南京林业大学试卷

课程 高等数学(B)(A卷) 2018~2019 学年第 2 学期

一、填空题(每小题 4分,共 20 分)

俎

썴

铝

叩

紪

1、已知
$$\vec{a}$$
 与 \vec{b} 垂直,且 $|\vec{a}|$ = 5|, $|\vec{b}|$ = 12,则 $|\vec{a}+\vec{b}|$ = 15;

1、已知
$$a = b$$
 垂直,且 $|a| = 5$, $|b| = 12$,则 $|a+b| = 10$; ∞ 人 ∞

③ 过点
$$A(2,2,-1)$$
 且方向角为 $\frac{\pi}{3}$, $\frac{\pi}{4}$, $\frac{2}{3}$ π 的直线方程为 $\frac{7}{3}$; $\frac{1}{3}$ $\frac{7}{3}$ $\frac{7$

4) 设
$$z = \arctan \frac{x - y}{1 + xy}$$
,则 $dz|_{(1,\sqrt{3})} =$;

(5)设一阶线性非齐次微分方程 y'+P(x)y=Q(x) 有两个线性无关的解 y_1 , y_2 , 若 α $y_1+\beta$ y_2 也

是该方程的解,则应有 $\alpha + \beta =$.

叩 二、选择题(每小题 4 分,共 20 分)

1、累次积分 $\int dx \int f(x,y)dy$ 改变积分次序为 (\bigcirc)

(A)
$$\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx$$

(B)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{x}} f(x, y) dx$$

(C)
$$\int_{0}^{1} dy \int_{0}^{y^{2}} f(x, y) dx$$

(C)
$$\int_{0}^{1} dy \int_{0}^{y^{2}} f(x, y) dx$$
 (D) $\int_{0}^{1} dy \int_{y^{2}}^{1} f(x, y) dx$

2、极限
$$\lim_{\substack{x\to 0\\y\to -1}} \frac{\sin(xy)}{x}$$
为(\bigcirc)

2、极限 $\lim_{\substack{x\to 0\\y\to -1}} \frac{\sin(xy)}{x}$ 为(C) 连续 一编号存在 全个统元存在 (任徒).

(A) 1 (B) 0 (C) -1 (D) 2

3、函数 f(x, y) 在点 (x_0, y_0) 处连续是函数 f(x, y) 在该点处存在偏导数的()).

(A). 充分条件;

(B). 必要条件;

(C). 充分必要条件; (D). 既不是必要,也不是充分条件.

(A)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{2n^3 + 3n + 1}}$$
 (B) $\sum_{n=1}^{+\infty} \frac{n}{2n + 3}$ (C) $\sum_{n=1}^{+\infty} \frac{(-4)^{n-1}}{3^n}$ (D) $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$

(c)
$$\sum_{n=1}^{+\infty} \frac{(-4)^{n-1}}{3^n}$$

(D)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} \frac{1}{1 + \frac{1}{2}}$$

$$5$$
、. 幂级数 $\sum_{n=1}^{+\infty} \frac{(x-1)^n}{3^n}$ 的收敛域为(\bigwedge)

1

(A) (-2,4) (B) (C) (-1) (D) [-2,4)

三. 计算题 (每小题7分, 共计14分)

- 2、已知 $z = f\left(x^2, \frac{x}{v}\right)$, 其中 f 具有二阶连续的偏导数,求 $\frac{\partial^2 z}{\partial x \partial v}$;
- 四. (每小题8分,共16分)

1、计算
$$I = \iint_{x^2+y^2 \le 4} (x^2 - 3\sin x + 4) d\sigma$$

- 2、计算 $\iint_{\Omega} z dx dy dz$,其中 Ω 由 $z = x^2 + y^2$ 及z = 4所围成的闭区域;
- 五. (每小题8分, 共计16分)

1、设函数
$$y = (1+x)^2 u(x)$$
 是方程 $y' - \frac{2}{1+x} y = (1+x)^3$ 的通解,求 $u(x)$ 。

- 2、已知 $y'' 2y' 8y = (x+1)e^{-2x}$ 的一个特解为 $y^* = x\left(-\frac{1}{12}x \frac{5}{36}\right)e^{-2x}$,试求其通解。
- 六. 计算题(每小题7, 共计14分)

1、将函数
$$f(x) = \frac{x}{(1-x)^2}$$
展开为 x 的幂级数.

2、(1) 求
$$\sum_{n=0}^{\infty} (n+1) x^n$$
 的收敛域及和函数,(2) 求级数 $\sum_{n=0}^{\infty} \frac{n+1}{3^{n+1}}$.