Smooth unconstrained minimization

Pramesh Kumar

IIT Delhi

September 4, 2025

Unconstrained problems

To $\min_{\mathbf{x}} f(\mathbf{x})$, where f is convex, we generally adopt an iterative procedure.

- ▶ Start with some initial point $\mathbf{x}^{(0)}$ and then generate a sequence of points $\{\mathbf{x}_k\}$.
- ▶ We want improving objective values in each iteration i.e., $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$.
- ▶ Hopefully, our sequence of points $\{\mathbf{x}^{(k)}\}$ will converge to a local minimizer \mathbf{x}^* (or global minimizer).

Descent methods

General procedure

From $\mathbf{x}^{(0)}$, we generate a sequence of points using the following procedure:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t_k \mathbf{d}^{(k)}$$

where, $\mathbf{d}^{(k)}$ is called the search direction (must be descent direction¹ i.e., $\nabla f(\mathbf{x}^{(k)})^T \mathbf{d}^{(k)} < 0$) and t_k is called the step size. Continue until a stopping criterion is satisfied.

Line search types

- Exact line search $t_k = \operatorname{argmin}_{t>0}\{f(\mathbf{x}^{(k)} + t\mathbf{d}^{(k)})\}$ (can be done using Bisection method)
- ▶ Backtracking line search For $0 < \alpha < 0.5$ and $0 < \beta < 1$
 - Start with t=1, update $t:=\beta t$
 - until $f(\mathbf{x} + t\mathbf{d}) \le f(\mathbf{x}) + t\alpha \nabla f(\mathbf{x})^T \mathbf{d}$

 $^{^1\}text{By Taylor expansion }f(\mathbf{x}^{(k)}+t_k\mathbf{d}^{(k)})\approx f(\mathbf{x}^{(k)})+t_k\nabla f(\mathbf{x}^{(k)})^T\mathbf{d}^{(k)}.$ We need to choose $\mathbf{d}^{(k)}$ such that $\nabla f(\mathbf{x}^{(k)})^T\mathbf{d}^{(k)}<0$

Gradient descent method

initialize $\mathbf{x}^{(0)} \in \operatorname{dom}(f)$. Set k=0 and tolerance $\epsilon>0$ repeat

- 1. Evaluate $\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$ (check if this is a decent direction)
- 2. Use a line search method to evaluate t_k
- 3. Update $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t_k \mathbf{d}^{(k)}$; Set k := k + 1.
- 4. Go back to Step 1 until $\|\nabla f(\mathbf{x}^{(k)})\| \le \epsilon$ in which case output $\mathbf{x}^{(k)}$ as the solution.

Remark. Gradient method is guaranteed to converge to a local minimizer. As we know if $f(\mathbf{x})$ is convex, local is also global.

Newton's method

In this method, at any point $\mathbf{x}^{(k)}$, we approximate the objective function $f(\mathbf{x})$ by its second order Taylor series expansion:

$$f(\mathbf{x}) \approx f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})^T (\mathbf{x} - \mathbf{x}^{(k)}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(k)})^T \nabla^2 f(\mathbf{x}^{(k)}) (\mathbf{x} - \mathbf{x}^{(k)})$$
(1)

We minimize (1) to get

$$\mathbf{x}^* = \mathbf{x}^{(k)} - [\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$$
 (2)

In Newton's method, the search direction (also called Newton's step) is:

$$\mathbf{d}^{(k)} = -\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)}) \tag{3}$$

Question: Is this a descent direction? Answer: Yes, because $\nabla f(\mathbf{x}^{(k)})^T\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)})^T[\nabla^2 f(\mathbf{x}^{(k)})]^{-1}\nabla f(\mathbf{x}^{(k)}) < 0 \text{ since } \nabla^2 f(\mathbf{x}^{(k)}) \text{ is positive definite for strictly convex } f(\mathbf{x})$

Gradient descent method

initialize $\mathbf{x}^{(0)} \in \operatorname{dom}(f)$. Set k=0 and tolerance $\epsilon>0$ repeat

- 1. Evaluate $\mathbf{d}^{(k)} = -[\nabla^2 f(\mathbf{x}^{(k)})]^{-1} \nabla f(\mathbf{x}^{(k)})$
- 2. Use a line search method to evaluate t_k
- 3. Update $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t_k \mathbf{d}^{(k)}$; Set k := k + 1.
- 4. Go back to Step 1 until $\|\nabla f(\mathbf{x}^{(k)})\| \le \epsilon$ in which case output $\mathbf{x}^{(k)}$ as the solution.

A few remarks

Gradient method

- No matter where it starts, it will always converge to a local minimizer.
- ▶ It is easy to implement.
- Only need to know the first-order (gradient) information
- Linear convergence rate

Newton's method

- Sensitive to the initial point
- Require second-order information (second-order derivative)
- Quadratic convergence rate (much faster than the gradient)

Suggested reading

Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Thank you!