PAT solutions for pharmaceutical industry

Alexey L. Pomerantsev

Russian chemometric society

Content

- Introduction
- Case study 1: Incoming Inspection
- Case study 2: Process Control
- Case study 3: Outcoming Inspection

Process Analytical Technology

PAT is a systemanufacturing processing) of raw and in-proof of ensuring final

Guidance for Industry
PAT — A Framework for
Innovative Pharmaceutical
Development, Manufacturing,
and Quality Assurance

and controlling its (i.e., during ce attributes of s, with the goal

Guidance for Indust Development, Manu Pharmaceutical CG

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM) Office of Regulatory Affairs (ORA)

> Pharmaceutical CGMPs September 2004

Pharmaceutical

PAT Instruments

Near Infra Red spectroscopy

Generic PAT Solutions

Substance

Process

Product

Incoming inspection

Process control

Outcoming inspection

Case study 1: Incoming Inspection

To design a quick and simple routine procedure for recognition the perfect raw pharmaceutical substances directly in a warehouse

The goal

Material: Taurine, a non-essential sulfur-

containing amino acid

Data: NIR spectra measured in

4100 -10000 cm⁻¹ region,

resolution 2 cm⁻¹

Substance: in the closed PE bags,

82 drums measured 3 times,

totally: 246 spectra

Spectra

Explorative analysis

The problem:

60 points of 246 are outliers.

Are they fakes?

Reason of failure

Probe position effect

Two PCA models

Model 1

Dots are the training samples (Group 1) Squares are the test samples (Group 2)

Model 2

Squares are the training samples (Group 1)

Dots are the test samples (Group 2)

Routine testing procedure

Case study conclusions

Probing robust method

• Qualitative trihotomy analysis: yes / no / try again

• 100 % inspection (≤ 3 trials)

Details

ANALYTICA CHIMICA ACTA 642 (2009) 222-227

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/aca

Quality control of packed raw materials in pharmaceutical industry

O.Ye. Rodionova a,*, Ya.V. Sokovikovb, A.L. Pomerantseva

^a Semenov Institute of Chemical Physics, Kosygin 4, 119991 Moscow, Russia

^b SchelTec AG, Kosygin 19, 119334 Moscow, Russia

Case study 2: Process Control

To predict the drug release profiles during a running pellet coating process from the in-line near infrared (NIR) measurements

Objects: Pellets

Fluid bed coating

Experiment

NIR Spectra

Dissolution Profiles

t = 105

Our goal

Data overview

		Samples								
		1	2	3	4	5	6	7	8	9
Batches	W1	25	44	62	82	99	117	136	154	171
	W2	22	37	52	67	81	98	110	124	142
	W3	18	30	41	52	62	73	85	97	114
	W4	9	ra	002	35 ⁶⁷	4 i m	98		29	137
	W5	18	1 9	U G		LII ₆ +			89	105
	W6	39	70	98	127	156	188	215	246	260
	W7	19	34	48	64	79	95	111	125	140
	Y1	21	40	59	77	96	115	133	152	168
	Y2	20	30	43	55	67	82	92	105	121
	Y3	24	46	70	89	111	133	155	176	191
	Y4	26	50	74	98	122	150	171	194	209
	Y5	18	31	42	52	63	73	83	94	110
	Y6	19	34	49	64	79	94	109	124	140

Conventional approach

PLS2 results

10.04.2011

ICOPIC 2011

Kinetic approach

Autocatalysis

$$\varphi(t, m, k) = 100k \frac{\exp[(m+k)t] - 1}{m + k \exp[(m+k)t]}$$

$$A + B \xrightarrow{m} 2B$$

$$A \xrightarrow{k} B$$

$$[A] + [B] = 100$$

$$[B](0) = 0$$

$$\varphi = [B]$$

Fitter software

Parameter m is common within a batch

Parameter mand the layer grade

Parameter k and the layer thickness

10.04.2011

Intermediate conclusions

parameter *m* reflects the material grade

parameter *k* depends on the layer thickness

parameter *k* keeps track of batch variations

Prediction of k: NLR - NIR (White subset)

Prediction of k: NLR - NIR (Yellow subset)

Prediction technique

Test set validation: W2 and Y5 prediction

Conclusions

• PAT solution for the in-line release profile prediction

• novel "curve to curve" calibration approach via NLR

• autocatalytic model for the drug release

Details

IN-LINE PREDICTION OF DRUG RELEASE PROFILE FOR pH-SENSITIVE COATED PELLETS

<u>Alexey L. Pomerantsev</u>^{1,2}, Oxana Ye. Rodionova¹, Michael Melichar³, Anthony J. Wigmore³ and Andrey Bogomolov⁴

Case study 3: Outcoming Inspection

To design a quick and simple routine procedure for the in-line inspection of the finished pharmaceutical products

Two years ago: April 2009

Soft remedy for treatment of the heart and blood vessel diseases

Strong drug applied for the muscle relaxation in anesthesia and for intensive care

4% aqueous solution of dexamethasone (glucocorticosteroid remedy)

Genuine objects

batch G1: 15 ampoules

batch G2: 15 ampoules

Counterfeit objects

batch F2: 15 ampoules

ICOPIC 2011

NIR layout

Bomem 160 FT NIR

spectral range 5500 - 10000 cm⁻¹

resolution 8 cm⁻¹

8 mm vial holder

T= 30°C

NIR spectra

PCA analysis

SIMCA classification

Training set is G1

Training set is G1+G2

Wet chemistry analysis

HPLC- DAD Chromatograms λ=254 nm

Peak areas of the common impurities

genuine sample G1 is used as the reference (HPLC-DAD-UV at λ =254 nm)

Case study conclusions

• We do not check composition, e.g. the API concentration

• Qualitative analysis: yes / no

• 100 % inspection

Details

Anal Bioanal Chem (2010) 397:1927–1935 DOI 10.1007/s00216-010-3711-y

ORIGINAL PAPER

Noninvasive detection of counterfeited ampoules of dexamethasone using NIR with confirmation by HPLC-DAD-MS and CE-UV methods

Oxana Rodionova • Alexey Pomerantsev • Lars Houmøller • Alexey Shpak • Oleg Shpigun

Collaborators

Oxana Rodionova ICP RAS Russia

Lars
Houmøller
Arla Foods
Denmark

Oleg Shpigun MSU Russia

Andrey Bogomolov J&M Germany

Thanks!

