CTAMO 30 DEC 2005 -种具有脱硫作用的裂化催化剂

技术领域

本发明是关于一种裂化催化剂,更进一步地说是关于一种含钒的 具有脱硫作用的裂化催化剂。

背景技术

流化催化裂化(FCC)是一种工业规模应用的石油炼制过程。催 化裂化原料通常含有有机硫化合物形态的硫,例如硫醇、硫化物和噻 吩等,裂化产物中相应地也含有这些硫杂质,它们以一定比例进入汽 油馏份中,并进入汽油池。由于近年来对环境保护的日益重视,针对 汽油中硫含量的限制指标也越来越严格。限制汽油中硫含量不仅对环 境保护有利,而且对于降低汽车催化转化器的硫中毒程度也十分重 要。

常见的脱硫方式是进行加氢处理以脱除其中的部分硫化合物,从 而降低汽油中的硫含量。可以选择对 FCC 原料进行加氢处理,也可以 在 FCC 过程之后对裂化产物进行加氢处理。前者耗氢大,设备的投资 和运转费用都较高;后者会饱和产物中的烯烃,使辛烷值受到损失。

从经济的观点看,最好能够在裂化过程中除硫而不附加另外的处 理过程。为了达到这个目的,一部分的研究集中在从再生器的烟气中 除去硫,但这种方法实际上对产品的硫含量没有多大降低 (Krishna et. al., Additives Improve FCC Process, Hydrocarbon Processing, 1991, 11, 59-66); 另一部分研究是在 FCC 过程中添加具有脱硫功能的助 剂,通过 FCC 过程直接除去汽油中的硫。

对具有脱硫功能助剂的研究证明,一些金属元素,如钒、镍、铜、 镉、锡、硼、铝、锌等具有这方面的功能。例如, Grace Davison 公 司开发了降低 FCC 汽油硫含量的 GFS 降硫催化剂和 GSR 降硫助剂;在 USP5376608 和 USP5525210 中,公开的降硫助剂为负载金属的氧化铝 材料,所说金属选自 Ni、Cu、Zn、Ag、Cd、In、Sn、Hg、T1、Pb、Bi、 B、A1; 在 US6482315 中, 公开了一种负载 5~10 重% 钒的氧化铝材料 作为脱硫剂,它与含有 Y 型沸石的 FCC 裂化助剂配合使用可以显示出 更好的脱除汽油硫含量的作用。

CN1261618A 中公开了一种在流化床催化裂化过程的汽油脱硫方

法。该方法中提到的脱硫催化剂组合物包括一种多孔的分子筛,一般是八面沸石如 USY 分子筛,而该分子筛包含零价以上氧化态和在分子筛孔结构内沉积的、优选钒的金属组分以及提高裂化活性的稀土组分。

由于催化剂不仅存在于裂化反应的高温条件下,还要经蒸汽汽提和氧化再生的重复循环过程,因此催化剂的稳定性,特别是水热稳定性非常重要。但是上面提到的具有脱硫作用的裂化催化剂均为以金属化合物负载在一定的载体上形成的,金属离子处于离子交换位上,在水热稳定性上存在问题,在高温的作用下,负载的金属会从原来的位置上迁移到分子筛上,不但失去原有的脱硫活性,更严重的是钒能够破坏作为 FCC 催化剂中活性组元分子筛的稳定结构,最后导致整个催化剂失去活性。

发明简述

一种具有脱硫作用的组合物,其特征在于该组合物中含有骨架结构中含钒元素的分子筛作为脱硫组元。该组合物主要由载体、粘结剂、活性组元和骨架结构中含钒元素的分子筛组成。所说的骨架结构中含钒元素的分子筛占 1~20 重%,优选 7~15 重%。该组合物中所说的活性组元和骨架结构中含钒元素的分子筛的比例为 1~50、优选 3~20。

所说的骨架结构中含钒元素的分子筛选自钒硅分子筛、磷酸钒铝分子筛和磷酸钒硅铝分子筛中的一种或几种的混合物,优选钒硅分子筛为 VS-1 或 VS-2,其中硅与钒的摩尔比为 10~300,优选的磷酸钒铝分子筛为 VAPO-5、VAPO-11、VAPO-17 或 VAPO-31,其中铝与钒的摩尔比为 10~300。

所说的活性组元为各种大孔、中孔分子筛,如Y型分子筛和/或ZSM-5沸石。所说的Y型分子筛为超稳Y或稀土超稳Y。所说的Y型分子筛经金属氧化物改性,所说的金属氧化物为氧化锌;所说的ZSM-5沸石经稀土改性或经磷和稀土改性。所说的载体为高岭土。所说的粘结剂选自硅溶胶、铝溶胶和拟薄水铝石中的一种或其中两种或三者的混合物。

发明内容

本发明的目的是针对现有技术中金属化合物负载的脱硫裂化催化

WO 2005/000998 PCT/CN2004/000683

剂的不足,提供一种水热稳定性好、不影响主要活性组元分子筛结构的裂化催化剂。

本发明提供的具有脱硫作用的裂化催化剂,其特征在于该催化剂含有骨架结构中含钒元素的分子筛作为脱硫组元。

更具体地说,本发明提供的裂化催化剂,主要由粘土、粘结剂、活性组元和脱硫组元组成,所说的脱硫组元为骨架结构中含钒元素的分子筛,其含量优选占催化剂的1~20重%、更优选7~15重%;另外,其中所说的活性组元与骨架结构中含钒元素的分子筛的比例优选1~50、更优选3~20。

本发明提供的催化剂中,所说的骨架结构中含钒元素的分子筛,简称为含钒分子筛,是指钒元素进入分子筛的骨架,以 V4+形式结合在分子筛骨架中,作为骨架元素的分子筛,钒的存在形态以 FT-IR、ESR和 NMR 共同表征确定 (可参考文献 Vanadosilicate catalysts prepared from different vanadium sources and their characteristics in methanol to conversion (A. Miyamoto, D. Medhanavyn和 T. Inui, Applied Catalysis, 28 (1986) 89-103), Synthesis and Characterization of the Vanadium-incorporated Molecular Sieve VAPO-5 (S. H. Jhung, Y. S. UH和 H. Chon, Applied Catalysis 62 (1990) 61-72)以及 Synthesis, characterization and catalytic properties of vanadium silicates with a ZSM-48 structure (A. Tuel and Y. Ben Taarit, Applied Catalysis A: General, 102 (1993) 201-204))。

含钒分子筛可以为钒硅分子筛 (如 VS-1 和 VS-2), 其中钒和硅作为骨架元素, 硅与钒的摩尔比优选 10~100; 可以为磷酸钒铝分子筛 (如 VAPO-5、VAPO-11、VAPO-31、VAPO-17等), 其中钒、铝、磷作为骨架元素,同样,其中的硅与钒的摩尔比优选 10~100; 也可以为磷酸钒硅铝,硅与铝的比例是任意的,这时硅铝同时作为骨架元素,以硅钒摩尔比来表征骨架中钒的含量。无论是磷酸钒铝还是磷酸硅钒铝分子筛,骨架中磷元素含量对裂化催化剂的性能无明显影响。

本发明提供的催化剂中,所说的活性组元是常规裂化催化剂常常采用的,可以是各种大孔和或中孔分子筛,例如Y型分子筛和ZSM-5 沸石等,它们可以经改性得到,如USY、REY、REUSY或经各种金属氧 WO 2005/000998 PCT/CN2004/000683

化物处理得到的含金属组元的 Y 型分子筛; 所说的 ZSM-5 沸石可以 为稀土改性或经稀土和磷改性的 ZSM-5 沸石 (简记为 ZRP, 如 CN1093101A 中记载)。

本发明提供的催化剂中,所说的载体为各种粘土,如高岭土等; 所说粘结剂可以选自硅溶胶、铝溶胶和拟薄水铝石中的一种或两种或 三者的混合物。

本发明提供的流化催化裂化催化剂,由于在催化剂的活性组元中 引入具有脱硫作用的骨架中含钒元素的分子筛,可以在不影响常规的 FCC 操作条件的情况下,有效降低 FCC 过程汽油硫含量;与现有技术 所用的负载钒的氧化铝的催化剂相比,钒元素可稳定地存在于分子筛 中、避免了因为钒流失对裂化催化剂活性组元,如 Y 型分子筛结构的 破坏。

具体实施方式

下面通过实施例对本发明作进一步的说明,但是并不因此而限制 本发明。

在催化剂微型轻油裂化评价中采用原料的硫含量为 403mg/L。

实施例中,催化剂中所说的钒硅分子筛或钒铝磷分子筛的元素组 成以 X 射线荧光光谱定量分析; 其晶相和结晶度以 XRD 测定。

实施例 1~5 的催化剂中脱硫作用的分子筛为 VAPO-5。

实施例1

VAPO-5 分子筛的合成: 15g 干胶粉 (Al,O,含量 65.8%, 长岭催 化剂厂生产), 加水 60mL 打浆 60 分钟后向其中缓慢滴加 14g 正磷酸 溶液 (磷酸含量 85%, 北京试剂厂生产)。 搅拌 10 分钟后加入 2.3 克 五水硫酸氧钒 (V 含量 22%, 溶于 2g 水中), 室温下继续搅拌 60 分 钟后以 1mL/min 的速度加入 16mL 模板剂三乙胺 (含量 98%, 北京试剂 厂生产)。继续搅拌 1 小时后,置于晶化釜中 175℃动态晶化 72 小时。 所得产物用水洗涤后于 80℃烘干, 样品在流动的空气中程序升温焙烧 (120 $^{\circ}$ C, 1 小时; 3 $^{\circ}$ C/分钟升温至 550 $^{\circ}$ C; 保持 4 小时后缓慢冷却到 室温)。所得产物的 X-射线衍射(XRD)谱图具有 VAPO-5 分子筛特 征,其铝钒摩尔比为51。

按照 VAPO-5 10 重%、REUSY 分子筛 47 重%,硅溶胶 18 重%和 高岭土 25 重%的催化剂组成、将上述合成的 VAPO-5 加入含 10 重% 硅溶胶的溶液中,再加入 REUSY 分子筛和高岭土,搅拌均匀后,经喷雾干燥制备成催化剂 A1。

催化剂 A1 的结果见表 1, 在表 1 中, 同时列出催化剂 DB-1 的结果。

对比例1

对比催化剂 DB-1 的组成为: REUSY 分子筛 (晶胞常数为 24.5Å, 稀土含量 68 重%)、57 重%、硅溶胶 18 重%、高岭土 25 重%。

表1

	 -	
催化剂	DB - 1	A1
MA (800°C/8h)	64	64
C/0	1. 29	1. 29
反应温度/°C	500	500
干气	1.83	1. 71
液化气	10.65	8. 29
汽油	47.80	45.48
柴油	21.16	22. 09
重油	16. 37	19.56
焦炭	2.20	2.86
总计	100.0	100. 0
转化率/m%	62.47	58. 35
轻质油收率/m%	68.95	67.57
轻收+液化气/m%	79.60	75.86
重油/焦炭	7.45	6.84
焦炭/转化率	0. 04	0. 05
汽油硫含量, mg/L	318.7	176. 3

从表 1 可以看出,催化剂 A 1 与未添加含钒分子筛的对比催化剂 DB-1 相比,汽油的硫含量大大降低。

实施例 2

与实施例的催化剂 A1 不同的是, REUSY 分子筛用 Zn0 改性的稀土

USY 分子筛替代,该分子筛标记为 ZARY,其中 Zn0 含量 6 重%,稀土含量为 10 重%,USY 含量为 84 重%,催化剂编号 A1'。

对比例 2

与对比催化剂 DB-1 不同的是, REUSY 用 ZARY 替代。评价结果见表 2。

表 2

催化剂	对比剂 DB-2	催化剂 A1'
MA (800°C/8h)	64	64
C/0	1. 29	1. 29
反应温度/ °C	500	500
干气	2. 01	1. 99
液化气	12. 35	12. 23
汽油	49. 48	49. 29
柴油	20. 21	20.33
重油	14. 15	14. 27
焦炭	1.80	1. 89
总计	100.0	100.0
转化率/m%	65. 64	65.40
轻质油收率/m%	69. 69	69.62
轻收+液化气/m%	82.04	81.85
重油/焦炭	7.86	7. 55
焦炭/转化率	0. 03	0. 03
汽油硫含量, mg/L	321. 3	172. 1

实施例 3

脱硫组分为实施例 1 中合成的 VAPO - 5, 占 11.7 重%, USY 占 47 重%、ZRP10 重% (ZRP 为磷和稀土改性的 ZSM-5 分子筛, 工业牌号为 ZRP - 7, 齐鲁石化催化剂厂生产, SiO_2/AI_2O_3 为 80), 硅溶胶 12 重%、高岭土 19.3 重%。催化剂编号 A1"。评价结果见表 3。

对比例 3

对比催化剂 DB-3 的组成为, USY 分子筛 47 重%、ZRP10 重%, 硅溶胶 18 重%、高岭土 25 重%。评价结果见表 3。

表 3

表 3		
催化剂	对比剂 DB-3	催化剂 A1"
MA (800°C/8h)	64	64
C/0	1. 29	1. 29
反应温度/°C	500	500
干气	1.80	1. 73
液化气	13.18	12.92
汽油	51.70	52. 03
柴油	19.62	20.07
重油	11.78	11. 39
焦炭	1. 92	1.86
总计	100.0	100.0
转化率/m%	68.60	68. 54
轻质油收率/m%	71. 32	72.10
轻收+液化气/m%	84.50	85. 02
重油/焦炭	6. 14	6. 12
焦炭/转化率	0. 03	0. 03
汽油硫含量, mg/L	319.4	171. 6

实施例 4~7

实施例 4~7 的催化剂分别记为 A2、A3、A4 和 A5, ZARY 分子筛含量为 47 重量%, 高岭土含量为 25 重量%, 区别在于所用 VAPO-5 中 A1/V (mo1)分别为 150、130、80 和 15, 含量分别为 15 重%、6 重%、3 重%和 1 重%,硅溶胶含量分别为 13 重%、22 重%、25 重%和 24 重%。

微型轻油裂化评价装置的结果见表 4。

表 4

催化剂	DB - 1	A2	A3	A4	A5
A1/V (mo1)		150	130	80	15
MA (800°C/8h)	64	64	64	64	64
C/0	1. 29	1. 29	1. 29	1. 29	1. 29
反应温度/℃	500	500	500	500	500
干气	1.83	1.70	1.73	1.80	1.82
液化气	10.65	8.41	9.55	10.23	10.33
汽油	47.80	46.96	46.70	46.82	46.23
柴油	21.16	23. 02	21.17	21.13	20.97
重油	16. 37	19.43	16.33	16.74	15.89
焦炭	2.20	2.18	2.15	2.17	2. 21
总计	100.0	100.0	100.0	100.0	100.0
转化率/m%	62.47	59.25	60.13	61. 02	60.59
轻质油收率/11%	68.95	69.98	67.87	67.95	67.20
轻收+液化气/m%	79.60	78.39	77.42	78.18	77.53
重油/焦炭	7. 45	8. 91	7.60	7. 71	7. 19
焦炭/转化率	0. 04	0. 04	0. 04	0. 04	0. 04
汽油硫含量, mg/L	318. 7	181. 4	165. 3	169.4	173.0

从表 4 可以看出,催化剂 A2~A5 与未添加含钒分子筛的对比催化剂 DB-1 相比,汽油的硫含量大大降低。

实施例 8~12 的催化剂中脱硫作用的分子筛为 VAPO-11。 实施例 8

VAPO-11 的合成: 15g 干胶粉 ($A1_20_3$ 含量 65.8%, 长岭催化剂厂生产),加水 60mL 打浆 60 分钟后向其中缓慢滴加 14g 正磷酸溶液 (磷酸含量 85%,北京试剂厂生产)。搅拌 10 分钟后加入 2.1g 五水硫酸氧钒(V 含量 22%,溶于 2g 水中),室温下继续搅拌 60 分钟后以 1mL/min的速度加入 13.6mL 模板剂二丙胺 (含量 98%,北京试剂厂生产)。继续搅拌 1 小时后,置于晶化釜中 200 C 动态晶化 96 小时。所得产物的X-射线衍射 (XRD) 谱图具有 VAPO-11 分子筛的特征,铝钒摩尔比

为 53。

将按上述方法合成的 VAPO-11, 加入 REUSY 分子筛, 硅溶胶和高岭土, 同实施例 1 方法制备催化剂, 其中 VAPO-11 的含量为 10 重%, REUSY 分子筛 47 重%, 硅溶胶 18 重%和高岭土 25 重%, 经喷雾干燥制备成催化剂, 编号为 A6。

A6 的微型轻油裂化评价装置的结果见表 5。

表 5 中同时列出 DB-1 的评价结果。

对比例 4

本对比例说明 USP6482315 的方法制备的对比催化剂。

将 0.2 克偏钒酸铵溶解在 20ml 去离子水中,再将该溶液加入将有 10 克拟薄水铝石的烧杯中,搅拌 1h,干燥,得到脱硫组分。

以上述产物制备得到对比催化剂 DB-4, 脱硫组分占 10 重%, 其余组分为 REUSY 分子筛 47 重%, 硅溶胶 18 重%和高岭土 25 重%。

DB-4的微型轻油裂化评价装置的结果见表 5。

表 5

			
催化剂	DB - 1	DB - 4	A6
MA (800℃/8h)	64	64	64
C/0	1. 29	1. 29	1. 29
反应温度/℃	500	500	500
干气	1.83	4. 47	1. 37
液化气	10.65	9. 35	8. 13
汽油	47.80	44.80	41.57
柴油	21.16	18. 23	19.89
重油	16. 37	16. 12	26. 30
焦炭	2.20	7. 03	2.74
总计	100. 0	100.0	100.0
转化率/m%	62.47	53. 55	53. 81
轻质油收率/m%	68.95	63. 03	61. 46
轻收+液化气/m%	79.60	72. 38	69. 59
重油/焦炭	7. 45	2. 29	9. 58

焦炭/转化率	0. 04	0.13	0. 05
汽油硫含量, mg/L	318. 7	308. 6	217. 0

从表 5 可以看出, A6 与未添加含钒分子筛的催化剂 DB-1 和现有技术提供的钒负载的对比催化剂 DB-4 相比,汽油的硫含量大大降低。

以下说明本发明提供的催化剂的稳定性。

将对比催化剂 DB-4 和催化剂 A6,在 800℃进行了水热老化实验,分别处理 8 小时、12 小时、16 小时和 20 小时后测定样品中的钒含量和 Y 型分子筛的结晶度,结果见表 6。

表 6

	对比剂 DB	对比剂 DB - 4		16
水热老化时间	V含量	结晶度	V 含量	结晶度、
(小时)	(重%)	(%)	(重%)	(%)
新鲜剂	0. 1	100	0. 1	100
8	0. 1	99	0. 1	99
12	0. 1	90	0. 1	99
16	0. 09	88	0. 1	99
20	0. 09	84	0. 1	99

从表 6 看出 ,对比催化剂 DB-4 中氧化铝上的钒含量随着水热 老化时间延长有流失的现象,而 Y 型分子筛的结晶度也降低;而 A6 中钒含量和结晶度都能够保持稳定。

实施例 9~12

实施例 9~12 的催化剂分别记为 A7, A8, A9 和 A10。

经微型轻油裂化评价装置的结果见表 7。

表7中同时列出对比催化剂 DB-1 的评价结果。

表 7

				,	
催化剂	DB - 1	A7	A8	A9	A10
A1/V (mo1)		180	70	23	-16
MA (800°C/8h)	64	64	64	64	64
C/0	1. 29	1. 29	1. 29	1. 29	1. 29
反应温度/°C	500	500	500	500	500
干气	1.83	1. 33	1. 36	1. 37	1. 35
液化气	10.65	8.16	8. 11	8.10	8. 12
汽油	47.80	41.58	41.50	41.53	41. 38
柴油	21.16	19.91	19.90	19.83	19.87
重油	16. 37	26. 32	26.14	26.42	26. 51
焦炭	2.20	2.70	2.99	2.75	2.77
总计	100.0	100.0	100.0	100.0	100.0
转化率/m%	62.47	53.77	53.96	53.75	53. 62
轻质油收率/m%	68.95	61.49	61.40	61.36	61. 25
轻收+液化气/m%	79.60	69.65	69.51	69.46	69.37
重油/焦炭	7.45	9.75	8.74	9. 61	9.57
焦炭/转化率	0. 04	0. 05	0. 06	0. 05	0. 05
汽油硫含量, mg/L	318.7	217. 0	218.3	240.1	284.3

从表 7 可以看出, A7~A10 与未添加含钒分子筛的催化剂 DB-1 相比, 汽油的硫含量大大降低。

实施例 13~17 中催化剂的脱硫组分为 VS-1。

实施例 13

将 1.0 克 V_2O_5 溶解在 50 克四丁基氢氧化铵中,再加入 15 克硅胶作硅源,搅拌均匀,160 \mathbb{C} 晶化 10 天,530 \mathbb{C} 焙烧 5 小时后所得产物的 X – 射线衍射(XRD)谱图具有 VS – 1 分子筛的特征,硅钒摩尔比为 52。

将按上述方法合成的 VS-1, 按实施例 1 所述方法加入 REUSY 分子筛、硅溶胶和高岭土制成催化剂,其中 VS-1 的含量为 10 重%, REUSY 分子筛 47 重%, 硅溶胶 18 重%和高岭土 25 重%, 经喷雾干燥制备成催化剂, 记为 A11。

经微型轻油裂化评价装置的结果见表 8。

表 8

催化剂	DB - 1	A11
MA (800℃/8h)	64	64
C/0	1. 29	1. 21
反应温度/℃	500	500
干气	1.83	1. 45
液化气	10.65	9. 91
汽油	47.80	41.68
柴油	21.16	19.72
重油	16. 37	24. 59
焦炭	2.20	2. 65
总计	100. 0	100. 0
转化率/m%	62.47	55.69
轻质油收率/m%	68.95	61.40
轻收+液化气/m%	79.60	71. 31
重油/焦炭	7. 45	9. 60
焦炭/转化率	0. 04	0. 05
汽油硫含量, mg/L	318. 7	210.0

从表 8 可以看出, A11 与未添加含钒分子筛的催化剂 DB-1 相比, 汽油的硫含量大大降低。

实施例 14~17

实施例 12~15 的催化剂分别记为 A12, A13, A14 和 A15。与 A11 相比,区别在于所用的 VS-1 中硅钒摩尔比分别为 178、132、72、40,含量分别为 15 重%,6 重%,3 重%,1 重%,硅溶胶含量分别为 13 重%,22 重%,25 重%和 24 重%。

经微型轻油裂化评价装置的结果见表 9。

表 9

催化剂	DB - 1	A12	A13	A14	A15
Si/V (mol)		178	132	72	40
MA (800°C/8h)	64	64	64	64	64
C/0	1. 29	1. 21	1.21	1.21	1.21
反应温度/°C	500	500	500	500	500
干气	1.83	1.44	1.46	1.45	1.43
液化气	10.65	9. 03	9. 02	9. 05	9.10
汽油	47.80	43.85	43.82	43.85	43.89
柴油	21.16	18.53	18.46	18.49	18.50
重油	16. 37	24.95	24.50	24.49	24.43
焦炭	2.20	2.20	2.74	2.67	2.65
总计	100.0	100.0	100.0	100.0	100.0
转化率/m%	62.47	56.52	57. 04	57. 02	57. 07
轻质油收率/m%	68.95	62.38	62.28	62.34	62.39
轻收+液化气/m%	79.60	71.41	71.30	71. 39	71.49
重油/焦炭	7. 45	11.3	8.94	9. 17	9. 22
焦炭/转化率	0. 04	0. 05	0. 05	0. 11	0. 11
汽油硫含量, mg/L	318.7	201. 3	214. 3	221. 4	293.7

从表 9 可以看出, A12~A15 与未添加含钒分子筛的催化剂 DB-1 相比, 汽油的硫含量大大降低。

实施例 18~22 中催化剂的脱硫组分为 VS-2。

实施例 18

将 1.8 克 V_2O_5 溶解在 30 克四丁基氢氧化铵和 10 克水中,再加入 15 克硅胶作硅源,搅拌均匀,180 ℃晶化 10 天,530 ℃焙烧 5 小时后使用,得到原粉,所得产物的 X - 射线衍射(XRD)谱图具有 VS - 2 分于筛的特征。硅钒摩尔比为 25。

按照 VS-2 含量 10 重%, REUSY 分子筛 47 重%, 硅溶胶 18 重%和高岭土 25 重%的含量,制备催化剂,记为 A16。

经微型轻油裂化评价装置的结果见表 10。

表10

催化剂	DB - 1	A16
MA (800°C/8h)	64	64
C/0	1. 29	1. 28
反应温度/°C	500	500
干气	1.83	1. 56
液化气	10.65	12.64
汽油	47.80	39.77
柴油	21.16	18. 45
重油	16. 37	24.90
焦炭	2.20	2. 68
总计	100.0	100.0
转化率/m%	62.47	56.65
轻质油收率/m%	68.95	58. 22
轻收+液化气/m%	79.60	70.86
重油/焦炭	7. 45	9. 29
焦炭/转化率	0. 04	0. 05
汽油硫含量, mg/L	318. 7	216. 0

从表 10 看出, A16 与未添加含钒分子筛的对比剂 DB-1 相比, 汽油的硫含量大大降低。

实施例 19~22

实施例 17~20 的催化剂分别记为 A17, A18, A19 和 A20。与 A16 的区别在于所用的 VS-2 中,硅钒摩尔比分别为 200、140、103、33,含量分别为 13 重%、22 重%、25 重%和 24 重%,硅溶胶含量分别为 15 重%、6 重%、3 重%和 4 重%。

经微型轻油裂化评价装置的结果见表 11。

在表 11 中,同时列出对比催化剂 DB-1 的评价结果。

表 11

催化剂	DB - 1	A17	A 18	A 19	A 20
Si/V (mol)		200	140	103	33
MA (800℃/8h)	64	64	64	64	64
C/0	1. 29	1.40	1.40	1.40	1.40
反应温度/℃	500	500	500	500	500
干气	1.83	2. 01	1. 89	1.92	1.87
液化气	10.65	10.11	10.02	9.89	9.82
汽油	47.80	42.12	42.39	42.47	42.57
柴油	21.16	18.47	18.48	18.47	18.49
重油	16. 37	24.24	24. 21	24.23	24. 25
焦炭	2.20	3. 05	3. 01	3. 02	3.00
总计	100.0	100.0	100.0	100.0	100.0
转化率/m%	62.47	57. 29	57.31	57. 28	57.26
轻质油收率/m%	68.95	60.59	60.87	60.94	61.06
轻收+液化气/m%	79.60	70.70	70.89	70.84	70.88
重油/焦炭	7. 45	7.95	8. 04	8. 02	8. 08
焦炭/转化率	0. 04	0. 05	0. 05	0. 05	0. 05
汽油硫含量, mg/L	318.7	216.0	203.6	189. 2	169. 4

从表 11 看出, A19~A22 与未添加含钒分子筛的对比剂 DB-1 相比, 汽油的硫含量大大降低。

实施例 23~30 的催化剂中脱硫组分为混合的含钒分子筛。

实施例 23~26

催化剂记为 A21、A22、A23 和 A24。

在 A21、A22、A23 和 A24 中,REUSY 分子筛 47 重%,硅溶胶含量为 18 重%,高岭土含量为 25 重%,VAPO-11 (铝钒摩尔比为 73)的含量分别为 9 重%,6 重%,3 重%和 1 重%,VS-2 (硅钒摩尔比为 75)含量分别为 1 重%,3 重%,6 重%和 9 重%。

经微型轻油裂化评价装置的结果见表 12。

表 12 中同时列出对比催化剂 DB-1 的评价结果。

表 12

DB - 1	A21	A22	A23	A24_
64	64	64	64	64
1. 29	1.40	1.40	1.40	1.40
500	500	500	500	500
1.83	1. 89	1.84	1.85	1.83
10.65	10.07	9.87	9.78	7.83
47.80	46.70	46.72	46.74	46.76
21.16	20.17	20.18	20.18	21.03
16. 37	18.28	18.53	18.61	19.70
2.20	2.89	2.86	2.84	2.85
100.0	100.0	100.0	100.0	100.0
62.47	61.55	61.29	61.21	59. 27
68.95	66.87	66.90	66.92	67.79
79.60	76.94	76.77	76.70	75.62
7. 45	6. 32	6.48	6.55	6.90
0. 04	0. 05	0. 05	0. 05	0. 05
318.7	215.3	211. 2	208.4	201.5
	64 1. 29 500 1. 83 10. 65 47. 80 21. 16 16. 37 2. 20 100. 0 62. 47 68. 95 79. 60 7. 45 0. 04	64 64 1. 29 1. 40 500 500 1. 83 1. 89 10. 65 10. 07 47. 80 46. 70 21. 16 20. 17 16. 37 18. 28 2. 20 2. 89 100. 0 100. 0 62. 47 61. 55 68. 95 66. 87 79. 60 76. 94 7. 45 6. 32 0. 04 0. 05	64 64 64 1. 29 1. 40 1. 40 500 500 500 1. 83 1. 89 1. 84 10. 65 10. 07 9. 87 47. 80 46. 70 46. 72 21. 16 20. 17 20. 18 16. 37 18. 28 18. 53 2. 20 2. 89 2. 86 100. 0 100. 0 100. 0 62. 47 61. 55 61. 29 68. 95 66. 87 66. 90 79. 60 76. 94 76. 77 7. 45 6. 32 6. 48 0. 04 0. 05 0. 05	64 64 64 64 1. 29 1. 40 1. 40 1. 40 500 500 500 500 1. 83 1. 89 1. 84 1. 85 10. 65 10. 07 9. 87 9. 78 47. 80 46. 70 46. 72 46. 74 21. 16 20. 17 20. 18 20. 18 16. 37 18. 28 18. 53 18. 61 2. 20 2. 89 2. 86 2. 84 100. 0 100. 0 100. 0 100. 0 62. 47 61. 55 61. 29 61. 21 68. 95 66. 87 66. 90 66. 92 79. 60 76. 94 76. 77 76. 70 7. 45 6. 32 6. 48 6. 55 0. 04 0. 05 0. 05 0. 05

从表 12 可以看出, A21~A24 与未添加含钒分子筛的对比剂 DB-1相比, 汽油的硫含量大大降低。

实施例 27~30

按实施例 1 的方法制备催化剂,记为催化剂 A25, A26, A27, A28。 A25, A26, A27, A28 中 HY 分子筛 47 重 %, 硅溶胶含量为 18 重 %, 高岭土含量为 25 重 %, VAPO-5 (A1/V 摩尔比为 46)含量分别为 9 重 %,6 重 %,3 重 %,1 重 %,VS-1 (Si/V 摩尔比为 75)含量分别为 1 重 %,3 重 %,6 重 % 和 9 重 %。

经微型轻油裂化评价装置的结果见表 13。

表 13 中同时列出对比催化剂 DB-1 的评价结果。

WO 2005/000998 . 17

表 13

DB - 1	A25	A26	A27	A28
64	64	64	64	64
1. 29	1.40	1.40	1.40	1.40
500	500	500	500	500
1.83	1.98	2. 02	1. 95	1.96
10.65	10.12	10.03	10.01	10.19
47.80	42.15	42.13	42.25	42.30
21.16	18.52	18.48	18.46	18.47
16. 37	24. 20	24.20	24.21	24.19
2.20	3. 03	3. 14	2.94	2.89
100.0	100.0	100.0	100.0	100.0
62.47	57. 28	57.32	57.15	57.34
68.95	60.67	60.61	60.71	60.77
79.60	70.79	70.64	70.72	70.96
7. 45	8.00	7.70	8. 23	8. 37
0. 04	0. 05	0. 05	0. 06	0. 06
318.7	220.3	211. 3	208.4	200. 1
	64 1. 29 500 1. 83 10. 65 47. 80 21. 16 16. 37 2. 20 100. 0 62. 47 68. 95 79. 60 7. 45 0. 04	64 64 1. 29 1. 40 500 500 1. 83 1. 98 10. 65 10. 12 47. 80 42. 15 21. 16 18. 52 16. 37 24. 20 2. 20 3. 03 100. 0 100. 0 62. 47 57. 28 68. 95 60. 67 79. 60 70. 79 7. 45 8. 00 0. 04 0. 05	64 64 64 1. 29 1. 40 1. 40 500 500 500 1. 83 1. 98 2. 02 10. 65 10. 12 10. 03 47. 80 42. 15 42. 13 21. 16 18. 52 18. 48 16. 37 24. 20 24. 20 2. 20 3. 03 3. 14 100. 0 100. 0 100. 0 62. 47 57. 28 57. 32 68. 95 60. 67 60. 61 79. 60 70. 79 70. 64 7. 45 8. 00 7. 70 0. 04 0. 05 0. 05	64 64 64 64 1. 29 1. 40 1. 40 1. 40 500 500 500 500 1. 83 1. 98 2. 02 1. 95 10. 65 10. 12 10. 03 10. 01 47. 80 42. 15 42. 13 42. 25 21. 16 18. 52 18. 48 18. 46 16. 37 24. 20 24. 20 24. 21 2. 20 3. 03 3. 14 2. 94 100. 0 100. 0 100. 0 100. 0 62. 47 57. 28 57. 32 57. 15 68. 95 60. 67 60. 61 60. 71 79. 60 70. 79 70. 64 70. 72 7. 45 8. 00 7. 70 8. 23 0. 04 0. 05 0. 05 0. 06

从表 13 看出, A25~A28 与未添加含钒分子筛的对比剂 DB-1 相 比,汽油的硫含量大大降低。

权 利 要 求

- 1、一种具有脱硫作用的组合物,其特征在于该组合物中含有骨架结构中含钒元素的分子筛作为脱硫组元。
- 2、按照权利要求 1 的组合物, 其特征在于该组合物主要由载体、 粘结剂、活性组元和骨架结构中含钒元素的分子筛组成。
- 3、按照权利要求 1 或 2 的组合物, 所说的骨架结构中含钒元素的分子筛占 1~20 重%。
- 4、按照权利要求 3 的组合物, 所说的骨架结构中含钒元素的分子筛占 7~15 重%。
- 6、按照权利要求 5 的组合物, 所说的活性组元和骨架结构中含 银元素的分子筛的比例为 3~20。
- 7、按照权利要求 1 或 2 的组合物, 所说的骨架结构中含钒元素的分子筛选自钒硅分子筛、磷酸钒铝分子筛和磷酸钒硅铝分子筛中的一种或几种的混合物。
- 8、按照权利要求 7 的组合物, 所说的钒硅分子筛为 VS-1 或 VS-2, 硅与钒的摩尔比为 10~300。
- 9、按照权利要求7的组合物,所说的磷酸钒铝分子筛为 VAP0-5、 VAP0-11、VAP0-17 或 VAP0-31,铝与钒的摩尔比为10~300。
- 10、按照权利要求 2、5 或 6 的组合物, 其中所说的活性组元为各种大孔、中孔分子筛。
- 11、按照权利要求 2、5 或 6 的组合物,其中所说的活性组元为 Y型分子筛和/或 ZSM-5 沸石。
- 12、按照权利要求 11 的组合物, 其中所说的 Y 型分子筛为超稳 Y 或稀土超稳 Y。
- 13、按照权利要求 11 的组合物,其中所说的 Y 型分子筛经金属氧化物改性。
- 14、按照权利要求 13 的组合物,其中所说的金属氧化物为氧化锌。
 - 15、按照权利要求 11 的组合物, 其中所说的 ZSM-5 沸石经稀土

改性。

- 16、按照权利要求 11 的组合物, 其中所说的 ZSM-5 沸石经磷和稀土改性。
 - 17、按照权利要求2的组合物,所说的载体为高岭土。
- 18、按照权利要求 2 的组合物, 所说的粘结剂选自硅溶胶、铝溶胶和拟薄水铝石中的一种或其中两种或三者的混合物。
- 19、一种具有脱硫作用的裂化催化剂, 其特征在于该催化剂中含有骨架结构中含钒元素的分子筛作为脱硫组元。
- 20、按照权利要求 19 的催化剂, 其特征在于该催化剂主要由载体、粘结剂、活性组元和骨架结构中含钒元素的分子筛组成。
- 21、按照权利要求 19 或 20 的催化剂, 所说的骨架结构中含钒元素的分子筛占 1~20 重%。
- 22、按照权利要求 21 的催化剂, 所说的骨架结构中含钒元素的分子筛占7~15 重%。
- 23、按照权利要求 20 的催化剂, 所说的活性组元和骨架结构中含钒元素的分子筛的比例为 1~50。
- 24、按照权利要求 23 的催化剂, 所说的活性组元和骨架结构中含钒元素的分子筛的比例为 3~20。
- 25、按照权利要求 19 或 20 的催化剂, 所说的骨架结构中含钒元素的分子筛选自钒硅分子筛、磷酸钒铝分子筛和磷酸钒硅铝分子筛中的一种或几种的混合物。
- 26、按照权利要求 25 的催化剂,所说的钒硅分子筛为 VS-1 或 VS-2, 硅与钒的摩尔比为 10~300。
- 27、按照权利要求 25 的催化剂, 所说的磷酸钒铝分子筛为 VAPO 5、VAPO 11、VAPO-17 或 VAPO-31, 铝与钒的摩尔比为 10~300。
- 28、按照权利要求 20、23 或 24 的催化剂,其中所说的活性组元为裂化催化剂常用的各种大孔、中孔分子筛。
- 29、按照权利要求 20、23 或 24 的催化剂,其中所说的活性组元为 Y 型分子筛和/或 ZSM-5 沸石。
- 30、按照权利要求 29 的催化剂,其中所说的 Y 型分子筛为超稳 Y 或稀土超稳 Y。
 - 31、按照权利要求 30 的催化剂, 其中所说的 Y 型分子筛经金属

氧化物改性。

- 32、按照权利要求 31 的催化剂,其中所说的金属氧化物为氧化锌。
- 33、按照权利要求 29 的催化剂,其中所说的 ZSM-5 沸石经稀土改性。
- 34、按照权利要求 29 的催化剂, 其中所说的 ZSM-5 沸石经磷和稀土改性。
 - 35、按照权利要求 20 的催化剂, 所说的载体为高岭土。
- 36、按照权利要求 20 的催化剂, 所说的粘结剂选自硅溶胶、铝溶胶和拟薄水铝石中的一种或其中两种或三者的混合物。
- 37、一种降低硫化合物含量的过程,其特征在于该过程是在权利要求1的组合物存在下进行。
- 38、一种催化裂化反应方法,其特征在于该方法是在权利要求 19 所说的含有骨架结构中含钒元素的分子筛作为脱硫组元的裂化催化剂存在下进行反应。

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2004/000683

A. CLASSIF	ICATION OF SUBJECT MATTER			
According to I	IPC ⁷ International Patent Classification (IPC) or to both n	C10G45/02 ational classification and IPC		
B. FIELDS	SEARCHED			
Minimum doc	umentation searched (classification system followed	by classification symbols)		
	IPC' C10	G; C02F; B01J		
Documentation	n searched other than minimum documentation to th	e extent that such documents are included	in the fields searched	
	CN	-PAT		
Electronic data	a base consulted during the international search (nan	ne of data base and, where practicable, sear	ch terms used)	
	WPI, EPODOC, I	PAJ,CN-PAT, CNKI		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.	
x c	CN1175482A (He changqing et al.) 30.AUG 1998	A (He changqing et al.) 30.AUG1998 (30.08.1998), see claims 1, example 5		
A U	A US6482315B1 (Roberie, Terry G. et al.) 19.NOV.2002 (19.11.2002), see whole page 1-38			
A U	, and the second			
A GB2356859A (DAVYDOV L et al) 06.JUN.2001 (06.06.2001), see whole page		1-38		
			·	
☐ Further o	documents are listed in the continuation of Box C.	See patent family annex.		
"A" docume consider a internati "L" documer which is citation "O" documer other me	I categories of cited documents: ant defining the general state of the art which is not red to be of particular relevance application or patent but published on or after the sional filing date at which may throw doubts on priority claim (S) or so cited to establish the publication date of another or other special reason (as specified) ant referring to an oral disclosure, use, exhibition or eans ant published prior to the international filing date than the priority date claimed	"T" later document published after the or priority date and not in conflict cited to understand the principle of invention "X" document of particular relevance; cannot be considered novel or cannot an inventive step when the document of particular relevance; cannot be considered to involve an document is combined with one or documents, such combination bein skilled in the art "&" document member of the same pa	with the application but r theory underlying the the claimed invention be considered to involve ent is taken alone the claimed invention inventive step when the more other such g obvious to a person	
Date of the act	tual completion of the international search	Date of mailing of the international searc	h report	
N7	22.Sep.2004	21 · OCT 2004 (2-11	0 . 2004)	
6 Xitucheng R	ing address of the ISA/CN id, Jimen Bridge, Haidian District, Beijing 100088, China	Authorized officer LIU JIANG	3	
racsimile No. (8	86-10)62019451	Telephone No. (86-01)620847	:-i	

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/CN2004/000683

	_		FC1/C1/200-#000085
US6482315B1	19.11.2002	CN1420920A	28.05.2003
		WO0121732A1	29.03.2001
		AU200075886A	24.04.2001
		BR200014102A	07.05.2002
		EP1228167A1	07.08.2002
		KR2002052181A	02.07.2002
		ZA200201945A	24.12.2002
		US2003034275A1	20.02.2003
		JP200351045T	18.03.2003
US5130031A	14.07.1992	WO9207797A1	14.05.1992
		EP0507939A1	14.10.1992
		JP5503252T	03.06.1993
		EP0507939B1	03.10.1993
		DE69100478E	11.11.1993

国际检索报告

国际申请号

PCT/CN2004/000683

A. 主题的分类

IPC

C10G45/02

按照国际专利分类表(IPC)或者同时按照国家分类和 IPC 两种分类

B. 检索领域

检索的最低限度文献(标明分类系统和分类号)

 \mathbb{P}^{7}

C10G; C02F; B01J

包含在检索领域中的除最低限度文献以外的检索文献

中国专利文献

在国际检索时查阅的电子数据库(数据库的名称,和使用的检索词(如使用))

WPI, EPODOC, PAJ: Vanadium-silicon molecular sieve; framework; phosphate; zeolite

CN-PAT, CNKI:钒硅分子筛; 骨架; 磷; 分子筛

C. 相关文件

类 型*	引用文件,必要时,指明相关段落	相关的权利要求
X	CN1175482A (He changqing 等) 1998 年 6月 (日) 日 (山) 63.1998),参见权利要求 1,实施例 5	1, 19
A	US6482315B1(Roberie, Terry G.等)2002 年 11 月 19 日(19.11.2002),参见全文	1-38
Α	US5130031A(Johnston, Allan J.等)1992 年 07 月 14 日(14.07.1992),参见全文	1-38
A	GB2356859A (DAVYDOV L 等) 2001 年 06 月 06 日 (06.06.2001),参见全文	1-38

□ 其余文件在C栏的续页中列出。

図 见同族专利附件。

- * 引用文件的具体类型:
- "A"认为不特别相关的表示了现有技术一般状态的文件
- "E" 在国际申请日的当天或之后公布的在先申请或专利
- "L"可能对优先权要求构成怀疑的文件,为确定另一篇 引用文件的公布日而引用的或者因其他特殊理由而引 用的文件
- "O" 涉及口头公开、使用、展览或其他方式公开的文件
- "P" 公布日先于国际申请日但迟于所要求的优先权日的文件
- "T"在申请日或优先权日之后公布,与申请不相抵触,但为了 理解发明之理论或原理的在后文件
- "X"特别相关的文件,单独考虑该文件,认定要求保护的 发明不是新颖的或不具有创造性
- "Y"特别相关的文件,当该文件与另一篇或者多篇该类文件 结合并且这种结合对于本领域技术人员为显而易见时, 要求保护的发明不具有创造性
- "&" 同族专利的文件

国际检索实际完成的日期

22.9月2004 (22.09.2004)

国际检索报告邮寄日期

21 · 10月2004 (21 · 10 · 2004)

中华人民共和国国家知识产权局(ISA/CN) 中国北京市海淀区蓟门桥西土城路 6 号 100088

传真号: (86-10)62019451

授权官员

电话号码: (86-10)62084*777*

国际检索报告 关于同族专利的信息 国际申请号 PCT/CN2004/000683

检索报告中引用的 专利文件	公布日期	同族专利	公布日期
US6482315B1	19.11.2002	CN1420920A	28.05.2003
		WO0121732A1	29.03.2001
		AU200075886A	24.04.2001
		BR200014102A	07.05.2002
		EP1228167A1	07.08.2002
		KR2002052181A	02.07.2002
		ZA200201945A	24.12.2002
		US2003034275A1	20.02.2003
		JP2003510405T	18.03.2003
US5130031A	14.07.1992	WO9207797A1	14.05.1992
		EP0507939A1	14.10.1992
		JP5503252T	03.06.1993
		EP0507939B1	03.10.1993
		DE69100478E	11.11.1993

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
I LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.