DESCRIPTIVE STATISTICS & PROBABILITY

Credits: 4 Semester: I Subject Code: BS19025 No. of Lecture hours: 60 **OBJECTIVE:** To prepare students for lifelong learning and successful careers using their statistical skills. Outcome: Students will be able to compute descriptive statistics and probabilities from data, using the application of correct statistical notation and language. CO1: Organize, manage and present data and Analyze statistical data using measures of central tendency CO2: Analyze the statistical data using dispersion and location. CO3: Use the basic probability rules, including additive and multiplicative laws, using the terms, independent and mutually exclusive events. **CO4: Develop** the probability density function of transformation of random variables. CO5: Identify probabilities, and derive the marginal and conditional distributions of bivariate random variables. **UNIT I Descriptive Statistics:** 12hrs 1. Concept of primary and secondary data 2 2. Methods of collection and editing of primary data 2 3. Designing a questionnaire and a schedule 2 4. Sources and editing of secondary data Classification and tabulation of data 2 5. Measures of central tendency (Mean, Median, Mode, Geometric mean and harmonic mean) with simple applications. 4 **UNIT-II** 12hrs 1. Absolute and relative measures of dispersion (Range, Quartile deviation, mean deviation and standard deviation) with simple applications. 4 2. Importance of moments- Central and non central moments and their interrelationships. 6 Sheppard's corrections for moments for ungrouped data – Skewness and Kurtosis - Their measures including those based on quartiles and moments with real life examples. 2 **UNIT-III Probability:** 12hrs Basic concepts in Probability – Deterministic and random experiments – Trail, outcome, sample space, event and operation of events- Mutually exclusive and exhaustive events -Equally likely and favorable outcomes with examples. 3 Mathematical, Statistical and axiomatic definitions of

3

probability with merits and demerits

Properties of probability based on axiomatic	
Definition conditional probability and independence	
of events.	2
3. Addition and multiplication theorems for 'n' events.	
4. Boole's inequality and Baye's theorem	2
5. Problems on probability using counting methods and theorems.	
	2
	4.0
UNIT-IV	12hrs
Random Variables:	
1. Definition of Random Variable, Discrete and	
continuous random variables	2
2. Functions of random variables, Probability mass	_
function and probability density function with illustrations	2
3. Distribution function and its properties	2
4. Transformation of one-dimensional random	
variable (simple 1-1 functions only) Notion	_
of Bivariate random variable	2
5. Bivariate distribution and statement of its properties	2
6. Joint, Marginal and conditional distributions	1
7. Independence of random variables	2
UNIT-V	12hrs
Mathematical Expectation: Mathematical	
expectation of random variable, Moments –	
Raw and central moments	2
2. Covariance using Mathematical expectation	_
with examples	2
3. Addition and multiplication theorems of expectation	1
4. Definition of moment generating function (m.g.f)	1
5. Cumulant generating function (c.g.f)	1
6. Probability generating function (p.g.f) and	1
7. Characteristic function (c.f) and statement of	_
their properties with applications	2
8. Chebychev's and Cauchy-Schwartz's inequalities	
and their applications	2
± ±	