AD. 1 - Mouvement en roue libre

Activité : Modélisation du mouvement d'une voiture en roue libre sur une pente

- 1) Relevé des positions successives grâce au logiciel Capstone. Rappel sur la procédure.
 - Cadrage

Représenter l'allure de la courbe V_x(t)

- Paramétrage de l'échelle
- Placement du repère et des axes

2) Tracé des différentes évolutions : position, vitesse et accélération	
a. Position. Représenter l'allure de la courbe x(t).	
A quel type de courbe fait-elle penser ?	
Quelle est l'équation générale de ce type de courbe ?	
Quel paramètre peut-on connaître si on a placé le repère de façon que x(0)=0)?
b. Vitesse.	

A quel type de courbe fait-elle penser ?
Quelle est l'équation générale de ce type de courbe ?
Utiliser le logiciel pour déterminer les paramètres de cette courbe (ordonnée à l'origine et pente
Quel(s) paramètre(s) de x(t) peut-on connaître si on admet que $V_x = \frac{dx(t)}{dt}$?
▲
c. Accélération Représenter l'allure de la courbe x(t).
A quel type de courbe fait-elle penser ?
Quelle est l'équation générale de ce type de courbe ?
Utiliser Le logiciel pour déterminer les paramètres de cette courbe.
Comparer la courbe trouvée à la courbe $\frac{dVx(t)}{dt}$; retrouve-t-on que $a_x = \frac{dVx(t)}{dt}$?
3) Bilan.
Donner l'équation de la position en fonction du temps x(t).
Calculer la position atteinte au bout de 10 secondes
Calculer la vitesse atteinte à cette même date.