Formulario

Estadística descriptiva univariante

Notación

- X, Y, \dots : Variables.
- x_i :
 - En datos individuales: Cada uno de los valores observados de la variable \boldsymbol{X}
 - En datos agrupados: Cada uno de los k posibles valores de la variable X.
- \bullet n: Número total de observaciones en la muestra.
- N: Número total de observaciones en la población.
- n_i : Número de observaciones en la clase i.
- c_i : Marca de clase en datos agrupados por intervalos.
- $L_i, i = 0, ..., k$: Límites de los intervalos $(L_{i-1}, L_i]$.

Tablas de frecuencias

- n_i : Frecuencia absoluta, número de observaciones en la clase i.
- f_i : Frecuencia relativa. $f_i = \frac{n_i}{n}$
- N_i : Frecuencia absoluta acumulada. $N_i = \sum\limits_{j=1}^i n_j$
- N_i : Frecuencia relativa acumulada. $F_i = \sum_{j=1}^i f_j = \frac{N_i}{n}$
- Número de intervalos en variables continuas:

$$\begin{array}{l} - \text{ Si } n \leq 100, k \approx \sqrt{n} \\ - \text{ Si } n > 100, k \approx 1 + \log_2 n \end{array}$$

- A: amplitud de la variable. $A = x_{max} x_{min}$
- a_i : Amplitud de la clase i. $a_i = A/k$
- c_i : Marca de clase. $c_i = \frac{L_{i-1} + L_i}{2}$

Medidas de tendencia central

- Moda: clase más frecuente. $x_i : n_i = \max_{j=1,...k} \{n_j\}$
- Media aritmética: $\bar{x} = \frac{\sum\limits_{i=1}^{n} x_i}{n}$.
 - Propiedad: $Y = a + bX \implies \bar{y} = a + b\bar{x}$
 - En variables discretas agrupadas: $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \sum_{i=1}^{k} f_i x_i$,
 - En variables agrupadas en intervalos: $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} n_i c_i = \sum_{i=1}^{k} f_i c_i$

1

- Mediana: $\min_{i=1,...n} x_i : F_i \ge 0.5$
- Media geométrica: $m_g = (\prod_{i=1}^n x_i)^{\frac{1}{n}}$

• Media armónica: $H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$

Medidas de posición

• Percentil de orden p: $P_{p\%} = \min_{i=1,...n} x_i : F_i \ge p/100$

• Cuartiles: $Q_1 = P_{25}$; $Q_3 = P_{75}$

Medidas de dispersión

• Rango o recorrido: $R = \max_{i} x_i - \min_{i} x_i$

• Desviación media absoluta: $DMA = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$.

• Desviación absoluta mediana: $DAM = Me|x_i - Me_x|, i = 1,...,n.$

• Varianza muestral o cuasivarianza: $s^2 = \frac{\sum\limits_{i=1}^n (x_i - \bar{x})^2}{n-1} = \frac{1}{n-1} \left(\sum\limits_{i=1}^n x_i^2 - n\bar{x}^2\right)$

• Varianza poblacional: $\sigma^2 = \frac{\sum\limits_{i=1}^N (X_i - \mu)^2}{N} = \frac{1}{N} \sum\limits_{i=1}^n X_i^2 - \mu^2$

• Desviación típica muestral o cuasidesviación típica: $s=\sqrt{s^2}=\sqrt{\sum\limits_{i=1}^n(x_i-\bar{x})^2\over n-1}$.

- Propiedad de la varianza: $Y=a+bX \implies s_y^2=b^2s_X^2$

• Tipificación: $Z = \frac{X - \bar{x}}{s} \implies \bar{z} = 0; s^2 = 1$

• Coeficiente de variación: $CV = \frac{s}{|\bar{x}|}$

• Rango intercuartílico: $IQR = Q_3 - Q_1$

Medidas de forma

• Coeficiente de asimetría: $\gamma_1 = \frac{m_3}{s^3}$

$$- m_3 = \frac{1}{n} \sum_{i=1}^{n} (x - \bar{x})^3$$

• Coeficiente de curtosis (apuntamiento): $\gamma_2 = \frac{m_4}{s^4} - 3$

$$-m_4 = \frac{1}{n} \sum_{i=1}^{n} (x - \bar{x})^4$$

Estadística descriptiva bivariante

Notación

• X, Y, \dots : Variables.

• x_i, y_j : Cada uno de los k posibles valores de la variable X.

• (x_i, y_i) : Cada uno de los n pares de valores observados.

• n: Número total de observaciones en la muestra.

• n_i : Número de clases de la variable X.

• n_i : Número de clases de la variable Y.

• n_{ij} : Número de observaciones en la clase i de la variable X \mathbf{y} en la clase j de la variable Y.

Tablas de frecuencias

- n_{ij} : Frecuencia absoluta conjunta, número de observaciones en la clase i de la variable X y en la clase j de la variable Y.
- f_{ij} : Frecuencia relativa conjunta. $f_{ij} = \frac{n_{ij}}{n}$
- Frecuencias marginales de X:

– Absolutas:
$$n_i$$
. = $\sum_{j=1}^{n_j} n_{ij}$

– Relativas:
$$f_{i.} = \sum_{j=1}^{n_j} f_{ij}$$

• Frecuencias marginales de Y:

$$- n_{\cdot j} = \sum_{i=1}^{n_i} n_{ij}$$

$$- f_{\cdot j} = \sum_{i=1}^{n_i} f_{ij}$$

• Frecuencias condicionadas:

$$- f_{x_i|y=y_j} = \frac{n_{ij}}{n_{uj}}.$$

$$- f_{y_j|x=x_y} = \frac{n_{ij}}{n_{iu}}.$$

- Independencia: Si $f_{ij} = f_{i.} \cdot f_{.j} \ \forall i, j$, entonces las variables X e Y son independences.

Covarianza y correlación

• Covarianza poblacional:

– Definición:
$$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

– Cálculo abreviado:
$$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (X_i \cdot Y_i) - \bar{X} \cdot \bar{Y}$$

• Covarianza muestral:

- Definición:
$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

– Cálculo abreviado:
$$s_{xy} = \frac{1}{n-1} \left(\sum_{i=1}^{n} (x_i \cdot y_i) - n \cdot \bar{x} \cdot \bar{y} \right)$$

- Coeficiente de correlación lineal: $r_{xy} = \frac{s_{xy}}{s_x \cdot s_y}$
- Matriz de covarianzas (caso bivariante):

$$\mathbf{S} = \left[\begin{array}{cc} s_x^2 & s_{xy} \\ s_{xy} & s_y^2 \end{array} \right]$$

3

Regresión lineal simple

• Recta de regresión: y = a + bx

$$-b = \frac{s_{xy}}{s_x^2}$$

$$-a=\bar{y}^x-b\bar{x}$$

$$-b = \frac{s_y}{s_x} r_{xy}$$

- Predicción de nuevos valores: $\hat{y}_{n+1} = a + bx_{n+1}$
- Residuos: $\varepsilon_i = y_i \hat{y}_i = y_i (a + bx_i)$
- Varianza residual: $s_{\varepsilon}^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2$
 - $-\frac{s_{\varepsilon}^2}{s_y^2} = (1 r_{xy}^2)$
- Coeficiente de determinación: $R^2=1-\frac{s_{\varepsilon}^2}{s_y^2}=r_{xy}^2$

Probabilidad

Notación

- A, B, \ldots : Sucesos
- ω : Suceso elemental
- Ω: Espacio muestral
- Ø: Suceso imposible
- A^c : Suceso complementario del suceso A

Definiciones

- Unión de sucesos: $A \cup B$: Ocurre A o Ocurre B, o los dos
- Intersección de sucesos: $A \cap B$: Ocurre A y Ocurre B
- Sucesos disjuntos o mutuamente excluyentes, o incompatibles: $A \cap B = \emptyset$
- Partición del espacio muestral: Colección de sucesos $A_1, A_2, \ldots \in \Omega$ que cumplen:
 - $-A_1, A_2, \dots : A_i \subset \Omega \ \forall i$ $-A_i \cap A_j = \emptyset \ \forall i \neq j,$

 - $-\bigcup A_i=\Omega.$
- Sigma álgebra de sucesos \aleph (aleph). conjunto de sucesos que:
 - Pertenecen a ℵ,

 - $\begin{array}{l} -\text{ Si } A \in \mathbb{N} \implies A^c \in \mathbb{N} \\ -\text{ Si } \{A_i\} \in \mathbb{N} \ \forall i, \text{ entonces } \bigcup_i A_i \in \mathbb{N} \text{ y } \bigcap_i A_i \in \mathbb{N} \end{array}$

Propiedades

- Conmutativa:
 - $-A \cup B = B \cup A.$
 - $-A \cap B = B \cap A.$
- Asociativa:
 - $-A \cup (B \cup C) = (A \cup B) \cup C.$
 - $-A \cap (B \cap C) = (A \cap B) \cap C.$
- Distributiva:
 - $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
 - $-A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$
- Leyes de De Morgan:
 - $(A \cup B)^c = A^c \cap B^c.$
 - $(A \cap B)^c = A^c \cup B^c.$
- $A \cup A = A \cap A = A \cup \emptyset = A \cap \Omega = A$.
- $A \cup \Omega = \Omega$.

Definiciones de probabilidad

• Definición de Laplace: $P(A) = \frac{\text{casos favorables a } A}{\text{casos posibles}}$

- Definición frecuentista: $P(A) = \lim_{n \to \infty} \frac{n(A)}{n}$
- Definición axiomática:
 - Primer axioma: $\forall A \in \aleph \exists P(A) > 0$.
 - Segundo axioma: $P(\Omega) = 1$.
 - Tercer axioma: Dada la sucesión $A_1, \ldots, A_i, \ldots : A_i \in \aleph \ \forall i, A_i \cap A_j = \emptyset \ \forall i \neq j$, se cumple:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Teoremas derivados

• Dados n sucesos disjuntos dos a dos $A_1, \ldots, A_n : A_i \cap A_j = \emptyset \ \forall i \neq j$:

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

- $P(A^c) = 1 P(A)$.
- $P(\emptyset) = 0$.
- Dados $A_1, A_2 : A_1 \subset A_2 \implies P(A_1) \leq P(A_2)$.
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

•
$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_i\right).$$

$$0 \le P(A) \le 1$$

Probabilidad condicionada e independencia

- Probabilidad de A condicionada a B: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ Probabilidad de la interesección: $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$
- Regla de la cadena:

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = P(A_{1}) \cdot P(A_{2}|A_{1}) \cdot P(A_{3}|A_{1} \cap A_{2}) \cdot \ldots \cdot P\left(A_{n}|\bigcap_{i=1}^{n-1} S_{i}\right)$$

•
$$A ext{ y } B ext{ independientes} \iff P(A|B) = P(A) ext{ y } P(B|A) = P(B)$$

$$- \boxed{P(A \cap B) = P(A) \cdot P(B)} ext{ (solo si son independientes)}$$

$$- P(A^c|B) = 1 - P(A|B)$$

Probabilidad total y fórmula de Bayes

• Probabilidad total:

$$P(B) = \sum_{i=1}^{n} P(B/A_i) \cdot P(A_i)$$

• Fórmula de Bayes:

$$P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{i=1}^{n} P(B/A_i) \cdot P(A_i)}$$

Variable aleatoria

- Función de distribución: $F(x) = P[X \le x]$
- Probabilidad en un intervalo: $P[a < X \le b] = F(b) F(a)$
- Probabilidad del intervalo complementario: P[X > a] = 1 F(a)
- Función de masa de probabilidad (VA discreta):

$$-p(x_i) = P[X = x_i] = P[x_{i-1} < X \le x_i] = F(x_i) - F(x_{i-1})$$

- Condiciones:
 - * $p(x_i) \ge 0 \ \forall i$.

$$* \sum_{i=1}^{\infty} p(x_i) = 1.$$

- Función de distribución: $F(x_i) = \sum_{i=1}^{i} p(x_j)$
- Función de densidad (VA continua):

$$- f(x) = \frac{dF(x)}{dx}$$

$$-F(x) = \int_{-\infty}^{x} f(t)dt = P[X \le x]$$

- Condiciones:

$$\begin{array}{l} * \ f(x) \ge 0 \\ * \ \int_{-\infty}^{\infty} f(x) dx = 1 \end{array}$$

- Probabilidad en un intervalo: $P[a < X \le b] = \int_a^b f(x) dx$
- Consecuencia: P[X = x] = 0
- Características:
 - Media: $\mu = E[X]$
 - * VA discreta: $\mu = E[X] = \sum_{i} x_i p(x_i)$
 - * VA continua: $\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$ * Propiedad: E[a + bX] = a + bE[X]
 - Varianza: $V[X] = \sigma^2 = E[(X \mu)^2] = E[X^2] (E[X])^2$
 - * VA discreta: $\alpha_2 = E[X^2] = \sum\limits_{\cdot} x_i^2 p(x_i)$
 - * VA continua: $\alpha_2 = E[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx$ * Propiedad: $V[a+bX] = b^2 V[X]$
 - Desviación típica: $\sigma = +\sqrt{\sigma^2}$
 - Coeficiente de variación: $CV = \frac{\sigma}{c}$
- Tipificación de variables aleatorias:

$$Z = \frac{X - \mu}{\sigma} \implies \mu_Z = 0; \ \sigma_Z = 1$$

• Probabilidad condicionada en variables aleatorias:

$$P[X \in A | X \in B] = \frac{P[(X \in A) \cap (X \in B)]}{P[X \in B]}$$

Modelos de distribución de probabilidad

Distribuciones discretas más importantes

- Bernoulli: Ber(p)
 - $-X = \begin{cases} 1 & \text{con probabilidad } p \\ 0 & \text{con probabilidad } 1-p \end{cases}; P[X=1] = p; \quad P[X=0] = 1-p,$
 - Media: $\mu = E[X] = p$.
 - Varianza: $\sigma^2 = V[X] = p \cdot (1-p)$
- Binomial: $X \sim Bin(n; p); n > 0, 0$

 - $\begin{array}{l} -P[X=x] = \binom{n}{x} \cdot p^x \cdot (1-p)^{(n-x)} \\ -\text{ Media: } \mu = E[X] = n \cdot p. \\ -\text{ Varianza: } \sigma^2 = V[X] = n \cdot p \cdot (1-p). \end{array}$
 - Aditiva: $Y = \sum_{j=1}^{m} X_j, X_j \sim Bin(n_j; p) \implies Y \sim Bin\left(\sum_{j=1}^{m} n_j; p\right)$
- Poisson $X \sim Poiss(\lambda); \ \lambda > 0; \ x = 0, 1, \dots \infty$

 - $\begin{array}{l} -\ P[X=x] = \frac{e^{-\lambda}\lambda^x}{x!} \\ -\ \text{Media:}\ \mu = E[X] = \lambda \\ -\ \text{Varianza:}\ \sigma^2 = V[X] = \lambda \end{array}$
 - Propiedad: $Y = \sum_{j=1}^{m} X_j, X_j \sim Poiss(\lambda_j) \implies Y \sim Poiss\left(\sum_{j=1}^{m} \lambda_j\right)$
- Binomial negativa: $X \sim BN(c; p)$; c > 0; $0 ; <math>x = 0, 1, 2, \dots, \infty$
 - $\begin{array}{l} -\ P[X=x] = {x+c-1 \choose x} \cdot p^c \cdot (1-p)^x \\ -\ \text{Media:}\ E[X] = \frac{c \cdot (1-p)}{p} \\ -\ \text{Varianza:}\ V[X] = \frac{c \cdot (1-p)}{p^2} \end{array}$

 - Propiedad: $Y = \sum_{j=1}^{m} X_j, X_j \sim BN(c_j; p) \implies Y \sim BN\left(\sum_{j=1}^{m} c_j; p\right)$
- Geométrica: $X \sim Ge(p)$; 0
 - $\begin{array}{l} -P[X=x]=p\cdot (1-p)^x;\; x=0,1,\ldots,\infty\\ -\text{ Media: }\mu=E[X]=\frac{1-p}{p}\\ -\text{ Varianza: }\sigma^2=V[X]=\frac{1-p}{p^2}\\ -\text{ Propiedad: }Ge(p)\equiv BN(1;\; p) \end{array}$
- Hipergeométrica: $X \sim HG(N; M; n)$; $max(0, n + M - N) \le x \le \min(M, n)$
 - $-P[X=x] = \frac{\binom{N-M}{n-x} \cdot \binom{M}{x}}{\binom{N}{x}}$
 - Media:

 - Varianza: $E[X] = M \cdot \frac{n}{N}$ Aditiva: $Var[X] = \frac{M \cdot (N-M) \cdot n \cdot (N-n)}{N^2 \cdot (N-1)}$
 - Propiedad: si $\frac{n}{N} < 0, 1 \implies X \leadsto Bin\left(n; \ p = \frac{M}{N}\right)$

Distribuciones continuas más importantes

- Uniforme

 - Media:Varianza:
- Exponencial
 - Media:
 - Varianza:
- Normal

 - Media:Varianza:

Tabla distribución normal estándar

La siguiente tabla contiene la probabilidad de la cola inferior de la distribución normal estándar $Z \sim N(0;1)$, es decir $F(z) = P[Z \leq z]$..

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993

0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	\mathbf{z}
0.9995	0.9995	0.9995	0.9994	0.9994	0.9994	0.9994	0.9994	0.9993	0.9993	3.2
0.9997	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9995	0.9995	0.9995	3.3
0.9998	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	3.4
0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	3.5
0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	3.6
0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	3.7
0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	3.8
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	3.9