Notation

General

		Subscript		
Quantity	Notation	Left	Right	${\bf Superscript}$
Scalar	lowercase	n/a	n/a	n/a
Vector	lowercase, bold	frame	$from \to to$	n/a
Unit axis vector	lowercase, bold	frame	axis	frame of axis
Homogeneous vector	lowercase, bold, tilde	frame	$\mathrm{from} \to \mathrm{to}$	n/a
Matrix	uppercase, bold	n/a	n/a	n/a
${\it Transformations}^1$	uppercase, bold	n/a	$to \leftarrow from$	n/a

Example a=4 $\mathcal{A}r_{AB}$ $\mathcal{A}e_{x}^{\mathcal{B}}$ $\mathcal{A}\tilde{r}_{AB}$ \mathcal{A} \mathcal{A} \mathcal{A}

f(x; p) a quantity f with variables x and (optionally) parameterized by parameters p.

Kinematics

Quantity	Notation	Subscript
Absolute ¹ position	$m{r}_P := {}_{\mathcal{I}}m{r}_{IP}$	object (point)
Absolute velocity	$\boldsymbol{v}_P := {}_{\mathcal{I}} \dot{\boldsymbol{r}}_{IP}$	object (point)
Absolute acceleration	$\boldsymbol{a}_P := \dot{\boldsymbol{v}}_P = {}_{\mathcal{I}} \ddot{\boldsymbol{r}}_{IP}$	object (point)

 $^{^1}$ relative to a fixed (inertial) reference frame ${\mathcal I}$ with origin I

 $^{^{\}rm 1}$ This includes passive rotation matrices, homogeneous transformations, quaternions

Probability

Property	Notation
Random variable (RV), state	X, x
Probability	P(X=x) =: P(X)
Conditional probability	P(X = x Y = y) =: P(X Y)
Expectation of a continuous RV	$\mathbb{E}_{x \sim f(x)}[X] = \int_{-\infty}^{\infty} x \ f(x) \ dx =: \mathbb{E}[X] =: \mu$
Expectation of a discrete RV	$\mathbb{E}_{x \sim p(x)}[X] = \sum_{i} x_i \ p(x_i) =: \mathbb{E}[X] =: \mu$
Expectation (continuous RV) of a function g	$\mathbb{E}_{x \sim f(x)}[g(x)] = \int_{-\infty}^{\infty} g(x) f(x) \ dx$
Expectation (discrete RV) of a function g	$\mathbb{E}_{x \sim p(x)}[g(x)] = \sum_{i} g(x_i) p(x_i)$
Variance	$Var[X] =: \sigma^2$
Standard deviation	$SD[X] =: \sigma$
Probability mass function ¹	$p_X(x) =: p(x)$
Probability density function ²	$f_X(x) =: f(x)$
Cumulative distribution function	$F_X(x) =: F(x)$

 $^{^1\,\}mathrm{for}$ discrete RVs $^{-2}\,\mathrm{for}$ continuous RVs