Chap 4 of Sutton & Barto: Reinforcement Learning

トップエスイー勉強会

2019/09/03

担当: 田辺

復習: 記号など

- MDP (Malkov Decision Process)
 - S: 状態
 - ◆ A: 行動
 - \circ \mathcal{R} \subset \mathbb{R} : 報酬
 - \circ $p(s',r\mid s,a)$: ダイナミクス関数 (確率を返す)
- S_t, A_t, R_t (t は時刻 0, 1, ...):対応する確率変数
- $G_t:=\sum_{k=0}^{\infty}\gamma^kR_{t+k+1}$: 収益, γ : 割引因子
- ポリシー関数 $\pi(a \mid s)$ (確率を返す)
- 価値関数 $v_\pi(s) := \mathbb{E}_\pi[G_t \mid S_t = s]$
- ullet 行動価値関数 $q_\pi(s,a) := \mathbb{E}_\pi[G_t \mid S_t = s, A_t = a]$
- ullet 最適価値関数 $v_*(s) := \max_\pi v_\pi(s)$
- ullet 最適行動価値関数 $q_*(s,a) := \max_{\pi} q_{\pi}(s,a)$

復習: Bellman 最適方程式

$$egin{align} v_*(s) &= \max_a \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a] \ q_*(s,a) &= \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \mid S_t = s, A_t = a] \ q_*(s,a) &= s, A_t = a. \end{align}$$

- $ullet v_*$ や q_* に関する方程式 ullet 「最適価値関数として,局所的に辻褄が合っている」
- ullet V が最適価値関数 $\iff v_* = V$ が(4.1)の解.
- ullet Q が最適行動価値関数 $\iff q_* = Q$ が(4.2)の解.
- 参照: Banachの不動点定理 (付録)
- 第4章では、この方程式を満たす関数を求める方法を扱う.

4.1 Policy Evaluation

- まず, v_{π} の計算方法を考える.
 - ポリシー評価とか予測問題とか呼ばれる.
- 定義より:

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) [r + \gamma v_{\pi}(s')] ~~(4.4)$$

- ullet 4.4 は, $|\mathcal{S}|$ 個の連立方程式なので,解ける.
 - \circ 0 < γ < 1 または パスはすべて有限と仮定している.
 - (これも,不動点定理が適用できる)

アルゴリズム: 反復ポリシー評価

- 入力: π: 評価するポリシー
- アルゴリズムパラメタ: θ: 反復停止判断閾値
- 初期化: V(s)を任意の値にする. ただし, 終端状態 s については V(s)=0 とすること.
- 反復:
 - $\circ \Delta \leftarrow 0$
 - \circ 各 $s\in\mathcal{S}$ について
 - $v \leftarrow V(s)$
 - $lacksquare V(s) \leftarrow \sum_a \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) [r + \gamma V(s')]$
 - $lacksquare \Delta \leftarrow \max(\Delta, |v V(s)|)$
- $\Delta < \theta$ となるまで

例4-1

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1 \\ \text{on all transitions}$

- 落ちそうになったらそこに留まる.
- 灰色マスは停止状態.

4.2 Policy Improvement

- しばらく,決定的なポリシー (1つ以外の選択肢の確率は0) π を考える. (確率 $\pi(s,a)$ の代わりに $\pi(s)$ で選んだ選択肢を表すことにする)
- $s \in \mathcal{S}$, $a \in \mathcal{A}$ として, $q_{\pi}(s,a) > v_{\pi}(s)$ ならば, $\pi(s)$ の代わりに a を選ぶように 変更した方が良いように思われる. 実際次が成り立つ:

ポリシー改善定理

2つの決定的なポリシー π と π' について, 任意の $s\in \mathcal{S}$ に対して $q_\pi(s,\pi'(s))\geq v_\pi(s)$ ならば, 任意の $s\in \mathcal{S}$ に対して $v_{\pi'}(s)\geq v_\pi(s)$ である.

ポリシー改善

• π に対して、 すべての状態でポリシー改善定理を適用して、以下の改善ポリシー π' を得る:

•

$$egin{aligned} \pi'(s) &:= rg\max_a q_\pi(s,a) \ &= rg\max_a \sum_{a',r} p(s',r\mid s,a)[r+\gamma v_\pi(s')] \end{aligned} \end{aligned} \tag{4.9}$$

- この結果, もし $\pi = \pi'$ であれば, (4.9) は, Bellman 方程式になる. 決定的ポリシーは有限個しかないので, (Bellman 方程式の解の一意性が成り立つのであれば) ポリシー改善を繰り返すと最適解に到達する.
- 確率的ポリシーの場合も似たようなもの.

4.3 Policy Iteration

- ポリシー評価とポリシー改善を交互に行って,最適ポリシーを得る方法 を,ポリシー反復と呼ぶ.
- アルゴリズムは次スライド

- 1. 初期化: $s\in\mathcal{S}$ に対して,V(s) と $\pi(s)$ を任意に取る.
- 2. ポリシー評価
 - 反復:
 - $\Delta \leftarrow 0$
 - ullet 各 $s\in\mathcal{S}$ について
 - $lacksquare v \leftarrow V(s)$
 - $lackbox{ }V(s)\leftarrow\sum_{s',r}p(s',r\mid s,\pi(s))[r+\gamma V(s')]$
 - $lacksquare \Delta \leftarrow \max(\Delta, |v V(s)|)$
 - \circ $\Delta < heta$ となるまで
- 3. ポリシー改善
 - \circ stable \leftarrow true
 - \circ 各 $s \in \mathcal{S}$ について
 - lacksquare old $\leftarrow \pi(s)$
 - $lacksquare \pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r \mid s,a) [r + \gamma V(s')]$
 - ullet old $eq \pi(s)$ なら, stable \leftarrow false
 - \circ stable = true なら, $v_\pi:=V$ と $\pi_*:=\pi$ を返して終了. そうでなければ2に戻る.

例4.2 Jack's Car Rental

- レンタカー営業所A, B
 - 駐車スペース 20台
- 1日あたりの貸出依頼台数と返却依頼台数は、Poisson分布.

$$\circ \; p(\lambda,n) = rac{\lambda^n}{n!} e^{-\lambda}$$

- ∘ λ の値: Aの貸出: 3, Aの返却: 3, Bの貸出: 4, Bの返却: 2
- スペースを超えて返却はできない. 無い車は貸せない.
- 貸出すると1台当たり10ドルの利益 (貸出し当日のみ).
- 夜に、A,B間で車を5台まで移動できる. 1台当たり2ドルの費用発生.

 $\gamma=0.9$ で,最適ポリシー関数と価値関数を決定せよ.

4.4 Value Iteration

- ポリシー反復の弱点: 毎回のポリシー評価で全状態を何度も計算.
- ポリシー評価を、途中で切り上げる手法がいろいろある.
- 反復を1回で終わらせる手法を, 価値反復と呼ぶ.

アルゴリズムは次のようになる.

- 1. V を今までと同様に初期化.
- 2. Repeat:
 - $\circ v \leftarrow V$
 - 。各 $s \in \mathcal{S}$ に対して $V(s) \leftarrow \max_a \sum_{s',r} p(s',r \mid s,a) [r + \gamma V(s')]$
 - \circ Until: $\max_s |v(s) V(s)| < heta$
- 3. 出力:
 - \circ 価値関数 V
 - \circ ポリシー $\pi(s) := rgmax_a \sum_{s',r} p(s',r \mid s,a) [r + \gamma V(s')]$

例4.3 ギャンブラー

- 最初の所持金: 1以上99以下
- 表の出る確率が p_h (0.5とは限らない) のコイン
- 以下を所持金がなくなるか、所持金が100以上になるまで繰り返す.
 - 所持金からいくらか賭ける
 - コインを投げる.
 - 表が出たら、賭け金は戻り、さらに同額もらえる.
 - 裏が出たら、掛け金は没収
- 所持金を100以上にできれば成功 (reward = 1),できなければ失敗 (reward = 0)

最適なポリシー関数と価値関数を決定せよ.

4.5 Asynchronous Dynamic Programming

- DPの弱点: 全状態集合をなめる
 - \circ バックギャモンの状態集合の大きさは 10^{20} 以上.
- 非同期DP
 - 状態の更新順序制限を緩める. 一部の状態を頻繁に更新してもよい.
- 例:
 - \circ k回目の更新で,1状態 s_k のみを更新.
 - $\circ~0 \leq \gamma < 1$ で、すべての $s \in \mathcal{S}$ が 更新列に無限回現れれば、 v_* への収束が保証される.
- いつでも計算量が減るわけでは無いが、うまくやれば早く有益な情報が得られることがある。→ 第8章
- エージェントがMDP上で走るのと並行して対話的DPアルゴリズムを動かす.
 - 例: エージェントが現在いる状態を更新対象にする.

4.6 Generalized Policy Iteration (GPI)

- ポリシー評価とポリシー改善が交互に動作する.
 - 粒度にはさまざまな場合がある.
 - GPI: これらの総称. ほぼすべての強化学習の 方式はGPIとみなせる.
- 安定状態にいたると、Bellman 方程式の解になるので、最適解である。

4.7 Efficiency of Dynamic Programming

- DPは大きな問題は解けないが、他のMDPの解法より効率的.
 - \circ $|\mathcal{S}|, |\mathcal{A}|$ の多項式時間
 - \circ 探索空間は $|\mathcal{S}|^{|\mathcal{A}|}$
 - 線型計画法もあるが, DPの方が大きな問題に強い.
- 次元の呪い
 - o DPのせいではない.
- 百万単位の状態をもつMDPがDPで解かれている.
- ポリシー反復も価値反復も用いられる.
 - 一般的にどちらが良いとは言えない.
 - 理論的な最悪評価より,たいてい速い. 初期値に依存.
- 状態数が多いときには非同期DPが有効.
 - 最適解には少数の状態しか出てこないことがある.

付録: Banach の不動点定理

- (V, ||⋅||): 完備ベクトル空間.
 - 完備: ノルムに関するコーシー列が収束
- $0 < \gamma < 1$
- T:V o V: γ -縮小写像 \circ i.e., $\|Tu-Tv\|<\gamma\|u-v\|$

このとき,以下が成立する.

- 1. T は、ただ一つの不動点 v を持つ.
- 2. 任意の $v_0\in V$ に対し, $v_{n+1}=Tv_n$ で定義される列 $\{v_n\}$ は,不動点v に収束する.より詳しく,

$$||v_n - v|| \le \gamma^n ||v_0 - v||$$

(ベクトル空間の構造は使っていない、完備距離空間でありさえすれば良い、)

証明

主题: 丁任真公常 記し: ||v-u|| < ||v-To||+||u-Tu|| 37): llv-Tull+llu-Tull ~ (1-x) llv-ull > 11 12-Tull+ 11 Tu-ull - 11v-ull + 11 Tro-Tull = || w-Tv||+ 11Tw-Tu||+11T1,-u||-||v-u|| 2 11 w-ull-11v-ull=0. (土がつ、不動点はたかだかなつ、 PEC NOEV EEZ MMEN GOTU, $\|T^{n}v_{o}-T^{m}v_{o}\|\leq\frac{q}{1-\gamma}\left[\|T^{n}v_{o}-T^{n\eta}v_{o}\|+\|T^{m}v_{o}-T^{m\eta}v_{o}\|\right]$ $\leq \frac{y^n + y^m}{1 - v} \| v_o - T v_o \|$ 7 =1), [Thuo], it Cour 31 7302, \$ 2 veV (248) Tv=T(lim vn)=lim Tvn=v·フまり、ひは不動意、 #t-, || To, -ν ||=| Tho-Tholl ≤ γ ((v,-ν)).

V が最適価値関数 $\iff v_* = V$ がBellman最適方程式の解

割引率 $0<\gamma<1$ である場合

- ノルムとしては ||・||_∞ を用いる.
 成分の絶対値のうち、最大のもの
- $Tv(s) = \max_a \sum_{s',r} p(s',r\mid s,a)[r+\gamma v(s')]$ が、 γ -縮小写像であることを言えば良い。

$$egin{aligned} |Tv_1(s) - Tv_2(s)| & \leq \max_a \sum_{s',r} p(s',r \mid s,a) [\gamma \cdot |v_1(s') - v_2(s')|] \ & \leq \gamma \cdot \|v_1 - v_2\|_{\infty} \end{aligned}$$

終端状態があって, $\gamma=1$ の場合

- 終端状態をtとする.
- ポリシー π がproper $\stackrel{ ext{def}}{\Longleftrightarrow} n \in \mathbb{N}$ が存在して,すべての状態xに対して, $\operatorname{Prob}(x_n
 eq t \mid x_0 = x, \pi) < 1.$
- 任意のポリシーがproperなら,T は,あるノルムに関して縮小写像である. (したがって,Bellman 最適方程式の解は一意で,任意の初期値からTの繰返し適用で収束する.)
- もっと緩い条件で、Bellman最適方程式の解の一意性と任意の初期値から の 収束を言う定理もある.

付録は、 http://researchers.lille.inria.fr/~lazaric/Webpage/MVA-RL Course14 files/notes-lecture-02.pdf によった.

(End of Slides)