IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method of providing a digital signal processing function f to an executing device having at least one processor in an obfuscated form; the function f including a function cascade including a plurality of signal processing functions f_i , $1 \le i \le N$, for processing a digital signal input x to yield a digital signal output output, such as, $FC_1(x) = f_N \circ \cdots \circ f_1(x)$, the method including:

performing the following steps by at least one processor of the executing device:

selecting a set of 2N invertible permutations p_i , $1 \le i \le 2N$;

calculating a set of N functions g_i , where g_i is functionally equivalent to

$$p_{2i}^{-1} \circ f_i \circ p_{2i-1}$$
, for $1 \le i \le N$;

calculating a set of N-1 functions h_i , where h_i is functionally equivalent to

$$p_{2i-1}^{-1} \circ p_{2i-2}$$
, for $2 \le i \le N$;

equipping the executing device with an execution device function cascade that

includes $y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1$, where y_I, \dots, y_N are function parameters parameters,

(such as,
$$ED_1(y_1,...,y_N) \equiv y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ ... \circ y_1)$$
,

providing the functions $g_1,...,g_N$ to the executing device; and

in the executing device, applying the execution device function cascade to the functions $g_1,...,g_N$ (such as $ED_1(g_1,...,g_N)$), wherein the execution of the g_i and h_i functions by the executing device in an interleaved manner enables the functionality of the execution device function cascade to be achieved without function f being directly recognizable.

2. (Currently Amended) A method of providing a digital signal processing function f as claimed in claim 1, wherein the execution device function cascade includes

$$y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1 \circ p_1^{-1}$$
 (such as $ED_2(y_1, \dots, y_N) \equiv y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1 \circ p_1^{-1}$).

Serial Number: 10/596,336

Filing Date: June 9, 2006

Title: BLOCK CIPHERING SYSTEM, USING PERMUTATIONS TO HIDE THE CORE CIPHERING FUNCTION OF EACH ENCRYPTION

- 3. (Currently Amended) A method of providing a digital signal processing function f as claimed in claim 1, wherein the function cascade starts with a further signal processing function f_0 (such as $FC_2(x) \equiv f_N \circ ... \circ f_1 \circ f_0(x)$ and the execution device function cascade includes $y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1 \circ S_1$, (such as $ED_3(y_1, \dots, y_N) \equiv y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1 \circ S_1$), where S_I is functionally equivalent to $p_1^{-1} \circ f_0$.
- 4. (Currently Amended) A method of providing a digital signal processing function f as claimed in claim 1, wherein the execution device function cascade includes $p_{2N} \circ y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1$: (such as $ED_4(y_1, \dots, y_N) \equiv p_{2N} \circ y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1$).
- 5. (Currently Amended) A method of providing a digital signal processing function f as claimed in claim 1, wherein the function cascade ends with a further signal processing function f_{N+1} , (such as $FC_3(x) = f_{N+1} \circ f_N \circ ... \circ f_1(x)$) and the execution device function cascade includes $S_2 \circ y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1 \xrightarrow{\text{such as, } ED_5(y_1, \dots, y_N)} \equiv S_2 \circ y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1$ where S_2 is functionally equivalent to $f_{N+1} \circ p_{2N}$.
- 6. (Original) A method of providing a digital signal processing function f as claimed in claim 1, including obtaining a unique identity of the executing device and/or user of the executing device; the set and/or sequence of 2N invertible permutations p_i being unique for the obtained identity.
- 7. (Original) A method as claimed in claim 1, wherein the step of equipping the executing device with the execution device function cascade includes providing the execution device function cascade embedded in a software program for execution by a processor in the executing device.
- 8. (Original) A method as claimed in claim 7, wherein the step of providing the functions g_1, \dots g_N to the executing device includes providing the functions g_1, \dots, g_N in the form of a plug-in for the program.

Title: BLOCK CIPHERING SYSTEM, USING PERMUTATIONS TO HIDE THE CORE CIPHERING FUNCTION OF EACH ENCRYPTION ROLLND

- 9. (Original) A method as claimed in claim 7, wherein the step of providing the functions $g_1,...,g_N$ to the executing device includes embedding the functions $g_1,...,g_N$ in the software program by applying the execution device function cascade to the function parameters $g_1,...,g_N$.
- 10. (Currently Amended) A computer program product stored on a non-transitory computer readable storage medium that is operative to cause a processor in an execution device to execute a digital signal processing function f including a function cascade including a plurality of signal processing functions f_i , where $1 \le i \le N$, for processing a digital signal input x to yield a digital signal output (such as, $FC_1(x) = f_N \circ ... \circ f_1(x)$), by:

performing the following steps by at least one processor of the execution device:

loading an execution device function cascade that includes

 $y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ ... \circ y_1$, where $y_1,...,y_N$ are function parameters,

loading a set of functions $g_1,...,g_N$;

 p_i is an invertible permutation, for $1 \le i \le 2N$.

applying the execution device function cascade to the set of functions $g_1,...,g_N$; where:

 g_i is functionally equivalent to $p_{2i}^{-1} \circ f_i \circ p_{2i-1}$, for $1 \le i \le N$; h_i is functionally equivalent to $p_{2i-1}^{-1} \circ p_{2i-2}$, for $2 \le i \le N$; and

11. (Currently Amended) A system for providing a digital signal processing function f to an executing device in an obfuscated form; the system including a server (610) and an executing device (620); the function f including a function cascade including a plurality of signal processing functions f_i , $1 \le i \le N$, for processing a digital signal input x to yield a digital signal output; (such as, $FC_1(x) = f_N \circ ... \circ f_1(x)$);

the server including a processor (612) for performing the following steps, under control of a program:

selecting a set of 2N invertible permutations p_i , $1 \le i \le 2N$; calculating a set of N functions g_i , where g_i is functionally equivalent to $p_{2i}^{-1} \circ f_i \circ p_{2i-1}$, for $1 \le i \le N$; and

calculating a set of N- 1 functions h_i , where h_i is functionally equivalent to $p_{2i-1}^{-1} \circ p_{2i-2}$, for $2 \le i \le N$; and

means (614) for equipping the executing device with an execution device function cascade that includes $y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1$, where y_1, \dots, y_N are function parameters parameters, (such as $ED_1(y_1, \dots, y_N) = y_N \circ h_N \circ y_{N-1} \circ h_{N-1} \circ \dots \circ y_1$), and

means (616) for providing the functions $g_1,...,g_N$ to the executing device; and the executing device (620) including:

means (626) for obtaining the functions $g_1,...,g_N$ from the server; and a processor (622) for, under control of a program, loading the execution device function cascade and applying the loaded execution device function cascade to the functions $g_1,...,g_N$ (such as, $ED_1(g_1,...,g_N)$), wherein the execution of the g_i and h_i functions by the executing device in an interleaved manner enables the functionality of the execution device function cascade to be achieved without function f being directly recognizable.

12. (Currently Amended) An execution device (620) for use in the system as claimed in claim 11; the executing device including:

means (626) for obtaining the functions $g_1,...,g_N$ from the server; and a processor (622) for, under control of a program, applying the execution device function cascade to the functions $g_1,...,g_N$ (such as, $ED_1(g_1,...,g_N)$) and applying the applied device function cascade to the digital signal input x.

13. (Currently Amended) A method of providing a digital signal processing function f to a plurality of executing devices, each identified by a unique index j, in an obfuscated, anonymous form; the function f including a function cascade including a plurality of signal processing functions f_i , where $1 \le i \le N$, for processing a digital signal input x to yield a digital signal output (such as, $f(x) = f_N \circ ... \circ f_1(x)$), the method including:

performing the following steps by at least one processor: selecting a set of 2N invertible permutations p_i , where $1 \le i \le 2N$;

calculating a set of N functions g_i , where g_i is functionally equivalent to $p_{2i}^{-1} \circ f_i \circ p_{2i-1}, 1 \leq i \leq N;$

selecting for each device *j* a corresponding set and/or sequence of 2N invertible permutations $p_{i,i}$, that is unique for the device and/or a user of the device;

calculating for each executing device j a corresponding set of N-1 functions $h_{i,i}$, where $h_{j,i}$ is functionally equivalent to $p_{j,2i-1}^{-1} \circ p_{j,2i-2}$ for 2 < i < N;

equipping each executing device j with a respective execution device function cascade $ED_j(y_1,...,y_N)$ that includes $y_N \circ h_{i,N} \circ y_{N-1} \circ h_{i,N-1} \circ ... \circ y_1$;

equipping each executing device j with a respective loader function $loader_i(x_1,...,x_N) = (l_{i,1} \circ x_1 \circ r_{i,1},...,l_{i,N} \circ x_N \circ r_{i,N})$, where $l_{j,i}$, is functionally equivalent to $p_{j,2i}^{-1} \circ p_{2i}$ and $r_{j,i}$ is functionally equivalent to $p_{2i-1}^{-1} \circ p_{j,2i-1}$; providing to the executing device the functions $g_1,...,g_N$; and in the executing device, executing $ED_i(loader_i(g_1,...,g_N))$.

- (Original) A method of providing a digital signal processing function f as claimed in 14. claim 13, including providing $g_1,...,g_N$ to each executing device through broadcasting and/or distribution on a storage medium with a same content for each executing device.
- 15. (Original) A method of providing a digital signal processing function f as claimed in claim 14, including also providing the digital signal input x to each executing device through broadcasting and/or distribution on a storage medium with a same content for each executing device.
- 16. (Original) A method of providing a digital signal processing function f as claimed in claim 13, including providing to executing device j through a one-to-one communication channel and/or a storage medium with a device-specific content at least one the following sets of corresponding functions: $h_{j,i}$, $l_{j,i}$, or $r_{j,i}$.

Title: BLOCK CIPHERING SYSTEM, USING PERMUTATIONS TO HIDE THE CORE CIPHERING FUNCTION OF EACH ENCRYPTION ROUND

- 17. (Previously Presented) A method of providing a digital signal processing function f as claimed in claim 1, wherein the function f is a decryption function based on a Feistel cipher network and each of the signal processing functions f_i is a respective Feistel decryption round function.
- 18. (Currently Amended) A method of providing a digital signal processing function f as claimed in claim 17, wherein each of the permutations p_i is a Feistel transformer where a function Q operating on a sequential pair $\langle x, y \rangle$ is a Feistel transformer if there exist invertible functions Q_x and Q_y and $Q(\langle x, y \rangle) = \langle Q_x(x), Q_y(y) \rangle$, where $Q_x(x) \oplus Q_x(y) = Q_x(x \oplus y)$ and $Q_y(x) \oplus Q_y(y) = Q_y(x \oplus y)$.
- 19. (Currently Amended) A computer program product stored on a non-transitory computer readable storage medium that is operative to cause a processor in an execution device j to execute a digital signal processing function f including a function cascade including a plurality of signal processing functions f_i , where $1 \le i \le N$, for processing a digital signal input x to yield a digital signal output (such as, $FC_1(x) = f_N \circ ... \circ f_1(x)$), the method including:

performing the following steps by at least one processor of the execution device:

loading an execution device function cascade that is unique for the execution device and that includes $y_N \circ h_{j,N} \circ y_{N-1} \circ h_{j,N-1} \circ \dots \circ y_1$, where y_1,\dots,y_N are function parameters,

loading a loader function

$$loader_j(x_1,...,x_N) \equiv (l_{j,1} \circ x_1 \circ r_{j,l},...,l_{j,N} \circ x_N \circ r_{j,N}), \text{ loading a set of functions}$$

$$g_1,...,g_N;$$

applying the loader function to the set of functions $g_1,...,g_N$ yielding a set of functions $g_{j,1},...,g_{j,N}$ and applying the execution device function cascade to the set of functions $g_{j,1},...,g_{j,N}$, where:

$$g_i$$
 is functionally equivalent to $p_{2i}^{-1} \circ f_i \circ p_{2i-1}$, for $1 \le i \le N$; p_i is an invertible permutation, for $1 \le i \le N$;

 $h_{j,i}$ is functionally equivalent to $p_{j,2i-1}^{-1} \circ p_{j,2i-2}$ for $2 \le i \le N$;

 $l_{j,i}$ is functionally equivalent to $p_{j,2i}^{-1} \circ p_{2i}$;

 $r_{j,i}$ is functionally equivalent to $p_{2i-1}^{-1} \circ p_{j,2i-1}$; and

 $p_{j,i}$ are invertible permutations, for $1 \le i \le 2N$, being unique for the device and/or a user of the device.

20. (Currently Amended) A system for providing a digital signal processing function f to a plurality of executing devices, in an obfuscated, anonymous form; the system including a server and a plurality of executing devices, each identified by a unique index j; the function f including a function cascade including a plurality of signal processing functions f_i , where $1 \le i \le N$, for processing a digital signal input x to yield a digital signal output; (such as,

$$FC_1(x) \equiv f_N \circ ... \circ f_1(x)$$
;

the server including a processor for performing the following steps, under control of a program:

selecting a set of 2N invertible permutations p_i , where $1 \le i \le 2N$;

calculating a set of N functions g_i , where g_i is functionally equivalent to

$$p_{2i}^{-1} \circ f_i \circ p_{2i-1}$$
, for $1 \le i \le N$;

selecting for each device j a corresponding set and/or sequence of 2N invertible permutations $p_{i,i}$, that is unique for the device and/or a user of the device;

calculating for each executing device j a corresponding set of N-1 functions $h_{j,i}$,

where $h_{j,i}$ is functionally equivalent to $p_{j,2i-1}^{-1} \circ p_{j,2i-2}$ for $2 \le i \le N$;

equipping each executing device j with a respective execution device function

cascade $ED_j(y_1,...,y_N)$ that includes $y_N \circ h_{j,N} \circ y_{N-1} \circ h_{j,N-1} \circ ... \circ y_1$;

equipping each executing device j with a respective loader function

 $loader_i(x_1,...,x_N) = (l_{i,1} \circ x_1 \circ r_{i,1},...,l_{i,N} \circ x_N \circ r_{i,N})$, where $l_{j,i}$ is functionally equivalent to

 $p_{j,2i}^{-1} \circ p_{2i}$ and $r_{j,i}$ is functionally equivalent to $p_{2i-1}^{-1} \circ p_{j,2i-1}$; and

providing to the executing device the functions $g_1,...,g_N$; and

each executing device j,

means for obtaining the functions $g_1,...,g_N$ from the server; and a processor for, under control of a program:

loading an execution device function cascade that is unique for the execution device and that includes $y_N \circ h_{j,N} \circ y_{N-1} \circ h_{j,N-1} \circ \dots \circ y_1$, where y_1,\dots,y_N are function parameters,

loading a loader function

$$loader_i(x_1,...,x_N) \equiv (l_{i,1} \circ x_1 \circ r_{i,1},...,l_{i,N} \circ x_N \circ r_{i,N})$$

applying the loader function to the set of functions $g_1,...,g_N$ yielding a set of functions $g_{j,1},...,g_{j,N}$; and

applying the execution device function cascade to the set of functions $g_{j,1},...,g_{j,N_{-}}$

21. (Original) An execution device for use in the system as claimed in claim 20; where the executing device is identified by a unique index j; and includes:

means for obtaining the functions $g_1,...,g_N$ from the server; and a processor for, under control of a program:

loading an execution device function cascade that is unique for the execution device and that includes $y_N \circ h_{j,N} \circ y_{N-1} \circ h_{j,N-1} \circ \dots \circ y_1$, where y_1,\dots,y_N are function parameters,

loading a loader function $loader_j(x_1,...,x_N) \equiv (l_{j,1} \circ x_1 \circ r_{j,1},...,l_{j,N} \circ x_N \circ r_{j,N})$

applying the loader function to the set of functions $g_1,...,g_N$ yielding a set of functions $g_{i,1},...,g_{i,N}$; and

applying the execution device function cascade to the set of functions $g_{j,1},...,g_{j,N}$ where:

 g_i is functionally equivalent to $p_{2i}^{-1} \circ f_i \circ p_{2i-1}$ for $1 \le i \le N$;

 p_i is an invertible permutation, for $1 \le i \le N$;

 $h_{j,i}$ is functionally equivalent to $p_{j,2i-1}^{-1} \circ p_{j,2i-2}$ for $2 \le i \le N$;

Serial Number:10/596,336 Filing Date: June 9, 2006

Title: BLOCK CIPHERING SYSTEM, USING PERMUTATIONS TO HIDE THE CORE CIPHERING FUNCTION OF EACH ENCRYPTION ROUND

 $l_{j,i}$ is functionally equivalent to $p_{j,2i}^{-1} \circ p_{2i}$;

$$r_{j,i}$$
 is functionally equivalent to $p_{2i-1}^{-1} \circ p_{j,2i-1}^{-1}$; and

 $p_{j,i}$ are invertible permutations, for $1 \le i \le 2N$, being unique for the device and/or a user of the device.