Università degli Studi Roma Tre Anno Accademico 2008/2009

AL1 - Algebra 1 Esercitazione 1

Giovedì 2 Ottobre 2008

domande/osservazioni: dibiagio@mat.uniroma1.it

- 1. Dimostrare che le leggi distributive dell'unione rispetto all'intersezione e dell'intersezione rispetto all'unione valgono anche per famiglie arbitrarie di insiemi. Ovvero, dato X insieme, $A \in \mathcal{P}(X)$ (i.e. $A \subseteq X$), \mathcal{F} famiglia arbitraria di sottoinsiemi di X (i.e. $\mathcal{F} \subseteq \mathcal{P}(X)$), dimostrare che:
 - (a) $(\bigcap_{B \in \mathcal{F}} B) \cup A = \bigcap_{B \in \mathcal{F}} (B \cup A);$
 - (b) $(\bigcup_{B \in \mathcal{F}} B) \cap A = \bigcup_{B \in \mathcal{F}} (B \cap A)$.
 - (a) Proveremo l'asserto per doppia inclusione, cioè faremo vedere che $(\bigcap_{B\in\mathcal{F}}B)\cup A\subseteq\bigcap_{B\in\mathcal{F}}(B\cup A)$ e che $(\bigcap_{B\in\mathcal{F}}B)\cup A\supseteq\bigcap_{B\in\mathcal{F}}(B\cup A)$:
 - ⊆) Se $x \in (\bigcap_{B \in \mathcal{F}} B) \cup A$ allora, per definizione di unione insiemistica, $x \in (\bigcap_{B \in \mathcal{F}} B)$ oppure $x \in A$ (ATTENZIONE: qui e nel seguito, se non detto altrimenti, gli "o" e gli "oppure" andranno sempre intesi nel modo inclusivo "o/e"; in simboli: \vee). Se $x \in (\bigcap_{B \in \mathcal{F}} B)$ allora $\forall B \in \mathcal{F}, x \in B$, quindi $\forall B \in \mathcal{F}, x \in B$

Se $x \in (| | |_{B \in \mathcal{F}} B)$ allora $\forall B \in \mathcal{F}, x \in B$, quindi $\forall B \in \mathcal{F}, x \in B \cup A$, da cui $x \in \bigcap_{B \in \mathcal{F}} (B \cup A)$.

Se $x \in A$ allora $\forall B \in \mathcal{F}, x \in B \cup A$, da cui nuovamente la tesi.

- ⊇) Se $x \in \bigcap_{B \in \mathcal{F}} (B \cup A)$ allora, per definizione di intersezione insiemistica, $x \in B \cup A$ per ogni $B \in \mathcal{F}$.

 Distinguiamo i due casi $x \in A$ e $x \notin A$. Se $x \in A$ allora ovviamente $x \in (\bigcap_{B \in \mathcal{F}} B) \cup A$. Se $x \notin A$ allora, dato che $x \in B \cup A$ per ogni $B \in \mathcal{F}$, necessariamente $x \in B$ per ogni $B \in \mathcal{F}$, perciò $x \in \bigcap_{B \in \mathcal{F}} B$, da cui segue nuovamente la tesi.
- (b) Anche in questo caso proveremo l'asserto per doppia inclusione, ma cercando di essere più concisi. In particolare notate che le frecce ⇐ dimostrano ⊇, mentre le frecce ⇒ dimostrano ⊆:

 $x \in (\bigcup_{B \in \mathcal{F}} B) \cap A \Leftrightarrow x \in \bigcup_{B \in \mathcal{F}} B \text{ e } x \in A \Leftrightarrow x \in A \text{ e } \exists B_0 \in \mathcal{F} \text{ t.c. } x \in B_0 \Leftrightarrow \exists B_0 \in \mathcal{F} \text{ t.c. } x \in B_0 \cap A \Leftrightarrow x \in \bigcup_{B \in \mathcal{F}} (B \cap A).$

- 2. Siano A, B insiemi. Dimostrare che:
 - (a) $A \cup (B \setminus A) = A \cup B$
 - (b) $A \cap (B \setminus A) = \emptyset$
 - (c) $A \setminus A = \emptyset$; $A \setminus \emptyset = A$
 - (d) $A \setminus (A \setminus B) = A \cap B$
 - (e) $A \setminus B = A \setminus (A \cap B)$

Tutte le uguaglianze si dimostrano per doppia inclusione, come abbiamo visto nel corso dell'esercitazione.

3. Sia X insieme, $A\subseteq X,\ \mathcal{F}\subseteq \mathcal{P}(X)$. Dimostrare la seconda legge di De Morgan, ovvero:

$$A\setminus\bigcup_{B\in\mathcal{F}}B=\bigcap_{B\in\mathcal{F}}(A\setminus B).$$

Dimostreremo la seconda legge di De Morgan in due modi diversi.

- (a) Per doppia inclusione, come di consueto: $x \in A \setminus \bigcup_{B \in \mathcal{F}} B \Leftrightarrow x \in A \text{ e } x \not\in \bigcup_{B \in \mathcal{F}} B \Leftrightarrow x \in A \text{ e } x \not\in B \text{ per ogni } B \in \mathcal{F} \Leftrightarrow x \in A \setminus B \text{ per ogni } B \in \mathcal{F} \Leftrightarrow x \in \bigcap_{B \in \mathcal{F}} (A \setminus B).$
- (b) Usando la prima legge di De Morgan (DM1 i.e. $A \setminus \bigcap_{B \in \mathcal{F}} B = \bigcup_{B \in \mathcal{F}} (A \setminus B)$) l'esercizio 1 (ES1) e i punti (d) e (e) dell'esercizio precedente:

precedence:
$$A \setminus \bigcup_{B \in \mathcal{F}} B =^{(e)} A \setminus (A \cap \bigcup_{B \in \mathcal{F}} B) =^{ES1} A \setminus (\bigcup_{B \in \mathcal{F}} (A \cap B)) =^{(d)}$$

$$A \setminus (\bigcup_{B \in \mathcal{F}} A \setminus (A \setminus B)) =^{DM1} A \setminus (A \setminus (\bigcap_{B \in \mathcal{F}} (A \setminus B)) =^{(d)} A \cap (\bigcap_{B \in \mathcal{F}} (A \setminus B)) = \bigcap_{B \in \mathcal{F}} (A \setminus B).$$

- 4. Descrivere esplicitamente $\mathcal{P}(\{1;2\})$ e $A:=\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$. Dire poi se le seguenti affermazioni sono vere o false:
 - (a) $\emptyset \subseteq A$;
 - (b) $\emptyset \subseteq \{1; 2\};$
 - (c) $\{1; 2\} \cap \mathcal{P}(\{1; 2\}) = \{1; 2\};$
 - (d) $\emptyset \in A$;
 - (e) $\emptyset \in \{1; 2\};$
 - (f) $\{\emptyset\} \subseteq A$;
 - (g) $\{\{\{\emptyset\}\}\}\}\subseteq A$.

$$\mathcal{P}(\{1;2\}) = \{\emptyset, \{1\}, \{2\}, \{1;2\}\} \text{ e } A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}.$$

- (a) Vera;
- (b) Vera;
- (c) Falsa;
- (d) Vera;
- (e) Falsa;
- (f) Vera;
- (g) Vera.
- 5. Per ogni $t \in \mathbb{R}_+$ si considerino gli insiemi $A_t := \{x \in \mathbb{Q} \text{ t.c. } |x \sqrt{2}| < t\} \subseteq \mathbb{Q} \text{ e } B_t := \{x \in \mathbb{R} \text{ t.c. } |x \sqrt{2}| < t\} \subseteq \mathbb{R}.$ Determinare esplicitamente $\bigcup_{t \in \mathbb{R}_+} A_t, \bigcup_{t \in \mathbb{R}_+} B_t, \bigcap_{t \in \mathbb{R}_+} A_t, \bigcap_{t \in \mathbb{R}_+} B_t.$

Notare che $A_t = B_t \cap \mathbb{Q}$.

$$\bigcup_{t \in \mathbb{R}_+} B_t = \mathbb{R}. \ \bigcup_{t \in \mathbb{R}_+} A_t = \bigcup_{t \in \mathbb{R}_+} (B_t \cap \mathbb{Q}) = (\bigcup_{t \in \mathbb{R}_+} B_t) \cap \mathbb{Q} = \mathbb{R} \cap \mathbb{Q} = \mathbb{Q}.$$

 $\bigcap_{t\in\mathbb{R}_+}B_t=\{\sqrt{2}\},$ infatti chiaramente $\forall t\in\mathbb{R}^+,\sqrt{2}\in B_t$ e inoltre se $x\neq\sqrt{2}$ allora $|x-\sqrt{2}|\neq0,$ i.e. $|x-\sqrt{2}|\in\mathbb{R}_+,$ e quindi $x\not\in B_{|x-\sqrt{2}|}$ da cui $x\not\in\bigcap_{t\in\mathbb{R}_+}B_t.$

 $\bigcap_{t\in\mathbb{R}_+} A_t = (\bigcap_{t\in\mathbb{R}_+} B_t) \cap \mathbb{Q} = \emptyset$, dato che $\sqrt{2}$ è irrazionale.

6. Siano $X:=\{1;2;3\}$ e $Y:=\{1,2\}$. Descrivere esplicitamente $Y^X:=\{f \text{ applicazione } | f:X\to Y\}$ e $X^Y:=\{g \text{ applicazione } | g:Y\to X\}$ e dire quali tra le applicazioni individuate è iniettiva o suriettiva.

Introduciamo le seguenti notazioni:

siano $a_1, a_2, a_3, b_1, b_2 \in \mathbb{N}, \ 1 \le a_1, a_2, a_3 \le 2$ e $1 \le b_1, b_2 \le 3$. Definiamo f_{a_1,a_2,a_3} come $f_{a_1,a_2,a_3}: X \to Y$ tale che per $i = 1, 2, 3, \ f_{a_1,a_2,a_3}(i) := a_i$ e definiamo g_{b_1,b_2} come $g_{b_1,b_2}: Y \to X$ tale che per $i = 1, 2 \ g_{b_1,b_2}(i) := b_i$. Quindi, ad esempio, $f_{1,2,1}$ è la funzione da X a Y tale che $1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 1$, e g_{33} è la funzione da Y a X tale che $1 \mapsto 3$ e $2 \mapsto 3$.

 $Y^X = \{f_{1,1,1}, f_{1,1,2}, f_{1,2,1}, f_{1,2,2}, f_{2,1,1}, f_{2,1,2}, f_{2,2,1}, f_{2,2,2}\} = \{f_{i,j,k}|1 \leq i,j,k \leq 2\}.$ In particolare $f_{1,1,2}, f_{1,2,1}, f_{1,2,2}, f_{2,1,1}, f_{2,1,2}, f_{2,2,1}$ sono suriettive. Ovviamente non vi possono essere funzioni iniettive da X a Y.

 $X^Y = \{g_{1,1}, g_{1,2}, g_{1,3}, g_{2,1}, g_{2,2}, g_{2,3}, g_{3,1}, g_{3,2}, g_{3,3}\} = \{g_{i,j} | 1 \leq i, j \leq 3\}.$ In particolare le $g_{i,j}$ con $i \neq j$ sono iniettive. Ovviamente non vi possono essere funzioni suriettive con dominio Y e codominio X.