

Guidelines

Oscar Corcho, Catherine Roussey
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn
28660 Boadilla del Monte, Madrid

Content: Anti Patterns

- AntiPatterns= Common errors made by ontology developer
- 3 sets of elementary antipatterns
 - 1. Logical Anti-Patterns (LAP): 9 antipatterns
 - Inconsistencies detected by the reasoner
 - 2. Non-Logical Anti-patterns (NLAP): 9 antipatterns
 - Cognitive or modeling problems not detected by the reasoner
 - 3. Guidelines (G): 4 Antipatterns
 - Complex expressions not detected by the reasoner, improve the readability of the formal axioms
- Combination of elementary unit antipattern
 - Association of antipatterns that may lead to inconsistencies
- Strategy to use the antipatterns

Logical Anti-Patterns (LAP)

- AndIsOr (AIO)
- EquivalenceIsDifference (EID)
- OnlynessIsLoneliness (OIL)
- OnlynessIsLonelinessWithInheritance (OILWI)
- OnlynessIsLonelinessWithPropertyInheritance (OILWPI)
- UniversalExistence (UE)
- UniversalExistenceWithInheritance1 (UEWI_1)
- UniversalExistenceWithInheritance2 (UEWI_2)
- UniversalExistenceWithPropertyInheritance1 (UEWPI_1)

Non-Logical Anti-patterns (NLAP)

- SynonymeOfEquivalence (SOE)
- OnlynessIsLonelinessWithInverseProperty (OILWIP)
- UniversalExistenceWithPropertyInheritance2 (UEWPI_2)
- UniversalExistenceWithInverseProperty (UEWIP)
- SumOfSom (SOS)
- SumOfSomWithInheritage (SOSWI)
- SumOfSomWithPropertyInheritance (SOSWPI)
- SumOfSomWithInverseProperty (SOSWIP)
- SomeMeansAtLeastOne (SMALO)

Guidelines (G)

- DisjointnessOfComplement (DOC)
- Domain&CardinalityConstraints (DCC)
- GroupAxioms (GA)
- MinIsZero (MIZ)

Problem G DOC

DisjointnessOfComplement

The ontology developer wants to say that C1 and C2 can not share instances

Recommendations G DOC

Main Recommendation

Disj(C1,C2)

Problem NLAP SOE

SynonymeOfEquivalence
Represent a terminological synonymy relation
Not useful in a single ontology
C1≡C2

Recommendations NLAP SOE

Main Recommendation

C2 is a label of C1

Problem LAP EID

Equivalence Is Difference

Concepts share some common properties but have also differences

C1≡C2, Disj(C1,C2)

Recommendations LAP EID

Main recommendation

• C1⊆C2

Other recommendation

C2 is label of C1

Problem LAP AIO

AndIsOr

misunderstanding of logical "and" and "or" C1⊆∃R.(C2∩C3), Disj(C2,C3)

Recommendations LAP AIO

The main recommendation C1⊆∃R.(C2∪C3), Disj(C2,C3)

Recommendations LAP AIO

Recommendations

• C1<u>⊆</u>∃R.(**C2**∪**C3**), Disj(C2,C3)

 $C1 \subseteq \exists R.C2 \cap \exists R.C3$, Disj(C2,C3) C3 C2 C1?

OnlynessIsLoneliness

Forget one of the axiom during the development of the ontology.

Recommendations LAP OIL

Main recommendation
C1⊆∀R.(C2∪C3), Disj(C2,C3)

OnlynessIsLonelinessWithInheritance

Forget one of the axiom during the development of the ontology.

 $C1 \subseteq C2$, $C1 \subseteq \forall R.C3$, $C2 \subseteq \forall R.C4$, Disj(C3,C4)

Recommendations LAP OILWI

Main recommendation
C1⊆ C2, C1⊆∀R.C3, C2⊆∀R.(C3∪C4), Disj(C3,C4)

Problem LAP OILWPI

OnlynessIsLonelinessWithPropertyInheritance
Misunderstanding of subproperty relation
R1⊆R2, C1⊆∀R1.C2, C1⊆∀R2.C3, Disj(C2,C3)

Recommendations LAP OILWPI

Main recommendation

R1 \subseteq R2, C1 \subseteq \forall **R2.(C2\cupC3)**, Disj(C2,C3)

Problem NLAP OILWIP

OnlynessIsLonelinessWithInverseProperty

Forget one of the axiom during the development of the ontology.

 $C2 \subseteq \forall R^{-1}.C1, C1 \subseteq \forall R.C3, Disj(C2,C3)$

Recommendations NLAP OILWIP

Main Recommendation
C2⊆∀R-1.C1, C1⊆∀R.(C2∪C3), Disj(C2,C3)

Problem NLAP SOS

SumOfSom

Forget one of the axiom during the development of the ontology.

C1⊆∃R.C2, C1⊆∃R.C3, Disj(C2,C3)

Recommendations NLAP SOS

Main Recommendation
C1⊆∃R.(C2∪C3), Disj(C2,C3)?

Problem NLAP SOSWI

SumOfSomWithInheritage

Forget one of the axiom during the development of the ontology.

 $C1 \subseteq C2$, $C1 \subseteq \exists R.C3$, $C2 \subseteq \exists R.C4$, Disj(C3,C4)

Recommendations NLAP SOSWI

Main Recommendations

Forget one of the axiom during the development of the ontology.

 $C1 \subseteq C2$, $C1 \subseteq \exists R.C3$, $C2 \subseteq \exists R.(C3 \cup C4)$, Disj(C3,C4)

Problem NLAP SOSWPI

SumOfSomWithPropertyInheritance
Misunderstanding of subproperty relation
R1⊆R2, C1⊆∃R1.C2, C1⊆∃R2.C3, Disj(C2,C3)

Recommendations NLAP SOSWPI

Main Recommendation
R1⊆R2, C1⊆∃R1.(C2), C1⊆∃R2.(C2∪C3), Disj(C2,C3)

Problem NLAP SOSWIP

SumOfSomWithInverseProperty

Forget one of the axiom during the development of the ontology.

 $C2 \subseteq \exists R^{-1}.C1, C1 \subseteq \exists R.C3, Disj(C2,C3)$

Recommendations NLAP SOSWIP

Main Recommendations
C2⊆∃R-1.C1, C1⊆∃R.(C2∪C3), Disj(C2,C3)

Problem LAP UE

UniversalExistence

Forget one of the axiom during the development of the ontology.

Misunderstanding of the universal and existential restrictions

Recommendations LAP UE

Main recommendations

- $C1 \subseteq \forall R.(C2 \cup C3) \cap \exists R.C2$, Disj(C2,C3)
- C1⊆∀R.(C2∪C3)∩∃R.(C2∪C3), Disj(C2,C3)

Recommendations LAP UE

Others recommendations

- C1⊆∀R.(C2∪C3), Disj(C2,C3)
- C1⊆∃R.(C2∪C3), Disj(C2,C3)

UniversalExistenceWithInheritance1

Forget one of the axiom during the development of the ontology.

 $C1 \subseteq C2$, $C1 \subseteq \exists R.C3$, $C2 \subseteq \forall R.C4$, Disj(C3,C4)

Recommendations LAP UEWI_1

Main recommendations

C1 \subseteq C2, C1 \subseteq \exists **R**.(C3 \cup C4), C2 \subseteq \forall **R**.(C3 \cup C4), Disj(C3,C4)

UniversalExistenceWithInheritance2

Forget one of the axiom during the development of the ontology.

 $C1 \subseteq C2$, $C1 \subseteq \forall R.C3$, $C2 \subseteq \exists R.C4$, Disj(C3,C4)

Recommendations LAP UEWI_2

Main recommendations

C1 \subseteq C2, C1 $\subseteq \forall$ R.(C3 \cup C4) \cap ∃R.C4, C2 \subseteq ∃R.(C3 \cup C4), Disj(C3,C4)

Problem LAP UEWPI_1

UniversalExistenceWithPropertyInheritance1
Misunderstanding of subproperty relation
R1⊆R2, C1⊆∃R1.C2, C1⊆∀R2.C3, Disj(C2,C3)

Recommendations LAP UEWPI_1

Main Recommendation
R1⊆R2, C1⊆∃R1.C2, C1⊆∀R2.(C2∪C3), Disj(C2,C3)

Problem NLAP UEWIP

UniversalExistenceWithInverseProperty

Forget one of the axiom during the development of the ontology.

 $C2 \subseteq \exists R^{-1}.C1, C1 \subseteq \forall R.C3, Disj(C2,C3)$

Recommendations NLAP UEWIP

Main Recommendation
C2⊆∃R-1.C1, C1⊆∀R.(C2∪C3), Disj(C2,C3)

Problem NLAP SMALO

SomeMeansAtLeastOne forget to remove one of the axiom C1⊆∃R.C2, C1⊆≥1R.T

Recommendations NLAP SMALO

Main Recommendation
forget to remove one of the axiom
C1⊆∃R.C2, C1⊆≥1R.T

Problem G DCC

Domain&CardinalityConstraints

Developers may forget that existential restrictions contain a cardinality constraint

C1<u>⊆</u>∃R.C2, C1<u>⊆</u>(≥2R.T)

Recommendations G DCC

Main Recommendation
C1⊆∀R.C2, C1⊆(≥2R.T)

Problem G GA

GroupAxioms

facilitate the comprehension of complex class definition C1⊆∀R.C2, C1⊆(≥2R.T) (for example)

Recommendations

C1⊆ (∀R.C2)∩(≥2R.T)

Problem G MIZ

MinIsZero 1

The ontology developer wants to say that C1 can be the domain of the R role

C1<u>⊆</u>(≥0R.T)

Main Recommendation

C1<u>⊆(≥0R.T)</u>

Complex antipatterns

AntiPattern SumOfSomIsNeverEqualToOne (SOSINETO)

 $C1 \subseteq \exists R.C2, C1 \subseteq \exists R.C3, C1 \subseteq \le 1R.T, Disj(C2,C3)$

What are the elementary antipatterns?

Recommendation

C1⊆∀**R.(C2**∪**C3),** C1⊆≤1R.T, Disj(C2,C3)

Global Strategy for ontology debugging

Debugging Strategy based on antipatterns

More detail strategy

