PulSearch

Looking for pulsars in space

Les changements dans le projet

Nos objectifs

• Aider les scientifiques à plus facilement identifier les Pulsars.

Apprendre

Les Pulsars

• Un pulsar est une étoile qui émet de façon périodique une vague de rayonnement électromagnétique.

• Ils sont répartis en 3 classes.

Integrated profile:

Une courbe qui représente le rayonnement électromagnétique d'un pulsar

Displacement Measure:

L'indice d'étirement de la courbe

"Integrated profile"

Signal to Noise ratio:

Mesure utilisée pour comparer le signal du pulsar au bruit de l'espace Table 1: Overview of the dataset

M _{in}	SDip	EK _{in}	Skin	MDM_{SNR}	$SDDM_{SNR}$	EDM _{SNR}	SKDM _{SNR}
140.5625	55.68378	-0.23457	-0.69965	3.199833	19.11043	7.975532	74.24222
102.5078	58.88243	0.465318	-0.51509	1.677258	14.86015	10.57649	127.3936
103.0156	39.34165	0.323328	1.051164	3.121237	21.74467	7.735822	63.17191
136.75	57.17845	-0.06841	-0.63624	3.642977	20.95928	6.896499	53.59366
88.72656	40.67223	0.600866	1.123492	1.17893	11.46872	14.26957	252.5673
93.57031	46.69811	0.531905	0.416721	1.636288	14.54507	10.62175	131.394
119.4844	48.76506	0.03146	-0.11217	0.999164	9.279612	19.20623	479.7566
130.3828	39.84406	-0.15832	0.38954	1.220736	14.37894	13.53946	198.2365
107.25	52.62708	0.452688	0.170347	2.33194	14.48685	9.001004	107.9725
107.2578	39.49649	0.465882	1.162877	4.079431	24.98042	7.39708	57.78474
142.0781	45.28807	-0.32033	0.283953	5.376254	29.0099	6.076266	37.83139
133.2578	44.05824	-0.08106	0.115362	1.632107	12.00781	11.97207	195.5434
134.9609	49.55433	-0.1353	-0.08047	10.69649	41.34204	3.893934	14.13121
117.9453	45.50658	0.325438	0.661459	2.83612	23.11835	8.943212	82.47559
138.1797	51.52448	-0.03185	0.046797	6.330268	31.57635	5.15594	26.14331
114.3672	51.94572	-0.0945	-0.28798	2.738294	17.19189	9.050612	96.6119
109.6406	49.01765	0.137636	-0.2567	1.508361	12.0729	13.36793	223.4384

Comment avons-nous fait?

• Python: Sickit Learn, Seaborn, matplotlib, pandas

• Github

Naïve Bayes

Decision Tree

Des questions?