EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado

Duração da prova: 120 minutos 2002

1.ª FASE 2.ª CHAMADA VERSÃO 1

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas delas subdivididas em alíneas, num total de onze.

Na página 11 deste enunciado encontra-se um formulário que, para mais fácil utilização, pode ser destacado do resto da prova, em conjunto com esta folha.

Grupo I

- · As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- · Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- · Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos.
- 1. De uma função f , de domínio $\mathbb R$, sabe-se que:
 - f(5) = 0
 - f é uma função par

Seja g a função, de domínio \mathbb{R} , definida por $g(x)\!=\!f(x\!+\!3)$.

Qual dos seguintes pode ser o conjunto dos zeros de g?

- **(A)** {0,3}
- **(B)** $\{3,5\}$ **(C)** $\{-8,2\}$ **(D)** $\{2,8\}$

2. Na figura estão representados, em referencial o. n. xOy, o círculo trigonométrico e um triângulo [OAB].

> AOs pontos Bpertencem à circunferência.

> O segmento [AB]é perpendicular ao semieixo positivo Ox.

> O ponto $\,C\,$ é o ponto de intersecção da circunferência com o semieixo positivo $\ Ox.$

 $\left(\alpha\in\right]0,\frac{\pi}{2}\left[\right)$ Seja $\,\alpha\,$ a amplitude do ângulo $\,COA.$

Qual das expressões seguintes dá a área do triângulo [OAB], em função de α ?

(A) $\sin \alpha \cdot \cos \alpha$

(B) $\frac{\operatorname{tg}\alpha \cdot \cos\alpha}{2}$

(C) $tg \alpha . sen \alpha$

(D) $\frac{\operatorname{tg}\alpha \cdot \operatorname{sen}\alpha}{2}$

3. De uma função h, de domínio \mathbb{R}^- , sabe-se que a recta de equação y=2 é assimptota do seu gráfico.

Qual é o valor de $\lim_{x \to -\infty} \frac{h(x)}{e^x}$?

- (A) $+\infty$ (B) $-\infty$ (C) 0
- **(D)** 2

4. Na figura está representado, em referencial o. n. Oxyz, um cilindro de revolução.

Tem-se que:

- ullet a altura do cilindro é $\,3\,$
- uma das bases está contida no plano xOy, sendo o seu centro o ponto (0,1,0) e o seu raio igual a 1

Seja $b \in]0,2[$ e seja f a função que, a cada valor de b, faz corresponder o perímetro da secção produzida no cilindro pelo plano de equação y = b.

Qual é o máximo da função f?

- **(A)** 9
- **(B)** 10
- **(C)** 11
- **(D)** 12

5. Na figura estão representados os gráficos de duas distribuições normais.

> Uma das distribuições tem valor médio $\,a\,$ e desvio padrão b.

> A outra distribuição tem valor médio $\,c\,$ e desvio padrão d.

Os gráficos são simétricos em relação à mesma recta r.

Qual das afirmações seguintes é verdadeira?

(A) a=c e b>d

(B) a = c e b < d

(C) a > c e b = d

(D) a < c e b = d

6. O João utiliza, por vezes, o autocarro para ir de casa para a escola.

Seja $\,A\,$ o acontecimento: «O João vai de autocarro para a escola».

Seja $\,B\,$ o acontecimento: «O João chega atrasado à escola».

Uma das igualdades abaixo indicadas traduz a seguinte afirmação: «Metade dos dias em que vai de autocarro para a escola, o João chega atrasado».

Qual é essa igualdade?

(A) $P(A \cap B) = 0.5$

(B) $P(A \cup B) = 0.5$

(C) P(A|B) = 0.5

- **(D)** P(B|A) = 0.5
- 7. Qual das figuras seguintes pode ser a representação geométrica, no plano complexo, do conjunto $\{z \in \mathbb{C} : |z+1| = |z-i| \land 2 \leq Im(z) \leq 4 \}$?

(A)

(B)

(C)

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- **1.** De dois números complexos $\ z_1 \ \ {\rm e} \ \ z_2 \ \ {\rm sabe-se} \ {\rm que} :$
 - um argumento de z_1 é $\frac{\pi}{3}$
 - \bullet o módulo de $\,z_{2}\,$ é $\,4\,$
 - **1.1.** Seja $w=\frac{-1+i}{i}$ Justifique que w é diferente de z_1 e de z_2
 - **1.2.** z_1 e z_2 são duas das raízes quartas de um certo número complexo z. Sabendo que, no plano complexo, a imagem geométrica de z_2 pertence ao segundo quadrante, determine z_2 na forma algébrica.
- 2. O nível N de um som, medido em decibéis, é função da sua intensidade I, medida em watt por metro quadrado, de acordo com a igualdade

$$N\!=\!10\,\log_{10}\!\left(10^{12}\,I\right)$$
 , para $I\!>\!0$

Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes.

- **2.1.** Verifique que $N = 120 + 10 \log_{10} I$

Determine a intensidade desse som, em watt por metro quadrado.

3. De uma função f, de domínio $[-\pi,\pi]$, sabe-se que a sua **derivada** f' está definida igualmente no intervalo $[-\pi,\pi]$ eé dada por

$$f'(x) = x + 2\cos x$$

- 3.1. Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes:
 - **3.1.1.** Determine o valor de $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$
 - **3.1.2.** Estude a função f quanto às concavidades do seu gráfico e determine as abcissas dos pontos de inflexão.
- **3.2.** O gráfico de f contém um único ponto onde a recta tangente é paralela ao eixo Ox. Recorrendo à sua calculadora, determine um valor arredondado às centésimas para a abcissa desse ponto. Explique como procedeu.
- **4.** Seja f uma função contínua, de domínio [0,5] e contradomínio [3,4]. Seja g a função, de domínio [0,5], definida por g(x) = f(x) x. Prove que a função g tem, pelo menos, um zero.

- **5.** Considere todos os números de quatro algarismos que se podem formar com os algarismos de 1 a 9.
 - **5.1.** Escolhe-se, ao acaso, um desses números.
 - **5.1.1.** Determine a probabilidade de o número escolhido ter exactamente dois algarismos iguais a 1. Apresente o resultado na forma de percentagem, arredondado às unidades.
 - **5.1.2.** Determine a probabilidade de o número escolhido ter os algarismos todos diferentes e ser maior do que 9800. Apresente o resultado na forma de dízima, com três casas decimais.
 - **5.2.** Considere o seguinte problema:

«De todos os números de quatro algarismos que se podem formar com os algarismos de 1 a 9, alguns deles cumprem as três condições seguintes:

- começam por 9;
- têm os algarismos todos diferentes;
- a soma dos quatro algarismos é par.

Quantos são esses números?»

Uma resposta correcta a este problema é $3 imes 4 imes ^4 A_2 + ^4 A_3$

Numa pequena composição, com cerca de vinte linhas, explique porquê.

FIM

COTAÇÕES

Grupo l	l	63
	Cada resposta certa	- 3
	Nota: um total negativo neste grupo vale 0 (zero) pontos.	
Grupo l	II	137
	1	21
	2.	28
	3.1. 26 3.1.1. 10 3.1.2. 16 3.2. 15	41
	4	15
	5.1. 16 5.1.1. 8 5.1.2. 8 5.2. 16	32
ΓΩΤΔΙ		200

Formulário

Áreas de figuras planas

$${\color{red} \textbf{Losango:}} \ \ \frac{Diagonal maior \times Diagonal menor}{2}$$

Trapézio:
$$\frac{Basemaior + Basemenor}{2} \times Altura$$

Polígono regular:
$$Semiperímetro \times Apótema$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

($r - raio\ da\ base;\ g - geratriz$)

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r - raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r-raio)$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen} a \cdot \cos b + \operatorname{sen} b \cdot \cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis}(n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2k\pi}{n}, k \in \{0, \dots, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 imes \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$