Expectation Maxmization of Gaussian Mixture Models

James A. Perez

2019, April 25

Outline

- Overview:
 - 1. Commingling Analysis
 - 2. Gaussian Mixture Model (GMM)
 - 3. Expectation Maximization Algorithm
 - 4. Code Demonstration
 - 5. Results / Issues

Problem Statement

• Using simulated quantitative phenotype trait (QTP) measurements from N independent individuals $X = (x_1, x_2, ..., x_n)$, estimate the parameters of the k component denisties θ_k generative for each quantitative trait x_i .

Problem Statement

Using simulated quantitative phenotype trait (QTP) measurements from N independent individuals $X = (x_1, x_2, ..., x_n)$, estimate the parameters of the k component denisties θ_k generative for each quantitative trait x_i .

Assumptions:

- 1. Mixture densities are members of a Gaussian location family (common variance).
- 2. Biallelic genotype forms a partition in the sample space of X.

Figure 1:

► Also known as a disribution of "contaminated normals" Given by,

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_k f_k(x)$$

► Also known as a disribution of "contaminated normals" Given by,

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_k f_k(x)$$

- $ho_k = ext{Probability that any realization } X = x_i ext{ was derived from density } k$
- We call this a mixture component probability.

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_k f_k(x)$$

Expectation:

$$E[X] = \sum_{i=1}^{k} \alpha_i \int_{-\infty}^{\infty} x f_i(x) = \sum_{i=1}^{k} \alpha_i \mu_i = \bar{\mu}$$

Variance:

$$Var(X) = \sum_{i=1}^k \alpha_i \sigma_i^2 + \sum_{i=1}^k \alpha_i (\mu_i - \bar{\mu})^2$$

► The mixture density problem is one of the most widely used applications of the EM algorithm.

- ► The mixture density problem is one of the most widely used applications of the EM algorithm.
- ▶ The probablility model we wish to maximize is,

$$p(x|\Theta) = \sum_{m=1}^{K} \alpha_m p_m(x|\theta_m)$$

• where $\Theta = (\alpha_1, ..., \alpha_k, \theta_1, ..., \theta_k)$ such that $\sum_{m=1}^K \alpha_m = 1$

The incomplete log likelihood is given by,

$$log(L(\Theta|X)) = log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i}^{N} log \left(\sum_{m=1}^{K} \alpha_m p_m(x_i|\theta_m) \right)$$

The incomplete log likelihood is given by,

$$log(L(\Theta|X)) = log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i}^{N} log \left(\sum_{m=1}^{K} \alpha_m p_m(x_i|\theta_m) \right)$$

► The log of a summation turns out to be very difficult to maximize using standard numerical techniques. . .

The incomplete log likelihood is given by,

$$log(L(\Theta|X)) = log \prod_{i=1}^{N} p(x_i|\Theta) = \sum_{i}^{N} log \left(\sum_{m=1}^{K} \alpha_m p_m(x_i|\theta_m) \right)$$

- ► The log of a summation turns out to be very difficult to maximize using standard numerical techniques...
- ▶ How can we simplify the maximization computation?

Soln: We posit the existence of an unknown random indicator vector $Z_{ik} \in \{0,1\}$ that informs us of which k^{th} component density was generative for each $X = x_i$

- Soln: We posit the existence of an unknown random indicator vector $Z_{ik} \in \{0,1\}$ that informs us of which k^{th} component density was generative for each $X = x_i$
- ▶ If we knew beforehand what the distribution of Z_k was, the likelihood would be:

- Soln: We posit the existence of an unknown random indicator vector $Z_{ik} \in \{0,1\}$ that informs us of which k^{th} component density was generative for each $X = x_i$
- ► If we knew beforehand what the distribution of Z_k was, the likelihood would be:

$$log(L(\Theta|X,Z_k) = \sum_{i=1}^{N} log(P(x_i|Z_{ik})P(Z_{ik}=1)) = \sum_{i=1}^{N} log(\alpha_k p_k(x_i|\theta_k))$$

- Soln: We posit the existence of an unknown random indicator vector $Z_{ik} \in \{0,1\}$ that informs us of which k^{th} component density was generative for each $X = x_i$
- ▶ If we knew beforehand what the distribution of Z_k was, the likelihood would be:

$$log(L(\Theta|X,Z_k) = \sum_{i=1}^{N} log(P(x_i|Z_{ik})P(Z_{ik} = 1)) = \sum_{i}^{N} log(\alpha_k p_k(x_i|\theta_k))$$

▶ However, we of course don't know which k^{th} component was used to sample $X = x_i$

- Soln: We posit the existence of an unknown random indicator vector $Z_{ik} \in \{0,1\}$ that informs us of which k^{th} component density was generative for each $X = x_i$
- ▶ If we knew beforehand what the distribution of Z_k was, the likelihood would be:

$$log(L(\Theta|X,Z_k) = \sum_{i=1}^{N} log(P(x_i|Z_{ik})P(Z_{ik} = 1)) = \sum_{i}^{N} log(\alpha_k p_k(x_i|\theta_k))$$

- ▶ However, we of course don't know which k^{th} component was used to sample $X = x_i$
- ▶ Therefore, we must derive an expression for the distribution of the "unobserved" indicators $Z_k = (Z_{1k}, Z_{2k}, ..., Z_{nk})$.

▶ The strategy is to pretend we know parameters for the mixture densities ("guesses") in order to derive the distribution of Z_k . to maximize our likelihood.

- ▶ The strategy is to pretend we know parameters for the mixture densities ("guesses") in order to derive the distribution of Z_k . to maximize our likelihood.
- ▶ In that case, we pivot our interest to the following "complete" log likelihood:

$$\sum_{m=1}^{K} log(L(\Theta|X, Z_m)) p(Z_m = 1|X, \Theta^g)$$

• where Θ^g is our first guess for the parameters.

- ▶ Given Θ^g we can easily compute $p_k(x_i|\theta_k^g)$
- In addition, the mixture component probabilities α_k , can be thought of as Bayesian "priors".

- Given Θ^g we can easily compute $p_k(x_i|\theta_k^g)$
- ▶ In addition, the mixture component probabilities α_k , can be thought of as Bayesian "priors".

Therefore, using Bayes's rule:

$$w_{ik} = p(Z_{ik} = 1 | x_i, \Theta^g) = \frac{\alpha_k^g p_k(x_i | \theta_k^g)}{\sum_{m=1}^K \alpha_m^g p_m(x_i | \theta_m^g)}$$

where I denote w_{ik} as a membership weight of data point x_i in mixture denisty k.

▶ Recall the complete log likelihood which I now denote $Q(\Theta|\Theta^g)$

$$Q(\Theta|\Theta^g) = \sum_{m=1}^K log(L(\Theta|X, Z_m)) p(Z_m = 1|X, \Theta^g)$$

▶ Recall the complete log likelihood which I now denote $Q(\Theta|\Theta^g)$

$$Q(\Theta|\Theta^g) = \sum_{m=1}^K log(L(\Theta|X, Z_m))p(Z_m = 1|X, \Theta^g)$$

Now that we have the marginal denisty of Z_k from Bayes theorem, we can maximize the previous expression, denoted by

$$Q^*(\Theta|\Theta^g) = \underset{\Theta}{\operatorname{argmax}} L(\Theta|X)$$

▶ Recall the complete log likelihood which I now denote $Q(\Theta|\Theta^g)$

$$Q(\Theta|\Theta^{g}) = \sum_{m=1}^{K} log(L(\Theta|X, Z_{m}))p(Z_{m} = 1|X, \Theta^{g})$$

Now that we have the marginal denisty of Z_k from Bayes theorem, we can maximize the previous expression, denoted by

$$Q^*(\Theta|\Theta^g) = \underset{\Theta}{\operatorname{argmax}} L(\Theta|X)$$

- The EM algorithm does this iteratively through i iterations

$$Q^{(i)} = \underset{\Theta}{\operatorname{argmax}} Q(\Theta, \Theta^{(i-1)})$$

► Each iteration has two steps:

► Each iteration has two steps:

E-step: Compute w_{ik} for all data points $x_i 1 <= i <= N$ and mixture components 1 <= k <= K using the initial or old parameter vector $\Theta^{(i-1)}$. This yields the NxK matrix W, where each row sums to one.

► Each iteration has two steps:

E-step: Compute w_{ik} for all data points $x_i 1 <= i <= N$ and mixture components 1 <= k <= K using the initial or old parameter vector $\Theta^{(i-1)}$. This yields the NxK matrix W, where each row sums to one.

$$w_{ij} = \frac{\alpha_k^{(i-1)} p_k \left(x_i | \theta_k^{(i-1)} \right)}{\sum_{m=1}^K \alpha_m^{(i-1)} p_m \left(x_i | \theta_m^{(i-1)} \right)} \quad (EQN1)$$

M-step: Use the "priors" or membership weights w_{ij} to calculate the new parameter vector $\Theta^{(i)}$.

M-step: Use the "priors" or membership weights w_{ij} to calculate the new parameter vector $\Theta^{(i)}$.

Let $N_k = \sum_{i=1}^N w_{ik}$ be the effective number of data points assigned to component density k.

M-step: Use the "priors" or membership weights w_{ij} to calculate the new parameter vector $\Theta^{(i)}$.

Let $N_k = \sum_{i=1}^N w_{ik}$ be the effective number of data points assigned to component density k.

We have for the mixture components,

$$\alpha^{(i)} = \frac{N_k}{N} \quad (EQN2)$$

M-step: Use the "priors" or membership weights w_{ij} to calculate the new parameter vector $\Theta^{(i)}$.

Let $N_k = \sum_{i=1}^N w_{ik}$ be the effective number of data points assigned to component density k.

We have for the mixture components,

$$\alpha^{(i)} = \frac{N_k}{N} \quad (EQN2)$$

The updated means,

$$\mu^{(i)} = \frac{1}{N_k} \sum_{i=1}^{N} w_{ij} \cdot x_i, \quad 1 \le k \le K. \quad (EQN3)$$

M-step: Use the "priors" or membership weights w_{ij} to calculate the new parameter vector $\Theta^{(i)}$.

Let $N_k = \sum_{i=1}^N w_{ik}$ be the effective number of data points assigned to component density k.

We have for the mixture components,

$$\alpha^{(i)} = \frac{N_k}{N} \quad (EQN2)$$

The updated means,

$$\mu^{(i)} = \frac{1}{N_k} \sum_{i=1}^{N} w_{ij} \cdot x_i, \quad 1 <= k <= K. \quad (EQN3)$$

And common variance,

$$\sigma^{2(i)} = \frac{1}{N_k} \sum_{i=1}^{N} w_{ij} \cdot (x_i - \mu^{(i)})^2 \quad 1 <= k <= K. \quad (EQN4)$$

Code demonstration

Results: Estimation Accuracy - tol=0.001

	dq	μ_{ii}	μ_{ij}	μ_{jj}	σ^2			
true	0.400	-0.600	0.000	0.800	0.100			
est	0.412	0.586	0.007	0.765	0.009			
D^2	1.52e-04	1.94e-04	4.32e-05	1.25e-03	8.25e-03			
Set 2 (itr=122)								
true	0.100	0.200	0.300	0.700	0.500			
est	0.575	0.178	0.314	0.314	0.235			
D^2	2.26e-01	5.05e-04	1.86e-04	1.49e-01	7.03e-02			
Set 3 (<i>itr</i> =121)								
true	0.050	0.200	0.300	0.700	0.500			
est	0.576	0.248	0.285	0.285	0.242			
D^2	2.77e-01	2.28e-03	2.30e-04	1.72e-01	6.63e-02			
$mse_1 = 0.002$, $mse_2 = 0.089$, $mse_3 = 0.104$								

Set 1 (*itr*=27)

Results: Estimation Accuracy - tol=0.00001

Set 3 (<i>itr=867</i>)									
true	0.050	0.200	0.300	0.700	0.500				
est	0.577	0.231	0.293	0.293	0.241				
D^2	2.78e-01	9.82e-04	4.63e-05	1.65e-01	6.70e-02				

 $mse_3 = 0.102$

1. EM has trouble converging for small disease allele frequencies dq

- 1. EM has trouble converging for small disease allele frequencies dq
- ► This is due to uncertainty in resolving two component densities from a single component with a relatively large variance.

- 1. EM has trouble converging for small disease allele frequencies dq
- ► This is due to uncertainty in resolving two component densities from a single component with a relatively large variance.
- 2. Variances for each component don't converge to the expected common variance as expected in these extreme cases.

- 1. EM has trouble converging for small disease allele frequencies dq
- ► This is due to uncertainty in resolving two component densities from a single component with a relatively large variance.
- 2. Variances for each component don't converge to the expected common variance as expected in these extreme cases.
- I arbitrarily use a sample mean statistic across all three estimated mixture densities to estimate the common variance.
 This is only asymptotically unbiased (extremely small tolerance needed for rare minor alleles.)