POLITECHNIKA WROCŁAWSKA

Wydział Informatyki i Telekomunikacji

Określanie optymalnych miejsc na postawienie nowego parku

Sprawozdanie z laboratorium

Autor

Jakub Bednarek

 nr albumu: 260387

kierunek: Informatyka Stosowana

14 czerwca 2022

1 Wstęp – sformułowanie problemu

Autor porzebuje określić najoptymalniejsze miejsca na wybudowanie nowego parku w mieście San Francisco na podstawie istniejących już parków oraz szkół.

Rozwiąznie tego problemu pozwoli na podniesienie poziomu życia oraz zadowolenia mieszkańców w mieście.

2 Opis danych

Do rozwiązania problemu będą wykorzystywane 2 datasety.

Pierwszym z nich jest lokalizacja wszystkich instniejących parków - rozmiar 240 wierszy. Kolumna "shape" - określa kształ parku, który zostaje zamienony na punkt - środek parku reprezentujący jego położenie.

Drugim z nich jest położenie wszystkich szkół - rozmiar 445 wierszy.

Kolumna "location_1" - zmienna określająca długość oraz szerokośc geograficzną obiektu, reprezentuje punkt na mapie.

3 Opis rozwiązania

Dane zostały pobrane ze strony https://data.sfgov.org/. Dostęp do danych uzyskano za pomocą API, natomiast w przypadku wykorzystywanych datasetów nie był potrzebny do tego klucz prywatny, ponieważ są to dane dostępne publicznie. Baza została zapisana w postaci ramki danych korzystacjąc z biblioteki Pandas, a następnie przetworzone tak, aby każdy obiekt był reprezentowany przez dwie wartości - x, y. Tak przygotowane dane zostały następnie przetworzone przy wykorzystaniu biblioteki constraint, która pozwala na określenie ograniczeń oraz danych, którymi w naszym przypadku są położenia szkół oraz istniejących już parków. Dzięki temu uzyskamy model reprezentujący najbardziej optymalne miejsca budowy.

4 Rezultaty obliczeń

4.1 Plan badań

Do przeprowadzenia badań musimy określić ograniczenia, którymi algorytm będzie się kierował. W tym przypadku dobór wartości jest następujący:

- 1. Minimalna i maksymalna odległość od istniejacej szkoły: 0.95km, 1km
- 2. Minimalna i maksymalna odległośc od istniejącego parku: 4km, 4.2km
- 3. Przedział przeszukiwanych położeń dla x: minimalna oraz maksymalna wartość długości geograficznej istniejących parków.
- 4. Przedział przeszukiwanych położeń dla y: minimalna oraz maksymalna wartość szerokości geograficznej istniejacych parków.

Tak dobrane wartości pozwalają na stworzenie formuł reprezentujących nasze ograniczenia. Położenia spełniające warunek odległości od istniejącej szkoły:

$$distance = (new_pos_x - school_x)^2 + (new_pos_y - school_y)^2$$

 $ifdistance > min_school_distance^2$ and $distance < max_school_distance^2$: True

Następnie ze znalezionych pozycji możemy wybrać te, które spełniają warunek odległości od istniejącego parku:

$$distance = (found_position_x - park_x)^2 + (found_position_y - park_y)^2$$

 $ifdistance > min_park_distance^2$ and $distance < max_park_distance^2$: True

Gdzie distance w obu przypadkach oznacza odległość punktu od danego obiektu, new_pos oznacza nową pozycję, która będzie sprawdzana, a school_x, school_y, park_x, park_y oznaczają kolejno położenia aktualnie sprawdzanych szkół i parków.

Dla optymalizacji programu wykorzystano podniesie zmiennych reprezentujących maksymalny i minimalny dystans od danego obiektu do kwadratu, tak aby uniknąć pierwiastkowania przy obliczaniu odległości między dwoma punktami.

4.2 Wyniki obliczeń

Otrzymane wyniki można zaprezentować na wykresie, reprezentującym długość oraz szerokość geograficzną jako punkty.

5 Wnioski

Przedstawiona metoda pozwala na wyszukiwanie optymalnych miejsc na podstawie informacji o istniejących obiektach. Warto zauważyć, że przy pobieraniu datasetu należy zwrócić uwagę na rozłożenie zmiennych określających długość i szerokość geograficzną, jako iż mogą one występować zamiennie.

Należy również podkreślić, że w celach wykonania projektu, dataset został zmniejszony odpowiednio do rozmiaru 100 wierszy, tak aby algorytm wykonał się w realnym czasie.

Jak widzimy na załączonym wykresie, otrzymaliśmy zbiór najbardziej optymalnych miejsc na wybudowanie nowego parku, reprezentowanych jako punkty. Takie informacje można wykorzystać w procesie planowania kolejnych inwestycji, tak aby stosunek kosztów do wartości publicznej był jak największy.

A Dodatek

Kody źródłowe(utrzymane w konwencji języka Python wraz z instrukcjmi uruchomienia) umieszczone zostały w repozytorium github: $\verb|github.com/Jakub-Bednarek/MSiD-Project|.$