PRINCIPLES OF PROGRAMMING LANGUAGES

I.2 LAMBDA CALCULUS

DR. HERBERT PRÄHOFER

INSTITUTE FOR SYSTEM SOFTWARE
JOHANNES KEPLER UNIVERSITY LINZ

LAMBDA CALCULUS

developed by Alonzo Church, 1930s

Formal theory for computable functions

universal model for computations - Turing complete

Consists of

- Syntax in the form of lambda expressions
- Operational semantics in the form of conversion rules

Used for

- reasoning about computable functions
- formal definition of semantics of programming languages
- model for implementation of functional programming languages
 - ☐ functional languages are direct implementations of lambda calculus
 - lambda calculus is basis for the execution model of functional languages,

LAMBDA CALCULUS

- Syntax
- Conversion rules
- Evaluation strategies
- Summary

SYNTAX OF LAMBDA EXPRESSIONS

Lambda expressions

```
Lamba-expr =
    Variable
    | λ Variable {Variable} . Lambda-expr
    | Lambda-expr Lambda-expr {Lambda-expr} .
```

lambda abstraction function application

also named lambda function

Constant

names for lambda functions (optional)

LAMBDA ABSTRACTION

Function definitions by lambda abstractions

Lambda abstraction = anonymous function definition

Examples:

FUNCTION APPLICATION

Prefix notation of function applications

juxtaposition of function and argument(s)

Examples:

BOUND AND FREE VARIABLES

■ A variable is **bound** if there is an enclosing lambda abstraction which binds it; otherwise the variable is called **free** in the lambda abstraction

$$\lambda$$
 y . f x y y is bound, f and x are free in expression f x y

■ Bound variables get their values by arguments of a function application

$$(\lambda y \cdot f x y) b \rightarrow f x b$$

■ free variables may be bound by some surrounding lambda abstraction, e.g.,

$$\lambda x \cdot (\lambda y \cdot f x y)$$
 $(\lambda x \cdot (\lambda y \cdot f x y)) a b $\rightarrow f a b$$

now x is bound by outer lambda abstraction (f still free)

MULTIPLE ARGUMENTS AND CURRY-FORM

after Haskell B. Curry, US-American logician, 1900-1982.

Lambda abstraction with multiple bound variables

$$\lambda x y \cdot f x y$$

two variables x and y are **bound**

Curry-form: lambda abstractions always with a single variable

expression can be a further lamdba abstraction with next variable bound

$$\lambda x \cdot (\lambda y \cdot f x y)$$

first abstraction binds x and is defined by second abstraction which binds y

Currying

Building Curry-form by successively forming one argument abstractions

$$\lambda x y z$$
 . $f x y z$ $\rightarrow \lambda x . (\lambda y . (\lambda z . f x y z))$

both forms are equivalent!

CONSTANTS

- In (pure) lambda calculus no functions and literals exist per se
 - ☐ they all are finally expressed by lambda abstractions
- We informally introduce **bindings** of **lambda abstractions** to **names**, like

```
TRUE = \lambda t f . t

FALSE = \lambda t f . f

AND = \lambda a b . a b (\lambda t f . f)

...
```

```
0 = \lambda f. \lambda x. x
1 = \lambda f. \lambda x. f x
...
+ = \lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)
* = ...
```

```
DOUBLE = \lambda x \cdot + x x
```

or just

DOUBLE x = + x x

LAMBDA CALCULUS

- Syntax
- Conversion rules
- Evaluation strategies
- Summary

OPERATIONAL SEMANTICS

The operational semantics of lambda calculus is defined by

conversion rules

which specify how to transform one lambda expression into an equivalent lambda expression

Conversions work in both ways:

- → **Reduction**: from more complex expression to simpler expression
- ← Abstraction: from simple expression to more complex expression

There are three conversions

- \blacksquare β -reduction: Applying function to arguments
- **η-reduction**: Simplifying functions by reducing number of arguments

Abstractions just the opposite

 \blacksquare α -conversion: Renaming of bound variables to avoid name clashes

VARIABLE SUBSTITUTION

A substitution

expr [A/x]

of a variable x in an expression expr by a value A is defined as follows:

v [A/x]

$$= A$$

if
$$v = x$$

v [A/x]

if
$$v \neq x$$

if $v \neq x$

if v = x

$$(\lambda \ v \ . \ E \) \ [A/x] = (\lambda \ v \ . \ E[A/x])$$

$$(\lambda \ v \cdot E) [A/x] = (\lambda \ v \cdot E)$$

$$(F E) [A/x] = (F[A/x] E[A/x])$$

Examples:

$$x[2/x] = 2$$

$$y[2/x] = y$$

$$(\lambda y \cdot x y)[2/x] = (\lambda y \cdot (x y)[2/x]) = (\lambda y \cdot 2 y)$$

New argument x shadows x

$$(\lambda \times \cdot \times y) [2/x] =$$

$$(\lambda \times ... \times y)$$

$$((\lambda y . x y) x)[2/x] =$$

 $((\lambda y . x y)[2/x] x[2/x]) =$
 $((\lambda y . 2 y) 2)$

BETA-REDUCTION

Reducible term (redex)

A reducible term (redex) is a function application where left side is a lambda abstraction

$$(\lambda \times .expr) A$$

β -reduction of redex

replacing bound variable in defining expression by argument expression

$$(\lambda \times . expr) \land \rightarrow_{\beta} expr[A/x]$$

β -abstraction

 \blacksquare β-abstraction is just inverse of β-reduction and works by introducing a lambda function with a bound variable

$$(\lambda \times . expr) \land \leftarrow_{\beta} expr[A/x]$$

EXAMPLES OF BETA-REDUCTIONS

9

function * with built-in functions with own reduction rule!

 \rightarrow

REDUCTIONS WITH FUNCTIONS IN CURRY-FORM

Lamda function in Curry form

$$\lambda \times (\lambda y + x y)$$

Example application:

Partial application with one argument results in lambda function

$$(\lambda \times . (\lambda y . + x y)) 1$$

$$(\lambda y . + 1 y)$$

Result of function application is a function → partial application

Resulting lambda function can again be applied with next argument

ALPHA-CONVERSION

- \blacksquare α -conversion of λ -abstractions
 - \square **Renaming** of bound variable in λ -abstraction

Only needed to avoid name clashes of variables!

$$\lambda \times \expr \longleftrightarrow_{\alpha^{[y/x]}} \lambda y \cdot \expr[y/x]$$

i.e., all occurrences of variable x in expr are replaced by variable y

Example:

$$\lambda x \cdot + x \cdot x$$

$$\Rightarrow_{\alpha} [y/x] \quad (\lambda \overline{x} \cdot + \overline{x} \overline{x}) [y/x]$$

$$\Rightarrow \quad \lambda y \cdot + y \cdot y$$

Note: We will assume unique variable names and neglect name clashes in the sequel!

ETA-CONVERSION

η-conversion of λ -expressions

$$\lambda$$
 x . F x \leftrightarrow $_{\eta}$ F

which means that we can **remove the bound variable** x in a lambda abstraction if expression is just application of F with x

Example:

$$\lambda \times (\lambda y \cdot + y \cdot y) \times \leftrightarrow_{\eta} (\lambda y \cdot + y \cdot y)$$

Explanation: by applying function

$$\lambda \times (\lambda y \cdot + y y) \times \\ \rightarrow_{\beta} (\lambda x \cdot + x \cdot x)$$

$$\rightarrow_{\alpha [y/x]} (\lambda y \cdot + y \cdot y)$$

EVALUATION OF LAMBDA-EXPRESSIONS

Normal form

A lambda expression is in normal form iff it does not contain any reducible term!

Evaluation by applying reduction rules

- choose any redex in the expression
- reduce the redex using applicable reduction rules
- until **no redex exists** and the expression is **in normal form**

ENCODINGS OF COMPUTATION DOMAINS

Lambda calculus for formally defining computation domains

- lambda abstractions define values and functions
- **conversion rules** give semantics

→ Lambda calculus can express all computable functions just by lambda abstractions

CHURCH ENCODING OF BOOLEAN ALGEBRA (1/10)

Boolean algebra encoded in lambda calculus

■ Boolean values as lambda abstractions with two arguments

True: Projection to the 1st argument t

True =
$$(\lambda t f . t)$$

choose first argument

■ Boolean functions as lambda abstractions

AND AND =
$$(\lambda \ a \ b \ a \ b \ (\lambda \ t \ f \ f))$$

NOT NOT =
$$\lambda$$
 a . a (λ t f . f) (λ t f . t)

False: Projection to the 2nd argument f

False =
$$(\lambda t f . f)$$

choose second argument

OR OR =
$$(\lambda \ a \ b \ . \ a \ (\lambda \ t \ f \ . \ t) \ b)$$

IF IF =
$$(\lambda \ c \ a \ b \ c \ a \ b)$$

where c has to reduce to a Boolean value

CHURCH ENCODING OF BOOLEAN ALGEBRA (2/10)

Reduction rule for AND

Reduction:

```
(λ a b . a b (λ t f . f)) (λ t1 f1 . t1) expr
(λ b . (λ t1 f1 . t1) b (λ t f . f)) expr
(λ t1 f1 . t1) expr (λ t f . f)
(λ f1 . expr) (λ t f . f)
expr
```

Reduction rule:

AND True expr => expr

CHURCH ENCODING OF BOOLEAN ALGEBRA (3/10)

Reduction rule for AND

Reduction:

```
(\lambda a b . a b (\lambda x y . y)) (\lambda t1 f1 . f1) expr

(\lambda b . (\lambda t1 f1 . f1) b (\lambda t f . f)) expr

(\lambda t1 f1 . f1) expr (\lambda t f . f)

(\lambda t f . f)

(\lambda t f . f)
```

Reduction rule:

AND False expr => False

CHURCH ENCODING OF BOOLEAN ALGEBRA (4/10)

Reduction rule for OR

Reduction:

Reduction rule:

OR True expr => True

CHURCH ENCODING OF BOOLEAN ALGEBRA (5/10)

Reduction rule for OR

Reduction:

```
(λ a b . a (λ t f . t) b ) (λ t1 f1 . f1) expr
(λ b . (λ t1 f1 . f1) (λ t f . t) b ) expr
(λ t1 f1 . f1) (λ t f . t) expr
(λ f1 . f1) expr
expr
```

Reduction rule:

OR False expr => expr

CHURCH ENCODING OF BOOLEAN ALGEBRA (7/10)

Reduction rule for NOT

Reduction:

```
λ a. a (λ t f . f) (λ t f . t) (λ t 1 f 1 . f 1) (λ t f . f) (λ t f . t) (λ t f . t)
```

Reduction rule:

NOT False => True

CHURCH ENCODING OF BOOLEAN ALGEBRA (6/10)

Reduction rule for NOT

Reduction:

```
\lambda a. a (\lambda t f . f) (\lambda t f . t) (\lambda t 1 f 1 . t 1)
(\lambda t 1 f 1 . t 1) (\lambda t f . f) (\lambda t f . t)
(\lambda f 1 . (\lambda t f . f)) (\lambda x y . x)
(\lambda t f . f)
False
```

Reduction rule:

NOT True => False

CHURCH ENCODING OF BOOLEAN ALGEBRA (8/10)

Reduction rule for IF

Reduction:

Reduction rule:

IF True THEN exprA ELSE exprB

=>

exprA

CHURCH ENCODING OF BOOLEAN ALGEBRA (9/10)

Reduction rule for IF

Reduction:

Reduction rule:

```
IF True THEN exprA ELSE exprB
=>
exprB
```


CHURCH ENCODING OF BOOLEAN ALGEBRA (10/10)

Formal semantics of Boolean functions by reduction rules:

```
(AND True expr)
                                         expr
(AND False expr)
                                        False
(OR True expr)
                                         True
(OR False expr)
                                        expr
(NOT True)
                                     => False
(NOT False)
                                        True
(IF True THEN exprA ELSE exprB)
                                     => exprA
(IF False THEN exprA ELSE exprB)
                                     => exprB
```


CHURCH ENCODING OF INTEGER ARITHMETIC (1/2)

Similar encodings exist for other values and functions

- Natural numbers
 - □ constants

```
0 = \lambda f. \lambda x. x

1 = \lambda f. \lambda x. f x

2 = \lambda f. \lambda x. f (f x)

3 = \lambda f. \lambda x. f (f (f x))

...

n = \lambda f. \lambda x. f^n x
```

☐ functions

```
SUCC = \lambda n.\lambda f.\lambda x. f (n f x)

PLUS = \lambda m.\lambda n.\lambda f.\lambda x. m f (n f x)

MULT = \lambda m.\lambda n.\lambda f. m (n f)

PRED = \lambda n.\lambda f.\lambda x. n (\lambda g.\lambda h. h (g f))
(\lambda u. x) (\lambda u. u)
```


CHURCH ENCODING OF INTEGER ARITHMETIC (2/2)

Example reduction

 \Box 1 + 2 = 3

```
PLUS
(\lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)) (\lambda f1. \lambda x1. f1 x1) (\lambda f2. \lambda x2. f2 (f2 x))
    \lambda n.\lambda f.\lambda x. (\lambda f1.\lambda x1. f1 x1) f (n f x)) (\lambda f2.\lambda x2. f2 (f2 x2)
         \lambda f. \lambda x. (\lambda f1. \lambda x1. f1 x1) f ((\lambda f2. \lambda x2. f2 (f2 x2) f x))
         \lambda f. \lambda x. (\lambda f1. \lambda x1. f1 x1) f (f (f x))
         \lambda f. \lambda x. ( \lambda x1. f x1) ( f (f x))
         \lambda f.\lambda x. ( f (f x)))
          \lambda f. \lambda x. f (f (f x))
```


CHURCH ENCODING OF LISTS

List functions

```
NIL = \lambda x . \lambda y . y empty list

CONS = \lambda x . \lambda y . \lambda z . z x y pair of two values

HEAD = \lambda p . p(\lambda x . \lambda y . x) first of cons pair

TAIL = \lambda p . p(\lambda x . \lambda y . y) second of cons pair
```

■ <u>lists</u>: recursive CONS pairs with **NIL** as last element

```
NIL
\lambda x. \lambda y . y

CONS
1 \text{ NIL}
(\lambda x1. \lambda y1. \lambda z1 . z1 x1 y1) 1 (\lambda x2. \lambda y2 . y2)

CONS
1 \text{ (CONS)}
(\lambda x1. \lambda y1. \lambda z1 . z1 x1 y1) 1 ((\lambda x2. \lambda y2. \lambda z2 . z2 x2 y2) 2 (\lambda x3. \lambda y3 . y3)))
```

CHURCH ENCODING OF LISTS

List functions

```
NIL = \lambda x . \lambda y . y empty list

CONS = \lambda x . \lambda y . \lambda z . z x y pair of two values

HEAD = \lambda p . p(\lambda x . \lambda y . x) first of cons pair

TAIL = \lambda p . p(\lambda x . \lambda y . y) second of cons pair
```

■ Applying **HEAD**:

CHURCH ENCODING OF LISTS

List functions

```
NIL = \lambda x . \lambda y . y empty list

CONS = \lambda x . \lambda y . \lambda z . z x y pair of two values

HEAD = \lambda p. p(\lambda x . \lambda y . x) first of cons pair

TAIL = \lambda p. p(\lambda x . \lambda y . y) second of cons pair
```

■ Applying **TAIL**:

```
TAIL (CONS 1 NIL))

\lambda p. \ p(\lambda x. \lambda y . \ y) \ ((\lambda x 1. \lambda y 1. \lambda z 1 . \ z 1 \ x 1 \ y 1) \ 1 \ (\lambda x 2. \lambda y 2 . \ y 2))

\lambda p. \ p(\lambda x. \lambda y . \ y) \ ((\lambda y 1. \lambda z 1 . \ z 1 \ 1 \ y 1) \ (\lambda x 2. \lambda y 2 . \ y 2))

\lambda p. \ p(\lambda x. \lambda y . \ y) \ ((\lambda z 1 . \ z 1 \ 1 \ (\lambda x 2. \lambda y 2 . \ y 2)))

(\lambda z 1 . \ z 1 \ 1 \ (\lambda x 2. \lambda y 2 . \ y 2)) \ (\lambda x. \lambda y . \ y)

(\lambda x. \lambda y . \ y) \ 1 \ (\lambda x 2. \lambda y 2 . \ y 2))

(\lambda x 2. \lambda y 2 . \ y 2)

(\lambda x 2. \lambda y 2 . \ y 2)

(\lambda x 2. \lambda y 2 . \ y 2)

(\lambda x 2. \lambda y 2 . \ y 2)
```


LAMBDA CALCULUS

- Syntax
- Conversion rules
- Evaluation strategies
- Summary

EXAMPLE: DIFFERENT REDUCTION ORDERS (1/2)

Reduction rule for AND

Reduction:

Reduction rule:

AND True expr => expr

EXAMPLE: DIFFERENT REDUCTION ORDERS (2/2)

Reduction rule for AND

Alternative Sequence of reductions:

Reduction rule:

AND True expr => expr

different reduction order but same result!

EVALUATION OF LAMBDA EXPRESSIONS

Recall: Evaluation of lambda expressions by applying reduction rules

	choose	any	redex in t	the expression
--	--------	-----	------------	----------------

- \Box **reduce the redex** using applicable reduction rules (mainly β-reduction)
- until no redex exists and the expression is in normal form.

does not contain a redex

Questions:

- 1) Which redex should we choose and therefore in which order apply the reductions?
- 2) Is the result (= normal form) independent of the chosen order of reductions?

Answers:

- 1) Different strategies applicable and we distinguish between strict and non-strict evaluation strategies!
- Yes, results (= normal forms) will be the same if reached, but it is possible that with one order the normal form is reached while with another it is NOT!

CHURCH-ROSSER THEOREM I

Definitions:

Let →* denote a series of reductions

Let ↔* denote a series of conversions (abstractions and reductions)

Two expressions E_1 and E_2 are equivalent if there is a conversion $E_1 \leftrightarrow^* E_2$.

Church-Rosser Theorem I:

$$E_1 \leftrightarrow^* E_2 \Rightarrow \exists E : E_1 \rightarrow^* E \land E_2 \rightarrow^* E$$

If two expressions E_1 and E_2 are equivalent

$$E_1 \leftrightarrow^* E_2$$

then there exists an expression E so that E_1 and E_2 can be **reduced** to E

$$E_1 \rightarrow^* E$$
 and $E_2 \rightarrow^* E$

That means lambda expressions are confluent:

REDUCTION TO NORMAL FORM (1/2)

From the Church-Rosser theorem I it directly follows:

Lemma:

No expression can be converted to two distinct normal forms.

Proof sketch: (by establishing a contradiction to Church-Rosser theorem I)

- When it is possible to reduce an expression E to two distinct expressions EN_1 and EN_2 which both are in normal form, then EN_1 and EN_2 are equivalent $EN_1 \leftrightarrow^* EN_2$.
- Then according to Church-Rosser theorem I, there has to be a reduction of EN_1 and EN_2 to a common expression E'_1
- However *EN*₁ and *EN*₂ are in normal form and cannot be reduced, which represents a contradiction to Church-Rosser theorem I.

REDUCTION TO NORMAL FORM (2/2)

Interpretation of uniqueness of normal form:

- if two reductions reach normal form, then they are the same
- But there can be reductions which run into an infinite loop and will never reach normal form!

EVALUATION STRATEGIES

Strategies for selecting reducible terms

Strict evaluation (eager evaluation, applicative evaluation)

■ Call-by-value: actual argument expressions are evaluated and values replace formal parameters

Non-strict evaluation (lazy evaluation)

■ Call-by-name:

actual argument expressions are passed unevaluated and expressions replace formal parameters

■ Normal-order:

Call-by-name with leftmost, outermost redex reduced first

■ Call-by-need:

variant of normal-order where expressions are evaluated only when needed and only once!

Algol, Scala!

STRICT EVALUATION: CALL-BY-VALUE

Example:

■ Example function

```
SQUARE = \lambda x . * x x
DOUBLE = \lambda n . * 2 n
```

Strict evaluation: Evaluate argument expressions first

```
SQUARE (DOUBLE 3)

SQUARE (DOUBLE 3)

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )

(\lambda \times . * \times x) ((\lambda \times . * \times x) )
```


Non-Strict Evaluation: Normal-order

Example:

■ Example function

Non-strict evaluation with leftmost, outermost redex reduced first

```
SQUARE (DOUBLE 3)
                               left-most, outmost first!
      SQUARE
                     (DOUBLE 3)
     (\lambda \times . * \times \times) ((\lambda \times . * 2 \times n) \times 3)
\rightarrow (* ((\lambda n . * 2 n) 3) ((\lambda n . * 2 n) 3))
                                                                      Assumption:
                                                                      built-in function * strict
\rightarrow (* (* 2 3) ((\lambda n . * 2 n) 3))
\rightarrow \quad (* \qquad 6 \qquad ((\lambda n \cdot * 2 n) 3))
                                 (* 2 3) )
       36
```


EVALUATION STRATEGIES: EXAMPLES (1/3)

■ Recall: reduction rules for logical operators

```
AND True expr = expr
AND False expr = False
```

```
OR True expr = True
OR False expr = expr
```

Example expression:

```
(AND False (AND True (OR False True))
```

☐ Strict evaluation (arguments first):

```
(AND False (AND True (OR False True))

→ (AND False (AND True True))

→ (AND False True)

→ False
```

□ Normal-order evaluation (left-most, outer-most first):

```
(AND False (AND True (OR False True))

→ False

Short circuit evaluation!
```


EVALUATION STRATEGIES: EXAMPLES (2/3)

■ Recall function definition IF:

```
IF True exprA exprB = exprA
IF False exprA exprB = exprB
```

Example expression:

```
(IF (!= x 0) (/ a x) 0)
```

☐ Strict evaluation:

Assuming x == 0!

```
(IF (!= x \ 0) (/ a x) 0)

\rightarrow (IF False (/ a \ x) 0)

Error: division by 0!
```

☐ Non-strict evaluation:

```
(IF (!= x 0) (/ a x) 0)

\Rightarrow (IF False (/ a x) 0)

\Rightarrow 0 equivalent to built-in evaluation rule of if-statement in strict languages!
```


EVALUATION STRATEGIES: EXAMPLES (3/3)

Function definitions

```
INFINITE = \lambda x . INFINITE (+ x 1)
FRIST = \lambda x y . x
```

Example expression:

```
FRIST 1 (INFINITE 1)
```

Strict evaluation

evaluate argument first

```
FRIST 1 (INFINITE 1)

→ FRIST 1 (INFINITE 2)

→ FRIST 1 (INFINITE 3)

→ FRIST 1 (INFINITE 4)

→ ... infinite loop ...
```

■ Normal-order evaluation

CHURCH-ROSSER THEOREM II

Church-Rosser Theorem II:

If $E_1 \to^* E_2$ (i.e., expression E_1 can be reduced to expression E_2) and E_2 is in **normal form**, then there exists a **normal-order reduction** sequence from E_1 to E_2 .

Consequence:

Normal-order reduction will always find the normal form if such a reduction exists, while other reduction sequences may fail and run into infinite loops.

LAMBDA CALCULUS

- Syntax
- Conversion rules
- Evaluation strategies
- Summary

SUMMARY LAMBDA CALCULUS

- Lambda-expressions
 - □ Variable symbols x, y, ...
 - \Box Function definitions $\lambda x \cdot \lambda$ -expr
 - \Box Function applications λ -expr λ -expr
- Computation by β-reduction of lambda-expressions
 - \Box term replacement $(\lambda x \cdot expr) A \rightarrow_{\beta} expr [A/x]$
- Reduction can be done in any order
 - ☐ different evaluation strategies: strict evaluation versus non-strict evaluations
 - □ **normal-order** evaluation is more **"reliable"** as it will result in normal form when possible
- Lambda-expressions can represent any computable function
 - → Turing-complete
- Theoretical basis for **formal definition of semantics** of programming languages
- Model for implementation of functional programming languages
 - ☐ **Lisp** is an implementation of lambda calculus with **strict** evaluation semantics
 - ☐ **Haskell** is implementation of lambda calculus with **call-by-need** evaluation semantics

WHAT YOU MIGHT BE ASKED IN THE FINAL EXAM

- Describe what the lambda calculus is
 - ☐ its purpose and its use
- Explain lambda-expressions
 - ☐ syntax plus explanation of different terms
- Reductions (β -reduction, α -reduction, η -reduction)
 - □ how reductions work and for what they are used
- \blacksquare β -reduction of non-trivial lambda-expressions
 - see reduction examples for Booleans and numbers above
- Explain Church-Rosser theorems I and II
 - ☐ what they express and what their implications are
- Name, explain and compare the different evaluation strategies

