

CS7IS2 - Artificial Intelligence 8-Puzzle Problem

Group Members:-Abhinav Gandhi Shikher Singh Vishal Tanvi Bagla

Problem Description

8-Puzzle Problem

A 8-Puzzle consists of 9 tiles arranged in a 3X3 grid with:-

- 1 blank tile
- 8 tiles numbered from 1 to 8.

Target:-

Reach goal state from initial state by making possible moves.

Possible Moves:-

- Vertical (Up and Down)
- Horizontal(Left and Right)

Example: 8-puzzle

 Here, blank moves left, right, or up

Algorithms Implemented

8-Puzzle Problem

Algorithm	Strategy Used	Description
Uniform Cost Search (UCS)	Uninformed Search	Explores the path with the lowest cost first. Hence, an optimal solution gets preference.
A Star Search (A*)	Informed Search	Uses heuristics to determine the path. Path with the lowest cost is explored first.
		Heuristics Used — Manhattan Distance Fixed Cost (Up= 0.1, Down=0.2,Left=0.3, Right=0.4)
Iterative Deepening Depth First Search (IDDFS)	Uninformed Search	Form of Depth First Search with a limit. Limit is incremented after each iteration. Optimal solution is guaranteed.

Results and Conclusion

8-Puzzle Problem

Comparative analysis of a testcase -

Testcase - 3,1,2,4,5,0,6,7,8				
Factors	UCS	A-Star	IDDFS	
Path to goal	[Left, Left, Up]	[Left, Left, Up]	[Left, Left, Up]	
Cost of Path	3	3	3	
Nodes Expanded	30	3	11	
Search Depth	3	3	3	
Maximum Search Depth	4	3	3	
Execution Time	0.00074506	0.00026393	0.00023556	
RAM Usage	9.86328125	10.0000000	9.84375000	

Conclusion –

- ❖ A* came out as the best performing algorithm and justifies the importance of heuristic measures.
- UCS was the worst performer in terms of node expanded or execution time.

Thank You!

