CHAPTER 6

LINES AND ANGLES

(A) Main Concepts and Results

Complementary angles, Supplementary angles, Adjacent angles, Linear pair, Vertically opposite angles.

- If a ray stands on a line, then the adjacent angles so formed are supplementary and its converse,
- If two lines intersect, then vertically opposite angles are equal,
- If a transversal intersects two parallel lines, then
 - (i) corresponding angles are equal and conversely,
 - (ii) alternate interior angles are equal and conversely,
 - (iii) interior angles on the same side of the transversal are supplementary and conversely,
- Lines parallel to the same line are parallel to each other,
- Sum of the angles of a triangle is 180°,
- An exterior angle of a triangle is equal to the sum of the corresponding two interior opposite angles.

(B) Multiple Choice Questions

Write the correct answer:

Sample Question 1: If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio 2:3, then the greater of the two angles is

- (A) 54°
- (B) 108°
- (C) 120°
- (D) 136°

Solution: Answer (B)

EXERCISE 6.1

Write the correct answer in each of the following:

- 1. In Fig. 6.1, if AB \parallel CD \parallel EF, PQ \parallel RS, \angle RQD = 25° and $\angle CQP = 60^{\circ}$, then $\angle QRS$ is equal to
 - (A) 85°
- (B) 135°
- 145° (C)
- (D) 110°
- 2. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is

- (B) an obtuse triangle
- (C) an equilateral triangle
- (D) a right triangle

Fig. 6.1

- 3. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is
- (B) $52\frac{1}{2}^{\circ}$ (C) $72\frac{1}{2}^{\circ}$
- (D) 75°
- **4.** The angles of a triangle are in the ratio 5:3:7. The triangle is
 - (A) an acute angled triangle
- (B) an obtuse angled triangle

(C) a right triangle

- (D) an isosceles triangle
- 5. If one of the angles of a triangle is 130°, then the angle between the bisectors of the other two angles can be
 - 50° (A)
- 65° (B)
- 145° (C)
- (D) 155°

- **6.** In Fig. 6.2, POQ is a line. The value of x is
 - (A) 20°
- 25° (B)
- 30° (C)
- 35° (D)

7. In Fig. 6.3, if OPIIRS, \angle OPQ = 110° and \angle QRS = 130°, then \angle PQR is equal to

(C)

P 130°

Fig. 6.3

8. Angles of a triangle are in the ratio 2 : 4 : 3. The smallest angle of the triangle is

(A) 60°

40°

(A)

(B) 40°

50°

(B)

(C) 80°

60°

(D) 20°

70°

(D)

(C) Short Answer Questions with Reasoning

Sample Question 1:

Let OA, OB, OC and OD are rays in the anticlockwise direction such that \angle AOB = \angle COD = 100°, \angle BOC = 82° and \angle AOD = 78°. Is it true to say that AOC and BOD are lines?

Solution : AOC is not a line, because \angle AOB + \angle COB = 100° + 82° = 182° , which is not equal to 180° . Similarly, BOD is also not a line.

Sample Question 2: A transversal intersects two lines in such a way that the two interior angles on the same side of the transversal are equal. Will the two lines always be parallel? Give reason for your answer.

Solution : In general, the two lines will not be parallel, because the sum of the two equal angles will not always be 180°. Lines will be parallel when each equal angle is equal to 90°.

EXERCISE 6.2

- 1. For what value of x + y in Fig. 6.4 will ABC be a line? Justify your answer.
- **2.** Can a triangle have all angles less than 60°? Give reason for your answer.
- **3.** Can a triangle have two obtuse angles? Give reason for your answer.
- **4.** How many triangles can be drawn having its angles as 45°, 64° and 72°? Give reason for your answer.

Fig. 6.4

LINES AND ANGLES 57

5. How many triangles can be drawn having its angles as 53°, 64° and 63°? Give reason for your answer.

- **6.** In Fig. 6.5, find the value of *x* for which the lines *l* and *m* are parallel.
- 7. Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.
- **8.** If one of the angles formed by two intersecting lines is a right angle, what can you say about the other three angles? Give reason for your answer.
- **9.** In Fig.6.6, which of the two lines are parallel and why?

10. Two lines *l* and *m* are perpendicular to the same line *n*. Are *l* and *m* perpendicular to each other? Give reason for your answer.

(D) Short Answer Questions

Sample Question 1 : In Fig. 6.7, AB, CD and EF are three lines concurrent at O. Find the value of *y*.

Solution:
$$\angle AOE = \angle BOF = 5y$$
 (Vertically opposite angles)

Also,

$$\angle$$
COE + \angle AOE + \angle AOD = 180°
So, $2y + 5y + 2y = 180°$
or, $9y = 180°$, which gives $y = 20°$.

Fig. 6.5

Sample Question 2 : In Fig.6.8, x = y and a = b.

Prove that $l \parallel n$.

Solution: x = y (Given)

Therefore, $l \parallel m$ (Corresponding angles) (1)

Also, a = b (Given)

Therefore, $n \parallel m$ (Corresponding angles) (2)

From (1) and (2), $l \parallel n$ (Lines parallel to the same line)

EXERCISE 6.3

1. In Fig. 6.9, OD is the bisector of $\angle AOC$, OE is the bisector of $\angle BOC$ and OD $\perp OE$. Show that the points A, O and B are collinear.

2. In Fig. 6.10, $\angle 1 = 60^{\circ}$ and $\angle 6 = 120^{\circ}$. Show that the lines m and n are parallel.

Fig. 6.10

3. AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines l and m (Fig. 6.11). Show that AP \parallel BQ.

Fig. 6.11

LINES AND ANGLES 59

4. If in Fig. 6.11, bisectors AP and BQ of the alternate interior angles are parallel, then show that $l \parallel m$.

5. In Fig. 6.12, BA || ED and BC || EF. Show that \angle ABC = \angle DEF [Hint: Produce DE to intersect BC at P (say)].

Fig. 6.12

6. In Fig. 6.13, BA || ED and BC || EF. Show that \angle ABC + \angle DEF = 180°

Fig. 6.13

7. In Fig. 6.14, DE \parallel QR and AP and BP are bisectors of \angle EAB and \angle RBA, respectively. Find ∠APB.

8. The angles of a triangle are in the ratio 2 : 3 : 4. Find the angles of the triangle.

- **9.** A triangle ABC is right angled at A. L is a point on BC such that $AL \perp BC$. Prove that $\angle BAL = \angle ACB$.
- **10.** Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.

(E) Long Answer Questions

Sample Question 1: In Fig. 6.15, m and n are two plane mirrors perpendicular to each other. Show that incident ray CA is parallel to reflected ray BD.

Fig. 6.15

Solution: Let normals at A and B meet at P.

As mirrors are perpendicular to each other, therefore, BP || OA and AP || OB.

So, BP
$$\perp$$
 PA, i.e., \angle BPA = 90°
Therefore, $\angle 3 + \angle 2 = 90^\circ$ (Angle sum property)

Also,
$$\angle 1 = \angle 2$$
 and $\angle 4 = \angle 3$ (Angle of incidence = Angle of reflection)

(1)

Therefore,
$$\angle 1 + \angle 4 = 90^{\circ}$$
 [From (1)] (2)

Adding (1) and (2), we have

i.e.,
$$\angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$$

$$\angle CAB + \angle DBA = 180^{\circ}$$
Hence,
$$CA \parallel BD$$

LINES AND ANGLES 61

Sample Question 2: Prove that the sum of the three angles of a triangle is 180°.

Solution: See proof of Theorem 6.7 in Class IX Mathematics Textbook.

Sample Question 3: Bisectors of angles B and C of a triangle ABC intersect each other at the point O. Prove that $\angle BOC = 90^{\circ} +$

$$\frac{1}{2} \angle A$$
.

Solution: Let us draw the figure as shown in Fig. 6.16

$$\angle$$
A + \angle ABC + \angle ACB = 180°
(Angle sum property of a triangle)

Therefore,
$$\frac{1}{2} \angle A + \frac{1}{2} \angle ABC + \frac{1}{2} \angle ACB = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$$

i.e.,
$$\frac{1}{2} \angle A + \angle OBC + \angle OCB = 90^{\circ}$$
 (Since BO and CO are

bisectors of
$$\angle B$$
 and $\angle C$) (1)

But
$$\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$$
 (Angle sum property) (2)

Subtracting (1) from (2), we have

$$\angle BOC + \angle OBC + \angle OCB - \frac{1}{2} \angle A - \angle OBC - \angle OCB = 180^{\circ} - 90^{\circ}$$

i.e.,
$$\angle BOC = 90^{\circ} + \frac{1}{2} \angle A$$

EXERCISE 6.4

- 1. If two lines intersect, prove that the vertically opposite angles are equal.
- 2. Bisectors of interior $\angle B$ and exterior $\angle ACD$ of a $\triangle ABC$ intersect at the point T. Prove that

$$\angle$$
 BTC = $\frac{1}{2}$ \angle BAC.

3. A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.

4. Prove that through a given point, we can draw only one perpendicular to a given line

[Hint: Use proof by contradiction].

5. Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other.

[Hint: Use proof by contradiction].

- **6.** Prove that a triangle must have atleast two acute angles.
- 7. In Fig. 6.17, $\angle Q > \angle R$, PA is the bisector of $\angle QPR$ and PM $\perp QR$. Prove that

$$\angle APM = \frac{1}{2} (\angle Q - \angle R).$$

Fig. 6.17