In [4]:

#(SALINITY TEMPERATURE)

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [5]:

```
df=pd.read_csv(r"C:\Users\RAMADEVI SURIPAKA\Downloads\bottle.csv.zip")
df
```

C:\Users\RAMADEVI SURIPAKA\AppData\Local\Temp\ipykernel_18528\1481418663.p
y:1: DtypeWarning: Columns (47,73) have mixed types. Specify dtype option
on import or set low_memory=False.
 df=pd.read_csv(r"C:\Users\RAMADEVI SURIPAKA\Downloads\bottle.csv.zip")

Out[5]:

		Cst_	_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
	0		1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900
Tn	1 [6]:		1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600
df=	df[['Sal mns=	lnty' =['5a	,'T_de≀ al','T&r	gC']] np 054.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400
In	[7]:					19- 4903CR-					
df.	he a d	(10)) 1	4	054.0 056.0	HY-060- 0930-	19	10.450	33.4200	NaN	25.64300
Out[7]: 05400560- 0019A-3											
0 1	33.44 33.44 33.43	0 1	0.50 0.46 0.46	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300
3	33.42		0.40								
8 6	33.42 485.4 3 33.44	1 34		864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
8	33.42 33.42 4859 33.49	0 1	0.24 0.06 1404 9.86	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
86	4860	34	1404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
86	4861	34	1404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

Linear Regression(1) - Jupyter Notebook In [12]:Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Sainty O2ml_L **STheta** sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None) Out[12]: 1611SR-093.4 MX-310-**864862** 34404 864863 093.4 MX-310-<seaborn.axisgrid.Facet@24.4 at 02428283a4c850> 09340264-17.533 33.3880 80 60 40

34

36

In [13]:

20

0

df.describe()

Out[13]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

30

32

Sal

```
In [14]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
     Column Non-Null Count
                              Dtype
             817509 non-null float64
 0
     Sal
 1
             853900 non-null float64
     Temp
dtypes: float64(2)
memory usage: 13.2 MB
In [15]:
df.fillna(method='ffill',inplace=True)
C:\Users\RAMADEVI SURIPAKA\AppData\Local\Temp\ipykernel_18528\4116506308.p
y:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-
view-versus-a-copy)
  df.fillna(method='ffill',inplace=True)
In [18]:
x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df['Temp']).reshape(-1,1)
df.dropna(inplace=True)
C:\Users\RAMADEVI SURIPAKA\AppData\Local\Temp\ipykernel_18528\1516682253.p
y:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy)
  df.dropna(inplace=True)
In [20]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.20424352864002682

In [21]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [24]:

```
df500=df[:][:50]
sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
```

Out[24]:

<seaborn.axisgrid.FacetGrid at 0x1ec869a6770>

In [26]:

```
df500.fillna(method='ffill',inplace=True)
x=np.array(df500['Sal']).reshape(-1,1)
y=np.array(df500['Temp']).reshape(-1,1)
df500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
```

Regression: 0.724238085651293

In [27]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [28]:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

In [29]:

```
model=LinearRegression()
model.fit(x_test,y_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 0.724238085651293

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

 $\label{lem:csv} $$ df=pd.read_csv(r"C:\Users\RAMADEVI SURIPAKA\Downloads\fiat500_VehicleSelection_Dataset (df) $$ df.$$$

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1	lounge	51	882	25000	1	44.907242	8.611
1	2	рор	51	1186	32500	1	45.666359	12.241
2	3	sport	74	4658	142228	1	45.503300	11.417
3	4	lounge	51	2739	160000	1	40.633171	17.634
4	5	pop	73	3074	106880	1	41.903221	12.495
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	pop	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568

1538 rows × 9 columns

In [16]:

```
df=df[['engine_power','km']]
df.columns=['engine','Km']
```

In [17]:

df.head(10)

Out[17]:

	engine	Km
0	51	25000
1	51	32500
2	74	142228
3	51	160000
4	73	106880
5	74	70225
6	51	11600
7	51	49076
8	73	76000
9	51	89000

In [19]:

sns.lmplot(x="engine",y="Km",data=df,order=2,ci=None)

Out[19]:

<seaborn.axisgrid.FacetGrid at 0x1fcb31d6ce0>

In [20]:

```
df.describe()
```

Out[20]:

	engine	Km
count	1538.000000	1538.000000
mean	51.904421	53396.011704
std	3.988023	40046.830723
min	51.000000	1232.000000
25%	51.000000	20006.250000
50%	51.000000	39031.000000
75%	51.000000	79667.750000
max	77.000000	235000.000000

In [21]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 2 columns):
    # Column Non-Null Count Dtype
    -----
    0 engine 1538 non-null int64
    1 Km 1538 non-null int64
dtypes: int64(2)
```

memory usage: 24.2 KB

In [22]:

```
df.fillna(method='ffill',inplace=True)
```

```
C:\Users\RAMADEVI SURIPAKA\AppData\Local\Temp\ipykernel_18236\4116506308.p
y:1: SettingWithCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

In [23]:

```
x=np.array(df['engine']).reshape(-1,1)
y=np.array(df['Km']).reshape(-1,1)
df.dropna(inplace=True)
```

C:\Users\RAMADEVI SURIPAKA\AppData\Local\Temp\ipykernel_18236\821801754.p
y:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

In [24]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.10971252862136616

In [25]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [26]:

```
df500=df[:][:50]
sns.lmplot(x="engine",y="Km",data=df500,order=1,ci=None)
```

Out[26]:

<seaborn.axisgrid.FacetGrid at 0x1fcb34667a0>

In [27]:

```
df500.fillna(method='ffill',inplace=True)
x=np.array(df500['engine']).reshape(-1,1)
y=np.array(df500['Km']).reshape(-1,1)
df500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
```

Regression: -0.4737406374937898

In [28]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [29]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

In [30]:

```
model=LinearRegression()
model.fit(x_test,y_test)
r2=r2_score(y_test,y_pred)
print("R2_score:",r2)
```

R2 score: -0.4737406374937898

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

```
df=pd.read_csv(r"C:\Users\RAMADEVI SURIPAKA\Downloads\archive.zip")
df
```

Out[2]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwa
0	13300000	7420	4	2	3	yes	no	no	
1	12250000	8960	4	4	4	yes	no	no	
2	12250000	9960	3	2	2	yes	no	yes	
3	12215000	7500	4	2	2	yes	no	yes	
4	11410000	7420	4	1	2	yes	yes	yes	
540	1820000	3000	2	1	1	yes	no	yes	
541	1767150	2400	3	1	1	no	no	no	
542	1750000	3620	2	1	1	yes	no	no	
543	1750000	2910	3	1	1	no	no	no	
544	1750000	3850	3	1	2	yes	no	no	

545 rows × 13 columns

In [3]:

```
df=df[['price','area']]
df.columns=['Price','Area']
```

In [4]:

df.head(10)

Out[4]:

	Price	Area
0	13300000	7420
1	12250000	8960
2	12250000	9960
3	12215000	7500
4	11410000	7420
5	10850000	7500
6	10150000	8580
7	10150000	16200
8	9870000	8100
9	9800000	5750

In [5]:

sns.lmplot(x="Price",y="Area",data=df,order=2,ci=None)

Out[5]:

<seaborn.axisgrid.FacetGrid at 0x280c823e470>

In [6]:

df.describe()

Out[6]:

	Price	Area
count	5.450000e+02	545.000000
mean	4.766729e+06	5150.541284
std	1.870440e+06	2170.141023
min	1.750000e+06	1650.000000
25%	3.430000e+06	3600.000000
50%	4.340000e+06	4600.000000
75%	5.740000e+06	6360.000000
max	1.330000e+07	16200.000000

```
In [7]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 2 columns):
     Column Non-Null Count Dtype
 0
     Price
             545 non-null
                             int64
             545 non-null
                             int64
 1
     Area
dtypes: int64(2)
memory usage: 8.6 KB
In [8]:
df.fillna(method='ffill',inplace=True)
C:\Users\RAMADEVI SURIPAKA\AppData\Local\Temp\ipykernel_18500\4116506308.p
y:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-
view-versus-a-copy)
  df.fillna(method='ffill',inplace=True)
In [9]:
x=np.array(df['Price']).reshape(-1,1)
y=np.array(df['Area']).reshape(-1,1)
df.dropna(inplace=True)
C:\Users\RAMADEVI SURIPAKA\AppData\Local\Temp\ipykernel_18500\3529588183.p
y:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy)
  df.dropna(inplace=True)
In [10]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.2994780602269379

In [11]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [12]:

```
df500=df[:][:50]
sns.lmplot(x="Price",y="Area",data=df500,order=1,ci=None)
```

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x280b5f31240>

In [13]:

```
df500.fillna(method='ffill',inplace=True)
x=np.array(df500['Price']).reshape(-1,1)
y=np.array(df500['Area']).reshape(-1,1)
df500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
```

Regression: -0.12003962657929845

In [14]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [15]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

In [16]:

```
model=LinearRegression()
model.fit(x_test,y_test)
r2=r2_score(y_test,y_pred)
print("R2_score:",r2)
```

R2 score: -0.12003962657929845

In []: