Fiche d'exercices nº 2

Réduction des endomorphismes

Exercice 1.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ inversible de polynôme caractéristique χ_A . Montrer que pour tout $x \in \mathbb{K}$, avec $x \neq 0$, on a :

 $\chi_{A^{-1}}(x) = \frac{x^n}{\chi_A(0)} \chi_A\left(\frac{1}{x}\right).$

Exercice 2.

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On désire établir l'égalité des polynômes caractéristiques de AB et de BA: $\chi_{AB} = \chi_{BA}$.

- a) Établir l'égalité quand $A \in GL_n(\mathbb{C})$.
- **b)** Pour $A \notin GL_n(\mathbb{C})$, justifier que pour $p \in \mathbb{N}$ assez grand, $A + \frac{1}{p}I_n \in GL_n(\mathbb{C})$. En déduire que l'égalité est encore vraie pour A non inversible.

Exercice 3.

Soient $n \ge 2$ et $f \in \mathcal{L}(\mathbb{C}^n)$ endomorphisme de rang 2. Déterminer le polynôme caractéristique de f en fonction de $\operatorname{tr}(f)$ et $\operatorname{tr}(f^2)$.

Exercice 4. **

Soient A et B dans $\mathcal{M}_n(\mathbb{K})$.

- a) Si $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) \neq \emptyset$, montrer l'existence de C non nulle dans $M_n(\mathbb{K})$ telle que AC = CB.
- b) Réciproquement, S'il existe C dans $M_n(\mathbb{K})$ de rang r > 0 telle que AC = CB, montrer que χ_A et χ_B admettent un diviseur commun de degré r.

Exercice 5.

Soient $n, p \in \mathbb{N}^*$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$.

Montrer que $X^p \chi_{AB} = X^n \chi_{BA}$.

(Indication: commencer par le cas où $A = \begin{pmatrix} I_r & (0) \\ (0) & (0) \end{pmatrix}$.)

Exercice 6.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose χ_A scindé.

Etablir que pour tout $k \in \mathbb{N}$,

$$\operatorname{Sp}(A^k) = \left\{ \lambda^k \ , \ \lambda \in \operatorname{Sp}(A) \right\}$$

Exercice 7.

Diagonaliser les matrices suivantes :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

On précisera bien la matrice de passage de la base canonique à la base de vecteurs propres.

Exercice 8.

Diagonaliser les matrices suivantes de $\mathcal{M}_n(\mathbb{K})$:

$$M(a,b) = \begin{pmatrix} a & & (b) \\ & \ddots & \\ (b) & & a \end{pmatrix}, \qquad A = \begin{pmatrix} (0) & & 1 \\ & \ddots & \\ 1 & & (0) \end{pmatrix}, \qquad B = \begin{pmatrix} & & 1 \\ & (0) & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

Exercice 9.

Soit $A = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$. Montrer que A est diagonalisable et calculer ses valeurs propres. En déduire qu'il existe une matrice B telle que $B^3 = A$.

Exercice 10.

Soit m un nombre réel et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{array}\right).$$

- a) Quelles sont les valeurs propres de f?
- b) Pour quelles valeurs de m l'endomorphisme est-il diagonalisable?
- c) On suppose m = 2. Calculer A^k pour tout $k \in \mathbb{N}$.

Exercice 11.

Résoudre dans
$$\mathcal{M}_3(\mathbb{R})$$
 l'équation $A^2 = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ -1 & 0 & 1 \end{pmatrix}$.

Exercice 12.

Déterminer une condition nécessaire et suffisante portant sur la trace d'une matrice de rang 1 pour qu'elle soit diagonalisable.

Exercice 13.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soient $u, v \in \mathcal{L}(E)$, tous deux diagonalisables. Montrer que u et v commutent si, et seulement si, ils sont codiagonalisable (c'est-à-dire diagonalisables dans une même base).

Exercice 14.

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$ non nulle et diagonalisable.

Montrer que $M=\begin{pmatrix} aA & bA \\ cA & dA \end{pmatrix}$ est diagonalisable si, et seulement si, A est diagonalisable.

Exercice 15.

Soient A, B, C dans $\mathcal{M}_n(\mathbb{C})$ et $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$. Si A et C ont chacune une seule valeur propre, donner une condition nécessaire et suffisante de diagonalisabilité de M.

Exercice 16.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. Pour tout $n\in\mathbb{N}$, on pose :

$$A_n = \begin{pmatrix} 0 & 1 & & (0) \\ \vdots & \ddots & \ddots & \\ 0 & \cdots & 0 & 1 \\ a_0 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix}$$

- a) Montrer que $\chi_{A_n} = X^n (a_{n-1}X^{n-1} + \dots + a_0)$.
- b) Montrer que tous les sous-espaces propres de A_n sont des droites.
- c) En déduire une condition nécessaire et suffisante pour que A_n soit diagonalisable.

Exercice 17.

Soit
$$B = \begin{pmatrix} 0_n & I_n \\ A & 0_n \end{pmatrix}$$
 où $A \in \mathcal{M}_n(\mathbb{C})$.
Déterminer les éléments propres de B en fonction de ceux de A .

Montrer également que B est diagonalisable si, et seulement si, A est diagonalisable et inversible.

Exercice 18.

Soient $\alpha \in \mathbb{R}$ et

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}) \text{ et } B = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$

- a) On suppose $\mathbb{K} = \mathbb{C}$. La matrice A est-elle diagonalisable?
- b) On suppose $\mathbb{K} = \mathbb{R}$. La matrice A est-elle diagonalisable?
- c) Mêmes questions avec B.

Exercice 19.

Soit A la matrice
$$\begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$$
.

- a) Diagonaliser A.
- **b)** Calculer A^n en fonction de n.
- c) On considère les suites (u_n) , (v_n) et (w_n) définies par leur premier terme u_0 , v_0 et w_0 et les relations suivantes:

$$\begin{cases} u_{n+1} &= -4u_n - 6v_n \\ v_{n+1} &= 3u_n + 5v_n \\ w_{n+1} &= 3u_n + 6v_n + 5w_n \end{cases}$$

pour $n \ge 0$. On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$. Exprimer X_{n+1} en fonction de A et X_n . En déduire u_n, v_n et w_n en fonction de n

Exercice 20. **

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que f est diagonalisable si, et seulement si, tout sous-espace de E admet un supplémentaire stable par f.

Exercice 21. polynôme annulateur en dimension infinie

On considère sur $E = \mathbb{K}[X]$ l'opérateur de dérivation $D \in \mathcal{L}(E)$ qui à tout polynôme associe son polynôme dérivé. Montrer que D n'admet aucun polynôme annulateur.

On pourra montrer que si $Q \in \mathbb{K}[X]$ est de degré $n \in \mathbb{N}^*$, $Q(D)(X^{n+1})$ est forcément non nul.

Exercice 22. polynômes de deux endomorphismes qui commutent

Soit E un espace vectoriel, et deux endomorphismes $u, v \in \mathcal{L}(E)$ qui commutent (ie uv = vu). Montrer que pour tout $P, Q \in \mathbb{K}[X], P(u)$ et Q(v) commutent.

Indication: On pourra commencer par montrer que pour tout $P \in \mathbb{K}[X]$, P(u) commute avec v.

Exercice 23.

Soit E un \mathbb{K} -espace vectoriel et soit $u \in \mathcal{L}(E)$. Soit P un polynôme annulateur de u dont 0 est racine simple. Montrer que $E = \operatorname{Ker}(u) + \operatorname{Im}(u)$.

Exercice 24.

Déterminer le polynôme minimal des matrices :

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix} \qquad D = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$

Exercice 25.

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie, et soit π_u son polynôme minimal. Soit $P \in \mathbb{K}[X]$. Démontrer que P(u) est inversible si, et seulement si, P et π_u sont premiers entre eux.

Exercice 26.

Soit $M \in \mathcal{M}_n(\mathbb{C})$ et $p \ge 1$. Montrer que M est diagonalisable si, et seulement si, M^p est diagonaliable et $\text{Ker}(M) = \text{Ker}(M^p)$. Le résultat subsiste-t-il si on travaille dans \mathbb{R} ?

Exercice 27.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable dans $\mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $P \in \mathbb{R}[X]$ tel que $A = P(A^3)$.

Exercice 28.

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ et un polynôme $P \in \mathbb{K}[X]$ tel que $P(0) \neq 0$ et AB = P(A). Montrer que A est inversible puis que A et B commutent.

Exercice 29.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ de polynôme minimal $(X-1)^2$. Montrer que A est semblable à une matrice diagonale par blocs avec des blocs diagonaux de la forme (1) ou $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Exercice 30.

Déterminer une condition nécessaire et suffisante sur $n \in \mathbb{N}^*$ pour qu'il existe $M \in \mathcal{M}_n(\mathbb{R})$ ayant $X^2 + 1$ comme polynôme minimal?