MAD 2104: Practice Test 1

1. Rewrite the following using variables:

"Given any two real numbers, there is a real number in between."

2. Let $A=\{c, d, f, g\}$, $B=\{f, j\}$, and $C=\{d, g\}$. Answer yes or no for the following questions:

a. Is $B \subseteq A$?

b. Is $C \subseteq A$?

- c. Is C a proper subset of A?
- 3. Consider the statement forms $(p \lor q) \lor (p \land r)$ and $(p \lor q) \land r$. Fill in the truth table showing each form:

p	q	r	
T	Т	Т	
T	Т	F	
T	F	Т	
T	F	F	
F	T	Т	
F	Т	F	
F	F	Т	
F	F	F	

Are they logically equivalent? _____

- 4. Use De Morgan's law to write the negation of: x < 2 or x > 5.
- 5. Write the negation of: "If today is New Year's Eve then tomorrow is January."
- 6. For the statement "If the decimal expansion of r is terminating then ${\bf r}$ is rational", give the
- a. Inverse
- b. Contrapositive

7. Construct a truth table for: $(p \rightarrow r) \leftrightarrow (q \rightarrow r)$.

p	q	r	
Т	T	T	
Т	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

8. Write the truth table for the following argument. You should have a column for each premise and for the conclusion. Circle the critical rows.

$$p \rightarrow q \lor r$$
$$\sim q \lor \sim r$$
$$\therefore \sim p \lor \sim r$$

p	q	r	
Т	T	T	
Т	T	F	
Т	F	T	
Т	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

Is the argument valid?_____

9. Let P(x) be the predicate "x > 1/x". What is the truth set of P(x) if the domain of x is \mathbb{R} .

10. Rewrite the following:								
a. "All rectangles are quadrilaterals"								
∀x, x								
b. "Some sets have 16 subsets"								
∃x such that								
11. Consider the statement " \forall real numbers x , if $x^2 \ge 1$ then $x > 0$."								
a. Write the negation of the statement.								
b. Write the converse of the statement.								