Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of "fugitive" fossil fuel emissions

Amy Townsend-Small, ^{1,2} Stanley C. Tyler, ^{3,4} Diane E. Pataki, ^{3,5} Xiaomei Xu, ³ and Lance E. Christensen ⁶

Received 12 September 2011; revised 28 February 2012; accepted 4 March 2012; published 14 April 2012.

[1] Recent studies have suggested that CH₄ emissions in Los Angeles and other large cities may be underestimated. We utilized stable isotopes (¹³C and D) and radiocarbon (14C) to investigate sources of CH₄ in Los Angeles, California. First, we made measurements of δ^{13} C and δ D of various CH₄ sources in urban areas. Fossil fuel CH₄ sources (oil refineries, power plants, traffic, and oil drilling fields) had δ^{13} C values between -45 and -30% and dD values between -275 and -100%, whereas biological CH₄ (cows, biofuels, landfills, sewage treatment plants, and cattle feedlots) had δ^{13} C values between -65 and -45% and δD values between -350 and -275%. We made high-altitude observations of CH₄ concentration using continuous tunable laser spectroscopy measurements combined with isotope analyses (¹³C, ¹⁴C, and D) of discrete samples to constrain urban CH₄ sources. Our data indicate that the dominant source of CH₄ in Los Angeles has a δ^{13} C value of approximately -41.5% and a δ D value between -229 and -208%. Δ^{14} C of CH₄ in urban air samples ranged from +262 to +344% (127.1 to 134.9 pMC), depleted with respect to average global background CH₄. We conclude that the major source of CH₄ in Los Angeles is leakage of fossil fuels, such as from geologic formations, natural gas pipelines, oil refining, and/or power plants. More research is needed to constrain fluxes of CH₄ from natural gas distribution and refining, as this flux may increase with greater reliance on natural gas and biogas for energy needs.

Citation: Townsend-Small, A., S. C. Tyler, D. E. Pataki, X. Xu, and L. E. Christensen (2012), Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of "fugitive" fossil fuel emissions, *J. Geophys. Res.*, 117, D07308, doi:10.1029/2011JD016826.

1. Introduction

[2] Anthropogenic activities have resulted in increasing levels of greenhouse gases, including methane (CH₄), with current atmospheric mixing ratios that have approximately doubled over the past 200 years [Sowers et al., 2005; MacFarling Meure et al., 2006; Mitchell et al., 2011]. Methane has a global warming potential of about 25 times that of carbon dioxide (CO₂) on a 100 year time scale [Forster et al., 2007]. Major global sources of CH₄ include wetlands, cattle and other ruminant animal ranching, fires, and rice paddies, but CH₄ is also released from landfills and

[3] Stable isotopes and radiocarbon have been previously employed to determine sources of both CO₂ [e.g., Pataki et al., 2003a; Fisher et al., 2006; Djuricin et al., 2010] and CH₄ [Cicerone and Oremland, 1988; Bergamaschi et al., 1998; Kessler et al., 2008; Lowry et al., 2001, 2009; Kai et al., 2011]. For CH₄, δ^{13} C and δ D ratios can be used to differentiate microbial from thermogenic sources. Microbial CH_4 is characterized by $\delta^{13}C$ values of between -50% and -110% and δD values of -150% to -400% [Cicerone and Oremland, 1988; Quay et al., 1991, 1999; Whiticar and Schaefer, 2007]. Thermogenic CH₄ (generated at high temperature in the Earth's crust, as in fossil fuels) has δ^{13} C values between -45% and -20%, and δD values between -100% and -275% [Whiticar and Schaefer, 2007]. Consumption of CH₄ by methanogenic bacteria or by oxidation with atmospheric radicals generally causes enrichment in both δ^{13} C and δ D of remaining CH₄ [Tyler, 1986; Whiticar, 1999; Saueressig et al., 1996, 2001; Snover and Quay,

Copyright 2012 by the American Geophysical Union. 0148-0227/12/2011JD016826

D07308 1 of 11

wastewater treatment plants, and during fossil fuel mining and distribution [Cicerone and Oremland, 1988; Reeburgh, 2004]. Methane is also an important component in the overall oxidative capacity of the troposphere, as it is consumed by reaction with atmospheric radicals [Cicerone and Oremland, 1988].

¹Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA.

²Department of Geography, University of Cincinnati, Cincinnati, Ohio, USA.

³Department of Earth System Science, University of California, Irvine, California, USA.

⁴Department of Chemistry, Norco College, Norco, California, USA. ⁵Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA.

⁶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.

://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Figure 1. Map of the study area, including point source sampling sites and high-altitude monitoring site (Mount Wilson Observatory, 1707 m above sea level). Dark green areas represent mountainous areas, and light green areas are low-lying urbanized areas.

2000]. Radiocarbon content may be a particularly good indicator of CH₄ source, since most fossil CH₄ sources are nearly 100% depleted in ¹⁴C [Quay et al., 1999; Lassey et al., 2007a, 2007b; Kessler et al., 2008; Pohlman et al., 2009; O'Sullivan et al., 2010]. In contrast, other sources of methane have ¹⁴C contents that are approximately modern, including rice paddies [Nakagawa et al., 2002], landfills [Coleman et al., 1995], sewage treatment plants [O'Sullivan et al., 2010] and cattle [Johnson and Johnson, 1995]. It is important to note that nuclear power plants and nuclear waste sites emit 14CH₄ without a significant flux of CH₄ overall, leading to global background Δ^{14} C of CH₄ values that are more enriched than atmospheric CO₂ [Lassey et al., 2007a, 2007b], although measurements are sparse due to large sample volume requirements and the high cost of radiocarbon dating.

[4] While the global emissions of CH₄ are relatively well constrained, regional emissions and the contribution of individual sources to these emissions is not [Bergamaschi et al., 2010; Dlugokencky et al., 2011]. In particular, relative proportion of urban greenhouse gas sources may differ from the magnitude of global sources, which complicates the use of global models for regional source estimation [Townsend-Small et al., 2011a, 2011b]. For example, studies

of tropospheric air in Los Angeles have found that CH₄ concentrations are larger than predicted by statewide models [Wunch et al., 2009; Hsu et al., 2010], indicating that some emissions factors for urban areas are missing or underestimated. Studies of CH₄ emissions in urban Indianapolis, USA, also showed evidence for significant urban CH₄ sources that are not accounted for in greenhouse gas emissions models [Mays et al., 2009]. Studies of CH₄ concentrations in St. Petersburg, Russia showed evidence for significant urban emissions, estimated at about 100 kT yr⁻¹ [Nisbet, 2005].

[5] A few prior studies have employed stable isotope analyses to determine sources of urban CH_4 and have shown that either landfills or natural gas leaks are significant in urban areas. In Krakow, Poland, analyses of $\delta^{13}C$ and $\Delta^{14}C$ of CH_4 showed that natural gas leaking was the dominant source of anthropogenic CH_4 in that city [*Kuc et al.*, 2003; *Nisbet*, 2005]. In London, UK, $\delta^{13}C$ analyses showed that the dominant sources of CH_4 in the urban area were landfills (\sim 80% of total source) and natural gas distribution systems (\sim 20%) [*Lowry et al.*, 2001; *Fisher et al.*, 2006].

[6] The objective of this study was to determine whether isotopes could be useful tracers of urban versus natural or agricultural CH₄ sources in southern California. We also

21562202d, 2012, D7, Downloaded from https://agupubs.on/helibitary.wiley.com/o/in/10.1029/2011D016826 by NASA Shared Services Center (NSSC), Wiley Online Library on [26/05/2025]. Set the Terms and Conditions (https://onlinelibitary.wiley.com/etrims-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Table 1. Data for Samples Collected for Point Source Determination, Including Sampling Location and Date, CH₄ Concentration, and δ^{13} C and δ D (Where Applicable)^a

Sample Number	Sample Type	ample Type Location		CH_4	δ^{13} C-CH ₄ (‰)	δD-CH ₄ (‰)
S1	Traffic	LAX parking garage	5/12/08	1.85 ppm	-30.4	-130.1
S2	Traffic	Sepulveda tunnel	5/12/08	1.87 ppm	-30.2	-113.2
S3	Oil field	Oil drilling rig, Kenneth Hahn Park, Culver City	5/12/08	2.27 ppm	-41.7	-190.4
S4	Power plant	Coastal power plant, Redondo Beach	5/12/08	1.86 ppm	-39.6	-192.0
S5	Oil refinery	Torrance, Los Angeles County	5/12/08	5.31 ppm	-44.7	-277.2
S6	Oil refinery	Carson, Los Angeles County	5/12/08	1.87 ppm	-44.7	-249.0
S7	Landfill biofuel	Los Angeles County landfill, from gas collection stream	11/29/07	$\sim 30\%$	-61.5	-316.1
S8	Landfill biofuel	Los Angeles County landfill, from gas collection stream	11/29/07	$\sim 30\%$	-61.9	-313.9
S9	Manure biofuel	Manure digestor test facility, Riverside County	6/28/07	2.24 ppm	-50.5	-280.0
S10	Manure biofuel	Manure digestor test facility, Riverside County	6/28/07	2.57 ppm	-50.7	-296.3
S11	Manure biofuel	Manure digestor test facility, Riverside County	6/28/07	15.53 ppm	-52.4	-333.6
S12	Manure biofuel	Manure digestor test facility, Riverside County	6/28/07	4.04 ppm	-50.2	-317.0
S13	Sewage treatment plant	Orange County	11/9/07	3.32 ppm	-46.3	-298.0
S14	Sewage treatment plant	Los Angeles County	11/2/07	3.11 ppm	-47.0	n.m.
S15	Cow manure	Commercial dairy farm, Riverside County	11/7/07	2.36 ppm	-59.1	-348.8
S16	Cow manure	Commercial dairy farm, Riverside County	11/7/07	3.18 ppm	-59.4	-338.4
S17	Cow manure	Commercial dairy farm, Riverside County	11/7/07	46.28 ppm	-62.1	n.m.
S18	Cow breath	Commercial dairy farm, Riverside County	11/7/07	132.33 ppm	-65.0	n.m.
S19	Cow breath	Commercial dairy farm, Riverside County	11/7/07	76.08 ppm	-60.2	n.m.
S20	Cow breath	Commercial dairy farm, Riverside County	11/7/07	90.97 ppm	-64.6	n.m.

^aData corrected for the presence of background air, as described in the text; n.m. denotes not measured.

hoped to use stable isotopes as well as radiocarbon to make preliminary estimates of the dominant source of CH₄ in the metropolitan area of Los Angeles, California.

2. Methods

2.1. Study Area

[7] Los Angeles is one of world's "megacities" with an estimated population of up to 15 million in the metropolitan area, which includes parts of Los Angeles, Orange, Riverside, and San Bernardino counties. The city is constrained by peninsular and transverse mountain ranges with dominant onshore winds (Figure 1), except during occasional wind reversals: the "Santa Ana" winds. This commonly results in atmospheric temperature inversions in the late afternoon that create notorious smog events. In general, wind trajectories are from the ocean to the land during the day, and in the opposite direction in the afternoon, with stronger sea breezes in summer than in winter [*Turpin and Huntzicker*, 1991]. The climate is semiarid/Mediterranean with most rain events occurring during only a few days during winter.

2.2. Sample Collection

[8] There were two components of our field sampling campaign: (1) point source identification and sampling around the basin followed by (2) observation and measurement of

CH₄ concentrations and isotope ratios in urban air sampled at high altitude. For part 1, we sampled a range of potential CH₄ sources including fossil fuel sources (oil wells, power plants, oil refinery, and vehicle emissions) as well as biogenic sources (cow breath, landfills, biofuels (from both manure and landfill sources), and sewage treatment plants). These samples were collected from November 2007 to May 2008. All samples were collected using a battery-powered oil-free GAST diaphragm pump through a magnesium perchlorate water trap in preevacuated stainless steel gas canisters ranging in size from 2 to 6 L. The typical flow rate during sampling was about 1.5 L min⁻¹ and canisters were filled to approximately 2 atm.

[9] Sampling locations and dates are shown in Tables 1 and 2. Samples of vehicle emissions were taken in the vicinity of downtown LA traffic (S1 and S2, Table 1). Oil field, oil refinery, and power plant samples (S3–S6, Table 1) were taken as close as possible to the source, using a handheld anemometer to ensure that wind was blowing from the source to the sample collection device. Biofuel samples (S8–S12, Table 1) were collected from or near collection systems at biofuel generation plants. Sewage treatment plant air was sampled from just above the surface of the treatment tanks, within the freeboard space to avoid sampling large amounts of background air (S13 and S14, Table 1). Samples from cattle farms (S15–S20, Table 1) were collected in two ways:

Table 2. Additional Measurements of CH₄ in Air Samples From Around Los Angeles Not Associated With a Specific Point Source and Measured for δ^{13} C Only^a

Sample Type	Location	Date ^b	CH ₄ (ppm)	δ^{13} C-CH ₄
City air: freeway traffic	I-5 at 60 freeway	3/6/08	2.03	-46.39
City air: freeway traffic	I-5 at Dodger Stadium	3/6/08	1.98	-46.32
City air: freeway traffic	I-5 at Atlantic Blvd.	3/6/08	2.06	-46.24
City air: freeway traffic	Intersection of I-605, I-5, and I-405	3/6/08	2.03	-46.55
City air: freeway traffic	I-405 at Century Blvd.	11/2/07	2.62	-44.91
City air: near sewage treatment plant/prison	Terminal Island, near Long Beach/San Pedro harbor	5/12/08	1.83	-37.10

^aThese data are not corrected for the presence of background air.

^bDate format is month/day/year.

^bDate format is month/day/year.

2156222d, 2012, D7, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011D016826 by NASA Shared Services Center (NSSC), Wiley Online Library on [2605/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governe

(1) using flux chambers placed over cow fields covered in manure and (2) by holding the sample collection line up to each cow's mouth. Finally, we sampled air around the city for preliminary characterization of CH₄ composition in urban air. These samples are shown in Table 2. Freeway traffic samples were collected from out the window of a car stuck in traffic, and samples from near the Terminal Island treatment plant and prison were collected from the side of the road.

[10] Part two of the study was conducted in August 2009, at the Mount Wilson Observatory, located in the mountains directly east of Los Angeles (Angeles National Forest; 34°13′25" N; 118°03′42"W; 1707 m above sea level). We installed a thermoelectrically cooled interband cascade tunable laser spectroscopy (TLS) instrument [Christensen et al., 2010] for real-time detection of CH₄ concentrations at the weather station operated by the California Laboratory for Atmospheric Remote Sensing (http://clarsweather.jpl.nasa. gov/). The TLS made six CH₄ concentration measurements per minute, with a scan-to-scan fluctuation of about 30 ppbv [Christensen et al., 2010]. We also collected discrete samples of air at regular intervals and over a range of CH₄ concentrations for later analysis of δ^{13} C, δ D, and Δ^{14} C of CH₄. Samples were collected through a magnesium perchlorate water trap in 32 L stainless steel gas canisters at up to 3 atm, for a total sample volume of approximately 100 L. Samples were collected using a GAST oil-free diaphragm pump operating at about 6 L min⁻¹, so samples represent air collected over about a 15 min period.

2.3. Sample Analysis

[11] Methane concentration was measured on a Shimadzu Scientific Instruments GC-14A gas chromatograph with flame ionization detector (GC-FID). Sample concentrations were referenced to a gas standard (1.903 ppm CH₄) that has been intercompared to NOAA Global Monitoring Division reference standards (CMDL83 scale [Lang et al., 1990]). The precision of this measurement is ± 5 to 10 ppb, or about 0.25 to 0.50% uncertainty.

[12] Stable isotope ratios were analyzed at the University of California, Irvine using continuous flow isotope ratio mass spectrometry according to the method of Rice et al. [2001], with combustion to CO_2 for $\delta^{13}C$ and pyrolysis to H_2 for δD . Carbon and hydrogen stable isotope ratios are expressed in delta (δ) notation, where the ratio of the rare to abundant isotope is expressed relative to an internationally recognized standard (PeeDee Belemnite (PDB) and Vienna Standard Mean Ocean Water (VSMOW), respectively). The uncertainties of δ^{13} C and δ D measurements have been estimated at 0.05‰ and 1.1‰, respectively. Extended details about calibration standards for δ^{13} C and δ D are included in the work by Tyler et al. [2007]. Isotope ratios of source signatures (shown in Figure 2 and Table 1) are corrected for the average background concentration and isotope ratio of atmospheric methane using the following equation:

(total δ) * (total CH₄ concentration) = (source δ signature)

- * (source CH₄ concentration) + (background δ)
- * (background CH₄ concentration).

Figure 2. Carbon and hydrogen stable isotopic composition of methane collected from various sources in southern California. Solid symbols represent fossil-derived CH₄, and open symbols represent biological sources. Isotope ratios represent source signatures corrected for the presence of background air.

[13] "Background" CH₄ concentration and isotope composition is usually determined from remote "clean air" sites and is variable with season, latitude, and altitude [*Quay et al.*, 1991, 1999; *Tyler et al.*, 1999, 2007; *Miller et al.*, 2002]. For calculating source signatures of CH₄ in this study, we used data from the same month collected at the Montana de Oro site, located north of Los Angeles and outside of significant urban influence. These data are presented by *Tyler et al.* [2007]. In order to determine the source of excess CH₄ for samples collected from air at the Mount Wilson Observatory, we constructed plots of isotope composition versus the inverse of CH₄ concentration, or Keeling plots [*Keeling*, 1958, 1961; *Pataki et al.*, 2003b].

[14] Air samples for analysis of Δ^{14} C of CH₄ were purified by vacuum line to remove CO₂ and CO, combusted to convert CH₄ to CO₂, graphitized using H₂ reduction, and analyzed for Δ^{14} C by accelerator mass spectrometry (AMS) at the Keck Carbon Cycle AMS Facility at the University of California, Irvine [Beverly et al., 2010]. The precision of this method is usually 2 to 3 % for normal, 1 mg C, modern samples, based on long-term quality control secondary standards. However, since our CH₄ sample sizes were so small (0.05 – 0.12 mg C), the relative error ranged from ± 4 to 10% after propagating the errors involved in background corrections, and precision generally varied with sample size (Table 3). Radiocarbon concentrations are presented as percent of the Modern carbon standard (pMC) and as Δ^{14} C following the conventions of Stuiver and Polach [1977]. Sample preparation backgrounds have been subtracted based on measurements of ¹⁴C-free CO₂ from coal, and data are

2156222d, 2012, D7, Downaded from https://aguptubs.on/inlibitary.wiley.com/ob/10.10292011D016826 by NASA Shared Service Center (NSSC), Wiley Online Library on [26052025]. See the Terms and Conditions (https://onlinelibitary.wiley.com/errms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centric Commons.

Sample Number	Date and Time ^b	CH ₄ (ppm)	δ^{13} C (‰)	δD (‰)	Δ^{14} C (‰)	pMC
1	8/4/09 11:27	1.76	-47.81	-93.2	261.9 ± 6.7	127.09 ± 0.0067
2	8/4/09 13:50	2.06	-47.79	-107.8	293.7 ± 5.7	130.30 ± 0.0057
3	8/4/09 15:07	2.02	-46.94	-103.7	270.1 ± 5.2	127.92 ± 0.0052
4	8/4/09 17:19	1.80			333.7 ± 11.5	134.32 ± 0.0115
5	8/4/09 21:01	1.76	-47.13	-87.6		
6	8/5/09 01:18	1.76	-47.11	-85.1		
7	8/5/09 05:46	1.76			339.8 ± 10.9	134.94 ± 0.0109
8	8/5/09 11:18	1.84	-47.13	-90.6	344.3 ± 5.9	135.39 ± 0.0059
9	8/5/09 13:54	1.94	-46.58	-99.7		
10	8/5/09 14:43	1.89	-46.96	-94.7		
11	8/5/09 15:45	1.79	-47.24	-88.7		
12	8/5/09 17:35	1.83	-47.14	-93.3		

^aData in Figures 2 and 3.

corrected for isotope fractionation to -25% using the online δ^{13} C values measured by the AMS.

3. Results

3.1. Stable Isotope Composition of CH₄ From Urban Sources

[15] Results for point source measurements of CH₄ concentration, δ^{13} C, and δ D are shown in Table 1 and Figure 2. Figure 2 shows the background-corrected source signature values of δ^{13} C and δD for CH₄ sampled in the Los Angeles basin. Fossil fuel CH₄ (solid symbols in Figure 2) was enriched in ¹³C and D, whereas biological sources were more depleted in both isotopes (open symbols in Figure 2). We also measured some additional CH₄ from point sources in Los Angeles for δ^{13} C only (Table 1). Fossil fuel derived samples had δ^{13} C values above -45% and δD values above about -275% (Figure 2). Biological samples had δ^{13} C values below about -50% and δD below -275%. In general, separation between fossil and biological CH₄ was better for δ^{13} C than for δ D (Figure 2). Sewage treatment plant samples were intermediate between the two types of sources (Figure 2 and Table 1). Samples taken in enclosed parking garages and traffic tunnels had very enriched δ^{13} C and δ D values, at the high end of our measurement range, similar to previous studies [Nakagawa et al., 2005]. Some point source isotope values were derived from relatively small enrichments in CH₄ concentrations, which may increase uncertainty (see Table 1).

3.2. Isotopic Composition of CH₄ in Urban Air

[16] There was a good correlation between CH₄ concentration measurements by the TLS instrument and in discrete samples measured by GC-FID (Figure 3a; $r^2 = 0.975$, p < 0.0001). Both 4 and 5 August showed similar meteorological conditions and trends in CH₄ concentrations, with peak CH₄ concentrations occurring in the midafternoon, and near-background air observed at other times (Figure 3). In general, wind in the Los Angeles basin is onshore, and the study period was no exception. During the night and early morning, the Mount Wilson site was located within the planetary boundary layer, characterized by background CH₄ concentrations and dry conditions (see H₂O vapor and wind direction data presented by *Christensen et al.* [2010]). As is usual in the region, in the early afternoon, onshore breezes

and temperature increases forced air from offshore and through the city up to the field station for a period of about 3 or 4 h, before cleaner, inland air from the Mojave desert pushed the CH₄-enriched air away (Figure 3) [*Turpin and Huntzicker*, 1991]. This pattern of urban air rising above and over the San Gabriel mountains in late afternoon has previously been shown for CH₄ and other air constituents in Los Angeles [*Hsu et al.*, 2010; *Langford et al.*, 2010].

[17] On both 4 and 5 August, the increase in CH₄ concentration was accompanied by an increase in δ^{13} C of up to 1‰ and a decrease in δD of 15–20‰ (Figures 3b and 3c). On both 4 and 5 August, there was a linear relationship between δD and the inverse of CH_4 concentration with a y intercept between -203% and -228% (\pm approximately 1‰, the error of the δD measurement) (Figure 4b), indicating that excess CH₄ was derived from a fossil fuel source (Figure 2). There was a significant relationship between δ^{13} C and the inverse of CH₄ concentration on 5 August (Figure 4a), with a y intercept of -41.5%. This intercept falls into the range of fossil fuel-derived CH₄ shown in Figure 2. On 4 August, there was no relationship between δ^{13} C and 1/CH₄. This is due to two apparent outliers (Samples 1 and 2, Table 3) whose δ^{13} C values do not scale with δD or CH₄ concentration. The source of this variability is unknown, and outlier sample δ^{13} C values were reanalyzed with the same result.

[18] There was no relationship between CH₄ concentration and Δ^{14} C, and Δ^{14} C ranged from +262‰ to +344‰ (127.1 to 134.9 pMC; Figure 3d). The ¹⁴C content of CH₄ in our two background air samples (1.76 ppm CH₄) ranged from +262‰ to +340‰, almost encompassing the entire range of Δ^{14} C across the concentration gradient.

4. Discussion

4.1. Isotopic Composition of Point Source CH₄

[19] Measurements of fossil fuel and biological CH₄ sources in the Los Angeles generally agree with previous work showing that fossil sources are more enriched in both ¹³C and D than biological sources [*Cicerone and Oremland*, 1988; *Whiticar*, 1999]. We also provide some new information on emerging urban CH₄ sources, including the stable isotope composition of CH₄ of biofuels (from both landfills and manure) and sewage treatment plants.

^bDate format is month/day/year.

Figure 3. (a) Methane concentrations in air observed at Mount Wilson Observatory as measured continuously with TLS (black dotted line) and in discrete samples with GC-FID (red points). Also shown is the approximate concentration of CH₄ in unpolluted air (1.82 ppm) as measured at Trinidad Head, California, by the NOAA flask sampling network. Shown are (b) δ^{13} C, (c) δ D, and (d) Δ^{14} C in discrete samples, shown with CH₄ concentrations measured by TLS. Data for discrete samples shown in Table 3.

[20] Biofuels are likely to encompass a larger portion of southern California's energy portfolio as fossil fuel prices rise and as the state enforces greenhouse gas emissions limits. Interestingly, we found large differences in δ^{13} C in two types of biofuels (landfill (-61%)) and manure (-51%)), but similar δD values (-280 to -330%)(Figure 2). At the (closed) landfills we sampled, CH₄ is extracted by pumping through a network of pipelines. In general in California, closed landfills are managed in this way to provide fuel for trash collection vehicles. We sampled landfill biofuel (about 30% CH₄) directly from this system. The vacuum system likely prevents consumption of CH₄ by soil microbes in upper layers of the landfill. Previous analyses of δ^{13} C of CH₄ from diffuse landfill emissions are more enriched than our landfill biofuel measurements, likely due to CH₄ oxidation in cover soils [Chanton et al., 1999, 2008]. Biofuels derived from cow manure, however, are more enriched in ¹³C and, to a lesser degree D, than CH₄ measured on cattle feedlots (Figure 2 and Table 1). The manure biofuel test facility we visited was an anaerobic digester supplied with manure from off-site facilities, and

relies on increased microbial activity in the digester to create greater CH₄ production than at feedlots, with increased enrichment in stable isotope composition.

[21] Our data show that sewage treatment plants in the Los Angeles area emit CH₄ (Table 1), and we have previously shown that these systems are a large source of N₂O in the region [Townsend-Small et al., 2011b]. In water recycling systems where denitrification is enhanced, CH₄ may be emitted as a by-product of low oxygen conditions. Only a handful of previous studies have analyzed the isotopic composition of CH₄ derived from sewage treatment. In a nitrification-denitrification plant in Japan, Toyoda et al. [2011] found CH₄ emissions of 14.1 mg CH₄ m⁻³, with a δ^{13} C signature of -50.7\%, depleted with respect to background air. Methane emissions from sludge digester-type treatment plants may be even higher, but we do not know the isotopic composition of such CH₄. No previous study has measured the δD of CH_4 from sewage treatment plants, but this is deserving of future research, as our preliminary data show that this source may be isotopically distinct from biological and fossil fuel sources. A better understanding of the -conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

21562020d, 2012, D7, Downloaded from https://agupubs.oninelibrary.wiley.com/obi/10.1029/2011D016826 by NASA Shared Services Cemer (NSSC), Wiley Online Library on [26052025], See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-and-conditions) on Wiley Online Library for rules of use. Q. Aardiese are governed by the dapplicable Centwice Cemer (NSSC), Wiley Online Library on [26052025], See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-and-conditions) on Wiley Online Library for rules of use. Q. Aardiese are governed by the dapplicable Centwice Cemer (NSSC), Wiley Online Library on [26052025], See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-and-conditions) on Wiley Online Library wiley.

Figure 4. Keeling plots of $1/\text{CH}_4$ concentration versus (a) $\delta^{13}\text{C-CH}_4$ and (b) $\delta\text{D-CH}_4$.

CH₄ flux from sewage treatment in this region is also needed, as wastewater recycling is an important component of the water management portfolio in arid southern California.

[22] There is a small but increasing amount of evidence that C in wastewater treatment plants is not entirely modern, either because of fossil C in detergents and pharmaceuticals [Griffith et al., 2009], or due to methanol added to support denitrification [Townsend-Small et al., 2011b]. One study in Japan found dissolved organic C in sewage treatment plants with 14 C ages up to 5000 years old [Nara et al., 2010], and rivers in northern California have dissolved organic C with low radiocarbon content, perhaps due to the presence of wastewater in urban rivers [Sickman et al., 2010]. We did not make direct measurements of Δ^{14} C of CH₄ from wastewater treatment plants in the area, but we have found that CO₂ sampled from wastewater treatment tanks contains up to 10% fossil carbon (X. Xu, unpublished data, 2010). This is an important area of future study, as wastewater

treatment may contribute greater greenhouse gas emissions as global development increases.

4.2. Isotopic Constraints on Sources of CH₄ in Los Angeles

4.2.1. Stable Isotopes

[23] Our lowest observations of CH₄ in air at Mount Wilson (~ 1.76 ppm) were depleted in CH₄ with respect to the nearest background air monitoring site (Figure 3a). This concentration likely represents the annual minimum in CH₄ concentration at our site, as, in general, CH₄ is lower in summer than winter in other Northern Hemisphere sites [Lowry et al., 2009; Dlugokencky et al., 2010]. The NOAA flask sampling network reports an average CH₄ concentration in August 2009 of 1.82 ppm at Trinidad Head, California [Dlugokencky et al., 2010]. This indicates consumption of CH₄ by interaction with OH or other radicals in the urban atmosphere at our study site, which is high in concentration in the summer months [Seinfeld, 1989; Griffin et al., 2004; Langford et al., 2010]. Previous studies have also documented that CH₄ concentrations drop in the summer months in response to high oxidation rates in the atmosphere [Tyler et al., 2007]. Our measurements of urban air at high altitude indicate that excess CH₄ in Los Angeles has a δ^{13} C of approximately -41.5% and a δ D between -203% and $-2\overline{2}8\%$ (Figure 4). Assuming depletion of CH₄ by 0.1 ppm that is uniform across the concentration gradient measured, we can assume that our estimates of the CH_4 end-members are depleted by up to 4% for $\delta^{13}C$ and 20% for δD [Saueressig et al., 2001]. This places our endmember close to our measurements from oil fields and power plants (Figure 2). Our estimates would be improved by incorporating tracers to track air masses moving through the urban core and up to our sampling site, such as ²²²Rn, or by incorporating measurements of other fossil fuel tracers, such as ¹⁴CO₂ or CO. Measurements of conservative tracers as well as trajectory analysis would enable us to translate our measurements into emission rates.

[24] Our data indicate that CH₄ loss from geologic formations, natural gas pipelines and/or fossil fuel refining was the major source of CH₄ in the Los Angeles Basin during our brief sampling period. Longer-term studies are needed to confirm that this is the major source of CH₄ throughout the year. This finding is in keeping with an earlier study [Wunch et al., 2009], which estimated that gas leaks and other industrial sources could account for about 0.1 to 0.3 Tg CH₄ emitted in Los Angeles annually. A recent study by the California Air Resources Board also indicated that leakage from natural gas infrastructure and distribution systems ("fugitive" CH₄) may be underestimated in statewide models [Hsu et al., 2010]. Estimates of fugitive CH₄ emission rates vary widely, ranging from 0.005% to 4%, [Shorter et al., 1996; Kirchgessner et al., 1997; Lelieveld et al., 2005], with estimates for the entire natural gas industry of up to 10%, including emissions from venting and flaring [Cicerone and Oremland, 1988; Kirchgessner et al., 1997]. However, there are very few published studies of fugitive CH₄ emission rates in urban areas, despite very extensive natural gas pipelines present in most cities. Studies of δ^{13} C-CH₄ in Krakow, Poland, found excess CH₄ concentrations attributed to leakage from natural gas pipelines [Kuc et al., 2003], and fossil fuel leakage is a significant source of

treatment plants, especially as the region incorporates more biological wastewater recycling techniques to conserve freshwater resources [Townsend-Small et al., 2011b]. However, our isotopic measurements do not indicate that this is a major source of CH₄ in the Los Angeles area.

4.2.2. Radiocarbon

[28] The radiocarbon content of atmospheric CH₄ is globally higher than that of CO₂, due largely to the release of radiocarbon-labeled CH₄ from nuclear power facilities and atmospheric nuclear weapons testing [Lassey et al., 2007b]. Most recent evidence shows that Δ^{14} C of CH₄ of background air has increased linearly since at least the mid-1980s, to a present-day value of about 138.9 pMC (extrapolated from Figure 1 [Lassey et al., 2007b]). The flux of

CH₄ in London, UK (\sim 20% of total urban CH₄ emissions) [Lowry et al., 2001; Fisher et al., 2006]. In addition to natural gas pipelines, Los Angeles also has several large oil refineries, which process most of the crude oil from the Alaskan North Slope. These facilities are known sources of CH₄, as are electric utilities [Piccot et al., 1996]. Because of the higher global warming potential of CH₄ with respect to CO₂, fugitive CH₄ emissions of even 1% of natural gas in a distribution system will increase the overall global warming potential of natural gas consumption by 25% [Howarth et al., 2011]. This is a growing concern as biogas production and domestic natural gas exploration, including from shale deposits ("hydrofracking"), increases.

[25] Our measurements of δ^{13} C of CH₄ on freeways during rush hour (Table 2) do not indicate a large source of highly enriched CH₄ from vehicle emissions (Figure 2). This is not surprising, as other studies have also shown that vehicle exhaust is a minor source of atmospheric CH₄ [Tyler, 1991; Chanton et al., 2000; Mays et al., 2009].

[26] Direct emissions of CH₄ from vehicles are not considered a significant portion of the global CH₄ budget [Forster et al., 2007]: one group estimated that direct emissions from vehicles accounted for about 0.5 Tg CH₄ yr⁻¹ globally, or about 0.2% of annual anthropogenic CH₄ emissions [Nam et al., 2004]. Amendments to the Clean Air Act in 1990 restricted total hydrocarbon emissions from passenger cars to 0.16 g km⁻¹, and up to 0.24 g km⁻¹ for trucks [U.S. Environmental Protection Agency (USEPA), 2004]. Actual CH₄ emissions from gasoline-powered cars in this category (built since 1990) range from 0.007 to 0.012 g km⁻¹, with an additional 0.055 g CH₄ emitted per cold start [USEPA, 2004]. Interstate 405, the most crowded freeway in Los Angeles, has an average of 374,000 cars per day at the busiest interchanges (California Department of Transportation, Annual average daily traffic statistics, 2009, http://traffic-counts.dot.ca.gov). The average commuting distance in California is 40 km d⁻¹, or about 26.7 min d⁻¹ [U.S. Department of Transportation, 2001]. At 0.007 g CH₄ km⁻¹ plus an additional 0.055 g CH₄ per start (and assuming all of the cars have been built since 1990 and are started 2 times per day), vehicles contribute 227 kg CH₄ d⁻¹ in Los Angeles, or about 83,000 kg CH₄ yr⁻¹. This is only a small fraction of estimated annual CH4 emissions in Los Angeles of between 0.2 to 0.6 Tg CH_4 yr^{-1} (2 to $6 \times 10^8 \text{ kg yr}^{-1}$) [Wunch et al., 2009; Hsu et al., 2010].

[27] More surprisingly, our measurements do not indicate a large source of CH₄ from landfills or wastewater treatment in Los Angeles. However, in London, UK, a comparable sized city (population ~13 million), landfills are the dominant source of urban CH₄ [Lowry et al., 2001; Fisher et al., 2006]. Globally, landfills and wastewater are a large source of CH₄, with estimates ranging from 6 to 12% of total global CH₄ emissions [Denman et al., 2007]. This contribution is expected to be much larger in urban areas, especially in generally dry regions, such as southern California, without significant wetland area. However, California regulates CH₄ emissions from landfills, and the state is at the forefront of natural gas reclamation from landfills to provide fuel for trash collection vehicles. The contribution of wastewater treatment to CH₄ emissions in Los Angeles is not well understood, and more studies are needed on the flux and stable isotopic composition of CH₄ from wastewater

globally higher than that of CO₂, due largely to the release of radiocarbon-labeled CH₄ from nuclear power facilities and atmospheric nuclear weapons testing [Lassey et al., 2007b]. Most recent evidence shows that Δ^{14} C of CH₄ of background air has increased linearly since at least the mid-1980s, to a present-day value of about 138.9 pMC (extrapolated from Figure 1 [Lassey et al., 2007b]). The flux of ¹⁴CH₄ from nuclear reactors is mostly from pressurized water reactors and results from deprotonation of 14N and reaction with H₂, resulting in venting of radio-labeled CH₄ and other reduced C species [Lassey et al., 2007b]. However, this flux is poorly quantified, and CH₄ from these sources is approximately 70% ¹⁴C [Lassey et al., 2007a, 2007b]. At least one other study in southern California has also shown that CH₄ dissolved in surface ocean water is enriched in ¹⁴C as compared to modern C [Kessler et al., 2008]. There are no nuclear power plants located directly in the Los Angeles air basin, but there is one pressurized water reactor just south of the Los Angeles basin (San Onofre Nuclear Generating Station, San Clemente; Figure 1) and one further north (Diablo Canyon Power Plant; San Luis Obispo county).

[29] Despite the radiomethane contribution from nuclear power plants, high Δ^{14} C levels in atmospheric CH₄ are tempered by the release of ¹⁴C-free CH₄ from fossil fuel sources [Wahlen et al., 1989; Lassey et al., 2007b]. Previous analyses of Δ^{14} C of CH₄ have found that about 20% to 30% of CH₄ globally is ¹⁴C-free, or of fossil origin [Wahlen et al., 1989; Quay et al., 1999; Lassey et al., 2007b]. It is difficult to use our measurements of Δ^{14} C-CH₄ to calculate the fossil fuel fraction of CH₄ emissions in Los Angeles, due to high variability in our radiocarbon dates and due to the lack of relationship to CH₄ concentration. For example, our measurements of $\Delta^{14}C$ in background air (1.76 ppm) range from +261.9% to +339.8%, or 127.1 to 134.9 pMC, which more or less represents the range of Δ^{14} C of CH₄ measurements along the entire concentration gradient in this study (Figure 3d and Table 3). However, our data do generally indicate the presence of fossil fuel-derived CH₄ in air in the Los Angeles basin: the current global background Δ^{14} C of CH₄ of 138.9 pMC [Lassey et al., 2007b] is greater than all of the air samples analyzed in this study. Certainly more research is needed to constrain the background value of Δ^{14} C of CH₄ in air in southern California as well as other urban areas, which can aid in constraining contributions of fossil fuels to total CH₄ emissions.

2156222d, 2012, D7, Downloaded from https://agupubs.on.inelibrary.wiley.com/ab/10.1029/2011D016826 by NASA Shawd Services Center (NSSC). Wiley Online Library on 26052025, See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use. OA articles are governed by the dapplicable Centeric Commons License

4.3. Potential for Optical, in Situ Measurements to Determine Sources of CH₄ Emissions

[30] Continuous measurements of greenhouse gas concentrations, such as those presented here, will likely be essential to any attempt to monitor emissions reductions targets, and stable isotopes and radiocarbon will be extremely useful in source apportionment [Levin et al., 2011]. Recent technological advances have shown that the

2156222d, 2012, D7, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011D016826 by NASA Shared Services Center (NSSC), Wiley Online Library on [2605/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Certain Commons and Conditions (https://onlinelibrary.wiley.com/errn-s-and-conditions) on Wiley Online Library for rules of use; OA articles are governe

stable isotopic composition of CH₄ can also be measured using optical techniques, with a strong interest in constraining CH₄ sources [Quay et al., 1999; Webster and Mahaffy, 2011]. However, currently these instruments generally have decreased accuracy as compared to IRMS systems [Zare et al., 2009; Webster, 2005], and work best with CH₄ that is much higher than atmospheric concentrations and/or pressures [Bergamaschi et al., 2000; Keppler et al., 2010]. Because of the high background concentration of CH₄ in Earth's atmosphere and relatively small contribution of source CH₄, measurements of the isotopic composition of CH_4 in air with excess CH_4 are similar to those in background air. For example, in this study, $\delta^{13}C$ of CH_4 in Los Angeles air varied less than 1.5‰ along a concentration gradient from 1.7 to 2.2 ppm (Figure 3b). Until TLS instruments are able to accurately measure small (i.e., $\ll 1 \%$ for δ^{13} C) differences in δ^{13} C of δ D of CH₄ at normal atmospheric concentrations and pressures, mass spectrometry remains the more practical tool for source determination. However, we have shown that the combination of TLS concentration measurements and IRMS isotope measurements of these parameters is a very promising tool for monitoring CH₄ emissions and source identification in urban areas or along urban-to-rural gradients. In our study, we used concentration data from the TLS instrument to time our flask sampling for later isotope analysis, so that our isotope measurements would represent the maximum possible concentration gradient.

5. Conclusions and Implications

[31] We have shown that δ^{13} C and δ D of atmospheric methane can be very useful for elucidating urban sources of CH₄. We also present data on new sources of CH₄ fuel in our measurements of isotope ratios of landfill and manure biofuels. Radiocarbon measurements of CH₄ in our study region show that high background values of Δ^{14} C of CH₄ may be diluted by inputs of fossil fuel CH₄, but long-term monitoring is necessary to better understand the patterns of radiomethane in Los Angeles. However, stable isotope measurements of CH₄ in Los Angeles indicate that fossil fuels, not agriculture, are the dominant source of CH₄ in this region, with evidence pointing toward losses from natural gas pipelines or hydrocarbon refining as the dominant source in the region. Further work on δ^{13} C and δ D of CH₄ in Los Angeles will improve our ability to quantify the strength of these CH₄ sources. This type of observation will be improved by continuous measurements of CH₄ concentration using TLS. In general, continuous measurements of greenhouse gas concentrations supplemented with isotope ratio measurements are extremely useful tools for verifying emissions reductions and for constraining regional-scale inversion modeling of emissions.

[32] Acknowledgments. We thank S. Trumbore, F. M. Kai, D. Zhang, A. Stills, J. Southton, D. Rosso, and K. Beverly for laboratory and field assistance and T. Phillips for Figure 1. The Los Angeles County landfill division and the University of California Cooperative Extension Service helped to coordinate sampling. We also thank the Mount Wilson Observatory (D. Jurasevich and H. McAlister) and the California Laboratory for Atmospheric Remote Sensing at JPL (S. Sander) for donating time and space for sample collection. The manuscript was aided by the comments of Euan Nisbet and two anonymous reviewers. This project was funded by the National Research Initiative of the United States Department of Agriculture, grant 2006–04686.

References

Bergamaschi, P., C. A. M. Brenninkmeijer, M. Hahn, T. Röckmann, D. H. Scharffe, P. J. Crtuzen, N. F. Elansky, I. B. Belikov, N. B. A. Trivett, and D. E. J. Worthy (1998), Isotope analysis based source identification for atmospheric CH₄ and CO sampled across Russia using the Trans-Siberian railroad, *J. Geophys. Res.*, 103, 8227–8235, doi:10.1029/97JD03738.

Bergamaschi, P., M. Bräunlich, T. Marik, and C. A. M. Brenninkmeijer (2000), Measurements of the carbon and hydrogen isotopes of atmospheric methane at Izaña, Tenerife: Seasonal cycles and synoptic-scale variations, *J. Geophys. Res.*, 105, 14,531–14,546, doi:10.1029/199JD901176.

Bergamaschi, P., et al. (2010), Inverse modeling of European CH₄ emissions 2001–2006, *J. Geophys. Res.*, 115, D22309, doi:10.1029/2010JD014180.

Beverly, R. K., W. Beaumont, D. Tauz, K. M. Ormsby, K. F. von Reden, G. M. Santos, and J. R. Southon (2010), The Keck Carbon Cycle AMS Laboratory—University of California, Irvine: Status report, *Radiocarbon*, 52, 301–309.

Chanton, J. P., C. M. Rutkowski, and B. Mosher (1999), Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes *Environ Sci. Technol.* 33, 3755–3760, doi:10.1021/es9904033

plumes, *Environ. Sci. Technol.*, 33, 3755–3760, doi:10.1021/es9904033. Chanton, J. P., C. M. Rutkowski, C. C. Schwartz, D. E. Ward, and L. Boring (2000), Factors influencing the stable carbon isotopic signature of methane from combustion and biomass burning, *J. Geophys. Res.*, 105, 1867–1877, doi:10.1029/1999JD900909.

Chanton, J. P., D. K. Powelson, T. Abichou, and G. Hater (2008), Improved field methods to quantify methane oxidation in landfill cover materials using stable carbon isotopes, *Environ. Sci. Technol.*, 42, 665–670, doi:10.1021/es0710757.

Christensen, L. E., K. Mansour, and R. Q. Yang (2010), Thermoelectrically cooled interband cascade laser for field measurements, *Appl. Opt.*, 49, 111119, doi:10.1117/1.3498767.

Cicerone, R. J., and R. S. Oremland (1988), Biogeochemical aspects of atmospheric methane, *Global Biogeochem. Cycles*, *2*, 299–327, doi:10.1029/GB002i004p00299.

Coleman, D. D., C. L. Liu, K. C. Hackley, and S. R. Pelphrey (1995), Isotopic identification of landfill methane, *Environ. Geosci.*, 2, 95–103.

Denman, K., et al. (2007), Couplings between changes in the climate system and biogeochemistry, in *Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, edited by S. Solomon et al., pp. 499–587, Cambridge Univ. Press, Cambridge, II K

Djuricin, S., D. E. Pataki, and X. Xu (2010), A comparison of tracer methods for quantifying CO₂ sources in an urban region, *J. Geophys. Res.*, 115, D11303, doi:10.1029/2009JD012236.

Dlugokencky, E. J., P. M. Lang, and K. A. Masarie (2010), Atmospheric methane dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1983–2009: Version 2010-08-12, report, NOAA, Silver Spring, Md. [Available at ftp://ftp.cmdl.noaa.gov/ccg/ch4/flask/event.]

Dlugokencky, E. J., E. G. Nisbet, R. Fisher, and D. Lowry (2011), Global atmospheric methane: Budget, changes, and dangers, *Philos. Trans. R. Soc. A*, 369, 2058–2072, doi:10.1098/rsta.2010.0341.

Fisher, R., D. Lowry, O. Wilkin, S. Sriskantharajah, and E. G. Nisbet (2006), High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry, *Rapid Commun. Mass Spectrom.*, 20(2), 200–208, doi:10.1002/ rcm.2300.

Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in *Climate Change 2007: The Physical Science Basis: Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, edited by S. Solomon et al., pp. 129–234, Cambridge Univ. Press, New York.

Griffin, R. J., M. K. Revelle, and D. Dabdub (2004), Modeling the oxidative capacity of the atmosphere of the South Coast Air Basin of California: 1. Ozone formation metrics, *Environ. Sci. Technol.*, 38, 746–752, doi:10.1021/es0341283.

Griffith, D. R., R. T. Barnes, and P. A. Raymond (2009), Inputs of fossil carbon from wastewater treatment plants to U.S. rivers and oceans, *Environ. Sci. Technol.*, 43, 5647–5651, doi:10.1021/es9004043.

Howarth, R. W., R. Santoro, and A. Ingraffea (2011), Methane and the greenhouse-gas footprint of natural gas from shale formations, *Clim. Change*, 106, 679–690, doi:10.1007/s10584-011-0061-5.

Hsu, Y. K., T. VanCuren, S. Park, C. Jakober, J. Herner, M. FitzGibbon, D. R. Blake, and D. D. Parrish (2010), Methane emissions inventory verification in southern California, *Atmos. Environ.*, 44, 1–7, doi:10.1016/j.atmosenv.2009.10.002.

21562202d, 2012, D7, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011JD016826 by NASA Shared Services Center (NSSC), Wiley Online Library on [26/05/2025]. See the Terms

and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

- Johnson, K. A., and D. E. Johnson (1995), Methane emissions from cattle, J. Anim. Sci., 73, 2483–2492.
- Kai, F. M., S. C. Tyler, J. T. Randerson, and D. R. Blake (2011), Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources, *Nature*, 476, 194–197, doi:10.1038/nature10259.
- Keeling, C. D. (1958), The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, *Geochim. Cosmochim. Acta*, 13, 322–334, doi:10.1016/0016-7037(58)90033-4.
- Keeling, C. D. (1961), The concentration and isotopic abundances of carbon dioxide in rural and marine air, *Geochim. Cosmochim. Acta*, 24, 277–298, doi:10.1016/0016-7037(61)90023-0.
- Keppler, F., S. Laukenmann, J. Rinne, H. Heuwinkel, M. Greule, M. Whiticar, and J. Lelieveld (2010), Measurements of ¹³C/¹²C methane from anaerobic digesters: Comparison of optical spectrometry with continuous-flow isotope ratio mass spectrometry, *Environ. Sci. Technol.*, *44*, 5067–5073, doi:10.1021/es100460d.
- Kessler, J. D., W. S. Reeburgh, D. L. Valentine, F. S. Kinnaman, E. T. Peltzer, P. G. Brewer, J. Southton, and S. C. Tyler (2008), A survey of methane isotope abundance (¹⁴C, ¹³C, ²H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters, *J. Geophys. Res.*, 113, C12021, doi:10.1029/2008JC004822.
- Kirchgessner, D. A., R. A. Lott, R. M. Cowgill, M. R. Harrison, and T. M. Shires (1997), Estimate of methane emissions from the U.S. natural gas industry, *Chemosphere*, 35, 1365–1390, doi:10.1016/S0045-6535(97) 00236-1.
- Kuc, T., K. Rozanski, M. Zimnoch, J. M. Necki, and A. Korus (2003), Anthropogenic emissions of CO₂ and CH₄ in an urban environment, Appl. Energy, 75, 193–203, doi:10.1016/S0306-2619(03)00032-1.
- Lang, P. M., L. P. Steele, and R. C. Martin (1990), Atmospheric methane data for the period 1986–1988 from the NOAA/CMDL global cooperative flask sampling network, NOAA Tech. Memo. ERL CMDL-2, Carbon Dioxide Info. Anal. Cent., Dep. of Energy, Oak Ridge, Tenn.
- Langford, A. O., C. J. Senff, R. J. Alvarez II, R. M. Banta, and R. M. Hardesty (2010), Long-range transport of ozone from the Los Angeles Basin: A case study, *Geophys. Res. Lett.*, 37, L06807, doi:10.1029/2010GL042507.
- Lassey, K. R., D. M. Etheridge, D. C. Lowe, A. M. Smith, and D. F. Ferretti (2007a), Centennial evolution of the atmospheric methane budget: What do the carbon isotopes tell us?, *Atmos. Chem. Phys.*, 7, 2119–2139, doi:10.5194/acp-7-2119-2007.
- Lassey, K. R., D. C. Lowe, and A. M. Smith (2007b), The atmospheric cycling of radiomethane and the "fossil fraction" of the methane source, *Atmos. Chem. Phys.*, 7, 2141–2149, doi:10.5194/acp-7-2141-2007.
- Lelieveld, J., S. Lechtenböhmer, S. S. Assonov, C. A. M. Brenninkmeijer, C. Dienst, M. Fischedick, and T. Hanke (2005), Low methane leakage from gas pipelines, *Nature*, 434, 841–842, doi:10.1038/434841a.
- Levin, I., S. Hammer, E. Eichelmann, and F. R. Vogel (2011), Verification of greenhouse gas emission reductions: The prospect of atmospheric monitoring in polluted areas, *Philos. Trans. R. Soc. A*, 369, 1906–1924, doi:10.1098/rsta.2010.0249.
- Lowry, D., C. W. Holmes, N. D. Rata, P. O'Brien, and E. G. Nisbet (2001), London methane emissions: Use of diurnal changes in concentration and δ^{13} C to identify urban sources and verify inventories, *J. Geophys. Res.*, 106, 7427–7448, doi:10.1029/2000JD900601.
- Lowry, D., E. Nisbet, R. Fisher, A. Roddy, and P. O'Brien (2009), Ten years of high-precision methane isotope data for Mace Head and London: The influence of Canadian and European sources, in 14th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers: Measurement Techniques, Rep. 186, pp. 44–47, Global Atmos. Watch, Geneva, Switzerland.
- MacFarling Meure, C., D. Etheridge, C. Trudinger, P. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins (2006), Law dome CO₂, CH₄, and N₂O ice core records extended to 2000 years BP, *Geophys. Res. Lett.*, *33*, L14810, doi:10.1029/2006GL026152.
- Mays, K. L., P. B. Shepson, B. H. Stirm, A. Karion, C. Sweeney, and K. R. Gurney (2009), Aircraft-based measurements of the carbon footprint of Indianapolis, *Environ. Sci. Technol.*, 43, 7816–7823, doi:10.1021/es901326b.
- Miller, J. B., K. A. Mack, R. Dissly, J. C. W. White, E. J. Dlugokencky, and P. P. Tans (2002), Development of analytical methods and measurements of ¹³C/¹²C in atmospheric CH₄ from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, *J. Geophys. Res.*, 107(D13), 4178, doi:10.1029/2001JD000630.
- Mitchell, L. E., E. J. Brook, T. Sowers, J. R. McConnell, and K. Taylor (2011), Multidecadal variability of atmospheric methane, 1000–1800 C.E., J. Geophys. Res., 116, G02007, doi:10.1029/2010JG001441.
- Nakagawa, F., N. Yoshida, A. Sugimoto, E. Wada, T. Yoshioka, S. Ueda, and P. Vijarnsorn (2002), Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in southern Thailand, *Biogeochemistry*, 61, 1–19, doi:10.1023/A:1020270032512.

- Nakagawa, F., U. Tsunogai, D. D. Komatsu, K. Yamada, N. Yoshida, J. Morilzumi, N. Nagamine, T. Lida, and Y. Ikebe (2005), Automobile exhaust as a source of ¹³C- and D-enriched atmospheric methane in urban areas, *Org. Geochem.*, 36, 727–738, doi:10.1016/j.orggeochem.2005.01.003.
- Nam, E. K., T. E. Jensen, and T. J. Wallington (2004), Methane emission from vehicles, *Environ. Sci. Technol.*, 38, 2005–2010, doi:10.1021/ es034837g.
- Nara, F. W., A. Imai, K. Matsushige, K. Komatsu, N. Kawasaki, and Y. Shibata (2010), Radiocarbon measurements of dissolved organic carbon in sewage-treatment-plant effluent and domestic sewage, *Nucl. Instrum. Methods Phys. Res., Sect. B*, 268, 1142–1145, doi:10.1016/j.nimb.2009.10.119.
- Nisbet, E. G. (Ed.) (2005), Meth-MonitEUr: Methane monitoring in the European Union and Russia: Final report, section 6, report, Eur. Comm., Brussels. [Available at http://www.rhul.ac.uk/earthsciences/labs/greengaslab.aspx.]
- O'Sullivan, G., B. J. Min, J. M. Bilyk, R. Ciezki, R. Calosing, and C. D. Sandau (2010), Forensic geo-gas investigation of methane: Characterization of sources within an urban setting, *Environ. Forensics*, 11, 108–116, doi:10.1080/15275920903558737.
- Pataki, D. E., D. R. Bowling, and J. R. Ehleringer (2003a), Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects, *J. Geophys. Res.*, 108(D23), 4735, doi:10.1029/2003JD003865.
- Pataki, D. E., J. R. Ehleringer, L. B. Flanagan, D. Yakir, D. R. Bowling, C. J. Still, N. Buchmann, J. O. Kaplan, and J. A. Berry (2003b), The application and interpretation of Keeling plots in terrestrial carbon cycle research, *Global Biogeochem. Cycles*, 17(1), 1022, doi:10.1029/2001GB001850.
- Piccot, S. D., L. Beck, S. Srinivasan, and S. L. Kersteter (1996), Global methane emissions from minor anthropogenic sources and biofuel combustion in residential stoves, *J. Geophys. Res.*, 101, 22,757–22,766.
- Pohlman, J. W., J. E. Bauer, E. A. Canuel, K. S. Grabowski, D. L. Knies, C. S. Mitchell, M. J. Whiticar, and R. B. Coffin (2009), Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes, *Mar. Chem.*, 115, 102–109.
- Quay, P. D., et al. (1991), Carbon isotopic composition of atmospheric CH₄: Fossil and biomass burning source strengths, *Global Biogeochem. Cycles*, 5, 25–47, doi:10.1029/91GB00003.
- Quay, P., J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, and T. Brown (1999), The isotopic composition of atmospheric methane, Global Biogeochem. Cycles, 13, 445–461, doi:10.1029/1998GB900006.
- Reeburgh, W. S. (2004), Global methane biogeochemistry, in *Treatise on Geochemistry*, vol. 4, edited by H. D. Holland and K. K. Turekian, pp. 65–90, Elsevier, Oxford, U. K.
- Fig. 8. J., A. Gotoh, H. O. Ajie, and S. C. Tyler (2001), High-precision continuous-flow measurement of δ¹³C and δD of atmospheric CH₄, Anal. Chem., 73, 4104–4110, doi:10.1021/ac0155106.
- Saueressig, G., P. Bergamaschi, J. N. Crowley, H. Fischer, and G. W. Harris (1996), D/H kinetic isotope effect in the reaction CH₄ + Cl, *Geophys. Res. Lett.*, 23, 3619–3622, doi:10.1029/96GL03292.
- Saueressig, G., J. N. Crowley, P. Bergamaschi, C. Brühl, C. A. M. Brenninkmeijer, and H. Fischer (2001), Carbon 13 and D kinetic isotope effects in the reactions of CH₄ with O(¹D) and OH: New laboratory measurements and their implications for the isotopic composition of stratospheric methane, J. Geophys. Res., 106, 23,127–23,138, doi:10.1029/2000JD000120.
- Seinfeld, J. H. (1989), Urban air pollution: State of the science, *Science*, 243, 745–752, doi:10.1126/science.243.4892.745.
- Shorter, J. H., et al. (1996), Methane emission measurements in urban areas in eastern Germany, J. Atmos. Chem., 24, 121–140, doi:10.1007/ BF00162407.
- Sickman, J. O., C. L. DiGiorgio, M. L. Davisson, D. M. Lucero, and B. Bergamaschi (2010), Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon dating: Sacramento-San Joaquin River basin, California, *Biogeochemistry*, 99, 79–96, doi:10.1007/s10533-009-9391-z.
- Snover, A. K., and P. D. Quay (2000), Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane, *Global Biogeochem. Cycles*, *14*, 25–39, doi:10.1029/1999GB900089.
- Sowers, T., S. Bernard, O. Aballain, J. Chappellaz, J. M. Barnola, and T. Marik (2005), Records of the δ^{13} C of atmospheric CH₄ over the past 2 centuries as recorded in Antarctic snow and ice, *Global Biogeochem. Cycles*, 19, GB2002, doi:10.1029/2004GB002408.
- Stuiver, M., and H. A. Polach (1977), Discussion: Reporting of ¹⁴C data, *Radiocarbon*, 19, 355–363.
- Townsend-Small, Á., D. E. Pataki, C. I. Czimczik, and S. C. Tyler (2011a), Nitrous oxide emissions and isotopic composition in urban and

21562202d, 2012, D7, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011JD016826 by NASA Shared Services Center (NSSC), Wiley Online Library on [2605/2025]. See the Terms

- agricultural systems in southern California, J. Geophys. Res., 116, G01013, doi:10.1029/2010JG001494.
- Townsend-Small, A., D. E. Pataki, L. Y. Tseng, C. Y. Tsai, and D. Rosso (2011b), Nitrous oxide emissions from wastewater treatment and water reclamation plants in southern California, *J. Environ. Qual.*, 40, 1542–1550, doi:10.2134/jeq2011.0059.
- Toyoda, S., Y. Suzuki, S. Hattori, K. Yamada, A. Fujii, N. Yoshida, R. Kuono, K. Murayama, and H. Shiomi (2011), Isotopomer analysis of production and consumption mechanisms of N₂O and CH₄ in an advanced wastewater treatment system, *Environ. Sci. Technol.*, 45, 917–922, doi:10.1021/es102985u.
- Turpin, B. J., and J. J. Huntzicker (1991), Secondary formation of organic aerosol in the Los Angeles Basin: A descriptive analysis of organic and elemental carbon concentrations, Atmos. Environ., Part A, 25, 207–215.
- Tyler, S. C. (1986), Stable carbon isotope ratios in atmospheric methane and some of its sources, *J. Geophys. Res.*, *91*, 13,232–13,238, doi:10.1029/JD091iD12p13232.
- Tyler, S. C. (1991), The global methane budget, in *Microbial Production* and *Consumption of Greenhouse Gases: Methane, Nitrogen Oxides,* and *Halomethanes*, edited by J. E. Rogers and W. B. Whitman, pp. 7–38, Am. Soc. of Microbiol., Washington, D. C.
- Tyler, S. C., H. O. Ajie, M. L. Gupta, R. J. Cicerone, D. R. Blake, and E. J. Dlugokencky (1999), Stable carbon isotopic composition of atmospheric methane: A comparison of surface level and free tropospheric air, J. Geophys. Res., 104, 13,895–13,910, doi:10.1029/1999JD900029.
- Tyler, S. C., A. L. Rice, and H. O. Ajie (2007), Stable isotope ratios in atmospheric CH₄: Implications for seasonal sources and sinks, *J. Geophys. Res.*, 112, D03303, doi:10.1029/2006JD007231.
- U.S. Department of Transportation (2001), Highway statistics, report, Fed. Highway Admin., Washington, D. C. [Available at http://www.bts.gov/publications/state_transportation_statistics/california/html/table_05_04.html.]
- U.S. Environmental Protection Agency (USEPA) (2004), Update of methane and nitrous oxide emission factors for on-highway visitors, *Publ. EPA420-P-04-016*, Washington, D. C.

- Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J. S. Vogel, J. Southton, A. Shemesh, R. Fairbanks, and W. Broecker (1989), Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon, *Science*, 245, 286–290, doi:10.1126/science.245.4915.286.
- Webster, C. R. (2005), Measuring methane and its isotopes ¹²CH₄, ¹³CH₄, and CH₃D on the surface of Mars with in situ laser spectroscopy, *Appl. Opt.*, 44, 1226–1235, doi:10.1364/AO.44.001226.
- Webster, C. R., and P. R. Mahaffy (2011), Determining the local abundance of Martian methane and its' ¹³C/¹²C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission, *Planet. Space Sci.*, *59*, 271–283, doi:10.1016/j. pss.2010.08.021.
- Whiticar, M. J. (1999), Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, *Chem. Geol.*, 161, 291–314, doi:10.1016/S0009-2541(99)00092-3.
- Whiticar, M., and H. Schaefer (2007), Constraining past global tropospheric methane budgets with carbon and hydrogen isotope ratios in ice, *Philos. Trans. R. Soc. A*, 365, 1793–1828, doi:10.1098/rsta.2007.2048.
- Wunch, D., P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin (2009), Emissions of greenhouse gases from a North American megacity, *Geophys. Res. Lett.*, 36, L15810, doi:10.1029/2009GL039825.
- Zare, R. N., D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad (2009), High-precision optical measurements of ¹³C/¹²C isotope ratios in organic compounds at natural abundance, *Proc. Natl. Acad. Sci. U. S. A.*, 106, 10,928–10,932, doi/10.1073/pnas.0904203106.
- L. E. Christensen, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
- D. E. Pataki, S. C. Tyler, and X. Xu, Department of Earth System Science, University of California, Irvine, CA 92697, USA.
- A. Townsend-Small, Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA. (amy.townsend-small@uc.edu)