Report No: CCISE181100603

FCC REPORT

(Bluetooth)

Applicant: GNJ Manufacturing Inc

Address of Applicant: 5811 West Hallandale Beach Blve. West Park, FL 33023

Equipment Under Test (EUT)

Product Name: Cool Duo

Model No.: Cool Duo

Trade mark: CellAllure

FCC ID: 2AAE9CAPHG52

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 Nov., 2018

Date of Test: 06 Nov., to 28 Nov., 2018

Date of report issued: 29 Nov., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	29 Nov., 2018	Original

Tested by: Mike OU Date: 29 Nov., 2018

Test Engineer

Reviewed by: 29 Nov., 2018

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	
2	2 VERSION	
3		
4	4 TEST SUMMARY	
5	5 GENERAL INFORMATION	
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION	I OF E.U.T.
		D TEST MODE
	5.4 DESCRIPTION OF SUPPO	ORT UNITS6
		TAINTY
		N
	5.8 TEST INSTRUMENTS LIS	т
6	6 TEST RESULTS AND MEA	ASUREMENT DATA
	6.1 ANTENNA REQUIREMEN	т
		S
	6.3 CONDUCTED OUTPUT P	POWER
		DTH15
		S SEPARATION18
		MBER
		UENCY HOPPING SEQUENCE
		UENCY HOPPING SEQUENCE
		on Method
		Method
		4
		sion Method4
		on Method48
7	7 TEST SETUP PHOTO	5
R	8 FUT CONSTRUCTIONAL	DETAILS 5

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna Requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205 & 15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	GNJ Manufacturing Inc
Address:	5811 West Hallandale Beach Blve. West Park, FL 33023
Manufacturer/ Factory:	Shenzhen Tugao Intelligent Co., Ltd.
Address:	7th/8th/10th Floor, Bldg A, Jingang Science & Technology Park, Yongfu Road, Fuyong, Bao'an District, Shenzhen, China 518103

5.2 General Description of E.U.T.

CIZ CONCIAI DOCCHIPHON	0. =.0
Product Name:	Cool Duo
Model No.:	Cool Duo
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-2.0 dBi
Power supply:	Rechargeable Li-ion Polymer Battery DC3.8V-2200mAh
AC adapter:	Model: 853-5010 Input: AC100-240V, 50/60Hz, 150mA Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.							

Report No: CCISE181100603

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)	

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	7 DD114 0470 DD114 047050	BBHA9170582	11-21-2017	11-20-2018	
nom Antenna	SCHWARZBECK	BBHA 9170	DDHA9170362	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018	
Spectrum analyzer	Nonde & Schwarz	1 31 40	100303	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date	
				(mm-dd-yy)	(mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	

Report No: CCISE181100603

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement: FCC Part 15 C Section 15.203 & 247(b)

15.203 requirement:
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna: The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is -2.0 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto			
Limit:	Frequency range	Limit (c	dBuV)		
	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the log	arithm of the frequency.			
Test setup:	Reference	e Plane			
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver	ower		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Hopping mode				
Test results:	Pass				

Measurement Data:

Product name:	Cool Duo	Product model:	Cool Duo
Test by:	Alex	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
220	MHz	dBu∀	dB	₫B	dBu₹	−−dBuV	<u>d</u> B	
1	0.170	28.53	0.17	10.77	39.47	54.94	-15.47	Average
2	0.174	43.86	0.16	10.77	54.79	64.77	-9.98	QP
3	0.206	40.73	0.15	10.76	51.64	63.36	-11.72	QP
4	0.206	25.53	0.15	10.76	36.44	53.36	-16.92	Average
5	0.219	40.49	0.15	10.76	51.40	62.88	-11.48	QP
6	0.230	39.87	0.14	10.75	50.76	62.44	-11.68	QP
7	0.238	24.41	0.14	10.75	35.30	52.17	-16.87	Average
1 2 3 4 5 6 7 8 9	0.274	34.82	0.13	10.74	45.69		-15.29	The state of the s
9	0.307	17.19	0.13	10.74	28.06	50.06	-22.00	Average
10	0.377	15.57	0.12	10.72	26.41	48.34	-21.93	Average
11	0.627	12.84	0.13	10.77	23.74			Average
12	3.681	28.02	0.17	10.90	39.09		-16.91	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Cool Duo		Prod	duct model:		Cool Duo	
Гest by:	Alex		Test	Test mode:		BT Tx mode	
Test frequency:	150 kHz ~ 30 MHz		Pha	Phase:		Neutral	
Test voltage:	AC 120 V/6	60 Hz	Env	ironment:		Temp: 22.5℃	Huni: 55%
100 Level (dBuV) 90 80 70 60 12 4 6 50 3 W		Maryana	of the first where the same of	and the state of t	Marine and a second	1	ART 15.247 QP ART 15.247 AV
10	Mil. 124 Mil. Mil.	W WWW				Antonia Maria Maria	
10 0.15 .2	.5	1	2 Frequenc	v (MHz)	5	10	20 30
10	Read	1 LISN Factor	Frequenc Cable Loss		5 Limit Line	Over	
10 0.15 .2 Trace: 5	Read Level	LISN	Frequenc Cable		Limit	Over Limit	20 30

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	GFSK mo	de		
Lowest channel	2.15	30.00	Pass	
Middle channel	1.03	30.00	Pass	
Highest channel	-0.31	30.00	Pass	
	π/4-DQPSK i	mode		
Lowest channel	1.09	21.00	Pass	
Middle channel	1.21	21.00	Pass	
Highest channel	0.42	21.00	Pass	
	8DPSK mode			
Lowest channel	1.30	21.00	Pass	
Middle channel	1.51	21.00	Pass	
Highest channel	1.03	21.00	Pass	

Test plot as follows:

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak
Limit:	NA
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass

Measurement Data:

Toot channel	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	832	1176	1176	
Middle	836	1176	1176	
Highest	836	1128	1176	

Test plot as follows:

6.5 Carrier Frequencies Separation

olo Garrioi i roquomoloo	
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak
Limit:	a) 0.025MHz or the 20dB bandwidth (whichever is greater)b) 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
	GFSK			
Lowest	1004	832.00	Pass	
Middle	1004	832.00	Pass	
Highest	1004	832.00	Pass	
	π/4-DQPSK mod	de		
Lowest	1004	752.00	Pass	
Middle	1004	752.00	Pass	
Highest	1004	752.00	Pass	
	8DPSK mode			
Lowest	1004	784.00	Pass	
Middle	1004	784.00	Pass	
Highest	1008	784.00	Pass	

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	832	832.00
π/4-DQPSK	1128	752.00
8DPSK	1176	784.00

Test plot as follows:

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result	
	DH1	0.08832			
GFSK	DH3	0.26592	0.4	Pass	
	DH5	0.31061			
	2-DH1	0.12672			
π/4-DQPSK	2-DH3	0.26784	0.4	Pass	
	2-DH5	0.31147			
	3-DH1	0.12992			
8DPSK	3-DH3	0.26784	0.4	Pass	
	3-DH5	0.31317			

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.276*(1600/ (2*79)) * 31.6=88.32ms

DH3 time slot=1.662*(1600/ (4*79)) * 31.6=265.92ms

DH5 time slot=2.912*(1600/ (6*79)) * 31.6=310.61ms

Test plot as follows:

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Non-hopping mode and hopping mode			
Test results:	Pass			

Test plot as follows:

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	2.3GHz to 2.5GHz								
Test Distance:	3m								
Receiver setup:	Frequency Detector RBW VBW Remark								
	Above 1GHz	Peak		1MHz	31\	ЛHz	Peak Value		
	Above IGHZ	RMS		1MHz	31\	ИHz	Average Value		
Limit:	Frequen	су	Lim	nit (dBuV/m @3	3m)		Remark		
	Above 10	∑ ⊔-7		54.00		A۱	verage Value		
	Above 10)1 IZ		74.00		Į.	Peak Value		
Test setup:	Horn Antenna Tower AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Amplifer Controller								
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
Test Instruments:	Refer to section 5.8 for details								
Test mode:	Non-hopping mode								
Test results:	Passed								

GFSK Mode:

Product	duct Name: Cool Duo		Product Mod			lel:	Cool Duo			
est By:		Alex			Te	est mode:		DH1 Tx mode		
Test Ch	annel:	Lowest ch	annel		Po	olarization		Vertical		
Test Vol	Itage:	AC 120/60)Hz		Er	nvironmen	t:	Temp: 24°	°C Huni: 57%	
Lov	rel (dBuV/m)				•		<u>'</u>			
110	rei (dbdv/iii)									
100										
									\cap	
80								FCC P	ART 15 (PK)	
								1001	AKT 15 WIG	
60								F00 B	A.D.T. 4.5 (ALI)	
	^~	~ ~^~~	~~~~~	~~ ~~		~~ ^~ ~		mala	ART 15 (AV)	
40	~ whenter		V	- V	4	4 - 7	40000	2	W	
40										
20										
0231	10 2320			2350					2404	
				Frequ	ency (MHz))				
		ReadA	nt enna	Cable	Preamp		Limit			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	—dBu∀				$\overline{dBuV/m}$	dBu√/m	<u>d</u> B		
1	2390.000	16.48	27.37	4.69 4.69	0.00	48.54	74.00	-25.46	Peak	
2	2390,000	7.80	07 27	4.69	0.00	00.00	E4 00	14 14	Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	t Name:	Cool Du	0		F	Product Mo	del:	Cool Due	0
Test By	y:	Alex			7	Test mode:		DH1 Tx mode	
Test Ch	nannel:	Lowest cl	hannel		F	Polarization	ո։	Horizonta	ıl
Test Vo	oltage:	AC 120/6	60Hz		E	Environme	nt:	Temp: 24	℃ Huni: 57%
110 Le	vel (dBuV/m)								
100									
80								FC	
								FU	C PART 15 (PK)
60			~~~.					FC	PART 15 (AV)
40		Consumer Consumer	~	~~~~	m			2	2
20									
023	10 2320			2350 Fred	quency (MF	łz)			2404
	Freq	ReadA Level		Cable	Preamp		Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000	19.77 7.95	27.37 27.37	4.69 4.69		51.83 40.01			Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.00 -23.06 Peak 54.00 -13.76 Average

Product Name:		Cool Du	0		F	Product Mod	iel:	Cool Duo		
Test By:		Alex			7	Test mode: DH1 Tx mode		de		
Test Channel:		Highest of	channel		F	Polarization:		Vertical		
Test Voltage:		AC 120/6	60Hz		Е	Environmen	t:	Temp: 24℃	Huni: 57	7%
110 Level (dBuV 100 80 60 40	//m)		72						PART 15 (P	
0 2478	Freq MHz	Read/ Level dBuV	Antenna Factor ——dB/m	Cable	Factor	100		Over Limit ———————————————————————————————————		2500

Remark:

2

2483.500

2483.500

18.56

7.86

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

4.81

0.00

50.94

0.00 40.24

Product Name:	Cool Duo		Product Mod	el:	Cool Duo	
Test By:	Alex	Test mode:	ode			
Test Channel:	Highest channel		Polarization:		Horizontal	
Test Voltage:	AC 120/60Hz		Environment	:	Temp: 24°C	Huni: 57%
110 Level (dBuV/m) 100 80 60 40 20 02478	2					PART 15 (PK) PART 15 (AV)
14 (000) (000) (000)		Frequency (17.			
Freq	ReadAntenna Level Factor	Cable Pream Loss Facto		Limit Line	Over Limit	Remark
MHz	dBuVdB/m	dB	iB dBu√/m	dBuV/m	<u>d</u> B	
1 2483.500 2 2483.500	19.98 27.57 7.96 27.57	4.81 0.0 4.81 0.0			-21.64 -13.66	Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

π/4-DQPSK mode

Product	t Name:	Cool Duc)		Pi	roduct Mod	del:	Cool Duo		
Test By	r:	Alex			Te	est mode:		2DH1 Tx m	ode	
Test Ch	annel:	Lowest ch	nannel		P	olarization	:	Vertical		
Test Vo	Itage:	AC 120/60	0Hz		E	nvironmen	t:	Temp: 24°C Huni: 57°		
110 Lev	vel (dBuV/m)									
100										
80								FCC	PART 15 (PK)	
60							- 10	FCC	PART 15 (AV)	
40						nna				
20										
				2250						
0231	10 2320			2350 Freq	juency (MH	łz)			240	
0231			ntenna Factor	Freq Cable	Preamp		Limit Line	Over Limit		
0231				Freq Cable	Preamp Factor		Line	Limit	Remark	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		Cool Dud	0		Product Model:			Cool Duo		
est By:	:	Alex			Te	est mode:		2DH1 Tx m	node	
est Ch	annel:	Lowest channel			Po	olarization		Horizontal		
Test Voltage: AC		AC 120/60Hz			E	Environment:		Temp: 24°C Huni: 57%		57%
Lev	vel (dBuV/m)									
10	ioi (abariii)									
00										
80								FCC	C PART 15	(FK)
										1
- 1										1 1
60								ECC	DADT 45	MVA
60	~~~~~	10.00 C	m	~~~^ ~			2-0	FCC	PART 15	(AV)
,	~~~	~~~	m	~~~	· · · · · · · · · · · · · · · · · · ·	~~~	~~~	FCC	PART 15	(AV)
60 40	~~~	~~~	m	~~~	·	~~~	~~~	FC(PART 15	(AV)
40	~~~	~~~	m		·····	~~~	~~~	FCC	PART 15	(AV)
,	~~~~	~~~	m	~~~	· · · · · · · · · · · · · · · · · · ·	~~~	~~~	FCC	PART 15	(AV)
40	~~~~	~~~	m		· · · · · · · · · · · · · · · · · · ·	~~~	~~~	FCC	PART 15	(AV)
40	10 2320		m	2350		~~~	~~~	FCC	PART 15	(AV)
40 20	10 2320		~~		quency (MH		~~~	FCC	PART 15	
40 20				Fred Cable	quen <mark>c</mark> y (MH Preamp		_\\\	Over		
40 20		ReadA Level		Fred Cable	quency (MH			~~~		
40 20				Fred Cable	quency (MH Preamp Factor		Line	Over Limit		
40 20	Freq	Level dBuV	Factor dB/m	Fred Cable Loss	quency (MH Preamp Factor dB	Level	Line	Over Limit	Remark	

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Cool Du	0		P	roduct Mod	lel:	Cool Duo			
Test By:	Alex			To	est mode:		2DH1 Tx m	node		
Test Channel:	Highest of	channel		P	olarization:		Vertical			
Test Voltage:	est Voltage: AC 120/60Hz			E	nvironmen	t:	Temp: 24°0	Huni: 57%		
110 Level (dBuV/m) 100 80 60								PART 15 (PK) PART 15 (AV)		
20								-		
02478								2500		
11/00/24/00/00/20				juency (MH		127140				
Free		Antenna Factor		Preamp Factor	Level	Limit Line		Remark		
MH	dBu₹	$-\overline{dB}/\overline{m}$		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B			
1 2483.500 2 2483.500		27.57 27.57	4.81 4.81				-21.91 -13.84	Peak Average		
Remark:										

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Cool Duo	Product Model:	Cool Duo
Test By:	Alex	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8DPSK mode

roduc	t Name:	Cool Duo Alex			Pi	roduct Mo	del:	Cool Duo		Cool Duo		
est By	y:				Te	est mode:		3DH1 Tx m	node			
est Ch	hannel:	Lowest ch	nannel		P	Polarization:		Vertical		Vertical		
est Vo	oltage:	AC 120/6	0Hz		E	nvironmen	t:	Temp: 24℃ Huni: 57%		57%		
- 10	avol /dPuV/m\	•			<u> </u>		•					
110	evel (dBuV/m)											
100		-										
										Λ		
80								FCC	PART 15	PIC		
									171111101	77		
60								FCC	PART 15	AVA		
V	2000 acma	~~~~	m	mm	~~~~	~~~~	manner and	~~~	A~~~	AVI		
						12 X 12 12 12 12 12 12 12 12 12 12 12 12 12	Service Control	, v				
40												
40												
20												
20	310 2320			2350						2404		
20	310 2320				uency (MH	z)				2404		
20	310 2320	ReadA	ntenna	Freq		140	Limit	Over		2404		
20		ReadA Level	ntenna Factor	Freq Cable	Preamp			Over Limit	Remark			
20		ReadA Level	ntenna Factor	Freq Cable	Preamp Factor	Level		Limit	Remark			
20	Freq	Level	Factor	Freq Cable Loss dB	Preamp Factor ————dB	Level	Line	Limit ———————————————————————————————————				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		Cool Du	0	Product Model:			el:	Cool Duo			
est By	:	Alex			Те	est mode:		3DH1 Tx m	ode		
est Ch	annel:	Lowest ch	nannel		Po	Polarization: Environment:		Horizontal Temp: 24°C Huni: 57%		Horizontal	
est Vo	Itage:	AC 120/6	0Hz		Er						
					•						
110 Le	vel (dBuV/m)										
100											
80									Λ		
_	-							FCC	PART 15 (PK)		
									11		
co									11		
60								FCC	PART 15 (AV)		
60	~~~~	~~~	~~~	~~~~	~~~~		~~~	FCC	PART 15 (AV)		
60	~~~	ww	~~~	~~~~	~~~		~~~	FCC	PART 15 (AV)		
^	~~~	~~~	~~~	····	m		~~~	FCC	PART 15 (AV)		
40	~~~~	~~~	~~~	·····	mm		~~~	FCC	PART 15 (AV)		
^	~~~	~~~	~~~	·~~	~~~		~~~	FCC	PART 15 (AV)		
40	~~~~	~~~	~~~	·····	nn		~~~	FCC	PART 15 (AV)		
40 20		~~~	~~~	2350	~~~		~~~	FCC	1		
40	10 2320	~~~	~~~	2350 Freq	uency (MH:	z)	~~~	FCC	PART 15 (AV)		
40	10 2320	Pood	~~~	Freq			Tinit		1		
40				Freq Cable	Preamp		Limit Line		240		
40	Freq	Level	Factor	Freq Cable Loss	Preamp Factor	Level	Line	Over Limit	240		
40				Freq Cable	Preamp Factor		Line	Over Limit	240		
40	Freq	Level dBuV	Factor dB/m	Freq Cable Loss dB	Preamp Factor dB	Level	Line dBuV/m	Over Limit	240 Remark		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

dB

74.00 -21.47 Peak

54.00 -13.49 Average

Test mode: Polarization: Vertical Environment: Temp: 24°C Huni: 57°
Environment: Temp: 24°C Huni: 57°
FCC PART 15 (PM
FCC PART 15 (AV

Remark:

1

MHz

2483.500

2483.500

dBuV

20.15

8.13

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

dB/m

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

dB

0.00

0.00

4.81

4.81

dB dBuV/m dBuV/m

52.53

40.51

oduct Name:	Cool Duo		Pr	roduct Mo	del:	Cool Dud	0
est By:	Alex		Te	est mode:		3DH1 Tx	mode
est Channel:	Highest channe	l	Po	olarizatior):	Horizonta	l
est Voltage: AC 120/60Hz Environment: Temp: 24°C			°C Huni: 57%				
10 Level (dBuV/m)						FC	C PART 15 (PK)
40		~~~				FC	C PART 15 (AV)

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	nt: FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spr spectrum intentional radiator is operating, the radio frequency power the is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

Test plot as follows:

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	5.209			
Test Method:	ANSI C63.10: 2					
Test Frequency Range:	9 kHz to 25 GH:					
Test Distance:	3m	<u>-</u>				
Receiver setup:	Frequency	Detect	or	RBW	VBV	/ Remark
	30MHz-1GHz	Quasi-pe		120kHz	300kl	
	Peak 1MHz 3MHz Pea					
	Above 1GHz					
Limit:	Frequency Limit (dBuV/m @3m) Remark					
					Quasi-peak Value	
	88MHz-216	MHz		43.5		Quasi-peak Value
	216MHz-960	MHz		46.0		Quasi-peak Value
	960MHz-10	SHz		54.0		Quasi-peak Value
	A1 401			54.0		Average Value
	Above 1GI	HZ -		74.0		Peak Value
Test setup:	Below 1GHz	ı				Antenna Tower
	Search Antenna Turm 0.8m 1m Table 0.8m 1m Ground Plane					
	Above 1GHz					
Tank	AE EUT Horn Antenna Tower AE Test Receiver Ampilier Controller					
Test Procedure:	/1.5m(above	1GHz) ab	ove t	the ground a	a 3 me	ole 0.8m(below 1GHz) eter chamber. The table on of the highest

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	 The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:		Cool Duo				Product Model:		Cool Duo			
Test By:		Alex				est mode:	BT Tx mode				
Test Fre	quency:	30 MHz ~ 1 GHz			Po	Polarization: Environment:		Vertical			
Γest Vol	tage:	AC 120/6	AC 120/60Hz					Temp: 24°C Huni: 57°		ni: 57%	
70 60 50 40 30	el (dBuV/m)		The state of the s	· Andrews	Will amount	4 5 4 1 ahrand pagalari	handan kantan kantan		CC PA	- 6	5.247
030	50		100	Feed	200 uency (MH			500			1000
		Readi	intenna	and the second		194	Limit	Ottor			
	Freq		Antenna Factor	Cable	Preamp Factor	100 1	Limit Line	Over Limit		nark	
	Freq MHz			Cable	Preamp Factor	100 1	Line		Rei	nark 	

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name: Test By:		Cool Duo			Pr	Product Model:		Cool Duo BT Tx mode Horizontal		
		Alex				st mode:				
est Fred	quency:	30 MHz ~ 1 GHz				Polarization:				
est Volt	age:	AC 120/6	0Hz		En	vironment	:	Temp: 24°C Huni: 579		
Leve	l (dBuV/m)									
80 2010		Y Y								
70										
20										
50								FC	PART	15.247
50										
40					- 2					
40						5				e e
						4				Φ
30				1	2	3 4 M				, be
				1	2 MM	Mary Market	M.	an rushe	programmer of	on oppositely
20	1		na de colum	Mandan	WHAT PAR	Mary Market	Manufactor	syntax of the second	probable and seed	on opposition
	Market alperture allers	and when	may w	Mundam	method from the second	My Jakowy	Managada	outer the said the	garden, i de majorare	and a consider
20 10 May 10	Anna halana maken	and when					M. mounds		garden et karden et de	
20	50	Manager Land by March	March 100		200 uency (MH		M. Moderandor	500	and my characters	
20 10 May 10			Ant enna	Freq Cable	200 uency (MH Preamp	z)	Limit	500 Over		100
20 10 May 10	50 Freq			Freq Cable	200 uency (MH	z)	Limit	500 Over		100
20 10 May 10			Ant enna	Freq Cable Loss	200 uency (MH Preamp Factor	z)	Limit Line	500 Over Limit		100
030	Freq MHz	Level	Antenna Factor dB/m	Freq Cable Loss	200 uency (MH Preamp Factor dB	z) Level	Limit Line dBuV/m	500 Over Limit	Rema	100
0 30	Freq MHz 112.920 199.986	Level dBuV 41.07 41.17	Antenna Factor dB/m 11.67	Freq Cable Loss dB	200 uency (MH Preamp Factor dB 29.44 28.83	z) Level dBuV/m 25.39 26.71	Limit Line dBuV/m 43.50 43.50	500 Over Limit ———————————————————————————————————	Rema QP QP	100
0 30	Freq MHz 112.920 199.986 232.532	Level dBuV 41.07 41.17 39.87	Antenna Factor dB/m 11.67 11.50	Freq Cable Loss dB 2.09 2.87 2.83	200 uency (MH Preamp Factor ————————————————————————————————————	z) Level dBuV/m 25.39 26.71 26.78	Limit Line dBuV/m 43.50 43.50 46.00	500 Over Limit ———————————————————————————————————	Rema QP QP QP	100
030	Freq MHz 112.920 199.986	Level dBuV 41.07 41.17	Antenna Factor dB/m 11.67	Freq Cable Loss dB 2.09 2.87 2.83 2.83	200 uency (MH Preamp Factor dB 29.44 28.83 28.64 28.54	z) Level dBuV/m 25.39 26.71 26.78 27.34	Limit Line dBuV/m 43.50 43.50 46.00 46.00	500 Over Limit ———————————————————————————————————	Rema QP QP QP	100

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

			Test ch	annel: Lowe	est channel				
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804	45.56	31.60	6.80	41.81	42.15	74.00	-31.85	Vertical	
4804	46.49	31.60	6.80	41.81	43.08	74.00	-30.92	Horizontal	
			Dete	ctor: Averag	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	35.61	31.60	6.80	41.81	32.20	54.00	-21.80	Vertical	
4804.00	36.51	31.60	6.80	41.81	33.10	54.00	-20.90	Horizontal	
			Test ch	annel: Mido	lle channel				
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	45.48	31.72	6.86	41.84	42.22	74.00	-31.78	Vertical	
4882.00	44.36	31.72	6.86	41.84	41.10	74.00	-32.90	Horizontal	
			Dete	ctor: Averag	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	35.62	31.72	6.86	41.84	32.36	54.00	-21.64	Vertical	
4882.00	34.60	31.72	6.86	41.84	31.34	54.00	-22.66	Horizontal	
			Test ch	annel: Highe	est channel				
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	44.87	31.84	6.91	41.87	41.75	74.00	-32.25	Vertical	
4960.00	45.09	31.84	6.91	41.87	41.97	74.00	-32.03	Horizontal	
				ctor: Averag	1				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	34.92	31.84	6.91	41.87	31.80	54.00	-22.20	Vertical	
	a = - :		.						

Remark:

4960.00

35.21

6.91

41.87

32.09

54.00

-21.91

31.84

Project No.: CCISE1811006

Horizontal

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.