

ЭТИКЕТКА

<u>СЛКН.431271.010 ЭТ</u> Микросхема интегральная 564 ЛА10В Функциональное назначение – Два логических элемента «2И-НЕ» с открытым стоковым выходом

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Свободный	8	Свободный
2	Свободный	9	Свободный
3	Вход	10	Выход
4	Вход	11	Вход
5	Выход	12	Вход
6	Свободный	13	Свободный
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ 1.1 Основные электрические параметры (при t = (25 ± 10) °C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
паименование нараметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при: $U_{CC} = 5$ В, $U_{IH} = 3,5$ В $U_{CC} = 10$ В, $U_{IH} = 7,0$ В $U_{CC} = 15$ В, $U_{IH} = 11$ В	U _{OL max}	- - -	0,5 1,0 1,5
2. Входной ток низкого уровня, мкА, при: U_{CC} = 15 В	I_{IL}	-	/-0,1/
3. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I _{IH}	-	0,1
4. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \text{ B, } U_{O} = 0,4 \text{ B}$ $U_{CC} = 5 \text{ B, } U_{O} = 1,0 \text{ B}$ $U_{CC} = 10 \text{ B, } U_{O} = 0,5 \text{ B}$ $U_{CC} = 10 \text{ B, } U_{O} = 1,0 \text{ B}$ $U_{CC} = 15 \text{ B, } U_{O} = 0,5 \text{ B}$	I_{OL}	16 34 37 68 50	- - - -
5. Ток потребления, мкА, при: $U_{CC} = 5 \ B \\ U_{CC} = 10 \ B \\ U_{CC} = 15 \ B$	I_{CC}	- - -	1,0 2,0 4,0
6. Ток потребления в динамическом режиме, мA, при: $U_{CC} = 10~B$	I _{OCC}	-	0,4

Продолжение таблицы 1				
1	2	3	4	
7. Ток утечки на выходе, мкА, при: $U_{CC}\!=\!$ 15 В	I_{LO}	-	2,0	
8. Ток утечки на выходе при воздействии помехи, мкА, при: U_{CC} = 5 B, U $_{IL}$ = 1,5 B U_{CC} = 10 B, U $_{IL}$ = 3,0 B U_{CC} = 15 B, U $_{IL}$ = 4,0 B	I_{LOH}	- - -	2,0 2,0 2,0	
9. Время задержки распространения при включении, нС, при: U_{CC} = 5 B, C_L = 50 пФ, R_L = 120 Ом U_{CC} = 10 B, C_L = 50 пФ, R_L = 120 Ом	t _{PHL}	-	200 90	
10. Время задержки распространения при выключении, нС, при: U_{CC} = 5 B, C_L = 50 п Φ , R_L = 120 Oм U_{CC} = 10 B, C_L = 50 п Φ , R_L = 120 Oм	t _{PLH}	-	200 120	
11. Входная емкость, п Φ , при: $U_{CC} = 10~B$	C _I	-	7,5	
12. Выходная емкость, п Φ , при: $U_{CC}=10~B,~U_O=0~B$ $U_{CC}=10~B,~U_O=10~B$	Co	-	70 40	

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

 $2.1~{\rm M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{\rm u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{\rm ^{\circ}}$ С не менее $100000~{\rm u}$., а в облегченных режимах, которые приводят в ТУ при $U_{\rm CC} = 5 {\rm B} \pm 10\%$ - не менее $120000~{\rm u}$.

 Γ амма — процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛА10В соответствуют техническим условиям бК0.347.064 ТУ 24/02 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	OT .		(дата)	
Место для шт					Место для штампа ВП
Место для шт	гампа «Перепроверка	произн	ведена		
Приняты по	(извещение, акт и др.)	_ OT .		(дата)	
Место для шт	гампа ОТК				Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с б $K0.347.064\ TY/02$.