

Advanced Data Modeling with Power BI

#PowerBler

Marc Lelijveld

Data & Analytics consultant Macaw Netherlands

Marc.Lelijveld@outlook.com

@MarcLelijveld

linkedin.com/in/MarcLelijveld

Data-Marc.com

Set the stage

Gather Clean Model Visualize

Your basic understanding

Star Schema

Relationship types

Role Playing Dimensions

Learning objectives

Explain data modeling best practices in general

Leverage one and bidirectional relationships

Successfully implement aggregations

Work with real live scenarios containing multiple fact tables

Today's agenda

- Relationships revisited
- Relationship direction
- Working with multiple fact tables
- Implementing Aggregations
- Wrap-up

Relationships revisited

Relationship types

1 to 1

Every **individual record** in dataset A is mapped to one **individual record** in dataset B

1 to many

One record of dataset A is mapped to multiple records in dataset B

Customer ID Country AW000111024 United States AW00019377 Germany	_	ataset A usto mer info m	nation
		Customer ID	Country
AW00019377 Germany		AW000111024	United States
		AW00019377	Germany

Data set B Sales Information							
Product	Order Quantity						
CA-1098	2						
BC-M005	1						
CA-1098	1						
FE-6654	1						
HL-U509-B	1						
TI-M602	1						
TT-M928	1						
WB-H098	1						
	Product CA-1098 BC-M005 CA-1098 FE-6654 HL-U509-B						

Many to many

Multiple records of dataset A are mapped to **multiple records** in dataset B

Jus to me r mio	rmation	
Customer ID	Store ID	Store Type
AW00011024	ON-1	Online
AW00011024	ST-1	Regional City Stor
AW00011024	ST-2	Regional City Stor
AW00019377	ON-1	Online
AW00019377	ST-1	Regional City Stor
AW00019377	ST-2	Regional City Stor

Sales Information						
Customer ID	Product	Order Quantity				
AW00011024	CA-1098	2				
AW00011024	TT-M928	5				
AW00019377	BC-M005	1				
AW00019377	CA-1098	1				
AW00019377	FE-6654	1				
AW00019377	HL-U509-B	1				
AW00019377	TI-M602	1				
AW00019377	TT-M928	1				
AW00019377	WB-H098	1				

Dataset B

Relationship direction

Relationship direction

Bi-directional relationships can result in surprising results, especially when working with multiple fact tables

- → It can have performance impacts and 'overfilter'
- → Can lead to ambiguity

Try to avoid bi-directional relationships

You can influence the direction of a relationship for the context of a calculation by CROSSFILTER in DAX:

→ CROSSFILTER(column1, column2, direction)

Relationships direction

Ambiguous data models

Two filter paths to the same table

→ Leads to unexpected results

Can happen with bi-directional relationships

→ Avoid bi-directional relationships as much as possible

Ambiguous data models

- Can lead to unpredictable results
- Each of these measures calculates the same, but removes one of the relationships
- By using CROSSFILTER you can change relationships in a measure context

Fiscal Year \$ Unit Cost (default filter behavior) \$ Unit Cost (no filter date > Product Inventory) \$ Unit Cost (no filter date > Internet Sales)

Total	€ 108,957,334,92	€ 108.957.334.92	€ 108.957.334.92
2020	€ 35.954.533,19	€ 28.267.611,68	€ 35.954.533,19
2019	€ 36.758.094,11	€ 45.834.231,75	€ 36.758.094,11
2018	€ 36.244.707,62	€ 27.337.603,34	€ 36.244.707,62

Ambiguous data models

Unexpected filter behavior

- → Result will be filtered by a subset of products as part of the Internet Sales (dark blue filter path)
- → Result will be filtered by a subset of dates (orange filter path)

Demo – relationships direction

Demo time!

Because life is boring without risks

Relationships & Row level security

Does not filter dimensional tables

- → Except over 1:1 bi-directional relationships
- → Possible when adding a RLS filter to each table individually
- → Requires a specific setup regarding relationships

Relationships & Row level security

Uses single directional filters by default

- → you can set 'Apply the Filter Direction when using Row Level security' on a bi-directional relationship to force RLS to use bi-directional filtering
- → Useful for dynamic row level security

Demo – Row Level Security

Demo time!

Because life is boring without risks

Handle multiple fact tables

Multiple fact tables

Multiple fact tables are common in real-life scenarios. Common scenarios:

Fact tables that you can append into one because they share common dimensions Facts on different levels of granularity, different topics or that do not share common dimensions

Not sure what scenario you have? Use a mapping table.

	Currency	Customer	Due date	Employee	Order date	Product	Promotion	Reseller	Sales territory	Ship date
Internet sales	X	X	X		X	X	X		X	Х
Reseller sales	X		X	X	X	X	X	X	X	Х

Multiple fact tables

		Currency	Customer	Due date	Employee	Order date	Product	Promotion	Reseller	Sales territory	Ship date
Int	ernet sales	Х	Х	Х		Х	X	Х		Х	Х
Res	seller sales	Х		Х	X	X	X	Х	X	X	Х

If you decide to append these, you will get (blanks) when you use one of the unmatched columns

Implementing Aggregations

Aggregations

Benefits

- → Report visualizations are faster
- → Balanced architecture by combining Direct Query and Import storage modes

Store data at a higher level of granularity than the original table

The following aggregations are available: count, groupby, max, min, sum, and count table rows

- → Aggregated data is stored in-memory (imported), details are accessed through DirectQuery
- → You can create the aggregated table in the

 Data Transformations (Power Query) or in your source (preferred)

Aggregations

Aggregations & storage modes

Aggregation, that hit based on relationships, require regular relationships.

Regular relationships include the following storage mode combinations, where both tables are from a single source group:

Table on the many side	Table on the 1 side
Dual	Dual
Import	Import or Dual
DirectQuery	DirectQuery or Dual

Relationships & storage modes

A model relationship is *limited* when there's no guaranteed "one" side. It can be the case for three reasons:

- → The relationship uses a Many-to-many cardinality type (even if one or both columns contain unique values)
- → The storage mode combination is Import and DirectQuery
- → The relationship is cross source group

Impact of limited relationships

Cross source group relationships have performance implications.

Limited optimalization: joins are done on-demand for DirectQuery.

No blank rows: table joins are achieved by using INNER JOIN.

→ Blank rows are not added for referential integrity violations

Additional restrictions:

- → RELATED DAX function cannot be used to retrieve the 'one' side of the relationship
- → Enforcing RLS requires you to check the following checkbox ►

Demo - Aggregations

Demo time!

Because life is boring without risks

Automatic Aggregations – Preview!

Power BI Premium per User, Premium Capacity and Embedded datasets

Automatic aggregations based on Query logs (7 days)

Supported sources during preview:

- Azure SQL Database
- Azure Synapse Dedicated SQL pool
- Google BigQuery
- Snowflake

Wrap up

- LET'S NECAP...
- → Use a star schema or snowflake data model to get the best out of Power BI.
- → Be careful leveraging bi-directional relationships
- → Avoid **ambiguous** data models
- → Consider leveraging aggregations to help analysis of big data
- → Be prepared to deal with multiple fact tables

Resources

→ Learning path: Model data in Power BI:

https://aka.ms/DataModelingLearningPath

→ Learning path: Use DAX in Power BI Desktop:

https://aka.ms/DAXLearningPath

→ Aggregations in Power BI Desktop:

https://aka.ms/PowerBIDesktopAggregations

→ DAX function: CROSSFILTER:

https://aka.ms/DAXCrossfilter

→ Model relationships in Power BI Desktop:

https://aka.ms/ModelRelationships

→ Whitepaper: Bidirectional cross-filtering for Power BI Desktop:

https://aka.ms/BidirectionalCrossFilteringWhitepaper

→ AdventureWorks 2020 demo dataset:

https://aka.ms/AW2020Dataset

Want to review all this content?

Webinar Series: Mastering Data Modeling with Power BI

Episode 1 - Data Modeling 101: Increasing the Impact of Power BI

by Jeroen ter Heerdt and Marc Lelijveld

Watch now [™]

by Jeroen ter Heerdt and Marc Lelijveld

Watch now ☑

Webinar Series: Mastering Data Modeling with Power BI

Episode 3 - Data Modeling for Experts with Power BI

by Jeroen ter Heerdt and Marc Lelijveld

Register to watch on September 8th, 2021 10AM – 11AM Pacific Time ☑

Find them all here: https://docs.microsoft.com/en-us/power-bi/fundamentals/webinars

or: aka.ms/DataModelingWebinarEpisode{1/2/3}

Thanks for attending!

Marc Lelijveld
Data & Analytics consultant
Macaw Netherlands

Marc.Lelijveld@outlook.com

@MarcLelijveld

in

linkedin.com/in/MarcLelijveld

Data-Marc.com

