1.010 - Brief Notes # 8 Selected Distribution Models

• The Normal (Gaussian) Distribution:

Let X_1, \ldots, X_n be independent random variables with common distribution $F_X(x)$. The so called central limit theorem establishes that, under mild conditions on F_X , the sum $Y = X_1 + \ldots + X_n$ approaches as $n \to \infty$, a limiting distributional form that does not depend on F_X . Such a limiting distribution is called the Normal or Gaussian distribution. It has the probability density function:

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(y-m)^2/\sigma^2}$$

where

m = mean value of Y

 $\sigma = \text{standard deviation of Y}$

Notice: $m = nm_X$, $\sigma^2 = n\sigma_X^2$, where m_X and σ_X^2 are the mean value and variance of X.

• Properties of the Normal (Gaussian) Distribution:

- 1. For most distributions F_X , convergence to the normal distribution is obtained already for n as small as 10.
- 2. Under mild conditions, the distribution of $\sum_{i} X_{i}$ approaches the normal distribution also for dependent and differently distributed X_{i} .
- 3. If X_1, \ldots, X_n are independent normal variables, then any linear function $Y = a_0 + \sum_i a_i X_i$ is also normally distributed.

• The Lognormal Distribution:

Let $Y = W_1 W_2 \cdots W_n$, where the W_i are iid , positive random variables. Consider:

$$X = \ln Y = \sum_{\text{all } i} \ln W_i$$

For n large, $X \sim N(m_{\ln Y}, \sigma_{\ln Y}^2)$

 $Y=e^X$ has a $\underline{\text{lognormal distribution}}$ with PDF:

$$f_Y(y) = \frac{dx}{dy} f_X[x(y)] = \frac{1}{y} \frac{1}{\sqrt{2\pi}\sigma_{\ln Y}} e^{-\frac{1}{2}(\ln Y - m_{\ln Y})^2/\sigma_{\ln Y}^2}, \quad y \ge 0$$

If $X \sim N(m_X, \sigma_X^2)$, then $Y = e^X \sim LN(m_Y, \sigma_Y^2)$ with mean value and variance given by:

$$\begin{cases} m_Y = e^{m_X + \frac{1}{2}\sigma_X^2} \\ \sigma_Y^2 = e^{2m_X + \sigma_X^2} \left(e^{\sigma_X^2} - 1 \right) \end{cases}$$

Conversely, m_X and σ_X^2 are found from m_Y and σ_Y^2 as follows:

$$\begin{cases} m_X = 2\ln(m_Y) - \frac{1}{2}\ln(\sigma_Y^2 + m_Y^2) \\ \sigma_X^2 = -2\ln(m_Y) + \ln(\sigma_Y^2 + m_Y^2) \end{cases}$$

Property: products and ratios of independent lognormal variables are also lognormally distributed.

4

• The Beta Distribution:

The Beta distribution is commonly used to describe random variables with values in a finite interval. The interval may be normalized to be [0, 1]. The Beta density can take on a wide variety of shapes. It has the form:

$$f_Y(y) \propto y^a (1-y)^b$$

where a and b are parameters. For a = b = 0, the Beta distribution becomes the uniform distribution.

• Multivariate Normal Distribution:

Consider $\underline{Y} = \sum_{i=1}^{n} \underline{X}_{i}$, where the \underline{X}_{i} are iid random vectors. As n becomes large, the joint probability density of \underline{Y} approaches a form of the type:

$$f_{\underline{Y}}(\underline{y}) = \frac{(\det \underline{\Sigma})^{-\frac{1}{2}}}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}(\underline{y} - \underline{m})^T \underline{\Sigma}^{-1}(\underline{y} - \underline{m})}$$

where \underline{m} and $\underline{\Sigma}$ are the mean vector and covariance matrix of \underline{Y} .

Properties

- 1. Contours of $f_{\underline{Y}}$ are ellipsoids centered at \underline{m} .
- 2. If the components of \underline{Y} are uncorrelated, then they are independent.
- 3. The vector $\underline{Z} = \underline{a} + \underline{B}\underline{Y}$, where \underline{a} is a given vector and \underline{B} is a given matrix, has jointly normal distribution $N(\underline{a} + \underline{B}\underline{m}, \underline{B}\underline{\Sigma}\underline{B}^T)$.

Let
$$\begin{bmatrix} \underline{Y}_1 \\ \underline{Y}_2 \end{bmatrix}$$
 be a partition of \underline{Y} , with associated partitioned mean vector $\begin{bmatrix} \underline{m}_1 \\ \underline{m}_2 \end{bmatrix}$ and covariance matrix $\begin{bmatrix} \underline{\Sigma}_{11} & \underline{\Sigma}_{12} \\ \underline{\Sigma}_{21} & \underline{\Sigma}_{22} \end{bmatrix}$. Then:

- 4. \underline{Y}_i has jointly normal distribution: $N(\underline{m}_i, \underline{\Sigma}_{ii})$.
- 5. $(\underline{Y}_1|\underline{Y}_2=\underline{y}_2)$ has normal distribution $N(\underline{m}_1+\underline{\Sigma}_{12}\underline{\Sigma}_{22}^{-1}(\underline{y}_2-\underline{m}_2),\underline{\Sigma}_{11}-\underline{\Sigma}_{12}\underline{\Sigma}_{22}^{-1}\underline{\Sigma}_{12}^T)$.

The bivariate normal distribution.

Relationships between Mean and Variance of Normal and Lognormal Distributions

If $X \sim N(m_X, \sigma_X^2)$, then $Y = e^X \sim LN(m_Y, \sigma_Y^2)$ with mean value and variance given by:

$$\begin{cases} m_Y = e^{m_X + \frac{1}{2}\sigma_X^2} \\ \sigma_Y^2 = e^{2m_X + \sigma_X^2} \left(e^{\sigma_X^2} - 1 \right) \end{cases}$$

Conversely, m_X and $\sigma_X{}^2$ are found from m_Y and $\sigma_Y{}^2$ as follows:

$$\begin{cases} m_X &= 2\ln(m_Y) - \frac{1}{2}\ln(\sigma_Y^2 + m_Y^2) \\ \sigma_X^2 &= -2\ln(m_Y) + \ln(\sigma_Y^2 + m_Y^2) \end{cases}$$