Odločitvena drevesa in pravila

Ljupčo Todorovski Univerza v Ljubljani, Fakulteta za upravo

Marec 2018

Pregled predavanja

Odločitvena drevesa

- Algoritem za učenje dreves TDIDT
- Sprotno in naknadno rezanje dreves
- Kontrola predsodka in variance

Odločitvena pravila

- Algoritem za učenje posameznih pravil
- Prekrivni algoritem za učenje množice pravil
- Kontrola predsodka in variance

Zgradba odločitvenih dreves

Notranje vozlišče

Testira vrednost izbrane napovedne spremenljivke X, npr. $X_1 < 0.5171$

Veje

Ustrezajo izidom testa, npr. True in False

Končno vozlišče

Poda napoved ciljne spremenljivke Y, npr. $\hat{Y} = 0.39$

Napoved odločitvenega drevesa za podan primer

- Začni v korenskem vozlišču
- Ponavljaj dokler si v notranjem vozlišču
 - Opravi test notranjega vozlišča
 - Sledi veji, ki ustreza izidu opravljenega testa do novega vozlišča
- Uporabi končno vozlišče za napoved

Primer regresijskega drevesa

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

Todorovski, UL-FU Drevesa in pravila Marec 2018 5 / 55

Napovedi regresijskega drevesa

Todorovski, UL-FU

Drevesa in pravila

Marec 2018

6 / 55

Primer klasifikacijskega drevesa

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Drevesa in pravila Marec 2018 7 / 55

Napovedi klasifikacijskega drevesa

Todorovski, UL-FU

Drevesa in pravila

Marec 2018

8 / 55

Algoritem TDIDT(S) = DecisionTree

TDIDT: Top-Down Induction of Decision Trees

```
function TDIDT(S)

if Impurity(S) = 0 return DecisionTree(leaf : S)

Split = SelectOptimal(S)

\{S_1, S_2, \dots S_s\} = Partition(S, Split)

for i = 1 to s do t_i = TDIDT(S_i)

return DecisionTree(node : Split, descendants : (t_1, t_2, \dots t_s))
```

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

9 / 55

Testi in razbitje množice Partition(S, Split)

Diskretna spremenljivka $X_j, D_j = \{v_1, v_2, \dots v_m\}$

- Split X_j : $S_i = \{(\mathbf{x}, \mathbf{y}) \in S : x_j = v_i\}$, eno možen test
- ② Split $X_j \in V$, $V \subset D_j$, $V \neq \emptyset$: $S_1 = \{(x, y) \in S : x_j \in V\}$, $S_2 = S \setminus S_1$, $2^{|D_j(S)|-1} 1$ možnih testov

Numerična spremenljivka $X_j, D_j \subseteq \mathbb{R}$

Split
$$X_j < v$$
: $S_1 = \{(x, y) \in S : x_j < v\}$, $S_2 = S \setminus S_1$, $|D_j(S)| - 1$ možnih testov (vrednosti praga v)

 $D_i(S)$ je množica vrednosti X_i v množici S.

Napoved končnega vozlišča leaf : S

Regresija, $D_Y \subseteq \mathbb{R}$: povprečje

$$Prediction(leaf : S) = \frac{1}{|S|} \sum_{(x,y) \in S} y$$

Klasifikacija, $D_Y = \{v_1, v_2, \dots v_c\}$: večinski razred

$$Prediction(leaf : S) = \arg\max_{v \in D_Y} p(Y = v_i | S)$$

 $p(Y = v_i|S)$ je verjetnost, da primer iz množice S pripada razredu v_i .

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 める◆

Funkcija nečistoče Impurity(S)

Funkcija nečistoče meri varianco vrednosti ciljne spremenljivke Y v S.

Regresija, $D_Y \subseteq \mathbb{R}$

Impurity(S) =
$$\frac{1}{|S|} \sum_{(x,y) \in S} (y - \bar{y})^2$$

Klasifikacija,
$$D_Y = \{v_1, v_2, \dots v_c\}$$

$$Impurity(S) = \phi(p_1, p_2, \dots p_c)$$

Verjetnosti
$$p_i = p(Y = v_i|S)$$

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 める◆

Zaželene lastnosti funkcije nečistoče $\phi(p_1, p_2, \dots p_c)$

- ullet Doseže maksimalno vrednost pri enakomerni porazdelitvi $orall i: p_i = 1/c$
- ullet Doseže minimalno vrednost pri porazdelitvah, kjer $\exists ! i : p_i = 1$
- Simetrična: neobčutljiva na vrstni red parametrov
- Konkavna, zvezna in zvezno odvedljiva

Dve pogosto uporabljani funkciji

- **1** Entropija $\phi(p_1, p_2, \dots p_c) = -\sum_{i=1}^{c} p_i \log_2 p_i$
- ② Indeks Gini $\phi(p_1,p_2,\dots p_c)=1-\sum_{i=1}^c p_i^2$

4□ > 4□ > 4 = > 4 = > = 90

Izbira optimalnega testa Split = SelectOptimal(S)

Ciljna funkcija za optimizacijo zmanjšanje nečistoče IR

$$IR(Split, S) = Impurity(S) - \sum_{i=1}^{s} \frac{|S_i|}{|S|} Impurity(S_i)$$

- Test Split povzroči razbitje S na $\{S_1, S_2, \dots S_s\}$
- IR = Impurity Reduction

Test izberemo z optimizacijo

$$\max_{Split} IR(Split, S) = \min_{Split} \sum_{i=1}^{s} \frac{|S_i|}{|S|} Impurity(S_i)$$

Ali lahko prepoznam delfina?

primer	dolzina	skrge	kljun	zob	delfin
	3	ne	da	veliko	da
<i>X</i> ₂	4	ne	da	veliko	da
<i>X</i> 3	3	ne	da	malo	da
<i>X</i> ₄	5	ne	da	veliko	da
<i>X</i> ₅	5	ne	da	malo	da
<i>x</i> ₆	5	da	da	veliko	ne
<i>X</i> 7	4	da	da	veliko	ne
<i>X</i> 8	5	da	ne	veliko	ne
<i>X</i> 9	4	da	ne	veliko	ne
<i>X</i> ₁₀	4	ne	da	malo	ne

Opis naloge strojnega učenja

Primeri

10 opazovanih živali, od tega 5 delfinov

Spremenljivke

- ullet Ciljna spremenljivka $Y=deflin,\ D_Y=\{da,ne\}$
- ullet Ena numerična napovedna spremenljivka $X_1=$ $dolzina,~D_1=\mathbb{R}^+$
- Tri diskretne napovedne spremenljivke
 - $X_2 = skrge, D_2 = \{da, ne\}$
 - $X_3 = kljun, D_2 = \{da, ne\}$
 - $X_4 = zob$, $D_2 = \{veliko, malo\}$

Napovedni model, ki razpoznava delfine: klasifikacijsko drevo

◆ロト ◆母 ト ◆ 重 ト ◆ 重 ・ 釣 Q ②

Nečistost množice in možni testi

Impurity(S), $S = \{x_1, x_2, \dots x_{10}\}$

- p(delfin = da) = p(delfin = ne) = 5/10 = 0.5
- $Gini(S) = 1 (0.5^2 + 0.5^2) = 0.5$

Pet možnih testov

- dolzina < 4</p>
- ② dolzina < 5</p>
- skrge
- 4 kljun
- zob

Test dolzina < 4

Impurity(
$$S_1$$
), $S_1 = \{x_1, x_3\}$

- p(delfin = da) = 2/2 = 1, p(delfin = ne) = 0/2 = 0
- $Gini(S_1) = 1 (1^2 + 0^2) = 0$

Impurity
$$(S_2)$$
, $S_2 = \{x_2, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}\}$

- p(delfin = da) = 3/8 = 0.375, p(delfin = ne) = 5/8 = 0.625
- $Gini(S_2) = 1 (0.375^2 + 0.625^2) = 0.46875$

$$IR(dolzina < 4) = 0.5 - (\frac{2}{10}0 + \frac{8}{10}0.46875) = 0.125$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (^)

Test dolzina < 5

Impurity
$$(S_1)$$
, $S_1 = \{x_1, x_2, x_3, x_7, x_9, x_{10}\}$

- p(delfin = da) = 3/6 = 0.5, p(delfin = ne) = 3/6 = 0.5
- $Gini(S_1) = 1 (0.5^2 + 0.5^2) = 0.5$

Impurity
$$(S_2)$$
, $S_2 = \{x_4, x_5, x_6, x_8\}$

- p(delfin = da) = 2/4 = 0.5, p(delfin = ne) = 2/4 = 0.5
- $Gini(S_2) = 1 (0.5^2 + 0.5^2) = 0.5$

$$IR(dolzina < 5) = 0.5 - (\frac{6}{10}0.5 + \frac{4}{10}0.5) = 0$$

Test skrge

Impurity(
$$S_1$$
), $S_1 = \{x_6, x_7, x_8, x_9\}$

- p(delfin = da) = 0/4 = 0, p(delfin = ne) = 4/4 = 1
- $Gini(S_1) = 1 (0^2 + 1^2) = 0$

Impurity
$$(S_2)$$
, $S_2 = \{x_1, x_2, x_3, x_4, x_5, x_{10}\}$

- p(delfin = da) = 5/6 = 0.833, p(delfin = ne) = 1/6 = 0.167
- $Gini(S_2) = 1 (0.833^2 + 0.167^2) = 0.278$

$$IR(skrge) = 0.5 - (\frac{4}{10}0 + \frac{6}{10}0.278) = 0.333$$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Test kljun

Impurity
$$(S_1)$$
, $S_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_{10}\}$

- p(delfin = da) = 5/8 = 0.625, p(delfin = ne) = 3/8 = 0.375
- $Gini(S_1) = 1 (0.625^2 + 0.375^2) = 0.46875$

$Impurity(S_2), S_2 = \{x_8, x_9\}$

- p(delfin = da) = 0/2 = 0, p(delfin = ne) = 2/2 = 1
- $Gini(S_2) = 1 (0^2 + 1^2) = 0$

$$IR(kljun) = 0.5 - (\frac{8}{10}0.46875 + \frac{2}{10}0) = 0.125$$

Test zob

Impurity
$$(S_1)$$
, $S_1 = \{x_1, x_2, x_4, x_6, x_7, x_8, x_9\}$

- p(delfin = da) = 3/7 = 0.4286, p(delfin = ne) = 4/7 = 0.5714
- $Gini(S_1) = 1 (0.4286^2 + 0.5714^2) = 0.4898$

Impurity
$$(S_2)$$
, $S_2 = \{x_3, x_5, x_{10}\}$

- p(delfin = da) = 2/3 = 0.667, p(delfin = ne) = 1/3 = 0.333
- $Gini(S_2) = 1 (0.667^2 + 0.333^2) = 0.444$

$$IR(zob) = 0.5 - (\frac{7}{10}0.4898 + \frac{3}{10}0.444) = 0.0238$$

- ◆ロト ◆御 ト ◆ 差 ト ◆ 差 - 夕 Q (~)

Izbira optimalnega testa: skrge

- **1** dolzina < 4: 0.125
- **2** dolzina < 5: 0
- **3** skrge: **0.333**
- 4 kljun: 0.125
- 3 zob: 0.0238

Delni rezultat

Rekurzija . . .

Končni rezultat

Legenda: skrge = b pomeni skrge = ne, zob = b pomeni zob = veliko

Kontrola predsodka in variance

Velikost drevesa

Kontroliramo tako, da dopuščamo *Impurity* > 0 v končnih vozliščih.

Rezanje dreves

- Sprotno rezanje: omejimo navzdol število primerov v vozlišču drevesa (parameter minsplit, ms)
- Naknadno rezanje: pretvarjanje notranjih vozlišč v končne

Naknadno rezanje dreves

Rezanje poddrevesa v vozlišču t

Notranje vozlišče t spremenimo v končno vozlišče t_L .

Napaka poddrevesa t

$$Err_{\alpha}(t) = Err(t) + \alpha |t|$$

- Err(t): napaka poddrevesa v t na učnih primerih iz t
- |t|: število končnih vozlišč, ki so nasledniki t

Odločitev o rezanju: $Err_{\alpha}(t_L) \leq Err_{\alpha}(t)$

Parameter α : regulator moči, stopnja rezanja (R implementacija: cp)

4 D > 4 D > 4 E > 4 E > 9 Q P

Primer rezanja poddrevesa Err(t : dolzina < 3.5)

Napaka poddrevesa

 $Err_{\alpha}(t) = 0 + 3 \alpha$, poddrevo ima napako 0 in tri končna vozlišča.

Napaka končnega vozlišča

 $Err_{\alpha}(t_L) = 1/3 + 1 \alpha$, učni primeri $\{x_3, x_5, x_{10}\}$: dva pozitivna in en negativen (napaka 1/3).

Prelomna točka $\textit{Err}_{lpha}(t) = \textit{Err}_{lpha}(t_L)$

Če je $\alpha \geq 1/6$, potem bo poddrevo porezano; sicer pa ne.

Legenda: skrge = bpomeni skrge = ne, zob = b pomeni zob = veliko

Regresijska drevesa: ms in cp

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

31 / 55

Todorovski, UL-FU Drevesa in pravila Marec 2018

Regresijska drevesa (cp = 0): ms

Številke: število končnih vozlišč v drevesu

Todorovski, UL-FU Drevesa in pravila Marec 2018 32 / 55

Regresijska drevesa (ms = 10): cp

Številke: število končnih vozlišč v drevesu

Todorovski, UL-FU Drevesa in pravila Marec 2018 33 / 55

Regresijska drevesa: število napovednih spremenljivk

Številke: število napovednih spremenljivk v drevesu

Marec 2018

Klasifikacijska drevesa: ms in cp

$$Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$$
 zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Drevesa in pravila Marec 2018 35 / 55

Klasifikacijska drevesa (cp = 0.02): ms

Številke: število končnih vozlišč v drevesu

Todorovski, UL-FU Drevesa in pravila Marec 2018 36 / 55

Klasifikacijska drevesa (ms = 5): cv

Številke: število končnih vozlišč v drevesu

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ 釣りぐ

Todorovski, UL-FU Drevesa in pravila Marec 2018 37 / 55

Klasifikacijska drevesa: število napovednih spremenljivk

Številke: število napovednih spremenljivk v drevesu

4 D > 4 D > 4 E > 4 E > E 990

Todorovski, UL-FU Drevesa in pravila Marec 2018 38 / 55

Časovna zahtevnost algoritmov za učenje dreves

Učenje drevesa iz podatkovne množice S

- ullet Eno vozlišče: O(p|S|), p je število napovednih spremenljivk
- Celotno drevo: $O(p|S|\log|S|)$, ker je $\log|S|$ pričakovana globina

Naknadno rezanje

- Eno vozlišče: $O(\log |S|)$
- Celotno drevo: $O(\log |S| \log |S|)$

Znani algoritmi in implementacije

CART (Breiman in ost. 1984)

Na voljo knjižnica za R.

C4.5 (Quinlan 1995), pozneje C5.0

Na voljo v zbirki Weka kot J4.8 (C4.5), na voljo knjižnica za R (C5.0).

Kaj so odločitvena pravila?

Eno pravilo r : IF Pogoj THEN Napoved

- Pogoj je konjunkcija testov napovednih spremenljivk X, npr. $X_1 > 3 \ \land \ X_3 = ne$
- Napoved poda napovedano vrednost ciljne spremenljivke Y, npr. $\hat{Y} = da$

Urejena (tudi zverižena) množica pravil

Napoved za x poda prvo pravilo r, za katerega velja: Pogoj(x) = True.

Neurejena množica pravil

Napovedi za x podajo vsa pravila r, za katera velja Pogoj(x) = True, množica napove povprečje (regresija) ali večinsko napoved (klasifikacija).

◆ロ → ◆部 → ◆差 → ◆差 → ○

Primera množice pravil

Urejena množica pravil

```
IF \ skrge = da THEN \ delfin = ne ELSE IF \ zob = veliko THEN \ delfin = da ELSE IF \ dolzina = 4 THEN \ delfin = ne ELSE delfin = da
```

Neurejena množica pravil

```
IF \ dolzina = 3 THEN \ delfin = da IF \ skrge = ne \ \land \ zob = veliko THEN \ delfin = da
```


Učenje enega pravila LearnRule(S) = DecisionRule

```
function LearnRule(S)

Cond = True

while Impurity(S, Cond) > 0 do

L_{opt} = arg min_L Impurity(S, Cond \land L)

Cond = Cond \land L_{opt}

return DecisionRule : IF Cond THEN Y = Prediction(S, Cond)
```

Napoved pravila Class(S, Cond)

$$S_{Cond} = \{(\textbf{x}, y) \in S : Cond(\textbf{x}) = True\}$$

Regresija, $D_Y \subseteq \mathbb{R}$: povprečje

$$Prediction(S, Cond) = \frac{1}{|S|} \sum_{(x,y) \in S_{Cond}} y$$

Klasifikacija,
$$D_Y = \{v_1, v_2, \dots v_c\}$$
: večinski razred

$$Prediction(S, Cond) = \underset{v \in D_Y}{\operatorname{arg max}} p(Y = v | S_{cond})$$

Funkcija nečistoče *Impurity*(*S*, *Cond*)

Funkcija nečistoče meri varianco vrednosti ciljne spremenljivke Y v množici pokritih primerov $S_{Cond} = \{(x, y) \in S : Cond(x) = True\}.$

Regresija, $D_Y \subseteq \mathbb{R}$

Impurity(S, Cond) =
$$\frac{1}{|S|} \sum_{(x,y) \in S_{Cond}} (y - \bar{y})^2$$

Klasifikacija,
$$D_Y = \{v_1, v_2, \dots v_c\}$$

$$Impurity(S, Cond) = 1 - \max_{v \in D_Y} p(Y = v | S_{Cond})$$

4D>4A>4E>4E> 9QQ

Prekrivni algoritem Covering(S) = RuleSet

Za učenje urejene množice pravil

```
function Covering(S)

RuleSet = []

while S \neq \emptyset do

Rule = LearnRule(S)

S = S \setminus S_{Rule.Cond}

append Rule to RuleSet

return RuleSet
```

Spremembe za neurejene množice pravil

- V vsaki iteraciji izberemo razred v za katerega se učimo pravilo
- Posebna varianta LearnRule(S, v), ki se uči pravilo za izbran razred v

•
$$S = S \setminus S_{Rule,Cond \wedge Y = v}$$

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q

Todorovski, UL-FU Drevesa in pravila Marec 2018 46 / 55

Ali lahko prepoznam delfina?

primer	dolzina	skrge	kljun	zob	delfin
<i>x</i> ₁	3	ne	da	veliko	da
<i>X</i> ₂	4	ne	da	veliko	da
<i>X</i> 3	3	ne	da	malo	da
<i>X</i> 4	5	ne	da	veliko	da
<i>X</i> ₅	5	ne	da	malo	da
<i>x</i> ₆	5	da	da	veliko	ne
<i>X</i> ₇	4	da	da	veliko	ne
<i>X</i> 8	5	da	ne	veliko	ne
<i>X</i> 9	4	da	ne	veliko	ne
<i>x</i> ₁₀	4	ne	da	malo	ne

Prva iteracija algoritma LearnRule(S)

Na začetku Cond = True, $S = \{x_1, x_2, \dots x_{10}\}$

L	S_{Cond}	p _{da}	p_{ne}	Impurity(S, Cond)
dolzina = 3	$\{x_1, x_3\}$	1	0	0
Izina = 4	$\{x_2, x_6, x_9, x_{10}\}$	0.25	0.75	0.25
dolzina = 5	$\{x_4, x_5, x_6, x_8\}$	0.5	0.5	0.5
skrge = da	$\{x_6, x_7, x_8, x_9\}$	0	1	0
skrge = ne	$\{x_1,\ldots x_5, x_{10}\}$	0.83	0.17	0.17
kljun = da	$\{x_1, \dots x_7, x_{10}\}$	0.625	0.375	0.375
kljun = ne	$\{x_8, x_9\}$	0	1	0
zob = veliko	$\{x_1, x_2, x_4, x_6, \dots x_9\}$	0.43	0.57	0.43
zob = malo	$\{x_3, x_5, x_{10}\}$	0.67	0.33	0.33

48 / 55

Todorovski, UL-FU Drevesa in pravila Marec 2018

Prva iteracija algoritma Covering(S)

- Izbrano pravilo *IF skrge* = *da THEN delfin* = *da*
- $S = \{x_1, \dots, x_5, x_{10}\}$

Prva iteracija algoritma LearnRule(S), drugič

Na začetku Cond = True, $S = \{x_1, \dots x_5, x_{10}\}$

L	S_{Cond}	p_{da}	p_{ne}	Impurity(S, Cond)
dolzina = 3	$\{x_1, x_3\}$	1	0	0
dolzina = 4	$\{x_2, x_{10}\}$	0.5	0.5	0.5
dolzina = 5	$\{x_4, x_5\}$	1	0	0
kljun = da	$\{x_1, \ldots x_5, x_{10}\}$	0.83	0.17	0.17
kljun = ne	Ø	NaN	NaN	NaN
zob = veliko	$\{x_1, x_2, x_4\}$	1	0	0
zob = malo	$\{x_3, x_5, x_{10}\}$	0.67	0.33	0.33

Druga iteracija algoritma Covering(S)

• Trenutna (urejena) množica pravil

$$IF \ skrge = da$$
 $THEN \ delfin = ne$ $ELSE$ $IF \ zob = veliko$ $THEN \ delfin = da$

• $S = \{x_3, x_5, x_{10}\}$

Prva iteracija algoritma LearnRule(S), tretjič

Na začetku Cond = True, $S = \{x_3, x_5, x_{10}\}$

L	S_{Cond}	p_{da}	p_{ne}	Impurity(S, Cond)
dolzina = 3	{x ₃ }	1	0	0
dolzina = 4	{ <i>x</i> ₁₀ }	0	1	0
dolzina = 5	{x ₅ }	1	0	0
kljun = da	$\{x_3, x_5, x_{10}\}$	0.67	0.33	0.33
kljun = ne	Ø	NaN	NaN	NaN

Tretja iteracija algoritma Covering(S)

• Trenutna (urejena) množica pravil

```
IF \ skrge = da THEN \ delfin = ne ELSE IF \ zob = veliko THEN \ delfin = da ELSE IF \ dolzina = 4 THEN \ delfin = ne
```

• $S = \{x_3, x_5\}$, čista množica

Končna (urejena) množica pravil

```
IF \ skrge = da THEN \ delfin = ne ELSE IF \ zob = veliko THEN \ delfin = da ELSE IF \ dolzina = 4 THEN \ delfin = ne ELSE delfin = da
```


Kontrola predsodka in variance

Velikost množice pravil

- število pravil
- število testov v pravilih

Kontrola velikosti

- Sprotno rezanje: predčasni izhod iz iteracije LearnRule
- 2 Naknadno rezanje: odstranjevanje pravil ali posameznih testov

Znani algoritmi in implementacije

CN2 (Clark and Nibblet 1987)

Na voljo knjižnica za R.

Ripper (Cohen 1995)

Na voljo v zbirki Weka, za uporabo v R na voljo skozi knjižnico RWeka.