Swan Dubois / Alexandre Maurer / <u>Franck Petit</u> / Maria Potop Butucaru / *Sébastien Tixeuil*

UPMC

 ${\tt Firstname.Lastname@lip6.fr}$

Outline

Self-stabilization

Hypothesis Atomicity Scheduling

Proof Techniques Transfer Function

Convergence stairs

Conclusion

Proof Techniques

- $ightharpoonup U_0 = a$
- ▶ $U_{n+1} = \frac{U_n}{2}$ if U_n is even
- $U_{n+1} = \frac{3U_n+1}{2} \text{ if } U_n \text{ is odd}$

- U₀ = a
 U_{n+1} = U_n/2 if U_n is even
 U_{n+1} = 3U_{n+1}/2 if U_n is odd

n		l		l					l			
U_n	7	11	17	26	13	20	10	5	8	4	2	1

- ► $U_0 = a$ ► $U_{n+1} = \frac{U_n}{2}$ if U_n is even
- $U_{n+1} = \frac{3U_n+1}{2} \text{ if } U_n \text{ is odd}$

27	41	62	31	47	71	107	161	242
121	182	91	137	206	103	155	233	350
175	263	395	593	890	445	668	334	167
251	377	566	283	425	638	319	479	719
1079	1619	2429	3644	1822	911	1367	2051	3077
4616	2308	1154	577	866	433	650	325	488
244	122	61	92	46	23	35	53	80
40	20	10	5	8	4	2	1	

- ▶ $U_0 = a$
- ▶ $U_{n+1} = \frac{U_n}{2}$ if U_n is even
- $U_{n+1} = \frac{3U_n+1}{2} \text{ if } U_n \text{ is odd}$
- ► Converges towards a "correct" behavior
 - ► 12121212121212121212121212...
 - ► Independent from the initial value

► Enumerator of Even Numbers

```
unsigned char x = 0;
. . .
for (;;)
   printf ("%d ",x);
   x = x + 2;
   . . .
```

 Self-Stabilizing Enumerator of Even Numbers (Overflow Control)

```
unsigned char x;
...
for (;;)
{
    ...
    printf ("%d ",x);
    x = ((x = x + 2) > 254 ) ? 0: x + 2;
    ...
}
```

► Self-Stabilizing Enumerator of Even Numbers (Parity Check)

```
unsigned char x;
...
for (;;)
{
    ...
    printf ("%d ",x);
    x = (x % 2) ? x + 1 : x + 2;
    ...
}
```

► Self-Stabilizing Enumerator of Even Numbers (Parity Check—Reset)

```
unsigned char x;
...
for (;;)
{
    ...
    printf ("%d ",x);
    x = (x % 2) ? 0 : x + 2;
    ...
}
```

► Self-Stabilizing Enumerator of Even Numbers (Left Shift)

```
unsigned char x;
...
for (;;)
{
    ...
    printf ("%d ",x<<1);
    x++;
    ...
}</pre>
```


Self-stabilization

Memory Corruption

► Example of a sequential program:

```
int x = 0;
...
if(x == 0) {
   // code assuming x equals 0
}
else {
   // code assuming x does not equal 0
}
```

► Locality of information

- ► Locality of information
- ► Locality of time

- ► Locality of information
- ► Locality of time
- ► ⇒ non-determinism

- Locality of information
- Locality of time
- ► ⇒ non-determinism

Definition (Configuration)

Product of the local states of the system components.

Definition (Execution)

Interleaving of the local executions of the system components.

Definition (Classical System, a.k.a. Non stabilizing)

Starting from a particular initial configuration, the system immediately exhibits correct behavior.

Definition (Self-stabilizing System)

Starting from any initial configuration, the system eventually reaches a configuration from with its behavior is correct.

Self-stabilization

Definition (Self-stabilizing System)

Starting from any initial configuration, the system eventually reaches a configuration from with its behavior is correct.

▶ Defined by Dijkstra in 1974

Self-stabilization

Definition (Self-stabilizing System)

Starting from any initial configuration, the system eventually reaches a configuration from with its behavior is correct.

- ▶ Defined by Dijkstra in 1974
- ► Advocated by Lamport in 1984 to addesss fault-tolerant issues

Definition ((Distributed) Task)

A task is **specified** in terms of:

Definition ((Distributed) Task)

A task is **specified** in terms of:

- ▶ **Safety**: *Bad actions*, which should not happen
 - ► At the intersection, traffic lights are green on two different axes.
 - Processes enter the critical section simultaneously.
 - Windows crashes.

Definition ((Distributed) Task)

A task is **specified** in terms of:

- ▶ **Safety**: *Bad actions*, which should not happen
- ▶ **Liveness**: *Good actions*, which should (eventually) happen
 - At the intersection, if one of the traffic lights is red then, it eventually becomes green.
 - Every process eventually enter the critical section.
 - Windows eventually reboots.

Definition (Fault)

A fault is an action that corrupts the task specification by changing the correct functioning of a system component.

Definition (Fault)

A fault is an action that corrupts the task specification by changing the correct functioning of a system component.

- ▶ At the intersection, traffic lights are off.
- ▶ A process requesting the critical section is stuck.
- Windows boot loops on a blue screen with white markings.

Definition (Fault)

A fault is an action that corrupts the task specification by changing the correct functioning of a system component.

- ▶ Type \rightarrow fail-stop, crash, omission, Byzantine, . . .
- Duration
- Detection Rate
- Correction Rate
- Frequency

Definition (Fault)

A fault is an action that corrupts the task specification by changing the correct functioning of a system component.

- ▶ Type \rightarrow fail-stop, crash, omission, Byzantine, . . .
- Duration
- ▶ Detection Rate
- Correction Rate
- Frequency

Fault-tolerant algorithm ⇒ Tolerates a given class of faults

▶ **Masking FT**: Both *Safety* and *Liveness* must be guaranteed.

► **Masking FT**: Both *Safety* and *Liveness* must be guaranteed. Unfortunately, [FLP]!

- ▶ **Masking FT**: Both *Safety* and *Liveness* must be guaranteed. Unfortunately, [FLP]!
- ▶ **Fail-Safe FT**: *Safety* guaranteed but not *Liveness*.

- ▶ **Masking FT**: Both *Safety* and *Liveness* must be guaranteed. Unfortunately, [FLP]!
- ▶ **Fail-Safe FT**: *Safety* guaranteed but not *Liveness*.
 - ► Traffic lights are red.
 - ▶ Transactions in databases.

- ▶ **Masking FT**: Both *Safety* and *Liveness* must be guaranteed. Unfortunately, [FLP]!
- ▶ **Fail-Safe FT**: *Safety* guaranteed but not *Liveness*.
- ▶ Non-Masking FT: *Liveness* guaranteed but not *Safety*.

- ▶ **Masking FT**: Both *Safety* and *Liveness* must be guaranteed. Unfortunately, [FLP]!
- ▶ **Fail-Safe FT**: *Safety* guaranteed but not *Liveness*.
- ▶ Non-Masking FT: *Liveness* guaranteed but not *Safety*.
 - Traffic lights are flashing orange.
 - Optimistic algorithm: Data replication mechanisms.

- ► Masking FT: Both *Safety* and *Liveness* must be guaranteed. Unfortunately, [FLP]!
- ▶ **Fail-Safe FT**: *Safety* guaranteed but not *Liveness*.
- ► Non-Masking FT: *Liveness* guaranteed but not *Safety*. Self-Stabilization: *Safety* eventually guaranteed.

Dijkstra' self-stabilizing algorithms

- ► Token-passing on a ring
- ► Token-passing on a chain with 4 states/process

Proof Techniques

Hypothesis Atomicity Scheduling

Proof Techniques
Transfer Function
Convergence stairs

Conclusion

Atomicity

► An example of a "stabilizing" sequential program
int x = 0;
...

```
while( x == x ) {
    x = 0;
    // code assuming x equals 0
}
```

Atomicity

► An example of a "stabilizing" sequential program

```
int x = 0;
...
while(x == x) {
    x = 0;
    // code assuming x equals 0
}

...
5 iconst_0
6 istore_1
7 iload_1
8 iload_1
9 if_icmpeq 5
```

Atomicity

► An example of a "stabilizing" sequential program

```
int x = 0;
...
while(x == x) {
    x = 0;
    // code assuming x equals 0
}

...
5 iconst_0
6 istore_1
7 iload_1
8 iload_1
9 if_icmpeq 5
```

► Message Passing

► Shared Registers

► Shared Memory

Message Passing

Shared Registers

Shared Memory

Definition (Shared Memory)

In one atomic step, read the states of all neighbors and write own state

Definition (Guarded command)

▶ Guard \rightarrow Action

Definition (Shared Memory)

In one atomic step, read the states of all neighbors and write own state

Definition (Guarded command)

- ► Guard → Action
- ▶ Guard: predicate on the states of the neighborhood

Definition (Shared Memory)

In one atomic step, read the states of all neighbors and write own state

Definition (Guarded command)

- ▶ Guard → Action
- ▶ Guard: predicate on the states of the neighborhood
- ▶ Action: executed if *Guard* evaluates to true

Scheduling

Definition (Scheduler a.k.a. Daemon)

The daemon chooses among activable processors those that will execute their actions.

► The daemon can be seen as an adversary whose role is to prevent stabilization

 $\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$

$$\Delta = \{ \begin{array}{c|c} 0 & 1 \end{array} \}$$

a <u>b</u>

 $\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$

$$\lambda = \{ 0 / 1 \}$$

$$\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$$

$$\Delta = \{ 0 \cdot 1 \}$$

b

 $\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$

$$\Delta = \{ \begin{array}{c|c} 0 & 1 \end{array} \}$$

 $\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$

$$\Delta = \{ \begin{array}{c|c} 0 & 1 \end{array} \}$$

a <u>b</u>

 $\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$

$$\lambda = \{ 0 / 1 \}$$

$$\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$$

$$\Delta = \{ 0 \cdot 1 \}$$

b

$$\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_i | j \in \mathsf{Neighbors}_i \} \right\}$$

$$\Delta = \{ 0 \cdot 1 \}$$

Self-stabilization

Spatial Scheduling

$$\mathsf{true} \to \mathsf{color}_i := \mathsf{Min} \left\{ \Delta \setminus \{\mathsf{color}_j | j \in \mathsf{Neighbors}_i \} \right\}$$

$$\Delta = \{ 0 \cdot 1 \}$$

a

Distributed

Synchronous

Central

Spatial Scheduling

Unfair

Fair

Bounded

Atomicity Scheduling

Proof Techniques Transfer Function Convergence stairs

Proof Techniques

Transfer Function

Basic Idea

- $ightharpoonup c_1
 ightharpoonup c_2
 ightharpoonup c_3
 ightharpoonup c_4
 ightharpoonup \cdots
 ightharpoonup c_i$
- ► $FP(c_1) > FP(c_2) > FP(c_3) > ... > FP(c_i) = bound$
- Used to prove convergence
- ► Can be used to compute the number of steps to reach a legitimate configuration

Transfer Function

Transfer Function

Convergence stairs

- $ightharpoonup A_i$ is a predicate
- $ightharpoonup A_k$ is legitimate
- ▶ For any i between 1 and k, A_{i+1} is a refinement of A_i

Self-stabilization

Hypothesis Atomicity Scheduling

Proof Techniques
Transfer Function
Convergence stairs

Conclusion

Self-stabilization

Pros

- The network does not need to be initialized
- ▶ When a fault is diagnosed, it is sufficient to identify, then remove or restart the faulty components
- ► The self-stabilization property does not depend on the nature of the fault
- ► The self-stabilization property does not depend on the extent of the fault

Self-stabilization

Cons

- ► *A priori*, "eventually" does not give any bound on the stabilization time
- ► *A priori*, nodes never know whether the system is stabilized or not
- ► A single failure may trigger a correcting action at every node in the network
- ► Faults must be sufficiently rare that they can be considered are transient

Initial State

- ① Incorrect messages in channels
- ② Incorrect values in variables

Starting from any initial configuration, the system eventually reaches a configuration from with its behavior is correct.

<u>Dijkstra 1974</u>

State Model

<Gard> → <Action>

- <u>Sûreté</u> : Au plus un jeton dans le système
- <u>Vivacité</u> : Chaque processeur obtient le jeton infiniment souvent

$$g$$
 top d g d

$$p = top$$

TR1: $(v_p = v_g)$ \rightarrow $v_p := v_g \oplus 1$
 $p \neq top$

TR2: $(v_p \neq v_g)$ \rightarrow $v_p := v_g$

Auto-

ecification

- <u>Sûreté</u> : Au plus un jeton dans le système
- Vivacité : Chaque processeur obtient le jeton infiniment souvent

$$p = top$$

$$TR1: (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$v_p := v_g \oplus 1$$

$$p \neq top$$

$$TR2: (v_p \neq v_g) \qquad -$$

$$v_p := v_g$$

- <u>Sûreté</u> : Au plus un jeton dans le système
- Vivacité : Chaque processeur obtient le jeton infiniment souvent

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$v_p := v_g$$

Spécification

- <u>Sûreté</u> : Au plus un jeton dans le système
- <u>Vivacité</u> : Chaque processeur obtient le jeton infiniment souvent

TR1

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$p \neq top$$

$$TR2: (v_p \neq v_g) \longrightarrow v_p := v_g$$

- <u>Sûreté</u> : Au plus un jeton dans le système
- <u>Vivacité</u> : Chaque processeur obtient le jeton infiniment souvent

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$p \neq top$$

$$TR2: (v_p \neq v_g) \longrightarrow v_p := v_g$$

- <u>Sûreté</u> : Au plus un jeton dans le système
- <u>Vivacité</u>: Chaque processeur obtient le jeton infiniment souvent

$$p = top$$

$$TR1: (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$p \neq top$$

TR2:
$$(v_p \neq v_g) \rightarrow v_p := v_g$$

- <u>Sûreté</u> : Au plus un jeton dans le système
- Vivacité : Chaque processeur obtient le jeton infiniment souvent

$$p = top$$

$$TR1: (v_p = v_g) \longrightarrow v_p := v_g \oplus 1$$

$$v_p := v_g \oplus 1$$

$$p \neq top$$

$$TR2: (v_p \neq v_g) \longrightarrow$$

$$v_p =$$

- <u>Sûreté</u> : Au plus un jeton dans le système
- Vivacité : Chaque processeur obtient le jeton infiniment souvent

TR2
$$top$$
 $TR2$
 $TR2$
 $TR2$
 $TR2$
 $TR2$

$$p = top$$

$$TR1: (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$v_p := v_g \oplus 1$$

$$p \neq top$$

TR2:
$$(v_p \neq v_g) \rightarrow v_p := v_g$$

$$v_p := v_g$$

TR1

top

TR2

TR2

TR2

Spécification

- <u>Sûreté</u> : Au plus un jeton dans le système
- <u>Vivacité</u>: Chaque processeur obtient le jeton infiniment souvent

TR2: $(v_p \neq v_g) \rightarrow v_p := v_g$

infiniment souvent

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$p \neq top$$

- <u>Sûreté</u> : Au plus un jeton dans le système
- <u>Vivacité</u>: Chaque processeur obtient le jeton infiniment souvent

TR2

$$top$$
 $TR2$
 $TR2$
 $TR2$
 $TR2$
 $TR2$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$p \neq top$$

$$TR2: (v_p \neq v_g) \longrightarrow v_p := v_g$$

Spécification

- <u>Sûreté</u> : Au plus un jeton dans le système
- Vivacité : Chaque processeur obtient le jeton infiniment souvent

$$p = top$$

$$TR1: (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$\rightarrow$$

$$v_p := v_g \oplus$$

$$p \neq top$$

$$TR2: (v_p \neq v_g) \longrightarrow$$

$$\rightarrow$$

$$v_p := v_g$$

Spécification

- <u>Sûreté</u> : Au plus un jeton dans le système
- <u>Vivacité</u> : Chaque processeur obtient le jeton infiniment souvent

Exercice: Montrer qu'il se produit la même chose avec un nombre impair de processeurs.

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

$$p = top$$

$$TR1 : (v_p = v_g) \rightarrow v_p := v_g \oplus_k 1$$

$$p \neq top$$

$$TR2 : (v_p \neq v_g) \rightarrow v_p := v_g$$

Algorithme Auto-stabilisant de circulation de jeton de Dijkstra

p = top

 $TR1: (v_p = v_g)$

 $p \neq top$

TR2: $(v_p \neq v_g)$

В

Auto-stabilisation?

Stabilisé!

