1. Write regular expressions for language that accept all strings of letters in which the letters are in ascending lexicographic order.

Solution:

$$(A|a)^*(B|b)^*(C|c)^* (D|d)^*..... (Y|y)^* (Z|z)^*$$

2. Consider the grammar:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow L,S \mid S$$

Find parse trees for the following sentences:

Solution:

i)

ii)

iii)

3. What language is generated by the following grammar:

Solution:

Prefix expression consisting of plus and minus signs

- 4. Show that the grammar S→ aSbS | bSaS | €
- i) Is ambiguous by constructing two different leftmost derivations for the string abab.

- ii) Construct the corresponding rightmost derivation for abab.
- iii) Construct the parse tree for abab.

Solution:

i) The two different leftmost deviation is constructed below with deviation tree for each of them:

$$[1] S \rightarrow aSbS$$

- \rightarrow abS (by S \rightarrow ϵ)
- -> abaSbS (by S -> aSbS)
- \rightarrow ababS (by S \rightarrow ϵ)
- \rightarrow abab (by S \rightarrow ϵ)

- -> abSaSbS (by S -> bSaS)
- -> abaSbS (by S -> ϵ)

- -> ababS (by S -> ε)
- -> abab (by S -> ϵ)

As, the string **abab** constructs two different trees, the grammar S –>aSbS |bSaS |ε is ambiguous.

- ii) For rightmost derivation, derivation should be started from right side. For the string **abab**, this can be done in two ways
 - a) S -> aSbS
 - -> aSbaSbS (by S ->aSbS)
 - ->aSbaSb (by S ->ε)
 - ->aSbab (by S $->\epsilon$)
 - ->abab (by S ->ε)

iii) Parse tree for the string abab -

->abab (by S ->ε)

a)

b)

5. Construct an NFA using Thompson's construction from the following regular expression:

(a|b)*a(a|b)(a|b)

Convert the resulting NFA to DFA using Subset construction rule.

Solution:

NFA:

DFA:

$$\in$$
-closure $\{0\} = \{0,1,2,4,7\} = A$

Move
$$(A, a) = \{3,8\}$$

$$\in$$
 -closure $\{3,8\} = \{1,2,3,4,6,7,8,9,11\} = B$

Move
$$(A, b) = \{5\}$$

$$\in$$
 -closure $\{5\} = \{1,2,4,5,6,7\} = C$

Move
$$(B, a) = \{3, 8, 10\}$$

$$\in$$
 -closure $\{3,8,10\} = \{1,2,3,4,6,7,8,9,10,11,13,14,16\} = D$

Move
$$(B, b) = \{5,12\}$$

$$\in$$
 -closure $\{5,12\} = \{1,2,4,5,6,7,12,13,14,16\} = E$

Move
$$(C, a) = \{3,8\}$$

$$\in$$
 -closure $\{3,8\} = B$

Move
$$(C, b) = \{5\}$$

$$\in$$
 -closure $\{5\} = C$

Move
$$(D, a) = \{3,8,10,15\}$$

$$\in$$
 -closure $\{3,8,10,15\} = \{1,2,3,4,6,7,8,9,10,11,13,14,15,16,18\}$
= F

Move
$$(D, b) = \{5,12,17\}$$

$$\in$$
 -closure $\{5,12,17\} = \{1,2,4,5,6,7,12,13,14,16,17,18\} = G$

Move
$$(E, a) = \{3,8,15\}$$

$$\in$$
 -closure $\{3,8,15\} = \{1,2,3,4,6,7,8,9,11,15,18\} = H$

Move
$$(E, b) = \{5,17\}$$

$$\in$$
 -closure $\{5,17\} = \{1,2,4,5,6,7,17,18\} = I$

Move
$$(F, a) = \{3,8,10,15\}$$

$$\in$$
 -closure $\{3,8,10,15\} = F$

Move
$$(F, b) = \{5,12,17\}$$

$$\in$$
 -closure $\{5,12,17\} = G$

Move
$$(G, a) = \{3,8,15\}$$

$$\in$$
 -closure $\{3,8,15\} = H$

Move
$$(G, b) = \{5,17\}$$

$$\in$$
 -closure $\{5,17\} = 1$

Move
$$(H, a) = \{3,8,10\}$$

$$\in$$
 -closure $\{3,8,10\} = D$

Move
$$(H, b) = \{5,12\}$$

Move
$$(I, a) = \{3,8\}$$

$$\in$$
 -closure $\{3,8\} = B$

Move
$$(I, b) = \{5\}$$

$$\in$$
 -closure $\{5\} = C$

Transition Table

State	а	b
Α	В	С
В	D	Е
С	В	С
D	F	G
E F	Н	1
	F	G
G	Н	1
Н	D	Е

	В	С
-		_

