PowerPulse: Household Energy Usage Forecast

PowerPulse: Household Energy Usage Forecast

A machine learning pipeline for predicting household energy consumption using historical data. This system helps consumers understand usage patterns and enables providers to forecast demand.

Project Overview

Features

- End-to-end ML pipeline from raw data to predictions
- Multiple model comparison (XGBoost, Random Forest, etc.)
- Feature engineering for temporal patterns
- Comprehensive evaluation metrics
- Visualizations of key insights

Project Structure

Technologies Used

Programming and Data Science:

Python 3.8+ - Core programming language

Pandas - Data manipulation and analysis

NumPy - Numerical computing

Scikit-learn - Machine learning algorithms

XGBoost - Gradient boosting framework

Matplotlib - Data visualization

Seaborn - Statistical data visualization

Joblib - Model serialization

Machine Learning Models

- •Linear Regression Baseline model
- •Random Forest Ensemble learning
- •Gradient Boosting (HistGradientBoosting) Advanced ensemble
- •XGBoost Optimized gradient boosting
- •Neural Networks (MLP) Deep learning approach

Data Processing & Feature Engineering

- •Scikit-learn Preprocessing Data normalization (MinMaxScaler)
- •Pandas DateTime Time series feature extraction
- •Lag Features Temporal pattern capture
- Rolling Statistics Moving averages and standard deviations

Run a code

1. Exploratory Data Analysis

python scripts/1_data_understanding.py

2. Data Cleaning and Normalization

python scripts/2_data_preprocessing.py

3. Feature Engineering

python scripts/3_feature_engineering.py

4. Model Training

python scripts/4_model_training.py

5. Model Evaluation

python scripts/5 model evaluation.py

Results

Evaluation Complete!			
Model	RMSE	MAE	R2
: :	:	:	:
0 Linear Regression	0.00347165	0.00210404	0.998096
1 Random Forest	0.00293257	0.00152246	0.998641
2 HistGradientBoosting	0.00233599	0.0013802	0.999138
3 XGBoost	0.00223969	0.00129153	0.999208
4 Neural Network	0.00692777	0.00576164	0.992418

