期中考试答案及评分标准

课程名称 数学建模 (开卷) 适用班级(或年级、专业) 3院20级智科

考试时间 90 分钟 班级 学号 姓名 四 号 五. 成绩 满 分 20 10 30 20 20 得 分 评卷人

(所有答案请写在题目后, 若空白处不够可自己加页)

一、简答题(共20分)

1. (8分) 简述数据拟合的线性最小二乘法。

答: 曲线拟合问题是指: 已知平面上 n 个点 (x_i,y_i) , 寻求函数 f(x), 使 f(x)在某种准则下与所有数据点最为接近,即曲线拟合最好。(2 分)

线性最小二乘法是解决曲线拟合最常用的方法, 其基本思路是, 令

$$f(x)=a_1r_1(x)+a_2r_2(x)+...+a_mr_m(x)$$
 (3 $\%$)

其中 $r_k(x)$ 是事先选定的一组函数, a_k 是待定系数。寻求 $a_1,a_2,...,a_m$ 使这 n 个点(x_i,y_i)与曲线 y=f(x) 的距离 δ_i 的平方和最小 即使 $J(a_1,...,a_m) = \sum_{i=1}^n [f(x_i) - y_i]^2$ 最小,此准则称为最小二乘准则。这种拟合方法称为最小二乘拟合。(**3 分**)

2. (5 分) 写出差分方程 $a_n=a_{n-1}+2a_{n-2}$ 的通解。

解:

该差分方程的特征方程为:

$$x^2-x-2=0$$
 (2 $\frac{4}{2}$)

特征根为: $x_1=2, x_2=-1$,为互异根,所以通解为: (1分)

$$a_n = C_1 2^n + C_2 (-1)^n$$
 (2 $\%$)

3. (7分) 写出下图的一个最大匹配,一个最小覆盖。

答: 最大匹配有{(a,u),(c,v),(d,w)} (答案不唯一)。 最小覆盖有{u, v, w}。

- 二、MATLAB 编程(写出求解问题的 MATLAB 代码, 共 10 分)
- 1. (5分) 绘制函数 $Z=(3X-2Y)^2$ 的网格图, 其中 $X \in [-3,3], Y \in [1,5]$ 。

答:

x=-3:0.1:3;y=1:0.1:5;[X,Y]=meshgrid(x,y); $Z=(3*X+2*Y).^2;$ mesh(X,Y,Z)(每行1分)

2. (5分) 求以下微分方程组的通解。

$$\begin{cases} \frac{dx}{dt} = 4x - 3y + 6z \\ \frac{dy}{dt} = 5x - 7y + 6z \\ \frac{dz}{dt} = 3x - 4y + 5z \end{cases}$$

解:输入代码

[x,y,z]=dsolve('Dx=4*x-3*y+6*z','Dy=5*x-7*y+6*z','Dz=3*x-4*y+5*z','t')

(5分, 若基本思路正确, 可以酌情给分)

三、模型表示 (共30分)

1. (16 分) 甲、乙、丙三个城市每年需要煤炭分别为: 320 万吨、250 万吨、350 万吨,由 A、B 两处煤矿负责供应。已知煤炭年供应量分别为: A—400 万吨, B—450 万吨。由煤矿 至各城市的单位运价(万元/万吨)如下表。由于需求大于供应,经研究平衡决定,甲城市 供应量可减少0~30万吨,乙城市需要量应全部满足,丙城市供应量不少于270万吨。试求 将供应量分配完又使总运费为最低的调运方案。

表: 供应点到各城市的单位运价

	甲	Z	丙
A	15	18	22
В	21	25	16

解:设 XA1, XA2, XA3 表示由煤矿 A 运送到甲、乙、丙城市的煤炭数量, XB1, XB2, XB3 表示 由煤矿 B 运送到甲、乙、丙城市的煤炭数量。 (2分) 建立规划模型:

Min f = 15*XA1+18*XA2+22*XA3+21*XB1+25*XB2+16*XB3 (2分) XA1+XA2+XA3=400; XB1+XB2+XB3=450; XA1+XB1≥290; XA1+XB1≤320;

XA2+XB2=250;

XA3+XB3≥270;

XA3+XB3≤350;

XA1≥0, XA2≥0, XA3≥0, XB1≥0, XB2≥0, XB3≥0 (每个约束1.5分,共12分)

2. (14 分)有一份中文说明书,需译成英、目、德、俄四种文字,分别记为工作 Y1,Y2,Y3,Y4。 现有 X1,X2,X3,X4 四人,已知第 i 个人将此中文说明书翻译成第 j 种文字所需时间为 Wij,如下表所示。问如何分配工作,使每人各完成一项任务,且所需总时间最少。要求用图论方 法描述该问题并给出答案。

表:每人完成工作所需时间

•	• / // -// //			
Wij	Y1	Y2	Y3	Y4
X1	3	12	30	24
X2	25	20	17	2
X3	50	32	4	30
X4	48	3	20	10

解:构建图模型G如下,其中V={ X1,X2,X3,X4,Y1,Y2,Y3,Y4},人和工作都用结点表示,边(Xi,Yj)上的权值表示表示第i个人做i项工作所需时间Wii。 (3分)

原问题转化为求图中的最小权和的匹配。 (3分)

从图中可找到最佳匹配{(X1,Y1), (X2,Y4), (X3,Y3), (X4,Y2)},按此匹配分配工作,则所需时间最少,共12。 (4分)

四、(20分)现有如下关于函数 y=f(x)的 7个观测点数据。

- (1) 用抛物线插值公式计算 f(6)的近似值。
- (2)若已知 $y=\ln(a^*x^2+b^*x+c)$,请用 lsqnonlin 指令进行数据拟合(要求给出相应的 matlab 代码)以确定系数 a、b 和 c 的最佳取值。

X	1	2	4	5	7	9	10
у	1.8	2.4	2.9	3.3	3.6	3.9	4.2

解: (1) 选择与 x=6 最接近的三点 $x_0=4$, $x_1=5$, $x_2=7$ 为插值结点,根据抛物线插值公式计算:

(2分)

$$f(6) \approx L_2(6) = y_0 \times \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \times \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + y_2 \times \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

$$= 2.9 \times \frac{(6-5)(6-7)}{(4-5)(4-7)} + 3.3 \times \frac{(6-4)(6-7)}{(5-4)(5-7)} + 3.6 \times \frac{(6-4)(6-5)}{(7-4)(7-5)}$$

$$= 3.5 \quad (2 \%)$$

(2)

用 1sqnonlin 指令

[1] 编写 M 文件 curve1.m (1分) function f=curve1(x) [2] 主程序 dianya1.m 如下:

x0=[1, 2, 3]; (1分)

(注意,这里的 x0 是用户猜测的各参数初始值,取什么值无所谓)

xishu=lsqnonlin('curve1',x0) (2分)

五、(20分)某厂生产一种产品,现有库存 5 吨,该产品在未来 3 个月的合同订购量分别为 40 吨、60 吨、35 吨。三个月的生产费用及最大生产能力如下表所示。若当月末交货后有剩余,可用于下月交货,但需支付存储费,每吨每个月的库存费为 2 万元。且该厂希望在第三月末交货后还能有产品储备 6 吨。问工厂应如何安排这三个月的生产计划,才能既满足合同需求又使总费用最低?要求先给出其数学模型描述,然后写出求解该问题的 matlab 代码。

	月份	最大生产能力(吨)	生产费用(万元,其中 x 为当月产量)
	1	60	$0.2x^2 + 10x + 6$
Ī	2	50	12x+3
Ī	3	40	(10000/x) +10

解:确定决策变量:设x1, x2, x3分别表示第1,2,3月份的产量

目标是总费用f最低,总费用包括生成费用和库存费用:

 $f=0.2*x1^2+10*x1+6+12*x2+3+(10000/x3)+10+2*5+2*(5+x1-40)+2*(5+x1+x2-100)$

(3分)

(2分)

约束条件:

所有决策变量非负: xi≥0; (1分)

每月生成能力限制: x1≤60, x3≤40, (3分)

每月需完成合同订货量: 5+x1≥40, 5+x1+x2≥100, 5+x1+x2+x3=135+6, (3分)

得非线性规划模型:

min $f=0.2*x1^2+14*x1+14*x2+(10000/x3)-231$

s. t. $x1 \le 60$;

 $x2 \le 50;$

 $x3 \le 40;$

 $x1 \ge 35$;

 $x1+x2 \ge 95$;

x1+x2+x3=136;

 $x1\ge0$, $x2\ge0$, $x3\ge0$

matlab求解代码:

(1)先建立 M 文件 fun.m 定义目标函数: (这里 x(1)至 x(3)对应上面的 x1 至 x3) function f=fun(x)