A	A192001	Pages:3

Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: MA101
Course Name: CALCULUS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 5 marks. Marks

- 1 a) Find the sum of the series $\sum_{k=1}^{\infty} \frac{2}{3^{(k+1)}}$ (2)
 - b) Determine whether the alternating series $\sum_{k=2}^{\infty} \frac{(-1)^k}{k} \frac{k}{k-1}$ converges. (3)
- 2 a) Find the slope of the function $f(x,y) = x\cos(xy) + y\sin(xy)$ at $(\pi,1)$ along the x-direction.
 - b) If $z = f(x^2-y^2)$, show that

$$y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = 0 \tag{3}$$

- 3 a) Find $\lim_{t\to 0} \mathbf{r}(t)$, where $\mathbf{r}(t) = \langle 1 + t^3, te^{-t}, \frac{\sin t}{t} \rangle$ (2)
 - b) Find the directional derivative of $f(x,y) = e^x \cos y$ at $P(0,\pi/4)$ in the direction of negative Y-axis
- - b) Evaluate $\iint_R (x^2 + y^2) dx dy$ where R is the region taken over the first (3)

quadrant for which $x + y \le 1$.

- 5 a) Find the divergence of the vector field $F(x, y, z) = x^2 y \, i + 2 y^3 z \, j + 3 z \, k \tag{2}$
 - b) Evaluate $\int_c x^2 dy + y^2 dx$ where C is the path y = x from (0,0) to(1,1)
- 6 a) Determine the source and sink of the vector field $F(x,y,z) = 2(x^3 2x)i + 2(y^3 2y)j + 2(z^3 2z)k$ (2)
 - b) If S is any closed surface enclosing a volume V and if $A = axi + byj + czk \text{ prove that } \iint A. nds = (a + b + c) V \tag{3}$

PART B Module 1

Answer	anv	two	questions,	each	carries	5	marks.
ILIUSIVUI	uiiy	$\iota \iota \iota \iota \iota \iota$	questions,	uuuu	cui i i co	J	mul no.

- Test for convergence of the series $\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!}$. 7 (5)
- Find the radius of convergence of $\sum_{k=0}^{\infty} \frac{(2x-1)^k}{3^{2k}}$. 8 (5)
- Expand $f(x) = \sin \pi x$ into a Taylors series about $x = \frac{1}{2}$, up to third 9 (5) derivative.

Module 1I

- Answer any two questions, each carries 5 marks. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$. 10 (5)
- Find the local linear approximation L(x,y) of $f(x,y) = \frac{1}{\sqrt{x^2+y^2}}$ at the 11 (5) point P(4,3). Compare the error in the approximation to f by L at the point Q(3.92,3.01) with the distance between P and Q.
- 12 Locate all relative extrema and saddle point for the function (5) $f(x,y) = x^3 + y^3 - 6xy + 20.$

Module 1II

Answer any two questions, each carries 5 marks.

- 13 Find the equation of the unit tangent and unit normal to the (5) $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$; at t = 0.
- A particle moves along the curve $r(t) = (\frac{1}{t})i + t^2j + t^3k$, where t 14 denotes time. Find
 - The scalar tangential and normal components of acceleration (5) at timet = 1.
 - 2) The vector tangential and normal component of acceleration at time t=1
- Find the equation of the tangent plane and the parametric equations 15 (5) of the normal line to the surface $z = 4x^3y^2 + 2y - 2$ at (1,-2,10).

Module 1V

Answer any two questions, each carries 5 marks.

- Use double integral to find the area of the plane enclosed by 16 (5) $y^2 = 4x \text{ and } x^2 = 4y$
- Change the order of integration to evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ 17 (5)

A	A192001 Pag	es:3						
18	Use triple integral to find the volume of the solid with in the cylinder $x^2 + y^2 = 4$ and between the planes $z = 0$ and $y + z = 3$.	(5)						
	Module V							
19	Answer any three questions, each carries 5 marks. If $\bar{r} = x \bar{\iota} + y \bar{\jmath} + z \bar{k}$ and $r = \bar{r} $, prove that $\nabla^2 r^n = n(n+1) r^{n-2}$	(5)						
20	Evaluate $\int_C (3x^2 + y^2) dx + 2xydy$ along the curve							
	$C: x = \cos t, y = \sin t, \ 0 \le t \le \frac{\pi}{2}$							
21	Find the scalar potential of $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$	(5)						
22	Find the work done by $F(x,y) = (x+y)i + xyj - z^2k$ along the line	. - \						
	segments from (0,0,0) to (1,3,1) to (2,-1,5)	(5)						
23	Show that $\int_{(0,0)}^{(1,\frac{\pi}{2})} e^x \sin y \ dx + e^x \cos y \ dy$ is independent of path.							
	Hence evaluate $\int_{(0,0)}^{(1,\frac{\pi}{2})} e^x \sin y \ dx + e^x \cos y \ dy$	(5)						
	Module VI							
24	Answer any three questions, each carries 5 marks. Evaluate using Green's theorem in the plane $\int_c (x^2 dx - xy dy)$ where C is the boundary of the square formed by $x = 0$, $y = 0$, $x = a$, $y = a$	(5)						
25	Evaluate the surface integral $\iint_{\sigma} f(x, y, z) ds$ where							
	$f(x, y, z) = x + y$, σ is the portion of the surface $z = 6 - 2x - 4y$ in	(5)						
	the first octant.							
26	Using divergence theorem find the flux across the surface σ which is the surface of the tetrahedron in the first octant bounded by $x + y + z = 1$ and the coordinate planes, $\bar{F} = (x^2 + y)\bar{\iota} + xy\bar{\jmath} - (2xz + y)\bar{k}$	(5)						
27	Evaluate $\int_c (e^x dx + 2y dy - dz)$ where C is the curve $x^2 + y^2 = 4$, $z = 2$ using Stoke's theorem	(5)						
28	Evaluate the surface integral $\iint_{\sigma} f(x, y, z) ds$ where							
	$f(x,y,z) = x^2 + y^2$, σ is the surface of the sphere $x^2 + y^2 + z^2 = a^2$	(5)						
