

Asimov comparisons with different dcp values

Patrick Dunne - Imperial College London

Overview

- Asked to study three new Asimov points by OA
- All based on point 1/A but with different values of dcp (see below)
- Energy spectra and woRC Asimov contours generated for each point

Set	А	С	D	Е
$\sin^2(\theta_{12})$	0.304			
$\sin^2(\theta_{13})$	0.0217			
$\sin^2(\theta_{23})$	0.528			
Δm_{12}^2	7.35e-05			
Δm_{23}^2	0.002509			
δ_{CP}	-1.601	0	π	$\frac{\pi}{2}$

Energy spectra - Asimov C $(\delta_{CP}=0)$

Energy spectra - Asimov D $(\delta_{\mathit{CP}} = \pi)$

Energy spectra - CP conserving (C and D)

Energy spectra - Asimov A ($\delta_{CP} = -1.601$)

Energy spectra - Asimov E $(\delta_{\mathit{CP}} = \frac{\pi}{2})$

CP conserving sets - appearance parameters

CP conserving sets - disappearance parameters

CP conserving sets - dcp

CP violating sets - appearance parameters

CP violating sets - disappearance parameters

CP violating sets - dcp

- ► Little difference between CP conserving asimovs
- Spectra are very similar (see right
- ▶ CP violating Asimovs show tighter exclusions for -1.601 than $\frac{\pi}{2}$
- This is due to there being a lot more ν_e events for -1.601 than for $\frac{\pi}{2}$
- wRC being processed now