autoregression analysis

Luca Comba 3/22/2021

Read dataset

```
fargo <- read.csv("C:/Users/Luca/Desktop/SPRING2021/Statistical Research/Correct Dataset/fargo.c
sv", encoding="UTF-8")
grand <- read.csv("C:/Users/Luca/Desktop/SPRING2021/Statistical Research/Correct Dataset/grand.c
sv", encoding="UTF-8")</pre>
```

Creating time series

Now for each of the variable we are creating a time series.

For the discharge.

For the average temperature.

For the Evapotranspiration.

For the rainfall.

For the snow depth

For the top soil temperature.

Plotting some time-series

plot(cbind(grand_discharge_ts,grand_top_soil_ts,grand_rainfall_ts), main = "Grand - Discharge an
d Top Soil temperature")

Grand - Discharge and Top Soil temperature

This is for Fargo

plot(cbind(fargo_discharge_ts,fargo_top_soil_ts,fargo_rainfall_ts), main = "Fargo - Discharge an
d Top Soil temperature")

Fargo - Discharge and Top Soil temperature

Seasonal Decomposition

Because our data shows that the time seires have a seasonal trend, then components of the time seires can be decomposed. In R we can do it with the stl() method.

Here is an exmple using Grand's discharge time-series.

```
grand_discharge_fit <- stl(grand_discharge_ts, s.window="period")
plot(grand_discharge_fit, main = "Grand Discharge Decomposition")</pre>
```

Grand Discharge Decomposition

Here is the decomposition for the rest of the data.

```
# Grand
grand_pen_fit <- stl(grand_pen_ts, s.window="period")
grand_rainfall_fit <- stl(grand_rainfall_ts, s.window="period")
grand_snow_fit <- stl(grand_snow_ts, s.window="period")
grand_temp_fit <- stl(grand_temp_ts, s.window="period")
grand_top_soil_fit <- stl(grand_top_soil_ts, s.window="period")

# Fargo
fargo_discharge_fit <- stl(fargo_discharge_ts, s.window="period")
fargo_pen_fit <- stl(fargo_pen_ts, s.window="period")
fargo_rainfall_fit <- stl(fargo_rainfall_ts, s.window="period")
fargo_snow_fit <- stl(fargo_snow_ts, s.window="period")
fargo_temp_fit <- stl(fargo_temp_ts, s.window="period")
fargo_top_soil_fit <- stl(fargo_top_soil_ts, s.window="period")</pre>
```

Another way to decompose the Time-series is to use decompose

```
# Grand
grand_discharge_fit <- decompose(grand_discharge_ts)
grand_pen_fit <- decompose(grand_pen_ts)
grand_rainfall_fit <- decompose(grand_rainfall_ts)
grand_snow_fit <- decompose(grand_snow_ts)
grand_temp_fit <- decompose(grand_temp_ts)
grand_top_soil_fit <- decompose(grand_top_soil_ts)

# Fargo
fargo_discharge_fit <- decompose(fargo_discharge_ts)
fargo_pen_fit <- decompose(fargo_pen_ts)
fargo_rainfall_fit <- decompose(fargo_rainfall_ts)
fargo_snow_fit <- decompose(fargo_snow_ts)
fargo_temp_fit <- decompose(fargo_temp_ts)
fargo_top_soil_fit <- decompose(fargo_top_soil_ts)</pre>
```

Vector Autoregression Analysis

After having uploaded the dataset and the correct libraries is time for creating time series objects.

We would need to check that has been completed correctly by plotting the data.

Autocorrelation

we would now need to check for autocorrelation.

```
head(grand_discharge_fit$time.series)
```

```
## seasonal trend remainder
## [1,] -1587.69165 3066.106 1831.58573
## [2,] -395.95636 3065.850 570.10663
## [3,] -90.06571 3065.594 334.47217
## [4,] 27.49160 3065.337 187.17105
## [5,] 250.04891 3065.081 -75.13007
## [6,] 615.93956 3064.825 -440.76453
```

Trends in the data for the Grand's discharge:

```
plot(grand_discharge_fit$time.series[,"trend"])
```


acf(grand_discharge_fit\$time.series[,"trend"])

Series grand_discharge_fit\$time.series[, "trend"]

For proceding to take out the seasonality, which means that after using decomposition into three components: trend, seasonal, and irregular, and then *apply VAR* to the residuals (irregular components of the time series).

The *Remainder* column in the Seasonal Decomposition of Time Series by Loess can be plotted and use it for the Vector Autoregression analysis.

```
plot(grand_discharge_fit$time.series[,"remainder"])
```


acf(grand_discharge_fit\$time.series[,"remainder"])

Series grand discharge fit\$time.series[, "remainder"]

Then the residual, or called remainder, can be save into the fitted variables and used for the analysis.

```
# Grand
grand_discharge_fit = grand_discharge_fit$time.series[,"remainder"]
grand_pen_fit = grand_pen_fit$time.series[,"remainder"]
grand_rainfall_fit = grand_rainfall_fit$time.series[,"remainder"]
grand_snow_fit = grand_snow_fit$time.series[,"remainder"]
grand_temp_fit = grand_temp_fit$time.series[,"remainder"]
grand_top_soil_fit = grand_top_soil_fit$time.series[,"remainder"]

# Fargo
fargo_discharge_fit = fargo_discharge_fit$time.series[,"remainder"]
fargo_pen_fit = fargo_pen_fit$time.series[,"remainder"]
fargo_rainfall_fit = fargo_rainfall_fit$time.series[,"remainder"]
fargo_snow_fit = fargo_snow_fit$time.series[,"remainder"]
fargo_top_soil_fit = fargo_top_soil_fit$time.series[,"remainder"]
```

Analysis

The analysis will start with the Grand Fork data. I have followed closely the tutorial on kevinkotze.github.io (https://kevinkotze.github.io/ts-7-tut/)

Analysis for Grand Forks

First we can try the set of variables Discharge and Top Soil.

```
# Selection of the variables
grand_bind_dis_top <- cbind(grand_discharge_fit, grand_top_soil_fit)
colnames(grand_bind_dis_top) <- c("discharge", "soil")</pre>
```

For the model selection and estimation we can use the VARselect method.

```
# Set up the analysis
grand_model <- VARselect(grand_bind_dis_top, lag.max = 12, type = "const")
grand_model$selection</pre>
```

```
## AIC(n) HQ(n) SC(n) FPE(n)
## 6 6 5 6
```

Because it seems that the best lag is 6 that would mean that the expected best p is 6.

```
grand_est <- VAR(grand_bind_dis_top, p = 6, type = "const", season = NULL,
    exog = NULL)
summary(grand_est)</pre>
```

```
##
## VAR Estimation Results:
## ==========
## Endogenous variables: discharge, soil
## Deterministic variables: const
## Sample size: 2185
## Log Likelihood: -18569.701
## Roots of the characteristic polynomial:
## 0.9037 0.9037 0.8436 0.6197 0.6197 0.5761 0.5761 0.4926 0.4926 0.4802 0.4802 0.4194
## VAR(y = grand bind dis top, p = 6, type = "const", exogen = NULL)
##
##
## Estimation results for equation discharge:
## discharge = discharge.l1 + soil.l1 + discharge.l2 + soil.l2 + discharge.l3 + soil.l3 + discha
rge.14 + soil.14 + discharge.15 + soil.15 + discharge.16 + soil.16 + const
##
##
               Estimate Std. Error t value Pr(>|t|)
                         0.02136 111.565 < 2e-16 ***
## discharge.l1
                2.38359
## soil.l1
              -10.99502 10.52749 -1.044 0.2964
## discharge.l2 -2.31004 0.05491 -42.073 < 2e-16 ***
## soil.12
                0.71405 16.07047
                                   0.044
                                          0.9646
## discharge.l3 1.44571
                        0.07198 20.085 < 2e-16 ***
## soil.13
               8.02230 16.71181 0.480 0.6312
## discharge.14 -0.78785 0.07195 -10.949 < 2e-16 ***
## soil.14
               11.23022 16.71221 0.672
                                           0.5017
## discharge.15 0.35039 0.05486 6.388 2.06e-10 ***
## soil.15
              -27.29582 16.05964 -1.700
                                           0.0893 .
## discharge.16 -0.09569 0.02136 -4.480 7.86e-06 ***
               14.75591 10.48958
## soil.16
                                    1.407
                                           0.1597
## const
                0.02526 8.05600 0.003
                                           0.9975
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 376.5 on 2172 degrees of freedom
## Multiple R-Squared: 0.9961, Adjusted R-squared: 0.9961
## F-statistic: 4.649e+04 on 12 and 2172 DF, p-value: < 2.2e-16
##
##
## Estimation results for equation soil:
## ===============
## soil = discharge.l1 + soil.l1 + discharge.l2 + soil.l2 + discharge.l3 + soil.l3 + discharge.l
4 + soil.14 + discharge.15 + soil.15 + discharge.16 + soil.16 + const
##
##
                Estimate Std. Error t value Pr(>|t|)
## discharge.l1 -1.792e-05 4.358e-05 -0.411 0.680984
## soil.l1
               1.153e+00 2.147e-02 53.709 < 2e-16 ***
## discharge.12 5.728e-05 1.120e-04
                                    0.512 0.609033
## soil.12
              -4.344e-01 3.278e-02 -13.253 < 2e-16 ***
## discharge.l3 -6.483e-05 1.468e-04 -0.442 0.658833
## soil.13
               1.210e-01 3.409e-02
                                    3.550 0.000393 ***
```

```
## discharge.14 2.749e-05 1.468e-04
                                       0.187 0.851408
## soil.14
                2.750e-02 3.409e-02
                                       0.807 0.419851
## discharge.15 7.300e-06 1.119e-04
                                       0.065 0.947984
## soil.15
              -3.364e-02 3.276e-02 -1.027 0.304477
## discharge.16 -1.772e-05 4.357e-05 -0.407 0.684191
## soil.16
               2.427e-02 2.139e-02 1.134 0.256720
## const
               -1.574e-03 1.643e-02 -0.096 0.923700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.768 on 2172 degrees of freedom
## Multiple R-Squared: 0.7863, Adjusted R-squared: 0.7851
## F-statistic: 666.1 on 12 and 2172 DF, p-value: < 2.2e-16
##
##
##
## Covariance matrix of residuals:
##
             discharge
                          soil
## discharge 141788.449 -7.0460
                -7.046 0.5899
## soil
##
## Correlation matrix of residuals:
##
            discharge
              1.00000 -0.02436
## discharge
## soil
             -0.02436 1.00000
```

We can test the model fit with many tests for example Portmanteau-test.

One question that we might have is what would would be the best value for the lags.pt?

```
grand_serial <- serial.test(grand_est, lags.pt = 12, type = "PT.asymptotic")
grand_serial</pre>
```

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object grand_est
## Chi-squared = 49.789, df = 24, p-value = 0.001506
```

```
plot(grand_serial, names = "discharge")
```


Histogram and EDF

ACF of Residuals

PACF of Residuals

ACF of squared Residuals

PACF of squared Residuals

plot(grand_serial, names = "soil")

Histogram and EDF

ACF of Residuals

10

12

ACF of squared Residuals

PACF of squared Residuals

"To interpret these statistics note that if a p-value is greater than 5% would generally indicate that there is an absence of serial correlation. To test for heteroscedasticity in the residuals we can perform a multivariate ARCH Lagrange-Multiplier test."

```
grand_arch <- arch.test(grand_est, lags.multi = 12, multivariate.only = TRUE)
grand_arch</pre>
```

```
##
## ARCH (multivariate)
##
## data: Residuals of VAR object grand_est
## Chi-squared = 1184.5, df = 108, p-value < 2.2e-16</pre>
```

Now we have the problem of heteroscedasticity. This means that our data has heteroscedasticity since the p value is less than 0.05.

We would also need to check for normality

```
grand_norm <- normality.test(grand_est, multivariate.only = TRUE)
grand_norm</pre>
```

```
## $JB
##
##
   JB-Test (multivariate)
##
## data: Residuals of VAR object grand_est
## Chi-squared = 64364, df = 4, p-value < 2.2e-16
##
##
## $Skewness
##
##
   Skewness only (multivariate)
##
## data: Residuals of VAR object grand_est
## Chi-squared = 400.67, df = 2, p-value < 2.2e-16
##
##
## $Kurtosis
##
   Kurtosis only (multivariate)
##
##
## data: Residuals of VAR object grand_est
## Chi-squared = 63963, df = 2, p-value < 2.2e-16
```

In conclusion the data indicates that the residual are not normally distributed.

Then lastly to test for the structural break in the residuals we can apply a CUSUM test.

```
grand_cusum <- stability(grand_est, type = "OLS-CUSUM")
plot(grand_cusum)</pre>
```


Other methods to use are: Granger causality, IRFs and variance decompositions.

Resources used

Here is a list of some website used

- Understanding Decomposition (https://anomaly.io/seasonal-trend-decomposition-in-r/index.html)
- Documentation of stl() (https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/stl)
- Vector Autoregression Tutorial 1 (https://kevinkotze.github.io/ts-7-tut/)
- General R time series (https://www.statmethods.net/advstats/timeseries.html)

Also another question was asked on StackOverflow (https://stackoverflow.com/questions/67066604/multiple-time-series-in-r-using-ts?noredirect=1#comment118547063 67066604)