Broblema 3.-

Estermos ante un probleme de minimización donde no todos los cos les reducidos son mayores o iguales que O por lo que podemos hacer decrecer la función objetivo dentro de la región factible.

Introducimos en la base la variable no básica xs y sacamos de la base la variable no paísica xs y sacamos de la base la variable paísica x3 con lo que la nueva tabla queda:

	XI	× 2	×3	1 74	1 ×5	Ī
×ī	1	-314	5/4	-1/4	0	7/2
Xş	0	-1/4	15/4	-3/4	1	5/2
1	0	11	21	0	0	2-1-18)

Como todos los cestes reducidos son mayores o iguales que o tenemos una solución optima (x1 x2 = 1/3) para la que la función (x3 x4 x5) | 56

objetivo toma el valor Z=-18. Sin embargo, no es única ya que hay una variable no bosica xy con coste reducido creró. El hecho de que en esa columna todos los valores sean menores o iguales que cero nos hace notar que podemos movernos a lo largo de una dirección extrema mante niendo el valor de la función objetivo. Por tanto, el conjunto de solucionos es

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} \frac{2}{13} \\ 0 \\ 0 \\ 0 \\ 5/2 \end{pmatrix} + \mu \begin{pmatrix} \frac{1}{14} \\ 0 \\ 0 \\ \frac{1}{3} \\ \frac{3}{14} \end{pmatrix}$$

conpuzo y el vulor de la función objetivo para estos puntos es Z=-18