Les limites

T^{le} Spécialité mathématiques Analyse - Démonstrations

1 Limites finies d'une fonction en $+\infty$

Démonstration du Théorème 1 :

On choisit ε tel que $l + \varepsilon < l' - \varepsilon$.

En supposant que f tend vers l: il existe A_1 tel que pour tout $x > A_1$: $l - \varepsilon < f(x) < l + \varepsilon$.

En supposant que g tend vers l': il existe A_2 tel que pour tout $x > A_2$: $l' - \varepsilon < g(x) < l' + \varepsilon$.

En prenant $A = \max(A_1, A_2)$, pour tout x > A on a:

- $x > A_1$ donc $f(x) < l + \varepsilon$
- $x > A_2$ donc $g(x) > l' \varepsilon$

Donc $f(x) < l + \varepsilon < l' - \varepsilon < g(x)$ donc f(x) < g(x).

Démonstration du Théorème 2 :

Par l'absurde, supposons que l > l' et $\lim_{x \to +\infty} f(x) = l$ et $\lim_{x \to +\infty} g(x) = l'$ et il existe A réel tel que pour tout x > A: $f(x) \le g(x)$.

D'après le Théorème 1, sous les hypothèses ci-dessus, il existe un réel A' tel que pour tout x > A', f(x) > g(x).

Ceci entre en contradiction avec la 4^e hypothèse $(f(x) \leq g(x))$. Conclusion : l < l'.