PSI* - MP

Sciences

Micromanipulateur compact pour la chirurgie endoscopique

Mines Ponts 2016

Savoirs et compétences :

□.

1 Micromanipulateur compact pour la chirurgie endoscopique (MC²E)

1.1 Présentation générale

L'objet de cette étude est un robot appelé MC²E utilisé en chirurgie endoscopique. Ce type de robots médicochirurgicaux est équipé de capteurs (caméra, capteur d'efforts...) permettant de maîtriser les interactions avec des environnements souvent déformables et difficilement modélisables comme le corps humain.

La figure suivante décrit les principales exigences auxquelles est soumis le MC²E.

1.2 Validation des performances de l'asservissement d'effort

Modèle de connaissance de l'asservissement

Objectif Modéliser l'asservissement en effort.

L'équation de mouvement est définie par l'équation différentielle suivante : $J \frac{\mathrm{d}^2 \theta_m(t)}{\mathrm{d}t^2} = C_m(t) - C_e(t)$ avec :

• *J*, inertie équivalente à l'ensemble en mouvement, ramenée sur l'arbre moteur;

• $C_e(t)$, couple regroupant l'ensemble des couples extérieurs ramenés à l'arbre moteur, notamment fonction de la raideur du ressort.

On notera $\theta_m(p)$, $\Omega_m(p)$, $C_m(p)$ et $C_e(p)$ les transformées de Laplace des grandeurs de l'équation de mouvement. On pose $C_e(t) = K_{C\theta} \theta_m(t)$ où $K_{C\theta}$ est une constante positive. On a de plus $\frac{\mathrm{d}\theta_m(t)}{\mathrm{d}t} = \omega_m(t)$. La régulation se met alors sous la forme du schéma-blocs à retour unitaire simplifié que l'on admettra :

Modèle simplifié du montage du capteur d'effort.

Avec:

- C_e(p), couple de sortie mesuré par le capteur d'effort situé sur le MC²E;
- $C_c(p)$, couple de consigne;
- $C_m(p)$, couple moteur;
- $H_{cor}(p)$, fonction de transfert du correcteur.

Dans un premier temps, on prendra $H_{cor}(p) = 1$.

Question 1 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

Correction

Question 2 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Correction

Question 3 Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Correction

Pour remédier au problème ainsi mis en évidence, le concepteur a choisi de mettre en place une boucle interne numérique, dite tachymétrique, de gain *B*. On s'intéresse

ici à la définition analytique de B. Le schéma-blocs modifié est donné figure suivante.

Régulation avec retour tachymétrique

On règle B de telle façon que, pour $H_{cor}(p) = 1$, la fonction de transfert en boucle ouverte, notée $H_{\mathrm{BO}}(p)$, puisse être mise sous la forme suivante : $H_{\mathrm{BO}}(p) = \frac{1}{\left(1 + \tau p\right)^2}$.

Question 4 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Correction

Les exigences du cahier des charges sont données plus haut (exigences 1.2.2.1, 1.2.2.3 et 1.2.2.4).

Afin de répondre à ces exigences, on choisit un correcteur proportionnel-intégral de gain K_i et de constante de temps T_i . Le schéma-blocs de la régulation se met sous la forme de la figure qui suit.

Régulation avec correcteur PI.

Question 5 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

Correction

On souhaite régler le correcteur pour que le système asservi ait une fonction de transfert en boucle fermée d'ordre 2 de la forme : $\frac{K_{\rm BF}}{1+\frac{2\xi_{\rm BF}}{\omega_{\rm 0BF}}p+\frac{p^2}{\omega_{\rm 0BF}^2}}.$

$$\frac{1+\frac{2\xi_{\rm BF}}{\omega_{\rm 0BF}}p+\frac{p^2}{\omega_{\rm 0BF}^2}}{1+\frac{2\xi_{\rm BF}}{\omega_{\rm 0BF}^2}}.$$

Question 6 Proposer une expression simple pour la constante de temps T_i .

Correction

Question 7 À partir des courbes suivantes, proposer une valeur de coefficient d'amortissement et de pulsation propre.

On donne $K_i = 1$.

Question 8 Les critères de performance du cahier des chartes sont-ils respectés? Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Correction

Diagrammes de Bode

On prend $K_i = 0, 4$, $T_i = 0.01$ s et $\tau = 0.5$ s.

Question 9 Tracer le diagrame de Bode de la fonction

de transfert
$$G(p) = \frac{K_i(1 + T_i p)}{T_i p(1 + \tau p^2)}$$
.

Question 2.

D'après l'équation de mouvement, $Jp\Omega_m(p) = C_m(p) - C_e(p)$. On a donc $H_1(p) = \frac{1}{Jp}$.

On a $p\theta_m(p) = \Omega_m(p)$; donc $H_2(p) = \frac{1}{n}$.

Enfin, $C_e(p) = K_{C\theta}\theta_m(p)$ et donc $H_3(p) = K_{C\theta}$.

Question 3.

On a dans un premier temps $\frac{c_e(p)}{c_m(p)} = F(p) = \frac{H_1(p)H_2(p)H_3(p)}{1 + H_1(p)H_2(p)H_3(p)} = \frac{\frac{1}{Jpp}K_{C\theta}}{1 + \frac{1}{Jpp}K_{C\theta}} = \frac{K_{C\theta}}{Jp^2 + K_{C\theta}}$

Dans un second temps, $H_{BF}(p) = \frac{\frac{K_{C\theta}}{Jp^2 + K_{C\theta}} H_{cor}(p)}{1 + \frac{K_{C\theta}}{Jp^2 + K_{C\theta}} H_{cor}(p)} = \frac{K_{C\theta} H_{cor}(p)}{Jp^2 + K_{C\theta} H_{cor}(p)}.$

Avec $H_{cor}(p) = 1 : H_{BF}(p) = \frac{K_{C\theta}}{Jp^2 + 2K_{C\theta}} = \frac{\frac{1}{2}}{\frac{J}{2K_{C\theta}}p^2 + 1}.$ 5

Question 4.

On peut mettre la fonction précédente sous forme canonique. On a : $H_{BF}(p) = \frac{\frac{1}{2}}{\frac{1}{2}p^2}$. Il s'agit d'un système du second

ordre avec un coefficient d'amortissement nul. On a alors un oscillateur harmonique et la réponse du système à un échelon d'amplitude C_0 est une sinusoïde (d'amplitude C_0 et de moyenne $\frac{c_0}{2}$).

Un mouvement sinusoïdal est surement incompatible avec l'asservissement d'un axe sur un robot chirurgical.

Question 5.

$$\begin{array}{l} \text{On a } H_{BO}(p) = \frac{H_{COT}(p)\frac{H_1(p)}{1+H_1(p)B}H_2(p)H_3(p)}{1+\frac{H_1(p)}{1+H_1(p)B}H_2(p)H_3(p)} = \frac{H_1(p)H_2(p)H_3(p)}{1+H_1(p)B+H_1(p)H_2(p)H_3(p)} = \frac{\frac{K_{C\theta}}{Jp^2}}{1+\frac{B}{Jp}+\frac{K_{C\theta}}{Jp^2}} = \frac{K_{C\theta}}{Jp^2+pB+K_{C\theta}} = \frac{1}{\frac{Jp^2+pB+K_{C\theta}}{K_{C\theta}+K_{C\theta}+K_{C\theta}+1}}. \\ \text{Par ailleurs, } (1+\tau p)^2 = 1+\tau^2 p^2+2\tau p. \\ \text{En identifiant, } \tau^2 = \frac{J}{K_{C\theta}} \text{ et } 2\tau = \frac{B}{K_{C\theta}}. \text{ On a donc } B = 2\tau K_{C\theta} = 2K_{C\theta} \sqrt{\frac{J}{K_{C\theta}}} = 2\sqrt{JK_{C\theta}} \text{ et } \tau = \sqrt{\frac{J}{K_{C\theta}}}. \end{array}$$

On a :
$$\varepsilon(p) = \frac{c_c(p)}{1 + FTBO(p)} = \frac{c_0}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}}$$
. En conséquences, $\varepsilon_S = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p\varepsilon(p) = \lim_{p \to 0} p\frac{c_0}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{1}{1 + \frac{K_i(1 + T_ip)}{T_ip(1 + \tau p)^2}} = \lim_{t \to \infty} \frac{c_0(p)}{p} \cdot \frac{c_0(p)}{p}$

 $\lim_{p\to 0} C_0 \cdot \frac{1}{1 + \frac{K_l(1+T_lp)}{T_lp(1+\tau p)^2}} = 0 \text{ Nm.}$ L'exigence 1.2.2.1 est vérifiée.

On a
$$\frac{\frac{K_i(1+T_ip)}{T_ip(1+\tau p)^2}}{1+\frac{K_i(1+T_ip)}{T_ip(1+\tau p)^2}} = \frac{K_i(1+T_ip)}{T_ip(1+\tau p)^2+K_i(1+T_ip)}$$
. Avec $T_i = \tau$, on a $\frac{K_i}{\tau p(1+\tau p)+K_i}$. La FTBF est bien d'ordre 2.

Pour avoir $D\% \le 15\%$ il faut $\xi \ge 0.5$

Cependant, on trouve sur ce diagramme qu'il faut avoir $\xi \ge 0.8$ pour avoir une marge de phase de 70°.

Si on souhaite obtenir le temps de réponse à 5% le plus rapide, comme $\xi \ge 0.8 > 0.7$, il faut prendre ξ le plus faible

possible. Cela impose $\boxed{\xi=0,8}$ et comme $\ \xi=\frac{1}{2\sqrt{K_*}}$ on a

alors $K_i = \frac{1}{4\xi^2} = 0.4$.

Pour $\xi = 0.8$, la lecture de l'abaque donne donc $t_{R5\%}.\omega_0 \ge 3.5$ et avec $t_{R5\%} \le 0.5s$ on a $|\omega_0 \ge 7rad/s|$

Question 9.

Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Chapitre 2 – Révisions SLCI

Sciences
Industrielles de
l'Ingénieur

Colle 02 -Corrigé

Cisaille à découpe au vol

D'après P. Dubois, C. Gamelon.

Savoirs et compétences :

 \Box .

Mise en situation Schéma-bloc du système

Question 1 Représenter le schéma-blocs du système. Indiquer les grandeurs d'entrée et de sortie de chaque bloc.

Fonction de transfert de l'ensemble vérin et charge

Équation de comportement dynamique Fonction de transfert du vérin

Question 2 Transformer les deux équations précédentes dans le domaine de Laplace. En déduire l'expression de la fonction de transfert : $H_v(p) = \frac{X(p)}{Q(p)}$, que l'on mettra sous la forme : $H_v(p) = \frac{k}{p(ap^2 + bp + 1)}$

Correction

D'une part,
$$mp^2X(p) = S\Delta P(p) - fpX(p) \Leftrightarrow \frac{p\left(mp+f\right)}{S}X(p) = \Delta P(p)$$
.

D'autre part : $Q(p) = SpX(p) + \frac{V}{2B}p\Delta P(p) \Leftrightarrow 2B\frac{Q(p) - SpX(p)}{Vp} = \Delta P(p)$.

On a donc : $\frac{p\left(mp+f\right)}{S}X(p) = 2B\frac{Q(p) - SpX(p)}{Vp} \Leftrightarrow \frac{p\left(mp+f\right)}{S}X(p) + \frac{2BSpX(p)}{Vp} = \frac{2BQ(p)}{Vp}$

$$\Leftrightarrow \left(\frac{p\left(mp+f\right)}{S} + \frac{2BSp}{Vp}\right)\frac{Vp}{2B} = \frac{Q(p)}{X(p)} \Leftrightarrow \left(\frac{p\left(mp+f\right)}{S}\frac{Vp}{2B} + Sp\right) = \frac{Q(p)}{X(p)}.$$

On a donc, $H_v(p) = \frac{1}{p\left(\frac{(mp+f)}{S}\frac{Vp}{2B} + S\right)} = \frac{1}{p\left(\frac{Vm}{2BS}p^2 + \frac{fV}{2BS}p + S\right)} = \frac{1/Q}{p\left(\frac{Vm}{2BS^2}p^2 + \frac{fV}{2BS^2}p + 1\right)}.$

Au final, $k = \frac{1}{S}$, $a = \frac{Vm}{2BS^2}$ et $b = \frac{fV}{2BS^2}$.

Détermination des paramètres canoniques à partir du diagramme de Bode

Question 3 Donner l'expression littérale du gain fréquentiel en décibel $GdB(\omega)$ en fonction des notations K_v , ω_0 et ξ , (ne pas développer le dénominateur pour le calcul du module de $H_v(j\omega)$). Quelle est sa valeur pour $\omega = \omega_0$?

$$\begin{aligned} & \text{Correction} \quad H_{v}(j\omega) = \frac{K_{v}}{j\omega\left(1 + \frac{2\xi}{\omega_{0}}j\omega - \frac{\omega^{2}}{\omega_{0}^{2}}\right)} \\ & \text{En conséquence, } G_{\text{dB}}(\omega) = 20\log\left|\frac{K_{v}}{j\omega\left(1 + \frac{2\xi}{\omega_{0}}j\omega - \frac{\omega^{2}}{\omega_{0}^{2}}\right)}\right| = 20\log K_{v} - 20\log\left|j\omega\right| - 20\log\left|1 + \frac{2\xi}{\omega_{0}}j\omega - \frac{\omega^{2}}{\omega_{0}^{2}}\right| \\ & = 20\log K_{v} - 20\log\omega - 20\log\left|\sqrt{\left(1 - \frac{\omega^{2}}{\omega_{0}^{2}}\right)^{2} + \left(\frac{2\xi\omega}{\omega_{0}}\right)^{2}}\right| \\ & \text{Au final, } G_{\text{dB}}(\omega_{0}) = 20\log K_{v} - 20\log\omega_{0} - 20\log2\xi. \end{aligned}$$

Question 4 Déterminer l'asymptote de la courbe de gain lorsque ω tend vers 0. Quelle est sa pente? Pour quelle valeur de ω coupe-t-elle l'horizontale à 0 dB?

Correction On a
$$G_{\mathrm{dB}}(\omega) = 20 \log K_{\nu} - 20 \log \omega - 20 \log \left| \sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\xi\omega}{\omega_0}\right)^2} \right|$$
.

Lorsque ω tend vers 0, le gain tend $20\log K_v - 20\log \omega$. La pente est donc de $-20\,\mathrm{dB/decade}$. Elle coupe l'horizontale à 0 dB en $\omega = K_v$.

Question 5 Déterminer l'asymptote de la courbe de gain lorsque ω tend vers l' ∞ . Quelle est sa pente? Pour quelle valeur de ω coupe-t-elle l'asymptote précédente?

Correction On a
$$G_{\mathrm{dB}}(\omega) = 20 \log K_v - 20 \log \omega - 20 \log \left| \sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\xi\omega}{\omega_0}\right)^2} \right|$$
.

Lorsque ω tend vers l'infini, le gain tend $20\log K_v - 20\log \omega$, G_{dB} tend vers $= 20\log K_v - 20\log \omega - 20\log \omega - 20\log \omega$ = $20\log K_v - 20\log \omega - 20\log \omega^2 + 20\log \omega_0^2 = 20\log K_v + 40\log \omega_0 - 60\log \omega$.

La pente est donc de -60 dB/decade.

L'intersection des deux asymptotes a lieu quand

 $20\log K_v - 20\log \omega = 20\log K_v + 40\log \omega_0 - 60\log \omega \Leftrightarrow \log \omega = \log \omega_0$. Ainsi, l'intersection des asymptotes a lieu en $\omega = \omega_0$.

Question 6 Déduire des résultats précédents et du diagramme de Bode de $H_v(p)$ donné sur la feuille réponse les valeurs des paramètres K_v , ω_0 et ξ (on tracera les asymptotes avec leur pente réelle).

Question 7 Donner l'expression littérale de la phase $\varphi(\omega)$ en fonction des notations ω_0 et ξ . Déterminer ses

limites lorsque ω tend vers 0 et lorsque ω tend vers l'infini. Tracer le diagramme asymptotique de phase. Calculer les valeurs de la phase en degrés pour la pulsation propre ω_0 puis pour 100 et 200 rad s⁻¹. Tracer la courbe de phase.

Correction

$$\varphi(\omega) = \arg K_v - \arg(j\omega) - \arg\left(1 + \frac{2\xi}{\omega_0}j\omega - \frac{\omega^2}{\omega_0^2}\right) = 0 - \frac{\pi}{2} - \arg\left(\left(1 - \frac{\omega^2}{\omega_0^2}\right) + \frac{2\xi\omega}{\omega_0}j\right)$$

 $\varphi(\omega) = \arg K_v - \arg \left(j\omega\right) - \arg \left(1 + \frac{2\xi}{\omega_0}j\omega - \frac{\omega^2}{\omega_0^2}\right) = 0 - \frac{\pi}{2} - \arg \left(\left(1 - \frac{\omega^2}{\omega_0^2}\right) + \frac{2\xi\omega}{\omega_0}j\right)$ Lorsque ω tend vers 0, $\varphi(\omega)$ tend vers $-\frac{\pi}{2}$.

Lorsque ω tend vers l'infini, $-\arg \left(\left(1 - \frac{\omega^2}{\omega_0^2}\right) + \frac{2\xi\omega}{\omega_0}j\right)$ tend vers π donc $-\arg(...)$ tend vers $-\pi$.

Explication graphiaue de prof de SII Explication graphique de prof de SII...

Au final, lorsque ω tend vers l'infini, $\varphi(\omega)$ tend vers $-\frac{3\pi}{2}$

Détermination des gains K_c , K_a et K_d

Question 8 Quelle valeur K doit-on donner au produit des gains $K_c K_a K_d$ (préciser les unités). On note K_0 le produit KK_{ν} (gain en boucle ouverte). Quelle est la valeur de K_0 ? Quelle est la marge de phase ainsi obtenue?

Correction Étant donné l'exigence demandée, le gain de la FTBO doit être de -6 dB lorsque la phase vaut -180°. On a déjà vu que pour cette phase, le gain décibel de H_{ν} vaut 37 dB. Le gain dB vaut $20 \log K + 20 \log |H_{\nu}|$. On cherche donc *K* tel que $20 \log K + 20 \log |H_v| = -6$. Au final, $K = 710^{-3} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$. Par suite, $K_0 = 7 \,\mathrm{s}^{-1}$.

Erreur de traînage

Question 9 Donner l'expression de l'écart $\varepsilon(p)$ en fonction de E(p) et H(p). La tôle se déplace à vitesse constante v, quelle est la transformée E(p) de e(t)? Donner l'expression de $\varepsilon(p)$ en fonction de v et des paramètres canoniques.

Question 10 On appelle erreur de traînage ε_t la différence entre l'entrée et la sortie en régime permanent pour une entrée en rampe. Donner l'expression de ε_t . Faire l'application numérique avec $v=1\,\mathrm{m\,s^{-1}}$ et $K_0=7$ (unité SI).

Identification temporelle

Question 11 Déterminer l'expression de la réponse temporelle de ce système soumis à une entrée identique à celle de la cisaille (déplacement de la tôle à vitesse constante : $v = 1 \text{ m s}^{-1}$).

Question 12 Déterminer les valeurs numériques de K_f et T à l'aide de relevés sur la courbe.

Correction Première solution : cf cours pour un système du premier ordre soumis à une rampe.

Seconde solution : se raccrocher à ce que l'on sait (peut-être) pour un premier ordre soumis à un échelon... en effet, la rampe peut être assimilée à un premier ordre intégré. Ainsi, pour un système du premier ordre soumis à un échelon d'amplitude v, la valeur finale est vK_f . Ainsi, en intégrant, la pente en régime permanent sera de vK_f . La pente étant de 1 on a $K_f=1$.

Reste à savoir que l'asymptote coupe l'axe des abscisses en T. Après lecture, T=0,15 s.

Question 13 Vérifier que l'on a la même erreur de traînage.

Correction Même erreur que précédemment.

Question 14 Quel réglage peut-on envisager sur la cisaille pour compenser cette erreur?

Correction Il est possible de décaler la butée de 14 cm et ainsi supprimer l'écart de trainage.

Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Chapitre 2 – Révisions SLCI

Sciences
Industrielles de
l'Ingénieur

Colle 03 – Corrigé

Tour en fosse utilisé pour le reprofilage des roues ferroviaires – Asservissement du porte-outil

Concours Centrale Supelec - PSI 2018

Savoirs et compétences :

☐.

Modélisation du mouvement pour la commande

Objectif Modéliser le comportement dynamique de l'outil et du porte-outil, puis étudier une commande en position $z_1(t)$ comprenant un correcteur proportionnel.

Le système composé de l'outil et du porte-outil est modélisé sur la Figure 2. Le porte-outil, de masse $m_1=5522\,\mathrm{kg}$, est considéré indéformable et en liaison glissière de direction $\overline{z_0}$ avec le bâti. Une chaîne de motorisation électrique permet de déplacer le porte-outil et une structure de commande associée permet d'asservir la position $z_1(t)$ par rapport à une position de référence. La chaîne de motorisation exerce une force motrice $\overrightarrow{f}_m(t) = f_m(t)\overline{z_0}$ sur le porte-outil.

La cahier des charges est donné sur la figure suivante.

FIGURE 1 – Diagramme des exigences de la chaîne d'asservissement

Les positions du porte-outil et du point C par rapport à leur position de référence sont respectivement paramétrées par $z_1(t)\overrightarrow{z_0}$ et $z_2(t)\overrightarrow{z_0}$, avec $z_1(t)\overrightarrow{z_0}$ et $z_2(t)\overrightarrow{z_0}$ des grandeurs algébriques (Figure 2). Les conditions initiales sont toujours supposées nulles.

Le théorème de la résultante dynamique appliqué au porte-outil puis à l'outil permet d'obtenir les deux relations suivantes :

$$m_1\ddot{z}_1(t) + \lambda\dot{z}_1(t) + Kz_1(t) = \lambda\dot{z}_2(t) + Kz_2(t) + f_m(t)$$

 $m_2\ddot{z}_2(t) + \lambda\dot{z}_2(t) + Kz_2(t) = \lambda\dot{z}_1(t) + Kz_1(t) + f_c(t)$

Le modèle correspondant est représenté par le schéma bloc de la Figure 3.

FIGURE 2 – Modèle de déformation de l'outil avec le porte-outil piloté

FIGURE 3 – Modèle de l'outil et du porte-outil

Question 1 Exprimer les fonctions $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_4(p)$ en fonction de K, λ , m_1 et m_2 .

Le modèle de la Figure 3 est réduit au modèle équivalent de la figure Figure 4.

FIGURE 4 – Modèle équivalent

Question 2 Exprimer $N_1(p)$ et $N_2(p)$ en fonction de $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_4(p)$.

Question 3 Montrer que $N_2(p)$ peut s'écrire sous la forme $N_2(p) = A \frac{p^2 + 2\xi_1\omega_1p + \omega_1^2}{p^2(p^2 + 2\xi_2\omega_2p + \omega_2^2)}$. Exprimer ξ_1 , ξ_2 , ω_1 , ω_2 et A en fonction de m_1 n m_2 , λ et K.

Le diagramme de Bode associé à la fonction de transfert $N_2(p)$ est représenté ci-après.

Question 4 Compléter ce diagramme par les tracés asymptotiques en module et en phase, et conclure sur la cohérence du diagramme donné.

Question 5 Au regard des valeurs numériques, montrer que la fonction de transfert $N_2(p)$ peut être approchée par la fonction $N_{2app}(p) = \frac{A}{p^2}$. En utilisant une couleur différente, tracer le diagramme de Bode associé à la fonction de transfert $N_{2app}(p)$ sur le document réponse et conclure sur la validité de ce modèle approché.

Le modèle approché $(N_{2app}(p))$ est retenu pour la suite de l'étude. Le schéma bloc modélisant la régulation de la position $z_1(t)$ est donné en figure Figure 5, en considérant un correcteur proportionnel de gain K_p .

FIGURE 5 – Modèle de synthèse de la régulation en position $z_1(t)$ du porte-outil

Question 6 Justifier qu'une correction proportionnelle ne permet pas de respecter l'ensemble des critères du diagramme des exigences de la Figure 1.

Analyse de l'influence d'un paramètre

On a d'une part $Q(p) = Q_c(p) - Z_2(p)H_r(p)$.

D'autre part, la quantité de matière enlevée est donnée par $q(t) = q_c(t) - z_2(t) + z_2(t-\tau)$ où τ est la durée nécessaire à la roue pour effectuer un tour complet.

D'un point de vue numérique, $K_f = 1.5 \times 10^9 \text{ N m}^{-2}$ et $\tau = 1 \text{ s}$.

Question 7 Déterminer $H_r(p)$ en fonction de τ .

Le schéma-blocs retenu est le suivant.

FIGURE 6 – Modèle équivalent de la chaîne d'asservissement complète

La Figure 7 représente le diagramme de Bode de la fonction de transfert en boucle ouverte du système modélisé Figure 6, avec $b=\frac{5\times 10^{-2}}{\pi} \mathrm{mm\,rad}^{-1}$

FIGURE 7 – Diagramme de Bode de la boucle ouverte du schéma-blocs

Les « zéros de transmission » d'une fonction de transfert H(p) correspondent aux pulsations ω pour lesquelles $H(j\omega)$ est nul.

Question 8 Préciser l'expression de la fonction de transfert en boucle ouverte de la figure 16 puis vérifier la cohérence du diagramme de Bode de la Figure 7 en analysant les « zéros de transmission ».

Question 9 Déterminer un ordre de grandeur du paramètre b permettant de conserver la stabilité du système en boucle fermée. Conclure sur la compatibilité de cette valeur maximale avec un bon amortissement de l'asservissement.