ME40064: System Modelling & Simulation ME50344: Engineering Systems Simulation Lecture 7

Dr Andrew Cookson University of Bath, 2019-20

LECTURE 7 FEM: Assembly Of Global Matrix

- Understand link between nodes, elements and element matrices
- Ability to assemble global matrix and vector, including source terms
- Ability to evaluate a simple global matrix

REVISION The Local Element Matrix

$$\int_{-1}^{1} D \frac{\partial c}{\partial x} \frac{\partial v}{\partial x} J d\xi \longrightarrow c_n \int_{-1}^{1} D \frac{d\psi_n}{d\xi} \frac{d\xi}{dx} \frac{d\psi_m}{d\xi} \frac{d\xi}{dx} J d\xi$$

$$Int_{00} = \int_{-1}^{1} D \frac{d\psi_0}{d\xi} \frac{d\xi}{dx} \frac{d\psi_0}{d\xi} \frac{d\xi}{dx} Jd\xi$$

Evaluating for n,m = 0, l produces four integrals, assembled into matrix form:

$$egin{bmatrix} Int_{00} & Int_{01} \ Int_{10} & Int_{11} \ \end{bmatrix} egin{bmatrix} c_0 \ c_1 \ \end{bmatrix}$$

REVISION The Local Element Matrix

$$\int_{-1}^{1} D \frac{\partial c}{\partial x} \frac{\partial v}{\partial x} J d\xi$$

$$\xi = -1 \qquad \qquad \xi = 1$$

standard element

$$\begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$

$$\begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$

$$\begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$

local element: el

$$x = 1/3 \qquad x = 2/3$$

local element: e2

$$x = 2/3 \qquad x = 1$$

local element: e3

REVISION Local And Global Mesh Nodes

These are not the same, c0 and c1, they are local to each element, assigned to the local nodes

ASSEMBLING GLOBAL MATRIX Local And Global Solution Nodes

We have enforced continuity in our solution and write global solution nodes vs local solution:

ASSEMBLING GLOBAL MATRIX Local And Global Solution Nodes

Identify the following links:

$$el:c0 = Cl$$

$$el:cl = e2:c0 = C2$$

$$e2:c1 = e3:c0 = C3$$

$$e3:c1 = C4$$

Therefore local element matrices can be written:

$$el: \begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

e2:
$$\begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} C_2 \\ C_3 \end{bmatrix} \quad \text{e3:} \begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} C_3 \\ C_4 \end{bmatrix}$$

ASSEMBLING GLOBAL MATRIX Global Solution Vector

Identify the following links:

el: c0 = Cl
el: cl = e2:c0 = C2
e2: cl = e3:c0 = C3
e3: cl = C4
$$C_1 \\ C_2 \\ C_3 \\ C_4$$

Therefore local element matrices can be written:

$$el: \begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

e2:
$$\begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix}$$
 $\begin{bmatrix} C_2 \\ C_3 \end{bmatrix}$ e3: $\begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix}$ $\begin{bmatrix} C_3 \\ C_4 \end{bmatrix}$

ASSEMBLY OF GLOBAL MATRIX Solving Simultaneous Equations

Add together the rows of local element matrices that share a global node value

$$\begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \begin{bmatrix} add together \\ 3D & -3D \end{bmatrix} \begin{bmatrix} C_2 \\ C_3 \end{bmatrix} \begin{bmatrix} add together \\ C_3 \end{bmatrix} \begin{bmatrix} 3D & -3D \\ -3D & 3D \end{bmatrix} \begin{bmatrix} C_3 \\ C_4 \end{bmatrix}$$
 add together

ASSEMBLY OF GLOBAL MATRIX Solving Simultaneous Equations

For the C2 matrix rows this gives:

$$-3DC_1 + 6DC_2 - 3DC_3$$

For the C3 matrix rows this gives:

$$-3DC_2 + 6DC_3 - 3DC_4$$

CI and C4 rows are unchanged

ASSEMBLY OF GLOBAL MATRIX Example For 3-Element Mesh

Putting this back into matrix form:

$$\begin{bmatrix} 3D & -3D & 0 & 0 \\ -3D & 6D & -3D & 0 \\ 0 & -3D & 6D & -3D \\ 0 & 0 & -3D & 3D \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix}$$

4 global nodes, therefore 4 by 4 global matrix Note the number of zeros - these matrices are generally sparse

ASSEMBLY OF GLOBAL MATRIX The Overlapping Nodes

ASSEMBLY OF GLOBAL MATRIX The Pseudo-Code

- 1. Create global matrix of zeros of size N_{nodes} by N_{nodes}
- 2. Loop over **elements** from 1 to N_{elements}
 - 2.i.For each element calculate local element matrices for diffusion operator & reaction term (if needed)
 - 2.ii.Sum the local element matrices to form a single 2-by-2 element matrix
 - 2.iii. Add this resultant element matrix into global matrix in the appropriate position

ASSEMBLY OF GLOBAL VECTOR Back To Our Original Equation

$$\int_0^1 v \left(D \frac{\partial^2 c}{\partial x^2} + \lambda c + f \right) dx = 0$$

$$\int_0^1 D \frac{\partial v}{\partial x} \frac{\partial c}{\partial x} dx - \int_0^1 \lambda c v dx = \int_0^1 v f dx + \left[v D \frac{\partial c}{\partial x} \right]_0^1$$

Lecture 6: Diffusion term element matrix

Reaction term Source term

Tutorial 3: Lecture 7: Lecture 8: element matrix element vector

Boundary condition

THE LHS OF THE EQUATION Integrating Sources Terms

Source term - integrate to form local element vector

$$\int_{0}^{1} v f dx = \int_{-1}^{1} v f J d\xi \qquad v = \psi_{0}, \psi_{1}$$

Integrate for the case that f is spatially constant:

$$Int_0 = \int_{-1}^{1} \left(\frac{1-\xi}{2}\right) fJd\xi = \frac{fJ}{2} \left[\xi - \frac{\xi^2}{2}\right]_{-1}^{1} = fJ$$

$$Int_1 = \int_{-1}^{1} \left(\frac{1+\xi}{2}\right) fJd\xi = \frac{fJ}{2} \left[\xi + \frac{\xi^2}{2}\right]_{-1}^{1} = fJ$$

ASSEMBLY OF GLOBAL VECTOR Follow Principles Of Global Matrix

Add together vector rows that share a common node

$$\begin{bmatrix} fJ \\ fJ \end{bmatrix}$$

For the 3-element mesh, J = I/6, therefore global vector is:

$$\begin{bmatrix}
f/6 \\
f/6 + f/6 \\
f/6
\end{bmatrix} = \begin{bmatrix}
f/6 \\
f/3 \\
f/6
\end{bmatrix}$$

ASSEMBLY OF GLOBAL VECTOR Follow Principles Of Global Matrix

Once we have boundary conditions (Lecture 8) can solve this system:

$$\begin{bmatrix} 3D & -3D & 0 & 0 \\ -3D & 6D & -3D & 0 \\ 0 & -3D & 6D & -3D \\ 0 & 0 & -3D & 3D \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} f/6 \\ f/3 \\ f/6 \end{bmatrix} + \begin{bmatrix} BCs \end{bmatrix}$$