Семинар 9. Кинематические эффекты теории относительности. Преобразования Лоренца.

Клименок Кирилл Леонидович

27.10.2022

1 Теоретическая часть

1.1 Основные идеи специальной теории относительности

Начнем с формулировки проблемы, которая привела к формулировкам теории относительности. К концу 19 века стало ясно, что свет — это электромагнитная волна, что приводит к вопросу о том как она распространяется и есть ли среда, где это происходит. Была идея, что свет, как и звук, распространяется в «эфире», что означало зависимость его скорости от направления. Были проведены опыты Майкельсона-Морли, которые пытали найти эту зависимость. Оказалось, что такой зависимости не существует и свет во всех направлениях распространяется одинаково. А еще скорость света не зависит от системы отсчета. Это оказалось проблемой: получается стандартные преобразования Галилея не работают нормально на скоростях близких к скорости света.

Единственным адекватным решением было сделать так, чтобы мы теперь рассматривали время и пространство вместе и тем самым при переходе из одной системы отсчета в другую мы бы получали зависимость течения времени от скорости.

Кратко повторю основные идеи выводов преобразований длины и времени для СТО. Для времени мы говорим, что сидим в одной точке, пускаем свет к зеркалу, он отражается и приходит к нам. Если пересядем в систему, которая едет со скоростью v перпендикулярно изначальному направлению, то свет пройдет большее расстояние. Тогда связь собственного времени (где все стояло, обозначено штрихом) и нового времени в движущейся системе получается:

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma \Delta t'$$

Таким образом, мы видим, что собственное время всегда меньше, чем любое другое время в любой другой системе отсчета. Это можно наблюдать экспериментально. Для этого можно посмотреть собственное время жизни космических лучей, которые прилетают на Землю. Они должны жить много меньше, чем время, необходимое им в полете до земли, но мы детектируем их на поверхности.

Теперь, что происходит с длиной? Она оказывается тоже меняется. Опять будем измерять длину через скорость света и время. В собственной системе отсчета все просто: $L'=2c\Delta t'$, а в движущейся возникают проблемы, которые приводят к формуле:

$$L = L'\sqrt{1 - \frac{v^2}{c^2}} = \frac{L'}{\gamma}$$

Таким образом, нам кажется, что длина сокращается, для объекта, который летит мимо нас с околосветовой скоростью.

Из этих двух мыслей уже можно понять, что в общем случае преобразование координат и времени (преобразований Лоренца) должно быть каким-то нетривиальным. Вывод этих преобразований у нас в программу не входит, поэтому просто запишем их для случая, когда скорость направлена вдоль оси x:

$$\begin{cases} t' = \frac{t - \frac{vx}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma \left(t - \frac{vx}{c^2} \right) \\ x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma \left(x - vt \right) \end{cases}$$

Оставшиеся координаты оставим без изменений. Как вы видите, тут появляется проблема следующего свойства: теперь сложно сказать, что за момент времени где происходит и что за положение в пространстве. Решить эту проблемы можно, если мы введем событие как совокупность времени и пространства: t, \vec{r} и интервал между ними:

$$s_{12} = \sqrt{c^2(t_1 - t_2)^2 - (\vec{r_1} - \vec{r_2})^2}$$

Оказывается, интервал инвариантен относительно преобразований Лоренца.

И последнее, что нам надо сказать в этой теме, это как работает сложение скоростей. Тут тоже все несколько иначе, так как скорости в разных системах отсчета будут рассчитывать скак производные от разных координат по разным временам. Просто приведу ответ:

$$v_x = \frac{dx}{dt}; v_x' = \frac{dx'}{dt'} = \frac{v_x - v}{1 - \frac{vv_x}{c^2}}$$

2 Практическая часть

2.1 Задача 0.17

Условие Две частицы, движущиеся на встречу друг другу с одинаковыми скоростями и находившиеся исходно на расстоянии L в лабораторной системе, столкнулись через время t=L/c по лабораторным часам. Найти их относительную скорость.

Решение Начнем с нашей лабораторной системы отсчета. Если они встретились через t = L/c, то скорости в ЛСО каждой из них должны быть по 0.5c. Тут нет противоречия с основным постулатом теории относительности, так как скорость сближения 2 частиц не переносит информацию.

Теперь разберемся с их относительной скоростью. Для этого мы должны воспользоваться формулой из теоретической части:

$$v_{rel} = \frac{0.5c + 0.5c}{1 + \frac{(0.5c)^2}{c^2}} = 0.8c$$

В данном случае, знак у скоростей плюс, так как они летят навстречу друг другу

2.2 Задача 8.4

Условие Две линейки, собственная длина каждой из которых равна l_0 , движутся навстречу друг другу параллельно общей оси с релятивистскими скоростями. Наблюдатель, связанный с одной из них, зафиксировал, что между совпадениями левых и правых концов линеек прошло время τ . Какова относительная скорость линеек?

Рис. 1: К задаче 8.4

Решение Тут все просто. Первое, что мы видим если сидим на одном стержне? Мы видим другой, но короче. Тогда из-за его сокращения нам кажется, что совпадение левых и правых концов происходит относительно нас не одновременно. Это и запишем:

$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}} = l_0 - v\tau$$

Решаем это относительно скорости и получаем:

$$v = \frac{2l_0\tau}{\tau^2 + l_0^2/c^2}$$

2.3 Задача 8.77

Условие Близнецы Петр и Павел расстались в тот день, когда им исполнилось по 21 году. Петр отправился в направлении оси x на 7 лет своего времени со скоростью 24/25 скорости света, после чего сменил скорость на обратную и за 7 лет вернулся назад, тогда как Павел оставался на Земле. Определить возраст близнецов в момент их встречи.

Решение Традиционная задача о «парадоксе близнецов». Происходит это потому, что время в разных системах идет по-разному. Запишем чему равен гамма-фактор для движения первого:

$$\gamma = \frac{1}{\sqrt{1 - \frac{24^2}{25^2}}} = 25/7$$

Тогда соотношение времени в движущейся и в покоящейся системах отсчета будет:

$$\Delta t = \gamma \Delta t' \Rightarrow \Delta t = \frac{25}{7} \Delta t'$$

То есть соотношение прожитых лет будет как 7 к 25. Итого у того, кто был в космосе возраст будет 35, а у того, который остался будет 71.

2.4 Задача 8.79

Условие Тонкий стержень пролетает с большой скоростью мимо метки, помещенной в лабораторной системе отсчета K. Известно, что промежуток времени прохождения концов стержня мимо метки составил $\Delta t = 3$ нс в системе K и $\Delta t' = 5$ нс в системе отсчета K', связанной со стержнем. Определить собственную длину стержня, т. е. длину в системе K'

Решение Тут опять же не так страшно, как может показаться. В лабораторной системе отсчета K стержень сокращает свою длину. Это означает, что:

$$\Delta t = \frac{l}{v} = \frac{l_0}{v} \sqrt{1 - \frac{v^2}{c^2}}$$

А в системе отсчета, связанной со стержнем нам кажется, что точка отсчета едет мимо нас со скоростью v. Тогда:

$$\Delta t' = \frac{l_0}{v}$$

Выразим из второго скорость и подставим в первое:

$$\left(\frac{\Delta t}{\Delta t'}\right)^2 = 1 - \frac{l_0}{(\Delta t'c)^2} \Rightarrow l_0 = \sqrt{1 - \left(\frac{\Delta t}{\Delta t'}\right)^2} \Delta t'c = 1.2 \text{ m}$$

2.5 Задача 8.30

Условие Вслед космическому кораблю, удаляющемуся от Земли со скоростью v = 0.8c, каждую секунду посылают сигналы точного времени. Какое время между поступлением двух сигналов будет проходить по корабельным часам?

Решение Неявно эта задача описывает эффект Доплера, когда изменяется частота (и соответственно период) сигнала, если приемник или источник движутся друг относительно друга. Запишем что у нас происходит с импульсами относительно Земли. Время между импульсами определяется начальным расстоянием от земли до корабля и его скоростью:

$$\tau = T + \frac{v\tau}{c} \Rightarrow \tau = \frac{T}{1 - \frac{v}{c}}$$

А что будет происходить в системе корабля? Там будет стандартное замедление времени:

$$\tau = \gamma T' \Rightarrow T' = \tau \sqrt{1 - \frac{v^2}{c^2}} = T \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}} = 3 \text{ c}$$

2.6 Комментарии к задачам из задания

Нулевки 16 задача это частный случай задачи 8.79

Задача 8.4 Решена

Задача 8.7 Пересесть в СО корабля, посмотреть что будет

Задача 8.30 Решена

Задача 8.77 Решена

Задача 8.79 Решена

Задача 8.89 Сложение скоростей вдоль одной прямой мы разбирали, а вот перпендикулярна составляющая тоже будет меняться из-за проблем с собственным временем. Формула для этого была приведена на лекции.

Задача 8.98 Аккуратно посчитать времена жизни частиц в ЛСО и посмотреть кто куда долетит.