

Probability and Statistics for Business and Data

PART 6 - REGRESSION

Linear Regression

Linear Regression

 The goal of regression is to develop an equation or formula that best describes the relationship between variables.

- How do we find a best-fit line?
- Consider a dataset with only one variable
- The best-fit line is just the mean value of the data points

- A plant manager wants to know when employees arrive at work
- The shift starts a 8:30am
- She takes five random timecards and plots the minutes of arrival on a chart

Understanding Best Fit

Timecard	Minutes past 8:00am
А	37
В	25
С	27
D	36
E	25
Total:	150
Mean	30

What makes $y = 30 \, a$ best-fit line? Steel Ste

error

See that the sum of the distances above the line balances the sum of those below the line

Understanding Best Fit

Error (E)	Square Error (SE)
+7	49
-5	25
-3	9
+6	36
-5	25
Sum of Squares Error (SSE)	144

we want to MINIMIZE the SSE

What if we move the line?

Let's set it to y = 31 instead

How does it affect the SSE?

Understanding Best Fit

Erro	r (E)	Sqւ Error	iare (SE)
+7	+6	49	36
-5	-6	25	36
-3	-4	9	16
+6	+5	36	25
-5	-6	25	36
Sun Squa Eri (SS	ares or	144	149

Timecards

moving the line INCREASED the SSE

- That's it! The goal of regression is to find the line that best describes our data.
- Fortunately, we don't have to rely on trial-and-error.
- We have algebra!

Recall that the equation of a line follows the form y = mx + b where
m is the slope of the line, and
b is where the line crosses the y-axis when x=0 (b is the y-intercept)

• In a linear regression, where we try to formulate the relationship between variables, y = mx + b becomes

$$\hat{y} = b_0 + b_1 x$$

 Our goal is to predict the value of a dependent variable (y) based on that of an independent variable (x).

$$\hat{y} = b_0 + b_1 x$$

• How to derive b_1 and b_0 :

$$b_1 = \rho_{x,y} \frac{\sigma_y}{\sigma_x}$$

$$\rho_{x,y} = Pearson Correlation Coefficient
\sigma_x, \sigma_y = Standard Deviations$$

$$= \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} \cdot \frac{\sqrt{\frac{\sum (y - \bar{y})^2}{n}}}{\sqrt{\frac{\sum (x - \bar{x})^2}{n}}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\hat{y} = b_0 + b_1 x$$

• How to derive b_1 and b_0 :

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

Limitations of Linear Regression

Anscombe's Quartet illustrates the pitfalls of relying on pure calculation.

Each graph results in the same calculated regression line.

 A manager wants to find the relationship between the number of hours that a plant

is operational in a week and weekly production.

• Here the independent variable x is hours of operation, and the dependent variable y is production volume.

The manager develops the following table:

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158

• First, plot the data Is there a linear pattern?

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158

$b_1 = \frac{\sum (z_1 - z_2)}{\sum (z_2 - z_2)}$

 $\hat{y} = b_0 + b_1 x$

• Run calculations:

Production	Production				
Hours (x)	Volume (y)	$(x-\overline{x})$	$(y-\overline{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$
34	102	-6	-32	192	36
35	109	-5	-25	125	25
39	137	-1	3	-3	1
42	148	2	14	28	4
43	150	3	16	48	9
47	158	7	24	168	49
40	134		Sum:	558	124

Sum:

Regression Exercise #1 $b_1 = \frac{\sum_{i=1}^{y-z_0} \sum_{i=1}^{y-z_0} y_i - \overline{y}}{\sum_{i=1}^{y-z_0} y_i - \overline{x}}$

• Run calculations:

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158
40	134

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{558}{124} = 4.5$$

$$b_0 = \bar{y} - b_1 \bar{x} = 134 - (4.5 \times 40) = -46$$

$$\hat{y} = -46 + 4.5x$$

124

558

 $\Sigma(x-\overline{x})(y-\overline{y}) \mid \Sigma(x-\overline{x})^2$

Based on the formula, if the manager wants to

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158

produce 125 units per week, the plant should run for:

$$\hat{y} = b_0 + b_1 x$$

$$125 = -46 + 4.5x$$

$$x = \frac{171}{45} = 38 \text{ hours per week}$$

REGRESSION with Excel Data Analysis

	A	В	C Da	ta Analysis				? X	1
1	SUMMARY OUTPUT			-				. ^	
2			Ar	nalysis Tools				ОК	
3	Regression St	tatistics		Covariance Descriptive Statistics			^		
4	Multiple R	0.966875047		exponential Smoothi	ng			Cancel	
5	R Square	0.934847357		-Test Two-Sample f	or Variances			<u>H</u> elp	
6	Adjusted R Square	0.918559196		ourier Analysis Iistogram			L		
7	Standard Error	6.614378278	l N	Noving Average					
8	Observations	6		Random Number Ge Rank and Percentile	neration				
9				Regression			~		
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	1	2511	2511	57.39428571	0.00162772			
13	Residual	4	175	43.75					
14	Total	5	2686						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	-46	23.91250292	-1.923679849	0.126733563	-112.3917517	20.39175167	-112.3917517	20.39175167
18	X Variable 1	4.5	0.593988704	7.575901644	0.00162772	2.85082297	6.14917703	2.85082297	6.14917703
40					_				

LINEAR REGRESSION with Python

```
>>> from scipy.stats import linregress
\Rightarrow > x = [34, 35, 39, 42, 43, 47]
\Rightarrow \Rightarrow y = [102, 109, 137, 148, 150, 158]
>>> slope = round(linregress(x,y).slope,1)
>>> intercept = round(linregress(x,y).intercept,1)
>>> print(f'y = {intercept} + {slope}x')
y = -46.0 + 4.5x
```


Multiple Regression

Linear vs Multiple Regression

 In linear regression we have one independent variable that may relate to a dependent variable with the formula

$$\hat{y} = b_0 + b_1 x$$

- Multiple regression lets us compare several independent variables to one dependent variable at the same time.
- Each independent variable is assigned a subscript: x_1 , x_2 , x_3 etc.

• The general formula is expanded:

linear regression multiple regression $\hat{y} = b_0 + b_1 x \qquad \hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots$

- b_1 is the coefficient on x_1
- b_1 reflects the change in \hat{y} for a given change in x_1 , all else remaining constant

• The formulas for coefficients also expand:

multiple regression

$$b_{1} = \frac{\sum (x_{2} - \overline{x_{2}})^{2} \sum (x_{1} - \overline{x_{1}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{2} - \overline{x_{2}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{2} = \frac{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{1} - \overline{x_{1}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{0} = \overline{y} - b_{1}\overline{x_{1}} - b_{2}\overline{x_{2}}$$

- For example, a used car lot may want to know what variables affect net profits
- They would create a list of predictors that might correlate with profit:

price age brand color style

- They would want to measure the correlation of each variable to net profit
- However, some predictors might correlate with each other:

price age brand color style

- The age of a car would have a direct impact on its sales price
- You can't adjust one without affecting the other
- This is called multicollinearity

- A pharmacy delivers medications to the surrounding community.
- Drivers can make several stops per delivery.
- The owner would like to predict the length of time a delivery will take based on one or two related variables.

- First, consider what variables may have an effect on delivery time:
 - number of stops
 - driving distance
 - outside temperature
 - gasoline prices

 Next, plot each variable against delivery time to see if there may be a relationship

- Once we've chosen our variables x_1 and x_2 , we'll usually test for multicollinearity
- We want to know if our two independent variables are closely related to each other
- If they are, it makes sense to discard one!

A delivery might go to one customer that lives far away, or to a group of stops close by

Stops vs Distance

y = Delivery Time (minutes)

 $x_1 = Number\ of\ Stops$

y	x_1	x_2	$(y-\overline{y})$	$(x_1-\overline{x_1})$	$(x_1-\overline{x_1})^2$	$(x_2-\overline{x_2})$	$(x_2-\overline{x_2})^2$
29	1	8	-1	-1	1	2	4
31	3	4	1	1	1	-2	4
36	2	9	6	0	0	3	9
35	3	6	5	1	1	0	0
19	1	3	-11	-1	1	-3	9
\overline{y}	$\overline{x_1}$	$\overline{x_2}$		Σ	$(x_1-\overline{x_1})^2$	Σ	$(x_2-\overline{x_2})^2$
30	2	6			4		26

$(x_1-\overline{x_1})(y-\overline{y})$	$(x_2-\overline{x_2})(y-\overline{y})$	$(x_1-\overline{x_1})(x_2-\overline{x_2})$
1	-2	-2
1	-2	-2
0	18	0
5	0	0
11	33	3
$\Sigma(x_1-\overline{x_1})(y-\overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
18	47	-1

y = Delivery Time (minutes)

 $x_1 = Number \ of \ Stops$

$$b_{1} = \frac{\sum (x_{2} - \overline{x_{2}})^{2} \sum (x_{1} - \overline{x_{1}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{2} - \overline{x_{2}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{2} = \frac{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{1} - \overline{x_{1}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

\overline{y}	$\overline{x_1}$	$\overline{x_2}$
30	2	6

$$\frac{\Sigma(x_1-\overline{x_1})^2}{4}$$

$$\frac{\Sigma(x_2-\overline{x_2})^2}{26}$$

2)2	2

$$\Sigma(x_1 - \overline{x_1})(y - \overline{y}) \quad \Sigma(x_2 - \overline{x_2})(y - \overline{y}) \quad \Sigma(x_1 - \overline{x_1})(x_2 - \overline{x_2})$$

$$\Sigma(x_2-\overline{x_2})(y-\overline{y}) \Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$$

y = Delivery Time (minutes)

 $x_1 = Number of Stops$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4)(47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

\overline{y}	$\overline{x_1}$	$\overline{x_2}$
30	2	6

$$\frac{\Sigma(x_1-\overline{x_1})^2}{4}$$

$$\frac{\Sigma(x_2-\overline{x_2})^2}{26}$$

) ²	

$\Sigma(x_1 -$	$-\overline{x_1}$)(y $-\overline{y}$)
	40

$$\Sigma(x_2-\overline{x_2})(y-\overline{y}) \quad \Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$$

$$(y-\overline{y}) \sum (x_1-\overline{x_1})(x_1-\overline{x_1})$$

y = Delivery Time (minutes)

 $x_1 = Number\ of\ Stops$

$$\hat{y} = 8 + 5x_1 + 2x_2$$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4)(47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

$$b_0 = \overline{y} - b_1 \overline{x_1} - b_2 \overline{x_2}$$

$$= 30 - (5)(2) - (2)(6)$$

$$= 30 - 10 - 12 = 8$$

$$\overline{y}$$
 $\overline{x_1}$ $\overline{x_2}$

$$\frac{\Sigma(x_2-\overline{x_2})^2}{26}$$

$\Sigma(x_1-\overline{x_1})(y-\overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
18	47	-1

y = Delivery Time (minutes)

 $x_1 = Number\ of\ Stops$

 $x_2 = Distance (miles)$

$$\hat{y} = 8 + 5x_1 + 2x_2$$

y	x_1	x_2
29	1	8
31	3	4
36	2	9
35	3	6
19	1	3

Based on our analysis, pharmacy deliveries have a fixed time of 8 minutes, plus 5 minutes for each stop, and 2 minutes for each mile traveled

Multiple Regression in Excel

Steps are the same as linear regression, except you select a wider x-axis range

Regression		? ×
Input <u>Y</u> Range: Input <u>X</u> Range: Labels	\$A\$2:\$A\$6 \$B\$2:\$C\$6 Constant is Zero	OK Cancel <u>H</u> elp
Output options Output Range: New Worksheet Ply: New Workbook	95 %	
Residuals Residuals Standardized Residuals Normal Probability Normal Probability Plots	Resi <u>d</u> ual Plots L <u>i</u> ne Fit Plots	

Multiple Regression in Excel

	Α	В	С	Data 4	Analysis				? ×
1	SUMMARY OUTPUT				-				. ^
2				<u>A</u> naly	sis Tools				ОК
3	Regression St	atistics			riance			^ _	
4	Multiple R	1			riptive Statistics mential Smoothing				Cancel
5	R Square	1		F-Test Two-Sample for Variances Fourier Analysis Histogram					<u>H</u> elp
6	Adjusted R Square	1							<u>II</u> eip
7	Standard Error	1.25607E-15			Moving Average Random Number Generation				
8	Observations	5							
9					and Percentile ession			~	
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	2	184	92	5.83119E+31	1.71492E-32			
13	Residual	2	3.15544E-30	1.57772E-30)				
14	Total	4	184						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	8	2.11706E-15	3.77882E+15	7.00306E-32	8	8	8	8
18	X Variable 1	5	6.31078E-16	7.92295E+15	1.59304E-32	5	5	5	5
19	X Variable 2	2	2.47529E-16	8.07985E+15	1.53177E-32	2	2	2	2
20									

MULTIPLE REGRESSION with Python

```
>>> from sklearn.linear_model import LinearRegression
>>> x1,x2 = [1,3,2,3,1], [8,4,9,6,3]
>>> y = [29,31,36,35,19]
>>> reg = LinearRegression()
>>> reg.fit(list(zip(x1,x2)), y)
>>> b1,b2 = reg.coef_[0], reg.coef_[1]
>>> b0 = reg.intercept_
>>> print(f'y = \{b0:.\{3\}\}\} + \{b1:.\{3\}\}x1 + \{b2:.\{3\}\}x2')
y = 8.0 + 5.0x1 + 2.0x2
```


Next Up: CHI-SQUARE ANALYSIS

