

Spatial Resource Allocation for Optical IRS-Aided HAP-Assisted Multi-UAV Networks

Khanh D. Dang¹, Hoang D. Le¹, Chuyen T. Nguyen², Vuong Mai³ and Anh T. Pham¹

- ¹ Computer Communications Laboratory, The University of Aizu, Japan
- ² School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Vietnam
- ³ Bradford-Renduchintala Centre for Space AI, University of Bradford, UK

Outline of Presentation

I. Introduction

II. Total Rate-optimized Spatial Resource Allocation

III. Numerical Results

IV. Conclusions

Outline of Presentation

I. Introduction

II. Total Rate-optimized Spatial Resource Allocation

III. Numerical Results

IV. Conclusions

Non-Terrestrial Networks

□ Non-terrestrial networks (NTNs) <u>provide global connectivity</u> by using satellites, high-altitude platforms (HAP), and UAVs.

□ NTNs <u>enhance traditional ground-based infrastructures</u>, especially useful for connecting <u>rural</u>

and remote areas where terrestrial networks face limitations.

☐ Several successful projects have demonstrated the *feasibility and potential* of NTNs.

The FSO-based NTNs

☐ The Free Space Optical (FSO)-based NTNs can provide high data-rate and wide coverage.

FSO communications

- Using near-infrared frequency bands (200-400 THz) to transmit data.
- High-speed connection (Gbps and even Tbps)
- Free-license bandwidth

□ However, FSO-based NTNs face <u>constraints on weight, size, power consumption, and hardware complexity</u>, since aerial platforms must <u>carry optical components</u> to receive, process, or transmit data.

July 13, 2025 VTC Spring-2025 5

The optical IRS-assisted FSO-based NTNs

☐ Many studies have developed *optical intelligent reflecting surfaces (OIRS)* as a potential technology to *enhance coverage* while maintaining *low cost, minimal energy consumption, and reduced complexity.*

Optical Intelligent Reflecting Surface (OIRS):

- A surface reflects FSO signal in a controlled way.
- Comprises: an array of mirrors or metamaterial elements.
- Nearly-passive: consume low power.

Advantages

- Extend coverage and avoid blockage.
- Low cost and low energy consumption.
- Light payload, reduce hardware complexity compared to relay

The operation concept of optical IRS

The optical IRS-assisted FSO-based NTNs are promising architectures for 6G.

System Model and Challenging Issue

The optical IRS-aided HAP-assisted Multi-UAV network

☐ System Model:

- 1. Source: N laser sources in the optical GS.
- 2. One OIRS (an array of mirrors) mounted on HAP.
 - Each mirror can <u>rotate independently</u> to reflect the beam to expected users.
- 3. Destinations: N UAVs-mounted base stations in rural/remote areas.

☐ Challenging issue:

The limited OIRS size mounted on HAP creating critical issues in sharing IRS among multiple UAVs.

Resource Allocation for OIRS mounted on HAP to support multiple UAVs

Conventional Approaches and Motivations

- ☐ To the best of our knowledge, most of the existing studies *in optical IRS-assisted NTNs* focus on *single user:* channel modeling and analyze the system's performance [1][2][3]
 - => Resource allocation for multiple users have not been investigated yet.

☐ Possible Resource Allocation Schemes:

- 1. Equal Spatial Resource Allocation: every users get the same IRS resource [4] [5].
 - => This method *might be inefficient and not maximize the total performance in the optical IRS-assisted NTNs.*
- 2. Fixed Spatial Resource Allocation: each user received a different IRS resource but fixed over time.
 - => This scheme may be not work well in the mobility scenario, where UAVs are moving.

□ Our Goal/Contribution:

We propose a **novel spatial resource allocation scheme** for optical IRS mounted on HAP-assisted multi-UAV networks. This scheme **effectively allocates** IRS resource and **optimize total performance**, **including mobility scenario**.

Outline of Presentation

I. Introduction

II. Total Rate-optimized Spatial Resource Allocation

III. Numerical Results

IV. Conclusions

Proposed Total Rate-optimized Spatial Resource Allocation (R-SRA)

- □ We propose a Total Rate-optimized Spatial Resource Allocation Scheme (R-SRA) for OIRS mounted on HAP:
 - 1. Maximize the number of <u>supported UAVs</u> (Phase I) *Supported UAV: $R_{\text{UAV}} \ge R_{\text{target}}$
 - 2. Maximize total achievable data rate (Phase II)
- ☐ Our Approach:
 - Step 1: Analyze the impact of IRS on end-to-end FSO channel.
 - ✓ How much IRS resource does each UAV need?
 - ✓ What is the required IRS resource for each UAV to meet its QoS?

Proposed R-SRA

- Step 2: Maximize the number of supported UAVs in set of N UAVs (PHASE I)
 - ✓ Allocate the IRS resource to UAV in order of lowest to highest requirement
- Step 3: Maximize the total achievable data rate (PHASE II)
 - ✓ Use exhaustive search to allocate each remaining IRS resource

Step 1. Chanel modeling: analyze the impact of IRS on the e2e FSO channel

☐ Composite FSO channel coefficient can be calculated by:

Step 1. Chanel modeling: analyze the impact of IRS on the e2e FSO channel

What is the **required IRS resource** for each UAV to **meet its QoS**?

Figure 2. Achievable data rate over IRS size in x-axis

 UAV_1

 UAV_2

 UAV_3

 UAV_4

 UAV_5

40

VTC Spring-2025 July 13, 2025 12

Step 2. Maximize the number of supported UAVs (Phase I)

^{*}For the algorithm, please refer to my paper.

Step 3. Maximize total achievable data rate (Phase II)

Outline of Presentation

I. Introduction

II. Total Rate-optimized Spatial Resource Allocation

III. Numerical Results

IV. Conclusions

Benchmarks and Parameters Setting

- ☐ To evaluate our proposed scheme, we compare it with *two benchmarks*:
 - (1) Conventional SRA: maximize the number of users (Phase I) + Equal allocation remaining arrays.
 - (2) Uniform Resource Allocation (URA): the IRS is shared equally among all users from the start.

Name	Symbol	Value
UAV _i altitude (m)	$H_{\mathrm{U},i}$	100, 120, 150, 200, 250
Reflected angle	$ heta_r$	$14^{\circ}, 16^{\circ}, 18^{\circ}, 20^{\circ}, 22^{\circ}$
Wavelength (nm)	λ_i	1570, 1565, 1560, 1555, 1550
CLWC (mg/m ³)	$L_{c,i}$	0.5 , 1 , 1.5 , 1.5 , 2
Targeted Rate (QoS)	$R_{target,i}$	1 Gbps
Bandwidth	\ddot{B}	1 GHz

Table II. A set of 5 UAVs with different locations, channel conditions.

Array size: 1 cm IRS size

The Effectiveness of Proposed R-SRA

Figure 3. The effectiveness of proposed R-SRA.

- ☐ The proposed R-SRA *outperforms the other allocation schemes* by *supporting more UAVs* and providing a *higher total achievable rate*.
- ☐ The proposed R-SRA ensures the minimum required IRS arrays to as many UAVs as possible, and then allocates the remaining arrays in an efficient way.

Investigation of Proposed R-SRA in Mobility Scenario

- □ UAV1 and UAV2 move far away from IRS for 2400 seconds at velocity of 30 km/h.
 - UAV3,UAV4 and UAV5 are stable

- □ R-SRA *consistently outperforms* the two conventional schemes, demonstrating its effectiveness in adapting to dynamic UAV movements.
- ☐ R-SRA *dynamically allocates* the IRS array for each UAV over time.

Figure 4. The effectiveness of proposed R-SRA in mobility scenario *Transmitted power: 8 dBm, 5 operating UAVs.

July 13, 2025 VTC Spring-2025 18

Conclusions

- ❖ In this work, we proposed a <u>novel total rate-optimized spatial resource allocation</u> for optical IRS-aided HAP-assisted multi-UAV networks.
 - ☐ The proposed scheme **effectively allocates** IRS resource to **maximizes the number of operating UAVs** at first and **maximizes the total achievable data rate**.
 - □ Numerical results confirmed the **effectiveness of proposed scheme** compared to conventional schemes, including the **mobility scenario**.
 - ☐ The results also **provided insights** into the selection of transmitted power to meet specific performance requirements.

THANK YOU FOR LISTENING!

References

- [1] A. -A. A. Boulogeorgos, A. Alexiou and M. D. Renzo, "Outage Performance Analysis of RIS-Assisted UAV Wireless Systems Under Disorientation and Misalignment," in IEEE Transactions on Vehicular Technology, vol. 71, no. 10, pp. 10712-10728, Oct. 2022, doi: 10.1109/TVT.2022.3187050.
- [2] X. Li, Y. Li, X. Song, L. Shao and H. Li, "RIS Assisted UAV for Weather-Dependent Satellite Terrestrial Integrated Network With Hybrid FSO/RF Systems," in IEEE Photonics Journal, vol. 15, no. 5, pp. 1-17, Oct. 2023, Art no. 7304217, doi: 10.1109/JPHOT.2023.3314664.
- [3] Y. Ata, A. M. Vegni and M. -S. Alouini, "RIS-Embedded UAVs Communications for Multi-Hop Fully-FSO Backhaul Links in 6G Networks," in IEEE Transactions on Vehicular Technology, vol. 73, no. 10, pp. 14143-14158, Oct. 2024, doi: 10.1109/TVT.2024.3414850.
- [4] H. Ajam, M. Najafi, V. Jamali, B. Schmauss and R. Schober, "Modeling and Design of IRS-Assisted Multilink FSO Systems," in IEEE Transactions on Communications, vol. 70, no. 5, pp. 3333-3349, May 2022, doi: 10.1109/TCOMM.2022.3163767
- [5] G. D. Chondrogiannis, A. P. Chrysologou, A.-A. A. Boulogeorgos, N. D. Chatzidiamantis, and H. Haas, "Optical ris-enabled multiple access communications," 2025. [Online]. Available: https://arxiv.org/abs/2502.06691