SPHINCS+

Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, **Andreas Hülsing**, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Bas Westerbaan

Hash-based signatures (Merkle '89)

Boring crypto:

- Dates back to beginning of public key cryptography
- No fancy new mathematical assumption:
 Only requires a secure hash function ("minimal security assumptions")
- Stateful schemes already in standardization

Hash-based signatures (Merkle '89)

Boring crypto:

- Dates back to beginning of public key cryptography
- No fancy new mathematical assumption:
 Only requires a secure hash function
 ("minimal security assumptions")
 Jan dardized
- Stateful schemes already in standardization

SPHINCS (Eurocrypt 2015)

Joint work with Daniel J. Bernstein, Daira Hopwood, Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O'Hearn

Stateless hash-based signatures

[NY89,Gol87,Gol04]

Goldreich's approach [Gol04]:

Security parameter $\lambda = 128$

Use binary tree as in Merkle, but...

- ...for security
 - pick index i at random;
 - requires huge tree to avoid index collisions (e.g., height $h = 2\lambda = 256$).
- ...for efficiency:
 - use binary certification tree of OTS key pairs (= Hypertree with d=h),
 - all OTS secret keys are generated pseudorandomly.

SPHINCS [BHH+15]

- Select index pseudorandomly
- Use a few-time signature key-pair on leaves to sign messages
 - Few index collisions allowed
 - Allows to reduce tree height
- Use hypertree: Use d << h.

SPHINCS⁺ vs SPHINCS

- Allow for 2^{64} instead of 2^{50} signatures per key pair
- Add multi-target attack mitigation (Tweakable hash functions)
- "Simple" and "Robust" parameters
- New few-time signature scheme FORS
- Verifiable index selection
- Optional non-deterministic signatures

SPHINCS⁺ in 3rd Round

Joint work with Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Bas Westerbaan

3rd Round changes

- Two new team members: Ward Beullens, Bas Westerbaan
- New parameter sets (more efficient at same security)
- (Discussed hierarchical PRG & constant sum WOTS but discarded both)

Search criteria:

- Improvement in optimized metric (fast / small)
- No significant penalty in other metric
- No worse verification speed
- No change to security assumptions / strength
- No increased complexity
- -> We only changed h, d, log(t) & k

	n	h	d	$\log(t)$	k	\overline{w}	bitsec	sec level	sig bytes
SPHINCS ⁺ -128s	16	64	8	15	10	16	133	1	8 080
SPHINCS ⁺ -128f	16	60	20	9	30	16	128	1	16976
$SPHINCS^+-192s$	24	64	8	16	14	16	196	3	17064
SPHINCS ⁺ -192f	24	66	22	8	33	16	194	3	35664
$SPHINCS^+-256s$	32	64	8	14	22	16	255	5	29792
SPHINCS ⁺ -256f	32	68	17	10	30	16	254	5	49216

	n	h	d	$\log(t)$	k	w	bitsec	sec level	sig bytes
SPHINCS ⁺ -128s	16	64	8	15	10	16	133	1	8 080 7 856
SPHINCS ⁺ -128f	16	60	20	9	30	16	128	1	16976 17 088
$SPHINCS^+-192s$	24	64	8	16	14	16	153 196	3	1706416 224
SPHINCS ⁺ -192f	24	66	22	8	33	16	194	3	35664
$SPHINCS^{+}-256s$	32	64	8	14	22	16	255	5	29792
SPHINCS ⁺ -256f	32	68	17	10	30	16	254	5	49 216 43 856

	sign	verify	sig	sec
128s	± 0	- 8 %	- 2.77 %	± 0
128f	- 24 %	+ 10 %	+ 0.66 %	± 0
192s	- 20 %	- 10 %	- 4.92 %	-3 bit (still 193 > 192)
192f	± 0	± 0	± 0	± 0
256s	± 0	± 0	± 0	± 0
256f	- 13 %	± 0	+ 1.30 %	+1 bit

Changes in speed are averaged over robust / simple & SHA2, SHAKE & Haraka parameter sets. For more details see our change log and the latest specification.

After round three updates

Feb 11: Mail by Morgan Stern

"In particular, in SPHINCS+-SHA-256 there is an issue with the definition of the H_msg function so that the security of the signature presently relies on the multitarget second pre-image resistance of the SHA-256 hash function."

 $H_msg(R, PK.seed, PK.root, M)$

= MGF1-SHA-256(SHA-256(R||PK.seed||PK.root||M), m).

- The multi-target second preimage attack loses about 64 bit in security
- Security down to 192 bits (for all SHA-256 parameters)
- Violates L5
- Fix: Switch to SHA2-512 for H_msg (& H_PRF) at L5.

Feb 16: Mail by John Kelsey

"I believe there's also a long-message second preimage attack that applies here. (Ray Perlner pointed this out in a discussion.)"

```
Fix:
```

```
H_msg :
= MGF1-SHA-X(R || PK.seed || SHA-X(R || PK.seed || PK.root || M), m)
```

(where X is 256 for L1 & L3, and 512 for L5)

```
Fix:

H_{msg}:

= MGF1-SHA-X(R || PK.seed || SHA-X(R || PK.seed || PK.root || M), m)

(where X is 256 for L1 & L3, and 512 for L5)
```

Attack:

- 1. Ask for q signatures on long messages (2^k message blocks)
- 2. Find expandable messages (takes time $\sim O(2^{n/2})$)
- 3. Find collision between expandable message and a message block in long message (takes times $O(2^{n-k-\log q}-1)$)
- 4. Expand expandable message sufficiently

- Attack before fix takes time $O(2^{n/2} + 2^{n-k-\log q-1})$
- Max values are $q = 2^{64}$, $k = 55 \Rightarrow$ We lose 119 bit security.
- Recall: Honest user signs!
- Assume compression function call takes 2^{-22} seconds ($\approx 200ns$).
- Attack takes $2^{64} \cdot 2^{55} = 2^{119}$ compression function calls.
- That is 2^{97} sec = 2^{72} years.
- Still 2^{52} years if key continuously used on 1 million machines!

Conclusion

- Possible synergies with standardizing stateful hash-based signatures
- *The* most conservative submission in the competition.

Thank you! Questions?

