Problem Set 8

Theo McGlashan

I adhered to the honor code on this assignment.

Additional Problem 1

Let μ be a regular Borel measure on \mathbb{R} which is finite on all compact sets. Then for $0 , a measurable function <math>f : \mathbb{R} \to \mathbb{C}$ is locally \mathcal{L}^p if for each $x \in \mathbb{R}$, there exists r > 0 such that

$$f\chi_{(x-r,x+r)} \in \mathcal{L}^p(\mu). \tag{1}$$

(a) Claim. $f \in \mathcal{L}^p_{loc}(\mu)$ if and only if

$$f\chi_K \in \mathcal{L}^p(\mu)$$
, for every compact $K \subseteq \mathbb{R}$. (2)

Proof. (\iff) Assume (2) holds for some function f. Then for $x \in \mathbb{R}$ and some r(x) > 0, we let K be the compact set [x - r, x + r]. Then by our assumption,

$$\int |f\chi_{(x-r,x+r)}|^p d\mu \le \int |f\chi_K| d\mu < +\infty.$$

Therefore $f \in \mathcal{L}^p_{loc}(\mu)$.

(\Longrightarrow) Assume that $f \in \mathcal{L}^p_{loc}(\mu)$, and take $K \subseteq \mathbb{R}$ to be compact. Then for all $x \in K$, there exists r(x) > 0 satisfying (1). K then has the open cover

$$K \subseteq \bigcup_{x \in K} (x - r(x), x + r(x)).$$

Because k is closed and bounded, there exists a finite collection $x_1, \ldots x_n =: A$ such that

$$K \subseteq \bigcup_{x_i \in A} (x_i - r(x_i), x_i + r(x_i)) =: B.$$

Using this finite open cover, we have

$$\int |f\chi_K|^p d\mu \le \int |f\chi_B|^p d\mu \le \sum_{i=1}^n \int |f\chi_{(x_i - r(x_i), x_i + r(x_i))}|^p d\mu < +\infty.$$

Therefore $f\chi_K \in \mathcal{L}^p(\mu)$ for all compact $K \subseteq \mathbb{R}$.

(b) The function $f: \mathbb{R} \to \mathbb{C}$ defined by f(x) = 1 is in $\mathcal{L}^p_{loc}(\mu)$ but not in $\mathcal{L}^p(\mu)$. It is in $\mathcal{L}^p_{loc}(\mu)$ because for any compact $K \subseteq \mathbb{R}$, we have

$$\int |f\chi_K|^p d\mu = \int \chi_K d\mu = \mu(K) < +\infty,$$

where the final inequality above is true by our hypothesis that μ is finite on all compact sets. Then by (a), $f \in \mathcal{L}^p_{loc}(\mu)$. However, $f \notin \mathcal{L}^p(\mu)$, because

$$||f||_p = \left(\int 1 d\mu\right)^{\frac{1}{p}} \to +\infty$$
, for all $0 .$

(c) Let $C_c(\mathbb{R})$, be the \mathbb{C} -valued continuous functions on \mathbb{R} with compact support, equipped with the sup norm $\|.\|_{\infty}$. Then for $1 \leq p < \infty$, fix $f \in \mathcal{L}^p_{loc}(\mu)$, and define

$$\ell_f(\phi) := \int f\phi \, d\mu \,, \, \text{for } \phi \in \mathcal{C}_c(\mathbb{R}).$$
 (3)

Claim. The integral in (3) is well defined and yields a linear functional on $\mathcal{C}_c(\mathbb{R})$.

Proof. To show that ℓ_f is well defined, we must show that $\ell_f(\phi) < +\infty$ for all f and ϕ . To do this, for $1 \le q < +\infty$ such that $1 = \frac{1}{p} + \frac{1}{q}$, observe that

$$\ell_f(\phi) \le \int |f\phi| \, d\mu = \int_K |f\phi| \, d\mu \le ||f\chi_K||_p ||\phi||_q < +\infty.$$

For the above, K is the compact support of ϕ , meaning $|f\phi|$ is supported on K, so the equality holds. The second inequality comes from holder. For the final inequality, the first factor is finite because $f \in \mathcal{L}^p_{loc}(\mu)$, which by (a) implies $f\chi_K \in \mathcal{L}^p(\mu)$. The second factor is finite because $\phi \in \mathcal{C}_c(\mathbb{R})$. This shows well-definedness of ℓ_f .

Additionally, we know ℓ_f maps to \mathbb{R} and not $\overline{\mathbb{R}}$ by the above, so ℓ_f is a linear functional if it is linear. But linearity of ℓ_f follows quite simply from linearity of the integral. \square

(d) Claim.

$$\ell_f(\phi) = 0$$
, for all $\phi \in \mathcal{C}_c(\mathbb{R})$ (4)

implies that f = 0, μ -a.e.

Proof. We will prove this by contradiction, assuming that $\mu(\{f(x) \neq 0\}) > 0$. Furthermore, assume without loss of generality that $\mu(\{f(x) > 0\}) > 0$, and that this measure is finite, as if not, then clearly (4) is false. Then take R > 0 such that $\{f > 0\} \subseteq [-R, R] =: A$.

Using the polar representation of \mathbb{C} -valued measurable functions, we know that there exists $h: \mathbb{R} \to \mathbb{C}$ with |h| = 1 such that $f = |f| \cdot h$, or equivalently, $|f| = \frac{1}{h}f$. Then

define $\phi = \frac{1}{h}\chi_A$, and $0 < q < +\infty$ such that $1 = \frac{1}{p} + \frac{1}{q}$. Then $\phi \in \mathcal{L}^q(\mu)$, and we know $\mathcal{C}_c(\mathbb{R})$ is dense in $\mathcal{L}^q(\mu)$, so there exists $\phi' \in \mathcal{C}_c(\mathbb{R})$ such that for $\epsilon > 0$,

$$\|\phi - \phi'\|_q < \epsilon. \tag{5}$$

From here, we have for the same $\epsilon > 0$, that

$$0 < \int f \, d\mu \le \int f \chi_A \, d\mu \le \int |f| \chi_A \, d\mu \tag{6}$$

$$\leq \int |f\phi| \, d\mu \tag{7}$$

$$\leq \int |f(\phi - \phi' + \phi')| \, d\mu$$

$$\leq \int |f(\phi - \phi')| \, d\mu + \int |f\phi'| \, d\mu \tag{8}$$

$$\leq ||f||_p ||\phi - \phi'||_q < ||f||_p \cdot \epsilon.$$
 (9)

For above, the second inequality in (6) follows because f is positive only on A.

(7) follows from the definition of ϕ and that |h| = 1. The first inequality in (9) comes from holder and that the second term of (8) is 0 by (4). The final inequality comes from (5).

Overall, this is a contradiction, because if $\int f d\mu < ||f||_p \cdot \epsilon$ for all $\epsilon > 0$, then $\int f d\mu = 0$, but $\int f d\mu > 0$.

Additional Problem 2

(a) Claim. Let $K \subseteq \mathbb{R}$ be compact. Then $\mathcal{C}_c(K)$, the space of continuous complex valued functions on K, is a Banach space with respect to the supremum norm.

Proof. We must first verify that the supremum norm acts as a norm on this space. Positive definiteness, homogeneity, and the triangle inequality all follow easily from the definition of the supremum norm. Also, for all $f \in \mathcal{C}_c(K)$, because f is continuous and defined on a compact set, the extreme value theorem tells us that f has a max and min. Therefore $||f||_{\infty} < +\infty$, so $||.||_{\infty}$ is indeed a norm on our space.

To see that this is a Banach space, recall that a sequence being uniformly Cauchy implies that it is uniformly convergent. Therefore for (f_n) , where $f_n \in \mathcal{C}_c(K)$, if (f_n) is cauchy in $\|.\|_{\infty}$, then it is uniformly cauchy. Therefore it is uniformly convergent to some function f. Recall as well that the uniform limit of a sequence of continuous

functions is continuous, so f is continuous. Therefore $f \in \mathcal{C}_c(K)$, so this is indeed a Banach space.

(b) Claim. $C_c(\mathbb{R})$ is not a Banach space with respect to the supremum norm.

Proof. Define the sequence of functions (f_n) by

$$f_n(x) = e^{-x^2} \chi_{[-n,n]} + (1 - n(x-n)) \chi_{(n,n+\frac{1}{n}]} + (1 + n(x+n)) \chi_{[-n-\frac{1}{n},-n)}.$$

While it is not immediately obvious that these functions are continuous, the second and third terms serve to remove the discontinuity in the first term at n and -n by creating a "steep" line from 1 to 0 at these points.

Then for $\epsilon > 0$, there exists $n \geq m \in \mathbb{N}$ such that $e^{-m^2} < \epsilon$ because $e^{-m^2} \to 0$. Then

$$||f_{m} - f_{n}||_{\infty} = ||f_{m} - f_{n}||_{\infty;[-m,m]^{c}}$$

$$\leq ||f_{m}||_{\infty;[-m,m]^{c}} + ||f_{n}||_{\infty;[-m,m]^{c}}$$

$$\leq 2\epsilon.$$
(10)

For above, (10) holds because on [-m, m], both f_m and f_n evaluate to e^{-x^2} .

This means that (f_n) is Cauchy in $\|.\|_{\infty}$, but $(f_n) \to e^{-x^2}$, which does not have compact support, so $\lim_{n\to\infty} f_n \notin \mathcal{C}_c(\mathbb{R})$. Therefore $\mathcal{C}_c(\mathbb{R})$ is not a banach space with respect to the supremum norm.

Additional Problem 3

(a) Claim. If V and W are both finite dimensional \mathbb{C} -vector spaces, then every linear map between V and W is bounded.

Proof. For linear map $T: V \to W$, because all norms on finite dimensional vector spaces are equivalent, it suffices to show that T is bounded in $||.||_1$. Then for $x \in V$, we know that

$$x = \sum_{i=1}^{N} c_i v_i$$
, where $c_i \in \mathbb{C}$, and $\mathcal{B} := \{v_1, \dots v_N\}$ form a basis of V .

From here, if we define $M := \max_{v_j \in \mathcal{B}} ||Tv_j||_1$, then

$$||Tx||_1 \le \sum_{i=1}^N |c_k|||Tv_k||_1 \le NM \sum_{i=1}^N |c_i| = NM||x||_1.$$

Notably, both N and M are independent of our choice of x, so T is bounded. \square

(b) Suppose μ is a finite Borel measure on \mathbb{R} , and take $f \in \mathcal{L}^{\infty}(\mu)$. Define the multiplication operator

$$T_f: \mathcal{L}^2(\mu) \to \mathcal{L}^2(\mu) , T_f(\phi) = f \cdot \phi.$$

We know already that T_f is a bounded linear operator with

$$||T_f \phi||_2 \le ||f||_{\infty} ||\phi||_2$$
, for all $\phi \in \mathcal{L}^2(\mu)$. (11)

Claim. The operator norm of T_f has the value

$$||T_f|| = ||f||_{\infty}.$$

Proof. Using the definition of the operator norm, we have

$$||T_f|| = \sup_{\|\phi\|_2 \le 1} ||T_f \phi||_2 \le ||f||_{\infty} ||\phi||_2 \le ||f||_{\infty}.$$

For above, the first inequality follows from (11), and the second from the above supremum being over $\|\phi\|_2 \leq 1$.

It remains to show $||T_f|| \ge ||f||_{\infty}$. To do so, for $\epsilon > 0$, define

$$A := \{ f(x) > ||f||_{\infty} - \epsilon \}.$$

Then A is measurable, and $\mu(A) > 0$ as shown in set 7. Then define

$$\phi = \frac{\chi_A}{\sqrt{\mu(A)}}.$$

By this definition, $\phi \in \mathcal{L}^2(\mu)$ with $\|\phi\|_2 = 1$. Thus

$$||T_{f}|| = \sup_{\|\varphi\|_{2} \le 1} ||T_{f}\varphi||_{2} \ge ||T_{f}\varphi||_{2} = ||f\varphi||_{2}$$

$$= \left(\int |f\varphi|^{2} d\mu\right)^{\frac{1}{2}}$$

$$\ge \left(\int_{A} |f\varphi|^{2} d\mu\right)^{\frac{1}{2}}$$

$$\ge \left((||f||_{\infty} - \epsilon)^{2} \int_{A} |\varphi|^{2} d\mu\right)^{\frac{1}{2}}$$

$$= ||f||_{\infty} - \epsilon. \tag{13}$$

For above, (12) holds because our definition of A, and (13) holds because $\|\phi\|_2 = 1$, and ϕ is supported only on A.

Therefore we conclude
$$||T_f|| = ||f||_{\infty}$$
.

Additional Problem 4

For the Banach space $(X, ||.||_X)$, we denote $\mathcal{B}(x) := \mathcal{B}(X, X)$, the vector space of bounded linear operators on X with respect to the operator norm. Then the identity operator $I: X \to X$, I(x) = x is a bounded linear operator which is invertible.

(a) Claim. For $T, S \in \mathcal{B}(X)$, one has the composition $TS \in \mathcal{B}(x)$ with

$$||TS|| \le ||T|| ||S||.$$

Proof. Because both T and S are bounded operators, we have

$$||Tx||_x \le ||T|| ||x||_x$$
, and $||S_x||_x \le ||S|| ||x||_x$.

With this, we can say

$$||TS|| = \sup_{\|x\| \le 1} ||TSx||_X$$

$$\le \sup_{\|x\| \le 1} ||T|| ||Sx||_X$$

$$\le \sup_{\|x\| \le 1} ||T|| ||S|| ||x||_X$$

$$\le ||T|| ||S||$$

(c) Let $P \in \mathcal{B}(X)$ be given with ||P|| < 1. Then defined

$$T := I - P \in \mathcal{B}(X).$$

Claim. T is invertible, or equivalently, there exists $S \in \mathcal{B}(X)$ such that TS = ST = I.

Proof. To begin, define

$$S := \sum_{n=0}^{\infty} P^n.$$

We know ||P|| < 1, so we have

$$\sum_{n=0}^{\infty} ||P||^n < +\infty.$$

Then by result 6.41, we have $S < +\infty$, so $S \in \mathcal{B}(X)$. Computing TS, with the computation of ST being very similar, we have

$$TS = \sum_{n=0}^{\infty} P^n - P \sum_{n=0}^{\infty} P^n = P^0 = I.$$