An Introduction to

VARIATIONAL GAUSSIAN PROCESSES

Torsten Scholak twitter @tscholak github tscholak blog tscholak.github.io August 18, 2016

What Is Bayesian Inference?

- 1. Observe the phenomenon, gather $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N$, $\mathbf{x}_i {\in} \mathbb{R}^D$.
- 2. Build a model, $p(\mathbf{X},\mathbf{z})$ with latent variables z_1,\ldots,z_d .
- 3. Infer the posterior, $p(\mathbf{z}|\mathbf{X}) = p(\mathbf{X},\mathbf{z})/\int p(\mathbf{X},\mathbf{z})\,\mathrm{d}\mathbf{z}$, in order t reason about the phenomenon.
- 4. **Criticize** the model, revise it $(\rightarrow 2)$, or collect additional data $(\rightarrow 1)$.
- 5. Apply the model, i.e. calculate integrals over $p(\mathbf{z}|\mathbf{X})$: expectations of $f(\mathbf{z})$, posterior predictive $p(\mathbf{x}^*|\mathbf{X})$, etc.

Why Is Bayesian Inference Hard?

Most posteriors $p(\mathbf{z}|\mathbf{X})$ are not analytically tractable.

A possible solution is numerical estimation via MCMC, e.g. via:

Metropolis Hastings Sampling,

Gibbs Sampling,

Hamiltonian Monte Carlo Sampling,

No-U-Turn Hamiltonian Monte Carlo Sampling (NUTS).

NUTS is close to exact, but also slow and sequential.

1

What Is Variational Inference (VI)?

VI is a class of algorithms which cast posterior inference as optimization:

- 3. Infer Approximate the posterior, $p(\mathbf{z}|\mathbf{X})$:
 - a. Build a variational model, $q(\mathbf{z};\lambda)$, over \mathbf{z} with parameters λ
 - b. Match $q(\mathbf{z};\lambda)$ to $p(\mathbf{z}|\mathbf{X})$ by optimizing over λ ,

$$\lambda^* = \operatorname{argmin}_{\lambda} \operatorname{divergence} (p(\mathbf{z}|\mathbf{X}), q(\mathbf{z}; \lambda)).$$

- c. Use $q(\mathbf{z}; \lambda^*)$ instead of $p(\mathbf{z}|\mathbf{X})$.
- d. Criticize the variational model, revise it $(\rightarrow a)$. Effectively, VI is an additional layer of approximation that facilitates convenient model iteration.

Matching And Optimizing

The **Kullback-Leibler divergence** from q to p is a good measure for closeness between p and q,

$$ext{KL}\left(q(\mathbf{z}; \lambda) \| p(\mathbf{z} | \mathbf{X})
ight) riangleq \mathbb{E}_{q(\mathbf{z}; \lambda)} \left[\log rac{q(\mathbf{z}; \lambda)}{p(\mathbf{z} | \mathbf{X})}
ight].$$

Minimization of this with respect to λ is intractable, though, because it directly depends on $p(\mathbf{z}|\mathbf{X})$.

Maximize the Evidence Lower BOund (ELBO) instead,

$$egin{aligned} \mathcal{L}(\lambda) & riangleq \log p(\mathbf{X}) - \mathrm{KL}\left(q(\mathbf{z};\lambda) \| p(\mathbf{z}|\mathbf{X})
ight) \ & = \mathbb{E}_{q(\mathbf{z};\lambda)}[\log p(\mathbf{X},\mathbf{z})] - \mathbb{E}_{q(\mathbf{z};\lambda)}[\log q(\mathbf{z};\lambda)] \,. \end{aligned}$$

Conventional Variational Modeling

Two conflicting demands:

i. Make q simpler than p, e.g. choose a factorized multivariate (mean-field) normal distribution,

$$q(\mathbf{z};\lambda) = \prod_{i=1}^d \mathcal{N}\left(z_i; \mu_i, \sigma_i^2
ight).$$

ii. Make q more **expressive** so that it can give good results, e.g. choose a full-rank multivariate normal distribution,

$$q(\mathbf{z};\lambda) = \mathcal{N}\left(\mathbf{z};\mu,oldsymbol{\Sigma}
ight).$$

Hierarchical Variational Modeling

iii. Use a mean-field distribution, $\prod_i q(z_i|\lambda_i)$, but softly constraint by putting a prior $q(\lambda;\theta)$ on it,

$$q_{
m HVM}(\mathbf{z}; heta) = \int \left[\prod_{i=1}^d q(z_i|\lambda_i)
ight] q(\lambda; heta) \, \mathrm{d}\lambda \, .$$

Hierarchy captures dependencies between latent variables, \mathbf{z} . More computationally tractable than a variational model with full dependence structure.

Expressiveness is determined by the complexity of $q(\lambda; heta)$.

Variational Gaussian Processes I

Let the mean-field parameters be $\lambda_i=f_i(\xi)\in\mathbb{R}$, $i=1,\ldots,d$, where:

The latent input $\xi\in\mathbb{R}^c$ is normally distributed, $\xi\sim\mathcal{N}(\mathbf{0},\mathbf{I})$. The functions $f_i:\mathbb{R}^c\to\mathbb{R}$ are distributed according to a Gaussian process (GP),

$$f_i \sim \mathcal{GP}\left(\mathbf{0}, \mathbf{K}
ight) | \, heta,$$

conditioned on a fake data set, heta, which is not modeled. Then we draw mean-field samples, i.e. approximate posterior samples $\mathbf{z} \in \operatorname{supp}(p)$, conditioned on the output of the GP draw.

Variational Gaussian Processes II

$$egin{aligned} q_{ ext{VGP}}(\mathbf{z}; heta) &= \iint \left[\prod_{i=1}^d q(z_i|f_i(\xi))
ight] \ & imes \left[\prod_{i=1}^d \mathcal{GP}\left(f_i;\mathbf{0},\mathbf{K}
ight)| heta
ight] \mathcal{N}(\xi;\mathbf{0},\mathbf{I}) \, \mathrm{d}\mathbf{f} \, \mathrm{d}\xi \,. \end{aligned}$$

Gaussian Processes

A Gaussian process is a **generalization** of the Gaussian probability distribution, \mathcal{N} .

Given data $heta=\{(\mathbf{s}_j,\mathbf{t}_j)\}_j=\{\mathbf{S},\mathbf{T}\}$, with inputs $\mathbf{s}_j\in\mathbb{R}^c$ and output $\mathbf{t}_j\in\mathbb{R}^d$,

$$p(\mathbf{f}| heta) = \prod_{i=1}^d \, \mathcal{GP}\left(f_i; \mathbf{0}, \mathbf{K}
ight) | \, heta$$

forms a **distribution over functions** $\mathbf{f}: \mathbb{R}^c \to \mathbb{R}^d$ which interpolate between input-output pairs in θ .

 ${f K}$ is the covariance matrix or ${f kernel}$ of the GP.

Gaussian Process Kernels

The standard choice is the automatic relevance determination kernel,

$$\mathbf{K}(\mathbf{S},\mathbf{S}')_{jj'} = \eta^2 \, \exp \left[-\sum_{l=1}^c
ho_l^2 \left(s_{jl} - s_{j'l}'
ight)^2
ight] + \delta_{\mathbf{s}_j \mathbf{s}_{j'}'} \sigma^2,$$

where $\delta_{\mathbf{s}_j\mathbf{s}'_{j'}}$ is meant with respect to the identity of the points. The more similar \mathbf{s}_j and $\mathbf{s}'_{j'}$, the more similar $\mathbf{f}(\mathbf{s}_j)$ and $\mathbf{f}(\mathbf{s}'_{j'})$. The larger ρ_l , the larger the weight on dimension l. η is the scale of the outputs \mathbf{T} . σ is the scale of the noise in \mathbf{T} .

Gaussian Process Prediction

The distribution of the function's value at a finite number of test inputs, S^* , is a multivariate normal distribution,

$$\mathbf{T}_i^* \, | \, \mathbf{S}, \mathbf{T}, \mathbf{S}^* \sim \mathcal{N} ig(\mathbf{K}(\mathbf{S}^*, \mathbf{S}) \, \mathbf{K}(\mathbf{S}, \mathbf{S})^{-1} \, \mathbf{T}_i, \ \mathbf{K}(\mathbf{S}^*, \mathbf{S}^*) - \mathbf{K}(\mathbf{S}^*, \mathbf{S}) \, \mathbf{K}(\mathbf{S}, \mathbf{S})^{-1} \, \mathbf{K}(\mathbf{S}, \mathbf{S}^*) ig),$$

where \mathbf{T}_i (\mathbf{T}_i^*) are (test) outputs for the i-th output dimension.

Gaussian Process Joint Distribution

The joint distribution of the observed target values and the function values at the test locations can be written as:

$$egin{aligned} \left(egin{aligned} \mathbf{T}_i \ \mathbf{T}_i^* \end{aligned}
ight) &\mathbf{S}, \mathbf{S}^* \sim \mathcal{N} \left[\mathbf{0}, egin{pmatrix} \mathbf{K}(\mathbf{S}, \mathbf{S}) & \mathbf{K}(\mathbf{S}, \mathbf{S}^*) \ \mathbf{K}(\mathbf{S}^*, \mathbf{S}) & \mathbf{K}(\mathbf{S}^*, \mathbf{S}^*) \end{array}
ight)
ight]. \end{aligned}$$

Demonstration

What Is The Target Function in The VGP?

Just for now, assume that the variational likelihood $q(\mathbf{z}|\mathbf{f}(\xi))$ is a point mass distribution,

$$q(\mathbf{z}|\mathbf{f}(\xi)) = \delta(\mathbf{z} - \mathbf{f}(\xi))$$
.

Then, with the GP, we want to approximate a function, \mathbf{f}^* , that, wher applied to draws $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, produces samples $\mathbf{z} = \mathbf{f}^*(\boldsymbol{\xi})$ that are distributed as the posterior $p(\mathbf{z}|\mathbf{X})$, i.e. effectively

$$p(\mathbf{z}|\mathbf{X}) = \int_{\mathbb{R}^c} \delta(\mathbf{z} - \mathbf{f}^*(\xi)) \, \mathcal{N}(\xi; \mathbf{0}, \mathbf{I}) \, \mathrm{d} \xi.$$

Explicit Construction of f^* I

1. Integrate on both sides:

$$p(\mathbf{z}'|\mathbf{X}) = \int\limits_{\mathbb{R}^c} \delta(\mathbf{z}' - \mathbf{f}^*(\xi')) \, \mathcal{N}(\xi'; \mathbf{0}, \mathbf{I}) \, \mathrm{d}\xi', \ \int\limits_{\mathbb{R}^c} p(\mathbf{z}'|\mathbf{X}) \, \mathrm{d}\mathbf{z}' = \int\limits_{\mathbb{R}^c} \int\limits_{\{z_i' \leq f_i^*(\xi)\}_i} \delta(\mathbf{z}' - \mathbf{f}^*(\xi')) \, \mathrm{d}\mathbf{z}' \, \mathcal{N}(\xi'; \mathbf{0}, \mathbf{I}) \, \mathrm{d}\xi'.$$

- 2. The LHS is, by definition, the posterior cumulative density function, $P(\mathbf{z}|\mathbf{X}) \triangleq \mathbb{P}(\mathbf{z}' \leq \mathbf{z}|\mathbf{X})$, evaluated at $\mathbf{z} = \mathbf{f}^*(\xi)$.
- 3. The inner integral over \mathbf{z}' on the RHS reduces to the Heaviside function, Θ , evaluated at $\mathbf{f}^*(\xi) \mathbf{f}^*(\xi')$.

Explicit Construction of f^* II

4. The Heaviside function reduces the integration domain of the remaining integral over ξ' on the RHS:

$$P\left(\mathbf{f}^*(\xi)|\mathbf{X}
ight) = \int\limits_{\{\xi': f_i^*(\xi') \leq f_i^*(\xi), \, i=1,\ldots,d\}} \mathcal{N}(\xi'; \mathbf{0}, \mathbf{I}) \; \mathrm{d}\xi'.$$

5. At this point, I wish I had evidence that allowed me to replace the integration domain with $\{\xi':\xi'_l\leq \xi_l,\ l=1,\ldots,c\}$, because then the RHS would reduce to the standard multivariate normal cumulative distribution function, Φ , evaluated at ξ . We would then have

$$\mathbf{f}^*(\xi) = \mathbf{P}^{-1}(\Phi(\xi)) \triangleq \{\mathbf{z}: P(\mathbf{z}|\mathbf{X}) = \Phi(\xi)\}$$
 .

But I don't have that evidence :(

VGP Approximation Theorem

Let $q_{\mathrm{VGP}}(\mathbf{z};\theta)$ denote the variational Gaussian process. Let $p(\mathbf{z}|\mathbf{X})$ be a posterior distribution with a finite number of latent variables and continuous quantile function (inverse cumulative distribution function), $\mathbf{P}^{-1}(\mathbf{z})$. Then there exists a sequence of parameters θ_m such that

$$\lim_{m o \infty} \mathrm{KL}\left(q_{\mathrm{VGP}}(\mathbf{z}; heta_m) \| p(\mathbf{z}|\mathbf{X})
ight) = 0.$$

Every posterior with strictly positive density $p(\mathbf{z}|\mathbf{X})$ can be represented by a VGP (because those always have continuous quantile functions).

Black Box Inference

Unfortunately, the ELBO,

$$\mathcal{L} = \mathbb{E}_{q_{ ext{VGP}}(\mathbf{z}; heta)}[\log p(\mathbf{X}, \mathbf{z})] - \mathbb{E}_{q_{ ext{VGP}}(\mathbf{z}; heta)}[\log q_{ ext{VGP}}(\mathbf{z}; heta)] \,,$$

is not analytically tractable because of the log-density $\log q_{\mathrm{VGP}}(\mathbf{z};\theta)$.

The paper derives a weaker lower bound for the log-evidence,

$$egin{aligned} ilde{\mathcal{L}} & riangleq \mathbb{E}_{q_{ ext{VGP}}(\mathbf{z}; heta)}[\log p(\mathbf{X}|\mathbf{z})] \ & - \mathbb{E}_{q_{ ext{VGP}}(\mathbf{z}; heta)}ig[ext{KL}ig(q(\mathbf{z}|\mathbf{f}(\xi))\|p(\mathbf{z})ig) + ext{KL}ig(q(\xi,\mathbf{f})\|r(\xi,\mathbf{f}|\mathbf{z})ig)ig]\,, \end{aligned}$$

and shows how to maximize that instead, where r is an auxiliary distribution...

• • •

Algorithm Complexity

$$\mathcal{O}(d+m^3+LH^2),$$

where:

d is the number of latent variables,

m is the size of the fake data set θ ,

 \boldsymbol{L} is the number of layers of a neural network leveraged for optimization with

H the average hidden layer size.

How Do We Use This?

We Don't (For Now)

@dustinvtran is Edward implementing the VGP from your ICLR 2016
paper? I looked through the code and couldn't find it anywhere.
— Torsten Scholak (@tscholak) August 12, 2016

1