Axioma	expressão	denominação
1	$\mathbf{x} + \mathbf{x} = \mathbf{x}$	Fechamento
1'	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	
2	x + 1 = 1	Elemento Nulo
2'	$\mathbf{x} \cdot 0 = 0$	
3	$\mathbf{x} + 0 = \mathbf{x}$	Elemento Neutro
3'	$\mathbf{x} \cdot 1 = \mathbf{x}$	
4	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	Comutativa
4'	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	
5	$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$	Associativa
5'	$(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})$	
6	$x + x^2 = 1$	Elemento Inverso
6'	$\mathbf{x} \cdot \mathbf{x}' = 0$	
7	$x \cdot (y + z) = x \cdot y + x \cdot z$	Distributiva
7'	$\mathbf{x} + \mathbf{y} \cdot \mathbf{z} = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{z})$	
8	$\mathbf{x} + \mathbf{x} \cdot \mathbf{y} = \mathbf{x}$	Absorção
8'	$\mathbf{x} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x}$	
9	x + x, $y = x + y$	Eliminação
9'	$\mathbf{x} \cdot (\mathbf{x}' + \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$	

x.y + x'.z + y.z = x.y + x'.z

 $(x+y).(x^2+z).(y+z) = (x+y).(x^2+z)$

(x')' = x

 $(x + y)' = x' \cdot y'$

 $(x \cdot y)' = x' + y'$

Consenso

Complementação

De Morgan

10

10'

11

12

12'

Axiomas da Álgebra Booleana