Solubility:

- 1. [Molecule 1] (solute-solute) in termolecular forces are: \dots
- 2. [Molecule 2] (solvent-solvent) in termolecular forces are: \dots
- 3. The solute-solvent forces of attraction are: ...
- 4. These are (not) strong enough to overcome the solute-solute and solvent-solvent intermolecular forces so [Molecule 1] dissolves in [Molecule 2].

Functional groups:

Functiona	General formula:	Suffix:	Intermolecular forces present:
l group:			
Alcohol	R —— OH	-ol	Hydrogen bondingDipole-dipole forces
			• Dispersion forces
Aldehyde	R — C = 0 H	-al	Dipole-dipole forcesDispersion forces
Ketone	R^1 C R^2	-one	Dipole-dipole forcesDispersion forces
Amine	R — NH ₂	-amine	Hydrogen bondingDipole-dipole forcesDispersion forces
Amide	R — C — NH ₂	-amide	Hydrogen bondingDipole-dipole forcesDispersion forces
Carboxyli c acid	R — C = O OH	-oic	Hydrogen bondingDipole-dipole forcesDispersion forces

Ester	R^1 — C $=$ 0	-(alkyl	• Dipole-dipole forces
		group	• Dispersion forces
	Ó	attached	
		to single	
	$ ho^2$	bonded	
		oxygen)-	
		–oate	

Priority:

- 1. Carboxylic acid
- 2. Ester
- 3. Amide
- 4. Aldehyde
- 5. Ketone
- 6. Alcohol
- 7. Amine
- 8. Alkyl groups + halogens

Can't Eat An Ant, Keto Life is My Life

	Intermolecular forces present:	
Molecule 1	Hydrogen bonding, dipole-dipole forces and dispersion forces	
Molecule 2	Dipole-dipole forces and dispersion forces	
Molecule 3	Dispersion forces	

Q: Will Molecule 1 be soluble in Molecule 2? Explain.

Yes. Molecule 1 attracts most strongly by hydrogen bonding and dipole-dipole forces whilst Molecule 2 attracts most strongly by dipole-dipole forces. Thus, Molecule 1 is soluble in Molecule 2 due to the similar strengths of hydrogen bonding or dipole-dipole forces in Molecule 1 (solute-solute intermolecular forces) and dipole-dipole forces in Molecule 2 (solvent-solvent intermolecular forces), resulting in the molecules being able to mix and attract one another by dipole-dipole forces.

Q: Will Molecule 2 be soluble in Molecule 3? Explain.

No. Molecule 2 attracts most strongly by dipole-dipole forces whilst Molecule 3 attracts most strongly by dispersion forces. Thus, Molecule 2 is not soluble in Molecule 3 since the strengths of the dipole-dipole forces in Molecule 2 (solute-solute intermolecular forces) and the dispersion forces in Molecule 3 (solvent-solvent intermolecular forces) are not similar.

Q: Will Molecule 1 be soluble in Molecule 3? Explain.

No. Molecule 1 attracts most strongly by hydrogen bonding and dipole-dipole forces whilst Molecule 3 attracts most strongly by dispersion forces. Thus, Molecule 1 is not soluble in Molecule 3 since the strengths of the hydrogen bonding or dipole-dipole forces in Molecule 1 (solute-solute intermolecular forces) and the dispersion forces in Molecule 3 (solvent-solvent intermolecular forces) are not similar.