3D Z₂ topological insulators

Figure from Hasan and Kane, RMP, 2010 (Adapted from Xia et al., 2008; Hsieh, Xia, Qian, Wray, et al., 2009a; and Xia, Qian, Hsieh, Wray, et al., 2009)

Reminder: Hybrid WF centers

2 occupied bands; no TR; trivial

HXIN TIME-REVERSAL-INVARIANT SYSTEMS

(TRI = TR INVARIANT TRB = TR - BROKEN)

 H_k is that of a 2D insulator with TR

 H_k is that of a 2D insulator with TR

Hybrid WF sheets

6 independent Z₂ indices? No, only 4... (Moore and Balents, 2007)

6 independent Z₂ indices? No, only 4... (Moore and Balents, 2007)

$$v_0 = v_{1a}v_{1b} = v_{2a}v_{2b} = v_{3a}v_{3b}$$

 $v_0 = (+)$: Opposite faces have same indices

 $v_0 = (-)$: Opposite faces have opposite indices "Strong Topological Insulator" (STI)

Full index set: $(v_0; v_{1b}v_{2b}v_{3b})$

Hybrid WF sheets

Hybrid WF sheets

Weyl semimetal

WCCs along \hat{y} vs. (k_x, k_z) for Weyl semimetal.

One Weyl point in the ¼ 2D BZ allows violation of the Moore-Balents rule

One Weyl point in the ¼ 2D BZ allows violation of the Moore-Balents rule

Bulk-boundary correspondence: 2D

Figure 5.13 (a) Flow of hybrid Wannier centers for a Kane-Mele model in the trivial phase with $\Delta = 0.7$, $t_1 = -1.0$, $\lambda_R = 0.05$, and $\lambda_{SO} = -0.06$. (b) Edge states on a ribbon cut from the same model; those on the top and bottom edges of the ribbon are indicated by full and reduced intensity respectively. (c-d) Same as (a-b), but in the topological phase, $\lambda_{SO} = -0.24$.

6 independent Z₂ indices? No, only 4... (Moore and Balents, 2007)

(001) surface Fermi structure

Fig. 5.17: $(v_1 \ v'_1; v_2 \ v'_2) = ?$

Fig. 5.18

3D Kane-Mele model

Hybrid WF sheets

Surface energy bands

Hybrid WF sheets

First-principles calculation: Bi₂Se₃

H. Zhang et al., Nature Physcis **5**, 2009

First-principles calculation: Bi₂Se₃

bulk bandstructure of Bi₂Se₃ projected onto Bi 6p orbitals

First-principles Bi₂Se₃ Wannier centers

First-principles Bi₂Se₃ Wannier centers

First-principles Bi₂Se₃ Wannier centers

3D Z₂ topological insulators

Figure from Hasan and Kane, RMP, 2010 (Adapted from Xia et al., 2008; Hsieh, Xia, Qian, Wray, et al., 2009a; and Xia, Qian, Hsieh, Wray, et al., 2009)