PUNTOS NOTABLES II

- ORTOCENTRO.
- CIRCUNCENTRO.
- RECTA DE EULER.

ORTOCENTRO:

Q

Н

Es aquel punto de concurrencia de las alturas en todo triangulo.

Si \overline{AP} y \overline{BR} son alturas: \overline{CQ} : Altura H: Ortocentro

Si ΔABC es acutángulo:

 $H \in R$. interior

Si ∆ABC es

rectángulo:

Si ΔABC es obtusángulo:

 $H \in R$. exterior

B:Ortocentro

PUNTOS NOTABLES II

DEMOSTRACIÓN:

Para demostrar que θ + α = 180°, aprovechamos que H es ortocentro, prolongamos \overline{AH} y \overline{CH} . \overline{AP} y \overline{CQ} : Alturas.

• Entonces HQBP es inscriptible, por caso usual: $\therefore \theta + \alpha = 180^{\circ}$

PUNTOS NOTABLES II

En un triangulo ABC, E es excentro relativo a \overline{AC} y H ortocentro. Si AHCE es inscriptible, calcule $m \not \triangleleft ABC$.

RESOLUCIÓN:

Nos piden m∢ABC=2X (Se coloca 2X por conveniencia.)

Como E es excentro:

$$m \not AEC=90^{\circ} - \frac{2X}{2}$$

- Y como H es ortocentro:
 m≪AHC=180° 2X
- Por dato: AHCE inscriptible $90^{\circ} - X + 180^{\circ} - 2X = 180^{\circ}$ $3X = 90^{\circ}$ $X = 30^{\circ}$ $\therefore 2X = 60^{\circ}$

RECORDAR:

PUNTOS NOTABLES II

CIRCUNCENTRO:

Es aquel punto de concurrencia de las Mediatrices de los lados de todo triángulo.

al ΔABC:

O: Circuncentro R: Circunradio

OA=OB=OC=R

Si ΔABC es acutángulo:

 $O \in R$. interior

Si O es Circuncentro:

$$\alpha = \theta$$

$$AM = MC = a$$

PUNTOS NOTABLES II

Del gráfico O es circuncentro del ∆ABC, si AP=AO. Calcule m∢ACB.

RESOLUCIÓN:

Nos piden $m \not \triangleleft ACB = X$

Dato:

Como O es circuncentro:

Además R es Circunradio:

$$OC = R$$

El ΔAOC es isósceles:

$$m \angle OAC = 40^{\circ}$$

El ΔOAP es isósceles:

$$m \not \triangleleft AOP = 70^{\circ}$$

(por suplemento en el vértice O)

Aplicando de nuevo el teorema del circuncentro (O):

$$\therefore X = 55^{\circ}$$

RECORDAR:

PUNTOS NOTABLES II

RECTA DE EULER:

Es aquella recta que contiene al ortocentro (H), baricentro (G) y circuncentro (O) de todo triángulo.

Se cumple:

HG = 2(GO)

PUNTOS NOTABLES II

TEOREMAS ADICIONALES:

DEMOSTRACIÓN:

PUNTOS NOTABLES II

RECORDAR:

DEMOSTRACIÓN:

Demostrar que:

Trazamos la circunferencia circunscrita para aprovechar el teorema anterior y $\overline{OM} \perp \overline{BP}$.

- En el rectángulo QMON:
 MQ=b
- Como H es ortocentro: si HM=c HQ=QP= b + c
- Como $\overline{OM} \perp \overline{BP}$: BM=MP a+c=2b+c $\therefore a=2b$