Validation of Automated Mobility Assessment using a Single 3D Sensor

Jiun-Yu (Joanne) Kao, Minh Nguyen, Luciano Nocera, Cyrus Shahabi, Antonio Ortega, Carolee J Winstein, Ibrahim Sorkhoh, Yu-chen Chung, Yi-an Chen, Helen Bacon University of Southern California

Introduction

- Motivation: Reliable human mobility assessment can be critical in many medical applications, where it can be an essential tool for diagnosis or monitoring.
- Increasing availability of sensing technologies, e.g. wearable sensors and 3D sensor, is now creating the opportunity to provide portable, continuous and unobtrusive human mobility assessment.
- We present a methodology to design an automated mobility assessment system based on motion data captured via costeffective 3D sensors.

Contributions

- We introduce a methodology to develop an automated mobility assessment system based on single 3D sensor and we verify its utility.
- We propose a novel graph-based feature extraction technique to reveal the dynamic coordination between parts of body, which achieves comparable results to data-driven features with many desirable properties.
- In a case study on PD subjects, we achieve a system that can successfully predict the medication states of subjects with the accuracy achieving 84% using a relatively small number of movements.

Feature Design

Gait Measurements

 step lengths, stride time, stride width of each 2-step segmentation (SAU)

Angular Statistics

■ For each SAU, extract 5 statistics, i.e., average, standard deviation, min, max, angular speed out of the angles at each joint.

Graph-based Features

- Can capture the coordination between two parts of body and dynamics
- Human skeletal structure is modeled as a fixed undirected graph G = (V, E) with the vertex set V corresponding to the 15 joints detected at each frame.
- The edge set *E* consists of the unweighted edges corresponding to the directly connected physical limbs of the human body.
- The difference in coordinates of all the joints between each pair of consecutive frames in one SAU can be regarded as a graph signal lying on the above defined skeletal graph *G*.

$$\begin{aligned} \boldsymbol{p}_{t,i} &= [x_i^{(t)} \, y_i^{(t)} \, z_i^{(t)}], \, i \in \{1, ..., 15\}, t \in \{1, ..., T\}, \, \boldsymbol{v}_{t,i} = \boldsymbol{p}_{t+1,i} - \boldsymbol{p}_{t,i} \\ \boldsymbol{f}_a^{(t)} &\in \mathcal{R}^{15} \text{ defined as } \boldsymbol{f}_a^{(t)}(i) = \boldsymbol{v}_{t,i}(a), \, a = \{x, y, z\} \end{aligned}$$

 Graph Fourier transform (GFT) can provide frequency analysis to the graph signals, which defined as

$$\mathcal{L} = I - D^{-1/2}AD^{-1/2}, \ \mathcal{L} = U\Lambda U^{T}, \ \mathbf{F}_{a}^{(t)} = U^{T}\mathbf{f}_{a}^{(t)}$$

- ▶ Vectorize $C^{(t)} = \left[\mathbf{F}_{x}^{(t)}, \mathbf{F}_{y}^{(t)}, \mathbf{F}_{z}^{(t)} \right]$ to a row vector and concatenate into a transform coefficient matrix $\mathbf{C} \in \mathcal{R}^{(T-1)\times 45}$
- Apply pyramid pooling scheme to capture the dynamics

System Design

We propose a general methodology and insights into key factors for deploying an automated mobility assessment system based on cost-effective 3D sensors.

Hardware and environment:

- Field of view of the 3D sensors
- Estimation errors may be larger under certain situations.

Task:

- Prefer activities that can fully exploit and examine the mobility of all parts of the body.
- The level of difficulty in performing activities will affect the system capability.
- Better to have each task performed repeatedly by each subject

Experiments and Evaluation

Experimental Methodology

14 subjects with Parkinson's disease

A (%)

- Perform standardized tests (e.g. walking) in front of Kinect sensor
- Skeletons are extracted in real time using Microsoft Kinect SDK
- Each action is performed 5 times when medication is in effect and another 5 times after medication wears off
- Goal: classify between ON/OFF medication states with captured motion data

Performance Evaluation

FEATURE

 Evaluate the system capability in terms of classification using different features, classifiers, tasks, schemes.

CLASSIFIER

P (%) R (%) F-M

GAIT ANGLE GRAPH ALL PCA	63.58 (88.71/39.53) 75.30 (92.22/53.58) 82.41 (95.68/69.63) 84.79 (93.95/71.23) 84.66 (95.32/71.99)	57.26 75.01 83.04 85.43 85.30	55.40 74.20 81.93 83.38 84.44	0.51 0.74 0.82 0.84 0.85	SVM RANDOM FOREST K-NN DECISION TREE NAIVE BAYES SKR (AP) SK (AP)	84.79 83.09 79.24 72.66 71.02 87.41 87.28	85.43 83.68 80.16 72.92 71.64 87.61 87.49	83.38 83.09 79.24 72.66 71.02 87.40 87.29	0.84 0.83 0.79 0.73 0.70 0.87 0.87
Task Count Tray Walk	A (%) 84.79 (93.95/71.23) 82.04 (94.44/53.63) 81.04 (96.05/48.99)	P (%) 85.43 82.19 81.63	R (%) 83.38 90.00 87.75	F-M 0.84 0.85 0.83	CLASSIFIER NAIVE BAYES DECISION TREE SVM RANDOM FOREST K-NN	A (%) 60.09 62.98 67.13 75.67 76.86	P (%) 60.50 63.00 67.10 75.90 77.10	R (%) 60.10 63.00 67.10 75.70 76.90	F-M 0.60 0.63 0.67 0.76 0.77

- Combination of three proposed features sets achieve the highest performance metrics.
- Graph-based feature are shown to be comparable to PCA-based feature, even with better interpretability, robustness to the noise and selection to the dataset, and comparability between different schemes.
- Subject-independent results are much worse because the effects of PD are highly person-dependent.
- Choosing appropriate type of captured actions can significantly improve the system capability.

Conclusion

- Propose a methodology to develop automated mobility assessment system with a single 3D sensor
- Propose graph-based feature, which achieves comparable performance while has better interpretability and robustness.
- Present an evaluation for a pilot study involving PD subjects, which supports the feasibility of using single 3D sensor to automatically assess the mobility and successfully classify the medication states.

Reference

■ J.Y. Kao et al., Validation of Automated Mobility Assessment using a Single 3D Sensor, submitted to ACM SIGKDD'16.

