Tutorial 5

Exercise 3

- 17. Give an example of a 2×3 matrix A, if possible, such that the solution space of the linear system Ax = 0 is
 - (a) \mathbb{R}^3 .

- (b) the plane $\{(x, y, z) \mid 2x + 3y z = 0\}.$
- (c) the line $\{(t, 2t, 3t) | t \in \mathbb{R} \}$.
- (d) the zero subspace.
- 19. Let U, V and W be the three planes defined in Question 3.4. Is $U \cap V$ a subspace of \mathbb{R}^3 ? Is $V \cap W$ a subspace of \mathbb{R}^3 ? Justify your answers.

$$\begin{split} U &= \{\, (x,y,z) \mid 2x-y+3z=0 \,\}, \ V = \{\, (x,y,z) \mid 3x+2y-z=0 \,\}, \\ W &= \{\, (x,y,z) \mid x-3y-2z=1 \,\}. \end{split}$$

- 25. For each of the sets S_1 to S_6 in Question 3.9, determine whether the set is linearly independent
 - (a) $S_1 = \{(1, 1, -1), (-2, 2, 1)\}.$
 - (b) $S_2 = \{(1, 1, -1), (-2, -2, 2)\}.$
 - (c) $S_3 = \{(1, 1, -1), (-2, 2, 1), (1, 5, -2)\}.$
 - (d) $S_4 = \{(1, 1, -1), (-2, 2, 1), (4, 0, 3)\}.$
 - (e) $S_5 = \{(1, 1, -1), (-2, 2, 1), (1, 5, -2), (0, 8, -2)\}.$
 - (f) $S_6 = \{(1, 1, -1), (-2, 2, 1), (4, 0, 3), (2, 6, -3)\}.$
- 27. In Question 3.13, suppose u, v, w are linearly independent vectors in \mathbb{R}^n . Determine which of the sets S_1 to S_5 are linearly independent.

$$S_1 = \{u, v\}, \quad S_2 = \{u - v, v - w, w - u\}, \quad S_3 = \{u - v, v - w, u + w\},$$

 $S_4 = \{u, u + v, u + v + w\}, \quad S_5 = \{u + v, v + w, u + w, u + v + w\}.$

- 29. Let u, v, w be vectors in \mathbb{R}^3 such that $V = \text{span}\{u, v\}$ and $W = \text{span}\{u, w\}$ are planes in \mathbb{R}^3 . Find $V \cap W$ if
 - (a) u, v, w are linearly independent.
 - (b) u, v, w are not linearly independent.
- 30. (All vectors in this question are written as column vectors.) Let u_1, u_2, \ldots, u_k be vectors in \mathbb{R}^n and P a square matrix or order n.
 - (a) Show that if Pu_1, Pu_2, \ldots, Pu_k are linearly independent, then u_1, u_2, \ldots, u_k are linearly independent.
 - (b) Suppose u_1, u_2, \ldots, u_k are linearly independent.
 - (i) Show that if P is invertible, then Pu_1, Pu_2, \ldots, Pu_k are linearly independent.
 - (ii) If P is not invertible, are Pu_1, Pu_2, \ldots, Pu_k linearly independent?