## Real Estate Investment Using ARIMA Modeling

David Richter, Flatiron School, July 5, 2022

#### **Business Problem and Data**

- Our business objective is to develop a method for determining the most profitable zip codes for real estate investment.
- To measure profitability, I'll use year over year Return on Investment, measured as:
  - (Current Median Home Value Median Home Value 1 ya)/(Median Home Value 1 ya)
- The data for these calculations comes from Zillow's database of median home values for US zip codes between 1996 and 2018.

## Methodology

- Predictions will be made using ARIMA modeling
- ARIMA modeling is a form of regression in which values in a time series are regressed against past values, differences, or noise of that same time series.
- ARIMA isn't for modeling long term shifts in the real estate market, but for modeling shorter term patterns.
- This means that to the extent possible I tried to eliminate the effects of long-term trends or exogenous factors from my data.

## Detrending the Data: Subtracting US ROI

- The main trend I wanted to eliminate from my data was the overall trend of the US housing market, since this is not something that ARIMA modeling can predict.
- This means that for a given month ROI values are calculated as:
  - Zip code ROI US ROI

# Detrending the Data: Limiting Our Training Set to Post-2010

- This sample second differencing from one zip code in the data set shows the much greater volatility of ROI values after 2010.
- This indicates that we want to train our ARIMA model on the post-2010 period, since we don't want to incorporate patterns from an earlier period into our model.



## **Selecting 20 Zip Codes for Modeling**

Since the dataset contains over 10,000 zip codes, I began by looking at the top five zip codes according to four metrics:

- High average value over the past 12 months
- Highest average ROI over the past 12 months
- High average first difference (ROI increase)
- High average second difference (ROI acceleration)

## Selecting a Universal Model

- Based on these twenty zip codes I tested 216 ARIMA models based on different combinations of features
- I trained each model on the 2010-2017 period for each zip code and calculated standard error based on predicted and true values for the 2017-2018 period.
- I then calculated the average standard error for each model across all zip codes.

#### **Model Features**

- The best performing model had non seasonal features (1, 1, 2) and 1 year seasonal features (1, 0, 1)
- This means that the model regresses on five features:
  - The most recent difference (change) in ROI
  - The two most recent differences (changes) in the model's noise
  - The previous year's ROI value
  - The previous year's noise
- This model had a standard error of 0.11, which is significant, since US ROI was 0.064 from 2018-2019

# Using the Universal Model for Zipcode Selection

- I trained the universal ARIMA model on data from 2010-2018 from all zip codes and made forecasts for each zip code through April 2019.
- I then selected the top 5 zip codes by highest lower confidence interval (alpha=0.05) for April 2019 as the top zip codes for investment.

## Forecasts for the Top Five Zip Codes



## Forecasted ROIs for TOP 5 Zip Codes

| E-   | zipcode | predicted mean | lower interval |
|------|---------|----------------|----------------|
| 6715 | 70121   | 0.333956       | 0.152095       |
| 8816 | 72837   | 0.273015       | 0.112034       |
| 6514 | 29601   | 0.252431       | 0.103501       |
| 3936 | 34691   | 0.256219       | 0.080849       |
| 9190 | 46996   | 0.188035       | 0.065623       |

### **Forecasting Prices**

Based on the price information, our model's ROI forecasts, and US ROI (0.064% from 2Q 2018- 2Q 2019), we get the following forecasted median home prices for each of our five zip codes. In all cases this is below the US median of 358K for 2019.

|            | City       | State | Median Price 2018-04 | Forecast 2019-04 | Lower Interval 2019-04 |
|------------|------------|-------|----------------------|------------------|------------------------|
| RegionName |            |       |                      |                  |                        |
| 29601      | Greenville | SC    | 261900               | 344773.0         | 305769.0               |
| 34691      | Holiday    | FL    | 104800               | 138359.0         | 119980.0               |
| 46996      | Winamac    | IN    | 90800                | 113685.0         | 102570.0               |
| 70121      | Jefferson  | LA    | 171100               | 239190.0         | 208074.0               |
| 72837      | Dover      | AR    | 112000               | 149746.0         | 131716.0               |
| 70121      | Jefferson  | LA    | 171100               | 239190.0         | 208074.0               |

Madian Drice 2019 04 Foregood 2010 04 Lawer Interval 2010 04

#### A Better Universal Model?

- The features for our ARIMA model were selected based on the model's performance for a specific set of zip codes-chosen for high earning potential.
- If we want a single model that applies to all zip codes, we might want to perform feature selection based on a randomly chosen group of zip codes.

## **Modeling by Category?**

Another possible strategy is seeing if different models are optimal for different categories of zip code. Three intuitive ways of categorizing zip codes are:

- By Value high value vs. low value
- By ROI variance high variance zip codes vs. low variance zip codes
- By covariance of a zip code ROI and US ROI high positive covariance vs. high negative covariance vs. low absolute covariance.

Thank you for viewing my presentation.

You can email any questions to d.richte@gmail.com.

And you can view the github for this project at <a href="https://github.com/DavidKRichter/dsc-real-estate-investment">https://github.com/DavidKRichter/dsc-real-estate-investment</a>.