Business Intelligence, Analytics, and Data Science: A Managerial Perspective

Fourth Edition

Chapter 6 – Part B

Prescriptive Analytics: Optimization and Simulation

Optimization via Mathematical Programming

Mathematical Programming

A family of tools designed to help solve managerial problems in which the decision maker must allocate scarce resources among competing activities to optimize a measurable goal

- Optimal solution: The best possible solution to a modeled problem
 - Linear programming (LP): A mathematical model for the optimal solution of resource allocation problems.
 All the relationships are linear.

Application Case 6.6

Mixed-Integer Programming Model Helps the University of Tennessee Medical Center with Scheduling Physicians

Questions for Discussion

- 1. What was the issue faced by the Regional Neonatal Associates group?
- 2. How did the HPSM model solve all of the physician's requirements?

LP Problem Characteristics

- Limited quantity of economic resources
- 2. Resources are used in the production of products or services
- Two or more ways (solutions, programs) to use the resources
- Each activity (product or service) yields a return in terms of the goal
- 5. Allocation is usually restricted by constraints

Linear Programming Steps

- 1. Identify the ...
 - Decision variables
 - Objective function
 - Objective function coefficients
 - Constraints
 - Capacities / Demands / ...
- 2. Represent the model
 - LINDO: Write mathematical formulation
 - EXCEL: Input data into specific cells in Excel
- 3. Run the model and observe the results

Modeling in LP - An Example

The Product-Mix Linear Programming Model (for MBI Corporation)

- Decision variable: How many computers to build?
- Two types of mainframe computers: CC-7 and CC-8
- Constraints: Labor, Materials, and Marketing limits

	<u>CC-7</u>	<u>CC-8</u>	Rel	<u>Limit</u>
Labor (days)	300	500	<=	200,000 /mo
Materials (\$)	10,000	15,000	<=	8,000,000 /mo
Units	1		>=	100
Units		1	>=	200
Profit (\$)	8,000	12,000	(Max)	

Objective: Maximize Total Profit / Month

LP Solution – Algebraic Formulations

LP Solution with Excel

Decision Variables:

X₁: unit of CC-7

X₂: unit of CC-8

Objective Function:

Maximize Z (profit)

 $Z=8000X_1+12000X_2$

Subject To

 $300X_1 + 500X_2 \le 200K$

 $10000X_1 + 15000X_2 \nleq 8000K$

 $X_1 \ge 100$

 $X_2 \ge 200$

Slide 6-8

Illustrating the Power of Spreadsheet Modeling

Election Resource Allocation Problem (Data)

		Electoral			Influence
	State	Votes	W/E	N/S	Function
	NV	6	West		F1
	CO	9	West		F2
	IA	6	West	North	F3
	WI	10	West	North	F1
	ОН	18	East	North	F2
	VA	13	East	South	F2
	NC	15	East	South	F1
Ī	FL	29	East	South	F3
	NH	4	East		F3

Young	Old		
3	1	4	
3	3	6	
6	4	10	Total
Young	Old		
1.5	2.5	4	
2.5	1	3.5	
4	3.5	7.5	Total
Young	Old		
2.5	2.5	5	
1	2	3	
3.5	4.5	8	Total
	3 3 6 Young 1.5 2.5 4 Young 2.5 1	3 1 3 3 6 4 Young Old 1.5 2.5 2.5 1 4 3.5 Young Old 2.5 2.5 1 2	3 1 4 6 6 6 4 10 Young Old 1.5 2.5 4 3.5 7.5 Young Old 2.5 2.5 5 1 3.5 7.5

Illustrating the Power of Spreadsheet Modeling

Election Resource Allocation Problem (Formulation)

Illustrating the Power of Spreadsheet Modeling

Election
 Resource
 Allocation
 Problem
 (Compact
 Formulation)

Slide 6-11

Common Optimization Models

- Assignment (best matching of objects)
- Dynamic programming
- Goal programming
- Investment (maximizing rate of return)
- Linear and integer programming
- Network models for planning and scheduling
- Nonlinear programming
- Replacement (capital budgeting)
- Simple inventory models (e.g., economic order quantity)
- Transportation (minimize cost of shipments)

- Multiple Goals
 - Simple-goal vs. multiple goals
 - Vast majority of managerial problems has multiple goals (objectives) to achieve
 - Attaining all goals simultaneously
- Methods of handling multiple goals
 - Utility theory
 - Goal programming
 - Expression of goals as constraints, using LP
 - A points system

- Certain difficulties may arise when analyzing multiple goals:
 - Difficult to obtain a single organizational goal
 - The importance of goals change over time
 - Goals and sub-goals are viewed differently
 - Goals change in response to other changes
 - Dynamics of groups of decision makers
 - Assessing the importance (priorities)

- Sensitivity analysis
 - It is the process of assessing the impact of change in inputs on outputs
 - Helps to ...
 - eliminate (or reduce) variables
 - revise models to eliminate too-large sensitivities
 - adding details about sensitive variables or scenarios
 - obtain better estimates of sensitive variables
 - alter a real-world system to reduce sensitivities
 - ...
 - Can be automatic or trial and error

- What-if analysis
 - Assesses solutions based on changes in variables or assumptions (scenario analysis)
 - What if we change our capacity at the milling station by 40% [what would be the impact on output?]
- Goal seeking
 - Backwards approach, starts with the goal and determines values of inputs needed
 - Example is break-even point determination
 - In order to break even (profit = 0), how many products do we have to sell each month?

What-If Analysis Example in Excel

Goal Seeking Example in Excel

5						
6						
7	Investment Problem		Initial Inves	stment:	\$ 1,000.00	
8	Example of GoalSeeking		Interest Rate:		10%	
9						
10	Find the Interest Rate		Annual		NPV	
11	(the Internal Rate of	Year	Returns		Calculations	
12	Return-IRR)	1	\$ 120.00		\$109.09	
13	that yields an NPV	2	\$ 130.00		\$118.18	
14	of \$0	3	\$ 140.00		\$127.27	
15		4	\$ 150.00		\$136.36	
16		5	\$ 160.00		\$145.45	
17		6	\$ 152.00		\$138.18	
18		7	\$ 144.40		\$131.27	
19		8	\$ 137.18		\$124.71	
20		9	\$ 130.32		\$118.47	
21		10	\$ 123.80		\$112.55	
22						
23			The NPV	Solutions:	\$261.55	
24						

Decision Analysis with Decision Tables and Decision Trees

- Decision Tables a tabular representation of the decision situation (alternatives)
- Investment example:
 - Goal: maximize the yield after one year
 - Yield depends on the status of the economy (the state of nature)
 - Solid growth
 - Stagnation
 - Inflation

Decision Table -Investment Example: Possible Situations

- 1. If solid growth in the economy, bonds yield 12%; stocks 15%; time deposits 6.5%
- 2. If stagnation, bonds yield 6%; stocks 3%; time deposits 6.5%
- 3. If inflation, bonds yield 3%; stocks lose 2%; time deposits yield 6.5%

Decision Table Investment Example: Decision Table

- Payoff decision variables (alternatives)
- Uncontrollable variables (states of economy)
- Result variables (projected yield)
- Tabular representation:

TABLE 6.3	Investment Problem Decision Table Model				
State of Nature (Uncontrollable Variables)					
Alternative	Solid Growth (%)	Stagnation (%)	Inflation (%)		
Bonds	12.0	6.0	3.0		
Stocks	15.0	3.0	-2.0		
CDs	6.5	6.5	6.5		

Decision Table Investment Example: Treating Uncertainty

- Optimistic approach vs. pessimistic approach
- Treating Risk/Uncertainty:
 - Use known probabilities (expected values)
- Multiple goals: yield, safety, and liquidity

TABLE 6.4	Multiple Goals		
Alternative	Yield (%)	Safety	Liquidity
Bonds	8.4	High	High
Stocks	8.0	Low	High
CDs	6.5	Very high	High

Decision Trees

- Graphical representation of relationships
 - Can be induced (driven) from data [data mining]
 - Can be driven from experts [knowledge-driven]
- Multiple criteria approach
- Demonstrates complex relationships
- Cumbersome, if many alternatives exist
- Many tools exist:
 - Mind Tools Ltd., mindtools.com
 - TreeAge Software Inc., treeage.com
 - Palisade Corp., palisade.com

Simulation

- Simulation is the "appearance" of reality
- It is often used to conduct what-if analysis on the model of the actual system
- It is a popular DSS technique for conducting experiments with a computer on a comprehensive model of the system to assess its dynamic behavior
- Often used when the system is too complex for other DSS techniques

Major Characteristics of Simulation

- Imitates reality and captures its richness both in shape and behavior
 - "Represent" versus "Imitate"
- Technique for conducting experiments
- Descriptive, not normative tool
- Often to "solve" [i.e., analyze] very complex systems/problems
- Simulation should be used only when a numerical optimization is not possible

Application Case 6.7

Simulating Effects of Hepatitis B Interventions

Questions for Discussion

- Explain the advantage of OR methods such as simulation over clinical trial methods in determining the best control measure for Hepatitis B.
- 2. In what ways do the decision and Markov models provide cost-effective ways of combating the disease?
- 3. Discuss how multidisciplinary background is an asset in finding a solution for the problem described in the case.

Advantages of Simulation

- The theory is fairly straightforward
- Great deal of time compression
- Experiment with different alternatives
- The model reflects manager's perspective
- Can handle wide variety of problem types
- Can include the real complexities of problems
- Produces important performance measures
- Often it is the only DSS modeling tool for nonstructured problems

Disadvantages of Simulation

- Cannot guarantee an optimal solution
 - It is a descriptive model that can help develop prescriptive outcomes
- Time-demanding and costly construction process
- Cannot transfer solutions and inferences to solve other problems (models are problem specific)
- So easy to explain/sell to managers, may lead to overlooking analytical/optimal solutions
- Software may require special skills/experience

Simulation Methodology

Model Development Steps:

- 1. Define problem
- 2. Construct the model
- 3. Test and validate model
- 4. Design experiments

- 5. Conduct experiments
- 6. Evaluate results
- 7. Implement solution

Simulation Types

- Stochastic vs. Deterministic Simulation
 - Uses probability distributions
- Time-dependent vs.
 Time-independent Simulation
 - Monte Carlo Simulation (X = A + B)
 [A, B, and X are all probability distributions]
- Discrete Event vs. Continuous Simulation vs. Agent-Based Simulation
- Simulation Implementation
 - Visual Simulation and/or Object-Oriented Simulation

Application Case 6.8

Cosan Improves Its Renewable Energy Supply Chain Using Simulation

Questions for Discussion

- 1. What type of supply chain disruptions might occur in moving the sugar cane from the field to the production plants to develop sugar and ethanol?
- 2. What types of advanced planning and prediction might be useful in mitigating such disruptions?

Visual Interactive Simulation (VIS)

- Visual interactive modeling (VIM), also called Visual Interactive Simulation or Visual Interactive Problem Solving
- Goal is to address conventional simulation modeling inadequacies
- Uses computer graphics and animation
- Often integrated with RFID and GIS
- Allows for interactive/immersive sensitivity analysis
- Virtual reality
- Immersive presence

Application Case 6.9 (1 of 4)

Improving Job-Shop Scheduling Decisions through RFID: A Simulation-Based Assessment

Questions for Discussion

- 1. In situations such as what this case depicts, what other approaches can one take to analyze investment decisions?
- 2. How would one save time if an RFID chip can tell the exact location of a product in process?
- 3. Research to learn about the applications of RFID sensors in other settings. Which one do you find most interesting?

Application Case 6.9 (2 of 4)

Improving Job-Shop Scheduling Decisions through RFID: A Simulation-Based Assessment (Simio - Modeling Interface)

Application Case 6.9 (3 of 4)

Improving Job-Shop Scheduling Decisions through RFID: A Simulation-Based Assessment (Simio - Process Definition)

Application Case 6.9 (4 of 4)

Improving Job-Shop Scheduling Decisions through RFID: A Simulation-Based Assessment (Simio – Result Reporting)

Simulation Software

- A comprehensive list can be found at
 - orms-today.org/surveys/Simulation/Simulation.html
- Simio LLC, simio.com
- SAS Simulation [SAS OR], sas.com
- Lumina Decision Systems, lumina.com
- Oracle Crystal Ball, oracle.com
- Palisade Corp., palisade.com
- Rockwell Software, arenasimulation.com ...

