Exercises: Matrix Rank

Problem 1. Calculate the rank of the following matrix:

$$\left[\begin{array}{ccccc}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2
\end{array}\right]$$

Solution. To compute the rank of a matrix, remember two key points: (i) the rank does not change under elementary row operations; (ii) the rank of a row-echelon matrix is easy to acquire. Motivated by this, we convert the given matrix into row echelon form using elementary row operations:

$$\begin{bmatrix} 0 & 16 & 8 & 4 \\ 2 & 4 & 8 & 16 \\ 16 & 8 & 4 & 2 \\ 4 & 8 & 16 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 4 & 8 & 16 \\ 16 & 8 & 4 & 2 \\ 4 & 8 & 16 & 2 \\ 0 & 16 & 8 & 4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 4 & 8 \\ 0 & -24 & -60 & -126 \\ 0 & 0 & 0 & -30 \\ 0 & 4 & 2 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 4 & 8 \\ 0 & 4 & 2 & 1 \\ 0 & -24 & -60 & -126 \\ 0 & 0 & 0 & -30 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 4 & 8 \\ 0 & 4 & 2 & 1 \\ 0 & 0 & -48 & -120 \\ 0 & 0 & 0 & -30 \end{bmatrix}$$

As this matrix has 4 non-zero rows, we conclude that the original matrix has rank 4.

Problem 2. Calculate the rank of the following matrix:

$$\left[\begin{array}{cccc}
4 & -6 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{array}\right]$$

1

Solution.

$$\begin{bmatrix} 4 & -6 & 0 \\ -6 & 0 & 1 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ -6 & 0 & 1 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & -9 & 1 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & -9 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 37/9 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & -9 & 1 \\ 0 & 0 & 37/9 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the rank of the original matrix is 3.

Problem 3. Judge whether the following vectors are linearly independent.

$$[3,0,1,2]$$

$$[6,1,0,0]$$

$$[12,1,2,4]$$

$$[6,0,2,4]$$

$$[9,0,1,2]$$

If they are not, find the largest number of linearly independent vectors among them.

Solution. This question is essentially asking for the rank of matrix:

$$\begin{bmatrix} 3 & 0 & 1 & 2 \\ 6 & 1 & 0 & 0 \\ 12 & 1 & 2 & 4 \\ 6 & 0 & 2 & 4 \\ 9 & 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 0 & 1 & 2 \\ 0 & 1 & -2 & -4 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & -4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 3 & 0 & 1 & 2 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & -2 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The rank of the matrix is 3. This means that the maximum number of linearly independent vectors is 3. They are the ones that correspond to the non-zero rows of the final matrix:

$$[3, 0, 1, 2]$$

 $[6, 1, 0, 0]$
 $[9, 0, 1, 2]$

Problem 4. Prove: if A is not square, then either the row vectors or the column vectors are linearly dependent.

Proof. The maximum number of linearly independent row vectors is the rank of \mathbf{A} , while the maximum number of linearly independent column vectors is the rank of \mathbf{A}^T . Suppose that \mathbf{A} is an $m \times n$ matrix. If m < n, then $rank \mathbf{A}^T = rank \mathbf{A} \le m < n$. Therefore, the column vectors are linear dependent. Similarly, if n < m, then the row vectors are linearly dependent.

Problem 5. Let S be an arbitrary set of vectors in \mathbb{R}^3 . Prove that there are at most 3 linearly independent vectors in S.

Proof. Let n be the number of vectors in S. For an $n \times 3$ matrix \mathbf{A} where the i-th $(1 \le i \le n)$ row is the i-th vector in S. Clearly, $rank \mathbf{A} = rank \mathbf{A}^T \le 3$. Hence, S can have at most 3 linearly independent vectors.

Problem 6 (Hard). Prove: $rank(AB) \leq rankA$.

Proof. Suppose that A is an $m \times n$ matrix, and B an $n \times p$ matrix. Let d = rank A. Without loss of generality, assume that the first d rows of A are linearly independent. Denote the row vectors of A as $r_1, ..., r_m$ in top down order, and the column vectors of B as $c_1, ..., c_p$ in left-to-right order.

We will prove that for any $i \in [d+1, m]$, the *i*-th row of AB is a linear combination of the first d rows of AB. This, in effect, shows that $rank(AB) \leq d$.

We know that the first d rows of AB are:

$$egin{array}{lcl} m{v}_1 &=& [m{r}_1 \cdot m{c}_1, m{r}_1 \cdot m{c}_2, ..., m{r}_1 \cdot m{c}_p] \ m{v}_2 &=& [m{r}_2 \cdot m{c}_1, m{r}_2 \cdot m{c}_2, ..., m{r}_2 \cdot m{c}_p] \ & ... \ m{v}_d &=& [m{r}_d \cdot m{c}_1, m{r}_d \cdot m{c}_2, ..., m{r}_d \cdot m{c}_p] \end{array}$$

while the *i*-th $(i \in [d+1, m])$ row of AB is:

$$v_i = [r_i \cdot c_1, r_i \cdot c_2, ..., r_i \cdot c_p]$$

Since r_i is a linear combination of $r_1, r_2, ..., r_d$, there exist real values $\alpha_1, ..., \alpha_d$ that (i) are not all zero, and (ii) satisfy:

$$r_i = \sum_{z=1}^d \alpha_z r_z$$

This means that for any $j \in [1, p]$, we have

$$\mathbf{r}_i \cdot \mathbf{c}_j = \sum_{z=1}^d \alpha_z (\mathbf{r}_z \cdot \mathbf{c}_j)$$

This, in turn, indicates that

$$v_i = \sum_{z=1}^d \alpha_z v_z$$

namely, v_i is a linear combination of $v_1, ..., v_d$.

Problem 7 (Very Hard). Prove: $rank(A + B) \le rank A + rank B$.

Proof. Let A, B be $m \times n$ matrices. Construct an $(2m) \times (2n)$ matrix:

$$Q = \begin{bmatrix} A & 0 \\ \hline 0 & B \end{bmatrix}$$

 $rank \mathbf{Q} = rank \mathbf{A} + rank \mathbf{B}$ (you can see this by converting \mathbf{Q} into row-echelon form).

Also observe that Q has the same rank as

$$\left[egin{array}{c|c} A & 0 \ \hline A & B \end{array}
ight]$$

which has the same rank as

$$\begin{bmatrix} A & A \\ \hline A & A+B \end{bmatrix}$$

Since the rank of a submatrix cannot exceed the rank of the whole matrix, we know that rank(A + B) is at most the rank of Q, which as mentioned earlier is rank(A + rank(B)).