Bjørnar's assignment in Gretl

Henrik Georg Jacobsen

Table of contents

1	Exercise 1	1
2	Exercise 2	3
3	Exercise 3 3.1 Age:	$\frac{4}{5}$
4	Exercise 4	5
5	Exercise 5	6
Bi	ørnar's assignment	

Inline equations $\theta = 2 + 2$

1 Exercise 1

obs	price	WinterRain	temp	HarvestRain	Age
Min. :1952	Min. : 495.2	Min. :376.0	Min. :14.98	Min. : 38.0	Min. : 3.0
1st Qu.:1959	1st Qu.: 670.8	1st Qu.:543.5	1st Qu.:16.15	1st Qu.: 88.0	1st Qu.: 9.
Median:1966	Median :1079.8	Median:600.0	Median :16.42	Median :123.0	Median :16.0
Mean :1966	Mean :1405.8	Mean :608.4	Mean :16.48	Mean :144.8	Mean :16.
3rd Qu.:1973	3rd Qu.:1707.7	3rd Qu.:705.5	3rd Qu.:17.01	3rd Qu.:185.5	3rd Qu.:22.
Max. :1980	Max. :4883.9	Max. :830.0	Max. :17.65	Max. :292.0	Max. :31.0
	NA's :2	NA's :2	NA's :2	NA's :2	NA's :2

Histogram of Wine Prices

Scatterplot: Wine Price vs Temperature

2 Exercise 2

Model 1

$$price_i = \beta_0 + \beta_1 Age_i + u_i$$

a.

Model 3: OLS, using observations 1-29 $\,$

Dependent variable: price

	Coefficient	Std. Error	t-ratio	p-value
const	494.278	402.112	1.229	0.2304
Age	56.318	22.222	2.534	0.0179 **

R-squared: 0.2043

Adjusted R-squared: 0.1728

F-statistic: 6.420 P-value (F): 0.0179

b.

For each year the wine gets older, its price is expected to increase by 56.318 units.

c.

P-value (0.0179) > (0.01)

Significance level () = 0.01 (1%)

 $H_0: \beta = 0$

 $H_1: \beta \neq 0$

P-value is higher than 0.01, that means age is not statistically significant.

d.

Age Predicted_Price

 1
 3.00000
 663.23

 2
 16.18519
 1405.80

 3
 31.00000
 2240.15

3 Exercise 3

Model 2

$$price_i = \beta_0 + \beta_1 A g e_i + \beta_2 Winter Rain_i + \beta_3 temp_i + \beta_3 Harvest Rain_i + u_i$$

a.

Model 4: OLS, using observations 1952-1980 (T = 27)

Missing or incomplete observations dropped: 2

Dependent variable: price

C	coefficient	std. error	t-ratio	p-value	
const -	-15509,0	3379,87	-4,589	0,0001	***
Age	39,2126	14,3490	2,733	0,0121	**
WinterRain	2,75098	0,965119	2,850	0,0093	***
temp	930,787	190,557	4,885	6,97e-05	***
HarvestRain	-5,04694	1,61682	-3,122	0,0050	***
Mean dependent va	ar 1405,800	S.D. depend	ent var	1027,226	
Sum squared resid	1 7238994	S.E. of reg	ression	573,6246	
R-squared	0,736141	Adjusted R-	squared	0,688166	
F(4, 22)	15,34443	P-value(F)		3,93e-06	
Log-likelihood	-207,0499	Akaike crit	erion	424,0999	
Schwarz criterion	430,5791	Hannan-Quin	n	426,0265	

b.

3.1 Age:

Coefficient = 39.21

P-value = 0.0121

Wine price increases by 39.21 each year.

3.2 WinterRain:

Coefficient = 2.75

P-value = 0.0093

Wine price increases by 2.75 each mm winter rainfall.

3.3 Temperature:

Coefficient = 930.79

P-value = 0.00007

Wine price increases by 930.79 every 1 degree.

3.4 HarvestRain

Coefficient = -5.05

P-value = 0.0050

Wine price decreases by 5.05 each additional 1 mm HarvestRain

c.

Adding more variables improves the model to explain the wine prices.

4 Exercise 4

Model 3

 $price_i = \beta_0 + \beta_1 Dheavyraint_i + \beta_2 tempt_i + \beta_3 temp_i \cdot Dheavyrain_i + u_i$

a.

Model 2: OLS, using observations 1952-1980 (T = 27)

Missing or incomplete observations dropped: 2

Dependent variable: price

	coefficient	std. error	t-rati	io p-value	
const	-16289,5	4395,18	-3,706	0,0012	***
Dheavyrain	11634,1	8990,38	1,294	1 0,2085	
temp	1082,95	266,391	4,065	0,0005	***
temp_Dheavyrain	-756,902	546,064	-1,386	0,1790	
Mean dependent var	1405,800	S.D. dependent	var	1027,226	
Sum squared resid	14038659	S.E. of regres	sion	781,2660	
R-squared	0,488295	Adjusted R-squ	ıared	0,421550	
F(3, 23)	7,315911	P-value(F)		0,001294	

Log-likelihood	-215,9914	Akaike criterion	439,9829
Schwarz criterion	445,1662	Hannan-Quinn	441,5242

Excluding the constant, p-value was highest for variable 6 (Dheavyrain)

b.

Temp * Dheavyrain captures whether the impact of temperature on price depends on harvest rainfall. Dheavyrain captures the shift in wine price when harvest rainfall is very high, regardless of temperature.

5 Exercise 5

a.

				Predicted Price	
-					
-	Model	1	4883.90	1733.28	3150.62
	Model	2	4883.90	3578.80	1305.10
	Model	3	4883.90	2481.70	2402.20

b.

Model 2 is the best model for predicting Bordeaux wine price.

It hast multiple significant variables and is a better fit.