PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-290457

(43) Date of publication of application: 19.10.2001

(51)Int.Cl.

G09G 3/20 G02F 1/133 G09G 3/30 **G09G** 3/36

(21)Application number : 2001-020078

(71)Applicant: SEMICONDUCTOR ENERGY LAB CO

LTD

(22)Date of filing:

29.01.2001

(72)Inventor: ASAMI MUNEHIRO

(30)Priority

Priority number : 2000022536

Priority date : 31.01.2000

Priority country: JP

(54) COLOR PICTURE DISPLAY DEVICE AND ITS DRIVING METHOD, AND, ELECTRIC **EQUIPMENT**

(57)Abstract:

PROBLEM TO BE SOLVED: To control application voltages of pixel electrodes independently in R, G, B without increasing the number of multilevel power source lines in the case of driving plural source lines with one D/A conversion circuit in the source signal line driving circuit of an active matrix type color picture display device coping with the inputting of a digital video signal.

SOLUTION: In this display device, multilevel power source lines to be supplied to a source signal line driving circuit are made to be only one system and respective D/A conversion circuits drives source signal lines of lines of multiples of them by making three lines of source signal lines corresponding to respective colors of R, G, B a unit, Then, periods when respective source line selecting circuits select source signal lines corresponding to respective colors of R, G, B are made to be in synchronization and, moreover, power source voltages to be applied to the multilevel power source lines are changed in one horizontal write period and power source voltages corresponding to R, G, B are applied

respectively to the multilevel power source lines in a period when the source signal lines of R, G, B are selected, respectively.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-290457 (P2001-290457A)

(43)公開日 平成13年10月19日(2001.10.19)

(51) Int.Cl. ⁷		識別記号	FΙ	テーマコート (参考)			
G 0 9 G	3/20	6 2 3	G 0 9 G	3/20	623 1	E	
G 0 2 F	1/133	5 1 0	G 0 2 F	1/133	5 1 0		
		5 5 0			5 5 0		
G 0 9 G	3/30	•	G 0 9 G	3/30	J		
	3/36		3/36				
		•	審查請求	未請求	請求項の数20	OL	(全 28 頁)
(21)出願番号		特願2001-20078(P2001-20078)	(71)出願人	000153878			
(22)出顧日		平成13年1月29日(2001.1.29)		株式会社半導体エネルギー研究所 神奈川県厚木市長谷398番地			
(31)優先権主張番号		特顧2000-22536(P2000-22536)	(72)発明者	浅見 宗広 神奈川県厚木市長谷398番地 株式会社半			

(54) 【発明の名称】 カラー画像表示装置とその駆動方法、および、電子機器

平成12年1月31日(2000.1.31)

日本(JP)

(57)【要約】

(32)優先日

(33)優先権主張国

【課題】 デジタル映像信号入力に対応するアクティブマトリクス型カラー画像表示装置のソース信号線駆動回路において、1つのD/A変換回路で複数のソース線を駆動する場合に、階調電源線の本数を増加させることなく画素電極の印加電圧をRGB独立に制御できるようにする。

【解決手段】 ソース信号線駆動回路に供給される階調電源線は1系統のみとし、各D/A変換回路はRGBに対応した3本のソース信号線を単位としてその倍数本のソース信号線を駆動する。そして、各ソース線選択回路がRGB各色に対応したソース信号線を選択する期間を同期させ、さらに、階調電源線に印加する電源電圧を1水平費き込み期間内に変化させ、R、G、Bのソース信号線がそれぞれ選択されている期間にR、G、Bに対応した電源電圧をそれぞれ階調電源線に印加する。

導体エネルギー研究所内

【特許請求の範囲】

【請求項1】複数のソース信号線と、複数のゲート信号 線と、前記各ソース信号線と前記各ゲート信号線が交差 する各領域に設けられた複数の画素電極と、該複数の画 素電極を駆動するための複数のスイッチング素子と、を 有する画素アレイ部と、前記複数のソース信号線を駆動 するソース信号線駆動回路と、前記複数のゲート信号線 を駆動するゲート信号線駆動回路と、を有するカラー画 像表示装置において、前記ソース信号線駆動回路は、複 数のD/A変換回路と、複数のソース線選択回路と、を 有し、前記各D/A変換回路は、R(赤)G(緑)B (青)の3色に対応した3本のソース信号線を単位とし てその倍数の前記ソース信号線と、前記各ソース線選択 回路を介して接続され、さらに前記各D/A変換回路へ 接続される複数本からなる階調電源線は1系統であり、 該各階調電源線には1ゲート線選択期間内にRGBの3 色に対応した電源電圧が印加されることを特徴とするカ ラー画像表示装置。

【請求項2】1ゲート線選択期間に、前記各ソース線選択回路は前記3の倍数本のソース信号線を全てのソース線選択回路で同期を取りながら順に選択して前記各D/A変換回路と接続させ、さらに前記各選択期間では、前記各D/A変換回路に接続されたソース信号線はRGBについて全て同色に対応したものであり、該色に対応する電源電圧が前記階調電源線に印加される、請求項1に記載のカラー画像表示装置。

【請求項3】前記各D/A変換回路が6以上で3の倍数の前記ソース信号線と前記各ソース線選択回路を介して接続され、前記各ソース線選択回路は、RGBについて同色に対応したソース信号線を連続的に選択し前記各D/A変換回路と接続させる、請求項2に記載のカラー画像表示装置。

【請求項4】 1 ゲート線選択期間を第1、第2、第3の 3つの期間に分割し、前記第1の期間には、3色(RG B)のうち第1の色に対応する電源電圧が前記各階調電 源線に印加され、同時に前記各ソース線選択回路は前記 第1の色に対応する1本或いは複数本の前記ソース信号 線を選択し前記各D/A変換回路と接続させ、前記第2 の期間には、3色(RGB)のうち第2の色に対応する 電源電圧が前記各階調電源線に印加され、同時に前記各 ソース線選択回路は前記第2の色に対応する1本或いは 複数本の前記ソース信号線を選択し前記各D/A変換回 路と接続させ、前記第3の期間には、3色(RGB)の うち第3の色に対応する電源電圧が前記各階調電源線に 印加され、同時に前記各ソース線選択回路は前記第3の 色に対応する1本或いは複数本の前記ソース信号線を選 択し前記各D/A変換回路と接続させる、請求項1に記 載のカラー画像表示装置。

【請求項5】表示素子に液晶材料を用いる請求項1乃至 請求項4のいずれか1項に記載のカラー画像表示装置。 【請求項6】表示素子にエレクトロルミネッセンス(EL)材料を用いる請求項1乃至請求項4のいずれか1項に記載のカラー画像表示装置。

【請求項7】請求項1乃至請求項6のいずれか1項に記載の前記カラー画像表示装置を用いることを特徴とする携帯電話。

【請求項8】請求項1乃至請求項6のいずれか1項に記載の前記カラー画像表示装置を用いることを特徴とするビデオカメラ。

【請求項9】請求項1乃至請求項6のいずれか1項に記載の前記カラー画像表示装置を用いることを特徴とするパーソナルコンピュータ。

【請求項10】請求項1乃至請求項6のいずれか1項に 記載の前記カラー画像表示装置を用いることを特徴とす るヘッドマウントディスプレイ。

【請求項11】請求項1乃至請求項6のいずれか1項に 記載の前記カラー画像表示装置を用いることを特徴とす るテレビ。

【請求項12】請求項1乃至請求項6のいずれか1項に 記載の前記カラー画像表示装置を用いることを特徴とす る携帯書籍。

【請求項13】請求項1乃至請求項6のいずれか1項に 記載の前記カラー画像表示装置を用いることを特徴とす るDVDプレーヤー。

【請求項14】請求項1乃至請求項6のいずれか1項に 記載の前記カラー画像表示装置を用いることを特徴とす るデジタルカメラ。

【請求項15】請求項1乃至請求項5のいずれか1項に 記載の前記カラー画像表示装置を用いることを特徴とす るプロジェクター。

【請求項16】請求項1乃至請求項6のいずれか1項に 記載の前記カラー画像表示装置を用いることを特徴とす る電子機器。

【請求項17】複数のソース信号線と、複数のゲート信 号線と、前記各ソース信号線と前記各ゲート信号線が交 差する各領域に設けられた複数の画素電極と、該複数の 画素電極を駆動するための複数のスイッチング素子と、 を有する画素アレイ部と、前記複数のソース信号線を駆 動するソース信号線駆動回路と、前記複数のゲート信号 線を駆動するゲート信号線駆動回路と、を有するカラー 画像表示装置において、前記ソース信号線駆動回路は、 複数のD/A変換回路と、複数のソース線選択回路と、 を有し、前記各D/A変換回路は、RGBの3色に対応 した3本のソース信号線を単位としてその倍数の前記ソ 一ス信号線と、前記各ソース線選択回路を介して接続さ れ、さらに前記各D/A変換回路へ接続される複数本か らなる階調電源線は1系統であり、該各階調電源線には 1ゲート線選択期間内にRGBの3色に対応した電源電 圧が印加されることを特徴とするカラー画像表示装置の 駆動方法。

【請求項18】1ゲート線選択期間に、前記各ソース線選択回路は前記3の倍数本のソース信号線を全てのソース線選択回路で同期を取りながら順に選択して前記各D/A変換回路と接続させ、さらに前記各選択期間では、前記各D/A変換回路に接続されたソース信号線はRGBについて全て同色に対応したものであり、該色に対応する電源電圧が前記階調電源線に印加される、請求項17に記載のカラー画像表示装置の駆動方法。

【請求項19】前記各D/A変換回路が、6以上で3の倍数の前記ソース信号線と前記各ソース線選択回路を介して接続され、前記各ソース線選択回路は、RGBについて同色に対応したソース信号線を連続的に選択し前記各D/A変換回路と接続させる、請求項18に記載のカラー画像表示装置の駆動方法。

【請求項20】1ゲート線選択期間を第1、第2、第3 の3つの期間に分割し、前記第1の期間には、3色(R GB)のうち第1の色に対応する電源電圧が前記各階調 電源線に印加され、同時に前記各ソース線選択回路は前 記第1の色に対応する1本或いは複数本の前記ソース信 号線を選択し前記各D/A変換回路と接続させ、前記第 2の期間には、3色(RGB)のうち第2の色に対応す る電源電圧が前記各階調電源線に印加され、同時に前記 各ソース線選択回路は前記第2の色に対応する1本或い は複数本の前記ソース信号線を選択し前記各D/A変換 回路と接続させ、前記第3の期間には、3色(RGB) のうち第3の色に対応する電源電圧が前記各階調電源線 に印加され、同時に前記各ソース線選択回路は前記第3 の色に対応する1本或いは複数本の前記ソース信号線を 選択し前記各D/A変換回路と接続させる、請求項17 に記載のカラー画像表示装置の駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

【0002】本発明は、マトリクス状に配置されたスイッチング素子と画素により映像などの情報の表示をおこなうカラー画像表示装置(アクティブマトリクス型カラー画像表示装置)、特にデジタル方式の駆動方法およびそれを用いた画像表示装置、電子機器に関する。

[0003]

【従来の技術】最近安価なガラス基板上に半導体薄膜を形成した半導体装置、例えば薄膜トランジスタ(TFT)を作製する技術が急速に発達してきている。その理由は、アクティブマトリクス型画像表示装置の需要が高まってきたことによる。

【0004】アクティブマトリクス型画像表示装置には、表示素子に液晶を用いるアクティブマトリクス型液晶表示装置やエレクトロルミネッセンス(EL)素子を用いるEL表示装置などがある。以下では、アクティブマトリクス型画像表示装置の代表的な例として、アクティブマトリクス型液晶表示装置を例にとって説明する。

【0005】アクティブマトリクス型液晶表示装置は、 図30に示すように、ソース信号線駆動回路101と、 ゲート信号線駆動回路102と、マトリクス状に配置さ れた画素アレイ部103とを有している。ソース信号線 駆動回路101は、クロック信号等のタイミング信号に 同期して、入力された映像信号をサンプリングし各ソー ス信号線104にデータを書き込む。ゲート信号線駆動 回路102は、クロック信号等のタイミングに同期し て、ゲート信号線105を順次選択し、画素アレイ部1 03の各画素内にあるスイッチング素子であるTFT (画素TFT) 106のオン・オフを制御するようにな っている。これにより、各ソース信号線104に書き込 まれたデータが順次各画素に書き込まれることになる。 【0006】ソース信号線駆動回路の駆動方式として は、アナログ方式とデジタル方式があるが、高精細・高 速駆動が可能なデジタル方式のアクティブマトリクス型 液晶表示装置が注目されてきている。

【0007】従来のデジタル方式のソース信号線駆動回路を図31に示す。図31において、201はシフトレジスタ部を示し、フリップフロップ回路などを含むシフトレジスタ基本回路202から構成される。シフトレジスタ部201へスタートパルスSPが入力されるとクロック信号CLKに同期してサンプリングパルスが順次ラッチ1回路203(LAT1)へ送出される。

【0008】ラッチ1回路203(LAT1)では、シフトレジスタ部からのサンプリングパルスに同期して、データバスライン(DATA-R、DATA-G、DATA-B)から供給されるnビット(nは自然数)のデジタル映像信号を順次記憶する。

【0009】一水平画素分の信号がLAT1部へ書き込まれた後、各ラッチ1回路203(LAT1)に保持されているデジタル映像信号は、ラッチ信号バスライン(LP)から供給されるラッチパルスに同期してラッチ2回路204(LAT2)に一斉に転送される。

【0010】デジタル映像信号がラッチ2回路204(LAT2)に保持されると、再びスタートパルス(SP)が入力され、次行の画素分のデジタル映像信号がLAT1部へ新たに書き込まれる。この間、LAT2部へは、前行の画素分のデジタル映像信号が記憶されておりデジタル/アナログ信号変換回路(以降、D/A変換回路と記す)205(D/A)によって、デジタル映像信号に対応したアナログ映像信号が各ソース信号線に書き込まれる。図31において、Vref-R、Vref-G、Vref-Bは、それぞれR(赤)、G(緑)、B(青)の各色に対応したD/A変換回路205に接続される階調電源線を示す。また、SL1、SL2、・・・等は番号付けしたソース信号線を、SL1等の下に記したR、G、Bはそれぞれ赤、緑、青を示し、単板でカラー表示可能な表示装置を想定している。

【0011】図31に示した各D/A変換回路205は

それぞれ1本のソース信号線と接続され、その1本のソース信号線にアナログ映像信号を書き込む。しかし、高解像度、高精細の液晶表示装置を作成する場合、大きな面積を占めるD/A変換回路をソース信号線と同数作ることは近年望まれている液晶表示装置の小型化の妨げとなっており、1つのD/A変換回路で複数のソース信号線を駆動する方法が特開平11-167373で提案されている。

【0012】1つのD/A変換回路で4本のソース信号線を駆動するソース信号線駆動回路の構成例を図32に示す。図31と比較して判るように図32にはパラレル/シリアル変換回路301(P/S変換回路)、ソース線選択回路302とそれらに入力される選択信号(SS)が新たに追加されている。このような回路が追加されるにもかかわらず、4本のソース信号線に1つのD/A変換回路で信号の書き込みができれば、必要なD/A変換回路数が1/4で済む効果は大きく、ソース信号線駆動回路の占有面積を小さくすることが可能となる。

[0013]

【発明が解決しようとする課題】図31においては、RGB用に独立な3系統の階調電源線がソース信号線駆動回路に供給されている。しかし、図32に示したソース信号線駆動回路には、図31と異なり1系統の階調電源線のみが供給されている。一般に、階調電源線の電源電圧が与えられれば、D/A変換回路の出力電圧範囲は一意に決まる。従って、1系統の階調電源線が供給されている図32のソース信号線駆動回路は、各ソース信号線に書き込まれる電圧範囲はRGBの区別なく同じになる。

【0014】さて、液晶表示装置の輝度比の液晶印加電圧依存性は、RGB各色で全く同じというわけではなく、図33に示す例のように色によって異なる。この例では、輝度比が極小値をとる電圧値がRGBそれぞれに対してVR、(<) VBと異なる。従って、液晶に電圧を印加していったときに階調表現の単調性が失われないためには、液晶に印加できる最大電圧はRGBそれぞれに対してVR、VG、VBとなる。しかし、図32のような1系統の階調電源線しか供給されない場合、前述のように液晶に印加できる電圧範囲はRGBの区別なく一様になるので、図33の輝度比一電圧特性を持った液晶に対しては、印加できる最大電圧がVRとなる。この時、GやBが十分に暗の状態にならず、コントラストが低くなるばかりか、正確な色彩の表現性に乏しくなってしまう問題が生じる。

【0015】以上の理由から、図31に示したように階調電源線もRGB独立に3系統供給するなどして、液晶の印加電圧をRGB独立に制御できるようにすることが望ましい。

【0016】しかし、上記の3系統の階調電源線を供給する方法で、1つのD/A変換回路で複数のソース信号

線を駆動する場合では、階調電源線の本数が増加するばかりか、それら階調電源線の1つとD/A変換回路との接続切り替えをおこなうスイッチが必要になる。これらは、外部入力ピン数の増加や、階調電源線を配線する領域や上記の追加するスイッチ等による駆動回路の占有面積の増加など新たな問題を生じさせる。これでは、1つのD/A変換回路で複数のソース信号線を駆動し、駆動回路の占有面積を減少させるメリットがなくなってしまう。

【0017】そこで本発明は、これらの問題を解決する 駆動方法を提供するものである。

[0018]

【課題を解決するための手段】ソース信号線駆動回路に供給される階調電源線は1系統のみとし、各D/A変換回路はRGBに対応した3本のソース信号線を単位としてその倍数本のソース信号線に対しアナログ映像信号を書き込む。また、1水平書き込み期間内に階調電源線の電源電圧も変化させる。各ソース線選択回路がRGB各色に対応したソース信号線を選択する期間を同期させ、階調電源線に印加する電源電圧は、Rのソース信号線が選択されている期間にはRに対応した電源電圧を、Gのソース信号線が選択されている期間にはGに対応した電源電圧を、Bのソース信号線が選択されている期間にはBに対応した電源電圧をそれぞれ印加する。

【0019】こうすることで、外部入力ピン数の増加や、駆動回路の占有面積の増加を招くことなく画素電極の電圧をRGB独立に制御することを可能にする。

[0020]

【発明の実施の形態】以下、本発明の実施の形態について,図面を参照しながら説明する。

【0021】[実施形態]本実施形態では、1系統の階調電源線がソース信号線駆動回路に供給され、各D/A変換回路がそれぞれRGBに対応する3本のソース信号線を駆動する方法について説明する。

【0022】また、本実施形態では、RGB各色それぞれ (n+1) ビット (n) は自然数)のデジタル映像信号入力に対応する場合を例にとって説明する。

【0023】図1には本実施形態の概略回路図が示されている。図1では、デジタル映像信号を順次サンプリングするためのサンプリングパルスを発生させるシフトレジスタ部、前記サンプリングパルスによりデジタル映像信号をラッチするラッチ1回路部に記憶されていたデジタル映像信号を一斉にラッチするラッチ2回路部は図示せず省略した。パラレル/シリアル変換回路(P/S変換回路)は、ラッチ2回路のパラレルな出力データ($D0[3k+1]\sim Dn[3k+1]$ 、 $D0[3k+2]\sim Dn[3k+3]\sim Dn[3k+3]$ (kは0以上の整数))をビット信号毎にまとめシリアルデータに変換する。ここで、<math>D0[3k+1]

1] は第(3k+1)ソース信号線に対する最下位(第 1)ビット(LSB)のデジタル映像信号を示し、Dn [3k+1] は同じく第(3k+1) ソース信号線に対する最上位(第(n+1))ビット(MSB)のデジタル映像信号を示す。以降、表記DI[s] は第sソース信号線に対する第(l+1) ビットのデジタル映像信号を示すものとする。また、第(3k+1) ソース信号線はRを、第(3k+2) ソース信号線はGを、第(3k+3) ソース信号線はBをそれぞれ表示するためのソース信号線とする。

【0024】ソース線選択回路は3つのスイッチsw1、sw2、sw3から成り、sw1がオンすると第(3k+1)番目のソース信号線(Rを担当するソース信号線)が、sw2がオンすると第(3k+2)番目のソース信号線(Gを担当するソース信号線)が、sw3がオンすると第(3k+3)番目のソース信号線(Bを担当するソース信号線)がそれぞれ各D/A変換回路の出力と接続される。SS1~SS3はそれぞれsw1~sw3のオン・オフを制御する選択信号である。

【0025】図1の駆動回路に対する信号動作タイミン グを図2に示す。1ゲート線選択期間を3つに分割し、 第1番目の期間に選択信号SS1をHiレベルにしsw 1をオンし、第2番目の期間に選択信号SS2をHiレ ベルにしsw2をオンし、第3番目の期間に選択信号S S3をHiレベルにしsw3をオンする動作を示す。な お、各P/S変換回路の出力信号(PS0[k]~PS n [k])は、上記の選択信号(SS1~SS3)と同 期させ、1ゲート線選択期間を3分割した、その第1番 目の期間には第(3k+1)ソース信号線に対するデジ タル映像信号を出力し、第2番目の期間には第(3 k + 2) ソース信号線に対するデジタル映像信号を出力し、 第3番目の期間には第(3k+3)ソース信号線に対す るデジタル映像信号を出力するようにP/S変換回路に 入力される選択信号SSにより制御する。こうすること で、各ソース信号線に対応したデジタル映像信号が適切 なソース信号線の書き込みに反映される。この様子を、 図2のPS0[1]~PSn[1]、PS0[2]~P **Sn[2]に示した。ここでは、PSI[k]は第k段** 目のP/S変換回路の第(I+1)ビット目の出力信号 を示す。従って、PSI[k]は、DI[3k-2]、 **DI[3k-1]、DI[3k]のデジタル映像信号か** ら構成される。また、図2において、DI[s、g]は第 s列第g行の画素に対する第(I+1)ビット目のデジ タル映像信号を示し、表記D I [s]にあらわにゲート信 号線の情報を付加したものである。

【0026】つぎに、階調電源線Vrefへの電源電圧の入力方法を図20Vrefに示す。図中、Vref-R、Vref-G、Vref-Bは、それぞれR、G、Bの各色に対応した階調電源線の電源電圧を印加することを示す。1 ゲート線選択期間を3 つに分割した第1 番目

の期間には、ソース線選択回路により第(3k+1)番目のソース信号線(Rを担当するソース信号線)が選択されているので、Rを表示するための電源電圧が階調電源線に印加される。同様に、1ゲート線選択期間を3つに分割した第2、第3番目の期間にはそれぞれG、Bを表示するための電源電圧がそれぞれ階調電源線に印加される。

【0027】以上、本実施形態により、1つのD/A変 換回路でRGBの3本のソース信号線を駆動する形態に おいて、1系統のみの階調電源線がソース信号線駆動回 路に供給された場合であっても、画素電極の電圧をRG B独立に制御することが可能となる。なお、本実施形態 では、1つのD/A変換回路でRGBの3本のソース信 号線を駆動する場合を例に挙げているが、本発明はこれ に限定されるものではなく、3本、6本、・・・といっ た3の倍数本のソース信号線を1つのD/A変換回路で 駆動する場合にも適用され得る。また、ソース線選択回 路がソース信号線を選択する順序は、本実施形態のよう にR、G、Bの順に限定されるものではなく、他の順序 でもよい。さらに、本実施形態では、パラレル/シリア ル変換回路(P/S変換回路)を用いたが、本発明はこ の有無に限定されない。すなわち、本発明はD/A変換 回路に1ゲート線選択期間、複数のソース信号線に対す るデジタル映像信号をシリアル入力するいかなる方法に 対しても適用され得る。

[0028]

【実施例】ここで、本発明の実施例について、図面を参照しながら説明する。ただし、本発明は、以下の実施例に限定されるわけではない。

【0029】 [実施例1] 本実施例では、アクティブマトリクス型画像表示装置に本発明を適用した例を示す。アクティブマトリクス型画像表示装置は、従来例で示したようにソース信号線駆動回路、ゲート信号線駆動回路、マトリクス状に配置された画素アレイ部とから構成されている。ゲート信号線駆動回路と画素アレイ部の動作は従来例と同じなので、本実施例ではソース信号線駆動回路について説明する。また、図3に示すように、本実施例では、RGB各色に対するデジタル映像信号は3ビットとし、1つのD/A変換回路でRGBの3本のソース信号線を駆動する場合を例に説明する。

【0030】シフトレジスタ部は、フリップフロップ回路(FF)、NAND回路、およびインバータ回路を有し、クロック信号(CLK)、前記クロック信号の反転クロック信号(CLKb) およびスタートパルス(SP)が入力される。図4(A)に示すように、フリップフロップ回路(FF)はクロックドインバータ回路、インバータ回路で構成されている。

【0031】スタートパルス(SP)が入力されると、 クロック信号(CLK、CLKb)に同期してサンプリ ングパルスが順次シフトしていく。 【0032】記憶回路であるラッチ1部とラッチ2部は、基本ラッチ回路(LAT)から構成されている。基本ラッチ回路を図4(B)に示す。基本ラッチ回路(LAT)はクロックドインバータ回路とインバータ回路で構成されている。ラッチ1部へはR、G、B、各3ビットのデジタル映像信号(DR0、DR1、DR2、DG0、DG1、DG2、DB0、DB1、DB2)が入力され、シフトレジスタ部からのサンプリングパルスによって、デジタル映像信号をラッチする。ラッチ2部は、水平帰線期間に入力されるラッチパルス(LP)によって、ラッチ1部に保持されていたデジタル映像信号を一斉にラッチすると同時に下流の回路に情報を伝達する。この時、ラッチ2部には1水平書き込み期間データが保持される。

【0033】なお、図4(A)および(B)において、各クロックドインバータ回路のPチャネル型トランジスタへのクロック入力端子の接続が省略されているが、実際はNチャネル型トランジスタへのクロック入力端子に入力されている制御信号の反転信号が入力される。また、本実施例ではフリップフロップ回路(FF)と基本ラッチ回路(LAT)は同じ回路構成をしているが、異なる回路構成であってもよい。

【0034】パラレル/シリアル変換回路(図3ではP/S変換回路Aとした)へは、3(ビット数)×3(R GBで3本のソース信号線分)のラッチ2部に記憶されているデジタル映像信号と、選択信号(SS1~SS3)が入力される。図5(A)に示すように、P/S変換回路AはNAND回路から構成されている。

【0035】図7に、第1~第3ソース信号線(SL1 ~SL3)に関わるP/S変換回路Aに注目した信号動 作タイミングを示す。1ゲート線選択期間を3つに分割 し、第1番目の期間に選択信号(SS1)をHiレベル にし、第1ソース信号線(SL1)に対するデジタル映 像信号をD/A変換回路に出力する。第2番目の期間 は、選択信号(SS2)をHiレベルにし、第2ソース 信号線(SL2)に対するデジタル映像信号をD/A変 換回路に出力する。第3番目の期間は、選択信号(SS 3)をHiレベルにし、第3ソース信号線(SL3)に 対するデジタル映像信号をD/A変換回路に出力する。 この様子を、図7のPSO[1]~PS2 [1] に示し た。ここで、PSI[1]は、第1~第3ソース信号線 **(SL1~SL3)に関わるP/S変換回路Aの第(l** +1)ビット目の出力データである。また、前述したよ うにD | [s、g]は第 s 列第 g 行の画素に対する第 (| +1)ビット目のデジタル映像信号を示している。ここ で、RGBで区別したDRI、DGI、DBI(I=0 ~2) やD | [s] (l=0~2) には以下の関係があ る。

DR I[s]=DI[3s-2] $(|=0\sim2)$ DG I[s]=DI[3s-1] $(|=0\sim2)$ DB | [s] = D | [3 s](1=0~2)また、DR | [s] などの表記にゲート信号線の情報を付加したものをDR | [s、g] などと表記する。

【0036】上記と同様な動作は他のソース信号線(SL4~SL6、SL7~SL9、・・・)に関わるP/S変換回路Aでも並行しておこなわれる。

【0037】D/A変換回路の回路構成例を図6に示す。図6は抵抗ストリング型のD/A変換回路であり、ある電圧範囲の出力を得るためには2本の階調電源線を供給する必要がある。図6では、これらをVrefーL、VrefーHと示した。これらの階調電源電圧を抵抗で分圧し、3ビットのデジタル映像信号に対応した電圧値を出力する。

【0038】D/A変換回路の出力は、ソース線選択回路Aを介して適切なソース信号線に接続される。ソース線選択回路Aの回路構成例を図5(B)に示す。ソース線選択回路Aは3つのトランスミッションゲート(スイッチ)からなり、各ゲートへ選択信号(SS1~SS3)とそれらの反転信号が入力される。図7の信号動作タイミングに従えば、1ゲート線選択期間を3つに分割した、第1番目の期間にはスイッチsw1をオンしRの第1ソース信号線(SL1)へD/A変換回路の出力を書きこむ。最後の、第3番目の期間にはスイッチsw2をオンしGの第2ソース信号線(SL2)へD/A変換回路の出力を書きこむ。最後の、第3番目の期間にはスイッチsw3をオンしBの第3ソース信号線(SL3)へD/A変換回路の出力を書きこむ。

【0039】このような書き込みは他のソース信号線に対しても並行しておこなわれる。そして、各ソース信号線に書き込まれたデータは、ゲート信号線駆動回路と画素TFTとの働きにより順次各画素に書き込まれることになる。

【0040】本実施例では、2本の階調電源線VrefーL、VrefーHのうち、VrefーLはRGB各色について同一電圧としてV0とし、VrefーHはRGBについてそれぞれVR、VG、VBとした。1ゲート線選択期間に階調電源線の電源電圧を変化させる様子は図7に示されている。Rのソース信号線がソース線選択回路に選択されている期間は、Rに対応する電源電圧が印加され、Gのソース信号線がソース線選択回路に選択されている期間は、Gに対応する電源電圧が印加され、Bのソース信号線がソース線選択回路に選択されている期間は、Bに対応する電源電圧が印加される。

【0041】以上の駆動方法により、1つのD/A変換回路で3本のソース信号線を駆動する場合、ソース信号線駆動回路に供給される階調電源線が1系統のみであっても、画案に印加する電圧をRGB独立に制御することができる。

【0042】なお、本実施例においてソース信号線駆動回路に供給される回路駆動電源は1系統を仮定したが、

2系統以上とし必要な部分にレベルシフタ回路を挿入してもよい。また、本実施例では階調電源線 V r e f - L の電源電圧は R G B に対して同一としたが、異なっていてもよい。

【0043】 [実施例2] 本実施例でも、実施例1と同様にアクティブマトリクス型画像表示装置に本発明を適用した例を示すが、実施例1と異なり1つのD/A変換回路で6本(RGB×2)のソース信号線を駆動する例.を説明する。本実施例でも主にソース信号線駆動回路について説明する。シフトレジスタ部、ラッチ1部、ラッチ2部については実施例1と同じとし、以下ではそれらの説明を省略する。本実施例におけるラッチ2回路より下流の回路構成例を図8に示す。また、本実施例でも、RGB各色に対するデジタル映像信号は3ビットとする。

【0044】パラレル/シリアル変換回路(図8ではP/S変換回路Bとした)へは、3(ビット数)×6(RGB×2で6本のソース信号線分)のラッチ2部に記憶されているデジタル映像信号と、選択信号(SS1~SS6)が入力される。図9(A)に示すように、P/S変換回路BはNAND回路から構成されている。

【0045】図10に、第1~第6ソース信号線(SL 1~5 L 6)に関わる P / S変換回路 B に注目した信号 動作タイミングを示す。1ゲート線選択期間を6つに分 割した、それぞれの期間毎に6つの選択信号SS1、S S4、SS2、SS5、SS3、SS6がこの順序でH iレベルになるように入力される。こうしてP/S変換 回路Bは、ソース信号線SL1(R)、SL4(R)、 SL2 (G) 、SL5 (G) 、SL3 (B) 、SL6 (B) に対応するデジタル映像信号をこの順序でD/A 変換回路に出力する。この様子を、図10のPS0[1] ~PS2 [1] に示した。ここで、PSI [1] は、第 1~第6ソース信号線(SL1~SL6)に関わるP/ S変換回路Bの第(I+1)ビット目の出力データであ る。また、前述したようにDI[s、g]は第s列第g行 の画素に対する第(I+1)ビット目のデジタル映像信 号を示している。ここで、RGBで区別したDRI、D GI, DBI $(1=0\sim2) \ \forall DI[s] \ (1=0\sim$ 2) にも以下の関係が成立する。

DRI[s]=DI[3s-2] (I=0~2)

DGI[s]=DI[3s-1] (1=0~2)

DBI[s]=DI[3s] $(1=0\sim2)$

また、DRI[s]などの表記にゲート信号線の情報を付加したものをDRI[s、g]などと表記する。

【0046】上記と同様な動作は他のソース信号線(SL7~SL12、SL13~SL18、・・・)に関わるP/S変換回路Bでも並行しておこなわれる。

【0047】D/A変換回路は実施例1と同じで図6に示されるものとする。

【0048】D/A変換回路の出力は、ソース線選択回

路Bを介して適切なソース信号線に接続される。ソース線選択回路Bの回路構成例を図9(B)に示す。ソース線選択回路Bは6つのトランスミッションゲート(スイッチ)からなり、各ゲートへ選択信号(SS1~SS6)とそれらの反転信号が入力される。図10の信号動作タイミングに従えば、1ゲート線選択期間を6つに分割した、その各期間に6つの選択信号SS1、SS4、SS2、SS5、SS3、SS6がこの順序でHiレベルになる。これにより、ソース線選択回路B内のスイッチはsw1、sw4、sw2、sw5、sw3、sw6の順にオンし、ソース信号線SL1(R)、SL4(R)、SL2(G)、SL5(G)、SL3(B)、SL6(B)をこの順序でD/A変換回路と接続し各ソース信号線への書き込みをおこなう。

【0049】このような書き込みは他のソース信号線に対しても並行しておこなわれる。そして、各ソース信号線に書き込まれたデータは、ゲート信号線駆動回路と画素TFTとの働きにより順次各画素に書き込まれることになる。

【0050】本実施例でも、2本の階調電源線VrefーL、VrefーHのうち、VrefーLはRGB各色について同一電圧V0とし、VrefーHはRGBについてそれぞれVR、VG、VBとした。1ゲート線選択期間に階調電源線の電源電圧を変化させる様子は図10に示されている。Rのソース信号線がソース線選択回路に選択されている期間は、Rに対応する電源電圧が印加され、Gのソース信号線がソース線選択回路に選択されている期間は、Gに対応する電源電圧が印加され、Bのソース信号線がソース線選択回路に選択されている期間は、Bに対応する電源電圧が印加される。

【0051】本実施例のように、1ゲート線選択期間内においては、RGBについて同色のソース信号線は連続的にD/A変換回路と接続させることにより、階調電源線に印加する電源電圧を変化させる周期を長くすることができ、回路動作負担の低減につながる。

【0052】以上の駆動方法により、1つのD/A変換回路で6本のソース信号線を駆動する場合、ソース信号線駆動回路に供給される階調電源線が1系統のみであっても、画素に印加する電圧をRGB独立に制御することができる。

【0053】なお、本実施例においてソース信号線駆動回路に供給される回路駆動電源は1系統を仮定したが、2系統以上とし必要な部分にレベルシフタ回路を挿入してもよい。また、本実施例では階調電源線Vrefelの電源電圧はRGBに対して同一としたが、異なっていてもよい。また、ソース線選択回路のソース信号線を選択する順序は本実施例には限定されない。

【0054】[実施例3]本実施例では、実施例1および 実施例2をアクティブマトリクス型液晶表示装置に適用 した場合の作成方法例として、画素部のスイッチング素 子である画素TFTと、画素部の周辺に設けられる駆動回路(ソース信号線駆動回路、ゲート信号線駆動回路等)のTFTを同一基板上に作製する方法について工程に従って詳細に説明する。但し、説明を簡単にするために、駆動回路部としてはその基本構成回路であるCMOS回路を、画素TFT部としてはnチャネル型TFTとを図示することにする。

【0055】図11において、基板401には、例えばコーニング社の1737ガラス基板に代表される無アルカリガラス基板を用いる。TFTが形成される基板401の表面に、下地膜402をプラズマCVD法やスパッタ法で形成する。下地膜402は、窒化シリコン膜を25~100nm、ここでは50nmの厚さに、酸化シリコン膜を50~300nm、ここでは150nmの厚さに形成する。また、下地膜402は、窒化シリコン膜や窒化酸化シリコン膜のみを用いても良い。

【0056】次に、この下地膜402の上に50nmの厚さの、非晶質シリコン膜をプラズマCVD法で形成する。非晶質シリコン膜は含有水素量にもよるが、好ましくは400~550℃で数時間加熱して脱水素処理を行い、含有水素量を5atom%以下として、結晶化の工程を行うことが望ましい。また、非晶質シリコン膜をスパッタ法や蒸着法などの他の作製方法で形成しても良いが、膜中に含まれる酸素、窒素などの不純物元素を十分低減させておくことが望ましい。

【0057】ここで、下地膜と非晶質シリコン膜とはいずれもプラズマCVD法で作製されるものであり、このとき下地膜と非晶質シリコン膜を真空中で連続して形成しても良い。下地膜を形成後、一旦大気雰囲気にさらされない工程にすることにより、表面の汚染を防ぐことが可能となり、作製されるTFTの特性バラツキを低減させることができる。

【0058】非晶質シリコン膜を結晶化する工程は、公知のレーザー結晶化技術または熱結晶化の技術を用いれば良い。本実施例では、パルス発振型のKrFエキシマレーザー光を線状に集光して非晶質シリコン膜に照射して結晶質シリコン膜を形成する。

【0059】尚、本実施例では半導体層となる結晶質シリコン膜を、非晶質シリコン膜から形成するが、非晶質シリコン膜の代わりに微結晶シリコン膜を用いても構わないし、直接結晶質シリコン膜を成膜しても良い。

【0060】こうして形成された結晶質シリコン膜をパターニングして、島状の半導体層403、404、405を形成する。

【0061】次に、島状の半導体層403、404、405を覆って、酸化シリコンまたは窒化シリコンを主成分とするゲート絶縁膜406を形成する。ゲート絶縁膜406は、プラズマCVD法でN2OとSiH4を原料とした窒化酸化シリコン膜を10~200nm、好ましくは50~150nmの厚さで形成すれば良い。ここでは

100nmの厚さに形成する。

【0062】そして、ゲート絶縁膜406の表面に第1のゲート電極となる第1の導電膜407と、第2のゲート電極となる第2の導電膜408とを形成する。第1の導電膜407は5i、Geから選ばれた一種の元素、またはこれらの元素を主成分とする半導体膜で形成すれば良い。また、第1の導電膜407の厚さは5~50nm、好ましくは10~30nmとする必要がある。ここでは、20nmの厚さで5i膜を形成する。

【0063】第1の導電膜407として使用する半導体膜にはn型あるいはp型の導電型を付与する不純物元素が添加されていても良い。この半導体膜の作製法は公知の方法に従えば良く、例えば、減圧CVD法で基板温度を450~500℃として、ジシラン(Si_2H_6)を250SCCM、ヘリウム(He)を300SCCM導入して作製することができる。このとき同時に、 Si_2H_6 に対して PH_3 を0.1~2%混入させてn型の半導体膜を形成しても良い。

【0064】第2のゲート電極となる第2の導電膜408は、Ti、Ta、W、Moから選ばれた元素、あるいはこれらの元素を主成分とする化合物で形成すれば良い。これはゲート電極の電気抵抗を下げるために考慮されるものであり、例えば、Mo-W化合物を用いても良い。ここでは、Taを使用し、スパッタ法で、200~1000nm、代表的には400nmの厚さに形成した。(図11(A))

【0065】次に公知のパターニング技術を使ってレジストマスクを形成し、第2の導電膜408をエッチングして第2のゲート電極を形成する工程を行う。第2の導電膜408はTa膜で形成されているので、ドライエッチング法によりエッチングを行う。ドライエッチングの条件として、 Cl_2 を80SCCM導入して100mTorrで500Wの高周波電力を投入して行う。そして、図11(B)に示すように第2のゲート電極409、410、412、413と、配線411、414を形成する。第2のゲート電極の、チャネル長方向の長さは、CMOS回路を形成する第2のゲート電極409、410で3 μ mとし、また、画素TFTはマルチゲートの構造となっていて、第2のゲート電極412、413の各々の長さを2 μ mとした。

【0066】また、第2の導電膜408はウエットエッチング法で除去することもできる。例えば、Taの場合、フッ酸系のエッチング液で容易に除去することができる。

【0067】また、画素TFTを構成するnチャネル型TFTのドレイン側に保持容量を設ける構造となっている。このとき、第2の導電膜と同じ材料で保持容量の配線電極414が形成される。

【0068】次に、n型を付与する第1の不純物元素を添加する工程を行う。この工程は第2の不純物領域を形

成するための工程である。ここでは、フォスフィン(PH3)を用いたイオンドープ法を行う。この工程では、ゲート絶縁膜406と第1の導電膜407を通してその下の半導体層403、404、405にリンを添加するために、加速電圧は80keVと高めに設定する。半導体層403、404、405に添加されるリンの濃度は、 $1\times10^{16}\sim1\times10^{19}$ atoms/cm³の範囲にするのが好ましく、ここでは 1×10^{18} atoms/cm³とする。そして、半導体層にリンが添加された領域415、416、417、418、419、420、421、422が形成される。(図11(B))

【0069】このとき、第1の導電膜407で、第2のゲート電極409、410、411、412、413、414と重ならない領域にもリンが添加される。この領域のリン濃度は特に規定されるものではないが、第1の導電膜の抵抗率を下げる効果が得られる。

【0070】次に、n チャネル型TFTが形成される領域をレジストマスク423、424で覆って、第1の導電膜407の一部を除去する工程をドライエッチング法で行う。第1の導電膜407はS i であり、ドライエッチングの条件として、C F4をS 0 S C C M、O 2を45 S C C M導入し、S 0 m T o r r で 200 W の高周波電力を投入して行う。その結果、レジストマスク或いはゲート電極で覆われた、第1の導電膜の一部である425、426、427、428が残る。

【0071】そして、p チャネル型TFTが形成される領域に、p型を付与する第3の不純物元素を添加する工程を行う。ここではジボラン(B_2H_6)を用いてイオンドープ法で添加する。ここでも加速電圧を80keVeUして、 2×10^{20} atoms/cm³の濃度にボロンを添加する。そして、図11(C)に示すようにボロンが高濃度に添加された第3の不純物領域429、430が形成される。(図11(C))

【0072】さらに、レジストマスク423、424を完全に除去して、再度レジストマスク431、432、433、434、435、436を形成する。そして、レジストマスク431、434、435、436を用い、第1の導電膜の一部425、428をエッチングし、新たに第1の導電膜の一部437、438、439、440を形成する。(図12(A))

【0073】レジストマスク431は 9μ mの長さで、レジストマスク434、435は 7μ mの長さで形成する。これにより、n型を付与する第1の不純物添加の工程でリンが添加された半導体層のうち、レジストマスク431、434、435で覆われた下の領域が、第20不純物領域として次の工程の後確定することになる。

【0074】次に、n型を付与する第2の不純物元素を添加する工程を行う。ここでは、フォスフィン(PH3)を用いたイオンドープ法で行う。この工程でも、ゲート絶縁膜406を通してその下の半導体層にリンを

添加するために、加速電圧は80keVと高めに設定する。そして、リンが添加された第1の不純物領域441、442、443、444、445が形成される。この領域のリンの濃度はn型を付与する第1の不純物元素を添加する工程と比較して高濃度であり、 1×10^{19} ~ 1×10^{21} atoms/cm 3 とするのが好ましく、ここでは 1×10^{20} atoms/cm 3 とする。(図12(A))

【0075】さらに、レジストマスク431、432、433、434、435、436を除去して新たにレジストマスク446、447、448、449、450、451を形成する。この工程において、nチャネル型TFTに形成されるレジストマスク446、449、450のチャネル長方向の長さはTFTの構造を決める上で重要である。レジストマスク446、449、450は第1の導電膜437、438、439の一部を除去する目的で設けられるものであり、このレジストマスクの長さにより、第2の不純物領域がゲート電極と重なる領域と、重ならない領域をある範囲で自由に決めることができる。(図12(B))

【0076】そして、レジストマスク446、449、450を使用したエッチングにより、図12(C)に示すように第1のゲート電極452、453、454が形成される。ここで、第1のゲート電極452の、チャネル長方向の長さは6 μ m、第1のゲート電極453、454のチャネル長方向の長さは4 μ mとした。

【0077】また、画素部には、保持容量部の電極45 5が形成される。

【0078】図12(C)までの工程が終了したら、窒化シリコン膜456、第1の層間絶縁膜457を形成する工程を行う。最初に窒化シリコン膜456を50nmの厚さに成膜する。窒化シリコン膜456はプラズマCVD法で形成され、SiH4を5SCCM、NH3を40SCCM、N2を100SCCM導入して0.7Torr、300Wの高周波電力を投入する。続いて、第1の層間絶縁膜457として酸化シリコン膜を採用し、TEOSを500SCCM、O2を50SCCM導入し1Torr、200Wの高周波電力を投入して950nmの厚さに成膜する。

【0079】次に、熱処理の工程を行う。熱処理の工程は、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化するために行う必要がある。この工程は、電気加熱炉を用いた熱アニール法や、前述のエキシマレーザーを用いたレーザーアニール法や、ハロゲンランプを用いたラピットサーマルアニール法(RTA法)で行えば良い。ここでは熱アニール法で活性化の工程を行う。加熱処理は、窒素雰囲気中において300~700℃、好ましくは350~550℃、ここでは450℃、2時間の処理を行う。

【0080】第1の層間絶縁膜457と窒化シリコン膜456には、その後、パターニングでそれぞれのTFT

のソース領域と、ドレイン領域に達するコンタクトホール形成のためエッチングされる。そして、ソース電極458、459、460とドレイン電極461、462を形成する。図示していないが、本実施例ではこの電極を、Ti膜を100nm、Tiを含むAl膜300nm、Ti膜150nmをスパッタ法で連続形成した3層構造の電極として用いる。

【0081】そして、ソース電極458、459、460とドレイン電極461、462と、第1の層間絶縁膜457を覆ってパッシベーション膜463を形成する。パッシベーション膜463は、窒化シリコン膜で50nmの厚さで形成する。さらに、有機樹脂からなる第2の層間絶縁膜464を約1000nmの厚さに形成する。有機樹脂膜としては、ポリイミド、アクリル、ポリイミドアミド等を使用することができる。有機樹脂膜を用いることの利点は、成膜方法が簡単である点や、比誘電率が低いので、寄生容量を低減できる点、平坦性に優れる点などが上げられる。なお上述した以外の有機樹脂膜を用いることもできる。ここでは、基板に塗布後、熱重合するタイプのポリイミドを用い、300℃で焼成して形成する。

【0082】以上の工程で、CMOS回路のnチャネル型TFTにはチャネル形成領域465、第1の不純物領域468、469、第2の不純物領域466、467が形成される。ここで、第2の不純物領域は、ゲート電極と重なる領域(GOLD領域)466a、467aが・1.5μmの長さに、ゲート電極と重ならない領域(LDD領域)466b、467bが1.5μmの長さにそれぞれ形成される。第1の不純物領域468はソース領域、第1の不純物領域469はドレイン領域となる。

【0083】pチャネル型TFTは、同様にクラッド構造のゲート電極が形成され、チャネル形成領域470、第3の不純物領域471、472が形成される。そして、第3の不純物領域471はソース領域、第3の不純物領域472はドレイン領域となる。

【0084】また、画素TFTであるnチャネル型TFTはマルチゲートであり、チャネル形成領域473、478と第1の不純物領域476、477、481と第2の不純物領域474、475、479、480が形成される。ここで第2の不純物領域は、ゲート電極と重なる領域474a、475a、479a、480aと重ならない領域474b、475b、479b、480bとが形成される。

【0085】こうして図13に示すように、基板401上にCMOS回路と、画素TFTが形成されたアクティブマトリクス基板が作製される。また、画素TFTであるnチャネル型TFTのドレイン側には、保持容量部が同時に形成されている。

[0086] [実施例4] 本実施例では、実施例3と同じ工程で図12(A)に示す状態を得た後、他の方法で

第1の導電膜の一部を除去する例を、図14を用いて説明する。

【0087】まず、図12(A)で形成したレジストマスク431、432、433、434、435、436をそのまま使用して、図12(A)の第1の導電膜437、438、439、440の一部をエッチングして除去し、第1の導電膜を図14の482、483、484、485に示すような形状にする。

【0088】ここでのエッチングの工程は、第1のゲート電極がシリコン膜である場合、ドライエッチング法により、SF6を40SCCM、O2を10SCCM導入して、100mTorr、200Wの高周波電力を印加して行うことができる。

【0089】このドライエッチングの条件では、下地にあるゲート絶縁膜との選択比は高く、ゲート絶縁膜40 6はほとんどエッチングされない。

【0090】ここでは、レジストマスク431は、TFTのチャネル長方向に対して 9μ m、また、レジストマスク434、435は 7μ mの長さで形成されている。そして、ドライエッチングにより第1の導電膜を 1.5μ mずつ除去して、第1のゲート電極482、483、484、485を形成する。

【0091】レジストマスク431、432、433、434、435、436を除去すればTFTに関する部分では、図12(C)の状態になる。以降の工程は実施例3に従えば良く、図13に示すように窒化シリコン膜456、第1の層間絶縁膜457、ソース電極458、459、460、ドレイン電極461、462、パッシベーション膜463、第2の層間絶縁膜464を形成して、図13に示すアクティブマトリクス基板が形成される。

【0092】 [実施例5] 本実施例では、実施例3において半導体層として用いる結晶質半導体膜を、触媒元素を用いた熱結晶化法により形成する例を示す。触媒元素を用いる場合、特開平7-130652号公報、特開平8-78329号公報で開示された技術を用いることが望ましい。

【0093】ここで、特開平7-130652号公報に開示されている技術を本発明に適用する場合の例を図15に示す。まず基板1201に酸化シリコン膜1202を設け、その上に非晶質シリコン膜1203を形成する。さらに、重量換算で10ppmのニッケルを含む酢酸ニッケル塩溶液を塗布してニッケル含有層1204を形成する。(図15(A))

【0094】次に、500℃、1時間の脱水素工程の後、500~650℃で4~12時間、例えば550℃、8時間の熱処理を行い、結晶質シリコン膜1205を形成する。こうして得られた結晶質シリコン膜1205は非常に優れた結晶質を有する。(図15(B))

【0095】また、特開平8-78329号公報で開示

された技術は、触媒元素を選択的に添加することによって、非晶質半導体膜の選択的な結晶化を可能としたものである。同技術を本発明に適用した場合について、図16で説明する。

【0096】まず、ガラス基板1301に酸化シリコン膜1302を設け、その上に非晶質シリコン膜1303、酸化シリコン膜1304を連続的に形成する。この時、酸化シリコン膜1304の厚さは150nmとする。

【0097】次に酸化シリコン膜1304をパターニングして、選択的に開孔部1305を形成し、その後、重量換算で10ppmのニッケルを含む酢酸ニッケル塩溶液を塗布する。これにより、ニッケル含有層1306が形成され、ニッケル含有層1306は開孔部1305の底部のみで非晶質シリコン膜1303と接触する。(図16(A))

【0098】次に、500~650℃で4~24時間、例えば570℃、14時間の熱処理を行い、結晶質シリコン膜1307を形成する。この結晶化の過程では、ニッケルが接した非晶質シリコン膜の部分が最初に結晶化し、そこから横方向へと結晶化が進行する。こうして形成された結晶質シリコン膜1307は棒状または針状の結晶が集合して成り、その各々の結晶は巨視的に見ればある特定の方向性をもって成長しているため、結晶性が揃っているという利点がある。(図16(B))

【0099】尚、上記2つの技術において使用可能な触媒元素は、ニッケル(Ni)の以外にも、ゲルマニウム(Ge)、鉄(Fe)、パラジウム(Pd)、スズ(Sn)、鉛(Pb)、コバルト(Co)、白金(Pt)、銅(Cu)、金(Au)、といった元素を用いても良い。

【0100】以上のような技術を用いて結晶質半導体膜(結晶質シリコン膜や結晶質シリコンゲルマニウム膜などを含む)を形成し、パターニングを行えば、結晶質TFTの半導体層を形成することができる。本実施例の技術を用いて、結晶質半導体膜から作製されたTFTは、優れた特性が得られるが、そのため高い信頼性を要求されていた。しかしながら、本発明のTFT構造を採用することで、本実施例の技術を最大限に生かしたTFTを作製することが可能となった。

【0101】 [実施例6] 本実施例は、実施例3で用いられる半導体層を形成する方法として、非晶質半導体膜を初期膜として前記触媒元素を用いて結晶質半導体膜を形成した後で、その触媒元素を結晶質半導体膜から除去する工程を行った例を示す。本実施例ではその方法として、特開平10-135468号公報または特開平10-135469号公報に記載された技術を用いる。

【0102】同公報に記載された技術は、非晶質半導体膜の結晶化に用いた触媒元素を結晶化後にリンのゲッタリング作用により除去する技術である。同技術を用いる

ことで、結晶質半導体膜中の触媒元素の濃度を 1×10 $17_{atms/cm}$ 以下、好ましくは 1×10 $16_{atms/cm}$ にまで低減することができる。

【0103】本実施例の構成について図17を用いて説 明する。ここではコーニング社の1737基板に代表さ れる無アルカリガラス基板を用いる。図17(A)で は、実施例5で示した結晶化の技術を用いて、下地膜1 402、結晶質シリコン膜1403が形成された状態を 示している。そして、結晶質シリコン膜1403の表面 にマスク用の酸化シリコン膜1404を150nmの厚 さに形成し、さらにパターニングにより開孔部を設け、 結晶質シリコン膜を露出させた領域を形成してある。そ して、リンを添加する工程を実施して、結晶質シリコン 膜にリンが添加された領域1405が設けられている。 【0104】この状態で、窒素雰囲気中で550~80 0℃、5~24時間、例えば600℃、12時間の熱処 理を行うと、結晶質シリコン膜にリンが添加された領域 1405がゲッタリングサイトとして働き、結晶質シリ コン膜1403に残存していた触媒元素はリンが添加さ れた領域1405に偏析させることができる。(図17 (B))

【0105】そして、マスク用の酸化シリコン膜1404と、リンが添加された領域1405とをエッチングして除去することにより、結晶化の工程で使用した触媒元素の濃度を1×10¹⁷atms/cm³以下にまで低減された結晶質シリコン膜を得ることができる。この結晶質シリコン膜はそのまま実施例3で示した本発明のTFTの半導体層として使用することができる。

【0106】 [実施例7] 本実施例では、実施例3で示した本発明のTFTを作製する工程において、半導体層とゲート絶縁膜を形成する他の実施例を示す。本実施例の構成は図18に示されている。

【0107】ここでは、少なくとも700~1100℃程度の耐熱性を有する基板が必要であり、石英基板1501が用いられる。そして実施例5及び実施例6で示した技術を用い、結晶質半導体が形成され、これをTFTの半導体層にするために、島状にパターニングして半導体層1502、1503を形成する。そして、半導体層1502、1503を覆って、ゲート絶縁膜1504として酸化シリコンを主成分とする膜を形成する。本実施例では、プラズマCVD法で窒化酸化シリコン膜を70nmの厚さで形成する。(図18(A))

【0108】そして、ハロゲン(代表的には塩素)と酸素を含む雰囲気中で熱処理を行う。本実施例では、950℃、30分とした。尚、処理温度は700~1100℃の範囲で選択すれば良く、処理時間も10分から8時間の間で選択すれば良い。(図18(B))

【0109】その結果、本実施例の条件では、半導体層 1502、1503とゲート絶縁膜1504との界面で 熱酸化膜が形成され、成膜したゲート絶縁膜1504と 組み合わされたゲート絶縁膜1507が形成される。また、ハロゲン雰囲気での酸化の過程で、ゲート絶縁膜1504と半導体層1502、1503に含まれる不純物で、特に金属不純物元素はハロゲンと化合物を形成し、気相中に除去することができる。

【0110】以上の工程で作製されるゲート絶縁膜1507は、絶縁耐圧が高く半導体層1505、1506とゲート絶縁膜1507の界面は非常に良好なものになる。本発明のTFTの構成を得るためには、以降の工程は実施例3に従えば良い。

【0111】 [実施例8] 本実施例では、実施例5に示す方法で結晶質半導体膜を形成し、実施例3で示す工程でアクティブマトリクス基板を作製する方法において、結晶化の工程で使用した触媒元素をゲッタリングにより除去する例を示す。まず、実施例3において、図11

(A)で示される半導体層403、404、405は、 触媒元素を用いて作製された結晶質シリコン膜であっ た。このとき、結晶化の工程で用いられた触媒元素が半 導体層中に残存するので、ゲッタリングの工程を実施す ることが望ましい。

【0112】ここでは、図11(C)に示す工程までそのまま実施し、その後、レジストマスク423、424を除去した。

【0113】そして、図19に示すように、新たなレジストマスク1601、1602、1603、1604、1605、1606を形成する。次に、n型を付与する第2の不純物添加の工程を行う。その結果、半導体層にリンが添加された領域1607、1608、1609、1610、1611、1612、1613が形成される。

【0114】ここで、リンが添加された領域1609、1610にはすでにp型を付与する不純物元素であるボロンが添加されているが、このときリン濃度は 1×10 $19\sim1\times10^{20}$ atoms/cm³であり、ボロンに対して1/2 程度の濃度で添加されるので、pチャネル型TFTの特性には何ら影響を及ぼさない。

【0115】この状態で、窒素雰囲気中で400~800℃、1~24時間、例えば600℃、12時間の加熱処理の工程を行う。この工程により、添加されたn型及びp型を付与する不純物元素を活性化することができる。さらに、前記リンが添加されている領域がゲッタリングサイトとなり、結晶化の工程の後、残存していた触媒元素を偏析させることができる。その結果、チャネル形成領域から触媒元素を除去することが可能となる。

(図19(B))

【0116】図19(B)の工程が終了したら、以降の工程は実施例3の工程に従い、図13の状態を形成することにより、アクティブマトリクス基板を作製することができる。

【0117】[実施例9]本実施例では、実施例3で作

製されたアクティブマトリクス基板から、アクティブマトリクス型液晶表示装置を作製する工程を説明する。

【0118】図13の状態のアクティブマトリクス基板に対して、図20(A)に示すように遮光膜1101、第3の層間絶縁膜1102を形成する。遮光膜1101は顔料を含む有機樹脂膜や、Ti、Crなどの金属膜を用いると良い。また、第3の層間絶縁膜1102は、ポリイミドなどの有機樹脂膜で形成した。そして、第3の層間絶縁膜1102と第2の層間絶縁膜464、パッシベーション膜463にドレイン電極462に達するコンタクトホールを形成し、画素電極1103を形成する。画素電極1103は、透過型液晶表示装置の場合には透明導電膜を用い、反射型の液晶表示装置の場合には透明導電膜を用いれば良い。ここでは透過型の液晶表示装置とするために、酸化インジウム・スズ(ITO)膜を100nmの厚さにスパッタ法で形成し、画素電極1103を形成する。

【0119】次に、図20(B)に示すように、配向膜1104を第3の層間絶縁膜1102と画素電極1103を覆うように形成する。通常液晶表示素子の配向膜にはポリイミド樹脂が多く用いられている。対向側の基板1105には、透明導電膜1106と、配向膜1107とを形成する。配向膜は、形成された後、ラビング処理を施して液晶分子がある一定のプレチルト角を持って平行配向させる役目を果たす。

【0120】上記の工程を経て、画素TFTと、CMO S回路が形成されたアクティブマトリクス基板と対向基板とを、公知のセル組み工程によってシール材やスペーサ(共に図示せず)などを介して貼りあわせる。その後、両基板の間に液晶材料1108を注入し、封止剤(図示せず)によって完全に封止する。このようにして図20(B)に示すアクティブマトリクス型液晶表示装置が完成する。

【0121】なお、上記の行程により作成されるTFTはトップゲート構造であるが、ボトムゲート構造のTFTやその他の構造のTFTに対しても本発明は適用され得る。

【0122】また、液晶材料の代わりにエレクトロルミネッセンス(EL:Electro Luminescence)材料を用いた自発光型の表示装置であるEL表示装置に対しても本発明は適用され得る。なお、本明細書中では、陽極、有機化合物層及び陰極で形成される素子を発光素子と呼ぶ。発光素子は、エレクトロルミネッセンス(Electroluminescence:電場を加えることで発生するルミネッセンス)が得られる有機化合物を含む層(以下、有機化合物層と記す)と、陽極と、陰極とを有する。有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とがあるが、本発明はどちらの発光を用いた発光装置にも適用可能である。

【0123】なお、本明細書では、陽極と陰極の間に設けられた全ての層を有機化合物層と定義する。有機化合物層には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的に発光素子は、陽極/発光層/陰極が順に積層された構造を有しており、この構造に加えて、陽極/正孔注入層/発光層/陰極や、陽極/正孔注入層/発光層/陰極等の順に積層した構造を有していることもある。

【0124】 [実施例10] 本実施例では、実施例1および実施例2をEL表示装置に適用した場合の作製例について説明する。

【0125】図21(A)は本発明を適用したEL表示装置の上面図であり、図21(B)は図21(A)に示したA-A で切断したEL表示装置の断面図である。図21(A)において、4010は基板、4011は画素部、4012はソース信号線駆動回路、401*3はゲート信号線駆動回路であり、それぞれの駆動回路は配線4014~4016を経てFPC4017に至り、外部機器へと接続される。

【0126】このとき、少なくとも画素部、好ましくは 駆動回路及び画素部を囲むようにしてカバー材460 0、シーリング材(ハウジング材ともいう)4100、 密封材(第2のシーリング材)4101が設けられてい る。

【0127】また、図21(B)に示すように、基板4010、下地膜4021の上に駆動回路用TFT(但し、ここではnチャネル型TFTとpチャネル型TFTを組み合わせたCMOS回路を図示している。)4022及び画素部用TFT4023(但し、ここではEL素子への電流を制御するTFTだけ図示している。)が形成されている。これらのTFTは公知の構造(トップゲート構造またはボトムゲート構造)を用いれば良い。

【0128】公知の作製方法を用いて駆動回路用TFT4023が完成したら、樹脂材料でなる層間絶縁膜(平坦化膜)4026の上に画素部用TFT4023のドレインと電気的に接続する透明導電膜でなる画素電極4027を形成する。透明導電膜としては、酸化インジウムと酸化スズとの化合物(1T0と呼ばれる)または酸化インジウムと酸化亜鉛との化合物を用いることができる。そして、画素電極4027を形成したら、絶縁膜4028を形成し、画素電極4027上に開口部を形成する。

【0129】次に、EL層4029を形成する。EL層4029は公知のEL材料(正孔注入層、正孔輸送層、発光層、電子輸送層または電子注入層)を自由に組み合わせて積層構造または単層構造とすれば良い。どのような構造とするかは公知の技術を用いれば良い。また、EL材料には低分子系材料と高分子系(ポリマー系)材料がある。低分子系材料を用いる場合は蒸着法を用いるが、高分子系材料を用いる場合には、スピンコート法、

印刷法またはインクジェット法等の簡易な方法を用いる ことが可能である。

【0130】本実施例では、シャドーマスクを用いて蒸着法によりEL層を形成する。シャドーマスクを用いて画素毎に波長の異なる発光が可能な発光層(赤色発光層、緑色発光層及び青色発光層)を形成することで、カラー表示が可能となる。その他にも、色変換層(CCM)とカラーフィルターを組み合わせた方式、白色発光層とカラーフィルターを組み合わせた方式があるがいずれの方法を用いても良い。勿論、単色発光のEL表示装置とすることもできる。

【0131】EL層4029を形成したら、その上に陰極4030を形成する。陰極4030とEL層4029の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、真空中でEL層4029と陰極4030を連続成膜するか、EL層4029を不活性雰囲気で形成し、大気解放しないで陰極4030を形成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。

【0132】なお、本実施例では陰極4030として、 LiF(フッ化リチウム)膜とAI(アルミニウム)膜の積層構造を用いる。具体的にはEL層4029上に蒸 着法で1nm厚のLiF(フッ化リチウム)膜を形成し、その上に300nm厚のアルミニウム膜を形成する。勿論、公知の陰極材料であるMgAg電極を用いても良い。そして陰極4030は4031で示される領域において配線4016に接続される。配線4016は陰極4030に所定の電圧を与えるための電源供給線であり、導電性ペースト材料4032を介してFPC4017に接続される。

【0133】4031に示された領域において陰極4030と配線4016とを電気的に接続するために、層間絶縁膜4026及び絶縁膜4028にコンタクトホールを形成する必要がある。これらは層間絶縁膜4026のエッチング時(画素電極用コンタクトホールの形成時)や絶縁膜4028のエッチング時(EL層形成前の開口部の形成時)に形成しておけば良い。また、絶縁膜4028をエッチングする際に、層間絶縁膜4026まで一括でエッチングしても良い。この場合、層間絶縁膜4026と絶縁膜4028が同じ樹脂材料であれば、コンタクトホールの形状を良好なものとすることができる。

【0134】このようにして形成されたEL素子の表面を覆って、パッシベーション膜4603、充填材4604、カバー材4600が形成される。

【0135】さらに、EL素子部を囲むようにして、カバー材4600と基板4010の内側にシーリング材4100が設けられ、さらにシーリング材4100の外側には密封材(第2のシーリング材) 4101が形成される。

【0136】このとき、この充填材4604は、カバー材4600を接着するための接着剤としても機能する。 充填材4604としては、PVC(ポリビニルクロライド)、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。この充填材4604の内部に乾燥剤を設けておくと、吸湿効果を保持できるので好ましい。

【0137】また、充填材4604の中にスペーサーを含有させてもよい。このとき、スペーサーをBaOなどからなる粒状物質とし、スペーサー自体に吸湿性をもたせてもよい。

【0138】スペーサーを設けた場合、パッシベーション膜4603はスペーサー圧を緩和することができる。 また、パッシベーション膜とは別に、スペーサー圧を緩和する樹脂膜などを設けてもよい。

【0139】また、カバー材4600としては、ガラス板、アルミニウム板、ステンレス板、FRP(Fiberglass-Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリルフィルムを用いることができる。なお、充填材4604としてPVBやEVAを用いる場合、数十μmのアルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることが好ましい。

【0140】但し、EL素子からの発光方向(光の放射方向)によっては、カバー材4600が透光性を有する必要がある。

【0141】また、配線4016はシーリング材4100および密封材4101と基板4010との隙間を通ってFPC4017に電気的に接続される。なお、ここでは配線4016について説明したが、他の配線4014、4015も同様にしてシーリング材4100および密封材4101の下を通ってFPC4017に電気的に接続される。

【0142】なお本実施例では、充填材4604を設けてからカバー材4600を接着し、充填材4604の側面(露呈面)を覆うようにシーリング材4100を取り付けているが、カバー材4600及びシーリング材4100を取り付けてから、充填材4604を設けても良い。この場合、基板4010、カバー材4600及びシーリング材4100で形成されている空隙に通じる充填材の注入口を設ける。そして前記空隙を真空状態(10-2Torr以下)にし、充填材の入っている水槽に注入口を浸してから、空隙の外の気圧を空隙の中の気圧よりも高くして、充填材を空隙の中に充填する。

【0143】 [実施例11] 本実施例では、本発明を用いて実施例10とは異なる形態のEL表示装置を作製した例について、図22(A)、図22(B)を用いて説明する。図21(A)、図21(B)と同じ番号のもの

は同じ部分を指しているので説明は省略する。

【0144】図22 (A) は本実施例のEL表示装置の 上面図であり、図22 (A) をA-A'で切断した断面図 を図22 (B) に示す。

【0145】実施例10に従って、EL素子の表面を覆ってパッシベーション膜4603までを形成する。

【0146】さらに、EL素子を覆うようにして充填材4604を設ける。この充填材4604は、カバー材4600を接着するための接着剤としても機能する。充填材4604としては、PVC(ポリビニルクロライド)、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。この充填材4604の内部に乾燥剤を設けておくと、吸湿効果を保持できるので好ましい。

【0147】また、充填材4604の中にスペーサーを含有させてもよい。このとき、スペーサーをBaOなどからなる粒状物質とし、スペーサー自体に吸湿性をもたせてもよい。

【0148】スペーサーを設けた場合、パッシベーション膜4603はスペーサー圧を緩和することができる。 また、パッシベーション膜とは別に、スペーサー圧を緩和する樹脂膜などを設けてもよい。

【0149】また、カバー材4600としては、ガラス板、アルミニウム板、ステンレス板、FRP(Fiberglass-Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリルフィルムを用いることができる。なお、充填材4604としてPVBやEVAを用いる場合、数十µmのアルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることが好ましい。

【 0 1 5 0 】 但し、E L 素子からの発光方向(光の放射 方向)によっては、カバー材 4 6 0 0 が透光性を有する 必要がある。

【0151】次に、充填材4604を用いてカバー材4600を接着した後、充填材4604の側面(露呈面)を覆うようにフレーム材4601を取り付ける。フレーム材4601はシーリング材(接着剤として機能する)4602によって接着される。このとき、シーリング材4602としては、光硬化性樹脂を用いるのが好ましいが、EL層の耐熱性が許せば熱硬化性樹脂を用いても良い。なお、シーリング材4602はできるだけ水分や酸素を透過しない材料であることが望ましい。また、シーリング材4602の内部に乾燥剤を添加してあっても良い。

【0152】また、配線4016はシーリング材460 2と基板4010との隙間を通ってFPC4017に電 気的に接続される。なお、ここでは配線4016につい て説明したが、他の配線4014、4015も同様にし てシーリング材4602の下を通ってFPC4017に 電気的に接続される。

【0153】なお本実施例では、充填材4604を設けてからカバー材4600を接着し、充填材4604の側面(露呈面)を覆うようにフレーム材4601を取り付けているが、カバー材4600及びフレーム材4601を取り付けてから、充填材4604を設けても良い。この場合、基板4010、カバー材4600及びフレーム材4601で形成されている空隙に通じる充填材の注入口を設ける。そして前記空隙を真空状態(10-2Torr以下)にし、充填材の入っている水槽に注入口を浸してから、空隙の外の気圧を空隙の中の気圧よりも高くして、充填材を空隙の中に充填する。

【0154】 [実施例12] ここでEL表示装置における画素部のさらに詳細な断面構造を図23に、上面構造を図24(A)に、回路図を図24(B)に示す。図23、図24(A)及び図24(B)では共通の符号を用いるので互いに参照すれば良い。

【0155】図23において、基板4501上に設けられたスイッチング用TFT4502は公知の方法で形成されたnチャネル型TFTを用いる。本実施例ではダブルゲート構造としているが、構造及び作製プロセスに大きな違いはないので説明は省略する。但し、ダブルゲート構造とすることで実質的に二つのTFTが直列された構造となり、オフ電流値を低減することができるという利点がある。なお、本実施例ではダブルゲート構造としているが、シングルゲート構造でも構わないし、トリプルゲート構造やそれ以上のゲート本数を持つマルチゲート構造でも構わない。また、公知の方法で形成されたpチャネル型TFTを用いて形成しても構わない。

【0156】また、電流制御用TFT4503は公知の方法で形成されたnチャネル型TFTを用いる。スイッチング用TFT4502のソース配線(ソース信号線)は34である。そして、スイッチング用TFT4502のドレイン配線である35は配線36によって電流制御用TFTのゲート電極37に電気的に接続されている。また、38で示される配線は、スイッチング用TFT4502のゲート電極39a、39bを電気的に接続するゲート配線(ゲート信号線)である。

【0157】電流制御用TFT4503はEL素子を流れる電流量を制御する素子であるため、多くの電流が流れ、熱による劣化やホットキャリアによる劣化の危険性が高い素子でもある。そのため、電流制御用TFT4503のドレイン側に、ゲート絶縁膜を介してゲート電極に重なるようにLDD領域を設ける構造は極めて有効である。

【0158】また、本実施例では電流制御用TFT45 03をシングルゲート構造で図示しているが、複数のT FTを直列につなげたマルチゲート構造としても良い。 さらに、複数のTFTを並列につなげて実質的にチャネ ル形成領域を複数に分割し、熱の放射を高い効率で行えるようにした構造としても良い。このような構造は熱による劣化対策として有効である。

【0159】また、図24(A)に示すように、電流制 御用TFT4503のゲート電極37となる配線36は 4504で示される領域で絶縁膜を介して、電流制御用 TFT4503のドレイン配線40と電気的に接続され た電源供給線4506と重なる。このとき、4504で 示される領域ではコンデンサが形成され、電流制御用工 FT4503のゲート電極37にかかる電圧を保持する ための保持容量として機能する。保持容量4504は、 電源供給線4506と電気的に接続された半導体膜45 07、ゲート絶縁膜と同一層の絶縁膜(図示せず)及び 配線36との間で形成される。また、配線36、第1層 間絶縁膜と同一の層(図示せず)及び電源供給線450 6で形成される容量も保持容量として用いることが可能 である。なお、電流制御用TFTのドレインは電源供給 線(電源線)4506に接続され、常に一定の電圧が加 えられている。

【0160】スイッチング用TFT4502及び電流制御用TFT4503の上には第1パッシベーション膜41が設けられ、その上に樹脂絶縁膜でなる平坦化膜42が形成される。平坦化膜42を用いてTFTによる段差を平坦化することは非常に重要である。後に形成されるEL層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、EL層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。

【0161】また、43は反射性の高い導電膜でなる画素電極(EL素子の陰極)であり、電流制御用TFT4503のドレインに電気的に接続される。画素電極43としてはアルミニウム合金膜、銅合金膜または銀合金膜など低抵抗な導電膜またはそれらの積層膜を用いることが好ましい。勿論、他の導電膜との積層構造としても良い。

【0162】また、絶縁膜(好ましくは樹脂)で形成されたバンク44a、44bにより形成された溝(画素に相当する)の中に発光層45が形成される。なお図24

(A) では、保持容量 4 5 0 4 の位置を明確にするために一部バンクを省略しており、バンク 4 4 a、 4 4 b しか図示していないが、電源供給線 4 5 0 6 とソース配線

(ソース信号線) 3 4を一部覆うように電源供給線 4 5 0 6 とソース配線 (ソース信号線) 3 4 の間に設けられている。また、ここでは二画素しか図示していないが、R(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けても良い。発光層とする有機 E L 材料としてはπ共役ポリマー系材料を用いる。代表的なポリマー系材料としては、ポリパラフェニレンビニレン (PPV)系、ポリビニルカルバゾール (PVK)系、ポリフルオレン系などが挙げられる。

【0163】なお、PPV系有機EL材料としては様々な型のものがあるが、例えば「H. Shenk, H. Becker, O. Gelsen, E. Kluge, W. Kreuder, and H. Spreitzer, "Polymers for Light Emitting Diodes", Euro Display, Proceedings, 1999, p. 33-37」や特開平10-92576号公報に記載されたような材料を用いれば良い。

【0164】具体的な発光層としては、赤色に発光する発光層にはシアノポリフェニレンビニレン、緑色に発光する発光層にはポリフェニレンビニレン、青色に発光する発光層にはポリフェニレンビニレン若しくはポリアルキルフェニレンを用いれば良い。膜厚は30~150nm(好ましくは40~100nm)とすれば良い。

【0165】但し、以上の例は発光層として用いることのできる有機EL材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせてEL層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。

【0166】例えば、本実施例ではポリマー系材料を発 光層として用いる例を示したが、低分子系有機EL材料 を用いても良い。また、電荷輸送層や電荷注入層として 炭化珪素等の無機材料を用いることも可能である。これ らの有機EL材料や無機材料は公知の材料を用いること ができる。

【0167】本実施例では発光層45の上にPEDOT (ポリチオフェン)またはPAni (ポリアニリン)でなる正孔注入層46を設けた積層構造のEL層としている。そして、正孔注入層46の上には透明導電膜でなる陽極47が設けられる。本実施例の場合、発光層45で生成された光は上面側に向かって(TFTの上方に向かって)放射されるため、陽極は透光性でなければならない。透明導電膜としては酸化インジウムと酸化スズとの化合物や酸化インジウムと酸化亜鉛との化合物を用いることができるが、耐熱性の低い発光層や正孔注入層を形成した後で形成するため、可能な限り低温で成膜できるものが好ましい。

【0168】陽極47まで形成された時点でEL素子4505が完成する。なお、ここでいうEL素子4505は、画素電極(陰極)43、発光層45、正孔注入層46及び陽極47で形成されたコンデンサを指す。図24(A)に示すように画素電極43は画素の面積にほぼ一致するため、画素全体がEL素子として機能する。従って、発光の利用効率が非常に高く、明るい画像表示が可能となる。

【0169】ところで、本実施例では、陽極47の上にさらに第2パッシベーション膜48を設けている。第2パッシベーション膜48としては窒化珪素膜または窒化酸化珪素膜が好ましい。この目的は、外部とEL素子とを遮断することであり、有機EL材料の酸化による劣化を防ぐ意味と、有機EL材料からの脱ガスを抑える意味

との両方を併せ持つ。これにより E L 表示装置の信頼性が高められる。

【0170】以上のように本発明のEL表示装置は図23のような構造の画素からなる画素部を有し、オフ電流値の十分に低いスイッチング用TFTと、ホットキャリア注入に強い電流制御用TFTとを有する。従って、高い信頼性を有し、且つ、良好な画像表示が可能なEL表示装置が得られる。

【0171】 [実施例13] 本実施例では、実施例12に示した画素部において、EL素子4505の構造を反転させた構造について説明する。説明には図25を用いる。なお、図23の構造と異なる点はEL素子の部分と電流制御用TFTだけであるので、その他の説明は省略することとする。

【0172】図25において、電流制御用TFT450 3は公知の方法で形成されたpチャネル型TFTを用いる。

【0173】本実施例では、画素電極(陽極)50として透明導電膜を用いる。具体的には酸化インジウムと酸化亜鉛との化合物でなる導電膜を用いる。勿論、酸化インジウムと酸化スズとの化合物でなる導電膜を用いても良い。

【0174】そして、絶縁膜でなるバンク51a、51b が形成された後、溶液塗布によりポリビニルカルバゾールでなる発光層52が形成される。その上にはカリウムアセチルアセトネート(acacKと表記される)でなる電子注入層53、アルミニウム合金でなる陰極54が形成される。この場合、陰極54がパッシベーション膜としても機能する。こうしてEL素子4701が形成される。

【0175】本実施例の場合、発光層52で発生した光は、矢印で示されるようにTFTが形成された基板の方に向かって放射される。

【0176】[実施例14]本実施例では、図24

(B) に示した回路図とは異なる構造の画素とした場合の例について図26(A)~(C)に示す。なお、本実施例において、4801はスイッチング用TFT4802のソース配線(ソース信号線)、4803はスイッチング用TFT4802のゲート配線(ゲート信号線)、4804は電流制御用TFT、4805は保持容量、4806、4808は電源供給線、4807はEL素子とする。

【0177】図26(A)は、二つの画素間で電源供給線4806を共通とした場合の例である。即ち、二つの画素が電源供給線4806を中心に線対称となるように形成されている点に特徴がある。この場合、電源供給線の本数を減らすことができるため、画素部をさらに高精細化することができる。

【0178】また、図26(B)は、電源供給線480 8をゲート配線(ゲート信号線)4803と平行に設け た場合の例である。なお、図26(B)では電源供給線4808とゲート配線(ゲート信号線)4803とが重ならないように設けた構造となっているが、両者が異なる層に形成される配線であれば、絶縁膜を介して重なるように設けることもできる。この場合、電源供給線4808とゲート配線(ゲート信号線)4803とで専有面積を共有させることができるため、画素部をさらに高精細化することができる。

【0179】また、図26(C)は、図26(B)の構造と同様に電源供給線4808をゲート配線(ゲート信号線)4803と平行に設け、さらに、二つの画素を電源供給線4808に対し線対称となるように形成する点に特徴がある。また、電源供給線4808をゲート配線(ゲート信号線)4803のいずれか一方と重なるように設けることも有効である。この場合、電源供給線の本数を減らすことができるため、画素部をさらに高精細化することができる。

【0180】 [実施例15] 実施例12に示した図24 (A)、図24(B)では電流制御用TFT4503のゲートにかかる電圧を保持するために保持容量4504を設ける構造としているが、保持容量4504を省略することも可能である。実施例12の場合、電流制御用TFT4503のドレイン側に、ゲート絶縁膜を介してゲート電極に重なるように設けられたLDD領域を有している。この重なり合った領域には一般的にゲート容量と呼ばれる寄生容量が形成されるが、本実施例ではこの寄生容量を保持容量4504の代わりとして積極的に用いる点に特徴がある。

【0181】この寄生容量のキャパシタンスは、上記ゲート電極とLDD領域とが重なり合った面積によって変化するため、その重なり合った領域に含まれるLDD領域の長さによって決まる。

【0182】また、実施例14に示した図26(A), (B), (C)の構造においても同様に、保持容量48 05を省略することは可能である。

【0183】[実施例16]本実施例では、本発明の駆動方法を用いたアクティブマトリクス型液晶表示装置或いはEL表示装置を組み込んだ電子機器について説明する。これらの電子機器には、携帯情報端末(電子手帳、モバイルコンピュータ、携帯電話等)、ビデオカメラ、スチルカメラ、パーソナルコンピュータ、テレビ等が挙げられる。それらの一例を図27~図29に示す。ただし、アクティブマトリクス型液晶表示装置については、図27、図28、図29が適用され、EL表示装置については、図27、図28が適用される。

【0184】図27(A)は携帯電話であり、本体9001、音声出力部9002、音声入力部9003、表示部9004、操作スイッチ9005、アンテナ9006がら構成されている。本発明は表示部9004に適用することができる。

【0185】図27(B)はビデオカメラであり、本体9101、表示部9102、音声入力部9103、操作スイッチ9104、バッテリー9105、受像部9106から成っている。本発明は表示部9102に適用することができる。

【0186】図27(C)はパーソナルコンピュータの一種であるモバイルコンピュータ或いは携帯型情報端末であり、本体9201、カメラ部9202、受像部9203、操作スイッチ9204、表示部9205で構成されている。本発明は表示部9205に適用することができる。

【0187】図27(D)はヘッドマウントディスプレイ(ゴーグル型ディスプレイ)であり、本体9301、表示部9302、アーム部9303で構成される。本発明は表示部9302に適用することができる。

【0188】図27(E)はテレビであり、本体940 1、スピーカー9402、表示部9403、受信装置9 404、増幅装置9405等で構成される。本発明は表 示部9403に適用することができる。

【0189】図27(F)は携帯書籍であり、本体9501、表示部9502、記憶媒体9504、操作スイッチ9505、アンテナ9506から構成されており、ミニディスク(MD)やDVD(Digtial Versatile Disc)に記憶されたデータや、アンテナで受信したデータを表示するものである。本発明は表示部9502に適用することができる。

【0190】図28(A)はパーソナルコンピュータであり、本体9601、画像入力部9602、表示部9603、キーボード9604で構成される。本発明は表示部9603に適用することができる。

【0191】図28(B)はプログラムを記録した記録 媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体9701、表示部9702、スピーカ部9703、記録媒体9704、操作スイッチ9705で構成される。なお、この装置は記録媒体としてDVD、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行なうことができる。本発明は表示部9702に適用することができる。

【0192】図28(C)はデジタルカメラであり、本体9801、表示部9802、接眼部9803、操作スイッチ9804、受像部(図示しない)で構成される。本発明は表示部9802に適用することができる。

【0193】図28(D)は片眼のヘッドマウントディスプレイであり、表示部9901、ヘッドマウント部9902で構成される。本発明は表示部9901に適用することができる。

【0194】図29(A)はフロント型プロジェクターであり、投射装置3601、スクリーン3602で構成される。

【0195】図29(B)はリア型プロジェクターであ

り、本体3701、投射装置3702、ミラー370 3、スクリーン3704で構成される。

【0196】なお、図29(C)は、図29(A)及び図29(B)中における投射装置3601、3702の構造の一例を示した図である。投射装置3601、3702は、光源光学系3801、ミラー3802、ダイクロイックミラー3803、マイクロレンズアレイ3804、液晶表示部3805、フレネルレンズ3806、投射光学系3807で構成される。投射光学系3807は、投射レンズを含む光学系で構成される。本実施例は単板式の投射装置である。また、図29(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。本発明は液晶表示部3805に適用することができる。

【0197】また、図29(D)は、図29(C)中における光源光学系3801の構造の一例を示した図である。本実施例では、光源光学系3801は、リフレクター3811、光源3812、レンズアレイ3813、3814、偏光変換素子3815、集光レンズ3816で構成される。なお、図29(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。

【0198】以上の様に、本発明の適用範囲はきわめて広く、画像表示装置を用いるあらゆる分野の電子機器に適用することが可能である。

[0199]

【発明の効果】本発明の駆動方法によると、1つのD/A変換回路で複数のソース信号線を駆動する方法において、外部入力ピン数の増加や、駆動回路の占有面積の増加を招くことなく液晶に印加する電圧をRGB独立に制御することを可能にする。

【0200】また、これによりコントラストの低下を防ぎ、更に、色彩の表現性に優れたクオリティーの高い映像を表示することが可能となる。

【図面の簡単な説明】

- 【図1】 本発明の実施形態による駆動回路の概略図である。
- 【図2】 図1の実施形態による動作タイミングの例である。
- 【図3】 実施例1におけるソース信号線駆動回路図である。
- 【図4】 実施例1におけるフリップフロップ回路(F)と基本ラッチ回路(LAT)の回路図である。
- 【図5】 実施例1におけるP/S変換回路とソース線 選択回路の回路図である。
- 【図6】 実施例1におけるD/A変換回路の回路図である。

- 【図7】 実施例1における信号動作タイミングを表す 図である。
- 【図8】 実施例2におけるソース信号線駆動回路図である。
- 【図9】 実施例2におけるP/S変換回路とソース線 選択回路の回路図である。
- 【図10】 実施例2における信号動作タイミングを表す図である。
- 【図11】 TFTの作製工程を示す断面図である。
- · 【図12】 TFTの作製工程を示す断面図である。
 - 【図13】 アクティブマトリクス基板断面図である。
 - 【図14】 TFTの作製工程を示す断面図である。
- 【図15】 結晶質シリコン膜の作製工程を示す図である。
- 【図16】 結晶質シリコン膜の作製工程を示す図である。
- 【図17】 結晶質シリコン膜の作製工程を示す図である。
- 【図18】 結晶質シリコン膜の作製工程を示す図である。
- 【図19】 TFTの作製工程を示す断面図である。
- 【図20】 液晶表示装置の作製工程を示す断面図である。
- 【図21】 EL表示装置の作製例を示す図である。
- 【図22】 EL表示装置の作製例を示す図である。
- 【図23】 EL表示装置の作製例を示す図である。
- 【図24】 EL表示装置の作製例を示す図である。
- 【図25】 EL表示装置の作製例を示す図である。
- 【図26】 EL表示装置の作製例を示す図である。
- 【図27】 画像表示装置の一例を示す図である。
- 【図28】 画像表示装置の一例を示す図である。
- 【図29】 投影型液晶表示装置の構成を示す図である。
- 【図30】 アクティブマトリクス型液晶表示装置の概略図である。
- 【図31】 従来のデジタル方式のソース信号線駆動回路の概略図である。
- 【図32】 1つのD/A変換回路で4本のソース信号線を駆動するソース信号線駆動回路の概略図である。
- 【図33】 液晶表示装置における色別の輝度比一電圧特性の1例である。

【符号の説明】

- 101 ソース信号線駆動回路
- 102 ゲート信号線駆動回路
- 103 画素アレイ部
- 104 各ソース信号線
- 105 各ゲート信号線
- 106 各画素のスイッチング素子であるTFT
- 201 シフトレジスタ部
- 202 シフトレジスタ基本回路

203 ラッチ1回路

204 ラッチ2回路

205 D/A変換回路

301 パラレル/シリアル変換回路

302 ソース線選択回路

sw3-on

【図3】

【図6】 【図7】 第1ゲート線選択期間 第2ゲート稼選択期間 D/A变换回路 SSI Vref-H **SS2** SS3 PS0[1] D0[1,1] D0[2,1] D0[3,1] D0[1,2] D0[2,2] D0[3,2] (DR0[1,1]) (DG0[1,1]) (DB0[1,1]) (DR0[1,2]) (DG0[1,2]) (DB0[1,2]) PS1[1] D1[1,1] D1[2,1] D1[3,1] D1[1,2] D1[2,2] D1[3,2] (DRI[1,1]) (DGI[1,1]) (DBI[1,1]) (DRI[1,2]) (DGI[1,2]) (DBI[1,2]) PS2[1] D2[1,1] D2[2,1] D2[3,1] D2[1,2] D2[2,2] D2[3,2] (DR2[1,1]) (DG2[1,1]) (DB2[1,1]) (DR2[1,2]) (DG2[1,2]) (DB2[1,2]) sw1-on sw1-on sw3-on sw2-on sw2-on Vref-H **VB** VQ **VR** Vref-L

【図8】

[図9]

[図13]

456:SiN膜、457:第1の層間絶縁膜、458、459、460:ソース電極、461、482:トレイン電極、463:パッシペーション膜、464:第2の層間絶縁膜、465、470、473、478:チャネル形成領域、466m、468b、487m、467b:第2の不純物領域(LDD領域)、468、478:第1の不純物領域(ソース領域)、469、481:第1の不純物領域(ドレイン領域)、471:第3の不純物領域(ソース領域)、472:第3の不純物領域(ドレイン領域)、474m、474b、475m、475b、479m、479b、480m、480b:第2の不純物領域(LDD)領域)、477:第1の不純物領域(ソース・ト・レイン領域)

【図10】

【図11】

401:基板、402:下地膜、403、404、405:半導体層、406:か一ト絶縁膜、407:シリコン旗、408:Ta膜、409、410、412、413:か一ト電極、411:配線、414:保持容量配線、415~422:リンが添加された半導体層、423、424:レジストマスク、425~428:第1の導電膜、428、430:第3の不純物領域

[図14]

406:ゲート絶縁度 431~436:レシストマスク 482~484:第1のゲート電径 485:保持容量部電極

【図12】

431~438:レジストマスク、437~440:第1の導電膜、441~445:第1の不純物領域 446~451:レジストマスク、452~454:第1のゲート電極、455:保持容量部電極

【図19】

【図20】

[図 2 5]

51a

EL業子 4701

53

51b

42

35

42

38

スイッチング用TFT 4502

光の放射方向

[図24] (A) **(B)** 4505 4506 【図28】 9701 本体 9803 表录部 (A) (B) - 8902 ヘッドマウント部 9901 表示部

(D)

(C)

【図32】

