

Time: 3 hour Maximum Marks: 60

1 Instructions

- 1. For a surface $\vec{r} = \vec{r}(u\cos v, u\sin v, f(u))$. Write down the first fundamental form of the surface. Show that the parametric curves are orthogonal.
- 2. Prove that necessary conditions for the curve u=u(t), v=v(t) on a surface $\vec{(r)}=\vec{(r)}(u,v)$ to be geodesic is that

$$U\frac{\partial T}{\partial \dot{v}} - V\frac{\partial T}{\partial \dot{u}} \tag{1}$$

where

$$\begin{split} U &= \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{u}} \Big) - \frac{\partial T}{\partial u} = \frac{1}{2T} \frac{dT}{dt} \frac{\partial T}{\partial \dot{u}} \\ V &= \frac{d}{dt} \Big(\frac{\partial T}{\partial \dot{v}} \Big) - \frac{\partial T}{\partial v} = \frac{1}{2T} \frac{dT}{dt} \frac{\partial T}{\partial \dot{v}} \end{split}$$

[10]

[06]

[8]

3. For the curve

$$x = a(3u - u^3),$$
 $y = 3au^2,$ $z = a(3u + u^3)$

show that

$$\tau = k = \frac{1}{3a(1+u^2)^2}$$

4. A curve is uniquely determined except as the position in space, when its curvature and torsion are given functions of its arc length. [8]

5. Show that there exists an infinite family of involutes for a gives curve. [8]

- 6. Give short answers of the following questions.
 - 1. Define Helicoids?
 - 2. Define spherical indicatrix?
 - 3. Define the intrinsic equation?
 - 4. Write the statement of existence theorem for space curve?
 - 5. The normal curvature k_n is equal to the what?
 - 6. Prove that $L = -n_1 \cdot r_1$ and $N = -n_2 \cdot r_2$?
 - 7. Define the geodesic?
 - 8. Write down the equation of tangent plane?
 - 9. If equation of the circle is $x^2 + y^2 = a^2$ then the parametric equations of circles are _____?

Student's name: End of exam