

RedHat Enterprise Linux Essential

Unit 4: Users, Groups, and Permissions

Objectives

- Upon completion of this unit, you should be able to:
 - Explain the Linux security model
 - Explain the purpose of user and group accounts
 - Read and set file permissions

Users

- Add user: useradd student; passwd student
- Every user of the system is assigned with a unique User ID number (the uid)
 - UID 0 identifies root
- Users' names and uids are stored in /etc/passwd
- Users are assigned to a home directory and a program that is run when they log in (usually a shell)
- Users cannot read, write or excute each others' files without permission

Groups

- Users are assigned to groups with unique group ID numbers (the gid)
- gids are stored in /etc/group
- Each user is given their own private group
 - They can also be added to other groups to gain additional access
 - The primary group can temporarily be changed by running:
 - newgrp groupname
- All users in a group can share files that belong to the group

Linux File Security

- Every file is owned by a UID and a GID
- Every process runs as a UID and one or more GIDs
 - Usually determined by who runs the process
- Three access categories:
 - Processes running with the same UID as the file (user)
 - Processes running with the same GID as the file (group)
 - All other processes (other)

Processing Linux Security

- When a process accesses a file the user and group of the process are compared with the user and group of the file
 - If the user matches the user permissions apply
 - If the group matches, but the user doesn't, the group permissions apply
 - If neither match, the other permissions apply

Permission Types

- Four symbols are used when displaying permissions:
 - r permission to read a file or list a directory's contents (Is)
 - W permission to write to a file or create and remove files from a directory (touch, rm)
 - x permission to excute a program or change into a directory and do along listing of the directory (cd && Is –I)
 - no permission (in place of the r, w, or x)

Examining Permissions

- File permissions may be viewed using Is –I
 - \$ ls -l /bin/login
 - -rwxr-xr-x 1 root root 19080 Apr 1 18:26 /bin/login
- File type and file access permissions are symbolized by a 10 character string

Interpreting Permissions

- Characters 2,3 and 4 identify permissions for owner
- Characters 5,6 and 7 identify permissions for members of the group
- Characters 8,9 and 10 identify permissions for all other

Changing File Ownership

- Only root can change a file's owner
- Only root or the owner can change a file's group
- Ownership is changed with chown:

chown [-R] user_name file|directory

Group-Ownership is changed with chgrp:

chgrp [-R] group_name file|directory

Changing Permissions - Symbolic Method

To change access modes:

chmod [-R] mode file

Changing Permissions- Numeric Method

- Uses a three-digit mode number
 - First digit specifies owner's permissions
 - Second digit specifies group permissions
 - Third digit represents others' permissions
- Permissions are calculated by adding:
 - **4** (for read)
 - 2 (for write)
 - 1 (for execute)
 - 0 (for no permission)
- Example: chmod 640 myfile

