Cifrado Afin

En aritmética modular, se considera que **dos enteros relativos son congruentes modulo n** si presentan la misma resta en la división euclidiana por n. Trabajar con modulo n significa trabajar con números enteros comprendidos en el intervalo [0; n-1] incluidos los limites.

Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	T	U	٧	W	Х	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Usar como función de cifrado una función afín del tipo ; y = ax + b en las que [a] y [b] son constantes, y en las que [x] e [y] son números correspondientes a las letras del alfabeto en base a esta tabla.

**Nota: si [a]=1, volvemos a encontrar la cifra de Cesar donde [b] representa el desplazamiento. Y el valor de [b] es un número comprendido entre el 0 y el 25.

No podemos utilizar cualquier valor para [a]; [a] y 26 **deben ser primos entre sí**, lo que significa que no deben tener divisores comunes que no sean 1. Los valores posibles para [a] son pues 1, 3, 5, 7, 11, 15, 17, 19, 21, 23, y 25.

Ejemplo.

Texto en Claro	Н	0	L	Α
Х	7	14	11	0
Υ	15	0	25	4

$$a = 9; b = 4; y = ax + b$$

H
$$y = 9(7) + 4 = 67 \mod 26 = 15 \rightarrow P$$

O
$$y = 9(14) + 4 = 130 \mod 26 = 0 \rightarrow A$$

L
$$y = 9(11) + 4 = 103 \mod 26 = 25 \rightarrow \mathbf{Z}$$

A
$$y = 9(0) + 4 = 4 \mod 26 = 0 \rightarrow E$$

Fórmula de descifrado

Invertir (mod 26) la fórmula de cifrado con el fin de expresar [x] en función de [y]

$$y = ax + b$$

 $y - b = ax$
Sabemos que $[a^{-1}][a] = 1$
 $[a^{-1}](y - b) = x$
 $x = [a^{-1}](y - b) \pmod{26}$

Si (y-b) resulta negativo basta con sumarle 26 antes de multiplicarlo por $[a^{-1}]$

Ejemplo.

$$a = 9 : [a^{-1}] = 3;$$
 $b = 4;$ $x = [a^{-1}](y - b) \pmod{26}$
 $P \to x = 3(15 - 4) = 33 \mod 26 = 7 \to H$
 $A \to x = 3(0 - 4) = -12 \mod 26 = 14 \to 0$
 $Z \to x = 3(25 - 4) = 63 \mod 26 = 11 \to L$
 $E \to x = 3(0) = 33 \mod 26 = 0 \to A$

Para romper con este cifrado al igual que con el de Vigenere, hay que observar y cuantificar la frecuencia de aparición de cada letra en determinado idioma. Teniendo esto observamos que símbolos se repiten más y suponer que es una de las letras con más frecuencia. Y también es común que antes o después de una vocal exista una consonante. Con estos criterios podemos ir descartando y proponer candidatos para descifrar el mensaje.