UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

TOPOLOGÍA III

Ejemplo: Teoría de retractos

SEMESTRE: Séptimo u octavo

CLAVE: **0767**

HORAS A LA SEMANA/SEMESTRE		
TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Análisis Matemático II, Topología II.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Que el alumno conozca los conceptos básicos de la Teoría de Retractos, extensión de funciones continuas y la topología de los poliedros y CW-complejos.

NUM. HORAS	UNIDADES TEMÁTICAS	
5	1. Retractos y extensión de funciones continuas	
	1.1 Ejemplos básicos.	
5	2. Propiedades topológicas invariantes bajo una retracción	
5	3. La propiedad del punto fijo	
5	4. Homotopía	
	4.1 Contraibilidad y contraibilidad local.	
5	5. Retractos de deformación y retractos fuertes de deforma-	
	ción	
5	6. Extensores y retractos absolutos de vecindad	
	6.1 Los ANR's, AR's, ANE's AE's.	
5	7. Productos, subespacios abiertos e uniones de los ANR's	
5	8. El teorema de extensión de Dugundji y sus consecuencias	
5	9. La esfera unitaria en un espacio normado lineal	
5	10. Poliedros simpliciales con la topología de Whitehead y	
	con la topología métrica	
5	11. La propiedad de extensión homotópica	
5	12. Espacios n-conexos y localmente n-conexos	
5	13. La caracterización de los ANR's de dimensión finita	

5	14. La caracterización de los ANR's por homotopías pequeñas	
10	15. Espacios de adjunción y propiedades de extensión	
	15.1 Aplicaciones.	

BIBLIOGRAFÍA BÁSICA:

- 1. Borsuk, K. Theory of Retracts, PWN-Polish. Sci. Publ., 1967.
- 2. Hu, S.T. Theory of Retracts, Wayne State University Press, 1965.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Van Mill, J. Introduction to Infinite-Dimensional Topology. Prerequisites and introduction, North-Holand, 1989.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.