M 361K Homework 3

Ishan Shah

October 23, 2022

5.1

3. Let a < b < c. Suppose that f is continuous on [a,b], that g is continuous on [b,c], and that f(b) = g(b). Define h on [a,c] by h(x) := f(x) for $x \in [a,b]$ and h(x) := g(x) for $x \in [b,c]$. Prove that h is continuous on [a,c].

Proof. We have that h is continuous from $[a,b) \cup (b,c]$ from the definition of h and the continuity of f and g. We now need to show that h is continuous at b. Now, $\lim_{x\to b^-} = \lim_{x\to b^+} = f(b)$ and $\lim_{x\to b^+} = \lim_{x\to b^+} = g(b)$.

Because f(b) = g(b), $\lim_{x\to b^-} h(x) = \lim_{x\to b^+} h(x) = h(b)$. Thus, $\lim_{x\to b} h(x) = h(b)$. Therefore, since h is continuous from $[a,b)\cup[b]\cup(b,c]$, h is continuous on [a,c].

7. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at c and let f(c) > 0. Show that there exists a neighborhood $V_{\delta}(c)$ of c such that if $x \in V_{\delta}(c)$, then f(x) > 0.

Proof. Let $\epsilon = \frac{f(c)}{2} > 0$. Then, let there be some $\delta > 0$ such that there exists some $V_{\delta}(c) = (c - \delta, c + \delta)$. Then, let $x \in V_{\delta}(c) = (c - \delta, c + \delta)$. Then,

$$x \in (c - \delta, c + \delta) \implies |f(x) - f(c)| < \epsilon$$

$$\implies -\epsilon < f(x) - f(c) < \epsilon$$

$$\implies f(c) - \frac{f(c)}{2} < f(x)$$

$$\implies f(x) > 0$$

Thus, f(x) > 0 for all $x \in V_{\delta}(c)$.

12. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that f(r) = 0 for every rational number r. Prove that f(x) = 0 for all $x \in \mathbb{R}$.

Proof. Since \mathbb{Q} is dense in \mathbb{R} , we can find some sequence of rational numbers (x_n) that converges to some x in \mathbb{R} . We know that f is continuous at x, so we can say that $(f(x_n))$ converges to f(x) and $f(x_n) = 0 \, \forall \, n \in \mathbb{N}$ because $f(r) = 0 \, \forall \, r \in \mathbb{Q}$. Thus, $f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n) = 0$.

5.2

2. Show that if $f: A \to \mathbb{R}$ is continuous on $A \subseteq \mathbb{R}$ and if $n \in \mathbb{N}$, then the function f^n defined by $f^n(x) = (f(x))^n$, for $x \in A$, is continuous on A.

Proof. We can do a proof by induction where the base case is n = 1. Then, $f^1(x) = f(x)$ which is trivially continuous on A by our original assumption.

Our inductive case is that $f^{n+1} = f^n f$ which is true by Theorem 5.2.1 which states that the product of two continuous functions is continuous. Thus, f^{n+1} is continuous on A.

3. Give an example of functions f and g that are both discontinuous at a point c in \mathbb{R} such that the sum f + g is continuous at c and the product $f \cdot g$ is continuous at c.

Proof. Let f(x) and g(x) be defined as follows:

$$f(x) = \begin{cases} 1 & \text{if } x = c \\ 0 & \text{if } x \neq c \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{if } x = c \\ 1 & \text{if } x \neq c \end{cases}$$

Then, f+g is continuous at c because f(c)+g(c)=1 and $f\cdot g$ is continuous at c because $f(c)\cdot g(c)=0$ for all values of x.

7. Give an example of a function $f:[0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1] but such that |f| is continuous on [0,1].

Proof. The Density Theorem tells us that for every pair of rational numbers, there exists an irrational number between them, and vice versa. Thus, let f be defined as follows:

$$f(x) = \begin{cases} -1 & \text{if } x = \frac{p}{q} \text{ for some } p, q \in \mathbb{N} \\ 1 & \text{if } x \neq \frac{p}{q} \text{ for all } p, q \in \mathbb{N} \end{cases}$$

Then, |f| is 1 everywhere. Thus, f is discontinuous at every point of [0,1] but |f| is continuous on [0,1].

8. Let f, g be continuous from \mathbb{R} to \mathbb{R} , and suppose that f(r) = g(r) for all rational numbers r. Is it true that f(x) = g(x) for all $x \in \mathbb{R}$?

Proof. The Density Theorem states that there is a irrational number between every pair of rational numbers. Because f(r) = g(r) for the rationals, f(s) = g(s) for all irrational numbers s in order to maintain continuity for f and g using the Density Theorem. Thus, f(x) = g(x) for all $x \in \mathbb{R}$ is true.

6.1

- **3.** Let $I \subseteq \mathbb{R}$ be an interval, let $c \in I$, and let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ be functions that are differentiable at c. Prove the following:
 - (a) If $\alpha \in \mathbb{R}$, then the function αf is differentiable at c.

Proof. We can use the definition of the derivative to show this.

$$(\alpha f)'(c) = \lim_{x \to c} \frac{\alpha f(x) - \alpha f(c)}{x - c}$$
$$= \alpha \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \alpha f'(c)$$

(b) The function f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c).

Proof.

$$(f+g)'(c) = \lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x) + g(x) - f(c) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$

$$= f'(c) + g'(c)$$

4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := x^2$ for x rational, f(x) := 0 for x irrational. Show that f is differentiable at x = 0, and find f'(0).

Proof. Let $g(x) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}$ so that g(x) := x for x rational and g(x) := 0 for x irrational. To show that f is differentiable at 0 we have to show that $\lim_{x \to 0} g(x) = f'(0)$ exists.

We know that $-|x| \le g(x) \le |x|$ for all $x \in \mathbb{R}$ and that $\lim_{x\to 0} -|x| = -0$ and $\lim_{x\to 0} |x| = 0$. Thus, $\lim_{x\to 0} g(x) = 0$ by Theorem 3.2.7 (Squeeze Theorem) so f is differentiable at x = 0 and f'(0) = 0.

7. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at c and that f(c) = 0. Show that g(x) := |f(x)| is differentiable at c if and only if f'(c) = 0.

Proof. Suppose that g(x) is differentiable at c and we want to show that f'(c) = 0.

$$g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{|f(x)| - |f(c)|}{x - c}$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \text{ by the definition of } g$$

Suppose that f'(c) = 0 and we want to show that g(x) is differentiable at c.

9. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is an even function (that is, f(-x) = f(x) for all $x \in \mathbb{R}$) and has a derivative at every point, then the derivative f' is an odd function (that is, f'(-x) = -f'(x) for all $x \in \mathbb{R}$). Also prove that if $g: \mathbb{R} \to \mathbb{R}$ is a differentiable odd function, then g' is an even function.

6.2

- **5.** Let a > b > 0 and let $n \in \mathbb{N}$ satisfy $n \ge 2$. Prove that $a^{1/n} b^{1/n} < (a b)^{1/n}$. Hint: Show that $f(x) := x^{1/n} (x 1)^{1/n}$ is decreasing for $x \ge 1$, and evaluate f at 1 and a/b.
- **6.** Use the Mean Value Theorem to prove that $|\sin x \sin y| \le |x y|$ for all x, y in \mathbb{R} .
- **8.** Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable in (a,b). Show that if $\lim_{x\to a} f'(x) = A$, then f'(a) exists and equals A. Hint: Use the definition of f'(a) and the Mean Value Theorem.
- **10.** Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) := x + 2x^2 \sin(1/x)$ for $x \neq 0$ and g(0) := 0. Show that g'(0) = 1, but in every neighborhood of 0 the derivative g'(x) takes on both positive and negative values. Thus g is not monotonic in any neighborhood of 0.
- **13.** Let I be an interval and let $f: I \to \mathbb{R}$ be differentiable on I. Show that if f' is positive on I, then f is strictly increasing on I.