

Course: BTech Semester: 6

Prerequisite: Data structure, automata, and languages, Mathematics, Python. | 203105212 - Python Programming Laboratory

Rationale: This course provides a broad introduction to Artificial Intelligence. All techniques for search and knowledge representation also apply knowledge of Al planning and machine learning techniques to real-world problems.

Teaching and Examination Scheme

Teaching Scheme					Examination Scheme					
Lecture	Tutorial	Lab		Credit	Int	ernal Ma	rks	Externa	l Marks	Total
Hrs/Week	Hrs/Week	Hrs/Week	Hrs/Week	Credit	Т	CE	Р	Т	Р	
3	0	0	0	3	20	20	-	60	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	W - Weightage (%) , T - Teaching						
Sr.	Topics		w	Т				
1	_	: blems, designing a learning system, Issues with machine learning. Concept Learning, Version Spaces and iminations, Inductive bias	10	6				
2	Decision Tre	and Unsupervised Learning: e Representation, Appropriate problems for Decision tree learning, Algorithm, Hypothesis space search ree learning, inductive bias in Decision tree learning, Radial Bases, Functions, Case Based Reasoning	20	9				
3	Neural Netw	ural networks and genetic algorithms: ork Representation, Appropriate problems for Neural Network Learning, Perceptrons, Multilayer d Back Propagation, Algorithms, Remarks on Back Propagation Algorithms, Case Study: face Recognition	20	9				
4	Bayes Optim	arning: em, Bayes Theorem and Concept Learning, Maximum Likelihood and Least squared Error Hypothesis, al Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian Belief Network, EM Algorithm Case ing to classify text.	20	9				
5		ic and Fuzzy logic, Fuzzy Rule based systems, Fuzzy Decision making, Fuzzy Classification, Fuzzy Pattern Applications	20	8				
6	Derivative b	n Techniques: ased Optimization – Descent Methods – Genetic Algorithms – Ant Colony Optimization – Particle Swarm ased Study - fraud detection, health care usingSoft computing techniques.	10	4				

Reference Books

1.	Real-World Machine Learning (TextBook) By Henrik Brink, Joseph Richards, Mark Fetherolf DreamTech				
2.	Christopher M. Bishop, —Pattern Recognition and Machine Learning , Springer 2011 Edition.				
3.	Elements of Statistical Learning By Hastie, Tibshirani, and Friedman Soft Computing for Problem Solving, AISC , Springer				
4.	Data Mining: Tools and Techniques By Jiawei Han and Michelline Kamber				
5.	Data Mining: A practical Machine Learning Tools and techniques By I H Witten, Eibe Frank, Mark A Hall Elsevier				

Course Outcome

After Learning the Course the students shall be able to:

- 1. Discover the basic issues and challenges in Machine Learning including data and model selection and its complexity
- 2 Understand the underlying mathematical relations within and across Machine Learning algorithms.
- 3 Assess the different Supervised Learning algorithms using a suitable Dataset.
- 4 Evaluate the different unsupervised Learning algorithms using a suitable Dataset.
- 5 Design and implement different machine learning algorithms in a range of real-world applications.

Printed on: 24-11-2024 09:58 PM Page 2 of 2

Course: BTech Semester: 6

Prerequisite: Data structure, automata, and languages, Mathematics, Python | 203105101 - Fundamentals of Programming

Rationale: This course provides a broad introduction to Artificial Intelligence. All techniques for search and knowledge representation also apply knowledge of Al planning and machine learning techniques to real-world problems.

Teaching and Examination Scheme

Teaching Scheme					Examination Scheme					
Lecture	Tutorial	Lab		Credit	Int	ernal Ma	rks	Externa	l Marks	Total
Hrs/Week	Hrs/Week	Hrs/Week	Hrs/Week	Credit	Т	CE	Р	Т	Р	
0	0	2	0	1	-	-	20	-	30	50

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Course Outcome

After Learning the Course the students shall be able to:

- 1. Discover the basic issues and challenges in Machine Learning including data and model selection and its complexity
- 2. Understand the underlying mathematical relations within and across Machine Learning algorithms
- 3. Assess the different Supervised Learning algorithms using a suitable Dataset.
- 4. Evaluate the different unsupervised Learning algorithms using a suitable Dataset.
- 5. Design and implement different machine learning algorithms in a range of real-world applications.

List of Practical

List	of Practical	
1.	Write a prog	ram to demonstrate the working of the decision tree-based ID3 algorithm.
2.	Build an Arti data sets.	ficial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate
3.	1	ram to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute of the classifier, considering a few test data sets.
4.	Assuming a s	et of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task.
5.		ram to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis ents using standard Heart Disease Data Set.
6.	Apply EM alg	gorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means
7.	Write a prog	ram to implement the K-Nearest Neighbour algorithm to classify the iris data set.
8.	Implement li	near regression and logistic regression.
9.	Compare the	various supervised learning algorithm by using appropriate dataset.
10.	Compare the	various Unsupervised learning algorithm by using the appropriate datasets.

Printed on: 24-11-2024 09:59 PM Page 1 of 1