Implicit Regularization for Optimal Sparse Recovery

Varun Kanade¹, Patrick Rebeschini², Tomas Vaškevičius²

¹ Department of Computer Science, ² Department of Statistics

Problem Setting

• Let $\mathbf{w}^* \in \mathbb{R}^d$ be a k-sparse vector with $\mathbf{k} \ll \mathbf{d}$. We observe $\mathbf{n} \ll \mathbf{d}$ data points $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, i \in \{1, \dots, n\}$ such that in matrix-vector notation the model reads

$$\mathbf{y} = \mathbf{X}\mathbf{w}^* + \xi,$$

where ξ is a vector of independent σ^2 -sub-Gaussian noise random variables. We want to find an estimator $\widehat{\mathbf{w}} \in \mathbb{R}^d$ with small **parameter estimation error** $\|\widehat{\mathbf{w}} - \mathbf{w}^*\|_2^2$.

• Classical approaches to solving the above problem add an explicit sparsity-inducing penalty term to the optimization objective. For example, the lasso is a solution to

$$\min_{\widehat{\mathbf{w}} \in \mathbb{R}^d} \frac{1}{n} \|\mathbf{X}\widehat{\mathbf{w}} - \mathbf{y}\|_2^2 + \lambda \|\widehat{\mathbf{w}}\|_1.$$

• In this work, we investigate **implicit regularization** schemes for **gradient descent methods** applied to **unpenalized** least squares regression to solve the above problem.

Reparameterization

• The mean squared error is given by $\mathcal{L}(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2/n$. Performing gradient descent updates on $\mathcal{L}(\mathbf{w})$ together with early-stopping induces a regularization effect similar to ℓ_2 penalization (ridge regression). This type of regularization does not induce sparsity and hence is unsuitable for solving our problem. Updates on $\mathcal{L}(\mathbf{w})$ in this case read as

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla \mathcal{L}(\mathbf{w}_t) = \mathbf{w}_t - (2\eta)/n \left(\mathbf{X}^\mathsf{T} \mathbf{X} (\mathbf{w}_t - \mathbf{w}^*) - \mathbf{X}^\mathsf{T} \xi \right)$$

• Instead, the key is to consider the following **reparameterization**. Let \odot denote a coordinate-wise multiplication for vectors. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$ let $\mathbf{w} = \mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}$ and define the mean squared error objective on \mathbf{u} and \mathbf{v} as

$$\mathcal{L}(\mathbf{u}, \mathbf{v}) = \|\mathbf{X} (\mathbf{u} \odot \mathbf{u} - \mathbf{v} \odot \mathbf{v}) - \mathbf{y}\|_{2}^{2} / n.$$

• We show that using the above parameterization and applying gradient-based updates on (\mathbf{u}, \mathbf{v}) instead of \mathbf{w} results in **sparsity-inducing implicit regularization effect**. For a constant learning rate η , the updates on \mathbf{u} and \mathbf{v} are given by

$$\mathbf{u}_{t+1} = \mathbf{u}_{t} - \eta \frac{\partial \mathcal{L}(\mathbf{u}_{t}, \mathbf{v}_{t})}{\partial \mathbf{u}_{t}} = \mathbf{u}_{t} \odot \left(\mathbb{1} - 4\eta \left(\frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \left(\mathbf{w}_{t} - \mathbf{w}^{\star} \right) - \frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi \right) \right),$$

$$\mathbf{v}_{t+1} = \mathbf{v}_{t} - \eta \frac{\partial \mathcal{L}(\mathbf{v}_{t}, \mathbf{v}_{t})}{\partial \mathbf{v}_{t}} = \mathbf{v}_{t} \odot \left(\mathbb{1} + 4\eta \left(\frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \left(\mathbf{w}_{t} - \mathbf{w}^{\star} \right) - \frac{1}{n} \mathbf{X}^{\mathsf{T}} \xi \right) \right).$$

• The idea of the above parameterization comes from recent work on matrix factorization models, where low-rank constraints are imposed by letting $\mathbf{W} = \mathbf{U}\mathbf{U}^{\mathsf{T}}$ [1].

Restricted Isometry Property

Our theoretical analysis is based on a standard assumption in compressed sensing literature. **Definition 1** (Restricted Isometry Property (RIP)). A $n \times d$ matrix \mathbf{X}/\sqrt{n} satisfies the (δ, k) -(RIP) if for any k-sparse vector $\mathbf{w} \in \mathbb{R}^d$ we have

$$(1 - \delta) \|\mathbf{w}\|_{2}^{2} \le \|\mathbf{X}\mathbf{w}/\sqrt{n}\|_{2}^{2} \le (1 + \delta) \|\mathbf{w}\|_{2}^{2}.$$

Intuitively, RIP assumption allows to treat $\mathbf{X}^{\mathsf{T}}\mathbf{X}/n$ as an identity matrix for sparse vectors. Various i.i.d. random ensembles (e.g., Gaussian or Rademacher) satisfy RIP.

Theorem 1 – Minimax Optimality

Below \lesssim denotes inequalities up to absolute multiplicative constants. Notation $a \approx b$ means $a \lesssim b \lesssim a$. We also define $w_{\max}^* = \max_i |w_i^*|$ and $w_{\min}^* = \min_{i:w_i^* \neq 0} |w_i^*|$. Finally, the notation \widetilde{O} is used to hide logarithmic factors.

- We assume that \mathbf{X}/\sqrt{n} satisfies $(\delta, k+1)$ -RIP with $\delta = \widetilde{O}(1/\sqrt{k})$. Such a condition requires dataset size n to scale quadratically with sparsity k, that is $n = \Omega(k^2 \log(d/k))$.
- To prevent explosion, it is necessary to set the learning rate $\eta \lesssim 1/w_{\text{max}}^{\star}$. It is possible to estimate w_{max}^{\star} up to multiplicative constants at the computational cost of one gradient descent iteration, that is O(nd). Hence, we let $\eta \approx 1/w_{\text{max}}^{\star}$.
- Set $\mathbf{u}_0 = \mathbf{v}_0 = \alpha$, where the initialization size α satisfies $0 < \alpha \le \frac{\sigma^2 \wedge \sigma}{n((2d+1) \vee w_{\max}^*)^2} \wedge \frac{\sqrt{w_{\min}^*}}{2}$. In particular, initialization size α is a **polynomial function** in d^{-1} , n^{-1} , $(w_{\max}^*)^{-1}$, w_{\min}^* , σ , while the optimal stopping time (see below) is only affected **logarithmically** in α^{-1} .
- Then, after $t = O(\frac{w_{\max}^* \sqrt{n}}{\sigma \sqrt{\log d}} \log \frac{1}{\alpha}) = \tilde{O}(\frac{w_{\max}^* \sqrt{n}}{\sigma})$ iterations we have $\|\mathbf{w}_t \mathbf{w}^*\|_2^2 \lesssim k \frac{\sigma^2 \log d}{\sigma}$ with probability at least $1 1/(8d^3)$.
- The above rate is **minimax optimal** for sub-linear sparsity and cannot be improved in general.

Key Proof Ideas

- Our parameterization turns **additive** updates into **multiplicative** updates.
- For every coordinate i, $\mathbf{u}_{t+1} \odot \mathbf{v}_{t+1} \preccurlyeq \mathbf{u}_t \odot \mathbf{v}_t$ hence for each i $\mathbf{u}_{t,i} \land \mathbf{v}_{t,i} \leq \alpha \approx \mathbf{0}$. Hence for simplicity assume $\mathbf{w}^* \succcurlyeq 0$ and use parameterization $\mathbf{w}_t = \mathbf{u}_t \odot \mathbf{u}_t$.
- Assume $\mathbf{X}^\mathsf{T}\mathbf{X}/n = \mathbf{I}$. The updates become $\mathbf{w}_{t+1} = \mathbf{w}_t \odot (\mathbf{1} 4\eta(\mathbf{w}_t \mathbf{w}^* \mathbf{X}^\mathsf{T}\xi/n))^2$.
- Then, *i*-th coordinate converges in $O(\eta^{-1}|\boldsymbol{w_i^{\star}} + (\mathbf{X^{\mathsf{T}}\boldsymbol{\xi}})_i/\boldsymbol{n}|^{-1}\log\alpha^{-1})$ iterations.
- Hence, all coordinates converge **exponentially fast at different rates**.

Necessity of Small Initialization

For any $\varepsilon > 0$ and large enough t we have $(1 + 2\varepsilon)^t \gg (1 + \varepsilon)^t$. Hence with small enough α we get the effect of **fitting coordinates one by one**.

Phase Transitions

With the intuition above, as soon as $w_{\min}^* - \|\frac{1}{n}\mathbf{X}^\mathsf{T}\xi\|_{\infty} > \|\frac{1}{n}\mathbf{X}^\mathsf{T}\xi\|_{\infty}$ all coordinates on the true support S grow exponentially at a faster rate than the coordinates on S^c .

Theorem 2 – Dimension Free Bounds

Consider the setting of Theorem 1. If in addition we have $w_{\min}^* \gtrsim \|\mathbf{X}^\mathsf{T}\xi\|_{\infty}/n$ then after $t = \widetilde{O}(\frac{w_{\max}^*\sqrt{n}}{\sigma})$ iterations we have $\|\mathbf{w}_t - \mathbf{w}^*\|_2^2 \lesssim k \frac{\sigma^2 \log k}{n}$ with probability at least $1 - 1/(8k^3)$

Theorem 3 – Computational Optimality

- The coordinates i such that $|w_i^{\star}| \gtrsim w_{\text{max}}^{\star}$ converge in $O(\log \alpha^{-1})$ iterations after which the learning rate **remains unnecessarily small**. We can instead use different learning rates for different coordinates.
- We can compute \hat{z} such that $w_{\max}^* \leq \hat{z} \leq 2w_{\max}^*$ in O(nd) time. For $m = 2, 3, \ldots$, after every $t = m\Omega(\log \alpha^{-1})$ iterations, double the learning rate for all i such that $|w_{t,i}^*| \leq 2^{-m-1}\hat{z}$.
- The resulting algorithm achieves the bounds of Theorems 1 and 2 in $\widetilde{O}(1)$ iterations. Hence the total complexity of our algorithm is $\widetilde{O}(nd)$.

References

[1] Y. Li, T. Ma, and H. Zhang. Algorithmic regularization in over-parameterized matrix sensing and neural networks with quadratic activations. In *Conference On Learning Theory*, pages 2–47, 2018.