East West University Summer 2019

Name: Bijoy Basak

ID No: 2018-2-60-033

Section: 02

Course Instructor: M Saddam Hossain Khan

Course Title: Electrical Circuits

Course Code: CSE209

Circuit Diagram

1. Theoretical Analysis

Using nodal analysis to solve this DC circuit.

There is a supernode in node 1 and 2.

Equation for the current controlled voltage source insidethe supernode,

VS:
$$V_2$$
- $V_1 = 4I_0$; Here, $I_0 = \frac{V3}{4}$

$$\Rightarrow$$
 V₂ - V₁ = 4 x $\frac{V3}{4}$

$$\Rightarrow V_2 - V_1 = 4 \times \frac{V_3}{4}$$

$$\Rightarrow V_1 - V_2 + V_3 = 0 (1)$$

Equation outside the super node,

SN:
$$\frac{V_1}{4} + \frac{V_1 - V_3}{1} + \frac{V_2}{1} = 1 + 2V_0$$
; Here, $V_0 = V_1 - V_3$

$$\Rightarrow \frac{V_1}{4} + V_1 - V_3 + V_2 = 1 + 2V_1 + 2V_3$$

$$\Rightarrow \frac{V_1}{4} - V_1 + V_2 + V_3 = 4 \qquad (2)$$

Equation at node 3,

$$\frac{V3-10}{2} + \frac{V3}{4} + \frac{V3-V1}{1} = -2V_0$$

$$\Rightarrow \frac{V3}{2} - 5 + \frac{V3}{4} + V_3 - V_1 = -2V_1 + 2V_3$$

$$\Rightarrow V_1 - V_3 + \frac{V_3}{2} + \frac{V_3}{4} = 5$$

$$\Rightarrow 4V_1 - 4V_3 + 2V_3 + V_3 = 20$$

$$\Rightarrow 4V_1 - V_3 = 20$$
(3)

By equating the equations we get,

$$V_1 = 4.96969 \text{ V}$$

$$V_2 = 4.84848 \ V$$

$$V_3 = -0.12121 \text{ V}$$

Now,
$$V_0 = V_1 - V_3$$

$$V_0 = 4.96969 - (-0.12121) V$$

$$V_0 = 5.0909 \text{ V}$$

And,
$$I_0 = \frac{V3}{4}$$

$$I_0 = \frac{-0.12121}{4} A$$

$$I_0 = -0.303025 \text{ A}$$

$$I_1 = \frac{V1}{4} = \frac{4.96969}{4} = 1.2424 \text{ A}$$

$$I_2 = \frac{V2}{1} = 4.84848 \text{ A}$$

$$I_3 = \frac{10 - V3}{2} = 5.0606 \text{ A}$$

$$I_4 = \frac{v_0}{1} = 5.0909 \text{ A}$$

$$I_5 = 2V_0 - I_2 = (2 \times 5.0909) - 4.84848 = 5.333 A$$

2.PSPICE Simulation

3. Comparison Table

Indications	Theoretical Values	Simulated Values	Differences
V_1	4.96969 V	4.970 V	0.00031
V_2	4.84848 V	4.849 V	0.00052
V_3	-0.12121 V	-0.12121 V	0
I_1	1.2424 A	1.242 A	0.0004
I_2	4.84848 A	4.849 A	0.00052
I_3	5.0606 A	5.061 A	0.0004
I_4	5.0909 A	5.091 A	0.0001
I_5	5.333 A	5.333 A	0
I_0	-0.303025 A	-0.3030 A	0.000025