Name:

Integral rechnung 2

Ohne Hilfsmittel, 90 Min.

1. Berechne mit Substitutionsmethode: (9P)

a)
$$\int x \sin x^2 \, \mathrm{d}x$$

$$b) \int \frac{t^3}{1 + t^4} \, \mathrm{d}t$$

c)
$$\int \frac{e^{2x}}{\sqrt{1+e^x}} \, \mathrm{d}x$$

2. Berechne mit partieller Integration: (6P)

a)
$$\int 3ze^{2z} dz$$

b)
$$\int e^x \cos x \, dx$$

3. Berechne: (6P)

$$a) \int \frac{1}{y(y+1)} \, \mathrm{d}y$$

b)
$$\int_{1}^{e} \frac{\sqrt{\ln x}}{x} \, \mathrm{d}x$$

4. Für welchen Wert von a schliessen die Graphen der Funktionen y=ax und $y=x^2-ax$ eine Fläche vom Inhalt 36 ein? (6P)

5. Die Funktion $f(x) = x \cdot \sin^2 x$ ist im folgenden Diagramm dargestellt:

a) Zeige, dass die Flächen $A_0, A_1, A_2, A_3, ...$ eine arithmetische Folge bilden. (6P)

b) Zeige, dass die Funktion f(x) in jedem Intervall $[n\pi; (n+1)\pi]$ mit $n \in \mathbb{N}_0$ die Fläche zwischen der Winkelhalbierenden y = x und der x-Achse halbiert. (6P)

6. Die Funktion

$$g(x) = 2\sqrt{x} \cdot e^{-\frac{x^2}{2}}$$

wird um die x-Achse gedreht. Zeige, dass das Volumen des Rotationskörpers 2π beträgt. (6P)

7. Seien $g(x) = \sin(kx)$ und $h(x) = \frac{1}{x^2}$.

- a) Bestimme k so, dass der Graph von g mit dem Diagramm übereinstimmt. (Hinweis: überlege für welchen Wert g(x) im Schnittpunkt ein Maximum hat.)
- b) Bestimme den Inhalt der "grauen" Fläche. (8P)

Total: 53P