Inleiding

Elke halveringstijd halveert het aantal radioactieve kernen. Dit verband wordt gegeven door de formule:

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}$$

Een vergelijkbaar verband bestaat voor de verhouding tussen de activiteit en de oorspronkelijke activiteit.

$$\frac{A}{A_0} = \left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}$$

De verhouding tussen de doorgelaten (I) en oorspronkelijke intensiteit (I_0) van kernstraling neemt af met de dikte (d) van het materiaal, volgens het volgende verband.

$$\frac{I}{I_0} = \left(\frac{1}{2}\right)^{\frac{d}{d_1/2}}$$

Wiskundige achtergrond

Al deze verbanden zijn voorbeelden van een exponentieel verband. Dus van de vorm:

$$y = C \cdot a$$

Wanneer y bekend is en x gevraagd wordt gebruik je het natuurlijk logaritme (\ln). Het natuurlijk logaritme is gedefinieerd als:

$$\ln\left(e^x\right) = x$$

Hieruit volgen de rekenregels:

$$\ln (a^n) = n \ln a$$

$$\ln (a \cdot b) = \ln a + \ln b$$

Natuurkundige toepassing

Hier gaan we rekenen met de formule $\frac{N}{N_0}=\left(\frac{1}{2}\right)^{\frac{t}{t_1/2}},$ maar je kan dezelfde methode toepassen bij de andere verbanden genoemd in de inleiding.

Met deze rekenregels kan je dus de verhouding tussen tijd en halveringstijd $(\frac{t}{t_1/2})$ bepalen wanneer de verhouding tussen het huidig aantal kernen en het oorspronkelijk aantal kernen bekend is. We beginnen met de vergelijking:

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}$$

Dan nemen we het natuurlijk logaritme van beide zijden;

$$\ln\left(\frac{N}{N_0}\right) = \ln\left(\left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}\right) = \frac{t}{t_{1/2}}\ln\left(\frac{1}{2}\right)$$

Door beide zijden te delen door $\ln\left(\frac{1}{2}\right)$ krijgen we een formule voor de verhouding tussen tijd en halveringstijd:

$$rac{t}{t_{1/2}}=rac{\ln\left(rac{N}{N_0}
ight)}{\ln\left(rac{1}{2}
ight)}$$

Omdat $\ln\left(\frac{1}{2}\right)=-\ln 2$, dus kunnen de formule ook als volgt opschrijven:

$$rac{t}{t_{1/2}} = rac{-\ln\left(rac{N}{N_0}
ight)}{\ln 2}$$

3.1 Voorbeeld berekening

.1 Vraad

Een stralingsbron bevat radium-228, met een halveringstijd van 5,75 jaar. Aan het begin heeft deze bron een activiteit van 8,0 MBq. Hoe lang duurt het voordat de bron een activiteit heeft van 0,75 Mbq?

3.1.2 Uitwerking

$$A = 0,75MBq$$
$$A_0 = 8,0Mbq$$

$$t_{1/2} = 5, 75y$$

$$t = ?$$

$$A_0 = \frac{0, 75}{8, 0} = 0,094 = \left(\frac{1}{2}\right)^{\frac{t}{5.75}}$$

$$\ln 0,094 = \frac{t}{5, 75} \ln\left(\frac{1}{2}\right)$$

$$\ln 0,094 = \frac{t}{5, 75} \ln\left(\frac{1}{2}\right)$$

$$-2,37 = \frac{t}{5, 75} \cdot -0,69$$

$$-2,37 \cdot 5,75$$

$$-2,37 \cdot 5,75$$

$$t = 19,75y$$

3.1.3 Extra check

We vergelijken de verhouding tussen de oorspronkelijke en huidge activiteit is $\frac{A_0}{A}=10,66.$ We vergelijken dit met machten van 2:

$$2^3 = 8 < 10, 66 < 16 = 2^4$$

Dus tussen de 3 en 4 halveringstijden, oftewel tussen 17,25 y en 23 jaar, zijn verlopen. Het antwoord, 19,75 y, zit daar tussen in, dus zal wel kloppen.

4 Extra oefeningen

Antwoorden staan achteraan.

4.1 Opdracht 1

Van een radioactieve isotoop is na 24 uur 28 procent van de kernen over. Bereken de halveringstijd van deze isotoop.

4.2 Opdracht 2

De halveringsdikte van lood voor gamma-straling van 5,0 MeV is gelijk aan 1,23 cm. Hoe dik moet een loden plaat zijn om 4/5 van de gamma-straling te blokkeren?

4.3 Antwoorden

$$1: t = 13,1 h$$

$$2: d = 2,9 cm$$