

PRECISION BAROMETER AND ALTIMETER SENSOR

Key Features

- Operation temperature: -40~85°C
- Supply voltage: 1.8V to 3.6V
- Pressure range: 0 ~1000Kpa
- Programmable events and interrupt controls
- High-speed I2C digital output interface (Up to 10 MHz)
- Fast conversion down to 2ms
- Standby current <0.1uA, low conversion power, 2uA at 1 sample/sec.
- Water proof design can use in 100m

4.5x4.5x3.0mm

Applications

- Depth meter systems
- Industrial Pressure and Temperature Sensor System
- Adventure and Sports watches
- Diving computers
- Data loggers for pressure, temperature
- Panel computer
- Hermetically sealable for outdoor devices

Descriptions

The HP5834-10BA employs a MEMS pressure sensor with an I2C interface to provide accurate Temperature, Pressure data. The sensor Pressure and Temperature outputs are digitized by a high resolution 24-bit ADC. Data compensation is integrated internally to save the effort of the external host MCU system. Easy command-based data acquisition interface and programmable interrupt control is available. Typical active supply current is 5.3uA per measurement-second while the ADC output is filtered and decimated by 256.

1. Typical Application Circuit

Typical application circuit

2. Pin Configuration

Table1 Pin Descriptions

Pin	Name	I/O	Function
1	GND	I	Ground
2	INT1	0	Interrupt 1 output pin
3	SDA	Ю	I ² C serial bi-directional data
4	SCL	Ю	I ² C serial clock input pin
5	NC	-	NO Connect
6	VDD	ı	Power supply

3. Mechanical and Electrical Specifications

3.1 Pressure and Temperature Characteristics

Table2 Pressure Output Characteristics @ VDD = 3.0V, T = 25°C unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Pressure Measurement Range	P _{FS}	Absolute	0		1000	Кра
Pressure Absolute		0 to 1000 Kpa from 0°C to 40°C	-2.5		+2.5	Кра
Accuracy		0 to 1000 Kpa from -20℃ to 60℃	-5.0		+5.0	Кра
Pressure Relative Accuracy		0 to 1000 Kpa at 25℃		±1.0		l/n o
		0 to 1000 Kpa From -20℃ to 60℃		±2.0		Кра
Max Error with Power Supply		Power supply from 1.8V to 3.6V	-1.0		+1.0	Кра
Pressure Resolution		Pressure Mode		0.01		Кра
Board Mount Drift		After solder reflow		±1.5		Кра
Long Term Drift		After a period of 1 year		2.0		Кра

Table3 Temperature Output Characteristics @ VDD = 3.0V, T = 25°C unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Temperature	Тор		-40		85	$^{\circ}$
Temperature Absolute		25℃		±1.0		$^{\circ}$ C
Accuracy		-10℃ to +70℃		±3.0		$^{\circ}$
Max Error with Power Supply		Power supply from 1.8V to 3.6V		±0.5		°C
Temperature Resolution of Output Data				0.01		\mathbb{C}

3.2 Electrical Characteristics

Table4 DC Characteristics @VDD=3.0 V, T=25℃ unless otherwise note

Parameter	Symbol		Conditions	Min	Тур	Max	Unit
Operation Supply Voltage	V _{DD}			1.8	3.0	3.6	V
Operation Temperature	Тор			-40		85	$^{\circ}$ C
			4096		85.2		
Average Operation Current			2048		42.6		
(Pressure Measurement under	IDDAVP	OSR*	1024		21.3		μA
One Conversion per Second)			512		10.7		
. ,			256		5.3		
			128		2.7		
			4096		68.8		
Average Operation Current		OSR*	2048		34.4		
(Temperature Measurement	I _{DDAVT}		1024		17.2		μΑ
under One Conversion per	IDDAVI		512		8.6		
Second)			256		4.3		
			128		2.2		
			4096		65.6		ms
		OSR*	2048		32.8		
Conversion Time of			1024		16.4		
Pressure or Temperature	t _{CONV}		512		8.2		
			256		4.1		
			128		2.1		
Peak Current	I _{PEAK}	During con	version		1.3		mA
Standby Supply Current	IDDSTB	At 25℃				0.1	μΑ
Serial Data Clock Frequency	fsclk	I ² C protoco	I, pull-up resistor of 10k		100	400	kHz
Digital Input High Voltage	ViH			0.8			V
Digital Input Low Voltage	VIL					0.2	V
Digital Output High Voltage	Vон	IO = 0.5 m/	4	0.9			V
Digital Output Low Voltage	VoL	IO = 0.5 m/	Α			0.1	V
Input Capacitance	C _{IN}				4.7		uF

^{*}OSR stands for over sampling rate

3.3 Absolute Maximum Rating

Table 5 Maximum Rating

Parameter	Symbol	Conditions	Min	Max	Unit
Overpressure	P _{MAX}			2	Мра
Supply Voltage	V_{DD}		-0.3	3.6	V
Interface Voltage	ViF		-0.3	VDD+0.3	V
Storage Temperature Range	T _{STG}		-40	150	$^{\circ}$
Maximum Soldering Temperature	Тмѕ	40 second maximum		250	$^{\circ}\!$
ESD Rating		Human body model	-2	+2	kV
Latch-up Current		At 85℃	-100	100	mA

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

4. Function Descriptions

4.1 General Description

The HP5834 is a high precision barometer, the pressure and the temperature by an internal 24-bit ADC and compensates them by a patented algorithm. The fully-compensated values can be read out via the I²C interface by external MCU.

4.2 Factory Calibration

Every device is individually factory calibrated for sensitivity and offset for both of the temperature and pressure measurements. The trim values are stored in the on-chip 128-Byte Non-Volatile Memory (NVM). In normal situation, further calibrations are not necessary to be done by the user.

4.3 Automatic power on initialization

Once the device detects a valid VDD is externally supplied, an internal Power-On-Reset (POR) is generated and the device will automatically enter the power-up initialization sequence. After that the device will enter the sleep state. Normally the entire power-up sequence consumes about 400 us. The user can scan a DEV_RDY bit in the INT_SRC register in order to know whether the device has finished its power-up sequence. This bit appears to 1 when the sequence is done. The device stays in the sleep state unless it receives a proper command from the external MCU. This will help to achieve minimum power consumptions.

4.4 Sensor Output Conversion

For each pressure measurement, the temperature is always being measured prior to pressure measurement automatically, while the temperature measurement can be done individually. The conversion results are stored into the embedded memories that retain their contents when the device is in the sleep state.

The conversion time depends on the value of the OSR parameter sent to the device within the ADC_CVT command. Six options of the OSR can be chosen, range from 128, 256 ... to 4096. The below table shows the conversion time according to the different values of OSR:

Table 6 Conversion Time VS OSR

	Convers	sion Time (ms)								
OSR		Temperature and								
	Temperature	Pressure								
128	2.1	4.1								
256	4.1	8.2								
512	8.2	16.4								
1024	16.4	32.8								
2048	32.8	65.6								
4096	65.6	131.1								

The higher OSR will normally achieve higher measuring precision, but consume more time and power. The conversion results can be compensated or uncompensated. The user can enable/disable the compensation by setting the ADC_CVT register before performing the conversions.

5. Access Modes & Commands

5.1 Operation Flow

During each power-up/reset cycle, the device will only perform one calibration. After that it will enter the SLEEP state waiting for any incoming commands. It will take actions after receiving different proper commands, and re-enters the SLEEP state when it finishes the jobs.

5.2 Command

The Command Set (Table 6) allows the user to control the device to perform the measuring, results reading and the miscellaneous normal operations.

Table7 Command set

Name	Hex Code	Binary Code	Descriptions
SOFT_RST	0x06	0000 0110	Soft reset the device
ADC_CVT	NA	010_OSR_chnl	Perform ADC conversion
READ_PT	0x10	0001 0000	Read the temperature and pressure values
READ_P	0x30	0011 0000	Read the pressure value only
READ_T	0x32	0011 0010	Read the temperature value only
ANA_CAL	0x28	0010 1000	Re-calibrate the internal analog blocks

5.2.1 Soft Reset the Device SOFT_RST (0x06)

Once the user issues this command, the device will immediately be reset no matter what it is working on. Once the command is received and executed, all the memories (except the NVM) will be reset to their default values following by a complete power-up sequence to be automatically performed.

5.2.2 OSR and Channel Setting ADC_CVT (010, 3-bit OSR, 2-bit CHNL)

This command let the device to convert the sensor output to the digital values with or without compensation depends on the PARA register setting. The 2-bit channel (CHNL) parameter tells the device the data from which channel(s) shall be converted by the internal ADC. The options are shown below:

00: sensor pressure and temperature channel

10: temperature channel

The 3-bit OSR defines the decimation rate of the internal digital filter as shown below:

 000:
 OSR = 4096
 011:
 OSR = 512

 001:
 OSR = 2048
 100:
 OSR = 256

 010:
 OSR = 1024
 101:
 OSR = 128

Setting the CHNL bits to the value of 01 or 11, or the OSR bits to the values of 110 or 111 will lead to failure of conversion.

5.2.3 Read the Temperature and Pressure Values

READ_PT (0x10)

The temperature data is arranged as 20-bit 2's complement format and the unit is in degrees C. Temperature value is stored in all 24 bits of OUT_T_MSB, OUT_T_CSB and OUT_T_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the temperature value. The user shall convert this 20-bit 2's complement binary value into an integer, and then divide the integer by 100 to obtain the final result.

The pressure data is arranged as 20-bit the unit is in Pascal. Pressure value is stored in all 24 bits of OUT_T_MSB, OUT_T_CSB and OUT_T_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the pressure value. The user shall convert this 20-bit unsigned binary value into an integer.

For Example: (Temperature)

Hex value	OUT_T_MSB	OUT_T_CSB	OUT_T_LSB	Dec value
0x000A5C	0x00	0x0A	0x5C	26.52
0xFFFC02	0xFF	0xFC	0x02	-10.22

For Example: (Unsigned data pressure)

P(Units: Kpa)

Hex value	OUT_ P _MSB	OUT_ P_CSB	OUT_ P_LSB	Dec value
0x00A880	0x00	0xA8	0x80	43136
43136 /100 = 4	31.36 Kpa			

5.2.4 Read the Pressure Value .READ_P (0x30)

The pressure data is arranged as 20-bit the unit is in Pascal. Pressure value is stored in all 24 bits of OUT_T_MSB, OUT_T_CSB and OUT_T_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the pressure value. The user shall convert this 20-bit unsigned binary value into an integer.

5.2.5 Read the Temperature Value .READ_T (0x32)

The temperature data is arranged as 20-bit 2's complement format and the unit is in degrees C. Temperature value is stored in all 24 bits of OUT_T_MSB, OUT_T_CSB and OUT_T_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the temperature value. The user shall convert this 20-bit 2's complement binary value into an integer, and then divide the integer by 100 to obtain the final result.

6. I²C Interface

The I²C interface is fully compatible to the official I²C protocol specification. All the data are sent starting from the MSB. Successful communication between the host and the device via the I²C bus can be done using the four types of protocol introduced below.

6.1 I²C Specification

Table8 I²C Slave Timing Values

		Į.	² C			
Parameter	Symbol	Condition	Min	Typ	Ma x	Unit
SCL Clock Frequency	S _{CL}	Pull-up = $10 \text{ k}\Omega$	0		400	KHz
Bus free time between STOP and START condition	t _{BUF}		1.5			μs
Repeated START Hold Time	t _{HD.STA}		0.6			μs
Repeated START Setup Time	t _{SU.STA}		0.6		5	μs
STOP Condition Setup Time	t _{SU.STO}		0.6			μs
SDA Data Hold Time	t _{HD.DAT}		100			ns
SDA Setup Time	t _{SU.DAT}		100			ns
SCL Clock Low Time	t _{LOW}		1.5			μs
SCL Clock High Time	t _{HIGH}		0.6			μs
SDA and SCL Rise Time	t _R		30		500	ns
SDA and SCL Fall Time	t _F		30		500	ns

6.2 I² C Device and Register Address

The I²C device address is shown below. The LSB of the device address is corresponding to address 0XEC (write) and 0XED (read).

A7	A6	A5	A4	A3	A2	A1	W/R
1	1	1	0	1	1	0	0/1

6.3 I²C Protocol

The 1st TYPE: the host issuing a single byte command to the device

The host shall issue the Device Address (ID) followed by a Write Bit before sending a Command byte. The device will reply an ACK after it received a correct SOFT_RST command.

	1	1	1	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	
S		Device Address						W	Α				Comi	mand				Α	Р

The 2nd TYPE: the host writing a register inside the device

The host shall issue the Device Address (ID) followed by a Write Bit before sending a command byte and a data byte. This format only applies while the user wants to send the WRITE_REG command.

	1	1	1	0	1	1	0	0	0	1	1	0	0	1	0	1	0	0	0	0	0	0	0	1	1	0	0	
S	Device Address			s	W	Α		Command						Α				Data					Α	Р				

The 3rd TYPE: the host reading a register from the device

In this activity there are two frames that are sent separately. The first frame is to send the READ_REG command which contains a 2-bit binary number of 10 followed by a 6-bit register address. The format of the first frame is identical to the 1st type activity. In the second frame, the device will send back the register data after receiving the correct device address followed by a read bit. This format only applies while the user wants to use the READ_REG command.

The 4th TYPE: the host reading the 3-byte or 6-byte ADC data from the device

In this activity there are two frames that are sent separately. The first frame is identical to sending a single command, which can be one of the conversion result reading commands. In the second frame, the device will send back the ADC data (either 3 bytes or 6 bytes depending on the commands) after receiving the

Descriptions

7. Package information

Mechanical Dimension (unit: mm) General tolerance (0.1mm)

8. Revision History

Revision	Description	Date
1.0	Initial Release	2022/4/6

PE MICROELECTRONICS CO., LTD

Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan District, Shenzhen, Guangdong, China

+86 755 82973805 Tel: +86 755 82973550 Fax: sales@hoperf.com Email: Website: http://www.hoperf.com

http://www.hoperf.cn

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons.

NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2022, HOPE MICROELECTRONICS CO., LTD. All rights reserved.