"JUST THE MATHS"

UNIT NUMBER

10.3

DIFFERENTIATION 3 (Elementary techniques of differentiation)

by

A.J.Hobson

- 10.3.1 Standard derivatives
- 10.3.2 Rules of differentiation
- 10.3.3 Exercises
- 10.3.4 Answers to exercises

UNIT 10.3 - DIFFERENTIATION 3

ELEMENTARY TECHNIQUES OF DIFFERENTIATION

10.3.1 STANDARD DERIVATIVES

In Unit 10.2, reference was made to the use of a table of standard derivatives and such a table can be found in the appendix at the end of this Unit.

However, for the time being, a very short list of standard derivatives is all that is necessary since other derivatives may be developed from them using techniques to be discussed later in this and subsequent Units.

f(x)	f'(x)
a const.	0
x^n	nx^{n-1}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\ln x$	$\frac{1}{x}$

Note:

In the work which now follows, standard derivatives may be used which have not, here, been obtained from first principles; but the student is expected to be able to quote results from a table of derivatives including those for which no proof has been given.

10.3.2 RULES OF DIFFERENTIATION

(a) Linearity

Suppose f(x) and g(x) are two functions of x while A and B are constants. Then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[Af(x) + Bg(x) \right] = A \frac{\mathrm{d}}{\mathrm{d}x} [f(x)] + B \frac{\mathrm{d}}{\mathrm{d}x} [g(x)].$$

Proof:

The left-hand side is equivalent to

$$\lim_{\delta x \to 0} \frac{\left[Af(x + \delta x) + Bg(x + \delta x) \right] - \left[Af(x) + Bg(x) \right]}{\delta x}$$

$$= A \left[\lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} \right] + B \left[\lim_{\delta x \to 0} \frac{g(x + \delta x) - g(x)}{\delta x} \right]$$

$$= A \frac{\mathrm{d}}{\mathrm{d}x} [f(x)] + B \frac{\mathrm{d}}{\mathrm{d}x} [g(x)].$$

The result, so far, deals with a "linear combination" of two functions of x but is easily extended to linear combinations of three or more functions of x.

EXAMPLES

1. Write down the expression for $\frac{dy}{dx}$ in the case when

$$y = 6x^2 + 2x^6 + 13x - 7.$$

Solution

Using the linearity property, the standard derivative of x^n , and the derivative of a constant, we obtain

$$\frac{dy}{dx} = 6\frac{d}{dx}[x^2] + 2\frac{d}{dx}[x^6] + 13\frac{d}{dx}[x^1] - \frac{d}{dx}[7]$$

$$= 12x + 12x^5 + 13.$$

2. Write down the derivative with respect to x of the function

$$\frac{5}{x^2} - 4\sin x + 2\ln x.$$

Solution

$$\frac{d}{dx} \left[\frac{5}{x^2} - 4\sin x + 2\ln x \right]$$

$$= \frac{d}{dx} \left[5x^{-2} - 4\sin x + 2\ln x \right]$$

$$= -10x^{-3} - 4\cos x + \frac{2}{x}$$

$$= \frac{-10}{x^3} - 4\cos x + \frac{2}{x}.$$

(b) Composite Functions (or Functions of a Function)

(i) Functions of a Linear Function

Expressions such as $(5x+2)^{16}$, $\sin(2x+3)$ and $\ln(7-4x)$ may be called "functions of a linear function" and have the general form

$$f(ax+b)$$
,

where a and b are constants. The function f(x) would, of course, be the one obtained on replacing ax + b by a single x; hence, in the above illustrations, f(x) would be x^{16} , $\sin x$ and $\ln x$, respectively.

Functions of a linear function may be differentiated as easily as f(x) itself on the strength of the following argument:

Suppose we write

$$y = f(u)$$
 where $u = ax + b$.

Suppose, also, that a small increase of δx in x gives rise to increases (positive or negative) of δy in y and δu in u. Then:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \frac{\delta y}{\delta u} \frac{\delta u}{\delta x}.$$

Assuming that δy and δu tend to zero as δx tends to zero, we can say that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta u \to 0} \frac{\delta y}{\delta u} \times \lim_{\delta x \to 0} \frac{\delta u}{\delta x}.$$

That is,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

This rule is called the "Function of a Function Rule" or "Composite Function Rule" or "Chain Rule" and has applications to a much wider class of composite functions than has so far been discussed. But, for the moment we restrict the discussion to functions of a linear function.

EXAMPLES

1. Determine $\frac{dy}{dx}$ when $y = (5x + 2)^{16}$.

Solution

First, we write $y = u^{16}$ where u = 5x + 2.

Then, $\frac{dy}{du} = 16u^{15}$ and $\frac{du}{dx} = 5$.

Hence, $\frac{dy}{dx} = 16u^{15}.5 = 80(5x+2)^{15}$.

2. Determine $\frac{dy}{dx}$ when $y = \sin(2x + 3)$.

Solution

First, we write $y = \sin u$ where u = 2x + 3.

Then, $\frac{dy}{du} = \cos u$ and $\frac{du}{dx} = 2$.

Hence, $\frac{dy}{dx} = \cos u \cdot 2 = 2\cos(2x+3)$.

3. Determine $\frac{dy}{dx}$ when $y = \ln(7 - 4x)$.

Solution

First, we write $y = \ln u$ where u = 7 - 4x.

Then, $\frac{dy}{du} = \frac{1}{u}$ and $\frac{du}{dx} = -4$.

Hence, $\frac{dy}{dx} = \frac{1}{u} \cdot (-4) = \frac{-4}{7-4x}$.

Note:

It is hoped that the student will quickly appreciate how the fastest way to obtain the derivative of a function of a linear function is to treat the expression ax + b initially as if it were a single x; then, multiply the final result by the constant value, a.

(ii) Functions of a Function in general

The formula

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$$

is in no way dependent on the fact that the examples so far used to illustrate it have involved functions of a linear function. Exactly the same formula may be used for the composite function

whatever the functions f(x) and g(x) happen to be. All we need to do is to write

$$y = f(u)$$
 where $u = g(x)$,

then apply the formula.

EXAMPLES

1. Determine an expression for $\frac{dy}{dx}$ in the case when

$$y = (x^2 + 7x - 3)^4.$$

Solution

Letting $y = u^4$ where $u = x^2 + 7x - 3$, we have

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 4u^3 \cdot (2x+7)$$
$$= 4(x^2 + 7x - 3)^3 (2x+7).$$

2. Determine an expression for $\frac{dy}{dx}$ in the case when

$$y = \ln(x^2 - 3x + 1).$$

Solution

Letting $y = \ln u$ where $u = x^2 - 3x + 1$, we have

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{u} \cdot (2x - 3) = \frac{2x - 3}{x^2 - 3x + 1}.$$

3. Determine the value of $\frac{dy}{dx}$ at x = 1 in the case when

$$y = 2\sin(5x^2 - 1) + 19x.$$

Solution

Consider, first, the function $2\sin(5x^2-1)$ which we shall call z. Its derivative is $\frac{dz}{dx}$, where $z=2\sin(5x^2-1)$.

Let $z = 2 \sin u$ where $u = 5x^2 - 1$; then,

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x} = 2\cos u \cdot 10x = 20x\cos(5x^2 - 1).$$

Hence, the complete derivative is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 20x\cos(5x^2 - 1) + 19.$$

Finally, when x = 1, this derivative has the value $20\cos 4 + 19$, which is approximately equal to 5.927, remembering that the calculator must be in **radian mode**.

Note:

Again, it is hoped that the student will appreciate how there is a faster way of differentiating composite functions in general. We simply treat g(x) initially as if it were a single x, then multiply by g'(x) afterwards.

For example,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\sin^3 x \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[(\sin x)^3 \right] = 3(\sin x)^2 \cdot \cos x = 3\sin^2 x \cdot \cos x.$$

10.3.3 EXERCISES

1. Determine an expression for $\frac{dy}{dx}$ in the following cases:

(a)

$$y = 3x^3 - 8x^2 + 11x + 9;$$

(b)

$$y = 10\cos x + 5\sin x - 14x^{7};$$

(c)

$$y = (2x - 7)^5$$
;

(d)

$$y = (2 - 5x)^{-\frac{5}{2}};$$

(e)

$$y = \sin\left(\frac{\pi}{2} - x\right)$$
; that is, $\cos x$;

(f)

$$y = \cos(4x + 1);$$

(g)

$$y = \ln(4 - 2x);$$

(h)

$$y = \ln\left[\frac{3x - 8}{6x + 2}\right].$$

2. Determine an expression for $\frac{dy}{dx}$ in the cases when

(a)

$$y = (4 - 7x^3)^8;$$

(b)

$$y = (x^2 + 1)^{\frac{3}{2}};$$

(c)

$$y = \cos^5 x;$$

(d)

$$y = \ln(\ln x)$$
.

- 3. If $y = \sin(\cos x)$, evaluate $\frac{dy}{dx}$ at $x = \frac{\pi}{2}$.
- 4. If $y = \cos(7x^5 3)$, evaluate $\frac{dy}{dx}$ at x = 1.

10.3.4 ANSWERS TO EXERCISES

1. (a)

$$9x^2 - 16x + 11$$
;

(b)

$$-10\sin x + 5\cos x - 98x^6;$$

$$10(2x-7)^4$$
;

(d)

$$\frac{25}{2}(2-5x)^{-\frac{7}{2}};$$

(e)

$$-\cos\left(\frac{\pi}{2}-x\right)$$
; that is, $-\sin x$;

(f)

$$-4\sin(4x+1)$$
;

(g)

$$\frac{-2}{4-2x}$$
 or $\frac{2}{2x-4}$;

(h)

$$\frac{3}{3x-8} - \frac{6}{6x+2} = \frac{54}{(3x-8)(6x+2)}.$$

2. (a)

$$-168x^2(4-7x^3)^7;$$

(b)

$$3x(x^2+1)^{\frac{1}{2}};$$

(c)

$$-5\cos^4 x \cdot \sin x;$$

(d)

$$\frac{1}{x \ln x}$$
.

3.

$$-1$$

4.

$$-35\sin 4 \cong 26.488$$

APPENDIX - A Table of Standard Derivatives

f(x)	f'(x)
a (const.)	0
x^n	nx^{n-1}
$\sin ax$	$a\cos ax$
$\cos ax$	$-a\sin ax$
$\tan ax$	$a sec^2 ax$
$\cot ax$	$-a \operatorname{cosec}^2 ax$
sec ax	$a\sec ax. \tan ax$
cosec ax	-acosec ax . cot ax
$\ln x$	1/x
e^{ax}	ae^{ax}
a^x	$a^x \cdot \ln a$
$\sinh ax$	$a \cosh ax$
$\cosh ax$	$a \sinh ax$
$\tanh ax$	$a \operatorname{sech}^2 a x$
sech ax	$-a \operatorname{sech} ax. \tanh ax$
$\operatorname{cosech} ax$	$-a$ cosech ax . $\coth x$
$\ln(\sin x)$	$\cot x$
$\ln(\cos x)$	$-\tan x$
$\ln(\sinh x)$	$\coth x$
$\ln(\cosh x)$	$\tanh x$
$\sin^{-1}(x/a)$	$1/\sqrt{(a^2-x^2)}$
$\cos^{-1}(x/a)$	$-1/\sqrt{(a^2-x^2)}$
$\tan^{-1}(x/a)$	$a/(a^2+x^2)$
$\sinh^{-1}(x/a)$	$1/\sqrt{(x^2+a^2)}$
$\cosh^{-1}(x/a)$	$1/\sqrt{(x^2-a^2)}$
$\tanh^{-1}(x/a)$	$a/(a^2-x^2)$