

SPRING SCHOOL 2021 Data Science Team 6

Truong Hoang Xuan
Vignesh Somasundaram
Shankar Lokeshwara
Danil Degtarenko
Ilya Kharebashvili
Ivanna Nahuliak
Misha Navudylo

Vision

A central database for Car Sport Racing over the world

Goal

Source: https://www.visolve.com

- 1. Create Database for real-time data taken from racing cars
- 2. Create Database for history data about car racing
- 3. API for media and press produce racing news
- 4. A platform where fans can find all information about car racing
- 5. An analytical system based on the current data

Requirement

1. Create Database for real-time data taken from

racing cars

 Database is optimized for time series including

- sensors data from racing cars
- the weather at the place where the racing is taking place
- Visualize real-time data on dashboards

Source: https://support.minitab.com

Requirement

- 2. Create Database for history data about car racing
- NonSQL Database is a combination of different data source
 - optimize for images, videos, news
- Relational database
 - Biography about the pilots, tournaments
 - Live update for racing events are taking place

Source: https://www.differencebetween.info

Requirement

3. API for media and press produce racing news

 Provide an API for privileged client get data and produce car racing news

4. A platform where fans can find all information about car racing

 An mobile app and website for fans can find schedule of racing event all over the world

Source: https://teks.co.in

Source: http://scr.templatemonster.com

Requirement

- 5. An analytical system based on the current data
- Using machine learning and data analysis to predict, classify data.
 These information should provide clients who want to use our data for their purpose

Source: https://www.symmetrymagazine.org

Requirements Elicitation

From stakeholder analysis we lay down our proposals below:

• An interactive interface for the user to display, modify and update entries

• Real time update

- Different types of subscribers
- → Normal subscribers
- → Commercial subscribers

Scalable and integratable

Requirements Elicitation

BrandGrowd

Plausible data Analytics

Provision for data migration from different sources with accuracy

Proposed System

Network Diagram

System Architecture

Architecture

Resource Analysis

Rationale behind choosing Relational database

- Large amounts of structured data
- Information from multiple files can be linked through "keys."
- Client requirements on application requiring strong transactional functionality, data mining and complex reporting
- Data has a lot of relationships
- Predictability based on past data and report generation for the same

Cloud Based infrastructure

- Scope for future expansion, scalable and flexible
- Support from major tech firms
- Less maintenance from the owners side
- Pay as used type of resource

Based on the above factors and analysis Amazon Relational Database Service is decided as the cloud based data base four system and application.

Resource Analysis

Need for Dockerized containers

- To support continuous build, deploy, run, update of data in the databas.
- Full control on the database.
- Continuous integration and continuous delivery of data into the database
- Traffic free routing of changes into the database.
- Real-time update

Analytics - Apache Spark (Compared among, Spart, Hadoop and Flink)

- Easy-to-use APIs
- One of the best for iterative algorithms
- Being a more mature framework and superior in terms of market share and community.
- Includes a richer set of operations and a wide range of tools
- Better performance in terms of time and resources with variations in configurable parameters like clusters, number of nodes, parallelism etc
- Runs Everywhere

Adding a new Entry

Example for a homepage display for driver details table

Display the existing data

Remove entity

BrandGrown

BrandGrow

Proposal

Proposal

Pos.	Driver	AU1	AU2	HUN	GB1	GB2	SPA	BEL	ITA	RUS	BH1	BH2	ABU	Pts
1	Lewis Hamilton	5	6	2	1	7	3	3	1	1	1	2	2	231
2	Sebastian Vettel	7	2	1	6	4	2	1	3	2	2	1	7	195
3	Max Verstappen	1	10	4	2	2	1	6	2	3	4	4	1	192
4	Alex Albon	4	1	3	4	7	4	19	4	5	10	8	3	125
5	Kimi Raikkonen	10	14	5	3	3	5	4	6	4	9	3	5	110
6	Romain Grosjean	8	5	6	5	9	7	2	10	12	12	6	4	80
7	Valtteri Bottas	3	7	12	7	5	11	9	13	7	3	7	6	74
8	Charles Leclerc	2	11	15	14	6	6	12	7	6	6	5	13	66
9	Sergio Perez	11	4	7	9	11	20	7	11	8	8	10	18	35
10	Lance Stroll	14	3	14	20	20	10	18	15	9	18	15	11	19
11	George Russell	17	8	9	8	14	9	8	9	10	15	13	12	19
12	Kevin Magnussen	9	19	17	12	8	15	13	5	18	11	18	9	18
13	Daniil Kvyat	13	12	20	15	13	12	14	16	14	5	14	8	15
14	Lando Norris	20	17	8	10	10	8	10	19	11	20	20	10	12
15	Esteban Ocon	6	18	10	17	15	19	16	12	16	16	9	17	11
16	Carlos Sainz Jr	19	15	11	18	18	17	5	20	13	19	17	15	10
17	Daniel Ricciardo	16	16	16	11	17	14	20	8	20	7	12	14	10
18	Nicholas Latifi	18	9	19	19	16	16	15	14	15	14	19	20	2
19	Pierre Gasly	12	20	13	13	12	13	11	18	17	13	11	19	0
20	Antonio Giovinazzi	15	13	18	16	19	18	17	17	19	17	16	16	0

References

- J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada and J. Tourifio, "Performance evaluation of big data frameworks for large-scale data analytics," 2016 IEEE International Conference on Big Data (Big Data), 2016, pp. 424-431, doi: 10.1109/BigData.2016.7840633.
- https://python-adv-web-apps.readthedocs.io/en/latest/flask_forms.html
- https://pandas.pydata.org/pandas-docs/
- https://www.tutorialspoint.com/flask/index.htm
- https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
- https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html