Examen partiel

Département de génie électrique et de génie informatique

GEL-3000 – Électronique des composants intégrés

Le 12 mars 2019

Documentation permise : 1 feuille de notes recto-verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (10h30 – 12h20).

1. (30 points) Questions à courts développements

- a) Donnez les deux critères d'oscillation pour un oscillateur sinusoïdal et indiquez les blocs essentiels qu'il doit comporter.
- b) Pour un circuit suiveur de tension avec un ampli-op possédant un slew rate de 5V/us et alimenté à ±10V, donnez la fréquence maximale du circuit. Illustrez l'effet du slew rate sur la sortie si on applique une entrée dont la fréquence est plus haute que la fréquence maximale.
- c) Soit le circuit de la Figure 1, modifiez le circuit pour réduire l'effet de la tension de décalage. En mettant la tension v_I à 0, montrez l'effet de la tension de décalage sur la sortie en donnant l'expression de v_o en fonction v_{os} avant et après l'ajout que vous avez suggéré.
- d) Soit le circuit de la Figure 2, décrivez la fonction de chaque bloc et donnez la sortie Vo en fonction de V1 et V2.
- e) Soit le circuit de super diode montré à la Figure 3, faites un ajout au circuit pour que celui-ci permettre d'être un redresseur double alternance.

1

Figure 1.

Figure 2.

Figure 3.

2. (30 points) Analyse de circuits

Soit le circuit montré à la Figure 4, avec R_1 =5 k Ω , R_2 =50 k Ω , et R_3 =1 k Ω et R_4 =10 k Ω .

- a) Donnez l'impédance d'entrée Z_{in} et le gain en mode commun A_{cm} du <u>premier étage</u> $(v_{o1}/v_{Icm} \text{ ou } v_{o2}/v_{Icm}).$
- b) Si v_{Id} =0.05cos(2 π f₁t), v_{Icm} =2.0cos(2 π f₂t), quel devrait être le TRMC de ce circuit pour obtenir v_{ocm} =0.01cos(2 π f₂t)? **Note : v_{ocm} représente le signal mode commun mesuré à la sortie du circuit et qui n'a pas pu être rejeté.**
- c) Si le TRMC de <u>l'amplificateur différentiel</u> était de 60 dB, calculez les tensions aux points v_1 , v_2 , v_{o1} , v_{o2} et v_o .
- d) En tenant compte des gains de l'étage d'entrée et de l'amplificateur différentiel, calculez le gain en mode commun de ce circuit <u>pour un TRMC total de 80 dB</u>.

Figure 4.

3. (40 points) Conception d'un filtre passe-haut d'ordre supérieur

Concevez un filtre passe-bande constitué des sections suivantes :

– Un filtre passe haut d'ordre 2: Cette section est réalisée à l'aide d'un filtre Sallen-Key d'ordre 2 dont la fréquence de coupure f_{hp} est de 10 kHz, possédant un gain

unitaire et pour lequel le facteur de qualité Q est égal à 0.707.

- La section passe-bas : Cette section possède une réponse de Butterworth dont les

caractéristiques sont les suivantes : $A_{max} = 1$ dB, $\omega_p = 2\pi \cdot 20$ kHz, $\omega_s = 2\pi \cdot 60$ kHz

et A_{min} > 20 dB. Cette section doit être réalisée à l'aide d'au moins 1 filtre passe-

bas d'ordre 2 par inductance simulée.

- Note 1 : Pour le filtre Sallen-Key, choisissez $R_1 = R_2 = R_A = R$

- Note 2 : Référez-vous à la Figure A1 et la Table A1 pour le polynôme de

Butterworth.

Note 3 : n'utilisez que des condos de 1 nF.

Suivez les étapes suivantes et répondez aux questions :

a) Dessinez le schéma complet du filtre passe-haut Sallen-Key, calculez les valeurs

de tous ces éléments passifs et donnez sa fonction de transfert.

b) Estimez l'ordre du filtre passe-bas et donnez le polynôme de Butterworth

dénormalisé.

c) Dessinez le schéma de la section par inductance simulée du filtre passe-bas,

calculez les valeurs de ses éléments passifs et donnez sa fonction de transfert.

d) Dessinez le reste du schéma du filtre passe-bas qui réalise la réponse de Butterworth

donnée en b). Utilisez des filtres actifs. Vous n'avez pas à trouver les valeurs de ses

composants.

Bonne chance!

Benoit Gosselin

4

Aide-mémoire

Largeur de bande grand signal:

$$f_{M} \leq \frac{SR}{2\pi V_{omax}}$$

Réponse en fréquence de l'ampli inverseur/non-inverseur:

$$\frac{V_{o}(s)}{V_{i}(s)} \approx \frac{1 + R_{2} / R_{1}}{1 + (s / \omega_{t}) \left(1 + \frac{R_{2}}{R_{1}}\right)}$$

Pour un ampli-op en <u>boucle ouverte</u> : $\omega_t = A_0 \omega_b$ où ω_b est la fréquence de coupure.

Pour un ampli-op en <u>boucle fermée</u> : $\omega_{-3dB} = \omega_t/A_{BF}$ où ω_{-3dB} est la fréquence de coupure et A_{BF} est le gain en boucle fermée.

Approximations de filtres

Figure A1.

Réponse Butterworth:

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2N}}}$$

Réponse Chebyshev:

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cos^2[N \cos^{-1}(\omega / \omega_p)]}}, \ \omega \le \omega_p$$

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cosh^2[N \cosh^{-1}(\omega / \omega_p)]}}, \ \omega \ge \omega_p$$

Atténuation maximum d'un filtre dans la bande passante :

$$A_{\max} = 20\log\sqrt{1+\varepsilon^2}$$

Dénormalisation:

$$\omega_0 = \omega_p (1/\varepsilon)^{1/N}$$

L'atténuation $(|T(j\omega)|^{-1})$ d'un filtre à $\omega = \omega_s$:

$$A(j\omega_s) = -20\log\left[1/\sqrt{1+\varepsilon^2(\omega_s/\omega_p)^{2N}}\right]$$
$$= 10\log\left[1+\varepsilon^2(\omega_s/\omega_p)^{2N}\right]$$

Table A1. Réponse Butterworth: polynôme normalisé

n	Polynôme normalisé
1	(1+s)
2	$(1+1.414s+s^2)$
3	$(1+s)(1+s+s^2)$
4	$(1+0.765s+s^2)(1+1.848s+s^2)$
5	$(1+s)(1+0.618s+s^2)(1+1.618s+s^2)$
6	$(1+0.518s+s^2)(1+1.414s+s^2)(1+1.932s+s^2)$
7	$(1+s)(1+0.445s+s^2)(1+1.247s+s^2)(1+1.802s+s^2)$
8	$(1+0.390s+s^2)(1+1.111s+s^2)(1+1.663s+s^2)(1+1.962s+s^2)$
9	$(1+s)(1+0.347s+s^2)(1+s+s^2)(1+1.532s+s^2)(1+1.879s+s^2)$
10	$(1+0.313s+s^2)(1+0.908s+s^2)(1+1.414s+s^2)(1+1.782s+s^2)(1+1.975s+s^2)$

Conception de filtres

Filtre passe-bas à base d'inductance simulée:

Figure A2.

$$T(s) = \frac{1/LC}{s^2 + s(1/RC) + (1/LC)} = \frac{KR_2 / C_4 C_6 R_1 R_3 R_5}{s^2 + s(1/R_6 C_6) + (R_2 / C_4 C_6 R_1 R_3 R_5)}$$

où $R = R_6$, $C = C_6$ et $L = C_4 R_5 R_3 R_1 / R_2$.

Filtre Sallen-Key passe-bas:

Figure A3.

$$T(s) = \frac{aKG_{1}G_{2} / C^{2}}{s^{2} + s[G_{1} + G_{2}(2 - K)] / C + G_{1}G_{2} / C^{2}} = \frac{a_{0}}{s^{2} + s(\omega_{0} / Q) + \omega_{0}^{2}}$$

$$où \qquad Q = \sqrt{G_{1}G_{2}} / [G_{1} + G_{2}(2 - K)]$$

Par ailleurs, si $R_1 = R_2 = R$, on obtient K = 3-1/Q.

Or,
$$K = 1 + R_B/R_A$$
, soit $R_B = (2-1/Q)R_A$.

Fonctions d'ordre 1:

Fonctions d'ordre 2 :

