Analiza 3 - definicije, trditve in izreki

Oskar Vavtar 2020/21

Kazalo

1	PARAMETRIČNO PODANE KRIVULJE		3
2	PLOSKVE V \mathbb{R}^3		4
3	INTEGRALI S PARAMETROM		6
	3.1 Izlimitirani integrali s parametrom		6
	3.2 Dvojni in dvakratni integrali		7
	3.3 Integriranje in odvajanje integralov s parametrom		9
	3.4 Eulerjevi funkciji Γ in B	1	10
4	VEČKRATNI INTEGRALI	1	12
	4.1 Cilindrične ali valjne koordinate	1	15
	4.2 Sferične koordinate	1	16
	4.3 Splošne koordinate		17
5	PLOSKOVNI IN KRIVULJNI INTEGRAL	1	۱9
	5.1 Površina ploskve in ploskovni integral skalarne funkcije	1	19
	5.2 Krivuljni integral	2	20

1 PARAMETRIČNO PODANE KRIVULJE

Trditev 1.1. Če je \vec{r} odvedljiva vektorska funkcija (njene komponente x, y in z so odvedljive funkcije spremenljivke t), potem je

$$\dot{\vec{r}}(t_0) = (\dot{x}(t_0), \dot{y}(t_0), \dot{z}(t_0))$$

tangentni vektor na krivuljo $t \mapsto \vec{r}(t)$ v točki $\vec{r}(t_0)$, če velja $\dot{\vec{r}}(t_0) \neq 0$.

Trditev 1.2. Če je \vec{r} zvezno odvedljiva vektorska funkcija na intervalu [a, b] (za a < b), je potem dolžina krivulje, ki jo določa, enaka

$$s = \int_a^b \|\dot{\vec{r}}(t)\| dt.$$

To velja tudi za funkcijo, ki so le *odsekoma zvezne*. Opazimo tudi, da je zgornja dolžina neodvisna od parametrizacije krivulje.

Trditev 1.3. Naj bo \vec{r} zvezno odvedljiva vektorska funkcija, definirana na intervalu [a,b] (za a < b) in naj bo $\psi : [a,b] \to [\alpha,\beta]$ zvezno odvedljiva bijekcija, tako da $t = \psi(\tau)$ preteče interval [a,b], ko τ preteče interval $[\alpha,\beta]$ (za $\alpha < \beta$). Potem je

$$\int_a^b \|\dot{\vec{r}}(t)\|dt = \int_\alpha^\beta \|\frac{d}{d\tau}\vec{r}(\psi(\tau))\|d\tau.$$

2 PLOSKVE V \mathbb{R}^3

Definicija 2.1 (Ploskev). Podmnožica $P \subseteq \mathbb{R}^3$ je *ploskev*, če za vsako točko $\vec{r} \in P$ obstaja taka okolica $H \subseteq \mathbb{R}^3$, da je $P \cap H$ graf kake zvezno odvedljive funkcije $\phi: D \to \mathbb{R}$, definirane na kaki *odprti* podmnožici $D \subseteq \mathbb{R}^2$.

To pomeni, da se na $P \cap H$ ena od koordinat x, y, z da enolično izraziti kot funkcija preostalih, torej da je $P \cap H$ ene od oblik:

$$P \cap H = \{(x, y, \phi(x, y)) \mid (x, y) \in D\},\$$
$$P \cap H = \{(x, \phi(x, z), y) \mid (x, z) \in D\},\$$

$$P \cap H = \{ (\phi(y, z), y, z) \mid (y, z) \in D \}.$$

Trditev 2.1 (Izrek o implicitni funkciji). Naj bo $g: \mathbb{R}^3 \to \mathbb{R}$ zvezno odvedljiva funkcija in privzemimo, da je množica $P = g^{-1}(0)$ neprazna. Če je

$$\nabla g(\vec{r}) \neq 0$$

za $\forall \vec{r} \in P$ je P ploskev.

Enačba oblike $\vec{r} = \vec{r}(t)$ $(t \in [a, b] \subseteq \mathbb{R}, a < b)$ predstavlja krivuljo v \mathbb{R}^3 . Privzeli bomo, da je pri tem \vec{r} zvezno odvedljiva funkcija spremenljivke t. Taka krivulja leži na ploskvi $P = g^{-1}(0)$ natanko tedaj, ko je $g(\vec{r}(t)) = 0$ za $\forall t \in [a, b]$. Ko to enakost odvajamo po t, dobimo

$$\nabla g(\vec{r}(t)) \cdot \dot{\vec{r}}(t) = 0.$$

Ta enakost pomeni, da je vektor $\nabla g(\vec{r}(t))$ pravokoten na tangentni vektor $\dot{\vec{r}}(t)$ krivulje v točki $\vec{r}(t)$.

Če sedaj izberemo poljubno točko \vec{r}_0 na ploskvi P in opazujemo vse krivulje na ploskvi P, ki gredo skozi točko \vec{r}_0 (vsaka taka krivulja $\vec{r} = \vec{r}(t)$ zadošča pogoju $\vec{r}(t_0) = \vec{r}_0$ za kak t_0), vidimo, da je vektor $\nabla g(\vec{r}_0)$ pravokoten na tangentni vektor $\vec{r}(t_0)$ vsake take krivulje.

To pomeni, da mora biti vektor $\nabla g(\vec{r}_0)$ pravokoten na ploskev P. To velja za vsako točko $\vec{r}_0 \in P$.

Definicija 2.2 (Normalni vektor). Vektor $\nabla g(\vec{r})$ imenujemo normalni vektor na ploskev $P=g^{-1}(0)$ v točki $\vec{r}\in P$. Ravnino $T_{\vec{r}}P$ z normalnim vektorjem $\nabla g(\vec{r})$ skozi točko \vec{r} na ploskvi P pa imenujemo tangentna ravnina na ploskev P v točki \vec{r} .

Tangentna ravnina na P skozi točko \vec{r} je torej vzporedna vsem tangentnim vektorjem v točki \vec{r} na krivulje skozi \vec{r} na ploskvi P.

3 INTEGRALI S PARAMETROM

Definicija 3.1 (Integral s parametrom). Naj bo f zvezna funkcija dveh spremenljivk, definirana na pravokotniku $P = [a, b] \times [c, d]$ (a < b, c < d). Integral

$$F(y) = \int_{a}^{b} f(x, y)dx \tag{1}$$

je funkcija spremenljivke y. Tak integral imenujemo $integral\ s\ parametrom\ y.$

Trditev 3.1. Če je f zvezna funkcija na pravokotniku $P = [a, b] \times [c, d]$, je funkcija F (definirana z (1)) zvezna na intervalu P.

Izrek 3.1. Naj bo f zvezna na pravokotniku $P = [a, b] \times [c, d]$ in privzemimo, da obstaja parcialni odvod $\frac{\partial f}{\partial y}$, ki naj bo zvezen na P. Potem je funkcija F (podana z (1)) odvedljiva in velja

$$F'(y) = \frac{d}{dy} \int_{a}^{b} f(x, y) dx = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx.$$
 (2)

3.1 Izlimitirani integrali s parametrom

Definicija 3.2. Integral $F(y) = \int_a^\infty f(x,y) dx$ je enakomerno konvergenten za $y \in S \subseteq \mathbb{R}$, če za $\forall \varepsilon > 0 \ \exists M \in \mathbb{R}$, da za $\forall b \geq M$ in $\forall y \in S$ velja

$$\left| \int_{b}^{\infty} f(x, y) dx \right| < \varepsilon.$$

Za razliko od navadne konvergence mora tukaj obstajati tak M, ki je istočasno ustrezen za $\forall y \in S$, torej je $M = M_{\varepsilon}$ odvisen le od ε , ne pa tudi od y. Pri navadni konvergenci bi bil veljalo $M = M_{\varepsilon,y}$.

Trditev 3.2. Če je f zvezna funkcija na pasu $P = [a, \infty) \times [c, d]$ in integral

$$F(y) = \int_{a}^{\infty} f(x, y) dx$$

enakomerno konvergenten za $y \in [c, d]$, je F zvezna funkcija na [c, d].

3.2 Dvojni in dvakratni integrali

Definicija 3.3. Naj bo $P = [a, b] \times [c, d]$ in $f : P \to \mathbb{R}$ funkcija. Delitev $D_{[a,b]}$ intervala [a,b] je določena z zaporedjem točk

$$a = x_0 < x_1 < \ldots < x_m = b.$$

Delitev $D_{[a,b]}$ skupaj s poljubno delitvijo $D_{[c,d]}$ intervala [c,d],določeno z

$$c = y_0 < y_1 < \ldots < y_n = d,$$

določa neko delitev pravokotnika P na manjpe pravokotnike

$$P_{i,j} = [x_{i-1}, x_i] \times [y_{i-1}, y_i], (i = 1, ..., m; j = 1, ..., n).$$

Naj bo

$$m_{i,j} = \inf_{(x,y) \in P_{i,j}} f(x,y),$$

$$M_{i,j} = \sup_{(x,y)\in P_{i,j}} f(x,y).$$

Z $\Delta_{i,j}p=\Delta_ix\cdot\Delta_jy=(x_i-x_{i-1})(y_j-y_{j-1})$ označimo ploščino pravokotnika $P_{i,j}.$ Vsoto

$$\underline{S}_D = \sum_{i=1}^m \sum_{j=1}^n m_{i,j} \Delta_{i,j} p$$

imenujemo spodnja, vsoto

$$\overline{S}_D = \sum_{i=1}^m \sum_{j=1}^n M_{i,j} \Delta_{i,j} p$$

pa zgornja Riemannova vsota funkcije f pri delitvi D.

Lema 1. Če je N nadaljevanje delitve D pravokotnika P, za spodnje in zgornje Riemannove vsote poljubne omejene funkcije $f: P \to \mathbb{R}$ velja

$$\underline{S}_N \ge \underline{S}_D$$
 in $\overline{S}_N \le \overline{S}_D$.

Definicija 3.4. Omejena funkcija $f: P \to \mathbb{R}$ je na pravokotniku P integrabilna v $Riemannovem \ smislu$, če velja

$$\underline{S} = \overline{S},$$

kjer je \underline{S} supermum njenih spodnjih, \overline{S} pa infimum njenih zgornjih Riemannovih vsot. Tedaj skupno vrednost $S=\overline{S}$ označimo kot

$$\iint_P f(x,y)dp,$$

kjer pomeni dp = dxdy ploščinski element, in jo imenujemo dvojni integral funkcije f po pravokotniku P.

Izrek 3.2. Zvezna funkcija f na pravokotniku $P = [a, b] \times [c, d]$ je integrabilna in velja

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \iint_{P} f(x, y) dp = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy. \tag{3}$$

Enak zaključek velja tudi za funkcijo f, ki ni nujno zvezna, če je N množica njenih točk nezveznosti taka, da jo za $\forall \varepsilon > 0$ lahko pokrijemo s kakim zaporedjem pravokotnikov, katerih vsota ploščin je pod ε . Tedaj pravimo, da ima N mero 0.

Posledica. Za funkcijo f, ki je na pravokotniku P integrabilna v Riemannovem smislu, konvergirajo Riemannove vsote S proti $\iint_P f(x,y)dp$, ko gredo velikosti delilnih pravokotnikov (njihove diagonale) proti 0.

Natančneje: za $\forall \varepsilon > 0 \; \exists \delta > 0$, da je

$$\left| S - \iint_P f(x, y) dp \right| < \varepsilon$$

za vsako Riemannovo vsoto funkcije f pri vsaki delitvi pravokotnika P, kjer si dolžine diagonal pod δ .

3.3 Integriranje in odvajanje integralov s parametrom

Izrek 3.3. Naj bo f zvezna na pasu $[a, \infty) \times [c, d]$. Če je integral $\int_a^\infty f(x, y) dx$ enakomerno konvergenten za $y \in [c, d]$, potem je

$$\int_{c}^{d} \int_{a}^{\infty} f(x, y) dx \ dy = \int_{a}^{\infty} \int_{c}^{d} f(x, y) dy \ dx.$$

Izrek 3.4. Naj bosta f in $\frac{\partial f}{\partial y}$ zvezni na pasu $[a,\infty)\times[c,d]$, naj bo integral

$$F(y) = \int_{a}^{\infty} f(x, y) dx$$

konvergenten za $y \in [c, d]$ in naj bo integral

$$\int_{a}^{\infty} \frac{\partial f}{\partial y}(x,y) dx$$

enakomerno konvergenten na [c,d]. Potem je F odvedljiva funkcija in velja

$$F'(y) = \frac{d}{dy} \int_{a}^{\infty} f(x, y) dx = \int_{a}^{\infty} \frac{\partial f}{\partial y}(x, y) dx.$$

Izrek 3.5 (Kriterij za ugotavljanje enakomerne konvergence).

Integral $\int_a^\infty f(x,y)dx=F(y)$ je enakomerno konvergenten na S natanko tedaj, ko za $\forall \varepsilon>0$ $\exists N\in\mathbb{R},$ da za poljubna $d>b\geq N$ in za $\forall y\in S$ velja

$$\left| \int_{b}^{d} f(x, y) dx \right| < \varepsilon.$$

Posledica. Če je $|f(x,y)| \leq g(x,y)$ za $\forall (x,y) \in [a,\infty) \times [c,d]$ in je integral $\int_a^b g(x,y)dx$ enakomerno konvergenten na [c,d], je enakomerno konvergenten tudi integral $\int_a^b f(x,y)dx$.

Izrek 3.6 (2. izrek o povprečju). Naj bo f integrabilna, g pa nenegativna padajoča (odvedljiva) funkcija na intervalu [a, b]. Potem $\exists \xi \in [a, b]$, da je

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx.$$

3.4 Eulerjevi funkciji Γ in B

Definicija 3.5 (Funkcija Γ). Na poltraku x > 0 je funkcija Γ definirana z

$$\Gamma(x) = \int_0^\infty t^{t-1} e^{-t} dt. \tag{4}$$

Trditev 3.3 (Rekurzivna formula). Za $\forall x > 0$ velja

$$\Gamma(x+1) = x\Gamma(x).$$

Posledica. $\Gamma(n+1) = n!$ za $\forall n \in \mathbb{N}$

To nam namiguje, naj definiramo

$$x! := \Gamma(x+1)$$
 za $\forall n \in \mathbb{N}$.

Rekurzivna formula nam omogoča, da razširimo definicijsko območje funkcije Γ . Če je namreč $x \in (-1,0)$, je $x+1 \in (0,1)$, zato je vrednost $\Gamma(x+1)$ že definiramo in lahko postavimo

$$\Gamma := \frac{\Gamma(x+1)}{x}.$$

S ponavljanjem rekurzivne formule dobimo

$$\Gamma(x) = \frac{\Gamma(x+n)}{x(x+1)\dots(x+n-1)}.$$
 (5)

Za $\forall x \in \mathbb{R}$, ki ni negativno celo število ali 0, lahko izberemo tak najmanjši $n \in \mathbb{N}$, da je (x+n) > 0; tedaj je vrednost $\Gamma(x+n)$ že definirana in lahko $\Gamma(x)$ definiramo s formulo (5).

Definicija 3.6. Funkcija beta je definirana kot

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \quad (x > 0, y > 0).$$
 (6)

Lahko se je prepričati, da je integral v (6) konvergenten, če je x>0 in y>0.

Z vpeljavo nove integracijske spremenljivke $t=\sin^2\varphi$ lahko definicijo funkcije Bzapišemo tudi kot

$$B(x,y) = 2\int_0^{\frac{\pi}{2}} \sin^{2x-1}\varphi \cos^{2y-1}\varphi d\varphi.$$
 (7)

Trditev 3.4. Za poljubna pozitivna x, y je

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \tag{8}$$

Izrek 3.7 (Stirlingova formula).

$$\lim_{n \to \infty} \frac{n!}{\sqrt{n}(\frac{n}{e})^n} = \sqrt{2\pi}$$

Trditev 3.5 (Wallisova formula).

$$\lim_{n \to \infty} \frac{1}{2n+1} \prod_{j=1}^{n} \left(\frac{2j}{2j-1} \right)^2 = \frac{\pi}{2}$$

4 VEČKRATNI INTEGRALI

Definicija 4.1. Naj bo $f: K \to \mathbb{R}$ omejena funkcija, definirana na kvadru $K = [a, b] \times [c, d] \times [e, g]$ v \mathbb{R}^3 . Vse tri intervale [a, b], [c, d] in [e, g] razdelimo na podintervale z delilnimi točkami:

$$a = x_0 < \dots < x_{i-1} < x_i < \dots < x_m = b,$$

 $c = y_0 < \dots < y_{j-1} < y_j < \dots < y_n = d,$
 $e = z_0 < \dots < z_{k-1} < z_k < \dots < z_p = g.$

S tem razdelimo kvader K na manjše podkvadre

$$K_{i,j,k} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k];$$

to delitev imenujemo D. Označimo

$$m_{i,j,k} = \inf_{(x,y,z) \in K_{i,j,k}} f(x,y,z),$$

$$M_{i,j,k} = \sup_{(x,y,z) \in K_{i,j,k}} f(x,y,z)$$

ter tvorimo spodnjo in zgornjo Riemannovo vsoto pri tej delitvi:

$$\underline{S}_D = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p m_{i,j,k} \Delta_{i,j,k} V,$$

$$\overline{S}_D = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p M_{i,j,k} \Delta_{i,j,k} V,$$

kjer je

$$\Delta_{i,i,k}V = \Delta_i x \Delta_i y \Delta_k z = (x_i - x_{i-1})(y_i - y_{i-1})(z_k - z_{k-1})$$

prostornina kvadra $K_{i,j,k}$. Končno naj bo

$$\underline{S} = \sup_{D} \underline{S}_{D}$$
 in $\overline{S} = \inf_{D} \overline{S}_{D}$,

kjer teče D po vseh takih delitvah kvadra K. Če je $\underline{S}=\overline{S}$ pravimo, da je funkcija f integrabilna na kvadru K in skupno vrednost $\underline{S}=\overline{S}$ označimo kot

$$\iiint_K f(x,y,z) \ dV$$

ter jo imenujemo trojni (Riemannov) integral funkcije f.

Definicija 4.2. Naj bo Ω poljubna omejena podmnožica v \mathbb{R}^n (n = 1, 2, 3, ...), $f: \Omega \to \mathbb{R}$ pa omejena funkcija. Izberimo kvader K oblike $K = [a, b] \times [c, d] \times ...$, ki naj vsebuje Ω , definirajmo funkcijo $f_K: K \to \mathbb{R}$ kot

$$f(x) = \begin{cases} f(x, y, \dots) & ; (x, y, \dots) \in \Omega \\ 0 & ; (x, y, \dots) \in K \setminus \Omega \end{cases}$$

ter večkratni integral $\int \cdots \int_{\Omega} f(x, y, \ldots) dV$ kot

$$\int \cdots \int_{\Omega} f(x, y, \ldots) \ dV = \int \cdots \int_{K} f_{K}(x, y, \ldots) \ dV.$$

Trditev 4.1. Če ima presek *omejenih* množic Ω_1 in Ω_2 v \mathbb{R}^2 (ali v \mathbb{R}^n) mero 0, potem je

$$\int \cdots \int_{\Omega_1 \cup \Omega_2} f(x_1, \dots, x_n) dV = \int \cdots \int_{\Omega_1} f(x_1, \dots, x_n) dV + \int \cdots \int_{\Omega_2} f(x_1, \dots, x_n) dV$$

Trditev 4.2. Naj bosta f_1 in f_2 zvezni funkciji na Ω ter c_1 in c_2 poljubni konstanti. Potem velja

$$\int \cdots \int_{\Omega} (c_1 f_1 + c_2 f_2) \ dV = c_1 \int \cdots \int_{\Omega} f_1 \ dV + c_2 \int \cdots \int_{\Omega} f_2 \ dV.$$

Trditev 4.3. Če je $f \leq g$, potem je $\iint_{\Omega} f \ dp \leq \iint_{\Omega} g \ dp$ in podobno za večkratne integrale. Če je torej funkcija f omejena na mnoćici Ω navzgor s konstanto M, navzdol pa s konstanto m, potem velja

$$mp_{\Omega} \leq \iint_{\Omega} f dp \leq Mp_{\Omega},$$

kjer je p_{Ω} ploščina množice Ω .

Trditev 4.4.

$$\left| \iint_{\Omega} f \ dp \right| \le \iint_{\Omega} |f| \ dp$$

Trditev 4.5. Naj bo Ω kompaktna množica v \mathbb{R}^2 , katere rob sestoji iz končno mnogo krivulj oblike $\vec{:}[a,b] \to \mathbb{R}^2$ za kake zvezno odvedljive funkcije \vec{r} in kake intervale [a,b]. Izberimo pravokotnik P, ki vsebuje Ω , in naj bo D poljubna delitev tega pravokotnika s premicami, vzporednimi koordinatnima osema. V vsakem od tistih delilnih pravokotnikov P_k delitve D, ki sekajo Ω , izberemo točko $\vec{r}_k \in P_k \cap \Omega$, označimo z $\Delta_k p$ ploščino pravokotnika P_k in tvorimo Riemannovo vsoto

$$S_D(f) = \sum_k f(\vec{r_k}) \Delta_k p,$$

kjer teče indeks le po tistih delilnih pravokotnikih P_k , ki sekajo Ω . Za vsako zvezno funkcijo f na Ω je integral $\iint_{\Omega} f(\vec{r}) \ dp$ enak limiti vsot $S_D(f)$, ko gredo velikosti vseh delilnih pravokotnikov (torej največja diagonala vseh delilnih pravokotnikov) proti 0. Natančneje, za $\forall \varepsilon > 0 \ \exists \delta > 0$, da je

$$\left| S_D(f) - \iint_{\Omega} f(\vec{r}) \ dp \right| < \varepsilon,$$

če je maksimalna diagonalna delilnih pravokotnikov P_k manjša od δ .

Posledica. Naj bo Ω podana kot

$$\Omega = \{ (x, y) \in \mathbb{R}^2 \mid g_1(x) \le y \le g_2(x), \ a \le x \le b \}, \tag{9}$$

kjer sta g_1 in g_2 zvezni funkciji na intervalu [a,b] in $g_1(x) \leq g_2(x)$ za $\forall x \in [a,b]$. Naj bosta M_1 in M_2 taki števili, da pravokotnik $P = [a,b] \times [M_1,M_2]$ vsebuje množico Δ (torej $M_1 \leq g_1(x) \leq g_2(x) \leq M_2$ za $\forall x \in [a,b]$). Po definiciji imamo potem za vsako zvezno funkcijo $f: \Omega \to \mathbb{R}$:

$$\iint_{\Omega} f(x,y) \ dp = \iint_{P} f_{P}(x,y) \ dp,$$

kjer je f_P funkcija na P, definirana z

$$f_P(x,y) = \begin{cases} f(x,y) & ; \ (x,y) \in \Omega \\ 0 & ; \ (x,y) \in P \setminus \Omega. \end{cases}$$

Po zgornjem izreku pa je

$$\iint_P f_P(x,y) \ dp = \int_a^b \left(\int_{M_1}^{M_2} f(x,y) \ dy \right) dx = \int_a^b \left(\int_{g_1(x)}^{g_2(x)} f(x,y) \ dy \right) dx,$$

kjer smo upoštevali, da je funkcija f_P enaka 0 izven Ω in zato $\int_{M_1}^{M_2} f_P(x,y) \ dy = \int_{g_1(x)}^{g_2(x)} \ dy$. Torej velja naslednja trditev:

Trditev 4.6. Za vsako *zvezno* funkcijo f na množici Ω , definirani kot (9), velja

$$\iint_{\Omega} f(x,y) \ dp = \int_a^b \left(\int_{g_1(x)}^{g_2(x)} f(x,y) \ dy \right) dx.$$

Trditev 4.7. Za območja Ω , podana kot $\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid g_1(x, y) \leq z \leq g_2(x, y), (x, y) \in \Lambda\}$, in (skoraj povsod) zvezne funkcije f na njih velja

$$\iiint_{\Omega} f(x, y, z) \ dV = \iint_{\Lambda} \left(\int_{g_1(x)}^{g_2(x)} f(x, y, z) \ dz \right) dp.$$

4.1 Cilindrične ali valjne koordinate

Definicija 4.3. Lega točke (x,y,z) v prostoru $\mathbb R$ je določena s koordinato z in polarnima koordinatama r,φ njene projekcije (x,y,0) na ravnino x,y. Trojko φ,r,z imenujemo *cilindrične* ali *valjne* koordinatne točke. S kartezičnimi koordinatami so povezane prek enakosti

$$x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = z.$$

Pri tem lahko r zavzame vse nenegativne vrednosti, z vse realne vrednosti, φ pa na intervalu $[0,2\pi)$. Za dano točko T pomeni r njeno razdaljo od osi z, ki je enaka razdalji projekcije točke T na ravnino x,y od koordinatnega izhodišča.

Posledica (Koordinatne ploskve).

 $\bullet\,$ Ploskve z=konstanta so ravnine, vzporedne z ravnino x,y

- \bullet Ploskve r = konstanta so neskončni valji, katerih os je os z
- Ploskve $\varphi =$ konstanta pa so polravnine

4.2 Sferične koordinate

Definicija 4.4. Sferične ali krogelne koordinate točke T(x, y, z) so:

- $R = \sqrt{x^2 + y^2 + z^2}$ razdalja od izhodišča
- \bullet θ kot, ki ga vektor $\vec{0T}$ oklepa s pozitivnim poltrakom osi z
- φ kot, ki ga pravokotna projekcija vektorja $0\vec{T}$ na ravnino x,y oklepa s pozitivnim poltrakom osi x

Naj bo kot doslej r
, razdalja T od osi z. Potem je $r=R\sin\theta$ in

$$x = R\sin\theta\cos\varphi, \quad y = R\sin\theta\sin\varphi, \quad z = R\cos\theta.$$

Tukaj lahko zavzame kot θ vrednosti na intervalu $[0, \pi]$ (0 je na pozitivnem, π pa na negativnem poltraku osi z), kot φ pa vrednosti na intervalu $[0, 2\pi)$.

Volumni element v sferičnih koordinatah je

$$dV = R^2 \sin \theta \ dR \ d\theta \ d\varphi.$$

Od tod sledi, da lahko trojni integral po telesu Ω , ki je opisano kot

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : g_1(\varphi, \theta) \le R \le g_2(\varphi, \theta), (\varphi, \theta) \in \Lambda\},\$$

kjer sta $g_1 \leq g_2$ zvezni funkciji na množici $\Lambda \subset \mathbb{R}^2$, izrazimo kot

$$\iiint_{\Omega} f(x,y,z) \ dV = \iint_{\Lambda} \left(\int_{g_1(\varphi,\theta)}^{g_2(\varphi,\theta)} f(R\sin\theta\cos\varphi, \ R\sin\theta\sin\varphi, \ R\cos\theta) R^2 \sin\theta \ dR \right) d\theta \ d\varphi.$$

Posledica (Koordinatne ploskve).

- Ploskve R = konstanta so sfere
- Ploskve $\theta = \text{konstanta so stožci}$
- Plosvke $\varphi = \text{konstanta so polravnine}$

4.3 Splošne koordinate

Definicija 4.5. Naj bo V odprta podmožica v ravnini. Vlogo splošnih koordinat na V lahko igra vsak tak par funkcij

$$u = u(x, y), \quad v = v(x, y)$$

na V, da iz $(x,y) \neq (x_1,y_2)$ sledi $(u(x,y),v(x,y)) \neq (u(x_1,y_1),v(x_1,y_1))$, kar pomeni, da je točka (x,y) enolično določena s parom (u(x,y),v(x,y)). Drugače povedano, vektorska funkcija

$$F: V \to \mathbb{R}^2, \ F(x,y) = (u(x,y), v(x,y))$$

mora biti injektivna. Zavoljo diferencialnega računa predpostavimo, da sta funkciji u in v zvezno odvedljivi. Iz izreka o inverzni preslikavi vemo, da potem obrnljivost Jacobijeve matrike F'(x,y) preslikave F zagotavlja injektivnost preslikave F v okolici točke (x,y), ne pa na celem definicijskem območju V, zato jo je treba posebej privzeti. Tedaj je pri pogoju, da je F'(x,y) obrnljiva matrika za $\forall (x,y) \in V$, preslikava F dejansko bijekcija na odprto množico U := F(V), inverzna preslikava

$$G := F^{-1} : U \to V$$

pa je tudi zvezno odvedljiva in

$$G'(\vec{q}) = (F'(G(\vec{q})))^{-1}$$
 za $\forall \vec{q} \in U$.

Pri fiksnih u_0 in v_0 imenujemo krivulje u=(x,y) in v=(x,y) koordinatne krivulje.

Izrek 4.1. Naj bo $G: U \to V$ taka zvezno odvedljiva bijekcija, kjer sta U in V odprti podmnožici v \mathbb{R} , da je det $G'(\vec{r}) \neq 0$ za $\forall \vec{r} \in U$. Označimo $\vec{r} = (u, v)$ in G(u, v) = (x(u, v), y(u, v)). Naj bo Ω kompaktna podmnožica v V, katere rob naj sestoji iz končno mnogo zvezno odvedljivih krivulj (oz. naj ima mero 0), f pa naj bo zvezna funkcija na V (razen morda na množici z mero 0). Potem je

$$\iint_{\Omega} f(x,y) \ dx \ dy \ = \ \iint_{G^{-1}(\Omega)} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)}(u,v) \right| du \ dv,$$

kjer je

$$\frac{\partial(x,y)}{\partial(u,v)}(u,v) = \det G'(u,v) = \det \begin{bmatrix} \frac{\partial x}{\partial u}(u,v) & \frac{\partial x}{\partial v}(u,v) \\ \frac{\partial y}{\partial u}(u,v) & \frac{\partial y}{\partial v}(u,v) \end{bmatrix}.$$

Lema 2. Naj bo $L: \mathbb{R}^2 \to \mathbb{R}^2$ obrnljiva linearna preslikava in Λ paralelogram. Potem med ploščinama paralelograma Λ in $L(\Lambda)$ velja zveza

$$p_{L(\Lambda)} = |\det L|_{p_{\Lambda}}.\tag{10}$$

Enaka povezava velja tudi za vsako kompaktno podmnožico Λ v \mathbb{R}^2 oziroma za vsako ravninsko podmnožico, za katero je ploščina definirana.

Lema 3. Naj bo $G: U \to \mathbb{R}^2$ zvezno odvedljiva injektivna preslikava s povsod obrbljivim odvodom G'(u,v), definirana na odprti množici U, K kompaktna podmnožica v $U, \Lambda = \{(u,v) \in \mathbb{R}^2; |u-a| \leq h, |v-b| \leq h\}$ pa kvadrat s središčem (a,b) in stranico dolžine 2h, vsebovan v K. Označimo

$$L = \det G'(a,b) = \det \begin{bmatrix} \frac{\partial x}{\partial u}(a,b) & \frac{\partial x}{\partial v}(a,b) \\ \frac{\partial y}{\partial u}(a,b) & \frac{\partial y}{\partial v}(a,b) \end{bmatrix}$$

in naj bo A preslikava, definirana z A(u,v)=G(a,b)+L(u-a,v-b). Potem za $\forall \varepsilon>0 \ \exists \delta>0$ (neodvisen od izbire kvadrata), da za ploščini likov $G(\Lambda)$ in $A(\Lambda)$, ko je $h<\delta$, velja

$$|p_{G(\Lambda)} - p_{A(\Lambda)}| < \varepsilon p_{\Lambda}.$$

Ker se preslikavi A in Lrazlikujeta le za translacijo, lahko v tej oceni nadomestimo A z L.

5 PLOSKOVNI IN KRIVULJNI INTEGRAL

5.1 Površina ploskve in ploskovni integral skalarne funkcije

Definicija 5.1. Naj bo Λ pravokotnik s središčem $(u, v) \in \Omega$ in stranicama du, dv, ki naj bosta vzporedni koordinatnima osema in je L Jacobijeva matrika preslikave $\vec{r} = \vec{r}(u, v)$, torej

$$L = \begin{bmatrix} \frac{\partial}{\partial u} \vec{r}(u, v) & \frac{\partial}{\partial v} \vec{r}(u, v) \end{bmatrix}.$$

Ploščina paralelograma $L(\Lambda)$ je tako

$$p_{L(\Lambda)} \ = \ \|duL(1,0)\times dvL(0,1)\| \ = \ du \ dv \ \|\frac{\partial}{\partial u}\vec{r}(u,v)\times \frac{\partial}{\partial v}\vec{r}(u,v)\|.$$

Celotno površino ploskve lahko izračunamo tako, da seštejemo ploščine takih paralelogramov in limitiramo njihove velikosti proti 0, s čimer preide vsota v integral

$$p = \iint_{\Omega} \|\frac{\partial}{\partial u} \vec{r}(u, v) \times \frac{\partial}{\partial v} \vec{r}(u, v)\| du dv.$$

Z upoštevanjem Lagranje
ove identitete $\|\vec{a} \times \vec{b}\| = \sqrt{\|\vec{a}\|^2 \|\vec{b}\|^2 - (\vec{a} \cdot \vec{b})^2}$, lahko nekoliko poenostavimo formulo:

$$E(u,v) = \|\frac{\partial}{\partial u}\vec{r}\|^2, \quad F(u,v) = \frac{\partial}{\partial u}\vec{r} \cdot \frac{\partial}{\partial v}\vec{r}, \quad G(u,v) = \|\frac{\partial}{\partial v}\vec{r}\|^2$$
$$p = \iint_{\Omega} \sqrt{EG - F^2} \ du \ dv.$$

Označimo $\vec{q} = (u, v)$. Jacobijeva matrika $\dot{\vec{r}}(\vec{q})$ je

$$[\dot{\vec{r}}(\vec{q})]^T [\dot{\vec{r}}(\vec{q})] \ = \ \begin{bmatrix} E(u,v) & F(u,v) \\ F(u,v) & G(u,v) \end{bmatrix},$$

od kjer dobimo determinanto

$$\det [\dot{\vec{r}}(\vec{q})]^T [\dot{\vec{r}}(\vec{q})] = E(u, v)G(u, v) - F(u, v)^2.$$

Zamenjava spremenljivk:

$$\begin{split} \iint_{\Lambda} \sqrt{E(s,t)G(s,t) - F(s,t)^2} \ ds \ dt \ &= \ \iint_{\Lambda} \sqrt{E(s,t)G(s,t) - F(s,t)^2} \left| \frac{\partial (u,v)}{\partial (s,v)} \right| \ ds \ dt \\ &= \ \iint_{\Omega} \sqrt{E(u,v)G(u,v) - F(u,v)^2} \ du \ dv. \end{split}$$

Trditev 5.1. Definicija površine ploskve je neodvisna od parametrizacije.

Definicija 5.2. Naj bo f funkcija, definirana na ploskvi \mathcal{P} z enačbo $\vec{r} = \vec{r}(u,v), \ (u,v) \in \Omega \subseteq \mathbb{R}^2$. *Ploskovni integral* te funkcije po ploskvi \mathcal{P} je definirana kot

$$\iint_{\mathcal{P}} f \ dp \ = \ \iint_{\Omega} f(\vec{r}(u,v)) \sqrt{E(u,v)G(u,v) - F(u,v)^2} \ du \ dv.$$

Lahko bi pokazali, da je ploskovni integral neodvisen od parametrizacije ploskve.

5.2 Krivuljni integral

Definicija 5.3. Naj bo f (zvezna) funkcija na krivulji γ z enačbo $\vec{r} = \vec{r}(t)$, $a \leq t \leq b$. Krivuljni integral funkcije f po krivulji γ , je definiran kot

$$\int_{\gamma} f(\vec{r}) \ ds = \int_{a}^{b} f(\vec{r}(t)) ||\dot{\vec{r}}(t)|| \ dt.$$

Definicija 5.4. Krivuljni integral je definiran kot

$$\int_{\gamma} \vec{F} \cdot d\vec{r} \; = \; \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \dot{\vec{r}}(t) \; dt.$$