Principal Component Analysis
Partial least squares
Overview
Break!

Almost everything you need to know about PLS

Part 1: Background, Theory, and Examples

Jenny Rieck & Derek Beaton

October 24, 2017

Principal Component Analysis
Partial least squares
Overview
Break!

The BIG outline

• Part 1: Background & Examples

- Part 1: Background & Examples
 - RIGHT NOW

- Part 1: Background & Examples
 - RIGHT NOW
 - Introduce everything we need

- Part 1: Background & Examples
 - RIGHT NOW
 - Introduce everything we need
- Part 2: PLS in Matlab & R

- Part 1: Background & Examples
 - RIGHT NOW
 - Introduce everything we need
- Part 2: PLS in Matlab & R
 - Tuesday November 21, 10:00-12:00 Worstman Hall

- Part 1: Background & Examples
 - RIGHT NOW
 - Introduce everything we need
- Part 2: PLS in Matlab & R
 - Tuesday November 21, 10:00-12:00 Worstman Hall
 - Put knowledge into practice

Principal Component Analysis
Partial least squares
Overview
Break!

Part 1 outline

Theory & Background

- Theory & Background
 - Principal component analysis (PCA)

- Theory & Background
 - Principal component analysis (PCA)
 - Partial least squares (PLS)

- Theory & Background
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
- Short break

- Theory & Background
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
- Short break
- Examples (with ADNI)

- Theory & Background
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
- Short break
- Examples (with ADNI)
 - Standard PLS (& inference)

- Theory & Background
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
- Short break
- Examples (with ADNI)
 - Standard PLS (& inference)
 - Discriminant PLS

- Theory & Background
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
- Short break
- Examples (with ADNI)
 - Standard PLS (& inference)
 - Discriminant PLS
 - "Seed" PLS

- Theory & Background
 - Principal component analysis (PCA)
 - Partial least squares (PLS)
- Short break
- Examples (with ADNI)
 - Standard PLS (& inference)
 - Discriminant PLS
 - "Seed" PLS
- And beyond!

Break!

Background Formalization Toy example

Principal Component Analysis

Principal Component Analysis
Partial least squares
Overview

Break!

Background Formalization Toy example

Background

Modern form

- Modern form
 - Hotelling (1933)

- Modern form
 - Hotelling (1933)
- Traces back to

- Modern form
 - Hotelling (1933)
- Traces back to
 - Cauchy (1829)

- Modern form
 - Hotelling (1933)
- Traces back to
 - Cauchy (1829)
 - Galton (1859)

- Modern form
 - Hotelling (1933)
- Traces back to
 - Cauchy (1829)
 - Galton (1859)
 - Pearson (1901)

- Modern form
 - Hotelling (1933)
- Traces back to
 - Cauchy (1829)
 - Galton (1859)
 - Pearson (1901)
- Modern overviews

- Modern form
 - Hotelling (1933)
- Traces back to
 - Cauchy (1829)
 - Galton (1859)
 - Pearson (1901)
- Modern overviews
 - S. Wold et al., (1987)

- Modern form
 - Hotelling (1933)
- Traces back to
 - Cauchy (1829)
 - Galton (1859)
 - Pearson (1901)
- Modern overviews
 - S. Wold et al., (1987)
 - Jollife (2002)

- Modern form
 - Hotelling (1933)
- Traces back to
 - Cauchy (1829)
 - Galton (1859)
 - Pearson (1901)
- Modern overviews
 - S. Wold et al., (1987)
 - Jollife (2002)
 - Abdi & Williams (2010)

Visualize high dimensional data

- Visualize high dimensional data
- Orthogonal transformation

- Visualize high dimensional data
- Orthogonal transformation
- Dimensionality reduction

• Find "components"

- Find "components"
 - Components are new variables that are combinations of old variables

- Find "components"
 - Components are new variables that are combinations of old variables
- Components explain maximum possible variance

- Find "components"
 - Components are new variables that are combinations of old variables
- Components explain maximum possible variance
 - Conditional to orthogonality

Visual example

Figure 1: The kind of data we usually expect for PCA

OBS, 12 OBS. 17 OBS. 20 OBS. 16 OBS. 11 OBS. @BS. @BS. 4 OBSØBS. ØBS. 18 OBS. 0BS. 14 OBS. 19 OBS. 15 OBS. 1 OBS. 5 OBS, 3

VAR

VAR.2 (centered/scaled)

VAR.1 (centered/scaled)

VAR.1 (centered/scaled)

VAR.1 (centered/scaled)

VAR.2 (centered/scaled)

VAR.1 (centered/scaled)

OB

VAR.2 (centered/scaled)

VAR.1 (centered/scaled)

First & Second Component

VAR.1 (centered/scaled)

• The basis of modern techniques

- The basis of modern techniques
 - Factor analyses

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis
 - Partial least squares

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis
 - Partial least squares
 - Discriminant analyses

- The basis of modern techniques
 - Factor analyses
 - Independent components analysis
 - Partial least squares
 - Discriminant analyses
 - Multi-table (e.g., MFA, GCCA)

• A special case of the singular value decomposition (SVD)

- A special case of the singular value decomposition (SVD)
- Which means (almost) everything else is, too

Principal Component Analysis
Partial least squares
Overview

Break!

Background Formalization Toy example

Formalization

Singular value decomposition

The SVD is one of the most ubiquituous and important tools

We'll go into enough formalization

- We'll go into enough formalization
- If you want more:

- We'll go into enough formalization
- If you want more:
 - S. Wold et al., (1987)

- We'll go into enough formalization
- If you want more:
 - S. Wold et al., (1987)
 - Jollife (2002)

- We'll go into enough formalization
- If you want more:
 - S. Wold et al., (1987)
 - Jollife (2002)
 - Abdi & Williams (2010)

- We'll go into enough formalization
- If you want more:
 - S. Wold et al., (1987)
 - Jollife (2002)
 - Abdi & Williams (2010)
 - And many others...

Figure 2: The shape of the data

Figure 3: SVD breaks down the data

Notation

• x - a scalar

- x a scalar
- a a vector

- x a scalar
- a a vector
- A a matrix

- x a scalar
- a a vector
- A a matrix
- \bullet \mathbf{A}^T transpose

- x a scalar
- a a vector
- A a matrix
- \bullet \mathbf{A}^T transpose
- AB multiplication

Think back to PCA

- Think back to PCA
- We want to find the principal component

- Think back to PCA
- We want to find the principal component
 - a.k.a. maximum source of variance

Given a matrix **X** we generally assume that

Given a matrix **X** we generally assume that

column-wise centered

Given a matrix **X** we generally assume that

- column-wise centered
- ullet column-wise scaled (e.g., z-scores or sums of squares = 1)

Given **X** of size $I \times J$

Given **X** of size $I \times J$

We want to find vectors

Given **X** of size $I \times J$

We want to find vectors

- **u** of size $I \times 1$
- **v** of size $J \times 1$

Given **X** of size $I \times J$

We want to find vectors

- **u** of size $I \times 1$
- **v** of size $J \times 1$

such that

$$\underset{\mathbf{u},\mathbf{v}}{\operatorname{argmax}} \delta = \mathbf{u}^T \mathbf{X} \mathbf{v} \text{ conditional to } \mathbf{u}^T \mathbf{u} = 1 = \mathbf{v}^T \mathbf{v}$$

Which gives us the following equivalencies:

- $\mathbf{X}\mathbf{v} = \mathbf{u}\delta$
- $\bullet \ \mathbf{X}^T \mathbf{u} = \mathbf{v} \delta$

Which gives us the following equivalencies:

- $\mathbf{X}\mathbf{v} = \mathbf{u}\delta$
- $\mathbf{X}^T \mathbf{u} = \mathbf{v} \delta$

where

•
$$\mathbf{X}_1 = \delta \mathbf{u} \mathbf{v}^T$$

Which gives us the following equivalencies:

- $\mathbf{X}\mathbf{v} = \mathbf{u}\delta$
- $\mathbf{X}^T \mathbf{u} = \mathbf{v} \delta$

where

- $\mathbf{X}_1 = \delta \mathbf{u} \mathbf{v}^T$
 - X₁ is X as represented by source of maximum variance

Given $\mathbf{X}_1 = \delta \mathbf{p} \mathbf{q}^T$ we can find the other components

Given $\mathbf{X}_1 = \delta \mathbf{p} \mathbf{q}^T$ we can find the other components

- $X_{2:L} = X X_1$
- $\mathbf{X}_{2:L}$ is orthogonal to \mathbf{X}_1

Given $\mathbf{X}_1 = \delta \mathbf{p} \mathbf{q}^T$ we can find the other components

- $X_{2:L} = X X_1$
- $\mathbf{X}_{2:L}$ is orthogonal to \mathbf{X}_1

$$\underset{\mathbf{p},\mathbf{q}}{\operatorname{argmax}} \delta = \mathbf{p}^T \mathbf{X}_{2:L} \mathbf{q} \text{ conditional to } \mathbf{p}^T \mathbf{p} = 1 = \mathbf{q}^T \mathbf{q}$$

The SVD of **X** of size $I \times J$:

The SVD of **X** of size $I \times J$:

$$\mathbf{X} = \mathbf{U} \mathbf{\Delta} \mathbf{V}^{\mathsf{T}} \tag{1}$$

The SVD of **X** of size $I \times J$:

$$X = U\Delta V^{\mathsf{T}} \tag{1}$$

U and **V** are orthonormal such that

The SVD of **X** of size $I \times J$:

$$X = U\Delta V^{\mathsf{T}} \tag{1}$$

U and **V** are orthonormal such that

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I} = \mathbf{V}^{\mathsf{T}}\mathbf{V} \tag{2}$$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

• where rank is L (i.e., number of extractable components)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- where rank is L (i.e., number of extractable components)
- **U** is $I \times L$ (left singular vectors; rows of **X**)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^{\mathsf{T}}$$
 such that $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{I} = \mathbf{V}^{\mathsf{T}} \mathbf{V}$

- where rank is L (i.e., number of extractable components)
- **U** is $I \times L$ (left singular vectors; rows of **X**)
- **V** is $J \times L$ (right singular vectors; columns of **X**)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

• Δ is $L \times L$ diagonal matrix

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^{\mathsf{T}}$$
 such that $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{I} = \mathbf{V}^{\mathsf{T}} \mathbf{V}$

- Δ is $L \times L$ diagonal matrix
- $\operatorname{diag}\{\Delta\} = \delta$ are singular values (decreasing)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- Δ is $L \times L$ diagonal matrix
- $\operatorname{diag}\{\Delta\} = \delta$ are singular values (decreasing)
- $oldsymbol{\delta} \lambda = \delta^2$ are the eigenvalues (variance)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\bullet \ \mathbf{X}_1 = \mathbf{U}_1 \mathbf{\Delta}_1 \mathbf{V}_1^T$$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\bullet \ \, \textbf{X}_1 = \textbf{U}_1 \boldsymbol{\Delta}_1 \textbf{V}_1^{\mathcal{T}}$$

$$\bullet$$
 $X_{2:L} = U_{2:L} \Delta_{2:L} V_{2:L}^T$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

•
$$F_I = U\Delta$$
 (row component scores)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

- $\mathbf{F}_I = \mathbf{U} \Delta$ (row component scores)
- $\mathbf{F}_J = \mathbf{V} \Delta$ (column component scores)

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Delta} \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

•
$$F_I = U\Delta = XV$$

$$\mathbf{X} = \mathbf{U} \Delta \mathbf{V}^\mathsf{T}$$
 such that $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{I} = \mathbf{V}^\mathsf{T} \mathbf{V}$

$$\bullet$$
 $F_I = U\Delta = XV$

$$\bullet$$
 $\mathbf{F}_J = \mathbf{V} \mathbf{\Delta} = \mathbf{X}^T \mathbf{U}$

Phew.

- Phew.
- Enough nerd stuff

SVD

- Phew.
- Enough nerd stuff
- Let's get back to PCA

Principal Component Analysis
Partial least squares
Overview

Break!

Formalization
Toy example

Toy example

Background Formalization Toy example

• In R with ExPosition packages

- In R with ExPosition packages
 - Sneak preview of newest version

- In R with ExPosition packages
 - Sneak preview of newest version
- https://github.com/derekbeaton/ExPosition-Family/

- In R with ExPosition packages
 - Sneak preview of newest version
- https://github.com/derekbeaton/ExPosition-Family/
- https:

//cran.r-project.org/web/packages/ExPosition/index.html

• 36 different wines (e.g., USA red cab., CAN rose syrah)

- 36 different wines (e.g., USA red cab., CAN rose syrah)
- 4 objective measures (e.g., "Alcohol", "Acidity")

- 36 different wines (e.g., USA red cab., CAN rose syrah)
- 4 objective measures (e.g., "Alcohol", "Acidity")
- 9 subjective measures (e.g., "sweet", "acidic")

- 36 different wines (e.g., USA red cab., CAN rose syrah)
- 4 objective measures (e.g., "Alcohol", "Acidity")
- 9 subjective measures (e.g., "sweet", "acidic")
 - We'll use this one for PCA

- 36 different wines (e.g., USA red cab., CAN rose syrah)
- 4 objective measures (e.g., "Alcohol", "Acidity")
- 9 subjective measures (e.g., "sweet", "acidic")
 - We'll use this one for PCA
 - We'll use both for PLS

PCA Subjective Measures

	fruity	floral	vegetal	spicy
Chili_red_merlot	6	2	1	4
Chili_red_cabernet	5	3	2	3
Chili_red_shiraz	7	1	2	6
Canada_red_pinot	4	2	3	1
Canada_white_chardonnay	4	3	2	1
Canada_white_sauvignon	8	4	3	2
USA_rose_cabernet	8	3	3	3
USA_rose_pinot	6	1	1	2
USA_rose_syrah	9	3	2	5

PCA maximizes variance

- PCA maximizes variance
- So let's visualize the variance per component

- PCA maximizes variance
- So let's visualize the variance per component
 - Use the eigenvalues

- PCA maximizes variance
- So let's visualize the variance per component
 - Use the eigenvalues
 - "Scree plot"

Many ways to present the results

- Many ways to present the results
- We prioritize visualization

- Many ways to present the results
- We prioritize visualization
 - Use numbers and tables when needed

- Many ways to present the results
- We prioritize visualization
 - Use numbers and tables when needed
- PCA is half

- Many ways to present the results
- We prioritize visualization
 - Use numbers and tables when needed
- PCA is half
 - Stats

- Many ways to present the results
- We prioritize visualization
 - Use numbers and tables when needed
- PCA is half
 - Stats
 - Art

Component 1 variance: 44.55%

PCA: Wines

Figure 4: Variables & Observations

PCA

• If you know PCA you know about 90% of the multivariate stats in use

Principal Component Analysis
Partial least squares
Overview
Break!

Background Formalization Example

Partial least squares

Principal Component Analysis
Partial least squares
Overview
Break!

Background Formalization Example

Background

Projection onto latent structures

- Projection onto latent structures
 - Probably the most accurate name

- Projection onto latent structures
 - Probably the most accurate name
 - But also probably too broad a definition

Partial least squares sounds like ordinary least squares

• When we have two matrices: X and Y

Partial least squares sounds like ordinary least squares

- When we have two matrices: X and Y
- OLS: $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$

Partial least squares sounds like ordinary least squares

- When we have two matrices: X and Y
- OLS: $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$
- PLS: X^TY

• Partial least squares path modelling (PLS-PM)

- Partial least squares path modelling (PLS-PM)
- Partial least squares regression (PLSR)

- Partial least squares path modelling (PLS-PM)
- Partial least squares regression (PLSR)
- Partial least squares correlation (PLSC)

- Partial least squares path modelling (PLS-PM)
- Partial least squares regression (PLSR)
- Partial least squares correlation (PLSC)
 - This is the one we'll talk about today

Names

• Inter-battery (factor) analysis (Tucker, 1958)

Names

- Inter-battery (factor) analysis (Tucker, 1958)
- Covariance between two fields (Bretherton, Smith, & Wallace, 1992)

Names

- Inter-battery (factor) analysis (Tucker, 1958)
- Covariance between two fields (Bretherton, Smith, & Wallace, 1992)
- PLS-SVD (Tenenhaus, 2005)

Names

- Inter-battery (factor) analysis (Tucker, 1958)
- Covariance between two fields (Bretherton, Smith, & Wallace, 1992)
- PLS-SVD (Tenenhaus, 2005)
- co-inertia analysis (Dray, 2014)

Friends

• Reduced Rank Regression

Friends

- Reduced Rank Regression
- Canonical Correlation Analysis

Friends

- Reduced Rank Regression
- Canonical Correlation Analysis
- (Fisher's) Linear Discriminant Analysis

Friends

- Reduced Rank Regression
- Canonical Correlation Analysis
- (Fisher's) Linear Discriminant Analysis
- PLS-correspondence analysis

History

• McIntosh, Bookstein, Haxby, & Grady (1996)

History

- McIntosh, Bookstein, Haxby, & Grady (1996)
- Bookstein (1992)

History

- McIntosh, Bookstein, Haxby, & Grady (1996)
- Bookstein (1992)
- Tucker (1958)

Modern overviews

McIntosh & Lobaugh (2004)

Modern overviews

- McIntosh & Lobaugh (2004)
- Krishnan et al., (2011)

It's effectively just PCA applied to the cross product of two matrices measured on the same observations:

It's effectively just PCA applied to the cross product of two matrices measured on the same observations:

• **X** which is $I \times J$

It's effectively just PCA applied to the cross product of two matrices measured on the same observations:

- **X** which is $I \times J$
- **Y** which is $I \times K$

Principal Component Analysis
Partial least squares
Overview
Break!

Background Formalization Example

Formalization

Given **X** of size $I \times J$ and **Y** of size $I \times K$

Given **X** of size $I \times J$ and **Y** of size $I \times K$

We want to find vectors

Given **X** of size $I \times J$ and **Y** of size $I \times K$

We want to find vectors

- **u** of size $J \times 1$
- **v** of size $K \times 1$

To define latent variables

Given **X** of size $I \times J$ and **Y** of size $I \times K$

We want to find vectors

- **u** of size $J \times 1$
- **v** of size $K \times 1$

To define latent variables

- $I_X = Xu$ of size $I \times 1$
- $I_Y = Yv$ of size $I \times 1$

Given **X** of size $I \times J$ and **Y** of size $I \times K$

We want to find vectors

- **u** of size $J \times 1$
- **v** of size $K \times 1$

To define latent variables

- $I_X = Xu$ of size $I \times 1$
- $I_Y = Yv$ of size $I \times 1$

such that

$$\underset{\mathbf{u},\mathbf{v}}{\operatorname{argmax}} \delta = \mathbf{u}^T \mathbf{X}^T \mathbf{Y} \mathbf{v} \text{ conditional to } \mathbf{u}^T \mathbf{u} = 1 = \mathbf{v}^T \mathbf{v}$$

Compute the relationship between \boldsymbol{X} and \boldsymbol{Y}

$$\mathbf{R} = \mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{3}$$

Compute the relationship between ${f X}$ and ${f Y}$

$$\mathbf{R} = \mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{3}$$

Compute the SVD of R

$$R = U\Delta V^{T}$$
 (4)

Compute the relationship between ${f X}$ and ${f Y}$

$$\mathbf{R} = \mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{3}$$

Compute the SVD of R

$$R = U\Delta V^{T}$$
 (4)

Compute the latent variables

$$L_X = XU$$
 and $L_Y = YV$ (5)

Almost everything is the same:

▲ are singular values

Almost everything is the same:

- ▲ are singular values
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})

Almost everything is the same:

- Δ are singular values
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- ullet $\mathbf{F}_{\mathcal{K}} = \mathbf{V} \Delta$ (component scores for variables of \mathbf{Y})

Almost everything is the same:

- Δ are singular values
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $F_K = V\Delta$ (component scores for variables of Y)
- So our nomeclature will align with PCA

The new-ness

ullet $\mathbf{L}_{\mathbf{X}}=\mathbf{X}\mathbf{U}$ express the individuals w.r.t. \mathbf{X}

The new-ness

- $L_X = XU$ express the individuals w.r.t. X
- \bullet L_Y = YV express the individuals w.r.t. Y

The new-ness

- $L_X = XU$ express the individuals w.r.t. X
- ullet ${f L}_{f Y}={f Y}{f V}$ express the individuals w.r.t. ${f Y}$
- Not in PCA

The new-ness

- L_X = XU express the individuals w.r.t. X
- \bullet L_Y = YV express the individuals w.r.t. Y
- Not in PCA
 - We'll call these "latent variable scores"

Maximizes the latent variables

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}=\mathbf{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}} = \mathbf{\Delta} \tag{6}$$

$$(XU)^T(YV) = \Delta$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}} = \mathbf{\Delta} \tag{6}$$

$$(XU)^T(YV) = \Delta$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}\boldsymbol{V}=\boldsymbol{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}=\mathbf{\Delta}$$

$$(XU)^T(YV) = \Delta$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}\boldsymbol{V}=\boldsymbol{\Delta}$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{R}\boldsymbol{V}=\boldsymbol{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}=\mathbf{\Delta}$$

$$(XU)^T(YV) = \Delta$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}\boldsymbol{V}=\boldsymbol{\Delta}$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{R}\boldsymbol{V}=\boldsymbol{\Delta}$$

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{U}\boldsymbol{\Delta}\boldsymbol{V}^{\mathsf{T}}\boldsymbol{V}=\boldsymbol{\Delta}$$

Maximizes the latent variables

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}=\mathbf{\Delta}$$

When expanded

$$(XU)^T(YV) = \Delta$$

$$\mathbf{U}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{Y}\mathbf{V} = \mathbf{\Delta}$$

$$\mathbf{U}^{\mathsf{T}}\mathbf{R}\mathbf{V} = \mathbf{\Delta}$$

$$\mathbf{U}^\mathsf{T}\mathbf{U}\mathbf{\Delta}\mathbf{V}^\mathsf{T}\mathbf{V}=\mathbf{\Delta}$$

because

$$U^TU = I = V^TV$$

It's effectively just PCA with some new-ness:

▲ are singular values

- Δ are singular values
- **U** akin to loadings (for variables of **X**)

- Δ are singular values
- U akin to loadings (for variables of X)
- V akin to loadings (for variables of Y)

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $\mathbf{F}_K = \mathbf{V} \mathbf{\Delta}$ (component scores for variables of \mathbf{Y})

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $\mathbf{F}_K = \mathbf{V} \Delta$ (component scores for variables of \mathbf{Y})
- ullet ${f L}_{f X}={f X}{f U}$ express the individuals w.r.t. ${f X}$

- Δ are singular values
- **U** akin to loadings (for variables of **X**)
- V akin to loadings (for variables of Y)
- $\mathbf{F}_J = \mathbf{U} \Delta$ (component scores for variables of \mathbf{X})
- $\mathbf{F}_K = \mathbf{V} \Delta$ (component scores for variables of \mathbf{Y})
- ullet $L_X = XU$ express the individuals w.r.t. X
- L_Y = YV express the individuals w.r.t. Y

Background Formalization Example

Example

PLS Toy Dataset - Wine

• 36 different wines (e.g., USA red cab., CAN rose syrah)

PLS Toy Dataset - Wine

- 36 different wines (e.g., USA red cab., CAN rose syrah)
- 4 objective measures (e.g., "Alcohol", "Acidity")

PLS Toy Dataset - Wine

- 36 different wines (e.g., USA red cab., CAN rose syrah)
- 4 objective measures (e.g., "Alcohol", "Acidity")
- 9 subjective measures (e.g., "sweet", "acidic")

PLS Subjective Measures

	fruity	floral	vegetal	spicy
Chili_red_merlot	6	2	1	4
Chili_red_cabernet	5	3	2	3
Chili_red_shiraz	7	1	2	6
Canada_red_pinot	4	2	3	1
Canada_white_chardonnay	4	3	2	1
Canada_white_sauvignon	8	4	3	2
USA_rose_cabernet	8	3	3	3
USA_rose_pinot	6	1	1	2
USA_rose_syrah	9	3	2	5

PLS Objective Measures

	Acidity	Alcohol	Sugar	Tanin
Chili_red_merlot	5.33	13.8	2.75	559
Chili_red_cabernet	5.14	13.9	2.41	672
Chili_red_shiraz	5.16	14.3	2.20	455
Canada_red_pinot	5.70	13.3	1.70	320
Canada_white_chardonnay	6.00	13.5	3.00	35
Canada_white_sauvignon	7.50	12.0	3.50	40
USA_rose_cabernet	5.71	12.5	4.30	93
USA_rose_pinot	5.40	13.0	3.10	79
USA_rose_syrah	6.50	13.5	3.00	89

While PLS is similar to PCA we should focus on what PLS maximizes:

While PLS is similar to PCA we should focus on what PLS maximizes:

$$\mathbf{L}_{\mathbf{X}}^{\mathcal{T}}\mathbf{L}_{\mathbf{Y}}$$

While PLS is similar to PCA we should focus on what PLS maximizes:

$$\mathbf{L}_{\mathbf{X}}^{T}\mathbf{L}_{\mathbf{Y}}$$

So we'll start with the latent variable scores

È

hili wasa pingka

PLS Wine Latent Variable Scores: LV1

Component 1 variance: 88.99%

PLS: Wine Subjective Measures

Component 1 variance: 88.99%

PLS Wine Latent Variable Scores: LV1

LX 1

Overview

We're experts now

PCA is the core of PLS

- PCA is the core of PLS
- PLS generalizes PCA

- PCA is the core of PLS
- PLS generalizes PCA
 - If your two matrices are both the same, e.g., X

- PCA is the core of PLS
- PLS generalizes PCA
 - If your two matrices are both the same, e.g., X
 - PLS gives same results as PCA

We're experts now

Visualize first

- Visualize first.
- Use what you know to help construct the story from the numbers

- Visualize first.
- Use what you know to help construct the story from the numbers
 - We'll see some additional helpers in next part today

Break!

• And we're not even at the good part yet!

- And we're not even at the good part yet!
- 7 ± 2 break

- And we're not even at the good part yet!
- 7 ± 2 break
 - Stretch, coffee

- And we're not even at the good part yet!
- 7 ± 2 break
 - Stretch, coffee
 - Pressing questions