Advanced Features

Ch.4 Text Analytics with Python. Dipanjan Sarkar. 2019. Apress An implementation guide to word2vec. Derek Chia. 2018 R Machine Learning Projects. Sunil Chinnamgari. 2018. Packt

Different Approaches

Bag of Words

Words are atomic units

- One-hot encoding for each word:

$$car = [1,0]$$
 bus = $[0,1]$

- N Dimensions = N words
- No projection to other dimensions
- Unable to capture Context or Meaning: car:bus [transportation]
- sparse
- Frequency-Based method

Word Vectors

Multidimensional continuous word space

(Mikolov et al. 2013)

Distributed representations: dependence of one word on the other words

Word2Vec Model (Tomas Mikolov et al., 2013, Google): distributed, and continuous dense vector representations of words

Distributional hypothesis: the context for each word is in its nearby words

Two Models

Goal: Generate vector representations of words that carry semantic meanings for further NLP tasks.

The transformation from words to vectors is also known as word embedding.

Learns the embedding by predicting the current word based on its context

is faster and has slightly better accuracy for more frequent words.

Learns the embedding by by predicting the surrounding words given a current word

works well with small amount of data and represents well rare words or phrases

CBOW

w(t) – the current target word (center word) w(t-1), w(t+1) – the source content words (surrounding words)

Example

- Word2Vec family of models is unsupervised
- No additional labels or information needed

(context_window, target_word)

Derek Chia, 2018. An implementation guide to Word2Vec

Implementing CBOW Model

Keras

- Deep learning framework for Python
- Enables fast experimentation
- Runs on top of other frameworks
- Written by François Chollet (2015)

Workflow

- Preprocess corpus
- Build the corpus vocabulary
- Build a CBOW (context, target) generator
- Build the CBOW model architecture
- Train the model
- Get word embeddings

from keras.preprocessing import text from keras.utils import np_utils from keras.preprocessing import sequence

Data Preparation

Step 1. Preprocessing Corpus

```
alice_norm = norm(alice)
['another moment went alice never considering world get',
    'rabbit hole went straight like tunnel way dipped suddenly suddenly alice me
```

'either well deep fell slowly plenty time went look wonder going happer nex

Step 2. Corpus Vocabulary

fit_on_texts: word -> index dictionary

```
tokenizer = text.Tokenizer()
tokenizer.fit_on_texts(alice_norm)
word2id = tokenizer.word_index
```

```
from nltk.tokenize import sent_tokenize
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from nltk.corpus import gutenberg
alice = gutenberg.raw(fileids='carroll-alice.txt')

def norm(text):
    norm text = []
```

```
norm text = []
  tokenizer = RegexpTokenizer('[a-zA-Z]+')
  tokens sentences = [tokenizer.tokenize(t) for t in
sent_tokenize(text)]
  stop words = stopwords.words('english')
  for s in tokens_sentences:
    w norm = []
    for w in s:
      if not w.lower() in stop_words:
        w_norm.append(w.lower())
    norm_text.append(' '.join(w_norm))
  return(norm_text)
```

from keras.preprocessing import text

(Dipanjar Sarkar, 2019, Ch4)

Vocabulary

Step 2. Corpus Vocabulary (cont)

PAD: Padding to a fixed length (e.g. sentence)

a vocabulary of unique words in the corpus

- a map of a word to its unique identifier and

id2word

vice versa

word2id

```
[('said', 1),
                                    [(1, 'said'),
('alice', 2),
                                     (2, 'alice'),
 ('little', 3),
                                     (3, 'little'),
 ('one', 4),
                                     (4, 'one'),
 ('know', 5),
                                     (5, 'know'),
 ('like', 6),
                                     (6, 'like'),
 ('would', 7),
                                     (7, 'would'),
 ('went', 8),
                                     (8, 'went'),
                                     (9, 'could'),
 ('could', 9),
                                     (10, 'queen')]
 ('queen', 10)]
```

word2id['PAD'] = 0
id2word = {v:k for k, v in word2id.items()}
wids = [[word2id[w] for w in
text.text_to_word_sequence(doc)] for doc in
alice_norm]

vocab_size = len(word2id)

Vocabulary

Step 2. Corpus Vocabulary (cont)

vocab_size = len(word2id) window_size = 2

We need to generate Context_window, target_word pairs

```
def generate_context_word_pairs(corpus, window_size, vocab_size):
  context_length = window_size*2
  for words in corpus:
                                              Context (X): ['alice', 'adventures', 'lewis', 'carroll'] -> Target (Y): wonderland
                                              Context (X): ['adventures', 'wonderland', 'carroll', 'chapter'] -> Target (Y): lewis
    sentence_length = len(words)
                                             Context (X): ['rabbit', 'hole', 'beginning', 'get'] -> Target (Y): alice
    for index, word in enumerate(words): Context (X): ['hole', 'alice', 'get', 'tired'] -> Target (Y): beginning
                                              Context (X): ['alice', 'beginning', 'tired', 'sitting'] -> Target (Y): get
       context_words = []
                                              Context (X): ['beginning', 'get', 'sitting', 'sister'] -> Target (Y): tired
      label_word = []
                                              Context (X): ['get', 'tired', 'sister', 'bank'] -> Target (Y): sitting
       start = index - window size
                                              Context (X): ['tired', 'sitting', 'bank', 'nothing'] -> Target (Y): sister
                                              Context (X): ['sitting', 'sister', 'nothing', 'twice'] -> Target (Y): bank
       end = index + window size + 1
                                             Context (X): ['sister', 'bank', 'twice', 'peeped'] -> Target (Y): nothing
       context_words.append([words[i]
                                              Context (X): ['bank', 'nothing', 'peeped', 'book'] -> Target (Y): twice
                   for i in range(start, end)
                   if 0 <= i < sentence_length
                   and i!= indexl)
       label_word.append(word)
       x = sequence.pad_sequences(context_words, maxlen=context_length)
       y = np_utils.to_categorical(label_word, vocab_size)
       yield (x, y)
```

(Dipanjar Sarkar, 2019, Ch4)

CBOW Model

cbow = Sequential()

vocab_size = len(word2id)
embed_size = 100
window_size = 2

Step 3. CBOW

W(t-n)

W(t+n)

Embedding	input:	(None, 4)	
Linbedding	output:	(None, 4, 100)	

cbow.add(Embedding(input_dim=vocab_size, output_dim=embed_size, input_length=window_size*2))

	•	
Lambda	input:	(None, 4, 100)
Lamoda	output:	(None, 100)

cbow.add(Lambda(lambda x: K.**mean**(x, axis=1), output_shape=

Dense	input:	(None, 100)
Delise	output:	(None, 2424)

cbow.add(Dense(vocab_size, activation="softmax"))

cbow.compile(loss='categorical_crossentropy', optimizer=

Step 4. Train Model

Epoch: One iteration over the entire dataset

Batch: 1 Epoch is divided into several smaller batches

Loss: Cost or error function is used to evaluate a candidate solution (i.e. a set of weights)

Softmax - calculates the output probabilities

2000 examples
500 batches
4 iterations
=
1 epoch

(Ian Goodfellow et al., 2016. Deep Learning)

```
for epoch in range(1, 3): # 2 epoch for demo. Use more epoch
  loss = 0.
  i = 0
  for x, y in generate_context_word_pairs(corpus=wids, window_size=window_size, vocab_size=vocab_size):
    i += 1
    loss += cbow.train_on_batch(x, y)
    if i % 100000 == 0:
        print('Processed {} (context, word) pairs'.format(i))
    print('Epoch:', epoch, '\tLoss:', loss)
    print()
```

Epoch: 1 Loss: 87117.61428439617

Epoch: 2 Loss: 91431.85377651453

Step 5. Get Word Embeddings

cbow.get_weights()[0]

Weights for the first layer (N dimensions * vocabulary size)

from sklearn.metrics.pairwise import euclidean_distances
distance_matrix = euclidean_distances(weights)

	0	1	2	3
alice	-0.219162	0.135351	0.264799	-0.057425
little	0.140651	-0.026189	-0.121107	0.045276
one	0.105631	-0.024040	0.141738	0.112736
know	0.116042	-0.027436	-0.132211	0.145596
like	-0.056407	0.123225	0.046632	0.059488

Let's find similar terms for Alice, Queen, and rabbit

similar_words = {search_term: [id2word[idx] for idx in distance_matrix[word2id[search_term]-1].argsort()[1:6]+1]

for search_term in ['alice', 'queen', 'rabbit']}

```
similar_words
{'alice': ['way', 'queen', 'getting', 'back', 'take'],
  'queen': ['gryphon', 'go', 'white', 'dear', 'come'],
  'rabbit': ['even', 'three', 'size', 'middle', 'certainly']}
```

Visualizing Distance

from sklearn.manifold import TSNE import pylab as plt

words_ids = [word2id[w] for w in words]

np.set_printoptions(suppress=True)

T = tsne.fit_transform(word_vectors)

labels = words

plt.figure(figsize=(10, 6))

plt.scatter(T[:, 0], T[:, 1], c="steelblue", edgecolors="k", s= 40) for label, x, y in zip(labels, T[:, 0], T[:, 1]): plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset points', fontsize = 16)

(Dipanjar Sarkar, 2019, Ch4)