Christian Poveda Jaime E. Forero-Romero

Universidad de los Andes

3 de Diciembre, 2014

Ajustando con MCMC

Obteniendo concentraciones

Resultados

Test

MiniMDR1

Conclusiones

Menú

Introducción

Introducción

- ► El comportamiento a gran escala de universo esta dominado por la materia oscura.
- Esta última se comporta como un fluido no colisional que solo interactua de forma gravitacional.
- Se han realizado varios experimentos numéricos para simular el comportamiento del universo en grandes volumenes.
- De estas simulaciones se ha obtenido que la materia oscura se agrupa siguiendo un perfil de densidad independiente de los parámetros cosmológicos.
- una de las parametrizaciones mas usuales de la distribución de densidad es el perfil de Navarro-Frenk-White.

- Propuesto por Julio Navarro, Carlos Frenk y Simon White en 1997.
- Es una doble ley de potencias dependiente de la distancia radial.
- La transición entre esta ley de potencias está dada por un parámetro r_s .

$$\rho(r; \rho_0, r_s) = \frac{\rho_0}{r/r_s (1 + r/r_s)^2}$$

$$M(r; \rho_0, r_s) = 4\pi \rho_0 r_s^3 \left[\ln(\frac{r + r_s}{r}) - \frac{r}{r + r_s} \right]$$

$$V(r; \rho_0, r_s) = \sqrt{\frac{GM(r; \rho_0, r_s)}{r}}$$

▶ Usando el radio virial r_{vir} podemos normalizar $\rho(r)$, M(r) y V(r), utilizando la concentración $c = r_{vir}/r_s$ como parámetro y usando la distancia radial normalizada $x = r/r_{vir}$

$$\rho(x;c) = \frac{(1+c)^2}{x(1+xc)^2}$$

$$m(x;c) = \frac{\ln(1+xc) - \frac{xc}{1+xc}}{\ln(1+c) - \frac{c}{1+c}}$$

$$v(x;c) = \sqrt{\frac{\ln(1+xc) - \frac{xc}{1+xc}}{x\ln(1+c) - \frac{xc}{1+c}}}$$

Ajustando con MCMC

- MCMC = Markov Chain Monte Carlo.
- Con MCMC podemos muestrear una distribución de probabilidad... Cual?
- ▶ Un estimador de que tan bien ajusta un modelo f dependiente de algunos parámetros $s_1,...,s_n$ a unos datos x_i,y_i .

$$\mathcal{L}(s_1, ..., s_n) \propto \exp(-\frac{1}{2}\chi^2(s_1, ..., s_n))$$

$$\chi^{2}(s_{1},...,s_{n}) = \sum_{i} \frac{(f(x_{i};s_{1},...,s_{n}) - y_{i})^{2}}{\sigma_{i}^{2}}$$

- \mathcal{L} grande corresponde a χ^2 pequeño.
- ▶ Nos da incertidumbres $\sigma_{s_1},...,\sigma_{s_n}$ sobre los parámetros.

$$f(x; a, b) = ax^2 + bx$$

Y lo ajustaremos a una serie de datos

Menú

Obteniendo concentraciones

- Obtenemos el centro de cada halo minimizando el potencial gravitacional.
- ightharpoonup Calculamos su r_{vir} y descartamos los puntos a una distancia mayor.
- Obtenemos su perfil de masa organizando las distancias radiales.
- Normalizamos y ajustamos utilizando MCMC.

Resultados

Test

Comparar contra otros métodos:

Ajustar el perfil de densidad.

$$\rho(x;c) = \frac{(1+c)^2}{x(1+xc)^2}$$

Ajustar el máximo de velocidad radial.

$$v_{max} = \sqrt{\frac{0.216c}{\ln(1+c) - \frac{c}{1+c}}}$$

- Poner a prueba estos tres métodos con halos generados cuya concentración es conocida.
- Cuantificaremos el error con

$$\xi(n) = \frac{1}{|\mathcal{H}_n|} \sum_{\mathcal{H}_n} |1 - c_{obtenido}/c_{original}|$$

- \triangleright \mathcal{H}_n es el conjunto de halos con n partículas.
- \triangleright $\xi(n)$ es independiente de la magnitud de las concentraciones y de el tamaño de \mathcal{H}_n .

00

Tomar datos del catálogo MiniMDR1 y analizar la consistencia de los resultados.

$$c_v > c_m > c_\rho$$

Resultados 00

Observar la relación masa-concentración

Menú

Introducción

Ajustando con MCMC

Obteniendo concentraciones

Resultados

Test

MiniMDR1

Conclusiones

Este método provee una nueva perspectiva respecto a la relación masa-concentración al proveer un valor intermedio obtenido con datos puros, sin necesidad de binning u otros procesos. J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. The Astrophysical Journal, 490:493–508, December 1997.

K. Riebe, A. M. Partl, H. Enke, J. Forero-Romero,S. Gottlöber, A. Klypin, G. Lemson, F. Prada, J. R. Primack,M. Steinmetz, and V. Turchaninov.

The MultiDark Database: Release of the Bolshoi and MultiDark cosmological simulations.

Astronomische Nachrichten, 334:691-708, August 2013.

