Matemática Aplicada a Tecnologías de la Información Curso 2023/24

Práctica 7: Convolución

En esta práctica vamos a trabajar con redes neuronales convolucionales e intentar aportar interpretabilidad a la arquitectura.

```
import tensorflow as tf
```

Ejercicio 1 En uno de los tutoriales de la librería Tensorflow¹, se explica cómo implementar una red convolucional para el dataset cifar10. Primero, analiza el modelo propuesto e interpreta lo que se está haciendo. Luego, adapta el código para que funcione para el dataset fashion_MNIST.

```
datasets.fashion_mnist.load_data()
```

Entrena el modelo sólo durante tres épocas. ¿Qué accuracy consigues? En lo que se ha implementado, ¿hay data leacking?

Ejercicio 2 Con el modelo entrenado del ejercicio anterior, vamos a visualizar la activación de las distintas capas. Estudia el siguiente código, adáptalo para mostrar información de todas las capas e interpreta lo obtenido para distintas imágenes.

```
activations_model = tf.keras.models.Model(model.inputs,
    outputs=[layers.output for layers in model.layers])
activations_model.compile(optimizer='adam',
    loss='categorical_crossentropy')
activations = activations_model.predict(np.array([test_images[0]]))
fig = plt.figure(figsize=(22, 3))
for img in range(8):
    ax = fig.add_subplot(2, 15, img+1)
    ax = plt.imshow(activations[0][0, :, :, img], cmap='plasma')
    plt.xticks([])
    plt.yticks([])
    fig.subplots_adjust(wspace=0.05, hspace=0.05)
```

Ejercicio 3 Intenta mejorar los resultados obtenidos en el ejercicio 1. Puedes emplear cualquier modificación de la arquitectura. ¿Qué has hecho para mejorar la arquitectura? ¿Cuánto has conseguido mejorar? ¿Hay overfitting?

¹https://www.tensorflow.org/tutorials/images/cnn?hl=es-419

Ejercicio 4 Adapta la famosa red neuronal *AlexNet* y evalúa su rendimiento en el dataset fashion_MNIST. Luego, interpreta alguna de sus capas. ¿Consigues mejores resultados que con la red anterior?

Operation	Parameters	Input Size	Output Size
CONV	11x11, stride=4, 96 kernels	227x227x3	56x56x96
MAXPOOL	3x3, stride=2	56x56x96	27x27x96
CONV	5x5, pad=2, 256 kernels	27x27x96	27x27x256
MAXPOOL	3x3, stride=2	27x27x256	13x13x256
CONV	3x3, pad=1, 384 kernels	13x13x256	13x13x384
CONV	3x3, pad=1, 384 kernels	13x13x284	13x13x384
CONV	3x3, pad=1, 256 kernels	13x13x384	13x13x256
MAXPOOL	3x3, stride=2	13x13x256	6x6x256
FC	ReLU	9216	4096
FC	ReLU	4096	4096
Output	Softmax	4096	1000