

TRABAJO FIN DE GRADO GRADO INGENIERÍA INFORMÁTICA

INDI Web Client

Desarrollo de un prototipo de cliente Web INDI para el control de instrumental astronómico

Autor

Pablo Torrecillas Ortega

Tutor

Prof. Dr. Sergio Alonso Burgos

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, 11 de Diciembre de 2015

INDI Web Client

Desarrollo de un prototipo de cliente Web INDI para el control de instrumental astronómico.

Autor

Pablo Torrecillas Ortega

Tutor

Prof. Dr. Sergio Alonso Burgos

INDI Web Cliente: Desarrollo de un prototipo de cliente Web INDI para el control de instrumental astronómico

Pablo Torrecillas Ortega

Palabras clave: INDI, *Software* Libre, Cliente Web, Internet, Astronomía, Control, Prototipo, Navegador

Resumen

Este proyecto ha sido realizado ante la necesidad de conseguir diferentes herramientas para el control de instrumental astronómico y facilitar el trabajo tanto a profesionales como a *amateurs* en el campo de la astronomía. Una vez analizado el estado del arte y los medios que se utilizan en este momento, se ha desarrollado un proyecto encaminado a conseguir los objetivos planteados a través de un prototipo de cliente web viniendo a completar de esta forma las diferentes aplicaciones que ya existen.

El objetivo del proyecto es poder realizar la función control de un observatorio astronómico situado en cualquier lugar del mundo con conexión a Internet.

Las tareas que se pueden realizar son las siguientes: recepción y procesamiento de datos de diferente naturaleza, envío de los mismos y cambio de parámetros y valores. Este trabajo viene a ser la base para otras funciones posteriores que se pueden desarrollar a partir del prototipo de cliente web realizado.

Para ello, se ha utilizado como punto de partida el protocolo INDI que ya se encuentra desarrollado. INDI es, a grandes rasgos, un protocolo que facilita el control en el tiempo y en el espacio, así como la adquisición de datos y el intercambio entre diferentes dispositivos hardware y sus interfaces software.

La utilización de este protocolo, lleva aparejado una enorme ventaja y es el poder emplear diferentes dispositivos obteniendo resultados con el mismo beneficio, independientemente de la naturaleza del dispositivo utilizado, abriéndose así un abanico de posibilidades ante el problema que se podría plantear si se tuviera que utilizar un dispositivo concreto y único, pues de esa forma se acotarían enormemente las posibilidades si no se cuenta con el dispositivo en cuestión y por tanto no se podría llevar a cabo la función control. Cabe destacar que este prototipo de cliente es multiplataforma y por tanto es capaz de ejecutarse en cualquier máquina que disponga de navegador web.

La aportación de este proyecto, basado en un prototipo de cliente web, es una nueva e importante posibilidad que viene a unirse a las ya existentes, complementando la forma de obtener resultados utilizando otras herramientas.

Dado que la difusión de Internet se hace ya de forma cotidiana y es fácil encontrar un punto de acceso al mismo, prácticamente en cualquier punto del planeta el astrónomo tanto *amateur* como profesional, solo necesitaría un navegador web y la conexión a Internet para poder trabajar y controlar todos los aspectos astronómicos que desee.

Este proyecto aporta una innovación de forma sencilla, rápida y poco costosa en la forma de trabajar en la obtención de datos y su posterior manipulación en el campo de la astronomía.

Hay que hacer justa mención al *software* libre y su filosofía pues han sido pilares básicos en el trabajo que hoy se presenta, ya que se han utilizado todas las herramientas de dicho *software* para el desarrollo del prototipo del cliente web.

Como conclusión, cabe destacar que este proyecto sienta las bases para conseguir llegar a ser un cliente web como producto final utilizando el trabajo desarrollado y que se iniciaba creando un prototipo de cliente web basado en INDI.

Project Title: Project Subtitle

First name, Family name (student)

 $\textbf{Keywords}\text{: } Keyword1, Keyword2, Keyword3, \dots$

Abstract

Write here the abstract in English.

D. **Sergio Alonso Burgos**, Profesor del Departamento de Lenguajes y Sistemas Informáticos de la Universidad de Granada.

Informa:

Que el presente trabajo, titulado *INDI Web Client, Desarrollo de un prototipo de cliente Web INDI para el control de instrumental astronómico*, ha sido realizado bajo su supervisión por **Pablo Torrecillas Ortega**, y autorizamos la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Granada a 11 de diciembre de 2015.

Tutor:

Prof. Dr. Sergio Alonso Burgos

Agradecimientos

Poner aquí agradecimientos...

Índice general

1.	\mathbf{Intr}	oducci	ón	15
	1.1.	Astron	omía	15
	1.2.	Observ	vatorio e Instrumental Astronómico	18
		1.2.1.	Telescopio	18
		1.2.2.	Cámara CCD	19
		1.2.3.	Montura	19
		1.2.4.	Enfocador	19
		1.2.5.	Rueda Portafiltros	19
		1.2.6.	Cúpula	19
		1.2.7.	Óptica Adaptativa	19
		1.2.8.	Estación Meteorológica	19
		1.2.9.	Controlador de Dispositivos	19
	1.3.		o del arte: Software	

Capítulo 1

Introducción

1.1. Astronomía

La astronomía es la ciencia que se ocupa del estudio de los cuerpos celestes del universo, los planetas y sus satélites, los cometas y meteoroides, las estrellas y la materia interestelar, los sistemas de materia oscura, estrellas, gas y polvo llamados galaxias y los cúmulos de galaxias, así como sus movimientos, los fenómenos ligados a ellos y las leyes que los rigen.

La palabra, como tal, proviene del latín astronomía. La astronomía ha formado parte de la historia de la humanidad considerándola como la ciencia más antigua. Civilizaciones como la azteca, la maya y la inca, así como la egipcia, la china y la griega alcanzaron un grado tal de conocimientos que son tenidos por fundamentales para la posterior evolución de esta disciplina, considerándola como esencial para otras ciencias como la matemática o la física.

Su registro y la investigación de su origen se produce a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio.

Es una de las pocas ciencias en las que los *amateurs* también pueden desempeñar un papel activo, especialmente en el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

En sus inicios, la astronomía tenía una aplicación práctica para conocer los ciclos de los astros y establecer medidas de tiempo que permitieran determinar, entre otras cosas, el momento propicio para la siembra y la cosecha. En los pueblos antiguos, los astros se consideraban como divinidades y el estudio de sus posiciones resultaba esencial para determinar sus influen-

16 1.1. Astronomía

cias sobre los acontecimientos terrenales. Por este conjunto de razones la astronomía fue, en todas las civilizaciones del pasado, una ciencia tanto al servicio del poder civil como del religioso.

Antiguamente se ocupaba, únicamente, de la observación y predicciones de los movimientos de los objetos visibles a simple vista, quedando separada durante mucho tiempo de la Física. En Sajonia-Anhalt, Alemania, se encuentra el famoso Disco celeste de Nebra, que es la representación más antigua conocida de la bóveda celeste. Quizá fueron los astrónomos chinos quienes dividieron, por primera vez, el cielo en constelaciones. Los antiguos griegos hicieron importantes contribuciones a la astronomía, entre ellas, la definición de magnitud. La astronomía precolombina poseía calendarios muy exactos y parece ser que las pirámides de Egipto fueron construidas sobre patrones astronómicos muy precisos.

Fue probablemente Eratóstenes quien diseñara la esfera armilar que es un astrolabio para mostrar el movimiento aparente de las estrellas alrededor de la tierra.

La astronomía observacional estuvo casi totalmente estancada en Europa durante la Edad Media, a excepción de algunas aportaciones como la de Alfonso X el Sabio con sus tablas alfonsíes, o los tratados de Alcabitius, pero floreció en el mundo con el Imperio persa y la cultura árabe. Al final del siglo X, un gran observatorio fue construido cerca de Teherán (Irán), por el astrónomo persa Al-Khujandi, quien observó una serie de pasos meridianos del Sol, lo que le permitió calcular la oblicuidad de la eclíptica. También en Persia, Omar Khayyam elaboró la reforma del calendario que es más preciso que el calendario juliano acercándose al Calendario Gregoriano.

Durante siglos, la visión geocéntrica de que el Sol y otros planetas giraban alrededor de la Tierra no se cuestionó. En el Renacimiento, Nicolás Copérnico propuso el modelo heliocéntrico del Sistema Solar. Su trabajo De Revolutionibus Orbium Coelestium fue defendido, divulgado y corregido por Galileo Galilei y Johannes Kepler, autor de Harmonices Mundi, en el cual se desarrolla por primera vez la tercera ley del movimiento planetario.

Galileo añadió la novedad del uso del telescopio para mejorar sus observaciones. La disponibilidad de datos observacionales precisos llevó a indagar en teorías que explicasen el comportamiento observado. Al principio sólo se obtuvieron reglas como las leyes del movimiento planetario de Kepler, descubiertas a principios del siglo XVII.

Fue Isaac Newton quien extendió hacia los cuerpos celestes las teorías de la gravedad terrestre y conformando la Ley de la gravitación universal,

Introducción 17

inventando así la mecánica celeste, con lo que explicó el movimiento de los planetas y consiguiendo unir el vacío entre las leyes de Kepler y la dinámica de Galileo. Esto también supuso la primera unificación de la astronomía y la física.

Tras la publicación de los Principios Matemáticos de Isaac Newton (que también desarrolló el telescopio reflector), se transformó la navegación marítima. A partir de 1670, utilizando instrumentos modernos de latitud y los mejores relojes disponibles se ubicó cada lugar de la Tierra en un planisferio o mapa, calculando para ello su latitud y su longitud. Los requerimientos de la navegación supusieron un empuje para el desarrollo progresivo de observaciones astronómicas e instrumentos más precisos, constituyendo una base de datos creciente para los científicos.

A finales del siglo XIX se descubrió que, al descomponer la luz del Sol, se podían observar multitud de líneas de espectro , regiones en las que había poca o ninguna luz.

Se descubrió que las estrellas eran objetos muy lejanos y con el espectroscopio se demostró que eran similares al Sol, pero con una amplia gama de temperaturas, masas y tamaños. La existencia de la Vía Láctea como un grupo separado de estrellas no se demostró hasta el siglo XX, junto con la existencia de galaxias externas y, poco después, la expansión del universo, observada en el efecto del corrimiento al rojo. La astronomía moderna también ha descubierto una variedad de objetos exóticos como los quásares, púlsares, radiogalaxias, agujeros negros, estrellas de neutrones, y ha utilizado estas observaciones para desarrollar teorías físicas que describen estos objetos.

Durante el siglo XX, la espectrometría avanzó, en particular, como resultado del nacimiento de la física cuántica, necesaria para comprender las observaciones astronómicas y experimentales.

La astronomía moderna se divide en varias ramas: astrometría, el estudio mediante la observación de las posiciones y los movimientos de estos cuerpos; mecánica celeste, el estudio matemático de sus movimientos explicados por la teoría de la gravedad; astrofísica, el estudio de su composición química y su condición física mediante el análisis espectral y las leyes de la física, y cosmología, el estudio del Universo como un todo.

1.2. Observatorio e Instrumental Astronómico

La denominación y el edificio conocido como Observatorio Astronómico, lugar desde donde se estudian y controlan los cambios, los movimientos y las leyes que rigen los astros, ha sufrido grande cambios con el paso del tiempo. En la antigüedad, dado que la astronomía estaba ligada a la religión y por tanto a los templos, estos eran los lugares que servían para hacer de ellos observatorios astronómicos.

Fue ya en la Edad Media cuando el observatorio comenzó a ser un lugar en el cual se reunían los astrónomos y en él se fueron disponiendo los diferentes instrumentos o herramientas que facilitaban el estudio de aquellas personas, profesionales o amateurs, que se dedicaban a esta disciplina. Después de las primeras décadas del siglo XX, los astrónomos se veían en la obligación de alejarse de la ciudad debido a la contaminación lumínica y química que en ella se produce. Es en este momento histórico cuando comenzaron a construirse los observatorios astronómicos, siguiendo en la actualidad ubicándose en lugares desérticos y elevados para conseguir trabajar con un cielo oscuro, libre de contaminación lumínica y consiguiendo que el número de días serenos sea más elevado.

Por otra parte, se denomina instrumental astronómico al conjunto de instrumentos a disposición del astrónomo para complementar y facilitar sus observaciones. A continuación, se pasa a describir parte del instrumental más importante que podemos encontrar en un observatorio.

1.2.1. Telescopio

El telescopio es un instrumento cuya función principal es recoger la luz de un objeto lejano y ampliarlo. Está considerado como el artífice de la astronomía moderna.

Introducción 19

Figura 1.1: Telescopio Astronómico (http://blog.astroaficion.com/)

- 1.2.2. Cámara CCD
- 1.2.3. Montura
- 1.2.4. Enfocador
- 1.2.5. Rueda Portafiltros
- 1.2.6. Cúpula
- 1.2.7. Óptica Adaptativa
- 1.2.8. Estación Meteorológica
- 1.2.9. Controlador de Dispositivos
- $1.3. \quad \text{Estado del arte: } Software$