Meaning of prefixes

S - REAL D - DOUBLE PRECISION C - COMPLEX Z - COMPLEX*16

(this may not be supported by all machines)

For the Level 2 BLAS a set of extended-precision routines with the prefixes ES, ED, EC, EZ may also be available.

Level 1 BLAS

In addition to the listed routines there are two further extended-precision dot product routines DQDOTI and DQDOTA.

Level 2 and Level 3 BLAS

Matrix types:

GE - GEneral GB - General Band
SY - SYmmetric SB - Sym. Band SP - Sum. Packed
HE - HErmitian HB - Herm. Band HP - Herm. Packed
TR - TRiangular TB - Triang. Band TP - Triang. Packed

Level 2 and Level 3 BLAS Options

Dummy options arguments are declared as CHARACTER*1 and may be passed as character strings.

TRANx = 'No transpose', 'Transpose',

'Conjugate transpose' (X, X^T, X^H)

UPLO = 'Upper triangular', 'Lower triangular'
DIAG = 'Non-unit triangular', 'Unit triangular'
SIDE = 'Left', 'Right' (A or op(A) on the left,

or A or op(A) on the right)

For real matrices, TRANSx = T and TRANSx = T have the same meaning.

For Hermitian matrices, TRANSx = T' is not allowed. For complex symmetric matrices, TRANSx = T' is not allowed.

References

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, "Basic Linear Algebra Subprograms for Fortran Usage," *ACM Trans.* on Math. Soft. 5 (1979) 308-325

J.J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, "An Extended Set of Fortran Basic Linear Algebra Subprograms," ACM Trans. on Math. Soft. 14,1 (1988) 1-32

J.J. Dongarra, I. Duff, J. DuCroz, and S. Hammarling, "A Set of Level 3 Basic Linear Algebra Subprograms," *ACM Trans. on Math. Soft.* (1989)

Obtaining the Software via netlib@ornl.gov

To receive a copy of the single-precision software, type in a mail message:

send sblas from blas send sblas2 from blas send sblas3 from blas

To receive a copy of the double-precision software,

type in a mail message: send dblas from blas

send dblas2 from blas

send dblas3 from blas

To receive a copy of the complex single-precision software, type in a mail message:

send cblas from blas

send cblas2 from blas

send cblas3 from blas

To receive a copy of the complex double-precision software, type in a mail message:

send zblas from blas

send zblas2 from blas

send zblas3 from blas

Send comments and questions to lapack@cs.utk.edu .

Basic

Linear

Algebra

Subprograms

A Quick Reference Guide

University of Tennessee Oak Ridge National Laboratory Numerical Algorithms Group Ltd.

May 11, 1997

T 14 DIAG		
Level 1 BLAS		C
dim scalar vector vector scalars 5-element array SUBROUTINE xROTG (A, B, C, S)	Generate plane rotation	prefixes S, D
SUBROUTINE AROUG (D1, D2, A, B, PARAM)	Generate modified plane rotation	S, D
SUBROUTINE XROT (N, X, INCX, Y, INCY, C, S)	Apply plane rotation	S, D
SUBROUTINE XROTM (N, X, INCX, Y, INCY, PARAM)	Apply modified plane rotation	S, D
SUBROUTINE XSWAP (N, X, INCX, Y, INCY)	$x \leftrightarrow y$	S, D, C, Z
SUBROUTINE xSCAL (N, ALPHA, X, INCX)	$x \leftarrow \alpha x$	S, D, C, Z, CS, ZD
SUBROUTINE xCOPY (N, X, INCX, Y, INCY)	$y \leftarrow x$	S, D, C, Z
SUBROUTINE XAXPY (N, ALPHA, X, INCX, Y, INCY)	$y \leftarrow \alpha x + y$	S, D, C, Z
FUNCTION xDOT (N, X, INCX, Y, INCY)	$dot \leftarrow x^T y$	S, D, DS
FUNCTION xDOTU (N, X, INCX, Y, INCY)	$dot \leftarrow x^T y$	C, Z
FUNCTION xDOTC (N, X, INCX, Y, INCY)	$dot \leftarrow x^H y$	C, Z
FUNCTION xxDOT (N, X, INCX, Y, INCY)	$dot \leftarrow \alpha + x^T y$	SĎS
FUNCTION xNRM2 (N, X, INCX)	$nrm2 \leftarrow x _2$	S, D, SC, DZ
FUNCTION xASUM (N, X, INCX)	$asum \leftarrow re(x) _1 + im(x) _1$	S, D, SC, DZ
FUNCTION IXAMAX(N, X, INCX)	$amax \leftarrow 1^{st}k \ni re(x_k) + im(x_k) $	S, D, C, Z
	$= max(re(x_i) + im(x_i))$	
Level 2 BLAS		
options dim b-width scalar matrix vector scalar vector	_	
xGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^T x + \beta y, y \leftarrow \alpha A^H x + \beta y, A - m \times n$	S, D, C, Z
xGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^T x + \beta y, y \leftarrow \alpha A^H x + \beta y, A - m \times n$	S, D, C, Z
xHEMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	C, Z
xHBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	C, Z
xHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	C, Z
xSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	S, D
xSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	S, D
xSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	S, D
xTRMV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)	$x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx$	S, D, C, Z
xTBMV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)	$x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx$	S, D, C, Z
xTPMV (UPLO, TRANS, DIAG, N, AP, X, INCX)	$x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx$	S, D, C, Z
xTRSV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)	$x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-H}x$	S, D, C, Z
xTBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)	$x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-H}x$	S, D, C, Z
xTPSV (UPLO, TRANS, DIAG, N, AP, X, INCX)	$x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-H}x$	S, D, C, Z
options dim scalar vector vector matrix	$T + A A \longrightarrow$	a D
XGER (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)	$A \leftarrow \alpha x y^T + A, A - m \times n$	S, D
XGERU (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)	$A \leftarrow \alpha x y^T + A, A - m \times n$	C, Z
XGERC (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)	$A \leftarrow \alpha x y^H + A, A - m \times n$ $A \leftarrow \alpha x x^H + A$	C, Z
XHER (UPLO, N, ALPHA, X, INCX, A, LDA)	$A \leftarrow \alpha x x^{\mu} + A$ $A \leftarrow \alpha x x^{H} + A$	C, Z
XHPR (UPLO, N, ALPHA, X, INCX, AP)	$A \leftarrow \alpha x x^{\mu} + A$ $A \leftarrow \alpha x y^{H} + y(\alpha x)^{H} + A$	C, Z
XHER2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)	$A \leftarrow \alpha x y^{H} + y(\alpha x)^{H} + A$ $A \leftarrow \alpha x y^{H} + y(\alpha x)^{H} + A$	C, Z
xHPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)	$A \leftarrow \alpha x y^{-1} + y(\alpha x)^{-1} + A$ $A \leftarrow \alpha x x^{T} + A$	C, Z
XSYR (UPLO, N, ALPHA, X, INCX, A, LDA)	$A \leftarrow \alpha x x^{2} + A$ $A \leftarrow \alpha x x^{T} + A$	S, D
XSPR (UPLO, N, ALPHA, X, INCX, AP)	$A \leftarrow \alpha x x^2 + A$ $A \leftarrow \alpha x y^T + \alpha y x^T + A$	S, D
XSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)		S, D
xSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)	$A \leftarrow \alpha x y^T + \alpha y x^T + A$	S, D
Level 3 BLAS		
options dim scalar matrix matrix scalar matrix		
xGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)	$C \leftarrow \alpha op(A)op(B) + \beta C, op(X) = X, X^T, X^H, C - m \times n$	S, D, C, Z
xSYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)	$C \leftarrow \alpha AB + \beta C, C \leftarrow \alpha BA + \beta C, C - m \times n, A = A^T$	S, D, C, Z
XHEMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)	$C \leftarrow \alpha AB + \beta C, C \leftarrow \alpha BA + \beta C, C - m \times n, A = A^{H}$	C, Z
xSYRK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)	$C \leftarrow \alpha A A^T + \beta C, C \leftarrow \alpha A^T A + \beta C, C - n \times n$	S, D, C, Z
XHERK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)	$C \leftarrow \alpha A A^H + \beta C, C \leftarrow \alpha A^H A + \beta C, C - n \times n$	C, Z
xSYR2K(UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)	$C \leftarrow \alpha A B^T + \bar{\alpha} B A^T + \beta C, C \leftarrow \alpha A^T B + \bar{\alpha} B^T A + \beta C, C - n \times n$	S, D, C, Z
xHER2K(UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)	$C \leftarrow \alpha A B^H + \bar{\alpha} B A^H + \beta C, C \leftarrow \alpha A^H B + \bar{\alpha} B^H A + \beta C, C - n \times n$	C, Z
xTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)	$B \leftarrow \alpha o p(A)B, B \leftarrow \alpha B o p(A), o p(A) = A, A^T, A^H, B - m \times n$	S, D, C, Z
TOOM (CIDE IDIO TOANCA DIAC M N AIDUA A IDA D IDD)	$B \leftarrow \alpha o p(A^{-1})B, B \leftarrow \alpha B o p(A^{-1}), o p(A) = A, A^T, A^H, B - m \times n$	S, D, C, Z
XIRDH (SIDE, OFLO, IRANDA, DIAG, H, N, ALFRA, A, LDA, B, LDB)		