Fuzzy Set
Logika Fuzzy
Fuzzy System

Crisp Set

- Crisp set membedakan anggota dan non anggota dengan batasan pasti
- Misalkan A sebuah crisp set dan x anggota A maka :

$$\mu_A[x]=1$$

Jika y bukan anggota A maka $\mu_A[y]=0$

Contoh: Crisp Set

Himpunan Fuzzy

Contoh: Fungsi Keanggotaan (1)

$$\mu = [\mu_{sp}, \mu_p, \mu_s, \mu_t, \mu_{st}]$$

Fungsi Keanggotaan (2)

$$\mu$$
[163]= [0, 0, 0.42, 0.58, 0] atau μ_{sedang} [163] = 0.42, μ_{tinggi} [163] = 0.58

Fuzzy vs Probabilitas

- Fuzzy ≠ Probabilitas
- Probabilitas berkaitan dengan ketidakmenentuan dan kemungkinan
 - Logika Fuzzy berkaitan dengan ambiguitas dan ketidakjelasan
- Contoh 1:

Billy memiliki 10 jari kaki. Probabilitas Billy memiliki 9 jari kaki adalah 0. Keanggotaan Fuzzy Billy pada himpunan orang dengan 9 jari kaki ≠ 0

- Contoh 2:
 - Probabilitas botol 1 berisi air beracun adalah 0.5 dan 0.5 untuk isi air murni {mungkin air tersebut tidak beracun}
 - Isi botol 2 memiliki nilai keanggotaan 0.5 pada himpunan air berisi racun {air pasti beracun}

Himpunan Fuzzy

Variabel Fuzzy

Variabel dalam suatu sistem fuzzy. Contoh: berat badan, tinggi badan, dsb

Himpunan Fuzzy (Fuzzy set)

Himpunan fuzzy yang mewakili suatu kondisi pada suatu variabel fuzzy. Contoh:

- •Variabel suhu terbagi menjadi 3 himpunan fuzzy, yaitu : panas, hangat, dingin.
- Variabel nilai terbagi menjadi : tinggi, sedang, rendah
- Himpunan fuzzy memiliki 2 atribut, yaitu :
 - Linguistik, yaitu penamaan suatu group yang mewakili suatu kondisi, misalnya panas, hangat, dingin
 - Numeris, yaitu ukuran dari suatu variabel seperti : 17,19, 21, 33, dst

· Himpunan Semesta

keseluruhan nilai yang boleh dioperasikan dalam suatu variabel fuzzy. Contoh:

- •Semesta untuk variabel berat badan : [1, 150]
- •Semesta untuk variabel suhu : [0,100].

Domain

Domain himpunan fuzzy adalah keseluruhan nilai yang diijinkan dalam Semesta dan boleh dioperasikan dalam suatu himpunan fuzzy.

Contoh:

```
    DINGIN = [0,60]
    HANGAT = [50,80]
    PANAS = [80, +∞)
```

Fungsi Keanggotaan: Fungsi Linier

Linier Naik

$$\mu[x]=0; x \le a$$
 $(x-a)/(b-a); a < x \le b$ $1; x > b$

$$\mu[x] = (b-x)/(b-a); \ a \leq x < b$$

$$0; \ x \geq b$$

Fungsi Keanggotaan: Segitiga

$$\mu[x] = 0$$
; $x \le a$ atau $x \ge c$
(x-a)/(b-a); $a < x \le b$
(c-x)/(c-b); $b < x < c$

Fungsi Keanggotaan: Trapesium

$$\mu[x]=0; x \le a \text{ atau } x \ge d$$

(x-a)/(b-a); a < x \le b
1; b < x \le c
(d-x)/(d-c); c < x < d

Fungsi Keanggotaan: Sigmoid

$$\mu[x;a,b,c]_{sigmoid} = \begin{array}{ll} 0; & x \leq a \\ & 2\;((x-a)/(c-a))^2; \;\; a < x \leq b \\ & 1 - 2((c-x)/(c-a))^2; \;\; b < x < c \\ & 1; \;\; x \geq c \end{array}$$

Fungsi Keanggotaan: Phi

$$\mu[x;a,b,c]_{phi} = \mu[x;c-b,c-b/2,c]_{sigmoid}; \ x \le c$$

$$\mu[x;c,c+b/2,c+b]_{sigmoid}; \ x > c$$

Operator Dasar

Nilai keanggotaan sebagai hasil dari operasi 2 himpunan: fire strength atau α-predikat

AND

$$\mu_{A \cap B}[x] = \min(\mu_A[x], \mu_B[x])$$

Misalkan nilai keanggotaan IP 3.2 pada himpunan **IPtinggi** adalah 0.7 dan nilai keanggotaan 8 semester pada himpunan **LulusCepat** adalah 0.8 maka α-predikat untuk IPtinggi **dan** LulusCepat:

$$\mu_{\text{IPtinggi} \cap \text{LulusCepat}} = \min(\mu_{\text{IPtinggi}}[3.2], \mu_{\text{LulusCepat}}[8])$$

$$= \min(0.7, 0.8) = 0.7$$

OR

$$\mu_{A \cup B}[x] = max(\mu_A[x], \mu_B[x])$$

α-predikat untuk IPtinggi **atau** LulusCepat:

```
\mu_{\text{IPtinggi} \cup \text{LulusCepat}} = \max(\mu_{\text{IPtinggi}}[3.2], \mu_{\text{LulusCepat}}[8])

= \max(0.7, 0.8) = 0.8
```

NOT (Complement)

$$\mu_{\Delta}$$
'[x] = 1 - μ_{Δ} [x]

 α -predikat untuk **BUKAN IPtinggi** :

$$\mu_{IPtinggi}$$
 = 1 - $\mu_{IPtinggi}$ [3.2] = 1 - 0.7 = 0.3

Approximate Reasoning

A: 'Apakah dia anak yang pintar?'

B: 'Sepertinya begitu.'

A: 'Apakah Indeks Prestasi dan hasil tes psikologinya **bagus**?'

B: 'Ya, keduanya sangat bagus.'

A: 'Apakah dia layak mendapatkan beasiswa?'

B: 'Ya, sepertinya itu adalah keputusan yang baik.'

Approximate Reasoning

 P_1 : Sebagian besar mahasiswa suka membaca

 P_{γ} : Dani adalah mahasiswa

 P_3 : Sepertinya Dani suka membaca

Reasoning yang Pasti

 P_1 : Semua manusia pasti akan mati

 P_2 : Dani adalah manusia

 P_3 : Dani pasti akan mati

Fuzzy Rule Based System

Contoh 1:

Mengevaluasi kesehatan orang berdasarkan tinggi dan berat badannya

Input: tinggi dan berat badan

Output: kategori sehat

- sangat sehat (SS)
- sehat (A)
- agak sehat (AS)
- tidak sehat (TS)

L1: Fuzzification (1)

Ada 3 variabel fuzzy yang dimodelkan: tinggi, berat, sehat

	BERAT							
		Sangat kurus	Kurus	Biasa	Berat	Sangat berat		
т	Sangat pendek	SS	S	AS	TS	TS		
i i	Pendek	S	SS	S	AS	TS		
N	Sedang	AS	SS	SS	AS	TS		
G	Tinggi	TS	S	SS	S	TS		
1	Sangat tinggi	TS	AS	SS	S	AS		

L1: Fuzzification (2)

$$f = \{TS, AS, S, SS\}$$

L2: Rules Evaluation (1)

Tentukan rules

Tabel Kaidah Fuzzy

	BERAT							
		Sangat kurus	Kurus	Biasa	Berat	Sangat berat		
T I N	Sangat pendek	SS	S	AS	TS	TS		
G	Pendek	S	SS	S	AS	TS		
G	Sedang	AS	SS	SS	AS	TS		
	Tinggi	TS	S	SS	S	TS		
	Sangat tinggi	TS	AS	SS	S	AS		

Dalam bentuk if-then, contoh:

If sangat pendek dan sangat kurus then sangat sehat

L2: Rules Evaluation (2)

Contoh: bagaimana kondisi kesehatan untuk orang dengan tinggi 161.5 cm dan berat 41 kg?

$$\mu_{\text{sedang}}[161.5] = (165-161.5)/(165-160) = 0.7$$
 $\mu_{\text{tinggi}}[161.5] = (161.5-160)/(165-160) = 0.3$

L2: Rules Evaluation (3)

$$\mu_{\text{sangatkurus}}[41] = (45-41)/(45-40) = 0.8$$

$$\mu_{\text{kurus}}[41] = (41-40)/(45-40) = 0.2$$

	BERAT							
		0.8	0.2	Biasa	Berat	Sangat berat		
T	Sangat pendek	SS	S	AS	TS	TS		
N G	Pendek	S	SS	S	AS	TS		
G	0.7	AS	SS	SS	AS	TS		
	0.3	TS	S	SS	S	TS		
	Sangat tinggi	TS	AS	SS	S	AS		

L2: Rules Evaluation (4)

Pilih bobot minimum krn relasi AND

BERAT							
		0.8	0.2	Biasa	Berat	Sangat berat	
Ţ	Sangat pendek	SS	Ø	AS	TS	TS	
- NGG-	Pendek	S	SS	S	AS	TS	
	0.7	0.7	0.2	SS	AS	TS	
	0.3	0.3	0.2	SS	S	TS	
	Sangat tinggi	TS	AS	SS	S	AS	

L3: Defuzzification

Diperoleh:

$$f = \{TS, AS, S, SS\} = \{0.3, 0.7, 0.2, 0.2\}$$

Penentuan hasil akhir, ada 2 metoda:

- Max method: index tertinggi 0.7 hasil Agak Sehat
- 2. Centroid method (Mamdani):

$$(0.3x0.2)+(0.7x0.4)+(0.2x0.6)+(0.3x0.8) /$$

 $(0.3+0.7+0.2+0.2)$
 $= 0.4429$

Crisp decision index = 0.4429

Fuzzy decision index: 75% agak sehat, 25% sehat

Contoh 2 Pemberian Beasiswa

Aturan : dengan Logika Biner if $IPK \geq 3,00$ and $G \leq 10$ juta then Dapat Beasiswa

- Mhsw A IPK 3.00 Gaji orang tuanya 10 juta
 - Mhsw B IPK 2.99 Gaji orang tua 1 juta
 - A lebih layak mendapatkan beasiswa.
 - Kurang adil (manusiawi).

Himpunan Fuzzy

Aturan Fuzzy untuk Nilai Kelayakan

IPK Gaji	Kecil	Sedang	Besar	Sangat Besar
Buruk	Rendah	Rendah	Rendah	Rendah
Cukup	Tinggi	Rendah	Rendah	Rendah
Bagus	Tinggi	Tinggi	Tinggi	Rendah

IPK mahasiswa A

Bagus

Gradien = 1-0 / 3.25-2.75 = 1 / 0.5 = 2

Pers garisnya Y = 2 (X-2.75)

Hitung untuk X = 3.0

Y = 2 * 0.25 = 0.5

Cukup

Gradien = 0-1 / 3.25 - 2.75 = -1 / 0.5 = -2

Pers garisnya Y = -2(X-2.75)+1

Hitung untuk X = 3.0

Y = -2 * 0.25 + 1 = 0.5

Gaji Ortu mhs A

```
Sangat Besar
Gradien = (1-0) / (12-7) = 1/5
Pers garisnya Y = 1/5 (X-7)
Hitung untuk X =10
Y =1/5(10-7) =3/5=0.6
```

```
Sangat Besar
Gradien = (0-1) / (12-7) = -1/5
Pers garisnya Y = -1/5 (X-7) + 1
Hitung untuk X = 10
Y = -1/5(10-7) + 1 = 2/5 = 0.4
```


Fuzzification untuk mhs A

```
IPK = 3,00
Gaji Orangtua = 10 juta/bulan
```

```
IPK = Cukup (0,5)
IPK = Bagus (0,5)
Gaji Orangtua = Besar (0,4)
Gaji Orangtua = Sangat Besar (0,6)
```

Aturan Fuzzy untuk Nilai Kelayakan

IPK Gaji	Kecil	Sedang	Besar _{0.4}	Sangat Besar
Buruk	Rendah	Rendah	Rendah	Rendah
Cukup 0.5	Tinggi	Rendah	Rendah _{0.4}	Rendah _{0.5}
Bagus _{0.5}	Tinggi	Tinggi	Tinggi _{0.4}	Rendah _{0.5}

Fuzzification untuk mhs A

IPK = 3,00 Gaji Orangtua = 10 juta/bulan

IPK = Cukup (0,5)

IPK = Bagus (0,5)

Gaji Orangtua = **Besar** (0,4)

Gaji Orangtua = **Sangat Besar** (0,6)

Conjunction (^) & Disjunction (\/)

```
IF IPK = \text{Cukup}(0,5) AND Gaji = \text{Besar}(0,4) THEN NK = \text{Rendah}(0,4)

IF IPK = \text{Cukup}(0,5) AND Gaji = \text{Sangat} \text{ Besar}(0,6) THEN NK = \text{Rendah}(0,5)

IF IPK = \text{Bagus}(0,5) AND Gaji = \text{Besar}(0,4) THEN NK = \text{Tinggi}(0,4)

IF IPK = \text{Bagus}(0,5) AND Gaji = \text{Sangat} \text{ Besar}(0,6) THEN NK = \text{Rendah}(0,5)
```



```
NK = Rendah (0,5)
NK = Tinggi (0,4)
```


$$y^* = \frac{(10 + 20 + 30 + 40 + 50 + 60)0,5 + (70 + 80 + 90 + 100)0,4}{6(0,5) + 4(0,4)}$$

$$y^* = \frac{105 + 136}{4,6} = 52,39$$

mahasiswa B

IPK Gaji	Kecil	Sedang	Besar	Sangat Besar
Buruk	Rendah	Rendah	Rendah	Rendah
Cukup.52	Tingg52	Rendah	Rendah	Rendah
Bag <mark>0</mark> s48	Tin g gi48	Tinggi	Tinggi	Rendah

NK = Rendah (0) NK = Tinggi (0,52)

$$y^* = \frac{60 (1/3) + 65 (1/2) + (70 + 80)(0,52)}{(1/3) + (1/2) + (0,52)2}$$
$$y^* = \frac{20 + 32,5 + 78}{2,87334} = 69,66$$

Keputusan Model Mamdani

- Mahasiswa B dengan IPK = 2,99 dan Gaji orangtuanya sebesar 1 juta rupiah per bulan memperoleh Nilai Kelayakan sebesar 69,66.
- Lebih besar dibandingkan dengan Nilai Kelayakan mahasiswa A yang sebesar 52,39.
- Jadi, mahasiswa B layak mendapatkan beasiswa.

Model Mamdani

IPK Gaji	Keaj <u>l</u> 5	Sedang 0.5	Besar _{0.5}	Sangat Besar
Buruk	Rendah	Rendah	Rendah	Rendah
0.9Cukup	Tinggi	Rendal _{0.5}	Rendah _{0.5}	Rendah
0.1Bagus	Tinggi	Tinggi _{0.1}	Tinggi _{0.1}	Rendah

Model Sugeno

- Model ini sering digunakan untuk membangun sistem kontrol yang membutuhkan respon cepat.
- Proses perhitungannya sangat sederhana sehingga membutuhkan waktu relatif cepat sehingga sangat sesuai untuk sistem kontrol.
- Bagaimana jika digunakan untuk masalah pemberian beasiswa?

FK singleton untuk Nilai Kelayakan

Untuk mahasiswa A

- NK = Rendah (0,5)
- NK = Tinggi (0,4)

Proses Composition

Defuzzyfication: Weighted Average

$$y^* = \frac{(0,5)50 + (0,4)80}{(0,5) + (0,4)} = 63,33$$

Mahasiswa B

```
IF IPK = \text{Cukup}(0,52) AND Gaji = \text{Kecil}(1) THEN NK = \text{Tinggi}(0,52)
IF IPK = \text{Cukup}(0,52) AND Gaji = \text{Sedang}(0) THEN NK = \text{Rendah}(0)
IF IPK = \text{Besar}(0,48) AND Gaji = \text{Kecil}(1) THEN NK = \text{Tinggi}(0,48)
IF IPK = \text{Besar}(0,48) AND Gaji = \text{Sedang}(0) THEN NK = \text{Tinggi}(0)
```


NK = Rendah (0) NK = Tinggi (0,52)

Untuk Mahasiswa B

- NK = Rendah (0)
- NK = Tinggi (0,52)

Defuzzyfication: Weighted Average

$$y^* = \frac{(0)50 + (0,52)80}{0 + 0,52} = 80$$

Keputusan Model Sugeno

- Mahasiswa B dengan IPK = 2,99 dan Gaji orangtuanya sebesar Rp 1 juta per bulan memperoleh Nilai Kelayakan sebesar 80.
- Lebih besar dibandingkan dengan Nilai Kelayakan mahasiswa A yang sebesar 63,33.
- Jadi, mahasiswa B layak mendapatkan beasiswa.

Model Mamdani

IPK Gaji	Kecil	Sedang	Besar	Sangat Besar
Buruk	Rendah	Rendah	Rendah	Rendah
Cukup	Tinggi	Rendah	Rendah	Rendah
Bagus	Tinggi	Tinggi	Tinggi	Rendah

Model Sugeno

IPK Gaji	Kecil	Sedang	Besar	Sangat Besar
Buruk	Rendah	Rendah	Rendah	Rendah
Cukup	Tinggi	Rendah	Rendah	Rendah
Bagus	Tinggi	Tinggi	Tinggi	Rendah

Nilai Kelayakan mahasiswa A & B

	Nilai Kelayakan mendapat beasiswa		
Mahasiswa	Model Mamdani	Model Sugeno	
Α	52,39	63,33	
В	69,66	80	
Selisih A dan B	17,72	16,67	