AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A magnetic head actuator comprising:

a head-holding substrate having a pair of movable arms for holding a magnetic head: and

piezoelectric elements fixed along the pair of movable arms to move the pair of movable arms in response to an applied voltage.

wherein the head-holding substrate comprises a fired glass-ceramic compact and all surfaces of the substrate are fired,

wherein the fired glass-ceramic compact has a mechanical strength of 200 MPa or more, and

wherein the fired glass-ceramic compact has a glass component comprising MgO, Al₂O₃, SiO₂, B₂O₃, and a ceramic component comprising SiO₂.

2. - 8. (Cancelled)

- 9. (Original) A magnetic head actuator according to Claim 1, wherein the piezoelectric elements are formed on the head-holding substrate by printing and are fired at a lower temperature than the sintering temperature of the fired glass-ceramic compact.
- (Original) A magnetic head actuator according to Claim 9, wherein the piezoelectric elements comprise PZT.
 - 11 29. (Cancelled)
 - 30. (New) A magnetic head actuator comprising:

a head-holding substrate having a pair of movable arms for holding a magnetic head; and

piezoelectric elements fixed along the pair of movable arms to move the pair of movable arms in response to an applied voltage,

wherein the head-holding substrate comprises a fired glass-ceramic compact and all surfaces of the substrate are fired.

wherein the fired glass-ceramic compact has a mechanical strength of 200 MPa or more, and

wherein the fired glass-ceramic compact has a glass component comprising MgO, Al₂O₃, SiO₂, B₂O₃, and a ceramic component comprising SiO₂.

- 31. (New) A magnetic head actuator according to Claim 30, wherein the piezoelectric elements are formed on the head-holding substrate by printing and are fired at a lower temperature than the sintering temperature of the fired glass-ceramic compact.
- (New) A magnetic head actuator according to Claim 31, wherein the piezoelectric elements comprise PZT.
 - 33. (New) A magnetic head actuator comprising:

a head-holding substrate having a pair of movable arms for holding a magnetic head; and

piezoelectric elements fixed along the pair of movable arms to move the pair of movable arms in response to an applied voltage.

wherein the head-holding substrate comprises a fired glass-ceramic compact and all surfaces of the substrate are fired,

wherein the fired glass-ceramic compact has a mechanical strength of 200 MPa or more, and

wherein the fired glass-ceramic compact has a glass component comprising B₂O₃, SiO₂, and a ceramic component comprising Al₂O₃.

34. (New) A magnetic head actuator according to Claim 33, wherein the piezoelectric elements are formed on the head-holding substrate by printing and are fired at a lower temperature than the sintering temperature of the fired glass-ceramic compact.

- (New) A magnetic head actuator according to Claim 34, wherein the piezoelectric elements comprise PZT.
 - 36. (New) A magnetic head actuator comprising:
- a head-holding substrate having a pair of movable arms for holding a magnetic head; and
- piezoelectric elements fixed along the pair of movable arms to move the pair of movable arms in response to an applied voltage,
- wherein the head-holding substrate comprises a fired glass-ceramic compact and all surfaces of the substrate are fired,
- wherein the fired glass-ceramic compact has a mechanical strength of 200 MPa or more, and
 - wherein the fired glass-ceramic compact comprises CaO, Al₂O₂, and SiO₂
- 37. (New) A magnetic head actuator according to Claim 36, wherein the piezoelectric elements are formed on the head-holding substrate by printing and are fired at a lower temperature than the sintering temperature of the fired glass-ceramic compact.
- (New) A magnetic head actuator according to Claim 37, wherein the piezoelectric elements comprise PZT.
 - 39. (New) A magnetic head actuator comprising:
- a head-holding substrate having a pair of movable arms for holding a magnetic head; and
- piezoelectric elements fixed along the pair of movable arms to move the pair of movable arms in response to an applied voltage,
- wherein the head-holding substrate comprises a fired glass-ceramic compact and all surfaces of the substrate are fired.

wherein the fired glass-ceramic compact has a mechanical strength of 200 MPa or more, and

wherein the fired glass-ceramic compact has a glass component comprising Li_2O , SiO_2 , MgO, Al_2O_3 , and a ceramic component comprising SiO_2 and Al_2O_3 .

- 40. (New) A magnetic head actuator according to Claim 39, wherein the piezoelectric elements are formed on the head-holding substrate by printing and are fired at a lower temperature than the sintering temperature of the fired glass-ceramic compact.
- 41. (New) A magnetic head actuator according to Claim 40, wherein the piezoelectric elements comprise PZT.
 - 42. (New) A magnetic head actuator comprising:

a head-holding substrate having a pair of movable arms for holding a magnetic head; and

piezoelectric elements fixed along the pair of movable arms to move the pair of movable arms in response to an applied voltage,

wherein the head-holding substrate comprises a fired glass-ceramic compact and all surfaces of the substrate are fired.