Ejercicio 1: Para cada uno de los siguientes sistemas determine si son causales, lineales, invariantes en el tiempo y si poseen memoria. En cada caso grafique la salida del sistema y[n] para una entrada dada.

- 1. $y[n]=g[n]x[n],\ \mbox{donde}\ g[n]=A\sin(\omega nT)$ siendoAconstante, $\omega=2\pi f$ y Tel período de muestreo.
- 2. $y[n] = \sum_{n=0}^{n+no} x[k]$
- 3. y[n] = x[n] + 2
- $4. \ y[n] = nx[n]$

Para que un sistema sez invariante

EN EL TIEMPO se debe cumplir que

$$Y(t-T_0) = X(t-T_0)$$

① Y[n]=g[n]x[n] Invarianza en el tiempo Para que el sistema sea TI

Bx(t) > PT > Y(t) > deben ser iguales

(a) $Y[n-t] = 9[n-t] \times [n-t]$

Y[n] = g[n] X[n-t]

3y 6 son distintos

Memoria

No tiene memoria. No depende de entradas pasadas

Linea lidad

se tiene que complir su perposicion

$$Y$$
 el de Homogeneidad

 $X_{i}(t)$ $\longrightarrow Y_{i}(t) \longrightarrow Y_{i}(t) \longrightarrow X_{i}(t)$
 $x_{i}(t)$ $\longrightarrow X_{i}(t)$ $\longrightarrow X_{i}(t)$ $\longrightarrow X_{i}(t)$
 $x_{i}(t)$ $\longrightarrow X_{i}(t)$
 $x_{i}(t)$
 $x_{i}(t)$ $\longrightarrow X_{i}(t)$
 $x_{i}(t)$
 $x_{i}(t)$

$$y[n] = \sum_{k=n-no}^{n+no} x[k] \qquad \text{Invarianza en el tiempo}$$

$$y[n-t] \Rightarrow \sum_{K=n-no-t}^{n+no-t} x[K]$$

$$x[n-t] \Rightarrow \sum_{K=n-no-t}^{n+no} x[K-t] = \sum_{K=n-no-t}^{n+no-t} x[K]$$

Ambos son iguales : invariante en el tiempo

Memoria

tiene memoria por depender de valores anteriores Linealidad

: comple superposición

$$\frac{n+n_0}{\chi[n-n_1]} \rightarrow \frac{n+n_0}{\sum_i \chi[\kappa-n_i]} = \chi[n-n_i]$$

Causalidad

No es causal

3.
$$y[n] = x[n] + 2$$

Linealidad

$$y_1 = x_1 + 2$$
 $y_2 = x_2 + 2$ $y' = (x_1 + x_2) + 2$
 $y_1 + y_2 = x_1 + x_2 + 4$ $y' = x_1 + x_2 + 2$
 $y_1 + y_2 \neq y'$... No superpos

Varianza en el trempo

$$y_1 = x_1 [n-t] + z$$

$$= 1 \text{ invariante}$$

$$x' = x [n-t] + z$$

Causal

Sies causal

Linealidad

$$y_1 = X_1 N$$
 $y_2 = X_2 N$ $y_1 + y_2 = N(X_1 + X_2)$
 $y' = (x_1 + x_2) N = y_1 + y_2$ superposicion /
 $y'_1 = Kx_1 N = y'_1 = Kx_1 N$ homogeneo

Varianza en el tiempo

$$\gamma = n \times [n - n_0] \times [n - n_0]$$

 $\gamma' = n \times [n - n_0] \times \gamma' \neq \gamma_1 \quad \forall \text{ariante}$