Definition and Notation

Contents

- String
- Kleene Star
- String Contcatenation
- Prefix
 - Some facts
- Reverse
- Sets
 - Union, Intersection, Substraction, Complement, Product, Conctenation of language
- Powers of Language
 - Kleen stat * as power
- DeMorgan's laws
- · Strings vs. Sets
- Function Notation

String

- A String is a finite sequence of symbols, and these symbols come from a finite alphabet.
- An **Alphabet** is a finite set, often denoted by \sum
 - Each element of an alphabet is a symbol.
 - $\circ~$ A **string** over \sum is any finite-length sequence of **symbols** from \sum
 - String sometimes referred to as words
 - $\circ~$ The length of a string is W is the number of symbols in W, denoted by |W|.

GIST: set of Symbols makes alphabet. A combination of those symbols of Alphabet gives string or word. Count of symbols in a string is the length.

- ullet For any alphabet \sum there is a special string called the empty string denoted by ϵ , its length is 0.
- Exponent Notation: Shortcut for repeated symbols
 - $\circ \; z^k$ to denote strings of Z's of length k, Example $2^3=222$
 - $2^0 = \epsilon$ Empty string.

Kleene Star

- For any **Alphabet** \sum the set of all string over \sum is denoted by \sum^*
 - One way to think about it, for each k>=0, list all string of lenmgth k you can make using symbols from ∑

String Contcatenation

- string are concatenated by putting them side to side.
- it uses dot notation.
- THe length of the concatenation string $W_1 \cdot W_2$: $|W_1 \cdot W_2|$ = $|W_1| + |W_2|$
- · Concatenation the empty string does nothing,
- $\hbox{ For a string W and integer $k \geq 0$,}$ the value of W^K is W concatenated to itself k times.

Prefix

• String P is a **prefix** of string Y if $Y = P \cdot Z$ where Z is a string

Some facts

- 1. Empty string is a Prefix of every string
- 2. Every string is a prefix of itself
- A Prefix P of Y is called propper prefix if $P \neq \epsilon$ and $P \neq Y$

Reverse

- ullet For any string W, the reverse W^R is reverse of W.
- ullet If $W=W^R$ then it is a palindrome.

Sets

- A set is an unordered collection of distinct elements.
- · A set of string is a language
 - A language can be finite or infinite
 But alphabets and string are finite.
- $\bullet\,$ For any two sets A and B, write $A\subseteq B$ to say A is a subset of B.
 - \circ Formal definition: $x \in A \implies x \in B$
 - \circ Two sets A and B are equal, $A\subseteq B$ and $B\subseteq A$

ullet The size of a finite ser S is the number of elements in S, written as |S|

Union, Intersection, Substraction, Complement, Product, Conctenation of language

Name	Def
Union	$A \cup B = \{x (x \in A) \bigvee (x \in B)\}$
Intersection	$A\cap B=\{x\ (x\in A)igwedge(x\in B)\}$
Substraction	$A-B=\{x\ (x\in A)igwedge(x otin B)\}$
Complement	If U is the set of Universal element $ar{A}=U-A$
Product	$A imes B=\{(a,b)\ (a\in A)igwedge(b\in B)\}$
Concatenation of Language	$AB = A \cdot B = \{W_1 \cdot W_2 \ (W_1 \in A) igwedge(W_2 \in A)\}$

Powers of Language

ullet denotes the set of string obtained by concatenating A with itself K times.

Kleen stat * as power

- $\bullet \ \ A*=A^0\cup A^1\cup A^2\cup A^3\cup A^4\cup A^5\cup A^6\cdot \cdots$
 - $\circ A*$ contains an infinite number of strings, but each string in A* is finite

DeMorgan's laws

For any sets A and B

- $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Strings vs. Sets

Strings	Sets
Order matters $the eq teh$	no ordering $\{t,h,e\}=\{t,e,h\}$

Strings	Sets
Repetations allowed	no repetitions
0100 is a valid string	{0, 1, 0, 0} is not a set

Function Notation

• function takes one input and produces one output. It must be well defined.