Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstra

Trees

Randoi

Boostin

End

References

Machine Learning Methods for Gene Expression Data

Day 4

Dennis Wylie, UT Bioinformatics Consulting Group

May 24, 2018

Outline

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstra

Trees

Randoi Forests

DOOSLII

End

References

- 1 SVM
- 2 Bootstrap
- 3 Trees
- 4 Random Forests
- 5 Boosting
- 6 End

Support vector machines (SVMs)

Machine Learning Methods for Gene Expression Data

Day 4

 SVM

Bootstra

Tree

Rando Forests

Doostii

Enc

Reference

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/\|\beta\|$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M\xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.

Taken from Hastie et al. (2009).

Fitting SVMs

Machine Learning Methods for Gene Expression Data

Day 4

SVM

3ootstra

...--

Forests

Doostii

Enc

References

Here follow convention $y \in \{-1, 1\}$ instead of $y \in \{0, 1\}$.

SVM parameters β_0, β, ξ fit by optimization:

$$\underset{\beta_0,\beta,\underline{\xi}}{\operatorname{arg\,min}} \left\{ \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i \right\}$$

subject to constraints

$$y_i(\boldsymbol{\beta} \cdot \mathbf{x}_i + \beta_0) \ge 1 - \xi_i$$

 $\xi_i \ge 0$

Linear SVM

P(Pro)

0.6

0.4

Nonlinear SVMs

Machine Learning Methods for Gene Expression Data

Day 4

SVM

ootstra

Trees

Forest

Doostii

End

References

Can fit SVM in nonlinearly transformed feature space.

For certain transformations, so-called "kernel trick" can be used: Given a particular transformation h, the kernel

$$k(\mathbf{x}, \mathbf{x}') = \langle h(\mathbf{x}), h(\mathbf{x}') \rangle$$

is actually all that is needed to fit SVM.

Nonlinear SVMs

Machine Learning Methods for Gene Expression Data

Day 4

SVM

ootstra

Tree

Rando Forests

Boosti

Enc

Reference

Can fit SVM in nonlinearly transformed feature space.

For certain transformations, so-called "kernel trick" can be used: Given a particular transformation h, the kernel

$$k(\mathbf{x}, \mathbf{x}') = \langle h(\mathbf{x}), h(\mathbf{x}') \rangle$$

is actually all that is needed to fit SVM.

Most popular *h*:

special transformation designed to produce radial basis kernel

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

Inution: classify sample with features x based on

- \blacktriangleright (known) classes of similar training data x_i
- where "similarity" quantified by kernel $k(\mathbf{x}, \mathbf{x}_i)$.

Radial SVM: $C = 1, \overline{\gamma} = 0.5$

0.8

0.6

0.4 0.2

Radial SVM: $C = 1, \gamma = 2.5$

8.0

0.6 0.4 0.2

Radial SVM: $C = 1, \gamma = 12.5$

8.0

0.6

0.4

0.2

Radial SVM: $C = 1, \gamma = 62.5$

Uncertainty in Model Parameters

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

I ree

Forests

Doostii

End

Reference

Often want to characterize uncertainty in model parameters.

Linear models: useful analytical results on confidence intervals

other modeling strategies not always so lucky.

If gathering data were sufficiently cheap, could just replicate:

- the experiment which generated data
- ▶ and the modeling process

many times to

empirically estimate the distribution of fit model parameters.

Bootstrapping

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Trees

Rando

Roostii

End

References

Bootstrapping: simulate such replication

using just the one data set we actually have.

Bootstrapping

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree

Randoi Forests

DOOSLII

⊏nc

References

Bootstrapping: simulate such replication

- using just the one data set we actually have.
- 1. Generate a case-resampled data set $\underline{\mathbf{X}}^{\text{boot}}$ by drawing n random integers $R = \{r_i \in \{1, \dots, n\}\}$ with replacement and setting

$$x_{gi}^{\text{boot}} = x_{gr_i}$$

 $y_i^{\text{boot}} = y_{r_i}$

Note that the r_i will generally not be unique!

- 2. Apply modeling strategy M to $(\underline{\mathbf{X}}^{\text{boot}}, \underline{y}^{\text{boot}})$ to obtain fitted parameters $\boldsymbol{\theta}^{\text{boot}}$.
- 3. Use model $(M, \theta^{\text{boot}})$ to estimate parameter or statistic $\hat{\Omega}^{\text{boot}}$ of interest.
- 4. Repeat steps 1-3 B times, obtaining values Ω_b^{boot} for $b \in \{1, \dots, B\}$ using models $(M, \theta_b^{\text{boot}})$.

Bootstrapping for Performance Estimation

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree

Forests

Doostii

End

References

Bootstrapping can also be used as an alternative to cross-validation for estimation of prediction error Ω .

How to do this?

- lacktriangle Might try to estimate distribution of prediction error $\{\hat{\Omega}_b^{\mathrm{full}}\}$
- ▶ on full (original) training set X.

Bootstrapping for Performance Estimation

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

I ree

Rando Forest

Liiu

Bootstrapping can also be used as an alternative to cross-validation for estimation of prediction error Ω .

How to do this?

- lacktriangle Might try to estimate distribution of prediction error $\{\hat{\Omega}_b^{\mathrm{full}}\}$
- ▶ on full (original) training set X.

However, since bootstrap training sets were drawn from $\underline{\mathbf{X}}$, $\{\hat{\Omega}_b^{\text{full}}\}$ will suffer from resubstitution bias.

Bootstrapping for Performance Estimation

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree

Rando Forest

20000.

Ena

Referer

Bootstrapping can also be used as an alternative to cross-validation for estimation of prediction error Ω .

How to do this?

- lacktriangle Might try to estimate distribution of prediction error $\{\hat{\Omega}_b^{\mathrm{full}}\}$
- ▶ on full (original) training set X.

However, since bootstrap training sets were drawn from $\underline{\mathbf{X}}$, $\{\hat{\Omega}_{h}^{\text{full}}\}$ will suffer from resubstitution bias.

Instead we could follow cross-validation methodology:

- ▶ use only models (M, θ_b) for which
- ightharpoonup sample *i* not used in resampled training set R_b

$$\hat{\Omega}^{\text{loo-boot}} = \frac{1}{n} \sum_{i} \frac{1}{|\{b \mid i \notin R_b\}|} \sum_{\{b \mid i \notin R_b\}} \hat{\Omega}(M, \theta_b, y_i)$$

.632 Bootstrap

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Trees

Randor

Boostir

End

References

While $\{\hat{\Omega}_b^{\rm full}\}$ are generally overly optimistic,

lacktriangle $\hat{\Omega}^{\text{loo-boot}}$ may be too pessimistic . . .

Day 4

SVM

Bootstrap

_

Rando

Forests

End

Reference

While $\{\hat{\Omega}_b^{\text{full}}\}$ are generally overly optimistic,

 $ightharpoonup \hat{\Omega}^{\mathsf{loo-boot}}$ may be too pessimistic . . .

Why? Because each bootstrap case-resampled training set

$$R_b = \{r_{bi} \mid i \in \{1, \dots, n\}\}$$

generally contains only a fraction $1 - \frac{1}{e} \approx 0.632$ of the true training samples (albeit with some showing up multiple times!).

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree

Randoi Forests

Boostir

End

Reference

While $\{\hat{\Omega}_b^{\text{full}}\}$ are generally overly optimistic,

 $ightharpoonup \hat{\Omega}^{\text{loo-boot}}$ may be too pessimistic . . .

Why? Because each bootstrap case-resampled training set

$$R_b = \{r_{bi} \mid i \in \{1, \dots, n\}\}$$

generally contains only a fraction $1-\frac{1}{e}\approx 0.632$ of the true training samples (albeit with some showing up multiple times!).

Repeating training samples doesn't generally improve models ...

 \blacktriangleright learning models using only $\approx 63.2\%$ of the available data.

.632 Bootstrap

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree

Randoi Forests

Boostin

End

Referen

While $\{\hat{\Omega}_b^{\mathrm{full}}\}$ are generally overly optimistic,

 $lackbox{}\hat{\Omega}^{\mathsf{loo-boot}}$ may be too pessimistic . . .

Why? Because each bootstrap case-resampled training set

$$R_b = \{r_{bi} \mid i \in \{1, \dots, n\}\}$$

generally contains only a fraction $1-\frac{1}{e}\approx 0.632$ of the true training samples (albeit with some showing up multiple times!).

Repeating training samples doesn't generally improve models \dots

▶ learning models using only \approx 63.2% of the available data.

Efron & Tibshirani (1997) showed that

$$\Omega^{.632} = 0.368 \, \Omega^{\mathsf{resub}} + 0.632 \, \Omega^{\mathsf{loo-boot}}$$

works well in some situations.

.632 Bootstrap

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree

Rando

Boostir

End

Reference

Machine Learning Methods for Gene Expression Data

Day 4

S V IVI

Bootstrap

Tree

Randoi Forests

Boostir

Enc

Reference

However, in cases where overfitting is more severe, Efron & Tibshirani (1997) recommend

$$\Omega^{.632+} = (1 - \hat{w}) \Omega^{\mathsf{resub}} + \hat{w} \Omega^{\mathsf{loo-boot}}$$

where $\hat{w} \in [1 - \frac{1}{e}, 1]$ depends on the degree of overfitting.

There is a standard formula for calculating \hat{w} for estimating prediction error using the .632+ bootstrap which you can look up; aside from Efron & Tibshirani (1997), Hastie *et al.* (2009) has a nice treatment.

Bagging: Bootstrap Aggregating Models

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree:

Rand

Roosti

End

References

Might consider using set of B bootstrap case-resample trained models in place of a single model for making predictions.

Bagging: Bootstrap Aggregating Models

Machine Learning Methods for Gene Expression Data

Day 4

Bootstrap

Dootstii

Rando

Boostin

End

Reference

Might consider using set of B bootstrap case-resample trained models in place of a single model for making predictions.

For modeling strategy M yielding predictions $f_{M,\theta}(\mathbf{x})$:

Repeat for $b \in \{1, \dots, B\}$:

- 1. Generate $\underline{\mathbf{X}}_b$ by drawing n random integers $R_b = \{r_{bi} \in \{1, \dots, n\}\}$ with replacement and setting $X_{bgi} = X_{gr_{bi}}$, $y_{bi} = y_{r_{bi}}$.
- 2. Fit M to $(\underline{\mathbf{X}}_b, \underline{\mathbf{y}}_b)$ to obtain fitted parameters $\boldsymbol{\theta}_b$.

Bagged predictions for new data x using $(M, \{\theta_b\})$:

$$f_{M,\{\theta_b\}}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} f_{M,\theta_b}(\mathbf{x})$$

Bagging: What is it Good For?

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

I ree

Forest:

Boostir

End

From Breiman (1996):

For unstable procedures bagging works well ... The evidence, both experimental and theoretical, is that bagging can push a good but unstable procedure a significant step towards optimality. On the other hand, it can slightly degrade the performance of stable procedures.

In this context, "stability" is of the fit model parameters θ with respect to the training data $\{x_i, y_i\}$.

Bagging: What is it Good For?

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstrap

Tree

Forests

Boostir

End

From Breiman (1996):

For unstable procedures bagging works well ... The evidence, both experimental and theoretical, is that bagging can push a good but unstable procedure a significant step towards optimality. On the other hand, it can slightly degrade the performance of stable procedures.

In this context, "stability" is of the fit model parameters θ with respect to the training data $\{x_i, y_i\}$.

Perhaps the most celebrated application of bagging is in its application to generate random forests of decision trees . . .

Machine Learning Methods for Gene Expression Data

Day 4

SVM

3ootstra_l

Trees

Rando Forests

Boostin

End

Deference

$$\mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) = \sum_{k=1}^{K} p_k \ [\mathbf{x} \in R_k]$$

where the Iverson bracket expression

$$[\mathbf{x} \in R_k] = \begin{cases} 1 & \text{if } \mathbf{x} \in R_k, \\ 0 & \text{otherwise} \end{cases}$$

and the regions $R_k \in \mathbb{R}^p$ are defined by recursive partitioning.

Decision Trees

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstra

Trees

Rand

Roostin

$$\mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) = \sum_{k=1}^{K} p_k \ [\mathbf{x} \in R_k]$$

where the Iverson bracket expression

$$[\mathbf{x} \in R_k] = \begin{cases} 1 & \text{if } \mathbf{x} \in R_k, \\ 0 & \text{otherwise} \end{cases}$$

and the regions $R_k \in \mathbb{R}^p$ are defined by recursive partitioning.

Decision Trees

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstra

Trees

Rand

ь ..

⊏nc

References

$$\mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) = \sum_{k=1}^{K} p_k \ [\mathbf{x} \in R_k]$$

where the Iverson bracket expression

$$[\mathbf{x} \in R_k] = \begin{cases} 1 & \text{if } \mathbf{x} \in R_k, \\ 0 & \text{otherwise} \end{cases}$$

and the regions $R_k \in \mathbb{R}^p$ are defined by recursive partitioning.

Fitting a Decision Tree

Machine Learning Methods for Gene Expression Data

Day 4

SVM

Bootstra

Trees

Rando Forests

Boostir

Enc

Referenc

Recursive partitioning generally selects both the variable X_g to split on and the value t at which to split that variable by minimizing an impurity measure Q such as

$$\begin{split} Q_{\text{misclassification}} &= \min(p_{<}, 1 - p_{<}) \\ &+ \min(p_{>}, 1 - p_{>}) \\ Q_{\text{gini}} &= p_{<}(1 - p_{<}) \\ &+ 2p_{>}(1 - p_{>}) \\ Q_{\text{deviance}} &= -p_{<} \log p_{<} - (1 - p_{<}) \log(1 - p_{<}) \\ &- p_{>} \log p_{>} - (1 - p_{>}) \log(1 - p_{>}) \end{split}$$

where

$$p_{<} = \frac{|\{i \mid y_{i} = 1, x_{ig} < t\}|}{|\{i \mid x_{ig} < t\}|}$$
$$p_{>} = \frac{|\{i \mid y_{i} = 1, x_{ig} \ge t\}|}{|\{i \mid x_{ig} \ge t\}|}$$

Day 4

SVM

Bootstra_l

Tree

Random Forests

Boostin

End

Reference

A random forest is constructed by:

Repeat for $b \in \{1, \dots, B\}$:

- 1. Generate $\underline{\mathbf{X}}_b$ by drawing n random integers $R_b = \{r_{bi} \in \{1, \dots, n\}\}$ with replacement and setting $X_{bgi} = X_{gr_{bi}}$.
- 2. Recursively partition $\underline{\mathbf{X}}_b$ with the modification that for each partitioning step, m < p of the features are randomly selected from a uniform distribution and the best split is selected from only this set of variables.
 - m random features redrawn for each new split.
 - Commonly $m \approx \sqrt{p}$.

Boosting

End

References

An alternative approach to model aggregation is boosting; one variant (Discrete AdaBoost, Friedman *et al.* (2000)) consists of:

- 1. Observation weights w_{1i} ($i \in \{1, ..., n\}$) are initialized: $w_{1i} = \frac{1}{n}$.
- 2. For each $b \in \{1, ..., B\}$, fit M to $(\underline{X}, y, \underline{w})$ and set

$$\begin{aligned} \operatorname{err}_{b} &= \frac{1}{\sum_{i} w_{bi}} \sum_{i} w_{bi} \left[y_{i} \neq f_{M,\theta_{b}}(\mathbf{x}_{i}) \right] \\ \alpha_{b} &= \log \left(\frac{1 - \operatorname{err}_{b}}{\operatorname{err}_{b}} \right) \\ w_{(b+1)i} &= w_{bi} \exp \left(\alpha_{b} \left[y_{i} \neq f_{M,\theta_{b}}(\mathbf{x}_{i}) \right] \right) \end{aligned}$$

3. Define
$$f_{M,\{\theta_b\}} = \operatorname{sign}\left(\sum_b \alpha_b f_{M,\theta_b}\right)$$
.

Boosting

Machine Learning Methods for Gene Expression Data

Day 4

SVM

ootstra

Tree

Rando Forests

Boosting

Enc

Reference

An alternative approach to model aggregation is boosting; one variant (Discrete AdaBoost, Friedman *et al.* (2000)) consists of:

- 1. Observation weights w_{1i} $(i \in \{1, ..., n\})$ are initialized: $w_{1i} = \frac{1}{n}$.
- 2. For each $b \in \{1, \dots, B\}$, fit M to $(\mathbf{X}, y, \underline{w})$ and set

$$\begin{aligned} \operatorname{err}_{b} &= \frac{1}{\sum_{i} w_{bi}} \sum_{i} w_{bi} \left[y_{i} \neq f_{M,\theta_{b}}(\mathbf{x}_{i}) \right] \\ \alpha_{b} &= \log \left(\frac{1 - \operatorname{err}_{b}}{\operatorname{err}_{b}} \right) \\ w_{(b+1)i} &= w_{bi} \exp \left(\alpha_{b} \left[y_{i} \neq f_{M,\theta_{b}}(\mathbf{x}_{i}) \right] \right) \end{aligned}$$

- 3. Define $f_{M,\{\theta_b\}} = \operatorname{sign}\left(\sum_{b} \alpha_b f_{M,\theta_b}\right)$.
- ▶ Requires *M* to be able to fit weighted data set.

Boosting

Machine Learning Methods for Gene Expression Data

Day 4

J V IVI

Bootstra

I ree

Rando

Boosting

End

Referen

Training of b^{th} tree fit focused on those samples misclassified by first b-1 trees.

Individual trees cast votes weighted by α_b to determine outcome of final classifier.

Friedman *et al.* (2000) showed that from a statistical point of view boosting can be seen as a form of additive modeling with similarities to logistic regression.

Key concept which emerges across many variations of boosting is the importance of **slow learning**.

- often use very shallow trees (e.g., stumps)
- may be further facilitated by shrinkage and randomization

Cross-Validation Flow

Machine Learning Methods for Gene Expression Data

Day 4

SV/M

Bootstra

Tree

Rando

Boostir

End

References

References I

Machine Learning Methods for Gene Expression Data

Day 4

3 V IVI

Bootstra

_ .

Forests

DOOSLIN

End

References

Breiman, Leo. 1996. Bagging predictors. $Machine\ Learning,\ {\bf 24}(2),\ 123-140.$

Efron, Bradley, & Tibshirani, Robert. 1997. Improvements on cross-validation: the 632+ bootstrap method. Journal of the American Statistical Association, 92(438), 548-560.

Friedman, Jerome, Hastie, Trevor, Tibshirani, Robert, et al. . 2000. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28(2), 337–407.

Hastie, Trevor, Tibshirani, Robert, & Friedman, Jerome. 2009. The Elements of Statistical Learning. Springer.