1 Многогранники

Многогранные углы

Представим себе несколько плоских углов, имеющих общую вершину, каждая сторона которых является общей ровно для двух углов. Такая конструкция называется **многогранным углом**, а плоские углы, образующие его, называются гранями.

Пример 1. Докажите, что каждая грань трехгранного угла меньше суммы двух других.

Решение. Пусть плоские углы данного трехгранного угла удовлетворяют соотношению $\alpha \le \beta \le \gamma$, а углы α', β' – ортогональные проекции соответственно углов α, β на плоскость угла γ . Поскольку ортогональная проекция угла всегда не превосходит его, из $\alpha' + \beta' = \gamma$ получим $\alpha + \beta \ge \gamma$. Равенство возможно только в том случае, когда плоскости всех трех плоских углов параллельны друг другу, что невозможно, поскольку плоские углы имеют общую вершину. Утверждение доказано.

Пример 2. Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.

Решение. Пусть ABCDS – выпуклый четырёхгранный угол с вершиной S. Плоскости противоположных граней ASB и CSD пересекаются по прямой a, проходящей через точку S, а граней ASD и BSC – по прямой b, также проходящей через S. Через пересекающиеся прямые a и b проведём плоскость α . Любая плоскость, проведённая через произвольную точку ребра данного четырёхгранного угла, пересекает этот угол по некоторому четырёхугольнику. По теореме о пересечении двух параллельных плоскостей третьей противоположные стороны этого четырёхугольника попарно параллельны, следовательно, это параллелограмм.