Performance of the GW approximation at reproducing key features in exact Kohn-Sham potentials

•••

<u>Jack Wetherell</u>, Leopold Talirz, Matt Hodgson, Rex Godby

Theory

Density Functional Theory

We can imagine a fictitious system of non-interacting electrons that has the **same density** as the real system

Fictitious

$$V_{ks}[n] = V_{ext} + V_{H}[n] + V_{XC}[n]$$

Many-Body Perturbation Theory

How does a system respond when an **added electron** propagates through the system?

Many-Body Perturbation Theory

How does a system respond when an added electron propagates through the system?

iDEA

iDEA

The Exact Kohn-Sham Potential

Exchange Dominated: Asymmetric Double Well

GOWO@NON-INTERACTING

SI Correction

EXACT

Orbital Reordering: Starting Orbitals

$$\begin{aligned} \phi^{QP} &\approx \phi^0 \\ E_i^{QP} &\approx E_i^0 + <\phi_i^0 |\Sigma| \phi_i^0 > \end{aligned}$$

Orbital Reordering: Determining the step position

Orbital Reordering: What feature in the Self-Energy adds the step?

How does the step change in self-consistency?

One-electron

How good is the fully self-consistent density?

Key Points

- 1. Using iDEA we can compare the exact density and Vks with that produced by by GW
- 2. In exchange-dominated systems G0W0 can describe steps (correct position, incorrect height) and fails to completely remove SI
- 3. Fully self-consistent GW corrects the step height and removes almost all of the SI
- 4. Small amount of SI remaining due to one-electron correlation

Thanks for Listening!

- 1. Using iDEA we can compare the exact density and Vks with that produced by by GW
- 2. In exchange-dominated systems G0W0 can describe steps (correct position, incorrect height) and fails to completely remove SI
- 3. Fully self-consistent GW corrects the step height and removes almost all of the SI
- 4. Small amount of SI remaining due to one-electron correlation