

Statistika Non Parametrik TSD - Ganjil 2024/2025

Pertemuan Minggu 5: Uji Hipotesis 2 Sampel Independen & Dependen

Outline

Uji komparatif dua sampel independen

- uji median
- uji mann whitney

Uji komparatif dua sampel dependen

• mc nemar

Pendahuluan

- ✓ Uji dua sampel biasanya juga disebut uji komparasi dua sampel.
- ✓ Merupakan uji yang dilakukan untuk membandingkan parameter lokasi dari dua sampel yang berasal dari dua populasi.
- ✓ Uji ini terdiri dari dua bagian yaitu uji dua sampel Independen (bebas) dan Dependen (berhubungan).

Definisi dan Tujuan Uji Hipotesis 2 Sampel Independen

- ✓ Sampel bebas adalah dua kelompok sampel yang berbeda, namun dilakukan pengukuran pada waktu yang sama.
- ✓ Pengujian dua sampel bebas bertujuan untuk menganalisis perbedaan dari dua sampel yang saling bebas, atau dengan kata lain untuk menguji apakah kedua sampel yang saling bebas tersebut berasal dari populasi yang memiliki karakteristik yang sama atau tidak.

Pedoman Memilih Metode

	Alat Analisis Pengujian Hipotesis Dua Sampel Bebas
Nominal	Uji Fisher Exact Probability Uji Chi Square Two Sample
Ordinal	Uji Median Uji Mann-Whitney (U Test) Uji Kolmogorov-Smirnov Two Samples Uji Wald-Woldfowitz

- Merupakan uji untuk dua sampel independen yang paling sederhana.
- Digunakan untuk menguji apakah sama antara median dari sampel 1 dengan median dari sampel 2.

Asumsi yang Harus Dipenuhi:

- Kedua sampel diambil secara acak dari dua populasi independen
- Sampel I dengan pengamatan X₁,X₂,....,X_n
- Sampel II dengan pengamatan Y₁,Y₂,....,Y_n
- Variabel pengamatan keduanya adalah kontinyu
- Skala pengukuran minimal ordinal
- Bila median kedua populasi adalah sama maka peluang p (banyaknya pengamatan diatas median gabungan ($grand\ median$)) adalah sama untuk keduanya.

Prosedur:

- Tentukan median gabungan yaitu median untuk semua skor dalam kedua sampel.
- Pisahkan skor masing-masing kelompok berdasarkan median gabungan dan **masukan frekuensi- frekuensi** yang diperoleh **dalam tabel** (slide selanjutnya).
- Jika ada skor yang mempunyai **nilai sama dengan median gabungan**, peneliti mempunyai dua pilihan solusi: Pertama, jika kasus yang nilainya sama dengan median gabungan sedikit dan n gabungan besar maka nilai tersebut bisa tidak digunakan dalam analisis. Kedua, kasus yang nilainya sama dengan median gabungan dapat dibagi dua menjadi skor-skor di atas median dan skor-skor di bawah median.
- Jika n ≤ 20 gunakan uji Fisher exact.
- Jika n > 20 gunakan uji Chi-square dengan koreksi kontinyuitas (jika frekuensi harapannya ada yang kurang dari 5, maka gunakan uji Fisher).

Struktur Data

	Kelompok I	Kelompok II	Jumlah		
> median	Α	В	A + B		
< median	С	D	C + D		
	n1 = A + C	n2 = B + D	n = n1 + n2		

Keterangan:

A = banyaknya pengamatan > nilai median gabungan (grand median) dari kelompok I

B = banyaknya pengamatan > nilai median gabungan (grand median) dari kelompok II

C = banyaknya pengamatan < nilai median gabungan (grand median) dari kelompok I

D = banyaknya pengamatan < nilai median gabungan (grand median) dari kelompok II

n = banyak pengamatan keseluruhan

Hipotesis:

Pada uji median, hipotesis yang digunakan hanya dua sisi (karena proses satu sisi sangatlah rumit)

- > H₀: Kedua populasi memiliki median yang sama
- ➤ H₁: Kedua populasi memiliki median yang berbeda

Statistik Uji:

Uji Fisher (n \leq 20):

$$p = \frac{(A+B)!(C+D)!(A+C)!(B+D)!}{n!A!B!C!D!}$$

Tolak H_0 jika probabilitas $(p) \le \alpha$.

	Kelompok I	Kelompok II	Jumlah		
> median	А	В	A + B		
< median	С	D	C + D		
	n1 = A + C	n2 = B + D	n = n1 + n2		

Statistik Uji:

Uji Chi-square (n > 20):

$$\chi^{2} = \frac{n\left(\left|AD - BC\right| - \frac{n}{2}\right)^{2}}{\left(A + B\right)\left(C + D\right)\left(A + C\right)\left(B + D\right)}, \text{ dengan df} = 1$$

Tolak H_0 jika $\chi^2_{hitung} \ge \chi^2_{tabel(\alpha,df)}$.

Statistik Uji:

Untuk sampel besar juga bisa menggunakan pendekatan normal dengan statistik uji sebagai berikut:

$$T = \frac{(A/n_{1}) - (B/n_{2})}{\sqrt{\hat{P}(1-\hat{P})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

Dengan: $\hat{P} = (A+B)/N$

Tolak H_0 jika $T \ge Z_{\alpha/2}$ atau $T \le -Z_{\alpha/2}$

Contoh:

Suatu eksperimen bertujuan untuk melihat apakah ada perbedaan produksi per-hektar tanaman padi dengan 2 metode penanaman yang berbeda, dimana pertumbuhan tanaman padi dipilih dari sejumlah bidang tanah yang berbeda secara random. Kemudian produksi per-hektar dari masing-masing bidang tanah dihitung dan hasilnya adalah sebagai berikut: ($\alpha = 5\%$)

Metode 1	83	91	94	89	96	91	92	90	92	85		
Metode 2	91	90	81	83	84	83	88	91	90	84	80	85

Penyelesaian

Hipotesis:

 H_0 : dua metode tanam mempunyai nilai median yang sama untuk produksi per hektar.

H₁: dua metode tanam mempunyai nilai median yang berbeda untuk produksi per hektar.

Nilai median gabungan = 89.5

Karena n > 20 gunakan uji **Chi-square**

$$\chi^{2} = \frac{n\left(|AD - BC| - \frac{n}{2}\right)^{2}}{(A+B)(C+D)(A+C)(B+D)}$$

$$\chi^{2} = \frac{22\left(|56-12| - \frac{22}{2}\right)^{2}}{(11)(11)(10)(12)} = 1.65$$

$$\chi^{2}_{tabel} = \chi^{2}_{0.05,1} = 3.84$$

	Metode 1	Metode 2	Jumlah
> median	7	4	11
< median	3	8	11
	n1 = 10	n2 = 12	n = 22

Keputusan:

Gagal tolak H_0 karena $\chi^2_{hitung} < \chi^2_{tabel(\alpha,df)}$.

Kesimpulan:

Kesimpulan: dua metode tanam mempunyai nilai median yang sama untuk produksi per-hektar dengan tingkat keyakinan 95%

Nilai median gabungan = 89.5

Menggunakan pendekatan **Normal**

$$\hat{P} = (A + B) / n = 11/22 = 0.5$$

$$T = \frac{(A/n_1) - (B/n_2)}{\sqrt{\hat{P}(1-\hat{P})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$T = \frac{(7/10) - (4/12)}{\sqrt{0.5(1-0.5)\left(\frac{1}{10} + \frac{1}{12}\right)}} = 1.7127$$

	Metode 1	Metode 2	Jumlah
> median	7	4	11
< median	3	8	11
	n1 = 10	n2 = 12	n = 22

Keputusan:

Gagal tolak H_0 karena $T < Z_{\alpha/2}$.

Kesimpulan:

Kesimpulan: dua metode tanam mempunyai nilai median yang sama untuk produksi per-hektar dengan tingkat keyakinan 95%

- Uji mann Whitney ≈ Uji U mann Whitney
- Digunakan untuk menguji parameter lokasi dari 2 populasi bila skala datanya ordinal.

Asumsi:

- data merupakan sampel acak masing-masing dari dua populasi
- populasi 1 dengan pengamatan X₁,X₂,....,X_{n1}
- populasi 2 dengan pengamatan Y₁,Y₂,....,Y_{n2}
- kedua sampel independen
- variabel pengamatan adalah variabel acak kontinyu
- skala pengukuran minimal ordinal
- fungsi distribusi kedua populasi hanya berbeda dalam hal populasi lokasi

Perumusan Hipotesis:

Uji Dua Sisi

H₀ : Kedua populasi yang diamati identik

H₁ : Kedua populasi yang diamati berbeda

Satu Sisi (Arah Kiri)

H₀ : Kedua populasi yang diamati memiliki distribusi yang identik

H₁: Nilai-nilai X cenderung lebih kecil daripada nilai Y

Satu Sisi (Arah Kanan)

H₀ : Kedua populasi yang diamati memiliki ditribusi yang identik

H₁ : Nilai-nilai X cenderung lebih besar daripada nilai Y

Prosedur:

- a. Gabungkan dua sampel independen dan beri jenjang pada tiap-tiap anggotanya mulai dari pengamatan terkecil sampai nilai pengamatan terbesar. Jika ada dua atau lebih pengamatan yang sama maka digunakan jenjang rata-rata.
- b. Hitunglah jumlah jenjang masing-masing bagi sampel pertama dan kedua dan beri notasi R1 dan R2.
- c. Untuk pengujian statistik U, kemudian dihitung dari sampel pertama dengan n1 pengamatan.

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$

Atau dari sampel kedua dengan n₂ pengamatan

$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$

- d. Dari dua nilai U tersebut yang digunakan adalah nilai U yang lebih kecil. Untuk dibandingkan dengan nilai U tabel.
- e. Bandingkan nilai U dengan nilai U dalam tabel (untuk n_1 dan n_2 yang lebih kecil dari 20.
- f. Pengambilan keputusan dengan kriteria:
 - H_0 gagal ditolah, jika $U \ge U_{\alpha, n1, n2.}$
 - H_0 ditolak, jika $U < U_{\alpha, n1, n2}$.

Aproksimasi Sampel Besar:

• Bila n_1 atau $n_2 > 20$ maka diterapkan:

$$Z = \frac{U - \mu_U}{\sigma_U}, \quad \mu_U = \frac{n_1 n_2}{2} \qquad \text{U = Nilai terkecil antara U}_1 \text{ dan U}_2$$

Bila tidak ada angka sama

$$\sigma_U = \frac{\sqrt{n_1 n_2 (n_1 + n_2 + 1)}}{12}$$

Bila ada angka-angka sama dalam kelompok yang berbeda, dilakukan koreksi:

$$\sigma_U = \sqrt{\left(\frac{n_1 n_2}{n(n-1)}\right) \left(\frac{n^3 - n}{12} - \sum T\right)}$$

$$T = \frac{t^3 + t}{12}; \ n = n_1 + n_2$$

Daerah Penolakan

- Dua sisi, tolak H_o jika $Z \ge Z_{\alpha/2}$ atau $Z \le Z_{1-\alpha/2}$
- Satu sisi (arah kiri) $Z \leq Z_{1-\alpha}$
- Satu sisi (arah kanan) $Z \ge Z_{\alpha}$

t = banyak observasi berangka sama

Contoh

Seorang manajer pemasaran sirup, melakukan penelitian dengan tujuan untuk menguji apakah perbedaaan selera konsumen sirup Rasa Durian di dua desa yaitu di Desa Karanganyar dan di Desa Kali Tengah. Untuk kepentingan tersebut diambil sampel secara acak sebanyak 14 konsumen dari dua desa tersebut dengan data sebagai berikut:

Desa	Sikap
Karanganyar	Sangat Suka
Karanganyar	Suka
Karanganyar	Sangat Suka
Karanganyar	Suka
Karanganyar	Sangat Suka
Karanganyar	Cukup Suka
Karanganyar	Tidak Suka
Kalitengah	Suka
Kalitengah	Suka
Kalitengah	Sangat Suka
Kalitengah	Suka
Kalitengah	Tidak Suka
Kalitengah	Suka
Kalitengah	Cukup Suka
Kalitengah	Sangat Suka
Kalitengah	Sangat Suka

1. Judul Penelitian

Perbedaan Selera Konsumen terhadap Sirup Rasa Durian di Desa Karanganyar dan di Desa Kalitengah.

2. Variabel Penelitian

Selera konsumen terhadap sirup rasa durian di Desa Karanganyar dan Selera konsumen sirup rasa durian di Kalitengah

3. Pertanyaan Penelitian

Apakah terdapat perbedaan selera konsumen terhadap sirup rasa durian di Desa Karanganyar dan di Desa Kalitengah?

4. Hipotesis

H₀: Tidak terdapat perbedaan selera konsumen terhadap sirup rasa durian di Desa Karanganyar dan di Desa Kalitengah.

H₁: Terdapat perbedaan selera konsumen terhadap sirup rasa durian di Desa Karanganyar dan di Desa Kalitengah.

atau:

$$H_0: \mu_1 = \mu_2$$

$$H_1 : \mu_1 \neq \mu_2$$

5. Kriteria Pengujian

Gagal tolak H_0 , jika $U \ge U\alpha$, atau Sig. > 0.05

Tolak Ho, jika U < U α , atau Sig. \leq 0.05

No	Sikap Masyarakat Karanganyar	Ranking A	Sikap Masyarakat Kalitengah	Ranking B
1	5	13.5	4	7.5
2	4	7.5	4	7.5
3	5	13.5	5	13.5
4	4	7.5	4	7.5
5	5	13.5	2	1.5
6	3	3.5	4	7.5
7	2	1.5	3	3.5
8			5	13.5
9			5	13.5
		60.5		75.5

 $R_1 = 60.5 \text{ dan } R_2 = 75.5.$

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$

$$U_1 = 7x9 + \frac{7(7+1)}{2} - 60,5 = 30,5$$

$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$

$$U_2 = 7x9 + \frac{9(9+1)}{2} - 75,5 = 32,5$$

Output SPSS

Ranks

	kota	N	Mean Rank	Sum of Ranks
sikap	Karanganyar	7	8.64	60.50
	Kalitengah	9	8.39	75.50
	Total	16		

Test Statistics^b

	sikap
Mann-Whitney U	30.500
Wilcoxon W	75.500
Z	112
Asymp. Sig. (2-tailed)	.911
Exact Sig. [2*(1-tailed Sig.)]	.918ª

- a. Not corrected for ties.
- b. Grouping Variable: kota

Kesimpulan

- Berdasarkan analisis di atas ternyata $U_1 < U_2$, sehingga yang digunakan untuk membandingkan dengan U tabel adalah U_1 .
- Nilai U_{tabel} pada Tabel Mann-Whitney U test, dengan α = 0.05; n1 = 7; n2 = 9, adalah U_{tabel} = 12.
- Karena U_{hitung} (30.5) > U_{tabel} (12), atau. Sig. 2-tail (0.911) > alpha (0.05), maka hipotesis nol gagal ditolak.
- Sehingga hipotesis yang menyatakan "Terdapat perbedaan selera konsumen sirup rasa durian di desa Karanganyar dan Kalitengah", ditolak.

Critical Values of the Mann-Whitney U (Two-Tailed Testing)

FAKULTAS TEKNO	LOGI MAJU D	AN MULTIDISIPLIN

										n	l ₁								
n ₂	α	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	.05		0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
3	.01		0	0	0	0	0	0	0	0	1	1	1	2	2	2	2	3	3
4	.05	-	0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	14
4	.01			0	0	0	1	1	2	2	3	3	4	5	5	6	6	7	8
5	.05	0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
	.01			0	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	.05	1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
0	.01		0	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	.05	1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
	.01		0	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	.05	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
	.01		1	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	.05	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
	.01	0	1	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	.05	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
	.01	0	2	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42
11	.05	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
	.01	0	2	5	7	10	13	16	18	21	24	27	30	33	36	39	42	45	48
12	.05	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
	.01	1	3	6	9	12	15	18	21	24	27	31	34	37	41	44	47	51	54
13	.05	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
	.01	1	3	7	10	13	17	20	24	27	31	34	38	42	45	49	53	56	60
14	.05	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
	.01	1	4	7	11	15	18	22	26	30	34	38	42	46	50	54	58	63	67
15	.05	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
	.01	2	5	8	12	16	20	24	29	33	37	42	46	51	55	60	64	69	73
16	.05	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
	.01	2	5	9	13	18	22	27	31	36	41	45	50	55	60	65	70	74	79
17	.05	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87	93	99	105
	.01	2	6	10	15	19	24	29	34	39	44	49	54	60	65	70	75	81	86
18	.05	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
	.01	2	6	11 19	16	21	26	31	37	42	47	53 72	58	64	70 92	75	81	87	92
19	.05	7	13	12	25	32	38	45	52	58	65		78	85		99	106	113	119
	.01	3	7		17 27	22	28	33	39	45 62	51 69	56	63	69	74	105	87 112	93 119	99 127
20	.05	3	14	20		34	41	48	55			76	67	90	98	105	92	99	
	.01	5	8	13	18	24	30	36	42	48	54	60	67	73	79	86	92	99	105

- ✓ Merupakan salah satu uji untuk 2 sampel berhubungan khususnya jika data berupa frekuensi.
- ✓ Pada uji ini ada 2 kategori pengamatan yang salah satunya diperhatikan, selain dari itu tidak.
- ✓ Data dapat dikategorikan sebagai peristiwa "ya" atau "tidak"

Asumsi:

- Data terdiri dari N subyek atau berupa data berpasangan atau berasal dari dua sampel yang dipasangkan.
- Skala pengukuran adalah nominal, dengan peristiwa hasil amatan terhadap 2 sampel yang berhubungan berupa "ya-ya", "ya-tidak", "tidak-ya", dan "tidaktidak".
- Jika berupa 2 sampel maka salah satu sampel merupakan kontrol dari sampel lainnya yang dalam hal ini sebagai eksperimennya.

• Struktur data hasil pengamatan uji Mc Nemar berupa tabel kontingensi 2 x 2

		Sampel 1		Jumlah
		Ya	Tidak	Julillali
Sampel 2	Ya	Α	В	A + B
	Tidak	С	D	C + D
Jumlah		A + C	B + D	N

 Dalam uji Mc Nemar ini ingin diketahui apakah ada perbedaan dari suatu kategori, sehingga pengujian hipotesis yang diujikan berupa pengujian 2 arah.

Hipotesis:

• $H_0: P_1 = P_2$

• $H_1 : P_1 \neq P_2$

Atau

• $H_0: P_1 - P_2 = 0$

• $H_1: P_1 - P_2 \neq 0$

Dengan P₁ adalah proporsi kategori amatan yang diperhatikan dan P₂ adalah proporsi kategori lainnya.

Untuk pengamatan sampel maka :

$$\hat{p}_1 = \frac{A+B}{N} \operatorname{dan} \, \hat{p}_2 = \frac{A+C}{N}$$

Karakteristik yang diperhatikan adalah "Ya" maka selisih :

$$\hat{p}_1 - \hat{p}_2 = \frac{B - C}{N}$$

Statistik uji :

$$Z = \frac{B - C}{\sqrt{B + C}}$$

• Daerah kritis:

Tolak H
$$_{0}$$
 jika $\left|Z\right|>Z_{1-lpha/2}$

Contoh:

Pike dan Smith menggunakan data yang dikumpulkan oleh Johnson dan Johnson untuk menjelaskan uji McNemar. Mereka memasangkan masing-masing dari 85 pasien yang dirawat karena menderita penyakit Hodgkin dengan saudara kandung mereka sendiri yang sehat, berjenis kelamin sama, dan berbeda usia tidak lebih dari 5 tahun (sebagai kontrol). Apakah ada perbedaan dalam sejarah tonsilektomi pada

kedua kelompok?

		Tonsilektomi kontrol		Jumlah
		Ya	Tidak	
Tonsilektomi pasien	Ya	26	15	41
	Tidak	7	37	44
Jumlah		33	52	85

Activa Go to S

Hipotesis

$$H_0: p_1 = p_2$$

$$H_1: p_1 \neq p_2$$

Statistik uji $z = \frac{15 - 7}{\sqrt{15 + 7}} = 1,71$

Keputusan:

Nilai 1,71 lebih kecil daripada 1,96 sehingga kita tidak dapat menolak H_0 . Oleh karena ini adalah uji dua sisi, nilai p untuk contoh ini adalah 2(0,0436) = 0,0872 > 0,05. Jadi, tidak ada perbedaan dalam sejarah tonsilektomi pada kedua kelompok.

Latihan soal

Latihan 1

Seorang pengusaha ingin mengetahui frekuensi belanja online dan belanja offline tiap bulan (datang langsung ke supermarket / pasar) masyarakat yang tinggal di kota Surabaya. Diambil sampel beberapa warga dengan frekuensi belanja online maupun offine adalah sebagai berikut. Apakah terdapat perbedaan frekuensi belanja online dan offline untuk warga Surabaya? Gunakan uji median dengan alpha = 1%.

Frekuensi Belanja online	Frekuensi Belanja offline		
5	3		
1	2		
10	10		
3	3		
6	3		
16	2		
3			
4			
9			
10			

Latihan 2

Dilakukan penelitian untuk mengetahui adakah perbedaan keuntungan antara penambang bitcoin dengan ethereum. Penelitian menggunakan sampel 17 orang yang mempunyai aset bitcoin dan 23 orang yang mempunyai asset ethereum. Selanjutnya kedua kelompok jenis asset tersebut diukur besaran keuntungannya. Gunakan uji Mann-Whitney untuk mengetahui perbedaan kualitas antara kedua jenis kripto tersebut dengan alpha = 1%.

Keuntungan bitcoin	Keuntungan Ethereum		
101	191		
183	262		
219	274		
196	282		
264	210		
240	235		
271	212		
242	242		
248	258		
174	295		
266	260		
169	261		
200	290		
301	190		
450	89		
141	101		
98	250		
	78		
	98		
	70		
	103		
	77		
	303		

Latihan 3

Waters melaksanakan suatu uji klinik terkontrol untuk menangani sakit kepala sebelah (migraine headache) di kalangan wanita. Untuk itu, sejumlah subyek menerima tablettablet ergotamine (1 mg) dan suatu placebo (laktosa) dengan urutan pemberian yang acak selama periode delapan minggu. Hasil eksperimen seperti dalam tabel berikut.

		Bermanfaatkah ergotamine?		Jumlah
		Ya	Tidak	
Bermanfaatkah placebo?	Ya	22	24	46
	Tidak	18	15	33
Jumlah		40	39	79

Berdasarkan data di atas, dengan menggunakan Mc Nemar Test, dapatkah kita menyimpulkan bahwa terapi eksperimental tersebut efektif untuk menangani sakit kepala sebelah? (Misalkan taraf nyata sebesar 5%)

Terima Kasih