NOTES

1 Previous definition or conclusion

weights	$W \in \mathbb{R}^n$, where $n = w \times h \times c_{in} \times c_{out}$
mean(W)	$\operatorname{mean}(W) \coloneqq \frac{\sum_{i=1}^{n} W_i}{n}$
std(W)	$\operatorname{std}(W) \coloneqq \frac{\sum_{i=1}^{n}(W_i - mean(W_i))}{n}$
Base vector of W	$B_{i} \coloneqq sign(W - mean(W) + u_{i} * std(W)), u_{i} \coloneqq -1 + \frac{i-1}{M-1} * 2$
М	The number of the amount of base vectors
α	$\alpha = (B^T B)^{-1} B^T W$, where OLS is adopted
0	$0 = \sum_{m=1}^{n} \alpha_m Conv(B_m, A)$

2 ORIGINAL BACKWARD PROCESS

In the original paper, the gradient of weights is calculate as follow (e.q. 7 in the paper)

$$\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} \left(\sum_{m=1}^{M} \alpha_m \frac{\partial O}{\partial B_m} \frac{\partial B_m}{\partial W} \right) = S^{TE} = \frac{\partial c}{\partial O} \left(\sum_{m=1}^{M} \alpha_m \frac{\partial O}{\partial B_m} \right) = \sum_{m=1}^{M} \alpha_m \frac{\partial c}{\partial B_m}$$

To be more specific:

$$\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} * \frac{\partial O}{\partial W} = \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \alpha_m \frac{\partial O}{\partial B_m} \frac{\partial B_m}{\partial W} \right) = \sum_{m=1}^{M} \alpha_m \frac{\partial c}{\partial B_m}$$

3 THE CORRECT BACKWARD GRADIENT

However the equation: $\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} * \frac{\partial O}{\partial W} = \frac{\partial c}{\partial O} * (\sum_{m=1}^{M} \alpha_m \frac{\partial O}{\partial B_m} \frac{\partial B_m}{\partial W})$ is actually inaccurate with or without the assumption that $\frac{\partial a_m}{\partial W} = 0$.

3.1 WITH THE ASSUMPTION $\frac{\partial a_m}{\partial w} = 0$

With the assumption that $\frac{\partial a_m}{\partial W} = 0$, the correct equation should be $\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} * \frac{\partial O}{\partial W} = \frac{\partial C}{\partial O} * \frac{\partial O}{$

$$\left(\sum_{m=1}^{M} \frac{\partial O}{\partial B_m} \frac{\partial B_m}{\partial W}\right) = \sum_{m=1}^{M} \frac{\partial C}{\partial B_m}$$

To be more specific,

$$\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} * \frac{\partial O}{\partial W}$$

$$= \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \frac{\partial O}{\partial Conv(B_m, A)} \frac{\partial Conv(B_m, A)}{\partial B_m} \frac{\partial B_m}{\partial W} \right)$$

$$= \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \alpha_m \frac{\partial Conv(B_m, A)}{\partial B_m} \frac{\partial B_m}{\partial W} \right)$$

$$= \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \frac{\partial O}{\partial B_m} \frac{\partial B_m}{\partial W} \right)$$

$$= \left(\sum_{m=1}^{M} \frac{\partial c}{\partial B_m}\right)$$

Equation 1

3.2 WITHOUT THE ASSUMPTION $\frac{\partial a_m}{\partial W}=0$ (A more general expression)

In fact, $\alpha = (B^T B)^{-1} B^T W$ which indicates that α is related to the W.

So
$$\frac{\partial \alpha_m Conv(B_m,A)}{\partial W} = \frac{\partial \alpha_m}{\partial W} Conv(B_m,A) + \alpha_m \frac{\partial Conv(B_m,A)}{\partial W}$$
. And the whole process is :

$$\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \left(\frac{\partial O}{\partial a_m Conv(B_m, A)} * \frac{\partial a_m Conv(B_m, A)}{\partial W} \right) \right)$$

$$= \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \left(\frac{\partial O}{\partial a_{m} Conv(B_{m}, A)} * \left(\frac{\partial a_{m}}{\partial W} * Conv(B_{m}, A) + \frac{\partial Conv(B_{m}, A)}{\partial W} * a_{m} \right) \right) \right)$$

Equation 2

3.3 Verify that Equation 2 is a generalized expression of Equation 1

If we add the assumption $\frac{\partial a_m}{\partial W}=0$ to the above equation, the result has same expression as Equation 1.

$$= \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \left(\frac{\partial O}{\partial a_{m} Conv(B_{m}, A)} * \left(0 * Conv(B_{m}, A) + \frac{\partial Conv(B_{m}, A)}{\partial W} * a_{m} \right) \right) \right)$$

$$= \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \left(\frac{\partial O}{\partial a_m Conv(B_m, A)} * \left(\frac{\partial Conv(B_m, A)}{\partial B_m} * a_m \right) * \frac{\partial B_m}{W} \right) \right)$$

And given that $\frac{\partial O}{\partial a_m Conv(B_m,A)} = 1$,

$$\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \left(\left(\frac{\partial Conv(B_m, A)}{\partial B_m} * a_m \right) * \frac{\partial B_m}{W} \right) \right)$$

$$= \frac{\partial c}{\partial O} * \sum_{m=1}^{M} \frac{\partial O}{\partial B_m} * \frac{\partial B_m}{W}$$

$$=\sum_{m=1}^{M}\frac{\partial c}{\partial B_{m}}*\frac{\partial B_{m}}{W}$$

$$=^{STE} = \sum_{m=1}^{M} \frac{\partial c}{\partial B_m}$$

4 CONCLUSION

Recalled that in the original paper,

Backward:
$$\frac{\partial c}{\partial \mathbf{W}} = \frac{\partial c}{\partial \mathbf{O}} \left(\sum_{m=1}^{M} \alpha_m \frac{\partial \mathbf{O}}{\partial \mathbf{B}_m} \frac{\partial \mathbf{B}_m}{\partial \mathbf{W}} \right) \stackrel{\text{STE}}{=} \frac{\partial c}{\partial \mathbf{O}} \left(\sum_{m=1}^{M} \alpha_m \frac{\partial \mathbf{O}}{\partial \mathbf{B}_m} \right) = \sum_{m=1}^{M} \alpha_m \frac{\partial c}{\partial \mathbf{B}_m}.$$
 (7)

But the correct expression is:

$$\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} * \left(\sum_{m=1}^{M} \left(\frac{\partial O}{\partial a_{m} Conv(B_{m}, A)} * \left(\frac{\partial a_{m}}{\partial W} * Conv(B_{m}, A) + \frac{\partial Conv(B_{m}, A)}{\partial W} * a_{m} \right) \right) \right)$$

Even given the assumption that $\frac{\partial a_m}{\partial w} = 0$ the correct expression is as following which is different from e.q.7 in the original paper.

$$\frac{\partial c}{\partial W} = \sum_{m=1}^{M} \frac{\partial c}{\partial B_m}$$

It's obviously that the gradient in original paper in inaccurate or some additional assumptions are dismissed in the paper.