Modulo 08 Transformada de Laplace

Transformada de Laplace

Objetivos:

- Expandir os resultados obtidos para FT
- Analisar sinais contínuos que não são absolutamente integráveis
- Função de transferência Transformada de Laplace da resposta ao impulso de um sistema

Determinação da Transf. de Laplace

Seja

$$\triangleright s = \sigma + j\omega$$

 $ightharpoonup e^{st}$ uma exponencial complexa

Podemos escrever e^{st} como:

$$e^{st} = e^{\sigma t} e^{j\omega t}$$

= $e^{\sigma t} (\cos(\omega t) + j \sin(\omega t))$

Exponenciais complexas e o plano s

$$x(t) = Ae^{\sigma t} \cdot e^{j\omega_0 t} = Ae^{(\sigma + j\omega_0)t} = Ae^{st}$$

amortecimento

Freqüência complexa

crescimento exponencial

(amplitude crescente)

Fator de escala "A" não representado no plano s

Freqüências complexas e o plano s

$$x(t) = e^{\sigma t} \cdot \cos(\omega_0 t) = \frac{1}{2} \left[e^{(\sigma + j\omega_0)t} + e^{(\sigma - j\omega_0)t} \right]$$

Esboce as formas de onda de x(t) para cada caso

$$e^{st} = e^{(\sigma+j\omega)t} = e^{\sigma t}e^{j\omega t}$$

Transformada de Fourier (σ =0)

Determinação da Transf. de Laplace

Determinação da Transf. de Laplace A FT de um sinal x(t) é:

$$X(j\omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

desde que x(t) satisfaça a condição:

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty.$$

Muitos sinais não atendem esta condição

Determinação da Transf. de Laplace

"Forçando" que x(t) seja absolutamente integrável: $x(t)e^{-\sigma t}$, sendo $\sigma \gg 0$ amortecimento" Aplicando a transformada de Fourier, temos

$$\int_{-\infty}^{\infty} [x(t)e^{-\sigma t}]e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(t)e^{-st}dt = X(\sigma + j\omega).$$

como $s = \sigma + j\omega$. Então, $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$

plano s

▶ LT = FT se $\sigma = 0$, i.e. $s = j\omega$:

$$X(s)|_{s=j\omega} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = X(j\omega).$$

Transformada (bilateral) de Laplace $(-\infty \le t \le \infty)$

9.3 Transformada inversa de Laplace

Considerando

$$X(\sigma + j\omega) = \mathfrak{F}\{x(t)e^{-\sigma t}\} = \int_{-\infty}^{+\infty} x(t)e^{-\sigma t}e^{-j\omega}dt$$

Segue que

$$\chi(t)e^{-\sigma t} = \mathfrak{F}^{-1}\{X(\sigma+j\omega)\} = \frac{1}{2\pi}\int_{-\infty}^{+\infty}X(\sigma+j\omega)e^{j\omega t}\,d\omega$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + j\omega) e^{(\sigma + j\omega)t} d\omega.$$

Integral - de contorno

ao longo de reta paralela ao eixo jω

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st} ds.$$

$$s = \sigma + j\omega$$

$$ds = j \cdot d\omega$$

$$(\sigma = fixo)$$

- ► A Transformada de Fourier transforma um sinal x(t) em 1-D em um espectro de frequência $X(j\omega)$ em 1-D
- A Transformada de Laplace transforma um sinal x(t) em 1 − D em uma nova função da variável s, X(s) em 2 − D. Um plano complexo chamado de plano-s:
 - ightharpoonup os valores de σ são apresentados no eixo horizontal e os valores de $j\omega$ apresentados no eixo vertical.

http://cnyack.homestead.com/files/alaplace/lt2rpm.htm

http://cnyack.homestead.com/files/alaplace/laptr3.htm

http://cnyack.homestead.com/files/alaplace/laptr2.htm

Applet para traçar gráficos

- http://www.math.ksu.edu/~bennett/jomacg/
- Variável "s" é chamada de "z" no site

Planos - (e Fourier)

Região de Convergência

Lembrando o desenvolvimento anterior:

$$X(\sigma + j\omega) = \int_{-\infty}^{\infty} \underbrace{x(t)e^{-\sigma t}}_{\text{nova função}} e^{-j\omega t} dt$$

Para que a integral exista é preciso que:

$$\int_{-\infty}^{\infty} |x(t)e^{-\sigma t}| dt < \infty$$

 O conjunto de valores de σ para os quais a integral converge é chamado Região de Convergência (RDC)

Exemplo: Região de Convergência

 $\mathbf{x}(t) = e^t \mathbf{u}(t)$ não possui FT, mas, devido ao termo $e^{-\sigma t}$, podemos calcular a LT

$$x(t)e^{-\sigma t} = e^t u(t)e^{-\sigma t} = e^{(1-\sigma)t}u(t)$$

Se $\sigma > 1$, o sinal é absolutamente integrável.

Determine a LT do sinal

$$x(t) = e^{at}u(t)$$

sendo a > 0

Solução

Usando a definição, temos:

$$X(s) = \int_{-\infty}^{\infty} e^{at} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-(s-a)t} dt$$

$$= -\frac{1}{s-a} e^{-(s-a)t} \Big|_{0}^{\infty}, \text{ fazendo } s = \sigma + j\omega$$

$$= -\frac{1}{\sigma + j\omega - a} e^{-(\sigma - a)t} e^{-j\omega t} \Big|_{0}^{\infty}$$

Logo, para $\sigma > a$:

$$X(s) = -\frac{1}{\sigma + j\omega - a}(0 - 1) = \frac{1}{s - a}$$

RDC para $x(t) = e^{at}u(t)$, com a > 0

Determine a LT do sinal

$$x(t) = -e^{at}u(-t)$$

sendo a > 0

Solução

Usando a definição, temos:

$$X(s) = \int_{-\infty}^{\infty} -e^{at}u(-t)e^{-st}dt = -\int_{-\infty}^{0} e^{-(s-a)t}dt$$

$$= \frac{1}{s-a}e^{-(s-a)t}\Big|_{-\infty}^{0}, \text{ fazendo } s = \sigma + j\omega$$

$$= \frac{1}{\sigma + j\omega - a}e^{-(\sigma - a)t}e^{-j\omega t}\Big|_{-\infty}^{0}$$

Logo, para $\sigma < a$:

$$X(s) = \frac{1}{\sigma + j\omega - a}(1 - 0) = \frac{1}{s - a}$$

RDC para $x(t) = -e^{at}u(-t)$, com a > 0

Exercício

Determinar a TL do sinal x(t) = u(t - 5). Usando a definição, temos:

$$X(s) = \int_{-\infty}^{\infty} u(t-5)e^{-st}dt = \int_{5}^{\infty} e^{-st}dt$$
$$= -\frac{1}{s}e^{-st}\Big|_{5}^{\infty}$$

Para que a integral convirja, é necessário que Re(s) > 0 ou $\sigma > 0$. Logo:

$$X(s) = \frac{1}{s}e^{-5s}$$

Solução

Encontre a transformada de Laplace do impulso unitário.

$$F(s) = \int_{-\infty}^{\infty} \delta(t)e^{-st}dt = \int_{0^{-}}^{0^{+}} \delta(t)dt = 1$$

Exercício

Determinar a TL do sinal $x(t) = e^{j\omega_0 t}u(t)$. Usando a definição, temos:

$$X(s) = \int_{-\infty}^{\infty} e^{j\omega_0 t} u(t) e^{-st} dt = \int_{0}^{\infty} e^{j\omega_0 t} e^{-st} dt$$
$$= -\frac{1}{s - j\omega_0} e^{-(s - j\omega_0)t} \Big|_{0}^{\infty}$$

Para que a integral convirja, é necessário que Re(s) > 0 ou $\sigma > 0$. Logo:

$$X(s) = \frac{1}{s - j\omega_0}$$

Ex. 9.3
$$x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$$
.

$$\begin{array}{c}
\updownarrow \mathcal{L} \\
X(s) = \frac{3}{s+2} - \frac{2}{s+1} & e^{-at} \cdot u(t) & \stackrel{\mathcal{L}}{\leftrightarrow} & \frac{1}{s+a} < Re(s) > -a \\
\Re e(s) > -2 & \Re e(s) > -1
\end{array}$$

Somando as frações parciais e sobrepondo as RDCs

$$X(s) = \frac{s-1}{s^2+3s+2}, \Re(s) > -1$$

Ex. 9.4
$$x(t) = e^{-2t}u(t) + e^{-t}(\cos 3t)u(t)$$

$$e^{-at} \cdot u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a} < Re(s) > -a$$

$$x(t) = \left[e^{-\frac{1}{2}t} + \frac{1}{2}e^{-(\frac{1-3}{3}j)t} + \frac{1}{2}e^{-(\frac{1+3}{3}j)t}\right]u(t)$$

$$\frac{1}{s+2} \frac{1}{s+(1-3j)} \frac{1}{s+(1+3j)} \frac{Re(s+1-3j)>0}{\sigma+1>0\to\sigma>-1}$$

$$Re(s)>-2 \qquad Re(s)>-1 \qquad Re(s)>-1$$

Somando as frações parciais e sobrepondo as RDCs

$$X(s) = \frac{2s^2 + 5s + 12}{\left(s^2 + 2s + 10\right)\left(s + 2\right)}$$

(Re(s) > -1

Par de transformadas	Sinal	Transformada	RDC
1	δ (t)	1	Todo s
2	u(t)	$\frac{1}{s}$	(Re{s} > 0
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	(Re{s} > -a
7	-e ^{-αt} u (−t)	$\frac{1}{s+\alpha}$	(Re{s} < -a
10	$\delta(t-T)$	e ^{-sI}	Todo s
11	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	(Re{s} > 0
12	$[\operatorname{sen} \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	(Re{s} > 0
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	(Re{s} > -a
14	$[e^{-\alpha t}\operatorname{sen}\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	(Re{s} > -a

Alguns pares de Transformadas de Laplace (ver pág. 414

Plano s: Zeros e Pólos

$$X(s) = \frac{(s+1)((s+4)^2+4)}{(s+3)(s-4)((s-2)^2+9)} = \frac{N(s)}{D(s)}$$

- ▶ Zeros (∘): raízes de N(s) = 0
- Pólos (x): raízes de D(s) = 0

Ex 9.3 (com pólos e zeros)

$$x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t).$$

$$\updownarrow \mathcal{L}$$

$$X(s) = \frac{s-1}{s^2 + 3s + 2}, \Re\{s\} > -1$$

raízes dos polinômios

Pólos

$$\begin{cases} s_1 + s_2 = -3 \\ s_1 \cdot s_2 = 2 \end{cases} \Rightarrow \begin{cases} s_1 = -1 \\ s_2 = -2 \end{cases}$$

zero em s
$$\rightarrow \infty$$

se s $\rightarrow \infty$, $X(s) \rightarrow 0$

(não indicado no plano s)

Ex 9.4 (com pólos e zeros)

$$x(t) = e^{-2t}u(t) + e^{-t}(\cos 3t)u(t)$$

$$\downarrow \mathcal{L}$$

$$2s^2 + 5s + 12$$

$$(s^2 + 2s + 10)(s + 2)$$

$$S_1 + S_2 = -2$$

$$S_1 \cdot S_2 = 10$$

$$\Rightarrow S_{1,2} = 1 \pm j3$$

$$\Rightarrow S_{1,2} = \frac{-5 \pm \sqrt{-71}}{4} \approx -1,25 \pm j2,11$$

plano s

Rec(s) > -1

Zero em s $\rightarrow \infty$

Por quê?

Pólos e zeros múltiplos, em s = 0 e em s $\rightarrow \infty$

Ex 9.5
$$x(t) = \delta(t) - \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t)$$

$$\updownarrow \mathcal{L}$$

$$e^{-at} \cdot u(t) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{1}{s+a} < Re(s) > -a$$

$$X(s) = 1 - \frac{4}{3} \frac{1}{s+1} + \frac{1}{3} \frac{1}{s-2} = \frac{(s-1)^2}{(s+1)(s-2)}, \quad \Re\{s\} > 2$$

Tem pólo ou zero quando s →∞?

RDC não inclui o eixo j ω : não existe $\mathcal{F}\{x(t)\}$

9.2 Propriedades da Região de convergência (RDC)

Propriedade 1: A RDC de X(s) consiste de faixas paralelas ao eixo $j\omega$ no plano s.

Propriedade 2: Para transformadas de Laplace racionais, a RDC não contém quaisquer polos.

Propriedade 3: Se x(t) tem duração finita e é absolutamente integrável, então a RDC é todo o plano s. demonstração pág. 396

Propriedade 4: Se x(t) for lateral direito e se a reta $\Re\{s\} = \sigma_0$ está na RDC, então todos os valores de s para os quais $\Re\{s\} > \sigma_0$ também estarão na RDC.

demonstração pág. 397

Propriedades da região de convergência (RDC)

Propriedade 5: Se x(t) for lateral esquerdo e se a reta $\Re\{s\} = \sigma_0$ estiver na RDC, então todos os valores de s para os quais $\Re\{s\} < \sigma_0$ também estarão na RDC.

demonstração pág. 397-398

Propriedade 6: Se x(t) for bilateral e se a reta ($\Re s(s) = \sigma_0$ estiver na RDC, então a RDC consistirá em uma faixa no plano s que inclui a reta ($\Re s(s) = \sigma_0$)

demonstração pág. 397-398

Propriedades da região de convergência (RDC)

O que ocorre se b < 0?

Propriedade 7: Se a transformada de Laplace X(s) de x(t) for racional, então sua RDC é limitada por polos ou se estende até o infinito. Além disso, nenhum polo de X(s) está contido na RDC.

Ex. 9.8
$$X(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$

plano s

Possibilidades:

9.3 Transformada inversa de Laplace

Considerando

$$X(\sigma + j\omega) = \mathfrak{F}\{x(t)e^{-\sigma t}\} = \int_{-\infty}^{+\infty} x(t)e^{-\sigma t}e^{-j\omega}dt$$

Segue que

$$\chi(t)e^{-\sigma t} = \mathfrak{F}^{-1}\{X(\sigma+j\omega)\} = \frac{1}{2\pi}\int_{-\infty}^{+\infty}X(\sigma+j\omega)e^{j\omega t}\,d\omega$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + j\omega) e^{(\sigma + j\omega)t} d\omega.$$

Integral - de contorno

ao longo de reta paralela ao eixo jω

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st} ds.$$

 $s = \sigma + j\omega$ $ds = j \cdot d\omega$ $(\sigma = fixo)$

x(t) pode ser recuperado com qualquer σ (fixo) dentro da RDC!

Transformada inversa de Laplace

Cálculo direto pode ser elaborado e não é usado no curso

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds.$$

 Se X(s) é racional → expandir em soma de termos de 1^a. ordem (frações parciais)

$$X(s) = \frac{N(\omega)}{D(\omega)} \equiv \sum_{i=1}^{m} \frac{A_i}{s + a_i} \quad \stackrel{\mathcal{L}}{\longleftrightarrow} \quad \sum_{i=1}^{m} (\pm) A_i e^{-a_i t} u(\pm t)$$

$$Re\{s\} > + a_i \qquad Re\{s\} < -a_i$$
causal anticausal

$$A = [(s+1)X(s)]|_{s=-1} = 1$$

Ver Ex. 9.10 e 9.11: mesmo X(s) com RDCs diferentes

9.5 Propriedades da Transformada de Laplace

- Semelhantes às da Transformada de Fourier de tempo contínuo
- Regiões de convergência (RDC) devem ser analisadas
- Pode haver cancelamentos de pólos e zeros em transformações de sinais
- Pode haver interseções vazias de RDCs

Seção	Propriedade	Sinal	Transformada de Laplace	RDC
		x(f)	X(s)	R
		x ₁ (t)	X,(s)	R ₁
		र्भू र्ग	X ₂ (s)	R ₂
9.5.1	Linearidade	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	Pelo menos $R_1 \cap R_2$
9.5.2	Deslocamento no tempo	$x(t-t_0)$	$e^{-st_0}X(s)$	R
9.5.3	Deslocamento no domínio s	$e^{s_0t}x(t)$	$X(s-s_0)$	Versão deslocada de R (ou seja, s está na RDC se $s-s_0$ estiver em R)
9.5.4	Mudança de escala no tempo	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	RDC com mudança de escala (ou seja, s está na RDC se s/a estiver em R
9.5.5	Conjugação	x*(t)	X*(s*)	R
9.5.6	Convolução	$x_1(t) * x_2(t)$	X ₁ (s)X ₂ (s)	Pelo menos $R_1 \cap R_2$
9.5.7	Diferenciação no domínio do tempo	$\frac{d}{dt}x(t)$	sX(s)	Pelo menos R
9.5.8	Diferenciação no domínio s	-tx(t)	$\frac{d}{ds}X(s)$	R
9.5.9	Integração no domínio do tempo	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	Pelo menos $R \cap \{\text{Ree } \{s\} > 0\}$

Propriedades das Transformadas (ver pág. 413)

Deslocamento em s

Se
$$x(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X(s)$$
, com RDC = R
Então $e^{s_0 t} x(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X(s - s_0)$, com RDC = $R + \Re e\{s_0\}$.

Se
$$X(s)$$
 tem pólo em $s=a$
então $X(s-s_0)$ tem pólo em $s-s_0=a \rightarrow s=a+s_0$

Desloc. no tempo: RDC não altera
$$x(t-t_0) \leftarrow \mathcal{L} \rightarrow e^{-st_0} X(s)$$
, com RDC = R.

Mudança de escala de tempo

Se
$$x(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X(s)$$
, com RDC = R
Então $x(at) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right)$, com RDC $R_1 = aR$.

Convolução no tempo

Se

$$x_1(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X_1(s)$$
, com RDC = R_1 e $x_2(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X_2(s)$, com RDC = R_2

(pode ser maior que $R_1 \cap R_2$)

Exemplo

$$X_1(s) = \frac{s+1}{s+2}, \quad \text{(Re}\{s\} > -2$$

$$X_1(s)X_2(s) = 1$$

$$X_2(s) = \frac{s+2}{s+1}, \quad \text{(Re}\{s\} > -1)$$
RDC \(\epsilon\) o plano s inteiro

Diferenciação em s

Se
$$x(t) \leftarrow \mathcal{L} \times X(s)$$
, com RDC = R

Então

$$-tx(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{dX(s)}{ds}$$
, com RDC = R.

Ex. 9.14 Se
$$e^{-at}u(t) \leftarrow \frac{\mathfrak{L}}{s+a}, \Re\{s\} > -a$$
,

Então $te^{-at}u(t) \leftarrow \frac{\mathfrak{L}}{s+a} - \frac{d}{ds} \left[\frac{1}{s+a}\right] = \frac{1}{(s+a)^2}, \Re\{s\} > -a$.

Em geral (Ex. 9.14)
$$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t) \stackrel{\ell}{\longleftrightarrow} \frac{d^n}{ds^n}X(s) = \frac{1}{(s+a)^n}, \Re\{s\} > -a$$

Diferenciação no tempo

Se
$$x(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X(s)$$
, com RDC = R

Então

$$\frac{dx(t)}{dt} \leftarrow \mathcal{L} \longrightarrow sX(s)$$
, com RDC contendo R.

Exemplo

$$x(t) \stackrel{\varrho}{\longleftrightarrow} X(s) = \frac{1}{s} \frac{1}{(s+a)}, \Re e\{s\} > 0$$

$$\frac{d}{dt}x(t) \stackrel{\ell}{\longleftrightarrow} sX(s) = \frac{1}{(s+a)}, \Re\{s\} > -a$$

Integração no tempo

Se
$$x(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X(s)$$
, com RDC = R

Então
$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{\mathfrak{L}} \frac{1}{s} X(s), \text{ com RDC contendo} \\ R \cap \{\Re e\{s\} > 0\}.$$

Exemplo

$$x(t) \overset{\ell}{\leftrightarrow} X(s)$$

$$x(t) \overset{\ell}{\leftrightarrow} X(s)$$

$$x(t) = ?$$

$$X(s) = ?$$

$$X(s) = ?$$

Teorema do valor final

$$\lim_{t\to\infty}x(t)=\lim_{s\to 0}sX(s)$$

x(t) = 0, t < 0 e limite finito com $t \rightarrow 0$

Prova
$$\frac{d}{dt}$$

Prova
$$\frac{d}{dt}x(t) \stackrel{\ell}{\leftrightarrow} sX(s)$$

$$\cdot \cdot \int_{0}^{\infty} \left[\frac{d}{dt} x(t) \right] \cdot e^{-st} dt = sX(s)$$

$$\lim_{s\to 0} \int_{0}^{\infty} \left[\frac{d}{dt} x(t) \right] \cdot e^{-st} dt = \lim_{s\to 0} \left[sX(s) \right]$$

$$\int_{0-}^{\infty} \frac{dx(t)}{dt} dt = x(\infty) - x(0) = \lim_{s \to 0} \left[s \cdot X(s) \right] \longrightarrow \left[x(\infty) = \lim_{s \to 0} \left[s \cdot X(s) \right] \right]$$

Teorema do valor inicial

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

x(t) = 0, t < 0 e sem impulsos/singularidades em t = 0

Prova
$$\frac{d}{dt}x(t) \stackrel{\ell}{\leftrightarrow} sX(s)$$

$$x(0^+) + \int_{0+}^{\infty} \left[\frac{d}{dt} x(t) \right] \cdot e^{-st} dt = sX(s)$$

sem descontinuidades em t = 0

$$x(0^{+}) + \lim_{s \to \infty} \int_{0+}^{\infty} \left[\frac{d}{dt} x(t) \right] \cdot e^{-st} dt = \lim_{s \to \infty} sX(s)$$

$$= 0$$

$$x(0^{+}) = \lim_{s \to \infty} sX(s)$$

 $x(0^+)$

 $t \rightarrow 0$ pela direita (valores positivos de t)

9.7 – Análise e caracterização de SLITs

$$h(t)$$

$$X(s) \longrightarrow H(s) \longrightarrow Y(s) = H(s) \cdot X(s)$$

$$x(t) \qquad y(t) = h(t) * x(t)$$

Função de Transferência ou Função de Sistema

Causalidade e H(s) no plano s:

h(t) = 0 se t < 0 ... RDC é um semiplano direito

Se *H*(*s*) é racional, uma RDC à direita é seguramente de um sistema causal

Ex. 9.17

$$h(t) = e^{-t} \cdot u(t)$$
 (causal)

$$H(s) = \frac{1}{s+1}, \quad (\text{Re}\{s\} > -1)$$

(racional)

(semiplano direito)

Ex. 9.18

$$h(t) = e^{-|t|}$$

(não causal)

$$x(t) = -e^{-b|t|}$$
 Ex. 9.7

$$x(t) = e^{-bt} \cdot u(-t) + e^{-bt} \cdot u(t)$$

Lat. esquerdo Lat. direito

$$\begin{array}{ccc} & \mathcal{L} & \mathcal{L} \\ \frac{-1}{s-b} & & \end{array}$$

$$\Re\{s\} < +b$$
 $\Re\{s\} > -b$, (ver Ex. 9.1)

(racional)

Causalidade e RDC

Qual significado de e^s ?

$$H(s) = \frac{e^s}{s+1}, \quad (\Re e\{s\} > -1)$$

(não é racional)

RDC: semiplano direito

h(t) é causal?

$$h(t) = ? \qquad e^{-t}u(t) \xleftarrow{\mathfrak{L}} \frac{1}{s+1}, \qquad (\operatorname{Re}\{s\} > -1).$$

$$\underbrace{e^{-(t+1)}u(t+1)}_{\text{(não causal)}} \underbrace{\frac{\mathcal{L}}{s+1}}_{\text{(nāo causal)}} \underbrace{\frac{e^s}{s+1}}_{\text{(Ne(s))}} \underbrace{\text{(Re(s))}}_{\text{(nain)}} > -1$$

Note:

RDC à direita só é seguramente de um sistema causal se H(s) for racional

Estabilidade e a transformada de Fourier

A RDC de um sistema estável inclui o eixo $j\omega$

Justificativa

SLIT estável:
$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

∴ se *h*(*t*) satisfaz as <u>outras duas</u> condições de Dirichlet, existe *H*(*j*ω)

Pág. 182

- x(t) tenha um número finito de máximos e mínimos em qualquer intervalo finito.
- x(t) tenha um número finito de descontinuidades em qualquer intervalo finito. Além do mais, cada uma dessas descontinuidades precisa ser finita.

Análise e caracterização de SLITs no plano s: estabilidade

Ex. 9.20
$$H(s) = \frac{s-1}{(s+1)(s-2)} = \frac{A^{\frac{2}{3}}}{s+1} + \frac{B^{\frac{1}{3}}}{s-2}$$
 RDC = ?

RDC: Possibilidades:

Causal, instável

$$h(t) = \left(\frac{2}{3}e^{-t} + \frac{1}{3}e^{2t}\right)u(t)$$

Não causal (bilateral) estável Anticausal, instável

$$h(t) = -\left(\frac{2}{3}e^{-t} + \frac{1}{3}e^{2t}\right)u(-t)$$

$$h(t) = \frac{2}{3}e^{-t}u(t) - \frac{1}{3}e^{2t}u(-t)$$

SLIT causal e estável, H(s) racional: todos os pólos no semiplano esquerdo

Eq. diferenciais c/ coeficientes constantes

Ex. 9.23

$$\frac{dy(t)}{dt} + 3y(t) = x(t)$$

$$\uparrow$$

$$\downarrow$$

$$sY(s) + 3Y(s) = X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{s+3}$$

Apenas a equação diferencial não especifica completamente o sistema (Seção 2.4)

Assumindo causalidade

$$h(t) = e^{-3t}u(t)$$

Assumindo anticausalidade

$$h(t) = -e^{-3t}u(-t)$$

(instável: sem eixo $j\omega$)

$$RC\frac{dy(t)}{dt} + LC\frac{d^{2}y(t)}{dt^{2}} + y(t) = x(t)$$

$$\uparrow \\ c$$

$$H(s) = \frac{1/LC}{s^2 + (R/L)s + (1/LC)}$$

Verifique que, se R, L, C > 0

A parte real dos pólos é negativa

∴ O sistema é estável

9.8 Diagramas de blocos – Interconexão de SLITs

Linearidade

Convolução no tempo

$$h(t) = h_1(t) * h_2(t)$$

$$H(s) = H_1(s) \cdot H_2(s)$$

Sistemas com realimentação

$$Y(s) = H_1(s) \cdot E(s)$$

$$Y(s) = H_1(s) \cdot [X(s) - Z(s)]$$

$$Y(s) = H_1(s) \cdot [X(s) - H_2(s) \cdot Y(s)]$$

$$Y(s)[1+H_2(s)\cdot H_2(s)] = H_1(s)\cdot X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{H_1(s)}{1 + H_1(s) \cdot H_2(s)}$$

Expressão fundamental. "Pendure na parede do quarto"

Ex. 9.28

$$H(s) = \frac{1}{s+3}$$
 causal

Com realimentação

Com Eq. diferencial

$$H(s) = \frac{Y(s)}{X(s)} \to sY(s) + 3Y(s) = X(s)$$

$$\frac{dy(t)}{dt} + 3y(t) = x(t),$$

$$\frac{dy(t)}{dt} = -3y(t) + x(t)$$

$$H(s) = \frac{\frac{1}{s}}{1 + 3 \cdot \frac{1}{s}}$$

$$\equiv \frac{H_1(s)}{1 + H_1(s) \cdot H_2(s)}$$

Diagrama em blocos na "forma direta"

Ex. 9.30

$$H(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s^2 + 3s + 2}$$
causal
$$\uparrow_{\mathcal{E}}$$

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t) \qquad \Rightarrow \frac{d^2y(t)}{dt^2} = -3\frac{dy(t)}{dt} - 2y(t) + x(t)$$

Ex. 9.30 (continuação)

$$H(s) = \frac{1}{(s+1)(s+2)} = \left(\frac{1}{s+1}\right)\left(\frac{1}{s+2}\right)^{s}$$

$$= \left(\frac{\frac{1}{s}}{1+1\cdot\frac{1}{s}}\right) \left(\frac{\frac{1}{s}}{1+2\cdot\frac{1}{s}}\right)$$

Ex. 9.30 (continuação)

$$H(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} + \frac{1}{s+2} = \frac{1}{s+1} - \frac{1}{s+2}$$

$$= \left(\frac{\frac{1}{s}}{1+1 \cdot \frac{1}{s}}\right) - \left(\frac{\frac{1}{s}}{1+2 \cdot \frac{1}{s}}\right)$$

$$= \frac{1}{s+1} - \frac{1}{s+2}$$

$$= \frac{1}{s+1} - \frac{1}{s+2}$$

$$= \frac{1}{s+1} - \frac{1}{s+2}$$

$$= \frac{1}{s+1} - \frac{1}{s+2}$$

Diagrama em blocos na "forma paralela"

9.9 Transformada de Laplace unilateral

 Particularmente útil para SLITs causais especificados por equações diferencias c/ coeficientes constantes e com condições iniciais não nulas.

$$\mathcal{UL}\{x(t)\} = \int_{0-}^{\infty} x(t) \cdot e^{-st} \cdot dt$$
Permite descontinuidades em $t = 0$

- Sinais diferentes para t < 0 mas iguais para t ≥ 0 têm transformadas unilaterais idênticas (mas as transformadas bilaterais são diferentes)
- Causalidade → RDC da transformada unilateral é sempre um semiplano direito

	Propriedade -	Sinal 2012	Transformada de Laplace unilateral
Propriedades de \mathcal{UL} (p. 428) semelhantes às da transformada bilateral \mathcal{L}		x(t) x(t)	Stall RDC é um semiplano
		x ₂ (t)	ന്യൂട direito
	Linearidade	$ax_1(t) + bx_2(t)$	$a \mathfrak{X}_1(s) + b \mathfrak{X}_2(s)$
	Deslocamento no domínio s	$e^{s_0t}x(t)$	$\mathfrak{X}(s-s_0)$
	Mudança de escala no tempo	x(at), a > 0	$\frac{1}{a} \mathfrak{L} \left(\frac{s}{a} \right)$
	Conjugação	x-(t)	x-(s)
	Convolução (supondo que $x_1(t)$ e $x_2(t)$ sejam identicamente zero para $t < 0$)	$x_1(t) * x_2(t)$	\mathfrak{X}_1 (s) \mathfrak{X}_2 (s)
	Diferenciação no domínio do tempo	$\frac{d}{dt}x(t)$	s X(s) - x(0⁻) Atenção!
	Diferenciação no domínio s	-tx(t)	$\frac{d}{ds}\mathfrak{N}(s)$
	Integração no domínio do tempo	$\int_{0-}^{t} x(\tau) d\tau$	$\frac{1}{s}\mathfrak{X}(s)$

Teoremas dos valores inicial e final

Se x(t) não contém impulsos ou singularidades de ordem mais elevada em t = 0, então

$$x(0^+) = \lim_{s \to \infty} s \, \mathfrak{X}(s).$$
$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} s \, \mathfrak{X}(s)$$

Exemplos

$$\overline{x(t) = \cos(\omega_0 t) \cdot u(t)} = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) \cdot u(t)$$

$$\mathcal{X}(s) = \frac{1}{2} \frac{1}{s + j\omega_0} + \frac{1}{2} \frac{1}{s - j\omega_0} \longrightarrow \mathcal{X}(s) = \frac{s}{s^2 + \omega_0^2}$$

De forma similar,
$$sen(\omega_0 t) \cdot u(t) \stackrel{ue}{\longleftrightarrow} \frac{\omega_0}{s^2 + \omega_0^2}$$

$$x(t) = e^{-at} \cdot cos(\omega_0 t) \cdot u(t)$$

$$\mathcal{X}(s) = \frac{1}{2} \frac{1}{s - (a - j\omega_0)} + \frac{1}{2} \frac{1}{s - (a + j\omega_0)}$$

Exemplos

$$x(t) = e^{-at} \cdot \cos(\omega_0 t) u(t)$$

$$e^{-at} x_1(t) \xleftarrow{ue} \mathcal{X}_1(s+a)$$

$$\mathcal{X}(s) = \frac{s+a}{(s+a)^2 + \omega_0^2}$$

De forma similar,

$$e^{-at} \cdot sen(\omega_0 t) \cdot u(t) \stackrel{ue}{\longleftrightarrow} \frac{\omega_0}{(s+a)^2 + \omega_0^2}$$

Exemplos

$$x(t) = A \cdot u(t)$$

$$A \xrightarrow[0]{} t$$

$$\mathcal{X}(s) = \int_{0-}^{\infty} A \cdot e^{-st} \cdot dt = \left. \frac{-Ae^{-st}}{s} \right|_{t=0^{-}}^{\infty} \rightarrow \left. \mathcal{X}(s) = \frac{A}{s} \right| RDC = ?$$

$$x(t) = At \cdot u(t)$$

$$A \xrightarrow[0]{} t$$

$$tx(t) \leftarrow \frac{ue}{ds} \rightarrow -\frac{d}{ds} \mathcal{X}(s) = -\frac{d}{ds} \frac{A}{s} \rightarrow \mathcal{X}(s) = \frac{A}{s^2}$$

Eq. diferenciais e a transformada UL

Na UL posso introduzir facilmente as condições inicias (não preciso supor repouso inicial)

SLIT causal:
$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$$

$$\frac{dy(t)}{d(t)} \longleftrightarrow sY(s) - y(0^-)$$

$$\frac{dy(t)}{d(t)} \longleftrightarrow sY(s) - y(0^{-})$$

Condições iniciais: $y(0^-) = \beta$, $y'(0^-) = \gamma$.

$$Seja x(t) = \alpha u(t)$$

$$s^2 \Im(s) - \beta s - \gamma + 3s \Im(s) - 3\beta + 2\Im(s) = \frac{\alpha}{s}$$

Condições iniciais:
$$y(0^{-}) = \beta$$
, $y'(0^{-}) = \gamma$.

Seja $x(t) = \alpha u(t)$

$$s^{2}y(s) - \beta s - \gamma + 3s y(s) - 3\beta + 2y(s) = \frac{\alpha}{s}$$

$$\frac{d^{2}y(t)/dt^{2}}{2\pi u}$$

$$s[sy(s) - y(0^{-})] - \dot{y}(0^{-})$$

$$= s^{2}y(s) - sy(0^{-}) - \dot{y}(0^{-})$$

$$= s^{2}y(s) - sy(0^{-}) - \dot{y}(0^{-})$$

$$\Im(s) = \frac{\beta(s+3)}{(s+1)(s+2)} + \frac{\gamma}{(s+1)(s+2)} + \frac{\alpha}{s(s+1)(s+2)}$$

Entrada nula e estado (inicial) nulo

$$\Im(s) = \underbrace{\beta(s+3)}_{(s+1)(s+2)} + \underbrace{\frac{\alpha}{(s+1)(s+2)}}_{(s+1)(s+2)} + \underbrace{\frac{\alpha}{s(s+1)(s+2)}}_{resposta ao estado (inicial) nulo;}$$

$$\beta = \gamma = 0$$

$$\rightarrow resposta forçada/solução particular$$

$$\Im(s) = \frac{\beta(s+3)}{(s+1)(s+2)} + \frac{\gamma}{(s+1)(s+2)} + \frac{0}{s(s+1)(s+2)}$$
resposta à entrada nula
$$\Rightarrow \text{resposta natural/solução homogênea}$$
Entrada nula
$$x(t) = \alpha u(t) = 0$$

Transformada unilateral de Laplace e equações diferenciais

Exercícios recomendados

9.3, 9.5 9.10, 9.11, 9.17, 9.18, 9.20

9.21, 9.22, 9.25, 9.29, 9.31, 9.35, 9.36, 9.37, 9.40, 9.49

9.4 Cálculo geométrico da transformada de Fourier a partir do diagrama de pólos e zeros

Análise de vetores no plano S

$$Seja \ X(s) = \frac{1}{s-2}$$

Sistema de 1^a. ordem

$$X(s) = \frac{1}{s + \frac{1}{2}}, \quad \Re e[s] > -\frac{1}{2}$$

$$x(j\omega) = \frac{1}{|j\omega| + |1/2|}$$

$$|X(j\omega)|^2 = \frac{1}{|\omega|^2 + (1/2)^2}$$

Transformada de Fourier $(s=j\omega)$ a partir de pólos e zeros

Sistema de 1^a. Ordem (generalização)

$$h(t) = \frac{1}{\tau} e^{-t/\tau} u(t)$$

$$H(s) = \frac{1}{s\tau + 1} \quad \Re\{s\} > -\frac{1}{\tau}$$

$$X(j\omega) = \frac{\frac{1}{\tau}}{(j\omega) - \frac{-1}{\tau}}$$

Sistemas de 2^a. ordem: função de transferência

$$x(t) = m\frac{d^2y(t)}{dt^2} + ky(t) + b\frac{dy(t)}{dt}$$

$$\therefore X(s) = ms^2 Y(s) + kY(s) + bsY(s)$$

$$\rightarrow X(s) = Y(s)[ms^2 + bs + k]$$

$$\rightarrow \frac{Y(s)}{X(s)} = H(s) = \frac{1}{ms^2 + bs + k}$$

$$\to H(s) = \frac{1/m}{s^2 + (b/m)s + (k/m)}$$

Definindo: $\omega_n = \sqrt{k/m}$ $\varsigma = \frac{b}{2\sqrt{k \cdot m}}$

$$k \cdot H(s) = \frac{k/m}{s^2 + (b/m)s + (k/m)}$$

Trabalhando...

$$k \cdot H(s) = \frac{\omega_n^2}{s^2 + (2\zeta\omega_n)s + \omega_n^2}$$
Postante Forma usual

constante

Sistemas de 2^a. ordem

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\equiv \frac{\omega_n^2}{(s - c_1)(s - c_2)}$$

$$c_{1,2} = \varsigma \cdot \omega_n \pm \omega_n \sqrt{\varsigma^2 - 1}$$

Para $\zeta > 1$, c_1 e c_2 são reais

$$\downarrow$$
 $H(s) = \text{produto de}$
2 termos de 1^a. ordem

Transformada de Fourier a parte de pólos e zeros

$$H(s) = \frac{\omega_n^2}{(s - c_1)(s - c_2)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \omega_n = \sqrt{k/m} \quad \varsigma = \frac{b}{2\sqrt{k \cdot m}}$$

Para:
$$0 < \varsigma < 1$$
 $\rightarrow c_{1,2} = \varsigma \cdot \omega_n \pm j\omega_n \sqrt{|\varsigma^2 - 1|}$

Amortecimento subcrítico

Raízes = complexas e conjugadas

Interpretação gráfica Em frações parciais:

$$H(j\omega) = \frac{A}{j\omega - c_1} + \frac{B}{j\omega - c_2}$$

Sistemas de 2ª. ordem com pólos complexos conjugados

Transformada de Fourier a partir de pólos e zeros no plano s

Passa-tudo (\neq Ex. 4.35)

$$H(s) = k \frac{s-a}{s+a}$$
, RDC (causal) = ?

$$H(j\omega) = k \frac{j\omega - a}{j\omega + a} = 1$$

$$\angle H(j\omega) = \theta_1 - \theta_2 = (\pi - \theta_2) - \theta_2 = \pi - 2\theta_2$$

$$\theta_2 = tg^{-1}(\omega/a)$$

Transformada de Fourier $(s=j\omega)$ a partir de pólos e zeros