Теория моделей *

Александр Лузгарев

29 декабря 2013 г.

Содержание

	0.1 Логик	а первого порядка	2
	0.1.1	Языки и структуры	2
	0.1.2	Формулы	2
	0.1.3	Модели и теории	4
1	Основы теор	ии моделей	5
	1.1 Teopen	ма компактности	5
	1.1.1	Теорема Геделя о полноте	5
	1.1.2	Теорема компактности	6
	1.1.3	Следствия из теоремы компактности	6
	1.1.4	Топологическая интерпретация	6
	1.1.5	Ультрафильтры и ультрапроизведения	7
	1.1.6	Доказательство теоремы компактности	8
	1.1.7	Теорема Левенгейма-Скулема	9
	1.2 Полны	те теории	9
	1.2.1	Полнота и категоричность	9
	1.2.2	Бесконечно делимые абелевы группы без кручения	10
	1.2.3	Алгебраически замкнутые поля	10
	1.2.4	Тест Вота	11
	1.2.5	Приложение: теорема Акса-Гротендика	12
	1.3 Исклю	рчение кванторов	12
	1.3.1	Определимые множества	12
	1.3.2	Определимость и вычислимость	13
	1.3.3	Определимость: контрпример	14
	1.3.4	Исключение кванторов	15
	1.3.5	Вложения	15
	1.3.6	Диаграммы	16
	1.3.7	Сведение к случаю одного квантора	16
	1.3.8	Критерий исключения кванторов	17
	1.3.9	Алгебраически замкнутые поля	18
	1.3.10	Приложение: теорема Шевалле	19
	1.3.11	Приложение: Nullstellensatz	20
	1.3.12	Р. Определимость структур	21

 $^{^{*}}$ Конспект лекций спецкурса осени 2013 г.; предварительная версия.

	1.3.13	Приложение: теорема Мальцева	21
1.4	Типы		22
	1.4.1	Определения	22
	1.4.2	Нестандартный анализ	23
	1.4.3	Элементарные цепочки моделей	24
	1.4.4	Типы и автоморфизмы	25
	1.4.5	Пространство Стоуна	27

0.1 Логика первого порядка

0.1.1 Языки и структуры

Алгебра изучает множества, на которых заданы *алгебраические структуры*. Все [разумные] алгебраические структуры могут быть описаны путем задания некоторых функций (нескольких переменных) и отношений (произвольной арности) на этих множествах, а также выделения некоторых элементов. Например, группой можно считать множество с одной бинарной операцией и одним выделенным элементом — нейтральным, которые удовлетворяют неким аксиомам.

Языком называется набор из трех множеств $(\mathcal{F}, \mathcal{R}, \mathcal{C})$ вместе с заданием положительных натуральных чисел n_f для каждого элемента $f \in \mathcal{F}$ и n_r для каждого элемента $r \in \mathcal{R}$.

Элементы $\mathcal F$ являются символами функций; функция $f\in\mathcal F$ будет иметь n_f аргументов. Элементы $\mathcal R$ являются символами отношений; отношение $r\in\mathcal R$ будет иметь арность n_r . Наконец, элементы $\mathcal C$ являются символами констант. Для языка $L=(\mathcal F,\mathcal R,\mathcal C)$ конкретная реализация элементов $\mathcal F$, $\mathcal R$, $\mathcal C$ как функций, отношений, констант на некотором множестве называется L-структурой.

Пусть $L=(\mathfrak{F},\mathfrak{R},\mathfrak{C})$ — язык. Структурой в языке L, или L-структурой называется множество M с дополнительным заданием

- отображения $f^M \colon M^{\mathfrak{n}_f} \to M$ для каждого символа $f \in \mathfrak{F}$;
- ullet отношения $r^M \subseteq M^{n_r}$ для каждого символа $r \in \mathcal{R}$;
- ullet константы $c^M \in M$ для каждого символа $c \in \mathcal{C}$.

Отображения f^M , отношения r^M , константы c^M называются интерпретациями символов f, r, c в структуре M.

Таким образом, язык групп может быть описан как набор из одного символа функции \cdot от двух аргументов (то есть, n=2) и одной константы e. Мы будем записывать это неформальным образом: $L=(\cdot,e)$. Обратите внимание, что в определении языка каждое из множеств $\mathcal{F}, \mathcal{R}, \mathcal{C}$ может быть пустым.

Конечно, не любая структура в языке групп является группой: например, множество натуральных чисел является структурой в языке групп, если мы интерпретируем символ \cdot как сложение, а символ ϵ как натуральное число 0. Для того, чтобы выделить класс групп, необходимо потребовать выполнения известных аксиом, а пока что у нас даже нет способа записывать эти аксиомы.

0.1.2 Формулы

Пусть $L = (\mathcal{F}, \mathcal{R}, \mathcal{C})$ — язык. Наша ближайшая цель — научиться записывать формулы в языке L. Формулой будет конечная строка, составленная с помощью следующих символов:

• символы *F*, *R*, *C* языка L;

- символы переменных $v_1, v_2, ...;$
- символ равенства «=»;
- символы логических операций «¬», «/» и «/»;
- символы кванторов «∀» и «∃»;
- вспомогательные символы «(», «)» и «,».

Для того, чтобы определить, какие строки, составленные из этих символов, являются формулами, нам понадобятся вспомогательные понятия *терма* и *атомарной формулы*. Приведем индуктивное определение терма:

Иными словами, строка является термом, если она состоит из символа константы из ${\mathfrak C}$ или символа переменной или из символа некоторой функции $f\in {\mathfrak F}$, за которым идет открывающая скобка, затем через запятую идет ${\mathfrak n}_f$ термов и закрывающая скобка.

Пусть t — терм, в который входят некоторые переменные, причем все они содержатся в наборе $\overline{v}=(v_{i_1},\ldots,v_{i_m})$. Для любой L-структуры M мы можем определить отображение $t^M\colon M^m\to M$, которое просто подставляет набор элементов $\overline{a}=(a_{i_1},\ldots,a_{i_m})$ вместо переменных v_{i_1},\ldots,v_{i_m} в терм t. Более строго, определим значение отображение t^M на наборе $\overline{a}\in M^m$ следующим образом:

- ullet если t имеет вид c для константы $c\in \mathcal{C}$, положим $t^M(\overline{a})=c^M;$
- ullet если t имеет вид $u_{i_{
 u}}$, положим $t^{M}(\overline{\mathfrak{a}})=a_{i_{
 u}}$;
- если t имеет вид $f(t_1,\ldots,t_{n_f})$ для функции $f\in \mathcal{F}$ и термов $t_1,\ldots,t_{n_f},$ положим $t^M(\overline{a})=f^M(t_1^M(\overline{a}),\ldots,t_{n_f}^M(\overline{a})).$

Теперь мы можем определить атомарную формулу:

Наконец, вот определение формулы:

Переменная v_i называется **связанной** в формуле ϕ , если она входит в ϕ под знаком квантора $\forall v_i$ или $\exists v_i$. Мы будем считать, что каждая переменная входит в формулу ϕ либо свободным образом, либо связанным. В частности, переименовав связанные переменные, можно исключить ситуации, в которых некоторые вхождения v_i связаны, а некоторые

свободны: например, вместо формулы $v_2 = v_1 \land \exists v_1 c = v_1$ всегда можно рассмотреть эквивалентную ей формулу $v_2 = v_1 \land \exists v_3 c = v_3$.

Если ϕ — некоторая формула, все свободные переменные которой содержатся в наборе $\nu_{i_1},\dots,\nu_{i_m},\, M$ — L-структура, а $\overline{\alpha}=(\alpha_{i_1},\dots,\alpha_{i_m})\in M^m$, то мы можем подставить набор $\overline{\alpha}$ в формулу ϕ и получить булево значение «истина» или «ложь»: формула ϕ после такой подстановки либо истинна либо ложна.

Более формально:

- если ϕ атомарная формула вида $t_1=t_2$, где t_1,t_2 термы, то мы говорим, что $\phi(\overline{a})$ истинна, если и только если $t_1^M(\overline{a})$ равно $t_2^M(\overline{a})$;
- если ϕ атомарная формула вида $r(t_1,\dots,t_{n_r})$, где t_1,\dots,t_{n_r} термы, а $r\in \mathcal{R}$, то мы говорим, что $\phi(\overline{a})$ истинна, если и только если набор $(t_1^M(\overline{a}),\dots,t_{n_r}^M(\overline{a}))\in M^{n_r}$ содержится в множестве $r^M\subseteq M^{n_r}$;
- если ϕ формула вида $\neg \psi$, где ψ формула, то мы говорим, что $\phi(\overline{a})$ истинна, если и только если $\psi(\overline{a})$ ложна;
- если ϕ формула вида $\psi_1 \wedge \psi_2$, где ψ_1, ψ_2 формулы, то мы говорим, что $\phi(\overline{a})$ истинна, если и только если обе формулы $\psi_1(\overline{a})$ и $\psi_2(\overline{a})$ истинны;
- если ϕ формула вида $\psi_1 \vee \psi_2$, где ψ_1, ψ_2 формулы, то мы говорим, что $\phi(\overline{a})$ ложна, если и только если обе формулы $\psi_1(\overline{a})$ и $\psi_2(\overline{a})$ ложны;
- если ϕ формула вида $\forall \nu_{i_j}$ ψ , где ψ формула, то мы говорим, что $\phi(\overline{a}, a_{i_j})$ истинна, если и только если формула $\psi(\overline{a}, b)$ истинна для каждого $b \in M$.
- если ϕ формула вида $\exists \nu_{i_j} \ \psi$, где ψ формула, то мы говорим, что $\phi(\overline{a}, a_{i_j})$ истинна, если и только если существует $b \in M$ такое, что формула $\psi(\overline{a}, b)$ истинна.

Формула, не содержащая свободных переменных, называется предложением. Если $\phi(\overline{a})$ истинна в M, мы будем писать $M \models \phi(\overline{a})$; если ϕ — предложение, то можно обойтись без подстановки набора \overline{a} и имеет смысл запись $M \models \phi$.

Для записи формул мы будем также пользоваться полезными сокращениями:

- $\phi \Rightarrow \psi$ вместо $\neg \phi \lor \psi$;
- $\phi \Leftrightarrow \psi$ bmecto $(\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$;
- $\bigwedge_{i=1}^n \psi_i$ вместо $\psi_1 \wedge \cdots \wedge \psi_n$;
- $\bigvee_{i=1}^n \psi_i$ вместо $\psi_1 \vee \cdots \vee \psi_n$.

Кроме того, удобно использовать символы v, w, x, y, z, \dots в качестве символов переменных вместе с v_1, v_2, \dots

0.1.3 Модели и теории

Пусть L — язык. Две L-структуры M и N называются элементарно эквивалентными (обозначение: $M \equiv N$), если для любого предложения ϕ в языке L выполнено $M \models \phi$ тогда и только тогда, когда $N \models \phi$.

Набор предложений языка L называется L-теорией. L-структура M называется моделью теории T (обозначение: $M \models T$), если $M \models \phi$ для каждого предложения $\phi \in T$.

Теория называется выполнимой (satisfiable), если у нее есть модель. Легко привести пример теории, у которой нет модели: $\{\forall x \ x=0, \exists x \ x\neq 0\}$.

Класс L-структур K называется элементарным классом, если найдется L-теория T такая, что $K = \{M \mid M \models T\}$.

Пусть M — некоторая L-структура. Рассмотрим множество предложений языка L, истинных в M: $Th(M) = \{\phi \mid M \vDash \phi\}$. Это теория, называемая полной теорией структуры M. Элементарный класс моделей теории Th(M) в этом случае состоит в точности из L-структур, элементарно эквивалентных M.

Наконец, определим третье значение символа \models : если T-L-теория, а $\phi-L$ -предложение, будем говорить, что T логически влечет ϕ , если ϕ выполняется во всех моделях теории T, то есть, из $M \models T$ следует $M \models \phi$.

1 Основы теории моделей

1.1 Теорема компактности

1.1.1 Теорема Геделя о полноте

Пусть M-L-структура, $\phi-$ предложение в языке L. Если мы хотим показать, что $T \vDash \phi$, нам придется проверить выполнимость ϕ во всех моделях теории T. Обычно в математике мы все же так не поступаем, а приводим некоторое доказательство того, что из аксиом теории T следует предложение ϕ . Сейчас мы обрисуем, как отражаются доказательства в математической логике, не вдаваясь в детали.

Итак, доказательством предложения ϕ в теории T мы будем называть последовательность L-формул $\overline{\psi} = (\psi_1, \dots, \psi_n)$ такую, что

- $\psi_n = \varphi$;
- каждая формула ψ_i либо лежит в T, либо следует из [некоторых из] предыдущих формул $\psi_1, \ldots, \psi_{i-1}$ с помощью несложных логических процедур (*правил вывода*).

Мы не будем приводить полный список правил вывода, а приведем лишь один пример: «если ϕ и ψ , то $\phi \wedge \psi$ ». Если существует доказательство предложения ϕ в теории T, мы будем говорить, что ϕ выводимо в T и обозначать это так: $T \vdash \phi$. Мы требуем от правил вывода выполнения некоторых естественных свойств:

- soundness: если $T \vdash \varphi$, то $T \models \varphi$;
- если T конечное множество предложений, то существует алгоритм, который по последовательности L-формул $\overline{\psi}$ и по предложению ϕ определяет, является ли $\overline{\psi}$ доказательством предложения ϕ в теории T.

Теорема 1.1.1.1 (Теорема Геделя о полноте). Пусть T - L-теория, $\phi - L$ -предложение. $T \models \phi$ тогда и только тогда, когда $T \vdash \phi$.

Теория T называется противоречивой (несовместной, inconsistent), если $T \vdash (\phi \land \neg \phi)$ для некоторого предложения ϕ . В противном случае T называется непротиворечивой (совместной, consistent).

Следствие 1.1.1.2. Теория T совместна тогда и только тогда, когда T выполнима (то есть, y T есть модель).

Доказательство. Пусть T не имеет модели. Тогда, тривиальным образом, в любой модели теории T выполнено $(\phi \land \neg \phi)$. Это означает, что T $\models (\phi \land \neg \phi)$ и, в силу теоремы о полноте, T $\vdash (\phi \land \neg \phi)$, то есть, T противоречива.

1.1.2 Теорема компактности

Теорема 1.1.2.1 (Теорема компактности). У теории Т есть модель тогда и только тогда, когда у всякого конечного подмножества Т есть модель.

Доказательство. Очевидно, что любая модель Т является моделью всякого конечного подмножества Т. Обратно, если у Т нет модели, то по теореме о полноте Т противоречива. Пусть $\overline{\psi}$ — доказательство противоречия в Т. В силу конечности $\overline{\psi}$ оно использует лишь конечное число предложений из Т. Поэтому найдется конечное Т' \subseteq Т такое, что $\overline{\psi}$ — доказательство противоречия в Т'. Но тогда конечное подмножество Т' теории Т не имеет модели.

Эта теорема выглядит как простое следствие теоремы Геделя о полноте (и того факта, что доказательство имеет конечную природу), но является чрезвычайно важной в теории моделей. Мы не будем доказывать теорему Геделя, потому что нам не хочется разбираться в деталях определения правил вывода, а позже дадим альтернативное (и поучительное) доказательство теоремы компактности. На самом деле, мы докажем следующее усиление этой теоремы.

Теорема 1.1.2.2. Пусть T-L-теория, и у каждого конечного подмножества теории T есть модель. Пусть α — бесконечный кардинал, $\alpha \geqslant |L|$. Тогда у теории T есть модель мощности не более α .

1.1.3 Следствия из теоремы компактности

Посмотрим на некоторые применения теоремы компактности.

Предложение 1.1.3.1. Пусть $L = \{\cdot, +, <, 0, 1\}$, $\operatorname{Th}(\mathbb{N})$ — полная теория натуральных чисел. Тогда существует L-структура M такая, что $M \models \operatorname{Th}(\mathbb{N})$ и найдется $a \in M$ такое, что a больше любого натурального числа.

Доказательство. Добавим к L константу и рассмотрим язык $L^* = L \cup \{c\}$. Положим $T = Th(\mathbb{N}) \cup \{\underbrace{1+1+\dots+1}_n < c \mid n=1,2,\dots\}$. Проверим, что у любого конечного под-

множества T есть модель. Действительно, мы можем сделать $\mathbb N$ моделью этого конечного подмножества, проинтерпретировав c как достаточно большое натуральное число. Значит, по теореме компактности у T есть модель. Если $a \in M$ — интерпретация константы c в этой модели, то a больше любого натурального числа.

Лемма 1.1.3.2. *Если* $T \vDash \phi$, то $\Delta \vDash \phi$ для некоторого конечного подмножества $\Delta \subseteq T$.

Доказательство. Предположим противное. Пусть $\Delta\subseteq \mathsf{T}$ — конечное подмножество и $\Delta\nvdash \phi$. Тогда у теории $\Delta\cup \{\neg\phi\}$ есть модель. Значит, у любого конечного подмножества $\mathsf{T}\cup \{\neg\phi\}$ есть модель, и по теореме компактности $\mathsf{T}\nvdash \phi$.

1.1.4 Топологическая интерпретация

Рассмотрим множество всех L-структур какой-нибудь ограниченной мощности (например, не выше $|L| + \aleph_0$) и профакторизуем его по отношению элементарной эквивалентности \equiv . Обозначим полученное фактор-множество через S. Для каждого L-предложения P рассмотрим множество $[P] = \{[M] \in S \mid M \models P\}$ (проверьте, что это корректно определенное подмножество в S). Зададим на S топологию, в которой множества вида [P] образуют базу. Теорема компактности утверждает, что топологическое пространство S является компактным.

1.1.5 Ультрафильтры и ультрапроизведения

Наша ближайшая цель — доказательство теоремы компактности. Нам дана теория Т и мы знаем, что у каждого ее конечного подмножества имеется модель. Мы «явно» построим модель теории Т из моделей ее конечных подмножеств при помощи ультрапроизведения. Для этого нам нужно вспомнить понятия фильтра и ультрафильтра.

Определение 1.1.5.1. Пусть I — некоторое множество. Непустое семейство $\mathcal F$ подмножеств множества I называется фильтром на I, если

- 1. $\emptyset \notin \mathcal{F}$;
- 2. из $A \in \mathcal{F}$ и $A \subset A' \subset I$ следует, что $A' \in \mathcal{F}$.
- 3. из $A, B \in \mathcal{F}$ следует, что $A \cap B \in \mathcal{F}$.

Неформальная интерпретация: мы вводим меру на множестве I, называя множества из фильтра \mathcal{F} множествами меры 1, а дополнения к ним — множествами меры 0.

Определение 1.1.5.2. Фильтр ${\mathfrak F}$ на множестве I называется ультрафильтром, если для любого $A\subset I$ либо $A\in {\mathfrak F}$, либо $I\setminus A\in {\mathfrak F}$.

Таким образом, в мере, соответствующей ультрафильтру, всякое подмножество I является измеримым.

Пример 1.1.5.3. Пусть A_0 — непустое подмножество І. Рассмотрим все подмножества І, содержащие A_0 : $\mathcal{F}(A_0) = \{A \subset I \mid A_0 \subset A\}$. Нетрудно проверить, что $\mathcal{F}(A_0)$ является фильтром; это ультрафильтр тогда и только тогда, когда A_0 состоит из одного элемента.

Пример 1.1.5.4. Пусть множество I бесконечно и $\mathcal{F}_F = \{A \subset I \mid I \setminus A \text{ конечно}\}$. Тогда \mathcal{F}_F является фильтром на I; он называется фильтром Фреше.

Теорема 1.1.5.5. Любой фильтр на I содержится в некотором ультрафильтре.

 Δ оказательство. Нетрудно видеть, что ультрафильтры — это в точности максимальные (по включению) фильтры; утверждение теоремы теперь легко следует из леммы Цорна.

Пусть теперь $\{M_i\}_{i\in I}$ — набор структур в языке L, проиндексированный множеством I, на котором задан некоторый фильтр $\mathcal F$. Рассмотрим произведение всех этих структур $M=\prod\limits_{i\in I}M_i$. Мы будем воспринимать это произведение как множество функций $\phi\colon I\to\bigcup\limits_{i\in I}M_i$ таких, что $\phi(i)\in M_i$ для всех $i\in I$. Введем на M отношение эквивалентности: отождествим функции, совпадающие «почти всюду», то есть, на «множестве меры 1» в соответствии с нашим фильтром $\mathcal F$. Итак, будем говорить для $\phi,\psi\in M$, что $\phi\sim\psi$, если $\{i\in I\mid \phi(i)=\psi(i)\}\in \mathcal F$. Несложно проверить (с помощью определения фильтра), что \sim является отношением эквивалентности. Фактор-множество по этому отношению обозначим через $M/\mathcal F$. Для элемента $\phi\in M$ мы будем обозначать через $[\phi]$ его класс в $M/\mathcal F$.

Сейчас мы естественным образом превратим M/\mathcal{F} в L-структуру, пользуясь тем, что каждое множество M_i является L-структурой. Нам нужно задать интерпретации символов констант, отношений и функций. Мы проделаем это только для символов отношений, оставив интерпретации констант и функций читателю в качестве упражнения. Итак, пусть r- символ отношения в L арности n_r . Пусть $[\phi_1],\ldots,[\phi_{n_r}]$ — набор элементов M/\mathcal{F} . Положим $([\phi_1],\ldots,[\phi_{n_r}])\in r^{M/\mathcal{F}}$ тогда и только тогда, когда $\{i\in I\mid (\phi_1(i),\ldots,\phi_{n_r}(i))\in r^{M_i}\}\in \mathcal{F};$ иными словами, когда i-е компоненты набора ϕ находятся в отношении r для почти всех $i\in I$.

Упражнение 1.1.5.6. Проверьте, что такое определение корректно, то есть, не зависит от выбора представителей $\phi_1, \ldots, \phi_{n_r}$.

Таким образом, мы определили L-структуру $\prod_{i\in I} M_i/U$ — фильтрованное произведение L-структур M_i вдоль $\mathcal F$. Если $\mathcal F$ — ультрафильтр, такое произведение называется ультрапроизведением.

Теорема 1.1.5.7 (Теорема Лоса). Пусть M_i , $i \in I$ — набор L-структур, $\mathfrak F$ — ультрафильтр на I, $M = \prod_{i \in I} M_i/\mathfrak F$ — ультрапроизведение вдоль $\mathfrak F$. Для любой L-формулы $P(x_1,\ldots,x_n)$ со свободными переменными x_1,\ldots,x_n и для любых $[\phi_1],\ldots,[\phi_n] \in M$ выполнено

$$M \models P([\phi_1], \ldots, [\phi_n])$$
 тогда и только тогда, когда $\{i \in I \mid M_i \models P(\phi_1(i), \ldots, \phi_n(i))\} \in \mathcal{F}.$

Доказательство. Индукция по формулам: для атомарных формул теорема верна в силу нашего определения L-структуры на M. Остается рассмотреть формулы вида $P_1 \wedge P_2$, $\exists x P_1$ и $\neg P_1$. Для $P = P_1 \wedge P_2$ утверждение верно в силу определения фильтра.

Пусть теперь $P = \exists x P_1$. Если $M \models \exists x P_1([\phi_1], \ldots, [\phi_n], x)$, то, по определению, в структуре M найдется элемент $[\phi]$ такой, что $M \models P_1([\phi_1], \ldots, [\phi_n], [\phi])$. По предположению индукции из этого следует, что $M_i \models P_1(\phi_1(i), \ldots, \phi_n(i), \phi_{n+1}(i))$ для почти всех $i \in I$. Поэтому $M_i \models \exists x P_1(\phi_1(i), \ldots, \phi_n(i), x)$ для почти всех $i \in I$.

Обратно, если $M_i \models \exists x P_1(\phi_1(i), \dots, \phi_n(i), x)$, то существует функция ϕ такая, что $M_i \models \exists x P_1(\phi_1(i), \dots, \phi_n(i), \phi(x))$ выполнено для [по крайней мере] этих значений i, что и требовалось.

Наконец, пусть P имеет вид $\neg P_1$; утверждение теоремы в этом случае следует из определяющего свойства ультрафильтра.

1.1.6 Доказательство теоремы компактности

Доказательство теоремы 1.1.2.2. По предположению, у каждого конечного подмножества теории T есть модель. Доказательство будем состоять из последовательных приближений: сначала мы покажем, что у T есть какая-то модель, затем покажем, что есть модель мощности не больше α .

- Вез ограничения общности можно считать, что теория T вместе с любым конечным набором предложений P_1,\ldots,P_n содержит и предложение $P_1\wedge\cdots\wedge P_n$. По предположению у каждого предложения $P\in T$ имеется модель M_P . Определим ультрафильтр на T следующим образом: для каждого $P\in T$ рассмотрим множество $X_P=\{Q\in T\mid Q\models P\}$. Очевидно, что $X_{P_1\wedge P_2}=X_{P_1}\cap X_{P_2}$. Натянем на множество $\{X_P\}_{P\in T}$ фильтр. Точнее, рассмотрим, множество $\mathcal{F}_0=\{Y\subseteq T\mid X_P\subseteq Y$ для некоторого $P\in T\}$. Очевидно, что \mathcal{F}_0 является фильтром, и по теореме $\underline{1.1.5.5}$ содержится в некотором ультрафильтре \mathcal{F} . По теореме Лоса $\underline{1.1.5.7}$ ультрапроизведение $\prod_{P\in T} M_P/\mathcal{F}$ является моделью для любого предложения $P\in T$, поэтому оно является моделью T.
- Теперь можно считать, что у T есть модель M мощности больше α . Пусть M_0 некоторое подмножество M мощности α . Сейчас мы расширим множество M_0 так, чтобы оно стало моделью теории T. Выберем некоторый элемент $a_0 \in M_0$. Для каждой L-формулы $P(\nu_1, \dots, \nu_n)$ определим его функцию Скулема $g_P \colon M^{n-1} \to M$ следующим образом:

$$g_P(\alpha_1,\dots,\alpha_{n-1}) = \begin{cases} \alpha \in A \text{ такой, что } M \vDash P(\alpha_1,\dots,\alpha_{n-1},\alpha), & \text{если такой существует,} \\ \alpha_0, & \text{иначе.} \end{cases}$$

Рассмотрим замыкание M' относительно всех функций g_P . Заметим, что для любого символа функции f языка L арности n-1 интерпретация функция f^M , ограниченная на M', совпадает с функцией Скулема g_P для предложения P вида $f(\nu_1,\ldots,\nu_{n-1})=\nu_n$. Поэтому множество M' само является L-структурой. Индукцией по формулам несложно доказать, что для любой L-формулы $Q(\nu_1,\ldots,\nu_n)$ и для любых $b_1,\ldots,b_n\in M'$ выполнено

$$M \models Q(b_1, ..., b_n)$$
 тогда и только тогда, когда $M' \models Q(b_1, ..., b_n)$.

Поэтому M' является моделью теории Т. С другой стороны, из того, что $\alpha \geqslant |L|$, следует, что мощность M' равна α .

1.1.7 Теорема Левенгейма-Скулема

Можно еще усилить теорему компактности и доказать, что у теории T имеется модель мощности ровно α . Однако, в этом случае приходится накладывать дополнительные ограничения на T.

Теорема 1.1.7.1 (Теорема Левенгейма-Скулема). Пусть T-L-теория, у которой есть бесконечная модель M, α — бесконечный ординал, $\alpha \geqslant |L|$. Тогда у T есть модель мощности ровно α .

Доказательство. Добавим к языку L константы c_{β} для всех $\beta < \alpha$, а к теории T — предложения $\neq (c_{\beta} = c_{\gamma})$ для всех $\beta, \gamma < \alpha$ таких, что $\beta \neq \gamma$. Полученную теорию обозначим через T'. В силу бесконечности M у любого конечного подмножества T' есть модель: можно рассмотреть саму модель M и проинтерпретировать конечное число констант c_{β} , входящие в предложения из этого конечного подмножества, как различные элементы M, а остальные константы c_{β} произвольным образом. По теореме компактности у T' есть модель M' мощности не больше α . С другой стороны, добавленные предложения гарантируют, что M' имеет мощность $\geqslant \alpha$. Осталось заметить, что M' является моделью и для исходной теории T.

Упражнение 1.1.7.2. Приведите пример теории, у которой есть только конечные мо-

1.2 Полные теории

1.2.1 Полнота и категоричность

Определение 1.2.1.1. L-теория T называется полной, если для любого L-предложения ϕ выполнено либо $T \vDash \phi$, либо $T \vDash \neg \phi$.

Нетрудно проверить, что для любой L-структуры M полная теория $\mathrm{Th}(M)$ является полной. Описать теорию $\mathrm{Th}(M)$ обычно достаточно сложно; в таком случае полезно найти простую L-теорию T такую, что $M \models \mathrm{T}$ и T полна. В этом случае $M \models \varphi$ равносильно $\mathrm{T} \models \varphi$.

Определение 1.2.1.2. Пусть α — бесконечный кардинал, T — теория, у которой есть модель мощности α . Теория T называется α -категоричной, если любые две модели T мощности α изоморфны.

Пример 1.2.1.3. Рассмотрим пустой язык L и пустую теорию T. Модели этой теории — просто множества. Две модели T изоморфны тогда и только тогда, когда они равномощны. Поэтому T является α -категоричной для любого кардинала α .

Пример 1.2.1.4. Пусть язык L состоит из одного символа r бинарного отношения, а T теория отношений эквивалентности c ровно двумя классами эквивалентности, каждый из которых бесконечен. Тогда теория T является \aleph_0 -категоричной. Действительно, если счетное множество разбито на два бесконечных подмножества, то каждое из них счетно. С другой стороны, T не α -категорична ни для какого кардинала $\alpha > \aleph_0$. Пример двух неизоморфных моделей: в одной оба класса эквивалентности имеют мощность α , а в другой один класс счетен, а другой имеет мощность α .

1.2.2 Бесконечно делимые абелевы группы без кручения

Пример 1.2.2.1. Пусть $L=\{+,0\}$ — язык абелевых групп, а T — теория нетривиальных делимых абелевых групп без кручения. Иными словами, T задается аксиомами абелевых групп вместе с предложениями $\exists x(x\neq 0), \ \forall x \exists y(\underbrace{y+\dots+y}_n=x)$ и $\forall x(\underbrace{x+\dots+x}_n\neq 0)$ для всех натуральных n>0.

Предложение 1.2.2.2. Теория T является α -категоричной для всех $\alpha > \aleph_0$, но не \aleph_0 -категоричной.

Доказательство. Заметим, что нетривиальные делимые абелевы группы без кручения — это в точности нетривиальные векторные пространства над \mathbb{Q} . Для этого возьмем элемент $a \in A$ в такой группе, рациональное число q = m/n и определим элемент $qa \in A$ по следующему рецепту. Для начала воспользуемся делимостью и найдем $b \in A$ такой, что nb = a. Заметим, что если $b' \in A$ — другой элемент с тем же свойством, то n(b-b') = 0, откуда в силу отсутствия кручения следует, что b = b'. Поэтому такой элемент b определен однозначно; обозначим его через a/n и положим $a = m \cdot (a/n)$. Нетрудно проверить, что эта операция корректно определена и задает на $a \in A$ каноническую структуру векторного пространства над $a \in A$ 0.

Осталось заметить, что два векторных пространства над $\mathbb Q$ изоморфны тогда и только тогда, когда их размерности совпадают, и что мощность векторного пространства над $\mathbb Q$ размерности α равна $\alpha+\aleph_0$. Поэтому размерность пространства мощности $\alpha>\aleph_0$ определена однозначно; в то же время, неизоморфные векторные пространства размерностей $1,2,\ldots,\aleph_0$ счетны.

1.2.3 Алгебраически замкнутые поля

Пусть $L=\{+,-,\cdot,0,1\}$ — язык теории колец. Рассмотрим следующие L-теории: ACF — теория алгебраически замкнутых полей характеристики p, где p — простое число или 0. Мы будем задавать ACF известными аксиомами поля вместе c аксиомами $\forall a_1 \dots \forall a_n \exists x (x^n + a_1 x^{n-1} + \dots + a_n = 0)$ для всех натуральных n>0. После этого для простого числа p теория ACF_p задается аксиомами ACF вместе c аксиомами aCF вместе aCF аксиомами aCF аксиомами aCF аксиомами aC

Теория алгебраически замкнутых полей фиксированной характеристики также является полной; доказательство этого факта похоже на доказательство предложения 1.2.2.2 с заменой размерности на степень трансцендентности.

Предложение 1.2.3.1. Теория ACF_p является α -категоричной для всех несчетных кардиналов α .

Доказательство. Хорошо известно, что в каждом расширении полей можно выбрать базис трансцендентности, мощность которого определена однозначно; кроме того, два алгебраически замкнутых поля изоморфны тогда и только тогда, когда у них совпадают характеристики и степени трансцендентности (над простым подполем). Нетрудно видеть, что если эта степень трансцендентности равна α , то поле имеет мощность $\alpha + \aleph_0$. Поэтому степень трансцендентности алгебраически замкнутого поля мощности $\alpha > \aleph_0$ определена однозначно; в то же время, неизоморфные поля степени трансцендентности $1, 2, \ldots, \aleph_0$ счетны.

1.2.4 Тест Вота

Теорема 1.2.4.1 (Тест Вота). Пусть Т — выполнимая теория без конечных моделей, которая является α -категоричной для некоторого бесконечного кардинала $\alpha \geqslant |L|$. Тогда T полна.

Доказательство. Предположим, что для некоторого предложения ϕ выполнено $T \nvDash \phi$ и $T \nvDash \neg \phi$. Это означает, что у теорий $T_0 = T \cup \{\phi\}$ и $T_1 = T \cup \{\neg\phi\}$ есть модели. Поскольку у T нет конечных моделей, у T_0 и T_1 есть бесконечные модели. По теореме $\underline{1.1.7.1}$ можно найти структуры M_0 и M_1 мощности α такие, что $M_0 \vDash T_0$ и $M_1 \vDash T_1$. По построению теорий T_0 и T_1 модели M_0 и M_1 не являются элементарно эквивалентными, и потому неизоморфны. Это противоречит α -категоричности T.

Замечание 1.2.4.2. Предположение об отсутствии конечных моделей T необходимо: пусть T — теория в языке $\{+,0\}$ групп, в которых каждый элемент имеет порядок 2. Можно показать, что T является α -категоричной для всех $\alpha \geqslant \aleph_0$. Однако, T не полна: предложение $\exists x \exists y \exists z \ (x \neq y \land y \neq z \land z \neq x)$ ложно в двухэлементной группе и истинно в остальных моделях T.

Из теста Вота 1.2.4.1 и теорем 1.2.2.2 и 1.2.3.1 следует, что теория ACF_p полна.

Следствие 1.2.4.3. Пусть ϕ — предложение в языке колец. Следующие утверждения эквивалентны.

- 1. ϕ истинно в поле комплексных чисел \mathbb{C} .
- 2. ф истинно в каждом алгебраически замкнутом поле характеристики 0.
- 3. ф истинно в некотором алгебраически замкнутом поле характеристики 0.
- 4. Существует сколь угодно большие простые числа р такие, что ф истинно в некотором алгебраически замкнутом поле характеристики р.
- 5. Существует m такое, что для всех p>m ϕ истинно во всех алгебраически замкнутых полях характеристики p.

Доказательство. Пункты (1)–(3) равносильны в силу полноты АС F_p . Очевидно, что из (5) следует (4).

 $(2)\Rightarrow (5)$: пусть $ACF_0 \vDash \phi$. По теореме Геделя о полноте $\underline{1.1.1.1}$ это означает, что $ACF_0 \vDash \phi$. Вывод предложения ϕ из аксиом ACF_0 использует лишь конечное число аксиом вида $\neg(\underbrace{x+\dots+x}_p=0)$, поэтому он верен и в теории ACF_p для всех p, начиная с некоторого m.

 $(4) \Rightarrow (2)$: от противного. Если $ACF_0 \not\models \phi$, то в силу полноты $ACF_0 \models \neg \phi$. Применив рассуждение из предыдущего абзаца, получаем, что $ACF_p \models \neg \phi$ для всех достаточно больших р, что противоречит предположению (4).

Упражнение 1.2.4.4. Избавътесъ от ссылки на теорему Γ еделя о полноте $\underline{1.1.1.1}$ в этом доказательстве, воспользовавшисъ вместо нее теоремой компактности $\underline{1.1.2.2}$.

1.2.5 Приложение: теорема Акса-Гротендика

Теорема 1.2.5.1 (Теорема Акса–Гротендика). Всякое инъективное полиномиальное отображение из \mathbb{C}^n в \mathbb{C}^n сюръективно.

Основным соображением в доказательстве является тот факт, что для конечного поля k всякое инъективное отображение $k^n \to k^n$ сюръективно.

Лемма 1.2.5.2. Всякое инъективное полиномиальное отображение $f: (\overline{\mathbb{F}_p})^n \to (\overline{\mathbb{F}_p})^n$ сюръективно.

 $\underline{\mathcal{A}}$ оказательство. Предположим противное. Пусть $\overline{a} \in (\overline{\mathbb{F}_p})^d$ — набор коэффициентов f, и $\overline{b} \in (\overline{\mathbb{F}_p})^n$ — вектор, не лежащий в образе f. Пусть k — подполе $\overline{\mathbb{F}_p}$, порожденное координатами \overline{a} и \overline{b} . Тогда $f|_{k^n}$ — инъективное, но не сюръективное полиномиальное отображение из k^n в себя Ho поле k конечно — противоречие.

Доказательство теоремы Акса-Гротендика $\underline{1.2.5.1}$. Предположим, что найдется инъективное, но не сюръективное отображение $f=(f_1,\ldots,f_n)\colon \mathbb{C}^n\to\mathbb{C}^n$ такое, что f_i — многочлены от переменных x_1,\ldots,x_n . Пусть степени всех многочленов f_i меньше натурального числа d. Напишем предложение в языке L, выражающее тот факт, что для набора отображений (f_1,\ldots,f_n) степеней меньше d инъективность влечет сюръективность. Это можно сделать, поскольку отображения f_i задаются конечным числом коэффициентов. Например, подойдет предложение вида «для любого набора коэффициентов f_i из того, что

$$\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n \left(\bigwedge_{i=1}^n (f_i(x_1, \dots, x_n) = f_i(x_1, \dots, x_n)) \Rightarrow \bigwedge_{i=1}^n (x_i = y_i) \right),$$

следует, что $\forall y_1 \dots \forall y_n \exists x_1 \dots \exists x_n (\bigwedge_{i=1}^n (f_i(x_1,\dots,x_n)=y_i))$ ». По лемме <u>1.2.5.2</u> такое предложение выполнено в $\overline{\mathbb{F}_p}$ для всех р. В силу полноты ACF_p оно логически следует из ACF_p , и по следствию <u>1.2.4.3</u> оно логически следует и из ACF_0 . Получаем противоречие.

1.3 Исключение кванторов

1.3.1 Определимые множества

Определение 1.3.1.1. Пусть M — структура в языке L, $A \subseteq M$, n — натуральное число. Подмножество $X \subseteq M^n$ называется определимым над A, или A-определимым, если существует формула $\phi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ и элементы $\alpha_1,\ldots,\alpha_m\in A$ такие, что $X=\{(x_1,\ldots,x_n)\in M^n\mid M\models\phi(x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m)\}$. Если подмножество $X\subseteq M^n$ определимо над M, оно называется определимым.

В следующих примерах L_r — язык $(+, -, \cdot, 0, 1)$ теории колец.

Пример 1.3.1.2. Пусть M=R — коммутативное кольцо, $p(x)\in R[x]$ — некоторый многочлен. Тогда множество его корней $X=\{x\in R\mid p(x)=0\}$ определимо. Более того, X определимо над любым подмножеством R, содержащим коэффициенты многочлена p.

Пример 1.3.1.3. Пусть $M=\mathbb{R}$. Отношение порядка на \mathbb{R} определимо (и даже \emptyset -определимо) в следующем смысле: множество $X=\{(x,y)\mid x< y\}$ определимо формулой $\exists z(z\neq 0 \land y=x+z^2)$.

Пример 1.3.1.4. Пусть теперь $M=\mathbb{Z}$. Отношение порядка на \mathbb{Z} тоже определимо: обозначим через $\phi(x,y)$ формулу

$$\exists z_1 \exists z_2 \exists z_3 \exists z_4 (z_1 \neq 0 \land y = x + z_1^2 + z_2^2 + z_3^2 + z_4^2).$$

По теореме Лагранжа $\{(x,y) \in \mathbb{Z}^2 \mid x < y\} = \{(x,y) \in \mathbb{Z}^2 \mid M \vDash \phi(x,y)\}.$

Пример 1.3.1.5. Пусть F — поле, M = F[x]. Тогда подмножество $F \subset F[x]$ определимо формулой $x = 0 \lor \exists y (xy = 1)$.

Пример 1.3.1.6. Пусть $M=\mathbb{C}(t)$ — поле рациональных функций от одной комплексной переменной t. Тогда \mathbb{C} определимо в $\mathbb{C}(t)$ формулой $\exists x\exists y(y^2=v\wedge x^3+1=v)$. Действительно, если $z\in\mathbb{C}$, то найдутся $x,y\in\mathbb{C}\subset\mathbb{C}(t)$ такие, что $y^2=x^3+1=z$. Обратно, предположим, что $f,g,h\in\mathbb{C}(t)$ таковы, что $h=g^2=f^3+1$. Тогда отображение $t\mapsto (f(t),g(t))$ является рациональным отображением из открытого по Зарискому подмножества \mathbb{C} в эллиптическую кривую $E=\{(x,y)\text{in}\mathbb{C}^2\mid y^2=x^3+1\}$. Хорошо известно, что любое такое отображение постоянно, то есть, $h\in\mathbb{C}$.

Пример 1.3.1.7. Пусть $M = \mathbb{Q}$. Обозначим через $\varphi(x, y, z)$ формулу

$$\exists \alpha \exists b \exists c (xyz^2 + 2 = \alpha^2 + xb^2 - yc^2),$$

а через $\psi(x)$ — формулу

$$\forall y \forall z ((\phi(y, z, 0) \land (\forall w (\phi(y, z, w) \Rightarrow \phi(y, z, w + 1)))) \Rightarrow \phi(y, z, x)).$$

Тогда $\mathbb{Z} = \{x \in \mathbb{Q} \mid \mathbb{Q} \models \psi(x)\}$ (см. Julia Robinson, *Definability and decision problems in arithmetic*, J. Symbolic Logic **14** (1949), 98–114; доказательство этого факта опирается на теорему Хассе о представимости рационального числа квадратичной формой). Таким образом, \mathbb{Z} определимо в \mathbb{Q} .

1.3.2 Определимость и вычислимость

Пример 1.3.2.1. Пусть $M=\mathbb{N}$ — структура в языке $L=(+,\cdot,0,1)$. Определимые подмножества этой структуры устроены весьма сложным образом. К примеру, существует L-формула T(e,x,s) такая, что $\mathbb{N} \vDash T(e,x,s)$ тогда и только тогда, когда машина Тьюринга с программой номер e, получив на вход число x, завершает работу не более чем за s шагов (см., например, Stephen Cole Kleene, 1943, Recursive predicates and quantifiers, Transactions of the AMS, 53 n. 1, pp. 41–73). Поэтому машина Тьюринга с программой номер e завершает работу на входе x тогда и только тогда, когда $\mathbb{N} \vDash \exists s T(e,x,s)$. Это означает, что множество таких пар (e,x) определимо. В то же время, хорошо известно, что это множество не вычислимо.

Следствие 1.3.2.2. Полная теория $\mathrm{Th}(\mathbb{N})$ натуральных чисел в языке $\mathrm{L}=(+,\cdot,0,1)$ неразрешима, то есть, не существует алгоритма, который, получив на вход L -предложение ψ , завершал бы свою работу ответом «да» в случае $\mathbb{N} \vDash \psi$ и ответом «нет» в случае $\mathbb{N} \vDash \neg \psi$.

 Δ оказательство. Для натуральных чисел e, x обозначим через $\phi_{e,x}$ предложение

$$\exists sT(\underbrace{1+\cdots+1}_{e},\underbrace{1+\cdots+1}_{x},x).$$

Если бы описанный алгоритм существовал, мы могли бы определить, заканчивает ли работу программа e на входе x, отдав этому алгоритму предложение $\phi_{e,x}$ и выяснив, верно ли, что $\mathbb{N} \models \phi_{e,x}$.

По соображениям мощности неопределимых подмножеств \mathbb{N}^n гораздо больше, чем определимых: всего подмножеств в \mathbb{N}^n примерно континуум, а предложений (и, следовательно, определимых подмножеств) лишь счетное число. В то же время, класс определимых подмножеств достаточно широк. Например, *рекурсивно перечислимые* подмножества \mathbb{N}^n являются определимыми.

Пример 1.3.2.3. Напомним, что подмножество $A\subseteq \mathbb{N}^n$ называется рекурсивно перечислимым, если существует алгоритм, который завершает свою работу в точности на входах из множества A. Равносильное определение: существует алгоритм, который выводит в точности все элементы множества A (в некотором порядке). По теореме Матиясевича-Робинсон-Дэвиса-Патнем (решение десятой проблемы Гильберта) для любого рекурсивно перечислимого подмножества $A\subseteq \mathbb{N}^n$ существует многочлен $p(x_1,\ldots,x_n,y_1,\ldots,y_m)$ с целыми коэффициентами такой, что

$$A = \{(x_1, \dots, x_n) \in \mathbb{N} \mid \mathbb{N} \models \exists y_1 \dots \exists y_m p(\overline{x}, \overline{y}) = 0\}.$$

Таким образом, любое рекурсивно перечислимое подмножество определяется формулой достаточно специального вида.

1.3.3 Определимость: контрпример

Приведем пример неопределимого множества. Для этого нам понадобится следующее предложение.

Предложение 1.3.3.1. Пусть M-L-структура. Если подмножество $X\subseteq M^n$ определимо над $A\subseteq M$, то каждый L-автоморфизм M, тождественный на A, переводит X в себя. Иными словами, если $\sigma\colon M\to M-L$ -автоморфизм и $\sigma|_A=\mathrm{id}_A$, то $\sigma(X)=X$.

 Δ оказательство. Пусть X задается L-формулой $\psi(\overline{\nu},\overline{a})$ для некоторого набора \overline{a} элементов A. Пусть $\sigma\colon M\to M$ — автоморфизм, для которого $\sigma(\overline{a})=\overline{a}$, и пусть $\overline{b}\in M^n$. Очевидно, что если $j\colon M\to N$ — изоморфизм L-структур, то $M\models \phi(\overline{a})$ тогда и только тогда, когда $N\models \phi(\overline{j}(\overline{a}))$. Поэтому $M\models \psi(\overline{b},\overline{a})$ равносильно $M\models \psi(\sigma(\overline{b}),\sigma(\overline{a}))$, что равносильно $M\models \psi(\sigma(\overline{b}),\overline{a})$. Это означает, что $\overline{b}\in X$ тогда и только тогда, когда $\sigma(\overline{b})\in X$.

Следствие 1.3.3.2. Подмножество $\mathbb{R}\subseteq\mathbb{C}$ не определимо (в языке теории колец).

Доказательство. Если $\mathbb R$ определимо, то оно определимо над конечным подмножеством $A\subset \mathbb C$. Пусть $r,s\in \mathbb C$ алгебраически независимы над A, причем $r\in \mathbb R$ и $s\notin \mathbb R$. Тогда найдется автоморфизм σ поля $\mathbb C$ такой, что $\sigma|_A=\operatorname{id}|_A$ и $\sigma(r)=s$. При этом $\sigma(\mathbb R)\neq \mathbb R$, что противоречит предложению $\underline{1.3.3.1}$.

Мы воспользовались тем, что у поля $\mathbb C$ достаточно много автоморфизмов. Заметим, что такой прием не всегда работает: например, покажем, что у поля $\mathbb R$ вообще нет нетривиальных автоморфизмов. Любой автоморфизм $\mathbb R$ должен оставлять на месте $\mathbb Q$. Согласно примеру 1.3.1.3, отношение порядка определимо, поэтому оно сохраняется при автоморфизмах. Но $\mathbb Q$ плотно в $\mathbb R$, поэтому автоморфизмы оставляют на месте каждое вещественное число.

1.3.4 Исключение кванторов

В примере 1.3.2.3 мы видели, что отсутствие кванторов в формуле существенно сужает класс определяемых ей подмножеств. Так, подмножества \mathbb{N}^n , определяемые формулами без переменных — это фактически лишь решения систем полиномиальных уравнений и неравенств. В то же время, если разрешить последовательность подряд идущих кванторов существования, получатся уже все рекурсивно перечислимые множества.

Разумеется, гораздо проще исследовать множества, определяемые формулами без кванторов. В некоторых теориях так выглядят все определяемые подмножества. Нашей ближайшей целью станет доказательство того, что в теории алгебраически замкнутых полей любое определимое подмножество может быть определено формулой без кванторов. Например, хорошо известно, что формула $\exists x(ax^2+bx+c=0)$ эквивалентна (в теории АСF) формуле $a \neq 0 \lor b \neq 0 \lor c=0$. Таким же свойством исключения кванторов обладает и теория вещественно замкнутых полей (в языке $\{+,-,\cdot,<,0,1\}$): та же формула $\exists x(ax^2+bx+c=0)$ эквивалентна в этой теории формуле

$$(a \neq 0 \land b^2 - 4ac \geqslant 0) \lor (a = 0 \land (b \neq 0 \lor c = 0)).$$

Определение 1.3.4.1. Теория T обладает исключением кванторов, если для любой формулы ϕ найдется формула ψ без кванторов такая, что $T \vDash \phi \Leftrightarrow \psi$.

1.3.5 Вложения

Определение 1.3.5.1. Пусть M, N-L-структуры. Инъективное отображение $\mathfrak{i} \colon M \to N$ называется L-вложением, если

- $\mathfrak{i}(c^{\mathsf{M}})=c^{\mathsf{N}}$ для любого символа константы c языка L;
- $i(f^M(m_1,\ldots,m_{n_f})=f^N(i(m_1),\ldots,i(m_{n_f}))$ для любого символа функции f языка L и для любых $m_1,\ldots,m_{n_f}\in M;$
- для любого символа отношения r языка L и любых $m_1,\dots,m_{n_r}\in M$ выполнено $(m_1,\dots,m_n)\in r^M$ тогда и только тогда, когда $(i(m_1),\dots,i(m_n))\in r^N.$

При этом M называется подструктурой N, а N — расширением M. Обозначение: $M \subseteq N$.

Замечание 1.3.5.2. Несложно показать, что если $i: M \to N$ — вложение, то для любой L-формулы $\phi(\nu_1, \dots, \nu_n)$ без кванторов и для любых $a_1, \dots, a_n \in M$ выполнено $M \models \phi(a_1, \dots, a_n)$ тогда и только тогда, когда $N \models \phi(i(a_1), \dots, i(a_n))$.

Определение 1.3.5.3. Вложение $i: M \to N$ называется элементарным, если для любой L-формулы $\phi(\nu_1,\ldots,\nu_n)$ и для любых $\alpha_1,\ldots,\alpha_n\in M$ выполнено $M\models\phi(\alpha_1,\ldots,\alpha_n)$ тогда и только тогда, когда $N\models\phi(i(\alpha_1),\ldots,i(\alpha_n))$. При этом M называется элементарной подструктурой N, а N — элементарным расширением M. Обозначение: $M \preccurlyeq N$

Определение 1.3.5.4. L-теория T называется модельно полной, если для любых моделей M, N теории T из $M\subseteq N$ следует $M\preccurlyeq N$.

Иными словами, Т является модельно полной, если все вложения ее моделей элементарны.

Предложение 1.3.5.5. Если в Т есть исключение кванторов, то Т модельно полна.

 \mathcal{A} оказательство. Предположим, что $M\subseteq N$ — модели Т. Пусть $\phi(\overline{v})$ — L-формула, $\overline{a}\in M$. Тогда найдется формула без кванторов $\psi(\overline{v})$ такая, что $M\models \forall \overline{v}\ (\phi(\overline{v})\Leftrightarrow \psi(\overline{v}))$. По замечанию $\underline{1.3.5.2}\ M\models \psi(\overline{a})$ равносильно $N\models \psi(\overline{a})$. Поэтому и $M\models \phi(\overline{a})$ равносильно $N\models \phi(\overline{a})$.

1.3.6 Диаграммы

Определение 1.3.6.1. Пусть M — L-структура. Определим новый язык L_M , добавив в L символы констант m для всех элементов M. После этого M можно считать L_M -структурой, проинтерпретировав добавленные константы тождественным образом. Полученную L_M -структуру мы будем обозначать через M_M . Атомарной диаграммой структуры M называется множество формул вида $\phi(m_1,\ldots,m_n)$ в языке L таких, что ϕ является либо атомарной формулой (см. 0.1.2), либо отрицанием атомарной, и при этом $M_M \vDash \phi(m_1,\ldots,m_n)$. Обратите внимание, что в последнем выражении мы подставили в формулу ϕ в качестве переменной m_i константу m_i языка L_M и получили предложение (формулу без переменных) в языке L_M . Мы будем обозначать атомарную диаграмму структуры M через Diag(M). Полной диаграммой структуры M называется множество CDiag(M) формул вида $\phi(m_1,\ldots,m_n)$ в языке L таких, что $M_M \vDash \phi(m_1,\ldots,m_n)$.

Замечание 1.3.6.2. Иными словами, диаграмма структуры M — это множество предложений ϕ в языке L_M таких, что ϕ атомарно или является отрицанием атомарного, и $M_M \models \phi$. Полная диаграмма структуры M — это множество предложений ϕ в языке L_M таких, что $M_M \models \phi$.

Лемма 1.3.6.3. Пусть N- структура в языке L_M , $u\ N \models Diag(M)$. Тогда существует L-вложение структуры M в структуру N, рассматриваемую как L-структуру.

Доказательство. Определим і: $M \to N$ следующим образом: отправим элемент $\mathfrak{m} \in M$ в \mathfrak{m}^N , интерпретацию символа константы \mathfrak{m} языка L_M в структуре N. Пусть $\mathfrak{m}_1, \mathfrak{m}_2$ два различных элемента M. Тогда формула $\neg(\mathfrak{m}_1=\mathfrak{m}_2)$ лежит в $\mathrm{Diag}(M)$. Значит, по предположению $N \vDash \neg(\mathfrak{m}_1=\mathfrak{m}_2)$, то есть, $\mathfrak{m}_1^N \ne \mathfrak{m}_2^N$. Поэтому і инъективно.

Пусть f — символ функции языка L, и $m_1, \ldots, m_{n_f+1} \in M$ таковы, что $f^M(m_1, \ldots, m_{n_f}) = m_{n_f+1}$. Тогда формула $f(m_1, \ldots, m_{n_f}) = m_{n_f+1}$ лежит в Diag(M), откуда

$$f^N(\mathfrak{i}(\mathfrak{m}_1),\ldots,\mathfrak{i}(\mathfrak{m}_{\mathfrak{n}_f}))=\mathfrak{i}(\mathfrak{m}_{\mathfrak{n}_f+1})=\mathfrak{i}(f^M(\mathfrak{m}_1,\ldots,\mathfrak{m}_{\mathfrak{n}_f})).$$

Наконец, пусть r — символ отношения языка L, и элементы $m_1,\ldots,m_{n_r}\in M$ таковы, что $(m_1,\ldots,m_{n_r})\in r^M$. Тогда формула $r(m_1,\ldots,m_{n_r})$ лежит в ${\rm Diag}(M)$, откуда получаем, что $(i(m_1),\ldots,i(m_{n_r}))\in r^N$. Если же $(m_1,\ldots,m_{n_r})\notin r^M$, достаточно рассмотреть формулу $\neg r(m_1,\ldots,m_{n_r})$.

Понятие диаграммы структуры помогает строить ее вложения в другие структуры. Аналогичным образом, понятие *полной* диаграммы структуры помогает строить ее *элементарные* вложения. Следующая лемма доказывается совершенно так же, как лемма 1.3.6.3.

Лемма 1.3.6.4. Пусть N- структура в языке L_M , $u N \models CDiag(M)$. Тогда существует элементарное L-вложение структуры M в структуру N, рассматриваемую как L-структуру.

1.3.7 Сведение к случаю одного квантора

Следующая лемма сводит проверку к случаю формулы с одним экзистенциальным квантором.

Лемма 1.3.7.1. Пусть T-L-теория. Предположим, что для каждой L-формулы без кванторов $\theta(\overline{\nu},w)$ существует формула без кванторов $\eta(\overline{\nu})$ такая, что

$$\mathsf{T} \vDash \forall \overline{\mathsf{v}} (\exists \mathsf{w} \ \theta(\overline{\mathsf{v}}, \mathsf{w}) \Leftrightarrow \mathsf{\eta}(\overline{\mathsf{v}})).$$

Тогда в Т есть исключение кванторов.

 Δ оказательство. Пусть $\phi(\bar{\nu})$ — L-формула. Нам нужно найти формулу без кванторов, эквивалентную ϕ . Δ ействуем индукцией по длине ϕ . Если в ϕ нет кванторов, доказывать нечего.

Если $\phi(\overline{\nu})$ имеет вид $\neg \theta(\overline{\nu})$, то по предположению индукции $\theta(\overline{\nu})$ эквивалентна формуле $\eta(\overline{\nu})$ без кванторов; поэтому $\phi(\overline{\nu})$ эквивалентна формуле $\neg \eta(\overline{\nu})$.

Если $\phi(\overline{\nu})$ имеет вид $\theta_0(\overline{\nu}) \wedge \theta_1(\overline{\nu})$, то по предположению индукции каждая формула $\theta_i(\overline{\nu})$ эквивалентна формуле $\eta_i(\overline{\nu})$ без кванторов; поэтому $\phi(\overline{\nu})$ эквивалентна формуле $\eta_0(\overline{\nu}) \wedge \eta_1(\overline{\nu})$.

Наконец, пусть $\varphi(\overline{\nu})$ имеет вид $\exists w \ \theta(\overline{\nu}, w)$. Мы знаем, что $\theta(\overline{\nu}, w)$ эквивалентна формуле $\eta(\overline{\nu}, w)$ без кванторов. Поэтому $\varphi(\overline{\nu})$ эквивалентна формуле $\exists w \ \eta(\overline{\nu}, w)$. По нашему предположению найдется формула $\psi(\overline{\nu})$ без кванторов такая, что $\exists w \ \eta(\overline{\nu}, w)$ эквивалентна $\psi(\overline{\nu})$. Но тогда $\varphi(\overline{\nu})$ эквивалентна формуле $\psi(\overline{\nu})$.

1.3.8 Критерий исключения кванторов

Следующая теорема предоставляет способ удостовериться, что данная формула эквивалентна формуле без кванторов.

Теорема 1.3.8.1. Пусть L содержит символ константы c, T-L-теория, $\phi(\overline{\nu})-L$ -формула. Следующие утверждения равносильны:

- 1. Существует L-формула без кванторов $\psi(\overline{\nu})$ такая, что $\mathsf{T} \vDash \forall \overline{\nu} \ (\phi(\overline{\nu}) \Leftrightarrow \psi(\overline{\nu}))$.
- 2. Если M, N модели теории T, A L-структура такая, что $A \subseteq M$ и $A \subseteq N$, то для каждого набора $\overline{a} \in A$ выполнено $M \models \phi(\overline{a})$ тогда и только тогда, когда $N \models \phi(\overline{a})$.

Доказательство. (1) \Rightarrow (2): пусть $M \vDash \varphi(\overline{a})$. По предположению это равносильно тому, что $M \vDash \psi(\overline{v})$. По замечанию 1.3.5.2 это равносильно $A \vDash \psi(\overline{v})$, что равносильно $N \vDash \psi(\overline{v})$. Снова по предположению это равносильно $N \vDash \varphi(\overline{v})$.

 $(2)\Rightarrow (1)$: Пусть $\phi(\overline{\nu})$ — некоторая формула, зависящая от переменных $\overline{\nu}=(\nu_1,\dots,\nu_m)$. Если $T \vDash \forall \overline{\nu} \ \phi(\overline{\nu}, \text{ то } T \vDash \forall \overline{\nu} \ (\phi(\overline{\nu} \Leftrightarrow c=c). \ \exists \text{то означает, что } \phi(\overline{\nu}) \ \exists \text{кванторов } c=c$. Если же $T \vDash \forall \overline{\nu} \ \neg \phi(\overline{\nu}, \text{ то } T \vDash \forall \overline{\nu} \ (\phi(\overline{\nu} \Leftrightarrow c \neq c). \ \exists \text{то означает, что } \phi(\overline{\nu}) \ \exists \text{кванторов } c \neq c$.

Поэтому мы можем считать, что $\phi(\overline{\nu})$ не является ни тождественно истинной, ни тождественно ложной формулой.

Рассмотрим множество $\Gamma(\overline{\nu})$ всех формул $\psi(\overline{\nu})$ от тех же переменных, что и $\phi(\overline{\nu})$ таких, что $\psi(\overline{\nu})$ свободна от кванторов и $T \models \forall \overline{\nu} \ (\phi(\overline{\nu}) \Rightarrow \psi(\overline{\nu})$. Добавим в наш язык новые символы констант d_1, \ldots, d_m , соответствующие переменным ν_1, \ldots, ν_m . В следующей лемме будет доказано, что $T \cup \Gamma(\overline{d}) \models \phi(\overline{d})$. Тогда, в силу компактности, найдутся формулы $\psi_1(\overline{d}), \ldots, \psi_n(\overline{d}) \in \Gamma(\overline{d})$ такие, что

$$\mathsf{T} \vDash \psi_i(\overline{d}) \Rightarrow \phi(\overline{d}).$$

Поэтому

$$\mathsf{T} \vDash \forall \overline{\nu} \left(\bigwedge_{i=1}^n \psi_i(\overline{\nu}) \Rightarrow \phi(\overline{\nu}) \right)$$

, и, по определению $\Gamma(\overline{\nu})$,

$$T \vDash \forall \overline{\nu} \left(\bigwedge_{i=1}^n \psi_i(\overline{\nu}) \Leftrightarrow \phi(\overline{\nu}) \right).$$

Кроме того, $\bigwedge_{i=1}^n \psi_i(\overline{\nu})$ не содержит кванторов. Таким образом, осталось проверить следующую лемму.

Лемма 1.3.8.2. В обозначениях предыдущей теоремы, $T \cup \Gamma(\overline{d}) \vDash \varphi(\overline{d})$.

Доказательство. Действуем от противного: пусть у теории $\mathsf{T} \cup \Gamma(\overline{\mathbf{d}}) \cup \{\neg \phi(\overline{\mathbf{d}}) \text{ есть модель } M$. Обозначим через A подструктуру в M , порожденную $\overline{\mathbf{d}}$.

Пусть $\Sigma = T \cup \text{Diag}(A) \cup \phi(\overline{d})$. Покажем, что у Σ есть модель. Если это не так, то в силу компактности найдутся формулы без кванторов $\psi_1(\overline{d}), \ldots, \psi_n(\overline{d}) \in \text{Diag}(A)$ такие, что

$$T \vDash \forall \overline{d} \left(\bigwedge_{i=1}^n \psi_i(\overline{\nu}) \Rightarrow \neg \phi(\overline{\nu}) \right).$$

Но тогда

$$T \vDash \forall \overline{d} \ \left(\phi(\overline{\nu}) \Rightarrow \bigvee_{i=1}^n \neg \psi_i(\overline{\nu}) \right),$$

и получаем, что $\bigvee_{i=1}^n \neg \psi_i(\overline{v}) \in \Gamma(\overline{v})$. По определению A тогда получаем $A \models \bigvee_{i=1}^n \neg \psi_i(\overline{d})$, и одна из $\psi_i(\overline{d})$ не выполняется в A, что противоречит тому, что $\psi_i(\overline{d}) \in \text{Diag}(A)$. Таким образом, у Σ есть модель.

Пусть $N \models \Sigma$. Тогда $N \models \phi(\overline{d})$. Заметим, что Diag(A) содержится в Σ , и по лемме $\underline{1.3.6.3}$ тогда $A \subseteq N$. Но $M \models \neg \phi(\overline{d})$; из условия (2) предыдущей теоремы теперь следует, что и $N \models \neg \phi(\overline{d})$, противоречие.

Замечание 1.3.8.3. Можно подправить теорему 1.3.8.1 и избавиться от требование наличия символа константы в L. В этом случае в L вообще нет предложений без кванторов, но для каждого предложения найдется формула $\psi(\nu_1)$ без кванторов такая, что $T \models \forall \nu_1 \ (\phi \Leftrightarrow \psi(\nu_1))$.

Соединяя теорему 1.3.8.1 с леммой 1.3.7.1, получаем следующий нехитрый тест на исключение кванторов.

Следствие 1.3.8.4. Пусть T-L-теория. Предположим, что для любой формулы $\phi(\overline{v},w)$ без кванторов, если $M,N \models T, A$ — общая подструктура в M и $N, \overline{a} \in A$ и $b \in M$ таков, что $M \models \phi(\overline{a},b)$, то найдется $c \in N$ такой, что $N \models \phi(\overline{a},c)$. Тогда в T есть исключение кванторов.

1.3.9 Алгебраически замкнутые поля

Мы будем рассматривать теорию алгебраически замкнутых полей ACF в языке теории колец $L = \{+, -, \cdot, 0, 1\}$. Обратите внимание, что мы включаем операцию вычитания. Таким образом, подструктуры модели этой теории — это области целостности.

Теорема 1.3.9.1. В теории АСР есть исключение кванторов.

Доказательство. Воспользуемся следствием <u>1.3.8.4</u>. Пусть K, L — алгебраически замкнутые поля, A — область целостности такая, что $A \subseteq K \cap L$. Нам нужно показать, что если $\phi(\overline{v},w)$ — формула без кванторов, $\overline{a} \in A$, $b \in K$ и $K \vdash \phi(\overline{a},b)$, то найдется $c \in L$ такой, что $L \vDash \phi(\overline{a},c)$.

Пусть F — алгебраическое замыкание поля частных кольца A. Можно считать, что $F\subseteq K\cap L$. Мы покажем нечто более сильное: для $\overline{a}\in F$, $b\in K$ таких, что $K\vDash \phi(\overline{a},b)$, найдется $c\in F$ такой, что $F\vDash \phi(\overline{a},c)$. Тогда по замечанию $\underline{1.3.5.2}$ и $L\vDash \phi(\overline{a},c)$.

Запишем формулу φ в дизъюнктивной нормальной форме, то есть,

$$\phi(\overline{\nu}, w) \Leftrightarrow \bigvee_{i=1}^{n} \bigwedge_{j=1}^{m} \theta_{i,j}(\overline{\nu}, w).$$

Здесь каждая из формул $\theta_{i,j}(\overline{\nu},w)$ атомарная или отрицание атомарной. Из того, что $K \models \phi(\overline{a},b)$ следует, что $K \models \bigwedge_{j=1}^m \theta_{i,j}(\overline{a},b)$ для некоторого і. Поэтому можно считать, что ϕ является конъюнкцией атомарных или отрицаний атомарных. Заметим, что в нашем языке любая атомарная формула имеет вид $p(\overline{\nu})=0$ для некоторого многочлена p с целыми коэффициентами. При подстановке фиксированного $\overline{a} \in F$ в такой многочлен мы получаем многочлен от одной переменной с коэффициентами в F. Поэтому найдутся многочлены $p_1,\ldots,p_n,q_1,\ldots,q_m\in F[X]$ такие, что формула $\phi(\overline{a},\nu)$ эквивалентна формуле

$$\bigwedge_{i=1}^{n} p_i(v) = 0 \wedge \bigwedge_{i=1}^{m} q_i(v) \neq 0.$$

Если хотя бы один из многочленов p_i нетривиален, то элемент b алгебраичен над F, и тогда $b \in F$. В этом случае можно взять c = b и цель достигнута. Значит, можно считать, что формула $\phi(\overline{a}, \nu)$ эквивалентна формуле

$$\bigwedge_{i=1}^{m} q_i(v) \neq 0.$$

Но для каждого і уравнение $q_i(x)=0$ имеет лишь конечное число решений, а поле F бесконечно. Поэтому найдется $c\in F$ такой, что $F \models \phi(\overline{a},c)$.

Замечание 1.3.9.2. Пусть K, L — алгебраически замкнутые поля и K \subseteq L. Тогда K \preccurlyeq L в силу замечания 1.3.5.5.

1.3.10 Приложение: теорема Шевалле

Пусть k- поле, $p_1,\ldots,p_r\in k[x_1,\ldots,x_n]$. Напомним, что множества вида $V(p_1,\ldots,p_r)=\{\overline{x}\in k^n\mid p_1(\overline{x})=\cdots=p_r(\overline{x})=0\}$ называются замкнутыми множествами в mononosuu Зариского на k^n .

Лемма 1.3.10.1. Пусть k-nоле. Подмножества k^n , определимые атомарными формулами — это в точности подмножества вида $V(\mathfrak{p})$ для некоторого $\mathfrak{p} \in k[x_1,\ldots,x_n]$. Подмножество k^n определимо формулой без кванторов тогда и только тогда, когда оно является булевой комбинацией замкнутых множеств топологии Зариского.

Доказательство. Пусть $\phi(\overline{x},\overline{y})$ — атомарная формула в языке колец, определяющая множество X, то есть, $X=\{\overline{x}\mid \phi(\overline{x},\overline{a})$ для некоторого $\overline{a}\in k$. Нетрудно понять, что найдется многочлен $q(\overline{x},\overline{y})\in \mathbb{Z}[\overline{x},\overline{y})$ такой, что формула $\phi(\overline{x},\overline{y})$ эквивалентна формуле $q(\overline{x},\overline{y})=0$. Тогда $X=V(q(\overline{x},\overline{a}))$, причем многочлен $q(\overline{x},\overline{a})$ лежит в $k[\overline{x}]$. Обратно, для любого многочлена $p\in k[\overline{x}]$ можно найти многочлен $q\in \mathbb{Z}[\overline{x},\overline{y}]$ и набор $\overline{a}\in k$ такой, что $p(\overline{x})=q(\overline{x},\overline{a})$; например, в качестве \overline{a} можно взять коэффициенты p.

Если X замкнуто в топологии Зариского, то $X=V(p_1,\ldots,p_r)=V(p_1)\cap\cdots\cap V(p_r)$ для некоторых $p_1,\ldots,p_r\in k[\overline{x}]$ (по теореме Гильберта о базисе). Множества, определимые формулами без кванторов — это в точности конечные булевы комбинации атомарно определяемых множеств, то есть, в точности булевы комбинации замкнутых в топологии Зариского.

Определение 1.3.10.2. Конечные булевы комбинации множеств, замкнутых по Зарискому, называются конструктивными множествами.

Следствие 1.3.10.3. Пусть $k = \overline{k}$ — алгебраически замкнутое поле.

- 1. Подмножество $X\subseteq k^n$ конструктивно тогда и только тогда, когда оно определимо.
- 2. (теорема Шевалле). Образ конструктивного множества при полиномиальном отображении конструктивен.
- Доказательство. 1. По лемме 1.3.10.1 конструктивные множества это в точности множества, определимые формулами без кванторов. В силу исключения кванторов 1.3.9.1 любое множество является таким.
 - 2. Пусть $X \subset k^n$ конструктивно: $X = \{\overline{x} \mid \phi(\overline{x}, \overline{a})\}$ для некоторой формулы ϕ и $\overline{a} \in k$. Пусть $p \colon k^n \to k^m$ полиномиальное отображение. Тогда образ X равен определимому множеству $\{y \in k^m \mid \exists x \ (\phi(\overline{x}, \overline{a}) \land p(\overline{x}) = \overline{y})\}$, которое конструктивно.

1.3.11 Приложение: Nullstellensatz

Напомним, что для подмножества $X\subseteq k^n$ множество многочленов, обращающихся в нуль на X, является идеалом $I(X)=\{f\in k[\overline{x}]\mid f(\overline{x})=0$ для всех $\overline{x}\in X\}$ кольца $k[\overline{x}]$. Теорема Гильберта о нулях утверждает, что отображения I и V устанавливают биекцию между замкнутыми множествами топологии Зариского и радикальными идеалами в $k[\overline{x}]$. Для ее доказательства нам понадобится некоторый факт из коммутативной алгебры.

Лемма 1.3.11.1 (Примарное разложение). Пусть $I\subseteq k[\overline{x}]$ — радикальный идеал. Найдутся простые идеалы P_1,\ldots,P_m , содержащие I, такие, что $I=P_1\cap\cdots\cap P_m$, $I\neq\bigcap_{j\in J}P_j$ для всех $J\subsetneq\{1,\ldots,m\}$, и если Q_1,\ldots,Q_n — еще один набор простых идеалов с теми же свойствами, то n=m и $\{Q_1,\ldots,Q_n\}=\{P_1,\ldots,P_m\}$.

Теорема 1.3.11.2 (Nullstellensatz). Пусть $k=\overline{k}$ — алгебраически замкнутое поле. Если I,J — радикальные идеалы в $k[\overline{x}]$ такие, что $I\subsetneq J$, то $V(J)\subsetneq V(I)$.

Доказательство. Очевидно, что $V(J)\subseteq V(I)$. Пусть $\mathfrak{p}\in J\setminus I$. По лемме $\underline{1.3.11.1}$ найдется простой идеал $P\supseteq I$ такой, что $\mathfrak{p}\notin P$. Покажем, что найдется $x\in V(P)\subseteq V(I)$ такой, что $\mathfrak{p}(x)\neq 0$. В этом случае $x\notin V(J)$, и $V(I)\neq V(J)$.

Заметим, что $k[\overline{x}]/P$ — область целостности, поэтому можно рассмотреть алгебраическое замыкание ее поля частных: $F = \overline{Frac(k[\overline{x}]/P)}$. Пусть многочлены $q_1, \ldots, q_m \in k[\overline{x}]$ порождают идеал І. Обозначим через a_i образ элемента x_i в F. Поскольку $q_i \in P$ и $p \notin P$, получаем

$$F \vDash \bigwedge_{i=1}^m q_i(\overline{\alpha}) = 0 \land p(\overline{\alpha}) \neq 0.$$

Поэтому

$$F \vDash \exists \overline{\nu} \, \bigwedge_{i=1}^m q_i(\overline{\nu}) = 0 \, \land \, p(\overline{\nu}) \neq 0.$$

Поле k содержится в F, поэтому $k \leq F$ (замечание 1.3.9.2). Значит,

$$k \vDash \exists \overline{v} \bigwedge_{i=1}^{m} q_i(\overline{v}) = 0 \land p(\overline{v}) \neq 0.$$

Поэтому найдется $\overline{b} \in k^n$ такой, что $q_1(\overline{b}) = \cdots = q_m(\overline{b}) = 0$ и $p(\overline{b}) \neq 0$, то есть, $\overline{b} \in V(P) \setminus V(J)$.

1.3.12 Определимость структур

Сейчас мы хотим научиться сводить структуры в одном языке к структурам в другом языке. Пусть L_0 , L_1 — языки, и A — L_0 -структура. Мы хотим определить новую L_1 -структуру при помощи A. Подлежащим множеством этой структуры будет фактор-множество некоторого определимого подмножества A^n по определимому отношению эквивалентности на нем. А именно, пусть $Q(\overline{x})$ — L_0 -формула с n свободными переменными n0 с n0 свободными переменными, n0 с n0 свободными переменными такая, что n0 с n0 с n0 свободными переменными такая, что n0 с n

няется отношением эквивалентности E(A). В этом случае возникает отношение арности \mathfrak{n}_r на фактор-множестве Q(A)/E(A)

Итак, будем говорить, что L_1 -структура M определима (или интерпретируема) в L_0 -структуре A, если заданы L_0 -формулы Q, E (с описанными выше свойствами), и L_0 -формулы, задающие интерпретации всех символов языка L_1 так, что M изоморфна L_1 -структуре Q(A)/E(A).

Пример 1.3.12.1. Пусть F — поле, рассматриваемое как структура в языке колец $(+,\cdot,0,1)$, а $\mathrm{GL}_n(F)$ — группа невырожденных матриц над F размера $n\times n$, рассматриваемая как структура в языке групп (\cdot,e) . Естественно интерпретировать $\mathrm{GL}_n(F)$ на множестве $D=\{X=(x_{ij})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}\in F^{n^2}\mid \det(X)\neq 0\}$ с тривиальным отношением эквивалентности. Константа e интерпретируется как элемент e интерпретируется как элемент e интерпретируется в языке колец посредством известных полиномиальных формул.

1.3.13 Приложение: теорема Мальцева

Напомним, что (абстрактная) группа G называется линейной ранга n, если она изоморфна подгруппе группы $GL_n(F)$ для некоторого поля F.

Теорема 1.3.13.1 (Теорема Мальцева). Группа G линейна ранга n, если каждая конечно порожденная подгруппа G линейна ранга n.

Доказательство. Пусть G — локально линейная группа ранга n, то есть, каждая конечно порожденная подгруппа G вкладывается в $GL_n(F)$ для некоторого поля F. Рассмотрим теорию T, состоящую из аксиом поля в языке $(+,\cdot,0,1)$. Обозначим через $D((x_{ij}))$ формулу с n^2 переменными, определяющую множество $\{(x_{ij}) \in F^{n^2} \mid \det(x_{ij}) \neq 0\}$. Пусть Diag(G) — диаграмма группы G (в языке теории групп). Напомним, что Diag(G) — это множество формул в языке, в котором для каждого элемента G группы G имеется символ константы G0. Сейчас мы построим некоторое множество формул G1 в языке теории колец с добавленными константами. А именно, для каждого элемента G2 добавим G3 добавим G4 символов

констант c_{ij}^g , $1\leqslant i,j\leqslant n$. Включим в ${\sf Diag}^F(G)$ формулы ${\sf D}((c_{ij}^g))$. Кроме того, переведем каждую формулу из ${\sf Diag}(G)$ на язык теории полей: для этого достаточно научиться переводить формулу вида $c^g\cdot c^h=c^{gh}$, что делается формулой $\sum_k c_{ij}^g c_{kj}^h=c_{ij}^{gh}$.

Рассмотрим теперь множество предложений $\Sigma = T \cup \text{Diag}^F(G)$. В силу предположения о локальной линейности G каждое конечное подмножество Σ имеет модель. По теореме компактности $\underline{1.1.2.1}$ у Σ есть модель. Интерпретации символов констант c_{ij}^g в этой модели задают искомое вложение G.

1.4 Типы

1.4.1 Определения

Определение 1.4.1.1. Пусть L — некоторый язык, A — L-структура, X — некоторое подмножество A. Напомним, что через L_X мы обозначаем язык, полученный из L присоединением констант вида c_X для всех $x\in X$. Для элемента $\overline{b}=(b_1,\ldots,b_n)\in A^n$ рассмотрим множество всех формул $\phi(\overline{\nu})$ в языке L_X с n свободными переменными таких, что $A\vDash\phi(\overline{b})$. Это множество называется полным типом \overline{b} над X (по отношению x A) и обозначается через $tp_A(\overline{b}/X)=tp(\overline{b}/X)$. Элементы X называются параметрами этого полного типа. В случае $X=\emptyset$ мы пишем $tp_A(\overline{b})=tp_A(\overline{b}/\emptyset)$.

Замечание 1.4.1.2. Неформально говоря, полный тип элемента над X — это все, что мы можем сказать про этот элемент, пользуясь формулами с параметрами из X. Заметим, что если B — элементарное расширение A, то $\operatorname{tp}_B(\overline{b}/X)=\operatorname{tp}_A(\overline{b}/X)$.

Определение 1.4.1.3. Пусть $P(\overline{x})$ — некоторое множество формул L с параметрами из X. Будем говорить, что $P(\overline{x})$ — полный тип над X (по отношению к A), если $P(\overline{x})$ — полный тип некоторого элемента \overline{b} над X по отношению к некоторому элементарному расширению A.

Замечание 1.4.1.4. Неформально говоря, полный тип над X — это все, что мы можем сказать, пользуясь формулами с параметрами из X, про некоторый элемент \overline{b} , который в принципе может быть элементом A; он может лежать уже в A, а может — в некотором элементарном расширении A.

Определение 1.4.1.5. Типом над X (по отношению к A) называется произвольное подмножество некоторого полного типа над X. Тип, зависящий от n свободных переменных, называется n-типом. Будем говорить, что тип $P(\overline{x})$ над X реализуется элементом \overline{b} из A, если $P\subseteq tp_A(\overline{b}/X)$. Если P не реализуется никаким элементом в A, мы говорим, что A опускает тип P.

Замечание 1.4.1.6. Если $A \subseteq B$, то $\operatorname{tp}_A(a)$ и $\operatorname{tp}_B(a)$ могут быть различными. Однако, из определений сразу следует, что $A \preceq B$ влечет $\operatorname{tp}_A(a) = \operatorname{tp}_B(a)$.

Следующую теорему можно воспринимать как альтернативное определение типа и полного типа. Вудем говорить, что множество Φ формул в языке L с параметрами в A конечно реализуемо в A, если для любого конечного подмножества Ψ в Φ выполнено $A \vdash \exists \overline{x} \land \Psi$.

Теорема 1.4.1.7. Пусть L- язык, A-L-структура, X- некоторое подмножество $A,\ u\ \Phi(\nu_1,\ldots,\nu_n)-$ множество формул языка L с параметрами из X. Тогда

1. $\Phi(\overline{\nu})$ является типом над X по отношению к A тогда и только тогда, когда Φ конечно реализуемо в A.

- 2. $\Phi(\overline{\nu})$ является полным типом над X по отношению к A тогда и только тогда, когда Φ максимальное (по включению) конечно реализуемое множество L-формул с параметрами в X.
- Доказательство. 1. Пусть Φ полный тип над X по отношению к A. Тогда для некоторорого элементарного расширения $A \preccurlyeq B$ найдется набор $\overline{b} \in B$ такой, что $B \models \bigwedge \Phi(\overline{b})$. Если Ψ конечное подмножество Φ , то $B \models \bigwedge \Psi(\overline{b})$ и поэтому $B \models \exists \overline{v} \bigwedge \Psi(\overline{v})$. Поскольку $A \preccurlyeq B$, из этого следует, что $A \models \exists \overline{v} \bigwedge \Psi(\overline{v})$.

Обратно, если Φ конечно реализуемо в A, рассмотрим полную диаграмму $\mathrm{CDiag}(A)$ и добавим в наш язык новые константы $\overline{c}=(c_1,\ldots,c_n)$. Рассмотрим теорию $\mathsf{T}=\mathrm{CDiag}(A)\cup\Phi(\overline{c})$. У каждого ее конечного подмножества есть модель: дествительно, если $\mathsf{U}\subseteq\mathsf{T}$ конечно, рассмотрим множество Ψ формул $\psi(\overline{\nu})\in\Phi$ таких, что $\psi(\overline{c})\in\mathsf{U}$. По предположению $A\models\exists\overline{\chi}\ \bigwedge\Psi$, поэтому для некоторого набор \overline{a} в A выполнено $A\models\bigwedge(\overline{a})$. Интерпретируя константы \overline{c} как соответствующие элементы набора \overline{a} , видим, что A является моделью U .

По теореме компактности $\underline{1.1.2.1}$ теперь у T есть модель C. При этом $C \vDash \mathrm{CDiag}(A)$, и по лемме $\underline{1.3.6.4}$ имеется элементарное вложение $e \colon A \to C$ (здесь C рассматривается как L-структура). Пусть \overline{b} — интерпретация констант \overline{c} в C. Тогда из $C \vDash \mathsf{T}$ следует $C \vDash \bigwedge \Phi(\overline{b})$. Это означает, что $\Phi(\overline{v})$ является подмножеством полного типа элемента \overline{b} в элементарном расширении A, что и требовалось.

2. Если Φ — полный тип над X, то для каждой формулы $\phi(\overline{\nu})$ в языке L с параметрами из X множество Φ содержит либо ϕ , либо $\neg \phi$. Поэтому Φ максимально среди всех типов над X по отношению к A. Обратно, пусть Φ максимально среди типов над X. При этом для некоторого элементарного расширения $A \preccurlyeq B$ найдется набор \overline{b} такой, что $B \models \bigwedge \Phi(\overline{b})$, то есть, Φ содержится в полном типе элемента \overline{b} над X. B силу максимальности теперь Φ совпадает с этим полным типом.

1.4.2 Нестандартный анализ

Сопоставим каждой функции $f\colon \mathbb{R}^n \to \mathbb{R}$ символ функции \bar{f} и рассмотрим язык L_1 Real, из этих символов. Заметим, что константы являются частным случаем функции, поэтому можно считать, что в нашем языке есть и символы для всех вещественных чисел. Кроме того, каждому подмножеству \mathbb{R}^n можно сопоставить его характеристическую функцию, поэтому можно считать, что в нашем языке есть символы для всех отношений на \mathbb{R} . В частности, имеются символы для отношения порядка на \mathbb{R} , для стандартных арифметических операций.

Обозначим через $\mathbb{R}_{analysis}$ множество \mathbb{R} с тривиальной интерпретацией каждого символа \bar{f} : $\bar{f}^{\mathbb{R}_{analysis}}=f$. Рассмотрим полную теорию $Th(\mathbb{R}_{analysis})$ этой L_1Real -структуры. Модель $\mathbb{R}_{analysis}$ мы будем называть стандартной моделью вещественных чисел, а остальные модели теории $Th(\mathbb{R}_{analysis})$ (они есть хотя бы по теореме компактности $\underline{1.1.7.1}$) — нестандартными. Заметим, что любая нестандартная модель вещественных чисел содержит $\mathbb{R}_{analysis}$ в качестве подструктуры.

Предложение 1.4.2.1. B любой нестандартной модели вещественных чисел найдется элемент α такой, что $0<\alpha<1/n$ для всех натуральных n.

 Δ оказательство. Пусть * \mathbb{R} — модель теории $\mathrm{Th}(\mathbb{R}_{\mathrm{analysis}})$. Если она отлична от $\mathbb{R}_{\mathrm{analysis}}$, то в ней найдется элемент γ , не являющийся вещественным числом. Пусть $[\gamma]^-=\{q\in$

23

 $\mathbb{Q} \mid q < \gamma$ }, $[\gamma]^+ = \{q \in \mathbb{Q} \mid q > \gamma\}$. Если $[\gamma]^-$ пусто, то можно взять $\alpha = -\gamma^{-1}$. Если $[\gamma]^+$ пусто, то можно взять $\alpha = \gamma^{-1}$. Если же оба множества $[\gamma]^-$, $[\gamma]^+$ непусты, то они образуют дедекиндово сечение, задающее единственное вещественное число r. При этом либо $r > \gamma$, либо $r < \gamma$. В первом случае положим $\alpha = r - \gamma$, а во втором $\alpha = \gamma - r$.

 Δ алее мы фиксируем некоторую нестандартную модель вещественных чисел $*\mathbb{R}$.

Определение 1.4.2.2. Элемент $\alpha \in {}^*\mathbb{R}$, для которого $0 < \alpha < 1/n$ при всех натуральных n, называется положительным бесконечно малым. Элемент называется бесконечно малым, если он имеет вид α или $-\alpha$ для положительного бесконечно малого α . Элемент $\gamma \in {}^*\mathbb{R}$ называется бесконечным, если $[\gamma]^-$ или $[\gamma]^+$ пусто. В противном случае γ называется ограниченным.

Замечание 1.4.2.3. Заметим, что условия $0 < \alpha < 1/n$ образуют тип в теории L_1 Real, поскольку любой конечный поднабор этих условий реализуется некоторым вещественным числом (см. теорему 1.4.1.7). Предложение 1.4.2.1 утверждает, что любая нестандартная модель вещественных чисел реализует этот тип.

Несложно проверить, что подмножество $B\subseteq {}^*\mathbb{R}$ всех ограниченных элементов образует кольцо, а его подмножество $\mu\subseteq B$ бесконечно малых элементов — идеал в этом кольце. Для $\alpha\in\mu$, $r\in\mathbb{R}$ положим $\mathrm{st}\colon r+\alpha\mapsto r$; это правило задает корректно определенный сюрьективный гомоморфизм колец $B\to\mathbb{R}$, называемый взятием стандартной части; для $x\in B$ вещественное число $\mathrm{st}(x)$ называется стандартной частью x.

Заметим, что для любой функции $f\colon \mathbb{R} \to \mathbb{R}$ наш язык содержит символ \bar{f} , который в нашей нестандартной модели ${}^*\mathbb{R}$ имеет некоторую интерпретацию; мы будем обозначать ее через *f .

- Упражнение 1.4.2.4. 1. Докажите, что $f \colon \mathbb{R} \to \mathbb{R}$ непрерывна на интервале (a,b) тогда и только тогда, когда $^*f(x+\alpha)-^*f(x)$ является бесконечно малым для любого $x \in (a,b)$ и для любого бесконечно малого α .
 - 2. Докажите, что д является производной f на интервале (a,b) тогда и только тогда, когда $g(x)=st((*f(x+\alpha)-*f(x))/\alpha)$ для любого вещественного $x\in (a,b)$ и для любого бесконечно малого α .

1.4.3 Элементарные цепочки моделей

Пусть L — язык, к — некоторый ординал, и пусть задана последовательность L-структур

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\alpha \subseteq \ldots \qquad (\alpha < \kappa),$$

занумерованная ординалом κ , так что $A_{\alpha}\subseteq A_{\alpha+1}$ — вложение для каждого ординала $\alpha<\kappa$, и для всякого предельного ординала $\delta\leqslant\kappa$ структура A_{δ} определена следующим [естественным] образом:

- как множество $A_{\delta} = \bigcup_{\alpha < \delta} A_{\alpha}$;
- ullet для каждого символа отношения r в L выполнено $r^{A_\delta} = \bigcup_{\alpha < \delta} r^{A_\alpha};$
- для каждого символа функции f в L функция $f^{A_\delta}\colon A_\delta^m \to A_\delta$ переводит \overline{a} в b если и только если \overline{a} лежит в A_α для некоторого α и $f^{A_\alpha}(\overline{a}) = b$;
- ullet для каждого символа константы C в L выполнено $c^{A_\delta} = c^{A_0}.$

Предложение 1.4.3.1. Если для каждого ординала $\alpha < \kappa$ выполнено $A_{\alpha} \preccurlyeq A_{\alpha+1}$, то $A_{\alpha} \preccurlyeq A_{\delta}$ для всех $\alpha < \delta \leqslant \kappa$.

Доказательство. Очевидно, что достаточно доказать это утверждение для всех предельных ординалов $\delta \leqslant \kappa$. По индукции можно предполагать, что $A_{\alpha} \preccurlyeq A_{\beta}$ для всех $\alpha < \beta < \delta$. Нам нужно доказать, что для любой L-формулы $\phi(\overline{x})$ и для любого \overline{a} в A_{α} выполнено $A_{\alpha} \vDash \phi(\overline{a})$ тогда и только тогда, когда $A_{\delta} \vDash \phi(\overline{a})$. Конечно, мы воспользуемся индукцией по сложности формулы ϕ .

Для атомарной формулы ϕ утверждение следует из того, что $A_{\alpha}\subseteq A_{\delta}$ является вложением. Пусть $\phi(\overline{x})$ имеет вид $\exists y\ \psi(\overline{x},y)$. Если $A_{\alpha}\models\phi(\overline{a})$, то для некоторого $b\in A_{\alpha}\subseteq A_{\delta}$ выполнено $\psi(\overline{a},b)$, и поэтому в A_{δ} выполнено $\exists y\ \psi(\overline{a},y)$, то есть, $A_{\delta}\models\phi(\overline{a})$. Обратно, если $A_{\delta}\models\exists y\ \psi(\overline{a},y)$, то $A_{\delta}\models\psi(\overline{a},b)$ для некоторого $b\in A_{\delta}$, и $b\in A_{\beta}$ для некоторого ординала β такого, что $\alpha<\beta<\delta$. По предположению индукции тогда $A_{\beta}\models\psi(\overline{a},b)$. Это означает, что $A_{\beta}\models\exists y\ \psi(\overline{a},y)$, откуда следует $A_{\alpha}\models\exists y\ \psi(\overline{a},y)$ в силу элементарности вложения $A_{\alpha}\preccurlyeq A_{\beta}$.

Определение 1.4.3.2. Цепочка моделей, удовлетворяющая условиям предложения <u>1.4.3.1</u>, называется элементарной.

Лемма 1.4.3.3. Пусть $P = \{p^{\alpha} \mid \alpha < \kappa\}$ — множество n-типов, A — некоторая L-структура, а кардинал κ таков, что $\kappa \geqslant \max\{|A|,|L|\}$. Тогда найдется элементарное расширение B структуры A такое, что $|B| = \kappa$ u все типы из P реализуются в B.

Доказательство. По предложению $\underline{1.4.3.1}$ достаточно доказать лемму для одноэлементного множества $P=\{p\}$. Рассмотрим расширение L' языка L_A константами c_1,\ldots,c_n и теорию $T'=\mathrm{CDiag}(A)\cup\{\phi(c_1,\ldots,c_n)\mid\phi(x_1,\ldots,x_n)\in p\}$. Из теоремы $\underline{1.4.1.7}$ сразу следует, что любое конечное подмножество T' имеет модель. По теореме компактности $\underline{1.1.2.2}$ у теории T' есть модель B мощности не более $|A|+\aleph_0$. При этом $B\models\mathrm{CDiag}(A)$, поэтому B, рассмотренная как L-структура, является элементарным расширением A.

Упражнение 1.4.3.4. Избавътесъ в доказательстве леммы $\underline{1.4.3.3}$ от ссылки на предложение $\underline{1.4.3.1}$, рассмотрев сразу все типы из P.

1.4.4 Типы и автоморфизмы

Рассмотрим структуру рациональных чисел $\mathbb Q$ в языке L, состоящем из одного отношения порядка <. Обозначим через $p(\nu)$ множество формул $\{\phi(\nu)\in L_{\mathbb N}\mid \phi(1/2)\}$ — полный тип элемента 1/2 над подмножеством натуральных чисел. Легко видеть, что 1/2 — не единственная реализация типа p. Действительно, для любого рационального числа 0< r<1 существует автоморфизм структуры $\mathbb Q$, который оставляет на месте все натуральные числа и переводит 1/2 в r. Поэтому $\mathbb Q \models \phi(1/2)$ тогда и только тогда, когда $\mathbb Q \models \phi(r)$. Значит, r реализует тип p.

Более того, элементы $\mathbb Q$, реализующие p- это в точности рациональные числа s, для которых 0 < s < 1. Действительно: если $s \leqslant 0$ или $s \geqslant 1$, то формула $(0 < \nu) \wedge (\nu < 1)$ лежит в $p(\nu)$, но не выполняется для s. Поэтому s не может реализовывать тип p.

Мы использовали автоморфизмы структуры для построения элементов с одинаковым полным типом. Оказывается, что если разрешить переход к элементарному расширению, то верно и обратное: элементы с одинаковым полным типом должны переводиться друг в друга некоторым автоморфизмом некоторого расширения.

Предложение 1.4.4.1. Пусть M-L-структура, $X\subseteq M$. Пусть $\overline{a}, \overline{b}\in M^n$ таковы, что $\operatorname{tp}^M(\overline{a}/X)=\operatorname{tp}^M(\overline{a}/X)$. Тогда найдется элементарное расширение N структуры M u автоморфизм $\sigma\colon N\to N$ такой, что $\sigma(x)=x$ для всех $x\in X$ u $\sigma(\overline{a})=\overline{b}$.

Для доказательства предложения 1.4.4.1 мы будем индуктивно строить нужное элементарное расширение; нам понадобится понятие частичного элементарного отображения.

Определение 1.4.4.2. Пусть M, N-L-структуры, $B\subseteq M$. Отображение $f\colon B\to N$ называется частичным элементарным, если для всех L-формул ϕ и для всех наборов \overline{b} элементов B выполнено $M \vDash \phi(\overline{b})$ тогда и только тогда, когда $N \vDash \phi(f(\overline{b}))$

Следующая лемма предоставляет нам индукционный переход.

Лемма 1.4.4.3. Пусть M, N-L-структуры, $B\subseteq M,$ $f\colon B\to N-$ частично элементарное отображение, $u\ b\in M.$ Существует элементарное расширение N_1 структуры $N\ u$ частично элементарное отображение $f_1\colon B\cup \{b\}\to N_1$, расширяющее $f_2\colon B\cup \{b\}\to N_1$, расширяющее $f_3\colon B\cup \{b\}\to N_2$.

Доказательство. Пусть

$$\Gamma = \mathtt{CDiag}(\mathsf{N}) \cup \{ \phi(\mathsf{v}, \mathsf{f}(\mathsf{a}_1), \dots, \mathsf{f}(\mathsf{a}_n) \mid \mathsf{M} \vDash \phi(\mathsf{b}, \mathsf{a}_1, \dots, \mathsf{a}_n), \mathsf{a}_1, \dots, \mathsf{a}_n \in \mathsf{B} \}.$$

Сейчас мы найдем структуру N_1 и элемент $c \in N_1$, удовлетворяющие всем формулам в Γ (после подстановки $v \mapsto c$). При этом N будет элементарным расширением N, и легко видеть, что f продолжается до частично элементарного отображения, которое b переводит в c.

Таким образом, достаточно доказать, что теория Γ имеет модель; а по теореме компактности 1.1.2.1 достаточно показать, что каждое конечное подмножество Γ имеет модель. Мы покажем, что N — модель для каждого конечного подмножества Γ . После взятия конъюнкций достаточно показать, что если $M \models \phi(b, a_1, \ldots, a_n)$, то $N \models \exists \nu \ \phi(\nu, f(a_1), \ldots, f(a_n))$. Но это следует из того, что $M \models \exists \nu \ \phi(\nu, a_1, \ldots, a_n)$ и f частично элементарно. \square

Теперь можно применить трансфинитную индукцию.

Следствие 1.4.4.4. Пусть M, N-L-структуры, $B\subseteq M$, $f\colon B\to N-$ частично элементарное отображение. Тогда существует элементарное расширение N' теории N и элементарное вложение $M\to N'$.

Доказательство. Пусть $\kappa = |M|$, $\{\alpha_{\alpha} \mid \alpha < \kappa\}$ — некоторым способом занумерованные элементы M. Пусть $N_0 = N$, $B_0 = B$ и $g_0 = f$. Положим $B_{\alpha} = B \cup \{\alpha_{\beta} \mid \beta < \alpha$. Мы построим элементарную цепочку $(N_{\alpha} \mid \alpha < \kappa)$ и частично элементарное отображение $g_{\alpha} \colon B_{\alpha} \to N_{\alpha}$ такое, что $g_{\beta} < g_{\alpha}$ для $\beta < \alpha$.

Если $\alpha=\beta+1$ и $g_{\beta}\colon B_{\beta}\to N_{\beta}$ — частично элементарное отображение, то, по лемме 1.4.4.3 найдется $N_{\beta}\preccurlyeq N_{\alpha}$ и $g_{\alpha}\colon B_{\alpha}\to N_{\alpha}$, продолжающее g_{β} .

Если же α — предельный ординал, положим $N_{\alpha} = \bigcup_{\beta < \alpha} N_{\beta}$ и $g_{\alpha} = \bigcup_{\beta < \alpha} g_{\beta}$. Из предложения 1.4.3.1 следует, что N_{α} является элементарным расширением N_{β} для всех $\beta < \alpha$, а g_{α} — частично элементарное отображение.

Положим теперь $N' = \bigcup_{\alpha < \kappa} N_{\alpha}$ и $g = \bigcup_{\alpha < \kappa} g_{\alpha}$. Снова применяя предложение 1.4.3.1 получаем, что $N \leq N'$, и g — частично элементарное отображение. При этом g определено на всем M, поэтому g является элементарным вложением M в N'.

Доказательство предложения 1.4.4.1. Рассмотрим отображение $f: A \cup \{a\} \to A \cup \{b\}$ такое, что f(a) = b и f(x) = x для $x \in A$. Из равенства $tp^M(a/A) = tp^M(b/A)$ следует, что

f — частично элементарное отображение. По следствию 1.4.4.4 существует элементарное расширение N_0 структуры M и элементарное вложение $f_0\colon M\to N_0$, продолжающее f.

Сейчас мы построим цепочку элементарных расширений

$$M = M_0 \leq N_0 \leq M_1 \leq N_1 \leq M_2 \leq N_2 \leq \dots$$

и элементарные вложения $f_i\colon M_i\to N_i$ такие, что $f_0\subseteq f_1\subseteq f_2\subseteq\dots$, и N_i содержится в образе $f_{i+1}.$ После этого мы положим

$$N = \bigcup_{i < \omega} N_i = \bigcup_{i < \omega} M_i, \quad \sigma = \bigcup_{i < \omega} f_i.$$

Из предложения 1.4.3.1 следует, что N — элементарное расширение M, а σ : N \to N — элементарное вложение такое, что $\sigma(a)=b$ и $\sigma(x)=x$ для $x\in A$. По построению отображение σ сюръективно, поэтому оно является нужным нам автоморфизмом N.

Построим теперь M_i и N_i по индукции. Для $f_i\colon M_i\to N_i$ мы можем рассмотреть f_i^{-1} как частично элементарное отображение из $f_i(M_i)$ в $M_i\preccurlyeq N_i$. По следствию 1.4.4.4 можно найти элементарное расширение M_{i+1} структуры N_i и продолжить f_i^{-1} до элементарного вложения $g_i\colon N_i\to M_{i+1}$. После этого, совершенно аналогичным образом, можно рассмотреть g_i^{-1} как частично элементарное отображение из $g_i(N_i)$ в $N_i\preccurlyeq M_{i+1}$, снова применить следствие 1.4.4.4 и найти элементарное расширение N_{i+1} структуры M_{i+1} вместе с элементарным вложением $f_{i+1}\colon M_{i+1}\to N_{i+1}$, продолжающим g_i^{-1} . Из включений $f_{i+1}\supseteq g_i^{-1}$ и $g_i\supseteq f_i^{-1}$ следует, что $f_{i+1}\supseteq f_i$. При этом g_i определено на N_i , и поэтому N_i содержится в образе f_{i+1} .

1.4.5 Пространство Стоуна

Определение 1.4.5.1. Пусть M — L-структура, $X \subseteq M$. Обозначим через $S_n^M(X)$ множество всех полных n-типов над X относительно структуры M. Для L_X -формулы φ со свободными переменными ν_1, \ldots, ν_n положим $[\varphi] = \{ p \in S^M(X) \mid \varphi \in p \}$. Множества вида $[\varphi]$ образуют базу некоторой топологии на множестве $S_n^M(X)$, которая называется топологией Стоуна.

Замечание 1.4.5.2. Заметим, что каждый тип $p \in S_n^M(X)$ является полным, поэтому ровно одна из формул ϕ , $\neg \phi$ содержится в p. Поэтому множество $[\phi] = S_n^M(X) \setminus [\neg \phi]$ является и замкнутым.

Лемма 1.4.5.3. Пространство $S_n^M(X)$ является компактным и вполне несвязным (то есть, для любых $p, q \in S_n^M(X)$ с $p \neq q$ найдется открытое замкнутое подмножество Y такое, что $p \in Y$ $u \neq Y$.

Доказательство. Для доказательства компактности достаточно показать, что из каждого покрытия $S_n^M(X)$ базисными открытыми множествами можно выбрать конечное подпокрытие. Предположим противное: пусть $C = \{[\phi_i(\overline{\nu})\}_{i\in I} - \text{покрытие}\ S_n^M(X),$ из которого нельзя выбрать конечное подпокрытие. Положим $\Gamma = \{\neg \phi_i(\overline{\nu})\}_{i\in I}$. Покажем, что $\mathrm{Th}_X(M) \cup \Gamma$ имеет модель. Действительно, пусть I_0 — конечное подмножество I . По предположению у C нет конечного подпокрытия, поэтому найдется тип p , не лежащий в объединении $\bigcup_{i\in I_0} [\phi_i]$. Пусть N — элементарное расширение M , в котором имеется реализация $\overline{\mathrm{a}}$ типа p . Тогда в N выполнены все формулы из $\mathrm{Th}_X(\mathrm{M})$ и все формулы вида $\phi_i(\overline{\mathrm{a}})$ для $i\in \mathrm{I}_0$. Поэтому любое конечное подмножество $\mathrm{Th}_X(\mathrm{M}) \cup \Gamma$ имеет модель, и по теореме компактности $\mathrm{I}.1.2.1$ все оно имеет модель. Обозначим эту модель через N ; в ней есть набор $\overline{\mathrm{a}}\in \mathrm{N}$, удовлетворяющий всем формулам из Γ . Это означает, что $\mathrm{tp}^\mathrm{N}(\overline{\mathrm{a}}/\mathrm{X})\in \mathrm{S}_n^\mathrm{M}(\mathrm{X})\setminus \bigcup_{i\in \mathrm{I}}[\phi_i(\overline{\nu})]$, противоречие.

Вполне несвязность: если $p \neq q$, найдется формула ϕ такая, что $\phi \in p$ и $\neg \phi \in q$. Тогда $[\phi]$ — базисное множество, которое открыто и замкнуто одновременно (по замечанию 1.4.5.2), разделяющее p и q.