

A311D

Quick Reference Manual

Revision: 01

Release Date: 2019-05-05

Amlogic, Ltd.

COPYRIGHT

© 2019 Amlogic, Ltd.

All rights reserved. No part of this document may be reproduced, transmitted, transcribed, or translated into any language in any form or by any means without the written permission of Amlogic, Ltd.

TRADEMARKS

AMLOGIC is a trademark of Amlogic, Ltd. All other trademarks and registered trademarks are property of their respective companies.

DISCLAIMER

Amlogic Ltd. may make improvements and/or changes in this document or in the product described in this document at any time.

This product is not intended for use in medical, life saving, or life sustaining applications.

Circuit diagrams and other information relating to products of Amlogic Ltd. are included as a means of illustrating typical applications. Consequently, complete information sufficient for production design is not necessarily given. Amlogic makes no representations or warranties with respect to the accuracy or completeness of the contents presented in this document.

CONTACT INFORMATION

Amlogic, Ltd.

2518 Mission College Blvd, Suite 120

Santa Clara, CA 95054

U.S.A.

www.amlogic.com

Change History

Issue 01 (2019-05-05)

This is the 01 version.

Compared to A311D Quick Reference Manual (0.7), the following topics are changed.

Section	Change Description						
2.3	Added a note that some GPIOAO pins can be reset by watchdog.						
3	Modified the chapter title.						
3.3	Added a note of ripple voltage after the table						
3.4	Modified thermo resistance value.						
3.5.1	Added two notes of min and max value of R _{PD} explaining the GPIO pin voltage in test condition.						
3.7.1	Added note after Table 3-2 that driving strength of OD pin is not adjustabe.						
3.7.7	 Modified the specs of tHC, tLC and tRC in Table 3-14 and Table 3-15 Updated timing figures from Figure 3-16 to Figure 3-19 						
4 and 5	Changed these two sections into chapters.						
5	Updated the power on sequence figure.						
6	Updated the dimension figure.						
6 Updated the dimension figure.							

Contents

1.	Gen	eral Info	ormation	1
	1.1	Over	<i>r</i> iew	1
	1.2	Featu	ıres	2
2.	Pin (Out Spe	ecification	6
	2.1		out Diagram (top view)	
	2.2		rder	
	2.3		escription	
	2.4	Pin M	lultiplexing Tables	31
	2.5		l Descriptions	
3.	Elec		haracteristics	
	3.1		ute Maximum Ratings	
	3.2	Reco	mmended Operating Conditions	49
	3.3		e Voltage Specification	
	3.4		nal Resistance	
	3.5	DC E	lectrical Characteristics	
		3.5.1	Normal GPIO Specifications (For DIO)	51
		3.5.2	Open Drain GPIO Specifications (For DIO_OD)	52
		3.5.3	DDR3/DDR3L/DDR4/LPDDR3/LPDDR4 SDRAM Specifications	52
	3.6	Reco	mmended Oscillator Electrical Characteristics	53
	3.7	Timin	g Information	54
		3.7.1	I2C Timing Specification	54
		3.7.2	EMMC/SDIO Timing Specification	55
		3.7.3	NAND Timing Specification	58
		3.7.4	SPICC Timing Specification	60
		3.7.5	SPIFC Timing Specification	60
		3.7.6	Ethernet Timing Specification	62
		3.7.7	Audio Timing Specification	64
		3.7.8	PDM Timing Specification	66
		3.7.9	UART Timing Specification	68
	3.8	Powe	r Consumption	69
	3.9	Stora	ge and Baking Conditions	70
4.	Pow	er On C	Config	71
5.	Reco	ommen	ded Power on/down Sequence	72
6.	Mec	hanical	Dimensions	73

7. Ordering Guide......74

1. General Information

1.1 Overview

A311D is an advanced AI application processor designed for hybrid OTT/IP Set Top Box(STB) and highend media box applications. It integrates a powerful CPU, GPU and neural network accelerator subsystem, a secured 4K video CODEC engine and a best-in-class HDR image processing pipeline with all major peripherals to form the ultimate high-performance AI multimedia AP.

The main system CPU is based on Big.Little architecture which integrates a quad-core ARM Cortex-A73 CPU cluster and a dual-core Cortex-A53 cluster with united L2 cache to improve system performance. Each CPU core includes the separate NEON SIMD co-processor to improve software media processing capability. There is also the neural network accelerator supporting INT8 inference for all popular deep learning frameworks including TensorFlow and Caffe.

The graphic subsystem consists of two graphic engines and a flexible video/graphic output pipeline. The ARM MaliTM-G52 MP4 (6EE) GPU handles all OpenGL ES 3.2 Vulkan 1.0 and OpenCL 2.0 graphic programs, while the 2.5D graphics processor handles additional scaling, alpha, rotation and color space conversion operations. Together, the CPU and GPU handle all operating system, networking, user-interface and gaming related tasks. The video output pipeline includes Dolby Vision^{optional}, advanced HDR10, HDR10+, HLG and PRIME HDR processing, REC709/BT2020 processing, motion adaptive edge enhancing de-interlacing, flexible programmable scalar, and many picture enhancement filters before passing the enhanced image to the video output ports.

Amlogic Video Engine (AVE-10) offloads the Cortex-A53 CPUs from all video CODEC processing. It includes dedicated hardware video decoder and encoder. AVE-10 is capable of decoding 4Kx2K resolution video at 75fps with complete Trusted Video Path (TVP) for secure applications and supports full formats including MVC, MPEG-1/2/4, VC-1/WMV, AVS, AVS+, AVS2 RealVideo, MJPEG streams, H.264, H265-10, VP9 and also JPEG pictures with no size limitation. The independent encoder is able to encode in JPEG or H.265/H.264 up to 1080p at 60fps.

A311D integrates all standard audio/video input/output interfaces including a HDMI2.1 transmitter with 3D, Dynamic HDR, CEC and HDCP 2.2 support, stereo audio DAC, a CVBS output, 4-lane MIPI DSI interface, multiple TDM, PCM, I2S and SPDIF digital audio input/output interfaces, and 8 channel far-field PDM digital microphone (DMIC) inputs. A 4-lane MIPI-CSI and DVP interface is available to support up to 8MP camera input with the built-in high-quality ISP.

A311D also integrates a set of functional blocks for digital TV broadcasting streams. The built-in two demux can process the TV streams from the serial and parallel transport stream input interface, which can connect to external tuner/demodulator.

The processor has rich advanced network and peripheral interfaces, including a 10/100/1000M Ethernet MAC with RGMII, 10/100M Ethernet PHY, one USB XHCI OTG 2.0 ports, one USB3.0 and PCIe 2.0 combo interface and multiple SDIO/SD card controllers, UART, I2C, high-speed SPI and PWMs.

Standard development environment utilizing GNU/GCC Android tool chain is supported. Please contact your AMLOGIC sales representative for more information.

1.2 Features

CPU Sub-system

- Quad core ARM Cortex-A73and dual core ARM Cortex-A53 CPU
- ARMv8-A architecture with Neon and Crypto extensions
- Unified system L2 cache
- Build-in Cortex-M4 core for always on processing
- Advanced TrustZone security system
- Application based traffic optimization using internal QoS-based switching fabrics

Neural Network Accelerator

- INT8 inference up to 1536 MAC
- Internal L2 cache (512KB) and system workspace buffer (1MB)
- Supports all major deep learning frameworks including TensorFlow and Caffe

3D Graphics Processing Unit

- ARM G52 MP4(6EE) GPU
- 8-wide warps, 2x dual texture pipe, 6x 8-wide execution engines (EE)
- Concurrent multi-core processing
- OpenGL ES 3.2, Vulkan 1.0 and OpenCL 2.0 support

2.5D Graphics Processor

- Fast bitblt engine with dual inputs and single output
- Programmable raster operations (ROP)
- Programmable polyphase scaling filter
- Supports multiple video formats 4:2:0, 4:2:2 and 4:4:4 and multiple pixel formats (8/16/24/32 bits graphics layer)
- Fast color space conversion
- Advanced anti-flickering filter

Crypto Engine

- AES/ block cipher with 128/256 bits keys, standard 16 bytes block size and streaming ECB, CBC and CTR modes
- TDES block cipher with ECB and CBC modes supporting 64 bits key for DES and 192 bits key for 3DES
- Hardware crypto key-ladder operation and DVB-CSA for transport stream encryption
- Built-in hardware True Random Number Generator (TRNG), CRC and SHA-1/SHA-2/HMAC SHA engine

Video/Picture CODEC

- Amlogic Video Engine (AVE) with dedicated hardware decoders and encoders
- Support multi-video decoder up to 4Kx2K@60fps+1x1080P@60fps
- Supports multiple "secured" video decoding sessions and simultaneous decoding and encoding
- Video/Picture Decoding
 - VP9 Profile-2 up to 4Kx2K@60fps
 - H.265 HEVC MP-10@L5.1 up to 4Kx2K@60fps
 - AVS2-P2 Profile up to 4Kx2K@60fps
 - H.264 AVC HP@L5.1 up to 4Kx2K@30fps
 - H.264 MVC up to 1080P@60fps

- MPEG-4 ASP@L5 up to 1080P@60fps (ISO-14496)
- o WMV/VC-1 SP/MP/AP up to 1080P@60fps
- AVS-P16(AVS+) /AVS-P2 JiZhun Profile up to 1080P@60fps
- MPEG-2 MP/HL up to 1080P@60fps (ISO-13818)
- MPEG-1 MP/HL up to 1080P@60fps (ISO-11172)
- RealVideo 8/9/10 up to 1080P@60fps
- o Multiple language and multiple format sub-title video support
- MJPEG and JPEG unlimited pixel resolution decoding (ISO/IEC-10918)
- Supports JPEG thumbnail, scaling, rotation and transition effects
- Supports *.mkv,*.wmv,*.mpg, *.mpeg, *.dat, *.avi, *.mov, *.iso, *.mp4, *.rm and *.jpg file formats
- Video/Picture Encoding
 - Independent JPEG and H.265/H.264 encoder with configurable performance/bit-rate
 - JPEG image encoding
 - H.265/H.264 video encoding up to 1080P@60fps with low latency
 - DVP (ITU 601/656) camera interface
 - Supports YUV or RGB camera input formats

9th Generation Advanced Amlogic TruLife Image Engine

- Supports Dolby Vision^{Optional}, HDR10, HDR10+, and HLG HDR
- Motion compensated noise reduction and 3D digital noise reduction for random noise
- Block noise, mosquito noise, spatial noise, contour noise reduction
- Motion compensated and motion adaptive de-interlacer
- Edge interpolation with low angle protection and processing
- 3:2/2:2 pulldown and Video on Film (VOF) detection and processing
- Smart sharpness with SuperScaler technology including de-contouring, de-ring, LTI, CTI, dejaggy, peaking
- Dynamic non-Linear contrast enhancement
- 3D LUTs with 17x17x17 nodes, provide 4913 different control points, which is competent for matching calibrated displays to a target colorspace
- High precision HSL color space-based color management with low saturation protection, independent luma/hue/saturation adjustment to achieve blue/green extension, fresh tone correction, and wider gamut for video
- 2 video planes and 3 graphics planes
- Independent HDR re-mapping of video and graphic layer

Camera Interface

- DVP parallel and MIPI-CSI camera interface with 4 lanes
- Supports RAW, YUV or RGB camera input formats
- Built-in 8MP HDR Image Signal Processor (ISP)
- Built-in image distortion correction engine

Video Output

- Built-in HDMI 2.1 transmitter including both controller and PHY with CEC, Dynamic HDR and HDCP 2.2, 4Kx2K@60 max resolution output
- CVBS 480i/576i standard definition output
- Supports all standard SD/HD/FHD video output formats: 480i/p, 576i/p, 720p, 1080i/p and 4Kx2K
- 4-lane MIPI DSI interface, resolution up to 1920*1080 with rotation and panel calibration

Audio Decoder and Input/Output

- Supports MP3, AAC, WMA, RM, FLAC, Ogg, Dolby Digital Optional, Dolby Digital Plus Optional, DTS Optional and programmable with 7.1/5.1 down-mixing
- Built-in serial digital audio SPDIF/IEC958 input/output and PCM input/output
- 3 built-in TDM/PCM/I2S ports with TDM/PCM mode up to 384kHz x32bits x 8ch or 96kHz x
 32bits x 32ch and I2S mode up to 384kHz x 32bits x 8ch
- Digital microphone PDM voice input with programmable CIC, LPF & HPF, support up to 8 DMICs
- Built-in stereo audio DAC
- Supports concurrent dual audio stereo channel output with combination of analog+PCM or I2S+PCM

Memory and Storage Interface

- 32-bit DRAM memory interface with dual ranks and max 4GB total address space
- Compatible with JEDEC standard DDR3-2133 /DDR3L-2133 /DDR4-2666 /LPDDR3-2133 /LPDDR4-3200 SDRAM
- Supports SLC/MLC/TLC NAND Flash with 60-bit ECC, compatible to Toshiba toggle mode in addition to ONFI 2.2
- SDSC/SDHC/SDXC card and SDIO interface with 1-bit and 4-bit data bus width supporting spec version 2.x/3.x/4.x DS/HS modes up to UHS-I SDR104
- eMMC and MMC card interface with 1/4/8-bit data bus width fully supporting spec version 5.0 HS200
- Supports serial 1, 2 or 4-bit NOR Flash via SPI interface
- Built-in 4k bits One-Time-Programming memory for key storage

Network

- Integrated IEEE 802.3 10/100/1000M Ethernet MAC with RGMII interface
- Integrated 10^{Note1}/100M Ethernet PHY interface
- WiFi/IEEE802.11 & Bluetooth supporting via PCIE/SDIO /USB/UART/PCM
- Network interface optimized for mixed WIFI and BT traffic

Digital Television Interface

- One serial and one parallel Transport stream (TS) input interface with built-in demux processor for connecting to external digital TV tuner/demodulator
- Built-in PWM, I2C and SPI interfaces to control tuner and demodulator
- Integrated ISO 7816 smart card controller

Integrated I/O Controllers and Interfaces

- One USB XHCI OTG 2.0 port
- One USB SS and PCle 2.0 combo interface up to 5Gbps, supporting 2 configurations:
 - o 1 USB 2.0 Host + 1 PCle
 - o 1 USB3.0 (No PCIe)
- Multiple PWM, UART, I2C and SPI interface with slave select
- Programmable IR remote input/output controllers
- Built-in 10bit SAR ADC with 4 input channels
- A set of General Purpose IOs with built-in pull up and pull down

System, Peripherals and Misc. Interfaces

- Integrated general purpose timers, counters, DMA controllers
- 24 MHz crystal input

Embedded debug interface using ICE/JTAG

Power Management

- Multiple internal power domains controlled by software
- Multiple sleep modes for CPU, system, DRAM, etc.
- Multiple internal PLLs to adjust the operating frequencies
- Multi-voltage I/O design for 1.8V and 3.3V
- Power management auxiliary processor in a dedicated always-on (AO) power domain for system stand-by

Security

- Trustzone based Trusted Execution Environment (TEE)
- Secured boot, encrypted OTP, encrypted DRAM with memory integrity checker, hardware key ladder and internal control buses and storage
- Separated secure/non-secure Entropy true RNG
- Pre-region/ID memory security control and electric fence
- Hardware based Trusted Video Path (TVP), video watermarking and secured contents (needs SecureOS software)
- Secured IO and secured clock

Package

FCBGA, 16.1mmx14.3mm, 0.6mm ball pitch, RoHS compliant

Note1: 10Base-T not support CTS mode

2. Pin Out Specification

2.1 Pin-Out Diagram (top view)

2.2 Pin Order

Table 2-1. Pin Order

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
A1	DDR_DQ31	E15	GPIOA_6	J34	HDMI_CEXT
A3	DDR_DQ30	E17	GPIOA_2	J37	GPIOH_1
A5	DVSS	E19	DVSS	J42	DVSS
A7	DDR_DQSP3	E21	GPIOC_3	J44	HDMITX_0N
A11	DDR_DQ25	E24	DVSS	J46	HDMITX_0P
A15	GPIOA_8	E26	VDDIO_C	K7	DDR_DQM2
A19	GPIOA_0	E28	GPIOC_1	K9	DDR_DQ16
A24	GPIOC_4	E30	PCIE_CLK_n	K11	DVSS
A28	DVSS	E32	DVSS	L1	DDR_DQ23
A32	PCIE_RXP	E34	PCIE_TXP	L3	DVSS
A36	USBOTG_B_VBUS	E36	ENET_EXTRES	L5	DDR_DQ22
A40	USBOTG_B_DM	E38	USBHOST_A_DP	L13	VDDQ
A42	ENET_TXP	E40	DVSS	L16	GPIOA_13
A44	ENET_RXP	E42	DVSS	L19	DVSS
A46	DVSS	E44	HDMITX_2N	L22	GPIOA_14
C1	DVSS	E46	DVSS	L25	DVSS
C3	DDR_DQ18	G1	DDR_DQ21	L28	HCSL_REXT
C5	DDR_DQ29	G3	DDR_DQ20	L31	DVSS
C7	DDR_DQ\$N3	G5	DVSS	L34	DVSS
C9	DDR_DQ28	G8	DDR_DQ27	L37	GPIOH_0
C11	DVSS	G11	DDR_DQM3	L40	GPIOH_3
C13	DVSS	G13	DVSS	L42	HDMITX_CKN
C15	GPIOA_9	G16	GPIOA_4	L44	HDMITX_CKP
C17	GPIOA_3	G19	VDDIO_A	N3	DVSS
C19	GPIOA_1	G22	GPIOA_11	N5	AC_35
C21	GPIOC_2	G25	GPIOA_10	N7	DVSS
C24	GPIOC_5	G28	GPIOC_7	N9	AC_31

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
C26	GPIOC_0	G31	USB_TXRTUNE	N11	DVSS
C28	GPIOC_6	G34	HDMI_REXT	N15	VDDQ
C30	PCIE_CLK_p	G37	GPIOH_8	N36	GPIOH_2
C32	PCIE_RXN	G42	DVSS	N38	VMID
C34	PCIE_TXN	G44	HDMITX_1P	N40	AVSS_AUDIO
C36	DVSS	G46	HDMITX_1N	N42	LOLP
C38	USBHOST_A_DM	H40	GPIOH_6	N44	DVSS
C40	USBOTG_B_DP	J3	DDR_DQSN2	P13	VDDQ
C42	ENET_TXN	J5	DDR_DQSP2	P18	DVSS
C44	ENET_RXN	J13	GPIOA_5	P20	DVSS
C46	HDMITX_2P	J16	GPIOA_7	P22	DVSS
E3	DDR_DQ19	J19	GPIOA_12	P24	AVDD18_PCIE
E5	DDR_DQ17	J22	GPIOA_15	P26	AVDD18_ENET
E7	DVSS	J25	DVSS	P28	AVDD33_USB
E9	DDR_DQ26	J28	PCIE_REXT	P30	DVSS
E13	DDR_DQ24	J31	USBOTG_B_ID	P32	AVSS_HPLL
P34	DVSS	Y24	AVSS_HCSL	AF20	DVSS
R1	DVSS	Y26	DVSS	AF22	AVSS_AMPLL
R3	AC_34	Y28	AVDD0V8_USB_PCIE	AF24	DVSS
R5	AC_20	Y30	AVDD0V8_HDMI	AF26	VDD_EE
R15	DVSS	Y32	AVDD18_HDMI	AF28	VDD_EE
R42	LORN	Y34	AVSS_CVBS	AF30	DVSS
R44	LOLN	AA3	AC_25	AF32	AVDD18_MIPICSI
R46	LORP	AA5	AC_24	AF34	AVDD18_MIPIDSI
T7	AC_38	AA42	CSI_D3_P	AG1	AC_15
Т9	DDR_RSTn	AA44	CSI_D3_N	AG3	AC_14
T11	DVSS	AB7	AC_5	AG5	AC_23
T36	REFP	AB9	AC_4	AG42	DVSS
T38	CVBS_RSET	AB11	PZQ	AG46	DSI_D0P

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
T40	CVBS_VREF	AB36	CSI_CLKA_P	AH7	AC_13
U3	AC_21	AB38	GPIOH_7	AH9	DVSS
U5	DVSS	AB40	DVSS	AH11	AC_9
U13	VDDQ	AC1	AC_28	AH14	AVDD_DDRPLL
U15	DVSS	AC3	DVSS	AH17	VDD_DDR
U17	DVSS	AC5	AC_22	AH20	VDDCPU_B
U19	VDD_EE	AC13	DVSS	AH23	AVDD18_DPLL
U21	DVSS	AC15	VDDQ	AH26	VDD_EE
U23	DVSS	AC17	DVSS	AH29	DVSS
U25	AVDD18_USB	AC19	VDD_DDR	AH32	DVSS
U27	ENET_ATP	AC21	DVSS	AH36	DVSS
U29	AVSS_ENETPLL	AC23	DVSS	AH38	CSI_D0_N
U31	NC	AC25	DVSS	AH40	CSI_D0_P
U33	DVSS	AC27	VDD_EE	AH44	DSI_D0N
U42	DVSS	AC29	DVSS	AK1	AC_11
U44	CVBS_IOUT	AC31	AVDD18_AUDIO	AK3	AC_10
W1	AC_33	AC33	AVDD18_CVBS	AK5	DVSS
W3	AC_29	AC42	DVSS	AK13	DVSS
W5	AC_32	AC44	CSI_D2_P	AK15	VDDQ
W7	AC_37	AC46	CSI_D2_N	AK17	DVSS
W9	AC_30	AE3	DVSS	AK19	VDDCPU_B
W11	PVREF	AE5	AC_26	AK21	VDDCPU_B
W36	CVBS_COMP	AE7	AC_6	AK23	DVSS
W38	GPIOH_5	AE9	AC_7	AK25	DVSS
W40	GPIOH_4	AE11	AC_12	AK27	VDD_EE
W42	DVSS	AE36	CSI_CLKA_N	AK29	VDDAO_0V8
W44	CSI_CLKB_P	AE38	CSI_D1_N	AK31	DVSS
W46	CSI_CLKB_N	AE40	CSI_D1_P	AK33	AVDD18_SARADC
Y14	VDDQ	AE42	DSI_CLKN	AK42	DVSS

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
Y16	DVSS	AE44	DSI_CLKP	AK44	DSI_D1P
Y18	DVSS	AF14	DVSS	AK46	DSI_D1N
Y20	VDD_EE	AF16	VDDQ	AL7	AC_17
Y22	DVSS	AF18	DVSS	AL9	AC_16
AL11	AC_3	AU29	DVSS	BB46	DVSS
AL36	DSI_CEXT	AU31	DVSS	BC7	DVSS
AL38	DSI_R1K	AU36	GPIOAO_10	BC36	GPIOZ_1
AL40	DSI_R600	AU38	GPIOE_2	BC38	SARADC_CH2
AM3	AC_2	AU40	GPIOAO_2	BC40	SARADC_CH3
AM5	AC_36	AV1	DVSS	BD3	DDR_DQ8
AM27	VDD_EE	AV3	DDR_DQ14	BD5	DDR_DQ7
AM42	DSI_D2N	AV5	DDR_DQ11	BD10	DVSS
AM44	DSI_D2P	AV42	RESET_N	BD13	GPIOAO_5
AN14	DVSS	AV44	GPIOAO_6	BD16	GPIOAO_4
AN16	DVSS	AV46	GPIOAO_7	BD19	BOOT_11
AN18	DVSS	AW14	DVSS	BD22	DVSS
AN20	VDDCPU_A	AW16	VDDCPU_A	BD25	DVSS
AN22	VDDCPU_A	AW18	VDDCPU_A	BD28	GPIOE_1
AN24	DVSS	AW20	VDDCPU_A	BD31	GPIOX_10
AN30	DVSS	AW22	VDDCPU_A	BD34	GPIOX_9
AN32	VDD18_AO_XTAL	AW24	DVSS	BD42	GPIOZ_12
AN34	DVSS	AW26	VDD_EE	BD44	GPIOZ_13
AP1	AC_0	AW28	DVSS	BF1	DDR_DQ6
AP3	DVSS	AW30	DVSS	BF3	DVSS
AP5	AC_18	AW32	VDDIO_Z	BF5	DDR_DQ5
AP7	DDR_DQM1	AW34	VDDIO_H	BF7	DVSS
AP9	DDR_DQ15	AY3	DDR_DQ10	BF10	DVSS
AP11	AC_1	AY5	DDR_DQ9	BF13	GPIOAO_3
AP27	VDD_EE	AY7	DVSS	BF16	GPIOAO_11

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
AP36	GPIOAO_0	AY9	DDR_DQ13	BF19	BOOT_15
AP38	GPIOAO_1	AY11	DVSS	BF22	BOOT_9
AP40	DVSS	AY36	VDDIO_AO	BF25	VDDIO_X
AP42	DVSS	AY38	SARADC_CH0	BF28	TEST_N
AP44	DSI_D3P	AY40	SARADC_CH1	BF31	GPIOX_17
AP46	DSI_D3N	AY42	SYS_OSCIN	BF34	GPIOX_11
AT3	DVSS	AY44	DVSS	BF36	GPIOZ_0
AT5	AC_8	BB1	DDR_DQSP1	BF39	GPIOZ_14
AT13	DVSS	BB3	DDR_DQSN1	BF42	GPIOZ_9
AT15	DVSS	BB5	DVSS	BF44	GPIOZ_11
AT17	VDDCPU_A	BB10	DVSS	BF46	GPIOZ_10
AT19	VDDCPU_A	BB13	DVSS	BH1	DVSS
AT21	VDDCPU_A	BB16	DVSS	ВН3	DDR_DQ4
AT23	DVSS	BB19	BOOT_10	BH5	DVSS
AT25	DVSS	BB22	DVSS	BH7	DVSS
AT27	VDD_EE	BB25	DVSS	ВН9	BOOT_1
AT33	DVSS	BB28	GPIOE_0	BH11	BOOT_3
AT42	GPIOAO_8	BB31	DVSS	BH13	BOOT_4
AT44	GPIOAO_9	BB34	GPIOX_8	BH17	BOOT_6
AU9	DDR_DQ12	BB42	GPIOZ_15	BH19	DVSS
AU11	DVSS	BB44	SYS_OSCOUT	BH21	VDDIO_BOOT
BH24	BOOT_8	BK11	BOOT_2	BM1	DDR_DQSP0
BH26	GPIOX_19	BK13	DVSS	BM3	DVSS
BH28	GPIOX_14	BK15	DVSS	BM5	DDR_DQ2
BH30	GPIOX_13	BK17	BOOT_7	BM7	DDR_DQ0
BH32	DVSS	BK19	BOOT_14	BM11	DVSS
BH34	GPIOX_3	BK21	BOOT_12	BM15	BOOT_5
BH36	DVSS	BK24	DVSS	BM19	BOOT_13
BH38	DVSS	BK26	GPIOX_15	BM24	GPIOX_18

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
BH40	GPIOX_7	BK28	GPIOX_12	BM28	DVSS
BH42	GPIOZ_6	BK30	GPIOX_16	BM32	GPIOX_0
BH44	DVSS	BK32	GPIOX_1	BM36	GPIOX_4
BH46	GPIOZ_8	BK34	GPIOX_2	BM40	DVSS
BK1	DDR_DQM0	BK38	GPIOX_5	BM42	GPIOZ_3
ВК3	DDR_DQSN0	BK40	GPIOX_6	BM44	GPIOZ_4
BK5	DDR_DQ3	BK42	GPIOZ_2	BM46	DVSS
ВК7	DDR_DQ1	BK44	GPIOZ_5	-	
ВК9	BOOT_0	BK46	GPIOZ_7	-	-

2.3 Pin Description

The A311D application processor pin assignment is described in the following table.

Table 2-2. Pin Name assignments

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused				
GPIOZ - Refer to									
Table 2-3 for functional	multiplex in	formation.							
GPIOZ_0	DIO	Up	General purpose input/output bank Z signal 0	VDDIO_Z	NC				
GPIOZ_1	DIO	Up	General purpose input/output bank Z signal 1	VDDIO_Z	NC				
GPIOZ_2	DIO	Up	General purpose input/output bank Z signal 2	VDDIO_Z	NC				
GPIOZ_3	DIO	Up	General purpose input/output bank Z signal 3	VDDIO_Z	NC				
GPIOZ_4	DIO	Up	General purpose input/output bank Z signal 4	VDDIO_Z	NC				
GPIOZ_5	DIO	Up	General purpose input/output bank Z signal 5	VDDIO_Z	NC				
GPIOZ_6	DIO	Up	General purpose input/output bank Z signal 6	VDDIO_Z	NC				
GPIOZ_7	DIO	Up	General purpose input/output bank Z signal 7	VDDIO_Z	NC				
GPIOZ_8	DIO	Up	General purpose input/output bank Z signal 8	VDDIO_Z	NC				
GPIOZ_9	DIO	Down	General purpose input/output bank Z signal 9	VDDIO_Z	NC				
GPIOZ_10	DIO	Down	General purpose input/output bank Z signal 10	VDDIO_Z	NC				
GPIOZ_11	DIO	Down	General purpose input/output bank Z signal 11	VDDIO_Z	NC				
GPIOZ_12	DIO	Down	General purpose input/output bank Z signal 12	VDDIO_Z	NC				
GPIOZ_13	DIO	Down	General purpose input/output bank Z signal 13	VDDIO_Z	NC				
GPIOZ_14	OD 3.3V	Z	OD input/output bank Z signal 14	VDDIO_Z	NC				
GPIOZ_15	OD 3.3V	Z	OD input/output bank Z signal 15	VDDIO_Z	NC				

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused			
VDDIO_Z	Р	-	Power supply for GPIO bank Z	-	NC			
GPIOA - Refer to Table 2-4 for functional multiplex information.								
GPIOA_0	DIO	Down	General purpose input/output bank A signal 0	VDDIO_A	NC			
GPIOA_1	DIO	Down	General purpose input/output bank A signal 1	VDDIO_A	NC			
GPIOA_2	DIO	Down	General purpose input/output bank A signal 2	VDDIO_A	NC			
GPIOA_3	DIO	Down	General purpose input/output bank A signal 3	VDDIO_A	NC			
GPIOA_4	DIO	Down	General purpose input/output bank A signal 4	VDDIO_A	NC			
GPIOA_5	DIO	Down	General purpose input/output bank A signal 5	VDDIO_A	NC			
GPIOA_6	DIO	Down	General purpose input/output bank A signal 6	VDDIO_A	NC			
GPIOA_7	DIO	Down	General purpose input/output bank A signal 7	VDDIO_A	NC			
GPIOA_8	DIO	Down	General purpose input/output bank A signal 8	VDDIO_A	NC			
GPIOA_9	DIO	Down	General purpose input/output bank A signal 9	VDDIO_A	NC			
GPIOA_10	DIO	Down	General purpose input/output bank A signal 10	VDDIO_A	NC			
GPIOA_11	DIO	Down	General purpose input/output bank A signal 11	VDDIO_A	NC			
GPIOA_12	DIO	Down	General purpose input/output bank A signal 12	VDDIO_A	NC			
GPIOA_13	DIO	Down	General purpose input/output bank A signal 13	VDDIO_A	NC			
GPIOA_14	DIO	Up	General purpose input/output bank A signal 14	VDDIO_A	NC			
GPIOA_15	DIO	Up	General purpose input/output bank A signal 15	VDDIO_A	NC			
VDDIO_A	Р	-	Power supply for GPIO bank A	-	NC			
BOOT - Refer to Table 2	2-5 for fund	tional mult	iplex information.					

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
BOOT_0	DIO	UP	General purpose input/output bank BOOT signal 0	VDDIO_BOOT	NC
BOOT_1	DIO	UP	General purpose input/output bank BOOT signal 1	VDDIO_BOOT	NC
BOOT_2	DIO	UP	General purpose input/output bank BOOT signal 2	VDDIO_BOOT	NC
BOOT_3	DIO	UP	General purpose input/output bank BOOT signal 3	VDDIO_BOOT	NC
BOOT_4	DIO	UP	General purpose input/output bank BOOT signal 4	VDDIO_BOOT	NC
BOOT_5	DIO	UP	General purpose input/output bank BOOT signal 5	VDDIO_BOOT	NC
BOOT_6	DIO	UP	General purpose input/output bank BOOT signal 6	VDDIO_BOOT	NC
BOOT_7	DIO	UP	General purpose input/output bank BOOT signal 7	VDDIO_BOOT	NC
BOOT_8	DIO	UP	General purpose input/output bank BOOT signal 8	VDDIO_BOOT	NC
BOOT_9	DIO	UP	General purpose input/output bank BOOT signal 9	VDDIO_BOOT	NC
BOOT_10	DIO	UP	General purpose input/output bank BOOT signal 10	VDDIO_BOOT	NC
BOOT_11	DIO	UP	General purpose input/output bank BOOT signal 11	VDDIO_BOOT	NC
BOOT_12	DIO	DOWN	General purpose input/output bank BOOT signal 12	VDDIO_BOOT	NC
BOOT_13	DIO	DOWN	General purpose input/output bank BOOT signal 13	VDDIO_BOOT	NC
BOOT_14	DIO	UP	General purpose input/output bank BOOT signal 14	VDDIO_BOOT	NC
BOOT_15	DIO	UP	General purpose input/output bank BOOT signal 15	VDDIO_BOOT	NC
VDDIO_BOOT	Р	-	Power supply for GPIO bank BOOT	-	To VDDIO_BOOT
GPIOC - Refer to Table	2-6 for fun	ctional mul	tiplex information.		
GPIOC_0	DIO	UP	General purpose input/output bank C signal 0	VDDIO_C	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
GPIOC_1	DIO	UP	General purpose input/output bank C signal 1	VDDIO_C	NC
GPIOC_2	DIO	UP	General purpose input/output bank C signal 2	VDDIO_C	NC
GPIOC_3	DIO	UP	General purpose input/output bank C signal 3	VDDIO_C	NC
GPIOC_4	DIO	UP	General purpose input/output bank C signal 4	VDDIO_C	NC
GPIOC_5	DIO	UP	General purpose input/output bank C signal 5	VDDIO_C	NC
GPIOC_6	DIO	UP	General purpose input/output bank C signal 6	VDDIO_C	NC
GPIOC_7	OD3.3V	Z	OD input/output bank C signal 7	VDDIO_C	NC
VDDIO_C	Р	-	Power supply for GPIO bank C	-	NC
GPIOX - Refer to Table	2-7 for fund	ctional mul	tiplex information.		
GPIOX_0	DIO	Up	General purpose input/output bank X signal 0	VDDIO_X	NC
GPIOX_1	DIO	Up	General purpose input/output bank X signal 1	VDDIO_X	NC
GPIOX_2	DIO	Up	General purpose input/output bank X signal 2	VDDIO_X	NC
GPIOX_3	DIO	Up	General purpose input/output bank X signal 3	VDDIO_X	NC
GPIOX_4	DIO	Up	General purpose input/output bank X signal 4	VDDIO_X	NC
GPIOX_5	DIO	Up	General purpose input/output bank X signal 5	VDDIO_X	NC
GPIOX_6	DIO	Down	General purpose input/output bank X signal 6	VDDIO_X	NC
GPIOX_7	DIO	Up	General purpose input/output bank X signal 7	VDDIO_X	NC
GPIOX_8	DIO	Up	General purpose input/output bank X signal 8	VDDIO_X	NC
GPIOX_9	DIO	Up	General purpose input/output bank X signal 9	VDDIO_X	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
GPIOX_10	DIO	Up	General purpose input/output bank X signal 10	VDDIO_X	NC
GPIOX_11	DIO	Up	General purpose input/output bank X signal 11	VDDIO_X	NC
GPIOX_12	DIO	Up	General purpose input/output bank X signal 12	VDDIO_X	NC
GPIOX_13	DIO	Up	General purpose input/output bank X signal 13	VDDIO_X	NC
GPIOX_14	DIO	Up	General purpose input/output bank X signal 14	VDDIO_X	NC
GPIOX_15	DIO	Up	General purpose input/output bank X signal 15	VDDIO_X	NC
GPIOX_16	DIO	Up	General purpose input/output bank X signal 16	VDDIO_X	NC
GPIOX_17	DIO	Down	General purpose input/output bank X signal 17	VDDIO_X	NC
GPIOX_18	DIO	Up	General purpose input/output bank X signal 18	VDDIO_X	NC
GPIOX_19	DIO	Z	General purpose input/output bank X signal 19	VDDIO_X	NC
VDDIO_X	Р	-	Power supply for GPIO bank	-	NC
GPIOH - Refer to Table	2-8 for fun	ctional mul	tiplex information.		
GPIOH_0	OD5V	Z	OD input/output bank H signal 0	VDDIO_H	NC
GPIOH_1	OD5V	Z	OD input/output bank H signal 1	VDDIO_H	NC
GPIOH_2	OD5V	Z	OD input/output bank H signal 2	VDDIO_H	NC
GPIOH_3	OD5V	Z	OD input/output bank H signal 3	VDDIO_H	NC
GPIOH_4	DIO	DOWN	General purpose input/output bank H signal 4	VDDIO_H	NC
GPIOH_5	DIO	DOWN	General purpose input/output bank H signal 5	VDDIO_H	NC
GPIOH_6	DIO	DOWN	General purpose input/output bank H signal 6	VDDIO_H	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
GPIOH_7	DIO	DOWN	General purpose input/output bank H signal 7	VDDIO_H	NC
GPIOH_8	OD5V	Z	OD input/output bank H signal 8	VDDIO_H	NC
VDDIO_H	Р	•	Power supply for GPIO bank H	-	NC

GPIOAO - Refer to Table 2-9 for functional multiplex information.

The following pins can be reset by watchdog: GPIOAO_0, GPIOAO_1, GPIOAO_2, GPIOAO_4, GPIOAO_6, GPIOAO_7, GPIOAO_10, TEST_N (only output reg and pull up/down).

GPIOAO_0	DIO	Up	General purpose input/output bank AO signal 0	VDDIO_AO	NC
GPIOAO_1	DIO	Up	General purpose input/output bank AO signal 1	VDDIO_AO	NC
GPIOAO_2	DIO	Down	General purpose input/output bank AO signal 2	VDDIO_AO	NC
GPIOAO_3	DIO	Up	General purpose input/output bank AO signal 3	VDDIO_AO	NC
GPIOAO_4	DIO	Down	General purpose input/output bank AO signal 4	VDDIO_AO	NC
GPIOAO_5	DIO	Up	General purpose input/output bank AO signal 5	VDDIO_AO	NC
GPIOAO_6	DIO	Down	General purpose input/output bank AO signal 6	VDDIO_AO	NC
GPIOAO_7	DIO	Up	General purpose input/output bank AO signal 7	VDDIO_AO	NC
GPIOAO_8	DIO	Up	General purpose input/output bank AO signal 8	VDDIO_AO	NC
GPIOAO_9	DIO	Down	General purpose input/output bank AO signal 9	VDDIO_AO	NC
GPIOAO_10	DIO	Up	General purpose input/output bank AO signal 10	VDDIO_AO	NC
GPIOAO_11	DIO	Down	General purpose input/output bank AO signal 11	VDDIO_AO	NC
TEST_N	DIO	UP	SOC test pin and general purpose input/output bank AO signal 12. Should be pulled up during normal power-on.	VDDIO_AO	NC
RESET_N	Input	DOWN	System reset input	VDDIO_AO	To RESET_N

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
VDDIO_AO	Р	-	Power supply for GPIO bank AO	VDDIO_AO	To VDDIO_AO
GPIOE- Refer to Table 2	2-10 for fun	ctional mu	Itiplex information.		
GPIOE_0	DIO	Z	General purpose input/output bank E signal 0	VDD18_AO_XTAL	NC
GPIOE_1	DIO	Z	General purpose input/output bank E signal 1	VDD18_AO_XTAL	NC
GPIOE_2	DIO	Z	General purpose input/output bank E signal 2	VDD18_AO_XTAL	NC
VDD18_AO_XTAL	Р	•	Power supply for GPIO bank E and XTAL, IOVREF	. 6	To VDD18_AO_XTAL
SARADC				10	
SARADC_CH0	AI	-	ADC channel 0 input	AVDD18_SARADC	NC
SARADC_CH1	Al	-	ADC channel 1 input	AVDD18_SARADC	NC
SARADC_CH2	Al	-	ADC channel 2 input	AVDD18_SARADC	NC
SARADC_CH3	Al	-	ADC channel 3 input	AVDD18_SARADC	NC
AVDD18_SARADC	Р	-	Analog power supply for SARADC	-	To 1.8V
CVBS OUT					
CVBS_COMP	А	-0	CVBS external compensation capacitor connection	AVDD18_CVBS	NC
CVBS_IOUT	AO		Video DAC output	AVDD18_CVBS	NC
CVBS_RSET	A	-	CVBS output strength setting resistor	AVDD18_CVBS	NC
CVBS_VREF	A	,	CVBS reference voltage filter cap	AVDD18_CVBS	NC
AVDD18_CVBS	Р	-	1.8 V Analog power supply for CVBS_OUT	-	To 1.8V
номі тх					
HDMITX_0P	АО	-	HDMI TMDS data0 positive output	NC	NC
HDMITX_0N	АО	-	HDMI TMDS data0 negative output	NC	NC
HDMITX_1P	АО	-	HDMI TMDS data1 positive output	NC	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
HDMITX_1N	AO	-	HDMI TMDS data1 negative output	NC	NC
HDMITX_2P	AO	-	HDMI TMDS data2 positive output	NC	NC
HDMITX_2N	AO	-	HDMI TMDS data2 negative output	NC	NC
HDMITX_CKP	AO	-	HDMI TMDS clock positive output	NC	NC
HDMITX_CKN	AO	-	HDMI TMDS clock negative output	NC •	NC
HDMI_REXT	А	-	HDMI output strength setting resistor	HDMI_AVDD18	NC
HDMI_CEXT	Α	-	HDMI TX external filter cap	HDMI_AVDD18	NC
AVDD18_HDMI	Р	-	Analog power supply 1.8V for HDMI	-	To 1.8V
AVDD0V8_HDMI	Р	-	Power supply 0.8V for HDMI	-	To VDD_EE
DRAM- Refer to Table 2	2-11 for fun	ctional mu	Itiplex information.		
AC_0	DO	-	DDR PHY address/command/control signal bit 0	VDDQ	NC
AC_1	DO		DDR PHY address/command/control signal bit 1	VDDQ	NC
AC_2	DO	3	DDR PHY address/command/control signal bit 2	VDDQ	NC
AC_3	DO	-	DDR PHY address/command/control signal bit 3	VDDQ	NC
AC_4	DO	-	DDR PHY address/command/control signal bit 4	VDDQ	NC
AC_5	DO	-	DDR PHY address/command/control signal bit 5	VDDQ	NC
AC_6	DO	-	DDR PHY address/command/control signal bit 6	VDDQ	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
AC_7	DO	-	DDR PHY address/command/control signal bit 7	VDDQ	NC
AC_8	DO	-	DDR PHY address/command/control signal bit 8	VDDQ	NC
AC_9	DO	-	DDR PHY address/command/control signal bit 9	VDDQ	NC
AC_10	DO	-	DDR PHY address/command/control signal bit 10	VDDQ	NC
AC_11	DO	-	DDR PHY address/command/control signal bit 11	VDDQ	NC
AC_12	DO	-	DDR PHY address/command/control signal bit 12	VDDQ	NC
AC_13	DO	-	DDR PHY address/command/control signal bit 13	VDDQ	NC
AC_14	DO	-	DDR PHY address/command/control signal bit 14	VDDQ	NC
AC_15	DO	7	DDR PHY address/command/control signal bit 15	VDDQ	NC
AC_16	DO		DDR PHY address/command/control signal bit 16	VDDQ	NC
AC_17	DO	-	DDR PHY address/command/control signal bit 17	VDDQ	NC
AC_18	DO	-	DDR PHY address/command/control signal bit 18	VDDQ	NC
AC_20	DO	-	DDR PHY address/command/control signal bit 20	VDDQ	NC
AC_21	DO	-	DDR PHY address/command/control signal bit 21	VDDQ	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
AC_22	DO	-	DDR PHY address/command/control signal bit 22	VDDQ	NC
AC_23	DO	-	DDR PHY address/command/control signal bit 23	VDDQ	NC
AC_24	DO	-	DDR PHY address/command/control signal bit 24	VDDQ	NC
AC_25	DO	-	DDR PHY address/command/control signal bit 25	VDDQ	NC
AC_26	DO	-	DDR PHY address/command/control signal bit 26	VDDQ	NC
AC_28	DO	-	DDR PHY address/command/control signal bit 28	VDDQ	NC
AC_29	DO	-	DDR PHY address/command/control signal bit 29	VDDQ	NC
AC_30	DO	-	DDR PHY address/command/control signal bit 30	VDDQ	NC
AC_31	DO	7	DDR PHY address/command/control signal bit 31	VDDQ	NC
AC_32	DO		DDR PHY address/command/control signal bit 32	VDDQ	NC
AC_33	DO	-	DDR PHY address/command/control signal bit 33	VDDQ	NC
AC_34	DO	-	DDR PHY address/command/control signal bit 34	VDDQ	NC
AC_35	DO	-	DDR PHY address/command/control signal bit 35	VDDQ	NC
AC_36	DO	-	DDR PHY address/command/control signal bit 36	VDDQ	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
AC_37	DO	-	DDR PHY address/command/control signal bit 37	VDDQ	NC
AC_38	DO	-	DDR PHY address/command/control signal bit 38	VDDQ	NC
DDR_RSTn	DO	-	DDR3/DDR4/LPDDR4 RSTn	VDDQ	NC
DDR_DQ0	DIO	-	DRAM data bus bit 0	VDDQ	To DRAM
DDR_DQ1	DIO	-	DRAM data bus bit 1	VDDQ	To DRAM
DDR_DQ2	DIO	-	DRAM data bus bit 2	VDDQ	To DRAM
DDR_DQ3	DIO	-	DRAM data bus bit 3	VDDQ	To DRAM
DDR_DQ4	DIO	-	DRAM data bus bit 4	VDDQ	To DRAM
DDR_DQ5	DIO	-	DRAM data bus bit 5	VDDQ	To DRAM
DDR_DQ6	DIO	-	DRAM data bus bit 6	VDDQ	To DRAM
DDR_DQ7	DIO	-	DRAM data bus bit 7	VDDQ	To DRAM
DDR_DQ8	DIO	-	DRAM data bus bit 8	VDDQ	To DRAM
DDR_DQ9	DIO	-	DRAM data bus bit 9	VDDQ	To DRAM
DDR_DQ10	DIO	-	DRAM data bus bit 10	VDDQ	To DRAM
DDR_DQ11	DIO	-	DRAM data bus bit 11	VDDQ	To DRAM
DDR_DQ12	DIO		DRAM data bus bit 12	VDDQ	To DRAM
DDR_DQ13	DIO		DRAM data bus bit 13	VDDQ	To DRAM
DDR_DQ14	DIO	-	DRAM data bus bit 14	VDDQ	To DRAM
DDR_DQ15	DIO	-	DRAM data bus bit 15	VDDQ	To DRAM
DDR_DQ16	DIO	-	DRAM data bus bit 16	VDDQ	NC
DDR_DQ17	DIO	-	DRAM data bus bit 17	VDDQ	NC
DDR_DQ18	DIO	-	DRAM data bus bit 18	VDDQ	NC
DDR_DQ19	DIO	-	DRAM data bus bit 19	VDDQ	NC
DDR_DQ20	DIO	-	DRAM data bus bit 20	VDDQ	NC
DDR_DQ21	DIO	-	DRAM data bus bit 21	VDDQ	NC
DDR_DQ22	DIO	-	DRAM data bus bit 22	VDDQ	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
DDR_DQ23	DIO	-	DRAM data bus bit 23	VDDQ	NC
DDR_DQ24	DIO	-	DRAM data bus bit 24	VDDQ	NC
DDR_DQ25	DIO	-	DRAM data bus bit 25	VDDQ	NC
DDR_DQ26	DIO	-	DRAM data bus bit 26	VDDQ	NC
DDR_DQ27	DIO	-	DRAM data bus bit 27	VDDQ	NC
DDR_DQ28	DIO	-	DRAM data bus bit 28	VDDQ	NC
DDR_DQ29	DIO	-	DRAM data bus bit 29	VDDQ	NC
DDR_DQ30	DIO	-	DRAM data bus bit 30	VDDQ	NC
DDR_DQ31	DIO	-	DRAM data bus bit 31	VDDQ	NC
DDR_DQM0	DIO	-	DRAM data mask 0	VDDQ	To DRAM
DDR_DQM1	DIO	-	DRAM data mask 1	VDDQ	To DRAM
DDR_DQM2	DIO	-	DRAM data mask 2	VDDQ	NC
DDR_DQM3	DIO	-	DRAM data mask 3	VDDQ	NC
DDR_DQSP0	DIO	-	DRAM data strobe 0	VDDQ	To DRAM
DDR_DQSN0	DIO	-	DRAM data strobe 0 complementary	VDDQ	To DRAM
DDR_DQSP1	DIO	-	DRAM data strobe 1	VDDQ	To DRAM
DDR_DQSN1	DIO		DRAM data strobe 1 complementary	VDDQ	To DRAM
DDR_DQSP2	DIO	-	DRAM data strobe 2	VDDQ	NC
DDR_DQSN2	DIO	-	DRAM data strobe 2 complementary	VDDQ	NC
DDR_DQSP3	DIO	-	DRAM data strobe 3	VDDQ	NC
DDR_DQSN3	DIO	-	DRAM data strobe 3 complementary	VDDQ	NC
PZQ	А	-	DRAM reference pin for ZQ calibration, to GND by 240ohm.	VDDQ	To GND by 240ohm
PVREF	А	-	DRAM reference voltage	VDDQ	To GND by capacitor
AVDD_DDRPLL	Р		Analog power supply for DDRPLL	-	To DDR VDDQ

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused					
USB	USB									
USBHOST_A_DP	AIO	-	USB 2.0 Port A positive data signal (Host only)	AVDD33_USB	NC					
USBHOST_A_DM	AIO	-	USB 2.0 Port A negative data signal (Host only)	AVDD33_USB	NC					
USBOTG_B_DP	AIO	-	USB 2.0 Port B positive data signal (OTG)	AVDD33_USB	NC					
USBOTG_B_DM	AIO	-	USB 2.0 Port B negative data signal (OTG)	AVDD33_USB	NC					
USBOTG_B_ID	AIO	-	USB OTG mini-receptacle identifier (Internal 12.8KΩ pull-up resistor to AVDD18)	AVDD18_USB	NC					
USBOTG_B_VBUS	AIO	-	USB OTG cable power detection	AVDD18_USB	NC					
USB_TXRTUNE	AIO	-	USB 2.0 Port A B host output strength setting resistor	AVDD18_USB	NC					
AVDD33_USB	Р	-	3.3V Power supply for USB	-	To 3.3V					
AVDD18_USB	Р	-	1.8V Power supply for USB	-	To 1.8V					
Ethernet										
ENET_ATP	AIO	-	Ethernet PHY analog test pin	AVDD18_NET	NC					
ENET_EXTRES	A		Ethernet PHY external resistor connection	AVDD18_NET	NC					
ENET_RXN	AIO		Ethernet PHY receive date negative input	AVDD18_NET	NC					
ENET_RXP	AIO	-	Ethernet PHY receive data positive input	AVDD18_NET	NC					
ENET_TXN	AIO	-	Ethernet PHY transmit data negative output	AVDD18_NET	NC					
ENET_TXP	AIO	-	Ethernet PHY transmit data positive output	AVDD18_NET	NC					
AVDD18_ENET	AP	-	Analog 1.8V power supply for Ethernet module	-	To 1.8V					
DSI										
DSI_CEXT	А	-	MIPI DSI external filter capacitor	AVDD18_MIPIDSI	NC					
DSI_CLKN	АО	-	MIPI DSI clock negative output	AVDD18_MIPIDSI	NC					

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
DSI_CLKP	AO	-	MIPI DSI clock positive output	AVDD18_MIPIDSI	NC
DSI_D0N	AIO	-	MIPI DSI data0 negative output or Bidirectional in LP mode	AVDD18_MIPIDSI	NC
DSI_D0P	AIO	-	MIPI DSI data0 positive output or Bidirectional in LP mode	AVDD18_MIPIDSI	NC
DSI_D1N	AO	-	MIPI DSI data1 negative output	AVDD18_MIPIDSI	NC
DSI_D1P	AO	-	MIPI DSI data1 positive output	AVDD18_MIPIDSI	NC
DSI_D2N	AO	-	MIPI DSI data2 negative output	AVDD18_MIPIDSI	NC
DSI_D2P	AO	-	MIPI DSI data2 positive output	AVDD18_MIPIDSI	NC
DSI_D3N	AO	-	MIPI DSI data3 negative output	AVDD18_MIPIDSI	NC
DSI_D3P	AO	-	MIPI DSI data3 positive output	AVDD18_MIPIDSI	NC
DSI_R1K	А	-	MIPI DSI reference current setting resistor with 1K ohm	AVDD18_MIPIDSI	NC
DSI_R600	A	-0	MIPI DSI reference voltage setting resistor with 604 ohm	AVDD18_MIPIDSI	NC
AVDD18_MIPIDSI	AP	_	MIPI-DSI power supply	-	To 1.8V
CSI					
CSI_DO_N	AIO	-	MIPI CSI data 0 negative input	AVDD18_MIPICSI	NC
CSI_DO_P	AIO	-	MIPI CSI data 0 positive input	AVDD18_MIPICSI	NC
CSI_D1_N	Al	-	MIPI CSI data 1 negative input	AVDD18_MIPICSI	NC
CSI_D1_P	Al	-	MIPI CSI data 1 positive input	AVDD18_MIPICSI	NC
CSI_D2_N	AIO	-	MIPI CSI data 2 negative input	AVDD18_MIPICSI	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
CSI_D2_P	AIO	-	MIPI CSI data 2 positive input	AVDD18_MIPICSI	NC
CSI_D3_N	AI	-	MIPI CSI data 3 negative input	AVDD18_MIPICSI	NC
CSI_D3_P	AI	-	MIPI CSI data 3 positive input	AVDD18_MIPICSI	NC
CSI_CLKA_N	AI	-	MIPI CSI CLK negative input for channel A	AVDD18_MIPICSI	NC
CSI_CLKA_P	AI	-	MIPI CSI CLK positive input for channel A	AVDD18_MIPICSI	NC
CSI_CLKB_N	AI	-	MIPI CSI CLK negative input for channel B	AVDD18_MIPICSI	NC
CSI_CLKB_P	AI	-	MIPI CSI CLK positive input for channel B	AVDD18_MIPICSI	NC
AVDD18_MIPICSI	AP	-	MIPI-CSI power supply	-	To 1.8V
Audio DAC			4.0		,
LOLN	АО	-	Audio DAC line-out left channel negative signal	AVDD18_Audio	NC
LOLP	AO	-	Audio DAC line-out left channel positive signal	AVDD18_Audio	NC
LORN	AO	-	Audio DAC line-out right channel negative signal	AVDD18_Audio	NC
LORP	AO		Audio DAC line-out right channel positive signal	AVDD18_Audio	NC
REFP	Α	-	Audio DAC positive reference voltage	AVDD18_Audio	NC
VMID	A	-	Audio DAC external filter cap connection	AVDD18_Audio	NC
AVDD18_AUDIO	AP	-	Analog 1.8V for Audio DAC	-	To 1.8V
AVSS_Audio	AP	-	Analog power ground for Audio DAC	-	To VSS
PCIE					
PCIE_CLK_n	AO	-	PCIE reference clock negative signal	AVDD18_PCIE	NC
PCIE_CLK_p	АО	-	PCIE reference clock positive signal	AVDD18_PCIE	NC

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused				
PCIE_REXT	AIO	-	PCIE output strength setting resistor	AVDD18_PCIE	NC				
PCIE_RXN	AI	-	PCIE or USB3.0input negative signal AVDD18_PCIE		NC				
PCIE_RXP	Al	-	PCIE or USB3.0input positive signal AVDD18_PCIE		NC				
PCIE_TXN	AO	-	PCIE or USB3.0 output negative signal	AVDD18_PCIE	NC				
PCIE_TXP	AO	-	PCIE or USB3.0output positive signal	AVDD18_PCIE	NC				
AVDD0V8_USB_PCIE	AP	-	Analog 0.8V power supply for USB and PCIE	. 65	To VDD_EE				
AVDD18_PCIE	AP	-	Analog 1.8V power supply for PCIE		To 1.8V				
HCSL_REXT	AIO	-	PCIE reference clk output strength setting resistor	AVDD18_PCIE	NC				
AVSS_HCSL	AP	-	Analog ground for PCIE reference module clock	-	To VSS				
System Clock & PLL	System Clock & PLL								
SYS_OSCIN	AI	-	24MHz crystal oscillator input	VDD18_AO_XTAL	To XTAL				
SYS_OSCOUT	AO		24MHz crystal oscillator output	VDD18_AO_XTAL	To XTAL				
Analog Power									
AVDD18_DPLL	AP	-	Analog power of System PLL	-	To 1.8V				
AVSS_ENETPLL	AP	-	Ground of Ethernet PLL		To GND				
AVSS_AMPLL	AP	-	Ground of DDR AM_ PLL	-	To GND				
AVSS_HPLL	AP	-	Ground of HDMI PLL	-	To GND				
AVSS_PLL	AP	-	Ground of System PLL	-	To GND				
AVSS_CVBS	AP		Ground of CVBS digital- analog converter		To GND				
Digital Power									
VDDCPU_A	Р	-	Power supply for CPU (Cortex A73)	-	To VDDCPU_A				
VDDCPU_B	Р	-	Power supply for CPU (Cortex A53)	-	To VDDCPU_B				

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused		
VDDQ	Р	-	DDR IO Power supply for DDR PHY	-	To VDDQ		
VDD_DDR	Р	-	Core Power supply for DDR PHY	-	To VDD_EE		
VDD_EE	Р	-	Power supply for GPU and core logic	-	To VDD_EE		
VDD18_AO_XTAL	Р	-	1.8V Power supply for Always On Domain	-	To VDD18_AO_XTAL		
VDDAO_0V8	Р	-	0.8V power supply for AO, XTAL and M3/M4 CPU	-	To VDDAO_0V8		
VDDIO_A	Р	-	Power supply for GPIO bank A	5	NC		
VDDIO_BOOT	Р		Power supply for GPIO bank BOOT		NC		
VDDIO_C	Р		Power supply for GPIO bank C	-	NC		
VDDIO_H	Р		Power supply for GPIO bank H	-	NC		
VDDIO_X	Р		Power supply for GPIO bank	-	NC		
VDDIO_Z	Р	-	Power supply for GPIO bank	-	NC		
Digital Ground							
DVSS	P		Digital power ground	-	To GND		

Abbreviations:

- DI = Digital input pin
- DO = Digital output pin
- DIO = Digital input/output pin
- OD3.3V = 3.3V input tolerant open drain (OD) output pin, need external pull up
- OD5V = 5V input tolerant open drain (OD) output pin, need external pull up
- A = Analog setting or filtering pin
- AI = Analog input pin
- AO = Analog output pin
- AIO = Analog input/output pin
- P = Power pin
- AP = Analog power pin
- NC = No connection
- UP = Pull-Up

- DOWN = Pull-down
- Z = High-Z

2.4 Pin Multiplexing Tables

Multiple usage pins are used to conserve pin consumption for different features. The A311D devices can be used in many different applications but each application will not utilize all the on chip features. As a result, some of the features share the same pin. Most of the multiple usage pins can be used as a GPIO pin as well.

Table 2-3. GPIOZ_x Multi-Function Pin

Pin Name	Fun1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOZ _0	ETH_MDIO	BT656_A_ VS	ISO7816_C LK	I2C_EE_M0 _SDA	PWM_B	-	-
GPIOZ _1	ETH_MDC	BT656_A_ HS	ISO7816_D ATA	I2C_EE_M0 _SCL	PWM_C	-	
GPIOZ _2	ETH_RGMII_R X_CLK	PWM_D	TSIN_B_VA LID	TDMC_D0	SDCARD_D 0	TDMC_DIN0	PDM_DIN0
GPIOZ _3	ETH_RX_DV	BT656_A_ CLK	TSIN_B_SO P	TDMC_D1	SDCARD_D 1	TDMC_DIN1	PDM_DIN1
GPIOZ _4	ETH_RXD0	BT656_A_ DIN0	TSIN_B_DI N0	TDMC_D2	SDCARD_D	TDMC_DIN2	PDM_DIN2
GPIOZ _5	ETH_RXD1	BT656_A_ DIN1	TSIN_B_CL K	TDMC_D3	SDCARD_D	TDMC_DIN3	PDM_DIN3
GPIOZ _6	ETH_RXD2_R GMII	BT656_A_ DIN2	TSIN_B_FAI	TDMC_FS	SDCARD_C LK	TDMC_SLV_ FS	PDM_DCLK
GPIOZ _7	ETH_RXD3_R GMII	BT656_A_ DIN3	TSIN_B_DI N1	TDMC_SCL K	SDCARD_C MD	TDMC_SLV_ SCLK	I2C_EE_M0 _SDA
GPIOZ _8	ETH_RGMII_T X_CLK	BT656_A_ DIN4	TSIN_B_DI N2	MCLK_1	-	-	I2C_EE_M0 _SCL
GPIOZ _9	ETH_TXEN	BT656_A_ DIN5	TSIN_B_DI N3	-	-	-	-
GPIOZ _10	ETH_TXD0	BT656_A_ DIN6	TSIN_B_DI N4	-	IR_REMOTE _OUT		-
GPIOZ _11	ETH_TXD1	BT656_A_ DIN7	TSIN_B_DI N5	-	-		-
GPIOZ _12	ETH_TXD2_R GMII	-	TSIN_B_DI N6	-	PWM_F		-
GPIOZ _13	ETH_TXD3_R GMII	CLK12_24	TSIN_B_DI N7	-	PWM_B		GEN_CLK_ EE
GPIOZ _14	ETH_LINK_LE D	-	I2C_EE_M2 _SDA	-	-	-	-
GPIOZ _15	ETH_ACT_LE D	-	I2C_EE_M2 _SCL	-	-	-	-

Table 2-4. GPIOA_x Multi-Function Pin

Pin Name	Func1	Func2	Func3
GPIOA_0	MCLK_0	-	-
GPIOA_1	TDMB_SCLK	TDMB_SLV_SCLK	-
GPIOA_2	TDMB_FS	TDMB_SLV_FS	-
GPIOA_3	TDMB_D0	TDMB_DIN0	-
GPIOA_4	TDMB_D1	TDMB_DIN1	PWM_D
GPIOA_5	PDM_DIN3	TDMB_DIN2	TDMB_D2
GPIOA_6	PDM_DIN2	TDMB_DIN3	TDMB_D3
GPIOA_7	PDM_DCLK	TDMC_D3	TDMC_DIN3
GPIOA_8	PDM_DIN0	TDMC_D2	TDMC_DIN2
GPIOA_9	PDM_DIN1	TDMC_D1	TDMC_DIN1
GPIOA_10	SPDIF_IN	TDMC_D0	TDMC_DIN0
GPIOA_11	SPDIF_OUT	MCLK_1	PWM_F
GPIOA_12	SPDIF_IN	TDMC_SCLK	TDMC_SLV_SCLK
GPIOA_13	SPDIF_OUT	TDMC_FS	TDMC_SLV_FS
GPIOA_14	WORLD_SYNC	I2C_EE_M3_SDA	-
GPIOA_15	IR_REMOTE_IN	I2C_EE_M3_SCL	-
C			

Table 2-5. BOOT_x Multi-Function Pin

Pin Name	Func1	Func2	Func3
BOOT_0	EMMC_D0	-	-
BOOT_1	EMMC_D1	-	-
BOOT_2	EMMC_D2	-	-
BOOT_3	EMMC_D3	-	NOR_HOLD
BOOT_4	EMMC_D4	-	NOR_D
BOOT_5	EMMC_D5	-	NOR_Q
BOOT_6	EMMC_D6	-	NOR_C
BOOT_7	EMMC_D7	-	NOR_WP
BOOT_8	EMMC_CLK	NAND_WEN_CLK)-
BOOT_9	-	NAND_ALE	-
BOOT_10	EMMC_CMD	NAND_CLE	-
BOOT_11	-	NAND_CE0	-
BOOT_12	-	NAND_REN_WR	-
BOOT_13	EMMC_NAND_DQS	_	-
BOOT_14	-	NAND_RB0	NOR_CS
BOOT_15	-	NAND_CE1	-

Table 2-6. GPIOC_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5
GPIOC_0	SDCARD_D0	JTAG_B_TDO	-	PDM_DIN0	SPI_A_MOSI
GPIOC_1	SDCARD_D1	JTAG_B_TDI	-	PDM_DIN1	SPI_A_MISO
GPIOC_2	SDCARD_D2	UART_AO_A_RX	-	PDM_DIN2	SPI_A_SS0
GPIOC_3	SDCARD_D3	UART_AO_A_TX	-	PDM_DIN3	SPI_A_SCLK
GPIOC_4	SDCARD_CLK	JTAG_B_CLK	-	PDM_DCLK	PWM_C
GPIOC_5	SDCARD_CMD	JTAG_B_TMS	I2C_EE_M0_SDA	-	ISO7816_CLK
GPIOC_6	-	-	I2C_EE_M0_SCL	-	ISO7816_DATA
GPIOC_7	PCIECK_REQN	WORLD_SYNC	-	-	-

Table 2-7. GPIOX_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOX_ 0	SDIO_D0	PDM_DIN0	TSIN_A_DI N0	-	-	-	-
GPIOX_ 1	SDIO_D1	PDM_DIN1	TSIN_A_S OP	-	-	-	-
GPIOX_ 2	SDIO_D2	PDM_DIN2	TSIN_A_VA LID	-	-	-	-
GPIOX_	SDIO_D3	PDM_DIN3	TSIN_A_CL K	PWM_D	-	-	-
GPIOX_ 4	SDIO_CLK	PDM_DCLK	-	-	-	·, O'	-
GPIOX_ 5	SDIO_CMD	MCLK_1	-	PWM_C		9	-
GPIOX_ 6	PWM_A	UART_EE_B_ TX	-	PWM_D	.1	-	-
GPIOX_ 7	PWM_F	UART_EE_B_ RX	-	PWM_B	-	-	-
GPIOX_ 8	TDMA_D1	TDMA_DIN1	TSIN_B_S OP	SPI_A_M OSI	PWM_C	ISO7816_C LK	-
GPIOX_ 9	TDMA_D0	TDMA_DIN0	TSIN_B_VA	SPI_A_MI SO	-	ISO7816_D ATA	-
GPIOX_ 10	TDMA_FS	TDMA_SLV_F S	TSIN_B_DI N0	SPI_A_SS 0	I2C_EE_M1_ SDA	-	-
GPIOX_ 11	TDMA_SCLK	TDMA_SLV_S CLK	TSIN_B_CL K	SPI_A_S CLK	I2C_EE_M1_ SCL	-	-
GPIOX_ 12	UART_EE_A_ TX		-	-	-	-	-
GPIOX_ 13	UART_EE_A_ RX	-	-	-	-	-	-
GPIOX_ 14	UART_EE_A_ CTS	-	-	-	-	-	-
GPIOX_ 15	UART_EE_A_ RTS	-	-	-	-	-	-
GPIOX_ 16	PWM_E	-	-	-	-	-	-
GPIOX_ 17	I2C_EE_M2_S DA	-	-	-	-	-	-
GPIOX_ 18	I2C_EE_M2_S CL	-	-	-	-	-	-

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOX_ 19	PWM_B	WORLD_SYN C	-	-	-	-	GEN_CLK _EE

Table 2-8. GPIOH_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6
GPIOH_ 0	HDMITX_SDA	I2C_EE_M3_SD A	-	-	-	•
GPIOH_ 1	HDMITX_SCL	I2C_EE_M3_SC L	-	-	- 40	
GPIOH_ 2	HDMITX_HPD_I N	I2C_EE_M1_SD A	-	-	-6	-
GPIOH_ 3	-	I2C_EE_M1_SC L	-	AO_CEC_A	AO_CEC_B	-
GPIOH_ 4	SPDIF_OUT	UART_EE_C_RT S	SPI_B_MO SI	- (-	-
GPIOH_ 5	SPDIF_IN	UART_EE_C_CT S	SPI_B_MIS O	PWM_F	TDMB_D3	TDMB_DIN
GPIOH_ 6	ISO7816_CLK	UART_EE_C_RX	SPI_B_SS0	I2C_EE_M1_SD A	IR_REMOTE_OU T	-
GPIOH_ 7	ISO7816_DATA	UART_EE_C_TX	SPI_B_SCL K	I2C_EE_M1_SC L	PWM_B	-
GPIOH_ 8	-	- (2)	-	-	-	-

Table 2-9. GPIOAO_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOAO _0	UART_AO_A_ TX	-	-	-	-	-	•
GPIOAO _1	UART_AO_A_ RX	-	-	-	-	-	•
GPIOAO _2	I2C_AO_M0_ SCL	UART_AO_B_ TX	I2C_AO_S0_ SCL	-	-	-	-
GPIOAO _3	I2C_AO_M0_ SDA	UART_AO_B_ RX	I2C_AO_S0_ SDA	-	-	-	
GPIOAO _4	IR_REMOTE_ OUT	CLK_32K_IN	PWMAO_C	PWMAO_C _HIZ	TDMB_D0	TDMB_DIN0	-

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
GPIOAO _5	IR_REMOTE_ IN	-	PWMAO_D	-	-	-	-
GPIOAO _6	JTAG_A_CLK	-	PWMAO_C	TSIN_A_SO P	TDMB_D2	TDMB_DIN2	-
GPIOAO _7	JTAG_A_TMS	-	-	TSIN_A_DI N0	TDMB_FS	TDMB_SLV_F S	-
GPIOAO _8	JTAG_A_TDI	-	UART_AO_B _TX	TSIN_A_CL K	TDMB_SC LK	TDMB_SLV_S CLK	-
GPIOAO _9	JTAG_A_TDO	IR_REMOTE_ OUT	UART_AO_B _RX	TSIN_A_VA LID	MCLK_0	-	-
GPIOAO _10	AO_CEC_A	AO_CEC_B	PWMAO_D	SPDIF_OUT	TDMB_D1	TDMB_DIN1	CLK12_ 24
GPIOAO _11	-	PWMAO_A_H IZ	PWMAO_A	GEN_CLK_ EE	GEN_CLK _AO	-	-

Table 2-10. GPIOE_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4
GPIOE_0	UART_AO_A_CTS	UART_AO_B_CTS	PWMAO_B	I2C_AO_M0_SCL
GPIOE_1	UART_AO_A_RTS	UART_AO_B_RTS	PWMAO_D	I2C_AO_M0_SDA
GPIOE_2	CLK12_24	CLK25_EE	-	-

Table 2-11 DDR AC Multi-Function Pin

Pin Name	LPDDR3	LPDDR4	DDR3	DDR4
AC_0	CKEA0	CKEA0	CKE0	CKE0
AC_1	CKEA1	CKEA1	CKE1	CKE1
AC_2	CSA0	CSA0	CS_N0	CS_N0
AC_3	CSA1	CSA1	NC	NC
AC_4	CLKA_T	CLKA_T	CAS_N	A6
AC_5	CLKA_C	CLKA_C	BA2	A8
AC_6	NC	NC	A7	A2
AC_7	NC	NC	A5	A11
AC_8	CAA2	CAA2	A10	A10
AC_9	CAA7	CAA3	WE_N	BG1

Pin Name	LPDDR3	LPDDR4	DDR3	DDR4
AC_10	CAA1	CAA1	A0	А3
AC_11	CAA4	CAA0	A2	A12
AC_12	CAA5	CAA5	A9	A0
AC_13	CAA6	CAA4	A13	A4
AC_14	CAA0	NC	A14	A13
AC_15	CAA3	NC	A11	A9
AC_16	CAA9	NC	CLK0_T	CLK0_T
AC_17	CAA8	NC	CLK0_C	CLK0_C
AC_18	ODTA	NC	NC	NC
AC_20	NC	CKEB0	CLK1_T	CLK1_T
AC_21	NC	CKEB1	CLK1_C	CLK1_C
AC_22	NC	CSB1	NC	NC
AC_23	NC	CSB0	NC	NC
AC_24	NC	CLKB_T	A6	A5
AC_25	NC	CLKB_C	A4	BA1
AC_26	NC	NC	A1	A1
AC_28	NC	CAB1	A8	A7
AC_29	NC	CAB3	BA1	RAS_N
AC_30	NC	CAB5	A15	ACT_N
AC_31	NC	CAB2	RAS_N	WE_N
AC_32	NC	CAB4	NC	NC
AC_33	NC	CAB0	A12	CAS_N
AC_34	NC	NC	A3	BA0
AC_35	NC	NC	BA0	BG0
AC_36	NC	NC	ODT0	ODT0
AC_37	NC	NC	ODT1	ODT1
AC_38	NC	NC	CS_N1	CS_N1
DDR_RSTn	NC	RESET_N	RESET_N	RESET_N
PVREF	PVREF	PVREF	PVREF	PVREF

Pin Name	LPDDR3	LPDDR4	DDR3	DDR4
PZQ	PZQ	PZQ	PZQ	PZQ

Table 2-12. PCIE IO Multi-Function Pin

Pin Name	Func1	Func2
PCIE_RXN	PCIE_RXN	USB3.0_RXN
PCIE_RXP	PCIE_RXP	USB3.0_RXP
PCIE_TXN	PCIE_TXN	USB3.0_TXN
PCIE_TXP	PCIE_TXP	USB3.0_TXP

2.5 Signal Descriptions

Table 2-13. SD Card Interface Signal Description

Signal Name	Туре	Description
SDCARD_D0	DIO	SD Card data bus bit 0 signal
SDCARD_D1	DIO	SD Card data bus bit 1 signal
SDCARD_D2	DIO	SD Card data bus bit 2 signal
SDCARD_D3	DIO	SD Card data bus bit 3 signal
SDCARD_CLK	DO	SD Card clock signal
SDCARD_CMD	DIO	SD Card command signal

Table 2-14. SDIO Interface Signal Description

Signal Name	Туре	Description
SDIO_D0	DIO	SDIO data bus bit 0 signal
SDIO_D1	DIO	SDIO data bus bit 1 signal
SDIO_D2	DIO	SDIO data bus bit 2 signal
SDIO_D3	DIO	SDIO data bus bit 3 signal
SDIO_CLK	DO	SDIO clock signal
SDIO_CMD	DIO	SDIO command signal

Table 2-15. Clock Interface Signal Description

Signal Name	Туре	Description
CLK_32K_IN	DI	32KHz clock input
CLK12_24	DO	12MHz/24MHZ clock output
CLK25_EE	DO	25MHz clock output

Table 2-16. UART Interface Signal Description

Signal Name	Туре	Description
UART_AO_A _ TX	DO	UART Port A data output in AO domain
UART_AO_A_RX	DI	UART Port A data input in AO domain
UART_AO_ A_ CTS	DI	UART Port A Clear To Send Signal in AO domain
UART_AO_A _ RTS	DO	UART Port A Ready To Send Signal in AO domain
UART_AO_B _ TX	DO	UART Port B data output in AO domain
UART_AO_B _ RX	DI	UART Port B data input in AO domain
UART_AO_B _ CTS	DI	UART Port B Clear To Send Signal in AO domain
UART_AO_B _ RTS	DO	UART Port B Ready To Send Signal in AO domain
UART_EE_A _TX	DO	UART Port A data output in EE domain
UART_EE _A_RX	DI	UART Port A data input in EE domain
UART_EE _A_CTS	DI	UART Port A Clear To Send Signal in EE domain
UART_EE _A_RTS	DO	UART Port A Ready To Send Signal in EE domain
UART_EE _B_TX	DO	UART Port B data output in EE domain
UART_EE _B_RX	DI	UART Port B data input in EE domain
UART_EE _B_CTS	DI	UART Port B Clear To Send Signal in EE domain
UART_EE _B_RTS	DO	UART Port B Ready To Send Signal in EE domain
UART_EE _C_TX	DO	UART Port C data output in EE domain
UART_EE _C_RX	DI	UART Port C data input in EE domain
UART_EE _C_CTS	DI	UART Port C Clear To Send Signal in EE domain
UART_EE _C_RTS	DO	UART Port C Ready To Send Signal in EE domain

Table 2-17. ISO7816 Interface Signal Description

Signal Name	Туре	Description
ISO7816_DATA	DIO	ISO7816 data signal
ISO7816_CLK	DO	ISO7816 clock signal

Table 2-18. TS In Interface Signal Description

Signal Name	Туре	Description
-------------	------	-------------

	•
DI	Serial TS input port A data
DI	TS input port A clock
DI	TS input port A start of stream signal
DI	TS input port A date valid signal
DI	Serial/Parallel TS input port B data 0
DI	Parallel TS input port B data 1
DI	Parallel TS input port B data 2
DI	Parallel TS input port B data 3
DI	Parallel TS input port B data 4
DI	Parallel TS input port B data 5
DI	Parallel TS input port B data 6
DI	Parallel TS input port B data 7
DI	TS input port B fail signal
DI	TS input port B clock
DI	TS input port B start of stream signal
DI	TS input port B date valid signal
	DI D

Table 2-19. PWM Interface Signal Description

Signal Name	Туре	Description
PWM_A	DO	PWM channel A output signal
PWM_B	DO	PWM channel B output signal
PWM_C	DO	PWM channel C output signal
PWM_D	DO	PWM channel D output signal
PWM_E	DO	PWM channel E output signal
PWM_F	DO	PWM channel F output signal
PWMAO_A / PWMAO_A_HIZ	DO	PWM A output signal in Always On domain, or extended HiZ function of PWMAO_A
PWMAO_B	DO	PWM B output signal in Always On domain
PWMAO_C / PWMAO_C_HIZ	DO	PWM C output signal in Always On domain, or extended HiZ function of PWMAO_C
PWMAO_D	DO	PWM D output signal in Always On domain

Table 2-20. I2C Interface Signal Description

Signal Name	Туре	Description
I2C_AO_ M0_ SCL	DO	I2C bus port 0 clock output, Master mode, in AO domain
I2C_AO _M0_SDA	DIO	I2C bus port 0 data input/output, Master mode, in AO domain
I2C_AO_SO_SCL	DI	I2C bus port 0 clock input, Slave mode, in AO domain
I2C_AO_S0_SDA	DIO	I2C bus port 0 data input/output, Slave mode, in AO domain
I2C_EE_M0_SCL	DO	I2C bus port 0 clock output, Master mode, in EE domain
I2C_EE _M0_SDA	DIO	I2C bus port 0 data input/output, Master mode, in EE domain
I2C_EE_M1_SCL	DO	I2C bus port 1 clock output, Master mode, in EE domain
I2C_EE _M1_SDA	DIO	I2C bus port 1 data input/output, Master mode, in EE domain
I2C_EE_M2_SCL	DO	I2C bus port 2 clock output, Master mode, in EE domain
I2C_EE _M2_SDA	DIO	I2C bus port 2 data input/output, Master mode, in EE domain
I2C_EE_M3_SCL	DO	I2C bus port 3 clock output, Master mode, in EE domain
I2C_EE_M3_SDA	DIO	I2C bus port 3 data input/output, Master mode, in EE domain

Table 2-21. eMMC Interface Signal Description

Signal Name	Туре	Description
EMMC_D0	DIO	eMMC/NAND data bus bit 0 signal
EMMC_D1	DIO	eMMC/NAND data bus bit 1 signal
EMMC_D2	DIO	eMMC/NAND data bus bit 2 signal
EMMC_D3	DIO	eMMC/NAND data bus bit 3 signal
EMMC_D4	DIO	eMMC/NAND data bus bit 4 signal
EMMC_D5	DIO	eMMC/NAND data bus bit 5 signal
EMMC_D6	DIO	eMMC/NAND data bus bit 6 signal
EMMC_D7	DIO	eMMC/NAND data bus bit 7 signal
EMMC_CLK	DO	eMMC clock signal
EMMC_CMD	DIO	eMMC command signal

Signal Name	Туре	Description
EMMC_NAND_DQS	DIO	eMMC/NAND data strobe

Table 2-22. NAND Signal Description

Signal Name	Туре	Description
NAND_RB0	DI	NAND ready/busy
NAND_ALE	DO	NAND address latch enable
NAND_CE0	DO	NAND chip enable 0
NAND_CE1	DO	NAND chip enable 1
NAND_CLE	DO	NAND command latch enable
NAND_REN_WR	DO	NAND read enable or write/read
NAND_WEN_CLK	DO	NAND write enable or clock

Table 2-23. NOR Interface Signal Description

Signal Name	Туре	Description
NOR_CS	DO	SPI NOR chip select
NOR_C	DO	SPI NOR Serial Clock
NOR_D	DIO	SPI NOR 1bit mode Output, 2/4 bit mode data I/O 0
NOR_Q	DIO	SPI NOR 1bit mode Input, 2/4 bit mode data I/O 1
NOR_WP	DIO	SPI NOR Write protection output, 4 bit mode data I/O 2
NOR_HOLD	DIO	SPI bus hold output, 4 bit mode data I/O 3

Table 2-24. HDMI Interface Signal Description

Signal Name	Туре	Description
HDMITX_SDA	DIO	HDMI TX DDC_I2C interface data signal
HDMITX_SCL	DO	HDMI TX DDC_I2C interface clock signal
HDMITX_HPD_IN	DI	HDMI TX hot-plug in signal input
AO_CEC_A	DIO	Customer Electronics Control signal in AO domain
AO_CEC_B	DIO	2nd pin of Customer Electronics Control signal in AO domain

Table 2-25. SPDIF Interface Signal Description

Signal Name	Туре	Description
SPDIF_IN	DI	SPDIF input signal
SPDIF_OUT	DO	SPDIF output signal

Table 2-26. PCIE Interface Signal Description

Signal Name	Туре	Description
PCIECK_REQN	DI	PCIE clock request input

Table 2-27. SPI Interface Signal Description

Signal Name	Туре	Description
SPI_A_MOSI	DIO	SPI master output, slave input A
SPI_A_MISO	DIO	SPI master input, slave output A
SPI_A_SCLK	DIO	SPI clock A
SPI_A_SS0	DIO	SPI slave select 0 A
SPI_B_MOSI	DIO	SPI master output, slave input B
SPI_B_MISO	DIO	SPI master input, slave output B
SPI_B_SCLK	DIO	SPI clock B
SPI_B_SS0	DIO	SPI slave select 0 B

Table 2-28. Remote Interface Signal Description

Signal Name	Туре	Description
IR_REMOTE_IN	DI	IR remote control input
IR_REMOTE_OUT	DO	IR remote control output

Table 2-29. Time Division Multiplexing Signal Description

Signal Name	Туре	Description
MCLK_0	DO	Master clock output 0, for I2S master mode
MCLK_1	DO	Master clock output 1, for I2S master mode
TDMA_DIN0	DI	Data input 0 of TDM port A

Signal Name	Туре	Description
TDMA_DIN1	DI	Data input 1 of TDM port A
TDMA_D0	DIO	Data input/output 0 of TDM port A
TDMA_D1	DIO	Data input/output 1 of TDM port A
TDMA_SCLK	DO	Bit clock output of TDM port A
TDMA_FS	DO	Frame sync output of TDM port A (Word clock of I2S)
TDMA_SLV_SCLK	DI	Bit clock input of TDM port A
TDMA_SLV_FS	DI	Frame sync input of TDM port A (Word clock of I2S)
TDMB_DIN0	DI	Data input 0 of TDM port B
TDMB_DIN1	DI	Data input 1 of TDM port B
TDMB_DIN2	DI	Data input 2 of TDM port B
TDMB_DIN3	DI	Data input 3 of TDM port B
TDMB_D0	DIO	Data input/output 0 of TDM port B
TDMB_D1	DIO	Data input/output 1 of TDM port B
TDMB_D2	DIO	Data input/output 2 of TDM port B
TDMB_D3	DIO	Data input/output 3 of TDM port B
TDMB_SCLK	DO	Bit clock output of TDM port B
TDMB_FS	DO	Frame sync output of TDM port B (Word clock of I2S)
TDMB_SLV_SCLK	DI	Bit clock input of TDM port B
TDMB_SLV_FS	DI	Frame sync input of TDM port B (Word clock of I2S)
TDMC_DIN0	DI	Data input 0 of TDM port C
TDMC_DIN1	DI	Data input 1 of TDM port C
TDMC_DIN2	DI	Data input 2 of TDM port C
TDMC_DIN3	DI	Data input 3 of TDM port C
TDMC_D0	DIO	Data input/output 0 of TDM port C
TDMC_D1	DIO	Data input/output 1 of TDM port C
TDMC_D2	DIO	Data input/output 2 of TDM port C
TDMC_D3	DIO	Data input/output 3 of TDM port C
TDMC_SCLK	DO	Bit clock output of TDM port C
TDMC_FS	DO	Frame sync output of TDM port C (Word clock of I2S)

Signal Name	Туре	Description
TDMC_SLV_SCLK	DI	Bit clock input of TDM port C
TDMC_SLV_FS	DI	Frame sync input of TDM port C (Word clock of I2S)

Table 2-30. PDM Signal Description

Signal Name	Туре	Description
PDM_DIN0	DI	PDM input data 0 signal
PDM_DIN1	DI	PDM input data 1 signal
PDM_DIN2	DI	PDM input data 2 signal
PDM_DIN3	DI	PDM input data 3 signal
PDM_DCLK	DO	PDM output clock signal

Table 2-31. JTAG Interface Signal Description

Signal Name	Туре	Description
JTAG_A_TDO	DO	JTAG data output channel A
JTAG_A _TDI	DI	JTAG data input channel A
JTAG_A_TMS	DI	JTAG Test mode select input channel A
JTAG_A_CLK	DI	JTAG Test clock input channel A
JTAG_B_TDO	DO	JTAG data output channel B
JTAG_B _TDI	DI	JTAG data input channel B
JTAG_B_TMS	DI	JTAG Test mode select input channel B
JTAG_B _CLK	DI	JTAG Test clock input channel B

Table 2-32. BT656 Interface Signal Description

Signal Name	Туре	Description
BT656_A_DIN0	DI	BT656 input data bus bit 0
BT656_A_DIN1	DI	BT656 input data bus bit 1
BT656_A_DIN2	DI	BT656 input data bus bit 2
BT656_A_DIN3	DI	BT656 input data bus bit 3
BT656_A_DIN4	DI	BT656 input data bus bit 4
BT656_A_DIN5	DI	BT656 input data bus bit 5

BT656_A_DIN6	DI	BT656 input data bus bit 6
BT656_A_DIN7	DI	BT656 input data bus bit 7
BT656_A_CLK	DI	BT656 input Clock
BT656_A_HS	DI	BT656 input HSYNC Signal
BT656_A_VS	DI	BT656 input VSYNC Signal

Table 2-33. Ethernet Interface Signal Description

Signal Name	Туре	Description
ETH_LINK_LED	DO	Ethernet link LED indicator
ETH_ACT_LED	DO	Ethernet active LED indicator
ETH_RGMII_RX_CLK	DI	Ethernet RGMII interface receive clock input
ETH_RGMII_TX_CLK	DO	Ethernet RGMII transmit clock
ETH_TX_EN	DO	Ethernet RMII/RGMII Interface transmit enable
ETH_TXD3	DO	Ethernet RGMII interface transmit data 3
ETH_TXD2	DO	Ethernet RGMII interface transmit data 2
ETH_TXD1	DO	Ethernet RMII/RGMII interface transmit data 1
ETH_TXD0	DO	Ethernet RMII/RGMII interface transmit data 0
ETH_RX_DV	DI	Ethernet RMII/RGMII interface receive data valid signal
ETH_RXD3	DI	Ethernet RGMII interface receive data 3
ETH_RXD2	DI	Ethernet RGMII interface receive data 2
ETH_RXD1	DI	Ethernet RMII/RGMII interface receive data 1
ETH_RXD0	DI	Ethernet RMII/RGMII interface receive data 0
ETH_MDIO	DIO	Ethernet SMI interface management data input/output
ETH_MDC	DO	Ethernet SMI interface management clock

Table 2-34. Other Signal Description

Signal Name	Туре	Description
WORLD_SYNC	DI	World clock sync input, to sync clock of multi devices
GEN_CLK_EE	DO	General clock output for EE domain clock, for debug
GEN_CLK_AO	DO	General clock output for AO domain clock, for debug

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

The table below gives the absolute maximum ratings. Exposure to stresses beyond those listed in this table may result in permanent device damage, unreliability or both.

Characteristic	Value	Unit
VDDCPU_A/B Supply Voltage	1.1	V
VDD_EE Supply Voltage	1.0	V
VDDQ Supply Voltage	1.7	V
AVDD_DDRPLL	1.98	٧
1.8V Supply Voltage	1.98	٧
3.3V Supply Voltage	3.63	٧
Input voltage, V _I	-0.3 ~ VDDIO+0.3	٧
Junction Temperature	125	°C

3.2 Recommended Operating Conditions

Note:

All voltage specs listed in this part are applicable at the pins of the chip, not the output of the DC-DC.

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDDCPU_A/B	Voltage for Cortex A73/A53 CPU	0.68 ¹	-	1.03 ²	V
VDD_EE and other 0.8V domain	Voltage for GPU & core logic	0.77	0.8	0.9 ²	V
VDDQ	DDR3/DDR3L/DDR4/LPDDR/LPDDR3/LPDDR4 IO Supply Voltage	1.05	-	1.6	V
AVDD18	1.8V AVDD for HDMI, USB, SARADC, PCIE, CVBS, AUDIO, MIPI_DSI, MIPI_CSI and ETHERNET phy.	1.71	1.80	1.89	V
VDD18_AO_XTAL	1.8V VDD for XTAL, and IOVREF	1.71	1.80	1.89	V
AVDD_DDRPLL	Analog power supply for DDRPLL module	1.05	-	1.89	V
AVDD33	3.3V AVDD for USB	3.15	3.3	3.45	V
VDDIO	LV mode	1.71	1.80	1.89	V
VDDIO	HV mode	3.03	3.3	3.45	V
TJ	Operating Junction Temperature	0	-	105 ⁴	°C
TA	Operating Ambient Temperature	0	-	70	°C

Note:

- Minimal VDDCPU_A/B voltage is for sleep mode while system runs at very low speed. Higher clock will need higher voltage. Considering the power supply may have 3% deviation, the minimal voltage in actual application should not be set to lower than min spec plus 0.02V.
- 2) Likewise, maximum VDDCPU_A/B voltage in actual application should not be higher than max spec minus 0.03V. Voltage of VDDCPU_A/B will affect CPU speed. Use lower voltage when CPU runs on lower speed to save power. Recommend to use +/-1.5% or higher precision DCDC.
- 3) GPIO cannot work if VDDIO voltage is out of the spec of LV / HV mode. GPIO output at HV mode will be weaker & max operating speed will be lower if VDDIO are design to 3.0V. Do not design VDDIO to lower than 3.0V in HV mode, recommend to use +/-1.5% or higher precision DCDC to supply power for VDDIO, actual voltage supplies to VDDIO (HV mode) should not be lower than 2.9V.
- 4) For operating temperature, good heat sink may be needed to guarantee Tj < max spec.

3.3 Ripple Voltage Specification

Power	Max Ripple	Unit	Test state
VDDCPU_A	40	+/-mV	Run APK StabilityTest
VDDCPU_B	40	+/-mV	Run APK StabilityTest
VDD_EE and other 0.8V domain	40	+/-mV	Run APK Basemark ES 2.0 Taiji
DDR3 VDDQ and AVDD_DDRPLL	60	+/-mV	Kernel boot
DDR3L VDDQ and AVDD_DDRPLL	60	+/-mV	Kernel boot
LPDDR3 VDDQ and AVDD_DDRPLL	40	+/-mV	Kernel boot
DDR4 VDDQ and AVDD_DDRPLL	40	+/-mV	Kernel boot
LPDDR4 VDDQ and AVDD_DDRPLL	40	+/-mV	Kernel boot
AVDD18	30	+/-mV	Kernel boot
VDD18_AO_XTAL	30	+/-mV	Kernel boot
AVDD33	50	+/-mV	WIFI SCAN
VDDIO LV	60	+/-mV	Kernel boot
VDDIO HV	60	+/-mV	WIFI SCAN

Note:

Ripple specification is only a reference spec, customer should run stress/performance/reliability test (high/low temperature test , damp and hot test , function test , etc...) on their product to confirm the system stability

3.4 Thermal Resistance

Jedec 2P2S board 101.5mm*114.5mm, natural convection, ambient temperature 25°C.

Symbol	Parameter		Air Flow (m/s)
Θја	Package junction-to- ambiance thermal resistance in nature convection	15.0521	0
Θjb	Package junction-to-pcb thermal resistance in nature convection	6.26571	0
Ѳјс	Package junction-to-case thermal resistance in nature convection	5.57433	0

Note:

- 1.) Due to the thinness of the SOC, DRAM or capacitors placed close to SOC may prevent heatsink touching SOC top side. A special convex shape heatsink is recommended.
- 2.) These measurement were conducted on a JEDEC defined 2S2P system. For more information, check below JEDEC standards:
- JESD51-2A: Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
- JESD51-8: Integrated Circuit Thermal Test Method Environmental Conditions Junction-to-Board
- JESD51-12: Guidelines for Reporting and Using Electronic Package Thermal Information
- 3.) m/s = meters per second

3.5 DC Electrical Characteristics

3.5.1 Normal GPIO Specifications (For DIO)

Symbol	Parameter	Min.	Тур.	Max.	Unit
ViH(VDDIO=3.3V) ³	High-level input voltage	IOVREF+0.37	-	VDDIO+0.3	V
ViL(VDDIO=3.3V) ³	Low-level input voltage	-0.3	-	IOVREF-0.23	V
ViH(VDDIO=1.8V) ³	High-level input voltage	IOVREF/2+0.3	-	VDDIO+0.3	V
V _{iL(VDDIO=1.8V)} ³	Low-level input voltage	-0.3	-	IOVREF/2-0.3	V
R _{PU}	Built-in pull up resistor	50K	60K	70K	ohm
R _{PD}	Built-in pull down resistor	50K⁵	60K	130K ⁶	ohm
IoL/IoH(DS=0)1,4	GPIO driving capability	0.5	-	-	mA
IoL/IoH(DS=1)1	GPIO driving capability	2.5	-	-	mA
IoL/IoH(DS=2)1	GPIO driving capability	3	-	-	mA
IoL/IoH(DS=3) ¹	GPIO driving capability	42	-	-	mA
VOH	Output high level with IoL/IoH loading	VDDIO-0.5	-	-	V
VOL	Output low level with IoL/IoH loading	-	-	0.4	V

Note:

- With Minimal IoL/IoH driving capability loading, IO is garanteed to meet Vol < 0.4V or VOH > (VDDIO-0.5V) spec.
- 2. Maximal GPIO loading is 6mA for application such as driving LED, which does not care about Vol/Voh spec. Please set DS=3 for such application.

- 3. VDD18 AO supplies power to IOVREF.
- 4. Do not use this setting, it's too weak for most applications.
- 5. Test condition, GPIO pin voltage close to 0 V.
- 6. Test condition, GPIO pin voltage close to VDDIO(3.3 V).

3.5.2 Open Drain GPIO Specifications (For DIO_OD)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{iH(} OD5V)	High-level input voltage	1.5		5.5	V
V _{iL(} OD5V)	Low-level input voltage	-0.3		0.8	V
V _{iH(} OD3.3V)	High-level input voltage	1.5		3.6	V
V _{iL(} OD3.3V)	Low-level input voltage	-0.3	•	0.8	V
R _{PU/PD}	No built-in pull up/down resistor on OD IO	-	-		ohm
lo	OD IO driving low capability	4		6	mA
VOL	Output low level with min lo loading		10	0.4	V

Note:

- With Minimal IoL driving capability loading, IO is guaranteed to meet Vol<0.4V spec
- Maximal GPIO loading is 6mA for application such as driving LED, which does not care about Vol spec.
- 3. The Vil/Vih of OD PAD is irrelevant to VDDIO voltage

3.5.3 DDR3/DDR3L/DDR4/LPDDR3/LPDDR4 SDRAM Specifications

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDDQ	IO supply voltage(DDR3)	1.425	1.50	1.57	V
VDDQ	IO supply voltage(DDR3L)	1.283	1.35	1.45	>
VDDQ	IO supply voltage(DDR4)	1.14	1.20	1.30	>
VDDQ	IO supply voltage(LPDDR3)	1.14	1.2	1.30	>
VDDQ	IO supply voltage(LPDDR4)	1.06	1.1	1.17	V
Vref	Input reference supply voltage	0.49*VDDQ	0.5*VDDQ	0.51*VDDQ	V

Note: The minimal VDDQ voltage in sleep mode is defined by memory.

DC specifications - DDR3/DDR3L mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	DC input voltage high	Vref + 0.100		VDDQ	V
VIL	DC input voltage low	VSSQ		Vref-0.100	V
VOH	DC output logic high	0.8*VDDQ			V
VOL	DC output logic low			0.2*VDDQ	V
RTT	Input termination resistance to VDDQ/2	100 54 36	120 60 40	140 66 44	ohm

DC specifications - DDR4 mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VdIVW_total	Rx Mask voltage-p-p total			136	mv
VOH	DC output logic high	0.9*VDDQ			V
VOL	DC output logic low			0.1*VDDQ	V
	Input termination resistance to VDDQ	200	240	280	
		100	120	140	
		67	80	93	
RTT		50	60	70	ohm
		42	48	56	
		34	40	46	
		28	34	40	

DC Specifications - LPDDR3 mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	DC input voltage high	Vref + 0.100		VDDQ	V
VIL	DC input voltage low	VSSQ		Vref-0.100	V
VOH	DC output logic high	0.9*VDDQ			V
VOL	DC output logic low			0.1*VDDQ	V
RTT	Input termination resistance to VDDQ	100 200	120 240	140 280	ohm

DC Specifications – LPDDR4 mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VOH	DC output logic high	0.9*VDDQ	-	-	V
VOL	DC output logic low	-	-	0.1*VDDQ	V
	Input termination resistance to VDDQ	216	240	264	
		108	120	132	
RTT		72	80	88	ahm
		54	60	66	ohm
		43.2	48	52.8	
		36	40	44	

3.6 Recommended Oscillator Electrical Characteristics

A311D requires the 24MHz oscillator for generating the main clock source.

Symbol Description Min. Unit Notes Тур. Max. F_{o} Nominal Frequency 24 MHz -30 +30 At 25 ℃ ppm Frequency Tolerance $\Delta f/f_o$ -50 +50 At -20~85 °C ppm C_L 7.5 12 Load Capacitance 12.5 pF **ESR** Equivalent Series Resistance 100 oHm

Table 3-1. 24MHz Oscillator Specification

Note:

- 1. 10ppm Tolerance is preferred if 24MHz XTAL is also driving WIFI module.
- For user external clock source, Please connect input clock output to SYS_OSCIN, let SYS_OSCOUT_floating.
- 3. The threshold of Xin inverter is around 0.9V (Xin range: -0.3V to +2.1V). Therefore, Following suggestion for input clock.
- Suggestion 1: Without DC blocking capacitor, use a higher Vpp output TCXO. The high voltage should be higher than 1.35V (VSWING >1.35V, 0V to >1.35V).
- Suggestion 2: With DC blocking capacitor, re-bias the middle voltage at 0.9V, VSWING >2*0.45V;

3.7 Timing Information

3.7.1 I2C Timing Specification

The I2C master interface Fast/Standard mode timing specifications are shown below.

tsu;DAT 70 % 70 % SDA tHD;DAT t_{VD;DAT} tHIGH 70 % 70 % 70 % SCL 30 % 30 % cont. 9th clock 1 / fsci 1st clock cycle tBUF • • • SDA t_{VD:ACK} tsu:sta t_{HD};STA 70 % • • • SCL 30 % 9th clock 002aac938 $V_{IL} = 0.3V_{DD}$

Figure 3-1. I2C Interface Timing Diagram, FS mode

 $V_{IH} = 0.7V_{DD}$

55

Table 3-2. I2C Interface Timing Specification, SF mode

Complete	symbol Parameter		Standard-mode		Fast-mode	
Symbol	raiametei	Min.	Max	Min	Max	Unit
tR	Rise time of SDA and SCL signals	-	1000	-	300	ns
tF	Fall time of SDA and SCL signals	-	300	1	300	ns
fSCL	SCL clock frequency	-	100	-	400	KHz
tLOW	LOW period of the SCL clock	4.7	-	1.3	-	μs
tHIGH	HIGH period of the SCL clock	4.0	-	0.6	-	μs
tSu;STA	Setup time for START	4.7	- 6	0.6	-	μs
tSu;DAT	Setup time for SDA	250	100	100	-	ns
tSu;STO	Setup time for STOP	4.0	-	0.6	-	μs
tHd;STA	Hold time for START	4.0	-	0.6	-	μs
tHd;DAT	Hold time for SDA	0	3.45	0	0.9	μs
tBuf	Bus free time between stop and start	4.7	-	1.3	-	μs

Note:

Driving strength of OD pin is not adjustable.

3.7.2 EMMC/SDIO Timing Specification

Timing specification for EMMC and SD are shown as below.

VCCQ

CLOCK
OUTPUT

VSS.

VSS.

VALIB
WINDOW

VJH.

VSS.

VSS.

VALIB
WINDOW

VJH.

Figure 3-2. EMMC HS200 Data Output Timing

Table 3-3 HS200 Timing Specification

Symbol	Parameter	Min	Max	Unit
tPERIOD	Cycle time data transfer mode	5	ı	ns
tISU	output set-up time	1.4	-	ns
tlH	output hold time	0.8	-	ns

Figure 3-3. EMMC HS200 Data Input Timing

Table 3-4 HS200 Timing Specification

Symbol	Parameter	Min	Max	Unit
--------	-----------	-----	-----	------

tPH	Device output momentary phase from CLK input to CMD or DAT line output. Does not include a longterm temperature drift.	0	2	UI
ΔΤΡΗ	Delay variation due to temperature change after tuning. Total allowable shift of output valid window (TVW) from last system Tuning procedure ΔTPH is 2600ps for ΔT from -25 °C to 125 °C during operation.	-350(ΔT=- 20deg.C)	1550(ΔT=90deg.C)	ps
tVW	Valid Data Simple window	0.575	-	UI

Figure 3-4. SDIO(SDR104) Clock Signal Timing Diagram

Table 3-5 SDIO(SDR104) Clock Timing Specification

Symbol	Parameter (SDR104 Mode)	Min	Max	Unit
tCLK	clock period Data Transfer Mode(PP)	4.8	-	ns
Duty	Clock Duty	30	70	%
tCR	clock rise time	-	0.96	ns
tCF	clock fall time	-	0.96	ns

Figure 3-5. SDIO(SDR104) Output Timing Diagram

Table 3-6 SDIO(SDR104) Timing Specification

Inputs CMD, DAT (referenced to CLK)					
Symbol	Parameter	Min	Max	Unit	
tIS	input set-up time	1.4	-	ns	
tIH	input hold time	0.8	-	ns	

Note:SD card interface uses SDIO protocol

3.7.3 NAND Timing Specification

Nand timing specifications are shown as below.

Figure 3-6 Async Waveform for Command/Address/Data Output Timing

Figure 3-7 Async Waveform for Address Output Cycle

59

CE#

| CE# | CEA |

Figure 3-8 Async Waveform for Sequential Data Read Cycle(After Read)-EOD Mode

Table 3-7 Nand Timing Specifications

Symbol	Parameter(Asynchronous) (mode 5)	Min	Max	Unit
tCLS	CLE setup time	10	-	ns
tCLH	CLE hold time	5	-	ns
tALS	ALE setup	10	-	ns
tALH	ALE hold	5	-	ns
tDS	Data setup time	7	-	ns
tDH	Data hold time	5	-	ns
tWC	WE# cycle time	20	-	ns
tWP	WE# pulse width	10	-	ns
tWH	WE# high lold time	7	-	ns
tREA	RE# access time	-	16	ns
tOH	Data output hold time	15	-	ns
tRLOH	RE#-low to data hold time (EDO)	5	-	ns
tRP	RE# pulse width	10	-	ns
tREH	RE# high hold time	7	-	ns
tRC	RE# cycle time	20	-	ns

3.7.4 SPICC Timing Specification

Figure 3-9. SPICC Timing Diagram

Table 3-8. SPICC Master Timing Specification

Symbol	Description	Min.	Max.	Unit
fCLK	Clock Frequency	1	80	MHz
TCH	Clock high time	5		ns
TCL	Clock low time	5		ns
TLS1	CS fall to First Rising CLK Edge	50		ns
TSET	Data input Setup Time	4		ns
THOL	Data input Hold Time	4		ns
TLH	Minimum idling time between transfers(minimum ss high time)	5		ns

3.7.5 SPIFC Timing Specification

Figure 3-10. SPIFC Serial Input Timing Diagram

Figure 3-11. SPIFC Out Timing Diagram

Table 3-9. SPIFC Master Timing Specification

Symbol	Parameter(Clock 41.7MHz)	Min	Max	Unit
fRSCLK	Clock Frequency for READ instructions		50	Mhz
tCH	Clock High Time	8		ns
tCL	Clock Low Time	8		ns
tCLCH	Clock Rise Time (peak to peak)	0.1		V/ns
tCHCL	Clock Fall Time (peak to peak)	0.1		V/ns
tSLCH	CS# Active Setup Time (relative to SCLK)	4	-	ns
tCHSH	CS# Active Hold Time (relative to SCLK)	4	-	ns
tDVCH	Data In Setup Time	2	-	ns
tCHDX	Data In Hold Time	3	-	ns
tSHQZ	Output Disable Time (relative to CS#)		8	ns
tCLQV	Clock Low to Output Valid		6	ns
tCLQX	Output Hold Time	1		ns

3.7.6 Ethernet Timing Specification

Figure 3-12. Management Data Timing Diagram

Table 3-10. Management Data Timing Specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
tMDC	MDC clock Period	400	500	0	ns	From MAC
tMDCSU	Setup time to rising edge of MDC	10	1		ns	
tMDCHD	Hold time to rising edge of MDC	10			ns	

Figure 3-13. RMII Timing Diagram

Table 3-11. RMII Timing Specification

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tREFCLK	RMII clock period		20		ns	50MHz from PHY
tOSU	TXD & TX_EN setup time to rising edge of RMII clock	1.8	10		ns	To PHY
tOHD	TXD & TX_EN hold time to rising edge of RMII clock	1.4	10		ns	To PHY
tISU	RXD & DV setup time to rising edge of RMII clock	1.0	10		ns	From PHY
tIHD	RXD & DV hold time to rising edge of RMII clock	1.0	10		ns	From PHY

Figure 3-14. RGMII Receive Timing Diagram

Table 3-12. RGMII Receive Timing Specification

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tRX_CLK	RGMII RX_CLK clock period	4	8		ns	125MHz from PHY
tSETUP	RXD[3:0] & RX_DV setup time (PHY internal delay enabled)	1.2			ns	From PHY
tHOLD	RXD[3:0] & RX_DV hold time (PHY internal delay enabled)	1.2			ns	From PHY
tSKEW	RXD[3:0] & RX_DV skew between these 5 signals (PHY internal delay disabled)	-0.5		0.5	ns	From PHY

When PHY internal delay is enabled, check setup/hold timing.

When PHY internal delay is disabled, check signal skew.

Figure 3-15. RGMII Transmit Timing Diagram

		U	•			
Symbol	Description	Min.	Тур.	Max	Unit	Notes
tTX_CLK	RGMII TX_CLK clock period		8		ns	125MHz to PHY
tOSU	TXD & TX_EN setup time to rising edge of RGMII clock (no clock delay added)	1			ns	From PHY
1050	TXD & TX_EN setup time to rising edge of RGMII clock (clock delay added)	-0.9			ns	From PHY
tOI ID	RXD & DV hold time to rising edge of RGMII clock (no clock delay added)	0.8			ns	From PHY
tOHD	RXD & DV hold time to rising edge of RGMII	2.7			ns	From PHY

Table 3-13. RGMII Transmit Timing Specification

3.7.7 Audio Timing Specification

There are two modes for the audio I2S/TDM interface: Master mode and Slave mode, as shown below.

SCLK (output)

WS/Dout (output)

Din (input)

Figure 3-16 Output Data of SCLK Rising Edge TDM/I2S Timing, Master Mode

Note: Input data was sampled on SCLK rising/falling edge via software setting.

Figure 3-17 Output Data of SCLK Falling Edge TDM/I2S Timing, Master Mode

Note: Input data was sampled on SCLK rising/falling edge via software setting.

Table 3-14 Audio I2S/TDM Timing Specification, Transmitter, Master Mode

Transmitter (master mode)									
Symbol	Parameter	Min	Тур	Max	Unit				
Т	Clock period	10			ns				
tHC	High level of SCLK	0.35			Т				
tLC	Low level of SCLK	0.35			Т				
tRC	Edge time of SCLK			0.15	Т				
tdly	Delay from SCLK to WS	-2	3	5					
Tsu din	Setup time of Din	4		O	ns				
Thd din	Hold time of Din	4	25		ns				

Note: Measure point refer to parameter Vih, ViL of Normal GPIO specifications.

Figure 3-18 Output Data of SCLK Rising Edge TDM/I2S Timing, Slave Mode

Note: Input data was sampled on SCLK rising/falling edge via software setting.

Figure 3-19 Output Data of SCLK Falling Edge TDM/I2S Timing, Slave Mode

Note: Input data was sampled on SCLK rising/falling edge via software setting.

Table 3-15 Audio I2S/TDM Timing Specification, Transmitter, Slave Mode

Transmitter (slave mode)								
Symbol	Parameter	Min	Тур	Max	unit			
T(out)	Clock period	40			ns			
T(in)	Clock period	10			ns			
tHC	High level of SCLK	0.35			Т			
tLC	Low level of SCLK	0.35			Т			
tRC	Edge time of SCLK			0.15	Т			
tsu din	Setup time of WS/Din	4			ns			
thd din	Hold time of WS/Din	4			ns			
tdly	Delay between SCLK and Dout	2	12	15	ns			

Note: Measure point refer to parameter Vih, ViL of Normal GPIO specifications.

3.7.8 PDM Timing Specification

Figure 3-20 PDM Timing Diagram

Table 3-16 PDM Timing Specification

Parameter	Symbol	Min.	Тур.	Max.	Units.
PDM clock period	tDCLK	200			ns
PDM clock duty cycle	tHIGH/tLOW	48%		52%	tDCLK
PDM Data setup time	tSETUP	20			ns
PDM Data hold time	tHOLD	20			ns
Sys clock period	tSYSCLK	5	7.5		ns

Note:

- 1.Default PDM_SYS_CLOCK=133MHz
- 2.For Sample position, please refer to PDM register PDM_CHAN_CTRL,PDM_CHAN_CTRL1

3.7.9 UART Timing Specification

Figure 3-21 Figure UART Timing Diagram

Table 3-17 UART Timing Specification

Parameter	Symbole	Min.	Max.	Units.
Delay time ,CTS high before midpoint of stop bit	tTXSTOP	-	0.5	Bit Periods
Delay time ,midpoint of stop bit to RTS hgih	tSRTS	-	0.5	Bit Periods

3.8 Power Consumption

Note: Value listed here is estimated typical max value tested. Enough margin in circuit needs to be reserved.

Symbol	Maximum Current	Note
VDDCPU_A	6 A	-
VDDCPU_B	1.2A	
VDD_EE	4 A	-
VDD_DDR	400 mA	
VDDQ	600 mA	Note: Peak SOC + DRAM VDDQ current is up to 1.5A with 2 ranks DDR3.

Symbol	Typical current	Maximum current	Note
VDD18_AO_XTAL	1 mA	-	EFUSE: Max 100 mA when programing EFUSE.
VDDAO_0V8	22 mA	-	-
AVDD0V8_USB_PCIE	58 mA	-	60
AVDD0V8_HDMI	23 mA	-	At 6 Gbps mode
AVDD_DDRPLL	6 mA	- • 70	
AVDD18_ENET	40 mA	-	-
AVDD18_AUDIO	4 mA	6.6 mA	-
AVDD18_PCIE	45mA	9	At 5 Gbps mode
AVDD18_HDMI	3.3 mA	-	-
AVDD18_SARADC	1.2 mA		
AVDD18_CVBS		48 mA	
AVDD18_MIPIDSI	40 mA		
AVDD18_MIPICSI	40 mA	-	
AVDD18_USB	13.8 mA	17 mA	Per channel
AVDD33_USB	7 mA	-	Per channel
AVDD18_DPLL	35 mA		
VDDIO	-	-	Note

Note:

VDDIO=1.8V, DS=3, output 200MHz clock:

- 1) IO pad itself consumes about 1.4mA.
- 2) Driving a 550hm trace with length of 50mm and width of 0.1mm will consumes about 2.8mA additional current (low impedance trace consumes more power)
- 3) Base #2, add 5pF cap will consumes about 1.8mA additional current, total about 6mA
- 4) When VDDIO=3.3V, GPIO consumes about 70% higher current, about 13mA
- 5) Internal & external pull down resistor consumes additional current

3.9 Storage and Baking Conditions

The processor is moisture-sensitive device of MSL level 3, defined by IPC/JEDEC J-STD-020. Please follow the storage and backing guidelines.

- 1) Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH).
- 2) After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - a) Mounted with 168 hours of factory conditions ≤30°C/60% RH, or
 - b) Stored per J-STD-033
- 3) Devices require bake, before mounting, if Humidity Indicator Card reads >10%.
- 4) If baking is required, refer IPC/JEDEC J-STB-033 for baking process.

4. Power On Config

3 Boot pins are used as power on config (POC) pins, to set the booting sequence.

POC setting is latched at the rising edge of reset signal.

3 POC pins are all pull high internal, CPU will try to boot from nand/eMMC first, if fails than try to boot from SD CARD, still fails then try to boot from USB (PC).

External 4.7K ohm pull down resistors can be used to change the POC setting. The resistors should be placed on right location, avoid stubs on high speed signals.

A311D's Power On Configuration is listed as following:

Table 4-1. Power On Configuration Pin Table

POC	Boot Pin	Name	Pull low	Pull high	
POC0	Boot [4]	SPI NAND First	SPI NAND boot first	Default sequence	
POC1	Boot [5]	USB First	USB boot first	Default sequence	
POC2	Boot [6]	SPI NOR First	SPI NOR first	Default sequence	

Booting Sequence Diagram

No.	POC_0 (SPI_NAND)	POC_1 (USB_BOOT)	POC_2 (SPI_NOR, eMMC/NAND)	1st Boot device	2nd Boot device	3rd Boot device	4th Boot device
1	0	0	0	USB (short delay)	SPI_NOR	NAND/eMMC	SD Card
2	0	0	1	USB (short delay)	NAND/eMMC	SD Card	-
3	0	1 0	0	SPI_NOR	NAND/eMMC	SD Card	USB
4	0	1	1	SPI_NAND	NAND/eMMC	USB	-
5	1	0	0	USB (short delay)	SPI_NOR	NAND/eMMC	SD Card
6	1	0	1	USB (short delay)	NAND/eMMC	SD Card	-
7	1	1	0	SPI_NOR	NAND/eMMC	SD Card	USB
8	1	1	1	NAND/eMMC	SD Card	USB	-

Note:

If GPIOC is not work as SDIO port, please do not pull CARD_DET(GPIOC_6) low when system booting up, to avoid romcode trying to boot from SD CARD.

5. Recommended Power on/down Sequence

Example power on sequence:

Note:

- 1) All test values refer to 80% of typical power voltage.
- 2) VDDAO_3.3V & VCC3.3V should ramp up > 0.5ms later than VDD_EE.
- All power sources should get stable within 20ms (except for DDR_VDDQ).
- 4) No sequence requirement between VDD18_AO and VDD_EE. No sequence requirement between VDDCPU_A & VDDCPU_B & DDR_VDDQ and other power source.
- 5) VDDIO_AO18 should ramps up earlier or at the same time with VDDAO_3.3V & VCC3.3V, VDDAO_3.3V & VCC3.3V should never be 2.5V higher than VDD18_AO.
- RESET in should keep low for at least 40ms after power up (except DDR VDDQ).

Please refer to reference schematics.

Example of power down sequence:

Power OFF Sequence

Note:

A reset IC should monitor VDDIO3.3V, output lower (lower than 1.5V) before other power rails turning off. There is no power off sequence between other power rails.

6. Mechanical Dimensions

The A311D processor comes in a 52x46 ball matrix FCBGA RoHS package. The mechanical dimensions are given in millimeters as the following figures.

Figure 6-1 Dimensions (2X) 0.15 C 13.500 Α 0.600 0.400 REF B PAD CORNE **TOP VIEW** SIDE VIEW **BOTTOM VIEW** DIMENSION MINIMUM NOMINAL MAXIMUM 0.926 1.006 1.086 Α1 0.230 0.270 0.310 ○ 0.10 C A2 0.686 0.736 0.786 0.300 0.350 0.400 NUMBER OF BALL 454

7. Ordering Guide

Please check the following table for special features of each part number.

Part Number	Special Feature
A311D	-
A311D-B	Dolby Digital, Dolby Digital Plus
A311D-H	Dolby Digital, Dolby Digital Plus, DTS,
A311D-J	Dolby Digital, Dolby Digital Plus, Dolby Vision
A311D-K	Dolby Digital, Dolby Digital Plus, DTS, Dolby Vision
Confidential for Mesic	