Problem Statement

Overfitting a machine learning algorithm will lead to well fitting training models but poorly fitting test models. In effect an overfitted model will have a low *squared bias* but a large sample-to-sample *variation*.

FIGURE 6.23. On a simulated example with n=20 training observations, features that are completely unrelated to the outcome are added to the model. Left: The R^2 increases to 1 as more features are included. Center: The training set MSE decreases to 0 as more features are included. Right: The test set MSE increases as more features are included.

Example: Regression analysis with an observation specific dummy variable for each observation will have a perfect fit.

High-Dimensional Data

The number of features K-1 is close to the number of observations n or even larger. If n < K-1 the models cannot be uniquely calibrated.

Examples:

• The possible link of DNA mutations in single nucleotide polymorphisms to specific diseases. There are over 500.000 different SNPs and usually the sample size *n* is substantially smaller.

• Internet search terms by a set of users are used for marketing purpose. Usually the "bag-of-words" is substantially larger than the number of users.

Subsets of features will be perfectly correlated. This can lead to different but identical sub-set solutions (*one of many possible models problems*):

FIGURE 6.24. The lasso was performed with n=100 observations and three values of p, the number of features. Of the p features, 20 were associated with the response. The boxplots show the test MSEs that result using three different values of the tuning parameter λ in (6.7). For ease of interpretation, rather than reporting λ , the degrees of freedom are reported; for the lasso this turns out to be simply the number of estimated non-zero coefficients. When p=20, the lowest test MSE was obtained with the smallest amount of regularization. When p=50, the lowest test MSE was achieved when there is a substantial amount of regularization. When p=2,000 the lasso performed poorly regardless of the amount of regularization, due to the fact that only 20 of the 2,000 features truly are associated with the outcome.

Regularization

Regularization is an umbrella term that comprises of methods which build *less complex* models with a low prediction error.

Specific approaches:

- Best subset selection of explanatory variables. This is not practical because $2^{(K-1)}$ different combinations are possible. Approximations by stepwise search strategies are possible.
- Shrinkage methods like Ridge and Lasso regression
- Dimension reduction methods like principal component regression or partial least squares

Regularization are also applied with neutral networks, which directly minimize an objective function.

Shrinkage methods

The tuning parameter λ can be regarded as hyper-parameter.