SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Linguagens Formais e Autômatos Esdras Lins Bispo Jr.

27 de novembro de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios-bônus;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- -P é a pontuação obtida na prova, e
- -EB é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (2) Autômatos Finitos Determinísticos, e (3) Autômatos Finitos Não-Determinísticos.

Nome:		
T (OIIIO.		

Segundo Teste

- 1. (5,0 pt) Dê o diagrama de estados dos **AFNs** que reconhecem as seguintes linguagens. Admita em todos os itens que o alfabeto é $\{0,1\}$.
 - (a) [Sipser 1.7 (c)] (1,5 pt) $\{\omega \mid \omega \text{ contém um número par de 0s, ou contém exatamente dois 1s}\}.$

(b) [Sipser 1.9 (a)] (2,0 pt) $A \circ B$, em que $A = \{\omega \mid \text{o comprimento de } \omega \text{ \'e no m\'aximo 5} \}$ e $B = \{\omega \mid \text{toda posiç\~ao impar de } \omega \text{ \'e um 1} \}$.

(c) [Sipser 1.10 (b)] (1,5 pt) A^* , em que $A = \{\omega \mid \omega \text{ contém ao menos dois 0s e no máximo um 1s}\}.$

2. (5,0 pt) [Sipser 1.31] Para qualquer cadeia $\omega = \omega_1 \omega_2 \dots \omega_n$, o reverso de ω , chamado de $\omega^{\mathcal{R}}$, é a cadeia ω em ordem reversa, $\omega_n \dots \omega_2 \omega_1$. Para qualquer linguagem A, faça que $A^{\mathcal{R}} = \{\omega^{\mathcal{R}} \mid \omega \in A\}$. Mostre que se A é regular, então $A^{\mathcal{R}}$ também é regular.

Prova: Se A é regular, então existe um AFD $M_A = (Q_A, \Sigma_A, \delta_A, q_A, F_A)$ que a reconhece. Iremos construir o AFN $M = (Q, \Sigma, \delta, q_0, F)$, a partir de M_A , que reconhece $A^{\mathcal{R}}$. Apresentamos os elementos de M a seguir:

- $\bullet \ \ Q = Q_A \cup \{q_0\};$
- $\Sigma = \Sigma_A$;
- $\bullet \ \delta(q,a) = \left\{ \begin{array}{l} \{r\}, \ \ \mathrm{se} \ \delta_A(r,a) = q \\ F_A, \ \ \mathrm{se} \ q = q_0 \ \mathrm{e} \ a = \epsilon \\ \emptyset, \ \ \mathrm{caso} \ \mathrm{contrário}. \\ \mathrm{em} \ \mathrm{que} \ q \in Q, \ r \in Q_A \ \mathrm{e} \ a \in \Sigma; \end{array} \right.$
- q_0 é o estado inicial;
- $F = \{q_0\}.$

Como foi possível construir M, logo $A^{\mathcal{R}}$ é regular