Subsystem Design Specification

University of Toronto Aerospace Team Onboard Computer

August 17, 2025

Contents

1	Subteam Overview				
	1.1 Technical Responsibilities	1			
	1.2 Other Responsibilities	1			
2	Applicable Documents and Standards	1			
	2.1 Technical Documents	1			
	2.2 Standards Documents	1			
3	Subsystem Requirements	1			
	3.1 Electrical System Requirements	1			
	3.2 OBC Requirements	3			
	3.3 PAY Requirements	4			
4	Verification and Validation Plan				
5	High Level System Architecture				
6	Detailed System Architecture	7			
7	Possible Risks				
8	Development Schedule and Status				
9	Open Issues and Future Work	7			

1 Subteam Overview

1.1 Technical Responsibilities

The electrical team has two main deliverables for the spacecraft:

- 1. The OnBoard Computer (OBC)
- 2. The Payload Controller (PAY)

Each deliverable is an STM32-based PCB that is designed, validated, and tested in-house.

As the board is being designed in house, the team is also responsible for:

- Ensuring boards can be manufactured for flight when the time comes
- Creating and maintaining datasheets for each board
- Maintaining the Interface Control Document

1.2 Other Responsibilities

- Training up members of the subteam to work on OBC and PAY via onboarding projects.
- Maintaining the Altium library—ensuring that all components can withstand the space environment.
- Maintaining the lab space (MY618) for electrical testing and PCB bring-up.
- Placing PCB fabrication and component orders

2 Applicable Documents and Standards

2.1 Technical Documents

- OBC Datasheet
- PAY Datasheet
- Master Connection Sheet

2.2 Standards Documents

3 Subsystem Requirements

3.1 Electrical System Requirements

From the FINCH-Spacecraft-Electrical System, requirements for the existence of OBC and PAY are derived. Seen in Table 1 are also other higher-lever requirements of the system including the common bus to connect OBC, PAY, and the board for the Electrical Power System (EPS).

Req. ID	Description	Parent Req.	Verification Method
FINCH- Spacecraft- ElectricalSystem	The electrical system shall provide the necessary electrical functionality for the mission to function.	FINCH-Mission- Objective	Demonstration
FINCH-OBC- ControlAndOps	The OBC shall control the modes of operation of the satellite.	FINCH- Spacecraft- ElectricalSystem	Demonstration
FINCH-Payload Controller- PayloadOps	The Payload Controller shall support necessary operations for executing the mission of the payload	FINCH- Spacecraft- ElectricalSystem	Demonstration
FINCH- Spacecraft- CommonBus	The spacecraft shall utilize a common bus which includes the lines for power and communication between OBC, EPS, and PAY.	FINCH- Spacecraft- ElectricalSystem	Test
FINCH- Spacecraft- CANBus	The spacecraft shall use CAN Bus for communication between nodes on the electrical system.	FINCH- Spacecraft- CommonBus	Test
FINCH- Spacecraft- Electrical Grounding	The grounding system for the spacecraft shall include a separate chassis and signal ground.	FINCH- Spacecraft- ElectricalSystem	Analysis
FINCH- Spacecraft- Electrical Soldering Standard	Electrical components shall be soldered in accordance to IPC Type 3 or equivalent	FINCH- Spacecraft- ElectricalSystem	Inspection

Table 1: Electrical System Requirements

3.2 OBC Requirements

Figure 1: Requirement tree view of the requirements for the OnBoard Computer

Req. ID	Description	Parent Req.	Verification Method
FINCH-OBC- LoadSwitch Control	The OBC shall be capable of controlling the load switches on the EPS board which turn on and off other nodes on the satellite (FINCH-OBC- ControlAndOps	Demonstration
FINCH-OBC- CANBus	The OBC shall send and receive data on CANBus (non-terminated)	FINCH-OBC-ControlAndOps, FINCH-Spacecraft-CANBus	Test
FINCH-OBC- Time	The OBC shall track of the internal time of the satellite	FINCH-OBC- ControlAndOps	Test
FINCH-OBC- Housekeeping	The OBC shall monitor the state and health of the satellite.	FINCH-OBC- ControlAndOps	Test
FINCH-OBC- CheckNodes	OBC shall monitor other nodes of the spacecraft as well as the external sensors to verify operation of the spacecraft is going without fault.	FINCH-OBC- Housekeeping	Test, Analysis
FINCH-OBC- Watchdog	The OBC shall be capable of resetting itself in the event of a lockup	FINCH-OBC- CheckNodes	Test
FINCH-OBC- TelemetryStorage	The OBC shall be capable of storing telemetry and housekeeping data.	FINCH-OBC- Housekeeping	Test
FINCH-OBC- MemoryType	The OBC shall store telemetry data flash memory.	FINCH-OBC- TelemetryStorage	Test
FINCH-OBC- ThermalInterface	Provide a means of receiving data from external thermal sensors and setting states of external heaters	FINCH-OBC- Housekeeping	Test
FINCH-OBC- Internal Thermistors	The OBC shall contain sufficient thermistors to be able to fully monitor the OBC's hotspots.	FINCH-OBC- ThermalInterface	Test
FINCH-OBC- External Thermistors	The OBC shall provide the ability to poll no more than 16 external thermistors at a rate no lower than once every 5 seconds.	FINCH-OBC- ThermalInterface	Test

Table 2: OBC Requirements

3.3 PAY Requirements

Figure 2 and Table 3 summarize the requirements for the Payload Controller system.

Notable is the compression requirement which has only become a "should" recently after PAY was designed. The reason why the requirement suddenly became a "should" comes from a spec from optics saying that the whole sensor will not be used. Initial requirement for compression assumed the whole sensor would be used.

Figure 2: PAY Requirement Tree

Req. ID	Description	Parent Req.	Verification Method
FINCH- PayloadController CameraControl	The Payload Controller shall control the camera module	FINCH- PayloadController PayloadOps	Test, Analysis
FINCH- PayloadController Storage	The Payload Controller shall store the images taken from the camera.	FINCH- PayloadController Storage	- Test
~	The Payload Controller shall write -image data to storage device at speeds end less than 34.4 MB/s	FINCH- PayloadController Storage	- Test
FINCH- PayloadController ImageStorageQua	Latimaging data higher is better as	FINCH- PayloadController Storage	- Test
FINCH- PayloadController TelemetryStorage	Leanable of storing telemetry data	FINCH- PayloadController Storage	- Test
FINCH- PayloadController DownlinkSpeeds	The Payload Controller system shall not bottleneck downlink to the ground station.	FINCH- PayloadController PayloadOps	- Test
RFLink	The Payload Controller shall utilize the faster interface with the RF -transceiver that makes it possible to send data to the transceiver such that it does not bottleneck communication.	FINCH- PayloadController DownlinkSpeeds	- Test
FINCH- PayloadController UplinkSpeeds	The Payload Controller system shall be capable of receiving data from the RF module directly.	FINCH- PayloadController PayloadOps	- Test
FINCH-	The Payload Controller shall be -capable of directly sending payload and telemetry data to the RF module.	FINCH- PayloadController PayloadOps	- Test
FINCH- PayloadController Compression	The Payload Controller should support image compression.	FINCH- PayloadController PayloadOps	- Test

Table 3: Electrical System Requirements

4 Verification and Validation Plan

Electrical requirements will be verified via tests and demonstrations. The verification and validation plan will follow the following timeline:

- 5 High Level System Architecture
- 6 Detailed System Architecture
- 7 Possible Risks
- 8 Development Schedule and Status
- 9 Open Issues and Future Work