⇔ Lycée de Dindéfélo ↔			A.S.: 2024/2025
Matière: Mathématiques	Niveau: TS2	Date: 21/01/2025	Durée : 4 heures
Devoir n° 2 Du 1 ^{er} Semestre			

Exercice 1 : 4 points [Déjà corrigé en classe]

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite numérique définie par :

$$\begin{cases} u_1 = \frac{1}{3}, \\ (\forall n \in \mathbb{N}^*), \ u_{n+1} = \frac{2u_n}{1 + (n+2)u_n}. \end{cases}$$

Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite numérique définie par : $v_n=\frac{1}{u_n}-n$.

1 Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ est géométrique.

1,5 pt

2 a Déterminer v_n et u_n en fonction de n.

1 pt

b Calculer en fonction de n la somme : $S_n = v_1 + v_2 + \cdots + v_n$.

1,5 pt

Exercice 2 (BAC 2022): 4 points [Déjà corrigé en classe par moi-même]

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$. Soit le nombre complexe a défini par

$$a = \sqrt{2} - \sqrt{3} - i\sqrt{2} + \sqrt{3}.$$

1 Montrer que $a^2 = -2\sqrt{3} - 2i$, puis en déduire le module de a.

0.5 + 0.5 pt

2 Écrire a^2 sous forme trigonométrique puis vérifier qu'une des mesures de l'argument de a est $\frac{19\pi}{12}$

0.5 + 0.5 pt

- 3 En déduire les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$, puis de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- 1 pt

1 pt

4 Représenter sur le même graphique les points images de a, -a et a^2 .

Exercice 3 : 4 points [Exercice 1 du devoir N1 déjà corrigé par moi-même]

1 Calculer les limites suivantes :

$$(0.5pt \times 3+0.25pt)$$

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\sin 2x} \; ; \quad \lim_{x \to 0} \frac{\cos x - 1}{x^3 + x^2} \; ; \quad \lim_{x \to 1} \frac{\sqrt{x + 3} - \sqrt{5 - x}}{\sqrt{2x + 7} - \sqrt{10 - x}}.$$

2 Donner les primitives des fonctions f et g respectivement sur \mathbb{R} et $\mathbb{R} \setminus \{1, 2\}$.

 $(2 \times 0.5 \text{ pt})$

$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3; \quad g(x) = \frac{1 - x^2}{(x^3 - 3x + 2)^3}.$$

Problème: 9,75 points [Exercice d'application déjà corrigé par moi-même]

Soit f la fonction définie par :

$$f(x) = \begin{cases} 2x\sqrt{1-x^2} & \text{si } x > 0\\ -x + \sqrt{x^2 - 2x} & \text{si } x \le 0 \end{cases}$$

- 1 Déterminer D_f , les limites aux bornes et préciser la branche infinie. (0,5pt \times 3)
- Étudier la dérivabilité de f en 0 et 1 interpréter géométriquement les résultats obtenus. (0,5pt \times 3+0,5pt \times 3)
- 3 Calculer f'(x) là où f est définie, puis dresser le tableau de variation de f. (0,5pt \times 2+0,5pt \times 2 + 0,5pt)
- 4 Tracer la courbe de f. (0,75pt)
- 5 Soit h la restriction de f à l'intervalle $]-\infty;0]$.
 - Montrer que h admet une bijection réciproque h^{-1} dont on précisera l'ensemble de définition, l'ensemble de dérivabilité et le tableau de variation. (0,5pt)
 - **b** Sans utiliser l'expression de $h^{-1}(x)$, calculer $(h^{-1})'(2)$. (0,5pt)
 - c Déterminer explicitement h^{-1} . (0,5pt)
 - d Tracer la courbe de h^{-1} dans le même repère que celle de f. (0,5pt)