Machine Learning Basics

COMP9312_24T2

About this topic

- Introduce basic knowledge about machine learning
- You need them to understand graph neural networks
- Concepts in this topic would not be in assignments/exam

Machine Learning ≈ Looking for Function

Speech Recognition

$$f($$
)= "Hello World"

Image Recognition

ChatGPT

$$f(\text{write a solution for my assignment 1}) = "..."$$

Two types of ML function

Regression

Classification

Some Classification Tasks

AlphaGo

ChatGPT

Machine Learning

- Algorithms that improve automatically through experience.
- The algorithm has a (large) number of parameters whose values need to be learned from the data.

Neurons and Perceptron

What does a Perceptron do? (1)

Suppose a NN initialized to weight w be (0.1, 0.2, 0.3) & bias b = 0.05 **Step0**: Take an input x (0.3, 0.6, 0.9)

What does a Perceptron do? (2)

Step1: Calculate a weighted sum

$$z = w^{T}x + b$$
; $z = 0.1 \times 0.3 + 0.2 \times 0.6 + 0.3 \times 0.9 + 0.05 = 0.47$

What does a Perceptron do? (3)

Step2: Apply an activation function

Neural Networks

X ₁	X_2	X_3	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Output Y is 1 if at least two of the three inputs are equal to 1.

Neural Networks (cont)

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$

where
$$I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

Neural Networks (cont)

- Model is an assembly of interconnected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t
- The sign function (activation function) outputs a value +1 if its argument is positive and -1 otherwise.

Perceptron Model

$$Y = I(\sum_{i} w_{i} X_{i} - t) \quad \text{or} \quad$$

$$Y = sign(\sum_{i} w_{i} X_{i} - t)$$

Increase Expressive Power

From Perceptrons to NN

- Perceptrons are a basic unit of a neural network.
- 1-layered neural network on the right

Structure:

- Input layer, output layer,
- Middle are hidden layers.

A Case Study

What is the final mark of a student in 9312? (a regression problem)

$$f$$
(student's mark for COMP9024) = ??

Where does the machine learn from?

Marks of many previous students for 9024 and 9312 (Supervised Learning)

Other types: unsupervised learning (NLP), semi-supervised learning, ...

How to get the function

- 1. Tell the machine what to learn (Parameters)
- 2. Tell the machine how to evaluate the function (Loss Function)
- 3. Wait ... (Training)

Step 1 - Parameters

1. Tell the machine what to learn (Parameters)

A linear function based on domain knowledge.

weight
$$y = b + wx_1$$

$$\uparrow \qquad \uparrow$$
bias feature

w and b are unknown parameters to learn.

Step 2 – Loss Function

2. Tell the machine how to evaluate the function (Loss Function)

 \hat{y} is the label (real value)

y is the estimation

How good is a value / a function?

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

 $e = |y - \hat{y}|$ L is mean absolute error (MAE)

 $e = (y - \hat{y})^2$ L is mean square error (MSE)

Step 2 – Loss Function

2. Tell the machine how to evaluate the function (Loss Function)

$$y = b + wx_1$$

We aim to find a good w and b to minimize the loss function.

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

 $e = |y - \hat{y}|$ L is mean absolute error (MAE)

 $e = (y - \hat{y})^2$ L is mean square error (MSE)

Step 3 - Training

How to get good parameters?

$$y = b + wx_1$$

Gradient Descent.

Done by the toolkit (e.g., pytorch...).

Gradient Descent

$$y = b + wx_1 \quad w^*, b^* = \arg\min_{w,b} L$$

- 1. pick a random w^0
- 2. compute gradient $\frac{\partial L}{\partial w}|_{w=w^0}$

Negative -> increase w^0

Positive -> decrease w^0

3. Update w based on a hyperparameter η

$$w^1 \leftarrow w^0 - \eta \frac{\partial L}{\partial w}|_{w=w^0}$$

4. Update w iteratively.

Evaluate the function

Now we have a good linear function to predict the mark.

f(student's mark for COMP9024) = ??

Are linear models good enough?

Beyond Linear Models

Real problems are much more sophisticated.

How to get sophisticated functions

Combine simple functions in two ways:

$$f_1(x)+f_2(x)$$

$$f_1(f_2(x))$$

Combine linear functions? The result is still a linear function~

$$y=3x+1$$
 $y=5x+2$ -> $y=3(5x+2)+1=15x+7$

Activation functions are required:

- Sigmoid
- Relu

Sigmoid Function

Sigmoid Function

How to represent this function?

Hard Sigmoid

Sigmoid Function

$$y = c \frac{1}{1 + e^{-(b + wx_1)}}$$

$$= c sigmoid(b + wx_1)$$

Combining Sigmoid Functions

Other activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid and ReLU

$$y = b + \sum_{i} c_{i} \underline{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$

$$y = b + \sum_{2i} \frac{c_i}{max} \left(0, b_i + \sum_j w_{ij} x_j \right)$$

Combine i Sigmoid functions

$$y = b + wx_1$$
 \longrightarrow $y = b + \sum_{i} c_i sigmoid(b_i + w_i x_1)$

Combine i Sigmoid functions

$$y = b + wx_1$$
 \longrightarrow $y = b + \sum_{i} c_i sigmoid(b_i + w_i x_1)$

Combine j features

$$y = b + \sum_{i} w_{i} x_{j} \longrightarrow$$

$$y = b + \sum_{j} w_{j} x_{j} \longrightarrow y = b + \sum_{i} c_{i} sigmoid \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$

$$y = b + \sum_{i} c_{i} sigmoid\left(b_{i} + \sum_{j} w_{ij}x_{j}\right)$$

$$r_1 = b_1 + w_{11}x_1 + w_{12}x_2 + w_{13}x_3$$

 w_{ij} : weight for x_j for i-th sigmoid

$$r_2 = b_2 + w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

$$r_3 = b_3 + w_{31}x_1 + w_{32}x_2 + w_{33}x_3$$

j is #features

i is #sigmoid

$$y = b + \sum_{i} c_{i} sigmoid \left(b_{i} + \sum_{j} w_{ij} x_{j}\right)$$

$$y = b + \sum_{i} \frac{c_{i}}{c_{i}} sigmoid\left(b_{i} + \sum_{j} w_{ij} x_{j}\right)$$

j is #features

i is #sigmoid

Matrix Style

$$= b + c^T$$

W

Minimize Loss

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

Multiple parameters

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

(Randomly) Pick initial values θ^0

$$oldsymbol{ heta} = egin{bmatrix} heta_1 \ heta_2 \ heta_3 \ heta_3 \end{bmatrix}$$

$$egin{aligned} oldsymbol{g} &= egin{bmatrix} rac{\partial L}{\partial heta_1}|_{oldsymbol{ heta} = oldsymbol{ heta}^0} \ rac{\partial L}{\partial heta_2}|_{oldsymbol{ heta} = oldsymbol{ heta}^0} \end{bmatrix}$$

$$\boldsymbol{g} = \nabla L(\boldsymbol{\theta}^0)$$

$$\mathbf{g} = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix} \quad \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \end{bmatrix} \leftarrow \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \\ \vdots \end{bmatrix} - \begin{bmatrix} \mathbf{\eta} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \mathbf{\eta} \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix}$$

$$\vdots$$

$$\boldsymbol{\theta}^1 \leftarrow \boldsymbol{\theta}^0 - \boldsymbol{\eta} \boldsymbol{g}$$

Compute the Loss for all data?

$$\theta^* = arg \min_{\theta} L$$
 Loss: $L = \frac{1}{N} \sum_{n=1}^{\infty} e_n$

- (Randomly) Pick initial values θ^0
- ightharpoonup Compute gradient $g = \nabla L(\theta^0)$

$$\boldsymbol{\theta}^1 \leftarrow \boldsymbol{\theta}^0 - \boldsymbol{\eta} \boldsymbol{g}$$

ightharpoonup Compute gradient $g = \nabla L(\theta^1)$

$$\theta^2 \leftarrow \theta^1 - \eta g$$

Repeat a set of iterations

Inefficient & ...

Compute the Loss for all data?

$$heta^* = arg \min_{ heta} L$$
 Loss: $L = \frac{1}{N} \sum_n e_n$

• (Randomly) Pick initial values θ^0

• Compute gradient $g = \nabla L^1(\theta^0)$ L^1

• Loss: $L = \frac{1}{N} \sum_n e_n$

• Compute gradient $g = \nabla L^1(\theta^0)$ L^1

• Compute gradient $g = \nabla L^2(\theta^1)$ L^2

• Compute gradient $g = \nabla L^2(\theta^1)$ L^2

• Compute gradient $g = \nabla L^3(\theta^2)$ L^3

• Loss: $L = \frac{1}{N} \sum_n e_n$

batch

• Dompute gradient $g = \nabla L^2(\theta^1)$ L^2

• Dompute gradient $g = \nabla L^3(\theta^2)$ L^3

Quiz

- 10,000 examples (N = 10,000)
- Batch size is 10 (B = 10)

How many update in 1 epoch?

<u>1,000 updates</u>

Machine Learning to Deep Learning

Neural Network

Deep means many layers

#Layers in GPT-3

https://jalammar.github.io/ how-gpt3-worksvisualizations-animations/

Deep vs Wide

generative pre-trained transformer

DL in real applications

Domain knowledge -> customized model (neural network)

Assume we have an image with 100 pixels A color can be represented by (256*256*256)

DL in real applications

Domain knowledge -> customized model (neural network)

Convolution Neural Network (CNN)

Learning Outcome

Understand the basic idea of ML and DL

Learn more details in COMP9444