Use of Proteomics and the Secretome and Exosporium of *Bacillus anthracis* in the Development of Bacterial Ghost-based Vaccines

Vito G. DelVecchio, Guy Patra, Tim Alefantis, Joseph Connolly, Alexander Waltz, Cesar Mujer, Akbar Khan¹, and Werner Lubitz²

Vital Probes, Inc., ¹Defense Threat Reduction Agency, ²University of Vienna

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect at this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE 15 NOV 2004		2. REPORT TYPE N/A		3. DATES COVERED				
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER					
	and the Secretome a		DD UKANI NUMBER					
anthracis in the Development of Bacterial Ghost-based Vaccines				5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)			5d. PROJECT NUMBER					
					5e. TASK NUMBER			
					5f. WORK UNIT NUMBER			
	ZATION NAME(S) AND AE Befense Threat Rec		8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO	PRING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL	LABILITY STATEMENT lic release, distributi	on unlimited						
	OTES 49, 2004 Scientific O Vland on 15-17 Nove		_					
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF					
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 32	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

Proteome

The total proteins expressed by a genome at a particular moment in the life of a cell.

Proteomics is the study of proteomes.

Hundreds or thousands of proteins are studied simultaneously.

Standard proteomics investigations use 2D gel electrophoresis.

First dimension separation is achieved by isoelectric focusing. The proteins migrate in a pH gradient and when the point is reached where they have a net charge of zero (pI), they no longer migrate. Thus, separation is based on <u>charge</u> of the individual proteins.

Second dimension separation is at a 90 degree angle to the first. SDS polyacrylamide gel is used to separate proteins according to their <u>size</u> or molecular weight. The gel acts as a sieve with larger proteins migrate slower than smaller proteins.

Two Dimensional Gel Electrophoresis

Isolelectric Focusing pH 4-7

SDS-PAGE

Method of Protein Identification

Mascot

- 1 Spot excision
- 2 Tryptic digest
- 3 Sample cleanup
- 4 Mass spectrometry

theoretical

Protein ID experimental

OBJECTIVE: Target the secretome, membrane, and exosporial proteins of *Bacillus anthracis* to create a shortlist of protein candidates to use in vaccine development.

- These subproteomes contain proteins that help the pathogen invade host tissues.
- They also contain the first factors that confront the host cell.
- Contain many immunogenic proteins.
- Ideal vaccine targets.

Bacillus anthracis Secretome

The secretome corresponds to the proteins exported into the external environment by an organism.

Secreted proteins are often part of the pathogen's early offensive strategy and can be considered remote control virulence factors.

They modify the host cells environment.

Thus, they are play a major role in the initial host cell/pathogen interactions.

Since they are natural candidates for MHC presentation, they are ideal vaccine targets.

Overview of *Bacillus anthracis* RA3 secretomes (pH 4-7)

Non-induced (254 spots)

Induced (322 spots)

Induction conditions use the R medium which is a minimum synthetic medium developed by Ristroph in 1983 for the production and purification of *B. anthracis* toxins. The culture is grown in a 5% CO2 atmosphere. The conditions simulate those of the host environment.

Vaccine candidate selection is facilitated by identification of immunogenic proteins using immunoblotting of 2D gels and immunoabsorbant columns followed by LC-MS/MS.

Immunoproteomics

Identification and Selection of Immunogenic Proteins Clone ORF into Bacterial Ghost vector Bacterial Ghost Production

QC of Bacterial Ghosts Animal Studies

MALDI-TOF

Total Protein

Immunogenic Proteins

1 - Spot excision of immunogenic proteins

2 - Tryptic digest

3 - Sample cleanup

4 - Mass spectrometry

Mascot

experimental

Protein ID

B. anthracis SECRETOME (CO₂ induced) RA3R (pXO1+pXO2-)

Sypro Ruby Stained gel

Immunoblot Human Ab

Immunoblot anti glcNAc

Secretome Proteins of B. anthracis (pXO1+), pH 4 to 7 (negative image)

Spots encircled in red represent immunogenic proteins as determined by Western blots.

Secretome Proteins of B. anthracis (pXO2+), pH 4 to 7 (negative image)

Secretome Proteins of B. anthracis (no plasmids), pH 4 to 7

Identification of *Bacillus anthracis* Exosporial Proteins

~ 65% protein

~ 20% lipid

~ 15% carbohydrate

SM: spore membrane

CX: Cortex CR: Core

SC: Spore coat

BM: Basal membrane (crystalline structure)

N: Nap (Hair-like structure)

Exosporial and membrane proteins promote adherence to host cell surfaces.

Membrane proteins transport solutes and nutrients, export proteins and macromolecules, allow cell-cell signaling, and sense changes in the environment.

Proteins on the outside of the spore or cell membrane often elicit an immune response.

CAUTION. Immunoreactivity does not always equate with immunoprotection.

B. anthracis EXOSPORIUM – RA3R (pXO1+, pXO2-)

Sypro Ruby Stained gel

Immunoblot Human Ab

Immunoblot anti glcNAc

Proteome of Bacillus anthracis RA3R (pXO1+, pXO2-) exosporium, pH 4-7

Proteome of Bacillus anthracis RA3R (pXO1+, pXO2-) exosporium, pH 4-7

spot		theoretical		
number	accession no.	mass	score	protein identification
	1 gi 21401538 ref	98977	88	aconitase, Aconitase family (aconitate hydratase) [Bacillus anthracis A2012]
	2 gi 21398069 ref	22332	69	GTP_EFTU, Elongation factor Tu GTP binding domain [Bacillus anthracis A2012]
	3 gi 21401790 ref	78160	65	RNase_PH, 3' exoribonuclease family [Bacillus anthracis A2012]
	4 gi 21402641 ref	62199	104	PK, Pyruvate kinase, barrel domain [Bacillus anthracis A2012]
	5 gi 21398845 ref	91307	53	SLH, S-layer homology domain [Bacillus anthracis A2012]
	6 gi 21402055 ref	87161	92	Methionine_synt, Methionine synthase, vitamin-B12 independent [Bacillus anthracis A2012]
	7 gi 49186878 ref	49423	153	pyruvate dehydrogenase complex E3 component, dihydrolipoamide dehydrogenase [Bacillus anthracis str
	8 gi 21399117 ref	70321	60	Peptidase_M3, Peptidase family M3 [Bacillus anthracis A2012]
	9 gi 21397814 ref	59716	71	GATase, Glutamine amidotransferase class-I [Bacillus anthracis A2012]
	10 gi 21402361 ref	65727	167	HSP70, Hsp70 protein [Bacillus anthracis A2012]
	11 gi 21401599 ref	69969	70	transketolase, Transketolase, thiamine diphosphate binding domain [Bacillus anthracis A2012]
	12 gi 21398213 ref	32749	92	cpn60_TCP1, TCP-1/cpn60 chaperonin family [Bacillus anthracis A2012]
	13 gi 21398255 ref	56190	126	aldedh, Aldehyde dehydrogenase family [Bacillus anthracis A2012]
	14 gi 21398556 ref	60967	152	Peptidase_M4_C, Thermolysin metallopeptidase, alpha-helical domain [Bacillus anthracis A2012]
	15 gi 21402519 ref	47185	97	FKBP, FKBP-type peptidyl-prolyl cis-trans isomerase [Bacillus anthracis A2012]
	16 gi 21402140 ref	46196	54	Glycos_transf_3, Glycosyl transferase family, a/b domain [Bacillus anthracis A2012]
	17 gi 21397777	51162	172	ATP-synt_ab, ATP synthase alpha/beta family, nucleotide-binding domain [Bacillus anthracis A2012]
	18 gi 21402023 ref	44874	74	2-oxoacid_dh, 2-oxo acid dehydrogenases acyltransferase (catalytic domain) [Bacillus anthracis A201
	19 gi 21397379	50313	56	PGI, phosphoglucose isomerase
	20 gi 21398266 ref	52262		Amidase, Amidase [Bacillus anthracis A2012]
	21 gi 21401476 ref	53709		aldedh, Aldehyde dehydrogenase family [Bacillus anthracis A2012]
	22 gi 49188304 ref	47394	83	adenylosuccinate synthetase [Bacillus anthracis str. Sterne]
	23 gi 21397598	46389	188	enolase, Enol-ase [Bacillus anthracis A2012]
	24 gi 21398094	34914	68	RNA_pol_A_bac, Bacterial RNA polymerase, alpha chain, N terminal domain [Bacillus anthracis A2012]
	25 gi 30018378	42912	168	Protein Translation Elongation Factor Tu (EF-TU) [Bacillus cereus ATCC 14579]
	26 gi 21402024 ref	35207	150	transket_pyr, Transketolase, pyridine binding domain [Bacillus anthracis A2012]
	27 gi 21402217 ref	39826	80	GLFV_dehydrog, E/Leucine/Phenylalanine/Valine dehydrogenase [Bacillus anthracis A2012]
	28 gi 49186676 ref	32415	57	translation elongation factor Ts [Bacillus anthracis str. Sterne]
	29 gi 21398197	43635	119	Ala_racemase, Alanine racemase [Bacillus anthracis A2012]
	30 gi 30265339 ref	45083	60	serine hydroxymethyltransferase [Bacillus anthracis str. Ames]
	31 gi 21400841 ref	40001	58	DAHP_synth_1, DAHP synthetase I family [Bacillus anthracis A2012]
;	32 gi 21397465 ref	29040	60	ABC_tran, ABC transporter [Bacillus anthracis A2012]
	33 gi 21402213 ref	35768	65	transket_pyr, Transketolase, pyridine binding domain [Bacillus anthracis A2012]
;	34 gi 21397811 ref	30654	95	F_bP_aldolase, Fructose-bisphosphate aldolase class-II [Bacillus anthracis A2012]
	35 gi 21401303 ref	23993	79	Transaldolase, Transaldolase [Bacillus anthracis A2012]
	36 gi 21398032 ref	32898	151	PALP, Pyridoxal-phosphate dependent enzyme [Bacillus anthracis A2012]
	37 gi 21399802 ref	34766	81	ldh, lactate/malate dehydrogenase, NAD binding domain [Bacillus anthracis A2012]
,	38 gi 21401818 ref	31192	63	CoA_binding, CoA binding domain [Bacillus anthracis A2012]
	39 gi 21397602 ref	35803	59	gpdh_C, Glyceraldehyde 3-phosphate dehydrogenase, C-terminal domain [Bacillus anthracis A2012]

LC-MS/MS Identification of Vaccine Candidate Proteins

Open Reading Frames Identified in Bacillus anthracis

64 ORF's identified in exosporium

86 ORF's identified in secretome

a total of 35 of these ORF's are immunoreactive

Ghosts are empty
bacterial cell
envelopes without
cytoplasm and DNA
but share functional
and antigenic
determinants of the
living counterpart

Generated by the tightly controlled expression of the cloned lysis gene E of bacteriophage PhiX174.

Oligomerization of the gene *E*-encoded protein causes a transmembrane tunnel in the bacterial cell wall of gram-negative bacteria.

The E-tunnel is a tube formed between the inner and outer membranes. The E-tunnel causes the cytoplasm of the cell to escape, forming the ghost.

Transmission Electron Micrograph of Bacterial Ghost with E-tunnel

Advantages of Bacterial Ghosts

Nonliving alternatives

to
Chemical
Irradiated
Heat
Inactivated bacteria

Bacterial Ghosts
Can be produced
In large quantities
By fermentation

Production process

Does not denature
The bacterial ghost
envelope

Stable as freeze-dried

Material for
long periods
of time and
Do not require
cold storage

Current ongoing studies demonstrate that bacterial Ghosts are stable at ambient temperature for at least 5 years (to date)

Advantages of Bacterial Ghosts

Bacterial Ghosts have strong adjuvant activity

Bacterial Ghosts are easily Self Administered

Bacterial ghosts can
Be delivered by
Oral
Respiratory
Conjunctival
Subcutaneous
Intramuscular
Routes of
administration

Bacterial Ghost cocktails can easily be used to create multi-agent vaccines

Vaccine Development Workflow: Proteomics to Bacterial Ghosts

Identification of Immunogenic Proteins

Clone ORF into Bacterial Ghost vector Bacterial Ghost Production

QC of Bacterial Ghosts Animal Studies

Vaccine Candidate Selection Criteria

Identification and Selection of Immunogenic Proteins Clone ORF into Bacterial Ghost vector Bacterial Ghost Production

QC of Bacterial Ghosts **Animal Studies**

Location

Exosporia, Secretome, Membrane

3 sites = 3 points

2 sites = 2 points

1 site = 1 point

Species Immunogenicity

Human or Rabbit

H + R = 3 points H only = 2 points R only = 1 point

Degree of Immunogenicity

High = 3 points Med = 2 points Low = 1 point

Degree of Immunogenicity =

Western Blot Spot Volume SYPRO Spot Volume

Homology to target organism

Human, Bovine, etc

None = 3 points Moderate = 2 points High = 1 point

Use in other vaccines

Protein used previously?

Protective = 3 points

Good = 2 points
Candidate

No Mention = 1 point

Vaccine Candidate Selection Criteria

Identification and Selection of Immunogenic Proteins Clone ORF into Bacterial Ghost vector

Location

Bacterial Ghost Production

QC of Bacterial Ghosts

Similar to protein used in

other vaccine development

studies

Animal Studies

Compile data to produce single score per protein...

Immunogenicity Immunogenicity

Species

Alanine Racemase
Dehydrogenase E1 Component
Protective Antigen
LSU Ribosomal Protein L12P
AhpC-TSA
Oligopeptide ABC transporter (OppA)

		J	,						
							bits		
E	1	Н	2	Med 2	Good Candidate	2	0	2	18.1
E	1	Н	2		Good Candidate	2	165	0	8.9
S	1	Н	2	High 3	Protective	3	0	2	20.9
E, S	1	Н	2	Med 2	Protective	3	0	2	19.3
E, S, M	3	H, R, Gu	3	High 3	Good Candidate	2	150	0	20.7
M	1	R	1		No Mention	1	0	2	11.7

Degree of

Location

Exosporia, Secretome, Membrane

3 sites = 3 points 2 sites = 2 points 1 site = 1 point

Species Immunogenicity

Human, Rabbit, Goat

3 species = 3 points 2 species = 2 points 1 specie = 1 point

Degree of Immunogenicity

High = 3 points Med = 2 points Low = 1 point

Use in other vaccines

Protein used previously?

Protective = 3 points
Good = 2 points
Candidate
No Mention = 1 point

Homology to target organism

Homology to

Human Proteins SCORE

Human, Bovine, etc

None = 3 points Moderate = 2 points High = 1 point

Placement of Recombinant Protein on Bacterial Ghosts

Identification and Selection of Immunogenic Proteins Clone ORF into Bacterial Ghost vector Bacterial Ghost Production

QC of Bacterial Ghosts Animal Studies

Locations on bacterial ghosts where expressed proteins can be directed

- Outer Membrane
- Periplasmic Space

- Inner Membrane
- Cytoplasm S-Layer

Periplasmic Space – S-Layer

Production of Bacterial Ghosts

Identification and Selection of Immunogenic Proteins Clone ORF into Bacterial Ghost vector Bacterial Ghost Production QC of Bacterial Ghosts **Animal Studies**

Preparation

Transformation of host cell (E. coli K12 (NM522)) with

Plasmid containing gene of interest
Plasmid containing genes for
E-mediated lysis
Digestion of DNA (Staph nuclease)

Production

Culture at 28C to produce required level of bacteria Induce recombinant protein production with IPTG Induce E-lysis (and Staph nuclease)

Thermal induction (39-42C)
Harvest ghosts

Quality Control

Viability Analysis

Colony forming assay FACS analysis

Recombinant Protein Analysis

2D Gel analysis (western blot analysis) LC-MS/MS analysis (quantification)

Online monitoring of bacterial ghost production by flow cytometry

Future projects

Vaccines for other BWA.

Fill BG with antimicrobial agents.

Use BG as carriers of DNA vaccines.