Първо упражнение по Дискретни Структури.

Въведение в съждителната и предикатната логика

1 Съждителна логика

Определение 1. Съждения са разказвателни изречения, всяко от които е или истина "Т", или лъжа "F". Елементарни съждения са прости такива изречения. Съставни съждения се получават от прости съждения или от други съставни съждения чрез логическите съюзи "и", "или", "или ..., или ...", "ако ..., то ...", "... тогава и само тогава, когато ..." и "не". Логически израз от съждителната логика е просто или съставно съждение. Валюация на логически израз от съждителната логика е едно възможно присвояване на стойностите Т или F на всички елементарни съждения, участващи в него. Кой да е съставен израз е:

- тавтология, ако стойността му е Т за всяка възможна валюация,
- противоречие, ако стойността му е F за всяка възможна валюация,
- ullet условност, ако стойността му е T за поне една валюация и F за поне една валюация ‡ .

Задача 1. Кои от следните изречения са съждения?

- 1. Пловдив е град в България.
- 2. България е град във Варна.
- 3. 2 + 2 = 4.
- 4. $2+2 \neq 4$.
- 5. Колко е часът?
- 6. Докога ще търпим тези безобразия!
- 7. Защо смятате, че 7 е нечетно число?
- 8. Тръгвайте!
- 9. (*) Това изречение е лъжа.

Задача 2. Нека p, q, r, s u t са следните съждения:

- р: Ще довърша програмата на Java преди обяд.
- **q:** Сутринта ще спортувам.

 $^{^{\}dagger}$ На английски терминът често е truth assignment, но се ползва и valuation.

[‡]На английски съответните термини са tautology, contradiction и contingency.

- т: Следобяд ще спортувам.
- **s:** Днес времето е хубаво.
- t: Днес влажността на въздуха е ниска.

Напишете логически изрази, съответстващи са следните изречения. Използвайте логическите съюзи \neg , \lor , \oplus , \land $u \rightarrow$.

- 1. Няма да довърша програмата на Java преди обяд.
- 2. Ще довърша програмата на Java и следобяд ще спортувам.
- 3. Днес ще спортувам или сутринта, или следобяд.
- 4. Днес ще спортувам сутринта или следобяд.
- 5. Ако днес времето е хубаво, следобяд ще спортувам.
- 6. Необходимо условие, за да спортувам днес следобяд е, времето да е хубаво.
- 7. Достатъчно условие, за да спортувам днес е (т.е., сутринта или следобяд), времето да е хубаво и влажността да е ниска.

Задача 3. *Напишете съставно съждение, еквивалентно на следното, но без използване на отрицание* "Ако не ми оправите водопровода, няма да платя наема."

Задача 4. *Напишете таблицата на истинност на всеки от следните логически изрази,* където р, q и r означават елементарни съждения (т.е., са логически променливи).

- 1. $\neg(p \lor \neg q) \rightarrow \neg p$
- 2. $(p \rightarrow q) \rightarrow r$
- 3. $(p \land (p \rightarrow q)) \rightarrow q$
- $4. \ q \leftrightarrow (\neg p \lor \neg q)$
- 5. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
- $\textit{6. } p \rightarrow (q \rightarrow r)$
- 7. $(p \rightarrow q) \rightarrow (q \rightarrow p)$
- 8. $(p \land q) \rightarrow p$

Задача 5. Напишете таблицата на истинност на всеки от следните логически изрази, където p, q и r означават елементарни съждения (т.е., са логически променливи).

- $\textit{1. } (p \lor q) \to (p \oplus q)$
- $\textit{2. } (p \oplus q) \to (p \vee q)$
- 3. $(p \lor q) \oplus (p \land q)$
- $\not 4. \ (p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$
- 5. $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$

6.
$$(p \oplus q) \rightarrow (p \oplus \neg q)$$

Задача 6. В Задача 4, кои изрази са тавтологии, кои са противоречия и кои са условности?

Задача 7. Нека р, q и г са съжденията:

- р: В района са забелязани мечки.
- **q:** Ходенето по пътеката е безопасно.
- **r:** Малините около пътеката са узрели.

Напишете логически изрази, съответстващи са следните изречения. Използвайте логическите съюзи \neg , \lor , \land , \rightarrow $u \leftrightarrow$.

- 1. Малините около пътеката са узрели, но в района не са забелязани мечки.
- 2. Мечки в района не са били забелязани и ходенето по пътеката е безопасно, но малините около пътеката не са узрели.
- 3. Ако малините около пътеката са узрели, то ходенето по пътеката бе безопасно ако и само ако в района не са забелязани мечки.
- 4. Не е безопасно да се ходи по пътеката, но в района не са забелязани мечки и малините около пътеката са узрели.
- 5. За да може ходенето по пътеката да е сигурно, необходимо е малините около пътеката да не са узрели и в района да не са забелязани мечки.
- 6. Ходенето по пътеката не е безопасно ако и само ако в района са били забелязани мечки и малините около пътеката са узрели.

Задача 8. За всяко от следните изречения, предложете еквивалентно съждение от вида "Ако . . . , то . . . ". Предложените съждения може да са повече от едно – в такъв случай, тяхната конюнкция да е еквивалентна на съответното изречение.

- 1. Трябва да измиеш колата на шефа, за да получиш повишението.
- 2. Когато задуха южен вятър, снегът се топи.
- 3. За да важи гаранцията трябва е продуктът да е закупен преди по-малко от две години.
- 4. Иван бива залавян винаги, когато преписва.
- 5. Ще имате достъп до пълната версия на уеб сайта само тогава, когато платите таксата.
- 6. Ще имате достъп до пълната версия на уеб сайта тогава, когато платите таксата.
- 7. За да те изберат на тази длъжност трябва да познаваш правилните хора.
- 8. На Мария винаги и става лошо в кола и никога, извън кола.

Задача 9. Докажете, че

$$\left(p \to (q \to r)\right) \to \left((p \to q) \to (p \to r)\right)$$

е тавтология.

Задача 10. Ако логическата променлива q има стойност T, определете всички валюации на логическите променливи p, r и s, за които изразът

$$\big(\mathsf{q} \to \big((\neg \mathsf{p} \vee \mathsf{r}) \wedge \neg \mathsf{s}\big)\big) \wedge \big(\neg \mathsf{s} \to (\neg \mathsf{r} \wedge \mathsf{q})\big)$$

има стойност Т.

Задача 11. В дома на семейство М. има четири деца. Едно от тях е изяло тортата, приготвена от госпожса М. При "разпит" на децата, те дават следните отговори на въпроса "Кой изяле тортата?":

Албена: Владимир изяде тортата.

Борис: Не съм аз!

Владимир: Гергана изяде тортата.

Гергана: Владимир излъга, казвайки, че аз изядох тортата.

Кой е виновникът, ако е известно, че е само един (или една), и че точно едно дете казва истината?

Решение: Едно възможно решение е следното. Тъй като точно едно дете казва истината, ще разгледаме четирите възможни случая за това. Нека въведем четири букви V, B, A и G, които означават прости съждения по следния начин: V е "Владимир изяде тортата", B е "Борис изяде тортата", A е "Албена изяде тортата" и "G" е "Гергана изаде тортата". Тогава Албена казва V, Борис казва ¬В, Владимир казва G, а Гергана казва ¬G.

Случай і: Албена казва истината, а всички други лъжат. Тогава в сила е $V \land \neg \neg B \land \neg G \land \neg \neg G$. Тъй като този израз съдържа $\neg G \land \neg \neg G$. Но по правилата на съждителната логика, той е еквивалентен на F, защото $\neg G \land \neg \neg G \equiv \neg G \land G \equiv F$. Ерго, няма как Албена да казва истината, а всички други да лъжат.

Случай ії: Борис казва истината, а всички други лъжат. Тогава в сила е $\neg V \land \neg B \land \neg G \land \neg \neg G$. Тъй като този израз съдържа $\neg G \land \neg \neg G$. Но по правилата на съждителната логика, той е еквивалентен на F, защото $\neg G \land \neg \neg G \equiv \neg G \land G \equiv F$. Ерго, няма как Борис да казва истината, а всички други да лъжат.

Случай ііі: Владимир казва истината, а всички други лъжат. Тогава в сила е $\neg V \land \neg \neg B \land G \land \neg \neg G$. Но по правилата на съждителната логика, той е еквивалентен на $\neg V \land B \land G$. Това казва, че Владимир не е изял тортата и Борис е изял тортата и Гергана е изяла тортата. Но ние знаем, че точно едно дете е изяло тортата. Ерго, няма как Владимир да казва истината, а всички други да лъжат.

Случай іv: Гергана казва истината, а всички други лъжат. Тогава в сила е $\neg V \land \neg \neg B \land \neg G \land \neg G$. Но по правилата на съждителната логика, той е еквивалентен на $\neg V \land B \land \neg G$. Това казва, че Владимир не е изял тортата и Борис е изял тортата и Гергана не е изяла тортата. Последното е възможно, тоест, е съвместимо с ограниченията на тази задача. Тъй като отхвърлихме възможността другите деца да казват истината, а точно едно дете казва истината, излиза, че Гергана казва истината.

Тогава Борис е изял тортата.

Задача 12. Докажете или опровергайте, че:

1. импликацията е асоциативна.

- 2. изключващото или е асоциативно.
- 3. импликацията е дистрибутивна спрямо конюнкцията.
- 4. импликацията е дистрибутивна спрямо дизюнкцията.
- 5. импликацията е дистрибутивна спрямо изключващото или.
- 6. конюнкцията е дистрибутивна спрямо импликацията.
- 7. дизюнкцията е дистрибутивна спрямо импликацията.
- 8. изключващото или е дистрибутивно спрямо импликацията.

Задача 13. Пет души—Албена, Борис, Владимир, Гергана и Димитър—имат достъп до някакъв чат рум (chat room). Можете ли кажете кои от тях "чатят" в момента, ако е известно, че:

- 1. Борис или Владимир (може и двамата) чатят сега.
- 2. Или Гергана, или Димитър (но не и двамата) чатят сега.
- 3. Ако Албена чати, то и Гергана чати.
- 4. Или Владимир и Димитър чатят и двамата, или нито един от тях не чати.
- 5. Ако Борис чати, то Албена и Владимир чатят.

Решение: Нека булевите променливи **a**, **b**, **c**, **d**, **e** означават съответно "Албена чати", "Борис чати", "Владимир чати", "Гергана чати" и "Димитър чати". Да преведем дадените факти на езика на съждителната логика.

- 1. $b \lor c$
- 2. $d \oplus e$
- 3. $a \rightarrow d$
- $4. \ \ c \leftrightarrow e$
- 5. $b \rightarrow (a \land c)$

Един начин да се реши задачата е чрез правилата за извод (виж правилата за извод на стр. 11).

b	(допускаме, че Борис чати)	(1)
$a \wedge c$	(modus ponens върху (1) и условие 5.)	(2)
α	(правилото за опростяване върху (2).)	(3)
d	(modus ponens върху (3) и условие 3.)	(4)
$\neg e$	(тривиално от (4) и условие 2.)	(5)
$\neg c$	(тривиално от (5) и условие 4.)	(6)
c	(правилото за опростяване върху (2).)	(7)
F	(конюнкция на редове (6) и (7).)	(8)

Изведохме лъжа, следователно допускането, че Борис чати, е погрешно. Следователно, Борис не чати. Тогава:

$$\neg b$$
 (Борис не чати) (9)

$$\neg d$$
 тривиално от (11) и условие 2. (12)

$$\neg a$$
 modus tolens върху (12) и условие 3. (13)

Получихме, че Албена, Борис и Гергана не чатят, а Владимир и Димитър чатят.

Друг начин да се реши задачата е чрез табличен метод, тоест с "груба сила". Ще оценим конюнкцията

$$X = (b \lor c) \land (d \oplus e) \land (a \rightarrow d) \land (c \leftrightarrow e) \land (b \rightarrow (a \land c))$$

върху всички възможни валюации.

a	b	c	d	e	b∨c	$d \oplus e$	$a \rightarrow d$	$c \leftrightarrow e$	$b \rightarrow (a \land c)$	X
F	F	F	F	F	F	F	Т	Т	Т	F
F	F	F	F	Т	F	Т	Т	F	Т	F
F	F	F	Т	F	F	Т	Т	Т	Т	F
F	F	F	Т	Т	F	F	Т	F	Т	F
F	F	Т	F	F	Т	F	Т	F	Т	F
F	F	Т	F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т	F	Т	F
F	F	Т	Т	Т	Т	F	Т	Т	Т	F
F	Т	F	F	F	T	F	Т	Т	F	F
F	Т	F	F	Т	Т	Т	Т	F	F	F
F	Т	F	Т	F	Т	Т	Т	Т	F	F
F	Т	F	Т	Т	T	F	Т	F	F	F
F	Т	Т	F	F	Т	F	Т	F	F	F
F	Т	Т	F	Т	Т	Т	Т	Т	F	F
F	Т	Т	Т	F	Т	Т	Т	F	F	F
F	Т	Т	Т	Т	Т	F	Т	Т	F	F
Т	F	F	F	F	F	F	F	Т	Т	F
Т	F	F	F	T	F	Т	F	F	Т	F
Т	F	F	Т	F	F	Т	Т	Т	Т	F
Т	F	F	Т	Т	F	F	Т	F	Т	F
Т	F	Т	F	F	T	F	F	F	Τ	F
Т	F	Т	F	Т	Т	Т	F	Т	Т	F
T	F	Т	Т	F	T	Т	Т	F	Т	F
Т	F	Т	Т	Т	T	F	Т	Т	Т	F
Т	Т	F	F	F	Т	F	F	Т	F	F
T	Т	F	F	Т	Т	Т	F	F	F	F
Т	Т	F	Т	F	Т	Т	Т	Т	F	F
Т	Т	F	Т	Т	Т	F	Т	F	F	F
Т	Т	Т	F	F	Т	F	F	F	Т	F
Т	Т	Т	F	Т	Т	Т	F	Т	Т	F
Т	Т	Т	Т	F	Т	Т	Т	F	Т	F
Т	Т	Т	Т	Т	Т	F	Т	Т	Т	F

Единствената валюация, върху която X е истина, е F F T F T, тоест Албена, Борис и Гергана не чатят, а Владимир и Димитър чатят.

2 Еквивалентност на изрази от съждителната логика

Определение 2. За всеки две съждения p и q казваме, че са еквивалентни, ако $p \leftrightarrow q$ е тавтология. Този факт записваме с " $p \equiv q$ ".

 $\it 3абележска:$ Нотацията " \equiv " не е логически съюз, следователно " $\it p\equiv \it q$ " не е съставен логически израз, а просто изразява факта, че две съждения са еквивалентни.

Теорема 1. Нека p, q и r са произволни съждения. Следните еквивалентности са в сила:

```
свойства на константите: p \wedge T \equiv p, p \vee F \equiv p, p \vee T \equiv T, p \wedge F \equiv F. свойства на отрицанието: p \wedge \neg p \equiv F, p \vee \neg p \equiv T. идемпотентност: p \vee p \equiv p, p \wedge p \equiv p. закон за двойното отрицание: \neg(\neg p) \equiv p. комутативност: p \vee q \equiv q \vee p, p \wedge q \equiv q \wedge p. асоциативност: (p \vee q) \vee r \equiv p \vee (q \vee r), (p \wedge q) \wedge r \equiv p \wedge (q \wedge r). дистрибутивност: p \vee (q \wedge r) \equiv (p \vee r) \wedge (p \vee r), p \wedge (q \vee r) \equiv (p \wedge r) \vee (p \wedge r). закони на Де Морган: \neg(p \vee q) \equiv \neg p \wedge \neg q, \neg(p \wedge q) \equiv \neg p \vee \neg q. поглъщане: p \vee (p \wedge q) \equiv p, p \wedge (p \vee q) \equiv p.
```

Задача 14. Докажете Теорема 1 чрез табличния метод.

Задача 15. Докажете закона за поглъщането, използвайки свойствата на константите и законите за дистрибутивността.

Решение: В тази задача се иска доказателството да се извърши чрез еквиваленти преобразувания, а не чрез табличния метод. Ще докажем, че $\mathfrak{p} \vee (\mathfrak{p} \wedge \mathfrak{q}) \equiv \mathfrak{p}$.

```
p\lor(p\land q)\equiv (съгласно св-вата на константите) (p\land T)\lor(p\land q)\equiv (съгласно дистрибутивн. на конюнк. спрямо дизюнк.) p\land (T\lor q)\equiv (съгласно св-вата на константите) p\land T\equiv (съгласно св-вата на константите) p
```

Задача 16. Използвайки табличния метод, докажете, че съжденията $(\mathfrak{p} \wedge \mathfrak{q}) \to \mathfrak{r}$ и $\mathfrak{p} \to (\mathfrak{q} \to \mathfrak{r})$ са еквивалентни.

Решение:

p	q	r	$p \wedge q$	$(p \land q) \rightarrow r$	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$
0	0	0	0	1	1	1
0	0	1	0	1	1	1
0	1	0	0	1	0	1
0	1	1	0	1	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Теорема 2. Нека p, q и r са произволни съждения. Следните еквивалентности са в сила:

$$\begin{array}{ll} p \rightarrow q \equiv \neg p \lor q, & p \rightarrow q \equiv \neg q \rightarrow \neg p, \\ p \lor q \equiv \neg p \rightarrow q, & p \land q \equiv \neg (p \rightarrow \neg q), \\ (p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r), \\ (p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r, \\ (p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r), \\ (p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r. \end{array}$$

Задача 17. Докажете Теорема 2 чрез еквивалентни преобразувания, използвайки наготово факта, че $\mathfrak{p} \to \mathfrak{q} \equiv \neg \mathfrak{p} \vee \mathfrak{q}$, и Теорема 1.

Задача 18. Докажете, че следните съставни съждения са тавтологии, използвайки табличния метод:

- 1. $(p \land q) \rightarrow p$,
- 2. $\mathfrak{p} \to (\mathfrak{p} \vee \mathfrak{q})$,
- 3. $\neg p \rightarrow (p \rightarrow q)$,
- $4. (\mathfrak{p} \wedge \mathfrak{q}) \rightarrow (\mathfrak{p} \rightarrow \mathfrak{q}),$
- 5. $\neg(p \rightarrow q) \rightarrow p$,
- $6. \neg (p \rightarrow q) \rightarrow \neg q$
- 7. $(\neg p \land (p \lor q)) \rightarrow q$,
- 8. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$,
- 9. $(\mathfrak{p} \wedge (\mathfrak{p} \to \mathfrak{q})) \to \mathfrak{q}$,
- 10. $((p \lor q) \land (p \to r) \land (q \to r)) \to r$.

Задача 19. Решете Задача 18 не чрез таблици на истинност, а чрез еквивалентни преобразувания. Теорема 2 може да се ползва наготово.

Решение: Ще докажем (10.).

$$\begin{array}{lll} \left((p\vee q)\wedge(p\to r)\wedge(q\to r)\right)\to r\equiv & \text{(съгласно Теорема 2)}\\ \neg \left((p\vee q)\wedge(p\to r)\wedge(q\to r)\right)\vee r\equiv & \text{(з-ни на Де Морган)}\\ \neg (p\vee q)\vee\neg(p\to r)\vee\neg(q\to r)\vee r\equiv & \text{(съгласно Теорема 2)}\\ \neg (p\vee q)\vee\neg(\neg p\vee r)\vee\neg(\neg q\vee r)\vee r\equiv & \text{(з-ни на Де Морган)}\\ \neg (p\vee q)\vee(p\wedge\neg r)\vee(q\wedge\neg r)\vee r\equiv & \text{(дистрибутивн. на конюнк. спрямо дизюнк.)}\\ \neg (p\vee q)\vee\left((p\vee q)\wedge\neg r)\right)\vee r\equiv & \text{(комутативност)}\\ \neg (p\vee q)\vee r\vee\left((p\vee q)\wedge\neg r)\right)\equiv & \text{(двойно отрицание)}\\ \neg (p\vee q)\vee\neg(\neg r)\vee\left((p\vee q)\wedge\neg r)\right)\equiv & \text{(з-ни на Де Морган)}\\ \neg ((p\vee q)\wedge\neg r)\vee\left((p\vee q)\wedge\neg r)\right)\equiv & \text{(тъй като } A\vee\neg A\equiv T)\\ T \end{array}$$

Определение 3. Нека $\mathfrak p$ и $\mathfrak q$ са съждения. Нека $\mathsf A$ означава импликацията $\mathfrak p \to \mathfrak q$. Тогава съждението $\neg \mathfrak q \to \neg \mathfrak p$ се нарича контрапозитивното съждение на $\mathsf A$.

Забележка: Съгласно Теорема 2, всяка импликация е еквивалентна на контрапозитивното си съждение.

3 Извод в съждителната логика

Определение 5. Извод в съждителната логика е последователност от съждения $\mathfrak{p}_1,\,\mathfrak{p}_2,\,\ldots,\,\mathfrak{p}_n,\,\mathfrak{q}$ за някое $\mathfrak{n}\geq 1$. Съжденията $\mathfrak{p}_1,\,\mathfrak{p}_2,\,\ldots,\,\mathfrak{p}_n$ са предпоставки, а \mathfrak{q} е следствие † . Изводът е валиден, тогава и само тогава, когато следствието е вярно тогава, когато всички предпоставки са верни.

Забележска: Споменатият извод е валиден тогава и само тогава, когато

$$(\mathfrak{p}_1 \wedge \mathfrak{p}_2 \wedge \ldots \wedge \mathfrak{p}_n) \vdash \mathfrak{q}$$

Ако поне една предпоставка p_i е лъжа, то $p_1 \land p_2 \land \ldots \land p_n$ е лъжа и тогава $(p_1 \land p_2 \land \ldots \land p_n) \vdash q$ е истина, независимо от истинността на q.

Задача 20. Нека р, q и r са следните елементарни съждения:

- р: Иван учи.
- **q:** Иван играе тенис.
- т: Иван взема блестящо изпита по Дискретни Структури.

Hека $\mathfrak{p}_1, \, \mathfrak{p}_2 \, \, u \, \mathfrak{p}_3 \, \, ca$ съжденията-предпоставки:

[†]На английски съответните термини са premises и conclusion.

р₁: Ако Иван учи, то той ще вземе блестящо изпита по Дискретни Структури.

р2: Ако Иван не играе тенис, той ще учи.

рз: Иван не е взел блестящо изпита по Дискретни Структури.

Докажете, че Иван е играл тенис.

Решение: Да напишем p_1 , p_2 и p_3 така:

 $p_1: p \rightarrow r$

 $p_2: \neg q \rightarrow p$

 \mathfrak{p}_3 : $\neg \mathfrak{r}$

Нашата цел е да докажем, че

$$\big((\mathsf{p}\to\mathsf{r})\wedge(\neg\mathsf{q}\to\mathsf{p})\wedge(\neg\mathsf{r})\big)\vdash\mathsf{q}$$

Ще докажем, че $(p_1 \land p_2 \land p_3) \to q$ е тавтология. Ще използваме табличния метод.

p	q	r	$p \rightarrow r$	$\neg q \rightarrow p$	¬r	$((p \to r) \land (\neg q \to p) \land \neg r) \to q$
F	F	F	Т	F	Т	Т
F	F	Т	T	F	F	Т
F	Т	F	Т	Т	Т	T
F	Т	Т	Т	Т	F	Т
Т	F	F	F	Т	Т	Т
Т	F	Т	Т	Т	F	T
Т	Т	F	F	Т	Т	T
Т	Т	Т	Т	Т	F	T

Задача 21. Докажете валидността на следния извод.

Ако влакът закъснее и няма таксита на гарата, Мария ще закъснее за срещата. Мария не е закъсняла за срещата. Влакът е закъснял. Следователно, на гарата е имало таксита.

Решение: Нека р, q и r са следните елементарни съждения:

р: Влакът закъснява.

q: На гарата няма таксита.

г: Мария закъснява за срещата.

Трябва да покажем, че $\big(((p \land q) \to r) \land \neg r \land p\big) \vdash \neg q$. Това значи да покажем, че

$$\big(((p \land q) \to r) \land \neg r \land p\big) \to \neg q$$

е тавтология. Да разгледаме израза

$$((p \land q) \rightarrow r) \land \neg r \land p$$

и да го опростим чрез еквивалентни преобразувания:

$$((p \land q) \rightarrow r) \land \neg r \land p \equiv \quad \text{(съгласно факта, че } a \rightarrow b \equiv \neg a \lor b)$$

$$(\neg (p \land q) \lor r) \land \neg r \land p \equiv \quad \text{(асоциативност)}$$

$$((\neg (p \land q) \lor r) \land \neg r) \land p \equiv \quad \text{(дистрибутивност)}$$

$$((\neg (p \land q) \land \neg r) \lor (r \land \neg r)) \land p \equiv \quad \text{(свойства на отрицанието)}$$

$$((\neg (p \land q) \land \neg r) \lor F) \land p \equiv \quad \text{(свойства на константите)}$$

$$(\neg (p \land q) \land \neg r) \land p \equiv \quad \text{(комутативност, асоциативност)}$$

$$(\neg (p \land q) \land p) \land \neg r \equiv \quad \text{(закони на } \text{Де Морган)}$$

$$((\neg p \lor \neg q) \land p) \land \neg r \equiv \quad \text{(дистрибутивност, комутативност)}$$

$$((\neg p \land p) \lor (p \land \neg q)) \land \neg r \equiv \quad \text{(свойства на отрицанието)}$$

$$(F \lor (p \land \neg q)) \land \neg r \equiv \quad \text{(свойства на константите)}$$

$$p \land \neg q \land r$$

Има два варианта за довършване на решението.

Вариант А: Може да се покаже с таблица, че $(p \land \neg q \land r) \to \neg q$ е тавтология:

p	q	r	$p \land \neg q \land r$	$(p \land \neg q \land r) \to \neg q$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
T	F	F	F	Т
Т	F	Т	Т	Т
T	Т	F	F	Т
Т	Т	Т	F	Т

Вариант Б: Вече сме показали, че

$$((p \land q) \rightarrow r) \land \neg r \land p \equiv p \land \neg q \land r$$

Но $p \land \neg q \land r$ е истина тогава и само тогава, когато всеки от трите съждения в тази конюнкция са истина, което включва и $\neg q$.

Правила за извод: Общоприети са следните правила за извод в съждителната логика. С тяхна помощ правенето на изводи се опростява значително – също както в предната задача е много по-лесно от предпоставките

r

да изведем $\neg q$ веднага, наместо да строим таблицата на истинност на $(p \land \neg q \land r) \to \neg q$. И така, въпросните правила са:

Правило modus ponens: $p \land (p \rightarrow q) \vdash q$

Правило modus tolens: $\neg q \land (p \rightarrow q) \vdash \neg p$

Правило хипотетичен силогизъм: $(p \to q) \land (q \to r) \vdash (p \to r)$

Правило дизюнктивен силогизъм: $((p \lor q) \land \neg p) \vdash q$

Правило за конюнкцията $\mathfrak{p} \wedge \mathfrak{q} \vdash \mathfrak{p} \wedge \mathfrak{q}^\dagger$ или написано другояче $\mathfrak{p}, \mathfrak{q} \vdash \mathfrak{p} \wedge \mathfrak{q}$

Правило за опростяване: $p \land q \vdash p$

Правило за доказателство чрез случаи: $((p \to r) \land (q \to r)) \vdash ((p \lor q) \to r)$

Правило за конструктивната дилема: $\big((p \to q) \land (r \to s) \land (p \lor r)\big) \vdash (q \lor s)$

Правило за деструктивната дилема: $((p \to q) \land (r \to s) \land (\neg q \lor \neg s)) \vdash (\neg p \lor \neg r)$

Правило за резолюцията: $((p \lor q) \land (\neg p \lor r)) \vdash (q \lor r)$

Задача 22. Докажете всяко от изброените девет правила за извод, използайки табличния метод.

Решение: Ще докажем правилото за резолюцията.

p	q	r	$p \lor q$	$\neg p \lor r$	$(p \lor q) \land (\neg p \lor r)$	$q \vee r$	$\big((p \lor q) \land (\neg p \lor r)\big) \to (q \lor r)$
F	F	F	F	Т	F	F	Т
F	F	Т	F	Т	F	Т	T
F	Т	F	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
T	F	F	Т	F	F	F	Т
T	F	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	Т	Т
T	Т	Т	Т	Т	Т	Т	Т

Забележа: От последната таблица ясно се вижда, че $(p \lor q) \land (\neg p \lor r)$ не е логически еквивалентно на $q \lor r$. Така че когато заместваме израз от вида $(p \lor q) \land (\neg p \lor r)$ с израз от вида $q \lor r$ съгласно правилото за резолюцията, това не е заместване на един логически израз с друг, еквивалентен на него израз, а е стъпка към някакъв логически извод.

Задача 23. Докажете валидността на следния извод.

Тази сутрин не беше слънчево и днес е по-студено от вчера. Ако отидем да плуваме, то тази сутрин е било слънчево. Ако не отидем да плуваме, то ще се разходим в планината. Ако се разходим в планината, то ще се приберем преди вечеря. Следователно, ще се приберем преди вечеря.

Решение: Нека р, q, r, s и t са следните съждения:

- р: Тази сутрин е слънчево.
- q: Днес е по-студено от вчера.

[†]Написано така, правилото изглежда безсмислено. Идеята е, че ако **независимо** изведем от едни и същи предпоставки и р, и q, имаме право да твърдим, че конюнкцията р ∧ q е истина и можем да я използваме.

- т: Ще отидем да плуваме.
- s: Ще отидем на разходка в планината.
- t: Ще се приберем преди вечеря.

Трябва да докажем, че изводът

$$((\neg p \land q) \land (r \rightarrow p) \land (\neg r \rightarrow s) \land (s \rightarrow t)) \vdash t$$

е валиден. Ето как може да стане това.

- 1. ¬р ∧ q (предпоставка)
- 2. ¬р (от (1.) и правилото за опростяване)
- 3. $r \rightarrow p$ (предпоставка)
- 4. ¬r (от (2.) и (3.) с modus tolens)
- 5. $\neg r \rightarrow s$ (предпоставка)
- 6. s (от (4.) и (5.) с modus ponens)
- 7. $s \rightarrow t$ (предпоставка)
- 8. t (от (6.) и (7.) с modus ponens)

Задача 24. Докажете валидността на следния извод.

Ако ми пратиш имейл, ще напиша програмата навреме. Ако не ми пратиш имейл, ще си легна рано. Ако си легна рано, ще се събудя свеж. Следователно, ако не напиша програмата навреме, ще се събудя свеж.

Решение: Нека р, q, r и s са следните съждения:

- р: Ти ми прати имейл.
- q: Ще напиша програмата навреме.
- т: Ще си легна рано.
- s: Ще се събудя свеж.

Трябва да докажем, че изводът

$$((p \to q) \land (\neg p \to r) \land (r \to s)) \vdash (\neg q \to s)$$

е валиден. Ето доказателството:

- 1. $\mathfrak{p} \to \mathfrak{q}$ (предпоставка)
- 2. $\neg q \rightarrow \neg p$ (контрапозитивно на (1.))
- 3. $\neg p \rightarrow r$ (предпоставка)
- 4. $\neg q \rightarrow r$ (хипотетичен силогизъм от (2.) и (3.))

- $5. r \rightarrow s$ (предпоставка)
- 6. $\neg q \to s$ (хипотетичен силогизъм от (4.) и (5.))

Задача 25. Докажете валидността на следния извод.

$$\big(((p \land q) \lor r) \land (r \to s)\big) \vdash (p \lor s)$$

Решение:

- 1. $(\mathfrak{p} \wedge \mathfrak{q}) \vee \mathfrak{r}$ (предпоставка)
- 2. $(\mathfrak{p} \vee \mathfrak{r}) \wedge (\mathfrak{q} \vee \mathfrak{r})$ (дистрибутивност и (1.))
- 3. $p \lor r$ (правилото за опростяване и (2.).)
- $4. \ \mathbf{r} \rightarrow \mathbf{s} \quad (предпоставка)$
- 5. $\neg r \lor s$ (от факта, че $a \to b \equiv \neg a \lor b$ и (4.).)
- 6. $p \lor s$ (резолюция върху (3.) и (5.))

Задача 26. Валиден ли е изводът

Ако решиш всяка задача в учебника, ще научиш Дискретна Математика. Ти си научил Дискретна Математика. Следователно, ти си решил всяка задача в учебника.

Решение: Не, защото

$$\big((p\to q) \land q\big) \vdash p$$

не е валиден извод. Сами докажете, че $((\mathfrak{p} \to \mathfrak{q}) \wedge \mathfrak{q}) \to \mathfrak{p}$ не е тавтология.

Задача 27. Валиден ли е изводът

Ако решиш всяка задача в учебника, ще научиш Дискретна Математика. Ти не си решил всяка задача в учебника. Следователно, ти не си научил Дискретна Математика.

Задача 28. Докажете, че изводът с предпоставки

$$\begin{aligned} (p \wedge t) &\to (r \vee s) \\ q &\to (u \wedge t) \\ u &\to p \end{aligned}$$

u следствие $q \to r$ е валиден.

Задача 29. Разгледайте следната задача, взета от [Ros07, Problem 35, pp. 74] † :

Ако Супермен е способен и желае да предотврати злото, той би го направил. Ако Супермен е неспособен да предотврати злото, той е безсилен; ако не желае да предотврати злото, той е зъл. Супермен не предотвратява злото. Ако Супермен съществува, той не е нито безсилен, нито зъл. Следователно, Супермен не съществува.

Определете дали изводът е валиден.

Решение: Изводът е валиден. Нека p, q, r, s, t и u са следните елементарни съждения:

- р: Супермен е способен да предотврати злото.
- q: Супермен желае да предотврати злото.
- **r:** Супермен е безсилен.
- s: Супермен е зъл.
- **t:** Супермен предотвратява злото.
- и: Супермен съществува.

Ще докажем, че

$$\big(((p \land q) \to t) \land (\neg p \to s) \land (\neg q \to s) \land \neg t \land (u \to (\neg r \land \neg s))\big) \vdash \neg u$$

- 1. $(p \land q) \rightarrow t$ (предпоставка)
- 2. ¬t (предпоставка)
- 3. $\neg(p \land q)$ (modus tolens върху (1.) и (2))
- 4. $\neg p \lor \neg q$ (закони на De Morgan върху (3.))
- 5. $\neg p \rightarrow r$ (предпоставка)
- 6. $\neg q \rightarrow s$ (предпоставка)
- 7. $(\neg p \to r) \land (\neg q \to s)$ (правило за конюнкцията върху (5.) и (6))
- 8. $(\neg p \rightarrow r) \land (\neg q \rightarrow s) \land (\neg p \lor \neg q)$ (правило за кон. върху (4.) и (7), асоциативност)
- 9. $r \lor s$ (конструктивна дилема върху (8.))
- 10. $\neg(\neg(r \lor s))$ (двойно отрицание върху (9.))
- 11. $\neg(\neg r \land \neg s)$) (закони на De Morgan върху (10.))
- 12. $\mathfrak{u} \to (\neg r \wedge \neg s)$ (предпоставка)
- 13. ¬u (modus tolens върху (11.) и (12))

Задача 30. Докажете, че изводът с предпоставки p_1, p_2, \ldots, p_n и следствие $q \to r$ е валиден, ако изводът с предпоставки p_1, p_2, \ldots, p_n , q и следствие r е валиден.

 $^{^{\}dagger}$ Rosen на свой ред я е взел от [KM64].

4 Въведение в предикатната логика

Определение 6. Едноместен предикат е съждение, в което има "празно място", в което празно място се слага обект от някаква предварително зададена област, наречена домейн. За всеки обект от домейна, предикатът е или истина, или лъжа.

Като пример, нека домейнът се състои от плодовете

ябълка, банан, портокал, авокадо, ягода

Нека ябълката и авокадото са зелени, бананът е жълт, портокалът е оранжев, а ягодата е червена. Да разгледаме съжденията:

- 1. Ябълката е червена.
- 2. Бананът е червен.
- 3. Портокалът е червен.
- 4. Авокадото е червено.
- 5. Ягодата е червена.

Съгласно допусканията, първите четири съждения са лъжа, а последното е истина.

Сега да си представим, че от всяко от тези съждения сме махнали името на плода и сме го заменили с многоточие "...". И в петте случая † получаваме

Това е едноместен предикат, чийто домейн са петте изброени плода. Празното място, за което се говори в Определение 6, е многоточието. На мястото на многоточието можем да слагаме име на плод и за всяко име на плод, твърдението е или истина, или лъжа.

Наместо да слагаме точки или подчертавка на празното място в съждението, удобно е да използваме променлива, примерно x. Тогава предикатът става "x е червен(a)", където x взема стойности от указаната област. Да бележим този предикат с "P(x)". При текущите допускания,

- Р(ягода) ≡ Т,
- $P(\text{ябълка}) \equiv F$, $P(\text{банан}) \equiv F$, $P(\text{портокал}) \equiv F$, $P(\text{авокадо}) \equiv F$.

Подчертаваме, че предикатът P(x) сам по себе си не е нито истина, нито лъжа. Истина или лъжа се получава само след заместване на x с някой обект от областта. Особен интерес представляват два случая при такова заместване:

- \bullet когато има поне един обект, за който предикатът е истина. Това бележим с $\exists x P(x)$.
- когато за всеки обект предикатът е истина. Това бележим с $\forall x P(x)$.

Символите " \exists " и " \forall " се наричат *квантори*. \exists е *екзистенциалният квантор*, а \forall е *универсалният квантор*. Ако обектите от областта са краен брой, да речем $\mathfrak{a}_1, \mathfrak{a}_2, \ldots, \mathfrak{a}_n$, то

• $\exists x P(x)$ има смисъл на $P(\mathfrak{a}_1) \vee P(\mathfrak{a}_2) \vee \ldots \vee P(\mathfrak{a}_n)$, а

[†]Родът на думата няма значение, така че "...е червен" се счита за същото като "...е червена".

• $\forall x P(x)$ има смисъл на $P(a_1) \wedge P(a_2) \wedge \ldots \wedge P(a_n)$.

Това илюстрира факта, че екзистенцилният квантор е свързан с дизюнкцията, а универсалният, с конюнкцията.

Ще илюстрираме ползата от използването на предикати с квантори. Да разгледаме следния тривиален извод:

Всяка риба живее във водата. Пъстървата е риба. Следователно, пъстървата живее във водата.

От най-общи съображения е ясно, че изводът е валиден. Но ако се опитаме да формализираме нещата със съждителна логика (като в предните секции), няма как да покажем валидността на извода. Нека заместим първото изречение с p, второто, с q, и третото, с r. За да покажем, че изводът е валиден, трябва да покажем $p \land q \vdash r$, което не е валиден извод. Валидността на извода се вижда, когато се вгледаме в структурата на изреченията, а не ги разглеждаме просто като елементарни съждения без структура. Първото изречение казва, че за всяко нещо (от някаква област, примерно животни), ако това нещо е риба, то то живее във водата. Нека P(x) е предикатът "x е риба", а Q(x) е предикатът "x живее във водата". Тогава първото изречение се формализира така:

$$\forall x (P(x) \rightarrow Q(x))$$

Нека t означава пъстърва. Второто изречение е P(t). Като цяло, изводът е

$$\frac{\forall x (P(x) \to Q(x))}{P(t)}$$

$$\therefore Q(t)$$

При този запис на логически извод, предпоставките се записват една над друга, следвани от хоризонтална черта, под която е следствието. Пред следствието се слага знакът "∴", който се чете, "следователно".

Когато е използван квантор върху някаква променлива, казваме, че тя е ceopsana. Примерно, в израза " $\forall x P(x)$ ", променливата x е свързана. Ако дадена променлива не е свързана, казваме, че тя е ceofodha. Както казахме вече, изрази от предикатната логика със свободни променливи не може да са нито истина, нито лъжа. Приемаме, че когато записваме изрази с квантори, кванторите имат по-висок приоритет, тоест свързват по-силно, от логическите съюзи. Следователно, в израза

$$\forall x P(x) \rightarrow Q(x)$$

действтието на квантора не се простира върху Q(x) и x е свободна променлива в Q(x). Следователно, последният израз не може да има стойност истина или лъжа. Забележете разликата с израза " $\forall x (P(x) \to Q(x))$ " горе, където скобите след $\forall x$ указват, че действието на квантора се простира върху $P(x) \to Q(x)$, а не само върху P(x). С цел по-голяма яснота ще повторим последните събражения:

$$orall x$$
 $\underbrace{\left(P(x) o Q(x)\right)}_{\text{обхват на действие на квантора}}$ $ightarrow Q(x)$ обхват на лействие на квантора

Предикатите могат да има повече от едно празни места за попълване. Иначе казано, да двуместни, триместни и т. н. Да се върнем на примера с плодовете. Нека в предикат (14) на стр. 16 заместим с многоточие и думата "червен". Получаваме

$$\dots e \dots$$
 (15)

На мястото на второто многоточие можем да слагаме име на цвят. По този начин, замествайки първото многоточие с име на плод и второто, с име на цвят, получаваме съждения, които са истина или лъжа. Удобно е да се използват имена на променливи наместо многоточия, за да не се налага да уточняваме "първото многоточие" и "второто многоточие". И така, наместо първото многоточие ползваме променливата \mathbf{x} , и наместо второто, \mathbf{y} . Получаваме двуместния предикат $\mathbf{P}(\mathbf{x},\mathbf{y})$

където x взема стойности име на плод, а y взема стойност име на цвят. Примерно, съгласно допусканията за цветовете на плодовете, $P(x,y) \equiv T$ когато x е банан и y е жълто, а $P(x,y) \equiv F$ когато x е ягода и y е зелено.

Квантори се използват и при предикатите с повече от една променлива. Типична употреба е, примерно, $\forall x \forall y P(x,y)$. Това се чете, "за всяко x, за всяко y, P(x,y)". Ако P е предикатът от примера с плодовете и цветовете, то $\forall x \forall y P(x,y)$ е лъжа, тъй като не е вярно, че ако вземем кой да е плод и кой да е цвят, този плод задължително е от този цвят – примерно, бананът не е червен, тоест P(банан, червен) е лъжа.

В израза $\forall x \forall y P(x,y)$ казваме, че кванторите са *вложени*. Може да имаме вложени квантори от различен вид, примерно $\forall x \exists y P(x,y)$. Това се чете, "за всяко x съществува y, такова че P(x,y)". Ако отново ползваме примера с плодовете и цветовете, $\forall x \exists y P(x,y)$ е истина. За да се убедим, че е така, достатъчно е да съобразим, че всеки плод има някакъв цвят.

Еднотипни квантори могат да бъдат размествани без това да се отразява на истинността, тоест винаги

$$\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)$$
$$\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)$$

От друга страна, разнотипни квантори не може да бъдат размествани по този начин. Тоест, в общия случай,

$$\forall x \exists y P(x, y) \not\equiv \exists y \forall x P(x, y)$$

 $\exists x \forall y P(x, y) \not\equiv \forall y \exists x P(x, y)$

Като пример да разгледаме двуместния предикат

$$Q(x, y) : x + y = 2$$

където x и y вземат стойности от множеството на реалните числа. $\forall x \exists y Q(x,y)$ очевидно е истина, понеже за всяко реално x има друго реално y, а именно y = 2 - x, такива че x + y = 2. От друга страна, $\exists y \forall x Q(x,y)$ е лъжа, понеже няма реално число, такова че всяко друго реално, събрано с него, да дава сбор 2.

Аналогично, в примера с плодовете и цветовете, $\forall x \exists y P(x,y)$ е истина, както вече казахме, докато $\exists y \forall x P(x,y)$. Вторият израз би бил истина, ако всички плодове бяха в един и същи цвят.

Забележете, че в " $\forall x P(x,y)$ ", y е свободна променлива, понеже не попада в обхвата на действие на квантор. Следователно, това не може да бъде нито истина, нито лъжа.

Забележе, че за всеки предикат P(x, y), изразът $\forall x \exists y P(x, y)$ е еквивалентен на $\forall y \exists x P(y, x)$, тъй като това е просто преименуване на променливите. Примерно, в предиката с многоточията (15) на предишната страница, няма значение дали наричаме с x първото многоточие и с y, второто, или обратно.

Отрицания на изрази с едноместни предикати се извършват по следния начин: отрицанието превръща универсалния квантор в екзизстенциален и обратното.

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \tag{16}$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x) \tag{17}$$

(18)

" $\neg \forall x P(x)$ " се чете, "не е вярно, че за всяко x от дадения домейн е изпълнено P(x)". " $\exists x \neg P(x)$ " се чете, "съществува x от дадения домейн, за който е изпълнено $\neg P(x)$ ". " $\neg \exists x P(x)$ " се чете, "не е вярно, че съществува x от дадения домейн, за което е изпълнено P(x)". " $\forall x \neg P(x)$ " се чете, "за всяко x от дадения домейн е изпълнено $\neg P(x)$ ".

Ще обосновем не много формално (16). За да се убедим, че двата израза са еквивалентни, можем да разгледаме случай, в който домейнът е краен, да речем домейнът е $\mathfrak{a}_1, \mathfrak{a}_2, \ldots, \mathfrak{a}_n$, и да съобразим, че

$$\forall x P(x) \equiv P(a_1) \land P(a_2) \land ... \land P(a_n)$$

Съгласно законите на De Morgan,

$$\neg (P(\alpha_1) \land P(\alpha_2) \land \ldots \land P(\alpha_n)) \equiv \neg P(\alpha_1) \lor \neg P(\alpha_2) \lor \ldots \lor \neg P(\alpha_n)$$

На свой ред,

$$\neg P(a_1) \lor \neg P(a_2) \lor ... \lor \neg P(a_n) \equiv \exists x \neg P(x)$$

Обосновката на (17) е аналогична.

Да разгледаме четирите твърдения:

- $\forall x (P(x) \land Q(x)) \equiv \forall x (P(x)) \land \forall x (Q(x))$
- $\forall x (P(x) \lor Q(x)) \equiv \forall x (P(x)) \lor \forall x (Q(x))$
- $\exists x (P(x) \land Q(x)) \equiv \exists x (P(x)) \land \exists x (Q(x))$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x (P(x)) \lor \exists x (Q(x))$

където P(x) и Q(x) са произволни едноместни предикати и променливата x винаги приема стойности от един и същи домейн. Кои от тези твърдения са верни и кои, не? Първото твърдение е вярно. За да се убедим в това, да разгледаме случая, когато домейнът е краен, да речем a_1, a_2, \ldots, a_n . Тогава изразът отляво е

$$(P(\alpha_1) \wedge Q(\alpha_1)) \wedge (P(\alpha_2) \wedge Q(\alpha_2)) \wedge \ldots \wedge (P(\alpha_n) \wedge Q(\alpha_n))$$

Поради асоциативността и комутативността на конюнкцията, той е еквивалентен на

$$(P(\alpha_1) \wedge P(\alpha_2) \wedge \ldots \wedge P(\alpha_n)) \wedge (Q(\alpha_1) \wedge Q(\alpha_2) \wedge \ldots \wedge Q(\alpha_n))$$

Второто твърдение е невярно. Например, нека P(x) и Q(x) са предикати с един и същи домейн—многоъгълниците от геометрията—като P(x) е "x има четен брой страни", а Q(x) е "x има нечетен брой страни". Очевидно $\forall x(P(x) \lor Q(x))$ е истина, понеже всеки многоъгълник има четен или нечетен брой страни. Обаче $\forall x(P(x)) \lor \forall x(Q(x))$ не е вярно. За да се убедим в това, да разгледаме поотделно двете съждения-участници в дизюнкцията:

- $\bullet \ \forall x(P(x))$ не е вярно, понеже не всеки многоъгълник има четен брой страни.
- \bullet $\forall x(Q(x))$ не е вярно, понеже не всеки многоъгълник има нечетен брой страни.

Щом двете съждения в дизюнкцията са лъжа, дизюнкцията е лъжа. С аналогични съображения се вижда, че третото твърдение не е вярно, а четвъртото е вярно. Следователно, в някакъв смисъл универсалният квантор има дистрибутивно свойство спрямо конюнкцията, а екзистенциалният, спрямо дизюнкцията.

5 Задачи от предикатната логика

Задача 31. Нека P(x) е предикатът $x \le 4$ с домейн реалните числа. За всяко от следните съждения, определете дали е истина или лъжа.

Задача 32. Нека P(x,y) е предикатът "x е столица на y", където домейнът на x са градовете, а на y, държавите. За всяко от следните съждения, определете дали е истина или лъжа.

Задача 33. Нека P(x) е предикатът "x учи поне пет часа дневно", където домейнът са студентите от ФМИ. Изразете на разговорен български език всяко от следните твърдения:

a)
$$\forall x P(x)$$
 b) $\forall x \neg P(x)$ b) $\exists x P(x)$ c) $\exists x \neg P(x)$
d) $\neg \exists x P(x)$ e) $\neg \forall x P(x)$ sign $\neg \exists x \neg P(x)$

Има ли твърдения, които са еквивалентни едно на друго? Ако да, кои са тези групи?

Задача 34. Нека P(x) е предикатът "x има котка", Q(x) е предикатът "x има куче" и R(x) е предикатът "x има папагал", където домейнът се състои от экителите на София. Изразете всяко от следните твърдения като твърдение от предикатната логика – използвайки предикатните символи P(x), Q(x) и R(x), кванторите и логическите съюзи.

- 1. Всеки човек има котка, куче и папагал.
- 2. Никой човек няма нито котка, нито куче, нито папагал.
- 3. Всеки човек има поне едно от котка, куче, папагал.
- 4. Всеки човек има точно едно от котка, куче, папагал.
- 5. Някой човек има котка и куче, но не и папагал.
- 6. Поне двама души имат котка и куче, но не и папагал.

Упътване: В (6.) ползвайте знака за равенство "=" или неговото отрицание " \neq ". За всеки два елемента от домейна x и y, нотацията "x = y" означава, че те са един и същи елемент, а " $x \neq y$ " означава обратното.

Решение на (6.):

$$\exists x \exists y \big((x \neq y) \land (P(x) \land Q(x) \land \neg R(x)) \land (P(y) \land Q(y) \land \neg R(y)) \big) \qquad \Box$$

Задача 35. Определете какво е твърдението $\forall x P(x)$ —истина или лъжа—където домейнът са реалните числа, а P(x) е предикатът x > 10.

Задача 36. Определете какво е твърдението $\exists x P(x)$ —истина или лъжа—където домейнът са реалните числа, а P(x) е предикатът x > 10.

Задача 37. Определете какво е твърдението $\exists x P(x)$ —истина или лъжа—където домейнът са реалните числа, а P(x) е предикатът x = x + 1.

Задача 38. Определете истинността на всяко от следните твърдения, ако домейнът се състои от целите числа, а P(x) е предикатът x+1>2x:

a)
$$P(0)$$
 b) $P(-1)$ b) $P(1)$ c) $\exists x P(x)$ d) $\forall x P(x)$ e) $\neg \exists x P(x)$ such that $\exists x \neg P(x)$ s) $\neg \exists x \neg P(x)$

Задача 39. Определете истинността на всяко от следните твърдения, ако домейнът се състои от целите числа:

```
a) \forall n(n+1>n) b) \exists n(2n=3n) b) \exists n(n=-n)

e) \exists n((n>0) \land (n=-n)) d) \forall n((n>0) \rightarrow (2=-3))

e) \forall n((n>n+1) \rightarrow (2=-3)) 3c) \forall n((n<0) \oplus (n=0) \oplus (n>0))

3) \forall n(n^2+2>1) u) \forall n\exists m(n^2+m>1) if \exists m\forall n(n^2+m>1)

k) \forall n\exists m(m\geq n) s) \exists m\forall n(m\geq n) s) \exists m\forall n(n\geq n)

s) \exists m\forall n((m\geq n) \rightarrow \exists r(r< r+1))
```

Задача 40. В тази задача домейнът се състои от целите положителни числа. Разгледайте твърдението " \mathfrak{m} се дели на \mathfrak{n} ". Предложете дефиниция на делимост, написана чрез предикат(u), квантор(u), и знаците за равенство (неравенство) и умножение.

Упътване: Дефиницията да бъде от вида

 \forall m \forall n(m се дели на n тогава и само тогава, когато ...)

Задача 41. В тази задача домейнът се състои от целите числа, по-големи от 1. Нека Q(m,n) е предикатът "m се дели на n". За всяко число казваме, че е просто, ако се дели единствено на себе си. Предложете дефиниция на просто число, написана чрез

- $npedu\kappa am(u)$,
- $\kappa вантор(u)$,
- знаците за равенство (неравенство) и аритметичните операции, и
- $npe\partial u\kappa ama \ Q(m,n)$.

Задача 42. В тази задача домейнът се състои от целите числа, по-големи от 1. Нека P(n) е предикатът "n е просто число". Добре известен факт е, че простите числа са безкрайно много. Изразете твърдението, че простите числа са безкрайно много, чрез средствата на предикатната логика. Използвайте и предиката P(n).

Упътване: Използвайте факта, че целите числа са подредени, тоест за всеки две различни цели числа, точно едното е по-голямо от другото. В решението можете да използвате знака ">".

Задача 43. Дадена е последователност от 20 цели числа A[1], A[2], ..., $A[20]^{\dagger}$. Изразете всяко от следните твърдения чрез средствата на предикатната логика, използвайки освен това знаците за равенство и неравенство, знаците за аритметични операции, както и записите на естествените числа:

- 1. Всяко число е неотрицателно.
- 2. Има двойка съседни числа, едното от които е два пъти по-голямо от другото по абсолютна стойност.
- 3. Числата са подредени в строго нарастващ порядък.
- 4. Всички числа са различни.

Решение на (2.):

$$\exists i \in \{1, 2, ..., 19\} : A[i] = 2 \times A[i+1] \lor A[i] = -2 \times A[i+1] \lor 2 \times A[i] = A[i+1] \lor -2 \times A[i] = A[i+1]$$

Задача 44. Нека P(x,y), Q(x,y) и R(x,y) са предикати над някакъв домейн. Разгледайте твърдението

$$\forall x \exists y ((P(x,y) \land Q(x,y)) \rightarrow R(x,y))$$

Напишете отрицанието на това твърдение така, че знакът за отрицание да не се среща вляво от кванторите.

Задача 45. Дефиницията на граница на реална функция в математическия анализ е следната.

Hека I е отворен интервал, който съдържа числото a. Hека f е функция, дефинирана върху I, може би с изключение на точка a. Kазваме, че f има граница L, когато x клони към a, тогава и само тогава, когато е вярно, че

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \big((0 < |x - \alpha| < \delta) \to (|f(x) - L| < \varepsilon) \big)$$

Напишете отрицанието на това твърдение така, че знакът за отрицание да не се среща вляво от кванторите; тоест, иска се да дадете необходимо и достатъчно условие за това, L да не е граница на f при дадените предпоставки.

Задача 46. За всяко от следните твърдения, напишете неговото отрицание така, че знакът за отрицание да не се среща вляво от кванторите. Нека написаните от вас отрицания са колкото е възможно по-прости. Допуснете, че домейнът са реалните числа.

- $\forall x \forall y ((x > y) \rightarrow (x y < 0))$
- $\forall x \forall y ((x < y) \rightarrow \exists z (x < z < y))$
- $\bullet \ \forall x \forall y \big((|x| = |y|) \to ((y = x) \oplus (y = -x) \big)$

[†]В компютрните науки такава последователност се нарича масив.

Литература

[KM64] D. Kalish and R. Montague. Logic: techniques of formal reasoning. Harcourt, Brace and World, 1964.

[Ros07] K.H. Rosen. Discrete mathematics and its applications. McGraw-Hill, 2007.