4 An α -particle moves in a straight line through a vacuum with a constant speed of $4.1 \times 10^6 \, \text{m s}^{-1}$. The α -particle enters a uniform electric field at point A, as shown in Fig. 4.1.

Fig. 4.1

The α -particle continues to move in the same straight line until it is brought to rest at point B by the electric field. The deceleration of the α -particle by the electric field is $2.7 \times 10^{14}\,\text{m}\,\text{s}^{-2}$.

(a)	Stat	e the	direction	of the	electric	field
١	a	, Otal	C LIIC	direction	OI LIIC	CICCUITC	noid.

(b) Calculate the distance AB.

(c) Calculate the electric field strength.

(d) The α -particle is at point A at time t = 0.

On Fig. 4.2, sketch the variation with time t of the momentum of the α -particle as it travels from point A to point B. Numerical values are not required.

Fig. 4.2

[1]

(e)	State the name of the quantity that is represented by the gradient of the graph in (d).

- (f) A β^- particle now enters the electric field along the same initial path as the α -particle and with the same initial speed of $4.1 \times 10^6 \, \text{m} \, \text{s}^{-1}$.
 - (i) Calculate the kinetic energy, in J, of the β^- particle at point A.

(ii) State and explain the differences between the electric force on the β^- particle in the electric field and the electric force on the α -particle in the electric field.

.....[3]

(iii) The β^- particle is produced by the decay of a nucleus. State the name of another lepton that is produced at the same time as the β^- particle.

.....[1]