CMPE 411 Computer Architecture

Lecture 7

Multiplier's Design

September 21, 2017

www.csee.umbc.edu/~younis/CMPE411/CMPE411.htm

Lecture's Overview

Previous Lecture

→ Constructing an Arithmetic Logic Unit

(Different blocks and gluing them together)

→ Scaling bit operations to word sizes (Ripple carry adder, MIPS ALU)

→ Optimization for carry handling (Measuring performance, Carry lookahead)

☐ This Lecture

- → Algorithms for multiplying unsigned numbers
- → Booth's algorithm for signed number multiplication
- → Multiple hardware design for integer multiplier

Multiply Unsigned

☐ Paper and pencil example (unsigned):

```
Multiplicand 1000
Multiplier × 1001
1000
0000
0000
1000
Product 01001000
```

- \square m bits x n bits = m+n bit product (<u>Overflow ?</u>)
- ☐ Binary makes it easy:
 - \rightarrow 0 => place 0 (0 x multiplicand)
 - → 1 => place a copy (1 x multiplicand)
- ☐ 4 versions of multiply hardware & algorithm:
 - → successive refinement

Unsigned Combinational Multiplier

- \square Stage *i* accumulates A * 2^{*i*} if B_{*i*} == 1
- ☐ At each stage shift A left (x 2)
- ☐ Use next bit of B to determine whether to add in shifted multiplicand
- ☐ Accumulate 2n bit partial product at each stage

Unsigned shift-add multiplier (version 1)

- □ 64-bit Multiplicand register, 64-bit ALU, 64-bit Product register, and 32-bit Multiplier register
- The 32-bit value of the Multiplicand starts in the right half of the 64-bit register
- The Multiplier is shifted in the opposite direction of the Multiplicand shift
- The product register starts with an initial value of zero
- Control decides when to shift the Multiplicand and the Multiplier registers and when to write new value into the product register

Multiply Algorithm Version 1

Multiplying two *n*-bit numbers needs a maximum of 2n² addition operations mostly for adding zeros

> 1a. Add multiplicand to product and place the result in Product register

- → If the least significant bit of the multiplier is 1, add the multiplicand to the product
- → If not, go to the next bit
- shift the multiplicand left and the multiplier right
- → Repeat for 32 times

An Example

Follow the multiplication algorithm (version 1) to get the product of 2×3 using only 4-bit binary representation

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial value	0011	0000 0010	0000 0000
	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
1	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
2	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
	1a: $0 \Rightarrow$ no operation	0000	0000 1000	0000 0110
3	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1a: $0 \Rightarrow$ no operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Multiply Hardware Version 2

- ☐ Since half of the 64-bit Multiplicand are zeros, a 64-bit ALU looks wasteful in the first version of multiplier
- ☐ Uses only 32-bit Multiplicand register, 32-bit ALU, 64-bit Product register, and 32-bit Multiplier register
- ☐ Since the least significant bits of the product would not change, the product could be shifted to the right instead of shifting the multiplicand
- ☐ The most significant 32-bits would be used by the ALU as a result register

Multiply Algorithm Version 2

Multiplicand stays still and product moves right

An Example

Follow the multiplication algorithm (version 2) to get the product of 2×3 using only 4-bit binary representation

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial value	0011	0010	0000 0000
	1a: 1 ⇒ Prod = Prod + Mcand	0011	0010	0010 0000
1	2: Shift right Product	0011	0010	0001 0000
	3: Shift right Multiplier	0001	0010	0001 0000
	1a: 1 ⇒ Prod = Prod + Mcand	0001	0010	0011 0000
2	2: Shift right Product	0001	0010	0001 1000
	3: Shift right Multiplier	0000	0010	0001 1000
	1a: 0 ⇒ no operation	0000	0010	0001 1000
3	2: Shift right Product	0000	0010	0000 1100
	3: Shift right Multiplier	0000	0010	0000 1100
	1a: 0 ⇒ no operation	0000	0010	0000 1100
4	2: Shift right Product	0000	0010	0000 0110
	3: Shift right Multiplier	0000	0010	0000 0110

Multiply Hardware Version 3

- ☐ Product register wastes space that exactly matches size of multiplier
 - ⇒ combine Multiplier register and Product register
- □ Uses only 32-bit Multiplicand register, 32-bit ALU, 64-bit Product register, and
 0-bit Multiplier register
- ☐ Shifting the product register would remove the least significant bit which is already used in the multiplication
- ☐ The most significant 32-bits are still being used by ALU as a result register

Multiply Algorithm Version 3

1a. Add multipl the product at the left half of

- → 2 steps per bit because Multiplier & Product combined
- → MIPS registers Hi and Lo are left and right half of Product

Product0 = 1 1. Test Product0 = 0 Product0
licand to the left half of
f the Product register
2. Shift the Product register right 1 bit
No: < 32 repetitions
32nd repetition?
Done

Start

Iteration	Step	Multiplicand	Product
0	Initial value	0010	0000 0011
	1a: 1 \Rightarrow Prod = Prod + Mcand	0010	0010 0011
1	2: Shift right Product	0010	0001 0001
	1a: 1 ⇒ Prod = Prod + Mcand	0010	0011 0001
2	2: Shift right Product	0010	0001 1000
_	10.10 7 110 0 0 0 1 0 1 1 1 1 1		0001 1000
3	2: Shift right Product	0010	0000 1100
	1a: 0 ⇒ no operation	0010	0000 1100
4	2: Shift right Product	0010	0000 0110

The product of 2×3

Multiplying Signed Number

- Easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps)
- ② Apply definition of 2's complement ⇒ need to sign-extend partial products

Example: multiply 1001 (-7) by 0010 (+2)

Iteration	Step	Multiplicand	Product
0	Initial value	1001	0000 0010
	1a: 0 ⇒ no operation	1001	0000 0010
1	2: Shift right Product	1001	0000 0001
	1a: 1 ⇒ Prod = Prod + Mcand	1001	1001 0001
2	2: Shift right Product	1001	1100 1000
	1a: 0 ⇒ no operation	1001	1100 1000
3	2: Shift right Product	1001	11 10 0100
_	1a: 0 ⇒ no operation	1001	1110 0100
4	2: Shift right Product	1001	111 1 0010

Does it work for all cases?

Multiply 0111 (+7) by 1110 (-2)

Iteration	Step	Multiplicand	Product
0	Initial value	0111	0000 1110
1	1a: 0 ⇒ no operation	0111	0000 1110
	2: Shift right Product	0111	0000 0111
2	1a: 1 ⇒ Prod = Prod + Mcand	0111	0111 0111
	2: Shift right Product	0111	0011 1011
3	1a: 0 ⇒ Prod = Prod + Mcand	0111	1010 1011
	2: Shift right Product	0111	1 101 0101
4	1a: 0 ⇒ Prod = Prod + Mcand	0111	0100 0101
	2: Shift right Product	0111	0010 0010

Iteration	Step	Multiplicand	Product
0	Initial value	0111	1111 1110
1	1a: 0 ⇒ no operation	0111	1111 1110
	2: Shift right Product	0111	1 111 0111
2	1a: 1 ⇒ Prod = Prod + Mcand	0111	0110 0111
	2: Shift right Product	0111	0011 0011
3	1a: 0 ⇒ Prod = Prod + Mcand	0111	1010 0011
	2: Shift right Product	0111	1 101 0001
4	1a: 0 ⇒ Prod = Prod + Mcand	0111	0110 0001
	2: Shift right Product	0111	0011 0000

Multiply 1111 (-7) by 1110 (-2)

Iteration	Step	Multiplicand	Product
0	Initial value	1001	0000 1110
1	1a: 0 ⇒ no operation	1001	0000 1110
	2: Shift right Product	1001	0000 0111
2	1a: 1 ⇒ Prod = Prod + Mcand	1001	1001 0111
	2: Shift right Product	1001	1 100 1011
3	1a: 0 ⇒ Prod = Prod + Mcand	1001	0101 0011
	2: Shift right Product	1001	0010 1001
4	1a: 0 ⇒ Prod = Prod + Mcand	1001	1011 0100
	2: Shift right Product	1001	11 01 0010

Iteration	Step	Multiplicand	Product
0	Initial value	1001	1111 1110
1	1a: 0 ⇒ no operation	1001	1111 1110
	2: Shift right Product	1001	1 111 0111
2	1a: 1 ⇒ Prod = Prod + Mcand	1001	1000 0111
	2: Shift right Product	1001	1 100 0011
3	1a: 0 ⇒ Prod = Prod + Mcand	1001	0101 0011
	2: Shift right Product	1001	0010 1001
4	1a: 0 ⇒ Prod = Prod + Mcand	1001	1011 0100
	2: Shift right Product	1001	1101 0010

Multiplying Signed Number

- Easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps)
- ② Apply definition of 2's complement ⇒ need to sign-extend partial products
 Example: multiply 1001 (-7) by 0010 (+2)

Itoration	Step	Multiplicand	Product
0	Initial value	1001	0000 0010
_	1a: 0 → no operation	1001	0000 0010
1	2: Shift right Product	1001	0000 0001
D-	D 10T:		
	es NOT it work for	or all cas	es: 00
	1a: 0 ⇒ no eperation	1001	1טטר טטרר
3	2: Shift right Product	1001	1110 0100
	1a: 0 ⇒ no operation	1001	1110 0100
4	2: Shift right Product	1001	1111 0016

Booth's Algorithm is elegant way to multiply signed numbers using same hardware as before and save cycles

Motivation for Booth's Algorithm

 \Box Example 2 x 6 = 0010 x 0110:

	0010	
Χ	0110	_
+	0000	shift (0 in multiplier)
+	0010	add (1 in multiplier)
+	0010	add (1 in multiplier)
+	0000	shift (0 in multiplier)
	00001100	_

□ ALU with add or subtract gets same result in more than one way:

$$6 = -2 + 8$$

$$0110 = -00010 + 01000 = 11110 + 01000$$

☐ Booth observed that there are multiple ways to compute a product with the ability to add and subtract

	0010	
X	0110	
+	0000	shift (0 in multiplier)
_	0010	sub (first 1 in multiplication)
+	0000	shift (mid string of 1s)
+	0010	add (prior step had last 1)
	00001100	-

Intuition behind Booth's Algorithm

■ Which of the following decimal multiplications is easier?

and

$$789634 \times 9999$$

☐ How about doing the second multiplication as follows:

$$789634 \times 9999 = 789634 \times (10000-1)$$

- ☐ Let's consider binary, which is of the following involves fewer additions
 - \rightarrow 1101 \times 0100 ==> needs 1 8-bit numbers addition = 8 1-bit addition
 - \rightarrow 1101 \times 0111 ==> needs 3 8-bit numbers addition = 24 1-bit addition
 - \rightarrow 1101 × 0111 = 1101 × (1000-0001)

==> needs 1 8-bit addition and 1 8-bit subtraction

- ☐ Booth's observed and proved that this can be partially applied to multiplication of long binary numbers
- □ Advantage:
 - → Fast multiplication (for consecutive 0's or 1's in the multiplier).
 - → Handling of signed multiplication as well
- ☐ For more about the theoretical basis of Booth Algorithm, you may check: http://fourier.eng.hmc.edu/e85_old/lectures/arithmetic_html/node10.html

Booth's Algorithm

Current bit	Bit to the right	Explanation	Example
1	0	Beginning of a run of 1s	00001111000
1	1	Middle of a run of 1s	00001111000
0	1	End of a run of 1s	00001111000
0	0	Middle of a run of 0s	00001111000

- Depending on the current and previous bits, do one of the following
 - 00: Middle of a string of $0s \Rightarrow no$ arithmetic operation
 - 01: End of a string of 1s \Rightarrow add the multiplicand to the left half of the product
 - 10: Beginning of a string of 1s ⇒ subtract multiplicand from left half of the product
 - 11: Middle of a string of $1s \Rightarrow no$ arithmetic operation
- 2 Shift the Product register to the right for 1 bit

Booth's algorithm works for both signed and unsigned numbers

Example (unsigned numbers)

Compare the multiplication algorithm (version 3) and Booth's algorithm applied to getting the product of 2×6 using only 4-bit binary representation

Multiplicand	Original Algorithm		Booth's Algorithm	
	Step	Product	Step	Product
0010	Initial value	0000 0110	Initial value	0000 0110 0
0010	1a: 0 ⇒ no operation	0000 0110	1a: 00 ⇒ no operation	0000 0110 0
0010	2: Shift right Product	0000 0011	2: Shift right Product	0000 0011 0
0010	1a: 1 ⇒ Prod = Prod + Mcand	0010 0011	1a: 10 ⇒ Prod = Prod - Mcand	1110 0011 0
0010	2: Shift right Product	0001 0001	2: Shift right Product	1111 0001 1
0010	1a: 1 ⇒ Prod = Prod + Mcand	0011 0001	1a: 11 ⇒ no operation	1111 0001 1
0010	2: Shift right Product	0001 1000	2: Shift right Product	1111 1000 1
0010	1a: 0 ⇒ no operation	0001 1000	1a: 01 ⇒ Prod = Prod + Mcand	0001 1000 1
0010	2: Shift right Product	0000 1100	2: Shift right Product	0000 1100 0

- ☐ Booth's algorithm uses both the current bit and the previous bit to determine its course of action
- ☐ Extend the sign when shifting to preserve the sign (*arithmetic right shift*)

Example (signed numbers)

Follow Booth's algorithm to get the product of 2×-3 using only 4-bit binary representation

Iteration	Step	Multiplicand	Product
0	Initial value	0010	0000 1101 0
_	1a: 10 ⇒ Prod = Prod - Mcand	0010	1110 1101 0
1	2: Shift right Product	0010	1111 0110 1
	1a: 01 ⇒ Prod = Prod + Mcand	0010	0001 0110 1
2	2: Shift right Product	0010	0000 1011 0
	1a: 10 ⇒ Prod = Prod - Mcand	0010	1110 1011 0
3	2: Shift right Product	0010	1111 0101 1
	1a: 11 ⇒ no operation	0010	1111 0101 1
4	2: Shift right Product	0010	1111 1010 1

Fast Multiplication

- Whether to add the multiplicand or not is known by looking at the individual multiplier's bits
- ☐ To multiply fast, one can provide a 32-bit adder for every bit in the multiplier
- ☐ The multiplier bit is ANDed with the multiplicand (each of its bits)

Why is this faster?

- No data storage required (no need for clock)
- Clock based operation slows down the multiplication since we are effectively adding once per clock cycle.

Conclusion

☐ Summary

- → Algorithms for multiplying unsigned numbers (Evolution of optimization, complexity)
- → Booth's algorithm for signed number multiplication
 (Different approach to multiplying, 2-bit based operation selection)
- → Multiple hardware design for integer multiplier (Hardware cost-driven optimization, fast multiplication)

☐ Next Lecture

- → Algorithms for dividing unsigned numbers
- → Handling of sign while performing a division
- → Hardware design for integer division

Read section 3.3 in 5th Ed., or section 3.3 in 4th Ed. of the textbook