

Artificial Intelligence & Machine Learning

Bagging & Boosting

 Para a previsão do tempo, considere que cada coluna representa um dia da semana:

Realidade		···	···			···	···
Modelo 1		X	•••	X		•••	X
Modelo 2	X	•••	···	X		•••	X
Modelo 3		:	X		×	X	
Modelo 4			X		X		···
Modelo 5	\$	X	•••	\frac{1}{2}		X	•••
Combinação		···	···			•••	···

4

- Usar vários modelos para melhorar a acurácia preditiva;
- A combinação de modelos diversificados e independentes nos permite tomar melhores decisões;

Nota: BDs podem ser iguais ou diferentes.

Ensembles – sucesso na prática

7

• Bases de dados com diferentes atributos;

• Subconjuntos da mesma base de dados (bagging);

• Reponderar a base de treinamento (boosting);

Fig. 1. Parallel architecture

Ponti Jr, Moacir P. "Combining Classifiers: from the creation of ensembles to the decision fusion."

9

Bagging

- Algoritmo de Bootstrap Aggregation (Brieman, 1996):
- 1) Amostrar, M vezes, N exemplos da base de dados (com reposição);
- 2) Treinar M classificadores (um para cada amostra);
- 3) Combinar os classificadores via voto majoritário.

- Passo 1) insere variância nas bases de treinamento dos componentes, aumentando a estabilidade do ensemble.
- Espera-se que em cada amostra existam 63,2% de tuplas não repetidas;
- Random Forests são baseadas nessa ideia.

Bootstrap Aggregating (Bagging)

MULTIPLE MODELS OF SAME LEARNING ALGORITHM TRAINED WITH SUBSETS OF DATASET RANDOMLY PICKED FROM THE TRAINING DATASET.

TRAINING DATASET (SIZE - N)

TEST DATASET

Bootstrap Aggregating (Bagging)

Random Forest

Previsão Final =
$$\frac{\sum_{i=1}^{n} \text{Previsão}_{i}}{n}$$

Boosting

- Em vez de reamostrar, repondera exemplos;
- Cada iteração induz um classificador e repondera exemplos;
- Ensemble é baseado no voto ponderado (acurácia) dos componentes.

- Cada retângulo representa um exemplo;
- Tamanho da árvore reflete a acurácia e indica seu peso no ensemble.

Boosting

- LITTLE VARIATION ON BAGGING
- SELECTING POINTS WHICH GIVE WRONG PREDICTIONS.

Boosting

TRAINING DATASET (SIZE - N)

Previsão Final = w_1 Previsão $_1 + \cdots + w_N$ Previsão $_N$

Questions and Feedback

Thank you!

Obrigado!

Vinicius Fernandes Caridá vfcarida@gmail.com

Copyright © 2018 Prof. Vinicius Fernandes Caridá Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).