Code No: 123BJ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017 STRENGTH OF MATERIALS – I

(Common to CE, CEE)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
1.a)	What do you mean by principle of super position?	[2]
b)	Define different modulii.	[3]
c)	Define Bending Moment and B.M.D.	[2]
d)	Explain with neat sketches different types of beams.	[3]
e)	Define shear stress and write the formulae for calculating this stress.	.[2]
e) f):	Write the assumptions in simple bending theory.	:[3]:::
g)	State "Rankine's theorem of failure".	[2]
h)	Write the limitations of maximum shear stress theory.	[3]
i)	Define moment area theorem II.	[2]
j)	What is Macaulay's method and how this is different from double int	egration
9	method of calculating slopes and deflections in a beam.	-[3]

PART-B

(50 Marks)

- 2.a) Draw stress strain diagram for mild steel, brittle material and a ductile material and indicate salient points.
- A circular alloy bar 3 m long uniformly tapers from 40mm diameter to 25mm diameter. Calculate the elongation of the rod under the axial force of 75kN: Take E=140GPa. [5+5]

OR

- 3. Define Resilience and derive the equation of stresses for a body subjected to sudden and impact loading. [10]
 - Draw S.F.D and B.M.D for the cantilever beam shown in figure 1. [10]

Draw S.F.D and B.M.D for the Over hanging beam shown in figure 2.

7.a)

b)

....8....

10.a)

11.