

Question 1: Rate of Convergence and Order of Convergence

(a) Determine the rate of convergence of the following sequences:

(i)
$$x_n = 1 + (\frac{1}{2})^n$$

Solution: $x_{n \to \infty} = 1$, $\frac{\|x_{n+1} - x_{\infty}\|}{\|x_n - x_{\infty}\|} = \frac{(\frac{1}{2})^{n+1}}{(\frac{1}{2})^n} = \frac{1}{2}$, $O(\frac{1}{2}^n)$
(converges linearly, p=1, $0 < k = 0.5 < 1$)

(ii)
$$x_n = 1 + (\frac{1}{n})^n$$

Solution: $x_{n \to \infty} = 1$, $\frac{\|x_{n+1} - x_{\infty}\|}{\|x_n - x_{\infty}\|} = \frac{\left(\frac{1}{n}\right)^{n+1}}{\left(\frac{1}{n}\right)^n} = \frac{1}{n} \to \lim_{n \to \infty} \frac{1}{n} = 0$, $O(\frac{1}{n})$
(converges super-linearly, p=1, $k = 0$)

(b) Suppose you apply an iterative method and obtain the following errors from the first four steps: 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} , How would you characterize the order of convergence of this method?

(A) Linear
$$\Rightarrow ||e_{n+1}|| \approx 10^{-2} ||e_n|| \Rightarrow \begin{vmatrix} e_n & k = ||e_{n+1}||/||e_n|| \\ 10^{-2} & - \\ 10^{-4} & 10^{-2} \\ \hline 10^{-6} & 10^{-2} \\ \hline 10^{-8} & 10^{-2} \end{vmatrix}$$

- (B) Super-linear
- (C) Quadratic
- (D) Faster than Quadratic

- (c) Suppose you apply an iterative method and obtain the following errors from the first four steps: 10^{-2} , 10^{-4} , 10^{-8} , 10^{-16} , How would you characterize the order of convergence of this method?
 - (A) Linear
 - (B) Super-linear

		e_n	$ \mathbf{k} = e_{n+1} / e_n^2 $
		10^{-2}	
(C) Quadratic	$\Rightarrow \ e_{n+1}\ \approx 1\ e_n\ ^2 \Rightarrow$	10^{-4}	1
		10^{-8}	1
		10^{-16}	1

- (D) Faster than Quadratic
- (d) Limits Involving Continuous Functions Defined on Convergent Sequences: Determine whether the sequence $\lim_{n\to\infty}\cos(\frac{3}{n^2})$ converges. If it converges, find its limit. Solution: $\lim_{n\to\infty}\cos(\frac{3}{n^2})\to\lim_{n\to\infty}\cos(0)=1$, The sequence converges with limit =1
- (e) Rate of convergence of functions. Definition. Let f be a function defined on the interval (a,b) that contains x=0, and suppose $\lim_{x\to 0} f(x) = L$. If there exists a function g for which $\lim_{x\to 0} g(x) = 0$ and a positive constant K such that

$$|f(x) - L| \le K|g(x)|$$

for all sufficiently small values of x, then f(x) is said to converge to L with rate of convergence O(g(x)).

Find the Rate of convergence of the following function as $h \to 0$: $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$

Solution:
$$\lim_{h\to 0} \frac{\sin(h)}{h} = 1 \to \sin(h) = h - \frac{h^3}{3!} \cdots,$$

 $\to \lim_{h\to 0} \frac{\sin(h)}{h} = \lim_{h\to 0} \frac{h - \frac{h^3}{3!} \cdots}{h} = \lim_{h\to 0} 1 - \frac{h^2}{6} \cdots$
 $\therefore \|\lim_{h\to 0} \frac{\sin(h)}{h} - 1\| \le \frac{1}{6} h^2$
 $k = \frac{1}{6}, O(h^2)$

(f) Determine the order of convergence of the sequence generated by the iterative algorithm used to find \sqrt{a} , where a is a positive real number using the following recursive formula:

$$x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$$

To accomplish this we must be able to compare the error in the $(n+1)^{\text{th}}$ term in the sequence $x_{n+1} - \sqrt{a}$ with error in the n^{th} , $x_n - \sqrt{a}$

Solution:

$$\begin{split} x_{n+1} - \sqrt{a} &= \frac{1}{2}(x_n + \frac{a}{x_n}) \\ &= \frac{1}{2}\left(\frac{x_n^2 + a}{x_n}\right) - \sqrt{a} \\ &= \frac{1}{2x_n}\left(x_n^2 + a - 2x_n\sqrt{a}\right) \\ &= \frac{\left(x_n - \sqrt{a}\right)^2}{2x_n} \\ \therefore \lim_{n \to \infty} \frac{\|x_{n+1} - \sqrt{a}\|}{\|x_n - \sqrt{a}\|^p} &= \frac{\left(x_n - \sqrt{a}\right)^2}{2x_n(\|x_n - \sqrt{a}\|^p)}, \text{ with } p = 2 \\ &\lim_{n \to \infty} \frac{1}{2x_n} &= \frac{1}{2\sqrt{a}} \therefore \text{ The order of convergence is quadratic} \end{split}$$

Question 2: <u>Bisection Method</u> for root finding—Textbook (9thedition) — Problem Set 2.1 (Page 54). Answers should be given in a tabular form (as in the lecture slides).

2. Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the bisection method on the following intervals to find p_3

(a)	[-2, 1]	5]				Answers: a	a0.68	75	
	[→ +-	It#	+ a		+b	+ p	f(a)	f(b)	++ abs(pn-pn_1)/pn
		1 2 3	-2 -2 -1.1	25	1.5 -0.25 -0.25	-0.25 -1.125 -0.6875	-22.5 -22.5 -22.5	3.75 3.75 3.75	-4.0 -0.888888888888888 -0.81818181818182

(b)	[-1.25, 2]	2.5]	Answers: b. 1.09375				
	It#	a	-+ b	+ р	f(a)	f(b)	abs(pn-pn_1)/pn
	1 1 2 3	-1.25 0.625 0.625	2.5 2.5 2.5 1.5625	0.625 1.5625 1.09375	-2.953125 -2.953125 -2.953125	: :	1.0 0.2 0.2857142857142857

5. use the bisection method to find solutions accurate to within 10^{-5} for the following problems.

(a) $x - 2^{-x} = 0$	for $0 \le x$	≤ 1 Answer	rs: a.	p17	= 0.641182
_> ++	b	p	+ f(a)	f(b)	 abs(pn-pn_1)/pn
1	1 0.75 0.75 0.6875 0.65625 0.65625 0.6484375 0.64453125 0.642578125 0.642578125	0.5 0.75 0.625 0.6875 0.65625 0.640625 0.6484375 0.64453125 0.642578125 0.6416015625 0.64111328125 0.641357421875	+	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.0 0.333333333333333333333333333333333
14 0.64111328125 15 0.64117431640625 16 0.64117431640625 p17 = 0.6411819458007812	0.6412353515625 0.6412353515625 0.641204833984375	0.64117431640625 0.641204833984375 0.6411895751953125	-1 -1 -1	0.5 0.5 0.5	0.49995240361732507 0.49997620294131645 0.4999881011875015

It#	a	b	р Р	f(a)	f(b)	 abs(pn-pn_1)/p
+ 1	+ l 0	+ 1	+ 0.5	+ -1.0	 2.7182818284590446	+ 0.0
2	i	0.5	0.25	-1.0	2.7182818284590446	0.0
j - 3	0.25	0.5	0.375	-1.0	2.7182818284590446	0.3333333333333
j 4	0.25	0.375	0.3125	-1.0	2.7182818284590446	0.4
j 5	0.25	0.3125	0.28125	-1.0	2.7182818284590446	0.44444444444
6	0.25	0.28125	0.265625	-1.0	2.7182818284590446	0.47058823529411
7	0.25	0.265625	0.2578125	-1.0	2.7182818284590446	0.48484848484848
8	0.25	0.2578125	0.25390625	-1.0	2.7182818284590446	0.49230769230769
9	0.25390625	0.2578125	0.255859375	-1.0	2.7182818284590446	0.4961832061068
10	0.255859375	0.2578125	0.2568359375	-1.0	2.7182818284590446	0.49809885931558
11	0.2568359375	0.2578125	0.25732421875	-1.0	2.7182818284590446	0.4990512333965
12	0.25732421875	0.2578125	0.257568359375	-1.0	2.7182818284590446	0.4995260663507
13	0.25732421875	0.257568359375	0.2574462890625	-1.0	2.7182818284590446	0.4997629208155
14	0.2574462890625	0.257568359375	0.25750732421875	-1.0	2.7182818284590446	0.4998814885043
15	0.25750732421875	0.257568359375	0.257537841796875	-1.0	2.7182818284590446	0.49994075127384
16	0.25750732421875	0.257537841796875	0.2575225830078125	-1.0	2.7182818284590446	0.4999703738816

Tools used in creating this document:

- Texmaker 5.0.4
- Spyder IDE 5.1.5 with python 3.8.5
- ©All questions in this file has been adapted from the sheet provided by the course instructor, I have only reorganized the sheet and attempted to answer it. Please do not share without the permission of the owner.

Ahmad.Aboelnaga@ejust.edu.eg ID:120200033, CSE01