Problem 45.2. Convert the following program to standard form:

maximize
$$3x_1 - 2x_2$$

subject to
$$2x_1 - x_2 \le 4$$
$$x_1 + 3x_2 \ge 5$$
$$x_2 > 0.$$

Problem 45.3. The notion of basic feasible solution for linear programs where the constraints are of the form $Ax \leq b$, $x \geq 0$ is defined as follows. A basic feasible solution of a (general) linear program with n variables is a feasible solution for which some n linearly independent constraints hold with equality.

Prove that the definition of a basic feasible solution for linear programs in standard form is a special case of the above definition.

Problem 45.4. Consider the linear program

maximize
$$x_1 + x_2$$

subject to $x_1 + x_2 \le 1$.

Show that none of the optimal solutions are basic.

Problem 45.5. The *standard n-simplex* is the subset Δ^n of \mathbb{R}^{n+1} given by

$$\Delta^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1 + \dots + x_{n+1} = 1, \ x_i \ge 0, \ 1 \le i \le n+1\}.$$

- (1) Prove that Δ^n is convex and that it is the convex hull of the n+1 vectors $e_1, \ldots e_{n+1}$, where e_i is the *i*th canonical unit basis vector, $i = 1, \ldots, n+1$.
- (2) Prove that Δ^n is the intersection of n+1 half spaces and determine the hyperplanes defining these half-spaces.

Remark: The volume under the standard simplex Δ^n is 1/(n+1)!.

Problem 45.6. The *n*-dimensional *cross-polytope* is the subset XP_n of \mathbb{R}^n given by

$$XP_n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid |x_1| + \dots + |x_n| \le 1\}.$$

- (1) Prove that XP_n is convex and that it is the convex hull of the 2n vectors $\pm e_i$, where e_i is the *i*th canonical unit basis vector, i = 1, ..., n.
- (2) Prove that XP_n is the intersection of 2^n half spaces and determine the hyperplanes defining these half-spaces.

Remark: The volume of XP_n is $2^n/n!$.