SOLUTIONS

Physics 471 – Quiz #6

Friday, November 17, 2023

You do <u>not</u> need to show any calculations for this quiz.

(v1)

Name:

This quiz has questions on both sides of the paper!
1) [3] A particle of mass m is trapped in an infinite square well potential of width L , with boundaries at $x=0$ and $x=L$. If the initial state vector is $ \psi(t=0)\rangle = E_2\rangle$ (circle the correct answers for parts b and c):
a) What is (\hat{x}) at $t=0$?
b) Does $\langle \hat{x}(t) \rangle$ change with time? YES
c) Does $\langle \widehat{H} \rangle$ (the expectation value of the energy) change with time?
(94) = Ez always See Homework 9, problem 1
2) [3] Consider the same particle in an infinite square well from the previous problem. If the initial state vector is $ \psi(t=0)\rangle = \frac{1}{\sqrt{5}}(E_1\rangle + 2 E_2\rangle)$ (circle the correct answers for parts a and c): a) Does $\langle \hat{x}(t) \rangle$ change with time? $\langle YES \rangle$ NO b) What is $\langle \hat{H} \rangle$ at $t=0$? (Express your answer in terms of E_1 and E_2 .) $\langle \hat{H} \rangle = \sum_{N} E_{N} P(E_{N}) = \sum_{S} E_{1} + \sum_{S} E_{2}$ c) Does $\langle \hat{H} \rangle$ change with time? YES NO Energy is conserved when \hat{H} doesn't depend on time. See Homework 9, problem 2
- 1

3) [4] The picture to the right shows the initial wave function (at t=0) of a particle in an infinite square well that extends from x=0 to x=L. The wave function is a perfect semi-circle; it is nonzero only for $\frac{2}{3}L < x < L$.

a) [2] If you were to measure the energy of the particle, there are many possible answers you might get: E_1 , E_2 , E_3 , etc. Which of those results do you think is most likely? To answer this question, draw pictures of the lowest 3 energy eigenstate wave functions, $\varphi_n(x)$, for the infinite well. (If you find it helpful, you may want to re-draw $\psi(x,t=0)$ directly above your other pictures.)

E3 is most likely, because (13 (x) has the greatest overlap with $\psi(x,t=0)$.

b) [1] Considering all the energy eigenvalues for this infinite square well, which is the smallest one that you will <u>never</u> get from an energy measurement? (You may draw a picture, or just explain your reasoning in words.) $\psi(\chi, \chi_{>0})$

You will never measure

E6, because (E6/4 (x=0))=0 ep6(x)

c) [1] If we express $|\psi(t=0)\rangle$ as a superposition of energy eigenstates: $|\psi(t=0)\rangle = \sum_n c_n |E_n\rangle$, then we can write the energy measurement probabilities as $P(E_n) = |c_n|^2$. Write down two expressions for c_n : one is a bracket (inner product), the other is an integral. You do <u>not</u> need to write out the explicit forms for the energy eigenstate wave functions, $\varphi_n(x)$, or for the initial wave function $\psi(x,t=0)$.

$$C_n = \langle E_n | \psi(t=0) \rangle = \int dx \, \psi_m(x) \, \psi(x,t=0)$$