$\leftarrow \quad \text{Optimization algorithms} \\$

Quiz, 10 questions

✓ Co	ngra	tulations! You passed!	Next Item
1/1 point		hich notation would you use to denote the 3rd layer's activations we cample from the 8th minibatch? $a^{[8]\{3\}\{7\}}$ $a^{[3]\{7\}\{8\}}$ $a^{[8]\{7\}\{3\}}$ $a^{[8]\{7\}\{3\}}$ $a^{[3]\{8\}\{7\}}$ Correct	vhen the input is the 7th
1/1 point	2. W	hich of these statements about mini-batch gradient descent do yo One iteration of mini-batch gradient descent (computing on faster than one iteration of batch gradient descent. Correct You should implement mini-batch gradient descent without different mini-batches, so that the algorithm processes all m time (vectorization). Training one epoch (one pass through the training set) using descent is faster than training one epoch using batch gradient.	a single mini-batch) is an explicit for-loop over ini-batches at the same
1/1 point	3. W	hy is the best mini-batch size usually not 1 and not m, but instead If the mini-batch size is m, you end up with batch gradient do process the whole training set before making progress. Correct If the mini-batch size is 1, you end up having to process the before making any progress. Un-selected is correct If the mini-batch size is 1, you lose the benefits of vectorization the mini-batch.	escent, which has to

Un-selected is correct

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

1 / 1 point

Which of the following do you agree with?

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

5. Suppose the temperature in Casablanca over the first three days of January are the same:

1 / 1

Jan 1st: $heta_1=10^oC$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias

correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$v_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=10$$
, $v_2^{corrected}=7.5$

 $\alpha = \frac{1}{1+2*t}\alpha_0$

Correct

 $\bigcirc \quad \alpha = \frac{1}{\sqrt{t}}\alpha_0$

 $lpha = 0.95^t lpha_0$

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

temberature

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line $\theta=0.98$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

~

8 Consider this figure:

1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

1 / 1 point

Adam combines the advantages of RMSProp and momentum

