## Министерство образования и науки РФ Нижегородский государственный технический университет им. Р.Е.Алексеева Кафедра "Производственная безопасность, экология и химия"

# Электромагнитные излучения, создаваемые телевизионными станциями

Методические указания по выполнению практических работ по курсу "Экология"

## УДК 502.7:311.1

Электромагнитные излучения, создаваемые телевизионными станциями: Методические указания по выполнению практических работ по курсу "Экология"/НГТУ; Сост.: О.В.Маслеева, А.Б.Елькин, Т.И.Курагина. Н.Новгород: НГТУ.- 2014, 9 с.

## 1. Цель работы:

- изучить влияние электромагнитного излучения радиочастотного диапазона на организм человека;
- -рассчитать электромагнитное излучение, создаваемое передающей антенной телецентра.

## 2. Краткие сведения из теории.

#### 2.1. Характеристики электромагнитного излучения:

Основными характеристиками электромагнитного излучения (ЭМИ) являются: -частота, Гц;

Радиоволны, в зависимости от частоты, делятся на диапазоны:

| ДВ  | 100 | - | 300 кГц  |
|-----|-----|---|----------|
| CB  | 0.3 | - | 3 мГц    |
| КВ  | 3   | - | 30 мГц   |
| УКВ | 30  | - | 300 мГц  |
| СВЧ | 0,3 | _ | 300 гГц. |

- -напряженность электрического поля Е, В/М;
- -напряженность магнитного поля Н, А/М;
- -плотность потока энергии W, Bт/м<sup>2</sup>.

### 2.2. Действие электромагнитного излучения на человека

Влияние на организм человека электромагнитного излучения радиочастот большой интенсивности связано с частичным поглощением их энергии тканями тела, что вызывает тепловой эффект.

Под воздействием высокочастотного электромагнитного излучения ионы тканей приходят в движение; в тканях возникают высокочастотные токи, сопровождающиеся поглощением энергии полей. Если механизм терморегуляции тела не способен рассеять избыточное тепло, возможно повышение температуры тела. Некоторые органы и ткани человека более чувствительны к облучению (мозг, глаз, почки, кишечник).

Проводимость тканей пропорциональна содержанию в них тканевой жидкости; наибольшую проводимость имеют кровь и мышцы, а наименьшую - жировые ткани. Толщина жирового слоя в облучаемом участке оказывает влияние на степень отражения волн от поверхности тела человека. Головной и спинной мозг имеют незначительный жировой слой, а глаза совершенно его не имеют, поэтому эти органы подвергаются наибольшему воздействию.

Систематическое и длительное воздействие на человека электромагнитных полей различных частот с интенсивностью, превышающей предельно допустимые уровни (ПДУ), может привести к некоторым функциональным изменениям в организме, в первую очередь - в центральной нервной системе. Эти изменения в организме могут проявляться в головной боли, нарушении сна,

повышенной утомляемости, раздражительности и ряде других симптомов. Кроме функциональных возможны также необратимые изменения в организме: торможение рефлексов, понижение кровяного давления, замедление сокращения сердца, изменение состава крови, помутнение хрусталика глаза.

Степень воздействия на человека электромагнитных полей зависит от интенсивности облучения, его длительности, расстояния от источника образования поля и от индивидуальной чувствительности организма человека.

## 2.3. Нормирование электромагнитного излучения.

Санитарные правила и нормы СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» устанавливают предельно-допустимые уровни (ПДУ) воздействия на людей электромагнитных излучений в диапазоне частот 30 кГц - 300 Ггц.

При работе радио и теле станций магнитная составляющая по своей величине не имеет существенного значения, поэтому интенсивность ЭМИ оценивается только по величине напряженности электрического поля (E, в/м).

Таблица 1 - Предельно допустимые уровни ЭМИ, создаваемые телевизионными станциями

| Частота, МГц | ПДУ, в/м |
|--------------|----------|
| 30-60        | 5        |
| 60-120       | 4        |
| 120-240      | 3        |
| 240-300      | 2,5      |

При одновременном облучении от нескольких источников, для которых установлены разные ПДУ, должно соблюдаться следующее условие:

$$\alpha = \sum_{i=1}^{n} \left( \frac{E_i}{\prod \coprod Y_i} \right)^2 \le 1 \tag{1}$$

где:

 $E_i$  - напряженность электрического поля, создаваемого і-источником, в/м,  $\Pi Д Y_i$ - предельно-допустимый уровень для і-источника, в/м.

Для защиты населения от ЭМИ мощных телерадиостанций (свыше 100 кВт) КВ диапазона, они должны размещаться за пределами населенных мест, вдали от жилой застройки.

Вокруг теле радиостанций создают санитарно-защитные зоны, размеры которых должны обеспечивать предельно-допустимый уровень ЭМИ в населенных местах (табл.2).

Таблица 2 - Размеры санитарных зон

| Суммарная мощность передатчика, | Размеры санитарной зоны, м        |  |  |
|---------------------------------|-----------------------------------|--|--|
| кВт                             |                                   |  |  |
| до 10                           | в пределах технической территории |  |  |
| 10-75                           | 200-300                           |  |  |
| 75-160                          | 400-500                           |  |  |
| более 160                       | 500-1000                          |  |  |

Санитарная зона разделяется на зону строгого режима (50-100 м) и зону ограниченного пользования в зависимости от мощности передатчика. В зоне строгого режима допускается пребывание только работников передающей станции, и ограниченное время.

В зоне ограниченного пользования можно располагать объекты, в которых граждане могли бы находиться менее 8 час (гаражи, хозяйственно-бытовые помещения и др.)

#### 2.4 Определение напряженности электрического поля в расчетной точке



Электрическая напряженность ЭМИ в расчетной точке А определяется по формуле:

$$W = \overline{E} * \overline{H} = \frac{E^2}{377} = \frac{P * \varphi}{4 * \pi * R^2}$$

$$E = \sqrt{\frac{30 * P * \varphi}{h^2 + x^2}}$$
(2)

где: Р - мощность источника, Вт

ф - коэффициент направленности антенны, рад

$$\varphi = \arctan \frac{x}{h} \tag{4},$$

где: R - расстояние от антенны до расчетной точки, м

h - высота антенны, м

х - расстояние от основания антенны до расчетной точки, м.

Электрическая напряженность ЭМИ в жилом помещении определяется по формуле:

$$E^* = \kappa * E \tag{5},$$

где: к - ослабление ЭМИ стенами здания,

к=1 для кирпичных стен;

к=0,2 для панельных стен.

## 3.Задание к работе

- 3.1 Рассчитать электрическую напряженность ЭМИ, создаваемого телевизионными передающими антеннами, по мере удаления от телецентра.(X=0, X=50, X=70, X=100, X=150, X=200, X=250, X=300) Построить график  $\alpha$  =f(x). Определить на каком расстоянии электрическая напряженность уменьшается до ПДУ (табл. 1).
- 3.2 Определить размер санитарной зоны по табл. 2 и определить напряженность электрического поля внутри жилого дома, расположенного на границе санитарной зоны и сравнить с ПДУ.

## 4. Пример расчета

Исходные данные приведены в табл 3.

Таблица 3.

| h, м | 1 канал        |       | 2 канал        |       | 3 канал        |       |
|------|----------------|-------|----------------|-------|----------------|-------|
|      | $\mathbf{f}_1$ | $P_1$ | $\mathbf{f}_2$ | $P_2$ | $\mathbf{f}_3$ | $P_3$ |
| 100  | 80             | 5000  | 110            | 10000 | 210            | 2500  |

Где:

h- высота антенны;

 $f_i$ - частота, МГц;

рі- мощность передатчика, Вт

Определим ПДУ для каждого канала по табл. 1 и занесем в табл.4.

Определим электрическую напряженность в расчетных точках по формуле 3 и результаты расчета сведем в табл. 4 и рис.2.

$$x=50 \quad E_1 = \sqrt{\frac{30 * P * arctg \frac{x}{h}}{h^2 + x^2}} = \sqrt{\frac{30 * 5000 * arctg \frac{50}{100}}{50^2 + 100^2}} = 2,35 \text{ B/M}$$

$$E_2 = \sqrt{\frac{30*10000*arctg\frac{50}{100}}{50^2 + 100^2}} = 3,32 \text{ B/M}$$

$$E_3 = \sqrt{\frac{30*2500*arctg\frac{50}{100}}{50^2 + 100^2}} = 1,66 \text{ B/M}$$

$$\alpha = (2,35/4)^2 + (3,32/4)^2 + (1,66/3)^2 = 0,36$$

#### Таблица 4

| X   | arctg $\frac{x}{h}$ | $E_{1}$ | $E_2$ | $E_3$ | α     |
|-----|---------------------|---------|-------|-------|-------|
| 0   | 0                   | 0       | 0     | 0     | 0     |
| 50  | 0,464               | 2,35    | 3,32  | 1,66  | 1,34  |
| 100 | 0,785               | 2,42    | 3,43  | 1,72  | 1,43  |
| 150 | 0,983               | 2,13    | 3,02  | 1,51  | 1,11  |
| 200 | 1,107               | 1,82    | 2,58  | 1,29  | 0,808 |
| 250 | 1,190               | 1,57    | 2,21  | 1,11  | 0,596 |
| 300 | 1,249               | 1,37    | 1,94  | 0,97  | 0,456 |
| ПДУ | -                   | 4       | 4     | 3     | 1     |



Рис. 2

Суммарная мощность передатчиков  $5000+10000+2500=17500~\mathrm{Br}=17,5\mathrm{kBr}$  Отсюда по табл. 2 определяем размер санитарной зоны  $-200~\mathrm{m}$ .

Находим по табл.5 величину Е для X=200м и рассчитываем напряженность электрического поля в кирпичном и панельном домах

Таблица 5

|           | $E_1$ | $E_2$ | $E_3$ | α     |
|-----------|-------|-------|-------|-------|
| X=200     | 1,82  | 2,58  | 1,29  | 0,808 |
| Кирпичный | 1,82  | 2,58  | 1,29  | 0,808 |
| дом       |       |       |       |       |
| Панельный | 0,364 | 0,516 | 0,258 | 0,032 |
| дом       |       |       |       |       |
| ПДУ       | 4     | 4     | 3     | 1     |

На границе санитарной зоны ЭМИ в кирпичных и панельных домах не превышает допустимого.

# 5. Варианты заданий

Рассчитать электрическую напряженность, создаваемую телевизионным передатчиком, по мере удаления от него в соответствии с заданным вариантом (табл. 6).

В таблице даны высота антенны, частоты и мощность передатчиков.

# 6. Рекомендуемая литература

- 1. Экология : Учеб.пособие / А. В. Тотай [и др.] ; Под общ.ред.А.В.Тотая. 2-е изд.,перераб.и доп. М. : Юрайт, 2012. 407 с.
- 2. Новогородцев А.Б. «Расчет электрических и магнитных полей». Л. 1975г.
- 3. Безопасность жизнедеятельности : Практикум / Р. И. Айзман [и др.]. М.; Новосибирск : АРТА, 2011. 288 с.

Таблица 6

| $\mathcal{N}_{\underline{0}}$ | Высота  | а 1 канал |       | 2 канал |       | 3 канал |       |
|-------------------------------|---------|-----------|-------|---------|-------|---------|-------|
| Варианта                      | антенны | $f_1$     | $P_1$ | $f_2$   | $P_2$ | $f_3$   | $P_3$ |
|                               | h       |           |       |         |       |         |       |
| 1                             | 300     | 31        | 1100  | 61      | 3100  | 121     | 6100  |
| 2                             | 290     | 32        | 1200  | 62      | 3200  | 122     | 6200  |
| 3                             | 280     | 33        | 1300  | 63      | 3300  | 123     | 6300  |
| 4                             | 270     | 34        | 1400  | 64      | 3400  | 124     | 6400  |
| 5                             | 260     | 35        | 1500  | 65      | 3500  | 125     | 6500  |
| 6                             | 250     | 36        | 1600  | 66      | 3600  | 126     | 6600  |
| 7                             | 240     | 37        | 1700  | 67      | 3700  | 127     | 6700  |
| 8                             | 230     | 38        | 1800  | 68      | 3800  | 128     | 6800  |
| 9                             | 220     | 39        | 1900  | 69      | 3900  | 129     | 6900  |
| 10                            | 210     | 40        | 100   | 70      | 4000  | 130     | 7000  |
| 11                            | 200     | 41        | 1100  | 71      | 4100  | 131     | 7100  |
| 12                            | 190     | 42        | 1200  | 72      | 4200  | 132     | 7200  |
| 13                            | 180     | 43        | 1300  | 73      | 4300  | 133     | 7300  |
| 14                            | 170     | 44        | 1400  | 74      | 4400  | 134     | 7400  |
| 15                            | 160     | 45        | 1500  | 75      | 4500  | 135     | 7500  |
| 16                            | 150     | 46        | 1600  | 76      | 4600  | 136     | 7600  |
| 17                            | 140     | 47        | 1700  | 77      | 4700  | 137     | 7700  |
| 18                            | 130     | 48        | 1800  | 78      | 4800  | 138     | 7800  |
| 19                            | 120     | 49        | 1900  | 79      | 4900  | 139     | 7800  |
| 20                            | 110     | 50        | 2000  | 80      | 5000  | 140     | 8000  |
| 21                            | 100     | 51        | 2100  | 81      | 5100  | 141     | 8100  |
| 22                            | 90      | 52        | 2200  | 82      | 5200  | 142     | 8200  |
| 23                            | 80      | 53        | 2300  | 83      | 5300  | 143     | 8300  |
| 24                            | 90      | 54        | 2400  | 84      | 5400  | 144     | 8400  |
| 25                            | 100     | 55        | 2500  | 85      | 5500  | 145     | 8500  |
| 26                            | 110     | 59        | 2600  | 86      | 5600  | 146     | 8600  |
| 27                            | 120     | 57        | 2700  | 87      | 5700  | 147     | 8700  |
| 28                            | 130     | 58        | 2800  | 88      | 5800  | 148     | 8800  |
| 29                            | 140     | 59        | 2900  | 89      | 5900  | 149     | 8900  |
| 30                            | 150     | 59,.5     | 3000  | 90      | 6000  | 150     | 9000  |

где: h - высота антенны, м;

f - частота, м $\Gamma$ ц;

Р - мощность передатчика, Вт.