Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы
вычислительной техники

К ЗАЩИТЕ ДОПУСТИТЬ

И. В. Лукьянова

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовой работе
на тему

ПРОЕКТИРОВАНИЕ И ЛОГИЧЕСКИЙ СИНТЕЗ СУММАТОРА-УМНОЖИТЕЛЯ ДВОИЧНО-ЧЕТВЕРИЧНЫХ ЧИСЕЛ

БГУИР КР 1-40 02 01 312 ПЗ

 Студент
 Г. В. Липский

 Руководитель
 И. В. Лукьянова

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1. РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ	
2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНО	ЖИТЕ-
	8
3. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ	
СУММАТОРА-УМНОЖИТЕЛЯ	9
3.1. Логический синтез одноразрядного четверичного умножителя .	9
3.2. Логический синтез одноразрядного четверичного сумматора	
3.3. Минимизация функции S_I алгоритмом Рота	17
3.4. Логический синтез преобразователя множителя	28
4. СИНТЕЗ КОМБИНАЦИОННЫХ СХЕМ УСТРОЙСТВ НА О	
МУЛЬТИПЛЕКСОРОВ	30
5. ОЦЕНКА РЕЗУЛЬТАТОВ РАЗРАБОТКИ	
ЗАКЛЮЧЕНИЕ	33
СПИСОК ЛИТЕРАТУРЫ	34
ПРИЛОЖЕНИЕ А	35
ПРИЛОЖЕНИЕ Б	
ПРИЛОЖЕНИЕ В	37
ПРИЛОЖЕНИЕ Г	38
ПРИЛОЖЕНИЕ Д	39

ВВЕДЕНИЕ

Предмет «Арифметические и логические основы вычислительной техники» является основополагающим в вопросах организации ЭВМ, а, следовательно, и неотъемлемой частью подготовки качественного специалиста в области информационных технологий.

Целью данной курсовой работы является проектирование такого устройства, как двоично-четверичный сумматор-умножитель (СУ). Сумматор является одним из центральных узлов арифметико-логического устройства (АЛУ), поэтому глубокое понимание принципов его работы критически важно для современного инженера. Чтобы спроектировать данное устройство, необходимо выполнить несколько последовательных этапов разработки:

- Разработка алгоритма умножения чисел, по которому работает СУ;
- Разработка структурной схемы СУ;
- Разработка функциональных схем основных узлов СУ;
- Оценка результатов проделанной работы;
- Оформление документации по проделанной работе.

В ходе выполнения курсовой работы автором были пройдены все эти этапы. В настоящей пояснительной записке изложено краткое описание процесса проектирования и приведена графическая документация по структурной схеме устройства и функциональным схемам основных её узлов.

1. РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ

Перевод сомножителей из десятичной системы счисления в четверичную: Множимое:

Множитель:

Запишем сомножители в форме с плавающей запятой в прямом коде:

$$M_H = 0,010100010101$$
 $P_{MH} = 0.0011$ $P_{MT} = 0.0011$

Умножение двух чисел с плавающей запятой на 2 разряда множителя одновременно в прямых кодах сводится к сложению порядков, формированию знака произведения, преобразованию разрядов множителя согласно алгоритму и перемножению мантисс сомножителей.

$$P_{MH} = 0.0011 +34$$
 $P_{MT} = 0.0011 +34$
 $P = 0.0100 +124$

Результат закодирован в соответствии с заданием на кодировку множимого. Знак произведения определяется суммой по модулю два знаков сомножителей:

$$3H.МH \oplus 3H.МT = 0 + 0 = 0$$

Для умножения мантисс необходимо предварительно преобразовать множитель, чтобы исключить диаду $11 (3_4)$, заменив ее на триаду 101.

Преобразованный множитель имеет вид:
$$M T^{\Pi} = 1\overline{12}\overline{12}\overline{10}$$
 $[MH]_{\pi} = 0,112111; \quad [-MH]_{\pi} = 3,221223; \quad [2MH]_{\pi} = 0,230222$

Умножение по алгоритму А:

Четверич	ная с/с	Двоично-четн	веричная с/с	Комментарии
0,000000		0, 00 00 00 00 00 00		\sum_{0}
0,000000		<u>0, 10 10 10 10 10 10</u>		$\Pi_1 = 0$
0,000000		0, 10 10 10 10 10 10		$\sum 1^{\mathrm{u}}$
0,000000	0	0, 10 10 10 10 10 10	10	$\sum_{1}^{4} \cdot 4^{-1}$
3,221223		<u>1,0000001000011</u>		$\Pi_2 = \mathbf{b}_6 \cdot [-\mathbf{M}_{\mathbf{H}}]_{\mathbf{H}}$
3,221223	0	1, 00 00 01 00 00 11	10	$\sum 2^{\mathbf{q}}$
3,322122	30	1, 11 00 00 01 00 00	11 10	$\sum_{2}^{\mathbf{q}} \cdot 4^{-1}$
0,230222		0,001110000000		$\Pi_3 = \mathbf{b}_5 \cdot [2\mathbf{M}_{\mathbf{H}}]_{\mathbf{\Pi}}$
0,213010	30	0, 00 01 11 10 01 10	11 10	$\sum_{3}^{\mathbf{q}}$
0,021301	030	0, 10 00 01 11 10 01	10 11 10	$\sum_{3}^{\mathbf{q}} \cdot 4^{-1}$
3,221223		<u>1,0000001000011</u>		$\Pi_4 = \mathbf{b}_4 \cdot [-\mathbf{M}_{\mathbf{H}}]_{\scriptscriptstyle \Pi}$
3,303130	030	1, 11 10 11 01 11 10	10 11 10	$\sum 4^{\mathbf{q}}$
3,330313	0030	1, 11 11 10 11 01 11	10 10 11 10	$\sum_{4}^{\mathbf{q}} \cdot 4^{-1}$
0,230222		0,001110000000		$\Pi_5 = \mathbf{b}_3 \cdot [2\mathbf{M}_{\mathbf{H}}]_{\mathbf{\Pi}}$
0,221201	0030	0, 00 00 01 00 10 01	10 10 11 10	$\sum 5^{4}$
0,022120	10030	0, 10 00 00 01 00 10	01 10 10 11 10	$\sum_{5}^{4} \cdot 4^{-1}$
3,221223		<u>1, 00 00 01 00 00 11</u>		$\Pi_6 = \mathbf{b}_2 \cdot [-\mathbf{M}_{\mathbf{H}}]_{\scriptscriptstyle \Pi}$
3,310003	10030	1, 11 01 10 10 10 11	01 10 10 11 10	$\sum 6^{\mathrm{q}}$
3,331000	310030	1, 11 11 01 10 10 10	11 01 10 10 11 10	$\sum_{5}^{4} \cdot 4^{-1}$
0,112111		0, 01 01 00 01 01 01		$\Pi_7 = \mathbf{b}_1 \cdot [\mathbf{M}_{\mathbf{H}}]_{\scriptscriptstyle \mathcal{I}}$
0,103111	310030	0, 01 10 11 01 01 01	11 01 10 10 11 10	\sum 7 ⁴

После окончания умножения необходимо оценить погрешность вычислений. Для этого полученное произведение:

$$(M_H \cdot M_T)_4 = 0.103111310030 (P_{M_H} \cdot P_{M_T} = 6)$$

приводится к нулевому порядку, а затем переводится в десятичную систему счисления:

$$(M_H \cdot M_T)_4 = 103111,310030 (P_{M_H} \cdot P_{M_T} = 0)$$

 $(MH \cdot MT)_{10} = 1237,8154$

Результат прямого перемножения операндов дает следующее значение: $\mathrm{M}_{10}\cdot\mathrm{M}_{10}=1238{,}5296$

$$\Delta = 1238,5296 - 1237,8154 = 0,7142 \\ \delta = \frac{\Delta}{(\text{MH*MT})_{10}} = \frac{0,7142}{1238,5296} = 0,000577; \, \delta = 0.058\%$$

Эта погрешность получена за счет приближенного перевода из десятичной системы счисления в четверичную обоих сомножителей, а также за счет округления полученного результата произведения.

2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТЕЛЯ

Структура сумматора-умножителя первого типа строится на базе заданных узлов ОЧС, ОЧУ и аккумулятора (накапливающего сумматора).

Управление режимом работы схемы осуществляется внешним сигналом Mul/sum, который определяет вид текущей арифметической операции (умножение или суммирование).

Если устройство работает как сумматор (на входе Mul/sum - «1»), то оба слагаемых последовательно (за два такта) заносятся в регистр множимого, а на управляющий вход формирователя дополнительного кода (Φ ДК) F_2 поступает «1».

Если устройство работает как умножитель (на входе Mul/sum - «0»), то множимое и множитель помещаются в соответствующие регистры, а на управляющий вход Φ ДК F_2 поступает «0».

Принцип работы ФДК в зависимости от управляющих сигналов приведён в таблице 2.1.

Сигналы на входах ФДК Результат на выходах ФДК F_1 F_2 0 0 Дополнительный код множимого 0 1 Дополнительный код слагаемого 1 0 Меняется знак множимого 1 1 Меняется знак слагаемого

Таблица 2.1 – Режимы работы формирователя дополнительного кода

Структурная схема сумматора-умножителя первого типа для алгоритма умножения «А» приведена в приложении А.

3. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ СУММАТОРА-УМНОЖИТЕЛЯ

3.1. Логический синтез одноразрядного четверичного умножителя

ОЧУ - это комбинационное устройство, имеющее 5 входов (2 разряда из регистра Мн, 2 разряда из регистра Мт и управляющий вход h) и 4 выхода.

Разряды множителя закодированы : 0 - 00; 1 - 01; 2 - 10; 3 - 11.

Разряды множимого закодированы : 0 - 10; 1 - 01; 2 - 00; 3 - 11.

Управляющий вход h определяет тип операции: 0 - умножение закодированных цифр, поступивших на информационные входы; 1 - вывод на выходы без изменения значения разрядов, поступивших из регистра множимого.

Принцип работы ОЧУ описывается с помощью таблицы истинности В таблице выделено 8 безразличных наборов, т.к. на входы ОЧУ из разрядов множителя не может поступить код 11.

Таблица 3.1 — Таблица истинности ОЧУ:

M	Ін	N	ſт	Уπ.	Ст.ра	зряды	Мл.ра	зряды	Пример операции в				
x_1	x_2	y_1	y_2	h	P_1	P_2	P_3	P_4	четверичной с/с				
1	2	3	4	5	6	7	8	9	10				
0	0	0	0	0	1	0	1	0	2 · 0=00				
0	0	0	0	1	1	0	0	0	Выход - код «02»				
0	0	0	1	0	1	0	0	0	2 · 1=02				
0	0	0	1	1	1	0	0	0	Выход - код «02»				
0	0	1	0	0	0	1	1	0	2 · 2=10				
0	0	1	0	1	1	0	0	0	Выход - код «02»				
0	0	1	1	0	X	X	X	X	2 · 3=12				
0	0	1	1	1	X	X	X	X	Выход - код «02»				
0	1	0	0	0	1	0	1	0	1 · 0=00				
0	1	0	0	1	1	0	0	1	Выход - код «01»				
0	1	0	1	0	1	0	0	1	1 · 1=01				
0	1	0	1	1	1	0	0	1	Выход - код «01»				
0	1	1	0	0	1	0	0	0	1 · 2=02				
0	1	1	0	1	1	0	0	1	Выход - код «01»				
0	1	1	1	0	X	X	X	X	1 · 3=03				
0	1	1	1	1	X	X	X	X	Выход - код «01»				
1	0	0	0	0	1 0		1	0	0.0=00				
1	0	0	0	1	1	0	1	0	Выход - код «00»				
1	0	0	1	0	1 0		1 0		0 · 1=00				

1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	1	0	1	0	Выход - код «00»
1	0	1	0	0	1	0	1	0	0 · 2=00
1	0	1	0	1	1	0	1	0	Выход - код «00»
1	0	1	1	0	X	X	X	X	0 · 3=00
1	0	1	1	1	X	X	X	X	Выход - код «00»
1	1	0	0	0	1	0	1	0	3 · 0=00
1	1	0	0	1	1	0	1	1	Выход - код «03»
1	1	0	1	0	1	0	1	1	3 · 1=03
1	1	0	1	1	1	0	1	1	Выход - код «03»
1	1	1	0	0	0	1	0	0	3 · 2=12
1	1	1	0	1	1	0	1	1	Выход - код «03»
1	1	1	1	0	X	X	X	X	3 · 3=21
1	1	1	1	1	X	X	X	X	Выход - код «03»

Минимизация функции P_1 картами Вейча:

Минимизировав функцию получим:

$$f_{\min_{\Xi H \Phi}} = y_2 + h + \overline{y}_1 + \overline{x}_1 x_2 + x_1 \overline{x}_2$$

$$f_{\min_{KH\Phi}} = (\overline{x}_1 + \overline{x}_2 + \overline{y}_1 + y_2 + h) \cdot (x_1 + x_2 + \overline{y}_1 + y_2 + h)$$

Минимизация функции P_2 картами Вейча:

Минимизировав функцию, получим:
$$\mathrm{f}_{\min_{ДН\Phi}} = \ x_1x_2y_1\overline{h} + \overline{x}_1\overline{x}_2y_1\overline{h}$$

Минимизация функции P_3 картами Карно:

	x_1	x_2	0	0	1	1
y 1, 3	y_2, h		0	_ 1	1	0
0	0	0	1			1
0	0	1			$\sqrt{1}$	1
0	1	1	X	X	X	X
0	1	0	X	X	X	X
1	1	0			1	1
1	1	1			1	1/
1	0	1.			1	1/
1	0	0	1	1	1	1

Минимизировав функцию, получим:
$$\mathbf{f}_{\min_{\text{ДНФ}}} = x_1 y_2 + x_1 h + \overline{y}_1 \overline{y}_2 \overline{h} + \overline{x}_2 \overline{y}_2 \overline{h}$$

Минимизация функции P_4 картами Карно:

Минимизировав функцию, получим:

$$f_{\min_{\text{ДН}\Phi}} = x_2 y_2 + x_2 h$$

Эффективность минимизаций:

$$K_{P1} = (22 \cdot 5 + 22 + 5) / 17 = 8,1;$$

$$K_{P2} = (2 \cdot 5 + 2 + 4) / 16 = 1;$$

$$K_{P3} = (14 \cdot 5 + 14 + 4) / 22 = 4;$$

$$K_{P4} = (8 \cdot 5 + 8 + 5) / 6 = 8,8.$$

Функциональная схема ОЧУ приведена в приложении Б.

3.2. Логический синтез одноразрядного четверичного сумматора

ОЧС - это комбинационное устройство, имеющее 5 входов и 3 выхода:

- 2 разряда одного слагаемого (множимого);
- 2 разряда второго слагаемого (множителя);
- вход переноса из младшего ОЧС;
- 3 выхода.

Принцип работы ОЧС описывается с помощью таблицы истинности Разряды обоих слагаемых закодированы : 0 - 10; 1 - 01; 2 - 00; 3 -11.

В таблице истинности выделено 16 безразличных наборов, так как на входы ОЧС со старших выходов ОЧУ не могут поступить коды «2» и «3».

Таблица 3.2 — Таблица истинности ОЧС:

a_1	a_2	b_1	b_2	p	П	S_1	S_2	Пример операции в четверичной c/c
1	2	3	4	5	6	7	8	9
0	0	0	0	0	X	X	X	2+2+0=10
0	0	0	0	1	X	X	X	2+2+1=11
0	0	0	1	0	0	1	1	2+1+0=03
0	0	0	1	1	1	1	0	2+1+1=10
0	0	1	0	0	0	0	0	2+0+0=02
0	0	1	0	1	0	1	1	2+0+1=03
0	0	1	1	0	X	X	X	2+3+0=11
0	0	1	1	1	X	X	X	2+3+1=12
0	1	0	0	0	X	X	X	1+2+0=03
0	1	0	0	1	X	X	X	1+2+1=10
0	1	0	1	0	0	0	0	1+1+0=02
0	1	0	1	1	0	1	1	1+1+1=03
0	1	1	0	0	0	0	1	1+0+0=01
0	1	1	0	1	0	0	0	1+0+1=02
0	1	1	1	0	X	X	X	1+3+0=10
0	1	1	1	1	X	X	X	1+3+1=11
1	0	0	0	0	X	X	X	0+2+0=02
1	0	0	0	1	X	X	X	0+2+1=03
1	0	0	1	0	0	0	1	0+1+0=01
1	0	0	1	1	0	0	0	0+1+1=02
1	0	1	0	0	0	1	0	0+0+0=00

1	2	3	4	5	6	7	8	9
1	0	1	0	1	0	0	1	0+0+1=01
1	0	1	1	0	X	X	X	0+3+0=03
1	0	1	1	1	X	X	X	0+3+1=10
1	1	0	0	0	X	X	X	3+2+0=11
1	1	0	0	1	X	X	X	3+2+1=12
1	1	0	1	0	1	1	0	3+1+0=10
1	1	0	1	1	1	0	1	3+1+1=11
1	1	1	0	0	0	1	1	3+0+0=03
1	1	1	0	1	1	1	0	3+0+1=10
1	1	1	1	0	X	X	X	3+3+0=12
1	1	1	1	1	X	X	X	3+3+1=13

Минимизация функции П картами Вейча:

Минимизировав функцию получим:

$$\mathbf{f}_{\mathrm{min}_{\textrm{ДН}\Phi}} = \ a_1 a_2 \overline{b_1} + a_1 a_2 p + \overline{a_1} \, \overline{a_2} \, b_2 p$$

Минимизация функции S_1 картами Карно:

	a_1	a_2	0	0	1	1
b_1 ,	b_2, p		0	1	1	0
1	0	0			1	_1
1	0	1	1		1	
1	1	1	X	X	X	X
1	1	0	X	X	X	X
0	1	0	1		1	
0	1	1	1	1		
0	0	1	x	X	X	X
0	0	0	X	X	X	X

Минимизировав функцию получим:

$$f_{\min_{\square H\Phi}} = \overline{a_1} \, \overline{a_2} \, b_2 + \overline{a_1} \, b_2 \, p + \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 b_1 + a_1 \overline{b_2} \overline{p} + a_1 a_2 \overline{p}$$

Минимизация функции S2 картами Карно:

	a_1, a_2	a_2	0	0	1	1
b_1 ,	b_2, p		0	1	1	0
0	0	0		1	1/	
0	0	1	1			1
0	1	1	X	X	X	X
0	1	0	X	X	X	X
1	1	0	1			1
1	1	1		J	1	
1	0	1	X	X	X	X
1	0	0	X	X	X	X

Минимизировав функцию, получим:
$$\mathbf{f}_{\min_{\mathrm{ДН\Phi}}} = \ \overline{a_2} \ b_2 \overline{p} + a_2 b_2 p + \ \overline{a_2} \ \overline{b_2} \ p + a_2 \overline{b_2} \overline{p}$$

Эффективность минимизаций:

$$K_{S1} = (8 \cdot 5 + 8 + 5) / 44 = 1.2$$
:

$$K_{S1} = (8 \cdot 5 + 8 + 5) / 44 = 1,2;$$

 $K_{S2} = (8 \cdot 5 + 8 + 5) / 28 = 1,9;$

$$K_{II} = (4 \cdot 5 + 4 + 5) / 23 = 1,3.$$

3.3. Минимизация функции S_1 алгоритмом Рота

Определим множество единичных кубов:

$$L = \begin{cases} 00010, 10100 \\ 00011, 11010 \\ 00101, 11100 \\ 01011, 11101 \end{cases}$$

Определим множество безразличных наборов:

$$N = \begin{cases} 00000, 01000, 10000, 11000 \\ 00001, 01001, 10001, 11001 \\ 00110, 01110, 10110, 11110 \\ 00111, 01111, 10111, 11111 \end{cases}.$$

Сформируем множество $C_0 = L \cup N$

$$C_0 = \begin{cases} 00010, 10100, 00000, 01000, 10000, 11000 \\ 00011, 11010, 00001, 01001, 10001, 11001 \\ 00101, 11100, 00110, 01110, 10110, 11110 \\ 01011, 11101, 00111, 01111, 10111, 11111 \end{cases}.$$

Первым этапом алгоритма Рота является нахождение множества простых импликант.

Для реализации этого этапа будем использовать операцию умножения (*) над множествами C_0 , C_1 и т. д., пока в результате операции будут образовываться новые кубы большей размерности.

Первый шаг умножения ($C_0 * C_0$) приведен в таблице 3.3.

В результате этой операции сформируется новое множество кубов:

$$C_{1} = \begin{cases} 0001x, 000x0, 00x10, 0x011, 000x1, 00x11, 00x01, 001x1\\ 010x1, 01x11, 1x100, 10x00, 101x0, 110x0, 11x10, 1110x\\ 11x00, 111x0, 11x01, 111x1, 0000x, 0x000, x0000, 0x001\\ x0001, 0011x, 0x110, x0110, 0x111, x0111, 0100x, x1000\\ x1001, 0111x, x1110, x1111, 1000x, 1x000, 1x001, 1011x\\ 1x110, 1x111, 1100x, 1111x \end{cases}.$$

Множество Z_0 кубов, не участвовавших в образовании новых кубов, пустое. В таблице 3.4 приведён следующий шаг поиска простых импликант с

помощью операции $C_1 * C_1$.

В результате образовалось множество C_2 кубов второй размерности:

$$C_{2} = \begin{cases} 000xx, 00x1x, 0x0x1, 00xx1, 0xx11, 1xx00 \\ 1x1x0, 11xx0, 11x0x, 111xx, x000x, 0x00x \\ xx000, xx001, 0x11x, x011x, xx110, xx111 \\ x100x, x111x, 1x00x, 1x11x \end{cases}.$$

$C_0 * C_0$	00010	00011	00101	01011	10100	11010	11100	11101	00000	00001	00110	00111	01000	01001	01110	01111	10000	10001	10110	10111	11000	11001	11110	11111
00010																								
00011	0001x																							
00101																								
01011		0x011																						
10100																								
11010																								
11100					1x100																			
11101																								
00000	000x0																							
00001		000x1	00x01						0000x															
00110	00x10																							
00111		00x11	001x1								0011x													
01000									0x000															
01001				010x1						0x001			0100x											
01110											0x110													
01111				01x11								0x111			0111 <i>x</i>									
10000					10x00				x0000															
10001										x0001							1000x							
10110					101x0						x0110													
10111												x0111							1011 <i>x</i>					
11000						110x0	11x00						x1000				1x000							
11001								11x01						x1001				1 <i>x</i> 001			1100x			
11110						11x10	111x0	444.6							x1110	4444			1x110					
11111								111x1								x1111				1 <i>x</i> 111			1111 <i>x</i>	

Таблица 3.3 — Поиск простых импликант ($C_0 * C_0$).

$C_1 * C_1$	0001x	000x0	00x10	0x011	000x1	00x11	00x01	001x1	010x1	01x11	1x100	10x00	101x0	110x0	11x10	1110x	11x00	111x0	11x01	111x1	0000x	0x000
0001x																						
000x0																						
00x10																						
0x011																						
000x1		000xx																				
00x11			00x1x																			
00x01						00xx1																
001x1					00x11																	
010x1					0x0x1																	
01x11						0xx11																
1x100																						
10x00																						
101x0																						
110x0																						
11x10																						
1110x												1 00			44.0							
11x00												1xx00			11x0x							
111x0													1x1x0	11xx0			44.0					
11x01																	11x0x					
111x1																		111 <i>xx</i>				
0000x	000xx																					
0x000																						

x0000														
0x001			0x0x1											0x00x
x0001														
0011x	00x1x													
0x110														
x0110														
0x111			0xx11											
x0111														
0100x													0x00x	
x1000														
x1101														
0111x														
x1110														
x1111														
1000x													x000x	
1x000							1xx00							
1x001														
1011x														
1x110							1x1x0							
1x111														
1100x										11x0x				
1111x										111xx				

Таблица 3.4 — Поиск

x0000	0x001	x0001	0011x	0x110	x0110	0x111	x0111	0100x	x1000	x1001	0111x	x1110	x1111	1000x	1x000	1x001	1011x	1x110	1x111	1100x	1111 <i>x</i>

x000x																	
				0x11x													
					x011x												
xx000																	
		xx001							x100x								
			0x11x														
					xx110												
							xx111				x111x						
	xx001												1x00x				
			x011x														
				xx110		_											
						xx111									1x11x		
								x100x				1x00x					
										x111x				1 <i>x</i> 11 <i>x</i>			

простых импликант ($C_1 * C_1$).

$C_2 * C_2$	000xx	00x1x	0x0x1	00xx1	0xx11	1xx00	1x1x0	11xx0	11x0x	111 <i>xx</i>	x000x	0x00x	xx000	xx001	0x11x	x011x	xx110	xx111	x100x	x111x	1x00x	1x11x
000xx																						
00x1x																						
0x0x1																						
00xx1																						
0xx11																						
1xx00																						
1x1x0																						
11xx0																						
11x0x																						
111 <i>xx</i>																						
x000x																						
0x00x																						
xx000																						
xx001													xx00x									
0x11x																						
x011x																						
xx110																						
xx111																	xx11x					
x100x											xx00x											
x111x																<i>xx</i> 11 <i>x</i>						
1x00x												xx00x										
1x11x															xx11x							

Таблица 3.5 — Поиск простых импликант ($C_2 * C_2$).

Множество Z_0 кубов, не участвовавших в образовании новых кубов, пустое.

В таблице 3.5 приведён следующий шаг поиска простых импликант с помощью операции $C_2 * C_2$.

В результате образовалось множество C_3 кубов третьей размерности:

$$C_3 = \{xx00x, xx11x\}.$$

Множество Z_2 кубов, не участвовавших в образовании новых кубов имеет вид:

$$Z_2 = \begin{cases} 000xx, 00x1x, 0x0x1, 00xx1 \\ 0xx11, 1xx00, 1x1x0, 11xx0 \\ 11x0x, 111xx \end{cases}.$$

Результат C_3*C_3 приведён в таблице 3.6.

$C_3 * C_3$	xx00x	<i>xx</i> 11 <i>x</i>
xx00x		
xx11x		

Таблица 3.6 — *Поиск простых импликант* $(C_3 * C_3)$.

Новых кубов (четвёртой размерности) не образовалось.

Получено множество Z_3 :

$$Z_3 = \{xx00x, xx11x\}.$$

На этом заканчивается этап поиска простых импликант, т. к. $|C_4| < 1$.

Множество простых импликант:

$$Z = Z_0 \cup Z_1 \cup Z_2 \cup Z_3 = \begin{cases} 000xx, 00x1x, 0x0x1, 00xx1 \\ 0xx11, 1xx00, 1x1x0, 11xx0 \\ 11x0x, 111xx, xx00x, xx11x \end{cases}.$$

Следующий этап — поиск L-экстремалей на множестве простых импликант (таблица 3.7). Для этого используется операция # (решётчатое вычитание).

Из каждой простой импликанты поочередно вычитаются все остальные простые импликанты $Z\#(Z\setminus z)$, результат операции (последняя строка таблицы) указывает на то, что L-экстремалями стали следующие простые импликанты: $E = \{00xx1, 11xx0\}$.

Необходимо проверить, нет ли среди полученных L-экстремалей таких, которые стали L-экстремалями за счёт безразличных кубов. Для этого в таблице 6 из кубов множества L вычитаются остатки простых импликант, полученные в таблице 5 (результат выполнения операции $Z\#(Z\setminus z)$).

Z#(Z z)	000xx	00x1x	0x0x1	00xx1	0xx11	1xx00	1x1x0	11xx0	11x0x	111xx	xx00x		xx	11 <i>x</i>
000xx		zz1zz 0011x	z1zzz 010x1	zz1zz 001x1	z11zz 0x111 01x11	y11zz 1x100 11x00	y11zz 1x1x0	yy1zz 11xx0	yy1zz 11x0x	уууzz 111хх	11 <i>zzz</i> <i>x</i> 100 <i>x</i>	1 <i>x</i> 00 <i>x</i>	11 ₃ xx1	
00x1x	zzz0z 0000x		zyz0z 01001	zzz0z 00101	z1zzz zyzzz 01111 01x11	y1zyz yyzyz 1x100 11x00	y1z0z 1x100 111x0	уугуг 11хх0	уугуг 11х0х	ууz0z 111xx	1 <i>yzyz</i> <i>x</i> 100 <i>x</i>	y1zyz 1x00x	x111x	222 1x11x
0x0x1	zzzz0 00000	zzyz0 00110		zzyzz 00101	zzyzz zz1zz 01111 01111	yzyzy yz1zy 1x100 11x00	yzyzy yzyzy 1x100 111x0	yz1zy 11xx0	yz1z0 11x00 1110x	yzyz0 111xx	1zzz0 1100x x1000	yzzz0 1x000	1zyz0 x1110 1111x	yzyz0 1x11x
00xx1	zzzzy 00000	zzzzy 00110	zyzzz 01001		zyzzz zyzzz 01111 01111	y1zzy yyzzy 1x100 11x00	y1zzy yyzzy 1x100 111x0	<i>yyzzy</i> 11 <i>xx</i> 0	yzzyy yyzz0 11x00 11100	yyzz0 111xx	yyzz0 1yzzy 1100x x1000	y1zzy 1x000	1 <i>yzzy yyzz</i> 0 <i>x</i> 1110 1111 <i>x</i>	y1zz0 1x110 1111x
0xx11	zzzyy 00000	zzzzy 00110	zzzyz 01001	zzzyz 00101		yzzyy yzzyy 1x100 11x00	yzzyy yzz0y 1x100 111x0	yzz0y 11xx0	yzzyy yzzyy 11x00 11100	yzz00 111x0 1110x	yzzy0 1zzyy 1100x x1000	<i>yzzyy</i> 1 <i>x</i> 000	1zzzy yzzz0 11110 11110	yzzzy yzzz0 1x110 11110
1xx00	yzzzz 00000	<i>yzzyz</i> 00110	yzzzy 01001	yzzzy 00101	yzzyy yzzyy 01111 01111		zzzzz zzz1z Ø 11110	zzz1z 11x10	zzzzz zzzzz Ø Ø	zzz1z zzzz1 11110 11101	zzzz1 0zzzz 11001 01000	zzzzz Ø	zzzyz zzzyz 11110 11110	zzzyz zzzyz 1x110 11110
1x1x0	yzyzz 00000	yzzzz 00110	yzyzy 01001	yzzzy 00101	yzzzy yzzzy 01111 01111	zzzzz zz0zz Ø 11000		zz0zz 11010		zzzzz zzzzy Ø 11101	zzyzy yzyzz 11001 01000		zzzzz zzzzz Ø Ø	zzzzz zzzzz Ø Ø
11xx0	<i>yyzzz</i> 00000	<i>yyzzz</i> 00110	yzzzy 01001	<i>yyzzy</i> 00101	yzzzy yzzzy 01111 01111	zzzzz Ø	zzzzz Ø			zzzzy 11101	zzzzy yzzzz 11001 01000			
11x0x	<i>yyzzz</i> 00000	уугуг 00110	yzzzz 01001	yyzzz 00101	yzzyz yzzyz 01111 01111			zzzyz 11010		zzzzz Ø	zzzzz yzzzz Ø 01000			
111 <i>xx</i>	<i>yyyzz</i> 00000	<i>yyzzz</i> 00110	yzyzz 01001	<i>yyzzz</i> 00101	yzzzz yzzzz 01111 01111			zzyzz 11010			yzyzz 01000			
xx00x	zzzzz Ø	zzyyz 00110	zzzzz Ø	zzyzz 00101	zzyyz zzyyz 01111 01111			zzzyz 11010						
xx11x		zzzzz Ø		zzzyz 00101	zzzzz zzzzz Ø Ø			zzyzz 11010			zzyyz 01000			

Таблица 3.7 — Поиск L-экстремалей

$L \cap E$	00010	00011	00101	01011	10100	11010	11100	11101
00101	Ø	Ø	00101	Ø	Ø	Ø	Ø	Ø
11010	Ø	Ø	Ø	Ø	Ø	11010	Ø	Ø

Таблица 3.8 — Проверка L-экстремалей

По результатам таблицы 3.8 L-экстремалями, не связанными с безразличными наборами, стали кубы 00xx1 и 11xx0 (остатки от вычитания из них всех остальных простых импликант — 00101 и 11010 — относятся к множеству единичных наборов L исходного задания функции). Эти кубы обязательно должны войти в минимальное покрытие.

Далее необходимо проанализировать, какие из исходных единичных кубов (множество L) не покрыты найденными L-экстремалями. Этот анализ осуществляется с помощью таблицы 3.9.

L # E	00010	00011	00101	01011	10100	11010	11100	11101
00xx1	<i>zzzzy</i> 00010	zzzz Ø	zzzz Ø	<i>zyzzz</i> 01011	<i>yzzzy</i> 01011	<i>yyzzy</i> 11010	<i>yyzzy</i> 11100	<i>yyzzz</i> 11101
11xx0	<i>yyzzz</i> 00010	<i>yyzzy</i> 00011	<i>yyzzy</i> 00101	<i>yzzzy</i> 01011	<i>zyzzz</i> 10100	zzzz Ø	zzzz Ø	zzzzy 11101

Таблица 3.9 — Поиск непокрытых исходных наборов

Из таблицы 3.9 видно, что L-экстремалями не покрыты четыре единичных куба (00010, 01011, 10100, 11101). Чтобы их покрыть, воспользуемся множеством простых импликант, не являющихся L-экстремалями (таблица 3.10).

Из таблицы 3.10 видно, что каждый из непокрытых единичных кубов может быть покрыт двумя равнозначными способами. Следовательно, существуют шестнадцать тупиковых (минимальных) форм:

$$\begin{split} &\mathbf{f}_{\min 1} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \, \overline{a_1} \, \overline{b_1} p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 2} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \, \overline{a_1} \, \overline{b_1} p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 \underline{b_1} \\ &\mathbf{f}_{\min 3} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \, \overline{a_1} \, \overline{b_1} p + \, a_1 b_1 \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 4} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \, \overline{a_1} \, \overline{b_1} p + \, a_1 b_1 \overline{p} + \, a_1 a_2 b_1 \\ &\mathbf{f}_{\min 5} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \, \overline{a_1} \, b_2 p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 6} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \, \overline{a_1} \, b_2 p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 \overline{b_1} \\ &\mathbf{f}_{\min 7} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \overline{a_1} \, b_2 p + \, a_1 b_1 \overline{p} + \, a_1 a_2 \overline{b_2} \\ \end{split}$$

$$\begin{split} &\mathbf{f}_{\min 8} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, \overline{p} + \, \overline{a_1} \, b_2 p + \, a_1 b_1 \overline{p} + \, a_1 a_2 b_1 \\ &\mathbf{f}_{\min 9} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, \overline{b_1} p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 10} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, \overline{b_1} p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 b_1 \\ &\mathbf{f}_{\min 11} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, \overline{b_1} p + \, a_1 b_1 \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 12} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, \overline{b_1} p + \, a_1 b_1 \overline{p} + \, a_1 a_2 b_1 \\ &\mathbf{f}_{\min 13} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, b_2 p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 14} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, b_2 p + \, a_1 \overline{b_2} \, \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 15} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, b_2 p + \, a_1 b_1 \overline{p} + \, a_1 a_2 \overline{b_2} \\ &\mathbf{f}_{\min 16} = \, \overline{a_1} \, \overline{a_2} \, p + a_1 a_2 \overline{p} + \, \overline{a_1} \, \overline{a_2} \, b_2 + \, \overline{a_1} \, b_2 p + \, a_1 b_1 \overline{p} + \, a_1 a_2 \overline{b_2} \end{split}$$

$L \cap Z$	00010	01011	10100	11101
000xx	00010	Ø	Ø	Ø
00x1x	00010	Ø	Ø	Ø
0x0x1	Ø	01011	Ø	Ø
0xx11	Ø	01011	Ø	Ø
1xx00	Ø	Ø	10100	Ø
1x1x0	Ø	Ø	10100	Ø
11x0x	Ø	Ø	Ø	11101
111 <i>xx</i>	Ø	Ø	Ø	11101
xx00x	Ø	Ø	Ø	Ø
xx11x	Ø	Ø	Ø	Ø

Таблица 3.10 — Покрытие оставшихся кубов

Функциональная схема ОЧС приведена в приложении В.

3.4. Логический синтез преобразователя множителя

Преобразователь множителя (ΠM) – это устройство, которое преобразовывает диады множителя в соответствии с методом умножения.

При умножении в дополнительных кодах ПМ заменяет диады 11 и 10 на триады $1\overline{01}$ и $1\overline{10}$ соответственно.

В случае образования единицы переноса в старшую диаду множителя она должна быть учтена при преобразовании следующей старшей диады (выход 1 ПМ), т.е. сохраняться до следующего такта на триггер.

Выход 2 ПМ переходит в единичное состояние, если текущая диада содержит отрицание $(0\overline{1})$.

На выходах 3 и 4 ПМ формируются диады преобразованного множителя, которые затем поступают на входы ОЧУ вместе с диадами множимого.

Для случая умножения множимого на два разряда двоичного множителя одновременно в прямых кодах с использованием алгоритма умножения «А» будет происходит замена только диады 11

Принцип работы ПМ представлен с помощью таблицы истинности (таблица 3.11).

	nya I.	Входная Младший Выходная											
	дная ада	Младший разряд	Перенос		одная ада	Знак							
a_1	a_2	p	h	S_{I}	S_2	Q							
0	0	0	0	0	0	0							
0	0	1	0	0	1	0							
0	1	0	0	0	1	0							
0	1	1	0	1	0	0							
1	0	0	0	1	1	0							
1	0	1	1	0	1	1							
1	1	0	1	0	1	1							
1	1	1	1	0	0	0							

Таблица 3.11 — Таблица истинности ПМ:

Минимизацию переключательных функций произведём с помощью карт Вейча и реализуем их в базисе И, ИЛИ, НЕ.

Минимизация функции Q картами Вейча:

$$f_{\min_{\mathbf{Д}\mathbf{H}\Phi}} = a_1 \overline{a_2} p + a_1 a_2 \overline{p}$$

Минимизация функции S_I картами Вейча:

$$f_{\min_{\text{ДН}\Phi}} = a_1 \overline{a_2} \, \overline{p} + \overline{a_1} \, a_2 p$$

Минимизация функции S2 картами Вейча:

$$f_{\min_{ДН\Phi}} = a_2 \overline{p} + \overline{a_2} p$$

Эффективность минимизаций:

$$K_Q = (2 \cdot 3 + 2 + 3) / 11 = 1;$$

$$K_{SI} = (2 \cdot 3 + 2 + 3) / 11 = 1;$$

$$K_{S2} = (4 \cdot 3 + 4 + 3) / 8 = 2,4;$$

Функциональная схема ПМ приведена в приложении Г.

4. СИНТЕЗ КОМБИНАЦИОННЫХ СХЕМ УСТРОЙСТВ НА ОСНОВЕ МУЛЬТИПЛЕКСОРОВ

Мультиплексор — это логическая схема, которая имеет n информационных входов, m управляющих входов и один выход. При этом должно выполнятся условие $m = 2^n$.

На выход мультиплексора может быть пропущен без изменений один любой логический сигнал, поступающий на один из информационных входов. Порядковый номер информационного входа, значение которого в данный момент должно быть передано на выход, определяется двоичным кодом, подаваемым на управляющие входы.

Переключательные функции (ПФ) от пяти переменных (как, например, ОЧС) можно реализовать на мультиплексоре «один из восьми». Управляющее поле такого мультиплексора будет определяться тремя переменными, следовательно, число групп с одинаковыми значениями этих переменных будет равно восьми. Также, реализация нескольких ПФ требует для каждой ПФ отдельного мультиплексора.

Для определения управляющего поля мультиплексора возьмём переменные a_1 , a_2 .

Таблица истинности для синтеза ПФ ОЧС приведена в таблице 4.1.

Tаблица 4.1 — Tаблица истинности для синтеза $\Pi\Phi$ O4C

a_1	a_2	b_1	b_2	p	П	Функция	S_1	Функция	S_2	Функция
1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	X		X		X	
0	0	0	0	1	X	1	X	1	X	_
0	0	0	1	0	0		1		1	
0	0	0	1	1	1	h n	1	h i n	0	h On
0	0	1	0	0	0	$b_2 \cdot p$	0	$b_2 + p$	0	$b_2 \bigoplus p$
0	0	1	0	1	0		1		1	
0	0	1	1	0	X		X		X	
0	0	1	1	1	X		X		X	
0	1	0	0	0	X	-	X	-	X	-
0	1	0	0	1	X		X		X	
0	1	0	1	0	0		0		0	
0	1	0	1	1	0	0	1	h n	1	$\frac{1}{h} \bigcap n$
0	1	1	0	0	0	U	0	$b_2 \cdot p$	1	$b_2 \oplus p$
0	1	1	0	1	0		0		0	
0	1	1	1	0	X		X		X	
0	1	1	1	1	X	-	X	-	X	-

1	2	3	4	5	6	7	8	9	10	11
1	0	0	0	0	X		X		X	
1	0	0	0	1	X	-	X	-	X	-
1	0	0	1	0	0		0		1	
1	0	0	1	1	0	0	0	$\frac{1}{b}$	0	h
1	0	1	0	0	0	U	1	$b_2 + p$	0	$b_2 \oplus p$
1	0	1	0	1	0		0		1	
1	0	1	1	0	X		X		X	
1	0	1	1	1	X		X		X	
1	1	0	0	0	X	-	X	-	X	-
1	1	0	0	1	X		X		X	
1	1	0	1	0	1		1		0	
1	1	0	1	1	1	h n	0	<u></u>	1	$\frac{1}{h}$ \int $\frac{1}{h}$
1	1	1	0	0	0	$b_2 + p$	1	$b_2 \cdot p$	1	$b_2 \oplus p$
1	1	1	0	1	1		1		0	
1	1	1	1	0	X		X		X	
1	1	1	1	1	X	_	X	-	X	-

Функциональная схема ОЧС на основе мультиплексоров представлена в приложении Д.

5. ОЦЕНКА РЕЗУЛЬТАТОВ РАЗРАБОТКИ

Формула расчёта временных затрат на умножение выглядит следующим образом:

$$T=n\cdot (T_{\Pi M}+T_{\Phi JK}+(n+1)\cdot T_{O4Y}+T_{O4C}+T_{cдвига}),$$
 где

 $T_{\Pi M}$ – время преобразования множителя;

 $T_{\Phi Д K}$ – время формирования дополнительного кода;

 $T_{\text{ОЧУ}}$ – время умножение на ОЧУ;

Точс – время формирования единицы переноса в ОЧС;

T_{сдвига} – время сдвига частичной суммы;

n – количество разрядов множителя.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной курсовой работы были разработаны структурная схема сумматора-умножителя и функциональные схемы основных узлов данного устройства. Для упрощения и уменьшения стоимости логических схем были выполнены минимизации переключательных функций различными способами. Это позволило выявить достоинства и недостатки каждого из алгоритмов.

В качестве главных достоинств карт Карно—Вейча можно выделить простоту минимизации и минимальные затраты времени. Однако использование данного метода для функций многих переменных будет весьма затруднительно.

Для минимизации функций многих переменных удобно использовать алгоритм Рота, который полностью формализует алгоритмы минимизации и делает минимизацию доступной для выполнения компьютерной программой. Функциональные схемы были построены в различных логических базисах. Это позволило закрепить теоретические знания об основных законах булевой алгебры как, например, правил де Моргана.

Реализация переключательных функций на основе мультиплексоров позволяет облегчить минимизацию этих функций и значительно упростить функциональную схему устройства.

СПИСОК ЛИТЕРАТУРЫ

- 1 Единая система конструкторской документации (ЕСКД) : справ. пособие / С. С. Борушек [и др.]. М. : Изд-во стандартов, 1989. 352 с.
- 2 Искра, Н. А. Арифметические и логические основы вычислительной техники : пособие / Н. А. Искра, И. В. Лукьянова, Ю. А. Луцик. Минск : БГУИР, 2016. 75 с.
- 3 Луцик, Ю. А. Учебное пособие по курсу «Арифметические и логические основы вычислительной техники» / Ю. А. Луцик, И. В. Лукьянова, М. П. Ожигина. Минск : МРТИ, 2001. 77 с.
- 4 Лысиков, Б. Г. Цифровая вычислительная техника / Б. Г. Лысиков. Минск : Выш. шк., 2003. 242 с.
- 5 Усатенко, С. Т. Выполнение электрических схем по ЕСКД : справочник / С. Т. Усатенко, Т. К. Каченюк, М. В. Терехова. М. : Изд-во стандартов, 1989.-325 с.

ПРИЛОЖЕНИЕ А

(обязательное)

Сумматор-умножитель первого типа. Схема электрическая структурная

					ГУИР.400201	1.301	91	
					Сумматор-умножитель	Лит.	Масса	Масштаб
Изм	Лист	№ документа	Подпись	Дата	первого типа.			
Pas	Разраб. Л	 			Схема электрическая	y		
Пр					•			
					структурная	Лист	Лис	тоє 1
						эвл	1, гр. 05	50503

приложение б

(обязательное)

Одноразрядный четверичный умножитель. Схема электрическая функциональная

приложение в

(обязательное)

Одноразрядный четверичный сумматор. Схема электрическая функциональная

приложение г

(обязательное)

Преобразователь множителя. Схема электрическая функциональная

приложение д

(обязательное)

Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная

