Algebraic Topology

Ikhan Choi

April 17, 2023

Contents

I	Homology	3
1	Axiomatic homology theory 1.1 Singular homology	4 4
2	Computation of homology 2.1 Cellular homology	5 5
3	Cohomology 3.1 Poincaré duality	6
II	Homotopy	7
4	Fundamental groups 4.1	8 8
5	Fibration5.1 Homotopy lifting property5.2 Obstruction theory5.3 Hurewicz theorem	9 9 9
6 II	Spectral sequences 6.1 Serre spectral sequence	10 10 10
7	Fiber bundles 7.1 Principal bundles	12 12 15 15 15
8	Characteristic classes	17
9	K-theory	18

Part I Homology

Axiomatic homology theory

- 1.1 Singular homology
- 1.2 Eilenberg-Steenrod axioms

Mayer-Vietoris sequence

Computation of homology

2.1 Cellular homology

CW complex, equivalence,

2.2 Simplicial homology

geometric realization, equivalence, smith normal form, simplicial approximation,

Cohomology

cup product Universal coefficient theorem

3.1 Poincaré duality

Part II Homotopy

Fundamental groups

4.1

- **4.1.** A homotopy of paths is a continuous map $h: I \times I \to X$ such that $h(0, 1) = x_0$ and
 - (a) linear homotopy
 - (b) reparametrization
- **4.2.** The fundamental group is a group composition
- 4.3 (Van Kampen theorem).

4.2 Covering spaces

path lifting property

Fibration

5.1 Homotopy lifting property

Locally trivial bundles pullback bundles: universal property, functoriality, restriction, section prolongation

5.2 Obstruction theory

5.3 Hurewicz theorem

 $H_{ullet}(\Omega S_n)$ and $H_{ullet}(U(n))$ Spin, Spin $_{\mathbb C}$ structure

Spectral sequences

6.1 Serre spectral sequence

(Lyndon-Hochschild-Serre)

6.2 Adams spectral sequence

Part III Fiber bundles

Fiber bundles

7.1 Principal bundles

7.1 (Structure groups). Let *G* be a topological group and *Y* be a left *G*-space. A *G*-bundle or a fiber bundle with structure group *G* with fiber *Y* is a fiber bundle $p: E \to B$, together with a local trivialization $\varphi = \{\varphi_i: p^{-1}(U_i) \to U_i \times Y\}_i$ such that the transition map are given by

$$\tau_{ii}(b, y) := \varphi_i \varphi_i^{-1}(b, y) = (b, g_{ii}(b)y), \quad b \in U_i \cap U_i, \ y \in Y,$$

where $g_{ij}: U_i \cap U_j \to G$ are maps.

A *G-bundle map* is a bundle map $(u, f): (E_1, B_1) \rightarrow (E_2, B_2)$ such that

$$\varphi_{2,j}u\varphi_{1,i}^{-1}(b,y) = (f(b),h_{ij}(b)y), \qquad b \in U_{1,i} \cap f^{-1}(U_{2,i}), \ y \in Y,$$

where $h_{ij}: U_{1,i} \cap f^{-1}(U_{2,j}) \to G$ are maps. If $B_1 = B_2 = B$, a *G*-bundle map over *B* is a *G*-bundle map (u, f) such that $f = \mathrm{id}_B$. We denote by $\mathbf{Bun}_Y(B)$ the category of *G*-bundles over *B* with fiber *Y*.

- (a) If *B* is locally compact and Hausdorff, then every fiber bundle with fiber *Y* has a structure group Homeo(*Y*).
- (b) A G-bundle map (u, f) is an isomorphism if and only if f is a homeomorphism.

Proof. (a)

$$\Box$$

7.2 (Fiber bundle construction theorem). Let $\mathcal{U} = \{U_i\}_i$ be an open cover of a topological space B, and G be a topological group. A \check{C} ech 1-cocyle on \mathcal{U} with coefficients in G is a set of maps $g = \{g_{ij} : U_i \cap U_j \to G\}_i$ such that the following cocycle condition holds:

$$g_{ik}(b) = g_{ik}(b)g_{ij}(b), \quad \forall i, j, k, b \in U_i \cap U_i \cap U_k.$$

The set of Čech 1-cocycles on \mathcal{U} with coefficients in G is denoted by $\check{Z}^1(\mathcal{U}, G)$.

Let $g \in \check{Z}^1(\mathcal{U}, G)$ and Y a left G-space. We will construct a G-bundle with fiber Y that is trivialized over \mathcal{U} in which the transition maps are given by g. Define

$$E := \left(\coprod_{i} (U_{i} \times Y) \right) / \sim,$$

where \sim is an equivalence relation generated by

$$(i, b, y) \sim (j, b, g_{ij}(b)y), \quad \forall i, j, b \in U_i \cap U_j, y \in Y.$$

Also define $p: E \to B: [i, b, y] \mapsto b$ and $\varphi_i^{-1}: U_i \times Y \to p^{-1}(U_i): (b, y) \mapsto [i, b, y]$, which are clearly continuous and surjective even without the cocycle condition.

- (a) φ_i^{-1} is injective.
- (b) φ_i^{-1} is open.
- (c) The transition maps from the local trivialization $\varphi = \{\varphi_i\}_i$ coincides with the cocycle g.

Proof. (a) Suppose $\varphi_i^{-1}(b,y) = \varphi_i^{-1}(b',y')$. Since $(i,b,y) \sim (i,b',y')$, we have b=b' and there is a sequence

$$y' = g_{i_{n-1}i_n}(b)g_{i_{n-2}i_{n-1}}(b)\cdots g_{i_0i_1}(b)y,$$

where $i_0 = i_n = i$. By applying the cocycle condition inductively, we obtain y = y', which implies the injectivity of φ_i^{-1} .

(b) The map φ_i^{-1} factors through $\coprod_i (U_i \times Y)$ such that

$$\varphi_i^{-1}: U_i \times Y \to \coprod_i (U_i \times Y) \xrightarrow{\pi} p^{-1}(U_i).$$

Since the inclusion to disjoint union is open, it suffices to show the quotient map $\pi: \coprod_i (U_i \times Y) \to E$ is open. Let $V \subset \coprod_i (U_i \times Y)$ be open. Observe for each pair of i and j that

$$\pi^{-1}\pi(V\cap(U_i\times Y))\cap(U_j\times Y)$$

is open because it is exactly same as the inverse image of the open set $V \cap (U_i \times Y)$ under the map $(U_i \cap U_j) \times Y \subset U_j \times Y \to U_i \times Y : (b, y) \mapsto (b, g_{ij}(b)y)$. Here we used the cocycle condition of g. Therefore,

$$\pi^{-1}\pi(V) = \bigcup_{ij} \pi^{-1}\pi(V \cap (U_i \times Y)) \cap (U_j \times Y)$$

is open, hence the open π .

(c) Clear by the cocycle condition.

7.3 (Cohomologous transitions). Let $\mathcal{U} = \{U_i\}_i$ be an open cover of a topological space B, and G be a topological group. A \check{C} ech 0-cochain on \mathcal{U} with coefficients in G is a set of maps $h = \{h_i : U_i \to G\}_i$. The group of \check{C} ech 0-cochains on \mathcal{U} with coefficients in G is denoted by $\check{C}^0(\mathcal{U}, G)$.

The *first Čech cohomology group* of \mathcal{U} with coefficients G is the orbit space of an action on $\check{Z}^1(\mathcal{U}, G)$ by $\check{C}^0(\mathcal{U}, G)$ defined as follows:

$$(hg)_{ij}(b) := h_j(b)g_{ij}(b)h_i(b)^{-1}, \quad \forall i, j, b \in U_i \cap U_j,$$

which is denoted by $\check{H}^1(\mathcal{U}, G)$. We define the *first Čech cohomology group* of B with coefficients in G as the direct limit

$$\check{H}^1(B,G) := \underset{\mathcal{U}}{\lim} \check{H}^1(\mathcal{U},G).$$

Let Y be a left G-space, and let $Bun_Y(B)$ be the set of isomorphism classes of G-bundles over B with fiber Y.

- (a) $\operatorname{Bun}_{Y}(B) \to \check{H}^{1}(B,G)$ is well-defined.
- (b) $\operatorname{Bun}_{V}(B) \to \check{H}^{1}(B,G)$ is surjective.
- (c) $\operatorname{Bun}_{Y}(B) \to \check{H}^{1}(B,G)$ is injective if Y is faithful.

Proof. (a) Suppose $p_1: E_1 \to B$ and $p_2: E_2 \to B$ be isomorphic *G*-bundles with fiber *Y*. Let $u: E_1 \to E_2$ be a *G*-bundle isomorphism. By considering the refinement, we can find an open cover $\mathcal{U} = \{U_i\}_i$ of *B* on which E_1 and E_2 are simultaneously locally trivialized.

$$g_1 := \{g_{1,ij} : U_i \cap U_j \to G\}.$$

7.4 (Principal bundles). Let *G* be a topological group, and *X* be a left *principal homogeneous G-space*, i.e. a free and transitive left *G*-space such that $G \times X \to X \times X : (g, x) \mapsto (gx, x)$ is a homeomorphism.

A principal *G*-bundle is a *G*-bundle $p: P \to B$ with fiber X, often together with a fiber-preserving continuous right action $\rho: P \times G \to P$ such that each chart $\varphi_i: p^{-1}(U_i) \to U_i \times X$ induces a principal homogeneous right action on $\{b\} \times X \subset U_i \times X$ which commutes with the left action. The right action ρ is called the *principal right action* or (global) gauge transformation. Note that for each $b \in B$ the fiber $\{b\} \times X$ has commuting left and right actions, but the fiber $p^{-1}(b)$ cannot be given a natural left action from local trivializations.

The category of principal *G*-bundles over *B* is denoted by $\mathbf{Prin}_G(B)$, and the morphisms are usually defined as right *G*-equivariant maps. Then, we may consider the forgetful functor $\mathbf{Prin}_G(B) \to \mathbf{Bun}_X(B)$.

- (a) $\mathbf{Prin}_G(B) \to \mathbf{Bun}_X(B)$ is fully faithful, i.e. a bundle map $u: P_1 \to P_2$ over B is a G-bundle map if and only if it is a right G-equivariant map.
- (b) $\mathbf{Prin}_G(B) \to \mathbf{Bun}_X(B)$ is surjective, i.e. every *G*-bundle with fiber *X* has a principal right action.
- (c) A principal bundle is trivial if it has a global section.

Proof. (a) Let $u: P_1 \to P_2$ be a *G*-bundle map over *B* so that there is a map $g_i: U_i \to G$ for each *i* such that

$$\varphi_i u \varphi_i^{-1}(b, x) = (b, g_i(b)x), \quad \forall i, b \in U_i, x \in X.$$

If we write $\rho_s = \rho(-,s)$, then the induced action $\varphi_i \rho_s \varphi_i^{-1}$ on $U_i \times X$ commutes with $\varphi_i u \varphi_i^{-1}$. Now for every $e \in P_1$, we have

$$\rho_s u(e) = \varphi_i^{-1}(\varphi_i \rho_s \varphi_i^{-1})(\varphi_i u \varphi_i^{-1}) \varphi_i(e)$$

$$= \varphi_i^{-1}(\varphi_i u \varphi_i^{-1})(\varphi_i \rho_s \varphi_i^{-1}) \varphi_i(e)$$

$$= u \rho_s(e),$$

therefore u is right G-equivariant.

Conversely, let $u: P_1 \to P_2$ be a right *G*-equivariant map. By fixing $x_0 \in X$ and using the fact that the left action is free and transitive, define $g_i: U_i \to G$ such that

$$(b, g_i(b)x_0) = \varphi_i u \varphi_i^{-1}(b, x_0).$$

The function g_i is continuous since it factors as

$$b \mapsto (b, x_0) \xrightarrow{\varphi_i u \varphi_i^{-1}} (b, g_i(b) x_0) \mapsto g_i(b) x_0 \mapsto g_i(b).$$

The last map is continuous since X is a principal homogeneous space. Then, for every $(b, x) \in U_i \times X$, there is a unique $s = s(b, x) \in G$ such that

$$\varphi_i \rho_s \varphi_i^{-1}(b, x_0) = (b, x),$$

so we have

$$\varphi_{i}u\varphi_{i}^{-1}(b,x) = (\varphi_{i}u\varphi_{i}^{-1})(\varphi_{i}\rho_{s}\varphi_{i}^{-1})(b,x_{0})$$

$$= \varphi_{i}u\rho_{s}\varphi_{i}^{-1}(b,x_{0})$$

$$= \varphi_{i}\rho_{s}u\varphi_{i}^{-1}(b,x_{0})$$

$$= (\varphi_{i}\rho_{s}\varphi_{i}^{-1})(\varphi_{i}u\varphi_{i}^{-1})(b,x_{0})$$

$$= (\varphi_{i}\rho_{s}\varphi_{i}^{-1})g_{i}(b)(b,x_{0})$$

$$= g_{i}(b)(\varphi_{i}\rho_{s}\varphi_{i}^{-1})(b,x_{0})$$

$$= g_{i}(b)(b,x)$$

$$= (b,g_{i}(b)x).$$

Hence, u is a G-bundle map.

(b) Fix $x_0 \in X$ and consider the homeomorphism $G \to X : g \to gx_0$. Define a right action

$$X \times G \rightarrow X : (gx_0, s) \mapsto gsx_0.$$

It defines a right principal homogeneous *X* and commutes with the left action,

Define $\rho: P \times G \rightarrow P$ such that

$$\varphi_i \rho_s \varphi_i^{-1}(b, x) = (b, xs).$$

It is well defined, fiber preserving, continuous. also for any b and any chart φ_j containing b, the action on $\{b\} \times X$ defines a principal homogeneous as we have seen. Therefore, ρ is a gauge tranformation.

(c)

7.5 (Associated bundles).

$$\operatorname{Prin}_G(B) \xrightarrow{\sim} \operatorname{Bun}_X(B) \xrightarrow{\sim} \check{H}^1(B,G) \hookrightarrow \operatorname{Bun}_F(B)$$

can be given in a more simple way.

7.2 Classifying spaces

Let $Prin_G(B)$ be the set of isomorphism classes of principal G-bundles. Then, we have a contravariant functor

$$Prin_G : \mathbf{hTop}_{para} \to \mathbf{Set}$$

such that there is a natural isomorphism between contravariant functors

$$[-,BG] \rightarrow Prin_G$$
.

7.6 (Homotopy properteis). Let $p: E \to B$ be a vector bundle

- (a) If $p_1: E_1 \to B \times [0, \frac{1}{2}]$ and $p_2: E_2 \to B \times [\frac{1}{2}, 1]$ are trivial, then
- (b) If $f, g : B' \to B$ are homotopic, then $f^*\xi \cong g^*\xi$.

7.7 (Finite type).

7.3 Reduction of structure groups

7.4 Vector bundles

subbundles, quotient bundles, bundle maps, constant rank, then ker, im, coker bundles are locally trivial so that they are vector bundles. pullback: vector bundle structure

vector fields(trivial subbundles), parallelizable bundle operations: sum, tensor, dual, hom, exterior reduction and metrics

- **7.8** (Vector bundles). Let $p_1: E_1 \to B$ and $p_2: E_2 \to B$ be vector bundles.
 - (a) A vector bundle map *u* over *B* is a vector bundle isomorphism if and only if it is a fiberwise linear isomorphism.

Let $1 \le n \le \infty$. If $f, g : B \to G_k(\mathbb{F}^n)$ such that $f^*(\gamma_{k^n}) \cong g^*(\gamma_{k^n})$, then $jf \simeq jg$, where $j : G_k(\mathbb{F}^n) \to G_k(\mathbb{F}^{2n})$ is the natural inclusion.

7.9. Riemannian and Hermitian metrics

Exercises

group quotient gives a principal G-bundle.

Characteristic classes

K-theory

bott periodicity Hopf invariant

Part IV Stable homotopy theory

equivariant topology chromatic homotopy theory spectral sequences orthogonal spectra abstract homotopy theory Kervaire invariant problem