1) Given figure shows a truss in which the members CJ and CF of the loaded truss cross but are not connected to members BI and DG. Determine the values of α for which the truss cannot be in equilibrium. Write a MATLAB programme to plot the forces in members BC, JC, IC, and IG as a function of α.

- 2) In the given figure rod CB is held by a cord AC which has a tension T. Write a MATLAB programme to determine,
 - a) The moment about B of the force exerted by the cord at point C as a function of the tension T and the distance d.
 - b) Plot the moment about B for $300\text{mm} \le d \le 1000\text{mm}$ when (i) T= 60N, (ii) T = 80N, (iii) T = 110N.

3) Given figure shows a frame in which the structural member supports the 5kN load. The load may be applied at any angle $\alpha(-90^{\circ}$ to $+90^{\circ})$, The pins at A and B need to be designed to support the maximum force transmitted to them, Write a MATLAB programme to plot the forces at A and B as a function of α and find their maximum values and corresponding angles α .

- 4) Given figure shows a slender rod AB of weight W attached to blocks at A and B which moves freely in the guides.
 - a) Derive a relationship between α , W, L and k that need to be satisfied for the rod to be in equilibrium. The spring constant is k, W=20 lb and L= 50 inch.
 - b) Write a MATLAB programme to compute and plot k as a function of α for $15^{\circ} < \alpha < 40^{\circ}$.

- 5) In the given figure the horizontal position of the rectangular block is adjusted by the wedge under the action of the force P. The wedge angle is α . μ_1 and μ_2 are the coefficient of static friction at the two wedge surfaces and between the block and the horizontal surfaces respectively.
 - a) Obtain a general expression for P (the least force required to move the block) in terms of α , μ_1 and μ_2 .
 - b) Write a MATLAB programme to plot P as a function of μ_1 for α =15,20 and 25°. $\mu_2 = 0.5$.
 - c) For $\alpha = 10^{\circ}$, plot P as a function of μ_1 for $\mu_2 = 0.2$, 0.4, 0.6 and 0.8.

- 6) Given figure shows a large turnbuckle which supports a cable tension of 12,000 lb. The mean diameter of the two 1.25 inch screws is 1.15 inch and has five square threads per inch. Both screws have single threads.
 - a) Determine the moments M_T and M_L that must be applied to the body of the turnbuckle in order to tighten and loosen it respectively.
 - b) Write a MATLAB programme to plot the moments M_T and M_L as functions of μ for $0 \le \mu \le 1$, where μ is the coefficient of friction for the threads.

Page 2 of 2