Not a markov chain

2020-08-02

Let sequence (X_n) be defined by $X_n = Q_n + Q_{n-1}$

The definition of a Markov chain states that a sequence (X_n) is a MC if the following holds:

$$P(X_{n+1}|X_n,...X_0) = P(X_{n+1}|X_n)$$

- for all n
- for every possible x value

That is the probability of what happens in the next step only depends on the previous step. Or put another way, knowing X_{n-1}, \ldots, X_0 does not change the probability of $P(X_{n+1}|X_n)$.

So to show that the sequence is NOT a markov chain, we will construct a situation where knowing (X_{n-1}, \ldots, X_n) does change the probability.

Consider the sequence: * all 8's: $(X_{n-1} = 8, ..., X_0 = 8)$

Then fix $X_n = 6$. This means that $Q_n = 2$, $Q_{n-1} = 4$ (because we know X_{n-1}, \ldots, X_n we can fully determine Q_n).

Then $P(X_{n+1}|X_n = 6, X_{n-1} = 8, ..., X_0 = 8)$ has distribution:

$$P(X_{n+1} = 4 | \dots) = P(Q_{n+1} = 2) = 1/4$$

$$P(X_{n+1} = 5 | \dots) = P(Q_{n+1} = 3) = 1/2$$

$$P(X_{n+1} = 6 | \dots) = P(Q_{n+1} = 4) = 1/4$$

$$P(X_{n+1} = 7 | \dots) = P(Q_{n+1} = 5) = 0$$

But if $(X_{n-1}=4,\ldots,X_0=4)$ and then we fix $X_n=6$ then we know $Q_n=4,Q_{n-1}=2$

 $P(X_{n+1}|X_n = 6, X_{n-1} = 4, \dots, X_0 = 4)$ has distribution

$$P(X_{n+1} = 4 | \dots) = P(Q_{n+1} = 0) = 0$$

$$P(X_{n+1} = 5 | \dots) = P(Q_{n+1} = 1) = 0$$

$$P(X_{n+1} = 6 | \dots) = P(Q_{n+1} = 2) = 1/4$$

$$P(X_{n+1} = 7 | \dots) = P(Q_{n+1} = 3) = 1/2$$

$$P(X_{n+1} = 8 | \dots) = P(Q_{n+1} = 3) = 1/4$$

That is we've changed the distribution given that we have knowledge other than X_n . The process is NOT memoryless and thus not a Markov chain.

Formally a Markov chain must have

$$P(X_{n+1}|X_n,...X_0) = P(X_{n+1}|X_n)$$

which also means more specifically

$$P(X_{n+1}|X_n = 6) =$$

$$P(X_{n+1}|X_n = 6, X_{n-1} = 8, \dots, X_0 = 8) = P(X_{n+1}|X_n = 6, X_{n-1} = 4, \dots, X_0 = 4)$$

but we've shown that the last equality does not hold.