IFITM3 Retrogenes with Intact ORF: Are They Functional?

Kazi Rahman, PhD
National Cancer Institute
03/02/2018

IFITMs: Genomic and Syntenic Context

- Five different types: IFITM1, 2, 3, 5 and 10
- All are in Chromosome 11
- IFITM1, 2, and 3 are interferon-inducible and flanked by ATHL1 and BGalNT4 genes

Role of IFITMs in Various Cellular Processes

Involved in

A. Virus Restriction (IFITM1, 2, 3)

- B. Cell Adhesion
- C. Anti-Proliferation
- D. Tumor Suppression
- E. Germ cell and embryo development

Origin of New Gene Copies through Gene Duplication

Recurrent Duplication of IFITM3 in Primates

Questions

Are those IFITM3 retrogenes with intact ORF functional?

- A. Do they undergo transcription and translation?
- B. What is their spatio-temporal expression pattern (i.e. specific cells/tissues and timing of expression)?
- C. Do they play redundant Roles of IFITM3 or gained neofunctionalism?

Investigating the function of human IFITM3 retrogenes.

IFITM Duplicants in Human

> Total 15 IFITM duplicants in Human

IFITM6P2

IFITM8P1

IFITM16P

IFITM7P

➤ All are retrogenes —intronless/ PolyA-tailed

STAKCLN(*ALIVDILMTIIL) IIRVLIFQAYR*

PPPSX * TLWASS * FCSSS----SOC * SSKPID-

PLPSI(*) FCTSI ** FCLSS----SQC*SSKSI)-

PLPSA**LWASS**)FCSSS----SQC*SSKSLD-LPPSA**LCASLRPFCSAS----SQC*SFKSIN-PPPSI(**LWASS**)FCSSS----SRC*PSKSID-

Evolutionary Conservation of IFITM8P2/12P1

110

	IFITMP8P2	Bonobo	MNHTFQTFFTPANSGHPRNYEMLKEEHEVAVVGAPQNPALPMSTMIHFHSETSMPDHVVWSLFNTLFMNSGCLGFIAFAYSLKSRERKKV
	IFITMP8P2	Chimpanzee	MNHTFQTFFTPANSGHPRNYEMLKEEHEVAVVGAPQNPALPMSTMIHFHSETSMPDHVVWSLFNTLFMNSGCLGFIAFAYSLKSRERKKV
IFITM8P2	IFITMP8P2	Gorilla	MNHTFQTFFTPANSGHPRNYEMLKEEHEVAVVGVPQNPAPPMSTMIHFHSETSMPDHVVWSLFNTLFMNSGCLGFIAFVYSMKSRERKKV
(67 0)	IFITMP8P2	_Orangutan	MNHIFQTFFTPANSGHPRNYEMLKEEHEVAVVGAPQNPAPLMSTMIHFHSETSMPDHVDWSLFNTLFMNSGCLGFIEFAYSKKSRGRKMV
(Chr. 8)	IFITMP8P2	Green Monkey	MNHTFQTFFTPANSSRSRNYEMLKEEHEVAVLGAPHNSAPPMSTMIHFSSETSVPDHVVWSLFNTLFMNSSCLGFIAFAYSMTSRDRKIV
	IFITMP8P2	Gibbon	MNHTFQTFFTPANSGHPCNYEMLKEEHEVAVVGARPTTLLPDVHHDPLPQRDLMPDHVIWSLFDALFMNSGCL(*)SAFAYSMKCWTGRCE
	IFITMP8P2	Crab-eating Macaque	MNHTFQTFFTPANSSRPPQ *DAQGGA*GGCGGDTPQLYASNVHHDPLQQ*DLCARPCCLVAVQHHFHELQLPGLHSICLLHDV*GQEDG
	IFITMP8P2	Rhesus Macaque	MNHTFQTFFTPANSSRPPQ *DAQGGA*GGCGGDTPQLYASNVHHDPLQQ*DLCARPCCLVAVQHHFHELQLPGLHSICLLHDV*GQEDG

10

IFITMP12P1 (Chr. 12)

IFITMP8P2 Human

IFITMP8P2 Olive baboon

IFITMP12P1_Human	MNHTVQTFFSPVNSGQPPNYEMLKEEHKVAVLGVPHNPAPPTSTVIHIRSKTSVPHHVVWSLFNTLFMNPCCLGFIAFAYSVKSRDRKMV
IFITMP12P1 Bonobo	MNHTVQTFFSPVNSGQPPNYEMLKEEHKVAVLGVPHNPAPPTSTVIHIHSKTSVPHCVVWSLFNTLFMNPCCLGFIAFAYSVKSRDRKMV
IFITMP12P1 Chimpanzee	MNHTVQTFFSPVNSGQPPNYEMLKEEHKVAVLGVPHNPAPPTSTVIHIHSKTSVPHCVVWSLFNTLFMNPCCLGFIAFAYSVKSRDRKMV
IFITMP12P1 Gorilla	MNHTVQT-FSPVNSGQPPNYEMLKEEHKVAVLGVPHNPAPPTSTVIHIRSKTSVPHHVVWSLFNTLFMNSCCLGFIAFAYSVKSRDRKMV
IFITMP12P1 Orangutan	MNHTVQTFFSPVNSGQHPQ(*)TQGGAQGGCAEGTPQPCSPDVH-RSETSVPHHVVWSLFNTLFRNPCCLGFIAFAYSVKSRDRKMV

120

MNHTFQTFFTPANSGHPRNYEMLKEEHKVAVVGAPQNPAPPMSTMIHFHSETSMPDHVVWSLFNTLFMNSGCLCFTAFVYSMKSRERKKV

MNHTFOTFFTPANSRRPPQ(+)AQGGA*GGCGGDTPQLYSSNVHHDPLQQ*DLCARPCCLVAVQHPFHELQLPGLHSICLLHDV*GQEDG

130

IFITMP8P2_Human	GDLTRAQAYTSTAKCLNIWALIVDIVMTILLIIIPVLIFQVY**
IFITMP8P2_Bonobo	GDLTRAQAYTSTAKCLNIWALIVDIVMTILLIIIPVLIFQVY**
IFITMP8P2_Chimpanzee	GDLTRAQAYTSTAKCLNIWALIVDIVMTILLIIIPVLIFQVY**
<pre>IFITMP8P2_Gorilla</pre>	GDLTRAQAYASTAKCLNIWALIVDIVMTILLSIIPVLIFQVY**
IFITMP8P2_Orangutan	GDLTRAQAYASTAKCLNIWALIVDIVMTILLIIIPVLIFQVY**
<pre>IFITMP8P2 Green Monkey</pre>	GDLTRAQAYASTAKCLNIWALIVGIVMTVLLIIIPVLIFQVY**
IFITMP8P2_Gibbon	PTCPPLKAISP*T*DRYTGP*YSIPS*KFE*HNMC*SSESID
<pre>IFITMP8P2 Crab-eating Macaque</pre>	W*PDQGPGLCLHHQVPEHLGPDCGHCHDRSAHHHPGVDLPSLLI
IFITMP8P2_Rhesus Macaque	W*PDQGPGLCLHHQVPEHLGPDCGHCHDRSAHHHPGVDLPSLLI
IFITMP8P2_Olive baboon	W*PDQAPMPPPPSA*TSGP*LVALS*PFCSSSSRC*SSKSID

100

IFITMP12P1 Human	GNVTGAQAYASTTKCLNIWALILGILMTILLIIIPVLIFQAHR*
IFITMP12P1 Bonobo	GNVTGAQAYASTTKCLNIWALILGILMTILLIIIPVLIFQAHR*
IFITMP12P1 Chimpanzee	GNVTGAQAYASTAKCLNIWALILGILMTILLIIIPVLIFQAHR*
IFITMP12P1 Gorilla	GNVTGAQAYSSTAKCLNIWALILGILMTILLIVIPVLIFQAHR*
IFITMP12P1 Orangutan	GDLTGAQAYASTAKCLNIWALILGILMTILLIVIPILIFQAHR*

mRNA Expression In Normal Human Tissues From Genotype-Tissue Expression (GTEx) Consortium

Transcriptomic Evidence of IFITM12P1 Expression

Tissue/Lineage-Specific Pseudogene Expression Profiles

Expressed Pseudogenes in the Transcriptional Landscape of Human Cancers

Cell. 2012 Jun 22; 149(7): 1622–1634.

Proteomics Evidence of IFITM12P1 Expression

J. Proteomic Research: 2016 Mar 4;15(3):945-55: Myoblastic cell lines Mol. Cell Proteomics: 2016 Mar;15(3):1072-82: Pancreatic carcinoma Scientific Data volume2: Article number: 150022: Colon cancer

Mol. Cell Proteomics: 2012 Mar;11(3):deep proteomics –in Jurkat cells

Potential Adoption of Regulatory Sequences in IFITM12P1

ISRE: Interferon-stimulated response element (for IFN-alfa/beta)

GAS: Interferon-Gamma Activated Sequence

Inr+1 : Transcription Start Site (TSS)

Aim-1: Is endogenous IFITM12P1 undergoes transcription and if these exapted regulatory sequences are active?

Experiments:

- A. Determine the level of IFITM12P1 RNA expression in different cells/tissues by RT-PCR
- **B**. Endogenous Tagging of IFITM12P1 by CRISPR/Cas9
- C. 5'-RACE (Rapid amplification of cDNA ends) analysis to check the TSS.

Aim-2: Investigating the role of IFITM12P1

Ectopically Expressed IFITM12P1 Shows Instability

Stable 293-T cells expressing FLAG-IFITM12P1/IFITM3

IFITM12P1 Might Degrade by Lysosome

Why IFIM12P1 shows Instability in comparison to IFITM3?

Sequence Variations among IFITM12P1 and IFITM2/IFITM3

		E27K E50KD54H
IFITM2	1	MNH <mark>I</mark> VQT-FSPVNSGQPPNYEMLKEE <mark>QE</mark> VAMLGVPHNPAPP <mark>M</mark> STVIHIRS <mark>E</mark> TSP <mark>D</mark> HVVWS
IFITM3	1	MNHTVQTFFSPVNSGQPPNYEMLKEEH <mark>E</mark> VAVLG <mark>A</mark> PHNPAPPTSTVIHIRS <mark>E</mark> TSP <mark>D</mark> HVVWS
Human IFITM12P1	1	MNHTVQTFFSPVNSGQPPNYEMLKEEH <mark>K</mark> VAVLGVPHNPAPPTSTVIHIRS <mark>K</mark> TSP <mark>H</mark> HVVWS
Gorilla-IFITM12P1	1	MNHTVQT-FSPVNSGQPPNYEMLKEEH <mark>K</mark> VAVLGVPHNPAPPTSTVIHIRS <mark>K</mark> TSP <mark>H</mark> HVVWS
Chimpange-IFITM12P1	1	MNHTVQTFFSPVNSGQPPNYEMLKEEH <mark>K</mark> VAVLGVPHNPAPPTSTVIHI <mark>HSK</mark> TSP <mark>H</mark> CVVWS
		D91N
IFITM2	60	LFNTLFMN <mark>T</mark> CCLGFIAFAYSVKSRDRKMVG <mark>D</mark> VTGAQAYASTAKCLNIWALILGI <mark>F</mark> MTILL
IFITM3	61	LFNTLFMNPCCLGFIAFAYSVKSRDRKMVG <mark>D</mark> VTGAQAYASTAKCLNIWALILGILMTILL
Human- IFITM12P1	61	LFNTLFMNPCCLGFIAFAYSVKSRDRKMVG <mark>N</mark> VTGAQAYAST <mark>T</mark> KCLNIWALILGILMTILL
Gorilla-IFITM12P1	60	LFNTLFMN <mark>S</mark> CCLGFIAFAYSVKSRDRKMVG <mark>N</mark> VTGAQAY <mark>S</mark> STAKCLNIWALILGILMTILL
Chimpange-IFITM12P1	61	LFNTLFMNPCCLGFIAFAYSVKSRDRKMVG <mark>N</mark> VTGAQAYASTAKCLNIWALILGILMTILL

IFITM2		IIIPVLVVQA <mark>Q</mark> R
IFITM3	121	IVIPVLIFQA <mark>Y</mark> G
Human-IFITM12P1	121	IIIPVLIFQA <mark>h</mark> r
Gorilla-IFITM12P1	120	IVIPVLIFQA <mark>h</mark> r
Chimpange-IFITM12P1	121	IIIPVLIFQA <mark>h</mark> r

Which amino acids are responsible for IFITM12P1 instability?

Aim-2a: Which amino acid(s) render IFITM12P1 unstable?

Experiments:

- **A.** SDM of each modified a.a. and testing their impact on expression pattern.
- **B.** Determine if that specific mutation is a characteristic pattern of other retrogenes to find for a universal code of retrogene instability

Aim-2b: What is the endogenous role of IFITM12P1 in cellular immunity against virus and/or in other cellular processes?

Experiments:

A. Redundant function of IFITMs?

Knocking out the IFITM12P1 by CRISPR/Cas9 in different cell types and test for mutants against virus challenge.

B. Inhibiting the expression of IFITMs by anti-sense RNA?

Co-expression of IFITM3 and IFITM12P1 and check the impact on IFITM3 expression

C. Enhancing the expression of IFITMs by binding with the IFIMT3 miRNAs?

Expression of IFITM12P1 3'-UTR in Hela cells and explore the expression level of IFITM3

Knocking-out of IFITMP121 by CRISPR attempt

Experimental progress:

-Made stable 293T cells and Hela cells expressing Cas9 protein.

Thanks