Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

Claim 1. (Currently Amended) A compound of the formula

wherein X_1 is O, $S(O)_n$, $-\stackrel{\mathbf{R}^5}{\mathbf{N}}$, $\stackrel{\mathbf{R}^5}{\mathbf{CO}-\mathbf{N}}$, or -CH₂-, with the proviso that when X_1 is -CH₂-, [[R₁]] \underline{R}^1 and [[R₂]] \underline{R}^2 are only halogen[[.]];

n is 0, 1 or 2;

 R^a and R^b when taken together form an oxo (=0) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR⁹, NHSO₂R⁹ or F;

X is H, CF3, OCF3, halogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ or and heterocyclic;

 R^1 and R^2 are each independently H, halogen, OR^9 , C_1 – C_7 alkyl, C_2 – C_7 alkynyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or and cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, $OC(O)OR^9$, aryl or heteroaryl, said aryl or and heteroaryl being optionally substituted with one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^9$, PO_3R^8 , $C(O)NR^6R^7$ or and heterocyclic;

 R^3 , R^4 and Y are each independently H, halogen, OR^{10} , $S(O)_nR^{10}$, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl of and cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, $OC(O)OR^9$, aryl or heteroaryl, said aryl of and heteroaryl being optionally substituted by one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^8$, PO_3R^8 , $C(O)NR^6R^7$ of and heterocyclic, with the proviso that not all of R^3 , R^4 and Y may be the same halogen;

R⁵, R⁶ and R⁷ are each independently H, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂-C₇ alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl of and cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, PO₃R⁸ of and heterocyclic;

R⁸ is H, C₁-C₇ saturated straight chain alkyl or cycloalkyl;

R⁹ is same as R⁸ but is not hydrogen C₁-C₇ saturated straight chain alkyl or cycloalkyl;

R¹⁰ is C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl, <u>aryl</u> or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, <u>aryl</u> or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, C(O)NR⁶R⁷ or and heterocyclic;

 $Z \text{ is } OR^{11}, S(O)_n R^{11}, NR^{11}R^{12} \text{ or } CHR^{11}R^{12};$

 R^{11} and R^{12} are each independently hydrogen, is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} , with the proviso that both R^{11} and R^{12} may not be hydrogen;

 R^{12} is hydrogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

R¹³ and R¹⁴ are each independently H, is SiR¹⁵R¹⁶R¹⁷, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, biaryl of and heteroaryl, said aryl, biaryl of and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, of and CN;

 R^{14} is H, SiR¹⁵R¹⁶R¹⁷, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl, aryl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally

substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, biaryl and heteroaryl, said aryl, biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN; or

 R^{13} and R^{14} when taken together <u>with the nitrogen atom to which they are attached</u> may form a 5–7 membered heterocyclic ring with one or more heteroatoms selected from O, N and S; said ring being optionally substituted by OR^8 , $COOR^8$, or $C(O)NR^5R^6$; and

 R^{15} , R^{16} , R^{17} are each independently $\underline{C_1}$ - $\underline{C_7}$ alkyl, aryl, benzyl, benzhydryl, biaryl, heteroaryl, $(C_1$ - $C_6)$ alkyl-aryl or $(C_1$ - $C_6)$ alkyl-heteroaryl, said aryl, benzyl, benzhydryl, and biaryl radical being optionally substituted by halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , CN, or C_1 - C_7 alkyl.

Claim 2. (Currently Amended) A compound of the formula

or a pharmaceutically acceptable salt thereof wherein

 X_1 is O, S(O)_n, $-\stackrel{R^5}{N}$, $\stackrel{R^5}{CO-N}$ or -CH₂-, with the proviso that when X_1 is -CH₂-, [[R₁]] \underline{R}^1 and [[R₂]] \underline{R}^2 are only halogen[[.]];

n is 0, 1 or 2;

R^a and R^b when taken together form an oxo (=O) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR⁹,

 $NHSO_2R^9$ or F[[.]];

X is H, CF3, OCF3, halogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ of and heterocyclic;

 R^1 and R^2 are each independently H, halogen, OR^9 , C_1 – C_7 alkyl, C_2 – C_7 alkenyl alkynyl, C_2 – C_7 alkenyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl of and cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, $OC(O)OR^9$, aryl or heteroaryl, said aryl of and heteroaryl being optionally substituted with one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^9$, PO_3R^8 , $C(O)NR^6R^7$ of and heterocyclic;

 R^3 , R^4 and Y are each independently H, OR^{10} , $S(O)_nR^{10}$, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl of and cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, $OC(O)OR^9$, aryl or heteroaryl, said aryl of and heteroaryl being optionally substituted by one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^8$, PO_3R^8 , $C(O)NR^6R^7$ of and heterocyclic;

 R^5 , R^6 and R^7 are each independently H, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 - C_7

alkynyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl of and cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, aryl or heteroaryl, said aryl of and heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, PO₃R⁸ of and heterocyclic;

R⁸ is H, C₁-C₇ saturated straight chain alkyl or cycloalkyl, CF₃ or CH₂CF₃;

 R^9 is same as R^8 but is not hydrogen C_1 – C_7 saturated straight chain alkyl or cycloalkyl;

 R^{10} is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl, aryl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^8$, PO_3R^8 , $C(O)NR^6R^7$ or and heterocyclic;

Z is OR¹¹, S(O)_nR¹¹, NR¹¹R¹² or CHR¹¹R¹²;

 R^{11} and R^{12} are each independently hydrogen, is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} , with the proviso that both R^{11} and R^{12} may not be hydrogen;

R¹² is hydrogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by NR¹³R¹⁴, S(O)_nR¹³ or OR¹³;

 R^{13} and R^{14} -are each independently H, is $SiR^{15}R^{16}R^{17}$, C_1 - C_7 alkyl, C_2 - C_7 alkynyl, aryl or C_3 - C_7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from $COOR^8$, OR^8 , $Si~R^{15}R^{16}R^{17}$, OR^{15} , aryl, biaryl of and heteroaryl, said aryl, biaryl of and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , of and CN;

R¹⁴ is H, SiR¹⁵R¹⁶R¹⁷, C₁–C₇ alkyl, C₂–C₇ alkenyl, C₂–C₇ alkynyl, aryl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, biaryl and heteroaryl, said aryl, biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN; or

 R^{13} and R^{14} when taken together with the nitrogen atom to which they are attached may form a 5 – 7 membered heterocyclic ring with one or more heteroatoms selected from O, N and S; said ring being optionally substituted by OR^8 , $COOR^8$, or $C(O)NR^5R^6$; and

 R^{15} , R^{16} , R^{17} are each independently $\underline{C_1}$ - $\underline{C_7}$ alkyl, aryl, benzyl, benzhydryl, biaryl, heteroaryl, (C_1 - C_6) alkyl-aryl or (C_1 - C_6) alkyl-heteroaryl, said aryl, benzyl, benzhydryl, and biaryl radical being optionally substituted by halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , CN, or C_1 - C_7 alkyl.

Claim 3. (Currently Amended) A compound of claim 2 wherein X_1 is O[[,]] or $S(O)_n$ and Y is OR^{10} in which R^{10} is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl, aryl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic,

OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ or heterocyclic, said R⁶, R⁷, R⁸ and R⁹ substituents being defined as in claim 2.

Claim 4. (Original) A compound of claim 3 in which R^a and R^b taken together represent an oxo (=0) group, or R^a and R^b are each independently hydrogen or OH.

Claims 5-6. (Canceled).

Claim 7. (Currently Amended) A compound of claim 3, 4, 5 or 6 in which

Zis

in which m and p each independently represent an integer of one to six, R^{15} , R^{16} , R^{17} are each independently C_1 – C_7 alkyl or phenyl, R^{18} is C_1 – C_7 alkyl and aryl

represents X' in which X^1 is halogen.

Claim 8. (Canceled).

Claim 9. (Original) A pharmaceutical composition for the inhibition of cytosolic phospholipase A₂ comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

Claim 10. (Withdrawn) A method of inhibiting cytosolic phospholipase A₂ in a mammal in need thereof, comprising administering to said mammal a therapeutically effective amount of a compound of claim 1.

Claim 11. (New) A compound selected from

QA211 Amendment

or a pharmaceutically acceptable salt thereof.

Claim 12. (New) A compound of the formula

$$Z \xrightarrow{R^1 \quad R^2} X_1 \xrightarrow{R^3 \quad R^4} X_1 \xrightarrow{R^4 \quad R^5 \quad R^4} X_2 \xrightarrow{R^4 \quad R^5 \quad R^4} X_3 \xrightarrow{R^4 \quad R^5 \quad R^4} X_4 \xrightarrow{R^5 \quad R^5 \quad R^4} X_4 \xrightarrow{R^5 \quad R^5 \quad R^5 \quad R^4} X_4 \xrightarrow{R^5 \quad R^5 \quad R^5 \quad R^5} X_4 \xrightarrow{R^5 \quad R^5 \quad R^5} X_4 \xrightarrow{R^5 \quad R^5 \quad R^5} X_5 \xrightarrow{R^5 \quad R^5 \quad R^5 \quad R^5} X_5 \xrightarrow{R^5 \quad R^5 \quad R^5 \quad R^5} X_5 \xrightarrow{R^5 \quad R^5 \quad R^5 \quad R^5} X_5 \xrightarrow{R^5 \quad R^5 \quad R^5} X_5 \xrightarrow{R^5 \quad R^5 \quad R^5} X_5 \xrightarrow{R^5 \quad R^5 \quad R^5 \quad R^5 \quad R^5 \quad R^5 \xrightarrow{R^5 \quad R^5 \quad R^5} X_5 \xrightarrow{R^5 \quad R^5 \quad R$$

or a pharmaceutically acceptable salt thereof wherein

 X_1 is O, S(O)_n, CO-N-, or $-CH_2-$, with the proviso that when X_1 is $-CH_2-$, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

R^a and R^b when taken together form an oxo (=O) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOCOR⁹, or F;

X is H;

R¹ and R² are each independently H, halogen, OR⁹, or C₁-C₇ alkyl;

 R^3 , R^4 and Y are each independently H, halogen, OR^{10} , or C_1 - C_7 alkyl, said alkyl being optionally substituted by aryl, said aryl being optionally substituted by one or two $COOR^8$ groups, with the proviso that not all of R^3 , R^4 and Y may be the same halogen;

R⁵, R⁶, and R⁷ are each independently hydrogen or C₁-C₇ alkyl, said alkyl being optionally substituted by OR⁸;

R⁸ is H or C₁-C₇ saturated straight chain alkyl;

R⁹ is C₁-C₇ saturated straight chain alkyl;

 R^{10} is C_1 - C_7 alkyl or aryl, said alkyl or aryl group being optionally substituted by $COOR^8$, $C(O)NR^6R^7$, heterocyclic, or OR^8 ;

Z is OR¹¹ or CHR¹¹R¹²;

 R^{11} is C_1 - C_7 alkyl substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

R¹² is hydrogen;

R¹³ is SiR¹⁵R¹⁶R¹⁷ or C₁-C₇ alkyl, said alkyl substituted by one to three groups independently selected from OR¹⁵ and aryl, said aryl substituted with one halogen;

R¹⁴ is C₁-C₇ alkyl; and

 R^{15} , R^{16} , and R^{17} are each independently C_1 - C_7 alkyl, aryl, or benzhydryl, said aryl and benzhydryl being optionally substituted by halogen.

Claim 13. (New) A compound of the formula

$$Z \xrightarrow{X_1 \times R^a \times R^b} Y$$

$$X \times R^1 \times R^2 \times R^3 \times R^4$$

or a pharmaceutically acceptable salt thereof wherein

 X_1 is O, $S(O)_n$, or $-CH_2$ -, with the proviso that when X_1 is $-CH_2$ -, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

 R^a and R^b are each independently hydrogen, OH, OCOR 9 , NH $_2$, N $_3$, NHCOOR 9 , NHCOCOR 9 , or F;

X is H, CF3, OCF3, halogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, C(O)NR⁶R⁷ and heterocyclic;

 R^1 and R^2 are each independently H, halogen, OR^9 , C_1 – C_7 alkyl, C_2 – C_7 alkynyl, C_2 – C_7 alkenyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, $OC(O)OR^9$, aryl or heteroaryl, said aryl and heteroaryl being optionally substituted with one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^9$, PO_3R^8 , $C(O)NR^6R^7$ and heterocyclic;

 R^3 and R^4 are each independently H, halogen, OR^{10} , $S(O)_nR^{10}$, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, $OC(O)OR^9$, aryl or heteroaryl, said aryl and heteroaryl being optionally substituted by one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^8$, PO_3R^8 , $C(O)NR^6R^7$ and heterocyclic, with the proviso that not all of R^3 , R^4 and Y may be the same halogen;

Y is OR^{10} or $S(O)_nR^{10}$;

 R^5 , R^6 and R^7 are each independently H, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 - C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by $COOR^8$, CN, OR^8 , NR^8R^9 , SO_3R^8 , PO_3R^8 , halogen, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from $COOR^8$, SO_3R^8 , PO_3R^8 and heterocyclic;

R⁸ is H, C₁-C₇ saturated straight chain alkyl or cycloalkyl;

R⁹ is C₁-C₇ saturated straight chain alkyl or cycloalkyl;

 R^{10} is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl, aryl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by $COOR^8$, CN, $C(O)NR^6R^7$, PO_3R^8 , SO_3R^8 , heterocyclic, OR^8 , SH, $S(O)_nR^9$, NR^6R^7 , $NH(CO)NR^6R^7$, $NH(CO)OR^9$, aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR^6R^7 , OR^8 , $COOR^8$, SO_3R^8 , $OCOR^8$, PO_3R^8 , $C(O)NR^6R^7$ or heterocyclic; and

Z is

$$-(CH_2)_m$$
 $-O-S_i$ $-R^{15}$ or $-(CH_2)_m$ $-N-(CH_2)_p$ $-CH_2$ aryles aryles $-(CH_2)_m$ $-N-(CH_2)_p$ $-CH_2$ aryles $-(CH_2)_m$ $-(CH_2)_m$ $-(CH_2)_p$ $-$

in which m and p each independently represent an integer of one to six, R^{15} , R^{16} , R^{17} are each independently C_1 – C_7 alkyl or phenyl, R^{18} is C_1 – C_7 alkyl and aryl

represents in which
$$X^1$$
 is halogen.