Curs 2

Exemplu de program logic

```
\begin{array}{ccc} \text{oslo} & \to & \text{windy} \\ \text{oslo} & \to & \text{norway} \\ \text{norway} & \to & \text{cold} \\ \\ \text{cold} & \land & \text{windy} & \to & \text{winterIsComing} \\ & & \text{oslo} \end{array}
```

Exemplu de întrebare

Este adevărat winterIsComing?

Putem să testăm în SWI-Prolog

Program:

```
windy :- oslo.
norway :- oslo.
cold :- norway.
winterIsComing :- windy, cold.
oslo.
```

Intrebare:

```
?- winterIsComing.
```

Vom prezenta teoria care stă la baza acestui program!

Cuprins

- Logica propoziţională PL
- 2 Forme normale în calculul propozițional
- 3 Rezoluția în calculul propozițional
- 4 Clauze propoziționale definite. Rezoluția SLD

Logica propozițională PL

Logica propozițională PL

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Exemplu

Fie φ propoziția:

$$(\mathtt{stark} \land \neg \mathtt{dead}) \rightarrow (\mathtt{sansa} \lor \mathtt{arya} \lor \mathtt{bran})$$

Cine este $\neg \varphi$? Propoziția $\neg \varphi$ este:

 $\operatorname{stark} \wedge \neg \operatorname{dead} \wedge \neg \operatorname{sansa} \wedge \neg \operatorname{arya} \wedge \neg \operatorname{bran}$

Limbajul și formulele PL

□ Limbajul PL
□ variabile propoziţionale: $Var = \{p, q, v, ...\}$ □ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)
□ Formulele PL $var ::= p \mid q \mid v \mid ...$ $form ::= var \mid (\neg form) \mid form \land form \mid form \lor form$ $\mid form \rightarrow form \mid form \leftrightarrow form$

Exemplu

- Nu sunt formule: $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$
- Sunt formule: $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$
- □ Notăm cu Form multimea formulelor.

Limbajul și formulele PL

- □ Limbajul PL
 - \square variabile propoziționale: $Var = \{p, q, v, \ldots\}$
 - \square conectori logici: \neg (unar), \rightarrow , \land , \lor , \leftrightarrow (binari)
- ☐ Formulele PL

$$\begin{array}{lll} \textit{var} & ::= & \textit{p} \mid \textit{q} \mid \textit{v} \mid \dots \\ \textit{form} & ::= & \textit{var} \mid (\neg \textit{form}) \mid \textit{form} \land \textit{form} \mid \textit{form} \lor \textit{form} \\ & \mid \textit{form} \rightarrow \textit{form} \mid \textit{form} \leftrightarrow \textit{form} \end{array}$$

- □ Conectorii sunt împărțiți în conectori de bază și conectori derivați (în funcție de formalism).
- \square Dacă \neg și \rightarrow sunt conectori de bază, atunci:

$$\varphi \lor \psi := \neg \varphi \to \psi
\varphi \land \psi := \neg (\varphi \to \neg \psi)
\varphi \leftrightarrow \psi := (\varphi \to \psi) \land (\psi \to \varphi)$$

Sintaxa și semantica

Un sistem logic are două componente:

□ Sintaxa	
□ notăm pri □ notăm pri	ntactice: demonstrație, teoremă n $\vdash \varphi$ faptul că φ este teoremă n $\Gamma \vdash \varphi$ faptul că formula φ este demonstrabilă din de formule Γ
□ Semantica	
noţiuni se adevărată	mantice: adevăr, model, tautologie (formulă universal)
🔲 notăm pri	$n \models \varphi$ faptul că φ este tautologie
notăm pri	n $\Gamma \models \varphi$ faptul că formula φ este adevărată atunci când
toate forr	nulele din mulțimea Γ sunt adevărate

Logica propozițională

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

p = winter is coming q = Ned is alive r = Robb is lord of Winterfel $\{(p \land \neg q) \to r, p, \neg r\} \models q$

□ Mulțimea valorilor de adevăr este $\{0,1\}$ pe care considerăm următoarele operații:

X	$\neg x$
0	1
1	0

$$x \lor y := max\{x, y\}$$

$$x \wedge y := min\{x, y\}$$

- \square o funcție $e: Var \rightarrow \{0,1\}$ se numește evaluare (interpretare)
- □ pentru orice evaluare $e: Var \rightarrow \{0,1\}$ există o unică funcție $e^+: Form \rightarrow \{0,1\}$ care verifică următoarele proprietăți:

oricare ar fi $v \in Var$ și φ , $\psi \in Form$.

Exemplu

Dacă
$$e(p) = 0$$
 și $e(q) = 1$ atunci

$$e^+(p \lor (p \to q)) = e^+(p) \lor e^+(p \to q) = e(p) \lor (e(p) \to e(q)) = 1$$

Considerăm $\Gamma \cup \{\varphi\} \subseteq Form$.

- □ O evaluare $e: Var \to \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.
- □ O formulă φ este tautologie (validă, universal adevarată) dacă $e^+(\varphi) = 1$ pentru orice evaluare $e : Var \to \{0,1\}$. Notăm prin $\models \varphi$ faptul că φ este o tautologie.
- □ O formulă φ este Γ —tautologie (consecință semantică a lui Γ) dacă orice model al lui Γ este și model pentru φ , i.e. $e^+(\Gamma) = \{1\}$ implică $e^+(\varphi) = 1$ pentru orice evaluare $e : Var \to \{0,1\}$. Notăm prin $\Gamma \models \varphi$ faptul că φ este o Γ -tautologie.

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

v_1	<i>V</i> ₂		Vn	φ
$e_1(v_1)$	$e_1(v_2)$		$e_1(v_n)$	$e_1^+(\varphi)$
$e_2(v_1)$	$e_2(v_2)$		$e_2(v_n)$	$e_2^+(\varphi)$
:	:	:	:	:
· • (v)	. (14)	•	. (14)	o+(,o)
$e_{2^n}(v_1)$	$e_{2^n}(v_2)$	• • • •	$e_{2^n}(v_n)$	$\mid e_{2^n}^+(\varphi)$

Fiecare evaluare corespunde unei linii din tabel!

$$\square \models arphi$$
 dacă și numai dacă $e_1^+(arphi) = \dots = e_{2^n}^+(arphi) = 1$

Verificarea problemei consecinței logice

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- \square În cazul în care formula conțin n variabile, tabelul de adevăr are 2^n rânduri. Această metodă este atât de costisitoare computațional (timp exponențial).
- ☐ Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

Echivalent, este adevărată P = NP? (Institutul de Matematica Clay – Millennium Prize Problems)

□ SAT este problema satisfiabilității în calculul propozițional clasic. SAT-solverele sunt bazate pe metode sintactice.

Sintaxa PL

Sisteme deductive pentru calculul propozițional clasic:

- ☐ Sistemul Hilbert
- □ Rezoluţie
- □ Deducția naturală
- □ Calculul cu secvenți

- \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:
 - (A1) $\varphi \to (\psi \to \varphi)$
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.
- \square Regula de deducție **este** modus ponens: $\frac{arphi,\ arphi o \psi}{\psi}$ MP
- O demonstrație pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:
 - \square γ_i este axiomă,
 - \square γ_i se obține din formulele anterioare prin MP: există j, k < i astfel încât $\gamma_i = \gamma_k \rightarrow \gamma_i$
- \square O formulă φ este teoremă dacă are o demonstrație. Notăm prin $\vdash \varphi$ faptul că φ este teoremă.

Fie $\Gamma \cup \{\varphi\} \subseteq Form$.

- O demonstrație din ipotezele Γ (sau Γ-demonstrație) pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:
 - \square γ_i este axiomă,
 - \square $\gamma_i \in \Gamma$
 - \square γ_i se obține din formulele anterioare prin MP: există j, k < i astfel încât $\gamma_i = \gamma_k \rightarrow \gamma_i$
- \square O formulă φ este Γ -teoremă dacă are o Γ -demonstrație. Notăm prin $\Gamma \vdash \varphi$ faptul că φ este o Γ -teoremă

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Exemplu

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (1),(2), MP
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi \text{ (ipoteza)}$
- (5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (3),(4), MP
- (6) $\{\varphi \to \psi, \psi \to \chi\} \vdash \varphi \to \chi$ TD
- (7) $\{\varphi \to \psi\} \vdash (\psi \to \chi) \to (\varphi \to \chi)$ TD
- (8) $\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$ TD

 \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
(A3) $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$.

 $\hfill\Box$ Regula de deducție **este** modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi} {\bf MP}$

Teorema de completitudine

Γ-teoremele și Γ-tautologiile coincid, i.e.

$$\Gamma \vdash \varphi$$
 dacă și numai dacă $\Gamma \models \varphi$

oricare are fi $\Gamma \cup \{\varphi\} \in Form$.

În particular, dash arphi dacă și numai dacă $\models arphi.$

- (⇒) Corectitudine (exercițiu)
- (⇐) Completitudine

Reguli de deducție pentru PL

O regula de deducție are forma

$$\frac{\Gamma_1 \vdash \varphi_1, \dots, \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi}$$

A demonstra o regulă de deducție derivată revine la a deduce concluzia $\Gamma \vdash \varphi$ din premisele $\Gamma_1 \vdash \varphi_1, \ldots, \Gamma_n \vdash \varphi_n$.

Exemplu

Folosind teorema deducției se demonstrează regula:

$$\frac{\Gamma \cup \{\varphi\} \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

Forme normale în calculul propozițional

Formule și funcții

Arătați că $\models v_1 \rightarrow (v_2 \rightarrow (v_1 \land v_2))$.

v_1	<i>V</i> ₂	$v_1 ightharpoonup (v_2 ightharpoonup (v_1 \wedge v_2))$
0	0	1
0	1	1
1	0	1
1	1	1

Acest tabel defineste o funcție $F:\{0,1\}^2 \to \{0,1\}$

x_1	<i>x</i> ₂	$F(x_1,x_2)$
0	0	1
0	1	1
1	0	1
1	1	1

Funcția asociată unei formule

Fie φ o formulă v_1, \ldots, v_n variabilele care apar în φ , e_1, \ldots, e_{2^n} evaluările posibile. Tabelul asociat

v ₁	<i>v</i> ₂		Vn	φ
:	:	:	:	:
$e_k(v_1)$	$e_k(v_2)$		$e_k(v_n)$	$f_{e_k}(\varphi)$
:	:	•	:	:

definește funcția $F_{arphi}:\{0,1\}^n
ightarrow \{0,1\}$

x_1	<i>x</i> ₂		x _n	$F_{\varphi}(x_1,\ldots,x_n)$
:	:	:	:	:
$e_k(v_1)$	$e_k(v_2)$		$e_k(v_n)$	$f_{e_k}(\varphi)$
:	:	:	:	:

Funcția asociată unei formule

Fie φ o formulă cu variabilele v_1, \ldots, v_n .

 \square Funcția asociată lui φ este $F_{\varphi}:\{0,1\}^n \to \{0,1\}$ definită prin

$$F_{\varphi}(x_1,\ldots,x_n)=f_{e}(\varphi),$$

unde
$$e(v_1) = x_1$$
, $e(v_2) = x_2$, ..., $e(v_n) = x_n$

- □ O funcție Booleană în n variabile este o funcție $F: \{0,1\}^n \rightarrow \{0,1\}$.
- \Box F_{φ} este o funcție Booleană pentru orice φ .

Teoremă

Dacă φ și ψ sunt formule cu variabilele v_1, \ldots, v_n , atunci

$$\models \varphi \leftrightarrow \psi \Leftrightarrow F_{\varphi} = F_{\psi}$$

Dem. exercițiu

Caracterizarea funcțiilor Booleene

Teorema FB

Pentru orice funcție Booleană $H:\{0,1\}^n \to \{0,1\}$ există o formulă φ cu n variabile astfel încât $H=F_{\varphi}$.

Dem. Dacă
$$x \in \{0,1\}^n$$
 atunci $x = (x_1, \dots, x_n)$. Definim $T = \{x \in \{0,1\}^n | H(x) = 1\}$ si $F = \{x \in \{0,1\}^n | H(x) = 0\}$,
$$\frac{\theta_1 := \bigvee_{x \in T} \left(\bigwedge_{x_i = 1} v_i \wedge \bigwedge_{x_i = 0} \neg v_i \right),}{\theta_2 := \bigwedge_{x \in F} \left(\bigvee_{x_i = 1} \neg v_i \wedge \bigvee_{x_i = 0} v_i \right).}$$

$$\begin{split} F_{\theta_1}(y_1,\ldots,y_n) &= 1 \Leftrightarrow \\ \text{există } x \in T \text{ astfel încât } \bigwedge_{x_i=1} y_i \land \bigwedge_{x_i=0} \neg y_i = 1 \Leftrightarrow \\ \bigwedge_{x_i=1} y_i &= 1 \text{ si } \bigwedge_{x_i=0} \neg y_i = 1 \Leftrightarrow \\ x_i &= y_i \text{ oricare } i \in \{1,\ldots,n\} \Leftrightarrow \\ (y_1,\ldots,y_n) &= x \in T \Leftrightarrow H(y_1,\ldots,y_n) = 1. \\ \text{Similar } F_{\theta_2}(y_1,\ldots,y_n) &= 0 \Leftrightarrow H(y_1,\ldots,y_n) = 0. \\ \text{Am demonstrat că } H &= F_{\theta_1} &= F_{\theta_2}. \end{split}$$

Exemplu

Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

X	у	z	H(x, y, z)	
0	0	0	0	$M_1 = x \vee y \vee z$
0	0	1	0	$M_2 = x \vee y \vee \neg z$
0	1	0	1	$m_1 = \neg x \wedge y \wedge \neg z$
0	1	1	0	$M_3 = x \vee \neg y \vee \neg z$
1	0	0	1	$m_2 = x \wedge \neg y \wedge \neg z$
1	0	1	1	$m_3 = x \wedge \neg y \wedge z$
1	1	0	1	$m_4 = x \wedge y \wedge \neg z$
1	1	1	1	$m_5 = x \wedge y \wedge z$

$$H(x,y,z) = m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_5$$

$$H(x,y,z) = M_1 \land M_2 \land M_3$$

FND si FNC

Un literal este o variabilă sau negația unei variabile.

- □ O formă normală disjunctivă (FND) este o disjuncție de conjunctii de literali.
- O formă normală conjuctivă (FNC) este o conjuncție de disjuncții de literali.
 - clauza este o disjunctie de literali
 - □ multime de clauze este o FNC

Teoremă

Pentru orice formulă φ există o FND θ_1 si o FNC θ_2 astfel încât $\models \varphi \leftrightarrow \theta_1$ si $\models \varphi \leftrightarrow \theta_2$

FNC

Orice formulă poate fi adusa la FNC prin urmatoarele transformări:

1. înlocuirea implicațiilor și echivalențelor

$$\varphi \to \psi \sim \neg \varphi \lor \psi,$$

$$\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

2. regulile De Morgan

$$\neg(\varphi \lor \psi) \sim \neg\varphi \land \neg\psi, \\ \neg(\varphi \land \psi) \sim \neg\varphi \lor \neg\psi,$$

3. principiului dublei negații

$$\neg\neg\psi\sim\psi$$

4. distributivitatea

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi),$$
$$(\psi \land \chi) \lor \varphi \sim (\psi \lor \varphi) \land (\chi \lor \varphi)$$

Exemple

1. Determinați FNC pentru formula

$$(\neg p
ightarrow \neg q)
ightarrow (p
ightarrow q) \sim \neg (\neg p
ightarrow \neg q) \lor (p
ightarrow q) \sim \neg (p \lor \neg q) \lor (\neg p \lor q) \sim (\neg p \land q) \lor (\neg p \lor q) \sim (\neg p \lor \neg p \lor q) \land (q \lor \neg p \lor q)$$

2. Determinați FNC pentru formula

$$eg((p \land q) \rightarrow q)$$
 $eg \neg (\neg (p \land q) \lor q)$
 $eg p \land q \land \neg q$

Rezoluția în calculul propozițional

Clauze

Definitii

Un literal este o variabila sau negatia unei variabile.

O clauza este o multime finita de literali:

 $C = \{L_1, \ldots, L_n\}$, unde L_1, \ldots, L_n sunt literali.

C este **triviala** daca exista $p \in Var$ astfel incat $p, \neg p \in C$.

Daca $e: Var \rightarrow \{0,1\}$ este o evaluare și $C = \{L_1, \ldots, L_n\}$, vom nota $e(C) := f_e(L_1 \vee \ldots \vee L_n)$.

 $C = \{L_1, \dots, L_n\}$ este **satisfabila** daca formula $L_1 \vee \dots \vee L_n$ este satisfiabila, adica exista o evaluare $e : Var \rightarrow \{0, 1\}$ cu e(C) = 1.

Clauza vida $\square := \{\}$ nu este satisfiabila (disjunctie indexata de \emptyset).

O multime de clauze $S = \{C_1, \dots, C_m\}$ este satisfiabila daca exista o evaluare $e: Var \to \{0, 1\}$ astfel incat $e(C_i) = 1$ oricare $i \in \{1, \dots, m\}$.

Clauze

Observatie

Putem identifica clauza $C = \{L_1, \ldots, L_n\}$ cu $L_1 \vee \ldots \vee L_n$, multimea de clauze $S = \{C_1, \ldots, C_m\}$ cu $C_1 \wedge \ldots \wedge C_m$.

Definitie

C clauza, S multime de clauze $Var(C) = \{ p \in Var | p \in C \text{ sau } \neg p \in C \},$ $Var(S) = \bigcup \{ Var(C) | C \in S \}.$

Exemple

- 1. p, $\neg r$, q sunt literali.
- 2. $\{p, \neg r\}, \{\neg r, r\}, \{q, p\}, \{q, \neg p, r\}$ sunt clauze.
- 3. $S = \{\{p, \neg r\}, \{\neg r, r\}, \{q, p\}, \{q, \neg p, r\}\}$ este satisfiabila.
- **Dem.** Consideram e(p) = e(q) = 1.
- 4. $S = \{ \{ \neg p, q \}, \{ \neg r, \neg q \}, \{ p \}, \{ r \} \}$ nu este satisfiabila. **Dem.** Daca exista o evaluare e care satisface C, atunci e(p) = e(r) = 1.

Rezulta e(q) = 0, deci $f_e(\{\neg p, q\}) = f_e(\neg p \lor q) = 0$. In consecinta, $\{\neg p, q\}$ nu e satisfacuta de e.

5. O multime de clauze triviale este intotdeauna satisfiabila.

Proprietati

Propozitie

Fie C, D clauze si \mathcal{T} , \mathcal{S} , \mathcal{U} multimi de clauze. Urmatoarele implicatii sunt adevarate.

- (p1) $C \subseteq D$, C satisfiabila $\Rightarrow D$ satisfiabila
- (p2) $C \cup D$ satisfiabila $\Rightarrow C$ satisfiabila sau D satisfiabila
- (p3) $p \notin Var(C) \Rightarrow C \cup \{p\}, C \cup \{\neg p\}$ satisfiabile
- (p4) $S \subseteq T$, T satisfiabila $\Rightarrow S$ satisfiabila
- (p5) Fie $p \in Var$ si \mathcal{U} , \mathcal{T} , \mathcal{S} multimi de clauze astfel incat

$$p \notin Var(\mathcal{U}),$$

or. $T \in \mathcal{T} \ (p \in T \ \text{si} \ \neg p \notin T),$
or. $S \in \mathcal{S} \ (p \notin S \ \text{si} \ \neg p \in S).$

Atunci \mathcal{U} satisfiabila $\Rightarrow \mathcal{U} \cup \mathcal{T}$, $\mathcal{U} \cup \mathcal{S}$ satisfiabile \bigcirc

Dem. exercitiu

Regula Rezolutiei

Regula Rezolutiei

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde $\{p, \neg p\} \cap C_1 = \emptyset$ si $\{p, \neg p\} \cap C_2 = \emptyset$.

Propozitie

Regula Rezolutiei pastreaza satsifiabilitatea, i.e.

$$\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}\$$
 satisfiabila $\Leftrightarrow C_1 \cup C_2$ satisfiabila.

Regula Rezolutiei

Propozitie

Regula Rezolutiei pastreaza satsifiabilitatea, i.e. $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}\$ satisfiabila $\Leftrightarrow C_1 \cup C_2$ satisfiabila.

Dem. Fie $e: Var \to \{0,1\}$ este o evaluare astfel incat $e(C_1 \cup \{p\}) = e(C_2 \cup \{\neg p\}) = 1$. Daca e(p) = 1 atunci $e(C_2) = 1$, deci $e(C_1 \cup C_2) = 1$. Similar pentru e(p) = 0.

Invers, presupunem ca $e(C_1 \cup C_2) = 1$, deci $e(C_1) = 1$ sau $e(C_2) = 1$. Daca $e(C_1) = 1$ consideram $e' : Var \rightarrow \{0,1\}$ o evaluare cu e'(v) = e(v) daca $v \in Var(C_1)$ si e'(p) = 0. Atunci $e'(C_1) = e(C_1) = 1$, deci $e'(C_1 \cup \{p\}) = 1$. De asemenea $e'(C_2 \cup \{\neg p\}) = e'(C_2) \vee e'(\neg p) = 1$, deci e' este model pentru multimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$.

Exemple

$$\frac{\{p\}, \{\neg p\}}{\Box} \quad \frac{\{p\}, \{\neg p, q\}}{\{q\}}$$

Atentie

Aplicarea **simultana** a regulii pentru doua variabile diferit este **gresita**. De exemplu

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\Box}$$

contrazice rezultatul anterior, deoarece $\{\{p, \neg q\}, \{\neg p, q\}\}$ este satisfiabila (e(p) = e(q) = 1).

Aplicarea corecta a Regulii Rezolutiei este

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\{q,\neg q\}}$$

38 / 60

Derivare prin rezolutie

Definitie

Fie $\mathcal S$ o multime de clauze. O derivare prin rezolutie din $\mathcal S$ este o secventa finita de clauze astfel incat fiecare clauza este din $\mathcal S$ sau rezulta din clauze anterioare prin rezolutie.

```
Exemplu S = \{ \{ \neg p, q \}, \{ \neg q, \neg r, s \}, \{ p \}, \{ r \}, \{ \neg s \} \} O derivare prin rezolutie pentru \square din S este C_1 = \{ \neg s \} \ (\in S) C_2 = \{ \neg q, \neg r, s \} \ (\in S) C_3 = \{ \neg q, \neg r \} \ (C_1, C_2, Rez) C_4 = \{ r \} \ (\in S) C_5 = \{ \neg q \} \ (C_3, C_4, Rez) C_6 = \{ \neg p, q \} \ (\in S) C_7 = \{ \neg p \} \ (C_5, C_6, Rez) C_8 = \{ p \} \ (\in S) C_9 = \square \ (C_7, C_8, Rez)
```

Procedura Davis-Putnam DPP (informal)

$\textbf{Intrare:} \ \ o \ \ multime \ \mathcal{C} \ \ de \ clauze$
Se repetă următorii pași:
se elimină clauzele triviale
□ se alege o variabilă <i>p</i>
\square se adaugă la mulțimea de clauze toți rezolvenții obținuti prin aplicarea Rez pe variabila p
\square se șterg toate clauzele care conțin p sau $\neg p$
leșire: dacă la un pas s-a obținut \square , mulțimea $\mathcal C$ nu este satisfiabilă altfel $\mathcal C$ este satisfiabilă.

Algoritmul Davis-Putnam(DP)

```
Intrare: S multime nevida de clauze netriviale.
S_1 := S: i := 1:
P1. v_i \in Var(\mathcal{C}_i);
              \mathcal{T}_i^1 := \{ C \in \mathcal{S}_i | v_i \in C \};
              \mathcal{T}_i^0 := \{C \in \mathcal{S}_i | \neg v_i \in C\};
              \mathcal{T}_i := \mathcal{T}_i^0 \cup \mathcal{T}_i^1;
              \mathcal{U}_i := \emptyset:
P2. if \mathcal{T}_i^0 \neq \emptyset and \mathcal{T}_i^1 \neq \emptyset then
             \mathcal{U}_i := \{C_1 \setminus \{v_i\} \cup C_0 \setminus \{\neg v_i\} | C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\};
P3. S_{i+1} = (S_i \setminus T_i) \cup U_i; S_{i+1} = S_{i+1} \setminus \{C \in S_{i+1} | C \text{ triviala}\};
P4. if S_{i+1} = \emptyset then SAT
                                 else if \square \in \mathcal{S}_{i+1} then NESAT
                                        else \{i := i + 1; \text{ go to P1}\}.
Run DP
```

```
S_1 := S = \{\{\neg p, q, \neg s\}, \{\neg r, \neg q\}, \{p, r\}, \{p\}, \{r\}, \{s\}\}\}
v_1 := p; T_1^1 := \{\{p, r\}, \{p\}\}; T_1^0 := \{\{\neg p, q, \neg s\}\};
U_1 := \{\{r, q, \neg s\}, \{q, \neg s\}\}:
S_2 := \{\{\neg r, \neg q\}, \{r\}, \{s\}, \{r, q, \neg s\}, \{q, \neg s\}\}\}; i := 2;
v_2 := q; T_2^1 := \{\{r, q, \neg s\}, \{q, \neg s\}\}; T_2^0 := \{\{\neg r, \neg q\}\};
U_2 := \{\{r, \neg s, \neg r\}, \{\neg s, \neg r\}\};
S_3 := \{\{r\}, \{s\}, \{\neg s, \neg r\}\}; i := 3
v_3 := r; T_3^1 := \{\{r\}\}; T_3^0 := \{\{\neg s, \neg r\}\}; U_3 := \{\{\neg s\}\};
S_4 := \{\{s\}, \{\neg s\}\}; i := 4:
v_4 := s; T_4^1 := \{\{s\}\}; T_4^0 := \{\{\neg s\}\}; U_4 := \{\Box\};
S_5 := \{ \square \}
In consecinta, S nu este satisfiabila
```

```
\begin{split} \mathcal{S}_1 &:= \mathcal{S} = \{ \{p, \neg r\}, \{q, p\}, \{q, \neg p, r\} \} \\ v_1 &:= r; \ T_1^1 := \{ \{q, \neg p, r\} \}; \ T_1^0 := \{ \{p, \neg r\} \}; \\ \mathcal{U}_1 &:= \{ \{q, \neg p, p\} \}; \\ \mathcal{S}_2 &:= \{ \{q, p\} \}; \ i := 2; \\ v_2 &:= q; \ T_2^1 := \{ \{q, p\} \}; \ T_2^0 := \emptyset; \\ \mathcal{U}_2 &:= \emptyset; \\ \mathcal{S}_3 &:= \emptyset \\ \text{In consecinta, } \mathcal{S} \text{ este satisfiabila} \end{split}
```

Algoritmul DP (facultativ)

Fie $\mathcal S$ o multime finita de clauze si n este numarul de variabile care apar in $\mathcal S$. Algoritmul DP se opreste deoarece $Var(\mathcal S_{i+1}) \subset Var(\mathcal S_i)$. Daca n este numarul de variabile care apar in $\mathcal S$, atunci exista un $n_0 \leq n$ astfel incat $Var(\mathcal S_{n_0+1}) = \emptyset$, deci $\mathcal S_{n_0+1} = \emptyset$ sau $\mathcal S_{n_0+1} = \{\Box\}$. Pentru simplitate, vom presupune in continuare ca $n_0 = n$.

Propozitie

 S_i satisfiabila $\Leftrightarrow S_{i+1}$ satisfiabila oricare $i \in \{1, \dots, n-1\}$.

Dem. Fie $i \in \{1, ..., n-1\}$. Stim ca $S_{i+1} = (S_i \setminus T_i) \cup U_i$. Consideram cazurile $U_i = \emptyset$ si $U_i \neq \emptyset$.

Daca $U_i = \emptyset$, atunci $\mathcal{T}_i^0 = \emptyset$ sau $\mathcal{T}_i^1 = \emptyset$ si $\mathcal{S}_i = (\mathcal{S}_{i+1} \cup \mathcal{T}_i)$. Ne aflam in ipotezele proprietatii (p5) . Din (p4) si (p5) obtinem concluzia dorita.

Algoritmul DP (facultativ)

Dem. continuare

Daca $U_i \neq \emptyset$, notam $C_i := S_i \setminus \mathcal{T}_i$. In consecinta $S_i = C_i \cup \mathcal{T}_i$ si $S_{i+1} = C_i \cup \mathcal{U}_i$. Observam ca fiecare clauza din \mathcal{U}_i se obtine aplicand Regula Rezolutiei pentru doua clauze din \mathcal{T}_i . Am demonstrat ca Regula Rezolutiei pastreaza satisfiabilitatea:

 \mathcal{U}_i satisfiabila $\Leftrightarrow \mathcal{T}_i$ satisfiabila.

Au loc urmatoarele echivalente:

 $\mathcal{S}_i = \mathcal{C}_i \cup \mathcal{T}_i$ satisfiabila $\Leftrightarrow \mathcal{C}_i$, \mathcal{T}_i satisfiabile $\Leftrightarrow \mathcal{C}_i$, \mathcal{U}_i satisfiabile $\Leftrightarrow \mathcal{U}_i \cup \mathcal{T}_i = \mathcal{S}_{i+1}$ satisfiabila.

Algoritmul DP (facultativ)

Teorema DP

Algoritmul DP este corect si complet, i.e. S nu este satisfiabila daca si numai daca iesirea algoritmului DP este $\{\Box\}$.

Dem. Din propozitia anterioara, S nu este satisfiabila daca si numai daca S_n nu este satisfiabila. Fie p unica variabila propozitionala care apare in S_n .

Daca $S_n = \{\{p\}\}$ atunci S_n este satisfiabila deoarece e(p) = 1 este un model. Daca $S_n = \{\{\neg p\}\}$ atunci S_n este satisfiabila deoarece e(p) = 0 este un model. In ambele cazuri $S_{n+1} = \{\}$.

Daca $S_n = \{\{p\}, \square\}$ sau $S_n = \{\{\neg p\}, \square\}$ atunci S_n nu este satisfiabila si $S_{n+1} = \{\square\}$.

Daca $S_n = \{\{p\}, \{\neg p\}\}$ sau $S_n = \{\{p\}, \{\neg p\}, \Box\}$ atunci S_n nu este satisfiabila, putem aplica Regula Rezolutiei si obtinem $S_{n+1} = \{\Box\}$.

Se observa ca S_n nu este satisfiabila daca si numai daca $S_{n+1} = \{\Box\}$.

Rezolutia

\sim				
	bse	ואב	/ Ti	-10
		- 1		

Algoritmul DP cu intrarea $\mathcal S$ se termina cu $\{\Box\}$ daca si numai daca exista o derivare prin rezolutie a clauzei vide \Box din $\mathcal S$.

Teorema

Daca S este o multime finita nevida de clauze, sunt echivalente:

- \square \mathcal{S} nu este satisfiabila,
- \square exista o derivare prin rezolutie a clauzei vide \square din \mathcal{S} .

Forma clauzala

Fie φ o formula si $C_1 \wedge \cdots \wedge C_n$ o FNC astfel incat $\models \varphi \leftrightarrow C_1 \wedge \cdots \wedge C_n$. Spunem ca multimea de clauze $\{C_1, \cdots, C_n\}$ este **forma clauzala** a lui φ .

Lema

Sunt echivalente:

- $\square \varphi$ satisfiabila,
- \Box $C_1 \land \cdots \land C_n$ satisfiabila,
- \square { C_1, \dots, C_n } satisfiabila.

Dem. exercitiu

Daca $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ este o multime de formule atunci o forma clauzala pentru Γ este $\mathcal{S} := \mathcal{S}_1 \cup \dots \cup \mathcal{S}_n$ unde \mathcal{S}_i este forma clauzala pentru γ_i oricare i. Observăm că Γ este satisfiabila dacă și numai dacă \mathcal{S} satisfiabila

Demonstratii prin rezoluție

Teorema

Fie Γ o multime finită de formule, φ o formula și \mathcal{S} o forma clauzală pentru $\Gamma \cup \{\neg \varphi\}$. Sunt echivalente:

- \Box $\Gamma \models \varphi$,
- $\Gamma \cup \{\neg \varphi\}$ nu e satisfiabilă,
- \square S nu este satisfiabilă.
- \square exista o derivare prin rezolutie a clauzei vide \square din \mathcal{S} .

Observatie

Teorema este adevarata si pentru Γ multime oarecare. Demonstratia foloseste *compacitatea* calculului propozitional: o multime de formule este satisfiabila daca si numai daca orice

submultime finita a sa este satisfiabila

```
A demonstra ca \models p \rightarrow (q \rightarrow p) revine la a demonstra ca \{\neg(p \rightarrow (q \rightarrow p))\} nu e satisfiabila. Pentru aceasta: (1) determinam o forma clauzala pentru \neg(p \rightarrow (q \rightarrow p)),
```

- (2) aplicam DP.
- (1) Determinam FNC pentru $\neg(p \rightarrow (q \rightarrow p))$: $\neg(p \rightarrow (q \rightarrow p)) \sim \neg(\neg p \lor \neg q \lor p) \sim p \land q \land \neg p$ Forma clauzala este $\mathcal{S} = \{\{p\}, \{q\}, \{\neg p\}\}.$
- (2) Aplicam DP: $\{\{p\}, \{q\}, \{\neg p\}\}\$ $\{\{p\}, \{\neg p\}\}\$ $\{\Box\}$

 \mathcal{S} nu este satisfiabila deoarece exista o derivare prin rezolutie a clauzei vide din \mathcal{S} . In consecinta, $\models p \rightarrow (q \rightarrow p)$.

Cercetati daca $\{p \lor q\} \models p \land q$. Aceasta revine cerceta satisfiabilitatea multimii $\Delta = \{p \lor q, \neg (p \land q)\}$.

- (1) O forma clauzala pentru $p \lor q$ este $\{\{p,q\}\}$. O forma clauzala pentru $\neg(p \land q)$ este $\{\{\neg p, \neg q\}\}$. Forma clauzala pentru Δ este $\mathcal{S} = \{\{p,q\}, \{\neg p, \neg q\}\}$.
- (2) Aplicam DP: $\{\{p,q\}, \{\neg p, \neg q\}\}\$ $\{\{q,\neg q\}\}\$ $\{\}$ (multimea vida)

In acest caz S este satisfiabila, deci $\{p \lor q\} \not\models p \land q$.

```
Cercetati daca \{p, p \to (q \lor r)\} \models \neg p \to (\neg p \land q \land \neg r).
(1) Determinam forma clauzala pentru
\{p, p \to (q \lor r), \neg(\neg p \to (\neg p \land q \land \neg r))\}.
Forma clauzala a lui p este \{\{p\}\}\.
p \rightarrow (q \lor r) \sim \neg p \lor q \lor r \text{ (FNC)}
Forma clauzala a lui p \to (q \lor r) este \{\{\neg p, q, r\}\}.
\neg(\neg p \to (\neg p \land q \land \neg r)) \sim \neg(p \lor (\neg p \land q \land \neg r)) \sim \neg p \land (p \lor \neg q \lor r))
Forma clauzala a lui \neg(\neg p \rightarrow (\neg p \land q \land \neg r)) este \{\{\neg p\}, \{p, \neg q, r\}\}.
(2) Aplicam DP:
\{\{p\}, \{\neg p, q, r\}, \{\neg p\}, \{p, \neg q, r\}\}
\{\{q,r\}, \Box, \{\neg q,r\}\}
\{\{r\},\square\}
\{\square\}
Este adevarat ca \{p, p \to (q \lor r)\} \models \neg p \to (\neg p \land q \land \neg r)
```

Concluzie

Fie Γ o mulțime de formule și φ o formulă.

Notăm prin $\Gamma \vdash_{\mathit{Rez}} \varphi$ faptul că există o derivare prin rezoluție a clauzei vide \square dintr-o formă clauzală a lui $\Gamma \cup \{ \neg \varphi \}$. În acest caz spunem că φ se demostrează prin rezoluție din Γ .

Teorema

Sunt echivalente:

 \Box $\Gamma \models \varphi$,

 \Box $\Gamma \vdash_{Rez} \varphi$.

În consecință, regula Rezolutiei este corecta si completa pentru calculul propozițional.

Folosind rezolutia (fara alte axiome si reguli de deductie) se poate construi un demonstrator automat pentru calculul propozițional.

Clauze propoziționale definite. Rezoluția SLD

Clauze propoziționale definite

- □ O clauză propozițională definită este o formulă care poate avea una din formele:
 - 1 q (un fapt în Prolog q.) 2 $p_1 \wedge ... \wedge p_k \rightarrow q$ (o regulă în Prolog q :- $p_1,...,p_k$)

unde q, p_1, \ldots, p_n sunt variabile propoziționale

Numim variabilele propozitionale atomi.

Programare logică - cazul logicii propoziționale

- \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.
- \square O întrebare este o listă q_1, \ldots, q_m de atomi.
- ☐ Sarcina sistemului este să stabilească:

$$Cd_1,\ldots,Cd_n\models q_1\wedge\ldots\wedge q_m.$$

Vom studia metode sintactice pentru a rezolva această problemă!

Rezoluția SLD (cazul propozițional)

Fie S o multime de clauze definite.

$$\mathsf{SLD} \boxed{ \frac{\neg p_1 \lor \cdots \lor \neg q \lor \cdots \lor \neg p_n}{\neg p_1 \lor \cdots \lor \neg q_1 \lor \cdots \lor \neg q_m \lor \cdots \lor \neg p_n} }$$

unde $q \vee \neg q_1 \vee \cdots \vee \neg q_m$ este o clauză definită din S.

Rezoluția SLD

Fie S o mulțime de clauze definite și q o întrebare.

O derivare din S prin rezoluție SLD este o secvență

$$G_0 := \neg q$$
, G_1 , ..., G_k , ...

în care G_{i+1} se obține din G_i prin regula SLD.

Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Rezoluția SLD

```
Baza de cunostințe KB:
                                                                                                                                                                                                                                                                         Întrebarea:
oslo .
                                                                                                                                                                                                                                                                         -? winter.
windy :- oslo.
norway :- oslo.
cold :- norway.
winter :- cold, windy.
                             Formă clauzală:
                              KB = \{\{oslo\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg norway, cold\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{\neg oslo, norway\}, \{\neg oslo, windy\}, \{\neg oslo, norway\}, \{oslo, norway\}, \{
                                                                                                         \{\neg cold, \neg windy, winter\}\}
           \square KB \vdash winter dacă și numai dacă KB \cup {\negwinter} este satisfiabilă.
                             Satisfiabilitatea este verificată prin rezoluție
                                            SLD = I inear resolution with Selected literal for Definite clauses
```

Clause Horn propoziționale - rezoluția SLD

Exempli

```
Demonstrăm KB ⊢ winter prin rezoluție SLD:
              \{\neg cold, \neg windy, winter\}
 \{\neg winter\}
 \{\neg cold, \neg windy\} \{\neg norway, cold\}
 \{\neg norway, \neg windy\} \{\neg oslo, norway\}
 \{\neg oslo, \neg windy\} \{oslo\}
 \{\neg windy\}
                \{\neg oslo, windy\}
 \{\neg oslo\}
                          {oslo}
```

Pe săptămâna viitoare!