A, perm

要想求出每个前缀的答案,就要先考虑单次求答案。不妨思考哪些元素是一定不能被删去的,即对于一个 a_k ,不同时存在 $j < k, a_i > a_k$ 和 $l > k, a_l > a_k$ 。

发现 a 序列的前/后缀最大值满足要求,且如果一个 a_i 既不是前缀最大值,也不是后缀最大值,那么其前后一定都有比自己大的元素,它不满足要求,可以被删去。那么现在问题变为有 |a| 个元素,a 的前缀最大值 有 k_1 个,后缀最大值有 k_2 个,则有 k_1+k_2-1 个元素不能被删去(全局最大值同时是前缀最大值与后缀最大值,被重复统计), $|a|-k_1-k_2+1$ 个元素可删可不删,则答案为 $2^{|a|+1-k_1-k_2}$,对每个前缀也是这样做,而 k_1,k_2 只需要用单调栈就能对每个前缀求出。O(n)。

B, array

梦梦的决策只有 2n 种:选择一个 i,再选择放 a_i,b_i 的顺序,其余的都由熊熊决定,于是可以据此设计 dp:设 dp_i 表示以 i 结尾的最大子段和,那么 $dp_{2i-1} = \max\{0, \max(A_i, B_i) + dp_{2i-2}\}$, $dp_{2i} = \max\{0, A_i, B_i, A_i + B_i + dp_{2i-2}\}$,但转移到梦梦决策的 2i 时需要特殊处理,这样就得到 $O(n^2)$ 的做法。

接下来考虑如何加速。梦梦的决策影响是很有限的,于是对于其不能决策时做一次上述 dp,再倒转序列求出 rdp_i 表示以 i 开头的最大子段和,那么梦梦如果操作了 2i-1,2i,则新的最大子段和只需要分为完全在 [1,2i-2],[2i+1,2n] 中,以及包含 2i-1,2i 中的恰一个或是包含两个(跨过),前者直接用 dp,rdp 查询,后者容易合并。O(n)。

C, string

对于单次对 T 的询问,设 f_i 表示 T[1,i] 中以 0 结尾的合法子序列数量, g_i 表示 T[1:i] 中以 1 结尾的合法子序列数量。则对于 T_{i+1} 分类讨论转移:

- T_{i+1} 为 0 : $f_{i+1}=f_i+g_i$, $g_{i+1}=g_i$.
- T_{i+1} 为 1: $f_{i+1} = f_i$, $g_{i+1} = f_i + g_i + 1$.
- T_{i+1} 为 \square : $f_{i+1}=f_i$, $g_{i+1}=g_i$.

三种转移都容易用 3×3 的矩阵刻画,其中过程向量为 $[f_i,g_i,1]$ 。

令 d=3,用线段树维护区间转移矩阵乘积来加速转移,每次 1 操作暴力递归到没有变为 \square 的叶子节点,可以做到 $O(qd^3\log n)$,可以通过本题。

D, divisor

若 $x=\prod_{i=1}^k p_i^{e_i}$,则 x 的因数个数 $d(x)=\prod_{i=1}^k (e_i+1)$,则我们只关心 e 序列,则不妨令 $e_1\geq e_2\geq \cdots \geq e_k$,因为幂的顺序并不重要。题述操作等价于给某一项加减 1 或是添加一项 1,操作之后将 0 去掉并重新排序。对于 $x\leq 10^6$,可以找出只有 m=289 个这样本质不同的 e 序列,所以计算出 m^2 对最短距离即可。

注意到对于 $x=2^{19},y=2^23^6$ 时,将 x 乘 2 就可以使两者均有 21 个因子,但这样就会出现 $\{20\}$ 这样不在 289 个合法序列中的过程 e 序列。如果不考虑这样的情况,可以得到任意两个数最多需要 10 次操作,于是一个比较松的限制是最优操作中所有过程中的 e 满足 $\sum e_i \leq 29$,即初始有 $\sum e_i \leq 19$,经过至多 10 次操作后 $\sum e_i$ 不超过 29。再进一步发现目标的 $\sum e_i$ 也不超过 19,那么这个上界还能缩小,精确的上界可以验证得到为 22,提前从 289 个起点出发 bfs,每次询问记忆化地合并答案即可,可以在时限范围内通过。