Disproof of the List Hadwiger Conjecture*

János Barát[†]

Gwenaël Joret[‡]

David R. Wood§

October 12, 2011

Abstract

The List Hadwiger Conjecture asserts that every K_t -minor-free graph is t-choosable. We disprove this conjecture by constructing a K_{3t+2} -minor-free graph that is not 4t-choosable for every integer $t \geq 1$.

1 Introduction

In 1943, Hadwiger [6] made the following conjecture, which is widely considered to be one of the most important open problems in graph theory; see [26] for a survey¹.

Hadwiger Conjecture. Every K_t -minor-free graph is (t-1)-colourable.

The Hadwiger Conjecture holds for $t \le 6$ (see [3, 6, 17, 18, 28]) and is open for $t \ge 7$. In fact, the following more general conjecture is open.

Weak Hadwiger Conjecture. Every K_t -minor-free graph is ct-colourable for some constant c > 1.

It is natural to consider analogous conjectures for list colourings². First, consider the

^{*}MSC: graph minors 05C83, graph coloring 05C15

[†]School of Mathematical Sciences, Monash University, VIC 3800, Australia (janos.barat@monash.edu). Research supported by OTKA Grant PD 75837, and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

[‡]Département d'Informatique, Université Libre de Bruxelles, Brussels, Belgium (gjoret@ulb.ac.be). Post-doctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.-FNRS). Supported in part by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique. Also supported by an Endeavour Fellowship from the Australian Government.

[§]Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia (woodd@unimelb.edu.au). Supported by a QEII Research Fellowship from the Australian Research Council.

¹See [2] for undefined graph-theoretic terminology. Let $[a, b] := \{a, a + 1, \dots, b\}$.

²A list-assignment of a graph G is a function L that assigns to each vertex v of G a set L(v) of colours. G is L-colourable if there is a colouring of G such that the colour assigned to each vertex v is in L(v). G is k-choosable if G is L-colourable for every list-assignment L with $|L(v)| \geq k$ for each vertex v of G. The choice number of G is the minimum integer k such that G is k-choosable. If G is k-choosable then G is also k-colourable—just use the same set of k colours for each vertex. Thus the choice number of G is at least the chromatic number of G. See [32] for a survey on list colouring.

choosability of planar graphs. Erdős et al. [5] conjectured that some planar graph is not 4-choosable, and that every planar graph is 5-choosable. The first conjecture was verified by Voigt [27] and the second by Thomassen [25]. Incidentally, Borowiecki [1] asked whether every K_t -minor-free graph is (t-1)-choosable, which is true for $t \leq 4$ but false for t=5 by Voigt's example. The following natural conjecture arises (see [10, 30]).

List Hadwiger Conjecture. Every K_t -minor-free graph is t-choosable.

The List Hadwiger Conjecture holds for $t \leq 5$ (see [7, 20, 31]). Again the following more general conjecture is open.

Weak List Hadwiger Conjecture. Every K_t -minor-free graph is ct-choosable for some constant $c \geq 1$.

In this paper we disprove the List Hadwiger Conjecture for $t \geq 8$, and prove that $c \geq \frac{4}{3}$ in the Weak List Hadwiger Conjecture.

Theorem 1. For every integer $t \geq 1$,

- (a) there is a K_{3t+2} -minor-free graph that is not 4t-choosable.
- (b) there is a K_{3t+1} -minor-free graph that is not (4t-2)-choosable,
- (c) there is a K_{3t} -minor-free graph that is not (4t-3)-choosable.

Before proving Theorem 1, note that adding a dominant vertex to a graph does not necessarily increase the choice number (as it does for the chromatic number). For example, $K_{3,3}$ is 3-choosable but not 2-choosable. Adding one dominant vertex to $K_{3,3}$ gives $K_{1,3,3}$, which again is 3-choosable [16]. In fact, this property holds for infinitely many complete bipartite graphs [16]; also see [19].

2 Proof of Theorem 1

Let G_1 and G_2 be graphs, and let S_i be a k-clique in each G_i . Let G be a graph obtained from the disjoint union of G_1 and G_2 by pairing the vertices in S_1 and S_2 and identifying each pair. Then G is said to be obtained by pasting G_1 and G_2 on S_1 and S_2 . The following lemma is well known.

Lemma 2. Let G_1 and G_2 be K_t -minor-free graphs. Let S_i be a k-clique in each G_i . Let G be a pasting of G_1 and G_2 on S_1 and S_2 . Then G is K_t -minor-free.

Proof. Suppose on the contrary that K_{t+1} is a minor of G. Let X_1, \ldots, X_{t+1} be the corresponding branch sets. If some X_i does not intersect G_1 and some X_j does not intersect G_2 , then no edge joins X_i and X_j , which is a contradiction. Thus, without loss of generality, each X_i intersects G_1 . Let $X_i' := G_1[X_i]$. Since S_1 is a clique, X_i' is connected. Thus X_1', \ldots, X_{t+1}' are the branch sets of a K_{t+1} -minor in G_1 . This contradiction proves that G is K_t -minor-free.

Let $K_{r\times 2}$ be the complete r-partite graph with r colour classes of size 2. Let $K_{1,r\times 2}$ be the complete (r+1)-partite graph with r colour classes of size 2 and one colour class of size 1. That is, $K_{r\times 2}$ and $K_{1,r\times 2}$ are respectively obtained from K_{2r} and K_{2r+1} by deleting a matching of r edges. The following lemma will be useful.

Lemma 3 ([8, 29]). $K_{r\times 2}$ is $K_{|3r/2|+1}$ -minor-free, and $K_{1,r\times 2}$ is $K_{|3r/2|+2}$ -minor-free.

Proof of Theorem 1. Our goal is to construct a K_p -minor-free graph and a non-achievable list assignment with q colours per vertex, where the integers p, q and r and a graph H are defined in the following table. Let $\{v_1w_1, \ldots, v_rw_r\}$ be the deleted matching in H. By Lemma 3, the calculation in the table shows that H is K_p -minor-free.

case	~	q			
(a)	3t+2	4t	2t + 1	$K_{r \times 2}$	$\left\lfloor \frac{3}{2}r\right\rfloor + 1 = 3t + 2 = p$
(b)	3t + 1	4t - 2	2t	$K_{r \times 2}$	$\lfloor \frac{3}{2}r \rfloor + 1 = 3t + 1 = p$
(c)	3t	4t-3	2t-1	$K_{1,r\times 2}$	$\lfloor \frac{3}{2}r \rfloor + 1 = 3t + 2 = p$ $\lfloor \frac{3}{2}r \rfloor + 1 = 3t + 1 = p$ $\lfloor \frac{3}{2}r \rfloor + 2 = 3t = p$

For each vector $(c_1, \ldots, c_r) \in [1, q]^r$, let $H(c_1, \ldots, c_r)$ be a copy of H with the following list assignment. For each $i \in [1, r]$, let $L(w_i) := [1, q + 1] \setminus \{c_i\}$. Let L(u) := [1, q] for each remaining vertex u. There are q + 1 colours in total, and |V(H)| = q + 2. Thus in every L-colouring of H, two non-adjacent vertices receive the same colour. That is, $\operatorname{col}(v_i) = \operatorname{col}(w_i)$ for some $i \in [1, r]$. Since each $c_i \notin L(w_i)$, it is not the case that each vertex v_i is coloured c_i .

Let G be the graph obtained by pasting all the graphs $H(c_1, \ldots, c_r)$, where $(c_1, \ldots, c_r) \in [1, q]^r$, on the clique $\{v_1, \ldots, v_r\}$. The list assignment L is well defined for G since $L(v_i) = [1, q]$. By Lemma 2, G is K_p -minor-free. Suppose that G is L-colourable. Let c_i be the colour assigned to each vertex v_i . Thus $c_i \in L(v_i) = [1, q]$. Hence, as proved above, the copy $H(c_1, \ldots, c_r)$ is not L-colourable. This contradiction proves that G is not L-colourable. Each vertex of G has a list of G colours in G. Therefore G is not G-choosable. (It is easily seen that G is G-degenerate, implying G is G-choosable.)

Note that this proof was inspired by the construction of a non-4-choosable planar graph by Mirzakhani [15].

3 Conclusion

Theorem 1 disproves the List Hadwiger Conjecture. However, list colourings remain a viable approach for attacking Hadwiger's Conjecture. Indeed, list colourings provide potential routes around some of the known obstacles, such as large minimum degree, and lack of exact structure theorems; see [10, 11, 30, 31].

³A graph is d-degenerate if every subgraph has minimum degree at most d. Clearly every d-degenerate graph is (d+1)-choosable.

The following table gives the best known lower and upper bounds on the maximum choice number of K_t -minor-free graphs. Each lower bound is a special case of Theorem 1. Each upper bound (except t=5) follows from the following degeneracy results. Every K_3 -minor-free graph (that is, every forest) is 1-degenerate. Dirac [4] proved that every K_4 -minor-free graph is 2-degenerate. Mader [14] proved that for $t \leq 7$, every K_t -minor-free graph is (2t-5)-degenerate. Jørgensen [9] and Song and Thomas [21] proved the same result for t=8 and t=9 respectively. Song [22] proved that every K_{10} -minor-free graph is 21-degenerate, and that every K_{11} -minor-free graph is 25-degenerate. In general, Kostochka [12, 13] and Thomason [23, 24] independently proved that every K_t -minor-free graph is $\mathcal{O}(t\sqrt{\log t})$ -degnerate.

t	3	4	5	6	7	8	9	10	11	 t
lower bound										
upper bound	2	3	5	8	10	12	14	22	26	 $\mathcal{O}(t\sqrt{\log t})$

The following immediate open problems arise:

- Is every K_6 -minor-free graph 7-choosable?
- Is every K_6 -minor-free graph 6-degenerate?
- Is every K_6 -minor-free graph 6-choosable?

Acknowledgements

Thanks to Louis Esperet for stimulating discussions.

References

- [1] MIECZYSLAW BOROWIECKI. Research problem 172. Discrete Math., 121:235–236, 1993. doi: 10.1016/0012-365X(93)90557-A.
- [2] REINHARD DIESTEL. Graph theory, vol. 173 of Graduate Texts in Mathematics. Springer, 4th edn., 2010. http://diestel-graph-theory.com/. MR: 2744811.
- [3] Gabriel A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc., 27:85–92, 1952. doi:10.1112/jlms/s1-27.1.85. MR:0045371.
- [4] Gabriel A. Dirac. Homomorphism theorems for graphs. Math. Ann., 153:69–80, 1964. doi: 10.1007/BF01361708. MR: 0160203.
- [5] PAUL ERDŐS, ARTHUR L. RUBIN, AND HERBERT TAYLOR. Choosability in graphs. In *Proc. West Coast Conference on Combinatorics, Graph Theory and Computing*, vol. XXVI of *Congress. Numer.*, pp. 125–157. Utilitas Math., 1980. http://www.renyi.hu/~p_erdos/1980-07.pdf. MR: 593902.

- [6] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich, 88:133–142, 1943. MR: 0012237.
- [7] WENJIE HE, WENJING MIAO, AND YUFA SHEN. Another proof of the 5-choosability of K_5 -minor-free graphs. Discrete Math., 308(17):4024-4026, 2008. doi: 10.1016/j.disc.2007.07.089. MR: 2418108.
- [8] JAROSLAV IVANČO. Some results on the Hadwiger numbers of graphs. *Math. Slovaca*, 38(3):221–226, 1988. MR: 977899.
- [9] LEIF K. JØRGENSEN. Contractions to K_8 . J. Graph Theory, 18(5):431–448, 1994. doi: 10.1002/jgt.3190180502. MR: 1283309.
- [10] Ken-ichi Kawarabayashi and Bojan Mohar. A relaxed Hadwiger's conjecture for list colorings. J. Combin. Theory Ser. B, 97(4):647–651, 2007. doi:10.1016/j.jctb.2006.11.002. MR: 2325803.
- [11] Ken-ichi Kawarabayashi and Bruce Reed. Hadwiger's conjecture is decidable. In *Proc. 41st Annual ACM Symposium on Theory of Computing* (STOC '09), pp. 445–454. ACM, 2009. doi:10.1145/1536414.1536476.
- [12] ALEXANDR V. KOSTOCHKA. The minimum Hadwiger number for graphs with a given mean degree of vertices. *Metody Diskret. Analiz.*, 38:37–58, 1982. MR: 0713722.
- [13] ALEXANDR V. KOSTOCHKA. Lower bound of the Hadwiger number of graphs by their average degree. *Combinatorica*, 4(4):307–316, 1984. doi:10.1007/BF02579141. MR:0779891.
- [14] WOLFGANG MADER. Homomorphiesätze für Graphen. Math. Ann., 178:154–168, 1968. doi: 10.1007/BF01350657. MR: 0229550.
- [15] MARYAM MIRZAKHANI. A small non-4-choosable planar graph. Bull. Inst. Combin. Appl., 17:15–18, 1996. MR: 1386951.
- [16] Kyoji Ohba. Choice number of complete multipartite graphs with part size at most three. Ars Combin., 72:133–139, 2004. MR: 2069052.
- [17] NEIL ROBERTSON, DANIEL P. SANDERS, PAUL D. SEYMOUR, AND ROBIN THOMAS. The four-colour theorem. *J. Combin. Theory Ser. B*, 70(1):2–44, 1997. doi:10.1006/jctb.1997.1750. MR:1441258.
- [18] Neil Robertson, Paul D. Seymour, and Robin Thomas. Hadwiger's conjecture for K_6 -free graphs. Combinatorica, 13(3):279–361, 1993. doi:10.1007/BF01202354. MR:1238823.

- [19] YUFA SHEN, WENJIE HE, GUOPING ZHENG, YANNING WANG, AND LINGMIN ZHANG. On choosability of some complete multipartite graphs and Ohba's conjecture. *Discrete Math.*, 308(1):136–143, 2008. doi: 10.1016/j.disc.2007.03.059. MR: 2370527.
- [20] RISTE ŠKREKOVSKI. Choosability of K_5 -minor-free graphs. Discrete Math., 190(1–3):223–226, 1998. doi: 10.1016/S0012-365X(98)00158-7. MR: 1639710.
- [21] ZI-XIA SONG AND ROBIN THOMAS. The extremal function for K_9 minors. J. Combin. Theory Ser. B, 96(2):240–252, 2006. doi:10.1016/j.jctb.2005.07.008. MR: 2208353.
- [22] ZIXIA SONG. Extremal Functions for Contractions of Graphs. Ph.D. thesis, Georgia Institute of Technology, USA, 2004. CiteSeer: 10.1.1.92.1275. MR: 2706190.
- [23] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261–265, 1984. doi: 10.1017/S0305004100061521. MR: 0735367.
- [24] Andrew Thomason. The extremal function for complete minors. *J. Combin. Theory Ser. B*, 81(2):318–338, 2001. doi:10.1006/jctb.2000.2013. MR:1814910.
- [25] Carsten Thomassen. Every planar graph is 5-choosable. *J. Combin. Theory Ser. B*, 62(1):180–181, 1994. doi:10.1006/jctb.1994.1062. MR:1290638.
- [26] BJARNE TOFT. A survey of Hadwiger's conjecture. Congr. Numer., 115:249–283, 1996.
 MR: 1411244.
- [27] MARGIT VOIGT. List colourings of planar graphs. *Discrete Math.*, 120(1-3):215–219, 1993. doi:10.1016/0012-365X(93)90579-I. MR: 1235909.
- [28] KLAUS WAGNER. Über eine Eigenschaft der ebene Komplexe. Math. Ann., 114:570–590, 1937. doi: 10.1007/BF01594196. MR: 1513158.
- [29] DAVID R. WOOD. On the maximum number of cliques in a graph. *Graphs Combin.*, 23(3):337–352, 2007. doi:10.1007/s00373-007-0738-8. MR: 2320588.
- [30] DAVID R. WOOD. Contractibility and the Hadwiger conjecture. *European J. Combin.*, 31(8):2102–2109, 2010. doi:10.1016/j.ejc.2010.05.015. MR: 2718284.
- [31] DAVID R. WOOD AND SVANTE LINUSSON. Thomassen's choosability argument revisited. SIAM J. Discrete Math., 24(4):1632–1637, 2010. doi:10.1137/100796649. MR:2746713.
- [32] DOUGLAS R. WOODALL. List colourings of graphs. In Surveys in combinatorics, vol. 288 of London Math. Soc. Lecture Note Ser., pp. 269–301. Cambridge Univ. Press, 2001. MR: 1850711.