Rank-74052 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1498834266

General information

Number of lines	10
Number of points	33
Number of singular points	1
Number of Eckardt points	2
Number of double points	9
Number of single points	21
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{10}
Type of lines on points	$5, 3^2, 2^9, 1^{21}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 10 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_9$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & \omega^{2} \\ 0 & 1 & 0 & 0 \end{bmatrix}_{252} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{252} = \mathbf{Pl}(2,0,0,1,0,0)_{11}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & \omega \\ 0 & 1 & 0 & 0 \end{bmatrix}_{168} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{168} = \mathbf{Pl}(3,0,0,1,0,0)_{12}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & \omega^{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{268} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{268} = \mathbf{Pl}(0,3,1,0,0,0)_{8}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & \omega \\ 0 & 0 & 1 & 0 \end{bmatrix}_{184} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{184} = \mathbf{Pl}(0,2,1,0,0,0)_{7}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & 0 & \omega^{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{289} = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{289} = \mathbf{Pl}(0,3,1,0,0,1)_{114}$$

$$\ell_{7} = \begin{bmatrix} 1 & 1 & 0 & \omega \\ 0 & 0 & 1 & 0 \end{bmatrix}_{205} = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{205} = \mathbf{Pl}(0,2,1,0,0,1)_{113}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & \omega \\ 0 & 1 & 0 & 1 \end{bmatrix}_{193} = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{193} = \mathbf{Pl}(1,1,0,2,1,1)_{192}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & 1 & \omega^{2} \\ 0 & 1 & 0 & 1 \end{bmatrix}_{277} = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{277} = \mathbf{Pl}(1,1,0,3,1,1)_{195}$$

Rank of lines: (340, 252, 168, 356, 268, 184, 289, 205, 193, 277) Rank of points on Klein quadric: (9, 11, 12, 1, 8, 7, 114, 113, 192, 195)

Eckardt Points

The surface has 2 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$ $1: P_{26} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1).$

Double Points

The surface has 9 Double points: The double points on the surface are:

$$\begin{array}{ll} P_3 = (0,0,0,1) = \ell_0 \cap \ell_3 & P_{55} = (2,0,2,1) = \ell_4 \cap \ell_9 \\ P_{24} = (2,0,0,1) = \ell_1 \cap \ell_4 & P_{72} = (3,0,3,1) = \ell_5 \cap \ell_8 \\ P_{32} = (2,2,0,1) = \ell_1 \cap \ell_6 & P_{63} = (2,2,2,1) = \ell_6 \cap \ell_8 \\ P_{25} = (3,0,0,1) = \ell_2 \cap \ell_5 & P_{84} = (3,3,3,1) = \ell_7 \cap \ell_9 \\ P_{37} = (3,3,0,1) = \ell_2 \cap \ell_7 & P_{84} = (3,3,3,1) = \ell_7 \cap \ell_9 \end{array}$$

Single Points

The surface has 21 single points: The single points on the surface are:

```
0 : P_{16} = (1,2,1,0) lies on line \ell_8
                                                                      11: P_{46} = (1, 2, 1, 1) lies on line \ell_9
1: P_{20} = (1, 3, 1, 0) lies on line \ell_9
                                                                      12: P_{47} = (2, 2, 1, 1) lies on line \ell_6
                                                                      13: P_{50} = (1, 3, 1, 1) lies on line \ell_8
2: P_{28} = (2, 1, 0, 1) lies on line \ell_1
3: P_{29} = (3, 1, 0, 1) lies on line \ell_2
                                                                      14: P_{52} = (3, 3, 1, 1) lies on line \ell_7
4: P_{30} = (0, 2, 0, 1) lies on line \ell_0
                                                                      15: P_{53} = (0, 0, 2, 1) lies on line \ell_3
5: P_{33} = (3, 2, 0, 1) lies on line \ell_2
                                                                      16: P_{56} = (3,0,2,1) lies on line \ell_5
6: P_{34} = (0, 3, 0, 1) lies on line \ell_0
                                                                      17: P_{68} = (3, 3, 2, 1) lies on line \ell_7
7: P_{36} = (2, 3, 0, 1) lies on line \ell_1
                                                                      18: P_{69} = (0,0,3,1) lies on line \ell_3
8: P_{38} = (0,0,1,1) lies on line \ell_3
                                                                      19: P_{71} = (2,0,3,1) lies on line \ell_4
                                                                      20 : P_{79} = (2,2,3,1) lies on line \ell_6
9: P_{40} = (2, 0, 1, 1) lies on line \ell_4
10: P_{41} = (3, 0, 1, 1) lies on line \ell_5
```

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456789
0	0111000011
1	1010101000
2	1100010100
3	1000111100
4	0101011101
5	0011101110
6	0101110110
7	0011111001
8	1000011001
9	$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{vmatrix}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_8	ℓ_9
in point	P_1	P_1	P_3	P_{26}	P_{26}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_6
in point	P_1	P_1	P_{24}	P_{32}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_7
in point	P_1	P_1	P_{25}	P_{37}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_3	P_2	P_2	P_2	P_2

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_6	ℓ_7	ℓ_9
in point	P_{24}	P_2	P_2	P_2	P_2	P_{55}

Line 5 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_8
in point	P_{25}	P_2	P_2	P_2	P_2	P_{72}

Line 6 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_7	ℓ_8
in point	P_{32}	P_2	P_2	P_2	P_2	P_{63}

Line 7 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_9
in point	P_{37}	P_2	P_2	P_2	P_2	P_{84}

Line 8 intersects

Line	ℓ_0	ℓ_5	ℓ_6	ℓ_9
in point	P_{26}	P_{72}	P_{63}	P_{26}

Line 9 intersects

Line	ℓ_0	ℓ_4	ℓ_7	ℓ_8
in point	P_{26}	P_{55}	P_{84}	P_{26}

24: $P_{55} = (2, 0, 2, 1)$ 25: $P_{56} = (3, 0, 2, 1)$

 $26: P_{63} = (2, 2, 2, 1)$ $26: P_{68} = (2, 2, 2, 1)$ $27: P_{68} = (3, 3, 2, 1)$ $28: P_{69} = (0, 0, 3, 1)$ $29: P_{71} = (2, 0, 3, 1)$

 $30: P_{72} = (3, 0, 3, 1)$ $31: P_{79} = (2, 2, 3, 1)$ $32: P_{84} = (3, 3, 3, 1)$

The surface has 33 points: The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	12: $P_{33} = (3, 2, 0, 1)$
$1: P_2 = (0,0,1,0)$	13: $P_{34} = (0, 3, 0, 1)$
$2: P_3 = (0,0,0,1)$	14: $P_{36} = (2, 3, 0, 1)$
$3: P_{16} = (1, 2, 1, 0)$	15: $P_{37} = (3, 3, 0, 1)$
$4: P_{20} = (1, 3, 1, 0)$	16: $P_{38} = (0, 0, 1, 1)$
$5: P_{24} = (2,0,0,1)$	17: $P_{40} = (2, 0, 1, 1)$
$6: P_{25} = (3,0,0,1)$	18: $P_{41} = (3, 0, 1, 1)$
$7: P_{26} = (0, 1, 0, 1)$	19: $P_{46} = (1, 2, 1, 1)$
$8: P_{28} = (2, 1, 0, 1)$	$20: P_{47} = (2, 2, 1, 1)$
$9: P_{29} = (3, 1, 0, 1)$	$21: P_{50} = (1,3,1,1)$
10: $P_{30} = (0, 2, 0, 1)$	$22: P_{52} = (3,3,1,1)$
$11: P_{32} = (2, 2, 0, 1)$	23: $P_{53} = (0, 0, 2, 1)$