

어떻게 프로그램과 데이터를 주고 받을 것인가?

프로그램과 소통하는 방법

Graphical User Interface

Command Line Interface

Command Line Interface

Graphic User Interface (GUI)와 달리
Text를 사용하여 컴퓨터에 명령을 입력하는
인터페이스 체계

Windows – CMD window Mac, Linux – Terminal

Console = Terminal = CMD창

어원: 디스플레이와 키보드가 조합된 장치

현재: CLI로 입력하는 화면

IBM 3270 termina

IBM 7094, a typical Mainframe

Source: http://www.gliderwiki.org/wiki/116

콘솔창 입출력 I

input() 함수는 콘솔창에서 문자열을 입력 받는 함수

console_test.py

```
print ("Enter your name:")
somebody = input() # 콘솔창에서 입력한 값을 somebody에 저장
print ("Hi", somebody, "How are you today?")
```

실행

python console_test.py

Enter your name:

cs50

Hi cs50 How are you today?

LoginID@cs50:~\$

Terminal

콘솔창 입출력 Ⅱ

콤마() 사용할 경우 print 문이 연결됨

```
>>> print ("Hello World!", "Hello Again!!!")
```

, 사용

Python Shell

Hello World! Hello Again!!!

실행 시 두 문장이 연결 돼서 출력됨

숫자 입력 받기

temperature = float(input("온도를 입력하세요:")) # 입력 시 바로 형 변환 하기

Editor

print(temperature)

temperature.py

python temperature.py

온도를 입력하세요 : 103

103.0

Terminal

실행

Human knowledge belongs to the world.

섭씨와 화씨

Lab: 화씨 변환기

아래와 같이 출력되는 프로그램을 만드시오

python fahrenheit.py

Terminal

본 프로그램은 섭씨를 화씨로 변환해주는 프로그램입니다

변환하고 싶은 섭씨 온도를 입력해 주세요:

32.2

섭씨온도 : 32.2

화씨온도: 89.96

fahrenheit.py

섭씨 온도 변환 공식은: ((9/5) * 섭씨온도) + 32

Human knowledge belongs to the world.

형식(format)에 맞춰서 출력을 할 때가 있음

	Α	В	С	https://goo.gl	/Z7fbYz
1	Date	Daily Income	Daily Expenses	Percent Gain/Loss	
2	1-May	\$322.00	\$146.00	221%	
3	2-May	\$371.00	\$135.00	275%	
4	3-May	\$345.00	\$467.00	74%	
5	4-May	\$345.00	\$216.00	160%	
6	5-May	\$150.00	\$269.00	56%	
7	6-May	\$116.00	\$481.00	24%	
8	7-May	\$440.00	\$203.00	217%	

print 문을 활용해서 결과 formatting 하기

print formatting

프린트 문은 기본적인 출력 외에 출력의 양식을 형식을 지정 가능

```
print(1,2,3)
print("a" + " " + "b" + " " + "c")
print("%d %d %d" % (1,2,3))
print("{} {} ".format("a","b","c"))
```

Two types

일반적으로 %-format 과 str.format() 함수를 사용함

```
print('%s %s' % ('one', 'two'))
print('{} {}'.format('one', 'two'))
print('%d %d' % (1, 2))
print('{} {}'.format(1, 2))
```

%-format

"%datatype" % (variable) 형태로 출력 양식을 표현

```
print("I eat %d apples." % 3)
print("I eat %s apples." % "five")
number = 3; day="three"
print("I ate %d apples. I was sick for %s days."
       % (number, day))
print("Product: %s, Price per unit: %f." % ("Apple", 5.243))
```

%-format

type	설명	
%s	문자열 (String)	
%с	문자 1개(character)	
%d	정수 (Integer)	
%f	부동소수 (floating-point)	
%o	8진수	
%x	16진수	
%%	Literal % (문자 % 자체)	

https://www.python-course.eu/python3_formatted_output.php

https://wikidocs.net/13

str.format()

"~~~{datatype}~~~".format(argument)

```
age = 36; name='Sungchul Choi'
print("I'm {0} years old.".format(age))
print("My name is {0} and {1} years old.".format(name,age))
print(
  "Product: {0}, Price per unit: {1:.3f}.".format(
    "Apple", 5.243))
```

str.format()

padding

여유 공간을 지정하여 글자배열 + 소수점 자릿수를 맞추기

```
print("Product: %5s, Price per unit: %.5f." % ("Apple",
5.243))
print("Product: {0:5s}, Price per unit:
{1:.5f}.".format("Apple", 5.243))
print("Product: %10s, Price per unit: %10.3f." % ("Apple",
5.243))
print("Product: {0:>10s}, Price per unit:
{1:10.3f}.".format("Apple", 5.243))
```

naming

해당 표시할 내용을 변수로 표시하여 입력

```
print("Product: %(name)10s, Price per unit: %(price)10.5f." %
       {"name": "Apple", "price": 5.243})
print("Product: {name:>10s}, Price per unit:
{price:10.5f}.".format(name="Apple", price=5.243))
```

See

https://docs.python.org/3/tutorial/inputoutput.html

https://www.python-course.eu/python3_formatted_output.php

https://wikidocs.net/13

Human knowledge belongs to the world.

데이터가 100개 있다면 어떻게 관리할 것인가?

100명의 성적 관리를 위한 변수는 몇 개?

100개? 1개?

List 또는 Array

- 시퀀스 자료형, 여러 데이터들의 집합
- Int, Float 같은 다양한 데이터 Type 포함

Source: http://goo.gl/q4VvB1, http://goo.gl/JMbHm0

인덱싱 (Indexing)

list에 있는 값들은 주소(offset)를 가짐, 주소를 사용해 할당된 값을 호출

```
colors = ['red', 'blue', 'qreen']
print (colors[0]) # red
print (colors[2]) # green
print (len(colors)) # 3
# len은 list의 길이를 반환
```


Source: http://goo.gl/q4VvB1, http://goo.gl/JMbHm0

슬라이싱 (Slicing)

- list의 값들을 잘라서 쓰는 것이 슬라이싱
- list의 주소 값을 기반으로 부분 값을 반환

```
cities = ['서울', '부산', '인천', '대구', '대전', '광주', '울산', '수원']

print (cities[0:6], " AND ", a[-9:]) # a 번수의 0부터 5까지, -9부터 끝까지

print (cities[:]) # a변수의 처음부터 끝까지

print (cities[-50:50]) # 범위를 넘어갈 경우 자동으로 최대 범위를 지정

print (cities[::2], " AND ", a[::-1]) # 2칸 단위로, 역으로 슬라이싱
```

Editor

리스트의 연산

- 인덱싱, 슬라이싱, 연산 등 활용

```
>>> color = ['red', 'blue', 'green']
>>> color2 = ['orange', 'black', 'white']
>>> print (color + color2) # 두 리스트 합치기
>>> len(color) # 리스트 길이
>>> color[0] = 'yellow' # 0번째 리스트의 값을 변경
>>> print (color * 2) # color 리스트 2회 반복
>>> 'blue' in color2 # 문자열 'blue'가 color2 존재 여부 반환
>>> total_color = color + color2
```

리스트 추가와 삭제

- append, extend, insert, remove, del 등 활용

```
Python Shell
# 이전 장과 연결 돼서 실행
>>> color.append("white") # 리스트에 "white" 추가
>>> color.extend(["black","purple"]) # 리스트에 새로운 리스트 추가
>>> color.insert(0,"orange") # 0번째 주소에 "orange" 추가
>>> print (color)
['orange', 'yellow', 'blue', 'green', 'white', 'black', 'purple']
>>> color.remove("white") # 리스트에 "white" 삭제
                            # 0번째 주소 리스트 객체 삭제
>>> del color[0]
>>> print (color)
['yellow', 'blue', 'green', 'black', 'purple']
```

Python 리스트만의 특징

- 다양한 Data Type이 하나에 List에 들어감

```
>>> a = ["color", 1, 0.2]
>>> color = ['yellow', 'blue', 'green', 'black', 'purple']
>>> a[0] = color # 리스트 안에 리스트도 입력 가능
print (a)
[['yellow', 'blue', 'green', 'black', 'purple'],
1, 0.2000000000000001]
```


중첩 리스트 시 메모리 구조

Source: http://goo.gl/FApwnw

리스트 메모리 저장 방식

```
Python Shell
>>> a = [5, 4, 3, 2, 1]
>>> b = [1, 2, 3, 4, 5]
>>> b = a
>>> print (b)
[5, 4, 3, 2, 1]
>>> a.sort()
>>> print (b)
[1, 2, 3, 4, 5]
>>> b = [6,7,8,9,10]
>>> print (a, b)
[1, 2, 3, 4, 5] [6, 7, 8, 9, 10]
```


"=" 의 의미는 같다가 아닌 메모리 주소에 해당 값을 할당(연결)한다는 의미

패킹과 언패킹

- 패킹 : 한 변수에 여러 개의 데이터를 넣는 것
- 언패킹 : 한 변수의 데이터를 각각의 변수로 반환

```
>>> t = [1, 2, 3] # 1,2,3을 변수 t에 패킹
>>> a , b , c = t # t에 있는 값 1, 2, 3 을 변수 a, b, c에 언패킹
>>> print(t, a, b, c) # [1, 2, 3] 1 2 3
[[1,2,3] 1 2 3]
```

Python Shell

이차원 리스트

- 리스트 안에 리스트를 만들어 행렬(Matrix) 생성

```
Python Shell
>>> kor_score = [49,79,20,100,80]
>>> math_score = [43,59,85,30, 90]
>>> eng_score = [49,79,48,60,100]
                                                                                 C
                                                                                            Ε
                                                                       Α
                                                                            В
                                                                                       D
>>> midterm_score = [kor_score, math_score, eng_score]
                                                           국어점수
                                                                      49
                                                                            79
                                                                                 20
                                                                                      100
                                                                                            80
>>> print (midterm_score[0][2])
                                                           수학점수
20
                                                                      43
                                                                            59
                                                                                 85
                                                                                      30
                                                                                            90
                                                           영어점수
                                                                      49
                                                                            79
                                                                                 48
                                                                                      60
                                                                                           100
```


Human knowledge belongs to the world.