

Effect of Roller Geometry on Roller Bearing Load-Life Relation

Fred B. Oswald
NASA Glenn Research Center

Erwin V. Zaretsky
NASA Glenn Research Center

Joseph V. Poplawski Poplawski & Associates

STLE 67th Annual Meeting & Exhibition

Roller Bearing Schematic

Roller bearing life analysis is based on Lundberg-Palmgren (1947 & 1952) for uncrowned rollers.

Issue: What is effect of roller crowning on life & reliability?

Lundberg-Palmgren (1947) rolling bearing life relation:

$$L \sim \left(\frac{1}{\tau}\right)^{c/m} \left(\frac{1}{V}\right)^{1/m} (z)^{h/m} \sim \left(\frac{1}{S_{\text{max}}}\right)^{n} \sim \left(\frac{1}{P}\right)^{p}$$

where:

L = Life

 τ = Critical shear stress

c = shear stress-life exponent P = Radial load

m = Weibull slope

exponent

V =Stressed volume

z = Depth to crit. shear stress

h = Exponent

p = Load-life

n = Exponent

 S_{max} = Max. Hertz stress

with LP model, n = 8 and p = 4 for line contact

Lundberg & Palmgren (1947) radial bearing load-life relation:

$$L = \left(\frac{C}{P}\right)^p$$

where:

L = Life

C = Dynamic load capacity

P = Applied radial load

exponent

p = 3 for either ball bearings or roller bearings

This relation was semi-empirical – based on life tests

Lundberg & Palmgren (1952) revised cylindrical roller bearing load-life relation:

$$L = \left(\frac{C}{P}\right)^p$$

p = 3 for pure point contact with both rings

p = 4 for pure line contact with both rings

p = 10/3 = 3.33 for mixed point and line contact

ANSI/ABMA and ISO Standards use p = 3.33 for roller bearings

Zaretsky (1996) modified the LP life equation, eliminating [1/z]^h

$$L \sim \left(\frac{1}{\tau}\right)^c \left(\frac{1}{V}\right)^{1/m} \sim \left(\frac{1}{S_{\text{max}}}\right)^n \sim \left(\frac{1}{P}\right)^p$$

where:

L = Life

 τ = Critical shear stress

C = shear stress-life exponent n = Exponent

m = Weibull slope

V =Stressed volume

 S_{max} = Max. Hertz stress

p = Load-life exponent

with Zaretsky model, n = 10 and p = 5 for line contact

Zaretsky model better fits post-1960, vacuum-processed steels

Objectives

- Investigate effect of roller profiles on load/life and stress/life relation for cylindrical roller bearings
 - Flat (uncrowned)
 - Aerospace crown
 - Chamfered
 - Full crown, r = 150D
 - Full crown, r = 100D

Results based on 210-size cylindrical roller bearing: Bore 50 mm, OD 90 mm, width 20 mm, roller dia. & length = 13 mm

Load-Life Relation - Lundberg-Palmgren Model

Hertz Stress-Life Relation - Lundberg-Palmgren Model

Load-Life Relation - Zaretsky Model

Hertz Stress-Life Relation - Zaretsky Model

Comparison of Lundberg-Palmgren and Zaretsky Models

Comparison of Lundberg-Palmgren and Zaretsky Models

Comparison of Lundberg-Palmgren and Zaretsky Models

Relative Life = 1.0 for C/P = 4.7 for flat roller where S_{max} = 1556 MPa (226 ksi)

Roller Profile	Lundberg-Palmgren			Zaretsky		
	p	n	Rel. Life	p	n	Rel. Life
Flat	4.00	8.00	1.0	5.03	10.10	83
Aero. & Chamfer	3.68	8.20	0.6	4.61	10.31	43
Full, R=150D	3.46	8.70	0.5	4.27	10.75	27
Full, R=100D	3.30	8.77	0.3	4.08	10.87	16
Full, R=50D	3.10	8.77	0.2	3.82	10.84	6

R = crown radius of curvature

D = roller diameter

Summary of Results

- For Flat rollers, Zaretsky load-life exponent p = 5 compared to p = 4 for LP model
- Confirmed LP model for Full Crown p = 3.33Zaretsky model for Full Crown p = 4.3
- Aerospace or Chamfered Crown p = 3.7 for LP model and p = 4.6 for Zaretsky model
- Zaretsky model predicts life 83 times higher than LP model for flat rollers at moderate load

Published Hertz Stress-Life Data

