## Misura della caratteristica I-V di un transistor BJT

### Matteo Bonazzi, Massimo D'Alessandro Schmidt

#### 9 dicembre 2022

#### Sommario

Misura della caratteristica I-V di un transistor BJT in configurazione a emettitore comune, in due valori della corrente di base.

Dal fit lineare dei dati nella regione attiva, si ottengono i valori  $V_{Ea,100\mu A}=(15.9\pm0.9)V~g_{100\mu A}=(1.09\pm0.06)m\Omega^{-1}$  per la configurazione con  $I_b=100\mu A,~V_{Ea,200\mu A}=(13\pm1)V~g_{200\mu A}=(2.20\pm0.14)m\Omega^{-1}$  per la configurazione con  $I_b=200\mu A.$ 

Si stima il guadagno del circuito  $\beta = (137 \pm 4.3)$ .

#### 1 Introduzione

Per la misura è stato utilizato un transistor BJT di tipo pnp,cioè un trasinsistor avente emettitore e colletore fatte di semiconduttore drogato p, e base di semiconduttore drogato n; il transistor è in configurazione a base comune, con base e collettore collegati a due potenziometri e l'emettitore collegato a terra.

Il circuito è realizzato con due potenziometri regolabili, uno regolante la corrente di base  $I_b$  con una resitenza di  $100k\Omega$ , e uno regolante la corrente di collettore  $I_c$ , con resitenza pari a  $1k\Omega$ ;

#### 2 Materiali e strumenti

Sono stati utilizzati:

- $\bullet$  Potenzio<br/>emtro da  $1k\Omega$
- $\bullet \,$  Potenziometro da  $100k\Omega$
- Multimetro (Metex M-3650D)
- $\bullet$ Oscilloscopio (IsoTech ISR622)
- Alimentatore a bassa tensione
- Transistor pnp 2N3906(BU) al Silicio, in configurazione a emettitore comune

## 3 Analisi dati

#### Caratteristiche I-V



Figura 1: Grafico delle caratterste I-V del transistor, nelle due configurazioni delle correnti di base  $I_b$ 

Per  $V_{ce}$  nel range 1-4V, cioè nella regione attiva del transistor, si opera un fit lineare del tipo:

$$V_{ce} = a + bI_c \tag{1}$$

Dove a rappresenta la tensione di Early  $V_{Ea}$ , e b rappresenta la resistenza del circuito; dal fit si ottengono i seguenti valori:

$$V_{Ea,100\mu A} = (15.9 \pm 0.9)V$$

$$R_{100\mu A} = (903 \pm 50)\Omega$$

$$V_{Ea,200\mu A} = (13 \pm 1)V$$

$$R_{200\mu A} = (458 \pm 31)\Omega$$
(2)

Dalle stime fornite dal fit è possibile ricavare i valori delle conduttanze, che risultano essere:

$$g_{100\mu A} = (1.09 \pm 0.06) m \Omega^{-1}$$
  

$$g_{200\mu A} = (2.20 \pm 0.14) m \Omega^{-1}$$
(3)

Per un valore di tensione fissato, è possibile calcolare il guadagno del circuito, dividendo la corrente di collettore per la corrente di base: il guadagno calcolato a  $V_{ce} = 3V$  è pari a

$$\beta = (137 \pm 4.3) \tag{4}$$

## 4 Conclusioni

Il guadagno stimato per il circuito è pari a  $\beta=(137\pm1.3)$ , mentre le tensioni di Early e i valori della conduttanza sono  $V_{Ea,100\mu A}=(15.9\pm0.9)V~V_{Ea,200\mu A}=(13\pm1)V~e~g_{100\mu A}=(1.09\pm0.06)m\Omega^{-1}~g_{200\mu A}=(2.20\pm0.14)m\Omega^{-1}$ 

# 5 Appendice

# 5.1 Dati sperimentali

Nella configurazione con  $I_b=-200\mu A,$  si misurano i seguenti valori per  $V_{ce}$  e  $I_c$ :

|                         |          | D. 1        | - 1 1       |
|-------------------------|----------|-------------|-------------|
| $V_{ce}  (\mathrm{mV})$ | Errore V | Risoluzione | Fondo scala |
|                         | (mV)     | (mV)        | (mV/div)    |
| 4000                    | 160      | 200         | 1000        |
| 3800                    | 150      | 200         | 1000        |
| 3600                    | 150      | 200         | 1000        |
| 3400                    | 143      | 200         | 1000        |
| 3200                    | 139      | 200         | 1000        |
| 3000                    | 135      | 200         | 1000        |
| 2900                    | 100      | 200         | 500         |
| 2700                    | 95       | 200         | 500         |
| 2500                    | 90       | 100         | 500         |
| 2400                    | 88       | 100         | 500         |
| 2200                    | 83       | 100         | 500         |
| 2000                    | 78       | 100         | 500         |
| 1900                    | 76       | 100         | 500         |
| 1700                    | 71       | 100         | 500         |
| 1500                    | 67       | 100         | 500         |
| 1400                    | 65       | 100         | 500         |
| 1200                    | 41       | 40          | 200         |
| 1120                    | 39       | 40          | 200         |
| 1000                    | 36       | 40          | 200         |
| 800                     | 31       | 40          | 200         |
| 720                     | 29       | 40          | 200         |
| 500                     | 18       | 20          | 100         |
| 400                     | 16       | 20          | 100         |
| 300                     | 10       | 10          | 50          |
| 200                     | 7.8      | 10          | 50          |
| 50                      | 5.2      | 10          | 50          |
|                         |          |             |             |

| _ , , ,            | errore $I_c$ | Risoluzione | Fondo scala |
|--------------------|--------------|-------------|-------------|
| $I_c \text{ (mA)}$ | (mA)         | (mA)        | (mA)        |
| 36.9               | 0.54         | 0.1         | 200         |
| 36.5               | 0.54         | 0.1         | 200         |
| 36                 | 0.53         | 0.1         | 200         |
| 35.6               | 0.53         | 0.1         | 200         |
| 35.1               | 0.52         | 0.1         | 200         |
| 34.7               | 0.52         | 0.1         | 200         |
| 34.6               | 0.52         | 0.1         | 200         |
| 34.2               | 0.51         | 0.1         | 200         |
| 33.6               | 0.50         | 0.1         | 200         |
| 33.6               | 0.50         | 0.1         | 200         |
| 33.1               | 0.50         | 0.1         | 200         |
| 32.5               | 0.49         | 0.1         | 200         |
| 32.5               | 0.49         | 0.1         | 200         |
| 32                 | 0.48         | 0.1         | 200         |
| 31.4               | 0.48         | 0.1         | 200         |
| 31.2               | 0.47         | 0.1         | 200         |
| 30.8               | 0.47         | 0.1         | 200         |
| 30.6               | 0.47         | 0.1         | 200         |
| 30.2               | 0.46         | 0.1         | 200         |
| 29.8               | 0.46         | 0.1         | 200         |
| 28.9               | 0.45         | 0.1         | 200         |
| 26.5               | 0.42         | 0.1         | 200         |
| 24.4               | 0.39         | 0.1         | 200         |
| 22                 | 0.36         | 0.1         | 200         |
| 17.08              | 0.095        | 0.01        | 20          |
| 4.5                | 0.033        | 0.01        | 20          |

Tabella 1: Valori di  $V_{ce}$  e  $I_c$ , per  $I_b = 200 \mu A$ 

Nella configurazione con  $I_b=-100\mu A,$  si misurano i seguenti valori per  $V_{ce}$  e  $I_c$ :

| $V_{ce} \; (\mathrm{mV})$ | Errore V | Risoluzione | Fondo scala |
|---------------------------|----------|-------------|-------------|
|                           | (mV)     | (mV)        | (mV/div)    |
| 4000                      | 156      | 200         | 1000        |
| 3800                      | 152      | 200         | 1000        |
| 3600                      | 147      | 200         | 1000        |
| 3400                      | 143      | 200         | 1000        |
| 3200                      | 108      | 200         | 1000        |
| 3000                      | 135      | 200         | 1000        |
| 2900                      | 100      | 100         | 500         |
| 2700                      | 95       | 100         | 500         |
| 2500                      | 90       | 100         | 500         |
| 2400                      | 87       | 100         | 500         |
| 2200                      | 83       | 100         | 500         |
| 2000                      | 78       | 100         | 500         |
| 1900                      | 76       | 100         | 500         |
| 1700                      | 71       | 100         | 500         |

| I (m A)            | errore $I_c$ | Risoluzione | Fondo scala |
|--------------------|--------------|-------------|-------------|
| $I_c \text{ (mA)}$ | (mA)         | (mA)        | (mA)        |
| 21.7               | 0.36         | 0.1         | 200         |
| 21.6               | 0.39         | 0.1         | 200         |
| 21.3               | 0.36         | 0.1         | 200         |
| 21.1               | 0.35         | 0.1         | 200         |
| 21                 | 0.35         | 0.1         | 200         |
| 21                 | 0.35         | 0.1         | 200         |
| 20.7               | 0.35         | 0.1         | 200         |
| 20.4               | 0.34         | 0.1         | 200         |
| 20.4               | 0.34         | 0.1         | 200         |
| 20.2               | 0.34         | 0.1         | 200         |
| 19.96              | 0.11         | 0.01        | 20          |
| 19.84              | 0.11         | 0.01        | 20          |
| 19.72              | 0.11         | 0.01        | 20          |
| 19.49              | 0.11         | 0.01        | 20          |

| 1500 | 67 | 100 | 500 |
|------|----|-----|-----|
| 1400 | 65 | 100 | 500 |
| 1200 | 41 | 50  | 200 |
| 1080 | 38 | 50  | 200 |
| 1000 | 36 | 50  | 200 |
| 800  | 31 | 50  | 200 |
| 720  | 29 | 50  | 200 |
| 500  | 18 | 20  | 100 |
| 400  | 15 | 20  | 100 |
| 300  | 10 | 10  | 50  |
| 200  | 8  | 10  | 50  |
| 50   | 5  | 10  | 50  |

| 19.26 | 0.11  | 0.01 | 20 |
|-------|-------|------|----|
| 19.14 | 0.11  | 0.01 | 20 |
| 18.81 | 0.10  | 0.01 | 20 |
| 18.69 | 0.10  | 0.01 | 20 |
| 18.58 | 0.10  | 0.01 | 20 |
| 18.42 | 0.10  | 0.01 | 20 |
| 18.29 | 0.10  | 0.01 | 20 |
| 17.74 | 0.099 | 0.01 | 20 |
| 17.11 | 0.096 | 0.01 | 20 |
| 15.78 | 0.089 | 0.01 | 20 |
| 12.46 | 0.072 | 0.01 | 20 |
| 3.19  | 0.026 | 0.01 | 20 |

Tabella 2: Valori di  $V_{ce}$  e  $I_c$ , per  $I_b = 100 \mu A$