EarthCat 2022-10-26

∄:	录	

STL	4
bitset	4
windows 环境下的对拍	5
图论	6
KM	6
prufer 序列	7
spfa 最短路及负环	8
一些定理	9
二分图匹配(HK 匈牙利匹配)	9
带花树	10
带花树 2	11
强连通(kosaraju)	12
强连通(tarjan 无 vector)	13
强连通(tarjan)	14
拓扑排序	14
数链剖分	15
最大流	16
最大流(double)	17

	最小费用最大流	18
	最小路径覆盖	19
	最近公共祖先(倍增)	19
	最近公共祖先(线段树)	20
	有源汇上下界最大小流	21
	朱刘算法	22
	树上启发式合并	24
	树分治	25
	欧拉回路	25
	点分树	26
	点双连通分量+缩点建图	28
	虚树	29
多项式	t	30
	fft	30
	ntt	31
	多项式全家桶	32
字符串	B	34
	AC 自动机	34
	KMP 2	35
	kmp	36
	regex	36

	Trie	38
	可持久化字典树	38
	后缀数组	39
	后缀自动机	39
	回文自动机	40
	马拉车	41
数据结	告构	41
	CDQ 分治	41
	kruskal 重构树	42
	LCT	43
	Splay	44
	ST 表	45
	Treap	45
	y 总 Splay Plus	46
	y 总 Splay	48
	主席树	49
	仙人掌	50
	区间 max	51
	回滚莫队	53
	带修莫队	54
	普通莫队	55

	树状数组(fenwick)	56
	线段树合并分裂	56
	舞蹈链(多重覆盖)	57
	舞蹈链(精确覆盖)	59
数论.		60
	BSGS	60
	扩展 BSGS	61
	burnside 引理	62
	polya 定理	62
	Cipolla	62
	exgcd	63
	FFT	63
	FWT	64
	lucas 求组合数	66
	min_25 筛	66
	NTT	67
	PN 筛	70
	pn 筛_zyx	72
	Pollard_Rho+Miller-Robin	73
	prufer	74
	中国剩余定理	76
	二次剩余	77

勾股数圆上格点数	78	正多面体	84
勾股数	78	组合数	84
高斯整数/高斯素数	78	莫比乌斯反演	85
博弈拾遗	79	逆元线性递推 inv 阶乘逆元组合数	87
SG 定理:	79	杂项	87
Nimk:	79	fread 快读	87
anti_nim	79	int128 输出	88
卡特兰	79	mt19937	88
卡特兰三角	80	洗牌算法	88
原根	80	大质数表	88
快速幂	81	快读 read	89
扩展欧拉定理	81	整体二分	89
扩欧求逆元	82	朝鲜大哥快读	90
数学知识	82	枚举子集	91
库默尔定理	82	模拟退火	91
原根存在定理	82	测试时常用的代码	93
整除分块(向上向下取整)	82	线性代数	93
格雷码	82	矩阵类模板_加减乘快速幂	93
欧拉筛(素数)	83	矩阵类模板_稀疏矩阵乘法	95
欧拉筛(莫比乌斯)	83	矩阵行列式	95
欧拉降幂	83	线性基 2	96

线性基模板	96
高斯消元	96
组合数学	97
斯特林数	97
第一类斯特林数(无符号第一类)	97
第二类斯特林数	98
计算几何	99
jls	99
zyx 的计算几何	106
几何一些定理(或知识点?	114
多面体欧拉定理	114
单纯形体积	114
球缺体积公式	114
海伦公式	114
球体积交和并	114
自适应辛普森	115
计算几何全家桶	115
高精度	121
高精度 GCD	121
高精度乘法(FFT)	122
高精度乘法(乘单精)	123

高精度乘法(朴素)124
高精度减法
高精度加法124
高精度取模(对单精)124
高精度幂125
高精度平方根126
高精度进制转换128
高精度阶乘128
高精度除法(除单精)128
高精度除法(除高精)129
色速乘快速幂(快速幂爆 longlong129

STL

bitset

C++ bitset 用法

bitset

C++的 bitset 在 bitset 头文件中,它是一种类似数组的结构,它的每一个元素只能是 0 或 1 ,每个元素仅用 1 bit 空间。

bitset 数组与 vector 数组区别

bitset 声明数组:bitset<100> number[10]

vector 声明数组:vector number[10];

bitset<每个 bitset 元素的长度(没有占满前面全部自动补 0)> 元素 bitset 内置转化函数:可将 bitset 转化为 string,unsigned long,unsigned long long。

```
构造
                                                                           #include <bits/stdc++.h>
                                                                            #define 11 long long
                                                                           using namespace std;
                            //无参构造,长度为4,默认每一位为0
        bitset<4> bitset1;
                                                                            int t,n,m;
                                                                            char str[1010];
   bitset<8> bitset2(12);
                            //长度为8,二进制保存,前面用0补充
                                                                            bitset<500> number[30];
                                                                            int main() {
   string s = "100101";
                                                                                   ios::sync with stdio(false); cin.tie(∅); cout.tie(∅);
   bitset<10> bitset3(s);
                            //长度为10,前面用0补充
                                                                               //freopen("test.in","r",stdin);
                                                                               //freopen("test.out", "w", stdout);
   char s2[] = "10101";
                                                                                   scanf("%d",&t);
   bitset<13> bitset4(s2);
                             //长度为13,前面用0补充
                                                                                   while(t--)
   cout << bitset1 << endl;</pre>
                              //0000
                                                                                            scanf("%d %d",&n,&m);
   cout << bitset2 << endl;</pre>
                              //00001100
                                                                                            for(int i=0;i<m;i++)</pre>
   cout << bitset3 << endl;</pre>
                              //0000100101
   cout << bitset4 << endl;</pre>
                              //0000000010101
                                                                                                    scanf("%s",str);
                                                                                                    number[i]=bitset<500>(str);
函数
                                                                                            int len=1<<m,ans=m+1;</pre>
        bitset<8> foo ("10011011");
                                                                                            for(int i=1;i<len;i++)</pre>
                                          (count 函数用来求bitset 中1的
   cout << foo.count() << endl;</pre>
                                  //5
                                                                                                    int t=i,s=0;
位数,foo 中共有5个1
                                                                                                    bitset<500> num(0);
                                                                                                    for(int j=0; j<m&&t>0; j++)
                                          (size 函数用来求bitset 的大小,
   cout << foo.size() << endl;</pre>
                                  //8
一共有8位
                                                                                                            if(t&1)
   cout << foo.test(0) << endl;</pre>
                                  //true
                                             (test 函数用来查下标处的元素
                                                                                                                    num=num|number[j];
是0还是1,并返回false或true,此处foo[0]为1,返回true
                                                                                                                    S++;
   cout << foo.test(2) << endl; //false</pre>
                                              (同理, foo[2]为 0, 返回fa
Lse
                                                                                                            t>>=1;
   cout << foo.any() << endl;</pre>
                                //true
                                           (any 函数检查bitset 中是否有1
                                                                                                    if(num.count()==n) ans=min(ans,s);
   cout << foo.none() << endl;</pre>
                                             (none 函数检查bitset 中是否
                                //false
没有1
                                                                                            if(ans==m+1) printf("-1\n");
                                            (all 函数检查bitset 中是全部
                                                                                            else printf("%d\n",ans);
   cout << foo.all() << endl;</pre>
                                //false
为1
                                                                                   return 0;
2019-2020 ICPC Asia Taipei-Hsinchu Regional Contest (H
                                                                            windows 环境下的对拍
Η
                                                                           @echo off
                                                                            :loop
```

```
dataa.exe > data.txt
                                                                                srand((int)time(0));
        biaocheng.exe < data.txt > ac.txt
                                                                                int T = rand() % 100000;
        A.exe < data.txt > test.txt
                                                                                cout << T << endl;</pre>
        fc ac.txt test.txt
        if not errorlevel 1 goto loop
                                                                                for (int i = 0; i < T; i++){
pause
                                                                                    cout << rand() % 100;</pre>
goto loop
其中要改的部分(标红辽):
@echo off
                                                                            rand()似乎只有三万多,需要更大的数的话要乘一下
:loop
dataa.exe > data.txt
$\color{red}{biaocheng.exe}$ < data.txt > ac.txt
                                                                            #
$\color{red}{A.exe}$ < data.txt > test.txt
fc ac.txt test.txt
if not errorlevel 1 goto loop
                                                                            图论
pause
goto loop
                                                                            KM
                                                                            #include<bits/stdc++.h>
文件以.bat 作为后缀
                                                                            using namespace std;
                                                                            const int inf = 0x3f3f3f3f;
                                                                            const int maxN = 505;
将三个程序(数据生成文件(dataa),标程或暴力代码(biaocheng),要看的代码
(A))放在同一目录下,
                                                                            namespace KM {
                                                                                int mp[maxN][maxN], link_x[maxN], link_y[maxN], N;
记得加 freopen
                                                                                bool visx[maxN], visy[maxN];
                                                                                int que[maxN << 1], top, fail, pre[maxN];</pre>
随机数记得加 srand((int)time(0));
                                                                                int hx[maxN], hy[maxN], slk[maxN];
                                                                                inline int check(int i) {
                                                                                    visx[i] = true;
随机数生成 code
                                                                                    if (link_x[i]) {
                                                                                       que[fail++] = link_x[i];
#include <iostream>
                                                                                       return visy[link_x[i]] = true;
#include <cstdlib>
#include <ctime>
                                                                                    while (i) {
using namespace std;
                                                                                       link_x[i] = pre[i];
                                                                                       swap(i, link_y[pre[i]]);
int main(){
        freopen("data.txt", "w", stdout);
                                                                                    return 0;
```

```
void bfs(int S) {
       for (int i = 1; i <= N; i++) {</pre>
           slk[i] = inf;
           visx[i] = visy[i] = false;
                                                                                     void init(int n) {
                                                                                         N = n;
       top = 0;
                                                                                         top = fail = 0;
       fail = 1;
                                                                                         for (int i = 1; i <= N; i++) {
       que[0] = S;
                                                                                             link_x[i] = link_y[i] = visx[i] = visy[i] = pre[i] = hx[i] =
       visy[S] = true;
                                                                                 hy[i] = slk[i] = 0;
       while (true) {
                                                                                             for (int j = 1; j <= N; j++) {
           int d;
                                                                                                 mp[i][j] = 0;
           while (top < fail) {</pre>
               for (int i = 1, j = que[top++]; i <= N; i++) {</pre>
                                                                                     }
                   if (!visx[i] \&\& slk[i] >= (d = hx[i] + hy[j] - mp[i]
[j])) {
                       pre[i] = j;
                       if (d) slk[i] = d;
                                                                                 int main() {
                       else if (!check(i)) return;
                                                                                     ios::sync_with_stdio(false);
                                                                                     cin.tie(0);
                                                                                     cout.tie(∅);
           d = inf;
                                                                                     int n, m;
           for (int i = 1; i <= N; i++) {</pre>
                                                                                     cin >> n >> m;
               if (!visx[i] && d > slk[i]) d = slk[i];
                                                                                     KM::init(max(n, m));
                                                                                     for (int i = 1; i <= n; i++) {</pre>
           for (int i = 1; i <= N; i++) {</pre>
                                                                                         for (int j = 1; j <= m; j++) {
               if (visx[i]) hx[i] += d;
                                                                                             cin >> KM::mp[i][j];
               else slk[i] -= d;
               if (visy[i]) hy[i] -= d;
                                                                                     KM::prework();
           for (int i = 1; i <= N; i++) {
                                                                                     int ans = 0;
               if (!visx[i] && !slk[i] && !check(i)) return;
                                                                                     for (int i = 1; i <= KM::N; i++) KM::bfs(i);</pre>
                                                                                     for (int i = 1; i <= KM::N; i++) ans += KM::mp[i][KM::link_x[i]];</pre>
                                                                                 }
   void prework() {
       for (int i = 1; i <= N; i++) {
           link_x[i] = link_y[i] = 0;
                                                                                 prufer 序列
           visy[i] = false;
                                                                                 #include <iostream>
       for (int i = 1; i <= N; i++) {</pre>
                                                                                 #include <cstdio>
           hx[i] = 0;
                                                                                 #include <cstring>
           for (int j = 1; j <= N; j++) {
                                                                                 #include <algorithm>
               if (hx[i] < mp[i][j]) hx[i] = mp[i][j];</pre>
```

```
int main()
using namespace std;
const int N = 100010;
                                                                                  scanf("%d%d", &n, &m);
                                                                                  if (m == 1) tree2prufer();
int n, m;
                                                                                  else prufer2tree();
int f[N], d[N], p[N];
                                                                                  return 0;
void tree2prufer()
   for (int i = 1; i < n; i ++ )</pre>
                                                                               spfa 最短路及负环
       scanf("%d", &f[i]);
       d[f[i]] ++;
                                                                               #include<bits/stdc++.h>
                                                                               using namespace std;
                                                                               typedef long long 11;
   for (int i = 0, j = 1; i < n - 2; j ++)
                                                                               const int N = 1 \ll 20;
                                                                               struct edge {
       while (d[j]) j ++ ;
                                                                                  11 to, len;
       p[i ++] = f[j];
       while (i < n - 2 \&\& -- d[p[i - 1]] == 0 \&\& p[i - 1] < j) p[i ++ ]
= f[p[i - 1]];
                                                                               vector<edge> g[N];
                                                                               11 d[N], cnt[N], vis[N];
   for (int i = 0; i < n - 2; i ++ ) printf("%d ", p[i]);</pre>
                                                                               bool spfa(ll s, ll n) {
                                                                                  queue<int> que;
                                                                                  for (int i = 1; i <= n; i++) { //防止不连通, 全加进去
void prufer2tree()
                                                                                      que.push(i);
                                                                                      vis[i] = 1;
   for (int i = 1; i <= n - 2; i ++ )
                                                                                  while (!que.empty()) {
       scanf("%d", &p[i]);
                                                                                      11 p = que.front();
       d[p[i]] ++;
                                                                                      que.pop();
                                                                                      vis[p] = 0;
   p[n-1]=n;
                                                                                      for (auto x:g[p]) {
                                                                                          if (d[x.to] > d[p] + x.len) {
   for (int i = 1, j = 1; i < n; i ++, j ++)
                                                                                             d[x.to] = d[p] + x.len;
                                                                                             cnt[x.to] = cnt[p] + 1;
       while (d[j]) j ++;
                                                                                             if (!vis[x.to]) {
       f[j] = p[i];
                                                                                                 if (cnt[x.to] > n) return 0;
       while (i < n - 1 \&\& -- d[p[i]] == 0 \&\& p[i] < j) f[p[i]] = p[i +
                                                                                                 vis[x.to] = 1;
1], i ++ ;
                                                                                                 que.push(x.to);
                                                                                             }
                                                                                          }
   for (int i = 1; i <= n - 1; i ++ ) printf("%d ", f[i]);</pre>
```

```
return 1;
一些定理
Hall 定理: 若二分图存在完美匹配,且大小为 n,那么取任意 1≤k≤n,均满足 X 集选出 k
个不同的点,它们连向Y集的点的个数不小于k。
二分图匹配(HK 匈牙利匹配)
//大量使用了memset,但常数貌似很小? HDU6808 跑了998ms (限制5000ms),然而
这个代int main()不是HDU6808的
#include<bits/stdc++.h>
using namespace std;
const int maxn=505;// 最大点数
const int inf=0x3f3f3f3f;// 距离初始值
struct HK_Hungary{//这个板子从1开始,0点不能用,nx 为左边点数,ny 为右边点数
   int nx,ny;//左右顶点数量
   vector<int>bmap[maxn];
   int cx[maxn];//cx[i]表示左集合i 顶点所匹配的右集合的顶点序号
   int cy[maxn]; //cy[i]表示右集合i 顶点所匹配的左集合的顶点序号
   int dx[maxn];
   int dy[maxn];
   int dis;
   bool bmask[maxn];
   void init(int a,int b){
      nx=a, ny=b;
      for(int i=0;i<=nx;i++){</pre>
         bmap[i].clear();
   void add_edge(int u,int v){
      bmap[u].push back(v);
```

for(int i=1;i<=nx;i++){//cx[i]表示左集合i 顶点所匹配的右集合的顶点

bool searchpath(){//寻找 增广路径

memset(dx,-1,sizeof(dx));

memset(dy,-1,sizeof(dy));

queue<int>Q;

dis=inf;

序号

```
if(cx[i]==-1){//将未遍历的节点 入队 并初始化次节点距离为0
          0.push(i);
          dx[i]=0;
   }//广度搜索增广路径
   while(!Q.empty()){
      int u=Q.front();
      Q.pop();
      if(dx[u]>dis) break;//取右侧节点
      for(int i=0;i<bmap[u].size();i++){</pre>
          int v=bmap[u][i];//右侧节点的增广路径的距离
          if(dy[v]==-1){
             dy[v]=dx[u]+1;//v 对应的距离 为 u 对应距离加 1
             if(cy[v]==-1)dis=dy[v];
             else{
                 dx[cy[v]]=dy[v]+1;
                 Q.push(cy[v]);
   return dis!=inf;
int findpath(int u){//寻找路径 深度搜索
   for(int i=0;i<bmap[u].size();i++){</pre>
      int v=bmap[u][i];//如果该点没有被遍历过 并且距离为上一节点+1
      if(!bmask[v]&&dy[v]==dx[u]+1){//对该点染色
          bmask[v]=1;
          if(cy[v]!=-1&&dy[v]==dis)continue;
          if(cy[v]==-1||findpath(cy[v])){
             cy[v]=u;cx[u]=v;
             return 1;
   return 0;
int MaxMatch(){//得到最大匹配的数目
   int res=0;
   memset(cx,-1,sizeof(cx));
   memset(cy,-1,sizeof(cy));
   while(searchpath()){
      memset(bmask,0,sizeof(bmask));
      for(int i=1;i<=nx;i++){</pre>
          if(cx[i]==-1){
```

```
res+=findpath(i);
            }
         }
      return res;
}HK;
int main(){
  int nn,n,m;
   cin>>nn;
   while(nn--){
      scanf("%d%d",&n,&m);
      HK.init(n,m);//左端点和右端点数量
      for(int i=1;i<=n;i++){</pre>
         int snum;
         cin>>snum;
         int v;
         for(int j=1;j<=snum;j++){</pre>
            cin>>v;
            HK.add_edge(i,v);//连边
      cout<<HK.MaxMatch()<<endl;//求最大匹配
   return 0;
带花树
00000000
03000 n 0000000000 i 000000 '0000 i 5000'000t00
#include<bits/stdc++.h>
using namespace std;
#define I inline int
#define V inline void
#define FOR(i,a,b) for(int i=a;i<=b;i++)</pre>
#define REP(u) for(int i=h[u],v;v=e[i].t,i;i=e[i].n)
```

```
const int N=1e3+1, M=1e5+1;
queue<int>q;
int n,m,tot,qwq,ans;
int h[N],lk[N],tag[N],fa[N],pre[N],dfn[N];
struct edge{int t,n;}e[M];
V link(int x,int y){lk[x]=y,lk[y]=x;}
V add_edge(int x,int y){
        if(!lk[x]&&!lk[y])link(x,y),ans++;
        e[++tot]=(edge)\{y,h[x]\},h[x]=tot;
        e[++tot]=(edge)\{x,h[y]\},h[y]=tot;
V rev(int x){if(x)rev(x[pre][lk]),link(x,pre[x]);}
I find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
I lca(int x,int y){
        for(qwq++;;x=x[1k][pre],swap(x,y))
                 if(dfn[x=find(x)]==qwq)return x;
                 else if(x)dfn[x]=qwq;
V shrink(int x,int y,int p){
        for(;find(x)!=p;x=pre[y]){
                 pre[x]=y,y=lk[x],fa[x]=fa[y]=p;
                 if(tag[y]==2)tag[y]=1,q.push(y);
I blossom(int u){
        FOR(i,1,n)tag[i]=pre[i]=0,fa[i]=i;
        tag[u]=1,q=queue<int>(),q.push(u);
        for(int p;!q.empty();q.pop())REP(u=q.front())
                if(tag[v]==1)
                         p=lca(u,v), shrink(u,v,p), shrink(v,u,p);
                 else if(!tag[v]){
                         pre[v]=u,tag[v]=2;
                         if(!lk[v])return rev(v),1;
                         else tag[lk[v]]=1,q.push(lk[v]);
        return 0:
int main(){
        scanf("%d%d",&n,&m);
        for(int x,y;m--;add edge(x,y))scanf("%d%d",&x,&y);
        FOR(i,1,n) ans +=! lk[i] &&blossom(i);
        cout<<ans<<'\n';</pre>
        FOR(i,1,n)cout<<lk[i]<<' ';
        return 0:
```

```
queue<int> q;
                                                                                int aux time = -1;
// graph
template <typename T>
class graph {
                                                                                  aux time++;
public:
 struct edge {
                                                                                  while (true) {
                                                                                   if (v != -1) {
   int from;
   int to:
   T cost;
                                                                                       return v;
 };
 vector<edge> edges;
 vector<vector<int> > g;
                                                                                       v = -1;
 int n;
 graph(int _n) : n(_n) { g.resize(n); }
                                                                                     } else {
 virtual int add(int from, int to, T cost) = 0;
};
// undirectedgraph
                                                                                   swap(v, u);
template <typename T>
                                                                                }; // Lca
class undirectedgraph : public graph<T> {
public:
 using graph<T>::edges;
 using graph<T>::g;
 using graph<T>::n;
                                                                                   parent[v] = u;
                                                                                   u = match[v];
 undirectedgraph(int _n) : graph<T>(_n) {}
                                                                                     label[u] = 0;
 int add(int from, int to, T cost = 1) {
   assert(0 <= from && from < n && 0 <= to && to < n);
                                                                                     q.push(u);
   int id = (int)edges.size();
   g[from].push back(id);
   g[to].push_back(id);
                                                                                   v = parent[u];
   edges.push back({from, to, cost});
                                                                                }; // blossom
   return id;
};
                                                                                  while (v != -1) {
// blossom / find max unweighted matching
template <typename T>
                                                                                   match[v] = pv;
vector<int> find_max_unweighted_matching(const undirectedgraph<T> &g) {
 std::mt19937 rng(chrono::steady clock::now().time since epoch().count
                                                                                   match[pv] = v;
                                                                                   v = next v;
 vector\langle int \rangle match(g.n, -1); // b \phi \phi
                                                                                }; // augment
 vector<int> aux(g.n, -1);
                               // " 00000
 vector<int> label(g.n);
                               // "o" or "i"
 vector<int> orig(g.n);
                                                                                auto bfs = [&](int root) {
                               // 0000
```

带花树 2

```
vector<int> parent(g.n, -1); // ♦♦♦Ж♦
auto lca = [&](int v, int u) {
    if (aux[v] == aux time) { // <math>\partial \tilde{u} \partial \tilde{u} \partial \tilde{u} \partial \tilde{g} \partial X \partial \partial \partial LCA
    aux[v] = aux_time;
    if (match[v] == -1) {
      auto blossom = [&](int v, int u, int a) {
 while (orig[v] != a) {
   auto augment = [&](int v) {
   int pv = parent[v];
   int next v = match[pv];
```

```
fill(label.begin(), label.end(), -1);
                                                                                  for (auto id : g.g[i]) {
  iota(orig.begin(), orig.end(), 0);
                                                                                    auto &e = g.edges[id];
  while (!q.empty()) {
                                                                                    int to = e.from ^ e.to ^ i;
   q.pop();
                                                                                    if (match[to] == -1) {
                                                                                     match[i] = to;
  q.push(root);
                                                                                     match[to] = i;
  // ��'���Ï "o", �����"0"����"o", "1"����"i"
                                                                                     break;
  label[root] = 0;
  while (!q.empty()) {
   int v = q.front();
   q.pop();
   for (int id : g.g[v]) {
                                                                            }; // greedy
     auto &e = g.edges[id];
     int u = e.from ^ e.to ^ v;
                                                                            // h @ @ ' @ @ @ @ @ @ @ @
     if (label[u] == -1) { // \partial \tilde{u} \partial \delta \partial \tilde{o} \partial
                                                                            greedy();
       label[u] = 1;
                           // @@@ "i"
                                                                            parent[u] = v;
                                                                            for (int i = 0; i < g.n; i++) {</pre>
       if (match[u] == -1) \{ // \partial \tilde{u} \partial \delta \beta \partial \partial \phi \partial \phi \}
                                                                              if (match[i] == -1) {
                             // 40000000000
                                                                                bfs(i);
         augment(u);
         return true;
       return match;
       label[match[u]] = 0;
       q.push(match[u]);
       continue;
     } else if (label[u] == 0 && orig[v] != orig[u]) {
                                                                           强连通 (kosaraju)
       // Oũ O O V O Ï"o" O O O O O O O O O
       int a = lca(orig[v], orig[u]);
                                                                          #include <bits/stdc++.h>
       // 00LCA 2000000
                                                                          using namespace std;
       blossom(u, v, a);
                                                                          struct SCC {
       blossom(v, u, a);
                                                                              static const int MAXV = 100000;
                                                                              int V;
                                                                              vector<int> g[MAXV], rg[MAXV], vs;
                                                                              bool used[MAXV];
  return false;
                                                                              int cmp[MAXV];
}; // bfs
                                                                              void add_edge(int from, int to) {
auto greedy = [&]() {
                                                                                  g[from].push back(to);
 vector<int> order(g.n);
                                                                                  rg[to].push_back(from);
  // @@@@@@ order
  iota(order.begin(), order.end(), 0);
  shuffle(order.begin(), order.end(), rng);
                                                                              void dfs(int v) {
                                                                                  used[v] = 1;
  for (int i = 0; i < g[v].size(); i++) {</pre>
  for (int i : order) {
                                                                                     if (!used[g[v][i]]) dfs(g[v][i]);
   if (match[i] == -1) {
```

```
vs.push_back(v);
   void rdfs(int v, int k) {
       used[v] = 1;
       cmp[v] = k;
       for (int i = 0; i < rg[v].size(); i++) {</pre>
           if (!used[rg[v][i]]) rdfs(rg[v][i], k);
   int solve() {
       memset(used, 0, sizeof(used));
       vs.clear();
       for (int v = 1; v <= V; v++) {</pre>
           if (!used[v]) dfs(v);
       memset(used, 0, sizeof(used));
       int k = 0;
       for (int i = (int)vs.size() - 1; i >= 0; i--) {
           if (!used[vs[i]]) rdfs(vs[i], ++k);
       return k;
   void init(int n) {
       V = n;
       vs.clear();
       for (int i = 0; i < MAXV; i++) {</pre>
           g[i].clear();
           rg[i].clear();
           used[i] = 0;
           cmp[i] = 0;
} scc;
// 记得调用 init()
强连通(tarjan 无 vector)
#include <bits/stdc++.h>
```

```
using namespace std;
struct SCC {
   static const int MAXN = 5000;
   static const int MAXM = 2000000;
   int dfs_clock, edge_cnt = 1, scc_cnt;
   int head[MAXN];
   int dfn[MAXN], lowlink[MAXN];
   int sccno[MAXN];
   stack<int> s;
   struct edge {
       int v, next;
   } e[MAXM];
   void add_edge(int u, int v) {
       e[edge cnt].v = v;
       e[edge_cnt].next = head[u];
       head[u] = edge_cnt++;
   void tarjan(int u) {
       int v;
       dfn[u] = lowlink[u] = ++dfs_clock; //每次dfs, u 的次序号增加1
                                        //将u入栈
       s.push(u);
       for (int i = head[u]; i != -1; i = e[i].next) //访问从 u 出发的边
          v = e[i].v;
          if (!dfn[v]) //如果 v 没被处理过
              tarjan(v); // dfs(v)
              lowlink[u] = min(lowlink[u], lowlink[v]);
          } else if (!sccno[v])
              lowlink[u] = min(lowlink[u], dfn[v]);
       if (dfn[u] == lowlink[u]) {
          scc_cnt++;
          do {
              v = s.top();
              s.pop();
              sccno[v] = scc_cnt;
          } while (u != v);
   }
   int find_scc(int n) {
```

```
for (int i = 1; i <= n; i++)</pre>
                                                                                            sccno[x] = scc cnt;
           if (!dfn[i]) tarjan(i);
                                                                                            if (x == u) break;
       return scc_cnt;
                                                                                     }
                                                                                 }
    void init() {
                                                                                 void solve(int n) {
       scc_cnt = dfs_clock = 0;
                                                                                     dfs clock = scc cnt = 0;
       edge cnt = 1; //不用初始化 e 数组,省时间
                                                                                     memset(sccno, 0, sizeof(sccno));
       while (!s.empty()) s.pop();
                                                                                     memset(dfn, 0, sizeof(dfn));
       memset(head, -1, sizeof(head));
       memset(sccno, 0, sizeof(sccno));
                                                                                     memset(lowlink, 0, sizeof(lowlink));
       memset(dfn, 0, sizeof(dfn));
                                                                                     for (int i = 1; i <= n; i++) {</pre>
       memset(lowlink, 0, sizeof(lowlink));
                                                                                        if (!dfn[i]) dfs(i);
} scc;
                                                                             } scc;
                                                                             // scc cnt 为SCC 计数器,sccno[i]为i 所在SCC 的编号
强连通 (tarjan)
                                                                             // vector<int> g[MAXN] 中加边
#include <bits/stdc++.h>
                                                                             //之后再补充 init()
using namespace std;
struct SCC {
                                                                             拓扑排序
    static const int MAXN = 100000;
    vector<int> g[MAXN];
                                                                             #include <bits/stdc++.h>
    int dfn[MAXN], lowlink[MAXN], sccno[MAXN], dfs_clock, scc_cnt;
                                                                             using namespace std;
    stack<int> S;
                                                                             const int MAXN = 100000;
    void dfs(int u) {
                                                                             int c[MAXN];
       dfn[u] = lowlink[u] = ++dfs_clock;
                                                                             int topo[MAXN], t, V;
       S.push(u);
                                                                             vector<int> g[MAXN];
       for (int i = 0; i < g[u].size(); i++) {</pre>
           int v = g[u][i];
                                                                             bool dfs(int u) {
           if (!dfn[v]) {
                                                                                 c[u] = -1;
              dfs(v);
                                                                                 for (int i = 0; i < g[u].size(); i++) {</pre>
              lowlink[u] = min(lowlink[u], lowlink[v]);
                                                                                     int v = g[u][i];
           } else if (!sccno[v]) {
                                                                                     if (c[v] < 0)
              lowlink[u] = min(lowlink[u], dfn[v]);
                                                                                        return false;
                                                                                     else if (!c[v] && !dfs(v))
                                                                                        return false;
       if (lowlink[u] == dfn[u]) {
           ++scc_cnt;
                                                                                 c[u] = 1;
           for (;;) {
                                                                                 topo[t--] = u;
              int x = S.top();
                                                                                 return true;
              S.pop();
```

```
bool toposort(int n) {
   V = n:
   t = n;
   memset(c, 0, sizeof(c));
   for (int u = 1; u <= V; u++)</pre>
       if (!c[u] && !dfs(u)) return false;
   return true;
数链剖分
11 fa[N], son[N], dep[N], siz[N], dfn[N], rnk[N], top[N];
11 dfscnt;
vector<11> g[N];
11 tree[N << 1];</pre>
11 lazy[N << 1];</pre>
void dfs1(ll u, ll f, ll d) {
   son[u] = -1;
   siz[u] = 1;
   fa[u] = f;
   dep[u] = d;
   for (auto v:g[u]) {
       if (v == f) continue;
       dfs1(v, u, d + 1);
       siz[u] += siz[v];
       if (son[u] == -1 \mid | siz[v] > siz[son[u]]) son[u] = v;
void dfs2(ll u, ll t) {
   dfn[u] = ++dfscnt;
   rnk[dfscnt] = u;
   top[u] = t;
   if (son[u] == -1) return;
   dfs2(son[u], t);
   for (auto v:g[u]) {
       if (v == son[u] || v == fa[u]) continue;
       dfs2(v, v);
ll lca(ll a, ll b) {
```

```
while (top[a] != top[b]) {
        if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
        a = fa[top[a]];
    return dep[a] < dep[b] ? a : b;
void init() {
    for (ll i = 0; i < N; i++) g[i].clear();</pre>
    for (11 i = 0; i < (N << 1); i++) {
       tree[i] = 0;
       lazv[i] = 0;
    dfscnt = 0;
void pushdown(ll k, ll l, ll r) {
    if (k >= N \mid | lazy[k] == 0) return;
    11 len = (r - 1 + 1) / 2;
    tree[k << 1] = tree[k << 1] + len * lazy[k];
    tree[k << 1 | 1] = tree[k << 1 | 1] + len * lazy[k];
    lazy[k \ll 1] = lazy[k \ll 1] + lazy[k];
    lazy[k \ll 1 \mid 1] = lazy[k \ll 1 \mid 1] + lazy[k];
    lazy[k] = 0;
}
11 merge range(ll a, ll b) {
    11 \text{ ans} = a + b;
    return ans;
}
void change_range(ll k, ll l, ll r, ll ql, ll qr, ll x) {
    if (r < ql || qr < l)return;</pre>
    if (ql <= 1 && r <= qr) {
        tree[k] = tree[k] + x * (r - 1 + 1);
        lazv[k] = lazv[k] + x;
        return;
    pushdown(k, 1, r);
    11 \text{ mid} = (1 + r) >> 1;
    change range(k \ll 1, 1, mid, q1, qr, x);
    change_range(k \ll 1 | 1, mid + 1, r, ql, qr, x);
    tree[k] = merge range(tree[k << 1], tree[k << 1 | 1]);
}
```

```
11 query range(ll k, ll l, ll r, ll ql, ll qr) {
   if (r < ql || qr < 1)return 0;</pre>
   if (ql <= 1 && r <= qr) {
       return tree[k];
   pushdown(k, l, r);
   11 \text{ mid} = (1 + r) >> 1;
   11 lq = query range(k << 1, 1, mid, ql, qr);</pre>
   ll rq = query_range(k \ll 1 | 1, mid + 1, r, ql, qr);
   return merge range(lq, rq);
11 query_path(ll a, ll b) {
   11 \text{ sum} = 0;
   while (top[a] != top[b]) {
       if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
       sum = sum + query_range(1, 1, N, dfn[top[a]], dfn[a]);
       //dfn[top[a]]~dfn[a]
       a = fa[top[a]];
   if (dep[a] > dep[b]) swap(a, b);
   //点权
   sum = sum + query range(1, 1, N, dfn[a], dfn[b]);
   //if (a != b) sum = sum + query range(1, 1, N, dfn[a] + 1, dfn[b]);
   //dfn[a]\sim dfn[b],x
   return sum;
void change_path(ll a, ll b, ll x) {
   while (top[a] != top[b]) {
       if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
       change range(1, 1, N, dfn[top[a]], dfn[a], x);
       //dfn[top[a]]~dfn[a]
       a = fa[top[a]];
   if (dep[a] > dep[b]) swap(a, b);
   //点权
   change_range(1, 1, N, dfn[a], dfn[b], x);
   //边权
   //if (a != b) change_range(1, 1, N, dfn[a] + 1, dfn[b], x);
   //dfn[a]\sim dfn[b],x
```

最大流

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
struct Edge {
   11 from, to, cap, flow;
    Edge(ll\ a, ll\ b, ll\ c, ll\ d): from(a), to(b), cap(c), flow(d) {}
};
struct Dinic {
    static const ll maxn = 10000;
    static const 11 inf = 0x3f3f3f3f3f3f3f3f3f3;
    11 N, M, S, T;
    vector<Edge> edges;
    vector<11> G[maxn];
    bool vis[maxn];
    11 d[maxn];
    11 cur[maxn];
    void AddEdge(ll from, ll to, ll cap) {
       edges.push back(Edge(from, to, cap, 0));
       edges.push_back(Edge(to, from, 0, 0));
       M = edges.size();
       G[from].push back(M - 2);
       G[to].push back(M - 1);
    bool BFS() {
       memset(vis, 0, sizeof(vis));
       queue<11> Q;
       Q.push(S);
       d[S] = 0;
       vis[S] = 1;
       while (!O.empty()) {
           11 x = Q.front();
           Q.pop();
           for (ll i = 0; i < G[x].size(); i++) {</pre>
               Edge& e = edges[G[x][i]];
               if (!vis[e.to] && e.cap > e.flow) {
                  vis[e.to] = 1;
                  d[e.to] = d[x] + 1;
                  Q.push(e.to);
               }
```

```
//最大密度子图
      return vis[T];
                                                                  //01 分数规划
                                                                   //addedge(S,V,m), addedge(E,1), addedge(V,T,2*g-deg(v)+m)
                                                                  //h(q)=n*m-maxflow(S,T)
   11 DFS(11 x, 11 a) {
      if (x == T | | a == 0) return a;
      11 flow = 0, f;
      for (11& i = cur[x]; i < G[x].size(); i++) {</pre>
                                                                   最大流(double)
         Edge& e = edges[G[x][i]];
         if (d[x] + 1 == d[e.to] \&\&
                                                                   #include <iostream>
            (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
                                                                   #include <cstring>
            e.flow += f;
                                                                   #include <algorithm>
            edges[G[x][i] ^ 1].flow -= f;
            flow += f;
                                                                   using namespace std;
            a -= f;
            if (a == 0) break;
                                                                   struct Dinic {
                                                                          static constexpr int N = 10010, M = 100010, INF = 1e8;
                                                                          static constexpr double eps = 1e-8;
      return flow;
                                                                          int n, m, S, T;
                                                                          int S, T;
                                                                          int h[N], e[M], ne[M], idx;
   11 Maxflow(11 S, 11 T) {
                                                                          double f[M];
      this->S = S, this->T = T;
                                                                          11 flow = 0;
                                                                   while (BFS()) {
         memset(cur, 0, sizeof(cur));
                                                                          void AddEdge(int a, int b, double c)
         flow += DFS(S, inf);
                                                                             e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
      return flow;
                                                                             e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx ++ ;
} MF;
                                                                          bool bfs()
//有源汇上下界最大流, 跑完可行流后, s-t 的最大流即为答案
                                                                             int hh = 0, tt = 0;
//有源汇上下届最小流,不连无穷边,s-t 跑最大流,再加上 t-s 无穷边,再跑最大流,
                                                                             memset(d, -1, sizeof d);
无穷边流量为答案
                                                                             q[0] = S, d[S] = 0, cur[S] = h[S];
                                                                             while (hh <= tt)</pre>
//最大权闭合子图
//构造一个新的流网络,建一个源点 s 和汇点 t,从 s 向原图中所有点权为正数的点建一
                                                                                int t = q[hh ++ ];
                                                                                for (int i = h[t]; ~i; i = ne[i])
条容量为点权的边,
//从点权为负数的点向 t 建一条容量为点权绝对值的边,原图中各点建的边都建成容量为
                                                                                   int ver = e[i];
                                                                                   if (d[ver] == -1 && f[i] > 0)
//然后求从s到t的最小割,再用所有点权为正的权值之和减去最小割,就是我们要求
的最大权值和了。
                                                                                       d[ver] = d[t] + 1;
```

```
if (ver == T) return true;
                       q[ ++ tt] = ver;
               }
            return false;
        double find(int u, double limit)
            if (u == T) return limit;
            double flow = 0;
            for (int i = cur[u]; ~i && flow < limit; i = ne[i])</pre>
                cur[u] = i;
                int ver = e[i];
               if (d[ver] == d[u] + 1 && f[i] > 0)
                   double t = find(ver, min(f[i], limit - flow));
                   if (t < eps) d[ver] = -1;
                   f[i] -= t, f[i ^ 1] += t, flow += t;
               }
            return flow;
        double Maxflow(int S, int T)
                 this->S = S, this->T = T;
            double r = 0, flow;
            while (bfs()) while (flow = find(S, INF)) r += flow;
            return r;
        void init() ///////
                 memset(h, -1, sizeof h);
                 idx = 0;
} MF;
// ? • • init
```

cur[ver] = h[ver];

最小费用最大流

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
struct Edge {
   11 from, to, cap, flow, cost;
   Edge(ll u, ll v, ll c, ll f, ll w):from(u), to(v), cap(c), flow(f),
cost(w) {}
};
struct MCMF {
   static const 11 maxn = 6000;
   static const 11 INF = 0x3f3f3f3f3f3f3f3f3;
   11 n, m;
   vector<Edge> edges;
   vector<11> G[maxn];
   11 inq[maxn];
   11 d[maxn];
   11 p[maxn];
   11 a[maxn];
   void init(ll n) {
       this->n = n;
       for (ll i = 1; i <= n; i++) G[i].clear();</pre>
       edges.clear();
   void add_edge(ll from, ll to, ll cap, ll cost) {
       from++, to++; // 原板子无法使用 0 点, 故修改
       edges.push back(Edge(from, to, cap, 0, cost));
       edges.push back(Edge(to, from, 0, 0, -cost));
       m = edges.size();
       G[from].push back(m - 2);
       G[to].push_back(m - 1);
   bool BellmanFord(ll s, ll t, ll& flow, ll& cost) {
       for (ll i = 1; i <= n; ++i) d[i] = INF;
       memset(inq, 0, sizeof(inq));
       d[s] = 0, inq[s] = 1, p[s] = 0, a[s] = INF;
       queue<11> Q;
       O.push(s);
       while (!Q.empty()) {
```

```
11 u = Q.front();
          Q.pop();
          inq[u] = 0;
          for (ll i = 0; i < G[u].size(); ++i) {</pre>
             Edge& e = edges[G[u][i]];
             if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
                 d[e.to] = d[u] + e.cost;
                 p[e.to] = G[u][i];
                 a[e.to] = min(a[u], e.cap - e.flow);
                 if (!inq[e.to]) {
                    Q.push(e.to);
                    inq[e.to] = 1;
          }
      if (d[t] == INF) return false;
      flow += a[t];
      cost += (11)d[t] * (11)a[t];
      for (ll u = t; u != s; u = edges[p[u]].from) {
          edges[p[u]].flow += a[t];
          edges[p[u] ^ 1].flow -= a[t];
      return true;
   //需要保证初始网络中没有负权圈
   11 MincostMaxflow(11 s, 11 t, 11& cost) {
      S++,t++;//原板子无法使用 0 点,故修改
      11 flow = 0;
      cost = 0:
      while (BellmanFord(s, t, flow, cost));
      return flow;
\} mcmf; // 若固定流量 k,增广时在 fLow+a>=k 的时候只增广 k-fLow 单位的流量,
然后终止程序
//下标从 0 开始
```

最小路径覆盖

对于有向无环图 (DAG)

定义: 在一个有向图中, 找出最少的路径, 使得这些路径经过了所有的点。

最小路径覆盖分为最小不相交路径覆盖和最小可相交路径覆盖。

最小不相交路径覆盖:每一条路径经过的顶点各不相同。

最小可相交路径覆盖:每一条路径经过的顶点可以相同。

DAG 的最小不相交路径覆盖:

把原图的每个点 v 拆成 v_x 和 v_y 两个点,如果有一条有向边 $A \rightarrow B$,就加边 $A_x \rightarrow B_y$,这样就得到一个二分图,最小路径覆盖=原图的节点数-新图的最大匹配数

DAG 的最小可相交路径覆盖:

先用 floyd 求出原图的传递闭包,即若 a 到 b 有路径,则加边 $a \rightarrow b$,转化为最小不相交路径覆盖问题

最近公共祖先 (倍增)

```
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int MAX = 600000;
struct edge {
   int t, nex;
} e[MAX << 1];
int head[MAX], tot;
int depth[MAX], fa[MAX][22], lg[MAX];
void add_edge(int x, int y) {
   e[++tot].t = y;
   e[tot].nex = head[x];
   head[x] = tot;
   e[++tot].t = x;
   e[tot].nex = head[y];
   head[y] = tot;
void dfs(int now, int fath) {
   fa[now][0] = fath;
   depth[now] = depth[fath] + 1;
```

```
for (int i = 1; i <= lg[depth[now]]; ++i)</pre>
       fa[now][i] = fa[fa[now][i - 1]][i - 1];
   for (int i = head[now]; i; i = e[i].nex)
       if (e[i].t != fath) dfs(e[i].t, now);
int lca(int x, int y) {
   if (depth[x] < depth[y]) swap(x, y);</pre>
   while (depth[x] > depth[y]) x = fa[x][lg[depth[x] - depth[y]] - 1];
   if (x == y) return x;
   for (int k = \lg[depth[x]] - 1; k \ge 0; --k)
       if (fa[x][k] != fa[y][k]) x = fa[x][k], y = fa[y][k];
   return fa[x][0];
void init(int n, int root) {
   for (int i = 1; i <= n; ++i) lg[i] = lg[i - 1] + (1 << lg[i - 1] ==
i);
   dfs(root, ∅);
最近公共祖先(线段树)
#include <bits/stdc++.h>
using namespace std;
int n, m, root;
const int MAX_N = 500005;
const int MAX = 1 \ll 20;
vector<int> g[MAX N];
vector<int> vs;
pair<int, int> tree[MAX * 2 + 10];
int fir[MAX_N];
int fa[MAX N];
int dep[MAX_N];
void dfs(int k, int p, int d) {
   fa[k] = p;
   dep[k] = d;
   vs.push_back(k);
   for (int i = 0; i < g[k].size(); i++) {</pre>
       if (g[k][i] != p) {
           dfs(g[k][i], k, d + 1);
           vs.push_back(k);
   }
```

```
void build(int k) {
   if (k >= MAX) return;
   build(k << 1);
   build(k << 1 | 1);
   tree[k] = min(tree[k << 1], tree[k << 1 | 1]);
pair<int, int> query(int k, int s, int e, int l, int r) {
   if (e < 1 || r < s) return pair<int, int>(INT_MAX, 0);
   if (1 <= s && e <= r) return tree[k];</pre>
   return min(query(k \ll 1, s, (s + e) \gg 1, l, r),
              query(k << 1 | 1, ((s + e) >> 1) + 1, e, l, r));
void init() {
   dfs(root, root, ∅);
   for (int i = 0; i < MAX * 2 + 10; i++) tree[i] = pair<int, int>(INT M
AX, 0);
   for (int i = MAX; i < MAX + vs.size(); i++)</pre>
       tree[i] = pair<int, int>(dep[vs[i - MAX]], vs[i - MAX]);
    for (int i = 0; i < vs.size(); i++) {</pre>
       if (fir[vs[i]] == 0) fir[vs[i]] = i + 1;
   build(1);
int lca(int a, int b) {
   return query(1, 1, MAX, min(fir[a], fir[b]), max(fir[a], fir[b])).se
cond;
int main() {
   scanf("%d%d%d", &n, &m, &root);
   for (int i = 1; i < n; i++) {
       int a, b;
       scanf("%d%d", &a, &b);
       g[a].push_back(b);
       g[b].push_back(a);
   init();
   for (int i = 1; i <= m; i++) {</pre>
       int a, b;
       scanf("%d%d", &a, &b);
       printf("%d\n", lca(a, b));
}
```

有源汇上下界最大小流 #include <bits/stdc++.h> using namespace std:

```
using namespace std;
typedef long long 11;
struct Edge {
   11 from, to, cap, flow, mn;
   Edge(11 a, 11 b, 11 c, 11 d, 11 e) : from(a), to(b), cap(c), flow(d),
mn(e) {}
};
11 n, m;
struct Dinic {
   static const ll maxn = 50010; // 点的大小,记得改
   static const 11 inf = 0x3f3f3f3f3f3f3f3f3f3f;
   11 N, M, S, T;
   vector<Edge> edges;
   vector<11> G[maxn];
   bool vis[maxn];
   11 d[maxn];
   11 cur[maxn];
   void AddEdge(ll from, ll to, ll cap, ll c) {
       edges.push back(Edge(from, to, cap, 0, c));
       edges.push_back(Edge(to, from, 0, 0, c));
       M = edges.size();
       G[from].push_back(M - 2);
       G[to].push back(M - 1);
   }
   bool BFS() {
       memset(vis, 0, sizeof(vis));
       queue<11> Q;
       Q.push(S);
       d[S] = 0;
       vis[S] = 1;
       while (!Q.empty()) {
          11 x = Q.front();
          Q.pop();
           for (ll i = 0; i < G[x].size(); i++) {</pre>
              Edge& e = edges[G[x][i]];
              if (!vis[e.to] && e.cap > e.flow) {
                  vis[e.to] = 1;
```

```
d[e.to] = d[x] + 1;
               Q.push(e.to);
       }
   return vis[T];
ll DFS(ll x, ll a) {
   if (x == T || a == 0) return a;
   11 flow = 0, f;
   for (11& i = cur[x]; i < G[x].size(); i++) {</pre>
       Edge& e = edges[G[x][i]];
       if (d[x] + 1 == d[e.to] \&\&
           (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
           e.flow += f;
           edges[G[x][i] ^ 1].flow -= f;
           flow += f;
           a -= f;
           if (a == 0) break;
   return flow;
void deleteEdge(ll u, ll v) {
   11 siz = edges.size();
   for(ll i = 0; i < siz; ++ i) {</pre>
       if(edges[i].from == u && edges[i].to == v) {
           edges[i].cap = edges[i].flow = 0;
           edges[i ^ 1].cap = edges[i ^ 1].flow = 0;
           break;
}
11 getValue() {
   return edges[2 * m].flow;
11 Maxflow(11 S, 11 T) {
   this->S = S, this->T = T;
   11 flow = 0;
   while (BFS()) {
```

```
memset(cur, 0, sizeof(cur));
          flow += DFS(S, inf);
       return flow;
} MF;
int main() {
   11 s, t;
   cin >> n >> m >> s >> t;
 // n 个点, m 条边, 给的源点汇点
   ll mp[50010] = {0}; // 点的大小,记得改
   for(ll i = 1; i <= m; ++ i) {</pre>
       11 a, b, c, d; // 从 a 到 b 有一条下界 c 上界 d 的边
       cin >> a >> b >> c >> d;
       mp[b] += c;
       mp[a] -= c;
       MF.AddEdge(a, b, d - c, c);
   MF.AddEdge(t, s, 1e18, 0); //
   11 tot = 0;
   for(ll i = 1; i <= n; ++ i) {</pre>
       if(mp[i] > 0) {
          tot += mp[i];
          MF.AddEdge(0, i , mp[i], 0);
       else {
           MF.AddEdge(i, n + 1, -mp[i], 0);
   if( MF.Maxflow(0, n + 1) != tot) {
       cout << "No Solution" << endl;</pre>
   else {
       ll res = MF.getValue(); // 从t到s边的流量
       MF.deleteEdge(t, s);
     //cout << res + MF.Maxflow(s, t) << endl; // 最大流
       cout << res - MF.Maxflow(t, s) << endl; // 最小流
   return 0;
```

```
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define x first
#define y second
using namespace std;
typedef pair<double, double> PDD;
const int N = 110;
const double INF = 1e8;
int n, m;
PDD q[N];
bool g[N][N];
double d[N][N], bd[N][N];
int pre[N], bpre[N];
int dfn[N], low[N], ts, stk[N], top;
int id[N], cnt;
bool st[N], ins[N];
void dfs(int u) {
   st[u] = true;
   for (int i = 1; i <= n; i++)</pre>
       if (g[u][i] && !st[i])
           dfs(i);
bool check con() {
   memset(st, 0, sizeof st);
   dfs(1);
   for (int i = 1; i <= n; i++)</pre>
       if (!st[i])
           return false;
   return true;
}
double get_dist(int a, int b) {
   double dx = q[a].x - q[b].x;
```

朱刘算法

```
double dy = q[a].y - q[b].y;
   return sqrt(dx * dx + dy * dy);
void tarjan(int u) {
   dfn[u] = low[u] = ++ts;
   stk[++top] = u, ins[u] = true;
   int j = pre[u];
   if (!dfn[j]) {
       tarjan(j);
       low[u] = min(low[u], low[j]);
   } else if (ins[j]) low[u] = min(low[u], dfn[j]);
    if (low[u] == dfn[u]) \{ \\
       int y;
       ++cnt;
       do {
           y = stk[top--], ins[y] = false, id[y] = cnt;
       } while (y != u);
double work() {
   double res = 0;
   for (int i = 1; i <= n; i++)</pre>
       for (int j = 1; j <= n; j++)
           if (g[i][j]) d[i][j] = get_dist(i, j);
           else d[i][j] = INF;
   while (true) {
       for (int i = 1; i <= n; i++) {
           pre[i] = i;
           for (int j = 1; j <= n; j++)
               if (d[pre[i]][i] > d[j][i])
                  pre[i] = j;
       memset(dfn, 0, sizeof dfn);
       ts = cnt = 0;
       for (int i = 1; i <= n; i++)</pre>
           if (!dfn[i])
               tarjan(i);
       if (cnt == n) {
           for (int i = 2; i <= n; i++) res += d[pre[i]][i];</pre>
```

```
break;
       for (int i = 2; i <= n; i++)
           if (id[pre[i]] == id[i])
               res += d[pre[i]][i];
       for (int i = 1; i <= cnt; i++)</pre>
           for (int j = 1; j <= cnt; j++)</pre>
               bd[i][j] = INF;
       for (int i = 1; i <= n; i++)</pre>
           for (int j = 1; j <= n; j++)
               if (d[i][j] < INF && id[i] != id[j]) {</pre>
                   int a = id[i], b = id[j];
                   if (id[pre[j]] == id[j]) bd[a][b] = min(bd[a][b], d[i]
[j] - d[pre[j]][j]);
                   else bd[a][b] = min(bd[a][b], d[i][j]);
       n = cnt;
       memcpy(d, bd, sizeof d);
    return res;
int main() {
    while (~scanf("%d%d", &n, &m)) {
       for (int i = 1; i <= n; i++) scanf("%lf%lf", &q[i].x, &q[i].y);</pre>
       memset(g, 0, sizeof g);
       while (m--) {
           int a, b;
           scanf("%d%d", &a, &b);
           if (a != b && b != 1) g[a][b] = true;
       if (!check_con()) puts("poor snoopy");
       else printf("%.21f\n", work());
    return 0;
```

#include <bits/stdc++.h> using namespace std; typedef long long 11; const int N = 2e5 + 10; int vis[N], now; vector<int> g[N]; int fa[N], son[N], siz[N], ans[N]; void insert(int pos) { vis[pos] = 1; now = now + 1 - vis[pos - 1] - vis[pos + 1];void remove(int pos) { vis[pos] = 0; now = now - 1 + vis[pos - 1] + vis[pos + 1];void dfs1(ll u, ll f) { siz[u] = 1;fa[u] = f; son[u] = -1;for (auto v:g[u]) { if (v == f) continue; dfs1(v, u); siz[u] += siz[v]; if $(son[u] == -1 \mid | siz[v] > siz[son[u]]) son[u] = v;$ void add(int u, int exc, int op) { if (op) insert(u); else remove(u); for (auto x:g[u]) { if (x == fa[u] || x == exc) continue; add(x, exc, op);

树上启发式合并

void dfs(ll u, ll opt) {

```
for (auto x:g[u]) {
       if (x == fa[u] || x == son[u]) continue;
        dfs(x, ∅);
    if (son[u] != -1) dfs(son[u], 1);
    add(u, son[u], 1);
    ans[u] = now;
    if (!opt) {
       add(u, 0, 0);
}
int main() {
    ios::sync_with_stdio(false),
           cin.tie(nullptr),
           cout.tie(nullptr);
    int t;
    cin >> t;
    int test = 0;
    while (t--) {
       int n;
        cin >> n;
        for (int i = 1; i < n; i++) {</pre>
           int a, b;
           cin >> a >> b;
           g[a].push_back(b);
           g[b].push_back(a);
        cout << "Case #" << ++test << ": ";</pre>
        dfs1(1, -1);
        dfs(1, 0);
        for (int i = 1; i <= n; i++) {</pre>
           if (i != 1) cout << ' ';
           cout << ans[i];</pre>
        cout << endl;</pre>
       for (int i = 1; i <= n; i++) g[i].clear();</pre>
}
```

#include <bits/stdc++.h> using namespace std; const int MAXN = 10005; const int INF = 10000000000; struct edge { int to, length; edge() {} edge(int a, int b) : to(a), length(b) {} }; vector<edge> g[MAXN]; bool centroid[MAXN]; int subtree size[MAXN]; int ans; //计算子树大小 int compute subtree size(int v, int p) { int c = 1; for (int i = 0; i < g[v].size(); i++) {</pre> int w = g[v][i].to;if (w == p | | centroid[w]) continue; c += compute_subtree_size(w, v); subtree_size[v] = c; return c; //查找重心, t 为连通分量大小 // pair (最大子树顶点数, 顶点编号) pair<int, int> search centroid(int v, int p, int t) { pair<int, int> res = pair<int, int>(INF, -1); int s = 1, m = 0;for (int i = 0; i < g[v].size(); i++) {</pre> int w = g[v][i].to; if (w == p | | centroid[w]) continue; res = min(res, search_centroid(w, v, t)); m = max(m, subtree_size[w]); s += subtree_size[w];

m = max(m, t - s);

树分治

```
res = min(res, pair<int, int>(m, v));
   return res;
void init(int n) {
   memset(centroid, 0, sizeof(centroid));
   memset(subtree_size, 0, sizeof(subtree_size));
   for (int i = 0; i <= n; i++) g[i].clear();</pre>
   ans = 0;
int solve(int u) {
   compute_subtree_size(u, -1);
   int s = search centroid(u, -1, subtree size[u]).second;
   centroid[s] = 1;
   for (int i = 0; i < g[s].size(); i++) {</pre>
       int v = g[s][i].to;
       if (centroid[v]) continue;
       /*solve()*/
   /*do something*/
   centroid[s] = 0;
   return ans;
欧拉回路
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 1e6 + 10;
int stk[N], top;
struct edge {
   int to, idx;
vector<edge> g[N];
namespace Euler1 { //无向图欧拉回路
   bool vis[N];
   int cur[N];
```

```
void dfs(int u, const int &w) {
       vis[abs(w)] = true;
       for (int &i = cur[u]; i < g[u].size();) {</pre>
           int idx = g[u][i].idx, v = g[u][i].to;
           i++;
           if (!vis[abs(idx)]) dfs(v, idx);
       stk[++top] = w;
   bool solve(int n) {
       // init():
       for (int i = 0; i <= n; i++) cur[i] = 0;
       for (int i = 0; i <= n; i++) vis[i] = 0;</pre>
       // calculate degree
       for (int i = 1; i <= n; i++) {</pre>
           if (g[i].size() & 1) return false;
       // Hierholzer
       for (int i = 1; i <= n; i++)</pre>
           if (!g[i].empty()) {
               dfs(i, ∅);
               break;
       return true;
} // namespace Euler1
namespace Euler2 { // 有向图欧拉回路
   int deg[N], cur[N];
   void dfs(int u, const int &w) {
       for (int &i = cur[u]; i < g[u].size();) {</pre>
           int idx = g[u][i].idx, v = g[u][i].to;
           i++;
           dfs(v, idx);
       stk[++top] = w;
   bool solve(int n) {
       // init
       for (int i = 0; i <= n; i++) deg[i] = 0;
       for (int i = 0; i <= n; i++) cur[i] = 0;</pre>
       // calculate degree
```

```
for (int i = 1; i <= n; ++i) {
           for (auto x: g[i]) deg[i]++, deg[x.to]--;
       for (int i = 1; i <= n; ++i)</pre>
           if (deg[i]) return false;
       // Hierholzer
       for (int i = 1; i <= n; ++i)</pre>
           if (!g[i].empty()) {
               dfs(i, 0);
               break;
       return true;
} // namespace Euler2
int main() {
   int t, n, m;
   cin >> t >> n >> m;
   for (int u, v, i = 1; i <= m; i++) {
       cin >> u >> v;
       g[u].push_back({v, i});
       if (t == 1) g[v].push back({u, -i});
   // solve
   bool flag = t == 1 ? Euler1::solve(n) : Euler2::solve(n);
   // output
   if (!flag | | (m > 0 && top - 1 < m))
       puts("NO");
   else {
       puts("YES");
       for (int i = top - 1; i > 0; --i) printf("%d%c", stk[i], " \n"[i
== 1]);
   }
   return 0;
点分树
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const 11 N = 2e5 + 10;
```

```
11 age[N];
struct edge {
   ll to, val;
struct father {
   11 u, num;
   11 dist;
};
struct son {
   11 age, dist;
   bool operator<(const son &s) const {</pre>
       return age < s.age;</pre>
};
vector<father> f[N];
vector<vector<son> > s[N];
vector<edge> g[N];
bool st[N];
11 siz[N];
11 getsiz(ll u, ll fa) {
   if (st[u]) return 0;
   siz[u] = 1;
   for (auto x:g[u]) {
       if (x.to == fa) continue;
       if (st[x.to]) continue;
       siz[u] += getsiz(x.to, u);
   return siz[u];
void getwc(ll u, ll fa, ll tot, ll &wc) {
   if (st[u]) return;
   11 \text{ mmax} = 0, \text{ sum} = 1;
   for (auto x:g[u]) {
       if (x.to == fa) continue;
       if (st[x.to]) continue;
       getwc(x.to, u, tot, wc);
       mmax = max(mmax, siz[x.to]);
       sum += siz[x.to];
   mmax = max(mmax, tot - sum);
```

```
if (2 * mmax <= tot) wc = u;
}
void getdist(ll u, ll fa, ll now, ll rt, ll kth, vector<son> &v) {
   if (st[u]) return;
   f[u].push back({rt, kth, now});
   v.push_back({age[u], now});
   for (auto x:g[u]) {
       if (x.to == fa || st[x.to]) continue;
       getdist(x.to, u, now + x.val, rt, kth, v);
}
void calc(ll u) {
   if (st[u]) return;
   getwc(u, -1, getsiz(u, -1), u);
   st[u] = 1;
   for (auto x: g[u]) {
       if (st[x.to]) continue;
       s[u].push back(vector<son>(0));
       auto &v = s[u].back();
       v.push back({-0x3f3f3f3f, 0});
       v.push_back({0x3f3f3f3f, 0});
       getdist(x.to, u, x.val, u, (11) s[u].size() - 1, v);
       sort(v.begin(), v.end(), [](son a, son b) { return a.age < b.age;</pre>
});
       for (ll i = 1; i < v.size(); i++) {</pre>
           v[i].dist += v[i - 1].dist;
   for (auto x:g[u]) {
       calc(x.to);
11 query(11 u, 11 1, 11 r) {
   11 \text{ ans} = 0;
   for (auto x:f[u]) {
       if (1 \le age[x.u] \&\& age[x.u] \le r) ans += x.dist;
       for (ll i = 0; i < s[x.u].size(); i++) {</pre>
           if (i == x.num) continue;
           auto &v = s[x.u][i];
           11 btn = lower_bound(v.begin(), v.end(), (son) \{1, 0\}) - v.be
gin() - 1;
```

```
11 top = upper bound(v.begin(), v.end(), (son) \{r, \emptyset\}) - v.be
                                                                           点双连通分量+缩点建图
gin() - 1;
          ans += v[top].dist - v[btn].dist;
                                                                          #include <bits/stdc++.h>
          ans += (top - btn) * x.dist;
                                                                          #define 11 long long
                                                                          using namespace std;
   for (auto v:s[u]) {
                                                                           const int N = 10010;
       11 btn = lower bound(v.begin(), v.end(), (son) {1, 0}) - v.begin
                                                                           const int M = 10010 * 4;
                                                                           int head[N];
      11 top = upper bound(v.begin(), v.end(), (son) {r, 0}) - v.begin
                                                                          int ver[M];
() - 1;
                                                                          int Next[M];
       ans += v[top].dist - v[btn].dist;
                                                                          int tot, n, m;
                                                                          void add(int x, int y) {
   return ans;
                                                                              ver[++tot] = y;
                                                                              Next[tot] = head[x];
                                                                              head[x] = tot;
signed main() {
   ios::sync_with_stdio(false);
   cin.tie(nullptr);
                                                                          int root;
   cout.tie(nullptr);
                                                                          vector<int> dcc[N];
                                                                          int stackk[N];
   11 n, q, a;
                                                                           int dfn[N], low[N];
   cin >> n >> q >> a;
                                                                          int num = 0;// n ◆ ◆ ◆
   for (ll i = 1; i <= n; i++) cin >> age[i];
                                                                          int top;//stackk
   for (ll i = 1; i < n; i++) {</pre>
                                                                          int cnt = 0;//@ @ @ @ L.
      11 x, y, z;
                                                                          bool cut[N];// * * * * *
       cin >> x >> y >> z;
                                                                          void tarjan(int x) {
       g[x].push_back({y, z});
                                                                              dfn[x] = low[x] = ++num;
       g[y].push_back({x, z});
                                                                              stackk[++top] = x;
                                                                              if (x == root \&\& head[x] == 0) {
                                                                                  calc(1);
                                                                                  return:
   11 \text{ ans} = 0;
                                                                              int flag = 0;
   while (q--) {
                                                                              for (int i = head[x]; i; i = Next[i]) {
      11 u, 1, r;
                                                                                  int y = ver[i];
      cin >> u >> 1 >> r;
                                                                                  if (!dfn[y]) {
      1 = (1 + ans) \% a;
                                                                                     tarjan(y);
      r = (r + ans) \% a;
                                                                                     low[x] = min(low[x], low[y]);
      if (1 > r) swap(1, r);
                                                                                     if (low[y] >= dfn[x]) {
       ans = query(u, 1, r);
                                                                                         flag++;
       cout << ans << endl;</pre>
                                                                                         if (x != root | | flag > 1)cut[x] = true;
                                                                                         cnt++;
                                                                                         int z;
```

```
000000eLX0+000?)
                z = stackk[top--];
                dcc[cnt].push_back(z);
             } while (z != y);
             dcc[cnt].push_back(x);
      } else low[x] = min(low[x], dfn[v]);
int tot2 = 1:
int new_id[N];
int hc[N];
int vc[M];
int nc[M];
void add_c(int x, int y) {
   vc[++tot2] = y;
   nc[tot2] = hc[x];
   hc[x] = tot2;
int main() {
   while (cin >> n >> m) {
      for (int i = 1; i <= m; ++i) {</pre>
         int x, y;
         cin >> x >> y;
         if (x == y)continue;
         add(x, y);
         add(y, x);
      for (int i = 1; i <= n; ++i) {
         if (!dfn[i])root = i, tarjan(i);
      /*for(int i=1;i<=n;++i)
         if(cut[i])printf("%d ",i);*/
      // 0000000 00 00 NOV-DCC
      for (int i = 1; i <= cnt; ++i) {
         for (int j = 0; j < dcc[i].size(); ++j)cout << i << " " << dc</pre>
c[i][j] << endl;
```

```
1/0000
   tot2 = 1;
   int num2 = cnt;
   for (int i = 1; i <= n; ++i) {</pre>
     for (int i = 1; i <= cnt; ++i) {
     for (int j = 0; j < dcc[i].size(); ++j) {</pre>
       int x = dcc[i][j];
       00j00040°000000000;
         add_c(i, new_id[x]);
         add c(new id[x], i);
       }
   for (int i = 2; i < tot2; i += 2)</pre>
     return 0;
* 00+000/40000hu00hu0y/0000000
虚树
11 fa[N], son[N], dep[N], siz[N], dfn[N], rnk[N], top[N];
11 dfscnt;
vector<11> g[N];
11 mmin[N];
void dfs1(ll u, ll f, ll d) {
 son[u] = -1;
```

```
siz[u] = 1;
                                                                          for (int i = 1, 1; i \le num; ++i) {
   fa[u] = f;
                                                                             if (H[i] == 1) continue; //如果 1 号节点是关键节点就不要重复添加
   dep[u] = d;
                                                                             1 = lca(H[i], sta[tot]); //计算当前节点与栈顶节点的 LCA
   for (auto v:g[u]) {
                                                                             if (1 != sta[tot]) { //如果 LCA 和栈顶元素不同,则说明当前节点不再当
      if (v == f) continue;
                                                                       前栈所存的链上
      dfs1(v, u, d + 1);
                                                                                 while (dfn[l] < dfn[sta[tot - 1]]) {//当次大节点的 Dfs 序大于
      siz[u] += siz[v];
                                                                       LCA 的 Dfs 序
      if (son[u] == -1 \mid | siz[v] > siz[son[u]]) son[u] = v;
                                                                                    vg[sta[tot - 1]].push_back(sta[tot]);
                                                                                    vg[sta[tot]].push_back(sta[tot - 1]);
                                                                                    tot--;
                                                                                 } //把与当前节点所在的链不重合的链连接掉并且弹出
void dfs2(11 u, 11 t) {
                                                                                 if (dfn[1] > dfn[sta[tot - 1]]) { //如果 LCA 不等于次大节点(这
   dfn[u] = ++dfscnt;
                                                                       里的大于其实和不等于没有区别)
   rnk[dfscnt] = u;
                                                                                    vg[1].clear();
   top[u] = t;
   if (son[u] == -1) return;
                                                                                    vg[1].push_back(sta[tot]);
                                                                                    vg[sta[tot]].push_back(1);
   dfs2(son[u], t);
   for (auto v:g[u]) {
                                                                                    sta[tot] = 1;//说明 LCA 是第一次入栈,清空其邻接表,连边后弹
      if (v == son[u] || v == fa[u]) continue;
                                                                       出栈顶元素, 并将 LCA 入栈
      dfs2(v, v);
                                                                                 } else {
                                                                                    vg[1].push_back(sta[tot]);
                                                                                    vg[sta[tot]].push_back(1);
                                                                                    tot--; //说明 LCA 就是次大节点,直接弹出栈顶元素
ll lca(ll a, ll b) {
   while (top[a] != top[b]) {
      if (dep[top[a]] < dep[top[b]]) swap(a, b);</pre>
                                                                             vg[H[i]].clear();
      a = fa[top[a]];
                                                                             sta[++tot] = H[i];
                                                                             //当前节点必然是第一次入栈,清空邻接表并入栈
   return dep[a] < dep[b] ? a : b;</pre>
                                                                          for (int i = 1; i < tot; ++i) {</pre>
                                                                             vg[sta[i]].push_back(sta[i + 1]);
struct edge {
                                                                             vg[sta[i + 1]].push_back(sta[i]);
   11 s, t, v;
                                                                          } //剩余的最后一条链连接一下
                                                                          return;
edge e[N];
vector<int> vg[N];
int sta[N], tot;
int h[N];
                                                                       多项式
void build(int *H, int num) {
   sort(H + 1, H + 1 + num, \lceil (int a, int b) \}  return dfn[a] < dfn[b];
   sta[tot = 1] = 1, vg[1].clear();// 1 号节点入栈,清空 1 号节点对应的邻
                                                                       const double Pi = acos(-1.0);
接表,设置邻接表边数为1
```

```
struct Complex {
   double x, y;
   Complex(double xx = 0, double yy = 0) { x = xx, y = yy; }
} a[N], b[N];
Complex operator+(Complex _a, Complex _b) { return Complex(_a.x + b.x,
a.y + b.y; }
Complex operator-(Complex a, Complex b) { return Complex( a.x - b.x,
_a.y - _b.y); }
Complex operator*(Complex _a, Complex _b) {
   return Complex(_a.x * _b.x - _a.y * _b.y, _a.x * _b.y + _a.y * _b.x);
} //不懂的看复数的运算那部分
int L, r[N];
int limit = 1;
void fft(Complex *A, int type) {
   for (int i = 0; i < limit; i++)</pre>
       if (i < r[i]) swap(A[i], A[r[i]]); //求出要迭代的序列
   for (int mid = 1; mid < limit; mid <<= 1) { // 待合并区间的长度的一半
       Complex Wn(cos(Pi / mid), type * sin(Pi / mid)); //单位根
       for (int R = mid << 1, j = 0; j < limit; j += R) { //R 是区间的长
度, i 表示前已经到哪个位置了
          Complex w(1, 0); //幂
          for (int k = 0; k < mid; k++, w = w * Wn) { //枚举左半部分
              Complex x = A[j + k], y = w * A[j + mid + k]; //蝴蝶效应
              A[j + k] = x + y;
              A[j + mid + k] = x - y;
void FFT(int n, int m) {
   limit = 1;
   L = 0;
   while (limit \langle = n + m \rangle limit \langle \langle = 1, L++ \rangle
   for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i \& 1) <<
(L - 1));
   // 在原序列中 i 与 i/2 的关系是 : i 可以看做是 i/2 的二进制上的每一位左移
一位得来
```

```
// 那么在反转后的数组中就需要右移一位,同时特殊处理一下奇数
    fft(a, 1), fft(b, 1);
    for (int i = 0; i <= limit; i++) a[i] = a[i] * b[i];</pre>
    fft(a, -1);
    for (int i = 0; i <= n + m; i++) a[i].x /= limit;</pre>
ntt
const 11 mod = 998244353, G = 3, Gi = 332748118;
int limit = 1, L, r[N];
11 a[N], b[N];
ll qpow(ll a, ll b) {
   11 \text{ ans} = 1;
    while ( b) {
       if (_b & 1) ans = (ans * _a) % mod;
        b >>= 1;
        _a = (_a * _a) \% mod;
    return ans;
}
void ntt(ll *A, int type) {
    auto swap = [](11 &_a, 11 &_b) {
        _a ^= _b, _b ^= _a, _a ^= _b;
    for (int i = 0; i < limit; i++)</pre>
        if (i < r[i]) swap(A[i], A[r[i]]);</pre>
    for (int mid = 1; mid < limit; mid <<= 1) {</pre>
        11 \text{ Wn} = \text{qpow}(\text{type} == 1 ? G : \text{Gi}, (\text{mod} - 1) / (\text{mid} << 1));
        for (int j = 0; j < limit; j += (mid << 1)) {
            11 w = 1;
            for (int k = 0; k < mid; k++, w = (w * Wn) % mod) {
               int x = A[j + k], y = w * A[j + k + mid] % mod;
               A[j + k] = (x + y) \% mod,
                        A[j + k + mid] = (x - y + mod) \% mod;
void NTT(int n, int m) {
```

```
limit = 1;
                                                                                  11 RR[N], inv[N];
   L = 0:
   while (limit <= n + m) limit <<= 1, L++;
                                                                                  void init() {
   for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i \& 1) <<
                                                                                      inv[0] = inv[1] = 1;
 (L - 1));
                                                                                      for (11 i = 2; i < N; ++i)
   ntt(a, 1), ntt(b, 1);
                                                                                          inv[i] = 111 * inv[mod % i] * (mod - mod / i) % mod;
   for (int i = 0; i < limit; i++) a[i] = (a[i] * b[i]) % mod;</pre>
   ntt(a, -1);
   11 inv = qpow(limit, mod - 2);
                                                                                  ll NTT init(ll n) {//快速数论变换预处理
   for (int i = 0; i \le n + m; i++) a[i] = a[i] * inv % mod;
                                                                                      11 limit = 1, L = 0;
                                                                                      while (limit <= n) limit <<= 1, L++;</pre>
                                                                                      for (ll i = 0; i < limit; ++i)</pre>
                                                                                          RR[i] = (RR[i >> 1] >> 1) | ((i & 1) << (L - 1));
多项式全家桶
                                                                                      return limit;
                                                                                  }
//#pragma GCC optimize(2)
#include <bits/stdc++.h>
                                                                              // 省空间用
                                                                                  11 deer[2][N];
using namespace std:
typedef long long 11;
                                                                                  void NTT(poly &A, 11 type, 11 limit) {//快速数论变换
                                                                                      A.resize(limit);
const 11 N = 3000007;
                                                                                      for (ll i = 0; i < limit; ++i)</pre>
const 11 p = 998244353, gg = 3, ig = 332738118, img = 86583718;
                                                                                         if (i < RR[i])
const 11 mod = 998244353;
                                                                                              swap(A[i], A[RR[i]]);
                                                                                      for (ll mid = 2, j = 1; mid <= limit; mid <<= 1, ++j) {</pre>
11 qpow(11 a, 11 b) {
                                                                                          11 len = mid >> 1;
   11 \text{ res} = 1;
   while (b) {
                                                                              //
                                                                                          省空间用
       if (b & 1) res = 111 * res * a % mod;
                                                                                          ll buf1 = qpow(G, (mod - 1) / (1 << j));
       a = 111 * a * a % mod;
                                                                                          ll buf0 = qpow(inv_G, (mod - 1) / (1 << j));
       b >>= 1:
                                                                                          deer[0][0] = deer[1][0] = 1;
                                                                                          for (11 i = 1; i < (1 << j); ++i) {
   return res;
                                                                                             deer[0][i] = 111 * deer[0][i - 1] * buf0 % mod;//逆
                                                                                              deer[1][i] = 1ll * deer[1][i - 1] * buf1 % mod;
namespace Polv {
#define mul(x, y) (111 * x * y >= mod ? 111 * x * y % mod : 111 * x * y)
                                                                                          for (11 pos = 0; pos < limit; pos += mid) {</pre>
#define minus(x, y) (111 * x - y < \emptyset ? 111 * x - y + mod : 111 * x - y)
                                                                                               LL *wn = deer[type][i];
#define plus(x, y) (111 * x + y >= mod ? 111 * x + y - mod : 111 * x + y)
                                                                                              省空间用
#define ck(x) (x >= mod ? x - mod : x)//取模运算太慢了
                                                                                             11 *wn = deer[type];
                                                                                              for (11 i = pos; i < pos + len; ++i, ++wn) {
   typedef vector<1l> poly;
                                                                                                 11 tmp = 111 * (*wn) * A[i + len] % mod;
   const 11 G = 3;//根据具体的模数而定,原根可不一定不一样!!!
                                                                                                 A[i + len] = ck(A[i] - tmp + mod);
   //一般模数的原根为 2 3 5 7 10 6
                                                                                                 A[i] = ck(A[i] + tmp):
   const 11 \text{ inv } G = \text{gpow}(G, \text{mod} - 2);
                                                                                             }
```

```
if (type == 0) {
       for (11 i = 0; i < limit; ++i)</pre>
          A[i] = 111 * A[i] * inv[limit] % mod;
}
poly poly_mul(poly A, poly B) {//多项式乘法
   11 deg = A.size() + B.size() - 1;
   11 limit = NTT init(deg);
   poly C(limit);
   NTT(A, 1, limit);
   NTT(B, 1, limit);
   for (ll i = 0; i < limit; ++i)</pre>
       C[i] = 111 * A[i] * B[i] % mod;
   NTT(C, 0, limit);
   C.resize(deg);
   return C;
poly poly_inv(poly &f, ll deg) {//多项式求逆
   if (deg == 1)
       return poly(1, qpow(f[0], mod - 2));
   poly A(f.begin(), f.begin() + deg);
   poly B = poly inv(f, (deg + 1) >> 1);
   11 limit = NTT_init(deg << 1);</pre>
   NTT(A, 1, limit), NTT(B, 1, limit);
   for (ll i = 0; i < limit; ++i)</pre>
       A[i] = B[i] * (2 - 111 * A[i] * B[i] % mod + mod) % mod;
   NTT(A, 0, limit);
   A.resize(deg);
   return A;
poly poly dev(poly f) {//多项式求导
   11 n = f.size();
   for (11 i = 1; i < n; ++i) f[i - 1] = 111 * f[i] * i % mod;
   return f.resize(n - 1), f;//f[0] = 0, 这里直接扔了,从1开始
poly poly_idev(poly f) {//多项式求积分
   11 n = f.size();
   for (ll i = n - 1; i; --i) f[i] = 111 * f[i - 1] * inv[i] % mod;
```

```
return f[0] = 0, f;
}
poly poly_ln(poly f, ll deg) {//多项式求对数
   poly A = poly idev(poly mul(poly dev(f), poly inv(f, deg)));
   return A.resize(deg), A;
poly poly exp(poly &f, ll deg) {//多项式求指数
   if (deg == 1)
       return poly(1, 1);
   poly B = poly_exp(f, (deg + 1) >> 1);
   B.resize(deg);
   poly lnB = poly_ln(B, deg);
   for (11 i = 0; i < deg; ++i)
       lnB[i] = ck(f[i] - lnB[i] + mod);
   ll limit = NTT_init(deg \langle\langle 1\rangle\rangle//n \rightarrow n^2
   NTT(B, 1, limit), NTT(lnB, 1, limit);
   for (ll i = 0; i < limit; ++i)</pre>
       B[i] = 111 * B[i] * (1 + lnB[i]) % mod;
   NTT(B, 0, limit);
   B.resize(deg);
   return B;
poly poly_sqrt(poly &f, ll deg) {//多项式开方
   if (deg == 1) return poly(1, 1);
   poly A(f.begin(), f.begin() + deg);
   poly B = poly_sqrt(f, (deg + 1) >> 1);
   poly IB = poly inv(B, deg);
   11 limit = NTT_init(deg << 1);</pre>
   NTT(A, 1, limit), NTT(IB, 1, limit);
   for (ll i = 0; i < limit; ++i)</pre>
       A[i] = 111 * A[i] * IB[i] % mod;
   NTT(A, 0, limit);
   for (ll i = 0; i < deg; ++i)</pre>
       A[i] = 111 * (A[i] + B[i]) * inv[2] % mod;
   A.resize(deg);
   return A;
poly poly pow(poly f, ll k) {//多项式快速幂
   if (f.size() == 1) {
```

```
f[0] = qpow(f[0], k);
                                                                                   C = poly mul(A, C);
       return f;
                                                                                   C = poly_idev(C);
                                                                                   return C;
   f = poly_ln(f, f.size());
   for (auto &x: f) x = 111 * x * k % mod;
   return poly exp(f, f.size());
                                                                                poly poly arctan(poly f, ll deg) {
                                                                                   poly A(f.size()), B(f.size()), C(f.size());
                                                                                   A = poly dev(f);
                                                                                   B = poly_mul(f, f);
poly poly_cos(poly f, ll deg) {//多项式三角函数 (cos)
                                                                                   B[0] = plus(B[0], 1);
   poly A(f.begin(), f.begin() + deg);
                                                                                   C = poly_inv(B, deg);
   poly B(deg), C(deg);
                                                                                   C = poly_mul(A, C);
   for (ll i = 0; i < deg; ++i)
                                                                                   C = poly_idev(C);
       A[i] = 111 * A[i] * img % mod;
                                                                                   return C;
                                                                               }
   B = poly_exp(A, deg);
   C = poly_inv(B, deg);
                                                                            }
   11 \text{ inv2} = \text{qpow}(2, \text{mod} - 2);
                                                                            using namespace Poly;
   for (11 i = 0; i < deg; ++i)
       A[i] = 111 * (111 * B[i] + C[i]) % mod * inv2 % mod;
                                                                            signed main() {
   return A;
                                                                                ios::sync_with_stdio(false);
                                                                                cin.tie(0);
                                                                                cout.tie(0);
poly poly_sin(poly f, ll deg) {//多项式三角函数 (sin)
   poly A(f.begin(), f.begin() + deg);
                                                                                11 n, k;
   poly B(deg), C(deg);
                                                                                cin >> n >> k;
   for (ll i = 0; i < deg; ++i)
                                                                                Poly::init();
       A[i] = 111 * A[i] * img % mod;
                                                                                vector<11> v(n);
                                                                                for (ll i = 0; i < n; i++) cin >> v[i];
   B = poly_exp(A, deg);
                                                                                auto res = Poly::poly pow(v, k);
   C = poly inv(B, deg);
                                                                                for (auto x: res) cout << x << ' ';
   11 inv2i = qpow(img << 1, mod - 2);</pre>
                                                                                cout << endl;</pre>
   for (11 i = 0; i < deg; ++i)
       A[i] = 111 * (111 * B[i] - C[i] + mod) \% mod * inv2i \% mod;
   return A;
poly poly arcsin(poly f, 11 deg) {
                                                                            字符串
   poly A(f.size()), B(f.size()), C(f.size());
   A = poly dev(f);
                                                                            AC 自动机
   B = poly_mul(f, f);
   for (ll i = 0; i < deg; ++i)</pre>
                                                                            #include <bits/stdc++.h>
       B[i] = minus(mod, B[i]);
                                                                            using namespace std;
   B[\emptyset] = plus(B[\emptyset], 1);
                                                                            struct AC {
   C = poly_sqrt(B, deg);
                                                                                static const int maxnode = 200005;
   C = poly_inv(C, deg);
                                                                                static const int sigma size = 26;
```

```
char T[maxnode];
int ch[maxnode][sigma_size];
int val[maxnode], fail[maxnode], last[maxnode];
int sz;
vector<pair<int, int> > ans;
void init() {
   sz = 1;
   memset(ch[0], 0, sizeof(ch[0]));
   ans.clear();
int idx(const char &c) { return c - 'a'; }
void insert(string s, int v) {
   int u = 0, n = s.length();
   for (int i = 0; i < n; i++) {</pre>
       int c = idx(s[i]);
       if (!ch[u][c]) {
           memset(ch[sz], 0, sizeof(ch[sz]));
           val[sz] = 0;
           ch[u][c] = sz++;
       u = ch[u][c];
   val[u] = v;
void get_fail() {
   queue<int> que;
   fail[0] = 0;
   for (int c = 0; c < sigma_size; c++) {</pre>
       int u = ch[0][c];
       if (u) {
           fail[u] = 0;
           que.push(u);
           last[u] = 0;
   while (!que.empty()) {
       int r = que.front();
       que.pop();
       for (int c = 0; c < sigma_size; c++) {</pre>
           int u = ch[r][c];
           if (!u) continue;
           que.push(u);
```

```
int v = fail[r];
               while (v \&\& !ch[v][c]) v = fail[v];
               fail[u] = ch[v][c];
               last[u] = val[fail[u]] ? fail[u] : last[fail[u]];
       }
    }
    void print(int j) {
       if (j) {
           ans.push_back(pair<int, int>(j, val[j]));
           print(last[j]);
    void find() {
       int n = strlen(T);
       int j = 0;
       for (int i = 0; i < n; i++) {</pre>
           int c = idx(T[i]);
           while (j && !ch[j][c]) j = fail[j];
           j = ch[j][c];
           if (val[j])
               print(j);
           else if (last[j])
               print(last[j]);
} ac; //字符串下标从 0 开始
KMP 2
#include <bits/stdc++.h>
using namespace std;
struct KMP {
    static const int MAXN = 1000010;
    char T[MAXN], P[MAXN];
    int fail[MAXN];
    vector<int> ans;
    void init() { ans.clear(); }
    void get_fail() {
       int m = strlen(P);
```

```
fail[0] = fail[1] = 0;
                                                                              p2[i]=j;
      for (int i = 1; i < m; i++) {</pre>
                                                                              if(j==n)return i-n+2;//返回位置
         int j = fail[i];
         while (j && P[i] != P[j]) j = fail[j];
         fail[i + 1] = (P[i] == P[j] ? j + 1 : 0);
                                                                       return 0;
   }
                                                                    int main(){
                                                                       char s1[15],s2[105];
   void find() {
                                                                       int p1[15],p2[105];
      int n = strlen(T), m = strlen(P);
                                                                       cin>>s1>>s2;
      get_fail();
                                                                       kmp(s1,p1);
      int j = 0;
                                                                       cout<<kmp(s1,p1,s2,p2)<<endl;</pre>
      for (int i = 0; i < n; i++) {</pre>
                                                                       return 0;
         while (j && P[j] != T[i]) j = fail[j];
         if (P[j] == T[i]) j++;
         if (j == m) ans.push back(i - m + 1);
                                                                    regex
                                                                    元字符
                                                                              描述
} kmp; //P 为模式串, 下标从 0 开始, 输入后直接调用 find()
                                                                    \
                                                                              将下一个字符标记符、或一个向后引用、或一个八进制转义符。例如,"\n"
                                                                              匹配\n。"\n"匹配换行符。序列"\"匹配"\"而"("则匹配"("。即相当于多种编
                                                                              程语言中都有的"转义字符"的概念。
kmp
                                                                    ٨
                                                                              匹配输入字行首。如果设置了 RegExp 对象的 Multiline 属性, ^也匹配"\n"
//next 数组等价于前缀函数
                                                                              或"\r"之后的位置。
#include<bits/stdc++.h>
                                                                    $
                                                                              匹配输入行尾。如果设置了 RegExp 对象的 Multiline 属性, $也匹配"\n"或
using namespace std;
typedef long long 11;
                                                                              "\r"之前的位置。
                                                                              匹配前面的子表达式任意次。例如, zo 能匹配"z", 也能匹配"zo"以及
int kmp(char *s1,int *p1,char *s2=0,int *p2=0){//必须先求 s1 的 next 数组,
                                                                              "zoo"。等价于{0,}。
即kmp(s1,p1);再kmp(s1,p1,s2,p2);
                                                                              匹配前面的子表达式一次或多次(大于等于 1 次)。例如, "zo+"能匹配"zo"
                                                                    +
   int n=strlen(s1);
   if(p2==0){
                                                                              以及"zoo", 但不能匹配"z"。+等价于{1,}。
      p1[0]=0;
                                                                    ?
                                                                              匹配前面的子表达式零次或一次。例如, "do(es)?"可以匹配"do"或"does"。?
      for(int i=1;s1[i]!='\0';i++){
                                                                              等价于{0,1}。
         int j=p1[i-1];
         while(j>0&&s1[i]!=s1[j])j=p1[j-1];
                                                                    {n}
                                                                              n 是一个非负整数。匹配确定的 n 次。例如,"o{2}"不能匹配"Bob"中的
         if(s1[i]==s1[j])j++;
                                                                              "o",但是能匹配"food"中的两个o。
         p1[i]=j;
                                                                    {n,}
                                                                              n 是一个非负整数。至少匹配 n 次。例如,"o{2,}"不能匹配"Bob"中的"o",
                                                                              但能匹配"foooood"中的所有 o。"o{1,}"等价于"o+"。"o{0,}"则等价于"o*"。
   else{
                                                                              m 和 n 均为非负整数,其中 n <= m。最少匹配 n 次且最多匹配 m 次。例
                                                                    {n,m}
      for(int i=0;s2[i]!='\0';i++){
                                                                              如,"o\{1,3\}"将匹配"fooooood"中的前三个 o 为一组,后三个 o 为一组。
         int j=i==0?0:p2[i-1];
                                                                              "o{0,1}"等价于"o?"。请注意在逗号和两个数之间不能有空格。
         while(j>0&&s2[i]!=s1[j])j=p1[j-1];
                                                                    ?
                                                                              当该字符紧跟在任何一个其他限制符 (,+,?, \{n\}, \{n,\}, \{n,m^*\}) 后面时,匹
         if(s2[i]==s1[j])j++;
```

元字符	描述	元字符	描述
	配模式是非贪婪的。非贪婪模式尽可能少地匹配所搜索的字符串,而默认的贪婪模式则尽可能多地匹配所搜索的字符串。例如,对于字符串"oooo", "o+"将尽可能多地匹配"o",得到结果["oooo"],而"o+?"将尽可能少地匹配"o",得到结果['o','o','o','o']	[^xyz]	负值字符集合。匹配未包含的任意字符。例如,"abc"可以匹配"plain"中的 "plin"任一字符。
		[a-z]	字符范围。匹配指定范围内的任意字符。例如,"[a-z]"可以匹配"a"到"z"范围内的任意小写字母字符。注意:只有连字符在字符组内部时,并且出现在两
点.	匹配除"\n"和"\r"之外的任何单个字符。要匹配包括"\n"和"\r"在内的任何字符,请使用像"[\s\S]"的模式。		个字符之间时,才能表示字符的范围;如果出字符组的开头,则只能表示连字符本身.
(pattern)	匹配 pattern 并获取这一匹配。所获取的匹配可以从产生的 Matches 集合得到,在 VBScript 中使用 SubMatches 集合,在 JScript 中则使用 09 属性。 要匹配圆括号字符,请使用"("或")"。	[^a-z]	负值字符范围。匹配任何不在指定范围内的任意字符。例如,"a-z"可以匹配任何不在"a"到"z"范围内的任意字符。
(?:pattern)	非获取匹配,匹配 pattern 但不获取匹配结果,不进行存储供以后使用。这在使用或字符"()"来组合一个模式的各个部分时很有用。例如"industr(?:y ies)"就是一个比"industry industries"更简略的表达式。	\b	匹配一个单词的边界,也就是指单词和空格间的位置(即正则表达式的"匹配"有两种概念,一种是匹配字符,一种是匹配位置,这里的\b 就是匹配位置的)。例如,"er\b"可以匹配"never"中的"er",但不能匹配"verb"中的"er";"\b1" <i>可以匹配"123</i> "中的"1", <i>但不能匹配"213</i> "中的"1_"。
(?=pattern)	非获取匹配,正向肯定预查,在任何匹配 pattern 的字符串开始处匹配查找字符串,该匹配不需要获取供以后使用。例如,"Windows(?=95 98 NT 2000)"能匹配"Windows2000"中的"Windows",但不能匹配"Windows3.1"中的"Windows"。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。	\B	匹配非单词边界。"er\B"能匹配"verb"中的"er",但不能匹配"never"中的"er"。
		\cx	匹配由 x 指明的控制字符。例如,\cM 匹配一个 Control-M 或回车符。 x 的值必须为 A - Z 或 a - z 之一。否则,将 c 视为一个原义的" c "字符。
		\d	匹配一个数字字符。等价于[0-9]。grep 要加上-P, perl 正则支持
(?!pattern)	非获取匹配,正向否定预查,在任何不匹配 pattern 的字符串开始处匹配查 找字符串,该匹配不需要获取供以后使用。例如 "Windows(?!95 98 NT 2000)"能匹配"Windows3.1"中的"Windows",但不能 匹配"Windows2000"中的"Windows"。	\D	匹配一个非数字字符。等价于 0-9。grep 要加上-P, perl 正则支持
		\f	匹配一个换页符。等价于\x0c 和\cL。
		\n	匹配一个换行符。等价于\x0a 和\cJ。
(?<=patter n)	非获取匹配,反向肯定预查,与正向肯定预查类似,只是方向相反。例如,"(?<=95]98 NT 2000)Windows"能匹配"2000Windows"中的"Windows",但不能匹配"3.1Windows"中的"Windows"。*python 的正则表达式没有完全按照正则表达式规范实现,所以一些高级特性建议使用其他语言如 java、scala 等 非获取匹配,反向否定预查,与正向否定预查类似,只是方向相反。例如	\r	匹配一个回车符。等价于\x0d 和\cM。
		\s	匹配任何不可见字符,包括空格、制表符、换页符等等。等价于[\f\n\r\t\v]。
		\S	匹配任何可见字符。等价于 \f\n\r\t\v。
		\t	匹配一个制表符。等价于\x09 和\cl。
(? patter<br n)	"(? 95 98 NT 2000)Windows"能匹配"3.1Windows"中的"Windows",但不能匹配"2000Windows"中的"Windows"。*python 的正则表达式没有完全按照正则表达式规范实现,所以一些高级特性建议使用其他语言如 java、scala 等</td <td>\v</td> <td>匹配一个垂直制表符。等价于\x0b 和\cK。</td>	\v	匹配一个垂直制表符。等价于\x0b 和\cK。
		\w	匹配包括下划线的任何单词字符。类似但不等价于"[A-Za-z0-9_]",这里的" 单词"字符使用 Unicode 字符集。
		\W	匹配任何非单词字符。等价于"A-Za-z0-9_"。
x y	匹配 x 或 y。例如,"z food"能匹配"z"或"food"(此处请谨慎)。"[z f]ood"则匹配"zood"或"food"。	\xn	匹配 n ,其中 n 为十六进制转义值。十六进制转义值必须为确定的两个数字长。例如," $(x41$ "匹配"A"。" $(x041$ "则等价于" $(x0481$ "。正则表达式中可以
[xyz]	字符集合。匹配所包含的任意一个字符。例如,"[abc]"可以匹配"plain"中的 "a"。		使用 ASCII 编码。
		num	匹配 num,其中 num 是一个正整数。对所获取的匹配的引用。例如,

```
元字符
         描述
                                                                  Trie() {
         "(.)\1"匹配两个连续的相同字符。
                                                                     sz = 1:
*n*
         标识一个八进制转义值或一个向后引用。如果*n 之前至少n 个获取的子表
                                                                     memset(ch[0], 0, sizeof(ch[0]));
         达式,则 n 为向后引用。否则,如果 n 为八进制数字(0-7),则 n*为一个
         八进制转义值。
                                                                  int idx(const char &c) { return c - 'a'; }
*nm*
         标识一个八进制转义值或一个向后引用。如果*nm 之前至少有nm 个获得子
         表达式,则nm 为向后引用。如果\nm 之前至少有 n 个获取,则 n 为一个
                                                                  void insert(string s, int v) {
         后跟文字 m 的向后引用。如果前面的条件都不满足,若 n 和 m 均为八进制
                                                                     int u = 0, n = s.length();
         数字(0-7),则\nm 将匹配八进制转义值 nm*。
                                                                     for (int i = 0; i < n; i++) {</pre>
                                                                        int c = idx(s[i]);
*nml*
         如果 n 为八进制数字 (0-7) ,且 m 和 l 均为八进制数字 (0-7) ,则匹配八
                                                                        if (!ch[u][c]) {
         进制转义值 nml。
                                                                           memset(ch[sz], 0, sizeof(ch[sz]));
                                                                           val[sz] = 0;
         匹配 n,其中 n 是一个用四个十六进制数字表示的 Unicode 字符。例如,
\un
                                                                           ch[u][c] = sz++;
         \u00A9 匹配版权符号(@)。
         小写 p 是 property 的意思,表示 Unicode 属性,用于 Unicode 正表达
p{P}
                                                                        u = ch[u][c];
         式的前缀。中括号内的"P"表示 Unicode 字符集七个字符属性之一:标点字
         符。其他六个属性: L: 字母: M: 标记符号(一般不会单独出现): Z: 分
                                                                     val[u] = v;
         隔符(比如空格、换行等); S: 符号(比如数学符号、货币符号等);
         N: 数字(比如阿拉伯数字、罗马数字等); C: 其他字符。*注: 此语法部
                                                                  int find(string s) {
         分语言不支持,例: javascript。
                                                                     int u = 0, n = s.length();
<>
         匹配词(word)的开始(<)和结束(>)。例如正则表达式<the>能够匹配
                                                                     for (int i = 0; i < n; i++) {</pre>
         字符串"for the wise"中的"the",但是不能匹配字符串"otherwise"中的
                                                                        int c = idx(s[i]);
         "the"。注意: 这个元字符不是所有的软件都支持的。
                                                                        if (!ch[u][c]) return 0;
                                                                        u = ch[u][c];
()
         将(和)之间的表达式定义为"组"(group),并且将匹配这个表达式的字
         符保存到一个临时区域(一个正则表达式中最多可以保存9个),它们可
                                                                     return val[u];
         以用 \1 到\9 的符号来引用。
                                                               } trie;
         将两个匹配条件进行逻辑"或"(or)运算。例如正则表达式(him|her)匹配
         "it belongs to him"和"it belongs to her",但是不能匹配"it belongs to
         them."。注意:这个元字符不是所有的软件都支持的。
                                                               可持久化字典树
Trie
                                                               struct Trie01 {
                                                                  static const int maxnode = 2000005;
#include <bits/stdc++.h>
                                                                  static const int sigma size = 2;
using namespace std;
                                                                  int ch[maxnode << 5][sigma size], val[maxnode << 5];</pre>
struct Trie {
                                                                  int rt[maxnode];
  static const int maxnode = 200005:
                                                                  int sz;
```

Trie01() {

sz = 0;

static const int sigma_size = 26;
int ch[maxnode][sigma size];

int val[maxnode];

int sz;

```
memset(ch[0], 0, sizeof(ch[0]));
                                                                                          for (int i = 2; i <= n; i++) {
   }
                                                                                              x[sa[i]] = (y[sa[i - 1]] == y[sa[i]] &&
                                                                                                         y[sa[i - 1] + k] == y[sa[i] + k])
   void insert(int &now, int pre, int v) {
                                                                                                            ? p
       now = ++sz;
                                                                                                            : ++p;
       for (int i = 30; i >= 0; i--) {
           int k = ((v >> i) & 1);
                                                                                          if (p >= n) break;
           ch[now][k] = ++sz;
                                                                                          m = p;
           ch[now][k \land 1] = ch[pre][k \land 1];
           val[ch[now][k]] = val[ch[pre][k]] + 1;
           now = ch[now][k];
           pre = ch[pre][k];
                                                                                  inline void get_height(int n) {
                                                                                      int i, j, k = 0;
                                                                                      for (int i = 1; i <= n; i++) ra[sa[i]] = i;</pre>
                                                                                      for (int i = 1; i <= n; i++) {</pre>
} trie;
                                                                                          if (k) k--;
                                                                                          int j = sa[ra[i] - 1];
                                                                                          while (s[i + k] == s[j + k]) k++;
后缀数组
                                                                                          height[ra[i]] = k;
#include <bits/stdc++.h>
using namespace std;
struct SuffixArray {
   static const int MAXN = 1100000;
                                                                              } SA; //字符串下标从一开始
   char s[MAXN];
   int sa[MAXN], t[MAXN], t1[MAXN], c[MAXN], ra[MAXN], height[MAXN], m;
   inline void init() { memset(this, 0, sizeof(SuffixArray)); }
                                                                               后缀自动机
   inline void get sa(int n) {
                                                                               #include <bits/stdc++.h>
       m = 256;
       int *x = t, *y = t1;
                                                                               using namespace std;
       for (int i = 1; i <= m; i++) c[i] = 0;
                                                                               typedef long long ll;
       for (int i = 1; i <= n; i++) c[x[i] = s[i]]++;
                                                                               const int N = 2e6 + 10;
       for (int i = 1; i <= m; i++) c[i] += c[i-1];
       for (int i = n; i >= 1; i--) sa[c[x[i]]--] = i;
                                                                               int tot = 1, last = 1;
       for (int k = 1; k <= n; k <<= 1) {
                                                                               struct Node {
           int p = 0:
                                                                                  int len, fa;
           for (int i = n - k + 1; i \le n; i++) y[++p] = i;
                                                                                  int ch[26];
           for (int i = 1; i <= n; i++)
                                                                               } node[N];
              if (sa[i] > k) y[++p] = sa[i] - k;
                                                                               char str[N];
           for (int i = 1; i <= m; i++) c[i] = 0;
                                                                               11 f[N], ans;
           for (int i = 1; i <= n; i++) c[x[y[i]]]++;</pre>
                                                                              int h[N], e[N], ne[N], idx;
           for (int i = 1; i <= m; i++) c[i] += c[i - 1];</pre>
           for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i];
                                                                              void extend(int c) {
           std::swap(x, y);
                                                                                  int p = last, np = last = ++tot;
           p = x[sa[1]] = 1;
                                                                                  f[tot] = 1;
```

```
node[np].len = node[p].len + 1;
                                                                             const int maxn = 300000 + 5;
   for (; p && !node[p].ch[c]; p = node[p].fa) node[p].ch[c] = np;
   if (!p) node[np].fa = 1;
                                                                             namespace pam {
   else {
                                                                                 int sz, tot, last;
       int q = node[p].ch[c];
                                                                                 int cnt[maxn], ch[maxn][26], len[maxn], fail[maxn];
       if (node[q].len == node[p].len + 1) node[np].fa = q;
                                                                                 char s[maxn];
       else {
          int nq = ++tot;
                                                                                 int node(int 1) { // 建立一个新节点,长度为 L
          node[nq] = node[q], node[nq].len = node[p].len + 1;
          node[q].fa = node[np].fa = nq;
                                                                                    memset(ch[sz], 0, sizeof(ch[sz]));
          for (; p && node[p].ch[c] == q; p = node[p].fa) node[p].ch[c]
                                                                                    len[sz] = 1;
= nq;
                                                                                    fail[sz] = cnt[sz] = 0;
                                                                                    return sz;
                                                                                 }
                                                                                 void clear() { // 初始化
void add(int a, int b) {
                                                                                    sz = -1;
   e[idx] = b, ne[idx] = h[a], h[a] = idx++;
                                                                                    last = 0;
                                                                                    s[tot = 0] = '$';
                                                                                    node(∅);
void dfs(int u) {
                                                                                    node(-1);
   for (int i = h[u]; \sim i; i = ne[i]) {
                                                                                    fail[0] = 1;
       dfs(e[i]);
       f[u] += f[e[i]];
                                                                                 int getfail(int x) { // 找后缀回文
   if (f[u] > 1) ans = max(ans, f[u] * node[u].len);
                                                                                    while (s[tot - len[x] - 1] != s[tot]) x = fail[x];
                                                                                    return x;
int main() {
   scanf("%s", str);
                                                                                 void insert(char c) { // 建树
   for (int i = 0; str[i]; i++) extend(str[i] - 'a');
                                                                                    s[++tot] = c;
   memset(h, -1, sizeof h);
                                                                                    int now = getfail(last);
   for (int i = 2; i <= tot; i++) add(node[i].fa, i);</pre>
                                                                                    if (!ch[now][c - 'a']) {
   dfs(1);
                                                                                        int x = node(len[now] + 2);
   printf("%11d\n", ans);
                                                                                        fail[x] = ch[getfail(fail[now])][c - 'a'];
                                                                                        ch[now][c - 'a'] = x;
   return 0;
                                                                                    last = ch[now][c - 'a'];
                                                                                    cnt[last]++;
回文自动机
                                                                                 long long solve() {
#include <bits/stdc++.h>
                                                                                    long long ans = 0;
                                                                                    for (int i = sz; i >= 0; i--) {
using namespace std;
                                                                                        cnt[fail[i]] += cnt[i];
```

```
for (int i = 1; i <= sz; i++) { // 更新答案
           ans = max(ans, 111 * len[i] * cnt[i]);
       return ans;
} // namespace pam
char s[maxn];
int main() {
   pam::clear();
   scanf("%s", s + 1);
   for (int i = 1; s[i]; i++) {
       pam::insert(s[i]);
   printf("%1ld\n", pam::solve());
   return 0;
马拉车
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100005;
char s[maxn];
char s_new[maxn * 2];
int p[maxn * 2];
int Manacher(char* a, int 1) {
   s_new[0] = '$';
   s new[1] = '#';
   int len = 2;
   for (int i = 0; i < 1; i++) {</pre>
       s_new[len++] = a[i];
       s new[len++] = '#';
   s new[len] = '\0';
   int id;
   int mx = 0;
   int mmax = 0;
   for (int i = 1; i < len; i++) {</pre>
       p[i] = i < mx ? min(p[2 * id - i], mx - i) : 1;
```

```
while (s \text{ new}[i + p[i]] == s \text{ new}[i - p[i]]) p[i]++;
       if (mx < i + p[i]) {
           id = i;
           mx = i + p[i];
       mmax = max(mmax, p[i] - 1);
   return mmax;
}
int main() {
   cin >> s;
   cout << Manacher(s, strlen(s));</pre>
数据结构
CDQ 分治
处理三维偏序问题,
每个node 的三维不能完全相等,完全相等的话加权做
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010;
int n, m;
struct Data
   int a, b, c, s, res;
   bool operator< (const Data& t) const</pre>
       if (a != t.a) return a < t.a;</pre>
```

```
if (b != t.b) return b < t.b;</pre>
       return c < t.c;
                                                                                        int a, b, c;
                                                                                        scanf("%d%d%d", &a, &b, &c);
   bool operator== (const Data& t) const
                                                                                       q[i] = {a, b, c, 1};
       return a == t.a && b == t.b && c == t.c;
                                                                                    sort(q, q + n);
}q[N], w[N];
                                                                                    int k = 1;
                                                                                    for (int i = 1; i < n; i ++ )</pre>
int tr[M], ans[N];
                                                                                       if (q[i] == q[k - 1]) q[k - 1].s ++ ;
int lowbit(int x)
                                                                                        else q[k ++ ] = q[i];
                                                                                    merge_sort(0, k - 1);
   return x & -x;
                                                                                    for (int i = 0; i < k; i ++ )</pre>
                                                                                        ans[q[i].res + q[i].s - 1] += q[i].s;
void add(int x, int v)
                                                                                    for (int i = 0; i < n; i ++ ) printf("%d\n", ans[i]);</pre>
   for (int i = x; i < M; i += lowbit(i)) tr[i] += v;</pre>
                                                                                    return 0;
int query(int x)
   int res = 0;
                                                                                kruskal 重构树
   for (int i = x; i; i -= lowbit(i)) res += tr[i];
   return res;
                                                                                int pa[N];
                                                                                void init(int n) {
void merge sort(int 1, int r)
                                                                                    for (int i = 0; i <= n; i++) {
                                                                                       pa[i] = i;
   if (1 >= r) return;
   int mid = 1 + r \gg 1;
                                                                                }
   merge sort(1, mid), merge sort(mid + 1, r);
   int i = 1, j = mid + 1, k = 0;
                                                                                int find(int a) {
   while (i <= mid && j <= r)
                                                                                    return pa[a] == a ? a : pa[a] = find(pa[a]);
       if (q[i].b \le q[j].b) add(q[i].c, q[i].s), w[k ++ ] = q[i ++ ];
       else q[j].res += query(q[j].c), w[k ++ ] = q[j ++ ];
   while (i \le mid) add(q[i].c, q[i].s), w[k ++ ] = q[i ++ ];
                                                                                struct edge {
   while (j \le r) \neq [j].res += query(q[j].c), w[k ++ ] = q[j ++ ];
                                                                                    int from, to, 1;
   for (i = 1; i \le mid; i ++) add(q[i].c, -q[i].s);
   for (i = 1, j = 0; j < k; i ++, j ++) q[i] = w[j];
                                                                                int w[N];
                                                                                edge e[N];
int main()
                                                                                vector<int> g[N];
   scanf("%d%d", &n, &m);
                                                                                int kruskal(int n, int m) {
   for (int i = 0; i < n; i ++ )
```

```
int kcnt = n;
                                                                               ch[y][k] = ch[x][!k], f[ch[x][!k]] = y;
                                                                               ch[x][!k] = y, f[y] = x, f[x] = z;
   init(n);
   sort(e + 1, e + 1 + m, [](edge a, edge b) { return a.l < b.l; });</pre>
                                                                               pushup(y), pushup(x);
   for (int i = 1; i <= m; i++) {</pre>
       int u = find(e[i].from);
       int v = find(e[i].to);
                                                                           // 从上到下一层一层 pushDown 即可
       if (u == v) continue;
                                                                            void update(ll p) {
       w[++kcnt] = e[i].1;
                                                                               if (!isroot(p)) update(f[p]);
       pa[kcnt] = pa[u] = pa[v] = kcnt;
                                                                               pushdown(p);
       g[u].push back(kcnt);
                                                                           }
       g[v].push_back(kcnt);
       g[kcnt].push back(u);
                                                                            inline void splay(ll x) {
       g[kcnt].push_back(v);
                                                                               update(x); // 马上就能看到啦。 在
                                                                               // Splay 之前要把旋转会经过的路径上的点都 PushDown
   return kcnt;
                                                                               for (ll fa; fa = f[x], !isroot(x); rotate(x)) {
                                                                                   if (!isroot(fa)) rotate(getch(fa) == getch(x) ? fa : x);
LCT
                                                                           // 回顾一下代码
11 ch[N][2], f[N], sum[N], val[N], tag[N], siz[N], siz2[N];
                                                                            inline void access(ll x) {
                                                                               for (11 p = 0; x; p = x, x = f[x]) {
inline void pushup(ll p) {
                                                                                   splay(x), siz2[x] += siz[ch[x][1]] - siz[p], ch[x][1] = p, pushu
   sum[p] = sum[ch[p][0]] ^ sum[ch[p][1]] ^ val[p];
                                                                            p(x);
   siz[p] = siz[ch[p][0]] + siz[ch[p][1]] + 1 + siz2[p];
inline void pushdown(ll p) {
                                                                            inline void makeroot(ll p) {
   if (tag[p]) {
                                                                               access(p);
       if (ch[p][0]) swap(ch[ch[p][0]][0], ch[ch[p][0]][1]), tag[ch[p]
                                                                               splay(p);
[0] ^= 1;
                                                                               swap(ch[p][0], ch[p][1]);
       if (ch[p][1]) swap(ch[ch[p][1]][0], ch[ch[p][1]][1]), tag[ch[p]
                                                                               tag[p] ^= 1;
[1]] ^= 1;
                                                                           }
       tag[p] = 0;
                                                                            inline void split(ll a, ll b) {
                                                                               makeroot(a);
                                                                               access(b);
11 getch(11 x) { return ch[f[x]][1] == x; }
                                                                               splay(b);
bool isroot(ll x) { return ch[f[x]][0] != x && ch[f[x]][1] != x; }
inline void rotate(ll x) {
                                                                            inline 11 find(11 p) {
   11 y = f[x], z = f[y], k = getch(x);
                                                                               access(p), splay(p);
   if (!isroot(y)) ch[z][ch[z][1] == y] = x;
                                                                               while (ch[p][0]) pushdown(p), p = ch[p][0];
   // 上面这句一定要写在前面,普通的Splay 是不用的,因为 isRoot (后面会讲)
                                                                               splay(p);
```

```
return p;
inline void link(ll x, ll y) {
   makeroot(v);
   makeroot(x);
   if (find(y) != x) {
       f[x] = y;
       siz2[y] += siz[x];
inline void cut(ll x, ll y) {
   makeroot(x);
   if (find(y) == x \&\& f[y] == x) {
       ch[x][1] = f[y] = 0;
       pushup(x);
void init(int n) {
   for (int i = 1; i <= n; i++) siz[i] = 1;
Splay
11 ch[N][2], f[N], sum[N], val[N], tag[N], siz[N];
inline void pushup(ll p) {
   sum[p] = sum[ch[p][0]] ^ sum[ch[p][1]] ^ val[p];
   siz[p] = siz[ch[p][0]] + siz[ch[p][1]] + 1;
inline void pushdown(ll p) {
   if (tag[p]) {
       if (ch[p][0]) swap(ch[ch[p][0]][0], ch[ch[p][0]][1]), tag[ch[p]
[0]] ^= 1;
       if (ch[p][1]) swap(ch[ch[p][1]][0], ch[ch[p][1]][1]), tag[ch[p]
[1]] ^= 1;
       tag[p] = 0;
   }
ll getch(ll x) { return ch[f[x]][1] == x; }
```

```
bool isroot(ll x) { return ch[f[x]][0] != x && ch[f[x]][1] != x; }
inline void rotate(ll x) {
   11 y = f[x], z = f[y], k = getch(x);
   if (!isroot(y)) ch[z][ch[z][1] == y] = x;
   // 上面这句一定要写在前面,普通的 Splay 是不用的,因为 isRoot (后面会讲)
   ch[y][k] = ch[x][!k], f[ch[x][!k]] = y;
   ch[x][!k] = y, f[y] = x, f[x] = z;
   pushup(y), pushup(x);
// 从上到下一层一层 pushDown 即可
void update(ll p) {
   if (!isroot(p)) update(f[p]);
   pushdown(p);
}
inline void splay(ll x) {
   update(x); // 马上就能看到啦。 在
   // Splay 之前要把旋转会经过的路径上的点都 PushDown
   for (11 fa; fa = f[x], !isroot(x); rotate(x)) {
       if (!isroot(fa)) rotate(getch(fa) == getch(x) ? fa : x);
// 回顾一下代码
inline void access(ll x) {
   for (11 p = 0; x; p = x, x = f[x]) {
       splay(x), ch[x][1] = p, pushup(x);
inline void makeroot(ll p) {
   access(p);
   splay(p);
   swap(ch[p][0], ch[p][1]);
   tag[p] ^= 1;
inline void split(ll a, ll b) {
   makeroot(a);
   access(b);
   splay(b);
```

```
inline ll find(ll p) {
   access(p), splay(p);
   while (ch[p][0]) pushdown(p), p = ch[p][0];
   splay(p);
   return p;
inline void link(ll x, ll y) {
   makeroot(x);
   if (find(y) != x) f[x] = y;
inline void cut(ll x, ll y) {
   makeroot(x);
   if (find(y) == x \&\& f[y] == x) {
       ch[x][1] = f[y] = 0;
       pushup(x);
ST 表
#include <bits/stdc++.h>
using namespace std;
const int logn = 21;
const int N = 2000001;
int f[N][logn + 1], lg[N + 1];
void pre() {
   lg[1] = 0;
   for (int i = 2; i < N; i++) {</pre>
       lg[i] = lg[i / 2] + 1;
int main() {
   ios::sync_with_stdio(false);
   int n, m;
   cin >> n >> m;
   for (int i = 1; i <= n; i++) cin >> f[i][0];
   pre();
```

```
for (int j = 1; j <= logn; j++)</pre>
        for (int i = 1; i + (1 << j) - 1 <= n; i++)
             f[i][j] = max(f[i][j-1], f[i+(1 << (j-1))][j-1]);
    for (int i = 1; i <= m; i++) {</pre>
        int x, y;
        cin >> x >> y;
        int s = \lg[y - x + 1];
        printf("%d\n", max(f[x][s], f[y - (1 << s) + 1][s]));
    return 0;
}
Treap
#include <bits/stdc++.h>
using namespace std;
struct node {
    node* ch[2];
    int r;
    int v;
    int cmp(int const& a) const {
        if (v == a) return -a;
        return a > v ? 1 : 0;
};
void rotate(node*& a, int d) {
    node* k = a->ch[d ^ 1];
    a \rightarrow ch[d \land 1] = k \rightarrow ch[d];
    k \rightarrow ch[d] = a;
    a = k;
void insert(node*& a, int x) {
    if (a == NULL) {
        a = new node;
        a \rightarrow ch[0] = a \rightarrow ch[1] = NULL;
        a \rightarrow v = x;
        a \rightarrow r = rand();
    } else {
        int d = a->cmp(x);
        insert(a->ch[d], x);
        if (a\rightarrow ch[d]\rightarrow r \rightarrow a\rightarrow r) rotate(a, d \land 1);
void remove(node*& a, int x) {
    int d = a \rightarrow cmp(x);
```

```
if (d == -1) {
        if (a->ch[0] == NULL)
             a = a \rightarrow ch[1];
        else if (a->ch[1] == NULL)
             a = a \rightarrow ch[0];
        else {
             int d2 = a \rightarrow ch[1] \rightarrow r > a \rightarrow ch[0] \rightarrow r ? 0 : 1;
             rotate(a, d2);
             remove(a->ch[d2], x);
    } else {
        remove(a \rightarrow ch[d], x);
int find(node*& a, int x) {
    if (a == NULL)
        return 0;
    else if (a->v == x)
        return 1;
    else {
        int d = a \rightarrow cmp(x);
        return find(a->ch[d], x);
    }
int main() {
    node* a = NULL;
    int k, 1;
    while (cin >> k >> 1) {
        if (k == 1)
             insert(a, 1);
        else if (k == 2)
             remove(a, 1);
        else {
             cout << find(a, 1) << endl;</pre>
y 总 Splay Plus
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
```

```
using namespace std;
const int N = 500010, INF = 1e9;
int n, m;
struct Node
   int s[2], p, v;
   int rev, same;
   int size, sum, ms, ls, rs;
   void init(int _v, int _p)
       s[0] = s[1] = 0, p = _p, v = _v;
       rev = same = 0;
       size = 1, sum = ms = v;
       ls = rs = max(v, 0);
}tr[N];
int root, nodes[N], tt;
int w[N];
void pushup(int x)
   auto &u = tr[x], &l = tr[u.s[0]], &r = tr[u.s[1]];
   u.size = 1.size + r.size + 1;
   u.sum = 1.sum + r.sum + u.v;
   u.ls = max(1.ls, 1.sum + u.v + r.ls);
   u.rs = max(r.rs, r.sum + u.v + 1.rs);
   u.ms = max(max(1.ms, r.ms), 1.rs + u.v + r.ls);
void pushdown(int x)
   auto &u = tr[x], &l = tr[u.s[0]], &r = tr[u.s[1]];
   if (u.same)
       u.same = u.rev = 0;
       if (u.s[0]) 1.same = 1, 1.v = u.v, 1.sum = 1.v * 1.size;
       if (u.s[1]) r.same = 1, r.v = u.v, r.sum = r.v * r.size;
       if (u.v > 0)
           if (u.s[0]) 1.ms = 1.1s = 1.rs = 1.sum;
           if (u.s[1]) r.ms = r.ls = r.rs = r.sum;
```

```
else
           if (u.s[0]) 1.ms = 1.v, 1.ls = 1.rs = 0;
           if (u.s[1]) r.ms = r.v, r.ls = r.rs = 0;
   else if (u.rev)
       u.rev = 0, 1.rev ^= 1, r.rev ^= 1;
       swap(1.ls, 1.rs), swap(r.ls, r.rs);
       swap(1.s[0], 1.s[1]), swap(r.s[0], r.s[1]);
void rotate(int x)
   int y = tr[x].p, z = tr[y].p;
   int k = tr[y].s[1] == x;
   tr[z].s[tr[z].s[1] == y] = x, tr[x].p = z;
   tr[y].s[k] = tr[x].s[k ^ 1], tr[tr[x].s[k ^ 1]].p = y;
   tr[x].s[k ^ 1] = y, tr[y].p = x;
   pushup(y), pushup(x);
void splay(int x, int k)
   while (tr[x].p != k)
       int y = tr[x].p, z = tr[y].p;
       if (z != k)
           if ((tr[y].s[1] == x) ^ (tr[z].s[1] == y)) rotate(x);
           else rotate(y);
       rotate(x);
   if (!k) root = x;
int get_k(int k)
   int u = root;
   while (u)
       pushdown(u);
       if (tr[tr[u].s[0]].size >= k) u = tr[u].s[0];
       else if (tr[tr[u].s[0]].size + 1 == k) return u;
       else k \rightarrow tr[tr[u].s[0]].size + 1, u = tr[u].s[1];
```

```
}
int build(int 1, int r, int p)
   int mid = 1 + r \gg 1;
   int u = nodes[tt -- ];
   tr[u].init(w[mid], p);
   if (1 < mid) tr[u].s[0] = build(1, mid - 1, u);
   if (mid < r) tr[u].s[1] = build(mid + 1, r, u);
   pushup(u);
   return u;
void dfs(int u)
   if (tr[u].s[0]) dfs(tr[u].s[0]);
   if (tr[u].s[1]) dfs(tr[u].s[1]);
   nodes[ ++ tt] = u;
int main()
   for (int i = 1; i < N; i ++ ) nodes[ ++ tt] = i;</pre>
   scanf("%d%d", &n, &m);
   tr[0].ms = w[0] = w[n + 1] = -INF;
   for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);</pre>
   root = build(0, n + 1, 0);
   char op[20];
   while (m -- )
       scanf("%s", op);
       if (!strcmp(op, "INSERT"))
           int posi, tot;
           scanf("%d%d", &posi, &tot);
           for (int i = 0; i < tot; i ++ ) scanf("%d", &w[i]);</pre>
           int l = get_k(posi + 1), r = get_k(posi + 2);
           splay(1, 0), splay(r, 1);
           int u = build(0, tot - 1, r);
           tr[r].s[0] = u;
           pushup(r), pushup(1);
       else if (!strcmp(op, "DELETE"))
```

```
scanf("%d%d", &posi, &tot);
       int 1 = get_k(posi), r = get_k(posi + tot + 1);
       splay(1, 0), splay(r, 1);
       dfs(tr[r].s[0]);
       tr[r].s[0] = 0;
       pushup(r), pushup(1);
   else if (!strcmp(op, "MAKE-SAME"))
       int posi, tot, c;
       scanf("%d%d%d", &posi, &tot, &c);
       int 1 = get_k(posi), r = get_k(posi + tot + 1);
       splay(1, ∅), splay(r, 1);
       auto& son = tr[tr[r].s[0]];
       son.same = 1, son.v = c, son.sum = c * son.size;
       if (c > 0) son.ms = son.ls = son.rs = son.sum;
       else son.ms = c, son.ls = son.rs = 0;
       pushup(r), pushup(1);
   else if (!strcmp(op, "REVERSE"))
       int posi, tot;
       scanf("%d%d", &posi, &tot);
       int l = get_k(posi), r = get_k(posi + tot + 1);
       splay(1, 0), splay(r, 1);
       auto& son = tr[tr[r].s[0]];
       son.rev ^= 1;
       swap(son.ls, son.rs);
       swap(son.s[0], son.s[1]);
       pushup(r), pushup(1);
   else if (!strcmp(op, "GET-SUM"))
       int posi, tot;
       scanf("%d%d", &posi, &tot);
       int l = get_k(posi), r = get_k(posi + tot + 1);
       splay(1, ∅), splay(r, 1);
       printf("%d\n", tr[tr[r].s[0]].sum);
   else printf("%d\n", tr[root].ms);
return 0;
```

int posi, tot;

```
y 总 Splay
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
struct node {
   int p, v, s[2];
   int siz, tag;
   void init(int _v, int _p) {
       v = v_, p = p_;
       siz = 1;
};
node tr[N];
int root, idx;
void pushup(int x) { tr[x].siz = tr[tr[x].s[0]].siz + tr[tr[x].s[1]].si
z + 1; }
void pushdown(int x) {
   if (tr[x].tag) {
       swap(tr[x].s[0], tr[x].s[1]);
       tr[tr[x].s[0]].tag ^= 1;
       tr[tr[x].s[1]].tag ^= 1;
       tr[x].tag = 0;
}
void rotate(int x) {
        pushdown(x);
   int y = tr[x].p, z = tr[y].p;
   int k = tr[y].s[1] == x;
   tr[y].s[k] = tr[x].s[k ^ 1], tr[tr[y].s[k]].p = y;
   tr[x].s[k ^ 1] = y, tr[y].p = x;
   tr[z].s[tr[z].s[1] == y] = x, tr[x].p = z;
   pushup(y), pushup(x);
void splay(int x, int k) {
   while (tr[x].p != k) {
       int y = tr[x].p, z = tr[y].p;
       if (z != k) {
           if ((tr[z].s[1] == y) ^ (tr[y].s[1] == x)) {
              rotate(x);
           } else {
              rotate(y);
```

```
rotate(x);
   if (!k) root = x;
void insert(int v) {
   int u = root, p = 0;
   while (u) p = u, u = tr[u].s[v > tr[u].v];
   u = ++idx;
   if (p) tr[p].s[v > tr[p].v] = u;
   tr[u].init(v, p);
   splay(u, 0);
int getk(int k) {
   int u = root;
   while (1) {
       pushdown(u);
       if (k <= tr[tr[u].s[0]].siz) {</pre>
           u = tr[u].s[0];
       } else if (k == tr[tr[u].s[0]].siz + 1) {
           splay(u, ∅);
           return u;
       } else {
           k = tr[tr[u].s[0]].siz + 1, u = tr[u].s[1];
int n, m;
void output(int u) {
   if (u == 0) return;
   pushdown(u);
   output(tr[u].s[0]);
   if (1 <= tr[u].v && tr[u].v <= n) cout << tr[u].v << ' ';</pre>
   output(tr[u].s[1]);
int main() {
   ios::sync with stdio(0), cin.tie(0), cout.tie(0);
   cin >> n >> m;
   for (int i = 0; i <= n + 1; i++) insert(i);</pre>
   while (m--) {
       int a, b;
```

```
cin >> a >> b;
       int id1 = getk(a), id2 = getk(b + 2);
       splay(id1, 0), splay(id2, id1);
       tr[tr[id2].s[0]].tag ^= 1;
    output(root);
主席树
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const 11 N = 1 << 20;
11 ch[N << 5][2], rt[N], tot;</pre>
ll val[N << 5];
11 update(ll a, ll b) {
    return a + b;
ll build(ll l, ll r) { // 建树
   11 p = ++tot;
    if (1 == r) {
       //初始化
       val[p] = 0;
       return p;
   11 \text{ mid} = (1 + r) >> 1;
    ch[p][0] = build(1, mid);
    ch[p][1] = build(mid + 1, r);
    val[p] = update(val[ch[p][0]], val[ch[p][1]]);
    return p; // 返回该子树的根节点
ll modify(ll pre, ll l, ll r, ll pos, ll v) { // 插入操作
    11 \text{ now} = ++\text{tot};
    ch[now][0] = ch[pre][0], ch[now][1] = ch[pre][1];
    if (1 == r) {
       val[now] = val[pre] + v;
       return now;
```

```
11 \text{ mid} = (1 + r) >> 1;
                                                                          #include <cstring>
   if (pos <= mid)</pre>
                                                                          #include <algorithm>
       ch[now][0] = modify(ch[now][0], 1, mid, pos, v);
                                                                          using namespace std;
       ch[now][1] = modify(ch[now][1], mid + 1, r, pos, v);
   val[now] = update(val[ch[now][0]], val[ch[now][1]]);
                                                                          const int N = 12010, M = N * 3;
   return now;
                                                                          int n, m, Q, new n;
                                                                          int h1[N], h2[N], e[M], w[M], ne[M], idx;
ll kth(ll pre, ll now, ll l, ll r, ll k) { // 查询操作
                                                                          int dfn[N], low[N], cnt;
                                                                          int s[N], stot[N], fu[N], fw[N];
   11 \text{ mid} = (1 + r) >> 1;
                                                                          int fa[N][14], depth[N], d[N];
   ll x = val[ch[now][0]] - val[ch[pre][0]]; // 通过区间减法得到左儿子的
                                                                          int A, B;
信息
   if (1 == r) return 1;
                                                                          void add(int h[], int a, int b, int c)
   if (k <= x) // 说明在左儿子中
       return kth(ch[pre][0], ch[now][0], 1, mid, k);
                                                                              e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
   else // 说明在右儿子中
       return kth(ch[pre][1], ch[now][1], mid + 1, r, k - x);
                                                                          void build circle(int x, int y, int z)
ll query(ll pre, ll now, ll l, ll r, ll ql, ll qr) { // 查询操作
                                                                              int sum = z;
   if (ql <= 1 && r <= qr) {
                                                                              for (int k = y; k != x; k = fu[k])
       return val[now] - val[pre];
                                                                                 s[k] = sum;
   if (qr < 1 || r < ql) {
                                                                                 sum += fw[k];
      return 0:
                                                                              s[x] = stot[x] = sum;
   11 \text{ mid} = (1 + r) >> 1;
                                                                              add(h2, x, ++ new_n, 0);
   11 lv = query(ch[pre][0], ch[now][0], 1, mid, ql, qr);
                                                                              for (int k = y; k != x; k = fu[k])
   ll rv = query(ch[pre][1], ch[now][1], mid + 1, r, ql, qr);
   return update(lv, rv);
                                                                                 stot[k] = sum;
                                                                                 add(h2, new_n, k, min(s[k], sum - s[k]));
//修改查询记得用rt[]!!!
                                                                          }
仙人掌
                                                                          void tarjan(int u, int from)
                                                                              dfn[u] = low[u] = ++ cnt;
仙人掌:任意一条边至多只出现在一条简单回路的无向连通图称为仙人掌。
                                                                              for (int i = h1[u]; \sim i; i = ne[i])
转化为圆方树,然后根据树的算法来做一些问题,注意区分圆点和方点
                                                                                 int j = e[i];
这题: 求带环(环和环之间无公共边)无向图两点间的最短路径
                                                                                 if (!dfn[j])
*/
                                                                                     fu[j] = u, fw[j] = w[i];
#include <iostream>
                                                                                     tarjan(j, i);
```

```
low[u] = min(low[u], low[j]);
           if (dfn[u] < low[j]) add(h2, u, j, w[i]);</pre>
       else if (i != (from ^ 1)) low[u] = min(low[u], dfn[j]);
   for (int i = h1[u]; \sim i; i = ne[i])
       int j = e[i];
       if (dfn[u] < dfn[j] && fu[j] != u)</pre>
           build_circle(u, j, w[i]);
void dfs lca(int u, int father)
   depth[u] = depth[father] + 1;
   fa[u][0] = father;
   for (int k = 1; k <= 13; k ++ )
       fa[u][k] = fa[fa[u][k - 1]][k - 1];
   for (int i = h2[u]; \sim i; i = ne[i])
       int j = e[i];
       d[j] = d[u] + w[i];
       dfs lca(j, u);
int lca(int a, int b)
   if (depth[a] < depth[b]) swap(a, b);</pre>
   for (int k = 13; k >= 0; k -- )
       if (depth[fa[a][k]] >= depth[b])
           a = fa[a][k];
   if (a == b) return a;
   for (int k = 13; k >= 0; k -- )
       if (fa[a][k] != fa[b][k])
           a = fa[a][k];
           b = fa[b][k];
   A = a, B = b;
   return fa[a][0];
int main()
```

```
scanf("%d%d%d", &n, &m, &Q);
   new_n = n;
   memset(h1, -1, sizeof h1);
   memset(h2, -1, sizeof h2);
   while (m -- )
       int a, b, c;
       scanf("%d%d%d", &a, &b, &c);
       add(h1, a, b, c), add(h1, b, a, c);
   tarjan(1, -1);
   dfs_lca(1, 0);
   while (Q -- )
       int a, b;
       scanf("%d%d", &a, &b);
       int p = lca(a, b);
       if (p \le n) printf("%d\n", d[a] + d[b] - d[p] * 2);
       else
           int da = d[a] - d[A], db = d[b] - d[B];
           int 1 = abs(s[A] - s[B]);
           int dm = min(1, stot[A] - 1);
           printf("%d\n", da + dm + db);
   return 0;
区间 max
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 1 \ll 20;
struct node {
   int mmax, semax, cnt;
   11 sum;
};
```

```
node tree[N << 1];</pre>
int init[N << 1];</pre>
node merge_range(node a, node b) {
   node ans;
   ans.sum = a.sum + b.sum;
   if (a.mmax == b.mmax) {
       ans.mmax = a.mmax;
       ans.cnt = a.cnt + b.cnt;
       ans.semax = max(a.semax, b.semax);
       if (a.mmax < b.mmax) swap(a, b);</pre>
       ans.mmax = a.mmax;
       ans.cnt = a.cnt;
       ans.semax = max(a.semax, b.mmax);
   return ans;
void build(int k, int l, int r) {
   if (1 == r) {
       tree[k] = {init[l], -1, 1, init[l]};
       return;
   int mid = (1 + r) >> 1;
   build(k << 1, 1, mid);
   build(k \ll 1 \mid 1, mid + 1, r);
   tree[k] = merge range(tree[k << 1], tree[k << 1 | 1]);
void pushdown(int k, int l, int r) {
   if (1 == r) return;
   if (tree[k].mmax < tree[k << 1].mmax) {</pre>
       tree[k << 1].sum -= 1LL * (tree[k << 1].mmax - tree[k].mmax) * tr
ee[k << 1].cnt;</pre>
       tree[k << 1].mmax = tree[k].mmax;</pre>
   if (tree[k].mmax < tree[k << 1 | 1].mmax) {</pre>
       tree[k << 1 \mid 1].sum -= 1LL * (tree[k << 1 \mid 1].mmax - tree[k].mm
ax) * tree[k << 1 | 1].cnt;
       tree[k << 1 \mid 1].mmax = tree[k].mmax;
```

```
node query(int k, int l, int r, int ql, int qr) {
   if (qr < 1 | | r < ql) return {0, -1, 1, 0};
   if (ql <= 1 && r <= qr) {
       return tree[k];
   pushdown(k, 1, r);
   int mid = (1 + r) >> 1;
   node lq = query(k \ll 1, 1, mid, ql, qr);
   node rq = query(k \ll 1 \mid 1, mid + 1, r, ql, qr);
   return merge range(lq, rq);
void modify(int k, int l, int r, int ql, int qr, int x) {
   if (qr < 1 | | r < ql) return;
   if (q1 <= 1 && r <= qr && tree[k].semax < x) {</pre>
       if (x < tree[k].mmax) {</pre>
           tree[k].sum -= 1LL * (tree[k].mmax - x) * tree[k].cnt;
           tree[k].mmax = x;
       return;
   pushdown(k, 1, r);
   int \ mid = (1 + r) >> 1;
   modify(k \ll 1, 1, mid, ql, qr, x);
   modify(k \ll 1 \mid 1, mid + 1, r, ql, qr, x);
   tree[k] = merge\_range(tree[k << 1], tree[k << 1 | 1]);
signed main() {
     freopen("data.txt", "r", stdin);
    freopen("test1.txt", "w", stdout);
   int t;
   scanf("%d", &t);
   while (t--) {
       int n, q;
       scanf("%d%d", &n, &q);
       for (int i = 1; i <= n; i++) scanf("%d", &init[i]);</pre>
       build(1, 1, n);
       while (q--) {
           int x, y, op, val;
           scanf("%d%d%d", &op, &x, &y);
           if (op == 0) {
               scanf("%d", &val);
               modify(1, 1, n, x, y, val);
           } else if (op == 1) {
```

```
node ans = query(1, 1, n, x, y);
              printf("%d\n", ans.mmax);
          } else {
                                                                          bool cmp(const Query& a, const Query& b)
              node ans = query(1, 1, n, x, y);
              printf("%11d\n", ans.sum);
                                                                             int i = get(a.1), j = get(b.1);
                                                                             if (i != j) return i < j;</pre>
      }
                                                                             return a.r < b.r;</pre>
                                                                          void add(int x, LL% res)
回滚莫队
                                                                             cnt[x] ++ ;
                                                                             res = max(res, (LL)cnt[x] * nums[x]);
离线, 询问按左端点升序为第一关键字, 右端点升序为第二关键字
                                                                          int main()
对于都在块内的点直接暴力,否则跨块:
若当前左端点所属的块与上一个不同,则将左端点初始为当前块的右端点+1,右端点初始
                                                                             scanf("%d%d", &n, &m);
为当前块的右端点
                                                                             len = sqrt(n);
左端点每次暴力, 右端点单调
                                                                             for (int i = 1; i \le n; i ++) scanf("%d", &w[i]), nums.push back(w
*/
                                                                             sort(nums.begin(), nums.end());
#include <iostream>
                                                                             nums.erase(unique(nums.begin(), nums.end()), nums.end());
#include <cstring>
                                                                             for (int i = 1; i <= n; i ++ )</pre>
#include <cstdio>
                                                                                 w[i] = lower_bound(nums.begin(), nums.end(), w[i]) - nums.begin
#include <algorithm>
                                                                          ();
#include <cmath>
#include <vector>
                                                                             for (int i = 0; i < m; i ++ )
using namespace std;
                                                                                 int 1, r;
                                                                                 scanf("%d%d", &1, &r);
typedef long long LL;
                                                                                 q[i] = \{i, 1, r\};
const int N = 100010;
                                                                             sort(q, q + m, cmp);
int n, m, len;
int w[N], cnt[N];
                                                                             for (int x = 0; x < m;)
LL ans[N];
struct Query
                                                                                 int y = x;
                                                                                 while (y < m \&\& get(q[y].1) == get(q[x].1)) y ++ ;
   int id, 1, r;
                                                                                 int right = get(q[x].1) * len + len - 1;
}a[N];
vector<int> nums;
                                                                                 // 暴力求块内的询问
                                                                                 while (x < y \&\& q[x].r <= right)
int get(int x)
                                                                                    LL res = 0;
   return x / len;
                                                                                    int id = q[x].id, l = q[x].l, r = q[x].r;
```

```
for (int k = 1; k \le r; k ++ ) add(w[k], res);
           ans[id] = res;
           for (int k = 1; k <= r; k ++ ) cnt[w[k]] -- ;
          x ++ ;
       // 求块外的询问
       LL res = 0;
       int i = right, j = right + 1;
       while (x < y)
           int id = q[x].id, 1 = q[x].1, r = q[x].r;
           while (i < r) add(w[ ++ i], res);
          LL backup = res;
           while (j > 1) add(w[ -- j], res);
           ans[id] = res;
           while (j < right + 1) cnt[w[j ++ ]] -- ;</pre>
           res = backup;
          x ++ ;
       memset(cnt, 0, sizeof cnt);
   for (int i = 0; i < m; i ++ ) printf("%lld\n", ans[i]);</pre>
   return 0;
带修莫队
#include <bits/stdc++.h>
using namespace std;
const int N = 10010;
int a[N], cnt[1000010], ans[N];
int len, mq, mc;
struct Ouery {
        int id, 1, r, t;
} q[N];
struct Modify {
        int p, c;
```

```
} c[N];
int getNum(int x) {
        return x / len;
// L 所在块的编号, r 所在块的编号, t 升序
bool cmp(const Query& a, const Query& b) {
        if(getNum(a.1) == getNum(b.1) \&\& getNum(a.r) == getNum(b.r)) {
                 return a.t < b.t;</pre>
        if(getNum(a.1) == getNum(b.1)) return a.r < b.r;</pre>
        return a.1 < b.1;
}
void add(int x, int& res) {
    if (!cnt[x]) res ++ ;
    cnt[x] ++;
void del(int x, int& res) {
    cnt[x] -- ;
    if (!cnt[x]) res -- ;
int main() {
        ios::sync with stdio(∅); cin.tie(∅); cout.tie(∅);
        int n, m;
        cin >> n >> m;
        char op;
        int x, y;
        for(int i = 1; i <= n; ++ i) {
                 cin >> a[i];
        for(int i = 1; i <= m; ++ i) {</pre>
                 cin >> op >> x >> y;
       if (op == 'Q') q[++ mq] = \{mq, x, y, mc\};
       else c[ ++ mc] = \{x, y\};
        }
  ///
        len = cbrt((double)n * mc) + 1;
```

```
sort(q + 1, q + mq + 1, cmp);
                                                                               int len;
        int i = 1, j = 0, t = 0, res = 0;
                                                                               int ans[M], cnt[1000010];
        for(int k = 1; k \le mq; ++ k) {
                int id = q[k].id, 1 = q[k].1, r = q[k].r, tm = q[k].t;
                                                                               int getNum(int 1) {
                while(j < r) add(a[++ j], res);</pre>
                                                                                       return 1 / len;
                while(j > r) del(a[j --], res);
                while(i < 1) del(a[i ++], res);</pre>
                while(i > 1) add(a[-- i], res);
                                                                               //左指针的分块,右指针的大小
                while(t < tm) {</pre>
                                                                               bool cmp (const node &a, const node & b) {
                         ++ t;
                                                                                       if(getNum(a.1) == getNum(b.1)) return a.r < b.r;</pre>
                         if(c[t].p >= i && c[t].p <= j) {
                                                                                       return a.1 < b.1;
                                  del(a[c[t].p], res);
                                  add(c[t].c, res);
                                                                               /* 奇偶优化
                                                                               struct node {
                         swap(a[c[t].p], c[t].c);
                                                                                 int L, r, id;
                                                                                 bool operator<(const node &x) const {</pre>
                while(t > tm) {
                                                                                   if (l / unit != x.l / unit) return l < x.l;</pre>
                         if(c[t].p >= i && c[t].p <= j) {</pre>
                                                                                   if ((L / unit) & 1)
                                  del(a[c[t].p], res);
                                                                                    return r < x.r; // 注意这里和下面一行不能写小于 (大于) 等于
                                  add(c[t].c, res);
                                                                                   return r > x.r;
                         swap(a[c[t].p], c[t].c);
                                                                              };
*/
                         -- t;
                ans[id] = res;
                                                                               void add(int x, int& res) {
                                                                                       if(cnt[x] == 0) res++;
                                                                                       cnt[x] ++;
        for(int i = 1; i <= mq; ++ i) {</pre>
                                                                               }
                cout << ans[i] << endl;</pre>
                                                                               void del(int x, int& res) {
                                                                                       cnt[x] --;
                                                                                       if(cnt[x] == 0) res --;
                                                                               }
普通莫队
                                                                               int main() {
#include <bits/stdc++.h>
                                                                                       ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
using namespace std;
                                                                                       int n;
const int N = 1e6 + 10, M = 1e6 + 10;
                                                                                       cin >> n;
int a[N];
                                                                                       for(int i = 1; i <= n; ++ i) {</pre>
                                                                                                cin >> a[i];
struct node {
        int id, 1, r;
                                                                                       int m;
} mp[M];
                                                                                       cin >> m;
```

```
len = sqrt((double)n * n / m);
                                                                                           x = (x + 1);
        for(int i = 1; i <= m; ++ i) {</pre>
                 mp[i].id = i;
                 cin >> mp[i].1 >> mp[i].r;
                                                                                   T get(int x) {
        sort(mp + 1, mp + m + 1, cmp);
                                                                                      T v{};
                                                                                       while (x >= 0) {
        //离线处理询问
                                                                                           v += fenw[x];
                                                                                           //if(v>=mod)v-=mod;
        int res = 0, i = 0, j = 0;
                                                                                           x = (x & (x + 1)) - 1;
        for(int k = 1; k <= m; ++ k) {
                 int id = mp[k].id, l = mp[k].l, r = mp[k].r;
                 while(j < r) add(a[++j], res);</pre>
                                                                                       return v;
                 while(j > r) del(a[j--], res);
                 while(i < 1) del(a[i++], res);</pre>
                                                                                   T gets(int l,int r){
                 while(i > 1) add(a[--i], res);
                                                                                      T res=get(r)-get(l-1);
                 ans[id] = res;
                                                                                       //if(res<0)res+=mod;</pre>
                                                                                       return res;
        for(int i = 1; i <= m; ++ i) {</pre>
                                                                               };
                 cout << ans[i] << endl;</pre>
        return 0;
                                                                               线段树合并分裂
                                                                               11 nodetot, recycnt, bac[N << 5], ch[N << 5][2], rt[N];</pre>
                                                                               11 val[N << 5];</pre>
树状数组 (fenwick)
                                                                               11 newnod() { return (recycnt ? bac[recycnt--] : ++nodetot); }
template <typename T>
struct fenwick {
                                                                               void recyc(ll p) {
   vector<T> fenw;
   int n;
                                                                                   bac[++recycnt] = p, ch[p][0] = ch[p][1] = val[p] = 0;
                                                                                   return;
   fenwick(int n) : n( n) {
       fenw.resize(n);
                                                                               void pushdown(ll p) {
   void clear(){
       fenw.clear();
       fenw.resize(n);
                                                                               void pushup(ll p) {
                                                                                   val[p] = 0;
                                                                                   if (ch[p][0]) val[p] += val[ch[p][0]];
                                                                                   if (ch[p][1]) val[p] += val[ch[p][1]];
   void modify(int x, T v) {
                                                                               }
       while (x < n) {
           fenw[x] += v;
                                                                               void modify(11 &p, 11 1, 11 r, 11 pos, 11 v) {
           //if(fenw[x]>=mod)fenw[x]-=mod;
```

```
if (!p) { p = newnod(); }
                                                                                 pushup(p);
                                                                                                               // pushup
   if (1 == r) {
                                                                                 return p;
       val[p] += v;
       return;
                                                                             void split(ll x, ll &v, ll k) {
   11 \text{ mid} = (1 + r) >> 1;
                                                                                 if (x == 0) return;
// pushdown(p);
                                                                                 y = newnod();
   if (pos <= mid) { modify(ch[p][0], 1, mid, pos, v); }</pre>
                                                                                11 v = val[ch[x][0]];
   else { modify(ch[p][1], mid + 1, r, pos, v); }
                                                                             // pushdown(x);
                                                                                 if (k > v) { split(ch[x][1], ch[y][1], k - v); }
   pushup(p);
   return;
                                                                                 else { swap(ch[x][1], ch[y][1]); }
                                                                                 if (k < v) { split(ch[x][0], ch[y][0], k); }</pre>
                                                                                 val[y] = val[x] - k;
11 query(11 p, 11 l, 11 r, 11 x1, 11 xr) {
                                                                                 val[x] = k;
   if (xr < 1 || r < xl) { return 0; }</pre>
                                                                                 return;
   if (xl <= 1 && r <= xr) { return val[p]; }</pre>
   11 \text{ mid} = (1 + r) >> 1;
// pushdown(p);
   return query(ch[p][0], 1, mid, x1, xr) + query(ch[p][1], mid + 1, r,
                                                                             舞蹈链(多重覆盖)
x1, xr);
                                                                             #include <bits/stdc++.h>
                                                                             using namespace std;
ll kth(ll p, ll l, ll r, ll k) {
                                                                             struct DLX {
   if (1 == r) { return 1; }
                                                                                 static const int maxn = 1000:
                                                                                                                  //列的上限
   11 \text{ mid} = (1 + r) >> 1;
                                                                                 static const int maxr = 1000;
                                                                                                                  //解的上限
// pushdown(p);
                                                                                 static const int maxnode = 5000; //总结点数上限
   if (val[ch[p][0]] >= k) { return kth(ch[p][0], 1, mid, k); }
                                                                                 static const int INF = 10000000000;
   else { return kth(ch[p][1], mid + 1, r, k - val[ch[p][0]]); }
                                                                                 int n. sz:
                                                                                 int S[maxn];
11 merge(ll x, ll y, ll l, ll r) {
                                                                                 int row[maxnode], col[maxnode];
   if (!x || !y) {
                                                                                 int L[maxnode], R[maxnode], U[maxnode], D[maxnode];
       return x + y;
   } // 只有一边有点,不用合并
                                                                                 int ansd, ans[maxr];
   11 p = newnod(); // 创建一个新结点 p
   if (1 == r) {
                                // 边界(某些时候可以省略,见下面一个代
                                                                                 int vis[maxnode];
码)
       val[p] = val[x] + val[y];
                                                                                 void init(int n) {
       return p;
                                                                                    this->n = n;
// pushdown(x), pushdown(y);
                                                                                    //虚拟节点
   11 \text{ mid} = (1 + r) >> 1;
                                                                                    for (int i = 0; i <= n; i++) {
   ch[p][0] = merge(ch[x][0], ch[y][0], 1, mid);
                                                                                        U[i] = i;
   ch[p][1] = merge(ch[x][1], ch[y][1], mid + 1, r);
                                                                                        D[i] = i;
   recvc(x), recvc(y);
                                // 垃圾回收
                                                                                        L[i] = i - 1;
```

```
R[i] = i + 1;
      R[n] = 0;
     L[0] = n;
      sz = n + 1;
      memset(S, 0, sizeof(S));
   void addRow(int r, vector<int> columns) {
      int first = sz;
      for (int i = 0; i < columns.size(); i++) {</pre>
         int c = columns[i];
         L[sz] = sz - 1;
         R[sz] = sz + 1;
         D[sz] = c;
         U[sz] = U[c];
         D[U[c]] = sz;
         U[c] = sz;
         row[sz] = r;
         col[sz] = c;
         S[c]++;
         SZ++;
      R[sz - 1] = first;
      L[first] = sz - 1;
#define FOR(i, A, s) for (int i = A[s]; i != s; i = A[i])
   void remove(int c) {
      FOR(i, D, c) \{ L[R[i]] = L[i], R[L[i]] = R[i]; \}
   void restore(int c) {
      FOR(i, U, c) { L[R[i]] = i, R[L[i]] = i; }
   int f check() //精确覆盖区估算剪枝
      /*
      强剪枝。这个
      剪枝利用的思想是A*搜索中的估价函数。即,对于当前的递归深度K 下的矩
阵,估计其最好情况下(即最少还需要多少步)才能出解。也就是,如果将能够覆盖当
      前列的所有行全部洗中,去掉这些行能够覆盖到的列,将这个操作作为一层深
度。重复此操作直到所有列全部出解的深度是多少。如果当前深度加上这个估价函数返
      回值,其和已然不能更优(也就是已经超过当前最优解),则直接返回,不必再
搜。
```

```
*/
   int ret = 0;
   FOR(c, R, 0) vis[c] = true;
   FOR(c, R, 0)
   if (vis[c]) {
      ret++;
      vis[c] = false;
      FOR(i, D, c)
      FOR(j, R, i) vis[col[j]] = false;
   return ret;
// d 为递归深度
void dfs(int d, vector<int>& v) {
   if (d + f_check() >= ansd) return;
   if (R[0] == 0) {
      if (d < ansd) {</pre>
          ansd = d;
          v.clear();
          for (int i = 0; i < ansd; i++) {</pre>
             v.push_back(ans[i]);
              //找到解
      return; //记录解的长度
   //找到S最小的列c
   int c = R[0];
   FOR(i, R, 0)
   if (S[i] < S[c])
      c = i;
                //第一个未删除的列
                //删除第c列
   FOR(i, D, c) { //用结点 i 所在的行能覆盖的所有其他列
      ans[d] = row[i];
      remove(i);
      FOR(j, R, i) remove(j); //删除结点i所在的能覆的所有其他列
      dfs(d + 1, v);
      FOR(j, L, i) restore(j);
      restore(i); //恢复结点i所在的行能覆盖的所有其他列
                 //恢复第c列
bool solve(vector<int>& v) {
   v.clear();
```

```
ansd = INF;
       dfs(0, v);
                                                                                    //虚拟节点
       return !v.empty();
                                                                                    for (int i = 0; i <= n; i++) {
                                                                                       U[i] = i;
};
                                                                                       D[i] = i;
//使用时 init 初始化, vector 中存入 r 行结点列表用 addRow 加行, solve(ans) 后答
                                                                                       L[i] = i - 1;
案按行的选择在 ans 中
                                                                                       R[i] = i + 1;
DLX dlx;
                                                                                    R[n] = 0;
int main() {
                                                                                    L[0] = n;
   int n, m;
   cin >> n >> m;
                                                                                    sz = n + 1;
   dlx.init(m);
   for (int i = 1; i <= n; i++) {</pre>
                                                                                    memset(S, 0, sizeof(S));
       vector<int> v;
       for (int j = 1; j <= m; j++) {
                                                                                void addRow(int r, vector<int> columns) {
           int a;
           cin >> a;
                                                                                    int first = sz;
                                                                                    for (int i = 0; i < columns.size(); i++) {</pre>
           if (a == 1) v.push back(j);
                                                                                        int c = columns[i];
                                                                                       L[sz] = sz - 1;
       dlx.addRow(i, v);
                                                                                        R[sz] = sz + 1;
                                                                                        D[sz] = c;
   vector<int> ans;
   dlx.solve(ans);
                                                                                       U[sz] = U[c];
                                                                                        D[U[c]] = sz;
   for (int i = 0; i < ans.size(); i++) cout << ans[i];</pre>
                                                                                       U[c] = sz;
                                                                                        row[sz] = r;
                                                                                        col[sz] = c;
                                                                                        S[c]++;
舞蹈链 (精确覆盖)
                                                                                        SZ++;
#include <bits/stdc++.h>
                                                                                    R[sz - 1] = first;
using namespace std;
                                                                                    L[first] = sz - 1;
struct DLX {
   static const int maxn = 1000;
                                     //列的上限
                                                                             #define FOR(i, A, s) for (int i = A[s]; i != s; i = A[i])
   static const int maxr = 1000;
                                     //解的上限
                                                                                void remove(int c) {
   static const int maxnode = 5000; //总结点数上限
                                                                                    L[R[c]] = L[c];
   int n, sz;
                                                                                    R[L[c]] = R[c];
   int S[maxn];
                                                                                    FOR(i, D, c)
                                                                                    FOR(j, R, i) {
   int row[maxnode], col[maxnode];
                                                                                       U[D[j]] = U[j];
   int L[maxnode], R[maxnode], U[maxnode], D[maxnode];
                                                                                       D[U[j]] = D[j];
                                                                                        --S[col[j]];
   int ansd, ans[maxr];
   void init(int n) {
       this->n = n;
                                                                                void restore(int c) {
```

```
FOR(i, U, c)
                                                                            案按行的选择在 ans 中
       FOR(j, L, i) {
          ++S[col[j]];
          U[D[j]] = j;
          D[U[j]] = j;
                                                                           数论
                                                                            BSGS 扩展 BSGS
       L[R[c]] = c;
       R[L[c]] = c;
                                                                           BSGS
   // d 为递归深度
                                                                           求a^t \equiv b \pmod{p} (a,p) = 1 的最小的 t
   bool dfs(int d) {
       if (R[0] == 0) {
                                                                                                t = x \times k - y, x \in [1, k], y \in [0, k - 1]
          ansd = d;
                      //找到解
                                                                                                t \in [1, k^2]
          return true; //记录解的长度
                                                                                                      a^k x \equiv b \times a^y \pmod{p}
                                                                           对 b \times a^y 建立 hash 表, 枚举 x 看是否有解
       //找到5 最小的列c
       int c = R[0];
                                                                           #include <bits/stdc++.h>
       FOR(i, R, 0) if (S[i] < S[c]) c = i; //第一个未删除的列
                                                                           using namespace std;
                      //删除第c列
       remove(c);
                                                                           typedef long long 11;
       FOR(i, D, c) { //用结点i 所在的行能覆盖的所有其他列
          ans[d] = row[i];
                                                                           unordered map<int , int> mp;
          FOR(j, R, i) remove(col[j]); //删除结点i 所在的能覆的所有其他
列
                                                                           int bsgs(int a, int p, int b) {
          if (dfs(d + 1)) return true;
          FOR(j, L, i) restore(col[j]); //恢复结点i 所在的行能覆盖的所有
                                                                                   if (1 % p == b % p) return 0; // 特判0 是不是解
其他列
                                                                                   mp.clear();
       restore(c); //恢复第c列
                                                                                   int k = sqrt(p) + 1;
       return false;
                                                                                   for(int i = 0, j = b % p; i < k; ++ i, j = (11)j * a % p) {
                                                                                            mp[j] = i;
   bool solve(vector<int>& v) {
       v.clear();
                                                                                   int ak = 1;
       if (!dfs(0)) return false;
                                                                                   for(int i = 0; i < k; ++i) {</pre>
       for (int i = 0; i < ansd; i++) v.push_back(ans[i]);</pre>
                                                                                            ak = (11)ak * a % p;
       return true;
};
                                                                                   for(int i = 1, j = ak \% p; i <= k; ++ i, j = (l1)j * ak % p) {
//使用时 init 初始化, vector 中存入 r 行结点列表用 addRow 加行, solve(ans) 后答
                                                                                            if(mp.count(j)) return (ll)i * k - mp[j];
```

```
int main() {
            ios::sync_with_stdio(0);
            cin.tie(0); cout.tie(0);
           int a, p, b;
           while(cin >> a >> p >> b, a | p | b) {
                       int res;
                       res = bsgs(a, p, b);
                       if(res == -1) {
                                   cout << "No Solution\n";</pre>
                       else {
                                  cout << res << endl;</pre>
           }
           return 0;
扩展 BSGS
求a^t \equiv b \pmod{p} 的最小的 t
 <math> \pm (a,p) ! = 1 
(a,p) = d d \nmid b 无解
a^t \equiv b \pmod{p} , a^t + kp = b 两边同时除以 d, \frac{a}{d}a^{t-1} + k\frac{p}{d} = \frac{b}{d}
                                         a^{t-1} \equiv \frac{b}{d} \left(\frac{a}{d}\right)^{-1}
                                 t' = t - 1, p' = \frac{p}{d}, b' = \frac{b}{a} \left(\frac{a}{d}\right)^{-1}
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
unordered_map<11, 11> mp;
```

return -1;

```
11 bsgs(l1 a, l1 p, l1 b) {
        if(1 % p == b % p) return 0; // 特判0 是不是解
        mp.clear();
        11 k = sqrt(p) + 1;
        for(ll i = 0, j = b % p; i < k; ++i, j = (ll)j * a % p) {</pre>
                 mp[j] = i;
        11 ak = 1;
        for(ll i = 0; i < k; ++i) {</pre>
                 ak = (11) ak * a % p;
        for(11 i = 1, j = ak \% p; i <= k; ++i, j = (11)j * ak \% p) {
                 if(mp.count(j)) return (ll) i * k - mp[j];
        return -1;
11 gcd(ll x, ll y) {
        return x \% y == 0 ? y : gcd(y, x \% y);
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){
    if(!b){
       d = a; x = 1; y = 0;
    else{
       extgcd(b, a%b, d, y, x);
       y -= x * (a / b);
11 inverse(ll a,ll n){
   11 d,x,y;
    extgcd(a,n,d,x,y);
    return d == 1 ? (x + n) % n : -1;
}
```

```
int main() {
        11 a, p, b;
        while(cin >> a >> p >> b, a | p | b) {
                  11 d = gcd(a, p);
                  if(d == 1) {
                           11 res = bsgs(a, p, b);
                           if(res == -1) {
                                    cout << "No Solution\n";</pre>
                           else {
                                    cout << res << endl;</pre>
                  else {
                           if(b % d != 0) {
                                    cout << "No Solution\n";</pre>
                                    continue;
                           else {
                                    p = p / d;
                                    b = (b / d) * inverse(a / d, p);
                                    11 res = bsgs(a, p, b);
                                    if(res == -1) {
                                             cout << "No Solution\n";</pre>
                                    else {
                                             cout << res + 1 << endl;</pre>
         return 0;
```

burnside&polya

burnside 引理

burnside : 用 $D(a_j)$ 表示在置换 a_j 下不变的元素的个数,L表示本质不同的方案数(等价类):

$$L = \frac{1}{|G|} \sum_{j=1}^{s} D\left(a_{j}\right)$$

定理: $|E_k| \times |Z_k| = |G|, k = 1,2,...,n$, 该定理的一个重要研究对象是群的元素个数,其中 Z_k 是 K 不动置换类,设 G 是 1,2,...n 的置换群,若 k 是 1 到 n 中某个元素,则 G 中使 K 保 持不变的置换的全体,为 Z_k . E_k 是等价类,设 G 是 1,2,...n 的置换群,若 k 是 1 到 n 中某个元素,k 在 G 的作用下的轨迹,为 E_k , 即 k 在 G 的作用下能变化成的所有元素的集合

$$\sum_{k=1}^{n} |Z_k| = \sum_{i=1}^{L} \sum_{k \in E_i} |Z_k| = \sum_{i=1}^{L} |E_i| \times |Z_i| = L \times |G|$$

每个置换的不动点的平均值就是不同方案数

任何一个置换都可以拆解成若干个循环置换

polya 定理

polya: 设 G 是 p 个对象的一个置换群,用 m 种颜色涂染 p 个对象,则不同染色的方案为:

$$L = \frac{1}{|G|} \left(m^{c(g_1)} + m^{c(g_2)} + \dots + m^{c(g_s)} \right)$$

其中 $G = \{g_1, g_2...g_s\}, c(g_i)$ 为置换 g_i 为置换的循环节数

浅证: $D(a_i) = m^{c(g_i)}$

每个置换的不动点有公式可以求 *每个循环的方案数^{循环数}*

(不同循环直接完全独立)

Cipolla

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;

11 mod;

```
cout.tie(nullptr);
11 I mul I; // 虚数单位的平方
struct Complex {
                                                                                   11 t;
   ll real, imag;
                                                                                   cin >> t;
                                                                                   while (t--) {
   Complex(ll real = 0, ll imag = 0) : real(real), imag(imag) {}
                                                                                      11 n;
                                                                                       cin >> n >> mod;
};
                                                                                       if (n == 0) {
                                                                                          cout << 0 << endl;</pre>
inline bool operator==(Complex x, Complex y) {
                                                                                          continue;
   return x.real == y.real and x.imag == y.imag;
                                                                                       if (!check_if_residue(n)) {
                                                                                          cout << "Hola!" << endl;</pre>
inline Complex operator*(Complex x, Complex y) {
   return Complex((x.real * y.real + I_mul_I * x.imag % mod * y.imag) %
                                                                                          continue;
mod.
                                                                                       11 x0, x1;
                  (x.imag * y.real + x.real * y.imag) % mod);
                                                                                       solve(n, x0, x1);
                                                                                       if (x0 > x1) swap(x0, x1);
                                                                                       cout << x0 << ' ' << x1 << endl;
Complex power(Complex x, 11 k) {
   Complex res = 1;
                                                                               }
   while (k) {
       if (k & 1) res = res * x;
       x = x * x;
       k >>= 1;
                                                                               exgcd
                                                                               ll ex_gcd(ll a, ll b, ll &x, ll &y) {
   return res;
                                                                                   if (b == 0) {
                                                                                      x = 1;
bool check if residue(ll x) {
                                                                                      y = 0;
   return power(x, (mod - 1) >> 1) == 1;
                                                                                      return a;
                                                                                   11 d = ex_gcd(b, a \% b, x, y);
void solve(ll n, ll &x0, ll &x1) {
                                                                                   11 \text{ temp} = x;
                                                                                   x = y;
   11 a = rand() % mod;
                                                                                   y = temp - a / b * y;
   while (!a or check_if_residue((a * a + mod - n) % mod))
                                                                                   return d;
       a = rand() \% mod;
   I_mul_I = (a * a + mod - n) \% mod;
   x0 = 11(power(Complex(a, 1), (mod + 1) >> 1).real);
   x1 = mod - x0;
                                                                               FFT
                                                                               #include <bits/stdc++.h>
signed main() {
   ios::sync_with_stdio(false);
                                                                               using namespace std;
   cin.tie(nullptr);
                                                                               typedef long long 11;
```

```
while (limit <= n + m) limit <<= 1, L++;
const int N = 1e7 + 10;
                                                                              for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i \& 1) <<
                                                                            (L - 1));
const double Pi = acos(-1.0);
                                                                              // 在原序列中 i 与 i/2 的关系是 : i 可以看做是 i/2 的二进制上的每一位左移
                                                                           一位得来
struct Complex {
                                                                              // 那么在反转后的数组中就需要右移一位,同时特殊处理一下奇数
   double x, y;
                                                                              fft(a, 1), fft(b, 1);
                                                                              for (int i = 0; i <= limit; i++) a[i] = a[i] * b[i];</pre>
   Complex(double xx = 0, double yy = 0) { x = xx, y = yy; }
                                                                              fft(a, -1);
} a[N], b[N];
                                                                              for (int i = 0; i <= n + m; i++) a[i].x /= limit;</pre>
Complex operator+(Complex _a, Complex _b) { return Complex(_a.x + _b.x,
_{a.y} + _{b.y}); }
                                                                           int main() {
                                                                              int n, m;
Complex operator-(Complex _a, Complex _b) { return Complex(_a,x - _b.x,
                                                                              cin >> n >> m;
_a.y - _b.y); }
                                                                              for (int i = 0; i <= n; i++) cin >> a[i].x;
                                                                              for (int i = 0; i <= m; i++) cin >> b[i].x;
Complex operator*(Complex _a, Complex _b) {
                                                                              FFT(n, m):
   return Complex(_a.x * _b.x - _a.y * _b.y, _a.x * _b.y + _a.y * _b.x);
                                                                              for (int i = 0; i <= n + m; i++) cout << (int) (a[i].x + 0.5) << ' ';
} //不懂的看复数的运算那部分
                                                                              return 0:
                                                                           }
int L, r[N];
int limit = 1;
                                                                           FWT
void fft(Complex *A, int type) {
   for (int i = 0; i < limit; i++)</pre>
                                                                           #include <bits/stdc++.h>
       if (i < r[i]) swap(A[i], A[r[i]]); //求出要迭代的序列
   for (int mid = 1; mid < limit; mid <<= 1) { // 待合并区间的长度的一半
                                                                           using namespace std;
       Complex Wn(cos(Pi / mid), type * sin(Pi / mid)); //单位根
                                                                           typedef long long 11;
                                                                           const int mod = 998244353;
       for (int R = mid << 1, j = 0; j < limit; j += R) { //R 是区间的长
度,i表示前已经到哪个位置了
                                                                           void add(int &x, int y) {
          Complex w(1, 0); //幂
                                                                               (x += y) >= mod \&\& (x -= mod);
          for (int k = 0; k < mid; k++, w = w * Wn) { //枚举左半部分
              Complex x = A[j + k], y = w * A[j + mid + k]; //蝴蝶效应
              A[i + k] = x + y;
                                                                           void sub(int &x, int y) {
              A[j + mid + k] = x - y;
                                                                               (x -= y) < 0 && (x += mod);
                                                                           namespace FWT {
                                                                              int extend(int n) {
                                                                                  int N = 1;
                                                                                  for (; N < n; N <<= 1);
void FFT(int n, int m) {
                                                                                  return N;
   limit = 1;
   L = 0;
```

```
void FWTor(std::vector<int> &a, bool rev) {
   int n = a.size();
   for (int 1 = 2, m = 1; 1 <= n; 1 <<= 1, m <<= 1) {
       for (int j = 0; j < n; j += 1)
           for (int i = 0; i < m; i++) {
              if (!rev) add(a[i + j + m], a[i + j]);
               else sub(a[i + j + m], a[i + j]);
void FWTand(std::vector<int> &a, bool rev) {
   int n = a.size();
   for (int 1 = 2, m = 1; 1 <= n; 1 <<= 1, m <<= 1) {
       for (int j = 0; j < n; j += 1)
           for (int i = 0; i < m; i++) {</pre>
              if (!rev) add(a[i + j], a[i + j + m]);
              else sub(a[i + j], a[i + j + m]);
void FWTxor(std::vector<int> &a, bool rev) {
   int n = a.size(), inv2 = (mod + 1) >> 1;
   for (int 1 = 2, m = 1; 1 <= n; 1 <<= 1, m <<= 1) {
       for (int j = 0; j < n; j += 1)
           for (int i = 0; i < m; i++) {
              int x = a[i + j], y = a[i + j + m];
              if (!rev) {
                  a[i + j] = (x + y) \% mod;
                  a[i + j + m] = (x - y + mod) \% mod;
              } else {
                  a[i + j] = 1LL * (x + y) * inv2 % mod;
                  a[i + j + m] = 1LL * (x - y + mod) * inv2 % mod;
              }
std::vector<int> Or(std::vector<int> a1, std::vector<int> a2) {
   int n = std::max(a1.size(), a2.size()), N = extend(n);
   a1.resize(N), FWTor(a1, false);
   a2.resize(N), FWTor(a2, false);
   std::vector<int> A(N);
   for (int i = 0; i < N; i++) A[i] = 1LL * a1[i] * a2[i] % mod;
```

```
FWTor(A, true);
       return A;
    std::vector<int> And(std::vector<int> a1, std::vector<int> a2) {
        int n = std::max(a1.size(), a2.size()), N = extend(n);
        a1.resize(N), FWTand(a1, false);
       a2.resize(N), FWTand(a2, false);
       std::vector<int> A(N);
       for (int i = 0; i < N; i++) A[i] = 1LL * a1[i] * a2[i] % mod;</pre>
        FWTand(A, true);
       return A;
    std::vector<int> Xor(std::vector<int> a1, std::vector<int> a2) {
        int n = std::max(a1.size(), a2.size()), N = extend(n);
        a1.resize(N), FWTxor(a1, false);
       a2.resize(N), FWTxor(a2, false);
        std::vector<int> A(N);
       for (int i = 0; i < N; i++) A[i] = 1LL * a1[i] * a2[i] % mod;
       FWTxor(A, true);
       return A;
};
int main() {
    int n;
    scanf("%d", &n);
    n = (1 << n);
    std::vector<int> a1(n), a2(n);
    for (int i = 0; i < n; i++) scanf("%d", &a1[i]);</pre>
    for (int i = 0; i < n; i++) scanf("%d", &a2[i]);</pre>
    std::vector<int> A;
    A = FWT::Or(a1, a2);
    for (int i = 0; i < n; i++) {
       printf("%d%c", A[i], " \n"[i == n - 1]);
    A = FWT::And(a1, a2);
    for (int i = 0; i < n; i++) {
       printf("%d%c", A[i], " \n"[i == n - 1]);
    A = FWT::Xor(a1, a2);
    for (int i = 0; i < n; i++) {</pre>
       printf("%d%c", A[i], " \n"[i == n - 1]);
    return 0;
```

```
lucas 求组合数
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
11 p;
const int maxn = 1e5 + 10;
ll \ qpow(ll \ x, ll \ n)
        11 \text{ res} = 1;
        while(n){
                 if(n \& 1) res = (res * x) % p;
                 x = (x * x) \% p;
                 n >>= 1;
        return res;
11 C(11 up, 11 down){
        if(up > down) return 0;
        11 \text{ res} = 1;
        for(int i = up + 1; i <= down; ++ i){
//
                 res = (res * i) % p;
//
        for(int i = 1; i <= down - up; ++ i){
//
                 res = (res * qpow(i, p - 2)) % p;
//
        for(int i = 1, j = down; i \le up; ++ i, -- j){
                 res = (res * j) % p;
                 res = (res * qpow(i, p - 2)) % p;
        return res;
```

```
11 lucas(ll up, ll down){
        if(up 
        return C(up % p, down % p) * lucas(up / p, down / p) % p;
}
int main(){
        ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
        int T;
        cin >> T;
        while (T --){
                11 down, up;
                cin >> down >> up >> p;
                cout << lucas(up, down) % p << endl;</pre>
        return 0;
}
min 25 筛
https://loj.ac/p/6053
筛积性函数 f 的前缀和
f(1)=1
f(p^e)=f xor e
n<=1e10, LOJ 347ms 本地1100ms
#include<bits/stdc++.h>
using namespace std;
typedef long long 11;
const 11 mod=1e9+7,inv3=3333333336;
const int N=1e5+5;//开到sqrt(n)即可
11 prime[N], sp0[N], sp1[N], sp2[N], g0[N<<1], g1[N<<1], g2[N<<1];</pre>
11 pnum,min25n,sqrn,w[N<<1],ind1[N],ind2[N];</pre>
bool notp[N];
void pre() { // 预处理, 线性筛
   notp[1]=1;
   for(int i=1; i<N; i++) {</pre>
       if(!notp[i]) {
          prime[++pnum]=i;
```

```
int id=x<=sqrn?ind1[x]:ind2[min25n/x];</pre>
          sp0[pnum]=(sp0[pnum-1]+1)%mod;//p^0 前缀和 (p 指质数) ,可以按
需增删,下标意义为第 pnum 个质数的前缀和,而 q 的实际下标意义为 w 之前的前缀和,
                                                                             ll ans=(((g1[id]-g0[id])-(sp1[y]-sp0[y]))%mod+mod)%mod;//x 以内大于第
两者有所区别
                                                                         y 个因子的质数部分前缀和
                                                                             if(x>=2&&y<1)ans=(ans+2)%mod;//特判包含f(2)的情况
          sp1[pnum]=(sp1[pnum-1]+i)%mod;//p^1 前缀和
                                                                             for(int i=y+1; i<=pnum&&prime[i]*prime[i]<=x; i++) {//筛合数部分前缀
          sp2[pnum]=(sp2[pnum-1]+111*i*i)%mod;//p^2 前缀和
      for(int j=1; j<=pnum&&prime[j]*i<N; j++) {</pre>
                                                                                11 pe=prime[i];
          notp[i*prime[j]]=1;
                                                                                for(int e=1; pe<=x; e++,pe=pe*prime[i]) {</pre>
                                                                                    11 fpe=prime[i]^e;//f(p^e)
          if(i%prime[j]==0)break;
                                                                                    ans=(ans+fpe\%mod*(S(x/pe,i)+(e!=1)))\%mod;
   }
                                                                             return ans%mod;
void min25(11 n) {
   11 tot=0;
   min25n=n;
                                                                         int main() {
   sqrn=sqrt(n);
                                                                             pre();//预处理一次即可
   for(ll i=1; i<=n; i=n/(n/i)+1) {</pre>
                                                                             11 n:
      w[++tot]=n/i;//实际下标
                                                                             scanf("%11d",&n);
      11 x=w[tot]%mod;
                                                                             min25(n);//每个不同的 n 都要调用一次该函数,再调用 S(n,0)
      g0[tot]=x-1;//x^0 前缀和
                                                                             printf("%11d\n",S(n,0)+1);//加上f(1)
      g1「tot]=x*(x+1)/2%mod-1;//x^1 前缀和
                                                                             return 0:
      g2[tot]=x*(x+1)/2%mod*(2*x+1)%mod*inv3%mod-1;//x^2 前缀和
      if(n/i<=sqrn)ind1[n/i]=tot;//离散下标
      else ind2[n/(n/i)]=tot;//离散下标
                                                                         NTT
   for(int i=1; i<=pnum; i++) {//扩展埃氏筛, 筛质数部分前缀和
                                                                          #include <bits/stdc++.h>
      for(int j=1; j<=tot&&prime[i]*prime[i]<=w[j]; j++) {</pre>
          int id=w[j]/prime[i]<=sqrn?ind1[w[j]/prime[i]]:ind2[n/(w[j]/</pre>
                                                                          using namespace std;
prime[i])];
                                                                          typedef long long 11;
          g0[j]-=(g0[id]-sp0[i-1]+mod)%mod;
          g1[j]-=prime[i]*(g1[id]-sp1[i-1]+mod)%mod;
                                                                          const int N = 4e6 + 10;
          g2[j]-=prime[i]*prime[i]%mod*(g2[id]-sp2[i-1]+mod)%mod;
                                                                          const 11 mod = 998244353, G = 3, Gi = 332748118;
          g0[j]%=mod,g1[j]%=mod,g2[j]%=mod;
          if(g0[j]<0)g0[j]+=mod;
                                                                         int limit = 1, L, r[N];
          if(g1[j]<0)g1[j]+=mod;
                                                                         11 a[N], b[N];
          if(g2[j]<0)g2[j]+=mod;
                                                                         ll qpow(ll _a, ll _b) {
                                                                             11 \text{ ans} = 1;
                                                                             while (_b) {
                                                                                if (_b & 1) ans = (ans * _a) % mod;
//该前缀和不计算f(1),需要自行加上
                                                                                _b >>= 1;
11 S(11 x,int y) {//x 以内最小质因子大于第 y 个因子的前缀和
                                                                                 _a = (_a * _a) \% mod;
   if(prime[y]>=x)return 0;
```

```
return ans;
                                                                                     NTT(n, m);
                                                                                     for (int i = 0; i <= n + m; i++) cout << a[i] << ' ';</pre>
void ntt(l1 *A, int type) {
   auto swap = [](11 & a, 11 & b) {
       _a ^= _b, _b ^= _a, _a ^= _b;
                                                                                 #include<cstdio>
   };
                                                                                 #include<cctype>
   for (int i = 0; i < limit; i++)</pre>
                                                                                 #include<cstring>
       if (i < r[i]) swap(A[i], A[r[i]]);</pre>
                                                                                 #include<cmath>
   for (int mid = 1; mid < limit; mid <<= 1) {</pre>
                                                                                 namespace fast IO
       11 Wn = qpow(type == 1 ? G : Gi, (mod - 1) / (mid << 1));</pre>
       for (int j = 0; j < limit; j += (mid << 1)) {</pre>
                                                                                          const int IN LEN=10000000, OUT LEN=10000000;
           11 w = 1;
                                                                                          char ibuf[IN_LEN],obuf[OUT_LEN],*ih=ibuf+IN_LEN,*oh=obuf,*lasti
           for (int k = 0; k < mid; k++, w = (w * Wn) % mod) {
                                                                                 n=ibuf+IN LEN,*lastout=obuf+OUT LEN-1;
               int x = A[j + k], y = w * A[j + k + mid] % mod;
                                                                                          inline char getchar_(){return (ih==lastin)&&(lastin=(ih=ibuf)+f
               A[j + k] = (x + y) \% mod,
                                                                                 read(ibuf,1,IN LEN,stdin),ih==lastin)?EOF:*ih++;}
                       A[j + k + mid] = (x - y + mod) \% mod;
                                                                                          inline void putchar_(const char x){if(oh==lastout)fwrite(obuf,1,
                                                                                 oh-obuf, stdout), oh=obuf; *oh++=x;}
       }
                                                                                          inline void flush(){fwrite(obuf,1,oh-obuf,stdout);}
                                                                                 using namespace fast_IO;
                                                                                 #define getchar() getchar ()
void NTT(int n, int m) {
                                                                                 #define putchar(x) putchar_((x))
   limit = 1;
                                                                                 typedef long long LL;
   L = 0;
                                                                                 #define rg register
   while (limit <= n + m) limit <<= 1, L++;
                                                                                 template <typename T> inline T max(const T a,const T b){return a>b?a:b;}
   for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) <<
                                                                                 template <typename T> inline T min(const T a,const T b){return a<b?a:b;}
(L - 1));
                                                                                 template \langle typename\ T \rangle inline T mind(T&a,const T b){a=a\langle b \ranglea:b;}
                                                                                 template <typename T> inline T maxd(T&a,const T b){a=a>b?a:b;}
   ntt(a, 1), ntt(b, 1);
   for (int i = 0; i < limit; i++) a[i] = (a[i] * b[i]) % mod;
                                                                                 template <typename T> inline T abs(const T a){return a>0?a:-a;}
   ntt(a, -1);
                                                                                 template <typename T> inline void swap(T&a,T&b){T c=a;a=b;b=c;}
   11 inv = qpow(limit, mod - 2);
                                                                                 template \langle typename\ T \rangle inline void swap(T*a,T*b)\{T\ c=a;a=b;b=c;\}
   for (int i = 0; i <= n + m; i++) a[i] = a[i] * inv % mod;</pre>
                                                                                 template <typename T> inline T gcd(const T a,const T b){if(!b)return a;r
                                                                                 eturn acd(b.a%b):}
                                                                                 template \langle typename\ T \rangle inline T square(const T x){return x*x;};
int main() {
                                                                                 template <typename T> inline void read(T&x)
   int n, m;
   cin >> n >> m;
                                                                                     char cu=getchar();x=0;bool fla=0;
   for (int i = 0; i <= n; i++) {
                                                                                     while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}
       cin >> a[i];
                                                                                     while(isdigit(cu))x=x*10+cu-'0',cu=getchar();
       a[i] = (a[i] + mod) \% mod;
                                                                                     if(fla)x=-x;
   for (int i = 0; i <= m; i++) {</pre>
                                                                                 template <typename T> void printe(const T x)
       cin >> b[i];
       b[i] = (b[i] + mod) \% mod;
                                                                                     if(x>=10)printe(x/10);
                                                                                     putchar(x%10+'0');
```

```
template <typename T> inline void print(const T x)
                                                                                                           const int inv=pow(lenth, mod-2);
                                                                                                           for(rg int i=0;i<lenth;i++)A[i]=A[i]*inv%mod;</pre>
   if(x<0)putchar('-'),printe(-x);</pre>
   else printe(x);
                                                                                 }Q[3];
const int maxn=262145;
                                                                                 LL EXgcd(const LL a, const LL b, LL &x, LL &y)
int n,m;
                                                                                     if(!b)
struct Ntt
        LL mod,a[maxn],b[maxn];;
                                                                                                  x=1, y=0;
        inline LL pow(LL x,LL y)
                                                                                         return a;
                 rg LL res=1;
                                                                                     const LL res=EXgcd(b,a%b,y,x);
                 for(;y;y>>=1,x=x*x%mod)if(y&1)res=res*x%mod;
                                                                                     y-=a/b*x;
                 return res;
                                                                                     return res;
        int lenth,Reverse[maxn];
                                                                                 inline LL msc(LL a, LL b, LL mod)
        inline void init(const int x)
                                                                                     LL v=(a*b-(LL)((long double)a/mod*b+1e-8)*mod);
                 rg int tim=0;lenth=1;
                                                                                     return v<0?v+mod:v;</pre>
                 while(lenth<=x)lenth<<=1, tim++;</pre>
                 for(rg int i=0;i<lenth;i++)Reverse[i]=(Reverse[i>>1]>>1)
                                                                                 int N, a[3], p[3];
/((i&1)<<(tim-1));
                                                                                 LL CRT()
        inline void NTT(LL*A, const int fla)
                                                                                     LL P=1, sum=0;
                                                                                     for(rg int i=1;i<=N;i++)P*=p[i];</pre>
                 for(rg int i=0;i<lenth;i++)if(i<Reverse[i])swap(A[i],A</pre>
                                                                                     for(rg int i=1;i<=N;i++)</pre>
[Reverse[i]]);
                 for(rg int i=1;i<lenth;i<<=1)</pre>
                                                                                          const LL m=P/p[i];
                                                                                         LL x, y;
                          LL w = pow(3, (mod-1)/i/2);
                                                                                          EXgcd(p[i],m,x,y);
                                                                                          sum=(sum+msc(msc(y,m,P),a[i],P))%P;
                          if(fla==-1)w=pow(w,mod-2);
                          for(rg int j=0;j<lenth;j+=(i<<1))</pre>
                                                                                          return sum;
                                   LL K=1;
                                                                                 int P;
                                  for(rg int k=0;k<i;k++,K=K*w%mod)</pre>
                                                                                 int main()
                                           const LL x=A[j+k], y=A[j+k+i]*
K%mod;
                                                                                          read(n),read(m),read(P);
                                                                                         Q[0].mod=469762049,Q[0].init(n+m);
                                           A[j+k]=(x+y)\%mod;
                                           A[j+k+i]=(mod+x-y)\%mod;
                                                                                         Q[1].mod=998244353,Q[1].init(n+m);
                                                                                         Q[2].mod=1004535809,Q[2].init(n+m);
                                                                                         for(rg int i=0;i<=n;i++)read(Q[0].a[i]),Q[2].a[i]=Q[1].a[i]=Q
                                                                                 [0].a[i];
                 if(fla==-1)
                                                                                         for(rg int i=0;i<=m;i++)read(Q[0].b[i]),Q[2].b[i]=Q[1].b[i]=Q
```

```
[0].b[i];
        Q[0].NTT(Q[0].a,1),Q[0].NTT(Q[0].b,1);
        Q[1].NTT(Q[1].a,1),Q[1].NTT(Q[1].b,1);
        Q[2].NTT(Q[2].a,1),Q[2].NTT(Q[2].b,1);
        for(rg int i=0;i<Q[0].lenth;i++)</pre>
                Q[0].a[i]=(LL)Q[0].a[i]*Q[0].b[i]%Q[0].mod,
                Q[1].a[i]=(LL)Q[1].a[i]*Q[1].b[i]%Q[1].mod,
                Q[2].a[i]=(LL)Q[2].a[i]*Q[2].b[i]%Q[2].mod;
        Q[0].NTT(Q[0].a,-1);
        Q[1].NTT(Q[1].a,-1);
        Q[2].NTT(Q[2].a,-1);
        N=2, p[1]=Q[0].mod, p[2]=Q[1].mod;
        const int INV=Q[2]. pow(Q[0].mod,Q[2].mod-2)*Q[2]. pow(Q[1].mod,Q[2])
[2].mod-2)%Q[2].mod;
        for(rg int i=0;i<=n+m;i++)</pre>
                a[1]=Q[0].a[i],a[2]=Q[1].a[i];
                const LL ans1=CRT();
                 const LL ans2=((Q[2].a[i]-ans1)\%Q[2].mod+Q[2].mod)\%Q[2].
mod*INV%Q[2].mod;
                print((ans2*Q[0].mod%P*Q[1].mod%P+ans1)%P),putchar('
');
        return flush(),0;
*/
```

PN 筛+2022HDU 多校 5-1002

相关证明可以看: https://oi-wiki.org/math/number-theory/powerful-number/

PN筛

积性函数:对于所有互质的a和b,总有f(ab) = f(a)f(b),则称f为积性函数。

PN(power number): 对于正整数n,记n的质因数分解为 $\prod p_i^{c_i}$ 。 是 PN 当且仅当 $\forall 1 <= i <= m, c_i > 1$ 。(1 也是 PN)

性质 1: 所有 PN 都可以表示成 a^2b^3 的形式,因为大于等于 2 的数总能分解成 2x+3y的 形式。

性质 2: n以内的 PN 至多有 $O(\sqrt{n})$ 个,可以通过 dfs 枚举下一个质数的次数在 $O(\sqrt{n})$ 时间内找到这些 PN。

已知f为积性函数, 求 $F(n) = \sum_{i=1}^{n} f(i)$

通过 PN 筛求解的一般过程:

1.构造积性函数g满足g(p)=f(p),且 $G(n)=\sum_{i=1}^n g(i)$ 能够快速求出(或者快速预处理 $2\sqrt{n}$ 个有效值)

2.构造(其实不用真的构造)h满足g*h=f,且 $h(p^c)$ 能够快速求出,由g*h=f可得h也是积性函数

3.其实h满足 $h(1)=1, h(p)=0, f(p^c)=\sum_{i=0}^c g\left(p^i\right)h(p^{c-i})$ 即可,也可以移项递推 $h(p^c)=f(p^c)-\sum_{i=1}^c g\left(p^i\right)h(p^{c-i})$

3.5.如果你在程序里递推 $h(p^c)$ 复杂度会是 $O(\sqrt{n}log(n))$ 的,但是实测跑不满,耗时较少。

4.dfs 求出小于等于 n 的 PN 的同时计算h(PN)和答案, $F(n) = \sum_{i=1}^{n} [i \not \in PN] h(i) G\left(\lfloor \frac{n}{i} \rfloor\right)$

复杂度与计算 \hbar 和G的复杂度有关(有时需要预处理),两者均为O(1)时,总复杂度为 $O(\sqrt{n})$

2022HDU 多校 5-1002

$$f(p^c) = \frac{p^c}{c}, \quad \Re \frac{1}{n} \sum_{i=1}^n f(i), n \le 1e12$$

构造积性函数 $g(p^c) = p^c$,即g(x) = x, $G(x) = \frac{x(x+1)}{2}$,并求出h

这里先递推找规律:

$$c f(p^c) g(p^c) h(p^c) = \frac{p^c}{c} = p^c 0 1 1 1 1 p p 0$$

$$c f(p^c) g(p^c) h(p^c)$$

$$= \frac{p^c}{c} = p^c$$

$$\frac{p^2}{2}$$
 p^2 $-\frac{p^2}{2}$

$$\frac{p^3}{3}$$
 p^3 $-\frac{p^3}{6}$

4
$$\frac{p^4}{4}$$
 p^4 $-\frac{p^4}{4}$

$$\frac{p^5}{5}$$
 p^5 $-\frac{p^5}{20}$

容易发现c >= 2 时 $h(p^c) = -\frac{p^c}{c(c-1)}$

也可以直接推式子:

$$f(p^{c}) = \sum_{i=0}^{c} g(p^{i})h(p^{c-i})$$

$$\frac{p^{c}}{c} = \sum_{i=0}^{c} p^{i} h(p^{c-i})$$

$$\frac{1}{c} = \sum_{i=0}^{c} \frac{h(p^{c-i})}{p^{c-i}} = \sum_{i=0}^{c} \frac{h(p^{i})}{p^{i}}$$

c >= 2 时:

$$\frac{1}{c} - \frac{1}{c-1} = \sum_{i=0}^{c} \frac{h(p^i)}{p^i} - \sum_{i=0}^{c-1} \frac{h(p^i)}{p^i}$$
$$\frac{h(p^c)}{p^c} = \frac{1}{c} - \frac{1}{c-1} = -\frac{1}{c(c-1)}$$
$$h(p^c) = -\frac{p^c}{c(c-1)}$$

预处理逆元(或者记忆化 h 函数后)可以0(1)求出。

dfs 出n以内的所有 PN,在 dfs 过程中,对于每个 PN——x,将 $h(x)G\left(\lfloor \frac{n}{x}\rfloor\right)$ 累加到答案上即可。

实际代码时要注意的点:

- 1.质数需要处理到 \sqrt{n} ,可以多处理一点例如处理到 $100 + \sqrt{maxn}$
- 2.h 函数只会用到 PN 数处的值,预处理/记忆化时,只需要存c >= 2 的 $h(p^c)$, $h\left(p_1^{c_1}p_2^{c_2}p_3^{c_3}\right)$ 之类的可以直接在 dfs 中通过积性函数性质O(1)运算。
- 3.满足c >= 2且 $p^c <= n$ 的 p^c 都是 PN,所以其数量是不超过 $O(\sqrt{n})$ 的。
- $4.h(p^c)$ 可以按质数的下标(即第几个质数) 和c存来省空间。
- 5.对于同一个 n,G 的有效取值会有 $2\sqrt{n}$ 个,即G(1)、G(2)... $G(\sqrt{n})$ 和 $G(\frac{n}{2})$ 、 $G(\frac{n}{\sqrt{n}})$,有时需要预处理。
- 6.这题部分乘法要先转_int128 再乘再取模。

PN 筛

```
///2022 杭电多校 5-1002
#include<bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pii;
const int inf=0x3f3f3f3f, N=1e7+9;
const 11 mod=4179340454199820289;
const int PMAX=N, PN=N; //PN 开到n 以内P 的最大数量可以省空间
int prime[PN],pcnt;//prime[0]=1,prime[1]=2
bool notp[PMAX];//motp[1]=1,notp[2]=0,notp[4]=1
void Prime(){
   pcnt=0;
   for(int i=2;i<PMAX;i++){</pre>
                if(!notp[i])prime[++pcnt]=i;
                for(int j=1; j<=pcnt&&i*prime[j]<PMAX; j++){</pre>
                         notp[i*prime[j]]=1;
                         if(i%prime[j]==0)break;
```

```
notp[1]=1;
11 qpow(11 a,11 b){
   11 ans=1;
   while(b){
      if(b&1)ans=(__int128)ans*a%mod;
      a=( int128)a*a%mod;
      b>>=1;
   return ans;
struct PNS{// 修改 G, f, q 即可使用, 不同的 n 只需要初始化 ans 和 n.}
   ll ans,n;
   11 G(11 x){
      return ( int128)x*(x+1)/2%mod;
   //f 和 q 均只在 h 函数中使用,如果可以直接公式求 h 函数则不用定义这两个函数
   11 f(int pid,ll c){
      return (__int128)qpow(prime[pid],c)*qpow(c,mod-2)%mod;
   //q 函数不用记忆化,实际调用次数很少
   11 g(int pid,ll c){
      return qpow(prime[pid],c);
   vector<ll>vh[PN];//这里要确保 c>2 时调用 h(pid, c) 前调用过 h(pid, c-1)
   11 h(int pid,11 c){
      if(c==0)return 1;
      if(c==1)return 0;
      if(c-2>=(ll)vh[pid].size()){//n=1e12、1e13、1e14 时会进80070、230
567、670121次,跑不满根号n,所以递推的耗时也是不高的。
          //vh[pid].push_back((LL)((-(__int128)qpow(prime[pid],c)*qpow
(c*(c-1), mod-2)%mod+mod)%mod));
          // 递推 h 函数,需要配合 f 函数和 q 函数一起使用
          11 ans=f(pid,c);
          for(ll i=1;i<=c;i++){</pre>
             ans=((ans-(int128)g(pid,i)*h(pid,c-i))%mod+mod)%mod;
          vh[pid].push_back(ans);
      return vh[pid][c-2];
```

```
void dfs(ll prod,ll hprod,int pid){
       ans=(ans+(__int128)hprod*G(n/prod))%mod;
       for(int i=pid;i<=pcnt;i++){</pre>
           if(prod>n/prime[i]/prime[i])break;
           for(ll c=2, x=prod*prime[i]*prime[i];x<=n;c++,x*=prime[i]){</pre>
               dfs(x,(_int128)hprod*h(i,c)%mod,i+1);
               if(x>n/prime[i])break;
}pns;
int main(){
   #ifdef ONLINE_JUDGE
       //std::ios::sync with stdio(false);
   #else
       freopen("1002.in","r",stdin);
       //freopen("out.txt", "w", stdout);
   #endif
   Prime();
   int t;
   scanf("%d",&t);
   while(t--){
       pns.ans=0;
       scanf("%11d",&pns.n);
       pns.dfs(1,1,1);
       //printf("%lld\n",pns.ans);
       printf("%11d\n",(11)((__int128)pns.ans*qpow(pns.n,mod-2)%mod));
   return 0;
pn 筛 zyx
#include <bits/stdc++.h>
using namespace std;
#define de(x) cout << #x << " = " << x << endl
#define dd(x) cout << #x << " = " << x << " "
typedef long long 11;
const __int128 N = 1e6 + 10;
const int128 M = 41;
const __int128 mod = 417934045419982028911;
```

```
const int128 inv2 = 208967022709991014511;
__int128 isp[N], pri[N], pcnt;
vector<__int128> h[N];
void getPrime() {
   fill(isp + 2, isp + N, 1);
   for (__int128 i = 2; i < N; i++) {</pre>
       if (isp[i]) {
           pri[pcnt++] = i;
       for (__int128 j = 0; j < pcnt && i * pri[j] < N; j++) {</pre>
           isp[i * pri[j]] = 0;
           if (i % pri[j] == 0) break;
__int128 qpow(__int128 x, __int128 y) {
   __int128 ans = 1;
   while (y) {
       if (y \& 1) ans = ans * x % mod;
       x = x * x % mod;
       y >>= 1;
   return ans;
__int128 g(__int128 x) {
   return x;
__int128 G(__int128 x) {
   return x * (x + 1) % mod * inv2 % mod;
__int128 f(__int128 x, __int128 c) {
   return x * qpow(c, mod - 2) % mod;
int128 ans;
11 n;
void dfs(__int128 deep, __int128 hpn, __int128 pn, bool flag) {
   if (flag) {
       ans = (ans + hpn * G(n / pn)) \% mod;
```

```
if (deep >= pcnt) return;
   if (pri[deep] * pri[deep] * pn > n) return;
   dfs(deep + 1, hpn, pn, false);
   for (__int128 i = 2, pi = pri[deep] * pri[deep] % mod; pn * pi <= n;</pre>
i++, pi = pi * pri[deep] % mod) {
       dfs(deep + 1, hpn * h[deep][i] % mod, pn * pi, true);
}
signed main() {
   ios::sync_with_stdio(∅);
    getPrime();
   for (__int128 pid = 0; pid < pcnt; pid++) {</pre>
       h[pid].push_back(1);
       h[pid].push back(0);
        <u>__int128</u> invp = qpow(pri[pid], mod - 2);
       for (__int128 c = 2, pc = pri[pid] * pri[pid]; c < M && pc <= 1e1</pre>
2; c++, pc = pc * pri[pid]) {
           h[pid].push back(f(pri[pid], c));//唯一f 使用,传入参数类型自
定义
            _int128 pci = qpow(pri[pid], c);
           for (__int128 i = 1, pi = pri[pid]; i <= c; i++, pi = pi * pr</pre>
i[pid] % mod) {
               pci = pci * invp % mod;
               h[pid][c] = (h[pid][c] - g(pi) * h[pid][c - i] % mod + mo
d) % mod;
   11 t;
   cin >> t;
   while (t--) {
       cin >> n;
       ans = G(n);
       dfs(0, 1, 1, false);
       cout << (11) ans << endl;</pre>
}
Pollard Rho+Miller-Robin
typedef long long 11;
```

```
namespace Miller Rabin {
   const 11 Pcnt = 12;
   const 11 p[Pcnt] = \{2, 3, 5, 7, 11, 13, 17, 19, 61, 2333, 4567, 2425\}
1};
   11 pow(ll a, ll b, ll p) {
       11 \text{ ans} = 1;
       for (; b; a = (__int128) a * a % p, b >>= 1)if (b & 1)ans = (__in
t128) ans * a % p;
       return ans;
   bool check(ll x, ll p) {
       if (x \% p == 0 \mid | pow(p \% x, x - 1, x) ^ 1)return true;
       11 t, k = x - 1;
       while ((k ^ 1) & 1) {
           t = pow(p \% x, k >>= 1, x);
           if (t ^ 1 && t ^ x - 1)return true;
           if (!(t ^ x - 1))return false;
       return false;
   inline bool MR(ll x) { //用这个
       if (x < 2)return false:</pre>
       for (int i = 0; i ^ Pcnt; ++i) {
           if (!(x ^ p[i]))return true;
           if (check(x, p[i]))return false;
       return true;
namespace Pollard Rho {
#define Rand(x) (111*rand()*rand()%(x)+1)
   11 gcd(const 11 a, const 11 b) { return b ? gcd(b, a % b) : a; }
   11 mul(const 11 x, const 11 y, const 11 X) {
       11 k = (1.0L * x * y) / (1.0L * X) - 1, t = (int128) x * y - (
_int128) k * X;
       while (t < 0)t += X;
       return t;
   11 PR(const 11 x, const 11 y) {
       int t = 0, k = 1;
```

```
11 \ v0 = Rand(x - 1), \ v = v0, \ d, \ s = 1;
   while (true) {
       v = (mul(v, v, x) + y) \% x, s = mul(s, abs(v - v0), x);
       if (!(v ^ v0) || !s)return x;
       if (++t == k) {
           if ((d = gcd(s, x)) ^ 1)return d;
           v0 = v, k <<= 1;
   }
void Resolve(ll x, ll &ans) {
   if (!(x ^1) || x \le ans) return;
   if (Miller Rabin::MR(x)) {
       if (ans < x)ans = x;
       return:
   11 y = x;
   while ((y = PR(x, Rand(x))) == x);
   while (!(x \% y))x /= y;
   Resolve(x, ans);
   Resolve(y, ans);
long long check(ll x) { //用这个,素数返回本身
   11 ans = 0;
   Resolve(x, ans);
   return ans;
```

prufer

}

Prufer 序列 (Prufer code),这是一种将带标号的树用一个唯一的整数序列表示的方法。

Prufer 序列可以将一个带标号 n 个结点的树用[1,n]中的n-2 个整数表示。你也可以把它理解为完全图的生成树与数列之间的双射。

显然你不会想不开拿这玩意儿去维护树结构。这玩意儿常用组合计数问题上。

线性建立 prufer

Prufer 是这样建立的:每次选择一个编号最小的叶结点并删掉它,然后在序列中记录下它连接到的那个结点。重复 n-2 次后就只剩下两个结点,算法结束。

线性构造的本质就是维护一个指针指向我们将要删除的结点。首先发现,叶结点数是非严格单调递减的。要么删一个,要么删一个得一个。

于是我们考虑这样一个过程:维护一个指针 p。初始时 p指向编号最小的叶结点。同时我们维护每个结点的度数,方便我们知道在删除结点的时候是否产生新的叶结点。操作如下:

- 1. 删除 指向的结点,并检查是否产生新的叶结点。
- 2. 如果产生新的叶结点,假设编号为 x , 我们比较 p, x 的大小关系。如果 x>p, 那么不做其他操作; 否则就立刻删除 x, 然后检查删除 x 后是否产生新的叶结点, 重复 2 步骤, 直到未产生新节点或者新节点的编号>p。
- 让指针 p 自增直到遇到一个未被删除叶结点为止;

循环上述操作 n-2 次, 就完成了序列的构造。

// 从原文摘的代码,同样以 0 为起点

```
vector<vector<int>> adj;
vector<int> parent;
void dfs(int v) {
 for (int u : adi[v]) {
   if (u != parent[v]) parent[u] = v, dfs(u);
vector<int> pruefer code() {
 int n = adj.size();
 parent.resize(n), parent[n - 1] = -1;
 dfs(n - 1);
 int ptr = -1;
 vector<int> degree(n);
 for (int i = 0; i < n; i++) {
   degree[i] = adj[i].size();
   if (degree[i] == 1 && ptr == -1) ptr = i;
 vector<int> code(n - 2);
 int leaf = ptr;
 for (int i = 0; i < n - 2; i++) {</pre>
   int next = parent[leaf];
   code[i] = next;
```

```
if (--degree[next] == 1 && next < ptr) {
    leaf = next;
} else {
    ptr++;
    while (degree[ptr] != 1) ptr++;
    leaf = ptr;
}
return code;
}</pre>
```

性质

- 1. 在构造完 Prufer 序列后原树中会剩下两个结点,其中一个一定是编号最大的 点 。
- 每个结点在序列中出现的次数是其度数减1。(没有出现的就是叶结点)

线性 prufer 转化成树

同线性构造 Prufer 序列的方法。在删度数的时侯会产生新的叶结点,于是判断这个叶结点与指针 p 的大小关系,如果更小就优先考虑它

// 原文摘代码

```
vector<pair<int, int>> pruefer decode(vector<int> const& code) {
 int n = code.size() + 2;
 vector<int> degree(n, 1);
 for (int i : code) degree[i]++;
 int ptr = 0;
 while (degree[ptr] != 1) ptr++;
 int leaf = ptr;
 vector<pair<int, int>> edges;
 for (int v : code) {
   edges.emplace_back(leaf, v);
   if (--degree[v] == 1 && v < ptr) {</pre>
     leaf = v;
   } else {
     while (degree[ptr] != 1) ptr++;
     leaf = ptr;
 }
```

```
edges.emplace_back(leaf, n - 1);
return edges;
}
cayley 公式
```

完全图 K_n 有 n^{n-2} 棵生成树。

用 Prufer 序列证:任意一个长度为 n-2 的值域 [1,n] 的整数序列都可以通过 Prufer 序列双射对应一个生成树,于是方案数就是 n^{n-2} 。

图连通方案数

一个 n 个点 m 条边的带标号无向图有 k 个连通块。我们希望添加 k - 1 条边使得整个图连通。求方案数。

设 s_i 表示每个连通块的数量。我们对 k 个连通块构造 Prufer 序列,然后你发现这并不是普通的 Prufer 序列。因为每个连通块的连接方法很多。不能直接淦就设啊。于是设 d_i 为第 i 个连通块的度数。由于度数之和是边数的两倍,于是 $\sum_{i=1}^k d_i = 2k-2$ 。则对于给定的 d 序列构造 Prufer 序列的方案数是

 $\star \$ in $\{k-2\}\{d_1-1,d_2-1,\dots,d_k-1\} = \frac{(k-2)!}{(d_1-1)!(d_2-1)! \cdot (d_k-1)!}$

对于第 i 个连通块,它的连接方式有 $s_i^{d_i}$ 种,因此对于给定 d 序列使图连通的方案数是

 $\$ \tbinom{k - 2}{d_1 - 1, d_2 - 1, \dots, d_k - 1} \prod_{i = 1}^{k}s_i^{d_i}\$

现在我们要枚举 d 序列, 式子变成

 $\$ \sum_{d_i \geq 1. \sum_{i = 1}^{k} d_i = 2k - 2} \t (a_1 - 1, d2 - 1, \dots , d_k - 1) \prod_{i = 1}^{k}s_i^{d_i}

根据多元二项式定理

 $\sl(x_1+\dots+x_m)^{p}= \sum_{c_i \neq 0, \sum_{i=1}^{m} c_i = p} \tionom{p}{C_1, C_2, \dots, C_m} \prod_{i=1}^{m} c_i = p} \tionom{p}{C_1, C_2, \dots, C_m} \$

对原式换元,设 $e_i = d_i - 1$,显然有 $\sum_{i=1}^k e_i = k - 2$

中国剩余定理

```
#include<cstdio>
using namespace std;
typedef long long 11;
ll a[100010], b[100010];
11 mul(11 A, 11 B, 11 mod) //快速乘取余 模板
    11 \text{ ans} = 0;
    while (B > 0) {
       if (B \& 1) ans = (ans + A \% mod) \% mod;
       A = (A + A) \% mod;
       B >>= 1;
    return ans;
ll exgcd(ll A, ll B, ll &x, ll &y) //扩展欧几里得 模板
    if (!B) {
       x = 1, y = 0;
       return A;
    11 d = exgcd(B, A \% B, x, y);
    11 \text{ tmp} = x;
    x = y, y = tmp - A / B * y;
    return d;
11 lcm(11 A, 11 B) //求最小公倍数
    11 xxx, yyy;
    11 g = exgcd(A, B, xxx, yyy);
    return (A / g * B);
11 excrt() //重点:求解同余方程组
   11 x, y;
    ll M = b[1], ans = a[1]; //赋初值
```

//M 为前 k-1 个数的最小公倍数, ans 为前 k-1 个方程的通解

```
for (int i = 2; i <= n; i++) {</pre>
       11 A = M, B = b[i];
       ll C = (a[i] - ans % B + B) % B; //代表同余方程 ax \equiv c \pmod{b} 中a,b,
С
       11 g = exgcd(A, B, x, y);
       // 求得 A, B 的最大公约数,与同余方程 ax ≡ qcd(a,b) (mod b) 的解,
       if (C % g) return -1; // 无解的情况
       x = mul(x, C / g, B); //求得x 的值, x 即 t
       ans += x * M; //获得前 k 个方程的通解
       M = 1cm(M, B); //更改M的值
       ans = (ans \% M + M) \% M;
   return ans;
int main() {
   scanf("%11d", &n);
   for (int i = 1; i <= n; i++)</pre>
       scanf("%11d%11d", &b[i], &a[i]);
   11 ans = excrt();
   printf("%11d", ans);
二次剩余
解的数量
对于x^2 \equiv n \pmod{p} 能满足 n 是 mod p 的二次剩余的 n 一共有\frac{p-1}{2}个(不包括 0),非二
次剩余为\frac{p-1}{2}个
勒让德符号
```

 $\binom{n}{n} \equiv n^{\frac{p-1}{2}} \pmod{p}$

欧拉判别准则

```
若 n 是二次剩余,当且仅当n^{\frac{p-1}{2}} \equiv 1 \pmod{p} 若 n 是非二次剩余,当且仅当n^{\frac{p-1}{2}} \equiv -1 \pmod{p}
```

Cipolla

找到一个数 a 满足 a^2-n 是 **非二次剩余** ,至于为什么要找满足非二次剩余的数,在下文会给出解释。 这里通过生成随机数再检验的方法来实现,由于非二次剩余的数量为 $\frac{p-1}{2}$,接近 $\frac{p}{2}$,所以期望约 2 次就可以找到这个数。

建立一个"复数域",并不是实际意义上的复数域,而是根据复数域的概念建立的一个类似的域。 在复数中 $i^2=-1$,这里定义 $i^2=a^2-n$,于是就可以将所有的数表达为A+Bi的形式,这里的 和 都是模意义下的数,类似复数中的实部和虚部。

在有了 i 和 a 后可以直接得到答案, $x^2 \equiv n \pmod{p}$ 的解为 $(a+i)^{\frac{p+1}{2}}$ 。

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
int t;
11 n, p;
11 w;
struct num { //建立一个复数域
        11 x, y;
};
num mul(num a, num b, ll p) { //复数乘法
        num ans = \{0, 0\};
        ans.x = ((a.x * b.x \% p + a.y * b.y \% p * w \% p) \% p + p) \% p;
        ans.y = ((a.x * b.y \% p + a.y * b.x \% p) \% p + p) \% p;
        return ans;
}
11 binpow real(ll a, ll b, ll p) {
                                         //实部快速幂
        11 \text{ ans} = 1;
        while (b) {
                if (b & 1) ans = ans * a % p;
                a = a * a % p;
```

```
b >>= 1;
        return ans % p;
11 binpow imag(num a, ll b, ll p) {
                                        // 虚部快速幂
       num ans = \{1, 0\};
        while (b) {
                if (b & 1) ans = mul(ans, a, p);
                a = mul(a, a, p);
                b >>= 1;
        return ans.x % p;
}
ll cipolla(ll n, ll p) {
       n %= p;
        if (p == 2) return n;
       if (binpow real(n, (p - 1) / 2, p) == p - 1) return -1;
       11 a;
        while (1) { //生成随机数再检验找到满足非二次剩余的 a
                a = rand() \% p;
                w = ((a * a % p - n) % p + p) % p;
                if (binpow_real(w, (p - 1) / 2, p) == p - 1) break;
       num x = \{a, 1\};
        return binpow_imag(x, (p + 1) / 2, p);
```

勾股数圆上格点数

勾股数

$$a^2 + b^2 = c^2$$

1.任何一个勾股数(a,b,c)内的三个数同时乘以一个正整数 n 得到的新数组(na, nb, nc)仍然是勾股数,

于是找 abc 互质的勾股数

一, 当 a 为大于 1 的奇数 2n+1 时, $b=2n^2+2n$, $c=2n^2+2n+1$ (把 a 拆成两个连续的自然数)

二, 当 a 为大于 4 的偶数 2n 时, $b = n^2 - 1$, $c = n^2 + 1$

(只想得到互质的数的话: a=4n, $b=4n^2-1$, $c=4n^2+1$

公式1

a=2mnt

 $b = (m^2 - n^2) t$

 $c = (m^2 + n^2) t$

(t 是倍数)

完全公式

a=m, $b=(m^2/k-k)/2$, $c=(m^2/k+k)/2$

其中 m ≥3

- 1. 当 m 确定为任意一个 ≥3 的奇数时, k={1, m^2 的所有小于 m 的因子}
- 2. 当 m 确定为任意一个 ≥4 的偶数时, k={m^2/2 的所有小于 m 的偶数因子}

高斯整数/高斯素数

3B1B 的视频

洛谷某题

二维平面转化为复数平面,

4n+1的素数,都能分解成高斯素数,4n+3的素数,他们本身就是高斯素数,2特殊

(乘以1, -1, i, -i 四个

半径为 \sqrt{n} 的圆上的格点数, 先将 n 分解质因数, 对每个不是高斯素数的数分解成共轭的高斯素数, 分配数比指数多 1, 指数是偶数的话, 有一种方法分配, 不然就没有格点

2 = (1+i)(1+i) , 但是这对数格点数没有影响, 因为要乘-i。

引入
$$f(x) = \begin{cases} 1, x 为素数x = 4n + 1 \\ -1, x 为素数x = 4n + 3 \\ 0, x 为偶数 \end{cases}$$

它是一个周期函数,同时是一个积性函数,

再来看这个问题,

\$\\$45 = 3^2 \times 5 \ 半径为 \sqrt{45} 圆上格点数问题 = 4 \times (f(1)+f(3)+f(3^2)) \times(f(1)+f(5))\\ =4 \times (f(1)+f(3)+f(5)+f(9)+f(15)+f(45))\$\$

最后转化为 45 的所有约数

博弈拾遗

SG 定理:

 $mex{minimal excludant}$ 运算,表示最小的不属于这个集合的非负整数。例如 $mex{0,1,2,4}=3$ 、 $mex{2,3,5}=0$ 、 $mex{}=0$ 。

Sprague-Grundy 定理(SG 定理): 游戏和的 SG 函数等于各个游戏 SG 函数的 Nim 和。这样就可以将每一个子游戏分而治之,从而简化了问题。而 Bouton 定理就是 Sprague-Grundy 定理在 Nim 游戏中的直接应用,因为单堆的 Nim 游戏 SG 函数满足 SG(x) = x。

Nimk:

普通的 NIM 游戏是在 n 堆石子中每次选一堆,取任意个石子,而 NIMK 游戏是在 n 堆石子中每次选择 k 堆, 1<=k<=n,从这 k 堆中每堆里都取出任意数目的石子,取的石子数可以不同,其他规则相同。

对于普通的 NIM 游戏,我们采取的是对每堆的 SG 值进行异或,异或其实就是对每一个 SG 值二进制位上的数求和然后模 2,比如说 3^5 就是 011+101=112,然后对每一位都模 2 就变成了 110,所以 $3^5=6$ 。而 NIMK 游戏和 NIM 游戏的区别就在于模的不是 2,如果 是取 k 堆,就模 k+1,所以取 1 堆的普通 NIM 游戏是模 2。当 k=2

时,3⁵→011+101=112,对每一位都模3之后三位二进制位上对应的数仍然是1,1,2。那么当且仅当每一位二进制位上的数都是0的时候,先手必败,否则先手必胜。

anti_nim

描述

和最普通的 Nim 游戏相同,不过是取走最后一个石子的人输。

先手必胜条件

以下两个条件满足其一即可:

- 1. 所有堆的石子个数=1,且异或和=0(其实这里就是有偶数堆的意思)。
- 2. 至少存在一堆石子个数>1, 且异或和≠0。

卡特兰

'卡特兰数 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,...

$$C_n = \frac{1}{n+1}C_{2n}^n = C_{2n}^n - C_{2n}^{n-1}$$

$$C_n = \frac{1}{n+1} \sum_{i=0}^{n} (C_n^i)^2$$

 $C\{n\}=\sqrt{\frac{4n-2}{n+1}C\{n-1\}(C_0=1)}$

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i} (C_0 = 1)$$

超级卡特兰数 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049,... (从第 0 项开始)

$$F_n * (n + 1) = (6 * n - 3) * F_{n-1} - (n - 2) * F_{n-2}$$

大施罗德数(OEIS A006318)1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098,...

超级卡特兰数的两倍(除第一项)

卡特兰三角

卡特兰三角

卡特兰数:由 $n \cap X$ 和 $n \cap Y$ 组成的一个序列中,满足**所有前缀中 Y 出现的次数不超过** X 出现的次数的序列的个数

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

卡特兰三角: 由 $n \cap X$ 和 $k \cap Y$ 组成的一个序列,满足**所有前缀中 Y 出现的次数-X 出现的次数小于 m** 的序列的个数

$$C_{m}(n,k) = \begin{cases} \binom{n+k}{k}, & 0 \le k < m \\ \binom{n+k}{k} - \binom{n+k}{k-m}, & m \le k \le n+m-1 \\ 0, & k > n+m-1 \end{cases}$$

卡特兰三角 (OEIS): T(n,k) = T(n-1,k) + T(n,k-1)

$$T(n+1, n+1) = \sum_{k=0}^{n} T(n, k)$$

原根

```
using namespace std;

ll qpow(ll n, ll m, ll p) {
    ll ans = 1;
    n %= p;
    for (; m; m >>= 1, n = n * n % p)
        if (m & 1)ans = ans * n % p;
    return ans;
}

ll pri[N], tot;

ll getRoot(ll p) //求质数p 的最小原根
{
    tot = 0;
    ll n = p - 1, sq = sqrt(p + 0.5);
    for (ll i = 2; i <= sq; i++)
```

#include<bits/stdc++.h>

```
if (n % i == 0) {
    pri[tot++] = i;
    while (n % i == 0)n /= i;
}
if (n > 1)pri[tot++] = n;
for (ll g = 2; g <= p - 1; g++) //试探每一个g是否原根
{
    ll flag = 1;
    for (ll i = 0; i < tot; i++)
        if (qpow(g, (p - 1) / pri[i], p) == 1) {
        flag = 0;
        break;
    }
    if (flag)return g;
}
return -1; //没有原根</pre>
```

快速幂

```
1l qpow(1l a, 1l b) {
    ll ans = 1;
    while (b) {
        if (b & 1) ans = (ans * a) % mod;
        a = (a * a) % mod;
        b >>= 1;
    }
    return ans;
}
```

扩展欧拉定理

用于在底数与模数不互质的情况下将质数降将至与模数同阶大小,从而使用 快速幂

 $\a^c = \left(\mod \phi(m) \right), \gcd(a, m) = 1 \ a^c, \gcd(a, m) \not = 1 \ c < \phi(m) \ a^c \phi(m) + \phi(m), \gcd(a, m) \not = 1 \ and \ c \ phi(m) \end{cases}$

证明以及引理:

欧拉定理: $a^{\phi(m)} \equiv 1 \pmod{m}$

证明欧拉:记 x_i 为第 i 个与 m 互质的数,则小于 m 的范围内共有 $\phi(m)$ 个这样的数

 $p_i = a \times x_i$

 $\Delta: \{pi\}$ 两两不同余且与m互质, $\{xi\}$ \$ 两两不同余

所有 p_i 的模 m 的集合与 $\{x_i\}$ 相等 \Rightarrow 他们的积模 m 相等

$$\Rightarrow \prod_{i=1}^{\phi m} p_i = a^{\phi(m)} \prod_{i=1}^{\phi(m)} x_i = \prod_{i=1}^{\phi(m)} x_i \pmod{m}$$

扩展欧拉:

 $\a^c = \left(\mod \phi(m) \right), \gcd(a, m) = 1 \ a^c, \gcd(a, m) = 1 \ a^c, \gcd(a, m) = 1 \ a^c, \gcd(a, m) = 1 \ a^c \ being(a, m) =$

证明扩展欧拉(3):

- 1. $\phi(p^r) = (p-1) \times p^r$,P 为质数
- 2. \$\exist a, b, x, y, s.t. x^a \times y^b = k, 都有 a, b\le \phi(k) \$
- 3. $\left(\frac{r}{r} \right)^{+r} \left(\frac{a^r}{m} \right)$

证明其中 3: $m = t \times a^r$, 其中 gcd(a,t) = 1

又 ϕ 是一个积性函数, 故 $\phi(t) | \phi(m)$

$$a^{\phi(t)} \equiv 1 \pmod{t} \Rightarrow a^{\phi(m)} \equiv 1 \pmod{t}$$

两边同乘以 $a^r \Rightarrow a^{\phi(m)+r} \equiv a^r \pmod{m}$

根据 2, $r \le \phi(m)$ 又 $c \ge \phi(m)$, 得证

$$a^c \equiv a^{c-r+r} \equiv a^{c-r+\phi(m)+r} \equiv a^{c+\phi(m)} \pmod{m}$$

扩欧求逆元

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){
   if(!b){ d=a; x=1; y=0;}
   else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }
ll inverse(ll a,ll n){
   11 d,x,y;
   extgcd(a,n,d,x,y);
   return d==1?(x+n)%n:-1;
int main(){
        int x, y;
       //cin >> x >> y;
        while(1){
                cin >> x >> y;
                cout << inverse(x, y) << endl;</pre>
        //cout << inverse(x, y) << endl;</pre>
数学知识
数学知识的一些范围(?
1~n 的质数个数
\frac{n}{l_n n}
1~2e9 中拥有最多约数个数的数拥有的约数个数
约 1600
n 个不同的点可以构成 n^{n-2} 棵不同的树
判断一个数是否为 11 的倍数
```

奇偶位置上的数位和的差是否为 11 的倍数

平方前缀和

$$\frac{n \times (n+1) \times (2 \times n+1)}{6}$$

立方前缀和

$$\left(\frac{n\times(n+1)}{2}\right)^2$$

库默尔定理

设 \mathbf{m} , \mathbf{n} 为正整数, \mathbf{p} 为素数,则 \mathbf{C}_{m+n}^{m} 含 \mathbf{p} 的幂次等于 \mathbf{m} + \mathbf{n} 在 \mathbf{p} 进制下的进位次数

原根存在定理

一个数 m 存在原根当且仅当 $m = 2,4, p^{\alpha}, 2p^{\alpha}$, 其中 p 为奇素数, $\alpha \in N^*$

整除分块(向上向下取整)

```
int x;
scanf("%d",&x);
int ans1=0,ans2=0;
//向下班整
for(int l=1,r;l<=x;l=r+1){
    int m=x/l;
    r=x/m;
    ans1+=(r-l+1)*m;
}
//向上班整
int R=1e5;
for(int l=1,r;l<=R;l=r+1){
    int m=(x+l-1)/l;
    r=m!=1?(x-1)/(m-1):R;
    ans2+=(r-l+1)*m;
}
```

格雷码

```
int gray_encode(int num) {
   return num ^ (num >> 1);
```

```
int gray_decode(int num) {
   int head;
   if (!num) return 0;
   head = 1 << int(log(num) / log(2));
   return head + gray_decode((num ^ head) ^ (head >> 1));
欧拉筛 (素数)
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 1000005;
int phi[N], prime[N], cnt;
bool st[N];
void get_eulers() {
   phi[1] = 1;
   for (int i = 2; i < N; i++) {</pre>
       if (!st[i]) {
           prime[cnt++] = i;
           phi[i] = i - 1;
       for (int j = 0; prime[j] * i < N; j++) {</pre>
           st[prime[j] * i] = 1;
           if (i % prime[j] == 0) {
               phi[prime[j] * i] = phi[i] * prime[j];
               break;
           phi[prime[j] * i] = phi[i] * (prime[j] - 1);
int main() {
   get_eulers();
   11 n;
   cin >> n;
   11 \text{ ans} = 0;
   for (int i = 1; i <= n; i++) ans += phi[i];</pre>
   cout << ans;</pre>
```

欧拉筛 (莫比乌斯)

}

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 1e5 + 10;
bool vis[N];
11 prime[N], mu[N];
void init mu() {
   11 cnt = 0;
   mu[1] = 1;
   for (11 i = 2; i < N; i++) {</pre>
       if (!vis[i]) {
           prime[cnt++] = i;
           mu[i] = -1;
       for (ll j = 0; j < cnt && i * prime[j] < N; j++) {</pre>
           vis[i * prime[i]] = 1;
           if (i % prime[j] == 0) {
               mu[i * prime[j]] = 0;
               break;
           } else { mu[i * prime[j]] = -mu[i]; }
}
int main() {
   init_mu();
```

欧拉降幂

不知道它有什么用毕竟已经有快速幂子

这里有一张图可以很好的说明欧拉降幂是什么

$$a^b \equiv \left\{ egin{array}{ll} a^{b\%arphi(n)} (mod n) & n,a$$
互质 $a^b (mod n) & b < arphi(n) \ a^{b\%arphi(n)+arphi(n)} (mod n) & b \geq arphi(n) \end{array}
ight.$

//其实只是想试一下 markdown 怎么用 //假装这里有代码

然后下面这个是用 \$\LaTeX\$公式写的

$$a^b \equiv \begin{cases} a^{b\%\varphi(n)}(\bmod n) & n,a \subseteq \mathbb{R} \\ a^b(\bmod n) & b < \varphi(n) \\ a^{b\%\varphi(n)+\varphi(n)}(\bmod n) & b \ge \varphi(n) \end{cases}$$

正多面体

Polyhedron, a = 2	Radius				Volume	
	In-, <i>r</i>	Mid-,	Circum-,	Surface area, A	V	Ur
tetrahedron	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{2}}$	$\sqrt{\frac{3}{2}}$	$4\sqrt{3}$	$\frac{\sqrt{8}}{3}\approx 0.942809$	≈ (
cube	1	$\sqrt{2}$	$\sqrt{3}$	24	8	
octahedron	$\sqrt{\frac{2}{3}}$	1	$\sqrt{2}$	$8\sqrt{3}$	$\frac{\sqrt{128}}{3}\approx 3.771236$	≈ l
dodecahedron	$\frac{\varphi^2}{\xi}$	$arphi^2$	$\sqrt{3}\varphi$	$12\sqrt{25+10\sqrt{5}}$	$rac{20arphi^3}{\xi^2}pprox 61.304952$	≈ '
icosahedron	$\frac{\varphi^2}{\sqrt{3}}$	φ	ξφ	$20\sqrt{3}$	$rac{20arphi^2}{3}pprox 17.453560$	≈:

The constants φ and ξ in the above are given by

$$arphi=2\cosrac{\pi}{5}=rac{1+\sqrt{5}}{2}, \qquad \xi=2\sinrac{\pi}{5}=\sqrt{rac{5-\sqrt{5}}{2}}=\sqrt{3-arphi}.$$

4681220

组合数

```
#include <bits/stdc++.h>
using namespace std;
typedef long long l1;
const l1 mod = 1e9 + 7;
const l1 maxn = 3e4 + 5;
l1 inv[maxn], fac[maxn];

l1 qpow(l1 a, l1 b) {
    l1 ans = 1;
    while (b) {
        if (b & 1) ans = (ans * a) % mod;
        a = (a * a) % mod;
}
```

```
b >>= 1;
}
return ans;
}

ll c(ll n, ll m) {
    if (n < 0 || m < 0 || n < m) return 0;
    return fac[n] * inv[n - m] % mod * inv[m] % mod;
}

void init() {
    fac[0] = 1;
    for (int i = 1; i < maxn; i++) {
        fac[i] = fac[i - 1] * i % mod;
    }
    inv[maxn - 1] = qpow(fac[maxn - 1], mod - 2);
    for (ll i = maxn - 2; i >= 0; i--) {
        inv[i] = (inv[i + 1] * (i + 1)) % mod;
    }
}
```

莫比乌斯反演

莫比乌斯函数

对加进行因数分解:
$$n = P_1^{\alpha_1} P_2^{\alpha_2} ... P_k^{\alpha_k}$$
 , 则 $\mu(n) = \begin{cases} 1, n = 1 \\ 0, \forall \alpha_i \geq 2 \\ \pm 1, (-1)^k \end{cases}$

n的所有约数的莫比乌斯的和

$$S(n) = \sum_{d|n} \mu(d) = \begin{cases} 1, & n = 1 \\ 0, & else \end{cases}$$

反演

$$(-般不用)$$
1. 若 $F(n) = \sum_{d|n} f(d)$, 则 $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$

$$(\sqrt{2}.$$
 若 $F(n) = \sum_{n \mid d} f(d)$,则 $f(n) = \sum_{n \mid d} \mu\left(\frac{d}{n}\right) F(d)$

构造[MathProcessingError]F(n)和f(n) 使 f(n)为目标,F(n)好求

1

求满足 $a \le x \le b, c \le y \le d$ 且 gcd(x, y) = k 的 xy 的对数

$$F(n) = gcd(x, y) = n$$
的倍数的xy的对数

$$f(n) = gcd(x, y) = n 的xy 的对数$$

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N = 50010;
11 primes[N], mu[N], sum[N], cnt;
bool st[N];
void init() {
        mu[1] = 1;
        for(int i = 2; i < N; ++ i) {</pre>
                 if(!st[i]) {
                          primes[cnt ++] = i;
                          mu[i] = -1;
                 for(int j = 0; primes[j] * i < N; ++ j) {</pre>
                          st[primes[j] * i] = 1;
                          if(i % primes[j] == 0) break;
                          mu[primes[j] * i] = -mu[i];
        for(int i = 1; i < N; ++ i) {</pre>
                 sum[i] = sum[i - 1] + mu[i];
```

```
F(n) = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{v | i} \sum_{v | i} [n | (x, y)]
11 g(11 n, 11 x) {
           return n / (n / x);
                                                                                                                                           f(n) = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{x | i} \sum_{y | j} [(x, y) = n]
11 f (int a, int b, int k) {
           a = a / k, b = b / k;
                                                                                                                  F(n) = \sum_{i=1}^{N} \sum_{i=1}^{M} \sum_{x | i} \sum_{y | i} [n|(x, y)] = \sum_{x=1}^{N} \sum_{y=1}^{M} \lfloor \frac{N}{x} \rfloor \lfloor \frac{M}{y} \rfloor [n|(x, y)] = \sum_{i=1}^{N} \sum_{x | i}^{\frac{M}{n}} \sum_{y | i}^{\frac{M}{n}} \lfloor \frac{N}{x' n} \rfloor \lfloor \frac{M}{y' n} \rfloor
           11 \text{ res} = 0;
           11 n = min(a, b);
           for(11 1 = 1, r; 1 \le n; 1 = r + 1) {
                                                                                                           两次整数分块
                       r = min(n, min(g(a, 1), g(b, 1)));
                       res += (sum[r] - sum[1 - 1]) * (a / 1) * (b / 1);
                                                                                                           #include <bits/stdc++.h>
           }
                                                                                                           using namespace std;
            return res;
                                                                                                           typedef long long 11;
                                                                                                           const int N = 50010;
int main() {
                                                                                                           int primes[N], cnt, mu[N], sum[N], h[N];
            ios::sync with stdio(0); cin.tie(0); cout.tie(0);
                                                                                                           bool st[N];
           init();
                                                                                                           inline int g(int n, int x) {
                                                                                                                      return n / (n / x);
           int T;
            cin >> T;
           while(T --) {
                                                                                                           void init() {
                       int a, b, c, d, k;
                                                                                                                      mu[1] = 1;
                       cin >> a >> b >> c >> d >> k;
                                                                                                                      for(int i = 2; i < N; ++i) {</pre>
                       cout << f(b, d, k) - f(a - 1, d, k) - f(b, c - 1, k)
                                                                                                                                  if(!st[i]){
                                             + f(a - 1, c - 1, k) << endl;
                                                                                                                                              primes[cnt++] = i;
           }
                                                                                                                                             mu[i] = -1;
                                                                                                                                  for(int j = 0; primes[j] * i < N; ++j) {</pre>
           return 0;
                                                                                                                                              st[primes[j] * i] = 1;
                                                                                                                                              if(i % primes[j] == 0) break;
2
                                                                                                                                             mu[primes[j] * i] = -mu[i];
求\sum_{i=1}^{N}\sum_{i=1}^{M}d(ij)
// d(ij) = \sum_{x|i} \sum_{y|i} [(x,y) = 1]
                                                                                                                      for(int i = 1; i < N; ++ i) {</pre>
```

```
sum[i] = sum[i - 1] + mu[i];
       }
                                                                           }
        for(int i = 1; i < N; ++i) {</pre>
                                                                           11 C(11 up, 11 down) {
                for(int l = 1, r; l <= i; l = r + 1) {
                                                                               if (up > down) return 0;
                        r = min(i, g(i, 1));
                                                                               if (up < 0 | | down < 0) return 0;
                        h[i] += (r - 1 + 1) * (i / 1);
                                                                               11 res = fac[down];
                                                                               res = res * invfac[down - up] % mod;
       }
                                                                               res = res * invfac[up] % mod;
                                                                               return res;
int main() {
        //ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
                                                                           // 先 init
        init();
        int T;
        scanf("%d", &T);
                                                                           杂项
       while(T--) {
                int n, m;
                                                                           fread 快读
                scanf("%d %d", &n, &m);
                11 \text{ res} = 0;
                int k = min(n, m);
                                                                           #include <bits/stdc++.h>
                                                                           using namespace std;
                for(int l = 1, r; l <= k; l = r + 1) {
                        r = min(k, min(g(n, 1), g(m, 1)));
                        res += (11)(sum[r] - sum[1 - 1]) * h[n / 1] * h
                                                                           char next_char() {
[m / 1];
                                                                                   static char buf[1 << 20], *first, *last;</pre>
                                                                                   if(first == last) {
           printf("%lld\n", res);
                                                                                           last = buf + fread(buf, 1, 1 << 20, stdin);</pre>
       }
                                                                                           first = buf;
                                                                                   return first == last ? EOF : *first ++;
        return 0;
                                                                           inline int read(){
逆元线性递推 inv 阶乘逆元组合数
                                                                                   int x = 0, w = 0; char ch = 0;
                                                                                   while(!isdigit(ch)) {w |= ch == '-'; ch = next_char(); }
11 fac[N];// n!
                                                                                   while(isdigit(ch)) \{x = (x << 3) + (x << 1) + (ch^48), ch = ne\}
ll invfac[N]; // n!的inv
                                                                           xt_char(); }
ll invn[N]; //n 的inv
                                                                                   return w ? -x : x;
                                                                           }
inline void init() {
   fac[0] = fac[1] = invfac[0] = invfac[1] = invn[0] = invn[1] = 1;
                                                                           int main(){
   for (int i = 2; i < N; ++i) {
                                                                                   fac[i] = fac[i - 1] * i % mod;
                                                                           а
       invn[i] = (mod - mod / i) * invn[mod % i] % mod;
                                                                                   int T;
       invfac[i] = invfac[i - 1] * invn[i] % mod;
                                                                                   cin >> T;
```

```
while(T --){
                                                                            #include <iostream>
                int x = read();
                                                                            #include <chrono>
                cout << x << endl;</pre>
                                                                            #include <random>
                                                                            using namespace std;
                                                                            int main()
                                                                                    // 随机数种子
int128 输出
                                                                                    unsigned seed = std::chrono::system_clock::now().time_since_epo
                                                                            ch().count();
inline void print(__int128 x) {
                                                                                    mt19937 rand_num(seed); // 大随机数
   if (x < 0) {
                                                                                    uniform_int_distribution<long long> dist(0, 1000000000); // 给
       putchar('-');
                                                                            定范围
       x = -x;
                                                                                    cout << dist(rand num) << endl;</pre>
                                                                                    return 0;
   if (x > 9)
       print(x / 10);
   putchar(x % 10 + '0');
                                                                            注意: 代码中的 rand num 和 dist 都是自己定义的对象,不是系统的。
                                                                            洗牌算法
                                                                            #include <random>
mt19937
                                                                            #include <algorithm>
mt19937
                                                                            #include <iterator>
                                                                            #include <iostream>
#include <random>
#include <iostream>
                                                                            int main()
int main()
                                                                                std::vector<int> v = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
   std::random device rd; //获取随机数种子
                                                                                std::random device rd;
   std::mt19937 gen(rd()); //Standard mersenne twister engine seeded wi
                                                                                std::mt19937 g(rd());
th rd()
   std::uniform int distribution<> dis(0, 9);
                                                                                std::shuffle(v.begin(), v.end(), g);
   for (int n = 0; n < 20; ++n)
                                                                                std::copy(v.begin(), v.end(), std::ostream_iterator<int>(std::cout,
       std::cout << dis(gen) << ' ';</pre>
                                                                             " "));
   std::cout << '\n';</pre>
                                                                                std::cout << "\n";</pre>
   system("pause");
   return 0;
                                                                                system("pause");
                                                                                return 0;
//可能的结果: 72214140472109192351
                                                                            大质数表
doule: std::uniformrealdistribution<> dis(0, 9);
```

https://www.cnblogs.com/ljxtt/p/13514346.html

88

```
整体二分
1e17
                    1e18
                    10000000000000000003
100000000000000000
                                                                             11 bit[N];
100000000000000013
                    10000000000000000009
                                                                             void add bit(ll k, ll a) {
100000000000000019
                    1000000000000000031
                                                                                while (k < N) {
1000000000000000021
                    1000000000000000079
                                                                                    bit[k] = bit[k] + a;
100000000000000049
                    1000000000000000177
                                                                                    k += k \& -k;
100000000000000081
                    1000000000000000183
100000000000000099
                    ll query_bit(ll k) {
                    1000000000000000283
10000000000000141
                                                                                11 ans = 0;
100000000000000181
                    1000000000000000381
                                                                                while (k) {
10000000000000337
                    1000000000000000387
                                                                                    ans = ans + bit[k];
                                                                                    k -= k \& -k;
10000000000000339
                    1000000000000000507
10000000000000369
                    1000000000000000523
                                                                                return ans;
10000000000000379
                    1000000000000000583
100000000000000423
                    10000000000000000603
                                                                             struct node {
10000000000000519
                    1000000000000000619
                                                                                11 x, y, k, id, type;
10000000000000543
                    10000000000000000621
                                                                             node q[N], q1[N], q2[N];
                    1000000000000000799
10000000000000589
                                                                             11 ans[N], now[N], tot, totx;
10000000000000591
                    1000000000000000841
                                                                             void solve(ll 1, ll r, ll ql, ll qr) {
100000000000000609
                    10000000000000000861
                                                                                if (ql > qr) return;
                    10000000000000000877
100000000000000669
                                                                                if (1 == r) {
                                                                                    for (ll i = ql; i <= qr; i++) {</pre>
100000000000000691
                    10000000000000000913
                                                                                        if (q[i].type == 2) {
100000000000000781
                    10000000000000000931
                                                                                           ans[q[i].id] = 1;
100000000000000787
                    1000000000000000997
                                                                                    return;
快读 read
                                                                                11 \text{ mid} = (1 + r) >> 1;
inline int read(){
                                                                                11 cq1 = 0, cq2 = 0;
   int X=0, w=0; char ch=0;
                                                                                for (ll i = ql; i <= qr; i++) {</pre>
   while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
                                                                                    if (q[i].type == 1) {
   while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
                                                                                        if (q[i].y <= mid) {
   return w?-X:X:
                                                                                           add_bit(q[i].x, q[i].k);
                                                                                           q1[++cq1] = q[i];
                                                                                        } else {
                                                                                           q2[++cq2] = q[i];
```

```
} else {
                                                                                      bn = fread(buf, 1, SIZE, stdin);
          11 sum = query_bit(q[i].y) - query_bit(q[i].x - 1);
                                                                                      bi = 0;
          if (sum >= q[i].k) {
              q1[++cq1] = q[i];
                                                                                  int sn = 0;
          } else {
                                                                                  while (bn) {
              q2[++cq2] = q[i];
                                                                                      for (; bi < bn && buf[bi] > ' '; bi++)
              q2[cq2].k -= sum;
                                                                                          s[sn++] = buf[bi];
                                                                                      if (bi < bn)</pre>
      }
                                                                                          break;
                                                                                      bn = fread(buf, 1, SIZE, stdin);
   for (ll i = 1; i \le cq1; i++) if (q1[i].type == 1) add_bit(q1[i].x,
                                                                                      bi = 0;
-q1[i].k);
   for (ll i = 1; i \le cq1; i++) q[ql + i - 1] = q1[i];
                                                                                  s[sn] = 0;
   for (11 i = 1; i \le cq2; i++) q[q1 + cq1 + i - 1] = q2[i];
                                                                                  return sn;
   solve(1, mid, ql, ql + cq1 - 1);
   solve(mid + 1, r, ql + cq1, qr);
                                                                               bool read(int &x) {
                                                                                  int n = read(str), bf = 0;
                                                                                  if (!n)
void init() {
                                                                                      return 0;
   totx = 0;
                                                                                  int i = 0;
   tot = 0;
                                                                                  if (str[i] == '-')
   memset(bit, 0, sizeof bit);
                                                                                      bf = 1, i++;
                                                                                  else if (str[i] == '+')
                                                                                      i++;
                                                                                  for (x = 0; i < n; i++)
                                                                                      x = x * 10 + str[i] - '0';
朝鲜大哥快读
                                                                                  if (bf)
                                                                                      x = -x;
#define FI(n) FastIO::read(n)
                                                                                  return 1;
#define FO(n) FastIO::write(n)
#define Flush FastIO::Fflush()
//程序末尾写上 Flush;
                                                                               bool read(long long &x) {
                                                                                  int n = read(str), bf;
namespace FastIO {
                                                                                  if (!n)
   const int SIZE = 1 << 16;</pre>
                                                                                      return 0;
   char buf[SIZE], obuf[SIZE], str[60];
                                                                                  int i = 0;
   int bi = SIZE, bn = SIZE, opt;
                                                                                  if (str[i] == '-')
   bf = -1, i++;
0.00000001, 0.000000001, 0.0000000001};
                                                                                  else
                                                                                      bf = 1;
   int read(char *s) {
                                                                                  for (x = 0; i < n; i++)
       while (bn) {
                                                                                      x = x * 10 + str[i] - '0';
          for (; bi < bn && buf[bi] <= ' '; bi++);</pre>
                                                                                  if (bf < 0)
          if (bi < bn)</pre>
                                                                                      X = -X
              break;
                                                                                  return 1;
```

```
void write(int x) {
   if (x == 0)
       obuf[opt++] = '0';
   else {
       if (x < 0)
           obuf[opt++] = '-', x = -x;
       int sn = 0;
       while (x)
           str[sn++] = x % 10 + '0', x /= 10;
       for (int i = sn - 1; i >= 0; i--)
           obuf[opt++] = str[i];
   if (opt >= (SIZE >> 1)) {
       fwrite(obuf, 1, opt, stdout);
       opt = 0;
void write(long long x) {
   if (x == 0)
       obuf[opt++] = '0';
   else {
       if (x < 0)
           obuf[opt++] = '-', x = -x;
       int sn = 0;
       while (x)
           str[sn++] = x \% 10 + '0', x /= 10;
       for (int i = sn - 1; i >= 0; i--)
           obuf[opt++] = str[i];
   if (opt >= (SIZE >> 1)) {
       fwrite(obuf, 1, opt, stdout);
       opt = 0;
void write(unsigned long long x) {
   if (x == 0)
       obuf[opt++] = '0';
   else {
       int sn = 0;
       while (x)
           str[sn++] = x \% 10 + '0', x /= 10;
       for (int i = sn - 1; i >= 0; i--)
```

```
obuf[opt++] = str[i];
      if (opt >= (SIZE >> 1)) {
          fwrite(obuf, 1, opt, stdout);
          opt = 0;
   void write(char x) {
      obuf[opt++] = x;
      if (opt >= (SIZE >> 1)) {
          fwrite(obuf, 1, opt, stdout);
          opt = 0;
   void Fflush() {
      if (opt)
          fwrite(obuf, 1, opt, stdout);
      opt = 0;
}; // namespace FastIO
枚举子集
 cin >> n;
 for (int s = n; s; s = (s - 1) & n) {
     cout << bitset<8>(s) << endl;</pre>
模拟退火
"优化的随机算法"
连续函数找区间最优
// 找一个点,与平面中的 n 个点的距离和最近
//进行多次模拟退火避免局部最大值
#include <bits/stdc++.h>
#include <ctime>
using namespace std;
```

```
const int maxn = 110;
int n;
#define x first
#define y second
typedef pair<double, double> PDD;
PDD q[maxn];
double ans = 1e8;
double rand(double 1, double r) {
   return (double) rand() / RAND_MAX * (r - 1) + 1;
double getDist(PDD a, PDD b) {
   double dx = a.x - b.x;
   double dy = a.y - b.y;
   return sqrt(dx * dx + dy * dy);
double calc(PDD p) {
   double res = 0;
   for(int i = 0; i < n; ++ i) {</pre>
       res += getDist(q[i], p);
   ans = min(ans, res);
   return res;
double simulate_anneal() {
   PDD cur(rand(0, 10000), rand(0, 10000)); // 随机一个起点
   for(double T = 1e4; T > 1e-4; T = T * 0.99) { // 初始温度,末态温度,
衰减系数,一般调整衰减系数0.999 0.95
       PDD np(rand(cur.x - T, cur.x + T), rand(cur.y - T, cur.y + T)); /
/ 随机新点
       double delta = calc(np) - calc(cur);
       if(exp(-delta / T) > rand(0, 1)) cur = np; //如果新点比现在的点更
优, 必过去, 不然有一定概率过去
```

```
int main() {
   cin >> n;
   for(int i = 0; i < n; ++ i) {</pre>
       cin >> q[i].x >> q[i].y;
   while((double) clock() / CLOCKS_PER_SEC < 0.8) { // 卡时 // 或for (1
00)
       simulate_anneal();
   cout << (int)(ans + 0.5) << endl;
   return 0;
//n 个点带权费马点 // 平衡点||吊打 XXX
//n 个二维坐标点,带重物重量,找平衡点
//进行一次模拟退火,但是在局部最大值周围多次跳动(以提高精度
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <ctime>
const int N = 10005;
int n, x[N], y[N], w[N];
double ansx, ansy, dis;
double Rand() { return (double)rand() / RAND MAX; }
double calc(double xx, double yy) {
 double res = 0;
 for (int i = 1; i <= n; ++i) {</pre>
   double dx = x[i] - xx, dy = y[i] - yy;
   res += sqrt(dx * dx + dy * dy) * w[i];
 if (res < dis) dis = res, ansx = xx, ansy = yy;</pre>
 return res;
void simulateAnneal() {
 double t = 100000;
```

```
double nowx = ansx, nowy = ansy;
 while (t > 0.001) {
   double nxtx = nowx + t * (Rand() * 2 - 1);
   double nxty = nowy + t * (Rand() * 2 - 1);
   double delta = calc(nxtx, nxty) - calc(nowx, nowy);
   if (exp(-delta / t) > Rand()) nowx = nxtx, nowy = nxty;
   t *= 0.97;
 for (int i = 1; i <= 1000; ++i) {</pre>
   double nxtx = ansx + t * (Rand() * 2 - 1);
   double nxty = ansy + t * (Rand() * 2 - 1);
   calc(nxtx, nxty);
int main() {
 srand(time(0));
 scanf("%d", &n);
 for (int i = 1; i <= n; ++i) {</pre>
   scanf("%d%d%d", &x[i], &y[i], &w[i]);
   ansx += x[i], ansy += y[i];
 ansx /= n, ansy /= n, dis = calc(ansx, ansy);
 simulateAnneal();
 printf("%.31f %.31f\n", ansx, ansy);
 return 0;
测试时常用的代码
#ifdef ONLINE JUDGE
#else
   freopen("in.txt","r",stdin);
   //freopen("out.txt", "w", stdout);
#include<ctime>
   clock_t ST,ED;
   ST=clock();
   // 0000000000tij 000
   ED=clock();
```

```
#include<ctime>
#include<cstdlib>
   srand(time(0)); // \phi \phi' \phi \phi
   rand();// • • • • [0, RAND_MAX] • • • • • • • • • • • (int) • • RAND_MAX • •
cstdlib @el 刊 @ 壬h @ @ Ï 0x7fff(32767)
线性代数
矩阵类模板 加减乘快速幂
#include <bits/stdc++.h>
using namespace std:
typedef long long 11;
const 11 N = 305;
const 11 mod = 998244353;
//矩阵类模板
struct Matrix {
   11 n, m;
   11 a[N][N];
   void set(ll _a, ll _b) {
       n = a, m = b;
   Matrix() {
       clear();
    void clear() {
       n = m = 0;
       memset(a, 0, sizeof(a));
   Matrix operator+(const Matrix &b) const {
       Matrix tmp;
       tmp.n = n;
       tmp.m = m;
       for (ll i = 0; i < n; ++i)
```

cout<<ED-ST<<"ms"<<endl;</pre>

```
for (11 j = 0; j < m; ++j)
           tmp.a[i][j] = (a[i][j] + b.a[i][j]) \% mod;
   return tmp;
Matrix operator-(const Matrix &b) const {
   Matrix tmp;
   tmp.n = n;
   tmp.m = m;
   for (11 i = 0; i < n; ++i) {
       for (11 j = 0; j < m; ++j)
           tmp.a[i][j] = (a[i][j] - b.a[i][j] + mod) \% mod;
   return tmp;
Matrix operator*(const Matrix &b) const {
   Matrix tmp;
   tmp.clear();
   tmp.n = n;
   tmp.m = b.m;
   for (11 i = 0; i < n; ++i)
       for (11 j = 0; j < b.m; ++j)
           for (11 k = 0; k < m; ++k) {
              tmp.a[i][j] += a[i][k] * b.a[k][j];
              tmp.a[i][j] %= mod;
   return tmp;
Matrix get(ll x) {//幂运算
   Matrix E:
   E.clear();
   E.set(n, m);
   for (11 i = 0; i < n; ++i)
       E.a[i][i] = 1;
   if (x == 0) return E;
   else if (x == 1) return *this;
   Matrix tmp = get(x / 2);
   tmp = tmp * tmp;
   if (x % 2) tmp = tmp * (*this);
   return tmp;
void exgcd(ll a, ll b, ll &x, ll &y) {
```

```
if (!_b)return x = 1, y = 0, void();
       exgcd(_b, _a % _b, y, x);
       y -= x * (_a / _b);
   11 inv(11 p) {
       11 x, y;
       exgcd(p, mod, x, y);
       return (x + mod) % mod;
   Matrix inv() {
       Matrix E = *this;
       11 is[N], js[N];
       for (11 k = 0; k < E.n; k++) {
           is[k] = js[k] = -1;
           for (ll i = k; i < E.n; i++) // 1
              for (11 j = k; j < E.n; j++)
                  if (E.a[i][j]) {
                      is[k] = i, js[k] = j;
                      break;
           if (is[k] == -1) {
              E.clear();
              return E;
           for (ll i = 0; i < E.n; i++) // 2
              swap(E.a[k][i], E.a[is[k]][i]);
           for (ll i = 0; i < E.n; i++)
              swap(E.a[i][k], E.a[i][js[k]]);
           if (!E.a[k][k]) {
              E.clear();
              return E;
           E.a[k][k] = inv(E.a[k][k]); // 3
           for (11 j = 0; j < E.n; j++)
              if (j != k) // 4
                  (E.a[k][j] *= E.a[k][k]) %= mod;
           for (ll i = 0; i < E.n; i++)
              if (i != k) // 5
                  for (11 j = 0; j < E.n; j++)
                      if (j != k)
                          (E.a[i][j] += mod - E.a[i][k] * E.a[k][j] % mo
d) \% = mod;
           for (ll i = 0; i < E.n; i++)</pre>
              if (i!= k) // 就是这里不同
```

```
E.a[i][k] = (mod - E.a[i][k] * E.a[k][k] % mod) % mod;
                                                                              矩阵行列式
       for (11 k = E.n - 1; k >= 0; k--) { // 6
                                                                              #include <bits/stdc++.h>
           for (ll i = 0; i < E.n; i++)
                                                                              using namespace std;
              swap(E.a[js[k]][i], E.a[k][i]);
                                                                              typedef long long 11;
           for (ll i = 0; i < E.n; i++)
                                                                              const 11 mod = 1e9 + 7;
              swap(E.a[i][is[k]], E.a[i][k]);
                                                                              struct Matrix {
                                                                                  static const 11 MAXN = 300;
       return E;
                                                                                  11 a[MAXN][MAXN];
};
                                                                                  void init() { memset(a, 0, sizeof(a)); }
//矩阵模板结束
                                                                                  11 det(11 n) {
                                                                                     for (int i = 0; i < n; i++)</pre>
                                                                                         for (int j = 0; j < n; j++) a[i][j] = (a[i][j] + mod) % mod;
矩阵类模板 稀疏矩阵乘法
                                                                                     11 \text{ res} = 1;
                                                                                     for (int i = 0; i < n; i++) {
struct Matrix{
                                                                                         if (!a[i][i]) {
   int n,m;
   int a[maxn][maxn];////
                                                                                             bool flag = false;
                                                                                             for (int j = i + 1; j < n; j++) {
   void clear(){
                                                                                                if (a[j][i]) {
       n=m=0;
                                                                                                    flag = true;
       memset(a,0,sizeof(a));
                                                                                                    for (int k = i; k < n; k++) {
                                                                                                        swap(a[i][k], a[j][k]);
   Matrix operator * (const Matrix &b) const{
       Matrix tmp:
                                                                                                    res = -res;
       tmp.clear();
                                                                                                    break;
       tmp.n=n;tmp.m=b.m;
                                                                                                }
       for (int k=0; k<m; ++k)
           for (int i=0;i<n;++i){</pre>
                                                                                             if (!flag) return 0;
                if(a[i][k]==0) continue;
                for(int j=0;j<b.m;++j){</pre>
                         if(b.a[k][j]==0) continue;
                                                                                         for (int j = i + 1; j < n; j++) {
                         tmp.a[i][j]+=a[i][k]*b.a[k][j];
                                                                                             while (a[j][i]) {
                  tmp.a[i][j]%=mod;
                                                                                                11 t = a[i][i] / a[j][i];
                                                                                                for (int k = i; k < n; k++) {
                                                                                                    a[i][k] = (a[i][k] - t * a[j][k]) % mod;
                                                                                                    swap(a[i][k], a[j][k]);
       return tmp;
                                                                                                res = -res;
};
//稀疏矩阵乘法
                                                                                         res *= a[i][i];
                                                                                         res %= mod;
                                                                                     return (res + mod) % mod;
```

```
线性基 2
线性基 能表示的线性空间与原向量 能表示的线性空间等价
用高斯消元得到线性基
先输入数组 a∏ 中
int n, k;
ll a[N];
void getVec() {
   k = 0;
   for(int i = 62; i >= 0; -- i) {
      for(int j = k; j < n; ++ j) {</pre>
         if(a[j] >> i & 1) {
             swap(a[j], a[k]);
             break;
         }
      if(!(a[k] >> i & 1)) continue;
      for(int j = 0; j < n; ++j) {</pre>
         if(j != k && (a[j] >> i & 1)) {
             a[j] ^= a[k];
      ++k;
      if(k == n) break;
这里注意最后的线性基是 a∏中从 0 到 k-1 个, 在前的是高位
线性基模板
```

} mat;

//

```
const int maxbit = 62;
                               //maxbit • • • •
struct L B{
       11 lba[maxbit];
       L B(){
       memset(lba, 0, sizeof(lba));
       void Insert(ll val){
                                       1/0000
       for(int i = maxbit - 1; i >= 0; -- i) // \phi \dot{b} \dot{l} \phi \lambda \phi \phi \dot{\lambda} \dot{i}
          if(val & (1ll << i)){ //</pre>
              if(!lba[i]){
                 lba[i] = val;
                 break;
              val ^= lba[i];
};
// d du d d e d v d d d d valnï2 d d d d d d d d d d d d d d X d j X ï 1 d d
//'�ã� �insert
高斯消元
#include <iostream>
#include <vector>
using namespace std;
const double eps = 1e-8;
void sway(vector<double>& a, vector<double>& b) {
   vector<double> s;
   for (int i = 0; i < a.size(); i++) {</pre>
       s.push back(a[i]);
   a.clear();
   for (int i = 0; i < b.size(); i++) {</pre>
       a.push back(b[i]);
   b.clear();
   for (int i = 0; i < s.size(); i++) {</pre>
      b.push back(s[i]);
```

```
vector<double> gauss jordan(const vector<vector<double> >& A,
                           const vector<double>& b) {
   int n = A.size();
   vector<vector<double> > B(n, vector<double>(n + 1));
   for (int i = 0; i < n; i++)
       for (int j = 0; j < n; j++) B[i][j] = A[i][j];</pre>
   for (int i = 0; i < n; i++) B[i][n] = b[i];
   for (int i = 0; i < n; i++) {</pre>
       int pivot = i;
       for (int j = i; j < n; j++) {</pre>
           if (abs(B[j][i]) > abs(B[pivot][i])) pivot = j;
       swap(B[i], B[pivot]);
       if (abs(B[i][i]) < eps) return vector<double>();
       for (int j = i + 1; j <= n; j++) B[i][j] /= B[i][i];</pre>
       for (int j = 0; j < n; j++) {
           if (i != j) {
               for (int k = i + 1; k <= n; k++) B[j][k] -= B[j][i] * B[i]</pre>
[k];
   vector<double> x(n);
   for (int i = 0; i < n; i++) x[i] = B[i][n];</pre>
   return x;
int main() {
   int n, m;
   cin >> n >> m;
   vector<vector<double> > mat(n, vector<double>(m));
   for (int i = 0; i < n; i++) {</pre>
       for (int j = 0; j < m; j++) {
           cin >> mat[i][j];
   vector<double> val(n);
   for (int i = 0; i < n; i++) cin >> val[i];
   vector<double> ans = gauss jordan(mat, val);
   for (int i = 0; i < ans.size(); i++) cout << ans[i] << ' ';</pre>
```

组合数学

斯特林数

百度百科讲的超好

第一类斯特林数 (无符号第一类)

定义: $\begin{bmatrix} n \\ k \end{bmatrix}$ 表示将 n 个两两不同的元素,划分为 k 个非空圆排列的方案数。

递推式
$$\begin{bmatrix} k \\ n \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

升阶函数

$$x^{n\uparrow}=x\left(x+1
ight)\left(x+2
ight)\cdots\left(x+n-1
ight)=\sum_{k=0}^{n}s_{u}\left(n,k
ight)x^{k}$$

(每一项系数则为无符号第一类斯特林数, 求前 n 项和则为取 x=1)

性质

无符号Stirling数有如下性质:

①
$$s_u(0,0) = 1$$

$$2 s_u(n,0) = 0$$

$$3s_u\left(n,n\right)=1$$

$$(5)$$
 $s_n(n, n-1) = C(n, 2)$

$$\bigcirc s_u\left(n,n-2
ight) = 2\cdot C\left(n,3
ight) + 3\cdot C\left(n,4
ight)$$

$$\otimes \sum_{k=0}^{n} s_{u}\left(n,k\right)=n!$$
 证明可令升阶函数中的x=1, 比较两边系数。

第二类斯特林数

定义: $\{ {}^{n}_{k} \}$ 表示将 n 个两两不同的元素,划分为 k 个非空子集的方案数。

递推式
$$\binom{n}{k} = \binom{n-1}{k-1} + k\binom{n-1}{k}$$

性质

$$2S(n,1)=1$$

$$\Im S(n,n) = 1$$

$$4S(n,2) = 2^{n-1} - 1$$

$$\ \, {\tiny \scriptsize \bigcirc} S\left(n,3\right) = \frac{1}{2}(3^{n-1}+1) - 2^{n-1}$$

$$\otimes S(n, n-3) = C(n,4) + 10 \cdot C(n,5) + 15 \cdot C(n,6)$$

⑨
$$\sum_{k=0}^n S(n,k) = B_n$$
 , B_n 是贝尔数。

通项公式:

$$S\left(n,m
ight)=rac{1}{m!}\sum_{k=0}^{m}\left(-1
ight)^{k}C\left(m,k
ight)\left(m-k
ight)^{n}$$

两类Stirling数之间的关系

两类Stirling数之间的递推式和实际含义很类似,事实上他们之间存在一个互为转置的转化关系:

$$\sum_{k=0}^{n} S(n,k) s(k,m) = \sum_{k=0}^{n} s(n,k) S(k,m)$$

计算几何

```
jls
#define mp make pair
#define fi first
#define se second
#define pb push back
typedef double db;
const db eps=1e-6;
const db pi=acos(-1);
int sign(db k){
   if (k>eps) return 1; else if (k<-eps) return -1; return 0;
int cmp(db k1,db k2){return sign(k1-k2);}
int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在
[k1,k2] 内
struct point{
   db x, y;
   point operator + (const point &k1) const{return (point){k1.x+x,k1.y+
y};}
    point operator - (const point &k1) const{return (point){x-k1.x,y-k1.
y};}
   point operator * (db k1) const{return (point){x*k1,y*k1};}
   point operator / (db k1) const{return (point){x/k1,v/k1};}
   int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,
k1.y) == 0;
   // 逆时针旋转
   point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*co}
s(k1)};}
   point turn90(){return (point){-y,x};}
   bool operator < (const point k1) const{</pre>
       int a=cmp(x,k1.x);
```

```
if (a==-1) return 1; else if (a==1) return ∅; else return cmp(y,
k1.y) == -1;
   db abs(){return sqrt(x*x+y*y);}
   db abs2(){return x*x+y*y;}
   db dis(point k1){return ((*this)-k1).abs();}
   point unit(){db w=abs(); return (point){x/w,y/w};}
   void scan(){double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;}
   void print(){printf("%.111f %.111f\n",x,y);}
   db getw(){return atan2(y,x);}
   point getdel(){if (sign(x)=-1)|(sign(x)==0\&\&sign(y)==-1)) return
(*this)*(-1); else return (*this);}
        int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)==-1);}
};
int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inm
id(k1.y,k2.y,k3.y);}
db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;}
db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;}
db rad(point k1,point k2){return atan2(cross(k1,k2),dot(k1,k2));}
// -pi -> pi
int compareangle (point k1, point k2){
   return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k
2))>0);
point proj(point k1, point k2, point q){ // q 到直线 k1, k2 的投影
   point k=k2-k1; return k1+k*(dot(g-k1,k)/k.abs2());
point reflect(point k1,point k2,point q){return proj(k1,k2,q)*2-q;}
int clockwise(point k1, point k2, point k3){// k1 k2 k3 逆时针 1 顺时针 -1
   return sign(cross(k2-k1,k3-k1));
int checkLL(point k1,point k2,point k3,point k4){// 求直线 (L) 线段 (S)k
1.k2 和 k3.k4 的交点
   return cmp(cross(k3-k1,k4-k1),cross(k3-k2,k4-k2))!=0;
point getLL(point k1,point k2,point k3,point k4){
   db w1=cross(k1-k3,k4-k3), w2=cross(k4-k3,k2-k3); return (k1*w2+k2*w1)
/(w1+w2);
int intersect(db l1,db r1,db l2,db r2){
   if (11>r1) swap(11,r1); if (12>r2) swap(12,r2); return cmp(r1,12)!=-
1\&\&cmp(r2,11)!=-1;
int checkSS(point k1,point k2,point k3,point k4){
```

```
return intersect(k1.x,k2.x,k3.x,k4.x)&&intersect(k1.y,k2.y,k3.y,k4.
y)&&
   sign(cross(k3-k1,k4-k1))*sign(cross(k3-k2,k4-k2))<=0\&\&
   sign(cross(k1-k3,k2-k3))*sign(cross(k1-k4,k2-k4))<=0;
db disSP(point k1,point k2,point q){
   point k3=proj(k1,k2,q);
   if (inmid(k1,k2,k3)) return q.dis(k3); else return min(q.dis(k1),q.d
is(k2));
db disSS(point k1,point k2,point k3,point k4){
   if (checkSS(k1,k2,k3,k4)) return 0:
   else return min(min(disSP(k1,k2,k3),disSP(k1,k2,k4)),min(disSP(k3,k
4,k1),disSP(k3,k4,k2)));
int onS(point k1,point k2,point q){return inmid(k1,k2,q)&&sign(cross(k1))
-q, k2-k1) ==0;
struct circle{
   point o; db r;
   void scan(){o.scan(); scanf("%lf",&r);}
   int inside(point k){return cmp(r,o.dis(k));}
};
struct line{
   // p[0]->p[1]
   point p[2];
   line(point k1, point k2){p[0]=k1; p[1]=k2;}
   point& operator [] (int k){return p[k];}
   int include(point k){return sign(cross(p[1]-p[0],k-p[0]))>0;}
   point dir(){return p[1]-p[0];}
   line push(){ // 向外 ( 左手边 ) 平移 eps
       const db eps = 1e-6;
       point delta=(p[1]-p[0]).turn90().unit()*eps;
       return {p[0]-delta,p[1]-delta};
};
point getLL(line k1,line k2){return getLL(k1[0], k1[1], k2[0], k2[1]);}
int parallel(line k1,line k2){return sign(cross(k1.dir(),k2.dir()))==0;}
int sameDir(line k1,line k2){return parallel(k1,k2)&&sign(dot(k1.dir(),
k2.dir()))==1;}
int operator < (line k1,line k2){</pre>
   if (sameDir(k1,k2)) return k2.include(k1[0]);
   return compareangle(k1.dir(),k2.dir());
int checkpos(line k1,line k2,line k3){return k3.include(getLL(k1,k2));}
vector<line> getHL(vector<line> &L){ // 求半平面交 , 半平面是逆时针方向 ,
```

```
输出按照逆时针
   sort(L.begin(),L.end()); deque<line> q;
   for (int i=0;i<(int)L.size();i++){</pre>
       if (i&&sameDir(L[i],L[i-1])) continue;
       while (q.size()>1\&\&!checkpos(q[q.size()-2],q[q.size()-1],L[i]))
q.pop_back();
       while (q.size()>1&&!checkpos(q[1],q[0],L[i])) q.pop_front();
       q.push_back(L[i]);
   while (q.size()>2\&\&!checkpos(q[q.size()-2],q[q.size()-1],q[0])) q.p
   while (q.size()>2&&!checkpos(q[1],q[0],q[q.size()-1])) q.pop_front
();
   vector<line>ans; for (int i=0;i<q.size();i++) ans.push_back(q[i]);</pre>
   return ans:
db closepoint(vector<point>&A,int l,int r){ // 最近点对 , 先要按照 x 坐标
排序
   if (r-1<=5){
       db ans=1e20:
       for (int i=1; i < r; i++) for (int j=i+1; j < r; j++) ans=min(ans, A[i].
dis(A[j]));
       return ans;
   int mid=l+r>>1; db ans=min(closepoint(A,1,mid),closepoint(A,mid+1,
r));
   vector<point>B; for (int i=1;i<=r;i++) if (abs(A[i].x-A[mid].x)<=ans)</pre>
B.push back(A[i]);
   sort(B.begin(),B.end(),[](point k1,point k2){return k1.y<k2.y;});</pre>
   for (int i=0;i<B.size();i++) for (int j=i+1;j<B.size()&&B[j].y-B[i].</pre>
y<ans;j++) ans=min(ans,B[i].dis(B[j]));</pre>
   return ans;
int checkposCC(circle k1, circle k2){// 返回两个圆的公切线数量
   if (cmp(k1.r,k2.r)==-1) swap(k1,k2);
   db dis=k1.o.dis(k2.o); int w1=cmp(dis,k1.r+k2.r), w2=cmp(dis,k1.r-k
   if (w1>0) return 4; else if (w1==0) return 3; else if (w2>0) return
2;
   else if (w2==0) return 1; else return 0;
vector<point> getCL(circle k1,point k2,point k3){ // 沿着 k2->k3 方向给出
 , 相切给出两个
   point k=proj(k2,k3,k1.o); db d=k1.r*k1.r-(k-k1.o).abs2();
   if (sign(d)==-1) return {};
```

```
point del=(k3-k2).unit()*sqrt(max((db)0.0,d)); return {k-del,k+del};
                                                                                 if (flag) for (line \&k:A) swap(k[0], k[1]);
                                                                                 return A;
vector<point> getCC(circle k1,circle k2){// 沿圆 k1 逆时针给出 , 相切给出
                                                                              db getarea(circle k1,point k2,point k3){
                                                                                 // 圆 k1 与三角形 k2 k3 k1.o 的有向面积交
   int pd=checkposCC(k1,k2); if (pd==0||pd==4) return {};
                                                                                 point k=k1.o; k1.o=k1.o-k; k2=k2-k; k3=k3-k;
   db a=(k2.o-k1.o).abs2(),cosA=(k1.r*k1.r+a-k2.r*k2.r)/(2*k1.r*sqrt(m)
                                                                                 int pd1=k1.inside(k2),pd2=k1.inside(k3);
ax(a,(db)0.0)));
                                                                                 vector<point>A=getCL(k1,k2,k3);
   db b=k1.r*cosA, c=sqrt(max((db)0.0, k1.r*k1.r-b*b));
   point k=(k2.o-k1.o).unit(), m=k1.o+k*b, del=k.turn90()*c;
                                                                                 if (pd1>=0){
                                                                                     if (pd2>=0) return cross(k2,k3)/2;
   return {m-del, m+del};
                                                                                     return k1.r*k1.r*rad(A[1],k3)/2+cross(k2,A[1])/2;
                                                                                 } else if (pd2>=0){
vector<point> TangentCP(circle k1,point k2){// 沿圆 k1 逆时针给出
                                                                                     return k1.r*k1.r*rad(k2,A[0])/2+cross(A[0],k3)/2;
   db a=(k2-k1.0).abs(),b=k1.r*k1.r/a,c=sqrt(max((db)0.0,k1.r*k1.r-b*
                                                                                 }else {
b));
                                                                                     int pd=cmp(k1.r,disSP(k2,k3,k1.o));
   point k=(k2-k1.o).unit(),m=k1.o+k*b,del=k.turn90()*c;
                                                                                     if (pd<=0) return k1.r*k1.r*rad(k2,k3)/2;
   return {m-del, m+del};
                                                                                     return cross(A[0],A[1])/2+k1.r*k1.r*(rad(k2,A[0])+rad(A[1],k3))/
                                                                              2;
vector<line> TangentoutCC(circle k1,circle k2){
   int pd=checkposCC(k1,k2); if (pd==0) return {};
   if (pd==1){point k=getCC(k1,k2)[0]; return {(line){k,k}};}
                                                                              circle getcircle(point k1,point k2,point k3){
   if (cmp(k1.r,k2.r)==0){
                                                                                 db a1=k2.x-k1.x, b1=k2.y-k1.y, c1=(a1*a1+b1*b1)/2;
       point del=(k2.o-k1.o).unit().turn90().getdel();
                                                                                 db a2=k3.x-k1.x, b2=k3.y-k1.y, c2=(a2*a2+b2*b2)/2;
       return {(line){k1.o-del*k1.r,k2.o-del*k2.r},(line){k1.o+del*k1.r,
                                                                                 db d=a1*b2-a2*b1;
k2.o+del*k2.r}};
                                                                                 point o=(point)\{k1.x+(c1*b2-c2*b1)/d,k1.y+(a1*c2-a2*c1)/d\};
   } else {
                                                                                 return (circle){o,k1.dis(o)};
       point p=(k2.0*k1.r-k1.0*k2.r)/(k1.r-k2.r);
       vector<point>A=TangentCP(k1,p),B=TangentCP(k2,p);
                                                                              circle getScircle(vector<point> A){
       vector<line>ans; for (int i=0;i<A.size();i++) ans.push_back((lin</pre>
                                                                                 random shuffle(A.begin(),A.end());
e){A[i],B[i]});
                                                                                 circle ans=(circle){A[0],0};
       return ans;
                                                                                 for (int i=1;i<A.size();i++)</pre>
                                                                                     if (ans.inside(A[i])==-1){
vector<line> TangentinCC(circle k1,circle k2){
                                                                                         ans=(circle){A[i],0};
                                                                                         for (int j=0;j<i;j++)</pre>
   int pd=checkposCC(k1,k2); if (pd<=2) return {};</pre>
                                                                                            if (ans.inside(A[j])==-1){
   if (pd==3){point k=getCC(k1,k2)[0]; return {(line){k,k}};}
                                                                                                ans.o=(A[i]+A[j])/2; ans.r=ans.o.dis(A[i]);
   point p=(k2.0*k1.r+k1.0*k2.r)/(k1.r+k2.r);
                                                                                                for (int k=0; k<j; k++)
   vector<point>A=TangentCP(k1,p),B=TangentCP(k2,p);
                                                                                                    if (ans.inside(A[k])==-1)
   vector<line>ans; for (int i=0;i<A.size();i++) ans.push back((line)</pre>
                                                                                                        ans=getcircle(A[i],A[j],A[k]);
{A[i],B[i]});
   return ans;
                                                                                 return ans;
vector<line> TangentCC(circle k1,circle k2){
   int flag=0; if (k1.r<k2.r) swap(k1,k2),flag=1;</pre>
                                                                              db area(vector<point> A){ // 多边形用 vector<point> 表示 , 逆时针
   vector<line>A=TangentoutCC(k1,k2),B=TangentinCC(k1,k2);
                                                                                 db ans=0;
   for (line k:B) A.push back(k);
```

```
for (int i=0;i<A.size();i++) ans+=cross(A[i],A[(i+1)%A.size()]);</pre>
                                                                               int rotating calipers() //卡壳
   return ans/2;
                                                                                   int i , q=1;
int checkconvex(vector<point>A){
                                                                                   int ans = 0;
   int n=A.size(); A.push back(A[0]); A.push back(A[1]);
                                                                                   stack[top]=0;
   for (int i=0; i< n; i++) if (sign(cross(A[i+1]-A[i], A[i+2]-A[i]))==-1)
                                                                                   for(i = 0 ; i < top ; i++)
return 0;
   return 1;
                                                                                       while( xmult( p[stack[i+1]] , p[stack[q+1]] , p[stack[i]] ) >
                                                                                          xmult( p[stack[i+1]] , p[stack[q]] , p[stack[i]] ) )
int contain(vector<point>A,point q){ // 2 内部 1 边界 0 外部
                                                                                           q = (q+1)\%(top);
   int pd=0; A.push back(A[0]);
                                                                                       ans = max(ans , max( dis(p[stack[i]] , p[stack[q]]) ,
   for (int i=1;i<A.size();i++){</pre>
                                                                                          dis(p[stack[i+1]] , p[stack[q+1]])));
       point u=A[i-1],v=A[i];
       if (onS(u,v,q)) return 1; if (cmp(u,y,v,y)>0) swap(u,v);
                                                                                   return ans;
       if (cmp(u.y,q.y) \ge 0 | |cmp(v.y,q.y) < 0) continue;
                                                                               vector<point> convexcut(vector<point>A, point k1, point k2){
       if (sign(cross(u-v,q-v))<0) pd^=1;</pre>
                                                                                   // 保留 k1,k2,p 逆时针的所有点
   return pd<<1;
                                                                                   int n=A.size(); A.push back(A[0]); vector<point>ans;
                                                                                   for (int i=0;i<n;i++){</pre>
vector<point> ConvexHull(vector<point>A,int flag=1){ // flag=0 不严格 fl
                                                                                      int w1=clockwise(k1,k2,A[i]),w2=clockwise(k1,k2,A[i+1]);
                                                                                      if (w1>=0) ans.push_back(A[i]);
ag=1 严格
                                                                                      if (w1*w2<0) ans.push back(getLL(k1,k2,A[i],A[i+1]));</pre>
   int n=A.size(); vector<point>ans(n*2);
   sort(A.begin(),A.end()); int now=-1;
                                                                                   return ans;
   for (int i=0;i<A.size();i++){</pre>
       while (now>0&&sign(cross(ans[now]-ans[now-1],A[i]-ans[now-1]))<f</pre>
                                                                               int checkPoS(vector<point>A,point k1,point k2){
lag) now--;
       ans[++now]=A[i];
                                                                                  // 多边形 A 和直线 ( 线段 )k1->k2 严格相交 , 注释部分为线段
                                                                                   struct ins{
   } int pre=now:
   for (int i=n-2; i>=0; i--){
                                                                                      point m,u,v;
       while (now>pre&&sign(cross(ans[now]-ans[now-1],A[i]-ans[now-1]))
                                                                                      int operator < (const ins& k) const {return m<k.m;}</pre>
<flag) now--;
                                                                                   }; vector<ins>B;
                                                                                   //if (contain(A,k1)==2||contain(A,k2)==2) return 1;
       ans[++now]=A[i];
                                                                                   vector<point>poly=A; A.push_back(A[0]);
   } ans.resize(now); return ans;
                                                                                   for (int i=1;i<A.size();i++) if (checkLL(A[i-1],A[i],k1,k2)){</pre>
db convexDiameter(vector<point>A){
                                                                                      point m=getLL(A[i-1],A[i],k1,k2);
   int now=0, n=A.size(); db ans=0;
                                                                                      if (inmid(A[i-1],A[i],m)/*\&\&inmid(k1,k2,m)*/) B.push back((ins)
   for (int i=0;i<A.size();i++){</pre>
                                                                               {m,A[i-1],A[i]});
       now=max(now,i);
       while (1){
                                                                                  if (B.size()==0) return 0; sort(B.begin(),B.end());
           db k1=A[i].dis(A[now%n]), k2=A[i].dis(A[(now+1)%n]);
                                                                                   int now=1; while (now<B.size()&&B[now].m==B[0].m) now++;</pre>
           ans=max(ans,max(k1,k2)); if (k2>k1) now++; else break;
                                                                                   if (now==B.size()) return 0;
                                                                                   int flag=contain(poly,(B[0].m+B[now].m)/2);
                                                                                   if (flag==2) return 1;
   return ans;
                                                                                   point d=B[now].m-B[0].m;
                                                                                   for (int i=now;i<B.size();i++){</pre>
```

```
if (!(B[i].m==B[i-1].m)&&flag==2) return 1;
       int tag=sign(cross(B[i].v-B[i].u,B[i].m+d-B[i].u));
       if (B[i].m==B[i].u||B[i].m==B[i].v) flag+=tag; else flag+=tag*2;
   //return 0:
   return flag==2;
int checkinp(point r,point 1,point m){
       if (compareangle(1,r)){return compareangle(1,m)&&compareangle(m,
r);}
       return compareangle(1,m) | | compareangle(m,r);
int checkPosFast(vector<point>A,point k1,point k2){    // 快速检查线段是否和
多边形严格相交
        if (contain(A,k1)=2||contain(A,k2)=2) return 1; if (k1=k2) r
eturn 0;
       A.push back(A[0]); A.push back(A[1]);
       for (int i=1;i+1<A.size();i++)</pre>
                if (checkLL(A[i-1],A[i],k1,k2)){
                        point now=getLL(A[i-1],A[i],k1,k2);
                        if (inmid(A[i-1],A[i],now)==0||inmid(k1,k2,now)|
==0) continue:
                        if (now==A[i]){
                                if (A[i]==k2) continue;
                                point pre=A[i-1], ne=A[i+1];
                                if (checkinp(pre-now,ne-now,k2-now)) r
eturn 1;
                        } else if (now==k1){
                                if (k1==A[i-1]|k1==A[i]) continue;
                                if (checkinp(A[i-1]-k1,A[i]-k1,k2-k1))
return 1:
                        } else if (now==k2||now==A[i-1]) continue;
                        else return 1;
        return 0;
// 拆分凸包成上下凸壳 凸包尽量都随机旋转一个角度来避免出现相同横坐标
// 尽量特判只有一个点的情况 凸包逆时针
void getUDP(vector<point>A, vector<point>&U, vector<point>&D){
   db l=1e100,r=-1e100;
   for (int i=0;i<A.size();i++) l=min(l,A[i].x),r=max(r,A[i].x);</pre>
   int wherel, wherer;
   for (int i=0; i<A. size(); i++) if (cmp(A[i].x,1)==0) wherel=i;
   for (int i=A.size();i;i--) if (cmp(A[i-1].x,r)==0) where r=i-1;
   U.clear(); D.clear(); int now=wherel;
```

```
while (1){D.push back(A[now]); if (now==wherer) break; now++; if (no
w>=A.size()) now=0;}
   now=where1:
   while (1){U.push_back(A[now]); if (now==wherer) break; now--; if (no
w<0) now=A.size()-1;}
// 需要保证凸包点数大于等于 3,2 内部 ,1 边界 ,0 外部
int containCoP(const vector<point>&U,const vector<point>&D,point k){
   db 1x=U[0].x,rx=U[U.size()-1].x;
   if (k==U[0]||k==U[U.size()-1]) return 1;
   if (cmp(k.x,lx)=-1 | cmp(k.x,rx)==1) return 0;
   int where1=lower bound(U.begin(),U.end(),(point){k.x,-1e100}})-U.beg
in();
   int where2=lower_bound(D.begin(),D.end(),(point){k.x,-1e100})-D.beg
in();
   int w1=clockwise(U[where1-1],U[where1],k),w2=clockwise(D[where2-1],
D[where2],k):
   if (w1=1)|w2=-1| return 0; else if (w1=0)|w2=0| return 1; return
2;
// d 是方向 ,输出上方切点和下方切点
pair<point, point> getTangentCow(const vector<point> &U.const vector<poi</pre>
nt> &D,point d){
   if (sign(d.x)<0||(sign(d.x)==0\&\&sign(d.y)<0)) d=d*(-1);
   point whereU, whereD;
   if (sign(d.x)==0) return mp(U[0],U[U.size()-1]);
   int l=0,r=U.size()-1,ans=0;
   while (1<r){int mid=1+r>>1; if (sign(cross(U[mid+1]-U[mid],d))<=0) 1
=mid+1, ans=mid+1; else r=mid; }
   where U=U[ans]; l=0, r=D. size()-1, ans=0;
   while (1<r){int mid=1+r>>1; if (sign(cross(D[mid+1]-D[mid],d))>=0) 1
=mid+1,ans=mid+1; else r=mid;}
   whereD=D[ans]; return mp(whereU,whereD);
// 先检查 contain. 逆时针给出
pair<point,point> getTangentCoP(const vector<point>&U,const vector<poin</pre>
t>&D,point k){
   db lx=U[0].x,rx=U[U.size()-1].x;
   if (k.x<lx){
       int l=0, r=U.size()-1, ans=U.size()-1;
       while (1<r)\{int mid=1+r>>1; if (clockwise(k,U[mid],U[mid+1])==1)
l=mid+1; else ans=mid,r=mid;}
       point w1=U[ans]; l=0, r=D. size()-1, ans=D. size()-1;
       while (1<r){int mid=1+r>>1; if (clockwise(k,D[mid],D[mid+1])==-1)
l=mid+1; else ans=mid,r=mid;}
```

```
point w2=D[ans]; return mp(w1,w2);
                                                                                     return cmp(z,k1.z)==-1;
   } else if (k.x>rx){
       int l=1,r=U.size(),ans=0;
                                                                                  int operator == (const P3 k1){
       while (1<r)\{int mid=1+r>>1; if (clockwise(k,U[mid],U[mid-1])==-1)
                                                                                     return cmp(x,k1.x) == 0\&\&cmp(y,k1.y) == 0\&\&cmp(z,k1.z) == 0;
 r=mid; else ans=mid,l=mid+1;}
       point w1=U[ans]; l=1,r=D.size(),ans=0;
                                                                                  void scan(){
       while (l<r){int mid=l+r>>1; if (clockwise(k,D[mid],D[mid-1])==1)
                                                                                     double k1,k2,k3; scanf("%lf%lf%lf",&k1,&k2,&k3);
r=mid; else ans=mid,l=mid+1;}
                                                                                     x=k1; y=k2; z=k3;
       point w2=D[ans]; return mp(w2,w1);
                                                                                  }
   } else {
       int where1=lower_bound(U.begin(),U.end(),(point){k.x,-1e100})-U.
                                                                              P3 cross(P3 k1,P3 k2){return (P3){k1.y*k2.z-k1.z*k2.y,k1.z*k2.x-k1.x*k2.}
begin();
                                                                              z.k1.x*k2.v-k1.v*k2.x}:}
       int where2=lower_bound(D.begin(),D.end(),(point){k.x,-1e100})-D.
                                                                              db dot(P3 k1,P3 k2){return k1.x*k2.x+k1.y*k2.y+k1.z*k2.z;}
begin();
                                                                              //p=(3,4,5), L=(13,19,21), theta=85 ans=(2.83,4.62,1.77)
       if ((k.x==1x\&\&k.y>U[0].y)||(where1\&\&clockwise(U[where1-1],U[where1-1]))|
                                                                              P3 turn3D(db k1,P3 1,P3 p){
e1],k)==1)){
                                                                                  l=1.unit(); P3 ans; db c=cos(k1),s=sin(k1);
                                                                                  ans.x = p.x*(1.x*1.x*(1-c)+c)+p.y*(1.x*1.y*(1-c)-1.z*s)+p.z*(1.x*1.z*)
           int l=1, r=where1+1, ans=0;
           while (l<r){int mid=l+r>>1; if (clockwise(k,U[mid],U[mid-1])
                                                                              (1-c)+1.y*s);
==1) ans=mid, l=mid+1; else r=mid;}
                                                                                  ans.y=p.x*(1.x*1.y*(1-c)+1.z*s)+p.y*(1.y*1.y*(1-c)+c)+p.z*(1.y*1.z*)
           point w1=U[ans]; l=where1,r=U.size()-1,ans=U.size()-1;
                                                                              (1-c)-1.x*s);
           while (l<r){int mid=l+r>>1; if (clockwise(k,U[mid],U[mid+1])
                                                                                  ans.z=p.x*(1.x*1.z*(1-c)-1.y*s)+p.y*(1.y*1.z*(1-c)+1.x*s)+p.z*(1.z*
==1) l=mid+1; else ans=mid,r=mid;}
                                                                              1.z*(1-c)+c);
           point w2=U[ans]; return mp(w2,w1);
                                                                                  return ans;
       } else {
           int l=1, r=where2+1, ans=0;
                                                                              typedef vector<P3> VP;
           while (l<r){int mid=l+r>>1; if (clockwise(k,D[mid],D[mid-1])
                                                                              typedef vector<VP> VVP;
==-1) ans=mid,l=mid+1; else r=mid;}
                                                                              db Acos(db x){return acos(max(-(db)1,min(x,(db)1)));}
           point w1=D[ans]; l=where2,r=D.size()-1,ans=D.size()-1;
                                                                              // 球面距离 , 圆心原点 , 半径 1
           while (l<r){int mid=l+r>>1; if (clockwise(k,D[mid],D[mid+1])
                                                                              db Odist(P3 a,P3 b){db r=Acos(dot(a,b)); return r;}
==-1) l=mid+1; else ans=mid,r=mid;}
                                                                              db r; P3 rnd;
           point w2=D[ans]; return mp(w1,w2);
                                                                              vector<db> solve(db a,db b,db c){
                                                                                  db r=sqrt(a*a+b*b),th=atan2(b,a);
                                                                                  if (cmp(c,-r)=-1) return \{0\}:
                                                                                  else if (cmp(r,c)<=0) return {1};</pre>
struct P3{
                                                                                  else {
   db x.v.z:
                                                                                     db tr=pi-Acos(c/r); return {th+pi-tr,th+pi+tr};
   P3 operator + (P3 k1){return (P3){x+k1.x,y+k1.y,z+k1.z};}
   P3 operator - (P3 k1){return (P3){x-k1.x,y-k1.y,z-k1.z};}
   P3 operator * (db k1){return (P3){x*k1,y*k1,z*k1};}
                                                                              vector<db> jiao(P3 a,P3 b){
   P3 operator / (db k1){return (P3)\{x/k1,y/k1,z/k1\};}
                                                                                  // dot(rd+x*cos(t)+y*sin(t),b) >= cos(r)
   db abs2(){return x*x+y*y+z*z;}
                                                                                  if (cmp(Odist(a,b),2*r)>0) return {0};
   db abs(){return sqrt(x*x+y*y+z*z);}
                                                                                  P3 rd=a*cos(r),z=a.unit(),y=cross(z,rnd).unit(),x=cross(y,z).unit();
   P3 unit(){return (*this)/abs();}
                                                                                  vector<db> ret = solve(-(dot(x,b)*sin(r)),-(dot(y,b)*sin(r)),-(cos
   int operator < (const P3 k1) const{</pre>
                                                                              (r)-dot(rd,b)));
       if (cmp(x,k1.x)!=0) return x<k1.x;
                                                                                  return ret;
       if (cmp(y,k1.y)!=0) return y< k1.y;
```

```
db norm(db x,db l=0,db r=2*pi){ // change x into \lceil l,r \rceil
   while (cmp(x,1)=-1) x+=(r-1); while (cmp(x,r)>=0) x-=(r-1);
                                                                                         if (c!=-1){
   return x;
                                                                                            ret.push_back({p[a],p[b],p[c]});
                                                                                            e.insert({a,b}); e.insert({b,c}); e.insert({c,a});
db disLP(P3 k1,P3 k2,P3 q){
                                                                                            wrap(c,b); wrap(a,c);
   return (cross(k2-k1,q-k1)).abs()/(k2-k1).abs();
db disLL(P3 k1,P3 k2,P3 k3,P3 k4){
   P3 dir=cross(k2-k1,k4-k3); if (sign(dir.abs())==0) return disLP(k1,k
                                                                                 VVP ConvexHull3D(VP _p){
                                                                                     p=q= p; n=p.size();
   return fabs(dot(dir.unit(),k1-k2));
                                                                                     ret.clear(); e.clear();
                                                                                     for (auto &i:q) i=i+(P3){rand db()*1e-4,rand db()*1e-4,rand db()}
VP getFL(P3 p,P3 dir,P3 k1,P3 k2){
                                                                              *1e-4};
   db a=dot(k2-p,dir),b=dot(k1-p,dir),d=a-b;
                                                                                     for (int i=1;i< n;i++) if (q[i].x< q[0].x) swap(p[0],p[i]), swap(q
   if (sign(fabs(d))==0) return {};
                                                                              [0],q[i]);
   return {(k1*a-k2*b)/d};
                                                                                     for (int i=2; i< n; i++) if ((q[i].x-q[0].x)*(q[1].y-q[0].y)>(q[i].
                                                                              y-q[0].y)*(q[1].x-q[0].x)) swap(q[1],q[i]),swap(p[1],p[i]);
VP getFF(P3 p1,P3 dir1,P3 p2,P3 dir2){// 返回一条线
                                                                                     wrap(0,1);
   P3 e=cross(dir1,dir2),v=cross(dir1,e);
                                                                                     return ret;
   db d=dot(dir2,v); if (sign(abs(d))==0) return {};
   P3 q=p1+v*dot(dir2,p2-p1)/d; return \{q,q+e\};
                                                                             VVP reduceCH(VVP A){
                                                                                 VVP ret; map<P3,VP> M;
// 3D Covex Hull Template
                                                                                 for (VP nowF:A){
db getV(P3 k1,P3 k2,P3 k3,P3 k4){ // get the Volume
                                                                                     P3 dir=cross(nowF[1]-nowF[0],nowF[2]-nowF[0]).unit();
   return dot(cross(k2-k1,k3-k1),k4-k1);
                                                                                     for (P3 k1:nowF) M[dir].pb(k1);
db rand db(){return 1.0*rand()/RAND MAX;}
                                                                                 for (pair<P3,VP> nowF:M) ret.pb(convexHull2D(nowF.se,nowF.fi));
VP convexHull2D(VP A,P3 dir){
                                                                                 return ret;
   P3 x={(db)rand(),(db)rand(),(db)rand()}; x=x.unit();
   x=cross(x,dir).unit(); P3 y=cross(x,dir).unit();
                                                                              // 把一个面变成 (点, 法向量)的形式
   P3 vec=dir.unit()*dot(A[0],dir);
   vector<point>B;
                                                                              pair<P3,P3> getF(VP F){
   for (int i=0;i<A.size();i++) B.push back((point){dot(A[i],x),dot(A</pre>
                                                                                 return mp(F[0],cross(F[1]-F[0],F[2]-F[0]).unit());
[i],y)});
   B=ConvexHull(B); A.clear();
                                                                              // 3D Cut 保留 dot(dir,x-p)>=0 的部分
   for (int i=0;i<B.size();i++) A.push back(x*B[i].x+y*B[i].y+vec);</pre>
                                                                              VVP ConvexCut3D(VVP A,P3 p,P3 dir){
   return A;
                                                                                 VVP ret; VP sec;
                                                                                 for (VP nowF: A){
namespace CH3{
                                                                                     int n=nowF.size(); VP ans; int dif=0;
   VVP ret; set<pair<int,int> >e;
                                                                                     for (int i=0;i<n;i++){</pre>
   int n; VP p,q;
                                                                                         int d1=sign(dot(dir,nowF[i]-p));
   void wrap(int a,int b){
                                                                                         int d2=sign(dot(dir,nowF[(i+1)%n]-p));
                                                                                         if (d1>=0) ans.pb(nowF[i]);
       if (e.find({a,b})==e.end()){
           int c=-1;
                                                                                         if (d1*d2<0){
           for (int i=0;i<n;i++) if (i!=a&&i!=b){</pre>
                                                                                            P3 q=getFL(p,dir,nowF[i],nowF[(i+1)%n])[0];
              if (c==-1||sign(getV(q[c],q[a],q[b],q[i]))>0) c=i;
```

```
ans.push back(q); sec.push back(q);
                                                                             struct Point {
          if (d1==0) sec.push back(nowF[i]); else dif=1;
                                                                                 double x, y;
          dif|=(sign(dot(dir,cross(nowF[(i+1)%n]-nowF[i],nowF[(i+1)%n]
-nowF[i])))==-1);
                                                                                 Point() { x = y = 0; }
       if (ans.size()>0&&dif) ret.push_back(ans);
                                                                                 Point(const Line &a);
   if (sec.size()>0) ret.push_back(convexHull2D(sec,dir));
                                                                                 Point(const double &a, const double &b) : x(a), y(b) {}
   return ret;
                                                                                 Point operator+(const Point &a) const {
db vol(VVP A){
                                                                                     return \{x + a.x, y + a.y\};
   if (A.size()==0) return 0; P3 p=A[0][0]; db ans=0;
   for (VP nowF:A)
       for (int i=2;i<nowF.size();i++)</pre>
                                                                                 Point operator-(const Point &a) const {
          ans+=abs(getV(p,nowF[0],nowF[i-1],nowF[i]));
                                                                                     return \{x - a.x, y - a.y\};
   return ans/6;
VVP init(db INF) {
                                                                                 Point operator*(const double &a) const {
   VVP pss(6, VP(4));
                                                                                     return {x * a, y * a};
   pss[0][0] = pss[1][0] = pss[2][0] = {-INF, -INF, -INF};
   pss[0][3] = pss[1][1] = pss[5][2] = {-INF, -INF, INF};
   pss[0][1] = pss[2][3] = pss[4][2] = {-INF, INF, -INF};
                                                                                 Point operator/(const double &d) const {
   pss[0][2] = pss[5][3] = pss[4][1] = {-INF, INF, INF};
                                                                                     return {x / d, y / d};
   pss[1][3] = pss[2][1] = pss[3][2] = {INF, -INF, -INF};
   pss[1][2] = pss[5][1] = pss[3][3] = {INF, -INF, INF};
   pss[2][2] = pss[4][3] = pss[3][1] = {INF, INF, -INF};
                                                                                 bool operator==(const Point &a) const {
   pss[5][0] = pss[4][0] = pss[3][0] = {INF, INF, INF};
                                                                                     return abs(x - a.x) + abs(y - a.y) < eps;
   return pss;
                                                                                 // 标准化, 转化为膜长为1
                                                                                 void standardize() {
zvx 的计算几何
                                                                                     *this = *this / sqrt(x * x + y * y);
#include <bits/stdc++.h>
                                                                             };
using namespace std;
                                                                             double norm(const Point &p) { return p.x * p.x + p.y * p.y; }
typedef long long 11;
const int N = 1e6 + 10;
                                                                             //逆时针转90度
const double eps = 1e-9;
                                                                             Point orth(const Point &a) { return Point(-a.y, a.x); }
const double PI = acos(-1.0);
const double dinf = 1e99;
                                                                             //两点间距离
const 11 inf = 0x3f3f3f3f3f3f3f3f3f;
                                                                             double dist(const Point &a, const Point &b) {
struct Line;
                                                                                 return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
```

```
//两点间距离的平方
double dist2(const Point &a, const Point &b) {
   return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
struct Line {
   Point s, t;
   Line() {}
   Line(const Point &a, const Point &b) : s(a), t(b) {}
};
struct Circle {
   Point o;
   double r;
   Circle() {}
   Circle(Point P, double R = 0) { o = P, r = R; }
};
//向量的膜长
double length(const Point &p) {
   return sqrt(p.x * p.x + p.y * p.y);
//线段的长度
double length(const Line &1) {
   Point p(1);
   return length(p);
Point::Point(const Line &a) { *this = a.t - a.s; }
istream &operator>>(istream &in, Point &a) {
   in >> a.x >> a.y;
   return in;
ostream &operator<<(ostream &out, Point &a) {</pre>
```

```
out << fixed << setprecision(10) << a.x << ' ' << a.y;</pre>
   return out;
}
//点积
double dot(const Point &a, const Point &b) { return a.x * b.x + a.y * b.
y; }
// 叉积
double det(const Point &a, const Point &b) { return a.x * b.y - a.y * b.
x; }
//正负判断
int sgn(const double &x) \{ return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); \}
//平方
double sqr(const double &x) { return x * x; }
//将向量 a 逆时针旋转 ang (弧度制)
Point rotate(const Point &a, const double &ang) {
   double x = cos(ang) * a.x - sin(ang) * a.y;
   double y = sin(ang) * a.x + cos(ang) * a.y;
   return {x, y};
//点p 在线段 seg 上, <=0 则包含端点
bool sp on(const Line &seg, const Point &p) {
   Point a = seg.s, b = seg.t;
   return !sgn(det(p - a, b - a)) && sgn(dot(p - a, p - b)) <= 0;</pre>
// 点 p 在直线 Line 上
bool lp on(const Line &line, const Point &p) {
   Point a = line.s, b = line.t;
   return !sgn(det(p - a, b - a));
//凸包, 下标从 0 开始, <=0 则凸包中不包含共线点
int andrew(Point *point, Point *convex, int n) {
   sort(point, point + n, [](Point a, Point b) {
       if (a.x != b.x) return a.x < b.x;</pre>
       return a.y < b.y;</pre>
   });
   int top = 0;
   for (int i = 0; i < n; i++) {
```

```
while ((top > 1) \&\& det(convex[top - 1] - convex[top - 2], point
                                                                                   p = b.t;
[i] - convex[top - 1]) <= 0)
                                                                                   return 2;
          top--;
       convex[top++] = point[i];
                                                                               if (!d3 && sp_on(b, a.s)) {
                                                                                   p = a.s;
   int tmp = top;
                                                                                   return 2;
   for (int i = n - 2; i >= 0; i--) {
       while ((top > tmp) && det(convex[top - 1] - convex[top - 2], poin
                                                                               if (!d4 && sp on(b, a.t)) {
t[i] - convex[top - 1]) <= 0
                                                                                   p = a.t;
          top--:
                                                                                   return 2;
       convex[top++] = point[i];
                                                                               return 0:
   if (n > 1) top--;
   return top;
                                                                           //两向量直接的相对位置关系,含义见英文注释
                                                                           int ccw(const Point &a, Point b, Point c) {
                                                                               b = b - a, c = c - a;
double slope(const Point &a, const Point &b) { return (a.y - b.y) / (a.x
                                                                               if (sgn(det(b, c)) > 0) return +1; // "COUNTER CLOCKWISE"
                                                                               if (sgn(det(b, c)) < 0) return -1; // "CLOCKWISE"</pre>
- b.x); }
                                                                               if (sgn(dot(b, c)) < 0) return +2;</pre>
                                                                                                                  // "ONLINE_BACK"
//斜率
                                                                               if (sgn(norm(b) - norm(c)) < 0) return -2; // "ONLINE FRONT"</pre>
                                                                               return 0;
                                                                                                              // "ON_SEGMENT"
double slope(const Line &a) { return slope(a.s, a.t); }
//两直线的焦点
Point 11_intersection(const Line &a, const Line &b) {
                                                                           //点p 在线 L 上的投影位置
   double s1 = det(Point(a), b.s - a.s), s2 = det(Point(a), b.t - a.s);
                                                                           Point project(const Line &1, const Point &p) {
   if (sgn(s1) == 0 && sgn(s2) == 0) return a.s;
                                                                               Point base(1);
   return (b.s * s2 - b.t * s1) / (s2 - s1);
                                                                               double r = dot(base, p - 1.s) / sqr(length(base));
                                                                               return 1.s + (base * r);
                                                                           }
//两线段交点p,返回0为无交点,2为交点为端点,1为相交
int ss cross(const Line &a, const Line &b, Point &p) {
                                                                           //线段 L 和点 p 的距离
   int d1 = sgn(det(a.t - a.s, b.s - a.s));
                                                                           double sp dist(const Line &1, const Point &p) {
   int d2 = sgn(det(a.t - a.s, b.t - a.s));
                                                                               if (1.s == 1.t) return dist(1.s, p);
   int d3 = sgn(det(b.t - b.s, a.s - b.s));
   int d4 = sgn(det(b.t - b.s, a.t - b.s));
                                                                               Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s;
                                                                               if (sgn(dot(x, z)) < 0)return length(x);//P 距离A 更近
   if ((d1 ^ d2) == -2 \&\& (d3 ^ d4) == -2) {
       p = 11_intersection(a, b);
                                                                               if (sgn(dot(y, z)) > 0)return length(y);//P 距离B 更近
       return 1:
                                                                               return abs(det(x, z) / length(z));//面积除以底边长
                                                                           }
   if (!d1 && sp_on(a, b.s)) {
       p = b.s;
                                                                           //直线 L 和点 p 的距离
       return 2;
                                                                           double lp_dist(const Line &1, const Point &p) {
                                                                               Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s;
   if (!d2 && sp_on(a, b.t)) {
                                                                               return abs(det(x, z) / length(z));//面积除以底边长
```

```
return res;
                                                                            }
//圆c和直线L的交点,返回值为交点的数量,ans为交点位置
                                                                            //两圆交点,位置关系见注释
int cl_cross(const Circle &c, const Line &l, pair<Point, Point> &ans) {
   Point a = c.o;
                                                                            int cc cross(const Circle &cir1, const Circle &cir2, pair<Point, Point>
   double r = c.r;
   Point pr = project(1, a);
                                                                                const Point &c1 = cir1.o, &c2 = cir2.o;
   double dis = dist(pr, a);
                                                                                const double &r1 = cir1.r, &r2 = cir2.r;
   double tmp = r * r - dis * dis;
                                                                                double x1 = c1.x, x2 = c2.x, y1 = c1.y, y2 = c2.y;
   if (sgn(tmp) == 1) {
                                                                                double d = length(c1 - c2);
       double base = sqrt(max(0.0, r * r - dis * dis));
                                                                                if (sgn(fabs(r1 - r2) - d) > 0) return 0; //内含
       Point e(1);
                                                                                if (sgn(r1 + r2 - d) < 0) return 4; //相离
       e.standardize();
                                                                                double a = r1 * (x1 - x2) * 2, b = r1 * (y1 - y2) * 2, c = r2 * r2 - r2
       e = e * base;
                                                                            r1 * r1 - d * d:
       ans = make_pair(pr + e, pr - e);
                                                                                double p = a * a + b * b, q = -a * c * 2, r = c * c - b * b;
       return 2;
   } else if (sgn(tmp) == 0) {
                                                                                double cosa, sina, cosb, sinb;
       ans = make_pair(pr, pr);
                                                                                //One Intersection
       return 1;
                                                                                if (sgn(d - (r1 + r2)) == 0 \mid | sgn(d - fabs(r1 - r2)) == 0) {
   } else return 0;
                                                                                   cosa = -q / p / 2;
                                                                                    sina = sqrt(1 - sqr(cosa));
                                                                                   Point p0(x1 + r1 * cosa, y1 + r1 * sina);
//圆c和线段L交点个数,下面cs cross用到
                                                                                   if (sgn(dist(p0, c2) - r2)) p0.y = y1 - r1 * sina;
int intersectCS(Circle c, Line 1) {
                                                                                   ans = pair<Point, Point>(p0, p0);
   if (sgn(norm(project(1, c.o) - c.o) - c.r * c.r) > 0) return 0;
                                                                                   if (sgn(r1 + r2 - d) == 0) return 3; //外切
   double d1 = length(c.o - 1.s), d2 = length(c.o - 1.t);
                                                                                   else return 1; //内切
   if (sgn(d1 - c.r) <= 0 \&\& sgn(d2 - c.r) <= 0) return 0;
   if ((sgn(d1 - c.r) < 0 \&\& sgn(d2 - c.r) > 0) || (sgn(d1 - c.r) > 0 \&\&
                                                                                //Two Intersections
 sgn(d2 - c.r) < 0)) return 1;
                                                                                double delta = sqrt(q * q - p * r * 4);
   Point h = project(1, c.o);
                                                                                cosa = (delta - q) / p / 2;
   if (dot(1.s - h, 1.t - h) < 0) return 2;</pre>
                                                                                cosb = (-delta - q) / p / 2;
   return 0;
                                                                                sina = sqrt(1 - sqr(cosa));
                                                                                sinb = sqrt(1 - sqr(cosb));
                                                                                Point p1(x1 + r1 * cosa, y1 + r1 * sina);
//圆和线段交点,返回交点数量
                                                                                Point p2(x1 + r1 * cosb, y1 + r1 * sinb);
int cs cross(Circle c, Line s, pair<Point, Point> &ans) {
                                                                                if (sgn(dist(p1, c2) - r2)) p1.y = y1 - r1 * sina;
   Line 1(s);
                                                                                if (sgn(dist(p2, c2) - r2)) p2.y = y1 - r1 * sinb;
   int num = cl cross(c, l, ans);
                                                                                if (p1 == p2) p1.v = v1 - r1 * sina;
   int res = intersectCS(c, s);
                                                                                ans = pair<Point, Point>(p1, p2);
   if (res == 2) return 2;
                                                                                return 2; // 相交
   if (num > 1) {
       if (dot(l.s - ans.first, l.t - ans.first) > 0) swap(ans.first, a
ns.second);
                                                                            //点p 关于直线 L 的对称点
       ans.second = ans.first;
                                                                            Point lp_sym(const Line &1, const Point &p) {
                                                                                return p + (project(1, p) - p) * 2;
```

```
if (pip convex jud(P[0], P[mid], a))1 = mid;
                                                                             else r = mid - 1;
//返回两向量的夹角
                                                                         if (pip_convex_jud(P[1], a, P[1 + 1]))return 0;//在P[pos_(pos+1)]外
double alpha(const Point &t1, const Point &t2) {
   double theta;
                                                                         if (sp on(Line(P[1], P[1 + 1]), a)) return 2; // \underbrace{\#P[pos (pos+1)] \bot}
   theta = atan2((double) t2.y, (double) t2.x) - atan2((double) t1.y,
                                                                         return 1:
(double) t1.x);
   if (sgn(theta) < 0)</pre>
                                                                      // 多边形是否包含线段
      theta += 2.0 * PI;
                                                                      // 因此我们可以先求出所有和线段相交的多边形的顶点,然后按照X-Y 坐标排序(X 坐标
   return theta;
                                                                      小的排在前面,对于X 坐标相同的点,Y 坐标小的排在前面,
                                                                      // 这种排序准则也是为了保证水平和垂直情况的判断正确),这样相邻的两个点就是在线
                                                                      段上相邻的两交点, 如果任意相邻两点的中点也在多边形内,
//【射线法】判断点A 是否在任意多边形 Poly 以内,下标从1 开始(为保险起见,可以
                                                                      // 则该线段一定在多边形内。
在判断前将所有点随机旋转一个角度防止被卡)
int pip(const Point *P, const int &n, const Point &a) {
                                                                      //【判断多边形 A 与多边形 B 是否相离】
   int cnt = 0;
                                                                      int pp judge(Point *A, int n, Point *B, int m) {
   double tmp;
                                                                         for (int i1 = 1; i1 <= n; ++i1) {</pre>
   for (int i = 1; i <= n; ++i) {
                                                                             int j1 = i1 < n ? i1 + 1 : 1;
      int j = i < n ? i + 1 : 1;
                                                                             for (int i2 = 1; i2 <= m; ++i2) {</pre>
      if (sp_on(Line(P[i], P[j]), a))return 2;//点在多边形上
                                                                                int j2 = i2 < m ? i2 + 1 : 1;
      if (a.y \ge min(P[i].y, P[j].y) \&\& a.y < max(P[i].y, P[j].y))//
                                                                                Point tmp;
坐标在该线段两端点之间
                                                                                if (ss cross(Line(A[i1], A[j1]), Line(B[i2], B[j2]), tmp)) r
         tmp = P[i].x + (a.y - P[i].y) / (P[j].y - P[i].y) * (P[j].x -
                                                                      eturn 0;//两线段相交
P[i].x), cnt += sgn(tmp - a.x) > 0;//交点在A 右方
                                                                                if (pip(B, m, A[i1]) || pip(A, n, B[i2]))return 0;//点包含在
                                                                      内
   return cnt & 1;//穿过奇数次则在多边形以内
                                                                             }
                                                                         return 1;
//判断AL 是否在AR 右边
bool pip convex jud(const Point &a, const Point &L, const Point &R) {
   return sgn(det(L - a, R - a)) > 0;//必须严格以内
                                                                      //【任意多边形 P 的面积】, 下标从 0 开始
                                                                      double area(Point *P, int n) {
                                                                          double S = 0;
//【二分法】判断点A是否在凸多边形Poly以内,下标从0开始
                                                                          for (int i = 0; i < n; i++) S += det(P[i], P[(i + 1) % n]);
bool pip convex(const Point *P, const int &n, const Point &a) {
                                                                          return S * 0.5;
   //点按逆时针给出
   if (pip_convex_jud(P[0], a, P[1]) || pip_convex_jud(P[0], P[n - 1],
a)) return 0;//在P[0 1]或P[0 n-1]外
                                                                      //多边形和圆的面积交 , 下表从 0 开始
   if (sp_on(Line(P[0], P[1]), a) \mid sp_on(Line(P[0], P[n - 1]), a)) re
                                                                      double pc area(Point *p, int n, const Circle &c) {
turn 2;//在P[0_1]或P[0_n-1]上
                                                                         if (n < 3) return 0;
   int l = 1, r = n - 2;
                                                                          function<double(Circle, Point, Point)> dfs = [&](Circle c, Point a,
                                                                      Point b) {
   while (1 < r) {//二分找到一个位置 pos 使得 P[0]_A 在 P[0_pos], P[0_(pos+
                                                                             Point va = c.o - a, vb = c.o - b;
1)]之间
                                                                             double f = det(va, vb), res = 0;
      int mid = (1 + r + 1) >> 1;
```

```
while (h < t \&\& judge(L[i], ll intersection(Q[h], Q[h + 1]))) ++
       if (sgn(f) == 0) return res;
       if (sgn(max(length(va), length(vb)) - c.r) <= 0) return f;</pre>
                                                                            h;//当队头两个直线交点不是在直线L[i]上或者左边时就出队
       Point d(dot(va, vb), det(va, vb));
                                                                                    Q[++t] = L[i];
       if (sgn(sp_dist(Line(a, b), c.o) - c.r) >= 0) return c.r * c.r *
atan2(d.v, d.x);
       pair<Point, Point> u;
                                                                                while (h < t \&\& judge(Q[h], ll_intersection(Q[t], Q[t - 1]))) --t;
       int cnt = cs_cross(c, Line(a, b), u);
                                                                                while (h < t \&\& judge(Q[t], ll_intersection(Q[h], Q[h + 1]))) ++h;
       if (cnt == 0) return res;
       if (cnt > 1 && sgn(dot(u.second - u.first, a - u.first)) > 0) swa
                                                                                for (int i = h; i <= t; ++i) {</pre>
p(u.first, u.second);
                                                                                    P[n++] = ll_intersection(Q[i], Q[i < t ? i + 1 : h]);</pre>
       res += dfs(c, a, u.first);
       if (cnt == 2) res += dfs(c, u.first, u.second) + dfs(c, u.second,
                                                                                return n;
b);
       else if (cnt == 1) res += dfs(c, u.first, b);
       return res;
                                                                            Point V1[N], V2[N];
   };
   double res = 0;
                                                                            //【闵可夫斯基和】求两个凸包{P1},{P2}的向量集合{V}={P1+P2}构成的凸包
   for (int i = 0; i < n; i++) {</pre>
                                                                            int mincowski(Point *P1, int n, Point *P2, int m, Point *V) {
       res += dfs(c, p[i], p[(i + 1) \% n]);
                                                                                for (int i = 0; i < n; ++i) V1[i] = P1[(i + 1) \% n] - P1[i];
                                                                                for (int i = 0; i < m; ++i) V2[i] = P2[(i + 1) \% m] - P2[i];
   return res * 0.5;
                                                                                int t = 0, i = 0, j = 0;
                                                                                V[t++] = P1[0] + P2[0];
                                                                                while (i < n \& j < m) V[t] = V[t - 1] + (sgn(det(V1[i], V2[j])) > 0?
Line Q[N];
                                                                             V1[i++] : V2[i++]), t++;
                                                                                while (i < n) V[t] = V[t - 1] + V1[i++], t++;
//【半平面交】
                                                                                while (j < m) V[t] = V[t - 1] + V2[j++], t++;
int judge(Line L, Point a) { return sgn(det(a - L.s, L.t - L.s)) > 0; }/
                                                                                return t;
/判断点 a 是否在直线 L 的右边
int halfcut(Line *L, int n, Point *P) {
   sort(L, L + n, [](const Line &a, const Line &b) {
                                                                            //【三点确定一圆】向量垂心法
       double d = atan2((a.t - a.s).y, (a.t - a.s).x) - atan2((b.t - b.
                                                                            Circle external_circle(const Point &A, const Point &B, const Point &C) {
s).y, (b.t - b.s).x);
                                                                                Point P1 = (A + B) * 0.5, P2 = (A + C) * 0.5;
       return sgn(d) ? sgn(d) < 0 : judge(a, b.s);</pre>
                                                                                Line R1 = Line(P1, P1 + orth(B - A));
   });
                                                                                Line R2 = Line(P2, P2 + orth(C - A));
                                                                                Circle 0:
   int m = n;
                                                                                0.o = 11 intersection(R1, R2);
   n = 0:
                                                                                0.r = length(A - 0.0);
   for (int i = 0; i < m; ++i)
                                                                                return 0;
       if (i == \emptyset | sgn(atan2(Point(L[i]).y, Point(L[i]).x) - atan2(Po
int(L[i - 1]).y, Point(L[i - 1]).x)))
          L[n++] = L[i];
                                                                            //三角形内接圆
   int h = 1, t = 0;
                                                                            Circle internal circle(const Point &A, const Point &B, const Point &C) {
   for (int i = 0; i < n; ++i) {
                                                                                double a = dist(B, C), b = dist(A, C), c = dist(A, B);
       while (h < t \&\& judge(L[i], ll_intersection(Q[t], Q[t - 1]))) --
                                                                                double s = (a + b + c) / 2;
t;//当队尾两个直线交点不是在直线L[i]上或者左边时就出队
                                                                                double S = sqrt(max(0.0, s * (s - a) * (s - b) * (s - c)));
```

```
double r = S / s;
                                                                                                                                                                         if (PIP(P))return://如果点P已经在凸壳上或凸包里就不插入了
                                                                                                                                                                         set<Point>::iterator tmp = s.lower_bound(Point(P.x, -dinf));
       return Circle((A * a + B * b + C * c) / (a + b + c), r);
                                                                                                                                                                         if (tmp != s.end() && sgn(tmp->x - P.x) == 0)s.erase(tmp);//特判
                                                                                                                                                           横坐标相等的点要去掉
                                                                                                                                                                         s.insert(P);
//动态凸包
                                                                                                                                                                         set<Point>::iterator it = s.find(P), p = it;
struct ConvexHull {
                                                                                                                                                                         if (p != s.begin()) {
                                                                                                                                                                                --p;
      int op;
                                                                                                                                                                                while (judge(p)) {
                                                                                                                                                                                        set<Point>::iterator temp = p--;
       struct cmp {
                                                                                                                                                                                        s.erase(temp);
              bool operator()(const Point &a, const Point &b) const {
                     return sgn(a.x - b.x) < 0 \mid | sgn(a.x - b.x) == 0 && sgn(a.y - b.x) == 0 & sgn(a.y - b
 b.y) < 0;
                                                                                                                                                                         if ((p = ++it) != s.end()) {
                                                                                                                                                                                while (judge(p)) {
      };
                                                                                                                                                                                        set<Point>::iterator temp = p++;
                                                                                                                                                                                        s.erase(temp);
       set<Point, cmp> s;
       ConvexHull(int o) {
              op = o;
                                                                                                                                                          } up(1), down(-1);
              s.clear();
                                                                                                                                                          int PIC(Circle C, Point a) { return sgn(length(a - C.o) - C.r) <= 0; }//</pre>
                                                                                                                                                           判断点A 是否在圆C 内
       inline int PIP(Point P) {
                                                                                                                                                          void Random(Point *P, int n) { for (int i = 0; i < n; ++i)swap(P[i], P</pre>
              set<Point>::iterator it = s.lower_bound(Point(P.x, -dinf));//救
                                                                                                                                                          [(rand() + 1) % n]); }//随机一个排列
到第一个横坐标大于P 的点
                                                                                                                                                          //【求点集 P 的最小覆盖圆】 O(n)
              if (it == s.end())return 0;
                                                                                                                                                          Circle min circle(Point *P, int n) {
              if (sgn(it->x - P.x) == 0) return sgn((P.y - it->y) * op) <= 0;//
                                                                                                                                                          // random shuffle(P,P+n);
比较纵坐标大小
                                                                                                                                                                  Random(P, n);
              if (it == s.begin())return 0;
                                                                                                                                                                  Circle C = Circle(P[0], 0);
              set<Point>::iterator j = it, k = it;
                                                                                                                                                                  for (int i = 1; i < n; ++i)
              --j;
                                                                                                                                                                         if (!PIC(C, P[i])) {
              return sgn(det(P - *j, *k - *j) * op) >= 0;//看叉姬1
                                                                                                                                                                                C = Circle(P[i], 0);
                                                                                                                                                                                for (int j = 0; j < i; ++j)
                                                                                                                                                                                       if (!PIC(C, P[j])) {
       inline int judge(set<Point>::iterator it) {
                                                                                                                                                                                               C.o = (P[i] + P[j]) * 0.5, C.r = length(P[j] - C.o);
              set<Point>::iterator j = it, k = it;
                                                                                                                                                                                               for (int k = 0; k < j; ++k) if (!PIC(C, P[k])) C = ext
              if (j == s.begin())return 0;
                                                                                                                                                          ernal_circle(P[i], P[j], P[k]);
              --i;
              if (++k == s.end())return 0;
              return sgn(det(*it - *j, *k - *j) * op) >= 0;//看叉姬
                                                                                                                                                                  return C;
       inline void insert(Point P) {
```

```
int temp[N];
                                                                                  Circle c2 = Circle(p2, sqrt(max(0.0, norm(tmp) - c1.r * c1.r)));
                                                                                  cc_cross(c1, c2, ans);
                                                                                  return sta;
//最近点对
double closest_point(Point *p, int n) {
   function<double(int, int)> merge = [&](int 1, int r) {
                                                                              //圆和圆的切线
       double d = dinf;
       if (1 == r) return d;
                                                                              int tangent(Circle c1, Circle c2, vector<Line> &ans) {
       if (l + 1 == r) return dist(p[l], p[r]);
                                                                                  ans.clear();
       int \ mid = (1 + r) >> 1;
                                                                                  if (sgn(c1.r - c2.r) < 0) swap(c1, c2);
       double d1 = merge(1, mid);
                                                                                  double g = norm(c1.o - c2.o);
       double d2 = merge(mid + 1, r);
                                                                                  if (sgn(g) == 0) return 0;
                                                                                  Point u = (c2.o - c1.o) / sqrt(g);
       d = min(d1, d2);
       int i, j, k = 0;
                                                                                  Point v = orth(u);
                                                                                  for (int s = 1; s >= -1; s -= 2) {
       for (i = 1; i <= r; i++) {
           if (sgn(abs(p[mid].x - p[i].x) - d) \leftarrow \emptyset)
                                                                                      double h = (c1.r + s * c2.r) / sqrt(g);
              temp[k++] = i;
                                                                                      if (sgn(1 - h * h) == 0) {
                                                                                         ans.push back(Line(c1.o + u * c1.r, c1.o + (u + v) * c1.r));
                                                                                      } else if (sgn(1 - h * h) >= 0) {
                                                                                         Point uu = u * h, vv = v * sqrt(1 - h * h);
       sort(temp, temp + k, [&](const int &a, const int &b) {
                                                                                         ans.push back(Line(c1.o + (uu + vv) * c1.r, c2.o - (uu + vv)
           return sgn(p[a].y - p[b].y) < 0;
                                                                              * c2.r * s));
       });
       for (i = 0; i < k; i++) {
                                                                                         ans.push_back(Line(c1.o + (uu - vv) * c1.r, c2.o - (uu - vv)
           for (j = i + 1; j < k \&\& sgn(p[temp[j]].y - p[temp[i]].y - d)
                                                                              * c2.r * s));
 <= 0; j++) {
                                                                                     }
              double d3 = dist(p[temp[i]], p[temp[j]]);
                                                                                  }
              d = min(d, d3);
                                                                                  return ans.size();
                                                                              }
       return d;
   };
                                                                              //两圆面积交
   sort(p, p + n, [&](const Point &a, const Point &b) {
                                                                              double areaofCC(Circle c1, Circle c2) {
       if (sgn(a.x - b.x) == 0) return sgn(a.y - b.y) < 0;
                                                                                  if (c1.r > c2.r) swap(c1, c2);
       else return sgn(a.x - b.x) < 0;
                                                                                  double nor = norm(c1.o - c2.o);
                                                                                  double dist = sqrt(max(0.0, nor));
   });
   return merge(0, n - 1);
                                                                                  if (sgn(c1.r + c2.r - dist) <= 0) return 0;</pre>
//圆和点的切线
                                                                                  if (sgn(dist + c1.r - c2.r) \le 0) return c1.r * c1.r * PI;
int tangent(const Circle &c1, const Point &p2, pair<Point, Point> &ans)
                                                                                  double val;
   Point tmp = c1.o - p2;
                                                                                  val = (nor + c1.r * c1.r - c2.r * c2.r) / (2 * c1.r * dist);
                                                                                  val = max(val, -1.0), val = min(val, 1.0);
   int sta;
   if (sgn(norm(tmp) - c1.r * c1.r) < 0) return 0;</pre>
                                                                                  double theta1 = acos(val);
   else if (sgn(norm(tmp) - c1.r * c1.r) == 0) sta = 1;
                                                                                  val = (nor + c2.r * c2.r - c1.r * c1.r) / (2 * c2.r * dist);
   else sta = 2;
                                                                                  val = max(val, -1.0), val = min(val, 1.0);
```

```
double theta2 = acos(val);
   return (theta1 - sin(theta1 + theta1) * 0.5) * c1.r * c1.r + (theta2)
 - sin(theta2 + theta2) * 0.5) * c2.r * c2.r;
//https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL 4 C
//把凸包切一刀
int convexCut(Point *p, Point *ans, int n, Line 1) {
   int top = 0;
   for (int i = 0; i < n; i++) {</pre>
       Point a = p[i], b = p[(i + 1) \% n];
       if (ccw(l.s, l.t, a) != -1) ans[top++] = a;
       if (ccw(1.s, 1.t, a) * ccw(1.s, 1.t, b) < 0)
          ans[top++] = 11_intersection(Line(a, b), 1);
   return top;
//两球体积交
double SphereCross(double d, double r1, double r2) {
   if (r1 < r2) swap(r1, r2);
   if (sgn(d - r1 - r2) >= 0) return 0;
   if (sgn(d + r2 - r1) <= 0) return 4.0 / 3 * PI * r2 * r2 * r2;</pre>
   double co = (r1 * r1 + d * d - r2 * r2) / (2.0 * d * r1);
   double h = r1 * (1 - co);
   double ans = (1.0 / 3) * PI * (3.0 * r1 - h) * h * h;
   co = (r2 * r2 + d * d - r1 * r1) / (2.0 * d * r2);
   h = r2 * (1 - co);
   ans += (1.0 / 3) * PI * (3.0 * r2 - h) * h * h;
   return ans;
几何一些定理(或知识点?
```

多面体欧拉定理

多面体欧拉定理是指对于简单多面体,其各维对象数总满足一定的数学关系,在三维空间中多面体欧拉定理可表示为:

"顶点数-棱长数+表面数=2"。

简单多面体即表面经过连续变形可以变为球面的多面体。

单纯形体积

 R^n 空间下标准单纯形与原点围成的体积为 $\frac{1}{2}$

球缺体积公式

球缺体积 $V=(\pi/3)(3R-h)*h^2$ 或写成 $V=\pi h^2(R-h/3)$,(R 是球的半径,h 是球缺的高).如果已知球缺高 h,底面半径 r,则 $V=[\pi h(3r^2+h^2)]/6$

海伦公式

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

球体积交和并

```
#include<bits/stdc++.h>
#define fi first
#define sf scanf
#define se second
#define pf printf
#define pb push back
#define mp make pair
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(x,y) memset((x),(y),sizeof(x))
#define fup(i,x,y) for(int i=(x);i<=(y);++i)
#define fdn(i,x,y) for(int i=(x);i>=(y);--i)
typedef long long 11;
typedef long double ld;
typedef unsigned long long ull;
typedef std::pair<int,int> pii;
using namespace std;
const ld pi=acos(-1);
ld pow2(ld x){return x*x;}
ld pow3(ld x){return x*x*x;}
ld dis(ld x1,ld y1,ld z1,ld x2,ld y2,ld z2)
   return pow2(x1-x2)+pow2(y1-y2)+pow2(z1-z2);
```

```
ld cos(ld a, ld b, ld c){return (b*b+c*c-a*a)/(2*b*c);}
                                                                           double simpson(double 1, double r) {
                                                                               double mid = (1 + r) / 2;
ld cap(ld r,ld h){return pi*(r*3-h)*h*h/3;} // 球缺体积公式,h 为球缺的高
                                                                               return (r - 1) * (f(1) + 4 * f(mid) + f(r)) / 6; // 辛普森公式
                                                                           }
//2 球体积交
                                                                            double asr(double 1, double r, double EPS, double ans) {
ld sphere intersect(ld x1,ld y1,ld z1,ld r1,ld x2,ld y2,ld z2,ld r2)
                                                                               double mid = (1 + r) / 2;
                                                                               double fl = simpson(l, mid), fr = simpson(mid, r);
   1d d=dis(x1,y1,z1,x2,y2,z2);
                                                                               if (abs(fl + fr - ans) \le 15 * EPS)
   //相离
                                                                                   return fl + fr + (fl + fr - ans) / 15; // 足够相似的话就直接返回
   if(d>=pow2(r1+r2))return 0;
                                                                               return asr(1, mid, EPS / 2, fl) +
   //包含
                                                                                     asr(mid, r, EPS / 2, fr); // 否则分割成两段递归求解
   if(d<=pow2(r1-r2))return pow3(min(r1,r2))*4*pi/3;</pre>
   ld h1=r1-r1*cos(r2,r1,sqrt(d)),h2=r2-r2*cos(r1,r2,sqrt(d));
   return cap(r1,h1)+cap(r2,h2);
                                                                            计算几何全家桶
                                                                            #include <bits/stdc++.h>
//2 球体积并
ld sphere union(ld x1,ld y1,ld z1,ld r1,ld x2,ld y2,ld z2,ld r2)
                                                                            using namespace std;
                                                                            typedef long long 11;
   ld d=dis(x1,y1,z1,x2,y2,z2);
                                                                            const 11 N = 1 << 20;
   //相离
                                                                            const 11 \mod = 1e9 + 7;
   if(d>=pow2(r1+r2))return (pow3(r1)+pow3(r2))*4*pi/3;
                                                                            const double dinf = 1e99;
                                                                            const int inf = 0x3f3f3f3f;
   if(d \le pow2(r1-r2))return pow3(max(r1,r2))*4*pi/3;
                                                                            const 11 linf = 0x3f3f3f3f3f3f3f3f3f;
   //相交
   ld h1=r1+r1*cos(r2,r1,sqrt(d)),h2=r2+r2*cos(r1,r2,sqrt(d));
                                                                            const double eps = 1e-9;
   return cap(r1,h1)+cap(r2,h2);
                                                                            const double PI = acos(-1.0);
                                                                            struct Line;
int main()
                                                                            struct Point {
   double x1,y1,z1,r1,x2,y2,z2,r2;
                                                                               double x, y;
   sf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&z1,&r1,&x2,&y2,&z2,&r2);
   pf("%.12Lf\n", sphere_union(x1,y1,z1,r1,x2,y2,z2,r2));
                                                                               Point() { x = y = 0; }
   return 0;
                                                                               Point(const Line &a);
                                                                               Point(const double &a, const double &b) : x(a), y(b) {}
自适应辛普森
                                                                               Point operator+(const Point &a) const {
double f(double x) {
                                                                                   return \{x + a.x, y + a.y\};
```

```
Point operator-(const Point &a) const {
                                                                                 circle(Point P, double R = 0) { o = P, r = R; }
       return {x - a.x, y - a.y};
                                                                             };
                                                                              double length(const Point &p) {
   Point operator*(const double &a) const {
                                                                                 return sqrt(p.x * p.x + p.y * p.y);
       return {x * a, y * a};
                                                                              double length(const Line &1) {
   Point operator/(const double &d) const {
                                                                                 Point p(1);
       return {x / d, y / d};
                                                                                 return length(p);
   bool operator==(const Point &a) const {
                                                                              Point::Point(const Line &a) { *this = a.t - a.s; }
       return abs(x - a.x) + abs(y - a.y) < eps;
                                                                              istream &operator>>(istream &in, Point &a) {
                                                                                 in >> a.x >> a.y;
   void standardize() {
                                                                                 return in;
       *this = *this / sqrt(x * x + y * y);
};
                                                                              double dot(const Point &a, const Point &b) {
                                                                                 return a.x * b.x + a.y * b.y;
Point normal(const Point &a) { return Point(-a.y, a.x); }
double dist(const Point &a, const Point &b) {
                                                                              double det(const Point &a, const Point &b) {
   return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
                                                                                 return a.x * b.y - a.y * b.x;
double dist2(const Point &a, const Point &b) {
                                                                              int sgn(const double &x) \{ return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); \}
   return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
                                                                              double sqr(const double &x) { return x * x; }
struct Line {
                                                                              Point rotate(const Point &a, const double &ang) {
                                                                                 double x = cos(ang) * a.x - sin(ang) * a.y;
   Point s, t;
                                                                                 double y = sin(ang) * a.x + cos(ang) * a.y;
   Line() {}
                                                                                 return {x, y};
   Line(const Point &a, const Point &b) : s(a), t(b) {}
                                                                             //点在线段上 <=0 包含端点
};
                                                                              bool sp on(const Line &seg, const Point &p) {
                                                                                 Point a = seg.s, b = seg.t;
struct circle {
                                                                                 return ! sgn(det(p - a, b - a)) \&\& sgn(dot(p - a, p - b)) <= 0;
   Point o;
   double r;
                                                                              bool lp_on(const Line &line, const Point &p) {
   circle() {}
                                                                                 Point a = line.s, b = line.t;
```

```
p = 11 intersection(a, b);
   return !sgn(det(p - a, b - a));
                                                                                     return 1;
//等于不包含共线
                                                                                  if (!d1 && sp_on(a, b.s)) {
int andrew(Point *point, Point *convex, int n) {
                                                                                     p = b.s;
                                                                                     return 2;
   sort(point, point + n, [](Point a, Point b) {
       if (a.x != b.x) return a.x < b.x;</pre>
                                                                                  if (!d2 && sp on(a, b.t)) {
       return a.y < b.y;</pre>
                                                                                     p = b.t;
   });
                                                                                     return 2;
   int top = 0;
   for (int i = 0; i < n; i++) {</pre>
                                                                                  if (!d3 && sp on(b, a.s)) {
       while ((top > 1) && det(convex[top - 1] - convex[top - 2], point
                                                                                     p = a.s;
[i] - convex[top - 1]) <= 0)
                                                                                     return 2;
          top--;
       convex[top++] = point[i];
                                                                                  if (!d4 && sp on(b, a.t)) {
   int tmp = top;
                                                                                     p = a.t;
                                                                                     return 2;
   for (int i = n - 2; i >= 0; i--) {
       while ((top > tmp) && det(convex[top - 1] - convex[top - 2], poin
                                                                                  return 0;
t[i] - convex[top - 1]) \leftarrow 0
                                                                              }
          top--;
       convex[top++] = point[i];
                                                                              Point project(const Line &1, const Point &p) {
                                                                                  Point base(1);
   if (n > 1) top--;
                                                                                  double r = dot(base, p - 1.s) / sqr(length(base));
   return top;
                                                                                  return 1.s + (base * r);
double slope(const Point &a, const Point &b) {
                                                                              double sp dist(const Line &1, const Point &p) {
   return (a.y - b.y) / (a.x - b.x);
                                                                                  if (l.s == l.t) return dist(l.s, p);
                                                                                  Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s;
                                                                                  if (sgn(dot(x, z)) < 0)return length(x);//P 距离A 更近
double slope(const Line &a) {
   return slope(a.s, a.t);
                                                                                  if (sgn(dot(y, z)) > 0)return length(y);//P 距离B 更近
                                                                                  return abs(det(x, z) / length(z));//面积除以底边长
Point Il intersection(const Line &a, const Line &b) {
   double s1 = det(Point(a), b.s - a.s), s2 = det(Point(a), b.t - a.s);
                                                                              double lp_dist(const Line &1, const Point &p) {
   return (b.s * s2 - b.t * s1) / (s2 - s1);
                                                                                  Point x = p - 1.s, y = p - 1.t, z = 1.t - 1.s;
                                                                                  return abs(det(x, z) / length(z));//面积除以底边长
int ss cross(const Line &a, const Line &b, Point &p) {
   int d1 = sgn(det(a.t - a.s, b.s - a.s));
                                                                              int lc cross(const Line &1, const Point &a, const double &r, pair<Point,
   int d2 = sgn(det(a.t - a.s, b.t - a.s));
                                                                               Point> &ans) {
   int d3 = sgn(det(b.t - b.s, a.s - b.s));
                                                                                  int num = 0;
   int d4 = sgn(det(b.t - b.s, a.t - b.s));
                                                                                  Point pr = project(1, a);
   if ((d1 ^ d2) == -2 \&\& (d3 ^ d4) == -2) {
```

```
double dis = dist(pr, a);
   double tmp = r * r - dis * dis;
   if (sgn(tmp) == 1) num = 2;
   else if (sgn(tmp) == 0) num = 1;
   else return 0;
   double base = sqrt(r * r - dis * dis);
   Point e(1);
   e.standardize();
   e = e * base;
   ans = make pair(pr + e, pr - e);
   return num;
int cc cross(const Point &c1, const double &r1, const Point &c2, const d
ouble &r2, pair<Point, Point> &ans) {
   double x1 = c1.x, x2 = c2.x, y1 = c1.y, y2 = c2.y;
   double d = length(c1 - c2);
   if (sgn(fabs(r1 - r2) - d) > 0) return -1; //内含
   if (sgn(r1 + r2 - d) < 0) return 0; //相离
   double a = r1 * (x1 - x2) * 2, b = r1 * (y1 - y2) * 2, c = r2 * r2 - r2
r1 * r1 - d * d;
   double p = a * a + b * b, q = -a * c * 2, r = c * c - b * b;
   double cosa, sina, cosb, sinb;
   //One Intersection
   if (sgn(d - (r1 + r2)) == 0 | | sgn(d - fabs(r1 - r2)) == 0) {
       cosa = -q / p / 2;
       sina = sqrt(1 - sqr(cosa));
       Point p0(x1 + r1 * cosa, y1 + r1 * sina);
       if (sgn(dist(p0, c2) - r2)) p0.y = y1 - r1 * sina;
       ans = pair<Point, Point>(p0, p0);
       return 1;
   //Two Intersections
   double delta = sqrt(q * q - p * r * 4);
   cosa = (delta - q) / p / 2;
   cosb = (-delta - q) / p / 2;
   sina = sqrt(1 - sqr(cosa));
   sinb = sqrt(1 - sqr(cosb));
   Point p1(x1 + r1 * cosa, y1 + r1 * sina);
   Point p2(x1 + r1 * cosb, y1 + r1 * sinb);
   if (sgn(dist(p1, c2) - r2)) p1.y = y1 - r1 * sina;
   if (sgn(dist(p2, c2) - r2)) p2.y = y1 - r1 * sinb;
   if (p1 == p2) p1.y = y1 - r1 * sina;
   ans = pair<Point, Point>(p1, p2);
```

```
return 2;
}
Point lp_sym(const Line &1, const Point &p) {
   return p + (project(1, p) - p) * 2;
double alpha(const Point &t1, const Point &t2) {
   double theta;
   theta = atan2((double) t2.y, (double) t2.x) - atan2((double) t1.y,
(double) t1.x);
   if (sgn(theta) < 0)</pre>
       theta += 2.0 * PI;
   return theta;
}
int pip(const Point *P, const int &n, const Point &a) {// 【射线法】判断点
A 是否在任意多边形 Poly 以内
   int cnt = 0;
   int tmp;
   for (int i = 1; i <= n; ++i) {
       int j = i < n ? i + 1 : 1;
       if (sp_on(Line(P[i], P[j]), a))return 2;//点在多边形上
       if (a.y >= min(P[i].y, P[j].y) \& a.y < max(P[i].y, P[j].y))//\%
坐标在该线段两端点之间
          tmp = P[i].x + (a.y - P[i].y) / (P[j].y - P[i].y) * (P[j].x -
P[i].x), cnt += sgn(tmp - a.x) > 0;//\overline{\chi} \triangle \triangle \triangle \triangle \triangle
   return cnt & 1;//穿过奇数次则在多边形以内
bool pip_convex_jud(const Point &a, const Point &L, const Point &R) {//
判断AL 是否在AR 右边
   return sgn(det(L - a, R - a)) > 0;//必须严格以内
bool pip_convex(const Point *P, const int &n, const Point &a) {//【二分
法】判断点A 是否在凸多边形 Poly 以内
   //点按逆时针给出
   if (pip_convex_jud(P[0], a, P[1]) || pip_convex_jud(P[0], P[n - 1],
a)) return 0;//在P[0_1]或P[0_n-1]外
   if (sp_on(Line(P[0], P[1]), a) \mid sp_on(Line(P[0], P[n - 1]), a)) re
turn 2;//在P[0 1]或P[0 n-1]上
   int l = 1, r = n - 2;
```

```
while (1 < r) {//二分找到一个位置 pos 使得 P[0] A 在 P[0 pos], P[0 (pos+
1) 7之间
      int mid = (1 + r + 1) >> 1;
      if (pip_convex_jud(P[0], P[mid], a))l = mid;
      else r = mid - 1;
   if (pip_convex_jud(P[1], a, P[1 + 1]))return 0;//在P[pos_(pos+1)]外
   if (sp on(Line(P[1], P[1 + 1]), a)) return 2; // \underbrace{\#P[pos (pos+1)] \bot}
   return 1:
// 多边形是否包含线段
// 因此我们可以先求出所有和线段相交的多边形的顶点, 然后按照 X-Y 坐标排序(X 坐标
小的排在前面,对于X坐标相同的点,Y坐标小的排在前面,
// 这种排序准则也是为了保证水平和垂直情况的判断正确),这样相邻的两个点就是在线
段上相邻的两交点,如果任意相邻两点的中点也在多边形内,
// 则该线段一定在多边形内。
int pp_judge(Point *A, int n, Point *B, int m) {// 【判断多边形 A 与多边形 B
是否相离】
   for (int i1 = 1; i1 <= n; ++i1) {
      int j1 = i1 < n ? i1 + 1 : 1;
      for (int i2 = 1; i2 <= m; ++i2) {
         int j2 = i2 < m ? i2 + 1 : 1;
         Point tmp:
         if (ss_cross(Line(A[i1], A[j1]), Line(B[i2], B[j2]), tmp)) r
eturn 0;//两线段相交
         if (pip(B, m, A[i1]) | | pip(A, n, B[i2]))return 0;//点包含在
内
   return 1;
double area(Point *P, int n) {//【任意多边形 P 的面积】
   double S = 0:
   for (int i = 1; i <= n; i++) S += det(P[i], P[i < n ? i + 1 : 1]);</pre>
   return S / 2.0;
Line Q[N];
int judge(Line L, Point a) { return sgn(det(a - L.s, L.t - L.s)) > 0; }/
/判断点 a 是否在直线 L 的右边
int halfcut(Line *L, int n, Point *P) {//【半平面交】
```

```
sort(L, L + n, [](const Line &a, const Line &b) {
       double d = atan2((a.t - a.s).y, (a.t - a.s).x) - atan2((b.t - b.
s).y, (b.t - b.s).x);
       return sgn(d) ? sgn(d) < 0 : judge(a, b.s);</pre>
   });
   int m = n;
   n = 0;
   for (int i = 0; i < m; ++i)</pre>
       if (i == 0 || sgn(atan2(Point(L[i]).y, Point(L[i]).x) - atan2(Po
int(L[i - 1]).y, Point(L[i - 1]).x)))
          L[n++] = L[i];
   int h = 1, t = 0;
   for (int i = 0; i < n; ++i) {</pre>
       while (h < t && judge(L[i], ll_intersection(Q[t], Q[t - 1]))) --</pre>
t;//当队尾两个直线交点不是在直线L[i]上或者左边时就出队
       while (h < t \&\& judge(L[i], ll_intersection(Q[h], Q[h + 1]))) ++
h;//当队头两个直线交点不是在直线L[i]上或者左边时就出队
       Q[++t] = L[i];
   while (h < t \&\& judge(Q[h], ll intersection(Q[t], Q[t - 1]))) --t;
   while (h < t \&\& judge(Q[t], ll_intersection(Q[h], Q[h + 1]))) ++h;
   n = 0;
   for (int i = h; i <= t; ++i) {
       P[n++] = 11_{intersection}(Q[i], Q[i < t ? i + 1 : h]);
   return n;
Point V1[N], V2[N];
int mincowski(Point *P1, int n, Point *P2, int m, Point *V) {// 【闵可夫斯
基和】求两个凸包{P1},{P2}的向量集合{V}={P1+P2}构成的凸包
   for (int i = 0; i < n; ++i) V1[i] = P1[(i + 1) \% n] - P1[i];
   for (int i = 0; i < m; ++i) V2[i] = P2[(i + 1) \% m] - P2[i];
   int t = 0, i = 0, j = 0;
   V[t++] = P1[0] + P2[0];
   while (i < n \& j < m) V[t] = V[t - 1] + (sgn(det(V1[i], V2[j])) > 0 ?
 V1[i++] : V2[j++]), t++;
   while (i < n) V[t] = V[t - 1] + V1[i++], t++;
   while (j < m) V[t] = V[t - 1] + V2[j++], t++;
   return t;
```

```
circle getcircle(const Point &A, const Point &B, const Point &C) {// 【=
点确定一圆】向量垂心法
           Point P1 = (A + B) * 0.5, P2 = (A + C) * 0.5;
           Line R1 = Line(P1, P1 + normal(B - A));
           Line R2 = Line(P2, P2 + normal(C - A));
           circle 0:
           0.o = 11_intersection(R1, R2);
           0.r = length(A - 0.0);
           return 0;
struct ConvexHull {
           int op;
           struct cmp {
                      bool operator()(const Point &a, const Point &b) const {
                                 return sgn(a.x - b.x) < 0 \mid | sgn(a.x - b.x) == 0 && sgn(a.y - b.x
  b.y) < 0;
          };
           set<Point, cmp> s;
           ConvexHull(int o) {
                      op = o;
                      s.clear();
           inline int PIP(Point P) {
                      set<Point>::iterator it = s.lower bound(Point(P.x, -dinf));//技
到第一个横坐标大于P 的点
                      if (it == s.end())return 0;
                      if (sgn(it->x - P.x) == 0) return sgn((P.y - it->y) * op) <= 0;//
比较纵坐标大小
                      if (it == s.begin())return 0;
                      set<Point>::iterator j = it, k = it;
                      return sgn(det(P - *j, *k - *j) * op) >= 0;//看叉姬1
           inline int judge(set<Point>::iterator it) {
                      set<Point>::iterator j = it, k = it;
                      if (j == s.begin())return 0;
                      --j;
```

```
if (++k == s.end())return 0;
       return sgn(det(*it - *j, *k - *j) * op) >= 0;//看叉姬
   inline void insert(Point P) {
       if (PIP(P))return;//如果点P已经在凸壳上或凸包里就不插入了
       set<Point>::iterator tmp = s.lower bound(Point(P.x, -inf));
       if (tmp != s.end() && sgn(tmp->x - P.x) == 0)s.erase(tmp);//特判
横坐标相等的点要去掉
       s.insert(P);
       set<Point>::iterator it = s.find(P), p = it;
       if (p != s.begin()) {
          --p;
          while (judge(p)) {
              set<Point>::iterator temp = p--;
              s.erase(temp);
       if ((p = ++it) != s.end()) {
          while (judge(p)) {
              set<Point>::iterator temp = p++;
              s.erase(temp);
} up(1), down(-1);
int PIC(circle C, Point a) { return sgn(length(a - C.o) - C.r) <= 0; }//</pre>
判断点A 是否在圆C 内
void Random(Point *P, int n) { for (int i = 0; i < n; ++i)swap(P[i], P</pre>
[(rand() + 1) % n]); }//随机一个排列
circle min circle(Point *P, int n) {//【求点集 P 的最小覆盖圆】 O(n)
// random shuffle(P.P+n):
   Random(P, n);
   circle C = circle(P[0], 0);
   for (int i = 1; i < n; ++i)
       if (!PIC(C, P[i])) {
          C = circle(P[i], 0);
          for (int j = 0; j < i; ++j)
              if (!PIC(C, P[i])) {
                 C.o = (P[i] + P[j]) * 0.5, C.r = length(P[j] - C.o);
                  for (int k = 0; k < j; ++k) if (!PIC(C, P[k])) C = get
circle(P[i], P[j], P[k]);
```

```
return C;
                                                                             for (int i = 1; i <= La + Lb; i++)</pre>
                                                                                nc[i + 1] += nc[i] / 10, nc[i] %= 10; //统一处理进位
                                                                             if (nc[La + Lb]) s += nc[La + Lb] + '0'; //判断第 i+j 位上的数字是不是
                                                                             for (int i = La + Lb - 1; i >= 1; i--)
                                                                                 s += nc[i] + '0'; //将整形数组转成字符串
高精度
                                                                             return s;
高精度 GCD
                                                                         int sub(int *a, int *b, int La, int Lb) {
                                                                             if (La < Lb) return -1; //如果 a 小于 b,则返回-1
#include <bits/stdc++.h>
                                                                             if (La == Lb) {
using namespace std;
                                                                                for (int i = La - 1; i >= 0; i--)
string add(string a, string b) {
                                                                                    if (a[i] > b[i])
   const int L = 1e5;
                                                                                       break;
   string ans:
                                                                                    else if (a[i] < b[i])
   int na[L] = \{0\}, nb[L] = \{0\};
                                                                                        return -1; //如果 a 小于 b , 则返回-1
   int la = a.size(), lb = b.size();
   for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0';
                                                                             for (int i = 0; i < La; i++) //高精度减法
   for (int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0';
   int lmax = la > lb ? la : lb;
                                                                                a[i] -= b[i];
   for (int i = 0; i < lmax; i++)</pre>
                                                                                if (a[i] < 0) \ a[i] += 10, \ a[i + 1] --;
      na[i] += nb[i], na[i + 1] += na[i] / 10, na[i] %= 10;
   if (na[lmax]) lmax++;
                                                                             for (int i = La - 1; i >= 0; i--)
   for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
                                                                                if (a[i]) return i + 1; //返回差的位数
   return ans;
                                                                             return 0;
                                                                                                       //返回差的位数
string mul(string a, string b) {
   const int L = 1e5;
                                                                          string div(string n1, string n2,
   string s;
                                                                                   int nn) // n1,n2 是字符串表示的被除数,除数,nn 是选择返回商还是余
   int na[L], nb[L], nc[L],
                                                                          数
      La = a.size(), Lb = b.size(); // na 存储被乘数, nb 存储乘数, nc 存
                                                                             const int L = 1e5;
   fill(na, na + L, 0);
                                                                             string s, v; // s 存商,v 存余数
   fill(nb, nb + L, 0);
                                                                             int a[L], b[L], r[L],
   fill(nc, nc + L, 0); //将na,nb,nc 都置为0
                                                                                La = n1.size(), Lb = n2.size(), i,
   for (int i = La - 1; i >= 0; i--)
                                                                                 tp = La; // a, b 是整形数组表示被除数,除数,tp 保存被除数的长度
      na[La - i] =
                                                                             fill(a, a + L, 0);
          a[i] - '0'; //将字符串表示的大整形数转成 i 整形数组表示的大整形数
                                                                             fill(b, b + L, 0);
   for (int i = Lb - 1; i >= 0; i--) nb[Lb - i] = b[i] - '0';
                                                                             fill(r, r + L, 0); //数组元素都置为0
   for (int i = 1; i <= La; i++)
                                                                             for (i = La - 1; i >= 0; i--) a[La - 1 - i] = n1[i] - '0';
      for (int j = 1; j <= Lb; j++)</pre>
                                                                             for (i = Lb - 1; i >= 0; i--) b[Lb - 1 - i] = n2[i] - '0';
          nc[i + j - 1] +=
                                                                             if (La < Lb | (La == Lb && n1 < n2)) {
             na[i] *
                                                                                // cout<<0<<endl;</pre>
             nb[j]; // a 的第 i 位乘以 b 的第 j 位为积的第 i+j-1 位 (先不考虑
                                                                                return n1;
进位)
                                                                                             //如果a<b,则商为0,余数为被除数
```

```
int t = La - Lb: //除被数和除数的位数之差
                                                                          return a;
   for (int i = La - 1; i >= 0; i--) // 将除数扩大10^t 倍
      if (i >= t)
          b[i] = b[i - t];
      else
          b[i] = 0;
   Lb = La;
   for (int j = 0; j <= t; j++) {
      int temp;
      while ((temp = sub(a, b + j, La, Lb - j)) >=
            0) //如果被除数比除数大继续减
          La = temp;
          r[t - j]++;
   for (i = 0; i < L - 10; i++)
      r[i + 1] += r[i] / 10, r[i] %= 10; //统一处理进位
   while (!r[i]) i--; //将整形数组表示的商转化成字符串表示的
   while (i >= 0) s += r[i--] + '0';
   // cout<<s<<endl:</pre>
   i = tp;
   while (!a[i]) i--; //将整形数组表示的余数转化成字符串表示的</span>
   while (i >= 0) v += a[i--] + '0';
   if (v.empty()) v = "0";
   // cout<<v<<endl:</pre>
   if (nn == 1) return s;
   if (nn == 2) return v;
bool judge(string s) //判断 s 是否为全 0 串
   for (int i = 0; i < s.size(); i++)</pre>
      if (s[i] != '0') return false;
   return true;
string gcd(string a, string b) //求最大公约数
   string t;
   while (!judge(b)) //如果余数不为0,继续除
                      //保存被除数的值
      t = a;
      a = b:
                      //用除数替换被除数
      b = div(t, b, 2); //用余数替换除数
```

```
//o(无法估计)
高精度乘法 (FFT)
#include <bits/stdc++.h>
using namespace std;
#define L(x) (1 << (x))
const double PI = acos(-1.0);
const int Maxn = 133015;
double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];
char sa[Maxn / 2], sb[Maxn / 2];
int sum[Maxn];
int x1[Maxn], x2[Maxn];
int revv(int x, int bits) {
    int ret = 0;
    for (int i = 0; i < bits; i++) {</pre>
       ret <<= 1;
       ret |= x & 1;
       x >>= 1;
    return ret;
void fft(double* a, double* b, int n, bool rev) {
    int bits = 0;
    while (1 << bits < n) ++bits;</pre>
    for (int i = 0; i < n; i++) {</pre>
       int j = revv(i, bits);
       if (i < j) swap(a[i], a[j]), swap(b[i], b[j]);</pre>
    for (int len = 2; len <= n; len <<= 1) {</pre>
       int half = len >> 1:
       double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);
       if (rev) wmy = -wmy;
       for (int i = 0; i < n; i += len) {</pre>
           double wx = 1, wy = 0;
           for (int j = 0; j < half; j++) {</pre>
               double cx = a[i + j], cy = b[i + j];
               double dx = a[i + j + half], dy = b[i + j + half];
               double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;
               a[i + j] = cx + ex, b[i + j] = cy + ey;
               a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;
```

```
for (i = 0; i < 12; i++) \times 2[i] = sb[12 - i - 1] - '0';
              double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wm
                                                                                  1 = solve(x1, 11, x2, 12, sum);
х;
                                                                                  for (i = 0; i < l | sum[i] >= 10; i++) // 进位
              wx = wnx, wy = wny;
                                                                                      sum[i + 1] += sum[i] / 10;
                                                                                      sum[i] %= 10;
   if (rev) {
       for (int i = 0; i < n; i++) a[i] /= n, b[i] /= n;
                                                                                  1 = i;
   }
                                                                                  while (sum[1] <= 0 && 1 > 0) 1--;
                                                                                                                                // 检索最高位
                                                                                  for (i = 1; i >= 0; i--) ans += sum[i] + '0'; // 倒序输出
int solve(int a[], int na, int b[], int nb, int ans[]) {
                                                                                  return ans;
   int len = max(na, nb), ln;
   for (ln = 0; L(ln) < len; ++ln)
                                                                              int main() {
                                                                                  cin.sync with stdio(false);
   len = L(++ln);
                                                                                  string a, b;
   for (int i = 0; i < len; ++i) {</pre>
                                                                                  while (cin >> a >> b) cout << mul(a, b) << endl;</pre>
       if (i >= na)
                                                                                  return 0;
           ax[i] = 0, ay[i] = 0;
       else
           ax[i] = a[i], ay[i] = 0;
                                                                              //o(nlogn)
   fft(ax, ay, len, 0);
   for (int i = 0; i < len; ++i) {</pre>
                                                                               高精度乘法 (乘单精)
       if (i >= nb)
          bx[i] = 0, by[i] = 0;
                                                                              #include <bits/stdc++.h>
       else
                                                                              using namespace std;
           bx[i] = b[i], by[i] = 0;
                                                                              string mul(string a, int b) //高精度a 乘单精度b
   fft(bx, by, len, 0);
                                                                                  const int L = 100005;
   for (int i = 0; i < len; ++i) {</pre>
                                                                                  int na[L];
       double cx = ax[i] * bx[i] - ay[i] * by[i];
                                                                                  string ans;
       double cy = ax[i] * by[i] + ay[i] * bx[i];
                                                                                  int La = a.size();
       ax[i] = cx, ay[i] = cy;
                                                                                  fill(na, na + L, 0);
                                                                                  for (int i = La - 1; i >= 0; i--) na[La - i - 1] = a[i] - '0';
   fft(ax, ay, len, 1);
                                                                                  int w = 0;
   for (int i = 0; i < len; ++i) ans[i] = (int)(ax[i] + 0.5);
                                                                                  for (int i = 0; i < La; i++)</pre>
   return len;
                                                                                      na[i] = na[i] * b + w, w = na[i] / 10, na[i] = na[i] % 10;
                                                                                  while (w) na[La++] = w \% 10, w /= 10;
string mul(string sa, string sb) {
   int 11, 12, 1;
                                                                                  while (La >= 0) ans += na[La--] + '0';
   int i;
                                                                                  return ans;
   string ans;
   memset(sum, 0, sizeof(sum));
   11 = sa.size();
                                                                              //o(n)
   12 = sb.size();
   for (i = 0; i < 11; i++) x1[i] = sa[11 - i - 1] - '0';
```

```
高精度乘法(朴素)
                                                                               int na[L] = \{0\}, nb[L] = \{0\};
                                                                               int la = a.size(), lb = b.size();
                                                                               for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0';</pre>
#include <bits/stdc++.h>
                                                                               for (int i = 0; i < 1b; i++) nb[1b - 1 - i] = b[i] - '0';
using namespace std;
                                                                               int lmax = la > lb ? la : lb;
string mul(string a, string b) //高精度乘法a,b,均为非负整数
                                                                               for (int i = 0; i < lmax; i++) {</pre>
                                                                                   na[i] -= nb[i];
   const int L = 1e5;
                                                                                   if (na[i] < 0) na[i] += 10, na[i + 1]--;</pre>
   string s;
   int na[L], nb[L], nc[L],
                                                                               while (!na[--lmax] && lmax > 0)
       La = a.size(), Lb = b.size(); // na 存储被乘数, nb 存储乘数, nc 存
                                                                               lmax++:
   fill(na, na + L, 0);
   fill(nb, nb + L, 0);
                                                                               return ans;
   fill(nc, nc + L, 0); //将na,nb,nc 都置为0
                                                                            }
   for (int i = La - 1; i >= 0; i--)
       na[La - i] =
                                                                            //o(n)
          a[i] - '0'; //将字符串表示的大整形数转成 i 整形数组表示的大整形数
   for (int i = Lb - 1; i >= 0; i--) nb[Lb - i] = b[i] - '0';
   for (int i = 1; i <= La; i++)</pre>
                                                                            高精度加法
       for (int j = 1; j <= Lb; j++)
          nc[i + j - 1] +=
                                                                            #include <bits/stdc++.h>
              na[i] *
                                                                            using namespace std;
              nb[j]; // a 的第 i 位乘以 b 的第 j 位为积的第 i+j-1 位 (先不考虑
讲付)
   for (int i = 1; i <= La + Lb; i++)</pre>
                                                                               const int L = 1e5;
       nc[i + 1] += nc[i] / 10, nc[i] %= 10; //统一处理进位
                                                                               string ans;
   if (nc[La + Lb]) s += nc[La + Lb] + '0'; //判断第 i+j 位上的数字是不是
                                                                               int na[L] = \{0\}, nb[L] = \{0\};
                                                                               int la = a.size(), lb = b.size();
   for (int i = La + Lb - 1; i >= 1; i--)
       s += nc[i] + '0'; //将整形数组转成字符串
   return s;
                                                                               int lmax = la > lb ? la : lb;
                                                                               for (int i = 0; i < lmax; i++)</pre>
//o(n^2)
                                                                               if (na[lmax]) lmax++;
```

高精度减法

```
#include <bits/stdc++.h>
using namespace std;
string sub(string a, string b) // 只限大的非负整数减小的非负整数
   const int L = 1e5;
   string ans;
```

```
for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
string add(string a, string b) // 只限两个非负整数相加
   for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0';</pre>
   for (int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0';</pre>
       na[i] += nb[i], na[i + 1] += na[i] / 10, na[i] %= 10;
   for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
   return ans;
```

高精度取模 (对单精)

//o(n)

#include <bits/stdc++.h>

```
using namespace std;
int mod(string a, int b)//高精度 a 除以单精度 b
   int d=0;
   for(int i=0;i<a.size();i++) d=(d*10+(a[i]-'0'))%b;//求出余数
   return d:
//o(n)
高精度幂
#include <bits/stdc++.h>
#define L(x) (1 << (x))
using namespace std;
const double PI = acos(-1.0);
const int Maxn = 133015;
double ax[Maxn], ay[Maxn], bx[Maxn], by[Maxn];
char sa[Maxn / 2], sb[Maxn / 2];
int sum[Maxn];
int x1[Maxn], x2[Maxn];
int revv(int x, int bits) {
   int ret = 0:
   for (int i = 0; i < bits; i++) {</pre>
       ret <<= 1;
       ret |= x & 1;
       x >>= 1;
   return ret;
void fft(double* a, double* b, int n, bool rev) {
   int bits = 0;
   while (1 << bits < n) ++bits;</pre>
   for (int i = 0; i < n; i++) {</pre>
       int j = revv(i, bits);
       if (i < j) swap(a[i], a[j]), swap(b[i], b[j]);</pre>
   for (int len = 2; len <= n; len <<= 1) {
       int half = len >> 1:
       double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);
       if (rev) wmy = -wmy;
       for (int i = 0; i < n; i += len) {</pre>
           double wx = 1, wy = 0;
           for (int j = 0; j < half; j++) {</pre>
```

```
double cx = a[i + j], cy = b[i + j];
               double dx = a[i + j + half], dy = b[i + j + half];
               double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;
               a[i + j] = cx + ex, b[i + j] = cy + ey;
               a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;
               double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wm
х;
               wx = wnx, wy = wny;
   if (rev) {
       for (int i = 0; i < n; i++) a[i] /= n, b[i] /= n;
int solve(int a[], int na, int b[], int nb, int ans[]) {
   int len = max(na, nb), ln;
   for (ln = 0; L(ln) < len; ++ln)
      ;
   len = L(++ln);
   for (int i = 0; i < len; ++i) {</pre>
       if (i >= na)
           ax[i] = 0, ay[i] = 0;
           ax[i] = a[i], ay[i] = 0;
   fft(ax, ay, len, 0);
   for (int i = 0; i < len; ++i) {</pre>
       if (i >= nb)
           bx[i] = 0, by[i] = 0;
       else
           bx[i] = b[i], by[i] = 0;
   fft(bx, by, len, 0);
   for (int i = 0; i < len; ++i) {</pre>
       double cx = ax[i] * bx[i] - ay[i] * by[i];
       double cy = ax[i] * by[i] + ay[i] * bx[i];
       ax[i] = cx, ay[i] = cy;
   fft(ax, ay, len, 1);
   for (int i = 0; i < len; ++i) ans[i] = (int)(ax[i] + 0.5);
   return len;
string mul(string sa, string sb) {
   int 11, 12, 1;
   int i;
```

```
string ans;
   memset(sum, 0, sizeof(sum));
   11 = sa.size();
   12 = sb.size();
   for (i = 0; i < 11; i++) \times 1[i] = sa[11 - i - 1] - '0';
   for (i = 0; i < 12; i++) x2[i] = sb[12 - i - 1] - '0';
   1 = solve(x1, 11, x2, 12, sum);
   for (i = 0; i < l || sum[i] >= 10; i++) // 进位
       sum[i + 1] += sum[i] / 10;
       sum[i] %= 10;
   1 = i;
   while (sum[1] <= 0 && 1 > 0) 1--;
                                                 // 检索最高位
   for (i = 1; i >= 0; i--) ans += sum[i] + '0'; // 倒序输出
   return ans:
string Pow(string a, int n) {
   if (n == 1) return a;
   if (n & 1) return mul(Pow(a, n - 1), a);
   string ans = Pow(a, n / 2);
   return mul(ans, ans);
//o(nlognlogm)
高精度平方根
#include <bits/stdc++.h>
using namespace std;
const int L = 2015;
string add(string a, string b) // 只限两个非负整数相加
   string ans;
   int na[L] = \{0\}, nb[L] = \{0\};
   int la = a.size(), lb = b.size();
   for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0';</pre>
   for (int i = 0; i < lb; i++) nb[lb - 1 - i] = b[i] - '0';
   int lmax = la > lb ? la : lb;
   for (int i = 0; i < lmax; i++)</pre>
       na[i] += nb[i], na[i + 1] += na[i] / 10, na[i] %= 10;
   if (na[lmax]) lmax++;
   for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
   return ans;
```

```
string sub(string a, string b) // 只限大的非负整数减小的非负整数
   string ans;
   int na[L] = \{0\}, nb[L] = \{0\};
   int la = a.size(), lb = b.size();
   for (int i = 0; i < la; i++) na[la - 1 - i] = a[i] - '0';</pre>
   for (int i = 0; i < 1b; i++) nb[1b - 1 - i] = b[i] - '0';
   int lmax = la > lb ? la : lb;
   for (int i = 0; i < lmax; i++) {</pre>
       na[i] -= nb[i];
       if (na[i] < 0) na[i] += 10, na[i + 1]--;</pre>
   while (!na[--lmax] && lmax > 0)
   lmax++;
   for (int i = lmax - 1; i >= 0; i--) ans += na[i] + '0';
   return ans;
string mul(string a, string b) //高精度乘法a,b,均为非负整数
   string s;
   int na[L], nb[L], nc[L],
       La = a.size(), Lb = b.size(); // na 存储被乘数, nb 存储乘数, nc 存
   fill(na, na + L, 0);
   fill(nb, nb + L, 0);
   fill(nc, nc + L, 0); //将 na, nb, nc 都置为 0
   for (int i = La - 1; i >= 0; i--)
       na[La - i] =
          a[i] - '0'; //将字符串表示的大整形数转成 i 整形数组表示的大整形数
   for (int i = Lb - 1; i >= 0; i--) nb[Lb - i] = b[i] - '0';
   for (int i = 1; i <= La; i++)</pre>
       for (int j = 1; j <= Lb; j++)
          nc[i + j - 1] +=
              na[i] *
              nb[j]; // a 的第 i 位乘以 b 的第 j 位为积的第 i+j-1 位 (先不考虑
讲位)
   for (int i = 1; i <= La + Lb; i++)</pre>
       nc[i + 1] += nc[i] / 10, nc[i] %= 10; //统一处理进位
   if (nc[La + Lb]) s += nc[La + Lb] + '0'; //判断第 i+j 位上的数字是不是
0
   for (int i = La + Lb - 1; i >= 1; i--)
       s += nc[i] + '0'; //将整形数组转成字符串
```

```
return s;
int sub(int *a, int *b, int La, int Lb) {
   if (La < Lb) return -1; //如果 a 小于b,则返回-1
   if (La == Lb) {
      for (int i = La - 1; i >= 0; i--)
          if (a[i] > b[i])
             break;
          else if (a[i] < b[i])</pre>
             return -1; //如果 a 小于 b,则返回-1
   for (int i = 0; i < La; i++) //高精度减法
      a[i] -= b[i];
      if (a[i] < 0) a[i] += 10, a[i + 1]--;</pre>
   for (int i = La - 1; i >= 0; i--)
      if (a[i]) return i + 1; //返回差的位数
                            //返回差的位数
   return 0:
string div(string n1, string n2,
         int nn) // n1, n2 是字符串表示的被除数,除数, nn 是选择返回商还是余
数
   string s, v; // s 存商, v 存余数
   int a[L], b[L], r[L],
      La = n1.size(), Lb = n2.size(), i,
      tp = La; // a, b 是整形数组表示被除数,除数,tp 保存被除数的长度
   fill(a, a + L, 0);
   fill(b, b + L, 0);
   fill(r, r + L, 0); //数组元素都置为0
   for (i = La - 1; i >= 0; i--) a[La - 1 - i] = n1[i] - '0';
   for (i = Lb - 1; i >= 0; i--) b[Lb - 1 - i] = n2[i] - '0';
   if (La < Lb | (La == Lb && n1 < n2)) {
      // cout<<0<<endl;</pre>
      return n1;
                  //如果a<b,则商为0,余数为被除数
   int t = La - Lb; // 除被数和除数的位数之差
   for (int i = La - 1; i >= 0; i--) // 将除数扩大10^t 倍
      if (i >= t)
          b[i] = b[i - t];
      else
          b[i] = 0;
   Lb = La;
```

```
for (int j = 0; j <= t; j++) {
       int temp;
       while ((temp = sub(a, b + j, La, Lb - j)) >=
             0) //如果被除数比除数大继续减
          La = temp;
          r[t - j]++;
       }
   for (i = 0; i < L - 10; i++)
       r[i + 1] += r[i] / 10, r[i] %= 10; //统一处理进位
   while (!r[i]) i--; //将整形数组表示的商转化成字符串表示的
   while (i >= 0) s += r[i--] + '0';
   // cout<<s<<endl;</pre>
   i = tp;
   while (!a[i]) i--; // 将整形数组表示的余数转化成字符串表示的</span>
   while (i >= 0) v += a[i--] + '0';
   if (v.empty()) v = "0";
   // cout<<v<<endl;</pre>
   if (nn == 1) return s;
   if (nn == 2) return v;
bool cmp(string a, string b) {
   if (a.size() < b.size()) return 1; // a 小于等于 b 返回真
   if (a.size() == b.size() && a <= b) return 1;</pre>
   return 0;
string DeletePreZero(string s) {
   int i:
   for (i = 0; i < s.size(); i++)</pre>
       if (s[i] != '0') break;
   return s.substr(i);
string BigInterSqrt(string n) {
   n = DeletePreZero(n);
   string l = "1", r = n, mid, ans;
   while (cmp(1, r)) {
       mid = div(add(1, r), "2", 1);
       if (cmp(mul(mid, mid), n))
          ans = mid, l = add(mid, "1");
       else
          r = sub(mid, "1");
   return ans;
```

```
// o(n^3)
高精度进制转换
#include <bits/stdc++.h>
using namespace std;
//将字符串表示的10 进制大整数转换为m 进制的大整数
//并返回 m 进制大整数的字符串
bool judge(string s) //判断串是否为全零串
   for (int i = 0; i < s.size(); i++)</pre>
      if (s[i] != '0') return 1;
   return 0;
string solve(
   string s, int n,
   int m) // n 进制转 m 进制 只限 0-9 进制, 若涉及带字母的进制, 稍作修改即可
   string r, ans;
   int d = 0;
   if (!judge(s)) return "0"; //特判
   while (judge(s))
                           //被除数不为@则继续
      for (int i = 0; i < s.size(); i++) {</pre>
         r += (d * n + s[i] - '0') / m + '0'; //求出商
         d = (d * n + (s[i] - '0')) \% m;
                                          //求出余数
                    //把商赋给下一次的被除数
      s = r;
      r = "";
                    //把商清空
      ans += d + '0'; //加上进制转换后数字
      d = 0;
                    //清空余数
   reverse(ans.begin(), ans.end()); //倒置下
   return ans;
//o(n^2)
```

高精度阶乘

```
#include <bits/stdc++.h>
using namespace std;
string fac(int n) {
   const int L = 100005;
   int a[L];
   string ans;
   if (n == 0) return "1";
   fill(a, a + L, 0);
   int s = 0, m = n;
   while (m) a[++s] = m \% 10, m /= 10;
   for (int i = n - 1; i >= 2; i--) {
       int w = 0;
       for (int j = 1; j <= s; j++)</pre>
           a[j] = a[j] * i + w, w = a[j] / 10, a[j] = a[j] % 10;
       while (w) a[++s] = w \% 10, w /= 10;
   while (!a[s]) s--;
   while (s >= 1) ans += a[s--] + '0';
   return ans;
}
//o(n^2)
高精度除法 (除单精)
#include <bits/stdc++.h>
using namespace std;
string div(string a, int b) //高精度a 除以单精度b
   string r, ans;
   int d = 0;
   if (a == "0") return a; //特判
   for (int i = 0; i < a.size(); i++) {</pre>
       r += (d * 10 + a[i] - '0') / b + '0'; //求出商
       d = (d * 10 + (a[i] - '0')) \% b;
                                          //求出余数
   int p = 0:
   for (int i = 0; i < r.size(); i++)</pre>
       if (r[i] != '0') {
           p = i;
           break;
```

```
return r.substr(p);
                                                                            int t = La - Lb; //除被数和除数的位数之差
                                                                            for (int i = La - 1; i >= 0; i--) //将除数扩大10<sup>^</sup>t 倍
                                                                                if (i >= t)
//o(n)
                                                                                   b[i] = b[i - t];
                                                                                else
                                                                                   b[i] = 0;
高精度除法 (除高精)
                                                                            Lb = La;
                                                                            for (int j = 0; j <= t; j++) {</pre>
#include <bits/stdc++.h>
                                                                                int temp;
using namespace std;
                                                                                while ((temp = sub(a, b + j, La, Lb - j)) >=
int sub(int *a, int *b, int La, int Lb) {
                                                                                      0) //如果被除数比除数大继续减
   if (La < Lb) return -1; //如果 a 小于 b,则返回-1
   if (La == Lb) {
                                                                                   La = temp;
      for (int i = La - 1; i >= 0; i--)
                                                                                   r[t - j]++;
          if (a[i] > b[i])
             break;
          else if (a[i] < b[i])
                                                                            for (i = 0; i < L - 10; i++)
             return -1; //如果 a 小于 b ,则返回-1
                                                                                r[i + 1] += r[i] / 10, r[i] %= 10; //统一处理进位
                                                                            while (!r[i]) i--; //将整形数组表示的商转化成字符串表示的
   for (int i = 0; i < La; i++) //高精度减法
                                                                            while (i \ge 0) s += r[i--] + '0';
                                                                            // cout<<s<<endl:</pre>
       a[i] -= b[i];
                                                                            i = tp;
      if (a[i] < 0) a[i] += 10, a[i + 1]--;
                                                                            while (!a[i]) i--; //将整形数组表示的余数转化成字符串表示的</span>
                                                                            while (i >= 0) v += a[i--] + '0';
   for (int i = La - 1; i >= 0; i--)
                                                                            if (v.empty()) v = "0";
       if (a[i]) return i + 1; //返回差的位数
                                                                            // cout<<v<<endl;</pre>
   return 0:
                             //返回差的位数
                                                                            if (nn == 1) return s; //返回商
                                                                            if (nn == 2) return v; //返回余数
string div(string n1, string n2, int nn)
// n1,n2 是字符串表示的被除数,除数,nn 是选择返回商还是余数
                                                                         //o(n^2)
   const int L = 1e5;
   string s, v; // s 存商,v 存余数
   int a[L], b[L], r[L], La = n1.size(), Lb = n2.size(), i, tp = La;
                                                                         龟速乘快速幂(快速幂爆 longlong
   // a, b 是整形数组表示被除数,除数,tp 保存被除数的长度
   fill(a, a + L, 0):
                                                                         #include <bits/stdc++.h>
   fill(b, b + L, 0);
                                                                         using namespace std;
   fill(r, r + L, 0); //数组元素都置为0
                                                                         typedef long long 11;
   for (i = La - 1; i >= 0; i--) a[La - 1 - i] = n1[i] - '0';
   for (i = Lb - 1; i >= 0; i--) b[Lb - 1 - i] = n2[i] - '0';
                                                                         11 gmul(11 a, 11 b, 11 p) {
   if (La < Lb | (La == Lb && n1 < n2)) {
                                                                                 11 \text{ res} = 0;
       // cout<<0<<endl;</pre>
                                                                                 while(b) {
      return n1;
                                                                                         if(b \& 1) res = (res + a) \% p;
   }
                   //如果 a < b , 则商为 0 , 余数为被除数
                                                                                         a = (a + a) \% p;
```