Analyse

Séries de fonctions

Question 1/5

Dérivation terme à terme

Réponse 1/5

Si
$$\forall n \in \mathbb{N}, u_n \text{ est de classe } \mathcal{C}^1 \text{ sur } I, \sum u_n$$

CVS sur $I, \sum u'_n$ CVU sur I

Alors,
$$\sum_{n=0}^{+\infty} u_n$$
 CVU sur I
Alors, $\sum_{n=0}^{+\infty} (u_n)$ est de classe \mathcal{C}^1 sur I ,

$$S' = \sum_{n=0}^{+\infty} (u'_n), \sum u_n$$
 CVU sur tout segment de

Question 2/5

Dérivation terme à terme pour la classe \mathcal{C}^k

Réponse 2/5

Si $\forall n \in \mathbb{N}$, u_n est de classe \mathcal{C}^k sur I, $\sum u_n^{(k)}$ CVU sur I, $\forall j \in [1, k-1]$, $\sum u_n^{(j)}$ CVS sur I

CVU sur
$$I$$
, $\forall j \in [1, k-1]$, $\sum u_n^{G'}$ CVS sur I .

Alors, $\sum_{n=0}^{+\infty} (u_n)$ est de classe \mathcal{C}^k sur I ,

$$\forall j \in [0, k], S^{(j)} = \sum_{n=0}^{+\infty} \left(u_n^{(j)}\right) \text{ et } \sum u_n^j \text{ CVU}$$
 sur tout segment de I

Question 3/5

Théorème de sommation L^1

Réponse 3/5

Si u_n est intégrable sur I, $\sum u_n$ CVS vers S

sur
$$I$$
, $\sum \int_{I} (|u_n|)$ converge

Alors, $S = \sum_{n=0}^{+\infty} (u_n)$ est intégrable,

n=0 $\int_{I} (S(t)) dt = \sum_{n=0}^{+\infty} \left(\int_{I} (u_n(t)) dt \right)$

Question 4/5

$$\sum u_n$$
 converge normalement sur A

Réponse 4/5

$$u_n$$
 est bornée sur A pour tout n
$$\sum ||u_n||_{\infty} \text{ converge}$$

Question 5/5

CVU d'une série de fonctions

Réponse 5/5

$$\sum u_n \text{ CVU sur } A \text{ si et seulement si } u_n \text{ CVS}$$

$$\text{sur } A \text{ et } ||R_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$$