引入

RTS(Real-Time Strategy Game),也就是即时战略游戏。分类于策略游戏中。是一种标准化程度较高的游戏。

一个RTS游戏本质上可以归纳为一种对称博弈。

其中,最完美的RTS博弈,在理想情况下应该不存在**纳什均衡**。例如经典的游戏"石头剪刀布"。

假如获胜收益为1,失败收益为-1,平手的收益为0。假设博弈的双方为A和B。

其收益矩阵如下:

	石头	剪刀	布
石头	(0,0)	(1,-1)	(-1,1)
剪刀	(-1,1)	(0,0)	(1,-1)
布	(1,-1)	(-1,1)	(0,0)

可以看到:

- 当A出布时, B的最佳应对为剪刀。
- 当A出石头时,B的最佳应对为布。
- 当A出剪刀时,B的最佳应对为石头。

反之亦然。

因此,双方均没有**严格占优策略**。

RTS的数值平衡

定理2: RTS游戏的数值的最优设计理论情况为不存在纳什均衡的对称博弈。

以知名游戏《帝国时代3——决定版》为例。

虽然该游戏有着众多的国家和玩法。

但是大体上的战略有三个 进攻,防守,发展。在相互的制约上,进攻方克制发展方、发展方克制防守方、防守方克制进攻方。

这里以帝国时代3决定版为例。

因为该游戏时代1无法进行有效进攻。因此以时代2为基准进行分析。国家以中国和 英国为例。假如不使用卡牌时。

如果中国方选择进攻的策略。那么需要至少制造一组士兵。而制造步兵之前还需要制造军事建筑"军事学院"。而敌方防守只需要村民躲进城镇中心即可。

所以一个RTS模型可以简化为以下几点

1. 拥有发展、进攻和防守的机制。

- 2. 每一种机制都会相互克制,且需要尽可能不存在严格占优策略。
- 3. 在双方决策的时候,是同时决策。

对RTS的最简化

游戏设计

既然我们已经总结出来了RTS最简的结构,我们因此就可以设计一个最简单的RTS游戏。

要注意,这个游戏并不一定是电子游戏。

以下是我设计的游戏:

• 游戏名: 《指尖战略》

• 游戏类型: 类似于石头剪刀布的游戏

• 游戏人数: 不限, 最少两个人

• 游戏规则:

1. 游戏的各方可以选择 8种手势 发展,小攻,大攻,总动员,小防,大防,

2. 双方需要同时做出决策

3. 各战略描述如下

战略名	战略点	攻 击 力	防 御 力	描述
发展	+1	0		最基础的战略,获得一点战 略点
小攻	-1	1		最基础的攻击,可以击败发 展
大攻	-2	2		高级的攻击,可以击败小 攻、发展和小防
总动员	-5	5		可以击败任何策略
小防	0		1	
大防	-1		2	

4. 各克制规则如下:

■ 如果双方均为攻击,那么攻击力大的获胜。如果策略一样 那么平手。

例如A选择了小攻, B选择了大攻。那么B胜利。

■ 总动员是强制胜利的选择,若某方积攒了5点战略点,可以 使用总动员获得胜利。

但是例外是若对方也使用了总动员则平手。

总的来说,在本游戏中,防御消耗的资源更少。进攻消耗的多,但是却有胜利的可能。

游戏分析

要注意的是,在本游戏中,每一局的收益会进行积累。因此整体可以看为动态博弈。

动态博弈的困难在于,在前一刻最优的决策在下一刻可能不再为最优,因此在求解 上发生很大的困难。

假设以双方获得的发展点为收益。如果失败则收益为损失的发展点,对方获得当前 自己的点数。

下面是收益矩阵

第一回合,双方发展点均为0

	发展	小攻	大攻	总动员	小防	大防
发展	(1,1)				(1,0)	
小攻						
大攻						
总动员						
小防	(0,1)					
大防						

因此第一回合双方一定选择发展。

第二回合,双方发展点为1的时候。(只列出了最核心的几项数据)

	发展	小攻	大攻	总动员	小防	大防
发展	(2,2)	(-∞,∞)				
小攻					(-1,0)	
大攻						
总动员						
小防	(0,1)					
大防						

选择发展的时候,对方选择小攻 选择小攻的时候,对方选择小防 选择小防的时候,对方选择发展 因此,双方均没有**严格占优策略**。

这个实际上就是游戏的设计核心。一个没有严格占优策略的规则。 该游戏拥有一个RTS的所有设计核心:

- 拥有发展、进攻和防守的机制。
- 每一种机制都会相互克制,且需要尽可能不存在严格占优策略。
- 在双方决策的时候,是同时决策。