

designwest

center of the engineering universe

Sensors in Design 2012: Smart Sensors Product Roadmaps

esc

Integration Challenges in MEMS Smart Sensor Fabrication

Joseph Doll Stanford University

Outline

- Intro to CMOS and MEMS fabrication
- Integration and signal transduction options
- Product examples

Process overviews

Integration options

Monolithic integration

Benefits

- Performance (e.g. capacitive sensors)
- Package size

Challenges

- Planarity
- Processing temperature (< 450C)
- Contamination and limited material options
- Complexity (development time, mask costs, optimization)
- Fabrication options (pre, intra, post)

Pre-CMOS

Intra-CMOS

Post-CMOS

ADXL202 (1999)

ADXL345 (2009)

Galaxy Nexus Gyroscope (Invensense)

a designwest summit

Hybrid integration

<u>iPhone 4 Gyroscope</u> (STMicroelectronics)

Images courtesy of Chipworks

Transduction fundamentals

- Sensor resolution (sensitivity + noise)
- Noise sources

- Amplifier vs. sensor noise
- Temperature stability and signal drift
- Other issues: power dissipation, linearity, bandwidth

Sensors In design

Piezoresistive

Piezoresistive

<u>Issues</u>

- 1) Long-term stability (temp and noise)
- 2) Power dissipation design tradeoffs
- 3) Actuation for self-test

Capacitive

Image courtesy of Femtotools

<u>Issues</u>

- 1) Parasitics
- 2) Dynamic range (snap-in)
- 3) Motional impedance

🕲 sensors ın design

a designwest summit

Piezoelectric

Example: AIN on Ti

<u>Issues</u>

- 1) Charge vs. voltage readout
- 2) DC sensitivity
- B) Film quality and stress
- 4) Metal electrode compatibility

Pressure sensors

Capacitive, monolithic (Infineon)

Piezoresistive, hybrid (Bosch)

Accelerometers

Piezoresistive, screen printed (Harvard)

Capacitive, hybrid (STMicroelectronics)

Microphones

Capacitive, hybrid (Knowles)

Capacitive, hybrid (Infineon)

Microphones

Capacitive, monolithic (Akustica)

Conclusions

- CMOS and MEMS can be integrated at the board, package or die levels. Hybrid (package level) integration is the most common approach.
- Capacitive transduction is dominant, but piezoresistive and piezoelectric transduction each have merits and are widely used. All can operate near the thermomechanical noise floor.
- Approaches vary widely. Most packaging/transduction combinations are in commercial production.

Thank you!