E
$$_{^{19}O}$$
 = 124.92 \rightarrow 111.33 MeV, I $_{^{19}O}$: 4.00 eμA (4.17×10 12 pps), T $_{_{Au}}$ = 900 °C f $_{^{A}F_{f}}$ = $\epsilon_{transportation}$ $\epsilon_{desorption}$ $\epsilon_{ionization}$ ϵ_{escape} $\frac{P_{^{A}F_{f}}}{J}$ I $_{^{19}O}$ P $_{^{208/209/210/211}F_{f}}$: 1.3 / 12.6 / 18.3 / 5.0 [×10 6 /s] ϵ_{escape} ($^{208/209/210/211}F_{f}$): 49.8 / 32.9 / 35.2 / 28.9 % $\epsilon_{ionization}$: 100.0%, $\epsilon_{desorption}$: 100.0% (?), $\epsilon_{transportation}$: 100.0% (?) f $_{^{208/209/210/211}F_{f}}$: 0.6 / 4.1 / 6.4 / 1.4 [×10 6 /s] Number of ions at MCP surface N $_{^{A}F_{f}}$ (t) = f $_{^{A}F_{f}}$ τ $_{^{A}F_{f}}$ + $_{^{A}F_{f}}$ ($_{^{A}O}$) - f $_{^{A}F_{f}}$ τ $_{^{A}F_{f}}$ $_{^{A}F_{f}}$ $_{^{A}F_{f}}$ + $_{^{A}O}$ N $_{^{A}F_{f}}$ (t) $_{^{A}O}$ $_{^{A}O}$ + $_{^{A}O}$

**We assume that only Fr is extracted from the target.

$$\begin{array}{l} \text{Detected signal Y}_{_{^{A}Fr}}(t) = \ \epsilon_{\text{signal}} \ \epsilon_{\text{SSD}} \left(1\text{-}\epsilon_{\text{OAR}} \right) \frac{D_{^{A}Fr}}{t_{^{A}Fr}} \, N_{^{A}Fr}(t) \\ \epsilon_{\text{signal}} = 100.0\% \ (?), \ \epsilon_{\text{SSD}} = 0.21\%, \ \epsilon_{\text{OAR}} = 63.0\% \end{array}$$

After 900.00 seconds of beam irradiation:

²⁰⁸Fr: α detection 399.66 pps (6.64 MeV)

²⁰⁹Fr: α detection 2548.76 pps (6.65 MeV)

²¹⁰Fr: α detection 3308.05 pps (6.54 MeV)

²¹¹Fr: α detection 911.69 pps (6.54 MeV)