Solving the Max-Cut Problem with Classical & Quantum Algorithms

Final Presentation - 08/28/2020

Max-Cut Problem & Antiferromagnetic Ising Model

Max-Cut Problem (NP-hard)

Objective: find cut that maximizes the total weight of edges in the cut

Antiferromagnetic Ising Model (Mother nature!)

- Atoms i and interaction strengths $-J_{ij}$, $J_{ij} < 0$
- Spins σ_i^z : (+1 + , -1 +)
- Spins tend to anti-align
- Interactions between anti-aligned spins $\sigma_i^z \neq \sigma_i^z$

 Ground state: configuration that minimizes energy (maximizes negative energy)

Different System Configurations

System structure

Disordered lattice

 Interaction shape & range (radius, R)

Step function $1 \cdot (d \leq R)$

Distance, r

Soft-core potential,

Random R[0,1]

System size

Classical Algorithm

Simulated Annealing

Simulated Annealing Algorithm Parameters:

Initial temperature T_0

Quantum Algorithm

Quantum Approximate Optimization Algorithm

(QAOA)

Classical optimization loop over angles $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$:

Quantum sub-routine:

sequence of length circuit depth α

Variational Quantum Eigensolver (VQE) minimizes total steps needed to reach a desired ground state fidelity

QAOA Algorithm Parameters:

- Circuit depth α
- Angles β , $\vec{\gamma}$

Unitary time evolution: $\hat{U}(\overrightarrow{\beta}, \overrightarrow{\gamma}) = e^{-i\hat{B}\beta_{(\alpha-1)}}e^{-i\hat{H}\gamma_{(\alpha-1)}}\dots e^{-i\hat{B}\beta_0}e^{-i\hat{H}\gamma_0}$

Ising Interaction Hamiltonian (acting on spins in z direction)

$$\hat{H}(\sigma) = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z$$

Reference Hamiltonian (transverse field in -x direction)

$$\hat{B}(\sigma) = -\sum_{i} \sigma_{i}^{\lambda}$$

Algorithm Evaluation Metric

• Evaluation metric: **minimize** total # of steps $M(T) \cdot T$ to reach desired ground state probability P_{st}

- Optimization parameters: M runs each for a time T
- What is T?
 - Simulated Annealing: number of iterations
 - QAOA: length of Hamiltonian sequence (less obvious)
- Key idea: willing to have multiple shorter runs to reach desired ground state probability more quickly

Sample Case: Simulated Annealing for All-to-all Random Interactions, N = 9

- Simulated Annealing
 - Evaluation metric: minimize $M(T) \cdot T$
- Compare with: brute force solution
 - Boltzmann distribution plotted using all states explored by brute force algorithm: -9.0 1

$$\frac{\sum_{i} E_{i} e^{-E_{i}/T}}{\sum_{i} e^{-E_{i}/T}}$$

Sample Case: QAOA for All-to-all Random Interactions, N = 9

- Variational Quantum Eigensolver
 - Evaluation metric: minimize $M(T) \cdot T$, where $T \in [1, 2\alpha]$
- Quantum Approximate Optimization Algorithm

Sample Case: Scaling with System Size in All-to-all Random Interactions, N = 9

Next Steps

- Solidify grounds for comparing classical & quantum algorithms
 - Common optimization: minimize $M(T) \cdot T$, i.e. number of trials x number of "steps" per trial what is T?
- Compare our findings for random all-to-all interactions with existing literature
- Simulate and compare classical & quantum algorithms for system configurations attainable in our experimental setup
- Run QAOA physically on our experiment!