Section 2E. Model Quality Statistics for Data Science

Victor M. Preciado, PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Assessing Model Quality

We should differentiate between two types of data:

▶ **Training dataset** $\mathcal{D}_{\mathsf{Tr}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$: Data available while estimating the unknown parameters θ of your parametric model, $\widehat{f}(\mathbf{x}; \theta)$. The **training MSE** is defined as

$$\mathsf{MSE}_{\mathsf{Tr}} = rac{1}{\mathsf{N}} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_{\mathsf{Tr}}} \left(y_i - \widehat{f}\left(\mathbf{x}_i; heta
ight)
ight)^2$$

▶ **Testing dataset** $\mathcal{D}_{Te} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{M}$: Data that your learning algorithm has **not** seen during training and can be used to estimate the performance of future predictions using the **test MSE**

$$\mathsf{MSE}_{\mathsf{Te}} = \frac{1}{M} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D}_{\mathsf{Te}}} \left(y_i - \widehat{f}\left(\mathbf{x}_i; \theta\right) \right)^2$$

The test MSE is a better reflection of the performance of your model.

Model Selection

Consider a training and a testing datasets, $\mathcal{D}_{\mathsf{Tr}}$ and $\mathcal{D}_{\mathsf{Te}}$ containing samples $(\mathbf{x}_i, y_i) \sim f_{X,Y}$

Model Selection (cont.)

Comments on test and train MSE (conceptual figure below):

- ▶ Train MSE (gray plot) decays monotonically as the flexibility increases.
- ▶ Test MSE (red plot) presents an optimal minimum value (blue square).
 - ▶ Below the optimal flexibility level, the model \hat{f} is not flexible enough to learn f faithfully (red square)
 - Above the optimal flexibility level, the model \hat{f} is too flexible and starts following the noise in our training data (gree square)

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.