Комп'ютерний практикум 1. Робота з масивами

Мета роботи

Отримати навички роботи з одновимірними та двовимірними масивами.

Основні теоретичні відомості

Масив – це структура даних, що являє собою сукупність фіксованого розміру і конфігурації упорядкованих однорідних незалежних змінних.

Масив відноситься до структурованих структур даних, тобто даних, що мають фіксовану внутрішню структуру (організацію).

Масив характеризується:

- 1. Кількістю розмірностей (кількістю координат, необхідних для визначення місцезнаходження потрібного елементу масиву).
- 2. Спільним ідентифікатором (ім'ям) для всіх елементів масиву.
- 3. Індексом або сукупністю індексів, що визначають кожний окремий елемент масиву.

Одновимірний масив (вектор) – має одну розмірність.

A – ідентифікатор масиву (у наведеному прикладі)

При звернені до окремого елемента масиву необхідно вказати його індекс (місцезнаходження в масиві): A[7] ← i=7; A[i]

Двовимірні масиви (матриці) — мають дві розмірності, $\mathbf{m*n}$. Доступ до окремого елементу масиву здійснюється шляхом визначення двох координат: номеру рядка $\mathbf{i=0..m-1}$ та стовпця $\mathbf{j=0..n-1}$:

1

Приклад:

$$A[3][7];$$
 $i = 4; j = 2;$
 $A[i][j] == A[4][2];$

Операціі надання виконуються аналогічно:

$$A[3][9] = 8;$$
 $B = A[1][1]$

Як індекс при організації доступу до елементу можна вказати також індексний вираз:

Порядок виконання роботи

- 1. Проаналізувати умову задачі.
- 2. Розробити алгоритм розв'язання задачі згідно з номером варіанту.
- 3. Результати роботи оформити у звіт:
 - 1) Титульний лист.
 - 2) Номер завдання.
 - 3) Завдання.
 - 4) Словесний опис алгоритму.
 - 5) Блок-схема алгоритму.
 - 6) Діаграма дій алгоритму.
 - 7) Висновки.

Варіанти завдань

Одновимірні масиви

- 2-1а. Надано масив A[N]. Якщо N парне, знайти максимальний елемент, інакше мінімальний.
- 2-2a. Надано масив A[N]. Поміняти мінімальний та максимальний елементи місцями.
- 2-3а. Надано масив A[N]. Вилучити елемент з наданим індексом (решту зсунути).
- 2 4a. Надано масив A[N]. Вставити елемент у надане місце.
- 2-5а. Надано масив A[N]. Вилучити мінімальний елемент (решту зсунути).
- 2 6a. В одновимірному масиві знайти найдовшу послідовність нулів, якщо така існує.
- 2 7а. Надано одновимірний масив. Всі його елементи, що не дорівнюють нулю, переписати у початок масиву, не порушуючи порядку. Нульові
 в кінець масиву. Новий масив не створювати.
- 2-8а. Надано два впорядкованих масиви $a_1 \leq a_2 \leq \ldots \leq a_n, b_1 \leq b_2 \leq \ldots \leq b_m$ Створити новий впорядкований масив $c_1 \leq c_2 \leq \ldots \leq c_{n+m}$. Сортування жодного масиву не виконувати.
- 2-9а. Дано два одновимірних масиви, A[N], B[M], N>M. Перевірити, чи існує послідовність елементів масиву A, яка цілком співпадає з масивом B.
- 2-10а. Дано два одновимірних масиви, A[N], B[M], N>M. Перевірити, чи існує послідовність елементів масиву A, яка цілком співпадає з масивом B, і, якщо так, вилучити її.
- 2-11а. Дано два одновимірних масиви, A[N], B[M], N>M Перевірити, чи є в масиві A елементи, що співпадають з елементами масиву B, і, якщо так, вилучити їх.

- 2-12а. Задано масив X[M]. Знайти довжину k самої довгої послідовності, що задовольняє умові: $x_p < x_{p+1} > x_{p+2} < x_{p+3} > \ldots < x_{p+k-1} > x_{p+k}$ Вивести на друк цю послідовність.
- 2-13а. Задано масив X[M]. Визначити, чи впорядковані елементи масиву і, якщо так, то за спаданням чи за зростанням.
- 2-14а. Дано два одновимірних масиви, A[N], B[N]. Якщо ці масиви не співпадають за значеннями елементів, порахувати їх скалярний добуток.
- 2 15а. Задано масив *X*[*M*]. Відомо, що елементи масиву відсортовані за модулем за зростанням (це перевіряти не потрібно). Переставити елементи масиву так, щоби на початку масиву знаходилися усі додатні, а потім усі від'ємні елементи так, щоби початковий порядок слідування окремо додатних, окремо від'ємних елементів зберігся.
- 2-16a. Дано два дійсних одновимірних масиви, A[N], B[N]. Усі елементи масиву A, що по модулю менше деякого наперед заданого значення 0 < epsilon < 1.0 замінити відповідними значеннями масиву B, якщо вони задовольняють такій самій умові (тобто A[i] замінити B[i]), або нулем.
- 2-17а. Відомо, що усі елементи символьного масиву із 10 елементів можуть приймати одне з трьох фіксованих значень: або 'a', або 'b', або 'c'. Відсортуйте масив за не спаданням.
- 2-18а. Задано символьний масив X[M]. Вилучити з нього усі елементи, що містять символи цифр 0..9.
- 2-19а. Задано дійсний масив X[M]. Вилучити з нього усі елементи, що містять дробову частину, яка починається десятковою п'ятіркою.

Двовимірні масиви

- 2 1. Є дійсна квадратна матриця a_{ij} , $i, j = 0 \div (N-1)$. Утворити вектор B, елементами якого є мінімальні елементи рядків матриці A.
- 2 2. Є дійсна квадратна матриця a_{ij} , $i, j = 0 \div (N-1)$. Утворити вектор B, елементами якого є суми елементів по стовпчиках матриці A.
- 2-3. Надано цілі числа $a_1 \dots a_N$ та квадратна матриця цілих чисел порядку N. Замінити нулями у матриці ті елементи із парною сумою індексів, для які співпадають з значеннями $a_1 \dots a_N$.
- 2-4. Є дві дійсні квадратні матриці порядку N. Утворити нову матрицю множенням елементів кожного рядка першої матриці на найбільше із значень елементів відповідного рядка другої матриці.
- 2-5. \in дійсна квадратна матриця порядку N. Шляхом перестановки рядків та стовпчиків помістити один з елементів матриці, що має найменше значення, у правий нижній кут.
- 2-6. \in дійсна матриця порядку N. Шляхом переставлення рядків та стовпчиків помістити один з елементів матриці, що має найбільше за модулем значення, у лівий верхній кут.
- 2-7. Є дійсна квадратна матриця порядку N, усі елементи якої різні. Знайти максимальні елементи на головній та на побічній діагоналі та поміняти їх місцями.
- 2-8. Дано двовимірний цілочисельний масив A[N][M]. Відомо, що серед його елементів тільки два рівних між собою. Знайти їх та вивести на друк їх індекси.
- 2-9. У наданій дійсній квадратній матриці порядку п знайти найбільший за модулем елемент. Знайти матрицю порядку N-1 шляхом викреслювання рядка та стовпчика, на перетину яких знаходиться знайдений елемент.
- 2-10. \in дві дійсні квадратні матриці порядку N. Знайти нову матрицю, додаючи до елементів кожного рядка першої матриці добуток

елементів відповідних рядків другої матриці.

- 2-11. Дано двовимірний масив A[N][M]. Деякий його елемент називається «сідловою точкою», якщо він одночасно найменший в рядку та найбільший в стовпці. Знайти такий елемент, якщо він існує, а якщо ні вивести на друк відповідне повідомлення.
- 2-12. Є дійсна квадратна матриця порядку $2N \times 2N$. Отримати нову матрицю, переставляючи її блоки розміром $N \times N$:

2-13. З дійсної квадратної матриці порядку $2N \times 2N$ отримати нову матрицю такою перестановкою її блоків розміром $N \times N$:

2-14. \in дійсна квадратна матриця порядку N. Знайти найбільший з

елементів, розташованих у заштрихованій частині:

2-15. \in дійсна квадратна матриця порядку N. Знайти найменший з

елементів, розташованих у заштрихованій частині:

2-16. \in дійсна квадратна матриця порядку N. Знайти суму елементів,

розташованих у заштрихованій частині:

2-17. \in дійсна квадратна матриця порядку N. Знайти суму від'ємних

елементів, розташованих у заштрихованій частині:

2-18. Є дійсна квадратна матриця a_{ij} , $i,j=0\div(N-1)$. Знайти дійсну квадратну матрицю b_{ij} , кожний окремий i,j-й елемент якої дорівнює сумі елементів попередньої матриці у відповідній заштрихованій

області:

2-19. Є дійсна квадратна матриця a_{ij} , $i,j=0\div(N-1)$. Знайти дійсну квадратну матрицю b_{ij} , елементи якої дорівнюють сумі елементів першої матриці у заштрихованій області, що визначена індексами i,j:

2-20. Є дійсна квадратна матриця A порядку N. Знайти дійсну квадратну матрицю B порядку N, кожний з елементів якої дорівнює сумі елементів матриці A у відповідній заштрихованій області, що

визначена індексами i, j:

2-21. Є дійсна квадратна матриця A порядку N. Знайти дійсну квадратну матрицю B порядку N, кожний з елементів якої дорівнює сумі елементів матриці A у відповідній заштрихованій області, що

визначена індексами i, j:

2-22. Є дійсна квадратна матриця A порядку N. Знайти дійсну квадратну матрицю B порядку N, кожний з елементів якої дорівнює сумі елементів матриці A у відповідній заштрихованій області, що

визначена індексами i, j:

2-23. Є дійсна квадратна матриця A порядку N. Знайти дійсну квадратну матрицю B порядку N, кожний елемент b_{ij} якої є сумою елементів

матриці А у заштрихованій області:

2-24. Утворити квадратну матрицю, елементами якої є натуральні числа, що

розташовані по спіралі:

2-25. Утворити квадратну матрицю, елементами якої є натуральні числа, що

розташовані по спіралі:

2-26. \in дійсна квадратна матриця порядку N. Знайти максимальний

елемент, розташований у заштрихованій області:

2-27. \in дійсна квадратна матриця порядку N. Знайти мінімальний елемент,

розташований у заштрихованій області:

2-28. \in дійсна квадратна матриця порядку N. Знайти найбільший з

елементів, розташованих у заштрихованій області:

2-29. \in дійсна квадратна матриця порядку N. Знайти найбільший з

елементів, розташованих у заштрихованій області:

2-30. \in дійсна квадратна матриця порядку N. Знайти найбільший з

елементів, розташованих у заштрихованій області:

2-31. \in дійсна квадратна матриця порядку N. Знайти найбільший з

елементів, розташованих у заштрихованій області:

2-32. Утворити матрицю $n\times n$, елементами якої ϵ натуральні числа,

розташовані наступним чином:

2-33. Утворити матрицю $n\times n$, елементами якої є натуральні числа,

розташовані наступним чином:

2-34. Утворити матрицю $n \times n$, елементами якої є натуральні числа,

розташовані наступним чином:

2 – 35. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з лівого нижнього кута:

2 – 36. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з лівого нижнього кута:

2 – 37. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з лівого верхнього кута:

2 – 38. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з правого нижнього кута:

2 – 39. Утворити квадратну матрицю, розташувавши числа натурального

ряду за напрямом стрілки. На інших позиціях нулі:

2-40. Утворити квадратну матрицю, розташувавши числа натурального

ряду за напрямом стрілки. На інших позиціях нулі:

2 – 41. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з лівого нижнього кута:

2 – 42. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з правого верхнього кута:

2 – 43. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з правого верхнього кута:

2 – 44. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з лівого нижнього кута:

2 – 45. Утворити квадратну матрицю, розташувавши числа натурального ряду за напрямом стрілки. На інших позиціях елементи дорівнюють

нулю. Починати з правого верхнього кута:

Контрольні запитання

- 1. Надати визначення масиву.
- 2. Які загальні характеристики масиву?
- 3. Як зображують одно- та двовимірні масиви на діаграмі дій?
- 4. Як звернутись до окремого елемента одно- та двовимірного масиву?
- 5. Що таке індекс, індексний вираз?
- 6. Які значення може набувати індекс?

Комп'ютерний практикум 1-S. Робота з символьними масивами

- 1. Дано: натуральне число **n**, символи **S**₁, . . . , **S**_n. Обчислити: скільки разів серед заданих символів зустрічається символ '+' та скільки разів символ '*'.
- 2. Є символи S_1, \ldots, S_n . Відомо, що серед символів $S_2, S_3, \ldots S_n$ є кілька знаків питання. Визначити кількість символів пробілу серед S_i, \ldots, S_n , що йдуть перед другим знаком питання.
- Дано натуральне число n, символи S₁, . . . , S_n. Отримати перше натуральне
 і, для якого кожний з символів S_i и S_{i+1} співпадає з літерою 'a '.
- 4. Дано: натуральне число \mathbf{n} , символи $\mathbf{S_1}, \ldots, \mathbf{S_n}$. Необхідно перетворити послідовність $\mathbf{S_1}, \ldots, \mathbf{S_n}$, замінивши кожну крапку на три крапки.
- 5. Дано: натуральне число **n**, символи **S**₁, . . . , **S**_n. Виключити з послідовності усі групи літер вигляду "abcd"
- 6. Дано: натуральне число \mathbf{n} , символи $\mathbf{S_1}$, . . . , $\mathbf{S_n}$, серед яких ϵ двокрапка. Отримати усі символи, що знаходяться до першої двокрапки включно.
- 7. Дано: натуральне число \mathbf{n} , символи $\mathbf{S_1}, \ldots, \mathbf{S_n}$. Обчислити найбільшу кількість символів пробілу, що йдуть підряд.
- 8. Дано: натуральне число **n**, символи **S**₁, . . . , **S**_n. Визначити кількість вхождень у послідовність **S**₁, . . . , **S**_n груп літер "**abc**"
- 9. Дано: натуральне число **n**, слова **S**₁, . . . , **S**_n. Знайти будь-яке слово, що починається з літери ' **a**' і закінчуються літерою ' **z**' (якщо таких слів немає, то вивести відповідне повідомлення).
- 10. Дано: натуральне число **n**, слова **S**₁, . . . , **S**_n. Видалити з **S**₁, . . . , **S**_n усі слова з непарними порядковими номерами та перевернути усі слова з парними номерами.
- 11. Дано: натуральне число \mathbf{n} , слова $\mathbf{S_1}, \ldots, \mathbf{S_n}$. Видалити з $\mathbf{S_1}, \ldots, \mathbf{S_n}$, усі слова, в яких зустрічається не більше двох різних літер.
- 12. Дано: натуральне число **n**, слова **S**₁,...,**S**_n. Видалити з **S**₁,...,**S**_n усі слова, що завершуються групою букв 'is' или 'er'.