Lecture Summary: Cumulative Distribution Function (CDF)

Source: Lecture 4.2.docx

Key Points

- Definition of Cumulative Distribution Function (CDF):
 - A CDF, denoted as $F_X(x)$, maps any real number x to the interval [0, 1].
 - Formula:

$$F_X(x) = P(X \le x).$$

- The CDF captures the probability that the random variable X takes a value less than or equal to x.
- Properties of CDF:
 - $-F_X(x)$ is non-decreasing:

If
$$x_1 \le x_2$$
, $F_X(x_1) \le F_X(x_2)$.

– $F_X(x)$ starts at 0 as $x \to -\infty$: $\lim_{x \to -\infty} F_X(x) = 0.$

$$\lim_{x \to -\infty} F_X(x) = 0$$

- $F_X(x)$ approaches 1 as $x \to \infty$:

$$\lim_{x \to \infty} F_X(x) = 1.$$

- For a < b:

$$P(a < X \le b) = F_X(b) - F_X(a).$$

- CDFs for discrete random variables have step-like behavior, while continuous random variables have smooth, continuous CDFs.
- Example: Bernoulli Random Variable $(X \sim Bernoulli(p))$:
 - X takes values 0 with probability 1-p and 1 with probability p.
 - CDF:

$$F_X(x) = \begin{cases} 0, & x < 0, \\ 1 - p, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

- Graph: Stepwise increase at x = 0 and x = 1, reflecting the probabilities.
- Example: Uniform Discrete Random Variable $(X \sim \text{Uniform}\{1, 2, \dots, 6\})$:
 - PMF: $P(X = k) = \frac{1}{6}$ for $k = 1, 2, \dots, 6$.
 - CDF:

$$F_X(x) = \begin{cases} 0, & x < 1, \\ \frac{k}{6}, & k \le x < k + 1 \ (k = 1, \dots, 5), \\ 1, & x \ge 6. \end{cases}$$

- Graph: Stepwise increases with each step size corresponding to $\frac{1}{6}$.

• Applications of CDF:

- Calculating probabilities for intervals:

$$P(a < X \le b) = F_X(b) - F_X(a).$$

- Example:

* $X \sim \text{Uniform}\{1, \dots, 100\}$:

$$P(3 \le X \le 10) = F_X(10) - F_X(3) = \frac{10}{100} - \frac{3}{100} = \frac{7}{100}.$$

- * For non-integer values like 3.2 or 10.6, the CDF output corresponds to the nearest integer boundary.
- Probability for tail events:

$$P(X > c) = 1 - F_X(c).$$

• Connecting CDF to PMF:

- For discrete random variables:

$$P(X = x) = F_X(x) - F_X(x^-),$$

where $F_X(x^-)$ is the left-hand limit of F_X at x.

- For continuous random variables, the derivative of $F_X(x)$ yields the probability density function (PDF):

$$f_X(x) = \frac{d}{dx} F_X(x).$$

Simplified Explanation

What is the CDF? The cumulative distribution function describes the probability that a random variable is less than or equal to a given value:

$$F_X(x) = P(X \le x).$$

Key Features: - Non-decreasing. - Ranges from 0 to 1. - Stepwise for discrete variables, smooth for continuous ones.

Example: For $X \sim \text{Bernoulli}(p)$: - $F_X(0) = 1 - p$. - $F_X(1) = 1$.

Conclusion

In this lecture, we:

- Defined the CDF and its key properties.
- Demonstrated examples with discrete random variables.
- Highlighted the use of CDFs in probability calculations and their relationship to PMFs and PDFs.

CDFs are crucial for understanding and calculating probabilities in both discrete and continuous frameworks.