Master UGA SSD 2024-2025 M1 - Supervised Project

Prognostic biomarkers in colon cancer

Supervisors: Ekaterina BOUROVA-FLIN¹ et Séverine VALMARY-DEGANO¹,²

¹ Team "Epigenetic Regulations", Institute for Advanced Biosciences (IAB), Grenoble ² Centre Hospitalier Universitaire Grenoble Alpes (CHUGA)

Outline

Part I. Presentation of the Institute

Part II. Scientific background

II.1 Introduction

II.2 Methods

II.3 Results

Part III. Presentation of the supervised project

Outline

Part I. Presentation of the Institute

Part II. Scientific background

II.1 Introduction

II.2 Methods

II.3 Results

Part III. Presentation of the supervised project

Institute for Advanced Biosciences

UGA, INSERM, CNRS

3 departments 19 teams 300 people

Signaling through Chromatin

Team « Epigenetic Regulations »

Saadi Khochbin (Team Leader)

18 permanent staff

- biologists
- computer engineers
- medical doctors
- 4 PhD students
- 3 Master students

Bioinformatic facility « EpiMed »

Outline

Part I. Presentation of the Institute

Part II. Scientific background

II.1 Introduction

II.2 Methods

II.3 Results

Part III. Presentation of the supervised project

Epigénétique

20-ème siècle – La génétique

La génétique (du grec « donner naissance ») est la science qui étudie l'hérédité et les gènes.

1909 – notion de gène, une base d'hérédité

1953 – découverte du double hélice d'ADN

1977 – séquençage des fragments d'ADN

2003 – séquençage complet du génome humain

21-ème siècle – L'épigénétique

Épi: « au dessus de »

L'épigénétique étudie les mécanismes moléculaires qui modifient l'expression des gènes en fonction de l'environnement.

Epigenetic regulations

HUMAN CELL ANATOMY

Epigenetic regulations

Epigenetic regulations

Normal cells

Cancer cells

Normal cells

Tissue-specific genes

OFF

ON

Tissue-specific genes in human normal tissues

Normal tissues (GTEX dataset)

Tissue-specific genes in human normal tissues

Tissue-specific genes in cancers

1. Massively activated

Tissue-specific genes in cancers

1. Massively activated

2. In all cancer types

Tissue-specific genes in cancers

1. Massively activated

2. In all cancer types

3. Aggressive forms

"ON" status = poor prognosis

Novel source for discovery of prognosis biomarkers in cancers

Outline

Part I. Presentation of the Institute

Part II. Scientific background

II.1 Introduction

II.2 Methods

II.3 Results

Part III. Presentation of the supervised project

Biomarker discovery pipeline "ectopy": Overview

REF

Testis

Training dataset

Validation datasets

Test datasets

Training dataset

Validation datasets

Test datasets

Permutations and cross-validations

Robust candidates: A, B, C...

Training dataset

Validation datasets

Test datasets

Permutations and cross-validations

Select stable candidates

Robust candidates: A, B, C...

Prognostic classifier (GEC)

Training dataset

Validation datasets

Test datasets

Permutations and cross-validations

Robust candidates: A, B, C...

Select stable candidates

Prognostic classifier (GEC)

Test GEC

OK?

Outline

Part I. Presentation of the Institute

Part II. Scientific background

II.1 Introduction

II.2 Methods

II.3 Results

Part III. Presentation of the supervised project

Gene Expression Classifier (GEC): 4 biomarkers

HOXC6, ULBP2, ERFE, LAMP5

Gene Expression Classifier (GEC): 4 biomarkers

HOXC6, ULBP2, ERFE, LAMP5

Training dataset

TCGA-COAD-FPKM - T-Colon (n=398, evts=79) cox p-value = 4.5e-08 *** logrank p-value = 1.4e-04 *** hazard ratio = 3.4 1.0 0 (n=110) 1-4 (n=288) 8.0 Overall survival 0.6 0.2 0.0 120 80 100 20 60 Time in months

Validation dataset

Test dataset

Pooled datasets

Outline

Part I. Presentation of the Institute

Part II. Scientific background

II.1 Introduction

II.2 Methods

II.3 Results

Part III. Presentation of the supervised project

Main objectives

Supposing that the prognostic GEC score has been already calculated for each patient in 3 colon cancer public datasets:

Identify subtypes of colon cancer in the TCGA-COAD dataset

These subtypes are not directly available in clinical annotations. They should be defined from an analysis of multiomics data (mutation, methylation, copy number alteration and expression) available in the TCGA-COAD dataset

Predict the subtypes in two other datasets of colon cancer for which only transcriptomic data are available: GSE39582 and GSE17536

Several approaches are possible: machine learning, differential analysis, GSEA analysis using published molecular signatures in the MSigDB database

Analyze the GEC score in different subtypes of colon cancer

Main subtypes of interest: Microsatellite instability (MSI), KRAS mutations, ...

[Optional objectives] Analysis of correlation between ectopic activations and epigenetic deregulations in colon cancer

Microsatellite instability

Microsatellite instability in colorectal cancer—the stable evidence

Eduardo Vilar & Stephen B. Gruber

March 1988

March 2018

March

Nature Reviews Clinical Oncology 7, 153-162 (2010) Cite this article

6765 Accesses | 688 Citations | 20 Altmetric | Metrics

Abstract

Microsatellite instability (MSI) is the molecular fingerprint of a deficient mismatch repair system. Approximately 15% of colorectal cancers (CRC) display MSI owing either to epigenetic silencing of *MLHI* or a germline mutation in one of the mismatch repair genes *MLHI*, *MSH2*, *MSH6* or *PMS2*. Methods to detect MSI are well established and routinely incorporated into clinical practice. A clinical and molecular profile of MSI tumors has been described, leading to the concept of an MSI phenotype in CRC. Studies have confirmed that MSI tumors have a better prognosis than microsatellite stable CRC, but MSI cancers do not necessarily have the same response to the chemotherapeutic strategies used to treat microsatellite stable tumors. Specifically, stage II MSI tumors might not benefit from 5-fluorouracil-based adjuvant chemotherapy regimens. New data suggest possible advantages of irinotecan-based regimens, but these findings require further clarification. Characterization of the molecular basis of MSI in CRC is underway and initial results show that mutations in genes encoding kinases and candidate genes with microsatellite tracts are over-represented in MSI tumors. Transcriptome expression profiles of MSI tumors and systems biology approaches are providing the opportunity to develop targeted therapeutics for MSI CRC.

Key Points

- Microsatellite instability (MSI) is present in approximately 15% of colorectal cancers (CRC), which are mostly nonfamilial (sporadic) and caused by hypermethylation of the MLH1 promoter
- Approximately 2–3% of all CRC are caused by germline mutations in one of the mismatch repair genes (MLH1, MSH2, MSH6 and PMS2)
- The MSI phenotype is characterized by right-sided location, low pathological stage, mucinous presentation, tumor-infiltrating lymphocytes, absence of necrotic cellular debris and the presence of a Crohn-like nodular infiltrate
- MSI tumors have a good prognosis and reduced likelihood of metastasis compared with microsatellite stable tumors, which highlights the value of MSI as a prognostic marker in CRC
- Although 5-fluorouracil-based chemotherapy is the gold standard for CRC, this drug
 offers little benefit in early MSI CRC—irinotecan-based regimens and other drugs may
 hold promise, and are being studied in MSI CRC
- Transcriptome expression studies that characterize MSI tumors and cell lines have identified unique attributes of MSI cancers, and systems biology tools and other approaches enable investigation of targeted therapies

Access to data and documents

http://epimed.univ-grenoble-alpes.fr/downloads/uga_ssd/

Index of /downloads/uga_ssd

<u>Name</u>	Last modified	Size Description
Parent Directory		-
biblio/	2024-10-20 11:26	; -
data/	2024-10-20 11:25	-
documents/	2024-10-20 11:25	· -