科学的故障管理

-鼓励改进,还是处罚错误?

赵成@蘑菇街

关于我

- 11年工作经历, 电信及互联网软件研发&运维
 - 2008.5-2015.1,华为
 - 2015.1-至今, 蘑菇街
- 擅长领域:运维、SRE、DevOps、云计算、技术管理
- 个人荣誉:
 - SRECon19 Asia/Pacific Speaker
 - 腾讯云TVP,最具价值专家
 - 专栏作家,《进化:运维技术变革与实践探索》作者
- 当前,专注于云计算、SRE和技术运营方向

目录

故障管理实践-定级、定性、定责

故障管理与SLO

为什么要"科学"的故障管理?

Blameless Culture

Gitlab全球直播故障恢复

如何科学地管理故障?

—故障定级、定性、定责

纠结的问题

- •问题到底严不严重?有多严重?
- •责任谁来承担? 锅谁来背?
- •造成恶劣影响,应该怎么处罚?

故障定级-影响程度(P0-P4)

- •影响范围
 - 用户影响,持续时长,如注册、登录、IM通信
- •影响收入
 - 收入降低, GMV、支付金额
- 造成资损
 - 向商家、CP、SP赔偿损失
- •造成PR事件
 - 公司口碑、声誉受损

故障定级/升级示例

产品线	功能大类	问题描述	影响面/定级	P4	Р3	P2	P1
交易	交易主流程 (按订单量下降算)	造成下单量下跌的按此计算(ipad版本不适用此升级时间)	30-100%				P1
			10-30%			P2	0.5H
			0-10%		P3	1H	2H
	交易核心功能	购物车;加入购物车、购物车列表、去结算功能不可用 下单:确定下单不可用,下单主流程无法进行;地址信息出不来;运费计算错误; 支付:去支付不可用,支付回调不可用	60-100%				Pl
			10-60%			P2	1H
			0-10%		P3	2H	4H
	次核心功能	购物车: 修改, 凑单 订单操作: 发货、确认收货、结算给商家、发起退货退款, 退货退款列表, 卖家同意/拒 绝, 买家发货, 卖家确认收货	60-100%			P2	2H
			10-60%		P3	4H	8H
		订单操作: 取消订单、删除订单、发起维权、修改订单(地址、价格等)	0-10%	P4	4H	8H	
	非核心功能	购物车: 计数 订单列表: 计数, 退货退款, 订单搜索不到。	60-100%		Р3	4H	
			10-60%	P4	4H		
			0-10%	P4	8H		

故障定性-有效分类

- 代码质量
- •测试质量
- •流程规范
- 硬件设备
- 变更执行
- •第三方
- •产品逻辑
- 预案演练

故障定责-判定原则

- 高压线原则
- •上下游原则
- •健壮性原则
- •分段判定原则
- Case By Case原则(自由裁量)

谁来主持公道?

科学管理-"法官"判定

中立

权威

规则制定

自由裁量

普法宣传

主持公道

定级

定性

定责

要不要"处罚"?

定责≠处罚≠钱

要不要处罚?

- •慎用处罚,负作用大
- •要有标准,有理有据
- 高压线、重复错误、低级失误,要罚
- •长周期,全局审视
- 管理者要承担更大责任

故障管理与SLO

如何度量—SLO稳定性度量体系

SLO 服务等级目标 SLIs SLA 服务等级指标 服务等级协议 SLI SLI

SLI

•度量内容:

能够衡量服务质量的指标,如可用性,RT

• 度量范围:

指标合理范围,如RT<200ms,http返回码为非5xx

SĽO

- •全站访问请求RT<500ms的比例不低于95%
- 全站访问请求非5xx比例>99.95%

SLA

- 涉及双方商务合约,违反将触发处罚条款
- SLA = SLO + 后果

SLIs and SLOs

Category	SLI	SLO
API		(c
Availability	The proportion of successful requests, as measured from the load balancer metrics. Any HTTP status other than 500—599 is considered successful. count of "api" http_requests which do not have a SXX status code divided by count of all "api" http_requests	97% success
Latency	The proportion of sufficiently fast requests, as measured from the load balancer metrics. "Sufficiently fast" is defined as < 400 ms, or < 850 ms. count of "api" http_requests with a duration less than or equal to "0.4" seconds divided by count of all "api" http_requests count of "api" http_requests with a duration less than or equal to "0.85" seconds divided by count of all "api" http_requests	90% of requests < 400 ms 99% of requests < 850 ms

SLI选择依据—VALET法则

- Volume-容量
 - ▶服务承诺的最大容量是多少?(QPS、流量、连接数、吞吐等)
- Availablity-可用性
 - 服务是否正常?(2xx的返回码的请求比例)
- Latency-时延
 - 响应是否足够快?(rt是否在规定范围内?任务执行时长是否合理?)
- Errors-错误
 - 错误率有多少?(5xx占比)
- Tickets-人工介入
 - 是否需要人工介入?(任务重跑?数据修复)

2018-11-22 17:54:47 ~2018-11-29 17:54:47

Api.UnifiedCreateService

Api.UnifiedCreateService

	VOLUME		AVAILABILITY	LATENCY		ERRORS
	Request Per Minute	Peak TPS	Overall Availability	90th Percentile(ms)	95th Percentile(ms)	Error(%)
SLOs	3000	100	99.96%	50.00	80.00	1.00
2018-11-28	1369	40	98.01%	30.21	48.35	0.07
2018-11-27	926	55	99.99%	32.27	44.41	0.02
2018-11-27	936	51	99.10%	54.24	73.89	0.12
2018-11-28	1130	36	99.98%	35.54	49.2	0.03
2018-11-28	1213	44	97.12%	61.21	81.48	2.87

CDN SLO制定

日常情况:96.97%~99.67%

日常情况:

90% 请求RT: <150ms

95% 请求RT: < 160ms

日常情况:

命中率: 76.78% ~ 94.99%

9x%占比:68% 8x%占比:30% <80%占比:2%

综上所述,不可用时长 = (可用性<98% || 90% Rt>200ms || 命中率<80%) && 持续2min

在一月内,开始计算月度稳定性可用率时长,全月多次触发以上条件会累加计算。 即:*月度可用率 = (总时长-不可用时长)/总时长*

SLO体系延伸

- Error Buget-错误预算
- Policy-预算策略
- •宽松和收紧SLO
- •基于SLO的告警

故障复盘—黄金三问

- •故障根因,究竟是什么?
- •我们应该怎么做,才能更快地恢复业务?
- •我们应该怎么做,才能避免再次出现类似问题?
- ·One more thing,我们还可以做些什么?

如何辩证的对待故障?

- •理解一个系统应该如何工作并不能使人成为专家,只能靠调查系统为何不能正常工作才行
- 系统故障是常态,系统正常是特例
- •故障永远是表象,背后技术和管理问题才是本质
- 从技术角度考虑解决方案,尽量避免流程和制度约束
- •管理者应该多反思

实践中,故障是暴露问题最充分的渠道

鼓励改进,而不是处罚错误。

Thanks

继续交流