Claims

A circuit arrangement, for generating an x-ray
tube voltage, comprising:

an inverse rectifier circuit (G_{si}) for generating a

high-frequency alternating voltage,

rectifier circuit (Gsi), and wherein

a high-voltage generator (G_{su}) for converting the 10 high-frequency alternating voltage into a high voltage for the x-ray tube ,

a voltage controller (G_{RU}) , which based on a deviation of an x-ray tube voltage $(V_U(t))$ from a set-point x-ray tube voltage $(W_{U(t)})$ generates a first controlling variable value $(Y_{U(t)})$ for the inverse rectifier circuit (G_{si}) ,

a measurement circuit for measuring an oscillating current $(i_{sw(t)})$ applied to one output of the inverse rectifier circuit (G_{si}) of the high-frequency alternating voltage,

an oscillating current controller (G_{RI}) , which based on a deviation of an ascertained actual oscillating current value $(V_{I}(t))$ from a predetermined maximum oscillating current value (W_{I_max}) generates a second controlling variable value $(Y_{I(t)})$ for the inverse

a switching device, connected downstream of the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) , operable to compare the first controlling variable value $(Y_{U(t)})$ and the second controlling variable value $(Y_{I(t)})$ and is operable to send the lesser of the first and second controlling variable values $(Y_{U(t)})$ and $Y_{I(t)}$ onward as a resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) .

35

15

20

25

30

- 2. The circuit arrangement as of claim 1, wherein at least one of the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) includes a PI controller.
- 3. The circuit arrangement as of claim 1, wherein one output of the switching device is connected to at least one of the voltage controller (G_{RU}) and of the oscillating current controller (G_{RI}) ; and that the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) are such the resultant controlling variable value (Y(t)) is carried along, if neither one of the controlling variable values $(Y_{U(t)})$ and $(Y_{I(t)})$ generated by their respective controllers is sent onward as the resultant controlling variable value (Y(t)).
- 4. The circuit arrangement as of claim 2, wherein one output of the switching device is connected to at least one of the voltage controller (G_{RU}) and of the oscillating current controller (G_{RI}) ; and that the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) are such the resultant controlling variable value (Y(t)) is carried along, if neither one of the controlling variable values $(Y_{U(t)})$ and $(Y_{I(t)})$ generated by their respective controllers is sent onward as the resultant controlling variable value (Y(t)).

30

35

5

10

15

5. The circuit arrangement as of claim 1, wherein the switching device is such that no controlling variable lower than a predetermined minimum controlling variable value (Y_{min}) is sent onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit

 (G_{si}) .

6. The circuit arrangement as of claim 4, wherein the switching device is such that no controlling variable lower than a predetermined minimum controlling variable value (Y_{min}) is sent onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) .

10

15

20

- 7. The circuit arrangement as of claim 1, wherein switching device is such that no controlling variable higher than a predetermined maximum controlling variable value (Y_{min}) is send onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) .
- 8. The circuit arrangement as of claim 6, wherein switching device is such that no controlling variable higher than a predetermined maximum controlling variable value (Y_{min}) is send onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) .

25

30

- 9. The circuit arrangement as of claim 1, wherein at least one of the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) can vary at least one parameter, the at least one parameter being a function of at least one of a set x-ray tube voltage $(U_{R\bar{o}})$ and a set x-ray tube current $(I_{R\bar{o}})$.
- 10. An x-ray generator having a circuit arrangement 35 of claims 1.

- 11. An x-ray generator having a circuit arrangement of claim 8.
- 5 12. An x-ray system having an x-ray generator of claim 10.

.

25

where a high-frequency alternating voltage is generated via an inverse rectifier circuit (G_{si}) , the high-frequency alternating voltage is converted into a high voltage for the x-ray tube v a high-voltage generator (G_{su}) , and a first controlling variable value $(Y_{U(t)})$ is generated for the inverse rectifier circuit (G_{si}) via a voltage controller (G_{RU}) due to a deviation of an x-ray tube voltage $(V_{U(t)})$ from a set-point x-ray tube voltage $(W_{U(t)})$, the method comprising:

measuring an oscillating current $(i_{sw(t)})$ via a 20 measurement circuit that is connected to one output of the inverse rectifier circuit (G_{si}) of the high-frequency alternating voltage,

generating a second controlling variable value $(Y_{I(t)})$ for the inverse rectifier circuit (G_{si}) via an oscillating current controller (G_{RI}) , due to a deviation of an ascertained actual oscillating current value $(V_I(t))$ from a predetermined maximum oscillating current value $(W_{I,max})$,

comparing the first controlling variable value $(Y_{U(t)})$ and the second controlling variable value $(Y_{I(t)})$ via a switching device, the switching device being connected downstream of the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) , and

sending the lesser of the first and second controlling variable values $(Y_{U(t)} \text{ and } Y_{I(t)})$ onward as a

resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) .

- The method as of claim 13, further comprising using a PI controller in at least one of the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) .
- 15. The method as of claim 13, further comprising feeding back the resultant controlling variable value (Y(t)) as an input value to at least one of the voltage controller (G_{RU}) and/or to the oscillating current controller (G_{RI}) , and carrying along the resultant controlling variable value (Y(t)), if neither one of the controlling variable values $(Y_{U(t)})$ and $(Y_{I(t)})$ generated by their respective controllers is sent onward as the resultant controlling variable value (Y(t)).
- 16. The method as of claim 14, further comprising feeding back the resultant controlling variable value (Y(t)) as an input value to at least one of the voltage controller (G_{RU}) and to the oscillating current controller (G_{RI}) , and carrying along the resultant controlling variable value (Y(t)), if neither one of the controlling variable values $(Y_{U(t)})$ and $(Y_{I(t)})$ generated by their respective controllers is sent onward as the resultant controlling variable value (Y(t)).

30

35

.

17. The method as of claim 13, further comprising sending onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) , via the switching device, a controlling variable not lower than a predetermined minimum controlling variable value (Y_{min}) .

- 18. The method as of claim 14, further comprising sending onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) , via the switching device, a controlling variable not lower than a predetermined minimum controlling variable value (Y_{min}) .
- 19. The method as of claim 13, further comprising sending onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) , via the switching device, a controlling variable not higher than a predetermined maximum controlling variable value (Y_{max}) .

15

20

25

· , · .

5

- 20. The method as of claim 14, further comprising sending onward as the resultant controlling variable value (Y(t)) to the inverse rectifier circuit (G_{si}) , via the switching device, a controlling variable not higher than a predetermined maximum controlling variable value (Y_{max}) .
- 21. The method as of claim 12, further comprising varying at least one parameter within at least one of the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) , the at least one parameter being a function of at least one of a set x-ray tube voltage $(U_{R\delta})$ and a set x-ray tube current $(I_{R\delta})$.
- 22. The method as of claim 14, further comprising varying at least one parameter within at least one of the voltage controller (G_{RU}) and the oscillating current controller (G_{RI}) , the at least one parameter being a function of at least one of a set x-ray tube voltage $(U_{R\bar{o}})$ or a set x-ray tube current $(I_{R\bar{o}})$.