(20%) 1. (a) In Fig.1a, a Widlar current source consists of one resistor and two identical MOSFETs M₁ and M₂.

Assume that
$$K = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_{MLM2}$$
, please derive

I_O as a function of I_{REF}, K, and R. (10%)

(b) A Widlar current source which consists of one resistor and two identical BJTs(Q_1 , Q_2) is shown in Fig.1b. Let $I_{REF} = 1 \text{mA}$, $R = 10 \text{k}\Omega$, and the thermal voltage $V_T = 25 \text{mV}$, please calculate the output current I_O by iterative approach. Your answer should be expressed in µA and accurate to one decimal place. (10%)

Fig.1a

Fig.1b

(15%) 2. (a) Fig.2a shows the output stage of the 741 without the protection circuitry. Assume that Q_{13A} delivers a current of 180μA to the network, and $R_{10} = 40k\Omega$. If we neglect the base currents of Q_{14} and Q_{20} , and assume V_{BE18} is approximately 0.6V at first. Please find the bias currents I_{C18} , I_{C19} , and I_{C14} , where $V_T = 25 \text{mV}$, $\beta_{O18} = 200$, $I_S = 3.10^{-14} \text{A}$ for Q_{14} and Q_{20} , and $I_S=10^{-14}$ A for other BJTs. (10%) (b) If we use two diode-connected BJTs Q_1 and Q_2 to establish the voltage between the bases of the output BJTs Q_{14} and Q_{20} , as shown in Fig.2b, find the I_{C14} . (5%)

- (15%) 3. Draw a basic circuit of a 3-bit DAC utilizing an R-2R ladder network, and describe its operation.
- (15%) 4. Briefly explain (a) full-power bandwidth
- (b) Stagger-tuned amplifier
- (c) Barkhausen criterion
- (20%) 5. (a) Explain why the circuit shown in Fig.5 acts as a resistor. How does the stray capacitance affect this circuit? (10%) (b) Sketch two kinds of stray-insensitive switched-capacitor

integrators (both inverting and non-inverting) (10%)

(15%) 6. Consider a 2nd-order Butterworth low-pass filter with $\varepsilon = 0.5$. Assume that its passband edge is ω_p , and

5. Consider a
$$2^{nd}$$
-order Butterworth low-pass filter with $\varepsilon = 0.5$. Assume that its passband ε its stopband edge $\omega_s = 10 \cdot \omega_p$. (Butterworth transmission function= $\frac{1}{\sqrt{1 + \varepsilon^2 (\frac{\omega}{\omega_p})^{2N}}}$)

- (a) Find the maximum allowed variation in passband transmission A_{max} and the minimum required stopband attenuation A_{min}. Your answers should be expressed in dB. (10%)
- (b) Derive the normalized polynomial T(s). (5%)