Algorithms HW

3. Let R be a finite ring. Prove that R is a field if and only if it is an integral domain.

In general we have that R a field implies R is an integral domain, even if R is not finite. We recount the proof here. Suppose R is a field, that is R is commutative with $1 \neq 0$ and every $a \in R$ is a two-sided unit. Now suppose we have ab = 0. If a = 0 then we are done, so suppose a is non-zero in R. Then, a has a two-sided inverse $a^{-1} \in R$, and so

$$0 = ab = a^{-1}ab = 1 \cdot b = b.$$

If we instead assume $b \neq 0$ then an extremely similar calculation will show that ab = 0 implies a = 0. (Or, perhaps it's enough that R is commutative at this point?) Thus, R is an integral domain.

Now suppose R is finite and is an integral domain. That is, R is a commutative ring with $1 \neq 0$ and for all $a, b \in R$ we have ab = 0 implies a = 0 or b = 0. We show that every non-zero element in R has a two-sided inverse. Let $a \in R$ be some non-zero element and let $\phi_a : R \to R$ be the map defined by $\phi(r) = a \cdot r$.

We claim that ϕ_a is injective. Suppose we have $\phi(b) = \phi(c)$ for some $b, c \in R$. That is, ab = ac, equivalently a(b - c) = 0. But recall that a is a non-zero element in the integral domain R, and so we must have b - c = 0. In other words b = c and ϕ_a is injective by definition.

In addition, since R is finite and #R = #R, we have that ϕ_a is actually a bijection. And so there must exist some $c \in R$ such that $\phi(c) = 1$. That is, we have $c \in R$ such that ac = 1. Since R is commutative, a is actually a two-sided unit with inverse c. Thus, R is a field.

Note to self: Aluffi claims that finite division rings turn out to always be commutative. Have a read of this later if we get time

- 4. Let \mathbb{F} be a finite field of order q. We are going to prove that the multiplicative group \mathbb{F}^{\times} is cyclic of order q-1.
 - (a) Show that for all $d \geq 1$, the number of d-torsion elements of the group \mathbb{F}^{\times} is at most d.
 - (b) Suppose that G is a finite abelian group such that the number of d-torsion elements of G is at most d for all $d \geq 1$. Prove that G is cyclic. (Hint: the structure theorem for finite abelian groups may be helpful.)
- (a) Consider the polynomial $f(x) = x^n 1 \in \mathbb{F}[x]$. Recall that $\mathbb{F}[x]$ is a unique factorization domain we should probably understand this better, and so f has at most n roots in \mathbb{F} . That is, there are at most n elements in \mathbb{F} such that $a^n = 1$. And, in particular, the zero element in the ring \mathbb{F} does not satisfy the above equation. And so, all roots of f must in fact lie in \mathbb{F}^\times . Then, recalling that an element in a group $g \in G$ is a d-torsion element of G if |g| | d, the above shows that \mathbb{F}^\times has at most d elements with d-torsion, for each $d \ge 1$. question: does d-torsion mean that |g| = d or that |g| |d?
- (b) I'm not sure we've super talked about the structure theorem of finite abelian groups much, so I will recall the theorem in detail here. *Theorem:* If *G* is a finite abelian group then we have that *G* is a product of cyclic groups, in particular

$$G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z}$$
,

for $d_i > 0$ integers and where $d_1 | d_2 | \cdots | d_n$ ew, i hate the spacing on this. Moreover, $|G| = d_1 \cdots d_s$. Here, we are treating G as a group under addition.

Now suppose G is a finite abelian group such that the number of d-torsion elements is at most d for all $d \ge 1$. We show that s = 1 and so G is cyclic. Suppose, for contradiction, that s > 1 and let $g \in G$. We have that $\langle g \rangle \le G$ and so, by Lagrange's theorem, we have that $|g| \mid |G| = d_1 \cdots d_s$. And so |g| divides one of d_i . If $\langle g \rangle$ divides d_i then, since in particular $d_i \mid d_s$, we also have $\langle g \rangle \mid d_s$. Indeed, we have $m_1 \mid g \mid = d_i$ and $m_2 d_i = d_s$ then $m_1 m_2 \mid g \mid = d_s$, i.e., $|g| \mid d_s$. That is g is a d_s -torsion element.

We have shown that all elements $g \in G$ have d_s -torsion. However, we have |G| =

 $d_1 \cdots d_s > d_s$. And so we have found more than d_s elements of G which have d_s -torsion, a contradiction. That is, we must in fact have s = 1 and $G \cong \mathbb{Z}/d\mathbb{Z}$ for some $d \in \mathbb{N}$. In other words, G is a cyclic group.

5. Let R be a ring and $f \in R$ an element. Prove that the localisation of R at the set $S = \{1, f, f^2, \dots\}$ is isomorphic to R[x]/(1-xf).

Let us first define a map into R[x]: $\phi: S^{-1}R \to R[x]$ by $\varphi(1/f) = x$ and $\varphi(a/1) = a$, and then we extend this definition so that the map distributes over products and addition in $S^{-1}R$. That is $\varphi(a/f^k) = ax^k$ and $\varphi(a/f^k + b/f^\ell) = \varphi((af^\ell + b^k)/f^{k+\ell}) = (af^k + bf^\ell)x^{k+\ell}$. Is this sufficient reasoning to allow us to "extend the map".

First we check that this is a well defined map out of $S^{-1}R$. Suppose $a/f^k \equiv b/f^\ell$ and consider

$$\phi(a/f^k - b/f^\ell) = \phi(\frac{af^\ell - bf^k}{f^{\ell+k}}) = (af^\ell - bf^k)x^{\ell+k}.$$

Now, the condition $a/f^k \equiv b/f^\ell$ means that there exists some $c \in S$ such that $c(af^\ell - bf^k) = 0$, in particular $c = f^m$ for some integer $m \ge 0$. That is, we have $f^m(af^\ell - bf^k) = 0$. Applying ϕ to both sides of this expression gives $x^m(af^\ell - bf^k) = 0$ in R[x]. If we somehow knew that $\ell + k \ge m$ we'd be done, but it's not super clear to me how we can finish this reasoning. This might also perhaps be the wrong approach

Actually note that $\phi: S^{-1}R \to R[x]$ is not a well-defined map, consider the image of $(af^2)/f^3$

Next we check that ϕ is in fact a well-defined map into the quotient R[x]/(1-fx). Namely, we will check that $\phi^{-1}((1-fx)) = \{0\}$. We have

$$\phi^{-1}(1-fx) = \frac{1}{1} - \frac{f}{f} = 0 \in S^{-1}R.$$

And so, ϕ is a well-defined map into the quotient R[x]/(1-fx). From now, we will treat ϕ as a map $\phi: S^{-1} \to R[x]/(1-fx)$. Something about this paragraph feels a bit fishy to me, do we think that I checked everythign that I needed to check?

Nex we will show that ϕ is a bijection. First we check injectivity. Notice that every element of $S^{-1}R$ can be reduced to the form a/f^k for some $a \in R$ and some natural k. Now suppose $\phi(a/f^k) = \phi(b/f^\ell)$, i.e. $ax^k = bx^\ell$. The only way for this to be true is if $k = \ell$ and only if a = b a part of me wants to unpack this, I believe this is true because intuitively "the

constants in R[x] are independent of the variable x." is there a more precise way of saying this?. That is, $a/f^k = b/f^\ell$ and so ϕ is injective.

Next we show that ϕ is surjective. Suppose $a_0 + a_1x + \cdots + a_nx^n \in R[x]/(1-fx)$, since this is an element of the quotient suppose we have reduced away all existing factors of f in each coefficient a_i using the relation 1 = fx in the quotient. Then notice $a_0/1 + a_1/f + \cdots + a_n/f^n$ maps to the given polynomial under ϕ .

In the end, we have found a bijective homomorphism from $S^{-1}R$ to R[x]/(1-fx), and so these rings are isomorphic.

6. Let p be a prime number, and let $\Phi_p(x)$ be the polynomial

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1.$$

By considering the polynomial $\Phi_p(x+1)$, or otherwise, show that $\Phi_p(x)$ is irreducible in $\mathbb{Q}[x]$.

Recall Eisenstein's Criterion maybe cite it here

First we consider $\Phi(x)$ as a polynomial in $\mathbb{Z}[x]$ and after that, why is it also irreducible in $\mathbb{Q}[x]$?

Next, notice that $\Phi(x) = \frac{x^p - 1}{x - 1}$ i wonder how we show this? i vaugely recall that it is a combinatorial fact. perhaps we just multiply both sides by x - 1

It then follows that $\Phi(x+1) = \frac{(x+1)^p - 1}{x}$. Now, using the binomial theorem, we have

$$(x+1)^p = x^p + \binom{p}{p-1}x^{p-1} + \dots + \binom{p}{3}x^3 + \binom{p}{2}x^2 + \binom{p}{1}x + 1.$$

And so

$$\frac{(x+1)^p - 1}{x} = x^{p-1} + \binom{p}{p-1} x^{p-2} + \dots + \binom{p}{1}.$$

We claim that this form allows us to deduce that the Eisenstein criterion is fulfilled. First, we have $a_n = 1$ and so a_n is not in any prime ideal. Moreover, we have that $\binom{p}{1} = p \notin (p)^2 = (p^2)$ in $\mathbb{Z}[x]$. is this last sentence true?

Then lastly, we need to show that $\binom{p}{k} \in (p)$ for each 1 < k < p. i'm not entirely sure how the proof in the book works for this..