E1 ... E4 - Einführungsversuche

E1 Fadenpendel

E2 Federschwinger

E3 Dichtemessung

E4 Ohmsches Gesetz

Die Einführungsversuche sind als Einstieg in das Physikalische Praktikum gedacht. Die zu untersuchenden Sachverhalte sind gemessen an den Anforderungen eines Physikstudiums eher trivial und sollen auch nicht den Schwerpunkt dieser Übung bilden. Ein gewisses Verständnis der zugrundeliegenden Physik (einschließlich Herleitung der Gleichungen u.ä.) wird allerdings vorausgesetzt.

Folgende Lehrziele werden angestrebt:

Praktische Arbeit/Protokollierung: Wie wird möglichst "gut" gemessen? Wie wird die Messung dokumentiert?

Fehlerbehandlung: Wie kann die Messgenauigkeit der einzelnen Größen bestimmt werden (dort, wo es angebracht ist, kommen dabei auch statistische Methoden zur Anwendung)? Wie setzt sich die Messgenauigkeit des Ergebnisses aus der der einzelnen Messgrößen zusammen (Addition absoluter bzw. relativer Fehler)?

Dokumentation: Wie werden die Ergebnisse klar und übersichtlich dargestellt (bei einer grafischen Darstellung: Achten auf Achseneinteilung, -beschriftung usw.; Ergebnisse mit Fehlergrenzen: Wieviele Stellen sind sinnvoll)?

Schlussfolgerungen: Vergleich mit erwarteten Werten. Was gehört in die Ergebnisdiskussion?

Zur Vorbereitung ist unbedingt der Artikel "Fehlerrechnung - leicht gemacht" (zu finden auf der Praktikums-Homepage:

http://www.physik.uni-jena.de/pafmedia/studium/phys_gp/FehlerrechnungLeichtGemacht_PDF.pdf)

zu lesen. Wichtig ist auch die Beschäftigung mit den Grundlagen statistischer Auswertemethoden (Stichworte: Mittelwert, Standardabweichung, Vertrauensbereich). Dazu kann z.B. der **Grundlagenteil der Anleitung zum Versuch 303** genutzt werden.

Sie erhalten für diesen Versuch ein vorgedrucktes Blatt, in dem die Tabellen zum Eintragen der Messwerte bereits vorhanden sind und auch der Gang der Auswertung im Wesentlichen vorgegeben ist. Diese Art der Protokollführung kann prinzipiell als Muster für alle weiteren Versuche betrachtet werden.

Es ist vorgesehen, die Protokolle des Einführungsversuches bereits während der Praktikumszeit fertigzustellen (einschließlich einer ersten Korrektur durch den Assistenten mit nachfolgender Besprechung). Etwaige Nachbesserungen müssen dann zu Hause erledigt werden.

Kurze Vorstellung der einzelnen Versuche

(Weiterführende physikalische und mathematische Grundlagen sind der Literatur zu entnehmen.)

E1 - Fadenpendel

Man lässt ein Pendel (Gewicht an einem Faden der Länge L) Schwingungen ausführen und bestimmt die Schwingungsdauer T.

Mit Hilfe der Gleichung

$$g = 4\pi^2 \cdot L / T^2$$

kann die Schwerebeschleunigung g auf der Erdoberfläche berechnet werden.

Zur Längenbestimmung ist ein 40cm-Lineal vorgegeben. Da L > 40 cm ist, muss dieses zweimal angelegt werden. Hinzu kommt der Radius des Gewichtes, welcher mit einem Messschieber bestimmt wird. Der Messfehler ΔL setzt sich somit aus drei Einzelfehlern zusammen.

Die Schwingungsdauer ist mit einer Stoppuhr über jeweils 10 Perioden zu messen und die Messung 20-mal zu wiederholen. Die Auswertung erfolgt statistisch (Mittelwert und Standardabweichung bestimmen, Genauigkeit des Mittelwertes für 95% statistische Sicherheit angeben).

Den relativen (prozentualen) Fehler von g erhält man durch Addition der relativen Fehler von L und T (Quadrat beachten!). Bei der Ergebnisdarstellung ist auf eine sinnvolle Stellenzahl zu achten (Fehlerangabe mit 1 oder 2 geltenden Ziffern = signifikanten Stellen, Ergebnis mit gleicher Zahl Nachkommastellen wie Fehler).

Das erhaltene Ergebnis soll selbstverständlich mit dem erwarteten Wert verglichen werden. Abweichungen sind zu diskutieren.

Falls genügend Zeit ist, sollte der gesamte Versuch noch einmal mit geänderten Parametern (Masse, Länge oder Auslenkung) wiederholt und der Einfluss auf das Ergebnis *g* diskutiert werden.

E2 - Federschwinger

Eine Schraubenfeder wird durch angehängte Massen m in Schwingungen versetzt und die Schwingungsdauer T gemessen.

Mit Hilfe der Gleichung

$$k = 4\pi^2 \cdot m / T^2$$

kann die Federkonstante k berechnet werden.

Die Messung soll für drei unterschiedliche Massen durchgeführt werden. Zur Massenbestimmung steht eine digitale Laborwaage zur Verfügung (Messgenauigkeit 0.1g bzw. 0.05g).

Die Schwingungsdauer ist mit einer Stoppuhr über jeweils 10 Perioden zu messen und die Messung 20-mal zu wiederholen. Die Auswertung erfolgt statistisch (Mittelwert und Standardabweichung bestimmen, Genauigkeit des Mittelwertes für 95% statistische Sicherheit angeben).

Den relativen (prozentualen) Fehler von k erhält man durch Addition der relativen Fehler von m und T (Quadrat beachten!). Bei der Ergebnisdarstellung ist auf eine sinnvolle Stellenzahl zu achten (Fehlerangabe mit 1 oder 2 geltenden Ziffern = signifikanten Stellen, Ergebnis mit gleicher Zahl Nachkommastellen wie Fehler).

Die drei so erhaltenen Werte für die Federkonstante k sind unter Beachtung ihrer Messgenauigkeiten zu vergleichen (grafische Darstellung / Fehlerbalken). Wenn es möglich ist (gute Überschneidung der Intervalle), kann der Mittelwert gebildet werden.

E3 - Dichtemessung

Zehn Holzklötze (Quader) aus demselben Material aber mit unterschiedlichen Größen werden vermessen: Länge l, Breite b und Höhe h mit einem Messschieber; die Masse m wird auf einer Laborwaage (Messgenauigkeit 0.1g bzw. 0.05g) bestimmt. Aus Masse m und Volumen V kann dann die Dichte ρ berechnet werden:

$$\rho = m / V$$
 mit $V = l \cdot b \cdot h$.

Die Messgenauigkeiten der einzelnen Größen sind abzuschätzen. ΔV ergibt sich über die Addition der relativen Fehler von l, b und h, $\Delta \rho$ über die Addition der relativen Fehler von V und m. Alle zehn Werte sind mit ihren Fehlerbalken grafisch darzustellen. Unterschiedliche Genauigkeiten der einzelnen Messwerte sind zu diskutieren.

Die gesuchte Dichte des Materials erhält man aus einer statistischen Auswertung (Mittelwert von ρ bilden, Standardabweichung bestimmen, Genauigkeit des Mittelwertes für 95% statistische Sicherheit angeben).

Bei der Ergebnisdarstellung ist auf eine sinnvolle Stellenzahl zu achten (Fehlerangabe mit 1 oder 2 geltenden Ziffern = signifikanten Stellen, Ergebnis mit gleicher Zahl Nachkommastellen wie Fehler).

Zusätzlich kann der Zusammenhang zwischen V und m in Form eines Diagramms grafisch dargestellt und die Dichte ρ aus dem Anstieg der entstehenden Geraden ermittelt werden.

E4 - Ohmsches Gesetz

Durch gleichzeitiges Messen von Strom I und Spannung U wird die Größe eines Widerstandes R bestimmt.

Die Gleichung (Ohmsches Gesetz) lautet

R = U / I.

Für die Messung stehen zwei Analog-Multimeter zur Verfügung. Es sollen zehn unterschiedliche Ströme zwischen 1 und 5mA (Messbereich 5 mA) und die zugehörigen Spannungen im jeweils optimalen Bereich (MB 3V bzw. 1V) gemessen werden. Der Einfluss der Messbereichs-Umschaltung auf das Ergebnis ist zu diskutieren.

Als Messfehler ΔI und ΔU soll nur die Ungenauigkeit der Skalenablesung betrachtet werden. Diese ist abzuschätzen. Den Fehler von R erhält man über die Addition der relativen Fehler von I und U. Er ist für alle zehn Werte zu berechnen und in Form von Fehlerbalken grafisch darzustellen. Unterschiedliche Genauigkeiten der einzelnen Messwerte sind zu diskutieren.

Das endgültige Resultat für den gesuchten Widerstandswert erhält man aus einer statistischen Auswertung (Mittelwert von *R* bilden, Standardabweichung bestimmen, Genauigkeit des Mittelwertes für 95% statistische Sicherheit angeben).

Bei der Ergebnisdarstellung ist auf eine sinnvolle Stellenzahl zu achten (Fehlerangabe mit 1 oder 2 geltenden Ziffern = signifikanten Stellen, Ergebnis mit gleicher Zahl Nachkommastellen wie Fehler).

Zusätzlich kann der Zusammenhang zwischen U und I in Form eines Diagramms grafisch dargestellt und der Widerstand R aus dem Anstieg der entstehenden Geraden ermittelt werden.