Math 240: Midterm 2 Q6a

Daniel Ko

Spring 2020

§1 6a

Given positive integers a and b, we want to compute some integers s and t such that

$$gcd(a, b) = sa + tb$$

Consider the following iterative program LIN_COMB (a, b) which is supposed to accomplish this: Initialize variables c = a, d = b, $s_0 = 1$, $t_0 = 0$, $s_1 = 0$, $t_1 = 1$

While $c \neq d$, do the following:

If c < d, then decrement d by c, decrement s_1 by s_0 , decrement t_1 by t_0 Else if c > d, then decrement c by d, decrement s_0 by s_1 , decrement t_0 by t_1 Return s_0 and t_0

Prove that $(c = s_0 a + t_0 b) \wedge (d = s_1 a + t_1 b)$ is a loop invariant for the while loop in LIN_COMB.

Proof. Let P(n) be the predicate asserting that if the while loop has run for n iterations, then $(c = s_0 a + t_0 b) \wedge (d = s_1 a + t_1 b)$. Domain: \mathbb{N} . We prove by induction that for all k, P(k) holds.

 $c = s_0 a + t_0 b$

Base case: Before any iteration of the loop: c = a, d = b, $s_0 = 1$, $t_0 = 0$, $s_1 = 0$, $t_1 = 1$.

$$= 1c + 0d$$
$$= c$$
$$d = s_1 a + t_1 b$$

= 0c + 1d

= d

Hence, P(0) holds as desired.

Inductive step: Suppose that $n \in N$ such that P(n) holds. We prove that P(n+1) holds. Suppose the loop has run for n+1 iterations. Let c', d', s'_0 , t'_0 , s'_1 , t'_1 be the value of the variables after the loop has run for n iterations. Now we consider what happens in the $(n+1)^{th}$ iteration.

i. Case 1: c' < d'

$$c = c'$$

$$d = d' - c'$$

$$s_0 = s'_0$$

$$t_0 = t'_0$$

$$s_1 = s'_1 - s'_0$$

$$t_1 = t'_1 - t'_0$$

By our induction hypothesis, we know that $c'=s_0'a+t_0'b$ and $d'=s_1'a+t_1'b$. Thus,

$$c = c'$$

$$= s'_0 a + t'_0 b$$

$$= s_0 a + t_0 b$$

$$d = d' - c'$$

$$= s'_1 a + t'_1 b - (s'_0 a + t'_0 b)$$

$$= s'_1 a + t'_1 b - s'_0 a - t'_0 b$$

$$= (s'_1 - s'_0) a + (t'_1 - t'_0) b$$

$$= s_1 a + t_1 b$$

as desired. So P(n+1) holds for when c' < d'.

ii. Case 2: c' > d'

$$c = c' - d'$$

$$d = d'$$

$$s_0 = s'_0 - s'_1$$

$$t_0 = t'_0 - t'_1$$

$$s_1 = s'_1$$

$$t_1 = t'_1$$

By our induction hypothesis, we know that $c' = s'_0 a + t'_0 b$ and $d' = s'_1 a + t'_1 b$. Thus,

$$c = c' - d'$$

$$= s'_0 a + t'_0 b - (s'_1 a + t'_1 b)$$

$$= s'_0 a + t'_0 b - s'_1 a - t'_1 b$$

$$= (s'_0 - s'_1) a + (t'_0 - t'_1) b$$

$$= s_0 a + t_0 b$$

$$d = d'$$

$$= s'_1 a + t'_1 b$$

$$= s_1 a + t_1 b$$

as desired. So P(n+1) holds for when c' > d'.

This proves the inductive step. By induction, we conclude that P(n) holds for all $n \in \mathbb{N}$ which makes it an loop invarient for LIN COMB.