Calculus and Probability Theory

Assignment 4, February 23, 2017

Handing in your answers:

- submission via Blackboard (http://blackboard.ru.nl);
- one single pdf file (make sure that if you scan/photo your handwritten assignment, the result is clearly readable);
- all of your solutions are clearly and convincingly explained;
- make sure to write your name, your student number.

Deadline: Friday, March 3, 14:30 sharp!

Goals: After completing these exercises successfully you should be able to:

- analyse and sketch real functions;
- apply differentiation rules to determine higher-order partial derivatives;
- find primitives of well-known functions;
- compute definite integrals when the primitive function is known;
- compute improper integrals.

Marks: You can score a total of 100 points (and 16 bonus points) There are three bonus exercises.

- 1. (20 points) Investigate the function $f(x) = \frac{x}{\ln(x)}$ as follows. (Do not start with drawing a graph by means of a device or some web resource. Of course you may check your result when you're done.)
 - (a) Determine the domain of the function f.
 - (b) What are the roots of f?
 - (c) Determine the limits at 1 and ∞ . (Hint: there are 3 cases, use l'Hôpital!)
 - (d) Find f' and f''.
 - (e) Find the zeros of f' and f''.
 - (f) What are the critical points (determine their x and y coordinates)?
 - (g) Find the local minimums and maximums.
 - (h) Which parts of the function are convex and concave? Does function f have points of inflection? (Hint: Use the sign of the second derivative for answering both questions.)
 - (i) Draw the graph of function f. (If you collect all intervals and special points in a table, it helps a lot in drawing the graph. Moreover, you get some extra points!)

Solution:

- (a) $(0,1) \cup (1,\infty)$;
- (b) There are no zeros.
- (c) i. $\lim_{x\to\infty}\frac{x}{\ln(x)}=\lim_{x\to\infty}\frac{1}{1/x}=\lim_{x\to\infty}x=\infty$ ii. $\lim_{x\to 1^+}\frac{x}{\ln(x)}=\infty$

 - iii. $\lim_{x \to 1^-} \frac{x}{\ln(x)} = -\infty$

For the first we used l'Hôpital (condition: $\frac{\infty}{\infty}$).

(d) Use the quotient rule in both cases. We get $f'(x) = \frac{1 \cdot \ln(x) - x \cdot 1/x}{(\ln(x))^2} = \frac{\ln(x) - 1}{(\ln(x))^2} = \frac{1}{\ln(x)} - \frac{1}{(\ln(x))^2}$ and $f''(x) = \frac{\partial}{\partial x} \left[\frac{1}{\ln(x)} - \frac{1}{(\ln(x))^2} \right] = \frac{-1}{x(\ln(x))^2} - \frac{-2}{x(\ln(x))^3} = \frac{2 - \ln(x)}{x(\ln(x))^3}$.

- (e) From the above we can easily read that $f'(x) = 0 \iff \ln(x) = 1 \iff x = e$ and $f''(x) = 0 \iff \ln(x) = 2 \iff x = e^2$.
- (f) The only critical point (i.e., with f'(x) = 0) has x = e, and for this we have $f(e) = \frac{e}{\ln(e)} = e$. So (e, e) is the only critical point.
- (g) We have $f''(e) = \frac{1}{e} > 0$, so (e, e) is a local minimum. Another method is to look at f'(x): since f'(x) < 0 if x < e and f'(x) > 0 if x > e, (e, e) is a local minimum. The domain has no edge points or points in which f is not differentiable (since f is not defined in 0 and 1) so there are no other local extrema.
- (h) i. on (0,1), f''(x) < 0 thus concave (since $f''(\frac{1}{e}) = -3e < 0$) ii. on $(1,e^2)$, f''(x) > 0 thus convex (since $f''(e) = \frac{1}{e} > 0$) iii. on (e^2,∞) , f''(x) < 0 thus concave (since $f''(e^3) = \frac{-1}{9e^3} < 0$) iv. on e^2 , $f''(e^2) = 0$ which is an inflection point as f''(x) changes from convex to concave.
- (i) Sketch:

[[Grading Instruction:

Grading (total 20):	
aspect:	points
(a)	1
(b)	1
(c) three simple limits	2
(c) limit with L'Hôpital and condition	2
(d) f'	2
(d) f''	2
(e) zero of f'	1
(e) no zero of f''	1
(f)	1
(g)	2
(h)	4
(i)	1
small mistake	-2

11

2. **(6 points)** Show that the derivative of an odd function is even and that the derivative of an even function is odd.

Solution: Assume f is odd, i.e., f(-x) = -f(x). Then because of the chain rule $\frac{\partial}{\partial x} f(-x) = f'(x) \cdot -1 = -f'(-x)$, but when f is odd we also have $\frac{\partial}{\partial x} f(-x) = \frac{\partial}{\partial x} - f(x) = -f'(x)$. Hence f'(-x) = f'(x) and f' is even. Analogously, when f is even, i.e., f(-x) = f(x) then (chain rule) $\frac{\partial}{\partial x} f(-x) = -f'(-x)$ and (f even) $\frac{\partial}{\partial x} f(-x) = f(x) = f'(x)$. Thus f'(-x) = -f'(x) and f' is odd.

[[Grading Instruction:

Grading (total 6 points):	
aspect:	points
correct answer, per part	3

]]

3. (14 points) Optimization problem

- (a) Find the point on the parabola $y^2 = 2x$ that is closest to A = (1,4).
- (b) A steel rod is carried down a hallway of 9 meter wide. At the end there is corner to the right into a narrower hallway of 6 meter wide. What is the maximum length of the steel rod that can be carried horizontally around the corner?

(Hint: What happens at $\theta \to 0$ and $\theta \to \frac{1}{4}\pi$? Show that the angle at which the minimum is obtained is at $\theta = \arctan\left(\sqrt[3]{\frac{3}{2}}\right) \approx 0,853$.)

Solution:

- (a) Let B=(a,b) be this point. Then $b^2=2a\Leftrightarrow a=\frac{1}{2}b^2$. The squared distance $D=d(A,B)^2=(1-a)^2+(4-b)^2=(1-\frac{1}{2}b^2)^2+(4-b)^2$. We find the minimum by differentiating D w.r.t. b, i.e., $\frac{\partial}{\partial b}D=2\cdot(1-\frac{1}{2}b^2)\cdot -b+2\cdot(4-b)\cdot -1=b^3-8$ which is 0 when b=2. Then $a=\frac{1}{2}2^2=2$ and the point with minimum distance is (2,2). (Note: minimizing the squared distance gives the same result as minimizing the distance but is easier to work with. An alternative solution can be found by substituting $b=\sqrt{2a}$ and taking the derivative w.r.t. a.)
- (b) Paradoxically, we solve the maximization problem by solving a minimization problem. Let L be the length of the rod going from wall to wall. If $\theta \to 0$ or $\theta \to \frac{\pi}{2}$ then $L \to \infty$, but for some angle θ there will be a minimum length L such that the rod just fits around the corner. Let $L = L_1 + L_2$ with L_1 the length in the lower corridor, L_2 the length in the upper corridor. Then $\sin \theta = \frac{9}{L_1} \Leftrightarrow L_1 = \frac{9}{\sin \theta}$ and $\cos \theta = \frac{6}{L_2} \Leftrightarrow L_2 = \frac{6}{\cos \theta}$. The angle at which the minimum length is obtained is found by differentiating wrt θ and setting equal to 0. Thus $\frac{\partial}{\partial \theta} L = \frac{-9\cos \theta}{\sin^2 \theta} + \frac{-6-\sin \theta}{\cos^2 \theta} = \frac{-9\cos^3 \theta + 6\sin^3 \theta}{\sin^2 \theta \cos^2 \theta}$ which is 0 when $6\sin^3 \theta = 9\cos^3 \theta \Leftrightarrow \tan^3 \theta = \frac{9}{6} \Leftrightarrow \theta = \arctan\left(\frac{3}{\sqrt[3]{2}}\right) \approx 0,853$. Substituting this in the equation for L gives us $L \approx 21,07$ meter.

[[Grading Instruction:

Grading (total 6 points):	
aspect:	points
correct answer, per part	7

]]

- 4. (20 points) Given function f, find the partial derivatives. If it is necessary, simplify the result.
 - (a) $f(x,y) = \cos(4y xy)$; $\frac{\partial}{\partial x} f(x,y) = ?$ and $\frac{\partial}{\partial y} f(x,y) = ?$

(b) Show that
$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x, y) \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x, y) \right)$$
.

Solution:

(a) First all partial derivatives for $f(x, y) = \cos(4y - xy)$.

$$\begin{array}{l} \mathrm{i.} \ \ \frac{\partial f(x,y)}{\partial x} = -\sin(4y-xy)*(-y) = y\sin(4y-xy); \\ \mathrm{ii.} \ \ \frac{\partial f(x,y)}{\partial y} = -\sin(4y-xy)(4-x); \end{array}$$

ii.
$$\frac{\partial f(x,y)}{\partial y} = -\sin(4y - xy)(4 - x);$$

(b) Second, the higher order partial derivatives

i.
$$\frac{\partial^2 f(x,y)}{\partial y \partial x} = \sin(4y - xy) + y\cos(4y - xy)(4 - x);$$

ii.
$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = -\cos(4y - xy) * (-y) * (4-x) + \sin(4y - xy) = \sin(4y - xy) + y\cos(4y - xy)(4-x)$$
.

[[Grading Instruction:

Grading (total 20 points):

points

(a) per correct partial derivative(b) per correct partial derivative

4

]]

5. (20 points) Evaluate the following definite integrals.

(a)
$$\int_{-1}^{1} (x^3 + x - 1) dx$$
;

(b)
$$\int_{1}^{2} (3\sqrt{x} + \frac{3}{x^2}) dx$$
;

(c)
$$\int_0^{\pi} (\sin(x) + \cos(x)) dx$$
;

(d)
$$\int_{1}^{e} \frac{1-\ln x}{x^2} dx$$

Solution:

(a)

$$\int_{-1}^{1} (x^3 + x - 1) dx = \int_{-1}^{1} x^3 dx + \int_{-1}^{1} x dx + \int_{-1}^{1} -1 dx$$
$$= \frac{1}{4} x^4 \Big|_{-1}^{1} + \frac{1}{2} x^2 \Big|_{-1}^{1} + (-x) \Big|_{-1}^{1}$$
$$= \frac{1}{4} - \frac{1}{4} + \frac{1}{2} - \frac{1}{2} - 1 - 1$$
$$= \underline{-2}.$$

(b)

$$\int_{1}^{2} (3\sqrt{x} + \frac{3}{x^{2}}) dx = 3\left(\int_{1}^{2} \sqrt{x} dx + \int_{1}^{2} \frac{1}{x^{2}} dx\right)$$

$$= 3\left(\frac{2}{3}x^{\frac{3}{2}}|_{1}^{2} + \frac{-1}{x}|_{1}^{2}\right)$$

$$= 3\left(\frac{2}{3}(2\sqrt{2} - 1) + \frac{1}{2}\right)$$

$$= 4\sqrt{2} - \frac{1}{2}.$$

(c)

$$\int_0^{\pi} (\sin(x) + \cos(x)) dx = \int_0^{\pi} \sin(x) dx + \int_0^{\pi} \cos(x) dx$$
$$= -\cos(x)|_0^{\pi} + \sin(x)|_0^{\pi}$$
$$= 1 + 1 + 0 + 0$$
$$= 2.$$

(d)

$$\int_{1}^{e} \frac{1 - \ln x}{x^{2}} dx = \frac{\ln x}{x} \Big|_{1}^{e}$$
$$= \frac{1}{e} - 0$$
$$= \frac{1}{e}.$$

[[Grading Instruction:

Grading (5 points per part; 20 points total):	
aspect:	points
method	3
answer	2

]]

- 6. (20 points) Evaluate the following improper integrals.
 - (a) $\int_{-1}^{1} \frac{1}{x^n} dx$, n an integer such that $n \geq 2$; (Hint: distinguish two cases)
 - (b) $\int_{-\infty}^{-\pi/2} \frac{x \cos(x) \sin(x)}{x^2} dx$; (Hint: use the quotient rule for derivation to find the primitive)
 - (c) $\int_2^\infty \frac{-1}{x \ln^2(x)} dx$. (Hint: use a fraction of well known functions to find the primitive)

Solution:

(a)

$$\int_{-1}^{1} \frac{1}{x^{n}} dx = \lim_{\epsilon \to 0^{+}} \int_{-1}^{-\epsilon} \frac{1}{x^{n}} dx + \int_{\epsilon}^{1} \frac{1}{x^{n}} dx$$

$$= \lim_{\epsilon \to 0^{+}} \left(\frac{-1}{n-1} x^{-n+1} \Big|_{-1}^{-\epsilon} + \frac{-1}{n-1} x^{-n+1} \Big|_{\epsilon}^{1} \right)$$

$$= \frac{1}{n-1} \lim_{\epsilon \to 0^{+}} \left(-x^{-n+1} \Big|_{-1}^{-\epsilon} - x^{-n+1} \Big|_{\epsilon}^{1} \right)$$
Case n is odd:
$$= \frac{1}{n-1} \lim_{\epsilon \to 0^{+}} \left(-\epsilon^{-n+1} + 1 - 1 + \epsilon^{-n+1} \right) = \underline{0}$$
Case n is even:
$$= \frac{1}{n-1} \lim_{\epsilon \to 0^{+}} \left(\epsilon^{-n+1} - 1 - 1 + \epsilon^{-n+1} \right) = \underline{\infty}.$$

(b)

$$\int_{-\infty}^{-\pi/2} \frac{x \cos(x) - \sin(x)}{x^2} dx = \lim_{b \to \infty} \left(\frac{\sin(x)}{x} \Big|_{-b}^{-\pi/2} \right)$$
$$= \lim_{b \to \infty} \left(\frac{-1}{-\pi/2} - \frac{\sin(b)}{b} \right)$$
$$= \frac{2}{\underline{\pi}}.$$

(c)

$$\int_{2}^{\infty} \frac{-1}{x \ln^{2}(x)} dx = \lim_{b \to \infty} \left(\frac{1}{\ln(x)} \Big|_{2}^{b} \right)$$
$$= \lim_{b \to \infty} \left(\frac{1}{\ln(b)} - \frac{1}{\ln(2)} \right)$$
$$= \frac{-1}{\ln(2)}.$$

[[Grading Instruction:

Grading (total 20 points):	
aspect:	points
correct answer, per part	5
correct reasoning, total	5

]]

- 7. (bonus, +6 points) Find primitives of the following functions f. That is, find F such that F'(x) = f(x).
 - (a) $f(x) = \frac{1}{2\sqrt{x}} \frac{1}{x^2}$;
 - (b) $f(x) = 2\sin(x)\cos(x);$
 - (c) $f(x) = \frac{2}{1+4x^2}$;

Solution:

- (a) $F(x) = \sqrt{x} + \frac{1}{x}$;
- (b) $F(x) = \sin^2(x)$;
- (c) $F(x) = \arctan(2x)$;

[[Grading Instruction:

Grading (total 6 points): aspect: points 2 point per part

]]

8. (bonus, 10 points) If $f(x,y) = \frac{xy}{x+y}$, show that

$$x^{2} \cdot \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f(x, y) \right) + 2xy \cdot \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x, y) \right) + y^{2} \cdot \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} f(x, y) \right) = 0.$$

(Hint: First compute all the second partial derivatives of f, then substitute the results in the expression on the left-hand side.)

Solution: Compute the partial derivatives.

(a)
$$\frac{\partial f}{\partial x} = \frac{y(x+y)-xy}{(x+y)^2} = \frac{y^2}{(x+y)^2};$$

(b) $\frac{\partial^2 f}{\partial^2 x} = \frac{-2(x+y)y^2}{(x+y)^4} = \frac{-2y^2}{(x+y)^3};$
(c) $\frac{\partial f}{\partial y} = \frac{x(x+y)-xy}{(x+y)^2} = \frac{x^2}{(x+y)^2};$

(b)
$$\frac{\partial^2 f}{\partial^2 x} = \frac{-2(x+y)y^2}{(x+y)^4} = \frac{-2y^2}{(x+y)^3}$$

(c)
$$\frac{\partial f}{\partial y} = \frac{x(x+y)-xy}{(x+y)^2} = \frac{x^2}{(x+y)^2}$$

(d)
$$\frac{\partial^2 f}{\partial^2 y} = \frac{-2(x+y)x^2}{(x+y)^4} = \frac{-2x^2}{(x+y)^3};$$

(d)
$$\frac{\partial^2 f}{\partial^2 y} = \frac{-2(x+y)x^2}{(x+y)^4} = \frac{-2x^2}{(x+y)^3};$$

(e) $\frac{\partial^2 f}{\partial y \partial x} = \frac{2y(x+y)^2 - 2(x+y)y^2}{(x+y)^4} = \frac{2y(x+y) - 2y^2}{(x+y)^3} = \frac{2xy}{(x+y)^3}.$

So the identity becomes

$$x^2\frac{-2y^2}{(x+y)^3} + 2xy\frac{2xy}{(x+y)^3} + y^2\frac{-2x^2}{(x+y)^3}$$

which is clearly zero.

[[Grading Instruction:

Grading (total 10 points):	
aspect:	points
for all (of at most the three) correct second order derivatives	5
concluding that identity holds	5
small mistakes	-2