Lab 2.1 – Condicionais Encadeadas

Objetivos: ☐ Fixar o conhecimento de condicionais ☐ Compreender condicionais encadeadas
Exercício 1 – Qual o tipo de triângulo?
Escreva um programa que leia três números reais , correspondentes às medidas dos lados de um triângulo, em ordem qualquer.
Dados de entrada : 1. Lado A. 2. Lado B. 3. Lado C.
Como saída , o programa deverá imprimir: " Triangulo: X "
No comando print() , substitua a letra X por um dos seguintes valores: • "equilátero", se todos os três lados forem iguais; • "isósceles", se apenas dois lados forem iguais; • "escaleno", se nenhum dos lados forem iguais; • "inválido", se pelo menos um dos lados for negativo ou se os três lados não formarem um triângulo.
 Lembre-se de que as condições de existência de um triângulo são: 1. Todos os lados devem ser positivos. 2. A medida de qualquer um dos lados deve ser menor que a soma das medidas dos outros dois.
Entrada 4.2 4.2 4.2

Saída correta Triangulo: equilatero

Entrada	3.0 4.0 5.0
Saída correta	Triangulo: escaleno
Entrada	1.0
	3.0
Saída correta	Triangulo: invalido

Exercício 2 – De volta à área do triângulo

Escreva um programa para calcular a área de um triângulo, a partir das medidas dos três lados, fornecidas pelo usuário, em qualquer ordem. O algoritmo não pode permitir a entrada de dados inválidos, ou seja, medidas menores ou iguais a zero, ou medidas que não correspondam às de um triângulo.

Entrada	3 4 5
Saída correta	6.0

Exercício 3 – Conta de energia

Escreva um programa que determine o **valor total** a ser pago pela conta de energia elétrica, com base nas seguintes **entradas**:

- 1. O consumo de energia (em kWh); e
- 2. O tipo de instalação (**R** para residências, **I** para indústrias, e **C** para comércios).

Como saída:

 Valor total da conta de energia elétrica arredondado para duas casas decimais, caso os dados sejam válidos OU a mensagem "Dados inválidos" caso os dados sejam inválidos. Os dados são inválidos quando o consumo é negativo ou o tipo de instalação é diferente das letras R, I ou C. O valor da conta depende do consumo e do tipo de local. Use a tabela a seguir para calcular o valor devido:

Preço por tipo e faixa de consumo			
Tipo	Consumo (kWh)	Preço (R\$/kWh)	
Decidencial	Até 500	0.44	
Residencial	Acima de 500	0.65	
Companial	Até 1000	0.55	
Comercial	Acima de 1000	0.60	
In desptain	Até 5000	0.55	
Industrial	Acima de 5000	0.60	

Validação de dados

Se o usuário inserir valores de entrada inválidos, imprima:

- "Entradas: X kWh e tipo Y"
- "Dados inválidos"

Se as entradas forem válidas, imprima:

- "Entradas: X kWh e tipo Y"
- "Valor total: R\$ Z"

Nas mensagens de saída, **substitua as letras X, Y** e **Z** pelos valores correspondentes.

Entrada	5500.75 I
Saída correta	Entradas: 5500.75 kWh e tipo I Valor total: R\$ 3300.45
Entrada	75.12 E

Saída correta	Entradas: 75.12 kWh e tipo E Dados invalidos
Entrada	790.5 C
Saída correta	Entradas: 790.5 kWh e tipo C Valor total: R\$ 434.78

Exercício 4 – Intervalo de valores

Considere dois números reais a e b, sendo b > a. Um número real x pertence ao intervalo [a, b] se $a \le x \le b$.

Escreva um programa que leia os números reais x, a, b, nesta ordem.

- Se *x* pertencer ao intervalo, imprima a seguinte mensagem:
 - "x pertence ao intervalo [a, b]"
- Caso contrário, imprima a seguinte mensagem:
 - "x não pertence ao intervalo [a, b]"

Se as entradas forem inválidas, ou seja, se $b \le a$, imprima a seguinte mensagem:

"entradas a e b inválidas"

Nas mensagens, substitua as letras **x**, **a**, **b** pelos valores fornecidos como entrada.

En	trada	8.0 10.0 7.5
Saída co	orreta	entradas 10.0 e 7.5 invalidas
Entrada	-5.0 -10.0 -6.5	
Saída correta	-5.0 n	ao pertence ao intervalo -10.0 , -6.5

Entrada	2.0
	1.0
	3.0
Saída correta	2.0 pertence ao intervalo 1.0 , 3.0
	2.0 percente de intervale 1.0 ; e.e

Exercício 5 – Dois intervalos de valores

Considere dois intervalos numéricos sobre a reta real: $I_1 = [a, b] e I_2 = [c, d]$. Escreva um programa que leia os números reais a, b, c e d (nesta ordem) correspondentes aos intervalos I_1 e I_2 e verifique se existe interseção (pelo menos um ponto em comum) entre os intervalos.

- Se houver interseção, o programa deverá imprimir:
 - "Há intersecção"
- Se não houver interseção, o programa deverá imprimir:
 - "Não há intersecção"
- Por fim, se as entradas forem inválidas, o programa deverá imprimir:
 - "Entradas invalidas"

Observações:

- 1. Verifique se os intervalos são válidos, ou seja, se b > a e d > c.
- 2. Não pressuponha nada com respeito à posição relativa entre os intervalos [a, b] e [c, d] . Ou seja, eles podem estar situados antes ou depois um do outro.

Entrada	2.5
	12.5
	6.0
	4.5
Saída correta	Entradas invalidas
Entrad	la 1.0
	5.0
	1.0
	5.0
Saída corret	ta Ha intersecao

Entrada	4.0 5.0 1.0 2.5
Saída correta	Nao ha intersecao

Exercício 6 - Quadrantes

Escreva um programa que leia 02 valores, \mathbf{x} e \mathbf{y} , que representam as coordenadas de um ponto no plano cartesiano.

Como saída, determine em que quadrante (Q1, Q2, Q3 ou Q4) o ponto está situado, ou se ele está sobre um dos eixos cartesianos (**Eixo X**, **Eixo Y**), ou se ele está na origem x = y = 0 (**Origem**).

Fonte: URI Online Judge | 1041

Entrada	
	-7.8
Saída correta	Q3
Entrada	12.0
	-15.6
Saída correta	Q4
Entrada	0
	-2.2
Saída correta	Eixo Y

Exercício 7 – Índice de massa corporal (IMC)

Faça um programa que informe o risco de problemas cardíacos de uma pessoa, a partir da leitura da idade e do índice de massa corporal (IMC), nessa ordem. Os riscos são definidos de acordo com a tabela a seguir:

IMC	Idade	
IIWIC	< 45	≥ 45
< 22.0	Baixo	Médio
≥ 22.0	Médio	Alto

Validação de dados

Verifique se os dados informados são válidos. Se a idade for menor ou igual a zero ou maior que 130 anos, ou se o IMC for menor ou igual a zero, imprima a seguinte mensagem:

"Entradas: X anos e IMC Y"

"Dados inválidos"

Se as entradas forem válidas, imprimir a seguinte mensagem:

"Entradas: X anos e IMC Y"

"Risco: Z"

Nas mensagens, substitua as letras X, Y e Z pelos valores correspondentes.

Entrada	25 21.0
Saída correta	Entradas: 25 anos e IMC 21.0 Risco: Baixo

Exercício 8 - Gratificação ao funcionário do ano

Uma empresa decidiu dar uma gratificação diferenciada ao melhor funcionário do ano. A gratificação é determinada com base no número de horas extras trabalhadas e no número de

horas não trabalhadas (horas que funcionário faltou ao serviço), conforme a tabela a seguir e o índice **H** determinado da seguinte forma:

$$H = (n\'umero de horas extra) - \frac{1}{4} \times (n\'umero de horas n\~ao trabalhadas)$$

Tipo	Índice H	Gratificação
Melhor funcionário	Maior que 400	R\$500
Padrão	Até 400	R\$100

Escreva um programa que leia:

- 1. O número de horas extras;
- 2. O número de horas que o funcionário faltou.

Considere cada hora informada como sendo um número real, por exemplo 3.5 horas.

Como saída, imprima a seguinte mensagem:

"E extras e F de falta"
"R\$ G"

Onde, E é o valor das horas extras, F é o valor das horas de faltas e G é o valor da gratificação.

12.5
1.0
12.5 extras e 1.0 de falta
R\$ 100.0
600.0
2.0
600.0 extras e 2.0 de falta

Entrada	10.5 2.0
Saída correta	10.5 extras e 2.0 de falta R\$ 100.0

Exercício 9 - Datas

3.a. Dia da semana

Escreva um programa que leia um **número inteiro**, correspondente ao dia de hoje na semana. Por exemplo, domingo é 0, segunda é 1, terça é 2, ..., sábado é 6.

Se o usuário digitar um número inteiro diferente destes, imprima:

"A entrada X é inválida", onde X é o valor fornecido.

Após isso, peça que o usuário também digite um número de dias no futuro a partir de hoje. Como saída, determine qual é o dia da semana após essa quantidsade de dias, com a seguinte mensagem:

"Hoje é X e o dia futuro é Y"

Caso de exemplo 1

Entre com o número do dia de hoje: 1 Entre com o número de dias após hoje: 3 Hoje é segunda e o dia futuro é quinta

Caso de exemplo 2

Entre com o número do dia de hoje: 2 Entre com o número de dias após hoje: 8 Hoje é terça e o dia futuro é quarta

> Entrada 4 200

Saída correta Hoje en quinta e o dia futuro en segunda

3.b. Qual o mês?

Escreva um programa que **leia** um **valor inteiro** m tal que $1 \le m \le 12$. Como saída, imprima por extenso o **nome do mês** correspondente no ano. Se a entrada não corresponder a nenhum dos meses do ano, imprima: "**número de mês inválido**".

Fonte: URI Online Judge | 1052

Exercício 10 – IMC com validação de entrada

Você foi contratado para desenvolver um programa que ajuda usuários a calcular seu **Índice de Massa Corporal (IMC)** e descobrirem sua classificação de peso de acordo com a **Organização Mundial da Saúde (OMS)**.

O programa deve:

- Solicitar que o usuário insira seu peso (kg) e altura (m).
- O programa deve **validar** as entradas e impedir que valores inválidos (ex: peso negativo ou altura zero) sejam processados (responda "entradas inválidas" se for o caso).
- Calcular o IMC usando a fórmula:

$$\circ$$
 IMC = $\frac{peso}{altura^2}$

• Comparar o IMC com a tabela da OMS e exibir a classificação correspondente:

IMC (kg/m²)	Classificação
-------------	---------------

Menos de 18.5	Abaixo do peso
18.5 – 24.9	Peso normal
25.0 – 29.9	Sobrepeso
30.0 – 34.9	Obesidade grau 1
35.0 – 39.9	Obesidade grau 2 (severa)
40.0 ou mais	Obesidade grau 3 (mórbida)