

Phase-1 Submission

Student Name: ASHWINTH M

Register Number: 712523205008

Institution: PPG INSTITUTE OF TECHNOLOGY

Department: INFORMATION TECHNOLOGY

Date of Submission: 26-04-2025

1. Problem Statement

Air pollution is a growing concern worldwide, especially in urban regions. Its adverse effects on human health, ecosystems, and climate make accurate forecasting of air quality a vital task. This project aims to leverage advanced machine learning algorithms to predict air quality levels (e.g., AQI), enabling authorities and citizens to make proactive decisions.

2. Objectives of the Project

- Predict the Air Quality Index (AQI) based on environmental and meteorological parameters.
- Identify key contributors (e.g., pollutants) to air pollution.
- Generate insights to help government agencies, researchers, and the public.
- Optionally develop a web-based dashboard for real-time AQI forecasting.

3. Scope of the Project

- Features: PM2.5, PM10, NO2, SO2, CO, O3, temperature, humidity, wind speed.
- Algorithms: Regression models, Ensemble methods (e.g., Random Forest, XGBoost), possibly time-series models like LSTM.
- Limitations: Real-time data availability, data quality from sensors, and computational constraints.

4.Data Sources

- Source: Kaggle, UCI, OpenAQ API, Central Pollution Control Board (India).
- Type: Public datasets; both static (historical data) and dynamic (API-fed real-time data).
- Format: CSV, JSON.
- Data

 source:

 https://www.kaggle.com/datasets/waqi786/global-air-quality-dataset?resour

 ce=download

5. High-Level Methodology

a. Data Collection

- Download datasets from platforms like Kaggle/UCI.
- Use APIs (e.g., OpenAQ) for dynamic updates.

b. Data Cleaning

- Handle missing/null values.
- Remove duplicates and irrelevant features.
- Normalize pollutant concentrations.

c. Exploratory Data Analysis (EDA)

• Visualize pollutant trends, seasonal patterns, and location-wise variations using heatmaps, line plots, and box plots.

d. Feature Engineering

• Create pollutant ratios, categorize AQI levels, and add time-based features.

e. Model Building

- Test with Linear Regression, Random Forest, XGBoost, LSTM (if time-series).
- Optimize using GridSearchCV or RandomizedSearch.

f. Model Evaluation

- Use MAE, RMSE, and R² Score.
- Employ cross-validation.

g. Visualization & Interpretation

- Use graphs and dashboards to show pollutant levels, AQI trends, and predictions.
- Tools: Matplotlib, Seaborn, Plotly.

h. Deployment (Optional)

- Use Streamlit or Flask to create a web app for AQI prediction.
- Integrate with real-time API for live monitoring.

6.Tools and Technologies

Category	Tools & Technologies
Programming Language	Python
IDE/Notebook	Jupyter Notebook / Google Colab
Libraries	pandas, numpy, seaborn, matplotlib,
	scikit-learn, XGBoost, TensorFlow
	(optional)
Deployment Tools	Deployment Tools

7. Team Members and Roles

Team Member Name	Role/Responsibility
Jeniliya	Data Collection, Model Building,
Aadharsh	Visualization, Deployment
Ashwinth	Evaluation, Presentation
Jeevanandan	Documentation, EDA
Ranjana sri	Reporting, , Feature Engineering