Data Sheet

RTC66006

0.1 to 2.7 GHz Medium Power SPDT RF Switch

RichWave

AUG 2021 - Ver. 0.4

Description

The RTC66006 is a high performance single-pole double-throw (SPDT) RF switch operating from 0.1 to 2.7 GHz which is ideal for use in general-purpose RF switching applications. This device is processed in advanced CMOS technology featuring low insertion loss, low control voltage, and high isolation. The RTC66006 is packaged in 6-pin ultrasmall SC-70 package with lead-free RoHS compliant.

Functional Block Diagram

Features

Operating Frequency: 0.1 – 2.7 GHz

Single supply voltage: 3.0 V

Low insertion loss:

0.55 dB @ 1 GHz

0.75 dB @ 2 GHz

High isolation :

- 31 dB @ 1 GHz

22 dB @ 2 GHz

High input P0.1dB: 32 dBm

Ultra-small SC-70 6-pin package

RoHS Compliant, Pb-free, Halogen Free

Moisture Sensitivity Level: MSL 3

Applications

General purpose medium-power switch applications

Pin Assignments

Top View Through Package

Pin No.	Pin Name	Description
1	RF1	RF Port 1, DC blocking capacitor is needed
2	GND	Ground
3	RF2	RF Port 2, DC blocking capacitor is needed
4	CTRL	DC control pin
5	RFC	Antenna port, DC blocking capacitor is needed
6	VDD	Supply voltage

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	VDD	+5	V
Control Voltage	CTRL	+4	V
Max Input Power (T _A = +25 °C)	P _{IN}	+32	dBm
Operating temperature	T _A	-40 to +105	°C
Storage temperature	T _{STG}	-65 to +150	°C

NOTE: Stresses above those conditions listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device above those conditions indicated in the Absolute Maximum Ratings is not implied. The functional operation of the device at the conditions in between Recommended Operating Ranges and Absolute Maximum Ratings for extended periods may affect device reliability.

Recommended Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Operating Frequency	f	0.1		2.7	GHz
Supply Voltage	VDD	1.8	3.0	3.6	V
Control Voltage High	CTRL(H)	1.35	1.8	3.3 ^(*)	V
Control Voltage Low	CTRL(L)	-0.4	0	0.4	V

^(*) VC should not exceed VDD.

NOTE: Recommended Operating Ranges indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits.

Truth Table

CTRL	Low Insertion Loss Path
Н	RFC – RF1
L	RFC – RF2

NOTE: Any modes other than those listed above are not supported.

Electrical Specifications

 T_{A} = +25 °C, 50 Ω system with VDD = 3.0 V, CTRL = 0/1.8 V, P_{IN} = 0 dBm, unless otherwise noted

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Frequency	f		0.1		2.7	GHz
	IL_1	0.1 – 0.5 GHz		0.50		dB
Insertion Loss	IL_2	0.5 – 1.0 GHz		0.55		dB
(RFC to RF1/RF2)	IL_3	1.0 – 2.0 GHz		0.75		dB
	IL_4	2.0 – 2.7 GHz		0.85	• (/	dB
	lso_1	0.1 – 0.5 GHz		36		dB
Isolation	lso_2	0.5 – 1.0 GHz		31		dB
(RFC to RF1/RF2)	lso3	1.0 – 2.0 GHz		22		dB
	Iso4	2.0 – 2.7 GHz		22		dB
	lso_5	0.1 – 0.5 GHz		38		dB
Isolation	lso_6	0.5 – 1.0 GHz		33		dB
(RF1 to RF2)	Iso7	1.0 – 2.0 GHz		25		dB
	s	2.0 – 2.7 GHz		25		dB
	RL_1	0. <mark>1</mark> – 0.5 GHz		28		dB
Return Loss	RL_2	0.5 – 1.0 GHz		23		dB
(RFC to RF1/RF2)	RL_3	1.0 – 2.0 GHz		19		dB
	RL4	2.0 – 2.7 GHz		18		dB
	2fo_1	P _{IN} = +25 dBm, CW, @ 900 MHz		-50		dBm
2nd Harmonics (RFC to RF1/RF2)	2fo_2	P _{IN} = +25 dBm, CW, @ 1800 MHz		-45		dBm
	2fo_3	P _{IN} = +25 dBm, CW, @ 2450 MHz		-50		dBm
	3fo_1	P_{IN} = +25 dBm, CW, @ 900 MHz		-56		dBm
3rd Harmonics (RFC to RF1/RF2)	3fo_2	$P_{IN} = +25 \text{ dBm, CW,}$ @ 1800 MHz		-45		dBm
	3fo_3	P _{IN} = +25 dBm, CW, @ 2450 MHz		-52		dBm
Spurious Performance (RFC to RF1/RF2)	P _{SPUR}	108 to1218 MHz@100kHz offset		-167		dBm/ Hz
Input Power for 0.1 dB Compression	P _{0.1dB}	@ 900 MHz, 1800 MHz, and 2700 MHz		32		dBm
Switching Time	tsw	50% VC to 90/10% RF		210		ns
Supply Current	urrent Idd VDD = 3 V, CTRL = 1.8 V			5		μA
Control Current	lctl	VDD = 3 V, CTRL = 1.8 V 1			μA	

Application Circuits

NOTE:

- 1. DC blocking capacitors $C_{BLOCK} = 68$ pF are required on all RF ports for operating frequency $0.5 \sim 2.7$ GHz. $C_{BLOCK} = 10$ nF for operating frequency $0.1 \sim 0.5$ GHz.
- 2. Information in the above application is for reference only, and does not guarantee the mass production design of the device.

Evaluation Board Bill of Material

Component	Value	Description	Supplier	Part Number	
IC		RTC66006	RichWave		
C	68 pF	DC blocking capacitor	Walsin	0402N680J500LT	
C _{BLOCK} –	10 nF	DC blocking capacitor	Walsin	0402B103K250CT	

Recommended Footprint Patterns

NOTE:

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

Package Dimensions

6L SC-70					
SYMBOL	MIN	ТҮР	MAX		
А	0.800	0.950	1.100		
A1	0.000	0.050	0.100		
A2	0.700	0.900	1.000		
b	0.150	0.250	0.350		
D	1.800	2.000	2.200		
L	0.260	0.360	0.460		
е	0.650 BSC				
e1	1.200	1.300	1.400		
Е	1.950	2.200	2.450		
E2	1.150	1.250	1.350		
θ	0°	4°	8°		

NOTE:

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

Customer Service

RichWave Technology Corp.

3F, No.1, Alley 20, Lane 407. Sec.2, Tiding Bvd., Neihu Dist., Taipei City 114, Taiwan, R.O.C. TEL +886-2-87511358 FAX +886-2-66006887 www.richwave.com.tw

Disclaimers

RichWave reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. RichWave does not assume any liability arising out of the application or use of information or product described in this document. Neither does RichWave convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. It is the user's responsibility to ensure that equipment using this product is compliant to all relevant standards. RichWave's products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright © RichWave Technology Corp. All rights reserved.