

MAE 5803 NONLINEAR CONTROL SYSTEMS

Phase Plane Analysis

Yongki Go

Mechanical & Aerospace Engineering

About Phase Plane Analysis

- Phase plane analysis: graphical method for studying second-order systems
 - Basic idea: generation of motion trajectories to various initial conditions and plot them in state space
 - Useful for visualization of dynamics
 - Reveals stability and motion patterns
- Phase plane analysis is applicable to both linear and nonlinear systems

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2)$ or $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

State space: space spanned by x_1 and x_2

→ also called phase plane

 Graphical visualization is limited to second-order systems, although concept can be extended to higher-order systems

Phase Portraits

- Phase-plane trajectory: geometrical plot of the solution $\mathbf{x}(t)$
- Singular points: equilibrium points in phase plane

$$f_1(x_1, x_2) = 0$$
 $f_2(x_1, x_2) = 0$

Phase portrait: family of phase-plane trajectories

Solution: $x(t) = x_0 \cos t$ \Rightarrow $\dot{x}(t) = -x_0 \sin t$

Eliminating $t: x^2 + \dot{x}^2 = x_0^2$ \Longrightarrow circle in phase plane

Phase portrait:

Phase Plane Analysis of Linear Systems

General form of linear second-order system:

$$\dot{x}_1 = ax_1 + bx_2$$
 or $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ with $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

- Only one singular point: origin
- \implies Eigenvalues/characteristic roots: λ_1 and λ_2

From linear system theory: system is stable if $Re(\lambda_1)$ and $Re(\lambda_2)$ are both negative

Phase-plane analysis can reveal dynamic characteristics of the system

Phase Portraits of Linear Systems

Phase Plane Analysis of Nonlinear Systems

- Nonlinear system can display much more complicated phase portraits
 - □ There can be multiple singular points and limit cycles

Example: Phase portrait of $\ddot{x} + 0.6\dot{x} + 3x + x^2 = 0$

Local Behavior or Nonlinear Systems

Linearization about a singular point:

$$\dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_2(x_1, x_2)$$

$$\dot{x}_1 = f_1(x_1, x_2)
\dot{x}_2 = f_2(x_1, x_2)
\dot{x}_2 = cx_1 + dx_2 + g_1(x_1, x_2)
\dot{x}_2 = cx_1 + dx_2 + g_2(x_1, x_2)$$

higher order terms, can be $\dot{x}_1 = ax_1 + bx_2$ neglected near a singular point $\dot{x}_2 = cx_1 + dx_2$

$$\dot{x}_1 = ax$$

$$\dot{x}_2 = cx$$

Local behavior can be approximated by the linearized system's behavior

Limit Cycles

- *Limit cycle*: isolated closed curve in the phase plane
 - → *closed curve* indicates periodic motion
 - isolated indicates limiting nature of the motion (trajectories in the vicinity of the limit cycle converge or diverge from it)
- Three kinds of limit cycles:

Example: Van der Pol Equation

Van der Pol equation: $\ddot{x} + \mu(x^2 - 1)\dot{x} + x = 0$

Limit Cycle Theorem

- Poincare-Bendixson theorem: If a trajectory of a secondorder autonomous system remains in a finite region Ω , then one of the following is true:
 - □ the trajectory goes to an equilibrium point
 - □ the trajectory tends to a stable limit cycle
 - □ the trajectory itself is a limit cycle

If $\mathbf{x}(t) \subset \mathbf{\Omega}$ for $t > t_0$:

- $\mathbf{x}(t) \to O$ as $t \to \infty$, or
- $\mathbf{x}(t) \rightarrow C$ (stable limit cycle)

