Zadanie nr 1 - Generacja sygnału i szumu

Cyfrowe Przetwarzanie Sygnałów

Dawid Jakubik, 224307 Hubert Gawłowski, 224298 22.04.2021

1 Cel zadania

Celem zadania było zapoznanie się z operacjami splotu, filtracji i korelacji sygnałów oraz zaimplementowanie ich rozszerzając tym samym program przygotowany w ramach zadań 1 i 2.

2 Wstęp teoretyczny

Podczas pracy nad zadaniem korzystaliśmy z teorii zawartej w intrukcji na platformie Wikamp [1]. Najważniejsze definicje, jakie trzeba poznać, aby mieć podstawy teoretyczne do zadania dotyczą:

- definicji splotu oraz wzoru na niego
- definicji korelacji oraz wzoru na korelację bezpośrenią oraz z użyciem splotu
- definicji filtracji, filtru dolnoprzepustowego oraz okna prostokątnego, a także wzorów na okna: Hamminga, Hanninga i Blackmana oraz filtrów: śtodkowoprzepustowego i górnoprzepustowego
- definicji odpowiedzi impulsowej filtru

W ramach zadania, zgodnie z poleceniem poza oknem prostokątnym zaimplementowaliśmy okno Hanninga, a oprócz filtru dolnoprzepustowego został zaimplementowany filtr środkowoprzepustowy.

3 Eksperymenty i wyniki

3.1 Splot sygnałów dyskretnych

Pierwsza pula eksperymentów miała na celu pokazanie splotu sygnałów dyskretnych

3.1.1 Eksperyment nr 1: Splot sygnałów sinusoidalnych

W pierwszym eksperymencie dokonaliśmy operacji splotu na dwóch sygnałach sinusoidalnych o następujących parametrach:

- Dla sygnału pierwszego:
 - Amplituda: 5
 - Start w sekundzie: 0

- Czas trwania w sekundach: 3

- Okres podstawowy: 2

– Częstotliwość próbkowania: 70

• Dla sygnału drugiego:

- Amplituda: 5

– Start w sekundzie: 1

- Czas trwania w sekundach: 3

- Okres podstawowy: 2

– Częstotliwość próbkowania: 70

Rysunek 1: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 2: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji splotu dwóch powyższych sygnałów przedstawia się następująco

Rysunek 3: Wynik operacji splotu sygnałów z rysunków 1 i 2

3.1.2 Eksperyment nr 2: Splot sygnałów sinusoidalnego wyprostowanego jednopółkowo oraz sygnału trójkątnego

W kolejnym eksperymencie wykonaliśmy splot na sygnałach sinusoidalnym wyprostowanym jednopółkowym oraz trójkątnym. Sygnały przyjęły następujące parametry:

- Dla sygnału pierwszego (sinusoidalnego jednopółkowego):
 - Amplituda: 3
 - Start w sekundzie: 1
 - Czas trwania w sekundach: 4
 - Okres podstawowy: 1
 - Częstotliwość próbkowania: 50
- Dla sygnału drugiego (trójkątnego):
 - Amplituda: 2
 - Start w sekundzie: 1

– Czas trwania w sekundach: 4

- Okres podstawowy: 3

-Współczynnik wypełnienia: $0.4\,$

– Częstotliwość próbkowania: 50

Rysunek 4: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 5: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji splotu dwóch powyższych sygnałów przedstawia się następująco

Rysunek 6: Wynik operacji splotu sygnałów z rysunków 4 i 5

3.1.3 Eksperyment nr 3: Splot sygnałów trójkątnego oraz sinusoidalnego wyprostowanego jednopółkowo

W kolejnym eksperymencie przeprowadziliśmy splot na takich samych sygnałach jak w eksperymencie powyżej, jednak zmieniliśmy kolejność sygnałów - w tym przypadku sygnałem nr 1 będzie sygnał trójkątny, a sygnałem nr 2 - sygnał sinusoidalny jednopółkowy. Celem tego eksperymentu jest zbadanie, czy wzór (2) podany w instrukcji do zadania [1] jest przemienny tzn. czy (h*x)(n) da nam ten sam wynik, co (x*h)(n). Tak więc - podsumowując do eksperymentów wykorzystamy następujące z następującymi parametrami:

- Dla sygnału pierwszego (trójkątnego):
 - Amplituda: 2
 - Start w sekundzie: 1
 - Czas trwania w sekundach: 4
 - Okres podstawowy: 3
 - Współczynnik wypełnienia: 0.4

– Częstotliwość próbkowania: 50

• Dla sygnału drugiego (sinusoidalnego jednopółkowego):

- Amplituda: 3

- Start w sekundzie: 1

– Czas trwania w sekundach: 4

- Okres podstawowy: 1

– Częstotliwość próbkowania: 50

Rysunek 7: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 8: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji splotu dwóch powyższych sygnałów przedstawia się następująco

Rysunek 9: Wynik operacji splotu sygnałów z rysunków 7 i 8

3.1.4 Eksperyment nr 4: Splot sygnałów prostokątnego i sinusoidalnego wyprostowanego dwupółkowo

W tym eksperymencie dokonaliśmy splotu na sygnałach prostokątym oraz sinusoidalnym dwupółkowym o następujących parametrach:

- Dla sygnału pierwszego (prostokątnego):
 - Amplituda: 4
 - Start w sekundzie: 0
 - Czas trwania w sekundach: 4
 - Okres podstawowy: 2
 - Współczynnik wypełnienia: 0.6
 - Częstotliwość próbkowania: 10
- Dla sygnału drugiego (sinusoidalnego dwupółkowego):
 - Amplituda: 1
 - Start w sekundzie: 0

– Czas trwania w sekundach: 4

- Okres podstawowy: 4

– Częstotliwość próbkowania: 20

Rysunek 10: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 11: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji splotu dwóch powyższych sygnałów przedstawia się następująco

Rysunek 12: Wynik operacji splotu sygnałów z rysunków 10 i 11

3.2 Korelacja sygnałów dyskretnych

W celu lepszego zwizualizowania podobieństw/różnic pomiędzy korelacją, a splotem eksperymenty dla korelacji postanowiliśmy wykonać wykorzystując te same sygnały wjeściowe, które mimo wszystko przedstawimy jeszcze raz w ramach eksperymentów.

3.2.1 Eksperyment nr 5: Korelacja bezpośrednia sygnałów sinusoidalnych

W pierwszym eksperymencie dotyczącym korelacji dokonaliśmy operacji korelacji bezpośredniej na dwóch sygnałach sinusoidalnych o następujących parametrach:

- Dla sygnału pierwszego:
 - Amplituda: 5
 - Start w sekundzie: 0
 - Czas trwania w sekundach: 3

- Okres podstawowy: 2

– Częstotliwość próbkowania: 70

• Dla sygnału drugiego:

- Amplituda: 5

- Start w sekundzie: 1

- Czas trwania w sekundach: 3

- Okres podstawowy: 2

– Częstotliwość próbkowania: 70

Rysunek 13: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 14: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji korelacji dwóch powyższych sygnałów przedstawia się następująco

Rysunek 15: Wynik operacji korelacji sygnałów z rysunków 13 i 14

3.2.2 Eksperyment nr 6: Korelacja bezpośrednia sygnałów sinusoidalnego wyprostowanego jednopółkowo oraz sygnału trójkątnego

W kolejnym eksperymencie wykonaliśmy korelacje bezpośrednią na sygnałach sinusoidalnym wyprostowanym jednopółkowym oraz trójkątnym. Sygnały przyjęły następujące parametry:

- Dla sygnału pierwszego (sinusoidalnego jednopółkowego):
 - Amplituda: 3
 - Start w sekundzie: 1
 - Czas trwania w sekundach: 4
 - Okres podstawowy: 1
 - Częstotliwość próbkowania: 50
- Dla sygnału drugiego (trójkątnego):
 - Amplituda: 2

- Start w sekundzie: 1

– Czas trwania w sekundach: 4

- Okres podstawowy: 3

-Współczynnik wypełnienia: $0.4\,$

– Częstotliwość próbkowania: 50

Rysunek 16: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 17: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji korelacji bezpośredniej dwóch powyższych sygnałów przedstawia się następująco

Rysunek 18: Wynik operacji korelacji sygnałów z rysunków 16 i 17

3.2.3 Eksperyment nr 7: Korelacja bezpośrednia sygnałów trójkątnego oraz sinusoidalnego wyprostowanego jednopółkowo

W kolejnym eksperymencie przeprowadziliśmy korelację bezpośrednią na takich samych sygnałach jak w eksperymencie powyżej, jednak zmieniliśmy kolejność sygnałów - w tym przypadku sygnałem nr 1 będzie sygnał trójkątny, a sygnałem nr 2 - sygnał sinusoidalny jednopółkowy. Celem tego eksperymentu jest zbadanie, czy wzór (2) podany w instrukcji do zadania [1] jest przemienny tzn. czy $(h^*x)(n)$ da nam ten sam wynik, co $(x^*h)(n)$. Tak więc - podsumowując do eksperymentów wykorzystamy następujące z następującymi parametrami:

- Dla sygnału pierwszego (trójkątnego):
 - Amplituda: 2
 - Start w sekundzie: 1
 - Czas trwania w sekundach: 4
 - Okres podstawowy: 3
 - Współczynnik wypełnienia: 0.4

– Częstotliwość próbkowania: 50

• Dla sygnału drugiego (sinusoidalnego jednopółkowego):

- Amplituda: 3

- Start w sekundzie: 1

– Czas trwania w sekundach: 4

- Okres podstawowy: 1

– Częstotliwość próbkowania: 50

Rysunek 19: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 20: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji korelacji bezpośredniej dwóch powyższych sygnałów przedstawia się następująco

Rysunek 21: Wynik operacji korelacji sygnałów z rysunków 19 i 20

3.2.4 Eksperyment nr 8: Korelacja z wykorzystaniem splotu sygnałów prostokątnego i sinusoidalnego wyprostowanego dwupółkowo

W tym eksperymencie dokonaliśmy korelacji z użciem splotu na sygnałach prostokątym oraz sinusoidalnym dwupółkowym o następujących parametrach:

- Dla sygnału pierwszego (prostokątnego):
 - Amplituda: 4
 - Start w sekundzie: 0
 - Czas trwania w sekundach: 4
 - Okres podstawowy: 2
 - Współczynnik wypełnienia: 0.6
 - Częstotliwość próbkowania: 10
- Dla sygnału drugiego (sinusoidalnego dwupółkowego):
 - Amplituda: 1

- Start w sekundzie: 0

– Czas trwania w sekundach: 4

– Okres podstawowy: 4

– Częstotliwość próbkowania: 20

Rysunek 22: Sygnał nr 1, który zostanie poddany operacji splotu

Rysunek 23: Sygnał nr 2, który zostanie poddany operacji splotu

Wynik operacji korelacji z wykorzystaniem splotu dwóch powyższych sygnałów przedstawia się następująco

Rysunek 24: Wynik operacji korelacji z wykorzystaniem splotu sygnałów z rysunków 22 i 23

3.3 Eksperyment nr 9: Filtracja sygnału sinusoidalnego

W ramach tego eksperymentu poddaliśmy poniższy sygnał sinusoidalny filtracjom. Podczs obu filtracji przyjęliśmy

• rząd filtru: 25

• Częstotliwość odcięcia: 10Hz

• Częstotliwość próbkowania sygnału: 80Hz

Rysunek 25: Sygnał sinusoidalny

Poniżej przedstawiony został filtr dolnoprzepustowy z oknem Hanninga oraz wynik filtracji.

Rysunek 26: Filtr oraz wynik filtracji dla filtra dolnoprzepustowego i zastosowania okna Hanninga

Poniżej przedstawiony został filtr pasmowy z oknem prostokątnym oraz wynik filtracji.

Rysunek 27: Filtr oraz wynik filtracji dla filtra pasmowego i zastosowania okna prostokątnego

4 Wnioski

Program umożliwia generowanie wykresów będącymi wynikami operacji splotu, korelacji oraz filtracji.

4.1 Splot sygnałów dyskretnych

Pierwsza pula eksperymentów polegała na spłocie sygnałów dyskretnych. W eksperymencie nr 1 dokonaliśmy operacji splotu na takich samych sygnałach sinusoidalnych, przesunietych w czasie o 1 s. Wynik operacji spłotu jest zgodny z założeniami. Sygnał wynikowy ma okres równy sumie okresów obu sygnałów. Pozwala nam to wysnuć wniosek, że przesuniecie w czasie nie ma wpływu na operacje splotu. W eksperymencie 2, w którym dokonaliśmy operacji splotu dla sygnałów sinusoidalnego wyprostowanego jednopółkowo oraz trójkatnego wyniki również wydają się logiczne i sensowne. Długość trwania sygnału splotu odpowiada sumie długości trwania sygnałów wejściowych, a maksymalną wartość splot przyjmuje dokładnie w połowie czasu trwania. Następny eksperyment (nr 3) dowodzi, że operacja splotu jest przemienna tzn. bez względu, który sygnał przyjmiemy jako h, a który jako x we wzorze na splot [1] - wynik bedzie taki sam. Eksperyment 4 przeprowadziliśmy dla typów sygnałów, dla których wcześniej nie przeprowadzaliśmy eksperymentów oraz z zdecydowanie mniejszą (i różną od siebie) częstotliwością próbkowania. Wynik pokazuje, że przy operacji splotu czestotliwość próbkowania obu sygnałów dyskretnych nie musi być taka sama.

4.2 Korelacja sygnałów dyskretnych

Druga pula eksperymentów polegała na pokazaniu operacji korelacji sygnałów dyskretnych. Eksperymenty przeprowadziliśmy dla takich samych sygnałów jak przy operacji splotu. Pierwszy z eksperymentów wykonany na sygnałach sinusoidalnych (a więc sygnałach symetrycznych) dał wynik dokładnie taki sam jak w przypadku splotu dla tych sygnałów. Różnice w rezultacie, jeśli porównamy go z operacją splotu dla analogicznych sygnałów możemy zaobserwować w eksperymencie nr 6. Co ciekawe, jest to po prostu odbicie lustrzane względem prostej y=4 (środek wykresu). Eksperyment 7 pokazał nam, że w przypadku korelacji parametry x i h ze wzoru zawartego w [1] nie mogą być stosowane zamiennie. W eksperymencie 8 pokazaliśmy korelacji z wykorzystaniem splotu. Wynik nie może dziwić - jest on po prostu wykresem powstałym w wyniku splotu dwóch sygnałów, a więc powstaje wykres taki sam jak w eksperymencie nr 4.

4.3 Filtracja sygnałów dyskretnych

Podczas procesu filtracji skupiliśmy się przede wszystkim na uzyskaniu optymalnej odpowiedzi impulsowej, którą potem należy wykorzystać w operacji splotu, aby uzyskać sygnał przefiltrowany. Uważamy, że okno Hanninga daje zdecydowanie lepsze i dokładniejsze rezultaty od okna prostokątnego. Co do filtra dolnoprzepustowego i środkowoprzepustowego wydaje nam się, że ciężko jednoznacznie stwierdzić, który z nich jest "lepszy". Uważamy, że ich zastosowanie należy uzależnić od konkretnego przypadku - w niektórych lepiej sprawdzi się filtr dolnoprzpustowy, a w innych - średnioprzepustowy.

4.4 Ostateczne najważniejsze wnioski

- Operacje korelacji i splotu są do siebie bardzo podobne, a w niektórych przypadkach dają w wyniku ten sam rezultat. Ponadto można zrealizować korelację w oparciu o splot.
- Zastosowanie funkcji okna pozwala zwiększyć efektywność filtru.
- Im większy rząd filtra, tym jakość filtracji lepsza
- Metoda filtrów SOI zastosowana w zadaniu generuje zakłócenia na krańcach odfiltrowanego sygnału.

Literatura

[1] Instrukcja do zadania 3 na stronie przedmiotu. [przeglądany 26.05.2021], Dostępny w: https://ftims.edu.p.lodz.pl/pluginfile.php/14039/mod resource/content/1/zad3.pdf