Generative Image Models DRAW: Deep Recurrent Attention Writer by K Gregor et al. CS698N Final Project Presentation

Nirbhay Modhe Vikas Jain

Department of Computer Science IIT Kanpur

November 11, 2016

- Introduction
 - Problem Statement
 - DRAW Model
- Work Done
 - Analysis of the DRAW model
 - Latent Space Analysis
 - Proposed Models
- What's new?
- 4 Contributions
- Mho did what?

Problem Statement

- Learning generative model for images.
- Inspired from DRAW: A Recurrent Neural Nerwork for Image Generation by Gregor et al. (Google DeepMind)

DRAW Model Existing Work

- Encoder RNN: Compresses real images presented during training into latent codes distribution.
- Decoder RNN : Reconstitutes images from sampled codes.
- Encoder network at every time step is made aware of the decoder output of the previous time step.
- Training Time \sim 30 minutes (MNIST)

- Introduction
 - Problem Statement
 - DRAW Model
- Work Done
 - Analysis of the DRAW model
 - Latent Space Analysis
 - Proposed Models
- What's new?
- 4 Contributions
- Mho did what?

Analysis of the DRAW model

	Avg.	σ	Max. (≤)
DRAW(Attention)	643	264	1370
DRAW(No-Attention)	644	268	1337
DRAW(T=1)	653	290	1724
DRAW(T=2)	698	276	1402
DRAW(T=5)	796	302	1853
DRAW(no-privy ¹)	809	298	2546
DRAW(only error image)	648	302	1853

It can be observed that **DRAW model with attention** is performing better than the other models which is the proposed model of the *DRAW* paper.

Qualitative Results - in midterm report.

¹decoder output is not made privy to the encoder $\leftarrow \square \rightarrow \leftarrow \bigcirc \rightarrow \leftarrow \bigcirc \rightarrow \leftarrow \bigcirc \rightarrow \bigcirc \bigcirc \bigcirc \bigcirc$

Latent Space Analysis Effect of each time step latent code

To study the effect of each time step latent code. For T=10:

Latent Space Analysis Interpolation in latent space

Proposed Models Model I - Each Step Convolution

- Introduced Convolutional layers in the Encoder network.
- Encoder reads both the input image and cnn features as input at each time step.
- Training Time \sim 3 hr (MNIST)

Proposed Models Model I - Each Step Convolution

Learned 1st layer kernels $(5 \times 5 \times 32)$

Proposed Models Model II - Supervised Encoder

- Supervision in the form of a digit classification network
- Interconnected with the encoder network at two places.
- Training Time \sim 3 hr (MNIST)

Proposed Models Model II - Supervised Encoder

Learned 1st layer kernels ($5 \times 5 \times 16$)

Model II

Proposed Models Model III - Convolutional Encoder

- Encoder is fed only the cnn features of the input image.
- CNN parameters updated using reconstruction and latent loss.
- Training Time $\sim 3 \text{ hr}$ (MNIST)

Proposed Models

Model III - Convolutional Encoder

Learned 1st layer kernels ($5 \times 5 \times 32$)

Proposed Models Calculating Model Error

We calculated the negative log-likelihood of 1000 generated images for each of the model shown in the table below.

	Average Error	Standard Deviation	Maximum Error (≤)	
DRAW	820	327	1989	
Model I - Each Step Convolution	656	267	1429 1823 1637	
Model II - Supervised Encoder	791	295		
Model III - Convolutional Encoder	625	255		

- Introduction
 - Problem Statement
 - DRAW Model
- Work Done
 - Analysis of the DRAW model
 - Latent Space Analysis
 - Proposed Models
- What's new?
- 4 Contributions
- Who did what?

What's new?

Things not covered in DRAW:

• We analyzed the network parameters of DRAW model.

What's new?

Things not covered in DRAW:

- We analyzed the network parameters of DRAW model.
- We analyzed the latent space of the encoded images. This
 deems as an important step which was missing and produced
 interesting observations.

What's new?

Things not covered in DRAW:

- We analyzed the network parameters of DRAW model.
- We analyzed the latent space of the encoded images. This
 deems as an important step which was missing and produced
 interesting observations.
- We proposed and trained 3 models incorporating CNN in the original DRAW model:
 - Model I Each Step Convolution
 - Model II Supervised Encoder
 - Model III Convolutional Encoder

Each model shows better performance than the original *DRAW* model.

- Introduction
 - Problem Statement
 - DRAW Model
- Work Done
 - Analysis of the DRAW model
 - Latent Space Analysis
 - Proposed Models
- 3 What's new?
- 4 Contributions
- Mho did what?

Contributions

Our contributions on top of the existing code

- Implemented stochastic data generation part of the paper.
- Added an interface for the SVHN dataset to be given as input to the draw network.
- Added convolution and deconvolution wrappers for training the proposed models I, II and III.
- Implemented the evaluation phase to calculate the negative log-likelihood of the generated images.
- Added new sampling functionalities to visualize the latent space.
- Visualizing and plotting kernels of the learned CNN.

- Introduction
 - Problem Statement
 - DRAW Model
- Work Done
 - Analysis of the DRAW model
 - Latent Space Analysis
 - Proposed Models
- What's new!
- 4 Contributions
- Who did what?

Who did what?

Task		М	Е	
Reproduction of results on MNIST and SVHN	1	1	1	VN
Experimenting with parameters	1	1	1	VN
Evaluation using negative log likelihood		1	1	V
Model I - Each Step Convolution		1	1	VN
Model II - Supervised Encoder	X	Х	1	N
Model III - Convolutional Encoder	Х	Х	1	V
Latent Space Analysis	X	X	1	N

Table: Work proposed(P), completed at midterm(M) and at endterm(E), along with the member-wise distribution. $\bf V$ represents Vikas, $\bf N$ represents Nirbhay, $\bf VN$ represents joint contribution by both members.

Thank you!