Department of Computer Science & Engineering

Meerut Institute of Technology, Meerut

(Affiliated to APJ Abdul Kalam Technical University, Lucknow)

Of

Major Project

(UPI Fraud Detection System)

Submitted By

S.No.	Name	Roll No.	Section	Year
1	RICHA KUMARI (Group Leader)	2302921530043	E	2 nd Year (IV Sem)
2	NITISH KUMAR	2302921530032	E	2 nd Year (IV Sem)
3	VISHAL KUMAR	2302921530060	E	2 nd Year (IV Sem)
4	PRITI KUMARI	2302921530036	E	2 nd Year (IV Sem)

Submitted to

Mr. Ayush Singhal

(Assistant Professor & Coordinator – Department of CSE)

Table of Content

S.No.	Content	Page No.	Date
1.	Introduction	1	
2.	Problem Statement	2	
3.	Objectives	3	
4.	Scope of the Project	4	
5.	Literature Review	5	
6.	System Architecture	6	
7.	Technology Stack	7	
8.	Data Flow Diagram (DFD)	8	
9.	Implementation Plan	9	
10.	Evaluation Metrics	10	
11.	References	11	

Introduction

Unified Payments Interface (UPI) is a widely used real-time payment system developed by the National Payments Corporation of India (NPCI). With its rapid adoption, there has also been a surge in fraudulent transactions. This project aims to develop a **UPI Fraud Detection System** that can identify and flag suspicious transactions in real-time using data analytics and machine learning techniques.

Problem Statement

The primary objective is to detect fraudulent UPI transactions by analyzing patterns in the transaction data. This involves building a predictive model capable of classifying transactions as legitimate or fraudulent based on the identified anomalies.

Objectives

- Data Analysis: Identify transaction patterns that indicate potential fraud.
- **Predictive Model:** Implement machine learning models to detect fraudulent transactions.
- **User Interface:** Develop a dashboard for monitoring and flagging transactions in real-time.
- **Reporting:** Generate reports and visualizations for fraud trend analysis.

Scope of the Project

- **Data Collection:** Gather UPI transaction data (synthetic or publicly available datasets).
- **Data Preprocessing:** Clean the dataset, handle missing values, and normalize data.
- **Feature Engineering:** Extract critical features such as transaction amount, frequency, time, location, device ID, etc.
- **Model Selection:** Implement and evaluate multiple ML algorithms:
 - o Logistic Regression
 - Decision Trees
 - Random Forest
 - o XGBoost
 - Neural Networks
- **Evaluation Metrics:** Assess model performance using:
 - Accuracy
 - Precision
 - o Recall
 - o F1 Score
 - ROC-AUC curve
- **Deployment:** Develop a real-time monitoring dashboard using frameworks like **Streamlit** or **Dash**.
- **Alert System:** Implement notifications via email or SMS for flagged transactions.

Literature Review

- Study existing fraud detection systems in the banking sector.
- Review machine learning models commonly used for fraud detection.
- Understand UPI transaction protocols, data flow, and potential vulnerabilities.

System Architecture

The system architecture is divided into several modules:

- **Data Collection Module:** Fetches transaction data from the UPI network or a simulated dataset.
- Data Preprocessing Module: Cleans data and standardizes formats.
- Feature Engineering Module: Extracts relevant features for model training.
- Model Training Module: Trains ML models using labeled datasets.
- **Prediction Module:** Predicts whether a transaction is fraudulent or legitimate.
- Alerting Module: Sends notifications for suspicious transactions.
- **Dashboard Module:** Visualizes transaction data and fraud analysis in real-time.

Technology Stack

• Programming Language: Python

• Data Analysis: Pandas, NumPy

• Data Visualization: Matplotlib, Seaborn

• Machine Learning: Scikit-Learn, TensorFlow, PyTorch

• **Database:** MySQL, MongoDB

• Web Framework: Flask, Django

• Dashboard: Streamlit, Plotly Dash

• Notification System: Twilio, Email SMTP

Data Flow Diagram (DFD)

- **Data Collection:** Fetch transaction data.
- Data Preprocessing: Clean and standardize data for analysis.
- Feature Extraction: Extract key indicators for fraud detection.
- Model Training: Apply and train ML algorithms.
- **Prediction:** Classify transactions as fraudulent or legitimate.
- **Alerting:** Notify stakeholders in case of suspicious transactions.
- **Dashboard:** Display transaction data and fraud analysis in real-time.

Implementation Plan

• Phase 1: Data Collection and Preprocessing

- o Gather synthetic or publicly available datasets.
- o Clean and preprocess data for model training.

Phase 2: Model Development and Training

- o Implement multiple ML models.
- o Compare model performance and select the best model.

• Phase 3: System Integration

- o Integrate the selected model with a web interface.
- o Develop a real-time monitoring dashboard.

Phase 4: Testing and Deployment

- o Test the system with synthetic data.
- Deploy the system on a local server or cloud.

Evaluation Metrics

- **Confusion Matrix:** Visual representation of true positives, false positives, true negatives, and false negatives.
- Accuracy Score: Measures the percentage of correctly classified transactions.
- **Precision, Recall, F1 Score:** Assess the balance between false positives and false negatives.
- **ROC-AUC Curve:** Evaluates the model's ability to differentiate between fraudulent and legitimate transactions.

Expected Outcomes

- A fully functional fraud detection system with real-time transaction monitoring.
- Alert system for notifying users of suspicious transactions.
- Comprehensive reports and visualizations for fraud analysis and pattern recognition.

References

☐ UPI System and Architecture: [1] National Payments Corporation of India (NPCI), "Unified Payments Interface (UPI) Overview," [Online]. Available: https://www.npci.org.in . Accessed: May 18, 2025.
☐ Fraud Detection Techniques in Banking: [2] S. R. Bharathi and V. Geetha, "Credit Card Fraud Detection using Machine Learning Algorithms," <i>IEEE Access</i> , vol. 7, pp. 184082-184090, 2019. doi: 10.1109/ACCESS.2019.2949295.
☐ Machine Learning Models for Fraud Detection: [3] J. Han, M. Kamber, and J. Pei, <i>Data Mining: Concepts and Techniques</i> , 3rd ed. Waltham, MA, USA: Morgan Kaufmann, 2012.
□ Data Analysis and Visualization Libraries: [4] W. McKinney, "Data Structures for Statistical Computing in Python," in <i>Proc. 9th Python in Science Conf.</i> , Austin, TX, USA, 2010, pp. 56-61. doi: 10.25080/Majora-92bf1922-00a.
☐ Alerting Systems in Fraud Detection: [5] Twilio Inc., "Twilio SMS API Documentation," [Online]. Available: https://www.twilio.com/docs/sms. Accessed: May 18, 2025.
☐ Streamlit for Dashboard Development: [6] Streamlit Inc., "Streamlit Documentation," [Online]. Available: https://docs.streamlit.io. Accessed: May 18, 2025.