1 ύνορ

Definice 1 (Homogenní systém hydrodynamického typu). Homogenní systém hydrodynamického typu je systém parciálních diferenciálních rovnic tvaru

$$\frac{\partial u^i}{\partial t} = f_j^{i\alpha}(u) \frac{\partial u^j}{\partial r^\alpha}, \quad i = 1, \dots, N, \quad \alpha = 1, \dots, d.$$
 (1)

prop:transformace-A

Tvrzení 1 (Transformace $f_j^{i\alpha}$). Provedeme-li záměnu proměnných $u^i\mapsto v^a$ vztahem

$$u^i = u^i(v^1, \cdots, v^N), \tag{2}$$

pak se funkce $f_j^{i\alpha}$ transformují jako

$$f_b^{a\alpha}(v) = \frac{\partial v^a}{\partial u^i} \frac{\partial u^j}{\partial v^b} f_j^{i\alpha}(u) \,. \tag{3}$$

Důkaz. Stačí rozepsat

$$\frac{\partial u^i}{\partial t}(v) = \frac{\partial u^i}{\partial v^a} \frac{\partial v^a}{\partial t} \,, \tag{4}$$

$$\frac{\partial u^j}{\partial x^\alpha}(v) = \frac{\partial u^j}{\partial v^b} \frac{\partial v^b}{\partial x^\alpha} \,, \tag{5}$$

takže

$$\frac{\partial u^i}{\partial v^a} \frac{\partial v^a}{\partial t} = \frac{\partial u^j}{\partial v^b} f_j^{i\alpha}(v(u)) \frac{\partial v^b}{\partial x^\alpha} \tag{6}$$

a odtud

$$\frac{\partial v^{a}}{\partial t} = \underbrace{\frac{\partial v^{a}}{\partial u^{i}} \frac{\partial u^{j}}{\partial v^{b}} f_{i\alpha}^{i\alpha}(v(u))}_{f_{i\alpha}^{h\alpha}(v)} \underbrace{\frac{\partial v^{b}}{\partial x^{\alpha}}}.$$
 (7)

Označme tedy M^N prostor (varietu) s lokálními souřadnicemi u^1, \cdots, u^N . Pak lze na tvrzení 1 nahlížet jako na změnu souřadnic na M^N a funkce $f_j^{i\alpha}$ jsou tenzory typu (1,1) pro každé zvolené α . Pro případ, že $f_j^{i\alpha}$ jsou ve speciálním tvaru, zavedeme bohatší geometrii na M^N .

Definice 2. 1. Poissonova závorka hydrodynamického typu funkcionálů I_1 a I_2 je definována vztahem

$$\{I_1, I_2\} = \int dx \left[\frac{\delta I_1}{\delta u^q(x)} f^{qp} \frac{\delta I_2}{\delta u^p(x)} \right] , \qquad (8)$$

kde

$$A = (A^{qp}) = \left(g^{qp}(u)\frac{\mathrm{d}}{\mathrm{d}x^{\alpha}} + b_s^{qp\alpha}(u)\frac{\partial u^s}{\partial x^{\alpha}}\right),\tag{9}$$

přičemž $g^{ij\alpha}$ a $b_k^{ij\alpha}$ jsou dané funkce, $i,j,k=1,\ldots,N$ a $\alpha=1,\ldots,d$. Speciálně

$$\left\{u^{i}(x), u^{j}(y)\right\} = g^{ij\alpha}[u(x)]\delta_{\alpha}(x-y) + b_{k}^{ij\alpha}[u(x)]u_{\alpha}^{k}(x)\delta(x-y), \tag{10}$$

^{*} Kontakt: miroslav@burysek.eu

2. Hamiltonián hydrodynamického typu je definován vztahem

$$H[u] = \int_{\mathbb{R}^d} h(u(x)) d^d x, \qquad (11)$$

kde h[u] je nezávislá na u_{α} , $u_{\alpha\beta}$. Funkci h(u) nazýváme hamiltonovská hustota.

3. Řekneme, že systém je hamiltonovský, jestliže lze psát

$$u_t^i(x) = \left\{ u^i(x), H \right\} := \left[g^{ij\alpha} [u(x)] \frac{\partial^2 h(u)}{\partial u^j \partial u^k} + b_k^{ij\alpha} [u(x)] \frac{\partial h(u)}{\partial u^j} \right] u_\alpha^k(x), \quad i = 1, \dots, d, \tag{12}$$

kde H[u] je funkcionál hydrodynamického typu a h je hamiltonovská hustota.

JEDNODIMENZIONÁLNÍ PŘÍPAD 2

Uvažujme nyní jednodimenzionální případ pro pevně zvolené α. Zkoumáme tedy hamiltonovský systém

$$\frac{\partial u^{i}}{\partial t}(t,x) = \left[g^{ij}[u(t,x)]\frac{\partial^{2}h(u)}{\partial u^{j}\partial u^{k}} + b_{k}^{ij}[u(t,x)]\frac{\partial h(u)}{\partial u^{j}}\right]\frac{\partial u^{k}}{\partial x}(t,x)$$
(13)

a Poissonova závorka hydrodynamického typu má tvar

$$\{I_1, I_2\} = \int dx \left[\frac{\delta I_1}{\delta u^q(x)} A^{qp} \frac{\delta I_2}{\delta u^p(x)} \right], \quad A^{qp} = \left(g^{qp}(u) \frac{d}{dx} + b_s^{qp}(u) \frac{\partial u^s}{\partial x} \right), \tag{14}$$

speciálně

$$\left\{u^{i}(x), u^{j}(y)\right\} = g^{ij}[u(t, x)]\delta'(x - y) + b_{k}^{ij}[u(t, x)]\frac{\partial u^{k}}{\partial x}\delta(x - y).$$

$$= eq:Poisson1D$$
(15)

Definice 3. Řekneme, že Poissonova závorka hydrodynamického typu je nedegenerovaná, jestliže $\det(g^{ij}) \neq 0$.

Podle tvrzení 2 na následující straně níže je nedegenerovanost závorky invariantní vůči záměnně proměnných.

Definice 4. Nechť je matice $(g^{ij}(u))$ nedegenerovaná. Definujme funkce $\Gamma^i_{jk}(u)$ vztahem

$$b_k^{ij}(u) = -g^{is}(u)\Gamma_{sk}^j(u), \quad i,j,k,s = 1,\dots,N.$$
 eq:definice-Gamma (16)

Dále uvidíme, že volba značení g^{ij} a Γ^i_{jk} není náhodná, ale že tyto funkce skutečně reprezentují metriku a složky afinní konexe na M^N . V důkazu mnoha tvrzení bude užitečný následující trik.

lemma:delta

Lemma 1 (O identitě s deltami). Platí

$$f(y)\delta'(x-y) = f(x)\delta'(x-y) + f'(x)\delta(x-y). \tag{17}$$

Důkaz. Přes distribuce.

$$\langle f(x)\delta'(x-y), \psi(x) \rangle = \langle \delta'(x-y), f(x)\psi(x) \rangle =$$

$$= -\langle \delta(x-y), f'(x)\psi(x) \rangle - \langle \delta(x-y), f(x)\psi'(x) \rangle =$$

$$= -f'(y)\psi(y) - f(y)\langle \delta(x-y), \psi'(x) \rangle =$$

$$= -\langle f'(x)\delta(x-y), \psi(x) \rangle + f(y)\langle \delta'(x-y), \psi(x) \rangle =$$

$$= \langle f(y)\delta(x-y) - f'(x)\delta'(x-y), \psi(x) \rangle,$$

odtud

$$\langle f(y)\delta'(x-y), \psi(x) \rangle = \langle f'(x)\delta(x-y), \psi(x) \rangle + \langle f(x)\delta'(x-y), \psi(x) \rangle . \tag{18}$$

Geometrie prostoru M^N

V tomto paragrafu si povšimneme, že na prostoru M^N lze zavést tensorová pole a afinní konexi, což nám dále umožní formulovat tvrzení o ekvivalenci hamiltonovské a riemannovské struktury.

prop:transoformace

Tvrzení 2 (O transformaci proměnných). *Uvažujme transformaci* $u^i \mapsto v^i$ danou vztahem

$$v^i = v^i(u^1, \dots, u^N)$$
, $i = 1, \dots, N$, eq:transform (19)

která je diffeomorfismem třídy C². Pak platí následující tvrzení:

1. Poissonovy závorky se transformují jako tensory typu (2,0), tj.

2. Koeficienty $g^{ij}(u)$ se transformují jako tensory typu (0,2), tj.

$$g^{pq}(v) = \frac{\partial v^p}{\partial u^i} \frac{\partial v^q}{\partial u^j} g^{ij}[u(v)], \quad p,q = 1, \dots, N.$$
 eq:transformace-metrika (21)

3. Koeficienty Γ^i_{jk} se transformují jako Christoffelovy symboly (složky afinní konexe), tj.

$$\Gamma_{qr}^{p}(v) = \frac{\partial v^{p}}{\partial u^{i}} \frac{\partial u^{j}}{\partial v^{q}} \frac{\partial u^{k}}{\partial v^{r}} \Gamma_{jk}^{i}(u) + \frac{\partial v^{p}}{\partial u^{i}} \frac{\partial^{2} u^{i}}{\partial v^{q} \partial v^{r}}.$$
 eq:transformace-konexe (22)

Důkaz. Přímým dosazením do definice

$$\left\{v^{p}(u^{i}(x)), v^{q}(u^{j}(y))\right\} = \int dx' \int dy' \underbrace{\frac{\delta v^{p}}{\delta u^{i}(x')}}_{\frac{\partial v^{p}}{\partial u^{i}}(x')\delta(x-x')} \left\{u^{i}(x'), u^{j}(y')\right\} \underbrace{\frac{\delta v^{q}}{\delta u^{j}(y')}}_{\frac{\partial v^{q}}{\partial u^{j}}(y')\delta(y-y')} = \tag{23}$$

$$= \frac{\partial v^p}{\partial u^i}(x) \frac{\partial v^q}{\partial u^j}(y) \left\{ u^i(x), u^j(y) \right\}. \tag{24}$$

2. Rozepišme transformaci závorky (20) pomocí (15)

$$g^{pq}[v(u(x))]\delta'(x-y) + b_s^{pq}[v(u(x))] \frac{\partial v^s}{\partial u^k}(x) \frac{\partial u^k}{\partial x} \delta(x-y) = \frac{\partial v^p}{\partial u^i}(x) \frac{\partial v^q}{\partial u^j}(y) \left[g^{ij}[u(x)]\delta'(x-y) + b_k^{ij}[u(x)] \frac{\partial u^k}{\partial x} \delta(x-y) \right] \cdot \underbrace{eq: dosad \\ (25)}$$

V dalším pro přehlednost označme

$$T_k^a(x) := \frac{\partial v^a}{\partial u^k}(x) \,. \tag{26}$$

Na pravé straně rovnice (25) vyjádříme $T^q_j(y)\delta'(x-y)$ pomocí lemmatu 1 na předchozí straně. Tím převedeme všechny funkce do proměnné x, což už dále nebudeme explicitně vypisovat. Dostaneme

$$g^{pq}(v)\delta'(x-y) + b_n^{pq}(v)T_j^n \frac{\partial u^j}{\partial x}\delta(x-y) = T_i^p T_j^q g^{ij}(u)\delta'(x-y) + \left(\frac{\partial^2 v^q}{\partial u^j \partial u^k} + T_i^p T_j^q b_k^{ij}\right) \frac{\partial u^k}{\partial x}\delta(x-y). \tag{27}$$

Porovnáním členů s δ' dostaneme vztah pro transformaci metriky (21).

$$b_n^{pq}(v)T_k^n = b_k^{ij}(u)T_i^p T_j^q + g^{ij}(u)T_i^p \frac{\partial^2 v^q}{\partial u^i \partial u^k}$$
 (28)

a po rozpisu pomocí (16)

$$-g^{ps}(v)\Gamma_{sn}^q(v)T_k^n = -g^{il}(u)\Gamma_{lk}^j(u)T_i^pT_j^q + g^{ij}(u)T_i^p\frac{\partial^2 v^q}{\partial u^i\partial u^k}.$$
 (29)

Na levé straně využijeme transformaci metriky (21) a dostaneme

$$-g^{ij}(u)\Gamma^{q}_{sm}(v)T^{p}_{i}T^{s}_{j}T^{m}_{k} = -g^{ij}(u)\Gamma^{l}_{jk}T^{p}_{i}T^{q}_{l} + g^{ij}(u)\frac{\partial^{2}v^{q}}{\partial u^{i}\partial u^{k}}T^{p}_{i}$$
(30)

a po zkrácení $g^{ij}(u)T_i^p$

$$\Gamma^l_{jk}(u)T^q_l = \Gamma^q_{sm}(v)T^s_jT^m_k + \frac{\partial^2 v^q}{\partial u^i\partial u^k}.$$
 (31)

V posledním kroku přenásobíme inverzní matic
í $(T^{-1})^a_q$ a dostaneme

$$\Gamma_{jk}^{a}(u) = \Gamma_{sm}^{q}(v) \frac{\partial v^{s}}{\partial u^{j}} \frac{\partial v^{m}}{\partial u^{k}} \frac{\partial u^{a}}{\partial v^{q}} + \frac{\partial^{2} v^{q}}{\partial u^{i} \partial u^{k}} \frac{\partial u^{a}}{\partial v^{q}}, \tag{32}$$

což je hledaný transformační vztah (22).

2.2 Ekvivalence riemannovské a poissonovské struktury

theorem1:ekvivalence

Věta 1 (Ekvivalence pseudoriemannovské a hamiltonovské struktury). Nechť $\det(g^{ij}) \neq 0$. Pak je vztahem (15) definována Poissonova závorka splňující antisymetrii, Leibnizovo pravidlo a Jacobiho identitu právě tehdy, když jsou splněny následující podmínky:

- 1. g^{ij} je symetrický tensor, tj. definuje pseudo-riemannovskou metriku na prostoru M^N .
- 2. Koeficienty Γ^i_{ik} jsou složky Levi-Civitovy konexe příslušející metrice g^{ij} .
- 3. Odpovídající konexe má nulovou torzi a křivost.

Důsledek. Existují lokální souřadnice $w^i = w^i(u^1, \dots, u^N)$, $i = 1, \dots, N$ takové, že

$$\tilde{g}^{ij}(w) = \text{konst}, \quad b_k^{ij}(w) = 0.$$
 (33)

V těchto souřadnicích je Poissonova závorka konstantní:

$$\left\{w^{i}(x), w^{j}(y)\right\} = \tilde{g}^{ij}\delta'(x-y). \tag{34}$$

Úplný lokální invariant Poissonových závorek je signatura pseudo-eukleidovské metriky \tilde{g}^{ij} .

Co se tímhle myslí?

Důkaz věty 1. Krok 1: Antisymetrie Poissonovy závorky implikuje symetrii metriky a kompatibilitu s Γ^i_{jk} Poissonova závorka je antisymetrická, tj.

$$\left\{u^{i}(x), u^{j}(y)\right\} + \left\{u^{j}(y), u^{i}(x)\right\} = 0.$$
 (35)

Rozepišme druhou závorku

$$\left\{u^{j}(y), u^{i}(x)\right\} = g^{ji}[u(y)]\delta'(y-x) + b_{k}^{ji}[u(y)]\frac{\partial u^{k}}{\partial y}\delta(y-x). \tag{36}$$

Využijeme vztahů

$$\delta(y-x) = \delta(x-y), \quad \delta'(y-x) = -\delta'(x-y) \tag{37}$$

a lemmatu 1 na straně 2 aplikovaného na $g^{ji}[u(y)]\delta'(y-x)$. Dostaneme

$$\left\{u^{j}(y), u^{i}(x)\right\} = -g^{ji}[u(x)]\delta'(x-y) - \frac{\partial g^{ji}}{\partial u^{k}}[u(x)]\frac{\partial u^{k}}{\partial x}\delta(x-y) + b_{k}^{ji}[u(x)]\frac{\partial u^{k}}{\partial x}\delta(x-y). \tag{38}$$

Celkově

$$0 = \left\{ u^i(x), u^j(y) \right\} + \left\{ u^j(y), u^i(x) \right\} = \left[g^{ij}[u(x)] - g^{ji}[u(x)] \right] \delta'(x - y) + \left[b_k^{ij} - \frac{\partial g^{ji}}{\partial u^k} + b_k^{ji} \right] \frac{\partial u^k}{\partial x} \delta(x - y) . \tag{39}$$

Výraz na pravé straně bude nulový právě tehdy, jestliže

$$g^{ij} = g^{ji}$$
, eq:Th.Novikov-symetrie (40)

$$\frac{\partial g^{ij}}{\partial u^k} = b_k^{ij} + b_k^{ji}.$$
 eq:Th.Novikov-konexe (41)

Rovnice (40) říká, že g^{ij} je symetrický tenzor, dle předpokladu det $g^{ij} \neq 0$ je nedegenerovaný, tj. definuje metriku na varietě M^N . Rovnice (41) dává

$$\frac{\partial g^{ij}}{\partial u^k} + g^{is} \Gamma^j_{sk} + g^{sj} \Gamma^i_{sk} = 0, \tag{42}$$

takže Γ^k_{ii} dává konexi kompatibilní s metrikou g^{ij} .

Krok 2: Jacobiho identita je ekvivalentní nulové torzi a křivosti

Abychom dokázali, že je nulová křivost a torze, využijeme Jacobiho identity. Položme

$$J^{ijk}(x,y,z) = \left\{ \left\{ u^i(x), u^j(y) \right\}, u^k(z) \right\} + \left\{ \left\{ u^j(y), u^k(z) \right\}, u^i(x) \right\} + \left\{ \left\{ u^k(z), u^i(x) \right\}, u^j(y) \right\}. \tag{43}$$

Musíme ukázat, že je $J^{ijk}(x,y,z)=0$ ve smyslu distribucí, tedy

$$\left\langle J^{ijk}(x,y,z), p_i(x)q_j(y)r_k(z) \right\rangle = 0 \quad \text{pro } p_i, q_j, r_k \in \mathcal{D}'(R)$$
 (44)

a protože se jedná o regulární distribuci, ověřujeme

$$\int_{\mathbb{R}^3} J^{ijk}(x, y, z) p_i(x) q_j(y) r_k(z) \, dx dy dz = 0.$$
 (45)

Takový integrál lze převést na jednodimenzionální integrál

$$\int_{\mathbb{R}} \sum_{\sigma,\tau=0}^{2} A_{\sigma\tau}^{ijk} p_i q_j^{(\sigma)} r_k^{(\tau)} dx = 0, \qquad (46)$$

kde koeficienty $A_{\sigma \tau}^{ijk}$ jsou nezávislé na p,q,r. Obdržíme tedy systém rovnic

$$A_{\sigma\tau}^{ijk} = 0 \quad \forall i, j, k = 1, \dots, N; \quad 0 \le \sigma, \tau \le 2.$$

Rád bych si funkce napsal explicitně, určitě se v nich objeví derivace druhého řádu někde? Ale nedaří se mi to sestavit.

Přepišme tyto rovnice explicitně. Jedna z těchto rovnic dává

$$A_{02}^{ijk} = b_s^{ij} g^{sk} - b_s^{kj} g^{si} = -g^{ip} \Gamma_{ps}^j g^{sk} + g^{km} \Gamma_{ms}^j g^{si} = 0,$$
(48)

odtud (po přenásobení $g_{ai}g_{bk}$)

$$\Gamma_{ab}^{j} - \Gamma_{ba}^{j} = 0. \tag{49}$$

Tento vztah říká, že jsou koeficienty afinní konexe symetrické, tj. příslušná konexe má nulovou torzi. Další z rovnic dává

$$A_{00}^{ijk} = B_p^{ijk}(u)u_{xx}^p + C_{pq}^{ijk}(u)u_x^p u_x^q = 0,$$
(50)

kde

Je v původním článku typo??

$$B_p^{ijk} = (b_{s,p}^{jk} - b_{p,s}^{jk})g^{si} + b_s^{ij}b_p^{sk} - b_s^{ik}b_p^{sj}.$$
(51)

Nulovost B_p^{ijk} dává nulovou křivost, jak plyne z rozpisu

$$B_{p}^{ijk} = -g^{is} \left(g_{,p}^{jm} \Gamma_{ms}^{k} + g^{jm} \Gamma_{ms,p}^{k} - g_{,s}^{jm} \Gamma_{mp}^{k} - g^{jm} \Gamma_{mp,s}^{k} \right) + g^{im} \Gamma_{ms}^{j} g^{sn} \Gamma_{np}^{k} - g^{im} \Gamma_{ms}^{k} g^{sn} \Gamma_{np}^{j} =$$
 (52)

$$=g^{is}g^{jn}\left(\Gamma^m_{np}\Gamma^k_{ms}-\Gamma^m_{ns}\Gamma^k_{mp}+\Gamma^k_{mp,s}-\Gamma^k_{ms,p}\right)+g^{is}g^{nm}\left(\Gamma^j_{np}\Gamma^k_{ms}-\Gamma^j_{ns}\Gamma^k_{mp}\right)+g^{im}g^{sn}\left(\Gamma^j_{ms}\Gamma^k_{np}-\Gamma^k_{ms}\Gamma^j_{np}\right)= \quad (53)$$

$$=-g^{is}g^{jn}\left(\Gamma^{m}_{ns}\Gamma^{k}_{mp}-\Gamma^{m}_{np}\Gamma^{k}_{ms}+\Gamma^{k}_{ms,p}-\Gamma^{k}_{mp,s}\right)=\tag{54}$$

$$=-g^{is}g^{jn}R_{nps}^{k}. (55)$$

Takže křivost metriky g^{ij} je nulová. Tím jsme dokázali, že pokud je vztahem (15) definována Poissonova závorka, jsou splněny

Krok 3: Souřadnice, ve kterých je závorka triviální, dávají postačitelnost

Jestliže mají koeficienty afinní konexe Γ^k_{ij} nulovou torzi i křivost, existují souřadnice $w^i=w^i(u^1,\ldots,u^N)$ pro $i=1,\ldots,N$ takové, že $g^{ij} = \text{konst}$ a $b_k^{ij} = 0$. V těchto souřadnicích je Poissonova závorka konstantní

$$\left\{ w^{i}(x), w^{j}(y) \right\} = \tilde{g}^{ij} \delta'(x - y). \tag{56}$$

Jacobiho identita, antisymetrie i Leibnizovo pravidlo jsou pro tuto závorku triviálně splněny. Tím jsme ukázali postačitelnost podmínek (1)-(3) pro vlastnosti Poissonovy závorky.

Kdy je hydrodynamický systém hamiltonovský?

Nyní můžeme explicitně přepsat podmínky, při kterých je obecný systém hydrodynamických rovnic hamiltonovský vůči nějaké nedegenerované Poissonově závorce. Nejprve si povšimneme, že funkce $f_i^i(u)$ lze přepsat pomocí Laplaceova–Beltramiho operátoru.

Tvrzení 3 (O zápisu pomocí Laplaceova-Beltramiho operátoru). Mějme hamiltonovský systém rovnic

$$\frac{\partial u^i}{\partial t} = f_k^i(u) \frac{\partial u^k}{\partial x} , \quad f_k^i(u) = g^{ij}(u) \frac{\partial^2 h}{\partial u^j \partial u^k} - g^{is}(u) \Gamma_{sk}^j(u) \frac{\partial h}{\partial u^j} . \quad \begin{array}{l} \text{eq:hamiltonovsky-system} \\ \text{(57)} \end{array}$$

Pak lze psát

$$f_k^i(u) = \nabla^i \nabla_k h(u) \,, \tag{58}$$

kde ∇_i je Levi-Civitova kovariantní derivace metriky g_{ij} a $\nabla^i = g^{is} \nabla_s$.

Důkaz. Přímým dosazením

$$\nabla_k h(u) = \frac{\partial h}{\partial u^k} \,, \tag{59}$$

$$\nabla^{i}\nabla_{k}h(u) = g^{is}\nabla_{s}\frac{\partial h}{\partial u^{k}} = g^{is}\left(\frac{\partial^{2}h}{\partial u^{s}\partial u^{k}} - \Gamma^{j}_{sk}\frac{\partial h}{\partial u^{j}}\right) = f^{i}_{k}(u). \tag{60}$$

Pomocí tohoto zápisu snadno můžeme sepsat postačující podmínky hamiltonovskosti. Důkaz plyne ihned z teorému 1 na straně 4.

Věta 2 (Postačující podmínka hamitonovskosti systému). Systém $u_t^i = f_i^i(u)u_x^j$ je hamiltonovský právě tehdy, když existuje nedegenerovaná metrika $g^{ij}(u)$, jejíž afinní konexe má nulovou křivost a splňuje

$$g_{ij}f_j^k = g_{jk}f_i^k$$
, eq: gf=gf

$$\nabla_i f_i^k = \nabla_j f_i^k$$
.

Speciálně vztah (62) říká, že ∇_i má nulovou torzi.

Rekonstrukce metriky z $f_i^i(u)$?

Máme-li zadaný hamiltonovský systém s maticí $f_i^i(u)$, lze metriku $g^{ij}(u)$ zkonstruovat jednoznačně? Tuto otázku nyní vyřešíme pro $N \geq 3$.

Označme λ_{α} vlastní čísla matice $f_i^i(u)$. (Mohou být komplexní.) Předpokládejme, že jsou navzájem různá. Označme odpovídající bázi vlastních vektorů $e_{\alpha}(u)$. Definujme koeficient $c_{\alpha\beta}^{\gamma}(u)$ vztahem

$$[e_{\alpha}, e_{\beta}] = c_{\alpha\beta}^{\gamma} e_{\gamma} \,, \tag{63}$$

kde $[\cdot,\cdot]$ značí obyčejný komutátor funkcí. Předpokládejme dále, že pro navzájem různé α,β,γ je $c_{\alpha\beta}^{\gamma}$ různé od nuly .

Definice 5. Matici $f_i^i(u)$ splňující podmínky výše nazveme hamiltonovskou maticí.

Věta 3 (O rekonstrukci metriky). Nechť $N \geq 3$. Nechť je dána hamiltonovská matice $f_i^i(u)$. Pak lze zkonstruovat nedegenerovanou metriku $g^{ij}(u)$ s nulovou křivostí jednoznačně až na násobek konstantou.

Tomuhle nerozumím a myslím si, že v článku mají typo.

Důkaz. Z rovnice (61) je vidět, že v bázi e_{α} je metrika g^{ij} diagonální.

Opravdu?

V této bázi pak bude mít rovnice (62) tvar (zde se nesčítá přes opakované indexy)

$$\partial_{\alpha}\lambda_{\beta}\delta_{\beta}^{\gamma} - \partial_{\beta}\lambda_{\alpha}\delta_{\alpha}^{\gamma} + (\Gamma_{\alpha\beta}^{\gamma} - \Gamma_{\beta\alpha}^{\gamma})\lambda_{\gamma} + \Gamma_{\beta\alpha}^{\gamma}(\lambda_{\beta} - \lambda_{\alpha}) = 0.$$
 (64)

Zde ∂_{α} je derivace ve směru e_{α} a konexe $\Gamma_{\alpha\beta}^{\gamma}$ jsou definované rovnostmi

$$\nabla_{e_{\beta}}e_{\alpha} = \sum \Gamma_{\alpha\beta}^{\gamma}e_{\gamma}. \tag{65}$$

Normalizujme nyní vlastní vektory e_{α} tak, aby v této bázi byla metrika jednotková matice, tj. $g^{\alpha\beta} = \delta^{\alpha\beta}$. Výraz $c_{\alpha\beta}^{\gamma}$ má význam torze (z definice) a platí

$$c_{\beta\alpha}^{\gamma} = \Gamma_{\alpha\beta}^{\gamma} - \Gamma_{\beta\alpha}^{\gamma} \,. \tag{66}$$

VÍCEROZMĚRNÝ PŘÍPAD 3

Ve vícerozměrném případě máme lineární bundle metrik a s nimi spojených konexí. Pro každou záměnu prostorových proměnných $x^{\alpha}\mapsto c^{\alpha}_{\beta}x^{\beta}$ pro $\alpha=1,\cdots,d$ splňující det $c^{\alpha}_{\beta}=1$ se metrika $g^{ij\alpha}$ a konexe $b^{ij\alpha}_k$ transformují jako komponenty vektoru.

Definice 6. Řekneme, že bundle metrik $g^{ij\alpha}$ je silně nedegenerovaný, jestliže pro nějakou sadu c_{α} je lineární kombinace $c_{\alpha}g^{ij\alpha}$ nedegenerovaná matice.

Věta 4. Nechť je hamiltonovský systém silně nedegenerovaný.

1. Pro N=1 lze Poissonovu závorku redukovat na konstantní formu

$$g^{ij}(u) = \tilde{g}^{ij}(u). \tag{67}$$

2. Pro $N \geq 2$ lze Poissonovu závorku redukovat na lineární formu

$$g^{ij\alpha}(u) = g_k^{ij\alpha} u^k + \tilde{g}^{ij\alpha}, \quad \alpha = 1, \cdots, d,$$
 (68)

(69)

kde koeficienty $g_k^{ij\alpha}=b_k^{ij\alpha}+b_k^{ij\alpha},$ $\tilde{g}^{ij\alpha}$ a $b_k^{ij\alpha}$ jsou konstantní.