Algebra Qualifying Exam January 23, 2001

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems that you would like to be graded by circling the problem numbers on the problem sheet. Please understand that one problem done completely correctly is worth quite a bit more than two problems each half completed. **Note:** All rings in this exam are associative and with 1 and all integral domains are commutative.

- 1. The group G is called a CA-group if for every $e \neq x \in G$, $C_G(x)$ is abelian. Prove that if G is a CA-group, then
 - (a) the relation $x \sim y$ if and only if xy = yx is an equivalence relation on $G^{\#}$;
 - (b) If \mathcal{C} is an equivalence class in $G^{\#}$, then $H = \{e\} \cup \mathcal{C}$ is a subgroup of G.
- 2. Let G be a group and let $M, N \triangleleft G$. If G = MN, prove that $G/(M \cap N) \cong G/M \times G/N$.
- 3. Let $G = GL_2(p)$, p prime, be the group of invertible 2×2 matrices over the field \mathbb{F}_p . Using the fact that $|G| = p(p-1)(p^2-1)$, compute the number of Sylow p-subgroups of G.
- 4. Let $\mathbb{Z}[i]$ be the ring of Gaussian integers and let $I \subseteq \mathbb{Z}[i]$ be an ideal. Assume that I is invariant under complex conjugation, i.e., $x \in I$ implies that $\overline{x} \in I$. Prove that I must be one of the types:
 - (i) $I = a\mathbb{Z}[i]$,
 - (ii) $I = ai\mathbb{Z}[i]$, or
 - (iii) $I = a(1+i)\mathbb{Z}[i]$,

where $a \in \mathbb{Z}$

- 5. Prove that no principal ideal in the polynomial ring $\mathbb{Z}[x]$ can be maximal.
- 6. Let $f: R \to R$ be a surjective homomorphism of the noetherian domain R. Prove that f is injective.
- 7. Let V be an n-dimensional vector space over a field \mathbb{F} , and let

$$V = V_0 \supset V_1 \supset \cdots \supset V_n = 0$$

be a chain of subspaces of V, with $\dim(V_i/V_{i+1}) = 1$ for i = 0, 1, ..., n-1. Suppose that $T: V \to V$ is a linear transformation satisfying $T(V_i) \subseteq V_{i+1}$ for all i = 0, 1, ..., n-1. Compute the characteristic polynomial of T.

8. Let \mathbb{C} be the field of complex numbers, and let $A \in M_3(\mathbb{C})$ be the matrix

$$A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 0 & -1 \\ -3 & -3 & -2 \end{bmatrix}.$$

- (a) Compute the invariant factors of A.
- (b) Compute the Jordan cononical form of A.
- 9. Let V be an \mathbb{F} -vector space and let $T: V \to V$ be a linear transformation. Assume that T is *irreducible* in that V has no T-invariant subspaces. If we set

$$C_V(T) = \{ \text{linear transformations } S: V \to V | ST = TS \},$$

prove that $C_V(T) = \mathbb{F}[T]$, *i.e.*, any linear transformation on V that commutes with T is a polynomial in T. [Hint: Show that V is a 1-dimensional vector space over the field $\mathbb{F}[T]$. How does this help?]

10. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial with Galois group G over the rational field Q. Assume that every subgroup of G is normal. Prove that deg f(x) = |G|.

1