

Introduction to Taiwan Earthquake Assessment for Structures by Pushover Analysis (TEASPA)

國家地震工程研究中心 蕭輔沛博士 NCREE Dr. Fu-Pei Hsiao 2018/12/19

History review

Wenchuan Earthquake (Mw=8.0)

May 12, 2008

2:28 pm

Death: more than 69,255

Earthquake in Pakistan (Mw=7.6)

Oct. 8th, 2005

8:50 am

Death: about 87,000

19,000 children died in collapsed

school buildings

921 Chi-Chi Earthquake

Sep. 21, 1999

01:47 am

Mw = 7.3

Death: about 2,413

656 primary and secondary school buildings were damaged in Chi-Chi earthquake

NARLabs Stages for School Upgrading Simple Survey Networks Screening... **Preliminary Assessment** Assessment **Detailed Assessment** /Design... and Peer **Retrofit Design** Review Yes \mathbf{m} Construction... Construction **Inspection** Yes **END**

Detailed Assessment and Retrofit Design

- Performed by the same P. E.
- Pushover analysis
 for lateral load-deflection curves
- Response spectrum analysis for effective PGA leading to collapse

Detailed Assessment with Pushover Analysis

Failure Modes of Column

Flexure, Flexural Shear and Shear Failures

Load-Deflection Curves of Column

Flexure

NARLabs

Idealized Shear-Drift Backbone

Elwood & Moehle (Spectra 2005; ACI 2005)

$$\frac{\Delta_{s}}{H_{n}} = \frac{3}{100} + 4\rho'' - \frac{1}{40} \frac{\upsilon}{\sqrt{f_{c}'}} - \frac{1}{40} \frac{N_{u}}{A_{g}f_{c}'} \ge \frac{1}{100}$$

$$\frac{\Delta_{a}}{H_{n}} = \frac{4}{100} \frac{1 + (\tan \theta)^{2}}{\tan \theta + N_{u} \left(\frac{s}{A_{st}f_{yt}d_{c} \tan \theta}\right)}$$
(MPa)

Test of Column Failed in Shear

Shear Failure

Implementation of ETABS Modeling

Column Modeling in ETABS(1/2)

Column Modeling in ETABS(2/2)

Pushover Analysis Using ETABS

- Modeling for School Building
- Properties of Plastic
 Hinges

In-situ Pushover Tests

- Understanding the seismic capacity of existing school buildings
- Calibrating the detailed assessment
- Verifying the seismic retrofitting methods

In-situ Pushover Tests

Correction the pushover curve with dynamic effect

Monotonic pushover test

Pseudo/cyclic dynamic test

Pushover analysis and test result

Verifications of pushover curves with **NARLabs** Reui-Pu elementary school

Verifications of pushover curves with Sin-Chen junior high school

Verifications of pushover curves with Kao-Hu elementary school

Verifications of pushover curves with Guan-Miao elementary school

Chi-Chi earthquake damage database of school buildings in the midland of Taiwan

- 35 typical school buildings
- Sketches and blueprints
- Damaged pictures and field interviews
- Actual and demand PGA of sites

Damage level of 35 typical school buildings

Collapse

Heavy damaged

Medium damaged

Slight damaged

Small damaged

$$CDR = \frac{Capacity}{Demand} \ge 1 \qquad OK$$

Conclusions

For our next generation, do something to upgrade school buildings before next disastrous earthquake.