

اصول طراحی کامپایلرها

حسین کارشناس

دانشکده مهندسی کامپیوتر

ترم اول ۹۸ – ۹۷

- گرامرهای غیر (SLR(1)
- وجود برخورد (انتقال/کاهش یا کاهش/کاهش) در برخی حالتها
 - مثال: گرامرهای زیر (SLR(1) نیستند

- نیاز به الگوریتمهای قوی تر تجزیه LR
 - Canonical LR CLR •
- کلی ترین روش برای ساخت جداول تجزیه LR
 - Lookahead LR LALR •
 - بهینهسازی CLR برای تجزیه سریعتر

- نگهداری اطلاعات بیشتر در موارد برای تصمیم گیری در مورد کاهش
- اگر حالتی از ماشین (A) حاوی مورد $A \to \beta$. عوده و ورودی بعدی (a) در مجموعه پسین A باشد (a) Follow(A) کاهش با قاعده تولید $A \to A \to A$ فقط وقتی صحیح است که $A \to A$ یک پیشوند ممکن باشد
 - نگهداری نشانههای پایانی که میتوانند پس از دستگیره β قرار داشته باشند
 استفاده از موارد (۱) LR(1)
 - موارد (1) LR یک قاعده تولید گرامر
 - $[A o eta.\gamma, a]$ یک زوج مؤلفه به صورت
 - است LR(0) یک مورد $A \rightarrow \beta.\gamma$
 - یک نشانه پایانی گرامر یا نشانه ویژه انتهای ورودی a \bullet

- موارد (LR(1) یک قاعده تولید گرامر (ادامه)
- مؤلفههای دوم ممکن برای مورد $[A \to \beta.\gamma, a]$ زیر مجموعه ای از مجموعه پسین (Follow(A)) هستند
 - استفاده از مورد $[A
 ightarrow \beta.\gamma,a]$ برای تصمیم گیری در مورد کاهشlacktriangle
- ا اگر حالت فعلی ماشین حاوی مورد $[A \to \beta, a]$ باشد $(\gamma = \epsilon)$ و ورودی بعدی $A \to \beta$ باشد $A \to \beta$ انگاه کاهش با
 - موارد (1) LR معتبر برای یک پیشوند ممکن
- α معتبر است اگر اشتقاق راست $(A \to \beta.\gamma, a]$ مورد $(A \to \beta.\gamma, a)$ برای پیشوند ممکن $S' \stackrel{*}{\Rightarrow} \alpha Aw \Rightarrow \alpha \beta \gamma w$ وجود داشته باشد و داشته باشیم:

 $a \in \{\{First(W) - \epsilon\} \cup \{\$: nullable(W)\}\}$

- ماشین (LR(1) برای بررسی محتوای پشته با نگاه به ورودی
 - محاسبه بسته استاندارد مجموعه موارد (LR(1)
 - كاملاً مشابه بسته استاندارد مجموعه موارد (R(0) محاسبه می شود
 - تعاریف جدید برای عملگرهای بستار و انتقال

```
void items(G') {
    initialize C to CLOSURE(\{[S' \to \cdot S, \$]\});
    repeat
    for ( each set of items I in C )
        for ( each grammar symbol X )
        if ( GOTO(I, X) is not empty and not in C )
            add GOTO(I, X) to C;
    until no new sets of items are added to C;
}
```

(I) LR(1) مجموعه موارد •

```
SetOfItems CLOSURE(I) {
    repeat
    for ( each item [A \to \alpha \cdot B\beta, a] in I )
        for ( each production B \to \gamma in G' )
        for ( each terminal b in FIRST(\beta a) )
        add [B \to \cdot \gamma, b] to set I;
    until no more items are added to I;
    return I;
}
```

- تمام موارد موجود در مجموعه موارد I در بستار آن هستند
- میتبر هنده تمام نشانههای پایانی است که در یک اشتقاق راست معتبر $S' \stackrel{*}{\Rightarrow} \delta A aw \Rightarrow \delta \alpha B \beta aw$ بیاید: B بیاید

X انتقال از یک مجموعه موارد (I) LR(1) با نشانه \bullet

```
SetOfItems GOTO(I, X) {
    initialize J to be the empty set;
    for ( each item [A \to \alpha \cdot X\beta, a] in I )
        add item [A \to \alpha X \cdot \beta, a] to set J;
    return CLOSURE(J);
}
```

- در هنگام انتقال، مؤلفه دوم بدون تغییر با موارد منتقل میشود
 - ماشین (1) LR
 - حالتهای ماشین مجموعههای موارد (1) LR هستند
 - تمام حالتها نهایی هستند
 - Closure($\{[S' \rightarrow .S, \$]\}$) حالت اولیه ماشین:
- انتقالهای ماشین با استفاده از عملگر انتقال (Goto) مشخص میشوند

• مثال: ماشین (LR(1) برای گرامر مضاعف روبرو

- تجزیه CLR با استفاده از ماشین (1) (1) و با توجه به ورودی فعلی
 - جدول تجزیه CLR
 - (Action[s, a]) بخش کنشها •
 - انگاه: (A \neq S') باشد (A \neq S') انگاه: $(A \rightarrow \alpha, a)$ انگاه:

Action[s, \mathbf{a}] = Reduce A $\rightarrow \alpha$

- Action[s, \$] = Accept باشد آنگاه: $S' \to S$. , \$] عاوی مورد $S' \to S$. , \$
- Action[s, a] = Shift باشد آنگاه: [A $ightarrow \alpha.a\beta$, b] مورد s حاوی مورد
 - Action[s, :] = Error بنبست) باشد آنگاه: s حالت خطا (حالت بنبست) اگر s
 - بخش انتقال (Goto[s, X]) •
 - پیادهسازی مدل انتقال ماشین (LR(1)

$$\begin{array}{cccc}
S' & \rightarrow & S \\
(1) S & \rightarrow & C C \\
C & \rightarrow & c C \mid d
\end{array}$$

STATE	A	CTIO	GOTO		
STATE	c	\overline{d}	\$	S	C
0	s3	s4		1	2
1			acc		
2	s6	s7]	5
3	s3 r3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3	}	
8	r2	r2		}	
9			r2	}	

• سوال: با توجه به جدول تجزیه بالا رشته ¢ccdd چگونه تجزیه میشود؟

- گرامر (1) LR
- گرامری که در هر خانه از بخش کنشهای جدول CLR ساخته شده برای آن حداکثر یک کنش وجود داشته باشد
 - نباید برخوردی بین کنشها وجود داشته باشد
 - هر گرامر (SLR(1) یک گرامر (R(1) است
 - تفکیک حالتها در تجزیه CLR با توجه به ورودی
 - برای یک گرامر (1) SLR تعداد حالتهای تجزیه گر CLR به مراتب بیشتر از تجزیه گر SLR ساخته شده برای آن گرامر است
 - \blacksquare امکان وجود چندین مجموعه موارد (1) LR برای هر مجموعه موارد (\blacksquare
 - تفاوت این مجموعههای موارد فقط در مؤلفههای دوم آنهاست

- مثال: برای گرامر یک زبان برنامهنویسی متداول مانند C
 - تجزیه گر SLR دارای حدود چند صد حالت است
- توصیف برخی از ساختارهای برنامهنویسی با گرامر SLR به راحتی ممکن نیست
 - تجزیه گر CLR دارای حدود چند هزار حالت است
 - اهمیت کاهش تعداد حالتهای تجزیه
 - کاهش حافظه مورد نیاز برای پیادهسازی تجزیه گر
 - کاهش زمان تجزیه برای برنامههای ورودی
 - تجزیه گر LALR

تحز به LR

- کاهش تعداد حالتهای تجزیه با ادغام مجموعههای موارد (LR(1)
- ادغام مجموعههای مواردی که دارای مؤلفههای اول (هسته) یکسان هستند
- هسته (core) یک مجموعه موارد (LR(1) همان مجموعه موارد (core) متناظر با أن است

• مثال: ادغام دو مجموعه موارد (LR(1)

 $C \to d \cdot, \$$

 $C \to d\cdot, c/d/$ \$

- أيا ادغام مجموعه موارد (LR(1) باعث ايجاد برخورد مي شود؟
 - باعث برخورد انتقال /کاهش نمیشود
 - تصمیم گیری در مورد انتقال با ادغام مجموعهها فرقی نخواهد کرد
- انتقال از یک مجموعه موارد (I) با یک نشانه (X) فقط به هسته آن بستگی دارد
- وجود این برخورد پس از ادغام به معنی وجود آن قبل از ادغام در یکی از حالتها است

- امکان برخورد کاهش/کاهش با ادغام مجموعه موارد (LR(1)
 - مثال: گرامر زیر یک گرامر (1) LR است
 - جدول تجزیه (1) LR دارای برخورد نیست

• با ادغام دو مجموعه موارد دارای هسته یکسان برخورد کاهش/کاهش ایجاد میشود

$$\{[A \to c\cdot, d], [B \to c\cdot, e]\}$$

$$\{[A \to c\cdot, e], [B \to c\cdot, d]\}$$

$$A \to c\cdot, d/e$$

$$B \to c\cdot, d/e$$

• چنین گرامری (LALR نیست

- روش تجزیه LALR
- سعی در بهینهسازی تجزیه گر CLR با کاهش تعداد حالتها
- برای هر گرامر تعداد حالتهای تجزیه گرهای LALR و SLR برابر است
 - محاسبه حالتهای تجزیه گر LALR
- برابر با حالتهای بدست آمده از ادغام مجموعههای موارد (LR(1) با هسته یکسان
 - جدول تجزیه LALR
 - (Actions[s, a]) بخش کنشها
 - کاملاً مشابه بخش کنشها در جدول تجزیه CLR ساخته می شود
 - بخش انتقال (Goto[s, X]) •
 - پیادهسازی مدل انتقال ماشین (1) LR با حالتهای ادغام شده

تجز به LR

X عملگر انتقال برای مجموعه موارد ادغام شده (J) با نشانه

اگر $I_k \cap I_2 \cap I_3 \cap I_5$ برابر است با: $I = I_1 \cap I_2 \cap I_3 \cap I_4$ اگر

 $Goto(I_1, X) = Goto(I_1, X) \cup Goto(I_2, X) \cup \cdots \cup Goto(I_k, X)$

• گرامر LALR

• بدون برخورد در بخش کنشهای جدول LALR ساخته شده برای آن

• مثال: جدول تجزیه LALR برای گرامر مضاعف روبرو

 $\begin{array}{cccc} S' & \rightarrow & S \\ S & \rightarrow & C & C \\ C & \rightarrow & c & C & \mid d \end{array}$ • مجموعه موارد قابل ادغام

> I_{36} : $C \rightarrow c \cdot C$, c/d/\$ I_{47} : $C \rightarrow d \cdot, c/d/$ \$ $C \rightarrow cC$, c/d/\$

 I_{89} : $C \rightarrow cC \cdot, c/d/\$$ $C \rightarrow d$, c/d/\$

• مثال: جدول تجزیه LALR

STATE	A	GOTO			
	c	\overline{d}	\$	\overline{S}	C
0	s36	s47		1	2
1	ļ.		acc	25	
2	s36	s47			5
36	s36	s47			89
47	r3	r3	$\mathbf{r}3$		
5			r1		
89	r2	r2	r2		

• مثال: جدول تجزیه LALR

STATE	A	CTIO	GOTO		
STATE	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3		ĺ	
5			r1	(
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

جدول تجزیه LALR

جدول تجزیه CLR

• سوال: کدام مجموعههای موارد (LR(1) زیر قابل ادغام هستند؟ $S \rightarrow L = R.,$ \$ $S \rightarrow L = R,$ $S \rightarrow L = .R$, \$ $= \prod_{R \to L, \$}$ $\overline{S'} \rightarrow .S,$ \$ $R \rightarrow L.,$ \$ $S \rightarrow L = R$, $L \rightarrow .* R,$ \$ $\begin{array}{c} & & \\$ $S \rightarrow .R$, \$ $L \rightarrow .id$, \$ $L \rightarrow .* R, =/$$ $R \rightarrow L_{\bullet},$ \$ id $L \rightarrow .id$, =/\$ \id $L \rightarrow id.,$ \$ $R \rightarrow .L,$ \$ $L \rightarrow *.R,$ $L \rightarrow id., =/$ $R \rightarrow L,$ $1 L \rightarrow .* R,$ id $L \rightarrow .id$, \$ $L \rightarrow R$, \$ $L \rightarrow *.R, =/$ $R \rightarrow .L, =/$ \$ $R \rightarrow L \rightarrow R$, =/\$ $S' \rightarrow S_{\bullet}, \$$ $L \rightarrow .id, =/$ $R \rightarrow L_{\bullet}, =/$ \$ 174

- عملکرد یکسان تجزیه CLR و CLR برای ورودیهای صحیح
 - قرارگیری حالتهای معادل در پشته
 - کنشهای انتقال و کاهش با ترتیب یکسان انجام میشوند
 - مثال: عملکرد دو تجزیه گر برای جمله ورودی \$cdcd
 - شناسایی با تأخیر خطا در تجزیه LALR برای ورودیهای غلط
- ممکن است بجای اعلام خطا تعدادی کاهش قبل از کشف خطا صورت بگیرد
 - در نهایت خطا پیش از انتقال نشانه ورودی جدید شناسایی میشود
 - مثال: عملکرد دو تجزیه گر برای جمله ورودی \$cd

- بکارگیری گرامرهای مبهم
- مشخص کردن برخی ساختارهای متداول زبانهای برنامهنویسی با گرامرهای مبهم موجزتر و قابل فهمتر است
- سرعت تجزیه با استفاده از گرامرهای مبهم میتواند سریعتر از گرامرهای غیرمبهم معادل باشد
 - جلوگیری از کاهش با استفاده از قواعد تولید تکی

$$E
ightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$
 مثال $E
ightarrow E + T \mid T$ $T
ightarrow T * F \mid F$ $F
ightarrow (E) \mid \mathbf{id}$

- بکارگیری گرامرهای مبهم (ادامه)
- استفاده از قوانین ابهامزدا و اعمال مستقیم آنها در جداول تجزیه
 - اولویت (precedence) و شرکتپذیری (precedence)
 - مثال: مجموعههای موارد (R(0) کرامر مبهم عبارات ریاضی

I_0 $E' \to \cdot E$ $E \to \cdot E + E$ $E \to \cdot E * E$ $E \to \cdot (E)$ $E \to \cdot \mathbf{id}$

$$I_{1}$$

$$E' \to E \cdot$$

$$E \to E \cdot + E$$

$$E \to E \cdot * E$$

$$E \rightarrow (\cdot E)$$

$$E \rightarrow \cdot E + E$$

$$E \rightarrow \cdot E * E$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow \cdot \mathbf{id}$$

$$\begin{array}{c}
I_{5} \\
E \to E * \cdot E \\
E \to \cdot E + E \\
E \to \cdot E * E \\
E \to \cdot (E) \\
E \to \cdot \mathbf{id}
\end{array}$$

$$\begin{split} & I_6 \\ E \rightarrow (E \cdot) \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{split}$$

$$E \rightarrow E + E \cdot E \rightarrow E \cdot + E \rightarrow E \cdot * E$$

$$E \to E * E \cdot E \cdot E \to E \cdot + E \cdot E \to E \cdot * E$$

$$\stackrel{I_9}{E} \to (E) \cdot$$

• مثال: جدول تجزیه SLR برای گرامر مبهم عبارات ریاضی

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$
(1) (2) (3) (4)

STATE			ACT	ION			GOTO
SIAIE	id	+	*	()	\$	\overline{E}
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s_5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

I_7
$E \to E + E$.
$E \to E \cdot + E$
$E \to E \cdot * E$

$$\begin{split} & I_8 \\ E \rightarrow E * E \cdot \\ E \rightarrow E \cdot + E \\ E \rightarrow E \cdot * E \end{split}$$

Grammar Relationships

Unambiguous Grammars

Ambiguous Grammars

