Single Variable Calculus

Otto Martinwall

$May\ 21,\ 2022$

Contents

1	Ana	alysis V	With an Introduction to Proof	3
	1.1	Sets a	nd Functions	4
		1.1.1	Ordered Pairs	4
		1.1.2	Cartesian Product	6
		1.1.3	Relation	7
2	Tho	omas' (Calculus Early Transcendentals	9
3	Cal	culus A	A Complete Course	10
	3.1	Limits	and Continuity	11
		3.1.1	Exercises 1.1	13
		3.1.2	Exercises 1.2	13
		3.1.3	Exercises 1.3	13
		3.1.4	Exercises 1.4	13
		3.1.5	Exercises 1.5	15
	3.2	Tange	nt Lines and Their Slopes	18
		3.2.1	Exercises 2.1	18

	3.2.2	Exercises 2.2	19
4	Lectures		20

1 Analysis With an Introduction to Proof

1.1 Sets and Functions

1.1.1 Ordered Pairs

Definition 1. [Ordered Pair] The **ordered pair** (a, b) is the set whose members are $\{a\}$ and $\{a, b\}$. In symbols we have

$$(a,b) = \{\{a\}, \{a,b\}\}\$$

This definition ensures that the elements have an order. To show this, this theorem and its proof should suffice.

Theorem 1.

$$(a,b) = (c,d) \Leftrightarrow a = c, b = d$$

Proof. If a = c and b = d, then

$$(a,b) = \{\{a\}, \{a,b\} = \{\{c\}, \{c,d\}\} = (c,d)\}$$

Conversely, suppose that (a, b) = (c, d). Then by our definition we have $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. We wish to conclude that a = c and b = d. To this end we consider two cases, depending on whether a = b or $a \neq b$.

If a = b, then $\{a\} = \{a, b\}$, so $(a, b) = \{\{a\}\}$. Since (a, b) = (c, d), we then have

$$\{\{a\}\} = \{\{c\}, \{c, d\}\}.$$

The set on the left has only one member, $\{a\}$. Thus the set on the 4.1.1 Sets and Functions

right can have only one member, so $\{c\} = \{c, d\}$, and we can conclude that c = d. But then $\{\{a\}\} = \{\{c\}\}\}$, so $\{a\} = \{c\}$ and a = c. Thus a = b = c = d.

On the other hand, if $a \neq b$, then from the preceding argument it follows that $c \neq d$. Since (a, b) = (c, d), we must have

$$\{a\} \in \{\{c\}, \{c, d\}\},\$$

which means that $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$. In either case we have $c \in \{a\}$, so a = c. Again, since (a, b) = (c, d), we must also have

$${a,b} \in {\{c\}, \{c,d\}\}}.$$

Thus $\{a,b\} = \{c\}$ or $\{a,b\} = \{c,d\}$. But $\{a,b\}$ has two distinct members and $\{c\}$ has only one, so we must have $\{a,b\} = \{c,d\}$. Now a=c, $a \neq b$, and $b \in \{c,d\}$, which implies that b=d.

1.1.2 Cartesian Product

Definition 2. [Cartesian Product] If A and B are sets, then the **Cartesian product** (or **cross product**) of A and B, written $A \times B$, is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$. In symbols,

$$A \times B = \{(a, b) : (a \in A) \land (b \in B)\}.$$

1.1.3 Relation

Definition 3. [Relation] Let A and B be sets. A **relation between** A **and** B is any subset R of $A \times B$. We say that an element a in A is **related** by R to an element b in B if $(a,b) \in R$, and we often denote this by writing "aRb". The first set A is referred to as the **domain** of the relation and denoted by dom R. If B = A, then we speak of a relation $R \subseteq A \times A$ being a **relation on A**.

Definition 4. [Equivalence Relation] A relation R on a set S is an **equivalence relation** if it has the following properties for all $x, y, z \in S$:

- Reflexive property: xRx
- Symmetric property: $xRy \leftrightarrow yRx$
- Transitive property: $(xRy \wedge yRz) \rightarrow xRz$

An example for a **equivalence relation** is the relation "is parallel to" when considering all lines in the plane, if we agree that a line is parallel to itself.

Definition 5. [Equivalence Class] Given an equivalence relation R on a set S, the **equivalence class** with respect to R of $x \in S$ is the

set

$$E_x = \{ y \in S : y Rx \}$$

2 Thomas' Calculus Early Transcendentals

3 Calculus A Complete Course

3.1 Limits and Continuity

Theorem 2. [The Squeeze Theorem, 4] Suppose that $f(x) \leq g(x) \leq h(x)$ holds for all x in some open interval containing c, except possibly at x = c. Suppose also that

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$

Then $\lim_{x\to c} g(x) = L$.

Proof. For this proof, the (ϵ, δ) -definition of the limit will be used.

The goal is to prove that $\lim_{x\to c} g(x) = L$, which is true if

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x, (|x - c| < \delta \Rightarrow |g(x) - L| < \epsilon).$$

Since $\lim_{x\to c} f(x) = L$,

$$\forall \epsilon > 0, \exists \delta_1 > 0 : \forall x, (|x - c| < \delta_1 \Rightarrow |f(x) - L| < \epsilon) \tag{1}$$

And since $\lim_{x\to c} h(x) = L$,

$$\forall \epsilon > 0, \exists \delta_2 > 0 : \forall x, (|x - c| < \delta_2 \Rightarrow |h(x) - L| < \epsilon). \tag{2}$$

3.1 Limits and Continuity

Then we have

$$f(x) \le g(x) \le h(x)$$

$$f(x) - L \le g(x) - L \le h(x) - L$$

We can choose $\delta = \min\{\delta_1, \delta_2\}$, then if $|x - c| < \delta$, and combining (1) and (2), we have

$$-\epsilon < f(x) - L \le g(x) - L \le h(x) - L < \epsilon$$
$$-\epsilon < g(x) - L < \epsilon$$
$$|g(x) - L| < \epsilon$$

So $\lim_{x\to c} g(x) = L$, which completes the proof.

Theorem 3. [The Intermediate-Value Theorem, 9] If f(x) is continuous on the interval [a, b] and if s is a number between f(a) and f(b), then there exists a number c in [a, b] such that f(c) = s.

In particular, a continuous function defined on a closed interval takes on all values between its minimum value m and its maximum value M, so its range is also a closed interval, [m, M].

Proof.

3.1.1 Exercises 1.1

3.1.2 Exercises 1.2

78. What is the domain of $\sin \frac{1}{x}$? Evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$.

The domain of $x \sin x$ is \mathbb{R} . The domain of $\frac{1}{x}$ is $(-\infty, 0) \cup (0, \infty)$. Therefore, the domain of $x \sin \frac{1}{x}$ is $(-\infty, 0) \cup (0, \infty)$.

To evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$, we can first evaluate $\lim_{x\to 0} \frac{1}{x}$.

$$\lim_{x\to 0^+} \frac{1}{x} = +\infty$$
, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

This means that $\lim_{x\to 0} \sin \frac{1}{x} = \lim_{x\to \pm \infty} \sin x$, which means that $-1 \le \lim_{x\to 0} \sin \frac{1}{x} \le 1$.

$$\lim_{x \to 0} x \sin \frac{1}{x} = (\lim_{x \to 0} x)(\lim_{x \to 0} \sin \frac{1}{x}) = 0$$

79. Suppose $|f(x)| \leq g(x) \forall x$. What can you conclude about $\lim_{x\to a} f(x)$ if $\lim_{x\to a} g(x) = 0$? What if $\lim_{x\to a} g(x) = 3$?

 $|f(x)| \leq g(x) \forall x \Leftrightarrow -g(x) \leq f(x) \leq g(x) \forall x$. Since $\lim_{x\to a} g(x) = 0$ and therefore $\lim_{x\to a} -g(x) = 0$, then $\lim_{x\to a} f(x) = 0$ by the squeeze theorem.

If $\lim_{x\to a} g(x) = 3$, and $-g(x) \le f(x) \le g(x) \forall x$, then we can conclude that either $-3 \le \lim_{x\to a} f(x) \le 3$, or $\lim_{x\to a} f(x)$ doesn't exist.

3.1.3 Exercises 1.3

3.1.4 Exercises 1.4

32.

Let g(x) = f(x) - x. Since $0 \le f(x) \le 1$ for $0 \le x \le 1$, then $0 \le g(0)$. By the same argument, $g(1) \le 0$. Because g(x) is continuous in the 3.1 Limits and Continuity interval [0,1], there must be some value $c \in [0,1]$ such that g(c) = 0, by the Intermediate-Value Theorem. If g(c) = 0, then f(c) = c, which was to be shown.

33.

Since f(x) is even, it is symmetric around the y-axis. The symmetric equivilance of $\lim_{x\to 0^+}$ around the y-axis is $\lim_{x\to 0^-}$. Since f(x) is right-continuous, it means that $\lim_{x\to 0^+} f(x) = f(0)$ and because of the symmetry, $\lim_{x\to 0^-} f(x) = f(0)$. Because $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0)$, f is continuous at f(x) = f(0).

34.

 $\lim_{x\to 0^+} f(x) = f(0)$ because f is right continuous. Since f is odd, it is symmetric around the origin, and therefore $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0) = 0$. Since f is both right and left continuous at x = 0, it is continuous at x = 0.

3.1.5 Exercises 1.5

31.

$$(\lim_{x\to a} f(x) = L) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_1 > 0 : 0 < |x-a| < \delta_1 \Rightarrow |f(x) - L| < \epsilon)$$

and

$$(\lim_{x\to a} f(x) = M) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_2 > 0 : 0 < |x-a| < \delta_2 \Rightarrow |f(x) - M| < \epsilon)$$

We assume that $L \neq M$. If we choose $\delta = \min\{\delta_1, \delta_2\}$, then $0 < |x-a| < \delta \Rightarrow |f(x) - L| + |f(x) - M| < \epsilon + \epsilon = 2\epsilon$.

By the triangle inequality,

$$|f(x) - L| + |f(x) - M| \ge |(L - f(x)) + (f(x) - M)| = |L - M|.$$

Since $L \neq M$, we can let $\epsilon = |L - M|/4$ because |L - M| is positive.

This means that $|L-M| \le 2\epsilon = |L-M|/2 \Rightarrow 2 \le 1$, which is obviously false. Therefore L=M and the limit is unique, which was to be shown.

32.

Since $\lim_{x\to a} g(x) = M$, the following must be true

$$|g(x)| = |(g(x) - M) + M| \le |g(x) - M| + |M| < \epsilon + |M|$$

If we choose $\epsilon = 1$ then

$$|g(x)| < 1 + |M|$$

Which was to be shown.

33.

$$\lim_{x \to a} f(x) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_1 > 0 : \forall x, (0 < |x - a| < \delta_1 \Rightarrow |f(x) - L| < \epsilon))$$

And

$$\lim_{x \to a} g(x) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_2 > 0 : \forall x, (0 < |x - a| < \delta_2 \Rightarrow |g(x) - M| < \epsilon))$$

Lets assume that $\lim_{x\to a} f(x)g(x) \neq LM$.

Let $\delta = \min{\{\delta_1, \delta_2\}}$. This would result in that

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x, (0 < |x - a| < \delta \Rightarrow |f(x) - L| + |g(x) - M| < 2\epsilon)$$
(3)

$$\begin{split} |f(x)-L|+|g(x)-M| &\geq |g(x)||f(x)-L|+|L||g(x)-M| = |g(x)(f(x)-L)| + |L(g(x)-M)| \geq |g(x)(f(x)-L)+L(g(x)-M)| = |f(x)g(x)-Lg(x)+Lg(x)-LM| = |(f(x)g(x))-(LM)| \end{split}$$

This together with (3) means that

$$\forall \epsilon > 0, \exists \delta > 0: \forall x, (0 < |x - a| < \delta \Rightarrow |(f(x)g(x)) - (LM)| < 2\epsilon)$$

Which shows that $\lim_{x\to a} f(x)g(x) = LM$.

3.2 Tangent Lines and Their Slopes

3.2.1 Exercises **2.1**

32.

$$P(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$$
$$P^{(n)}(a) = n!a_n$$

This means that $P'(a) = a_1$.

$$l(x) = m(x - a) + b$$
$$l'(a) = m$$

$$P(x) - l(x) = (x - a)^{2}Q(x)$$

$$P(x) = l(x) + (x - a)^{2}Q(x)$$

$$P(x) = b + m(x - a) + (x - a)^{2}Q(x)$$

$$P'(x) = m + 2(x - a)Q(x) + (x - a)^{2}Q'(x)$$

$$P'(a) = m$$

Since $P'(a) = a_1 = m = l'(a)$, P and l has the same tangent in x = a.

3.2.2 Exercises 2.2

52.

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

$$\frac{d}{dx}x^{-n} = \lim_{h \to 0} \frac{(x+h)^{-n} - x^{-n}}{h} = \lim_{h \to 0} \left(\frac{1}{h(x+h)^{-n}} + \frac{1}{hx^{-n}}\right) = \lim_{h \to 0} \left(\frac{1}{h(x+h)^{-n}} + \frac{1}{hx^{-n}}\right)$$

4 Lectures