Geographic Information System (GIS) and Docker – Revision Notes

☑ Geographic Information Systems (GIS)

- · Definition: A computer system for capturing, storing, querying, analyzing, and displaying geospatial data.
- · Use: Converts spatial data into actionable information for decision-making.

☑ Components of GIS

- Hardware
- Software
- Data Management & Analysis Procedures
- Spatial Data
- People (operators/users

✓ Challenges in GIS

- Data Intensive & Computation Intensive
- Variable Load on GIS server → Requires dynamic scaling
- High reliability and performance needs
- Network-intensive due to heavy web service usage

✓ Heterogeneity Issue in GIS

- Caused by diverse software systems in departments
- · Barriers in data sharing
- Solutions:
 - o Homogeneous data description
 - Standard data encoding
 - o Common data sharing mechanisms

Spatial Data Infrastructure (SDI)

- **Definition**: Coordinated policy & infrastructure for spatial data discovery and usage
- Users: Government, commercial, academia, non-profits, citizens

✓ Need for Geospatial Cloud

- · Large volume of data & metadata
- Demand for services and service orchestration
- Requires scaling, policy evolution, and multi-tenancy

Actors in Geospatial Cloud

- Brokers
- Customers
- Negotiators
- SLA Manager / Security Auditor

☑ Challenges in Geospatial Cloud

- Spatial DB implementation & scaling
- Multi-tenancy and policy management
- Geo-situated backups
- Data security

✓ Interoperability in Geospatial Systems

- **1.** Data Level → Consume data
- 2. Service Level → Exchange & access data
- 3. Security Level → Trustworthy & reliable access
 - Solution: Use OGC standards

Introduction to Docker & Containerization

☑ Docker

- A container management service (since March 2013)
- Lets you develop, ship & run apps anywhere
- Lightweight alternative to Virtual Machines

☑ Docker Features

- Smaller OS footprint
- Easier collaboration among Dev, QA, and Ops
- · Cross-platform deployment
- Highly scalable

☑ Docker Components

- Docker for Mac / Linux / Windows
- Docker Engine builds & runs containers

- **Docker Hub** public registry of images
- Docker Compose multi-container app config

☑ Docker Architecture

- Server: Hosts containers
- Host OS: Base system (Linux/Windows)
- Docker Engine: Manages containers
- Apps run inside containers, not VMs

✓ Containers

- Packages app code + dependencies
- Share OS kernel → faster & lighter than VMs
- Run as isolated user-space processes
- Image: Standalone package (code + runtime + config)
- Container: Running instance of an image

✓ VMs vs Containers

Feature	Virtual Machine	Docker Container
OS	Includes Guest OS	Shares Host OS kernel
Size	Heavy (GBs)	Lightweight (MBs)
Boot Time	Minutes	Seconds
Isolation	Full OS Isolation	Process-level isolation
Portability	Less portable	Highly portable
Resource Usage	High	Low

☑ Docker Hub

- Public Docker image registry
- Offers automated builds from GitHub Dockerfiles
- URL: https://hub.docker.com

☑ Docker Use Cases

- Fixes "works on my machine" problems
- Run apps side-by-side in containers
- Create CI/CD pipelines for agile deployment