TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN - ĐẠI HỌC QUỐC GIA TP HCM KHOA CÔNG NGHỆ THÔNG TIN BỘ MÔN HỆ THỐNG THÔNG TIN

BÁO CÁO BÀI TẬP 1

ĐỀ TÀI: DATA REPRESENTATION

Lóp: 22TNT1

Nhóm thực hiện đề tài:

22120221 – Uông Nhật Nam

22120456 - Vũ Châu Minh Trí

Giáo viên hướng dẫn: Cô Chung Thùy Linh

Thành phố Hồ Chí Minh, năm 2024.

1. Tổng quan

Thông tin nhóm

MSSV	Họ tên	Email
22120221	Uông Nhật Nam	22120221@student.hcmus.edu.vn
22120456	Vũ Châu Minh Trí	22120456@student.hcmus.edu.vn

Thông tin bài tập

Tên bài tập	Data Representation
Ngôn ngữ lập trình	C++
Công cụ hỗ trợ	Microsoft Visual Studio 2019
	Github
	Microsoft Office Word 2019
Thời gian thực hiện	12/3/2024 - 19/3/2024
Giáo viên hướng dẫn	Cô Chung Thùy Linh

Link source code

2. Ý tưởng

Chuyển số Integer qua Sign-Magnitude

*	Kiểm tra X có nằm trong khoảng [-127;127]		
	☐ Có thì thực hiện bước tiếp theo		
	☐ Không thì trả về "overflow".		
*	• Kiểm tra:		
	□ Nếu là số 0: trả về 2 cách biểu diễn: 0000 0000 hoặc 1000 0000.		
	□ Nếu là số dương: trả về chuỗi có độ dài là 8 với phần tử đầu là 0, các phần tử còn		
	lại là dạng biểu diễn nhị phân của trị tuyệt đối của số X.		
	☐ Nếu là số âm: trả về chuỗi có độ dài là 8 với phần tử đầu là 1, các phần tử còn lại		
	là dạng biểu diễn nhị phân của trị tuyệt đối của số ${ m X}.$		
*	Hàm biểu diễn số trị tuyệt đối của X từ hệ thập phân sang hệ nhị phân:		
	☐ Chạy vòng lặp While với điều kiện (X>0)		
	✓ Lấy bit đầu (tính từ bên phải) của X, thêm vào chuỗi ans.		
	✓ Dịch X sang phải 1 bit.		
	☐ Trả về chuỗi ans (dạng biểu diễn nhị phân của số X)		

Chuyển số Integer qua 1's Complement

*	Kiểm tra X có nằm trong khoảng [-127;127]		
	☐ Có thì thực hiện bước tiếp theo		
	☐ Không thì trả về "overflow".		
*	Kiểm tra:		
	□ Nếu X là số dương: thì biểu diễn như số Sign-Magnitude		
	□ Nếu X=0: trả về 2 cách biểu diễn: 0000 0000 hoặc 1111 1111.		
	☐ Nếu X là số âm: trả về chuỗi có độ dài là 8 với kí tự đầu là 1, các kí tự còn lại là		
	đảo bit số nhị phân của trị tuyệt đối số X.		

Chuyển số Integer qua 2's Complement

- ❖ Kiểm tra |X| có nằm trong khoảng [-128;127]
 - ☐ Có thì thực hiện bước tiếp theo
 - ☐ Không thì trả về "overflow".
- ❖ Kiểm tra:
 - □ Nếu X là số dương: thì biểu diễn như số Sign-Magnitude.
 - □ Nếu X=0: trả về 1 cách biểu diễn: 0000 0000.
 - □ Nếu X là số âm: Chuyển sang dạng biểu diễn 1's complement. Sau đó cộng thêm 1₂

Chuyển số 2's Complement sang Hexadecimal

- ❖ Chia chuỗi X (dạng 2's Complement 8 bit) thành 2 phần có độ dài 4 bit liên tiếp nhau.
- ❖ Chuyển mỗi phần từ dạng nhị phân sang dạng thập phân (thuộc khoảng [0,15]).
- Sau đó chuyển thành dạng Hexadecimal với:
 - ☐ Từ 0 đến 9: giữ nguyên.
 - ☐ Từ 10 đến 15: lần lượt tương đương với A,B,C,D,E.

3. Kết quả

Input n: -128
Output a: overflow
Output b: overflow
Output c: 10000000
Hexadecimal: 80

Input n: 200
Output a: overflow
Output b: overflow
Output c: overflow
Hexadecimal: overflow

Input n: 125
Output a: 01111101
Output b: 01111101
Output c: 01111101
Hexadecimal: 7D

Input n: 0

Output a: 00000000 or 10000000 Output b: 00000000 or 11111111

Output c: 00000000 Hexadecimal: 00 Input n: -100 Output a: 11100100 Output b: 10011011 Output c: 10011100 Hexadecimal: 9C

5. Tài liệu tham khảo

- [1] Chung Thùy Linh, Slide môn học Hệ thống máy tính
- [2] 04_Floating-point.pdf
- [3] Willian Stalling, Computer Organization and Architecture: Design for performance, 8th edition, Chapter 9
- [4] Patterson and Hennessy, Computer Organization and Design: The Hardware / Software Interface, 5th edition, Chapter 3
- [5] Prentice Hall, Computer Systems A Programmers Perspective 2nd,2011, Chapter 2