Approximate Principal Components Analysis of Large Data Sets

Daniel J. McDonald

Department of Statistics Indiana University

http://mypage.iu.edu/~dajmcdor dajmcdon@indiana.edu

Joint work with:
Darren Homrighausen

August 5, 2014

Data reduction

Modern statistical applications — genomics, neural image analysis, text analysis — have large numbers of covariates p

Also frequently have lots of observations n.

Need to do some dimension reduction

Many methods — multidimensional scaling, discriminant analysis, locally linear embeddings, Laplacian eigenmaps, and many others

NOTATION

- Observe $\tilde{X}_1, \dots, \tilde{X}_n$, where $\tilde{X}_i \in \mathbb{R}^p$
- Form $\tilde{\mathbf{X}} = \begin{bmatrix} \tilde{X}_1 & \cdots & \tilde{X}_n \end{bmatrix}^\top \in \mathbb{R}^{n \times p}$
- Call $\mathbf{X} = \tilde{\mathbf{X}} \overline{\mathbf{X}}$ where $\overline{\mathbf{X}} = n^{-1} \mathbf{1} \mathbf{1}^{\mathsf{T}} \tilde{\mathbf{X}}$
- Write the SVD of **X** as

$$\mathbf{X} = \mathbf{U}\Lambda \mathbf{V}^{\top},$$

For general rank r matrices \mathbf{A} we write

$$\mathbf{A} = U(\mathbf{A})\Lambda(\mathbf{A})V(\mathbf{A})^{\top}$$
 where $\Lambda(\mathbf{A}) = \operatorname{diag}(\lambda_1(\mathbf{A}), \dots, \lambda_r(\mathbf{A}))$

■ For some matrix **A**, we use \mathbf{A}_d to be the first d columns of **A**.

PRINCIPAL COMPONENTS ANALYSIS

- For $d \le r$, PCA gives a projection that minimizes the squared error distance between the data and the projection
- Projections involve \mathbf{U}_d , \mathbf{V}_d , and Λ_d

EXAMPLE

PCA for regression with response vector Y, the estimated coefficients would be

$$\widehat{\beta}_{pcr} = \mathbf{V}_d \Lambda_d^{\dagger} \mathbf{U}_d^{\top} Y = \mathbf{V}_d \mathbf{V}_d^{\top} \mathbf{X}^{\dagger} Y \tag{1}$$

and the fitted values can be written $\hat{Y} = \mathbf{U}_d \mathbf{U}_d^{\mathsf{T}} Y$

A BIG PROBLEM

- PCA requires computing an SVD
- So do most other data reduction methods
- Datasets are large: a recent ImageNet contest had $n \approx 10^6$ and $p \approx 65000^1$
- That was only about 8% of the data set.
- SVD requires $O(np^2 + n^3)$ computations check me
- And you need to store the entire matrix in fast memory
- This is bad

¹ see e.g. Krizhevsky, Sutskever, and Hinton. NIPS 2013

A BIG PROBLEM

- PCA requires computing an SVD
- So do most other data reduction methods
- Datasets are large: a recent ImageNet contest had $n \approx 10^6$ and $p \approx 65000^1$
- That was only about 8% of the data set.
- SVD requires $O(np^2 + n^3)$ computations check me
- And you need to store the entire matrix in fast memory
- This is bad.

 $^{^{1}}$ see e.g. Krizhevsky, Sutskever, and Hinton. $\it NIPS~2013$

APPROXIMATIONS

Can't take the SVD of X

What about approximating it?

Focus on two methods of "approximate SVD"

- 1 Nyström extension
- 2 Column sampling

Not our methods.

A QUICK "SKETCH" OF THE INTUITION

- Both methods fall into a larger class of methods
- Suppose we want to approximate $\mathbf{A} \in \mathbb{R}^{q \times q}$
- Assume A is symmetric and positive semi-definite
- Choose $l \ll q$ and form a "sketching" matrix $\Phi \in \mathbb{R}^{q \times l}$
- Then write $\mathbf{A} \approx (\mathbf{A}\Phi)(\Phi^{\top}\mathbf{A}\Phi)^{\dagger}(\mathbf{A}\Phi)^{\top}$.
- lacksquare Different Φ yield different approximations
- For Nyström and column sampling use

$$\Phi=\pi\tau$$

Where π is a permutation of \mathbf{I}_q and $\tau = \begin{bmatrix} \mathbf{I}_l & \mathbf{0} \end{bmatrix}^\top$.

Notes on sketching

- We don't actually do this, but this is the generality
- Essentially, let

$$\mathbf{S} = \frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X}$$
 and $\mathbf{Q} = \mathbf{X} \mathbf{X}^{\mathsf{T}}$

- Both of these are symmetric, positive semi-definite
- Randomly choose l entries in $\{1, ..., n\}$ and $\{1, ..., p\}$
- Then partition the matrix so the selected portion is \mathbf{S}_{11} and \mathbf{Q}_{11}

$$\mathbf{S} = \mathbf{V} \Lambda^2 \mathbf{V}^\top = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{bmatrix} \qquad \mathbf{Q} = \mathbf{U} \Lambda^2 \mathbf{U}^\top = \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix}$$

Approximating things we don't care about

If we want to approximate S (or Q), we have for example

Nyström

$$\mathbf{S}pprox egin{bmatrix} \mathbf{S}_{11} \ \mathbf{S}_{21} \end{bmatrix} \mathbf{S}_{11}^{\dagger} egin{bmatrix} \mathbf{S}_{11} \ \mathbf{S}_{12} \end{bmatrix}$$

Column sampling

$$\mathbf{S} \approx U\left(\begin{bmatrix} \mathbf{S}_{11} \\ \mathbf{S}_{21} \end{bmatrix}\right) \Lambda\left(\begin{bmatrix} \mathbf{S}_{11} \\ \mathbf{S}_{21} \end{bmatrix}\right) U\left(\begin{bmatrix} \mathbf{S}_{11} \\ \mathbf{S}_{21} \end{bmatrix}\right)^{\top}$$

Previous theoretical results have focused on the accuracy of these approximations and the way to randomly select the indices

What we actually want...

We really want \mathbf{U} , \mathbf{V} , and Λ . Then we can get the principal components, principal coordinates, and the amount of variance explained.

It turns out that there are quite a few ways to use these two methods to get the things we want.

Let

$$L(\mathbf{S}) = \begin{bmatrix} \mathbf{S}_{11} \\ \mathbf{S}_{21} \end{bmatrix}$$
 $L(\mathbf{Q}) = \begin{bmatrix} \mathbf{Q}_{11} \\ \mathbf{Q}_{21} \end{bmatrix}$

Quantity of interest	Label	Approximations	
V	$egin{array}{c} \mathbf{V}_{nys} \ \mathbf{V}_{cs} \end{array}$	$L(\mathbf{S})\mathbf{V}(\mathbf{S}_{11})\Lambda(\mathbf{S}_{11})^{\dagger}$ $\mathbf{U}(L(\mathbf{S}))$	
U	$egin{array}{c} \mathbf{U}_{nys} \ \mathbf{U}_{cs} \ \widehat{\mathbf{U}}_{nys} \ \widehat{\mathbf{U}}_{cs} \ \widehat{\mathbf{U}} \end{array}$	$L(\mathbf{Q})\mathbf{V}(\mathbf{Q}_{11})\Lambda(\mathbf{Q}_{11})^{\dagger} \ \mathbf{U}(L(\mathbf{Q})) \ \mathbf{X}\mathbf{V}_{nys}\Lambda_{nys}^{\dagger/2} \ \mathbf{X}\mathbf{V}_{cs}\Lambda_{cs}^{\dagger/2} \ \mathbf{U}(\mathbf{x}_1)$	

Quantity of interest	Label	Approximations	
V	$egin{array}{c} \mathbf{V}_{nys} \ \mathbf{V}_{cs} \end{array}$	$\begin{bmatrix} L(\mathbf{S})\mathbf{V}(\mathbf{S}_{11})\Lambda(\mathbf{S}_{11})^{\dagger} \\ \mathbf{U}(L(\mathbf{S})) \end{bmatrix}$	
U	$egin{array}{c} \mathbf{U}_{nys} \ \mathbf{U}_{cs} \ \widehat{\mathbf{U}}_{nys} \ \widehat{\mathbf{U}}_{cs} \ \widehat{\mathbf{U}} \end{array}$	$L(\mathbf{Q})\mathbf{V}(\mathbf{Q}_{11})\Lambda(\mathbf{Q}_{11})^{\dagger} \ \mathbf{U}(L(\mathbf{Q})) \ \mathbf{X}\mathbf{V}_{nys}\Lambda_{nys}^{\dagger/2} \ \mathbf{X}\mathbf{V}_{cs}\Lambda_{cs}^{\dagger/2} \ \mathbf{U}(\mathbf{x}_1)$	

Quantity of interest	Label	Approximations	
V	$egin{array}{c} \mathbf{V}_{nys} \ \mathbf{V}_{cs} \end{array}$	$ \left \begin{array}{c} L(\mathbf{S})\mathbf{V}(\mathbf{S}_{11})\Lambda(\mathbf{S}_{11})^{\dagger} \\ \mathbf{U}(L(\mathbf{S})) \end{array} \right $	
U	$egin{array}{c} \mathbf{U}_{nys} \ \mathbf{U}_{cs} \ \widehat{\mathbf{U}}_{nys} \ \widehat{\mathbf{U}}_{cs} \ \widehat{\mathbf{U}} \end{array}$	$L(\mathbf{Q})\mathbf{V}(\mathbf{Q}_{11})\Lambda(\mathbf{Q}_{11})^{\dagger} \ \mathbf{U}(L(\mathbf{Q})) \ \mathbf{X}\mathbf{V}_{nys}\Lambda_{nys}^{\dagger/2} \ \mathbf{X}\mathbf{V}_{cs}\Lambda_{cs}^{\dagger/2} \ \mathbf{U}(\mathbf{x}_1)$	

Quantity of interest	Label	Approximations	
V	$egin{array}{c} \mathbf{V}_{nys} \ \mathbf{V}_{cs} \end{array}$	$\begin{bmatrix} L(\mathbf{S})\mathbf{V}(\mathbf{S}_{11})\Lambda(\mathbf{S}_{11})^{\dagger} \\ \mathbf{U}(L(\mathbf{S})) \end{bmatrix}$	
U	$egin{array}{c} \mathbf{U}_{nys} \ \mathbf{U}_{cs} \ \widehat{\mathbf{U}}_{nys} \ \widehat{\mathbf{U}}_{cs} \ \widehat{\mathbf{U}} \end{array}$	$L(\mathbf{Q})\mathbf{V}(\mathbf{Q}_{11})\Lambda(\mathbf{Q}_{11})^{\dagger} \ \mathbf{U}(L(\mathbf{Q})) \ \mathbf{X}\mathbf{V}_{nys}\Lambda_{nys}^{\dagger/2} \ \mathbf{X}\mathbf{V}_{cs}\Lambda_{cs}^{\dagger/2} \ \mathbf{U}(\mathbf{x}_1)$	

Quantity of interest	Label	Approximations	
V	$egin{array}{c} \mathbf{V}_{nys} \ \mathbf{V}_{cs} \end{array}$	$ \left \begin{array}{c} L(\mathbf{S})\mathbf{V}(\mathbf{S}_{11})\Lambda(\mathbf{S}_{11})^{\dagger} \\ \mathbf{U}(L(\mathbf{S})) \end{array} \right $	
U	$egin{array}{c} \mathbf{U}_{nys} \ \mathbf{U}_{cs} \ \widehat{\mathbf{U}}_{nys} \ \widehat{\mathbf{U}}_{cs} \ \widehat{\mathbf{U}} \end{array}$	$L(\mathbf{Q})\mathbf{V}(\mathbf{Q}_{11})\Lambda(\mathbf{Q}_{11})^{\dagger}$ $\mathbf{U}(L(\mathbf{Q}))$ $\mathbf{X}\mathbf{V}_{nys}\Lambda_{nys}^{\dagger/2}$ $\mathbf{X}\mathbf{V}_{cs}\Lambda_{cs}^{\dagger/2}$ $\mathbf{U}(\mathbf{x}_{1})$	

NOTES OF INTEREST

	Complexity:		
Method	Computational	Storage	
Nyström	$O(nl^2 + l^3)$	$O(l^2)$ $[O(nl)]$	
Column sampling	$O(lnp + p^2l)$	O(pl)	

- \blacksquare Column sampling results in orthogonal U and V, Nyström doesn't
- Using **Q** is weird. Thus the "hatted **U**" versions.
- $\widehat{\mathbf{U}} = U(\mathbf{x}_1)$ where $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}$ seems reasonable if we think that only the first l selected covariates matter (gets used in supervised PCA)²

² Bair, Hastie, Paul, and Tibshirani, JASA, 2006.

SO WHAT DO WE USE?

Well...

It depends. We did some theory which gives a way to calculate how far off your approximation might be. You could use these bounds if you like to use your data and make a choice.

Did some simulations too.

SIMULATIONS

- Draw $\widetilde{X}_i \stackrel{iid}{\sim} N_p(0, \Sigma)$ for n = 5000, p = 3000.
- 4 conditions: $Random_{0.001}$, $Random_{0.01}$, $Random_{0.1}$, and Band.
 - Random_x with probability x and for i < j, $\Sigma_{ij}^{-1} = 1$ and 0 otherwise. Diagonal elements are always equal to 1. And symmetrize.
 - Band $\Sigma_{ij}^{-1} = 1$ if $|i j| \le 50$ and 0 otherwise.
- The graphical models have approximately $\binom{p}{2} \cdot x$ edges for Random_x and exactly 25(2p-1-50) edges for Band.

What we report

In the V case

$$\frac{||\mathbf{V}_{nys,d}(\mathbf{V}_{nys,d}^{\top}\mathbf{V}_{nys,d})^{-1}\mathbf{V}_{nys,d}^{\top} - \mathbf{V}_{d}\mathbf{V}_{d}^{\top}||_{F}}{||\mathbf{V}_{cs,d}\mathbf{V}_{cs,d}^{\top} - \mathbf{V}_{d}\mathbf{V}_{d}^{\top}||_{F}}.$$

Approximations to V

- y-axis, relative performance of Nyström to column sampling.
- Less than 1—better. More than 1—worse.
- x-axis, approximation parameter l (grid based on d).
- Random_{0.001} (solid, square), Random_{0.01} (dashed, circle), Random_{0.1} (dotted, triangle), and Band(dot-dash, diamond).
- d small, computation time is similar. d large, Nyström is 10–15% of column sampling 15

Approximations to \mathbf{U} (d=10)

- y-axis, performance relative to $\widehat{\mathbf{U}}_{cs}$
- \mathbf{x} -axis, approximation parameter l
- $lackbox{}\widehat{\mathbf{U}},\,\mathbf{U}_{nys},\,\widehat{\mathbf{U}}_{nys},\,\widehat{\mathbf{U}}_{cs}$
- Clockwise from top left: $Random_{0.001}$, $Random_{0.01}$, $Band,Random_{0.1}$

Conclusions

- For computing V, CS beats Nyström in terms of accuracy, but is much slower for similar choices of the approximation parameter and d large.
- \blacksquare For computing ${\bf U},$ the naı̈ve methods are bad, better to approximate ${\bf V}$ and multiply, so see above
- $\widehat{\mathbf{U}}$ really stinks. This is used for supervised PCA. Future research (don't steal, this one's ours)
- lacktriangle Other choices of Φ (also future research)
- Thanks NSF for funding us.
- For more info, see the paper. Contains boring theory, more extensive simulations, and application to Enron email dataset. (resubmitted to JCGS)