ombre y Apelli	qo:	**********	******	*******	********	• • • • • • • • • • • • • • • • • • • •	P2	drón:	*******	•••••		
orreo electróni	co:		· · · · · · · · ·	•••••	••••••			Fi	sica II	A /	B / 82.02	
uatrimestre y s	iðo:	•••••••	J	TP:	••••••••	•••••••	Pro	fesor:	• • • • • • • • • • • • • • • • • • • •	•••••••	N ⁶ hojas:	
		1	2		3		4		5			
	a	b	a	b	a	b	a	b	a	b	The state	

Problema 1

Se construye un acelerómetro eléctrico mediante dos condensadores de placas planas (modelo de placa infinita) en serie, de sección cuadrada de lado L y con placas separadas una distancia a. Entre los extremos de la asociación se encuentra aplicada una diferencia de potencial: V_0 constante. Un líquido dieléctrico ideal, de permitividad \mathcal{E} , puede pasar de un condensador a otro. En el estado de movimiento uniforme, el líquido llena hasta la mitad ambos condensadores. Cuando el sistema se acelera, los niveles cambian, de forma que entre los dos condensadores existe un desnivel h (ver figura) relacionado con la aceleración por la ecuación: $a_c/g = h/d$, siendo d la distancia entre los condensadores y g la gravedad. Se pide:

b) ¿Cuánto varia la carga del sistema cuando el desnivel pasa de 0 a h?

Problema 2.

Por un conductor infinito circula una corriente eléctrica constante I (ver figura), se pide:

- a) Establecer la función que describe el Campo Magnético según el versor $\hat{\theta}$.-
- En base a dicha función, calcular la circulación del Campo Magnético para la trayectoria dibujada.-

Problema 3. El eje de un automóvil tiene 1.5 m de longitud. Si éste se mueve a 15m/s, y la componente vertical del campo magnético terrestre es $B = 2.5 \times 10^{-5} \text{ T}$.

a) ¿ Cuál es la diferencia de potencial entre los extremos de los ejes?.-

 b) ¿Cuanta carga se necesita en cada extremo del eje para producir el Campo Eléctrico requerido en el punto a)? - (Suponer hipótesis de carga puntual y realizar esquema con todos los vectores intervinientes).-

Problema 4A. (Sólo para física IIA y 82.02).

a) Explique mediante una analogía entre el flujo de calor y la electricidad como interpretaría la Ley de Fourier para el caso de transmisión de calor a través de una pared plana, y cuál es el mecanismo de transmisión del calor que interviene.

b) La analogía anterior, se puede extender a otro mecanismo de transmisión de calor?. Explique como lo interpretaría para una tubería de espesor "e", de geometria cilíndrica que transporta un fluido caliente y está expuesta a una atmósfera de aire a temperatura ambiente.

Problema 5 A. (Sólo para física IIA y 82.02).

En un ciclo de Carnot se absorbe 100 KJ de una fuente caliente y se cede calor a otra de inferior temperatura. Si el trabajo realizado es de 28 KJ en cada ciclo:

a) Cual es la eficiencia de esa máquina y de que tipo es?.-

b) Si la disminución de entropía de la fuente caliente es de 0,5 KJ/K por ciclo. ¿Cual deberá ser la temperatura de la fuente fría considerando ahora a dicha máquina como de máxima eficiencia posible.-

Problema 4 B. (Sólo para física IIB).

Justificar por qué son ciertas o falsas las siguientes afirmaciones:

a) Si: $\nabla \cdot B = 0 \Rightarrow \nabla \cdot M = 0$.

b) En un medio magnético en el que no hay corrientes verdaderas, $\nabla \times B$ es proporcional $\nabla \times M$.

Problems SB. (Solo para física IIB).

a) Explique porque la Ley de Ampere $\vec{\nabla} \times \vec{B} = \mu_0 \vec{j}$ es incompleta cuando existen cargas eléctricas variables en el tiempo. Como lo generalizó Maxwell desde el punto de vista matemático?.

b) ¿Que puede decir de las similitudes y diferencias en la aplicación de la Ley de Gauss a los campos eléctricos y Magneticos?