ECMAScript 6 入门

作者: 阮一峰

授权:署名-非商用许可证

目录

- 0.前言
- 1.ECMAScript 6简介
- 2.let 和 const 命令
- 3.变量的解构赋值
- 4.字符串的扩展
- 5.正则的扩展
- 6.数值的扩展
- 7.函数的扩展
- 8.数组的扩展
- 9.对象的扩展
- 10.Symbol
- 11.Set 和 Map 数据结构
- 12.Proxy
- 13.Reflect
- 14.Promise 对象
- 15.Iterator 和 for...of 循环
- 16.Generator 函数的语法
- 17.Generator 函数的异步应用
- ______
- 18.async 函数
- 19.Class 的基本语法 20.Class 的继承
- 21.Decorator
- 22.Module 的语法
- 23.Module 的加载实现
- 24.编程风格
- 25.读懂规格
- 26.ArrayBuffer
- 27.参考链接

其他

- 源码
- 修订历史
- 反馈意见

Set和Map数据结构

- 1.Set
- 2.WeakSet
- 3.Map
- 4.WeakMap

1. Set

基本用法

ES6 提供了新的数据结构 Set。它类似于数组,但是成员的值都是唯一的,没有重复的值。

Set 本身是一个构造函数, 用来生成 Set 数据结构。

```
const s = new Set();
[2, 3, 5, 4, 5, 2, 2].forEach(x => s.add(x));
for (let i of s) {
   console.log(i);
}
// 2 3 5 4
```

上面代码通过 add 方法向 Set 结构加入成员,结果表明 Set 结构不会添加重复的值。

Set 函数可以接受一个数组(或者具有 iterable 接口的其他数据结构)作为参数,用来初始化。

```
// 例—
const set = new Set([1, 2, 3, 4, 4]);
[...set]
// (1, 2, 3, 4]

// 例二
const items = new Set([1, 2, 3, 4, 5, 5, 5, 5]);
items.size // 5

// 例三
function divs () {
    return [...document.querySelectorAll('div')];
}

const set = new Set(divs());
set.size // 56

// 类似于
divs().forEach(div => set.add(div));
set.size // 56
```

上面代码中,例一和例二都是 Set 函数接受数组作为参数,例三是接受类似数组的对象作为参数。

上面代码中,也展示了一种去除数组重复成员的方法。

```
// 去除数组的重复成员
[...new Set(array)]
```

向Set加入值的时候,不会发生类型转换,所以 5 和 "5" 是两个不同的值。Set内部判断两个值是否不同,使用的算法叫做"Same-value equality",它类似于精确相等运算符(===),主要的区别是 NaN 等于自身,而精确相等运算符认为 NaN 不等于自身。

```
let set = new Set();
let a = NaN;
let b = NaN;
set.add(a);
set.add(b);
set // Set {NaN}
```

上面代码向 Set 实例添加了两个 NaN ,但是只能加入一个。这表明,在 Set 内部,两个 NaN 是相等。

另外,两个对象总是不相等的。

```
let set = new Set();

set.add({});
set.size // 1

set.add({});
set.size // 2
```

上面代码表示,由于两个空对象不相等,所以它们被视为两个值。

Set 实例的属性和方法

Set 结构的实例有以下属性。

- Set.prototype.constructor:构造函数,默认就是Set函数。
- Set.prototype.size:返回 Set 实例的成员总数。

Set 实例的方法分为两大类:操作方法(用于操作数据)和遍历方法(用于遍历成员)。下面先介绍四个操作方法。

- add(value):添加某个值,返回Set结构本身。
- delete(value): 删除某个值,返回一个布尔值,表示删除是否成功。
- has(value): 返回一个布尔值,表示该值是否为 Set 的成员。
- clear():清除所有成员,没有返回值。

上面这些属性和方法的实例如下。

```
s.add(1).add(2).add(2);
// 注意2被加入了两次

s.size // 2

s.has(1) // true
s.has(2) // true
s.has(3) // false

s.delete(2);
s.has(2) // false
```

下面是一个对比,看看在判断是否包括一个键上面, <mark>Object</mark> 结构和 <mark>Set</mark> 结构的写法不同。

```
// 对象的写法
const properties = {
    'width': 1,
    'height': 1
};

if (properties[someName]) {
    // do something
}

// Set的写法
const properties = new Set();

properties.add('width');
properties.add('height');

if (properties.has(someName)) {
    // do something
}
```

Array.from 方法可以将 Set 结构转为数组。

```
const items = new Set([1, 2, 3, 4, 5]);
const array = Array.from(items);
```

这就提供了去除数组重复成员的另一种方法。

```
function dedupe(array) {
  return Array.from(new Set(array));
}

L—章
下一章
```

```
dedupe([1, 1, 2, 3]) // [1, 2, 3]
```

遍历操作

Set 结构的实例有四个遍历方法,可以用于遍历成员。

keys(): 返回键名的遍历器
values(): 返回键值的遍历器
entries(): 返回键值对的遍历器
forEach(): 使用回调函数遍历每个成员

需要特别指出的是, <mark>Set</mark> 的遍历顺序就是插入顺序。这个特性有时非常有用,比如使用Set保存一个回调函数列表,调用时就能保证按照添加顺序调用。

(1) keys(), values(), entries()

keys 方法、values 方法、entries 方法返回的都是遍历器对象(详见《Iterator 对象》一章)。由于 Set 结构没有键名,只有键值(或者说键名和键值是同一个值),所以 keys 方法和 values 方法的行为完全一致。

```
let set = new Set(['red', 'green', 'blue']);
for (let item of set.keys()) {
    console.log(item);
}
// red
// green
// blue

for (let item of set.values()) {
    console.log(item);
}
// red
// green
// blue

for (let item of set.entries()) {
    console.log(item);
}
// ["red", "red"]
// ["green", "green"]
// ["blue", "blue"]
```

上面代码中, entries 方法返回的遍历器, 同时包括键名和键值, 所以每次输出一个数组, 它的两个成员完全相等。

Set 结构的实例默认可遍历,它的默认遍历器生成函数就是它的 values 方法。

```
Set.prototype[Symbol.iterator] === Set.prototype.values
// true
```

这意味着,可以省略 values 方法,直接用 for...of 循环遍历 Set。

```
let set = new Set(['red', 'green', 'blue']);
for (let x of set) {
  console.log(x);
}
// red
// green
// blue
```

(2) forEach()

Set结构的实例的 forEach 方法,用于对每个成员执行某种操作,

```
let set = new Set([1, 2, 3]);
set.forEach((value, key) => console.log(value * 2) )
```

上面代码说明, <mark>forEach</mark> 方法的参数就是一个处理函数。该函数的参数依次为键值、键名、集合本身(上例省略了该参数)。另外, <mark>forEach</mark> 方法还可以有 第二个参数,表示绑定的 this 对象。

(3) 遍历的应用

扩展运算符(...)内部使用 for...of 循环, 所以也可以用于 Set 结构。

```
let set = new Set(['red', 'green', 'blue']);
let arr = [...set];
```

扩展运算符和 Set 结构相结合,就可以去除数组的重复成员。

```
let arr = [3, 5, 2, 2, 5, 5];
let unique = [...new Set(arr)];
```

而且,数组的 map 和 filter 方法也可以用于 Set 了。

```
let set = new Set([1, 2, 3]);
set = new Set([...set].map(x \Rightarrow x * 2));
let set = new Set([1, 2, 3, 4, 5]);
set = new Set([...set].filter(x \Rightarrow (x % 2) == 0));
```

因此使用 Set 可以很容易地实现并集(Union)、交集(Intersect)和差集(Difference)。

```
let a = new Set([1, 2, 3]);
let b = new Set([4, 3, 2]);
let union = new Set([...a, ...b]);
let intersect = new Set([...a].filter(x => b.has(x)));
let difference = new Set([...a].filter(x => !b.has(x)));
```

如果想在遍历操作中,同步改变原来的 Set 结构,目前没有直接的方法,但有两种变通方法。一种是利用原 Set 结构映射出一个新的结构,然后赋值给原 来的 Set 结构;另一种是利用 Array.from 方法。

```
let set = new Set([1, 2, 3]);
set = new Set([...set].map(val => val * 2));
// set的值是2, 4, 6
let set = new Set([1, 2, 3]);
set = new Set(Array.from(set, val => val * 2));
// set的值是2, 4, 6
```

上面代码提供了两种方法,直接在遍历操作中改变原来的 Set 结构。

2. WeakSet

含义

WeakSet 结构与 Set 类似,也是不重复的值的集合。但是,它与 Set 有两个区别。

首先, WeakSet 的成员只能是对象, 而不能是其他类型的值。

```
const ws = new WeakSet();
ws.add(1)
// TypeError: Invalid value used in weak set
ws.add(Symbol())
// TypeError: invalid value used in weak set
```

上面代码试图向 WeakSet 添加一个数值和 Symbol 值,结果报错,因为 WeakSet 只能放置对象。

其次,WeakSet 中的对象都是弱引用,即垃圾回收机制不考虑 WeakSet 对该对象的引用,也就是说,如果其他对象都不再引用该对象,那么垃圾回收机制会自动回收该对象所占用的内存,不考虑该对象还存在于 WeakSet 之中。

这是因为垃圾回收机制依赖引用计数,如果一个值的引用次数不为 ❷,垃圾回收机制就不会释放这块内存。结束使用该值之后,有时会忘记取消引用,导致内存无法释放,进而可能会引发内存泄漏。WeakSet 里面的引用,都不计入垃圾回收机制,所以就不存在这个问题。因此,WeakSet 适合临时存放一组对象,以及存放跟对象绑定的信息。只要这些对象在外部消失,它在 WeakSet 里面的引用就会自动消失。

由于上面这个特点,WeakSet 的成员是不适合引用的,因为它会随时消失。另外,由于 WeakSet 内部有多少个成员,取决于垃圾回收机制有没有运行,运行前后很可能成员个数是不一样的,而垃圾回收机制何时运行是不可预测的,因此 ES6 规定 WeakSet 不可遍历。

这些特点同样适用于本章后面要介绍的 WeakMap 结构。

语法

WeakSet 是一个构造函数,可以使用 new 命令,创建 WeakSet 数据结构。

```
const ws = new WeakSet();
```

作为构造函数,WeakSet 可以接受一个数组或类似数组的对象作为参数。(实际上,任何具有 Iterable 接口的对象,都可以作为 WeakSet 的参数。) 该数组的所有成员,都会自动成为 WeakSet 实例对象的成员。

```
const a = [[1, 2], [3, 4]];
const ws = new WeakSet(a);
// WeakSet {[1, 2], [3, 4]}
```

上面代码中,a是一个数组,它有两个成员,也都是数组。将a作为 WeakSet 构造函数的参数,a 的成员会自动成为 WeakSet 的成员。

注意,是 a 数组的成员成为 WeakSet 的成员,而不是 a 数组本身。这意味着,数组的成员只能是对象。

```
const b = [3, 4];
const ws = new WeakSet(b);
// Uncaught TypeError: Invalid value used in weak set(...)
```

上面代码中,数组 b 的成员不是对象,加入 WeaKSet 就会报错。

WeakSet 结构有以下三个方法。

- WeakSet.prototype.add(value): 向 WeakSet 实例添加一个新成员。
- WeakSet.prototype.delete(value): 清除 WeakSet 实例的指定成员。
- WeakSet.prototype.has(value): 返回一个布尔值 一十二十个值 一十二十一 kSet 实例之中。

下面是一个例子。

```
const ws = new WeakSet();
const obj = {};
const foo = {};

ws.add(window);
ws.add(obj);

ws.has(window); // true
ws.has(foo); // false

ws.delete(window);
ws.has(window); // false
```

WeakSet没有 size 属性,没有办法遍历它的成员。

```
ws.size // undefined
ws.forEach // undefined

ws.forEach(function(item){ console.log('WeakSet has ' + item)})
// TypeError: undefined is not a function
```

上面代码试图获取 size 和 forEach 属性,结果都不能成功。

WeakSet 不能遍历,是因为成员都是弱引用,随时可能消失,遍历机制无法保证成员的存在,很可能刚刚遍历结束,成员就取不到了。WeakSet 的一个用处,是储存 DOM 节点,而不用担心这些节点从文档移除时,会引发内存泄漏。

下面是 WeakSet 的另一个例子。

```
const foos = new WeakSet()
class Foo {
  constructor() {
    foos.add(this)
  }
  method () {
    if (!foos.has(this)) {
      throw new TypeError('Foo.prototype.method 只能在Foo的实例上调用! ');
    }
  }
}
```

上面代码保证了 Foo 的实例方法,只能在 Foo 的实例上调用。这里使用WeakSet的好处是, Foos 对实例的引用,不会被计入内存回收机制,所以删除实例的时候,不用考虑 Foos ,也不会出现内存泄漏。

3. Map

含义和基本用法

JavaScript 的对象(Object),本质上是键值对的集合(Hash 结构),但是传统上只能用字符串当作键。这给它的使用带来了很大的限制。

```
const data = {};
const element = document.getElementById('myDiv');

data[element] = 'metadata';
data['[object HTMLDivElement]'] // "metadata"
```

上面代码原意是将一个 DOM 节点作为对象 data 的键,但是由于对象只接受字符串作为键名,所以 element 被自动转为字符串 [object HTMLDivElement] 。

为了解决这个问题,ES6 提供了 Map 数据结构。它类似于对象,也是键值对的集合,但是"键"的范围不限于字符串,各种类型的值(包括对象)都可以 当作键。也就是说,Object 结构提供了"字符串一值"的对应,Managered Table 10 下一章 对应,是一种更完善的 Hash 结构实现。如果你需要"键值对"的 数据结构,Map 比 Object 更合适。

```
const m = new Map();
const o = {p: 'Hello World'};
m.set(o, 'content')
m.get(o) // "content"
m.has(o) // true
m.delete(o) // true
m.has(o) // false
```

上面代码使用 Map 结构的 set 方法,将对象 o 当作 m 的一个键,然后又使用 get 方法读取这个键,接着使用 delete 方法删除了这个键。

上面的例子展示了如何向 Map 添加成员。作为构造函数,Map 也可以接受一个数组作为参数。该数组的成员是一个个表示键值对的数组。

```
const map = new Map([
  ['name', '张三'],
 ['title', 'Author']
]);
map.size // 2
map.has('name') // true
map.get('name') // "张三
map.has('title') // true
map.get('title') // "Author"
```

上面代码在新建 Map 实例时,就指定了两个键 name 和 title。

Map 构造函数接受数组作为参数,实际上执行的是下面的算法。

```
const items = [
['name', '张三'],
  ['title', 'Author']
];
const map = new Map();
items.forEach(
  ([key, value]) => map.set(key, value)
```

事实上,不仅仅是数组,任何具有 Iterator 接口、且每个成员都是一个双元素的数组的数据结构(详见《Iterator》一章)都可以当作 <mark>Map</mark> 构造函数的参 数。这就是说,Set 和 Map 都可以用来生成新的 Map。

```
const set = new Set([
  ['foo', 1],
  ['bar', 2]
]);
const m1 = new Map(set);
m1.get('foo') // 1
const m2 = new Map([['baz', 3]]);
const m3 = new Map(m2);
m3.get('baz') // 3
```

上面代码中,我们分别使用 Set 对象和 Map 对象,当作 Map 构造函数的参数,结果都生成了新的 Map 对象。

如果对同一个键多次赋值,后面的值将覆盖前面的值。

```
const map = new Map();
map
.set(1, 'aaa')
.set(1, 'bbb');
map.get(1) // "bbb"
```

上面代码对键 1 连续赋值两次,后一次的值覆盖前一次的值。

如果读取一个未知的键,则返回 undefined 。

```
new Map().get('asfddfsasadf')
// undefined
```

注意,只有对同一个对象的引用,Map 结构才将其视为同一个键。这一点要非常小心。

```
const map = new Map();
map.set(['a'], 555);
map.get(['a']) // undefined
```

上面代码的 set 和 get 方法,表面是针对同一个键,但实际上这是两个值,内存地址是不一样的,因此 get 方法无法读取该键,返回 <mark>undefined</mark> 。

同理,同样的值的两个实例,在 Map 结构中被视为两个键。

```
const map = new Map();

const k1 = ['a'];
const k2 = ['a'];

map
    .set(k1, 111)
    .set(k2, 222);

map.get(k1) // 111
map.get(k2) // 222
```

上面代码中,变量 k1 和 k2 的值是一样的,但是它们在 Map 结构中被视为两个键。

由上可知,Map 的键实际上是跟内存地址绑定的,只要内存地址不一样,就视为两个键。这就解决了同名属性碰撞(clash)的问题,我们扩展别人的库的 时候,如果使用对象作为键名,就不用担心自己的属性与原作者的属性同名。

如果 Map 的键是一个简单类型的值(数字、字符串、布尔值),则只要两个值严格相等,Map 将其视为一个键,包括 @ 和 - @ ,布尔值 true 和字符串 true 则是两个不同的键。另外,undefined 和 null 也是两个不同的键。虽然 NaN 不严格相等于自身,但 Map 将其视为同一个键。

```
let map = new Map();

map.set(-0, 123);
map.get(+0) // 123

map.set(true, 1);
map.set('true', 2);
map.get(true) // 1

map.set(undefined, 3);
map.set(unll, 4);
map.get(undefined) // 3

map.set(NaN, 123);
map.get(NaN) // 123
```

实例的属性和操作方法

Map 结构的实例有以下属性和操作方法。

(1) size属性

size 属性返回 Map 结构的成员总数。

```
const map = new Map();
map.set('foo', true);

L-章
下一章
```

```
map.set('bar', false);
map.size // 2
```

(2) set(key, value)

set 方法设置键名 key 对应的键值为 value ,然后返回整个 Map 结构。如果 key 已经有值,则键值会被更新,否则就新生成该键。

```
const m = new Map();

m.set('edition', 6)  // 键是字符串

m.set(262, 'standard')  // 键是数值

m.set(undefined, 'nah')  // 键是 undefined
```

set 方法返回的是当前的 Map 对象,因此可以采用链式写法。

```
let map = new Map()
   .set(1, 'a')
   .set(2, 'b')
   .set(3, 'c');
```

(3) get(key)

get 方法读取 key 对应的键值,如果找不到 key ,返回 undefined 。

```
const m = new Map();
const hello = function() {console.log('hello');};
m.set(hello, 'Hello ES6!') // 键是函数
m.get(hello) // Hello ES6!
```

(4) has(key)

has 方法返回一个布尔值,表示某个键是否在当前 Map 对象之中。

```
const m = new Map();

m.set('edition', 6);
m.set(262, 'standard');
m.set(undefined, 'nah');

m.has('edition')  // true
m.has('years')  // false
m.has(262)  // true
m.has(undefined)  // true
```

(5) delete(key)

delete 方法删除某个键,返回 true 。如果删除失败,返回 false 。

(6) clear()

clear 方法清除所有成员,没有返回值。

```
let map = new Map();
map.set('foo', true);
map.set('bar', false);
map.size // 2

上一章
下一章
```

```
map.clean()
map.size // 0
```

遍历方法

Map 结构原生提供三个遍历器生成函数和一个遍历方法。

keys(): 返回键名的遍历器。values(): 返回键值的遍历器。entries(): 返回所有成员的遍历器。forEach(): 遍历 Map 的所有成员。

需要特别注意的是,Map 的遍历顺序就是插入顺序。

上面代码最后的那个例子,表示 Map 结构的默认遍历器接口(Symbol.iterator 属性),就是 entries 方法。

```
map[Symbol.iterator] === map.entries
// true
```

Map 结构转为数组结构,比较快速的方法是使用扩展运算符(...)。

```
const map = new Map([
        [1, 'one'],
        [2, 'two'],
        [3, 'three'],
        ]);

[...map.keys()]
// [1, 2, 3]

上一章
下一草
```

```
[...map.values()]
// ['one', 'two', 'three']

[...map.entries()]
// [[1,'one'], [2, 'two'], [3, 'three']]

[...map]
// [[1,'one'], [2, 'two'], [3, 'three']]
```

结合数组的 map 方法、filter 方法,可以实现 Map 的遍历和过滤(Map 本身没有 map 和 filter 方法)。

此外,Map 还有一个 forEach 方法,与数组的 forEach 方法类似,也可以实现遍历。

```
map.forEach(function(value, key, map) {
  console.log("Key: %s, Value: %s", key, value);
});
```

forEach 方法还可以接受第二个参数,用来绑定 this。

```
const reporter = {
  report: function(key, value) {
    console.log("Key: %s, Value: %s", key, value);
  }
};

map.forEach(function(value, key, map) {
  this.report(key, value);
}, reporter);
```

上面代码中, forEach 方法的回调函数的 this ,就指向 reporter 。

与其他数据结构的互相转换

(1) Map 转为数组

前面已经提过,Map 转为数组最方便的方法,就是使用扩展运算符(....)。

```
const myMap = new Map()
   .set(true, 7)
   .set({foo: 3}, ['abc']);
[...myMap]
// [ [ true, 7 ], [ { foo: 3 }, [ 'abc' ] ] ]
```

(2) 数组 转为 Map

将数组传入 Map 构造函数, 就可以转为 Map。

```
new Map([
[true, 7], 上一章
```

```
[{foo: 3}, ['abc']]
])
// Map {
// true => 7,
// Object {foo: 3} => ['abc']
// }
```

(3) Map 转为对象

如果所有 Map 的键都是字符串,它可以转为对象。

```
function strMapToObj(strMap) {
  let obj = Object.create(null);
  for (let [k,v] of strMap) {
    obj[k] = v;
  }
  return obj;
}

const myMap = new Map()
  .set('yes', true)
  .set('no', false);
strMapToObj(myMap)
// { yes: true, no: false }
```

(4) 对象转为 Map

```
function objToStrMap(obj) {
  let strMap = new Map();
  for (let k of Object.keys(obj)) {
    strMap.set(k, obj[k]);
  }
  return strMap;
}

objToStrMap({yes: true, no: false})
// Map {"yes" => true, "no" => false}
```

(5) Map 转为 JSON

Map 转为 JSON 要区分两种情况。一种情况是,Map 的键名都是字符串,这时可以选择转为对象 JSON。

```
function strMapToJson(strMap) {
  return JSON.stringify(strMapToObj(strMap));
}
let myMap = new Map().set('yes', true).set('no', false);
strMapToJson(myMap)
// '{"yes":true,"no":false}'
```

另一种情况是,Map 的键名有非字符串,这时可以选择转为数组 JSON。

```
function mapToArrayJson(map) {
  return JSON.stringify([...map]);
}

let myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);
mapToArrayJson(myMap)
// '[[true,7],[{"foo":3},["abc"]]]'
```

(6) JSON 转为 Map

JSON 转为 Map, 正常情况下, 所有键名都是字符串。

```
function jsonToStrMap(jsonStr) {
  return objToStrMap(JSON.parse(jsonStr));
}

jsonToStrMap('{"yes": true, "no": false}')
// Map {'yes' => true, 'no' => false}
F-#
```

但是,有一种特殊情况,整个 JSON 就是一个数组,且每个数组成员本身,又是一个有两个成员的数组。这时,它可以一一对应地转为Map。这往往是数组转为 JSON 的逆操作。

```
function jsonToMap(jsonStr) {
  return new Map(JSON.parse(jsonStr));
}

jsonToMap('[[true,7],[{"foo":3},["abc"]]]')
// Map {true => 7, Object {foo: 3} => ['abc']}
```

4. WeakMap

含义

WeakMap 结构与 Map 结构类似,也是用于生成键值对的集合。

```
// WeakMap 可以使用 set 方法添加成员
const wm1 = new WeakMap();
const key = {foo: 1};
wm1.set(key, 2);
wm1.get(key) // 2

// WeakMap 也可以接受一个数组,
// 作为构造函数的参数
const k1 = [1, 2, 3];
const k2 = [4, 5, 6];
const wm2 = new WeakMap([[k1, 'foo'], [k2, 'bar']]);
wm2.get(k2) // "bar"
```

WeakMap 与 Map 的区别有两点。

首先,WeakMap 只接受对象作为键名(null 除外),不接受其他类型的值作为键名。

```
const map = new WeakMap();
map.set(1, 2)
// TypeError: 1 is not an object!
map.set(Symbol(), 2)
// TypeError: Invalid value used as weak map key
map.set(null, 2)
// TypeError: Invalid value used as weak map key
```

上面代码中,如果将数值 1 和 Symbol 值作为 WeakMap 的键名,都会报错。

其次,WeakMap 的键名所指向的对象,不计入垃圾回收机制。

WeakMap的设计目的在于,有时我们想在某个对象上面存放一些数据,但是这会形成对于这个对象的引用。请看下面的例子。

```
const e1 = document.getElementById('foo');
const e2 = document.getElementById('bar');
const arr = [
   [e1, 'foo 元素'],
   [e2, 'bar 元素'],
];
```

上面代码中,e1 和 e2 是两个对象,我们通过 arr 数组对这两个对象添加一些文字说明。这就形成了 arr 对 e1 和 e2 的引用。

一旦不再需要这两个对象,我们就必须手动删除这个引用,否则垃圾回收机制就不会释放 e1 和 e2 占用的内存。

```
arr [0] = null;
arr [1] = null;
```

上面这样的写法显然很不方便。一旦忘了写,就会造成内存泄露。

WeakMap 就是为了解决这个问题而诞生的,它的键名所引用的对象都是弱引用,即垃圾回收机制不将该引用考虑在内。因此,只要所引用的对象的其他引用都被清除,垃圾回收机制就会释放该对象所占用的内存。也就是说,一旦不再需要,WeakMap 里面的键名对象和所对应的键值对会自动消失,不用手动删除引用。

基本上,如果你要往对象上添加数据,又不想干扰垃圾回收机制,就可以使用 WeakMap。一个典型应用场景是,在网页的 DOM 元素上添加数据,就可以使用 WeakMap 结构。当该 DOM 元素被清除,其所对应的 WeakMap 记录就会自动被移除。

```
const wm = new WeakMap();
const element = document.getElementById('example');
wm.set(element, 'some information');
wm.get(element) // "some information"
```

上面代码中,先新建一个 Weakmap 实例。然后,将一个 DOM 节点作为键名存入该实例,并将一些附加信息作为键值,一起存放在 WeakMap 里面。这时,WeakMap 里面对 element 的引用就是弱引用,不会被计入垃圾回收机制。

也就是说,上面的 DOM 节点对象的引用计数是 1,而不是 2。这时,一旦消除对该节点的引用,它占用的内存就会被垃圾回收机制释放。Weakmap 保存的这个键值对,也会自动消失。

总之, <mark>WeakMap</mark> 的专用场合就是,它的键所对应的对象,可能会在将来消失。 <mark>WeakMap</mark> 结构有助于防止内存泄漏。

注意,WeakMap 弱引用的只是键名,而不是键值。键值依然是正常引用。

```
const wm = new WeakMap();
let key = {};
let obj = {foo: 1};

wm.set(key, obj);
obj = null;
wm.get(key)
// Object {foo: 1}
```

上面代码中,键值 obj 是正常引用。所以,即使在 WeakMap 外部消除了 obj 的引用,WeakMap 内部的引用依然存在。

WeakMap 的语法

WeakMap 与 Map 在 API 上的区别主要是两个,一是没有遍历操作(即没有 key() 、 values() 和 entries() 方法),也没有 size 属性。因为没有办法列出所有键名,某个键名是否存在完全不可预测,跟垃圾回收机制是否运行相关。这一刻可以取到键名,下一刻垃圾回收机制突然运行了,这个键名就没了,为了防止出现不确定性,就统一规定不能取到键名。二是无法清空,即不支持 clear 方法。因此,WeakMap 只有四个方法可用: get() 、 set() 、 has() 、 delete() 。

```
const wm = new WeakMap();

// size forEach clear 方法都不存在
wm.size // undefined
wm.forEach // undefined
wm.clear // undefined
```

WeakMap 的示例

WeakMap 的例子很难演示,因为无法观察它里面的引用会自动消失。此时,其他引用都解除了,已经没有引用指向 WeakMap 的键名了,导致无法证实那个键名是不是存在。

贺师俊老师提示,如果引用所指向的值占用特别多的内存,就可以通过 Node 的 process.memoryUsage 方法看出来。根据这个思路,网友vtxf补充了下面的例子。

首先, 打开 Node 命令行。

```
$ node --expose-gc
```

上面代码中, --expose-gc 参数表示允许手动执行垃圾回收机制。

然后, 执行下面的代码。

```
> global.gc();
undefined
// 查看内存占用的初始状态, heapUsed 为 4M 左右
> process.memoryUsage();
{ rss: 21106688,
 heapTotal: 7376896,
 heapUsed: 4153936,
 external: 9059 }
> let wm = new WeakMap();
undefined
> let key = new Array(5*1024*1024);
undefined
// 设置 WeakMap 实例的键名, 也指向 key 数组
> wm.set(key,1);
WeakMap {}
> global.gc();
undefined
> process.memoryUsage();
{ rss: 67538944,
 heapTotal: 7376896,
 heapUsed: 45782816,
 external: 8945 }
> key = null;
> global.gc();
undefined
> process.memoryUsage();
{ rss: 20639744,
 heapTotal: 8425472,
 heapUsed: 3979792,
  external: 8956 }
```

上面代码中,只要外部的引用消失,WeakMap 内部的引用,就会自动被垃圾回收清除。由此可见,有了 WeakMap 的帮助,解决内存泄漏就会简单很多。

WeakMap 的用途

```
let myElement = document.getElementById('logo');
let myWeakmap = new WeakMap();

myWeakmap.set(myElement, {timesClicked: 0});

myElement.addEventListener('click', function() {
    let logoData = myWeakmap.get(myElement);
    logoData.timesClicked++;
}, false);
```

上面代码中,myElement 是一个 DOM 节点,每当发生 click 事件,就更新一下状态。我们将这个状态作为键值放在 WeakMap 里,对应的键名就是myElement。一旦这个 DOM 节点删除,该状态就会自动消失,不存在内存泄漏风险。

WeakMap 的另一个用处是部署私有属性。

```
const _counter = new WeakMap();
const _action = new WeakMap();

class Countdown {
    constructor(counter, action) {
        _counter.set(this, counter);
        _action.set(this, action);
}
dec() {
    let counter = _counter.get(this);
    if (counter < 1) return;
    counter--;
    _counter.set(this, counter);
    if (counter === 0) {
        _action.get(this)();
    }
}
const c = new Countdown(2, () => console.log('DONE'));

c.dec()
c.dec()
// DONE
```

上面代码中,Countdown 类的两个内部属性_counter 和_action ,是实例的弱引用,所以如果删除实例,它们也就随之消失,不会造成内存泄漏。

留言