$$\mathbb{N} = \{8, 1, 2, \dots \}$$

R = reals

$$N = \{ 0, 1, 2, \dots \}$$

$$N = \{ 0, 1, 2, \dots \}$$

Big O notation Let's take fig: N -> N We sny fix of order g if there is a constan C70 EN and $n_0 \in \mathbb{N}$ s.t. $f(n) \leq c \cdot g(n)$ 4 N 7/ No. A threshold.

0(g) = { } | f : 2 of one (g) "Big O of g" If $f \in O(g)$ we say

g parder en asyonplotte

upper bound for f.

if $f \in O(g)$ $g \in O(l)$ then we say they are of the same video

 $p(n) = n^2 + O(n)$ f(n)= n2+g(n),

g (n) e O(n).

s ∈ o(n).

Example Assure mut
g t 0 (t) fr= nZ y(n)= n3 snow that Jc, no Lt. g & 0(2) のとc·f(n) Yn7,no. chouse n, = 1 + max \(\frac{7}{2} \) c, no \(\frac{3}{2} \) $n_{1}^{3} = n_{1} \cdot n_{1}^{2} 7 c \cdot n_{1}^{2}$ where $n_{1} 7 n_{b}$.

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$(7 N_{0}) \quad | + N_{0} \times N_{0}$$

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{1} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{2} = 1 + C \quad \text{or} \quad | + N_{D}$$

$$N_{3} = 1 + C \quad \text{or} \quad | + N_{D}$$

n = 1 + max { c, n, }

we have a contradiction 7 n 7 no 3.t. gh) > (f(n) this is the opposite of

this is the opposite of our definition,

This we may conclude out $g \notin O(f)$.

Proof by Contradicaron.
show P. Ossme TP.
if there armses a controduction on TP, we Greende P.
Exhaustrum. Induction. & Be familiar
(12 struction)
Contraposition.

$$\beta(n) = n^{2} + 2n + 5$$

 $\beta(n) = n^{2}$
Show $\beta \in O(4)$
if $c = 1$
 $n > 0$
 $0 \le 2n + 5$

f(n)= n2+2n+5 9(n)= n2 n2+ 2n+5 = n2+2n2+5n2 < 8 n Z C = 8 4n71.