BPA再結晶回收優化報告

報告人: 薛勝宏 2022年7月18日

執行摘要

- 一、BPA4製程以結晶方式分離BPA與不純物,因不純物結晶母液中仍溶存有部分BPA(930公斤/小時),續送入再結晶區,透過再次提濃析出BPA-酚共晶體進行回收,而富含不純物廢液則送高溫氧化器處理。
 - (一)BPA回收量原設計408公斤/小時,現況雖已提高到616公斤/小時,但廢液中仍有314公斤/小時送焚化處理,需持續改善。
 - (二)<mark>製程調整及取樣分析時間延遲長達8小時</mark>,無法有效掌握BPA-酚 共**品體中不純物含量**(影響產品品質)及**BPA回收狀況**。
- 二、建立兩個AI品質預測模型,分別預測【不純物濃度】及【BPA濃度】, 在符合不純物濃度≤3%管制標準內,找到BPA回收量最大的操作條件。
 - (一)因現場品質數據209筆偏少,利用Aspen Plus模擬產出數據1,155筆, 併同導入AI建模,提高模型精準度。
 - (二)改善後,BPA回收量由616/654公斤/小時,廢液中BPA(送焚化)由 314\276公斤/小時,減少38公斤/小時,減幅12.1%。 BPA回收增加333噸/年,年效益15,354千元,模型2021年11月上線。
- 三、横向展開BPA1/2/3及寧波BPA,全廠合計年效益52,737千元。

報告內容

- 一、製程說明
- 二、改善動機
- 三、AI模型開發歷程
- 四、全廠AI執行成果
- 五、後續推動工作

一、BPA製程說明

- 1. BPA製程係以丙酮及酚為原料,經反應生成BPA及水,伴隨產生少量不純物。
- 2. 反應出口的BPA溶液,進入結晶區以結晶方式得到BPA-酚共晶體,經固液分離後,送至後段脫酚製粒得到BPA成品。
- 3. 結晶母液中含有部分BPA(930公斤/小時),續送入再結晶區,藉由再次結晶分離進行 回收(616公斤/小時),而廢液中則仍有314公斤/小時送至高溫氧化器處理。

再結晶區製程說明

二、改善動機

- 1. 再結晶區BPA回收量原設計408公斤/小時,現況雖已提升到616公斤/小時,但廢液中仍有 BPA 314公斤/小時送高溫氧化器處理,需持續努力降量及回收。
- 2. 再結晶製程調整後滯留時間5小時,加上取樣分析3小時,時間延遲共8小時,無法有效掌握 BPA-酚共晶體中不純物含量、及BPA回收狀況。
- 3. 建置兩個AI模型,分別預測【不純物濃度】及【BPA濃度】,透過操作條件指引程式,在不純物濃度 \leq 3. 00%管制標準內,找出BPA回收量(【BPA濃度】x流量)最大的操作條件。

三、AI模型開發歷程

執行重點

數據收集與前處理

現場實際品質數據209筆偏少,利用Aspen Plus製程模擬產出1,155筆品質數據,合計1,364筆。

建立品質預測模型

模型一:【不純物濃度】預測模型。

模型二:【BPA濃度】預測模型。

開發操作條件 指引程式 藉由電腦程式計算,找出在符合【不純物濃度】≤3.00% 管制標準下,BPA回收量(【BPA濃度】x流量)最大的 操作條件。

模型上線應用

藉著即時演算,將【不純物濃度】、【BPA濃度】及操作條件建議值呈現於DCS畫面,供盤控人員調整參考。

(一)數據收集與前處理

1. 數據收集

(1)現場實際數據

2017年1月~2021年6月

再結晶製程變數共25個,收集2017/1~2021/6製程及品質數據,經刪除異常值及開停車期間數據,製程數據計22,185筆,品質數據計209筆。

(2)運用製程模擬模型產生品質數據

a. 製程模擬模型建立 利用Aspen Plus軟體建立再結晶區製程模擬模型,可在既有製程操作條件下,產出具化工理論基礎的品質數據,解決現場實際品質數據不足的問題。

模型開發流程

製程數據 **Aspen Plus** 文獻資料輔助 完成建模 再結晶製程 参考文獻之理論方程式 (1)質能平衡計算 製程數據 • Chemical Eng. Research and ● 氣液平衡 ●溫度 Design(2010), Alamdari 再結晶製程 • 比熱 ●壓力 Journal of Chemical Eng. 模擬模型 ●組成 ● 蒸發熱等 (2004),Wei ●其他 (2)溶解度平衡計算 ... 等,共13篇 ●溶質: BPA、 不純物 文獻理論方程式: ●溶劑:酚 溶解度=A+B/T+C*ln(T)+D*T [T:溫度、A/B/C/D:溶解度參數]

b. 製程模擬模型品質數據產出

Step1:

從過去22,185筆製程 操作條件組合中,挑選 1,155筆具差異性且 無品質數據的操作條件

筆數	蒸發罐 3V620壓力 (Torr)	•••	結晶罐 3K630溫度 (℃)
1	43.0	•••	45.0
2	43. 5	•••	45. 5
3	43. 5	•••	46.0
:			:
1, 154	48. 5	•••	53. 0
1, 155	49. 0	•••	55. 0

Step2:

依挑選的操作條件,輸入 再結晶製程模擬模型計算 取得品質數據。

<u>產出1,155筆</u> 不純物及BPA濃度 品質模擬數據。

Aspen Plus 模擬模型 品質數據 1,155筆

- 1.【不純物濃度】
- 2.【BPA濃度】

利用Aspen Plus軟體已建置的再結晶製程模型,將製程變數依不同操作條件組合的數據輸入,產出品質模擬數據1,155筆。

c. 數據收集(改善後):

實際 + 模擬 品質數據進行AI建模

實際取樣分析數據209筆,加上Aspen Plus軟體產生1,155筆,品質數據共計1,364筆、以及製程條件數據22,185筆,<mark>將80%數據作為建模使用</mark>,20%數據進行模型測試。

2. 數據前處理:標準化

原始數據共1,364筆 (單位、數值範圍不同)

數據標準化 (無單位,且數值皆在0到1之間)

筆數	蒸發罐 3V620壓力 (Torr)	•••	結晶罐 3K630溫度 (°C)
1	43.0	•••	45. 0
2	43.5	•••	45. 5
3	43. 5	•••	46. 0
:	÷		:
1, 363	48. 5	•••	53. 0
1, 364	49. 0	•••	55. 0

標準化轉換

極小極大手法

 $X^* = \frac{X - \min}{\max - \min}$

X: 製程變數 max: 最大值 min: 最小值

筆數	蒸發罐 3V620壓力	•••	結晶罐 3K630溫度
1	0.000	•••	0.000
2	0. 083	•••	0.050
3	0. 083	•••	0.100
÷	:		i i
1, 363	0.917	•••	0.800
1, 364	1.000	•••	1.000

每個變數的單位、數值大小不同,使用極小極大手法(MinMax scaler)進行標準化轉換, 將數據轉換在同一基準下(最大值為1,最小值為0),<mark>可避免數值大小差異影響模型準確度</mark>。

(二)建立品質預測AI模型

1. 變數篩選(以【模型一:不純物濃度】為例)

篩選前: $Y(不純物濃度) = a_1X_1 + \cdots + a_{13}X_{13} + a_{14}X_{14} + \cdots + a_{25}X_{25} + b$

篩選後: $Y(不純物濃度) = a_1X_1 + \cdots + a_{13}X_{13} + a_{14}X_{14} + b$

排名	製程變數	模型係數(ai)→代表變數對【不純物濃度】影響程」
1	再結晶罐3K630溫度(3TIC-6304)	7 175
2	酚蒸發罐3V620入料流量(3FIC-6202)	6.512 正值:與不純物濃度正相關
3	酚蒸發罐3V620塔底溫度(3TIC-6205)	-6.003 負值:與不純物濃度負相關
:		絕對值大:影響程度高
13	再結晶罐3K630液位(3LIC-6302)	1.022 絕對值小:影響程度低
14	酚蒸發罐3V620液位(3LIC-6204)	0.941
15	再結晶罐3K630攪拌機電流(3II-AG630)	0.000
:	:	□ : 將模型係數為0之變數剔除
24	3V620塔頂冷凝液暫存槽溫度(3TI-6252)	0.000
25	3V620塔頂冷凝液暫存槽液位(3LIC-6251)	0. 000

- (1) <mark>製程變數25個</mark>,以Lasso演算法計算出每個變數的模型係數,判斷變數對【不純物濃度】 的影響程度,將模型係數為0之變數剔除,篩選出14個變數作為後續建模依據。
- (2) 【模型二:BPA濃度】預測模型以相同手法進行變數篩選,最終篩選出13個變數。 篩選後:Y(BPA濃度) = $c_1X_1 + \cdots + c_{12}X_{12} + c_{13}X_{13} + d$

2. 模型開發

	演算法	Lasso (套索迴歸)	Ridge (脊迴歸)	SVM (支援向量機)	XGBoost (極限梯度提升)
	模型類別	線性	線性	線性	非線性
模型一	MAPE 平均絕對百分比誤差	1.71%	1.57%	1.83%	1. 23%
不純物濃度	R ² 決定係數	0.83	0.81	0.82	0. 95
模型二	MAPE 平均絕對百分比誤差	1.69%	1.60%	2.11%	1. 36%
BPA濃度	R ² 決定係數	0.85	0.80	0.79	0. 94

以4種演算法進行建模評估 , 經測試XGBoost模型: MAPE分別為1.23%、1.36%最低 , R²為 0.95、0.94最高 , 故選其作為模型一【不純物濃度】及模型二【BPA濃度】的演算法。

3. 上線驗證

以**2021年7月的實際數據**,<mark>進行模型上線驗證</mark>,MAPE為1.27%、1.31%,R²為0.95、0.93,與建模時MAPE為1.23%、1.36%, **R**²為0.95、0.94相當,<mark>代表兩個模型可分別</mark>預測【不純物濃度】及【BPA濃度】。

(三)開發操作條件指引程式

1. 開發流程

- (1)<mark>從模型一及模型二</mark>篩選出8個共同可控變數,再<mark>選出5個關鍵可控變數</mark>。
- (2)以Python程式語言開發操作條件指引程式,設定關鍵可控變數的合理操作範圍,依各種操作條件組合,自動帶入【模型一】及【模型二】計算,在符合不純物濃度≤3.00%管制標準內,找出BPA回收量(BPA濃度x流量)最大的操作條件建議值。

2. 篩選關鍵可控變數

項目		變數重要	性係數			
		模型一	模型二	TAG編號	中文說明	
		不純物濃度	BPA濃度			
	1	0. 2081	0. 1881	3FIC-6301	酚蒸發罐3V620出料流量	」 出入料影響產量
	2	0.1744	0.1954	3FIC-6202	酚蒸發罐3V620入料流量	不列入選擇
	3	0.1709	0.1649	3TIC-6304	再結晶罐3K630溫度	7
可控	4	0. 1578	0.1512	3PIC-6203	酚蒸發罐3V620壓力	篩選5個作為
變數	5	0.1520	0.1624	3TIC-6205	酚蒸發罐3V620塔底溫度	► <mark>模型一、模型二</mark>
	6	0.0908	0.0615	3LIC-6302	再結晶罐3K630液位	關鍵可控變數
	7	0.0541	0.0634	3LIC-6204	酚蒸發罐3V620液位	
	8	0.0450	0.0344	3FIC-6403	盤式過濾機廢液出料流量	→ 出料影響產量 不列入選擇
	9	0. 0345	0.0284	3TI-6312	3K630入料溫度	小州八运件
不可控	÷		:	:	:	
變數	13	0. 0151	0.0135	3PI-6403	3V640壓力	
	14	0.062	_	311-F630	3F630攪拌機電流	

模型一、模型二之模型變數分別有14及13個,其中共同可控變數有8個,以XGBoost演算法的變數重要性係數排序,檢視模型變數重要性,其中入料及出料流量因會影響產量,予以剔除,檢討後選擇項次3-7共5個,作為關鍵可控變數上線調整。

3. 設定合理操作區間及找出最佳條件

	日日人士 二丁 上心 4該 由人	條件言	田山	模型計算			
	關鍵可控變數		操作範圍	間距	操作點	現狀	較佳條件
\mathbf{X}_1	再結晶罐3K630溫度	°C	45.0 ~ 55.0	0.5	21個	48. 5	46. 0
X_2	酚蒸發罐3V620壓力	Torr	43.0 ~ 49.0	1.0	7個	46. 5	46. 0
X_3	酚蒸發罐3V620塔底溫度	°C	106.0 ~ 110.0	0.5	9個	107. 5	108. 0
X_4	再結晶罐3K630液位	%	40.0 ~ 60.0	1.0	21個	55. 0	48. 0
X_5	酚蒸發罐3V620液位	%	40.0 ~ 60.0	1.0	21個	52. 0	50. 0
管制標準	不純物濃度	%	≤ 3.00%			2.63	2. 82
目標值	BPA回收量 (BPA濃度x流量)	公斤/小時	極大化(望大)			616	654

- (1)將5個關鍵可控變數設定合理的調整間距,共獲得583,443種操作條件組合。
- (2)由操作指引程式篩選,在符合不純物濃度≤3.00%管制標準內,找到一組BPA回收量(BPA濃度x流量)最大的操作條件。
- (3)經模型計算結果顯示,透過降低再結晶罐溫度及酚蒸發罐壓力等操作, BPA回收量預估可由616/654公斤/小時。

4. 操作條件指引程式執行結果彙總

項目	\mathbf{X}_1	$\mathbf{X_2}$	$\mathbf{X_3}$	X_4	\mathbf{X}_{5}	管制標準	目	標值
描述	再結晶罐 3K630温度 (°C)	酚蒸發罐 3V620壓力 (Torr)	酚蒸發罐 3V620塔底 溫度(°C)	再結晶罐 3K630液位 (%)	酚蒸發罐 3V620液位 (%)	模型一 不純物濃度 (%)	模型二 BPA濃度 (%)	BPA回收量 (公斤/小時)
操作範圍	45. 0~55. 0	43.0~49.0	106. 0~110. 0	40.0~60.0	40.0~60.0	≦3.00	-	望大
調整間距	0.5	1. 0	0. 5	1.0	1.0	_	-	-
1	55. 0	49. 0	106. 0	40.0	60.0	2. 55	25. 3	562
:	:	:	:	:	:	:	:	:
253, 468	48. 5	46. 5	107. 0	55. 0	52. 0	2. 62	27. 0	613
253, 469 (現狀)	48. 5	46. 5	107. 5	55. 0	52. 0	2. 63	27. 1	616
:	:	:	:	:	:	:	:	:
372, 553	46.0	46. 0	107. 5	48. 0	50.0	2.81	30.3	641
372,554 (推薦值)	46. 0	46. 0	108. 0	48. 0	50. 0	2. 82	30. 6	654
372, 555	46. 0	46. 0	108.0	48. 0	49.0	2. 91	30.4	651
372, 556	46. 0	46. 0	108.0	48. 0	48. 0	2, 98	30.5	653
372, 557	45.0	46.0	108. 0	48.0	48.0	3. 02	30.8	659
:	:	:	:	:	:	:	:	:
583, 443	45.0	43.0	110.0	60.0	40.0	3. 71	33. 9	707

- (1)從模型一、模型二共同關鍵可控變數 $X_1 \sim X_5$,設定合理操作範圍及調整間距,可獲得 583,443 種條件組合。
- (2)透過操作指引程式篩選,在符合不純物濃度≤3.00%管制標準內,共有372,556種條件組合。
- (3) 指引程式續依【模型二: BPA濃度】及流量,計算並找到一組(第372,554組) BPA回收量最大的操作條件。

(四)模型上線應用

1. 上線成果

項次	關鍵可控變數	單位	調整後 (A)	模型預測 (B)	調整前 (C)	比預測 (A-B)	比調整前 (A-C)
\mathbf{X}_1	再結晶罐3K630溫度	°C	46. 0	46. 0	48. 5	_	-2.5
X_2	酚蒸發罐3V620壓力	Torr	46. 0	46. 0	46. 5	_	-0.5
X_3	酚蒸發罐3V620塔底溫度	°C	108. 0	108. 0	107. 5	_	0.5
X_4	再結晶罐3K630液位	%	48. 0	48. 0	55. 0	_	-7.0
X_5	酚蒸發罐3V620液位	%	50.0	50. 0	52. 0	_	-2.0
管制標準	不純物濃度	%	2, 80	2. 82	2, 63	-0.02	0.17
目標	BPA回收量(BPA濃度 x 流量)	公斤/小時	654	654	616	_	38

製程調整前先進行變更管理(MOC),檢討其合理性及適用性。製程變數依模型建議調整後,不純物濃度由2.63/2.80%,與模型預測值2.82%相差0.02%,誤差值與建模相當,BPA回收量由616/654公斤/小時。

2. 改善效益

- (1)調整後, **BPA回收量由616**/654公斤/小時, **廢液中BPA**(送焚化)由314\276公斤/小時 減少38公斤/小時, 減幅12.1%, **BPA回收增加333噸/年**, 相當可節省原料酚283.0噸/年 丙酮86.6噸/年, 年效益15,354千元。
- (2)**横向展開至其他套別**(共建置5個AI模型),**全部完成後**可節省原料酚971.8噸/年, 丙酮297.5噸/年,**預估年效益52,737千元**。

3. 線上應用

再結晶回收優化操作介面已於2021年11月完成上線,如下圖。

1 模型精確度

2 操作調整指引

製程操作條件調整指引

4 預測趨勢圖

模組資訊 不純物濃度精準度(MAPE) = 1.25% Warning=2.00%, Alarm=3.00% 2021-11-01~ 1.25 % 2021-11-30 BPA濃度精準度(MAPE) = 1.29% Warning=2.00%, Alarm=3.00% Date Time 2021-11-01~ 1.29 % 2021-11-30

	現況值	建議操作值	調整範圍				
再結晶罐3K630溫度 3TIC-6304	46.1 °C	46.0 °C	0.1				
酚蒸發罐3V620壓力 3PIC-6203	46.0 Torr	46.0 Torr	0.0				
酚蒸發罐3V620塔底溫度 3TIC-6205	107.9 °C	108.0 °C	A 0.1				
再結晶罐3K630液位 3LIC-6302	47.9 %	48.0 %	A 0.1				
酚蒸發罐3V620液位 3LIC-6204	49.8 %	50.0 %	0.2				

3LIC-6204	49.8 %	50.0 %	_
模型管制目標			
	現況值	預測值	
不純物濃度	2.81 %	2.82 %	
模型優化目標			
	現況值	目標值	
BPA濃度	30.6 %	30.6 %	
BPA回收量	653.9 公斤/小時	654.0 公斤/小時	

③ 優化目標推薦值

四、全廠AI執行成果

製	項	項目名稱	原料節省	(噸/年)	節汽	年效益	完成日
程	次	垻日石柵	酚 丙酮		(噸/小時)	(千元)	(預完日)
	1	脫酚純化區AI模型	_	_	0.1	1, 150	(2022/7/31)
陶	2	水系結晶區AI模型	86. 1	26.4	_	4, 673	(2022/8/31)
氏	3	再結晶區AI模型	107. 6	33.0	_	5, 841	(2022/9/20)
製	4	酚系結晶區AI模型	68. 9	21.1	_	3, 740	(2022/10/20)
程	5	萃取回收區AI模型	_	_	0.2	2, 300	(2022/11/20)
	6	反應區AI模型	151.7	46.5	_	8, 234	(2022/12/31)
	1	酚水分離區AI模型	_	_	2. 3	23, 967	2021/6/30
	2	第一段結晶區AI模型	949. 7	294.4	_	51, 634	2021/12/31
	3	重組反應區AI模型	607.8	187. 5	_	33, 020	2022/1/12
出	4	縮合反應區AI模型	861.3	263. 7	_	46, 741	2022/2/28
光製	5	第二段結晶區AI模型	_	_	0.4	4,600	(2022/7/31)
程	6	再結晶區AI模型	864. 2	264. 5	_	46, 899	(2022/9/30)
	7	脫水脫酚區AI模型	_	_	1.0	10, 950	(2022/10/31)
	8	脫酚製粒區AI模型	_	_	0.5	5, 200	(2022/12/31)
	9	丙酮回收區AI模型	_		0.7	7, 775	(2022/10/31)
合	計可	節省酚3,697.3噸/年	 、丙酮1.137.1º	 頓/年、節汽5.		年效益	: 256,724千元

- 1. 全廠AI案件依製程分區, 陶氏製程(BPA1)計建置6個AI模型, 出光製程(BPA2/3/4及 寧波BPA)計各建置9個AI模型,合計共42案,預定2022/12/31全部完成。
- 2. 全部完成後,合計年效益256,724千元。

五、後續推動工作

- (一)為克服現場品質數據不足問題,本案結合Aspen Plus模擬 再結晶區製程,產出大量品質數據供AI模型訓練,此經驗 可提供其他具有結晶純化之廠處參考。
- (二)全廠AI案件合計共42案,目前已完成29案,已上線至即時生產管理系統及DCS畫面,供盤控人員作調整參考,其餘13案預定 2022/12/31全部完成。
- (三)本案再結晶回收優化後,廢液中BPA由314、276公斤/小時, 擬增設水解反應系統,將廢液中BPA水解還原為原料酚及丙酮, BPA可再由276、83公斤/小時,預估年效益140,621千元。 橫向展開,全廠預估年效益561,553千元,已於今年6月提出 環評變更申請,預定2025年12月完成。

報告完畢恭請指導