Exam 1

Matthew Tiger

October 23, 2016

Problem 1. You pay into an annuity a sum of P dollars. This annuity pays you α per year, compounded monthly. The interest is r% and is calculated as simple interest on the remaining balance at the end of each month. If A(n) is the amount remaining at the end of the n-th month, with A(0) = P, write down A(n+1) in terms of A(n) and deduce a closed form solution for A(n).

If P = \$100,000, $\alpha = \$500$, and the interest rate is 4% per month, how long will the annuity last?

 \square

Problem 2. Let $g_{\mu}(x) = \mu x \frac{(1-x)}{(1+x)}$, for $\mu > 0$.

a) Show that g_{μ} has a maximum at $x = \sqrt{2} - 1$ and the maximum value is $\mu(3 - 2\sqrt{2})$.

- b) Deduce that g_{μ} is a dynamical system on [0,1] for $0 \leq \mu \leq 3 + 2\sqrt{2}$, i.e. $g_{\mu}([0,1]) \subseteq [0,1]$.
- c) Find the fixed points of g_{μ} for $\mu \geq 1$.
- d) Find g'_{μ} and determine whether the fixed points are attracting or repelling.
- e) Use a graphing utility to graph g_{μ}^2 and g_{μ}^3 and estimate when a period 2 point is created.

Solution. a) If $g_{\mu}(x) = \mu x \frac{(1-x)}{(1+x)}$, then we see that

$$g'_{\mu}(x) = \mu \left[\frac{(1-x)}{(1+x)} - \frac{2x}{(1+x)^2} \right]$$
$$= \mu \left[\frac{-x^2 - 2x + 1}{(1+x)^2} \right]. \tag{1}$$

Thus, $g'_{\mu}(x) = 0$ if $x = \pm \sqrt{2} - 1$. Since $g'_{\mu}(0) = \mu > 0$ with $0 < \sqrt{2} - 1$ and $g'_{\mu}(1) = -\mu/2 < 0$ for $\sqrt{2} - 1 < 1$, we see that $x = \sqrt{2} - 1$ is a local maximum of $g_{\mu}(x)$. The maximum value is thus given by

$$g_{\mu}(\sqrt{2}-1) = \mu(\sqrt{2}-1)\frac{(1-(\sqrt{2}-1))}{(1+(\sqrt{2}-1))} = \mu(3-2\sqrt{2}).$$

b) The function $g_{\mu}: [0,1] \to [0,1]$ will be a dynamical system for $0 \le \mu \le 3 + 2\sqrt{2}$ if $g_{\mu}([0,1]) \subseteq [0,1]$. Note that on [0,1], we have that the global minimum of g_{μ} is 0 and can easily see using the previous result that the global maximum of g_{μ} is $\mu(3-2\sqrt{2})$. Thus, since g_{μ} is continuous, we must have that $g_{\mu}([0,1]) = [0, \mu(3-2\sqrt{2})]$. If $0 \le \mu \le 3 + 2\sqrt{2}$, we see that

$$0 \le \mu(3 - 2\sqrt{2}) \le (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 1.$$

Therefore, $g_{\mu}([0,1]) = [0, \mu(3-2\sqrt{2})] \subseteq [0,1]$ and g_{μ} is a dynamical system on [0,1].

c) Suppose that $\mu \geq 1$. The fixed points of g_{μ} are the roots of the function

$$f(x) = g_{\mu}(x) - x = -\frac{x[x(\mu+1) - (\mu-1)]}{(x+1)}.$$

Thus, the fixed points of g_{μ} are given by

$$x_0 = 0$$
 and $x_1 = \frac{\mu - 1}{\mu + 1}$. (2)

d) Recall that a fixed point c of a function f that is hyperbolic is attracting if |f'(c)| < 1 and repelling if |f'(c)| > 1. The derivative of g_{μ} is provided by (1). Thus, we readily see that for the fixed points provided by (2) that

$$|g'_{\mu}(x_0)| = |g'_{\mu}(0)| = |\mu|$$

and

$$|g'_{\mu}(x_1)| = \left| g'_{\mu} \left(\frac{\mu - 1}{\mu + 1} \right) \right|$$
$$= \frac{1}{2} \left| \left(-\mu + \frac{1}{\mu} + 2 \right) \right|.$$

Since $\mu \geq 1$, we see that if $\mu > 1$ then the fixed point x_0 will be a hyperbolic fixed point and will be repelling. If, however, $\mu = 1$, we see that $g'_{\mu}(x_0) = 1$ and x_0 is a non-hyperbolic fixed point. We rely on a previous theorem that states that we can use the second and third derivative of g_{μ} in order to classify the non-hyperbolic fixed point. Note that

$$g''_{\mu}(x) = -\frac{4\mu}{(1+x)^3}$$
 and $g'''_{\mu}(x) = \frac{12\mu}{(1+x)^4}$. (3)

Since $g''_{\mu}(x_0) = -4\mu < 0$, the fixed point $x_0 = 0$ is one-sided asymptotically stable to the right of 0 for $\mu = 1$.

For the fixed point x_1 , we see that if $1 < \mu < 2 + \sqrt{5}$, then $|g'_{\mu}(x_1)| < 1$ so that x_1 is a hyperbolic, attracting fixed point. On the other hand, if $2 + \sqrt{5} < \mu$, then $|g'_{\mu}(x_1)| > 1$ so that x_1 is a hyperbolic, repelling fixed point. In the case that $\mu = 1$ or $\mu = 2 + \sqrt{5}$, the fixed point x_1 is non-hyperbolic.

If $\mu=1$, we see that $x_1=0=x_0$ and so it must have the same classification as x_0 when $\mu=1$, i.e. it is a non-hyperbolic fixed point that is one-sided asymptotically stable to the right of 0. If $\mu=2+\sqrt{5}$, then we see that $g'_{\mu}(x_1)=-1$. Note that we can use the Schwarzian derivative of g_{μ} to classify this non-hyperbolic fixed point. The Schwarzian derivative of g_{μ} evaluated at x_1 is given by

$$Sg_{\mu}(x_1) = -g_{\mu}^{"'}(x_1) - \frac{3g_{\mu}^{"}(x_1)^2}{2}$$
$$= 6 - 6\sqrt{5} - \frac{3(-4)^2}{2}$$
$$= -18 - 6\sqrt{5}.$$

Since $Sg_{\mu}(x_1) < 0$, the fixed point x_1 is asymptotically stable when $\mu = 2 + \sqrt{5}$.

e) Using the Mathematica Manipulate command, we can plot the parametric families g_{μ}^2 and g_{μ}^3 for $0 \le \mu \le 3 + 2\sqrt{2}$. After plotting these families we see that a bifurcation point for the system occurs approximately when $\mu \approx 4.23607$. For values of $\mu > 4.23607$ a 2-cycle is born for the dynamical system.

Problem 3. Consider the family of functions $f_{\lambda}(x) = x^3 - \lambda x$ for some parameter $\lambda \in \mathbb{R}$.

- a) Find all fixed points and determine their nature and where they are created as λ varies.
- b) Find where a 2-cycle is created and give the graph of where this happens. Determine the stability of the hyperbolic 2-cycles.
- c) Use a graphing utility to find an approximate value of λ where the 3-cycle is created. Give the graph of this situation.

 \Box

Problem 4. Let f be a 4-times continuously differentiable function. Its Newton function is $N_f(x) = x - f(x)/f'(x)$. Suppose that c is a zero of f. If Sf(x) is the Schwarzian derivative of f, show that

$$N_f'''(c) = 2Sf(c)$$

Solution. \Box

Problem 5. Let $f:[0,1] \to [0,1]$ be continuous on [0,1] and differentiable on (0,1) with |f'(x)| < 1 for all $x \in (0,1)$.

- a) Prove that f has a unique fixed point p in [0, 1].
- b) Prove that f cannot have a point of period 2 in [a, b].
- c) Prove that $f^n(x) \to p$ as $n \to \infty$ for all $x \in (0,1)$.

 \Box

Problem 6. Let $f(x) = ax^3 + bx + c$ where a and b satisfy a/b > 0. Denote by N_f the corresponding Newton function.

- a) Show that N_f has a unique fixed point.
- b) Show that N_f cannot have any period 2 points.
- c) Why does it follow that N_f has no points of period n for n > 2?

Solution. \Box

Problem 7. a) Show that the function f(x) = -1/(x+1) has the property that $f^3(x) = x$ for all $x \neq -1, 0$.

- b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined on a set I, with $f^3(x) = x$ for all $x \in I$. Set $g(x) = f^2(x)$. Show that $g^3(x) = x$ for all $x \in I$. Deduce a function different from that in a) that has this property.
- c) In general, show that such a function cannot have a 2-cycle.
- d) Deduce that a function $f: \mathbb{R} \to \mathbb{R}$ with the property $f^3(x) = x$ cannot be continuous.
- e) Show that the inverse of f must exist.
- f) If f'(x) exists for all $x \in I$, show that the 3-cycles are non-hyperbolic where f is not the identity map.
- g) Suppose that $f(x) = \frac{ax+b}{cx+d}$ satisfies $f^3(x) = x$. Show that if f is not the identity map and $a \neq d$, then $a^2 + bc + ad + d^2 = 0$.
 - i) Use this to find other functions with the property $f^3(x) = x$.
 - ii) Deduce that if ad bc > 0, then such a function cannot have any fixed points.

 \square