

CONVERGENT SEQUENCE

Mathematics-III (Differential Calculus)
Code: BSC-301

ARKAPRATIM GHOSH 13000121058

CONTENT

INTRODUCTION

- What is a sequence ?
- What is a convergent sequence ?
- PROPERTIES OF CONVERGENT SEQUENCE
- • A few basic theorems
- APPLICATIONS
- REFERENCE

SEQUENCE

- \times A collection S of real numbers is said to be a *sequence of numbers* if corresponding to every positive integer n, there exists a unique element a_n of S.
- \times Example: $\{5,7,9,11\}$ is finite sequence. $\{1,\frac{1}{3},\frac{1}{3},\frac{1}{3},\dots\}$ is harmonic sequence.

CONVERGENT SEQUENCE

A sequence $\{a_n\}$ is said to be convergent if $\lim_{n\to\infty} a_n = L$ is finite.

Example: In $\{1,1/3,1/3^2,...,1/3^n,...\}$, the sequence $\{an\}$ where an = $1/3^n$, is convergent since $\lim_{n\to\infty}a_n=L$, L=0 is finite.

A convergent sequence determines its limit uniquely. Every convergent sequence is bounded. A monotonic increasing or decreasing sequence which is bounded above or below respectively is said to be convergent.

APPLICATIONS

Convergence is a concept used throughout calculus in the context of limits, sequences, and series. A convergent sequence is one in which the sequence approaches a finite, specific value.

convergence is used to show that an algorithm is correct or behaves like it should, e.g. in machine learning and probabilistic algorithms.

REFERENCES

The information in this presentation has been taken from the book ENGINEERING MATHEMATICS Volume IIIA by B.K. Pal , K. Das.

analysis - Applications of Convergence of a series in Algorithms - Mathematics
Stack Exchange