UNIVERSIDADE DO MINHO

Mini-teste 2

Mestrado Integrado em Engenharia Informática

Mineração de Dados $(1.^{\circ}$ Semestre / 2020-2021)

A84003 Beatriz Rocha

Braga, Dezembro 2020

- 1. Apresente uma análise ao desempenho dos algoritmos NaiveBayes, BayesNet, J48 e AdaBoost sobre NB, Bagging sobre J48 no dataset ionosphere. Considere as seguintes alíneas:
- 1.1. Usando a decomposição bias-variance estude o evoluir da complexidade da árvore J48 (por aplicação de diferentes níveis de pruning) e o efeito no erro e suas componentes.

Intervalo de confiança de 0.1

▶ Tamanho da árvore

Number of Leaves: 10 Size of the tree: 19

▷ Erro e suas componentes

Bias-Variance Decomposition

Classifier : weka.classifiers.trees.J48-C 0.1 -M 2

Data File : ionosphere.arff

Class Index : last Training Pool: 100 Iterations : 50 Seed : 1 : 0.1555 Error Sigma^2 : 0 Bias^2

: 0.0754 Variance : 0.0785

Intervalo de confiança de 0.2

▶ Tamanho da árvore

Number of Leaves: 16 Size of the tree: 31

▷ Erro e suas componentes

Bias-Variance Decomposition

Classifier : weka.classifiers.trees.J48-C 0.2 -M 2

Data File : ionosphere.arff

Training Pool: 100 Iterations : 50 Seed : 1 Error : 0.1568 Sigma^2 : 0 Bias^2 : 0.075 Variance : 0.0802

Class Index : last

Intervalo de confiança de 0.3

⊳ Tamanho da árvore

Number of Leaves: 18 Size of the tree: 35

▷ Erro e suas componentes

Bias-Variance Decomposition

Classifier : weka.classifiers.trees.J48-C 0.3 -M 2

Data File : ionosphere.arff

Class Index : last
Training Pool: 100
Iterations : 50
Seed : 1
Error : 0.1593
Sigma^2 : 0

Bias^2 : 0.0745 Variance : 0.0831

Intervalo de confiança de 0.4

▶ Tamanho da árvore

Number of Leaves: 18 Size of the tree: 35

 \triangleright Erro e suas componentes

Bias-Variance Decomposition

Classifier : weka.classifiers.trees.J48-C 0.4 -M 2

Data File : ionosphere.arff

Class Index : last
Training Pool: 100
Iterations : 50
Seed : 1
Error : 0.1593
Sigma^2 : 0
Bias^2 : 0.0745
Variance : 0.0831

Intervalo de confiança de 0.5

▶ Tamanho da árvore

Number of Leaves: 18 Size of the tree: 35

▷ Erro e suas componentes

Bias-Variance Decomposition

Classifier : weka.classifiers.trees.J48-C 0.5 -M 2

Data File : ionosphere.arff

Class Index : last
Training Pool: 100
Iterations : 50
Seed : 1
Error : 0.1593
Sigma^2 : 0
Bias^2 : 0.0745

Bias 2 : 0.0745 Variance : 0.0831

Confidence Factor	Size of the tree	Error	Bias 2	Variance
0.1	19	0.1555	0.0754	0.0785
0.2	31	0.1568	0.075	0.0802
0.3	35	0.1593	0.0745	0.0831
0.4	35	0.1593	0.0745	0.0831
0.5	35	0.1593	0.0745	0.0831

Tabela 1: Resultados para os vários intervalos de confiança

O erro de um modelo pode ser decomposto em três componentes:

- Viés mede a capacidade da previsão média de um algoritmo de aprendizagem acertar no objetivo;
- Variância mede a variabilidade da previsão de um algoritmo para diferentes conjuntos de treino de um dado tamanho;
- Erro irredutível é o limite mínimo de erro esperado para qualquer algoritmo de aprendizagem.

Na Tabela 1, podemos observar o tamanho da árvore, o erro, o viés² e a variância para vários intervalos de confiança. De frisar que, para obter estes três últimos valores, recorri ao terminal, onde executei o comando

java -cp "~/Downloads/weka-3-8-4/weka.jar" weka.classifiers.BVDecompose -t ionosphere.arff -W weka.classifiers.trees.J48 -- -C X -M 2

onde X corresponde ao intervalo de confiança aplicado.

A partir daqui, é possível estudar a evolução da complexidade da árvore J48 e o efeito no erro e suas componentes. À medida que o intervalo de confiança aumenta, o tamanho da árvore também aumenta, uma vez que o pruning vai, consecutivamente, diminuindo. Podemos, ainda, observar que o erro e a variância também aumentam, enquanto o viés² diminui. Isto poderá significar que o modelo está a entrar em overfitting, visto que overfitting ocorre se um modelo

apresentar viés baixo e variância alta.

$1.2.\ Apresente$ os resultados do erro por validação cruzada dos cinco modelos referidos. Elabore uma justificação para cada resultado obtido.

$\underline{NaiveBayes}$		
=== Stratified cross-validation === === Summary ===		
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	290 61 0.6394 0.1736 0.3935 37.7001 % 82.0203 %	82.6211 % 17.3789 %
$\underline{BayesNet}$		
=== Stratified cross-validation === === Summary ===		
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	314 37 0.7681 0.1069 0.3179 23.2213 % 66.2607 % 351	89.4587 % 10.5413 %
$\underline{J48}$		
=== Stratified cross-validation === === Summary ===		
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error Total Number of Instances	321 30 0.8096 0.0938 0.2901 20.36 % 60.4599 % 351	91.453 % 8.547 %
$\underline{Adaboost \text{ sobre } NB}$		
=== Stratified cross-validation === === Summary ===		

Correctly Classified Instances	323	92.0228 %
Incorrectly Classified Instances	28	7.9772 %
Kappa statistic	0.8273	
Mean absolute error	0.1043	
Root mean squared error	0.2611	
Relative absolute error	22.6412 %	
Root relative squared error	54.4218 %	
Total Number of Instances	351	
<pre>Bagging sobre J48 === Stratified cross-validation === === Summary ===</pre>		
Summery		
Correctly Classified Instances	326	92.8775 %
Incorrectly Classified Instances	25	7.1225 %
Kappa statistic	0.8422	
Mean absolute error	0.1109	
Root mean squared error	0.2431	
Relative absolute error	24.0792 %	
Root relative squared error	50.6629 %	
Total Number of Instances	351	

	Mean absolute error	Root mean squared error	Relative absolute error	Root relative squared error
NaiveBayes	0.1736	0.3935	37.7001%	82.0203%
BayesNet	0.1069	0.3179	23.2213%	66.2607%
J48	0.0938	0.2901	20.36%	60.4599%
Adaboost sobre NB	0.1043	0.2611	22.6412%	54.4218%
Bagging sobre J48	0.1109	0.2431	24.0792%	50.6629%

Tabela 2: Resultados do erro por validação cruzada dos cinco modelos

Antes de mais, convém explicar as várias medidas de erro apresentadas pelo Weka:

- Mean absolute error quantidade usada para medir quão próximas as previsões estão dos resultados finais;
- Root mean squared error medida das diferenças entre os valores (amostrais e populacionais) previstos por um modelo ou estimador e os valores realmente observados;
- Relative absolute error quanto o resultado se desvia do valor real;
- Root relative squared error medida em percentagem em relação ao valor real.

Adicionalmente, é importante explicar que *Bagging* tem tendência a baixar a variância do erro dos classificadores originais, enquanto *Boosting* reduz viés e variância (e, consequentemente, o erro).

Pela observação da Tabela 2, podemos comprovar esta premissa, visto que, quando se aplica Bagging a J48, obtêm-se menores valores em alguns tipos de erro e, quando se aplica Adaboost a NB, obtêm-se menores valores de erro para

todos os parâmetros.

- 1.3. Para a classe b e considerando os cinco modelos referidos:
 - Qual seria o melhor modelo a recuperar os casos desta classe?
 - E o modelo com melhor qualidade de previsão nesta classe?

Justifique as suas respostas.

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.865	0.196	0.712	0.865	0.781	0.648	0.935	0.917	b
0.804	0.135	0.914	0.804	0.856	0.648	0.935	0.958	g

BayesNet

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.825	0.067	0.874	0.825	0.849	0.769	0.947	0.918	b
0.933	0.175	0.905	0.933	0.919	0.769	0.949	0.966	g

<u>J48</u>

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.825	0.036	0.929	0.825	0.874	0.813	0.892	0.855	b
0.964	0.175	0.908	0.964	0.935	0.813	0.892	0.894	g

$\underline{Adaboost \text{ sobre } NB}$

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.897	0.067	0.883	0.897	0.890	0.827	0.943	0.931	b
0.933	0.103	0.942	0.933	0.938	0.827	0.943	0.945	g

$Bagging\ {\rm sobre}\ {\rm J}48$

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.857	0.031	0.939	0.857	0.896	0.844	0.962	0.957	b
0.969	0.143	0.924	0.969	0.946	0.844	0.962	0.960	g

	Precision	Recall
Naive Bayes	0.712	0.865
BayesNet	0.874	0.825
J48	0.929	0.825
$Adaboost ext{ sobre } NB$	0.883	0.897
Bagging sobre J48	0.939	0.857

Tabela 3: Valores de Precision e Recall dos cinco modelos

Precision é a proporção de identificações positivas que estava realmente correta. Assim sendo, o melhor modelo a recuperar os casos da classe b seria *Bagging* sobre J48, pois é este que apresenta o maior valor para este parâmetro (0.939).

Recall é a proporção de positivos reais identificada corretamente. Posto isto, o modelo com melhor qualidade de previsão seria Adaboost sobre NB, pois é aquele que apresenta o maior valor para esta métrica (0.897).

2. Que tipo de benefícios esperaria da aplicação de *Bagging* sobre *Naive Bayes* num *dataset* específico, sabendo que o resultado do modelo individual *Naive Bayes* nesse *dataset* é erro = 0.005. Justifique.

Bootstrap aggregating, também conhecida por Bagging, é uma técnica de Machine Learning desenvolvida para melhorar a estabilidade e precisão de algoritmos de Machine Learning usados em classificação estatística e regressão. Este algoritmo também reduz a variância do erro do classificador e ajuda a evitar overfitting.

Embora esta técnica seja normalmente aplicada com sucesso a algoritmos instáveis como aqueles que envolvem árvores de decisão (por exemplo, J48), esta também pode ser aplicada a algoritmos mais estáveis (por exemplo, *Naive Bayes*). Contudo, no último caso, esta técnica pode chegar a aumentar a variância, visto que *Naive Bayes* já apresenta uma variância bastante baixa.

Uma vez que a taxa de erro apresentada pelo algoritmo *Naive Bayes* sem recorrer à técnica de *Bagging* é quase nula, pode-se concluir que a aplicação desta técnica, nesta situação, poderá trazer desvantagens e aumentar a taxa de erro nas instâncias corretamente classificadas.

3. Para um determinado conjunto de teste com 10 exemplos, a seguinte tabela representa as previsões obtidas com os modelos M1 e M2 para a classe A. Os modelos são classificadores binários por definição de *threshold*. O valor de *threshold* usado é 0.9. A coluna *Class* indica a classe efetiva de cada caso de teste.

	M1		M2		
#	Score	Class	#	Score	Class
1	0.996	Α	1	0.999	Α
2	0.995	Α	2	0.998	Α
3	0.977	Α	3	0.997	В
4	0.951	Α	4	0.979	Α
5	0.915	В	5	0.931	Α
6	0.895	В	6	0.920	Α
7	0.881	В	7	0.915	В
8	0.795	В	8	0.812	В
9	0.786	Α	9	0.775	В
10	0.675	В	10	0.771	В

a) Apresente o valor de rácio de erro para os dois modelos.

Sabendo que o valor de threshold é 0.9, temos de ter em conta o que se apresenta na figura seguinte:

Figura 1: Localização do threshold na tabela

Para além disso, convém recordar e explicar o formato de uma matriz de confusão:

		Classe real		
		P	N	
Classe prevista	P	TP	FP	
	N	FN	TN	

Tabela 4: Formato de uma matriz de confusão

onde $P=Positive,\ N=Negative,\ TP=True\ Positive,\ FP=False\ Positive,\ FN=False\ Negative\ e\ TN=True\ Negative.$

Posto isto, na Figura 1 podemos ver que, no modelo M1, existem:

- 4 instâncias da classe A corretamente classificadas como A;
- 4 instâncias da classe B corretamente classificadas como B;
- 1 instância da classe A incorretamente classificada como B;
- 1 instância da classe B incorretamente classificada como A.

	A	В
A	4	1
В	1	4

Tabela 5: Matriz de confusão do modelo M1

Ainda na Figura 1, podemos ver que, no modelo M2, existem:

- 5 instâncias da classe A corretamente classificadas como A;
- 3 instâncias da classe B corretamente classificadas como B;
- 0 instâncias da classe A incorretamente classificadas como B;
- 2 instâncias da classe B incorretamente classificadas como A.

	A	В
A	5	2
В	0	3

Tabela 6: Matriz de confusão do modelo M2

Por fim, só falta calcular o valor de rácio de erro para os dois modelos, que é dado pela seguinte fórmula:

$$R\acute{a}cio\ de\ erro = \frac{(FP + FN)}{(TP + TN + FP + FN)} \tag{1}$$

Rácio de erro
$$(M1) = \frac{(1+1)}{(4+4+1+1)} = \frac{1}{5}$$
 (2)

Rácio de erro (M2) =
$$\frac{(2+0)}{(5+3+2+0)} = \frac{1}{5}$$
 (3)

b) Qual devia ser o modelo escolhido para esta classe? Justifique.

O valor de rácio de erro nem sempre é a melhor medida para comparar modelos. Assim sendo, podemos recorrer à AUC (Area Under the Curve) que oferece uma melhor forma de discriminação entre modelos e também é insensível à distribuição de classes. Podemos calcular a AUC usando ranks dos scores derivados por cada classificador, mas, primeiro, temos de ordenar ascendentemente os mesmos, tal como podemos ver na Tabela 7.

M1		M2			
#	Score	Class	#	Score	Class
1	0.675	В	1	0.771	В
2	0.786	A	2	0.775	В
3	0.795	В	3	0.812	В
4	0.881	В	4	0.915	В
5	0.895	В	5	0.920	A
6	0.915	В	6	0.931	A
7	0.951	A	7	0.979	A
8	0.977	A	8	0.997	В
9	0.995	A	9	0.998	A
10	0.996	A	10	0.999	A

Tabela 7: Scores derivados ordenados ascendentemente

A fórmula para calcular a AUC apresenta-se de seguida:

$$AUC = \frac{S_0 - n_0(n_0 + 1)/2}{n_0 n_1} \tag{4}$$

onde S_0 = posições onde Class é A, n_0 = número de intâncias onde Class é A e n_1 = número de instâncias onde Class é B.

Posto isto, só nos resta calcular AUC(M1) e AUC(M2):

$$AUC(M1) = \frac{(2+7+8+9+10) - 5*6/2}{5*5} = \frac{21}{25}$$
 (5)

$$AUC(M2) = \frac{(5+6+7+9+10) - 5*6/2}{5*5} = \frac{22}{25}$$
 (6)

Visto que, quanto maior a AUC, melhor é o modelo, concluímos que o modelo M2 deveria ser o modelo escolhido para esta classe.

c) Sabendo que precision = TP/(TP+FP) e FPR = FP/(FP+TN) calcule precision(M1) e FPR(M2) para a classe A e interprete os valores obtidos (nota: $FPR = false\ positive\ rate$).

Calculando precision(M1) e FPR(M2), temos:

$$precision(M1) = \frac{4}{4+1} = \frac{4}{5} \tag{7}$$

$$FPR(M2) = \frac{2}{2+3} = \frac{2}{5} \tag{8}$$

A precisão determina a fração de registos que efetivamente são positivos no grupo que o classificador declarou como uma classe positiva. Assim sendo e tendo em conta a equação (7), podemos verificar que, no modelo M1, $\frac{4}{5}$ dos registos que o classificador declarou como uma classe positiva são efetivamente positivos. Visto que este valor é relativamente alto e avaliando apenas por esta métrica, pode concluir-se que M1 é um bom modelo (quanto maior a precisão, melhor é o modelo).

Já a taxa de falsos positivos trata-se da probabilidade de rejeitar incorretamente a hipótese nula para um teste particular. Posto isto e tendo em conta a equação (8), podemos observar que, no modelo M2, existe uma probabilidade de $\frac{2}{5}$ de rejeitar incorretamente a hipótese nula. Uma vez que este valor é relativamente baixo e avaliando apenas por esta métrica, pode concluir-se que M2 é um bom modelo (quanto menor a taxa de falsos positivos, melhor é o modelo).