Inducción matemática, parte II

Podemos usar inducción matemática para demostrar propiedades numéricas.

Ejemplo 1. Demuestre que 1 + 2 + 3 + ... + n = n(n+1)/2

Prueba: Por inducción matemática.

Sea p(n):= 1 + 2 + 3 + ... + n = n(n+1)/2, $\forall n \ge 1$

Paso base: Probar p(1) es verdad. 1 = 1(1+1)/2 = 1

$$1 = 1(1+1)/2 = 1$$

Paso inductivo: Asumimos p(k) = 1 + 2 + 3 + ... + k = k(k+1)/2, para algún $k \ge 1$

Demostramos p(k+1):=1+2+3+...+k+(k+1)

p(k+1) = k(k+1)/2 + (k+1)#En este punto hacemos uso de la hipótesis inductiva

p(k+1) = (k+1)(k/2 + 1) = (k+1)(k+2)/2

p(k+1) = (k+1)((k+1)+1)/2#La proposición es verdadera para k+1 también

En conclusión, la proposición p(n) es verdadera $\forall n \geq 1$.

Ejemplo 2. Demuestre que para todo $n \ge 0$ vale 6^n - 1 es un múltiplo de 5.

Prueba: Por inducción matemática.

Sea $p(n) := 6^n - 1 = 5m$, para todo $n \ge 0$ y $m \in Z$

Paso base: Probamos p(0).

$$\phi^{\circ} - 1 = 0 = 5.0$$

Paso inductivo: Asumimos P(K):= 6 - 1 = 5m, K70 y me Z

Demostramos $P(K+1) := \binom{K+1}{4} - 1$

$$p(K+1) := 6.6^{K} - 6 + 5$$

$$p(K+1) := (o(6^{K}-1)+5)$$
 #Hipotesis inductiva

$$p(k+1) := 6.5m + 5$$

$$P(K+1) := 5 (6m+1) = 5m_1$$
, en donde $m_1 = 6m+1$

En conclusión, p(n) es verdadera para todo $n \ge 0$.

Ejemplo 4. Supongamos que tenemos un peón que puede moverse en un tablero estándar de ajedrez. El peón comienza en la posición mostrada y en cada paso se mueve hacia arriba o abajo 1 unidad e izquierda o derecha 1 unidad. El peón debe moverse exactamente una unidad en cada dirección (vertical y horizontal). Proponga una estrategia para llevar el peón al punto mostrado en la figura.

Redefinimos los movimientos del peón en un tablero de ajedrez.

Cada movimiento se compone de:

1 adelante o 1 atrás, y 1 izquierda o 1 derecha

Aparentemente, no es posible llevar al peón hasta la casilla indicada usando los movimientos permitidos, ya que este juego tiene una *propiedad invariante*.

Una *propiedad invariante* o simplemente *invariante* es una propiedad de un objeto que permanece inalterada a lo largo de una secuencia de pasos o transformaciones.

Aseguramos que si le llamamos (x, y) a la posición del peón en el tablero, entonces luego de n movimientos permitidos se cumplirá que: x + y es impar

Esta propiedad es la invariante del juego.

Proposición. Sea p(n):= Luego de n movimientos, la suma de las coordenadas de la posición del peón es un número impar, i.e., (x, y) la posición, entonces x + y es impar con $n \ge 0$.

Prueba: Por inducción matemática.

Paso base: Probamos p(0).

Luego de 0 movimientos, su posición es (2, 1). Luego, 2 + 1 = 3, un número impar.

<u>Paso inductivo</u>: Asumimos p(k), i.e., luego de k movimientos $x^* + y^* = 2m + 1$, en donde (x^*, y^*) es la posición del peón luego de los $k \ge 0$ movimientos y $m \in \mathbb{Z}$.

Demostramos p(k+1), i.e., luego de k+1 movimientos. Esto lo hacemos por casos.

Caso 1:

Derecha y arriba,
$$(x^*, y^*) \rightarrow (x^*+1, y^*+1) \rightarrow x^*+1 + y^*+1 = (2m+1) + 2 = 2(m+1) + 1 = 2m_1+1$$

Caso 2:

Derecha y abajo, $(x^*, y^*) \rightarrow (x^*+1, y^*-1) \rightarrow x^*+1 + y^*-1 = 2m + 1$

•	•							•						•				•	•	•					•		•	•				
Cas	so 3	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Izq			iba	, (x	*, y	/*) -	. ($(x^*$	1, 1	y*+	1) -	\rightarrow :	χ*-1	· (+	y*-	+1 :	= 2	т +	- 1	•	•	•	•	•	•	•	•	•	•	•	•	•
• • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Cas	so 4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
· Izq	. y a	aba	ijo,	(x^*)	', y	*)•-	→° (.	x*-1	1,°y	* - 1) ==	× x'	-1	+° <i>y</i>	*•1	<u></u>	(<mark>2</mark> m	1+	<mark>1)</mark> -	- 2 :	= 2	(m-	1)	+•1	= ′2	2 <i>m</i> 1	ı +1	•	•	•	•	•
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
. En	cor	ıclı	ısić	'n,	lue	ego	de	n	≥.0	mo	vii	nie	ente	os e	es v	ver	dac	d qı	ле :	x +	<i>y</i> (es•i	mp	ar.	_	—	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L	_	•	•	•	•	•	•
Con	olai	rio.	Ċc	· ma	n la	· ca	sill	аа	la	(1116	e se	· ni	ide	1 <u>1</u> e	gai	r es	. (4.	4)	$\stackrel{\bullet}{\longrightarrow}$	4 +	- 4	= 8	. es	• • 111	· n m	úm	erc) na	• ar. 6	· •nto	onc	es.
Con es i	mn	no. Insi	hle	m	OV	er e	ol n	ല ലവ	ı h	ast:	a d	ich	ac	asil	o Ha	1152	and	0 10	OS 1	mo	wir	nie	nto	s r	eri	mit	ido	, L.	, \	•	•	•
•	1117	•	•	•	•	•	P	•	•	•	•	•		•	•	·	•	•	•	•	•	•	•	' ^o P	•	•	·	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•