G-ESTIMATION OF STRUCTURAL NESTED MODELS

Joy Shi, Barbra Dickerman, Miguel Hernán DEPARTMENTS OF EPIDEMIOLOGY AND BIOSTATISTICS

Learning objectives At the end of this lecture you will be able to

- Specify a structural nested model for a continuous outcome
- Conduct g-estimation to estimate the parameters of a structural nested model
- Describe the relation between g-estimation and instrumental variable estimation
- ☐ Key concepts
 - G-estimation
 - Structural nested mean models

S	tudy population
	1629 cigarette smokers
	Aged 25-74 years when interviewed in 1971-75 (baseline)
	Interviewed again in 1982
	Known sex, age, race, weight, height, education, alcohol use, and smoking intensity at both baseline and follow-up visits, and who answered the general medical history questionnaire at baseline

Key variables

Treatment A	Quit smoking between baseline and 1982 1: yes, 0: no
Continuous outcome Y	Weight gain, kg Weight in 1982 minus baseline weight Available for 1566 individuals
Baseline (pre-treatment) covariates	Age, sex, race, alcohol use, intensity of smoking, weight
Censoring C	Missing weight in 1982 1: yes, 0: no

Formal version of causal question: First define the counterfactual means

if everybody had quit smoking

- \blacksquare $E[Y^{a=1}]$
- $Y^{a=1}$ is an individual's outcome under a=1

if nobody had quit smoking

- \blacksquare $E[Y^{a=0}]$
- $Y^{a=0}$ is an individual's outcome under a=0

Then the formal question is:

- \square What is the average causal effect $E[Y^{a=1}] E[Y^{a=0}]$?
 - ignore censoring for now

G-estimation !

Average causal effect can be defined marginally or conditionally

- ☐ Marginal: Effect in the entire population
 - $\blacksquare \quad \mathbb{E}[Y^{a=1}] \mathbb{E}[Y^{a=0}]$
 - Methods: Standardization, IP weighting of MSMs, Instrumental variable estimation (under homogeneity)
- ☐ Conditional: Effects in subsets defined by effect modifiers
 - $E[Y^{a=1}|V=v] E[Y^{a=0}|V=v]$ for all values l
 - All of the above combined with stratification
- ☐ Conditional: Effects in subsets defined by *all* confounders
 - $E[Y^{a=1}|L=l] E[Y^{a=0}|L=l]$ for all values l
 - Methods: stratification, outcome regression, and g-estimation of structural nested models

Footnote: Average causal effects can also be conditional on PS

- ☐ Just replace the individual covariates *L* by the propensity score PS
 - $E[Y^{a=1}|PS=p] E[Y^{a=0}|PS=p]$ for all values p
 - lacktriangle Methods: stratification and outcome regression using PS rather than L

G-estimation :

Some new terms

- ☐ Structural nested models:
 - Models with parameter(s) that can be interpreted as the magnitude of the causal effect conditional on covariates
- ☐ G-estimation:
 - Method to estimate the parameters of structural nested models

Plan for this lecture

- A. Review
 - Conditional exchangeability
- B. Structural nested models
- C. G-estimation
- D. Adjustment for selection bias
- E. G-estimation and IV estimation

G-estimation 9

Conditional exchangeability Formal definition

$$Y^a \coprod A | L = l$$
 for all a

- \square Conditional exchangeability is equivalent to randomization within levels of the variables in L
 - e.g., smoking cessation occurred at random within levels of age, sex, race, smoking intensity, etc.
- ☐ Also known as the assumption of no unmeasured confounding

Clarification:

Average causal effect for continuous outcomes

- ☐ Only mean exchangeability is required
 - lacktriangle within levels of the covariates L, treated individuals would have had the same mean outcome as the untreated individuals had they being untreated, and vice versa
 - lacktriangle mean counterfactual outcome is the same in the treated and the untreated with the same value of L
- ☐ For dichotomous outcomes, exchangeability and mean exchangeability are the same

An equivalent expression of conditional exchangeability

$$Y^a \coprod A \mid L = l$$
 for all a
$$\Pr[A = 1 \mid L = l, Y^{a=1}] = \Pr[A = 1 \mid L = l, Y^{a=0}]$$
$$= \Pr[A = 1 \mid L = l]$$

☐ That is, conditional on the measured covariates, the probability of treatment does not depend on the value of the counterfactual outcome

G-estimation 15

Dream with me for a minute

- \square Suppose conditional exchangeability given L holds
- \square Suppose we know the values of the counterfactual outcomes $Y^{a=1}$ and $Y^{a=0}$ for all subjects
- ☐ Suppose that we fit a logistic model for treatment that includes one of the counterfactual outcomes as a covariate
 - logit $Pr[A=1|L, Y^a] = \alpha_0 + \alpha_1 Y^a + \alpha_2 L$
 - For either a=0 or a=1

What would be the value of the coefficient $lpha_1$ for $Y^{a=0}$? $\log it \Pr[A=1 L,Y^{a=0}]=lpha_0+a$	$lpha_1 Y^{a=0} + lpha_2 L$	0
Zero	0%	
Greater than zero	0%	
Less than zero	0%	
Start the presentation to see liv	ive content. For screen share software, share the entire screen. Get help at pollev.com/app	

What would be th ${f the \ coefficient}\ lpha_1 \ {f logit}\ { m Pr}[A=1 I]$		Ø 0
Zero		
		0%
Greater than zero		0%
Less than zero		
Less than zero		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

her conditional exchangeability holds by fitting a propensity score erfactual outcomes as covariates and then checking the value of $lpha_1$.	₡ 0
	0%
	0%
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	
	erfactual outcomes as covariates and then checking the value of $lpha_1$.

Different notat	ion, different concepts	5
☐ Conditional ex untreated is re	changeability of treated a	and
	$Y^a \coprod A L = l$	
□ Conditional ind outcome is rep	dependence of treatment presented by	and
	$Y \coprod A L = l$	

Plan

- A. Review
 - Conditional exchangeability assumption
- B. Structural nested models
- C. G-estimation
- D. Adjustment for selection bias
- E. G-estimation and IV estimation

Average causal effect within levels of the confounders

- ☐ These conditional effects are represented by
 - $E[Y^{a=1}|L=l] E[Y^{a=0}|L=l]$ for all values l
- ☐ Or, equivalently
 - $E[Y^{a=1}-Y^{a=0}|L=l]$
- ☐ Outcome regression
 - models for the conditional mean outcome $E[Y^a|L=l] = E[Y|A=a, L=l]$
- ☐ Structural nested models
 - models for the conditional average effect $E[Y^{a=1}-Y^{a=0}|L=l]$

G-estimation 23

Outcome regression One dichotomous confounder *L*

☐ If effect modification

$$E[Y|A=a, L=l] = \beta_0 + \beta_1 A + \beta_2 AL + \beta_3 L$$

- Effect in stratum $L=0:\beta_1$
- Effect in stratum $L=1: \beta_1 + \beta_2$
- ☐ If no effect modification

$$E[Y|A=a, L=l] = \beta_0 + \beta_1 A + \beta_3 L$$

■ Effect in all strata : β_1

Structural nested mean model One dichotomous confounder *L*

☐ If effect modification

$$E[Y^a - Y^{a=0}|A=a, L=l] = \beta_1 a + \beta_2 aL$$

- Effect in stratum $L=0:\beta_1$
- Effect in stratum L=1: $\beta_1 + \beta_2$
- ☐ If no effect modification

$$E[Y^a - Y^{a=0}|A=a, L=l] = \beta_1 a$$

■ Effect in all strata : β_1

G-estimation 25

Structural nested models have fewer parameters than outcome regression models

- ☐ Because SNMs model the causal effect directly
 - That is, the difference in mean outcomes rather than the mean outcomes
- □ No intercept and no parameters for the confounders
- ☐ Fewer opportunities of having bias due to model misspecification

Structural nested models vs. Marginal structural models

- ☐ For time-varying treatments, structural nested models allow product terms between treatment and time-varying covariates
 - marginal structural models do not
- ☐ For point treatments (like in our data), both classes of models can be used
 - MSMs estimate marginal effect or conditional effects, SNMs estimate conditional effects only

G-estimation 27

Plan

- A. Review
 - Conditional exchangeability assumption
- B. Structural nested models
- C. G-estimation
- D. Adjustment for selection bias
- E. G-estimation and IV estimation

- ☐ The procedure to estimate the parameters of structural nested models
- \square Next we describe, in 5 steps, g-estimation to estimate β_1 in a structural nested mean model
 - $E[Y^a Y^{a=0}|A=a, L=l] = \beta_1 a$
 - under no effect modification by any confounders
 - \square Aside: in the presence of EM, there are multiple parameters to be identified: $\mathbb{E}[Y^a Y^{a=0}|A=a, L=l] = \beta_1 a + \beta_2 a L$

G-estimation 29

Step 1: Mean model transformed into an individual-level, rank-preserving model

$$Y^a - Y^{a=0} = \psi_1 \ a$$

- ☐ This step is not really necessary for g-estimation but simplifies teaching the method
- ☐ This rank-preserving model has stronger assumptions than the mean model
- \Box The estimate of ψ_1 obtained via g-estimation for the rank-preserving model is also valid for the mean model

Step 2: Some rearranging $Y^{a=0} = Y^a - \psi_1 \ a$ \square We'll see why later \square Still too many unknowns in the model

Step 3: Model linked to the observed data

$$Y^{a=0} = Y - \psi_1 A$$

- \square The observed outcome Y equals the counterfactual outcome Y^a when a is equal to the observed treatment A
 - By consistency of counterfactuals
- \square How can we validly estimate ψ_1 ?

G-estimation 33

Step 4: Suppose that a friend of yours knows the value of ψ_1

- \square But they only tell you that ψ_1 is one of the following
 - $\psi^{\dagger} = -1.11$, $\psi^{\dagger} = 0$, or $\psi^{\dagger} = 3.46$
- \square How can you identify the true value ψ_1 among the 3 possible values ψ^{\dagger} ?
- \square For each subject, compute $H(\psi^{\dagger}) = Y \psi^{\dagger}A$ for each of the three possible values ψ^{\dagger}
- \square The newly created variables H(-1.11), H(0), and H(3.46) are candidate counterfactuals
 - One of them is the counterfactual outcome $Y^{a=0}$
 - $\blacksquare \ \ H(\psi^\dagger) = Y^{a=0} \ \ \text{if} \ \ \psi^\dagger = \psi_1$

Computing $H(\psi^{\dagger})$ from our observed data

 $Y^{a=0}=Y-\psi_1\,A$ Recall that ψ_1 is one of the following: $H(\psi^\dagger)=Y-\psi^\dagger A$ $\psi^\dagger=-1.11$, $\psi^\dagger=0$, or $\psi^\dagger=3.46$

$$H(\psi^{\dagger}) = Y - \psi^{\dagger} A$$

$$\psi^{\,\dagger} = -$$
 1.11, $\psi^{\,\dagger} = 0$, or $\psi^{\,\dagger} = 3.46$

ID	A	L	Y
1	0	0	3.5
2	1	1	1.2
3	1	1	2.7

Computing $H(\psi^{\dagger})$ from our observed data

$$Y^{a=0} = Y - \psi_1 A$$

 $Y^{a=0} = Y - \psi_1 A$ Recall that ψ_1 is one of the following:

$$H(\psi^{\dagger}) = Y - \psi^{\dagger} A$$

$$H(\psi^{\dagger}) = Y - \psi^{\dagger}A$$
 $\psi^{\dagger} = -1.11, \ \psi^{\dagger} = 0, \ \text{or} \ \psi^{\dagger} = 3.46$

ID	A	L	Y	$H(\psi^{\dagger}=-1.11)$
1	0	0	3.5	3.5 - (-1.11)(0) = 3.5
2	1	1	1.2	1.2 - (-1.11)(1) = 2.31
3	1	1	2.7	2.7 - (-1.11)(1) = 3.81

G-estimation

36

Computing $H(\psi^{\dagger})$ from our observed data

 $Y^{a=0}=Y-\psi_1\,A$ Recall that ψ_1 is one of the following: $H(\psi^\dagger)=Y-\psi^\dagger A$ $\psi^\dagger=-1.11$, $\psi^\dagger=0$, or $\psi^\dagger=3.46$

$$H(\psi^{\dagger}) = Y - \psi^{\dagger} A$$

$$\psi^{\dagger} = -$$
 1.11, $\psi^{\dagger} = 0$, or $\psi^{\dagger} = 3.46$

ID	A	L	Y	$H(\psi^{\dagger}=-1.11)$	H(ψ [†] =0)
1	0	0	3.5	3.5 - (-1.11)(0) = 3.5	3.5 - 0(0) = 3.5
2	1	1	1.2	1.2 - (-1.11)(1) = 2.31	1.2 - 0(1) = 1.2
3	1	1	2.7	2.7 - (-1.11)(1) = 3.81	2.7 - 0(1) = 2.7

G-estimation

Computing $H(\psi^{\dagger})$ from our observed data

$$Y^{a=0} = Y - \psi_1 A$$

 $Y^{a=0} = Y - \psi_1 A$ Recall that ψ_1 is one of the following:

$$H(\psi^{\dagger}) = Y - \psi^{\dagger} A$$

$$H(\psi^{\dagger}) = Y - \psi^{\dagger}A$$
 $\psi^{\dagger} = -1.11, \psi^{\dagger} = 0, \text{ or } \psi^{\dagger} = 3.46$

ID	A	L	Y	$H(\psi^{\dagger}=-1.11)$	$H(\psi^{\dagger}=0)$	<i>H</i> (ψ [†] =3.46)
1	0	0	3.5	3.5 - (-1.11)(0) = 3.5	3.5 - 0(0) = 3.5	3.5 - 3.46(0) = 3.5
2	1	1	1.2	1.2 - (-1.11)(1) = 2.31	1.2 - 0(1) = 1.2	1.2 - 3.46(1) = -2.26
3	1	1	2.7	2.7 - (-1.11)(1) = 3.81	2.7 - 0(1) = 2.7	2.7 - 3.46(1) = -0.76

G-estimation

38

Step 5: Test all the candidates, choose the true value

 \Box To identify which candidate $H(\psi^{\dagger})$ is the counterfactual $Y^{a=0}$, fit 3 models

$$\begin{aligned} & \text{logit Pr}[A=1|L, H(\psi^{\dagger})] = \alpha_0 + \alpha_1 \, H(-1.11) + \alpha_2 L \\ & \text{logit Pr}[A=1|L, H(\psi^{\dagger})] = \alpha_0 + \alpha_1 \, H(0) + \alpha_2 L \\ & \text{logit Pr}[A=1|L, H(\psi^{\dagger})] = \alpha_0 + \alpha_1 \, H(3.46) + \alpha_2 L \end{aligned}$$

- ☐ Remember the assumption of conditional exchangeability?
 - and its relation to the parameter α_1 in the model logit $\Pr[A=1|L, Y^{a=0}] = \alpha_0 + \alpha_1 Y^{a=0} + \alpha_2 L$

Done: That was g-estimation Search over all possible values of ψ^{\dagger} until you find one that results in $H(\psi^{\dagger})$ with $\alpha_1 = 0$ The candidate $H(\psi^{\dagger})$ with $\alpha_1 = 0$ is the counterfactual and the corresponding ψ^{\dagger} is the true value ψ_1 In practice, use more sophisticated search methods Need some additional coding Sometimes the estimator has closed form No need to search or optimize e.g., linear models like the ones considered here

To get the 95% confidence interval for ψ_1 Invert the test for α_1 =0 Find the set of values of ψ^\dagger that result in a P-value>0.05 when testing for α_1 =0 The 95% confidence limits are the limits of that set of values Can use Wald test, Score test...

G-estimation

Back to our data: Point estimate for ψ_1 Point estimate: 3.5 See gestimation.R, lines 19-42 Value of ψ^{\dagger} that produces the value of α_1 closest to 0 Or, equivalently, p-value closest to 1 Adjusting for baseline covariates: Sex, age, race, education, smoking intensity, duration of smoking, exercise, active lifestyle, baseline weight

43

95% confidence interval for estimate of ψ_1

- □ 95% CI: 2.6, 4.4 approx
- \square By inversion of the test: values of ψ^{\dagger} for which the test for α_1 =0 has P-value>0.05 in model

■ Select next closest ψ^{\dagger} with p-value<0.05 to give us a (conservative) 95% CI

See gestimation.R, lines 19-42

ψ_1	p-value
2.5	0.028
2.6	0.049
2.7	0.081
3.4	0.888
3.5	0.929
3.6	0.750
4.2	0.091
4.3	0.055
4.4	0.032

L

G-estimation

4 E

More efficient g-estimators exist (narrower 95% CIs)

- ☐ Doubly-robust estimators are more efficient
 - Require a model for the mean of $H(\psi^{\dagger})$ given the confounders L
- \Box G-estimation based on functions of $H(\psi^{\dagger})$ may be more efficient
 - e.g., we could use the model logit $\Pr[A=1|L, H(\psi)] = \alpha_0 + \alpha_1 [H(\psi^{\dagger})]^3 + \alpha_2 L$

G-estimation

46

Causal questions of interest

- 1. What is the effect of smoking cessation on weight gain?
- 2. What is the effect of smoking cessation on risk of death?

 Can use log models under rare disease assumption

G-estimation 47

Plan

- A. Review
 - Conditional exchangeability assumption
- B. Structural nested models
- C. G-estimation
- D. Adjustment for selection bias
- E. G-estimation and IV estimation

Key variables

Treatment A	Quit smoking between baseline and 1982 1: yes, 0: no
Continuous outcome Y	Weight gain, kg Weight in 1982 minus baseline weight Available for 1566 individuals
Baseline (pre-treatment) covariates	Age, sex, race, alcohol use, intensity of smoking, weight
Censoring C	Missing weight in 1982 1: yes, 0: no

G-estimation 49

Causal question

- ☐ Estimate the counterfactual mean weight gain if nobody's outcome had been censored
 - $\blacksquare E[Y^{a=1,c=0}]$
 - $\blacksquare E[Y^{a=0,c=0}]$
- ☐ Estimate the average causal effect
 - $E[Y^{a=1,c=0}] E[Y^{a=0,c=0}]$
- ☐ Conditional on confounders when using gestimation

- The weights create a pseudo-population without selection bias by measured covariates
- i.e., no arrows from L and A into C

G-estimation 51

G-estimation + IP weighting

- ☐ Second, use g-estimation to adjust for confounding in the pseudo-population
 - Find the value of ψ that produces the value of α_1 closest to 0 in the IP weighted model
 - logit $Pr[A=1|L, H(\psi^{\dagger})] = \alpha_0 + \alpha_1 H(\psi^{\dagger}) + \alpha_2 L$
 - lacktriangle using estimates of the weights W^C
- □ Need to use robust variance estimator
 - Conservative 95% confidence interval

☐ Point esti	mate: 3.4 See gestimation.R, lines 44-104	
□ 95% CI: 2	2.5, 4.5 approx	
□ Adjusting	for baseline covariates:	
, ,	e, race, education, smoking intensity, durage, exercise, active lifestyle, baseline weight	

Plan

- A. Review
 - Conditional exchangeability assumption
- B. Structural nested models
- C. G-estimation
- D. Adjustment for selection bias
- E. G-estimation and IV estimation

G-estimation to consistently estimate the parameter ψ_1

- \square From the model $Y^{a=0} = Y \psi_1 A$
- \square Compute $H(\psi^{\dagger}) = Y \psi^{\dagger} A$
 - lacktriangle for a range of possible values ψ^{\dagger}
 - The variables $H(\psi^{\dagger})$ are candidate counterfactuals
 - One of them is the counterfactual outcome $Y^{a=0}$ \square $H(\psi^{\dagger}) = Y^{a=0}$ if $\psi^{\dagger} = \psi_1$
- \square We just need to identify the value ψ^{\dagger} that makes $H(\psi^{\dagger}) = Y^{a=0}$

G-estimation 55

How to identify the value ψ^{\dagger} that makes $H(\psi^{\dagger}) = Y^{a=0}$?

☐ We said that **IF** conditional exchangeability holds

$$Y^a \coprod A | L = l$$

- □ Then ψ_1 is the value ψ^{\dagger} that makes α_1 =0 in the model logit $\Pr[A=1|L, H(\psi^{\dagger})] = \alpha_0 + \alpha_1 H(\psi^{\dagger}) + \alpha_2 L$
- ☐ But there is another way
 - If we have an instrumental variable Z

How to identify the value of ψ that makes $H(\psi^{\dagger}) = Y^{a=0}$?

☐ **By definition** of IV, (unconditional) exchangeability is expected to hold

$Y^a \coprod Z$

□ Then the true value of ψ is the one that makes α_1 =0 in the model logit $\Pr[Z=1|H(\psi)] = \alpha_0 + \alpha_1 H(\psi^{\dagger})$

G-estimation 57

IV estimation as a particular case of g-estimation

- ☐ G-estimation based on the IV is mathematically equivalent to the standard IV estimand
 - Defined in last week's notes
- \Box The standard IV estimator consistently estimates the parameter ψ^* from our structural mean model
 - Under instrumental assumptions (i)-(iii) and assumption of no additive effect modification (iv)
 - See Chapter 16 of Causal Inference: What If.

□ Use c	f baseline covariates	
■ To i	ncrease efficiency	
	specially if covariates are strongly associated with Y and reakly associated with A	
■ To a	address violations of condition (iii)	
 Use of multiplicative models and assumption of r multiplicative effect modification (iv) 		
	sions to time-varying treatments and time- ng instruments, survival analyses	

□ We have studie	d (essentially) all available methods
to adjust for co	nfounding
☐ Of those, IP weighting, standardization/g-fo and g-estimation can be generally used with varying treatments	

IP weighting, standardization, or g-estimation? □ Why do we have to choose? ■ If possible, use all methods separately and doubly-robust versions when available ■ Similar effect estimates increase our confidence in the results ■ Different effect estimates will make us examine our modeling assumptions □ See EPI207 for more about these methods

G-estimation

Readings		
□ Causal Inferen	ce: What If. Chapter 14	

61

Progress report

- 1. Introduction to modeling
- 2. Stratified analysis:
 - Outcome regression
 - Propensity scores
- 3. Standardization
- 4. Inverse probability weighting
 - Marginal structural models
- 5. Instrumental variable estimation
- 6. G-estimation
- 7. Causal survival analysis