Experiment 2 PH3105

12 September

1 Aim

- To find out the operating voltage of the supplied GM tube. Keep the source in front of the GM tube and record different values of the voltage vs the number of counts. From the graph between the count rate and the applied voltage find out the operating voltage of the supplied GM tube.
- To find background counts. Operate the GM tube with the operating voltage. Take reading for about 10 min without the source.
- To calculate the linear attenuation coefficient, mass attenuation coefficient and half value thickness. Now put the source and then the absorber [Aluminum (Al)]. Change the thickness of Al block and determine the count rate at different thickness.
- To verify the inverse square law of radiation.

2 Theory

There are various ways in which radiation interacts with matter, in our experiment the Cesium source emits γ radiation. They can interact with matter, in ways like.

- Photoelectric effect: Incoming radiation knocks off an electron from the metal.
- Compton scattering: Radiation deflects a charged particle (usually an electron) from it's trajectory.
- Pair production: Gamma Rays produce an electron- positron pair when near a large nucleus.

2.1 Attenuation coefficients

An attenuation experiment is one which involves firing a narrow beam of gamma rays at a material and analysing how much radiation would get through. We take the incident intensity to be I_0 and the one which gets through as I_t .

Now if one varies the thickness of a material without changing any of the other properties, we can assume that the change in the intensity through an infinitesimal thickness of that material is proportional to the small thickness and the incident intensity.

$$-dI \propto I.dx$$

We can replace the proportionality with a constant μ .

$$-dI = \mu I.dx$$

This μ happens to be the linear attenuation coefficient of the material.

$$-\frac{dI}{I} = \mu dx \implies -\int_{I_0}^{I_t} \frac{dI}{I} = \mu \int_0^t dx$$

Which gives us,

$$I_t = I_0 e^{-\mu t}$$

The mass attenuation coefficient is μ/ρ .

2.2 Half value thickness

The half value thickness is the thickness at which the intensity drops to half it's incident value.

$$I_t = \frac{I_0}{2} = I_0 e^{-\mu t_{1/2}}$$

$$t_{1/2} = \frac{ln(2)}{\mu} = \frac{0.693}{\mu}$$

2.3 Inverse square law

The inverse square law of Electromagnetic radiation states that the measured intensity of light is inversely proportional to the square of the distance from the source.

EM rays spread their power over the area $4\pi r^2$,

$$I(4\pi r^2) = \mathbf{constant} \implies I \propto \frac{1}{r^2}$$

Ideally, the plot of log(I) vs. log(r) should give a slope of -2, but due to scattering and a small data-set, it is natural for it to deviate a bit.

3 Observations

:

3.1 Attenuation coefficients

The data was acquired by using a Cesium-137 source placed at an appropriate distance from the GM tube. The thickness of the slab was varied from, 0 to 200 mm.

Thickness	Count	Count rate			
0	2221	11.105			
1	1306	6.530			
2	1203	6.015			
3	1132	5.660			
4	1121	5.605			
5	1076	5.380			
8	861	4.305			
11	807	4.035			
14	802	4.010			
17	642	3.210			
20	567	2.835			
23	498	2.490			
26	466	2.330			
30	525	2.625			
35	394	1.970			
40	433	2.165			
45	394	1.970			
50	409	2.045			
55	373	1.865			
60	303	1.515			
65	242	1.210			
70	247	1.235			
75	200	1.000			
80	186	0.930			
90	176	0.880			
100	137	0.685			
110	130	0.650			
120	98	0.490			
130	82	0.410			
140	81	0.405			
150	76	0.380			
160	48	0.240			
170	61	0.305			
180	42	0.210			
190	44	0.220			
200	32	0.160			

Figure 1: Attenuation coeff plot

3.2 Inverse square law

The aluminium slab was removed and the voltage was kept at $\bf 1.5~kV$. The distance from the source was varied from 5 to 51 cm.

	Source o	listance	from	detector	(cm)	1/r² ([1/cm²)	Run 1	Run 2	Avg	Counts	(per sec)
							.200000	67441	67089			672.650
					6.0		166667	45208	45023			451.155
					7.0		.142857	32177	32219			321.980
					8.0		125000	23729	24327			240.280
							0.111111	18417				183.520
					10.0		100000	14488	14386			144.370
							.090909		11491			114.420
							.083333	9202	9162			91.820
												76.045
10					14.0		.071429	5200	6299			57.495
												53.410
12					16.0		.062500	4447	4539			44.930
					17.0		.058824	3734	3740			37.370
14					18.0		.055556	3206				32.135
					19.0			2716	2584			26.500
16					20.0		.050000	2171	2240			22.055
							.047619		1888			18.835
18					24.0		.041667					11.795
19					27.0							7.425
20					30.0			574				5.635
22					36.0		.027778	288	281			2.845
					39.0		.025641	184				1.985
24					42.0		.023810		162			1.670
					45.0							1.240
26					48.0		.020833					1.090
							.019608					0.925

Figure 2: Data for inverse square law verification

Figure 3: inverse square law plots

4 Analysis

4.1 Attenuation coefficients

For the above graph, the linear attenuation coefficient comes out to be $\mu = 0.018 mm^{-1} - 0.18 cm^{-1}$.

Therefore, the mass attenuation coefficient $\mu_m = \frac{\mu}{\rho_{Al}}$, the density of Aluminium is $\rho = 2.7g/cm^3$, $\mu_m = 0.18/2.7 = 0.067cm^2/g$.

The half value thickness is $t_{1/2} = \frac{0.693}{\mu} = \frac{0.693}{0.018} = 38.51 mm$.

4.2 Inverse square law

Fitting the data for a $Y = \frac{a}{X^b}$ curve, we get a power of b = 2.28. The ideal slope for a log(I) vs. log(r) should be -2.

5 Error analysis

The data and it's results do not match with the literature values completely, that could be because

- Poor data quality due to smaller run times.
- Experimentally, this could happen because of some higher order effects like scattering and non-uniform material being used (assuming the simulation software accounts for these effects).

6 Conclusion

- The linear attenuation coefficient for Aluminium: $\mu 0.18cm^{-1}$.
- The mass attenuation coefficient: $\mu_m = 0.067 cm^2/g$.

- Half value thickness: $t_{1/2} = 38.51mm$.
- \bullet The slope of log(I) vs. log(r) curve was -2.28. Which might differ from the ideal -2 due to additional higher order perturbations.