Roberto Capobianco

Recap

From Multi-Armed to Contextual Bandits

Action Reward Multi-armed Bandit (stateless)

State Action Reward Contextual Bandit

Contextual bandits add back some context (state)

Contextual Bandits: Interaction

The interactive process that we deal with in CB is the following:

For
$$t = 0, ..., T-1$$
:

- 1. A new i.i.d. context x_{t} in X appears
- Select an action a_t in A based on historical information and context
- 3. Observe reward $r(x_t, a_t)$ (which is context and arm dependent)

For simplicity we assume deterministic rewards, as the context is the challenge here

Contextual Bandits VS RL

In RL, conversely, states depend on previous actions: we can say that contextual bandits are Finite-Horizon MDPs with horizon 1

Contextual Bandits: Regret

Optimal policy:
$$\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E}_{x \sim \mu} r(x, \pi(x))$$

At every iteration $a_t = \pi_t(x_t)$ is selected and a reward $r(x_t, a_t)$ is received: the regret is the **total expected reward if we always use** π^* VS the **total expected reward if we use our learned sequence of policies**

$$\mathsf{Regret}_T = \boxed{T\mathbb{E}_{x \sim \mu}[r(x, \pi^{\star}(x))]} - \boxed{\sum_{t=0}^{T-1} \mathbb{E}_{x \sim \mu}[r(x, \pi^t(x))]}$$

Note that policies are different at every iteration t

Explore & Commit Algorithm

- 1. For t = 0, ..., N-1: (explore)
 - \circ observe state $x_{+} \sim \mu$
 - o uniform-randomly sample a₊~ Unif(A)
 - observe reward $r_{+}=r(x_{+},a_{+})$
 - o build, for \mathbf{x}_{t} , an unbiased estimate of $\mathbb{E}_{a \sim p} \hat{\mathbf{r}}[a] = r(x_t, a), \forall a$
- 2. Compute policy

$$\hat{\pi} = \arg\max_{\pi \in \Pi} \sum_{i=0}^{N-1} \hat{\mathbf{r}}_i[\pi(x_i)]$$

- \circ observe state $x_{+} \sim \mu$
- o play arm

$$\hat{\mathbf{r}}_t[a] = \begin{cases} 0 & a \neq a_t \\ \frac{r_t}{1/|\mathcal{A}|} & a = a_t \end{cases}$$

$$\mathsf{Regret}_T = T \mathbb{E}_{x \sim \mu} [r(x, \pi^{\star}(x))] - \sum_{t=0}^{T-1} \mathbb{E}_{x \sim \mu} [r(x, \pi^t(x))] = O\left(T^{2/3} K^{1/3} \cdot \ln(|\Pi|)^{1/3}\right)$$

ε -Greedy

Instead of setting a threshold for exploring and then committing, we can try to interleave exploration and exploitation

- 1. For t = 0, ..., T: (interleave exploration & exploitation)
 - observe state $x_{+}^{\sim} \mu$
 - o $a_t \sim p_t = (1-\varepsilon)\delta(\pi^t(x_t)) \varepsilon Unif(A)$ o observe reward $r_t = r(x_t, a_t)$

 - build, for x_{t} , an unbiased estimate of $\mathbb{E}_{a \sim p} \hat{\mathbf{r}}[a] = r(x_{t}, a), \forall a$
- Update policy

$$\pi^{t+1} = \arg\max_{\pi \in \Pi} \sum_{i=0}^t \hat{\mathbf{r}}_i[\pi(x_i)] \qquad \begin{array}{c} \varepsilon = \text{0} \to \text{exploit} \\ \varepsilon = \text{1} \to \text{uniformly explore} \end{array}$$

$$\varepsilon$$
 = 0 -> exploit

Bayesian Bandits

So far we have made no assumptions about the reward distribution $\nu_{\rm i}$, we only derived bounds on rewards

In Bayesian Bandits, however:

- We exploit *prior* knowledge of rewards
- Update a posterior distribution of rewards based on historical information
- Use posterior to guide exploration using:
 - upper confidence bounds (Bayesian UCB)
 - probability matching (Thompson Sampling)

Gaussian Bayesian Bandits: UCB

Now we are modelling a distribution, so we already have confidence What is confidence for Gaussians? **standard deviation**

Let's do UCB by selecting the action with highest standard deviation ${\bf a_t} = {\rm argmax_i}_{\rm in~K}~\mu_{\rm t}({\rm i}) + {\rm c}\sigma_{\rm t}({\rm i})/\sqrt{\rm N_t}({\rm i})$

Gaussian Bayesian Bandits: Thompson Sampling

```
For t=0,\ldots,T:

generic MDPs this can be replaced with the Q function: we estimate a distribution of Q

1. for each arm i=1,\ldots,K:

sample \hat{\mathbf{r}}_i independently from N(\mu_{t-1}(i),\sigma^2_{t-1}(i))

2. pull arm

I_t = \arg\max_{i \in [K]} \hat{\mathbf{r}}_i

3. observe reward \mathbf{r}_t

4. update posterior distribution p(\mu_+(i),\sigma^2_+(i)|\mathbf{r}_+)
```

This is an estimation of the reward, in more

This can be done with different distributions as well

End Recap

Given an MDP, what happens if we cannot get access to a reward?

Given an MDP, what happens if we cannot get access to a reward? We can learn by imitation of an expert!

Given an MDP, what happens if we cannot get access to a reward?
We can learn by imitation of an expert!

Collect expert demonstrations

$$D = \{s_i^*, a_i^*\}_{i=1}^{M} \sim d^{\pi^*}$$

For simplicity, let's assume expert is a (nearly) optimal policy π^*

Given an MDP, what happens if we cannot get access to a reward?

We can learn by imitation of an expert!

- 1. Collect expert demonstrations
- 2. Use a machine learning algorithm to learn to map states to actions

i.e., do regression or classification

$$\widehat{\pi} = \arg\min_{\pi \in \Pi} \sum_{i=1}^{M} \ell(\pi, s^*, a^*)$$

loss can be negative likelihood

$$-\ln \pi(a^{\star} \mid s^{\star})$$

or square error

$$\|\pi(s) - a^*\|_2^2$$

Given an MDP, what happens if we cannot get access to a reward? We can learn by imitation of an expert!

- 1. Collect expert demonstrations
- 2. Use a machine learning algorithm to learn to map states to actions
- 3. Generate a policy

For simplicity, let's assume expert is a (nearly) optimal policy π^*

Behavior Cloning

Credits: Wen Sun

Behavior Cloning

Behavior cloning, with probability 1- δ , returns a policy such that

$$V^{\pi^*} - V^{\widehat{\pi}} \le \frac{2}{(1 - \gamma)^2} \epsilon$$

(you can prove it using performance difference lemma)

Behavior cloning, with probability 1- δ , returns a policy such that

$$V^{\pi^{\star}} - V^{\widehat{\pi}} \le \frac{2}{(1 - \gamma)^2} \epsilon$$
 Quadratic

(you can prove it using performance difference lemma)

Credits: Wen Sun

Behavior cloning, with probability 1- δ , returns a policy such that

$$V^{\pi^{\star}} - V^{\widehat{\pi}} \le \frac{2}{(1 - \gamma)^2} \epsilon$$
 Quadratic

(you can prove it using performance difference lemma)

Why?

Behavior cloning, with probability 1- δ , returns a policy such that

$$V^{\pi^{\star}} - V^{\widehat{\pi}} \le \frac{2}{(1 - \gamma)^2} \epsilon$$
 Quadratic

(you can prove it using performance difference lemma)

Why? Predictions affect future inputs/observations, inducing a distribution shift

Behavior Cloning: Distribution Shift

Behavior Cloning: Distribution Shift

Credits: Wen Sun

Interactive Imitation Learning

Can we alleviate such problem? Yes, by setting up an interactive process where we continuously query the expert

Interactive Imitation Learning

_ _ _

DAgger

DAgger: Iterations (0th)

DAgger: Iterations (1st)

_ _ _

Credits: Wen Sun, Drew Bagnell, Stephane Ross, Arun Venktraman

DAgger: Iterations (2nd)

Credits: Wen Sun, Drew Bagnell, Stephane Ross, Arun Venktraman

DAgger: Iterations (n-th)

_ _ _

Credits: Wen Sun, Drew Bagnell, Stephane Ross, Arun Venktraman

DAgger: Video

Inverse Reinforcement Learning

Given an MDP, what happens if we cannot get access to a reward?

We can learn through an optimal expert that minimizes the true cost!

Assume transition function is known and we have our dataset D

Inverse Reinforcement Learning

Given an MDP, what happens if we cannot get access to a reward?

We can learn through an optimal expert that minimizes the true cost!

Assume transition function is known and we have our dataset D

Also assume the true reward/cost is linear in some features □(s,a)

Entropy

Given a distribution P, the entropy is:

$$Entropy(P) = -\sum_{x} P(x) \cdot \ln P(x)$$

Higher entropy means higher uncertainty (i.e., a deterministic distribution has 0 entropy, uniform the highest)

Maximum Entropy

We want to find a distribution whose mean and covariance matrix equal some values, but there are infinitely many such distributions:

we choose the least committing one, with maximum entropy

We want to find a policy such that

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]$$
$$s.t. \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a)$$

From expert data:

$$\sum_{i=1}^{N} \phi(s_i^{\star}, a_i^{\star})/N$$

We want to find a policy such that

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]$$

$$s.t, \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a)$$

$$\mathbb{E}_{s \sim d_u^{\pi}} \left[\mathsf{entropy}(\pi(\,\cdot\,|\,s)) \right] = -\,\mathbb{E}_{s \sim d_u^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s)} \ln \pi(a\,|\,s) = -\,\mathbb{E}_{s,a \sim d_u^{\pi}} \ln \pi(a\,|\,s)$$

We want to find a policy such that

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]$$

$$s.t, \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a)$$

$$\arg\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\mathsf{entropy}(\pi(\,\cdot\,|\,s)) \right] = \arg\min_{\pi} \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \ln \pi(a\,|\,s)$$

We want to find a policy such that

$$\max_{\pi} \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left[\text{entropy} \left(\pi(\cdot \mid s) \right) \right]$$
$$s.t, \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a) = \mathbb{E}_{s,a \sim d_{\mu}^{\pi}} \phi(s,a)$$

Using Lagrange multipliers

$$\max_{w \in \mathbb{R}^d} \min_{\pi} \mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \ln \pi(a \mid s) + w^{\top} \left(\mathbb{E}_{s, a \sim d_{\mu}^{\pi}} \phi(s, a) - \mathbb{E}_{s, a \sim d_{\mu}^{\pi^{\star}}} \phi(s, a) \right)$$

Maximum Entropy IRL: Algorithm

Initialize $w^0 \in \mathbb{R}^d$ This is like an RL problem w/ cost For $t = 0 \to T-1$ $c(s,a) := (w^t)^\top \phi(s,a)$, but w/ an additional $\ln \pi(a \mid s)$ $\pi^t = \arg\min_{\pi} \mathbb{E}_{s,a \sim d^\pi_\mu} \left[(w^t)^\top \phi(x,a) + \ln \pi(a \mid s) \right]$ (# best response: $\pi^t = \arg\min_{\pi} \ell(\pi,w^t)$) $e^{t+1} = w^t + \eta \left(\mathbb{E}_{s,a \sim d^{\pi^t}_\mu} \phi(s,a) - \mathbb{E}_{s,a \sim d^{\pi^t}_\mu} \phi(s,a) \right)$ Return $\bar{\pi} = \text{Uniform}(\pi^0, \dots, \pi^{T-1})$ (# gradient update: $e^{t+1} = w^t + \eta \nabla_w \ell(\pi^t, w^t)$)

Maximum Entropy IRL: Algorithm

Initialize $w^0 \in \mathbb{R}^d$ This is like an RL problem w/ cost For $t = 0 \to T-1$ $c(s,a) := (w^t)^\top \phi(s,a)$, but w/ an additional $\ln \pi(a \mid s)$ Uses soft-value iteration (# best response: $\pi^t = \arg\min_{\pi} \ell(\pi, w^t)$) $w^{t+1} = w^t + \eta \left(\mathbb{E}_{s,a \sim d_{\mu}^{\pi^t}} \phi(s,a) - \mathbb{E}_{s,a \sim d_{\mu}^{\pi^*}} \phi(s,a) \right)$ Return $\bar{\pi} = \text{Uniform}(\pi^0, \dots, \pi^{T-1})$ (# gradient update: $w^{t+1} = w^t + \eta \nabla_w \ell(\pi^t, w^t)$)

