2.1.ii Prove that if $F: C \to \text{Set}$ is representable, then F preserves monomorphisms, i.e., sends every monomorphism in C to an injective function. Use the contrapositive to find a covariant set-valued functor defined on your favorite concrete category that is not representable.

Solution: Suppose F is representable by $c \in C$. Thus there is a natural isomorphism between F and C(c, -). Thus

$$C(c,x) \xrightarrow{\cong} F(x)$$

$$f_* \downarrow \qquad \qquad \downarrow^{F(f)}$$

$$C(c,y) \xrightarrow{\cong} F(y)$$

commutes for any $x, y \in C$ with $f: x \to y$. Now, if $f: x \to y$ is a monomorphism, then for any $z, w \in C$ with $g: z \to x$ and $h: w \to x$,

$$fg = fh \implies g = h.$$

This is equivalent to saying that for any $z \in C$, post-composition with f defines an injection $f_* \colon C(z,x) \to C(z,y)$. Hence, in the square above, if we denote the top isomorphism by α_x and the bottom one by α_y , then we find that $\alpha_y \circ f_* \circ \alpha_x^{-1} = F(f)$, and since isomorphisms between sets are bijective functions, and as f_* is injective, we have that $F(f) = \alpha_y \circ f_* \circ \alpha_x^{-1}$ is injective.

Taking the contrapositive, we have that if a covariant functor $F \colon C \to \operatorname{Set}$ does not preserve monomorphisms, then F is not representable.

Consider the category $C=2=\{0,1\}$ with the single non-identity map $0\to 1$. Now define a functor $F\colon C\to \mathrm{Set}$ sending $0\to\{1,2\}$ and $1\to\{3\}$. Then $F(0\to 1)$ is not mono since the maps $\alpha,\beta\colon\{-1,-2\}\to\{1,2\}$ by $\alpha(-1)=1,\alpha(-2)=2$ and $\beta(-1)=2,\beta(-2)=1$ each give that for $\gamma\colon\{1,2\}\to\{3\},\ \gamma\alpha=\gamma\beta,$ yet $\alpha\neq\beta$, so γ is not a monomorphism.

- **2.1.iii:** Suppose $F: C \to \text{Set}$ is equivalent to $G: D \to \text{Set}$ in the sense that there is an equivalence of categories $H: C \to D$ so that GH and F are naturally isomorphic.
 - (i) If G is representable, then is F representable?
 - (ii) If F is representable, then is G representable?

Solution:

We claim both (i) and (ii) are true.

(i) We have that GH and F are naturally isomorphic, so

$$GH(c) \xrightarrow{\cong} F(c)$$

$$GH(f) \downarrow \qquad \qquad \downarrow^{F(f)}$$

$$GH(c') \xrightarrow{\cong} F(c')$$

commutes.

Suppose G is representable, so there exists some $d \in D$ such that

$$\begin{array}{ccc} C(d,x) & \stackrel{\cong}{----} & G(x) \\ \downarrow^{f_*} & & \downarrow^{G(f)} \\ C(d,y) & \stackrel{\sim}{----} & G(y) \end{array}$$

commutes.

Since H is one part of an equivalence of categories, it is full, faithful and essentially surjective on objects

by theorem 1.5.9, so there exists some $\tilde{c} \in C$ such that $H(\tilde{c}) \cong d$. Furthermore, by theorem 1.5.9, it is full and faithful, so for any $a,b \in C$, $|\operatorname{Hom}(a,b)| = |\operatorname{Hom}(H(a),H(b))|$, s $C(a,b) \cong C(H(a),H(b))$. Composing the two commutative squares, and using this last bijection, we find that

commutes, and since each square commutes, we have that the outer rectangle commutes, giving that F is represented by \tilde{c} .

(ii) Suppose GH and F are naturally isomorphic as before, and suppose F is representable - suppose it is represented by $c \in C$, so

$$GH(c) \xrightarrow{\cong} F(c)$$

$$GH(f) \downarrow \qquad \qquad \downarrow^{F(f)}$$

$$GH(c') \xrightarrow{\cong} F(c')$$

and

$$\begin{array}{ccc} C(c,x) & \stackrel{\cong}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} & F(x) \\ \downarrow^{f_*} & & \downarrow^{F(f)} \\ C(c,y) & \stackrel{\cong}{-\!\!\!\!\!-\!\!\!\!-\!\!\!\!-} & F(y) \end{array}$$

commute.

Letting α_x and α_y denote the top and bottom isomorphism, respectively, we have

$$f_*\alpha_x^{-1} = \alpha_y^{-1}\alpha_y f_*\alpha_x^{-1} = \alpha_y^{-1} F(f)\alpha_x \alpha_x^{-1} = \alpha_y^{-1} F(f)$$

so we can rewrite it as the following diagram commuting:

$$F(x) \xrightarrow{\cong} C(c, x)$$

$$\downarrow^{f_*}$$

$$F(y) \xrightarrow{\cong} C(c, y)$$

Now let $d', \tilde{d} \in D$ be arbitrary with $g: d' \to \tilde{d}$ a morphism between them. As H is essentially surjective on objects and full and faithful by theorem 1.5.9., there exist $c', \tilde{c} \in C$ such that $H(c') \cong d'$ and $H(\tilde{c}) \cong \tilde{d}$. By fullness and faithfullness, $C(c', \tilde{c}) \cong C\left(d', \tilde{d}\right)$, so there exists $g': c' \to \tilde{c}$ with H(g') = g. We thus find

commutes with each square commuting. Here the last square again follows as H is part of an equivalence and hence both faithful and full, so $C(c, x) \cong C(H(c), H(x))$ for any $x \in C$.

Thus the outer square commutes, so G is represented by G(c).