EE210: HW-2

Date: 16.01.2019

- Q.1 (a) A two terminal element X has I-V characteristics given by the relation $I_x = V_x^6$. A simple model for this device is a constant voltage of V_α . Determine this voltage, if the model is to be used in the current range 10mA-100mA. Determine the % error in the use of such a model over the specified current range. Will the error reduce if the non-linearity in the device became stronger (a higher order polynomial)?
- (b) A battery of 5V is in series with a resistor and the element X. Determine an approximate value for the maximum % error in current, when the above model is used. (Note that error would increase as supply voltage gets closer to the voltage V_{α} .)
- (c) What would be a new suitable value of V_{α} , if the current range is changed to 1μ A- 10μ A? (Note that a model is a representation for a purpose).
- **Q.2** An improved model for the element X is a constant voltage source V_{α} in series with a resistor R_{α} . Determine values of these elements for the current range 10mA-100mA.
- **Q.3** (a) Determine the small signal model for element X, when it is biased at a voltage of 0.5V. Show that the small signal voltage across X has to be less than or equal to 21mV for error in small signal current to be less than or equal to 10%.
- (b) How large can the ac voltage in the circuit be for the small signal model to be valid (with error < 10%) in the following circuit? (Note that X has a dc bias of 0.5V).

Q.4 For the circuit shown below, $V_o = 0.5$ V and $I_{R1} = 0.5$ mA for the given values of components. Using the small signal analysis technique, determine the approximate change in output voltage, if R_1 changes by 10%.

Q.5 A hypothetical 3-terminal (a, b & c) unilateral device (shown below) has the following characteristics.

Determine the small signal model of the device around the bias point $V_{\rm in} = 1.5 \rm V$ and two values of output voltage $V_{\rm o} = 0.1 \rm V$ and $V_{\rm o} = 2 \rm V$.