\$101D01/\$101D02 \$201D01/\$201D02

16-Pin DIP Type SSR for Low Power Control

■ Features

- 1. Compact
 - (16-pin dual-in-line package type)
- 2. RMS ON-state current I_T: 1.2Arms
- 3. Built-in zero-cross circuit

(S101D02, S201D02)

- 4. Recognised by UL, file No. E94758
- 5. Approved by CSA, No. LR63705

■ Applications

- 1. Fan heaters
- 2. Microwave ovens
- 3. Refrigerators
- 4. Air conditioners

■ Model Line-ups

	For 100V lines	For 200V lines
For phase control No built-in zero- cross circuit	\$101D01	S201D01
Built-in zero- cross circuit	S101D02	S201D02

■ Outline Dimensions

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Parameter		C11	Rating		TT14
		Symbol	S101D01/S101D02	S201D01/S201D02	Unit
Innut	Forward current	I_F	50		mA
Input	Reverse voltage	V _R	6		V
	RMS ON-state current	I_T	1.2		A rms
Output	*1Peak one cycle surge current	I surge	12		A
	Repetitive peak OFF-state voltage	V DRM	400	600	V
*2 Isolation voltage		V iso	4 000		V rms
Operating temperature		T opr	- 25 to + 85		°C
Storage temperature		T stg	- 40 to + 125		°C
*3Soldering temperature		T sol	260		°C

^{*1 50}Hz, sine wave

"In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."

^{*2 40} to 60% RH, AC 60Hz for 1 minute

^{*3} For 10 seconds

■ Electrical Characteristics

 $(Ta = 25^{\circ}C)$

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage		VF	$I_F = 20mA$	-	1.2	1.4	V
прис	Reverse current		I_R	$V_R = 3V$	-	-	10-5	A
Output	peak OFF-state	S101D01/S101D02	I DRM	$V_{DRM} = 400V$	-	-	10-4	A
		S201D01 / S201D02		$V_{DRM} = 600V$	-	-	10-4	A
	ON-state voltage		V _T	$I_T = 1.2A$	-	-	1.7	V
	Holding current		I_{H}	$V_D = 6V$	-	-	25	mA
	Zero-cross voltage	S101D02/S201D02	V _{ox}	Resistance load, I _F = 15mA	-	-	35	V
	rise of OFF-state	S101D01/S101D02	⊣ dV/dt	$V_{DRM} = 1/\sqrt{2} \cdot 400V$	200	-	-	V/μ s
		S201D01 / S201D02		$V_{DRM} = 1/\sqrt{2} \cdot 600V$	100	-	-	V/μ s
Transfer characteristics	Minimum trigger current		I_{FT}	$V_D = 6V$, $R_L = 100\Omega$	-	-	10	mA
	Isolation resistance		R _{ISO}	DC500V, 40 to 60% RH	5 x 10 ¹⁰	1011	-	Ω
	Turn-on time		t on	$V_D = 6V$, $R_L = 100\Omega$, $I_F = 20mA$	-	-	100	μs

Fig. 1 RMS ON-state Current vs.
Ambient Temperature

Fig. 3 Forward Current vs. Forward Voltage

Fig. 2 Forward Current vs.
Ambient Temperature

Fig. 4 Minimum Trigger Current vs.
Ambient Temperature

Fig. 5 Minimum Trigger Current vs.
Ambient Temperature
(S101D02, S201D02)

Fig. 7 ON-state Voltage vs.
Ambient Temperature

Fig. 9 ON-state Current vs. ON-state Voltage

Fig. 6 Minimum Trigger Current vs. Ambient Temperature

Fig. 8 Relative Holding Current vs.
Ambient Temperature

Fig.10 Turn-on Time vs. Forward Current (\$101D01)

Fig.11 Turn-on Time vs. Forward Current (S101D02, S201D02)

Fig.12 Turn-on Time vs. Forward Current (S201D01)

■ Basic Operation Circuit

- Notes 1) If large amount of surge is loaded onto V $_{CC}$ or the driver circuit, add a diode D $_{1}$ between terminals 2 and 3 to prevent reverse bias from being applied to the infrared LED.
 - 2) Be sure to install a surge absorption circuit. An appropriate circuit must be chosen according to the load (for CR, choose its constant). This must be carefully done especially for an inductive load.
 - 3) For phase control, adjust such that the load current immediately after the input signal is applied will be

(Precautions for Use)

- 1) All pins must be soldered since they are also used as heat sinks (heat radiation fins). In designing, take into the heat radiation from the mounted SSR.
- 2) For higher radiation efficiency that allows wider thermal margin, secure a wider round pattern for Pin 13 when designing mounting pattern. The rounded part of Pin 15 (gate) must be as small as possible. Pulling the gate pattern around increases the change of being affected by external noise.

 3) As for other general cautions, refer to the chapter "Precautions for Use"