Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Кафедра вычислительных систем

Лабораторная работа №3 «Исследование переходных процессов»

Вариант 3

Выполнили студентки группы ИП-916: Адова А.С. Александрова А.С. Проверил преподаватель: Парначева Тамара Ивановна

Новосибирск 2020

Лабораторная работа №3 Исследование переходных процессов

1. Цель работы

Экспериментальная проверка влияния пассивных реактивных элементов на параметры переменного напряжения прямоугольной формы. Приобретение навыков расчёта RC цепей в режимах интегрирования и дифференцирования.

2. Экспериментальная часть 2.1 Исследование интегрирующей RC цепи.

 $egin{array}{lll} R_1 = 1 \ \kappa O M & C_1 = 1 \ m \kappa \Phi \\ R_2 = 6,8 \ \kappa O M & C_2 = 0,1 \ m \kappa \Phi \\ R_3 = 10 \ \kappa O M & C_3 = 8,2 \ m \kappa \Phi \end{array}$

Рис. 1. Интегрирующая RC-цепь

Рисунок 1: $\tau = 0,111$ мс

Рисунок 2: mA R1,C1

Рисунок 3: V1V2 R1,C1

Рисунок 4: mA R1, C2

Рисунок 6: mA1 R1,C3

Рисунок 7: V2 R1,C3

Ф -V2=-0;419

V2=-0,470

0,100 В/дел

0,100 В/дел

Рисунок 8: mA1 R2,C1

Рисунок 11: V2 R2,C3

V2.1-V2.2 = 0,00 B dT = -2,44 мс

Рисунок 12: mA1 R3,C1

2.2 Исследование дифференцирующей RC цепи

Рис. 2. Дифференцирующая RC-цепь

Рисунок 17: $\tau = 0,111$ мс

Рисунок 19: mA1 V2 R1,C2

Рисунок 22: mA1 V2 R3,C1

3. Контрольные вопросы

1. Понятие переходных процессов.

Переходным процессом называется процесс перехода от одного режима работы ЭЦ к другому, возникающий в результате коммутации в цепи.

Коммутацией называется процесс замыкания или размыкания рубильников, выключателей, в результате которого происходит изменение параметров цепи, её конфигурации, подключение или отключение источников. Будем считать, что коммутация производится мгновенно в момент t=0.

Изучение переходных процессов даёт возможность установить, как деформируются по форме и амплитуде сигналы при прохождении их через усилители, фильтры и другие устройства, позволяет выявить возможные превышения напряжения и токов на отдельных участках цепи, которые могут в десятки раз превышать их установившиеся значения.

2. Законы коммутации.

Первый закон. В начальный момент времени после коммутации ток в индуктивности остаётся таким же, каким он был непосредственно перед коммутацией, а затем плавно изменяется.

$$i_L(-0) = i_L(0) = i_L(+0)$$
 (6.1)

Невозможность скачкообразного изменения тока следует из того, что в противном случае на индуктивности появилось бы бесконечно большое напряжение $u_L = L \frac{di}{dt} = \infty$, что лишено физического смысла.

Второй закон. В начальный момент времени после коммутации напряжение на ёмкости остаётся таким же, каким было до коммутации, а затем плавно изменяется.

$$u_C(-0) = u_C(0) = u_C(+0)$$
 (6.2)

Невозможность скачкообразного изменения напряжения на ёмкости следует из того, что в противном случае через ёмкость проходил бы бесконечно большой ток $i_{\mathcal{C}} = \mathcal{C} \frac{du_{\mathcal{C}}}{dt} = \infty$, что также лишено физического смысла.

3. Методы расчета переходных процессов.

Расчет переходных процессов классическим методом сводится к решению системы линейных дифференциальных уравнений с постоянными коэффициентами, составленных на основании законов Кирхгофа для мгновенных значений токов и напряжений. Эта система приводится к неоднородному дифференциальному уравнению n-го порядка, общее решение которого

$\square(\square) = \square_{\text{частн.}}(\square) + \square_{\text{общ.}}(\square),$
Где
□общ.(□)-общее решение однородного уравнения.

Здесь под y(t) понимается любой искомый ток или напряжение. Частное решение неоднородного уравнения определяется видом функции, стоящей в правой части уравнения, и поэтому называется вынужденной составляющей $\square_{\text{вых}}(\square)$. Для цепей с постоянными или периодическими напряжениями (токами) источников энергии вынужденное решение совпадает с установившимися значениями искомых функций. Общее решение однородного уравнения описывает электромагнитный процесс, происходящий в схеме без воздействия внешних источников, и называется свободной составляющей $\square_{\text{св}}(\square)$ Из теории дифференциальных уравнений известно, что решение однородного уравнения ищется в виде:

$$y_{\text{вых}}(t) = \sum_{s=1}^{n} A_{s} l^{(Ps,t)}$$

Где \Box_{S} -постоянные интегрирования, определяемые из начальных условий;

 \square_{S} - корни характеристического уравнения.

Основными составляющими расчета у(t) являются: определение начальных условий, вынужденной составляющей, корней характеристического уравнения, постоянных интегрирования. Более подробно остановимся на определении начальных условий и корней характеристического уравнения.

4. Физические процессы, происходящие в интегрирующей цепи при воздействии на нее прямоугольных импульсов напряжения.

В этой цепи постоянная времени RC должна быть значительно больше длительности импульса $t_{\rm u}$, который на нее воздействует.

Напряжения заряда и разряда описываются соответственно выражениями:

$$U_{(c(3))} = U_a \left(1 - e^{\left(\frac{-t_U}{RC}\right)} \right)$$
$$U_{(c(p))} = U_a e^{\left(\frac{-t_U}{RC}\right)}$$

B то же время $U_{\text{вx}}(t) = U_{\text{r}}(t) + U_{\text{C}}(t)$

Поскольку постоянная времени RC проходной цепи большая, в цепи заряда будет протекать малый ток, конденсатор за время действия импульса зарядится до небольшого напряжения.

Так как t_u << RC, заряд-разряд конденсатора протекает практически на линейном участке, и напряжение U_C (рис 2.5) также является линейно изменяющимся. Из рис. 2.5 видно, что сигнал на резисторе U_r имеет завал вершины в пределах действия входного импульса, поскольку $U_r(t) = U_{BX}(t) - U_C(t)$ После прекращения действия входного импульса конденсатор разряжается на резистор и на нем формируется импульс отрицательной полярности. Чем больше будет постоянная времени RC, тем меньше будет завал вершины импульса напряжения, выделяющегося на резисторе во время действия входного импульса и амплитуда импульса отрицательной полярности, формирующийся на резисторе за счет разряда конденсатора после окончания входного импульса.

Рис.2.5

5. Условие интегрирования пассивных интегрирующих цепей RC и RL.

Для корректного выполнения цепью интегрирующих функций должно выполняться условие: $\tau >> T_u$

Где Т_и - длительность входного импульса.

При соблюдении этого условия, выходное напряжение: $u_2 = \frac{1}{\tau} \rho u_1 dt$

6. Физические процессы, происходящие в дифференцирующей цепи при воздействии на нее прямоугольных импульсов напряжения.

Напряжение на конденсаторе не может изменяться скачкообразно, в момент поступления на вход цепи положительного импульса с амплитудой U_m на резисторе R напряжение будет равно U_m . Затем начнется быстрый заряд конденсатора ($\tau << T_u$), в ходе которого напряжение на конденсаторе будет возрастать по экспоненциальному закону. Напряжение на выходе цепи, равное разности напряжений U_m и U_c : $U_{\text{вых}} = U_{\text{вх}} - U_c = U_m - U_c$ будет убывать с той же скоростью. Из-за малой величины постоянной времени τ напряжение на выходе становится практически равным нулю задолго до окончания импульса, т.к. за время $t=t_u$ конденсатор успевает почти зарядиться.

С момента окончания действия входного импульса в цепи действует только одно напряжение U_c , и согласно закону Кирхгофа, выходное напряжение можно найти из равенства: $u = U_{\text{вх}} + U_c$, т.е. выходное напряжение должно повторять U_c . Поэтому в момент времени t_u на входе цепи появляется напряжение U_m с отрицательной

полярностью. Этот отрицательный перепад напряжения быстро спадает до нуля, т.к. конденсатор быстро разряжается.

Таким образом, каждый входной импульс прямоугольной формы преобразуется рассматриваемой цепью в пару остроконечных кратковременных импульсов разной полярности. Поэтому такая цепь является обостряющей.

7. Условия дифференцирования и разделительной цепи.

Разделительные цепи предназначены для разделения постоянной и переменной составляющей. Условие дифференцирования: $\tau>>t_u$; $\tau<< t_n$ обеспечивает вариант разделительной цепочки.

Главное условие при разделении сигнала есть то, что площади, выраженные положительным и отрицательным импульсом должны быть равны $(S_1=S_2)$

8. Практическое применение дифференцирующих и интегрирующих цепей.

Интегрирующие и дифференцирующие цепи находят применение в электротехнике, системах автоматического управления, при аналого-цифровом преобразовании и генерации периодических колебаний.

RC цепи используются везде, где надо выделить постоянную составляющую, переменную составляющую, выделить фронт сигнала, узнать задержку и т.д. Дифференцирующие цепи удобно использовать для выделения фронта и среза импульсных сигналов.