PROBLEM SET #3

- (1) Is $\mathbb{Z}[\sqrt[3]{37}]$ a regular ring? What about $\mathbb{Z}[\sqrt[3]{43}]$?
- (2) Let R be an A-algebra, $f(x_1,\ldots,x_n)\in A[x_1,\ldots,x_n]$ a polynomial with coefficients in A, and $r_1,\ldots,r_n,s_1,\ldots,s_n\in R.$

 - (a) Prove the chain rule for the universal derivation: $d_{R|A}(f(r_1,\ldots,r_n)) = \sum_i \frac{df}{dx_i}(r_1,\ldots,r_n)dr_i$. (b) Prove the Taylor expansion formula: $f(r_1+s_1,\ldots,r_n+s_n) = \sum_{\alpha \in \mathbb{N}^n} \frac{1}{|\alpha|!} \frac{d^{|\alpha|}f}{dx_1^{\alpha_1}\cdots dx_n^{\alpha_n}}(r_1,\ldots,r_n)s_1^{\alpha_1}\cdots s_n^{\alpha_n}$.
- (3) Facts about *p*-bases/ *p*-degree:
 - (a) Let $K \subseteq L$ be an extension of fields of positive characteristic. Let T be a p-basis for L over K. Show that for any e, the set $T^{[< p^e]}$ is a basis for L over $K(L^{p^e})$.
 - (b) Let $K \subseteq L$ be a finite extension of fields of positive characteristic. Show that $p \deg(K) = 1$ $p \deg(L)$.
 - (c) Let $L = K(x_1, \ldots, x_m)$ be a field of rational functions in m variables over K. Show that $p \deg(L) = p \deg(K) + m.$
- (4) Let k be a field of positive characteristic with a finite p-basis, R be a finitely generated k-algebra, and $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals of R. Show that

$$\dim R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}} = p \deg(\kappa(\mathfrak{p})) - p \deg(\kappa(\mathfrak{q})).$$

- (5) Let K be a field.
 - (a) Let R = K[x] be a polynomial ring in one variable and $M = R^{\oplus \mathbb{N}}$ be a free R-module on a countable basis. Compute the (x)-adic completion of M.
 - (b) Let $R = K[x_1, x_2, \dots]$ be a polynomial ring in countably many variables and $\mathfrak{m} = (x_1, x_2, \dots)$. Describe the elements of $\hat{R}^{\mathfrak{m}}$. Find an element in the maximal ideal of $\hat{R}^{\mathfrak{m}}$ that is not an element of $\mathfrak{m}\hat{R}^{\mathfrak{m}}$.
- (6) Let $K \subseteq L$ be an extension of fields.
 - (a) Suppose that L is a finitely generated over K as fields. Show that L is formally unramified over K if and only if the extension is separable algebraic.

1

(b) Show that the finite generation hypothesis is strictly necessary in part (1).