Практичне заняття 15.03.2021, 22.03.2021

Машина натуральнозначних регістрів (МНР)

R_0	$R_{_1}$	R_2	 R_{n}	•••

Команди МНР бувають 4-ох типів:

1. Обнулення n -го регістру:

$$Z(n)$$
: ' $R_n = 0$.

2. Збільшення вмісту n -го регістру на 1:

$$S(n)$$
: $R_n = R_n + 1$.

3. Переадресація або копіювання вмісту регістру R_m у регістр R_n :

$$T(m,n)$$
: ' $R_n = R_m$ (у такому разі ' R_m не змінюється).

4. Умовний перехід: J(m,n,q):

наступну за списком кол... адресою переходу. Приклад 9. $f(x) = \frac{x}{2} = \begin{cases} x/2, \text{ якщо } x\text{- парне} \\ \text{невизначена, якщо } x\text{- непарнe} \end{cases}$: $f(5) - \text{невизначенe} \qquad f(6) = \left[\frac{6}{2}\right] = 3$ наступну за списком команду програми. Число q у команді J(m,n,q) назвемо

- 3) S(2)
- 4) S(1)
- 5) J(0,0,1).
- 6) T(1,0)

R_0	R_1	R_2
<mark>5</mark>	0	0 1 2 2 3 4 4 5 6 6 7 8
5	0	1
5	0	2
5	1 1	2
5	1	3
5	1	4
5	2	4
5	2	5
5	2	6
5	3	6
5	3	7
5	1 2 2 2 3 3 3 4	8
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4	8
5		

R_0	R_1	R_2
6	0	0
6	0	1
6	0	2
6	1	2
6	1	3
6	1	4
6	2	4
6	2	5
6 6 6 6 6 6 6 6 6 6 3	1 1 2 2 2 2 3 3	1 2 2 3 4 4 5 6 6 6
6	3	6
3	3	6

Приклад 10. $f(x) = x \cdot y$:

1) J(1,3,9)

2) J(0,2,6)

3) S(2)

4) S(4)

5) J(0,0,2)

6) Z(2)

7) S(3)

8) J(0,0,1)

9) T(4,0)

Ідея: х додається у разів.

 R_2 – в регістрі накопичується значення x,

 R_3 – лічильник кількості додавань x,

 R_4 – в регістрі накопичується добуток $x \cdot y$.

f	(3,	2)	=	6
J	ι – ,	-,		\circ

R_0	R_1	R_2	R_3	R_4
3	2	0	0	0
3	2	1	0	1
3	2	2	0	2
3	2	3	0	3
3	2	0	1	3
3	2	1	1	4
3	2	2	1	5
3	2	3	1	6
3 3 3 3 3 3 3 6	2	0	2	6
6	2	0	2	6

$$f(2,0)=0$$

R_0	R_1	R_2	R_3	R_4
2	0	0	0	0
O	0	0	0	0

Машина Тьюрінга

Кожна *команда* має вигляд п'ятірки :

$$q_i a_j q_k a_m d$$
 and $q_i a_j \rightarrow q_k a_m d$,

де $d = \{S, L, R\}$ — функція руху голівки читання-запису:

- S означає відсутність руху голівки читання-запису (стоп),
- L зсування на одну комірку вліво,
- R зсування на одну комірку вправо.

Машина Тьюрінга *правильно обчислює* часткову функцію f , якщо для будь-якого $a \in T^*$ виконується:

- 1) якщо f(a) визначена і f(a) = b, тоді машина Тьюрінга застосовна до початкової конфігурації $q_1 a$ та заключною конфігурацією є $q_0 b$,
- 2) якщо f(a) невизначена, то МТ незастосовна до початкової конфігурації $q_1 a$.

Функція f називається *правильно обчислюваною за Тьюрінгом*, якщо існує МТ, яка її правильно обчислює.

Приклад 1. Перевірити чи застосовна машина Тьюрінга до заданого слова P.

	q_1	q_2	q_3	q_4	$q_{\scriptscriptstyle 5}$	q_6	q_7
0	$q_2 0R$	q_60R	q_40R	q_50R	q_60S	$q_7 1R$	$q_0 1S$
1	q_30R	$q_1 1S$	q_31R	$q_4 1R$	q_51R	$q_6 1R$	

 $P = 1^{x}01^{y}, x \ge 1, y \ge 1$

Машина Тьюрінга застосовна до заданого слова P і результатом ϵ слово $P_0 = 1^{x-1}01^y01^2$.

 $P = 1^5 01^3$

 $P_0 = 1^4 01^3 01^2$

Приклад 2. Перевірити чи застосовна машина Тьюрінга до заданого слова P.

	q_1	q_2	q_3	q_4	q_5	q_6	q_7
0	$q_2 0R$	q_40L	q_60R	q_50L	$q_1 1R$	$q_7 0R$	$q_0 1S$
1	$q_1 1R$	q_31L	q_31R	q_4 1 L	q_51L	$q_6 1R$	$q_6 1R$

$$P = 1^x 0^2 1^y, x \ge 1, y \ge 1$$

Машина Тьюрінга не застосовна до заданого слова P.

не застосовна

 $P = 10^2 1^4$

не застосовна

Приклад 3. Побудувати МТ, яка обчислює функцію $f\left(x,y\right) = x \div y = \begin{cases} x-y, \, x \geq y \\ 0, \quad x < y \end{cases}$

	$q_{_1}$	$q_{_2}$	$q_{_3}$	$q_{\scriptscriptstyle 4}$	$q_{\scriptscriptstyle 5}$	$q_{_6}$	q_{7}
0	$q_2 0R$	q_30L	$q_0 1S$	q_50L	q_60R	$q_7 1R$	$q_0 0S$
1	$q_1 1R$	$q_2 1R$	q_40L	q_4 1 L	q_51L	$q_1 0R$	q_70R

Тестові приклади:

1)
$$x = 3, y = 1, f(3,1) = 2$$

Число x=3 на стрічці подається як 1111, а число y=1 подається як 11. Результат f(3,1)=2 подається у вигляді 111.

2)
$$x = 0, y = 4, f(0,4) = 0$$

Число x=0 на стрічці подається як 1, а число y=4 подається як 11111. Результат f(0,4)=0 подається у вигляді 1.

