Свойства отношений.

Для обозначения некоторых специальных видов отображений, заданных на одном и том же множестве, применяют термин **ОТНОШЕНИЕ.**

Отображение, заданное между двумя или несколькими элементами одного множества X, называют отношением. Например, между объектами математической природы такими отношениями могут быть "быть равным", "быть большим", "быть неравным" и т.п.. Все множество отношений между числами может быть {=; <}, а между объектами "нематематической" природы такими отношениями могут быть: "быть родственником", "быть соседом", "находиться рядом с …", "быть частью" и т.п.≤.

Формальная запись отношения не отличается от записи для отображений, если принять вместо Y множество X. Множество пар отношений обозначают символом R.

Например,

$$R = \{(x_1; x_2) | x_{1,2}X \subseteq X\} \in {}^2X;$$

$$R = \{(x_1; x_2; \dots; x_{n+1}) | x_i X \subseteq X\} \in {}^n X..$$

Если (n+1)=1, то отношение называют унарным или одноместным. Такое отношение выделяет в множестве подмножество, удовлетворяющее заданному свойству.

Задание отношение $\mathbf{r}(\mathbf{x})$ равносильно заданию предиката $\mathbf{P}^1(\mathbf{x})$ на области определения. Например, на множестве целых чисел можно задать предикат $\mathbf{P}^1\mathbf{Z}.\in(\mathbf{x})$:- "быть четным числом".

В результате будет сформировано множество

$$R(x)=\{2;4;6;8;...\}$$

Если (**n**+**1**)=**2**, то отношение называют бинарным или двухместным. Такое отношение позволяет сравнить или упорядочить попарно элементы заданного множества.

Для математических объектов это могут быть отношения:

 $r_4(x_1;x_2)$:-" имеют общий делитель" и др.

Правило $r_j(x_1;x_2)$ позволяет формировать подмножества $\mathbf{R}_j(\mathbf{x}_1;\mathbf{x}_2)$ опираясь на вычисление предиката: $\mathbf{P}_1^2(\mathbf{x}_1;\mathbf{x}_2)$:-" \mathbf{x}_1 больше \mathbf{x}_2 ",

$$P_2^2(x_1;x_2)$$
:-" x_1 paben x_2 ",

$$P_3^2(x_1;x_2):$$
-" x_1 меньше x_2 ",

 $P_4^2(x_1;x_2)$:-" имеют общий делитель".

Например, на множестве целых чисел Z эти отношения сформируют следующие подмножества:

$$R_1(x_1;x_2Z; \otimes Z_{\subseteq}) = \{(10;6);(8;5);(3;1);...\}$$

$$R_2(x_1;x_2Z;\otimes Z_{\subseteq})=\{(10;10);(8;8);(5;5);(3;3);...\}$$

$$R_3(x_1;x_2Z;\otimes Z_{\subseteq})=\{(6;10);(5;8);(3;\%);(1;3);...\}$$

$$R_4(x_1;x_2Z.\otimes Z_{\underline{C}})=\{(10;2);(10;5);(8;4);(6;3);...\}$$

Если (**n**+**1**)=**3**, то отношение называют тернарным или трехместным, если **равно 4**, **то четырехместным** и т.д.. Наибольшее распространение имеют бинарные отношения в связи с удобством их описания.

Анализ различных бинарных отношений позволяет выделить наиболее характерные свойства, что необходимо для классификации всего множества отношений. Такими свойствами являются: рефликсивность, симметричность и транзитивность.

Бинарное отношение рефликсивно, если для любого **x**i имеем

$$r(x_i;x_i)=1$$
,

т.е. отношение имеет значение "истины" при применении к одному элементу x_i ; такими отношениями являются "быть равным", "быть похожим", "быть изоморфным", "быть эквивалентным" и т.п.; при матричном задании такого отношения это означает, что на главной диагонали матрицы находятся только "1", а при графическом представлении - петли при каждой вершине графа(см. рис.2а)).

Бинарное отношение антирефлексивно, если для любого **x**i имеем

 $r(x_i;x_i)=0$,

т.е. отношение имеет значение "ложь" применительно к одному элементу $\mathbf{x_i}$; такими отношениями являются "быть больше", "быть меньше", "быть родителем" и т.п.; при матричном задании такого отношения это означает, что на главной диагонали матрицы находятся только "0", а при графическом представлении -отсутствие петель при каждой вершине графа(см. рис.26)).

б)

Бинарное отношение симметрично, если для любой пары $(x_i; x_j)$ имеем

$$r(x_i;x_j)=r(x_j;x_i)=1;$$

это могут быть такие отношения: "быть похожим", "быть эквивалентным", "быть родственником" и т.п.; при матричном задании такого отношения это означает симметричное расположение "1" относительно главной диагонали, при графическом представлении - отсутствие стрелок на линиях, соединяющих вершины x_i и x_j , или их наличия, но в обе стороны(см. рис.2в)).

B)

$$\mathbf{r}$$
 \mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n

$$x_1 * 1 * 1$$

$$x_2 1 * * *$$

$$x_n 1 * * *$$

Бинарное отношение антисимметрично, если для любой пары $(x_i; x_j)$ имеем

$$r(x_i;x_j) = 0$$
 при $i \neq j$, а

при
$$i=j$$
 $r(x_i;x_j)=1;$

такими отношениями являются "быть больше или равным", "быть меньше или равным" и т.п.; при матричном задании такого отношения это означает несимметричное расположение "1" относительно главной диагонали, но наличие их на главной диагонали, при графическом представлении - наличие стрелок на линиях, соединяющих вершины x_i и x_j и наличие петель у вершин графа (см. рис.2г)).

Г)

$$\mathbf{r}$$
 \mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n

$$x_1 \ 1 \ 1 \ * \ 1$$

$$x_n * * * 1$$

 $\frac{\text{Бинарное отношение асимметрично}}{(\mathbf{x_i; x_j})}$ имеем

$$\mathbf{r}(\mathbf{x}_i;\mathbf{x}_j\mathbf{r}(\mathbf{x}\neq)_j;\mathbf{x}_i);$$
 или $\mathbf{r}(\mathbf{x}_i;\mathbf{x}_i)=1,$ то $\mathbf{r}(\mathbf{x}_i;\mathbf{x}_i)=0$

такими отношениями являются "быть больше", "быть меньше", "быть родителем" и т.п.; при матричном задании такого отношения это означает только несимметричное расположение "1" относительно главной диагонали и наличие только "0" на ней, а при графическом представлении -наличие стрелок на линиях, соединяющих вершины x_i и x_j и отсутствие петель у вершин графа (см. рис.2д)). Следует обратить внимание, что антисимметричное отношение отличается от асимметричного только наличием "1" на главной диагонали или наличием

д)

петель у вершин графа.

если

<u>Бинарное отношение транзитивно</u>, если для любых **трех** элементов $\mathbf{x_{i}, x_{j}, x_{k}}$ имеем

 $r(x_i;x_j)=1$ только при условии $r(x_i;x_k)=1$ и $r(x_k;x_j)=1$;

такими отношениями являются "быть больше", "быть меньше", "быть родственником" и т.п.; при матричном представлении это означает, что если $\mathbf{r}(\mathbf{x}_i;\mathbf{x}_k)=1$ и $\mathbf{r}(\mathbf{x}_k;\mathbf{x}_j)=1$, то это же отношение можно установить между вершинами \mathbf{x}_i и \mathbf{x}_j через промежуточную вершину \mathbf{x}_k , т.е. найти $\mathbf{r}(\mathbf{x}_i;\mathbf{x}_j)=1$; при графическом представлении –

наличие пути из вершины x_i в вершину x_j через промежуточную вершину x_k , используя ребра $(x_i; x_k)$ и $(x_k; x_j)$ (см. рис. е)).

e)

$$\mathbf{r}$$
 \mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n

$$x_1 * 1 * 1$$

$$x_2 * * * 1$$

* * * *

