試作一直角等腰三角形,使其頂點在三條平行線上

Created by Mr. Francis Hung on 20140901

已給三條平行綫 $L_1 \setminus L_2 \not \in L_3$,其中 L_2 在 L_1 及 L_3 之間。 試作一直角等腰三角形,使其頂點分別在該三條平行綫上。 1

基礎分析:

如圖一, ΔABC 為等腰直角三角形,C 為直角頂點。過A、B 分別作直綫 ℓ_1 、 ℓ_2 與 AB 垂直。過C 作綫段 PQ,與 ℓ_1 、 ℓ_2 依次交於 P、Q。過C 作 PQ 之垂直綫,與 AB 相交於 R。連接 PR 及 QR。試證 ΔPQR 為等腰直角三角形。

證明如下:

 $\angle RCP + \angle PAR = 180^{\circ}$ (由作圖所得)

APCR 為一個圓內接四邊形。 (對角互補) $\angle CPR = \angle CAR$ (同弓形上的圓周角)

= 45°

(ΔABC 為等腰直角三角形)

 $\angle OBR = 90^{\circ} = \angle RCP$

(已知)

BOCR 為一個圓內接四邊形。

(外角=內對角)

 $\angle CQR = \angle CBR$

(同弓形上的圓周角)

 $=45^{\circ}$

(ΔABC 為等腰直角三角形)

- $\therefore \angle PRQ = 180^{\circ} 45^{\circ} 45^{\circ} = 90^{\circ} (\Delta PQR \text{ 的內角和})$
- :. ΔPQR 為一個等腰直角三角形。

註:我們可以將以上答案推廣:

 $\angle ACB = 90^{\circ}$, $PA \perp AB$, $QB \perp AB$, $R \in AB$ 上任意一點,

使得 $PQ \perp CR$, 則 $\angle PRQ = 90^{\circ}$ 及 $\Delta PQR \sim \Delta ABC$ 。

圖二

Last updated: 2021-09-29

作圖方法如下:

方法一(圖二):

- (1) 在 L_1 上取任意一點N。 過N作一綫垂直於 L_2 及 L_3 ,交 L_2 於K及 L_3 於M。
- (2) 利用垂直平分綫,找出NK的中點C。
- (3) 以M為圓心,CM為半徑作一半圓,交 L_3 於 $A \times B$ 。
- (4) 連接 AC、BC。
- (5) 過A作一綫垂直於 L_3 ,交 L_1 於P。
- (6) 過B作一綫垂直於L₃,交L₂於Q。
- (7) 連接 CP 及 CO。
- (8) 過C作一綫垂直於PQ,交 L_3 於R。連接PR及QR。

作圖完畢。

證明如下:

MA = MC = MB

(半徑)

 L_1^-

 ΔAMC 及 ΔCMB 為全等的等腰直角三角形

(S.A.S.)

 $\angle ACB = 90^{\circ}$

(半圓上的圓周角)

同樣, ΔABC 為一個等腰直角三角形。

 $\therefore NC = CK$

(由作圖所得)

 $\angle CNP = 90^{\circ} = \angle CKQ$

(由作圖所得)

¹原題目為 1973 中文中學會考高級數學試卷二 Q7

QK = BM = MA = NP

 $\therefore \Delta QCK \cong \Delta PCN$

 $\angle QCK = \angle PCN$

 $\angle QCN = 180^{\circ} - \angle QCK$

 $\therefore \angle PCN + \angle QCN = 180^{\circ}$

 $P \cdot C \cdot Q$ 共綫

PC = CQ

由基礎分析的的結果, ΔPQR 為一個等腰直角三角形。證明完畢。

方法二(由荃灣官立中學徐斈炘提供)(圖三):

- (1) 在 L_1 上取任意一點A。 過A作一綫垂直於 L_2 及 L_3 ,交 L_2 於B及 L_3 於R。
- (2) 過A作一綫段AQ,與 L_1 成45°,交 L_2 於Q。
- (3) 連接 QR。
- (4) 過Q作一綫段QP,與QR互相垂直,交 L_1 於P。
- (5) 連接 PR。

則 ΔPQR 便是一個等腰直角三角形了。作圖完畢。證明如下:

 $\angle PQR = 90^{\circ} = \angle PAR$

PAOR 為一個圓內接四邊形。

 $\angle PRO = 45^{\circ}$

 $\angle OPR = 45^{\circ}$

 $\therefore \Delta POR$ 是一個等腰直角三角形。

證明完畢。註:以上方法較為簡單。

方法三(由趙聿修紀念中學鄧焯榮提供)(圖四):

- (1) 在 L_2 上取任意一點 Q。 過 Q 作一綫垂直於 L_1 及 L_3 ,交 L_1 於 A 及 L_3 於 B。
- (2) 以 Q 為圓心, QA 為半徑作一弧, 交 L_2 於 C。
- (3) 過C作一綫段垂直於 L_2 ,交 L_3 於R。
- (4) 以 Q 為圓心, QB 為半徑作一弧, 交 L_2 於 D。
- (5) 過D作一綫段垂直於 L_2 ,交 L_1 於P。
- (6) 連接 PQ、QR 及 PR。

則 ΔPQR 便是一個等腰直角三角形了。作圖完畢。

證明如下:

AQ = QC 及 BQ = QD

AQDQ 及 QBRC 全等的長方形

PQ = QR

 $\angle PQR = \angle PQD + \angle RQD = \angle PQD + \angle AQP = 90^{\circ}$

:. ΔPQR 是一個等腰直角三角形。證明完畢。

(長方形性質)

(S.A.S.)

(全等三角形的對應角)

(直綫上的鄰角)

(直綫上的鄰角互補)

(全等三角形的對應邊)

圖三

(由作圖所得)

(同弓形上的圓周角的逆定理)

(圓內接四邊形的外角)

(三角形內角和)

圖四

(由作圖所得)

(全等的長方形的對角綫相等)