Лабораторная работа № 2 «Интерполяционный кубический сплайн»

На отрезке [a,b] задана функция $f_1(x)$. Вычислить значения функции в равноотстоящих узлах $\left\{x_i=a+ih\,|\,i=\overline{0,N},h=(b-a)/N,N=15\right\}$. По полученной таблице $\left\{x_i,f_1(x_i)\right\}$ построить интерполяционный кубический сплайн $S_3(x)$ для функции $f_1(x)$ с дополнительными условиями, указанными в варианте задания. В узлах $\overline{x}_i=a+i\left(b-a\right)/100,\ i=\overline{0,100}$ вычислить значения сплайна $S_3(x)$ и сравнить со значениями функции $f_1(x)$ в этих узлах, т.е. найти $\max_{i=0,100}\left|S_3\left(\overline{x}_i\right)-f_1\left(\overline{x}_i\right)\right|$. В одной системе координат построить график функции $f_1(x)$ и график интерполяционного кубического сплайна $S_3(x)$. Построить график погрешности интерполирования кубическим сплайном.

В содержание отчета должна быть включена следующая информация:

- Алгоритм построения интерполяционного кубического сплайна.
- $\max_{i=0.100} \left| S_3(\overline{x}_i) f_1(\overline{x}_i) \right|$.
- Графики функции $f_1(x)$ и интерполяционного кубического сплайна $S_3(x)$.
- График погрешности интерполирования кубическим сплайном.
- Выводы.
- Листинг программы с комментариями.

Варианты заданий

Номер варианта	Функция	Дополнительные условия
1	$f_1(x) = e^{\cos x}, [a,b] = [-3,3].$	$S_3'(a) = f_1'(a), S_3'(b) = f_1'(b).$
2	$f_1(x) = x^3 \cos(3x-1), [a,b] = [-2,2].$	$S_3''(a) = f_1''(a), S_3''(b) = f_1''(b).$
3	$f_1(x) = e^{\sin x}, [a,b] = [-3,3]$	$S_3'(a) = f_1'(a), S_3''(b) = f_1''(b).$
4	$f_1(x) = \sin x \cos x, [a,b] = [-3,3]$	$S_3''(a) = f_1''(a), S_3'(b) = f_1'(b).$
5	$f_1(x) = x\cos(x+5), [a,b] = [-5,5]$	$S'_3(a) = f'_1(a), S'_3(b) = f'_1(b).$
6	$f_1(x) = \sin(\cos x), [a,b] = [-3,3].$	$S_3''(a) = f_1''(a), S_3''(b) = f_1''(b).$
7	$f_1(x) = x^2 \cos 2x$, $[a,b] = [-3,3]$.	$S_3'(a) = f_1'(a), S_3''(b) = f_1''(b).$
8	$f_1(x) = \sin 2x \ln(x+5), [a,b] = [-2,2].$	$S_3''(a) = f_1''(a), S_3'(b) = f_1'(b).$
5	$f_1(x) = \sin x$, $[a,b] = [-3,3]$.	$S'_3(a) = f'_1(a), S'_3(b) = f'_1(b).$
10	$f_1(x) = x^3 \sin 2x$, $[a,b] = [-2,2]$.	$S_3''(a) = f_1''(a), S_3''(b) = f_1''(b).$