EE 101: Basic Electronics Diode Basics

Nagarjuna Nallam

Department of EEE, IIT Guwahati, India

Linear Elements

A Two Terminal Non-Linear Element

 ${\sf Non\text{-}linear} + {\sf Non\text{-}Reciprocal}$

An Ideal Diode

I - V Characteristics of an Ideal Diode

A Diode Circuit

A Diode Circuit

Draw the Transfer Characteristics

A Real Diode

A PN Junction Diode

Diffusion Current in a PN Junction Diode

Diffusion Current $I_D = I_{Dp} + I_{Dn}$

Quick Recap: Diffusion current \propto Carrier Gradient

Drift Current in a PN Junction Diode

Quick Recap: Drift Current $\propto E$

Direction of drift curreent due to $E_{in-built}$ is $n \rightarrow p$

At equilibrium: Diffusion current = Drift current

Built-in potential in a PN Junction Diode

Where $V_T = \frac{kT}{q}$ is the thermal voltage,

 N_A is the acceptor atoms concentration on p-side,

 N_D is the donar atoms concentration on n-side,

 n_i is the intrinsic carrier concentration.

In Si PN junction diodes, $V_{in-built} \approx 0.7V$

PN Junction Diode in Reverse Bias

PN Junction Diode in Forward Bias

In Forward bias, diffusion current > drift current $\qquad \qquad \downarrow$ due to majority carriers $\qquad \qquad \downarrow$

small current from p \rightarrow n for $V_F < V_0$ large current from p \rightarrow n for $V_F \geq V_0$

I-V Characteristics of a PN Junction Diode

$$I_D = \begin{cases} I_s \left(e^{\left(\frac{V_D}{\eta V_T}\right)} - 1\right) \text{ for } V_D > 0 \\ \\ -I_s \text{ for } V_D < 0 \end{cases}$$

Is is called saturation current.

 η is a constant and has a value between 1 to 2.

Piecewise Linear Models

Draw the Transfer Characteristics

Assume Si based PN-junction diodes.

Summary

- Nonlinear, non-reciprocal element
- Ideal diode characteristics
- Review of semiconductor physics (not in slides)
- Operation of a PN junction diode
- I-V characteristics of a PN junction diode
- Piecewise linear models of a diode

Reference Book

[1] A. Sedra and K. C. Smith, "Microelectronic Circuits," 6th Ed., Oxford university press, 2011.