Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_{0}^{#1} = 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0$	$t_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0 - i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$4\ i\ k^{X}\ \partial_{arepsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	17

												$\tau_{1}^{\#1}{}_{\alpha}$	
	$^{1}\omega_{\alpha}^{\ \theta}\partial_{i}f^{\alpha i}+$	$t_1 \partial_i f^{\alpha i} \partial_{\theta} f_{\alpha}^{\ \ \theta} +$	$t_1 \partial_{\alpha} f_{ \theta_{ \prime}} \partial^{\theta} f^{\alpha \prime} +$	$3t_1\partial_{\theta}f_{ \alpha}\partial^{\theta}f^{\alpha\prime}$ +	$_3\omega_{lpha_I}$ $_{eta}$ $_{eta}$ $_{eta}$ $_{eta}$ $_{eta}$ $_{eta}$ $_{eta}$	$\omega^{\alpha \beta i}$ -	ω ^{αβι} -	$\omega^{\alpha\prime}_{\alpha}$ -	+ 0 /	κω _{θ'} -	. वी y वी x वीt	$\sigma_{1}^{\#2}{}_{\alpha}$	
	$S == \iiint (\frac{1}{6} (2t_1 \ \omega^{\alpha}, \ \omega^{\theta}_{, \ \theta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 4 \ t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{i} f^{\alpha i} +$	$4t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$4t_1\partial' f^\alpha_{\ \alpha}\partial_\theta f^{\ \theta}_{\ \prime} - 6t_1\partial_\alpha f_{\ \prime\theta}\partial^\theta f^{\alpha\prime} - 3t_1\partial_\alpha f_{\ \theta\prime}\partial^\theta f^{\alpha\prime} +$	$3t_1\partial_i f_{\alpha\theta}\partial^\theta f^{\alpha i} + 3t_1\partial_\theta f_{\alpha i}\partial^\theta f^{\alpha i} + 3t_1\partial_\theta f_{i\alpha}\partial^\theta f^{\alpha i} +$	$6t_1 \ \omega_{\alpha\theta\prime} \ (\omega^{\alpha\prime\theta} + 2 \partial^{\theta} f^{\alpha\prime}) + 8 r_2 \partial_{\beta} \omega_{\alpha\prime\theta} \partial^{\theta} \omega^{\alpha\beta\prime} -$	$4r_2\partial_\beta\omega_{\alpha\theta_I}\partial^\theta\omega^{\alpha\beta_I} + 4r_2\partial_\beta\omega_{_I\theta\alpha}\partial^\theta\omega^{\alpha\beta_I} -$	$2r_2\partial_{\scriptscriptstyle 1}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta^{\scriptscriptstyle 1}} + 2r_2\partial_{\theta}\omega_{\alpha\beta^{\scriptscriptstyle 1}}\partial^{\theta}\omega^{\alpha\beta^{\scriptscriptstyle 1}} -$	$4 r_2 \partial_{\theta} \omega_{\alpha I \beta} \partial^{\theta} \omega^{\alpha \beta I} + 6 r_5 \partial_{I} \omega_{\theta}^{\kappa} \partial^{\theta} \omega^{\alpha I}_{\alpha} -$	$6r_5\partial_\theta\omega_{'\kappa}^{\kappa}\partial^\theta\omega^{\alpha\prime}_{\alpha}-6r_5\partial_\alpha\omega^{\alpha\prime\theta}\partial_\kappa\omega_{'\theta}^{\kappa}+$	$12 r_5 \partial^{\theta} \omega^{\alpha \prime}_{\ \alpha} \partial_{\kappa} \omega^{\ \kappa}_{\ \beta} + 6 r_5 \partial_{\alpha} \omega^{\alpha \prime \theta} \partial_{\kappa} \omega^{\ \kappa}_{\ \theta} , -$	$12 r_5 \partial^{\theta} \omega^{\alpha\prime}_{\ \alpha} \partial_{\kappa} \omega_{\theta^{\ \prime}}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\sigma_{1^-\alpha}^{\#1}$	
	$_{\theta}^{\beta} + 6 f^{\alpha\beta} \tau_{\alpha\beta}^{-}$	$t_1 \omega_{,\theta}^{\theta} \partial' f^{\alpha}_{\alpha}$	$t_1 \partial' f^{\alpha}_{\ \alpha} \partial_{\theta} f_{\ }^{\ \theta}$ - ($t_1 \partial_{,f} f_{\alpha \theta} \partial^{\theta} f^{\alpha \prime} +$	$t_1\;\omega_{lpha heta_l}\;(\omega^{lpha l heta_l})$	$r_2 \partial_eta \omega_{lpha heta_1} \partial^ heta \omega^{lpha_1}$	$r_2\partial_i\omega_{lphaeta heta}\partial^ heta\omega^{lpha_i}$	$r_2\partial_ heta\omega_{lpha_Ieta}\partial^ heta\omega^{lpha_I}$	$r_5 \partial_ heta \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}$	$2 r_5 \partial^{\theta} \omega^{\alpha\prime}_{\ \ \alpha} \partial_{\kappa} \omega$	$2 r_5 \partial^{\theta} \omega^{lpha\prime}_{ lpha} \partial_{\kappa} \omega$	$\tau_1^{\#1} + \alpha \beta$	
) action	$\omega^{\alpha\prime}_{\alpha}$ $\omega^{\epsilon}_{\prime}$	4	4	m	9	4	2	4	9	H	H	$\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#2}$	
Quadratic (free) action	$\iint (\frac{1}{6} (2 t_1))$											$\sigma_{1}^{\#1}{}_{\alpha\beta}$	
Quadra	S== []												

0

0

0

0

 $\sigma_{1}^{\#_1} \! \uparrow^{\alpha}$

0

0

0

0

-2	2 i	(1+5/	4 k (1+2 k)			#	#1 c#1	c#1)	<i>ш</i> 1	$\sigma_{0^{\bar{-}}}^{\#1}$	0	0	0	1 2
αβ) ² t ₁	$\frac{\overline{2}k}{)^2t_1}$			#	≠1 _ 		$f_0^{+1} f_0^{+1}$			#1 0	${oldsymbol{ au}_0^{\#2}}$	0	0	0	0
- 2 ' ab	2	$(1+2k^2)^2t_1$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$)		#1 #1 #1 1	0		0))	${t_0^{\#1}}$	0	0	0	0
	•	_	_	ιβχ) ⁺	0		0))	$\sigma_{0}^{\#1}$	0	0	0	0
	$\sigma^{*1} + \alpha \beta$	- - - -	$\tau_{2}^{\#1} + \alpha \beta$	$\alpha + 1 + \alpha \beta X$	72-) ⁺	0		0	$k^2 r$			σ_{c+}^{*1} +	0: 0 $\tau_{0}^{*1} +$	$\tau_{0}^{\#2} +$	$\sigma_{\tilde{\sigma}^{-1}}^{*1}$
			$\omega_{1}^{\#1}$				$f_{1^{+}}^{#1}$	αβ	$\omega_1^{\#1}$	α		#2 1 α	f_1^3	#1 Γα		<u>2</u> α	G
υ# 1	1 †'	αβ	$k^2 r_5$ -		(<u>†1</u> √2	$-\frac{ik}{}$	<u>t</u> 1/2	0			0		0	()	
υ# 1	² †'	αβ	$-\frac{t_1}{\sqrt{2}}$)	0		0			0		0	()	
f# _.	1 †°	αβ	$\frac{i k t_1}{\sqrt{2}}$		()	0		0			0		0	()	
ω	# ₁ -1 †	_α	0		()	0		$k^2 r_5 +$	$-\frac{t_1}{6}$	_ 3	$\frac{t_1}{\sqrt{2}}$		0	<u>ī</u> k	<u>t</u> 1 3	
ω	#2 1- †	_α	0		()	0		$\frac{t_1}{3\sqrt{2}}$	<u>-</u>		<u>t</u> 1 3		0	$\frac{1}{3}$ \bar{l} $\sqrt{}$		1
f	# ₁ -1 †	-α	0		()	0		0			0		0	()	
f	#2 1- †	_α	0		()	0		$-\frac{1}{3}\bar{l}k$	t_1	$-\frac{1}{3}\bar{I}$	$\sqrt{2} k$	t_1	0	2 k ²	2 t ₁	

0 0 | 1 | 1 | 1 | 1 |

Massive and massless spectra

		9		
Massive partic	le	?	Quadratic pole)
Pole residue:	$-\frac{1}{r_2} > 0$	$\stackrel{k^{\mu}}{\longrightarrow} ?$	Pole residue:	$-\frac{1}{r_5 t_1}$
Polarisations:	1	?	Polarisations:	2
Square mass:	$\frac{t_1}{r_2} > 0$?		
Spin:	0			
Parity:	Odd			

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$