Functions

3.1 INTRODUCTION

One of the most important concepts in mathematics is that of a function. The terms "map," "mapping," "transformation," and many others mean the same thing; the choice of which word to use in a given situation is usually determined by tradition and the mathematical background of the person using the term.

3.2 FUNCTIONS

Suppose that to each element of a set A we assign a unique element of a set B; the collection of such assignments is called a *function* from A into B. The set A is called the *domain* of the function, and the set B is called the *target set* or *codomain*.

Functions are ordinarily denoted by symbols. For example, let f denote a function from A into B. Then we write

$$f: A \to B$$

which is read: "f is a function from A into B," or "f takes (or maps) A into B." If $a \in A$, then f(a) (read: "f of a") denotes the unique element of B which f assigns to a; it is called the <u>image</u> of a under f, or the <u>value</u> of f at a. The <u>set of all image values</u> is called the <u>range</u> or <u>image</u> of f. The image of $f: A \to B$ is denoted by Ran(f), Im(f) or f(A).

Frequently, a function can be expressed by means of a mathematical formula. For example, consider the function which sends each real number into its square. We may describe this function by writing

$$f(x) = x^2$$
 or $x \mapsto x^2$ or $y = x^2$

In the first notation, x is called a variable and the letter f denotes the function. In the second notation, the barre arrow \mapsto is read "goes into." In the last notation, x is called the *independent variable* and y is called the *dependent variable* since the value of y will depend on the value of x.

Remark: Whenever a function is given by a formula in terms of a variable x, we assume, unless it is otherwise stated, that the domain of the function is \mathbf{R} and the codomain is \mathbf{R} . (\mathbf{R} - Real numbers)

Fig. 3-1

EXAMPLE 3.1

- (a) Consider the function $f(x) = x^3$, i.e., f assigns to each real number its cube. Then the image of 2 is 8, and so we may write f(2) = 8.
- (b) Figure 3-1 defines a function f from $A = \{a, b, c, d\}$ into $B = \{r, s, t, u\}$ in the obvious way. Here

$$f(a) = s$$
, $f(b) = u$, $f(c) = r$, $f(d) = s$

The image of f is the set of image values, $\{r, s, u\}$. Note that t does not belong to the image of f because t is not the image of any element under f.

(c) Let A be any set. The function from A into A which assigns to each element in A the element itself is called the *identity function* on A and it is usually denoted by 1_A , or simply 1. In other words, for every $a \in A$,

$$1_A(a) = a$$
.

Functions as Relations

There is another point of view from which functions may be considered. First of all, every function $f: A \to B$ gives rise to a relation from A to B called the graph of f and defined by

Graph of
$$f = \{(a, b) | a \in A, b = f(a)\}$$

Two functions $f: A \to B$ and $g: A \to B$ are defined to be *equal*, written f = g, if f(a) = g(a) for every $a \in A$; that is, if they have the same graph. Accordingly, we do not distinguish between a function and its graph. Now, such a graph relation has the property that each a in A belongs to a unique ordered pair (a, b) in the relation. On the other hand, any relation f from A to B that has this property gives rise to a function $f: A \to B$, where f(a) = b for each (a, b) in f. Consequently, one may equivalently define a function as follows:

Definition: A function $f: A \to B$ is a relation from A to B such that each $a \in A$ belongs to a unique ordered pair (a, b) in f.

EXAMPLE 3.2

(a) Let $f: A \to B$ be the function defined in Example 3.1 (b). Then the graph of f is as follows:

$$\{(a, s), (b, u), (c, r), (d, s)\}$$

(b) Consider the following three relations on the set $A = \{1, 2, 3\}$:

$$f = \{(1,3), (2,3), (3,1)\}, g = \{(1,2), (3,1)\}, h = \{(1,3), (2,1), (1,2), (3,1)\}$$

f is a function from A into A since each member of A appears as the first coordinate in exactly one ordered pair in f; here f(1) = 3, f(2) = 3, and f(3) = 1. g is not a function from A into A since $2 \in A$ is not the first coordinate of any pair in g and so g does not assign any image to 2. Also h is not a function from A into A since $1 \in A$ appears as the first coordinate of two distinct ordered pairs in h, (1, 3) and (1, 2). If h is to be a function it cannot assign both 3 and 2 to the element $1 \in A$.

Composition Function

Consider functions $f: A \to B$ and $g: B \to C$; that is, where the codomain of f is the domain of g. Then we may define a new function from A to C, called the *composition* of f and g and written $g \circ f$, as follows:

$$(g \circ f)(a) \equiv g(f(a))$$

That is, we find the image of a under f and then find the image of f(a) under g. This definition is not really new. If we view f and g as relations, then this function is the same as the composition of f and g as relations (see Section 2.6) except that here we use the functional notation $g \circ f$ for the composition of f and g instead of the notation $f \circ g$ which was used for relations.

Consider any function $f: A \to B$. Then

$$f \circ 1_A = f$$
 and $1_B \circ f = f$

where 1_A and 1_B are the identity functions on A and B, respectively.

3.3 ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

A function $f: A \to B$ is said to be <u>one-to-one</u> (written 1-1) if <u>different elements in the domain A have</u> <u>distinct images</u>. Another way of saying the same thing is that f is <u>one-to-one</u> if f(a) = f(a') implies a = a'.

A function $f: A \to B$ is said to be an **onto** function if every element of B is the image of some element of A. In other words, $f: A \to B$ is onto if the image of f is the entire codomain, i.e., if f(A) = B. In such a case we say that f is a function from A onto B or that f maps A onto B.

A function $f: A \to B$ is invertible if its inverse relation f^{-1} is a function from B to A. In general, the inverse relation f^{-1} may not be a function. The following theorem gives simple criteria which tells us when it is.

Theorem 3.1: A function $f: A \rightarrow B$ is invertible if and only if f is both one-to-one and onto.

If $f: A \to B$ is one-to-one and onto, then f is called a *one-to-one correspondence* between A and B. This terminology comes from the fact that each element of A will then correspond to a unique element of B and vice versa.

Some texts use the terms *injective* for a one-to-one function, *surjective* for an onto function, and *bijective* for a one-to-one correspondence.

EXAMPLE 3.3 Consider the functions $f_1: A \to B$, $f_2: B \to C$, $f_3: C \to D$ and $f_4: D \to E$ defined by the diagram of Fig. 3-3. Now f_1 is one-to-one since no element of B is the image of more than one element of A. Similarly, f_2 is one-to-one. However, neither f_3 nor f_4 is one-to-one since $f_3(r) = f_3(u)$ and $f_4(v) = f_4(w)$

Fig. 3-3

As far as being onto is concerned, f_2 and f_3 are both onto functions since every element of C is the image under f_2 of some element of B and every element of D is the image under f_3 of some element of C, $f_2(B) = C$ and $f_3(C) = D$. On the other hand, f_1 is not onto since $g_1 \in B$ is not the image under $g_2 \in B$ is not the image under $g_3 \in B$ and $g_4 \in B$ is not onto since $g_4 \in B$ is not the image under $g_4 \in B$ is not the image under $g_4 \in B$.

Thus f_1 is one-to-one but not onto, f_3 is onto but not one-to-one and f_4 is neither one-to-one nor onto. However, f_2 is both one-to-one and onto, i.e., is a one-to-one correspondence between A and B. Hence f_2 is invertible and f_2^{-1} is a function from C to B.

Solved Problems

FUNCTIONS

- **3.1.** Let $X = \{1, 2, 3, 4\}$. Determine whether each relation on X is a function from X into X.
 - (a) $f = \{(2,3), (1,4), (2,1), (3,2), (4,4)\}$
 - (b) $g = \{(3, 1), (4, 2), (1, 1)\}$
 - (c) $h = \{(2, 1), (3, 4), (1, 4), (2, 1), (4, 4)\}$

Recall that a subset f of $X \times X$ is a function $f: X \to X$ if and only if each $a \in X$ appears as the first coordinate in exactly one ordered pair in f.

- (a) No. Two different ordered pairs (2, 3) and (2, 1) in f have the same number 2 as their first coordinate.
- (b) No. The element $2 \in X$ does not appear as the first coordinate in any ordered pair in g.
- (c) Yes. Although $2 \in X$ appears as the first coordinate in two ordered pairs in h, these two ordered pairs are equal.
- **3.3.** Let $A = \{a, b, c\}$, $B = \{x, y, z\}$, $C = \{r, s, t\}$. Let $f: A \to B$ and $g: B \to C$ be defined by:

$$f = \{(a, y)(b, x), (c, y)\}$$
 and $g = \{(x, s), (y, t), (z, r)\}.$

Find: (a) composition function $g \circ f: A \to C$; (b) $\operatorname{Im}(f)$, $\operatorname{Im}(g)$, $\operatorname{Im}(g \circ f)$.

(a) Use the definition of the composition function to compute:

$$(g \circ f)(a) = g(f(a)) = g(y) = t$$

 $(g \circ f)(b) = g(f(b)) = g(x) = s$
 $(g \circ f)(c) = g(f(c)) = g(y) = t$

That is
$$g \circ f = \{(a, t), (b, s), (c, t)\}.$$

(b) Find the image points (or second coordinates):

$$Im(f) = \{x, y\}, \quad Im(g) = \{r, s, t\}, \quad Im(g \circ f) = \{s, t\}$$

3.4. Let $f: \mathbf{R} \to \mathbf{R}$ and $g: \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 2x + 1 and $g(x) = x^2 - 2$. Find the formula for the composition function $g \circ f$.

Compute
$$g \circ f$$
 as follows: $(g \circ f)(x) = g(f(x)) = g(2x+1) = (2x+1)^2 - 2 = 4x^2 + 4x - 1$.

Observe that the same answer can be found by writing

$$y = f(x) = 2x + 1$$
 and $z = g(y) = y^2 - 2$

and then eliminating y from both equations:

$$z = v^2 - 2 = (2x + 1)^2 - 2 = 4x^2 + 4x - 1$$

ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

3.5. Let the functions $f: A \to B$, $g: B \to C$, $h: C \to D$ be defined by Fig. 3-9. Determine if each function is: (a) onto, (b) one-to-one, (c) invertible.

Fig. 3-9

(a) The function $f: A \to B$ is not onto since $3 \in B$ is not the image of any element in A.

The function $g: B \to C$ is not onto since $z \in C$ is not the image of any element in B.

The function $h: C \to D$ is onto since each element in D is the image of some element of C.

(b) The function $f: A \to B$ is not one-to-one since a and c have the same image 2.

The function $g: B \to C$ is one-to-one since 1, 2 and 3 have distinct images.

The function $h: C \to D$ is not one-to-one since x and z have the same image 4.

- (c) No function is one-to-one and onto; hence no function is invertible.
- **3.8.** Let $f: \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 2x 3. Now f is one-to-one and onto; hence f has an inverse function f^{-1} . Find a formula for f^{-1} .

Let y be the image of x under the function f:

$$y = f(x) = 2x - 3$$

Consequently, x will be the image of y under the inverse function f^{-1} . Solve for x in terms of y in the above equation:

$$x = (y + 3)/2$$

Then $f^{-1}(y) = (y+3)/2$. Replace y by x to obtain

$$f^{-1}(x) = \frac{x+3}{2}$$

which is the formula for f^{-1} using the usual independent variable x.

Supplementary Problems

FUNCTIONS

3.27. Let $W = \{a, b, c, d\}$. Decide whether each set of ordered pairs is a function from W into W.

(a)
$$\{(b,a), (c,d), (d,a), (c,d) (a,d)\}$$
 (c) $\{(a,b), (b,b), (c,d), (d,b)\}$

(b)
$$\{(d,d), (c,a), (a,b), (d,b)\}\$$
 (d) $\{(a,a), (b,a), (a,b), (c,d)\}\$

3.28. Let
$$V = \{1, 2, 3, 4\}$$
. For the following functions $f: V \to V$ and $g: V \to V$, find:

(a)
$$f \circ g$$
; (b), $g \circ f$; (c) $f \circ f$:

$$f = \{(1,3), (2,1), (3,4), (4,3)\}$$
 and $g = \{(1,2), (2,3), (3,1), (4,1)\}$

3.29. Find the composition function $h \circ g \circ f$ for the functions in Fig. 3-9.

ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

- **3.30.** Determine if each function is one-to-one.
 - (a) To each person on the earth assign the number which corresponds to his age.
 - (b) To each country in the world assign the latitude and longitude of its capital.
 - (c) To each book written by only one author assign the author.
 - (d) To each country in the world which has a prime minister assign its prime minister.
- **3.31.** Let functions f, g, h from $V = \{1, 2, 3, 4\}$ into V be defined by: f(n) = 6 n, g(n) = 3, $h = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$. Decide which functions are:
 - (a) one-to-one; (b) onto; (c) both; (d) neither.
- **3.34.** Let $f: \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 3x 7. Find a formula for the inverse function $f^{-1}: \mathbf{R} \to \mathbf{R}$.

Answers to Supplementary Problems

3.27. (a) Yes; (b) No; (c) Yes; (d) No.

3.29.
$$\{(a, 4), (b, 6), (c, 4)\}$$

3.30. (a) No, (b) yes, (c) no, (d) yes.

3.31. (a)
$$f, h$$
; (b) f, h ; (c) f, h ; (d) g .

3.34.
$$f^{-1}(x) = (x+7)/3$$