1. Download the dataset: Dataset

2. Load the dataset.

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
df=pd.read_csv(r'Churn_Modelling.csv')
df.head()
```

`	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	Θ

3. Perform the Below Visualizations.

■ Univariate Analysis ■ Bi - Variate Analysis ■ Multivariate Analysis sns.distplot(df['Age'])

C:\Users\AdhoLOKHAM\anaconda3\lib\site-packages\seaborn\
distributions.py:2619: FutureWarning: `distplot` is a deprecated
function and will be removed in a future version. Please adapt your

code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='Age', ylabel='Density'>

sns.lineplot(df['Age'],df['Exited'])

C:\Users\AdhoLOKHAM\anaconda3\lib\site-packages\seaborn\
 _decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

<AxesSubplot:xlabel='Age', ylabel='Exited'>

Text(0.5, 1.0, 'NumOfProducts')

NumOfProducts

C:\Users\AdhoLOKHAM\anaconda3\lib\site-packages\seaborn\
 _decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

<AxesSubplot:ylabel='Geography'>

sns.scatterplot(x=df.CreditScore,y=df.Balance)

<AxesSubplot:xlabel='CreditScore', ylabel='Balance'>

plt.pie(df.Geography.value_counts(),colors=['red','green','blue'],labe
ls=['France','Germany','Spain'],autopct='%.1f%%')
plt.title('Geography')

Text(0.5, 1.0, 'Geography')

sns.boxplot(df.Age)

C:\Users\AdhoLOKHAM\anaconda3\lib\site-packages\seaborn\
 _decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

<AxesSubplot:xlabel='Age'>

4. Perform descriptive statistics on the dataset. df.describe()

Tonuno	RowNumber	CustomerId	CreditScore	Age	
	10000.00000	1.000000e+04	10000.000000	10000.000000	
10000.0	5000.50000	1.569094e+07	650.528800	38.921800	
5.01280 std	2886.89568	7.193619e+04	96.653299	10.487806	
2.89217	1.00000	1.556570e+07	350.000000	18.000000	
0.00000 25%	2500.75000	1.562853e+07	584.000000	32.000000	
3.00000	5000.50000	1.569074e+07	652.000000	37.000000	
5.00000 75%	7500.25000	1.575323e+07	718.000000	44.000000	
	10000.00000	1.581569e+07	850.000000	92.000000	
10.0000	99				
count mean	Balance 10000.000000 76485.88928	9 10000.00000	0 10000.00000	10000.000000	\
std min	62397.405202	0.58165	4 0.45584	0.499797	

```
25%
            0.000000
                            1.000000
                                           0.00000
                                                           0.000000
50%
        97198.540000
                            1.000000
                                           1.00000
                                                           1.000000
75%
       127644.240000
                            2.000000
                                           1.00000
                                                           1.000000
       250898.090000
                            4.000000
                                           1.00000
                                                           1.000000
max
       EstimatedSalary
                                Exited
          10000.000000
                         10000.000000
count
         100090.239881
mean
                              0.203700
std
          57510.492818
                              0.402769
min
              11.580000
                              0.000000
25%
          51002.110000
                              0.000000
50%
         100193.915000
                              0.000000
75%
         149388.247500
                              0.000000
max
         199992.480000
                              1.000000
```

df.mean()

C:\Users\ADHOLO~1\AppData\Local\Temp/ipykernel_2088/3698961737.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.mean()

RowNumber 5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 3.892180e+01 Aae Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01

dtype: float64

df.median()

C:\Users\ADHOLO~1\AppData\Local\Temp/ipykernel_2088/530051474.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.median()

RowNumber 5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 Age 3.700000e+01 Tenure 5.000000e+00

Balance	9.719854e+04
NumOfProducts	1.000000e+00
HasCrCard	1.000000e+00
IsActiveMember	1.000000e+00
EstimatedSalary	1.001939e+05
Exited	0.000000e+00

dtype: float64

df.mode()

Λ	RowNumb	er	Custo	merId	Surname	CreditScore	Geography	Gender	
Age 0	\	1	155	65701	Smith	850.0	France	Male	
37.0 1		2	155	65706	NaN	NaN	NaN	NaN	
NaN 2		3	155	65714	NaN	NaN	NaN	NaN	
NaN 3		4	155	65779	NaN	NaN	NaN	NaN	
NaN 4		5	155	65796	NaN	NaN	NaN	NaN	
NaN 									
9995	99	96	158	15628	NaN	NaN	NaN	NaN	
NaN 9996	99	97	158	15645	NaN	NaN	NaN	NaN	
NaN 9997	99	98	158	15656	NaN	NaN	NaN	NaN	
NaN 9998	99	99	158	15660	NaN	NaN	NaN	NaN	
NaN 9999 NaN	100	00	158	15690	NaN	NaN	NaN	NaN	
IVAIV	Tenure	Ra [°]	lance	NumO-	fProducts	HasCrCard	IsActiveMe	ember \	
0	2.0	Ба	0.0	Nullo	1.0	1.0	ISACCIVEN	1.0	
1 2	NaN NaN		NaN NaN		NaN NaN			NaN NaN	
3	NaN		NaN		NaN	NaN		NaN	
4	NaN 		NaN 		NaN 	NaN 		NaN 	
9995	NaN		NaN		NaN	NaN		NaN	
9996 9997	NaN NaN		NaN NaN		NaN NaN	NaN NaN		NaN NaN	
9998	NaN		NaN		NaN			NaN	
9999	NaN		NaN		NaN	NaN		NaN	
	Fa+:	- 4C	-1		- d				

EstimatedSalary Exited 24924.92 0.0

0

1	NaN	NaN
2	NaN	NaN
3	NaN	NaN
4	NaN	NaN
9995	NaN	NaN
9996	NaN	NaN
9997	NaN	NaN
9998	NaN	NaN
9999	NaN	NaN

[10000 rows x 14 columns]

df.std()

C:\Users\ADHOLO~1\AppData\Local\Temp/ipykernel_2088/3390915376.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.std()

RowNumber	2886.895680
CustomerId	71936.186123
CreditScore	96.653299
Age	10.487806
Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769

dtype: float64

df.head()

,	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

Tenure Balance NumOfProducts HasCrCard IsActiveMember \

0	2	0.00	1	1	1
1	1	83807.86	1	0	1
2	8	159660.80	3	1	0
3	1	0.00	2	0	0
4	2	125510.82	1	1	1

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0

5. Handle the Missing values.

df.isnull().sum()

RowNumber 0 CustomerId 0 Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

df['Age'].fillna(df['Age'].mean(),inplace=True)

df.head()

`	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	Θ	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	Θ	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0

6. Find the outliers and replace the outliers sns.displot(df['Age'])

<seaborn.axisgrid.FacetGrid at 0x1ced3490fd0>

sns.boxplot(x='Gender',y='Age',data=df)

<AxesSubplot:xlabel='Gender', ylabel='Age'>

sns.boxplot(y='Age',data=df)

<AxesSubplot:ylabel='Age'>

df['Age'].mean()

38.9218

df1=df[df['Age']<55]

 $\verb|sns.boxplot(y='Age',data=df1)| \\$

<AxesSubplot:ylabel='Age'>

df1['Age'].mean()

36.62250493529283

df1.boxplot()

<AxesSubplot:>

RowNiusthanectits@emeleAgeTenuPalamOeHanAirthabithertelsEstog@aptiteptibyagthy_2

```
7. Check for Categorical columns and perform encoding.
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['Geography']= le.fit transform(df['Geography'])
df.Gender= le.fit transform(df.Gender)
df['Geography'].unique()
array([0, 2, 1], dtype=int64)
df['Gender'].unique()
array([0, 1], dtype=int64)
df=pd.get dummies(df,columns=['Geography'])
df.head()
   RowNumber
              CustomerId
                            Surname CreditScore Gender
                                                           Age
Tenure \
           1
                15634602
                          Hargrave
                                             619
                                                   Female
                                                            42
1
           2
                15647311
                               Hill
                                             608
                                                  Female
                                                            41
2
           3
                15619304
                               Onio
                                             502
                                                  Female
                                                            42
                                                  Female
3
           4
                                             699
                15701354
                               Boni
                                                            39
4
           5
                15737888 Mitchell
                                             850
                                                   Female
                                                            43
                                         IsActiveMember
     Balance NumOfProducts
                             HasCrCard
EstimatedSalary
        0.00
                           1
                                      1
                                                       1
101348.88
    83807.86
                           1
                                      0
                                                       1
112542.58
   159660.80
                           3
                                      1
                                                       0
113931.57
        0.00
                           2
                                      0
                                                       0
93826.63
  125510.82
                           1
                                      1
                                                       1
79084.10
   Exited
           Geography France
                             Geography Germany
                                                 Geography Spain
0
        1
                           1
                                              0
        0
                           0
                                              0
                                                                1
1
2
        1
                           1
                                              0
                                                                0
3
                           1
                                              0
        0
                                                                0
```

8. Split the data into dependent and independent variables. df.head()

RowNum	ber	CustomerId	Surname	CreditScore	Gender	Age	
Tenure \	1	15634602	Hargrave	619	0	42	2
1	2	15647311	Hill	608	0	41	1
2	3	15619304	Onio	502	0	42	8
3	4	15701354	Boni	699	0	39	1
4	5	15737888	Mitchell	850	0	43	2

Balance	NumOfProducts	HasCrCard	IsActiveMember				
EstimatedSalary \							
0.00	1	1	1				
101348.88							
1 83807.86	1	0	1				
112542.58							
2 159660.80	3	1	0				
113931.57							
3 0.00	2	0	0				
93826.63							
4 125510.82	1	1	1				
79084.10							

	Exited	Geography_0	Geography_1	Geography_2
0	1	1	0	0
1	0	0	0	1
2	1	1	0	0
3	Θ	1	0	0
4	0	0	0	1

#Independent variable

x=df.iloc[:,[4,5,6,11,12]]

x.head()

	Gender	Age	Tenure	EstimatedSalary	Exited
0	0	42	2	101348.88	1
1	0	41	1	112542.58	0
2	Θ	42	8	113931.57	1
3	Θ	39	1	93826.63	Θ
4	0	43	2	79084.10	0

```
#Dependent variable
```

y=df.iloc[:,[13]]

y.head()

```
Geography_0
0
             1
1
             0
2
             1
3
             1
4
             0
9. Scale the independent variables
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
#x train = sc.fit transform(x train)
data=ss.fit transform(x)
data
                      0.29351742, -1.04175968,
array([[-1.09598752,
                                                0.02188649.
1.97716468],
       [-1.09598752, 0.19816383, -1.38753759,
                                                0.21653375, -
0.505774761,
       [-1.09598752, 0.29351742, 1.03290776,
                                                0.2406869 ,
1.97716468],
       [-1.09598752, -0.27860412, 0.68712986, -1.00864308,
1.977164681,
       [ 0.91241915,  0.29351742, -0.69598177, -0.12523071,
1.97716468],
       [-1.09598752, -1.04143285, -0.35020386, -1.07636976, -
0.50577476]])
from sklearn.preprocessing import scale
scale=pd.DataFrame(scale(x),columns=x.columns)
scale
        Gender
                     Age
                            Tenure
                                    EstimatedSalary
                                                       Exited
0
     -1.095988 0.293517 -1.041760
                                           0.021886 1.977165
1
     -1.095988
                0.198164 -1.387538
                                           0.216534 - 0.505775
2
     -1.095988
                0.293517
                          1.032908
                                           0.240687
                                                     1.977165
3
     -1.095988 0.007457 -1.387538
                                          -0.108918 -0.505775
4
     -1.095988 0.388871 -1.041760
                                          -0.365276 -0.505775
9995 0.912419 0.007457 -0.004426
                                          -0.066419 -0.505775
9996 0.912419 -0.373958 1.724464
                                           0.027988 -0.505775
9997 -1.095988 -0.278604 0.687130
                                          -1.008643 1.977165
```

-0.125231

-1.076370 -0.505775

1.977165

[$10000 \text{ rows } \times 5 \text{ columns}$]

9998 0.912419 0.293517 -0.695982

9999 -1.095988 -1.041433 -0.350204

10. Split the data into training and testing

```
x=df.iloc[:,0:15].values
y=df.iloc[:,15:16].values
x.shape
(10000, 15)
y.shape
(10000, 1)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.2, random_state=0)
x_train.shape
(8000, 15)
y_train.shape
(8000, 1)
```