Algebraic Geometry 2 Tutorial session 2

Lecturer: Rami Aizenbud TA: Shai Shechter

May 1, 2020

Definition (Presheaf)

Let X be a topological space. A presheaf $\mathcal F$ of abelian groups on X consists of the following data:

- lacktriangledown for any open subset $U\subseteq X$, an abelian group $\mathcal{F}(U)$, and
- ② for every inclusion $V \subseteq U$ of open sets in X, a (restriction) homomorphism $\operatorname{res}_{UV}: \mathcal{F}(U) \to \mathcal{F}(V)$,

such that the following hold:

- $\mathbf{2} \operatorname{res}_{UU} = \mathbf{1}_{\mathcal{F}(U)}$, and
- **③** $res_{UW} = res_{VW} \circ res_{UV}$ for any $W \subseteq V \subseteq U$ open.

Definition (Presheaf)

Let X be a topological space. A presheaf $\mathcal F$ of abelian groups on X consists of the following data:

- **①** for any open subset $U \subseteq X$, an abelian group $\mathcal{F}(U)$, and
- ② for every inclusion $V \subseteq U$ of open sets in X, a (restriction) homomorphism $\operatorname{res}_{UV}: \mathcal{F}(U) \to \mathcal{F}(V)$,

such that the following hold:

- $\mathbf{Q} \operatorname{res}_{UU} = \mathbf{1}_{\mathcal{F}(U)}$, and
- ③ $res_{UW} = res_{VW} \circ res_{UV}$ for any $W \subseteq V \subseteq U$ open.

The elements of \mathcal{F} are called *sections* of \mathcal{F} over U.

Definition (Presheaf)

Let X be a topological space. A presheaf $\mathcal F$ of abelian groups on X consists of the following data:

- lacktriangle for any open subset $U\subseteq X$, an abelian group $\mathcal{F}(U)$, and
- ② for every inclusion $V\subseteq U$ of open sets in X, a (restriction) homomorphism $\operatorname{res}_{UV}:\mathcal{F}(U)\to\mathcal{F}(V)$,

such that the following hold:

- $\mathbf{Q} \operatorname{res}_{UU} = \mathbf{1}_{\mathcal{F}(U)}$, and
- ③ $res_{UW} = res_{VW} \circ res_{UV}$ for any $W \subseteq V \subseteq U$ open.

The elements of \mathcal{F} are called *sections* of \mathcal{F} over U. It is sometimes convenient to write $\mathcal{F}(U) = \Gamma(U, \mathcal{F})$.

Equivalently, a presheaf is a contravariant functor

$$\mathcal{F}: \underline{\mathbf{Open}}(X) \to \underline{\mathbf{AbGps}},$$

where $\mathbf{Open}(X)$ is the category of open sets of X with

$$\operatorname{Hom}(V,U) = \begin{cases} \{i_{VU}\} & \text{if } V \subseteq U \\ \emptyset & \text{otherwise.} \end{cases}$$

Definition (Sheaf)

A presheaf \mathcal{F} on X is a *sheaf* if it satisfies the following additional axioms, for any $U \subseteq X$ open with open cover $U = \bigcup_{\alpha} V_{\alpha}$:

- **①** (locality) for any $s \in \mathcal{F}(U)$, if $s \mid_{V_{\alpha}} = 0$ for all α then s = 0, and
- ② (gluing) given sections $s_{\alpha} \in \mathcal{F}(U_{\alpha})$ such that $s_{\alpha} \mid_{V_{\alpha} \cap V_{\beta}} = s_{\beta} \mid_{V_{\alpha} \cap V_{\beta}}$ for all α, β , there exists $s \in \mathcal{F}(U)$ such that $s \mid_{V_{\alpha}} = s_{\alpha}$ for all α .

Definition (Sheaf)

A presheaf \mathcal{F} on X is a *sheaf* if it satisfies the following additional axioms, for any $U \subseteq X$ open with open cover $U = \bigcup_{\alpha} V_{\alpha}$:

- **①** (locality) for any $s \in \mathcal{F}(U)$, if $s \mid_{V_{\alpha}} = 0$ for all α then s = 0, and
- ② (gluing) given sections $s_{\alpha} \in \mathcal{F}(U_{\alpha})$ such that $s_{\alpha} \mid_{V_{\alpha} \cap V_{\beta}} = s_{\beta} \mid_{V_{\alpha} \cap V_{\beta}}$ for all α, β , there exists $s \in \mathcal{F}(U)$ such that $s \mid_{V_{\alpha}} = s_{\alpha}$ for all α .

Given an inclusion $V \subseteq U$ of open sets and $s \in \mathcal{F}(U)$, we abbreviate $s \mid_{V} = \operatorname{res}_{UV}(s)$.

The sheaf axioms can be described by a sequence:

$$1 \to \mathcal{F}(\mathit{U}) \xrightarrow{\mathsf{s} \mapsto (\mathsf{s}|_{\mathit{V}_{\alpha}})_{\alpha}} \prod_{\alpha} \mathcal{F}(\mathit{V}_{\alpha}) \xrightarrow{(\mathsf{s}_{\alpha})_{\alpha} \mapsto (\mathsf{s}_{\alpha}|_{\mathit{V}_{\alpha,\beta}} - \mathsf{s}_{\beta}|_{\mathit{V}_{\alpha,\beta}})_{\alpha,\beta}} \prod_{\alpha.\beta} \mathcal{F}(\mathit{V}_{\alpha,\beta})$$

where $V_{\alpha,\beta}:=V_{\alpha}\cap V_{\beta}$.

The sheaf axioms can be described by a sequence:

$$1 \to \mathcal{F}(U) \xrightarrow{s \mapsto (s|_{V_{\alpha}})_{\alpha}} \prod_{\alpha} \mathcal{F}(V_{\alpha}) \xrightarrow{(s_{\alpha})_{\alpha} \mapsto (s_{\alpha}|_{V_{\alpha,\beta}} - s_{\beta}|_{V_{\alpha,\beta}})_{\alpha,\beta}} \prod_{\alpha,\beta} \mathcal{F}(V_{\alpha,\beta})$$

where $V_{\alpha,\beta} := V_{\alpha} \cap V_{\beta}$.

The locality axiom is equivalent to exactness at $\mathcal{F}(U)$, and the gluing axioms is equivalent to exactness at $\prod_{\alpha} \mathcal{F}(V_{\alpha})$.

The sheaf axioms can be described by a sequence:

$$1 \to \mathcal{F}(U) \xrightarrow{s \mapsto (s|_{V_{\alpha}})_{\alpha}} \prod_{\alpha} \mathcal{F}(V_{\alpha}) \xrightarrow{(s_{\alpha})_{\alpha} \mapsto (s_{\alpha}|_{V_{\alpha,\beta}} - s_{\beta}|_{V_{\alpha,\beta}})_{\alpha,\beta}} \prod_{\alpha,\beta} \mathcal{F}(V_{\alpha,\beta})$$

where $V_{\alpha,\beta} := V_{\alpha} \cap V_{\beta}$.

The locality axiom is equivalent to exactness at $\mathcal{F}(U)$, and the gluing axioms is equivalent to exactness at $\prod_{\alpha} \mathcal{F}(V_{\alpha})$.

Remark. In different contexts, e.g. if \mathcal{F} is a sheaf of sets, the last arrow is often replaced by an equalizer arrow.

Let X be a topological space.

Let X be a topological space.

• The assignments $U \mapsto C(U)$, $C_b(U)$ and $C_c(U)$ (continuous, bounded and compactly supported functions on $U \subseteq X$) give rise to presheaves on X, with res defined by restriction of functions.

Let X be a topological space.

• The assignments $U \mapsto C(U)$, $C_b(U)$ and $C_c(U)$ (continuous, bounded and compactly supported functions on $U \subseteq X$) give rise to presheaves on X, with res defined by restriction of functions. $U \mapsto C(U)$ is also a sheaf. $U \mapsto C_b(U)$ is not a sheaf.

Let X be a topological space.

• The assignments $U \mapsto C(U)$, $C_b(U)$ and $C_c(U)$ (continuous, bounded and compactly supported functions on $U \subseteq X$) give rise to presheaves on X, with res defined by restriction of functions. $U \mapsto C(U)$ is also a sheaf. $U \mapsto C_b(U)$ is not a sheaf. $C_c(U)$ is a sheaf iff X is compact.

Let X be a topological space.

- **1** The assignments $U \mapsto C(U)$, $C_b(U)$ and $C_c(U)$ (continuous, bounded and compactly supported functions on $U \subseteq X$) give rise to presheaves on X, with res defined by restriction of functions. $U \mapsto C(U)$ is also a sheaf. $U \mapsto C_b(U)$ is not a sheaf. $C_c(U)$ is a sheaf iff X is compact.
- ② Given an abelian group, the *constant* presheaf on X is the assignment $\mathcal{F}(U) = \{\text{constant functions } U \to A\}$, for any $U \subseteq X$ open, with function restriction. This is *not* a presheaf.

Let X be a topological space.

- The assignments $U \mapsto C(U)$, $C_b(U)$ and $C_c(U)$ (continuous, bounded and compactly supported functions on $U \subseteq X$) give rise to presheaves on X, with res defined by restriction of functions. $U \mapsto C(U)$ is also a sheaf. $U \mapsto C_b(U)$ is not a sheaf. $C_c(U)$ is a sheaf iff X is compact.
- ② Given an abelian group, the *constant* presheaf on X is the assignment $\mathcal{F}(U) = \{\text{constant functions } U \to A\}$, for any $U \subseteq X$ open, with function restriction. This is *not* a presheaf.
- In the same setting, the assignment

$$\mathcal{F}(U) = \{ \varphi : U \to A : \varphi \text{ is locally constant} \}$$

is the presheaf of locally constant functions. It is a sheaf.

In general, given a field K and a property (P) of functions with values to K (e.g. continuity, differentiability, integrability, boundedness etc.), any assignment of the form

$$U \mapsto \{\varphi : U \to K \mid \varphi \text{ has property } (P)\}$$

gives rise to a persheaf on X.

In general, given a field K and a property (P) of functions with values to K (e.g. continuity, differentiability, integrability, boundedness etc.), any assignment of the form

$$U \mapsto \{\varphi : U \to K \mid \varphi \text{ has property } (P)\}$$

gives rise to a persheaf on X.

Heuristically, the sheaf axioms tell us that the property (P) is of local nature.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X. Show that the locally constant presheaf is a sheaf.

Solution.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X. Show that the locally constant presheaf is a sheaf.

Solution.

Let $V_1 \subseteq X$ be a non-dense open subset and let $V_2 \subseteq V_1^c$ be open.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X. Show that the locally constant presheaf is a sheaf.

Solution.

Let $V_1 \subseteq X$ be a non-dense open subset and let $V_2 \subseteq V_1^c$ be open. Let $a_1, a_2 \in A$ be distinct elements and $s_i \in \mathcal{F}(V_i)$ the function $s_i \equiv a_i$, for i = 1, 2.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X. Show that the locally constant presheaf is a sheaf.

Solution.

Let $V_1 \subseteq X$ be a non-dense open subset and let $V_2 \subseteq V_1^c$ be open. Let $a_1, a_2 \in A$ be distinct elements and $s_i \in \mathcal{F}(V_i)$ the function $s_i \equiv a_i$, for i=1,2. Then $V_1 \cap V_2 = \emptyset$, and therefore any selection of elements $s_i \in \mathcal{F}(V_i)$ should glue to an element of $\mathcal{F}(V_1 \cup V_2)$. However, a function function $s: V_1 \cup V_2 \to A$ such that $s \mid_{V_1} = s_1$ and $s \mid_{V_2} = s_2$ is not constant. Thus the gluing axiom fails.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X. Show that the locally constant presheaf is a sheaf.

Solution.

Let $V_1 \subseteq X$ be a non-dense open subset and let $V_2 \subseteq V_1^c$ be open. Let $a_1, a_2 \in A$ be distinct elements and $s_i \in \mathcal{F}(V_i)$ the function $s_i \equiv a_i$, for i=1,2. Then $V_1 \cap V_2 = \emptyset$, and therefore any selection of elements $s_i \in \mathcal{F}(V_i)$ should glue to an element of $\mathcal{F}(V_1 \cup V_2)$. However, a function function $s: V_1 \cup V_2 \to A$ such that $s \mid_{V_1} = s_1$ and $s \mid_{V_2} = s_2$ is not constant. Thus the gluing axiom fails.

To show that the preasheaf of locally constant functions is a sheaf, we need to verify the locality and gluing axioms.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X. Show that the locally constant presheaf is a sheaf.

Solution.

Let $V_1 \subseteq X$ be a non-dense open subset and let $V_2 \subseteq V_1^c$ be open. Let $a_1, a_2 \in A$ be distinct elements and $s_i \in \mathcal{F}(V_i)$ the function $s_i \equiv a_i$, for i=1,2. Then $V_1 \cap V_2 = \emptyset$, and therefore any selection of elements $s_i \in \mathcal{F}(V_i)$ should glue to an element of $\mathcal{F}(V_1 \cup V_2)$. However, a function function $s: V_1 \cup V_2 \to A$ such that $s \mid_{V_1} = s_1$ and $s \mid_{V_2} = s_2$ is not constant. Thus the gluing axiom fails.

To show that the preasheaf of locally constant functions is a sheaf, we need to verify the locality and gluing axioms. The locality axiom holds for any sheaf of functions.

Let X be a topological space and A an abelian group. Assuming X has a non-dense open subset and A is non-trivial, show that the constant presheaf is not a sheaf on X. Show that the locally constant presheaf is a sheaf.

Solution.

Let $V_1 \subseteq X$ be a non-dense open subset and let $V_2 \subseteq V_1^c$ be open. Let $a_1, a_2 \in A$ be distinct elements and $s_i \in \mathcal{F}(V_i)$ the function $s_i \equiv a_i$, for i=1,2. Then $V_1 \cap V_2 = \emptyset$, and therefore any selection of elements $s_i \in \mathcal{F}(V_i)$ should glue to an element of $\mathcal{F}(V_1 \cup V_2)$. However, a function function $s: V_1 \cup V_2 \to A$ such that $s \mid_{V_1} = s_1$ and $s \mid_{V_2} = s_2$ is not constant. Thus the gluing axiom fails.

To show that the preasheaf of locally constant functions is a sheaf, we need to verify the locality and gluing axioms. The locality axiom holds for any sheaf of functions. The gluing axiom is also easy.

Stalks

Definition

Let X be a topological space and \mathcal{F} a presheaf on X. Given a point $p \in X$, the stalk of \mathcal{F} is defined to be

$$\mathcal{F}_p = \varinjlim_{p \in U \text{ open}} \mathcal{F}(U)$$

Stalks

Definition

Let X be a topological space and \mathcal{F} a presheaf on X. Given a point $p \in X$, the stalk of \mathcal{F} is defined to be

$$\mathcal{F}_p = \varinjlim_{p \in U \text{ open}} \mathcal{F}(U)$$

The set \mathcal{F}_p can be identified with the set equivalence classes of of pairs

$$\{(s, U) : p \in U \subseteq X \text{ open, } s \in \mathcal{F}(U)\},$$

with respect to the relation

$$(s,U)\sim (t,V) \quad\Longleftrightarrow\; \exists p\in W\subseteq U\cap V \; {\sf such\; that}\; s\mid_W=t\mid_W.$$

Another example - Skyscraper sheaves

Let X be a topological space, $p \in X$ a point and A an abelian group. Define, for any $U \subseteq X$ open,

$$i_{p,A}(U) = egin{cases} A & ext{if } p \in U \ 0 & ext{otherwise}, \end{cases}$$

with $res_{U,V} = \mathbf{1}_A$ if $p \in V \subseteq U$ and 0 otherwise.

Exercise

Show that $i_{p,A}$ is a sheaf. What are its stalks?

The verification that $i_{p,A}$ is a sheaf is easy, and left as a home exercise.

The verification that $i_{p,A}$ is a sheaf is easy, and left as a home exercise.

Let us compute the stalk of $i_{p,A}$ at a point $q \in X$.

The verification that $i_{p,A}$ is a sheaf is easy, and left as a home exercise.

Let us compute the stalk of $i_{p,A}$ at a point $q \in X$.

• Case 1. Consider q = p. Then, for any open neighbourhood $p \in U$ we have $i_{p,A}(U) = A$, and for two pairs (s, U) and (t, V) as above, we have that $(s, U) \sim (t, V)$ iff there exists $W \subseteq U \cap V$ such that $s = s \mid_{W} = t \mid_{W} = t$. That is, $(s, U) \sim (t, V)$ iff s = t, which implies $(i_{p,A})_p = A$.

The verification that $i_{p,A}$ is a sheaf is easy, and left as a home exercise.

Let us compute the stalk of $i_{p,A}$ at a point $q \in X$.

- Case 1. Consider q = p. Then, for any open neighbourhood $p \in U$ we have $i_{p,A}(U) = A$, and for two pairs (s, U) and (t, V) as above, we have that $(s, U) \sim (t, V)$ iff there exists $W \subseteq U \cap V$ such that $s = s \mid_{W} = t \mid_{W} = t$. That is, $(s, U) \sim (t, V)$ iff s = t, which implies $(i_{p,A})_p = A$.
- Case 2. Assume there exists $q \in U \subseteq X$ open such that $p \notin q$. Then, for any $q \in V \subseteq U$ we necessarily have that $i_{p,A}(V) = 0$, since $p \notin V$. Thus, the stalk in this case is 0.

The verification that $i_{p,A}$ is a sheaf is easy, and left as a home exercise.

Let us compute the stalk of $i_{p,A}$ at a point $q \in X$.

- Case 1. Consider q = p. Then, for any open neighbourhood $p \in U$ we have $i_{p,A}(U) = A$, and for two pairs (s, U) and (t, V) as above, we have that $(s, U) \sim (t, V)$ iff there exists $W \subseteq U \cap V$ such that $s = s \mid_{W} = t \mid_{W} = t$. That is, $(s, U) \sim (t, V)$ iff s = t, which implies $(i_{p,A})_p = A$.
- Case 2. Assume there exists $q \in U \subseteq X$ open such that $p \notin q$. Then, for any $q \in V \subseteq U$ we necessarily have that $i_{p,A}(V) = 0$, since $p \notin V$. Thus, the stalk in this case is 0.
- Case 3. Otherwise, any $q \in U \subseteq X$ open necessarily contains p as well, and hence $i_{p,A}(U) = A$. It follows, as in the first case, that $(i_{p,A})_q = A$ in this case as well.

Example

Consider $X = \{1, 2, 3\}$ with topology given by

$$\left\{ \emptyset,X,\left\{ 1\right\} ,\left\{ 1,2\right\} \right\} .$$

Example

Consider $X = \{1, 2, 3\}$ with topology given by

$$\{\emptyset, X, \{1\}, \{1,2\}\}$$
.

Then $\overline{\{1\}} = X$, $\overline{\{2\}} = \{2,3\}$ and $\overline{\{3\}} = \{3\}$.

Example

Consider $X = \{1, 2, 3\}$ with topology given by

$$\{\emptyset, X, \{1\}, \{1, 2\}\}\$$
.

Then
$$\overline{\{1\}} = X$$
, $\overline{\{2\}} = \{2,3\}$ and $\overline{\{3\}} = \{3\}$.

The following table describes the stalk $(i_{p,\mathbb{Z}})_q$ for different values of p and q:

$q \backslash p$	1	2	3
1	\mathbb{Z}	0	0
2	\mathbb{Z}	\mathbb{Z}	0
3	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}

Morphisms of presheaves

Definition

A morphism $\varphi: \mathcal{F} \to \mathcal{G}$ between two presheaves on a topological space X is a collection $(\varphi_U)_{U \subseteq X \text{ open}}$ such that the following diagram commutes for any $V \subseteq U \subseteq X$:

$$\begin{array}{c|c} \mathcal{F}(U) \stackrel{\varphi_U}{\longrightarrow} \mathcal{G}(U) \\ \operatorname{res}_{U,V}^{\mathcal{F}} \middle| & \operatorname{res}_{U,V}^{\mathcal{G}} \\ \mathcal{F}(V) \stackrel{\varphi_V}{\longrightarrow} \mathcal{G}(V). \end{array}$$

Morphisms of presheaves

Definition

A morphism $\varphi: \mathcal{F} \to \mathcal{G}$ between two presheaves on a topological space X is a collection $(\varphi_U)_{U \subseteq X \text{ open}}$ such that the following diagram commutes for any $V \subseteq U \subseteq X$:

$$\begin{array}{c|c} \mathcal{F}(U) \stackrel{\varphi_U}{\longrightarrow} \mathcal{G}(U) \\ \operatorname{res}_{U,V}^{\mathcal{F}} & \operatorname{res}_{U,V}^{\mathcal{G}} \\ \mathcal{F}(V) \stackrel{\varphi_V}{\longrightarrow} \mathcal{G}(V). \end{array}$$

Equivalently, a morphism of presheaves is the same as a natural transformation between \mathcal{F} and \mathcal{G} , when considered as functors $\mathbf{Open}(X) \to \mathbf{AbGps}$.

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that the presheaf $\operatorname{Ker}(\varphi)$, defined by $\operatorname{Ker}(\varphi)(U) = \operatorname{Ker}(\varphi_U)$ with the restriction maps induced from \mathcal{F} , is a sheaf on X.

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that the presheaf $\operatorname{Ker}(\varphi)$, defined by $\operatorname{Ker}(\varphi)(U) = \operatorname{Ker}(\varphi_U)$ with the restriction maps induced from \mathcal{F} , is a sheaf on X.

Solution.

The fact that $\operatorname{Ker}(\varphi)$ is a presheaf follows from the presheaf axioms of \mathcal{F} . For example, by definition, $\operatorname{res}_{U,U}^{\operatorname{Ker}(\varphi)} = \operatorname{res}_{U,U}^{\mathcal{F}}|_{\operatorname{Ker}(\varphi_U)}$, which is simply $\mathbf{1}_{\operatorname{Ker}(\varphi_U)}$.

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that the presheaf $\operatorname{Ker}(\varphi)$, defined by $\operatorname{Ker}(\varphi)(U) = \operatorname{Ker}(\varphi_U)$ with the restriction maps induced from \mathcal{F} , is a sheaf on X.

Solution.

The fact that $\operatorname{Ker}(\varphi)$ is a presheaf follows from the presheaf axioms of \mathcal{F} . For example, by definition, $\operatorname{res}_{U,U}^{\operatorname{Ker}(\varphi)} = \operatorname{res}_{U,U}^{\mathcal{F}}|_{\operatorname{Ker}(\varphi_U)}$, which is simply $\mathbf{1}_{\operatorname{Ker}(\varphi_U)}$. Also, given an open cover $U = \bigcup_{\alpha} V_{\alpha}$ and $s \in \operatorname{Ker}(\varphi_U)$ such that $s \mid_{V_{\alpha}} = 0$, we have that s = 0 by the locality axiom of \mathcal{F} .

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that the presheaf $\operatorname{Ker}(\varphi)$, defined by $\operatorname{Ker}(\varphi)(U) = \operatorname{Ker}(\varphi_U)$ with the restriction maps induced from \mathcal{F} , is a sheaf on X.

Solution.

The fact that $\mathrm{Ker}(\varphi)$ is a presheaf follows from the presheaf axioms of \mathcal{F} . For example, by definition, $\mathrm{res}_{U,U}^{\mathrm{Ker}(\varphi)} = \mathrm{res}_{U,U}^{\mathcal{F}} \mid_{\mathrm{Ker}(\varphi_U)}$, which is simply $\mathbf{1}_{\mathrm{Ker}(\varphi_U)}$. Also, given an open cover $U = \bigcup_{\alpha} V_{\alpha}$ and $s \in \mathrm{Ker}(\varphi_U)$ such that $s \mid_{V_{\alpha}} = 0$, we have that s = 0 by the locality axiom of \mathcal{F} .

Let us show the gluing axiom.

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that the presheaf $\operatorname{Ker}(\varphi)$, defined by $\operatorname{Ker}(\varphi)(U) = \operatorname{Ker}(\varphi_U)$ with the restriction maps induced from \mathcal{F} , is a sheaf on X.

Solution.

The fact that $\operatorname{Ker}(\varphi)$ is a presheaf follows from the presheaf axioms of \mathcal{F} . For example, by definition, $\operatorname{res}_{U,U}^{\operatorname{Ker}(\varphi)} = \operatorname{res}_{U,U}^{\mathcal{F}}|_{\operatorname{Ker}(\varphi_U)}$, which is simply $\mathbf{1}_{\operatorname{Ker}(\varphi_U)}$. Also, given an open cover $U = \bigcup_{\alpha} V_{\alpha}$ and $s \in \operatorname{Ker}(\varphi_U)$ such that $s \mid_{V_{\alpha}} = 0$, we have that s = 0 by the locality axiom of \mathcal{F} .

Let us show the gluing axiom. Given $U = \bigcup_{\alpha} V_{\alpha}$ and $s_{\alpha} \in \operatorname{Ker}(\varphi_{V_{\alpha}})$ such that $s_{\alpha} \mid_{V_{\alpha} \cap V_{\beta}} = s_{\beta} \mid_{V_{\alpha} \cap V_{\beta}}$ for all α, β , the gluing axiom of \mathcal{F} implies that there exists $s \in \mathcal{F}(U)$ such that $s \mid_{V_{\alpha}} = s_{\alpha}$ for all α . We show that in fact $s \in \operatorname{Ker}(\varphi_{U})$.

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that the presheaf $\operatorname{Ker}(\varphi)$, defined by $\operatorname{Ker}(\varphi)(U) = \operatorname{Ker}(\varphi_U)$ with the restriction maps induced from \mathcal{F} , is a sheaf on X.

Solution.

The fact that $\mathrm{Ker}(\varphi)$ is a presheaf follows from the presheaf axioms of \mathcal{F} . For example, by definition, $\mathrm{res}_{U,U}^{\mathrm{Ker}(\varphi)} = \mathrm{res}_{U,U}^{\mathcal{F}} \mid_{\mathrm{Ker}(\varphi_U)}$, which is simply $\mathbf{1}_{\mathrm{Ker}(\varphi_U)}$. Also, given an open cover $U = \bigcup_{\alpha} V_{\alpha}$ and $s \in \mathrm{Ker}(\varphi_U)$ such that $s \mid_{V_{\alpha}} = 0$, we have that s = 0 by the locality axiom of \mathcal{F} .

Let us show the gluing axiom. Given $U = \bigcup_{\alpha} V_{\alpha}$ and $s_{\alpha} \in \operatorname{Ker}(\varphi_{V_{\alpha}})$ such that $s_{\alpha} \mid_{V_{\alpha} \cap V_{\beta}} = s_{\beta} \mid_{V_{\alpha} \cap V_{\beta}}$ for all α, β , the gluing axiom of \mathcal{F} implies that there exists $s \in \mathcal{F}(U)$ such that $s \mid_{V_{\alpha}} = s_{\alpha}$ for all α . We show that in fact $s \in \operatorname{Ker}(\varphi_{U})$. Indeed $\varphi_{U}(s) \mid_{V_{\alpha}} = \varphi_{V_{\alpha}}(s \mid_{V_{\alpha}}) = 0$ implies, by the locality axiom of \mathcal{G} , that $\varphi_{U}(s) = 0$.

Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on a top space X.

1 φ is said to be *injective* if $Ker(\varphi)$ is the zero sheaf.

Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on a top space X.

- **1** φ is said to be *injective* if $Ker(\varphi)$ is the zero sheaf.
- ② Defining surjective morphisms requires the notion of a sheafification, to be defined in the next lecture.

Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on a top space X.

- **1** φ is said to be *injective* if $\operatorname{Ker}(\varphi)$ is the zero sheaf.
- ② Defining surjective morphisms requires the notion of a sheafification, to be defined in the next lecture.
- However, we have another characterization of surjective and injective morphisms using stalks (to be proved in the home exercise).

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on a top space X.

- **1** φ is said to be *injective* if $Ker(\varphi)$ is the zero sheaf.
- Defining surjective morphisms requires the notion of a sheafification, to be defined in the next lecture.
- However, we have another characterization of surjective and injective morphisms using stalks (to be proved in the home exercise).

Fact

A morphism $\varphi: \mathcal{F} \to \mathcal{G}$ as above is injective (resp surjective) iff, for any $p \in X$, φ induces an injective (resp surjective) homomorphism $\varphi_p: \mathcal{F}_p \to \mathcal{G}_p$.

Example

Let $X=\mathbb{R}$ with the standard topology, and let \mathcal{F} be the sheaf of locally constant functions on X with values in \mathbb{Z} , and $\mathcal{G}=i_{0,\mathbb{Z}}\oplus i_{1,\mathbb{Z}}$ (direct sum of two skyscraper sheaves).

Example

Let $X = \mathbb{R}$ with the standard topology, and let \mathcal{F} be the sheaf of locally constant functions on X with values in \mathbb{Z} , and $\mathcal{G} = i_{0,\mathbb{Z}} \oplus i_{1,\mathbb{Z}}$ (direct sum of two skyscraper sheaves).

Let $\varphi:\mathcal{F}\to\mathcal{G}$ be defined, for any $U\subseteq X$ open, by

$$\varphi_U(s) = (\widetilde{s}(0), \widetilde{s}(1)) \quad (s \in \mathcal{F}(U)),$$

where $\widetilde{s}: \mathbb{R} \to \mathbb{Z}$ is such that $\widetilde{s} \mid_{U} \equiv s$ and $\widetilde{s} \mid_{U^c} \equiv 0$.

Example

Let $X=\mathbb{R}$ with the standard topology, and let \mathcal{F} be the sheaf of locally constant functions on X with values in \mathbb{Z} , and $\mathcal{G}=i_{0,\mathbb{Z}}\oplus i_{1,\mathbb{Z}}$ (direct sum of two skyscraper sheaves).

Let $\varphi: \mathcal{F} \to \mathcal{G}$ be defined, for any $U \subseteq X$ open, by

$$\varphi_U(s) = (\widetilde{s}(0), \widetilde{s}(1)) \quad (s \in \mathcal{F}(U)),$$

where $\widetilde{s}: \mathbb{R} \to \mathbb{Z}$ is such that $\widetilde{s}\mid_{U}\equiv s$ and $\widetilde{s}\mid_{U^c}\equiv 0$. Then, for any $p\in\mathbb{R}$, we have that $\mathcal{F}_p=\mathbb{Z}$ and \mathcal{G}_p is either \mathbb{Z} if $p\in\{0,1\}$ or 0 otherwise. The induced map φ_p is either identity, in the first case, or the zero map, otherwise, and in any case – surjective.

Example

Let $X = \mathbb{R}$ with the standard topology, and let \mathcal{F} be the sheaf of locally constant functions on X with values in \mathbb{Z} , and $\mathcal{G} = i_{0,\mathbb{Z}} \oplus i_{1,\mathbb{Z}}$ (direct sum of two skyscraper sheaves).

Let $\varphi:\mathcal{F}\to\mathcal{G}$ be defined, for any $U\subseteq X$ open, by

$$\varphi_U(s) = (\widetilde{s}(0), \widetilde{s}(1)) \quad (s \in \mathcal{F}(U)),$$

where $\widetilde{s}:\mathbb{R}\to\mathbb{Z}$ is such that $\widetilde{s}\mid_{U}\equiv s$ and $\widetilde{s}\mid_{U^c}\equiv 0$. Then, for any $p\in\mathbb{R}$, we have that $\mathcal{F}_p=\mathbb{Z}$ and \mathcal{G}_p is either \mathbb{Z} if $p\in\{0,1\}$ or 0 otherwise. The induced map φ_p is either identity, in the first case, or the zero map, otherwise, and in any case – surjective. Thus φ is surjective.

Example

Let $X=\mathbb{R}$ with the standard topology, and let \mathcal{F} be the sheaf of locally constant functions on X with values in \mathbb{Z} , and $\mathcal{G}=i_{0,\mathbb{Z}}\oplus i_{1,\mathbb{Z}}$ (direct sum of two skyscraper sheaves).

Let $\varphi:\mathcal{F}\to\mathcal{G}$ be defined, for any $U\subseteq X$ open, by

$$\varphi_U(s) = (\widetilde{s}(0), \widetilde{s}(1)) \quad (s \in \mathcal{F}(U)),$$

where $\widetilde{s}: \mathbb{R} \to \mathbb{Z}$ is such that $\widetilde{s} \mid_{\mathcal{U}} \equiv s$ and $\widetilde{s} \mid_{\mathcal{U}^c} \equiv 0$.

Then, for any $p \in \mathbb{R}$, we have that $\mathcal{F}_p = \mathbb{Z}$ and \mathcal{G}_p is either \mathbb{Z} if $p \in \{0,1\}$ or 0 otherwise. The induced map φ_p is either identity, in the first case, or the zero map, otherwise, and in any case – surjective. Thus φ is surjective.

However, $\mathcal{F}(X) = \mathbb{Z}$ and $\mathcal{G}(X) = \mathbb{Z} \oplus \mathbb{Z}$, and the map φ_X is *not* surjective.

Let R be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(R) = \{ \mathfrak{p} \triangleleft R : \mathfrak{p} \text{ prime} \}.$$

Let R be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(R) = \{ \mathfrak{p} \triangleleft R : \mathfrak{p} \text{ prime} \}.$$

Example

Let R be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(R) = \{ \mathfrak{p} \triangleleft R : \mathfrak{p} \text{ prime} \}.$$

Example

- ② Spec $(k[x_1,...,x_n]) =: \mathbb{A}_k^n$ ≈ {irreducibe monic polynomials in $x_1,...,x_n$ } \sqcup {0}

Let R be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(R) = \{ \mathfrak{p} \triangleleft R : \mathfrak{p} \text{ prime} \}.$$

Example

- ② Spec $(k[x_1,...,x_n])$ =: \mathbb{A}_k^n ≈ {irreducibe monic polynomials in $x_1,...,x_n$ } \sqcup {0}

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}$.

Exercise

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}.$

Exercise

• $V((0)) = R \text{ and } V(R) = \emptyset.$

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}.$

Exercise

- $V((0)) = R \text{ and } V(R) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}.$

Exercise

- $V((0)) = R \text{ and } V(R) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}.$

Exercise

- **1** V((0)) = R and $V(R) = \emptyset$.
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}.$

Exercise

- **1** V((0)) = R and $V(R) = \emptyset$.
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

Proof.

Clear;

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}$.

Exercise

- $V((0)) = R \text{ and } V(R) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

- Clear;
- 2 \supseteq is clear, if $\mathfrak{p} \supseteq I$ then $\mathfrak{p} \supseteq IJ$ (similarly if $\mathfrak{p} \supseteq J$).

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}$.

Exercise

- $V((0)) = R \text{ and } V(R) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

- Clear;
- ② \supseteq is clear, if $\mathfrak{p} \supseteq I$ then $\mathfrak{p} \supseteq IJ$ (similarly if $\mathfrak{p} \supseteq J$). Conversely, assume $IJ \subseteq \mathfrak{p}$ and $I \not\subseteq \mathfrak{p}$. Take $x \in I \setminus \mathfrak{p}$, and $y \in J$. Then $xy \in IJ \subseteq \mathfrak{p}$ implies $y \in \mathfrak{p}$, since \mathfrak{p} is prime.

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}.$

Exercise

- $V((0)) = R \text{ and } V(R) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

- Clear;
- ② \supseteq is clear, if $\mathfrak{p} \supseteq I$ then $\mathfrak{p} \supseteq IJ$ (similarly if $\mathfrak{p} \supseteq J$). Conversely, assume $IJ \subseteq \mathfrak{p}$ and $I \not\subseteq \mathfrak{p}$. Take $x \in I \setminus \mathfrak{p}$, and $y \in J$. Then $xy \in IJ \subseteq \mathfrak{p}$ implies $y \in \mathfrak{p}$, since \mathfrak{p} is prime.

Given $I \triangleleft R$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \}$.

Exercise

- $V((0)) = R \text{ and } V(R) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

- Clear;
- ② \supseteq is clear, if $\mathfrak{p} \supseteq I$ then $\mathfrak{p} \supseteq IJ$ (similarly if $\mathfrak{p} \supseteq J$). Conversely, assume $IJ \subseteq \mathfrak{p}$ and $I \not\subseteq \mathfrak{p}$. Take $x \in I \setminus \mathfrak{p}$, and $y \in J$. Then $xy \in IJ \subseteq \mathfrak{p}$ implies $y \in \mathfrak{p}$, since \mathfrak{p} is prime.
- ③ ⊇: $\mathfrak{p} \in \bigcap_{\alpha} V(I_{\alpha})$ implies $\mathfrak{p} \supseteq \bigcup I_{\alpha} \supseteq \sum I_{\alpha}$. ⊆: Since $I_{\alpha_0} \subseteq \sum I_{\alpha}$ for all α_0 , $\mathfrak{p} \in V(\sum I_{\alpha})$ implies $\mathfrak{p} \in V(I_{\alpha_0})$ for all α_0 .

The collection $\{V(I): I \triangleleft R\}$ is the set of closed sets for a topology on $\operatorname{Spec}(R)$, which is known as the *Zariski Topology* of R.

Let R be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if R is a domain, then $\{(0)\}$ is a <u>dense</u> point.

Let R be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if R is a domain, then $\{(0)\}$ is a <u>dense</u> point.

Solution.

Let R be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if R is a domain, then $\{(0)\}$ is a <u>dense</u> point.

Solution.

O By definition, and by the previous exercise:

$$\overline{\mathfrak{p}} = \bigcap_{\mathfrak{p} \in F \text{ closed}} F = \bigcap_{\substack{I \leq R \\ I \subseteq \mathfrak{p}}} V(I) = V(\sum_{I \subseteq \mathfrak{p}} I) = V(\mathfrak{p}).$$

In particular, $\{\mathfrak{p}\}$ is closed iff $\{\mathfrak{p}\} = V(\mathfrak{p})$ which occurs iff \mathfrak{p} is maximal (o/w, take $\mathfrak{m} \supseteq \mathfrak{p}$ maximal).

Let R be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if R is a domain, then $\{(0)\}$ is a dense point.

Solution.

• By definition, and by the previous exercise:

$$\overline{\mathfrak{p}} = \bigcap_{\mathfrak{p} \in F \text{ closed}} F = \bigcap_{\substack{I \leq R \\ I \subseteq \mathfrak{p}}} V(I) = V(\sum_{I \subseteq \mathfrak{p}} I) = V(\mathfrak{p}).$$

In particular, $\{\mathfrak{p}\}$ is closed iff $\{\mathfrak{p}\} = V(\mathfrak{p})$ which occurs iff \mathfrak{p} is maximal (o/w, take $\mathfrak{m} \supseteq \mathfrak{p}$ maximal).

② Note: $(0) \in \operatorname{Spec}(R)$ iff R is a domain, in which case V(0) = R.

It still remains to define a sheaf structure on $\operatorname{Spec}(R)$. We will do this in the next tutorial.

Questions?