Lecture 1: Probability and Review of Chapter 1

Announcements:

- 1. Office hours MWF for 1h after class or by appointment, 432 Animal Sciences Building
- 2. Please begin reading textbook, ch. 1 and 2. Let me know if you find errors in the textbook
- 3. Compass is now set up for this course, with lectures and handouts available. Please let me know if you cannot access it.

Review of topics

- Gene: unit of inheritance transmitted from parents to offspring
- Locus (plural loci): chromosomal position of a gene (note: most of these terms *also apply to non-coding regions*)
- Alleles: the different forms of a gene
- **Diploid**: genes present in two copies, one from each parent
- **Genotype**: the two alleles of a single gene present in an individual

- Homozygote: two alleles in an individual are the same
- **Heterozygote**: two alleles in an individual are different
- **Polyploid**: Carrying more than two copies of each gene (e.g., wheat is hexaploid)
- In placental mammals, **autosomal** chromosomes (non-sex-determining) are diploid, while the X-chromosome is **haplo-diploid**.
- **Haploid**: Carrying only one copy of each gene (e.g., mitochondrial DNA, Y-chromosome, gametes)
- Y-chromosome is paternally inherited; mtDNA and chloroplast DNA *generally* show maternal inheritance

- **Haplotype**: an array of linked genes or alleles on a particular copy of a chromosome. Haplotypes may be disrupted by recombination.
- **Recombination**: The trading of fragments of genetic material between chromosomes before the egg and sperm cells are created, usually the breaking and rejoining of homologous chromosomes.
- Recombination between genes increases with increasing physical separation. Rule of thumb: 1 **map unit** or 0.01 recombination between two genes represents approximately 1 million nucleotides separation.
- Wild type alleles: result in a wild or normal phenotype.

• DNA bases or nucleotides consist of the **purines** adenine and guanine; and the **pyrimidines** cytosine and thymine. **Transitions** are mutations from purine to purine, or pyrimidine to pyrimidine. Mutations from purine to pyrimidine or vice versa are called **transversions**.

codons specify 20 amino acids (or "stop"), with considerable two- or four-fold **degeneracy**, especially in the 3d position. Some mutations in a coding region will be silent (**synonymous**); others **non-synonymous**

		Second p	position	
	U	C	A	G
U	UUU UUC Phe (F)	UCU UCC Ser (S)	UAU Tyr (Y)	UGU Cys (C)
	UUA UUG Leu (L)	UCA UCG	UAA Stop	UGA Stop UGG Trp (W)
C	CUU CUC CUA CUG	CCU CCC CCA CCG	${\rm CAU \atop CAC}$ His (H) ${\rm CAA \atop CAG}$ ${\rm Gln}$ (Q)	CGU CGC CGA CGG
A	AUU AUC AUA AUG Met (M)	ACU ACC ACA ACG	AAU AAC AAA AAA AAG Lys (K)	AGU AGC AGC AGA AGG AGG Arg Arg Arg
G	GUU GUC GUA GUG	GCU GCC GCA GCG	$ \begin{pmatrix} GAU \\ GAC \end{pmatrix} $ $ Asp (D) $ $ GAA \\ GAG $ $ GAG $ $ GAU (E)$	GGU GGC GGA GGG

Genes consist of coding regions called **exons**, separated by non-coding **introns**. They may also have 5'- and/or 3' untranslated regions (**UTRs**).

Transcription is often regulated by an upstream **promoter** region

Model to predict the number of individuals in a population (p15)

- N_t = number in generation t
- N_{t+1} = number in generation t + 1
- $R = net \ replacement \ rate = N_{t+1}/N_t$
- $\bullet \ \ N_{t+1} = R \ N_t$
- $N_{t+2} = R N_{t+1}$
- $\bullet \ \ N_{t+2} = R^2 \ N_t$
- $N_t = R^t N_0 =$ population size in generation t

Δ (delta) or difference (p16)

- $\Delta N = N_{t+1} N_t$
- $\Delta N = R N_t N_t$
- $\Delta N = N_t (R-1)$

• If R = 1, then the population size does not

change.

• Example R=1.5

Probability Intro (p22)

- P(A) = probability of event A occurring
- $0 \le P(A) \le 1$
- P(A) = m/n = relative frequency
 - where m = number of outcomes of event A
 - and n = number of possible outcomes.
- If A can not occur, m=0 and P(A) = 0.
- If A must occur, m=n and P(A) = 1.

Mutually exclusive

- Events A and B are mutually exclusive if the occurrence of one precludes the occurrence of the other.
- Either event A or event B may occur but not both at the same time.
- For example, a coin tossed a single time can land with the head up, or the tail up, but not both up.

Complement

- Complement of A is 'not A'.
- P(A) + P(not A) = 1
- P(not A) = 1 P(A)
 - Because A and 'not A' are mutually exclusive events.
- Example: "heads" is the complement of "tails" in a coin toss

Example 1

- Consider one locus with two alleles $(A_1 \text{ and } A_2)$ where A_1 is dominant to A_2 .
- What is the probability of an offspring with dominant phenotype (A_1-) from a mating of $A_1A_2 \times A_1A_2$?
- Four genotypes are equally likely from this mating: A_1A_1 , A_1A_2 , A_2A_1 and A_2A_2 .

Example 1 continued

- $P(A_1-) = P(A_1A_1) + P(A_1A_2) + P(A_2A_1)$
- $P(A_1-) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$
- Recessive phenotype and the dominant phenotype are "mutually exclusive"
- $P(A_2A_2) = 1 P(A_1-) = 1 \frac{3}{4} = \frac{1}{4}$
- $P(A_1-) + P(A_2A_2) = \frac{3}{4} + \frac{1}{4} = 1$

Independent

- If the probability of event A is the same whether or not event B occurs, the events are independent.
- Example:

A: probability of getting an ace (1in 13)

B: probability of getting diamonds (1 in 4)

Independent

- If the probability of event A is the same whether or not event B occurs, the events are independent.
- If P(A|B) = P(A), then P(AB) = P(A)P(B).
- Also, if events A and B are independent, then P(AB) = P(A)P(B).

- P(A or B) = P(A) + P(B) P(AB)
- Probability of event A occurring or event B occurring is the sum of the probability of event A occurring plus the probability of event B occurring minus the probability that both event A and event B occurred.
- Example: getting an Ace OR Diamonds

Additive rule for more than two events

• P(A or B or C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).

P(A or B or C or D) = P(A) + P(B) + P(C) + P(D) - P(AB) - P(AC) - P(AD) - P(BC)
 -P(BD) - P(CD) + P(ABC) + P(ABD) + P(ACD) + P(BCD) - P(ABCD).

Additive rule for mutually exclusive events

- P(A or B) = P(A) + P(B)
- P(A or B or C) = P(A) + P(B) + P(C) Example: rolling one die and getting "3" or "4" or '5"

• P(A or B or C or D)= P(A) + P(B) + P(C) + P(D)

Conditional probability

• the probability of some event A, given the occurrence of some other event B

• P(A|B) is "the probability of A given B"

• $P(A|B) = P(A \cap B) / P(B)$ for $P(B) \neq 0$.

Conditional probability: Multiplicative law

• $P(A \text{ and } B) = P(A) \times P(B|A)$

Binomial Probability

Pr(i) = ((N!/(i!j!)) pⁱ q^j
 where N = i + j = total number of events,
 p = P(A) = probability of event A,
 q = P(B) = probability of event B,
 i = number of occurrences of event A
 j = number of occurrences of event B

n! represents the factorial of n, or $1 \times 2 \times 3 \dots \times 1$ for example, $6! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 = 720$ Note: 0! = 1

Multinomial probability

• Pr $(i,j) = (N!/(i!j!k!)) P^i H^j Q^k$ where N = i + j + k = total number of events,

P = P(A) = probability of event A,

H = P(B) = probability of event B,

Q = P(C) = probability of event C,

with P+H+Q=1

i = number of occurrences of event A

j = number of occurrences of event B

k = number of occurrences of event C

A few final definitions

• Heuristic: a method used to solve a problem, often "rule of thumb"

• Stochastic: chance events

• Monte Carlo methods: computational algorithms that rely on repeated computation and random or pseudo-random numbers (so not deterministic)