

Arquitectura-De-Computadores-Tema-1.pdf

Arrebato

Arquitectura de Computadores

2º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Descarga la app de Wuolah desde tu store favorita

Arquitectura de Computadores

This Ortega Lopera Teoria

Mauaia Anguita Practicas

Teomia Practicas

60% 40%

(40%) 2'4 1'6

Actividades ExamenOrd Entregas Examen Clobal 4 pts 2 pts 2 pts 2 pts

FUNDAMENTOS Y PROBLEMAS DE ARQUITECTURA DE COMPUTADORES.

AUTORES : Mancia Anguita López / Julio Ortega Lopera

Editorial Técnica Avicam

LIBRERÍA FLEMING AVENIDA DE MADRID, 12

Mail: ciencias@libreriafleming.com

TLF. 958280183 / 654387692

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

/ena 1 Drquitecturas 1	Parificación y Prestaciones
Depondencies de dotos Os blogues Bry Bz sevoir de	pendrentes St.
nisma pos. de memoria	Be aparece autes que Bz en el codigo
Tipes de Sependencia: Read After Write Write After Write	Write Aller Record
0= b+c 0= 6+c	WAR b= ∞ + 1
d = a + c	d + e
Pavalelismo implicito en	una aplicación. Octos
Extragendo extructura	· Implicito en opera aous
logica de Jouannes • ~ paralelismo del nivel de Louanie	· Se puede sacre de la representa-
	• ± = paralelismo nivel bode

Unidad de Contral Menor Unidad de ejecución Mayor Unidad de ejecución Mayor Unidad de process consta de por unidad de procesamiento por unidad de procesamiento

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad

Closificación seguir memoria Multicomputadores Mulliproce sa dores 6 Especio direcciones propio · Mismo espació de disecutives · Programmedor et necesita · Programador W necesita saler Red de interconexión Red de interconexión M M M E/S E/S H W H S H W o deux balenas · Mayor Laleraa (no hory trophoronous · Poco escalable (aunorboria lalaccia) o Más escalable o Comunicación implécita variables compartidas o Comunicación explicita passo de monsajes · Necesita primiticas sinaronización · Sincronización mensajes · Distribución codigo/dalos: no vecesaria · Distribución código/data compleja · Programación difiail · Programación màs servilla Red de cuter overson Barras cruzadas Multietapa andquier combinasse si asturiese libre son brandwitch never

mudia complejidod

que barros cruzadas

mayor laterate

	Multi- computadores	NORMA No Remote	ej. cluster, red de	Memoria físicamente distribuida	+	+	
	Memoria no compartida	Memory Access	computadores	P	Nivel de		
	Multi-	memory Access oria artida ico espacio de	NUMA	Red de interconexión	empa	Escalabilidad	
			CC-NUMA	E/S-W E/S-W			
	procesadores Memoria		СОМА				
	compartida Un único espacio de direcciones		SMP Symmetric MultiProcessor	Memoria físicamente centralizada		д	
				P P P P P Red de interconexión	y conexión		
				M M M E/S	-	-	

Tiempo de CPU TCPU = Ciclos De Programe × Taiclo = Ciclos De Programa Ciclos Instrucción (CPI) = Colos Programa

Nº Instrucción (NI) Topo = NI x CPI x Toxlo Craudo hay n'ipos de contracciones distinctos CPI-1 Coclosde Poppouna = & CPI; *I: CPI = E CPI : *I:

NI Procesaulores que lauran introcciones paraleles Topo = NI < CPE x Table CPE = colos neviveos entre la reanisato de custrocomos IPE = Instrucciones por Emisson

		ŀ					─		No segn	
Inst. 1	IF	ID	EX	MEM	WB			CPE=	5 IPE=1	CPI=5
Inst. 2	-		5T			IF	ID	EX	MEM	WB
Inst. 1	IF	μD	EX	MEM	WB				Segi	mentado
Inst. 2		IF	ID	EX	MĔM₽	WB		CPE=	1 IPE=1	
Inst. 3			IF	ID	EX	MEM	WB			
Inst. 4		<u> </u>		IF	ID	EX	MEM	WB		
Inst. 1	IF	ID	EX	MEM	WB			Su	perescal	lar o VLIW
Inst. 2	IF	ID	EX	MEM	WB			CPE=	1 IPE=2	CPI=0.5
Inst. 3		IF	ID	EX	MEM	WB				
Inst. 4		IF	ID	EX	MEM	WB				
		_				_				

Paralelisus eulre enstrocciones

Tambie...

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

MFLOPS millones de operaciones en coma flotante

MIPS Maningless Indication of Procesor Speed Chascarrillo

MFLOPS - Operaciós - coma flotante

Mala comparazou si no hou ops. en coma flotoute

El conjunto de aps no es constante entre magaines y la potencia varia seguin que operación (precisión, soma + multiplicación)

Necesidad de normalización de las custrucciones

Cauarcia de Prestaciones

Ley de Amdahl

Pado un programa ron ordo sevencial estigation, las procesadores un podran vense etimenente.

Ejemplo

Programa 25% 000 de coma flatante. Coma flatante se mejora al dalle le colocidade

$$\rho=2$$
 $S \leq \frac{2}{1+0'75(2-1)} = 3'14$

Hay que mejorar el coso mos se cos)