1 充配电总成

1.1 布置位置

充配电总成布置在车辆前舱上部,如下图所示:

1.2 低压引脚定义

低压接插件投影图如下:

引脚号	端口名称	端口定义	线束接法
1	OFF-12V-1	常电 1	接 12V 常电
2	OFF-12V-1	常电2	接 12V 常电
3	GND	常电电源地 1	
4	CC	充电连接确认	接交流充电口-2
5	СР	充电控制导引	接交流充电口-1

6	CC-BMC	充电连接信号	接 BMC02-20
7	T-CDK	充电口温度检测	接交流充电口-7
8	SOURSE-JCQ	直流充电正极/直流充电负极接 触器电源	接 BMC01-15
9	CONTROL-JCQ+	直流充电正极接触器控制信号	接 BMC01-33
10	CONTROL-JCQ-	直流充电负极接触器控制信号	接 BMC01-24
11	SJJC	直流充电接触器烧结检测信号	接 BMC02-7
12	DCHS-IN	直流高压互锁输入	接动力电池包-29
13	DCHS-OUT	直流高压互锁输出	接 BMC02-5
14	ACHS-IN	交流高压互锁输入	接 BMC02-10
15	ACHS-OUT	交流高压互锁输出	接 BMC02-11
16	CAN-H	动力网 CAN 线	
17	CAN-L	动力网 CAN 线	
18	GND	直流充电接触器烧结检测信号 地	
19	GND	常电电源地 2	
20~33	预留	/	/

1.3 结构说明

序号	定义	对接说明
1	辅助定位(Φ13)	安装在前舱大支架上
2	出水口	连接冷却水管

3	排气口	连接排气管
4	进水口	连接冷却水管
5	主定位(Φ11)	安装在前舱大支架上
6	交流充电输入	连接交流充电口
7	直流充电输入	连接直流充电口
8	空调压缩机配电	连接空调压缩机
9	空调 PTC 配电	连接空调 PTC
10	辅助定位(Φ13)	安装在前舱大支架上
11	低压正极输出	连接正极保险盒
12	辅助定位(Φ13)	安装在前舱大支架上
13	低压接插件	连接低压线束
14	高压直流输入/输出	连接电池包
15	电机控制器配电	连接电机控制器
16	直流充电输入线鼻子固定 维修盖	线鼻子固定点维修盖板
17	电机控制器配电和高压直 流输入线鼻子固定维修盖	线鼻子固定点维修盖板
18	空调保险	压缩机和 PTC 保险

1.4 故障诊断

1 把车开进维修间

下一步

2 检查蓄电池电压

标准电压值:

11~14V

如果电压值低于 11V, 在进行下一步之前请 充电或更换蓄电池。

下一步

3 参考故障诊断表

/上 田	νπ' γ.⊸
结果	进行

现象不在故障诊断表中	А
现象在故障诊断表中	В

В

转到第5步

Α

全面诊断

调整,维修或更换

下一步

确认测试

下一步

结束

1.4.1 故障码列表

	14-112-171	44 44 44 44	
 	故障码	故障描述	
	OBC 故障码		
1	P157016	交流侧电压低	
2	P157017	交流侧电压高	
3	P157219	直流侧过流	
4	P157216	直流侧电压低	
5	P157217	直流侧电压高	
6	P157400	供电设备故障	
7	P157616	低压供电电压过低	
8	P157617	低压供电电压过高	
9	P157897	CC 信号异常	
10	P15794B	温度采样 1 高	
11	P157A37	充电电网频率高	
12	P157A36	充电电网频率低	
13	P157B00	交流侧过流	
14	P157C00	硬件保护	
15	P157E11	充电连接信号外部对地短路	
16	P157E12	充电连接信号外部对电源短路	
17	P157F11	交流输出端短路	

18	P15834B	温度采样2高	
19	P158798	充电口温度严重过高	
20	P158900	充电口温度采样异常	
21	P158A00	电锁异常	
22	P151100	交流端高压互锁故障	
23	U011100	BMC 通讯超时	
24	U015500	组合仪表通讯超时	
25	U024500	多媒体通讯超时	
26	P151500	水温传感器故障	
27	P15FD00	冷却水温高	
28	U014087	BCM 通讯超时	
29	U011181	BMC 报文数据异常	
30	U015587	组合仪表报文数据异常	
31	U024587	多媒体报文数据异常	
32	U014081	BCM 报文数据异常	
33	U011182	BMC 循环计数器异常	
34	P15FE00	主控与子模块通讯故障	
35	P15FF00	内部温度传感器故障	
	DCDC 故障码		
1	P1EC000	降压时高压侧电压过高	
2	P1EC100	降压时高压侧电压过低	
3	P1EC600	降压时高压侧电流过高	
4	P1EC200	降压时低压侧电压过高	
5	P1EC300	降压时低压侧电压过低	
6	P1EC400	降压时低压侧电流过高	
7	P1EC700	降压时硬件故障	
8	P1EE000	散热器过温	
9	U011100	与动力电池管理器通讯故障	
10	U014000	与 BCM 通讯故障	
11	P1ED317	低压供电电压过低	
12	P1ED316	低压供电电压过高	
	漏	电传感器故障码	
	P1CA100	严重漏电故障	
	P1CA200 一般漏电故障		
	P1CA000	漏电传感器自身故障	

全面诊断

1.4.2 不能交流充电故障诊断流程

当车辆出现无法充电的故障时,按照以下流程初步判断故障原因

对接接插件

ОК

2 检测是否可以 OK 档行驶

NG

检查电池管理器及电机控制器

ОК

3 OK 档下是否可以充电

检查低压配电及网关

ОК

4 更换充配电总成

1.4.3 DC 降压故障

当车辆出现无法充电的故障时,按照以下流程初步判断故障原因

- 1 检查动力电池电压
- a)整车上ON档。
- b) 用 VDS2000 读取电池管理器发出的动力电池电压。

动力电池	正常值
动力电池电压	约 250-420V

NG

动力电池故障

2 检测高压母线电压

a) 整车上 OK 档

b)用 VDS2000 读取 DC 母线电压是否正常

DC	正常值
母线电压	约 250-420V

OK

检查电池包及高压线路

NG

3 更换充配电总成

1.4.4 漏电传感器故障

	P1C	A000	漏电传感器自身故障
尝试清除故障码,清除故障码故障依旧更换充配电总成。			
	P1CA1	100	严重漏电故障

检查整车高压电器、高压线路及电池包。使用绝缘电阻测试仪或万用表分别排查绝缘故障

1.5 更换充配电总成

1.5.1 断开维修开关

车辆熄火(退至 OFF 挡),拆副仪表台,断开动力电池维修开关。

1.5.2 拆卸外部接口

1) 使用水管钳拆卸进水管、出水管、排气管;

2) 手工拆卸低压线束接插件、空调 PTC 接插件、空调压缩机接插件、交流充电输入

接插件;(注意空调压缩机、PTC接插件有二次锁止机构)

3) 使用 13 号套筒供件拆卸低压正极线、2 条搭铁线。

1.5.3 拆卸线鼻子(若充配电总成配有维修盖,完成这部后直接跳到 1.5.7)

用专用工具拆卸上盖 10 个防拆螺栓

拆开维修盖后,用万用表测量直流母线电压,电压为 0 后再进行下一步操作。 用 10 号套筒工具拆卸 12 个 M6 螺栓

1.5.4 拆卸充配电总成上盖

用8号套筒工具拆卸上盖19个M5六角头螺栓,用专用工具拆卸1个内五花防拆螺栓。

1.5.5 拆卸充配电总成内部线鼻子

拆开充配电总成上盖后,用万用表测量直流母线电压,电压为 0 后再进行下一步操作。 用 10 号套筒工具拆卸电控甩线 4 个 M6 螺栓,用 13 号套筒工具拆卸直流母线(接电池)、 直流充电线束 4 个 M8 螺栓。

1.5.6 装配充配电总成上盖

用8号套筒工具装配上盖19个M5六角头螺栓,用专用工具装配1个内五花防拆螺栓。

1.5.7 拆卸充配电总成固定点

用 13 号套筒工具拆卸充配电总成安装脚 4 个 M10 螺栓。

1.5.8 装配说明

取出故障充配电总成,更换一个新的充配电总成,按照拆卸的倒序,用同样的工具,装配好充配电总成。

其中 M5 螺栓安装力矩 2.8±0.3N.m, M6 螺栓安装力矩 9±1 Nm, M10 螺栓安装力矩 15 ±1Nm。

2 充电口

2.1 布置位置

SCEB 交流充电口总成、直流充电口总成布置在车辆前格栅处。

2.2 低压引脚定义

低压接插件投影图如下:

直流充电口低压接插件

表 2-1 交流充电口引脚定义

引脚号	端口名称	端口定义	线束接法
1	СР	充电控制确认	接充配电总成 33PIN-5
2	CC	充电连接确认	接充配电总成

			33PIN-4
3		闭锁电源	BCM D端口-2
4		开锁电源	BCM D端口-3
5		闭锁状态检测	接 BCM-14
6		(空)	
7		温度传感器高	接充配电总成 33PIN-7
8		温度传感器低	车身地
9~12	预留	/	/

表 2-1 直流充电口引脚定义

引脚号	端口名称	端口定义	线束接法
1	A-	低压辅助电源负	车身地
2	A+	低压辅助电源正	接 BMC01-6
3	CC2	直流充电感应信号	接 BMC02-15
4	CAN-L	动力网 CAN-L	接 BMC02-25
5	CAN-H	动力网 CAN-H	接 BMC02-24
6		(空)	
7		直流充电口温度 1	接 BMC02-19
8		直流充电口温度地 1	接 BMC02-12
9		直流充电口温度 2	接 BMC02-13
10		直流充电口温度地 2	接 BMC02-6
11	预留	/	/
12	预留	/	/

2.3 故障诊断

充电口作为传导充电方式一定存在磨损老化问题,需要加入保养范围,具体保养项目如下,判定标准见下表:

- 1) 车辆熄火(退电至 OFF 挡),整车解锁,打开充电口舱盖及充电口盖;
- 2) 目视检查充电口塑料绝缘壳体外观有无热熔变形,严重热熔变形影响正常使用的需要更换处理;
- 3) 目视检查充电口内部以及端子内部有无异物,有异物的需要使用高压气枪排出异物, 无法排出且影响正常使用的需更换处理;
- 4) 目视检查充电口端子簧片及底部有无变黑,变黑的需要更换处理;

- 5) 目视检查充电口端子簧片及底部有无变黄,如变黄请打开后背门,打开左后侧围检修口排查充电口尾部电缆是否烧黑及变形(需辅助照明仔细观察),如变黄且伴随 尾部电缆外层变黑则需更换处理;
- 6) 目视检查端子簧片有无断裂,断裂的需要更换处理;
- 7) 超过质保期的充电口需自费更换(不更换的需告知使用安全隐患以及连带充电枪损失)。

正常状态一

正常状态二

端子簧片附着异物需清理

端子变黑需更换

端子簧片及底部变黄且尾部电缆外层变黑需更换

端子簧片前端断裂需更换

2.4 更换充电口

2.4.1 拆卸接插件

车辆熄火(退至OFF挡),拔掉维修开关。

更换交流充电口: 手工拆卸交流充电接插件、交流低压接插件;

更换直流充电口: 手工拆卸直流低压接插件, 工具拆卸直流充电线鼻子(先断开电池维

修开关 1.6.1、拆卸充配电总成上盖 1.6.3、拆卸充配电总成内部线鼻子 1.6.4);

2.4.2 拆卸搭铁及扎带

更换交流充电口:用 13 号套筒工具拆卸交流充电搭铁,用剪刀剪断扎带;

2.4.3 拆卸电子锁

更换交流充电口: 用十字起拆卸电子锁。

2.4.4 拆卸车辆插座

更换交流充电口:用 10 号套筒工具拆卸交流车辆插座; 更换直流充电口:用 10 号套筒工具拆卸直流车辆插座。

2.4.5 装配说明

取出故障充电口,更换一个新的充电口,按照拆卸的倒序,用同样的工具,装配好充电口。

其中螺栓力矩为8±1Nm,电子锁安装螺丝为1Nm。