Sandipan Choudhuri

🔊 [+1] 480-300-9385 | 💌 s.choudhuri@asu.edu | 😵 s-choudhuri.github.io | 🛅 Linkedin | 🗘 Github | 🕿 Google Scholar

EDUCATION

Doctor of Philosophy

Arizona State University • Computer Science (Machine Learning)

Aug 2017-Present • USA

CGPA: 4/4

Jadavpur University • Computer Science & Engineering (Computer Vision)

Aug 2013-July 2015 • India CGPA: 8.44/10

Bachelors

West Bengal University of Technology • Computer Science & Engineering

Aug 2009-July 2013 • India

CGPA: 8.6/10

PROFESSIONAL EXPERIENCE

• Rovicare - Machine Learning Intern

May-Aug 2022 • USA

• Automated the patient intake process by designing a cloud-based machine learning framework for extracting proprietary data from scanned records. Enhanced in-house efficiency by streamlining customer ticketing and contract systems.

Interbiz - Machine Learning Intern

o Engineered a document parser for automated processing of scanned health/auto insurance claim forms, improving the turnaround time by a factor of 18. Devised a HIPAA-compliant cloud-based application for secure health-record access.

NetXT Lab, Arizona State University - Research Assistant

Aug 2019-Present • USA

o Designed unsupervised adaptation frameworks to alleviate annotation overhead, achieving state-of-the-art accuracies. Developed a time-series pipeline to estimate future opioid incidents and optimal sites for medication-assisted treatment facilities. Leveraged language models to assess social media data's effectiveness in monitoring the opioid crisis.

CMATER Lab, Jadavpur University - Junior Research Fellow

Aug 2015-Mar 2017 • India

o Developed a production-level breast cancer diagnostic system, overseeing requirements, data sourcing, and model architecture. Designed frameworks and authored publications on scene labeling, contour detection, and image segmentation.

TECHNICAL SKILLS & RELEVANT COURSEWORK

Language: Python, Java, C++, C, SQL, JavaScript, HTML + CSS

Platform: Google Cloud, Microsoft Azure

Technology: Docker, Apache Spark, Tableau, Matlab, Git, ClickUp **Library:** Pytorch, Keras, Pandas, NumPy, Scikit-learn, OpenCV, Statsmodels, Spark MLlib, Seaborn, Flask, SpaCy, D3.js Course: Machine Learning, Data Mining,

Deep Learning, Statistical Learning, Computer Vision, Natural Language Processing, Data Visualization

Research Publications

Summary of works leveraging knowledge from a known dataset (source) to mitigate annotation costs on an unlabelled dataset (target), assuming the source has a broader category set than the target (Partial Domain Adaptation)

• Utilizing source prototypes and negative ensemble learning for target supervision (In Review) IEEE ICMLA, 2023

• Leveraging objectives beyond first-order moments for category-level distribution alignment (Accepted) IEEE ACSSC, 2023

• Aligning class distributions with complement entropy objective and adaptative target label refinement AIA Journal, 2023

• Coupling adversarial learning with selective voting for distribution alignment

AdvML@KDD, JCCE Journal, 2022

IEEE ACSSC, 2022

• Adaptation using selective representation learning for class-weight computation

IEEE ACSSC, 2020

Summary of works identifying object positions (localization) and assigning semantic labels to every pixel (scene labeling)

• Pixel-level image segmentation and scene labeling using multi-scale super-pixel contextuality

Springer RMLDA, 2019

• A survey of object localization techniques on natural scenes

o Domain-invariant feature alignment using variational inference

IJPRAI Journal, 2018

Summary of works detecting boundaries between objects at individual pixel resolution (contour detection) in images

o Leveraging neighborhood attributes and particle swarm optimization for object boundary detection Springer FICTA, 2017

o Identifying contours by detecting image discontinuities using combined feature-channel information IEEE ICACCI, 2016

Other works

o Optimal cost network design for bounded delay data transfer from PMU to control center

IEEE GLOBECOM, 2021

• Structural dependency-aware service chain mapping for network function virtualization • User satisfaction-driven bandwidth allocation for image transmission in a crowded environment

IEEE DRCN, 2020 MMTC Journal, 2018

o Identification of at-risk groups for opioid addiction through web data analysis

epiDAMIK@KDD, 2018

AWARDS & SERVICES

Doctoral Fellowship Award for "strong academic work and research progress" • Arizona State University

2021-2023

Web chair • INFOCOM workshop on Network Science for Quantum Communication Networks (NETSCIQCOM) 2022, 2023 Ph.D. Conference Travel Award • Arizona State University

2020, 2022, 2023

Research award reviewer for the Graduate Grants Program • Arizona State University

2020-2023

Reviewer for IEEE journals and conferences

2018-2023

Co-authored and secured NSF and AHCCCS grants for combating drug trafficking and Arizona's opioid crisis 2019. 2021

Top 0.5% among 0.25M candidates • Indian Graduate Aptitude Test in Engineering (GATE) for Computer Science

2013

OTHER PROJECTS

• Domain Adaptation in Unconstrained Label-Space

Proposed a framework for unsupervised target classification under universal adaptation \rightarrow Conditional distribution alignment achieved by coupling source prototypes and reciprocal points, with an iterative category-importance estimator for *intra* and *inter* class distance optimization \rightarrow Bagged highest accuracies across benchmark models on *Office-31*, *Office-home*, *VISDA2017*, and *ImageNet-Caltech* datasets.

• DNN Visualization Using Knowledge Distillation

Designed a visualization framework to interpret the functioning of a deep-neural network \rightarrow Utilized variational autoencoder to generate neighbors around data instances and trained a linear network to probe and replicate the complex network's behavior on the generated samples using knowledge distillation \rightarrow Examined platform's efficacy using ResNet and VGG models on MNIST and SVHN datasets.

• Time-Series Forecasting on Opioid Data

Formulated a pipeline for estimating the geospatial distribution of future opioid occurrences, leveraging time-series analysis on Arizona Emergency Medical Services (EMS) and demographic data \rightarrow Tasks involved time-series decomposition, stationarity and seasonality testing, estimating series forecastability through running *Granger causality tests*, and developing forecasting models using ARIMA, SARIMA, RNN and uni/bi-directional LSTM.

• Colonoscopic Image Segmentation

Proposed a method to bypass the necessity for constant monitoring during optical colonoscopy \rightarrow Polyp regions estimated from informative frames (informativeness determined with supervision) using an iterative entropy-based clustering policy and a deep-siamese network trained on contrastive loss \rightarrow A 6% improvement in mean Intersection Over Union (mIOU) witnessed over the benchmark UNet, on a real-world Mayo-Clinic dataset.

• Natural Scene Labelling

Designed a multi-scale solution to capturing context information for scene labeling \rightarrow map super-pixel groups at different neighborhood scales to object labels using deep classifiers. A consensus-labeling strategy employed on the output probabilities through multiple voting routines \rightarrow Outperformed state-of-the-art super-pixel-based methods on *Stanford B*. dataset.

Contour Detection on Natural Scenes

Developed a game-theoretic, multi-scale contour detection approach, treating texture and color-based feature extraction as players in a two-player game \rightarrow A mixed strategy Nash Equilibrium is searched across various extraction scales, aiming to minimize spurious edges and highlight salient contours \rightarrow Secured the second position (average precision of 0.67 with a peak recall of 0.91), on the BSDS-500 dataset, next only to the state-of-the-art hierarchical image segmentation model.

• Activity Recognition using Myo Gesture Control Armband

Acquired gesture data over two continuous days from four students wearing sensor bands, with eating durations logged \rightarrow Utilized classical machine learning and deep learning methodologies to discern between eating and non-eating behaviors with a 94.76% accuracy, leveraging features from the *Inertial Measurement Unit (IMU)* and *Electromyography (EMG)* data.

GRADUATE TEACHING

Arizona State University

• CSE 110 - Introduction to programming

2017

CSE 205 - Object Oriented Programming and Data Structures

2018

• CSE 551 - Foundation of Algorithms

2017-2020

• CSE 572 - Data Mining

2019, 2023