

Machine Learning for Tract Segmentation in dMRI Data

Bao Nguyen

NeuroInformatics Laboratory (NILab)

Contents

- Introduction
- State of the art (SoA)
- Problem statement
- Proposed solution
- Preliminary results
- Conclusion and Future works

White matter

white matter grey matter

dMRI technique

(diffusion Magnetic Resonance Imaging) in vivo (not invasive) Denis Le Bihan, 1984

- Number: ~ 10¹² axons
- Size: ~ 2-20μm

Streamline & Tractography

Streamline: a polyline representating thousands of axons. (fiber, track)

Bundle: a group of 'close' streamlines

Tractography: presentation of whole brain by streamlines.

Tract: the real anatomical group of axons.

Tractography Segmentation

To group streamlines belonging to a common anatomical area into one segmentation

Tract segmentation approaches

Atlas based Tract Segmentation

ROI based Tract Segmentation

Wakana et al., 2007

ROIs

are

drawn

Pros

- No pairwise distance calculate
- Relate to anatomy (indirect)
- Target tract

- Prior knowledge of tracjectory
- Work on well characterized tracts
- Co-registration

Unsupervised Tract Segmentation

Supervised Tract Segmentation

tractography

tract(s)

New strategy: BOI - Bundle of Interest

Focus directly on which bundle (cluster of streamlines) that user wants to work on

Approach	ROI	BOI
Anatomy related	Yes (indirect)	Yes
Visualization	No	Yes
Interaction	No	Yes
No prior knowledge of trajectory	No	Yes

Goals

Improve the support of ML for tract segmentation

Challenges

- overcome disadvantages of Atlas, ROI
- combine both un-supervised and supervised
- design an effective method for tract segmentation

Process design: interactive segmentation

Interactive tract refinement

Demo of Spaghetti

Problem statement

- Given a set of N objects $\mathcal{X} = \{x_1, \dots, x_N\}$
- $_{ullet}$ Traditional clustering: find one partition of ${\mathcal X}$

$$C = \{C_1, \ldots, C_K\}$$
 with $K \le N$

where
$$C_i$$
 is a cluster of \mathcal{X} : $C_i = \{x_1^i, \ldots, x_j^i\}, j \leq N$

$$i \quad C_i \neq \emptyset, i \in [1, \ldots, K]$$

$$ii \quad \bigcup_{i=1}^K C_i = \mathcal{X}$$

iii
$$C_i \wedge C_j = \emptyset$$
, $i, j \in [1, ..., K], i \neq j$

Interactive clustering

Our approach: find a set m partitions of \mathcal{X}

$$\mathcal{P} = \{ P_1, \ldots, P_m \}$$

where P_i is one partition of \mathcal{X} : $P_i = \{C_1^i, \ldots, C_d^i\}$

- i P_i represents the *ith abstraction level* of \mathcal{X}
- ii constraint γ : $\forall i \in [1, m-1], P_i \leq P_{i+1}$ ("nested in")
- Denoted as a triple $\langle \mathcal{P}, \mathcal{X}, \gamma \rangle$

Interactive clustering: partial order relation

- \mathcal{P}_{y} : set of all possible partitions of \mathcal{X}
- Over \mathcal{P}_{γ} , a partial order relation \preceq ("nested in")

$$\forall P_a, P_b \in \mathcal{P}_{\chi}, \ P_a \preceq P_b \longleftrightarrow \forall \ C^b_i \in P_b, \exists C^a_{i_1}, ..., C^a_{i_k} \in P_a \text{: } C^b_i = \bigcup_{t=1}^k C^a_{i_t}$$

Interactive clustering: update partitions

Remove an old object $x_{rm} \in \mathcal{X}$

$$\mathcal{X} = \{X_1, \dots, X_N\}$$

$$\mathcal{X}' = \mathcal{X} \setminus \{X_{r.m}\}$$

• Add a new object x_{add}

$$\mathcal{X} = \{X_1, \dots, X_N\}$$

$$\mathcal{X}' = \mathcal{X} \cup \{X_{add}\}$$

$$\mathcal{P} = \{ P_1, \dots, P_m \}$$

$$\langle \mathcal{P}, \mathcal{X}, \gamma \rangle, \gamma : P_i \preceq P_{i+1}$$

$$i \in [1, m-1]$$

$$\mathcal{P}' = \{ P'_1, \dots, P'_m \}$$

$$\langle \mathcal{P}', \mathcal{X}', \gamma' \rangle, \gamma' : P'_i \preceq P'_{i+1}$$

$$i \in [1, m-1]$$

current partitions

updating partitions

Interactive clustering: add new object

- Current viewing abstraction level is ith
- C(x, P_i): cluster in parition P_i having object x
 - All upper partitions

$$\gamma'_1: \forall j \in [i, ..., m], \forall x \in \mathcal{X}:$$

$$C(x,P'_i) = C(x_{add},P'_i) \rightarrow C(x,P'_j) = C(x_{add},P'_j)$$

All lower partitions

```
\gamma'_2: \forall k \in [1, ..., i-1], \forall x \in \mathcal{X}:
   C(x,P'_i) \neq C(x_{add},P'_i) \rightarrow C(x,P'_k) \neq C(x_{add},P'_k)
```

Hierarchical clustering

Find m partitions of $\mathcal{X}: \mathcal{P} = \{P_1, ..., P_m\}, P_i \leq P_{i+1}, i \in [1, m-1]$

Algorithm

- 1. Assign each s_i to one cluster
- 2. Merge two closest clusters
- 3. Compute distances
- 4. Repeat until all in one cluster

Interactive clustering: remove object

Removing object x_{rm} from all partitions

$$\begin{aligned} \forall \mathsf{P}_{\mathsf{i}}, \ \mathsf{i} \in [1,...,\mathsf{m}], \\ \forall \mathsf{j} \in [1,...,\mathsf{d}_{\mathsf{i}}]: \\ & \text{if } \mathsf{x}_{\mathsf{r}.\mathsf{m}} \in \mathsf{C}_{\mathsf{j}}^{\mathsf{i}} \ \text{then} \\ & \mathsf{C}_{\mathsf{j}}^{\mathsf{i}} = \mathsf{C}_{\mathsf{j}}^{\mathsf{i}} \setminus \{\mathsf{x}_{\mathsf{r}.\mathsf{m}}\}, \\ & \text{if } \mathsf{C}_{\mathsf{j}}^{\mathsf{i}} = \varnothing, \, \mathsf{P}_{\mathsf{i}} = \mathsf{P}_{\mathsf{i}} \setminus \, \{\mathsf{C}_{\mathsf{j}}^{\mathsf{i}}\} \end{aligned}$$

Interactive clustering: add object

Denote δ_{max} as the maximum distance in cluster C_i

$$\delta_{\text{max}}(C_i) = \max \{d(x,x')\}, \forall x,x' \in C_i, x \neq x'$$

- 1. Find the closet cluster of x_{add} in P_1 : $C_{close}(x_{add}, P_1)$
- 2. Start from the direct parent of $C_{close}(x_{add}, P_1)$: $C_{crt} = C_{close}(x_{add}, P_1)$. parent
- 3. If $(C_{crt} = \varnothing) \lor (d(x_{add}, C_{crt}) < \delta_{max}(C_{crt}))$
- 3.1. Merge: $C_{crt} = C_{crt} \cup \{s_a\}$
 - 3.2. Stop
- 4. $C_{crt} = C_{crt}$.parent

Preliminary Results

(method) Dissimilarity representation

E. Olivetti, **T. B. Nguyen**, E. Garyfallidis, *The Approximation of the Dissimilarity Projection*, Pattern Recognition in Neurolmaging, PRNI 2012.

The Approximation of the Dissimilarity Projection

Frame Obert M. Menter, 1998, Then Box Nayard and Fietherics Confulled

"Neural diseases Laboures (Bill d) Bass Scalab Foundation Boss, Rely

"Copie templatement Monte Ceres (SMC), Unevery of Hows, Nay

"Copie templatement Monte Ceres (SMC), Unevery of Hows, Nay

where the control of the control of

The contraction of the contracti

he the following we present a concern bernal descript of the destination protection impetitor with a matrix approximation to quantity from accusate this approximate retraction of the control of the control of the concerning of the control o

(software/tool) Spaghetti: an interactive visualization

tool for segmentation tractography

E. Garyfallidis, S. Gerhard, P. Avesani, **T. B. Nguyen**, V. Tsiaras, I. N. Smith, E. Olivetti, A software application for real-time, clustering based exploration of tractographies, OHBM 2012.

A software application for read-dime, dustering-based explanation of fracciographics for the control of the con

 (case study) ALS (amyotrophic lateral sclerosis) disease (in preparation)

Conclusion

- An effective method for tract segmentation: tract candidate (supervised) and tract refinement (clustering)
- An interactive visualization tool for tract segmentation
- ALS case study

Future works

- Implement the modified HAC for tractography
- Revise the solution for 'adding object' to partitions
- Integerate tract candidate (supervised) into Spaghetti

Credits

- Nivedita Agarwal, S.Chiara Trento Hospital, Italy;
 University of Utah, USA
- Eleftherios Garyfallidis, University of Cambridge, UK; University of Sherbrooke, Canada
- Emanuele Olivetti, Fondazione Bruno Kessler, Italy
- Paolo Avesani, Fondazione Bruno Kessler, Italy
- Luigi Cattaneo, CiMeC, University of Trento, Italy
- Francesca Maule, CiMeC, University of Trento, Italy

Thank you!