Monmos Conductos Minimos Coadiados to: p(x) w+ 2, W= argminJrwl

L> Función de
Costo

Jrw1= = 1/2 (1+- pell2 W= argmin = 11+- pw112 Nota: los factores 1/2 son para simplificar Jiw1: = [++7-2+7 du+ downdow) TwJ1w1= 0-++++++++ - Igualamos a Caro W= 10-41-+++ い=(ゆすゆりずナすゆ)

Minimos Cuadrados Rogularizados to = 9(x,) Tw + 2, -12, 110, 02) Widge: aigmin Jaws
L> Forción de Costo - Agragamos, la norma L2 para panalizar passes grandas Jiw1= = 1+ - pw112+ /211w112 Nota: los factoras 1/2 son para simplificar la Widge = aigmin (= 11+ + wil 2+ 1 wil 2) 11+- poll= (+-pul(+-pu) Vw Jiw1: 0-++++++

かったっしてからい Cily== (d-d+ /I)-++d

Maxima Vajosimilitudo 3 0 mais The grantwith 2. 7 30 22 NGO, 02 1/4/9 - Sigua una distribución normal.

p(+1/X1, W, oz 1= N(+1) p(X1) w, oz 1 - Asyminado, i.i.d., la varosimilitud conjuntar, asiali producto da todas las probabilidades individuales. P(+1x, w, 0212TT NC+1141x1 w, 02) · Forma da una dansidad gaussiana unidimansional. N(+, 1 M, 03)= 1 = (1- 1- M2)) p(+1x, w. 02) = TIp(+,1x, w. 02) P(+1X, w, ozz) = TT 1 e zoz (+, - 4(X) w)

- El prodocto de las constantes (210 z) -1/2
Se convierte en: TI (21102 1-4/2 = (21102 1-4/2 P(+1 X, w, o 2 1 = (211 0 2 1 N/2 N e (202 1 th - 9 18) W

J= [4-4|x1,m]=[4-4m],(+-4m] P(+1x, w, 03)= 12mo 1-1/2 e(====11+-+w112) Les mas conveniente trabajar con al logaritmo 1,p(+1 X, w, o2)=-N/2/2/02) Whize argmax Inp (+1 X, w, or 2) - Como al prima tarmino no dapada da Wita as aquivalenta a minimiser al tarmino cuadratico WMZ: arymin11+- \$\pi\11^2 WML= 10-41-4-4 52= # 11+- & WM2112 50 WX 1+1

Maximo appostanton lung - +11 = 1001 t= 91x1~ 12N(0,02) - En base al MLEl Maxima Vaiosimilitud). WILE = (0+0) + + + = = = = = - Introducimos un pior sobre los pasos W. asum: ando aqua los pasos siguen una distribución normal contrada en O. P(W)= N(W|0,02 I) P(W): (2702)-N/2 e(202 | W|12) - Sa aplica al taorama de bayas. pcw1+,x1= p1+1x,w1pcw1 P(+1x) Wmap: arymaxlogp(+1 x, w) + logp(w) logpl+1 x, w1 = - N log1211021 - 1 1+ + w1/2 log p(w): - 1 log [270 2 1 - 1 202 | WII]

J(W): 2021+- +w112+ 2021 W1120 000001 (50,0) Upol 5200 + W1,219 = + al WEELManna 50 asmitted). JIM1: + 11+- per 112+ 2 1100 H2 Vw.Tewl: - 0+++ 0+60++ 20 = 0 ×1+19 Wmap= 1 00 + AI) 1 0 + + W La Mismo lasultado que Tomo Condicidos de Tomos Condicidos de Tomos Condicidos de Tomos Condicidos de Tomos Condicidos de Condic (= 50 0 W/U = 1 w19

Bayesiano con medelo lineal gaussiano:

En lugar de buscar un solo numero w, el modelo devuelve una distribución complete sobie w, que refleta Incertidombre.

Expresion lei posterior

P(w/t. X) = N(w/Wmap, Emap) + la distribución de w despues de ver los datos es una norma i multivaria la con media y covarianza

meha covarianza

Media: WMAP EN (EO MO + T AT L) Covarianza: \(\So^1 + 1 \overline{\phi} \overline{\phi} \)

Al tener mas datos, mas pequeño se uvelve EN, o seo, el modelo se vuelve mas seguro sobre los pesos W.

Sasumimos mo = 0 - Wmap = 1 5 N Tt

Prior sobre pesas:

P(w) = N(w/mo, Eo

Verosimilitud:

P(t) w) = N(t) (w, On I)

P(w/to,x) = P(t/w) - P(w)

P(w|tox) = - 7 (||to||2 - 2 to o(xn) w + o(xn) w o(xn) w

= - 7 \(\(\tau - mo)^{\tau} \) (w-mo)

= - 1 (w Zo w - (w) Zo (mo) - mo Zo w + Zo mo mo)

= -7 (\$0 WW - 2 \$0 mo w + \$0 mo mo

Derivamos Plultaxi respecto a w:

d P(w) + x) = - 1 (0-2 + η φ (xη) + 2 φ (xη) φ (xη) ψ) - 1 (2 εσ ω - 2 εσ σ + ο

 $-\frac{1}{2}\left[\frac{-2}{9^{2}}\ln\phi(x_{0})^{T}+2\phi(x_{0})^{T}\phi(x_{0})w-2\xi\delta^{2}w-2\xi\delta^{2}w-2\xi\delta^{2}md^{T}\right]=0$

\$(xn) \$ (xn) w + 50 w = tn \$(xn) + 20 mo

cuadratico uneat

w (Σο Ι+ φ (xn)	$\phi(x_n) = \frac{1}{2}$	$\theta^2 n$	+ 25 W	of	25. 4	V XX Q	1
Pesas optimos:	SN	2300	100	Mes	4.000	Dacat	1/29
w= (507 I + 0(xn)7							
P(w)= N(w10, 92w)	-	Plulte		N(w1m	1, šn)		13
$W = \begin{pmatrix} 7 & I + \phi (x_n)^T \\ \theta^2 & \theta^2 \end{pmatrix}$	(xa)) -1 0	$\frac{(x_n)^T L_n}{\Theta^2 n} =$	MN				
SN				F 4	4. 83 10		reside
$S_{N} = \left(\frac{1}{\theta^{2}}\right)^{-1} \left(\frac{\theta^{2}}{\theta^{2}}\right)^{-1}$	1 + \$(xn) T	$\phi(x_n)^{-1}$	φ(xn)T	n			
$W = \left(\begin{array}{c} \phi \left(x_{n} \right)^{T} \phi \left(x_{n} \right) \\ \Theta^{2}_{n} \end{array} \right)$	λI)-7 φ(xn) to	2 1				TO Y
Regresion rigida							1515
Este modelo map $K(X,X') = \phi(X)^T \phi(X)$			de dimens	sion move	con $\phi(x)$	27)	
Arrancamos de Bare				1000		3 (2) 3	112)3
P(with) = 11tn - 01	xnlw llz t	Allwilz	2 10 10 10		16		
w= argmin lltn-0	(Xn) WT 112 +	XIIWIIZ	= (φ ^T (xn) \$\phi(xn) + \lambda	I)-, Ф.(X	n) tn	
$\omega'' = (\phi^{T}(x_{n}) \phi(x_{n}) + \frac{k(x_{n}, x_{n})}{k(x_{n}, x_{n})}$ $\omega'' = \sum_{i} \alpha_{i} \phi(x_{i})^{T}$		Þ(xi) ^T					
Se necesita predice	ción para un	nuevo pu	nto 010	vectando s	sobie w*		
$f = \phi(x_{F})^{T} \psi^{T}(x_{A})^{T}$) (pt(xo) d)	x) +) T	7-77				
K(#) ^T	K(x,x)	Charle Colonia	Ln				
to= (k+)I)-7 to	K(+)T		K(#)T= (k (xr, x1)	,, K (X#	LINX,	
					101		
VIIIIII							1

Lan Mar Miz Jue Vie Sab

Marden

Dia Mes Año	Lun Mar Mie Jue Vie S	sab											
P(tn)= (-=tn) (-(8	2 IN) (K+ 02)	[n) k t	(On	In)	-7) {	n)		3	Or.		-):	-	TAN .
e					10		to	3 00	17	31	34	12	
= (-]tnT(k)	O' IN to				93 979							5 95	
0.4	Varian 2a				17.17	W.	1231	115	16		() 1		16
eltn)= N(tnlo, K+	BE TOU				Y	11/	191	10 3		-,1	1,1	, 4	3713