

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
		0700/4

2851798509

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

JC20 06_9709_11/2R © UCLES 2020

[Turn over

Find the	first term and the co	mmon difference o	of the progression.	I
•••••				 •••••
•••••				
•••••				
•••••				
•••••				
•••••				 •••••
•••••				

Find the value of the positive constant k .	

3

Each year the selling price of a diamond necklace increases by 5% of the price the year before. The

a)	Write down an expression for the selling price of the necklace n years later and hence find the selling price in 2008.
b)	The company that makes the necklace only sells one each year. Find the total amount of mone obtained in the ten-year period starting in the year 2000.
b)	
b)	
b)	
o)	
D)	
b)	
)	

4

(c)

The diagram shows the graph of y = f(x), where $f(x) = \frac{3}{2}\cos 2x + \frac{1}{2}$ for $0 \le x \le \pi$.

(a)	State the range of f.	[2]

A function g is such that g(x) = f(x) + k, where k is a positive constant. The x-axis is a tangent to the curve y = g(x).

(b)	State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ or to $y = g(x)$.

State the equation of the curve which is the reflection of $y = f(x)$ in the x-axis. in the form $y = a \cos 2x + b$, where a and b are constants.	Give your answer [1]
	•••••

(a)	Given that the line is a tangent to the curve, express m in terms of c .
(b)	Given instead that $m = -4$, find the set of values of c for which the line intersects the curve two distinct points.

6 Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto \frac{1}{2}x - a,$$

$$g: x \mapsto 3x + b$$
,

where a and b are constants.

(a)	Given that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b .	[4]
		•••••
		••••••
		•••••
		•••••
		•••••
		•••••
(b)	Using these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, where c and constants.	d <i>d</i> are [2]
		•••••
		•••••
		•••••
		•••••

	Prove the identity $\frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \equiv \frac{2}{\cos \theta}$	$\frac{2}{8\theta}$. [3]
•		
•		
•		

(b)	Hence solve the equation	$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\cos\theta}$	$\frac{\sin\theta}{\sin\theta} = \frac{3}{\sin\theta},$	for $0 \le \theta \le 2\pi$.	[3]

In the diagram, ABC is a semicircle with diameter AC, centre O and radius 6 cm. The length of the arc AB is 15 cm. The point X lies on AC and BX is perpendicular to AX.

Find the perimeter of the shaded region <i>BXC</i> .	[6]

)	Find expressions for $\frac{dy}{dx}$ and $\frac{d}{dx}$	$\frac{2y}{x^2}$.	[4]

Determine the nature of each stationary point.	

10	The	coordinates of the points A and B are $(-1, -2)$ and $(7, 4)$ respectively.
	(a)	Find the equation of the circle, C , for which AB is a diameter. [4]

	Find the equation of the tangent, T , to circle C at the point B .	[4]
)	Find the equation of the circle which is the reflection of circle C in the line T .	[3]

11

The diagram shows part of the curve $y = \frac{8}{x+2}$ and the line 2y + x = 8, intersecting at points *A* and *B*. The point *C* lies on the curve and the tangent to the curve at *C* is parallel to *AB*.

(a)	Find, by calculation, the coordinates of A , B and C .	[6]

(b)	Find the volume generated when the shaded region, bounded by the curve and the line, is rotated through 360° about the <i>x</i> -axis. [6]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

老师微信: liuxue119118 (题目有修改过,请加微信确认是否完整,以免影响您的学习!