

Computer Vision

Early vision: Just one image

School of Electronic & Electrical Engineering

Sungkyunkwan University

Hyunjin Park

Linear Filters

Representing image regions

- We can generate a number of intrinsic images from a given image
 - Depth/disparity
 - Surface albedo/color
 - Surface normal
 - ...
- How can we organize these into surfaces?
 - Identify attributes of regions
 - Bounding edges
 - Texture
 - Spatial aggregations of pixels
 - Segmentation

Taxonomy

- Signal processing
 - Discrete-time signal processing
 - Wavelet tour of signal processing
- Image processing
 - Two-dimensional signal and image processing
 - The Fourier transform and its applications
- Tools which have become indispensable to computer vision
 - Linear filters
 - Over-complete (pyramid) representation

Systems and filters

- Filtering
 - Form a new image whose pixels are a combination of original pixel values

- Goals
 - Extract useful information from the images
 - Features (edges, corners, blobs, ...)
 - Modify or enhance image properties
 - Super-resolution, in-painting, de-nosing

Systems and filters

De-noising

Super-resolution

In-painting

Image filtering

- Filtering
 - Modify the pixels in an image
 - Based on some function of a local neighborhood of the pixels

10	5	3
4	5	1
1	1	7

7	

Linear filtering

- Linear case is the simplest and most useful
 - Form a new image by replacing each pixel with a weighted sum (i.e., linear combination) of its neighbors, using the same set of weights at each point

The prescription for the linear combination is called the kernel

10	5	3		0	0	0			
4	5	1	*	0	0.5	0	_	7	
1	1	7		0	1.0	0.5			
kernel									

Example: 2D discrete-space moving average with 3×3 window

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

$$(f*h)[m,n] = \frac{1}{9} \sum_{k,l} f[k,l]h[m-k,n-l]$$

F[x, y]

G[x, y]

F[x, y]

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Replaces each pixel with an average of its neighborhood

- Achieve smoothing effect
 - Remove sharp features

Linear filter properties

- Linear
 - Output is a linear function of the input
 - Superposition: $h * (f_1 + f_2) = (h * f_1) + (h * f_2)$
 - Scaling: h * (kf) = k(h * f)
 - $-S[\alpha f_1 + \beta f_2] = \alpha S[f_1] + \beta S[f_2]$

Linear filter properties

- Shift-invariant
 - Output is a shift-invariant function of the input
 - Shift the input image two pixels to the left, the output is shifted two pixels to the left

- If
$$f[n,m] \stackrel{S}{\to} g[n,m]$$
, then $f[n-n_0,m-m_0] \stackrel{S}{\to} g[n-n_0,m-m_0]$

Correlation filtering

• Size of the averaging window: $(2k + 1) \times (2k + 1)$

$$g[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} f[i+u,j+v]$$

 Generalize to allow different weights depending on neighboring pixel's relative position

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v]f[i+u,j+v]$$
$$g = h \otimes f$$

Correlation filtering

Convolution filtering

- Convolution: $g = h \star f$
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v]f[i-u,j-v]$$

Convolution vs. correlation

Convolution:

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v] f[i-u,j-v]$$
$$g = h \star f$$

Cross-correlation:

$$g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v] f[i+u,j+v]$$

Convolution vs. correlation

Convolution:

- Integral that expresses the amount of overlap of one function as it is shifted over another function
- Convolution is a filtering operation

Cross-correlation:

- Computes a measure of similarity of two input signals as they are shifted by one another
- The correlation result reaches a maximum at the time when the two signals match best
- Correlation is a measure of relatedness of two signals

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

Shifted left by 1 pixel with correlation

Original

Blur (with a box filter)

	96	300	-31	
_				1
()ri	igir	าล	
•		ייסי	101	

Sharpening filter

Sharpening filter

after

Smoothing: Average filter

We can reduce noise by smoothing

Smoothing by averaging

- Average smoothing is not appropriate for a defocused lens
 - A single point of light viewed in a defocused lens looks like a fuzzy blob
 - Averaging process would give a little square

Gaussian kernel gives a good model of a fuzzy blob

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

1	2	1
2	4	2
1	2	1

Smoothing with a Gaussian

Size of kernel

 $\sigma = 5$ with 10×10 kernel $\sigma = 5$ with 30×30 kernel

- Variance of Gaussian
 - Determines extent of smoothing

 $\sigma=2$ with 30 imes30 kernel

 $\sigma = 5$ with 30×30 kernel

Rows

 Smoothing with Gaussians of different width

Columns

 Different realizations of an image of Gaussian noise

- Smoothing by averaging
 - Good when the average is taken over a homogeneous neighborhood with zero-mean noise
 - When the neighborhood straddles the boundary between two homogeneous regions, the estimate results in blurring of the boundary

- Median filter
 - Non-linear filter
 - Method:
 - 1) Rank-order neighborhood intensities
 - 2) Take middle value
 - No new gray level emerge

- Median filter
 - Remove spikes
 - Good for impulse, salt & pepper noise
 - Less sensitive to outliers compared to mean filter

Salt and pepper noise Median filtered

Plots of a row of the image

- Median filter
 - Not always optimistic

3 x 3 median filter

Sharpens edges, destroys edge cusps and protrusions

- Median filter
 - Not always optimistic

Comparison with Gaussian filter

E.g.) Upper lip smoother, eye better preserved

- Median filter
 - Not always optimistic

10 times 3 x 3 median filter

Patchy effect: Important details lost (e.g., earring)

Filters as templates

- Filtering the image
 - Applying a filter at some point can be seen as taking a dot-product between the image and some vector
 - Filtering the image is a set of dot products

Filters look like the effects they are intended to find matched filters

Filters as templates

- Filters as templates
 - Can be used for template matching
 - Use normalized cross-correlation to find a given pattern in the image

$$\frac{\sum_{x,y} (A_{x,y} - A_{mean}) (B_{x,y} - B_{mean})}{\sqrt{\sum_{x,y} (A_{x,y} - A_{mean})^{2}} \sqrt{\sum_{x,y} (B_{x,y} - B_{mean})^{2}}}$$

Scene

Template

Detected template

Correlation map

Template

Scene

Template

Correlation map