

Lucas R. Ximenes dos Santos - 11917239

Pequeno comentário: Fiz a lista às pressas, pois esqueci que tinha e acabei fazendo faltando algumas horas pra entrega, então se houver muitos erros, peço que por favor explicite onde estão os passos errados. Ficarei agradecido!

5. Reabastecendo

Um estudante de mecânica dos fluidos foi à praia de carro durante a semana da Pátria. Infelizmente preocupado com provas, listas, etc, ele esqueceu de encher o tanque de combustível e ficou em pana seca. Contudo, uma boa alma lhe deu gasolina num recipiente cilíndrico de raio R, cheio até o topo (z=h) bem como uma mangueira de raio r para sifonar o fluído. Supor $R\gg r$.

Supor o escoamento estacionário e calcular a velocidade do fluido na mangueira. Calcular a pressão na parte horizontal da mangueira de modo a poder comparar com a pressão atmosféricas p_o . Na configuração da figura, quando o fluido para de circular na mangueira? É melhor abaixar ou levantar o recipiente da esquerda para o fluido circular por mais tempo?

Solução:

Pelo princípio de continuidade, a vazão $\dot{Q}=\pi r^2 v$ é constante ao longo da mangueira, onde v é a velocidade do fluido na mangueira. Como o fluido escoa em regime estacionário, a vazão que sai do recipiente é igual à vazão que entra na mangueira. Assim, podemos escrever $\dot{Q}=\pi R^2\sqrt{2gh}$, onde h é a altura do fluido no recipiente. Logo, a velocidade do fluido na mangueira é

$$v = \frac{\dot{Q}}{\pi r^2} = \frac{R^2}{r^2} \sqrt{\frac{2gh}{R^2}} = \frac{R}{r^2} \sqrt{2gh}$$
 (1.1)

Na horizontal da mangueira, a pressão p é dada pela equação de Bernoulli, que relaciona a pressão p, a densidade ρ e a velocidade v do fluido: $p+\frac{1}{2}\rho v^2=p_o$, onde p_o é a pressão atmosférica. Substituindo a velocidade do item (a), temos

$$p = p_o - \frac{1}{2}\rho \left(\frac{R}{r^2}\sqrt{2gh}\right)^2 \tag{1.2}$$

Quando o fluido para de circular na mangueira, a pressão na horizontal da mangueira é igual à pressão atmosférica. Isso ocorre quando a altura do fluido no recipiente é menor que a altura z_2 da mangueira em relação ao fundo do recipiente. Para que o fluido circule por mais tempo na mangueira, é melhor abaixar o recipiente da esquerda, pois isso aumenta a altura do fluido no recipiente e, portanto, aumenta a vazão que entra na mangueira.

7. O experimentador negligente

Um experimentador negligente deixou a válvula de um tanque de hélio ligeiramente aberta durante um fim de semana. O gás, inicialmente a pressão de 200 atm, escapou lentamente e isotermicamente a 20°C.

- (a) Qual foi a velocidade de escape inicial?
- (b) Mesma pergunta se o processo for adiabático.
- (c) Nos dois casos, qual foi a mudança em entropia que 1 kg do gás (que restou no interior do recipiente) sofreu?

Solução:

(a) Para encontrar a velocidade de escape inicial, podemos usar a equação de Bernoulli para o escoamento de um gás ideal:

$$\frac{1}{2}v^2 + \frac{\gamma}{\gamma - 1}\frac{P}{\rho} = \text{cte}$$

Como o processo é isotérmico, temos

$$\frac{P}{\rho} = \frac{kT}{m}$$

Portanto, podemos escrever:

$$\frac{1}{2}v^2 + \frac{\gamma kT}{(\gamma - 1)m} = \text{cte}$$

No estado inicial, a pressão é $p_i=200$ atm e a densidade $\rho=\frac{p_i m}{nkT}$. A constante (cte) é determinada pela condição de que a velocidade de escape é alcançada quando $p_f=p_o=1$ atm, portanto:

$$\frac{1}{2}v_{\rm esc}^2 + \frac{\gamma nkT}{(\gamma - 1)m} = \frac{\gamma nkT}{(\gamma - 1)m} + \frac{nkT}{m}\ln\left(\frac{p_i}{p_f}\right)$$

Obtemos portanto que:

$$v_{\rm esc} = \sqrt{2\left(\frac{R}{m}\right)T\ln\left(\frac{p_i}{p_o}\right)}$$

Substituindo os valores numéricos, obtemos que a velocidade de escape é de aproximadamente:

$$v_{\rm esc} \approx 2.5 \text{ km/s}$$
 (1.3)

(b) Como o processo é adiabático, temos que $p_f V_f^{\gamma} = p_i V_i^{\gamma}$, onde γ é a razão de calor específico do hélio. Novamente usando a equação da densidade, temos que $\rho = \frac{p_i M}{(RT)}$. Substituindo, temos que a expressão para velocidade de escape fica:

$$v_{\rm esc} = \sqrt{2\left(\frac{\gamma}{\gamma - 1}\right) \frac{RT_o}{m} \left(1 - \frac{p_i}{p_o}\right)^{\frac{\gamma - 1}{\gamma}}}$$

Nesse caso, usamos que $\gamma=\frac{5}{3}$ e portanto, substituindo os outros valores numéricos, obtemos:

$$v_{\rm esc} \approx 1.7 \text{ km/s}$$
 (1.4)

(c) A mudança da entropia é dada por

$$\Delta S = C_V \ln \left(\frac{T_f}{T_i}\right) + R \ln \left(\frac{V_f}{V_i}\right)$$

Para um gás monoatômico, temos que $C_V = \frac{3R}{2}$. Usando a equação de estado dos gases ideais pV = nRT, temos que $V_f = nR\frac{T_f}{p_f}$ e que $V_i = nR\frac{T_i}{p_i}$, implicando em:

$$\Delta S = \frac{3R}{2} \ln \left(\frac{T_f}{T_i} \right) + R \ln \left(\frac{T_f}{T_i} \right) + R \ln \left(\frac{p_i}{p_f} \right)$$

Substituindo os valores, obtemos que a variação de entropia é dada por:

$$\Delta S \approx 1.11 * 10^4 \text{ J/K}$$
 (1.5)