Отчёт по лабораторной работе №12

Пример моделирования простого протокола передачи данных

Ощепков Дмитрий Владимирович НФИбд-01-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Определим декларации	9
5	Упражнение	11
6	Выводы	13

Список иллюстраций

3.1	граф системы .													•	8
5.1	Граф состояний														11
5.2	Граф состояний														12

Список таблиц

1 Цель работы

Реализовать простой протокол передачи данных

2 Задание

Рассмотрим ненадёжную сеть передачи данных, состоящую из источника, получателя. Перед отправкой очередной порции данных источник должен получить от получателя подтверждение о доставке предыдущей порции данных. Считаем, что пакет состоит из номера пакета и строковых данных. Передавать будем сообщение «Modelling and Analysis by Means of Coloured Petry Nets», разбитое по 8 символов.

3 Выполнение лабораторной работы

Основные состояния: источник (Send), получатель (Receiver). Действия (переходы): отправить пакет (Send Packet), отправить подтверждение (Send ACK). Промежуточное состояние: следующий посылаемый пакет (NextSend).

Зададим промежуточные состояния (A, B с типом INTxDATA, C, D с типом INTxDATA) для переходов (рис. 12.2): передать пакет Transmit Packet (передаём (n,p)), передать подтверждение Transmit ACK (передаём целое число k).

Таким образом, получим модель простого протокола передачи данных (рис. 12.3). Пакет последовательно проходит: состояние Send, переход Send Packet, состояние A, с некоторой вероятностью переход Transmit Packet, состояние B, попадает на переход Receive Packet, где проверяется номер пакета и если нет совпадения, то пакет направляется в состояние Received, а номер пакета передаётся последовательно в состояние C, с некоторой вероятностью в переход Transmit ACK, далее в состояние D, переход Receive ACK, состояние NextSend (увеличивая на 1 номер следующего пакета), переход Send Packet. Так продолжается до тех пор, пока не будут переданы все части сообщения. Последней будет передана стоппоследовательность.

Рис. 3.1: граф системы

4 Определим декларации

```
colset INT = int; colset DATA = string; colset INTxDATA = product INT * DATA; var n, k: INT; var p, str: DATA; val stop = "#######"; colset Ten0 = int with 0..10; colset Ten1 = int with 0..10; var s: Ten0; var r: Ten1;
```

- ▼ Declarations
 - Standard priorities
 - Standard declarations
 - ▼colset INT = int;
 - ▶ colset DATA
 - ▶ colset INTxDATA
 - ▶ var n k
 - ▶ var p str
 - ▶ val stop
 - colset Ten0
 - colset Ten1
 - ▶ var r
 - ▶ var s
 - ▶fun Ok
- ► Monitors main

5 Упражнение

Вычислите пространство состояний. Сформируйте отчёт о пространстве состояний и проанализируйте его. Постройте граф пространства состояний.

Рис. 5.1: Граф состояний

Рис. 5.2: Граф состояний

6 Выводы

Реализовал простой протокол передачи данных.