

Data Science in Action #9

Studying Complex Systems – Simulating the Monopoly Board Game

Gerhard Svolba Data Scientist, SAS Austria

Data Science Applications and Case Studies

Data Science in Action: #9

Studying Complex Systems – Simulating the Monopoly Board Game

How can you simulate complex environments to get insight in the most frequent processes?

Monte Carlo Simulations

Applications of Monte Carlo Simulations

- Problem that cannot be solved analytically
- Problems that are theoretically solvable, but are very complex
- Illustrate and understand complex processes
- Analyse Game and Investment Strategies

Appliations by Industries

- Simulate Loss Distributions and Claim Events
- Analyse investment strategies
- Simulate production process to detect and understand bottlenecks
- Simulate customer networks in communication
- Voting pattern
- Weather, climate ,...

The Monopoly® board game is a complex system

Set of Complex Rules

Additional Instructions

Monetary Dimension

Ssas

Framework of Opportunities and Events Components

Questions of Interest

- What is the distribution of visits on the fields of the board game?
- Which fields are most profitable?
- Which fields have a high variability in profitability?
- These questions can be transferred to many other simulations studies of complex systems.

Locating the Token – Influential Factors

Sum of 2 Dice

Go to Jail!

Event Fields

Accelerator Dice

Chart copied from http://www.stat4u.at/

Dice only: Almost Even Distribution

All Field-40 visits are relocated to 14

Sum of 2 Dice

Go to Jail!

Event Fields relocate to other fields

Sum of 2 Dice

Go to Jail!

Event Fields

Red Dice introduces high variability

Sum of 2 Dice

Go to Jail!

Event Fields

Accelerator Dice

Example for a Relocation

- If the 3rd dice shows the Monopoly® man:
 - Move forward to the next free property-field
 - To the next property field, if all are sold

Effect of the accelerator dice after 20 rounds

Effect of the accelerator dice after 70 rounds

Dynamic Component

 Effect of the rule changes during the course of the game

Profitability Distribution after 40 rounds

 Profitability simulation allows you to understand the distribution of the simulation

Profitability Distribution after 70 rounds

 The expected duration of the game impacts the profitability of different fields

Visualization Examples in SAS Visual Analytics created by my students at the Business School of Burgenland

Visualizing different visit frequency scenarios with a barchart

Visualizing the balance per field over the course of the game

Visualizing the balance per player for different numbers of players

Tipps/Tricks when implementing this simulation in SAS

Implementation in SAS

```
Declare and Initialize
Loop over Scenarios (Games)
   Initialize Scenario
   Loop over Rounds and Players
      Generate Random Numbers
      Follow Instructions
      Generate Deterministic/Random Behaviour
      Update Counts, Values, States
      Output the Record
  End Loop
End Loop
```

Prepare Analysis Data: Aggreg., Transpose, Enrich

Calculate Output Statistics, Display Output

```
data Monopoly;
 array PlayerPos {4} PlayerPos1 - PlayerPos4;
   do Game = 1 to 10000;
     do Round = 1 to 70;
       do Player = 1 to 4;
          Dice1 = ceil(rand('Uniform')*6);
          if PlayerPos[Player]=40 then
                         PlayerPos[Player]=14;
          output;
       end:
     end:
   end:
run;
proc transpose data=Monopoly ...; run;
proc sgplot data=Monopoly TP;
```

Using an ARRAY in a SAS Datastep

```
Array PlayerPos {&players} PlayerPos1 - PlayerPos&players. ;
Array PlayerBalance {&players} PlayerBalance1 - PlayerBalance&players. ;
Array PlayerIncome {&players} PlayerIncome1 - PlayerIncome&players. ;
Array PlayerExpense {&players} PlayerExpense1 - PlayerExpense&players. ;
Array Field {52} Field1 - Field52 ;
Array FieldSetup {52} FieldSetup1 - FieldSetup52 ;
Array FieldRevenue {52} FieldRevenue1 - FieldRevenue52;
Array FieldCost {52} FieldCost1 - FieldCost52 ;
Array FieldBalance {52} FieldBalance1 - FieldBalance52;
```

- PLAYERPOS[2] denotes the position of player 2 and refers to variable PLAYERPOS2
- PLAYEREXPENSE[Player] refers to the player expense variable for the respective player.
- FIELDREVENUE[PLAYERPOS[PLAYER]] refers to the revenue of that field, where the actual PLAYER is currently positioned.

Using a SAS Format as Lookup Table

	13	Field			M2	M3	
1		2	0.2	1	3	9	16
2		4	0.4	2	6	18	32
3		5	0.5	3	8	24	36
4		8	0.6	3	9	27	40
5		9	0.6	3	9	27	40
6		12	0.6	3	9	27	40
7		13	0.8	4	10	30	45
8		16	1	5	15	45	62
9		17	1	5	15	45	62
10		19	1	5	15	45	62
11		20	1.2	6	18	50	70

```
data k0;
set Property_CostRevenue;
fmtname = 'k0_';
type = 'i';
rename field=start k0=label;
run;

proc format cntlin=k0 library=work;
run;
```

Verwenden der Formate und Arrays

Moving the Token

```
do Round = 1 to &Rounds;
    do Player = 1 to &players;
          Dice1 = ceil(rand('Uniform')*6);
          Dice2 = ceil(rand('Uniform')*6);
          Dice3 = ceil(rand('Uniform') *6);
          *** Dice3 shows a number Number
              that shall be added to the sum;
          if
                  Dice3 <= 3 then DiceSum =
                                   sum(Dice1, Dice2, Dice3);
          else
                                   DiceSum = sum(Dice1, Dice2);
       PlayerPos[Player] + DiceSum;
       PlayerPos[Player] = mod(PlayerPos[Player]-1,52)+1;
```


Summary

- Monopoly Game as "Illustration"
- Analogies with real business life
 - Decisions about investments need to be made.
 - Information not only about the expected value, but also about the variability is needed.
 - Strategies and decisions can change in the course of a game
- SAS is a powerful tool to perform and study simulation case studies (Datastep, DS2, CAS, IML, Analytic Procedures, Visualisation)

Analytics and Data Science is there to help you!

- Get a clearer, more objective picture of your data and your analysis subjects
- Get explicit results instead of searching the needle in the haystack
- Make your data talk to you!
- Receive findings automatically instead of manually
- Do it again! treat models as an asset and repeat your analysis

Get access to more content:

SAS DACH @Youtube: https://www.youtube.com/user/SASsoftwareGermany

Blogs on LinkedIn: https://www.linkedin.com/in/gerhardsvolba/

Twitter: https://twitter.com/gsvolba

Content on Github: https://github.com/gerhard1050

Books @SAS-Press: https://support.sas.com/svolba

Für meine Eltern und meine Großeltern. (To my parents and my grandparents)

In the late 1970s my grandmother from Burgenland came to visit us in Vienna for two weeks. I still remember that time. Every morning before I went to school, I prepared the DKT board game (which is a very popular equivalent to the Monopoly board game in Austria) to be able to start playing with her immediately when I came home from school. And she played with me the whole afternoon, every day. She lost every game, and it always ended with a huge debt amount for her. But she never complained or wanted to do anything else. Spending time with us, the children, was a priority for her. And that was always true for my parents and all my grandparents: We, the children, were always important to them. I enjoyed having fun, listening to self-invented stories, being at the lake, inviting friends, constructing boats, and other stuff, but I also appreciated knowing that you have to work hard and be patient, modest, and persistent to achieve your goals. I learned very early that a happy life has many dimensions. Today I am aware that there are so many things from that time that I could take with me into my professional life and that made me successful. Finishing this book beside a highly intensive full-time job as a SAS consultant and parttime lecturer at universities was a very hard trial for me. And I finally succeeded. The fact that this book ends with the simulation case study of the Monopoly board game is an essential piece that completes a comprehensive picture.

It is my way of saying "Thank You" to my parents and my grandparents for so many things.

