

Introduction to Agent-Based Modelling

Historical Background

- Agent-based modelling is a comparably young modelling technique.
- Were inspired by Cellular Automata (Von Neumann, Ulam, etc)
- Thomas Schelling's Model of Segregation (1971) is broadly denoted as the first agent-based model

Model segregation behaviour between individuals with different races in US in the 1970s

Historical Background

- Agent-based modelling is a comparably young modelling technique.
- Were inspired by Cellular Automata (Von Neumann, Ulam, etc)
- Thomas Schelling's Model of Segregation (1971) is broadly denoted as the first agent-based model

Historical Background

- Agent-based modelling is a comparably young modelling technique.
- Were inspired by Cellular Automata (Von Neumann, Ulam, etc)
- Thomas Schelling's Model of Segregation (1971) is broadly denoted as the first agent-based model

CA Model

Each cell is assigned a colour (= a person if colour is not white)

Agent Based Model (ABM)

Each agent (= person) is assigned a colour (blue or red) <u>and</u> a cell

In principle both representations make sense for this application. Yet Schelling used the second concept to describe the model for its benefits.

CA Model

ABM

for C in Cellspace:
 if C is not white:
 N(C) = neighbourhood of C
 do update rules with C w.r. to N(C)
 Update Cellspace

for A in AgentList:

get cell and color of A

find neighboured agents N(A)

do some actions with A w.r. to N(A)

Update AgentList

Pseudocode representation of a time step in Schelling's model.

In principle both representations make sense for this application. Yet Schelling used the second concept to describe the model for its benefits.

It is easier to explain the model as it is a more natural description!

We do not have to use a dicrete timestep!

We do not have to

use a cell-space

It could be some "grayscales" in between if we want to

ABM

for A in AgentList:

get cell and color of A

find neighboured agents N(A)

do some actions with A w.r. to N(A)

Update AgentList

We could distinguish between male and female agents (persons)

We could include more realistic distributions

We could introduce death of agents

We could add some immigrants

Why Agent?

Latin: "agere" (to act)

What is an Agent? (1)

- Agent lat. agere (act)
- There is no unique definition. The word is very broadly used.

[Agent-based modelling is...]
"Rather a general concept"
or Simulation Conference 2005, 2, 20

(Winter Simulation Conference 2005 & 2006)

What is an Agent? (2)

- With respect to Winter Simulation Conference (2005 & 2006) an agent has to...
 - ... be uniquely identifiable
 - ... cohabitate an environment with other agents, and has to be able to communicate with them.
 - ... be able to act targeted.
 - ... be autonomous and independent.
 - ... be able to change its behaviour.

What is an Agent? (2)

- With respect to Winter Simulation Conference (2005 & 2006) an agent has to...
 - ... be uniquely identifiable
 - ... cohabitate an environment with other agents, and has to be able to communicate with them.
 - ... be able to act targeted.
 - ... be autonomous and independent.
 - ... be able to change its behaviour.

Optional properties (Wintersimulation Conference 2015)

Act Targeted

Act Targeted

Target

Short Summary

- Agent-Based modelling is a bottom up modelling approach using a big number of individual system components (agents).
- The components act independently (following given rules)
- As it requires a lot of processing resources ABM is a very young science with high potential.

Properties of Agent-Based Models

a. Representation of "emergent phenomena"

b. Flexibility (Bonabeau, 2002)

c. Natural description of the system

Properties of Agent-Based Models

a. Representation of "emergent phenomena"

b. Flexibility (Bonabeau, 2002)

c. Natural description of the system

Representation of "Emergent Phenomena"

Simple rules for individual agents

Complex dynamics of the whole system

group dynamics / swarm intelligence

Representation of "Emergent Phenomena"

Representation of "Emergent Phenomena"

Example: Fish or bird flocks

https://www.youtube.com/watch?v=QOGCSBh3kmM

Boids Flock Model

Each agent tends towards the centre of its neighbours

Swim in the same direction as your neighbours

Wilensky, U. (1998). NetLogo Flocking model. http://ccl.northwestern.edu/netlogo/models/Flocking. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Properties of Agent-Based Models

a. Representation of "emergent phenomena"

b. Flexibility (Bonabeau, 2002)

c. Natural description of the system

Flexibility

- Change of details is very easy compared to other (especially macroscopic) modelling approaches.
- Different parameterisation of single agents does not require changes within the system structure.
- Change or addition of (meta) rules for single agents does not influence the system structure as well (as long as they remain compatible with the system).

Example: Emergency exit strategy

Agent-Based Model

Macroscopic approach a

Agent-Based Model

Macroscopic approach

Example: Emergency exit strategy

Agent-Based Model

Macroscopic approach

Almosible

Example: Emergency exit strategy

Properties of Agent-Based Models

a. Representation of "emergent phenomena"

b. Flexibility (Bonabeau, 2002)

c. Natural description of the system

Natural description of the System

- Components of the system look like in reality
- Parameters can be seen like data or properties of individuals in reality
- No mathematical background knowledge is required in order to understand the modelling approach

Natural description of the System

Example: GEPOC (Generic Population Concept)

- Population model of Austria
- Simulation of Austria's population from 1999 to make prognosis until 2050

Example: GEPOC (Generic Population Concept)

- Population model of Austria
- Simulation of Austria's population from 1999 to make prognosis until 2050

Example: GEPOC (Generic Population Concept)

- Project for two years.
- Parametrisation and Validation data for time <2016 from Statistics Austria
- Parametrisation and Validation for time >=2016 matched with Statistics Austria Prognosis tool

Example: GEPOC Flu

- Simulation of 2014 Flu
- Contact driven disease spread

Example: GEPOC Flu

- Simulation of 2014 Flu
- Contact driven disease spread

Example: GEPOC Flu

THIS model is absolute rubbish and has hardly anything to do with reality!

Beware of wrong ideas!

- Natural descripion of the system makes the model easier to communicate.
- Therefore it becomes more credible than more abstract approaches

BUT

CREDIBLE ≠ VALID
PICTURESQUE≠ VALID

Interpretation of Agent-Based Model Results

Basically two classes of agent-based models can be observed

ABMs for **qualitative** investigation

- Usually interested in (temporal behaviour) of patterns
- Usually used for foundamental scientific research

ABMs for **<u>quantitative</u>** investigation

- Usually interested in temporal behaviour of aggregate numbers
- Usually used for some kind of resource planning

Interpretation of Agent-Based Model Results

Basically two classes of agent-based models can be observed

ABMs for **<u>qualitative</u>** investigation

- (On purpose) very abstract
- Usually very complex model behaviour
- Hardly any parameters identified with real data

ABMs for **quantitative** investigation

- Rather simple agent interactions
- A lot of data involved for model parametrisation and validation
- Usually less famous

"Schelling's model predicts: In a few years only immigrants in Wien Hietzing!"

CORRECT INTERPRETATION

"If we do not take care on our migration policy human homophobia might lead to spatially visible ghettoism as seen above in Austria as well!"

"GEPOC predicts: Austrian population is assumed to grow to x.x Mio people until 2030."

Summary: Agent-Based Models

Agent-based models are good in...

- analysis and discovery of complex group dynamic behaviour. This must not necessarily be a good thing as emergent behaviour may occur in models even if it is not correct.
- ... communitcating models to non-experts.
 The modelling appoach is easy to understand, picturesque and no mathematical background is necessary.

Summary: Agent-Based Models

Agent-based models are good in...

- ... analysis and discovery of complex group dynamic behaviour.
- ... communitcating models to non-experts.

Agent-based modelling is problematic ...

- ... regards misinterpretation. If it looks like reality it must not necessarily be a valid model for it.
- ... regards the validation process. Validation of ABMs is a difficult task due to complex model behaviour.
- ... regards computer ressources. ABMs require high performance CPUs and a lot of RAM.

Questions?

