AL 1 - COMPLÉMENTS D'ALGÈBRE LINÉAIRE

Dans tout le chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , E est un \mathbb{K} -espace vectoriel; $(n,p) \in (\mathbb{N}^*)^2$.

1 Espaces vectoriels

Dans ce paragraphe, I désigne un ensemble non vide, fini ou infini.

1.1 Familles de vecteurs

Définition 1

Une famille $\mathcal{F} = (x_i)_{i \in I} \in E^I$ de vecteurs de E est dite génératice (de E) si $\text{Vect}(\mathcal{F}) = E$.

Définition 2

Une famille $\mathcal{F}=(x_i)_{i\in I}\in E^I$ de vecteurs de E est dite libre si

$$\forall n \in \mathbb{N}^*, \forall (i_1, ..., i_n) \in I^n, \forall (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n : \sum_{k=1}^n \lambda_k x_{i_k} = 0_E \Rightarrow \forall k \in [1, n], \lambda_k = 0$$

Vocabulaire:

- Si une famille est libre, on dit que ses vecteurs sont linéairement indépendants;
- Si une famille n'est pas libre, on dit qu'elle est *liée*.

Définition 3

On dit qu'une famille \mathcal{F} de vecteurs de E est une base de E si elle est libre et génératrice.

Théorème 1

Une famille \mathcal{F} de vecteurs de E est une base de E si, et seulement si tout vecteur de E s'écrit de manière unique comme combinaison linéaire d'éléments de \mathcal{F} .

Vocabulaire: Si $\mathcal{F} = (x_i)_{i \in I}$ est une base de E, alors pour tout vecteur x de E il existe un unique n-uplet de vecteurs $(x_{i_1}, ..., x_{i_n})$ de \mathcal{F} (à l'ordre près) et un unique n-uplet de scalaires $(\lambda_1, ..., \lambda_n)$ non nuls tels que $x = \sum_{i=1}^{n} \lambda_k x_{i_k}$.

- On dit que les λ_k sont les coordonnées de x dans la base $(x_i)_{i\in I}$
- On dit que les $\lambda_k x_{i_k}$ sont les composantes de x dans cette base.

Théorème 2

Tout espace vectoriel admet une base.

1.2 Espace vectoriel des polynômes

Proposition 1

L'ensemble $\mathbb{K}[X]$ des polynômes sur \mathbb{K} en l'indéterminée X muni des lois usuelles est un espace vectoriel de dimension infinie sur \mathbb{K} et de base $(X^n)_{n\in\mathbb{N}}$

Définition 4

Une famille de polynômes (P_k) indexée dans \mathbb{N} est dite à degrés échelonnés ou échelonnée si :

$$\deg(P_1) < \deg(P_2) < \dots < \deg(P_k) < \dots$$

Proposition 2

Toute famille $(P_i)_{i \in I}$ de polynômes non nuls échelonnée est libre.

Proposition 3

Soit $(P_i)_{i\in I}$ une famille de polynômes telle que $\forall n\in\mathbb{N}, \exists i\in I, \deg(P_i)=n$. Alors $(P_i)_{i\in I}$ est une famille génératrice de $\mathbb{K}[X]$.

Corollaire : Une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes telle que $\forall n\in\mathbb{N}, \deg(P_n)=n$ est une base de $\mathbb{K}[X]$.

1.3 Somme d'espaces vectoriels

Dans l'ensemble de ce paragraphe, $(E_i)_{1 \le i \le p}$ désigne une famille de p sous-espaces vectoriels de E.

Définition 5

La somme des sous-espaces E_i est l'ensemble :

$$\sum_{i=1}^{p} E_i = \left\{ \sum_{i=1}^{p} x_i / \forall i \in [1, p], x_i \in E_i \right\}$$

On le munit des lois induites par les lois de E.

Proposition 4

$$\sum_{i=1}^{p} E_i = \text{Vect}\left(\bigcup_{i=1}^{p} E_i\right)$$

Définition 6

On dit que les E_i sont en somme directe si : $\forall x \in \sum_{i=1}^p E_i, \exists ! (x_1, ..., x_p) \in E_1 \times ... \times E_p, x = \sum_{i=1}^p x_i.$

On note alors $\bigoplus_{i=1}^{p} E_i$ la somme $\sum_{i=1}^{p} E_i$.

Proposition 5

Une somme est directe si, et seulement si la seule décomposition de 0_E dans la somme est $\sum_{i=1}^p 0_{E_i}$.

Proposition 6

Si tous les sous-espaces vectoriels E_i sont de dimension finie, alors : $\dim \left(\sum_{i=1}^p E_i\right) \leq \sum_{i=1}^p \dim(E_i)$, avec égalité si, et seulement si la somme est directe.

Rappels:

- Deux sous-espaces vectoriels F et G sont dits supplémentaires si $E = F \oplus G$.
- $E = F \oplus G \Leftrightarrow E = F + G \text{ et } F \cap G = \{0_E\}.$
- Dans un espace vectoriel de dimension finie, tout sous-espace vectoriel admet un supplémentaire.
- Si E est de dimension finie, et si $\mathcal{B} = (e_1, ..., e_p)$ est une base d'un sous-espace vectoriel F de E, alors le théorème de la base incomplète assure l'existence d'une base $(e_1, ..., e_p, e_{p+1}, ..., e_n)$ de E appelée base adaptée à F.

Théorème-Définition 1

Soient $(E_i)_{1 \le i \le p}$ une famille finie de sous-espaces vectoriels de E en somme directe, et $\forall i \in [1, p], \mathcal{B}_i$ une base de E_i . Alors la concaténation $\mathcal{B} = (\mathcal{B}_1, ... \mathcal{B}_p)$, est une base de $\bigoplus_{i=1}^p E_i$, dite base adaptée à cette somme directe.

Proposition 7

Soit $(n_1, ..., n_p) \in (\mathbb{N}^*)^p$ et $\mathcal{B} = (e_j^i) \underset{1 \leq i \leq p}{\underset{1 \leq j \leq n_i}{\text{une base de } E}}$ une base de E. On note pour tout $i \in [1, p]$, $\mathcal{B}_i = (e_1^i, ..., e_{n_i}^i)$ (\mathcal{B} est la concaténation de $\mathcal{B}_1, ..., \mathcal{B}_p$), et $E_i = \text{Vect}(\mathcal{B}_i)$. Alors on a : $E = \bigoplus_{i=1}^p E_i$.

$\mathbf{2}$ Applications linéaires

Endomorphismes remarquables

Dans l'ensemble de ce paragraphe, F et G désignent deux sous-espaces vectoriels supplémentaires.

Projecteur 2.1.1

Définition 7

On appelle projecteur sur F parallèlement à G l'endomorphisme p défini sur E par ses restrictions : $p_{|F} = \text{Id et } p_{|G} = 0.$

Remarque 1

- Si on note $x = x_F + x_G$ la décomposition de x suivant F et G, alors $p(x) = x_F$.
- Si on note p_F le projecteur sur F parallèlement à G et p_G le projecteur sur G parallèlement à F, alors : $p_F + p_G = \operatorname{Id}_E$ et $p_F \circ p_G = p_G \circ p_F = 0_{\mathcal{L}(E)}$.

Proposition 8

Si p est le projecteur sur F parallèlement à G, alors $\operatorname{Im}(p) = F$, $\operatorname{Ker}(p) = G$ et $\operatorname{Im}(p) \oplus \operatorname{Ker}(p) = E$..

Proposition 9

Soit p une application de E dans E. Alors p est un projecteur $\Leftrightarrow \left\{ \begin{array}{l} p \text{ lin\'eaire} \\ p \circ p = p \end{array} \right.$ Dans ce cas, p est le projecteur sur Im(p) parallèlement à Ker(p)

Définition 8

Soit $(E_i)_{1 \leq i \leq p}$ une famille finie de sous-espaces vectoriels de E telle que $E = \bigoplus_{i=1}^{p} E_i$.

Pour $i \in [1, p]$, on définit le projecteur sur E_i parallèlement à $F_i = \bigoplus_{\substack{j=1\\j \neq i}}^p E_j$ comme l'unique application

linéaire telle que : $\left\{ \begin{array}{ll} p_i(x) = x & \text{si } x \in E_i \\ p_i(x) = 0 & \text{si } x \in F_i \end{array} \right. .$

Remarque 2

• Si $x = x_i + y_i$ (avec $(x_i, y_i) \in E_i \times F_i$) est l'unique décomposition de x dans $E_i \oplus F_i$, alors $p_i(x) = x_i$.

Proposition 10

Avec les mêmes hypothèses et notations, on a :

- $p_i \circ p_i = p_i$; $p_i \circ p_j = 0$ si $i \neq j$.
- $\sum_{i=1}^{r} p_i = \mathrm{Id}_E$.

2.1.2Symétrie

Définition 9

On appelle symétrie par rapport à F parallèlement à G l'endomorphisme s défini sur E par ses restrictions : $s_{|F} = \text{Id et } s_{|G} = -Id$.

Remarque 3

- Si on note $x = x_F + x_G$ la décomposition de x suivant F et G, alors $s(x) = x_F x_G$.
- Si on note p le projecteur sur F parallèlement à G alors : $s = 2p \mathrm{Id}_E$.

Proposition 11

Soit s une application de E dans E. Alors s est une symétrie \Leftrightarrow $\begin{cases} s \text{ linéaire} \\ s \circ s = \text{Id}_E \end{cases}$

Dans ce cas, s est la symétrie par rapport à Ker(s - Id) parallèlement à Ker(s + Id).

2.2 Equations linéaires

Définition 10

Soient E et F deux \mathbb{K} -espaces vectoriels, $b \in F$ et $f \in \mathcal{L}(E, F)$.

- Toute équation du type (L): f(x) = b est appelée équation linéaire.
- L'équation (H): f(x) = 0 est appelée équation homogène associée à (L).

Proposition 12

Soient E et F deux K-espaces vectoriels, $b \in F$ et $f \in \mathcal{L}(E, F)$. On note (L): f(x) = b.

- L'ensemble des solutions de l'équation homogène associée à (L) est $S_H = \text{Ker}(f)$.

• L'ensemble des solutions de l'équation (L) est :
$$S_L = \begin{cases} x_0 + S_H = \{x_0 + x \mid x \in S_H\} & \text{si } b = f(x_0) \in \text{Im}(f) \\ \varnothing & \text{sinon} \end{cases}$$

2.3Hyperplans

Définition 11

On appelle hyperplan d'un espace vectoriel E tout sous-espace vectoriel admettant un supplémentaire de dimension 1 (c'est-à-dire une droite vectorielle).

Remarque 4

• Si E est de dimension finie n, tout hyperplan est de dimension n-1.

Définition 12

On appelle forme linéaire sur E toute application linéaire de E dans \mathbb{K} .

Proposition 13

Une partie H de l'espace vectoriel E est un hyperplan si, et seulement si H est le noyau d'une forme linéaire non nulle (c'est-à-dire qu'il existe $\varphi \in \mathcal{L}(E,\mathbb{K})$ telle que $H = \mathrm{Ker}(\varphi)$).

Définition 13

Soit $H = \text{Ker}(\varphi)$ un hyperplan de E. On dit que l'identité scalaire $\varphi(x) = 0$ est **une** équation de H.

Proposition 14

Soit φ une forme linéaire non nulle sur E. Alors toute forme linéaire ψ s'annulant sur $H = \text{Ker}(\varphi)$ est proportionnelle à φ , c'est-à-dire qu'il existe $\lambda \in \mathbb{K}$ tel que $\psi = \lambda \varphi$.

En particulier deux équations d'un hyperplan sont proportionnelles.

Remarque 5

• Si E est de dimension finie n, de base $\mathcal{B}=(e_1,...,e_n)$, soient φ une forme linéaire sur E et $H = \operatorname{Ker}(\varphi)$; alors pour $x = \sum_{i=1}^{n} x_i e_i$, on a $\varphi(x) = \sum_{i=1}^{n} a_i x_i$, avec $\forall i \in [1, n], a_i = \varphi(e_i) \in \mathbb{K}$.

Une équation de H dans la base \mathcal{B} est alors $\sum_{i=1}^{n} a_i x_i = 0$.

Proposition 15

Soient $H_1,...,H_p$ des hyperplans, et $\varphi_1,...,\varphi_p$ des formes linéaires telles que : $\forall i \in \llbracket 1,p \rrbracket, \operatorname{Ker}(\varphi_i) = H_i.$

- L'application f = (φ₁, ..., φ_p) est une application linéaire de E dans K^p; son noyau est Ker(f) = ⋂_{i=1}^p H_i;
 Si le rang de la famille (φ₁, ..., φ_p) est r ≤ p, alors ⋂_{i=1}^p H_i est un espace vectoriel de dimension $n-r \ge n-p$.

Proposition 16

Si E est de dimension n, et F est un sous-espace vectoriel de E de dimension p < n, alors F est l'intersection de n-p hyperplans de E.

3 Matrices

Dans ce paragraphe, n et p désignent des entiers naturels non nuls; $A \in M_{n,p}(\mathbb{K})$.

Matrices par blocs 3.1

Définition 14

Soient
$$(n_1, ..., n_l) \in (\mathbb{N}^*)^l$$
, et $(p_1, ..., p_c) \in (\mathbb{N}^*)^c$ tels que $n_1 + ... + n_l = n$ et $p_1 + ... + p_c = p$.
On définit la matrice A par blocs en notant $A = (A_{n_i, p_j})$ $1 \le i \le l$
$$1 \le j \le c$$

$$A_{n_l, p_1} \cdot ... \cdot A_{n_l, p_c}$$
telle que $\forall i \in [1, l], \forall j \in [1, c], A_{n_i, p_i} \in M_{n_i, p_i}$

Vocabulaire:

• Une matrice diagonale par blocs est une matrice dont les blocs diagonaux sont des matrices carrées et sont les seuls blocs non nuls :

$$\begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A_n \end{pmatrix}$$

• Une matrice triangulaire supérieure par blocs est une matrice dont les blocs diagonaux sont des matrices carrées et ceux situés en-dessous sont nuls :

$$\begin{pmatrix} A_1 & * & \dots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & A_n \end{pmatrix}$$

Remarque 6

• A condition de compatibilité dans les dimensions, les règles de calculs (produit par un scalaire, somme, produit) pour les matrices définies par blocs sont les mêmes que dans $M_{n,p}(\mathbb{K})$.

3.2 Sous espaces vectoriels stables par un endomorphisme

Définition 15

Soient F un sous-espace vectoriel de E, et $u \in \mathcal{L}(E)$. On dit que F est stable par u ou que u laisse F stable si $u(F) \subset F$, c'est-à-dire si $\forall x \in F, u(x) \in F$.

Définition 16

Soit $u \in \mathcal{L}(E)$ laissant stable un sous-espace vectoriel F. Alors la restriction de u à F est à valeurs dans F, et on peut définir un endomorphisme $\tilde{u}_F \in \mathcal{L}(F)$ par : $\forall x \in F, \tilde{u}_F(x) = u(x)$. Cet endomorphisme est appelé endomorphisme induit par u sur F.

Proposition 17

Si E est de dimension n, soient F un sous-espace vectoriel de E de dimension p, et $\mathcal{B} = (e_1, ..., e_n)$ une base de E adaptée à F. F est stable par $u \in \mathcal{L}(E)$ si, et seulement si la matrice de u dans \mathcal{B} est triangulaire supérieure par blocs, de la forme : $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$.

Dans ce cas, la matrice $A \in M_p(\mathbb{R})$ est la matrice de l'endomorphisme \tilde{u}_F induit par u sur F.

3.3 Matrices semblables

Définition 17

Deux matrices A et B de $M_n(\mathbb{K})$ sont dites semblables s'il existe une matrice $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$.

Proposition 18

La relation "est semblable à", appelée relation de similitude, est une relation d'équivalence (réflexive, symétrique, transitive).

Proposition 19

Soient $A \in M_n(\mathbb{K})$ et u l'endomorphisme de \mathbb{K}^n canoniquement associé à A.

Une matrice $A' \in M_n(\mathbb{K})$ est semblable à A si, et seulement si il existe une base \mathcal{B} de \mathbb{K}^n telle que A' soit la matrice de u dans \mathcal{B} .

3.4 Trace

Définition 18

La trace d'une matrice $A=(a_{i,j})\in M_n(\mathbb{K})$ est la somme de ses coefficients diagonaux.

On note
$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}$$
.

Proposition 20

La trace est une forme linéaire sur $M_n(\mathbb{K})$, c'est-à-dire : $\forall (A,B) \in (M_n(\mathbb{K}))^2$, $\forall \lambda \in \mathbb{K}$:

- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- $tr(\lambda A) = \lambda tr(A)$

Proposition 21

Soit
$$(A, B) \in (M_n(\mathbb{K}))^2$$
. On a $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Conséquence 1

- Deux matrices semblables ont la même trace. On dit que la trace est un invariant de similitude.
- Si E est de dimension finie, soit $u \in \mathcal{L}(E)$. Toutes les matrices carrées représentant u ont la même trace, que l'on note $\operatorname{tr}(u)$ appelée trace de l'endomorphisme u.