PI: PRODUCTION AND INDUSTRIAL ENGINEERING

EE25BTECH11023-Venkata Sai

	and the variable cost ctively. The demand for	-	Maximum Marks: 100 duct are Rs. 20000 and Rs. 50 s. To break even, the unit price
a) 50	b) 75	c) 90	d) 100
			(GATE PI 2013)
b) fundamentalc) basic types of	of fixtures used in man motions used in man of waste in manufactu types of material han	ual work ring process	
order of their a customer arriva	arrival. The average ti	me taken for issuing a ocess and service time	(GATE PI 2013) ur and tickets are issued in the ticket is 1 min. Assuming that s are exponentially distributed,
a) 3	b) 4	c) 5	d) 6
			(GATE PI 2013) luminum sheet of 2 mm thick- um punching force required (in
a) 2.57	b) 3.29	c) 5.03	d) 6.33
	-	I thread angle 60° is in of the best size wire (in	(GATE PI 2013) spected for its pitch diameter mm) is
a) 0.866	b) 1.000	c) 1.154	d) 2.000
			(GATE PI 2013)
6) Match the COI	RRECT pairs.		
P.Proces	sses	1.Characteristics / A	Applications

2.Joining of thick plates3.Consumable electrode wire

4.Joining of cylindrical dissimilar materials

Q.Gas Metal Arc Welding

S.Electroslag Welding

R.Tungsten Inert Gas Welding

7) In a rolling prod	cess, the state of stress	of the material unde	(GATE PI 2013) ergoing deformation is
a) pure compresb) pure shear	sion	c) compressiond) tension and	
a plane wall; w0°C and 100°C.statement.a) The directionb) The maximum	ith the boundary surfa	aces (x=0 and x=L) formly throughout the efform 100° C to 0° C all must be greater the	_
d) The temperate	ure distribution is symi	metric about mid-pla	ne
			(GATE PI 2013) par. This gas is compressed in a bar. The work required (in kJ)
a) 804.7	b) 953.2	c) 981.7	d) 1012.2
	ith all revolute joints. T		(GATE PI 2013) PQ=2.0 m, QR=3.0 m, RS=2.5 obtain a double rocker (rocker-
a) PQ	b) QR	c) RS	d) SP
11) Let <i>X</i> be a norm is	nal random variable wi	th mean 1 and varian	(GATE PI 2013) ace 4. The probability $P\{X < 0\}$
a) 0.5b) greater than 0	and less than 0.5	c) greater than d) 1.0	0.5 and less than 1.0
12) Choose the CO :	RRECT set of function	ns which are linearly	(GATE PI 2013) dependent.
a) $\sin x$, $\sin^2 x$, co b) $\cos x$, $\sin x$, $\tan x$		c) $\cos 2x$, $\sin^2 x$ d) $\cos 2x$, $\sin x$	
			(GATE PI 2013)

c) P-2, Q-3, R-4, S-1

d) P-2, Q-4, R-1, S-3

a) P-4, Q-3, R-1, S-2

b) P-4, Q-2, R-3, S-1

- 13) The eigenvalues of a symmetric matrix are all:
 - a) complex with non-zero positive imaginary part
 - b) complex with non-zero negative imaginary part
 - c) real
 - d) pure imaginary

(GATE PI 2013)

- 14) The partial differential equation $\frac{\partial u}{\partial t} + \frac{u\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$ is a
 - a) linear equation of order 2
- c) linear equation of order 1
- b) non-linear equation of order 1
- d) non-linear equation of order 2

(GATE PI 2013)

15) Match the **CORRECT** pairs.

Number Integration Schemes	Order of fitting polynomial
P.Simpson's 3/8 Rule	1.First
Q.Trapezoidal Rule	2.Second
R.Simpson's 1/3 Rule	3.Third

a) P-2, Q-1, R-3

c) P-1, Q-2, R-3

b) P-3, Q-2, R-1

d) P-3, Q-1, R-2

(GATE PI 2013)

16) A rod of length L having uniform cross-sectional area A is subjected to a tensile force P as shown in the figure below. If the Young's modulus varies linearly from E_1 to E_2 along the length of the rod, the normal stress developed at section SS is

Fig. 1

a) $\frac{P}{A}$

- b) $\frac{P(E_1-E_2)}{A(E_1+E_2)}$ c) $\frac{PE_2}{AE_1}$ d) $\frac{PE_1}{AE_2}$

(GATE PI 2013)

17) For steady, fully developed flow inside a straight pipe of diameter D, neglecting gravity effects, the pressure drop Δp over length L and the wall shear stress tau_w are related by

- a) $\tau_w = \frac{\Delta pD}{4L}$ b) $\tau_w = \frac{\Delta pD^2}{4L^2}$ c) $\tau_w = \frac{\Delta pD}{2L}$ d) $\tau_w = \frac{4\Delta pL}{D}$

(GATE PI 2013)

18)	For a ductile materia	l, toughness is a measu	ure of	
	a) resistance to scrateb) ability to absorb e	•	c) ability to absorb ed) resistance to inden	
19)	-	ng solidifies in 5 min. 7 is 8 times heavier tha		(GATE PI 2013) in min for a cube of the will be
	a) 10	b) 20	c) 24	d) 40
20)				(GATE PI 2013) with a depth of cut of 4 removal rate in mm ³ /s is
	a) 160	b) 167.6	c) 1600	d) 1675.5
21)	a) clamps requiredb) locators on the pric) degrees of freedom	-		(GATE PI 2013)
22)		al smoothing forecasting othing constant must be		(GATE PI 2013) ghtage to recent demand
	a) -1	b) zero	c) 0.5	d) 1
23)	- ·	ctive toys can be rewor	•	(GATE PI 2013) of the toys are defective nes. The average number
	a) 900	b) 920	c) 940	d) 960
24)	The type of control of	chart used to monitor t	he amount of dispersion	(GATE PI 2013) on in a sample is
	a) c-chart	b) p-chart	c) \bar{x} -chart	d) R-chart
25)	Which one of the f systems?	following is modeled	based on adaptation c	(GATE PI 2013) rapabilities of biological

a) Relational		c) Simulated anr	
b) Fuzzy syste	em	d) Genetic algori	ithm
	lans to purchase a machine o models of the machine v	-	-
	Machine N	MTBF (hr) MTTR (h	nr)
	Model M	60 4	
	Model N	48 2	
The company	should buy		
a) only Mode	l M	c) either Model	M or N
b) only Mode		d) neither Model	M nor N
mm. Historica	rer produces bars designed al data indicates that manu- rd deviation of 0.15 mm.	factured bars have an	average diameter of 9.98 i
a) 0.08	b) 0.12	c) 0.18	d) 0.27
	te the linear programming destinations. Then, the du		
sources and n a) nm variable b) nm variable 9) Following dat	te the linear programming destinations. Then, the dues and nm constraints as and $n+m$ constraints are fers to an automat and arts in a manufacturing should be destinated as $n+m$ constraints	c) $n + m$ variable d) $n + m$ variable a center lathe, which arp.	ensportation problem with (P) has es and $n + m$ constraints es and nm constraints (GATE PI 20) The being compared to mach
sources and n a) nm variable b) nm variable 9) Following dat	destinations. Then, the dues and nm constraints as and $n+m$ constraints are refers to an automat and arts in a manufacturing shows	c) $n + m$ variable d) $n + m$ variable a center lathe, which are p.	es and $n + m$ constraints es and nm constraints (GATE PI 20 re being compared to mach
sources and n a) nm variable b) nm variable 9) Following dat	destinations. Then, the dues and nm constraints are and $n+m$ constraints are refers to an automat and arts in a manufacturing shows Machine Setup Time (mathematical expression).	c) $n + m$ variable d) $n + m$ variable a center lathe, which are p. Automat	ensportation problem with (P) has es and $n + m$ constraints es and nm constraints (GATE PI 20) The being compared to mach the second s
sources and n a) nm variable b) nm variable 9) Following dat	es and <i>nm</i> constraints es and <i>nm</i> constraints es and <i>n + m</i> constraints a refers to an automat and a rts in a manufacturing sho Machine Setup Time (m.) Machine Setup Cost (Rs)	c) $n + m$ variable d) $n + m$ variable a center lathe, which are p. Automat ain) 120 a./min) 800	es and $n + m$ constraints es and nm constraints (GATE PI 20 re being compared to mach
sources and n a) nm variable b) nm variable 9) Following dat	destinations. Then, the dues and nm constraints are and $n+m$ constraints are refers to an automat and arts in a manufacturing shows Machine Setup Time (mathematical expression).	c) $n + m$ variable d) $n + m$ variable a center lathe, which are p. Automat (a) (a) (b) (c) (c) (min) (c) (d) (d) (d) (d) (e) (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	ensportation problem with (P) has es and $n + m$ constraints es and nm constraints (GATE PI 20) re being compared to mach Center Lathe
sources and n a) nm variable b) nm variable 9) Following dat a batch of par	es and <i>nm</i> constraints es and <i>nm</i> constraints es and <i>n + m</i> constraints a refers to an automat and a rts in a manufacturing sho Machine Setup Time (m Machine Setup Cost (Rs Machining Time per pie	c) $n + m$ variable d) $n + m$ variable a center lathe, which are p. Automat (ain) 120 (a./min) 800 (a./min) 2 (a./min) 2 (a./min) 500	es and $n + m$ constraints es and nm constraints (GATE PI 20 re being compared to mach Center Lathe
sources and n a) nm variable b) nm variable 9) Following dat a batch of par	destinations. Then, the destinations. Then, the destinations and nm constraints are and n + m constraints are arefers to an automat and arts in a manufacturing shows a machine Setup Time (machine Setup Cost (Rs. Machining Time per pieto Machining Cost (Rs./mitematical machine Setup	c) $n + m$ variable d) $n + m$ variable a center lathe, which are p. Automat (ain) 120 (a./min) 800 (a./min) 2 (a./min) 2 (a./min) 500	es and $n + m$ constraints es and nm constraints (GATE PI 20 re being compared to mach Center Lathe
a) <i>nm</i> variable b) <i>nm</i> variable b) <i>nm</i> variable 9) Following dat a batch of parabatch of parabatch a) 28 O) Cylindrical piplating is 30:	destinations. Then, the destinations. Then, the destinations and nm constraints are are fers to an automat and arts in a manufacturing shows a machine Setup Time (machine Setup Cost (Research Machining Time per pied Machining Cost (Res./mi) be economical if the batch	c) $n + m$ variable d) $n + m$ variable a center lathe, which are p. Automat sin) 120 s./min) 800 see (min) 2 n) 500 th size exceeds c) 61	ensportation problem with (P) has es and $n + m$ constraints es and nm constraints (GATE PI 20 re being compared to mach) Center Lathe

at a current of 1000 A with 90% current efficiency, the material removal rate was observed

_	current of 2000 A with	weight = 48, valency 90% current efficiency		
a) 0.11	b) 0.23	c) 0.30	d) 0.52	
-	lpy and velocity of stearers as given below:	am at inlet and exit of	`	PI 2013) ng under

	Specific enthalpy (kJ/kg)	Velocity (m/s)
Inlet steam condition	3250	180
Exit steam condition	2360	5

The rate of heat loss from the turbine per kg of steam flow rate is 5 kW. Neglecting changes in potential energy of steam, the power developed in kW by the steam turbine per kg of steam flow rate is

a) 901.2 b) 911.2 c) 17072.5 d) 17082.5

(GATE PI 2013)

33) A simply supported beam of length L is subjected to a varying distributed load $\sin(3\pi x/L)$ Nm^{-1} , where the distance x is measured from the left support. The magnitude of the vertical reaction force in N at the left support is

c) L/π d) $2L/\pi$ a) zero b) $L/3\pi$

(GATE PI 2013)

34) The probability that a student knows the correct answer to a multiple choice question is $\frac{2}{3}$. If the student does not know the answer, then the student guesses the answer. The probability of the guessed answer being correct is $\frac{1}{4}$. Given that the student has answered the question correctly, the conditional probability that the student knows the correct answer is

a) $\frac{2}{3}$

32)

b) $\frac{3}{4}$

c) $\frac{5}{6}$

d) $\frac{8}{9}$

(GATE PI 2013)

35) The solution to the differential equation

$$\frac{d^2u}{dx^2} - k^2u = 0$$

where k is a constant, subjected to the boundary conditions u(0) = 0 and u(L) = U, is

a) $u = \frac{Ux}{L}$ b) $u = U(\frac{1 - e^{kx}}{1 - e^{kL}})$ c) $u = U(\frac{1 - e^{-kx}}{1 - e^{-kL}})$ d) $u = U(\frac{1 + e^{-kx}}{1 + e^{-kL}})$

(GATE PI 2013)

- 36) The value of the definite integral $\int_1^e \ln(x) dx$ is
 - a) $\frac{4\sqrt{e^3}}{9} + \frac{2}{9}$ b) $\frac{2\sqrt{e^3}}{9} \frac{4}{9}$ c) $\frac{2\sqrt{e^3}}{9} + \frac{4}{9}$ d) $\frac{4\sqrt{e^3}}{9} \frac{2}{9}$

(GATE PI 2013)

37) The following surface integral is to be evaluated over a sphere for the given steady velocity vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ where S is the sphere $x^2 + y^2 + z^2 = 1$ and **n** is the outward unit normal vector to the sphere:

$$\iint_{S} \frac{1}{4} (\mathbf{F} \cdot \mathbf{n}) . dA$$

The value of the surface integral is

a) π

b) 2π

c) $\frac{3\pi}{4}$ d) 4π

(GATE PI 2013)

- 38) The function f(t) satisfies the differential equation $\frac{d^2f}{dt^2} + f = 0$ and the auxiliary conditions $f(0) = 0, \frac{df}{dt}(0) = 4$ The Laplace transform of f(t) is:
 - a) $\frac{2}{s+1}$
- b) $\frac{4}{s+1}$
- c) $\frac{4}{s^2+1}$
- d) $\frac{2}{s^4+1}$

(GATE PI 2013)

- 39) A flywheel connected to a punching machine has to supply energy of 400 Nm while running at a mean angular speed of 20 rad/s. If the total fluctuation of speed is not to exceed $\pm 2\%$, the mass moment of inertia of the flywheel in $kg\hat{A} \cdot m^2$ is
 - a) 25

b) 50

- c) 100
- d) 125

(GATE PI 2013)

40) A single riveted lap joint of two similar plates has the following data:

Fig. 2

Plate width = 200 mm

Plate thickness = 5 mm

Number of rivets = 3, Rivet diameter = 10 mm

Rivet hole diameter = 11 mm

Allowable tensile stress of plate $\sigma_p = 200$ MPa

Allowable bearing stress of rivet $\sigma_c = 150$ MPa.

If the plates are designed to avoid tearing failure, the maximum permissible load P in kN is

41)	Two cutting tools ar are:	re being compared t	for a machining op	(GATE PI 2013) peration. The tool life equations
		Carbide	tool : $VT^{1.6} = 3000$	
		HSS	S tool : $VT^{0.6} = 200$	
	where V is cutting shigher tool life if the			n. The carbide tool will provide
i	a) 15.0	b) 39.4	c) 49.3	d) 60.0
42)		rigin and makes an	angle of 45° counter	(GATE PI 2013) to be obtained about a line which erclockwise with the X-axis. The
i	a) (7.5, 5)	b) (10, 5)	c) (7.5, -5)	d) (10, -5)
43)	pressure of 400 MPa	a. The density of w	ater is 1000 kg/m ³	(GATE PI 2013) a 0.3 mm diameter orifice at a . The coefficient of discharge is gh the orifice, the power of the
i	a) 25.3	b) 50.6	c) 75.9	d) 101.2
44)	A linear programmii Maximize	ng problem is show	n below:	(GATE PI 2013)
			3x + 7y	
	Subject to:			
		3	$3x + 7y \le 10$	
			$4x + 6y \le 8$	
			$x, y \ge 0$	
	It has:			
	a) an unbounded obj b) exactly one optim			o optimal solutions nany optimal solutions
45)		-	•	(GATE PI 2013) occessed in Machine X and then s of four jobs (1, 2, 3 and 4) on

The sequence of jobs on the machines that minimizes make span is:

c) 167d) 501

a) 83b) 125

Job	Processing	time (in min)
	Machine X	Machine Y
1	6	5
2	3	4
3	7	6
4	5	4

a) 2-3-1-4

b) 1-2-3-4

c) 2–1–3–4

d) 3-1-4-2

(GATE PI 2013)

46) Match the CORRECT pairs:

C 1	G
Group 1	Group 2
P. Man-machine chart	1.Determines standard time of jobs
Q. Learning curve	2. Finds the preferred method of doing work
R. Time study	3. Measures work improvement
S. Motion study	4. Shows idle times

a) P-2, Q-3, R-4, S-1

c) P-4, Q-1, R-3, S-2

b) P-3, Q-2, R-4, S-1

d) P-4, Q-3, R-1, S-2

(GATE PI 2013)

47) A firm produces 120 units of product in every 8-hour shift. Four operations as given below are needed to manufacture each unit:

Operation	Precedence	Processing time(in min)
P	none	1
Q	P	1
R	P	4
S	Q,R	3

The above operations are to be assigned to workstations such that one or more operations are performed in each workstation. Only one unit of product will be processed in each workstation at a time. The minimum number of workstations that will achieve the production target, without violating the precedence constraints, is:

a) 1

b) 2

c) 3

d) 4

(GATE PI 2013)

Common Data Questions Common Data for Questions 48 and 49:

A disc of 200 mm outer and 80 mm inner diameter is faced at a feed of 0.1 mm/rev with a depth of cut of 1 mm. The facing operation is undertaken at a constant cutting speed of 90 m/min in a CNC lathe. The main (tangential) cutting force is 200 N.

48) Neglecting the contribution of the feed force towards cutting power, the specific cutting energy in J/mm³ is:

a) 0.2

b) 2

c) 200

d) 2000

(GATE PI 2013)

49) Assuming approach and over-travel of the cutting tool to be zero, the machining time in minutes is:

a) 2.93	b) 5.86	c) 6.66	d) 13.33
C	D 4 6 0 4 70	1 54	(GATE PI 2013)

Common Data for Questions 50 and 51:

The demand for soap at a retailer is 40 kg per day. The retailer buys soap in bulk at a cost of Rs. 50 per kg. The ordering cost is Rs. 200 per order and the holding cost is Rs. 0.1 per kg per day. The lead time is 3 days. The retailer's current policy is to order 200 kg every 5 days.

50) To avoid stock-out situations, the retailer needs to place orders when the inventory level (in kg) drops to:

a) 40

b) 60

c) 80

d) 120

(GATE PI 2013)

51) If the retailer uses an optimum policy to minimize the total cost, the saving in Rs. in the total cost as compared to the current policy will be

a) 10

b) 20

c) 40

d) 50

(GATE PI 2013)

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

A project consists of seven activities, whose durations are independent normal random variables, as shown in the table below. Activities are identified by their beginning node i and ending node j.

Activity (node <i>i</i> - node <i>j</i>)	Mean duration (in days)	Standard deviation (in days)
1 - 2	6	1
1 - 3	9	2
2 - 3	2	0.5
2 - 4	8	0.5
3 - 4	7	1
3 - 5	8	1
4 - 5	4	1

52) The critical path of the project, based on the mean activity duration, is:

a) 1-2-3-4-5 b) 1-2-3-5 c) 1-3-5

(GATE PI 2013)

53) Let Φ denote the cumulative distribution function of the standard normal random variable. The probability that all activities on the critical path, based on the mean activity duration, are completed in 22 days is:

a) $\Phi^{-1}(0.333)$ b) $\Phi^{-1}(0.816)$ c) $\Phi^{-1}(1.664)$ d) $\Phi^{-1}(2.235)$

(GATE PI 2013)

Statement for Linked Answer Questions 54 and 55:

In orthogonal turning of a bar of 100 mm diameter with a feed of 0.25 mm/rev, depth of cut of 4 mm, and cutting velocity of 90 m/min, it is observed that the main (tangential) cutting force is perpendicular to the friction force acting at the chip-tool interface. The main

	(tangential) cutting f	orce is 1500 N.		
54)	The orthogonal rake	angle of the cutting to	ol in degrees is:	
	a) zero	b) 3.58	c) 5	d) 7.16
55)	The normal force ac	ting at the chip-tool int	terface in N is:	(GATE PI 2013)
	a) 1000	b) 1500	c) 2000	d) 2500
	General Aptitude (GA) Questions		(GATE PI 2013)
56)	Were you a bird, you a) would fly b) shall fly c) should fly d) shall have flown	ı in the sky.		(CATE DI 2012)
57)	Choose the grammat	ically INCORRECT se	ntence:	(GATE PI 2013)
	a) He is of Asian orib) They belonged to	_	c) She is an Europead) They migrated from	
58)	Complete the sentence	ce: Universalism is to 1	particularism as diffuso	(GATE PI 2013) eness is to
	a) specificity	b) neutrality	c) generality	d) adaptation
59)	What will be the ma	ximum sum of 44, 42,	40,?	(GATE PI 2013)
	a) 502	b) 504	c) 506	d) 500
60)	Which one of the fo	llowing options is the	closest in meaning to	(GATE PI 2013) the word given below?
	a) Highest	b) Lowest	c) Medium	d) Integration
	Q.61 to Q.65 carry	two marks each		(GATE PI 2013)
61)				e remainder by bus at 30 courist in km/h during his
	a) 36	b) 30	c) 24	d) 18
				(GATE PI 2013)

62) The current erection cost of a structure is Rs. 13,200. If the labour wages per day increase by 1/5 of the current wages and the working hours decrease by 1/24 of the current period, then the new cost of erection in Rs. is:

63) Out of all the 2-digit integers between 1 and 100, a 2-digit number has to be selected at random. What is the probability that the selected number is not divisible by 7?						
a) 13/90	b) 12/90	c) 78/90	d) 77/90			
(GATE PI 2013) 64) After several defeats in wars, Robert Bruce went in exile and wanted to commit suicide. Just before committing suicide, he came across a spider attempting tirelessly to have its net. Time and again, the spider failed but that did not deter it from making attempts. Such attempts by the spider made Bruce curious. Thus, Bruce started observing the near-impossible goal of the spider to have the net. Ultimately, the spider succeeded in having its net despite several failures. Such act of the spider encouraged Bruce not to commit suicide. And then, Bruce went back again and won many a battle, and the rest is history. Which one of the following assertions is best supported by the above information?						
b) Honesty is the best policy.c) Life begins and ends with adventures.d) No adversity justifies giving up hope.						
65) Find the sum of the 81 + 80 + 1 +	•	+ 2 + 1 + 2 + 1 + 1	(GATE PI 2013)			
a) 7b) 8		c) 9 d) 10				
			(GATE PI 2013)			

d) 10,120

(GATE PI 2013)

a) 16,500 b) 15,180 c) 11,000