L/2018/11/S-I ඔසු ම හිමිකම් ඇව්රෑම් /	l Rights Reserved]
ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකාව විභාග දෙපාර්තමේන්තුව ල් ල් ලංකාව විභාග දෙපාර්තමේන්තුව ල් ලංකාව විභාග දෙපාර්තමේන්තුව ල් ල් ලංකාව විභාග දෙපාර්තමේන්තුව ල් ලංකාව විභාග දෙපාර්තමේන්තුව ල්	යේකු වෙන්වන දෙපාර්ත මෙන්නුව විශාල දෙපාර්තමේන්තුව මී ලංකා විශාල දෙපාර්තමේන්තු , තිනුමක් සිදුල් විශාල දෙපාර්ත මෙන්නුව විශාල දෙපාර්තමේන්තුව මී ලංකා විශාල දෙපාර්තමේන්තු කතා USA UKLU ගින්නු තැත්ත මෙන්නුව දෙපාර්තමේන්තුව මී ලංකා විශාල දෙපාර්තමේන්තු අදුල් දෙපාර්තමේන්තුව දී අවත විශාල දෙපාර්තමේන්තුව මී ලංකා විශාල දෙපාර්තමේන්තු ක පනු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු
சுக ஒகி மூன்று மணித்தியாலம் Three hours	අමතර කියවීම් කාලය - මිනිත්තු 10 යි

			T		
විභාග අ	ංකය	J			

උපදෙස් :

- 💥 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
 - A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).
- * A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පනුය f B කොටසෙහි පිළිතුරු පනුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🔆 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටකට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු
-	1	
	2	
	3	
	4	10 TH
	5	100
A	6	_
	7	1751
	8	
	9	1
	10	
	11	
	12	*
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

I පතුය	
II පනුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණ

	A CANADA MARINE DE TENNANDO DE LA CONTRACTOR DE LA CONTRA
ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ:	
අධීක්ෂණය කළේ:	

	A. කොටස
1.	සාධකවලට වෙන් කරන්න: $8(a+b+c)^3-(a+b)^3-(b+c)^3-(c+a)^3$.
	••••••••••••••••••••••••••••••
2.	සමහර k \in ${f Z}$ සඳහා $a=3^kb$ නම් සියලු ධන පරිමේය සංඛනා කුලකය ${m Q}^+$ මත R සම්බන්ධයක් aRb මගින් අර්ථ
	දැක්වේ. R යනු $m{Q}^{\!$

AL/2018/11/S-I	4	$\mathbf{L}/$	20	18	/11	/S-	I
----------------	---	---------------	-----------	----	-----	-----	---

\sim
~

-			
ലാഹാശ	අංකය	•	_
	4	٠	•

0106

3.	x > 1 සඳහා ූ	f(x) = (x -	1) ² + 2 යැයි	ගතිමු. f එකට– එක බව හා $f^{-1}ig(2f(2)ig)=3$ බව පෙන්වන්න.

	,			

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	111111111111111111111111111111111111111			

			•••••	
1				
	a-b-c	2b	2c	2
4.	2 <i>a</i>	b-c-a	2c	$=\left(a+b+c ight)^3$ බව පෙන්වන්න.
4.	2 <i>a</i>	b-c-a	2c $2c$ $c - a - b$	$=\left(a+b+c ight)^3$ බව පෙන්වන්න.
4.	2 <i>a</i>	b-c-a	2c	$=\left(a+b+c ight)^3$ බව පෙන්වන්න.
4.	2 <i>a</i>	b-c-a	2c	$=\left(a+b+c ight)^3$ බව පෙන්වන්න.
4.	2 <i>a</i>	b-c-a	2c	$=\left(a+b+c ight)^3$ බව පෙන්වන්න.
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	
4.	2 <i>a</i>	b-c-a 2b	$ \begin{array}{c} 2c \\ c - a - b \end{array} $	

[හතරවැනි පිටුව බලන්න.

5.	$y^2=4ax$ පරාවලයෙහි $(at^2,2at)$ හා $(aT^2,2aT)$ ලක්ෂා යාකරන ජාාය $(4a,0)$ ලක්ෂාය හරහා යයි.
	tT = $-$ 4 බව පෙන්වන්න.
	$\begin{cases} \frac{\sin 2x}{x}, & x < 0 \text{ so,} \end{cases}$
6.	$f: \mathbb{R} \to \mathbb{R}$ යනු $f(x) = \begin{cases} x \\ p \\ (x^2 + q)e^{-(x+1)} \end{cases}$, $x = 0$ නම්,
6.	$f\colon \mathbb{R} o \mathbb{R}$ යනු $f(x) = \left\{ egin{array}{ll} & \frac{\sin 2x}{x} & , \ x < 0 & නම්, \\ & p & , \ x = 0 & නම්, \\ & \left(x^2 + q\right)e^{-(x+1)} & , \ x > 0 & නම්, \end{array} ight.$ මගින් අර්ථ දැක්වෙන ශිුතය යැයි ගනිමු. $x = 0$ හි දී f සන්තතික බව දී ඇත. p හා q හි අගයන් සොයන්න.
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	

7.	$x\in\mathbb{R}$ සඳහා $f(x)=(x-1)^{rac{1}{3}}\left x-1 ight $ යැයි ගනිමු. $x=1$ හි දී $f(x)$ අවකලා බව පෙන්වා, සියලු $x\in\mathbb{R}$ සඳහා එහි
	වයුත්පත්නය $f'(x)$ ලියා දක්වන්න.
8.	විසඳන්න: $\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tan x = \sin x$.
ļ	

	•••••••••••••••••••••••••••••••••••••••

9.	$T>0$ යැයි ද f යනු සියලු x \in \mathbb{R} සඳහා $f(x+T)=f(x)$ වන පරිදි \mathbb{R} මත වූ තාත්ත්වික අගයැති සන්තතික ශිුතය	3ක
	යැයි ද ගනිමු. $\int\limits_a^b f(x) \mathrm{d}x = \int\limits_{a+T}^{b+T} f(x) \mathrm{d}x$ බව පෙන්වන්න.	
10.	$r=2\sin heta$ හා $r\cos\left(heta-rac{\pi}{4} ight)=\sqrt{2}$ වකුවල දළ සටහන් එකම රූපයක ඇඳ ඒවායේ ඡේදන ලක්ෂාවල ධැවැ	ක
10.	$r=2\sin heta$ හා $r\cos\left(heta-rac{\pi}{4} ight)=\sqrt{2}$ වකුවල දළ සටහන් එකම රූපයක ඇඳ ඒවායේ ඡේදන ලක්ෂාවල ධුැවැ බණ්ඩාංක සොයන්න.	ක
10.		ක
10.		ක
10.		ක
10.		ක
10.		ක
10.		න
10.		ක
10.		ක .

கீரு ම விறை අඩ්ටිණි/முழுப் பதிப்புரிமையுடையது/All Rights Reserved)

I

இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Q ලංකා විභාග දෙපාර්තලේන්තුව இ ලංකා විභාග දෙපාර්තලේන්තුව இ ලංකා විභාග දෙපාර්තලේන්තුව இ ලංකා විභාග දෙපාර්තලේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

උසස් ගණිතය

உயர் கணிதம்

Higher Mathematics

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

- $11. \quad (a) \ X, \ Y$ හා Z යනු S සර්වනු කුලකයක උපකුලක යැයි ගනිමු. ඔබ භාවිත කරන කුලක වීජයෙහි ඕනෑම පුතිඵලයක් පැහැදිලි ව පුකාශ කරමින්
 - (i) $(X-Y)-Z\subseteq X-Z$,
 - (ii) (X-Y)-(Y-Z)=X-Y
 - බව පෙන්වන්න; මෙහි X-Yයන්න $X-Y=X\cap Y'$ මගින් අර්ථ දැක්වේ.
 - (b) ආපන ශාලාවක සිටින පාරිභෝගිකයක් 100 දෙනකු යොදා ගනිමින් උදේ ආහාරය සඳහා ඉදිආප්ප, ආප්ප හා පාන් අතුරින් ඔවුන් කැමති ආහාරය නිගමනය කිරීමට සමීක්ෂණයක් සිදු කරන ලදී. එම සමීක්ෂණයෙන් පහත දැක්වෙන දත්ත එක්රැස් කරන ලදී.
 - 44 දෙනකු ඉදිආප්පවලට කැමති ය.
 - 15 දෙනකු පාන්වලට **පමණක්** කැමති ය.
 - 10 දෙනකු ඉදිආප්පවලට හා ආප්පවලට කැමති නමුත් පාන්වලට අකමැති ය.
 - 78 දෙනකු පාන්වලට හෝ ආප්පවලට කැමති ය.
 - 12 දෙනකු පාන්වලට හා ආප්පවලට කැමති නමුත් ඉදිආප්පවලට අකමැති ය.
 - 27 දෙනකු වර්ග තුනටම කැමති අතර 19 දෙනකු එකම වර්ගයකටවත් කැමති නැත.
 - (i) ඉදිආප්පවලට කැමති නමුත් ආප්පවලට අකමැති,
 - (ii) ආප්පවලට **පමණක්** කැමති,
 - (iii) ඉදිආප්ප හා පාන්වලට කැමති නමුත් ආප්පවලට අකමැති පාරිභෝගිකයන්ගේ ගණන සොයන්න.
- 12. (a) a,b හා c යනු a+b+c=1 වන පරිදි වූ ධන තාත්ත්වීක සංඛාහ යැයි ගනිමු. සමාන්තර මධානාසය ගුණෝත්තර මධානාසය අසමානතාව භාවිතයෙන් $\frac{1}{abc} \ge 27$ බව පෙන්වන්න.

ඒ නයින්,

(i)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$$
 බව හා (ii) $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \ge 27$

බව පෙන්වන්න.

$$\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right) \ge 64$$
 බව **අපෝගනය** කරන්න.

- (b) $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ පරිණාමනය මගින් xy-තලයේ ලක්ෂා x'y'-තලයේ ලක්ෂා බවට අනුරූපණය
 - වේ. මෙම පරිණාමනය යටතේ y=ax+b රේඛාව x'y'-තලයේ යම් රේඛාවක් මතට අනුරූපණය වේ ද එම රේඛාවේ සමීකරණය සොයන්න; මෙහි a හා b නියන වේ.
 - $A\equiv (2,3)$ හා $B\equiv (3,2)$ යනු xy-තලයේ ලක්ෂා දෙකක් යැයි ගනිමු. x'y'-තලයේ යම් රේඛාවක් මතට AB රේඛාව අනුරුපණය වේ ද එම රේඛාවේ සමීකරණය සොයන්න.

- 13. ධන නිඛිලමය දර්ශකයක් සඳහා **ද මුවාචර් පුමේශය** පුකාශ කරන්න.
 - **උ මුවාවර් පුමේයය** භාවිතයෙන්
 - (i) ඔත්තේ n සඳහා,

$$\sin n\theta = {}^{n}C_{1}\cos^{n-1}\theta\sin\theta - {}^{n}C_{3}\cos^{n-3}\theta\sin^{3}\theta + \dots + (-1)^{\frac{n-1}{2}}\sin^{n}\theta,$$

(ii) ඉරට්ටේ n සඳහා,

$$\sin n\theta = {}^{n}C_{1}\cos^{n-1}\theta\sin\theta - {}^{n}C_{3}\cos^{n-3}\theta\sin^{3}\theta + \dots + (-1)^{\frac{n-2}{2}}{}^{n}C_{n-1}\cos\theta\sin^{n-1}\theta$$

බව පෙන්වන්න.

 $\sin \theta \neq 0$ සඳහා $\frac{\sin 5\theta - \sin 4\theta}{\sin \theta} = 16\cos^4\theta - 8\cos^3\theta - 12\cos^2\theta + 4\cos\theta + 1$ බව **අපෝහන**ය කරන්න. $x^4 - x^3 - 3x^2 + 2x + 1 = 0$ සමීකරණයෙහි මූල සැලකීමෙන්,

$$\cos\frac{\pi}{9} + \cos\frac{3\pi}{9} + \cos\frac{5\pi}{9} + \cos\frac{7\pi}{9} = \frac{1}{2}$$
 so

$$\cos\frac{\pi}{9} \cdot \cos\frac{3\pi}{9} \cdot \cos\frac{5\pi}{9} \cdot \cos\frac{7\pi}{9} = \frac{1}{8}$$
 බව පෙන්වන්න.

14. (a) $y = e^{2x}$ හා $y = 2x - x^2$ වකුවල දළ සටහන් එක ම රූපයක අඳින්න.

ඉහත වකු දෙකෙන් ද x=0 හා x=2 රේඛාවලින් ද පර්යන්තගත පෙදෙස R යැයි ගනිමු. R හි වර්ගඵලය සොයන්න.

තව ද R පෙදෙස x-අක්ෂය වටා සෘජුකෝණ හතරකින් භුමණය කිරීමෙන් ජනනය වන ඝනයේ පරිමාව සොයන්න.

(b) වකු කුලයක් $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - x^2}{xy}$ අවකල සමීකරණය සපුරාලයි. y = vx ආදේශ කිරීමෙන් මෙම අවකල සමීකරණය විසඳන්න.

තව ද මෙම වකු කුලයෙහි පුලම්බ පරාවකු සපුරාලන අවකල සමීකරණය ලබාගෙන එය විසඳන්න.

 $egin{aligned} \mathbf{15.} & (a) & n \in \mathbb{Z}^+ \$ සඳහා $I_n = \int\limits_0^1 \, x^n \sqrt{1-x^2} \ \mathrm{d}x$ යැයි ගනිමු. $I_n = \left(rac{n-1}{n+2}
ight) I_{n-2} \$ බව පෙන්වන්න.

ඒ නයින්,
$$\int\limits_0^1 x^4 \sqrt{1-x^2} \ \mathrm{d}x$$
 හි අගය සොයන්න.

(b) e^x හා $\sin x$ හි **මැක්ලෝරින්** ශේණි පුසාරණ ලියා දක්වන්න.

ඒ නයින්, $e^{\sin x}$ හි මැක්ලෝරින් ශේුණි පුසාරණය x^4 අඩංගු පදය දක්වා, එයත් ඇතුළත්ව, සොයන්න.

මෙය භාවිතයෙන් $\int\limits_0^1 e^{\sin x} \,\mathrm{d}x$ සඳහා ආසන්න අගයක් සොයන්න.

More Past Papers at

tamilguru.lk

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ බහුවලයට $P(a \sec \theta, b \tan \theta)$ ලක්ෂායේ දී ස්පර්ශකයේ සමීකරණය සොයන්න.

P හි දී ස්පර්ශකය, බහුවලයේ පුධාන අක්ෂයෙහි අන්තයන්හි ස්පර්ශක Q හා R හි දී හමු වේ. QR රේඛා ඛණ්ඩය මගින් එක් එක් නාභියෙහි සෘජුකෝණයක් ආපාතනය කරන බව පෙන්වන්න.

 S_1 හා S_2 නාහි සහිත $\frac{x^2}{9}-y^2=1$ බහුවලය මත P ලක්ෂායේ ඛණ්ඩාංක $\left(5,\frac{4}{3}\right)$ යැයි ගනිමු.

ඉහත දැක්වෙන පරිදි අර්ථ දැක්වෙන Q,R,S_1 හා S_2 ලක්ෂා ඒකවෘත්ත බව පෙන්වා, මෙම ලක්ෂා හරහා යන වෘත්තයේ සමීකරණය සොයන්න.

- **17.** (a) $f(x) = \frac{3\cos x 4\sin x}{4\cos x + 3\sin x + 10}$ යැයි ගනිමු.
 - f(x) හි වසම පුකාශ කරන්න.
 - f(x) හි උපරිම අගය හා අවම අගය සොයා, මෙම අගයන් ලබාදෙන ලක්ෂාවල x-ඛ-න්ඩාංක සොයන්න.
 - (iii) f(x) = 0 සමීකරණය විසඳන්න.
 - (b) පහත දැක්වෙන වගුවේ දී ඇති $\ln(1+x^2)$ හි අගයන් සහිත ව **ශිම්සන් නීතිය භාවිතයෙන්** $\int\limits_0^1 \ln(1+x^2)\,\mathrm{d}x$ සඳහා ආසන්න අගයක් සොයන්න.

x	0	0.25	0.50	0.75	1.0
$\ln(1+x^2)$	0	0.0606	0.2231	0.4463	0.6931

 $\int\limits_0^1 \ln \left(rac{1+x^2}{2}
ight) \mathrm{d}x$ සඳහා ආසන්න අගයක් **අපෝහනය** කරන්න.

.

<i>Ba</i>	ම හිමිකම්	ඇව්රිණි / ආගුඩ	பதிப்புரிமையுடை	.யது/All	Rights Res	served]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව රිකාල විශ්ය පෙළුවේන්තුව විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ශිකානයින් පැවැති සහ දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ශිකානයින් පැවැති සහ දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලිකානයින් සහ ඉහළුවෙන් ලෙස දෙපාර්තමේන්තුව ලිකානයින් සහ දෙපාර්තමේන්තුව ලිකානයින් සහ ඉහළුවෙන් ලෙස දෙපාර්තමේන්තුව ලිකානයින් සහ ඉහළුවෙන් දෙපාර්තමේන්තුව ලිකානයින් සහ දෙපාර්තමේන්ත් සහ දෙපාර්තමේන්තුව ලිකානයින් සහ දෙපාර්තමේන්ත් සහ දෙපාර්තමේන් සහ දෙපාර්තමේන් සහ දෙපාර සහ දෙපාර්තමේන් සහ දෙපාර්තමේන් සහ දෙපාර්තමේන් සහ දෙපාර්තමේන් සහ

අබායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

് උසස් ගණිතය II உயர் கணிதம் II Higher Mathematics II

2018.09.01 / 1300 - 1610

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය					
------------	--	--	--	--	--

උපදෙස් :

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🔆 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටකට ගෙනයාමට ඔබට අවසර ඇත.
- 🔆 සංඛාහන වගු සපයනු ලැබේ.
- * g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(11) උසස් ගණිතය II				
කොටස	පුශ්න අංකය	ලකුණු		
	1			
ţ	2			
	3			
	4			
A	5			
A	6			
	7			
	8			
	9			
	10			
	11			
	12			
	13			
В	14			
	15			
	16			
	17			
	එකතුව			
	පුතිශතය			

I පතුය			
II පතුය		_	
එකතුව			
අවසාන ලකුණු			

අවසාන ලකුණු

		 	 	_
ඉලක්කමෙන්			·	
අකුරෙන්				

සංකේත අංක

1

	නොවස
_	ביוג או ומופו

•		-
1		
	${f i}-2{f j}+c{f k}$ වේ. \overrightarrow{OA} හා \overrightarrow{OB} එකිනෙකට ලම්බ වන පරිදි හා $\overrightarrow{OA} imes\overrightarrow{OB}=3\overrightarrow{OC}$ වන පරිදි a හා c නියතවල අගයන සොයන්න. a හා c සඳහා මෙම අගයන් සහිත ව \overrightarrow{AC} ඉදෙශිකය \overrightarrow{OB} දෙශිකයට ලම්බ බව තවදුරටත් පෙන්වන්න	,
	,	
2.	\mathbf{F} බලයක් විශාලත්වයෙන්, දිශාවෙන් හා කිුයා රේඛාවෙන් $\lambda \overrightarrow{AB}$ මගින් නිරූපණය වේ; මෙහි λ යනු අදිශයක් වන	
	අතර $\overrightarrow{OA} = -\mathbf{i} + \mathbf{j}$ හා $\overrightarrow{OB} = \mathbf{k}$ වේ. O මූලය වටා \mathbf{F} හි සූර්ණ දෛශිකය $\lambda(\mathbf{i} + \mathbf{j})$ බව පෙන්වන්න.	
	තවදුරටත්, ${f F}$ ඒකක විශාලත්වයකින් යුක්ත වේ නම් λ ට ගත හැකි අගයන් සොයන්න.	
		l

විභාග අංකය :.....

3.	අභාාන්තර අරය a , බාහිර අරය $2a$ හා ඝනත්වය σ වූ ඒකාකාර ඝන ගෝලාකාර කබොලක්, ඝනත්වය $ ho$ වූ සමජාතීය
	දුවයක ආංශික වශයෙන් ගිලී ඉපිලේ. $\frac{\sigma}{ ho}<rac{8}{7}$ බව පෙන්වා, කබොල දුවයෙහි සම්පූර්ණයෙන් ගිලී ඉපිලී තිබීමට
	කබොලෙහි උච්චතම ලක්ෂායට ඇඳිය හැකි අංශුවේ අඩුතම බර සොයන්න.
4.	කාලය $t\!=\!0$ හි දී පිහිටුම් දෛශිකය a i වන ලක්ෂාංය හරහා යමින්, Oxy -තලයේ චලනය වන ස්කන්ධය m වූ P අංශුවක
	t කාලයේ දී රේඛීය ගමාතාව $ma\omega(-{f i}\sin\omega t + {f j}\cos\omega t)$ චේ; මෙහි a හා ω ධන නියත වේ. P හි ${f r}$ පිහිටුම් දෛශිකය
	${f r}=a({f i}\cos\omega t+{f j}\sin\omega t)$ මගින් දෙනු ලබන බවත්, එය මත කිුයාකරන ${f F}$ බලය, ${f F}=-m\omega^2{f r}$ බවත් එහි O මූලය
	වටා කෝණික ගමාතාව $ma^2\omega\mathbf{k}$ බවත් පෙන්වන්න; මෙහි \mathbf{k} යනු $\mathbf{i} imes\mathbf{j}$ දෙශිකයයි.
	••••••

5	. භුමණයකින් තොරව සිරස් ව වැටෙන සුමට ඒකාකාර A ගෝලයක්, සැහැල්ලු අවිතනා තන්තුවකින් එල්ලී නිශ්චල තිබෙන සමාන B ගෝලයක් සමග ගැටේ. ගැටුමට මොහොතකට පෙර A හි වේගය u වන අතර ගෝලවල කේන්
	යාකරන රේඛාව සිරස සමග 45° ක කෝණයක් සාදයි. ගැටුමෙන් මොහොතකට පසු B හි වේගය $rac{u}{2}$ වේ. ගෝල දෙ
	අතර පුතාහාගති සංගුණකය $rac{1}{2}$ බව පෙන්වන්න.
6.	ස්කන්ධය M හා පැත්තක දිග $2a$ වූ ඒකාකාර සමචතුරසුාකාර $ABCD$ ආස්තරයක් AB ඔස්සේ යන අචල, සුමට
	් දීම් වූ දීම් කරන අත වස මූ ප්රක්ෂණ සටවාද්රේක්ණ අත වන අතුල් සම්වූ සම්වූ
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	තිරස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $\frac{4}{3}Ma^2$ බව උපකල්පනය කරමින් කුඩා දෝලනවල කාලාවර්තය $4\pi\sqrt{\frac{a}{3g}}$ බව පෙන්වන්න.
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය
	ති්රස් අක්ෂයක් වටා කුඩා දෝලන සිදු කරයි. AB වටා ආස්තරයේ අවස්ථිති සූර්ණය $rac{4}{3}Ma^2$ බව උපකල්පනය

Ç.	AL/	2018/11/S-II - 5 -
	7.	මුහුණත් මත $1,2,3,4$ ලකුණු කර ඇති චතුස්තලාකාර දාදු කැටයක් නැඹුරු කර ඇත්තේ එය උඩ දැමූ විට r අංකය ලකුණු කරන ලද මුහුණත පහළට ඇතිව පතිත වීමේ සම්භාවිතාව pr වන පරිදි ය; මෙහි p ධන නියතයක් වන අතර $r=1,2,3,4$ වේ. X යනු "දාදු කැටයේ පහළට ඇති මුහුණතේ ලකුණු කරන ලද අංකය" ලෙස අර්ථ
		දැක්වෙන සසම්භාවී විචලාස යැයි ගනිමු. $p=rac{1}{10}$ බව පෙන්වා, X හි අපේක්ෂාව සොයන්න. $Var\left(X ight) =1$ බව පෙන්වන්න.

5	8.	නොනැඹුරු කාසියක් 8 වරක් උඩ දමනු ලැබේ. අගයන් ගණනට වඩා වැඩියෙන් ශීර්ෂ ගණනක් ලැබීමේ සම්භාවිතාව සොයන්න.
	·	

9.	Xසන්තතික	සසම්භාවී	විචලායක	f(x) සම්භා	විතා ඝන	ත්ව ශුිතය
----	----------	----------	---------	------------	---------	-----------

$$f(x) = \begin{cases} rac{2}{3k} x(k-x) \ , \ 0 \le x \le k$$
 සඳහා $0 \le x \le k$ සඳහා $0 \le x \le k$ සඳහා

මගින් දෙනු ලැබේ; මෙහි k යනු නියතයකි. $k\!=\!3$ බව පෙන්වා X හි අපේක්ෂාව සොයන්න.

				•••				 		•••	• • •			. 		 					 															•••
• • • •	• • • •	• • • •	• • • •	•••	• • • •	•••	• • •	 •••	•••	• • •	• • •	• • •	•••	•••	• • •	 •••	• • •	•••	• • •	• • •	 •••	• • •	• • •	• •	• • •	•••	•••	• • • •	• •		• •	• • •	• • •	• • • •	• • •	• • • •
· · · ·								 								 																				
													•			 		• • •			 • • •	• • •	•••	•••	• • • •		• • •	• • • •	• • •	• • • •	• •	• • • •	• • • •		• • •	

 $oxed{10}.\,\,\,X$ සන්තතික සසම්භාවී විචලායක F(x) සමුච්චිත වාාප්ති ශිුතය

$$F(x) = \left\{ egin{array}{lll} 0 & , & x < 0 & න @, \ & kx(4-x) & , & 0 \leq x \leq 1 & න @, \ & 1 & , & x > 1 & න @, \end{array}
ight.$$

මගින් දෙනු ලැබේ; මෙහි k යනු නියතයකි.

- (i) k හි අගය,
- (ii) $P\left(X < \frac{1}{4}\right)$ to
- (iii) $P\left(\frac{1}{4} < X < \frac{1}{2}\right)$

සොයන්න.

.....

[හත්වැනි පිටුව බලන්න.

තියලු ම හිමිකම් ඇවිරිණි / (மුඟුට பුනිට්பුfනගෙபුடையது / $All\ Rights\ Reserved$)

අධාසන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

උසස් ගණිතය II உயர் கணிதம் II Higher Mathematics II

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. O මූලය අනුබද්ධයෙන් ${f r}_s$ පිහිටුම් දෛශික සහිත A_s ලක්ෂාවල දී ${f F}_s$ බල කියාකරයි; මෙහි s=1,2,...,n වේ. මෙම පද්ධතිය O හි දී කියාකරන ${f R}=\sum_{s=1}^n {f F}_s$ තනි බලයක් සමග සූර්ණ දෛශිකය ${f G}=\sum_{s=1}^n {f r}_s \times {f F}_s$ වූ යුග්මයකට ඌනනය කළ හැකි බව පෙන්වන්න. පද්ධතිය තනි සම්පුයුක්ත බලයකට තුලා වීම සඳහා අවශානා ලබාගන්න. බල හතරකින් සමන්විත පද්ධතියක් පහත දී ඇත.

කිුයා ලක්ෂපය	පිහිටුම් දෛශිකය	බලය
A	3 i	$4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$
В	2i – 2k	$3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$
С	-5 i + 11 j	$2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$
D	i + 2j + 3k	$3\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}$

මෙම පද්ධතිය O මූලයෙහි දී ${f R}$ තනි බලයක් සමග සූර්ණ දෛශිකය ${f G}=4{f i}-12{f j}+4{f k}$ වූ යුග්මයකට ඌනනය වන බව පෙන්වා ${f R}$ සොයන්න.

ඒ නයින්, පද්ධතිය විශාලත්වය $4\sqrt{22}$ වූ තනි සම්පුයුක්ත බලයකට තුලා වන බව පෙන්වත්න. මෙම සම්පුයුක්ත බලයේ කිුිියා රේඛාවේ දෛශික සමීකරණයක්, මෙම රේඛාව මත පිහිටන ලක්ෂායක පිහිටුම් දෛශිකය දක්වමින්, ලබාගන්න.

- 12. අරය a වූ වෘත්තාකාර ආස්තරයක් එහි O කේන්දුය දුව පෘෂ්ඨයේ සිට a ගැඹුරකින් පිහිටන පරිදි ho නියත සනත්වයක් සහිත දුවයක සිරස් ලෙස ගිල්වා ඇත.
 - (i) ආස්තරය මත දුව තෙරපුමෙහි විශාලත්වය $\pi a^3
 ho \ g$ බවත්,
 - (ii) ආස්තරයේ පීඩන කේන්දුය එහි සිරස් විෂ්කම්භය මත O කේන්දුයට $rac{a}{4}$ දුරක් පහළින් පිහිටන බවත් අනුකලනය මගින් පෙන්වන්න.

අරය a වූ ඝන අර්ධ ගෝලයක් එහි උච්චතම ලක්ෂාය දුව පෘෂ්ඨයේ යම්තම් ගෑවී තිබෙන පරිදි හා එහි තල මුහුණත සිරස් වන ලෙස, ho නියත ඝනත්වයක් සහිත දුවයක ගිල්වා ඇත. අර්ධ ගෝලය මත උඩුකුරු තෙරපුම සොයා තල මුහුණත මත තෙරපුම ලියා දක්වන්න.

ඒ නයින්, අර්ධ ගෝලයෙහි වකු පෘෂ්ඨය මත තෙරපුමේ විශාලත්වය, දිශාව හා කිුිිියා රේඛාව සොයන්න. (අරය a වූ ඒකාකාර ඝන අර්ධ ගෝලයක ගුරුත්ව කේන්දුය එහි සමමිතික අක්ෂය මත, කේන්දුයේ සිට $\frac{3a}{8}$ දුරකින් පිහිටන බව උපකල්පනය කරන්න.)

13. ස්කන්ධය m වූ P අංශුවක් O මූලයේ සිට $\mathbf{u} = u(\mathbf{i}\cos\alpha + \mathbf{j}\sin\alpha)$ ආරම්භක පුවේගයකින් පුක්ෂේප කරනු ලැබේ; මෙහි u හා α නියත වන අතර \mathbf{i} හා \mathbf{j} පිළිවෙළින් තිරස් හා උඩු සිරස් දිශාවලට ඒකක දෛශික වේ.

අංශුවේ පුවේගය ${\bf v}$ වන විට එහි චලිතයට $-mk{\bf v}$ පුතිරෝධ බලයක් ඇත; මෙහි k යනු ධන නියතයකි. අංශුව සඳහා චලිත සමීකරණය $(\ddot x+k\dot x){f i}+(\ddot y+k\dot y+g){f j}={f 0}$ දෛශික ආකාරයෙන් ලබාගන්න; මෙහි ${\bf r}=x{f i}+y{f j}$ යනු t කාලයේ දී අංශුවේ පිහිටුම් දෛශිකයයි.

ඉහත සමීකරණය සඳහා විසඳුම් $x=A+Be^{-kt}$ හා $y=C+De^{-kt}-rac{g}{k}t$ සංරචක ආකාරයෙන් උපකල්පනය කරමින් A,B,C හා D නියතවල අගයන් u හා lpha ඇසුරෙන් සොයන්න.

අංශුවට චලනය විය හැකි තිරස් දුරෙහි සීමාකාරී අගය **අපෝහනය** කරන්න.

k නියතය නොගිණිය හැකි නම් අංශුවේ පෙතෙහි කාටීසීය සමීකරණයත් **අපෝහනය** කරන්න.

14. සුපුරුදු අංකනයෙන්, තලයක් මත චලනය වන අංශුවක අරීය හා තීර්යක් ත්වරණ සංරචක, (r, heta) ධුැවක ඛණ්ඩාංක මගින්, පිළිවෙළින් $\ddot{r}-r\dot{ heta}^2$ හා $rac{1}{r}rac{\mathrm{d}}{\mathrm{d}t}ig(r^2\dot{ heta}ig)$ බව පෙන්වන්න.

සුමට තිරස් මේසයක් මත තබා ඇති ස්කන්ධය m වූ P අංශුවක්, මේසය මත ඇති O කුඩා සුමට සිදුරක් තුළින් යන සැහැල්ලු අවිතනෳ තන්තුවක් මගින් සමාන Q අංශුවකට ඇඳා, Q අංශුව නිදහසේ එල්ලෙන පරිදි P අල්වා තබනු ලැබේ. ආරම්භයේ දී OP හි දිග a වන අතර, V වේගයෙන් P අංශුව තන්තුවට සෘජුකෝණීව තිරස් ව පුක්ෂේප කරනු ලැබේ. t කාලයේ දී OP හි දිග r ($\geq a$) වන අතර OP එහි මුල් පිහිටීමේ සිට θ කෝණයකින් හැරී ඇතැයි සිතමු.

(i)
$$r^2\dot{\theta} = aV$$
 හා

(ii)
$$2\ddot{r} - \frac{a^2V^2}{r^3} + g = 0$$

බව පෙන්වන්න.

ඒ නයින්,
$$\dot{r}^2 = \frac{V^2}{2} \left(1 - \frac{a^2}{r^2} \right) - g(r-a)$$
 බව පෙන්වන්න.

තන්තුවේ දිග 2a ට වඩා වැඩි බව දී ඇති විට, $a \le r \le 2a$ වන පරිදි මෙම චලිතය සිදු වීම සඳහා $V = \sqrt{\frac{8ga}{3}}$ විය යුතු බවත් පෙන්වන්න.

r=2a සීමාන්තික පිහිටීමේ දී තන්තුවේ ආතතිය සොයා, මෙම පිහිටීමේ දී Q හි ත්වරණය සිරස් ව පහළට $\dfrac{2g}{3}$

15. ස්කන්ධය M හා කේන්දුය C වූ R රෝදයක් සාදා ඇත්තේ අරය 2a වූ ඒකාකාර වෘත්තාකාර තැටියකින් අරය a වූ ඒක කේන්දීය වෘත්තාකාර තැටියක් ඉවත් කිරීමෙනි. මෙම R රෝදයෙහි පිටත වෘත්තාකාර දාරයෙහි ලක්ෂායක් හරහා යන එහි තලයට ලම්බ අක්ෂයක් වටා අවස්ථිති සූර්ණය $\frac{13}{2} Ma^2$ බව පෙන්වන්න. [ස්කන්ධය m හා අරය r වූ ඒකාකාර වෘත්තාකාර තැටියක කේන්දුය හරහා යන තැටියේ තලයට ලම්බ අක්ෂයක් වටා අවස්ථිති සූර්ණය $\frac{1}{2} mr^2$ බව ඔබට උපකල්පනය කළ හැකි ය.]

R රෝදය රළු ති්රස් ගෙබිමක් මත ලිස්සීමකින් තොරව පෙරළේ. රෝදයෙහි තලය සිරස් ද ගෙබිම මත උස a වූ සිරස් පඩියකට ලම්බ ද වන අතර C කේන්දුයේ වේගය පඩිය දෙසට u වේ. (යාබද රූපය බලන්න.)

රෝදය හා පඩිය අතර ගැටුම අපුතාහස්ථ වන අතර ගැටුමට පසු පඩිය සමග ස්පර්ශ ලක්ෂාය වූ A වටා ω කෝණික වේගයකින් රෝදය ස්වකීය තලයේම හුමණය වීමට පටන් ගනී. $a\omega=\frac{9u}{26}$ බව පෙන්වා ගැටුමෙන් මොහොතකට පසු රෝදයේ ඉතිරිවන චාලක ශක්තිය සොයන්න.

ඒ නයින්, ඉරා්දයට පඩිය උඩට නැගීම සඳහා $u \geq \frac{4}{9}\sqrt{13ga}$ විය යුතු බව පෙන්වන්න.

16. (a) ගොඩනැගිල්ලක පිවිසුමෙහි රාජකාරියෙහි නියුතු මුර භටයා ළඟ සර්වසම ලෙස පෙනෙන යතුරු n ගණනක් ඇති අතර ඉන් එකකින් පමණක් ඉදිරිපස දොර ඇරේ. බලයලත් තැනැත්තකුගේ ඉල්ලීමක් මත භටයා එක යතුරකට පසුව තවත් යතුරක් වශයෙන් සසම්භාවීව, ප්‍රතිස්ථාපනයෙන් තොරව තෝරාගෙන දොර ඇරීම සඳහා උත්සාහ කරයි. "දොර ඇරීමට පෙර ඔහු උත්සාහ කරන යතුරු ගණන" සසම්භාවී වීචලාය X යැයි ගනිමු.

 $r=1,2,\ldots,n$ සඳහා $P(X=r)=rac{1}{n}$ බව පෙන්වන්න. අපේක්ෂිත යතුරු ගණන E(X) සොයා X හි විචලතාව $rac{n^2-1}{12}$ බව පෙන්වන්න.

X හි සම්මත අපගමනය 2 නම්, යතුරු ගණන සොයන්න.

(b) මහන මැෂිමක්, එය මිල දී ගත් පළමු වසර තුළ පිරික්සීම සඳහා නඩත්තු කාර්මික ශිල්පියකු X වාර ගණනක් පැමිණිය යුතු අතර, X

$$P(X=r) = \left\{ egin{array}{ll} e^{-\mu} rac{\mu^r}{r!} &, & r=0,1,2,\dots & (\mu>0) \ 0 &, & \mbox{අවෙනක් විට,} \end{array}
ight.$$

ලෙස අර්ථ දැක්වෙන පුවාසොන් වහාප්තියක් අනුගමනය කරයි. X හි මධානාසය හා විචලතාව පුකාශ කරන්න.

තවදුරටත් $\mu=4$ බව දී ඇත. පිරික්සුම් වාර 4 කට වඩා අවශා වීමේ සම්භාවිතාව සොයන්න. පළමු පිරික්සුම ගෙවීමකින් තොරව සිදු කරන අතර පසුව සිදු කරන පිරික්සුම් එක එකක් සඳහා රුපියල් 1000 බැගින් අය කරනු ලැබේ. මිල දී ගත් පළමු අවුරුද්ද තුළ මහන මැෂිමේ මධානා නඩත්තු වියදම සොයන්න.

 $oldsymbol{17.}$ (\mathbf{a}) X සසම්භාවී විචලායක f(x) සම්භාවිතා ඝනත්ව ශිුතය,

$$f(x) = \begin{cases} \frac{1}{15}e^{-\frac{x}{15}} &, & x \ge 0 &$$
නම්, $0 &,$ අවෙතක් වීට,

මගින් දෙනු ලැබේ.

- (i) E(X)=15 බව පෙන්වා Var(X) සොයන්න.
- (ii) X හි වාාප්ති ශිූතය සොයා, **ඒ නයින්** $P(X \ge 20)$ සොයන්න.
- (b) කිරි පිටි ඇසුරුම්වල බර, මධානාය $405~{
 m g}$ හා සම්මත අපගමනය $20~{
 m g}$ සහිත ව පුමත ලෙස වාාාප්තව ඇත.
 - (i) අහඹු ලෙස තෝරාගත් කිරි පිටි ඇසුරුමක බර $395~{
 m g}$ හා $420~{
 m g}$ අතර තිබීමේ සම්භාවිතාව සොයන්න.
 - (ii) කිරි පිටි ඇසුරුම් පහක් අහඹු ලෙස තෝරාගනු ලැබේ. මෙම ඇසුරුම්වලින් අඩුතරමින් දෙකක බර 395 g හා 420 g අතර තිබීමේ සම්භාවිතාව සොයන්න.

* * *

More Past Papers at