APPENDIX

A. NP-completeness of Lossless Extraction Decision Problem

We define the decision version L of lossless extraction problem as follows.

Input: (\mathcal{F}, V) and k, where \mathcal{F} is the set of all the frequent patterns such that every $f \in \mathcal{F}$ has a valid branch combination b_f with storage cost c_f , V is the universal set of all the branch ids of the frequent patterns, and $k \in \mathbb{N}$.

Question: Does there exist a $E \subseteq \mathcal{F}$ for lossless extraction with $\sum_{e \in E} c_e \leq k$?

Claim 1: L is in NP.

Proof: The following verifier for L runs in time polynomial in the length of the inputs:

Verifier \mathbb{V} ($<\mathcal{F},V,k>,< E>$):

- 1. Construct $U = \{u | u \in X \land X \in \mathcal{F}\}$
- 2. Construct $T = \{e | e \in X \land X \in E\}$
- 3. $\forall e \in U$, Construct $V_e = \{i | e \in X \land X \in \mathcal{F} \land i \in b_X\}$
- 4. $\forall e \in T$, Construct $W_e = \{i | e \in X \land X \in E \land i \in b_X\}$
- 5. If the following are all true then accept else reject:
 - i U = T (all frequent items included)
 - ii $\forall e \in U, V_e = W_e$ (all

 tranch id, item> included)
 - iii $\sum_{e \in E} c_e \le k \text{ (total cost } \le k) \blacksquare$

Claim 2: Weighted Set Cover $\leq_p L$

Proof: The weighted set cover problem takes as input $\langle U, \mathcal{A}, k \rangle$, where \mathcal{A} is a set whose member $i \subseteq U$ with cost c_i and $k \in \mathbb{N}$, to answer the question if U has an \mathcal{A} -cover of cost k.

Let us define a function f that takes as input $\langle U, \mathcal{A}, k \rangle$ and output $\langle \mathcal{F}, V, k \rangle$. We perform this by computing mutually exclusive sets D_i from \mathcal{A} in polynomial time, such that $D_i \cap D_j = \emptyset$, $\forall i \neq j$ and $\bigcup_i D_i = U$, where $i \in \mathbb{N}$.

Now, \mathcal{F} can be computed as follows. $\forall w \in \mathcal{A} \implies w \in \mathcal{F}$ with cost c_w and valid branch combination $\{i\}$ where $w \subseteq D_i$.

Suppose U has a weighted \mathcal{A} -cover \mathcal{B} of cost $\leq k$. Then it can be trivially shown, \mathcal{B} can be used for lossless extraction of \mathcal{F} , since all frequent items and their corresponding valid branches are covered.

Conversely, if \mathcal{B} can be used for lossless extraction of \mathcal{F} , then $\bigcup_{w \in \mathcal{B}} w = U$ and total cost of $\mathcal{B} \leq k$. Thus \mathcal{B} is also a weighted \mathcal{A} -cover of cost $\leq k$.