Table 2: Dataset splits used for evaluation (indicated with ‡).

Split	Training data	#TLinks	#Documents	Test data	#TLinks	#Documents
TD^{\ddagger}	TD (train+dev)	4.4k	27	TD (test)	1.3k	9
TE3 [‡]	TB, AQ, VC, TD (full)	17.5k	256	PT	0.9k	20

Table 3: Hyper-parameters from the experiments.

Hyper-parameter	Value
Document-creation starting time (s_{DCT})	0
Minimum event duration (d_{min})	0.1
Time-line margin (m_{τ})	0.025
Hinge loss margin (m_h)	0.1
Dropout (α_d)	0.1
Word-level RNN units (α_{rnn})	25
Word-embedding size (α_{wemb})	50
POS-embedding size	10

Table 4: Evaluation of relative time-lines for each model and loss function, where L_* indicates the (unweighted) sum of L_τ , $L_{\tau ce}$, and $L_{\tau h}$.

	$TE3^{\ddagger}$			$\mathbf{T}\mathbf{D}^{\ddagger}$		
Model	P	R	F	P	R	\mathbf{F}
Indirect: $O(n^2)$						
TL2RTL (L_{τ})	53.5	51.1	52.3	59.1	61.2	60.1
TL2RTL ($L_{\tau ce}$)	53.9	51.7	52.8	61.2	60.7	60.9
TL2RTL $(L_{\tau h})$	52.8	51.1	51.9	57.9	60.6	59.2
TL2RTL (L_*)	52.6	52.0	52.3	62.3	62.3	62.3
Direct: O(n)						
S-TLM (L_{τ})	50.1	50.4	50.2	57.8	59.5	58.6
S-TLM ($L_{\tau ce}$)	50.1	50.0	50.1	53.4	53.5	53.5
S-TLM $(L_{\tau h})$	51.5	51.7	51.6	55.1	56.4	55.7
S-TLM (L_*)	50.9	51.0	51.0	56.5	55.3	55.9
C-TLM (L_{τ})	56.2	56.1	56.1	57.1	59.7	58.4
C-TLM ($L_{\tau ce}$)	54.4	55.4	54.9	52.4	57.3	54.7
C-TLM $(L_{\tau h})$	55.7	55.5	55.6	55.3	54.9	55.1
C-TLM (L_*)	54.0	54.3	54.1	54.6	53.5	54.1

5 Results

We compared our three proposed models for the three loss functions L_{τ} , $L_{\tau ce}$, and $L_{\tau h}$, and their linear (unweighted) combination L_* , on TE3[‡] and TD[‡], for which the results are shown in Table 4.

A trend that can be observed is that overall performance on TD^{\ddagger} is higher than that of $TE3^{\ddagger}$, even though less documents are used for training. We inspected why this is the case, and this is caused by a difference in class balance between both test sets. In $TE3^{\ddagger}$ there are many more TLinks of type *simultaneous* (12% versus 3%), which are very

difficult to predict, resulting in lower scores for TE3[‡] compared to TD[‡]. The difference in performance between the datasets is probably also be related to the dense annotation scheme of TD[‡] compared to the sparser annotations of TE3[‡], as dense annotations give a more complete temporal view of the training texts. For TL2RTL better TLink extraction¹² is also propagated into the final timeline quality.

If we compare loss functions L_{τ} , $L_{\tau ce}$, and $L_{\tau h}$, and combination L_{*} , it can be noticed that, although all loss functions seem to give fairly similar performance, L_{τ} gives the most robust results (never lowest), especially noticeable for the smaller dataset TD^{\ddagger} . This is convenient, because L_{τ} is fastest to compute during training, as it requires no score calculation for each TLink type. L_{τ} is also directly interpretable on the timeline. The combination of losses L_{*} shows mixed results, and has lower performance for S-TLM and C-TLM, but better performance for TL2RTL. However, it is slowest to compute, and less interpretable, as it is a combined loss.

Moreover, we can clearly see that on TE3 ‡ , C-TLM performs better than the indirect models, across all loss functions. This is a very interesting result, as C-TLM is an order of complexity faster in prediction speed compared to the indirect models (O(n)) compared to $O(n^2)$ for a text with n entities). We further explore why this is the case through our error analysis in the next section.

On TD[‡], the indirect models seem to perform slightly better. We suspect that the reason for this is that C-TLM has more parameters (mostly the LSTM weights), and thus requires more data (TD[‡] has much fewer documents than TE3[‡]) compared to the indirect methods. Another result supporting this hypothesis is the fact that the difference between C-TLM and S-TLM is small on the smaller

¹²F1 of 40.3 for TE3[‡] and 48.5 for TD[‡] (Ning et al., 2017) ¹³We do not directly compare prediction speed, as it would

¹³We do not directly compare prediction speed, as it would result in unfair evaluation because of implementation differences. However, currently, C-TLM predicts at \sim 100 w/s incl. POS tagging, and \sim 2000 w/s without. When not using POS, overall performance decreases consistently with 2-4 points.