Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Отчет по лабораторной работе N_2110

Гироскоп

Выполнил студент 410 группы Сарафанов Ф.Г.

Содержание

1 Установка								
2	Teo	рия лабораторной работы	2					
	2.1	Краткая теоретическая вводная	2					
3	Экс	периментальные данные	4					
	3.1	Расчетный момент инерции ротора	4					
	3.2	Оценка скорости собственного вращения	5					
	3.3	Зависимость $\frac{1}{T}$ от l	6					
	3.4	Коэффициенты A и B	6					
	3.5	Момент инерции из графика	7					
За	клю	чение	8					

1 Установка

Рис. 1: Схематичное изображение гироскопа

2 Теория лабораторной работы

2.1 Краткая теоретическая вводная

Запишем уравнение моментов относительно центра масс гироскопа:

$$\frac{d\vec{N}}{dt} = \vec{M} = [\vec{OA} \times m\vec{g}] \tag{1}$$

Момент силы тяжести груза будет создавать прецессию гироскопа следующим образом. Представим вектор $\vec{N} = \vec{N}_{\perp} + \vec{N}_{\parallel}$ (относительно оси основного вращения)

Со временем \vec{N}_{\parallel} остается постоянным,а конец вектора \vec{N}_{\perp} движется по окружности с радиусом $N_{\perp}=N\sin\alpha$.

За малый промежуток времени dt вектор \vec{N}_{\perp} повернется на угол

$$d\phi = \frac{dN}{N_{\perp}} = \frac{Mdt}{N\sin\alpha} \tag{2}$$

Угловую скорость его поворота найдем по определению

$$\Omega = \frac{d\phi}{dt} = \frac{M}{N\sin\alpha} \tag{3}$$

Но момент нам известен, а $N = J\omega$, и тогда

$$\Omega = \frac{d\phi}{dt} = \frac{mg \cdot OA}{J\omega} \tag{4}$$

Удобно представить OA как сумму постоянных величин и переменной:

Рис. 2: Оценка расстояний a и b

$$OA = l + (a+b) \tag{5}$$

Практически можно замерить не скорость, а период прецессии. Запишем в следующем виде:

$$\frac{2\pi}{T} = \frac{mgl + mg(a+b)}{J\omega} \tag{6}$$

или как уравнение прямой

$$\frac{1}{T} = Al + B, (7)$$

где

$$A = \frac{mg}{2\pi J\omega} \tag{8}$$

$$B = \frac{mg(a+b)}{2\pi J\omega} \tag{9}$$

3 Экспериментальные данные

3.1 Расчетный момент инерции ротора

Рис. 3: Схематичное изображение ротора гироскопа в разрезе

Момент инерции гироскопа можно найти как разность моментов инерции внешнего цилиндра и внутреннего:

$$J_{\text{внеш}} = \frac{m_{\text{внеш}}R^2}{2} = \frac{\rho\pi R^4 H}{2} \tag{10}$$

$$J_{\text{внутр}} = \frac{m_{\text{внутр}}r^4}{2} = \frac{\rho\pi r^4 h}{2} \tag{11}$$

(12)

$$J = \frac{\rho\pi}{2} \left[R^4 H - r^4 h \right] = \frac{7.8 \cdot 3.14}{2} \left[(4.5)^4 \cdot 5 - (3.5)^4 \cdot 4.8 \right] = 16287 \left[g \cdot cm^2 \right]$$
 (13)

Оценка скорости собственного вращения 3.2

Таблица 1: Результаты опыта для 15 воль	Таблица	1:	Результаты	опыта	для	15	вольт
---	---------	----	------------	-------	-----	----	-------

l, cm	t_1 , c	t_2 , c	t_3 , c	< t >, c	T, c	$\frac{1}{T}, c^{-1}$	$\Delta[\frac{1}{T}], \ c^{-1}$
1	45.23	45.8	45	45.34	15.11	$6.62 \cdot 10^{-2}$	$2.6\cdot10^{-3}$
2	41.27	40.49	40.8	40.85	13.62	$7.34\cdot10^{-2}$	$3.2\cdot 10^{-3}$
3	37.72	35.18	35.92	36.27	12.09	$8.27\cdot10^{-2}$	$4.1\cdot 10^{-3}$
4	33.03	32.81	34.13	33.32	11.11	$9\cdot 10^{-2}$	$4.9\cdot 10^{-3}$
5	30.38	29.8	30.8	30.33	10.11	$9.89 \cdot 10^{-2}$	$5.9\cdot10^{-3}$
6	28.4	28.33	28.65	28.46	9.49	0.11	$6.7\cdot10^{-3}$
7	27	26.59	27.1	26.9	8.97	0.11	$7.5\cdot10^{-3}$
8	24.8	25.34	25.32	25.15	8.38	0.12	$8.5\cdot10^{-3}$

Таблица 2: Результаты опыта для 18 вольт

l, cm	t_1 , c	t_2 , c	t_3 , c	< t >, c	T, c	$\frac{1}{T}$, c^{-1}	$\Delta[\frac{1}{T}], c^{-1}$
1	52.57	51.49	52.32	52.13	17.38	$5.76 \cdot 10^{-2}$	$2\cdot 10^{-3}$
2	49.28	49.11	49.32	49.24	16.41	$6.09\cdot10^{-2}$	$2.2\cdot 10^{-3}$
3	44.88	43.79	44.15	44.27	14.76	$6.78\cdot10^{-2}$	$2.8\cdot 10^{-3}$
4	41.77	41.54	41.75	41.69	13.9	$7.2\cdot 10^{-2}$	$3.1\cdot 10^{-3}$
5	39	38.67	38.72	38.8	12.93	$7.73\cdot10^{-2}$	$3.6\cdot10^{-3}$
6	36.49	35.92	36.73	36.38	12.13	$8.25\cdot10^{-2}$	$4.1\cdot10^{-3}$
7	34.51	33.96	34.12	34.2	11.4	$8.77 \cdot 10^{-2}$	$4.6\cdot10^{-3}$
8	32.18	32.12	32.53	32.28	10.76	$9.29 \cdot 10^{-2}$	$5.2\cdot10^{-3}$

Мы оценили $a=6cm,\ b=1cm,\$ и рассчитали $J=16287\ [g\cdot cm^2].$ Из эксперимента можно взять значение периода для определенной длины, например $T=11.11\ c,\ l=1cm.$ Тогда можем оценить собственную скорость ω_{15} :

$$\frac{2\pi}{T} = \frac{mgl + mg(a+b)}{J\omega} \tag{14}$$

$$\omega = \frac{mgT(l+a+b)}{2\pi J} \tag{15}$$

$$\omega = \frac{mgT(l+a+b)}{2\pi J}$$

$$\omega_{15} = \frac{208 \cdot 980 \cdot 11.11 \cdot 11}{2 \cdot 3.14 \cdot 16287} \approx 260 \ [c^{-1}]$$

$$\omega_{18} = \frac{208 \cdot 980 \cdot 16.41 \cdot 9}{2 \cdot 3.14 \cdot 16287} \approx 294 \ [c^{-1}]$$

$$(15)$$

$$\omega_{18} = \frac{208 \cdot 980 \cdot 16.41 \cdot 9}{2 \cdot 3.14 \cdot 16287} \approx 294 \ [c^{-1}] \tag{17}$$

3.3 Зависимость $\frac{1}{T}$ от l

Рис. 4: Зависимость $\frac{1}{T}$ от l

3.4 Коэффициенты A и B

Из графика нашли уточненные данные по коэффициентам $A_{15}, B_{15}, A_{18}, B_{18}$

$$A_{15} \left[= \frac{mg}{2\pi J\omega_{15}} \right] = 5.13 \cdot 10^{-3} \tag{18}$$

$$B_{15} \left[= \frac{mg(a+b)}{2\pi J\omega_{15}} \right] = 5.18 \cdot 10^{-2} \tag{19}$$

$$A_{18} \left[= \frac{mg}{2\pi J\omega_{18}} \right] = 7.61 \cdot 10^{-3} \tag{20}$$

$$B_{18} \left[= \frac{mg(a+b)}{2\pi J\omega_{18}} \right] = 5.92 \cdot 10^{-2} \tag{21}$$

3.5 Момент инерции из графика

Тогда можем найти момент инерции через коэффициенты:

$$J_{A15} = \frac{mg}{2\pi\omega_{15}A_{15}} = \frac{208 \cdot 980}{2 \cdot 3.14 \approx 260 \cdot 5.13 \cdot 10^{-3}} \approx 17873 \ [g \cdot cm^2]$$
 (22)

$$J_{A18} = \frac{mg}{2\pi\omega_{18}A_{18}} = \frac{208 \cdot 980}{2 \cdot 3.14 \cdot 294 \cdot 7.61 \cdot 10^{-3}} \approx 14507 \ [g \cdot cm^2]$$
 (23)

$$J_{B15} = \frac{mg(a+b)}{2\pi\omega_{15}B_{15}} = \frac{208 \cdot 980 \cdot 7}{2 \cdot 3.14 \cdot 260 \cdot 5.18 \cdot 10^{-2}} \approx 16870 \ [g \cdot cm^2]$$
 (24)

$$J_{B18} = \frac{mg(a+b)}{2\pi\omega_{15}B_{15}} = \frac{208 \cdot 980 \cdot 7}{2 \cdot 3.14 \cdot 294 \cdot 5.92 \cdot 10^{-2}} \approx 13054 \ [g \cdot cm^2]$$
 (25)

$$\langle J \rangle = 15576 \left[q \cdot cm^2 \right]$$
 (26)

Заключение

В проведенной лабораторной работе было экспериментально рассмотрено поведение гироскопа с двумя и тремя степенями свободы, изучено явление прецессии гироскопа.

Найден момент инерции ротора из геометрических соображений:

$$J = 16287 [g \cdot cm^2] \tag{27}$$

Измерены периоды прецессии T для различного удаления l груза от тела гироскопа. По рассчитанному J, найденным a=6cm и b=1cm и измеренному T оценили собственную угловую скорость (скорость вращения ротора):

Для 15 вольт

$$\omega_{15} = 260 \ [c^{-1}] \tag{28}$$

Для 18 вольт

$$\omega_{18} = 294 \ [c^{-1}] \tag{29}$$

Построили график зависимости $\frac{1}{T}$ от l, откуда, найдя константы $A_{15}, B_{15}, A_{18}, B_{18}$:

$$A_{15} = 5.13 \cdot 10^{-3} \tag{30}$$

$$B_{15} = 5.18 \cdot 10^{-2} \tag{31}$$

$$A_{18} = 7.61 \cdot 10^{-3} \tag{32}$$

$$B_{18} = 5.92 \cdot 10^{-2} \tag{33}$$

Нашли момент инерции через эти константы:

$$J_{A15} = 17873 \left[g \cdot cm^2 \right] \tag{34}$$

$$J_{A18} = 14507 \ [g \cdot cm^2] \tag{35}$$

$$J_{B15} = 16870 \ [g \cdot cm^2] \tag{36}$$

$$J_{B18} = 13054 \left[g \cdot cm^2 \right] \tag{37}$$

И среднее значение близко к первому расчетному:

$$\langle J \rangle = 15576 \ [g \cdot cm^2]$$
 (38)