The Bayes' Box and the Grid Method

Bayesian Data Analysis Steve Buyske

- Let's return to Bayes' Rule for a moment to discuss a method called "Bayes' Box".
- When we have a discrete parameter, this is a way to calculate the denominator of Bayes' Rule and from there the posterior.

- · We will do it via an example.
- Suppose that we have a coin with probability θ of heads, and suppose we toss it twice and observe 2 heads.
- Suppose also that there are only three possible values of θ , namely 1/4, 1/2, and 3/4, and we judge them equally likely.
- · On the next slide we'll construct the Bayes' box.

θ	$Prob(\theta)$	Prob(HH <i>θ</i>)	$Prob(HH \mid \theta)Prob(\theta)$	Prob(<i>θ</i> HH)
1/4	1/3			
1/2	1/3			
3/4	1/3			

θ	$Prob(\theta)$	Prob(HH θ)	$Prob(HH \mid \theta)Prob(\theta)$	Prob(θ HH)
1/4	1/3	1/4 * 1/4 = 1/16		
1/2	1/3	1/2 * 1/2 = 1/4		
3/4	1/3	3/4 * 3/4 = 9/16		

θ	$Prob(\theta)$	Prob(HH θ)	$Prob(HH \mid \theta)Prob(\theta)$	Prob(<i>θ</i> HH)
1/4	1/3	1/4 * 1/4 = 1/16	1/3 * 1/16 = 1/48	
1/2	1/3	1/2 * 1/2 = 1/4	1/3 * 1/4 = 1/12 = 4/48	
3/4	1/3	3/4 * 3/4 = 9/16	1/3 * 9/16 = 9/48	

θ	$Prob(\theta)$	Prob(HH <i>θ</i>)	$Prob(HH \mid \theta)Prob(\theta)$	Prob(θ HH)
1/4	1/3	1/4 * 1/4 = 1/16	1/3 * 1/16 = 1/48	
1/2	1/3	1/2 * 1/2 = 1/4	1/3 * 1/4 = 1/12 = 4/48	
3/4	1/3	3/4 * 3/4 = 9/16	1/3 * 9/16 = 9/48	

$$1/48 + 4/48 + 9/48 = 14/48$$

θ	Prob(heta)	Prob(HH <i>θ</i>)	$Prob(HH \mid \theta)Prob(\theta)$	Prob(<i>θ</i> HH)
1/4	1/3	1/4 * 1/4 = 1/16	1/3 * 1/16 = 1/48	(1/48)/(14/48) = 1/14
1/2	1/3	1/2 * 1/2 = 1/4	1/3 * 1/4 = 1/12 = 4/48	(4/48)/(14/48) = 4/14
3/4	1/3	3/4 * 3/4 = 9/16	1/3 * 9/16 = 9/48	(9/48)/(14/48) = 9/14

$$1/48 + 4/48 + 9/48 = 14/48$$

Bayes' Box and the Grid Method

- With a discrete parameter, we could program the Bayes' Box method to find the posterior even if there were many possible values of θ .
- For a continuous parameter, we could get a good approximation by chopping up the continuous parameter into a grid.
- Notice that to do so, we just need to be able to evaluate the prior and the likelihood—the integral in the denominator is replaced by a sum.
- The finer the grid, the more accurate the approximation.
- There may be a problem if we don't know a bound for θ .
- There will definitely be a problem if there are more than just a few parameters, because the number of grid points will become very large.