Computer Organization and Architecture Floating Point Arithmetic

Veena Thenkanidiyoor National Institute of Technology Goa

1

Recap

- Representation for real numbers
- Floating point representation
- Signed exponent

Floating Point Numbers and Excess-*k* **Format for Signed Integers**

3

Excess-k Representation for Signed Integers

- Signed integers can also be represented using Excess-k format
- Integers obtained after representing the signed integers in excess- \boldsymbol{k} format are called as biased integers
- Biased integer = true integer + k
 - -k is called as bias
 - For any *n*-bit integers, bias, $k=2^{(n-1)}-1$
 - True integer: The actual value of an integer. It can be positive or negative value
 - Biased integer: The positive integer value obtained by adding bias to the actual integer
- This representation is typically used in representing the exponent part of the floating point number

Illustration of Excess-7 Format for 4-bit Signed Integers

- Based integer = true integer + k
- True Integer = X: $x_3 x_2 x_1 x_0$
- Based integer = \widehat{X} : $\widehat{x}_3\widehat{x}_2\widehat{x}_1\widehat{x}_0$ – For 4-bit signed integers, n=4 – bias, k=2 $^{(n-1)}$ -1 = 2 3 -1 = 7
- Range of positive values the biased integer can hold is 0 to 15

X	ŷ	Â
	41	in binary
-7	0	0000
-6	1	0001
-5	2	0010
-4	3	0011
-3	4	0100
-2	5	0101
-1	6	0110
0	7	0111
1	8	1000
2	9	1001
3	10	1010
4	11	1011
5	12	1100
6	13	1101
7	14	1110
8	15	1111
		5

5

Floating Point Number Representation

- Example: -6.3245×10^{-2} $13.75 = 1101.11 \times 2^{0}$ Normalized form $= 1.10111 \times 2^{3}$
- IEEE Standard 754
- 32-bit single precision

- Exponent is represented in Excess-k representation
- bias, $k=2^{(8-1)}-1=2^7-1=127$
- Excess-127

32-bit Single Precision

- · Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

\mathbf{X}_{e}	$\widehat{\mathbf{X}}_{m{e}}$	\mathbf{X}_{m}	Remark
-	0	0	The value exact 0 is represented

7

7

32-bit Single Precision

- · Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

X_e	$\widehat{\mathbf{X}}_{e}$	\mathbf{X}_{m}	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented

32-bit Single Precision

- · Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

\mathbf{X}_{e}	$\widehat{\mathbf{X}}_{oldsymbol{e}}$	\mathbf{X}_{m}	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented
-	0	≠0	Denormalized value

_

9

32-bit Single Precision

- · Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

\mathbf{X}_{e}	$\widehat{\mathbf{X}}_{m{e}}$	\mathbf{X}_{m}	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented
-	0	≠0	Denormalized value
-	255	≠0	Not a number (NaN)

32-bit Single Precision

- · Exponent field is 8-bit in length
- Exponent is represented in Excess-k format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 255$
- The biased exponent value 0 and 255 is used to represent special values
- Actual biased exponent takes the values from 1 to 254
 - Hence, true exponent is in the range: $-126 \le X_e \le +127$

X_e	$\widehat{\mathbf{X}}_{oldsymbol{e}}$	\mathbf{X}_{m}	Remark
-	0	0	The value exact 0 is represented
-	255	0	The value ∞ is represented
-	0	≠0	Denormalized value
-	255	≠0	Not a number (NaN)
-126 to 127	1 to 254	0 or ≠0	Normalized value

11

11

Range and Resolution in 32-bit Single Precision

· Range:

- In 32-bit fixed-point numbers, range is ±4.55x10⁻¹⁰ to ±2.15x10⁹
- · Resolution:
 - Different exponent will have different resolution
 - _ 2-23+true exponent

Resolution in 32-bit Single Precision

- · Resolution:
 - Different exponent will have different resolution
 - 2-23+true exponent

13

13

Resolution in 32-bit Single Precision

- Resolution:
 - Different exponent will have different resolution
 - 2-23+true exponent

64-bit Double Precision

- · Exponent field is 11-bit in length
- Exponent is represented in Excess-1023 format
- Biased exponent is in the range: $0 \le \hat{X}_e \le 2047$
- The biased exponent value 0 and 2047 is used to represent special values
- Actual biased exponent takes the values from 1 to 2046
 - Hence, true exponent is in the range:

$$-1022 \le X_e \le +1023$$

Resolution: 2^{-52+true} exponent

15

15

Range and Resolution in 64-bit Double Precision

Range:

- · Resolution:
 - Different exponent will have different resolution
 - 2-52+true exponent

Arithmetic Operations on Floating Point Numbers

17

Floating Point Addition/Subtraction

- $X: X_s \widehat{X}_e X_m$
- Y: $Y_s \hat{Y}_e Y_m$
- Z = X + Y or Z = X Y
- Resultant $Z: Z_s \ \hat{Z}_e \ Z_m$
- Focus: 32-bit single precision floating point numbers
- · Addition Subtraction Rule:
 - 1. Choose the number with smallest exponent
 - Shift its mantissa right a number of steps equal to the difference of exponent
 - 2. Set the exponent of the result equal to the larger exponent
 - 3. Perform addition/subtraction on the mantissas and determine the sign of the result
 - 4. Normalize the resulting value, if necessary

Floating Point Addition/Subtraction: Example 1

X: X_s X̂_e X_m

X: 1.00000...00x20

Y: Y_s Ŷ_e Y_m

Y: 1.11110...00x2-5

- Z = X + Y
- · Addition Subtraction Rule:
 - 1. Choose the number with smallest exponent and let that be Y

Y: 1.11110...00x2-5

Shift its mantissa right a number of steps equal to the difference of exponents

difference = |0+5| = 5

Y: 0.0000111110...00x20

2. Perform addition/subtraction on the mantissas and determine the sign of the result

X: 1.0000000000...00x20

Y: 0.0000111110...00x20

Z: 1.0000111110...00x20

3. Normalize the resulting value, if necessary

40

19

Floating Point Addition/Subtraction: Example 2

X: X_s X̂_e X_m

X: -1.00000...00x20

• Y: $Y_s \hat{Y}_e Y_m$

Y: 1.11110...00x2-5

- Z = X + Y
- · Addition Subtraction Rule:
 - 1. Choose the number with smallest exponent and let that be Y

Y: 1.11110...00x2-5

Shift its mantissa right a number of steps equal to the difference of exponents

difference = |0+5| = 5

Y: 0.0000111110...00x20

Perform addition/subtraction on the mantissas and determine the sign of the result

X: -1.0000000000...00x20

Y: 0.00001111110...00x20

Z: -0.1111000010...00x20

3. Normalize the resulting value, if necessary

Z: -1.1110000100...00x2-1

Floating Point Addition/Subtraction: Example 3

- X: $X_s \hat{X}_e X_m$ X: 1.00000...00×2° • Y: $Y_s \hat{Y}_e Y_m$ Y: 1.11110...00×2⁵
- Z = X Y
- Addition Subtraction Rule:
 - 1. Choose the number with smallest exponent and let that be Y

Y: 1.00000...00x20

Shift its mantissa right a number of steps equal to the difference of exponents $% \left\{ 1,2,...,n\right\}$

difference = |0-5| = 5

Y: 0.0000100000...00x25

Perform addition/subtraction on the mantissas and determine the sign of the result

X: 1.1111000000...00x2⁵
Y: 0.0000100000...00x2⁵
Z:-1.1110100000...00x2⁵

Sign, Z_s=1 i.ve negative

3. Normalize the resulting value, if necessary

21

Floating Point Multiplication and Division

- · 32-bit single precision
- Multiply rule:
 - Add the exponent and subtract 127 (i.e. bias)
 - Multiply the mantissas and determine the sign of the result
 - Normalize the resulting value, if necessary
- Division rule:
 - Subtract the exponent and add 127 (i.e. bias)
 - Divide the mantissas and determine the sign of the result.
 - Normalize the resulting value, if necessary

25

25

Reference

 Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", 5th Edition, Tata McGraw Hill, 2002

