(Extra)² Questions for MA 106

Aryaman Maithani

Semester: Spring 2021 Latest update: 2021-03-13 12:41:06+05:30

These are questions that came out of some discussions. In the following, \mathbb{F} denotes an arbitrary field. You may read this to get an introduction to fields. Or may assume that $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . (Although your answers then may not work for a general field.)

- 1. A **nonempty** subset $J \subset \mathbb{F}^{n \times n}$ is said to be a *two-sided ideal* if it has the following properties:
 - (a) (Closed under addition) For all $A, B \in J$, we have $A + B \in J$,
 - (b) (Absorption) For all $A \in J$ and $C \in \mathbb{F}^{n \times n}$, we have $AC, CA \in J$.

Show that the (two-sided) ideals of $\mathbb{F}^{n\times n}$ are precisely $\{O\}$ and $\mathbb{F}^{n\times n}$.

- 2. Let $A \in \mathbb{F}^{n \times n}$ be such that Ay = y for all $y \in \mathbb{F}^{n \times 1}$. Show that A = I. **HIDDEN:** Consider $y = e_k$ for $k \in \{1, \dots, n\}$.
- 3. Suppose $A \in \mathbb{R}^{2 \times 2}$ is such that $x^{\top}Ax = 0$ for all $x \in \mathbb{R}^{2 \times 1}$. Is it necessary that A = O? **HIDDEN:** No. Interpret $x^{\top}Ax$ as $\langle Ax, x \rangle$.
- 4. Let $P \in \mathbb{R}^{n \times n}$ be invertible and let $A = P^{\top}P$. Show that if $x \in \mathbb{R}^{n \times 1}$, then $x^{\top}Ax = 0 \iff x = 0$.
- 5. Let $A \in \mathbb{F}^{n \times n}$ be arbitrary. Show that
 - (a) A can be written as a sum of two invertible matrices, and
 - (b) A can be written as a sum of two non-invertible matrices.