Chapter 1

Vector Spaces

1.1 Groups and Fields

Definition. A binary operation on a set G is a mapping from $G \times G$ to G.

Definition. A binary operation \star on a set G is called *associative* if for all $a, b, c \in G$, $(a \star b) \star c = a \star (b \star c)$ holds.

Definition. Let G be a set and \star be a binary operation on G. An *identity* of G with respect to \star is an element $e \in G$ such that $a \star e = a$ and $e \star a = a$ for all $a \in G$.

Theorem 1.1. The identity of G with respect to \star is unique if it exists.

Proof. If e and e' are identity of G with respect to \star , then $e = e \star e' = e'$.

Notation. The identity of G is denoted by 1_G . However, if the binary operation is written additively, the identity is denoted by 0_G instead.

Definition. Let \star be a binary operation on G with identity e. Let a be an element of G. An element $b \in G$ is called an *inverse* of a if $a \star b = e$ and $b \star a = e$.

Theorem 1.2. For all $a \in G$, the inverse of $a \in G$ is unique if it exists.

Proof. If both b and b' are inverses of a, then

$$b = b \star 1_G = b \star (a \star b') = (b \star a) \star b' = 1_G \star b' = b'.$$

Notation. The inverse of a in G is denoted by a^{-1} . However, if the binary operation is written additively, the inverse of a is denoted by -a instead.

Definition. A set G and a binary operation \star on G form a group (G, \star) if the following conditions hold.

- $(G 1) \star is associative.$
- (G 2) The identity of G (with respect to \star) exists.
- (G 3) For all $a \in G$, the inverse of a (with respect to \star) exists.

Example. Let S denote the set of permutations of $\{1, 2, 3\}$ and let \circ denote the composition of permutations. That is,

$$S = \{(1)(2)(3), (1)(23), (2)(31), (3)(12), (123), (321)\}.$$

Then (S, \circ) is a group.

Definition. A binary operation \star on a set G is called *commutative* if for all $a, b \in G$, $a \star b = b \star a$ holds.

Definition. A group (G, \star) is called an *Abelian group* if the following condition holds.

 $(G 4) \star is commutative.$

Example. $(\mathbb{Z}, +)$ and $(\mathbb{Q} \setminus \{0\}, \cdot)$ are Abelian groups.

Theorem 1.3. Let (G, \star) be a group. Then for all $a \in G$, $(a^{-1})^{-1} = a$.

Proof. Since
$$a \star a^{-1} = 1_G$$
, a is the inverse of a^{-1} in G. Thus, $(a^{-1})^{-1} = a$.

Theorem 1.4 (Cancellation Law). Let (G, \star) be a group. Then the following statements are true.

- (a) For all $a, b, c \in G$, if $c \star a = c \star b$, then a = b.
- (b) For all $a, b, c \in G$, if $a \star c = b \star c$, then a = b.

Proof.

(a) We have

$$a = 1_G \star a = (c^{-1} \star c) \star a = c^{-1} \star (c \star a)$$

and

$$b = 1_G \star b = (c^{-1} \star c) \star b = c^{-1} \star (c \star b).$$

Because $c \star a = c \star b$, we have a = b.

(b) The proof is similar to (a).

Definition. Let F be a set. Let + and \cdot be binary operations on F.

- The operation \cdot is called *left-distributive* over + if $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.
- The operation \cdot is called *right-distributive* over + if $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a,b,c \in F$.
- The operation \cdot is called *distributive* over + if it is both left-distributive and right-distributive.

Definition. A set F and two binary operations + and \cdot on F form a field $(F, +, \cdot)$ if the following conditions hold.

- (F 1) (F, +) is an Abelian group.
- (F 2) $(F \setminus \{0_F\}, \cdot)$ is an Abelian group.

(F 3) The operation \cdot is distributive over +.

Example. $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are fields.

Example. $(\mathbb{Q}[\sqrt{2}], +, \cdot)$ is a field, where

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

Theorem 1.5. Let $(F, +, \cdot)$ be a field. Then the following statements are true.

- (a) For all $a \in F$, $a \cdot 0_F = 0_F = 0_F \cdot a$.
- (b) For all $a, b \in F$, $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.
- (c) For all $a, b \in F$, $(-a) \cdot (-b) = a \cdot b$.

Proof.

(a) We have

$$a \cdot 0_F + a \cdot 0_F = a \cdot (0_F + 0_F) = a \cdot 0_F = a \cdot 0_F + 0_F.$$

Thus, $a \cdot 0_F = 0_F$ by cancelltaion law (Theorem 1.4). The proof of $0_F \cdot a = 0_F$ is similar.

(b) By (a), we have

$$a \cdot b + (-a) \cdot b = (a + (-a)) \cdot b = 0_F \cdot b = 0_F.$$

Thus, $(-a) \cdot b = -(a \cdot b)$. The proof of $a \cdot (-b) = -(a \cdot b)$ is similar.

(c) We have

$$(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$$

by applying (b) twice.

Remark. Let $G = F \setminus \{0_F\}$ and 1_G be the multiplicative identity of G. By Theorem 1.5 (a), we have $1_G \cdot 0_F = 0_F = 0_F \cdot 1_G$. Therefore, 1_G is also the multiplicative identity of F, and thus we denote it by 1_F .

Remark. Subtraction and division are defined in terms of addition and multiplication by using additive and multiplicative inverses.

1.2 Vector Spaces

Definition. Let F be a field and let V be a set on which two operations $+: V \times V \to V$ and $\cdot: F \times V \to V$ are defined. Then $(V, +, \cdot)$ is a *vector space* over F if the following conditions hold.

- (V 1) (V, +) is an Abelian group.
- (V 2) For all $x \in V$, $1_F \cdot x = x$.
- (V 3) For all $a, b \in F$ and for all $x \in V$, $(a \cdot b) \cdot x = a \cdot (b \cdot x)$.
- (V 4) For all $a, b \in F$ and for all $x \in V$, $(a + b) \cdot x = a \cdot x + b \cdot x$.
- (V 5) For all $a \in F$ and for all $x, y \in V$, $a \cdot (x + y) = a \cdot x + a \cdot y$.

Remark. We also say that V is a vector space over F if both + and \cdot are "standard".

Example. $(\mathbb{C}, +, \cdot)$ is a vector space over \mathbb{R} , and $(\mathbb{R}, +, \cdot)$ is a vector space over \mathbb{Q} .

Example. Let F be a field.

- $(F^n, +, \cdot)$ is a vector space over F.
- Let $\mathcal{P}(F)$ denote the set of polynomials with coefficients in F. Then $(\mathcal{P}(F), +, \cdot)$ is a vector space over F.
- Let $\mathcal{F}(S,F)$ denote the set of functions from S to F. Then $(\mathcal{F}(S,F),+,\cdot)$ is a vector space over F.

Theorem 1.6. Let $(V, +, \cdot)$ be a vector space over F. Then the following statements are true.

- (a) For all $x \in V$, $0_F \cdot x = 0_V$.
- (b) For all $a \in F$, $a \cdot 0_V = 0_V$.
- (c) For all $a \in F$ and $x \in V$, $(-a) \cdot x = -(a \cdot x) = a \cdot (-x)$.

Proof. It is similar to the proof of Theorem 1.5.

(a) We have

$$0_F \cdot x + 0_F \cdot x = (0_F + 0_F) \cdot x = 0_F \cdot x = 0_F \cdot x + 0_V.$$

Thus, $0_F \cdot x = 0_V$ by cancelltaion law (Theorem 1.4).

- (b) It is similar to the proof of (a).
- (c) By (a), we have

$$a \cdot x + (-a) \cdot x = (a + (-a)) \cdot x = 0_F \cdot x = 0_V$$

Thus, $(-a) \cdot x = -(a \cdot x)$. By (b), we have

$$a \cdot x + a \cdot (-x) = a \cdot (x + (-x)) = a \cdot 0_V = 0_V.$$

Thus,
$$a \cdot (-x) = -(a \cdot x)$$
.

1.3 Subspaces

Definition. Let $(V, +_V, \cdot_V)$ be a vector space over a field F. Let W be a subset of V. If $+_W : W \times W \to W$ and $\cdot_W : F \times W \to W$ satisfy

$$x +_W y = x +_V y$$
 and $a \cdot_W x = a \cdot_V x$

for all $a \in F$ and $x, y \in W$, then we say that $+_W$ and \cdot_W inherit $+_V$ and \cdot_V , respectively.

Definition. Let $(V, +_V, \cdot_V)$ be a vector space over F. A subset W of V is called a subspace of V if $(W, +_W, \cdot_W)$ is a vector space over F, where $+_W$ and \cdot_W inherit $+_V$ and \cdot_V , respectively.

Theorem 1.7. Let $(V, +_V, \cdot_V)$ be a vector space over F. Let W be a subset of V. Then W is a subspace of V if the following conditions hold.

- (a) For all $x, y \in W$, $x +_V y \in W$.
- (b) For all $a \in F$ and $x \in W$, $a \cdot_V x \in W$.
- (c) $0_V \in W$.

Proof. We can define operations $+_W: W \times W \to W$ and $\cdot_W: F \times W \to W$ such that

$$x +_W y = x +_V y$$
 and $a \cdot_W x = a \cdot_V x$

for all $a \in F$ and $x, y \in W$ due to (a) and (b). Then $+_W$ and \cdot_W inherit $+_V$ and \cdot_V , respectively.

Now we prove that $(W, +_W, \cdot_W)$ is a vector space over F. Since a vector in W is also in V, (V 2), (V 3), (V 4) and (V 5) hold trivially for W. Thus, one only needs to prove (V 1), i.e., $(W, +_W)$ is an Abelian group.

Since $+_W$ inherits $+_V$, $+_V$ is associative implies that $+_W$ is associative. Furthermore, since

$$0_V \in W$$
 and $-x = -(1_F \cdot x) = (-1_F) \cdot x \in W$

hold for all $x \in W$, we have

$$0_V +_W x = x = x +_W 0_V$$
 and $x +_W (-x) = 0_V = (-x) +_W x$

hold for all $x \in W$. Thus, $0_V \in W$ is an additive identity of W, and each vector in W also has an additive inverse in W, which complete the proof.

Example. Let $\mathcal{P}_n(F)$ denote the set of polynomials in $\mathcal{P}(F)$ with degree less than or equal to n, where $n \geq -1$ is an integer. Then it follows from Theorem 1.7 that $\mathcal{P}_n(F)$ is a subspace of $\mathcal{P}(F)$.

Theorem 1.8. Let $(V, +_V, \cdot_V)$ be a vector space over F. Let I be an index set such that W_i is a subspace of V for all $i \in I$. Then the intersection

$$W = \bigcap_{i \in I} W_i$$

is a subspace of V.

Proof. For all $a \in F$ and for all $x, y \in W$, since

$$x +_V y \in W_i$$
 and $a \cdot_V x \in W_i$ and $0_V \in W_i$

hold for all indices $i \in I$, we have

$$x +_V y \in W$$
 and $a \cdot_V x \in W$ and $0_V \in W$.

Thus, W is a subspace of V.

Definition. Let $(V, +_V, \cdot_V)$ be a vector space over F. Let S_1 and S_2 be subsets of V. Then the *sum* of S_1 and S_2 , denoted $S_1 + S_2$, is defined as

$$S_1 + S_2 = \{x + y : x \in S_1 \text{ and } y \in S_2\}.$$

Theorem 1.9. Let $(V, +_V, \cdot_V)$ be a vector space over F. If W_1 and W_2 be subspaces of V, then the following statements are true.

- (a) $W_1 + W_2$ is a subspace of V.
- (b) If W is a subspace of V with $W_1 \cup W_2 \subseteq W$, then $W_1 + W_2 \subseteq W$.

Proof.

(a) Suppose that $a \in F$ and $x, y \in W_1 + W_2$. Then there exists $x_1, y_1 \in W_1$ and $x_2, y_2 \in W_2$ such that

$$x = x_1 +_V x_2$$
 and $y = y_1 +_V y_2$.

Thus,

$$a \cdot_V x = a \cdot_V (x_1 + x_2) = a \cdot_V x_1 + a \cdot_V x_2 \in W_1 + W_2$$

and

$$x +_V y = (x_1 +_V x_2) + (y_1 +_V y_2) = (x_1 +_V y_1) + (x_2 +_V y_2) \in W_1 + W_2.$$

We also have $0_V = 0_V +_V 0_V \in W_1 + W_2$. Hence, $W_1 + W_2$ is a subspace of V.

(b) If $x \in W_1 + W_2$, then there exists $x_1 \in W_1$ and $x_2 \in W_2$ such that $x = x_1 + x_2$. Since $W_1 \subseteq W$ and $W_2 \subseteq W$, we have $x_1 \in W$ and $x_2 \in W$, which implies $x \in W$.

1.4 Spanning Sets

Definition. Let (G, +) be an Abelian group. Then we define

$$\sum_{i=m}^{n} a_i = \begin{cases} \sum_{i=m}^{n-1} a_i + a_n & \text{if } m \leq n \\ 0_G & \text{if } m > n, \end{cases}$$

where $a_i \in G$ for each integer i with $m \leq i \leq n$.

Definition. Let $(V, +, \cdot)$ be a vector space over F. Let S be a subset of V. Then a vector $x \in V$ is called a *linear combination* of S if there exist some nonnegative integer n, scalars $a_1, \ldots, a_n \in F$, and vectors $x_1, \ldots, x_n \in S$ such that

$$x = \sum_{i=1}^{n} a_i x_i.$$

Remark. Since n can be zero, 0_V is a linear combination for all $S \subseteq V$.

Remark. Although S can be infinite, the number of terms in the summation must be finite. For example, in the vector space \mathbb{R} over \mathbb{Q} , although we have

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \cdots,$$

e is still not a linear combination of \mathbb{Q} .

Definition. Let $(V, +, \cdot)$ is a vector space over F. The *span* of S, denoted span(S), is the set that consists of all linear combinations of S.

Theorem 1.10. Let $(V, +, \cdot)$ be a vector space over F. Let $S \subseteq V$. Then the following statements are true.

- (a) $\operatorname{span}(S)$ is a subspace of V.
- (b) If W is a subspace of V such that $S \subseteq W$, then $\operatorname{span}(S) \subseteq W$.

Proof.

(a) If $c \in F$ and $x, y \in \text{span}(S)$, then there exist nonnegative integers m, n, scalars $a_1, \ldots, a_m, b_1, \ldots, b_n \in F$ and vectors $x_1, \ldots, x_m, y_1, \ldots, y_n \in S$ such that

$$x = \sum_{i=1}^{m} a_i x_i$$
 and $y = \sum_{j=1}^{n} b_j y_j$.

Thus, we have

$$cx = c(a_1x_1 + \dots + a_mx_m)$$

$$= c(a_1x_1) + \dots + c(a_mx_m)$$

$$= (ca_1)x_1 + \dots + (ca_m)x_m \in \operatorname{span}(S)$$

and

$$x + y = a_1x_1 + \dots + a_mx_m + b_1y_1 + \dots + b_ny_n \in \operatorname{span}(S).$$

Also, $0_V \in \text{span}(S)$. Hence, span(S) is a subspace of V.

(b) If $x \in \text{span}(S)$, then there exists an nonnegative integer n, scalars $a_1, \ldots, a_n \in F$ and vectors $x_1, \ldots, x_n \in S$ such that

$$x = \sum_{i=1}^{m} a_i x_i.$$

Thus, since $x_1, \ldots, x_n \in W$, we have $x = a_1 x_1 + \cdots + a_n x_n \in W$.

Definition. A subset S of a vector space $(V, +, \cdot)$ spans V if span(S) = V. In this case, we also say that S is a spanning set of V.

Example. $\{(0,1,1),(1,0,1),(1,1,0)\}$ is a spanning set of \mathbb{R}^3 since for all $x,y,z\in\mathbb{R}$,

$$(x,y,z) = \frac{-x+y+z}{2} \cdot (0,1,1) + \frac{x-y+z}{2} \cdot (1,0,1) + \frac{x+y-z}{2} \cdot (1,1,0).$$

1.5 Linearly Independent Sets

Definition. Let $(V, +, \cdot)$ be a vector space over F. Let S be a subset of V. For scalars $a_1, \ldots, a_n \in F$ and distinct vectors $x_1, \ldots, x_n \in S$, we say that

$$\sum_{i=1}^{n} a_i x_i = 0_V$$

is a trivial representation of 0_V as a linear combination of S if $a_1 = \cdots = a_n = 0_F$.

Definition. Let $(V, +, \cdot)$ be a vector space over F.

- A subset S of V is called *linearly dependent* if there exists a nontrivial representation of 0_V as a linear combination of S.
- \bullet A subset S of V is called *linearly independent* if it is not linear dependent.

Theorem 1.11. Let $(V, +, \cdot)$ be a vector space over F and let $S \subseteq V$. Then S is linearly independent if and only if there exists $x \in S$ such that $x \in \text{span}(S \setminus \{x\})$.

Proof. (\Rightarrow) Because S is linearly dependent, it follows that there exists a nontrivial representation

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0_V$$

as a linear combination of S, where $a_1, \ldots, a_n \in F$ are scalars and $x_1, \ldots, x_n \in S$ are distinct vectors. Without loss of generality, let $a_1 \neq 0_F$. Then we have

$$x_1 = (-a_1)^{-1}(a_2x_2 + \dots + a_nx_n)$$

= $(-a_1)^{-1}a_2x_2 + \dots + (-a_1)^{-1}a_nx_n$
 $\in \operatorname{span}(S \setminus \{x_1\}).$

 (\Leftarrow) Since $x \in \text{span}(S \setminus \{x\})$, there exists scalars $a_1, \ldots, a_n \in F$ and distinct vectors $x_1, \ldots, x_n \in S \setminus \{x\}$ such that

$$a_1x_1 + \cdots + a_nx_n = x.$$

Then

$$(-1_F)x + a_1x_1 + \dots + a_nx_n = 0_V$$

is a nontrivial representation of 0_V as a linear combination of S.

Theorem 1.12. Let $(V, +, \cdot)$ be a vector space over F. Let S be a subset of V and let x be an element of S. Then $x \in \text{span}(S \setminus \{x\})$ if and only if $\text{span}(S) = \text{span}(S \setminus \{x\})$.

Proof. (\Rightarrow) Since $x \in \text{span}(S \setminus \{x\})$ and $S \setminus \{x\} \subseteq \text{span}(S \setminus \{x\})$, we have

$$S \subseteq \operatorname{span}(S \setminus \{x\}) \quad \Rightarrow \quad \operatorname{span}(S) \subseteq \operatorname{span}(S \setminus \{x\})$$

by Theorem 1.10. Also, $\operatorname{span}(S \setminus \{x\}) \subseteq \operatorname{span}(S)$ because $S \setminus \{x\} \subseteq S$. Thus, we can conclude that $\operatorname{span}(S \setminus \{x\}) = \operatorname{span}(S)$.

$$(\Leftarrow)$$
 Since $x \in S \subseteq \text{span}(S) = \text{span}(S \setminus \{x\})$, we have $x \in \text{span}(S \setminus \{x\})$.

Example. Let $S = \{1, 1 + 2x, 1 + 2x + 3x^2, 1 + 2x + 3x^2 + 4x^3\}$ be a subset of $\mathcal{P}_3(\mathbb{R})$. Then S is linearly independent since the only solution to the following system of linear equations

$$a_1 = 0$$

 $a_1 + 2a_2 = 0$
 $a_1 + 2a_2 + 3a_3 = 0$
 $a_1 + 2a_2 + 3a_3 + 4a_4 = 0$

is $a_1 = a_2 = a_3 = a_4 = 0$.

Theorem 1.13. Let $(V, +, \cdot)$ be a vector space, and let $R \subseteq S \subseteq V$. If R is linearly dependent, then S is linearly dependent.

Proof. If R is linearly dependent, then there exists $x \in R$ such that $x \in \text{span}(R \setminus \{x\})$. By $R \subseteq S$, we have $R \setminus \{x\} \subseteq S \setminus \{x\}$. Since $x \in S$ and $x \in \text{span}(S \setminus \{x\})$, S is linearly dependent.

Corollary. Let $(V, +, \cdot)$ be a vector space, and let $R \subseteq S \subseteq V$. If S is linearly independent, then R is linearly independent.

Proof. Suppose that S is linearly independent. If R is linearly dependent, then so is S by Theorem 1.13, contradiction. Thus, R is linearly independent.

Theorem 1.14. Let $(V, +, \cdot)$ be a vector space. For each finite set $S \subseteq V$, there exists a linearly independent set $Q \subseteq S$ such that $\operatorname{span}(Q) = \operatorname{span}(S)$.

Proof. The proof is by induction on n = |S|. The induction begins with n = 0, i.e., $S = \emptyset$. Since \emptyset is linearly independent, we can choose $R = \emptyset$, and thus the theorem holds.

Now suppose that the theorem is true for some integer $n \geq 0$, and we prove that the theorem holds for n+1. If S is linearly independent, then we can choose Q=S. Otherwise, there exists $x \in S$ with $\mathrm{span}(S \setminus \{x\}) = \mathrm{span}(S)$ because S is linearly dependent. Let $S' = S \setminus \{x\}$. Then there exists a linearly independent set $Q \subseteq S'$ such that $\mathrm{span}(Q) = \mathrm{span}(S')$ by induction hypothesis, implying $Q \subseteq S$ and $\mathrm{span}(Q) = \mathrm{span}(S)$.

1.6 Bases and Dimension

Definition. Let $(V, +, \cdot)$ be a vector space. A subset S of V is a *basis* of V if S is not only a spanning set but also a linearly independent set of V.

Example. Following are some examples of bases.

- Since span(\varnothing) = $\{0_V\}$ and \varnothing is linearly independent, \varnothing is a basis of $\{0_V\}$.
- Let $S = \{x_1, \ldots, x_n\}$ be a subset of F^n with $(x_i)_j = [i = j]$ for all $i, j \in \{1, \ldots, n\}$. Then S is called the *standard basis* of F^n .
- The set $S = \{1_F, x, x^2, \dots, x^n\}$ is the called the *standard basis* of $\mathcal{P}_n(F)$.

Theorem 1.15. Let $(V, +, \cdot)$ be a vector space over F. If there exists a finite set S that spans V, then there is a subset Q of S that is a finite basis of V.

Proof. By Theorem 1.14, there exists a linearly independent set $Q \subseteq S$ such that $\operatorname{span}(Q) = \operatorname{span}(S) = V$. Thus, Q is a finite basis of V.

Theorem 1.16 (Replacement Theorem). Let $(V, +, \cdot)$ be a vector space over F. Let S be a finite set that spans V, and let $Q \subseteq V$ be a finite linearly independent set. Then $|Q| \leq |S|$, and there exists $R \subseteq S \setminus Q$ such that both $|Q \cup R| = |S|$ and $\operatorname{span}(Q \cup R) = V$ hold.

Proof. The proof is based on induction on |Q|. The induction begins with |Q| = 0, i.e., $Q = \emptyset$. Choosing R = S, we have $Q \cup R = S$, and thus both $|Q \cup R| = S$ and span $(Q \cup R) = V$ hold.

Now suppose that the theorem is true for |Q|=m with $m\geq 0$, and we prove that the theorem holds for |Q|=m+1. Let $Q=\{x_1,\ldots,x_{m+1}\}$ and let $Q'=Q\setminus\{x_{m+1}\}$. By induction hypothesis, there exists $R'=\{y_1,\ldots,y_k\}\subseteq S\setminus Q'$ such that m+k=|S| and $\operatorname{span}(Q'\cup R')=V$. Since $Q'\cup R'$ spans V, there exists $a_1,\ldots,a_m,b_1,\ldots,b_k\in F$ such that

$$x_{m+1} = \sum_{i=1}^{m} a_i x_i + \sum_{j=1}^{k} b_j y_j.$$

If $b_j = 0_F$ for all $j \in \{1, ..., k\}$, then x_{m+1} is a linear combination of Q, implying that Q is linearly dependent, contradiction. Thus, there must exist some $j \in \{1, ..., k\}$ such that $b_j \neq 0_F$. Without loss of generality let $b_k \neq 0_F$. Also, let $R = \{y_1, ..., y_{k-1}\}$. Then $|Q \cup R| = (m+1) + (k-1) = |S|$. Since $k \geq 1$, we have $|Q| \leq |S|$. Note that $(Q' \cup R') \setminus (Q \cup R) = \{y_k\}$. By

$$y_k = (-b_k)^{-1} \left(\sum_{i=1}^m a_i x_i + (-1_F) x_{m+1} + \sum_{j=1}^{k-1} b_j y_j \right) \in \operatorname{span}(Q \cup R),$$

we have

$$Q' \cup R' \subseteq Q \cup R \cup \{y_k\} \subseteq \operatorname{span}(Q \cup R).$$

Thus, by Theorem 1.10 we have

$$V = \operatorname{span}(Q' \cup R') \subseteq \operatorname{span}(Q \cup R) \subseteq V,$$

implying span $(Q \cup R) = V$.

Corollary. Let $(V, +, \cdot)$ be a vector space over F that is spanned by a finite set. Then every linearly independent subset of V is finite.

Proof. Suppose that S is a finite spanning set of V and that Q is linearly independent. If Q is infinite, then there exists $Q' \subseteq Q$ with |Q'| = |S| + 1. It follows that Q' is linearly independent by Theorem 1.13, and thus $|Q'| \le |S|$ by Theorem 1.16, contradiction to |Q'| = |S| + 1. Therefore, Q is finite.

Theorem 1.17. Let $(V, +, \cdot)$ be a vector space over F. If V has a finite basis, then all bases of V have the same size.

Proof. Let S be a finite basis of V and let Q be an arbitrary basis of V. Since $V = \operatorname{span}(S)$ and Q is linearly independent, it follows that Q is finite, and thus $|Q| \leq |S|$ by replacement theorem (Theorem 1.16).

Also, since $V = \operatorname{span}(Q)$ and S is linearly independent, we have $|S| \leq |Q|$ by replacement theorem (Theorem 1.16). Thus, |Q| = |S|.

Definition. A vector space $(V, +, \cdot)$ over F is called *finite-dimensional* if it has a finite basis. A vector space that is not finite-dimensional is called *infinite-dimensional*.

Definition. The number of vectors in each basis of a finite-dimensional vector space V is called the *dimension* of V and is denoted by $\dim(V)$.

Example. We have $\dim(\{0_V\}) = 0$, $\dim(F^n) = n$, and $\dim(\mathcal{P}_n(F)) = n + 1$.

Example. The dimension of a vector space depends on its field of scalars.

- If $V = \mathbb{C}$ is a vector space over \mathbb{R} , then $\dim(V) = 2$ since $\{1, i\}$ is a basis of V.
- If $W = \mathbb{C}$ is a vector space over \mathbb{C} , then $\dim(W) = 1$ since $\{1\}$ is a basis of W.

Theorem 1.18. Let $(V, +, \cdot)$ be a vector space over F. Then a subset of V of $n = \dim(V)$ vectors is linearly independent if and only if it is a spanning set of V.

Proof. (\Rightarrow) Suppose that Q is linearly independent with |Q| = n. By replacement theorem (Theorem 1.16), there exists $R \subseteq S \setminus Q$ such that $|Q \cup R| = |S|$ and $\operatorname{span}(Q \cup R) = V$. Since |Q| = |S|, we have |R| = 0, i.e., $R = \emptyset$. Thus, $\operatorname{span}(Q) = V$.

(\Leftarrow) Suppose that S spans V with |S| = n. By Theorem 1.15, there is a subset Q of S that is a basis of V. Then we have |Q| = n, implying Q = S. Thus, S is a basis of V. □

Theorem 1.19. Let $(V, +, \cdot)$ be a finite-dimensional vector space over F, and let V' be a subspace of V. Then the following statements hold.

- (a) $\dim(V') \leq \dim(V)$.
- (b) If $\dim(V') = \dim(V)$, then V' = V.

Proof. Let S be a basis of V and let S' be a basis of V'.

- (a) Since S' is linearly independent and V = span(S), we have $|S'| \leq |S|$ by replacement theorem (Theorem 1.16). Thus, $\dim(V') \leq \dim(V)$.
- (b) Since S' is linearly independent and $|S'| = \dim(V)$, we have $\operatorname{span}(S') = V$ by Theorem 1.18. Thus, $V' = \operatorname{span}(S') = V$.

Chapter 2

Linear Transformations

2.1 Linear Transformations, Null Spaces and Ranges

Definition. Let $f: X \to Y$ be a function.

- f is injective (i.e, f is an injection) if T(x) = T(x') implies x = x' for $x, x' \in X$.
- f is surjective (i.e., f is a surjection) if for each $y \in Y$, there exists some $x \in X$ with T(x) = y.
- f is bijective (i.e., f is a bijection) if f is injective and surjective.

Remark. If both domain and codomain of a function are vector spaces, then the function is usually said to be a transformation. Furthermore, it is said to be an operator if its domain and codomain are the same.

Definition. Let V and W be vector spaces over F. A transformation $T:V\to W$ is *linear* if the following statements hold.

- (a) T(x+y) = T(x) + T(y) for all $x, y \in V$.
- (b) T(ax) = aT(x) for all $a \in F$ and $x \in V$.

The set of all linear transformations from V to W is denoted by $\mathcal{L}(V, W)$. In the case that V = W, we write $\mathcal{L}(V)$ for short.

Example. The zero transformation from V to W is the transformation $O_{V,W}: V \to W$ that satisfies $O_{V,W}(x) = 0_W$ for all $x \in V$. It is clear that $O_{V,W} \in \mathcal{L}(V,W)$.

Example. The identity transformation on V is the transformation $I_V: V \to V$ that satisfies $I_V(x) = x$ for all $x \in V$. It is clear that $I_V \in \mathcal{L}(V)$.

Example. Recall that $\mathcal{P}(F)$ is the set of polynomials with coefficients in F.

- The differential operator $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ with D(f) = f' for $f \in \mathcal{P}(\mathbb{R})$, where f' is the derivative of f, is linear.
- The operator $T: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ such that for $f \in \mathcal{P}(\mathbb{R})$,

$$(T(f))(x) = \int_0^x f(t)dt$$

for all $x \in \mathbb{R}$, is linear.

Theorem 2.1. If V and W are vector spaces over F, then $\mathcal{L}(V, W)$ is also a vector space over F.

Proof. $\mathcal{L}(V,W)$ is a vector space because it is a subspace of $\mathcal{F}(V,W)$, which is proved as follows.

(a) If $T_1, T_2 \in \mathcal{L}(V, W)$, then $T_1 + T_2$ is linear because

$$(T_1 + T_2)(x + y) = T_1(x + y) + T_2(x + y)$$

$$= T_1(x) + T_1(y) + T_2(x) + T_2(y)$$

$$= T_1(x) + T_2(x) + T_1(y) + T_2(y)$$

$$= (T_1 + T_2)(x) + (T_1 + T_2)(y)$$

and

$$(T_1 + T_2)(cx) = T_1(cx) + T_2(cx)$$

$$= cT_1(x) + cT_2(x)$$

$$= c(T_1(x) + T_2(x))$$

$$= c(T_1 + T_2)(x)$$

hold for $x, y \in V$ and $c \in F$.

(b) If $T \in \mathcal{L}(V, W)$ and $a \in F$, then aT is linear because

$$(aT)(x + y) = aT(x + y)$$

$$= a(T(x) + T(y))$$

$$= aT(x) + aT(y)$$

$$= (aT)(x) + (aT)(y)$$

and

$$(aT)(cx) = aT(cx) = a(cT(x)) = c(aT(x)) = c(aT)(x)$$

hold for $x, y \in V$ and $c \in F$.

(c) It is clear that $O_{V,W} \in \mathcal{L}(V,W)$.

Definition. Let V and W be vector spaces over F, and let $T: V \to W$ be linear.

• The null space N(T) of T is the set of vectors $x \in V$ with $T(x) = 0_W$; that is,

$$N(T) = \{x \in V : T(x) = 0_W\}.$$

• The range R(T) of T is the image of V under T; that is,

$$R(T) = \{T(x) : x \in V\}.$$

Example. Let $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ be the differential operator. Then

$$N(D) = \{a_0 : a_0 \in \mathbb{R}\}$$
 and $R(D) = \mathcal{P}(\mathbb{R})$.

Theorem 2.2. Let V and W be vector spaces over F, and let $T: V \to W$ be linear. Then N(T) and R(T) are subspaces of V and W, respectively.

Proof.

- (a) Let $x, x' \in N(T)$ and $a \in F$. Then we have $T(x+x') = T(x) + T(x') = 0_W + 0_W = 0_W$, $T(ax) = aT(x) = a0_W = 0_W$ and $T(0_V) = 0_W$. Thus, N(T) is a subspace of V
- (b) Let $y, y' \in R(T)$ and $a \in F$. There exist $x, x' \in V$ with y = T(x) and y' = T(x'). Then we have y + y' = T(x) + T(x') = T(x + x'), ay = aT(x) = T(ax) and $0_W = T(0_V)$. Thus, R(T) is a subspace of W.

Definition. Let V and W be vector spaces over F, and let $T: V \to W$ be linear.

- The nullity of T, denoted by nullity (T), is the dimension of N(T).
- The rank of T, denoted by rank(T), is the dimension of R(T).

Theorem 2.3 (Rank-nullity Theorem). Let V and W be vector spaces over F, and let $T: V \to W$ be linear. If V is finite-dimensional, then $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V)$.