الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: جوان2015 المادة : علوم فيزيانية

علامة	ال		7		***				
المجمو	مجزأة		(4	عابة (الموضوع الأول	عناصر الإم				
- SOUTH CONTRACT					ط)	لأول : (04نا	مرین ا		
	0,25	 المؤكميد: كل فرد كيميائي يكتسب إلكتروناً أو أكثر خلال تفاعل كيميائي. 							
	0,25			ون او اکثر خلال تفاعل					
	0,25			$Q_4(aq) = 2CO_2(aq)$					
	0,25			$+8H^{+}(aq) + 5e^{-} =$	$Mn^{2+}(aq) + 4$	ع: H ₂ O(<i>l</i>)	ن للإرجا		
	0,25	5 H	$I_2C_2O_{4(aq)} + 2M$	$nO_{4}^{-}(aq) + 6H_{(aq)}^{+} =$					
		المعادلة	5 H ₂ C ₂ O ₄ (aq) +	2MnO ₄ (aq) + 6H ⁺ (a	aq) = 10CO ₂ (aq) +				
- 1	0,50	ح.ابتدائية	C ₂ V ₂	C ₁ V ₁	0	0	T		
	0,50	ح.انتقالية	C ₂ V ₂ -5x	C ₁ V ₁ -2x	- 10x	2x	بزيادة		
	- 0.00	ح.نهائية	C ₂ V ₂ -5x _f	C ₁ V ₁ -2x _f	10x _f	2x _f			
	0,25	[H ₂ C ₂ C		mol , $\frac{C_1V_1}{2} = 5$ $3 \text{ mol.L}^{-1} \text{[Mr]}$	<u>C</u>	$\frac{V_1}{2} \neq \frac{C_2V_2}{5}$. منه:		
		[H₂C₂O	$0_4]_0 = \frac{C_2 V_2}{V_1 + V_2} = 0,$	mol $\int \frac{S_1^2 A}{2} = 5$ $3 \text{ mol.L}^{-1} \int Mr$ $\int \frac{2x}{V_T} \int Mr$ $[Mn^{2+}](t) = \frac{C_1}{2}$	$\frac{C_1}{2}$ $100_4]_0 = \frac{C_1 V_1}{V_1 + V_2}$ $100_4] = \frac{C_1 V_1}{V_1 + V_2}$	$\frac{V_1}{2} \neq \frac{C_2 V_2}{5}$ $= 0,1 \text{ mol.L}$ $\frac{V_1}{2} = \frac{C_1 V_2}{5}$ $\frac{V_1}{V_1} = \frac{C_1 V_2}{V_1}$	ر منه: 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		

دمة	COTTON				جابة النموذجية المادة : عاصر الإجابة (الموضوع	<i>r</i> G-				
المجموع	مجزاة			0317	عناصر الإجابة والموصور					
					04 نقاط)	مرين الثاني: (4				
		i.a.	$\frac{3}{1}H$	² <i>H</i>	النواة	- التركيب:				
	0,50		1	1						
	0,50		-		عدد البروتونات: 2					
			2	1	N = A - Z عدد النيترونات:					
	0,50		30		ها العدد Z نفسه و A مختلف .	- نظائر العنصر ل				
	0,25	الة عدد نوياتها A	ئرية X _Z بدلا	في نواة ا	ون تغيرات عكس طاقة الربط لكل نوية	:- يمثل منحنى أسد				
					$-\left(\frac{E}{E}\right)$	$\left \frac{f}{g}\right = f(A)$:				
	0,25	.40≤ ∠	زب 190≥ا	لتی تتمی	 السان " غالبية الأنوية المستقرة " وا 	1/				
	0,25	تمثّل المنطقة المظللة من البيان " غالبية الأنوية المستقرة " والتي تتميز بـ 190 $\Delta = 40$. • الأنوية الخفيفة $\Delta = 40$: تستقر بآلية " الاندماج اللووي ".								
04.0	0,25				لأنوية الثقيلة 190<1/: تستقر بآلية "					
	0,50	المنعزلة الربط للنواة E_{i} هي: الطاقة الواجب توفيرها لنواة ساكنة لغصلها إلى نكليوناتها المنعزلة -4								
	- 9		G, 4-			4- طاقة الربط للنوا والعناكنة . (تقيل ال				
	0,50		31	$H + {}^{2}H$	$\longrightarrow {}_{2}^{4}He + {}_{0}^{1}n$:4	وساعه . ر <u>سم</u> 5- أ- معاملة التفكا				
		$ \Delta E $ =	$2\frac{E_{\ell}}{4}({}_{1}^{2}H)$	+3E	$\left(\frac{3}{1}H\right)-4\frac{E_{\ell}}{A}\left(\frac{4}{2}He\right)$					
	0,50				$(4 \times 7,1) = 17,8 \text{ MeV}$	ب-				
			K - 3-7	(,	-) (1×1,1) -11,0 MeV					
1	0,50	AE = (m(4He)+ m(1	-\	(31)(21) 2	او				
		$ \Delta E = \left (m({}_{2}^{4}He) + m({}_{0}^{1}n) - m({}_{1}^{3}H) - m({}_{1}^{2}H)) \times e^{2} \right $ = $\left (4,00150 + 1,00866 - 3,01550 - 2,01355) \times 931,5 \right = 17,6 MeV$								
		5	•		2,01330/231,3 =1	7,02010				
			8%							

لامة			61	الموضوع الأو	1 1 N		
المجموع	مجزاة		٠,	الموصوع ادق	عصر البجاب ا		
						(40نقاط)	تمرين الثالث:
	0,25	ىتھا عمليا ہو	ر المناسب لمتابع	سيرة جدا، فالجهاز	ن مدة الظاهرة قم	$u_C = f$	 من البيان (1)
						ذاكرة».	راسم اهتزازات ذو
	L 10	↑ . *I	к т		:0	راسم الاهتزازان	- طريقة توصيل
	الشكل 0,25	ьЩ	Ų	R = 100 Ω	ني	جمع التوترات	- بتطبيق قانون
	125	7	c_t	X = 100 Ω - uc - uc			لدارة RC ، نجد
	0,25						$E = u_C + u_R$
	0,25				***	***	$u_R = Ri$ مع:
	0,50				$=\frac{E}{RC}$ le E		***
04.0	0,25			$\frac{du_C}{dt} = \frac{E}{\tau} \times e^{-\frac{t}{2}}$			
	0,50	$\frac{E}{\tau} = \frac{E}{\tau}$	E وهذه:	$e^{\tau} + \frac{E}{\tau}(1-$	$-\frac{f}{\tau}) = \frac{E}{\tau}$:	َّت السابقة نجد	التعويض في م.
	0,50	$u_C(\tau) = E(1$	$-e^{-\tau/\tau}$)=E	(1-0,37)=0	,63 <i>E</i> ومنه u_{C} ($t) = E(1 - e^{-t})$	- البرهان : (ً
	0,25					E	=2V :بيانيا
	0,50	τ ∈ [6		على البيان نجد:	harasanan marka		
	0,50		C	$=\frac{\tau}{R}=\frac{6\times10^{-3}}{100}$	$-=60 \ \mu F$	$\Leftarrow \tau = R.C$	– قيمة السعة: ﴿
		*					
		*					
					9		

الشعبة:علوم تجريبية	المادة : علوم فيزيائية	تابع الإجابة النموذجية
---------------------	------------------------	------------------------

مجزاة الرسم 0,25	عناصر الإجابة (الموضوع الأول) لتمرين الرابع:(04نقاط)
	لتمرين الرابع:(04نقاط)
0,25	
0,50	$\vec{F}_{s/p}$ $\vec{F}_{s/p} = -G \frac{m_p M_s}{\vec{v}} \cdot \vec{u}$ الرسم $\vec{F}_{s/p} = -G \frac{m_p M_s}{\vec{v}} \cdot \vec{u}$ القوة: -2
0,50	$\sum \vec{F}_{ext} = m \cdot \vec{a}_G$: يَطْبِيقَ القَانُونِ الثَّانِي لَنِيوتِن $\vec{F}_{ext} = m \cdot \vec{a}_G$
	يمنه $\overline{F}_{SIP} = m \cdot \overline{a}$ يمنه الناظم الموجه نحو مركز الشمس:
0,50	$a_N = G \cdot \frac{M_S}{r^2} \Leftarrow G \cdot \frac{m_p \cdot M_S}{r^2} = m_p \cdot a_N$
0,50	ما الحركة دائرية منتظمة $a_T=0$ الحركة دائرية منتظمة $a_T=0$
	أو: شعاع تمارع الحركة ناظميا و مركزيا و ثابت القيمة و منه الحركة دائرية منتظمة.
0,50	r^3 عبارة عن " خط مستقيم مار من المبدأ " أي $T^2 = f(r^3)$ متناسب طردا مع $T^3 = f(r^3)$ البيان $T^2 = f(r^3)$ عبارة عن " خط مستقيم مار من المبدأ " $T^2 = f(r^3)$ مناسب طردا مع القانون الثالث لكبلر المعبر عنه بالعلاقة:
0,25	r^3 $\frac{T^2}{r^3} = k = \frac{1,2 \times 10^{17}}{4,0 \times 10^{35}} = 3,0 \times 10^{-19} \text{ s}^2 \cdot m^{-3}$ بيانيا: r^3
0,25	$M_S = \frac{4\pi^2}{G \cdot k} \Leftarrow \frac{T^2}{r^3} = k = \frac{4\pi^2}{G \cdot M_S}$: كثلة الشمس: حسب القانون الثالث لكبار:
0,25	$M_S = 2 \times 10^{30} \ kg$
0,50	$rac{T^2}{r^3} = 3,0 imes 10^{-19} \ s^2.m^{-3}$ دور حركة الأرض: $3,0 imes 10^{-19} \ s^2.m^{-3}$ دور حركة الأرض: $T = 3,18 imes 10^7 s = 368 j \Leftarrow rac{T^2}{(1,50 imes 10^{11})^3} = 3,0 imes 10^{-19}$ بالتعويض
	(1,50×10 ¹¹) ³
	0,50 0,50 0,50 0,50 0,25 0,25

الشعبة:علوم تجريبية	المادة · علو م فيز بانية	تابع الاحابة النمو ذحية
است. سرم بروبو	المادة . علوم فيز يانيه	الع الإحالة اللمو تحله

- "	العا					To 1714 • 600			
المجموع	مجزأة			ع الاول)	الإجابة (الموضو	عناصر			
						04 نقاط)	رين التجريبي:(
							معادلة تفاعل الم		
	0,50	$C_6H_5CO_2H(aq) + HO^-(aq) = C_6H_5CO_2^-(aq)$							
							· نقطة التكافر:		
	0,50			$E(V_{bE})$	=20mL; pH	$I_E \simeq 8,4$) :	ريقة المماسات ن		
	0,50					$C_a V_a = C_b V_b$	· عند التكافؤ: ع		
	0,50				$C_a = 10^{-1} \ mol.L$	$C_a = C_a$	$C_b.\frac{V_{bE}}{V_a}$:43		
	0,25			p.	$H = pK_o = 4,2 :$	ب التكافئ $E_{_{14}}$ نجد	· عند نقطة نصف		
	0,25			pl	البيان نجد: 4,5 = H	و من $V_b = 14cr$	التراكيز: n³		
		ادلة	المعا	$C_6H_5CO_2H$	$(aq)+HO^{-}(aq)$	$=C_6H_5CO_2^-(\alpha)$	$(I) + H_2O(\ell)$		
		22	التقدم		بوحدة (mol)	كمية المادة			
	0,25	15	0	C _a V _a	C _b V _b	0			
4,0	,,,,,	15	· X	C _a V _a -x	C _b V _b -x	x	بوفرة		
		ح ن	x,	C _a V _a -x _f	C _b V _b -x _f	xf			
	0,25			[HO	$\begin{bmatrix} 10^{pH-14} = 10 \end{bmatrix}$	_	10^{-10} mol.L		
	0,25 0,25 0,25			$[C_6 I$	$\begin{bmatrix} HO^{-1} \\ I_{5}COO^{-} \end{bmatrix} = \frac{\lambda}{V_{a}}$ $DOH = \frac{C_{a}V_{a}}{V_{a}+V_{a}}$	$x_f = 1.43$ $x_f = 1.43$ $\frac{x_f}{+V_b} = 4.1173$ $\frac{-x_f}{V_b} = 1.765 \times 10^{-1}$	$(10^{-10} mol.L)$ $(10^{-10} mol.L)$ $(10^{-3} mol)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$		
	0,25			$[C_6 I$	$\begin{bmatrix} HO^{-1} \\ I_{5}COO^{-} \end{bmatrix} = \frac{\lambda}{V_{a}}$ $DOH = \frac{C_{a}V_{a}}{V_{a}+V_{a}}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{V_b} = 4.117$ $\frac{c_f}{V_b} = 1.765 \times \frac{C_b V_b}{V_a + V_b} = 4.11$	$(10^{-10} mol.L)$ $(10^{-10} mol.L)$ $(10^{-3} mol)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$		
	0,25 0,25 0,25		x =	[C ₆ H ₃ Cc	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{\lambda}{V_a}$ $[OOH] = \frac{C_b V_a}{V_a + 1}$ $[Na^+] = \frac{C_b V_a}{V_b}$	$x_f = 1.4$: $x_f = 1.4$: $\frac{f_f}{+V_b} = 4.117$: $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{V_a + V_b} = 4.11$: $\frac{C_b V_b}{V_a + V_b} = 4.11$:	$(10^{-10} mol.L)$ $(10^{-10} mol.L)$ $(10^{-3} mol.L)$ $(10^{-2} mol.L)$		
	0,25 0,25 0,25		$x_{\text{max}} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{x}{V_a}$ $\begin{bmatrix} OOH \end{bmatrix} = \frac{C_aV_a - V_a + V_a}{V_a + V_a}$ $\begin{bmatrix} Na^+ \end{bmatrix} = \frac{C_aV_a - V_a}{V_a}$ $\begin{bmatrix} 14 \cdot 10^{-3} = 14 \cdot 10 \end{bmatrix}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$10^{-10} mol.L$ $3 = C_b V_b - x$ $10^{-3} mol$ $10^{-2} mol.L$		
	0,25 0,25 0,25		$x_{\text{max}} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{\lambda}{V_a}$ $[OOH] = \frac{C_b V_a}{V_a + 1}$ $[Na^+] = \frac{C_b V_a}{V_b}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$^{3} = C_{b}V_{b} - x$ $\times 10^{-3} mol$ $\times 10^{-2} mol.L$		
	0,25 0,25 0,25		$x_{\max} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{x}{V_a}$ $\begin{bmatrix} OOH \end{bmatrix} = \frac{C_aV_a - V_a + V_a}{V_a + V_a}$ $\begin{bmatrix} Na^+ \end{bmatrix} = \frac{C_aV_a - V_a}{V_a}$ $\begin{bmatrix} 14 \cdot 10^{-3} = 14 \cdot 10 \end{bmatrix}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$10^{-10} mol.L$ $3 = C_b V_b - x$ $10^{-3} mol$ $10^{-2} mol.L$		
	0,25 0,25 0,25		$x_{\text{max}} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{x}{V_a}$ $\begin{bmatrix} OOH \end{bmatrix} = \frac{C_aV_a - V_a + V_a}{V_a + V_a}$ $\begin{bmatrix} Na^+ \end{bmatrix} = \frac{C_aV_a - V_a}{V_a}$ $\begin{bmatrix} 14 \cdot 10^{-3} = 14 \cdot 10 \end{bmatrix}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$10^{-10} mol.L$ $3 = C_b V_b - x$ $10^{-3} mol$ $10^{-2} mol.L$		

تابع الإجابة النموذجية المادة: علوم فيزيانية الشعبة: علوم تجريبية

المجموع	مجزأة			ع الثاني)	الإجابة (الموضو	عناصر	H 1 1-11			
	0,50 0,25	. 1	нсоон ₍	$H_{(q)} + H_2 O_{(\ell)} = I$	<i>НСОО</i> [−] _(аў) + <i>Н</i> ₃ <i>О</i> • НСООН/НС	: (04 نقاط) الانحلال _(مه) *(مرين الأول - 1- معادلة ا - الثنائيات			
		715	المعا	HCOC	W . W O		- جدول التقدم			
			التقدم	ncoc		$HCOO^{(aq)} + H_3C$)* _(aq)			
	0,50	<u>ح ح</u>	0	C.V	بوحدة (mol)					
		15	x	CV-x		0	0			
		عن ح	-	C.V -x	بوفزة	x	х			
		00	x,	C.V -Xf		X _f	Xf			
	0.50		Γ	.7		نهاني:	رً- نسبة التقدم ال			
	0,50					$= C \cdot V \Leftarrow C \cdot V$				
50	0,50	بالتالي: $ au_f = \frac{x_f}{x_{\text{max}}} = \frac{10^{-pH}}{C} = \frac{10^{-2.9}}{10^{-2}} = 0,126 < 1$ بالتالي:								
				, x _m	ax C	10-2 - 0,120	بسي. ۱ > ٥			
					issa Annasis shikkaan s		قيمة الـ Ka			
	0,50	$pKa = 3,8 \Leftarrow pH = pKa + log \frac{[HCOO^{-}]}{[HCOOH]} = pKa + log \frac{[H_{3}O^{+}]}{C - [H_{3}O^{+}]}$ $Ka = \frac{[H_{3}O^{+}] \cdot [C_{6}H_{5}COO^{-}]}{[C_{6}H_{5}COOH]} : 5 - 1 - II$								
4,0										
	0,25									
	0,50	log Ka-l	og[H ₃ O*	$] = \log \frac{[C_6 H_5 C_6]}{[C_6 H_5 C_6]}$	$\frac{\text{COO'}}{\text{OOH}} \leftarrow \log \frac{K}{[\text{H}_3]}$	$\frac{O^{+}] \cdot [C_{6}H_{5}COO]}{C_{6}H_{5}COOH]}$ $\frac{C_{6}}{O^{+}]} = \log \frac{[C_{6}H_{5}COO]}{[C_{6}H_{5}COO]}$ $= \log \frac{[C_{6}H_{5}COO]}{[C_{6}H_{5}COO]}$	ومنه: COO <u>`]</u> (OOH]			
	0,50	log Ka-l	og[H ₃ O*	$] = \log \frac{[C_6 H_5 C_6]}{[C_6 H_5 C_6]}$	$\frac{\text{COO'}}{\text{OOH}} \leftarrow \log \frac{K}{[\text{H}_3}$ $-\log[\text{H}_3\text{O'}] = -\log$ $pH = 4, 2 \leftarrow \log \frac{K}{[\text{H}_3]}$	$\frac{G}{O^{+}} = \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= g Ka + \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= \frac{[C_6 H_5 COO^{+}]}{[C_6 H_5 COOH]} = \frac{1}{2}$	رمنه: (COO) (OOH) (OOH) (OOOH)			
		log Ka-l	og[H ₃ O*	$] = \log \frac{[C_6 H_5 C_6]}{[C_6 H_5 C_6]}$	$\frac{\text{COO'}}{\text{OOH}} \leftarrow \log \frac{K}{[\text{H}_3}$ $-\log[\text{H}_3\text{O'}] = -\log$ $pH = 4, 2 \leftarrow \log \frac{K}{[\text{H}_3]}$	$\frac{\text{Ca}}{\text{O}^{+}} = \log \frac{[\text{C}_{6}\text{H}_{5}\text{C}]}{[\text{C}_{6}\text{H}_{5}\text{C}]}$ $\text{g Ka} + \log \frac{[\text{C}_{6}\text{H}_{5}\text{C}]}{[\text{C}_{6}\text{H}_{5}\text{C}]}$	ومنه: (COO) (OOH) (OOH) (OOOH)			
		log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G}{O^{+}} = \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= g Ka + \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= \frac{[C_6 H_5 COO^{+}]}{[C_6 H_5 COOH]} = \frac{1}{2}$	رمنه: (COO) (COO) (منه: (COO) (منه: (COO) (coo)			
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)			
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]}$ $g Ka + \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{5} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)			
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]}$ $g Ka + \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{5} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)			
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]}$ $g Ka + \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{5} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)			

للمة		/ athresis and Table atte
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
3		لتمرين الثاني: (04 نقاط)
	0,50	
	0,25	1 - الشكل-3: تفريغ الشكل-4: شحن
	0,25	الجهاز M المستعمل: راسم الاهتزاز ذي ذاكرة أو جهاز الـ EXAO
	0,50	$\mathbf{u}_{AB}\left(\mathbf{t}\right)+u_{R}=0$ حيث: $\mathbf{u}_{AB}\left(\mathbf{t}\right)$ حيث:
	0,25	$u_{R'} = R' \cdot i = R' \cdot \frac{dq}{dt} = R' \cdot C \frac{du_{AB}(t)}{dt}$
	0,23	ut ut
	0,25	$u_{AB}(t)$ وهي معادلة تفاضلية من الرتبة الأولى بالنسبة لـ $\frac{du_{AB}(t)}{dt} + \frac{1}{R'C}u_{AB}(t) = 0$.
		ut KC
	0,25	$\frac{\mathrm{d}u_{AB}(t)}{\mathrm{d}t} = -\frac{A}{R'C} \cdot e^{\frac{t}{R'C}} \Leftarrow u_{AB}(t) = A \cdot e^{\frac{t}{R'C}} : 1$
	0,25	التعويض نجد: $\frac{A}{R'C} \cdot e^{\frac{t}{R'C}} + \frac{1}{R'C} \cdot A \cdot e^{\frac{t}{R'C}} = 0$ (المعادلة محققة).
4,0		K C K C
4,0	0,25	$A = E \leftarrow \mathbf{u}_{AB}(0) = \mathbf{A} \cdot \mathbf{e}^{\frac{0}{R'C}} = A = E$ کنن $\mathbf{t} = 0$ لنا $\mathbf{t} = 0$
	0,23	4 – عبارة شدة التيار :
	0,50	$i(t) = \frac{dq}{dt} = C \cdot \frac{du_{AB}(t)}{dt} = -C \cdot \frac{E}{R'C} \cdot e^{-\frac{t}{R'C}} = -\frac{E}{R'} \cdot e^{-\frac{t}{R'C}}$
		ملاحظة: يمكن استنتاج (i(t من قانون جمع التوترات.
	0,25	$u_{AB} = 0,63 \cdot E = 7,56 \text{ V}$ من الشكل -4 : من الشكل -5 -5
	0,23	$\tau = 0.2s$ وبالإسقاط نجد:
	100 200 0	u AB = 0,37 ⋅ E = 4,44 V من الشكل-3: من الشكل
	0,25	وبالإسقاط نجد: 0,09s ≃ ′ ت ملاحظة: تقبل القيم القريبة من قيم τ و ′ τ
	On the state of	그는 그들은 그는 그 그는 경기에서 한다면서 그러워 그렇게 그렇게 그렇게 그는 그는 그는 그는 그를 하게 되었다. 그는 그를 다시다는 그를 다시다고 그는 그를 다시다고 그를 다시다.
	0, 25	$C = \tau'/R' = 0,09/500 = 180.10^{-6}F = 180 \ \mu F \iff \tau' = R'C$
	0,25	$R = \tau/C = 0,2/(180 \cdot 10^{-6}) = 1,1 \cdot 10^{3} \Omega \leftarrow \tau = R \cdot C$ - قيمة المقاومة:
	111	

العلامة		عناصر الإجابة (الموضوع الثاني)					
المجموع	مجزأة	عناصر الإجابة (الموضوح الناني)					
		لتمرين الثالث: (04 نقاط)					
	0,25	N = A - Z = 78: عدد البروبونات: $Z = 53$ وعدد النيترونات: $Z = 78$					
	0,25	2- أ- الجسيم المنبعث هو: e و و و و و و و و و و و و و					
		$^{131}_{53}I \rightarrow ^{A}_{z}X + ^{0}_{-1}e$ ب- المعادلة: و					
	3×0,25	تطبيق قانون انحفاظ العدد الكتلي نجد: 131 = A					
		تطبيق قانون انحفاظ العدد الشحني نجد: 24 = Z					
		منه النواة الابن هي: $Xe + {0 \atop 53}$ والمعادلة تصبح: $Xe + {0 \atop 131}$ والمعادلة تصبح:					
		3- العبارة:					
	0,50	$\ell n A(t) = -\lambda \cdot t + \ell n A_0 \Leftarrow A(t) = A_0 \cdot e^{-\lambda \cdot t}$					
-	0,25	- العبارة البيانية: nA = a · t + b العبارة البيانية: -4					
	0,25	$a = \frac{\Delta(\ell nA)}{\Delta t} = \frac{(28,8-36)}{800} = -0.09 \text{ jours}^{-1}$: ميث معامل التوجيه					
4,0	0,25	منه 4nA = -0,09⋅t + 36 منه					
		ع t بالوحدة jours .					
	0,25	$A_0 = e^{36} = 4.3 \times 10^{15} \; \mathrm{Bq} \Leftarrow \ell \mathrm{nA}_0 = 36$ ينتج: (2) مع (1) مع					
	0,50	$t_{1/2} = \frac{\ell n 2}{0,09} = 8 \text{ jours} \Leftarrow \lambda = \frac{\ell n 2}{t_{1/2}} = 0,09$					
		ملاحظة: تقبل القيم القريبة من هذه القيمة.					
		(m_0) الكتلة الإبتدائية –5					
	0,50	$\mathbf{m_0} = \frac{\mathbf{t_{1/2} \cdot A_0 \cdot M}}{\ell \mathbf{n2 \cdot N_A}} \Leftarrow \mathbf{A_0} = \lambda \cdot \mathbf{N_0} = \frac{\ell \mathbf{n2}}{\mathbf{t_{1/2}}} \cdot \frac{\mathbf{m_0}}{\mathbf{M}} \cdot \mathbf{N_A}$					
	0,25	$m_0 = \frac{8 \cdot (24 \cdot 3600) \cdot 4,3 \times 10^{15} \cdot 131}{\ell n 2 \cdot 6,02 \cdot 10^{23}} \approx 0.9g$					
		CH2 - 0,02 - 10					
	320						
		· · · · · · · · · · · · · · · · · · ·					
		16					

لامة	الع	/ man
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	الرسم	تمرين الرابع: (04 نقاط) المرابع الرابع المرابع
	0,25	ا – ا عبارة التسارع على المسار AB
	0,25	$\sum \vec{F}_{ext} = \vec{P} + \vec{R} + \vec{f} = m \cdot \vec{a}$ مطبيق القانون الثاني لنيوتن:
		P m.g.sin α - f = m.a الإسقاط على محور الحركة:
	0,25	$a = g \cdot \sin \alpha - \frac{f}{m} : \alpha$
		»- قيمة التسارع: الحركة مستقيمة متسارعة بانتظام ومنه:
	0,25	
	0,23	$a = \frac{v_B^2}{2 \cdot AB} = \frac{2^2}{2 \cdot 2} = 1 \text{m} / \text{s}^2 \iff v_B^2 - v_A^2 = 2 a \cdot AB$
		شدة قرة الاحتكاك:
	0,25	$f = (g \cdot \sin \alpha - a) \cdot m = (10 \cdot 0, 5 - 1) \cdot 0, 1 = 0, 4N \iff a = g \cdot \sin \alpha - \frac{f}{m}$
		m استخدام مبدأ إنحفاظ الطاقة. R A
	الرسم 0,25	- طبيعة الحركة على المسار BC :
4,0	0,25	طبيق القانون الثاني لنيوتن: P+R = ma
	.,	B C $a = 0 \Rightarrow 0 \Rightarrow 0$ $a = 0 \Rightarrow 0 \Rightarrow 0$
	0,25	الحركة مستثنيمة منتظمة.
	الرسم	الحظة : يقبل استخدام مبدأ انحفاظ الطاقة.
	0,25	- أ- البرهان على معادلة المسار: - أ- البرهان على معادلة المسار:
		$\sum \vec{F}_{ext} = \vec{P} = m\vec{a}$: تطبیق القانون الثانی لنیوتن
	0,25	لإسقاط على Ox نجد:
	0,25	$x(t) = v_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$ $x(t) = v_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$ $x(t) = v_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$
		$v_z = -gt + c \Leftarrow \frac{dv_z}{dt} = -g \Leftarrow a_z = -g$
	0,25	$z = -\frac{1}{2}gt^2 + c' \Leftarrow v_z = \frac{dz}{dt} = -gt$ $c = 0 \leftarrow t = 0$
	0,23	2 ";
		$z = -\frac{1}{2}gt^2 + h$ ومنه: c' = h = t
	0,25	$z = -\frac{g}{2v^2}x^2 + h = -1,25 \cdot x^2 + 0,8$ $\leftarrow t = \frac{x}{v}$
	0,25	$x_D = \sqrt{0,8/1,25} = 0,8m \iff z_D = -1,25 \cdot x_D^2 + 0,8 = 0$: OD : OD :
	0,25	$t_D = x_D / v_C = 0.8/2 = 0.4s \iff x_D = v_C \cdot t$
	0,25	$v_D = \sqrt{v_{xD}^2 + v_{zD}^2} = \sqrt{v_C^2 + (-gt)^2} = \sqrt{2^2 + (-10 \times 0, 4)^2} = 4,47 \text{m}/$
		المنظة : يقبل استخدام مبدأ إنحفاظ الطاقة.

تابع الإجابة النموذجية المادة: علوم فيزيائية الشعبة: علوم تجريبية

لامة المجموع	مجزأة			(ع الثاني	لموضو	إجابة (ا	مناصر ال				
المجموح	مجراه	-					, ,					
	0,50	CHC	WON.		011	CII O		(20)	(04 نة	يريبي :	رين التـ	
	0,25		:OOH _(t)	+C ₂ H ₅ C	$OH_{(t)} =$	CH ₃ CC	OC ₂ H					
		2							ت الإيثيل			
	0,25							روسيط)	يع التفاعا	ض: تعر	دور الحه	
			(m: -)	Т.	-	1					الجدول:	
	0,25		(min)	0	60	120	180	240	300	360	420	
			$\frac{1}{m}(mol)$	1,40	0,80	0,59	0,52	0,48	0,47	0,46	0,46	
	- 1	"este	(mor)	0	0,60	0,81	0,88	0,92	0,93	0,94	0,94	
		man	Laptan Service	diseasons		NE SOLETION	-		nester	= f(t)	لبيان: (
		n	ester(mol)								
		1000							-01			
								明日 地 ス テー 4日 日 日 日 日 日 日 東京 日 日 日 日 日		(91)	
*	0.50							(θ_2)				
4,0	0,50											
1,0		x _{0/2}										
	-								0,1			
									30			
		樓					(Salata)					
		0 4	t _{1/2}	BEARING BY						t(n	nin)	
			0/2									
		اللة	المعا	CH,C	OOH	+C.H.	OH =	CH_C	OOC H	ادم: ا	جدول التا م ا	
	0,50	5 ج	التقدم	التقد			$C_2H_5OH_{(t)} = CH_3COOC_2H_5$ (t) C_2H_5 (t) C_2H_5 (t) C_2H_5 (mol) كمية المادة بوحدة					
	,,,,	12	0	$n_0 = 1$,40	$n_0 = 1$			0		0	
		15	x	n ₀ -	x	n ₀ -			x		x	
		عن	x,	n ₀ -:	x,	n ₀ -	x,	1300	x_f		x,	
- Test of	0,50	$x_f = 1,40-0,46 = 0,94mol$: ول قام: $x_{max} = n_0 = 1,4mol$										
	0,50								ل غير تا.			
	0,25								التفاعل:		17.00	
	0,25			4(1/2)	~ 612	-0,74	, 2 - 0,					
			,		A. 1. 14	0	0000		38 ; 4			
	0 25			Al Laure	(انظر العد	$\theta_{2} = 10$	DO.C. 7.	in light 1		~ (+)	10 0	
	0,25		(4	,,,,,,		-			n _{ester} =	8(1)	ىمىي	
	0,25		(0		- 5-7	•			ester =	8(1)	- ىمىين	