Integrated Science Unit 4: Matter, Energy, & the Hydrosphere	Name: D	vate:	Period:
Specific Heat and Be sure to show all work and the answeuse factor label.	Heat Capacity Prace er with the appropria		
	$Q = c_p m \Delta T$		
1. The temperature of 335 g of water changed f (c for water = 4.18 J/g°C)	from 24.5°C to 26.4°C. Hov	w much heat did th	nis sample absorb?
2. How much heat in kilojoules has to be remov 10.0°C? (1000 J= 1kJ)	ed from 225g of water to	lower its tempera	ture from 25.0°C to
3. How much heat is required to bring 1.0kg of	water from 25°C to 99°C?	(1000g=1kg)	
 A calorimeter has a specific heat capacity of a calorimeter to change from 22.34°C to 25.12 			

5. What is the specific heat of silicon (in $J/g^{\circ}C$) if it takes 192J to raise the temperature of 45.0g of Si by $6.0^{\circ}C$?

6.	Assuming that Coca Cola has the same specific heat as water (4.18 J/g $^{\circ}$ C), calculate the amount of heat in kJ transferred when one can (about 350g) is cooled from 25 $^{\circ}$ C to 3 $^{\circ}$ C.
7.	What is the specific heat (in J/g°C) of lead if it takes 96J to raise the temperature of a 75g block by 10° C?
8.	Titanium metal is used as a structural material in many high-tech applications such as jet engines. What is the specific heat of titanium (in $J/g^{\circ}C$) if it takes 89.7 J to raise the temperature of a 33.0g block by 5.20°C?
9.	Mercury (Hg) is the only metal that exists as a liquid at room temperature. Hg as a specific heat capacity of 0.140J/g°C. How many kilojoules of energy are required to increase 75.0kg of Hg from 23.0 to 52.0°C?
10.	An insulated cup contains 75.0g of water at 24.00°C. A 26.00g sample of metal at 82.25°C is added. The final temperature of the water and metal is 28.34°C. What is the specific heat of the metal? *hint; this is similar to what you did in LAB this week*