JESENSKI ISPITNI ROK IZ DIGITALNE LOGIKE – PISMENI ISPIT

Grupa C

1	Dva sustava razmjenjuju poruke koje sadrže jedan bit informacije. Podatci se štite kôdom n -strukog ponavljanja uz n =3. Prijemnik s komunikacijskog kanala očitava tri bita: $d_2d_1d_0$. U prijemniku se nalazi sklop za ispravljanje pogreške koji na ulazu dobiva $d_2d_1d_0$ a generira ispravljeni podatak d . Konstruirajte taj sklop. Minimalni zapis funkcije $d(d_2d_1d_0)$ u zapisu sume produkata glasi:						
	a) $d_0 + d_1 + d_2$ c) $d_2 d_1 d_0$ e) $d_0 d_1 + \overline{d_1} \overline{d_2}$						
	b) $d_2d_0 + d_1d_0 + d_2d_1$ d) $d_2d_1d_0 + \overline{d_2}\overline{d_1}\overline{d_0}$ f) ništa od navedenoga						
2	Funkciju $g(d_0, d_1, d_2, d_3, d_4) = \overline{d_0}(\overline{d_1} + \overline{d_2}) + \overline{d_3}\overline{d_4}$ potrebno je ostvariti uporabom tehnologije CMOS.						
	Koliko nam minimalno treba <i>n</i> -kanalnih tranzistora?						
	a) 3 b) 5 c) 4 d) 2 e) 7 f) ništa od navedenoga						
3	Funkciju $g(x_0, x_1, x_2) = \overline{x}_0 \overline{x}_1 + \overline{x}_0 \overline{x}_2 + \overline{x}_1 \overline{x}_2$ ostvarujemo multipleksorom 2/1. Ako na adresni ulaz s						
	dovedemo x_0 , što je potrebno dovesti na podatkovni ulaz d_0 ? Podatkovni ulazi multipleksora su						
	d_0 i d_1 .						
	a) $x_1 \cdot x_2$ b) $\overline{x_1 + x_2}$ c) $x_1 + x_2$ d) $x_1 \oplus x_2$ e) $\overline{x_1 \cdot x_2}$ f) ništa od navedenoga						
4	Prijamnik s komunikacijskog kanala očitava bitove 1011000. Ako je poznato da je predajnik poruku zaštitio Hammingovim kodom uz parni paritet i uobičajen razmještaj zaštitnih i podatkovnih bitova, je li se dogodila pogreška, i ako je, na kojem bitu? Bitovi su numerirani s lijeva na desno počev od 1. Može se pretpostaviti da se sigurno nije dogodila višestruka pogreška.						
	a) nema pogreške b) šesti bit je pogrešan c) prvi bit je pogrešan d) četvrti bit je pogrešan e) treći bit je pogrešan f) ništa od navedenog						
5	Neki industrijski proces nadzire se nizom senzora. Temeljem tako dobivenih podataka generiraju se dva alarma a_1 i a_2 (a_i =1 znači da je i -ti alarm aktivan). Za proizvodni proces posebno je opasna situacija koja nastupa kada se najprije upali alarm a_1 , potom nakon nekog vremena se dodatno upali alarm a_2 te se konačno nakon nekog vremena ugasi a_1 dok je a_2 i dalje aktivan. Konstruirajte Mooreov automat koji će temeljem ulaza a_1 i a_2 generirati novi alarm a_3 koji će se aktivirati kada se detektira opisana sekvenca i koji će biti aktivan sve dok traje posljednje stanje sekvence; bilo kakva promjena koja nastupi nakon posljednjeg opisanog stanja deaktivira ovaj alarm. Ako se za kodiranje stanja koristi prirodni binarni kod, koliko nam je minimalno potrebno D-bistabila da bismo ostvarili opisani Mooreov automat?						
	a) 5 b) 3 c) 2 d) 4 e) 1 f) ništa od navedenoga						
6	4-bitno sinkrono binarno brojilo ima izlaze $Q_3Q_2Q_1Q_0$ te radi na taktu frekvencije 1MHz. 4-bitni težinski binarni D/A pretvornik s operacijskim pojačalom ima ulaze $a_3a_2a_1a_0$, najveći otpor u težinskoj mreži iznosi $10k\Omega$, otpor u povratnoj grani operacijskog pojačala iznosi $1k\Omega$ a $U_{REF}=1V$. Pretvornik i brojilo spojeni su na sljedeći način: $a_3=Q_1$, $a_2=Q_3$, $a_1=Q_0$ te $a_0=Q_2$. Ako je poznato da je izlaz brojila jednak nula od t=0μs do t=1μs, što će biti na izlazu D/A pretvornika u t=5.3μs?						
6	4-bitno sinkrono binarno brojilo ima izlaze $Q_3Q_2Q_1Q_0$ te radi na taktu frekvencije 1MHz. 4-bitni težinski binarni D/A pretvornik s operacijskim pojačalom ima ulaze $a_3a_2a_1a_0$, najveći otpor u težinskoj mreži iznosi $10k\Omega$, otpor u povratnoj grani operacijskog pojačala iznosi $1k\Omega$ a $U_{REF}=1V$. Pretvornik i brojilo spojeni su na sljedeći način: $a_3=Q_1$, $a_2=Q_3$, $a_1=Q_0$ te $a_0=Q_2$. Ako je poznato da je izlaz brojila jednak nula od t=0μs do t=1μs, što će biti na izlazu D/A pretvornika u t=5.3μs? (a) $0V$ (b) $-0.3V$ (c) $-0.9V$ (d) $-0.6V$ (e) $-0.1V$ (f) ništa od navedenoga						
7	4-bitno sinkrono binarno brojilo ima izlaze $Q_3Q_2Q_1Q_0$ te radi na taktu frekvencije 1MHz. 4-bitni težinski binarni D/A pretvornik s operacijskim pojačalom ima ulaze $a_3a_2a_1a_0$, najveći otpor u težinskoj mreži iznosi $10k\Omega$, otpor u povratnoj grani operacijskog pojačala iznosi $1k\Omega$ a $U_{REF}=1V$. Pretvornik i brojilo spojeni su na sljedeći način: $a_3=Q_1$, $a_2=Q_3$, $a_1=Q_0$ te $a_0=Q_2$. Ako je poznato da je izlaz brojila jednak nula od t=0μs do t=1μs, što će biti na izlazu D/A pretvornika u t=5.3μs?						

8	Zadana ja funkcija $f = (\overline{A} + PC)D$. Vaka alasi minimalni zanja dvalna funkcija ad					
	Zadana je funkcija $f = (\overline{A} + BC)D$. Kako glasi minimalni zapis dualne funkcije od komplementarne funkcije od f , u obliku sume produkata?					
	a) $A\overline{D} + \overline{B}\overline{C}\overline{D}$	c) $\overline{A}D + BCD$	e) $\overline{A}D + BC$			
	b) $\overline{A}B + \overline{C}D$	d) $\overline{A}\overline{D} + BC\overline{D}$	f) ništa od nav	redenoga		
9	Minimalni zapis funkcije f	(A,B,C,D) pokriva 11 mir	terma. Koliko maksterma po	kriva minimalni		
	zapis te iste funkcije kada	se gleda zapis u obliku pr				
	a) 11 b) 13	c) 3 d) 5		ta od navedenoga		
10		vih funkcija moguće ostv	ariti jednim dekoderom 2/4?	Dekoder nema		
	ulaz za omogućavanje.	a) 4 4) 22	a) 0 A mix	to admarradamana		
1.1	a) 16 b) ∞	c) 4 d) 32	e) 8 f) niš	ta od navedenoga		
11	Sklop koji ostvaruje funkciju f prikazan je na slici. Uporabom jednog multipleksora $2/1$					
	potrebno je ostvariti sklop	koji ostvaruje istu	A - 0			
	funkciju. Ako se na adresn	<u> </u>	& =1	≥1		
	dovede varijabla B, kako g rezidualne funkcije koju je		C			
	podatkovni ulaz d_0 ?	1				
	a) $A+C+\overline{D}$	c) $\overline{C}D$	e) $AB + \overline{D}$			
	b) $\overline{A}CD$	d) 1	f) ništa od na	vedenoga		
12	Na raspolaganju je dekode	er 1/2 definiran kao kompo	onenta DEK12 u čijem su suč	čelju navedeni		
			om). Te se komponente koris			
		P Koji ima ulaze A , B te izi dek12 port map(A,'1',	az f. U arhitekturi opisa sklo i1,i2);	pa nalaze se:		
	c2: entity work.	dek12 port map(B,i1,i dek12 port map(B,i2,i	3,14);			
	f <= i3 + i4 + i5	;				
	_		ı obliku sume produkata. <i>i1-i</i>	6 su interni signali.		
	a) $\overline{A} + \overline{B}$	c) $\overline{A} \cdot \overline{B}$	e) $\overline{A}B$	vadanaga		
	b) A \(\overline{B} \)	d) <i>A</i> ⊕ <i>B</i>	f) ništa od nav			
13	Koji je minimalni dekoder dovoljan kako bismo jednim takvim ostvarili funkciju:					
	$f(A,B,C,D,E) = \sum_{i=1}^{n} m(1,3,5,7,9,11,13,15,16,17,18,19,20,21,22,23)$? Napomena: minimizirajte					
	funkciju K-tablicom!	a) 2/9 d) 5/2	2 a) 2/4 f) nið	ita ad navadanaga		
14	a) 1/2 b) 4/16	c) 3/8 d) 5/3	,	sta od navedenoga		
14		02	O_1			
	1	T Q T	8 T a			
	Г	-C) CP	CP CP			
	CP					
	Izvedba nekog automata prikazana je na slici. Izlazi automata su $O_2O_1O_0$. Utvrdite ciklus u kojem					
	se mijenjaju izlazi tog automata. Jedan njegov dio je:					
	a) $4 \rightarrow 7 \rightarrow 1$ b) $0 \rightarrow 6 \rightarrow 3$	3 c) $3 \rightarrow 6 \rightarrow 2$ d) $3 \rightarrow$	$6 \rightarrow 5$ e) $4 \rightarrow 5 \rightarrow 7$ f) niš	sta od navedenoga		

15	Čemu je proporcionalna dinamička disipacija snage kod integriranih logičkih sklopova?			h logičkih sklopova?		
	a) $\sqrt{U}f$			e) U/f		
	b) U^2f	d) $U\sqrt{f}$		f) ništa od navedenoga		
16	Za automat prikazan na slici u zadatku 14 utvrdite maksimalnu frekvenciju rada. Kašnjenje ogičkog sklopa I je 5ns, invertora 2ns, vrijeme postavljanja bistabila iznosi 20ns, vrijeme kašnjenja bistabila iznosi 25ns a vrijeme pridržavanja bistabila iznosi 18ns. Frekvencije su u odgovorima zaokružene na jednu decimalu i navedene su u MHz.					
17	, , ,		15,4 e) 20,0	f) ništa od navedenoga		
17	Uporabom sklopa koji se sastoji od binarnog brojila unaprijed te memorije (vidi sliku) potrebno je ostvariti sklop koji na izlazu ciklički generira slijed 7,5,5,0,3,2,2,2. Što je potrebno upisati u memoriju na lokaciju 1? Po uključenju na napajanje binarno brojilo postavit će se u stanje 0 i tada na izlazu čitavog ispisan u oktalnom zapisu. U svi	CP — CP sklopa treba biti im oznakama vec	ei indeks predstavl	memorije u odgovorima je		
	/) 16 d)	,	f) ništa od navedenoga		
18	Memorija organizacije 2 ½ D in adresna ulaza i 4 izlaza. Koliki j a) 2 ⁹ b) 2 ⁸ c	e ukupni kapacit		itovima?		
	,	//		f) ništa od navedenoga		
19	Kojeg je tipa hazard koji može r sklopa koji ostvaruje Booleovu postupkom: a) dinamički 0-1 hazard b) statički 1-hazard c) dinamički 0-hazard d) statički 0-hazard e) dinamički 1-hazard f) ništa od navedenoga					
20	Modul za digitalnu aritmetiku u nekom sustavu radi sa znamenkama u bazi 4, i pri tome koristi kôd					
	0=11, 1=00, 2=10, 3=01. Neka s označeni x_1x_0 a izlazi y_1y_0 . Vrije	edi:		-		
	a) $y_1 = x_1, y_0 = \bar{x}_0$	c) $y_1 = x_1, y_0$	· ·	e) $y_1 = \overline{x}_0, y_0 = x_1$		
	· · · · · · · · · · · · · · · ·	$d) y_1 = \overline{x}_1, y_0$		f) ništa od navedenoga		
21	Na raspolaganju su čipovi RAM 2^{15} x64 bita. Koliko adresnih ula korištenih manjih čipova RAM-	za treba imati de a?	koder koji upravlja	ulazima za omogućavanje		
	,) 3 d)		f) ništa od navedenoga		
22	Pomoću 5 bistabila T izgrađeno je asinkrono binarno brojilo unaprijed. Bistabili imaju još i dodatni asinkroni ulaz za brisanje (reset, ulaz aktivan s 0), i u brojilu su ti ulazi povezani zajedno, te je na njih spojen izlaz sklopa koji računa $\overline{Q_4Q_3Q_2}\overline{\overline{Q_1}}\overline{\overline{Q_0}}$ (Q_4 je izlaz bistabila koji čuva bit najveće težine).					
	Koliko stanja sadrži ciklus tako	izvedenog brojil	a?			
	a) 24 b) 25 c)	26 d) 2	7 e) 28	f) ništa od navedenog		

- Zadana je funkcija $f(A,B,C,D) = \sum m(2,3,5,7,8,12,14)$? Koliko primarnih implikanata / bitnih primarnih implikanata ima komplement te funkcije?
 - a) 6/3
- b) 5 / 3
- c) 5/2
- d) 4 / 3
- e) 3 / 2
- f) ništa od navedenog

Na raspolaganju je logički blok FPGA sklopa prikazan slikom. Želimo ostvariti bistabil s ulazima A i B čija je tablica promjene stanja:

A	В	Q^{n+1}
0	0	\overline{Q}^{n}
0	1	0
1	0	1
1	1	Q^{n}

gdje Q^{n+1} označava sljedeće a Q^n trenutno stanje bistabila. Kako treba programirati logički blok? U rješenjima je LUT očitan od d_0 prema d_7 .

- a) LUT=10001101, s=1, t=1
- b) LUT=00101110, s=1, t=1
- c) LUT=01101010, s=1, t=1
- d) LUT=00111010, s=1, t=1
- e) LUT=00011101, s=1, t=1
- f) ništa od navedenog

25 | Sklopom PAL prikazanim na slici ostvarena je funkcija f. O kojoj se funkciji radi?

- a) $f(A, B, C) = \sum m(2,3,4,7)$
- b) $f(A, B, C) = \sum m(3,5,6,7)$
- c) $f(A, B, C) = \sum m(1,2,3,6)$
- d) $f(A, B, C) = \sum m(0,1,3,7)$
- e) $f(A, B, C) = \sum m(1,2,4,6,7)$
- f) ništa od navedenoga