds can be made here for each atom. A colour sheme is needed.
- (k) Each rotatable bond can be grouped together in specified bins below each DOF in (j), which produces a contour plot.
- (I) & (m) A 3D scatter and mesh plot can be viewed respectively. The mesh plot uses the bins defined in (j).
 - (n) Search for a range of files where one DOF is within the angles of another DOF. In this case all files of DOF_Y that are within the angles defined for DOF X can be searched.
 - (o) Search for files that are within the angles defined for each DOF (LA lower angle, UA upper angle)
 - (p) Convert a *.magres* file into a *.xyz* file, to view the 3D conformation in other plotting programmes.

G3c Scoring Function for all moleculese in unit cell

See Table ...

The scoring function procedure can be performed by combining multiple molecules in the asymmetric unit cell together. This should account for any miss assignement or lack of chemical shift from either molecule. See next page for a guide to the functions.

G3d Scoring function performed for each molecule in the asymetric unit cell

