```
import numpy as np # linear algebra
import pandas as pd
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
```

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

df = pd.read_csv('/content/milknew.csv')
df

	рН	Temprature	Taste	0dor	Fat	Turbidity	Colour	Grade
0	6.6	35	1	0	1	0	254	high
1	6.6	36	0	1	0	1	253	high
2	8.5	70	1	1	1	1	246	low
3	9.5	34	1	1	0	1	255	low
4	6.6	37	0	0	0	0	255	medium
1054	6.7	45	1	1	0	0	247	medium
1055	6.7	38	1	0	1	0	255	high
1056	3.0	40	1	1	1	1	255	low
1057	6.8	43	1	0	1	0	250	high
1058	8.6	55	0	1	1	1	255	low

1059 rows × 8 columns

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1059 entries, 0 to 1058 Data columns (total 8 columns): Non-Null Count Dtype # Column --- ----------0 1059 non-null Temprature 1059 non-null 1 int64 2 Taste 1059 non-null 3 Odor 1059 non-null int64 4 Fat 1059 non-null int64 Turbidity 1059 non-null 5 int64 1059 non-null Colour int64 7 Grade 1059 non-null dtypes: float64(1), int64(6), object(1)
memory usage: 66.3+ KB

df.describe()

	рН	Temprature	Taste	Odor	Fat	Turbidity	Colour
count	1059.000000	1059.000000	1059.000000	1059.000000	1059.000000	1059.000000	1059.000000
mean	6.630123	44.226629	0.546742	0.432483	0.671388	0.491029	251.840415
std	1.399679	10.098364	0.498046	0.495655	0.469930	0.500156	4.307424
min	3.000000	34.000000	0.000000	0.000000	0.000000	0.000000	240.000000
25%	6.500000	38.000000	0.000000	0.000000	0.000000	0.000000	250.000000
50%	6.700000	41.000000	1.000000	0.000000	1.000000	0.000000	255.000000
75%	6.800000	45.000000	1.000000	1.000000	1.000000	1.000000	255.000000
max	9.500000	90.000000	1.000000	1.000000	1.000000	1.000000	255.000000

```
X = df.iloc[:, :-1].values
Y = df.iloc[:, -1].values
#Split data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
model_Decission_tree = DecisionTreeClassifier(criterion='entropy', random_state=42)
model_Decission_tree = model_Decission_tree.fit(X_train, Y_train)
#Predict data train and test
Y_pred_train = model_Decission_tree.predict(X_train)
Y_pred_test = model_Decission_tree.predict(X_test)
#Evaluation report model
grade = ['high','medium', 'low']
print('Classsification Report Model : \n')
print(classification_report(Y_test, Y_pred_test, target_names=grade))
Classification Report Model :
                   precision
                                recall f1-score
                                                   support
                                            0.99
             high
                        1.00
                                  0.98
                                                        48
           medium
                        1.00
                                  0.99
                                            0.99
                                                        78
                        0.98
                                 1.00
                                            0.99
                                                        86
                                            0.99
         accuracy
                                                       212
        macro avg
                        0.99
                                  0.99
                                            0.99
                                                       212
     weighted avg
                        0.99
                                            0.99
                                  0.99
                                                       212
#Entering new data to get milk quality grade
pH = float(input('Input PH = '))
Temprature = float(input('Input Temprature = '))
Taste = bool(input('Input Tastte (True or False) = '))
Odor = bool(input('Input Odor (True or False) = '))
Fat = bool(input('Input Fat (True or False) = '))
Turbidity = bool(input('Input Turbidity (True or False) = '))
Colour= int(input('Input Colour = '))
grade_milk = [[pH, Temprature, Taste, Odor, Fat, Turbidity, Colour]]
predict_data = model_Decission_tree.predict(grade_milk)
print('Quality of the milk', predict_data)
     Input PH = 9
     Input Temprature = 45
     Input Tastte (True or False) = 1
     Input Odor (True or False) = 0.45
     Input Fat (True or False) = 0.78
     Input Turbidity (True or False) = 87
     Input Colour = 255
     Quality of the milk ['low']
```

• ×