Marshallian Demands for an n-Good max $\{\}$ Utility

Consider a consumer whose utility function is

$$u(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\},\$$

with prices $\mathbf{p} = (p_1, p_2, \dots, p_n)$ and income m. We want to find the Marshallian (ordinary) demands $x_i(p, m)$ and the indirect utility function v(p, m).

Solution

1. Utility maximization problem:

$$\max_{x_1, x_2, \dots, x_n} \max \{ x_1, x_2, \dots, x_n \} \text{ subject to } \sum_{i=1}^n p_i x_i = m, \quad x_i \ge 0.$$

2. Maximizing $\max\{x_1,\ldots,x_n\}$ under a budget:

Because the utility is the maximum of all x_i , the consumer wants to make one of the x_i 's as large as possible. Intuitively, the best option is to spend all income on the *cheapest* good.

- Let $p_{i^*} = \min\{p_1, \dots, p_n\}$ be the lowest price among all goods.
- Then using all income on good i^* yields $x_{i^*} = \frac{m}{p_{i^*}}$ and $x_j = 0$ for $j \neq i^*$.
- This choice maximizes $\max\{x_1,\ldots,x_n\}$ because buying any more expensive good would reduce the quantity the consumer can afford and thus reduce the overall maximum.

3. Marshallian demands:

If there is a *unique* lowest price p_{i^*} , the corner solution is:

$$x_{i^*}(p,m) = \frac{m}{p_{i^*}}, \quad x_j(p,m) = 0 \text{ for all } j \neq i^*.$$

If there is a *tie* (multiple goods share the same lowest price), the consumer is indifferent among any combination of those lowest-priced goods. Any such combination gives the same utility $\frac{m}{\min_i p_i}$.

4. Indirect utility function:

Spending all income on the good with the lowest price p_{i^*} yields a maximum quantity of $\frac{m}{p_{i^*}}$. Hence, the indirect utility is

$$v(p,m) = \max_{i} \frac{m}{p_i} = \frac{m}{\min_{i} p_i}.$$

This reflects that utility is the largest x_i the consumer can buy, achieved by dedicating all income to the cheapest good.