Automatic Control

Introduction to digital control

- Motivations
- Structure of digital control systems
- Discrete time signals and systems

Automatic Control – M. Canale

The structure of an analog feedback control system

In an analog feedback control system:

- relevant signals are analog (i.e. continuous in time and amplitude)
- the controller is typically realized through an active electronic filter

Motivations for digital control

Automatic Control – M. Canale

Lead and lag networks implementation using ideal OA*

$$V_o(s) = -\frac{R_f}{R_a} \cdot \frac{1 + R_a C_a s}{1 + R_f C_f s} V_a(s)$$
 Lead if: $R_a C_a > R_f C_f$ Lag if: $R_a C_a < R_f C_f$

see C. Greco, M. Indri, Controlli Automatici, Politecnico di Torino - CELM (2007)

Automatic Control – M. Canale

PI network implementation using ideal OA*

$$V_o(s) = -\left(\frac{R_f}{R_a} + \frac{1}{R_a C s}\right) V_o(s) = -\frac{1}{R_a C} \cdot \frac{1 + R_f C s}{s} V_o(s)$$

* see C. Greco, M. Indri, Controlli Automatici, Politecnico di Torino - CELM (2007)

Automatic Control – M. Canale

AC L19 5

Analog controllers drawbacks and solutions

Problems related to analog controllers

- Components degradation due to aging
- Parameters uncertainty and variability as a function of working conditions
- Actual circuits show nonlinear behaviors
- Very expensive in case of re-tuning and/or re-design
- Coupling with EM disturbance

Possible solutions

- Improve robustness in the design (→ more conservative)
- Realize controllers improving accuracy and "stability" of the components (→ high costs)
- Design and realize digital controllers

PID network implementation using ideal OA*

$$V_o(s) = -\frac{\left(1 + R_f C_f s\right) \left(1 + R_a C_a s\right)}{R_a C_f s \cdot \left(1 + C_c / C_f + R_f C_c s\right)} V_a(s)$$

$$V_o(s) = -\left(\frac{C_a}{C_f} + \frac{R_f}{R_a} + \frac{1}{R_a C_f s} + \frac{R_f C_a s}{N_o}\right) \cdot \frac{1}{(1 + C_c/C_f + R_f C_c s)} V_a(s)$$

* see C. Greco, M. Indri, Controlli Automatici, Politecnico di Torino - CELM (2007)

Automatic Control – M. Canale

AC L19 6

The structure of a digital feedback control system

Introduction to digital control

- At present, most control systems use digital computers for controller implementation
- Digital computers allow one to calculate the control input through SW algorithms rather than using suitable electronic filters.
 This gives relevant advantages:
 - Flexibility in making modifications to the controller after the hardware design is fixed
 - Hardware and software design can proceed almost independently, saving a large amount of time
 - Logic and nonlinear operations can be easily included in the controller
 - Rapid prototyping

Automatic Control – M. Canale

AC L19 9

The structure of a digital feedback control system

In a digital feedback control system:

- the digital controller is interfaced to the analog system made up by actuator-plant connection
- both analog and digital signals are present $T \rightarrow$ sample time $(s) \rightarrow x(kT) \rightarrow$ sampled signal

The structure of a digital feedback control system

In digital feedback control systems, the analog controller is replaced by a digital computer (μ -processor)

The digital computer receives and operates on digital signals (i.e. discrete in both time and amplitude)

The analog measured signals are converted by means of analogto-digital converters (A/D)

The digital controller output signal is converted to an analog signal to be provided to the plant by a digital-to-analog converter (D/A)

Automatic Control – M. Canale

AC L19 10

The structure of a digital feedback control system

Sampled data feedback control system with error sampling

Automatic Control – M. Canale

AC L19 11

Automatic Control – M. Canale

AC_L19 12

Discrete time signals and systems

Automatic Control – M. Canale

Discrete-time signals: sequences

A **discrete-time signal** is made up by a sequence of real numbers Therefore, the signal is not defined between two sampling instants.

Discrete time signals

In a digital feedback control system

the **digital controller**, at each sampling time kT, computes the control input u(kT) using the sampled value of the tracking error e(kT)

Since both u(kT) and e(kT) are **discrete-time signals**

→ the digital controller is a **discrete-time dynamic system**

In the following, the simplified notation f(k) will be used instead of f(kT)

Automatic Control – M. Canale

AC L19 14

Discrete-time signals: examples

• Unit impulse sequence:

$$\delta(\mathbf{k}) = \begin{cases} 0 & \mathbf{k} \neq 0 \\ 1 & \mathbf{k} = 0 \end{cases}$$

• Unit step sequence:

$$\varepsilon(\mathbf{k}) = \begin{cases} 0 & \mathbf{k} < 0 \\ 1 & \mathbf{k} \ge 0 \end{cases}$$

• "Geometric" sequence:

Automatic Control – M. Canale

$$e^{aTk} = \alpha^k, |\alpha| < 1$$

$$e^{aT} = \alpha$$

Introduction

Discrete time dynamical systems are used to describe:

- Phenomena whose events are defined (observed) in discrete time instants only (e.g. once a year, once a day, once a second, ...) like, e.g., social end economic studies
- The sampling of continuous time signals

A simple example: bank account

Let x(k) be the capital stored in the account at the generic year k

Lat u(k) be the net paid up at the generic year k

Let $\eta > 0$ be the simple year interest

The capital increment at year k+1 is given by: $x(k+1) = (1+\eta)x(k) + u(k)$

Automatic Control – M. Canale

AC_L19 17

Discrete time linear dynamic systems

If both $f(\cdot)$ and $g(\cdot)$ are linear functions in both the arguments x(k) and u(k), the system becomes **linear**

$$x(k+1) = A(k)x(k) + B(k)u(k)$$

$$y(k) = C(k)x(k) + D(k)u(k)$$

$$A(k) \in \mathbb{R}^{n,n} \quad B(k) \in \mathbb{R}^{n,p} \quad C(k) \in \mathbb{R}^{q,n} \quad D(k) \in \mathbb{R}^{q,p}$$

Moreover, if matrices $A(\cdot)$, $B(\cdot)$, $C(\cdot)$ and $D(\cdot)$ do not depend on time, the system is **linear time invariant**

$$x(k+1) = Ax(k) + Bu(k)$$

$$y(k) = Cx(k) + Du(k)$$

$$A \in \mathbb{R}^{n,n} \quad B \in \mathbb{R}^{n,p} \quad C \in \mathbb{R}^{q,n} \quad D \in \mathbb{R}^{q,p}$$

Discrete time dynamical systems

A finite dimensional, discrete time ($k \in \mathbb{Z}^+$), dynamical system can be described through a state space representation made up by:

- a system of nonlinear finite difference equations
- a static output equation

$$\begin{cases} x(k+1) = f(k, x(k), u(k)) \rightarrow \text{state equation} \\ y(k) = g(k, x(k), u(k)) \rightarrow \text{output equation} \\ x(k) \in \mathbb{R}^n, u(k) \in \mathbb{R}^p, y(k) \in \mathbb{R}^q \end{cases}$$

Automatic Control – M. Canale

Automatic Control – M. Canale

AC L19 18

Solution of discrete time LTI dynamic systems

Consider the state space description:

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases}$$
 given $u(k), x(0)$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

The solution can be compute using the time domain iterative relations:

$$x(k) = \underbrace{A^{k} x(0)}_{x_{zi}(k)} + \underbrace{\sum_{i=0}^{k-1} A^{k-i-1} Bu(i)}_{x_{zs}(k)} = x_{zi}(k) + x_{zs}(k)$$

$$y(k) = \underbrace{CA^{k} x(0)}_{y_{zi}(k)} + \underbrace{C\sum_{i=0}^{k-1} A^{k-i-1} Bu(i)}_{y_{zs}(k)} + Du(k) = y_{zi}(k) + y_{zs}(k)$$

The \mathcal{Z} -transform

Analysis and solution of discrete time dynamical systems can be effectively performed using the \mathbb{Z} -transform which, for a generic discrete time sequence f(kT), is defined as:

$$F(z) = \sum_{k=0}^{\infty} f(kT)z^{-k}$$

The \mathcal{Z} -transform is the discrete-time signals counterpart of the Laplace transform for analog signals

An exhaustive development of the \mathcal{Z} -transform theory (e.g. existence, convergence, uniqueness,... properties) is outside the scopes of an Automatic Control course

Thus, basic properties of the \mathcal{Z} -transform only will be introduced

Automatic Control – M. Canale

AC_L19 21

Some Z-transform pairs

f(k)	F(z)
a^k	$\frac{Z}{Z-a}$
$\binom{k}{\ell}a^{k-\ell}$, $\ell>0$	$\frac{Z}{\left(Z-a\right)^{\ell+1}}$
$\sin(gk), g \in \mathbb{R}$	$\frac{z\sin(\vartheta)}{z^2-2\cos(\vartheta)z+1}$
$\cos(\vartheta k), \vartheta \in \mathbb{R}$	$\frac{z(z-\cos(\theta))}{z^2-2\cos(\theta)z+1}$
A^k , $A \in \mathbb{R}^{n,n}$	$Z(ZI-A)^{-1}$

\mathcal{Z} -transform properties

	Theorem	Name
1.	$z\{af(t)\} = aF(z)$	Linearity theorem
2.	$z\{f_1(t) + f_2(t)\} = F_1(z) + F_2(z)$	Linearity theorem
3.	$z\{e^{-aT}f(t)\} = F(e^{aT}z)$	Complex differentiation
4.	$z\{f(t-nT)\} = z^{-n}F(z)$	Real translation
5.	$z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$	Complex differentiation
6.	$f(0) = \lim_{z \to \infty} F(z)$	Initial value theorem
7.	$f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$	Final value theorem

Note: kT may be substituted for t in the table.

Automatic Control – M. Canale

AC_L19 22

AC L19 24

Z-domain solution of discrete time LTI systems

Considering the \mathcal{Z} -transform of the state space description:

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) & \mathcal{Z} \\ y(k) = Cx(k) + Du(k) & \mathcal{Z} \end{cases} \begin{cases} zX(z) - zx(0) = AX(z) + BU(z) \\ Y(z) = CX(z) + DU(z) \end{cases}$$

we obtain:

$$X(z) = \underbrace{z(zI - A)^{-1} X(0)}_{X_{zi}(z)} + \underbrace{(zI - A)^{-1} BU(z)}_{X_{zz}(z)} = X_{zi}(z) + X_{zz}(z)$$

$$Y(z) = \underbrace{C z(zI - A)^{-1} x(0)}_{Y_{zi}(z)} + \underbrace{\left[C(zI - A)^{-1} B + D\right]U(z)}_{Y_{zs}(z)} = Y_{zi}(z) + Y_{zs}(z)$$

$$H(z) = C(zI - A)^{-1}B + D \rightarrow$$
 transfer function

Z-domain solution of discrete time LTI systems

All the \mathcal{Z} -transform expressions of the solution of discrete time LTI system are made up by real rational functions

The inverse \mathcal{Z} -transform can thus be performed by suitably using the PFE procedure:

$$F(z) = \frac{z}{(z-0.5)(z-0.4)} = \frac{5}{z-0.5} - \frac{4}{z-0.4}$$

$$\mathcal{Z}^{-1}\left\{\frac{5}{z-0.5}\right\} = ??$$

$$\mathcal{Z}^{-1}\left\{\frac{-4}{z-0.4}\right\} = ??$$

Automatic Control – M. Canale

AC L19 25

\mathcal{Z} -domain solution of discrete time LTI systems

Inverse $\ensuremath{\mathcal{Z}}$ -transform, in the presence of a couple of complex conjugate roots

Compute the PFE as

$$F(z) = \frac{Rz}{z - \lambda} + \frac{R^*z}{z - \lambda^*}, \lambda = \sigma + j\omega = v e^{j\theta}$$

then:

$$f(k) = \mathcal{Z}^{-1}\left\{\frac{Rz}{z-\lambda} + \frac{R^*z}{z-\lambda^*}\right\} = 2 |R| v^k \cos(\theta k + \angle R)$$

Z-domain solution of discrete time LTI systems

In order to apply the PFE procedure to compute the inverse \mathcal{Z} -transform, a preliminary step is needed:

$$\tilde{F}(z) = \frac{z}{(z - 0.5)(z - 0.4)}$$

$$\tilde{F}(z) = \frac{F(z)}{z} = \frac{1}{(z - 0.5)(z - 0.4)} = \frac{10}{z - 0.5} - \frac{10}{z - 0.4}$$

$$F(z) = z \cdot \tilde{F}(z) = \frac{10z}{z - 0.5} - \frac{10z}{z - 0.4}$$

$$f(k) = \mathcal{Z}^{-1}\left\{F(z)\right\} = \mathcal{Z}^{-1}\left\{\frac{10z}{z - 0.5} - \frac{10z}{z - 0.4}\right\} = \left(10 \cdot 0.5^{k} - 10 \cdot 0.4^{k}\right)\varepsilon(k)$$

Automatic Control – M. Canale

AC L19 26

\mathcal{Z} -domain solution of discrete time LTI systems

Example:

$$x(k+1) = \begin{bmatrix} 3 & 0 \\ -3.5 & -0.5 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(k)$$
 Compute $x_{zi}(k)$ and $x(k)$ when:
$$y(k) = \begin{bmatrix} 1 & -1 \end{bmatrix} x(k)$$

$$u(k) = 2\varepsilon(k), x(0) = \begin{bmatrix} 1 & -2 \end{bmatrix}^T$$

$$X(z) = z(zI - A)^{-1} X(0) + (zI - A)^{-1} BU(z)$$

$$(zI - A)^{-1} = \begin{bmatrix} z & 0 \\ 0 & z \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ -3.5 & -0.5 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{z - 3} & 0 \\ \frac{-3.5}{(z - 3)(z + 0.5)} & \frac{1}{z + 0.5} \end{bmatrix}$$

\mathcal{Z} -domain solution of discrete time LTI systems

$$X(z) = z(zI - A)^{-1} X(0) + (zI - A)^{-1} BU(z)$$

$$X_{z}(z) = (zI - A)^{-1}x(0) = z \begin{bmatrix} \frac{1}{z-3} & 0\\ -3.5 & 1\\ (z-3)(z+0.5) & \frac{1}{z+0.5} \end{bmatrix} \begin{bmatrix} 1\\ -2 \end{bmatrix} = z \begin{bmatrix} \frac{1}{z-3}\\ -2z+2.5\\ (z-3)(z+0.5) \end{bmatrix}$$

$$X_{z}(k) = \begin{bmatrix} X_1(k) \\ X_2(k) \end{bmatrix} = \begin{bmatrix} 3^k \\ -3^k - (-0.5)^k \end{bmatrix} \varepsilon(k)$$

DiCTAr – M. Canale AC_L19 29

Discrete-time LTI systems transfer function

The transfer function of a discrete time LTI system is expressed as a real rational function of the form:

$$H(z) = \frac{Y(z)}{U(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z + b_0}{z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \dots + a_0}, m \le n$$

Let's divide both numerator and denominator by z^n :

$$H(z) = \frac{b_m z^{m-n} + b_{m-1} z^{m-n-1} + \dots + b_0 z^{-n}}{1 + a_{n-1} z^{-1} + a_{n-2} z^{-2} + \dots + a_0 z^{-n}}$$

The \mathcal{Z} -transform of Y(z) is given by

$$Y(z) = -a_{n-1}z^{-1}Y(z) - a_{n-2}z^{-2}Y(z) - \dots - a_0z^{-n}Y(z) + b_mz^{m-n}U(z) + b_{m-1}z^{m-1-n}U(z) + \dots + b_0z^{-n}U(z)$$

Z-domain solution of discrete time LTI systems

$$X_{zs}(z) = (zI - A)^{-1}BU(z) = \begin{bmatrix} \frac{1}{z - 3} & 0\\ -3.5 & \frac{1}{z + 0.5} \end{bmatrix} \begin{bmatrix} 1\\ 2 \end{bmatrix} \frac{2z}{z - 1} = z \begin{bmatrix} \frac{2}{(z - 3)(z - 1)} \\ 4z - 19 \\ (z - 3)(z + 0.5)(z - 1) \end{bmatrix}$$

$$X_{zs}(k) = \begin{bmatrix} X_1(k) \\ X_2(k) \end{bmatrix} = \begin{bmatrix} 3^k - 1 \\ -3^k - 4 \cdot (-0.5)^k + 5 \end{bmatrix} \varepsilon(k)$$

$$x(k) = \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} 2 \cdot 3^k - 1 \\ -2 \cdot 3^k - 5 \cdot (-0.5)^k + 5 \end{bmatrix} \varepsilon(k)$$

DiCTAr – M. Canale AC_L19 30

Discrete-time LTI systems transfer function

$$Y(z) = -a_{n-1}z^{-1}Y(z) - a_{n-2}z^{-2}Y(z) - \dots - a_0z^{-n}Y(z) + b_mz^{m-n}U(z) + b_{m-1}z^{m-1-n}U(z) + \dots + b_0z^{-n}U(z)$$

Recalling that

$$\mathcal{Z}^{-1}\{Z^{-\ell}F(Z)\}=f(k-\ell)$$

we can express the current output y(k) by means of the finite difference equation

$$y(k) = -a_{n-1}y(k-1) - a_{n-2}y(k-2) - \dots - a_0y(k-n) + b_mu(k-n+m) + b_{m-1}u(k-n+m-1) + \dots + b_0u(k-n)$$

The current output y(k) of a discrete time LTI system can be recursively computed through the values of the input and output signals at the previous sampling instants.

Example

Consider a discrete-time LTI system described by a difference equation:

$$y(k) = -a_1y(k-1) - a_0y(k-2) + b_1u(k) + b_0u(k-1)$$

Applying the \mathcal{Z} -transform:

$$Y(z) = (-a_1 z^{-1} - a_0 z^{-2})Y(z) + (b_1 + b_0 z^{-1})U(z)$$

we obtain the system transfer function:

$$H(z) = \frac{Y(z)}{U(z)} = \frac{b_1 + b_0 z^{-1}}{1 + a_1 z^{-1} + a_0 z^{-2}}$$

Automatic Control – M. Canale

AC L19 33

Natural modes and modal analysis of discrete time LTI systems

Discrete time transfer functions

Definition of a discrete-time transfer function with MatLab:

$$H(z) = \frac{N(z)}{D(z)} = \frac{1}{z^2 - 1.7 z + 0.72} = \frac{1}{(z - 0.8)(z - 0.9)}$$

- >> T=1
- >> z=tf('z',T)
- $>> H=1/(z^2 1.7*z + 0.72)$

Automatic Control – M. Canale

AC L19 34

Natural modes of discrete time LTI systems

The natural modes of the LTI system

$$X(k+1) = AX(k) + BU(k)$$

associated with the i^{th} distinct eigenvalue λ_i (i=1,...,r) with minimal polynomial multiplicity μ'_i , are given by the following functions $m_{ij}(k)$ (i=1,...,r, j=1,..., μ'_i)

$$m_{i,0}(k) = \lambda_i^k, m_{i,1}(k) = k \lambda_i^{k-1}, \dots, m_{i,\mu',k}(k) = \binom{k}{\mu'_i - 1} \lambda_i^{k-\mu'_i + 1}$$

$$\binom{k}{\mu'_{i}-1}\lambda_{i}^{k-\mu'_{i}+1} = \frac{k(k-1)\cdots(k-\mu'-2)}{(\mu_{i}'-1)!}\lambda_{i}^{k-\mu'_{i}+1}$$

Natural modes of discrete time LTI systems

The natural modes of the LTI system

$$X(k+1) = AX(k) + BU(k)$$

associated with a couple of complex conjugate eigenvalues of the form $\lambda = \sigma_0 \pm j\omega_0 = \nu e^{\pm j\theta}$ having minimal polynomialmultiplicity μ' , are given by the following functions $m_j(k)$ $(j=1,...,\mu')$

$$m_0(k) = \begin{cases} v^k \cos(\theta k), m_1(k) = \begin{cases} k v^{k-1} \cos(\theta (k-1)), \\ k v^{k-1} \sin(\theta (k-1)), \end{cases}$$

...,
$$m_{\mu'}(k) = \begin{cases} \binom{k}{\mu'-1} v^{k-\mu'+1} \cos(\theta(k-\mu'+1)) \\ \binom{k}{\mu'-1} v^{k-\mu'+1} \sin(\theta(k-\mu'+1)) \end{cases}$$

Automatic Control – M. Canale

AC_L19 37

Modal analysis of discrete time LTI systems

The natural modes of the form $\mathbf{v}^k\cos(\theta k)$, $\mathbf{v}^k\sin(\theta k)$, associated with the eigenvalue $\lambda = \mathbf{\sigma} \pm \mathbf{j} \mathbf{\omega} = \mathbf{v} e^{\pm \mathbf{j} \theta} \in \mathbb{C}$ having unitary minimal polynomial multiplicity are:

- **Geometrically convergent** if $|\lambda| < \nu < 1$ (Example $0.5^k \sin(k)$)
- Bounded (oscillating) if $|\lambda| = v = 1$, $Arg(\lambda) = \theta \neq 0$ (Example sin(5k))
- **Geometrically divergent** if $|\lambda| = v > 1$ (Example 1.5 $^k \sin(k)$)

Modal analysis of discrete time LTI systems

The natural mode λ^k , associated with the eigenvalue $\lambda \in \mathbb{R}$ having unitary minimal polynomial multiplicity is:

- Geometrically convergent if $|\lambda| < 1$ (Example: 0.5^k , $(-0.5)^k$)
- Bounded if $|\lambda| = 1$ (Example: $1^k = 1$, $(-1)^k$)
- Geometrically divergent if $|\lambda| > 1$ (Example 2^k , (-2) *)

Note that, if $\mathbb{R}e(\lambda) < 0$, the corresponding mode gives rise to a samples sequence (**alternate mode**) whose sign changes at every sample time

Automatic Control – M. Canale

Automatic Control – M. Canale

AC L19 38

Modal analysis of discrete time LTI systems

Modal analysis of discrete time LTI systems

Automatic Control – M. Canale

AC_L19 41

Modal analysis of discrete time LTI systems

The μ' natural modes of the form $k(k-1)..(k-\mu'-2)\lambda^{k-\mu'+1}$, ..., $k\lambda^{k-1}$, associated with the eigenvalue $\lambda \in \mathbb{R}$ having unitary minimal polynomial multiplicity μ' are:

- Geometrically convergent if $|\lambda| < 1$ (Example: $k \cdot 0.5^{k-1}$, $k \cdot (-0.5)^{k-1}$)
- Polynomially divergent if $|\lambda| = 1$ (Example: $k1^{k-1} = k$)
- Geometrically divergent if $|\lambda| > 1$ (Examples: $k \cdot 1.5^{k-1}$, $k \cdot (-1.5)^{k-1}$)

Note that, if $\mathbb{R}e(\lambda) < 0$, the corresponding mode gives rise to a samples sequence (**alternate mode**) whose sign changes at every sample time

Modal analysis of discrete time LTI systems

Automatic Control – M. Canale

AC L19 42

Modal analysis of discrete time LTI systems

The natural modes of the form

$$\binom{k}{\mu'-1}v^{k-\mu'+1}\cos(\theta(k-\mu'+1)), \binom{k}{\mu'-1}v^{k-\mu'+1}\sin(\theta(k-\mu'+1))$$

associated with the eigenvalue $\lambda = \sigma \pm j\omega = ve^{\pm j\theta} \in \mathbb{C}$ having minimal polynomial multiplicity μ' are:

- Geometrically convergent if $|\lambda| = v < 1$ (Example $k \cdot 0.5^{k-1} \sin(k-1)$)
- Polynomially divergent if $|\lambda| = v = 1$, $Arg(\lambda) = \theta \neq 0$ (Example: $k \sin(5(k-1))$)
- Geometrically divergent if $|\lambda| = v > 1$ (Example: $k \cdot 1.5^{k-1} \sin(k-1) \cdot 1.5^k \sin(k)$)

Modal analysis of discrete time LTI systems

Automatic Control – M. Canale

AC L19 45

Stability of discrete time dynamical systems

Modal analysis: synthetic resume

Denote with $\lambda_i(A)$, i = 1, ..., n the ith eigenvalue of matrix A then

- The natural mode associated with eigenvalue λ_i is **bounded** if: $|\lambda_i(A)| = 1$ and $\mu'(\lambda_i(A)) = 1$
- The natural mode associated with eigenvalue λ_j is **convergent** if: $|\lambda_j(A)| < 1$
- The natural mode associated with eigenvalue λ_i is **divergent** if: $|\lambda_i(A)| > 1$ OR $|\lambda_i(A)| = 1$ and $\mu'(\lambda_i(A)) > 1$

Automatic Control – M. Canale

AC L19 46

Internal stability of discrete time LTI systems

Denote with $\lambda_i(A)$, i = 1, ..., n the ith eigenvalue of matrix A then

Result (Internal stability of discrete time LTI systems)

- A discrete time LTI system is **internally stable** if and only if: $|\lambda_j(A)| \le 1$, j = 1, ..., n and $\mu'(\lambda_j(A)) = 1$ for all the eigenvalues such that $|\lambda_j(A)| = 1$ ($\mu'(\cdot)$ is the minimal polynomial multiplicity)
- A discrete time LTI system is **asymptotically stable** if and only if: $|\lambda_i(A)| < 1, i = 1, ..., n$
- A discrete time LTI system is **unstable** if and only if: $\exists i : |\lambda_j(A)| > 1 \text{ OR } |\lambda_i(A)| \le 1, i = 1, ..., n \text{ and } \mu'(\lambda_j(A)) > 1 \text{ for some } j \text{ such that } |\lambda_j(A)| = 1 (\mu'(\cdot)) \text{ is the minimal polynomial multiplicity}$

DiCTAr – M. Canale

Automatic Control – M. Canale

AC_L19 48

BIBO stability of discrete time LTI systems

Result (BIBO stability of LTI system)

A discrete-time LTI system is **BIBO** stable if and only if all the poles of its transfer function H(z) lie strictly inside the unit circle:

$$|p_i| < 1$$
, $i = 1,...,n$, where p_i are the poles of $H(z)$

Automatic Control – M. Canale

AC_L19 49

Relationship between \mathcal{L} -transform and \mathcal{Z} -transform

$$f^*(t) = \sum_{k=0}^{\infty} f(kT) \delta(t - kT)$$

the Laplace of $f^*(t)$ is given by:

$$F^*(s) = \sum_{k=0}^{\infty} f(kT)e^{-kTs} = \sum_{k=0}^{\infty} f(kT)(e^{Ts})^{-k}$$

Let $z = e^{Ts}$, then:

$$F^*(s) = F(z)|_{z=e^{Ts}}$$

moreover: $z = e^{Ts} \Rightarrow s = 1/T \log(z)$

$$|F^*(s)|_{s=1/T\log(z)} = \sum_{k=0}^{\infty} f(kT)(e^{Ts})^{-k} = \sum_{k=0}^{\infty} f(kT)z^{-k} = F(z)$$

The mapping $z = e^{Ts}$ is referred to as the **sampling transformation**

Relationship between \mathcal{L} -transform and \mathcal{Z} -transform

Consider a signal f(t) ideally sampled with uniform sampling period T

the sampled signal $f^*(t)$ can be represented as a continuous time signal as:

$$f^*(t) = \sum_{k=0}^{\infty} f(kT) \delta(t - kT)$$

Automatic Control – M. Canale

AC L19 50

\mathcal{Z} -transform: mapping s-plane \rightarrow z-plane

Axes origin: $s = 0 \rightarrow z = e^{sT} = 1$

\mathbb{Z} -transform: mapping s-plane \rightarrow z-plane

Imaginary axis:
$$s = j\omega \rightarrow z = e^{j\omega T} = cos(\omega T) + jsin(\omega T)$$

Automatic Control – M. Canale

AC_L19 53

\mathbb{Z} -transform: mapping s-plane \rightarrow z-plane

Left half-plane:

$$s = \sigma + j\omega$$
, $\sigma < 0$ \rightarrow $z = re^{j\omega T} = r\cos(\omega T) + jr\sin(\omega T)$, $r = e^{\sigma T} < 1$

Automatic Control – M. Canale

AC_L19 55

\mathbb{Z} -transform: mapping s-plane \rightarrow z-plane

Negative real axis: $s = \sigma < 0 \rightarrow 0 < z = e^{\sigma T} < 1$

Automatic Control – M. Canale

AC L19 54