Санкт-Петербургский Политехнический университет Петра Великого

Институт Прикладной Математики и Механики Кафедра «Прикладная Математика и Информатика»

Отчет

По лабораторной работе № 4 По Дисциплине «Математическая статистика»

Выполнил:

Студент Селянкин Федор

Группа 3630102/70301

Проверил:

 $\kappa. \varphi. - м.н.,$ доцент

Баженов Александр Николаевич

Содержание

Постановка задачи	3
Теория	3
Распределения	3
Эмпирическая функция распределения	3
Статистический ряд	3
Определение	3
Описание	4
Оценки плотности вероятности	4
Определение	4
Ядерные оценки	4
Реализация	5
Результаты.	5
Эмпирическая функция распределения	5
Ядерные плотности распределения	7
Литература	8
Обсуждения	8
Список Иллюстраций:	
1 ЭФР: Равномерное распределение	5
2 ЭФР: Распределение Пуассона	5
3 ЭФР: Распределение Лапласа	6
4 ЭФР: Нормальное распределение	6
5 ЭФР: Распределение Коши	6
6 ЯПР: Равномерное распределение	7
7 ЯПР: Распределение Пуассона	7
8 ЯПР: Распределение Лапласа	7
9 ЯПР: Нормальное распределение	8
10 ЯПР: Распределение Коши	8

Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши *C*(*x*, 0, 1)
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 20, 60 и 100 элементов.

Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4, 4] для непрерывных распределений и на отрезке [6;14] для распределения Пуассона.

Теория

Распределения

• Нормальное распределение

 $N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{-x^2}{2}}$ (1)

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1}$$
 (2)

• Распределение Лапласа

$$L(\mathbf{x}, 0, \frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|\mathbf{x}|}$$
(3)

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение

$$\mathbf{U}(\mathbf{x}, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |\mathbf{x}| \le \sqrt{3} \\ \mathbf{0} & \text{при } |\mathbf{x}| > \sqrt{3} \end{cases}$$
 (5)

Эмпирическая функция распределения

Статистический ряд

Статистическим рядом называется последовательность различных элементов выборки $z_1, z_2, ..., z_k$, расположенных в возрастающем порядке с указанием частот $n_1, n_1, ..., n_k$, с которыми эти элементы содержаться в выборке. Статический ряд обычно записывается в виде таблицы

Z	z_1	\mathbf{z}_2		z_k				
n	n_1	n_2		n_k				
Таблица 1 Статистический ряд								

Определение

Эмпирической (выборочной) функцией распределения (э. ф. р.) называется относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x)$$
 (6)

Описание

Для получения относительной частоты $P^*(X < x)$ просуммируем в статистическом ряде, построенном по данной выборке, все частоты n_i , для которых элементы z_i статистического ряда меньше x. Тогда $P^*(X < x) = \frac{1}{n} \sum_{z_i < x} n_i$. Получаем

7

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i \tag{7}$$

 Γ де $F^*(x)$ — функция распределения дискретной случайной величины X^* , заданной таблицей распределения

X*	z_1	\mathbf{z}_2		z_k			
P	n_1	n_2		n_k			
	n	n		n			
Таблииа 2Таблииа распределений							

Эмпирическая функция распределения является оценкой, т.е. приближённым значением, генеральной функции распределения

8

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i$$
 (8)

Оценки плотности вероятности

Определение

Оценкой плотности вероятности f(x) называется функция $\hat{f}(x)$, построенная на основе выборки, приближенно равная f(x)

9

$$\hat{f}(x) \approx f(x) \tag{9}$$

Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объему выборки:

10

$$\widehat{f}_n = \frac{1}{nh_n} \sum_{i=1}^n K(\frac{x - x_i}{h_n})$$
(10)

Здесь функция K(u), называемая ядерной (ядром), непрерывна и является плотностью вероятности, x_1, \ldots, x_n — элементы выборки, $\{h_n\}$ — любая последовательность положительных чисел, обладающая свойствами

11

$$h_n \xrightarrow[n \to \infty]{} 0; \frac{h_n}{n^{-1}} \xrightarrow[n \to \infty]{} \infty$$
 (11)

Такие оценки называются непрерывными ядерными.

Замечание. Свойство, означающее сближение оценки с оцениваемой величиной при $n \to \infty$ в каком-либо смысле, называется состоятельностью оценки.

Если плотность f(x) кусочно-непрерывная, то ядерная оценка плотности является состоятельной при соблюдении условий, накладываемых на параметр сглаживания h_n , а также на ядро K(u).

Гауссово (нормальное) ядро

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} \tag{12}$$

Правило Сильвермана

13

$$h_{n} = 1.06\hat{\sigma}n^{-\frac{1}{5}} \tag{13}$$

 Γ де – $\hat{\sigma}$ выборочное стандартное отклонение.

Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm, с использованием дополнительных библиотек для отображения и расчетов. Исходный код лабораторной выложен на веб-сервисе GitHub [2].

Результаты

Эмпирическая функция распределения

1 ЭФР: Равномерное распределение

2 ЭФР: Распределение Пуассона

3 ЭФР: Распределение Лапласа

4 ЭФР: Нормальное распределение

5 ЭФР: Распределение Коши

Ядерные плотности распределения

6 ЯПР: Равномерное распределение

7 ЯПР: Распределение Пуассона

8 ЯПР: Распределение Лапласа

9 ЯПР: Нормальное распределение

10 ЯПР: Распределение Коши

Литература

- 1. Выборочная функция распределения https://en.wikipedia.org/wiki/Empirical_distribution_function
- 2. Ссылка на репозиторий GitHub https://github.com/SelyankinFyodor/math-statistics/tree/master/Lab4

Обсуждения

С увеличением мощности выборки Эмпирическая функция распределения становится более походящей на функцию распределения.

С увеличением мощности выборки график ядерной плотности распределения все больше становится похож на график плотности распределения. Причем на многих иллюстрациях график с h выбранном согласно правилу Сильвермана без удваивания или уполовинивания приближен к графику плотности распределения лучше, чем остальные.