四川大学期末考试试题(闭卷) B

(2013-2014学年下期)

课程号: **201098050** 课序号: **0,1** 课程名称: 高等代数-2 任课教师: 付昌建 卢明 谭友军 王皓

成绩:

适用专业年级: 2013级数学学院各专业 学生人数: 250 印题份数: 280

·: 姓名:

考试须知

四川大学学生参加由学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》.有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理.

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》,《四川大学考场规则》和《四川大学监考人员职责》.有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理.

注意:满分100分,按题号把解答写在答题纸上.在以下题目中, \mathbb{F} 表示一个数域; \mathbb{C}^T 表示矩阵 \mathbb{C} 的转置.

- 1. (15分) 设V是 \mathbb{F} 上的一个3维线性空间, α_1 , α_2 , α_3 是V的一个基, \underline{A} 是V上的一个线性变换,满足: $\underline{A}\alpha_1=\alpha_2$, $\underline{A}\alpha_2=\alpha_3$, $\underline{A}\alpha_3=\alpha_1$.
 - (1) (5分) 求A的全部复特征值.
 - (2) (5分) 写出 \underline{A}^{100} 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵.
 - (3) (5分) 如果 \mathbb{F} 是复数域,证明:存在V的一个基,使得A在这个基下的矩阵是对角阵.
- 2. (20分) 设 $\dim V = 5$, $\dim W = 4$, 设线性映射 $f: V \to W$ 在V、W的基下的矩阵为 $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 & -3 \\ 0 & 1 & 2 & 2 & 6 \\ 5 & 4 & 3 & 3 & -1 \end{pmatrix}$.
 - (1) (10分) 分别求f的核ker f和像im f的维数.
 - (2) (5分) 证明: 存在V的基 $\alpha_1, \dots, \alpha_5$ 和W的基 β_1, \dots, β_4 使得 $f(\alpha_1) = \beta_1, f(\alpha_2) = \beta_2$.
 - (3) (5分) 设 $\dim U = 3$ 且线性映射 $g: U \to V$ 满足g的像 $\inf g = \ker f$. 证明: g是单射.

3. (20分) 设
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$
.

- (1) (10分) 求A的Jordan(若当)标准型<math>J.
- (2) (5分) 设f(x) = |xE A|. 写出特征多项式为f(x)的所有的互不相似的Jordan阵.
- (3) (5分) 证明: 在任意数域 \mathbb{F} 上A与 $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ 都不相似.
- 4. (15分) 设 $A = \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix}$.
 - (1) (10分) 设 $f(X) = X^T A X$ 是二次型. 求一个正交变换X = T Y把f(X)化为标准型.
 - (2) (5分) 在实向量空间 \mathbb{R}^3 上定义(,)为: $(X,Y)=X^TAY$. 证明: (,)是 \mathbb{R}^3 上的一个内积.
- 5. (10分) 设V是 \mathbb{F} 上的线性空间, V^* 是V的对偶空间, 设A是V上的线性变换.
 - (1) (5分) 对任意 $f \in V^*$, 定义V上的函数 f^* 为: $f^*(\alpha) = f(\underline{A}(\alpha))$, 任意 $\alpha \in V$. 证明: $f^* \in V^*$.
 - (2) (5分) 证明: 映射 \underline{A}^* : $f \mapsto f^* \in V^*$ 上的线性变换.
- 6. (10分) 证明如下的子空间的维数公式: 即,设U,V是W的子空间,且U+V是有限维的,则 $\dim(U+V)=\dim U+\dim V-\dim(U\cap V)$.
- 7. (10分) 设A是 \mathbb{F} 上的n阶方阵, $d_1(\lambda)$, \cdots , $d_n(\lambda)$ 是A的不变因子. 证明: A的极小多项式是 $d_n(\lambda)$.