Mixture Models & Expectation Maximization

A brief introduction

Clustering

HARD

SOFT

Clustering

HARD

Parameters: Centroids

SOFT

Parameters: Distributions Parameters (eg μ , σ^2)

Problem:

- Find the distributions that produced the data

Issue:

- Unknown labels

Problem:

- Find the distributions that produced the data

Issue:

- Unknown labels

Solution:

- Iteratively fit the data to find the best values of σ and μ for each distribution

Solution:

- Iteratively fit the data to find the best values of σ and μ for each distribution

Stop when no more changes are needed

Stop when no more changes are needed

Expectation Maximization

EM

Expectation

Calculate weights for each data point indicating the weighted probability of the point belonging to a distribution based on the likelihood of it being produced by a parameter.

Maximization

Compute a better estimate for the parameters using the weight-adjusted data.

- 1. Initialize parameters μ , **Σ**, π
- 2. Expectation

$$\gamma(z_{nk}) = rac{\pi_k \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_j, oldsymbol{\Sigma}_j)}$$

3. Maximization

$$oldsymbol{\mu}_k^{ ext{new}} = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \quad ^{N_k = \sum_{n=1}^N \gamma(z_{nk})} \ oldsymbol{\Sigma}_k^{ ext{new}} = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) ig(\mathbf{x}_n - oldsymbol{\mu}_k^{ ext{new}} ig) ig(\mathbf{x}_n - oldsymbol{\mu}_k^{ ext{new}} ig)^{ ext{T}} \ \pi_k^{ ext{new}} = rac{N_k}{N}$$

4. Maximize log likelihood

$$\ln p(\mathbf{X}|oldsymbol{\mu}, oldsymbol{\Sigma}, oldsymbol{\pi}) = \sum_{n=1}^N \ln \Biggl\{ \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) \Biggr\}$$

^{*} Equations from PRML book

Implementation

- Python
- Numpy
- Scipy
- Pandas*
- Plotting libraries

Tips

- Initialize the covariance matrix (NOT as Identity)
- 2. Wild singular matrices may appear
- 3. Comment your code
- 4. You are NOT required to implement the Distribution function and the PDF (use pre-existing functions)