Data Mining

Esercizi di clustering - Testi

L'interfaccia

Modalità di verifica dei risultati: indica il dataset su cui sono calcolati gli indici statistici che può essere diverso da quello in base al quale sono effettivamente costruiti i cluster (es. centroidi di kMeans)

In alternativa è possibile utilizzare un attributo classe per verificare la corrispondenza tra cluster e classe (se questa è nota)

Il data set Iris

- Il data set Iris modella le caratteristiche di una famiglia di piante
 - √ 150 istanze
 - ✓ Nessun dato mancante

Attributo	Descrizione
SepalLength	Lunghezza del sepalo
SepalWidth	Larghezza del sepalo
PetalLength	Lunghezza del petalo
PetalWidth	Larghezza del petalo

Pre-processing

- Gli algoritmi di clustering necessitano di una misura di distanza, nei casi che vedremo la distanza euclidea.
- Nel caso in cui gli attributi coinvolti abbiano range di valore diversi è sempre necessario normalizzare tali range in modo che ognuno di essi abbia la stessa influenza nel calcolo del risultato
 - ✓ Normalizzare gli attributi numerici utilizzando il filtro Unsupervised → Attribute→Normalize

Simple K-means: i parametri

- DisplayStdDev: mostra la deviazione standard delle distanze dei singoli punti rispetto al centro del cluster. La misura è riportata separatamente per ogni attributo
 - ✓ Minore la StdDev maggiore la coesione del cluster rispetto all'attributo.
 - ✓ Permette di scegliere quali attributi utilizzare nel calcolo della similarità.
- Distance function: funzione distanza utilizzata nel calcolo
- MaxIteration: numero massimo di iterazioni per ottenere la convergenza
- NumCluster:valore di k
- Seed: valore random per la scelta dei centroidi iniziali
 - ✓ Cambiandolo cambia il loro posizionamento iniziale

Simple K-means: i risultati

Eseguire l'algoritmo ponendo DisplayStdDev=true e NumCluster=3

Simple K-means: i risultati

Rieseguire l'algoritmo selezionando Classes to cluster evaluation

K-means: analisi del risultato

Visualizzare il risultato del clustering per le diverse coppie di attributi e discutere il risultato in base al posizionamento dei centroidi e alla dispersione dei punti. Come è possibile migliorare il risultato?

II Data set FoodNutrients

- Contiene le informazioni nutrizionali di 25 alimenti
 - ✓ Caricare il file FoodNutrients.arff

Attributo	Descrizione
EnergyCal	Calorie per 100 gr
ProteinGram	Proteine per 100 gr
FatGram	Grassi per 100gr
CalciumMG	Calcio in milligrammi per 100 gr
IronMG	Ferro in milligrammi per 100gr

- Normalizzare i dati e clusterizzarli utilizzando kmeans per valori crescenti di k [2,6]
- Analizzare i risultati facendo ipotesi sul significato delle classi in base alle caratteristiche dei centroide e alle StdDev dei cluster

II Data set Coordinates

- Contiene le coordinate geografiche di 480 punti
 - ✓ Caricare il file Coordinates.arff
- Classificare i dati utilizzando k-means con un numero di cluster compreso tra 2 e 6
 - ✓ Come varia SSE?
 - ✓ A partire da quale valore di k SSE si stabilizza?
 - ✓ K-means è in grado di catturare i cluster naturali?
 - Perche?

Coordinates con DBSCAN

- Valutare il risultato della classificazione con DBSCAN
- Identificare i corretti valori per epsilon e minpoints