Фамилия, Имя:

Группа:

Задание	1	2	3	4	5	6	7	8	Сумма	Оценка
Bec	1,2	1,4	1,4	1,4	1,4	1	1,4	1,2	10,4	
Балл										

- 1. а) Дайте определение характеристики поля. Привести примеры: поля конечной положительной характеристики и поля нулевой характеристики.
 - б) Что такое размерность пространства?
- 2. Является ли группа H комплексных матриц с нулевой суммой элементов в первой строке нормальной как подгруппа в группе $\mathfrak{gl}_n(\mathbb{C})$ всех квадратных $n \times n$ матриц (относительно операции сложения)? Если да, найдите факторгруппу $\mathfrak{gl}_n(\mathbb{C})/H$.
- 3. а) Является ли полем факторкольцо $F = \mathbb{F}_5[x]/\langle x^3 + 2x^2 + 2x + 3 \rangle$? 6) Через \bar{f} будем обозначать смежный класс $f + \langle x^3 + 2x^2 + 2x + 3 \rangle \in F$. Представить в виде \bar{f} , где $\deg f < 3$ выражение

$$\frac{x^3 + x^2 + 2x + 1}{2x^2 + 2x + 1} + \left(4x^3 + x^2 + 4x + 2\right)\left(3x^2\right) - \frac{4x^3 + 2x^2}{x}.$$

- 4. Найти размерности суммы и пересечения подпространств V_1,V_2 в \mathbb{R}^4 , где $V_1=\langle a_1,a_2,a_3\rangle$, $a_1=(-5,4,-5,-3)^T,a_2=(24,0,8,-8)^T,a_3=(-5,4,-5,-3)^T,$ а $V_2=\langle b_1,b_2,b_3\rangle$, $b_1=(-8,-2,-8,-2)^T,b_2=(30,12,14,-10)^T,b_3=(28,16,-4,-28)^T$. Найти базис пересечения подпространств.
- 5. Привести квадратичную форму $Q(x) = 9x_1^2 + 1x_2^2 + 16x_3^2 + 38x_1x_2 14x_1x_3 + 26x_2x_3$ к нормальному виду, определить ее ранг и индексы инерции.
- 6. Исследовать квадратичную форму на положительную или отрицательную определенность в зависимости от параметра: $Q(x) = (\lambda 31)x_1^2 + (\lambda 31)x_2^20x_3^2 + 26x_1x_2 60x_1x_3 + 4x_2x_3$.
- 7. Рассмотрим пространство непрерывных функций над \mathbb{R} . Являются ли линейно независимыми следующие функции: $1, cosx, sin(x+\pi/6)$? Ответ обосновать. Образует ли базис в их линейной оболочке следующий набор функций: $sinx, sinx + 1, cos(x+\pi/4)$? Ответ обосновать. В случае положительного ответа на оба вопроса найти матрицу перехода от первого упорядоченного набора ко второму.
- 8. Сформулируйте и докажите критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.