EC569 Economic Growth Technological Progress Lecture 8

İlhan Güner

2020-03-02

Overview

- Finish covering the two-country model of technology creation and growth
- Relax some unrealistic assumptions on the growth rate of technology
- Analyze the motives and consequences of R&D in a market economy
- Understand why might the level of R&D in market economy not be socially optimal
- Last lecture and this one are about understanding the sustained economic growth in advanced economies.

Last week, we left at...

Two-country model of technology creation and growth

- Draws on Barro and Sala-i Martin (1997)
- Two countries: country 1 and country 2

$$y_1 = A_1(1-\gamma_{A,1})$$

$$y_2=A_2(1-\gamma_{A,2})$$

- Two means of acquiring a technology
 - Innovation: the invention of a new technology
 - **Imitation:** copying of a technology from elsewhere, available only to *technology follower*
- Suppose, country 1 is the **technology leader:** $A_1 > A_2$
- Country 2 is the **technology follower:** $A_1 > A_2$
- Assume $\gamma_{A,1} > \gamma_{A,2}$
 - This assumption along with equal labor force sizes guarantees that country 1 is the technology leader in the model's steady state.

Productivity Growth Rates

• Productivity growth rate in the leader country

$$\hat{A}_1=rac{\gamma_{A,1}}{\mu_i}L_1,$$

where μ_i is the cost of *invention*.

• Productivity growth rate in the follower

$$\hat{A}_2=rac{\gamma_{A,2}}{\mu_c}L_2,$$

where μ_c is cost of copying (or imitation)

Cost of Copying for the Follower Country

• Cost of *copying* is a function of technology gap between leader and follower:

$$\mu_c = c \left(rac{A_1}{A_2}
ight)$$

- As technology gap widens, cost of copying decreases
- ullet As $rac{A_1}{A_2} o\infty$, $\mu_c=c\left(rac{A_1}{A_2}
 ight) o0$

Graphics from: Weil (2013)

Steady State in the Two-Country Model

- If $A_1/A_2=1$, then cost of invention would be the same, and country 1 will grow faster since $\gamma_{A,1}>\gamma_{A,2}$
- If $A_1/A_2=\infty$, then cost of copying would be 0 for country 2, and it will grow much faster than country 1
- At some point $1 < A_1/A_2 < \infty$ the countries will grow at the same rate
- Steady state is stable:
 - \circ If $A_1/A_2 > (A_1/A_2)_{ss}$, A_2 will grow faster and $A_1/A_2 \downarrow$
 - $\circ \:$ If $A_1/A_2 < (A_1/A_2)_{ss}$, A_1 will grow faster and $A_1/A_2 \uparrow$

• Remember that $\hat{A}_2=rac{\gamma_{A,2}}{\mu_c}L_2, \mu_c\downarrow$ as $A_1/A_2\uparrow$

Graphics from: Weil (2013)

Steady state

• In the steady state, countries grow at the same rate

$$rac{\gamma_{A,1}}{\mu_i}L=\hat{A}_1=\hat{A}_2=rac{\gamma_{A,2}}{\mu_c}L$$

• Cost of copying:

$$\mu_c = rac{\gamma_{A,2}}{\gamma_{A,1}} \mu_i$$

- Country 2 has lower cost of technology acquisition
- Once we know μ_c , we can solve for A_1/A_2 s.t. $c(A_1/A_2)=\mu_c=rac{\gamma_{A,2}}{\gamma_{A,1}}\mu_i$
- Is the technology-leading country necessarily better off than the follower?

Effects of an increase in R&D in the follower country on the steady state

- Increase $\gamma_{A,2}$ but still lower than $\gamma_{A,1}$
- Technology level of the follower country come closer to the technology level of the leader country
- ullet Since $\gamma_{A,2}<\gamma_{A,1}$, $A_1>A_2$ in the long run

Graphics from: Weil (2013)

Effect of an increase in $\gamma_{A,2}$ on productivity and output

Graphics from: Weil (2013)

- Increase in $\gamma_{A,2}$ causes a temporary increase in growth rates, in contrast to permanent increase in one-country model
 - Similar to increase in investment rate in the Solow model
- In contrast, an increase in $\gamma_{A,1}$ leads to permanent changes in the growth rates

Technology production function

Technology production function

• So far, we assumed technology growth rate is independent of current technology level:

$$\hat{A}=rac{L_A}{\mu}$$

- However, technology is cumulative:
 - Researchers begin their investigations where those who came before them left off.
- Considering the increse in the research efforts, growth should have skyrocketed.

Data source: OECD

Cumulative nature of technology development

Instead of assuming
$$\hat{A}=rac{L_A}{\mu}$$
 assume $\hat{A}\equivrac{\dot{A}}{A}=rac{L_A^{\lambda}}{\mu}A^{\phi-1}$, then

$$\dot{A}=rac{L_A^\lambda}{\mu}A^\phi$$

• If $\phi>0$: standing on shoulders

Isaac Newton:

- If I have seen farther than others, it is because I have stood on the shoulders of giants.
- Larger base of knowledge
- Larger set of tools
- If $\phi < 0$: fishing out
 - Fishing out effect: easiest discoveries have already been made
 - o More is known today, more effort for a researcher to learn everything required

Stepping on toes effect

- If $\lambda < 1$
- Efforts of most of the researchers will be wasted if many are working at the same project
 - Charles Darwin came up earlier with *natural selection* than Alfred Wallace
 - Two teams completed the sequencing of human genome simultaneously

Long-run growth rate

- How do we calculate long-run economic growth if $\dot{A}=rac{L_A^\lambda}{\mu}A^\phi$?
- ullet Growth rate of A, $g_A\equivrac{\dot{A}}{A}=rac{(\gamma_AL)^\lambda}{\mu}A^{\phi-1}=rac{(\gamma_AL)^\lambda}{\mu A^{1-\phi}}$
- ullet For g_A to be constant, $(\gamma_A L)^\lambda$ and $\mu A^{1-\phi}$ should grow at the same rate.
- Growth rate of $(\gamma_A L)^{\lambda}$ is λn , where n is the population growth rate.
- ullet Growth rate of $\mu A^{1-\phi}$ is equal to $(1-\phi)g_A$
- $(1-\phi)g_A=\lambda n$
- ullet Growth rate of technology: $g_A=rac{\lambda n}{(1-\phi)}$ if $\phi<1$.
- ullet g_A is positively correlated with λ and n, and negatively correlated with ϕ

Determinants of productivity growth

Recall that
$$g_A \equiv rac{\dot{A}}{A} = rac{(\gamma_A L)^\lambda}{\mu} rac{A^\phi}{A}$$

In the long-run:
$$g_A = rac{\lambda n}{(1-\phi)}$$

To understand the intuition, suppose $\lambda=1$ and $\phi=0$

Then $g_A=rac{(\gamma_A L)}{\mu}rac{1}{A}$ all the time, $g_A=n$ in the long run

- If population does not grow, g_A will converge to 0
- Hence the only source of growth is from population growth
- $g_A=n$ if $\lambda=1$ and $\phi=0$
- Larger population generates more ideas
- Since ideas are non-rivalrous, everyone benefits

Determinants of productivity growth, cont'd

- ullet Now suppose $\lambda=1$ and $\phi=1$
- Then, $g_A=rac{(\gamma_A L)}{\mu}rac{A}{A}=rac{(\gamma_A L)}{\mu}$ all the time
- Notice that this formulation is equivalent to our assumption in the last lecture
- We see sustained growth even if research effor is contant, i.e. even if $\gamma_A L$ is constant.
- Rejected by the data

Determinants of productivity growth, cont'd (2)

If $\phi > 0$ but $\phi < 1$:

still positive spillovers from research

$$g_A=rac{(\gamma_A L)^\lambda}{\mu}rac{A^\phi}{A}$$
 all the time

 g_A at the steady state (or balanced growth path): $g_A = rac{\lambda n}{(1-\phi)}$

- Unaffected by the fraction of population engaging in R&D
 - \circ Intuitively, higher γ_A leads to higher \hat{A} in the short run
 - \circ In the long-run, because of diminishing marginal product of idea stock in idea creation, γ_A does not affect the long-run economic growth.

However, short-run growth rate of productivity is a still function of fraction of labor force engaging in R&D.

Income per capita in the long run

- Fraction of labor force engaging in R&D impacts income per capita
 - Positively: high level of productivity in the long run
 - Negatively: smaller fraction of workers in the production
- Size of labor force, L(t), impacts income per capita positively (scale effect):
 - \circ **demand effect:** $L \uparrow \Rightarrow$ larger market for an idea $\Rightarrow \uparrow$ return to research
 - \circ **supply effect:** $L\uparrow\Rightarrow$ more potential creators of ideas

How is the level of innovation determined in a market economy?

2-models of innovation

Romer Model

- Developed by Paul Romer
- Technological progress in Romer:
 - increase in the number of differentiated intermediate goods
 - steam engines and electric motors are used alongside each other
- To produce a differentiated intermediate good,
 - one needs to own the blueprints of production
- Monopolistic competition in the intermediate goods
 - Economic profit is the motive to innovate

Schumpeterian model

- Developed by Aghion and Howitt (1992) and Grossman and Helpman (1991)
- Insights of Joseph Schumpeter, creative destruction
- Technological progress in the Schumpeterian model:
 - Technological progress: an innovation replaces an existing intermediate good
 - \circ Walking \to horse cart \to the Model T Ford \to modern cars
 - Hence the term creative destruction

What motivates entrepreneurs to innovate?

Return to innovation: expected discounted sum of future profits

Fraction of labor force working in R&D depends

- negatively on the distcount rate
 - the lower the value of future consumption, the lower the incentive to give up current consumption to have higher future consumption
- positively on the probability of innovation
 - The higher the chance of a successful innovation, the higher the incentives to innovate
- Negatively on the probability of innovation
 - The higher the chance of being replaced by subsequent innovators, the lower the incentives to innovate
 - Notice that this motive is missing in the Romer model.

Comparison of the Romer model and the Schumpeterian model

- In both models, long-run **growth** is independent of the fraction of labor force engaging in research
- In both models, **level** of income per capita in the long run is impacted by the fraction of labor force engaging in research
- If the discount rate applied to monopoly profits is large, the Schumpeterian model imply a larger fraction of labor force engaging in innovation
 - because relative importance of being replaced by others is small
- If the discount rate is relatively small, the Schumpeterian model imply a smaller fraction of labor force engaging in research
 - because people are sensitive to the future destruction of profits

Socially optimal R&D

Because of the externalities in the innovation process, competitive equilibrium R&D level is not socially optimal.

Three distortions:

Remember that
$$\dot{A}=rac{L_A}{\mu}A^{\phi}$$

- if $\phi>0$: "standing on shoulders"
 - Researchers do not benefit from the positive impact on the subsequent innovators
- if $\lambda < 1$: "stepping on toes"
 - Researchers do not take into account potential duplication of research efforts
- Consumer surplus effect
 - Private gain of an innovation = profit < Consumer surplus = Social gain
- Ground for government interference to correct for the externalities

Summary

- Analyzed the technology growth rates of different countries are interrelated.
- Analyzed how current level of technology, and number of researchers determine rate of technological progress.
- Analyzed the motives of innovation
- Analyzed the consequences of innovation
- Analyzed externalities in the innovation process, and justified the role of government intervention

To review this lecture

Read

- Chapter 8.3 of Economic Growth by David Weil
- Mathematical appendix to Cahpter 9 of Economic Growth by David Weil
- Chapter 5 of Introduction to Economic Growth by Jones and Vollrath