3. Basic Data Structures

Stacks

Abstrakter Datentyp Stack

- new(S): neuer, leerer Stack S
- isEmpty(S): boolean, ob S leer
- pop(S)/pop(): löscht oberstes Element von S, gibt es zurück; Fehler wenn S leer
- push(S,k)/S.push(k): k als oberstes Element auf S; Fehler, wenn S voll
 LIFO: last in, first out

Beispiel Bitcoin

Bitcoin nutzt Stacks, um verschiedene Werte während dem Verifikationsprozess zu speichern.

Stacks als Array

- Annahme: maximale Größe MAX des Stacks vorher bekannt
- Zeiger S.top zeigt auf oberstes Element
- Zeiger wird bei Operationen passend bewegt

Alogrithmen

Stacks variabler Größe

Wenn voll:

- Kopiere in größeres, zusammenhängendes Array oder
- Verteile auf viele Arrays, Siehe Verkettete Listen

Einfache Lösung

Wenn voll, Array mit 1 Feld mehr erstellen, alles kopieren

Laufzeit

Wenn n Elemente in Array, n push -Befehle führen zu $\Omega(n^2)$ Kopier-Schritten Durchschnittlich $\Omega(n)$ Kopier-Schritte pro push

Was tun

- · Trivial: Unendlich viel speicher reservieren
- Gesucht: Lösung die maximal jeweils O(#Elemente) braucht
 - Wenn Grenze erreicht, verdopple Speicher und kopiere um
 - Schrumpfe und kopiere, wenn weniger als $\frac{1}{4}$ benötigt

Algorithmen, Laufzeitanalyse

- RESIZE(A,m) reserviert neuen Speicher der Größe m, kopiert A um, fixt Referenz
- Im Schnitt für jeden der mindestens n Befehle $\Theta(1)$ Umkopierschritte

Verkettete Listen

Datenstruktur doppelt verkettete Liste

- Element x besteht aus:
 - key: Wert
 - prev : Zeiger auf Vorgänger/ nil
 - nexxt: Zeiger auf Nachfolger/nil
- head zeigt auf erstes Element (nil für leere Liste)

Verkettete Listen durch Arrays

entspricht doppelt verketteter Liste

Elementare Operationen auf verketteten Listen

Im Pseudocode wird wie in Java von short circuit evaluation und call by reference/value verwendet

Suche

Laufzeit = $\Theta(n)$

Einfügen

Laufzeit = $\Theta(1)$

- · Prüft nicht, ob Wert bereits in Liste ist
- Wenn zuerst suche nach Wert stattfinden soll, $\Omega(n)$

Löschen

Laufzeit = $\Theta(1)$

- x ist Verweis auf zu löschendes Element
- Wenn Wert gelöscht werden soll, muss dieser erst gesucht werden $\rightsquigarrow \Omega(n)$

Vereinfachung per Wächter/Sentinels

- Ziel: eliminiere die Spezialfälle für Listenanfang/-ende
- Sentinel L.sent hinzugefügt, head = L.sent.next, head.prev = L.sent, L.sent.key = nil

- Für letztes Element x gilt: x.next = L.sent und L.sent.prev = x
- Sentinel ist von außen nicht sichtbar
- Leere Liste besteht nur aus Sentinel

Löschen mit Sentinels

```
deleteSent(L,x) // deletes x from L with sentinel
    x.prev.next=x.next;
    x.next.prev=x.prev;
```

Andere Operationen müssen auch angepasst werden

Queues

Abstrakter Datentyp Queue

- new(Q): Erzeugt neue, leere Queue namens Q
- isEmpty(Q): Gibt an, ob Q leer
- dequeue(Q): Gibt vorderstes Element aus Q zurückt, löscht es aus Q, Fehler wenn
 Q leer
- enqueue(Q,k): Schreibt k als neues hinterstes Element auf Q, Fehler wenn Q voll
- · FIFO: first in, first out

Queues als virtuelles, zyklisches Array

- Problem mit Array-Implementierung:
 Queue "wandert", wenn Werte eingefügt/entfernt werden
- Führe Q.rear, Q.front für Zeiger auf Anfang und Ende ein
- Es gibt Ein Maximum für die Anzahl gleichzeitig in einer Queue: MAX
- Wenn Q.rear, Q.front auf selben Wert verweisen:
 - Speichere boolean empty, um anzugeben, ob Array vol oder leer
 - Alternativ: reserviere ein Element des Arrays als Abstandshalter

Algorithmen

- Q leer, wenn front==rear und empty==true
- Q voll, wenn front==rear und empty==false

```
new(Q)
    Q.A[]=ALLOCATE(MAX);
    Q.front=0;
    Q.rear=0;
    Q.empty=true;

isEmpty(Q)
```

```
return Q.empty;
dequeue(Q)
        IF isEmpty(Q) THEN
                error 'underflow'
        ELSE
                Q.front=Q.front+1 mod MAX;
                IF Q.front==Q.rear THEN
                        Q.empty=true;
                return Q.A[Q.front-1 mod MAX];
enqueue(Q,k)
       IF Q.rear==Q.front AND !Q.empty
        THEN error 'overflow'
        ELSE
                Q.A[Q.rear]=k;
                Q.rear=Q.rear+1 mod MAX;
                Q.empty=false;
```

Queues durch einfach verkettete Listen

front und rear sind nun Zeiger auf Listenelemente

```
new(Q)
        Q.front=nil;
        Q.rear=nil;
isEmpty(Q)
        IF Q.front==nil THEN
                return true
        ELSE
                return false;
dequeue(Q)
        IF isEmpty(Q) THEN
                error 'underflow'
        ELSE
                x=Q.front;
                Q.front=Q.front.next;
                return x;
enqueue(Q,x)
        IF isEmpty(Q) THEN
                Q.front=x;
        ELSE
                Q.rear.next=x;
```

```
x.next=nil;
Q.rear=x;
```

Anzahl Operationen Queues, Stacks, verkettete Listen

• Stack:

• Push: $\Theta(1)$

• Pop: $\Theta(1)$

• Queue:

• Enqueue: $\Theta(1)$

• Dequeue: $\Theta(1)$

Verkettete Liste:

• Einfügen: $\Theta(1)$

• Löschen: $\Theta(1)$

• Suchen: $\Theta(n)$

• Löschen eines Wertes: $\Omega(n)$

Binäre Bäume

Bäume durch verkettete Listen

- T.root verweist auf Wurzelknoten des Baumes T
- Jeder Knoten enthält:
 - key: Wert
 - child[]: Array von Zeigern auf Kinder
 - manchmal auch parent: Zeiger auf Elternknoten Baum-Bedingung:

Baum ist leer oder es gibt einen Knoten r (Wurzel), sodass jeder Knoten v von der Wurzel aus per eindeutiger Sequenz von child-Zeigern erreichbar ist:

```
v = r.child[i_1].child[i_2]. ....child[i_m]
```

Eigenschaften von Bäumen

- Bäume sind azyklisch
- Für nicht-leeren Baum gibt es genau #Knoten-1 viele Einträge $\neq nil$ über alle Listen child[]
- Man kann Bäume als (ungerichtete) Graphen darstellen, jedoch ist hier dann die Reihenfolge der Kinder relevant, da sie child[] abbilden muss

Begrifflichkeiten

Höhe des Baumes/ tree height = maximale Tiefe eines Knoten

Binärbaum

Jeder Knoten hat maximal 2 Kinder: left = child[0], right = child[1]

Ausgangsgrad/outdegree jedes Knotens ist < 2

Markiere Knoten auch graphisch als linkes/rechtes Kind

Halbblatt: Knoten mit genau einem Kind

linker/rechter Teilbaum eine Knotens: Baum der links/rechts am Knoten hängt, d.h. der Baum, der den linken/rechten Kindknoten als Wurzel hat

Höhe des leeren Baumes ist -1

Höhe nicht-leeren Baumes = $max{Höhe aller Teilbäume der Wurzel} + 1$

Inorder-Traversieren von Binärbäumen

Beispielanwendung: Serialisierung

Bei Bedarf mit Wrapper: inoderTree(T) = inorder(T.root)

 $T(n) = \text{Laufzeit bei } n \text{ Knoten, } T(n) \in O(n)$

Verschiedene Bäume können gleiche Inorder haben

Pre- und Postorder-Traversieren von Binärbäumen

Preorder kann für Syntaxbäume bei funktionalen Programmiersprachen genutzt werden

Siehe auch #TODO Verweis auf Racket einfügen

Preorder-Traversieren für Kopieren

- 1. Betrachte Knoten und lege Kopie an
- 2. Wiederhole die rekursive für Teilbäume

Postorder-Traversieren für Löschen

- 1. Postorder löscht Teilbäume
- 2. Postorder betrachtet Knoten, an dem die Teilbäume hängen, erst danach, löscht zuletzt

Verschiedene Bäume können gleiche Pre-/Postorder haben

Binärbaum aus Preorder, Inorder und eindeutigen Werten

- 1. Preorder identifiziert Wurzel
- 2. Inorder identifiziert Werte im rechten/linken Teilbaum
- 3. Bilde Teilbäume rekursiv Statt Pre- auch Postorder möglich

Abstrakter Datentyp Baum

```
    new(T): Erzeugt neuen Baum T
    search(T,k): Gibt Element x aus T mit x.key==k oder nil zurück
    insert(T,x): Fügt x in T ein
```

delete(T,x): Löscht x aus T
 Oft gibt es weitere Baum-Operationen wie Wurzel, Höhe, Traversieren, ...

Suchen

```
search(x,k)

IF x==nil THEN return nil;

IF x.key==k THEN return x;

y=search(x.left,k);

IF y != nil THEN return y;

return search(x.right,k);
```

Starte mit search(T.root,k)

 $\mathsf{Laufzeit} = \Theta(n)$

Jeder Knoten wird maximal einmal besucht, im schlechtesten Fall aber auch jeder Knoten

Einfügen

 $\mathsf{Laufzeit} = \Theta(1)$

Erzeugt linkslastigen Baum

Löschen

Idee: Ersetze \times durch Halbblatt ganz rechts, es gibt auch andere Möglichkeiten Sonderfälle beachten: Halbblatt hat selbst Wert \times oder ist Wurzel

```
Bei connect muss w nicht an y hängen Laufzeit connect = \Theta(1) Laufzeit delete = \Theta(h), h ist Höhe des Baumes, h=n ist möglich
```

Binäre Suchbäume (Binary Search Tree, BST)

Wir nehmen totale Ordnung auf den Werten an Binärer Suchbaum: Binärbaum, sodass für alle Knoten z gilt:

- Wenn x Knoten im linken Teilbaum von z, dann x.key <= z.key
- Wenn y Knoten im rechten Teilbaum von z, dann y.key >= z.key

Order und eindeutige Werte

Aus Pre-/ Postorder und eindeutigen Werten kann man eindeutige BST konstruieren

- 1. Identifiziere Wurzel
- 2. Identifiziere Werte anhand der Regeln
- Bilde Teilbäume rekursiv
 Mit Inorder und eindeutigen Werten lässt sich kein eindeutiger BST konstruieren

Suche

Iterative Suche

Einfügen

```
insert(T,z) // may insert z again, z.left==z.right==nil
       x=T.root; px=nil;
       WHILE x != nil DO
               px=x;
               IF x.key > z.key THEN
                      x=x.left
                ELSE
                       x=x.right;
       z.parent=px;
       IF px==nil THEN
              T.root=z
       ELSE
               IF px.key > z.key THEN
                      px.left=z
                ELSE
                       px.right=z;
```

Laufzeit O(h)

Löschen

Zu löschender Knoten ist z, Fallunterscheidung:

- z hat maximal ein Kind:
 Kind anstelle von z setzen, fertig
 Wenn z Blatt ist, löschen trivial
 Bedingungen an Struktur/Werte bleiben erhalten
- Rechtes Kind von z hat kein linkes Kind:
 Analog: Linkes Kind von z hat kein rechtes Kind
 Rechtes Kind an die Stelle von z setzen, linkes Kind von z wird linkes Kind von

rechtem Kind

BST-Bedingung bleibt erhalten

- Kleinster Nachfahre vom rechten Kind von z:
 - 1. Finde kleinsten Nachfahren
 - 2. Ersetze z durch kleinsten Nachfahren
 - 3. Da kleinster Nachfahre kein linkes Kind haben kann, entsteht hier kein Problem
 - 4. Rechtes Kind des kleinsten Nachfahren an die Stelle des kleinsten Nachfahren

Transplantation

hängt Teilbaum v an Elternknoten von u

Laufzeit = $\Theta(1)$

Algorithmus

```
delete(T,z)
        IF z.left==nil THEN
                transplant(T,z,z.right)
        ELSE
                IF z.right==nil THEN
                        transplant(T,z,z.left)
                ELSE
                        y=z.right;
                        WHILE y.left != nil DO y=y.left;
                        IF y.parent != z THEN
                                transplant(T,y,y.right);
                                y.right=z.right;
                                y.right.parent=y;
                        transplant(T,z,y);
                        y.left=z.left;
                        y.left.parent=y;
```

Höhe des BST

Laufzeit

Verkettete Liste:

```
Einfügen: Θ(1)
Löschen: Θ(1)
Suchen: Θ(n)
BST:
Einfügen: O(h)
Löschen: O(h)
Suchen: O(h)
BST ist besser, wenn viele Such-Operationen durchgeführt werden und h im Vergleich zu n relativ klein ist
```

Best-/Worst-Case

Best-Case:

```
· Vollständig: Alle Blätter haben gleiche Tiefe
```

```
    h = O(log<sub>2</sub> n)
    Laufzeit = O(log<sub>2</sub> n)
    Worst-Case:
```

Degeneriert: Lineare Liste

```
• h = n - 1
```

• Laufzeit = $\Omega(n)$

Durchschnittliche Höhe

Analyse ohne Einfügen und Löschen

Die erwartete Höhe E[h] des Baumes T , erzeugt durch $\mathsf{randomlyBuiltTree}(\mathsf{D})$, für eine Datenmenge D mit n Werten ist $E[h] = \Theta(\log_2 n)$.

Suchbäume als Suchindex

Knoten speichert nur Primärschlüssel und Zeiger auf Daten

- Bereichssuche ist möglich
- Sekundärindizes/zusätzliche Indizes kosten Speicherplatz und sind daher nur sinnvoll, wenn oft nach ihnen gesucht wird
- Z.B. sekundärer Baum mit alphabetischer Sortierung für eine Suche auf Namen