Chapitre: Suites numériques (variations et limites)

1. Sens de variation d'une suite

1.1. Sens de variation d'une suite numérique

Définitions

 (u_n) est une suite définie sur l'ensemble \mathbb{N} des entiers naturels.

Dire que (u_n) est <u>croissante</u> signifie que, pour tout entier naturel $n, u_{n+1} \ge u_n$.

Dire que (u_n) est **décroissante** signifie que, pour tout entier naturel n, $u_{n+1} \le u_n$.

Vocabulaire: Si, pour tout entier naturel n, $u_{n+1} = u_n$, on dit que la suite (u_n) est constante.

Remarque: Lorsque la suite (u_n) est définie à partir du rang n_0 , on compare u_n et u_{n+1} pour tout entier $n \ge n_0$.

Exemples:

- (u_n) est la suite définie sur IN par : $u_n = 3n + 2$. Pour tout entier naturel n, $u_{n+1} = 3(n+1) + 2 = 3n + 5$. Donc $u_{n+1} \ge u_n$. La suite (u_n) est croissante.
- (v_n) est la suite définie sur IN par : $v_{n+1} = v_n 2n^2$ avec $v_0 = 1$. Pour tout entier naturel $n, -2n^2 \le 0$ donc $v_{n+1} \le v_n$. La suite (v_n) est strictement décroissante.
- (w_n) est la suite définie pour tout entier naturel n par $w_n = (-1)^n$. $w_0 = 1$, $w_1 = -1$, $w_2 = 1$, $w_3 = -1$, ... La suite (w_n) n'est ni croissante ni décroissante.

1.2. Etude du signe de la différence $u_{n+1} - u_n$

 (u_n) est une suite définie sur \mathbb{N} . Si, pour tout entier naturel n, $\underline{u_{n+1} - u_n} \ge 0$, alors la suite (u_n) est <u>croissante</u>. Si, pour tout entier naturel n, $\underline{u_{n+1} - u_n} \le 0$, alors la suite (u_n) est <u>décroissante</u>. En effet, $u_{n+1} - u_n \ge 0$ équivaut à $u_{n+1} \ge u_n$.

Exemple: $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = u_n + 2n - 9 \Rightarrow u_{n+1} - u_n = 2n - 9$.

Or,
$$2n-9 \ge 0 \iff n \ge \frac{9}{2} = 4.5$$
. Donc si $n \ge 5$, alors $2n-9 > 0$, c'est-à-dire $u_{n+1} - u_n > 0$.

D'où la suite (u_n) est strictement croissante à partir du rang n = 5.

Sens de variation d'une suite arithmétique :

Si (u_n) est une suite arithmétique de raison r, on a $u_{n+1} - u_n = r$ pour tout entier naturel n.

Donc (u_n) est strictement croissante si r > 0, strictement décroissante si r < 0 et constante si r = 0.

1.3. Comparaison de $\frac{u_{n+1}}{u_n}$ à 1.

On suppose que tous les termes de la suite (u_n) sont strictement positifs.

Si, pour tout entier naturel n, $\frac{u_{n+1}}{u_n} \ge 1$, alors la suite (u_n) est <u>croissante</u>.

Si, pour tout entier naturel n, $\frac{u_{n+1}}{u_n} \le 1$, alors la suite (u_n) est <u>décroissante</u>.

En effet, $\frac{u_{n+1}}{u_n} \ge 1$ équivaut à $u_{n+1} \ge u_n$ car $u_n > 0$.

Exemple:

$$u_n = \frac{5}{2^n} \Rightarrow u_n > 0$$
 pour tout entier naturel n et $\frac{u_{n+1}}{u_n} = \frac{\frac{5}{2^{n+1}}}{\frac{5}{2^n}} = \frac{5}{2^{n+1}} \times \frac{2^n}{5} = \frac{1}{2} < 1 \Rightarrow \text{la suite } (u_n) \text{ est décroissante.}$

Sens de variation d'une suite géométrique :

Si (u_n) est une suite géométrique de raison q et de premier terme u_0 (avec q > 0 et $u_0 > 0$).

Alors, pour tout entier naturel n, $u_n = q^n u_0$, donc $u_n > 0$ et $\frac{u_{n+1}}{u_n} = q$.

Le sens de variation dépend donc de la place de q par rapport à 1 :

- si 0 < q < 1, alors (u_n) est strictement décroissante;
- si q > 1, alors (u_n) est strictement croissante;
- si q = 1, alors (u_n) est constante.

1.4. Suites du type $u_n = f(n)$

f est une fonction définie sur $[0; +\infty$ [et, pour tout entier naturel $n, u_n = f(n)$.

Si la fonction f est <u>croissante</u> sur $[0; +\infty[$, alors la suite (u_n) est <u>croissante</u>.

Si la fonction f est décroissante sur $[0; +\infty[$, alors la suite (u_n) est décroissante.

En effet, si f est croissante sur $[0; +\infty[$, alors de $n+1 \ge n$, on déduit $f(n+1) \ge f(n)$, c'est-à-dire $u_{n+1} \ge u_n$.

2. Notion de limite, finie ou infinie, d'une suite

2.1. Suite de limite + ∞ /

Exemple: (u_n) est la suite définie sur IN par $u_n = 1,5n+5$.

$$u_n$$
 dépasse 10 à partir du rang $n = 4$.

u_n dépasse 100

à partir du rang n = 64.

 u_n dépasse 1 000

à partir du rang n = 664.

Plus généralement, on démontre que, pour tout nombre réel A, aussi grand que l'on veut, u_n dépasse définitivement A à partir d'un certain rang N.

Pour traduire cette propriété, on dit que <u>la suite (u_n) a pour limite $+\infty$ </u> et on note $\lim_{n \to +\infty} u_n = +\infty$.

2.2. Suite de limite 0

Exemple: (v_n) est la suite définie sur \mathbb{N}^* par $v_n = \frac{1}{n}$.

à partir du rang n = 11.

 v_a appartient à

l'intervalle]—0,05 ; 0,05[

à partir du rang n = 21.

v, appartient à

l'intervalle]-0,01; 0,01[

à partir du rang n = 101.

Plus généralement, on démontre que, pour tout nombre réel strictement positif α , aussi proche de 0 que l'on veut, v_n appartient définitivement à l'intervalle] – α ; α [à partir d'un certain rang N.

Pour traduire cette propriété, on dit que <u>la suite</u> (v_n) a pour limite $\underline{0}$ et on note $\lim_{n \to +\infty} v_n = 0$.

Remarque:

Une suite peut avoir aussi pour limite un nombre réel autre que 0 ou avoir pour limite $-\infty$ ou enfin ne pas avoir de limite.