Resumen Control 2

MA5402 Cálculo Estocástico - Primavera 2023

Preliminares 0.

- Definición: [Nociones de convergencia] LAL
- Definición: [Funciones de variación acotada] LEL
- **Definición:** [Esperanza Condicional] Para $(\Omega, \mathcal{F}, \mathbb{P})$ espacio de probabilidad, X variable aleatoria en L^1 y \mathscr{G} sub σ -álgebra de \mathscr{F} , la esperanza condicional $\mathbb{E}[X|\mathcal{G}]$ se define como aquella variable integrable \mathcal{G} -medible tal que

$$\forall G \in \mathcal{G} : \mathbb{E}[Y\mathbf{1}_G] = \mathbb{E}[X\mathbf{1}_G]$$

La esperanza condicional posee, entre otras, las siguientes propiedades:

- 1. (Esperanza anidada) $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$
- 2. (Jensen) Si $c: \mathbb{R} \to \mathbb{R}$ convexa con c(X) integrable, entonces

$$\mathbb{E}[c(X)|\mathcal{G}] \ge c(E[X|\mathcal{G}])$$

3. (**medibilidad**) Si Z es \mathcal{G} -medible, entonces

$$\mathbb{E}[ZX|\mathcal{G}] = Z\mathbb{E}[X|G]$$

4. (independencia)

Martingalas continuas

Sea $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$ un e.d.p filtrado.

- **Definición:** [(sub/super) Martingala] Un proceso $(X_t)_{t\geq 0}$ adaptado tal que $X_t \in L^1$ para todo $t \ge 0$ se dice
 - 1. Martingala si $\forall 0 \le s \le t : \mathbb{E}[X_t | \mathscr{F}_s] = X_s$
 - 2. Supermartingala si $\forall 0 \le s \le t : \mathbb{E}[X_t | \mathscr{F}_s] \le X_s$
 - 3. Submartingala si $\forall s \leq s \leq t : \mathbb{E}[X_t | \mathscr{F}_s] \geq X_s$
- **Proposición:** [Ejemplos de martingalas] Sea $(B_t)_t$ un movimiento browniano, son ejemplos de martingalas los siguientes procesos:

 - B_t $B_t^2 t$ $\exp\left(\theta B_t \frac{\theta^2}{2}t\right),$ $\theta > 0$
- **Proposición:** [Funciones convexas] Sea $(X_t)_t$ adaptado y $f: \mathbb{R} \to \mathbb{R}$ \mathbb{R} convexa tal que $\mathbb{E}[|f(X_t)|] < \infty$ para todo t. Entonces
 - Si $(X_t)_t$ es martingala, entonces $(f(X_t))_t$ es submartingala.
 - Si $(X_t)_t$ es submartingala y f es no decreciente, entonces $(f(X_t))_t$ es submartingala.
- **Proposición:** [supremo] Si $(X_t)_t$ es (sub/super) martingala, entonces para todo $t \ge 0$

$$\sup_{s \in [0, t]} \mathbb{E}[|X_s|] < \infty$$

- Teorema: [Desigualdades clásicas]
 - 1. (Desigualdad maximal) Sea $(X_t)_t$ supermartingala continua por la derecha. Entonces para $t, \lambda > 0$

$$\lambda \mathbb{P}\left[\sup_{s \in [0,t]} |X_s| > \lambda\right] \le \mathbb{E}[|X_0|] + 2\mathbb{E}[|X_t|]$$

2. (**Desigualdad de Doob en** L^p) Sea $(X_t)_t$ martingala continua por la derecha. Entonces, para t > 0, p > 1

$$\mathbb{E}\left[\sup_{s\in[0,t]}|X_s|^p\right] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}\left[|X_t|^p\right]$$

- Proposición: [Subidas y bajadas] LIL
- Teorema: [De convergencia no UI] Sea X sobremartingala continua por la derecha tal que $\sup_{t\geq 0}\mathbb{E}[|x_t|]<\infty$. Entonces, existe $X_{\infty} \in L^1$ tal que

$$X_t \to X_{\infty}$$

Cuando $t \to \infty$ en el sentido casi seguro.

Definición: [Cerradura] Decimos que $(X_t)_t$ es martingala cerrada si existe $Z \in L^1$ tal que para todo $t \ge 0$

$$X_t = \mathbb{E}[Z|\mathcal{F}_t]$$

- **Teorema:** [De convergencia UI] Sea $(X_t)_t$ martingala continua por la derecha. LSSE:
 - 1. X cerrada.
 - 2. X UI.
 - 3. X converge casi seguramente y en L^1 a una X_{∞} cuando $t \to \infty$. En cualquiera de estos casos tenemos que para todo $t \ge 0$

$$X_t = \mathbb{E}[X_{\infty}|\mathcal{F}_t]$$

Teorema: [De parada opcional de Doob no acotado] Sea $(X_t)_t$ martingala UI continua a la derecha. Si S, T son dos t.d.p con $S \leq T$, entonces $X_S, X_T \in L^1$ y

$$X_S = \mathbb{E}[X_T | \mathscr{F}_S]$$

En particular, para S t.d.p, tenemos $X_S = \mathbb{E}[X_\infty | \mathscr{F}_S]$ y tomando esperanza se concluye $\mathbb{E}[X_S] = \mathbb{E}[X_{\infty}] = \mathbb{E}[X_0]$

Teorema: [De parada opcional de Doob acotado] Sea $(X_t)_t$ martingala continua por la derecha y $S \le T$ t.d.p acotados. Entonces $X_S, X_T \in L^1$ v

$$X_S = \mathbb{E}[X_T | \mathscr{F}_S]$$

- **Proposición:** [Martingala detenida] Sea $(X_t)_t$ martingala continua a la derecha y T t.d.p. Definimos $(X_t^T)_t$ como el proceso detenido $X_t^T = X_{t \wedge t}$. Entonces:
 - X^T es martingala.
 - Si X es martingala UI, entonces X^T también lo es y tenemos

$$X_t^T = \mathbb{E}[X_T | \mathscr{F}_t]$$

- Definición: [Martingala reversa] LAL
- Teorema: [Convergencia de martingalas reversas] LEL

Variaciones y Martingalas Locales