19. Optimal Control Infinite Horizon

Yvan Becard PUC-Rio

Macroeconomics I, 2023

Optimization in Continuous Time

- Optimal control is essentially dynamic programming in continuous time
- Dynamic optimization in discrete and continuous time are two useful tools
- ➤ No approach is superior to the other, certain problems are simpler in discrete time while others are naturally cast in continuous time

Origin

- ▶ Optimal control was born in 1697 when Swiss mathematician Johann Bernoulli posed a challenge to his fellow mathematicians
- ► The challenge was to solve the <u>brachistochrone</u> problem; in Greek *brachistos* means "the shortest" and *chronos* "time, delay"
- ► Given two points A and B in a vertical plane, what is the curve of fastest descent from A to B where gravity is the only force?
- Leibniz, L'Hôpital, Newton, and the Bernoulli brothers solved the problem

Which Curve Is Fastest?

The Brachistochrone Curve

Background

- Optimal control draws on the calculus of variations developed by Euler, Lagrange, and Legendre in the 18th century
- ► Hamilton and Jacobi made contributions in the 19th century that led to the Hamiltonian-Jacobi equation
- ▶ Pontryagin et al. (1962) formulated Pontryagin's maximum principle and developed modern optimal control theory
- ▶ Around the same time, Bellman was inventing dynamic programming

Lecture Outline

- 1. Preliminaries
- 2. Infinite-Horizon Optimal Control
- 3. The Maximum Principle
- 4. The Hamilton-Jacobi-Bellman Equation
- 5. Transversality Condition
- 6. Consuming a Nonrenewable Resource

Main Reference: Acemoglu, 2009, Introduction to Modern Economic Growth, Chapter 7

1. Preliminaries

Discount Factor in Discrete Time

► The usual subjective discount factor in discrete-time models is

$$\beta^t = \left(\frac{1}{1+\rho}\right)^t$$

- \triangleright β is the discount factor, ρ is the discount rate: $\beta \in (0,1)$, therefore $\rho > 0$
- ightharpoonup A high β means agents are very patient and have a low discount rate ρ
- ▶ Typically we calibrate β using data on the real return to risk-free bonds r and setting $\rho=r$; eg on an annual basis, $\rho\approx5\%$ and $\beta\approx0.95$

Compounding

▶ Let's uniformly compound the discount rate n times within a same unit of time t

$$\underbrace{\left(\frac{1}{1+\frac{\rho}{n}}\right)^t \times \dots \times \left(\frac{1}{1+\frac{\rho}{n}}\right)^t}_{n \text{ times}} = \left(\frac{1}{1+\frac{\rho}{n}}\right)^{nt}$$

- For example consider a period t of one year: if the rate is computed each quarter we have n=4, if computed each month we have n=12
- ▶ Both $\left(\frac{1}{1+\rho}\right)^t$ and $\left(\frac{1}{1+\frac{\rho}{n}}\right)^{nt}$ denote the present value of one unit of some good in period t under different discounting assumptions

Discount Factor in Continuous Time

Now if we set $n \to \infty$, we obtain

$$\lim_{n \to \infty} \left(\frac{1}{1 + \frac{\rho}{n}} \right)^{nt} = e^{-\rho t}$$

- $ightharpoonup e^{-\rho t}$ is the discount factor in continuous time
- ▶ As if we computed the discount rate at every point in time
- ► The proof is next slide

Proof

▶ Define $s = n/\rho$ and deduce

$$\lim_{n \to \infty} \left(1 + \frac{\rho}{n}\right)^{nt} = \lim_{s \to \infty} \left(1 + \frac{1}{s}\right)^{s\rho t} = \lim_{s \to \infty} \left[\left(1 + \frac{1}{s}\right)^s\right]^{\rho t}$$

- We need to show that $\lim_{s\to\infty} \left(1+\frac{1}{s}\right)^s = e$
- ▶ Define w = 1/s and apply l'Hôpital's rule

$$\lim_{w \to 0} \frac{\ln(1+w)}{w} = \lim_{w \to 0} \frac{1}{w+1} = 1$$

▶ Since $\frac{\ln(1+w)}{w} = \ln\left[(1+w)^{\frac{1}{w}}\right]$, we have

$$\lim_{s \to \infty} \left(1 + \frac{1}{s} \right)^s = \lim_{w \to 0} (1 + w)^{\frac{1}{w}} = \lim_{w \to 0} e^{\ln\left[(1 + w)^{\frac{1}{w}}\right]} = e \quad \blacksquare$$

Law of Motion of Asset in Continuous Time

▶ Consider the example of the neoclassical growth model; the law of motion of capital between period t and period $t + \Delta$, where $\Delta \in (0, 1)$, is

$$k_{t+\Delta} = \Delta f(k_t) + (1 - \Delta \delta)k_t - \Delta c_t$$

▶ Subtract k_t and divide by Δ on both sides

$$\frac{k_{t+\Delta} - k_t}{\Delta} = f(k_t) - \delta k_t - c_t$$

ightharpoonup Take the limit as $\Delta \to 0$

$$\dot{k}_t = f(k_t) - \delta k_t - c_t$$
 where $\dot{k}_t = \lim_{\Delta \to 0} \frac{k_{t+\Delta} - k_t}{\Delta} = \frac{dk_t}{dt}$

▶ This is the law of motion of capital in continuous time

The Neoclassical Growth Model in Continuous Time

Putting these things together, we can express the problem of the central planner in the continuous-time version of the neoclassical growth model

$$\begin{aligned} \max_{k_t, c_t} \int_0^\infty e^{-\rho t} u(c_t) dt \\ \text{subject to} \quad \dot{k}_t &= f(k_t) - \delta k_t - c_t, \\ k_0 \text{ given}, \\ \text{and} \quad \rho > 0, \ k > 0, \ c > 0 \end{aligned}$$

2. Infinite-Horizon Optimal Control

Streamlined Presentation

- Let's see the essential tools to solve a standard optimal control problem
- ► For a complete treatment read Acemoglu (2009), Section 7.3
- ▶ We focus on the simple case with one state variable and one control variable

The Problem

► We want to solve the following problem

$$\begin{aligned} \max_{x_t,y_t} \int_0^\infty f(t,x_t,y_t) dt \\ \text{subject to} \quad \dot{x}_t &= g(t,x_t,y_t) \quad \text{for almost all } t \\ x_t &\in \text{Int}\, X_t,\, y_t \in \text{Int}\, Y_t, \text{ for all } t,\, x_0 \text{ given} \end{aligned}$$

- \triangleright x_t is the state, y_t is the control, f is the objective, g is the state law of motion
- ▶ Int X_t is the set of all interior points of X_t
- \blacktriangleright We assume f and g are continuously differentiable in all their arguments

Continuous State and Control

- ightharpoonup The state x_t is absolutely continuous
- ightharpoonup The control y_t can be continuous, in which case x_t is differentiable
- \triangleright y_t can be piecewise continuous, ie it can be broken into a finite number of subintervals on which it is continuous
- ▶ If y_t is piecewise continuous then x_t is a continuous function differentiable almost everywhere
- ▶ By almost everywhere we mean that the set of points in which $\dot{x}_t = g(t, x_t, y_t)$ is not satisfied has measure zero

Example of Piecewise Continuous Function

Value Function

▶ As in the case with discrete time, we define a value function

$$V(t_0,x_{t_0}) = \max_{x_t,y_t} \int_{t_0}^{\infty} f(t,x_t,y_t) dt$$
 subject to $\dot{x}_t = g(t,x_t,y_t)$ for almost all t $x_t \in \operatorname{Int} X_t, \ y_t \in \operatorname{Int} Y_t$, for all $t, \ x_0$ given

The value function $V(t_0, x_{t_0})$ expresses the optimal value of the problem starting from an arbitrary initial condition x_{t_0}

Principle of Optimality

▶ The principle of optimality, formulated by Bellman, states that if the pair (\hat{x}_t, \hat{y}_t) solves the above problem, then

$$V(t_0,x_{t_0}) = \int_{t_0}^{t_1} f(t,\hat{x}_t,\hat{y}_t) dt + V(t_1,\hat{x}_{t_1}) \quad ext{for all } t_1 \geq t_0 ext{, given } x_{t_0}$$

- ► The principle of optimality is the same as in discrete time
- ▶ Pick whatever initial condition and control; then the controls you choose over the remaining period must be optimal for the remaining problem
- ▶ The initial condition could be the state resulting from an early decision

Problem

► Recall the problem

$$\begin{aligned} \max_{x_t,y_t} \int_0^\infty f(t,x_t,y_t) dt \\ \text{subject to} \quad \dot{x}_t &= g(t,x_t,y_t) \quad \text{for almost all } t \\ x_t &\in \text{Int}\, X_t,\, y_t \in \text{Int}\, Y_t, \text{ for all } t,\, x_0 \text{ given} \end{aligned}$$

► How do we solve this problem?

Hamiltonian

- ▶ We use a very useful device called the Hamiltonian
- ► The Hamiltonian was developed by Soviet mathematician Lev Pontryagin as part of his maximum principle
- ▶ It is the continuous-time equivalent of the Lagrangian

Hamiltonian

► The Hamiltonian is defined as

$$H(t, x_t, y_t, \lambda_t) \equiv f(t, x_t, y_t) + \lambda_t g(t, x_t, y_t)$$

- $ightharpoonup f(t, x_t, y_t)$ is the objective, $g(t, x_t, y_t)$ is the law of motion of the state
- \triangleright λ_t is a costate variable, the equivalent of the Lagrange multiplier
- ightharpoonup Since f and g are continuously differentiable, so is H

Maximum Principle

Theorem: if f and g are continuously differentiable, and if the problem has a piecewise continuous interior solution (\hat{x}_t, \hat{y}_t) , then

A. The Hamiltonian satisfies Pontryagin's maximum principle: for all $y_t \in Y_t$ and t > 0

$$H(t, \hat{x}_t, \hat{y}_t, \lambda_t) \ge H(t, \hat{x}_t, y_t, \lambda_t)$$

B. For all t such that \hat{y}_t is continuous in t, the following necessary conditions are satisfied

$$H_y(t, \hat{x}_t, \hat{y}_t, \lambda_t) = 0$$
 FOC control (to derive) (1)

$$\dot{\lambda}_t = -H_x(t, \hat{x}_t, \hat{y}_t, \lambda_t)$$
 FOC state (to derive) (2)

$$\dot{\hat{x}}_t = H_{\lambda}(t, \hat{x}_t, \hat{y}_t, \lambda_t) = g(t, \hat{x}_t, \hat{y}_t)$$
 Law of motion of state (given) (3)

Comments

- ▶ The maximum principle says the solution (\hat{x}_t, \hat{y}_t) maximizes the Hamiltonian
- ► The maximum principle, ie condition A, implies the necessary conditions, ie condition B, but the opposite is not necessarily true
- ► There exist necessary conditions for discontinuity points but we will ignore them and focus on problems that have a continuous solution
- ▶ See Acemoglu (2009), Section 7.3.5, for a proof of the theorem
- Let's now develop the intuition behind the maximum principle

Intuition

- What is the intuition for the first necessary condition (1)?
- ► Consider the alternative problem of maximizing the Hamiltonian directly

$$\int_0^\infty H(t, \hat{x}_t, y_t, \lambda_t) dt = \int_0^\infty [f(t, \hat{x}_t, y_t) + \lambda_t g(t, \hat{x}_t, y_t)] dt$$

- ► The first necessary condition, $H_y(t, \hat{x}_t, \hat{y}_t, \lambda_t) = 0$, would also be a necessary condition for this alternative problem
- Thus the maximum principle involves maximizing the sum of the original objective function $\int_0^\infty f(t,\hat{x}_t,y_t)dt$ plus an extra term $\int_0^\infty \lambda_t g(t,\hat{x}_t,y_t)dt$

Costate Variable

- ▶ What is the intuition for the costate variable λ_t in this extra term?
- \triangleright λ_t is like a Lagrange multiplier associated to the constraint
- ► An envelope theorem-type argument implies that

$$\frac{\partial V(t, \hat{x}_t)}{\partial x} = \lambda_t$$

- $ightharpoonup \lambda_t$ measures the impact of a small increase in the state x on the optimal value of the program
- Thus λ_t is the shadow value of relaxing the constraint by increasing the value of the state x_t at time t

Hamiltonian

▶ Return to the alternative problem and use $\dot{x}_t = g(t, \hat{x}_t, y_t)$

$$\int_0^\infty H(t, \hat{x}_t, y_t, \lambda_t) dt = \int_0^\infty [f(t, \hat{x}_t, y_t) + \lambda_t \dot{x}_t] dt$$

- Maximizing this equation amounts to maximizing
- 1. Instantaneous returns given by $f(t, \hat{x}_t, y_t)$
- 2. Plus the value of stock of x_t , given by λ_t , times the increase in the stock \dot{x}_t

Stock-Flow Type Maximization

- ightharpoonup The state x_t is a stock, the control y_t is a flow
- ► The essence of the maximum principle is to maximize the flow return plus the value of the current stock of the state variable
- ▶ In other words, when choosing the control y_t the maximizer takes into account the indirect effect of y_t on the value of the stock x_t
- ► This stock-flow type maximization has a clear economic logic

Costate Equation

▶ What is the intuition for the second necessary condition (2)?

$$-\dot{\lambda}_t = H_x(t, \hat{x}_t, \hat{y}_t, \lambda_t) = f_x(t, \hat{x}_t, \hat{y}_t) + \lambda_t g_x(t, \hat{x}_t, \hat{y}_t)$$

- \triangleright λ_t is the shadow value of the stock of the state x_t , so $\dot{\lambda}_t$ is the appreciation, ie the rise in value, of this stock variable
- ▶ A small rise in x_t changes the current flow return (less utility now) plus the value of the stock (more capital thus more utility later) by the amount H_x
- ▶ But it also affects the value of the stock by the amount $-\dot{\lambda}_t$ (lower value)
- ▶ The maximum principle states that this gain H_x should be equal to the depreciation $-\dot{\lambda}_t$, otherwise one could change x_t and increase $\int_0^\infty H(\cdot)dt$

4. The Hamilton–Jacobi–Bellman Equation

Alternative Formulation

- ► We can express the necessary conditions in Pontryagin's maximum principle theorem in another form
- ► This other form is analogous to the dynamic programming formulation we saw in lecture 3
- ► This is the so-called Hamilton-Jacobi-Bellman (HJB) equation

Hamilton-Jacobi-Bellman Equation

- Suppose that f and g are of class C^1 , ie they are differentiable and their first derivative is continuous
- Let V(t,x) be defined as previously and suppose the problem has a continuous interior solution (\hat{x}_t,\hat{y}_t)

Theorem: if V(t,x) is differentiable in t and x, then (\hat{x}_t, \hat{y}_t) satisfies for all $t \geq 0$

$$f(t, \hat{x}_t, \hat{y}_t) + \frac{\partial V(t, \hat{x}_t)}{\partial t} + \frac{\partial V(t, \hat{x}_t)}{\partial x} g(t, \hat{x}_t, \hat{y}_t) = 0$$

Proof

From the principle of optimality, we have for the optimal pair (\hat{x}_t, \hat{y}_t)

$$V(t_0, x_{t_0}) = \int_{t_0}^t f(s, \hat{x}_s, \hat{y}_s) ds + V(t, \hat{x}_t)$$

Differentiate with respect to time and use Leibniz's integral rule

$$\frac{dV(t_0, x_{t_0})}{dt} = f(t, \hat{x}_t, \hat{y}_t) + \underbrace{\int_{t_0}^t \frac{\partial}{\partial t} f(s, \hat{x}_s, \hat{y}_s) ds}_{=0} + \frac{\partial V(t, \hat{x}_t)}{\partial t} + \frac{\partial V(t, \hat{x}_t)}{\partial x} \frac{\partial x}{\partial t}$$

$$0 = f(t, \hat{x}_t, \hat{y}_t) + \frac{\partial V(t, \hat{x}_t)}{\partial t} + \frac{\partial V(t, \hat{x}_t)}{\partial x} \dot{x}_t$$

► Set $\dot{x}_t = g(t, \hat{x}_t, \hat{y}_t)$ and obtain the HJB equation

Interpreting the HJB Equation

- ► The HJB equation is used directly in many economic models, eg in endogenous technology models of growth
- ► The HJB equation is a partial differential equation since it features the derivative of *V* with respect to both time *t* and the state variable *x*
- ▶ The HJB equation shares similarity with the discrete-time Euler equation

Euler Equation in Discrete Time

► The Euler equation in discrete time has the form (recall lecture 3 section 5)

$$\frac{\partial U(x, y^*)}{\partial y} + \beta V'(y^*) = 0$$

where y^* is the optimal policy for the control variable

- This equation requires the current gain from increasing y today to be equal to the discounted loss of value of all future returns $-\beta V'(y^*)$
- ▶ Put differently, the sum of the current gain and the discounted gain of all future returns must be equal to zero

A Similar Interpretation

► The HJB equation has a similar interpretation

$$\underbrace{\frac{f(t, \hat{x}_t, \hat{y}_t) + \frac{\partial V(t, \hat{x}_t)}{\partial x} g(t, \hat{x}_t, \hat{y}_t)}_{= \text{ maximized Hamiltonian } H(t, \hat{x}_t, \hat{y}_t, \lambda_t)} + \frac{\partial V(t, \hat{x}_t)}{\partial t} = 0$$

- ▶ $f(t, \hat{x}_t, \hat{y}_t)$ is the current gain of increasing y_t now, while $\frac{\partial V(t, \hat{x}_t)}{\partial x}g(t, \hat{x}_t, \hat{y}_t)$ is the potential discounted loss of value from increasing y_t now
- ▶ The third term $\frac{\partial V(t,\hat{x}_t)}{\partial t}$ results from the fact that the maximized value can also change over time

Stationary HJB Equation

- ▶ The HJB equation can give us further intuition to the maximum principle
- ► Let's derive the stationary version of the HJB equation
- ► The stationary version applies to exponentially discounted maximization problems with time-independent or time-autonomous constraints
- ▶ In these problems, the objective function becomes $f(t, x_t, y_t) = e^{-\rho t} f(x_t, y_t)$ and the law of motion of the state becomes $g(t, x_t, y_t) = g(x_t, y_t)$
- ▶ If a pair $(\hat{x}_t, \hat{y}_t)_{t\geq 0}$ is optimal starting at t=0 with initial condition x_0 , then $(\hat{x}_t, \hat{y}_t)_{t\geq s>0}$ is also optimal starting at s>0 with initial condition $x_s=x_0$

Derivative of V with Respect to Time

- ▶ In this time-invariant environment, let's define $v(x) \equiv V(0, x)$
- ▶ Since (\hat{x}_t, \hat{y}_t) is an optimal plan regardless of the starting date, we have

$$V(t, x_t) = e^{-\rho t} v(x_t)$$
 for all t

▶ Differentiate with respect to time

$$\frac{\partial V(t, x_t)}{\partial t} = -\rho e^{-\rho t} v(x_t)$$

▶ The value function depends on time only through exponential discounting

Deriving the Stationary HJB Equation

Let $\dot{v}(x_t)$ be the change in the function v over time

$$\dot{v}(x_t) \equiv \frac{dv(x_t)}{dt} = \frac{\partial v(x_t)}{\partial x} \dot{x}_t$$

- Since v does not directly depend on time t, the change in v only results from the change in the state variable x_t
- ▶ Moreover, using $V(t, x_t) = e^{-\rho t}v(x_t)$

$$\frac{\partial V(t, x_t)}{\partial x} \dot{x}_t = e^{-\rho t} \underbrace{\frac{\partial v(x_t)}{\partial x} \dot{x}_t}_{\dot{v}(x_t)} = e^{-\rho t} \dot{v}(x_t)$$

Stationary HJB Equation

▶ The original HJB equation with discounting is

$$e^{-\rho t} f(\hat{x}_t, \hat{y}_t) + \frac{\partial V(t, \hat{x}_t)}{\partial t} + \frac{\partial V(t, \hat{x}_t)}{\partial x} \dot{x}_t = 0$$

▶ Plug in the expressions for $\frac{\partial V(t,\hat{x}_t)}{\partial t}$, $\frac{\partial V(t,\hat{x}_t)}{\partial x}\dot{x}_t$, and $\dot{v}(x_t)$ that we just computed to obtain

$$\rho v(\hat{x}_t) = f(\hat{x}_t, \hat{y}_t) + \dot{v}(\hat{x}_t)$$

No Arbitrage

- ► The stationary HJB equation is like a no-arbitrage asset value equation
- lackbox We can think of v as the value of an asset traded in the stock market and ho as the required return for investors for a large number of investors
- ▶ If the asset pays out more than the required rate of return ρ , there is excess demand for it and its value rises until its rate of return becomes equal to ρ
- ▶ The rate of return on the asset ρv comes from two sources
 - **Dividends** or current returns paid to investors $f(\hat{x}_t, \hat{y}_t)$
 - ▶ Capital gains or losses $\dot{v}(\hat{x}_t)$, ie appreciation/depreciation of the asset

Maximum Principle and No Arbitrage

▶ Let *d* denote dividends, the no-arbitrage condition becomes

$$\rho v(x) = d + \dot{v}(x)$$

- Thus the maximum principle requires that the program's maximized value v(x) and its rate of change $\dot{v}(x)$ be consistent with the no-arbitrage condition
- ► This is another intuition for the maximum principle

5. Transversality Condition

The Problem

Recall the problem

$$\max_{x_t,y_t} \int_0^\infty f(t,x_t,y_t) dt$$
 subject to $\dot{x}_t = g(t,x_t,y_t)$ for almost all t $x_t \in \operatorname{Int} X_t, \, y_t \in \operatorname{Int} Y_t$, for all $t, \, x_0$ given

- ightharpoonup f and g are continuously differentiable
- ▶ The problem has a piecewise continuous solution (\hat{x}_t, \hat{y}_t)
- $ightharpoonup V(t,\hat{x}_t)$ is the optimal value of the problem as before

Transversality Condition

- We want to avoid possible solutions that satisfy the necessary conditions but imply an explosive path for the value function, $\lim_{t\to\infty} V(t,\hat{x}_t) = \infty$
- ▶ For this we assume that in the limit, the value function is time-invariant

$$\lim_{t \to \infty} \frac{\partial V(t, \hat{x}_t)}{\partial t} = 0$$

Theorem: If $V(t, \hat{x}_t)$ is differentiable in x and t for t sufficiently large and if $\lim_{t\to\infty}\frac{\partial V(t,\hat{x}_t)}{\partial t}=0$, then the transversality condition is also a necessary condition

$$\lim_{t \to \infty} H(t, \hat{x}_t, \hat{y}_t, \lambda_t) = 0$$

Proof

▶ Recall the Bellman-Jacobi-Hamilton equation

$$\frac{\partial V(t, \hat{x}_t)}{\partial t} + f(t, \hat{x}_t, \hat{y}_t) + \frac{\partial V(t, \hat{x}_t)}{\partial x} g(t, \hat{x}_t, \hat{y}_t) = 0$$

Since $V(t, \hat{x}_t)$ is differentiable in x and t for t sufficiently large, and since $\frac{\partial V(t, \hat{x}_t)}{\partial x} = \lambda_t$, we have for t sufficiently large

$$\frac{\partial V(t, \hat{x}_t)}{\partial t} + \underbrace{f(t, \hat{x}_t, \hat{y}_t) + \lambda_t g(t, \hat{x}_t, \hat{y}_t)}_{H(t, \hat{x}_t, \hat{y}_t, \lambda_t)} = 0$$

▶ By assumption, $\lim_{t\to\infty} \frac{\partial V(t,\hat{x}_t)}{\partial t} = 0$, therefore we have

$$\lim_{t \to \infty} H(t, \hat{x}_t, \hat{y}_t, \lambda_t) = 0$$

► This is the tranversality condition

The Transversality Condition Ensures a Finite Value Function

- ▶ The condition that $\lim_{t\to\infty} V(t,\hat{x}_t)$ is finite is natural, since economic problems with infinite V are not relevant
- ▶ If $\lim_{t\to\infty} V(t,\hat{x}_t) = \infty$, there is typically no pair (x_t,y_t) reaching this value
- ▶ The assumption here, $\lim_{t\to\infty} \frac{\partial V(t,\hat{x}_t)}{\partial t} = 0$, is only slightly stronger than assuming that $\lim_{t\to\infty} V(t,\hat{x}_t)$ exists and is finite
- ▶ It is satisfied in almost all economic problems
- ► However this transversality condition is not always easy to check so in the next lecture we will present a stronger and more useful version of it

6. Consuming a Nonrenewable Resource

A Simple Problem

- ▶ Let's apply our optimal control tools to a concrete example
- We study a simple infinite-horizon optimization problem
- ► The problem is to choose the optimal path of consuming a nonrenewable or exhaustible natural resource
- ► Think of fuels (oil, gas, coal) or metals (gold, silver, iron)

Model Setup

- ightharpoonup The nonrenewable resource is x_t
- ightharpoonup The agent chooses to consume quantity y_t of the resource
- $ightharpoonup x_t$ is the state, a stock; y_t is the control, a flow
- ▶ There is one initial unit $x_0 = 1$ of the nonrenewable resource
- ▶ The instantaneous utility of consuming a flow y_t of the resource is $u(y_t)$, where $u:[0,1] \to \mathbb{R}$, u'>0, u''<0

Resource Constraint

▶ The resource constraint in discrete time is

$$x_{t+1} = x_t - y_t$$

▶ The resource constraint in continuous time is

$$x_{t+\Delta} = x_t - \Delta y_t$$
$$\frac{x_{t+\Delta} - x_t}{\Delta} = -y_t$$
$$\dot{x}_t = -y_t$$

Problem

► The decision-maker solves the problem

$$\max_{y_t} \int_0^\infty e^{-\rho t} u(y_t) dt$$
 subject to $\dot{x}_t = -y_t$, given $x_0 = 1$

▶ How do we solve this problem?

Hamiltonian

First, we write a Hamiltonian

$$H(t, x_t, y_t, \lambda_t) = e^{-\rho t} u(y_t) - \lambda_t y_t$$

Derive the First-Order Conditions

▶ Second, we derive the necessary conditions, which by the maximum principle imply that (\hat{x}_t, \hat{y}_t) satisfy

$$H_y(t, \hat{x}_t, \hat{y}_t, \lambda_t) = 0: \quad e^{-\rho t} u'(\hat{y}_t) = \lambda_t$$

$$\dot{\lambda}_t = -H_x(t, \hat{x}_t, \hat{y}_t, \lambda_t): \quad \dot{\lambda}_t = 0$$

$$\dot{\hat{x}}_t = H_\lambda(t, \hat{x}_t, \hat{y}_t, \lambda_t): \quad \dot{\hat{x}}_t = -\hat{y}_t$$

Define a New Costate and Differentiate the Second FOC

- ▶ Third, we define the alternative costate $\mu_t \equiv \lambda_t/e^{-\rho t}$
- \triangleright λ_t is the discounted marginal value of the state at t in units of time t goods
- \blacktriangleright μ_t is the current marginal value of the state at t in units of time zero goods
- ▶ We then differentiate μ_t with respect to time

$$\dot{\mu}_t = \rho e^{\rho t} \lambda_t + e^{\rho t} \dot{\lambda}_t$$

▶ Finally we use $\mu_t = e^{\rho t} \lambda_t$ and the second FOC $\dot{\lambda}_t = 0$ to obtain

$$\dot{\mu}_t = \rho \mu_t$$

Hotelling's Rule

► The previous expression is known as Hotelling's rule: Hotelling (1931, *JPE*) laid the foundations for the field of natural resource economics

$$\frac{\dot{\mu}_t}{\mu_t} = \rho$$

- \blacktriangleright μ_t is the shadow price of the resource, ie the marginal net revenue from the sale of the resource, and ρ is the discount rate, ie an interest rate
- ► Hotelling's rule states that the optimal extraction path of a nonrenewable resource is one along which its price increases at the rate of interest

Price Path

Decreasing Consumption Path

- \blacktriangleright We can characterize the explicit path of consumption y_t
- ▶ Rewrite the first FOC, $e^{-\rho t}u'(\hat{y}_t) = \lambda_t$, as

$$\hat{y}_t = u'^{-1}(e^{\rho t}\lambda_t)$$

- ightharpoonup u' is decreasing so u'^{-1} is also decreasing, thus the amount of resource consumed is monotonically decreasing over time
- ▶ Agents favor early consumption of the resource because they are impatient, but they do not consume all of it at once because they like a smooth path

- We can characterize the explicit path of the resource \hat{x}_t
- ▶ The second FOC, $\dot{\lambda}_t = 0$, implies that

$$\lambda_t = \lambda_{t-1} = \dots = \lambda_0$$

lacksquare Combine the two FOCs with the resource constraint, $\dot{\hat{x}}_t = -\hat{y}_t$

$$\dot{\hat{x}}_t = -u'^{-1}(e^{\rho t}\lambda_t) = -u'^{-1}(e^{\rho t}\lambda_0)$$

▶ Integrate the previous expression, $\dot{\hat{x}}_t = -u'^{-1}(e^{\rho t}\lambda_0)$

$$\int_0^t \dot{\hat{x}}_s ds = -\int_0^t u'^{-1}(e^{\rho s}\lambda_0) ds$$

▶ Use the initial value of the constraint, $x_0 = 1$

$$\hat{x}_t = 1 - \int_0^t u'^{-1}(e^{\rho s}\lambda_0)ds$$

lacksquare This is the optimal path of the resource \hat{x}_t

- ▶ To get the optimal path, we just need to compute λ_0
- ▶ Along any optimal path, $\lim_{t\to\infty} \hat{x}_t = 0$, therefore λ_0 satisfies

$$\int_0^\infty u'^{-1}(e^{\rho s}\lambda_0)ds = 1$$

- The resource is in initial quantity $x_0 = 1$ and is slowly depleted until it reaches zero in the limit
- ► Exercise: verify that the transversality condition is satisfied

Impatience Shock

- \triangleright Suppose agents become more impatient, ie the discount rate ρ increases
- From Hotelling's rule $\frac{\dot{\mu}_t}{\mu_t} = \rho$, we know the resource price increases faster
- Let $g(x) \equiv u'^{-1}(x)$; from $\dot{\hat{x}}_t = -u'^{-1}(e^{\rho t}\lambda_0)$ and $\int_0^\infty u'^{-1}(e^{\rho s}\lambda_0)ds = 1$ we get

$$\frac{\partial \dot{\hat{x}}_t}{\partial \rho} = \underbrace{-e^{\rho t}}_{<0} \left(\underbrace{t\lambda_0}_{>0} + \underbrace{\frac{\partial \lambda_0}{\partial \rho}}_{<0}\right) \underbrace{g'(e^{\rho t}\lambda_0)}_{<0}$$

- ▶ For small t, $|t\lambda_0| < |\frac{\partial \lambda_0}{\partial \rho}|$, so $\frac{\partial \hat{x}_t}{\partial \rho} < 0$: the resource depletes faster as ρ rises
- Impatient agents consume the resource faster, so the price rises faster

Impatience Shock

To Be Continued

▶ More about optimal control in lecture 20