- Datos originales vs. datos transformados
 - ► Interpretabilidad vs. utilidad
 - Datos completos vs. pérdida de información
 - ► Gran cantidad de datos vs. Cantidad manejable de datos

Valor medio y valor esperado

Dada una variable aleatoria X, el **valor esperado** de X es:

$$E[X] = \sum_{x \in \mathcal{X}} x \cdot P(X = x)$$

Valor medio y valor esperado

Dada una variable aleatoria X, el **valor esperado** de X es:

$$E[X] = \sum_{x \in \mathcal{X}} x \cdot P(X = x)$$

Dada una muestra S de X, el **valor medio** de S es:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} S_i$$

Variance

Dada una variable aleatoria X, la **varianza** de X es:

$$Var(X) = E[(X - E[X])^2]$$

donde
$$E[X] = \sum_{x \in \mathcal{X}} x \cdot P(X = x)$$

Variance

Dada una variable aleatoria X, la **varianza** de X es:

$$Var(X) = E[(X - E[X])^2]$$

donde
$$E[X] = \sum_{x \in \mathcal{X}} x \cdot P(X = x)$$

Dada una muestra S de X, la **varianza** de S es:

 $\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (S_i - \bar{X})^2$

Ejemplos:

X : Altura de estudiantes

X: Edad

X: Horas de estudio

Justificación, necesidad de la transformación

Probablemente, el principal uso del análisis de componentes es la reducción de dimensionalidad

Expresar los mismos datos, con la menor pérdida de información posible, a través de un menor número de variables.

Otra info: descubrimiento de relaciones ocultas entre variables, espacio más apropiado para la aplicación de ciertas técnicas de análisis, etc.

Ejemplo

Estudio del rendimiento de trabajadores/as

- Variables: No. horas trabajadas, Antigüedad del material, Comodidad, Movilidad en el puesto de trabajo, Rendimiento, etc.
- Si el número de horas de trabajo real está directamente relacionado con la antigüedad del material, la relación puede quedar escondida a simple vista

Ejemplo

Estudio del rendimiento de trabajadores/as

- Variables: No. horas trabajadas, Antigüedad del material, Comodidad, Movilidad en el puesto de trabajo, Rendimiento, etc.
- Si el número de horas de trabajo real está directamente relacionado con la antigüedad del material, la relación puede quedar escondida a simple vista
- Mediante análisis de componentes, se descubriría la relación entre ellas y la presencia de información redundante

Análisis de Componentes Principales (PCA)

Idea

- La idea es crear un conjunto de variables nuevo (reducido) que representen la misma información
- Serie de componentes (variables) ortogonales que explican, cada vez en menor medida, una porción de la información
 Podríamos decir: PCA obtiene representaciones comprimidas de los datos

Análisis de Componentes Principales (PCA)

Idea

- ► La idea es crear un conjunto de variables nuevo (reducido) que representen la misma información
- Serie de componentes (variables) ortogonales que explican, cada vez en menor medida, una porción de la información
 Podríamos decir: PCA obtiene representaciones comprimidas de los datos
- Las componentes que explican en menor medida los datos se eliminan para conseguir la reducción de dimensionalidad

Análisis de Componentes Principales (PCA)

Idea

- La idea es crear un conjunto de variables nuevo (reducido) que representen la misma información
- Serie de componentes (variables) ortogonales que explican, cada vez en menor medida, una porción de la información
 Podríamos decir: PCA obtiene representaciones comprimidas de los datos
- ► Las componentes que explican en menor medida los datos se eliminan para conseguir la reducción de dimensionalidad
- ► Efectivo contra el ruido y los valores extraños
- ► La representación en espacios alternativos puede ser útil para ciertos tipos de técnicas de análisis

- CPs: serie de proyecciones de los datos mutuamente no correlacionadas, ordenadas según la cantidad de varianza de los datos originales que explican
- ► Cada CP es el eje que mejor explica la mayor porción de varianza no explicada

CP.1: Explica la mayor cantidad de varianza

CP.2: Ortogonal a CP.1, es el eje que explica la mayor cantidad de varianza no explicada por CP.1

CP.3: Ortogonal a CP.1 y CP.2, es el eje que explica la mayor cantidad de varianza no explicada por CP.1 ni por CP.2

...

CPs = # Variables originales

Paso previo: Estandarización de los datos

Objetivo

Conseguir que todas las variables originales tengan el mismo rango.

1. Centrar las variables (media = 0):

$$\mathbf{x}_i \leftarrow \mathbf{x}_i - \frac{1}{n} \sum_{i'=1}^n \mathbf{x}_{i'}$$
, $\forall i \in \{1,\ldots,n\}$

2. Re-escalar las variables (varianza = 1):

$$x_i j \leftarrow x_{ij} / \sqrt{\frac{1}{n} \sum_{i'=1}^n (x_{i'j})^2}$$
 , $\forall i \in \{1, \ldots, n\} \land j \in \{1, \ldots, v\}$

** Evitar que las variables de mayor rango dominen las de menor rango **

Objetivo

Encontrar la dirección sobre la que mejor se expresan los datos

Buscar un vector \boldsymbol{u} tal que si los datos se proyectan en esa dirección, la varianza de la proyección es máxima

Varianza de una proyección

Buscar el vector \boldsymbol{u} que maximiza la varianza sobre todo el conjunto de datos, $\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n\}$:

$$\frac{1}{n}\sum_{i=1}^{n}(\mathbf{x}_{i}^{t}\mathbf{u})^{2}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{u}^{t}\mathbf{x}_{i}\mathbf{x}_{i}^{t}\mathbf{u}=\mathbf{u}^{t}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}^{t}\right)\mathbf{u}=\mathbf{u}^{t}\Sigma\mathbf{u}$$

donde $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{t}$ es la matriz de covarianza.

Varianza de una proyección

Buscar el vector \boldsymbol{u} que maximiza la varianza sobre todo el conjunto de datos, $\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n\}$:

$$\frac{1}{n}\sum_{i=1}^{n}(\mathbf{x}_{i}^{t}\mathbf{u})^{2}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{u}^{t}\mathbf{x}_{i}\mathbf{x}_{i}^{t}\mathbf{u}=\mathbf{u}^{t}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}^{t}\right)\mathbf{u}=\mathbf{u}^{t}\Sigma\mathbf{u}$$

donde $\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{t}$ es la matriz de covarianza.

Tarea

El problema se define como:

$$\arg \max_{u} u^t \Sigma u$$

Respuesta: El vector propio principal de Σ

¡Los **vectores propios** de Σ son los vectores ortogonales que buscamos!

Procedimiento

- 1. Calcular la matriz de covarianzas, Σ
- Descomponer Σ en vectores propios (descomposición en valores singulares)
- 3. Seleccionar los *q* vectores propios principales como CPs (los *q* vectores propios con mayor valor propio asociado)

- ightharpoonup Cada componente principal $oldsymbol{u}_j$ es una combinación lineal de las variables originales
- ► El nuevo conjunto de datos Z en el espacio transformado es:

$$z_i = egin{bmatrix} oldsymbol{u}_1^t oldsymbol{x}_i \ oldsymbol{u}_2^t oldsymbol{x}_i \ dots \ oldsymbol{u}_q^t oldsymbol{x}_i \end{bmatrix}, \quad orall i \in \{1,\ldots,n\}$$

► La reducción de la dimensionalidad depende del número de componentes principales (q).

La reducción de la dimensionalidad depende de *q* (número de componentes principales)

- Si q = v, no hay pérdida de información ni reducción de dimensionalidad
- A menor q, mayor reducción de dimensionalidad y pérdida de información
- Ritmo de pérdida de información: depende de la redundancia de las variables y las relaciones ocultas en los datos

Seleccionando q

- 1. Fijar un umbral s (ej., 95) en el acumulado de varianza explicada
- 2. Seleccionar las q CPs que expliquen al menos el s % de la varianza total de los datos

Pros y contras

Ventajas

- ► Técnica no paramétrica
- ► Único parámetro ajustable (posterior): número de componentes *q*
- ► En el espacio de optimización no existen máximos locales donde el método pudiese quedar atrapado

Desventaias

- ► El nuevo espacio puede no ser intuitivo
- ► La interpretabilidad de las variables se pierde (oscurece)
- ► Se limita a momentos muestrales de orden 2 (varianza) y a provecciones lineales