

Dualidades Tiempo Frecuencia

- Series/Transformada de Fourier
 - Series → señales periódicas
 - Transformada → señales aperiódicas
- Señales en tiempo continuo tienen espectros aperiódicos
 - La falta de periodicidad se debe a que la función exponencial $e^{(j 2 \pi F t)}$ es una función de la variable continua t, y por lo tanto no periódica en F.
 - El rango de frecuencias se extiende desde F=0 hasta $F=\pm\infty$.

- Dualidades Tiempo Frecuencia...
 - Señales en tiempo discreto tienen espectros periódicos
 - Las series y transformadas de Fourier de señales en tiempo discreto son periódicas de periodo $w=2\pi$.
 - El rango de frecuencias es finito y se extiende desde $w = -\pi$ hasta $w = \pi$, donde $w = \pi$ corresponde a la mayor oscilación posible.

- Dualidades Tiempo Frecuencia...
 - Señales *periódicas* tienen espectros discretos
 - Los coeficientes de la serie de Fourier representan las "líneas" del espectro discreto.
 - Relación Tiempo-Frecuencia en series de F.
 - Señales periódicas en tiempo continuo: el espaciado entre líneas ΔF del espectro es igual al inverso del periodo Tp en el tiempo.
 - $\Delta F = 1/Tp$
 - Señales períodicas en tiempo discreto: El espaciado entre líneas Δf del espectro es igual al inverso del periodo N en el tiempo.
 - $\Delta f = 1/N$

■ Dualidades Tiempo Frecuencia...

- Señales aperiódicas (de energía finita) tienen espectros continuos
 - Debido a que X(F) es función de $e^{(j 2\pi F t)}$, la cual es una función continua de la variable F.
 - Debido a que X(w) es función de $e^{(j w n)}$, la cual es una función continua de la variable w.

Percepción y Sistemas Inteligentes

- Resumen de Fórmulas de Análisis y Diseño
 - **Tiempo Continuo**

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

PEO Percepción y Sistemas Inteligentes

- Resumen de Fórmulas de Análisis y Diseño
 - **Tiempo Discreto**

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Propiedades de la Transformada de Fourier de Señales en Tiempo Discreto

Definiciones

 Por definición las transformadas directa e inversa de Fourier están dadas por,

$$X(w) = F\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)e^{-jwn} \qquad x(n) = F^{-1}\{X(w)\} = \frac{1}{2\pi} \int_{2\pi} X(w)e^{jwn} dw$$

• Generalmente la señal x(n) y su transformada X(w) son funciones complejas,

$$x(n) = x_R(n) + j x_I(n) \Leftrightarrow X(w) = X_R(w) + j X_I(w)$$

■ Definiciones...

- Reemplazando en la definición de las transformadas directa e inversa, y utilizando la identidad $e^{-jw} = \cos(w) j \sin(w)$,
- **■** Forma Alterna de la T. Directa
 - $X_R(w) = \sum_{n=0}^{\infty} [x_R(n)\cos wn + x_I(n)\sin wn]$

$$X_{I}(w) = -\sum_{n=-\infty}^{\infty} [x_{R}(n) \operatorname{sen} wn - x_{I}(n) \cos wn]$$

■ Forma Alterna de la T. Inversa

$$x_R(n) = \frac{1}{2\pi} \int_{2\pi} [X_R(w)\cos wn - X_I(w)\sin wn]dw$$

$$x_I(n) = \frac{1}{2\pi} \int_{2\pi} [X_R(w) \operatorname{sen} w n + X_I(w) \cos w n] dw$$

Propiedades de Simetría de Señales Reales:

 $x(n)=x_R(n)$

Transformada directa

$$X_{R}(w) = \sum_{n=-\infty}^{\infty} [x(n)\cos wn]$$

$$X_I(w) = -\sum_{n=-\infty}^{\infty} [x(n) \operatorname{sen} wn]$$

$$x(n) = \frac{1}{2\pi} \int_{2\pi} [X_R(w)\cos wn - X_I(w)\sin wn] dw$$

Propiedades de Simetría de Señales Reales y Pares:

- $\mathbf{L}(-n)=x(n)$
- $= x(n) \cos(wn)$ es par y $x(n) \sin(wn)$ es impar

Transformada directa

$X_R(w) = x(0) + 2\sum_{n=1}^{\infty} [x(n)\cos wn] \rightarrow s. par$ $X_I(w) = 0$

$$x(n) = \frac{1}{\pi} \int_{0}^{\pi} [X_{R}(w)\cos wn] dw$$

Propiedades de Simetría de Señales Reales e Impares

- x(-n)=-x(n)
- $x(n) \cos(wn)$ es impar y $x(n) \sin(wn)$ es par

Transformada directa

$$X_R(w) = 0$$

 $X_I(w) = -2\sum_{n=1}^{\infty} [x(n) \operatorname{sen} wn] \to \operatorname{s.impar}$

$$x(n) = -\frac{1}{\pi} \int_{0}^{\pi} [X_{I}(w) \operatorname{sen} wn] dw$$

■ Propiedades de Simetría de Señales *Imaginarias* puras:

 $\mathbf{x}(n) = \mathbf{j} \mathbf{x}_{\mathbf{I}}(n)$

Transformada directa

$$X_R(w) = \sum_{n=-\infty}^{\infty} [x_I(n) \operatorname{sen} wn]$$

$$X_{I}(w) = \sum_{n=-\infty}^{\infty} [x_{I}(n)\cos wn]$$

$$x(n) = \frac{1}{2\pi} \int_{2\pi} [X_R(w) \operatorname{sen} wn + X_I(w) \cos wn] dw$$

Propiedades de Simetría de Señales Imaginarias pares:

- $\mathbf{x}_{\mathbf{I}}(-n) = \mathbf{x}_{\mathbf{I}}(n)$
- $\mathbf{x}(\mathbf{n})\cos(wn)$ es par y $\mathbf{x}(\mathbf{n})$ sen (wn) es impar

Transformada directa

$$X_{R}(w) = 0$$

$$X_{I}(w) = x_{I}(0) + 2\sum_{n=1}^{\infty} [x_{I}(n)\cos wn] \rightarrow \text{s. par}$$

$$x(n) = \frac{1}{\pi} \int_{0}^{\pi} \left[X_{I}(w) \cos wn \right] dw$$

Propiedades de Simetría de Señales Imaginarias Impares:

- $\mathbf{x}_{\mathbf{I}}(-n) = -\mathbf{x}_{\mathbf{I}}(n)$
- $\mathbf{x}(\mathbf{n})\cos(wn)$ es impar y $\mathbf{x}(\mathbf{n})\sin(wn)$ es par

Transformada directa

$$X_R(w) = 2\sum_{n=1}^{\infty} [x_I(n) \operatorname{sen} wn] \to \operatorname{s. imp ar}$$

$$X_I(w) = 0$$

$$x(n) = \frac{1}{\pi} \int_{0}^{\pi} X_{R}(w) \operatorname{sen} wn \ dw$$

Propiedades de Simetría de la T.F.

Secuencia

T. Fourier

Sistemas Inteligentes

x(n)
$x^*(n)$
$x^*(-n)$
$x_R(n)$
$jx_I(n)$
$x_e(n) = \frac{1}{2}[x(n) + x^*(-n)]$
$x_o(n) = \frac{1}{2}[x(n) - x^*(-n)]$

$$X(\omega)$$

$$X^*(-\omega)$$

$$X^*(\omega)$$

$$X_e(\omega) = \frac{1}{2}[X(\omega) + X^*(-\omega)]$$

$$X_o(\omega) = \frac{1}{2}[X(\omega) - X^*(-\omega)]$$

$$X_R(\omega)$$

$$jX_I(\omega)$$

Señales Reales

Cualquier señal real
$$x(n)$$

$$x_e(n) = \frac{1}{2}[x(n) + x(-n)]$$
(real y par)
$$x_o(n) = \frac{1}{2}[x(n) - x(-n)]$$
(real e impar)

$$X(\omega) = X^*(-\omega)$$
 $X_R(\omega) = X_R(-\omega)$
 $X_I(\omega) = -X_I(-\omega)$
 $|X(\omega)| = |X(-\omega)|$
 $\angle X(\omega) = -\angle X(-\omega)$
 $X_R(\omega)$
(real y par)
 $jX_I(\omega)$
(imaginaria e impar)

Propiedades de Simetría de la T.F.

PSO Percepción y Sistemas Inteligentes

■ Resumen

■ Linealidad

$$x_1(n) \stackrel{F}{\longleftrightarrow} X_1(w)$$
 $x_2(n) \stackrel{F}{\longleftrightarrow} X_2(w)$

$$a_1 x_1(n) + a_2 x_2(n) \stackrel{F}{\longleftrightarrow} a_1 X_1(w) + a_2 X_2(w)$$

■ Se verifica el cumplimiento del teorema de superposición

Ejemplo: Determinar la Transformada de Fourier de la siguiente señal

$$x(n) = a^{|n|} -1 < a < 1$$

■ Solución.

■ La señal puede reescribirse como,

$$x(n) = x_1(n) + x_2(n) -1 < a < 1$$

$$x_1(n) = \begin{cases} a^n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Solución ...

Aplicando la T.F.

$$X_1(w) = \sum_{n=0}^{\infty} a^n e^{-jwn} = \frac{1}{1 - a e^{-jw}}$$

Se llega a:

$$X(w) = X_1(w) + X_2(w)$$
$$X(w) = \frac{1 - a^2}{1 - 2a\cos w + a^2}$$

$$X_1(w) = \sum_{n=0}^{\infty} a^n \ e^{-jwn} = \frac{1}{1 - a e^{-jw}} \qquad X_2(w) = \sum_{n=-\infty}^{-1} a^{-n} \ e^{-jwn} = \frac{a e^{jw}}{1 - a e^{jw}}$$

Desplazamiento Temporal

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$

$$x(n-k) \longleftrightarrow e^{-jwk} X(w)$$

- El contenido frecuencial de una señal sólo depende de su forma.
- La magnitud del espectro no cambia, sólo se afecta su fase en una cantidad igual a -wk.

Reflexión Temporal

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$
$$x(-n) \stackrel{F}{\longleftrightarrow} X(-w)$$

La magnitud del espectro no cambia y su fase sólo experimenta un cambio de signo.

■ Teorema de Convolución

$$x_1(n) \stackrel{F}{\longleftrightarrow} X_1(w)$$
 $x_2(n) \stackrel{F}{\longleftrightarrow} X_2(w)$

$$x(n) = x_1(n) * x_2(n) \stackrel{F}{\longleftrightarrow} X(w) = X_1(w) X_2(w)$$

► La convolución en el dominio temporal implica una multiplicación de los espectros frecuenciales.

Percepción y Sistemas Inteligentes

■ Representación Gráfica de la Convolución

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Teorema de Convolución...

■ Ejemplo

Determinar la convolución entre las secuencias

$$x_1(n) = x_2(n) = \{ 1 \ \underline{1} \ 1 \}$$

■ Solución

Las señales son anticausales, reales y pares.

$$X_{1}(w) = X_{2}(w) = 1 + 2 \cos w$$

$$X(w) = X_{1}(w) X_{2}(w) = (1 + 2 \cos w)^{2}$$

$$= 3 + 4 \cos w + 2 \cos 2w = 3 + 2(e^{jw} + e^{-jw}) + (e^{j2w} + e^{-j2w})$$

Antitransformando: $x(n) = x_1(n) * x_2(n) = \{1, 2, \underline{3}, 2, 1\}$

Teorema de la Correlación

$$x_1(n) \stackrel{F}{\longleftrightarrow} X_1(w)$$
 $x_2(n) \stackrel{F}{\longleftrightarrow} X_2(w)$

$$r_{x_1 x_2}(n) = \sum_{k=-\infty}^{\infty} x_1(k) x_2(k-n) \longleftrightarrow S_{x_1 x_2}(w) = X_1(w) X_2(-w)$$

■ La función $S_{x1x2}(w)$ se denomina *cross-densidad espectral de energía* de las señales $x_1(n)$ y $x_2(n)$.

- Teorema de la Correlación...
 - **■** Teorema de Wiener-Khintchine
 - Sea x(n) una señal real, entonces:

$$\mathbf{r}_{xx}(l) \longleftrightarrow S_{xx}(w)$$

- La densidad espectral de energía de una señal de energía es la transformada de Fourier de su función de autocorrelación.
- La función de **autocorrelación** de una señal y su **densidad espectral de energía** contienen la **misma información** sobre la señal.

■ Ejemplo

Determinar la densidad espectral de energía de la señal

$$x(n) = a^n \quad u(n) \qquad -1 < a < 1$$

■ Solución

$$r_{xx}(l) = \frac{1}{1 - a^2} a^{|l|} \qquad -\infty < l < \infty$$

$$S_{xx}(w) = F\{r_{xx}(l)\} = \frac{1}{1-a^2} F\{a^{|l|}\} = \frac{1}{1-2a\cos w + a^2}$$

Desplazamiento Frecuencial

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$

$$e^{jw_0 n} x(n) \stackrel{F}{\longleftrightarrow} X(w - w_0)$$

■ La multiplicación de una secuencia x(n) por e ^(j wo n) equivale a un desplazamiento w_0 del espectro X(w).

Teorema de la Modulación

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$

$$x(n) \cos(w_0 n) \stackrel{F}{\longleftrightarrow} \frac{1}{2} [X(w + w_0) + X(w - w_0)]$$

Esta propiedad puede verse como un desplazamiento

$$\cos w_0 n = (e^{jwo n} + e^{-jwo n})/2$$

pero se prefiere la modulación ya que $x(n) \cos(w_0 n)$ es real.

■ Teorema de Parseval

$$x_{1}(n) \stackrel{F}{\longleftrightarrow} X_{1}(w) \qquad x_{2}(n) \stackrel{F}{\longleftrightarrow} X_{2}(w)$$

$$\sum_{n=-\infty}^{\infty} x_{1}(n) x_{2}^{*}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_{1}(w) X_{2}^{*}(w) dw$$

► En el caso especial de $x_1(n) = x_2(n) = x(n)$ la relación de Parseval se reduce a,

$$E_{x} = r_{xx}(0) = \sum_{n=-\infty}^{\infty} |x(n)|^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(w)|^{2} dw = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xx}(w) dw$$

Multiplicación de dos Secuencias

(Teorema del Enventanado)

$$x_{1}(n) \stackrel{F}{\longleftrightarrow} X_{1}(w) \qquad x_{2}(n) \stackrel{F}{\longleftrightarrow} X_{2}(w)$$

$$x_{3}(n) = x_{1}(n)x_{2}(n) \stackrel{F}{\longleftrightarrow} X_{3}(w) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_{1}(\lambda) X_{2}(w - \lambda) d\lambda$$

■ La multiplicación de dos señales en el dominio del tiempo equivale a la convolución de sus transformadas de Fourier en el dominio frecuencial.

Diferenciación en el Dominio Frecuencial

$$x(n) \stackrel{F}{\longleftrightarrow} X(w)$$

$$n \ x(n) \stackrel{F}{\longleftrightarrow} j \frac{d \ X(w)}{dw}$$

▶ Se obtiene al derivar la definición de la T.F.:

$$\frac{dX(w)}{dw} = \frac{d}{dw} \left[\sum_{n=-\infty}^{\infty} x(n)e^{-jwn} \right] \qquad \frac{dX(w)}{dw} = \sum_{n=-\infty}^{\infty} x(n)\frac{d}{dw}e^{-jwn} = -j\sum_{n=-\infty}^{\infty} n x(n)e^{-jwn}$$

$$j \frac{dX(w)}{dw} = F\{ n x(n) \}$$

Propiedad	Dominio del tiempo	Dominio de la frecuencia
Notación	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_2(\omega)$
Linealidad	$a_1 x_1(n) + a_2 x_2(n)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Desplazamiento temporal	x(n-k)	$e^{-j\omega k}X(\omega)$
Reflexión temporal	x(-n)	$X(-\omega)$
Convolución	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Correlación	$r_{x_1 x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$ $= X_1(\omega)X_2^*(\omega)$ [si $x_2(n)$ es real]
Teorema de Wiener-Khintchine	$r_{xx}(l)$	$S_{xx}(\omega)$
Desplazamiento frecuencial	$e^{j\omega_0 n}x(n)$	$X(\omega-\omega_0)$
Modulación	$x(n)\cos\omega_0 n$	$\frac{1}{2}X(\omega+\omega_0)+\frac{1}{2}X(\omega-\omega_0)$
Multiplicación	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$
Diferenciación en el dominio de la frecuencia	nx(n)	$jrac{dX(\omega)}{d\omega}$
Conjugación	$x^*(n)$	$X^*(-\omega)$
Teorema de Parseval	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi}$	$X_1(\omega)X_2^*(\omega)d\omega$

ión y Sistemas Inteligentes

Percepción y Sistemas Inteligentes

Senai <i>x(n)</i>		
1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

$$X(\omega) = 1$$

PSI Percepción y Sistemas Inteligentes

Señal <i>x(n)</i>	Espectro <i>X(</i> ω)
$\frac{1}{\pi}$ $\frac{\omega_c}{\pi}$ $\frac{\pi}{\omega_c}$	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
$x(n) = \begin{cases} \frac{\omega_c}{\pi} & n = 0\\ \frac{\sin \omega_c n}{\pi n} & n \neq 0 \end{cases}$	$X(\omega) = \left\{ egin{array}{ll} 1, \; \omega < \omega_c \ 0, \; \omega_c \le \omega \le \infty \end{array} ight.$
$x(n) = \begin{cases} a^n, & n \ge 0 \\ 0, & n < 0 \end{cases}$	$X(\omega) = \frac{1}{1 - a e^{-jw}}$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

PSI Percepción y Sistemas Inteligentes

Time domain $x[n]$	Frequency domain $X(\omega)$	Remarks
$\delta[n]$	1	
$\delta[n-M]$	$e^{-i\omega M}$	integer M
$\sum_{m=-\infty}^{\infty} \delta[n - Mm]$	$\sum_{m=-\infty}^{\infty} e^{-i\omega Mm} = \frac{1}{M} \sum_{k=-\infty}^{\infty} \delta\left(\frac{\omega}{2\pi} - \frac{k}{M}\right)$	integer M
u[n]	$\frac{1}{1 - e^{-i\omega}}$	
e^{-ian}	$2\pi\delta(\omega+a)$	real number a
$\cos(an)$	$\pi \left[\delta(\omega - a) + \delta(\omega + a) \right]$	real number a
$\sin(an)$	$\frac{\pi}{i} \left[\delta(\omega - a) - \delta(\omega + a) \right]$	real number a
$\mathrm{rect}\left[\frac{(n-M/2)}{M}\right]$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)} e^{-i\omega M/2}$	integer M
$\operatorname{sinc}[(a+n)]$	$e^{ia\omega}$	real number a
$W \cdot \operatorname{sinc}^2(Wn)$	$\operatorname{tri}\left(\frac{\omega}{2\pi W}\right)$	real number W $0 < W \le 0.5$
$W \cdot \operatorname{sinc}[W(n+a)]$	$\operatorname{rect}\left(\frac{\omega}{2\pi W}\right) \cdot e^{ja\omega}$	real numbers W , a $0 < W \le 1$
$\begin{cases} 0 & n = 0\\ \frac{(-1)^n}{n} & \text{elsewhere} \end{cases}$	j α	it works as a differentiator filter

Percepción y Sistemas Inteligentes

Time domain $x[n]$	Frequency domain $X(\omega)$	Remarks
$\frac{W}{(n+a)} \left\{ \cos[\pi W(n+a)] - \operatorname{sinc}[W(n+a)] \right\}$	$j\omega \cdot \operatorname{rect}\left(\frac{\omega}{\pi W}\right) e^{ja\omega}$	real numbers W , a $0 < W \le 1$
$\frac{1}{\pi n^2}[(-1)^n - 1]$	$ \omega $	
$\begin{cases} 0; & n \text{ odd} \\ \frac{2}{\pi n}; & n \text{ even} \end{cases}$	$\begin{cases} j & \omega < 0 \\ 0 & \omega = 0 \\ -j & \omega > 0 \end{cases}$	Hilbert transform
$\frac{C(A+B)}{2\pi} \cdot \operatorname{sinc}\left[\frac{A-B}{2\pi}n\right] \cdot \operatorname{sinc}\left[\frac{A+B}{2\pi}n\right]$	-A -B B A	real numbers A, B complex C

$$\mathrm{rect}(t) = \Box(t) = \begin{cases} 0 & \text{if } |t| > \frac{1}{2} \\ \frac{1}{2} & \text{if } |t| = \frac{1}{2} \\ 1 & \text{if } |t| < \frac{1}{2} \end{cases}$$

$$\mathrm{rect}(t) = \sqcap(t) = \begin{cases} 0 & \text{if } |t| > \frac{1}{2} \\ \frac{1}{2} & \text{if } |t| = \frac{1}{2} \\ 1 & \text{if } |t| < \frac{1}{2} \end{cases} \qquad \\ \mathrm{tri}(t) = \wedge(t) = \begin{cases} 1+t; & -1 \leq t \leq 0 \\ 1-t; & 0 < t \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

