

5 WHAT IS CLAIMED IS:

1. A semiconductor sensor comprising:
a first single crystal silicon wafer layer;
a single crystal silicon structure formed in said first wafer layer and
including two oppositely disposed substantially vertical major surfaces and
including two oppositely disposed generally horizontal minor surfaces wherein
the aspect ratio of major surface to minor surface is at least 5:0; and
a carrier including a recessed region, wherein said carrier is secured to
said first wafer layer such that said structure is suspended opposite the recessed
region.

2. The sensor of claim 1,
wherein said carrier includes a silicon wafer layer; and
wherein said first layer and said carrier are fusion bonded together.

3. The sensor of claim 1 wherein said first layer is formed of
<100> oriented silicon crystal.

4. The sensor of claim 1 wherein the aspect ratio of major surface
to minor surface is at least 20:1.

5. The sensor of claim 1 wherein said structure is a beam secured
at only one end thereof to said first wafer layer.

6. The sensor of claim 1 wherein said structure is a beam secured
at one end thereof to said first wafer layer and including a seismic mass at the
other end thereof.

5 7. The sensor of claim 1 wherein said structure is a beam secured
at one end thereof to said first wafer layer and including an electronic circuit
formed in the other end thereof.

10 8. The sensor of claim 1,
wherein said first layer is formed of <100> oriented silicon crystal; and
wherein said structure is a beam secured at one end thereof to said first
wafer layer and including an electronic circuit formed in the other end thereof.

15 9. The sensor of claim 1 wherein said structure is a beam secured
at one end thereof to said first wafer layer and including a plurality of vertical
plates formed in the other end thereof.

20 10. The sensor of claim 1,
wherein said structure is a beam secured at one end thereof to said first
wafer layer and including a plurality of vertical plates formed in the other end
thereof; and
wherein said vertical plates have an aspect ratio of at least 10:1.

25 11. The sensor of claim 1,
wherein said structure is a beam secured at one end thereof to said first
wafer layer and including a plurality of vertical plates formed in the other end
thereof and further including an electronic circuit formed in the other end
thereof.

30 12. The sensor of claim 1,
wherein said first layer is formed of <100> oriented silicon crystal; and

5 wherein said structure is a beam secured at one end thereof to said first wafer layer and including a plurality of vertical plates formed in the other end thereof and further including an electronic circuit formed in the other end thereof.

10 13. The sensor of claim 1,
 wherein said first layer is formed of <100> oriented silicon crystal;
 wherein said structure is a beam secured at one end thereof to said first wafer layer and including a plurality of vertical plates formed in the other end thereof and further including an electronic circuit formed in the other end thereof;
15 and
 wherein said vertical plates have an aspect ratio of at least 10:1.

20 14. The sensor of claim 1 wherein said structure is a beam secured at both ends thereof to said first wafer layer.

25 15. The sensor of claim 1 wherein said structure is a plate secured at only one end thereof to said first wafer layer.

25 16. A semiconductor sensor comprising:
 a first single crystal silicon wafer layer;
 a curvilinear single crystal silicon structure formed in said first wafer layer and including two generally opposite facing first substantially vertical surface portions and two generally opposite facing first generally horizontal surface portions; and

5 a second single crystal wafer layer including a recessed region wherein
said second wafer layer is secured to said first wafer layer such that said
structure is suspended opposite the recessed region.

10 17. The sensor of claim 16 wherein said first wafer layer and said
second wafer layer are fusion bonded together.

18. The sensor of claim 16 wherein said first layer is formed of
<100> oriented silicon crystal.

15 19. The sensor of claim 16 wherein the aspect ratio of the first
substantially vertical surface portions to the first generally horizontal surface
portions is at least 5:1.

20 20. The sensor of claim 16 wherein the aspect ratio of the first
substantially vertical surface portions to the first generally horizontal surface
portions is at least 20:1.

25 21. The sensor of claim 16,
wherein said structure further includes two generally opposite facing
second substantially vertical surface portions and two generally opposite facing
second generally horizontal surface portions; and
wherein the aspect ratio of the first substantially vertical surface
portions to the first generally horizontal surface portions differs from the aspect
ratio of the second substantially vertical surface portions to the second
generally horizontal surface portions by at least 2:1.
30

- 5 22. The sensor of claim 16 wherein said first substantially vertical portion has a height of at least 10 microns.
- 10 23. A semiconductor sensor comprising:
 a first single crystal silicon wafer layer;
 a single crystal silicon structure formed in said first wafer layer and including two substantially vertical surfaces and two generally horizontal surfaces wherein a height of the vertical surfaces is substantially uniform and wherein a width of the horizontal surfaces is nonuniform; and
 a carrier including a recessed region wherein said carrier is secured to said first wafer layer such that said structure is suspended opposite the recessed region.
- 15 24. A semiconductor sensor comprising:
 a first single crystal silicon wafer layer;
 a plurality of single crystal silicon plates formed in said first wafer layer and having an aspect ratio of at least 10:1; and
 a second single crystal wafer layer secured to said first wafer layer such that said plates are suspended over the second wafer layer.
- 20 25. The sensor of claim 1 wherein,
 said second wafer layer defines a recessed region and said plates are suspended opposite the recessed region.
- 25 26. The sensor of claim 24 wherein said first layer and said second layer are fusion bonded together.

5 27. The sensor of claim 24 wherein said first layer is formed of
<100> oriented silicon crystal.

28. The sensor of claim 24 wherein each plate has a height of at
least 10 microns.

10 29. A semiconductor sensor comprising:
a first single crystal silicon wafer layer;
a plurality of single crystal silicon beams formed in said first wafer layer
and having an aspect ratio of at least 10:1; and
15 a second single crystal wafer layer secured to said first wafer layer such
that said beams are suspended over the second wafer layer

30. The sensor of claim 29 wherein,
said second wafer layer defines a recessed region and said beams re
20 suspended opposite the recessed region.

31. The sensor of claim 29 wherein said first layer and said second
layer are fusion bonded together.

25 32. The sensor of claim 29 wherein said first layer is formed of
<100> oriented silicon crystal.

33. The sensor of claim 29 wherein at least one of said plurality of
beams includes a plurality of vertical plates formed therein.

30 34. The sensor of claim 29,

EPO FEDERAL REPUBLIC OF GERMANY

5 wherein at least one of said plurality of beams includes a plurality of vertical plates formed therein; and
wherein said vertical plates have an aspect ratio of at least 10:1.

35. The sensor of claim 29,
10 wherein at least one of said plurality of beams includes a plurality of vertical plates formed therein;
wherein said first wafer layer is formed of <100> oriented silicon crystal;
and
wherein said vertical plates have an aspect ratio of at least 10:1.

15 36. The sensor of claim 29,
wherein at least one of said plurality of beams includes an electronic circuit formed therein.

20 37. The sensor of claim 29,
wherein at least one of said plurality of beams includes an electronic circuit formed therein; and
wherein said first wafer layer is formed of <100> oriented silicon crystal.

25 38. The sensor of claim 29,
wherein at least one of said plurality of beams includes an electronic circuit formed therein and further includes a plurality of vertical plates formed therein.

30 39. The sensor of claim 29,

5 wherein at least one of said plurality of beams includes an electronic circuit formed therein and further includes a plurality of vertical plates formed therein; and

 wherein said first wafer layer is formed of <100> oriented silicon crystal.

10

40. The sensor of claim 29,

 wherein at least one of said plurality of beams includes an electronic circuit formed therein and further includes a plurality of vertical plates formed therein; and

15

 wherein said vertical plates have an aspect ratio of at least 10:1.

41. The sensor of claim 29,

 wherein at least one of said plurality of beams includes an electronic circuit formed therein and further includes a plurality of vertical plates formed therein;

20

 wherein said first wafer layer is formed of <100> oriented silicon crystal; and

 wherein said vertical plates have an aspect ratio of at least 10:1.

25

42. The sensor of claim 29, wherein each beam has a height of at least 10 microns.

30

43. A semiconductor sensor produced by the steps of:
 providing a first single crystal silicon wafer layer;
 providing a carrier;

SEARCHED INDEXED FILED
JULY 1978

- 5 including a recessed region bonding the first wafer layer to the carrier
with the recessed region facing the first wafer layer; and
 etching substantially vertically through the first wafer layer opposite the
recessed region in a curvilinear pattern so as to form a curvilinear structure
integral with the first wafer layer and suspended over the recessed region.
- 10
44. The product of claim 43 wherein the step of etching includes
reactive ion etching.
- 15
45. The product of claim 43 wherein the step of providing the first
wafer layer includes providing a single crystal <100> oriented silicon wafer
layer.
- 20
46. The product of claim 43 wherein said process includes the
further step of thinning the first wafer layer to not less than ten microns.
- 25
47. A semiconductor sensor produced by the steps of:
 providing a first single crystal silicon wafer layer;
 providing a carrier including a recessed region bonding the first wafer
layer to the carrier with the recessed region facing the first wafer layer; and
 etching substantially vertically through the first wafer layer opposite the
recessed region so as to form a beam integral with the first wafer layer and
suspended over the recessed region wherein the beam has an aspect ratio of
height to width of at least 5:1.
- 30
48. The product of claim 47 wherein the step of etching includes
reactive ion etching.

5 49. The product of claim 47 wherein the step of providing the first
wafer layer includes providing a single crystal <100> oriented silicon wafer
layer.

10 50. The product of claim 47 wherein the step of etching includes
etching substantially vertically through the first wafer layer opposite the
recessed region so as to form multiple beams integral with the first wafer layer
and suspended over the recessed region wherein each beam has an aspect ratio
of height to width of at least 10:1.

15 51. A semiconductor sensor produced by the steps of:
 providing a first single crystal silicon wafer layer
 providing a carrier including a recessed region fusion bonding the first
wafer layer to the carrier with the recessed region facing the first wafer layer;
 and

20 etching substantially vertically through the first wafer layer opposite the
recessed region so as to form a plate integral with the first wafer layer and
suspended over the recessed region wherein the plate has an aspect ratio of
height to width of at least 5:1.

25 52. The product of claim 51 wherein the step of etching includes
reactive ion etching.

30 53. The product of claim 51 wherein the step of providing the first
wafer layer includes providing a single crystal <100> oriented silicon wafer
layer.

5 54. The product of claim 51 wherein the step of etching includes etching substantially vertically through the first wafer layer opposite the recessed region so as to form multiple plates integrated with the first wafer layer and suspended over the recessed region wherein each plate has an aspect ratio of height to width of at least 10:1.