Lecture 4: Spatial Statistical Foundations

Spatial Data Mining

Instructor: Yiqun Xie

Spatial Statistical Foundations

Statistics

- The study of collection, analysis, interpretation of data
- Spatial statistics
 - Statistics for spatial data (point, line, polygon, raster)
 - Unique properties
 - Non i.i.d.
 - Spatial autocorrelation & heterogeneity
 - Isotropy v.s. anisotropy
 - Stationarity v.s. non-stationarity

Overview

- Review of important basic concepts in statistics
 - Know the terminologies and notations
 - There will be some math but don't be scared...

- Discuss different types of spatial statistics
 - Suitable spatial data models, tasks, measures

- In the context of the whole semester
 - More descriptive and exploratory (get the spatial insights)
 - Inform the design & use of data mining techniques

Without Knowing Notations

• Example: Navigation in a foreign language

Learning Objectives

- Review of important basic concepts in statistics
 - Know the terminologies and notations
 - There will be some math but don't be scared...

Know different types of spatial statistics

- In the context of the whole semester
 - More descriptive and exploratory (give spatial insights of data)
 - Inform the design & use of data mining techniques

Selection of Topics

- Geostatistics
- Lattice statistics
- Spatial point processes

Selection of Topics

- Measure spatial autocorrelation
 - Relationship between observed values as their spatial relationship (e.g., distance) changes
 - Geostatistics → Taking samples from a continuous phenomenon
 - Lattice statistics → Discretize (partition) a continuous space
- Measure relative relationship between locations
 - Spatial point processes

Spatial Autocorrelation

- Tobler's First Law of Geography
 - Everything is related to everything, but nearby things are more relevant than distant things.
- How to model "difference"?
- How to model "nearby" and "distant"?
- Geostatistics and Lattice models use different strategies

Statistical Models (1): Geostatistics

Geostatistics

• A stochastic process Y(s): $s \in D$, D is a r-dimensional Euclidean

space

Example, the rainfall of the entire lowa

- Continuous process over the space
- Observations at discrete locations
- Used for
 - Exploratory data analysis
 - Spatial interpolation

Statistical Models (2): Lattice Statistics

- Areal data model
 - A tessellation of continuous space into (regular or irregular) cells
 - Mapping each unit to a non-spatial attribute value
 - Example: 2016 President Election
 - Y(s): $s \in D$, D is a set of cells
- Used for
 - Spatial pattern discovery
 - Spatial prediction

Statistical Models (3): Point Process

- Spatial point process
 - {s₁, s₂, ... s_n} s_i are event locations with fixed event type
 - Disease cases
 - Crime locations
 - Traffic accident locations

1854 Broad Street cholera outbreak

Point Process

Deaths all clustered around a water pump

Tools and Statistical Methods

- Geostatistics
 - Kriging: spatial interpolation
- Lattice model
 - Spatial regression
 - Spatial autocorrelation measures
 - Markov Random Field
- Point Process Model
 - Ripley's K function
 - Spatial scan statistics
 - Deep learning

Summary of Topics

- Geostatistics
 - Stationarity, variogram, Kriging
- Lattice model
 - Moran's I, Geary's C, LISA

Understand and measure spatial autocorrelation (observed values at locations)

- Point Process Model (preview)
 - Ripley's K, spatial scan statistics

Relationship of locations themselves

Geostatistics

- Also called point-referenced data
 - Estimate precipitation based on records at a set of weather stations
 - Infer ground water level based on sensor readings of a set of gauges
 - Predict mineral resources based on samples at a limited number of sites
- Relationship as a function of location-shift (e.g., distance)
- Statistical assumptions
 - Strict (Strong) stationary
 - Weak stationary
 - Intrinsic stationary

Geostatistics: Stationary

Strictly Stationary

- Distribution of value is unchanged with location-shift
- For $n \ge 1$, any n locations $\{s_1, s_2, \dots, s_n\}$, $h \in R^r$, We often have r = 2 or 3 for spatial data $\{Y(s_1), Y(s_2), \dots, Y(s_n)\}$ and $\{Y(s_1 + h), Y(s_2 + h), \dots, Y(s_n + h)\}$ have the same joint distributions
- Too strong and unrealistic

Basic concepts

- Statistical distribution; joint distribution
- Probability density function vs. probability mass function
- Symbol ∈: element of
- R: real value space; R^r : r dimensional real value space

Geostatistics: Stationary

- Weakly stationary
 - Mean unchanged when location shift
 - $E(Y(s)) = \mu_s = \text{constant mean}$
 - $cov(Y(s), Y(s+h)) = C(h), h \in \mathbb{R}^r$
 - Constant variance: C(0) = Var(s) = constant.
 - The covariance across locations is simply a function of the location shift
- Basic concepts
 - Mean, variance, covariance, covariance matrix
 - Function of ...

Variogram

Intrinsically Stationary

- The difference between two locations only depends on h
- Assuming E[Y(s) Y(s + h)] = 0 (constant mean)
- $E[Y(s) Y(s + h)]^2 = var[Y(s) Y(s + h)] = 2\gamma(h)$
- $2\gamma(h)$ is called variogram. $\gamma(h)$ is called **semi-variogram**

Variogram

- Intrinsically Stationary
 - The difference between two locations only depends on h
 - Assuming E[Y(s) Y(s + h)] = 0 (constant mean)
 - $E[Y(s) Y(s + h)]^2 = var[Y(s) Y(s + h)] = 2\gamma(h)$
 - $2\gamma(h) \rightarrow \text{variogram}. \ \gamma(h) \rightarrow \text{semi-variogram}.$
- $2\gamma(h) = var[Y(s) Y(s+h)]$ = $Var(Y(s+h)) + Var(Y(S)) - 2Cov(Y(s+h), Y(s)) = C(\mathbf{0}) + C(\mathbf{0}) - 2C(\mathbf{h})$ = $2[C(\mathbf{0}) - C(\mathbf{h})]$ • $\gamma(h) = C(\mathbf{0}) - C(\mathbf{h})$

21

Semi-Variogram

Isotropy:

- Assumption: direction does not matter. Only the distance matters
- Might not be always true.
- Easy to visualize (draw the curve)
- The semi-variogram has an opposite trend compared to the covariance C(h)
 - Longer lag distance, less correlation (covariance), higher semi-variogram

Variogram Plot

- Under the Isotropy and Intrinsic Stationary assumption
 - Smaller h → shorter distance → high covariance (higher correlation), low difference
 - Large h → longer distance → low covariance (lower correlation), high difference
 - Very large h → no effect on the variance or difference. Converged.
- Parameters of the semi-variogram $\gamma(h)$
 - Nugget: the minimum jump close to h = 0. Typical 0.
 - Sill: The $\gamma(h)$ value at which the variogram levels off.
 - Range: the lag h when variogram reaches sill

Empirical Semi-variogram

•
$$\hat{\gamma}(d) = \frac{1}{2|N(h)|} \sum_{s_i, s_j \in N(h)} [Y(s_i) - Y(s_j)]^2$$

- For each distance h, calculate the squared difference in value $[Y(s_i) Y(s_j)]^2$
 - For every pair of observations in the data with h as their distance (whole set: N(h))
- Plot the points and fit a model (e.g., spherical) with least-squared error
- Get the estimated parameters
 - Nugget
 - Sill
 - Range
- R package for semi-variogram fitting
 - "gstat" package, "geoR" package
 - fit.variogram()

Example

Diameter at breast height on trees

Example Application: Kriging

- Spatial Interpolation / Prediction Model
 - Given observations at a few locations {Y(s1), Y(s2), ... Y(sn)}
 - Infer values at a location with unknown value Y(s0)
 - Assumption: intrinsic stationary and a suitable variogram model
- Kriging named after a mining engineer Danie Gerhardus Krige
 - Krige's empirical work to evaluate mineral resources was formalized in the 1960s by French engineer Georges Matheron.
- Ordinary Kriging
 - Only uses the dependent variable Y (temperature) at given locations
- Universal Kriging
 - Uses also covariates X (e.g., rainfall, elevation) at given locations

Ordinary Kriging

Assumptions

- Intrinsic Stationary
- Known covariance C(h)
- Unknown constant mean E(Y) = u
- Linear estimation

•
$$\hat{y}(s_o) = \sum_{i=1}^n l_i y(s_i)$$

- Approach:
 - Minimize expected squared loss
 - $E(y(s_0) \sum_{i=1}^n l_i y(s_i))^2$

Solution of all l_i (for the new value to predict at a new location s_0)

$$egin{bmatrix} \gamma(x_1,x_1) & \cdots & \gamma(x_1,x_n) & 1 \ dots & \ddots & dots & dots \ \gamma(x_n,x_1) & \cdots & \gamma(x_n,x_n) & 1 \ 1 & \cdots & 1 & 0 \end{bmatrix}^{-1} egin{bmatrix} \gamma(x_1,x^*) \ dots \ \gamma(x_n,x^*) \ 1 \ \end{bmatrix}$$

Form of solution (out of the scope of the class; ignore details here and the main goal is to see that the solution is formed by variograms)

Lattice Statistics

- Also known as the areal model
- Given a complete and disjoint partitioning of the study area and a value for each partition
- Similar to the "Field Model" in Spatial Data Types
- Model spatial autocorrelation and quantify that.
- Spatial Prediction
 - Predict house price of a neighborhood given covariates of the same and nearby neighborhoods

W-Matrix

- Spatial Neighborhood Matrix (W matrix)
 - W_{ii}= 1 if i and j are neighbors
 - W_{ii} = 0 if not neighbors
- Row-normalized W-Matrix
 - Divide each value by row sum

1	4	7		
	5	8		
2	5	0		
3	6			

0	1	0	1	1	0	0	0
1	0	1	0	1	1	0	0
0	1	0	0	1	1	0	0
1	0	0	0	1	0	1	1
1	1	1	1	0	1	1	1
0	1	1	0	1	0	0	1
0	0	0	1	1	0	0	1
0	0	0	1	1	0	1	0

Spatial Autocorrelation

- Measures the level of global spatial association
- Many numeric measures proposed
 - Moran's I:
 - $I = \frac{n\Sigma_i\Sigma_jw_{ij}(y_i-\bar{y})(y_j-\bar{y})}{(\Sigma_{i\neq j}w_{ij})\Sigma_i(y_i-\bar{y})^2}$ w_{ij} is the w-matrix, i and j are locations
 - $I \in [-1, 1]$ 1: strong positive correlation (homogeneous), -1 strong negative correlation
 - Assuming Rook connectivity.

0	1	0	1	0
1	0	1	0	1
0	1	0	1	0
1	0	1	0	1
0	1	0	1	0

$$I \approx -1$$

$$I \approx 1$$

Note: spatial neighborhood relationship is important (W-matrix)

What is the Moran's I measure if using Queen neighborhood?

Moran's I

- $I = \frac{zWz^t}{zz^t}$, W is a row-normalized neighborhood matrix
- $z_i = (y_i \bar{y})$ (z is a vector)

		_		_	_		$\overline{}$		
0	1	0	1	1	0	0	0		
1	0	1	0	1	0	0	0		[0, 0.33, 0, 0.33, 0.33, 0,0,0]
0	1	0	0	0	1	0	0		[0.33, 0, 0.33, 0, 0.33, 0,0,0]
1	0	0	0	1	0	1	0		[0, 0.5, 0, 0, 0, 0.5, 0, 0]
1	1	0	1	0	0	0	1		
0	0	1	0	1	0	0	1		••••
0	0	0	1	0	0	0	1		
0	0	0	0	1	1	1	0		
	0 1 0 1 1 0 0	0 1 1 0 0 1 1 0 1 1 0 0 0 0	0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0	0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0	0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1	0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1	0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	0 1 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0	0 1 0 1 1 0 0 0 1 0 1 0 1 0

Spatial Autocorrelation

Geary's C measure

• C =
$$\frac{(n-1)\sum_{i}\sum_{j}w_{ij}(y_{i}-y_{j})^{2}}{2(\sum_{i\neq j}w_{ij})\sum_{i}(y_{i}-\bar{y})^{2}}$$

- C ≥ 0, low value has stronger auto-correlation
- C = 1 means no correlation
- C = 0 means same value over the space

1	1	1	0	0
1	1	1	0	0
1	1	1	0	0
1	1	1	0	0
1	1	1	0	0

Local Autocorrelation Measures

- LISA
 - Local Moran's I
 - Local Geary's C
 - ...
- Original paper
 - http://dces.wisc.edu/wpcontent/uploads/sites/30/2013/08/W4 Anselin1995.pdf
 - Luc Anselin: Location Indicators of Spatial Association LISA

Local Indicators of Spatial Association

- When data is not homogeneous, local behaviors may differ from global behavior (outliers)
- Measures how value at a location is correlated with its neighbors
- For each location (area) we calculate a measure

$$I_i = rac{Z_i}{m_2} \sum_j W_{ij} Z_j \qquad m_2 = rac{\sum_i Z_i^2}{N}$$

- W_{ii} is the row-normalized neighborhood matrix
- m₂ = global variance
- $z_i = (y_i \overline{y})$
- "Z-score multiplied by the average Z-scores of its neighbors".

LISA

Local vs. Global Moran

$$I = \frac{1}{n} \sum_{i} I_{i}$$

- High (positive) Local Moran:
 - High value in a high-value neighborhood (hotspot)
 - Low value in a low-value neighborhood (cold spot)
- Low (negative) Local Moran
 - Spatial outlier
- Always done with a Monte-Carlo simulation to assess significance

Local Moran

Physical inactivity of US counties

Local Geary'C

Local Geary's C

•
$$C_i = \frac{1}{m_2} \sum_j w_{ij} (Y_i - Y_j)^2$$

Spatial Point Process Model

- Example
 - Crime event locations
 - Disease event locations

Shooting, Chicago 2010
Source: http://assets.dnainfo.com

Ripley's K function

Hypothesis Testing

- H0: homogeneous Poisson point process (independent)
- H1: points tend to cluster with each other
- Test statistic: average point density around each point Test statistic:
 - $K(d) = \lambda^{-1}E(\# of points within radius d of a point)$
 - $\widehat{K}(d) = \lambda^{-1} \sum_{i \neq j} I(d_{ij} \leq d)/n$

Under H0, $K(d) = \pi d^2$

 λ is the global density $(\frac{points}{area})$

Technical Takeaways

- Basic statistical concepts
- Notations
 - A mathematical language (way of easier communication)
- Assumptions
 - Statistical or mathematical models always make simplifying assumptions
 - Spatial data models are always approximations of real-world phenomenon
 - When you try to understand an approach/model, always identify the assumptions first