Statistics: Covariance and Correlation

Covariance

- Variance = $\frac{1}{N} * \sum_{i=1}^{N} (x_i \overline{x})^2$
- Variance will explain how a data is varying
- Consider an age data of India, In India different age group people will be there
- If we want to how age in India is varying can be explained by Variance
- There is a situation we want to find out how an age related to income
- How an age related to income
- Here we are comparing two columns
- For that we have two methods:
 - Covariance
 - o Correlation
- If we are working on single variable it is called as Variance
- If we work on two variables, then we will use Covariance (Two Columns)

$$Var(x) = \frac{1}{N} * \sum_{i=1}^{N} (x_i - \overline{x})^2$$
$$Var(x, x) = \frac{1}{N} * \sum_{i=1}^{N} (x_i - \overline{x}) * (x_i - \overline{x})$$

$$CoVariance(x,y) = \frac{1}{N} * \sum_{i=1}^{N} (x_i - \overline{x}) * (y_i - \overline{y})$$

Age(x)	Income(y)	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x}) * (y_i - \bar{y})$
20	20000	-15	-15000	225000
25	25000	-10	-10000	100000
30	30000	-5	-5000	20000
35	35000	0	0	0
40	40000	5	5000	20000
45	45000	10	10000	100000
50	50000	15	15000	225000
$\bar{x} = 35$	$\bar{y} = 35000$			$= \frac{1}{N} * \sum_{i=1}^{N} (x_i - \bar{x}) * (y_i - \bar{y})$
				_ 700000
				=
				= 100000

Conclusion: Positive values indicates that there is a positive relation between age and income

Drawback:

- We can able to say, the features or columns are positively related or negatively related.
- · But we cannot say, how much they are related

Covariance Matrix:

- Variables Features Columns Input Variables Input Variables Prediction – Independent Variables
- All are same
- So, we have two columns:
 - o Age
 - o Income
- How many combinations possible? → 4 possible combinations
- 4 possible combinations are:
- 1. How age is varying w.r.t. income?
- 2. How income is varying w.r.t. age?
- 3. How an income is varying itself?
- 4. How an age is varying itself?

Age(A) Income(I)

Age(A)
$$A - A(Variance) A - I(CoVariance) I - I(Variance)$$

$$= \begin{bmatrix} V & CoV \\ CoV & V \end{bmatrix}$$

• If we have one more column as Education'

Age Income Education

Age
$$V$$
 CoV CoV
Income V V V V

Education

Correlation:

- We already know that; variance will provide is there relation between variables or not
- But it will not provide the amount of relation
- Correlation will provide amount of relation
- It will explain how two variables related with other; as well as how much they are related
- Correlation denoted by 'r'
- 'r' varies from -1 to +1
- -1 to 0: Indicates negative relationship
- 0: No relationship
- 0 to +1: Indicates positive relationship

$$Covariance(x,y) = \frac{1}{N} * \sum_{i=1}^{N} (x_i - \overline{x}) * (y_i - \overline{y})$$

$$Var(x) = \frac{1}{N} * \sum_{i=1}^{N} (x_i - \overline{x})^2$$
, standard deviiation = $\sigma_x = \sqrt{Var(x)}$

$$Var(y) = \frac{1}{N} * \sum_{i=1}^{N} (y_i - \overline{y})^2$$
, standard devilation = $\sigma_y = \sqrt{Var(y)}$

So, the formula for Correlation 'r' will be,

$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) * (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x}) * (y_i - \overline{y})^2}}$$

$$r = \frac{Covariance(x, y)}{\sqrt{Var(x) * Var(y)}}$$

$$r = \frac{Covariance(x, y)}{(\sigma_x * \sigma_y)}$$

Example:

- r = 0.7, between age and income
- there is 70% positive relation between age and income
- r = -0.7, between age and income
- there is 70% negative relation between age and income
- r = 0, between age and income
- there is no relation between age and income
 - Independent of each other
 - Perpendicular of each other
 - 90 degrees of phase shift
 - Orthogonal of each other

For Matrix:

$$\begin{bmatrix} 5 & -2 \\ -2 & 3 \end{bmatrix}$$