JointNets: an End-to-end R package for sparse Gaussian graphical model

Zhaoyang Wang, Beilun Wang, Arshdeep Sekhon, Yanjun Qi 2019/5/3

Motivation

- Advances in sparse Gaussian graphical model learning
 - Joint estimation, difference estimation and etc
- Heterogeneous existing source codes and packages
 - Different forms of inputs, outputs and etc
- Existing tools focus solely on estimation and visualization
 - Lack of comprehensiveness

Background

- Gaussian graphical model
 - Nodes follow multivariate normal distribution
 - Undirected graphical model
 - Precision matrix -> graph
- Samples to graph
 - Number of observations n << number of dimensions p
 - Estimate sparse precision matrix

Tasks

- Learning graph from samples
 - Data matrix => correlation matrix => conditional correlation matrix
 - Gaussian assumption:
 - Conditional correlation => conditional dependence
 Data Matrix

Tasks

- Joint Learning
 - Multiple graphs
 - Difference

Multiple Data Matrices

Multiple Conditional Dependence Graphs

Related Work

- Baselines
 - Joint Graphical Lasso (JGL)
 - Constrained l1 minimization (CLIME)
 - Elementary estimator (EE)
- Our algorithms
 - FASJEM
 - JEEK
 - (W)SIMULE
 - DIFFEE(K)

Goal

• An end-to-end and unified framework for sparse Gaussian graphical model learning

Proposed Solution

- Connected Modules
 - Simulation
 - Estimation
 - Visualization
 - Evaluation
 - Classification

Simulation

- simulation()
 - Sparsity
 - Shared
 - Individual
 - Dimensions
 - Contexts
 - Samples

Estimation

- method_name()
 - Correlation options
 - Intertwined
 - Prior knowledge
 - Joint Estimation
 - Difference Estimation

Visualization

- plot()
 - Subgraph
 - Title and legend
 - Layout
- plot_brain()
 - 3D brain overlay

Evaluation

- F1()
- AUC()
- BIC()

Classification

- QDA_eval()QDA()

Demos and Data Summary

- Simulated data p = 20, 100
- cancer genomics p = 50
 - High dimensional microarray p
 >1000
- Natural language text data p = 37
- Brain imaging data (ABIDE) p = 116

Visualization Results

• 2D

• 3D(brain)

Experimental Results

- ROC
 - Synthetic dataset, p = 20, k = 2

Experimental Results

- Classification Accuracy
 - ABIDE
 - NIPS conference paper word count

ABIDE prediction accuracy (from publications, p = 160, binary)

Method	DIFFEE	WSIMULE	JGL
Accuracy	57.58%	58.62%	56.90%

Text data prediction accuracy (p = 37, binary)

Method	DIFFEE	SIMULE	JEEK	FASJEM	JGL
Accuracy	74.50%	76.02%	66.8%	52.00%	50.7%

Demo

• R markdown

Conclusion and Future Work

- JointNets
 - End-to-end package
 - Closing gaps between fields by showcasing various applications
 - Standard and scalable interface / API
- Future works
 - Sparse QDA
 - Full GUI

References

- Beilun Wang, Arshdeep Sekhon: "A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models", 2018, International Conference on Machine Learning. 2018; [http://arxiv.org/abs/1806.00548 arXiv:1806.00548].
- Beilun Wang, Arshdeep Sekhon: "Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure", 2017; [http://arxiv.org/abs/1710.11223 arXiv:1710.11223].
- Beilun Wang, Ji Gao: "A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models", 2017; [http://arxiv.org/abs/1702.02715 arXiv:1702.02715].
- Beilun Wang, Ritambhara Singh: "A constrained L1 minimization approach for estimating multiple Sparse Gaussian or Nonparanormal Graphical Models", 2016; [http://arxiv.org/abs/1605.03468 arXiv:1605.03468].
- Chandan Singh, Beilun Wang: "A Constrained, Weighted-L1 Minimization Approach for Joint Discovery of Heterogeneous Neural Connectivity Graphs", 2017; [http://arxiv.org/abs/1709.04090 arXiv:1709.04090].
- Patrick Danaher, Pei Wang: "The joint graphical lasso for inverse covariance estimation across multiple classes", 2011; [http://arxiv.org/abs/1111.0324 arXiv:1111.0324].