Title of the Document

Author Name

June 22, 2024

Contents

Title of the Document 2

1 Exercises

- 2.1. Let (X, d) be a metric space and $S \subset X$. Show that $\overline{S}^{\circ} = \emptyset$.
- 2.2. Show that for an arbitrary choice of $a, b, c \in \mathbb{R}$, the closed disk $(x a)^2 + (y b)^2 \le r^2$ is a bounded set in \mathbb{R}^2 .
- 2.3. Let (X,d) be a metric space and let $x,y \in X$. Show that if $d(x,y) < \epsilon$ for every $\epsilon > 0$, then x = y.
- (2.1) Assume $S \neq \emptyset \Rightarrow \exists x \in S, \exists \epsilon > 0 . B_{\epsilon}(x) \subseteq S^{\circ}$.

Then by $x \in S^{**}$, $\exists \epsilon > 0 : B_{\frac{\epsilon}{2}}(x) \subseteq S_{\eta}$.

However, by $x \in \partial S$, this value of $\epsilon > 0$ implies

$$B_{\frac{\epsilon}{2}}(x) \cap S^{\nu} \neq \varnothing \Rightarrow B_{\frac{\epsilon}{2}}(x) \not\subseteq S_{\eta}$$

which is a contradiction, implying our assumption that $x \notin \overline{S}^s \cap S^{int}$ must be false and $\overline{S}^\circ \cap S^{int} = \varnothing$.

(2.2) A set S is bounded iff $\exists M \in \mathbb{R}^+ : \forall x, y \in S d(x, y) \leq M$.

Let $a, b, r \in \mathbb{R}$.

$$\delta := \left\{ (x,y) \in \mathbb{R} \,|\, (x-a)^2 + (y-b)^2 \le r^2 \right\}$$

$$\Rightarrow x^2 - 2ax + a^2 + y^2 - 2by + b^2 \le r^2$$

$$\Rightarrow x^2 - 2ax + y^2 - 2yb + r^2 - a^2 - b^2 \le r^2$$

$$\Rightarrow x^2 + y^2 < r^2 - a^2 - b^2 + 2ax + 2yb$$

we need to show x^2 is bounded.

- $\bullet \ (x-a)^2 \le r^2$
- $\bullet \Rightarrow |x a| \le |r|$
- $\bullet \Rightarrow |x-a| \le |r+a| = |r| + |a|$
- $\bullet \Rightarrow |x| = |x a + a| \le |x a| + |a| \le r + |a|$

(diagrams of a circle with radius a and a square of side 2r, situated around the circle)

$$\Rightarrow |y| \le r + |a|$$
$$\Rightarrow x^2 \le (r + |a|)^2$$

Same for $y_1, \quad y_1^2 \le (r+|b|)^2$

Title of the Document 3

$$\forall z = (x, y) \in D^2_{a,b}$$

$$||z|| = \sqrt{x^2 + y_2}$$

$$\leq \sqrt{(r+|a|)^2+(r+|b|)^2}$$

Thus, if $M = \sqrt{(r+|a|)^2 + (r+|b|)^2}$, the bond holds.

** Normed boundedness = distance boundedness.

Let
$$x = (x_1, x_2), y = (y_1, y_2) \in D_{a,b}$$

$$z_3 \in \{x, y\}$$

$$(z_1 - a)^2 + (z_2 - b)^2 \le r^2$$

$$\Rightarrow d(z,(a,b)) = \sqrt{(z_1-a)^2 + (z_2-b)^2} \le r$$

$$\Rightarrow d(x,y) \le d(x,(a,b)) + d(y,(a,b))$$

$$=\sqrt{(x_1-a)^2+(x_2-b)^2}+\sqrt{(y_1-a)^2+(y_2-b)^2}$$

$$\leq r + r = 2r$$
.

(iii)

Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\varepsilon = d(x,y) \Rightarrow \varepsilon > 0$ but $d(x,y) \notin \varepsilon$. (contradiction).

Suppose $x \neq y$ and so $d(x,y) \neq 0$. Choose $\varepsilon > 0$ so that $\varepsilon = d(x,y)$. Then we must have $d(x,y) < \varepsilon = \frac{d(x,y)}{2}$, which is a contradiction, as this implies $\frac{d(x,y)}{2} \leq d(x,y) = \varepsilon, \Rightarrow \varepsilon < \frac{\varepsilon}{2} \Rightarrow 2\varepsilon < \varepsilon$. Thus, x = y.

(iv)

Let $(V, \|\cdot\|)$ be a normed vsp. Then let r > 0 and $x \in V$. Then $B_r(x) = \{u \in V | d(x, u) < r\}$ $B_{r+\|x\|}(0) = \{u \in V | d(0, u) < r + \|x\|\}$

Let
$$y \in B_r(x)$$
. $d(0,y) \le d(0,x) + d(x,y) \le ||x|| + r \Rightarrow B_r(x) \subseteq B_{r+||x||}(0)$.

(v)

Suppose S is bounded. Then $\exists M \in \mathbb{R}_{>0} : \forall x \in S ||x|| \leq M$. (Equiv to $\exists M \in \mathbb{R} : \forall x \in V \ x \in B_M(0)$)