Hydrocephalus/SANS Subgroup Updates ABDR - Monday, June 30, 2025

INTRODUCTION

- Idiopathic normal pressure hydrocephalus (NPH)
- CSF buildup in the ventricles
- Three main symptoms:
 - Gait dysfunction
 - Urinary incontinence
 - Cognitive Impairment
- <u>Difficult to diagnose</u>: *Only 50-75% of patients have all three symptoms simultaneously*¹

Figure 1. Ventricles in the brain

Figure 2. Drawing of MRI showing enlarged ventricles in NPH

INTRODUCTION

- Estimated cause of 6% of all dementia cases¹
 - Genetic factors suspected, but not well established
 - Current management starts with CSF tap and then insertion of a shunt
- 80% of NPH cases thought to be misdiagnosed¹

Given that NPH can drastically reduce quality and quantity of life, effective diagnosis is crucial. It is crucial to understand the underlying genomics and mechanisms of NPH to help patients on Earth.

Figure 3. Ventriculoperitoneal shunt

Hydrocephalus/SANS in Space

In the same astronaut, (a) preflight baseline image and (b) matching postflight day 1 image show expansion of the lateral ventricle (black arrowheads), narrowing of the cingulate sulcus (white arrowhead), and thickening of the intermediate signal scalp soft tissues (arrows).

- 70% of astronauts experience SANS
- 11-25% sustained increase in ventricular
 volume even 6mo+
- Increase in free water in deep white matter hyperintensities
- Narrowing of subarachnoid space accompanies ventriculomegaly
 - Closely resembles parameters of diagnosis for NPH

Molecular

Aquaporins

SVZ/Progenitor Defects

Figure 1. Types of progenitor cells in the subventricular zone (SVZ) of rodent brains

There are few studies specifically investigating molecular changes to the choroid plexus/SVZ in microgravity

Imaging

complex and is incompletely understood. We1 and ers2 have documented enlargement of the fluidfilled cerebral ventricular system in astronauts following long-term missions (longer than 5 months) on the Inmational Space Station compared with the normal earance of the brain and ventricles prior to space-

imics of cerebrospinal fluid (CSF) is call triad of dementia, gait disturbances, and inco Hydrocephalus associated with long-term space

weeks) on a space shuttle did not demonstrate a significant change in ventricular volume from preflight to post-headaches usually associated with high ICP. The Na flight imaging, 12 Remodeling of cerebral structures in re-tional Aeronautics and Space Administration has terme

"HRP has scoped the LSAH/LSDA teams to a limited amount of unfunded data requests per year, typically smaller requests. Those that we can work often take longer because we work them as time permits (HRP requests are prioritized)."

III README 🥸 License FSL for Brain Segmentation in CT Scans This is an FSL-based pipeline of Bash scripts, which orients, smooths, and segments CT images

Oliver CM, Keesler DA, Fife TD, Barranco FD, Smith KA, McComb JG, Borzage MT, King KS. Autor Normal Pressure Hydrocephalus Using CT Imaging for Calculating the Ventricle-to-Subarachno Am J Neuroradiol, 2025 Jan 8:46(1):141-146, doi: 10.3174/ainr.A8451, PubMed PMID: 3974681 PMCID: PMC11735426.

Authors

- . Emily Foldes (emily.foldes@barrowneuro.org)
- · Jacob Knittel (jacobknittle@creighton.edu)

Shift to adapting FSL to MRI, running on existing data, looking for more sources potentially analog environments

The First Examination of Diagnostic Performance of Automated Measurement of the Callosal Angle in 1856 Elderly Patients and Volunteers Indicates That 12.4% of Exams Met the Criteria for Possible Normal Pressure Hydrocephalus

M. Borzage, A. Saunders, J. Hughes, J.G. McComb, S. Blüml and K.S. King merican Journal of Neuroradiology November 2021, 42 (11) 1942-1948; DOI: https://doi.org/10.3174/ainr.A7294

Investigating Molecular Changes Using GSE259421

- Used organoids because iPSCs more accurately reflect cells of the SVZ (neural progenitor hypothesis also exists as a potential cause)
- Consists of both dopaminergic and cortical organoids,
 with 4 unique subjects/cell lines & Bulk RNA-Seq
- 38 days post-microgravity exposure

Marotta D, Ijaz L, Barbar L, Nijsure M et al. Effects of microgravity on human iPSC-derived neural organoids on the International Space Station. *Stem Cells Transl Med* 2024 Dec 16;13(12):1186-1197. PMID: 39441987

Outline...Still Tentative

Organoid Changes Using GSE259421

36 samples total, 18 in cortical and 18 in dopaminergic

Organoid Changes Using GSE259421 - LASSO on All Grouped

Gene	Cilium	Cilia	Ciliopathy	Ventriculomegaly
KIF13B	5	5	1	0
ONECUTI	4	4	2	0
SLC26A2	2	2	0	0
CCDC15	1	1	0	0
LOC105372817	0	0	0	0
GPATCH2	0	0	0	0
LINC02363	0	0	0	0
CCDC174	0	0	0	1
TNRC6B-DT	0	0	0	0
SLITRK6	0	0	0	0
LOC102723331	0	0	0	0
TRN-GTT24-1	0	0	0	0
LOC105379100	0	0	0	0

Created using Entrez in R.

Actual		
0	1	
10	0	
0	8	
	0 10	

	GeneSymbol	EntrezID	Coefficient
1	CELSR2	1952	0.04027613
2	IFT172	26160	0.09673852
3	NPHP1	4867	3.36277826
4	TTC21B	79809	0.50564430
5	BBS12	166379	0.81361343
6	TUBB	203068	-0.90900859
7	BBS9	27241	0.54908463
8	PKD1L1	168507	0.77907904
9	DYNC2H1	79659	0.10892893
10	TUBA1A	7846	-0.32543898

Prediction accuracy drops to ~66.7%:')

- Dopaminergic organoids have drastically different expression than cortical organoids

```
Actual
Predicted 0 1
0 7 5
1 2 4
```

6 genes only sig. different in cortical organoids

*p<0.05, Wilcoxon rank sum test

4 genes sig. different in both organoids

• IFT172, BBS12, TTC21b are all involved with building & maintaining cilia. PKD1L1 is found in cilia & plays a role in sensing fluid flow

Maybe microgravity impacts cilia-mediated fluid flow sensing and cilia structure across neuron types(?)

AUC: 0.962962962963"

Applying findings to On-Earth Data, Future Steps

 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ac c=GSE110226

BBS2, GNA12, EVC2 all significantly differentially expressed genes also part of the NPH list. GNA12 was a very strong predictor from the large-scale GWAS, suggesting that what we're seeing here might be overlap in aging/NPH diagnosis overlapping with Alzheimer's.

I'll be running the model we trained on this dataset shortly, still working on aligning probes

Also next steps: applying this to OSD-32 after converting to mouse orthologs (microarray data from mice brains)

High ICP Exosome Patients (Ground Study - OSD363)

CSF

Genes	P-Value	FoldChange	Log2(FoldChange)
STAT5B	0.006064498	106.982234	6.741227425
TGM2	0.010723998	58.04288723	5.85904738
CD86	0.017767216	0.035699093	-4.807968769
S100A9	0.036088464	91.52837469	6.516147157
RIPK2	0.04805839	0.111435553	-3.165718504

Plasma

Genes	P-Value	FoldChange	Log2(FoldChange)
CXCR3	0.00768178	0.05214204	-4.2614092
TLR3	0.0159636	0.19328631	-2.3711887
LEFTY2	0.02011616	2.6443669	1.40292236
TNFSF4	0.03453125	6.00897553	2.58711905
CD70	0.03805422	0.11625619	-3.1046206
EREG	0.03805422	51.925596	5.69837397
CD80	0.03822381	0.16800093	-2.5734589