	UEPB	CCT – Departamento de Matemática	
		Cálculo Diferencial e Integral II – Prof.: Joselma	
	Estadual da Paraíba	Aluno(a):	

SEQUÊNCIAS NUMÉRICAS (RESUMO DE ALGUMAS DEFINIÇÕES E TEOREMAS) (Obs.: As soluções de todos os exemplos enunciados, serão feitas em aula)

1. Sequência de números reais (definição e exemplos)

Definição 1: Uma sequência de números reais é uma função f cujo domínio é o conjunto dos números naturais. Ou seja,

$$f \colon \mathbb{N} \to \mathbb{R}$$

$$n \to a_n = f(n)$$

Notações: $\{a_n\}$ ou (a_n) ou $\{a_n\}_{n\in\mathbb{N}}$ ou (a_n) $_{n\in\mathbb{N}}$, onde a_n é o $n^{\underline{mo}}$ termo ou termo geral da sequência.

Exemplo 1: Relacione os quatro primeiros termos e o décimo termo de cada sequência

a) $\left\{\frac{n}{n+1}\right\}$	b) $\left\{ (-1)^n \frac{n^2}{3n-1} \right\}$
c) {4}	d) $\{2 + (0,1)^n\}$

Para algumas sequências damos o primeiro termo a_I , juntamente com uma regra que permite determinar qualquer termo a_{k+1} a partir do termo precedente a_k , para $k \ge 1$. Isto é o que se constitui uma definição por **recorrência**.

Exemplo 2: Achar os quatro primeiros termos e o n^{mo} termo da sequência definida por $a_1 = 3$ e $a_{k+1} = 2a_k$ para $k \ge 1$.

2. Subsequências

Seja (a_n) uma sequência de números reais e considere o subconjunto infinito $\{n_1 < n_2 < n_3 < \dots < n_k < n_{k+1} < \dots\}$. A nova sequência $b_k = f(n_k) = a_{n_k}$ é dita uma subsequência de (a_n) .

Exemplo 3: Para a sequência
$$((-1)^n) = (-1,1,-1,1,-1,1,...)$$
 temos que $((-1)^{2n}) = (1,1,1,...)$ e $((-1)^{2n-1}) = (-1,-1,-1,-1,...)$ são subsequências de $((-1)^n)$.

3. Sequências Monótonas e Sequências Limitadas

Definição 2: Uma sequência (a_n) é dita monótona se os seus termos sucessivos são:

- Crescentes (ou extritamente crescente): $a_1 < a_2 < \cdots < a_n < \cdots$,
- ou são decrescentes (ou extritamente decrescente): $a_1 > a_2 > \cdots > a_n > \cdots$,
- ou são não-crescentes: $a_1 \ge a_2 \ge \cdots \ge a_n \ge \cdots$,
- ou são não-decrescentes: $a_1 \le a_2 \le \cdots \le a_n \le \cdots$.

Exemplo 4: No exemplo 1, a sequência $\left\{\frac{n}{n+1}\right\}$ é crescente, e a sequência $\{2+(0,1)^n\}$ é decrescente. Enquanto que a sequência $\{4\}$ é dita constante.

Definição 3: Uma sequência (a_n) é limitada (ou cotada), se existe um número real positivo M tal que $|a_n| \le M$, para todo $n \in \mathbb{N}$.

Exemplo 5:

- i) $\left\{\frac{n}{n+1}\right\}$ é limitada pois, $\left|\frac{n}{n+1}\right| \le 1$ para todo $n \in \mathbb{N}$.
- ii) $\{cos(n)\}\$ é limitada, pois $|cos(n)| \le 1$, para todo $n \in \mathbb{N}$.
- iii) $\{2n\}$ não é limitada, pois não existe um número real positivo M tal que $|2n| \le M$, para todo $n \in \mathbb{N}$.

4. Limite de sequências

Definição 4: Uma sequência $\{a_n\}$ tem por limite o número real L, ou converge para L, quando "para todo $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que $|a_n - L| < \varepsilon$ sempre que n > N."

Notação: $\lim_{n\to\infty} a_n = L \ ou \ a_n \to L \ quando \ n \to \infty$.

Observação 1: Se tal número L não existe, a sequência não tem limite, ou diverge.

Definição 5: A notação $\lim_{n\to\infty} a_n = \infty$ significa que, para todo número real positivo P, existe um número $N > 0 (N \in \mathbb{N})$ tal que $a_n > P$, sempre que n > N.

Observação 2: Tal como estudamos para as funções, dizer que $\lim_{n\to\infty} a_n = +\infty(ou-\infty)$ não significa dizer que o limite exista, mas sim que o número a_n cresce (ou decresce) sem limites quando n aumenta, e neste caso, dizemos que a sequência diverge.

Teorema 1: Se $a_n \to a$, então toda subsequência (a_{n_k}) de (a_n) também converge para a. (ou seja, se $a_n \to a$ então, $a_{n_k} \to a$).

Consequência do Teorema 1: "Se uma sequência possui duas subsequências convergindo para limites distintos então, a sequência não converge." Por exemplo, a sequência $((-1)^n)$ não converge, pois as subsequências $((-1)^{2n})$ e $((-1)^{2n-1})$ convergem para limites distintos, $(-1)^{2n} \to 1$ e $(-1)^{2n-1} \to -1$.

Observação: O limite de uma sequência (a_n) quando existe é único.

Teorema 2: Seja $\{a_n\}$ uma sequência, $f(n) = a_n$ e suponhamos que f(x) exista para todo número real $x \ge 1$.

- i) Se $\lim_{x\to\infty} f(x) = L$, então $\lim_{n\to\infty} f(n) = L$, ou seja, a sequência $\{a_n\}$ converge.
- ii) Se $\lim_{x\to\infty} f(x) = \infty (ou \infty)$, então $\lim_{n\to\infty} a_n = \infty (ou \infty)$, ou seja $\{a_n\}$ diverge.

5. Operações com Limites de Sequências

Teorema 3: Se $\{a_n\}$ e $\{b_n\}$ são sequências convergentes, então

- i) $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n;$
- ii) $\lim_{n\to\infty}(a_n.b_n)=\lim_{n\to\infty}a_n.\lim_{n\to\infty}b_n;$
- iii) $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \lim_{n \to \infty} \frac{a_n}{a_n}, \ b_n \neq 0 \ e \lim_{n \to \infty} b_n \neq 0;$

$$\begin{array}{ll} \mathrm{iv}) & & \lim_{n \to \infty} (a_n)^k = \left(\lim_{n \to \infty} a_n\right)^k, k \in \mathbb{N}. \\ \mathrm{v}) & & \mathrm{Se} \ a_n = c \text{, para todo } n \in \mathbb{N} \text{, então } \lim_{n \to \infty} c = c. \end{array}$$

v) Se
$$a_n = c$$
, para todo $n \in \mathbb{N}$, então $\lim_{n \to \infty} c = c$

vi) Se
$$a_n \ge 0$$
, para todo $n \in \mathbb{N}$, então $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{\lim_{n \to \infty} a_n}$.

Teorema 4: Se c é um número real e k é um número racional positivo, então $\lim_{n\to\infty}\frac{c}{n^k}=0$.

Teorema 5: Seja $r \in \mathbb{R}$,

- $\lim_{n \to \infty} r^n = 0, se |r| < 1.$ $\lim_{n \to \infty} |r^n| = \infty, se |r| > 1.$ ii)

Teorema 6: Seja $\{a_n\}$ uma sequência. Se $\lim_{n\to\infty} |a_n| = 0$ então $\lim_{n\to\infty} a_n = 0$.

Teorema 7(Teorema do Sanduíche): Se $\{a_n\}$, $\{b_n\}$, e $\{c_n\}$, são sequências e $a_n \le b_n \le c_n$, $para\ todo\ n\in\mathbb{N}\ e\ se\ \lim_{n\to\infty}a_n=L=\lim_{n\to\infty}c_n$, então, $\lim_{n\to\infty}b_n=L$.

Exemplo 6: Verifique se as sequências abaixo, converge ou diverge, se convergir calcule o seu limite.

a) {1 + 1/n}	b) $\left\{\frac{1}{4}n^2 - 1\right\}$	c) {5}
d) $\{(-1)^{n-1}\}$	e) $\left\{6\left(-\frac{5}{6}\right)^n\right\}$	f) $\left\{ \left(-\frac{2}{3}\right)^n \right\}$
g) {(1,01) ⁿ }	h) $\left\{\frac{2n^2}{5n^2-3}\right\}$	$i) \left\{ \frac{2n^2+1}{n^2+n} \right\}$
j) $\left\{\frac{4n^4+1}{2n^2-1}\right\}$	k) $\left\{ (-1)^{n+1} \cdot \frac{3n}{n^2 + 4n + 5} \right\}$	1) $\left\{\sqrt{n+1}-\sqrt{n}\right\}$

Exemplo 7: Aplique o Teorema 6 para mostrar que a sequência $\left\{\frac{\cos^2 n}{2n}\right\}$ converge ou diverge.

Exemplo 8: Determine, caso exista o limite da sequência $\left\{ (-1)^{n+1}, \frac{1}{n} \right\}$.

Exemplo 9: Calcule $\lim_{n\to\infty} \frac{n^2}{e^n}$. (Dica: Use o Teorema 2 e a Regra de L'Hospital)

Teorema 8: Toda sequência monótona e limitada é convergente (isto é, tem limite).

Exemplo 10: Mostre que a sequência $\{a_n\}$, com $a_n = \frac{1}{n} + 1$ é monótona e limitada, e portanto é convergente.

6. Limites Especiais

1.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$
.

2. $\lim_{n \to \infty} x^n = 0$, se $|x| < 1$
3. $\lim_{n \to \infty} \sqrt[n]{n} = 1$

Exemplo 11: Calcule $\lim_{n \to \infty} \left(1 + \frac{1}{3n}\right)^n$. Dica: Use o fato de que $\left[\left(1 + \frac{1}{3n}\right)^{3n}\right]^{\frac{1}{3}}$.

Exemplo 11: Calcule
$$\lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^n$$
. Dica: Use o fato de que $\left[\left(1+\frac{1}{3n}\right)^{3n}\right]^{\frac{1}{3}}$.

Referências:

CLARK, Marcondes Rodrigues. Cálculo de funções de uma variável real/ Marcondes Rodrigues Clark, Osmundo Alves de Lima. – Teresina: EDUFPI, 2012.

SWOKOWSKI, E.W. Cálculo com Geometria Analítica. Volumes 2. Editora McGraw.