. (19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-151499

(43)公開日 平成8年(1996)6月11日

C	nt.Cl. ⁶ 0 8 L 51/04 0 8 F 2/02 2/22	識別記号 LKY MAR MBL	庁内整理番号	FΙ	技術表示箇所
C	6/10 08L 55/02	MFU LME		審查請求	未請求 請求項の数7 OL (全 9 頁)
(21)	出願番号	特顯平6-294085		(71)出顧人	000003159 東レ株式会社
PE VC/QRE2	出巓日	平成6年(1994)11	月29日	(72)発明者 (72)発明者 (72)発明者	東京都中央区日本橋室町2丁目2番1号 岸本 彰彦 愛知県名古屋市港区大江町9番地の1 東 レ株式会社名古屋事業場内 後藤 栄三 東京都中央区日本橋室町2丁目2番1号 東レ株式会社東京事業場内 門井 晶 千葉県市原市千種海岸2番1 東レ株式会
					千葉県市原市十種海岸 2 番 1 ・ 東レベスム 社千葉工場内 最終頁に続く

(54) 【発明の名称】 耐衝撃性樹脂組成物の製造方法

(57)【要約】

【目的】色調および耐衝撃性と剛性との物性バランスなどに優れた耐衝撃性樹脂組成物が得られ、かつ排水処理が大幅に減少可能な耐衝撃性樹脂を得る。

【構成】ゴム成分を少量含む樹脂を連続塊状重合法で製造し、脱モノマー工程の後半、該樹脂が溶融状態にある時点で、ゴム成分を含有するグラフト共重合体ケークまたはスラリーを脱水・乾燥させて添加、混合することで耐衝撃性樹脂組成物を得る。

【特許請求の範囲】

ゴム状重合体1~25重量%に、芳香族 ビニル系単量体99~40重量%、シアン化ビニル系単 量体0~60重量%、(メタ)アクリル酸エステル系単 畳体0~80重量%およびこれらと共重合可能なその他 のビニル系単量体0~60重量%をグラフト重合させる ゴム成分含有連続塊状重合プロセス中の溶融状態のゴム 含有共重合体(A)1~99重量部に対して、ゴム状重 合体5~80重量部の存在下に芳香族ビニル系単量体1 0~100重量%、シアン化ビニル系単量体0~50重 量%および(メタ)アクリル酸エステル系単量体0~8 0重量%およびこれらと共重合可能なその他のビニル系 単量体0~60重量%からなる単量体混合物95~20 重量部を乳化グラフト重合したラテックスから得られる スラリーまたは含水ケークを液状物を通過させる溝・穴 あるいは間隙およびベント孔を有する押出し装置に供給 して脱水乾燥されたグラフト共重合体(B)99~1重 **量部(ただし耐衝撃性樹脂組成物においてグラフト共重** 合体(B)からのゴム状重合体含有量>ゴム含有共重合 体(A)からのゴム状重合体含有量)を連続的に添加し て混合することを特徴とする耐衝撃性樹脂組成物の製造 方法。

【請求項2】 残存モノマー量が10重量%以下のゴム 含有共重合体(A)にグラフト共重合体(B)を連続的 に添加する請求項1項記載の耐衝撃性樹脂組成物の製造 方法。

【請求項3】 ゴム含有共重合体(A)の連続塊状重合の脱モノマー工程中もしくは脱モノマー工程以降で残存モノマー量が10重量%以下になったゴム含有共重合体(A)にグラフト共重合体(B)を添加する請求項1項記載の耐衝撃性樹脂組成物の製造方法。

【請求項4】 グラフト共重合体(B)を半溶融もしく は溶融状態で添加する請求項1項記載の耐衝撃性樹脂組 成物の製造方法。

【請求項5】 グラフト共重合体(B)のゴム状重合体がジエン系ゴムである請求項1項記載の耐衝撃性樹脂組成物の製造方法。

【請求項6】 ゴム含有共重合体(A)がブタジエンースチレン-アクリロニトリル共重合体であり、グラフト共重合体(B)がゴム状重合体にスチレン-アクリロニトリルをグラフト共重合させたグラフト共重合体である請求項1項記載の耐衝撃性樹脂組成物の製造方法。

【請求項7】 ゴム含有共重合体(A)の連続塊状重合の脱モノマー工程がベント付きの単軸または二軸の押出機であり、グラフト共重合体(B)の連続添加装置がゴム含有共重合体(A)の脱モノマー押出機に接続した単軸または二軸の押出機である請求項1項記載の耐衝撃性樹脂組成物の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、耐衝撃性樹脂組成物の 製造方法に関するものである。さらに詳しくは、色調お よび耐衝撃性と剛性との物性バランスなどに優れた耐衝 撃性樹脂組成物の製造方法に関するものである。

[0002]

【従来の技術】ABSおよびハイインパクトポリスチレ ンに代表されるゴム成分を配合した耐衝撃性樹脂は、各 種物性と成形加工性とのバランスに優れた樹脂であり、 自動車部品、電気機器部品および事務機器部品などの広 範囲な用途で使用されている。これらのゴム成分配合耐 衝撃性樹脂は、十分な機械物性を発現させるためにはゴ ム成分にグラフト重合をさせる必要があり、製造方法と しは従来乳化グラフト重合でおこなわれていた。しか し、乳化重合法は工程が多く、かつ副原料が多いためコ スト高になり、しかも排水処理が必要になるなどの問題 を有する。したがって、かかる乳化重合の問題点を少な くすために、乳化グラフト重合した高ゴム含有重合体と ゴムを含まない懸濁重合により得られた重合体を溶融ブ レンドする方法が開発されてきた(高分子学会編「AB S樹脂」)。さらには、近年直接ゴムを含んだ耐衝撃性 樹脂を連続塊状重合するプロセスも実用化されている (例えば、特公昭47-14136号公報、特公昭49 -26711号公報、化学工学53(6)423~42 6 (1989) など)。

[0003]

【発明が解決しようとする課題】しかし、乳化グラフト 重合した高ゴム含有重合体とゴムを含まない連続塊状重 合法あるいは懸濁重合により得られた重合体を各々単離 重合体として得た後、溶融ブレンドする方法は、比較的 スムーズに物性をコントロールできる利点を有している が排水処理が必要になり、また溶融ブレンド時に熱履歴 をさらに受けるため色調が十分でなく、耐衝撃性と剛性 との物性バランスが十分でないという欠点がある。-方、ゴム成分を多く含んだ耐衝撃性樹脂を直接連続塊状 重合法により製造する方法は、工程および副原料が少な く、また排水処理が不要であるという点で最も優れる が、塊状重合におけるグラフト重合反応の制御が難しい という欠点がある。さらに耐衝撃性等の物性面で必ずし も満足できるものではない。また、ゴム成分が多くなる とゴムの劣化物が装置内に滞留したり、またそれが剥離 したりする等の製造上・品質上の問題点が生じるという 欠点も有している。

[0004]

【課題を解決するための手段】色調および耐衝撃性と剛性との物性バランスなどに優れた耐衝撃性樹脂組成物の製造方法を鋭意検討した結果、本発明に至った。すなわち本発明は、ゴム状重合体1~25重量%に、芳香族ビニル系単量体99~40重量%、シアン化ビニル系単量体0~60重量%、(メタ)アクリル酸エステル系単量体0~80重量%およびこれらと共重合可能なその他の

ビニル系単量体0~60重量%をグラフト重合させるゴ ム成分含有連続塊状重合プロセス中の溶融状態のゴム含 有共重合体 (A) 1~99重量部に対して、ゴム状重合 体 5~80重量部の存在下に芳香族ビニル系単量体10 ~100重量%、シアン化ビニル系単量体0~50重量 %および (メタ) アクリル酸エステル系単量体 0~80 重量%およびこれらと共重合可能なその他のビニル系単 量体0~60重量%からなる単量体混合物95~20重 **最部を乳化グラフト重合したラテックスから得られるス** ラリーまたは含水ケークを液状物を通過させる溝・穴あ るいは間隙およびベント孔を有する押出し装置に供給し て脱水乾燥されたグラフト共重合体 (B) 99~1重量 部(ただし耐衝撃性樹脂組成物においてグラフト共重合 体 (B) からのゴム状重合体含有量>ゴム含有共重合体 (A) からのゴム状重合体含有量) を連続的に添加して 混合することを特徴とする耐衝撃性樹脂組成物の製造方 法を提供するものである。

【0005】本発明で用いるゴム含有共重合体(A)およびグラフト共重合体(B)を構成する芳香族ビニル系単量体とは重合可能な二重結合を有する芳香族化合物であり、具体例として、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、プロピルスチレン、ブチルスチレンおよびシクロヘキシルスチレンなどが挙げられる。これらの芳香族ビニル系単量体は、1種または2種以上の混合物で使用される。これら芳香族ビニル系単量体のうち、スチレンおよびα-メチルスチレンが特に好ましく用いられる。

【0006】本発明で用いるゴム含有共重合体(A)およびグラフト共重合体(B)を構成するシアン化ビニル系単量体とは、重合可能な二重結合をおよびシアノ基を有する化合物であり、具体例として、アクリロニトリルおよびメタクリロニトリルなどが挙げられる。これらのシアン化ビニル系単量体は、1種または2種以上の混合物で使用される。これらシアン化ビニル系単量体のうち、アクリロニトリルが特に好ましく用いられる。

【0007】本発明で用いるゴム含有共重合体(A) およびグラフト共重合体(B) を構成する(メタ) アクリル酸エステル系単量体の具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸グリシジル、メタクリル酸ビドロキシエチル、アクリル酸メチル、アクリル酸エチル、アクリル酸プランルなどが挙げられる。これらの(メタ) アクリル酸エステル系単量体は、1種または2種以上の混合物で使用される。これら(メタ) アクリル酸エステル系単量体のうち、メタクリル酸メチルが特に好ましく用いられる。

【0008】本発明で用いるゴム含有共重合体(A)およびグラフト共重合体(B)を構成するその他のビニル系単畳体とはたとえばN-フェニルマレイミド、N-シクロヘキシルマレイミド、メチル置換N-フェニルマレ

イミド、無水マレイン酸、アクリル酸、メタアクリル酸などが挙げられる。なかでもN-フェニルマレイミドが特に好ましく用いられる。

【0009】本発明で用いるゴム含有共重合体(A)お よびグラフト共重合体(B)を構成するゴム状重合体と は、ジエン系ゴム、アクリル系ゴム、エチレン系ゴムな どであり、具体例としては、ポリブタジエン、ポリ(ブ タジエン-スチレン)、ポリ(ブタジエン-アクリロニ トリル)、ポリイソプレン、ポリ(ブタジエン-アクリ ル酸ブチル)、ボリ(ブタジエン-アクリル酸メチ ル)、ポリ (ブタジエン-メタクリル酸メチル)、ポリ (ブタジエン-アクリル酸エチル) 、エチレン-プロピ レンラバー、エチレン-プロピレンージエンラバー、ポ リ (エチレン-イソブチレン)、ポリ (エチレン-アク リル酸メチル)、ポリ(エチレン-アクリル酸メチル) などが挙げられる。これらのゴム状重合体は、1種また は2種以上の混合物で使用される。これらのゴム状重合 体のうち、ポリブタジエン、ポリ(ブタジエン-スチレ ン)、ボリ (ブタジエン-アクリロニトリル)、エチレ ン-プロピレンラバーが特に好ましく用いられる。

【0010】本発明で用いるゴム含有共重合体(A)の好ましい例として、ブタジエン-スチレン共重合体、ブタジエン-スチレン-アクリロニトリル共重合体、ブタジエン-スチレン-N-フェニルマレイミド共重合体、ブタジエン-スチレン-アクリロニトリル-メタクリル酸メチル共重合体、ブタジエン-スチレン-メタクリル酸メチル共重合体、エチレン-プロピレン-スチレン-アクリロニトリルグラフト共重合体が挙げられ、なかでもブタジエン-スチレン-アクリロニトリル共重合体が特に用いられる。

【0011】本発明で用いるグラフト共重合体(B)の 好ましい例として、ポリブタジエンのスチレングラフト 重合体、ポリ(ブタジエン-スチレン)のスチレングラ フト重合体、ポリブタジエンのスチレン-アクリロニト リルグラフト共重合体、ポリ(ブタジエン-スチレン) のスチレン-アクリロニトリルグラフト共重合体、ポリ (ブタジエン-アクリロニトリル) のスチレン-アクリ ロニトリルグラフト共重合体、ポリブタジエンのスチレ ン-アクリロニトリル-メタクリル酸メチルグラフト共 重合体、ポリ (エチレン-プロピレン) のスチレン-ア クリロニトリルグラフト共重合体などが挙げられる。な かでも特にゴム含有共重合体(A)のゴムおよび各モノ マーの使用割合は、得られる樹脂組成物の機械的強度、 色調および成形性の観点から、ゴム状重合体1~25重 量%に、芳香族ビニル系単量体99~40重量%、シア ン化ビニル系単量体0~60重量%、(メタ)アクリル 酸エステル系単量体0~80重量%およびこれらと共重 合可能なその他のビニル系単量体0~60重量%をグラ フト重合させることである。好ましくはゴム状重合体1 ~20重量%に芳香族ビニル系単量体99~50重量

%、シアン化ビニル系単量体0~50重量%、(メタ) アクリル酸エステル系単量体0~70重量%およびこれ らと共重合可能なその他のビニル系単量体0~50重量 %であり、より好ましくはゴム状重合体1~15重量% に芳香族ビニル系単量体99~55重量%、シアン化ビ ニル系単量体10~40重量%、(メタ)アクリル酸エ ステル系単量体0~60重量%およびこれらと共重合可 能なその他のビニル系単量体0~40重量%である。

【0012】本発明の前半の工程、すなわちゴム状重合 体1~25重量%に、芳香族ビニル系単量体99~40 重量%、シアン化ビニル系単量体0~60重量%、(メ タ) アクリル酸エステル系単量体0~80重量%および これらと共重合可能なその他のビニル系単量体0~60 重量%をグラフト重合させるゴム含有共重合体(A)を 連続塊状重合させる工程における連続塊状重合方法に制 限はなく、どのような連続塊状重合法も採用可能であ る。例えば、重合槽で重合した後、脱モノマー(脱揮) する方法などが知られている。重合槽としては、各種の 撹拌翼、たとえばパドル翼、タービン翼、プロペラ翼、 ブルマージン翼、多段翼、アンカー翼、マックスブレン ド翼、ダブルヘリカル翼、などを有する混合タイプの重 合槽、または各種の塔式の反応器などが使用できる。さ らにまた、多管反応器、ニーダー式反応器、二軸押出機 などを重合反応器として使用することもできる(例え ば、高分子製造プロセスのアセスメント10「耐衝撃性 ポリスチレンのアセスメント」: 高分子学会、1989 年1月26日など)。これら重合槽類(反応器)は、1 基(槽)または2基(槽)以上で使用され、また必要に 応じて2種類以上の反応器を組み合わせても使用され

【0013】これらの重合槽または反応器で重合したゴム含有共重合体(A)の反応混合物は、通常、次に脱モノマー工程に供され、モノマその他の揮発成分が除去される。脱モノマーの方法としては、ベントを有する一軸または二軸の押出機で加熱下常圧または減圧でベント穴より揮発成分を除去する方法、遠心型などのプレートフィン型加熱器をドラムに内臓する蒸発器で揮発成分を除去する方法、多管式熱交換器を用いて余熱、発泡して真空槽へフラッシュして揮発成分を除去する方法などがあり、いずれの方法も使用できるが、特にベントを有する一軸または二軸の押出機が好ましく用いられる。

【0014】ゴム含有共重合体(A)の連続塊状重合は、開始剤を使用せずに熱重合することも、開始剤を用いて開始剤重合することも、さらに熱重合と開始剤重合を併用することも可能である。開始剤としては、過酸化物またはアゾ系化合物などが用いられる。

【0015】過酸化物の具体例としては、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジイソプロピルベンゼンハイドロパ

ーオキサイド、t-ブチルハイドロパーオキサイド、t -プチルクミルパーオキサイド、t-ブチルパーオキシ アセテート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカルボネート、ジー t-ブチルパーオキイド、t-ブチルパーオクテート、1, 1-ビス (t-ブチルパーオキシ) 3、3、5-トリメ チルシクロヘキサン、1, 1-ビス (t-ブチルパーオ キシ) シクロヘキサン、t-ブチルパーオキシ-2-エ チルヘキサノエートなどが挙げられる。なかでもクメン ハイドロパーオキサイドおよび1, 1-ビス (t-ブチ ルパーオキシ) 3、3、5-トリメチルシクロヘキサン が特に好ましく用いられる。アゾ系化合物の具体例とし て、アゾビスイソブチロニトリル、アゾビス(2, 4ジ メチルバレロニトリル)、2-フェニルアゾ-2,4-ジメチル-4-メトキシバレロニトリル、2-シアノ-2-プロピルアゾホルムアミド、1, 1'-アゾビスシ クロヘキサン-1-カーボニトリル、アゾビス(4-メ トキシ-2, 4-ジメチルバレロニトリル)、ジメチル 2、2'-アゾビスイソブチレート、1-t-ブチルア ゾ-1-シアノシクロヘキサン、2-t-ブチルアゾ-2-シアノブタン、2-t-プチルアゾ-2-シアノ-4-メトキシ-4-メチルペンタンなどが挙げられる。 これらの開始剤を使用する場合、1種または2種以上を 併用して使用される。なかでも1,1'-アゾビスシク ロヘキサン-1-カーボニトリルが特に好ましく用いら

【0016】本発明で用いるゴム含有共重合体(A)の 重合度調節を目的として、メルカプタン、テルペンなど の連鎖移動剤を使用することも可能であり、その具体例 として、n-オクチルメルカプタン、t-ドデシルメル カプタン、n-ドデシルメルカプタン、n-テトラデシ ルメルカプタン、n-オクタデシルメルカプタン、テル ピノレンなどが挙げられる。これらの連鎖移動剤を使用 する場合、1種または2種以上を併用して使用される。 なかでも特にn-オクチルメルカプタン、t-ドデシル メルカプタン、n-ドデシルメルカプタンが好ましく用 いられる。

【0017】本発明で用いるゴム含有共重合体(A)は連続塊状重合法で製造されるのであるが、少量(例えば20%以下)の溶媒を使用して重合することも可能であり、本発明の範囲に含まれる。また、ゴムの劣化を防止するためにフェノール系、リン系、イオウ系などの各種の酸化防止剤を重合槽に添加することもでき、なかでもフェノール系酸化防止剤が好ましく、たとえばn-オクタデシル3(3´、5´-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4´-ブチリデンビス(3-メチル-4-ヒドロキシ-5-メチルフェニル)プロピオネートが特に好ましい。

【0018】本発明で用いられるもう一方の構成成分であるグラフト共重合体(B)は、ゴム状重合体5~80

重量部に、芳香族ビニル系単量体10~100重量%、シアン化ビニル系単量体0~50重量%、(メタ)アクリル酸エステル系単量体0~80重量%およびこれらと共重合可能なその他のビニル系単量体0~60重量%からなる単量体混合物95~20重量部をグラフト重合反応せしめた共重合体であるが、全量がグラフトしている必要はなく、通常はグラフトしていない共重合体との混合物として得られたものを使用する。グラフト共重合体(B)のグラフト率に制限はないが、好ましくは5~150%、より好ましくは10~100重量%のものが使用される。ここでいうグラフト率とは、次式で算出されるものである。

グラフト率(重量%)=(グラフト枝重量/ゴム状重合 体重量)×100

【0019】グラフト共重合体(B)中のゴム状重合体の割合は、得られる樹脂組成物の機械的強度、色調および成形性の観点から5~80重量部であり、より好ましくは20~70重量部である。グラフト共重合体(B)のゴム状重合体以外の各単量体の使用割合は、芳香族ビニル系単量体10~100重量%、シアン化ビニル系単量体0~80重量%だよびこれらと共重合可能なその他のビニル系単量体0~60重量%であり、より好ましくは(1)芳香族ビニル系単量体60~100重量%、シアン化ビニル系単量体10~40重量%および(メタ)アクリル酸エステル系単量体00重量%、シアン化ビニル系単量体20~60重量%、シアン化ビニル系単量体20~60重量%、シアン化ビニル系単量体20~60重量%、シアン化ビニル系単量体20~60重量%、シアン化ビニル系単量体20~60重量%、シアン化ビニル系単量体20~80重量%である。

【OO20】グラフト共重合体(B)の製造方法には制 限ないが、好ましくは乳化重合または塊状重合で製造さ れ、さらに好ましくは乳化重合で製造される。通常乳化 重合はゴム状重合体ラテックスの存在化に単量体混合物 を乳化グラフト重合する。この乳化グラフト重合に用い られる乳化剤に特に制限はなく、各種の界面活性剤が使 用できるが、カルボン酸塩型、硫酸エステル塩型、スル ホン酸塩型などのアニオン系界面活性剤が特に好ましく 使用される。このような乳化剤の具体例としては、カプ リル酸塩、カプリン酸塩、ラウリル酸塩、ミスチリン酸 塩、パルミチン酸塩、ステアリン酸塩、オレイン酸塩、 リノール酸塩、リノレン酸塩、ロジン酸塩、ベヘン酸 塩、ヒマシ油硫酸エステル塩、ラウリルアルコール硫酸 エステル塩、その他髙級アルコール硫酸エステル塩、ド デシルベンゼンスルホン酸塩、アルキルナフタレンスル ホン酸塩、アルキルジフェニールエーテルジスルホン酸 塩、ナフタレンスルホン酸塩縮合物、ジアルキルスルホ コハク酸塩、ポリオキシエチレンラウリル硫酸塩、ポリ オキシエチレンアルキルエーテル硫酸塩、ポリオキシエ チレンアルキルフェニルエーテル硫酸塩などが挙げられ る。ここでいう塩とはアルカリ金属塩、アンモニウム塩 などであり、アルカリ金属塩の具体例としてはカリウム塩、ナトリウム塩、リチウム塩、などが挙げられる。これらの乳化剤は、1種または2種以上を併用して使用される。 また、これら乳化グラフト重合で使用可能な開始剤および連鎖移動剤としては、前記共重合体 (A)の製造であげた開始剤および連鎖移動剤が挙げられ、開始剤はレドックス系でも使用できる。

【0021】乳化グラフト重合で製造されたグラフト共 重合体(B)は、次に凝固剤を添加してラテックスを凝 固してグラフト共重合体 (B) を回収する。凝固剤とし ては酸または水溶性塩が用いられ、その具体例として、 硫酸、塩酸、リン酸、酢酸、塩化カルシウム、塩化マグ ネシウム、塩化バリウム、塩化アルミニウム、硫酸マグ ネシウム、硫酸アルミニウム、硫酸アルミニウムアンモ ニウム、硫酸アルミニウムカリウム、硫酸アルミニウム ナトリウムなどが挙げられる。これらの疑固剤は1種ま たは2種以上の混合物で使用される。 凝固したスラリー または含水ケーク状のグラフト共重合体(B)を液状物 を通過させる溝・穴あるいは間隙およびベント孔を有す る押出し装置に供給して脱水・乾燥させる。この脱水・ 乾燥させる押出し装置は、スクリュー、シリンダー、ス クリュー駆動部からなり、シリンダーは加熱・冷却能力 を有していることが好ましい。そしてシリンダーは前半 部(供給側)は液状物は通過させるが大部分の固形分は 通過させない溝・穴あるいは間隙を有し、後半部(吐出 側)に1つ以上のベント孔を有するものであり、単軸押 出し機でも、2軸押出し機でもよい。本押出し装置にス ラリーまたは含水ケーク状のグラフト共重合体(B)を 供給し、シリンダーの低温領域(前半部)でスクリュー の回転により圧縮して大部分の水をシリンダーの前半部 (供給側) の溝・穴あるいは間隙から排出させ、次にシ リンダー後半部 (吐出側) の加熱領域で残余の水分およ び揮発分をベント孔より除去し、シリンダー先端より連 続的にゴム含有共重合体(A)に供給する。ベント孔は 常圧のままでもあるいは滅圧にひいても良く、さらに2 つ以上のベント孔で常圧および減圧を併用しても良い。 【0022】また上述の通り、グラフト共重合体(B) は塊状重合法で製造することも可能である。塊状重合法 で製造する場合は、脱モノマー機から出た溶融状態にあ るグラフト共重合体 (B) を直接共重合体 (A) に添加 することも可能であるし、また、予め単離したグラフト 共重合体 (B) を共重合体 (A) に添加することも可能 であるが、通常熱劣化防止および工程の連続化の点から 脱モノマー機から出た溶融状態にあるグラフト共重合体 (B) を直接添加することがより好ましい。

【0023】本発明では塊状重合プロセス中の溶融状態にあるゴム含有共重合体(A)にグラフト共重合体

(B) を連続的に添加した後、混合する必要があり、それによって初めて色調、耐衝撃性などの優れた樹脂組成物が得られる。またその際、溶融状態にあるゴム含有共

重合体 (A) 1~99重量部にグラフト共重合体 (B) を99~1重量部を連続的に添加する必要があり、より好ましくはゴム含有共重合体 (A) 30~95重量部にグラフト共重合体 (B) を70~5重量部を連続的に添加した後混合する。ただし耐衝撃性樹脂組成物においてグラフト共重合体 (B) からのゴム状重合体含有量を満たすことが必要である。グラフト共重合体 (B) からのゴム状重合体含有量がゴム含有共重合体 (A) からのゴム状重合体含有量がゴム含有共重合体 (A) からのゴム状重合体含有量より少ない場合は、色調・耐衝撃性の点で好ましくない。

【0024】この際のグラフト共重合体(B)の添加は、ゴム含有共重合体(A)の塊状重合プロセスの脱モノマー工程中もしくは脱モノマー工程以降で残存モノマー量が10%以下、より好ましくは5%以下になった点で行うと、その後の脱モノマー操作中にゴム成分が熱履歴により劣化せず、本発明の特徴である色調、耐衝撃性などがさらに良好となるので好ましい。また本発明においては、ゴム含有共重合体(A)にグラフト共重合体

(B) を連続的に添加した後の混合は、溶融混合することが耐衝撃性などの物性を十分に発現させるためにも好ましい。この溶融混合は添加混合時に行ってもあるいは混合物単離後、例えば溶融成形時に行ってもよい。

【0025】グラフト共重合体(B)の連続添加方法には特に制限はなく、任意の方法で添加することが可能である。通常、各種のフィーダー類、例えばベルト式フィーダー、スクリュー式フィーダー、単軸押出機、二軸押出機などが使用されるが単軸押出機および二軸押出機が特に好ましく用いられる。これら連続添加装置は定量できるものが好ましい。また、連続添加装置は加熱装置を有していてグラフト共重合体(B)を半溶融もしくは溶融状態で添加すると混合状態が良くなり好ましい。この目的には加熱装置を有している押出機などを使用することができる。

【0026】本発明においては、さらに必要に応じてフェノール系、リン系、イオウ系などの各種の酸化防止剤、紫外線吸収剤、光安定剤などの耐候剤、帯電防止剤、エチレンビスステアリルアミド、金属石ケンなどの滑剤、可塑剤、着色剤、充填剤、ガラス繊維、カーボン繊維などの補強材、難燃剤などを配合することも可能である。

[0027]

【実施例】以下実施例を挙げて本発明をさらに詳述するが、本発明はこれら実施例に限定されるものではない。なお、本実施例で用いた%および部は各々重量%および 重量部を示す。また、ペレットのYI値はスガ試験機 (株) 製色差計を用いてイエローインデックス (YI値) を測定した。また、アイゾット衝撃強度はASTM D256、引張り強度はASTM 638にしたがって測定した。

【0028】参考例1 (グラフト共重合体ケーク (B-1) の製造法)

ポリプタジエンラテックス (平均ゴム粒子径0.3μ m、ゲル含率85%) 60部(固形分換算)、純水20 0部、ナトリウムホルムアルデヒドスルホキシレート 0. 4部、エチレンジアミン四酢酸ナトリウム 0. 1 部、硫酸第一鉄(0.01部)およびリン酸ナトリウム 0. 1部を反応容器に仕込み、窒素置換後65℃に温調 し、撹拌下スチレン30部、アクリロニトリル10部お よびn-ドデシルメルカプタン0. 3部の混合物を4時 間かけて連続滴下した。同時に並行してクメンハイドロ パーオキサイド 0. 25部、乳化剤であるラウリン酸ナ トリウム2. 5部および純水25部の混合物を5時間か けて連続滴下し、滴下終了後さらに1時間保持して重合 を終了させた。重合を終了したラテックスを1.5%硫 酸で凝固し、次いでアルカリで中和、洗浄、遠心分離し て、グラフト共重合体ケーク (B-1) を調製した。得 られたグラフト共重合体ケーク (B-1) のグラフト率 は40%であった。

【0029】参考例2

参考例1と同様にしてグラフト共重合体(B-1)ラテックスを製造した。このラテックスを1.5%硫酸で凝固し、次いでアルカリで中和したグラフト共重合体スラリー(B-2)を調製した。

【0030】参考例3~9 (グラフト共重合体ケーク (B-3~9) の製造法)

参考例1と同様にして、表1に示した各種ゴム状重合体の存在化にスチレンおよび他のビニルモノマーとの混合物を重合して表1に示した組成を有するグラフト共重合体(B-3~9)を製造した。なお表1中のPBDとは参考例1で使用したのと同じポリブタジエンゴム、SBRとはスチレン25%とブタジエン75%からなるスチレン/ブタジエン共重合体ゴム、NBRとはアクリロニトリル25%とブタジエン75%からなるアクリロニトリル/ブタジエン共重合体ゴム、EPDMとはヨウ素価23、ムーニー粘度60のエチレン/プロピレン/5-エチリデン-2-ノルボネン三元共重合体ゴム(エチレン/プロピレン=68.5/31.5モル比)を表わす。

[0031]

【表1】

参考例	グラフト 共電合体 NO、	ゴム社	型合体 含有是	9 5 7 2500	ト共富会(体 (重量%) ビニル系単量体 メタクリル酸メチル	N-フェニルマレイミド	グラフト車 (重量分)
1	ケーク 8-1	PBD	80	30	10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4 0
2	スラリー8-2	PBD	80	30	10			40
3	ケーク 8-3	PBD	45	42	1 3			5 5
4	ケーク B-4	PBD	4.5	2 6	1 2		17	58
5	ケーク B-5	PBD	6.0	40				20
8	ケーク B-6	PBD	.4 5	17	8	3 5		4 0
7	ケーク 8-7	NBR	60	18	12			30
8	ケーク 日-8	SBR	50	37	13			40
9	ケーク B-9	EPDM	40	4.5	16			4.5

実施例1

ポリプタジエンラテックス (平均ゴム粒子径0.3μ m、ゲル含率85%) 70部(固形分換算)、純水20 0部、ナトリウムホルムアルデヒドスルホキシレート 0. 4部、エチレンジアミン四酢酸ナトリウム0. 1 部、硫酸第一鉄 (O. O1部) およびリン酸ナトリウム 0. 1 部を反応容器に仕込み、窒素置換後65℃に温調 し、撹拌下スチレン22.8部、アクリロニトリル7. 2部およびn-ドデシルメルカプタン0. 3部の混合物 を 4 時間かけて連続滴下した。同時に並行してクメンハ イドロパーオキサイド 0.25部、乳化剤であるラウリ ン酸ナトリウム2. 5部および純水25部の混合物を5 時間かけて連続滴下し、滴下終了後さらに1時間保持し て重合を完結させラテックスを得た。このラテックスの 固形分5部にスチレン25部を加えてよく撹拌した後、 硫酸マグネシウム 0. 3 部を添加した。混合液を白色の ポリマー/モノマー相 (クラム) のみを取りだしスチレ ン47. 2部、アクリロニトリル22. 8部、n-ドデ シルメルカプタン0.15部およびクメンハイドロパー オキサイド 0.03 部を加えて均一溶液 (原料ドープ) とした。次に、この原料ドープをヘリカルリボン型撹拌 翼を有し、上部に直結して凝縮器および静置分離器が設 置され、分離器の下相からは水が重合系外に取り出さ れ、上相からはモノマのみが抜き出されて重合槽に還流 されるようになっているジャケットを有する重合槽へ連 続的に仕込み、ポリマー濃度が75%になるよう制御し た。ポリマー濃度75%の重合反応混合物を予熱機、脱 モノマー機、脱モノマー機の先端から1/3長のバレル 部にタンデムに接続した加熱装置を有する2軸押出機型 フィーダーおよびベント穴を有する2軸押出機に連続的 に供給し、180~240℃で真空ベント穴から残存モ ノマーを減圧蒸発回収し、脱モノマー機の先端より1/ 3の所で見掛け上の重合率が99%以上のブタジエン/ スチレン/アクリロニトリル共重合体80部に対して、 2 軸押出機型フィーダーよりフェノール系安定剤である t-ブチルヒドロキシトルエンO. 5部、リン系安定剤 であるトリ (ノニルフェニル) ホスファイト0.5部お よび参考例1で製造したグラフト共重合体ケーク(B-1) 20部をベント孔を2つ備えた単軸押出し機により

脱水して半溶融状態で供給し、溶融混練した後、ストランド状に吐出させカッターによりスチレン系樹脂組成物ペレットを得た。得られたスチレン系樹脂組成物のYI値は表2に示したとおりであった。また、得られたスチレン系樹脂組成物の射出成形片を成形し、物性を測定した結果を表2に示した。表2からわかるとおり、本発明の方法により製造したスチレン系樹脂組成物は色調、物性ともに優れたものであった。

【0032】実施例2

実施例1中のグラフト共重合体ケーク(B-1)にかえて、参考例2で製造したグラフト共重合体スラリー(B-2)を水を通過させる間隙およびベント孔を2つ備えた単軸押出し機により脱水して供給した以外は、実施例1と同様に行い、スチレン系樹脂組成物ペレットを得た。得られたスチレン系樹脂組成物のYI値は表2に示したとおりであった。また、得られたスチレン系樹脂組成物の射出成形片を成形し、物性を測定した結果を表2に示した。表2からわかるとおり、本発明の方法により製造したスチレン系樹脂組成物は色調、物性ともに優れたものであった。

【0033】実施例3~9

実施例1中のグラフト共重合体ケーク(B-1)を参考例3~9で製造したグラフト共重合体ケーク(B-3~9)にする以外は実施例1と同様に行ない、スチレン系樹脂組成物ペレットを得た。得られたスチレン系樹脂組成物のYI値および樹脂組成物を射出成形して得られた試験片の物性測定結果を表2に示した。表2からわかるとおり、本発明の方法により製造したスチレン系樹脂組成物は色調、物性ともに優れたものであった。

【0034】比較例1

実施例1と同様にしてポリブタジエン-スチレン-アクリロニトリルグラフト共重合体ラテックスを得た。このラテックスの固形分42.9部にスチレン43.4部を加えてよく撹拌した後、硫酸マグネシウム0.3部を添加した。混合液から白色のポリマー/モノマー相(クラム)のみを取りだし、アクリロニトリル13.7部、n-ドデシルメルカプタン0.15部およびクメンハイドロパーオキサイド0.03部を加えて均一溶液(原料ドープ)とした。次に、この原料ドープをヘリカルリボン

型撹拌翼を有し、上部に直結して凝縮器および静置分離 器が設置され分離器の下相からは水が重合系外に取り出 され、上相からはモノマのみが抜き出されて重合槽に還 流されるようになっているジャケットを有する重合槽へ 連続的に仕込み、ポリマー濃度が75%になるように制 御した。ポリマー濃度75%の重合反応混合物を予熱 機、脱モノマー器、脱モノマー機の先端から1/3長の バレル部にタンデムに接続した加熱装置を有する2軸押 出機型フィーダーおよびベント穴を有する2軸押出機に 連続的に供給し、180~240℃で真空ベント穴から 残存モノマーを減圧蒸発回収し、脱モノマー機の先端よ り1/3の所で見掛け上の重合率が99%以上のブタジ エン/スチレン/アクリロニトリル共重合体70部に対 して、2軸押出機型フィダーよりフェノール系安定剤で ある t~ブチルヒドロキシトルエン 0. 5部、リン系安 定剤であるトリ (ノニルフェニル) ホスファイト0.5 部および参考例1で製造したグラフト共重合体ケーク (B-1) 30部をベント穴を2つ備えた単軸押出機に より脱水して半溶融状態で供給し、溶融混練した後、ス トランド状に吐出させカッターによりスチレン系樹脂組 成物ペレットを得た。得られたスチレン系樹脂組成物の Y I 値は表 2 に示したとおりであり、該スチレン系樹脂 組成物の射出成形片を成形し、物性を測定した結果を表 2に示した。表 2 からわかるように、本比較例の方法に より製造したスチレン系樹脂組成物は本発明の方法によ り製造したものに比べてアイゾット衝撃強度は優れるも のの引張り強度およびペレット色調(ペレットYI)が 劣っている。

【0035】比較例2

実施例1と同様にしてポリブタジエン-スチレン-アク リロニトリルグラフト共重合体ラテックスを得た。この ラテックスの固形分15部にスチレン25部を加えてよ く撹拌した後、硫酸マグネシウム0. 3部を添加して得 た混合液から白色のポリマー/モノマー相(クラム)の みを取りだしスチレン39.6部、アクリロニトリル2 0. 4部、n-ドデシルメルカプタン0. 15部および クメンハイドロパーオキサイド0.03部を加えて均一 溶液(原料ドープ)とした。次に、この原料ドープをへ リカルリボン型撹拌翼を有し、上部に直結して凝縮器お よび静置分離器が設置され、分離器の下相からは水が重 合系外に取り出され上相空はモノマーのみが抜き出され て重合槽に還流されるようになっているジャケットを有 する重合槽へ連続的に仕込み、ポリマー濃度が75%に なるように制御した。ポリマー濃度75%の重合反応混 合物を予熱機、脱モノマー機、脱モノマー機の先端から 1/3長のバレル部にタンデムに接続した加熱装置を有 する2 軸押出機型フィダーおよびベント穴を有する2 軸 押出機に連続的に供給し、180~240℃で真空ベン ト穴から残存モノマーを減圧蒸発回収し、脱モノマー機 の先端より1/3の所で見掛け上の重合率が99%以上 のブタジエン/スチレン/アクリロニトリル共重合体9 0部に対して、2軸押出機型フィーダーよりフェノール 系安定剤である t - ブチルヒドロキシトルエン0.5 部、リン系安定剤であるトリ(ノニルフェニル)ホスファイト0.5部および参考例1で製造したグラフト共重 合体ケーク(B-1)10部をベント穴を2つ備えた単軸押出機により脱水して半溶融状態で供給し、溶融混練した後にストランド状に吐出させ、カッターによりスチレン系樹脂組成物のYI値は表2に示したとおりで、また該スチレン系樹脂組成物の外出成形片を成形し物性を測定した結果を表2に示した。表2からわかるように本比較例の方法により製造したスチレン系樹脂組成物は本発明の方法により製造したスチレン系樹脂組成物は本発明の方法により製造したものに比べて色調(ペレットTI)が劣っている。

【0036】比較例3

実施例1と同様の連続式塊状重合装置を用いスチレン7 6部、アクリロニトリル24部および t-ブチルメルカ プタン0.15部からなる単量体混合物を重合槽へ連続 的に仕込み、ポリマー濃度が75%になるように制御し た。ポリマー濃度75%の重合反応混合物を実施例1と 同様に1軸押出機型予熱機で予熱した後、2軸押出機型 脱モノマー機により未反応の単量体をベントロより減圧 蒸留回収し、ストランド状に吐出しカッターによりゴム を含有していないスチレン系共重合体(A)ペレットを 得た。 次に、このゴムを含有していないスチレン系共 重合体(A)74部、参考例1で製造したグラフト共重 合体ケーク (B-1) を乾燥させたパウダー26部、t -ブチルヒドロキシトルエン0.5部およびトリ(ノニ ルフェニル) ホスファイト0.5部をドライブレンドし た後、溶融混練/押出しペレタイズしてスチレン系樹脂 組成物ペレットを得た。該スチレン系樹脂組成物ペレッ トのYI値および樹脂組成物を射出成形して得られた成 形片の物性測定結果を表2に示した。実施例と比べて明 かに本比較例で製造したスチレン系樹脂組成物は色調 (ペレットYI) が劣っている。

【0037】比較例4

スチレン76部、アクリロニトリル24部およびtードデシルメルカプタン0.18部からなる単量体混合物を懸濁重合で重合し脱水乾燥して得られたスチレン/アクリロニトリル共重合体ビーズ74部、参考例1で製造したグラフト共重合体ケーク(B-1)を乾燥させたパウダー26部、t-ブチルヒドロキシトルエン0.5部およびトリ(ノニルフェニル)ホスファイト0.5部およびトリ(ノニルフェニル)ホスファイト0.5部およびトリ(ノニルフェニル)ホスファイト0.5部をドライブレンドした後、溶融混練/押出しペレタイズしてスチレン系樹脂組成物ペレットを得た。該スチレン系樹脂組成物ペレットのYI値および該スチレン系樹脂組成物を射出成形して得られた成形片の物性測定結果を表2に示した。実施例と比べて明かに本比較例で製造したスチレン系樹脂組成物は色調(ペレットYI)が劣ってい

る。

[0038]

【表2】

		ゴム合	打共宣合体	(A)						義城的建度		
	ゴム状』 推順	合体 含有量 %	スチレン	アクリロニトリル %	供給量	グラフト共 種類	置合体(B) 供給量 部	混合方法	451r	アイゾット 街車独度 Agen/cm	利益り知 及 kg/ord	
実施到1	P 8 D	4. 7	72. 4	22. 9	8 0	8-1	20	共職合体(A)の 説モノマー証扱	2 2	2 5	400	
実施例2	PBD	4. 7	72. 4	22. 8	80	B - 2	20	彻上	21	2 5	400	
奥施與3	PBD	4. 7	72. 4	22. 9	80	B-3	20	同上	21	2 3	430	
実施例4	PBD	4. 7	72. 4	22. 9	80	B - 4	2 0	岡上	2 5	15	450	
実施別5	PBD	4. 7	72. 4	22. 9	8.0	B - 5	20	例上	20	12	450	
実施到6	P B D	4. 7	72. 4	22. 9	8.0	B-6	20	国上	2 1	20	420	
実施例?	PBD	4. T	72. 4	22. 9	80	B-7	20	同上	2 4	15	450	
実施製品	PBD	4. 7	72. 4	22. 9	80	B - 8	20	同上	2 2	19	410	
実施例9	PBD	4. 7	72. 4	22. 9	80	8 - 9	20	間上	23	1:4	430	
比较例1	PBD	30	5 3: 2	16.8	70	8-1	30	両上	4.5	3 5	300	
比拉例 2	PED	14	85. 4	2 Q. B	80	8-1	10	,同上	3 5	2 5	410	
比性例3		-	7.6	2.4	74	B - 1	2.5	ドライブレンド	3 2	2 0	410	
比较例4			78	2.4	74	.8-1	2.8	ドライブレンド	3 4	20	410	

[0039]

【発明の効果】本発明は、コム成分を少量含む樹脂を連続塊状重合法で製造し、脱モノマー工程の後半、該樹脂が溶融状態にある時点で、ゴム成分を含有するグラフト 共重合体ケークまたはスラリーを脱水・乾燥させて添加 して混合することが特徴である。そのため、実施例1~9のように色調と機械的強度に優れた樹脂組成物が得られる。また、本発明の製造方法を採用することで排水処理量を減少することが可能となり、さらには製造工程も少なく製造コストの低減が可能となる。

フロントページの続き

(72)発明者 中川 啓次

千葉県市原市千種海岸2番1 東レ株式会 社千葉工場内

TRANSLATION

JAPANESE PATENT OFFICE

(Laid Open) PATENT REPORT (A)

Hei 8-151499

(43) Date of Publication:

June 11, 1996

Number of Claims:

7

(Total 9 pages)

(21) Patent Application No.:

Hei 6-294085

(22) Date of Application: November 29, 1994

Applicant:

000003159

Toray Corp.

2-1 Nihonbashi Muro-machi, Chyuo-

ku, Tokyo-to

Inventors:

Akihiko Kishimoto, et.al.

SPECIFICATION

(54) [Title of the Invention] HIGH IMPACT RESIN COMPOSITION MANUFACTURING PROCESS.

(57) [Abstract]

[Objective]

To obtain a high impact resin that yields a high impact resin composition having excellent color and balanced properties such as impact resistance and rigidity and also capable of significantly reducing waste water treatment.

[Solution]

A high impact resin composition is obtained by manufacturing a resin containing a small amount of rubber component using a continuous bulk polymerization process and adding and mixing a graft copolymer cake or a slurry containing a rubber component in the latter half of the monomer removal step while said resin is in molten state.

[Scope of the Patent Claim]

[Claim 1]

A manufacturing process for a high impact resin composition characterized by a continuous addition and mixing of 99-1 parts by weight of a graft copolymer (B) obtained by supplying a slurry or a wet cake obtained from a latex prepared by emulsion graft polymerization of 95-20 parts by weight of a monomer mixture comprising 10-100% by weight of an aromatic vinyl monomer, 0-50% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth)acrylic acid ester monomer, and 0-60% by weight of other vinyl type monomer capable of copolymerizing with them to an extrusion device equipped with grooves and holes or a gap and a vent hole that allows a fluid to pass through to dehydrate and dry it with

1-99 parts by weight of a copolymer (A) containing a rubber while the copolymer is in molten state during a continuous bulk polymerization process designed to graft polymerize 99-40% by weight of an aromatic vinyl type monomer, 0-60% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth)acrylic acid ester type monomer, and 0-60% by weight of other vinyl type monomer that is capable of undergoing graft polymerization with 1-25% by weight of rubber like polymer (however, concentration of the rubber like polymer obtained from the graft copolymer (B)>concentration of the rubber like polymer obtained from the copolymer (A) containing rubber in the high impact resin composition) in the presence of 5-80 parts by weight of a rubber like polymer.

[Claim 2]

The manufacturing process for a high impact resin composition described in Claim 1 in which the graft copolymer (B) is continuously added to the copolymer (A) containing rubber having residual monomer concentration of no more than 10% by weight.

[Claim 3]

The manufacturing process for a high impact resin composition described in Claim 1 in which the graft copolymer (B) is added to the copolymer (A) containing rubber having residual monomer concentration of no more than 10% by weight during a monomer removal step in a continuous bulk polymerization of the copolymer (A) containing rubber or after the monomer removal step.

[Claim 4]

The manufacturing process for a high impact resin composition described in Claim 1 in which the graft copolymer (B) is added in semi-molten or molten state.

[Claim 5]

The manufacturing process for a high impact resin composition described in Claim 1 in which the rubber like polymer of the graft copolymer (B) is a diene type rubber.

[Claim 6]

The manufacturing process for a high impact resin composition described in Claim 1 in which the copolymer (A) containing rubber is a butadiene-styrene-acrylonitrile copolymer and the graft copolymer (B) is a graft copolymer obtained by graft copolymerization of styrene-acrylonitrile on a rubber like polymer.

[Claim 7]

The manufacturing process for a high impact resin composition described in Claim 1 in which the monomer removal step in the continuous bulk polymerization of the copolymer (A) containing rubber is a mono-axial or di-axial extruder equipped with a vent and the continuous addition device of the graft copolymer (B) is a mono-axial or di-axial extruder connected to the monomer removal extruder of the copolymer (A) containing rubber.

[Detailed Description of the Invention]

[0001]

[Field of Industrial Utility]

This invention deals with a manufacturing process for a high impact resin composition. More specifically, this invention deals with a manufacturing process for a high impact resin composition having excellent color tone and balanced properties such as impact resistance and rigidity.

[0002]

[Conventional Technology]

High impact resins containing a rubber component typified by ABS and high impact polystyrene are resins having an excellent balance between various properties and mold processing properties, and they are used in a broad range of applications, for example, in automobile parts, electrical equipment parts and office equipment parts. These high impact resins containing a rubber component need to have a rubber component graft polymerized to sufficiently realize mechanical properties, and emulsion graft polymerization was conventionally used as their manufacturing process. However, an emulsion polymerization process has problems.

For example, the process has many steps, is expensive due to many auxiliary raw materials needed, and an effluent water treatment is needed. In order to reduce the problems associated with emulsion polymerization, a process in which a polymer having high rubber content obtained by emulsion graft polymerization and a polymer that does not contain a rubber obtained by suspension polymerization were melt blended was developed. (Kobunshi Gakkai Edition, "ABS Resin.") Furthermore, a process in which a high impact resin containing a rubber was subjected directly to continuous bulk polymerization was put into practice recently. [For example, Japanese Patent Report Sho 47-14136, Japanese Patent Report Sho 49-26711, and Kagaku Kogaku 53(6), 423-426 (1989).]

[0003]

[Problems for the Invention to Solve]

The process in which a polymer having high rubber content obtained by emulsion graft polymerization and a polymer that does not contain a rubber obtained using a continuous bulk polymerization process or suspension polymerization are prepared individually as separate polymers and melt blended has an advantage of providing opportunities to control the properties relatively smoothly. However, the process also has problems. For example, it requires a waste water treatment, the color is not satisfactory due to hysteresis during melt blending, and the balance between impact resistance and rigidity is not adequate. In contrast, a production process used to prepare high impact resin containing a large amount of rubber component using a direct, continuous bulk polymerization process offers advantages. That is, the process has fewer steps, involves fewer auxiliary raw materials, and, most importantly, does not need a waste water treatment. However, the process has a drawback associated with difficulty in controlling graft polymerization reaction in the bulk polymerization. Furthermore, properties of the resin obtained such as impact resistance are not necessarily satisfactory. In addition, other production and quality problems are also associated with the process. That is, deteriorated rubber material remains in production equipment and is shed when the rubber component concentration rises.

[0004]

[Means to Solve the Problems]

Production processes for a high impact resin composition having excellent color tone and a good balance among properties such as impact resistance and rigidity were

investigated diligently, and this invention was developed as a result of the investigation. That is, this invention presents a manufacturing process for a high impact resin composition characterized by a continuous addition and mixing of

99-1 parts by weight of a graft copolymer (B) obtained by supplying a slurry or a wet cake obtained from a latex prepared by emulsion graft polymerization of 95-20 parts by weight of a monomer mixture comprising 10-100% by weight of an aromatic vinyl monomer, 0-50% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth)acrylic acid ester monomer, and 0-60% by weight of other vinyl type monomer capable of copolymerizing with them to an extrusion device equipped with grooves and holes or a gap and a vent hole that allows a fluid to pass through to dehydrate and dry it with

1-99 parts by weight of a copolymer (A) containing a rubber while the copolymer is in molten state during a continuous bulk polymerization process designed to graft polymerize 99-40% by weight of an aromatic vinyl type monomer, 0-60% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth)acrylic acid ester type monomer, and 0-60% by weight of other vinyl type monomer that is capable of undergoing graft polymerization with 1-25% by weight of rubber like polymer (however, concentration of the rubber like polymer obtained from the graft copolymer (B)>concentration of the rubber like polymer obtained from the copolymer (A) containing rubber in the high impact resin composition) in the presence of 5-80 parts by weight of a rubber like polymer.

[0005]

The aromatic vinyl type monomer constituting copolymer (A) containing rubber and graft copolymer (B) used in this invention is an aromatic compound containing double bonds that are capable of polymerizing, and specific examples include styrene, $\alpha\text{-methylstyrene}$, p-methylstyrene, vinyl toluene, propyl styrene, butyl styrene and cyclohexylstyrene. These aromatic vinyl type monomers are used individually or as a mixture of at least two of them. Of these aromatic vinyl type monomers, styrene and $\alpha\text{-}$ methylstyrene are particularly preferred.

[0006]

The vinyl cyanide type monomer constituting copolymer (A) containing rubber and graft copolymer (B) used in this invention is a compound containing double bonds that are capable of polymerizing and cyano groups, and specific examples include acrylonitrile and methacrylonitrile. These vinyl cyanide type monomers are used individually or as a

mixture of at least two of them. Of these vinyl cyanide type monomers, acrylonitrile is particularly preferred.

[0007]

, ', ·

Methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, glycidyl methacrylate, hydroxyethyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate can be cited as specific examples of the (meth)acrylate ester type monomers constituting copolymer (A) containing rubber and graft copolymer (B) used in this invention. These (meth)acrylate ester type monomers are used individually or as a mixture of at least two of them. Of these (meth)acrylate ester type monomers, methyl methacrylate is particularly preferred.

[0008]

N-Phenyl maleimide, N-cyclohexyl maleimide, methyl substituted N-phenyl maleimide, maleic anhydride, acrylic acid and methacrylic acid, for example, can be cited as other vinyl type monomers constituting copolymer (A) containing rubber and graft copolymer (B) used in this invention. Of these, N-phenyl maleimide is particularly preferred.

[0009]

The rubber like polymers constituting copolymer (A) containing rubber and graft copolymer (B) used in this invention are diene type rubber, acrylic type rubber and ethylene type rubber, and polybutadiene, poly(butadienestyrene), poly(butadiene-acrylonitrile), polyisoprene, poly(butadiene-butyl acrylate), poly(butadiene-methyl acrylate), poly(butadiene-methyl methacrylate), poly(butadiene-ethyl acrylate), ethylene-propylene rubber, ethylene-propylene-diene rubber, poly(ethylene-isobutylene), poly(ethylene-methyl acrylate), and poly(ethylene-methyl acrylate) [sic] can be cited as specific examples. rubber like polymers are used individually or as a mixture of at least two of them. Of these rubber like polymers, polybutadiene, poly(butadiene-styrene), poly(butadieneacrylonitrile), and ethylene-propylene rubber are particularly preferred.

[0010]

Butadiene-styrene copolymer, butadiene-styrene-acrylonitrile copolymer butadiene-styrene-N-phenyl maleimide copolymer butadiene-styrene-acrylonitrile-methyl methacrylate copolymer, butadiene-styrene-methyl methacrylate copolymer, and ethylene-propylene-styrene-acrylonitrile graft copolymer can be cited as preferred examples of the copolymer (A) containing rubber used in this invention. Of these,

butadiene-styrene-acrylonitrile copolymer is particularly . preferred.

[0011]

, 'r \

Styrene graft polymer of polybutadiene, styrene graft polymer of poly(butadiene-styrene), styrene-acrylonitrile graft copolymer of polybutadiene, styrene-acrylonitrile graft copolymer of poly(butadiene-styrene), styreneacrylonitrile graft copolymer of poly(butadieneacrylonitrile), styrene-acrylonitrile-methyl methacrylate graft copolymer of polybutadiene, and styrene-acrylonitrile graft copolymer of poly(ethylene-propylene) can be cited as preferred examples of the graft copolymer (B) used in this invention. Of these, the proportion of the rubber in the copolymer (A) containing rubber and individual monomers subjected to graft polymerization of 99-40% by weight of aromatic vinyl type monomer, 0-60% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth)acrylate ester type monomer and 0-60% by weight of other vinyl type monomers capable of copolymerization to 1-25% by weight of rubber like polymer is used in graft polymerization based on mechanical strength, color tone and moldability of the resin composition obtained. A preferred proportion is 99-50% by weight of aromatic vinyl type monomer, 0-50% by weight of vinyl cyanide type monomer, 0-70% by weight of (meth)acrylate ester type monomer and 0-50% by weight of other vinyl type monomer capable of copolymerization to 1-20% by weight of rubber like polymer. A more preferred proportion is 99-55% by weight of aromatic vinyl type monomer, 10-40% by weight of vinyl cyanide type monomer, 0-60% by weight of (meth)acrylate ester type monomer and 0-40% by weight of other vinyl type monomer capable of copolymerization to 1-15% by weight of rubber like polymer.

[0012]

The first half of the procedure of this invention, that is, the continuous bulk polymerization process used in a step to continuously bulk polymerize a copolymer (A) containing rubber obtained by graft polymerization of 99-40% by weight of aromatic vinyl type monomer, 0-60% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth)acrylate ester type monomer and 0-60% by weight of other vinyl type monomers capable of copolymerization on 1-25% by weight of rubber like polymer is not restricted, and any continuous bulk polymerization process can be used. For example, a process in which polymerization is allowed to take place in a polymerization vessel and the monomers are subsequently removed (removed by evaporation), for example, is known. A mixing type polymerization vessel or various tower type reactors equipped with a variety of agitator blades such as

paddle blades, turbine blades, propeller blades, bull [transliteration] margin blades, multiple stage blades, anchor blades, max blend blades or double helical blades may be used. Furthermore, a multiple pipe reactor, a kneader type reactor or a biaxial extruder may also be used as a polymerization reactor. (For example, refer to Polymer Production Process Assessment 10, "High Impact Polystyrene Assessment," Kobunshi Gakkai, January 26, 1989.) These polymerization vessels (reactors) are used individually or in a combination of at least two or a combination of at least two types of reactors when necessary.

[0013]

A reaction mixture of copolymer (A) containing a rubber obtained by the polymerization conducted in these polymerization vessels or reactors is normally subjected to a monomer removal step next and the monomer and other volatile components are removed. As the monomer removal process, a process in which volatile components are removed from vent holes under normal or reduced pressure upon heating using a monoaxial or biaxial extruder equipped with vents, a process in which volatile components are removed using an evaporator such as a centrifuge type evaporator that contains a plate fin type heater inside the drum, a process in which volatile components are removed using a thin film evaporator such as a centrifuge type evaporator, and a process in which volatile components are removed by pre-heating a mixture using a multiple tube type heat exchanger and allowing it to foam and flash into a vacuum vessel are available, and any of these processes can be used. However, a monoaxial or biaxial extruder containing vents are particularly desirable for use.

[0014]

The continuous bulk polymerization of a copolymer (A) containing rubber can be allowed to proceed using thermal polymerization without using an initiator, initiator polymerization using an initiator, or, in addition, using a combination of the thermal polymerization and initiator polymerization. As the initiator, a peroxide or an azo type compound can be used.

[0015]

As specific examples of the peroxide, benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, t-butylcumyl peroxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butylperoxy isopropyl carbonate, di-t-butyl peroxide, t-butyl peroctate, 1,1-bis(t-butylperoxy) 3,3,5-trimethyl cyclohexane, 1,1-bis(t-butylperoxy) cyclohexane, and t-butylperoxy-2-ethyl

hexanoate can be mentioned. Of these, cumene peroxide and 1,1-bis(t-butylperoxy) 3,3,5-trimethylcyclohexane are particularly preferred. As specific examples of the azo type compound, azo-bis-isobutyronitrile, azo-bis(2,4-dimethyl valeronitrile), 2-phenyl-azo-2,4-dimethyl-4-methoxy valeronitrile, 2-cyano-2-propyl-azo-formamide, 1,1'-azo-bis-cyclohexane-1-carbonitrile, azo-bis(4-methoxy-2,4-dimethyl valeronitrile), dimethyl 2,2'-azo-bis-isobutyrate, 1-t-butyl-azo-1-cyanocyclohexane, 2-t-butyl-azo-2-cyanobutane, and 2-t-butyl-azo-2-cyano-4-methoxy-4-methylpentane can be mentioned. One or a combination of at least two may be used when using these initiators. Of these, 1,1'-azo-bis-cyclohexane-1-carbonitrile is particularly preferred.

[0016]

_ '1 ·

A chain transfer agent such as mercaptan and terpene can be used for the purpose of adjusting the degree of polymerization of the copolymer (A) containing rubber used in this invention. As specific examples, n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, n-octadecyl mercaptan, and terpinolene can be mentioned. One or a combination of at least two may be used when using these chain transfer agents. Of these, n-octyl mercaptan, t-dodecyl mercaptan and n-dodecyl mercaptan are particularly preferred.

[0017]

The copolymer (A) containing rubber used in this invention is manufactured using a continuous bulk polymerization process, but the polymerization can be allowed to proceed using a small amount (for example, 20% or less) of a solvent and remain within the scope of this invention. In addition, various oxidation inhibitors such as phenol type, phosphorus type and sulfur type inhibitors may be added to prevent rubber deterioration, but, of these, phenol type oxidation inhibitors are preferred. For example, n-octadecyl 3(3',5'-di-t-butyl-4-hydroxyphenyl) propionate and 4,4'-butylidene bis(3-methyl-4-hydroxy-5-methylphenyl) propionate are particularly preferred.

[0018]

The graft copolymer (B) that is the other constitutional component used in this invention is a copolymer obtained by a graft polymerization reaction of 95-20 parts by weight of a monomer mixture comprising 10-100% by weight of aromatic vinyl type monomer, 0-50% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth)acrylate ester type monomer, and 0-60% by weight of other vinyl type monomers capable of copolymerizing with them on 5-80 parts by weight of rubber like polymer, but the entire amount does not need

to be grafted. A mixture of grafted and ungrafted copolymers is commonly used. The graft ratio of the grafted copolymer (B) is not restricted, but 5-150% is preferred and 10-100% by weight is more preferred. Here, the graft ratio is calculated using the equation below. Graft Ratio (% by weight) = (grafted branch weight/rubber line polymer weight) x 100

[0019]

Proportion of the rubber like polymer in the grafted copolymer (B) is 5-80 parts by weight and more preferably 20-70 parts by weight depending on the mechanical strength, color tone and moldability desired in the resin composition obtained. Proportions of the individual monomers used other than the rubber like polymer of the grafted copolymer (B) are 10-100% by weight of aromatic vinyl type monomer, 0-50% by weight of vinyl cyanide type monomer, 0-80% by weight of (meth) acrylate ester type monomer, and 0-60% by weight of other vinyl type monomers capable of copolymerizing with them, and more preferred proportions are (1) 60-100% by weight of aromatic vinyl type monomer, 10-40% by weight of vinyl cyanide type monomer, and 0% by weight of (meth) acrylate ester type monomer or (2) 20-60% by weight of aromatic vinyl type monomer, 0-30% by weight of vinyl cyanide type monomer, and 40-80% by weight of (meth)acrylate ester type monomer.

[0020]

Production process for the grafted copolymer (B) is not restricted. However, the polymer is preferably manufactured using emulsion or bulk polymerization, and emulsion polymerization is more preferred. A monomer mixture is commonly emulsion graft polymerized in the presence of a rubber like polymer latex in emulsion polymerization. emulsifier used in this emulsion graft polymerization is not particularly restricted, and various surfactants can be used. However, anionic surfactants such as carboxylic acid salt type, sulfuric acid ester salt type, and sulfonic acid salt type are particularly preferred for use. As specific examples of these emulsifiers, caprylic acid salts, capric acid salts, lauric acid salts, oleic acid salts, linolic acid salts, linolenic acid salts, rosinic acid salts, behenic acid salts, castor oil sulfuric acid ester salts, lauryl alcohol sulfuric acid ester salts, other high molecular weight alcohol sulfuric acid ester salts, dodecylbenzene sulfonic acid salts, alkylnaphthalene sulfonic acid salts, alkyl diphenyl ether disulfonic acid salts, naphthalene sulfonic acid salt condensation material, dialkyl sulfosuccinic acid salts, polyoxyethylene lauryl sulfuric acid salts, polyoxyethylene alkyl ether sulfuric

acid salts and polyoxyethylene alkyl phenyl ether sulfuric acid salts can be mentioned. Here, salts refers to alkali metal salts and ammonium salts, and potassium salts, sodium salts and lithium salts can be mentioned as specific examples of alkali metal salts. These emulsifiers are used individually or in a combination of at least two of them. In addition, the initiators and chain transfer agents listed for the production of the aforementioned copolymer (A) can be mentioned as the initiators and chain transfer agents that can be used in these emulsion graft polymerizations, and red-ox type initiators can also be used.

[0021]

A coagulation agent is added next to coagulate the latex, and a graft copolymer (B) is recovered to obtain a graft copolymer (B) manufactured using emulsion graft polymerization. An acid or a water soluble salt is used as the coagulation agent, and sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, calcium chloride, magnesium chloride, barium chloride, aluminum chloride, magnesium sulfate, aluminum sulfate, aluminum ammonium sulfate, aluminum potassium sulfate, and aluminum sodium sulfate can be mentioned as specific examples of it. These coagulation agents are used individually or as a mixture of at least two of them. The grafted copolymer (B) in the form of a coagulated slurry or a wet cake is supplied to an extrusion device containing grooves and holes or a gap and vent holes that allow liquids to pass through to remove water and dry it. This extrusion device used for dehydration • drying comprises a screw, a cylinder, and a screw drive sections, and the cylinder preferably has capacity to heat and cool. The first half (the supply side) of the cylinder contains grooves and holes or a gap that allows liquids to pass through but does not allow majority of the solids to pass through, and the last half (the discharge side) contains at least one vent hole. This may be a monoaxial extruder or a biaxial extruder. A grafted copolymer (B) in the form of a slurry or a wet cake is supplied to this extrusion device and is compressed using rotation of a screw in a low temperature region (the first half) of the cylinder to discharge majority of the water from the grooves and holes or a gap in the first half (the supply side) of the cylinder. Next, residual moisture and volatile fraction are removed next using vent holes in a heated region of the last half (the discharge side) of the cylinder, and the grafted copolymer (B) is supplied continuously to a copolymer (A) containing rubber from the cylinder tip. Vent holes may be used under normal pressure or under reduced pressure, and normal pressure and reduced pressure may be used in combination when at least two vent holes are present.

[0022]

As described above, the grafted copolymer (B) can also be manufactured using a bulk polymerization process. When a bulk polymerization process is used, the grafted copolymer (B) in molten state as it leaves from a monomer removal device can be added directly to a copolymer (A) or the grafted copolymer (B) isolated first can be added to the copolymer (A). However, direct addition of the grafted copolymer (B) in molten state discharged from a monomer removal device is more preferable from the standpoint of heat degradation prevention and continuity of the procedures.

[0023]

A mixture needs to be mixed during a bulk polymerization process in this invention after a grafted copolymer (B) is continuously added to a copolymer (A) containing rubber in molten state, and a resin composition having excellent color tone and impact resistance can be obtained only upon mixing. At this point, 99-1 parts by weight of a grafted copolymer (B) needs to be continuously added to 1-99 parts by weight of a copolymer (A) containing rubber in molten state, and 70-5 parts by weight of a grafted copolymer (B) is more preferably added continuously to 30-95 parts by weight of a copolymer (A) containing rubber in molten state and mixed. However, a high impact resin composition needs to have a greater rubber like polymer concentration in a grafted copolymer (B) than a rubber like polymer concentration copolymer (A) containing rubber. Color tone and impact resistance are not desirable when the rubber like polymer concentration in a grafted copolymer (B) is lower than the rubber like polymer concentration in the copolymer (A) containing rubber.

[0024]

Addition of a grafted copolymer (B) during the monomer removal step in a bulk polymerization process of a copolymer (A) containing rubber or after the monomer removal step at a point when residual monomer concentration is 10% or less or more preferably 5% or less is desirable. Then, the rubber component is not degraded by thermal hysteresis during subsequent monomer removal operation and color tone and impact resistance that are special features of this invention excel even further. Melt blending is preferred for mixing after a grafted copolymer (B) is continuously added to a copolymer (A) containing rubber in this invention in order to adequately realize impact resistance and other properties. This melt blending can be executed at the time

of addition and mixing or after the mixture is isolated, for example, at the time of melt molding.

[0025]

· 13 1

The continuous addition method of grafted copolymer (B) is not particularly limited, and optional method can be used for the addition. Various feeders, for example, a belt type feeder, a screw type feeder, a monoaxial extruder, and a biaxial extruder are commonly used, but monoaxial and biaxial extruders are particularly preferred. A continuous addition device capable of metering the addition is preferred. A continuous addition device equipped with a heater is preferred to deliver the grafted copolymer (B) in semi-molten or molten state to assist blending. Extruders equipped with a heater can be used for this purpose.

[0026]

In this invention, various oxidation inhibitors such as phenol type, phosphorus type and sulfur type, ultraviolet ray absorption agents, photo stabilizers and other weather resistance agents, electrostatic inhibitors, lubricants such as ethylene bis-stearylamide and metal soaps, plasticizers, colors, fillers, reinforcing materials such as glass fibers and carbon fibers, and flame retardants can also be added when necessary.

[0027]

[Examples]

This invention is further described in detail by citing examples below, but this invention is not limited to these examples. It should be noted that "%" and "parts" used in the examples represent % by weight and parts by weight, respectively. In addition, the YI (yellow index) value of pellets was determined using a color differentiometer made by Suga Shikenki K.K. Izod impact strength was determined according to ASTM D256, and tensile strength was determined according to ASTM 638.

[0028]

Reference Example 1. [Production Process for Grafted Copolymer Cake (B-1)]

Sixty parts (calculated in terms of solids) of polybutadiene latex (average rubber particle size 0.3 μm , gel content 85%), 200 parts of pure water, 0.4 part of sodium formaldehyde sulfoxylate, (0.01 part) ferrous sulfate and 0.1 part of sodium phosphate were added to a reactor, and the reactor was purged with nitrogen. The reactor was heated to 65°C, and a mixture of 30 parts of styrene, 10 parts of acrylonitrile and 0.3 part of n-dodecyl mercaptan was added dropwise continuously over four hours under

agitation. Simultaneously, a mixture of 0.25 part of cumene hydroperoxide, 2.5 parts of sodium laurate as emulsifier and 25 parts of pure water was continuously added dropwise over five hours. Upon completion of the dropwise addition, the mixture was maintained for an hour to allow polymerization to be concluded. Upon conclusion of the polymerization, the latex was coagulated using 1.5% sulfuric acid, neutralized using an alkali, washed and centrifuged to isolate a grafted copolymer cake (B-1). The grafting ratio of the grafted copolymer cake (B-1) obtained was 40%.

[0029] Reference Example 2. A grafted copolymer (B-1) latex was prepared using the procedure described in Reference Example 1. This latex was coagulated using 1.5% sulfuric acid, neutralized using an alkali next, and a grafted copolymer slurry (B-2) was prepared.

[0030] Reference Examples 3-9 [Production Process for Grafted Copolymer Cakes (B-3-9)] Mixtures of styrene and other vinyl monomers were allowed to polymerize in the presence of various rubber like polymers listed in Table 1 according to the procedure described in Reference Example 1 to prepare the grafted copolymers (B-3-9) having the compositions shown in Table 1. In Table 1, PBD represents a polybutadiene rubber, SBR represents a styrene/butadiene copolymer rubber comprising 25% styrene and 75% butadiene, NBR represents an acrylonitrile/butadiene copolymer rubber comprising 25% acrylonitrile and 75% butadiene, and EPDM represents an ethylene/propylene/5ethylidene-2-norbornane ternary copolymer rubber (ethylene/propylene = 68.5/31.5 mole ratio) having iodine number of 23 and Mooney viscosity of 60.

[0031] [Table 1]

79, 1

П					T	[
	Grafting	ratio (%	þy	weight)	40	40	55	58	20	40	30	40	45
	N-Phenyl	maleimide						17					
	Vinyl	monomer	(methyl	methacryl	())					35			
by weight)	Acrylonitri	Jе			10	10	13	12		3	12	13	16
olymer (%	Styrene				30	30	42	20	40	17	18	37	45
Grafted Copolymer (% by weight)	Rubber	like	polymer	content	80	80	45	45	50	45	09	50	45
	Rubber	like	polymer	type	PBD	PBD	PBD	PBD	PBD	PBD	NBR	SBR	EPDM
	Grafted	Copolymer	No.		Cake B-1	Slurry B-2	Cake B-3	Cake B-4	Cake B-5	Cake B-6	Cake B-7	Cake B-8	Cake B-9
	Refere	nce	Exampl	s s	-	2	3	4	5	9	7	8	0

Simultaneously, a mixture of 0.25 part of cumene hydroperoxide, 2.5 parts of sodium laurate as emulsifier and 25 parts of pure water was continuously added dropwise over five The reactor was heated to 65°C, and a mixture of 22.8 parts of styrene, 7.2 parts of acrylonitrile and 0.3 part Upon completion of the dropwise addition, the mixture was maintained for an hour styrene was added to five parts of the solid fraction in this latex, and the mixture was of n-dodecyl mercaptan was added dropwise continuously over four hours under agitation. formaldehyde sulfoxylate, (0.01 part) ferrous sulfate and 0.1 part of sodium phosphate Seventy parts (calculated in terms of solids) of polybutadiene latex (average rubber particle size 0.3 µm, gel content 85%), 200 parts of pure water, 0.4 part of sodium to allow polymerization to be concluded and to obtain a latex. Twenty-five parts of agitated well before 0.3 part of magnesium sulfate was added. Only the white polymer/monomer phase was collected, and 47.2 parts of styrene, 22.8 parts of were added to a reactor, and the reactor was purged with nitrogen. Real Example 1 hours.

acrylonitrile, 0.15 part of n-dodecyl mercaptan, and 0.03 part of cumene hydroxide was added to the mixture to obtain a homogeneous solution (raw material dope). Next, this raw material dope was supplied continuously to a polymerization vessel equipped with a helical ribbon type agitator blades and a jacket having a condenser and a static separator connected directly to the top designed to remove water from the polymerization system from the bottom phase of the separator and only the monomer from the top phase to reflux it to the polymerization vessel. The polymer concentration was controlled to 75%. The polymerization reaction mixture having polymer concentration of 75% was continuously supplied to a biaxial extruder equipped with a biaxial extruder type feeder having a pre-heater, a monomer remover, and a heating device connected in tandem from the tip of the monomer remover to $1/3^{rd}$ the length of the barrel section and vent holes. Residual monomer was allowed to evaporate under reduced pressure and recovered from vacuum vent holes at 180-240°C. To 80 parts of a butadiene/styrene/acrylonitrile copolymer having apparent polymerization ratio of at least 99% located at 1/3rd the distance from the tip of the monomer removal device, 0.5 part of t-butylhydroxy toluene as phenolic stabilizer, 0.5 part of tri(nonylphenyl) phosphite as phosphorus type stabilizer, and 20 parts of the grafted copolymer cake (B-1) prepared in the Reference Example 1 was supplied in a molten state from a biaxial extruder type feeder after it was dehydrated using a monoaxial extruder equipped with two vent holes. The resulting mixture was melted and kneaded before being discharged in strands and cut to obtain pellets of a styrene type resin composition. The YI value of the styrene type resin composition obtained is shown in Table 2. styrene type resin composition obtained was injection molded, and the properties were determined. The results are shown in Table 2. The color tone and properties of the styrene type resin compositions prepared according to the process of this invention were excellent as seen by the results reported in Table 2.

[0032] Real Example 2.

, D. .

The procedure described in Real Example 1 was conducted to obtain pellets of a styrene type resin composition with the exception of supplying the grafted copolymer slurry (B-2) prepared in Reference Example 2 after it was dehydrated using a monoaxial extruder equipped with a gap and two vent holes that allowed water to pass in place of the grafted copolymer cake (B-1) used in Real Example 1. The YI value of the styrene type resin composition obtained is shown in Table 2. In addition, the styrene type resin composition obtained was injection molded, the properties were

determined, and the results were shown in Table 2. The color tone and properties of the styrene type resin compositions prepared according to the process of this invention were excellent as seen by the results reported in Table 2.

[0033] Real Examples 3-9.

, 22 4

The procedure described in Real Example 1 was conducted to obtain pellets of a styrene type resin composition with the exception of using the grafted copolymer cakes (B-3-9) prepared in Reference Examples 3-9 in place of the grafted copolymer cake (B-1) obtained in Real Example 1. YI values of the styrene type resin compositions obtained and properties of the specimens obtained by injection molding the resin compositions are shown in Table 2. The color tone and properties of the styrene type resin compositions prepared according to the process of this invention were excellent as seen by the results reported in Table 2.

[0034] Comparative Example 1.

A polybutadiene-styrene-acrylonitrile grafted copolymer latex was obtained according to the procedure described in Real Example 1. To 42.9 parts of the solid fraction in this latex, 43.4 parts of styrene was added and thoroughly agitated before 0.3 part of magnesium sulfate was added. White polymer/monomer phase only was removed from the mixed solution, and 13.7 parts of acrylonitrile, 0.15 part of ndodecyl mercaptan, and 0.03 part of cumene hydroperoxide were added to create a homogeneous solution (raw material dope). Next, this raw material dope was supplied continuously to a polymerization vessel equipped with a helical ribbon type agitator blades and a jacket having a condenser and a static separator connected directly to the top designed to remove water from the polymerization system from the bottom phase of the separator and only the monomer from the top phase to reflux it to the polymerization vessel. The polymer concentration was controlled to 75%. The polymerization reaction mixture having polymer concentration of 75% was continuously supplied to a biaxial extruder equipped with a biaxial extruder type feeder having a pre-heater, a monomer remover, and a heating device connected in tandem from the tip of the monomer remover to 1/3rd the length of the barrel section and vent holes. Residual monomer was allowed to evaporate under reduced pressure and recovered from vacuum vent holes at 180-240°C. To 70 parts of a butadiene/styrene/acrylonitrile copolymer having apparent polymerization ratio of at least 99% located at 1/3rd the distance from the tip of the monomer removal device, 0.5 part of t-butylhydroxy toluene as phenolic stabilizer, 0.5 part of tri(nonylphenyl) phosphite as phosphorus type

stabilizer, and 30 parts of the grafted copolymer cake (B-1) prepared in the Reference Example 1 was supplied in a molten state from a biaxial extruder type feeder after it was dehydrated using a monoaxial extruder equipped with two vent holes. The resulting mixture was melted and kneaded before it was discharged in strands and cut to obtain pellets of a styrene type resin composition. The YI value of the styrene type resin composition obtained is shown in Table 2. The styrene type resin composition obtained was injection molded, and the properties were determined. results are shown in Table 2. The Izod impact strength of the styrene type resin composition prepared according to the method of this comparative example was better than that of a styrene type resin composition prepared according to a method of this invention, but tensile strength and pellet color tone (pellet YI) were inferior.

[0035] Comparative Example 2.

A polybutadiene-styrene-acrylonitrile grafted copolymer latex was obtained according to the procedure described in Real Example 1. A homogeneous solution (raw material dope) was obtained by adding 0.3 part of magnesium sulfate after 25 parts of styrene was added to fifteen parts of the solid fraction in this latex and agitated well, removing only the white polymer/monomer phase from the mixture solution obtained, and adding 39.6 parts of styrene, 20.4 parts of acrylonitrile, and 0.15 part of n-dodecyl mercaptan. Next, this raw material dope was supplied continuously to a polymerization vessel equipped with a helical ribbon type agitator blades and a jacket having a condenser and a static separator connected directly to the top designed to remove water from the polymerization system from the bottom phase of the separator and only the monomer from the top phase to reflux it to the polymerization vessel. The polymer concentration was controlled to 75%. The polymerization reaction mixture having polymer concentration of 75% was continuously supplied to a biaxial extruder equipped with a biaxial extruder type feeder having a pre-heater, a monomer remover, and a heating device connected in tandem to from the tip of the monomer remover to 1/3rd the length in the barrel section and vent holes. Residual monomer was allowed to evaporate under reduced pressure and recovered from vacuum vent holes at 180-240°C. To 90 parts of a butadiene/styrene/acrylonitrile copolymer having apparent polymerization ratio of at least 99% located at 1/3rd the distance from the tip of the monomer removal device, 0.5 part of t-butylhydroxy toluene as phenolic stabilizer, 0.5 part of tri(nonylphenyl) phosphite as phosphorus type stabilizer, and 10 parts of the grafted copolymer cake (B-1) prepared in the Reference Example 1 was supplied in a molten

state from a biaxial extruder type feeder after it was dehydrated using a monoaxial extruder equipped with two vent holes. The resulting mixture was melted and kneaded before being discharged in strands and cut to obtain pellets of a styrene type resin composition. The YI value of the styrene type resin composition obtained is shown in Table 2. The styrene type resin composition obtained was injection molded, and the properties were determined. The results are shown in Table 2. The color tone (pellet TI) [sic] of the styrene type resin composition prepared according to the method of this comparative example was inferior to that of a styrene type resin composition prepared according to a method of this invention.

[0036] Comparative Example 3.

. ...

A continuous bulk polymerization device identical to the one in Real Example 1 was used to continuously add a monomer mixture comprising 76 parts of styrene, 24 parts of acrylonitrile, and 0.15 part of t-butyl mercaptan to a polymerization vessel, and the polymer concentration was controlled to 75%. The polymerization reaction mixture having polymer concentration of 75% was pre-heated using a monoaxial extruder pre-heater identical to the one in Real Example 1, unreacted monomer was allowed to evaporate under reduced pressure and be recovered from a vent using a biaxial extruder type monomer removing device, and the strands obtained by discharging the mixture were cut to obtain pellets of a styrene type copolymer (A) that did not contain rubber. Next, 74 parts of this styrene type copolymer (A) that does not contain rubber, 26 parts of a powder obtained by drying the grafted copolymer cake (B-1) prepared in Reference Example 1, 0.5 part of t-butylhydroxy toluene, and 0.5 part of tri(nonylphenyl) phosphite were dry blended and pelletized by melt kneading/extrusion to obtain pellets of a styrene type resin composition. The YI value of said styrene type resin composition pellets and properties of the molded pieces obtained by injection molding the resin composition were determined and are shown in Table 2. Color tone (pellet YI) of the styrene type resin composition prepared in this comparative example was clearly inferior to that of a resin composition prepared in real examples.

[0037] Comparative Example 4. Seventy-four parts of styrene/acrylonitrile copolymer beads obtained by suspension polymerization of a monomer mixture comprising 76 parts of styrene, 24 parts of acrylonitrile and 0.18 part of t-dodecyl mercaptan followed by dehydration and drying , 26 parts of a powder obtained by drying the grafted copolymer cake (B-1) prepared in Reference Example

1, 0.5 part of t-butylhydroxy toluene, and 0.5 part of tri(nonylphenyl) phosphite were dry blended and pelletized using melt kneading/extrusion to obtain pellets of the styrene type resin composition. The YI value of said styrene type resin composition pellets and the properties of molded pieces obtained by injection molding said styrene type resin composition pellets were evaluated. The results are shown in Table 2. Color tone (pellet YI) of the styrene type resin composition prepared in this comparative example was clearly inferior to that of a resin composition prepared in real examples.

[8800]

- **9** } 4

cal th	Tensile Strength	kg/cm ²	400	400	430	450	450	420	450	410	430	300
Mechanical Strength	Izod S	ط د. ا	25	25	23	15	12	20	15	19	14	35
Pel let YI			22	21	21	25	20	21	24	22	23	45
Mixing Method			Immediately after removing monomer from copolymer (A)	Same	Same	Same						
fted lyme (B)	Amo	Par ts	20	20	20	20	20	20	20	20	20	30
Grafted Copolyme r (B)	Тур е		B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-1
bber	Amoun	Parts	80	80	80	80	80	80	08	08	08	70
ining Rubber	Acrylo nitril	(1) o/o	22.9	22.9	22.9	22.9	22.9	22.9	22.9	22.9	22.9	18.8
Copolymer (A) Containi	en	0/0	72.4	72.4	72.4	72.4	72.4	72.4	72.4	72.4	72.4	33.2
olymer (Rubbe	Cont.	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	30
Cop	Rubb	Type	PBD	PBD	PBD	PBD	PBD	PBD	PBD	PBD	PBD	PBD
			Real Ex.	Real Ex.	Real Ex.	Real Ex.	Real Ex.	Real Ex.	Real Ex.	Real Ex. 8	Real Ex.	Comp

	0	0	0.
	410	410	410
	25	20	
	35	32	34
	Same	Dry blended	Dry blended
	10	25	28
	B-1	B-1	B-1
	06	74	74
	20.6	24	24
	85.4	76	76
	14	1	1
	PBD		
1 E.	Comp . Ex. 2	Comp . Ex.	Comp . Ex.

00391

[Effect of the Invention]

rubber component using a continuous bulk polymerization process and adding and blending of strength are obtained as described in Real Examples 1-9. In addition, usage of a production process of this invention can reduce the level of effluent water treatment and a cake or a slurry of a grafted copolymer containing rubber component after it is dehydrated and dried in the latter half of a monomer removal step while said resin is in This invention is characterized by production of a resin containing a small amount of a molten state. Therefore, resin compositions having excellent color tone and mechanical roduction cost due to fewer production steps.

te Translated: 10/21/98 anslation No.: SGT-109

Dougherty Hermenau ы ж ж : 000

D. McDonald J. Rosedale

Rosedale