

EE/CSCI 451: Parallel and Distributed Computation

Lecture #3

8/25/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Outline

- From last class
 - Processor organization
 - Implicit parallelism
- Today (Chapter 2.2)
 - Memory systems
 - Latency, Bandwidth: performance implications
 - Cache: impact on performance
 - Data layout
 - Latency Hiding: Multithreading, Prefetching

Announcements

- Homework 1
 - Due: September 1 2020, midnight AOE (Any time On Earth)
 - Submit typewritten/scanned copy via blackboard
- Programming Homework 1
 - Due: August 28 2020, midnight AOE
 - Submit zip file via Blackboard

Memory system

 System performance (execution time) depends on the "rate" at which data can be accessed by the program

- (DRAM) Hardware Latency ~ 10 ns
- (Peak) Processor-Memory Bandwidth ~ 64 bits at 1 GHz
 (64 Gbits/sec or 8 GB/sec)
- Single cycle processor

Effective (DRAM) bandwidth depends on access stride

e.g. access consecutive addresses
$$i, i+1, ...$$
 [0,1,2,3,...] or arbitrary sequence $i_1, i_2, ..., i_k, ...$ [0,10,50,2,...]

System Organization

Performance of an application depends on

- Memory b/w and latency
- # of pipelines
- # of Functional Units (FPUs)

Example memory system performance (1)

Memory

Latency = 10 ns (Peak) Bandwidth = 64 bits at 1 GHz (64 Gbits/sec or 8 GB/sec) (bus frequency)

Processor

2 GHz, 1 word = 64 bits (8 bytes)

Unit of data access = 1 word

Cycle time = 0.5 ns (processor cycle)

2-issue superscalar, single cycle processor

2 Double Precision multiply-add (2 multipliers, 2 adders) FPUs

Peak performance of the processor = 2×4 = 8 GFlops/s
(Raw compute power)

Clock rate Total # of FP ops /cycle

Peak performance can also be computed as $2\times2 = 4$ GFlops/s

Clock rate 2 pipelines

Example memory system performance (2) Best Case ?

Example: Inner product: $a \cdot b = \sum_{i=1}^{n} a_i b_i$ (data in external memory)

2 data fetches for each multiply, add

Processor can do 8 mult or add/ns = 4 FP ops /cycle

Note: issue bandwidth limits performance to 2 FP ops/cycle (if no Fused mult add)

If we can stream the data (ie no DRAM latency (10ns) per access), In the **best case**, i.e., data is streamed:

Sustained performance (possible best case) = 2 ops over 4 processor cycles = **1 GFlop/s**Note: Initial access latency can be ignored for large *n*

Processor memory bandwidth determines possible best case sustained performance Note: Processor idles, waiting for data.

Example memory system performance (3) Worst Case?

Memory Latency = 10 ns (Peak) Bandwidth = 64bits at 1 GHz (64 Gbits/sec or 8 GB/sec)

Repeat

1. read $a_i \leftarrow 10$ ns 2. read $b_i \leftarrow 10$ ns

3. multiply (use register data)

4. add (use register data)

n times

Overlap Instr. 3, 4 with Instr. 1, 2 (Pipelining)

Sustained performance (possible worst case)

Total # of FP ops
Total time

Total time

Memory access time

$$\frac{2n}{20n \times 10^{-9}} = 0.1 \text{ GFlops/s}$$

Example memory system performance (4)

Inner product

Processor Peak = 8 GFlops/s (Raw compute power)

Processor Peak = 4 GFlops/s (Processor organization)

(Best case)

Sustained = 1 GFlop/s (Memory b/w bottleneck)

(Worst case)

Sustained = 0.1 GFlops/s (Memory latency bottleneck)

Memory Performance dictates overall application performance

Compute Bound/Memory (bandwidth) Bound (1)

Memory gap/Memory wall

Processor Performance >> Memory Performance

Processor may idle waiting for data

 Compute intensity = For every fetched data (from memory) how many ops make use of them

Compute Bound/Memory (bandwidth) Bound (2)

• Compute Bound: Performance is limited by available compute resources i.e. if we add more compute resources, the performance may improve (for a given bandwidth)

Cache (1)

Improving effective memory access latency

- Why it works?
 - Data reuse
 - Accessing from DRAM is expensive (DRAM latency)
 - Repeatedly use the data in cache, if possible (fast access)
 - Hit ratio: fraction of the memory references served by the cache

Cache (2)

- Cache characteristics
 - Cache size (M), Cache line size (L)
 - Unit of DRAM access—line size
 - Cache organization (virtual to physical mapping)
 - Direct Mapped
 - Set Associative
 - Fully Associative
 - Cache replacement policy (what is stored in cache?0
 - First in first out
 - · Most recently used
 - Random replacement
 - •
 - Write policy
 - Write through (to cache and to DRAM)
 - Write back

Cache (3)

Locality of references (program behavior)

Spatial locality

- If location i is referenced at time t, then locations near i are referenced in a small window of time following t
- Data in a cache line is effectively used

memory $\begin{array}{c|c} & & \\ \hline i & & \\ \hline \end{array}$ Time t

Temporal locality

- In a small window of time, repeated references to a small set of data items
- Reduces traffic to main memory

Cache (4)


```
Example: bubble sort
     for i from 1 to N
          for j from 0 to N-2
                R_1 \longleftarrow a[j]
                R_2 \longleftarrow a[j+1]
                if R_1 > R_2
                      swap (R_1 and R_2)
                end if
                 a[j] \leftarrow R_1
                 a[j+1] \leftarrow R_2
          end for
     end for
```

Assumptions:

- Direct mapped
- First in first out policy
- Cache line size = 1 data element
- Cache size 2 data elements

$$i = 1$$
 Read a[0], a[1] \rightarrow miss, miss
Read a[1], a[2] \rightarrow hit, miss
Read a[2], a[3] \rightarrow hit, miss
... ...
Read a[6], a[7] \rightarrow hit, miss

$$i = 2$$
 Read a[0], a[1] \rightarrow miss, miss
Read a[1], a[2] \rightarrow hit, miss

Cache hit ratio = $\frac{\text{# of times data found in cache}}{\text{Total # of accesses}}$

$$i = 1$$
, Read hit ratio = $\frac{N-2}{(N-1)*2} = \frac{6}{7*2} = 0.43$

Impact of cache on performance (1)

Matrix multiplication with on-chip cache

$$C = (A \times B)_{32 \times 32}$$

- 4 GHz Processor + DRAM
- 2 issue/cycle
- 5 stage pipeline
- Cache access latency = processor cycle time (0.5 ns)
- Multiple access to cache

Impact of cache on performance (2)

• Steps:

- Read A into cache
- Read B into cache
- Perform n^3 multiply and n^3 add to compute \boldsymbol{C}
- Store the results in cache
- Store the results from cache to DRAM
- Cache size ≥ 3K words for 32×32 matrix multiplication

Impact of cache on performance (3)

Assume

- No cache misses (no conflicts) doable by intelligent data placement
- Ideal case (no data dependencies) doable by program restructuring
- There is some overhead (load, compute) 2 instructions / compute step
- Case 1: 10 ns latency / memory access
 - Case 1a: with cache
 - Case 1b: without cache
- Case 2: 1 ns latency / memory access (streaming)
 - Case 2a
 - Case 2b

Impact of cache on performance (4)

• Case 1a: worst case access latency to memory with cache

• Read A into cache:
$$(32 \times 32) \times 10$$
 ns = $10 = 10 \mu$ s

• Read **B** into cache: $10 \mu s$

• Perform $2n^3$ mult/add to compute \boldsymbol{C} and store in cache:

$$2 \times 0.25 \text{ ns} \times 2 \times 32^3 / 2 = 16.384 \,\mu\text{s}$$

Load Compute

• Store the results from cache to DRAM: 10 μ s

Total time: 46.384 μ s

• Total number of ops: $2n^3 = 2(32)^3 = 65,536$

Sustained performance:
$$\frac{65536}{46.384 \times 10^{-6}} = 1.41 \text{ GFlops/s}$$

Note: we used worst case access latency to external memory

Impact of cache on performance (5)

- Case 1b: worst case access latency to memory without cache
- Sustained performance
 - Latency of 10 ns per access to each data
 - 2 words lead to one Multiply and one Add
 - Overlap read with arithmetic operations
 - = 2/20 GFlops/s
 - = 0.1 GFlops/s

Impact of cache on performance (6)

- Case 2a: best case access latency to memory with cache
 - Total time = time to compute + data access = $16.384+1+1=18.384 \mu s$ (time to load matrix A and B = $1 \mu s$)
 - Sustained Performance = $\frac{65536}{18.384 \times 10^{-6}}$ = 3.56 GFLOPS/s
- Case 2b: best case access latency to memory without cache
 - Two operations for two data access, streaming access at 1 ns per data
 - Sustained Performance = $\frac{2}{2 \times 1 \times 10^{-9}}$ = 1 GFLOPS/s

Impact of cache on performance (7)

- Performance improvement due to cache
 - Sustained performance (with cache)/Sustained performance (without cache)
 - Case 1: **1.41/0.1** \approx **14x**
 - Case 2: $3.56/1 \approx 3.5x$

Note

- Parallel algorithm should be carefully designed to achieve such speed-ups by exploiting cache
- Idea can be extended for large scale matrix multiplication (matrix size > cache size)

Cache pollution and sustained performance (1)

- Cache pollution
 - All fetched data in a cache line is not needed/used by the program
 - Reason: Mismatch between the way data is stored in DRAM and access pattern of the program (Low Spatial Locality)

$$A(i,j) \to \text{Memory}(i \cdot n + j)$$

 $0 \le i, j < n$

Column major order

$$A(i,j) \to \text{Memory}(i + n \cdot j)$$

 $0 \le i, j < n$

Data layout and data access pattern (2)

Example

- Cache line 4 words
- Sum each row of a matrix

$$B(i) = \sum_{j=0}^{\infty} A(i,j) \quad 0 \le i < n$$

- Assume A is stored in row major order
- Implementation 1:

1.
$$B(i) \leftarrow 0, 0 \le i < n$$

2. for
$$j = 0$$
 to $n - 1$ do

3. for
$$i = 0$$
 to $n - 1$ do

4.
$$B(i) \leftarrow B(i) + A(i,j)$$

$$A(i,j) \to \text{Memory}(i \cdot n + j)$$

 $0 \le i, j < n$

Column major access pattern

Data layout and data access pattern (3)

- Example (cont.)
 - Poor spatial locality
 - cache pollution
 - memory cache line access: only one word is used

$$A(i,j) \to \text{Memory}(i \cdot n + j)$$

 $0 \le i, j < n$

Data layout and data access pattern (4)

- Example –alternate implementation
 - Assume A is stored in row major order, cache line = 4 words
 - Implementation 2:

1.
$$B(i) \leftarrow 0, 0 \le i < n$$

2. for i = 0 to n - 1 do

3. for
$$j = 0$$
 to $n - 1$ do

4.
$$B(i) \leftarrow B(i) + A(i,j)$$

Row major access pattern

- High spatial locality
 - All 4 words of data accessed in each cycle are needed
 - Up to 4 times the performance as Implementation 1

$$A(i,j) \to \text{Memory}(i \cdot n + j)$$

 $0 \le i, j < n$

Data layout and data access pattern (5)

Note: can also do column major layout and use Implementation 1

→ high performance

Memory Systems Performance Summary

- Sustained performance
 - Main memory: latency and bandwidth affect performance
 - Caches can be very effective: Improvement depends on how cache is effectively accessed/exploited (Cache friendly/Cache oblivious algorithms)
 - Hit ratio
 - Data Locality
 - spatial locality
 - temporal locality
 - Cache pollution
 - Data layout and program access pattern affect
 - Effective processor-memory bandwidth
 - Sustained performance (GFlops/sec)

STREAM benchmark for memory performance (1)

- A simple synthetic benchmark program that measures sustainable memory bandwidth (in MB/s) and the corresponding computation rate for simple vector kernels
 - designed to be more indicative of the performance of very large, vector style applications
- It counts how many bytes the user asked to be read plus how many bytes the user asked to be written

STREAM benchmark for memory performance (2)

• The table below shows how many Bytes and FLOPs are counted in each iteration of the STREAM loops.

name	kernel	bytes/iter	FLOPS/iter
COPY: SCALE: SUM: TRIAD:	a(i) = b(i)	16	0
	a(i) = q*b(i)	16	1
	a(i) = b(i) + c(i)	24	1
	a(i) = b(i) + q*c(i)	24	2

Modern CPU STREAM benchmark results

Processor	# of cores	СОРУ	SCALE	ADD	TRIAD
AMD EPYC 7601	64	283 GB/s	286 GB/s	292 GB/s	290 GB/s
Intel Xeon Platinum 8160	40	175 GB/s	150 GB/s	170 GB/s	175 GB/s
IBM POWER9	40	240 GB/s	250 GB/s	255 GB/s	260 GB/s

Architectural support for latency hiding (1)

- Architecture → switch between threads when there is access to main memory by a thread
 - Typically hardware supports single-cycle switch between threads

Architectural support for latency hiding (2)

Example

- Assume 20 cycles for DRAM access [0.5 ns processor, 10 ns DRAM]
- Assume 1 cycle overhead for context switch
- Single thread: can be blocked for 20 cycles
- Multiple threads (e.g., $p \ge 10$): we can make sure the processor is kept busy executing some thread (i.e. doing useful work)

Multi-threading

Prefetching to hide memory latency

Example

1. for
$$i = 0 \text{ to } n - 1 \text{ do}$$

2.
$$C(i) \leftarrow A(i) + B(i)$$

 $A(0), B(0) \rightarrow \text{cache miss}$

Issue request to read A(0), B(0) in advance

Issue request to read A(1), B(1) in advance

inserted by compiler

to mask 20-cycle memory latency

Summary

- Memory systems
 - Main memory latency, throughput
 - Cache
 - Data reuse
 - To achieve high performance (reduce execution time)
 - Latency hiding
 - Reduce processor memory traffic (increase data reuse)

Backup Slides

Compute intensity example


```
A \leftarrow B * C n \times n matrix multiplication

Do i = 1 to n

Read i^{th}row of B

Do j = 1 to n

Read j^{th} col of C

Inner product B(i,*), C(*,j)
```

Compute intensity of row of B = nCompute intensity of col of C = 1