Fundamentals (Numbers, Sets, Words, Functions, and Relations)

Exercise 1. How many numbers are there between 100 and 1000 that are

- (a) divisible by 3?
- (b) divisible by 5?
- (c) divisible by 15?

Solution: Using the formula $\lfloor \frac{m}{k} \rfloor - \lfloor \frac{n-1}{k} \rfloor$:

- $\lfloor \frac{1000}{3} \rfloor \lfloor \frac{99}{3} \rfloor = 300$ numbers divisible by 3 $(102, 105, \dots, 999)$;
- $\left\lfloor \frac{1000}{5} \right\rfloor \left\lfloor \frac{99}{5} \right\rfloor = 181$ numbers divisible by 5 $(100, 105, \dots, 1000)$;
- $\lfloor \frac{1000}{15} \rfloor \lfloor \frac{99}{15} \rfloor = 60$ numbers divisible by 15 $(105, 120, \dots, 990)$.

Exercise 2. Let $\Sigma = \{a, b, c\}$ and $\Phi = \{a, c, e\}$.

- (a) How many words are in the set Σ^2 ?
- (b) What are the elements of $\Sigma^2 \setminus \Phi^*$?
- (c) Is it true that $\Sigma^* \setminus \Phi^* = (\Sigma \setminus \Phi)^*$? Why?

```
Solution: (a) \Sigma^2 = \{aa, ab, ac, ba, \dots, cc\}, hence |\Sigma^2| = 3 \cdot 3 = 9.

(b) \Sigma^2 \setminus \Phi^* = \{ab, ba, bb, bc, cb\}, that is, all words in \Sigma^2 with the letter b.

(c) No; for example, ab \in \Sigma^* and ab \notin \Phi^*, hence ab \in \Sigma^* \setminus \Phi^*; but \Sigma \setminus \Phi = \{b\}, hence ab \notin (\Sigma \setminus \Phi)^*.
```

Exercise 3. Prove that $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

Solution: We show in both directions that if an element belongs to $(A \setminus B) \cup (B \setminus A)$ then it also belongs to $(A \cup B) \setminus (A \cap B)$ and vice versa:

- Suppose that an element $x \in (A \setminus B) \cup (B \setminus A)$. Therefore, either $x \in A \setminus B$ or $x \in B \setminus A$. In either case, we conclude that $x \in A \cup B$ and (by the definition of set difference) $x \notin A \cap B$. Therefore, $x \in (A \cup B) \setminus (A \cap B)$.
- Suppose than $x \in (A \cup B) \setminus (A \cap B)$. This means that $x \in A \cup B$ (and, therefore, either $x \in A$ or $x \in B$), but $x \notin A \cap B$. If $x \in A$ and $x \notin A \cap B$, then $x \in A \setminus B$; alternatively, if $x \in B$ and $x \notin A \cap B$, then $x \in B \setminus A$. In either case, we conclude that $x \in (A \setminus B) \cup (B \setminus A)$.

Exercise 4. Consider the relation $R \subseteq \mathbb{R} \times \mathbb{R}$ defined by aRb if, and only if, $b + 0.5 \ge a \ge b - 0.5$. Is R

- (a) reflexive?
- (b) antireflexive?

- (c) symmetric?
- (d) antisymmetric?
- (e) transitive?

Solution:

- (a) Yes, since $a + 0.5 \ge a \ge a 0.5$ for all $a \in \mathbb{R}$
- (b) No; see (a)
- (c) Yes, since $(b + 0.5 \ge a) \land (a \ge b 0.5)$ implies $(b \ge a 0.5) \land (a + 0.5 \ge b)$.
- (d) No; e.g. $(0,0.1) \in R$ and $(0.1,0) \in R$.
- (e) No; e.g. $(1.1, 1.5) \in R$ and $(1.5, 1.9) \in R$ but $(1.1, 1.9) \notin R$ since 1.9 0.5 > 1.1

Exercise 5. For each of the following statements, provide a valid proof if it is true for all sets S and all relations $R_1 \subseteq S \times S$ and $R_2 \subseteq S \times S$. If the statement is not always true, provide a counterexample.

- (a) If R_1 and R_2 are symmetric, then $R_1 \cap R_2$ is symmetric.
- (b) If R_1 and R_2 are antisymmetric, then $R_1 \cup R_2$ is antisymmetric.

Solution:

- (a) We will show that if R_1 and R_2 are symmetric, then $R_1 \cap R_2$ is symmetric. Suppose $(a,b) \in R_1 \cap R_2$. Then $(a,b) \in R_1$ and $(a,b) \in R_2$. Because R_1 is symmetric, $(b,a) \in R_1$. Because R_2 is symmetric, $(b,a) \in R_2$. Therefore $(b,a) \in R_1 \cap R_2$. Therefore $R_1 \cap R_2$ is symmetric.
- (b) This is not the case. Consider relations on \mathbb{N} : $R_1 = \leq$ and $R_2 = \geq$. We have $1 \leq 2$, so $(1,2) \in R_1$ and $(2,1) \in R_2$. Therefore, $(1,2), (2,1) \in R_1 \cup R_2$ but $1 \neq 2$.