Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{8} = 2\sqrt{2}$	2p
	$2\sqrt{2} - 2\sqrt{2} + 6 = 6 \in \mathbb{N}$	3p
2.	f(0)=1	2p
	$f(0) = 1 (f \circ f)(0) = f(1) = 4$	3p
3.	$x^2 + 1 = 5$	3 p
	Rezultă $x = -2$ sau $x = 2$, care verifică ecuația	2p
4.	Se notează cu x prețul inițial $\Rightarrow 20\% \cdot x = 200$	2p
	x = 1000, deci prețul după ieftinire este 800 de lei	3p
5.	$\vec{u} = -\vec{v} \Rightarrow a - 1 = -2$	3р
	a = -1	2p
6.	M mijlocul lui $(BC) \Rightarrow AM = \frac{BC}{2}$	3p
	AM = 5	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$1-2+2\cdot 1=a$, $2\cdot 1-2=0$ și $2-1=1$	3р
	a=1	2p
b)	Determinantul sistemului este $\begin{vmatrix} 1 & -1 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{vmatrix} =$	2p
	=1+4+0-0-0-2=3	3 p
c)	$ \begin{aligned} x &= 0 \\ y &= 0 \end{aligned} $	2p
	z = -1	2p 1p
2.a)	$f = X^3 - X - 2 \Rightarrow f(2) = 2^3 - 2 - 2 =$	3p
	=4	2p
b)	$x_1 + x_2 + x_3 = 0$, $x_1 x_2 + x_1 x_3 + x_2 x_3 = -1$	2p
	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 2$	3 p
c)	$k \in \mathbb{Z}$ este rădăcină a lui $f \Rightarrow k^3 - k + a = 0$	2p
	$a = -(k-1) \cdot k \cdot (k+1) \Rightarrow a$ este număr întreg multiplu de 6, deoarece este divizibil cu trei	2
	numere întregi consecutive	3 p

1.	$f'(x) = \left(\frac{2}{x} + \ln x\right)' = 2\left(\frac{1}{x}\right)' + \frac{1}{x} =$	2p
	$= -\frac{2}{x^2} + \frac{1}{x} = \frac{x-2}{x^2}$, pentru orice $x \in (0, +\infty)$	3 p

b)	$f'(x) = 0 \Leftrightarrow x = 2$	2p
	$f'(x) < 0$, pentru $x \in (0,2)$ și $f'(x) > 0$, pentru $x \in (2,+\infty)$	2 p
	Punctul de extrem este $x = 2$	1p
c)	$f''(x) = \left(\frac{x-2}{x^2}\right)' = \frac{1 \cdot x^2 - (x-2) \cdot 2x}{x^4} = \frac{4-x}{x^3}$	3р
	$x \in (0,4) \Rightarrow 4-x>0 \Rightarrow f'(x)>0 \Rightarrow f$ este convexă pe intervalul $(0,4)$	2p
2.a)	$\int_{2}^{4} (x-1) f(x) dx = \int_{2}^{4} \frac{1}{x+1} dx =$	2p
	$= \ln(x+1) \begin{vmatrix} 4 \\ 2 \end{vmatrix} = \ln\frac{5}{3}$	3p
b)	$\int_{2}^{3} (x^{3} - 1) \frac{1}{x^{2} - 1} dx = \int_{2}^{3} \frac{x^{2} + x + 1}{x + 1} dx =$	2p
	$= \int_{2}^{3} \left(x + \frac{1}{x+1} \right) dx = \left(\frac{x^{2}}{2} + \ln(x+1) \right) \Big _{2}^{3} = \frac{5}{2} + \ln\frac{4}{3}$	3р
c)	$\mathcal{A} = \int_{2}^{3} f(x) dx = \int_{2}^{3} \frac{1}{x^{2} - 1} dx =$	2p
	$= \frac{1}{2} \ln \left(\frac{x-1}{x+1} \right) \Big _{2}^{3} = \frac{1}{2} \ln \frac{3}{2}$	3p

Examenul de bacalaureat național 2013 Proba E. c) Matematică *M* st-nat

Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $\sqrt{8} 2(\sqrt{2} 3)$ este natural.
- **5p** | **2.** Calculați $(f \circ f)(0)$ pentru funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2+1) = \log_2 5$.
- **5p 4.** După o ieftinire cu 20% prețul unui produs scade cu 200 de lei. Calculați prețul produsului după ieftinire.
- **5p** | **5.** Determinați numărul real a pentru care vectorii $\vec{u} = (a-1)\vec{i} + 4\vec{j}$ și $\vec{v} = 2\vec{i} 4\vec{j}$ sunt opuși.
- **5p** | **6.** Calculați lungimea medianei din A în triunghiul dreptunghic ABC cu ipotenuza BC = 10.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră sistemul de ecuații liniare $\begin{cases} x y + 2z = a \\ 2x y = 0 \\ y z = 1 \end{cases}$, unde a este un număr real.
- **5p** a) Determinați numărul real a știind că (x, y, z) = (1, 2, 1) este soluție a sistemului.
- **5p b**) Calculați determinantul matricei sistemului.
- **5p** c) Rezolvați sistemul pentru a = -2.
 - **2.** Se consideră polinomul $f = X^3 X + a$, unde a este număr întreg.
- **5p** a) Pentru a = -2, calculați f(2).
- **5p b)** Arătați că $x_1^2 + x_2^2 + x_3^2 = 2$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.
- $\mathbf{5p} \mid \mathbf{c}$) Arătați că, dacă polinomul f are o rădăcină întreagă, atunci a este multiplu de 6.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{2}{x} + \ln x$.
- **5p** a) Arătați că $f'(x) = \frac{x-2}{x^2}$, pentru orice $x \in (0, +\infty)$.
- **5p b**) Determinați punctele de extrem ale funcției f.
- **5p** c) Arătați că funcția f este convexă pe intervalul (0,4).
 - **2.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x^2 1}$.
- **5p** a) Arătați că $\int_{2}^{4} (x-1) f(x) dx = \ln \frac{5}{3}$.
- **5p b)** Calculați $\int_{2}^{3} (x^3 1) f(x) dx$.
- **5p** c) Arătați că aria suprafeței delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 2 și x = 3, este egală cu $\frac{1}{2} \ln \frac{3}{2}$.

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	2(1+i) = 2+2i	3p
	$x=2\in\mathbb{R}$	2 p
2.	f(2) = 0	3p
	$f(1) \cdot f(2) \cdot \dots \cdot f(5) = 0$	2p
3.	$x^2 + 1 = x^2 + 2x + 1$	2p
	Rezultă $x = 0$, care verifică ecuația	3p
4.	Numerele de două cifre având produsul cifrelor egal cu 5 sunt 15 și 51 ⇒ 2 cazuri favorabile	2p
	Numărul numerelor naturale de două cifre este 90 ⇒ 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{1}{1}$	
	$p = {\text{nr. cazuri posibile}} = {45}$	2p
5.	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 4\overrightarrow{i} + 3\overrightarrow{j}$	3p
	$AC = \sqrt{4^2 + 3^2} = 5$	2p
6.	$E\left(\frac{\pi}{3}\right) = \sin\frac{\pi}{3} + \cos\frac{\pi}{6}$	2p
	$=\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$	3p

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = 1 \cdot 5 - 2 \cdot 3 =$	3 p
	=5-6=-1	2p
b)	$A^2 = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 12 \\ 18 & 31 \end{pmatrix}$	2 p
	$A^{2} - 6A = \begin{pmatrix} 7 & 12 \\ 18 & 31 \end{pmatrix} - \begin{pmatrix} 6 & 12 \\ 18 & 30 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2}$	3 p
c)	$B = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} - 6 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix} \Rightarrow \det B = \begin{vmatrix} -5 & 2 \\ 3 & -1 \end{vmatrix} = -1$	2p
	$B^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$	3 p
2.a)	$2*2 = \sqrt{2^2 + 2^2 + 4} =$	2p
	$=\sqrt{12}$	3 p
b)	$\sqrt{x^2 + x^2 + 4} = \sqrt{12} \Leftrightarrow 2x^2 + 4 = 12$	2 p
	x = -2 sau $x = 2$	3 p

c)	$\underbrace{1 * 1 * \cdots * 1}_{1 \text{ de 8 ori}} = \sqrt{8 \cdot 1^2 + 4 \cdot (8 - 1)} = \sqrt{36}$	3p
	$\underbrace{1*1*\cdots*1}_{1 \text{ de 8 ori}} = 6 \in \mathbb{Z}$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (e^x)'(x^2 - 6x + 9) + e^x(x^2 - 6x + 9)' =$	3p
	$=e^{x}(x^{2}-6x+9)+e^{x}(2x-6)=e^{x}(x^{2}-4x+3)$, pentru orice $x \in \mathbb{R}$	2p
b)	$f''(x) = e^x (x^2 - 2x - 1)$	2p
	$f(x) + f''(x) = e^{x} (2x^{2} - 8x + 8) = 2(f'(x) + e^{x})$, pentru orice $x \in \mathbb{R}$	3p
c)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = 3$	2p
	$f'(x) > 0$ pentru $x \in (-\infty,1)$, $f'(x) < 0$ pentru $x \in (1,3)$ și $f'(x) > 0$ pentru $x \in (3,+\infty)$	2 p
	Punctele de extrem sunt $x_1 = 1$ şi $x_2 = 3$	1p
2.a)	$\int_{0}^{1} (x+1) f(x) dx = \int_{0}^{1} \frac{x(x+1)}{x+1} dx = \int_{0}^{1} x dx =$	2p
	$=\frac{x^2}{2}\Big _0^1 = \frac{1}{2}$	3p
b)	$\int_{0}^{1} x^{2} f(x) dx + \int_{0}^{1} x^{3} f(x) dx = \int_{0}^{1} \frac{x^{3}}{x+1} dx + \int_{0}^{1} \frac{x^{4}}{x+1} dx =$	2p
	$= \int_{0}^{1} \frac{x^{3}(x+1)}{x+1} dx = \int_{0}^{1} x^{3} dx = \frac{x^{4}}{4} \Big _{0}^{1} = \frac{1}{4}$	3p
c)	$V = \pi \int_{1}^{2} h^{2}(x) dx = \pi \int_{0}^{1} \left(\frac{x}{x+1}\right)^{2} dx = \pi \int_{0}^{1} \left(1 - \frac{2}{x+1} + \frac{1}{(x+1)^{2}}\right) dx =$	3p
	$= \pi \left(x - 2\ln(x+1) - \frac{1}{x+1} \right) \Big _{0}^{1} = \pi \left(\frac{3}{2} - 2\ln 2 \right)$	2p

Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_șt-nat*

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul x = 2(1+i) 2i este real.
- **5p** 2. Calculați $f(1) \cdot f(2) \cdot ... \cdot f(5)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x 2$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 1} = x + 1$.
- **4.** Calculați probabilitatea ca, alegând la întâmplare un număr din mulțimea numerelor naturale de două cifre, produsul cifrelor acestuia să fie egal cu 5.
- **5p** | **5.** Se consideră punctele A, B și C astfel încât $\overrightarrow{AB} = 2\overrightarrow{i} + 2\overrightarrow{j}$ și $\overrightarrow{BC} = 2\overrightarrow{i} + \overrightarrow{j}$. Calculați lungimea vectorului \overrightarrow{AC} .
- **5p 6.** Se consideră $E(x) = \sin x + \cos \frac{x}{2}$, unde x este număr real. Calculați $E\left(\frac{\pi}{3}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$.
- **5p** a) Calculați det A.
- **5p b**) Arătați că $A^2 6A = I_2$.
- **5p** c) Determinați inversa matricei $B = A 6I_2$.
 - **2.** Pe \mathbb{R} se definește legea de compoziție asociativă dată de $x * y = \sqrt{x^2 + y^2 + 4}$
- **5p a)** Calculați 2*2.
- **5p** | **b**) Rezolvați în mulțimea numerelor reale ecuația $x * x = \sqrt{12}$.
- **5p** c) Arătați că numărul $\underbrace{1*1*\cdots*1}_{1 \text{ de 8 ori}}$ este întreg.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x (x^2 6x + 9)$.
- **5p** a) Arătați că $f'(x) = e^x(x^2 4x + 3)$, pentru orice $x \in \mathbb{R}$.
- **5p b)** Verificați dacă $f(x) + f''(x) = 2(f'(x) + e^x)$, pentru orice $x \in \mathbb{R}$.
- **5p** $| \mathbf{c} |$ Determinați punctele de extrem ale funcției f.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x}{x+1}$.
- **5p** a) Calculați $\int_{0}^{1} (x+1) f(x) dx$.
- **5p b)** Arătați că $\int_{0}^{1} x^{2} f(x) dx + \int_{0}^{1} x^{3} f(x) dx = \frac{1}{4}$.
- **5p** c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $h:[0,1] \to \mathbb{R}$, h(x) = f(x).

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

2022	So de pr	
1.	$3(1-i) = 3-3i$ $x = 3 \in \mathbb{R}$	3p 2p
2.	$f(x) = 0 \Rightarrow x = 1$ sau $x = 2$ Distanța este egală cu 1	3p 2p
3.	2x+3=3 $x=0$	3p 2p
4.	Numerele din mulțimea A divizibile cu 4 sunt 4, 8, 12, 16 și $20 \Rightarrow 5$ cazuri favorabile Numărul de elemente ale mulțimii A este $20 \Rightarrow 20$ de cazuri posibile $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{4}$	2p 1p 2p
5.	Mijlocul segmentului (AC) este $M(0,4)$ $BM = \sqrt{(-3)^2 + 4^2} = 5$	2p 3p
6.	$A = \frac{\pi}{2}$ $AC = \frac{1}{2} \cdot BC = 2$	2p 3p

1.a)	$\det\left(M\left(2\right)\right) = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} =$	2p
	$\begin{vmatrix} -1 & 2 \\ = 4 - 1 = 3 \end{vmatrix}$	3 p
b)	$M(x) \cdot M(y) = \begin{pmatrix} xy + (1-x)(1-y) & x(1-y) + (1-x)y \\ (1-x)y + x(1-y) & (1-x)(1-y) + xy \end{pmatrix} =$	3p
	$= \begin{pmatrix} 2xy - x - y + 1 & 1 - (2xy - x - y + 1) \\ 1 - (2xy - x - y + 1) & 2xy - x - y + 1 \end{pmatrix} = M(2xy - x - y + 1), \text{ pentru orice numere reale}$	2p
	x și y	
c)	(*)	1 p
	2ax - a - x + 1 = a, pentru orice număr real x	2p
	$a = \frac{1}{2}$	2p
2.a)	$0 \circ (-2) = 0 \cdot (-2) + 2 \cdot 0 + 2 \cdot (-2) + 2 =$	3р
	=-2	2 p
b)	$x \circ y = xy + 2x + 2y + 2 = x(y+2) + 2(y+2) - 2 =$	3p
	=(x+2)(y+2)-2, pentru orice numere reale x și y	2 p
c)	$x \circ x \circ x = \left(x+2\right)^3 - 2$	3p
	$(x+2)^3 - 2 = 6 \Rightarrow x = 0$	2 p

SUBII	ECTUL al III-lea (30 de	e puncte)
1.a)	$f'(x) = \frac{(2x-2)(x-1) - (x^2 - 2x + 2)}{(x-1)^2} =$	3р
	$= \frac{x^2 - 2x}{\left(x - 1\right)^2} = \frac{x\left(x - 2\right)}{\left(x - 1\right)^2}, \text{ pentru orice } x \in \left(1, +\infty\right)$	2p
b)	$f'(x) = 0 \Rightarrow x(x-2) = 0 \Rightarrow x = 2$, deoarece $x \in (1, +\infty)$	2 p
	$f'(2) = 0$; $f'(x) < 0$, pentru $x \in (1,2)$ şi $f'(x) > 0$, pentru $x \in (2,+\infty)$	2p
	Punctul de extrem este $x = 2$	1p
c)	$\lim_{x \to +\infty} \frac{f(x)}{x} = 1$	2p
	$\lim_{x \to +\infty} \left(f\left(x\right) - x \right) = -1$	2p
	Ecuația asimptotei oblice spre $+\infty$ la graficul funcției f este $y = x - 1$	1p
2.a)	$\int_{1}^{2} \frac{f(x)}{\sqrt{x}} dx = \int_{1}^{2} x dx =$	2p
	$=\frac{x^2}{2}\Big _{1}^{2}=\frac{3}{2}$	3p
b)	$F'(x) = \left(\frac{2}{5} \cdot x^{\frac{5}{2}}\right)^{1} = x^{\frac{3}{2}} = x\sqrt{x} \text{, pentru orice } x \in (0, +\infty)$	3р
	$F'(x) = f(x)$, pentru orice $x \in (0, +\infty) \Rightarrow F$ este o primitivă a funcției f	2 p
c)	$F'(x) = f(x)$, pentru orice $x \in (0, +\infty) \Rightarrow F$ este o primitivă a funcției f $\mathcal{A} = \int_{1}^{4} f(x) dx = \int_{1}^{4} x \sqrt{x} dx =$	2p
	$= \frac{2}{5} \cdot x^2 \sqrt{x} \Big _{1}^{4} = \frac{62}{5}$	3р

Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_st-nat*

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul x = 3(1-i) + 3i este real.
- **5p** 2. Calculați distanța dintre punctele de intersecție a graficului funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$ cu axa Ox.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{2x+3} = 8$.
- **5p 4.** Calculați probabilitatea ca, alegând la întâmplare un element din mulțimea $A = \{1, 2, 3, ..., 20\}$, acesta să fie divizibil cu 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-2,3), B(3,0) și C(2,5). Calculați lungimea medianei din B a triunghiului ABC.
- **5p 6.** Determinați lungimea laturii *AC* a triunghiului *ABC*, știind că *BC* = 4, *B* = $\frac{\pi}{6}$ și *C* = $\frac{\pi}{3}$

SUBIECTUL al II-lea (30 de puncte)

- **1.** Pentru fiecare număr real x se consideră matricea $M(x) = \begin{pmatrix} x & 1-x \\ 1-x & x \end{pmatrix}$.
- **5p** a) Calculați $\det(M(2))$.
- **5p b**) Verificați dacă $M(x) \cdot M(y) = M(2xy x y + 1)$, pentru orice numere reale x și y.
- **5p** c) Determinați numărul real a astfel încât $M(a) \cdot M(x) = M(a)$, pentru orice număr real x.
 - **2.** Pe \mathbb{R} se definește legea de compoziție asociativă dată de $x \circ y = xy + 2x + 2y + 2$.
- **5p a**) Calculați $0 \circ (-2)$.
- **5p b)** Arătați că $x \circ y = (x+2)(y+2)-2$, pentru orice numere reale x și y.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $x \circ x \circ x = 6$.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 2x + 2}{x-1}$.
- **5p** a) Arătați că $f'(x) = \frac{x(x-2)}{(x-1)^2}$, pentru orice $x \in (1, +\infty)$.
- **5p b**) Determinați punctele de extrem ale funcției f.
- **5p** c) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
 - **2.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=x\sqrt{x}$.
- **5p** a) Calculați $\int_{1}^{2} \frac{f(x)}{\sqrt{x}} dx$.
- **5p b**) Arătați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{2}{5}x^2\sqrt{x}$ este o primitivă a funcției f.
- **5p** c) Calculați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 1 și x = 4.

Varianta 9

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	3(2+5i) = 6+15i	2p
	5(1+3i) = 5+15i	2p
	$a=1\in\mathbb{R}$	1p
2.	$f(x) = 0 \Rightarrow (x+5)^2 = 0$	2p
	x = -5 si y = 0	3 p
3.	$x^2 + x + 1 = x + 2$	3 p
	Rezultă $x = -1$ sau $x = 1$, care verifică ecuația	2p
4.	Se notează cu x prețul înainte de ieftinire $\Rightarrow x - \frac{10}{100} \cdot x = 90$	3p 2p
	x = 100	
5.	u = u	3p
	$d: y-2=1\cdot (x-2)$, deci $d: y=x$	2p
6.	$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC} = \frac{25 + 36 - 49}{2 \cdot 5 \cdot 6} =$	3 p
	$=\frac{1}{5}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) + A(6) = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 6 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 2 \\ 2 & -2 & 2 \end{pmatrix} =$	
	$ \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 2 \\ 2 & -2 & 2 \end{pmatrix} = $	3 p
	=2A(4)	2p
b)	$\det(A(x)) = \begin{vmatrix} 1 & 1 & 0 \\ x & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 3 - x$	3p
	$3-x=0 \Rightarrow x=3$	2p
c)	$\det(A(2)) = 1$	2p
	$(A(2))^{-1} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \\ -3 & 2 & -1 \end{pmatrix}$	3p
2.a)	f(-1) = -1 + 1 - m + m = 0	2p
	Rezultă $X + 1$ divide polinomul f	3 p
b)	$x_1 + x_2 + x_3 = -1$, $x_1 x_2 + x_1 x_3 + x_2 x_3 = m$	2 p
	$x_1^2 + x_2^2 + x_3^2 = 1 - 2m$	2p
	$1-2m=11 \Rightarrow m=-5$	1p

Probă scrisă la matematică *M_şt-nat*

Barem de evaluare și de notare

1

c)	$x_1 = -1 \Rightarrow x_2 = x_3 = 1$	2p
	$x_1 x_2 x_3 = -m$	1p
	$ m =1 \Rightarrow m=-1$ sau $m=1$; ambele valori verifică cerința	2 p

БОВП	ECTUL ai III-lea	(50 de puncte)
1.a)	$f'(x) = x' - (\ln x)' =$	2p
	$=1-\frac{1}{x}$, pentru orice $x \in (0,+\infty)$	3р
b)	y - f(1) = f'(1)(x-1)	2p
	$f(1)=1$, $f'(1)=0 \Rightarrow$ ecuația tangentei este $y=1$	3 p
c)	$f'(1) = 0, f'(x) < 0, \text{ pentru } x \in (0,1) \text{ si } f'(x) > 0, \text{ pentru } x \in (1,+\infty)$	3p
	$f(x) \ge f(1) \Rightarrow x \ge \ln x + 1$, pentru orice $x \in (0, +\infty)$	2p
2.a)	$\int_{2}^{3} \frac{f(x)}{x(x-1)} dx = \int_{2}^{3} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{2}^{3} =$	3р
	$=\frac{15}{2}-4=\frac{7}{2}$	2 p
b)	$f(x) = x^3 - x \Rightarrow$ primitiva F a funcției f este $F(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 + c$, unde $c \in \mathbb{R}$	3 p
	$F(1) = -1 \Rightarrow c = -\frac{3}{4} \Rightarrow F(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 - \frac{3}{4}$	2 p
c)	$\int_{2}^{e} \frac{f(x) \ln x}{x^{2} - 1} dx = \int_{2}^{e} x \ln x dx =$	2 p
	$= \left(\frac{x^2}{2}\ln x\right)\Big _2^e - \frac{1}{2}\int_2^e xdx = \frac{e^2}{4} - 2\ln 2 + 1$	3p

Examenul de bacalaureat național 2013 Proba E. c) Matematică M_st -nat

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul a = 3(2+5i) 5(1+3i) este real.
- **5p** 2. Determinați coordonatele punctului de intersecție cu axa Ox a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 10x + 25$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_5(x^2 + x + 1) = \log_5(x + 2)$.
- **5p 4.** După o ieftinire cu 10% prețul unui produs este 90 de lei. Calculați prețul produsului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră dreapta h de ecuație y = x 1 și punctul A(2,2). Determinați ecuația dreptei d care trece prin A și este paralelă cu h.
- **5p** | **6.** Calculați cosinusul unghiului A al triunghiului ABC în care AB = 5, AC = 6 și BC = 7.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Pentru fiecare număr real x se consideră matricea $A(x) = \begin{pmatrix} 1 & 1 & 0 \\ x & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.
- **5p** a) Arătați că A(2) + A(6) = 2A(4).
- **5p b**) Determinați numărul real x pentru care $\det(A(x)) = 0$.
- **5p c**) Determinați inversa matricei A(2).
 - **2.** Se consideră x_1 , x_2 și x_3 rădăcinile complexe ale polinomului $f = X^3 + X^2 + mX + m$, unde m este un număr real.
- **5p** a) Arătați că f este divizibil cu X + 1, pentru orice număr real m.
- **5p b**) Determinați numărul real *m* pentru care $x_1^2 + x_2^2 + x_3^2 = 11$.
- **5p** c) Determinați valorile reale ale lui m știind că $|x_1| = |x_2| = |x_3|$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x \ln x$.
- **5p** a) Calculați f'(x), $x \in (0, +\infty)$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
- **5p** c) Demonstrați că $x \ge \ln x + 1$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x(x+1)(x-1).
- **5p a)** Arătați că $\int_{2}^{3} \frac{f(x)}{x(x-1)} dx = \frac{7}{2}$.
- **5p b**) Determinați primitiva $F: \mathbb{R} \to \mathbb{R}$ a funcției f știind că F(1) = -1.
- **5p** c) Arătați că $\int_{2}^{e} \frac{f(x) \ln x}{x^2 1} dx = \frac{e^2}{4} 2 \ln 2 + 1$.

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

• SUBIECTUL I (30 de puncte)

- 50	• SUBJECTULI (SU de puncie	
1.	$a_2 - a_1 = r \Rightarrow r = -1$	2p
	$a_3 = 0$	2p
	Finalizare: produsul este egal cu 0	1p
2.	$\Delta = 4 + 4m < 0$	3p
	$m \in (-\infty, -1)$	2p
3.	$x(x-1)=12 \Rightarrow x=-3 \text{ sau } x=4$	3 p
	x = 4 convine, $x = -3$ nu convine	2p
4.	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}}$	1p
	nr. cazuri posibile	
	Numărul numerelor \overline{abc} pentru care $a \cdot b \cdot c = 3$ este egal cu $3 \Rightarrow 3$ cazuri favorabile	2p
	Numărul numerelor naturale de trei cifre este de 900 ⇒ 900 cazuri posibile	1p
	$n = \frac{1}{n}$	1
	$p = \frac{1}{300}$	1p
5.	$ \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos \ll (\vec{a}, \vec{b}) = 2 \cdot 3 \cdot \frac{1}{2}$	3 p
	$\vec{a} \cdot \vec{b} = 3$	2p
6.		2p
	$BH \perp AC \Rightarrow m_{BH} \cdot m_{AC} = -1 \Rightarrow \frac{y_H - 1}{1} \cdot \frac{-2}{2} = -1$	2p
	$y_H = 2$	1p

1.a)	Suma elementelor matricei A este egală cu $1+(2n+1)+n+1+(2n^2+1)+n^2+1=$	3 p
	$=3n^2+3n+5$	2p
b)	$\det A = n^2 - n$	2 p
	Finalizare: $n \in \mathbb{N} \setminus \{0,1\}$	3 p
c)	$A = \frac{1}{2} \Delta $	1p
	$n^2 + n - 6 = 0 \Longrightarrow n = 2 \text{ sau } n = -3$	3 p
	Finalizare: $n = 2$	1p
2.a)	$2011 \circ 2012 = 2011 + 2012 + 1 =$	3p
	= 4024	2p
b)	$(x \circ y) \circ z = x + ay + az + 2$ pentru orice $x, y, z \in \mathbb{R}$	2 p
	$x \circ (y \circ z) = x + ay + a^2z + a + 1$ pentru orice $x, y, z \in \mathbb{R}$	2p
	$(x \circ y) \circ z = x \circ (y \circ z)$ pentru orice $x, y, z \in \mathbb{R} \Rightarrow a = 1$	1p

- 1				
	c)	$2^x = t \Longrightarrow t^2 - t = 0$	2 p	ì
		Finalizare: $x = 0$	3р	1

	(ev de panete	
1.a)	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2)$	2p
	$f'(x) = (x + \ln x)' = 1 + \frac{1}{x}$, pentru orice $x \in (0, +\infty)$	2p
	Finalizare	1p
b)	y - f(1) = f'(1)(x-1)	2p
	f(1)=1, f'(1)=2	2p
	Ecuația tangentei este $y = 2x - 1$	1p
c)	$f''(x) = -\frac{1}{x^2}$, pentru orice $x \in (0, +\infty)$	2p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty)$	2p
	Finalizare	1p
2.a)	$\int_{0}^{1} f_{1}(x) dx = (x+1)e^{x} \Big _{0}^{1} - \int_{0}^{1} e^{x} dx =$	2p
	$=\left((x+1)e^x-e^x\right)\Big _0^1=e$	3 p
b)	f_{2011} derivabilă și $f_{2011}'(x) = ((x+2011)e^x)' = e^x + (x+2011)e^x = (x+2012)e^x$, $\forall x \in \mathbb{R}$	3 p
	$f_{2011}' = f_{2012}$	2p
c)	$(x+n)e^x \ge (x+n)(x+1)$, pentru orice $x \in [0,1]$ și $n \in \mathbb{N}^*$	1p
	$\int_{0}^{1} (x+n)e^{x} dx \ge \int_{0}^{1} (x+n)(x+1) dx$	1p
	$\int_{0}^{1} (x+n)(x+1) dx = \left(\frac{x^{3}}{3} + (n+1)\frac{x^{2}}{2} + nx\right)\Big _{0}^{1} = \frac{9n+5}{6}$	2p
	Finalizare	1p

Examenul de bacalaureat național 2013 Proba E. c) Matematică *M șt-nat*

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte

- **5p** | **1.** Calculați produsul primilor trei termeni ai progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=2$ și $a_2=1$.
- **5p** 2. Determinați valorile reale ale lui m pentru care $x^2 2x m > 0$, oricare ar fi $x \in \mathbb{R}$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2 x + \log_2 (x-1) = \log_2 12$.
- **5p 4.** Calculați probabilitatea ca, alegând la întâmplare un număr natural de trei cifre, produsul cifrelor acestuia să fie egal cu 3.
- **5p 5.** Calculați $\vec{a} \cdot \vec{b}$, știind că $|\vec{a}| = 2$, $|\vec{b}| = 3$ și unghiul vectorilor \vec{a} și \vec{b} are măsura $\frac{\pi}{3}$.
- **5p 6.** În reperul cartezian xOy se consideră punctele A(1,3), B(0,1) și C(3,1). Determinați coordonatele ortocentrului triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Pentru n număr natural se consideră matricea $A = \begin{pmatrix} 0 & 0 & 1 \\ 2n+1 & n & 1 \\ 2n^2+1 & n^2 & 1 \end{pmatrix}$.
- **5p** a) Calculați suma elementelor matricei A.
- 5p b) Determinați numerele naturale n pentru care matricea A are determinantul diferit de zero.
- **5p** c) În reperul cartezian xOy se consideră punctele O(0,0) și $A_n(2n+1,n)$, $n \in \mathbb{N}$, $n \ge 2$. Determinați valorile numărului natural n, $n \ge 2$ pentru care aria triunghiului $OA_nA_{n^2}$ este egală cu $n^2 3$.
 - **2.** Pe mulțimea numerelor reale se consideră legea de compoziție $x \circ y = x + ay + 1$, unde $a \in \mathbb{R}$.
- **5p** | **a**) Pentru a = 1 calculați $2011 \circ 2012$.
- **5p b)** Determinați numărul real a pentru care legea de compoziție " \circ " este asociativă.
- **5p** c) Pentru a = -1 rezolvați în mulțimea numerelor reale ecuația $4^x \circ 2^x = 1$.

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x + \ln x$.
- **5p** a) Arătați că $\lim_{x\to 2} \frac{f(x) f(2)}{x 2} = \frac{3}{2}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 1.
- **5p** c) Demonstrați că funcția f este concavă pe $(0, +\infty)$.
 - **2.** Pentru fiecare număr natural nenul n se consideră funcția $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = (x+n)e^x$.
- **5p** a) Calculați $\int_{0}^{1} f_1(x) dx$.
- **5p b)** Arătați că funcția f_{2011} este o primitivă a funcției f_{2012} .
- **5p** c) Demonstrați că $\int_0^1 f_n(x) dx \ge \frac{9n+5}{6}$, pentru orice număr natural nenul n, folosind eventual inegalitatea $e^x \ge x+1$, adevărată pentru orice $x \in \mathbb{R}$.

Varianta 3

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{28} = 2\sqrt{7}$ $2\sqrt{7} + 2 - 2\sqrt{7} = 2$	3p 2p
2.	f(1)+f(2)++f(10) = 2(1+2++10)-10 = = 100	3p 2p
3.	$4^{x+1} = 4^2$ $x+1=2 \Rightarrow x=1$	3p 2p
4.	Multiplii lui 7 din mulțimea A sunt 7 și $14 \Rightarrow 2$ cazuri favorabile Numărul de elemente ale mulțimii A este $15 \Rightarrow 15$ cazuri posibile $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{15}$	2p 1p 2p
5.	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 3\overrightarrow{i}$ $AC = 3$	3p 2p
6.	$\sin x = \cos x$ $x = \frac{\pi}{4}$	3p 2p

1.a)	$\det(A(2)) = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} =$	2p
	$\begin{vmatrix} 2 & 2 & 1 \end{vmatrix}$ = 5	3 p
b)	$A(1) \cdot A(2) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} =$	2p
	$= \begin{pmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{pmatrix} = 5A(1)$	3 p
c)	$\det(A(x)) = \begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix} = 2x^3 - 3x^2 + 1$	2p
	$\det(A(x)) = 0 \Leftrightarrow (2x+1)(x-1)^2 = 0 \Leftrightarrow x = -\frac{1}{2} \text{ sau } x = 1$	3 p
2.a)	$f = \frac{1}{2} \frac{2}{1} \frac{2}{1} \frac{2}{1} \frac{1}{3} $	2p
L)	f(1)=1-2-2+3=0	3p
b)	$f(2) = 2 \Rightarrow 8 - 8 - 4 + m = 2$ m = 6	3p 2p

c)	$x_1 + x_2 + x_3 = 2$, $x_1x_2 + x_2x_3 + x_3x_1 = -2$, $x_1x_2x_3 = -4$	3 p
	$\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = 2 \cdot \frac{-2}{-4} = 1$	2 p

	•	
1.a)	$f'(x) = x' \cdot \ln x + x \cdot (\ln x)' =$	2p
	$= \ln x + x \cdot \frac{1}{x} = \ln x + 1$	3p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x^2} = \lim_{x \to +\infty} \frac{\ln x}{x} =$	2p
	$= \lim_{x \to +\infty} \frac{1}{x} = 0$	3p
c)	$f"(x) = \frac{1}{x}, x \in (0, +\infty)$	2p
	$f''(x) > 0$ pentru orice $x \in (0, +\infty) \Rightarrow f$ convexă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} xf(x)dx = \frac{1}{2} \int_{0}^{1} \frac{(x^{2}+1)'}{x^{2}+1} dx =$	3р
	$= \frac{1}{2}\ln(x^2 + 1) \Big _{0}^{1} = \frac{1}{2}\ln 2$	2p
b)	$\int_{0}^{1} x f'(x) dx = x f(x) \Big _{0}^{1} - \int_{0}^{1} f(x) dx =$	2p
	$= \frac{1}{2} - \arctan \left \frac{1}{0} \right = \frac{1}{2} - \frac{\pi}{4}$	3p
c)	$V = \pi \int_{0}^{1} h^{2}(x) dx = \pi \int_{0}^{1} (x^{4} + 2x^{2} + 1) dx =$	2p
	$=\pi \left(\frac{x^5}{5} + \frac{2x^3}{3} + x\right) \Big _0^1 = \frac{28\pi}{15}$	3p

Examenul de bacalaureat național 2013 Proba E. c) Matematică *M st-nat*

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $2(\sqrt{7}+1)-\sqrt{28}$ este natural.
- **5p** 2. Calculați f(1) + f(2) + ... + f(10) pentru funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $4^{x+1} = 16$.
- **5p 4.** Calculați probabilitatea ca, alegând la întâmplare un element din mulțimea $A = \{1, 2, 3, ..., 15\}$, acesta să fie multiplu de 7.
- **5p 5.** Se consideră punctele A, B și C astfel încât $\overrightarrow{AB} = 2\overrightarrow{i} + \overrightarrow{j}$ și $\overrightarrow{BC} = \overrightarrow{i} \overrightarrow{j}$. Calculați lungimea vectorului \overrightarrow{AC} .
- **5p 6.** Determinați $x \in \left(0, \frac{\pi}{2}\right)$ știind că $\frac{3\sin x 2\cos x}{\cos x} = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Pentru fiecare număr real x se consideră matricea $A(x) = \begin{pmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{pmatrix}$.
- **5p** a) Calculați $\det(A(2))$.
- **5p b**) Arătați că $A(1) \cdot A(2) = 5A(1)$.
- **5p** c) Determinați numerele reale x pentru care $\det(A(x)) = 0$.
 - **2.** Se consideră polinomul $f = X^3 2X^2 2X + m$, unde m este număr real.
- **5p a)** Pentru m = 3, calculați f(1).
- $\mathbf{5p}$ **b**) Determinați numărul real m știind că restul împărțirii polinomului f la X-2 este egal cu 2.
- **5p** c) Pentru m = 4, arătați că $\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = 1$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=x\ln x$.
- **5p** a) Calculați f'(x), $x \in (0, +\infty)$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x)}{x^2}$.
- **5p** c) Demonstrați că funcția f este convexă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 1}$.
- **5p** a) Arătați că $\int_{0}^{1} x f(x) dx = \frac{1}{2} \ln 2.$
- **5p b**) Calculați $\int_{0}^{1} x f'(x) dx$.
- **5p** c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $h:[0,1] \to \mathbb{R}$, $h(x) = \frac{1}{f(x)}$.