

Introduction Motivation Time Series Modeling Methodology Data Methodology Results Conclusions References occoods

Release Planning Objectives

Two primary objectives of software release planning are:

Improving functionality
Maintaining quality

Both of these objectives are constrained by limits on development time and cost.

Release Plan Optimization

• A release plan is formed by selecting features and improvements to work on

• Release plans can be compared by the expected revenue they will generate

• This optimization problem is posed as The Next Release Problem (NRP)

Autoregressive Models

- A basic autoregressive (AR) model is a linear combination of previous values
- A white noise term accounts for stochastic fluctuation
- An AR(p) model for predicting a value X at time t is

$$X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t \tag{1}$$

where $\phi_1,\phi_2,...,\phi_p$ are the p parameters, c is a constant, and ϵ_t is the white noise term

Autoregressive Models (cont'd)

- Extending the AR model to be multivariate results in a Vector AR (VAR) model
- This model can support time series for defect count, improvements, and new features

Endogeneity and Exogeneity

Endogeneity

- Under a VAR model, the behavior of each time series is explained by both its own past values and the past values of the other time series
- This makes the variables endogenous

Exogeneity

- An alternative to this is when a variable is not explained at all by a model
- Rather, the variable is used to explain other time series
- This type of explanatory variable is called exogenous

Endogeneity and Exogeneity (cont'd)

- The desired model does not need to explain features and improvements
- Instead, these are used to explain defects
- Planned features and improvements can be made exogenous
- By also considering exogenous variables, a VAR model would become a VARX model

Specification & Estimation

- A VARX(p) model is specified by choosing an order p
- Model order is the number of autoregressive terms
- This affects the number of parameters included in the model
- To avoid having too many parameters relative to the number of observations, we use

$$p_{max} = \left| \frac{n}{mK_{min}} \right| \tag{2}$$

- n is the number of time samples
- *m* is the number of time series
- \bullet K_{min} is the minimum acceptable ratio of observations to parameters
- Models parameters are estimated for orders $1, 2, ..., p_{max}$

Diagnostic Checking

- Diagnostics can tell if a model should be rejected
- First diagnostic is for stability
 - AR model can have infinite impulse response
 - To be stable, the roots of the characteristic equation must lie outside the unit circle [3, p. 56]
 - Equivalently, the inverse of the roots must lie inside the unit circle
- Next diagnostic is residual autocorrelation
 - Model residuals should be indistinguishable from white noise
 - White noise is uncorrelated (no autocorrelation)
 - Ljung-Box test forms a statistic from the autocorrelation of the residuals

Model Selection

- Model selection criteria are used to compare models according to their fit
- Penalties for residual error and the number of parameters
- Some common selection criteria
 - Akaike Information Criterion (AIC)
 - AIC with correction (AICc)
 - Bayesian Information Criterion (BIC)
- Parameter penalty is more severe for BIC and AICC than for AIC [2]
- AIC will be used, since the number of parameters is already limited in the specification step

(ロ) (回) (国) (国) (目) (目) (2000)

Constitution Defende

Data source

- Data for time series modeling will be derived from project historical data
- This historical data can be found in the project issue tracking system (ITS)
- \bullet The issues in an ITS can be bugs, features, improvements, etc.
- The MongoDB software project was selected to try out the modeling methodology
 - The project has been actively developed since 2009
 - Data from versions 0.9.3 through 3.0.0-rc6 are used
 - This dataset contained 7042 issues

Model Specification, Estimation, and Diagnostic Checking

• Using $K_{min}=$ 4, maximum model order is obtained by

$$p_{max} = \left| \frac{78}{(3)(4)} \right| = \lfloor 6.5 \rfloor = 6 \tag{3}$$

- Models of order 1 through $p_{max} = 6$ were estimated for diagnostic checking
- All models were found to be stable
- Several model orders were found to be inadequate by the Ljung-Box test:
 - ullet Orders 1-2 for period W_{2-79}
 - Order 5 for period $W_{158-235}$

Model Selection

- Models found to be stable and not inadequate were considered for selection
- A different model was selected for each windowed period
- Lower AIC score is better

	AIC score					
Model order	W_{2-79}	W_{80-157}	$W_{158-235}$			
1	N/A	429.8	477.9			
2	N/A	439.3	482.4			
3	400.8	440.9	489.7			
4	400.3	450.2	499.9			
5	404.0	456.7	N/A			
6	414.9	461.7	508.8			

Table: Results of model selection, using AIC score to compare models of different order.

Introduction Motivation Time Series Modeling Methodology Data Methodology Results Conclusions References occools occoo

Figure : Actual values (solid) vs. one-step predictions (dotted), for each model selected by AIC score.

4 D > 4 B > 4 E > 4 E > E 9 Q O

Forecasting Results

- A range of hypothetical future values for improvements and new features were used to make defect predictions
- This simulates the use of defect prediction for release planning
- Single-step, out-of-sample forecast
- Inputs were differenced, and difference was removed from output
- Results include 75% and 90% confidence intervals
- ullet Forecast results are shown only for the first time window, W_{2-79}

Forecasting Results (cont'd)

- The actual number of improvements and features was 4 and 0
- Actual number of bugs was 18
- For the actual input values, the 90% confidence interval does not include 18

Table: Forecasting at the end of the first time window, W_{2-79} .

Improvements	Features	90% low	75% low	Mean	75% high	90% high
2	0	5.61	6.72	9.31	11.89	13.00
2	1	5.54	6.66	9.24	11.82	12.93
2	2	5.48	6.59	9.17	11.75	12.86
2	3	5.41	6.52	9.1	11.69	12.8
4	0	6.4	7.51	10.09	12.68	13.79
4	1	6.33	7.44	10.03	12.61	13.72
4	2	6.27	7.38	9.96	12.54	13.65
4	3	6.2	7.31	9.89	12.48	13.59

Introduction 0000 Motivation 0000 Time Series 0000 Modeling Methodology 0000 Data Methodology 00000 Results 00000 Conclusions 0000 Reference 000000

Forecasting Results (cont'd)

- Low accuracy for the predictions is concerning
- ullet For the next window, W_{80-157} , the actual number of future bugs was 17
- \bullet This was inside the 90% confidence interval, which spanned from 13.38 to 18.00
- This result conflicts with that of the previous window

Sliding Window Forecasts

- How useful is the VARX model in general, considering these conflicting results?
- To find out, a sliding 78-week window was used
- The sliding window started at the first sample period, and was shifted by one sample period after modeling
- Only the actual number of improvements and features were used in this forecasting

Sliding Window Forecasts (cont'd)

- Errors between the mean forecasted and actual number of bugs is shown as a histogram
- The histogram appears to be normally distributed (good)
- The variability is quite large (bad)
- \bullet The actual number of bugs was inside the 90% confidence interval for 23.87% of the sliding window ranges

Figure: Histogram of errors in forecast mean obtained using a 78-week sliding window.

