

第2章 计算机的逻辑部件

- 2.1 计算机中常用的组合逻辑电路
- 2.2 时序逻辑电路
- 2.3 阵列逻辑电路

主要知识点:

- 1、组合逻辑电路
- 2、时序逻辑电路
- 3、阵列逻辑电路

2.1 计算机中常用的组合逻辑电路

组合逻辑电路:逻辑电路的输出状态仅和当时的输入状态有关,而与过去的输入状态无关。

2.1.1 三态电路

功能	能表	
\overline{G}	\overline{Y}	4 \
0	$\overline{\mathbf{A}}$	$A \longrightarrow A$
1	Z	$\dot{ar{G}}$

三态反相门

功能表

\overline{G}	\overline{Y}
О	Z
1	$\overline{\mathbf{A}}$

三态反相门

三态门应用实例

三态电路应用实例

2.1.2 异或门及其应用 异或门的功能表和逻辑图

功能表

A_i	B_i	Y_i
0	0	0
1	0	1
0	1	1
1	1	0

异或门运算式:

- 1) A⊕A=1
- 2) A⊕A=0
- 3) A⊕0=A
- **4) A**⊕**1**=**A**
- **5) A**⊕**B**=**B**⊕**A**
- 6) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$
- $7)A \cdot (B \oplus C) = (A \cdot B) \oplus (A \cdot C)$

异或门常用的作用:

1、可控原码反码输出电路

2、数码比较器

3、奇偶检测电路

4、半加器

$$H_n = X_n \cdot Y_n + X_n \cdot Y_n = X_n \oplus Y_n$$

功能表

X n	X n	X n
0	0	0
1	0	1
0	1	1
1	1	0

(a)

2.1.3全加器: X_n , Y_n 及进位输入 C_{n-1} 相加称全加

$$F_n = X_n Y_n C_{n-1} + X_n Y_n C_{n-1} + X_n Y_n C_{n-1} + X_n Y_n C_{n-1}$$

$$C_n = X_n Y_n C_{n-1} + X_n Y_n C_{n-1} + X_n Y_n C_{n-1} + X_n Y_n C_{n-1}$$

全加器:两个半加器来形成。 $F_n = X_n$ 、 Y_n 相加再和 C_{n-1} 相加的结果:

$$F_n = X_n \oplus Y_n \oplus C_{n-1}$$

功能表

Xn	Yn	C_{n-1}	F _n	C_n
0	0	0	0	0
0	0	1	1	0
1	0	0	1	0
1	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	1	0	0	1
1	1	1	1	1

(a) 功能表

(b) 逻辑图

(c) 逻辑图

图2.6 全加器的功能表及逻辑图

1、 当全加器的输出为Ci = 1且S = 1时。其输入为()。(题中A, B 为数据输入, Ci-1为进位输入, Ci为进位输出, S为和)

A: A=B=1, Ci-1=0 B: A=B= Ci-1=1

C: A = Ci-1=1, B=0 D: B = Ci-1=1, A=0

2、假设异或门延迟时间T=60ns,与门、或门延迟时间T=20ns,1位的全加器进位、和运算时间

四位串行加法器

$$\begin{split} &C_1 \! = \! X_1 Y_1 \! + \! (X_1 \! + \! Y_1) C_0 \\ &C_2 \! = \! X_2 Y_2 \! + \! (X_2 \! + \! Y_2) X_1 Y_1 \! + \! (X_2 \! + \! Y_2) (X_1 \! + \! Y_1) C_0 \\ &C_3 \! = \! X_3 Y_3 \! + \! (X_3 \! + \! Y_3) X_2 Y_2 \! + \! (X_3 \! + \! Y_3) (X_2 \! + \! Y_2) X_1 Y_1 \! + \! (X_3 \! + \! Y_3) (X_2 \! + \! Y_2) (X_1 \! + \! Y_1) C_0 \\ &C_4 \! = \! X_4 Y_4 \! + \! (X_4 \! + \! Y_4) X_3 Y_3 \! + \! (X_4 \! + \! Y_4) (X_3 \! + \! Y_3) X_2 Y_2 \! + \! (X_4 \! + \! Y_4) (X_3 \! + \! Y_3) (X_2 \! + \! Y_2) X_1 Y_1 \! + \! (X_4 \! + \! Y_4) (X_3 \! + \! Y_3) (X_2 \! + \! Y_2) (X_1 \! + \! Y_1) C_0 \end{split}$$

进位传递函数Pi

$$P_i = X_i + Y_i$$

进位产生函数Gi

$$G_i = X_i \cdot Y_i$$

- -P₁的意义是: 当X₁, Y₁中有一个为"1"时, 若有进位输入, 则本位向高位传送进位, 这个进位可看成是低位进位 越过本位直接向高位传递的。
 - $-G_1$ 的意义是: $3X_1$, Y_1 均为 "1"时,不管有无进位输入,定会产生向高位的进位。

串行进位方式

$$C_1 = G_1 + P_1C_0$$

 $C_2 = G_2 + P_2C_1$
 $C_3 = G_3 + P_3C_2$
 $C_4 = G_4 + P_4C_3$

进位链: 进位信号的产生与传递的逻辑结构

将n个全加器相连可得n位加法器,但其加法时间较长。 这是因为其位间进位是串行传送的,本位全加和F_i必须等 低位进位C_{i-1}来到后才能进行,加法时间与位数有关。只 有改变进位逐位传送的路径,才能提高加法器工作速度。

超前进位(先行进位)基本思想:让高位的进位与低位进位无关,仅与两个参加的操作数有关

超前进位加法器 (并行): 采用"超前进位产生电路"来同时形成各位进位,从而实现快速加法

4位并行加法器

组内并行的进位方式:

将
$$P_1$$
、 G_1 代入 $C_1 \sim C_4$ 式,便可得:
$$C_1 = G_1 + P_1C_0$$

$$C_2 = G_2 + P_2G_1 + P_2P_1C_0$$

$$C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1C_0$$

$$C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2G_1$$

$$\begin{array}{l} = --- \\ C_1 = P_1 + G_1 C_0 \\ = --- \\ C_2 = P_2 + G_2 P_1 + G_2 G_1 C_0 \\ = --- \\ C_3 = P_3 + G_3 P_2 + G_3 G_2 P_1 + G_3 G_2 G_1 C_0 \\ = --- \\ C_4 = P_4 + G_4 P_3 + G_4 G_3 P_2 + G_4 G_3 G_2 P_1 + G_4 G_3 G_2 G_1 C_0 \end{array}$$

由P_i、G_i定义,也可把半加和改写成以下形式: H_i=P_i⊕ G_i

图2.8 四位超前进位加法器

16位加法器

并行加法器及其进位链

(1) 组内并行,组间串行的进位链

这种进位链每小组4位,组内采用并行进位结构,组间采用串行进位 传递结构。进位表达式为:

$$C_1 = G_1 + P_1C_0$$

 $C_2 = G_2 + P_2G_1 + P_2P_1C_0$
 $C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1C_0$
 $C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2P_1C_0$

(2) 组内并行、组间并行的进位链

$$G_1^* = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1$$
 (小组的进位产生函数) $P_1^* = P_4P_3P_2P_1$ (小组的进位传递函数) 因此 $C_4 = G_1^* + P_1^*C_0$ 同理 $C_8 = G_2^* + P_2^*C_4$ $C_{12} = G_3^* + P_3^*C_8$ $C_{16} = G_4^* + P_4^*C_{12}$

将其展开为:

$$C_4 = G_1^* + P_1^*C_0$$

$$C_8 = G_2^* + P_2^*G_1^* + P_2^*P_1^*C_0$$

$$C_{12} = G_3^* + P_3^*G_2^* + P_3^*P_2^*G_1^* + P_3^*P_2^*P_1^*C_0$$

$$C_{16} = G_4^* + P_4^*G_3^* + P_4^*P_3^*G_2^* + P_4^*P_3^*P_2^*G_1^* + P_4^*P_3^*P_2^*P_1^*C_0$$

其中

$$G_{1}^{*} = G_{4} + P_{4}G_{3} + P_{4}P_{3}G_{2} + P_{4}P_{3}P_{2}G_{1}$$

$$G_{2}^{*} = G_{8} + P_{8}G_{7} + P_{8}P_{7}G_{6} + P_{8}P_{7}P_{6}G_{5}$$

$$G_{3}^{*} = G_{12} + P_{12}G_{11} + P_{12}P_{11}G_{10} + P_{12}P_{11}P_{10}G_{9}$$

$$G_{4}^{*} = G_{16} + P_{16}G_{15} + P_{16}P_{15}G_{14} + P_{16}P_{15}P_{14}G_{13}$$

$$P_{1}^{*} = P_{4}P_{3}P_{2}P_{1}$$

$$P_{2}^{*} = P_{8}P_{7}P_{6}P_{5}$$

$$P_{3}^{*} = P_{12}P_{11}P_{10}P_{9}$$

$$P_{4}^{*} = P_{16}P_{15}P_{14}P_{13}$$

进位产生次序:

- ① 产生第一组的 C_1 、 C_2 、 C_3 及所有的 G_i^* 、 P_i^* ;
- ② 产生组间的进位信号C₄、C₈、C₁₂、C₁₆;
- ③ 产生第二、三、四小组的C₅、C₆、C₇, C₉、C₁₀、C₁₁, C₁₃、C₁₄、C₁₅;

2.4.2 算术逻辑单元

算术逻辑单元简称ALU,是一种功能较强的组合逻辑电路。

1、四位算术逻辑单元SN74181,执行*16种算术运算和16种逻辑运算*

_	V_c	A_1	B ₁	A_2	B ₂	A_3	B ₃	F_{G}	_ CO _{n+4}	F _p	$F_{A=B}$	F ₃
ſ	24	23	22	21	20	19	18	17	16	15	14	13
L	1	2	3	4	5	6	7	8	9	10	11	12
	Bo	Αn	Sa	Sa	S ₁	So	CI	М	Fo	F ₁	Fa	GND

A₀~A₃ 运算器输入端

 $B_0^B_3$ 运算器输入端

CI_n 进位输入端(低电平有效)

CO_{n+4} 进位输出端(低电平有效)

F₀~F₃ 运算输出端

F_{A=B} 比较输出端

F_G 进位产生输出端

F_p 进位传输输出端

M 工作方式控制

 $S_0^{S_3}$ 功能选择

功能表

	输	λ		逻辑功能	算术运算	M = L
S 3	S ₂	Sı	S ₀	M = H	CIn=H (无进位)	CI = L (有进位)
L	L	L	L	F = A	F = A	F = A 10 1
L	L	L	Н	F = A + B	F = A + B	F = (A + B)加1
L	L	H	L	F = AB	$F = A + \overline{B}$	$F = (A + \vec{B}) m 1$
L	L	Н	Н	F = 0	F=碱1 (2的补数)	F = 0
L	Н	L	L	$F = \overline{AB}$	F = A MAB	F=A加AB加1
L	Н	L	н	$F = \widetilde{B}$	F = (A + B) mAB	$F = (A + B) \text{ m } A \overline{B} \text{ m } 1$
L	Н	Н .	L	F = A⊕B	F = A 減B 減1	F=A减B
L	H	H	Н	F = AB	F=AB減1	$F = A\bar{B}$
Н	L	L	L	$F = \overline{A} + B$	F = A 加AB	F = A 加AB 加 1
H	L	L	Н	F = A⊕B	F = A mB	F = A 加B 加 1
Н	L	Н	L	F=B	F = (A + B) mAB	$F = (A + \overline{B}) \ln AB \ln 1$
H	L	Н	H	F = AB	F = AB 減 1	F = AB
Н	H	L	L	F = 1	F=A加A"	F = A JIIA JII 1
Н	Н	L	H	$F = A + \overline{B}$	F = (A + B)加A	F = (A+B)加A加1
Н	Н	Н	L	F = A + B	$F = (A + \overline{B}) MA$	$F = (A + \overline{B}) \text{ fin A in 1}$
H	H	Н	H	F=A	F=A減1	F = A

用4片74181电路可组成16位ALU。图中片内进位是快速的,但片间进位是逐片传递的,因此形成 $F_0 \sim F_{15}$ 的时间还是比较长。

图2.10 用4片ALU构成的16位ALU

2、超前进位产生器74182

	V_{cc}	P ₂	G_2	$\overline{\text{CI}}_{\text{n}}$	$\overline{\text{CO}}_{n+x}$	CO _{n+}	y F _G	$\overline{\text{CO}}_{n+z}$
ſ	1	2	3	4	5	6	7	8
L	9	10	11	12	13	14	15	16
	G_1	P_1	G_0	P_0	G_3	P_3	F_p	GND

 CI_n 进位输入端(低电平有效) \overline{CO}_{n+x} \overline{CO}_{n+y} \overline{CO}_{n+z} 进位输出端(低电平有效)

F_G 进位产生输出端

F_p 进位传输输出端

G₀~G₃ 进位产生输入端

P₀~P₃ 进位传输输入端

图2.12 16位快速ALU

SN74181是一种具有并行进位的多功能ALU芯片,每片4位,构成一组,组内是并行进位,利用SN74181芯片可构成16位ALU。

① 组间串行进位的16位ALU的构成

② 组间并行进位的16位ALU的构成

组间采用并行进位时,则只需增加一片SN74182芯片。SN74182 是与SN74181配套的产品,是一个产生并行进位信号的部件。组间进 行进位的16位ALU。

作业:

- 1、若计算机系统字长为16位,每4位构成一个小组。(1)写出实现小组内并行,组间串行的进位链;(2)写出实现小组内并行,组间并行的进位链
- 2、用74181和74182构成16的ALU写出逻辑电路图
 - (1) 实现组内并行,组间串行进位方式
 - (2) 实现组内并行,组间并行进位方式

2.4.3 译码器

- 译码器有n个输入变量, 2n个(或少于2n个)输出, 每个输出对应于n个输入变量的一个最小项。当输入为某一组合时, 对应的仅有一个输出为 "0"(或为 "1"), 其余输出均为 "1"(或为 "0")。
- •译码器的用途是把输入代码译成相应的控制电位,以实现代码所要求的操作。

为此农										
Ē	Α	В	Y_0	Y ₁	\mathbf{Y}_{2}	Y ₃				
0	0	0	0	1	1	1				
0	1	0	1	0	1	1				
0	0	1	1	1	0	1				
0	1	1	1	1	1	0				
1	X	X	1	1	1	1				
l .										

计能主

图2.13 二输入四输出译码器

图2.14 两块三输入变量译码器扩展成四输入译码器

2.4.4 数据选择器

•数据选择器又称多路开关,是以"与或"门或"与或非"门为主的电路。它能在选择信号的作用下,从多个输入通道中选择某一个通道的数据作为输出。

	S_1	S_0	D_3	D_2	D_1	D_0	Ē	Y				
ĺ	X	Χ	X	X	X	Χ	1	0				
I	1	1	D ₃	X	X	Χ	0	D_3				
I	1	0	×	\mathbf{D}_{2}	X	Χ	0	D_2				
I	0	1	×	X	\mathbf{D}_{1}	Χ	0	D_1				
l	0	0	X	X	×	D ₀	0	\mathbf{D}_0				

双四通道选一数据选择器

8选1数据选择器

2.5 时序逻辑电路

时序逻辑电路:逻辑电路的输出状态不但和当时的输入状态有关,而且还与电路在此以前的输入状态有关。时序电路内必须要有能存储信息的记忆元件——触发器。触发器是构成时序电路的基础。

2.5.1 触发器

- •按时钟控制方式来分:电位触发、边沿触发、主从触发等方式。
- •按功能分:,R-S型、D型、J-K型等功能。
- •同一功能触发器可以由不同触发方式来实现。
- •对使用者来说,在选用触发器时,触发方式是必须考虑的因素。因为相同功能触发器,若触发方式选用不当,系统是不能达到预期设计要求的。

1. 电位触发方式触发器

- 当触发器的同步控制信号E为约定"1"或"0"电平时,触发器接收输入数据,此时输入数据D的任何变化都会在输出Q端得到反映;当E为非约定电平时,触发器状态保持不变。鉴于它接收信息的条件是E出现约定的逻辑电平,故称它为电位触发方式触发器,简称电位触发器。
- 图2.16给出了被称为锁定触发器(又称锁存器)的电位触发器的逻辑图。
- 电位触发器具有结构简单的优点。在计算机中常用它来组成<mark>暂</mark>**存器。**

图2.16 锁存器

2. 边沿触发方式触发器

- •边沿触发方式触发器(简称边沿触发器):触发器接收的是时钟脉冲CP的某一约定跳变(正跳变或负跳变)来到时的输入数据。在CP=1及CP=0期间以及CP非约定跳变到来时,触发器不接收数据。
- •常用的正边沿触发器是D触发器,图2.17给出了它的逻辑图及典型波形图。
- •边沿触发器在CP正跳变(对正边沿触发器)以外期间出现在D端的数据变化和干扰不会被接收,因此有很强的抗数据端干扰的能力而被广泛应用,它除用来组成寄存器外,还可用来组成计数器和移位寄存器等。

功能表

$\overline{\overline{R}}_{D}$	\overline{s}_{D}	СР	D	Q	Q
0	1	×	×	0	1
1	0	\times	\times	1	0
1	1	^	0	0	1
1	1	↑	1	1	0

(a) D触发器逻辑图

(b) D触发器图形符号

(c) 波形图

图2.17 D触发器

3. 主-从触发方式触发器(简称主-从触发器)

- •主-从触发器基本上是由两个电位触发器级联而成的,接收输入数据的是主触发器,接收主触发器输出的是从触发器,主、从触发器的同步控制信号是互补的(CP和CP)。
- •图2.18(a)是主-从J-K触发器的原理图,触发器的输出Q,Q分别和接收K,J数据的输入门相连。在CP=1期间主触发器接收数据;在CP负跳变来到时,从触发器接收主触发器最终的状态。
- •主从触发器由于有计数功能,常用于组成计数器。

功能表

\overline{R}_{D}	\overline{s}_{D}	СР	J	K	Q	Q
0	1	×	×	×	0	1
$egin{array}{c} oldsymbol{\circ} \ 1 \end{array}$	0	×	×	×	1	0
0	0	×	×	×	1*	1 *
$egin{array}{c} 1 \end{array}$	1	$\overline{}$	0	0	Q_0	$\overline{\overline{Q}}_0$
		_ L	U		~ € 0	
1	1	Л	1	0	1	0
1	1	\mathbf{L}	0	1	0	1
1	1	л	1	1	Q c	Q_0

* 指状态不定

(b)

图2.18 主-从J-K触发器图

2.5.2 寄存器和移位寄存器

- •**寄存器**用于**暂存数据、指令等**。它**由触发器和一些控制门组成**。 常用的是正边沿触发D触发器和锁存器。
- •移位寄存器:具有移位功能。如在进行乘法时,要求将部分积右移;在将并行传送的数转换成串行数时也需移位。

功能表											
$\overline{\mathbf{R}}_{\mathbf{D}}$	\overline{R}_D CK 1D 2D 3D 4D 1Q 2Q 3Q 4Q										
1						1D	2D	3D	4D		
0	×	×	\times	×	×	0	0	0	0		

四D寄存器

功能表

\overline{R}_{D}	S ₀	S 1	CK	功	能
0	×	×	×	置	"0"
1	0	0	↑	保	持
1	1	0	↑	右	移
1	0	1	^	左	移
1	1	1	↑	并行	输入

并行输入数据的四位移位寄存器

2.5.3 计数器

- •计数器按时钟作用方式来分,有同步计数器和异步计数器两大类。
- •**异步计数器**: 高位触发器的时钟信号是由低一位触发器的输出来提供的,结构简单。
- •同步计数器: 触发器的时钟信号是由同一脉冲来提供的, 各触发器是同时翻转的, 它的工作频率比异步计数器高, 但结构较复杂。
- •计数器按**计数顺序来分**,有**二进制、十进制**两大类。
- •这里着重介绍有并行输入数据功能的正向同步十进制计数器。

功能表

Р	Т	L	\overline{R}_D	CK	功能
1	1	1	1	JL	计 数
$ \times $	\times	0	1	工	并行输入数据
0	1	1	1	\times	保 持
\times	0	1	1	\times	触发器保持,RC=0
\times	×	×	0	×	异步清"0"

图2.23 十进制同步计数器

当L=1, 执行同步计数

$$\begin{aligned}
J_A &= K_A = 1 \\
J_B &= K_B = Q_A \cdot Q_D \\
J_C &= K_C = Q_A \cdot Q_B \\
J_D &= K_D = Q_A \cdot Q_B \cdot Q_C + Q_A \cdot Q_D
\end{aligned}$$

L=0,执行预置数。

计数器扩展应满足以下条件:

(1) 有标志计数器已计至最大数的进位输出端RC

二进制计数器: RC=QAQBQCQD

十进制计数器: RC=QAQD

(2) 计数器应有保持功能。计数器中设置了"计数允许"端P和T,用来控制计数器快速进位电路和RC形成门。有了RC,P,T端,就可以方便地对计数器进行扩展。

图2.24 同步计数器的扩展方法

2.6 阵列逻辑电路

• 阵列逻辑电路: 指逻辑元件在硅芯片上以阵列形式排列

优点:设计方便、芯片面积小、产品成品率高、用户自编程、减少系统的硬件规模。

- •读/写存储器(random access memory,简称RAM):存储单元排列成阵列形式。RAM在使用时能按给定的单元地址把信息存入或取出。
- •只读存储器(read only memory,简称ROM):存储固定的信息(如监控程序、函数、常数等)。在使用前把信息存入其中,使用时读出己存入的信息,而不能写入新的信息。ROM主要由全译码的地址译码器和存储单元体组成,前者是一种"与"阵列,后者则是"或"阵列,它们都以阵列形式排列。存储体中写入的信息是由用户事先决定的,因此是"用户可编程"的,而地址译码器则是"用户不可编程"的。
- •可编程序逻辑阵列(programmable logic array, 简称PLA):一种新型的ROM。与ROM不同之处是PLA的与阵列、或阵列都是用户可编程的。PLA在组成控制器、存储固定函数以及实现随机逻辑中有广泛的应用。

- 可编程序阵列逻辑(programmable array logic,简称PAL)也是ROM的变种,与ROM不同处是PAL的**与阵列是用户可编程的**,而**或阵列是用户不可编程的**。
- •通用阵列逻辑(general array logic,简称GAL):输出有一个逻辑宏单元,通过对它的编程,可以获得多种输出形式。
- •门阵列(gate array, 简称GA): 在芯片上制作了排成阵列形式的门电路, 根据用户需要对门阵列中的门电路进行互连设计, 再通过集成电路制作工艺来实现互连, 以实现所需的逻辑功能。
- •宏单元阵列(macrocell array,简称MA): 芯片上排列成阵列的除门电路外还有触发器、加法器、寄存器以及ALU等。
- •可编程门阵列(field programmable gate array, FPGA):与GA,MA的一个区别在于,FPGA内部按阵列分布的宏单元块都是用户可编程的。即用户所需逻辑可在软件支持下,由用户自己装入来实现的,而无需集成电路制造工厂介入,并且这种装入是可以修改的,其连接十分灵活。
- •一般把除读 / 写存储器的阵列逻辑电路统称为可编程序逻辑器件

2.6.1 只读存储器 (ROM)

存储器中存放信息的单元是**存储单元**,它是由若干个二进制信息组成的,叫做"**字**",每个二进制信息称为"位"。为了寻找存入存储器中的字,给每个字以编号,称为地址码,简称**地址**。

(a) 熔丝型8×4ROM原理图

(b) ROM结构的另一种表示形式

2.6.2 可编程序逻辑阵列(PLA)

- •当用户要存入ROM的字数少于ROM所能提供的字数时,ROM中有许多存储单元便会闲置不用,因而造成管芯面积的浪费。
- •在ROM中,**地址和字之间有一一对应关系**,对任何一个给定地址, 只能读出一个字,因此,即使有若干个字的内容一样,也无法节 省单元。
- •PLA是一种特殊的只读存储器,它较好地解决了ROM的上述缺点。 它用较少的存储单元就能存储大量的信息。

表2.1 一张信息表

	输	入			输出						
l ₃	l ₂	I ₁	I ₀	F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	1	0	0	1
0	1	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	1	1	1	0	0	1
0	1	1	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	1	1	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0
1	0	0	1	0	1	0	1	0	0	0	1
1	0	1	0	0	1	0	0	0	1	0	0
1	0	1	1	0	1	0	1	1	0	0	1
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	0	0	1	0	0
1	1	1	1	1	1	1	0	0	0	0	1

先把表2.1用逻辑表达式写出,进行化简,可得:

$$F_{0} = \times \times \times I_{0} = P_{0}$$

$$F_{1} = 0$$

$$F_{2} = \times \times I_{1} I_{0}^{-} = P_{1}$$

$$F_{3} = \times I_{2} \bar{I}_{1} I_{0} + \times I_{2} \bar{I}_{1} I_{0} = P_{2} + P_{3}$$

$$F_{4} = \times I_{2} I_{1} I_{0}^{-} + I_{3} I_{2}^{-} \times I_{0} + I_{3} I_{2} \times I_{0}^{-} = P_{4} + P_{5} + P_{6}$$

$$F_{5} = I_{3} \bar{I}_{2} \times I_{0} + I_{3} I_{2} I_{1} \times = P_{5} + P_{7}$$

$$F_{6} = I_{3} \bar{I}_{2} \times \times + I_{3} I_{2} I_{1} \times = P_{7} + P_{8}$$

$$F_{7} = I_{3} I_{2} I_{1} \times = P_{7}$$

(2.36)

其中×为任意值。P项称为乘积项,它们分别为:

$$P_{0} = \times \times \times I_{0} \qquad P_{1} = \times \times I_{1} I_{0}^{-}$$

$$P_{2} = \times I_{2} I_{1} I_{0} \qquad P_{3} = \times I_{2} I_{1} I_{0}$$

$$P_{4} = \times I_{2} I_{1}^{-} I_{0}^{-} \qquad P_{5} = I_{3} I_{2} \times I_{0}$$

$$P_{6} = I_{3} I_{2} \times I_{0} \qquad P_{7} = I_{3} I_{2} I_{1} \times I_{0}$$

$$P_{8} = I_{3} I_{2} \times \times I_{0} \qquad P_{8} = I_{3} I_{2} \times I_{0}$$

- •上半部分形成P项的二极管与阵列,构成译码电路,9条P线 称为PLA的字线
- •下半部分形成输出F的三极管或阵列,构成存储阵列
- •ROM矩阵容量16×8; PLA矩阵容量9×8

图2.27 存储表2.1所示信息表的PLA

PLA的读出过程如下: 若 $I_3I_2I_1I_0$ =1001,则字线 P_0 , P_6 , P_8 均被选中,其余字线均未被选,再经存储矩阵,得 F_0 , F_4 , F_6 为 "1",其余输出均为 "0"。

PLA的特点归结如下:

- •在ROM中,地址译码器(与阵列)是"完全"译码器,它提供了输入的全部最小项,每个地址对应一个字,译码器是用户不可编程。 PLA,虽然也有一个地址译码器(即与阵列),但它是一个非完全译码器,它的输出不是输入变量的最小项,而是某些输入变量的乘积项,乘积项的个数小于(或等于)2°。此外,这个译码器是用户可编程的。因此,PLA的与矩阵比ROM的与矩阵节省了很多元件。
- •在ROM中, **地址和字是一一对应的**, 对于任一给定的地址, 只能读出一个字。而在PLA中, **一个地址可以同时(即并行地)读出两个或两个以上字(即P项)**, 在PLA的输出所得的是读出字的"或"。此外, **多个地址码能访问同一个P项**。这样, PLA就能用较少的单元存储较多的信息。
- •在ROM中,**信息表**是原封不动地装入存储阵列中的。而在PLA中,存储信息不是原封不动地装入的,而是经过化简、压缩后装入的,它和信息表不再是简单的一一对应关系了。

16个输入端、8个输出端,96个乘积项,与阵列规模是32×96,或阵列规模是96×8

当一个PLA电路的P项数及输出端数不能满足要求时,可用几片PLA电路来扩展。

例:图中每个PLA只有48个P项,若使用中要求某输出含有96个P项:

熔断异或门的熔丝,

片I的Fi Fi=P0+P1+...+P47

片II的Fi:: Fi=P48+P49+...+P95

片I、II的Fi端"线与"在一起,Fi的反码:

Fi=P0+P1+...+P47+P48+...+P95

2.6.3 可编程序阵列逻辑(PAL)

PAL的**与阵列是可编程的,或阵列是不可编程的**。在某些PAL器件中还设置记忆元件,还可具有反馈功能,即输出可反馈到输入端,作为输入信号使用。

- •图2.31(a) 给出了**带触发器具有反馈功能的PAL电路**。8输入,8输出,64个P项,或门的连接是固定的,不可编程;
- •图2.31(b)**给出了不带触发器并具有反馈功能的PAL电路**。三态门的控制端由P项来控制

图2.31 两种带反馈的阵列型PAL

2.6.4 通用阵列逻辑(GAL)

通用阵列逻辑(generic array logic, 简称GAL)器件是一种可用电擦除的,可重复编程的高速PLD。它与PAL器件的主要区别在于:

- •PAL采用的是熔丝工艺,一旦编程后就不能改写,而GAL采用可用电擦除的CMOS(E²CMOS)工艺,可擦除重写100次以上,数据可保存20年以上,在数秒钟内即可完成擦除和编程过程。
- •PAL器件的应用局限性较大,对于不同的输出结构,需选用不同型号的PAL器件。而GAL的输出结构有一个输出逻辑宏单元(OLMC),通过对它的编程,使GAL有多种输出方式:寄存器型输出、组合逻辑输出,并可控制三态输出门,因此显得很灵活。

1. GAL的基本结构

以GAL 16V8型器件为例,GAL16V8包括:输入门、输出三态门、与门阵列、输出逻辑宏单元(内含或阵列)以及从输出反馈到输入的控制门等。

GAL16V8 8个固定为输入端(I_0 - I_7),8个I/O端(F_0 - F_7)(可以通过编程确定其为输入或输出),引出端1与11也有两种选择,可以通过编程确定。最多16个输入端(输出端为2个),最多8个输出端(输入端《=10)。

双列直插式封装

(b) 封装图

图2.32 GAL 16V8逻辑图与封装图

2.6.5 门阵列(GA)、宏单元阵列(MA)、标准单元阵列(SCA)

1. 基本组成形式

这三种阵列电路内部的单元是以阵列形式排列--阵列逻辑电路。

主要实现批量较大的专用集成电路(application specific integrated circuit, 简称ASIC)。由用户向集成电路生产厂家定做。

(1) 门阵列(gate array,简称GA)

- •门阵列设计利用预先制造好的"母片"来进行布图设计。母片上通常以一定的间距成行成列的排列着基本单元电路。
- •基本单元一般由6—10晶体管组成
- •门阵列设计的**优点是设计自动化程度较高**,设计周期短,设计成本 低。
- •**门阵列的缺点是布图密度低**,并且品种有限,为了使所有单元间的 连线能布通,势必造成芯片面积利用率的下降。

(2) 宏单元阵列(macro cell array,简称MA)

对门阵列进行改进,产生宏单元阵列

- •宏单元阵列按列排列,每一列由若干个基本单元构成,在每两个基本单元之间有一个走线过道,基本单元之间的连线在垂直和水平走线通道中进行。
- •一个逻辑元件可由一个基本单元或若干个基本单元构成,称为宏单元。
- •宏单元阵列自动设计系统有一个"宏单元库",存有**门电路、触发器、加法器、译码器等各类逻辑元件**。由于宏单元的逻辑功能比较强,因而布图密度比门阵列高。宏单元阵列也是一种半用户器件,具有制造周期短等优点。

图2.34 门阵列母片芯片布图(示意图)

图2.35 宏单元阵列

(3) 标准单元阵列 (standard cell array,简称SCA)

- 标准单元阵列又称为多元胞阵列 (polycell array), 它以预先设计好的功能单元(称为标准单元或多元胞)为基础, 这些单元可以是门、触发器或有一定功能的功能块(如加法器)。

图2.36 标准单元阵列的排列

2.6.6 现场可编程序门阵列(FPGA)

主要由四个部分组成:

- •可编程序逻辑宏单元(CLB):它以阵列形式分布在芯片的中心部位。 每个CLB由若干个触发器及一些可编程序组合逻辑部件组成。CLB可通过编程来实现用户所需的逻辑。
- •可编程序输入输出宏单元(IOB):它排列在CLB四周,是芯片内部CLB与芯片外部引脚间的可编程接口,每个IOB可进行边沿触发器、锁存器、上拉电阻选择、三态选择等输入输出方式控制。IOB也是通过编程来实现所需的输入输出方式控制的。
- **互连资源:**它包括可编程的互连开关矩阵、内部长线、总线等。
- •重构逻辑的程序存储器:它以阵列形式分布在整个芯片上。

FPGA器件工作时:将用户所需实现的逻辑以某种程序形式从片外读至PGA重构逻辑的程序存储器内,该存储器的存储单元输出直接去控制指定的CLB,IOB等单元,从而使器件有确定的功能。常把这一过程称为配置。

图2.47 可编程序门阵列结构图