Université : Abdelhamid Mehri Constantine 2

DEPARTEMENT MATH ET INFORMATIQUE

ANALYSE 1

Enseignante :Benzeghba Soumeya

Table des matières

chapitre 1. Corps des nombres reels
1) Introduction
2) QUATORZE AXIOMES de \mathbb{R} :
2-1 Les axiomes de l'arithmétique
2-2 La relation d'ordre
2-3 L'axiome de la borne supérieure
2-3-1 Borne Supérieure, partie majoré de $\mathbb R$
2-3-2 Borne Inférieure, partie minorée de $\mathbb{R} \ldots \ldots$
3) Valeur absolue d'un réel
4) Intervalles
5) Théorème d'Archimède
6) Propriétés de la borne Supérieure
7) Partie entière d'un réel
8) Densité de ${\mathbb Q}$ dans ${\mathbb R}$
9) L'ensemble $\overline{\mathbb{R}}$
Chapitre 2 : suites numériques
1) Introduction
2) Suites Réelles Monotones
3) Une suite réelle est majorée et minorée
4) Convergence, Divergence, relation de la limite
5) Propriétés des Suites Convergentes
6) Suites Adiacentes

- 7) Suite extraite (partielle).....
- 8) Suite récurrente.....

Chapitre 1 Corps des nombres réelles

1) Introduction

L'ensemble $\mathbb{N}=\{0,1,2,\ldots\}$ des entiers naturels est à base de dénombrement, \mathbb{N} muni de l'addition(+) n'est pas un groupe en effet x+2=0 n'a pas de solution dans \mathbb{N} ceci conduit à la construction d'in nouveau l'ensemble Z = $\{\ldots,-2,-1,0,1,2,\ldots\}$ des entiers relatifs qui a pour but de pouvoir résoudre toute les équations de la forme x+b = a, mais \mathbb{Z} ne donne pas la solution de l'équation 2x=1 et donc ceci amène à la construction de corps commutatif ordonné pour les deux lois internes(+,.) et la relation d'ordre \leq dans \mathbb{Q} , il n'existe pas de nombre rationnel de carré égale à 2 l'équation x^2 = 2 n'a pas de solution dans \mathbb{Q} ceci nous a amené à construire un ensemble plus grand on appelle les nombres réel .

- **2) QUATORZE AXIOMES de** \mathbb{R} : Nous supposons donné un ensemble \mathbb{R} sur lequel sont définies des opérations d'addition x, y \rightarrow x+y et de multiplication x, y \rightarrow x· y = xy et une relation d'ordre x \leq y obéissant aux quatorze axiomes suivants.
- <u>2-1 Les axiomes de l'arithmétique</u> Toutes les règles de l'arithmétique d'écoulent des neuf premiers axiomes.
- **A1)** Quels que soient x, y et $z \in \mathbb{R}$,

$$x + (y + z) = (x + y) + z$$

A2) Quels que soient x et $y \in \mathbb{R}$,

$$x + y = y + x$$

A3) Il existe un 'élément $0 \in \mathbb{R}$ tel que, pour tout $x \in \mathbb{R}$,

$$x + 0 = x$$

A4) A chaque $x \in \mathbb{R}$ correspond un 'élément $-x \in \mathbb{R}$ tel que

$$x + (-x) = 0.$$

L'associativité (axiome A1) et la commutativité (axiome A2) de l'addition font que l'on peut écrire sans équivoque la somme de trois nombres x, y et z sous la forme x + y + z et permettent l'utilisation de la notation Σ pour désigner une somme comportant n termes :

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_n$$
.

L'élément neutre pour l'addition (axiome A3) est unique car si 0' avait la même propriété que 0, on aurait 0' = 0' + 0 = 0. De même, l'inverse additif d'un nombre (axiome A4) est uniquement défini car si -x' avait la même propriété que -x, on aurait

$$-x' = (-x') + 0 = (-x') + x + (-x) = 0 + (-x) = -x.$$

Observons que -0 = (-0) + 0 = 0. Soustraire y de x, c'est additionner -y à x et l'on 'écrit

$$x + (-y) = x - y.$$

A5) Quels que soient x, y et $z \in \mathbb{R}$,

$$x(yz) = (xy)z$$

A6) Quels que soient x et y $\in \mathbb{R}$,

$$Xy = yx$$

A7) Il existe un élément $1 \neq 0 \in \mathbb{R}$ tel que, pour tout $x \in \mathbb{R}$

$$x1 = x$$

A8) A chaque $x \neq 0 \in \mathbb{R}$ correspond un élément $x^{-1} \in \mathbb{R}$ tel que

$$xx^{-1} = 1$$
.

L'associativité (axiome A5) et la commutativité (axiome A6) de la multiplication font que l'on peut écrire sans équivoque le produit de trois nombres x, y et z sous la forme xyz et permettent l'utilisation de la notation Π pour désigner un produit comportant n termes :

$$\prod_{k=0}^{n} a_k = a_0 a_1 a_2 \dots a_n$$

L'élément neutre pour la multiplication (axiome A7) est unique car si 1' avait la même propriété que 1, on aurait 1'=1' 1=1. De même, l'inverse multiplicatif d'un nombre non nul (axiome A8) est uniquement défini car si $(x^{-1})'$ avait la même propriété que x^{-1} , on aurait

$$(x^{-1})' = (x^{-1})'1 = (x^{-1})'xx^{-1} = 1x^{-1} = x^{-1}$$

Observons que

$$1^{-1} = 1^{-1}1 = 1$$

Diviser x par y \neq 0, c'est multiplier x par y^{-1} et l'on 'écrit aussi $y^{-1} = \frac{1}{y}$ pour d'designer l'inverse multiplicatif.

Les opérations d'addition et de multiplication sont reliées par l'axiome de distributivité

A9) Quels que soient x, y et $z \in R$, x (y + z) = xy + xz. La première conséquence de cet axiome est que, quel que soit $x \in \mathbb{R}$,

$$0x = 0.$$

En effet, 0x = (0 + 0) x = 0x + 0x et le résultat suit en soustrayant 0x de chaque membre de l'équation. En conséquence, 0 n'a pas d'inverse multiplicatif : si 0^{-1} existait, on aurait en effet

$$1 = 00^{-1} = 0$$

Ce qui est exclu. De plus, quel que soit $x \in \mathbb{R}$,

$$-x = (-1) x$$
.

2-2 La relation d'ordre :

A10) Quels que soient x et y $\in \mathbb{R}$, une et une seule des trois possibilités suivantes est réalisée

$$x > y$$
 ou $x = y$ ou $x < y$.

A11) Quels que soient x, y et $z \in \mathbb{R}$,

$$x > y$$
 et $y > z \Rightarrow x > z$.

A12) Quels que soient x, y et $z \in \mathbb{R}$,

$$x > y \Rightarrow x+z > y+z$$
.

A13) Quels que soient x, y et $z \in \mathbb{R}$,

$$x > y \text{ et } z > 0 \implies xz > yz.$$

Les propriétés usuelles des inégalités d'écoulent toutes de ces quatre axiomes

$$x > y$$
 est équivalent à $x-y > 0$.

Conséquence directe de l'axiome A12. x > y et z < 0 impliquent xz < yz.

En éffet

$$0 > z$$
 et $x-y > 0$ impliquent $0(x-y) > z$ $(x-y)$ (axiomeA13),

C'est-
$$a$$
-dire $0 > xz-yz$ puis $yz > xz$.

x > y et $a \ge b$ impliquent x + a > y + b. En effet, x + a > y + a et $a + y \ge b + y$ impliquent, par transitivité (axiome A11), x + a > b + y.

x > y > 0 et $a \ge b > 0$ impliquent ax > by. En effet, ax > ay et $ay \ge by$ impliquent ax > by. x > 0 implique -x < 0 et $x^{-1} > 0$.

<u>2-3 L'axiome de la borne supérieure</u> Cet axiome porte sur des ensembles de nombres réels, les parties (sous-ensembles) de \mathbb{R} . Une partie $E \subseteq \mathbb{R}$ est dite bornée supérieurement s'il existe

 $\beta \in \mathbb{R}$ tel que, pour tout $x \in E$, $x \le \beta$. Le nombre β est alors une borne supérieure ou un majorant pour E — s'il existe une borne supérieure, il en existe une infinité. Une partie $E \subseteq R$ est dite bornée inférieurement s'il existe $\alpha \in R$ tel que, pour tout $x \in E$, $\alpha \le x$. Le nombre α est alors une borne inferieure ou un minorant pour E — s'il existe une borne inferieure, il en existe une infinité. L'ensemble E est dit borné E s'il est borné à la fois supérieurement et inférieurement.

A14) Tout ensemble $\emptyset \subseteq E \subseteq \mathbb{R}$ non vide de nombres réels qui est borné supérieurement admet une plus petite borne supérieure.

De par sa dentition même, la plus petite borne supérieure b d'un ensemble E borné supérieurement est unique. C'est la borne supérieure de E. On la 'dénote par le symbole sup

b = $\sup E = \sup \{x \mid x \in E\} = \sup x \in E$. Elle est donc caractérisée par les deux relations suivantes pour tout $x \in E$, $x \le b$ et b est le plus petit des majorant

2-3-1 Borne Supérieure, partie majoré de ℝ

<u>Définition</u> on dit qu'une partie non vide E de \mathbb{R} est majorée quand il existe un réel $M \in \mathbb{R}$ tel que $\forall x \in E$, $x \le M$ un tel réel M s'appelle un majorant de E

Remarque Si M est un majorant de E, tout réel Supérieur à M est aussi un majorant de E, donc une partie majorée de R admet une infinité de majorant LE PLUS PETIT DE CES MAJORANT ON L'APPELLE BORNE SUPERIEUR SUP si supE appartienne à E on appelle max E

Exemple

- 1) E =] A, B] pour tout $x \in E$ on a $x \le B$ alors E est majoré l'ensemble des majorant $[B.; +\infty[$ (une infinité de majorant) le plus petit de ces majorant est B alors supE= B= maxE
- 2) E =] $-\infty$; A[pour tout x ϵ E on a x< A alors E est majoré l'ensemble des majorant $[A; +\infty[$

(Une infinité de majorant) le plus petit de ces majorant est A alors supE= A ∉E donc max E il n'existe pas.

3) $E =]A, +\infty]$ pour tout $x \in E$ on a x > A alors E n'est pas majoré l'ensemble des majorant n'existe pas ;le plus petit de ces majorant supE = n'existe pas alors max E il n'existe pas ...

E= $\{-1; 25; 9; 100; 1212; 32452\}$ Pour tout $x \in E$ on a $x \le 32452$ alors E est majoré l'ensemble des majorant $[32452; +\infty[$ (Une infinité de majorant) le plus petit de ces majorant est 32452 alors supE= 32452=maxE.

Propriétés Caractéristique de la borne Supérieure Soit M un majorant de E, Alors on a :

$$\mathsf{M} = \mathsf{supE} \Leftrightarrow \left\{ \begin{array}{c} (\forall \mathsf{x} \in \mathsf{E}, \mathsf{x} \leq \mathsf{M} \ (1) \\ \forall \mathcal{E} > 0; \exists x_{\varepsilon} \in \mathsf{E}, x_{\varepsilon} > \mathsf{M} - \varepsilon(2) \end{array} \right.$$

2-3-2 Borne Inférieure, partie minorée de R

Définition: On dit qu'une partie E de \mathbb{R} est minorée quand il existe un réel m tq : $\forall x \in E$, $x \ge m$ un tel réel m s'appelle un minorant de E

Remarque si m est un minorant de E tout réel inférieur a m est aussi un minorant de E donc une partie minorée de \mathbb{R} admet une infinité de minorant le plus grand de ces minorant on appelle borne inferieur inf E.si il appartienne à E on le note min E

Propriétés Caractéristique de la borne Supérieure Soit M un majorant de E, Alors on a :

$$\mathsf{M=supE} \Leftrightarrow \left\{ \begin{array}{l} \forall x \in \mathsf{E}, x \geq \mathsf{M} \\ \forall \mathcal{E} > 0; \exists x_{\varepsilon} \in \mathsf{E}, x_{\varepsilon} < \mathsf{M} + \varepsilon \end{array} \right. \tag{1}$$

Exemple

- 1) E =] A, B] pour tout $x \in E$ on a x > A alors E est Minore l'ensemble des minorant $]-\infty$; A] (une infinité de Minorant) le plus grand de ces minorant est A alors inf E=A min E IL il n'existe pas
- 2) $E =]-\infty$; A[pour tout $x \in E$ on a x < A alors E n'est pas minoré l'ensemble des minorant n'existe pas min E n'existe pas
- 3) $E = [A, +\infty [pour tout x \in E on a x \ge A alors E est minoré l'ensemble des minorant <math>]-\infty; A]$; le plus grand de ces minorant inf $E = A \in E$ doc minE = A
- 4) $E=\{-1; 25; 9; 100; 1212; 32452\}$ Pour tout $x \in E$ on a $x \ge -1$ alors E est minoré l'ensemble des minorant $]-\infty; -1]$ (Une infinité de minorant) inf $E=-1=\min E$

3) Valeur absolue d'un réel

Définition : On appelle valeur absolue de $x \in \mathbb{R}$, le réel positif noté |x| défini par :

$$|x| = \begin{cases} x & si \quad x \ge 0 \\ -x & si \quad x < 0 \end{cases}$$

Propriétés :

- 1) $\forall x \in \mathbb{R}$, |x| > 0
- 2) $\forall x \in \mathbb{R}$, $|x|=0 \Leftrightarrow x=0$
- 3) $\forall x \in \mathbb{R}$, |x| = |-x|
- 4) $\forall x,y \in \mathbb{R}$, |x.y| = |x|.|y|
- 5) $\forall x,y \in \mathbb{R}$, $|x+y| \le |x| + |y|$
- 6) $\forall x \in \mathbb{R}$, $\forall a \in \mathbb{R}^+$; $|x| \le a \Rightarrow -a \le x \le a |x| > a \Leftrightarrow \begin{cases} x > a \\ x < -a \end{cases}$
- 7) $x \in \mathbb{R}$, $\sqrt{x^2} = |x|$
- 8) $||x|-|y|| \le |x-y|$
- 9) $\forall x, y \in \mathbb{R}$ $\max(x,y) = \frac{x+y+|x-y|}{2}$; $\min(x,y) = \frac{x+y-|x-y|}{2}$

4) Intervalles

Définition Pour a, b $\in \mathbb{R}$ tq:a < b on définit:

$$[a, b] = \{x \in \mathbb{R}, a \le x \le b\}$$

[a, b [={
$$x \in \mathbb{R}$$
, a $\leq x < b$ }

] a, b [=
$$\{x \in \mathbb{R} , a < x < b\}$$

]-
$$\infty$$
, a [={x $\in \mathbb{R}$, x < a}

[a,
$$+\infty$$
[={x $\in \mathbb{R}$,x \geq a}

 $]-\infty$; $+\infty$ [= \mathbb{R} les intervalles]- ∞ ,a],[a,+ ∞ [,[a,b]sont appelés des intervalles fermés.

Les intervalles] a, b [,]- ∞ , a [;] a,+ ∞ [sont appelés des intervalles ouverts.

les intervalles [a,b[,]a,b]sont appelés des intervalles semi-ouverts ou semi-fermés.

Les réels a et b sont appelés les extrémités de l'intervalle

5) Théorème d'Archimède

Th<u>éorème</u>: $\forall x \in \mathbb{R}^+$, $\exists n \in \mathbb{N}^*$, $n \ge x$ (pour tout réelle positif il existe un entier naturelle plus grand que ce réelle).

Remarque Théorème d'Archimède signifie que \mathbb{N} n'est pas majorée (sup \mathbb{N} n'existe pas ;inf $\mathbb{N}=0$)

6) Propriétés de la borne Supérieure

Propriétés

- 1) $A \subset B A$ et B bornées \Rightarrow sup $A \leq$ supB et inf $A \geq$ infB
- 2) A et B bornées ⇒ AUB est borné et sup(AUB)=max (supA, supB) et inf(AUB)=min (infA, infB)
- 3) Si $A \cap B \neq \emptyset \Rightarrow A \cap B$ borné, sup $(A \cap B) \leq \min(\sup A, \sup B)$ et $\inf(A \cap B) > \max(\sup A, \sup B)$
- 4) $\sup (-A)=-\inf A$ et $\inf (-A)=-\sup A$; $\sup (A+B)=\sup A+\sup B$ et $\inf (A+B)=\inf A+\inf B$
- 5) A.B = $\{a = x.y, x \in A, y \in B\}\}$, sup(A.B)=supA. SupB et inf(AB)=infA. InfB
- 6) $A+B = \{a = x+y, x \in A, y \in B\}$; sup(A+B)=supA+supB et inf(A+B)=infA+infB

7) Partie entière d'un réel

<u>Définition</u>: Soit x ∈ \mathbb{R} on appelle partie entière de x et on note E(x) ou [x] l'entier n qui vérifie : $n \le x$ < n+1 ou $[x] \le x < [x] + 1$

alors tout réel x peut s'écrire d'une seule manière $x = [x] + \alpha$ tq $0 \le \alpha < 1$ [2.5]=2 puisque : 2.5=2+0,5 et [-2.5]=-3 puisque -2.5 =-3+0.5

Propriétés 1) $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^* : [x+n]=[x]+n$

- 2) $\forall x,y \in \mathbb{R}$, $[x]+[y] \le [x+y] < [x]+[y]+1$
- 3) $\forall x \in \mathbb{R} \mathbb{Z}$: [-x] = -[x] 1
- 4) ∀x,y ∈ℝ :[x]≤[y]

8) Densité de $\mathbb Q$ dans $\mathbb R$

Théorème : entre deux réels différents il existe un rationnel

Remarque entre 2 réels différents il existe une infinité de rationnel

9) <u>L'ensemble $\overline{\mathbb{R}}$ ou la droite achevée : $\overline{\mathbb{R}}$ = \mathbb{R} \cup $\{-\infty; +\infty\}$ = $[-\infty; +\infty]$ </u>

<u>Remarque</u> toute partie non vide de $\overline{\mathbb{R}}$ admet une borne supérieure et une borne inférieure. Toutes les opérations dans $\overline{\mathbb{R}}$ sont de la forme :

- 1) $\forall x \in \mathbb{R}$; $x+(+\infty)=+\infty$
- 2) x+(-∞)=-∞
- 3) (+∞)+(+∞)=+∞
- 4) (-∞)+(-∞)=-∞
- 5) $\forall x \in \mathbb{R}^+_*$; $x (+\infty) = +\infty$; $x (-\infty) = -\infty$
- 6) $\forall x \in \mathbb{R}^-_* \quad x \ (+\infty) = -\infty \quad ; x \ (-\infty) = +\infty$
- 7) $(+\infty).(+\infty)=+\infty$; $(-\infty).(-\infty)=+\infty$; $(+\infty).(-\infty)=-\infty$
- 8) $\forall x \in \mathbb{R}$ $-\infty < x < +\infty$ sup $\overline{\mathbb{R}} = +\infty$; inf $\overline{\mathbb{R}} = -\infty$; donc $\overline{\mathbb{R}}$ est bornée

 $0 \times (+\infty)$, $(+\infty) + (-\infty)$, $(-\infty) \times 0$ ce sont les cas indéfinie il non pas de solution dans $\overline{\mathbb{R}}$

Alors $\overline{\mathbb{R}}$ n'est pas compatible pour cela on travaille avec l'ensemble des nombre réels \mathbb{R} .

1ére année informatique

Analyse1

SERIE TD 1 Nombre réel

Exercice1: démontrer les propriétés suivantes:

1)- $n^2 est$ pair \Rightarrow n est pair.

2)-
$$\forall x \in \mathbb{R}$$
, $(\forall \varepsilon > 0, |x| < \varepsilon \Rightarrow x = 0)$. *est vrais*

3)-
$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, (|x| < \varepsilon \Rightarrow x = 0)$$
 est faux

3)-
$$\forall n \in \mathbb{N}: \sum_{k=0}^{n} 2^k = 2^{n+1} - 1.$$

4))-
$$\forall n \in \mathbb{N}: \sum_{k=0}^n k = \frac{n(n+1)}{2}$$
 ; $\sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

Exercice2: montré que :

1)
$$\forall a,b \in \mathbb{R}; |\sqrt{|a|} - \sqrt{|b|}| \leq \sqrt{|a-b|}.$$

2)
$$\forall a,b \in \mathbb{R}$$
; $\frac{|a+b|}{1+|a+b|} \leq \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$.

3)
$$\forall x, y \in \mathbb{R} - \mathbb{Z}$$
; [-x]=-[x]-1. (cours)

4)
$$\forall x, y \in \mathbb{R}$$
; $[x] + [y] \le [x + y] \le [x] + [y] + 1$

<u>Exercice3</u>: trouvez les bornes supérieures et inferieurs des ensembles suivants (sup, inf, max, min)si elles existes(cours):

1)
$$A=\{1, -3, 5, 0, 10, 2, -5\}$$

2)
$$B=]-5;2]; C=]-\infty;-2]; D=[1;20[;E=]-4;+\infty[...]$$

3)
$$F = \left\{ \frac{2n+1}{n-2}; n > 2 \right\}; G = \left\{ -\frac{1}{n} + \frac{(-1)^n}{n+1}; n \in \mathbb{N}^* \right\}.$$

4) H= {-3x+1;x
$$\in$$
 [-2;1[}; I = { $x^2 + \frac{1}{x^2}$; $x \in \mathbb{R}^*$ }; J={- $x^2 + 2x$; x \in]1;2[}

Exercice4: soit l'ensemble A et B définies par :

$$A = {\frac{n-1}{n+4}}; n \in \mathbb{N}^* \}; B = {\frac{2n+3}{n+4}; n \in \mathbb{N}^* }$$

- 1) Montrer que A est bornée, trouver la borne supérieure et inferieur de A, est ce que le maximum et minimum existe ?
- 2) Montre que si A et B deux ensembles bornée et non vide de ℝ et A+B= {x∈ℝ ; x=a+b ,a∈A et b∈B } alors sup(A+B)=supA+ supB
- 2) déduire le sup B et inf B (remarque $\frac{2n+3}{n+4} = \frac{n-1}{n+4} + \alpha$).

Exercice5 : A un ensemble borné et non vide de \mathbb{R}^+

-1) Soit $B = \{\sqrt{x}, x \in A\}$ montrer que B et bornée et trouver sup B et inf B.

-2)
$$C = \{\frac{1}{X}, x \in A\}$$
; $D = \{\frac{1}{1-x}, x \in A\}$ même question pour C et D (laissez pour l'étudiant)

-3) $E=\{x\in\mathbb{R}^+,ax^2+b\in A,a\in\mathbb{R}^+\text{et }b\in\mathbb{R}^-\}$ montre que inf $E=\sqrt{\frac{1}{a}(infA-b)}$.trouver une relation pour le sup .

Exercices supplémentaires :(pour l'étudiant)

-A un ensemble bornée et non vide de \mathbb{R}^+

B=
$$\{x \in \mathbb{R}^+, x^2 \in A\}$$
; C= $\{\alpha - x, x \in A\}$

$$D = \{y \in \mathbb{R}, y = \frac{1}{1+r}; x \in]0; \frac{1}{2}]\}$$

$$E = \{x \in \mathbb{R}, x = (-1)^n + \frac{(-1)^{n+1}}{n} ; n \ge 1\}$$

$$F = \{Cos \frac{2n\pi}{7} ; n \in \mathbb{Z}\}. K = \{sin \frac{2n\pi}{7} ; n \in \mathbb{Z}\}$$

$$G = \{\frac{2^n}{2^{n-1}} + \frac{(-1)^{n+1}}{n+1}; n \in \mathbb{N}^*\}$$

$$H = \left\{ \frac{1}{n^2 + n + 1}, \quad n \in \mathbb{N} \right\}$$

$$I = \left\{1 + rac{(-1)^n}{2n}, n \in \mathbb{N}
ight\}$$

$$G = \left\{ \frac{2^n}{2^{n-1}}; \quad n \in \mathbb{N}^* \right\}$$

montrer qu'elles sont bornées et trouver leurs sup et inf. .

Etudier l'existence des max, min.

Chapitre 2 Suites numériques

Les Suites

1)Définition : Une Suite Numérique est une application de $\mathbb N$ dans $\mathbb R$

$$F: \mathbb{N} \to \mathbb{R}$$
$$n \to F(n)$$

F(n) est une suite, on la note souvent (U_n) , (V_n) , (W_n) ; $n \in \mathbb{N}$ une suite réelle est une suite numérique tq : $U_n \in \mathbb{R}$ pour chaque $n \in \mathbb{N}$, U_n est appelé terme générale de la suite, on peut considerer les suites de la forme :

- a) U_n est définie par l'un de ces termes U_0 ; U_1 ; U_2 ; U_3 U_n
- b) U_n est définie par son terme générale par exemple $U_n = \frac{1}{n}$ ou $U_n = 3n+1$
- c) U_n est une suite récurrente exple U_0 =1; U_{n+1} =1+ U_n

2) Suites Réelles Monotones : Soit (U_n) n \in N une suite réelle,

On dit que (U_n) $n \in \mathbb{N}$ est croissante (strictement croissante) si et seulement si $\forall n \in \mathbb{N}, U_n \leq U_{n+1}$ $(U_n < U_{n+1})$.

On dit que (U_n) n \in N est décroissante (strictement décroissante) si et seulement si \forall n \in N, $U_{n+1} \leq U_n$ $(U_{n+1} < U_n)$.

On dit que (U_n) n \in N est monotone si et seulement si (U_n) n \in N croissante ou (U_n) n \in N est décroissante

3) <u>Une suite réelle est majorée et minorée</u>: si pour tout $n \in \mathbb{N}$ il existe $n_0 \in \mathbb{N}$ et il existe $M \in \mathbb{R}$:

 $\forall n \geq n_0$, $U_n \leq M$ ou

 U_n majorée $\Leftrightarrow \exists n_0 \in \mathbb{N}$, $\exists \mathsf{M} \in \mathbb{R}$, $\forall \mathsf{n} \geq n_0$, $U_n \leq \mathsf{M}$

 U_n Minorée $\Leftrightarrow \exists n_0 \in \mathbb{N}$, $\exists m \in \mathbb{R}$, $\forall n \geq n_0$, $U_n \geq m$

 (U_n) Bornée \Leftrightarrow majorée et Un minorée ou

 $(U_n\)$ bornée $\Leftrightarrow \exists n_0\ \in \mathbb{N}, \, \exists \, {\rm M} \ {\rm et} \ {\rm m} \in \mathbb{R}, \forall \, {\rm n} \geq n_0\ , \, U_n\ \leq {\rm M} \ {\rm et} \ U_n\ \geq {\rm m}$

Ou $(U_n$) bornée $\Leftrightarrow \exists n_0 \in \mathbb{N}, \, \exists \alpha \in \mathbb{R}^+, \, \forall n \geq n_0$, $|U_n| \leq \alpha$

4) Convergence, Divergence, relation de la limite :

<u>Definition</u> On dit que la suite numérique (U_n) n $\in \mathbb{N}$ admet une limite L quand n tend vers+ ∞ si :

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : (n > n_0 \Rightarrow |U_n - I| < \varepsilon)$ et on écrit

$$\lim_{n \to +\infty} U_n \text{=} \mathsf{L}$$

- ■On dit que (U_n) est convergente si elle a une limite finie quand n \to + ∞ on écrit $\lim_{n\to+\infty}U_n$ =L< ∞
- lacksquare On dit que (U_n) est divergente si elle n'est pas convergente, on écrit

$$\forall L \in \mathbb{R}, \exists \mathcal{E} > 0, \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N} : n \geq n_0 \land |U_n - L| \geq \mathcal{E}$$

Exemple:

■
$$U_n = \frac{n+1}{2n}$$
 est convergente et converge vers $\frac{1}{2}$

$$\blacksquare U_n = -(-1)^n = \begin{cases} 1 & \text{si } n \text{ pair} \\ -1 & \text{si } n \text{ inpaire} \end{cases}$$
 divergente car elle a 2 limites différentes

 $■U_n$ = n+1 divergente car elle a une limite +∞

Proposition: Si U_n est convergente alors sa limite est unique

<u>**Démonstration**</u>: On suppose qu'il existe deux limites différentes quand $n \rightarrow +\infty$ tq:

$$\lim_{n \to +\infty} U_n = L_1 \quad et \quad \lim_{n \to +\infty} U_n = L_2$$

$$\lim_{n \to +\infty} U_n = L_1 \quad \Leftrightarrow \qquad \forall \varepsilon > 0, \ \exists \ n_1 \in \mathbb{N}, \ \forall n \in \mathbb{N} : (n > n_1 \Rightarrow |U_n - L_1| < \mathcal{E})$$

$$\lim_{n \to +\infty} U_n = L_2 \quad \Leftrightarrow \qquad \forall \varepsilon > 0, \ \exists \ n_2 \in \mathbb{N}, \ \forall n \in \mathbb{N} : (n > n_2 \Rightarrow |U_n - L_2| < \mathcal{E})$$

On choisit $n_0 = \max(n_1, n_1)$ alors $\forall n \ge n_0$:

$$|L_1-L_2|\!=\!|L_1-U_n+U_n-L_2|\!=\!|L_1-U_n|\!+\!|L_1-U_n|\!<\!\varepsilon+\varepsilon$$

 $|L_1-L_2|<2\varepsilon\quad\text{Si }\varepsilon\to 0:\quad 0\leq |L_1-L_2|\leq 2\varepsilon\to 0\\ \Longleftrightarrow |L_1-L_2|=0\quad\text{donc }L_1=L_2\text{ alors la limite est unique}.$

Exemple montré que $U_n = \frac{1}{3n} \rightarrow 0$ et $U_n = \cos(n)^{\frac{2}{3}} \sin(\frac{1}{n}) \rightarrow 0$

Solution: On veut démontrer que

$$\lim_{n \to +\infty} U_n = 0 \iff \forall \varepsilon > 0, \ \exists \ n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N} : (\mathsf{n} > n_0 \Rightarrow |U_n - \mathsf{0}| < \mathcal{E}$$

On démontre que : $\forall \varepsilon > 0$, $\exists \ n_0 \in \mathbb{N}$, $\forall \mathbf{n} \in \mathbb{N}$:($\mathbf{n} > n_0$)

1)
$$|U_n - 0| = \left|\frac{1}{3n} - 0\right| = \frac{1}{3n} < \varepsilon \implies 3n > \frac{1}{\varepsilon} \implies n > \frac{1}{3\varepsilon}$$
 d'après Archimède il existe n_0 ; tq $n_0 = \left[\frac{1}{3\varepsilon}\right] + 1$ alors $\forall n > n_0 \implies \left|\frac{1}{3n} - 0\right| < \varepsilon \implies \lim_{n \to +\infty} \frac{1}{3n} = 0$

2)
$$|U_n - 0| = \left|\cos(n)^{\frac{2}{3}}\sin\left(\frac{1}{n}\right) - 0\right| = \left|\cos(n)^{\frac{2}{3}}\sin\left(\frac{1}{n}\right)\right| < \left|\cos(n)^{\frac{2}{3}}\right| \left|\sin(\frac{1}{n})\right| < 1.\frac{1}{n}$$
 puisque

 $|\cos x| \ \leq 1 \ et \ |\sin x| \leq |x| \ ; \ \text{Alors} \quad |U_n - 0| < \frac{1}{n} < \varepsilon \ \ \Rightarrow \text{n} > \frac{1}{\varepsilon} \ \text{d'après Archimède il existe} \ n_0 \epsilon \mathbb{N}^* \ \text{tq}$

$$n_0 = \left[\frac{1}{\varepsilon}\right] + 1; \forall n > n_0 \Rightarrow \left|\cos(n)^{\frac{2}{3}}\sin\left(\frac{1}{n}\right) - 0\right| < \varepsilon \Leftrightarrow \lim_{n \to +\infty}\cos(n)^{\frac{2}{3}}\sin\left(\frac{1}{n}\right) = 0$$

Définition de la limite : Soit Un une suite réel

- $\bullet U_n \to +\infty \text{ quand n} \to +\infty \quad \Leftrightarrow \forall \mathsf{A} > \mathsf{0}, \exists n_0 \in \mathbb{N}, \forall \mathsf{n} \in \mathbb{N} : (\mathsf{n} \geq n_0 \Rightarrow U_n > \mathsf{A}) \text{ et on note } : \lim_{n \to +\infty} U_n = +\infty$
- $\bullet U_n \to -\infty \text{ quand n} \to +\infty \iff \forall \mathsf{A} > \mathsf{0}, \exists n_0 \in \mathbb{N}, \forall \mathsf{n} \in \mathbb{N} : (\mathsf{n} \geq n_0 \Rightarrow U_n < -A \; \mathsf{A}) \text{ et on note } : \lim_{n \to +\infty} U_n = -\infty \text{ and } n \to +\infty$

Proposition:1) toute suite convergente est bornée

- 2) toute suite Un →+∞ est minorée
- 3) toute suite Un →-∞ est majorée

<u>Remarque</u> il existe des suites bornées mais pas convergente, donc le contraire de la proposition n'est pas toujours vrai

<u>Exemple</u>: Un = $\sin(\frac{n\pi}{2})$ elle est bornée mais pas convergente : $|\sin(\frac{n\pi}{2})| \le 1$ donc bornée mais : $\lim_{n \to +\infty} \sin(\frac{n\pi}{2})$ n'existe pas alors elle n'est pas convergente

 U_n = n ; elle est ni bornée ni convergente

$$U_n$$
Convergente \Rightarrow U_n bornée

 U_n N'est pas bornée \Rightarrow U_n n'est pas convergente

Alors pour démontré que \mathcal{U}_n est divergente il suffit de démontrer que \mathcal{U}_n n'est pas bornée

Théorème: 1) toute suite réelle croissante et majorée est convergente.

2) toute suite réelle décroissante et minorée est convergente.

Exemple: $U_n = \sum_{k=1}^n \frac{1}{n+k}$ montré que U_n est convergente

Solution : pour démontrer que \mathcal{U}_n convergente il suffit de montrer que \mathcal{U}_n croissante majorée ou décroissante minorée

$$\begin{split} U_{n+1} - U_n &= \sum_{k=1}^{n+1} \frac{1}{n+1+k} - \sum_{k=1}^{n} \frac{1}{n+k} \\ &= \left(\frac{1}{n+2} + \frac{1}{n+3} + \cdots \cdot \cdot \frac{1}{n+1+n} + \frac{1}{n+n+2}\right) - \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots \cdot \cdot \frac{1}{n+n}\right) \\ &= \frac{1}{n+n+1} + \frac{1}{n+n+2} - \frac{1}{n+1} = \frac{1}{(n+1)(2n+1)} > 0 \end{split}$$

Donc elle est croissante il reste de montrer majorée

$$\begin{array}{cccc} \mathsf{n}+\mathsf{1}\!\geq n & \Rightarrow & \frac{1}{n+1} \leq \frac{1}{n} \\ \\ \mathsf{n}+\mathsf{2}\!\geq n & \Rightarrow & \frac{1}{n+2} \leq \frac{1}{n} \\ \\ \mathsf{n}+\mathsf{3}\!\geq n & \Rightarrow & \frac{1}{n+3} \leq \frac{1}{n} \\ \\ & \cdots \\ \\ & \cdots \\ \\ \mathsf{n}+\mathsf{n}\!\geq n+1 & \Rightarrow & \frac{1}{n+n} \leq \frac{1}{n} \end{array}$$

$$\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \cdots \dots \frac{1}{n+n} \le \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \cdots \dots + \frac{1}{n} = \frac{n}{n} = 1$$

$$donc \ U_n \le 1 \ alors \ elle \ est \ majorée.$$

 U_n croissante et majoree alors elle est convergente

5) Propriétés des Suites Convergentes : Soient $(U_n)_r(V_n)_r(W_n)$ trois suites numériques tq :

Si (U_n) , (V_n) converge vers L et L' respectivement alors :

1)
$$U_n + V(U_n)$$
, (V_n) (V_n) (V_n) (V_n) , $(V_$

2)
$$(U_n) \rightarrow L$$
 et elle vérifie : $\exists n_0 \in \mathbb{N}, \forall n \ge n_0$: si $U_n > 0 \implies L \ge 0$

3)
$$U_n \le V_n$$
 et elle vérifie : $\exists n_0 \in \mathbb{N}$, $\forall n \ge n_0 \Rightarrow L \le L'$

4) (U_n) et (V_n) converge vers la même limite L ; $\exists n_0 \in \mathbb{N}, \forall n \geq n_0$ et $U_n < V_n$ alors $W_n \to L$

5)
$$U_n \to L$$
 ; $\exists n_0 \in \mathbb{N}, \forall n \geq n_0 \text{ alors} |U_n| \to |\mathbf{L}|$

6.
$$Si(U_n) \rightarrow 0$$
 et V_n bornée alors $(U_n V_n) \rightarrow 0$

6)Suites Adjacentes

<u>**Définition**</u> deux suites (U_n) , (V_n) , sont dites adjacentes ssi (U_n) croissante (V_n) décroissante $U_n - V_n \to 0$.

<u>Proposition</u>: soit U_n et V_n deux suites adjacentes alors elle converge vers la même limite.

7) Suite de Cauchy On dit que (U_n) est une suite de Cauchy si elle vérifie

$$\forall \varepsilon > 0$$
, $\exists n_0 \in \mathbb{N}$, $\forall p > q \ge n_0 \Rightarrow |U_P - U_q| < \mathcal{E}$ autrement dit $|U_P - U_q| \Rightarrow 0$ p et $q \Rightarrow \infty$

$$(U_n)$$
 n'est pas de Cauchy $\Leftrightarrow \exists \varepsilon > 0$, $\forall n_0 \in \mathbb{N}, \exists p > q \ge n_0 \land |U_P - U_q| > \varepsilon$

Proposition: toute suite convergente est de Cauchy.

Proposition : toute suite de Cauchy est bornée

Remarque Dans \mathbb{R} suite de Cauchy est convergente, on dit que \mathbb{R} est complet, \mathbb{Q} n'est pas complet dans une autre raison pour prolonger \mathbb{Q} à \mathbb{R} .

7) Suite extraite(partielle) Une suite (V_n) est appelée suite extraite ou une sous suite d'une suite (U_n) s'il existe une application strictement croissante $\phi: \mathbb{N} \to \mathbb{N}$ vérifiant : $\forall n \in \mathbb{N}, V_n = U_{(\phi(n))}$

Exemple
$$U_n = (-1)^n = \begin{cases} 1 & n \ pair \\ -1 & n \ inpair \end{cases} = \begin{cases} U_{2n} \\ U_{2n+1} \end{cases}$$

<u>Proposition</u>: Si $(U_n) \rightarrow L$ alors toute suite extraite de (U_n) converge vers L

<u>Théorème</u> Toute suite contient une suite extraite monotone.

<u>Théorème</u> (Bolzano-Weierstrass) Toute suite bornée contient une suite partielle convergente.

8) Suite récurrente Soit I un intervalle de \mathbb{R} et soit $f: I \to \mathbb{R}$ tq : $f(I) \subset I$ On appelle suite récurrente la suite (U_n) définie par : $U_0 \in I \land \forall n \in \mathbb{N}$: $U_{n+1} = f(U_n)$

1ére année informatique

Analyse1

SERIE TD 2 Suite numérique

Exercice1:

a) Démontrer par la définition de la limite que :

1)
$$\lim_{x\to +\infty} \frac{n^2-n+2}{3(n^2+2n-4)} = \frac{1}{3}$$
; 2) $\lim_{x\to +\infty} 2-3n = -\infty$; 3) $\lim_{x\to +\infty} \frac{n+\sqrt{n}}{n+1} = 1$

4)
$$\lim_{r\to +\infty} 3^{2n-1} = +\infty$$

b) trouver les limites suivantes :

1)
$$\lim_{x\to +\infty} \frac{1}{n^3} \sum_{k=1}^n k^2$$
; 2) $\lim_{x\to +\infty} \sqrt{n^2+n}$ -n ;3) $\lim_{x\to +\infty} \frac{1}{n^2} \sum_{k=1}^n E(kx)$

4)
$$\lim_{x\to +\infty} \frac{n sinn}{n^2+1}$$
; 5) $\lim_{x\to +\infty} \frac{3^n-(-2)^n}{3^n+(-2)^n}$

Exercice2: montrer que les suites suivantes sont adjacentes:

1)
$$U_n=2^n \sin \frac{\theta}{2^n}$$
 , $V_n=2^n \tan \frac{\theta}{2^n}$

2)
$$U_n = \sum_{k=1}^n \frac{1}{k!}$$
 , $V_n = U_n + \frac{1}{nn!}$

Exercice3: soit a et b deux réels positif

1) Montrer que
$$\sqrt{ab} \le \frac{a+b}{2}$$
 et si $0 < a < b \ alors$:

$$\mathsf{a} < \frac{a+b}{2} < \mathsf{b}$$
 ; $\mathsf{a} < \sqrt{ab} < \mathsf{b}$

2)
$$U_0$$
 et V_0 deux positifs tq $U_0 < V_0$; et $(U_n)_{n \in \mathbb{N}}$ et $(V_n)_{n \in \mathbb{N}}$ deux suite qui vérifie $U_{n+1} = \sqrt{U_n V_n}$, $V_{n+1} = \frac{U_n + V_n}{2}$

Montrer que
$${\it U}_n > 0$$
 , ${\it V}_n >$ 0 et ${\it U}_n < {\it V}_n$ $orall n \in \mathbb{N}$

3) Montrer que $U_n et V_n$ sont adjacentes.

 $\underline{\text{Exercice4}}$: soit U_n une suite récurant définie par :

$$\begin{cases} U_{n+1} = \frac{U_0 = 1}{U_n} \\ \frac{U_n}{1 + \sqrt{1 + (U_n)^2}} \end{cases}$$

- 1) Montrer que $U_n>0$; $\forall n\in\mathbb{N}$.
- 2) montrer que pou tout $n \in N^*$ $U_n \leq \frac{1}{2^n}$.
- 3) montrer que U_n Est décroissante.
- 4) deduire la limite par deux methode.
- 5) A= $\{U_n, n \in \mathbb{N}\}$ trouver supA et infA .

Exercice5 : étudier la nature des suites d'après Cauchy :

1)
$$u_n = \sum_{k=1}^n \frac{\sin k}{3^n}$$
 2) $v_n = \sum_{k=2}^n \frac{1}{\log k}$ 3) $w_n = \cos \frac{1}{n}$

Exercice supplémentaire

1) Démontrer par la définition de la limite que :

$$\lim_{n \to +\infty} \frac{1}{2n-1} = 0 \,, \qquad \lim_{n \to +\infty} \frac{2n-3}{3n+1} = \frac{2}{3} \,, \qquad \lim_{n \to +\infty} \sin \frac{1}{n} = 0 \,, \qquad \lim_{n \to +\infty} \frac{n^2+1}{n-10} = +\infty \,\,,$$

$$\lim_{n \to +\infty} \sqrt[n]{a} = 1, a > 1$$

2) Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définie par :

$$U_0=rac{11}{4}$$
 $U_{n+1}=rac{5}{2}+\sqrt{U_n-rac{7}{4}}$ $orall n\in\mathbb{N};$

- 1- Montrer que $\frac{5}{2} \leq U_n \leq 4$ pour tout $n \in \mathbb{N}$.
- 2- Montré que (U_n) est monotone.
- 3- Déduire que (U_n) est convergente ; et calculer la $\lim_{n o \infty} U_n$.
- 4- A= $\{U_n, n \in \mathbb{N}\}$ trouver supA et infA

2019-2020

1h

<u>1MI</u>

Interrogation ANALYSE 1

Exercice1 (8point): Soit l'ensemble A et B définies par :

A=
$$\{\frac{2n}{n^2+1}; n > 2\}$$
 ; B= $\{\frac{e^x-1}{x}; x \in]0; +\infty[\}$

- 3) Montrer que A et B sont bornées, et trouver les bornes supérieures et inferieurs de A et B
- 4) Déduire les bornes supérieures et inferieurs de A+B; A-B et AUB

Exercice2 (5point) :: Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définie par :

$$0 < U_0 < 1$$
 $U_{n+1} = \frac{U_n}{4}(U_n + 2) \quad \forall n \in \mathbb{N};$

- 5- Montrer que $0 < U_n < 1$ pour tout $n \in \mathbb{N}$.
- 6- Montré que (U_n) est monotone.
- 7- Conclure pour la nature de la suite U_n
- 8- Calculer la $lim_{n o +\infty} U_n$

Exercice3 (3point) Démontrer par la définition de la limite que :

$$\lim_{x\to 1^+} \frac{x+2}{(x-1)(x+3)} = +\infty$$

Bonne chance