HN4-FTKL

Abteilung Elektronik

an der Höheren technischen Bundeslehranstalt 1 Innsbruck, Anichstraße 26 – 28

AquadDoc

Manuel Ljubic, Jack Neuner, Daniel Plank
18. Februar 2019

Dokumentation des Wasserhaushalts einer Wasserversorgungsanlage für Kleinsiedlungsgebiete

Inhaltsverzeichnis

1	Aufgabenstelleung
	1.1 Aufbau
	1.2 Sensoren
2	Test mittels Aurduino
	2.1 HC-SR04
	2.2 DS1722
3	Addendum
_	3.1 Literaturverzeichnis

1 Aufgabenstelleung

1.1 Aufbau

Ein Hochbehälter hat ein Fassungsvermögen um 1 Tag Wasser speichern zu können und ein Feuer zu löschen.

1.2 Sensoren

 Wasser zwischen Quelle und Brunnen und Brunnen und Häuser Umsetzung mittels Rotor mit Magnet an einer Schaufel, welcher einen REED-Kontakt schaltet. Aufgabe: Prellt dieser Schalter?

Abbildung 1: Schemata eines Reed-Schalters

Wassertemperatur
 Digitaler Sensor -> Auflösung von 0.01°C

Wasserstand Füllstand HB: Drucksensor, Ultraschallsensor, Potentiometer mit Schwimmer, etc.

- Türschalter
- Batteriestandsanzeige

Anforderungen an die Funkübertragung:

- Datensicherheit
- Übertragungsmöglichkeit (Manchester Kodierung)
- Übertragungsantenne

Gefundene Bauteile auf neuhold-elektronik.at:

- DS1722: SPI Digital Thermometer. 8-12 bit Auflösung.
- HC SR04: PWM Ultraschall Messmodul. 2mA standby strom.
- MAX640:
 5V Step-Down DC-DC Converter.

2 Test mittels Aurduino

Es wird ein Arduino verwendet um die gegebenen Sensoren DS1722 bzw. HC-SR04 zu testen. Die SPI anschlüsse des Arduinos werden mit den Anschlüssen der jeweiligen Sensoren verbunden und auf die Verwendung der richtigen Versorgungsspannung wird geachtet.

2.1 HC-SR04

Listing 1: Arduino Programm für HC-SR04

```
1
 2
   * Ultrasonic Sensor HC-SR04 and Arduino Tutorial
 3
 4
   * by Dejan Nedelkovski,
   * www. HowToMechatronics.com
 5
 6
 7
   */
8
9
   // defines pins numbers
10
   const int trigPin = 9;
11
   const int echoPin = 10;
12
   // defines variables
13
14
   long duration;
   int distance;
15
16
17
   void setup() {
18
            pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
           pinMode(echoPin, INPUT); // Sets the echoPin as an Input
19
            Serial.begin(9600); // Starts the serial communication
20
21
            return:
22
   }
23
24
   void loop() {
25
            // Clears the trigPin
26
            digitalWrite(trigPin, LOW);
27
            delayMicroseconds(2);
28
29
            // Sets the trigPin on HIGH state for 10 micro seconds
30
            digitalWrite(trigPin, HIGH);
            delayMicroseconds(10);
31
32
            digitalWrite(trigPin, LOW);
33
34
            // Reads the echoPin, returns the sound wave travel time
            // in µS
35
36
            duration = pulseIn(echoPin, HIGH);
37
38
            // Calculating the distance
39
            distance= duration *0.034/2:
40
41
            // Prints the distance on the Serial Monitor
            Serial.print("Distance:");
42
43
            Serial.println(distance);
44
            return;
45
```

2.2 DS1722

Listing 2: Arduino Programm für DS1722

```
#define DATAOUT 11 //MOSI - Master Input Slave Output
   #define DATAIN 12 //MISO - Master Output Slave Input
2
   #define SPICLOCK 13 //SCK — Serial Clock
   #define SLAVESELECT 10 //SS -- Slave Select
5
   #define DS1722 POWER 9
6
7
   #define DS1722 SELECT HIGH
   #define DS1722 DESELECT LOW
8
9
10
   #define DS1722 CONFIG BYTE 0xEE
11
   #define CONFIG REG READ 0x00
12
   #define CONFIG REG WRITE 0x80
   #define TEMP ADDR HI 0x02
13
   #define TEMP ADDR LOW 0x01
14
15
16
   byte clr;
   byte temperature [2];
17
18
19
   char spi transfer(volatile char data){
20
21
           // Start the transmission
22
           SPDR = data; // Wait the end of the transmission
23
           while (!(SPSR & (1<<SPIF))){};
           // return the received byte
24
25
           return SPDR;
26
27
28
   void setup(){
29
30
            byte n, config = 0xAB;
            Serial.begin(9600);
31
32
33
           temperature [0] = 0x12;
           temperature [1] = 0x34;
34
35
36
           /* Set DDIR registers */
37
38
           pinMode(DATAOUT, OUTPUT);
39
           pinMode(DATAIN, INPUT);
           pinMode(SPICLOCK, OUTPUT);
40
41
           pinMode(SLAVESELECT, OUTPUT);
           pinMode(DS1722_POWER, OUTPUT);
42
43
44
            digitalWrite (DS1722 POWER, HIGH); //disable device
45
            delay(250);
46
```

```
47
            digitalWrite(SLAVESELECT, DS1722 DESELECT); //disable
               device
            // set up SPI control register
48
49
            SPCR = (1 < SPE) | (1 < MSTR) | (1 < CPOL) | (1 < CPHA) ;
50
            clr=SPSR;
            clr=SPDR;
51
52
            delay(10);
53
54
            // read config byte
55
            digitalWrite (SLAVESELECT, DS1722 SELECT);
            spi transfer(CONFIG REG READ);
56
57
            config = spi_transfer(0xFF);
58
            digitalWrite (SLAVESELECT, DS1722 DESELECT);
59
            delay(100);
60
61
            Serial.print(config, HEX);
62
            Serial.print('\n', BYTE);
63
64
            // write config byte to the configuration register
65
            digitalWrite (SLAVESELECT, DS1722 SELECT);
            spi transfer(CONFIG REG WRITE);
66
67
            spi transfer(DS1722 CONFIG BYTE);
68
            digitalWrite (SLAVESELECT, DS1722 DESELECT);
69
            delay(100);
70
71
            // read config byte
72
            digitalWrite (SLAVESELECT, DS1722 SELECT);
            spi transfer(CONFIG REG READ);
73
74
            config = spi transfer(0xFF);
75
            digitalWrite (SLAVESELECT, DS1722 DESELECT);
76
            delay(100);
77
78
            Serial.print(config, HEX);
79
            Serial.print('\n', BYTE);
80
81
            Serial.print('h', BYTE);
            Serial.print('i', BYTE);
82
83
            Serial.print('\n', BYTE);//debug
            delay(1000);
84
85
86
            return:
87
88
89
   void loop(){
90
91
            //float c, f;
92
            // write config byte to the configuration register
93
            digitalWrite (SLAVESELECT, DS1722 SELECT);
94
            spi_transfer(CONFIG_REG_WRITE);
95
            spi_transfer(DS1722_CONFIG_BYTE);
```

```
96
             digitalWrite(SLAVESELECT, DS1722_DESELECT);
97
98
             delay(1400);
99
100
             digitalWrite (SLAVESELECT, DS1722 SELECT);
             spi transfer(TEMP ADDR HI);
101
             temperature [0] = spi transfer(0x00);
102
             //release chip, signal end transfer
103
104
             digitalWrite (SLAVESELECT, DS1722 DESELECT);
             delay(25); // just because ....
105
             digitalWrite (SLAVESELECT, DS1722 SELECT);
106
107
             spi_transfer(TEMP_ADDR_LOW);
             temperature[1] = spi transfer(0x00);
108
             //release chip, signal end transfer
109
             digitalWrite(SLAVESELECT, DS1722_DESELECT);
110
             Serial.print(temperature[0] * 9 / 5 + 32, DEC);
111
             Serial.print('', BYTE);
112
113
             Serial.print(temperature[0], DEC);
114
115
             if (temperature [1] & 0x80) {
116
117
                     Serial.print('.', BYTE);
                     Serial.print('5', BYTE);
118
119
             }
120
121
             Serial.print('\r', BYTE);
             Serial.print('\n', BYTE);
122
123
124
             delay(2000);
125
126
             return;
127
     }
```

3 Addendum

3.1 Literaturverzeichnis

- HC-SR04 Datenblatt
- DS1722 Datenblatt
- MAX640 Datenblatt
- CY8C5888LTI-LP097 Datenblatt