Lista Encadeadas

Prof. Rafael Guterres Jeffman rafael.jeffman@gmail.com

Estruturas de Listas

- Uma lista é uma seqüência ordenada e finita de elementos a₁, a₂, a₃, ... a_{n-1}, a_n, portanto:
 - todo elemento ai precede o elemento ai-1, para todo i {1,...,n-1}.
 - todo a_j está na j-ésima posição da lista, para todo j {1, ...,n}.
- O tamanho de uma lista é igual ao número de elementos que a compõe.
- Uma lista pode ser vazia. Esta lista tem tamanho "zero".

Operações em uma Lista

- Criação da Lista
- Destruição da Lista
- Inserção de um elemento
- Remoção de um elemento
- Procura de um elemento

Outras operações em Listas

- Contagem do número de elementos
- Ordenação de acordo com um determinado critério
- Concatenação de duas listas
- Inversão de uma lista
- Particionamento de uma lista

Representação de uma Lista

- Por contiguidade física
 - Garantia de precedência dos elementos pela contiguidade física em memória.
- Por contiguidade lógica
 - Garantia de precedência dos elementos pelo seu encadeamento.

Listas com contiguidade física

- A ordenação é garantida pela contiguidade física dos elementos em memória.
- A implementação mais comum é com arrays.

Listas com contiguidade lógica

- Nessa forma de representação, um elemento da lista é responsável pela "ligação" com o próximo elemento.
- Vantagens:
 - Inserção e Remoção mais rápidas
 - Maior facilidade na alocação de memória
- Desvantagens:
 - Uso da memória por elemento é um pouco maior
 - Perda da capacidade de acesso direto aos elementos

Listas Encadeadas

Processo de Inserção

Processo de Inserção

Processo de Inserção

Processo de Remoção

Processo de Remoção

Nodos de Uma Lista

- Contém uma "chave de pesquisa"
- Contém uma informação (que pode ser a própria chave).
- Apontam para um próximo nodo ou para o final da Lista.

Estrutura de uma lista

- Para a implementação de uma lista, basta que seja armazenado o primeiro elemento da lista.
- Todos os algoritmos podem ser escritos eficientemente a partir desse único elemento.

Listas Duplamente Encadeadas

- Variação da lista que utiliza um apontador para o início e outro para o fim da lista.
- Cada nodo da lista "conhece" o próximo nodo e o nodo anterior.
- Facilita os algoritmos de inserção e remoção.
- Permite percorrer a lista de maneira inversa.
- Utiliza um apontador extra para cada nodo.

Listas Circulares

- O último nodo da lista aponta para o primeiro nodo.
- Para facilitar a implementação, pode ser utilizado um "nodo sentinela".

