Stacking Classifier Approach for Music Genre Classification

By Momoe Nomoto & Yuechen Wang

Problem Description

To manage large digital library for music, a genre classification system is needed. So far, a musician still needs to choose label for his/her song when he/she uploads the music to the platform, and many old songs do not have genre labels on them, which poses challenges for music categorization.

The Application of Music genre classification

- Automatic categorization of old music without genre labels
- Music recommendation

Our Solution

Data & Feature Extraction

Dataset Source

Spotify Playlist

Extraction Package

Python Librosa

Dataset Info

1120 songs 140 songs per genre

79 Features 8 Genres

```
Index(['song id', 'mfcc a 0', 'mfcc a 1', 'mfcc a 2', 'mfcc a 3', 'mfcc a 4',
       mfcc_a_5', 'mfcc_a_6', 'mfcc_a_7', 'mfcc_a_8', 'mfcc_a_9', 'mfcc_a_10',
      'mfcc a 11', 'mfcc a 12', 'mfcc std 0', 'mfcc std 1', 'mfcc std 2',
       'mfcc_std_3', 'mfcc_std_4', 'mfcc_std_5', 'mfcc_std_6', 'mfcc_std_7',
       mfcc std 8', 'mfcc std 9', 'mfcc std 10', 'mfcc std 11', 'mfcc std 12',
       chroma a_0', 'chroma_a_1', 'chroma_a_2', 'chroma_a_3', 'chroma_a_4',
      'chroma_a_5', 'chroma_a_6', 'chroma_a_7', 'chroma_a_8', 'chroma_a_9',
      'chroma a 10', 'chroma a 11', 'chroma std 0', 'chroma std 1',
      'chroma std 2', 'chroma std 3', 'chroma std 4', 'chroma std 5',
      'chroma_std_6', 'chroma_std_7', 'chroma_std_8', 'chroma_std_9',
      'chroma_std_10', 'chroma_std_11', 'rolloff_a', 'rolloff_std',
       'melspect a', 'melspect std', 'rmseP a', 'rmseP std', 'rmseH a',
       'rmseH_std', 'centroid_a', 'centroid_std', 'bw_a', 'bw_std',
       'contrast_a', 'contrast_std', 'polyfeat_a', 'polyfeat_std', 'tonnetz_a',
       'tonnetz std', 'zcr a', 'zcr std', 'onset a', 'onset std', 'bpm',
      'rmseP skew', 'rmseP kurtosis', 'rmseH skew', 'rmseH kurtosis',
      'beats a', 'beats std', 'genre'],
      dtype='object')
```

{Blues, Classical, Disco, Electronic, Hiphop, Jazz, Pop, and Rock}

KNN

Step 1: Feature Scaling & PCA

Choose number of component: 25 components account for 88% of the variance

Step 2: Hyperparameter Tuning

Leaf size: (1,50)

Neighbors: (1,30)

Distance metrics:

Minkowski, Manhattan,

Euclidean

Result: Test Accuracy = 0.632

Support Vector Machine

Step 1: Feature Scaling & PCA

Step 2: Hyperparameter Tuning

Choose number of component: 40 components account for 95% of the variance

C: [0.1, 1, 10, 100]

Type of Kernel: [RBF, Linear,

Polynomial, Sigmoid]

Gamma: [1, 0.1, 0.01, 0.001]

Result: Test Accuracy = 0.743

Random Forest

Individual Decision Tree Classifier Ensemble

Test Accuracy: 0.477

Test Accuracy: 0.477

Bagging Test Accuracy: 0.599

Gradient Test Accuracy: 0.639

Boosting

Random Forest (Best Cross Validation Result: 0.639)

trees: 200
Minimal samples
per leaf: 1
Max depth: 10

Threshold: 0.0075, Test Accuracy: 0.656

Stacking Classifier

Final estimator: Logistic Regression

Simple & best for classification

Hyperparameter Tuning

5-fold stratified cross validation

Regularization C: np.logspace(-2, 2, 20)

Test Results

Unseen dataset: 30 songs from each genre

Stacking Classifier Test Accuracy: 0.69

In Comparison:

Base KNN Classifier Test Accuracy: 0.629

Base SVM Classifier Test Accuracy: 0.692

Base RF Classifier Test Accuracy: 0.671

	Precision	Recall	F1-Score
Blues	0.41	0.30	0.35
Classical	0.68	0.95	0.79
Disco	0.53	0.70	0.60
Electronic	0.77	0.75	0.76
Hiphop	0.69	0.63	0.66
Jazz	0.88	0.76	0.81
Pop	0.54	0.44	0.48
Rock	0.66	0.83	0.74
Accuracy			0.67
Macro Avg	0.65	0.67	0.65
Weighted Avg	0.67	0.67	0.66

Observations

Blues + Pop: Low Recall

Blues often predicted as classical and jazz

Classical + Rock: High Recall

Both have distinctive audio features

Jazz: High Precision

	Precision	Recall	F1-Score
Blues	0.41	0.30	0.35
Classical	0.68	0.95	0.79
Disco	0.53	0.70	0.60
Electronic	0.77	0.75	0.76
Hiphop	0.69	0.63	0.66
Jazz	0.88	0.76	0.81
Pop	0.54	0.44	0.48
Rock	0.66	0.83	0.74
Accuracy			0.67
Macro Avg	0.65	0.67	0.65
Weighted Avg	0.67	0.67	0.66

Model Limitation and Future Improvements

- 1. Larger Dataset
 - a. More data from each genre
- 2. Train with music that are from one genre
 - a. Reduce collinearity
- 3. More diverse set of genres
 - a. Spotify API provides >100 genres
- 4. Multi-genre classification
 - a. Ex. Pop 85%, Hiphop 10%, Rock 5%

```
"genres": ["acoustic", "afrobeat", "alt-
rock", "alternative", "ambient", "anime", "black-
metal", "bluegrass", "blues", "bossanova",
"brazil", "breakbeat", "british", "cantopop",
"chicago-house", "children", "chill", "classical",
"club", "comedy", "country", "dance", "dancehall",
"death-metal", "deep-house", "detroit-techno",
"disco", "disney", "drum-and-bass", "dub",
"dubstep", "edm", "electro", "electronic", "emo",
"folk", "forro", "french", "funk", "garage",
"german", "gospel", "goth", "grindcore", "groove",
"grunge", "guitar", "happy", "hard-rock",
"hardcore", "hardstyle", "heavy-metal", "hip-hop",
"holidays", "honky-tonk", "house", "idm",
"indian", "indie", "indie-pop", "industrial",
"iranian", "j-dance", "j-idol", "j-pop", "j-rock",
"jazz", "k-pop", "kids", "latin", "latino",
"malay", "mandopop", "metal", "metal-misc",
"metalcore", "minimal-techno", "movies", "mpb",
"new-age", "new-release", "opera", "pagode",
"party", "philippines-opm", "piano", "pop", "pop-
film", "post-dubstep", "power-pop", "progressive-
house", "psych-rock", "punk", "punk-rock", "r-n-
b", "rainy-day", "reggae", "reggaeton", "road-
trip", "rock", "rock-n-roll", "rockabilly",
"romance", "sad", "salsa", "samba", "sertanejo",
"show-tunes", "singer-songwriter", "ska", "sleep",
"songwriter", "soul", "soundtracks", "spanish",
"study", "summer", "swedish", "synth-pop",
"tango", "techno", "trance", "trip-hop",
"turkish", "work-out", "world-music"]
```

Thank you!