

Version 1.1, February 2014

INSAT-3D Data Products Format Document

Data Products Software Group
Signal and Image Processing Area
Space Applications Center (SAC)
Indian Space Research Organisation (ISRO)
INDIA-380015.

This page is intentionally left blank.

Document Control and Data sheet

1. Document No. and Date : SAC/IMDPS/SIPA/DPSG/MSDPD/TN-01/FEB 2014

2. Title : INSAT-3D Data Products Format Document

3. Type of document : Technical

4. No. of pages : 26

5. Authors : INSAT DP Team

6. Originating Unit : Data Products Software Group (DPSG),

Signal & Image Processing Area (SIPA),

SAC, ISRO, Ahmedabad-15, INDIA.

7. Security Classification : Unrestricted

8. Distribution : Open Circulation

Contents

Chapter 1: Introduction	
Chapter 1: Introduction	
1.2 Purpose and Objectives	1
1.3 INSAT-3D Payloads	
1.4 INSAT-3D Data Products Types	2
1.5 Product File Naming Convention	3
Chapter 2: INSAT-3D Data Products HDF5 File Structure	5
2.1 Products Overview	5
2.2 INSAT-3D Digital Data Products File Formats	5
2.3 Channel Datasets	9
2.4 Geophysical Parameter Datasets	11
2.6 Calibration Datasets	
2.7 Ancillary Datasets	19
2.8 Dimension Scales	20
Appendix- I: INSAT-3D Radiometric Calibration	22
Appendix- II : INSAT-3D Geometric Calibration	
Abbreviations and Acronyms	
References	26

Document Change History

*A: Addition; M: Modification; D: Deletion

Version No	Date.	Section No	A/M/D *	Description of change
V1.0	Sept 1, 2012		A	NetCDF-4 enhanced Data Model based
V1.0	May 3,2012		M	Switching to Netcdf4- classic model
V1.0	July 22, 2013		M	New Levels of Geophysical Parameters, KML Format
V1.1	Feb. 19, 2014		A,M	For Imager VISIBLE and SWIR bands Radiance is included in place of Albedo. For SOUNDER Visible Band Radiance is included in place of Albedo

Chapter 1: Introduction

1.1 Scope

The document describes the format layout of Sounder and Imager INSAT-3D Digital Data Products provided in HDF5 (Hierarchical Data Format) and Keyhole Markup Language (KML). These include Standard and Geophysical Parameters provided in HDF5 Format and KML. This format document is valid for Level-1, Level-2 and Level-3 products.

1.2 Purpose and Objectives

This document serves as a format document for the INSAT-3D data products in HDF5 Format. The reader should note that this document does not discuss the structures underlying HDF or the specific conventions employed. For more information on HDF, its design philosophy, and its logical and physical formats, the reader is referred to NCSA website [1]. The HDF5 library and utilities (provided by NCSA) can be used to read the contents of the HDF products.

1.3 INSAT-3D Payloads

The INSAT-3D spacecraft (parked at 82° East) carries two meteorological payloads: (i) Imager working from the visible to the infrared spectral bands (0.55 to 12.5 μ m) and (ii) Sounder working in 18 IR (7 in LWIR,5 in MWIR,6 in SWIR) channels and one in Visible spectral range. Brief specification of Imager and Sounder are as follows.

IMAGER

The IMAGER provides imaging capability of the earth disk from geostationary altitude in one Visible (VIS) in 0.55 to 0.75 μ m range and five infrared channels. The specifications of the payload are summarized in Table 1.2.1.

There are two flexible modes of operations possible with the IMAGER payloads:

- Full frame mode scans 18° E-W x 18°N-S covering the entire earth disk and some space around. The acquisition time for full globe is around 26 minutes. So daily 48 acquisitions are possible in every half hourly interval.
- Program mode covering 18° in E-W direction; N-S coverage can be defined in terms of the number of lines to be scanned

Table 1.1 Payload Specification for IMAGER

Spectral	Spectral Range	Resolution (km)	Quantization
Channels	(µm)		bits
VIS	0.55 - 0.75	1	10
SWIR	1.55-1.70	1	10
MIR	3.80-4.00	4	10
WV	6.50-7.10	8	10
TIR 1	10.3-11.3	4	10
TIR 2	11.5 – 12.5	4	10

SOUNDER

The Sounder onboard INSAT 3D has 18 Infra Red channels, out of which 7 are in long wave IR (LWIR), 6 in short wave IR (SWIR) and 5 in medium wave IR (MWIR) bands and 1 Visible Channel.

Table 1.2 Payload Specification for Sounder

Spectral Channels	Spectral Range (µm)	Resolution (km)	Quantization Bits
VISIBLE	0.67 - 0.72	10	12
SWIR (6 Channels)	3.67 - 4.59	10	14
MWIR (5 Channels)	6.38 - 11.33	10	14
LWIR (7 Channels)	11.66 – 14.85	10	14

1.4 INSAT-3D Data Products Types

Supported data products as given as:

Table: 1.3 INSAT-3D Data Product Levels and Types

Product	Processing	Corrections Applied	Format/Remarks
Description	level		
Standard	LEVEL 1B	Radiometrically corrected (Line loss	HDF5
Corrections		correction, Failed detector correction	
		and RAD LUT applied)	
Standard	LEVEL 1C	Radiometric + Geometric correction	HDF5
Corrections with		applied (Geo-referenced)	
Geo-referencing			
Geo-physical	LEVEL 2B	Geophysical parameters derived from	HDF5
Parameter		L1B	
Geo-physical	LEVEL2G	Geophysical Parameters Gridded at a	HDF5
Parameter		pre-defined Resolution	

Geo-physical	LEVEL2P	Geophysical Parameters provided as	HDF5/ KML
Parameter		Point Datasets	
Geo-physical	LEVEL 3B	Binned Geophysical Parameters	HDF5
Parameter		derived from L2B	
Geo-physical	LEVEL3G	Binned Geophysical Parameters	HDF5
Parameter		derived from L2G	

1.5 Product File Naming Convention

The hdf5 product file name is coined as: SSNNN_DDMMMYYYY_HHmm_LOP_XXX.h5

Where

SS=Satellite ID (e.g. 3D for INSAT-3D)

NNN=Sensor ID (IMG for Imager, SND for Sounder)

DDMMMYYYY=Date of Acquisition (DD=Day of Month, MMM=Month of the year, YYYY= year of Pass e.g. 23MAY2012)

HHmm=Time of Acquistion (HH=Hour of day mm=minute of the hour)

LOP=Level of Processing (L1B, L1C, L2B)

XXX=Parameter Name (See Table 1.5) or STD or Sector Name (See Table 1.4) e.g. 3DIMG_26SEP2012_0730_L1B_STD.h5

Table 1.4 Sector Name and Mnemonics

Sr.	Sector Name	Mnemonics	Description/ Remark	SENSOR
No				
1	ASIA_MER	ASI_MER		IMAGER
2	SGP	SGP	Area Of Interest (AOI)	
3	SA1	SA1	based Products	SOUNDER
4	SB1	SB1		

Table 1.5 Geo-physical Parameter Name and Mnemonics

Sr.	Geo-physical Parameter Name	SENSOR	Level	Mnemonics
No				
Per P	ixel Products (IMAGER)			
1.	Outgoing Longwave Radiation	IMAGER	L2B	OLR
2.	Hydro Estimator derived Precipitation	IMAGER	L2B	HEM
3.	Cloud Mask	IMAGER	L2B	CMK
4.	Sea Surface Temperature	IMAGER	L2B	SST
5.	Upper Troposphere Humidity	IMAGER	L2B	UTH

Gride	Gridded Geophysical Parameters (IMAGER)					
6.	Quantitative Precipitation Estimate (IMR Method)	IMAGER	L2G	IMR		
7.	Quantitative Precipitation Estimate (GPI Method)	IMAGER	L2G	GPI		
8.	Aerosol Optical Depth	IMAGER	L2G	AOD		
Point	Geophysical Parameters (IMAGER)					
9.	Wind Vectors	IMAGER	L2P	VIS/IR/WV/MIR		
10.	Smoke	IMAGER	L2P	SMK		
11.	Fire	IMAGER	L2P	FIR		
Map	Projected Geophysical Parameters (IMAGER)					
12.	Fog	IMAGER	L2C	FOG		
13.	Snow Cover	IMAGER	L2C	SNW		
Per P	Per Pixel Products (SOUNDER)					
14.	Atmospheric Profiles and Derived Parameters	SOUNDER	L2B	SA1/SB1 (Sector		
				Acquired)		

Chapter 2: INSAT-3D Data Products HDF5 File Structure

This chapter gives details of underlying product structure of INSAT-3D HDF Data Product corresponding to various Processing levels as described in previous chapter.

2.1 Products Overview

Standard Products (L1B and L1C) will have following datasets:

Table 2.1 Overview of Standard Products Structure

S. No.	Dataset Categories	Description		
1.	Channel Datasets	The various channels in which satellite image is acquired		
2.	Geo-location	The Geo-location Information in the form of 2-D Latitude		
	Information Datasets	Longitude Disks (containing per pixel Lat/Lon values) for		
		L1B and Map Projection information in case of L1C Products		
3.	Calibration Datasets	Calibration Lookup Tables (Radiance and Brightness		
		Temperature for IR and WV channels and Radiance for		
		Visible and SWIR Channels). Quadratic, Gain and Offset		
		coefficients also provided for calculating radiances directly		
		from count (See APPENDIX II)		
4.	Ancillary Datasets	Ancillary Information (Satellite Azimuth, Satellite Elevation,		
		Sensor Azimuth and Sensor Elevation)		

Geophysical Parameters will have following datasets:

Table 2.2 Overview of Geophysical Parameters Structure

S. No.	Datasets	Description	on
1.	Geophysical Parameters	geo-location Sounder Pr	all geophysical parameters are provided in separate HDF file along with a information and ancillary information (if any e.g. quality flags). For rofiles, atmospheric profiles, surface parameters along with derived are provided in a single product.
2.	Geo-location	L2B/L3B	2-D Latitude/ Longitude HDF5 Datasets
	Information	L2G/ L3G	1-D Latitude/ Longitude HDF5 dimension Scales
		L2P	1-D Latitude/ Longitude HDF5 Datasets for every Point observation

2.2 INSAT-3D Digital Data Products File Formats

This section gives detailed structure of digital data Products in HDF5. The data product follows CF-conventions (Climate and forecasting conventions [2]). Root group will have following attributes:

Table 2.3 Root Group Attributes

S. No.	Attribute Name	Attribute Value/ Format	Description
1.	conventions	CF-1.6	Conventions used in the data product
2.	title	e.g. 3DIMG_01SEP2012_013 0_L1B	A description of what is in the dataset.
3.	institute	=BES,SAC/ISRO, Ahmedabad for BES, Bopal =IMD,New Delhi, INDIA for IMD, Delhi	Specifies where the original data was processed.
4.	source	INSAT-3D Imager (IMG) /INSAT-3D Sounder (SND)	The satellite Payload which acquired the data.
5.	Unique_Id	3DIMG_01SEP2012_013 0	Unique Job ID
6.	Product_Creation_Time	YYYY-MM- DDTHH:mm:ss	Date and Time when product was created
7.	Output_Format	hdf5-1.8.8	HDF-5 library used for generating the product
8.	HDF_Product_File_Name	See Section 1.5	IMDPS-generated HDF5 file
9.	Station_Id	= BES (For BES, Bopal) =IMD (For IMD, Delhi)	Station ID for the ground station that processed data
10.	Ground_Station	= IMD New Delhi, INDIA (For IMD, Delhi) =BES, SAC/ISRO, Ahmedabad, INDIA (For BES, Bopal)	Description of Ground station where data was received
11.	Product_Type	= Standard (Full Disk) = SECTOR	Identifier to inform user of product Type
12.	Sensor_Id	= IMG (For Imager) = SND (For Sounder)	ID for Sensor
13.	Sensor_Name	IMAGER (For Imager) SOUNDER (For Sounder)	Descriptive Name of Sensor
14.	Acquisition_Date	DDMMMYYYY	Date image was acquired
15.	Acquisition_Time_in_GMT	hhmm	Representative time of acquisition in GMT
16.	Acquisition_Start_Time	DD-MM- YYYYTHH:MM:SS	Start Time for Data Acquisition
17.	Acquisition_End_Time	DD-MM- YYYYTHH:MM:SS	End Time for Data Acquisition
18.	Processing_Level	L1B/L1C/L2B/L2G/L2P/	Level of Processing

		L3B/L3G	
19.	Satellite_Name	INSAT-3D	Name of the Satellite
20.	Location_of_Satellite(degrees)	82° E	Location of Satellite
21.	Imaging_Mode	=FULL FRAME =NORMAL FRAME =SECTOR FRAME	Type of acquisition
21.	Nominal_Altitude(km)	36000.0	Nominal Altitude of Satellite
22.	Observed Altitude(km)	64-bit floating point	Observed Altitude of Satellite
23.	Field_of_View(degrees)	64-bit floating point	Field of View of Satellite
24.	Nominal_Central_Point_Coord inates(degrees)_Latitude_Long itude	0.0, 82.0	Nominal co-ordinate of the central point
25.	Software Version	1.0	Version of the DP Software used for Processing
26.	left_longitude	+180° to -180° (32bit	South Bounds of data
27.	right_longitude	floating point)	North Bounds of data
28.	upper_latitude	+90° to -90° (32bit	Upper Bounds of data
29.	lower_latitude	floating point)	Lower Bounds of data
30.	Datum	WGS84	Datum used
31	Ellipsoid	WGS84	Ellipsoid used
32.	Imaging_Mode	FULL_FRAME or SECTOR	Mode of Imaging
33.	FastScan_Linearity_Enabled	Yes/No	Whether Fast Scan (W-E or E-W) Linearity was enabled onboard during acquisition
34.	SlowScan_Linearity_Enabled	Yes/No	Whether Slow Scan (N-S) Linearity was enabled onboard during acquisition
35.	Attitude_Source	STAR /EARTH/ZERO	Source of Attitude used for product generation STAR: Star Sensor EARTH: Earth Sensor ZERO: No Attitude Available (Zero Attitude Used)
36.	Radiometric_Calibration_Type	LAB CALIBRATED/ONLINE CALIBRATED	Whether Radiometric Calibration was carried out (Lab Coefficients or Online Black Body measurements)

Table 2.4 Root Group Attributes (Specific to Imager L1B Products)

S.	Attribute Name	Attribute Value/	Description
No.		Format	_
1.	TIR1_Gain_Mode	=1	Gain Mode for TIR1
2.	TIR2_Gain_Mode	=2	Gain Mode for TIR2
3.	MIR_Gain_Mode	=3	Gain Mode for MIR
4.	WV_Gain_Mode	=4	Gain Mode for WV
5.	VIS_Gain_Mode		Gain Mode for SWIR
6.	SWIR_Gain_Mode		Gain Mode for VIS
7.	TIR1_Acquisition_Mode		Acquisition Mode for TIR1
			(Main or Redundant)
8.	TIR2_Acquisition_Mode		Acquisition Mode for TIR2
			(Main or Redundant)
9.	MIR_Acquisition_Mode	=MAIN (For Main)	Acquisition Mode for MIR
		=RED (for Redundant)	(Main or Redundant)
10.	WV_Acquisition_Mode		Acquisition Mode for WV
			(Main or Redundant)
11.	VIS_Acquisition_Mode		Acquisition Mode for VIS
			(Main or Redundant)
12.	SWIR_Acquisition_Mode		Acquisition Mode for
			SWIR (Main or
			Redundant)

Table 2.5 Root Group Attributes (Specific to Binned Products)

S. No.	Attribute Name	Attribute Value/ Format	Description
1.	Input_Date_Times	DDMMMYYYY_HHMM	Input Date Times used for
			binning
2.	Binning_Function	= MIN (Minimum)	Binning Function Used
		= MAX (Maximum)	
		= AVG (Average)	
		= SUM (Accumulated)	
3.	Binning_Period	=Daily	
		=Weekly	
		=Monthly	
		=Yearly	
4.	Num_Input_Date_Times		Number of Input Date
			Times used

2.3 Channel Datasets

For Imager, following are the channel Datasets

Table 2.6 Channel Datasets for IMAGER

S. No.	Dataset Name	Data Type	Description	
1.	IMG_VIS	16-bit unsigned integer	Gray Counts for Visible channel	
2.	IMG_SWIR	16-bit unsigned integer	Gray Count for Shortwave	
			Infrared Channel	
3.	IMG_TIR1	16-bit unsigned integer	Gray Counts for Thermal	
			Infrared Channel 1	
4.	IMG_TIR2	16-bit unsigned integer	Gray Counts for Thermal	
			Infrared Channel 2	
5.	IMG_MIR	16-bit unsigned integer	Gray Counts for Middlewave	
			Infrared Channel	
6.	IMG_WV	16-bit unsigned integer	Gray Counts for Shortwave	
			Infrared Channel	

The resolution value for L1B Products is at NADIR and for L1C, it is uniform over full image.

Table 2.7 Channel Datasets for SOUNDER (Data Type: 16-bit unsigned integer)

S. No.	Dataset Name	Description
1.	SND_LWIR1	Gray Counts for Longwave Infrared Channel 1
2.	SND_LWIR2	Gray Counts for Longwave Infrared Channel 2
3.	SND_LWIR3	Gray Counts for Longwave Infrared Channel 3
4.	SND_LWIR4	Gray Counts for Longwave Infrared Channel 4
5.	SND_LWIR5	Gray Counts for Longwave Infrared Channel 5
6.	SND_LWIR6	Gray Counts for Longwave Infrared Channel 6
7.	SND_LWIR7	Gray Counts for Longwave Infrared Channel 7
8.	SND_MWIR1	Gray Counts for Middlewave Infrared Channel 1
9.	SND_MWIR2	Gray Counts for Middlewave Infrared Channel 2
10.	SND_MWIR3	Gray Counts for Middlewave Infrared Channel 3
11.	SND_MWIR4	Gray Counts for Middlewave Infrared Channel 4
12.	SND_MWIR5	Gray Counts for Middlewave Infrared Channel 5
13.	SND_SWIR1	Gray Counts for Shortwave Infrared channel 1
14.	SND_SWIR2	Gray Counts for Shortwave Infrared Channel 2
15.	SND_SWIR3	Gray Counts for Shortwave Infrared Channel 3
16.	SND_SWIR4	Gray Counts for Shortwave Infrared Channel 4
17.	SND_SWIR5	Gray Counts for Shortwave Infrared Channel 5
18.	SND_SWIR6	Gray Counts for Shortwave Infrared Channel 6
19.	SND_VIS	Gray Counts of Visible Channel

Each of these datasets has following attributes giving meta-information about each channel:

Table 2.8 Attributes of Datasets within Channel Datasets

S. No.	Attribute Name	Data type	Description	Applicable
				Levels
1.	long_name	string, length=variable	Descriptive name of the channel	L1B, L1C
2.	invert	string, length=4	Whether the channel is inverted	L1B, L1C
		or 5	or not. Possible values=true or	
			false. All IR/WV channels are	
			inverted.	
3.	bandwidth	32-bit floating	Bandwidth of channel	L1B, L1C
		point	(same units as that of central	
			wavelength)	
4.	central_wavelen	32-bit floating	Central wavelength	L1B, L1C
	gth	point		
5.	wavelength_unit	string, length=2	Units of central wavelength	L1B, L1C
6.	bits_per_pixel	32-bit integer	Bits per pixel of the data	L1B, L1C
7.	resolution	32-bit floating	Spatial Resolution at NADIR in	L1B, L1C
		point	case of L1B and for full image in	
			case of L1C	
8.	resolution_unit	string, length=2	Units of Spatial resolution	L1B, L1C
9.	coordinates	string,	CF-compliant attribute for	L1B
		length=variable	associating coordinate variables	
			with the data variable. For	
10	anid manning	atuin a	example "time latitude longitude"	I 1C
10.	grid_mapping	string, length=variable	CF-compliant attribute for associating coordinate variables	L1C
		lengin-variable	with the data variable. For	
			example "mercator" for Mercator	
			Projection.	
11.#	lab_radiance_sca	64-bit floating	Quadratic term for lab calibrated	L1B, L1C
н	le_quad	point	radiance calculation from count	
12.#	lab_radiance_sca		Slope term for lab calibrated	L1B, L1C
#	le_factor	32-bit floating		
13. #	lab_radiance_ad	point	Offset term for lab calibrated	L1B, L1C
4.4	d_offset	<u> </u>	radiance calculation from count	* 1D * 1 °
14.	online_radiance_	64-bit floating	Offset term for online calibrated	L1B, L1C
1.5 #	quad	point	radiance calculation from count	1 1D 1 1C
15.#	online_radiance_	20 1:4	Quadratic term for online	L1B, L1C
	scale_factor	32-bit floating	calibrated radiance calculation	
1.6 #	aulina u- l'	point	from count	I 1D I 1C
16. #	online_radiance_		Slope term for online calibrated	L1B, L1C
	add_offset		radiance calculation from count	

[#] For detailed description of these fields Refer Appendix-I: Radiometric Calibration

2.4 Geophysical Parameter Datasets

Geophysical Parameters are classified into three types:

- 1. **L2B:** The parameters derived from L1B
- 2. **L2G:** The Parameters derived from L1B gridded at predefined grid interval.
- 3. **L2P:** The Parameters derived from L1B with output as point datasets.

Table 2.9 L2B Geophysical Parameters (IMAGER)

S.	Geophysical	Dataset(s)	Description	Data Type
No	Parameter	Name	•	.
	Name			
1.	Outgoing Longwave Radiation	OLR	Outgoing Longwave Radiation Dataset	32-bit floating point
2.	Fog	FOG	FOG Dataset	8-bit signed character
4.	Hydro Estimator derived Precipitation	НЕМ	Hydro estimator derived HEM Dataset	32-bit floating point
5.	Cloud Mask	СМК	Cloud Mask Dataset 0:Clear;1:Cloudy;2: Probably_Clear;3:Probably_Cloudy	8-bit signed character
6.	Upper Troposphere Humidity	UTH	Upper Troposphere Humidity Dataset	32-bit floating point
7.	Sea Surface Temperature	SST	Sea Surface Temperature Dataset	32-bit floating point
		SST_QFLAGS	SST Quality Flags 1:Cloud Masked; 2:Climatology Check Failed; 3:High Confidence; 4:Land	8-bit unsigned character

Table 2.10 L2B SOUNDER Geophysical Parameters (Data Type: 32-bit floating point)

S. No.	Dataset(s) Name	Description
1.	H2OMMRPhy	Water Vapor Profile (Physical Retrieval)
2.	H2OMMRReg	Water Vapor Profile (Regression Retrieval)
3.	O3VMRReg	Ozone Profiles (Regression Retrieval)
4.	TAirPhy	Temperature Profile (Physical Retrieval)
5.	TAirReg	Temperature Profile (Regression Retrieval)
6.	TSurfPhy	Surface Skin Temperature (Physical Retrieval)
7.	TSurfReg	Surface Skin Temperature (Regression Retrieval)
8.	totO3Reg	Total Column Ozone (Regression Retrieval)
9.	DMI	Dry Microburst Index
10.	FORC_SKIN_TEMP	Forecast Skin Temperature
11.	FOR_SURF_HUMIDITY	Forecast Surface Humidity

12.	GEO_POT_HEIGHT	Geo-potential Height
13.	L1_PREC_WATER	Layer-1 Precipitable Water (1000 to 900 mb)
14.	L2_PREC_WATER	Layer-2 Precipitable Water (900 to 700 mb)
15.	L3_PREC_WATER	Layer-1 Precipitable Water (700 to 300 mb)
16.	LI	Lifted Index
17.	MEAN_SURF_PRES	Mean Surface Pressure
18.	WI	Wind Index
19.	Theta-e	Maximum vertical theta-e
20.	totH2O	Total Water Vapor

Table 2.11 L2G Geophysical Parameters (Data Type: 32-bit floating point)

S. No	Geophysical	Dataset(s)	Description
	Parameter Name	Name	
1.	Quantitative	IMR	IMSRA (INSAT
	Precipitation Estimate		Multispectral Rainfall
	(IMR Method)		Algorithm) derived
			Precipitation Dataset
2.	Quantitative	GPI	Precipitation Derived
	Precipitation Estimate		from GPI Method
	(GPI Method)		
3.	Aerosol Optical	AOD	Aerosol Optical Depth
	Depth		

Table 2.12 L2C Geophysical Parameters (Data Type: 8-bt signed character)

S. No	Geophysical Parameter Name	Dataset(s) Name	Description
1.	Snow Cover	SNW	Snow Cover Dataset
2.	FOG	FOG	FOG Dataset

Table 2.13 L2P Wind Vector Geophysical Parameter Datasets

S.No.	Dataset(s) Name	Description	Data Type
1.	MEAN_BT	Average Brightness Temperature	
		(Only for TIR/WV/MIR channels)	32-bit floating point
2.	MIN_BT	Minimum Brightness Temperature	
		(Only for TIR/WV/MIR channels)	
3.	OBSERVATION_TI	Time of Observation	64-bit floating point
	ME		
4.	SCANS	Scan Number	32-bit signed integer
5.	PIXELS	Pixel Number	
6.	PRESSURE	Pressure	
7.	QUALITY_INDICA	Wind Quality	32-bit floating point
	TOR		
8.	HEIGHT	Height Assignment Method.	8-bit signed character
	ASSIGNMENT	HWIN: Infrared Window	

	METHOD	Technique	
	WETHOD	HH2O: H2O intercept method	
		BASE: Cloud Base method	
		CLRR : Clear Sky WV wind	
		HOLD : Old Empirical method	
		(When forecast is not available)	
		For MIR Channel	
		0:HWIN;1:BASE;2:HOLD	
		For TIR Channel	
		0:HWIN;1:HH2O;2:BASE;3:HOL	
		D	
		For WV Channel	
		0:HWIN;1:BASE;2:CLRR;3:HOL	
	D		
		For VIS Channel	
		0:HWIN;1:BASE;2:HOLD	
9.	UCOMP	U Component of Wind	
10.	VCOMP	V Component of Wind	
11.	WIND_DIRECTION	Wind Direction	32-bit floating point
12.	WIND_SPEED	Wind Speed	
13.	SAT_ZEN	Satellite Zenith	

Note: The L2P HDF Geophysical Parameters have a extra attribute in the root group with following details:

 Table 2.14 Attribute in Root Group of L2P Geophysical Parameter Datasets

S. No.	Attribute Name	Data Type	Description
1.	:featureType	string, value="point"	CF-compliant attribute used to
			indicate that dataset is point dataset

The dataset containing geophysical parameter has following of attributes:

Table 2.15 Attributes of Geophysical Parameter Datasets

S. No.	Attribute Name	Data type	Description
1.	long_name	string, length=variable	Descriptive name of the geophysical
			parameter
2.	standard_name	string, length=variable	Standard name of the geophysical
			parameter
3.	_FillValue	Same as dataset data-type	CF-compliant attribute used where the
			parameter is missing (wherever
			applicable)
4.	units	String, length=units	Unit string defining the units of
			geophysical parameter
5.	coordinates	string, length=variable	CF-compliant attribute for associating
			coordinate variables with the data
			variable. (Applicable for L2B and L2P)

2.5 Geo-location Information Datasets (For details Refer Appendix-II: Geometric Calibration)

These datasets contain geo-location information corresponding to the channel or geophysical parameter data stored in the product. For L1B and L2B products, the geo-location information is provided in terms of latitude/longitude datasets. For L1B products, the latitude/ longitude datasets are stored corresponding to each distinct resolution (1km/ 4km/ 8km for IMAGER and 10 km for SOUNDER).

Table 2.16 Geo-location Datasets for L1B, L2B and L2P (HDF) Products

S. No.	Dataset Name	Data Type	Description	Applicable
		~ ~	_	Levels
1.	Latitude		Latitude values. (For L1B	L1B, L2B, L2P
			Products, it corresponds	
		16-bit signed	to IR channels.)	
2.	Longitude	integer	Longitude values (For	L1B, L2B, L2P
			L1B Products, it	
			corresponds to IR	
			channels.)	
3.	Latitude_VIS		Latitude values for VIS	L1B
		32-bit signed	and SWIR channels	
4.	Latitude_VIS	integer	Longitude values for VIS	L1B
			and SWIR channels	
5.	Latitude_WV		Latitude values for WV	L1B
		16-bit signed	channels	
6.	Longitude_WV	integer	Longitude values for WV	L1B
			channels	

Each of these datasets has following attributes:

Table 2.17 Attributes Geo-location Information Datasets

S. No.	Attribute Name	Data type	Description
1.	add_offset		CF-compliant attribute for defining
			add offset (used in scaling the values).
2.	scale_factor	32-bit floating point	CF-compliant attribute for defining
			scale factor (used in scaling the
			values).
3.	units	string (degrees_north for	CF-compliant attribute for defining
		latitude, degrees_east for	units of latitude and longitude
		longitude)	variables
4.	_FillValue	Same as dataset data-type	CF-compliant attribute used where the
			parameter is missing
5.	long_name	string, length=variable	long name for latitude and longitude
			variables

For L1C products, the geo-location information is provided in terms of map projection (grid mapping in CF terminology) parameters. Grid Mapping is specified by creating "Projection_Information Dataset" and grid mapping is defined as a set of attributes of this dataset. For INSAT-3D, the supported projections are:

- 1. Mercator
- 2. Lambert Conformal Conic

For Mercator, the grid mapping is defined as following set of attributes:

Table 2.18 Grid Mapping Description for Mercator projection (for L1C and L2C)

able 2:10 Grid Mapping Descript			<u> </u>	
S.	Attribute Name	Data type	Description	
No.			-	
1.	grid_mapping_name	string,	CF compliant attribute, its value is	
		length=variable	'mercator'	
2.	false_easting		False Easting for Mercator	
			Projection	
3.	false_northing		False Northing for Mercator	
			Projection	
4.	longitude_of_projection_origin		Longitude of Projection Origin for	
			Mercator Projection	
5.	semi_minor_axis	64-bit floating	Semi major axis of earth (in	
		point	meters)	
6.	semi_major_axis		Semi minor axis of earth (in	
			meters)	
7.	standard_parallel		Standard Parallel for Mercator	
			Projection, Latitude at which	
			true_scale=1 (EPSG 9805)	

For Lambert Conformal Conic, the grid mapping is defined as following set of attributes:

Table 2.19 Grid Mapping Description for Lambert Conformal Conic Projection (for L1C and L2C)

S. No.	Attribute Name	Data t	ype	Description
1.	grid_mapping_name	string,		CF compliant attribute, its
		length=vai	riable	value is
				'lambert_conformal_conic'
2.	false_easting	64-bit	floating	False Easting for LCC
		point		Projection
3.	false_northing	64-bit	floating	False Northing for LCC
		point		Projection
4.	longitude_of_central_meridian	64-bit	floating	Longitude of Central
		point		Meridian for LCC Projection
5.	latitude_of_projection_origin	64-bit	floating	Latitude of Projection Origin
		point		for LCC Projection
6.	semi_minor_axis	64-bit	floating	Semi-major axis of earth

		point		
7.	semi_major_axis	64-bit	floating	Semi-minor axis of earth
		point		
8.	standard_parallel	64-bit	floating	Standard Parallels for LCC
		point		Projection

For L2G products, geo-location information is provided as Latitude/ Longitude Dimension scales.

Table 2.20 Dimension Scales for L2G Geophysical Parameters (Data Type: 64-bit floating point)

S. No.	Dataset Name	Description
1.	Latitude	Latitude values for each grid point in latitude direction.
2.	Longitude	Longitude values for each grid point in longitude direction.

Each dimension scale has following attributes:

Table 2.21 Attributes of Dimension Scales for L2G Geophysical Parameters

S. No.	Attribute Name	Data Type	Description
1.	long_name	string, length=variable	long name for dimension scale
2.	standard_name	string, length=variable	standard name for dimension scale
3.	units	String (degrees_north for	Units for latitude and longitude
		latitude, degrees_east for	
		longitude)	

2.6 Calibration Datasets

This calibration datasets contain calibration information for Imager and sounder channel data. For Imager, following are the Calibration Information datasets:

Table 2.22 Calibration Information Datasets for IMAGER (Data Type: 32-bit floating point)

S. No.	Dataset Name	Description
1.	IMG_VIS_RADIANCE	Visible Radiance
2.	IMG_SWIR_RADIANCE	Short Wave Infrared Radiance
3.	IMG_MIR_RADIANCE	Middlewave Infrared Radiance
4.	IMG_MIR_TEMP	Middlewave Infrared Temperature
5.	IMG_TIR1_RADIANCE	Thermal Infrared 1 Radiance
6.	IMG_TIR1_TEMP	Thermal Infrared 1 Temperature
7.	IMG_TIR2_RADIANCE	Thermal Infrared 1 Radiance
8.	IMG_TIR2_TEMP	Thermal Infrared 2 Temperature
9.	IMG_WV_RADIANCE	Water Vapor Infrared Radiance
10	IMG_WV_TEMP	Water Vapor Infrared Temperature

For Sounder, the Calibration Information datasets are listed below:

 ${\bf Table~2.23~Calibration~Information~Datasets~for~SOUNDER}$

(Data Type: 32-bit floating point)

	(Data Type: 32-bit floating point)		
S. No.	Dataset Name	Description	
1.	SND_LWIR1_RADIANCE	Radiance Lookup Table for Longwave Infrared Channel 1	
2.	SND_LWIR1_TEMP	Brightness Temperature Lookup Table for Longwave Infrared Channel 1	
3.	SND_LWIR2_RADIANCE	Radiance Lookup Table for Longwave Infrared Channel 2	
4.	SND_LWIR2_TEMP	Brightness Temperature Lookup Table for Longwave Infrared Channel 2	
5.	SND_LWIR3_RADIANCE	Radiance Lookup Table for Longwave Infrared Channel 3	
6.	SND_LWIR3_TEMP	Brightness Temperature Lookup Table for Longwave Infrared Channel 3	
7.	SND_LWIR4_RADIANCE	Radiance Lookup Table for Longwave Infrared Channel 4	
8.	SND_LWIR4_TEMP	Brightness Temperature Lookup Table for Longwave Infrared Channel 4	
9.	SND_LWIR5_RADIANCE	Radiance Lookup Table for Longwave Infrared Channel 5	
10.	SND_LWIR5_TEMP	Temperature for Longwave Infrared Channel 5	
11.	SND_LWIR6_RADIANCE	Radiance Lookup Table for Longwave Infrared Channel 6	
12.	SND_LWIR6_TEMP	Brightness Temperature Lookup Table for Longwave Infrared Channel 6	
13.	SND_LWIR7_RADIANCE	Radiance Lookup Table for Longwave Infrared Channel 7	
14.	SND_LWIR7_TEMP	Brightness Temperature Lookup Table for Longwave Infrared Channel 7	
15.	SND_MWIR1_RADIANCE	Radiance Lookup Table for Middlewave Infrared Channel 1	
16.	SND_MWIR1_TEMP	Brightness Temperature Lookup Table for Midwave Infrared Channel 1	
17.	SND_MWIR2_RADIANCE	Radiance Lookup Table for Middlewave Infrared Channel 2	
18.	SND_MWIR2_TEMP	Brightness Temperature Lookup Table for Middlewave Infrared Channel 2	
19.	SND_MWIR3_RADIANCE	Radiance Lookup Table for Middlewave Infrared Channel 3	
20.	SND_MWIR3_TEMP	Brightness Temperature Lookup Table for Middlewave Infrared Channel 3	
21.	SND_MWIR4_RADIANCE	Radiance Lookup Table for Middlewave Infrared Channel 4	

22.	SND_MWIR4_TEMP	Brightness Temperature Lookup Table for Middlewave Infrared Channel 4
23.	SND_MWIR5_RADIANCE	Radiance Lookup Table for Middlewave Infrared Channel 5
24.	SND_MWIR5_TEMP	Brightness Temperature Lookup Table for Middlewave Infrared Channel 5
25.	SND_SWIR1_RADIANCE	Radiance Lookup Table for Shortwave Infrared Channel 1
26.	SND_SWIR1_TEMP	Brightness Temperature Lookup Table for Shortwave Infrared Channel 1
27.	SND_SWIR2_RADIANCE	Radiance Lookup Table for Shortwave Infrared Channel 2
28.	SND_SWIR2_TEMP	Brightness Temperature Lookup Table for Shortwave Infrared Channel 2
29.	SND_SWIR3_RADIANCE	Radiance Lookup Table for Shortwave Infrared Channel 3
30.	SND_SWIR3_TEMP	Brightness Temperature Lookup Table for Shortwave Infrared Channel 3
31.	SND_SWIR4_RADIANCE	Radiance for Lookup Table Shortwave Infrared Channel 4
32.	SND_SWIR4_TEMP	Brightness Temperature Lookup Table for Shortwave Infrared Channel 4
33.	SND_SWIR5_RADIANCE	Radiance Lookup Table for Shortwave Infrared Channel 5
34.	SND_SWIR5_TEMP	Brightness Temperature Lookup Table for Shortwave Infrared Channel 5
35.	SND_SWIR6_RADIANCE	Radiance Lookup Table for Shortwave Infrared Channel 6
36.	SND_SWIR6_TEMP	Brightness Temperature Lookup Table for Shortwave Infrared Channel 6
37.	SND_VIS_RADIANCE	Radiance Lookup Table for Visible Channel

All the datasets have following set of attributes:

Table 2.24 Attributes of Calibration Information Datasets for SOUNDER

	Table 2.24 Attributes of Cambration Information Datasets for SOCIODER			
S. No.	Attribute Name	Data type	Description	
1.	_FillValue	Same as dataset data-type	CF-compliant attribute used where	
			the calibration dataset is missing	
2.	long_name	string, length=variable	Descriptive name of the calibration	
			dataset	
3.	units	String, length=variable	Unit string defining the units of	
			calibration dataset	
4.	invert	string (true or false)	Whether the dataset is inverted	
		-	(wherever applicable)	

2.7 Ancillary Datasets

Ancillary Datasets provide ancillary Information (Satellite Azimuth/Elevation and Sensor Azimuth/Elevation). The details of corresponding datasets are listed below:

Table 2.25 Ancillary Datasets

S. No.	Dataset Name	Data Type	Description
1.	Sat_Azimuth	16-bit unsigned integer	Satellite Azimuth
2.	Sat_Elevation	16-bit signed integer	Satellite Elevation
3.	Sun_Azimuth	16-bit unsigned integer	Sun Azimuth
4.	Sun_Elevation	16-bit signed integer	Sun Elevation

Meta information related to these datasets is provided as attributes along with each dataset:

Table 2.26 Attributes of Ancillary Datasets

S. No.	Attribute	Data type	Description	Applicable
1.	Name long_name	string, length=variable	Descriptive name of the dataset	L1B, L1C
2.	add_offset	string, length=variable	CF-compliant attribute for defining add offset (used in scaling the values).	L1B, L1C
3.	scale_factor	string, length=variable	CF-compliant attribute for defining scale factor (used in scaling the values).	L1B, L1C
4.	_FillValue	Same as dataset data-type	CF-compliant attribute used where the dataset is missing	L1B, L1C
5.	units	string, length=variable	Unit string defining the units of Ancillary dataset	L1B, L1C
6.	coordinates	string, length=variable	CF-compliant attribute for associating coordinate variables with the ancillary variable. For example "time latitude longitude"	L1B
7.	grid_mapping	string, length=variable	CF-compliant attribute for associating coordinate variables with the ancillary variable. For example "Mercator" for Mercator Projection.	LIC

For generating latitude and longitude, formulae for forward and inverse transformation can be referred at:

- 1. For Lambert Conformal Conic, refer [3]
- 2. For Mercator, refer [4]

2.8 Dimension Scales

By default for every dataset created dimension scales are created for every dimension of unique length. For L1B and L2B Products following dimensions are created:

Table 2.27 Dimension for L1B and L2B Products

S. No.	Dimension Name	Description	
1.	time	Time dimension for All Channels	
2.	GeoX	Dimension for pixel direction of TIR1, TIR2, and MIR	
		channels	
3.	GeoY	Dimension for scan direction of TIR1, TIR2, and MIR channels	
4.	GeoX1	Dimension for pixel direction of WV channels	
5.	GeoY1	Dimension for scan direction of WV channels	
6.	GeoX2	Dimension for VIS and SWIR channels	
7.	GeoY2	Dimension for VIS and SWIR channels	

 $GeoY^*$ and $GeoX^*$ contains the scan and pixel values of the image along scan and pixel direction. For L1C Products, following dimensions are created:

Table 2.28 Dimension for L1C Products

S. No.	Dimension Name	Description	
1.	time	Time dimension for All Channels	
1.	X	Dimension for pixel direction of all channels	
2.	Y	Dimension for scan direction of all channels	
3.	proj_dim	Dimension for Grid Mapping Dataset	

The X dimension contains the projection coordinates along pixel direction starting from left. And Y dimension contains projection coordinates along scan direction starting from top. X and Y dimensions have following attributes required as part of CF conventions:

Table 2.29 Attributes of X,Y dimensions for L1C Products

S.No.	Dimension Name	Attribute Name	Value
1.	X	long_name	x coordinate of projection
2.	X	standard_name	projection_x_coordinate
3.	X	units	m
4.	Y	long_name	y coordinate of projection
5.	Y	standard_name	projection_y_coordinate
6.	Y	units	m

For L1B and L1C Products, following dimension is also created:

Table 2.30 Additional Dimension for L1B and L1C Products

14014 200 1144410101141 2 11141101 101 212 4114 210 1104440			
S. No.	Dimension Name	Description	
1.	GreyCount	Dimension for storing calibration information as lookup table	
		for all the channels.	

Time dimension has following Attributes:

Table 2.31 Attributes of Time Dimension

S. No.	Attribute Name	Units	Description
1.	units	"minutes since 2000-01-01 00:00:00"	Units of Time dimension

NOTES:

- 1. All the dimension scales have an attribute named REFERENCE_LIST which is maintained by HDF5 dimension scale API for referring to in which all datasets it is being used as dimension.
- 2. All the Datasets in Products have and attribute named DIMENSION_LIST whose value is an array of references to the dimension scales (e.g. time, GeoY, GeoX). This attribute is maintained by the HDF5 dimension Scale API.

Appendix- I: INSAT-3D Radiometric Calibration

COUNT TO RADIANCE

INSAT-3D counts can be converted to radiance either using the lookup table (LUT) or the calibration coefficients.

LOOKUP TABLE

The look up table (XXX_YYYY_RADIANCE, where XXX is the sensor, YYYY is Band) provides mapping from count to corresponding radiance. A field name "Radiometric_Calibration_Type" provided as attribute of Root Group in HDF product describes source of calibration coefficients used for generating this LUT (Ref Table 2.3).

CALIBRATION COEFFICIENTS

Lab and Online radiometric calibration coefficients are available as part of HDF product, which can be used for computing radiance directly from count:

• Lab Calibration coefficients are generated using pre-launch ground test data, where each IR detector element along with its associated processing channel is characterized in Thermovacuum chamber using two Blackbody targets-a Space Reference Target (SRT) simulating space and a Variable Temperature Blackbody Source (VTBS) simulating the earth scene from 180K to 340K temperature range. Using these data quadratic coefficients (slope, offset and quadratic term) for EOM 10°C, 25°C and 40°C were generated. Based on EOM temperature of an acquisition lab slope, offset and quadratic term are derived and provided in product.

In HDF products a field named "invert" (provided as attribute of each channel dataset) indicates whether image counts are inverted or not. While computing the radiance values the counts should be inverted (only for bands having invert = True). The lab coefficients provided for Count to radiance conversion are used in following way:

Count = DN_{Max} - Count (only if invert = True)

Where DN_{Max} 1023 for Imager and DN_{Max} = 16383 for Sounder

 $R ext{ (in mw cm}^{-2} ext{ sr}^{-1} ext{ um}^{-1}) = lab_radiance_quad*(Count)^2 + lab_radiance_scale_factor*(Count) + lab_radiance_add_offset$

• Online calibration is performed using onboard internal blackbody serving as a "hot target" and space view count as "cold target". From these two online slope and offset are computed. Quadratic term is derived using inter sensor calibration.

In HDF products a field named *invert* indicates inversion of image counts. While computing the radiance values the counts should be inverted (only for bands having invert = True). The online coefficients provided for Count to radiance conversion are used in following way:

```
Count = DN_{Max}- Count (only if invert == true)
```

Where DN_{Max} 1023 for Imager and DN_{Max} = 16383 for Sounder

```
R (in mw cm<sup>-2</sup> sr<sup>-1</sup> um<sup>-1</sup>)=online_radiance_quad *(Count)<sup>2</sup> + online_radiance_scale_factor*(Count)+online_radiance_add_offset
```

COUNT TO BRIGHTNESS TEMPERATURE

Count can be converted to Brightness Temperature (BT) using 2 methods:

- Using LUT provided in the product (XXXX_YYY_TEMP, where XXXX is Sensor YYY is Band).
- First convert count to radiance as discussed above and then generate BT from radiance using inverse planck's law as given below.

```
brightness_temperature = C2 / (cwl * log(C1 / (1.0E6 * rad_w_m2 * pow (cwn, 5.0)) + 1))
```

Where

```
cwl(metres)= central_wavelength(um)/1000000.0 (Field central_wavelength in product) rad_w_m2 = radiance*10.0 (For converting from mw cm<sup>-2</sup> sr <sup>-1</sup> um<sup>-1</sup> to w m<sup>-2</sup> sr<sup>-1</sup> um<sup>-1</sup>) h = 6.6260755e-34 \text{ kg m}^2 \text{ s}^{-1}; c = 2.9979246e+8 \text{ ms}^{-1}; k = 1.380658e-23 \text{ kg m}^2 \text{ s}^{-2} \text{ k}^{-1}; C1 = 2.0 * h * c * c; C2 = (h * c) / k;
```

RECOMMENDATION: It is recommended to use coefficients of type of calibration (Radiometric_Calibration_Type) to generate radiance from counts. The other calibration source at some times may have issues.

Appendix- II : INSAT-3D Geometric Calibration

1. INSAT-3D IMAGER

- a) IMAGER L1B and L2B products are Fixed Grid product generated using GEOS [5] projection. Per pixel geo-location can either be computed using the GEOS projection parameters or per pixel navigation provided in HDF product. For Water-vapor band this navigation information (Table 2.8) is provided at 8 Km, for IR(TIR1,TIR2,MIR) channels (Table 2.8) at 4Km. and for Visible (Table 2.8),SWIR (Table 2.8) at 1Km. The geo-location datasets and ancillary datasets (sun azimuth/elevation and sensor azimuth/elevation are scaled to reduce data size. (Ref Table 2.17 for geo-location datasets scaling information and Ref Table 2.26 for ancillary datasets scaling information).
- b) L1C products are Map Projection based products and the Map-Projection parameters (Table 2.18 and Table 2.19) are provided in the product for navigation of each pixel.

2. INSAT-3D SOUNDER

Sounder L1B and L2B products are generated using Lat-Lon [5] navigation. The per pixel navigation information is provided at 10 Km for all 19 channels.

Abbreviations and Acronyms

HDF Hierarchical Data Format

IMD India Meteorological Department

INSAT Indian National Satellite

IR Infrared

ISRO Indian Space Research Organisation

LCC Lamberts Conformal Conic Projection

NCSA National Center for Supercomputing Applications

SAC Space Applications Centre

SWIR Shortwave Infrared

TIR Thermal Infrared

MIR Middlewave Infrared

LWIR Longwave Infrared

USGS United States Geological Survey

WV Water Vapour

VIS Visible band

CF Conventions Climate and Forecasting Conventions

GEOS Projection Geo-stationary Satellite Projection

DN Digital Number

References

- [1] http://hdf.ncsa.uiuc.edu/
- [2] http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.html
- [3] http://www.remotesensing.org/geotiff/proj_list/lambert_conic_conformal_2sp.html
- [4] http://www.remotesensing.org/geotiff/proj_list/mercator_2sp.html
- [5] CGMS 03 (Coordinate Group for Meteorological Satellites LRIT/HRIT Global Specifications.