(Frank Lübech) Abblildungen (oder Funktionen) (M, N, f) M, N Mengen (f CMXN Abb :(=) fin jedes x c M gibt es genan en (x, y) ef mit x'= x. genan en y EN mit (x,y) ef. Schreib Aldmin: $f: M \rightarrow N$ (Abb. from M mach N) $M \ni \times \mapsto f(x) \in N$, when $(x, f(x)) \in f$ oder: M to N M: Definitionsboreich nort N: Westebesich von f

m:= {1,2,..., m} n EIN, M Menze m-Tupil in M = Element son M " Schraibwein bei f & ASM M" (an - 1 an) mit a = f(i) Schreiben and Mm statt M Folgen in M = Element non M ! Schribwine f E M ! (ai) i eN mobil ai = f(i) fin i eN Was sind 1- Tupel & in M? Elemente son Mª (a), a EM

Identifizieren oft M and M
alw (a) mit a

Kartesische Produkte

Es sei $n \in \mathbb{N}$ und M_i eine Menge für alle $i \in \underline{n}$. Wir setzen $M := \bigcup_{i \in n} M_i$.

Definition

 $M_1 \times \cdots \times M_n := \{f : \underline{n} \to M \mid f(i) \in M_i \text{ für alle } i \in \underline{n} \}$, und nennen $M_1 \times \cdots \times M_n$ das *kartesische Produkt* von M_1, \ldots, M_n .

Schreibweisen

- Für $f \in M_1 \times \cdots \times M_n$ schreiben wir (x_1, \dots, x_n) oder $(x_i)_{i \in \underline{n}}$ mit $x_i := f(i)$ für $1 \le i \le n$.
- ▶ $M_1 \times \cdots \times M_n$ ist also die Menge aller n-Tupel $(x_1, \dots, x_n) = (x_i)_{i \in \underline{n}} \in M^n$ mit $x_i \in M_i$ für $i \in \underline{n}$.

Familien

Es seien M, I Mengen.

Definition

Es seien I und M Mengen.

Eine Abbildung $f: I \to M$ wird gelegentlich auch mit $(x_i)_{i \in I}$ notiert, wobei $x_i := f(i)$ ist für $i \in I$. In diesem Fall heißt $(x_i)_{i \in I}$ eine durch I indizierte Familie in M.

Beispiele

- ▶ Für $I = \mathbb{N}$ ist $(x_i)_{i \in I}$ eine Folge in M.
- ▶ Für $I = \underline{n}$ ist $(x_i)_{i \in I}$ ein n-Tupel in M.

Kartesische Produkte (Forts.)

Es sei I eine Menge und M_i eine Menge für alle $i \in I$. Wir setzen $M := \bigcup_{i \in I} M_i$.

Definition

Die Menge

$$\prod_{i\in I} M_i := \{(x_i)_{i\in I} \in M^I \mid x_i \in M_i \text{ für alle } i \in I\}$$

heißt das kartesische Produkt der Mengen M_i , $i \in I$.

Beispiel

Sei
$$I = \mathbb{N}$$
 und $M_i := \{x \in \mathbb{R} \mid x \leq i\}$ für $i \in \mathbb{N}$.

$$M = \prod_{i \in \mathbb{N}} M_i = \{(x_i)_{i \in \mathbb{N}} \mid x_i \leq i \text{ für alle } i \in \mathbb{N}\}. \quad \text{2.8.} \quad (i)_{i \in \mathbb{N}} \in \mathbb{M}$$

$$T = \text{Pot}(\mathbb{R}) \setminus \{\emptyset\}, \quad \times \subseteq \mathbb{R} \quad \text{in} \quad M_{\chi} := X$$

$$M = \prod_{x \in \mathbb{T}} X = \prod_{\emptyset \neq \chi \subseteq \mathbb{R}} X \quad \text{subviries, em Slement an } M$$

$$\text{an } x_i = x_i \in \mathbb{R}$$

$$\text{Answall as ion} : M \neq \emptyset$$

Bild und Urbild

Es sei $f: M \rightarrow N$ eine Abbildung.

Definition

▶ *X* ⊆ *M*:

$$f(X) := \{f(x) \mid x \in X\} \subseteq \mathcal{N}$$

= $\{y \in N \mid \text{es gibt ein } x \in \mathcal{M} \text{ mit } y = f(x)\}.$

Bild von X unter f.

- ightharpoonup f(M): Bild von f.
- Y ⊆ N:

$$f^{-1}(Y) := \{x \in M \mid f(x) \in Y\}$$

Urbild von Y unter f.

▶ $f^{-1}(\{y\})$ mit $y \in N$: die <u>Fasern von f.</u>

Bild und Urbild (Forts.)

Beispiele

$$f: \{1,2,3,4\} \rightarrow \{5,6,7,8,9\}, 1 \mapsto 5, 2 \mapsto 8, 3 \mapsto 5, 4 \mapsto 9$$

- ► $f({1,2,3}) = {5,8}$
- ▶ Bild von $f = \{ 5, 8, 9 \}$
- $f^{-1}(\{5,9\}) = \{2,3,4\}$
- ► Sei A die Menge der jetzt in diesem Hörsaal anwesenden Personen.

Setzte $J := A \to \mathbb{Z}$, $p \mapsto Geburtsjahr von <math>p$.

Die Faser $J^{-1}(\{2000\})$ ist die Menge der Personen aus A, die im Jahr 2000 geboren sind.

Bild und Urbild (Forts.)

Bemerkung

Es sei $f: M \rightarrow N$ eine Abbildung.

Die nicht-leeren Fasern von f bilden eine Partition von M.

(alw {f'([4]) | 4 c Rild f} ist Pontition ron M.)

- i zu sidem $x \in M$ gibles ein $y \in N$ mit f(x) = y, adso $x \in f^{-1}(\{y\})$
- o ruin $x \in M$, $x \in f^{-}(\{y\})$ and $x \in f^{-}(\{y'\})$ find (x) = y and (x) = y', also y = y' (da f(x) emdentize)

Es sei $f: M \to N$ eine Abbildung.

Definition

- ▶ f heißt *surjektiv*, falls f(M) = N.
- ▶ f heißt injektiv, falls für alle $x, x' \in M$ gilt: $f(x) = f(x') \Rightarrow x = x'$. Follow: $x \neq x' \Rightarrow f(x) \neq f(x')$
- ▶ f heißt bijektiv, falls f injektiv und surjektiv ist.

Beispiel

▶
$$\{1,2,3\} \rightarrow \{4,5\}$$
 , $1 \mapsto 4$, $2 \mapsto 4$, $3 \mapsto 5$ rung, 7 mig ,

▶ $\{1,2\} \rightarrow \{4,5,6\}$, $1 \mapsto 4$, $2 \mapsto 5$ 7 rung , mig

▶ $\{1,2,3\} \rightarrow \{4,5,6\}$, $1 \mapsto 5$, $2 \mapsto 6$, $3 \mapsto 4$ rung, rung =) ling

▶ $\{1,2,3\} \rightarrow \{4,5,6\}$, $1 \mapsto 5$, $2 \mapsto 6$, $3 \mapsto 5$ 7 mig , 7 rung

Beispiel

 $f: \mathbb{Q} \to \mathbb{Q}$, $x \mapsto -2x + 3$ ist bijektiv.

Bew: mjehlin: Sien
$$x_1x' \in \mathbb{R}$$
 mit $f(x) = f(x')$ (=)
$$-2x+3 = -2x'+3 \iff -2x = -2x' \iff x = x'$$
mythlin: Sie $y \in \mathbb{R}$. Dann gill für $x = \frac{3-y}{2}$, dan
$$f(x) = -2 \cdot \left(\frac{3-y}{2}\right) + 1 = y \text{ is } t \text{, also } y \in \text{Bild}(f).$$

Beispiel

$$\begin{split} \mathsf{Abb}_{\mathsf{inj}}(\{1,2\},\{3,4,5\}) \\ &= \{(1 \mapsto 3,2 \mapsto 4), (1 \mapsto 3,2 \mapsto 5), (1 \mapsto 4,2 \mapsto 3), \\ &\quad (1 \mapsto 4,2 \mapsto 5), (1 \mapsto 5,2 \mapsto 3), (1 \mapsto 5,2 \mapsto 4)\} \\ \mathsf{Abb}_{\mathsf{surj}}(\{1,2,3\},\{4,5\}) \\ &= \{(1 \mapsto 4,2 \mapsto 4,3 \mapsto 5), (1 \mapsto 4,2 \mapsto 5,3 \mapsto 4), \\ &\quad (1 \mapsto 4,2 \mapsto 5,3 \mapsto 5), (1 \mapsto 5,2 \mapsto 4,3 \mapsto 4), \\ &\quad (1 \mapsto 5,2 \mapsto 4,3 \mapsto 5), (1 \mapsto 5,2 \mapsto 5,3 \mapsto 4)\} \\ \mathsf{Abb}_{\mathsf{bij}}(\{1,2,3\},\{4,5,6\}) \\ &= \{(1 \mapsto 4,2 \mapsto 5,3 \mapsto 6), (1 \mapsto 4,2 \mapsto 6,3 \mapsto 5), \\ &\quad (1 \mapsto 5,2 \mapsto 4,3 \mapsto 6), (1 \mapsto 5,2 \mapsto 6,3 \mapsto 4), \\ &\quad (1 \mapsto 6,2 \mapsto 4,3 \mapsto 5), (1 \mapsto 6,2 \mapsto 5,3 \mapsto 4)\} \end{split}$$

Beispiele

- $\blacktriangleright f: \mathbb{Z} \to \mathbb{Z}, z \mapsto 2z \text{ ist } m_{j}, 7 m_{j}$
- $\blacktriangleright f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x \text{ ist} \qquad \text{with} \quad \text{and} \quad \text$
- ▶ Hashfunktionen, z.B. md5 : $\{\text{Texte}\} \rightarrow \{0,1\}^{128}$

 $\hbox{Verschlüsselungsfunktionen, z.B. crypt}: \{0,1\}^k \to \{0,1\}^k, \\ \hbox{sind injektiv} \quad \hbox{also and sunjektiv} \; .$