§1. Ultrapowers of \aleph_{α} for $\alpha < \omega_1$ by measures on $\aleph_n, n < \omega$.

1.1. Introduction. We use π_m to denote a partial permutation $(m, i_1, \ldots, i_{m-1})$ of $(1, 2, \ldots, m)$. Given any such permutation π , we define the corresponding wellorder, $<^{\pi}$, on tuples $\bar{\alpha} := (\alpha_1, \ldots, \alpha_m) \in \aleph_1^m$, with $\alpha_1 < \cdots < \alpha_m$, by

$$\bar{\alpha} <^{\pi} \bar{\beta} \iff \pi(\bar{\alpha}) <^{lex} \pi(\bar{\beta})$$

DEFINITION 1.1. $h:<^{\pi_m} \to \aleph_1$ is of **c-correct type (c-c.t.)**, $0 \le c \le m$, if (1) h is strictly increasing, (2) everywhere discontinuous, and (3) $\forall \bar{\alpha}$, uniformly $\cot h(\bar{\alpha}) = \alpha_c$, where $\alpha_0 = \omega$.

Sometimes we write c.t. for 0-c.t.

Definition 1.2 (Basic Measure $S^{\pi_m,c}$). If $A \subseteq \aleph_{m+1}$, then

$$A \in S^{\pi_m,c} \iff \exists \text{ c.u.b. } C \subset \aleph_1 \text{ s.t. } \forall h : <^{\pi_m} \to C \text{ of c.t. }, [h]_{\mu^m} \in A$$

To define a general measure, fix a function $\mathcal{F}_m: U \to \bigcup_{m,\pi_m,0 \le c \le m} \{S^{\pi_m,c}\}$ with finite domain $U \subset \omega^{\le m}$ such that $\forall u \in U$ with lh(u) = k, $\mathcal{F}_m(u) = S^{\pi_k,c}$. It is assumed that U contains at least one sequence of length m.

On tuples $\langle u, \lambda \rangle \in (\omega \times \aleph_1)^{\leq m}$, where $u \in U$ and $\lambda(1) < \cdots < \lambda(k)$, we define a well-order $<_*$ as follows. Let $u, u' \in U$, $k = \ln(u)$, $k' = \ln(u')$; assume $\mathcal{F}_m(u) = S^{\pi_k,c}$, $\mathcal{F}_m(u') = S^{\pi_{k'},c'}$ with $\pi = (k, i_2, \ldots, i_k)$, $\pi' = (k', j_2, \ldots, j'_k)$. Then

$$\langle u, \lambda \rangle <_* \langle u', \lambda' \rangle \iff$$

 $(\lambda(k), u(1), \lambda(i_2), u(2), \dots, \lambda(i_k), u(k)) <^{lex}$
 $(\lambda'(k'), u'(1), \lambda'(j_2), u'(2), \dots, \lambda'(j_k), u'(k))$

Let $\mathcal{H}:<_*\to\aleph_1$ be order preserving and discontinuous. For each $u\in U$ we define $h_u(\lambda):=\mathcal{H}(u,\lambda)$. We say \mathcal{H} is of the type matching with \mathcal{F}_m if $\forall u\in U$

$$h_u$$
 is of c-c.t. $\iff \mathcal{F}_m(u) = S^{\pi_k,c}$

In other words, the function h_u is one of those on which the measure \mathcal{F}_m concentrates.

Let us enumerate $U = \{u_i\}_{i=1}^p$ in lexicographically increasing order (here p = |U|). We set

$$\delta_i := [h_{u_i}]_{\mu^{k_i}}, \quad \text{for all } u_i \in U, \, k_i = \ln(u_i)$$

$$\delta(\mathcal{H}) := \operatorname{ot}(\delta_1, \dots, \delta_p) \in \aleph_{m+1}$$

Notice that given the function \mathcal{F}_m with the domain U, for each function $\mathcal{H}:<_*\to\aleph_1$ of the type matching with \mathcal{F}_m , the ordinal $\delta=\delta(\mathcal{H})$ is determined uniquely. One thinks of the measure $\mathcal{G}_{\mathcal{F}_m}$ being concentrated on such functions \mathcal{H} . We summarize all these in the formal

DEFINITION 1.3 (General Measure $\mathcal{G}_{\mathcal{F}_m}$). Let $\mathcal{A} \subseteq \aleph_{m+1}$. We set $\mathcal{A} \in \mathcal{G}_{\mathcal{F}_m}$ iff \exists **c.u.b.** $C \subset \aleph_1, \, \forall \mathcal{H} : <_* \to C$ of the type matching with $\mathcal{F}_m, \delta(\mathcal{H}) \in \mathcal{A}$

Observe that every basic measure $S^{\pi,c} = \mathcal{G}_{\mathcal{F}}$, where the domain of \mathcal{F} is a singleton $\{u\}$ and $\mathcal{F}(u) = S^{\pi,c}$.

A measure $\mathcal{G}_{\mathcal{F}_m}$ (or simply \mathcal{G}) can be represented by a finitely splitting tree of height m+1. The root of the tree is the empty set, and every maximal path is an element, u, of the domain of \mathcal{F}_m with the terminal node (π_k, c) if and only if $\mathcal{F}(u) = S^{\pi_k, c}$. Moreover, paths are ordered lexicographically, so that the left most maximal path is precisely u_1 . An example of such a tree is shown in figure.

- 1.2. Technical Lemmas.
- 1.3. Ultrapowers by Basic Measures.
- 1.4. Ultrapowers by General Measures.
- §2. Descriptions and Representation of Cardinals Below δ_5^1 .
- 2.1. Descriptions and their interpretation.
- 2.2. The Lowering Operator.
- 2.3. Representation of Cardinals below δ_5^1 .

§3. Basic Definitions.

Definition 3.1. A linear ordering < of P is a wellordering if every subset of P has a <-least element.

DEFINITION 3.2. A filter over a set S is a collection F of subsets of S s.t.

- 1) $S \in F$;
- 2) if $X \in F$ and $Y \in F$, then $X \cap Y \in F$;
- 3) if $X \subset Y \subset S$ and $X \in F$, then $Y \in F$.

A filter F is a **proper filter** if

4) $\emptyset \notin F$;

Examples:

- (e1) A trivial filter $F = \{S\}$
- (e2) The Fréchet filter $F = \{X \subseteq S : S X \text{ is finite }\}$, where S is infinite.

Definition 3.3. F is a **principle filter** if $\exists X_0 \subset S$ s.t. $\forall X \in F, X_0 \subset X$.

DEFINITION 3.4. A proper filter U over S is an ultrafilter if $\forall X \subseteq S$, either $X \in U$ or $S - X \in U$. (But not both since $X \cap (S - X) = \emptyset \notin U$)

Theorem 3.5 (Tarski). (AC) Every filter can be extended to an ultrafilter.

Definition 3.6. A relation \leq on A is a **prewellordering** (of A) iff it is reflexive, transitive, and connected. (I.e., $\forall a, b, c \in A$, $(a \leq a)$; $(a \leq b) \land (b \leq a)$ $(c) \rightarrow (a \leq c); \quad (a \leq b) \vee (b \leq a).$

Example: If U is an ultrafilter over S, and $\forall f, g: S \to ON$ we define

$$f \leq_U g \iff \{i \in S : f(i) \leq g(i)\} \in U$$
,

then \leq_U is a prewellordering.

Definition 3.7. A **prewellordering** is a wellordering of equivalence classes.

Definition 3.8. A set $H \subseteq A$ is homogeneous for a partition $\{X_i : i \in I\}$ of A^n , if $\exists i, H^n \subseteq X_i$.

Definition 3.9. $k \to (\lambda)_m^n$ means every $F: k^n \to m$ is constant on H^n for some $H \subseteq k$ with $|H| = \lambda$.

Theorem 3.10 (Ramsey). $\omega \to (\omega)_k^n$, $\forall n, k \in \omega$.

I.e., $\forall F : \omega^n \to \{1, \dots, k\}, \exists H \subseteq \omega \text{ s.t. } |H| = \omega \text{ and } F \text{ is constant on } H^n.$

Equivalently, every partition $\{X_1,\ldots,X_k\}$ of ω^n into K pieces has an infinite homogeneous set.

LEMMA 3.11. For all κ and λ ,

- (a) $2^{\kappa} \not\to (\lambda)^2_{\kappa}$ (b) $2^{\kappa} \not\to (\kappa^+)^2_2$
- (c) $\aleph_1 \not\rightarrow (\aleph_1)_2^2$

§4. Definitions and the general picture.

DEFINITION 4.1. For each $n \ge 1$ we define a projective ordinal $\boldsymbol{\delta}_n^1$ as follows $\pmb{\delta}_n^1 := \sup \{\, \xi \, : \, \xi \text{ is the length of } \pmb{\Delta}_n^1 \text{ prewellordering of } \mathbb{R} (=\omega^\omega) \}$

- §5. For all n, δ_n^1 is a cardinal.
- §6. For all n, δ_n^1 is a successor cardinal.
- a) $\delta_{2n+2}^1 = (\delta_{2n+1}^1)^+$ b) $\delta_{2n+1}^1 = (\kappa_{2n+1})^+$, where κ_{2n+1} is a cardinal of cofinality ω
- c) $\boldsymbol{\delta}_{2n+1}^1 = \aleph_{e(2n-1)+1}$, where $e(1) = \omega$ and $e(n+1) = \omega^{e(n)}$ (ordinal exponentiation)

Concretely,

$$\begin{array}{lll} \boldsymbol{\delta}_{1}^{1} = \aleph_{1} & \boldsymbol{\delta}_{2}^{1} = \aleph_{2} \\ \boldsymbol{\delta}_{3}^{1} = \aleph_{\omega+1} & \boldsymbol{\delta}_{4}^{1} = \aleph_{\omega+2} \\ \boldsymbol{\delta}_{5}^{1} = \aleph_{\omega^{\omega}+1} & \boldsymbol{\delta}_{6}^{1} = \aleph_{\omega^{\omega}+2} \\ \boldsymbol{\delta}_{7}^{1} = \aleph_{\omega^{\omega^{\omega}}+1} & \boldsymbol{\delta}_{8}^{1} = \aleph_{\omega^{\omega^{\omega}}+2} \end{array}$$

- §7. For all n, δ_n^1 is a regular cardinal.
- §8. For all n, δ_n^1 is a measurable cardinal.
- §9. Calculating δ_n^1 for $n \leq 4$.
- §10. The closed unbounded measure on \aleph_1 .
- §11. Uniform indiscernibles and the \aleph_n 's for $n \leq \omega$.
- §12. Back to the real world. What was developed so far was in the context of ZF + DC + AD. Now we review the results under ZF + AC and **Projective Determinacy** only.

Theorem 12.1. Under ZF + AC and **Projective Determinacy** only,

- 1. $\boldsymbol{\delta}_{1}^{1} = \aleph_{1}$ 2. $\boldsymbol{\delta}_{2}^{1} \leq \aleph_{2}$ $\left[\forall \alpha (\alpha^{\#} \ exists)\right] \boldsymbol{\delta}_{2}^{1} = u_{2}$
- §13. Infinite exponent partition relations and the singular measures

Definition 13.1. If α, β, γ are ordinals with $\gamma \leq \beta \leq \alpha$, we write $\alpha \to \beta^{\gamma}$ iff $\forall X \subset \alpha^{\gamma} \uparrow, \exists H \subset \alpha$ with $o.t.(H) = \beta$ such that either $H^{\gamma} \uparrow \subset X$ or $H^{\gamma} \uparrow \subset$

Remark 13.2. Assuming ZFC, there is no κ such that $\kappa \to \omega^{\omega}$

DEFINITION 13.3. $A \subseteq \kappa$ is λ -closed if every increasing λ -sequence from A has its limit in A.

DEFINITION 13.4. If λ, κ are regular cardinals, and $\lambda < \kappa$. μ_{λ} is defined to be the set of all subsets of κ which contain a λ -closed unbounded set.

Theorem 13.5. Let λ , κ be regular cardinals, κ uncountable, $\lambda < \kappa$, and $\kappa \to \kappa^{\lambda+\lambda}$. Then μ_{λ} is a normal measure.

- §14. Countable exponent partition relations for δ_n^1 , n odd.
- §15. $\omega_1 \rightarrow \omega_1^{\omega_1}$.
- §16. The Martin-Paris Theorem.
- §17. The measure μ_{ω} on δ_n^1 , n odd.
- §18. The measure μ_{λ} , with $\lambda > \omega$, on δ_n^1 , n odd.
- §19. Countable exponent partition relations on δ_n^1 , n even.
- §20. The measure μ_{ω} on δ_n^1 , n even.
- §21. Some singular cardinals.

§22. Stuff. Throughout the dissertation we work in the context of AD inside of $L(\mathbb{R})$. In this section we give basic definitions and facts needed for what follows, then we define *general* measures and state the theorem which gives the formula for ultrapowers. Throughout this chapter c.u.b. set means closed and unbounded subset of \aleph_1 ; measure means a σ -complete ultrafilter; μ is the normal measure on \aleph_1 ; and μ^m is its m-fold product measure on \aleph_1^m .

§23. Infinity. "The Mathematics of Infinity" by Theodore G. Faticoni (QA 248.F29 2006)

"Roads to Infinity" by John Stillwell. (QA 248.S778 2010)

- 1. The Diagonal Argument
- 2. Ordinals
- 3. Computability and Proof
- 4. Logic
- 5. Arithmetic
- 6. Natural Unprovable Sentences
- 7. Axioms of Infinity

"By the 1930s, mathematicians were contemplating sets large enough to model the universe itself: the co-called inaccessible and measurable cardinals."

"a better understanding of finite objects depends on a better understanding of infinity"

- (a) Set Theory without Infinity
- (b) Inaccessible Cardinals

Let $V_0 = \emptyset$ is the empty set, $V_1 = \{\emptyset\}$, V_{α} is consists of sets built by $\langle \alpha \rangle$ applications of the power set operation. V_{λ} , for limit λ , is the union of the V_{α} for $\alpha < \lambda$.

The least α for which a set X is a subset of V_{α} is called the rank of X. The axiom of foundation implies that every set has a rank.

A set V_{α} that is closed under the power set and replacement operations is necessarily of the form V_{κ} for some cardinal κ . The cardinal κ is then called *inaccessible*, because in some sense V_{κ} cannot be reached from below. Note, in ZF we cannot prove the existence of an inaccessible $\kappa > \omega$. Otherwise we could use V_{κ} to model all the axioms of ZF, and hence prove in ZF the sentence Con(ZF), which is impossible by Godel's second incompleteness theorem (ZF includes PA).

Thus "inaccessible $\kappa > \omega$ exists" is a new kind of axiom of infinity.

E-mail: farid.khafizov@gmail.com