Komentarz do 1. wykładu 27. lutego 2020

Przestrzeń probabilistyczna

Niech $\Omega \neq \emptyset$. Zbiór Ω nazywamy przestrzenią zdarzeń elementarnych. Intuicyjnie jest to zbiór możliwych wyników.

Drugim elementem konstrukcji jest rodzina zbiorów $\mathcal{F} \subset 2^{\Omega}$. Elementy tej rodziny nazywamy zdarzeniami. Rodzina zdarzeń spełnia następujące warunki:

- 1. $\Omega \in \mathcal{F}$,
- 2. $A \in \mathcal{F} \Longrightarrow A^C = (\Omega \setminus A) \in \mathcal{F}$,
- 3. $A_i \in \mathcal{F}, (i = 1, 2, ...) \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$

Rodzinę zbiorów spełniającą powyższe warunki nazywamy σ -ciałem zbiorów (zdarzeń). W skrócie: zbiór Ω jest zdarzeniem, dopełnienie zdarzenia jest zdarzeniem, suma skończonej lub przeliczalnej rodziny zdarzeń jest zdarzeniem. Chodzi o to, aby elementarne operacje mnogościowe na zdarzeniach nie dawały w wyniku nie-zdarzeń.

Ostatnim elementem jest funkcja $P: \mathcal{F} \to [0,1]$ nazywana prawdopodobieństwem lub gęstością taka, że

- 1. $P(\Omega) = 1$.
- 2. Jeżeli $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F} \text{ oraz } A_i \cap A_j = \emptyset \text{ dla } i \neq j, \text{ to } P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right).$

Definicja 1. Przestrzenią probabilistyczną nazywamy obiekt (Ω, \mathcal{F}, P) , gdzie Ω jest przestrzenią zdarzeń elementarnych, \mathcal{F} – σ -ciałem zdarzeń, natomiast P jest prawdopodobieństwem.

Zmienna losowa

Rozważamy zbiory otwarte na prostej rzeczywistej. Przez operację elementarną rozumiemy sumę, przekrój i dopełnienie mnogościowe.

Definicja 2. σ -ciałem borelowskim \mathcal{B} nazywamy klasę zbiorów otrzymanych ze zbiorów otwartych za pomocą przeliczalnej liczby operacji elementarnych. Jeżeli $B \in \mathcal{B}$ to mówimy, że zbiorem borelowskim.

Definicja 3. Niech będzie dana funkcja $X: \Omega \to \mathbb{R}$. X nazywamy zmienną losową jedynie wtedy $gdy \ \forall B \in \mathcal{B} \ X^{-1}(B) \in \mathcal{F}$.

 $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$. Słownie: przeciwobraz zbioru borelowskiego jest zdarzeniem.

Ciągłe i dyskretne zmienne losowe

Dyskretną zmienną losową nazywamy ciąg wartości (skończony lub przeliczalny) $\{x_i\}$ oraz ciąg prawdopodobieństw $\{p_i\}$. Ten drugi powinien spełniać warunki: $p_i \geqslant 0$ oraz $\sum_{i \in I} p_i = 1$. σ -ciałem zdarzeń jest najcześciej 2^I .

Przykłady:

- 1. Rzut kostką. Tutaj $\Omega = \{1, 2, \dots, 6\}, \mathcal{F} = 2^{\Omega} \text{ oraz } p_i = 1/6, \text{ dla } i = 1, 2, \dots, 6.$
- 2. Rzut kostką z rozróżnieniem parzyste-nieparzyste. Teraz $\Omega = \{1, 2, ..., 6\}$, rodziną zdarzeń jest $\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}, \ p_1 = P(\{1, 3, 5\}) = 1/2, \ p_1 = P(\{2, 4, 6\}) = 1/2.$
- 3. Schemat Bernoulliego. Przeprowadzamy n prób, ppb a sukcesu w każdej próbie jest liczba p taka, że 0 . O próbach zakładamy, że są niezależne. Na razie nie wprowadzamy formalnej definicji niezależności, zakładamy, że każda z prób jest przeprowadzana w tych samych warunkach, bez znajomości poprzednich wyników. Innymi słowy: wraz z kolejną próbą świat rozpoczyna się od nowa.

Wartością zmiennej losowej X jest liczba sukcesów w n próbach. Stąd $\Omega = \{0, 1, ..., n\}$, $p_k = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$. Zwrot: zmienna losowa X podlega rozkładowi Bernoulliego z parametrami n, p, zapisujemy krótko: $X \sim B(n, p)$.

4. Rozkład Poissona. Zliczanie zdarzeń w ustalonej jednostce czasu. Parametr rozkładu to rzeczywista, dodatnia liczba λ . $\Omega=\{0,1,2,\ldots\},\ p_k=P(X=k)=\mathrm{e}^{-\lambda}\,\frac{\lambda^k}{k!}$. Oznaczenie: $X\sim \mathrm{Poisson}(\lambda)$.

Witold Karczewski

^askrót ppb oznaczać będzie: Nominativus, Genetivus, Dativus, Accusativus, Locativus, Instrumentalis lub Vocativus od rzeczownika prawdopodobieństwo (singularis) lub rzeczownika prawdopodobieństwa (pluralis).