BEST AVAILABLE COPY

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 1/21, 5/10, 9/10, 15/53, 15/54, 15/61, 15/63, C12P 23/00, C12Q 1/68 (11) International Publication Number:

WO 99/63055

9 December 1999 (09.12.99) (43) International Publication Date:

(21) International Application Number:

PCT/US99/12121

A1

(22) International Filing Date:

2 June 1999 (02.06.99)

(30) Priority Data:

09/088.724

2 June 1998 (02.06.98)

US

09/088,725

2 June 1998 (02.06.98)

US

(71) Applicant (for all designated States except US): UNIVERSITY OF MARYLAND [US/US]; Office of Technology Liaison, 4312 Knox Road, College Park, MD 20742 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CUNNINGHAM, Francis, X., Jr. [US/US]; 2727 Washington Avenue, Chevy Chase, MD 20815 (US). SUN, Zairen [US/US]; 3405 Tulane Drive #22, Hyattsville, MD 20783 (US).

(74) Agents: GOLDHUSH, Douglas, H. et al.; Nikaido, Marmelstein, Murray & Oram LLP, Suite 330 - G Street Lobby, Metropolitan Square, 655 Fifteenth Street, N.W., Washington, DC 20005-5701 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD. GE. GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

(54) Title: GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF

(57) Abstract

Nucleic acid sequences encoding ϵ -cyclase, isopentenyl pyrophosphate isomerase and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with the vectors. Methods for controlling the ratio of various carotenoids in a host and for the production of novel carotenoid pigments. The present invention also provides a method for screening for eukaryotic genes encoding carotenoid biosynthesis, and for modifying the disclosed enzymes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin _.	16	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2,,	Ziniozowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ.	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

The present invention describes nucleic acid sequences for eukaryotic genes encoding ϵ lycopene ϵ -cyclase (also known as ϵ -cyclase and ϵ lycopene cyclase), isopentenyl pyrophosphate isomerase (IPP) and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with said vectors. The present invention also provides methods for augmenting the accumulation of carotenoids, changing the composition of the carotenoids, and producing novel and rare carotenoids. The present invention provides methods for controlling the ratio or relative amounts of various carotenoids in a host. The invention also relates to modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. Additionally, the present invention provides a method for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

15

20

Background of the Invention

Carotenoid pigments with cyclic endgroups are essential components of the photosynthetic apparatus in oxygenic photosynthetic organisms (e.g., cyanobacteria, algae and plants; Goodwin, 1980). The symmetrical bicyclic yellow carotenoid pigment βcarotene (or, in rare cases, the asymmetrical bicyclic \alpha-carotene) is intimately associated with the photosynthetic reaction centers and plays a vital role in protecting against potentially lethal photooxidative damage (Koyama, 1991). β-carotene and other carotenoids derived from it or from α-carotene also serve as light-harvesting pigments (Siefermann-Harms, 1987), are involved in the thermal dissipation of excess light energy captured by the lightharvesting antenna (Demmig-Adams & Adams, 1992), provide substrate for the biosynthesis of the plant growth regulator abscisic acid (Rock & Zeevaart, 1991; Parry & Horgan, 1991), and are precursors of vitamin A in human and animal diets (Krinsky, 1987). Plants also exploit carotenoids as coloring agents in flowers and fruits to attract pollinators and agents of seed dispersal (Goodwin, 1980). The color provided by carotenoids is also of agronomic value in a number of important crops. Carotenoids are currently harvested from a variety of organisms, including plants, algae, yeasts, cyanobacteria and bacteria, for use as pigments in food and feed.

30

The probable pathway for formation of cyclic carotenoids in plants, algae and cyanobacteria is illustrated in Figure 1. Two types of cyclic endgroups or rings are commonly found in higher plant carotenoids, these are referred to as the β (beta) and ϵ (epsilon) rings (Fig. 3). The precursor acyclic endgroup (no ring structure) is referred to as the Ψ (psi) endgroup. The β and ϵ endgroups differ only in the position of the double bond in the ring. Carotenoids with two β rings are ubiquitous, and those with one β and one ϵ ring are common, but carotenoids with two ϵ rings are uncommon. β -carotene (Fig. 1) has two β -endgroups and is a symmetrical compound that is the precursor of a number of other important plant carotenoids such as zeaxanthin and violaxanthin (Fig. 2).

10

15

20

25

5

Genes encoding enzymes of carotenoid biosynthesis have previously been isolated from a variety of sources including bacteria (Armstrong et al., 1989, Mol. Gen. Genet. 216, 254-268; Misawa et al., 1990, J. Bacteriol., 172, 6704-12), fungi (Schmidhauser et al., 1990, Mol. Cell. Biol. 10, 5064-70), cyanobacteria (Chamovitz et al., 1990, Z. Naturforsch, 45c, 482-86; Cunningham et al., 1994) and higher plants (Bartley et al., Proc. Natl. Acad. Sci USA 88, 6532-36; Martinez-Ferez & Vioque, 1992, Plant Mol. Biol. 18, 981-83). Many of the isolated enzymes show a great diversity in structure, function and inhibitory properties between sources. For example, phytoene desaturases from the cyanobacterium Synechococcus and from higher plants and green algae carry out a two-step desaturation to yield ζ-carotene as a reaction product. In plants and cyanobacteria a second enzyme (ζcarotene desaturase), similar in amino acid sequence to the phytoene desaturase, catalyzes two additional desaturations to yield lycopene. In contrast, a single desaturase enzyme from Erwinia herbicola and from other bacteria introduces all four double bonds required to form lycopene. The Erwinia and other bacterial desaturases bear little amino acid sequence similarity to the plant and cyanobacterial desaturase enzymes, and are thought to be of unrelated ancestry. Therefore, even with a gene in hand from one source, it may be difficult to identify a gene encoding an enzyme of similar function in another organism. In particular, the sequence similarity between certain of the prokaryotic and eukaryotic genes encoding enzymes of carotenoid biosynthesis is quite low.

30

Further, the mechanism of gene expression in prokaryotes and eukaryotes appears to differ sufficiently such that one cannot expect that an isolated eukaryotic gene will be properly expressed in a prokaryotic host.

The difficulties in isolating genes encoding enzymes with similar functions is exemplified by recent efforts to isolate the gene encoding the enzyme that catalyzes the formation of β -carotene from the acyclic precursor lycopene. Although a gene encoding an enzyme with this function had been isolated from a bacterium, it had not been isolated from any photosynthetic procaryote or from any eukaryotic organism. The isolation and characterization of the enzyme catalyzing formation of β -carotene in the cyanobacterium Synechococcus PCC7942 was described by the present inventors and others (Cunningham et al., 1993 and 1994). The amino acid sequence similarity of the cyanobacterial enzyme to the various bacterial lycopene β -cyclases is so low (ca. 18-25% overall; Cunningham et al., 1994) that there is much uncertainty as to whether they share a common ancestry or, instead, represent an example of convergent evolution.

The need remains for the isolation of eukaryotic and prokaryotic genes and cDNAs encoding polypeptides involved in the carotenoid biosynthetic pathway, including those encoding a lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. There remains a need for methods to enhance the production of carotenoids, to alter the composition of carotenoids, and to reduce or eliminate carotenoid production. There also remains a need in the art for methods for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

SUMMARY OF THE INVENTION

20

25

30

5

10

15

Accordingly, a first object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes involved in carotenoid biosynthesis; in particular, lycopene ε-cyclase, IPP isomerase and β-carotene hydroxylase.

A second object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes which produce novel or uncommon carotenoids.

A third object of the present invention is to provide vectors containing said genes.

A fourth object of the present invention is to provide hosts transformed with said vectors.

Another object of the present invention is to provide hosts which accumulate novel or uncommon carotenoids or which accumulate greater amounts of specific or total carotenoids.

Another object of the present invention is to provide hosts with inhibited and/or altered carotenoid production.

10

15

20

25

30

Another object of this invention is to secure the expression of eukaryotic carotenoidrelated genes in a recombinant prokaryotic host.

Yet another object of the present invention is to provide a method for screening for eukaryotic and prokaryotic genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

An additional object of the invention is to provide a method for manipulating carotenoid biosynthesis in photosynthetic organisms by inhibiting the synthesis of certain enzymatic products to cause accumulation of precursor compounds.

Another object of the invention is to provide modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase.

These and other objects of the present invention have been realized by the present inventors as described below.

A subject of the present invention is an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ε-cyclase, IPP isomerase or β-carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21 or 23-27.

The invention also includes vectors which comprise any of the nucleic acid sequences listed above, and host cells transformed with such vectors.

Another subject of the present invention is a method of producing or enhancing the production of a carotenoid in a host cell, comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

Yet another subject of the present invention is a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ε-cyclase, IPP isomerase or β-carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

10 .

15

20

25

30

The present invention also includes a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Also included is a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity in the host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Another subject of the present invention is a method for screening for genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

Figure 1 is a schematic representation of the putative pathway of β -carotene biosynthesis in cyanobacteria, algae and plants. The enzymes catalyzing various steps are indicated at the left. Target sites of the bleaching herbicides NFZ and MPTA are also indicated at the left. Abbreviations: DMAPP, dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; GPP, geranyl pyrophosphate; IPP, isopentenyl pyrophosphate; LCY, lycopene cyclase; MVA, mevalonic acid; MPTA, 2-(4-methylphenoxy)triethylamine hydrochloride; NFZ, norflurazon; PDS, phytoene desaturase; PSY, phytoene synthase; ZDS, ζ -carotene desaturase; PPPP, prephytoene pyrophosphate.

Figure 2 depicts possible routes of synthesis of cyclic carotenoids and common plant and algal xanthophylls (oxycarotenolds) from neurosporene. Demonstrated activities of the β - and ϵ -cyclase enzymes of A. thaliana are indicated by bold arrows labelled with β or ϵ respectively. A bar below the arrow leading to ϵ -carotene indicates that the enzymatic

10

15

20

25

30

activity was examined but no product was detected. The steps marked by an arrow with a dotted line have not been specifically examined. Conventional numbering of the carbon atoms is given for neurosporene and α -carotene. Inverted triangles (∇) mark positions of the double bonds introduced as a consequence of the desaturation reactions.

Figure 3 depicts the carotene endgroups which are found in plants.

Figure 4 is a DNA sequence and the predicted amino acid sequence of a lycopene ε-cyclase cDNA isolated from *A. thaliana* (SEQ ID NOS: 1 and 2). These sequences were deposited under Genbank accession number U50738. This cDNA is incorporated into the plasmid pATeps.

Figure 5 is a DNA sequence encoding the β -carotene hydroxylase isolated from A. thaliana (SEQ ID NO: 3). This cDNA is incorporated into the plasmid pATOHB.

Figure 6 is an alignment of the predicted amino acid sequences of A. thaliana β-carotene hydroxylase (SEQ ID NO: 4) with those of the bacterial β-carotene hydroxylase enzymes from Alicalgenes sp. (SEQ ID NO: 5) (Genbank D58422), Erwinia herbicola Eho10 (SEQ ID NO.: 6) (GenBank M872280), Erwinia uredovora (SEQ ID NO.: 7) (GenBank D90087) and Agrobacterium aurianticum (SEQ ID NO.: 8) (GenBank D58420). A consensus sequence is also shown. All five genes are identical where a capital letter appears in the consensus. A lowercase letter indicates that three of five, including A. thaliana, have the identical residue. TM; transmembrane.

Figure 7 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from A. thaliana (SEQ ID NO: 9). This cDNA is incorporated into the plasmid pATDP5.

Figure 8 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from A. thaliana (SEQ ID NO: 10). This cDNA is incorporated into the plasmid pATDP7.

Figure 9 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 11). This cDNA is incorporated into the plasmid pHP04.

Figure 10 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 12). This cDNA is incorporated into the plasmid pHP05.

Figure 11 is an alignment of the amino acid sequences predicted by IPP isomerase cDNAs isolated from A. thaliana (SEQ ID NO.: 16 and 18), H. pluvialis (SEQ ID NOS.: 14

WO 99/63055 PCT/US99/12121

and 15), Clarkia breweri (SEQ ID NO.: 17) (See, Blanc & Pichersky, Plant Physiol. (1995) 108:855; Genbank accession no. X82627) and Saccharomyces cerevisiae (SEQ ID NO.: 19) (Genbank accession no. J05090).

Figure 12 is a DNA sequence of the cDNA encoding an IPP isomerase isolated from *Tagetes erecta* (marigold; SEQ ID NO: 13). This cDNA is incorporated into the plasmid pPMDP1. xxx's denote a region not originally sequenced. Figure 21A shows the complete marigold sequence.

Figure 13 is an alignment of the consensus sequence of four plant β -cyclases (SEQ ID NO.: 20) with the A. thaliana lycopene ϵ -cyclase (SEQ ID NO.: 21). A capital letter in the plant β consensus is used where all four β -cyclase genes predict the same amino acid residue in this position. A small letter indicates that an identical residue was found in three of the four. Dashes indicate that the amino acid residue was not conserved and dots in the sequence denote a gap. A consensus for the aligned sequences is given, in capital letters below the alignment, where the β - and ϵ -cyclases have the same amino acid residue. Arrows indicate some of the conserved amino acids that will be used as junction sites for construction of chimeric cyclases with novel enzymatic activities. Several regions of interest including a sequence signature indicative of a dinucleotide-binding motif and two predicted transmembrane (TM) helical regions are indicated below the alignment and are underlined.

Figure 14 shows the nucleotide (SEQ ID NO:22) and amino acid sequences (SEQ ID NO:23) of the *Adonis palaestina* (pheasant's eye) ϵ -cyclase cDNA #5.

Figure 15A shows the nucleotide (SEQ ID NO:24) and amino acid sequences (SEQ ID NO:25) of a potato ε-cyclase cDNA. Figure 15B shows the amino acid sequence (SEQ ID NO:26) of a chimeric lettuce/potato lycopene ε-cyclase. Amino acids in lower case are from the lettuce cDNA and those in upper case are from the potato cDNA. The product of this chimeric cDNA has e-cyclase activity and converts lycopene to the monocyclic δ-carotene.

Figure 16 shows a comparison between the amino acid sequences of the *Arabidopsis* ϵ -cyclase (SEQ ID NO:27) and the potato ϵ -cyclase (SEQ ID NO:25).

Figure 17A shows the nucleotide sequence of the *Adonis palaestina* Ipi1 (SEQ ID NO:28) and Figure 17B shows the nucleotide sequence of the *Adonis palaestina* Ipi2 (SEQ ID NO: 29).

5

10

15

20

25

10

15

20

25

30

Figure 18A shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi1 (SEQ ID NO:11) and Figure 18B shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi2 (SEQ ID NO:30).

Figure 19A shows the nucleotide sequence of the *Lactuca sativa (romaine lettuce)* Ipi1 (SEQ ID NO:31) and Figure 19B shows the nucleotide sequence of the *Lactuca sativa* Ipi2 (SEQ ID NO: 32).

Figure 20 shows the nucleotide sequence of the *Chlamydomonas reinhardtii* Ipi1 (SEQ ID NO:33).

Figure 21A shows the nucleotide sequence of the *Tagetes erecta* (marigold) Ipi1 (SEQ ID NO:34) and Figure 21B shows the nucleotide sequence of the *Oryza sativa* (rice) Ipi1 (SEQ ID NO:35).

Figure 22 shows a amino acid sequence alignment of various plant and green algal isopentenyl isomerases (IPI) (SEQ ID NOS:16, 36-45).

Figure 23 shows a comparison between *Adonis palaestina* ϵ -cyclase cDNA #3 and cDNA #5 nucleotide sequences.

Figure 24 shows a comparison between *Adonis palaestina* ϵ -cyclase cDNA #3 and cDNA #5 predicted amino acid sequences.

Figure 25 shows a sequence alignment of various plant β - and ϵ -cyclases. Those sequences outlined in grey denote identical sequences among the ϵ -cyclases. Those sequences outlined in black denote identical sequences among both the β - and ϵ -cyclases.

Figure 26 shows a sequence alignment of the plant ϵ -cyclases from Figure 25. Those sequences outlined in black denote identical sequences among the ϵ -cyclases.

Figure 27 is a dendrogram or "tree" illustrating the degree of amino acid sequence similarity for various lycopene β - and ϵ -cyclases.

Figure 28 shows a comparison between Arabidopsis ϵ -cyclase and lettuce ϵ -cyclase predicted amino acid sequences.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention includes an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ε-cyclase, IPP isomerase or β-carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Nucleic acids encoding lycopene ε-cyclase, β-carotene hydroxylase and IPP

10

15

20

25

30

055

isomerases have been isolated from several genetically distant sources.

The present inventors have isolated nucleic acids encoding the enzyme IPP isomerase, which catalyzes the reversible conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP). IPP isomerase cDNAs were isolated from the plants A. thaliana, Tagetes erecta (marigold), Adonis palaestina (pheasant's eye), Lactuca sativa (romaine lettuce) and from the green algae H. pluvialis and Chlamydomonas reinhardtii.

Alignments of the amino acid sequences predicted by some of these cDNAs are shown in Figures 12 and 22. Plasmids containing some of these cDNAs were deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession numbers 98000 (pHP05 - H. pluvialis); 98001 (pMDP1 - marigold); 98002 (pATDP7 - A. thaliana) and 98004 (pHP04 - H. pluvialis).

The present inventors have also isolated nucleic acids encoding the enzyme β-carotene hydroxylase, which is responsible for hydroxylating the β-endgroup in carotenoids. The nucleic acid of the present invention is shown in SEQ ID NO: 3 and Figure 5. The full length cDNA product hydroxylates both end groups of β-carotene as do products of cDNAs which encode proteins truncated by up to 50 amino acids from the N-terminus. Products of genes which encode proteins truncated between about 60-110 amino acids from the N-terminus preferentially hydroxylate only one ring. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98003 (pATOHB - A. thaliana).

The present inventors have also isolated nucleic acids encoding the enzyme lycopene ϵ -cyclase, which is responsible for the formation of ϵ -endgroups in carotenoids. The A. thaliane ϵ -cyclase adds an ϵ ring to only one end of the symmetrical lycopene while the related β -cyclase adds a ring at both ends. The A. thaliana cDNA of the present invention is shown in Figure 4 and SEQ ID NO: 1. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98005 (pATeps - A. thaliana).

In addition, lycopene ϵ -cyclases have been identified in lettuce and in *Adonis* palaestina (cDNA #5) which encode enzymes that convert lycopene to the bicyclic ϵ -carotene (ϵ , ϵ -carotene). An additional cDNA from *Adonis palaestina* (cDNA #3) encodes a lycopene ϵ -cyclase which converts lycopene into δ -carotene (ϵ , ψ -carotene) and differs from the lycopene ϵ -cyclase which forms bicyclic ϵ -carotene (ϵ , ϵ -carotene) by only 5 amino acids.

10

15

20

25

30

One or more of these amino acids may be modified by alteration of the nucleotide sequence in the #5 cDNA to obtain an enzyme which forms the bicyclic ϵ,ϵ -carotene. The sequences of the *Adonis palaestina* and *Arabidopsis thaliana* ϵ -cyclases have about 70% nucleotide identity and about 72% amino acid identity.

Initial experiments by the inventors with chimeric genes indicated that the part of the ϵ -cyclase which is responsible for adding 2ϵ rings to form ϵ, ϵ -carotene is the carboxy terminal portion of the gene. The lettuce ϵ -cyclase adds two ϵ rings to form ϵ, ϵ -carotene. A DNA encoding a partial potato ϵ -cyclase (missing its amino terminal portion), when combined with an amino terminal region from the lettuce ϵ -cyclase gene, produces a monocyclic δ -carotene (ϵ, ψ -carotene). With the discovery of the differences between the Adonis palaestina clone #3 and clone #5, the specific amino acids responsible for the addition of an extra ϵ ring have been identified (Figure 24). Specifically, amino acid 55 is Thr in clone #3 and Ser in clone #5, amino acid 210 is Asn in clone #3 and Asp in clone #5, amino acid 231 is Asp in clone #3 and Glu in clone #5, amino acid 352 is Ile in clone #3 and Val in clone #5, and amino acid 524 is Lys in clone #3 and Arg in clone #5. It can be appreciated that these changes are quite conservative, as only one change, at amino acid 210, changes the charge of the protein.

Thus, it is clear that the nucleic acids of the invention encoding the enzymes as presently disclosed may be altered to increase a particularly desirable property of the enzyme, to change a property of the enzyme, or to diminish an undesirable property of the enzyme. Such modifications can be by deletion, substitution, or insertion of one or more amino acids, and can be performed by routine enzymatic manipulation of the nucleic acid encoding the enzyme (such as by restriction enzyme digestion, removal of nucleotides by mung bean nuclease or *Bal*31, insertion of nucleotides by Klenow fragment, and by religation of the ends), by site-directed mutagenesis, or may be accidental, such as by low fidelity PCR or those obtained through mutations in hosts that are producers of the enzymes. These techniques as well as other suitable techniques are well known in the art.

Mutations can be made in the nucleic acids of the invention such that a particular codon is changed to a codon which codes for a different amino acid. Such a mutation is generally made by making the fewest nucleotide changes possible. A substitution mutation of this sort can be made to change an amino acid in the resulting protein in a non-conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping

15

20

25

30

of amino acids having a particular size or characteristic to an amino acid belonging to another grouping) or in a conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to the same grouping). Such a conservative change generally leads to less change in the structure and function of the resulting protein. A non-conservative change is more likely to alter the structure, activity or function of the resulting protein. The present invention should be considered to include sequences containing conservative changes which do not significantly alter the activity or binding characteristics of the resulting protein.

The following is one example of various groupings of amino acids:

Amino acids with nonpolar R groups: Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Tryptophan and Methionine.

Amino acids with uncharged polar R groups: Glycine, Serine, Threonine, Cysteine, Tyrosine, Asparagine and Glutamine.

Amino acids with charged polar R groups (negatively charged at Ph 6.0): Aspartic acid and Glutamic acid.

Basic amino acids (positively charged at pH 6.0): Lysine, Arginine and Histidine.

Another grouping may be those amino acids with phenyl groups: Phenylalanine, Tryptophan and Tyrosine.

Another grouping may be according to molecular weight (i.e., size of R groups). Particularly preferred substitutions are:

- Lys for Arg and vice versa such that a positive charge may be maintained;
- Glu for Asp and vice versa such that a negative charge may be maintained;
- Ser for Thr such that a free -OH can be maintained; and
- Gln for Asn such that a free NH₂ can be maintained.

Amino acid substitutions may also be introduced to substitute an amino acid with a particularly preferable property. For example, a Cys may be introduced to provide a potential site for disulfide bridges with another Cys. A His may be introduced as a particularly "catalytic" site (i.e., His can act as an acid or base and is the most common amino acid in biochemical catalysis). Pro may be introduced because of its particularly planar structure, which induces β-turns in the protein's structure.

It is clear that certain modifications of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27 can take place without destroying the activity of the enzyme. It is noted especially that truncated

versions of the nucleic acids of the invention are functional. For example, several amino acids (from 1 to about 120) can be deleted from the N-terminus of the lycopene ε-cyclases of the invention, and a functional protein can still be produced. This fact is made especially clear from Figure 25, which shows a sequence alignment of several plant ε-cyclases. As can be seen from Figure 25, there is an enormous amount of sequence disparity between amino acid sequences 2 to about 50-70 (depending on the particular sequence, since gaps are present). There is less, but also a substantial amount of, sequence dissimilarity between about 50-70 to about 90-120 (depending on the particular sequence). Thereafter, the sequences are fairly conserved, except for small pockets of dissimilarity between about 275-295 to about 285-305 (depending on the particular sequence), and between about 395-415 to about 410-430 (depending on the particular sequence).

The present inventors have found that the amount of the 5' region present in the nucleic acids of the invention can alter the activity of the enzyme. Instead of diminishing activity, truncating the 5' region of the nucleic acids of the invention may result in an enzyme with a different specificity. Thus, the present invention relates to nucleic acids and enzymes encoded thereby which are truncated to within 0-50, preferably 0-25, codons of the 5' initiation codon of their prokaryotic counterparts as determined by alignment maps as discussed below.

For example, when the cDNA encoding A. thaliana β -carotene hydroxylase was truncated, the resulting enzyme catalyzed the formation of β -cryptoxanthin as the major product and zeaxanthin as minor product; in contrast to its normal production of zeaxanthin.

The present invention is intended to include those nucleic acid and amino acid sequences in which substitutions, deletions, additions or other modifications have taken place, as compared to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, without destroying the activity of the enzyme. Preferably, the substitutions, deletions, additions or other modifications take place at the 5' end, or any other of those positions which already show dissimilarity between any of the presently disclosed amino acid sequences (see also Figure 25) or other amino acid sequences which are known in the art and which encode the same enzyme (i.e., lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase).

In each case, nucleic acid and amino acid sequence similarity and identity is measured using sequence analysis software, for example, the Sequence Analysis, Gap, or BestFit software packages of the Genetics Computer Group (University of Wisconsin Biotechnology

5

10

15

20

25

Center, 1710 University Avenue, Madison, Wisconsin 53705), MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wisconsin 53715), or MacVector (Oxford Molecular Group, 2105 S. Bascom Avenue, Suite 200, Campbell, California 95008). Such software uses algorithms to match similar sequences by assigning degrees of identity to various substitutions, deletions, and other modifications, and includes detailed instructions as to useful parameters, etc., such that those of routine skill in the art can easily compare sequence similarities and identities. An example of a useful algorithm in this regard is the algorithm of Needleman and Wunsch, which is used in the Gap program discussed above. This program finds the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. Another useful algorithm is the algorithm of Smith and Waterman, which is used in the BestFit program discussed above. This program creates an optimal alignment of the best segment of similarity between two sequences. Optimal alignments are found by inserting gaps to maximize the number of matches using the local homology algorithm of Smith and Waterman.

15

10

5

Conservative (i.e. similar) substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine and leucine; aspartic acid, glutamic acid, asparagine and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine. Substitutions may also be made on the basis of conserved hydrophobicity or hydrophilicity (see Kyte and Doolittle, *J. Mol. Biol.* 157: 105-132 (1982)), or on the basis of the ability to assume similar polypeptide secondary structure (see Chou and Fasman, *Adv. Enzymol.* 47: 45-148 (1978)).

20

25

If comparison is made between nucleotide sequences, preferably the length of comparison sequences is at least 50 nucleotides, more preferably at least 60 nucleotides, at least 75 nucleotides or at least 100 nucleotides. It is most preferred if comparison is made between the nucleic acid sequences encoding the enzyme coding regions necessary for enzyme activity. If comparison is made between amino acid sequences, preferably the length of comparison is at least 20 amino acids, more preferably at least 30 amino acids, at least 40 amino acids or at least 50 amino acids. It is most preferred if comparison is made between the amino acid sequences in the enzyme coding regions necessary for enzyme activity.

30

It should be appreciated that also within the scope of the present invention are nucleic acid sequences encoding lycopene ε-cyclases, IPP isomerases and β-carotene hydroxylases

10

15

20

25

30

which code for enzymes having the same amino acid sequence as SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, but which are degenerate to the nucleic acids specifically disclosed herein.

The amino acid residues described herein are preferred to be in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property of immunoglobulin-binding is retained by the polypeptide.

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook et al, "Molecular Cloning: A Laboratory Manual" (1989); "Current Protocols in Molecular Biology" Volumes I-III [Ausubel, R. M., ed. (1994)]; "Cell Biology: A Laboratory Handbook" Volumes I-III [J. E. Celis, ed. (1994))]; "Current Protocols in Immunology" Volumes I-III [Coligan, J. E., ed. (1994)]; "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" [B.D. Hames & S.J. Higgins eds. (1985)]; "Transcription And Translation" [B.D. Hames & S.J. Higgins, eds. (1984)]; "Animal Cell Culture" [R.I. Freshney, ed. (1986)]; "Immobilized Cells And Enzymes" [IRL Press, (1986)]; B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

The present invention also includes vectors. Suitable vectors according to the present invention comprise a nucleic acid of the invention encoding an enzyme involved in carotenoid biosynthesis or metabolism and a suitable promoter for the host, and can be constructed using techniques well known in the art (for example Sambrook et al., Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York, 1991). Suitable vectors for eukaryotic expression in plants are described in Frey et al., Plant J. (1995) 8(5):693 and Misawa et al, 1994a; incorporated herein by reference. Suitable vectors for prokaryotic expression include pACYC184, pUC119, and pBR322 (available from New England BioLabs, Bevery, MA) and pTrcHis (Invitrogen) and pET28 (Novagen) and derivatives thereof. The vectors of the present invention can additionally contain regulatory elements such as promoters, repressors, selectable markers such as antibiotic resistance genes, etc.

The nucleic acids encoding the carotenoid enzymes as described above, when cloned into a suitable expression vector, can be used to overexpress these enzymes in a plant

10

15

20

25

30

expression system or to inhibit the expression of these enzymes. For example, a vector containing the gene encoding lycopene ϵ -cyclase can be used to increase the amount of α -carotene and carotenoids derived from α -carotene (such as lutein and α -cryptoxanthin) in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism.

Therefore, the present invention includes a method of producing or enhancing the production of a carotenoid in a host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

The present invention also includes a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

The term "modifying the production" means that the amount of carotenoids produced in the host cell can be enhanced, reduced, or left the same, as compared to the untransformed host cell. In accordance with one embodiment of the present invention, the make-up of the carotenoids (i.e., the specific carotenoids produced) is changed vis a vis each other, and this change in make-up may result in either a net gain, net loss, or no net change in the total amount of carotenoids produced in the cell. In accordance with another embodiment of the present invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) is enhanced by the insertion of an enzyme-encoding nucleic acid of the invention. In yet another embodiment of the invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) may be reduced or inhibited by a number of different approaches available to those skilled in the art, including but not limited to such methodologies or approaches as anti-sense (e.g.,

10

15

20

25

30

Gray et al (1992) Plant Mol. Biol. 19:69-87), ribozymes (e.g., Wegener et al (1994) Mol. Gen. Genet. 245:465-470), co-suppression (e.g., Fray and Grierson (1993) Plant Mol. Biol. 22:589-602), targeted disruption of the gene (e.g., Schaefer et al. (1997) Plant J. 11:1195-1206), intracellular antibodies (e.g., Rondon and Marasco (1997) Ann. Rev. Microbiol. 51:257-283) or whatever other approaches rely on the knowledge or availability of the nucleic acid or amino acid sequences of the invention and/or portions thereof, to thereby reduce accumulation of carotenoids with ϵ rings and compounds derived from them (for ϵ -cyclase inhibition), or carotenoids with hydroxylated β rings and compounds derived from them (for β -hydroxylase inhibition), or, in the case if IPP isomerase, accumulation of any isoprenoid compound.

Preferably, at least a portion of the nucleic acid sequences used in the methods, vectors and host cells of the invention codes for an enzyme having an amino acid sequence which is at least 85% identical, preferably at least 90%, at least 95% or completely identical to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Sequence identity is determined as noted above. Preferably, sequence additions, deletions or other modifications are made as indicated above, so as to not affect the function of the particular enzyme.

In a preferred embodiment, vectors are manufactured which contain a DNA encoding a eukaryotic IPP isomerase upstream of a DNA encoding a second eukaryotic carotenoid enzyme. The inventors have discovered that inclusion of an IPP isomerase gene increases the supply of substrate for the carotenoid pathway; thereby enhancing the production of carotenoid endproducts, as compared to a host cell which is not transformed with such a vector. This is apparent from the much deeper pigmentation in carotenoid-accumulating colonies of *E. coli* which also contain one of the aforementioned IPP isomerase genes when compared to colonies that lack this additional IPP isomerase gene. Similarly, a vector comprising an IPP isomerase gene can be used to enhance production of any secondary metabolite of dimethylallyl pyrophosphate and/or isopentenyl pyrophosphate (such as isoprenoids, steroids, carotenoids, etc.). The term "isoprenoid" is intended to mean any member of the class of naturally occurring compounds whose carbon skeletons are composed, in part or entirely, of isopentyl C₅ units. Preferably, the carbon skeleton is of an essential oil, a fragrance, a rubber, a carotenoid, or a therapeutic compound, such as paclitaxel.

A vector containing the cDNA encoding a lycopene ϵ -cyclase of the invention, preferably the lettuce lycopene ϵ -cyclase or Adonis ϵ -cyclase #5, can be used to increase the

10

15

20

25

30

amount of bicyclic ∈-carotene in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism. In addition, the transformed organism can be used in the formulation of therapeutic agents, for example in the treatment of cancer (see Mayne et al (1996) FASEB J. 10:690-701; Tsushima et al (1995) Biol. Pharm. Bull. 18:227-233).

An antisense strand of a nucleic acid of the invention can be inserted into a vector. For example, the lycopene ϵ -cyclase gene can be inserted into a vector and incorporated into the genomic DNA of a host, thereby inhibiting the synthesis of ϵ , β -carotenoids (lutein and α -carotene) and enhancing the synthesis of β , β -carotenoids (zeaxanthin and β -carotene).

The present invention also relates to novel enzymes which are encoded by the amino acid sequences of the invention, or portions thereof.

The present invention also relates to novel enzymes which can transform known carotenoids into novel or uncommon products. Currently ϵ -carotene (see Figure 2) and γ -carotene are commonly produced only in minor amounts. As described below, an enzyme can be produced which transforms lycopene to γ -carotene and lycopene to ϵ -carotene. With these products in hand, bulk synthesis of other carotenoids derived from them are possible. For example, ϵ -carotene can be hydroxylated to form lactucaxanthin, an isomer of lutein (one ϵ and one β ring) and zeaxanthin (two β rings) where both endgroups are, instead, ϵ rings.

In addition to novel enzymes produced by truncating the 5' region of known enzymes, as discussed above, novel enzymes which can participate in the formation of unusual carotenoids can be formed by replacing portions of one gene with an analogous sequence from a structurally related gene. For example, β -cyclase and ϵ -cyclase are structurally related (see Figure 13). By replacing a portion of β -lycopene cyclase with the analogous portion of ϵ -cyclase, an enzyme which produces γ -carotene will be produced (one β endgroup). Further, by replacing a portion of the lycopene ϵ -cyclase with the analogous portion of β -cyclase, an enzyme which produces ϵ -carotene will be produced (with some exceptions, such as the lettuce ϵ -cyclase, plant ϵ -cyclases normally produce a compound with one ϵ -endgroup, δ -carotene). Similarly, β -hydroxylase could be modified to produce enzymes of novel function by creation of hybrids with ϵ -hydroxylase.

Host systems according to the present invention can comprise any organism that already produces carotenoids or which has been genetically modified to produce carotenoids.

The IPP isomerase genes are more broadly applicable for enhancing production of any product dependent on DMAPP and/or IPP as a precursor.

Organisms which already produce carotenoids include plants, algae, some yeasts, fungi and cyanobacteria and other photosynthetic bacteria. Transformation of these hosts with vectors according to the present invention can be done using standard techniques such as those described in Misawa et al., (1990) supra; Hundle et al., (1993) supra; Hundle et al., (1991) supra; Misawa et al., (1991) supra; Sandmann et al., supra; and Schnurr et al., supra.

Transgenic organisms can be constructed which include the nucleic acid sequences of the present invention (Bird et al, 1991; Bramley et al, 1992; Misawa et al, 1994a; Misawa et al, 1994b; Cunningham et al, 1993). The incorporation of these sequences can allow the controlling of carotenoid biosynthesis, content, or composition in the host cell. These transgenic systems can be constructed to incorporate sequences which allow for the overexpression of the nucleic acids of the present invention. Transgenic systems can also be constructed containing antisense expression of the nucleic acid sequences of the present invention. Such antisense expression would result in the accumulation of the substrates of the substrates of the enzyme encoded by the sense strand.

A method for screening for eukaryotic genes which encode enzymes involved in carotenoid biosynthesis comprises transforming a prokaryotic host with a nucleic acid which may contain a eukaryotic or prokaryotic carotenoid biosynthetic gene; culturing said transformed host to obtain colonies; and screening for colonies exhibiting a different color than colonies of the untransformed host.

Suitable hosts include E. coli, cyanobacteria such as Synechococcus and Synechocystis, alga and plant cells. E. coli are preferred.

In a preferred embodiment, the above "color complementation" screening protocol can be enhanced by using mutants which are either (1) deficient in at least one carotenoid biosynthetic gene or (2) overexpress at least one carotenoid biosynthetic gene. In either case, such mutants will accumulate carotenoid precursors.

Prokaryotic and eukaryotic DNA or cDNA libraries can be screened in total for the presence of genes of carotenoid biosynthesis, metabolism and degradation. Preferred organisms to be screened include photosynthetic organisms.

5

10

15

20

25

10

15

20

25

30

E. coli can be transformed with these eukaryotic cDNA libraries using conventional methods such as those described in Sambrook et al, 1989 and according to protocols described by the vendors of the cloning vectors.

For example, the cDNA libraries in bacteriophage vectors such as lambdaZAP (Stratagene) or lambda ZIPLOX (Gibco BRL) can be excised en masse and used to transform *E.coli*.

Transformed *E. coli* can be cultured using conventional techniques. The culture broth preferably contains antibiotics to select and maintain plasmids. Suitable antibiotics include penicillin, ampicillin, chloramphenicol, etc. Culturing is typically conducted at 15-40°C, preferably at room temperature or slightly above (18-28°C), for 12 hours to 7 days.

Cultures are plated and the plates are screened visually for colonies with a different color than the colonies of the host $E.\ coli$ transformed with the empty plasmid cloning vector. For example, $E.\ coli$ transformed with the plasmid, pAC-BETA (described below), produce yellow colonies that accumulate β -carotene. After transformation with a cDNA library, colonies which contain a different hue than those formed by $E.\ coli/pAC$ -BETA would be expected to contain enzymes which modify the structure or accumulation of β -carotene. Similar $E.\ coli$ strains can be engineered which accumulate earlier products in carotenoid biosynthesis, such as lycopene, γ -carotene, etc.

Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.

EXAMPLE

I. Isolation of β-carotene hydroxylase

Plasmid Construction

An 8.6kb BgIII fragment containing the carotenoid biosynthetic genes of *Erwinia* herbicola was first cloned in the BamHI site of plasmid vector pACYC184 (chloramphenicol resistant), and then a 1.1kb BamHI fragment containing the *E. herbicola* β-carotene hydroxylase (*CrtZ*) was deleted. *E.coli* strains containing the resulting plasmid, pAC-BETA, accumulate β-carotene and form yellow colonies (Cunningham et al., 1994).

A full length cDNA encoding IPP isomerase of *Haematococcus pluvialis* (HP04) was first excised with *BamH*I and *Kpn*I from pBluescript SK-, and then ligated into the

corresponding sites of the pTrcHisA vector with high-level expression from the *trc* promoter (Invitrogen, Inc.). A fragment containing the IPP isomerase and *trc* promoter was subsequently excised with *EcoRV* and *KpnI*, treated with the Klenow fragment of DNA polymerase to produce blunt ends, and ligated in the Klenow-treated *HindIII* site of pAC-BETA. *E.coli* cells transformed with this new plasmid pAC-BETA-04 form orange colonies on LB plates (*vs.* yellow for those containing pAC-BETA) and cultures accumulate substantially more β-carotene (*ca.* two fold) than those that contain pAC-BETA.

Screening of an Arabidopsis cDNA Library

Several λ cDNA expression libraries of *Arabidopsis* were obtained from the *Arabidopsis* Biological Resource Center (Ohio State University, Columbus, OH) (Kieber et al., 1993). The λ cDNA libraries were excised *in vivo* using Stratagene's ExAssist SOLR system to produce a phagemid cDNA library wherein each phagemid contained also a gene conferring resistance to the antibiotic ampicillin.

E.coli strain DH10BZIP was chosen as the host cell for the screening and pigment production, although we have also used TOP10F' and XL1-Blue for this purpose. DH10B cells were transformed with plasmid pAC-BETA-04 and were plated on LB agar plates containing chloramphenicol at 50 µg/ml (from United States Biochemical Corporation). The phagemid Arabidopsis cDNA library was then introduced into DH10B cells already containing pAC-BETA-04. Transformed cells containing both pAC-BETA-04 and Arabidopsis cDNA library phagemids were selected on chloramphenicol plus ampicillin (150 μg/ml) agar plates. Maximum color development occurred after 3 to 7 days incubation at room temperature, and the rare bright yellow colonies were selected from a background of many thousands of orange colonies on each agar plate. Selected colonies were inoculated into 3 ml liquid LB medium containing ampicillin and chloramphenicol, and cultures were incubated at room temperature for 1-2 days, with shaking. Cells were then harvested by centrifugation and extracted with acetone in microfuge tubes. After centrifugation, the pigmented extract was spotted onto silica gel thin-layer chromatography (TLC) plates, and developed with a hexane:ether (1:1, by volume) mobile phases. B-carotene hydroxylaseencoding cDNAs were identified based on the appearance of a yellow pigment that comigrated with zeaxanthin on the TLC plates.

5

10

15

20

25

Subcloning and Sequencing

The plasmid containing the β-carotene hydroxylase cDNA was recovered and analyzed by standard procedures (Sambrook et al., 1989). The *Arabidopsis* β-carotene hydroxylase was sequenced completely on both strands on an automatic sequencer (Applied Biosystems, Model 373A, Version 2.0.1S). The cDNA insert of 0.95kb also was excised and ligated into the a pTrcHis vector. A *BgI*II restriction site within the cDNA was used to remove that portion of the cDNA that encodes the predicted polypeptide N terminal sequence region that is not also found in bacterial β-carotene hydroxylases (Figure 6). A BgIII-XhoI fragment was directionally cloned in BamHI-XhoI digested TrcHis vectors.

Pigment Analysis

5

10

15

20

25

30

A single colony was used to inoculate 50 ml of LB containing ampicillin and chloramphenicol in a 250-ml flask. Cultures were incubated at 28°C for 36 hours with gentle shaking, and then harvested at 5000 rpm in an SS-34 rotor. The cells were washed once with distilled H₂O and resuspended with 0.5 ml of water. The extraction procedures and HPLC were essentially as described previously (Cunningham et al, 1994).

II. Isolation and biochemical analysis of an Arabidopsis lycopene €-cyclase Plasmid Construction

Construction of plasmids pAC-LYC, pAC-NEUR, and pAC-ZETA is described in Cunningham et al., (1994). In brief, the appropriate carotenoid biosynthetic genes from *Erwinia herbicola*, *Rhodobacter capsulatus*, and *Synechococcus* sp. strain PCC7942 were cloned in the plasmid vector pACYC184 (New England BioLabs, Beverly, MA). Cultures of *E. coli* containing the plasmids pAC-ZETA, pAC-NEUR, and pAC-LYC, accumulate ζ-carotene, neurosporene, and lycopene, respectively. The plasmid pAC-ZETA was constructed as follows: an 8.6-kb BglII fragment containing the carotenoid biosynthetic genes of *E. herbicola* (GenBank M87280; Hundle et al., 1991) was obtained after partial digestion of plasmid pPL376 (Perry et al., 1986; Tuveson et al., 1986) and cloned in the BamHI site of pACYC184 to give the plasmid pAC-EHER. Deletion of adjacent 0.8- and 1.1-kb BamHI-BamHI fragments (deletion Z in Cunningham et al., 1994), and of a 1.1 kB Sall-Sall fragment (deletion X) served to remove most of the coding regions for the *E. herbicola* β-carotene hydroxylase (crtZ gene) and zeaxanthin glucosyltransferase (crtX gene), respectively. The

10

15

20

25

resulting plasmid, pAC-BETA, retains functional genes for geranylgeranyl pyrophosphate synthase (crtE), phytoene synthase (crtB), phytoene desaturase (crtI), and lycopene cyclase (crtY). Cells of E. coli containing this plasmid form yellow colonies and accumulate β -carotene. A plasmid containing both the lycopene ϵ - and β -cyclase cDNAs of A. thaliana was constructed by excising the ϵ -cyclase in clone y2 as a PvuI-PvuII fragment and ligating this piece in the SnaBI site of a plasmid (pSPORT 1 from GIBCO-BRL) that already contained the β -cyclase (Cunningham et al., 1996).

Organisms and Growth Conditions

E. coli strains TOP10 and TOP10 F' (obtained from Invitrogen Corporation, San Diego, CA) and XL1-Blue (Stratagene) were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 37°C in darkness on a platform shaker at 225 cycles per min. Media components were from Difco (yeast extract and tryptone) or Sigma (NaCl). Ampicillin at 150 μg/mL and/or chloramphenicol at 50 μg/mL (both from United States Biochemical Corporation) were used, as appropriate, for selection and maintenance of plasmids.

Mass Excision and Color Complementation Screening of an A. thaliana cDNA Library

A size-fractionated 1-2 kB cDNA library of A. thaliana in lambda ZAPII (Kieber et al., 1993) was obtained from the Arabidopsis Biological Resource Center at The Ohio State University (stock number CD4-14). Other size fractionated libraries were also obtained (stock numbers CD4-13, CD4-15, and CD4-16). An aliquot of each library was treated to cause a mass excision of the cDNAs and thereby produce a phagemid library according to the instructions provided by the supplier of the cloning vector (Stratagene; E. coli strain XL1-Blue and the helper phage R408 were used). The titre of the excised phagemid was determined and the library was introduced into a lycopene-accumulating strain of E. coli TOP10 F' (this strain contained the plasmid pAC-LYC) by incubation of the phagemid with the E. coli cells for 15 min at 37°C. Cells had been grown overnight at 30°C in LB medium supplemented with 2% (w/v) maltose and 10 mM MgSO₄ (final concentration), and harvested in 1.5 ml microfuge tubes at a setting of 3 on an Eppendorf microfuge (5415C) for 10 min. The pellets were resuspended in 10 mM MgSO₄ to a volume equal to one-half that of the

initial culture volume. Transformants were spread on large (150 mm diameter) LB agar petri plates containing antibiotics to provide for selection of cDNA clones (ampicillin) and maintenance of pAC-LYC (chloramphenicol). Approximately 10,000 colony forming units were spread on each plate. Petri plates were incubated at 37°C for 16 hr and then at room temperature for 2 to 7 days to allow maximum color development. Plates were screened visually with the aid of an illuminated 3x magnifier and a low power stage-dissecting microscope for the rare, pale pinkish-yellow to deep-yellow colonies that could be observed in the background of pink colonies. A colony color of yellow or pinkish-yellow was taken as presumptive evidence of a cyclization activity. These yellow colonies were collected with sterile toothpicks and used to inoculate 3ml of LB medium in culture tubes with overnight growth at 37°C and shaking at 225 cycles/min. Cultures were split into two aliquots in microfuge tubes and harvested by centrifugation at a setting of 5 in an Eppendorf 5415C microfuge. After discarding the liquid, one pellet was frozen for later purification of plasmid DNA. To the second pellet was added 1.5 ml EtOH, and the pellet was resuspended by vortex mixing, and extraction was allowed to proceed in the dark for 15-30 min with occasional remixing. Insoluble materials were pelleted by centrifugation at maximum speed for 10 min in a microfuge. Absorption spectra of the supernatant fluids were recorded from 350-550 nm with a Perkin Elmer lambda six spectrophotometer.

Analysis of isolated clones

20

5

10

15

Eight of the yellow colonies contained β -carotene indicating that a single gene product catalyzes both cyclizations required to form the two β endgroups of the symmetrical β -carotene from the symmetrical precursor lycopene. One of the yellow colonies contained a pigment with the spectrum characteristic of δ -carotene, a monocyclic carotenoid with a single ϵ endgroup. Unlike the β cyclase, this ϵ -cyclase appears unable to carry out a second cyclization at the other end of the molecule.

25

The observation that ϵ -cyclase is unable to form two cyclic ϵ -endgroups (e.g. the bicyclic ϵ -carotene) illuminates the mechanism by which plants can coordinate and control the flow of substrate into carotenoids derived from β -carotene versus those derived from α -carotene and also can prevent the formation of carotenoids with two ϵ endgroups.

30

The availability of the A. thaliana gene encoding the ϵ -cyclase enables the directed manipulation of plant and algal species for modification of carotenoid content and

PCT/US99/12121

composition. Through inactivation of the ϵ -cyclase, whether at the gene level by deletion of the gene or by insertional inactivation or by reduction of the amount of enzyme formed (by such as antisense technology), one may increase the formation of β -carotene and other pigments derived from it. Since vitamin A is derived only from carotenoids with β endgroups, an enhancement of the production of β -carotene versus α -carotene may enhance nutritional value of crop plants. Reduction of carotenoids with ϵ -endgroups may also be of value in modifying the color properties of crop plants and specific tissues of these plants. Alternatively, where production of α -carotene, or pigments such as lutein that are derived from α -carotene, is desirable, whether for the color properties, nutritional value or other reason, one may overexpress the ϵ -cyclase or express it in specific tissues. Wherever agronomic value of a crop is related to pigmentation provided by carotenoid pigments the directed manipulation of expression of the ϵ -cyclase gene and/or production of the enzyme may be of commercial value.

The predicted amino acid sequence of the A. thaliana ϵ -cyclase enzyme was determined. A comparison of the amino acid sequences of the β - and ϵ -cyclase enzymes of Arabidopsis thaliana (Fig. 13) as predicted by the DNA sequence of the respective cDNAs (Fig. 4 for the ϵ -cyclase cDNA sequence), indicates that these two enzymes have many regions of sequence similarity, but they are only about 37% identical overall at the amino acid level. The degree of sequence identity at the DNA base level, only about 50%, is sufficiently low such that we and others have been unable to detect this gene by hybridization using the β cyclase as a probe in DNA gel blot experiments.

REFERENCES

Each reference cited in this application and/or listed below is hereby incorporated by reference.

- 25 Bird et al, 1991 Biotechnology 9, 635-639.
 - Bishop et al., (1995) FEBS Lett. 367, 158-162.
 - Bramley, P.M. (1985) Adv. Lipid Res. 21, 243-279.
 - Bramley, P.M. (1992) Plant J. 2, 343-349.
 - Britton, G. (1988). Biosynthesis of carotenoids. In Plant Pigments, T.W. Goodwin, ed. (London: Academic Press), pp. 133-182.

30

5

10

15

15

20

25

30

Britton, G. (1979) Z. Naturforsch. Section C Biosci. 34, 979-985.

Britton, G. (1995) UV/Visible spectroscopy. In Carotenoids, Vol. IB: Spectroscopy,

G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 13-62.

Bouvier et al., (1994) Plant J. 6, 45-54.

Cunningham et al., (1985) Photochem. Photobiol. 42: 295-307.

Cunningham et al., (1993) FEBS Lett. 328, 130-138.

Cunningham et al., (1994) Plant Cell 6, 1107-1121.

Cunningham et al., (1996) Plant Cell 8, 1613-1626.

Davies, B.H. (1976). Carotenoids. In Chemistry and Biochemistry of Plant Pigments,

10 Vol. 2, T.W. Goodwin, ed (New York: Academic Press), pp. 38-165.

Del Sal et al., (1988). Nucl. Acids Res. 16, 9878.

Demmig-Adams & Adams, (1992) Ann. Rev. Plant Physiol. Mol. Biol. 43, 599-626.

Enzell & Back, (1995) Mass spectrometry. In Carotenoids, Vol. IB: Spectroscopy, G.

Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 261-320.

Frank & Cogdell (1993) Photochemistry and function of carotenoids in photosynthesis. In Carotenoids in Photosynthesis. A. Young and G. Britton, eds. (London: Chapman and Hall). pp. 253-326.

Goodwin, T.W. (1980). The Biochemistry of the Carotenoids. 2nd ed, Vol. 1 (London: Chapman and Hall.

Horvath et al., (1972) Phytochem. 11, 183-187.

Hugueney et al., (1995) Plant J. 8, 417-424.

Hundle et al., (1991) Photochem. Photobiol. 54, 89-93.

Jensen & Jensen, (1971) Methods Enzymol. 23, 586-602.

Kargl & Quackenbush, (1960) Archives Biochem. Biophys. 88, 59-63.

Kargl et al., (1960) Proc. Am. Hort. Soc. 75, 574-578.

Kieber et al., (1993) Cell 72, 427-441.

Koyama, Y. (1991) J. Photochem. Photobiol., B, 9, 265-80.

Krinsky, N.I. (1987) Medical uses of carotenoids. In Carotenoids, N.I. Krinsky, M.M. Mathews-Roth, and R.F. Taylor, eds. (New York: Plenum), pp. 195-206.

Kyte & Doolittle, (1982) J. Mol. Biol. 157, 105-132.

LaRossa & Schloss, (1984) J. Biol. Chem. 259, 8753-8757.

Misawa et al., (1994a) Plant J. 6, 481-489.

20

12.

Misawa et al., (1994b) J. Biochem, Tokyo, 116, 980-985.

Norris et al., (1995) Plant Cell 7, 2139-2149.

Pecker et al., (1996) Submitted to Plant Mol. Biol.

Perry et al., (1986) J. Bacteriol. 168, 607-612.

Persson & Argos, (1994) J. Mol. Biol. 237, 182-192.

Plumley & Schmidt, (1987) Proc. Nat. Acad. Sci. USA 83, 146-150.

Plumley & Schmidt, (1995) Plant Cell 7, 689-704.

Rossmann et al., (1974) Nature 250, 194-199.

Rock & Zeevaart (1991) Proc. Nat. Acad. Sci. USA 88, 7496-7499.

10 Rost et al., (1995) Protein Science 4, 521-533.

Sambrook et al., (1989) Molecular Cloning: A Laboratory Manual, 2nd edition (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Sancar, A. (1994) Biochemistry 33, 2-9.

Sander & Schneider, (1991) Proteins 9, 56-68.

15 Sandmann, G. (1994) Eur. J. Biochem. 223, 7-24.

Scolnik & Bartley, (1995) Plant Physiol. 108, 1342.

Siefermann-Harms, D. (1987) Physiol. Plant. 69, 561-568.

Spurgeon & Porter, (1980). Biosynthesis of carotenoids. In Biochemistry of

Isoprenoid Compounds, J.W. Porter, and S.L. Spurgeon, eds. (New York: Wiley), pp. 1-122.

Tomes, M.L. (1963) Bot. Gaz. 124, 180-185.

Tomes, M.L. (1967) Genetics 56, 227-232.

Tuveson et al., (1986) J. Bacteriol. 170, 4675-4680.

Van Beeumen et al., (1991) J. Biol. Chem. 266, 12921-12931.

Weedon & Moss, (1995) Structure and Nomenclature. In Carotenoids, Vol. IB:

25 Spectroscopy, G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 27-70.

Wierenga et al., (1986) J. Mol. Biol. 187, 101-107.

Zechmeister, L. (1962) Cis-Trans Isomeric Carotenoids, Vitamins A and Arylpolyenes. Springer-Verlag, Vienna.

Having now fully described the invention, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention as set forth herein.

We claim:

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or 25-27.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- 5. The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
 - 7. An isolated and/or purified protein having lycopene ϵ -cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or 25-27.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.

AMENDED CLAIMS

[received by the International Bureau on 15 November 1999 (15.11.99); original claims 1,2,7 and 8 amended; remaining claims unchanged (1 page)]

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- 5. The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
- 7. An isolated and/or purified protein having lycopene ∈-cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.

FIGURE 1

£.

FIGURE 2

Arabidopsis thaliana epsilon cyclase:

FIGURE 4

getettete etecteetet accgatttee gaeteegeet eccgaaatee ttatccggat teteteegte tettegattt aaacgetttt etgtetgtta 51 cgtcgtcgaa gaacggagac agaattctcc gattgagaac gatgagagac 101 eggagageae gageteeaca aacgetatag acgetgagta tetggegttg 151 201 cgtttggcgg agaaattgga gaggaagaaa tcggagaggt ccacttatct aatcgctgct atgttgtcga gctttggtat cacttctatg gctgttatgg 251 ctgtttacta cagattetet tggcaaatgg agggaggtga gateteaatg 301 ttggaaatgt ttggtacatt tgctctctct gttggtgctg ctgttggtat 351 ggaattotgg gcaagatggg otcatagage totgtggcac gottototat 401 ggaatatgca tgagtcacat cacaaaccaa gagaaggacc gtttgagcta 451 501 aacgatgttt ttgctatagt gaacgetggt ecagegattg gteteetete ttatggattc ttcaataaag gactcgttcc tggtctctgc tttggcgccg 551 ggttaggcat aacggtgttt ggaatcgcct acatgtttgt ccacgatggt 601 ctcgtgcaca agcgtttccc tgtaggtccc atcgccgacg tcccttacct 651 ccgaaaggte gccgccgctc accagctaca tcacacagac aagttcaatg 701 gtgtaccata tggactgttt cttggaccca aggaattgga agaagttgga 751 ggaaatgaag agttagataa ggagattagt cggagaatca aatcatacaa 801 asaggeeteg ggeteegggt egagttegag ttettgaett tasacsagtt 851 ttaaatccca aattcttttt ttgtcttctg tcattatgat catcttaaga 901 951 cggtct

FIGURE 5

 $\sigma^{i_{\underline{i}}}$

V	
[1	,
2	
C)
년 대	•

A. chal.		9755	6755 SSTDFRLRLP KSLSGFSPSL RFKLSVCTV VERRQHSPI EXDERPESTS STIALDAFAL	Kslsgpspsl	RFRAFSVCTV	VEERROHSPI	EXDEPLETS	TUNGINGUS 419
A.thal. Alical. A.aurant. E.berb. E.ured. Consensus	ALELAEIGER		KKSERSTYLI ANGLESPGIT	SHAWHAWTR	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SPCENFOTPA HTOFL HTNFL HGNSL HGNIMWAL	LSVGAAVCHE IVVATVLVHE IVVLSVTAHE IVFLSVTAHE	IUU FYARNAHAL LTAYSVICHI GLAATHOYI VIAALAHEYI
			Predicted TM helix	helt		Predi	Predicted TM helix	
A. chal.	WHASE, WROTH	SSHHXPREGE	PELNDVPALV	HAGPAIGLLS	YGPPHKGLVP VGAYMMPVLM	GLCFGAGLGI	TVPGLAYMPY	HDGLVHXBLP
A. aurant. E. herb.	HHGPLOWGHH HHG. NGNRHH		LEDONDLYGLV	PAVIATVLFT	VGWINGAPVLA	MI ALGR	TWELLYPLY	HOGLVHORND
E. ured. Consensus	HAG. NGNGNA -H1-NH	-SHIPPEGA	FEVNDLYAVV FAALSILLTY (E-NDe-V -Ael-L	PANSILLY -Aal-L	Lastampla	MIGAGN		HDGLVHQRWP HDGLVH-R-P
			a a	Predicted TM helix	ا ا.ع	Predicted TM helix	M helix	
A. chal. Alical. A. auranc. S. berb. B. ured. Consensus	VGPLADVPTL FRYIPRGYT FRYIPRGYA FHVIPRRGYL FRYIPRKGYL	RXYAAAHQLH RRLYQAHRLH RRLYQAHRLH KRLYVAHRLH KRLYVAHRHH	HTDKTHGV HAVEGEDHCV HAVEGEDHCV HAVRGREGCV HAVRGKEGCV	PYGLFLGPKE SPGFIYAP. SPGFIYAR. SPGFIYAR.	LZEVOGNEEL VDICKQDLOR VDICKQDLOR PADICATIAE	DICEI SRRIKS SGVLRPQDER SGVLRAEAGE RHGRPPICEDA RHGARAGA	YYYASGSGSS PS• RT• AYDREDBASP ANDAGGEDE	5.5.5 5.5.5 5.5.5 7.5.5

7 / 30

ccacgggtcc gcctccccgt ttttttccga tccgatctcc ggtgccgagg 1 actcagctgt ttgttcgcgc tttctcagcc gtcaccatga ccgattctaa 51 101 cgatgctgga atggatgctg ttcagagacg actcatgttt gaagacgaat gcattctcgt tgatgaaaat aatcgtgtgg tgggacatga cactaagtat 151 201 aactgtcatc tgatggaaaa gattgaagct gagaatttac ttcacagagc tttcagtgtg tttttattca actccaagta tgagttgctt ctccagcaac 251 301 ggtcaaaaac aaaggttact ttcccacttg tgtggacaaa cacttgttgc 351 agccatcctc tttaccgtga atccgagctt attgaagaga atgtgcttgg 401 tgtaagaaat gccgcacaaa ggaagctttt cgatgagctc ggtattgtag 451 cagaagatgt accagtcgat gagttcactc ccttgggacg catgctttac 501 aaggcacett etgatgggaa atggggagag cacgaagttg actatetact 551 cttcatcgtg cgggatgtga agcttcaacc aaacccagat gaagtggctg 601 agatcaagta cgtgagcagg gaagagctta aggagctggt gaagaaagca 651 gatgctggcg atgaagctgt gaaactatct ccatggttca gattggtggt 701 ggataatttc ttgatgaagt ggtgggatca tgttgagaaa ggaactatca ctgaagctgc agacatgaaa accattcaca agctctgaac tttccataag 751 ttttggatct tccccttccc ataataaaat taagagatga gacttttatt 801 gattacagac aaaactggca acaaaatcta ttcctaggat tttttttgc 851 tttttattta cttttgattc atctctagtt tagttttcat cttaaaaaaa 901 951 aaaa

÷:

CTCGGTAGCT GGCCACAATC GCTATTTGGA ACCTGGCCCG GCGGCAGTCC GATGCCGCGA TGCTTCGTTC GTTGCTCAGA GGCCTCACGC ATATCCCCCG CGTGAACTCC GCCCAGCAGC CCAGCTGTGC ACACGCGCGA CTCCAGTTTA 101 AGCTCAGGAG CATGCAGATG ACGCTCATGC AGCCCAGCAT CTCAGCCAAT 151 CTGTCGCGCG CCGAGGACCG CACAGACCAC ATGAGGGGTG CAAGCACCTG 201 251 GGCAGGCGGG CAGTCGCAGG ATGAGCTGAT GCTGAAGGAC GAGTGCATCT 301 TGGTGGATGT TGAGGACAAC ATCACAGGCC ATGCCAGCAA GCTGGAGTGT 351 CACAAGTTCC TACCACATCA GCCTGCAGGC CTGCTGCACC GGGCCTTCTC TGTGTTCCTG TTTGACGATC AGGGGCGACT GCTGCTGCAA CAGCGTGCAC 401 GCTCAAAAAT CACCTTCCCA AGTGTGTGGA CGAACACCTG CTGCAGCCAC 451 501 CCTTTACATG GGCAGACCCC AGATGAGGTG GACCAACTAA GCCAGGTGGC CGACGGAACA GTACCTGGCG CAAAGGCTGC TGCCATCCGC AAGTTGGAGC 551 ACGAGCTGGG GATACCAGCG CACCAGCTGC CGGCAAGCGC GTTTCGCTTC 601 CTCACGCGTT TGCACTACTG TGCCGCGGAC GTGCAGCCAG CTGCGACACA 651 ATCAGCGCTC TGGGGCGAGC ACGAAATGGA CTACATCTTG TTCATCCGGG 701 CCAACGTCAC CTTGGCGCCC AACCCTGACG AGGTGGACGA AGTCAGGTAC 751 GTGACGCAAG AGGAGCTGCG GCAGATGATG CAGCCGGACA ACGGGCTGCA 801 ATGGTCGCCG TGGTTTCGCA TCATCGCCGC GCGCTTCCTT GAGCGTTGGT 851 GGGCTGACCT GGACGCGGCC CTAAACACTG ACAAACACGA GGATTGGGGA 901 ACGGTGCATC ACATCAACGA AGCGTGAAAG CAGAAGCTGC AGGATGTGAA 951 GACACGTCAT GGGGTGGAAT TGCGTACTTG GCAGCTTCGT ATCTCCTTTT 1001 TCTGAGACTG AACCTGCAGT CAGGTCCCAC AAGGTCAGGT AAAATGGCTC 1051 GATAAAATGT ACCGTCACTT TTTGTCGCGT ATACTGAACT CCAAGAGGTC 1101 1151 ΑΑΑΑΑ ΑΑΑΑΑΑΑ

1	CTCGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC
51	GATGCCGCGA	TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCGCG
101	CGTGAACTCC	GCCCAGCAGC	CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA
151	AGCTCAGGAG	CATGCAGCTG	CTTTCCGAGG	ACCGCACAGA	CCACATGAGG
201	GGTGCAAGCA	CCTGGGCAGG	CGGGCAGTCG	CAGGATGAGC	TGATGCTGAA
251	GGACGAGTGC	ATCTTGGTAG	ATGTTGAGGA	CAACATCACA	GGCCATGCCA
301	GCAAGCTGGA	GTGTCACAAG	TTCCTACCAC	ATCAGCCTGC	AGGCCTGCTG
351	CACCGGGCCT	TCTCTGTGTT	CCTGTTTGAC	GATCAGGGGC	GACTGCTGCT
401	GCAACAGCGT	GCACGCTCAA	AAATCACCTT	CCCAAGTGTG	TGGACGAACA
451	CCTGCTGCAG	CCACCCTTTA	CATGGGCAGA	CCCCAGATGA	GGTGGACCAA
501	CTAAGCCAGG	TGGCCGACGG	AACAGTACCT	GGCGCAAAGG	CTGCTGCCAT
551	CCGCAAGTTG	GAGCACGAGC	TGGGGATACC	AGCGCACCAG	CTGCCGGCAA
601	GCGCGTTTCG	CTTCCTCACG	CGTTTGCACT	ACTGTGCCGC	GGACGTGCAG
651	CCAGCTGCGA	CACAATCAGO	GCTCTGGGGC	GAGCACGAAA	TGGACTACAT
701	CTTGTTCATC	CGGGCCAACG	TCACCTTGGC	GCCCAACCCT	GACGAGGTGG
751 [.]	ACGAAGTCAG	GTACGTGACG	CAAGAGGAGC	TGCGGCAGAT	GATGCAGCCG
801	GACAACGGGC	TTCAATGGTC	GCCGTGGTTT	CGCATCATCG	CCGCGCGCTT
851	CCTTGAGCGT	TGGTGGGCTG	ACCTGGACGO	GGCCCTAAAC	ACTGACAAAC
901	ACGAGGATTO	GGGAACGGT	CATCACATCA	ACGAAGCGTG	AAGGCAGAAG
951	CTGCAGGATO	TGAAGACAC	TCATGGGGT	GAATTGCGTA	CTTGGCAGCT
1001	TCGTATCTC	C TTTTTCTGA	ACTGAACCT	CAGAGCTAGA	GTCAATGGTG
1051	CATCATATT	C ATCGTCTCT	C TTTTGTTTT	A GACTAATCTO	TAGCTAGAGT
1101	CACTGATGA	A TCCTTTACA	A CTTTCAAAA	AAAAA	

HP04	1 MLRSLLRGLT	HIPRVNSAQQ	PSCAHARLQF	KLRSMQMTLM	50 OPSISANTSD
HP05	MLRSLLRGLT MSVSSLFNLP	HIPKYNSAQQ	PSCAHARLQF	KLRSMQLL	••••••
C brew	MS.SSMLNFT	.LIRLRSLAASRIVSLPL	LSSSFSSFRF	AHRPLSSIS.	PRKLPNFRAF
ATOPS		.TGPPPRFFP	LSSPPSRVHL IRSPVPRTQL	PLCFFSPISL	TORFSAKLTF
S ceres.		PHGAVSSYAK		FVRAFSAV	• • • • • • • • •
2 (650.		I HOW TOO IM	PAGUGIPEDI	LEEFPEIIPL	QQRPNTR
	51	•			100
	AEDRTDHMRG	ASTWAGGQSQ	DELMLKDECI	LVDVEDNITG	100 HASKLECHKF
	SEDRTDHMRG	ASTWAGGQSQ	DELMLKDECI	LVDVEDNITG	HASKLECHKF
	SGTA.MTD	TKDAGMDAVQ		LVDETDRVVG	HVSKYNCHLM
	SSQATT.MGE	VVDAGMDAVQ	RRLMFEDECI	LVDENDKVVG	HESKYNCHLM
	T.MTD	SNDAGMDAVQ		LVDENNRVVG	HDTKYNCHLM
•	SSETSNDESG	ETCFSGHDEE	QIKLMNENCI	VLDWDDNAIG	AGTKKVCHLM
	101				•
		PARSUET FOR	OCRETEORN	RSKITFPSVW	150
	LPHQPAGLLH	RAFSVFLFDD	OCRITIOORA	RSKITFPSVW	
	ENIEAKNLLH			NTKVTFPLVW	TNTCCSHPLH
	EKIESENLLH	RAFSVFLFNS	KYELLLOORS	ATKVTFPLVW	TNTCCSHPLY TNTCCSHPLY
	EKIEAENLLH	RAFSVFLFNS	KYELLLQQRS		TNTCCSHPLY
			QGELLLOORA	TEKITFPDLW	TNTCCSHPLC
					2000 20
	151				200
	GQTPDEVDQL		AKAAAIRKLE	HELGIPAHQL	PA.SAFRFLT
	GQTPDEVDQL	SQVADGTVPG	AKAAAIRKLE	HELGIPAHQL	PA.SAFRFLT
	RE	SELIQUNALG	VRNAAQRKLL	DELGIVAEDV	PV.DEFTPLG
	RE		VRNAAQRKLL	DELGIPAEDL	PV.DQFIPLS
		KGKLDDKIKG	A LUIN Y LUINT D	DELGIVAEDV HELGIPEDET	PV.DEFTPLG
			VIIVYAKKID	RELGIFEDET	KTRGKFHFLN
•	201			1	- 250
	RLHYCAADVQ		EHEMDYILFI	RANVTL	
	RLHYCAADVQ		EHEMDYILFI	RANVTL	
	RMLY	.KAPSDGKWG	EHELDYLLFI	VRDVKV	
	RILY	.KAPSDGKWG	EHELDYLLFI		DPNPDEVAEV.
	RMLY	. KAPSDGKWG	EHEVDYLLFI	VRDVKL	
	KIDI	.MAPSNEPWG	EHEIDYILFY	KINAKENLTV	NPNVNEVRDF
	251				20.0
		MMOPDN	GT.OWSDWEDT	IAARFLERWW	300
	RYVTQEELRO	MMQPDN	GLOWSPWFRI	IAARFLERWW	ADLDAALNTD
•	KYVSREELKE	LVKKADAGEE	GLKLSPWFRL	VVDNFLMKWW	DHVEKGTLVE
	KYMNRDDLKE	LLRKADAEEE	GVKLSPWFRL	VVDNFLFKWW	DHVEKGSLKD
	KYVSREELKE	LVKKADAGDE	AVKLSPWFRL	VVDNFLMKWW	DHVEKGTITE
	KWVSPNDLKT	MFADP	SYKFTPWFKI	ICENYLFNWW	EQLDDLSEVE
	301.				
	KHEDWGTVHH	TNFA+			
	KHEDWGTVHH				
	A. IDMKTIHK			•	
	A.ADMKTIHK				
	A.ADMKTIHK			·	4.
	NDRQIHR	ML*	*		•

WO 99/63055

ccaaaaacaa ctcaaatctc ctccgtcgct cttactccgc catgggtgac gactccggca tggatgctgt tcagcgacgt ctcatgtttg acgatgaatg 51 cattttggtg gatgagtgtg acaatgtggt gggacatgat accaaataca 101 attgtcactt gatggagaag attgaaacag gtaaaatgct gcacagagca 151 201 ttcagcgttt ttctattcaa ttcaaaatac gagttacttc ttcagcaacg 251 gtetgeaace aaggtgacat tteetttagt atggaceaac acetgttgea 301 gecatecaet etacagagaa teegagettg tteeegaaac geetgagaga 351 401 451 501 551 601 651 xxxxxxxxx xxxxxxxx xxxxxxxxx tcatgtgcaa aagggtacac 701 tcactgaatg caatttgata tgaaaaccat acacaagctg atatagaaac acacecteaa ecgaaaagea ageetaataa ttegggttgg gtegggteta 751 ccatcaattg ttttttttt ttaacaactt ttaatctcta tttgagcatg 801 ttgattcttg tcttttgtgt gtaagatttt gggtttcgtt tcagttgtaa 851 taatgaacca ttgatggttt gcaatttcaa gttcctatcg acatgtagtg 901 951 atctaaaaaa

FIGURE 12

· , - 1

Plant beta A.c. epsilon Consensus Cyanobacterial enzyme begins -VK--SEALLO LVPETKKEML DFELPMYDD. ...S.Kg-VV DLAVVGGGPA GLAVAQQVSE AGLSVCSIDD VKAGGSEIL. FVOHQQNKDM DEQSKLVDKL PPISIGDGAL DHVVIGCGPA GLAVARSAK LGLKVGLIGD Plant beca A.c. epsilon Consensus VX---S--L- -V------- D--------- D---V-G-GPA GLA-A---- -GL-V--I-P Possible subunit interaction domain Dinucleotide-binding signature 141 Plant beta A.c. epsilon Consensus Conserved region #1 Plant beta VSYLSSKVDS ITEASDGLEL VACDDMMVIP CRLATVASGA ASGELLQYEV GGPRVCVQTA YGVEVEVEMS A.c. epsilon V-----KV-- -----Q-- ----Q-- ----Q-- YG---EV---Consensus Plant beca PFD--KNVfM DWRDsHL-nn -elkeres-i PTVLYAMPYS SNTIVLEETS LVARPGLENd DIQERNVARL PYDPDQMVFM DYRDY..TNE .KVRSLRABY PTVLYAMPHT KSRLFFEETC LAGEDVMPFD LLETKLMLRL A.c. epsilon Consensus ♣ Conserved region #2 ▲ Conserved region #3 Plant beta HLGIKVKAI BEDENCVIPM GGPLPVIPQR VVGIGGTAGA VHPSTGYMVA RTLAAAPVVA NAII-YLGSA DTLGIRILKT YEERMSYIPV GGSLPNTEQK NLAPGAAASN VHPATGYSVV RSLSEAPKVA SVLAEILREE A.c. epsilon --LGI----- -E-E---IP- GG-LP---Q- ----G--A-M VHP-TGY-V- R-L--AP--A --I---L--E Consensus Conserved region #4 Predicted TM helix 421 Plant beta A.c. epsilon Consensus Conserved region #5 Plant beta GGFLGSTLIE GELIVFGLSL FSHASHTSR- EIMIK.GT-P LV-MINNLIQ D-e QGFLGSTLIE GDLVLFALYM FVISPHNIRK GLINHLISDP TGATMIKTYL KV. A.c. epsilon

30

FIGURE 13

-GFL-S-L-- --L--F-L-- F----N--R- -----

Predicted TM helix

Consensus

-

Adonis palaestina E-cyclase cDNA #5 Length: 1898

```
aaaggagtgt totattaatg ttactgtogo attottgcaa cacttatatt
      caaactccat tttcttcttt tctcttcaaa acaacaaact aatgtgagca
   51
      gagtatetgg ctatggaact acttggtgtt cgcaacctca tetettettg
  101
      ccctgtgtgg acttttggaa caagaaacct tagtagttca aaactagctt
  151
  201 ataacataca togatatggt tottottgta gagtagattt toaagtgaga
      gctgatggtg gaagcgggag tagaagttct gttgcttata aagagggttt
      tgtggatgaa gaggatttta tcaaagctgg tggttctgag cttttgtttg
  301
      tocaaatgoa goaaacaaag totatggaga aacaggocaa gotogoogat
  351
     aagttgccac caatacetti tggagaatcc gtgatggact tggttgtaat
  401
  451
      aggittgigga cotgotggte titcactgge tgcagaaget gctaagetag
 501
     ggttgaaagt tggccttatt ggtcctgatc ttccttttac aaataattat
      ggtgtgtggg aagacgagtt caaagatett ggaettgaac gttgtatega
 551
      gcatgcttgg aaggacacca tcgtatatct tgataatgat gctcctgtcc
 601
      ttattggtcg tgcatatgga cgagttagtc gacatttgct acatgaggag
 651
 701·
      ttgctgaaaa ggtgtgtgga gtcaggtgta tcatatctgg attctaaagt
      ggaaaggatc actgaagctg gtgatggcca tagccttgta gtttgtgaaa
 751
     atgagatett tatécettge aggettgeta etgttgeate tggageaget
 801
     tcagggaaac ttttggagta tgaagtaggt ggccctcgtg tttgtgtcca
 851
 901 aaccgcttat ggggtggagg ttgaggtgga gaacaatcca tacgatccca
     acttaatggt attcatggac tacagagact atatgcaaca gaaattacag
     tgctcggaag aagaatatcc aacatttctC tatgtcatgc ccatgtcgcc
1001
     aacaagactt ttttttgagg aaacctgttt ggcctcaaaa gatgccatgc
1051
     cattegatet actgaagaga aaactgatgt cacgattgaa gactetgggt
1101
1151
     atccaagtta caaaagttta tgaagaggaa tggtcatata ttcctgttgg
1201
     tggttettta ccaaacacag agcaaaagaa cctagcattt ggtgctgcag
1251 caagcatggt gcatccagca acaggctatt cggttgtacg gtcactgtca
1301 gaagetecaa aatatgette tgtaattgca aagattttga agcaagataa
1351 ctctgcgtat gtggtttctg gacaaagtag tgcagtaaac atttcaatgc
1401 aagcatggag cagtetttgg ccaaaggage gaaaacgtca aagagcatTe
     tttctttttg gattagaget tattgtgcag ctagatattg aagcaaccag
     aacattettt agaacettet teegettgee aacttggatg tggtggggtt
1501
     teettgggte ticactatea tetitegate tegtetigti ticcatgtae
1551
1601 atgtttgttt tggcgccaaa cagcatgagg atgtcacttg tgagacattt
1651 gctttcagat ccttctggtg cagttatggt aagagettac ctcgaaaggt
1701 agtotoatot attattaaac totagtgttt caccaaataa atgaggatoc
1751 ticquatgig tatatgatca tototatgia tatocigiac totaatotca
     taaagtaaat gccgggtttg atattgttgt gtcaaaccgg ccaatgatat
1851 aaagtaaatt tattgataca aaagtagttt ttttccttaa aaaaaaaa
```

Adonis palaestina ε-cyclase #5 predicted polypeptide TRANSLATE from: 113 to: 1702 Length: 529 amino acids

1 51 101 151 201 251 301 351 401 451	SGSRSSVAYK IPFGESVMDL DEFKDLGLER CVESGVSYLD LEYEVGGPRV EYPTFLYVMP KVYEEEWSYI YASVIAKILK	SSCPVWTFGT EGFVDEEDFI VVIGCGPAGL CIEHAWKDTI SKVERITEAG CVQTAYGVEV MSPTRLFFEE PVGGSLPNTE QDNSAYVVSG	KAGGSELLFV SLAAEAAKLG VYLDNDAPVL DGHSLVVCEN EVENNPYDPN TCLASKDAMP QKNLAFGAAA QSSAVNISMO	QMQQTKSMEK LKVGLIGPDL IGRAYGRVSR EIFIPCRLAT LMVFMDYRDY FDLLKRKLMS SMVHPATGYS AWSSLWPKER	HLLHEELLKR VASGAASGKL MQQKLQCSEE RLKTLGIQVT VVRSLSEAPK KBORAFFI FG
451 501	LELIVQLDIE	SOURT AAR	Q55AVNISMQ RI.PTWMWWGE	AWSSLWPKER	KRQRAFFLFG VLFSMYMFVL

FIGURE 14

351

DNA sequence of pot 3 cDNA (GenBank R27545) obtained from Nicholas J. Provart potato.seq Length: 1378 August 2, 1996 13:06 Type: N Check: 605 1 tageggnnnn naggatgagt teaaagatet tggtetteaa geetgeattg 51 aacatgtttg gcgggatacc attgtatatc ttgatgatga tgatcctatt 101 cttattggcc gtgcctatgg aagagttagt cgccatttac tgcacgagga 151 gttactcaaa aggtgtgtgg aggcaggtgt tttgtatcta aactcgaaag 201 tggataggat tgttgaggcc acaaatggcc acagtcttgt agagtgcgag 251 ggtgatgttg tgattecetg caggtttgtg actgttgcat cgggagcage 301 ctcggggaaa ttcttgcagt atgagttggg aggtectaga gtttetgtte 351 aaacagetta tggagtggaa gttgaggteg ataacaatee atttgaceeg 401 agcetgatgg ttttcatgga ttatagagae tatgtcagae acgaegetea 451 atetttagaa getaaatate caacatttet etatgecatg eccatgtete 501 caacacgagt ctttttcgag gaaacttgtt tggcttcaaa agatgcaatg 551 ccattcgatc tgttaaagaa aaaattgatg ttacgattga acaccetcgg 601 tgtaagaatt aaagaaattt atgaggagga atggtcttac ataccagttg 651 gaggatcttt gccaaataca gaacaaaaaa cacttgcatt tggtgctgct 701 gctagcatgg ttcatccagc cacaggttat tcagtcgtca gatcactgtc 751 tgaagctcca aaatgcgct tcgtgcttgc aaatatatta cgacaaaatc 801 atagcaagaa tatgcttact agttcaagta ccccgagtat ttcaactcaa 851 gettggaaca etetttggee acaagaacga aaacgacaaa gategttttt 901 cctatttgga ctggctctga tattgcagct ggatattgag gggataaggt 951 cattetecg egegttette egtgtgecaa aatggatgtg geagggattt 1001 ettggtteaa gtetteettn ageagaeete atgttatttg eettetaeat 1051 gtttattatt gcaccaaatg acatgagaag aggettaate agacatett 1101 tatctgatcc tactggtgca acattgataa gaacttatct tacattttag 1151 agtaaattcc tcctacaata gttgttgaan nagaggcctc attacttcag 1201 attcataaca gaaatcgcgg tctctcgagg ccttgtatat aacattttca 1251 ctaggttaat attgcttgaa taagttgcac agtttcagtt tttgtatctg

1351 gtatatataa attttataaa aaaaaaaa TRANSLATE from: 14 to: 1147 poteps.pep Length: 378 1 DEFKDLGLQA CIEHVWRDTI VYLDDDDPIL IGRAYGRVSR HLLHEELLKR 51 CVEAGVLYLN SKVDRIVEAT NGHSLVECEG DVVIPCRFVT VASGAASGKF 51 LQYELGGPRV SVQTAYGVEV EVDNNPFDPS LMVFMDYRDY VRHDAQSLEA 101 151 KYPTFLYAMP MSPTRVFFEE TCLASKDAMP FDLLKKKIML RINTLGVRIK 201 EIYEEEWSYI PVGGSLPNTE QKTLAFGAAA SMVHPATGYS VVRSLSEAPK CAFVLANILR QNHSKNMLTS SSTPSISTQA WNTLWPQERK RQRSFFLFGL 251 ALILQLDIEG IRSFFRAFFR VPKWMWQGFL GSSLSXADLM LFAFYMFIIA 301 PNDMRRGLIR HLLSDPTGAT LIRTYLTF*

1301 cttcttttt gtccaagatc atgtattgan ccaatttata tacattgcca

FIGURE 15A

Chimeric lettuce/potato lycopene ε-cyclase: converts lycopene to δ-carotene, the lettuce cDNA converts lycopene to t-carotene and the potato cDNA does not produce an active enzyme

(amino acids in lower case are from lettuce and those in uppercase are from the potato cDNA; an AvaII site in common to the two cDNAs was used to construct the chimera)

```
l mecfgarnmt atmavftcpr ftdcnirhkf sllkqrrftn lsassslrqi
51 kcsaksdrcv vdkqgisvad eedyvkaggs elffvqmqrt ksmesqskls
101 eklaqipign cildlvvigc gpaglalaae saklginvgl igpdlpftnn
151 ygvwqdefig lglegciehs wkdtlwyldd adpirigray grwhrdllhe
201 ellrrcvesg vsylsskver iteapngysl iecegnitip crlatvasga
    asgkfleyel gGPRVSVQTA YGVEVEVDNN PFDPSLMVFM DYRDYVRHDA
251
301 OSLEAKYPTF LYAMPMSPTR VFFEETCLAS KDAMPFOLLK KKLMLRLNTL
351 GVRIKEIYEE EWSYIPVGGS LPNTEQKTLA FGAAASMVHP ATGYSVVRSL
     SEAPKCAFVL ANILRONHSK NMLTSSSTPS ISTOAWNTLW POERKRORSF
401
     FLEGLALILQ LDIEGIRSFF RAFFRVPKWM WQGFLGSSLS XADLMLFAFY
451
    MFIIAPNOMR RGLIRHLLSD PTGATLIRTY LTF*
```

FIGURE 15B

GAP comparison of Arabidopsis e-cyclase x potato e-cyclase (partial)
Length Weight: 12 Average Match: 2.912 Quality: 1485 Length: 529 Ratio: 3.929 Gaps: 1
Match display thresholds for the alignment(s): = IDENTITY : = 2 . = 1
151 EDEFNDLGLOKCIEHVWRETIVYLDDDKPITIGRAYGRVSRRLLHEELLR 200
201 RCVESGVSYLSSKVDSITEASDGLRLVACDDNNVIPCRLATVASGAASGK 250
251 LLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKVRSLE 300
301 AEYPTFLYAMPMTKSRLFFEETCLASKDVMPFDLLKTKLMLRLDTLGIRI 350
351 LKTYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAP 400 .
401 KYASVIAEILREETTKQINSNISRQAWDTLWPPERKRQRAFFLFG 445
446 LALIVQFDTEGIRSFFRTFFRLPKWMWQGFLGSTLTSGDLVLFALYMFVI 495
496 SPNNLRKGLINHLISDPTGATMIKTYLKV 524 . .: : : : : 350 APNDMRRGLIRHLISDPTGATMIND

FIGURE 16

Adonis	pal	ae	s t	in	a	Ιp	il
	1	at	tc	at:	ct	tc	ac
	•	-	_				•

1	attcatcttc	agcagcgctg	tcgtactctt	tctatatctt	cttccatcac
51	taacagtagt	cgccgacggt	tgaatcggct	attcgcctca	
101	tgggtgaagt	cactgatgct	ggaatggatg	ctgttcagaa	gcggctcatg
151		aatgtatttt		aatgacaagg	
201		tacaactgtc		aaagatagag	
251	tocttcacao	agccttcagt	attttcttat	tcaactcaaa	
301	cttcttcage	aacgateege	cacaaacota		atatgaattg
351	aaacacatgt	tacaatcatc	ctctctttc	acattcccgc	tcgtatggac
401	assattatet	tgcagtcatc	220000000	tgattccgag	
451	Ctaccatta	cggtgtacga	aacgccgcac	aaagaaagct	tttagacgag
501	teaggeacte	cagctgaaga	tgtcccagtt	gatgaattta	ctcctcttgg
551	togcattett	tacaaagctc	catctgacgg.	caaatgggga	gagcacgaat
	tggactatct	cctatttatt	gtccgagatg	tgaaatacga	tecaaaccca
601	gatgaagttg	ctgatgctaa	gtatgttaat	cgcgaggagt	tgagagagat
651	actgagaaaa	gctgatgctg	gtgaagaggg	actcaagttg	tctccttggt
701	ttagattggt	tgttgataac	tttttgttca	agtggtggga	tcatgtagag
751	cagggtacga	ttaaggaagt	tgctgacatg	aaaactatcc	acaagttgac
-801	ttaagaggac	ttctctcctc	tgttctacta	tttattttt	gctacaataa
851	gtgggtggtg	ataagcagtt	tttctgtttt	Ctttaattta	tggcttttga
901	atttgcctcg	atottoaact	tgtaacatat	ttacacaaat	atgagaga
951		tttgaggctg	aatttatatt	tttqqqaaca	tastastas
1001	22			cccgggaaca	caacaatgtt

FIGURE 17A

Adonis palaestina Ipi2

 pu	reescina ip	12			1
1	ttttaaagct	ctttcgctcc	accaccatca	220002000	aatttctctg
51	tacaaaagtt	aaaaacacco	Ctttgggctt	tagecageca	atatcggaat
101	ccttgtttac	gatacgcatc	taaaccagta	atteteget	ttaatttgtt
151	tcctaaatta	ggccctttc	Cogatece	accettgget	cgtcgatcag
201	gattaatcct	ttatatagra	tetteteese	agaattatgt	acattatcag
251	cttcqtqttc	tteteceart	gttcatcttc	Caccaccaaa	acattatcag
301	tctatttctt	cttccatcac	taacactcct	agcagcgttg	regtactett
351	gttcgcctca	acotcoacta	taacagtcct	cgccgagggt	tgaatcggct
401	CCGtccagaa	acaacttata	tgggtgaagt	egetgatget	ggtatggatg
451	aatgacaagg	tratragaca	ttcgacgatg	aatgtatttt	ggtggatgag
501	aaagatagag	CCaCaaaaac	tgattccaaa	tacaactgtc	atttgatgga
551	tcaactcaaa	atacaaatta	tgcttcacag	agccttcagt	gttttcttat
601	acattcccc	testates	cttcttcagc	aacgatctgc	aacgaaggta
651	tgattccga	ctgtatggae	aaacacctgt	tgcagccatc	ccctcttccg
701	aaaccaaacc	tttatagaag	aaaattttct	cggggtacga	aacgctgcac
751	addagaagcc	LLLagacgag	ctaddcattc	cadctdaada	CGTaccages
801	gargaarrea	crecrettgg	tegeattett	tacaaaactc	Catctgacgg
851	uuaacyyyya	gagcacgaac	tggactatct	tetattatt	gtccgagatg
901	cyaaacacya	cccaaaccca	gatgaagttg	ctgacgctaa	atacattaat
951	cycgaggagt	tgaaagagat	actgagaaaa	gctgatgcag	GEGERATO
1001	aacaaagttg	ceteettggt	ttagattggt	totogataac	*****
1051	ageggegga	tcatgtagag	gaggggaaga	ttaaggacgt	CCCCCCCC
	addactattt	acaagttgac	ttaagagaaa	atetettaan	ttctactatt
1101	caarrrage	ttcaataagt	ggatggtgat	gagcagtttt	tatocttcct
1151	ccaaccccgg	ctttcaatt	tgctttatgt	gttgaacttg	taacatattt
1201	agicaaalat	gagaccttgt	gagttgaatt	tgaggttata	tttatagtrr
1251	EGGGGAACAFA			_ ,,	

FIGURE 17B

÷ ':

Haematococcus pluvialis Ipil

1 51 101 151 201 251 301 351 401 451 501 651 701 751 801	cctttacatg cgacggaaca acgagctggg ctcacgcgtt atcagcgctc ccaacgtcac gtgacgcaag	tgettegtte geccageage catgeagatg cegaggaeage taceacatea tttgaegate cacettecea ggcagaecec gtacetggeg gataceageg tggggegage cttggegeee aggagetgeg	ccagetgtge acgetcatge cacagaceae atgagetgat atcacagge gcetgcagge aggggegaet agtgtgtgga agatgaggtg caaaggetge caccagetge tgccgeggae acgaaatgga aaccetgaeg gcagatgatg	acacgcgcga agcccagcat atgaggggtg gctgaaggac atgccagcaa ctgctgcaac gctgctgcaa cgacaacctaa tgccatccgc cggcaagcgc gtgcagccag ctacatcttg aggtggacga cagccggaca	caagcacetg gagtgcatet getggagtgt gggcettete cagegtgeae etgeageeae gecaggtgge aagttggage gtttegette etgegaeaea tteateeggg agteaggtae
701 751	atcagegete ccaacgteae gtgacgeaag atggtegeeg gggetgacet acggtgeate gacacgteat tetgagaetg	tggggcgagc cttggcgcc aggagctgcg tggtttcgca ggacgcggcc acatcaacga ggggtggaat aacctgcagt accgtcactt	acgaaatgga aaccctgacg gcagatgatg tcatcgccgc ctaaacactg agcgtgaaag tgcgtacttg caggtcccac	gtgcagccag ctacatcttg aggtggacga cagccggaca gcgcttcctt acaaacacga cagaagctgc	ctgcgacaca ttcatccggg agtcaggtac acgggctgca gagcgttggt

FIGURE 18A

Haematococcus pluvialis Ipi2 tggaacctgg cccggcggca gtccgatgcc gcgatgcttc gttcgttgct cagaggeete acgeatatee egegegtgaa eteegeecag cageccaget 51 gtgcacacge gegaetecag titaagetea ggagcatgca getgettgee 101 gaggaccgca cagaccacat gaggggtgca agcacctggg caggcgggca gtcgcaggat gagctgatgc tgaaggacga gtgcatctta gtggatgctg 151 201 acgacaacat cacaggecat gecageage tggagtgeca caaatteeta 251 ccacatcage ctgcaggect getgcacegg geettetetg tgttcctgtt 301 tgacgaccag gggcgactgc tgctgcaaca gcgtgcacgc tcaaaaatca 351 cetteceaag tgtgtggacg aacacetget geagecacec tetacatggg 401 cagaccccag atgaggtgga ccaactaagc caggtggccg acggcacagt 451 acctggcgca aaagctgctg ccatccgcaa gttggagcac gagctgggga 501 taccagegea ccagetgeeg. gcaagegegt tregetreet caegegittg 551 cactactgtg ccgcggacgt gcagccggct gcgacacaat cagcgctctg 601 gggcgagcac gagatggact acatettatt cateegggee aaegteacet 651 tggcgcccaa ccctgacgag gtggacgaag tcaggtacgt gacgcaagag 701 gagetgegge agatgatgea geeggacaae gggttgeaat ggtegeegtg 751 gtttegeate ategeegege getteettga gegttggtgg getgaeetgg 801 acgeggeeet aaacactgae aaacacgagg attggggaac ggtgeateac 851 901 atcaacgaag cgtgaaggca gaagctgcag gatgtgaaga cacgtcatgg 951 ggtggaattg cgtacttggc agcttcgtat ctcctttttc tgagactgaa cctgcagagc tagagtcaat ggtgcatcat attcatcgtc tctcttttgt 1001 1051 tttagactaa tctgtagcta gagtcactga tgaatccttt acaactttca 1101 aaaaaaaa

FIGURE 18B

BNSDOCID: -WO

99630554115

FIGURE 19A

Lactuca s	ativa Ipi2				
1	tattcgcttc	aaaatctctt	ccattaactg	ctcaaatctc	caccttcgcc
51	ggtcttaatc	tccgccggcg	cactttcacc	accataaccg	ccgccatggg
101	tgacgattcc	ggcatggacg	ctgtccagag	acgtctcatg	tttgatgatg
151	aatgcatttt	ggttgatgaa	aatgacaatg	ttcttgggca	tgataccaaa
201	tacaattgtc	acttgatgga	gaagattgag	aaagataatt	tgcttcatag
251	agcattcagt	gtattttat	tcaattcaaa	atacgaatta	ctccttcagc
301	aaaggtcaga	aaccaaggtg	acatttcctt	tggtatggac	aaacacctgt
351	tgcagccatc	cactatacag	agaatcggag	ttaattcccg	aaaatgccct
401	tggggtcaga	aatgctgcac	agaggaagct	tctagatgaa	ctcggtatcc
451	ctgctgaaga	tgttccagtt	gatgagttca	caactttagg	togcatgttg
501	tacaaggctc	catctgatgg	aaaatggggt	gaacatgaag	ttgattacct
551	actcttcctc	gtgcgtgacg	ttgccgtgaa	cccaaaccct	gatgaggtgg
601	cggacattag	atacgtgaac	caagaagagt	taaaagagtt	actaaggaag
651	gcggatgcgg	gtgaggaggg	tttgaaattg	tccccatggt	ttaggctagt
701	ggtggacaac	ttcttgttca	aatggtggga	tcatgtccaa	aaggggacac
751	tcaatgaagc	aattgacatg	aaaaccattc	ataagttgat	atgaaaaatg
801		atggtggtgg			tgttcaagtc
851		ttttttaac			
901		ttgtaacgta			
951		cgttaattta			• • • • • • • • • • • • • • • • • • • •

FIGURE 19B

WO 99/63055

Chlamydomonas reinhardtii Ipil

(Note: the isomerase cDNA probably ends at ca. base 1103; the second half of the cDNA is similar to extensin and other hydroxyproline-rich structural proteins)

1 51	ggcacgagc		t ttaccatga	c atcgggaat	+ +aa
	aactacctca	attactcaa	taactcgcg		
101	cgctgttttc	: tctgctccad	ctaccgage		
151	gatgtcataa	actcccacti	atatgagat		, , , , , ,
201	ccagagcgca	acctgtctta			
251	caaagccgtg	ctctcgttg			gcgcctcgcg
301	aggactttca	caggeteaaa			ggccgggagc
351	cctgggaagg	cacgggcctg			agttcgtcaa
401	tgcttggtgg				gegggaegag
451	cgactgccac				CCaacaagta
501	accgcgcctt			f ccagccctgc	ggccgcctac
551	cagcagcgcg			ccgacggccg	actgctgctg
601	ctgctgctcg			CCgggtatat	ggaccaacac
651	Cadeacacac			geeggaegag	gtggacctgc
701	cggcggcggt			gcatcaaggg	ggcggcggtg
751	cgcaagctgc		ggggataccg	ccggagcagg	ttcccgcctc
801	ctccttctcc	3 -	gtctgcacta	ctgcgccgcc	
851	cgcacggccc	ggcggcggag	tggggcgagc	acgaggtgga	,,,,,
901	ttcgtgcggc	cgcagcagcc	cgtcagcctg	cagcccaacc	ctacgtgctg
951	ggacgccacg	cgctacgtga	cgctgccgga	gcttcagtcc	cagacgaggt
1001	accccggcct	cagctggagc	ccctggttcc	gcatcctggc	atgatggcgg
	gccttcctgc	ccgcctggtg	gggcgacctg		cacacagccc
1051	cggcagccga	Ctgtcggact	ggggcaccat		ggcgcccggg
1101	aaaggggaag	caggggcggg	agcgggggat	ccaccgcgtc	atgtgaagaa
1151	ttgtgatgcg	gcgtgggatg	aggtctgaag	gaatgggaat	gtgaatgcga
1201	cgggcgtgag	cgtgtgtgta	cgtgagcgac	acagggggaa	aatcgggggg
1251	gcgatgggta	catgtgtgtg	cggagggtcg	aaagccggga	ggcggaccgc
1301	gcatagcgtg	ttgtgtgtgt	geggetgege	gtgggtcggt	cggttgcgcg
1351	acggaggaga	aggcacacgc	aggtggcgcg	gggtatgtgg	gcacccgggc
1401	ggcgggcctc	actcctggtc	atacceases	gaggtgtgtc	aggggccatg
1451	ggggctgcac	ccatatgage	gtgcccagtg	gtctcgtggg	cagagtggca
1501	tcacttggtg	aggtggggcg	ggcgcactgc	cgcgctgggc	taagtcctta
1551	gaaggacacg	gtgtgtgagc	aggtggctgt	gggcggcggg	cgcagtggca
1601	ggcggatagc	gatatgacgt	ggtggagctc	tggccgtgcc	ggccgtgagg
1651	tgcaggccgc		tgtgcttggc	cgctgtaatg	cgggagaatg
1701	cgttggggag	gagaagcggg	cggtggcagg	aggccgcagg	ctgcagcacc
1751	gggcgcctga	gtgccgcctg	caggegegge	gccgggcggg	cctgagtaat
1801	ggacgagetg	gtagtggcgg	ccacaggagg	cgcaggaggc	agcagcagga
1851	gtggccatac	gagggacccg	ttggcaaccc		gtgtaacata
	3-39-catac	aaaaaaaa	aaaa	_	

FIGURE 20

FIGURE 21A

Oryza	sat	iva Ipil				
	1 51 101 151 201 201 301 301 401 451 501 551 601 701 751 801	agcggctcat gttgttggc atctgaaaat aatatgaact ctagtttgga gcttatacag tcttggatga acccctcttg tgaacacgag tcccgaaccc ctgaaggagc gtctccctgg atcacgtcga cacaagctga aagactctgt gaagtcagaa	gttcgacgac atgaatcaaa ctacttcata cctactccag ccaacacttg gaaaactacc gctgggcatc gtcggatgct cttgactacc ggacgaagtg tcatccgcaa ttccggctgg gaaaggcacc agtaaggact tcttgtctg gaagcttttg	gaatgcattt atataactgc gggctttcag caacgatctg ctgcagcat ttggtgttag ccagctgaag ttacaaggcc tgctgttcat gccgatgtga agcggacgcc ttgttgacaa ctcaacgagg gcgatgtgt ctgcatatta tatgtttctg	cgggatggac tggtggatga catctgatgg tgtattcctg caacaaaggt cctctgtacc aaatgctgct atgtgccagt ccatctgatg cgtccgcgac aatacgtgag ggagaggaag cttcctcatg ccgtggacat ggctggacat ggctggacag	acaagacaat aaaaaatcga ttcaactcaa tacatttcct gtgagtctga cagaggaagc tgaccaattc gaaaatgggg gtgaaggtag ccgtgaagcag gcctgaagct ggctggtggg ggagaccatc aatgatcctg ggaagttgca
9	901 951 901	gcaaacttct	tgactgagag atattataca	attcccttat	agagtgtcta	tgttaattta

FIGURE 21B

<u>1.</u>

Isomerases (IPI) or Complemtation in E.coli	61 -HGDDSGHDAVQR RLHFDDECILVDECD AHGDDSGHDAVQR RLHFDDECILVDEND THGDDSGHDAVQR RLHFDDECILVDEND THGEVADAGHDAVQK RLHFDDECILVDEND HGEVTDAGHDAVQK RLHFDDECILVDEND AAAAVEDAGHDAVQK RLHFDDECILVDEND AHTDTROAGHDAVQK RLHFDDECILVDEND AHTDTROAGHDAVQR RLHFDDECILVDEQD HTDSAUBAGHDAVQR RLHFDDECILVDEDH HRGASTWAG-GQSQD ELHLKDECILVDVEDH HRGASTWAG-GQSQD ELHLKDECILVDVEDH HRGASTWAG-GQSQD ELHLKDECILVDVEDH ARGASTWAG-GQSQD ELHLKDECILVDVEDH HRGASTWAG-GQSQD ELHLKDECILVDVEDH HRGASTWAG-GQSQD ELHLKDECILVDVEDH HASSSTHEGTGLSQD PRAVORECILVDVEDH		241 255 256 270 VAUNPUBEUADIKY VSHEEIKELLERADA VGLOPHPDEUADIKY VSHEEIKELLERADA VANNPHPDEUADIKY VNDEEIKELIRRADA VKYDPHPDEUADIKY VNREELKEILRRADA VKYDPHPDEUADKY VNREELKEILRRADA VKVOPHPDEUADKY VSREELKEILRRADA VKVOPHPDEUADKY VSREELKEILRRADA VKLQPHPDEUARKY VSREELKEILRRADA VKLQPHPDEUARKY VSREELKEILRRADA VTLAPHPDEUDEUKY VTQEELRQHAQP VSLQPHPDEVDEVRY YTGEELRQHAQP VSLQPHPDEVDEVRY VTQEELRQHAQP	Tagetes erecta (marigold) Lactuca sativa (romaine lettuce) Lactuca sativa (romaine lattuce) Adonis palaestina (pheasant's eye) Oryza sativa (rice). Arabidopsis thaliana Haematococcus pluvialis Haematococcus pluvialis Chlamydomonas reinhardtii
ClustaiM 1.7 Multiple Sequence Alignment of Plant and Green Algal Isopentenyl Pyrophosphate Isomerases (IPI) These amino acid sequences were predicted by CDNAs that were isolated and identified by color Complemtation in	RKSSFPPHPSLAAASVELHPLSSA DRCRTLS1SSSIT NSPRRGLNRLFASTS IRPLSSISPRKLPNFRAFSGT KLRSHQLLS	VELENSKYELLLOOR SATKUTFPLUMTHYC CSHP VELENSKYELLLOOR SATKUTFPLUMTHYC CSHP VELENDOGGRILLOOR SATKUTFPLUMTHYC CSHP VELENDOGGRILLOOR ARSKITFPSUMTHYC CSHP VELENDOGGRILLOOR ARSKITFPSUMTHYC CSHP VELENDOGGRILLOOR ARSKITFPSUMTHYC CSHP VELENDOGGRILLOOR ARSKITFPSUMTHYC CSHP	226 EHELDYLLFIVRD EHELDYLLFIVRD EHELDYLLFIVRD EHELDYLLFIVRD EHELDYLLFIVRD EHELDYLLFIVRD EHELDYLLFIVRD EHELDYLLFIVRD EHEVDYLLFIVRD EHEWDYLLFIVRD EHEWDYLLFIRRN EHEWDYLLFIRRN	301 315 316 GTLTEAIDNKTI HKLI 232 Tagec GTLNEAIDNKTI HKLT 280 Lactu GTLNEAIDNKTI HKTT 293 Adoni GTI
Sequence Alignment of Plant and Gr inces were predicted by cDNAs that	15 16 30 31 HSSIRINPLYSIFST TTKTLSASCSSPAVH LQ	105 106 120 120 VGHOTKYNCHME KIETGKHLHANFS VGHOTKYNCHME KIEKGMHLHANFS VGTOSKYNCHME KIEKDHLHANFS VGTOSKYNCHME KIEKDHLHANFS VGHOSKYNCHME KIEKHLLHANFS VGHOSKYNCHME KIEKHLLHANFS VGHOSKYNCHME KIEKHLLHANFS TGHASKLECHKEL PHQPAGLLHANFS TGHASKLECHKEL PHQPAGLLHANFS TGHANKYDCHRE AAKGQPGGRLHANFS	196 VPUDEFPLGRALY- VPUDEFFPLGRILY- VPUDEFFPLGRILY- VPUDEFFPLGRILY- VPUDEFFPLGRILY- VPUDEFFPLGRILY- VPUDEFFPLGRILY- VPUDEFFPLGRILY- VPUDEFFPLGRILY- LPASARRELRHINC LPASARRELRHINC VPASSFSFLTRLHYC	271 GEGUKLSPWFRLVV DNFLFKWUDHVOK GTL GEGUKLSPWFRLVV DNFLHKWUDHVOK GTL GDEGUKLSPWFRLVV DNFLHKWUDHVOK GTL GDEGUKLSPWFRLVV DNFLHKWUDHVOK GTL GDEGUKSPWFRIJA ARFLFRWADLDA ALH -DNGLOWSPWFRIJA ARFLFRWADLDA ALH -DPGLSWSPWFRIJA TQPAFLPAWGDLKR RWR
Clustaiw 1.7 Multiple These amino acid seque	1 T.erocra 1 2 L.saciva 1 3 L.saciva 2 4 A.polaestina 2 5 A.palaestina 1 6 O.saciva 1 7 A.thaliana 1 8 A.thaliana 2 9 H.pluvialis 1 10 H.pluvialis 2 11 C.reinhardtil 1	1 T.erecta 1 2 L.sativa 1 3 L.sativa 2 4 A.palaestina 2 5 A.palaestina 1 6 O.sativa 1 7 A.thallana 1 8 A.thallana 2 9 H.pluvialis 1 10 H.pluvialis 2 11 C.reinhardtil 1	1 T.erecta 1 2 L.sativa 1 3 L.sativa 2 4 A Palaestina 2 5 A-palaestina 2 6 O.sativa 1 7 A thaliana 1 9 A.thaliana 1 10 H.pluvialis 1 11 C.reinhardtii 1	1 Terecta 1 2 L.sativa 1 3 L.sativa 1 5 L.sativa 1 5 G 6 6 O.sativa 1 5 G

```
Comparison using GAP program of the Genetics Computer Group
         Gap Weight:
                              50
                                        Average Match: 10.000
        Length Weight:
                                       Average Mismatch:
                                                                0.000
               Quality:
                             17392
                                                     Length:
                                                                  1904
                  Ratio:
                             9.411
                                                       Gaps:
Percent Similarity: 95.331
                                      Percent Identity: 95.331
Match display thresholds for the alignment(s): | = IDENTITY
 Adonis palaestina E-cyclase #3 x Adonis palaestina E-cyclase #5
        1 gagagaaaaigagtgttatittaatgttactgtcgcattcttgcaacac: 49
1 .....aaaggagtgttctattaatgttactgtcgcattcttgcaacact 44
       99 tga.cggagtatctagctatggaactacttggtgttcgcaacctcat
95 tgagcagagtatctggctatggaactacttggtgttcgcaacctcat
           ttcttgccctgtctggacttttggaacaagaaaccttagtagttcaaaac 197
      148
      145
     198 tagettataácatacategátatggttettettgtagagtagatttteaa 247
195 tagettataácatacategatatggttettettgtagagtagatttteaa 244
     248 gtgagggctgatggtggaagcgggagtagaagttctgttgcttataaaga
245 gtgagagctgatggtggaagcgggagtagaagttctgttgcttataaaga
     298 gggttttgtggatgaagagattttatcaaagctggtggttctgagcttt
          tgtttgtccaaatgcagcaaacaaagtctatggagaaacaggccaagctc
     348
     345
          gccgataagttgccaccaatacettttggagaatctgtgatggacttggt 447
     398
     395
          tgtaataggttgtggacctgctggtctttcactggctgcagaagctgcta 497
     448
     445
     498 agctagggttgaaagttggccttattggtcctgatcttcctttta
     548 aattatggtgtgtgggaagacgagttcaaagatcttggacttgaacgtt
545 aattatggtgtgtgggaagacgagttcaaagatcttggacttgaacgtt
          tatcqaqcatqcttqqaaqqacaccatcqtatatcttqacaatqatqctctatccgaqcatqcttggaaqqacaccatcqtatatcttgataatqatqctc
     598
     595
    648 ctgtccttattggtcgtgcatatggacgagttagtcgacatttgctacat 697
    698 qaaqaqttqctqaaaaqqtqtqtcqaqtcaqqtqtatcatatctqaattc
          taaaqtqqaaaqqatcactqaaqctqqtqatqqccataqccttqtaqt
    798 grgaaaacgacarcrrratcccrrgcaggertgcractgractgratcrgga 847
795 grgaaaargagatctttatcccrrgcaggertgcractgractgratcrgga 844
```

FIGURE 23

WO 99/63055

FIGURE 23 (cont.)

84	T 1 1	1951	FFF	ago	ggą	ąą	ÇŢ	ÇÇ	ţg.	ga	gta	ato	aa	σt	aσ	at.	aaa	٠÷،	٠ + ~	~=		٠.	
84.	5 ģċá	gċ	ξęċ	aģ	ģģå	aa	cti	FF	få	gå	gta	f	aa	ΪĮ	Ιľ	ĮĮ.	֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	וַוַן	ŢŢ	71	1111	•	397
898	8 F9F	çç	aa	çŧç	765	ţą	Fgg	g t c	jţ	gga	agg	, t	gá	aa	ta	σa	יככ זמנ	iċa	a +	90	9 C C C		94
89	_	ĊĊ	ààà	င်ငင့်	jċt	tå	Łģ	ggg	340	կ գե	ago	ιŁŁ	ga	ďα	ff	ďΑ	TI I		ŢĮ	II.	֓֞֞֞֞֓֓֞֞֓֓֞֜֞֜֓֓֡֓֓֓֓֡֓֡֓֡֓֡֓֡֡֡֡֓֓֡֡֡֡֡֡֓֓֓֡֡֡֡֡֡֡֡	Γ.	47
948	ato	FF	aç	FĖŦ	af	gg:	Fat	fţi	tai	¢ g	jąç	ţa	çå	gą	ga	cta	ata	ιĖα	ca	ac	2022	y :	944
945	atc	ĊĊā	iáċ	tta	aat	ģģ	ţáł	F	cai	ξģ	Jac	:Ła	ca.	ga	ga	ξť		ίſ	IJ	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	atac agaa agaa		94
998	tta	cac	159	ç † ç	gg	aad	ga q	g	a	Fat	-66	ąą	çå	ţţ	- FÇI	ţ¢ţ	at	ġŧ	ca	tac	gaa. CCa CCa	2 3 F 1	047
995	tta	Ċáġ	rtġ	ċŧċ	ġġ	ààq	jáá	ıġå	ia	Lat	çç	ala	ca:	ff.	fç	Łċ	at	qf	ĮΤ.			ן ז	044
1048	959	966	aac	ráa	ga	951	777	F	7	99	igg	ąą	ąċ	çţ	gţţ	FFG	gç	ċt	caa	aaa	gato	, 1	097
1045	gtc	gcc	aa	ċàà	ġà	ċŧŧ	ttt	:tt	: é é	gå	ıģģ	aa	àċ	έŧ	446	ff	åξ	çŧ	۵į,	lll	gate	1	094
1098	III	<u> </u>	CE	779	ga	ffi	P	ŦĠ	ta a	gą	ga	aa.	ą¢t	ţaa	7 4 9	759	:ąç	ġą	ţţ.	jąą	gact	1	147
1148	cca	tgc	cat	itc	ga	tct	àċ	tġ	ráá	ıġá	ġá	à à a	áct	Lga	ąέċ	įέċ	:dc	ģå	ξĘĠ	jaa	gat gaç gaç	: 1	144
1145				Ç	ag:	FF	rça	aa	aa	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֓֡֓	Fa	F9.	aåq	jąc	194	aţ	gg	ŧ¢:	tţ	ţ	FFC	: 1	197
1198	tati	ggc	att	ca 	agı	cta 	ca	aa •	ag	tt	ta	tġ.	àá¢	jác	gģā	iát	φģ	f¢.	ata	ta	FFC	: 1	194
1195	ĮŢŢ	ווון	ַלְלָב <u>ָ</u>	11.	II.	וַן	Ï	<u>a</u> a	ŢŢ	ac T	19	age	rài	99	ga	aç	77	ågo	rat	FF	ggt ggt	1	247
1248	Ctac	:99 :20	cas	40	200			aa .:	ac	ac	ag.	ago	ta a	làá	ıġá	áċ	ct	àġ	:at	: £ £	ąątą	1	244
1245	CEG	ag.		Ĭ	֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	וַיִי	J.	ŢŢ	ij	17	ĮĮ.	aça	199	161	a t	19	99	۴۴	J F q	çq	ggtg atçá gtca	1:	297
1298	ctat	ca	gaa	ac.	tcc	, y c	aa.	a. tå	-c	ay c+	ta.	a ca	gg	ICT	at	tċ	ġġ:	tto	gta	ċġ	gtċa	1:	294
1295	ctg	ca	III daa	II.	ΙIJ	I	ĬĬ	ĮŢ	IJ	ΪĮ	בַלַן.	[נֻיַן	11		75	a a	ag:	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	77	ga	gtca agca agca	1:	347
1348	agat	:aa	ctc	ta	cat	at	ati	αά	tt	50	ta	720	.aa	20	gc	aa 	aga 	350	ct	ġà	aġċà •		344
1345	agat agat	:aa	Ff	fg	ge	at	<u>af</u>		ίſ	ĬΪ		֓֞֞֞֞֞֞֞֓֞֞֞֓֓֓֞֞֩֞֓֓֞֞֩֞֓֓֓֓֞֓֡֓֞֡֓֡֓֞֡֓֡֡֡֡֡֡֡֡	֓֟֝֟֝֟֟֟֟֝֟֝֟֟֝֟֝֟֝֟֝֟֝֟֝ <u>֚֚֚֚֚֟</u>	וַלַ	٢٩	ĬĮ.	<u>Y</u> C		Ţ	ac.	7555		397
1398	caat	gça	ąąg	çaı	‡gç	ąg	çad	gŧ	Çţ	tt	aac	ca	iåa	aa	aa	GG.	y Ca a a â	390	.aa	ac.	accc		394
1395	caat	ģċ	lag	cat	Fåå	Ιdg	čá	Ĩξ	çΕ	ff		ca	II	ď	I			֓֓֞֟֓֓֓֟֝֟֓֓֟֝֟֓֓֓֟֝֟֓֓֟֝֟֓֓֟֝֟֓֓֓֟֝֟֝ <u>֚֚</u>	ĬĮ.	֓֞֟֝֟֓֟֟֝֟֟֟֟֝֟֟֟֝֟֟֟֝֟֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟			147
1448	gcat	FF	777	ĊŦ	FFF	cg	gg1	ţţ,	ąg	ągo	;;	aţ	ŧα	ta	ca	aci	tad	at	at	ta	aga		97
1445	ġċát	tċt	fff	ċŧŧ	FFF	tģ	gai	LŁa	١ģ	ago	744	: d t	fţ	fģ	ĮΙ			I	IĮ	ĮĮ,	֓֓֓֓֓֓֓֟֓֓֓֟֓֓֓֓֟֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓		94
1498	aacc	aga	146	ġţţ	FFF	FF	499	aġ	761	FF	?	çç	ġç	FF	gç(- Çaa	act	ta	ga	tai	.aat		47
1495	aacc	aġa	iáċ	att	ċċŧ	tt	àġá	aad	cct	ffe	; £ 6	ငှင်	ĝς	fξ	åς	caa	cf	ŧ₫	ga	få	dat		44
1548 1545	9999	ffi	77	559	199	F F'	779	à	rti	a t	ra t	FF	ŧŧ.	çg	ąţ	FFI	gţ	аţ	Fg.	FFI	ţçċ		97
1598	9999		.cc	tto	199	te	tto	ad	eta	ito	àt	ċŧ	££.	ċġ	ato	; to	:ģŧ	ct	ξģ	ff	fee	15	94
1595	atgt		Ĭ	111	75	ŦŦ:		JÇ(Sec	799	110	49	Ça	Fg	age	jat	gŧ	Çą	F F	Fgt	gaġ	16	47
1648	acat	tta	ce	 	.gc		cgç	ici	3CC	caa	ac	àġ	Ċā:	tġ.	aġ	ját	ġŧ	ċå	¢ť.	tģŧ	gag	16	44
1645	acat	III	II.	וַוַן	10					191	90	ag	<u>የ</u> የ	a t	ggt	řtí	aa	gç	ትት	769	tçġ	16	97
1698	aaaa	ata	ati		.ay →	ati				191	gc	ag	t t	ato	ġġŧ	aa	ıga	ġċ	tt	àċċ	:¢ċġ	16	_
1695	aaag aaag	ΪIJ	aE		Į	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	֚֡֓֓֞֟֝֟֝֓֓֓֓֟֝֟֓֓֓֓֓֟֝֓֓֓֟֝֓֓֓֓֟֡֓֓֓֓֓֟֡֓֓֓֓֓֡֡֡֡֡֓֓֓֓֓֡֡֡֡֓֓֓֓֡֡֡֡֓֓֡֡֡֡֓֡֡֡֡֡	֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	إو	֓֓֓֓֓֓֟֟֓֓֓֓֟֟֓֓֓֓֓֟֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓	Ï	a E	49	[9]	C	F	tt	aa.	a Fi	779	tgā	17	
1745	ggat	cct	tc	ita	ta	tat	- 2 -	à t	· Ca	100		C C	agı	cgi		ca	cc	aa.	ata	ààà	tġà	17	
1745	ggat ggat	ççt	fc	raa	Į.	ΙΙ			וו	ŢŢ		ַן דַ	֓֞֞֞֓֓֓֞֟֓֓֓֟֝֟֓֓֓֟֝֟֓֓֟֝֟֓֓֟֝֓֓֟֝֟֓֓֓֟֝֓֓֓֟֝֓֓֓֟֝֓֡֝֡֓֡֝֡	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֟֓֓֓֓֓֟֓֓֓֓֓֟֓֓֓֓֟֓֓֓֓	֓֞֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֓֓֓֡֓֡֓֡֓֡֓֡֡֓֡	Ì	FF	<u>ff</u>	ata	ן בין	CFA	17	
1795	474		944	3 U L	aa	ccc	ıaa	aa	I T. T	~~		~ a	P 3/	73			_ :				•	17	
1795	atct	faf	ala	Ϊåf	aa.	ato	CC	ga		tt	ga	77		700	-0+	ad.	إم	֓֟֓֓֓֟֟֓֓֓֟֟֓֓֓֓֓֓֓֟֟֓֓֓֓֟֓֓֓֓֓֓֓֓֓֟֓֓֓֓	aa.	144	aaa	18	
1845	· F				• •			• •	• •												-	18	
1845	tgåt	ata	aaç	jta	aa	ttt	at	tq	at	ac	aa	aad	gt:	o		tr			• • • • • •			18:	
								-		_	_		,	,							444	10	74

F 12

WO 99/63055

GAP program of Genetics Computer Group blosum62.cmp Gap Weight: Average Match: 2.912 12 Length Weight: Average Mismatch: -2.003 Quality: Length: 530 Ratio: 5.147 Gaps: 0 Percent Similarity: 99.623 Percent Identity: 99.057 Match display thresholds for the alignment(s): | = IDENTITY Adonis palaestina ε-cyclase #3 x Adonis palaestina ε-cyclase #5 1 MELLGVRNLISSCPVWTFGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGG 50 1 MELLGVRNLISSCPVWTFGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGG 50 51 SGSRTSVAYKEGFVDEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKLPP 100 51 SGSRSSVAYKEGFVDEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKLPP 100 101 IPFGESVMDLVVIGCGPAGLSLAAEAAKLGLKVGLIGPDLPFTNNYGVWE 150 101 IPFGESVMDLVVIGCGPAGLSLAAEAAKLGLKVGLIGPDLPFTNNYGVWE 150 151 DEFKDLGLERCIEHAWKDTIVYLDNDAPVLIGRAYGRVSRHLLHEELLKR 200 151 DEFKDLGLERCIEHAWKDTIVYLDNDAPVLIGRAYGRVSRHLLHEELLKR 200 201 CVESGVSYLNSKVERITEAGDGHSLVVCENDIFIPCRLATVASGAASGKL 250 201 CVESGVSYLDSKVERITEAGDGHSLVVCENEIFIPCRLATVASGAASGKL 250 251 LEYEVGGPRVCVQTAYGVEVEVENNPYDPNLMVFMDYRDYMQQKLQCSEE 300 251 LEYEVGGPRVCVQTAYGVEVEVENNPYDPNLMVFMDYRDYMQQKLQCSEE 300 301 EYPTFLYVMPMSPTRLFFEETCLASKDAMPFDLLKRKLMSRLKTLGIQVT 350 301 EYPTFLYVMPMSPTRLFFEETCLASKDAMPFDLLKRKLMSRLKTLGIQVT 350 351 KIYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAPK 400 351 KVYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAPK 400 401 YASVIAKILKQDNSAYVVSGQSSAVNISMQAWSSLWPKERKRQRAFFLFG 450 401 YASVIAKILKQDNSAYVVSGQSSAVNISMQAWSSLWPKERKRQRAFFLFG 450 451 LELIVQLDIEATRTFFRTFFRLPTWMWWGFLGSSLSSFDLVLFSMYMFVL 500 451 LELIVQLDIEATRTFFRTFFRLPTWMWWGFLGSSLSSFDLVLFSMYMFVL 500 501 APNSMRMSLVRHLLSDPSGAVMVKAYLER* 530 501 APNSMRMSLVRHLLSDPSGAVMVRAYLER* 530

FIGURE 24

÷2.

Ċ	j	
G	a	
2	5	
ζ		
	7	

	- 222204240HBB07		
	1003 1003 1003 1004 1004 1004 1004 1004	205 205 204 204 204 204 204 181 181 182 182 183 184 185	161 312 311 311 311 316 298 298 289 289 289
*	PPIS PPIS PPIP PROIS PFEL DFEL DFEL DFEL	220 CVES CVES CVES CVES CVES CVES CVES CVES	
100	VVVRYSYRNIRFGL-CSVRASGGSSGSESCVAVREDFADEEDFVKAGGBELLFVGHGONRDHDEGSKIVDRISSKLAYNIHRYGSSCRVDPQVRADGGSGSRSSVAYRGFVDEEDFIKAGGBELLFVGHGONRDHDEGSKINDKISSKLAYNIHRYGSSCRVDPQVRADGGSGSRTSVAYRGFVDEEDFIKAGGBELLFVGHGOTKSHEKDAKIADKISSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYRGFVDEEDFIKAGGBELLFVGHGOTKSHEKDAKIADKIPBLLKORRFTNLSA-SSGLRQIKCSAKSDRCVVDKQQISVADEEDFYKAGGBELFVGHGOTKSHEKDAKISKLISKHINGGREGIFLAY-EQYEGKCNSSSGSSCVVDKEDFADEEDYVKAGGBELFVGHGOTKSHESGSKLSENSKOIKCNAAKSQLVVKQSIBEEDFYKAGGBELFVGHGOTKSHENDGSKENHSCHUKTPNKLDFFILHGFAEKQHLVSTSKLQNQVFRIASRNIHPCRNGTVKARGSALLLDLUVPETKKENH	* HEELLER HEELLER HEELLER HEELLER HEELLER HEELLER HEELLER KSKWOR	THE PARTY OF THE P
Ä	HERE HERE HERE HERE HELV HELV HELV HELV HELV HELV HELV HEL	HILL HILL WOLL WOOD WOOD WOOD WOOD WOOD	320 LEAR LEAR SEEE SEEE LEAR LEAR LEAG RNSKI RNSKI RNSKI RNSKI RNSKI
	ONKI ONKE ONKE ONKE ONKE ONKE ONKE ONKE ONKE	CRVC CRVC CRVC CRVC CRVC CRVC CRVC CRVC	320 2 VRHDAQSLBAK 2 TNEKVRSLBAE 2 HQOKLQCSBEE 2 MQOKLQCSBEE 2 SKHKPESLBAK 2 SKHKPESLBAK 2 TKHRQQSLBAK 2 TKHRQQSLBAK 3 TKHRQCSLBAK 3
•	VOUC VOUC VOUC VOUC VOUC VOUC VOUC VOUC		-VRH -TNE -MQQ -MQQ -SKH -TKH -TKH -TKH CNNV CNNV SNNW
	KAGGSELLE KAGGSE	DDDD FILES DDDD FILES DDDD FILES DDDD FILES DDD FILES DD FILES	SHIP SHIP SHIP SHIP SHIP SHIP SHIP SHIP
80	AGGBELL AGGBELL AGGBELL AGGBELL AGGBELL AGGBELL SRSVC RSVC RSVC RSVC ROVC KLGQKYC KKCRNGYI	TODOS ILE TODOS	
∞	Drvk Drvk Drvk Drvk Criv STL STL STL		300
	-ADEEDFY -VDEEDFY SVADEEDTY SVADEEDTY -ADEEDTY -REFERSENTH -KKFCEGLG SKKFCETL SKKFCETL SKKFCETL TREGRKKSQI	WRETI WRETI WRDTI WRDTI WRDTI WRDTI WRDTI WRDTV SGAN SGAN SGAN	D CONK
•	TRRPPVVRRYSTRIFGL-CSVRASGGGSSGSBSCVAVREDFADEEDFVFAGGBELLFV TRNLSSSKLAYNIHRYGSSCRVDPQVRADGGSGSRSSVAYKGFVDEEDFIFAGGBELLFV TRNLSSSKLAYNIHRYGSSCRVDPQVRADGGSGSRSSVAYKGFVDEEDFIFAGGBELFFV TRNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKGFVDEEDFIFAGGBELFFV TRHRPSLLKQRRFTHLSA-SSSLRQIKCSAKSDRCVVDKGGISVADBEDYVFAGGBLLFVMSGGELCQKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADEEDYVFAGGBLLFVMDTLLKTPNKLDFFIPQFHGFEEKQHLVSTSKLQVQVFRIASRNIHPCRNGTVKMDTLLKTPNKLELLPTLHGFAEKQHLVSTSKLQNQVFRIASRNIHPCRNGTVKMDTLLKTPNKLELLPTLHGFAAVKASTFRSEKHNFGSRKFCETLGRSVCVKMDTLLKTPNKLELLPTHGPAVKASTFRSEKHNFGSRKFCETLGRSVCVKMDTLLKTPNKLELLPTHRUGSVKASSFNSVKPHKFGSRKICENWGKUCVKMDTLLKTPNKLELLPTHRUGSVKASSFNSVKPHKFGSRKICENWGKUCVKMDTLLKTPNKLELLPTHRUGSKUNSSFNSVKPHKFGSRKICENWGKUCVKMDTLLKTPNKLELLYPLHELAKRHFLSPSPNPQNPNFKFFSRKPYQKKCRNGYIG	180 GIEHW GIEHW GIEHW GLDTIN GLDTIN GLDTIN GLDATIN GLDATIN GLDATIN GLDATIN GLDATIN	* CONNOTE CONTOTE CONNOTE CONNOTE CONNOTE CONNOTE CONNOTE CONNOTE CONNOTE CONTOTE CONNOTE CONN
	AVRE AVRE AVRE ODE ODE OF OF OF OF OF OF OF OF OF OF OF OF OF		
	RSCV/ RTSVI CV OSCVV PYHE FSSVF F	TROUGH BROUGH BROUGH FROUGH FRANDI BR	AYGV AYGV AYGIB AYGIB AYGIB AYGIB AYGIB AYGIB AYGIB AYGIB AYGIB
9	SSGS 3SGS 3SGS SSGS	PEERD I DEERD I	
	RKFPVVKRISTRNIRFGL-CSVRASGGGSSGSESCVAVREDF TRNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRSSVAYKEGF TRNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRSSVAYKEGF IRHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGI -WASGGELCQEKSIFLAY-EQYEGKCNSSGSSSCVVDKEDF	INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP INYGVWP	THE TOTAL THE TO
•	- RAI DPQVI DPQVI IRQI IRPA IGPA- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS- IGPS-		
	SCRVI SCRVI	TO THE PERSON OF	SHELLO SH
04	RKFPVVKRYSTRNIRFGL-CSVRAS TRNLSSSKLAINIHRYGSSCRVDFQVR TRNLSSSKLAINIHRYGSSCRVDFQVR TRHKFSLLKQRRTHLSA-SSSLRQIK KDTLLKTPNKLDFFIPQFHGFR HDTLLKTPNKLBFLPTLHGFA- 		
4	YRNI YNIH YNIH YNIH YRFTI YRFNI YTPNN (TPNN (TPNN	CS ID	
	KRYS SKLA SKLA LLKQI SLCQI OTLLI OTLLR TLLR		CERTAIN CONTROL OF THE CONTROL OF TH
*	TEPAN TESSI	140 MESTEL MESTEL MESTEL MOUSEA COVSEA COVSE	TOTAL
	GTTRE GTTRE STRE	TAGO MEMBERS STREET	581111511111111
	ATT.	TAO DAGLAHAABAKA DAGLAHAABAKA DAGLAHAABAKA DAGLAHAABAKA DAGLAHAABAKA DAGLAHAABAKA DAGLAHAABAKA DAGLAHAABAKA DAGLAHAABAKA DAGLAVAQOVSEA DAGLAVAQOVSEA DAGLAVAQOVSEA	VECEDD VACOBNO VACOBNO VACOBNO VECEDO
20	HECVGARNP-AAMAVSTPFSM9-CRRKFPVVRRYSYRNIRFGL-CSVRASGGGSSGSSCVAVREDFADEEFFV HELLGVRNLISSCFWT-FGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGGGSRSSVAYKEGFVDEEFFT HELLGVRNLISSCFWT-FGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKEGFVDEEFFT HECKGARNMTATMAVFTCFRFTDCNIRHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKGGISVADEEFT HECVGVQNV-GAMAVLTRFRIMRMSGGELCQEKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADEEFYT HECVGVQNV	120 130 140 16	- 240 GVLTINSFUDRIVERTRIGHSTOPERDOWN GVSTISSRUDSTITATORISTIVA DDRAWN GVSTISSRUDSTITATORISTIVA DDRAWN GVSTISSRUSRITATORISTIVA GRAND FRI GVSTISSRUSRITATORISTIVA GRAND FRI GVSTISSRUSRITATORISTIVA GRAND TRI GVA FROAKUIKVIH - RESKSHLI GNDGITH VAR FROAKUIKVIH - RESKSHLI GNDGVTH VAR FROAKUIKVIH - RESKSHLI GNDGVTH OUT FROAKUIKVIH - RESKSTLIGGSDGVTH GVA FROAKUIK - RESKSTLIGGSDGVTH GVA FROAKUIK - RESKSTLIGGSDGVTH GVA FROAKUIK - RESKSTLIGGSDGVTH GVA FROAKUIK
	HAAVE	BEAVY BILLYVI	H - H - H - H - H - H - H - H - H - H -
•	HECYGARNP - AAMAN HELLGYRNL - I HELLGYRNL - I HECYGARNHTATHAN HECYGYGNY - GAHAN HERAG - HHTATHAN	120 DOALD BESVED	LTINSTORTORTER STIDSTORTER STI
	SCUGARA SLLGVRA SLLGVRA SCUGAR	12 	LTINSKY STIDSKY STIDSKY STIDSKY STIDSKY KHOAKY KPHOAKY KPHOAKY KPHOAKY KPHOAKY
į		120 IG	GVLTINSKY GVSTIDSKY GVSTIDSKY GVSTIDSKY GVLTINSKY GVKTHORKY GVKTHORKY GVKTHORKY GVKTHORKY GVKTHORKY GVKTHORKY GVKTHORKY
-	= = = = = = = = = = = = = = = = = = =	00 00 00 00 00 00 00 00 00 00 00 00 00	
	Arabidopsiss Adoniss1 Adoniss2 Lettucess Tomatos Arabidopsiss Adoniss Peppers Tomatos Tobaccos Marigolds	PotatoB Arabidopsiss Adonissi Adonissi Adonissi Tomatos Amarigolds Arabidopsiss Peppers Peppers Comatos Arigolds	
PotatoB	Arabidops AdonisEl AdonisE2 LettuceEE TomatoE AdonisB PepperB PopacB TomatoB TobaccoB MarigoldB	PotatoB Arabidops AdonisE1 AdonisE1 LettuceER MarigoldB Arabidops: PepperB TomatoB TomatoB TobaccoB MarigoldB	Potatos Arabidopsiss Adonissi Adonissi Lettucess Lettucess Arabidopsiss Arabidopsiss Arabidopsiss Peppers Peppers Comatos Peppers
Pot	Are Add Add Tour Are Are Are Are Tour Tour Tour	PotatoB Arabido Adoniss Adoniss Pertuce Adoniss PepperB Tobaccoi Marigolo	Potatos Arabidopsiss Adonissi Adonissi Lettucess Tomatos Arabidopsiss Adoniss Peppers Tomatos Tobaccos Marigolds

_	
	•
+	J
4000	:
ć	ָ כ
`	
ሪ)
G	1
2	ξ
TCITO	5
۲	4
G	4

27 7 30	# ¹ 2.
2 4 4 4 4 4 4 4 2 2 2 2 2 4 4 4 4 4 4 4	8 9 10 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0
11753 : NS: : NS: : VSGQ : : VSGQ : : LLTS- :	
	540 THATLIRIYLIF- THATINIKY SHAVINA KILER- SHAVINA KILER- SHAVINIKA KILI THATILIRIYLIF THATILIRIYLIF LUVINI INILLODE
FYLLANT RONHSK SYLANT RODNSA SYLANT RODNSA SYLANT RODOSK SYLANT ROHYSK SYLANT ROHYSK SYLANT ROHYSK SYLANT ROHYSK SYLANT ROHYSK NAIL RYTH ROSERD NAIL RYTH ROSERD NSIVQY BUSERSH NAIL RYTH ROSERD NSIVQY BUSERSH NSIVQY BUSERSH NSIVQY BUSERSH NSIVQY BUSERSH NSIVQY BUSERSH NSIVQY BUSERSH NSIVQY BUSERSH	540 SGATH SGATH SGATH SGATH
FYLLAN SSCIPT SSCIPT SSCIPT WAILE WAILE WAILE WAILE	
APPKY APPKY	* 540 ** 520 ** 540 ** 520 ** 540 ** 520 ** 540 **
	520 TIANDHRRGIIR TVISHNICHRRGIIR TVISHNICHRRGIIN TVIANSHRHSHVR TVIANDHRRGIIV TIANDHRRGIIV TIANDHRRITH TIANDHRRGIIV TIANDHRRGIIV TIANDHRRGIIV
	520 STATE OF THE STATE OF THE S
MAND STORY ON WHE STORY ON W	MIGAPES MIG
	A CACACACACACACACACACACACACACACACACACAC
A CANADA	
HF>HFHHHHHHHH	480 TEGERS TEGERS TEGERS TEGERS TEGERS TEGERS TEGERS
RINTIGURIKE RETTIGIOUTE RETTIG	THE PROPERTY OF THE PROPERTY O
STANDARD STANDARD	
ASKDAMETDILITELIA ASKDAMETDILITELIA ASKDAMETDILITELIA ASKDAMETDILITELIA ASKDAMETDILITELIA VARPGIRNEDIGEN VARPGIRNEDIGEN VARPGIRNEDIGEN VARPGIRNEDIGEN VARPGIRNEDIGEN VARPGIRNEDIGEN	
	STES-ESTEANTHWE SSAVNISHOLMSSEND SSAVNISHOLMSSEND SSINSISH SENDEN KYT-NISKOMMTHWE RYTTNISKOMMTHWE LEGDELSARVWED GWE -SGDELSARVWED GWE -LONELSARVWED HWE -LONELSARVWED HWE -LONELSARVWED HWE -LONELSARVWED HWE -LONELSARVWED HWE -LONELSARVWED HWE -LONELSARVWED HWE -SGNDLAADVWED HWE
SPTRVSESSION TKSRLFGESTOC BPTRLFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRVFGESTOC SPTRFGESTOC SPTRFG	STES-ESTONE SSAVNISHONE SSAVNISHONE SSAVNISHONE SSAVNISHONE SSATTANE LEGDELSARV -SGDELSARV -LONGLESARV -LONGLESARV -LONGLESARV -SGDELSARV -SGDELSARV
SSNALL OF PROPERTY	STPS-FIST SSAVNESS SSAVNESS STREETS ERGDGLSA SGDBLSA - SGDBLSA - LUNBLSA - SGNDLAA
Potatos Arabidopsiss Adonissi Adonissi Tomatos Arabidopsiss Adoniss Peppers Tomatos Tobaccos	Potatos Arabidopsies Adonissi Adonissz Lettucess Tomatos Arabidopsies Adoniss Peppers Tomatos Tobaccos
Pol Add Add Mar Add Tom Mar Daf	Ars Pot Tour Tour Part Part Part Part Part Part Part Par

 $\sigma_{\omega}^{i_{\omega}}$

FIGURE 26

	00 00 00 00 00 00 00 00 00 00 00 00 00	57 008 07 112 05	LBLLU84	9 11 11 14 4	·
	1 103 1 102 1 102 1 100 1 100	208 209 207 207 207 202 1205	1167 1318 1317 1317 1315 1304	. 276 . 427 . 427 . 427 . 424	
٠	TOTAL PPIS TADKIPPIP TADKIPPIP TSEKLAGIP TSEKRAGIS TSDEKROIS	V V V V V V V V V V V V V V V V V V V	**************************************	440 TPS-II NI SAVNI SAVNI YT-NI	33 5524 5529 533 516
	SKLYDKLPPIS AKLADKLPPIP AKLADKLPPIP SKLSDEKLAQIP SKLSDEKRAQIP SKLSDEKRAQIP	E E E E E E		filtsss: NS VSGQS: VSGQS: NSGGS: IISLGK) ILTS-S:	00 00 00 00 00 00
100		ARLINISSINA RRICHISSINA RRICHISSINA RRICHISSINA RRICHISSINA ROLINISSINA	320 SARYPISM SEEVERS SEEVERS SARYPISM SARYPISM SARYPISM	* 440 TRONHSKNMLTSSSTPS-I TREETTKQINSN TRODNSAYVVSGOSSAVN TRODGSKEMISLGKYT-N TRODGSKEMISLGKYT-N TROHYSKNMLTS-SSIPSI	540 GATLIRTITE GATHIRTITE GAVURALIER GATHURALIER GATHURALIER GATHURALIER
	FVQMQON FVQMQOT FVQMQOT FVQMQOK FVQMQOK	SOSTOS			DPTGAT DPTGAT DPSGAV DPSGAV DPTGAT DPTGAT
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 PILJGRAYGRV PILJGRAYGRV PVLJGRAYGRV PILJGRAYGRV PILJGRAYGRV	TYRHDAGSL STANGKURSL STMQQKLQCS STMQQKLQCS STKHKPESCL STKHKSQSL	KCO FVI KYN SVI KYN SVI KYN SVI KYN SVI KYN SVI KYN SVI	IRHILIS INHILIS VRHILIS VRHILIS IRHILIS VRHILIS
80	155555	VXLDODD P VYLDDD RP VYLD WA P VYLDD ND P VYLDDD S P VYLDDD S P	300 SLAVISADIAD VYREDAGSL DOMINISTORED Y TNEKVRSL NLAVISADIAD YRDGYCCS NLAVISADIAD SKRKPESCS SLAVISADIAD SKRKPESCS SLAVISADIAD Y TKHKSGSL	CSLSEAL CSLSEAL CSLSEAL CSLSEAL CSLSEAL CSLSEAL CSLSEAL	520 PNDARRGI PNNIRKGI PNSARASI PNSIRASI PHSIRASI PNDARGI
		REGIVE REGIVE REGIVE REGIVE REGIVE	WIS 400 WIND OF STANDOOR OF ST	GYSVVF GYSVVF GYSVVF GYSVVF GYSVVF	I TAPA
•	KFPVVKRYSYRNIRFGL-CSVRASGGGSSGSBSCVAVREDFAD RNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRSGVAYKEGFAD RNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKEGFVD RHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVAD RNSGGRLCQEKSIFLAY-EQTESKCNSSSGSDSCVVDKEDFAD	180 CONTRACTOR	EVEVENNE EVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EVEVENNE EV	LAFGAAASWVHPATGYSVVRSLSEAP LAFGAAASWVHPATGYSVVRSLSEAP LAFGAAASWVHPATGYSVVRSLSEAP LAFGAAASWVHPATGYSVVRSLSEAP LAFGAAASWVHPATGYSVVRSLSEAP LAFGAAASWVHPATGYSVVRSLSEAP	A A B B B A A A
6	RASGGGSSGSRSCVAVREDF DPQVRADGGSGSRSSVAYKEGF LRQIKCSAKSDRCVVDKQGI RSKCNSSGSDSCVVDKEDF KQIKCNAAKSQLVVKQEI	S S H H S S B	5 5 5 5 H 5 H	AFGRANS AFGRANS AFGRANS AFGRANS AFGRANS AFGRANS	SXADI TSGDI TSGDI SSFDI SSTDI SSADI SSTDI SSTDI
9	RADGGS RADGGS RADGGS RCSAKSI KCNAAK	100 PER	280 RVSVQTAXGO RVCVQTAXGO RVCVQTAXGO RVCVQTAXGO RVCVQTAXGO RVCVQTAXGO		MWGFLGSSL WWGFLGSSL WWGFLGSSL WWGFLGSSL WWGFLGSSL WWGFLGSSL
•	SVRA RVDFQV RVDFQV SSLRQI QYRSI	160 PERMOTOLINATORNEDERNOGIO GPOLPFINNYGWNEDERNOGIO GPOLPFINNYGWNEDERNOGIO GPOLPFINNYGWNEDERNOGIO GPOLPFINNYGWNEDERNOGIO GPOLPFINNYGWNEDERNOGIO GPOLPFINNYGWNEDERNOGIO		380 GGSLPNT GGSLPNT GGSLPNT GGSLPNT GGSLPNT GGSLPNT	THE PROPERTY OF STREET
	YRNIRFGL-C YNIHRYGSGC YNIHRYGSGC RRYTHLSA-S REKSIFLAY-B	GPDLPF GPDLPF GPDLPF GPDLPF GPDLPF GPDLPF		* ***********************************	A PERVI
0	LAYNIH LAYNIH LAYNIH KORRFI CORKSI		260 TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI TVASGAASGKI	GVRIKEI KEEBBMSYIPVGGSLPNTEQKA GIRLKAYEEBBMSYIPVGGSLPNTEQKA GIQVIKYEEBBMSYIPVGGSLPNTEQKA GIQVIKYEEBBMSYIPVGGSLPNTEQKA GIRLTRAYEEBMSYIPVGGSLPNTEQKA GVRIKKIYEEBMSYIPVGGSLPNTEQKA	480 HRESES HRI
•	indsser indsser indsser ingggre	40 AESAKLGL AEDAKLGL AEBAKLGL AESAKLGL AESAKLGL AESAKLGL	PCREAT PCREAT PCREAT PCREAT PCREAT	11GYRIKEIYEEEMSYIPYGGSLPNTEQKA TIGIRILKAYEEEMSYIPYGGSLPNTEQKA TIGIQYTKIYEEEMSYIPYGGSLPNTEQKA TIGIQYTKIYEEEMSYIPYGGSLPNTEQKA VY GIRITRAYEEEMSYIPYGGSLPNTEQKA TIGYRIKEIYEEEMSYIPYGGSLPNTEQKA	
		AGENTANA OF THE PARTY OF THE PA		FEREREE	SEFFECTION OF SE
20	VSTPST ISSOPVI IPTOPRI //ITROPRI	120 -DGALDHVVIGGGPAGIALA -ESVVDIAVVIGGGPAGISLA -ESVVOLAVVIGGGPAGISLA -NCILDIAVVIGGGPAGIALA -QTVLDIAVVIGGGPAGIALA DSNCILDIAVVIGGGPAGIALA	240 WENTY CHANGE CODYN THE CONTROL OF CONTROL THE CONTROL CHANGE IN THE CONTROL THE CONTROL CHANGE IN THE CONTROL OF CONTROL CHANGE CONTROL CHANGE CODYN THE CONTROL CONTROL CHANGE CONTROL CHANGE CONTROL CHANGE CONTROL CHANGE CONTROL CHANGE CONTROL CHANGE C	MPFD LLKWKL MPFD LLKWK MPFD LLKWK	460 ORAFEL ORAFEL ORAFEL ORAFEL ORAFEL ORAFEL
	F-AAKAN G1 GTATKAN F-GAKAN		VEATIVO TEASDO TEASDO TEASDO VEATIVO VEATIVO	DAMPED DAMPED DAMPED DAMPED BAMPED BAMPED BAMPED BAMPED BAMPED	POERKR PPERKR PKERKR PLERKR PLERKR PLERKR
•	Wecvgarnf-aamavstfess-crrffpvyrrystriffgl-csv Wellgyrnlisscpwt-fotrnlsssklatnihrygscrv Wellgyrnlisscpwt-fotrnlsssklatnihrygscrv Wecpgarnhtatmavftcerftdcnirhrsllkorrytnlsa-sss Wecvgvgnv-gamavlfrennrwsggelcorsifla	120 • 120 •	* YDSKVDRI YDSKVBRI YDSKVBRI YDSKVBRI YDSKVBRI YDSKVBRI YDSKVBRI YDSKVBRI	**************************************	460 STOANWILMPOERKRORSFELFGLALIN SROANGILMPERKRORAFELFGLELIN SROANGSLAPFERKRORAFELFGLELIN SROANGSLAPFERKRORAFELFGLELIN SROANFLAMPLERKRORAFELFGLELIN STOANNILMPOERKRORSFFLFGLSHIU STOANNILMPOERKRORSFFLFGLALIU
		84 85 75 80 80 80 80 80 80 80 80 80 80 80 80 80	M W W	8	## **
	Potatos Arabidopsiss Adonissi Lettucess Tomatos	tos idopi issi issi icesi tos	tos Idopi Issi Issi Icessi Iolds	COR Idopa SEST SEST SEST COR COR	01 8 8 1 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Potatos Arabidops Adonissi Adonissi Lettucess Tomatos Marigolds	Potatos Arabidopsiss Adonissi Adonissi Lettucess Tomatos	Potatos Arabidopsiss Adonissi Lettucess Tomatos	Potatos Arabidopsiss Adonissi Adonissi Lettucess Tomatos	Potatos Arabidopsiss Adonissi Lettucess Tomatos

FIGURE 28

GAP of: Arabidopsis epsilon cyclase to Lettuce epsilon cyclase

Gap Weight: 12 Average Match: 2.912
Length Weight: 4 Average Mismatch: -2.003

Quality: 1837 Ratio: 3.499

Length: 534 Gaps:

Percent Similarity: 76.381 Percent Identity: 69.905

Match display thresholds for the alignment(s):

= IDENTITY

: = 2

1

Arabidopsis x Lettuce

1 MECVGARNF.AAMAVSTFPSWSCRRKFPVVKRYSYRNIRFGLCSVRA 46 : 1 MECFGARNMTATMAVFTCPRFTDCNIRHKFSLLKQRRFTNLSASSSLRQI 50
47 SGGGSSGSESCVAVREDFADEEDFVKAGGSEILFVQMQQNKDMDEQSKLV 96
51 KCSAKSDRCVVDKQGISVADEEDYVKAGGSELFFVQMQRTKSMESQSKLS 100
97 DKLPPISIGDGALDHVVIGCGPAGLALAAESAKLGLKVGLIGPDLPFTNN 146
: .
147 YGVWEDEFNDLGLOKCIEHVWRETIVYLDDDKPITIGRAYGRVSRRLLHE 196
: : :: :
197 ELLRRCVESGVSYLSSKVDSITEASDGLRLVACDDNNVIPCRLATVASGA 246
247 ASGKLLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKV 296
297 RSLEAEYPTFLYAMPMTKSDLEFFFFTGLASKFURGER
. :: :: . : 346 301 ESLEAKYPTFLYVMAMSPTKIFFEETCLASREAMPFNLLKSKLMSRLKAM 350
347 GIRILKTYEEEWSYT DUGGGI DNTTROVAN A FRANCE .
:
111 VGGSDFN1EQKNLAFGAAASMVHPATGYSVVRSL 400
397 SEAPKYASVIAEILREETTKQINSNISRQAWDTLWPPERKRQRAF 441
442 FLFGLALIVQFDTEGIRSFFRTFFRLPKWMWOGFLGGTUTGGTUTGT
. .
492 MFVISPNNLRKGLINHLISDPTGATMIKTVLKUL 525
. : : : : 501 MFVIAPHSLRMELVRHLLSDPTGATMVKAYLTI* 534

SEQUENCE LISTING

<110>	SUN, 2			, FF	(ANC)	IS X.	•					*			
<120>	GENES METHOI						THES	SIS F	AND 1	IETAE	BOLIS	IA ME	ND		
<130>	8172-9	9023												٠	
<140> <141>				IED				٠							
<150> <151>									,						
<150> <151>		-													
<160>	61														
<170>	Patent	In V	er.	2.0											
<210> <211> <212> <213>	1860 DNA	lopsi	s th	nalia	ına										
<220> <221> <222>		(16	580)										`		
<400> ACAAAA	_	raat <i>e</i>	TAG	AT TO	CTCI	rttci	r GCT	rtgci	ATA	CCTI	· 『GATA	AGA A	ACAAT	TATAAC	60
AATGGT	GTAA (STCTT	CTC	SC TO	STATT	rcga <i>i</i>	A ATT	ratt1	rgga	GGAG	GAA <i>i</i>	Met		TGT Cys	117
GTT GG Val Gl	G GCT y Ala 5	AGG Arg	AAT Asn	TTC Phe	GCA Ala 10	GCA Ala	ATG Met	GCG Ala	GTT Val	TCA Ser 15	ACA Thr	TTT Phe	CCG Pro	TCA Ser	165
rgg Ag Irp Se 20	T TGT r Cys	CGA Arg	AGG Arg	AAA Lys 25	TTT Phe	CCA Pro	GTG Val	GTT Val	AAG Lys 30	AGA Arg	TAC Tyr	AGC Ser	TAT Tyr	AGG Arg 35	213
AAT AT Asn Il	T CGT e Arg	TTC	GGT Gly 40	TTG Leu	TGT Cys	AGT Ser	GTC Val	AGA Arg 45	GCT Ala	AGC Ser	GGC Gly	GGC Gly	GGA Gly 50	AGT Ser	261
TCC GG Ser Gl	T AGT y Ser	GAG Glu 55	AGT Ser	TGT Cys	GTA Val	GCG Ala	GTG Val 60	AGA 'Arg	GAA Glu	GAT Asp	TTC Phe	GCT Ala 65	GAC Asp	GAA Glu	309
GAA GA Glu As	T TTT p Phe 70	GTG Val	AAA Lys	GCT Ala	GGT Gly	GGT Gly 75	TCT Ser	GAG Glu	ATT Ile	CTA Leu	TTT Phe 80	GTT Val	CAA Gln	ATG Met	357
CAG CA	G AAC	AAA	GAT	ATG	GAT	GAA	CAG	TCT	AAG	CTT	GTT	GAT	AAG	TTG	405

	W(99/6	3055													PCT/US99/12121
Gln	Gln 85	Asn	Lys	Asp	Met	Asp 90	Glu	Gln	Ser	Lys	Leu 95	Val	Asp	Lys	Leu	.· <u>.</u>
CCT Pro 100	Pro	ATA Ile	TCA Ser	ATT Ile	GGT Gly 105	GAT Asp	GGT Gly	GCT Ala	TTG Leu	GAT Asp 110	CAT His	GTG Val	GTT Val	ATT Ile	GGT Gly 115	453 .
TGT Cys	GGT Gly	CCT Pro	GCT Ala	GGT Gly 120	TTA Leu	GCC Ala	TTG Leu	GCT Ala	GCA Ala 125	GAA Glu	TCA Ser	GCT Ala	AAG Lys	CTT Leu 130	GGA Gly	501
TTA Leu	AAA Lys	GTT Val	GGA Gly 135	CTC Leu	ATT Ile	GGT Gly	CCA Pro	GAT Asp 140	CTT Leu	CCT Pro	TTT Phe	ACT Thr	AAC Asn 145	AAT Asn	TAC Tyr	549
GGT Gly	GTT Val	TGG Trp 150	GAA Glu	GAT Asp	GAA Glu	TTC Phe	AAT Asn 155	GAT Asp	CTT Leu	GGG Gly	CTG Leu	CAA Gln 160	AAA Lys	TGT Cys	ATT Ile	597
GAG Glu	CAT His 165	GTT Val	TGG Trp	AGA Arg	GAG Glu	ACT Thr 170	ATT Ile	GTG Val	TAT Tyr	CTG Leu	GAT Asp 175	GAT Asp	GAC Asp	AAG Lys	CCT Pro	645
ATT Ile 180	ACC Thr	ATT Ile	GGC Gly	CGT Arg	GCT Ala 185	TAT Tyr	GGA Gly	AGA Arg	GTT Val	AGT Ser 190	CGA Arg	CGT Arg	TTG Leu	CTC Leu	CAT His 195	693
GAG Glu	GAG Glu	CTT Leu	TTG Leu	AGG Arg 200	AGG Arg	TGT Cys	GTC Val	GAG Glu	TCA Ser 205	GGT Gly	GTC Val	TCG Ser	TAC Tyr	CTT Leu 210	AGC Ser	741
TCG Ser	AAA Lys	GTT Val	GAC Asp 215	AGC Ser	ATA Ile	ACA Thr	GAA Glu	GCT Ala 220	TCT Ser	GAT Asp	GGC Gly	CTT Leu	AGA Arg 225	CTT Leu	GTT Val	789
GCT Ala	TGT Cys	GAC Asp 230	GAC Asp	AAT Asn	AAC Asn	GTC Val	ATT Ile 235	CCC Pro	TGC Cys	AGG Arg	CTT Leu	GCC Ala 240	ACT Thr	GTT Val	GCT Ala	837
TCT Ser	GGA Gly 245	GCA Ala	GCT Ala	TCG Ser	GGA Gly	AAG Lys 250	CTC Leu	TTG Leu	CAA Gln	TAC Tyr	GAA Glu 255	GTT Val	GGT Gly	GGA Gly	CCT Pro	885
AGA Arg 260	GTC Val	TGT Cys	GTG Val	CAA Gln	ACT Thr 265	GCA Ala	TAC Tyr	GGC Gly	GTG Val	GAG Glu 270	GTT Val	GAG Glu	GTG Val	GAA Glu	AAT Asn 275	933
AGT Ser	CCA Pro	TAT Tyr	GAT Asp	CCA Pro 280	GAT Asp	CAA Gln	ATG Met	GTT Val	TTC Phe 285	ATG Met	GAT Asp	TAC Tyr	AGA Arg	GAT Asp 290	TAT Tyr	981
ACT Thr	AAC Asn	GAG Glu	AAA Lys 295	GTT Val	CGG Arg	AGC Ser	TTA Leu	GAA Glu 300	GCT Ala	GAG Glu	TAT Tyr	CCA Pro	ACG Thr 305	TTT Phe	CTG Leu	1029
TAC Tyr	GCC Ala	ATG Met 310	CCT Pro	ATG Met	ACA Thr	Lys	TCA Ser 315	AGA Arg	CTC Leu	TTC Phe	TTC Phe	GAG Glu 320	GAG Glu	ACA Thr	TGT Cys	1077

1125

TTG GCC TCA AAA GAT GTC ATG CCC TTT GAT TTG CTA AAA ACG AAG CTC Leu Ala Ser Lys Asp Val Met Pro Phe Asp Leu Leu Lys Thr Lys Leu

PCT/US99/12121

WO 99/63055		

		-														
	325					330					335				er iz	
ATG Met 340	TTA Leu	AGA Arg	TTA Leu	GAT Asp	ACA Thr 345	CTC Leu	GGA Gly	ATT Ile	CGA Arg	ATT Ile 350	CTA Leu	AAG Lys	ACT Thr	TAC Tyr	GAA Glu 355	1173
	GAG Glu															1221
	AAG Lys															1269 .
	GGC Gly															1317
	GTC Val 405															1365
	AAT Asn															1413
	AGA Arg															1461
TTC Phe	GAT Asp	ACC Thr	GAA Glu 455	GGC Gly	ATT Ile	AGA Arg	AGC Ser	TTC Phe 460	TTC Phe	CGT Arg	ACT Thr	TTC Phe	TTC Phe 465	CGC Arg	CTT Leu	1509
															GGA Gly	1557
	CTC Leu 485											Ser			AAT Asn	1605
	Arg					Asn					Asp				GCA Ala 515	1653
	ATG Met				Tyr					ATTT	CTT.	ATCA	ACTC	TT		1700
AGG	TTTG	TGT	TATA	TATA'	GT T	GATT	TATC	T GA	ATAA	TCGA	TCA	AAGA	ATG	GTAT	GTGGGT	1760
TAC	TAGG	AAG	TTGG	AAAC	AA A	CATG	TATA	G AA	TCTA	AGGA	GTG	SATCG	AAA	TGGA	GATGGA	1820
AAC	GAAA	AGA	AAAA	AATC	AG I	CTTT	GTTI	T GI	GGTT	'AGTG	;					1860

<210> 2 <211> 524 <212> PRT <213> Arabidopsis thaliana

PCT/US99/12121

420

480

		-												•		
Glu	Thr	Cys	Leu	Ala 325	Ser	Lys	Asp	Val	Met 330	Pro	Phe	Asp	Leu	Leu 335	Lys	
Thr	Lys	Leu	Met 340	Leu :	Arg	Leu	Asp	Thr 345	Leu	Gly	Ile	Arg	Ile 350	Leu	Lys	
Thr	Tyr	Glu 355	Glu	Glu	Trp	Ser	Tyr 360	Ile	Pro	Val	Gly	Gly 365	Ser	Leu	Pro	
Asn	Thr 370	Glu	Gln	Lys	Asn	Leu 375	Ala	Phe	Gly	Ala	Ala 380	Ala	Ser	Met	Val	
His 385	Pro	Ala	Thr	Gly	Tyr 390	Ser	Val	Val	Arg	Ser 395	Leu	Ser	Glu	Ala	Pro 400	
Lys	Tyr	Ala	Ser	Val 405	Ile	Ala	Glu	Ile	Leu 410	Arg	Glu	Glu	Thr	Thr 415	Lys	
Gln	Ile	Asn	Ser 420	Asn	Ile	Ser	Arg	Gln 425	Ala	Trp	Asp	Thr	Leu 430	Trp	Pro	
Pro	Glu	Arg 435	Lys	Arg	Gln	Arg	Ala 440	Phe	Phe	Leu	Phe	Gly 445	Leu	Ala	Leu	
Ile	Val 450	Gln	Phe	Asp	Thr	Glu 455	Gly	Ile	Arg	Ser	Phe 460	Phe	Arg	Thr	Phe	
Phe 465	Arg	Leu	Pro	Lys	Trp 470	Met	Trp	Gln	Gly	Phe 475	Leu	Gly	Ser	Thr	Leu 480	
Thr	Ser	Gly	Asp	Leu 485	Val	Leu	Phe	Ala	Leu 490	Tyr	Met	Phe	Val	Ile 495		
Pro	Asn	Asn	Leu 500	Arg	Lys	Gly	Leu	Ile 505	Asn	His	Leu	Ile	Ser 510	Asp	Pro	
Thr	Gly	Ala 515	Thr	Met	Ile	Lys	Thr 520	Tyr	Leu	Lys	Val					
<21:	0> 3 l> 9! 2> Di 3> A:	AK	dops	is t	hali	ana										
	0> 3 CTTT(CTC (CTCC	тсст	CT A	CCGA	TTTC	C GA	CTCC	GCCT	ccc	GAAA	TCC	TTAT	CCGGAT	60
TCT	CTCC	GTC	TCTT	CGAT	TT A	AACG	CTTT	т ст	GTCT	GTTA	CGT	CGTC	GAA	GAAC	GGAGAC	120
AGA	ATTC'	TCC	GATT	GAGA	AC G	ATGA	GAGA	c cg	GAGA	GCAC	GAG	CTCC	ACA .	AACG(CTATAG	180
ACG	CTGA	GTA	TCTG	GCGT	TG C	GTTT	GGCG	g ag	TAAA	TGGA	GAG	GAAG	AAA	TCGG	AGAGGT	240
CCA	CTTA'	TCT	AATC	GCTG	CT A	TGTT	GTCG	A GC	TTTG	GTAT	CAC	TTCT	ATG	GCTG	TTATGG	300
CTG	TTTA	CTA	CAGA	ттст	ст т	GGCA	AATG	g Ag	GGAG	GTGA	GAT	CTCA	ATG	TTGG.	AAATGT	360
TTG	GTAC.	АТТ	TGCT	CTCT	CT G	TTGG	TGCT	G CT	GTTG	GTAT	GGA	ATTC	TGG	GCAA	GATGGG	420

CTCATAGAGC TCTGTGGCAC GCTTCTCTAT GGAATATGCA TGAGTCACAT CACAAACCAA

WO 99/63055				PCT/US99/12121
GAGAAGGACC GTTTGAGC	TA AACGATGTTT	TTGCTATAGT GAA	CGCTGGT CCAGCGAT	rg 540
GTCTCCTCTC TTATGGAT	TC TTCAATAAAG	GACTCGTTCC TGG	TCTCTGC TTTGGCGCC	CG 600
GGTTAGGCAT AACGGTGT	TT GGAATCGCCT	ACATGTTTGT CCA	CGATGGT CTCGTGCA	CA 660
AGCGTTTCCC TGTAGGTC	CC ATCGCCGACG	TCCCTTACCT CCG	AAAGGTC GCCGCCGCT	°C 720 ·
ACCAGCTACA TCACACAG	AC AAGTTCAATG	GTGTACCATA TGG	ACTGTTT CTTGGACCO	CA 780
AGGAATTGGA AGAAGTTG	GA GGAAATGAAG	AGTTAGATAA GGA	GATTAGT CGGAGAATO	CA 840
AATCATACAA AAAGGCCT	CG GGCTCCGGGT	CGAGTTCGAG TTC	TTGACTT TAAACAAGI	T 900
TTAAATCCCA AATTCTTT	TT TTGTCTTCTG	TCATTATGAT CAT	CTTAAGA CGGTCT	956
<210> 4 <211> 294 <212> PRT <213> Arabidopsis ti	haliana			
<400> 4 Ser Phe Ser Ser Ser 1 5	Ser Thr Asp P	he Arg Leu Arg 10	Leu Pro Lys Ser 15	
Leu Ser Gly Phe Ser 20	Pro Ser Leu A	arg Phe Lys Arg 25	Phe Ser Val Cys	
Tyr Val Val Glu Glu 35	Arg Arg Gln A	sn Ser Pro Ile	Glu Asn Asp Glu 45	
Arg Pro Glu Ser Thr 50	Ser Ser Thr A 55	sn Ala Ile Asp 60	Ala Glu Tyr Leu	
Ala Leu Arg Leu Ala 65	Glu Lys Leu G 70	lu Arg Lys Lys 75	Ser Glu Arg Ser 80	
Thr Tyr Leu Ile Ala 85	Ala Met Leu S	er Ser Phe Gly 90	Ile Thr Ser Met 95	
Ala Val Met Ala Val 100		he Ser Trp Gln 05	Met Glu Gly Gly 110	
Glu Ile Ser Met Leu 115	Glu Met Phe G 120	ly Thr Phe Ala	Leu Ser Val Gly 125	
Ala Ala Val Gly Met 130	Glu Phe Trp A 135	la Arg Trp Ala 140	His Arg Ala Leu	
Trp His Ala Ser Leu 145	Trp Met Asn H 150	is Glu Ser His 155	His Lys Pro Arg 160	

Glu Gly Pro Phe Glu Leu Asn Asp Val Phe Ala Ile Val Asn Ala Gly

Pro Ala Ile Gly Leu Leu Ser Tyr Gly Phe Phe Asn Lys Gly Leu Val 180 185 190

Pro Gly Leu Cys Phe Gly Ala Gly Leu Gly Ile Thr Val Phe Gly Ile 195 200

Ala Tyr Met Phe Val His Asp Gly Leu Val His Lys Arg Phe Pro Val 210 215 220

Gly Pro Ile Ala Asp Val Pro Tyr Leu Arg Lys Val Ala Ala Ala His 225 230 235 240

Gln Leu His His Thr Asp Lys Phe Asn Gly Val Pro Tyr Gly Leu Phe 245 250 255

Leu Gly Pro Lys Glu Leu Glu Glu Val Gly Gly Asn Glu Glu Leu Asp 260 265 270

Lys Glu Ile Ser Arg Arg Ile Lys Ser Tyr Lys Lys Ala Ser Gly Ser 275 280 285

Gly Ser Ser Ser Ser Ser 290

<210> 5

<211> 162

<212> PRT

<213> Alicalgenes sp.

<400> 5

Met Thr Gln Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15

Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30

Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45

Asn Asp Leu Tyr Gly Val Val Phe Ala Val Leu Ala Thr Ile Leu Phe 50 55 60

Thr Val Gly Ala Tyr Trp Trp Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80

Met Thr Val Tyr Gly Leu Ile Tyr Phe Ile Leu His Asp Gly Leu Val 85 90 95

His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Arg Gly Tyr Phe Arg 100 105 110

Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125

His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140

Lys Gln Asp Leu Lys Arg Ser Gly Val Leu Arg Pro Gln Asp Glu Arg 145 150 155 160

Pro Ser

<210> 6

<211> 175

<212> PRT

<213> Erwinia herbicola

<400> 6 Met Leu Asn Ser Leu Ile Val Ile Leu Ser Val Ile Ala Met Glu Gly Ile Ala Ala Phe Thr His Arg Tyr Ile Met His Gly Trp Gly Trp Arg Trp His Glu Ser His His Thr Pro Arg Lys Gly Val Phe Glu Leu Asn Asp Leu Phe Ala Val Val Phe Ala Gly Val Ala Ile Ala Leu Ile Ala Val Gly Thr Ala Gly Val Trp Pro Leu Gln Trp Ile Gly Cys Gly Met Thr Val Tyr Gly Leu Leu Tyr Phe Leu Val His Asp Gly Leu Val His Gln Arg Trp Pro Phe His Trp Ile Pro Arg Arg Gly Tyr Leu Lys Arg 105 Leu Tyr Val Ala His Arg Leu His His Ala Val Arg Gly Arg Glu Gly 120 Cys Val Ser Phe Gly Phe Ile Tyr Ala Arg Lys Pro Ala Asp Leu Gln 135 Ala Ile Leu Arg Glu Arg His Gly Arg Pro Pro Lys Arg Asp Ala Ala 155 Lys Asp Arg Pro Asp Ala Ala Ser Pro Ser Ser Ser Pro Glu <210> 7 <211> 175 <212> PRT <213> Erwinia uredovora <400> 7 Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 25 Gly Trp Gly Trp His Leu Şer His His Glu Pro Arg Lys Gly Ala Phe Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu

Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr

105

100

PCT/US99/12121

60

120

WO 99/63055

Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly
115 120 125

Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 140

Lys Leu Gln Ala Thr Leu Arg Glu Arg His Gly Ala Arg Ala Gly Ala 145 150 155 160

Ala Arg Asp Ala Gln Gly Gly Glu Asp Glu Pro Ala Ser Gly Lys 165 170 175

<210> 8

<211> 162

<212> PRT

<213> Agrobacterium aurianticum

<400> 8

Met Thr Asn Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15

Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp
20 25 30

Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45

Asn Asp Leu Tyr Gly Leu Val Phe Ala Val Ile Ala Thr Val Leu Phe 50 55 60

Thr Val Gly Trp Ile Trp Ala Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80

Met Thr Val Tyr Gly Leu Ile Tyr Phe Val Leu His Asp Gly Leu Val 85 90 95

His Trp Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr Ala Arg
100 105 110

Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125

His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140

Lys Gln Asp Leu Lys Met Ser Gly Val Leu Arg Ala Glu Ala Gln Glu 145 150 155 160

Arg Thr

<210> 9

<211> 954

<212> DNA

<213> Arabidopsis thaliana

<400> 9

CCACGGGTCC GCCTCCCCGT TTTTTTCCGA TCCGATCTCC GGTGCCGAGG ACTCAGCTGT

TTGTTCGCGC TTTCTCAGCC GTCACCATGA CCGATTCTAA CGATGCTGGA ATGGATGCTG

WO 99/63055		PCT/US99/12121
	-	

TTCAGAGACG	ACTCATGTTT	GAAGACGAAT	GCATTCTCGT	TGATGAAAAT	AATCGTGTGG	180
TGGGACATGA	CACTAAGTAT	AACTGTCATC	TGATGGAAAA	GATTGAAGCT	GAGAATTTAC	240
TTCACAGAGC	TTTCAGTGTG	TTTTTATTCA	ACTCCAAGTA	TGAGTTGCTT	CTCCAGCAAC	300
GGTCAAAAAC	AAAGGTTACT	TTCCCACTTG	TGTGGACAAA	CACTTGTTGC	AGCCATCCTC	360
TTTACCGTGA	ATCCGAGCTT	ATTGAAGAGA	ATGTGCTTGG	TGTAAGAAAT	GCCGCACAAA	420
GGAAGCTTTT	CGATGAGCTC	GGTATTGTAG	CAGAAGATGT	ACCAGTCGAT	GAGTTCACTC	480
CCTTGGGACG	CATGCTTTAC	AAGGCACCTT	CTGATGGGAA	ATGGGGAGAG	CACGAAGTTG	540
ACTATCTACT	CTTCATCGTG	CGGGÄTGTGA	AGCTTCAACC	AAACCCAGAT	GAAGTGGCTG	600
AGATCAAGTA	CGTGAGCAGG	GAAGAGCTTA	AGGAGCTGGT	GAAGAAAGCA	GATGCTGGCG	660
ATGAAGCTGT	GAAACTATCT	CCATGGTTCA	GATTGGTGGT	GGATAATTTC	TTGATGAAGT	720
GGTGGGATCA	TGTTGAGAAA	GGAACTATCA	CTGAAGCTGC	AGACATGAAA	ACCATTCACA	780
AGCTCTGAAC	TTTCCATAAG	TTTTGGATCT	TCCCCTTCCC	ATAATAAAT	TAAGAGATGA	840
GACTTTTATT	GATTACAGAC	AAAACTGGCA	ACAAAATCTA	TTCCTAGGAT	TTTTTTTGC	900
TTTTTTTTTA	CTTTTGATTC	ATCTCTAGTT	TAGTTTTCAT	CTTAAAAAAA	AAAA	954
<210> 10 <211> 996 <212> DNA <213> Arabidopsis thaliana						
<400> 10	TCTTTCTTCT	## ##### ###	TCCCA TITCA TI	mcccoman en	momomoo e e e	
	TGTTTCTTCT					60
	TTTTTCTTCT					120
	GAATTTTCGT					180
	TGTTCAGAGA					240
	TGTGGGGCAT					300
					TATGAGTTGC	360
	AAGGTCAAAC					420
					GGTGTGAGGA	480
ATGCTGCACA	AAGAAAGCTT	CTCGATGAGC	TTGGTATTGT	AGCTGAAGAT	GTACCAGTCG	540

600

660

720

780

ATGAGTTCAC TCCCTTGGGA CGTATGCTGT ACAAGGCTCC TTCTGATGGC AAATGGGGAG

AGCATGAACT TGATTACTTG CTCTTCATCG TGCGAGACGT GAAGGTTCAA CCAAACCCAG

ATGAAGTAGC TGAGATCAAG TATGTGAGCC GGGAAGAGCT GAAGGAGCTG GTGAAGAAAG

CAGATGCAGG TGAGGAAGGT TTGAAACTGT CACCATGGTT CAGATTGGTG GTGGACAATT

WO 99/63055

	_					
TCTTGATGAA	GTGGTGGGAT	CATGTTGAGA	AAGGAACTTT	GGTTGAAGCT	ATAGACATGA	840
AAACCATCCA	CAAACTCTGA	ACATCTTTTT	TTAAAGTTTT	TAAATCAATC	AACTTTCTCT	900
TCATCATTTT	TATCTTTTCG	ATGATAATAA	TTTGGGATAT	GTGAGACACT	TACAAAACTT	960
CCAAGCACCT	CAGGCAATAA	TAAAGTTTGC	GGCCGC			996
<210> 11 <211> 1165 <212> DNA <213> Haema	atococcus pl	uvialis			\	
<400> 11 CTCGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCCCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA	AGCTCAGGAG	CATGCAGATG	ACGCTCATGC	180
AGCCCAGCAT	CTCAGCCAAT	CTGTCGCGCG	CCGAGGACCG	CACAGACCAC	ATGAGGGGTG	240
CAAGCACCTG	GGCAGGCGGG	CAGTCGCAGG	ATGAGCTGAT	GCTGAAGGAC	GAGTGCATCT	300
TGGTGGATGT	TGAGGACAAC	ATCACAGGCC	ATGCCAGCAA	GCTGGAGTGT	CACAAGTTCC	360
TACCACATCA	GCCTGCAGGC	CTGCTGCACC	GGGCCTTCTC	TGTGTTCCTG	TTTGACGATC	420
AGGGGCGACT	GCTGCTGCAA	CAGCGTGCAC	GCTCAAAAAT	CACCTTCCCA	AGTGTGTGGA	480
CGAACACCTG	CTGCAGCCAC	CCTTTACATG	GGCAGACCCC	AGATGAGGTG	GACCAACTAA	540
GCCAGGTGGC	CGACGGAACA	GTACCTGGCĠ	CAAAGGCTGC	TGCCATCCGC	AAGTTGGAGC	600
ACGAGCTGGG	GATACCAGCG	CACCAGCTGC	CGGCAAGCGC	GTTTCGCTTC	CTCACGCGTT	660
TGCACTACTG	TGCCGCGGAC	GTGCAGCCAG	CTGCGACACA	ATCAGCGCTC	TGGGGCGAGC	720
ACGAAATGGA	CTACATCTTG	TTCATCCGGG	CCAACGTCAC	CTTGGCGCCC	AACCCTGACG	780
AGGTGGACGA	AGTCAGGTAC	GTGACGCAAG	AGGAGCTGCG	GCAGATGATG	CAGCCGGACA	840
ACGGGCTGCA	ATGGTCGCCG	TGGTTTCGCA	TCATCGCCGC	GCGCTTCCTT	GAGCGTTGGT	900
GGGCTGACCT	GGACGCGGCC	CTAAACACTG	ACAAACACGA	GGATTGGGGA	ACGGTGCATC	960
ACATCAACGA	AGCGTGAAAG	CAGAAGCTGC	AGGATGTGAA	GACACGTCAT	GGGGTGGAAT	1020
TGCGTACTTG	GCAGCTTCGT	ATCTCCTTTT	TCTGAGACTG	AACCTGCAGT	CAGGTCCCAC	1080
AAGGTCAGGT	AAAATGGCTC	GATAAAATGT	ACCGTCACTT	TTTGTCGCGT	ATACTGAACT	1140
CCAAGAGGTC	AAAAAAAAA	AAAAA				1165

<210> 12 <211> 1135 <212> DNA <213> Haematococcus pluvialis

wo	00/63055	1
wo	99/63055	

480

<400> 12					ين جو	
	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCGCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA	AGCTCAGGAG	CATGCAGCTG	CTTTCCGAGG	180
ACCGCACAGA	CCACATGAGG	GGTGCAAGCA	CCTGGGCAGG	CGGGCAGTCG	CAGGATGAGC	240
TGATGCTGAA	GGACGAGTGC	ATCTTGGTAG	ATGTTGAGGA	CAACATCACA	GGCCATGCCA	300
GCAAGCTGGA	GTGTCACAAG	TTCCTACCAC	ATCAGCCTGC	AGGCCTGCTG	CACCGGGCCT	360
TCTCTGTGTT	CCTGTTTGAC	GATCAGGGGC	GACTGCTGCT	GCAACAGCGT	GCACGCTCAA	420
AAATCACCTT	CCCAAGTGTG	TGGACGAACA	CCTGCTGCAG	CCACCCTTTA	CATGGGCAGA	480
CCCCAGATGA	GGTGGACCAA	CTAAGCCAGG	TGGCCGACGG	AACAGTACCT	GGCGCAAAGG	540
CTGCTGCCAT	CCGCAAGTTG	GAGCACGAGC	TGGGGATACC	AGCGCACCAG	CTGCCGGCAA	600
GCGCGTTTCG	CTTCCTCACG	CGTTTGCACT	ACTGTGCCGC	GGACGTGCAG	CCAGCTGCGA	660
CACAATCAGC	GCTCTGGGGC	GAGCACGAAA	TGGACTACAT	CTTGTTCATC	CGGGCCAACG	720
TCACCTTGGC	GCCCAACCCT	GACGAGGTGG	ACGAAGTCAG	GTACGTGACG	CAAGAGGAGC	780
TGCGGCAGAT	GATGCAGCCG	GACAACGGGC	TTCAATGGTC	GCCGTGGTTT	CGCATCATCG	840
CCGCGCGCTT	CCTTGAGCGT	TGGTGGGCTG	ACCTGGACGC	GGCCCTAAAC	ACTGACAAAC	900
ACGAGGATTG	GGGAACGGTG	CATCACATCA	ACGAAGCGTG	AAGGCAGAAG	CTGCAGGATG	960
TGAAGACACG	TCATGGGGTG	GAATTGCGTA	CTTGGCAGCT	TCGTATCTCC	TTTTTCTGAG	1020
ACTGAACCTG	CAGAGCTAGA	GTCAATGGTG	CATCATATTC	ATCGTCTCTC	TTTTGTTTTA	1080
GACTAATCTG	TAGCTAGAGT	CACTGATGAA	TCCTTTACAA	CTTTCAAAAA	AAAAA '	1135
<210> 13 <211> 960 <212> DNA <213> Tagetes erecta						
<400> 13 CCAAAAACAA	CTCAAATCTC	CTCCGTCGCT	CTTACTCCGC	CATGGGTGAC	GACTCCGGCA	60
TGGATGCTGT	TCAGCGACGT	CTCATGTTTG	ACGATGAATG	CATTTTGGTG	GATGAGTGTG	120
ACAATGTGGT	GGGACATGAT	ACCAAATACA	ATTGTCACTT	GATGGAGAAG	ATTGAAACAG	180
GTAAAATGCT	GCACAGAGCA	TTCAGCGTTT	TTCTATTCAA	TTCAAAATAC	GAGTTACTTC	240
TTCAGCAACG	GTCTGCAACC	AAGGTGACAT	TTCCTTTAGT	ATGGACCAAC	ACCTGTTGCA	300
GCCATCCACT	CTACAGAGAA	TCCGAGCTTG	TTCCCGAAAC	GCCTGAGAGA	ATGCTGCACA	360
GAGGANNNN	иииииииии	ииииииииии	ииииииииии	ииииииииии	ииииииииии	420

имининий имининини имининини имининини имининини имининини

PCT/US99/12121

WO 99/63055

ииииииииии	ииииииииии	иииииииии	иииииииии	ииииииииии	иииииииии	540
ииииииииии	иииииииии	иииииииии	ииийииииии	иииииииии	ииииииииии	600
имимимими	ииииииииии	ииииииииии	иииииииии	иииииииии	имимимими	660
ииииииииии	иииииииии	TCATGTGCAA	AAGGGTACAC	TCACTGAATG	CAATTTGATA	720
TGAAAACCAT	ACACAAGCTG	ATATAGAAAC	ACACCCTCAA	CCGAAAAGCA	AGCCTAATAA	780
TTCGGGTTGG	GTCGGGTCTA	CCATCAATTG	TTTTTTTTTT	TTAACAACTT	TTAATCTCTA	840
TTTGAGCATG	TTGATTCTTG	TCTTTTGTGT	GTAAGATTTT	GGGTTTCGTT	TCAGTTGTAA	900
TAATGAACCA	TTGATGGTTT	GCAATTTCAA	GTTCCTATCG	ACATGTAGTG	АТСТАААААА	960

<210> 14

<211> 305

<212> PRT

<213> Haematococcus pluvialis

<400> 14

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu 35 40 45

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp 50 55 60

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile 65 70 75 80

Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala Ser Lys Leu Glu 85 90 95

Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu Leu His Arg Ala 100 105 110

Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu Leu Gln Gln 115 120 125

Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp Thr Asn Thr Cys 130 135 140

Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu Val Asp Gln Leu 145 150 155 160

Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys Ala Ala Ile 165 170 175

Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His Gln Leu Pro Ala 180 185 190

Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Val 195 200 205

- Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp 225 230 235 240
- Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met 245 250 255
- Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile 260 265 270
- Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu 275 280 285
- Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu 290 295 300

Ala 305

- <210> 15
- <211> 293
- <212> PRT
- <213> Haematococcus pluvialis

<400> 15

- Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn
 1 5 10 15
- Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30
- Arg Ser Met Gln Leu Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly
 35 40 45
- Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys 50 55 60
- Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75
- Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu 85 90 95
- Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110
- Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp 115 120 125
- Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140
- Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys
 145 150 155 160
- Ala Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175
- Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys

180 185 1

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 215 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 230 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp . 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His 275 280 285

His Ile Asn Glu Ala 290

<210> 16

<211> 284

<212> PRT

<213> Arabidopsis thaliana

<400> 16

BNSDOCID: <WO 996305541 I

Met Ser Val Ser Ser Leu Phe Asn Leu Pro Leu Ile Arg Leu Arg Ser 1 5 10 15

Leu Ala Leu Ser Ser Ser Phe Ser Ser Phe Arg Phe Ala His Arg Pro 20 25 30

Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe Arg Ala Phe Ser 35 40 45

Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met Asp Ala Val Gln 50 55 60

Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Thr Asp 65 70 75 80

Arg Val Val Gly His Val Ser Lys Tyr Asn Cys His Leu Met Glu Asn 85 90 95

Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe 100 105 110

Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Asn Thr Lys Val 115 120 125

Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr 130 135 140

Arg Glu Ser Glu Leu Ile Gln Asp Asn Ala Leu Gly Val Arg Asn Ala 145 150 155 160

Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Val Ala Glu Asp Val 165 170 175

Pro Val Asp Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro 180 185 190

Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile 195 200 205

Val Arg Asp Val Lys Val Gln Pro Asn Pro Asp Glu Val Ala Glu Ile 210 215 220

Lys Tyr Val Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp 225 230 235 240

Ala Gly Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val 245 250 255

Asp Asn Phe Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Leu 260 265 270

Val Glu Ala Ile Asp Met Lys Thr Ile His Lys Leu 275 280

<210> 17

<211> 287

<212> PRT

<213> Clarkia breweri

<400> 17

Met Ser Ser Ser Met Leu Asn Phe Thr Ala Ser Arg Ile Val Ser Leu 1 5 10 15

Pro Leu Leu Ser Ser Pro Pro Ser Arg Val His Leu Pro Leu Cys Phe 20 25 30

Phe Ser Pro Ile Ser Leu Thr Gln Arg Phe Ser Ala Lys Leu Thr Phe 35 40 45

Ser Ser Gln Ala Thr Thr Met Gly Glu Val Val Asp Ala Gly Met Asp 50 55 60

Ala Val Gln Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp 65 70 75 80

Glu Asn Asp Lys Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu 85 90 95

Met Glu Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val 100 105 110

Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala 115 120 125

Thr Lys Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His 130 135 140

Pro Leu Tyr Arg Glu Ser Glu Leu Ile Asp Glu Asn Cys Leu Gly Val 145 150 155 160

Arg Asn Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala 165 170 175

Glu Asp Leu Pro Val Asp Gln Phe Ile Pro Leu Ser Arg Ile Leu Tyr

180

185

190

Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu 195 200 205

Leu Phe Ile Ile Arg Asp Val Asn Leu Asp Pro Asn Pro Asp Glu Val 210 215 220

Ala Glu Val Lys Tyr Met Asn Arg Asp Asp Leu Lys Glu Leu Leu Arg 225 230 235 240

Lys Ala Asp Ala Glu Glu Glu Gly Val Lys Leu Ser Pro Trp Phe Arg 245 250 255

Leu Val Val Asp Asn Phe Leu Phe Lys Trp Trp Asp His Val Glu Lys 260 265 270

Gly Ser Leu Lys Asp Ala Ala Asp Met Lys Thr Ile His Lys Leu 275 280 285

<210> 18

<211> 261

<212> PRT

<213> Arabidopsis thaliana

<400> 18

Thr Gly Pro Pro Pro Arg Phe Pro Ile Arg Ser Pro Val Pro Arg

1 5 10 15

Thr Gln Leu Phe Val Arg Ala Phe Ser Ala Val Thr Met Thr Asp Ser 20 25 30

Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe Glu Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val Gly His Asp Thr
50 55 60

Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu Leu 65 70 75 80

His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu 85 90 95

Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro Leu Val Trp Thr
100 105 110

Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu Ile Glu 115 120 125

Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Phe Asp 130 135 140

Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp Glu Phe Thr Pro 145 150 155 160

Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu
165 170 175

His Glu Val Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Leu Gln 180 185 190 Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val Ser Arg Glu Glu 195 200 205

Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp Glu Ala Val Lys 210 220

Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Met Lys Trp 225 230 235 240

Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala Ala Asp Met Lys 245 250 255

Thr Ile His Lys Leu 260

<210> 19

<211> 288

<212> PRT

<213> Saccharomyces cerevisiae

<400> 19

Met Thr Ala Asp Asn Asn Ser Met Pro His Gly Ala Val Ser Ser Tyr

1 10 15

Ala Lys Leu Val Gln Asn Gln Thr Pro Glu Asp Ile Leu Glu Glu Phe 20 25 30

Pro Glu Ile Ile Pro Leu Gln Gln Arg Pro Asn Thr Arg Ser Ser Glu 35 40 45

Thr Ser Asn Asp Glu Ser Gly Glu Thr Cys Phe Ser Gly His Asp Glu
50 55 60

Glu Gln Ile Lys Leu Met Asn Glu Asn Cys Ile Val Leu Asp Trp Asp 65 70 75 80

Asp Asn Ala Ile Gly Ala Gly Thr Lys Lys Val Cys His Leu Met Glu 85 90 95

Asn Ile Glu Lys Gly Leu Leu His Arg Ala Phe Ser Val Phe Ile Phe 100 105 110

Asn Glu Gln Gly Glu Leu Leu Gln Gln Arg Ala Thr Glu Lys Ile 115 120 125

Thr Phe Pro Asp Leu Trp Thr Asn Thr Cys Cys Ser His Pro Leu Cys 130 135 140

Ile Asp Asp Glu Leu Gly Leu Lys Gly Lys Leu Asp Asp Lys Ile Lys 145 150 155 160

Gly Ala Ile Thr Ala Ala Val Arg Lys Leu Asp His Glu Leu Gly Ile 165 170 175

Pro Glu Asp Glu Thr Lys Thr Arg Gly Lys Phe His Phe Leu Asn Arg 180 185 190

Ile His Tyr Met Ala Pro Ser Asn Glu Pro Trp Gly Glu His Glu Ile
195 200 205

Asp Tyr Ile Leu Phe Tyr Lys Ile Asn Ala Lys Glu Asn Leu Thr Val

210 215 220

Asn Pro Asn Val Asn Glu Val Arg Asp Phe Lys Trp Val Ser Pro Asn 225 230 235 240

Asp Leu Lys Thr Met Phe Ala Asp Pro Ser Tyr Lys Phe Thr Pro Trp 245 250 255

Phe Lys Ile Ile Cys Glu Asn Tyr Leu Phe Asn Trp Trp Glu Gln Leu 260 . 265 270

Asp Asp Leu Ser Glu Val Glu Asn Asp Arg Gln Ile His Arg Met Leu 275 280 285

<210> 20

<211> 456

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
 sequence of four plant B-cyclases '

<400> 20

Met Asp Thr Leu Leu Lys Thr Pro Asn Leu Glu Phe Leu Pro His Gly
1 5 10 15

Phe Val Lys Ser Phe Ser Lys Phe Gly Lys Cys Glu Gly Val Cys Val 20 25 30

Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr Lys Lys Glu Asn 35 40 45

Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys Gly Val Val Asp
50 55 60

Leu Ala Val Val Gly Gly Pro Ala Gly Leu Ala Val Ala Gln Gln 65 70 75 80.

Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp Pro Pro Lys Leu 85 90 95

Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met 100 105 110

Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp Ser Gly Ala Val Tyr Ile 115 120 125

Asp Asp Thr Lys Asp Leu Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln 130 135 140

Leu Lys Ser Lys Met Met Gln Lys Cys Ile Asn Gly Val Lys Phe His 145 150 155 160

Gln Ala Lys Val Ile Lys Val Ile His Glu Glu Lys Ser Met Leu Ile 165 170 175

Cys Asn Asp Gly Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly 180 185 190

Phe Ser Arg Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln

- E

205

195 200

Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Lys 210 215 220

Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Asn Glu Leu Lys 235 240

Glu Arg Asn Ser Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser 245 250 255

Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly Leu 260 265 270

Arg Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu His Leu Gly 275 280 285

Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys Val Ile Pro Met 290 295 300

Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val Gly Ile Gly Gly 305 310 315

Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr 325 330 335

Leu Ala Ala Pro Val Val Ala Asn Ala Ile Ile Tyr Leu Gly Ser 340 345 350

Glu Ser Ser Gly Glu Leu Ser Ala Glu Val Trp Lys Asp Leu Trp Pro 355 360 365

Ile Glu Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile 370 375 380

Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg Arg Phe Phe Asp Ala Phe 385 390 395 400

Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser Ser Arg Leu 405 410 415

Phe Leu Pro Glu Leu Ile Val Phe Gly Leu Ser Leu Phe Ser His Ala 420 425 430

Ser Asn Thr Ser Arg Glu Ile Met Thr Lys Gly Thr Pro Leu Val Met 435 440 445

Ile Asn Asn Leu Leu Gln Asp Glu 450 455

<210> 21

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 21

Met Glu Cys Val Gly Ala Arg Asn Phe Ala Ala Met Ala Val Ser Thr

Phe Pro Ser Trp Ser Cys Arg Arg Lys Phe Pro Val Val Lys Arg Tyr 20 25 30

WO 99/63055 PCT/US99/12121

•			
355	360	365	ario
Asn Thr Glu Gln Lys Asn Leu 370 375	Ala Phe Gly Ala	Ala Ala Ser Met 380	Val
His Pro Ala Thr Gly Tyr Ser 385 390	Val Val Arg Ser 395	Leu Ser Glu Ala	Pro 400
Lys Tyr Ala Ser Val Ile Ala 405	Glu Ile Leu Arg 410	Glu Glu Thr Thr 415	Lys
Gln Ile Asn Ser Asn Ile Ser . 420	Arg Gln Ala Trp 425	Asp Thr Leu Trp 430	Pro ·
Pro Glu Arg Lys Arg Gln Arg . 435	Ala Phe Phe Leu 440	Phe Gly Leu Ala	Leu
Ile Val Glm Phe Asp Thr Glu 450 455	Gly Ile Arg Ser	Phe Phe Arg Thr 460	Phe
Phe Arg Leu Pro Lys Trp Met 465 470	Trp Gln Gly Phe 475	Leu Gly Ser Thr	Leu 480
Thr Ser Gly Asp Leu Val Leu 485	Phe Ala Leu Tyr 490	Met Phe Val Ile 495	Ser
Pro Asn Asn Leu Arg Lys Gly 500	Leu Ile Asn His 505	Leu Ile Ser Asp 510	Pro
Thr Gly Ala Thr Met Ile Lys 5	Thr Tyr Leu Lys 520	Val	
<210> 22 <211> 1898 <212> DNA <213> Adonis palaestina			
<400> 22 AAAGGAGTGT TCTATTAATG TTACTG	TCGC ATTCTTGCAA	CACTTATATT CAAAC	CTCCAT 60
TTTCTTCTTT TCTCTTCAAA ACAACA	AACT AATGTGAGCA	GAGTATCTGG CTATG	GGAACT 120
ACTTGGTGTT CGCAACCTCA TCTCTT	CTTG CCCTGTGTGG	ACTTTTGGAA CAAGA	AACCT 180
TAGTAGTTCA AAACTAGCTT ATAACA	TACA TCGATATGGT	TCTTCTTGTA GAGTA	GATTT 240
TCAAGTGAGA GCTGATGGTG GAAGCG	GGAG TAGAAGTTCT	GTTGCTTATA AAGAG	GGTTT 300
TGTGGATGAA GAGGATTTTA TCAAAG	CTGG TGGTTCTGAG	CTTTTGTTTG TCCAP	ATGCA 360
GCAAACAAAG TCTATGGAGA AACAGG	CCAA GCTCGCCGAT	AAGTTGCCAC CAATA	ACCTTT 420
TGGAGAATCC GTGATGGACT TGGTTG	TAAT AGGTTGTGGA	CCTGCTGGTC TTTC	CTGGC 480
TGCAGAAGCT GCTAAGCTAG GGTTGA	AAGT TGGCCTTATT	GGTCCTGATC TTCCT	TTTAC 540
AAATAATTAT GGTGTGTGGG AAGACG	AGTT CAAAGATCTT	GGACTTGAAC GTTGT	CATCGA 600
GCATGCTTGG AAGGACACCA TCGTAT	ATCT TGATAATGAT	GCTCCTGTCC TTATT	GGTCG 660

TGCATATGGA CGAGTTAGTC GACATTTGCT ACATGAGGAG TTGCTGAAAA GGTGTGTGGA

BNSDOCID: <WO 998305541 (>

720

WO 99/63055

-	-	. ~ ~			_
PCT	/L	JS9	19/1	121	2

GTCAGGTGTA	TCATATCTTG	ATTCTAAAGT	GGAAAGGATC	ACTGAAGCTG	GTGATGGCCA	780
TAGCCTTGTA	GTTTGTGAAA	ATGAGATCTT	TATCCCTTGC	AGGCTTGCTA	CTGTTGCATC	840
TGGAGCAGCT	TCAGGGAAAC	TTTTGGAGTA	TGAAGTAGGT	GGCCCTCGTG	TTTGTGTCCA	. 900
AACCGCTTAT	GGGGTGGAGG	TTGAGGTGGA	GAACAATCCA	TACGATCCCA	ACTTAATGGT	960
ATTCATGGAC	TACAGAGACT	ATATGCAACA	GAAATTACAG	TGCTCGGAAG	AAGAATATCC	1020
AACATTTCTC	TATGTCATGC	CCATGTCGCC	AACAAGACTT	TTTTTTGAGG	AAACCTGTTT	1080
GGCCTCAAAA	GATGCCATGC	CATTCGATCT	ACTGAAGAGA	AAACTGATGT	CACGATTGAA	1140
GACTCTGGGT	ATCCAAGTTA	CAAAAGTTTA	TGAAGAGGAA	TGGTCATATA	TTCCTGTTGG	1200
TGGTTCTTTA	CCAAACACAG	AGCAAAAGAA	CCTAGCATTT	GGTGCTGCAG	CAAGCATGGT	1260
GCATCCAGCA	ACAGGCTATT	CGGTTGTACG	GTCACTGTCA	GAAGCTCCAA	AATATGCTTC	1320
TGTAATTGCA	AAGATTTTGA	AGCAAGATAA	CTCTGCGTAT	GTGGTTTCTG	GACAAAGTAG	1380
TGCAGTAAAC	ATTTCAATGC	AAGCATGGAG	CAGTCTTTGG	CCAAAGGAGC	GAAAACGTCA	1440
AAGAGCATTC	TTTCTTTTTG	GATTAGAGCT	TATTGTGCAG	CTAGATATTG	AAGCAACCAG	1500
AACATTCTTT	AGAACCTTCT	TCCGCTTGCC	AACTTGGATG	TGGTGGGGTT	TCCTTGGGTC	1560
TTCACTATCA	TCTTTCGATC	TCGTCTTGTT	TTCCATGTAC	ATGTTTGTTT	TGGCGCCAAA	1620
CAGCATGAGG	ATGTCACTTG	TGAGACATTT	GCTTTCAGAT	CCTTCTGGTG	CAGTTATGGT	1680
AAGAGCTTAC	CTCGAAAGGT	AGTCTCATCT	ATTATTAAAC	TCTAGTGTTT	CACCAAATAA	1740
ATGAGGATCC	TTCGAATGTG	TATATGATCA	TCTCTATGTA	TATCCTGTAC	TCTAATCTCA	1800
TAAAGTAAAT	GCCGGGTTTG	ATATTGTTGT	GTCAAACCGG	CCAATGATAT	AAAGTAAATT	1860
TATTGATACA	AAAGTAGTTT	TTTTCCTTAA	AAAAAAA		•	1898

<210> 23

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 23

BNSDOCID: <WO 996305541 L >

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp
1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 . 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val 50 55 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln	Met	Gln	Gln	Thr 85	Lys	Ser	Met	Glu	Lys 90	Gln	Ala	Lys	Leu	Ala 95	Asp
Lys	Leu	Pro	Pro 100	Ile	Pro	Phe	Gly	Glu 105	Ser	Val	Met	Asp	Leu 110	Val	Val
Ile	Gly	Cys 115	Gly	Pro	Ala	Gly	Leu 120	Ser	Leu	Ala	Ala	Glu 125	Ala	Ala	Lys
Leu	Gly 130	Leu	Lys	Val	Gly	Leu 135	Ile	Gly	Pro	Asp	Leu 140	Pro	Phe	Thr	Asn
Asn 145	Tyr	Gly	Val	Trp	Glu 150	Asp	Glu	Phe	Lys	Asp 155	Leu	Gly	Leu	Glu	Arg 160
Cys	Ile	Glu	His	Ala 165	Trp	Lys	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180	Ile	Gly	Arg	Ala	Tyr 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195	Glu	Leu	Leu	Lys	Arg 200	Cys	Val	Glu	Ser	Gly 205	Val	Ser	Tyr
Leu	Asp 210	Ser	Lys	Val	Glu	Arg 215	Ile	Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
Leu 225	Val	Val	Cys	Glu	Asn 230	Glu	Ile	Phe	Ile	Pro 235	Cys	Arg	Leu	Ala	Thr 240
Val	Ala	Ser	Gly	Ala 245	Ala	Ser	Gly	Lys	Leu 250	Leu	Glu	Tyr	Glu	Val 255	Gly
Gly	Pro	Arg	Val 260	Cys	Val	Gln	Thr	Ala 265	Tyr	Gly	Val	Glu	Val 270	Glu	Val
Glu	Asn	Asn 275	Pro	Tyr	Asp	Pro	Asn 280	Leu	Met	Val	Phe	Met 285	Asp	Tyr	Arg
Asp	Tyr 290	Met	Gln	Gln	Lys	Leu 295	Gln	Cys	Ser	Glu	Glu 300	Glu	Tyr	Pro	Thr
Phe 305	Leu	Tyr	Val	Met	Pro 310	Met	Ser	Pro	Thr	Arg 315	Leu	Phe	Phe	Glu	Glu 320
Thr	Cys	Leu	Ala	Ser 325	Lys	Asp	Ala	Met	Pro 330	Phe	Asp	Leu	Leu	Lys 335	Arg
Lys	Leu	Met	Ser 340	Arg	Leu	Lys	Thr	Leu 345	Gly	Ile	Gln	Val	Thr 350	Lys	Val
Tyr	Glu	Glu 355	Glu	Trp	Ser	Tyr	11e 360	Pro	Val	Gly	Gly	Ser 365	Leu	Pro	Asn
Thr	Glu 370	Gln	Lys	Asn	Leu	Ala 375	Phe	Gly	Ala	Ala	Ala 380	Ser	Met	Val	His
Pro 385	Ala	Thr	Gly	Tyr	Ser 390	Val	Val	Arg	Ser	Leu 395	Ser	Glu	Ala	Pro	Lys 400
Tyr	Ala	Ser	Val	Ile	Ala	Lys	lle	Leu	Lys	Gln	Asp	Asn	Ser	Ala	Tyr

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 440

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 455

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 470

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr 490

Met Phe Val. Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 525

Arg

<210> 24 <211> 1370

<212> DNA

<213> Potato

<400> 24

BRIGHTON - WO GOSTOREAT I

TAGCGGAGGA TGAGTTCAAA GATCTTGGTC TTCAAGCCTG CATTGAACAT GTTTGGCTGG 60 GATACCATTG TATATCTTGA TGATGATGAT CCTATTCTTA TTGGCCGTGC CTATGGAAGA 120 GTTAGTCGCC ATTTACTGCA CGAGGAGTTA CTCAAAAGGT GTGTGGAGGC AGGTGTTTTG 180 TATCTAAACT CGAAAGTGGA TAGGATTGTT GAGGCCACAA ATGGCCACAG TCTTGTAGAG 240 TGCGAGGGTG ATGTTGTGAT TCCCTGCAGG TTTGTGACTG TTGCATCGGG AGCAGCCTCG 300 GGGAAATTCT TGCAGTATGA GTTGGGAGGT CCTAGAGTTT CTGTTCAAAC AGCTTATGGA 360 GTGGAAGTTG AGGTCGATAA CAATCCATTT GACCCGAGCC TGATGGTTTT CATGGATTAT 420 AGAGACTATG TCAGACACGA CGCTCAATCT TTAGAAGCTA AATATCCAAC ATTTCTCTAT 480 GCCATGCCCA TGTCTCCAAC ACGAGTCTTT TTCGAGGAAA CTTGTTTGGC TTCAAAAGAT 540 GCAATGCCAT TCGATCTGTT AAAGAAAAA TTGATGTTAC GATTGAACAC CCTCGGTGTA 600 AGAATTAAAG AAATTTATGA GGAGGAATGG TCTTACATAC CAGTTGGAGG ATCTTTGCCA 660 AATACAGAAC AAAAAACACT TGCATTTGGT GCTGCTGCTA GCATGGTTCA TCCAGCCACA 720 GGTTATTCAG TCGTCAGATC ACTGTCTGAA GCTCCAAAAT GCGCCTTCGT GCTTGCAAAT 780 ATATTACGAC AAAATCATAG CAAGAATATG CTTACTAGTT CAAGTACCCC GAGTATTTCA 840 ACTCAAGCTT GGAACACTCT TTGGCCACAA GAACGAAAAC GACAAAGATC GTTTTTCCTA 900

'		
WO 99/63055		PCT/US99/12121

TTTGGACTGG CTCT	GATATT GCAGO	TGGAT AT	rgaggga	TAAGGTCAT	T TTTCCGCGCG				
TTCTTCCGTG TGCC	AAAATG GATGT	GGCAG GG	ATTTCTTG	GTTCAAGTC	T TTCTTAGCAG				
ACCTCATGTT ATTT	GCCTTC TACAT	GTTTA TT	ATTGCACC	AAATGACAT	G AGAAGAGGCT				
TAATCAGACA TCTT	TTATCT GATCO	TACTG GTO	GCAACATT	GATAAGAAC	T TATCTTACAT				
TTTAGAGTAA ATTCCTCCTA CAATAGTTGT TGAAAGAGGC CTCATTACTT CAGATTCATA									
ACAGAAATCG CGGT	CTCTCG AGGCC	TTGTA TAT	TAACATTT	TCACTAGGT	T AATATTGCTT				
GAATAAGTTG CACA	GTTTCA GTTTT	TGTAT CTO	SCTTCTTT	TTTGTCCAA	G ATCATGTATT				
GACCAATTTA TATA	CATTGC CAGTA	AAA TATAT.	ATATTTTA	AAAAAAAA	A				
<210> 25 <211> 377 <212> PRT <213> Potato									
<400> 25	Aco Ion Clu	Ton Cla	73 - 0	7 3 03 0					
Asp Glu Phe Lys 1	5	ren Gin	10	lle Glu H	is Val Trp 15				
Arg Asp Thr Ile 20	Val.Tyr Leu	Asp Asp 25	Asp Asp		eu Ile Gly 30				
Arg Ala Tyr Gly 35	Arg Val Ser	Arg His	Leu Leu	His Glu G	lu Leu Leu				
Lys Arg Cys Val 50	Glu Ala Gly 55		Tyr Leu	Asn Ser Ly 60	ys Val Äsp				
Arg Ile Val Glu 65	Ala Thr Asn 70	Gly His	Ser Leu 75	Val Glu C	ys Glu Gly 80				
Asp Val Val Ile	Pro Cys Arg 85	Phe Val	Thr Val 90	Ala Ser G	ly Ala Ala ['] 95				
Ser Gly Lys Phe 100	Leu Gln Tyr	Glu Leu 105	Gly Gly		al Ser Val 10				
Gln Thr Ala Tyr 115	Gly Val Glu	Val Glu 120	Val Asp	Asn Asn Pi 125	co Phe Asp				
Pro Ser Leu Met 130	Val Phe Met 135	Asp Tyr	Arg Asp	Tyr Val Ai	rg His Asp				
Ala Gln Ser Leu 145	Glu Ala Lys 150	Tyr Pro	Thr Phe	Leu Tyr Al	la Met Pro 160				
Met Ser Pro Thr	Arg Val Phe 165	Phe Glu	Glu Thr 170	Cys Leu Al	la Ser Lys 175				
Asp Ala Met Pro 180	Phe Asp Leu	Leu Lys 185	Lys Lys		eu Arg Leu 90				
Asn Thr Leu Gly 195	Val Arg Ile	Lys Glu 200	Ile Tyr	Glu Glu Gl 205	lu Trp Ser				

PNSUCIU- -WU

Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu 210 215 220

Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser 225 230 235 240

Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala 245 250 255

Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser 260 265 270

Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu 275 280 285

Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 290 295 300

Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 305 310 315 320

Val Pro Lys Met Met Trp Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala 325 330 335

Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp 340 345 350

Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala 355 360 365

Thr Leu Ile Arg Thr Tyr Leu Thr Phe 370 375

<210> 26

<211> 533

<212> PRT

<213> Chimeric lettuce/potato

<400> 26

Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe 1 5 10 15

Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu 20 25 30

Leu Lys Gly Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg 35 40 45

Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln
50 60

Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser 65 70 75 80

Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln 85 90 . 95

Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile 100 105 110

Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala

BNSDOCID: <WO 9963055A1 1 >

		115					120					125			.∓`i
Ala	Glu 130	Ser	Ala	Lys	Leu	GÌy 135	Leu	Asn	Val	Gly	Leu 140	Ile	Gly	Pro	Asp
Leu 145	Pro	Phe	Thr	Asn	Asn 150	Tyr	Gly	Val	Trp	Gln 155	Asp	Glu	Phe	Ile	Gly 160
Leu	Gly	Leu	Glu	Gly 165	Cys	Ile	Glu	His	Ser 170	Trp	Lys	Asp	Thr	Leu 175	Val
Tyr	Leu	Asp	Asp 180	Ala	Asp	Pro	Ile	Arg 185	Ile	Gly	Arg	Ala	Tyr 190	Gly	Arg
Val	His	Arg 195	Asp	Leu	Leu	His	Glu 200	Glu	Leu	Leu	Arg	Arg 205	Cys	Val	Glu
Ser	Gly 210	Val	Ser	Tyr	Leu	Ser 215	Ser	Lys	Val	Glu	Arg 220	Ile	Thr	Glu	Ala
Pro 225	Asn	Gly	Tyr	Ser	Leu 230	Ile	Glu	Суѕ	Glu	Gly 235	Asn	Ile	Thr	Ile	Pro 240
Cys	Arg	Leu	Ala	Thr 245	Val	Ala	Ser	Gly	Ala 250	Ala	Ser	Gly	Lys	Phe 255	Leu
Glu	Tyr	Glu	Leu 260	Gly	Gly	Pro	Arg	Val 265	Ser	Val	Gln	Thr	Ala 270	Tyr	Gly
Val	Glu	Val 275	Glu	Val	Asp	Asn	Asn 280	Pro	Phe	Asp	Pro	Ser 285	Leu	Met	Val
Phe	Met 290	Asp	Tyr	Arg	Asp	Tyr 295	Val	Arg	His	Asp	Ala 300	Gln	Ser	Leu	Glu
Ala 305	Lys	Tyr	Pro	Thr	Phe 310	Leu	Tyr	Ala	Met	Pro 315	Met	Ser	Pro	Thr	Arg 320
Val	Phe	Phe	Glu	Glu 325	Thr	Cys	Leu	Ala	Ser 330	Lys	Asp	Ala	Met	Pro 335	Phe
Asp	Leu	Leu	Lys 340	Lys	Lys	Leu	Met	Leu 345	Arg	Leu	Asn	Thr	Leu 350	Gly	Val
Arg	Ile	Lys 355	Glu	Ile	Tyr	Glu	Glu 360	Glu	Trp	Ser	Tyr	Ile 365	Pro	Val	Gly
Gly	Ser 370	Leu	Pro	Asn	Thr	Glu 375	Gln	Lys	Thr	Leu	Ala 380	Phe	Gly	Ala	Ala
Ala 385	Ser	Met	Val	His	Pro 390	Ala	Thr	Gly	Tyr	Ser 395	Val	Val	Arg	Ser	Leu 400
Ser	Glu	Ala	Pro	Lys 405	Cys	Ala	Phe	Val	Leu 410	Ala	Asn	Ile	Leu	Arg 415	Gln
Asn	His	Ser	Lys 420	Asn	Met	Leu	Thr	Ser 425	Ser	Ser	Thr	Pro	Ser 430	Ile	Ser
Thr	Gln	Ala 435	Trp	Asn	Thr	Leu	Trp 440	Pro	Gln	Glu	Arg	Lys 445	Arg	Gln	Arg

WO 99/63055

Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu Gln Leu Asp Ile Glu 450 460

Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg Val Pro Lys Trp Met 465 470 475 480

Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala Asp Leu Met Leu 485 490 495

Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp Met Arg Arg Gly 500 505

Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala Thr Leu Ile Arg 515 520 525

Thr Tyr Leu Thr Phe 530

<210> 27

<211> 374

<212> PRT

<213> Arabidopsis thaliana

<400> 27

Glu Asp Glu Phe Asn Asp Leu Gly Leu Gln Lys Cys Ile Glu His Val
1 5 10 15

Trp Arg Glu Thr Ile Val Tyr Leu Asp Asp Asp Lys Pro Ile Thr Ile 20 25 30

Gly Arg Ala Tyr Gly Arg Val Ser Arg Arg Leu Leu His Glu Glu Leu 35 40 45

Leu Arg Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Ser Ser Lys Val
50 60

Asp Ser Ile Thr Glu Ala Ser Asp Gly Leu Arg Leu Val Ala Cys Asp 65 70 75 80

Asp Asn Asn Val Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala 85 90 95

Ala Ser Gly Lys Leu Leu Gln Tyr Glu Val Gly Gly Pro Arg Val Cys 100 105 110

Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Ser Pro Tyr 115 120 125

Asp Pro Asp Gln Met Val Phe Met Asp Tyr Arg Asp Tyr Thr Asn Glu 130 135 140

Lys Val Arg Ser Leu Glu Ala Glu Tyr Pro Thr Phe Leu Tyr Ala Met 145 150 155 160

Pro Met Thr Lys Ser Arg Leu Phe Phe Glu Glu Thr Cys Leu Ala Ser 165 170 175

Lys Asp Val Met Pro Phe Asp Leu Leu Lys Thr Lys Leu Met Leu Arg 180 185 190

Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys Thr Tyr Glu Glu Glu Trp

480

540

600

195 200 205 Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn 210 215 Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr 235 Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys Tyr Ala Ser Val Ile 245 255 Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys Gln Ile Asn Ser Asn Ile 260 Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro Pro Glu Arg Lys Arg Gln 280 Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe Phe Arg Leu Pro Lys Trp 310 Met Trp Gln Gly Phe Leu Gly Ser Thr Leu Thr Ser Gly Asp Leu Val 325 Leu Phe Ala Leu Tyr Met Phe Val Ile Ser Pro Asn Asn Leu Arg Lys 345 Gly Leu Ile Asn His Leu Ile Ser Asp Pro Thr Gly Ala Thr Met Ile 355 Lys Thr Tyr Leu Lys Val 370 <210> 28 <211> 1002 <212> DNA <213> Adonis palaestina <400> 28 ATTCATCTTC AGCAGCGCTG TCGTACTCTT TCTATATCTT CTTCCATCAC TAACAGTAGT 60 CGCCGACGGT TGAATCGGCT ATTCGCCTCA ACGTCAACTA TGGGTGAAGT CACTGATGCT 120 GGAATGGATG CTGTTCAGAA GCGGCTCATG TTCGACGACG AATGTATTTT GGTGGATGAG 180 AATGACAAGG TCGTCGGGCA TGATTCCAAA TACAACTGTC ATTTGATGGA AAAGATAGAG 240 GCAGAAAATT TGCTTCACAG AGCCTTCAGT GTTTTCTTGT TCAACTCAAA ATATGAATTG 300 CTTCTTCAGC AACGATCCGC CACAAAGGTA ACATTCCCGC TCGTATGGAC AAACACATGT 360 TGCAGTCATC CTCTCTTTCG TGATTCCGAG CTCATAGAAG AAAATTATCT CGGTGTACGA

AACGCTGCAC AAAGAAAGCT TTTAGACGAG CTAGGCATTC CAGCTGAAGA TGTCCCAGTT

GATGAATTTA CTCCTCTTGG TCGCATTCTT TACAAAGCTC CATCTGACGG CAAATGGGGA

GAGCACGAAT TGGACTATCT CCTATTTATT GTCCGAGATG TGAAATACGA TCCAAACCCA

WO 99/63055 PCT/US99/12121

•						
GATGAAGTT	G CTGATGCTAA	GTATGTTAA1	CGCGAGGAG	TGAGAGAGA'	F ACTGAGAAAA	660
GCTGATGCT	GTGAAGAGGG	ACTCAAGTT(TCTCCTTGGT	TTAGATTGG	T TGTTGATAAC	720
TTTTTGTTC	AGTGGTGGGA	TCATGTAGAG	CAGGGTACGA	TTAAGGAAG	T TGCTGACATG	780
AAAACTATCC	ACAAGTTGAC	TTAAGAGGAC	TTCTCTCCTC	TGTTCTACTA	TTTGTTTTT	840
GCTACAATAA	GTGGGTGGTG	ATAAGCAGTI	TTTCTGTTTT	CTTTAATTT	TGGCTTTTGA	900
ATTTGCCTCG	ATGTTGAACT	TGTAACATAT	TTAGACAAAT	ATGAGACCT1	GTAAGTTGAA	960
TTTGAGGCTG	AATTTATATT	TTTGGGAACA	TAATAATGTT	AA		1002
<210> 29 <211> 1271 <212> DNA <213> Adon	is palaesti	na	,			
<400> 29			•			
TTTTAAAGCT	CTTTCGCTCC	ACCACCATCA	AAGCCAGCCA	AATTTCTCTG	TACAAAAGTT	60
					GATACGCATC	120
TAAACCAGTA	ATTCTCGGTT	TTAATTTGTT	TCCTAAATTA	GGCCCCTTTC	CGGAATCCCG	180
AGAATTATGT	CGTCGATCAG	GATTAATCCT	TTATATAGTA	TCTTCTCCAC	CACCACTAAA	240
	CTTCGTGTTC					300
TTCTATTTCT	TCTTCCATCA	CTAACAGTCC	TCGCCGAGGG	TTGAATCGGC	TGTTCGCCTC	360
AACGTCGACT	ATGGGTGAAG	TCGCTGATGC	TGGTATGGAT	GCCGTCCAGA	AGCGGCTTAT	420
GTTCGACGAT	GAATGTATTT	TGGTGGATGA	GAATGACAAG	GTCGTCGGAC	ATGATTCCAA	480
ATACAACTGT	CATTTGATGG	AAAAGATAGA	GGCAGAAAAC	TTGCTTCACA	GAGCCTTCAG	540
TGTTTTCTTA	TTCAACTCAA	AATACGAGTT	GCTTCTTCAG	CAACGATCTG	CAACGAAGGT	600
AACATTCCCG	CTCGTATGGA	CAAACACCTG	TTGCAGCCAT	CCCCTCTTCC	GTGATTCCGA	660
	GAAAATTTTC					720
	CCAGCTGAAG		•			780
	CCATCTGACG					840
TGTCCGAGAT	GTGAAATACG	ATCCAAACCC	AGATGAAGTT	GCTGACGCTA	AGTACGTTAA	900
TCGCGAGGAG	TTGAAAGAGA	TACTGAGAAA	AGCTGATGCA	GGTGAAGAGG	GAATAAAGTT	960
GTCTCCTTGG	TTTAGATTGG	TTGTGGATAA	CTTTTTGTTC	AAGTGGTGGG	ATCATGTAGA	1020
GGAGGGGAAG	ATTAAGGACG	TCGCCGACAT	GAAAACTATC	CACAAGTTGA	CTTAAGAGAA	1080
AGTCTCTTAA	GTTCTACTAT	TTGGTTTTTG	CTTCAATAAG	TGGATGGTGA	TGAGCAGTTT	1140
TTATGCTTCC	TTTAATTTTG	GCTTTTCAAT	TTGCTTTATG	TGTTGAACTT	GTAACATATT	1200
TAGTCAAATA	TGAGACCTTG	TGAGTTGAAT	TTGAGGTTAT	ATTTATAGTT	TTGGGAACAT	1260
•						

÷ . AAAAAAAA A 1271 <210> 30 <211> 1109 <212> DNA <213> Haematococcus pluvialis <400> 30 TGGAACCTGG CCCGGCGGCA GTCCGATGCC GCGATGCTTC GTTCGTTGCT CAGAGGCCTC 60 ACGCATATCC CGCGCGTGAA CTCCGCCCAG CAGCCCAGCT GTGCACACGC GCGACTCCAG 120 TTTAAGCTCA GGAGCATGCA GCTGCTTGCC GAGGACCGCA CAGACCACAT GAGGGGTGCA 180 AGCACCTGGG CAGGCGGCA GTCGCAGGAT GAGCTGATGC TGAAGGACGA GTGCATCTTA 240 GTGGATGCTG ACGACAACAT CACAGGCCAT GCCAGCAAGC TGGAGTGCCA CAAATTCCTA 300 CCACATCAGC CTGCAGGCCT GCTGCACCGG GCCTTCTCTG TGTTCCTGTT TGACGACCAG 360 GGGCGACTGC TGCTGCAACA GCGTGCACGC TCAAAAATCA CCTTCCCAAG TGTGTGGACG 420 AACACCTGCT GCAGCCACCC TCTACATGGG CAGACCCCAG ATGAGGTGGA CCAACTAAGC 480 CAGGTGGCCG ACGGCACAGT ACCTGGCGCA AAAGCTGCTG CCATCCGCAA GTTGGAGCAC 540 GAGCTGGGGA TACCAGCGCA CCAGCTGCCG GCAAGCGCGT TTCGCTTCCT CACGCGTTTG 600 CACTACTGTG CCGCGGACGT GCAGCCGGCT GCGACACAAT CAGCGCTCTG GGGCGAGCAC 660 GAGATGGACT ACATCTTATT CATCCGGGCC AACGTCACCT TGGCGCCCAA CCCTGACGAG 720 GTGGACGAAG TCAGGTACGT GACGCAAGAG GAGCTGCGGC AGATGATGCA GCCGGACAAC 780 GGGTTGCAAT GGTCGCCGTG GTTTCGCATC ATCGCCGCGC GCTTCCTTGA GCGTTGGTGG 840 GCTGACCTGG ACGCGGCCCT AAACACTGAC AAACACGAGG ATTGGGGAAC GGTGCATCAC 900 ATCAACGAAG CGTGAAGGCA GAAGCTGCAG GATGTGAAGA CACGTCATGG GGTGGAATTG 960 CGTACTTGGC AGCTTCGTAT CTCCTTTTTC TGAGACTGAA CCTGCAGAGC TAGAGTCAAT 1020 GGTGCATCAT ATTCATCGTC TCTCTTTTGT TTTAGACTAA TCTGTAGCTA GAGTCACTGA 1080 TGAATCCTTT ACAACTTTCA AAAAAAAA 1109 <210> 31 <211> 985 <212> DNA <213> Lactuca sativa <400> 31 TGCCAAAATG TTGAAATTTC CCCCTTTTAA AACCATTGCT ACCATGATCT CTTCTCCATA 60 TTCTTCCTTC TTGCTGCCTC GGAAATCTTC TTTCCCTCCA ATGCCGTCTC TCGCAGCCGC 120 TAGTGTTTTC CTCCACCCTC TTTCGTCTGC CGCTATGGGC GATTCCAGCA TGGATGCTGT 180 CCAGCGACGT CTCATGTTCG ATGACGAATG CATTTTGGTG GATGAGAATG ACAAAGTGGT 240 TGGCCATGAT ACTAAATACA ATTGTCATTT GATGGAGAAG ATTGAAAAGG GAAATATGCT 300

PCT/US99/12121

WO 99/63055

WO			

PCT/US99/12121

	73/						
ACACAGAGCA	A TTCAGTGTGT	TCTTGTTCAA	CTCGAAATAT	GAATTACTCC	TTCAGCAACG	;	360 [°]
TTCTGCAACO	AAGGTGACTT	TCCCTTTGGT	ATGGACAAAC	ACGTGTTGCA	GCCATCCACT		420
ATACAGGGAG	AGTGAGCTTA	TTGACGAAAA	CGCCCTTGGG	GTGAGGAATG	CTGCACAGAG	4	480
GAAGCTCCTC	GATGAACTCG	GCATCCCTGG	AGCAGATGTT	CCGGTTGATG	AGTTCACTCC	į	540
ATTGGGTCGC	ATTCTATACA	AGGCCGCATC	GGATGGAAAG	TGGGGAGAAC	ATGAACTTGA	(600
TTACCTGCT	TTTATGGTAC	GTGATGTTGG	TTTGGATCCG	AACCCAGATG	AAGTGAAAGA	•	660
TGTAAAATAT	GTGAACCGGG	AAGAGCTGAA	GGAATTGGTA	AGGAAGGCGG	ATGCTGGTGA	-	720
AGAGGGTGTG	AAGCTGTCCC	CGTGGTTCAA	ATTGATTGTC	GATAATTTCT	TGTTTCAGTG	7	780
GTGGGATCGA	CTCCATAAGG	GAACCCTAAC	CGAAGCTATT	GATATGAAAA	CAATCCACAA		340
ACTCACATA	AAACACTACA	CTAGTAGGAG	AGAGGATTAT	ATGAGATATT	TGTTATATGT	9	900
GAAATTGAAA	TTCAGATGAA	TGCTTGTÄTT	TATTTCTATT	TGGACAAACT	TCAACTTCTT	9	960
TTTGCTACCT	TATCAGAAAA	AAAAA	• .			9	985
<210> 32 <211> 988		•		•			
<212> DNA	uca sativa						
<400> 32	uca sativa		•				
	AAAATCTCTT	CCATTAACTG	CTCAAATCTC	CACCTTCGCC	GGTCTTAATC		60
TCCGCCGGCG	CACTTTCACC	ACCATAACCG	CCGCCATGGG	TGACGATTCC	GGCATGGACG	. 1	120
CTGTCCAGAG	ACGTCTCATG	TTTGATGATG	AATGCATTTT	GGTTGATGAA	AATGACAATG	. 3	180
TTCTTGGGCA	TGATACCAAA	TACAATTGTC	ACTTGATGGA	GAAGATTGAG	AAAGATAATT	2	240
TGCTTCATAG	AGCATTCAGT	GTATTTTAT	TCAATTCAAA	ATACGAATTA	CTCCTTCAGC	3	300
AAAGGTCAGA	AACCAAGGTG	ACATTTCCTT	TGGTATGGAC	AAACACCTGT	TGCAGCCATC	3	360
CACTATACAC	AGAATCGGAG	TTAATTCCCG	AAAATGCCCT	TGGGGTCAGA	AATGCTGCAC	4	120
AGAGGAAGCT	TCTAGATGAA	CTCGGTATCC	CTGCTGAAGA	TGTTCCAGTT	GATGAGTTCA	4	180
CAACTTTAGG	TCGCATGTTG	TACAAGGCTC	CATCTGATGG	AAAATGGGGT	GAACATGAAG	5	540
TTGATTACCT	ACTCTTCCTC	GTGCGTGACG	TTGCCGTGAA	CCCAAACCCT	GATGAGGTGG	6	500
CGGACATTAC	ATACGTGAAC	CAAGAAGAGT	TAAAAGAGTT	ACTAAGGAAG	GCGGATGCGG	6	560
GTGAGGAGGG	TTTGAAATTG	TCCCCATGGT	TTAGGCTAGT	GGTGGACAAC	TTCTTGTTCA	7	720
AATGGTGGGA	TCATGTCCAA	AAGGGGACAC	TCAATGAAGC	AATTGACATG	AAAACCATTC	7	780
ATAAGTTGAT	ATGAAAAATG	GTTAATATTT	ATGGTGGTGG	TTTGGAGCTA	ATAATTTGTG	8	340
TGTTCAAGTC	TCGGTCCTTC	TTTTTTTAAC	GTTTTTTTT	TTTCTTTTAT	TGGGAGTGTT	9	900
TATTGTGTAC	TTGTAACGTA	GGCCCTTTGG	TTACGCTTTA	AGAGTTTAAT	AAAGAACCAC	9	960

ССТТААТТТА ДАДАЛАЛАЛ ДАДАЛАЛА	e ju	988
<210> 33 <211> 1874 <212> DNA <213> Chlamydomonas reinhardtii		
<400> 33 GGCACGAGCT CGAGTTTGTT TTACCATGAC ATCGGGAATT TGGAAGCTTG	AACTACCTCA	60
ATTACTCAAG TAACTCGCGG CAACACATTT CGCGCGCCAT CGCTGTTTTC	TCTGCTCCAG	120 [.]
CTACCGAGCA GCATTGCTTT AGATCGCTTT GATGTCATAA ACTCCCACTT	ATATGAGATC	180
CAGTTTCATC GAGCCCAAGC CCAGAGCGCA ACCTGTCTTA AGCCGCGGCA	GGGCGTCCAT	240
GCGCCTCGCG CAAAGCCGTG CTCTCGTTGC GCGTGTCAGC TCCGCCCTGT	GGCCGGGAGC	300
AGGACTTTCA CAGGCTCAAA GCGTTGCGGT GCGAATGGCG AGTTCGTCAA	CCTGGGAAGG	360
CACGGGCCTG AGCCAGGATG ACTTCATGCA GCGGGACGAG TGCTTGGTGG	TGGACGAGCA	420
GGACCGGCTG CTAGGCACCG CCAACAAGTA CGACTGCCAC CGCTTCGAGG	CGGCCAAGGG	480
CCAGCCCTGC GGCCGCCTGC ACCGCGCCTT CTCCGTGTTC CTGTTCAGCC	CCGACGGCCG	540
ACTGCTGCTG CAGCAGCGC CAGCCAGCAA GGTGACGTTC CCGGGTGTGT	GGACCAACAC	600
CTGCTGCTCG CACCCGCTGG CGGGCCAGGC GCCGGACGAG GTGGACCTGC	CGGCGGCGGT	660
AGCCTCGGGC CAGGTGCCGG GCATCAAGGC GGCGGCGGTG CGCAAGCTGC	AGCACGAGCT	720
GGGGATACCG CCGGAGCAGG TTCCCGCCTC CTCCTTCTCC TTCCTCACGC	GTCTGCACTA	780
CTGCGCCGCC GACACCGCCA CGCACGGCCC GGCGGCGGAG TGGGGCGAGC	ACGAGGTGGA	840
CTACGTGCTG TTCGTGCGGC CGCAGCAGCC CGTCAGCCTG CAGCCCAACC	CAGACGAGGT	900
GGACGCCACG CGCTACGTGA CGCTGCCGGA GCTTCAGTCC ATGATGGCGG	ACCCCGGCCT	960
CAGCTGGAGC CCCTGGTTCC GCATCCTGGC CACACAGCCC GCCTTCCTGC	CCGCCTGGTG	1020
GGGCGACCTG AAGCGGCGCT GGCGCCCGGG CGGCAGCCGA CTGTCGGACT	GGGGCACCAT	1080
CCACCGCGTC ATGTGAAGAA AAAGGGGAAG CAGGGGCGGG AGCGGGGGAT	GAATGGGAAT	1140
GTGAATGCGA TTGTGATGCG GCGTGGGATG AGGTCTGAAG ACAGGGGGAA	AATCGGGGGG	1200
CGGGCGTGAG CGTGTGTGTA CGTGAGCGAC AAAGCCGGGA GGCGGACCGC	GCGATGGGTA	1260
CATGTGTGT CGGAGGGTCG GTGGGTCGGT CGGTTGCGCG GCATAGCGTG	TTGTGTGTGT	1320
GCGGCTGCAG GGGTATGTGG GCACCCGGGC ACGGAGGAGA AGGCACACGC	AGGTGGCGCG	1380
GAGGTGTGTC AGGGGCCATG GGCGGGCCTC ACTCCTGGTC GTGCCCAGTG	GTCTCGTGGG	1440
CAGAGTGGCA GGGGCTGCAC CCATATGAGC GGCGCACTGC CGCGCTGGGC	TAAGTCCTTA	1500
TCACTTGGTG AGGTGGGCG AGGTGGCTGT GGGCGGCGGG CGCAGTGGCA	GAAGGACACG	1560
GTGTGTGAGC GGTGGAGCTC TGGCCGTGCC GGCCGTGAGG GGCGGATAGC	GATATGACGT	1620

WO 99/63055 PCT/US99/12121

						.,00,,,,121
TGTGCTTGGC	CGCTGTAATG	CGGGAGAATG	TGCAGGCCGC	GAGAAGCGGG	CGGTGGCAGG	1680
AGGCCGCAGG	CTGCAGCACC	CGTTGGGGAG	GTGCCACCTG	CAGGCGCGGC	GCCGGGCGGG	1740
CCTGAGTAAT	GGGCGCCTGA	GTAGTGGCGG	CCACAGGAGG	CGCAGGAGGC	AGCAGCAGGA	1800
GGACGAGCTG	GAGGGACCCG	TTGGCAACCC	AAGGTTGCGC	GTGTAACATA	GTGGCCATAC	1860
ААААААААА	AAAA					1874
<210> 34 <211> 954 <212> DNA <213> Taget	es erecta					
<400> 34 CCAAAAACAA	CTCAAATCTC	CTCCGTCGCT	CTTACTCCGC	CATGGGTGAC	GACTCCGGCA	60
TGGATGCTGT	TCAGCGACGT	CTCATGTTTG	ACGATGAATG	CATTTTGGTG	GATGAGTGTG	120
ACAATGTGGT	GGGACATGAT	ACCAAATACA	ATTGTCACTT	GATGGAGAAG	ATTGAAACAG	180
GTAAAATGCT	GCACAGAGCA	TTCAGCGTTT	TTCTATTCAA	TTCAAAATAC	GAGTTACTTC	240
TTCAGCAACG	GTCTGCAACC	AAGGTGACAT	TTCCTTTAGT	ATGGACCAAC	ACCTGTTGCA	300
GCCATCCACT	CTACAGAGAA	TCCGAGCTTG	TTCCCGAAAA	CGCCCTTGGA	GTAAGAAATG	360
CTGCACAGAG	GAAGCTGTTG	GATGAACTCG	GTATCCCTGC	TGAAGATGTT	CCCGTTGATC	420
AGTTTACTCC	TTTAGGTCGC	ATGCTCTACA	AGGCTCCATC	TGATGGAAAG	TGGGGAGAAC	480
ATGAACTTGA	CTACCTACTT	TTCATAGTGA	GAGACGTTGC	TGTAAACCCG	AACCCAGATG	540
AAGTGGCGGA	TATCAAATAT	GTGACCAGAA	GAGTTAAAGG	AGCTGCTAAG	GAAAGCAGAT	600
GCGGGGGAGG	AGGGTTTGAA	GCTGTCTCCA	TGGTTCAGGT	TAGTGGTTGA	TAACTTCTTG	660
TTCAAGTGGT	GGGATCATGT	GCAAAAGGGT	ACACTCACTG	AAGCAATTGA	TATGAAAACC	720
ATACACAAGC	TGATATAGAA	ACACACCCTC	AACCGAAAAG	TTCAAGCCTA	ATAATTCGGG	780
TTGGGTCGGG	TCTACCATCA	ATTGTTTTTT	TCTTTTAAGA	AGTTTTAATC	TCTATTTGAG	840
CATGTTGATT	CTTGTCTTTT	GTGTGTAAGA	TTTTGGGTTT	CGTTTCAGTT	GTAATAATGA	900
ACCATTGATG	GTTTGCAATT	TCAAGTTCCT	ATCGACATGT	AGTGATCTAA	AAAA	954
<210> 35 <211> 1031 <212> DNA <213> Oryza	a sativa				·	
<400> 35	CCTCCCCTC	ACCCCCCCC	CCCMMCMCCC	000007		
		AGGCGGCCGC				60
		CGGGATGGAC				120
		ACAAGACAAT			•	180
CATCIGATGG	AAAAAATCGA	ATCTGAAAAT	CTACTTCATA	GGGCTTTCAG	TGTATTCCTG	240

	00000			~		C1/05///12
TTCAACTCAA	AATATGAACT	CCTACTCCAG	CAACGATCTG	CAACAAAGGT	TACATTTCC	т 300
CTAGTTTGGA	CCAACACTTG	CTGCAGCCAT	CCTCTGTACC	GTGAGTCTGA	GCTTATACA	G 360
GAAAACTACC	TTGGTGTTAG	AAATGCTGCT	CAGAGGAAGC	TCTTGGATGA	GCTGGGCAT	C 420
CCAGCTGAAG	ATGTGCCAGT	TGACCAATTC	ACCCCTCTTG	GTCGGATGCT	TTACAAGGC	C 480
CCATCTGATG	GAAAATGGGG	TGAACACGAG	CTTGACTACC	TGCTGTTCAT	CGTCCGCGA	540
GTGAAGGTAG	TCCCGAACCC	GGACGAAGTG	GCCGATGTGA	AATACGTGAG	CCGTGAGCA	G 600
CTGAAGGAGC	TCATCCGCAA	AGCGGACGCC	GGAGAGGAAG	GCCTGAAGCT	GTCTCCCTG	G 660
TTCCGGCTGG	TTGTTGACAA	CTTCCTCATG	GGCTGGTGGG	ATCACGTCGA	GAAAGGCAC	720
CTCAACGAGG	CCGTGGACAT	GGAGACCATC	CACAAGCTGA	AGTAAGGACT	GCGATGTTG	r 780
GGCTGGAAAG	AATGATCCTG	AAGACTCTGT	TCTTGTGCTG	CTGCATATTA	CTCTTACCA	3 840
GGAAGTTGCA	GAAGTCAGAA	GAAGCTTTTG	TATGTTTCTG	GGTTTGGAGC	TTGGAAGTG	r 900
TGGGCTCTGC	TGACTGAGAG	ATTCCCTTAT	AGAGTGTCTA	TGTTAATTTA	GCAAACTTC'	r 960
ATATTATACA	TGATTAGTTA	ATTGTTCGGT	GTCTGAATAA	AGAACAATAG	CATGTTCCA	r 1020
GTTTATTTGC	T					1031
<210> 36 <211> 232 <212> PRT	voa avaata					

<213> Tagetes erecta

<400> 36

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe

Asp Asp Glu Cys Ile Leu Val Asp Glu Cys Asp Asn Val Val Gly His

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Thr Gly Lys

Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu

Val Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 100

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Gln Phe

Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp 130 135

Gly Glu His (Asp 150	Tyr	Leu	Leu	Ile 155	Val	Arg	Asp	Val	Ala 160

Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Lys Tyr Val Ser His 165 170 175

Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly 180 185 190

Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195 200 205

Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Thr Glu Ala Ile Asp 210 215 220

Met Lys Thr Ile His Lys Leu Ile 225 230

<210> 37

<211> 280

<212> PRT

<213> Lactuca Sativa

<400> 37

Met Leu Lys Phe Pro Pro Phe Lys Thr Ile Ala Thr Met Ile Ser Ser 1 5 10 15

Pro Tyr Ser Ser Phe Leu Leu Pro Arg Lys Ser Ser Phe Pro Pro Met 20 25 30

Pro Ser Leu Ala Ala Ala Ser Val Phe Leu His Pro Leu Ser Ser Ala 35 40 45

Ala Met Gly Asp Ser Ser Met Asp Ala Val Gln Arg Arg Leu Met Phe 50 55 60

Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly His 65 70 75 80

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Gly Asn 85 90 95

Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 100 105 110

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val 115 120 125

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 130 135 140

Ile Asp Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 145 150 155 160

Leu Asp Glu Leu Gly Ile Pro Gly Ala Asp Val Pro Val Asp Glu Phe 165 170 175

Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Ala Ser Asp Gly Lys Trp
180 185 190

Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Met Val Arg Asp Val Gly

<u>.</u>.

195 . 200

Leu Asp Pro Asn Pro Asp Glu Val Lys Asp Val Lys Tyr Val Asn Arg 210 215 220

Glu Glu Leu Lys Glu Leu Val Arg Lys Ala Asp Ala Gly Glu Glu Gly 225 230 235 240

Val Lys Leu Ser Pro Trp Phe Lys Leu Ile Val Asp Asn Phe Leu Phe 245 250 255

Gln Trp Trp Asp Arg Leu His Lys Gly Thr Leu Thr Glu Ala Ile Asp 260 265 270

Met Lys Thr Ile His Lys Leu Thr 275 280

<210> 38

<211> 229

<212> PRT

<213> Lactuca Sativa

<400> 38

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe 1 5 10 15

Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Asn Val Leu Gly His 20 25 30

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Asp Asn 35 40 45

Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 50 55 60

Leu Leu Cln Gln Arg Ser Glu Thr Lys Val Thr Phe Pro Leu Val
65 70 75 80

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 85 90 95

Ile Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 100 105 110

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe 115 120 125

Thr Thr Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp 130 135 140

Gly Glu His Glu Val Asp Tyr Leu Leu Phe Leu Val Arg Asp Val Ala 145 150 155 160

Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Arg Tyr Val Asn Gln
165 170 175

Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly 180 185

Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195 200 205

Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Asn Glu Ala Ile Asp 210 215 220

Met Lys Thr Ile His 225

<210> 39

<211> 295

<212> PRT

<213> Adonis Palaestina

<400> 39

Met Ser Ser Ile Arg Ile Asn Pro Leu Tyr Ser Ile Phe Ser Thr Thr 1 5 10 15

Thr Lys Thr Leu Ser Ala Ser Cys Ser Ser Pro Ala Val His Leu Gln
20 25 30

Gln Arg Cys Arg Thr Leu Ser Ile Ser Ser Ser Ile Thr Asn Ser Pro 35 40 45

Arg Arg Gly Leu Asn Arg Leu Phe Ala Ser Thr Ser Thr Met Gly Glu
50 60

Val Ala Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu Met Phe Asp 65 70 75 80

Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly Tyr Asp 85 90 95

Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu 100 105 110

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu 115 120 125

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val Trp 130 135 140

Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser Glu Leu Ile 145 150 155 160

Glu Glu Asn Phe Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Leu 165 170 175

Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe Thr 180 185 190

Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly 195 200 205

Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Tyr 210 215 220

Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val Asn Arg Glu 225 230 235 240

Glu Leu Lys Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly Ile 245 250 . 255

Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe Lys

265

270

Trp Trp Asp His Val Glu Glu Gly Lys Ile Lys Asp Val Ala Asp Met 275 280 285

Lys Thr Ile His Lys Leu Thr 290 295

<210> 40

<211> 234

<212> PRT

<213> Adonis Palaestina

<400> 40

Met Gly Glu Val Thr Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu 1 5 10 15

Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val 20 25 30

Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys
50 55 60

Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro 65 70 75 80

Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser 85 90 95

Glu Leu Ile Glu Glu Asn Tyr Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110

Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp 115 120 125

Glu Phe Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly 130 135 140

Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp 145 150 155 160

Val Lys Tyr Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val 165 170 175

Asn Arg Glu Glu Leu Arg Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu 180 185 190

Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205

Leu Phe Lys Trp Trp Asp His Val Glu Gln Gly Thr Ile Lys Glu Val 210 215 220

Ala Asp Met Lys Thr Ile His Lys Leu Thr 225 230

<210> 41 <211> 238

بيانيون

<212> PRT <213> Oryza Sativa

<400> 41

Met Ala Gly Ala Ala Ala Ala Val Glu Asp Ala Gly Met Asp Glu Val 1 5 10 15

Gln Lys Arg Leu Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Gln
20 25 30

Asp Asn Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu Met Glu 35 40 45

Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu 50 55 60

Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys 65 70 75 / 80

Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu 85 90 95

Tyr Arg Glu Ser Glu Leu Ile Gln Glu Asn Tyr Leu Gly Val Arg Asn 100 105 110

Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp 115 120 125

Val Pro Val Asp Gln Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala 130 135 140

Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe 145 150 155 160

Ile Val Arg Asp Val Lys Val Val Pro Asn Pro Asp Glu Val Ala Asp 165 170 175

Val Lys Tyr Val Ser Arg Glu Gln Leu Lys Glu Leu Ile Arg Lys Ala 180 185 190

Asp Ala Gly Glu Glu Leu Lys Leu Ser Pro Trp Phe Arg Leu Val 195 200 205

Val Asp Asn Phe Leu Met Gly Trp Trp Asp His Val Glu Lys Gly Thr 210 215 220

Leu Asn Glu Ala Val Asp Met Glu Thr Ile His Lys Leu Lys 225 230 235

<210> 42

<211> -233

<212> PRT

<213> Arabidopsis thaliana

<400> 42

Met Thr Asp Ser Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu
1 5 10 15

Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val 20 25 30

- Gly His Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Āla 35 40 45
- Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys
 50 55 60
- Tyr Glu Leu Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro 65 70 75 80
- Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser 85 90 95
- Glu Leu Ile Glu Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110
- Lys Leu Phe Asp Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp 115 120 125
- Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly 130 135 140
- Lys Trp Gly Glu His Glu Val Asp Tyr Leu Leu Phe Ile Val Arg Asp 145 150 155 160
- Val Lys Leu Gln Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val 165 170 175
- Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp 180 185 190
- Glu Ala Val Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205
- Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala 210 215 220
- Ala Asp Met Lys Thr Ile His Lys Leu 225 230
- <210> 43
- <211> 293
- <212> PRT
- <213> Haematococcus pluvialis
- <400> 43
- Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15
- Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30
- Arg Ser Met Gln Leu Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly 35 40 45
- Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys
 50 55 60
- Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75 80
- Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110

Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp 115 120 125

Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140

Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys
145 150 155 160

Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175

Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys 180 185 190

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 225 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His 275 280 285

His Ile Asn Glu Ala 290

<210> 44

<211> 304

<212> PRT

<213> Haematococcus pluvialis

<400> 44

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn
1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu 35 40 45

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp 50 55 60

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile 65 70 . 75 80

Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu Leu Gln Gln Arg 115 120 125

Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp Thr Asn Thr Cys Cys 130 135 140

Ser His Pro Leu His Gly Gln Thr Pro Asp Glu Val Asp Gln Leu Ser 145 150 155 160

Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys Ala Ala Ala Ile Arg 165 170 175

Lys Leu Glu His Glu Leu Gly Ile Pro Ala His Gln Leu Pro Ala Ser 180 185 190

Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Val Gln
195 200 205

Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu His Glu Met Asp Tyr 210 220

Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp Glu 225 230 235 240

Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met Met 245 250 255

Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile Ala 260 265 270

Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu Asn 275 280 285

Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu Ala 290 295 300

<210> 45

<211> 307

<212> PRT

<213> Chlamydomonas reinhardtii

<400> 45

Met Arg Ser Ser Phe Ile Glu Pro Lys Pro Arg Ala Gln Pro Val Leu 1 5 10 15

Ser Arg Gly Arg Ala Ser Met Arg Leu Ala Gln Ser Arg Ala Leu Val 20 25 30

Ala Arg Val Ser Ser Ala Leu Trp Pro Gly Ala Gly Leu Ser Gln Ala 35 40 45

Gln Ser Val Ala Val Arg Met Ala Ser Ser Ser Thr Trp Glu Gly Thr 50 55 60

Gly Leu Ser Gln Asp Asp Phe Met Gln Arg Asp Glu Cys Leu Val Val

65 70 .75 Asp Glu Gln Asp Arg Leu Leu Gly Thr Ala Asn Lys Tyr Asp Cys His Arg Phe Glu Ala Ala Lys Gly Gln Pro Cys Gly Arg Leu His Arg Ala Phe Ser Val Phe Leu Phe Ser Pro Asp Gly Arg Leu Leu Gln Gln 120 Arg Ala Ala Ser Lys Val Thr Phe Pro Gly Val Trp Thr Asn Thr Cys 130 135 Cys Ser His Pro Leu Ala Gly Gln Ala Pro Asp Glu Val Asp Leu Pro Ala Ala Val Ala Ser Gly Gln Val Pro Gly Ile Lys Ala Ala Ala Val 170 Arg Lys Leu Gln His Glu Leu Gly Ile Pro Pro Glu Gln Val Pro Ala Ser Ser Phe Ser Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Thr 200 Ala Thr His Gly Pro Ala Ala Glu Trp Gly Glu His Glu Val Asp Tyr 210 Val Leu Phe Val Arg Pro Gln Gln Pro Val Ser Leu Gln Pro Asn Pro 235 Asp Glu Val Asp Ala Thr Arg Tyr Val Thr Leu Pro Glu Leu Gln Ser Met Met Ala Asp Pro Gly Leu Ser Trp Ser Pro Trp Phe Arg Ile Leu 265 Ala Thr Gln Pro Ala Phe Leu Pro Ala Trp Trp Gly Asp Leu Lys Arg Arg Trp Arg Pro Gly Gly Ser Arg Leu Ser Asp Trp Gly Thr Ile His 295 Arg Val Met 305 <210> 46 <211> 1848 <212> DNA

<213> Adonis palaestina

<400> 46

WO 99/	63055				F	CT/US99/12121
TTTTCAAGTG	AGGGCTGATG	GTGGAAGCGG	GAGTAGAACT	TCTGTTGCTT	ATAAAGĀGG	G 300
TTTTGTGGAC	GAGGAGGATT	TTATCAAAGC	TGGTGGTTCT	GAGCTTTTGT	TTGTCCAAA	т 360
GCAGCAAACA	AAGTCTATGG	AGAAACAGGC	CAAGCTCGCC	GATAAGTTGC	CACCAATAC	C 420
TTTCGGAGAA	TCTGTGATGG	ACTTGGTTGT	AATAGGTTGT	GGACCTGCTG	GTCTTTCAC	T 480
GGCTGCAGAA	GCTGCTAAGC	TAGGCTTGAA	AGTTGGCCTT	ATTGGTCCTG	ATCTTCCTT	T 540
TACAAATAAT	TATGGTGTGT	GGGAAGACGA	GTTCAAAGAT	CTTGGACTTG	AACGTTGTA	T 600
CGAGCATGCT	TGGAAGGACA	CCATCGTATA	TCTTGACAAT	GATGCTCCTG	TCCTTATTG	G 660
TCGTGCATAT	GGACGAGTTA	GCCGGCATTT	GCTGCATGAA	GAGTTGCTGA	AAAGGTGTG	T 720
CGAGTCAGGT	GTATCATATC	TGAATTCTAA	AGTGGAAAGG	ATCACTGAAG	CTGGTGATG	G 780
CCATAGTCTT	GTAGTTTGTG	AAAACGACAT	CTTTATCCCT	TGCAGGCTTG	CTACTGTTG	C 840
ATCTGGAGCA	GCTTCAGGGA	AACTTTTGGA	GTATGAAGTA	GGTGGCCCTC	GTGTTTGTG	r 900
CCAAACTGCT	TATGGTGTGG	AGGTTGAGGT	GGAGAACAAT	CCATACGATC	CCAACTTAA	r 960
GGTATTTATG	GACTACAGAG	ACTATATGCA	ACAGAAATTA	CAGTGCTCGG	AAGAAGAAT.	A 1020
TCCAACATTT	CTCTATGTCA	TGCCCATGTC	GCCAACAAGA	CTTTTTTTTG	AGGAAACCT	G 1080
TTTGGCCTCA	AAAGATGCCA	TGCCTTTCGA	TCTACTGAAG	AGAAAACTAA	TGTCACGAT	r 1140
GAAGACTCTG	GGTATCCAAG	TTACAAAAAT	TTATGAAGAG	GAATGGTCTT	ATATTCCTG	r 1200
TGGGGGTTCT	TTACCAAACA	CAGAGCAAAA	GAACCTAGCA	TTTGGTGCTG	CAGCAAGCA'	г 1260
GGTGCATCCA	GCAACAGGCT	ATTCGGTTGT	ACGATCACTA	TCAGAAGCTC	CAAAATATG	2 1320
TTCTGTAATT	GCAAAGATTT	TGAAGCAAGA	TAACTCTGCA	TATGTGGTTT	CTGGACAAA	3 1380
CAGTGCAGTA	AACATTTCAA	TGCAAGCATG	GAGCAGTCTT	TGGCCAAAGG	AGCGAAAAC	G 1440
TCAAAGAGCA	TTCTTTCTTT	TCGGGTTAGA	GCTTATTGTG	CAGCTAGATA	TTGAAGCAA	1500
CAGAACGTTC	TTTAGAACCT	TCTTCCGCTT	GCCAACTTGG	ATGTGGTGGG	GTTTCCTTG	G 1560
GTCTTCACTA	TCATCTTTCG	ATCTTGTATT	GTTTTCCATG	TACATGTTTG	TTTTGGCCC	1620
GAACAGCATG	AGGATGTCAC	TTGŢGAGACA	TTTGCTTTCA	GATCCTTCTG	GTGCAGTTA	r 1680
GGTTAAAGCT	TACCTCGAAA	GGTAATCTGT	TTTATGAAAC	TATAGTGTCT	CATTAAATA	A 1740

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp

ATGAGGATCC TTCGTATATG TATATGATCA TCTCTATGTA TATCCTATAT TCTAATCTCA

TAAAGTAATC GAAAATTCAT TGATAGAAAA AAAAAAAAA AAAAAAAA

1800

1848

<210> 47

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 47

15 Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 105 Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg 155 Cys Ile Glu His Ala Trp Lys Asp Thr Ile Val Tyr Leu Asp Asn Asp Ala Pro Val Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu Lys Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Asp Ser Lys Val Glu Arg Ile Thr Glu Ala Gly Asp Gly His Ser Leu Val Val Cys Glu Asn Glu Ile Phe Ile Pro Cys Arg Leu Ala Thr 225 Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Glu Tyr Glu Val Gly 250 Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Asn Pro Tyr Asp Pro Asn Leu Met Val Phe Met Asp Tyr Arg 280 Asp Tyr Met Gln Gin Lys Leu Gln Cys Ser Glu Glu Glu Tyr Pro Thr 295 Phe Leu Tyr Val Met Pro Met Ser Pro Thr Arg Leu Phe Phe Glu Glu 315 Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Arg 330

Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Val 345 Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys 390 Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu

Arg

<210> 48

<211> 378

<212> PRT

<213> Potato

<400> 48

Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile Glu His Val Trp

Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Pro Ile Leu Ile Gly

Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu

Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp

Arg Ile Val Glu Ala Thr Asn Gly His Ser Leu Val Glu Cys Glu Gly

Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala Ser Gly Ala Ala

Ser Gly Lys Phe I 100	Leu Gln Ty	yr Glu Leu 105	Gly Gly Pro	Arg Val Ser Val
--------------------------	------------	-------------------	-------------	-----------------

Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp 115 120 125

Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp 130 135

Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro 145 150 155 160

Met Ser Pro Thr Arg Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys 165 170 175

Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Leu Met Leu Arg Leu 180 185 190

Asn Thr Leu Gly Val Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser 195 200 205

Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu 210 215 220

Ala Phe Gly Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser 225 230 235 240

Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala 245 250 255

Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser 260 265 270

Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu 275 280 285

Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 290 295 300

Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 305 . 310 315 320

Val Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa 325 330 335

Ala Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn 340 345 350

Asp Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly 355 360 365

Ala Thr Leu Ile Arg Thr Tyr Leu Thr Phe 370

<210> 49

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 49

Met 1	Glu	Cys	Val	Gly 5	Ala	Arg	Asn	Phe	Ala 10	Ala	Met	Ala	Val	Ser 15	Thr
Phe	Pro	Ser	Trp 20	Ser	Cys	Arg	Arg	Lys 25	Phe	Pro	Val	Val	Lys 30	Arg	Tyr
Ser	Tyr	Arg 35	Asn	Ile	Arg	Phe	Gly 40	Leu	Cys	Ser	Val	Arg 45	Ala	Ser	Gly
Gly	Gly 50	Ser	Ser	Gly	Ser	Glu 55	Ser	Cys	Val	Ala	Val 60	Arg	Glu	Asp	Phe
Ala 65	Asp	Glu	Glu	Asp	Phe 70	Val	Lys	Ala	Gly	Gly 75	Ser	Glu	Ile	Leu	Phe 80
Val	Gln	Met	Gln	Gln 85	Asn	Lys	Asp	Met	Asp 90	Glu	Gln	Ser	Lys	Leu 95	Val
Asp	Lys	Leu	Pro 100	Pro	Ile	Ser	Ile	Gly 105	Asp	Gly	Ala	Leu	Asp 110	His	Val
Val	Ile	Gly 115	Cys	Gly	Pro	Ala	Gly 120	Leu	Ala	Leu	Ala	Ala 125	Glu	Ser	Ala
Lys	Leu 130	Gly	Leu	Lys	Val	Gly 135	Leu	Ile	Gly	Pro	Asp 140	Leu	Pro	Phe	Thr
Asn 145	Asn	Tyr	Gly	Val	Trp 150	Glu	Asp	Glu	Phe	Asn 155	Asp	Leu	Gly	Leu	Gln 160
Lys	Cys	Ile	Glu	His 165	Val	Trp	Arg	Glu	Thr 170	Ile	Val	Tyr	Leu	Asp 175	
Asp	Lys	Pro	Ile 180	Thr	Ile	Gly	Arg	Ala 185	Tyr	Gly	Arg	Val	Ser 190	Arg	Arg
Leu	Leu	His 195	Glu	Glu	Leu	Leu	Arg 200	Arg	Cys	Val	Glu	Ser 205	Gly	Val	Ser
Tyr	Leu 210	Ser	Ser	Lys	Val	Asp 215	Ser	Ile	Thr	Glu	Ala 220	Ser	Asp	Gly	Leu
Arg 225	Leu	Val	Ala	Cys	Asp 230	Asp	Asn	Asn	Val	Ile 235	Pro	Cys	Arg	Leu	Ala 240
Thr	Val	Ala	Ser	Gly 245	Ala	Ala	Ser	Gly	Lys 250	Leu	Leu	Gln	Tyr	Glu 255	Val
Gly	Gly	Pro	Arg 260	Val	Cys	Val	Gln	Thr 265	Ala	Tyr	Gly	Val	Glu 270	Val	Glu
Val	Glu	Asn 275	Ser	Pro	Tyr	Asp	Pro 280	Asp	Gln	Met	Val	Phe 285	Met	Asp	Tyr
Arg	Asp 290	Tyr	Thr	Asn	Glu	Lys 295	Val	Arg	Ser	Leu	Glu 300	Ala	Glu	Tyr	Pro
Thr 305	Phe	Leu	Tyr	Ala	Met 310	Pro	Met	Thr	Lys	Ser 315	Arg	Leu	Phe	Phe	Glu 320
Glu	Thr	Cys	Leu	Ala	Ser	Lys	Asp	Val	Met	Pro	Phe	Asp	Leu	Leu	Lys

335

325 330

Thr Lys Leu Met Leu Arg Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys 340 345 350

Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro 355 360 365

Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val 370 380

His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro 385 390 395 400

Lys Tyr Ala Ser Val Ile Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys
405 410 415

Gln Ile Asn Ser Asn Ile Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro 420 425 430

Pro Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu 435 440 445

Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe 450 455 460

Phe Arg Leu Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Thr Leu 465 470 475 480

Thr Ser Gly Asp Leu Val Leu Phe Ala Leu Tyr Met Phe Val Ile Ser 485 490 495

Pro Asn Asn Leu Arg Lys Gly Leu Ile Asn His Leu Ile Ser Asp Pro 500 505 510

Thr Gly Ala Thr Met Ile Lys Thr Tyr Leu Lys Val 515 520

<210> 50

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 50

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp
1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val 50 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp

PCT/US99/12121

90

95 Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 105 Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg. Cys Ile Glu His Ala Trp Lys Asp Thr Ile Val Tyr Leu Asp Asn Asp Ala Pro Val Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu Lys Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Asp Ser Lys Val Glu Arg Ile Thr Glu Ala Gly Asp Gly His Ser Leu Val Val Cys Glu Asn Glu Ile Phe Ile Pro Cys Arg Leu Ala Thr 235 Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Glu Tyr Glu Val Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val 260 Glu Asn Asn Pro Tyr Asp Pro Asn Leu Met Val Phe Met Asp Tyr Arg 280 Asp Tyr Met Gln Gln Lys Leu Gln Cys Ser Glu Glu Glu Tyr Pro Thr Phe Leu Tyr Val Met Pro Met Ser Pro Thr Arg Leu Phe Phe Glu Glu 315 Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Arg 330 Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Val Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His 375 Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys 395 Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr 410

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp
420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 435 440 445

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 475 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr
485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Arg

<210> 51

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 51

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp
1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Thr Ser Val Ala Tyr Lys Glu Gly Phe Val
50 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp 85 90 95

Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 100 105 110

Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys 115 120 125

Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn 130 135 140

Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg 145 150 155 160

		-													
Cys	Ile	Glu	His	Ala 165	Trp	Lys ,	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180	Ile	Gly	Arg	Ala	Tyr 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195	Glu	Leu	Leu	Lys	Arg 200	Cys	Val	Glu	Ser	Gly 205	Val	Ser	Tyr
Leu	Asn 210	Ser	Lys	Val	Glu	Arg 215	Ile	Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
Leu 225	Val	Val	Cys	Glu	Asn 230	Asp	Ile	Phe	Ile	Pro 235	Cys	Arg	Leu	Ala	Thr 240
Val	Ala	Ser	Gly	Ala 245	Ala	Ser	Gly	Lys	Leu 250	Leu	Glu	Tyr	Glu	Val 255	Gly
Gly	Pro	Arg	Val 260	Cys	Val	Gln	Thr	Ala 265	Tyr	Gly	Val	Glu	Val 270	Glu	Val
Glu	Asn	Asn 275	Pro	Tyr	Asp	Pro	Asn 280	Leu	Met	Val	Phe	Met 285	Asp	Tyr	Arg
Asp	Tyr 290	Met	Gln	Gln	Lys	Leu 295	Gln	Cys	Ser	Glu	Glu 300	Glu	Tyr	Pro	Thr
Phe 305	Leu	Tyr	Val	Met	Pro 310	Met	Ser	Pro	Thr	Arg 315	Leu	Phe	Phe	Glu	Glu 320
Thr	Cys	Leu	Ala	Ser 325	Lys	Asp	Ala	Met	Pro 330	Phe	Asp	Leu	Leu	Lys 335	Arg
Lys	Leu	Met	Ser 340	Arg	Leu	Lys	Thr	Leu 345	Gly	Ile	Gln	Val	Thr 350	Lys	Ile
Tyr	Glu	Glu 355	Glu	Trp	Ser	Tyr	Ile 360	Pro	Val	Gly	Gly	Ser 365	Leu	Pro	Asn
Thr	Glu 370	Gln	Lys	Asn	Leu	Ala 375	Phe	Gly	Ala	Ala	Ala 380	Ser	Met	Val	His
Pro 385	Ala	Thr	Gly	Tyr	Ser 390	Val	Val	Arg	Ser	Leu 395	Ser	Glu	Ala	Pro	Lys 400
Tyr	Ala	Ser	Val	Ile 405	Ala	Lys	Ile	Leu	Lys 410	Gln	Asp	Asn	Ser	Ala 415	Tyr
Val	Val	Ser	Gly 420	Gln	Ser	Ser	Ala	Val 425	Asn	Ile	Ser	Met	Gln 430	Ala	Trp
Ser	Ser	Leu 435	Trp	Pro	Lys	Glu	Arg 440	Lys	Arg	Gln	Arg	Ala 445	Phe	Phe	Leu
Phe	Gly 450	Leu	Glu	Leu	Ile	Val 455	Gln	Leu	Asp	Ile	Glu 460	Ala	Thr	Arg	Thr
Phe 465	Phe	Arg	Thr	Phe	Phe 470	Arg	Leu	Pro	Thr	Trp 475	Met	Trp	Trp	.Gly	Phe 480
Leu	Gly	Ser	Ser	Leu	Ser	Ser	Phe	Asp	Leu	Val	Leu	Phe	Ser	Met	Tyr

485

490

495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Lys Ala Tyr Leu Glu 515 520 525

Arg

<210> 52

<211> 533

<212> PRT

<213> Lettuce

<400> 52

Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe
1 5 10 15

Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu 20 25 30

Leu Lys Gln Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg 35 40 45

Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln
50 60

Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser 65 70 . 75 80

Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln 85 90 95

Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile 100 105 110

Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala 115 120 125

Ala Glu Ser Ala Lys Leu Gly Leu Asn Val Gly Leu Ile Gly Pro Asp 130 135 140

Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Gln Asp Glu Phe Ile Gly
145 150 155 160

Leu Gly Leu Glu Gly Cys Ile Glu His Ser Trp Lys Asp Thr Leu Val

Tyr Leu Asp Asp Ala Asp Pro Ile Arg Ile Gly Arg Ala Tyr Gly Arg 180 185 190

Val His Arg Asp Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu 195 200 205

Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Glu Arg Ile Thr Glu Ala 210 215 220

Pro Asn Gly Tyr Ser Leu Ile Glu Cys Glu Gly Asn Ile Thr Ile Pro

225 230 235 Cys Arg Leu Ala Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Phe Leu 245. Glu Tyr Glu Leu Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Ile Glu Val Glu Val Glu Asn Asn Pro Tyr Asp Pro Asp Leu Met Val 280 Phe Met Asp Tyr Arg Asp Phe Ser Lys His Lys Pro Glu Ser Leu Glu. Ala Lys Tyr Pro Thr Phe Leu Tyr Val Met Ala Met Ser Pro Thr Lys Ile Phe Phe Glu Glu Thr Cys Leu Ala Ser Arg Glu Ala Met Pro Phe 330 Asn Leu Leu Lys Ser Lys Leu Met Ser Arg Leu Lys Ala Met Gly Ile Arg Ile Thr Arg Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala 375 Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Asn Tyr Ala Ala Val Ile Ala Lys Ile Leu Arg Gln Asp Gln Ser Lys Glu Met Ile Ser Leu Gly Lys Tyr Thr Asn Ile Ser 425 Lys Gln Ala Trp Glu Thr Leu Trp Pro Leu Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ser His Ile Val Leu Met Asp Leu Glu 455 Gly Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Lys Trp Met 470 Trp Trp Gly Phe Leu Gly Ser Ser Leu Ser Ser Thr Asp Leu Ile Ile 490 Phe Ala Leu Tyr Met Phe Val Ile Ala Pro His Ser Leu Arg Met Glu 505 Leu Val Arg His Leu Leu Ser Asp Pro Thr Gly Ala Thr Met Val Lys 520 Ala Tyr Leu Thr Ile 530

<210> 53

<400> 53

Met Glu Cys Val Gly Val Gln Asn Val Gly Ala Met Ala Val Leu Thr 1 5 10

Arg Pro Arg Leu Asn Arg Trp Ser Gly Glu Leu Cys Gln Glu Lys 20 25 30

Ser Ile Phe Leu Ala Tyr Glu Gln Tyr Glu Ser Lys Cys Asn Ser Ser 35 40 45

Ser Gly Ser Asp Ser Cys Val Val Asp Lys Glu Asp Phe Ala Asp Glu 50 55 60

Glu Asp Tyr Ile Lys Ala Gly Gly Ser Gln Leu Val Phe Val Gln Met 65 70 75 80

Gln Gln Lys Lys Asp Met Asp Gln Gln Ser Lys Leu Ser Asp Glu Leu 85 90 95

Arg Gln Ile Ser Ala Gly Gln Thr Val Leu Asp Leu Val Val Ile Gly
100 105 110

Cys Gly Pro Ala Gly Leu Ala Leu Ala Ala Glu Ser Ala Lys Leu Gly 115 120 125

Leu Asn Val Gly Leu Val Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr 130 135 140

Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile 145 150 155 160

Glu His Val Trp Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Glu Pro 165 170 175

Ile Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Phe Leu His 180 185 190

Glu Glu Leu Leu Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn 195 200 205

Ser Lys Val Asp Arg Ile Val Glu Ala Thr Asn Gly Gln Ser Leu Val 210 215 220

Glu Cys Glu Gly Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala 225 230 235 240

Ser Gly Ala Ala Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Ser Pro 245 250 255

Arg Val Ser Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn 260 265 270

Asn Pro Phe Asp Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr 275 280 285

Leu Arg His Asp Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu 290 295 300

Tyr 305	Ala	Met	Pro	Met	Ser 310	Pro	Thr	Arg	Val	Phe 315	Phe	Glu	Glu	Thr	Cys 320
Leu	Ala	Ser	Lys	Asp 325	Ala	Met	Pro	Phe	Asp 330	Leu	Leu	Lys	Lys	Lys 335	Leu
Met	Leu	Arg	Leu 340	Asn	Thr	Leu	Gly	Val 345	Arg	Ile	Lys	Glu	Ile 350	Tyr	Glu
Glu	Glu	Trp 355	Ser	Tyr	Ile	Pro	Val 360	Gly	Gly	Ser	Leu	Pro 365	Asn	Thr	Glu
Gln	Lys 370	Thr	Leu	Ala	Phe	Gly 375	Ala	Ala	Ala	Ser	'Met 380	Val	His	Pro	Ala
Thr 385	Gly	Tyr	Ser	Val	Val 390	Arg	Ser	Leu	Ser	Glu 395	Ala	Pro	Lys	Cys	Ala 400
Ser	Val	Leu	Ala	Asn 405	Ile	Leu	Arg	Gln	His 410	Tyr	Ser	Lys	Asn	Met 415	Leu
Thr	Ser	Ser	Ser 420	Ile	Pro	Ser	Ile	Ser 425	Thr	Gln	Ala	Trp	Asn 430	Thr	Leu
Trp	Pro	Gln 435	Glu	Arg	Lys	Arg	Gln 440	Arg	Ser	Phe	Phe	Leu 445	Phe	Gly	Leu
Ala	Leu 450	Ile	Leu	Gln	Leu	Asp 455	Ile	Glu	Gly	Ile	Arg 460	Ser	Phe	Phe	Arg
Ala 465	Phe	Phe	Arg	Val	Pro 470	Lys	Trp	Met	Trp	Gln 475	Gly	Phe	Leu	Gly	Ser 480
Ser	Leu	Ser	Ser	Ala 485	Asp	Leu	Met	Leu	Phe 490	Ala	Phe	Tyr	Met	Phe 495	Ile
Ile	Ala	Pro	Asn 500	Asp	Met	Arg	Lys	Gly 505	Leu	Ile	Arg	His	Leu 510	Leu	Ser
Asp	Pro	Thr 515	Gly	Ala	Thr	Leu	Ile 520	Arg	Thr	Tyr	Leu	Thr 525	Phe		

<210> 54

<211> 516

<212> PRT

<213> Tagetes erecta

<400> 54

Met Ser Met Arg Ala Gly His Met Thr Ala Thr Met Ala Ala Phe Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Pro Arg Phe Met Thr Ser Ile Arg Tyr Thr Lys Gln Ile Lys Cys 20 25 30

Asn Ala Ala Lys Ser Gln Leu Val Val Lys Gln Glu Ile Glu Glu Glu 35 40 45

Glu Asp Tyr Val Lys Ala Gly Gly Ser Glu Leu Leu Phe Val Gln Met 50 55 60

WO 99/63055

		-													
Gln 65	Gln	Asn	Lys	Ser	Met 70	Asp	Ala	Gln	Ser	Ser 75	Leu	Ser	Gln	Lys	Leu 80
Pro	Arg	Val	Pro	Ile 85	Gly	Gly	Gly	Gly	Asp 90	Ser	Asn	Cys	Ile	Leu 95	Asp
Leu	Val	Val	Ile 100	Gly	Cys	Gly	Pro	Ala 105	Gly	Leu	Ala	Leu	Ala 110	Gly	Glu
Ser	Ala	Lys 115	Leu	Gly	Leu	Asn	Val 120	Ala	Leu	Ile	Gly	Pro 125	Asp	Leu	Pro
Phe	Thr 130	Așn	Asn	Tyr	Gly	Val 135	Trp	Glu	Asp	Glu	Phe 140	Ile	Gly	Leu	Gly
Leu 145	Glu	Gly	Cys	Ile	Glu 150	His	Val	Trp	Arg	Asp 155	Thr	Val	Val	Tyr	Leu 160
Asp	Asp	Asn	Asp	Pro 165	Ile	Leu	Ile	Gly	'Arg 170	Ala	Tyr	Gly	Arg	Val 175	Ser
Arg	Asp	Leu	Leu 180	His	Glu	Glu	Leu	Leu 185	Thr	Arg	Cys	Met	Glu 190	Ser	Gly
Val	Ser	Tyr 195	Leu	Ser	Ser	Lys	Val 200	Glu	Arg	Ile	Thr	Glu 205	Ala	Pro	Asn
Gly	Leu 210		Leu	Ile	Glu	Cys 215	Glu	Gly	Asn	Ile	Thr 220	Ile	Pro	Cys	Arg
Leu 225	Ala	Thr	Val	Ala	Ser 230	Gly	Ala	Ala	Ser	Gly 235	_	Leu	Leu	Gln	Tyr 240
Glu	Leu	Gly	Gly	Pro 245	Arg	Val	Суѕ	Val	Gln 250	Thr	Ala	Tyr	Gly	Ile 255	Glu
Val	Glu	Val	Glu 260	Ser	Ile	Pro	Tyr	Asp 265	Pro	Ser	Leu	Met	Val 270	Phe	Met
Asp	Tyr	Arg 275	Asp	Tyr	Thr	Lys	His 280	Lys	Ser	Gln	Ser	Leu 285	Glu	Ala	Gln
Tyr	Pro 290	Thr	Phe	Leu	Tyr	Val 295	Met	Pro	Met	Ser	Pro 300	Thr	Lys	Val	Phe
Phe 305	Glu	Glu	Thr	Cys	Leu 310		Ser	Lys	Glu	Ala 315		Pro	Phe	Glu	Leu 320
Leu	Lys	Thr	Lys	Leu 325		Ser	Arg	Leu	Lys 330		Met	Gly	Ile	Arg 335	Ile
Thr	Lys	Thr	Tyr 340		Glu	Glu	Trp	Ser 345		Ile	Pro	Val	Gly 350	_	Ser
Leu	Pro	Asn 355		Glu	Gln	Lys	Asn 360		Ala	Phe	Gly	Ala 365		Ala	Ser
Met	Val 370		Pro	Ala	Thr	Gly 375		Ser	Val	Val	Arg 380		Leu	Ser	Glu
n 1	_		_						-		-		_		_

Ala Pro Asn Tyr Ala Ala Val·Ile Ala Lys Ile Leu Gly Lys Gly Asn

385 390 395 400 Ser Lys Gln Met Leu Asp His Gly Arg Tyr Thr Thr Asn Ile Ser Lys 405 Gln Ala Trp Glu Thr Leu Trp Pro Leu Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Met Asp Ile Glu Gly Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp 455 Trp Gly Phe Leu Gly Ser Ser Leu Ser Ser Thr Asp Leu Ile Ile Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro His Ser Leu Arg Met Gly Leu Val Arg His Leu Leu Ser Asp Pro Thr Gly Gly Thr Met Leu Lys Ala Tyr Leu Thr Ile 515 <210> 55 <211> 501 <212> PRT <213> Arabidopsis thaliana <400> 55 Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Asp Phe Phe Ile Pro Gln Phe His Gly Phe Glu Arg Leu Cys Ser Asn Asn Pro Tyr His Ser Arg Val Arg Leu Gly Val Lys Lys Arg Ala Ile Lys Ile Val Ser Ser Val Val Ser Gly Ser Ala Ala Leu Leu Asp Leu Val Pro Glu Thr Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Leu Tyr Asp Thr Ser Lys Ser 65 70 75 80 Gln Val Val Asp Leu Ala Ile Val Gly Gly Pro Ala Gly Leu Ala

Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp 100 105 110

Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp

Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr Thr Trp Ser

Gly Ala Val Val Tyr Val Asp Glu Gly Val Lys Lys Asp Leu Ser Arg

		-									•				
145				•	150					155					160
Pro	Tyŗ	Gly	Arg	Val 165	Asn	Arg	Lys	Gln	Leu 170	Lys	Ser	Lys	Met	Leu 175	Gln
Lys	Cys	Ile	Thr 180	Asn	Gly	Val	Lys	Phe 185	His	Gln	Ser	Lys	Val 190	Thr	Asn
Val	Val	His 195	Glu	Glu	Ala	Asn	Ser 200	Thr	Val	Val	Cys	Ser 205	Asp	Gly	Val
Lys	Ile 210	Gln	Ala	Ser	Val	Val 215	Leu	Asp	Ala	Thr	Gly 220	Phe	Ser	Arg	Cys
Leu 225	Val	Gln	Tyr	Asp	Lys 230	Pro	Tyr	Asn	Pro	Gly 235	Tyr	Gln	Val	Ala	Tyr 240
Gly	Ile	Val	Ala	Glu 245	Val	Asp	Gly	His	Pro 250	Phe	Asp	Val	Asp	Lys 255	Met
Val	Phe	Met	Asp 260	Trp	Arg	Asp	Lys	His 265	Leu	Asp	Ser	Tyr	Pro 270	Glu	Leu
Lys	Glu	Arg 275	Asn	Ser	Lys	Ile	Pro 280	Thr	Phe	Leu	Tyr	Ala 285	Met	Pro	Phe
Ser	Ser 290	Asn	Arg	Ile	Phe	Leu 295	Glu	Glu	Thr	Ser	Leu 300	Val	Ala	Arg	Pro
Gly 305	Leu	Arg	Met	Glu	Asp 310	Ile	Gln	Glu	Arg	Met 315	Ala	Ala	Arg	Leu	Lys 320
His	Leu	Gly	Ile	Asn 325	Val	Lys	Arg	Ile	Glu 330	Glű	Asp	Glu	Arg	Cys 335	Val
Ile	Pro	Met	Gly 340	Gly	Pro	Leu	Pro	Val 345	Leu	Pro	Gln	Arg	Val 350	Val	Gly
Ile	Gly	Gly 355	Thr	Ala	Gly	Met	Val 360	His	Pro	Ser	Thr	Gly 365	Tyr	Met	Val
Ala	Arg 370	Thr	Leu	Ala	Ala	Ala 375	Pro	Ile	Val	Ala	Asn 380	Ala	Ile	Val	Arg
Tyr 385	Leu	Gly	Ser	Pro	Ser 390	Ser	Asn	Ser	Leu	Arg 395	Gly	Asp	Gln	Leu	Ser 400
Ala	Glu	Val	Trp	Arg 405		Leu	Trp	Pro	Ile 410	Glu	Arg	Arg	Arg	Gln 415	Arg
Glu	Phe	Phe	Cys 420	Phe	Gly	Met	Asp	Ile 425	Leu	Leu	Lys	Leu	Asp 430	Leu	Asp
Ala	Thr	Arg 435	Arg	Phe	Phe	Asp	Ala 440	Phe	Phe	Asp	Leu	Gln 445	Pro	His	Tyr
Trp	His 450	Gly	Phe	Leu	Ser	Ser 455	Arg	Leu	Phe	Leu	Pro 460	Glu	Leu	Leu	Val
Phe 465	Gly	Leu	Ser	Leu	Phe 470	Ser	His	Ala	Ser	Asn 475	Thr	Ser	Arg	Leu	Glu 480

Ile Met Thr Lys Gly Thr Val Pro Leu Ala Lys Met Ile Asn Asn Leu 485 490 495

Val Gln Asp Arg Asp 500

<210> 56

<211> 502

<212> PRT

<213> Adonis palaestina

<400> 56

Met Asp Thr Leu Leu Arg Thr His Asn Lys Leu Glu Leu Leu Pro Thr 1 5 10 15

Leu His Gly Phe Ala Glu Lys Gln His Leu Val Ser Thr Ser Lys Leu 20 25 30

Gln Asn Gln Val Phe Arg Ile Ala Ser Arg Asn Ile His Pro Cys Arg 35 40 45

Asn Gly Thr Val Lys Ala Arg Gly Ser Ala Leu Leu Glu Leu Val Pro 50 55 60

Glu Thr Lys Lys Glu Asn Leu Glu Phe Asp Leu Pro Ala Tyr Asp Pro 65 70 75 80

Ser Arg Gly Ile Val Val Asp Leu Ala Val Val Gly Gly Pro Ala 85 90 95

Gly Leu Ala Ile Ala Gln Gln Val Ser Glu Ala Gly Leu Leu Val Cys 100 105 110

Ser Ile Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val 115 120 125

Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr 130 135 140

Thr Trp Ser Gly Ala Val Val Tyr Thr Asp Asp Asn Ser Lys Lys Tyr 145 150 155 160

Leu Asp Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys 165 170 175

Met Leu Gln Lys Cys Val Thr Asn Gly Val Lys Phe His Gln Ala Lys 180 185 190

Val Ile Lys Val Ile His Glu Glu Ser Lys Ser Leu Leu Ile Cys Asn 195 200 205

Asp Gly Ile Thr Ile Asn Ala Thr Val Val Leu Asp Ala Thr Gly Phe 210 215 220

Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln 225 230 235 240

Val Ala Tyr Gly Ile Met Ala Glu Val Glu Glu His Pro Phe Asp Leu 245 250 255

Asp Lys Met Leu Phe Met Asp Trp Arg Asp Ser His Leu Asn Glu Lys 260 265 270

Leu Glu Leu Lys Asp Lys Asn Arg Lys Ile Pro Thr Phe Leu Tyr Ala

Leu Glu Leu Lys Asp Lys Asn Arg Lys Ile Pro Thr Phe Leu Tyr Ala 275 280 285

Met Pro Phe Ser Ser Thr Lys Ile Phe Leu Glu Glu Thr Ser Leu Val 290 295 300

Ala Arg Pro Gly Leu Arg Phe Glu Asp Ile Gln Glu Arg Met Val Ala 305 310 315 320

Arg Leu Lys His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu 325 330 335

Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg 340 345 350

Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly 355 360 365

Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Lys Ser 370 375 380

Ile Val Gln Tyr Leu Gly Ser Asp Arg Ser Leu Ser Gly Asn Glu Leu 385 390 395 400

Ser Ala Glu Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Gln 405 410 415

Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu 420 425 430

Gln Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro His 435 440 445

Tyr Trp His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Leu 450 460

Phe Phe Gly Leu Ser Leu Phe Ser His Ala Ser Asn Ala Ser Arg Ile 465 470 475 480

Glu Ile Met Ala Lys Gly Thr Val Pro Leu Val Asn Met Met Asn Asn 485 490 495

Leu Ile Gln Asp Thr Asp 500

<210> 57

<211> 498

<212> PRT

<213> Pepper

<400> 57

Met Asp Thr Leu Leu Arg Thr Pro Asn Asn Leu Glu Phe Leu His Gly
1 10 15

Phe Gly Val Lys Val Ser Ala Phe Ser Ser Val Lys Ser Gln Lys Phe 20 25 30

		-													
Gly	Ala	Lys 35	Lys	Phe	Cys	Glu	Gly 40	Leu	Gly	Ser	Arg	Ser 45	Val	Cys	Val
Lys	Ala 50	Ser	Ser	Ser	Ala	Leu 55	Leu	Glu	Leu	Val	Pro 60	Glu	Thr	Lys	Lys
Glu 65	Asn	Leu	Asp	Phe	Glu 70	Leu	Pro	Met	Tyr	Asp 75	Pro	Ser	Lys	Gly	Val 80
Val	Val	Asp	Leu	Ala 85	Val	Val	Gly	Gly	Gly 90	Pro	Ala	Gly	Leu	Ala 95	Val
Ala	Gln	Gln	Val 100	Ser	Glu	Ala	Gly	Leu 105	Ser	Val	Cys	Ser	Ile 110	Asp	Pro
Asn	Pro	Lys 115	Leu	Ile	Trp	Pro	Asn 120	Asn	Tyr	Gly	Val	Trp 125	Val	Asp	Glu
Phe	Glu 130	Ala	Met	Asp	Leu	Leu 135	Asp	Cys	Leu	Asp	Ala 140	Thr	Trp	Ser	Gly
Ala 145	Ala	Val	Tyr	Ile	Asp 150	Asp	Lys	Thr	Thr	Lys 155	Asp	Leu	Asn	Arg	Pro 160
Tyr	Gly	Arg	Val	Asn 165	Arg	Lys	Gln	Leu	Lys 170	Ser	Lys	Met	Met	Gln 175	Lys
Cys	Ile	Leu	Asn 180	Gly	Val	Lys	Phe	His 185	Gln	Ala	Lys	Val	Ile 190	Lys	Val
Ile	His	Glu 195	Glu	Ser	Lys	Ser	Met 200	Leu	Ile	Cys	Asn	Asp 205	Gly	Ile	Thr
Ile	Gln 210	Ala	Thr	Val	Val	Leu 215	Asp	Ala	Thr	Gly	Phe 220	Ser	Arg	Ser	Leu
Val 225	Gln	Tyr	Asp	Lys	Pro 230	Tyr	Asn	Pro	Gly	Tyr 235	Gln	Val	Ala	Tyr	Gly 240
Ile	Leu	Ala	Glu	Val 245	Glu	Glu	His	Pro	Phe 250	Asp	Val	Asn	Lys	Met 255	Val
Phe	Met	Asp	Trp 260	Arg	Asp	Ser	His	Leu 265	Lys	Asn	Asn	Val	Glu 270	Leu	Lys
Glu	Arg	Asn 275	Ser	Arg	Ile	Pro	Thr 280	Phe	Leu	Tyr	Ala	Met 285	Pro	Phe	Ser
Ser	Asn 290	Arg	Ile	Phe	Leu	Glu 295	Glu	Thr	Ser	Leu	Val 300	Ala	Arg	Pro	Gly
Leu 305	Gly	Met	Asp	Asp	Ile 310	Gln	Glu	Arg	Met	Val 315	Ala	Arg	Leu	Ser	His 320
Leu	Gly	Ile	Lys	Val 325	Lys	Ser	Ile	Glu	Glu 330	Asp	Glu	His	Cys	Val 335	Ile
Pro	Met	Gly	Gly 340	Pro	Leu	Pro	Val	Leu 345	Pro	Gln	Arg	Val	Val 350	Gly	Ile
Gly	Gly	Thr	Ala	Gly	Met	Val	His	Pro	Ser	Thr	Gly	Tyr	Met	Val	Ala

- 1

355 360 365

Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile Gln Tyr 370 380

Leu Ser Ser Glu Arg Ser His Ser Gly Asp Glu Leu Ser Ala Ala Val 385 390 395 400

Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu Phe Phe 405 410 415

Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg 420 425 430

Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly 435 440 445

Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val Phe Gly Leu 450 455 460

Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Leu Glu Ile Met Thr 465 470 475 480

Lys Gly Thr Leu Pro Leu Val His Met Ile Asn Asn Leu Leu Gln Asp 485 490 495

Lys Glu

<210> 58

<211> 500

<212> PRT

<213> Tomato

<400> 58

Met Asp Thr Leu Leu Lys Thr Pro Asn Asn Leu Glu Phe Leu Asn Pro 1 5 10 15

His His Gly Phe Ala Val Lys Ala Ser Thr Phe Arg Ser Glu Lys His 20 25 30

His Asn Phe Gly Ser Arg Lys Phe Cys Glu Thr Leu Gly Arg Ser Val 35 40 45

Cys Val Lys Gly Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80

Gly Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile 100 105 110

Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp

	130					135					140				7 _:
Ser 145	Gly	Ala	Ala		Tyr .150	Ile	Asp	Asp	Asn	Thr 155	Ala	Lys	Asp	Leu	His 160
Arg	Pro	Tyr	Gly	Arg 165	Val	Asn	Arg	Lys	Gln 170	Leu	Lys	Ser	Lys	Met 175	Met
Gln	Lys	Cys	Ile 180	Met	Asn	Gly	Val	Lys 185	Phe	His	Gln	Ala	Lys 190	Val	Ile
Lys	Val	Ile 195	His	Glu	Glu	Ser	Lys 200	Ser	Met	Leu	Ile	Cys 205	Asn	Asp	Gly
Ile	Thr 210	Ile	Gln	Ala	Thr	Val 215	Val	Leu	Asp	Ala	Thr 220	Gly	Phe	Ser	Arg
Ser 225	Leu	Val	Gln	Tyr	Asp 230	Lys	Pro	Tyr	Asn	Pro 235	Gly	Tyr	Gln	Val	Ala 240
Tyr	Gly	Ile	Leu	Ala 245	Glu	Val	Glu	Glu	His 250	Pro	Phe	Asp	Val	Asn 255	Lys
Met	Val	Phe	Met 260	Asp	Trp	Arg	Asp	Ser 265	His	Leu	Lys	Asn	Asn 270	Thr	Asp
Leu	Lys	Glu 275	Arg	Asn	Ser	Arg	Ile 280	Pro	Thr	Phe	Leu	Tyr 285	Ala	Met	Pro
Phe	Ser 290	Ser	Asn	Arg	Ile	Phe 295	Leu	Glu	Glu	Thr	Ser 300	Leu	Val	Ala	Arg
Pro 305	Gly	Leu	Arg	Ile	Asp 310	Asp	Ile	Gln	Glu	Arg 315	Met	Val	Ala	Arg	Leu 320
Asn	His	Leu	Gly	11e 325	Lys	Val	Lys	Ser	11e 330	Glu	Glu	Asp	Glu	His 335	Cys
Leu	Ile	Pro	Met 340	Gly	Gly	Pro	Leu	Pro 345	Val	Leu	Pro	Gln	Arg 350	Val	Val
Gly	Ile	Gly 355	Gly	Thr	Ala	Gly	Met 360	Val	His	Þго	Ser	Thr 365	Gly	Tyr	Met
Val	Ala 370	Arg	Thr	Leu	Ala	Ala 375	Ala	Pro	Val	Val	Ala 380	Asn	Ala	Ile	Ile
Gln 385	Tyr	Leu	Gly	Ser	Glu 390	Ärg	Ser	His	Ser	Gly 395	Asn	Glu	Leu	Ser	Thr 400
Ala	Val	Trp	Lys	Asp 405	Leu	Trp	Pro	Ile	Glu 410	Arg	Arg	Arg	Gln	Arg 415	Glu
Phe	Phe	Cys	Phe 420	Gly	Met	Asp	Ile	Leu 425	Leu	Lys	Leu	Asp	Leu 430	Pro	Ala
Thr	Arg	Arg 435	Phe	Phe	Asp	Ala	Phe 440	Phe	Asp	Leu	Glu	Pro 445	Arg	Tyr	Trp
His	Gly 450	Phe	Leu	Ser	Ser	Arg 455		Phe	Leu	Pro	Glu 460	Leu	Ile	Val	Phe

Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Phe Glu Ile 465 470 475 480

Met Thr Lys Gly Thr Val Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495

Gln Asp Lys Glu 500

<210> 59

<211> 500

<212> PRT

<213> Tobacco

<400> 59

Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Glu Phe Leu His Pro
1 5 10 15

Val His Gly Phe Ser Val Lys Ala Ser Ser Phe Asn Ser Val Lys Pro 20 25 30

His Lys Phe Gly Ser Arg Lys Ile Cys Glu Asn Trp Gly Lys Gly Val 35 40 45

Cys Val Lys Ala Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80

Gly Leu Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Val Ser Ile 100 105 110

Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp 130 140

Ser Gly Thr Val Val Tyr Ile Asp Asp Asn Thr Thr Lys Asp Leu Asp 145 150 155 160

Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met
165 170 175

Gln Lys Cys Ile Leu Asn Gly Val Lys Phe His His Ala Lys Val Ile 180 185 190

Lys Val Ile His Glu Glu Ala Lys Ser Met Leu Ile Cys Asn Asp Gly 195 200 205

Val Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg 210 215 220

Cys Leu Val Gln Tyr Asp Lys Pro Tyr Lys Pro Gly Tyr Gln Val Ala 225 230 235 240

Tyr	Gly	Ile	Leu	Ala 245	Glu	Val	Glu	Glu	His 250	Pro	Phe	Asp	Thr	Ser 255	Lys
Met	Val	Leu	Met 260	Asp	Trp	Arg	Asp	Ser 265	His	Leu	Gly	Asn	Asn 270	Met	Glu
Leu	Lys	Glu 275	Arg	Asn	Arg	Lys	Val 280	Pro	Thr	Phe	Leu	Tyr 285	Ala	Met	Pro
Phe	Ser 290	Ser	Asn	Lys	Ile	Phe 295	Leu	Glu	Glu	Thr	Ser 300	Leu	Val	Ala	Arg
Pro 305	Gly	Leu	Arg	Met	Asp 310	Asp	Ile	Gln	Glu	Arg 315	Met	Val	Ala	Arg	Leu 320
Asn	His	Leu	Gly	Ile 325	Lys	Val	Lys	Ser	Ile 330	Glu	Glu	Asp	Glu	His 335	Cys
Val	Ile	Pro	Met 340	Gly	Gly	Ser	Leu	Pro 345	Val	Ile	Pro	Gln	Arg 350	Val	Val
Gly	Thr	Gly 355	Gly	Thr	Ala	Gly	Leu 360	Val	His	Pro	Ser	Thr 365	Gly	Tyr	Met
Val	Ala 370	Arg	Thr	Leu	Ala	Ala 375	Ala	Pro	Val	Val	Ala 380	Asn	Ala	Ile	Ile
His 385	Tyr	Leu	Gly	Ser	Glu 390	Lys	Asp	Leu	Leu	Gly 395	Asn	Glu	Leu	Ser	Ala 400
Ala	Val	Trp	Lys	Asp 405	Leu	Trp	Pro	Ile	Glu 410	Arg	Arg	Arg	Gln	Arg 415 _.	
Phe	Phe	Cys	Phe 420	Gly	Met	Asp	Ile	Leu 425	Leu	Lys	Leu	Asp	Leu 430	Pro	Ala
Thr	Arg	Arg 435	Phe	Phe	Asp	Ala	Phe 440	Phe	Asp	Leu	Glu	Pro 445	Arg	Tyr	Trp
His	Gly 450	Phe	Leu	Ser	Ser	Arg 455	Leu	Tyr	Leu	Pro	Glu 460	Leu	Ile	Phe	Phe
Gly 465	Leu	Ser	Leu	Phe	Ser 470	Arg	Ala	Ser	Asn	Thr 475	Ser	Arg	Ile	Glu	Ile 480
Met	Thr	Lys	Gly	Thr 485	Leu	Pro	Leu	Val	Asn 490	Met	Ile	Asn	Asn	Leu 495	Leu

Gln Asp Thr Glu 500

<210> 60 <211> 511 <212> PRT <213> Tagetes erecta

<400> 60

Met Asp Thr Phe Leu Arg Thr Tyr Asn Ser Phe Glu Phe Val His Pro 1 5 10 15

				3.5	7										
Ser	Asn	Lys	Phe 20	Àla	Gly	Asn	Leu	Asn 25	Asn	Leu	Asn	Gln	Leu 30	Asn	Gln
Ser	Lys	Ser .35	Gln	Phe	Gln	Asp	Phe 40	.Arg	Phe	Gly	Pro	Lys 45	Lys	Ser	Gln
Phe	Lys 50	Leu	Gly	Gln	Lys	Tyr 55	Cys	Val	Lys	Ala	Ser 60	Ser	Ser	Ala	Leu
Leu 65	Glu	Leu	Val	Pro	Glu 70	Ile	Lys	Lys	Glu	Asn 75	Leu	Asp	Phe	Asp	Leu 80
Pro	Met	Tyr	Asp	Pro 85	Ser	Arg	Asn	Val	Val 90	Val	Asp	Leu	Val	Val 95	Val
Gly	Gly	Gly	Pro 100	Ser	Gly	Leu	Ala	Val 105	Ala	Gln	Gln	Val	Ser 110	Glu	Ala
Glý	Leu	Thr 115	Val	Cys	Ser	Ile	Asp 120	Pro	Ser	Pro	Lys	Leu 125	Ile	Trp	Pro
Asn	Asn 130	Tyr	Gly	Val	Trp	Val 135	Asp	Glu	Phe	Glu	Ala 140	Met	Asp	Leu	Leu
Asp 145	Cys	Leu	Asp	Thr	Thr 150	Trp	Ser	Ser	Ala	Val 155	Val	Tyr	Ile	Asp	Glu 160
Lys	Ser	Thr	Lys	Ser 165	Leu	Asn	Arg	Pro	Tyr 170	Ala	Arg	Val	Asn	Arg 175	Lys
Gln	Leu	Lys	Thr 180	Lys	Met	Leu	Glņ	Lys 185	Cys	Ile	Ala	Asn	Gly 190	Val	Lys
Phe	His	Gln 195	Ala	Lys	Val	Ile	Lys 200	Val	Ile	His	Glu	Glu 205	Leu	Lys	Ser
Leu	Leu 210	lle	Cys	Asn	Asp	Gly 215	.Val	Thr	Ile	Gln	Ala 220	Thr	Leu	Val	Leu
Asp 225	Ala	Thr	Gly	Phe	Ser 230	Arg	·Ser	Leu	Val	Gln 235	Tyr	Asp	Lys	Pro	Tyr 240
Asn	Pro	Gly	Tyr	Gln 245	Val	Ala	Tyr	Gly	11e 250	Leu	Ala	Glu	Val	Glu 255	Glu
His	Pro	Phe	Asp 260	Val	Asp	Lys	Met	Leu 265	Phe	Met	Asp	Trp	Arg 270	Asp	Ser
His	Leu	Asp 275	Gln	Asn	Leu	Glu	Ile 280	Lys	Ala	Arg	Asn	Ser 285	Arg	Ile	Pro
Thr	Phe 290	Leu	Tyr	Ala	Met	Pro 295	Phe	Ser	Ser	Thr	Arg 300	Ile	Phe	Leu	Glu
Glu 305	Thr	Ser	Leu	Val	Ala 310	Arg	Pro	Gly	Leu	Lys 315	Met	Glu	Asp	Ile	Gln 320
Glu	Arg	Met	Ala	Tyr 325	Arg	Leu	Lys	His	Leu 330	Gly	Ile	Lys	Val	Lys 335	
Ile	Glu	Glu	Asp	Glu	Arg	Cys	Val	Ile	Pro	Met	Gly	Gly	Pro	Leu	Pro

340 345

390

350

Val Leu Pro Gln Arg Val Leu Gly Ile Gly Gly Thr Ala Gly Met Val 355 360 365

His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Pro

Ile Val Ala Lys Ser Ile Ile Arg Tyr Leu Asn Asn Glu Lys Ser Met

Val Ala Asp Val Thr Gly Asp Asp Leu Ala Ala Gly Ile Trp Arg Glu .

395

Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly 420 425 430

Met Asp Ile Leu Lys Leu Asp Leu Glu Gly Thr Arg Arg Phe Phe 435 440 445

Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser 450 460

Ser Arg Leu Phe Leu Pro Glu Leu Val Thr Phe Gly Leu Ser Leu Phe 465 470 475 480

Gly His Ala Ser Asn Thr Cys Arg Val Glu Ile Met Ala Lys Gly Thr 485 490 495

Leu Pro Leu Ala Thr Met Ile Gly Asn Leu Val Arg Asp Arg Glu 500 505 510

<210> 61

<211> 503

<212> PRT

<213> Daffodil

<400> 61

Met Asp Thr Leu Leu Arg Thr His Asn Arg Leu Glu Leu Leu Tyr Pro 1 5 10 15

Leu His Glu Leu Ala Lys Arg His Phe Leu Ser Pro Ser Pro Asn Pro 20 25 30

Gln Asn Pro Asn Phe Lys Phe Phe Ser Arg Lys Pro Tyr Gln Lys Lys 35 40 45

Cys Arg Asn Gly Tyr Ile Gly Val Ser Ser Asn Gln Leu Leu Asp Leu
50 60

Val Pro Glu Ile Lys Lys Glu His Leu Glu Phe Asp Leu Pro Leu Tyr 65 70 75 80

Asp Pro Ser Lys Ala Leu Thr Leu Asp Leu Ala Val Val Gly Gly 85 90 95

Pro Leu Ala Arg Ser Cys Ser Thr Ser Leu Gly Gly Gly Leu Ser Val

Val Ser Ile Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly

بن أجر

 Val
 Trp 130
 Val Asp Glu Phe 135
 Glu Asp Met Asp Leu Leu Asp 140
 Leu Asp Cys Leu Asp 140

 Ala Thr Trp Ser Gly Ala 150
 Tyr Val Asp 155
 Asp Arg Ser Thr Lys 160

Asn Leu Ser Arg Pro Tyr Ala Arg Val Asn Arg Lys Asn Leu Lys Ser

Lys Met Met Lys Lys Cys Val Ser Asn Gly Val Arg Phe His Gln Ala 180 185 190

Thr Val Val Lys Ala Met His Glu Glu Glu Lys Ser Tyr Leu Ile Cys 195 200 205

Ser Asp Gly Val Thr Ile Asp Ala Arg Val Val Leu Asp Ala Thr Gly 210 215 220

Phe Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr 225 230 235 240

Gln Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp 245 250 255

Val Asp Lys Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Gly
260 265 270

Lys Ala Glu Leu Asn Glu Arg Asn Ala Lys Ile Pro Thr Phe Leu Tyr 275 280 285

Ala Met Pro Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu 290 295 300

Val Ala Arg Pro Gly Leu Lys Met Glu Asp Ile Gln Glu Arg Met Val 305 310 315 320

Ala Arg Leu Asn His Leu Gly Ile Arg Ile Lys Ser Ile Glu Glu Asp 325 330 335

Glu Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Ile Pro Gln 340 345 350

Arg Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr 355 360 365

Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro Ile Val Ala Asn 370 375 380

Ser Ile Val Gln Tyr Leu Val Ser Asp Ser Gly Leu Ser Gly Asn Asp 385 390 395 400

Leu Ser Ala Asp Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Arg 405 410 415

Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp 420 425 430

Leu Glu Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro 435 440 445

Val Pro Phe Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Cys Lys 465 470 475 480

Leu Glu Ile Met Ala Lys Gly Thr Leu Pro Leu Val Asn Met Ile Asn 485 490 495

Asn Leu Val Gln Asp Arg Asp 500

INTERNATIONAL SEARCH REPORT

International application No.

			PC1/US99/1212	:1
IPC(6) :Please Se US CL :435/189,	TION OF SUBJECT MATTER te Extra Sheet. 193, 233, 252.3, 320.1, 325; 536/23.2 tional Patent Classification (IPC) or to both r	national classification	and IPC	-
B. FIELDS SEAF	RCHED			······································
Minimum documenta	tion searched (classification system followed	by classification sym	ibols)	
	193, 233, 252.3, 320.1, 325; 536/23.2	,	·	
Documentation search	ed other than minimum documentation to the	extent that such docur	ments are included	in the fields searched
Electronic data base of Please See Extra Si	consulted during the international search (na	me of data base and,	where practicable,	search terms used) .
C. DOCUMENTS	S CONSIDERED TO BE RELEVANT	1		
Category* Cital	tion of document, with indication, where app	propriate, of the releva	int passages	Relevant to claim No.
X WO 9 PARK No:1.	97/36998 A1 (UNIVERSITY OF Colors of Colors 1997, see entire d	F MARYLAND ocument, especia	COLLEGE ally SEQ ID	1-8
				•
Further docum	ents are listed in the continuation of Box C.	See paten	t family annex.	
	nes of cited documents:			rnational filing date or priority
"A" document defir to be of particu	ing the general state of the art which is not considered plar relevance		theory underlying the	
L document which	nt published on or after the international filing date th may throw doubts on priority claim(s) or which is	considered nov		e claimed invention cannot be red to involve an inventive step
special reason				claimed invention cannot be step when the document is
nieans	rring to an oral disclosure, use, exhibition or other	being obvious	one or more other suct to a person skilled in t	n documents, such combination he art
the priority dat			ber of the same patent	
02 AUGUST :999	mpletion of the international search	Date of mailing of th		rch report
Name and mailing ad Commissioner of Pate Box PCT	nts and Trademarks	Authorized officer BRADLEY S. M.	AYHEW A	U Y.
Washington, D.C. 20 Facsimile No. (703	231 3) 305-3230	Telephone No. (7	03) 308-0196	YUL

BNSDOCID: <WO__9963055A1_I_>

<u>-</u>			PCT/U	S99/12121	
A. CLASSIFICATION OF S IPC (6):	UBJECT MATTER:				-
C12N 1/21, 5/10, 9/10, 15/53	3, 15/54, 15/61, 15/63;	C12P 23/00; C12Q 1/	68		
B. FIELDS SEARCHED Electronic data bases consult	ed (Name of data base)	and where practicable	terms used):		
Dialog and APS search terms: IPP, epsilon c isomerase	yclase, lycopene cyclase	e, isopentenyl pyropho	sphate isomerase a	nd isopentenyl d	iphosphate

Form PCT:ISA 210 (extra sheet/July 1992)*

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 1/21, 5/10, 9/10, 15/53, 15/54, 15/61, 15/63, C12P 23/00, C12Q 1/68 (11) International Publication Number:

WO 99/63055

A1

(43) International Publication Date:

9 December 1999 (09.12.99)

(21) International Application Number:

PCT/US99/12121

(22) International Filing Date:

2 June 1999 (02.06.99)

(30) Priority Data:

09/088,724 09/088,725

2 June 1998 (02.06.98) 2 June 1998 (02.06.98) LIS US

(71) Applicant (for all designated States except US): UNIVERSITY OF MARYLAND [US/US]; Office of Technology Liaison, 4312 Knox Road, College Park, MD 20742 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): CUNNINGHAM, Francis, X., Jr. [US/US]; 2727 Washington Avenue, Chevy Chase, MD 20815 (US). SUN, Zairen [US/US]; 3405 Tulane Drive #22, Hyattsville, MD 20783 (US).
- (74) Agents: GOLDHUSH, Douglas, H. et al.; Nikaido, Marmelstein, Murray & Oram LLP, Suite 330 G Street Lobby, Metropolitan Square, 655 Fifteenth Street, N.W., Washington, DC 20005-5701 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

(54) Title: GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF

(57) Abstract

Nucleic acid sequences encoding ϵ -cyclase, isopentenyl pyrophosphate isomerase and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with the vectors. Methods for controlling the ratio of various carotenoids in a host and for the production of novel carotenoid pigments. The present invention also provides a method for screening for eukaryotic genes encoding carotenoid biosynthesis, and for modifying the disclosed enzymes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Itały	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
1							

GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

The present invention describes nucleic acid sequences for eukaryotic genes encoding ϵ lycopene ϵ -cyclase (also known as ϵ -cyclase and ϵ lycopene cyclase), isopentenyl pyrophosphate isomerase (IPP) and β -carotene hydroxylase as well as vectors containing the same and hosts transformed with said vectors. The present invention also provides methods for augmenting the accumulation of carotenoids, changing the composition of the carotenoids, and producing novel and rare carotenoids. The present invention provides methods for controlling the ratio or relative amounts of various carotenoids in a host. The invention also relates to modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. Additionally, the present invention provides a method for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

15

20

25

30

Background of the Invention

Carotenoid pigments with cyclic endgroups are essential components of the photosynthetic apparatus in oxygenic photosynthetic organisms (e.g., cyanobacteria, algae and plants; Goodwin, 1980). The symmetrical bicyclic yellow carotenoid pigment βcarotene (or, in rare cases, the asymmetrical bicyclic α-carotene) is intimately associated with the photosynthetic reaction centers and plays a vital role in protecting against potentially lethal photooxidative damage (Koyama, 1991). β-carotene and other carotenoids derived from it or from α-carotene also serve as light-harvesting pigments (Siefermann-Harms, 1987), are involved in the thermal dissipation of excess light energy captured by the lightharvesting antenna (Demmig-Adams & Adams, 1992), provide substrate for the biosynthesis of the plant growth regulator abscisic acid (Rock & Zeevaart, 1991; Parry & Horgan, 1991), and are precursors of vitamin A in human and animal diets (Krinsky, 1987). Plants also exploit carotenoids as coloring agents in flowers and fruits to attract pollinators and agents of seed dispersal (Goodwin, 1980). The color provided by carotenoids is also of agronomic value in a number of important crops. Carotenoids are currently harvested from a variety of organisms, including plants, algae, yeasts, cyanobacteria and bacteria, for use as pigments in food and feed.

WO 99/63055

The probable pathway for formation of cyclic carotenoids in plants, algae and cyanobacteria is illustrated in Figure 1. Two types of cyclic endgroups or rings are commonly found in higher plant carotenoids, these are referred to as the β (beta) and ϵ (epsilon) rings (Fig. 3). The precursor acyclic endgroup (no ring structure) is referred to as the Ψ (psi) endgroup. The β and ϵ endgroups differ only in the position of the double bond in the ring. Carotenoids with two β rings are ubiquitous, and those with one β and one ϵ ring are common, but carotenoids with two ϵ rings are uncommon. β -carotene (Fig. 1) has two β -endgroups and is a symmetrical compound that is the precursor of a number of other important plant carotenoids such as zeaxanthin and violaxanthin (Fig. 2).

10

15

20

5

Genes encoding enzymes of carotenoid biosynthesis have previously been isolated from a variety of sources including bacteria (Armstrong et al., 1989, Mol. Gen. Genet. 216, 254-268; Misawa et al., 1990, J. Bacteriol., 172, 6704-12), fungi (Schmidhauser et al., 1990, Mol. Cell. Biol. 10, 5064-70), cyanobacteria (Chamovitz et al., 1990, Z. Naturforsch, 45c, 482-86; Cunningham et al., 1994) and higher plants (Bartley et al., Proc. Natl. Acad. Sci USA 88, 6532-36; Martinez-Ferez & Vioque, 1992, Plant Mol. Biol. 18, 981-83). Many of the isolated enzymes show a great diversity in structure, function and inhibitory properties between sources. For example, phytoene desaturases from the cyanobacterium Synechococcus and from higher plants and green algae carry out a two-step desaturation to yield ζ -carotene as a reaction product. In plants and cyanobacteria a second enzyme (ζ carotene desaturase), similar in amino acid sequence to the phytoene desaturase, catalyzes two additional desaturations to yield lycopene. In contrast, a single desaturase enzyme from Erwinia herbicola and from other bacteria introduces all four double bonds required to form lycopene. The Erwinia and other bacterial desaturases bear little amino acid sequence similarity to the plant and cyanobacterial desaturase enzymes, and are thought to be of unrelated ancestry. Therefore, even with a gene in hand from one source, it may be difficult to identify a gene encoding an enzyme of similar function in another organism. In particular, the sequence similarity between certain of the prokaryotic and eukaryotic genes encoding enzymes of carotenoid biosynthesis is quite low.

30

25

Further, the mechanism of gene expression in prokaryotes and eukaryotes appears to differ sufficiently such that one cannot expect that an isolated eukaryotic gene will be properly expressed in a prokaryotic host.

The difficulties in isolating genes encoding enzymes with similar functions is exemplified by recent efforts to isolate the gene encoding the enzyme that catalyzes the formation of β -carotene from the acyclic precursor lycopene. Although a gene encoding an enzyme with this function had been isolated from a bacterium, it had not been isolated from any photosynthetic procaryote or from any eukaryotic organism. The isolation and characterization of the enzyme catalyzing formation of β -carotene in the cyanobacterium Synechococcus PCC7942 was described by the present inventors and others (Cunningham et al., 1993 and 1994). The amino acid sequence similarity of the cyanobacterial enzyme to the various bacterial lycopene β -cyclases is so low (ca. 18-25% overall; Cunningham et al., 1994) that there is much uncertainty as to whether they share a common ancestry or, instead, represent an example of convergent evolution.

The need remains for the isolation of eukaryotic and prokaryotic genes and cDNAs encoding polypeptides involved in the carotenoid biosynthetic pathway, including those encoding a lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase. There remains a need for methods to enhance the production of carotenoids, to alter the composition of carotenoids, and to reduce or eliminate carotenoid production. There also remains a need in the art for methods for screening for genes and cDNAs encoding enzymes of carotenoid biosynthesis and metabolism.

SUMMARY OF THE INVENTION

20

5

10

15

Accordingly, a first object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes involved in carotenoid biosynthesis; in particular, lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase.

A second object of this invention is to provide purified and/or isolated nucleic acids which encode enzymes which produce novel or uncommon carotenoids.

25

A third object of the present invention is to provide vectors containing said genes.

A fourth object of the present invention is to provide hosts transformed with said vectors.

Another object of the present invention is to provide hosts which accumulate novel or uncommon carotenoids or which accumulate greater amounts of specific or total carotenoids.

30

Another object of the present invention is to provide hosts with inhibited and/or altered carotenoid production.

WO 99/63055

Another object of this invention is to secure the expression of eukaryotic carotenoid-related genes in a recombinant prokaryotic host.

Yet another object of the present invention is to provide a method for screening for eukaryotic and prokaryotic genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

An additional object of the invention is to provide a method for manipulating carotenoid biosynthesis in photosynthetic organisms by inhibiting the synthesis of certain enzymatic products to cause accumulation of precursor compounds.

Another object of the invention is to provide modified lycopene ϵ -cyclase, IPP isomerase and β -carotene hydroxylase.

These and other objects of the present invention have been realized by the present inventors as described below.

A subject of the present invention is an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21 or 23-27.

The invention also includes vectors which comprise any of the nucleic acid sequences listed above, and host cells transformed with such vectors.

Another subject of the present invention is a method of producing or enhancing the production of a carotenoid in a host cell, comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

Yet another subject of the present invention is a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

5

10

15

20

25

PCT/US99/12121

WO 99/63055

5

10

15

20

25

30

The present invention also includes a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Also included is a method of expressing, in a host cell, a heterologous nucleic acid sequence which encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity in the host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising the heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence.

Another subject of the present invention is a method for screening for genes and cDNAs which encode enzymes involved in carotenoid biosynthesis and metabolism.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

Figure 1 is a schematic representation of the putative pathway of β -carotene biosynthesis in cyanobacteria, algae and plants. The enzymes catalyzing various steps are indicated at the left. Target sites of the bleaching herbicides NFZ and MPTA are also indicated at the left. Abbreviations: DMAPP, dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; GPP, geranyl pyrophosphate; IPP, isopentenyl pyrophosphate; LCY, lycopene cyclase; MVA, mevalonic acid; MPTA, 2-(4-methylphenoxy)triethylamine hydrochloride; NFZ, norflurazon; PDS, phytoene desaturase; PSY, phytoene synthase; ZDS, ζ -carotene desaturase; PPPP, prephytoene pyrophosphate.

Figure 2 depicts possible routes of synthesis of cyclic carotenoids and common plant and algal xanthophylls (oxycarotenolds) from neurosporene. Demonstrated activities of the β - and ϵ -cyclase enzymes of A. thaliana are indicated by bold arrows labelled with β or ϵ respectively. A bar below the arrow leading to ϵ -carotene indicates that the enzymatic

activity was examined but no product was detected. The steps marked by an arrow with a dotted line have not been specifically examined. Conventional numbering of the carbon atoms is given for neurosporene and α -carotene. Inverted triangles (∇) mark positions of the double bonds introduced as a consequence of the desaturation reactions.

Figure 3 depicts the carotene endgroups which are found in plants.

Figure 4 is a DNA sequence and the predicted amino acid sequence of a lycopene ϵ -cyclase cDNA isolated from A. thaliana (SEQ ID NOS: 1 and 2). These sequences were deposited under Genbank accession number U50738. This cDNA is incorporated into the plasmid pATeps.

Figure 5 is a DNA sequence encoding the β -carotene hydroxylase isolated from A. thaliana (SEQ ID NO: 3). This cDNA is incorporated into the plasmid pATOHB.

Figure 6 is an alignment of the predicted amino acid sequences of A. thaliana β-carotene hydroxylase (SEQ ID NO: 4) with those of the bacterial β-carotene hydroxylase enzymes from Alicalgenes sp. (SEQ ID NO: 5) (Genbank D58422), Erwinia herbicola Eho10 (SEQ ID NO.: 6) (GenBank M872280), Erwinia uredovora (SEQ ID NO.: 7) (GenBank D90087) and Agrobacterium aurianticum (SEQ ID NO.: 8) (GenBank D58420). A consensus sequence is also shown. All five genes are identical where a capital letter appears in the consensus. A lowercase letter indicates that three of five, including A. thaliana, have the identical residue. TM; transmembrane.

Figure 7 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from A. thaliana (SEQ ID NO: 9). This cDNA is incorporated into the plasmid pATDP5.

Figure 8 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from A. thaliana (SEQ ID NO: 10). This cDNA is incorporated into the plasmid pATDP7.

Figure 9 is a DNA sequence of a cDNA encoding an IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 11). This cDNA is incorporated into the plasmid pHP04.

Figure 10 is a DNA sequence of a second cDNA encoding another IPP isomerase isolated from *Haematococcus pluvialis* (SEQ ID NO: 12). This cDNA is incorporated into the plasmid pHP05.

Figure 11 is an alignment of the amino acid sequences predicted by IPP isomerase cDNAs isolated from A. thaliana (SEQ ID NO.: 16 and 18), H. pluvialis (SEQ ID NOS.: 14

5

10

15

20

25

and 15), Clarkia breweri (SEQ ID NO.: 17) (See, Blanc & Pichersky, Plant Physiol. (1995) 108:855; Genbank accession no. X82627) and Saccharomyces cerevisiae (SEQ ID NO.: 19) (Genbank accession no. J05090).

Figure 12 is a DNA sequence of the cDNA encoding an IPP isomerase isolated from *Tagetes erecta* (marigold; SEQ ID NO: 13). This cDNA is incorporated into the plasmid pPMDP1. xxx's denote a region not originally sequenced. Figure 21A shows the complete marigold sequence.

Figure 13 is an alignment of the consensus sequence of four plant β -cyclases (SEQ ID NO.: 20) with the A. thaliana lycopene ϵ -cyclase (SEQ ID NO.: 21). A capital letter in the plant β consensus is used where all four β -cyclase genes predict the same amino acid residue in this position. A small letter indicates that an identical residue was found in three of the four. Dashes indicate that the amino acid residue was not conserved and dots in the sequence denote a gap. A consensus for the aligned sequences is given, in capital letters below the alignment, where the β - and ϵ -cyclases have the same amino acid residue. Arrows indicate some of the conserved amino acids that will be used as junction sites for construction of chimeric cyclases with novel enzymatic activities. Several regions of interest including a sequence signature indicative of a dinucleotide-binding motif and two predicted transmembrane (TM) helical regions are indicated below the alignment and are underlined.

Figure 14 shows the nucleotide (SEQ ID NO:22) and amino acid sequences (SEQ ID NO:23) of the *Adonis palaestina* (pheasant's eye) ϵ -cyclase cDNA #5.

Figure 15A shows the nucleotide (SEQ ID NO:24) and amino acid sequences (SEQ ID NO:25) of a potato ε-cyclase cDNA. Figure 15B shows the amino acid sequence (SEQ ID NO:26) of a chimeric lettuce/potato lycopene ε-cyclase. Amino acids in lower case are from the lettuce cDNA and those in upper case are from the potato cDNA. The product of this chimeric cDNA has e-cyclase activity and converts lycopene to the monocyclic δ-carotene.

Figure 16 shows a comparison between the amino acid sequences of the *Arabidopsis* ϵ -cyclase (SEQ ID NO:27) and the potato ϵ -cyclase (SEQ ID NO:25).

Figure 17A shows the nucleotide sequence of the *Adonis palaestina* Ipi1 (SEQ ID NO:28) and Figure 17B shows the nucleotide sequence of the *Adonis palaestina* Ipi2 (SEQ ID NO: 29).

5

10

15

20

25

Figure 18A shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi1 (SEQ ID NO:11) and Figure 18B shows the nucleotide sequence of the *Haematoccus pluvialis* Ipi2 (SEQ ID NO:30).

Figure 19A shows the nucleotide sequence of the Lactuca sativa (romaine lettuce)

Ipi1 (SEQ ID NO:31) and Figure 19B shows the nucleotide sequence of the Lactuca sativa

Ipi2 (SEQ ID NO: 32).

Figure 20 shows the nucleotide sequence of the *Chlamydomonas reinhardtii* Ipi1 (SEQ ID NO:33).

Figure 21A shows the nucleotide sequence of the *Tagetes erecta* (marigold) Ipi1 (SEQ ID NO:34) and Figure 21B shows the nucleotide sequence of the *Oryza sativa* (rice) Ipi1 (SEQ ID NO:35).

Figure 22 shows a amino acid sequence alignment of various plant and green algal isopentenyl isomerases (IPI) (SEQ ID NOS:16, 36-45).

Figure 23 shows a comparison between Adonis palaestina ϵ -cyclase cDNA #3 and cDNA #5 nucleotide sequences.

Figure 24 shows a comparison between *Adonis palaestina* ε-cyclase cDNA #3 and cDNA #5 predicted amino acid sequences.

Figure 25 shows a sequence alignment of various plant β - and ϵ -cyclases. Those sequences outlined in grey denote identical sequences among the ϵ -cyclases. Those sequences outlined in black denote identical sequences among both the β - and ϵ -cyclases.

Figure 26 shows a sequence alignment of the plant ϵ -cyclases from Figure 25. Those sequences outlined in black denote identical sequences among the ϵ -cyclases.

Figure 27 is a dendrogram or "tree" illustrating the degree of amino acid sequence similarity for various lycopene β - and ϵ -cyclases.

Figure 28 shows a comparison between Arabidopsis ϵ -cyclase and lettuce ϵ -cyclase predicted amino acid sequences.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention includes an isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity and having the amino acid sequence of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Nucleic acids encoding lycopene ϵ -cyclase, β -carotene hydroxylase and IPP

5

10

15

20

25

PCT/US99/12121

ون مو

WO 99/63055

5

10

15

20

25

30

isomerases have been isolated from several genetically distant sources.

The present inventors have isolated nucleic acids encoding the enzyme IPP isomerase, which catalyzes the reversible conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP). IPP isomerase cDNAs were isolated from the plants A. thaliana, Tagetes erecta (marigold), Adonis palaestina (pheasant's eye), Lactuca sativa (romaine lettuce) and from the green algae H. pluvialis and Chlamydomonas reinhardtii. Alignments of the amino acid sequences predicted by some of these cDNAs are shown in Figures 12 and 22. Plasmids containing some of these cDNAs were deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession numbers 98000 (pHP05 - H. pluvialis); 98001 (pMDP1 - marigold); 98002 (pATDP7 - A. thaliana) and 98004 (pHP04 - H. pluvialis).

The present inventors have also isolated nucleic acids encoding the enzyme β -carotene hydroxylase, which is responsible for hydroxylating the β -endgroup in carotenoids. The nucleic acid of the present invention is shown in SEQ ID NO: 3 and Figure 5. The full length cDNA product hydroxylates both end groups of β -carotene as do products of cDNAs which encode proteins truncated by up to 50 amino acids from the N-terminus. Products of genes which encode proteins truncated between about 60-110 amino acids from the N-terminus preferentially hydroxylate only one ring. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98003 (pATOHB - A. thaliana).

The present inventors have also isolated nucleic acids encoding the enzyme lycopene ϵ -cyclase, which is responsible for the formation of ϵ -endgroups in carotenoids. The A. thaliane ϵ -cyclase adds an ϵ ring to only one end of the symmetrical lycopene while the related β -cyclase adds a ring at both ends. The A. thaliana cDNA of the present invention is shown in Figure 4 and SEQ ID NO: 1. A plasmid containing this gene was deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville MD 20852 on March 4, 1996 under ATCC accession number 98005 (pATeps - A. thaliana).

In addition, lycopene ϵ -cyclases have been identified in lettuce and in *Adonis* palaestina (cDNA #5) which encode enzymes that convert lycopene to the bicyclic ϵ -carotene (ϵ , ϵ -carotene). An additional cDNA from *Adonis palaestina* (cDNA #3) encodes a lycopene ϵ -cyclase which converts lycopene into δ -carotene (ϵ , ψ -carotene) and differs from the lycopene ϵ -cyclase which forms bicyclic ϵ -carotene (ϵ , ϵ -carotene) by only 5 amino acids.

10

15

20

25

30

One or more of these amino acids may be modified by alteration of the nucleotide sequence in the #5 cDNA to obtain an enzyme which forms the bicyclic ϵ, ϵ -carotene. The sequences of the *Adonis palaestina* and *Arabidopsis thaliana* ϵ -cyclases have about 70% nucleotide identity and about 72% amino acid identity.

Initial experiments by the inventors with chimeric genes indicated that the part of the ϵ -cyclase which is responsible for adding 2ϵ rings to form ϵ, ϵ -carotene is the carboxy terminal portion of the gene. The lettuce ϵ -cyclase adds two ϵ rings to form ϵ, ϵ -carotene. A DNA encoding a partial potato ϵ -cyclase (missing its amino terminal portion), when combined with an amino terminal region from the lettuce ϵ -cyclase gene, produces a monocyclic δ -carotene (ϵ, ψ -carotene). With the discovery of the differences between the Adonis palaestina clone #3 and clone #5, the specific amino acids responsible for the addition of an extra ϵ ring have been identified (Figure 24). Specifically, amino acid 55 is Thr in clone #3 and Ser in clone #5, amino acid 210 is Asn in clone #3 and Asp in clone #5, amino acid 231 is Asp in clone #3 and Glu in clone #5, amino acid 352 is Ile in clone #3 and Val in clone #5, and amino acid 524 is Lys in clone #3 and Arg in clone #5. It can be appreciated that these changes are quite conservative, as only one change, at amino acid 210, changes the charge of the protein.

Thus, it is clear that the nucleic acids of the invention encoding the enzymes as presently disclosed may be altered to increase a particularly desirable property of the enzyme, to change a property of the enzyme, or to diminish an undesirable property of the enzyme. Such modifications can be by deletion, substitution, or insertion of one or more amino acids, and can be performed by routine enzymatic manipulation of the nucleic acid encoding the enzyme (such as by restriction enzyme digestion, removal of nucleotides by mung bean nuclease or *Bal31*, insertion of nucleotides by Klenow fragment, and by religation of the ends), by site-directed mutagenesis, or may be accidental, such as by low fidelity PCR or those obtained through mutations in hosts that are producers of the enzymes. These techniques as well as other suitable techniques are well known in the art.

Mutations can be made in the nucleic acids of the invention such that a particular codon is changed to a codon which codes for a different amino acid. Such a mutation is generally made by making the fewest nucleotide changes possible. A substitution mutation of this sort can be made to change an amino acid in the resulting protein in a non-conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping

10

15

20

25

30 .

of amino acids having a particular size or characteristic to an amino acid belonging to another grouping) or in a conservative manner (i.e., by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to the same grouping). Such a conservative change generally leads to less change in the structure and function of the resulting protein. A non-conservative change is more likely to alter the structure, activity or function of the resulting protein. The present invention should be considered to include sequences containing conservative changes which do not significantly alter the activity or binding characteristics of the resulting protein.

The following is one example of various groupings of amino acids:

Amino acids with nonpolar R groups: Alanine, Valine, Leucine, Isoleucine, Proline, Phenylalanine, Tryptophan and Methionine.

Amino acids with uncharged polar R groups: Glycine, Serine, Threonine, Cysteine, Tyrosine, Asparagine and Glutamine.

Amino acids with charged polar R groups (negatively charged at Ph 6.0): Aspartic acid and Glutamic acid.

Basic amino acids (positively charged at pH 6.0): Lysine, Arginine and Histidine.

Another grouping may be those amino acids with phenyl groups: Phenylalanine, Tryptophan and Tyrosine.

Another grouping may be according to molecular weight (i.e., size of R groups). Particularly preferred substitutions are:

- Lys for Arg and vice versa such that a positive charge may be maintained;
- Glu for Asp and vice versa such that a negative charge may be maintained;
- Ser for Thr such that a free -OH can be maintained; and
- Gln for Asn such that a free NH₂ can be maintained.

Amino acid substitutions may also be introduced to substitute an amino acid with a particularly preferable property. For example, a Cys may be introduced to provide a potential site for disulfide bridges with another Cys. A His may be introduced as a particularly "catalytic" site (i.e., His can act as an acid or base and is the most common amino acid in biochemical catalysis). Pro may be introduced because of its particularly planar structure, which induces β -turns in the protein's structure.

It is clear that certain modifications of SEQ ID NOS: 2, 4, 14-21, 23 or 25-27 can take place without destroying the activity of the enzyme. It is noted especially that truncated

10

15

20

25

30

versions of the nucleic acids of the invention are functional. For example, several amino acids (from 1 to about 120) can be deleted from the N-terminus of the lycopene €-cyclases of the invention, and a functional protein can still be produced. This fact is made especially clear from Figure 25, which shows a sequence alignment of several plant €-cyclases. As can be seen from Figure 25, there is an enormous amount of sequence disparity between amino acid sequences 2 to about 50-70 (depending on the particular sequence, since gaps are present). There is less, but also a substantial amount of, sequence dissimilarity between about 50-70 to about 90-120 (depending on the particular sequence). Thereafter, the sequences are fairly conserved, except for small pockets of dissimilarity between about 275-295 to about 285-305 (depending on the particular sequence), and between about 395-415 to about 410-430 (depending on the particular sequence).

The present inventors have found that the amount of the 5' region present in the nucleic acids of the invention can alter the activity of the enzyme. Instead of diminishing activity, truncating the 5' region of the nucleic acids of the invention may result in an enzyme with a different specificity. Thus, the present invention relates to nucleic acids and enzymes encoded thereby which are truncated to within 0-50, preferably 0-25, codons of the 5' initiation codon of their prokaryotic counterparts as determined by alignment maps as discussed below.

For example, when the cDNA encoding A. thaliana β -carotene hydroxylase was truncated, the resulting enzyme catalyzed the formation of β -cryptoxanthin as the major product and zeaxanthin as minor product; in contrast to its normal production of zeaxanthin.

The present invention is intended to include those nucleic acid and amino acid sequences in which substitutions, deletions, additions or other modifications have taken place, as compared to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, without destroying the activity of the enzyme. Preferably, the substitutions, deletions, additions or other modifications take place at the 5' end, or any other of those positions which already show dissimilarity between any of the presently disclosed amino acid sequences (see also Figure 25) or other amino acid sequences which are known in the art and which encode the same enzyme (i.e., lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase).

In each case, nucleic acid and amino acid sequence similarity and identity is measured using sequence analysis software, for example, the Sequence Analysis, Gap, or BestFit software packages of the Genetics Computer Group (University of Wisconsin Biotechnology

Center, 1710 University Avenue, Madison, Wisconsin 53705), MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wisconsin 53715), or MacVector (Oxford Molecular Group, 2105 S. Bascom Avenue, Suite 200, Campbell, California 95008). Such software uses algorithms to match similar sequences by assigning degrees of identity to various substitutions, deletions, and other modifications, and includes detailed instructions as to useful parameters, etc., such that those of routine skill in the art can easily compare sequence similarities and identities. An example of a useful algorithm in this regard is the algorithm of Needleman and Wunsch, which is used in the Gap program discussed above. This program finds the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. Another useful algorithm is the algorithm of Smith and Waterman, which is used in the BestFit program discussed above. This program creates an optimal alignment of the best segment of similarity between two sequences. Optimal alignments are found by inserting gaps to maximize the number of matches using the local homology algorithm of Smith and Waterman.

15

10

5

Conservative (i.e. similar) substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine and leucine; aspartic acid, glutamic acid, asparagine and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine. Substitutions may also be made on the basis of conserved hydrophobicity or hydrophilicity (see Kyte and Doolittle, *J. Mol. Biol.* 157: 105-132 (1982)), or on the basis of the ability to assume similar polypeptide secondary structure (see Chou and Fasman, *Adv. Enzymol.* 47: 45-148 (1978)).

25

20

If comparison is made between nucleotide sequences, preferably the length of comparison sequences is at least 50 nucleotides, more preferably at least 60 nucleotides, at least 75 nucleotides or at least 100 nucleotides. It is most preferred if comparison is made between the nucleic acid sequences encoding the enzyme coding regions necessary for enzyme activity. If comparison is made between amino acid sequences, preferably the length of comparison is at least 20 amino acids, more preferably at least 30 amino acids, at least 40 amino acids or at least 50 amino acids. It is most preferred if comparison is made between the amino acid sequences in the enzyme coding regions necessary for enzyme activity.

30

It should be appreciated that also within the scope of the present invention are nucleic acid sequences encoding lycopene ϵ -cyclases, IPP isomerases and β -carotene hydroxylases

10

15

20

25

30

which code for enzymes having the same amino acid sequence as SEQ ID NOS: 2, 4, 14-21, 23 or 25-27, but which are degenerate to the nucleic acids specifically disclosed herein.

The amino acid residues described herein are preferred to be in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property of immunoglobulin-binding is retained by the polypeptide.

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook et al, "Molecular Cloning: A Laboratory Manual" (1989); "Current Protocols in Molecular Biology" Volumes I-III [Ausubel, R. M., ed. (1994)]; "Cell Biology: A Laboratory Handbook" Volumes I-III [J. E. Celis, ed. (1994))]; "Current Protocols in Immunology" Volumes I-III [Coligan, J. E., ed. (1994)]; "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" [B.D. Hames & S.J. Higgins eds. (1985)]; "Transcription And Translation" [B.D. Hames & S.J. Higgins, eds. (1984)]; "Animal Cell Culture" [R.I. Freshney, ed. (1986)]; "Immobilized Cells And Enzymes" [IRL Press, (1986)]; B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

The present invention also includes vectors. Suitable vectors according to the present invention comprise a nucleic acid of the invention encoding an enzyme involved in carotenoid biosynthesis or metabolism and a suitable promoter for the host, and can be constructed using techniques well known in the art (for example Sambrook et al., Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York, 1991). Suitable vectors for eukaryotic expression in plants are described in Frey et al., Plant J. (1995) 8(5):693 and Misawa et al, 1994a; incorporated herein by reference. Suitable vectors for prokaryotic expression include pACYC184, pUC119, and pBR322 (available from New England BioLabs, Bevery, MA) and pTrcHis (Invitrogen) and pET28 (Novagen) and derivatives thereof. The vectors of the present invention can additionally contain regulatory elements such as promoters, repressors, selectable markers such as antibiotic resistance genes, etc.

The nucleic acids encoding the carotenoid enzymes as described above, when cloned into a suitable expression vector, can be used to overexpress these enzymes in a plant

10

15

20

25

30

expression system or to inhibit the expression of these enzymes. For example, a vector containing the gene encoding lycopene ϵ -cyclase can be used to increase the amount of α -carotene and carotenoids derived from α -carotene (such as lutein and α -cryptoxanthin) in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism.

Therefore, the present invention includes a method of producing or enhancing the production of a carotenoid in a host cell, relative to an untransformed host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence to produce the protein.

The present invention also includes a method of modifying the production of carotenoids in a host cell, the method comprising inserting into the host cell a vector comprising a heterologous nucleic acid sequence which produces an RNA and/or encodes for a protein which modifies lycopene ϵ -cyclase, IPP isomerase or β -carotene hydroxylase enzyme activity, relative to an untransformed host cell, wherein the heterologous nucleic acid sequence is operably linked to a promoter; and expressing the heterologous nucleic acid sequence in the host cell to modify the production of the carotenoids in the host cell, relative to the untransformed host cell.

The term "modifying the production" means that the amount of carotenoids produced in the host cell can be enhanced, reduced, or left the same, as compared to the untransformed host cell. In accordance with one embodiment of the present invention, the make-up of the carotenoids (i.e., the specific carotenoids produced) is changed vis a vis each other, and this change in make-up may result in either a net gain, net loss, or no net change in the total amount of carotenoids produced in the cell. In accordance with another embodiment of the present invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) is enhanced by the insertion of an enzyme-encoding nucleic acid of the invention. In yet another embodiment of the invention, the production or the biochemical activity of the carotenoids (or the enzymes which catalyze their formation) may be reduced or inhibited by a number of different approaches available to those skilled in the art, including but not limited to such methodologies or approaches as anti-sense (e.g.,

WO 99/63055 PCT/US99/12121

Gray et al (1992) Plant Mol. Biol. 19:69-87), ribozymes (e.g., Wegener et al (1994) Mol. Gen. Genet. 245:465-470), co-suppression (e.g., Fray and Grierson (1993) Plant Mol. Biol. 22:589-602), targeted disruption of the gene (e.g., Schaefer et al. (1997) Plant J. 11:1195-1206), intracellular antibodies (e.g., Rondon and Marasco (1997) Ann. Rev. Microbiol. 51:257-283) or whatever other approaches rely on the knowledge or availability of the nucleic acid or amino acid sequences of the invention and/or portions thereof, to thereby reduce accumulation of carotenoids with ϵ rings and compounds derived from them (for ϵ -cyclase inhibition), or carotenoids with hydroxylated β rings and compounds derived from them (for β -hydroxylase inhibition), or, in the case if IPP isomerase, accumulation of any isoprenoid compound.

Preferably, at least a portion of the nucleic acid sequences used in the methods, vectors and host cells of the invention codes for an enzyme having an amino acid sequence which is at least 85% identical, preferably at least 90%, at least 95% or completely identical to SEQ ID NOS: 2, 4, 14-21, 23 or 25-27. Sequence identity is determined as noted above. Preferably, sequence additions, deletions or other modifications are made as indicated above, so as to not affect the function of the particular enzyme.

In a preferred embodiment, vectors are manufactured which contain a DNA encoding a eukaryotic IPP isomerase upstream of a DNA encoding a second eukaryotic carotenoid enzyme. The inventors have discovered that inclusion of an IPP isomerase gene increases the supply of substrate for the carotenoid pathway; thereby enhancing the production of carotenoid endproducts, as compared to a host cell which is not transformed with such a vector. This is apparent from the much deeper pigmentation in carotenoid-accumulating colonies of *E. coli* which also contain one of the aforementioned IPP isomerase genes when compared to colonies that lack this additional IPP isomerase gene. Similarly, a vector comprising an IPP isomerase gene can be used to enhance production of any secondary metabolite of dimethylallyl pyrophosphate and/or isopentenyl pyrophosphate (such as isoprenoids, steroids, carotenoids, etc.). The term "isoprenoid" is intended to mean any member of the class of naturally occurring compounds whose carbon skeletons are composed, in part or entirely, of isopentyl C₃ units. Preferably, the carbon skeleton is of an essential oil, a fragrance, a rubber, a carotenoid, or a therapeutic compound, such as paclitaxel.

A vector containing the cDNA encoding a lycopene ϵ -cyclase of the invention, preferably the lettuce lycopene ϵ -cyclase or Adonis ϵ -cyclase #5, can be used to increase the

5

10

15

20

25

30

10

15

20

25

30

amount of bicyclic ε-carotene in an organism and thereby alter the nutritional value, pharmacology and visual appearance value of the organism. In addition, the transformed organism can be used in the formulation of therapeutic agents, for example in the treatment of cancer (see Mayne et al (1996) FASEB J. 10:690-701; Tsushima et al (1995) Biol. Pharm. Bull. 18:227-233).

An antisense strand of a nucleic acid of the invention can be inserted into a vector. For example, the lycopene ϵ -cyclase gene can be inserted into a vector and incorporated into the genomic DNA of a host, thereby inhibiting the synthesis of ϵ , β -carotenoids (lutein and α -carotene) and enhancing the synthesis of β , β -carotenoids (zeaxanthin and β -carotene).

The present invention also relates to novel enzymes which are encoded by the amino acid sequences of the invention, or portions thereof.

The present invention also relates to novel enzymes which can transform known carotenoids into novel or uncommon products. Currently ϵ -carotene (see Figure 2) and γ -carotene are commonly produced only in minor amounts. As described below, an enzyme can be produced which transforms lycopene to γ -carotene and lycopene to ϵ -carotene. With these products in hand, bulk synthesis of other carotenoids derived from them are possible. For example, ϵ -carotene can be hydroxylated to form lactucaxanthin, an isomer of lutein (one ϵ and one β ring) and zeaxanthin (two β rings) where both endgroups are, instead, ϵ rings.

In addition to novel enzymes produced by truncating the 5' region of known enzymes, as discussed above, novel enzymes which can participate in the formation of unusual carotenoids can be formed by replacing portions of one gene with an analogous sequence from a structurally related gene. For example, β -cyclase and ϵ -cyclase are structurally related (see Figure 13). By replacing a portion of β -lycopene cyclase with the analogous portion of ϵ -cyclase, an enzyme which produces γ -carotene will be produced (one β endgroup). Further, by replacing a portion of the lycopene ϵ -cyclase with the analogous portion of β -cyclase, an enzyme which produces ϵ -carotene will be produced (with some exceptions, such as the lettuce ϵ -cyclase, plant ϵ -cyclases normally produce a compound with one ϵ -endgroup, δ -carotene). Similarly, β -hydroxylase could be modified to produce enzymes of novel function by creation of hybrids with ϵ -hydroxylase.

Host systems according to the present invention can comprise any organism that already produces carotenoids or which has been genetically modified to produce carotenoids.

10

15

20

25

30

The IPP isomerase genes are more broadly applicable for enhancing production of any product dependent on DMAPP and/or IPP as a precursor.

Organisms which already produce carotenoids include plants, algae, some yeasts, fungi and cyanobacteria and other photosynthetic bacteria. Transformation of these hosts with vectors according to the present invention can be done using standard techniques such as those described in Misawa et al., (1990) supra; Hundle et al., (1993) supra; Hundle et al., (1991) supra; Misawa et al., (1991) supra; Sandmann et al., supra; and Schnurr et al., supra.

Transgenic organisms can be constructed which include the nucleic acid sequences of the present invention (Bird et al, 1991; Bramley et al, 1992; Misawa et al, 1994a; Misawa et al, 1994b; Cunningham et al, 1993). The incorporation of these sequences can allow the controlling of carotenoid biosynthesis, content, or composition in the host cell. These transgenic systems can be constructed to incorporate sequences which allow for the overexpression of the nucleic acids of the present invention. Transgenic systems can also be constructed containing antisense expression of the nucleic acid sequences of the present invention. Such antisense expression would result in the accumulation of the substrates of the substrates of the enzyme encoded by the sense strand.

A method for screening for eukaryotic genes which encode enzymes involved in carotenoid biosynthesis comprises transforming a prokaryotic host with a nucleic acid which may contain a eukaryotic or prokaryotic carotenoid biosynthetic gene; culturing said transformed host to obtain colonies; and screening for colonies exhibiting a different color than colonies of the untransformed host.

Suitable hosts include E. coli, cyanobacteria such as Synechococcus and Synechocystis, alga and plant cells. E. coli are preferred.

In a preferred embodiment, the above "color complementation" screening protocol can be enhanced by using mutants which are either (1) deficient in at least one carotenoid biosynthetic gene or (2) overexpress at least one carotenoid biosynthetic gene. In either case, such mutants will accumulate carotenoid precursors.

Prokaryotic and eukaryotic DNA or cDNA libraries can be screened in total for the presence of genes of carotenoid biosynthesis, metabolism and degradation. Preferred organisms to be screened include photosynthetic organisms.

10

15

20

25

30

E. coli can be transformed with these eukaryotic cDNA libraries using conventional methods such as those described in Sambrook et al, 1989 and according to protocols described by the vendors of the cloning vectors.

For example, the cDNA libraries in bacteriophage vectors such as lambdaZAP (Stratagene) or lambda ZIPLOX (Gibco BRL) can be excised en masse and used to transform *E.coli*.

Transformed *E. coli* can be cultured using conventional techniques. The culture broth preferably contains antibiotics to select and maintain plasmids. Suitable antibiotics include penicillin, ampicillin, chloramphenicol, etc. Culturing is typically conducted at 15-40°C, preferably at room temperature or slightly above (18-28°C), for 12 hours to 7 days.

Cultures are plated and the plates are screened visually for colonies with a different color than the colonies of the host $E.\ coli$ transformed with the empty plasmid cloning vector. For example, $E.\ coli$ transformed with the plasmid, pAC-BETA (described below), produce yellow colonies that accumulate β -carotene. After transformation with a cDNA library, colonies which contain a different hue than those formed by $E.\ coli/pAC$ -BETA would be expected to contain enzymes which modify the structure or accumulation of β -carotene. Similar $E.\ coli$ strains can be engineered which accumulate earlier products in carotenoid biosynthesis, such as lycopene, γ -carotene, etc.

Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.

EXAMPLE

I. <u>Isolation of β-carotene hydroxylase</u>

Plasmid Construction

An 8.6kb BgIII fragment containing the carotenoid biosynthetic genes of *Erwinia* herbicola was first cloned in the BamHI site of plasmid vector pACYC184 (chloramphenicol resistant), and then a 1.1kb BamHI fragment containing the *E. herbicola* β-carotene hydroxylase (*CrtZ*) was deleted. *E.coli* strains containing the resulting plasmid, pAC-BETA, accumulate β-carotene and form yellow colonies (Cunningham et al., 1994).

A full length cDNA encoding IPP isomerase of *Haematococcus pluvialis* (HP04) was first excised with *BamH*I and *Kpn*I from pBluescript SK-, and then ligated into the

WO 99/63055 PCT/US99/12121

corresponding sites of the pTrcHisA vector with high-level expression from the *trc* promoter (Invitrogen, Inc.). A fragment containing the IPP isomerase and *trc* promoter was subsequently excised with *EcoRV* and *KpnI*, treated with the Klenow fragment of DNA polymerase to produce blunt ends, and ligated in the Klenow-treated *HindIII* site of pAC-BETA. *E.coli* cells transformed with this new plasmid pAC-BETA-04 form orange colonies on LB plates (*vs.* yellow for those containing pAC-BETA) and cultures accumulate substantially more β-carotene (*ca.* two fold) than those that contain pAC-BETA.

Screening of an Arabidopsis cDNA Library

Several λ cDNA expression libraries of *Arabidopsis* were obtained from the *Arabidopsis* Biological Resource Center (Ohio State University, Columbus, OH) (Kieber et al., 1993). The λ cDNA libraries were excised *in vivo* using Stratagene's ExAssist SOLR system to produce a phagemid cDNA library wherein each phagemid contained also a gene conferring resistance to the antibiotic ampicillin.

E.coli strain DH10BZIP was chosen as the host cell for the screening and pigment production, although we have also used TOP10F' and XL1-Blue for this purpose. DH10B cells were transformed with plasmid pAC-BETA-04 and were plated on LB agar plates containing chloramphenicol at 50 µg/ml (from United States Biochemical Corporation). The phagemid Arabidopsis cDNA library was then introduced into DH10B cells already containing pAC-BETA-04. Transformed cells containing both pAC-BETA-04 and Arabidopsis cDNA library phagemids were selected on chloramphenicol plus ampicillin (150 μg/ml) agar plates. Maximum color development occurred after 3 to 7 days incubation at room temperature, and the rare bright yellow colonies were selected from a background of many thousands of orange colonies on each agar plate. Selected colonies were inoculated into 3 ml liquid LB medium containing ampicillin and chloramphenicol, and cultures were incubated at room temperature for 1-2 days, with shaking. Cells were then harvested by centrifugation and extracted with acetone in microfuge tubes. After centrifugation, the pigmented extract was spotted onto silica gel thin-layer chromatography (TLC) plates, and developed with a hexane:ether (1:1, by volume) mobile phases. B-carotene hydroxylaseencoding cDNAs were identified based on the appearance of a yellow pigment that comigrated with zeaxanthin on the TLC plates.

5

10

15

20

25

30

Subcloning and Sequencing

The plasmid containing the β-carotene hydroxylase cDNA was recovered and analyzed by standard procedures (Sambrook et al., 1989). The *Arabidopsis* β-carotene hydroxylase was sequenced completely on both strands on an automatic sequencer (Applied Biosystems, Model 373A, Version 2.0.1S). The cDNA insert of 0.95kb also was excised and ligated into the a pTrcHis vector. A *BgI*II restriction site within the cDNA was used to remove that portion of the cDNA that encodes the predicted polypeptide N terminal sequence region that is not also found in bacterial β-carotene hydroxylases (Figure 6). A BgIII-XhoI fragment was directionally cloned in BamHI-XhoI digested TrcHis vectors.

Pigment Analysis

5

10

15

20

25

30

A single colony was used to inoculate 50 ml of LB containing ampicillin and chloramphenicol in a 250-ml flask. Cultures were incubated at 28°C for 36 hours with gentle shaking, and then harvested at 5000 rpm in an SS-34 rotor. The cells were washed once with distilled H₂O and resuspended with 0.5 ml of water. The extraction procedures and HPLC were essentially as described previously (Cunningham et al, 1994).

II. Isolation and biochemical analysis of an Arabidopsis lycopene ϵ -cyclase Plasmid Construction

Construction of plasmids pAC-LYC, pAC-NEUR, and pAC-ZETA is described in Cunningham et al., (1994). In brief, the appropriate carotenoid biosynthetic genes from *Erwinia herbicola*, *Rhodobacter capsulatus*, and *Synechococcus* sp. strain PCC7942 were cloned in the plasmid vector pACYC184 (New England BioLabs, Beverly, MA). Cultures of *E. coli* containing the plasmids pAC-ZETA, pAC-NEUR, and pAC-LYC, accumulate ζ-carotene, neurosporene, and lycopene, respectively. The plasmid pAC-ZETA was constructed as follows: an 8.6-kb BglII fragment containing the carotenoid biosynthetic genes of *E. herbicola* (GenBank M87280; Hundle et al., 1991) was obtained after partial digestion of plasmid pPL376 (Perry et al., 1986; Tuveson et al., 1986) and cloned in the BamHI site of pACYC184 to give the plasmid pAC-EHER. Deletion of adjacent 0.8- and 1.1-kb BamHI-BamHI fragments (deletion Z in Cunningham et al., 1994), and of a 1.1 kB SalI-SalI fragment (deletion X) served to remove most of the coding regions for the *E. herbicola* β-carotene hydroxylase (crtZ gene) and zeaxanthin glucosyltransferase (crtX gene), respectively. The

resulting plasmid, pAC-BETA, retains functional genes for geranylgeranyl pyrophosphate synthase (crtE), phytoene synthase (crtB), phytoene desaturase (crtI), and lycopene cyclase (crtY). Cells of *E. coli* containing this plasmid form yellow colonies and accumulate β -carotene. A plasmid containing both the lycopene ϵ - and β -cyclase cDNAs of *A. thaliana* was constructed by excising the ϵ -cyclase in clone y2 as a PvuI-PvuII fragment and ligating this piece in the SnaBI site of a plasmid (pSPORT 1 from GIBCO-BRL) that already contained the β -cyclase (Cunningham et al., 1996).

Organisms and Growth Conditions

E. coli strains TOP10 and TOP10 F' (obtained from Invitrogen Corporation, San Diego, CA) and XL1-Blue (Stratagene) were grown in Luria-Bertani (LB) medium (Sambrook et al., 1989) at 37°C in darkness on a platform shaker at 225 cycles per min. Media components were from Difco (yeast extract and tryptone) or Sigma (NaCl). Ampicillin at 150 μg/mL and/or chloramphenicol at 50 μg/mL (both from United States Biochemical Corporation) were used, as appropriate, for selection and maintenance of plasmids.

Mass Excision and Color Complementation Screening of an A. thaliana cDNA Library

A size-fractionated 1-2 kB cDNA library of A. thaliana in lambda ZAPII (Kieber et al., 1993) was obtained from the Arabidopsis Biological Resource Center at The Ohio State University (stock number CD4-14). Other size fractionated libraries were also obtained (stock numbers CD4-13, CD4-15, and CD4-16). An aliquot of each library was treated to cause a mass excision of the cDNAs and thereby produce a phagemid library according to the instructions provided by the supplier of the cloning vector (Stratagene; E. coli strain XL1-Blue and the helper phage R408 were used). The titre of the excised phagemid was determined and the library was introduced into a lycopene-accumulating strain of E. coli TOP10 F' (this strain contained the plasmid pAC-LYC) by incubation of the phagemid with the E. coli cells for 15 min at 37°C. Cells had been grown overnight at 30°C in LB medium supplemented with 2% (w/v) maltose and 10 mM MgSO₄ (final concentration), and harvested in 1.5 ml microfuge tubes at a setting of 3 on an Eppendorf microfuge (5415C) for 10 min. The pellets were resuspended in 10 mM MgSO₄ to a volume equal to one-half that of the

5

10

15

20

25

initial culture volume. Transformants were spread on large (150 mm diameter) LB agar petri plates containing antibiotics to provide for selection of cDNA clones (ampicillin) and maintenance of pAC-LYC (chloramphenicol). Approximately 10,000 colony forming units were spread on each plate. Petri plates were incubated at 37·C for 16 hr and then at room temperature for 2 to 7 days to allow maximum color development. Plates were screened visually with the aid of an illuminated 3x magnifier and a low power stage-dissecting microscope for the rare, pale pinkish-yellow to deep-yellow colonies that could be observed in the background of pink colonies. A colony color of yellow or pinkish-yellow was taken as presumptive evidence of a cyclization activity. These yellow colonies were collected with sterile toothpicks and used to inoculate 3ml of LB medium in culture tubes with overnight growth at 37°C and shaking at 225 cycles/min. Cultures were split into two aliquots in microfuge tubes and harvested by centrifugation at a setting of 5 in an Eppendorf 5415C microfuge. After discarding the liquid, one pellet was frozen for later purification of plasmid DNA. To the second pellet was added 1.5 ml EtOH, and the pellet was resuspended by vortex mixing, and extraction was allowed to proceed in the dark for 15-30 min with occasional remixing. Insoluble materials were pelleted by centrifugation at maximum speed for 10 min in a microfuge. Absorption spectra of the supernatant fluids were recorded from 350-550 nm with a Perkin Elmer lambda six spectrophotometer.

Analysis of isolated clones

20

5

10

15

Eight of the yellow colonies contained β -carotene indicating that a single gene product catalyzes both cyclizations required to form the two β endgroups of the symmetrical β -carotene from the symmetrical precursor lycopene. One of the yellow colonies contained a pigment with the spectrum characteristic of δ -carotene, a monocyclic carotenoid with a single ϵ endgroup. Unlike the β cyclase, this ϵ -cyclase appears unable to carry out a second cyclization at the other end of the molecule.

25

The observation that ϵ -cyclase is unable to form two cyclic ϵ -endgroups (e.g. the bicyclic ϵ -carotene) illuminates the mechanism by which plants can coordinate and control the flow of substrate into carotenoids derived from β -carotene versus those derived from α -carotene and also can prevent the formation of carotenoids with two ϵ endgroups.

30

The availability of the A. thaliana gene encoding the ϵ -cyclase enables the directed manipulation of plant and algal species for modification of carotenoid content and

composition. Through inactivation of the ϵ -cyclase, whether at the gene level by deletion of the gene or by insertional inactivation or by reduction of the amount of enzyme formed (by such as antisense technology), one may increase the formation of β -carotene and other pigments derived from it. Since vitamin A is derived only from carotenoids with β endgroups, an enhancement of the production of β -carotene versus α -carotene may enhance nutritional value of crop plants. Reduction of carotenoids with ϵ -endgroups may also be of value in modifying the color properties of crop plants and specific tissues of these plants. Alternatively, where production of α -carotene, or pigments such as lutein that are derived from α -carotene, is desirable, whether for the color properties, nutritional value or other reason, one may overexpress the ϵ -cyclase or express it in specific tissues. Wherever agronomic value of a crop is related to pigmentation provided by carotenoid pigments the directed manipulation of expression of the ϵ -cyclase gene and/or production of the enzyme may be of commercial value.

The predicted amino acid sequence of the A. thaliana ϵ -cyclase enzyme was determined. A comparison of the amino acid sequences of the β - and ϵ -cyclase enzymes of Arabidopsis thaliana (Fig. 13) as predicted by the DNA sequence of the respective cDNAs (Fig. 4 for the ϵ -cyclase cDNA sequence), indicates that these two enzymes have many regions of sequence similarity, but they are only about 37% identical overall at the amino acid level. The degree of sequence identity at the DNA base level, only about 50%, is sufficiently low such that we and others have been unable to detect this gene by hybridization using the β cyclase as a probe in DNA gel blot experiments.

REFERENCES

Each reference cited in this application and/or listed below is hereby incorporated by reference.

25 Bird et al, 1991 Biotechnology 9, 635-639.

Bishop et al., (1995) FEBS Lett. 367, 158-162.

Bramley, P.M. (1985) Adv. Lipid Res. 21, 243-279.

Bramley, P.M. (1992) Plant J. 2, 343-349.

Britton, G. (1988). Biosynthesis of carotenoids. In Plant Pigments, T.W. Goodwin, ed. (London: Academic Press), pp. 133-182.

30

5

10

15

20

10

15

25

Britton, G. (1979) Z. Naturforsch. Section C Biosci. 34, 979-985.

Britton, G. (1995) UV/Visible spectroscopy. In Carotenoids, Vol. IB: Spectroscopy,

G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 13-62.

Bouvier et al., (1994) Plant J. 6, 45-54.

Cunningham et al., (1985) Photochem. Photobiol. 42: 295-307.

Cunningham et al., (1993) FEBS Lett. 328, 130-138.

Cunningham et al., (1994) Plant Cell 6, 1107-1121.

Cunningham et al., (1996) Plant Cell 8, 1613-1626.

Davies, B.H. (1976). Carotenoids. In Chemistry and Biochemistry of Plant Pigments,

Vol. 2, T.W. Goodwin, ed (New York: Academic Press), pp. 38-165.

Del Sal et al., (1988). Nucl. Acids Res. 16, 9878.

Demmig-Adams & Adams, (1992) Ann. Rev. Plant Physiol. Mol. Biol. 43, 599-626.

Enzell & Back, (1995) Mass spectrometry. In Carotenoids, Vol. IB: Spectroscopy, G.

Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 261-320.

Frank & Cogdell (1993) Photochemistry and function of carotenoids in photosynthesis. In Carotenoids in Photosynthesis. A. Young and G. Britton, eds. (London: Chapman and Hall). pp. 253-326.

Goodwin, T.W. (1980). The Biochemistry of the Carotenoids. 2nd ed, Vol. 1 (London: Chapman and Hall.

20 Horvath et al., (1972) Phytochem. 11, 183-187.

Hugueney et al., (1995) Plant J. 8, 417-424.

Hundle et al., (1991) Photochem. Photobiol. 54, 89-93.

Jensen & Jensen, (1971) Methods Enzymol. 23, 586-602.

Kargl & Quackenbush, (1960) Archives Biochem. Biophys. 88, 59-63.

Kargl et al., (1960) Proc. Am. Hort. Soc. 75, 574-578.

Kieber et al., (1993) Cell 72, 427-441.

Koyama, Y. (1991) J. Photochem. Photobiol., B, 9, 265-80.

Krinsky, N.I. (1987) Medical uses of carotenoids. In Carotenoids, N.I. Krinsky, M.M. Mathews-Roth, and R.F. Taylor, eds. (New York: Plenum), pp. 195-206.

30 Kyte & Doolittle, (1982) J. Mol. Biol. 157, 105-132.

LaRossa & Schloss, (1984) J. Biol. Chem. 259, 8753-8757.

Misawa et al., (1994a) Plant J. 6, 481-489.

÷ 1

Misawa et al., (1994b) J. Biochem, Tokyo, 116, 980-985.

Norris et al., (1995) Plant Cell 7, 2139-2149.

Pecker et al., (1996) Submitted to Plant Mol. Biol.

Perry et al., (1986) J. Bacteriol. 168, 607-612.

Persson & Argos, (1994) J. Mol. Biol. 237, 182-192.

Plumley & Schmidt, (1987) Proc. Nat. Acad. Sci. USA 83, 146-150.

Plumley & Schmidt, (1995) Plant Cell 7, 689-704.

Rossmann et al., (1974) Nature 250, 194-199.

Rock & Zeevaart (1991) Proc. Nat. Acad. Sci. USA 88, 7496-7499.

Rost et al., (1995) Protein Science 4, 521-533.

Sambrook et al., (1989) Molecular Cloning: A Laboratory Manual, 2nd edition (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Sancar, A. (1994) Biochemistry 33, 2-9.

Sander & Schneider, (1991) Proteins 9, 56-68.

Sandmann, G. (1994) Eur. J. Biochem. 223, 7-24.

Scolnik & Bartley, (1995) Plant Physiol. 108, 1342.

Siefermann-Harms, D. (1987) Physiol. Plant. 69, 561-568.

Spurgeon & Porter, (1980). Biosynthesis of carotenoids. In Biochemistry of Isoprenoid Compounds, J.W. Porter, and S.L. Spurgeon, eds. (New York: Wiley), pp. 1-122.

Tomes, M.L. (1963) Bot. Gaz. 124, 180-185.

Tomes, M.L. (1967) Genetics 56, 227-232.

Tuveson et al., (1986) J. Bacteriol. 170, 4675-4680.

Van Beeumen et al., (1991) J. Biol. Chem. 266, 12921-12931.

Weedon & Moss, (1995) Structure and Nomenclature. In Carotenoids, Vol. IB:

25 Spectroscopy, G. Britton, S. Liaaen-Jensen, H.P. Pfander, eds. (Basel: Birkhauser Verlag), pp. 27-70.

Wierenga et al., (1986) J. Mol. Biol. 187, 101-107.

Zechmeister, L. (1962) Cis-Trans Isomeric Carotenoids, Vitamins A and Arylpolyenes. Springer-Verlag, Vienna.

Having now fully described the invention, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention as set forth herein.

5

15

20

30

We claim:

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or 25-27.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- 5. The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
- An isolated and/or purified protein having lycopene ε-cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23 or 25-27.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23 or 25-27.

[received by the International Bureau on 15 November 1999 (15.11.99); original claims 1,2,7 and 8 amended; remaining claims unchanged (1 page)]

- 1. An isolated and/or purified nucleic acid sequence which encodes for a protein having lycopene ϵ -cyclase enzyme activity and has an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
- 5 2. The nucleic acid sequence of claim 1, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.
 - 3. A vector comprising the nucleic acid sequence of claim 1, wherein the nucleic acid sequence is operably linked to a promoter.
 - 4. A host cell which contains the vector of claim 3.
- The host cell of claim 4, wherein the host cell is selected from the group consisting of a bacterial cell, an algal cell, a yeast cell and a plant cell.
 - 6. The host cell of claim 4, wherein the host cell is a photosynthetic cell.
- 7. An isolated and/or purified protein having lycopene ε-cyclase enzyme activity and having an amino acid sequence which is at least 85% identical to one of SEQ ID NOS: 23, 25 or 26.
 - 8. The protein of claim 7, wherein the protein has the amino acid sequence of one of SEQ ID NOS: 23, 25 or 26.

FIG. 1

3
$$3 + \frac{2}{4}$$

$$4 \text{ endgroup}$$

$$8 \text{ cyclase}$$

$$3 + \frac{6}{4}$$

$$8 \text{ endgroup}$$

$$6 \text{ endgroup}$$

#¹2

4/45

FIG.4A

FIG. 4B

FIG. 4

FIG. IIA

FIG.IIB

F1G. 11

FIG. 13A

FIG. 13B

FIG. 13

FIG.14A

FIG. 14B

FIG. 14

FIG. 22A

FIG. 22 B

FIG. 22

FIG. 4A

Arabidopsis thaliana epsilon cyclase:

	acaaaaggaaataattag attcctctttctgcttgctataccttgaca	48
	gaacaacataacaatggtgtaagtcttctc gctgtattcgaaattatttggaggaggaac	108
1	atggagtgtgttggggctaggaatttcgca gcaatggcggtttcaacatttccgtcatgg M E C V G A R N F A A M A V S T F P S W	168
21	agttgtcgaaggaaatttccagtggctaag agatacagctataggaatattcgcttcggt S C R R K F P V V K R Y S Y R N I R F G	228
41	ttgtgtagtgtcagagctagcggcggcgga agttccggtagtgagagttgtgtagcggtg L C S V R A S G G G .S S G S K S C V A V	288
61	agagaagatttcgctgacgaagaagatttt gcgaaagctggcggttctgagattctattt R S D F A D E E D F V E A G G S R I L F	348
81	gttcaaatgcagcagaacaaagatatggat gaacagtctaagcttgttgataagttgcct V Q M Q Q M K D M D S Q S K L V D K L P	408
01	cctatatcaactggtgatggtgctttggat catgtggttactggctgtggtcctgctggt P I S I G D G A L D K V V I G C G P A G	468
21	ttagccttggctgcagaatcagctaagctt ggattaaaagttggactcattggtccagat L A L A A K S A K L G L K V G L I G P D	528
141	cttccttttactaacaattacggtgtttgg gaagatgaattcaatgatcttgggctgcaa L P F T M M Y G V M K D K F N D L G L G	588
161	aaatgtattgagcatgtttggagagagact attgcgcacctggatgatgacaagcctatt K C I K K V W R S T I V Y L D D K P I	648
181	accattggccgtgcttatggaagagttagt cgacgtttgctccatgaggagcttttgagg T I G R A Y G R V S R R L L X E E L L R	708
201	aggtgtgtcgagtcaggtgtctcgtacctt agctcgaaagttgacagcataacagaagct R C V K S G V S Y L S S K V D S I T E A	768
221	tgtgatggccttagacttgttgcttgtgac gacaataacgtcattccctgcaggcttgcc S D G L X L V A C D D M M V I P C X L A	828
241	actgttgcttctggagcagcttcgggaaag ctcttgcaatacgaagttggtggacctaga T V A S G A A S G K L L Q Y X V G G P R	888
	atctatacacaactacatacaacaaaataatcaatataatca	948

FIG. 4B

201	V (٠	٧	Ų	1	А	Y	G	٧	X	V	X	V	X	N	5	Р	Y	D	Р	
281	gato D	caa Q	atg M	gtt V	ttc P	ato M	gat D	tac Y	caga R	agat D	tat Y	act T	aac M	gag X	aaa X	gtt V	.cgg	jago S	tta L	gaa X	1008
301	gcto A	gag K	tat Y	.cca P	acg T	rttt F	cto L	rtac Y	gcc A	catg M	cct P	atg M	jaca T	aag K	tca S	aga R	ctc	ttc F	ttc(gag K	1068
321	gaga K	aca T	tgt C	ttg L	gcc A	tca S	aaa K	igat D	gto V	atg M	ccc P	ttt F	gat D	ttg L	cta L	aaa K	acg T	aag K	ctca L	atg M	1128
341	ttaa I	aga P	tta V	gac G	aca G	cto S	gga L	att P	cga N	att T	cta X	iaag Q	act K	tac N	gaa L	gag A	gag F	tgg G	tcc1 A	tat A	1188
361	atco I	cca P	gtt V	ggt G	ggt G	tcc S	ttg L	KCZ P	aaac M	cacc T	gaa X	icaa Q	aag K	aat N	ctc L	gcc A	ttt F	ggt G	gcto A	gcc A	1248
381	gcta A	agc S	atg M	gta V	cat M	.ccc	:gca A	aca T	iggc G	tat Y	tca S	gtt V	gtg V	aga R	tct S	ttg L	tct S	gaa X	gcto A	cca P	1308
401	aaac K	at Y	gca A	tca \$	gtc V	atc I	:gca A	gag K	jata I	icta L	aga R	gaa E	gag E	act T	acc T	aaa K	cag Q	att I	aaca N	agt S	1368
421	aata M	itt I	tca S	aga R	caa Q	gct A	tag W	gat D	act T	tta L	tgg W	icca P	cca P	gaa E	agg R	aaa X	aga R	cag. Q	agaç R	gca A	1428
441	ttc1 F	tt F	ctc L	ttt F	ggt G	ctt L	.gca A	ctc L	aga I	gtt V	caa Q	ttc F	gat D	acc T	gaa X	ggc G	att I	aga R	agct S	tc F	1488
461	ttco F	gt R	act T	ttc P	ttc F	cgc R	ctt L	CCa P	aaa K	itgg W	atg M	rtgg W	caa Q	999 G	ttt F	cta L	gga G	tca S	acat T	ta L	1548
481	acat T	ca S	gga G	gat D	ctc L	gtt V	ctc	ttt F	gct A	tta L	tac Y	atg M	tto P	gtc V	att I	tca S	cca P	aac M	aatt M	tg L	1608
501	agaa R	aaa K	ggt G	ctc L	att I	aat N	.cat W	ctc L	ato I	tct S	gat D	cca P	aco T	gga G	gca A	acc T	atg M	ata I	aaaa K	acc T	1668
521	tato Y		aaa K		tga	ttt	act	tac	caa	ctc	tta	ggt	ttg	tgt	ata	tat	atg	ccg	attt	at	1728
J.	·			-	.					.	_1.1										1700
	ctg																		_		1788
	agaa	atc	taa	gga	gtg	atc	gaa	atg	gag	acg	gaa	acg	aaa	aga	aaa	aaa	tca	gtc	tttg	rtt	1848
	ccgt	.gg	cta	gtg																	1868

FIG. 5

gctctttctc ctcctcctct accgatttcc gactccgcct cccgaaatcc 51 ttatccggat tctctccgtc tcttcgattt aaacgctttt ctgtctgtta cgtcgtcgaa gaacggagac agaattctcc gattgagaac gatgagagac 101 cggagagcac gagctccaca aacgctatag acgctgagta tctggcgttg 151 201 cgtttggcgg agaaattgga gaggaagaaa tcggagaggt ccacttatct 251 aatcgctgct atgttgtcga gctttggtat cacttctatg gctgttatgg 301 ctgtttacta cagattctct tggcaaatgg agggaggtga gatctcaatg 351 ttggaaatgt ttggtacatt tgctctctct gttggtgctg ctgttggtat ggaattctgg gcaagatggg ctcatagagc tctgtggcac gcttctctat 401 451 ggaatatgca tgagtcacat cacaaaccaa gagaaggacc gtttgagcta 501 aacgatgttt ttgctatagt gaacgctggt ccagcgattg gtctcctctc 551 ttatggattc ttcaataaag gactcgttcc tggtctctgc tttggcgccg ggttaggcat aacggtgttt ggaatcgcct acatgtttgt ccacgatggt 601 651 ctcgtgcaca agcgtttccc tgtaggtccc atcgccgacg tcccttacct 701 ccgaaaggtc gccgccgctc accagctaca tcacacagac aagttcaatg 751 gtgtaccata tggactgttt cttggaccca aggaattgga agaagttgga 801 ggaaatgaag agttagataa ggagattagt cggagaatca aatcatacaa 851 aaaggcctcg ggctccgggt cgagttcgag ttcttgactt taaacaagtt 901 ttaaatccca aattctttt ttgtcttctg tcattatgat catcttaaga 951 cggtct

±2

8745

FIG. 7

ccacgggtcc gcctccccgt ttttttccga tccgatctcc ggtgccgagg 1 actcagctgt ttgttcgcgc tttctcagcc gtcaccatga ccgattctaa 51 cgatgctgga atggatgctg ttcagagacg actcatgttt gaagacgaat 101 151 gcattctcgt tgatgaaaat aatcgtgtgg tgggacatga cactaagtat 201 aactgtcatc tgatggaaaa gattgaagct gagaatttac ttcacagagc tttcagtgtg tttttattca actccaagta tgagttgctt ctccagcaac 251 ggtcaaaaac aaaggttact ttcccacttg tgtggacaaa cacttgttgc 301 agccatecte tttacegtga atecgagett attgaagaga atgtgettgg 351 tgtaagaaat gccgcacaaa ggaagctttt cgatgagctc ggtattgtag 401 451 cagaagatgt accagtegat gagtteacte cettgggaeg catgetttae 501 aaggcacctt ctgatgggaa atggggagag cacgaagttg actatctact 551 cttcatcgtg cgggatgtga agcttcaacc aaacccagat gaagtggctg 601 agatcaagta cgtgagcagg gaagagctta aggagctggt gaagaaagca 651 gatgetggeg atgaagetgt gaaactatet ceatggttea gattggtggt 701 ggataatttc ttgatgaagt ggtgggatca tgttgagaaa ggaactatca 751 ctgaagctgc agacatgaaa accattcaca agctctgaac tttccataag 801 ttttggatct tccccttccc ataataaaat taagagatga gacttttatt 851 gattacagac aaaactggca acaaaatcta ttcctaggat ttttttttgc tttttattta cttttgattc atctctagtt tagttttcat cttaaaaaaa 901 951 aaaa

FIG. 8

1 caccaatgte tgtttcttct ttatttaate teecattgat tegeeteaga 51 tototogoto titogiotto tititottot titocgattig cocatogico TCTGTCATCG ATTTCACCGA GAAAGTTACC GAATTTTCGT GCTTTCTCTG 101 GTACCGCTAT GACAGATACT AAAGATGCTG GTATGGATGC TGTTCAGAGA 151 201 CGTCTCATGT TTGAGGATGA ATGCATTCTT GTTGATGAAA CTGATCGTGT 251 TGTGGGGCAT GTCAGCAAGT ATAATTGTCA TCTGATGGAA AATATTGAAG 301 CCAAGAATTT GCTGCACAGG GCTTTTAGTG TATTTTTATT CAACTCGAAG 351 TATGAGTTGC TTCTCCAGCA AAGGTCAAAC ACAAAGGTTA CGTTCCCTCT AGTGTGGACT AACACTTGTT GCAGCCATCC TCTTTACCGT GAATCAGAGC 401 451 TTATCCAGGA CAATGCACTA GGTGTGAGGA ATGCTGCACA AAGAAAGCTT 501 CTCGATGAGC TTGGTATTGT AGCTGAAGAT GTACCAGTCG ATGAGTTCAC 551 TCCCTTGGGA CGTATGCTGT ACAAGGCTCC TTCTGATGGC AAATGGGGAG 601 AGCATGAACT TGATTACTTG CTCTTCATCG TGCGAGACGT GAAGGTTCAA CCAAACCCAG ATGAAGTAGC TGAGATCAAG TATGTGAGCC GGGAAGAGCT 651 701 GAAGGAGCTG GTGAAGAAAG CAGATGCAGG TGAGGAAGGT TTGAAACTGT 751 CACCATGGTT CAGATTGGTG GTGGACAATT TCTTGATGAA GTGGTGGGAT CATGTTGAGA AAGGAACTTT GGTTGAAGCT ATAGACATGA AAACCATCCA 801 851 CAAACTCTGA ACATCTTTTT TTAAAGTTTT TAAATCAATC AACTTTCTCT TCATCATTTT TATCTTTTCG ATGATAATAA TTTGGGATAT GTGAGACACT 901 TACAAAACTT CCAAGCACCT CAGGCAATAA TAAAGTTTGC GGCCGC

FIG. 9

1	CICGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC
51	GATGCCGCGA	TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCCC
101	CGTGAACTCC	GCCCAGCAGC	CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA
151	AGCTCAGGAG	CATGCAGATG	ACGCTCATGC	AGCCCAGCAT	CTCAGCCAAT
201	CTGTCGCGCG	CCGAGGACCG	CACAGACCAC	ATGAGGGGTG	CAAGCACCTG
251	GGCAGGCGGG	CAGTCGCAGG	ATGAGCTGAT	GCTGAAGGAC	GAGTGCATCT
301	TGGTGGATGT	TGAGGACAAC	ATCACAGGCC	ATGCCAGCAA	GCTGGXGTGT
351	CACAAGTTCC	TACCACATCA	GCCTGCAGGC	CTGCTGCACC	GGGCCTTCTC
401	TGTGTTCCTG	TTTGACGATC	AGGGGGGACT	GCTGCTGCAA	CAGCGTGCAC
451	GCTCAAAAAT	CACCTTCCCA	AGTGTGTGGA	CGAACACCTG	CTGCAGCCAC
501	CCTTTACATG	GGCAGACCCC	AGATGAGGTG	GACCAACTAA	GCCAGGTGGC
551	CGACGGAACA	GTACCTGGCG	CAAAGGCTGC	TGCCATCCGC	AAGTTGGAGC
601	ACGAGCTGGG	GATACCAGCG	CACCAGCTGC	CGGCAAGCGC	GTTTCGCTTC
651	CTCACGCGTT	TGCACTACTG	TGCCGCGGAC	GTGCAGCCAG	CTGCGACACA
701	ATCAGCGCTC	TGGGGCGAGC	ACGAAATGGA	CTACATCTTG	TTCATCCGG
751	CCAACGTCAC	CTTGGCGCCC	AACCCTGACG	AGGTGGACGA	AGTCAGGTAC
801	GTGACGCAAG	AGGAGCTGCG	GCAGATGATG	CAGCCGGACA	ACGGGCTGCA
851	ATGGTCGCCG	TGGTTTCGCA	TCATCGCCGC	GCGCTTCCTT	GAGCGTTGGT
901	GGGCTGACCT	GGACGCGGCC	CTAAACACTG	ACAAACACGA	GGATTGGGGA
951	ACGGTGCATC	ACATCAACGA	AGCGTGÄAAG	CAGAAGCTGC	AGGATGTGAA
1001	GACACGTCAT	GGGGTGGAAŢ	TGCGTACTTG	GCAGCTTCGT	ATCTCCTTT
1051	TCTGAGACTG	AACCTGCAGT	CAGGTCCCAC	AAGGTCAGGT	AAAATGGCTC
1101	GATAAAATGT	ACCGTCACTT	TTTGTCGCGT	ATACTGAACT	CCAAGAGGT
1151	******	****			

FIG. 10

1	CTCGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCG
51	GATGCCGCGA	TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCGCG
101	CGTGAACTCC	GCCCAGCAGC	CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA
151	AGCTCAGGAG	CATGCAGCTG	CTTTCCGAGG	ACCGCACAGA	CCACATGAGG
201	GGTGCAAGCA	CCTGGGCAGG	CGGGCAGTCG	CAGGATGAGC	TGATGCTGAA
251	GGACGAGTGC	ATCTTGGTAG	ATGTTGAGGA	CAACATCACA	GGCCATGCCA
301	GCAAGCTGGA	GTGTCACAAG	TTCCTACCAC	ATCAGCCTGC	AGGCCTGCTG
351	CACCGGGCCT	TCTCTGTGTT	CCTGTTTGAC	GATCAGGGGC	GACTGCTGCT
401	GCAACAGCGT	GCACGCTCAA	AAATCACCTT	CCCAAGTGTG	TGGACGAACA
451	CCTGCTGCAG	CCACCCTTTA	CATGGGCAGA	CCCCAGATGA	GGTGGACCAA
501	CTAAGCCAGG	TGGCCGACGG	AACAGTACCT	GGCGCAAAGG	CTGCTGCCAT
551	CCGCAAGTTG	GAGCACGAGC	TGGGGATACC	AGCGCACCAG	CTGCCGGCAA
601	GCGCGTTTCG	CTTCCTCACG	CGTTTGCACT	ACTGTGCCGC	GGACGTGCAG
651	CCAGCTGCGA	CACAATCAGC	GCTCTGGGGC	GAGCACGAAA	TGGACTACAT
701	CTTGTTCATC	CGGGCCAACG	TCACCTTGGC	GCCCAACCCT	GACGAGGTGG
751 [.]	ACGAAGTCAG	GTACGTGACG	CAAGAGGAGC	TGCGGCAGAT	GATGCAGCCG
801	GACAACGGGC	TTCAATGGTC	GCCGTGGTTT	CGCATCATCG	CCGCGCGCTT
851	CCTTGAGCGT	TGGTGGGCTG	ACCTGGACGC	GGCCCTAAAC	ACTGACAAAC
901	ACGAGGATTG	GGGAACGGTG	CATCACATCA	ACGAAGCGTG	AAGGCAGAAG
951	CTGCAGGATG	TGAAGACACG	TCATGGGGTG	GAATTGCGTA	CTTGGCAGCT
.001	TCGTATCTCC	TTTTTCTGAG	ACTGAACCTG	CAGAGCTAGA	GTCAATGGTG
.051	CATCATATTC	ATCGTCTCTC	TTTTGTTTTA	GACTAATCTG	TAGCTAGAGT
101	CACTGATGAA	TCCTTTACAA	CTTTCAAAAA	AAAAA	

FIG. IIA

HPO4 HPO5 ATDP7 C.brew. ATOP5 S.cerev.	MLRSLLRGLT MLRSLLRGLT MSVSSLFNLP MS.SSMLNFT MTADNNSM	HIPRVNSAQQ .LIRLRSLA. .ASRIVSLPL .TGPPPRFFP	PSCAHARLQF	AHRPLSSIS. PLCFFSPISL	PRKLPNFRAF TQRFSAKLTF
	SEDRTDHMRG SGTA.MTD SSQATT.MGE T.MTD	ASTWAGGQSQ ASTWAGGQSQ TKDAGMDAVQ VVDAGMDAVQ SNDAGMDAVQ ETCFSGHDEE	DELMLKDECI RRLMFEDECI RRLMFEDECI RRLMFEDECI	LVDETDRVVG LVDENDKVVG LVDENNRVVG	HASKLECHKF HVSKYNCHLM HESKYNCHLM HDTKYNCHLM
	LPHOPAGLLH ENIEAKNLLH ENIESENLLH EKIEAENLLH	RAFSVFLFDD RAFSVFLFNS RAFSVFLFNS	QGRLLLQQRA KYELLLQQRS KYELLLQQRS KYELLLQQRS	RSKITFPSVW RSKITFPSVW NTKVTFPLVW ATKVTFPLVW KTKVTFPLVW TEKITFPDLW	TNTCCSHPLY TNTCCSHPLY TNTCCSHPLY TNTCCSHPLY
	RERE	SQVADGTVPG SELIQDNALG SELIDENCLG SELIEENVLG	AKAAAIRKLE VRNAAQRKLL VRNAAQRKLL VRNAAQRKLF	HELGIPAHOL HELGIPAHOL DELGIVAEDV DELGIPAEDL DELGIVAEDV HELGIPEDET	PA.SAFRFLT PV.DEFTPLG PV.DQFIPLS PV.DEFTPLG
	201 RLHYCAADVQ RLHYCAADVQ RMLY RILY RMLY	.KAPSDGKWG .KAPSDGKWG .KAPSDGKWG	EHEMDYILFI EHEMDYILFI EHELDYLLFI EHELDYLLFI EHEVDYLLFI EHEIDYILFY	IRDVNL	APNPDEVDEV QPNPDEVAEI DPNPDEVAEV QPNPDEVAEI

÷:

14/45

FIG. IIB

300
RYVTQEELRQ MMQ...PDN GLQWSPWFRI IAARFLERWW ADLDAALNTD
RYVTQEELRQ MMQ...PDN GLQWSPWFRI IAARFLERWW ADLDAALNTD
KYVSREELKE LVKKADAGEE GLKLSPWFRL VVDNFLMKWW DHVEKGTLVE
KYMNRDDLKE LLRKADAEEE GVKLSPWFRL VVDNFLFKWW DHVEKGSLKD
KYVSREELKE LVKKADAGDE AVKLSPWFRL VVDNFLMKWW DHVEKGTITE
KWVSPNDLKT MF....ADP SYKFTPWFKI ICENYLFNWW EQLDDLSEVE

301
KHEDWGTVHH INEA*
KHEDWGTVHH INEA*
A.IDMKTIHK L*
A.ADMKTIHK L*
A.ADMKTIHK L*
A.ADMKTIHK L*
NDRQ...IHR ML*

F1G. 12

1	ccaaaaacaa	ctcaaatctc	ctccgtcgct	cttactccgc	catgggtgac
51		tggatgctgt			
101		gatgagtgtg			
151		gatggagaag			
201		ttctattcaa			
251		aaggtgacat			
301		ctacagagaa			
351		gaggaxxxxx			
401		××××××××			
451		xxxxxxxxx			
501		xxxxxxxxx			
551		xxxxxxxxx			
601		xxxxxxxxx			
651		xxxxxxxxx			
701		caatttgata			
751		ccgaaaagca			
801		tttttttt			
851		tcttttgtgt			
901		ttgatggttt			
951	atctaaaaa		3	7	

1 MECVGARNFA AMAVSTFPSW SCRRKFPVVK RYSYRNÍRFG LCSVRASGGG SSGSESCVAV REDFADEXDF	Cyanobacterial enzyme begins ————————————————————————————————————	Dinucleotide-binding signature	210 PKLIWPNN YGVWVDEFEA MDLLDCLDaT WSGa-VYiDd -t-KDL-RPY GRVNRKQLKS KMMQKCI-NG DLPFTNN YGVWEDEFND LGLQKCIEHV WRETIVYLDD DKPITIGRAY GRVSRRLHE ELLRRCVESG PNN YGVW-DEFLC WVY-DDR-Y GRV-RL	
kfg	GLAVAQQV GLALAAES GLA-A	ide-bindi	GRVNRKOL GRVSRRLL GRV-RL	
vkS-f-s- LCSVRASGGG	DLAVVGGGPA DHVVIGCGPA DV-G-GPA	Dinucleot	-t-KOL-RPY OKPITIGRAY R-Y	
-HGF- RYSYRNIRFG	begins —S.Kg-VV ppiSiGDGAL		WSGa-VYiDd WRETIVYLDD WVY-DD	
PN-Laf1-p- SCRRKFPVVK F	Cyanobacterial enzyme begins LVPETKKKNL DFELPMYDD: S.Kg-\ FVQMQQNKDM DEQSKLVDKL PPISIGDG-\ -V	tion domain	MDLLDCLDaT LGLQKCIEHV LC	
MDTLLKT AMAVSTFPSW T	Yanobacter LVPETKKKNL FVQMQQNKDM -V	nit interac	YGVWVDEFEA YGVWEDEFND YGVW-DEF	
1 MECVGARNFA	71 VKSSALLa VKAGGSEIL. VKSL-	Possible subunit interaction domain	141 -PKLIWPNN DLPFTNN)
Plant <i>beto</i> A.t.epsilon Consensus	Plant <i>beta</i> A.t.epsilon Consensus	P	Plant <i>beta</i> A.t.epsilon Consensus	

280 SKVDS ITKASDGLRL VACDDNNVIP CRLATVASGA ASGKLLÖYEV GGPRVCVÖTA YGVEVEVENS -KV
PYnPGY. QVA GGPRVCVQTA Q-A
SRLVQYDK ASGKLLQYEV L-QY
AtVVLDATGF CRLATVASGA A-G-
VACDDNNVIP
ViHE.E-KSm ITKASDGLRL
211 VKFHqaKVik VSYLSSKVDS VKV
Plant beta A.t.epsilon Consensus

Conserved region #1

F1G. 13 A

Predicted TM helix 13B Conserved region #3 Conserved region #4 Conserved region #5 Predicted TM helix Conserved region #2 Plant beta A.t.epsilon Plant beta A. t.epsilon Plant beta 4. t.epsilon Plant beta A.t.epsilon Consensus Consensus Consensus Consensus

FIG. 14A

Adonis palaestina ε-cyclase cDNA #5 Length: 1898

1	and and the state of the state
51	
101	
	guyuducuyy cualyyddil dilliddinii cacaacetca tetettette
151	coolegigues activitique caadaaacet tantanttes assetsenti
201	acadeataca tegatatuut tetterinta nantanatti teesetasaa
251	9009009909 GARAGUCUUUAU LANAANTTOT OTTOCTTATA 3303000+++
301	- cycygacyda ydyydlllid llaaantan taattetaaa c++++
351	cocadatyca ycaadcaddu liitainnana aacaggccaa actagaara
401	aagttgccac caataccttt tggagaatcc gtgatggact tggttgtaat
451	aggttgtgga cctgctggtc tttcactggc tgcagaagct gctaagctag
501	ggttgaaagt tggccttatt ggtcctgatc ttccttttac aaataattat
551	ggtgtgtggg aagacgagtt caaagatctt ggacttgaac gttgtatcga
601	gcatgettag aaggacacca tegtatatat
651	gcatgcttgg aaggacacca tcgtatatct tgataatgat gctcctgtcc
701	ttattggtcg tgcatatgga cgagttagtc gacatttgct acatgaggag
751	ttgctgaaaa ggtgtgtgga gtcaggtgta tcatatctgg attctaaagt
801	ggaaaggatc actgaagctg gtgatggcca tagccttgta gtttgtgaaa
851	digagater talectific addettacts contracts tagages act
901	tedayagaac tittigaadta Idaadtaddt doccetedta tttatatataa
951	dacegerial gyddiddadd T.T.Daddfora daacaateca tacgatecaa
	decidatyyi dilediydae tacadadaet atatocaaca gaaattacaa
1001	- 1901099009 0090010100 dacattrott tatotrator contators
1051	adeadyacti tittilidadd adacetafff aaceteaaa aataceataa
1101	carregates designed adactigation carrattings goetstaget
1151	diccadgita tadaddilia idaadaddaa footcatata ttoctottoo
1201	- 19911CILLA CCADACACAD ACCAAAAAAA CCTAGCATTT GGTGGTGGA
1251	- cuayearyyr yearceadea acadderatt contrataca atcactata
1301	gadgeteedd daidigelle lataattaca aagattttaa agaaagaaa
1351	
1401	aagcatggag cagtctttgg ccaaaggagc gaaaacgtca aagagcatTc
1451	tttcttttTg gattagagct tattgtgcag ctagatattg aagcaaccag
1501	aacattettt agaacettet teegettgee aacttggatg tggtggggtt
1551	tecttaggte tteactates tetttegate tectatell tagging taggaggtt
1601	tccttgggtc ttcactatca tctttcgatc tcgtcttgtt ttccatgtac
1651	atgtttgttt tggcgccaaa cagcatgagg atgtcacttg tgagacattt
1701	Secretaria Control of Contrattor sanagettae et en
1751	agreered arranged to the carrage at a second and a second arranged to the carrage at a second arranged
1801	- TOUS AND TOUR LANGUAGE AND THE CONTRACT OF THE TOUR PROPERTY OF THE TO
1851	Laddyladdi UCCUUUTTTA ATATTATTAT Atcaaacca caast l
1001	aaagtaaatt tattgataca aaagtagttt ttttccttaa aaaaaaaa

FIG. 14B

Adonis palaestina E-cyclase #5 predicted polypeptide TRANSLATE from: 113 to: 1702 Length: 529 amino acids

MELLGVRNLI SSCPVWTFGT RNLSSSKLAY NIHRYGSSCR VDFOVRADGG SGSRSSVAYK EGFVDEEDFI KAGGSELLFV QMQQTKSMEK QAKLADKLPP 51 101 IPFGESVMDL VVIGCGPAGL SLAAEAAKLG LKVGLIGPDL PFTNNYGVWE DEFKDLGLER CIEHAWKDTI VYLDNDAPVL IGRAYGRVSR HLLHEELLKR 151 201 CVESGVSYLD SKVERITEAG DGHSLVVCEN EIFIPCRLAT VASGAASGKL LEYEVGGPRV CVQTAYGVEV EVENNPYDPN LMVFMDYRDY MOOKLOCSEE 251 301 EYPTFLYVMP MSPTRLFFEE TCLASKDAMP FDLLKRKLMS RLKTLGIOVT KVYEEEWSYI PVGGSLPNTE QKNLAFGAAA SMVHPATGYS VVRSLSEAPK 351 YASVIAKILK QDNSAYVVSG QSSAVNISMQ AWSSLWPKER KRQRAFFLFG 401 LELIVOLDIE ATRTÉFRTFF RLPTWMWGF LGSSLSSFDL VLFSMYMFVL 451 501 APNSMRMSLV RHLLSDPSGA VMVRAYLER*

- -

20/45

FIG. 15A

DNA sequence of potato cDNA (GenBank R27545) obtained from Nicholas J. Provart

```
potato.seq Length: 1378 August 2, 1996 13:06 Type: N Check: 605
     tagcggnnnn naggatgagt tcaaagatct tggtcttcaa gcctgcattg
     aacatgtttg gcgggatacc attgtatatc ttgatgatga tgatcctatt
  51
     cttattggcc gtgcctatgg aagagttagt cgccatttac tgcacgagga
 101
 151
     gttactcaaa aggtgtgtgg aggcaggtgt tttgtatcta aactcgaaag
     tggataggat tgttgaggcc acaaatggcc acagtcttgt agagtgcgag
 201
 251
     ggtgatgttg tgattccctg caggtttgtg actgttgcat cgggagcagc
 301
     ctcggggaaa ttcttgcagt atgagttggg aggtcctaga gtttctgttc
 351
     aaacagctta tggagtggaa gttgaggtcg ataacaatcc atttgacccg
 401
     agcctgatgg ttttcatgga ttatagagac tatgtcagac acgacgctca
     atctttagaa gctaaatatc caacatttct ctatgccatg cccatgtctc
 451
 501
     caacacgagt ctttttcgag gaaacttgtt tggcttcaaa agatgcaatg
     ccattcgatc tgttaaagaa aaaattgatg ttacgattga acaccctcgg
 551
     tgtaagaatt aaagaaattt atgaggagga atggtcttac ataccagttg
601
651<sup>-</sup>
     gaggatettt gecaaataea gaacaaaaaa eacttgeatt tggtgetget
 701
     gctagcatgg ttcatccagc cacaggttat tcagtcgtca gatcactgtc
 751
     tgaagctcca aaatgcgcct tcgtgcttgc aaatatatta cgacaaaatc
     atagcaagaa tatgcttact agttcaagta ccccgagtat ttcaactcaa
801
     gcttggaaca ctctttggcc acaagaacga aaacgacaaa gatcgttttt
851
901
     cctatttgga ctggctctga tattgcagct ggatattgag gggataaggt
 951
     catttttccg cgcgttcttc cgtgtgccaa aatggatgtg gcagggattt
     cttggttcaa gtctttcttn agcagacctc atgttatttg ccttctacat
1001
     gtttattatt gcaccaaatg acatgagaag aggcttaatc agacatcttt
1051
1101
     tatctgatcc tactggtgca acattgataa gaacttatct tacattttag
1151
     agtaaattcc tcctacaata gttgttgaan nagaggcctc attacttcag
1201
     attcataaca gaaatcgcgg tctctcgagg ccttgtatat aacattttca
1251
     ctaggttaat attgcttgaa taagttgcac agtttcagtt tttgtatctg
1301
     cttcttttt gtccaagatc atgtattgan ccaatttata tacattgcca
1351
     gtatatataa attttataaa aaaaaaaa
```

poteps.pep Length: 378 TRANSLATE from: 14 to: 1147

- 1 DEFKDLGLQÄ CIEHVWRDTI VYLDDDDPIL IGRAYGRVSR HLLHEELLKR
 51 CVEAGVLYLN SKVDRIVEAT NGHSLVECEG DVVIPCRFVT VASGAASGKF
 101 LQYELGGPRV SVQTAYGVEV EVDNNPFDPS LMVFMDYRDY VRHDAQSLEA
 151 KYPTFLYAMP MSPTRVFFEE TCLASKDAMP FDLLKKKLML RLNTLGVRIK
 201 ELVEEDISVI DVCCSLDNTE OVTLAEGAAA SMVUDATGVS VVDSLSGADV
- 201 EIYEEEWSYI PYGGSLPNTE QKTLAFGAAA SMVHPATGYS VVRSLSEAPK 251 CAFVLANILR QNHSKNMLTS SSTPSISTQA WNTLWPQERK RQRSFFLFGL
- 301 ALILQLDIEG ÎRSFFRAFFR VPKWMWQGFL GSSLSXADLM LFAFYMFIIA
- 351 PNDMRRGLIR HLLSDPTGAT LIRTYLTF*

FIG. 15B

Chimeric lettuce/potato lycopene $\epsilon\text{-cyclase}$: converts lycopene to $\delta\text{-}$ carotene, the lettuce cDNA converts lycopene to $\epsilon\text{-carotene}$ and the potato cDNA does not produce an active enzyme

(amino acids in lower case are from lettuce and those in uppercase are from the potato cDNA; an $Ava\Pi$ site in common to the two cDNAs was used to construct the chimera)

1	mecfgarnmt	atmavftcpt	ftdcnirhkf	sllkqrrftn	lsassslrqi
51	kcsaksdrcv	vdkqgisvac	eedyvkaggs	elffvqmqrt	ksmesqskls
101	eklagipign	cildlvvigc	gpaglalaae	saklglnvgl	igpdlpftnn
151	ygvwqdefig	lglegciehs	wkdtlvyldd	adpirigray	grvhrdllhe
201	ellrrcvesq	vsylsskver	iteapngysl	iecegnitip	crlatvasga
251	asgkflevel	gGPRVSVQTA	YGVEVEVDNN	PFDPSLMVFM	DYRDYVRHDA
301	QSLEAKYPTF	LYAMPMSPTR	VFFEETCLAS	KDAMPFDLLK	KKLMLRLNTL
351	GVRIKEIYEE	EWSYIPVGGS	LPNTEQKTLA	FGAAASMVHP	ATGYSVVRSL
401	SEAPKCAFVL	ANILRONHSK	NMLTSSSTPS	ISTQAWNTLW	PQERKRQRSF
451	FLFGLALILQ	LDIEGIRSFF	RAFFRVPKWM	WQGFLGSSLS	XADLMLFAFY
501	METTAPNDMR	RGLIRHLLSD	PTGATLIRTY	LTF*	

FIG. 16

blosi		912 003
Match	Ratio: 3.929 Gaps: Percent Similarity: 79.893 Percent Identity: 76. display thresholds for the alignment(s): = IDENTITY := 2 . = 1	1 139
151		
1	. DEFKDLĠĹQAĊĬĖHVWRDTĪVŸĹDDDDPĪLĪĠŔAŸĠŔVŚŔHĹĹHĖĖĹĹK	49
201	RCVESGVSYLSSKVDSITEASDGLRLVACDDNNVIPCRLATVASGAASGK	250
50	. . : .	99
251	LLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKVRSLE	300
100	.	149
301		350
150	. .	199
351	LKTYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAP	400
200	.	249
401		445
250	: : .	299
446		495
300	.	349
496		
350	. .: : : : : APNDMRRGLIRHLLSDPTGATLIRTYLTF 378	

FIG. 17A

Adonis palaestina Ipil attcatcttc agcagcgctg tcgtactctt tctatatctt cttccatcac 51 taacagtagt cgccgacggt tgaatcggct attcgcctca acgtcaacta 101 tgggtgaagt cactgatgct ggaatggatg ctgttcagaa gcggctcatg ttcgacgacg aatgtatttt ggtggatgag aatgacaagg tcgtcgggca 151 201 tgattccaaa tacaactgtc atttgatgga aaagatagag gcagaaaatt 251 tgcttcacag agccttcagt gttttcttgt tcaactcaaa atatgaattg 301 cttcttcagc aacgatccgc cacaaaggta acattcccgc tcgtatggac 351 aaacacatgt tgcagtcatc ctctctttcg tgattccgag ctcatagaag 401 aaaattatct cggtgtacga aacgctgcac aaagaaagct tttagacgag 451 ctaggcattc cagctgaaga tgtcccagtt gatgaattta ctcctcttgg 501 tcqcattctt tacaaagctc catctgacgg caaatgggga gagcacgaat 551 tggactatct cctatttatt gtccgagatg tgaaatacga tccaaaccca 601 gatgaagttg ctgatgctaa gtatgttaat cgcgaggagt tgagagagat 651 actgagaaaa gctgatgctg gtgaagaggg actcaagttg tctccttggt ttagattggt tgttgataac tttttgttca agtggtggga tcatgtagag 701 751 cagggtacga ttaaggaagt tgctgacatg aaaactatcc acaagttgac 801 ttaagaggac ttctctcctc tgttctacta tttgtttttt gctacaataa gtgggtggtg ataagcagtt tttctgtttt ctttaattta tggcttttga 851 atttgcctcg atgttgaact tgtaacatat ttagacaaat atgagacctt 901 951 gtaagttgaa tttgaggctg aatttatatt tttgggaaca taataatgtt 1001 aa

÷:

24/45

FIG. 17B

Adonis palaestina Ipi2 ttttaaagct ctttcgctcc accaccatca aagccagcca aatttctctg tacaaaagtt aaaaacaccg ctttgggctt tggcccctcc atatcggaat 51 ccttgtttac gatacgcatc taaaccagta attctcggtt ttaatttgtt 101 tcctaaatta ggcccctttc cggaatcccg agaattatgt cgtcgatcag 151 gattaatcct ttatatagta tcttctccac caccactaaa acattatcag 201 cttcgtgttc ttctcccgct gttcatcttc agcagcgttg tcgtactctt 251 tctatttctt cttccatcac taacagtcct cgccgagggt tgaatcggct 301 gttcgcctca acgtcgacta tgggtgaagt cgctgatgct ggtatggatg 351 ccqtccaqaa qcgqcttatg ttcgacgatg aatgtatttt ggtggatgag 401 aatgacaagg tcgtcggaca tgattccaaa tacaactgtc atttgatgga 451 aaagatagag gcagaaaact tgcttcacag agccttcagt gttttcttat 501 tcaactcaaa atacgagttg cttcttcagc aacgatctgc aacgaaggta 551 acattecege tegtatggae aaacacetgt tgeagecate ecetetteeg 601 tgattccgaa ctcatagaag aaaattttct cggggtacga aacgctgcac 651 aaaggaagct tttagacgag ctaggcattc cagctgaaga cgtaccagtt 701 gatgaattca ctcctcttgg tcgcattctt tacaaagctc catctgacgg 751 aaaatgggga gagcacgaac tggactatct tctgtttatt gtccgagatg 801 tgaaatacga tccaaaccca gatgaagttg ctgacgctaa gtacgttaat 851 cgcgaggagt tgaaagagat actgagaaaa gctgatgcag gtgaagaggg 901 aataaagttg tctccttggt ttagattggt tgtggataac tttttgttca 951 agtggtggga tcatgtagag gaggggaaga ttaaggacgt cgccgacatg 1001 aaaactatcc acaagttgac ttaagagaaa gtctcttaag ttctactatt 1051 tggtttttgc ttcaataagt ggatggtgat gagcagtttt tatgcttcct 1101 ttaattttgg cttttcaatt tgctttatgt gttgaacttg taacatattt 1151 agtcaaatat gagaccttgt gagttgaatt tgaggttata tttatagttt 1201 tgggaacata aaaaaaaaaa 1251

FIG. 18A

Haematococcus pluvialis Ipil 1 ctcggtagct ggccacaatc gctatttgga acctggcccg gcggcagtcc gatgccgcga tgcttcgttc gttgctcaga ggcctcacgc atatcccccg 51 cgtgaactcc gcccagcagc ccagctgtgc acacgcgcga ctccagttta 101 agctcaggag catgcagatg acgctcatgc agcccagcat ctcagccaat 151 ctgtcgcgcg ccgaggaccg cacagaccac atgaggggtg caagcacctg 201 ggcaggcggg cagtcgcagg atgagctgat gctgaaggac gagtgcatct 251 tggtggatgt tgaggacaac atcacaggcc atgccagcaa gctggagtgt 301 cacaagttcc taccacatca gcctgcaggc ctgctgcacc gggccttctc 351 tgtgttcctg tttgacgatc aggggcgact gctgctgcaa cagcgtgcac 401 gctcaaaaat caccttccca agtgtgtgga cgaacacctg ctgcagccac 451 cctttacatg ggcagacccc agatgaggtg gaccaactaa gccaggtggc 501 cgacggaaca gtacctggcg caaaggctgc tgccatccgc aagttggagc 551 acgagetggg gataccageg caccagetge eggeaagege gtttegette 601 ctcacgcgtt tgcactactg tgccgcggac gtgcagccag ctgcgacaca 651 atcagcgctc tggggcgagc acgaaatgga ctacatcttg ttcatccggg 701 ccaacgtcac cttggcgccc aaccctgacg aggtggacga agtcaggtac 751 gtgacgcaag aggagctgcg gcagatgatg cagccggaca acgggctgca 801 atggtcgccg tggtttcgca tcatcgccgc gcgcttcctt gagcgttggt 851 gggctgacct ggacgcggcc ctaaacactg acaaacacga ggattgggga 901 acggtgcatc acatcaacga agcgtgaaag cagaagctgc aggatgtgaa 951 gacacgtcat ggggtggaat tgcgtacttg gcagcttcgt atctcctttt 1001 tctgagactg aacctgcagt caggtcccac aaggtcaggt aaaatggctc 1051 gataaaatgt accgtcactt tttgtcgcgt atactgaact ccaagaggtc 1101 aaaaaaaaa aaaaa 1151

J. 12

26/45

FIG. 18B

Haematococcus pluvialis Ipi2

```
tggaacctgg cccggcggca gtccgatgcc gcgatgcttc gttcgttgct
 51
     cagaggeete acgeatatee egegegtgaa eteegeecag cageecaget
101
     gtgcacacgc gcgactccag tttaagctca ggagcatgca gctgcttgcc
151
     gaggaccgca cagaccacat gaggggtgca agcacctggg caggcgggca
201
     gtcgcaggat gagctgatgc tgaaggacga gtgcatctta gtggatgctg
251
     acgacaacat cacaggccat gccagcaagc tggagtgcca caaattccta
301
     ccacatcage etgeaggeet getgeacegg geettetetg tgtteetgtt
351
     tgacgaccag gggcgactgc tgctgcaaca gcgtgcacgc tcaaaaatca
401
     ccttcccaag tgtgtggacg aacacctgct gcagccaccc tctacatggg
451
     cagaccccag atgaggtgga ccaactaagc caggtggccg acggcacagt
501
     acctggcgca aaagctgctg ccatccgcaa gttggagcac gagctgggga
551
     taccagcgca ccagctgccg gcaagcgcgt ttcgcttcct cacgcgtttg
601
     cactactgtg ccgcggacgt gcagccggct gcgacacaat cagcgctctg
651
      gggcgagcac gagatggact acatcttatt catccgggcc aacgtcacct
701
      tggcgcccaa ccctgacgag gtggacgaag tcaggtacgt gacgcaagag
751
     gagctgcggc agatgatgca gccggacaac gggttgcaat ggtcgccgtg
     gtttcgcatc atcgccgcgc gcttccttga gcgttggtgg gctgacctgg
801
851
      acgcggccct aaacactgac aaacacgagg attggggaac ggtgcatcac
     atcaacgaag cgtgaaggca gaagctgcag gatgtgaaga cacgtcatgg
901
 951
      ggtggaattg cgtacttggc agcttcgtat ctcctttttc tgagactgaa
1001
      cctgcagagc tagagtcaat ggtgcatcat attcatcgtc tctcttttgt
1051
      tttagactaa tctgtagcta gagtcactga tgaatccttt acaactttca
1101
      aaaaaaaa
```

...

F1G. 19A

Lactuca sativa Ipil tgccaaaatg ttgaaatttc ccccttttaa aaccattgct accatgatct cttctccata ttcttccttc ttgctgcctc ggaaatcttc tttccctcca atgccgtctc tcgcagccgc tagtgttttc ctccaccctc tttcgtctgc 101 cgctatgggc gattccagca tggatgctgt ccagcgacgt ctcatgttcg 151 atgacgaatg cattitiggtg gatgagaatg acaaagtggt tggccatgat actaaataca attgtcattt gatggagaag attgaaaagg gaaatatgct 201 251 acacagagca ttcagtgtgt tcttgttcaa ctcgaaatat gaattactcc 301 ttcagcaacg ttctgcaacc aaggtgactt tccctttggt atggacaaac acgtgttgca gccatccact atacagggag agtgagctta ttgacgaaaa 351 401 cgcccttggg gtgaggaatg ctgcacagag gaagctcctg gatgaactcg gcatcctgg agcagatgtt ccggttgatg agttcactcc attgggtcgc 451 501 ăttctatacă ağgccgcătc ggatggaaag tggggagaac atgaacttga 551 ttacctgctg tffatggtac gfgatgttgg tffggatccg aacccagatg 601 aagtgaaaga tgtaaaatat gtgaaccggg aagagctgaa ggaattggta aggaaggcgg atgctggtga agagggtgtg aagctgtccc cgtggttcaa attgattgtc gataatttct tgtttcagtg gtgggatcga ctccataagg 651 701 751 801 gaaccctaac cgaagctatt gatatgaaaa caatccacaa actcacataa ăaacactaca ctagtaggag ăgaggăttat atgagatatt tgttatatgt 851 gaaattgaaa ttcăgatgaă tgcttgtatt tatttctatt tggacaaact 901 tcaacttctt tttgctacct tatcagaaaa aaaaa 951

FIG. 19B

Lactuca sativa Ipi2 tattcgcttc aaaatctctt ccattaactg ctcaaatctc caccttcgcc ggtctťaatc tccgccggcg cactttcacc accataaccg ccgccatggg tgacgattcc ggcatggacg ctgtccagag acgtctcatg tttgatgatg 101 aătgčatttt ğğttgătgaă aatgacaatg ttcttgggca tgataccaaa 151 tacăattgtc ăcttgatgga gaagattgag aaagatăătt tgcttcatag agcattcagt gtattttat tcaattcaaa atacgaatta ctccttcagc 201 251 aaaggtcaga aaccaaggtg acatttcctt tggtatggac aaacacctgt 301 tgcăğccatc cactatăcağ agaatcggag ttaattcccg aaaatgccct tggggtcaga aatgctgcac agaggaagct tctagatgaa ctcggtatcc 351 401 ctgctgaaga tgttccagtt gatgagttca caactttagg tcgcatgttg 451 tacaaggete catetgatgg aaaatggggt gaacatgaag ttgattacet 501 acteticete gtgcgtgacg ttgccgtgaa cccaaaccet gatgaggtgg 551 cggacattag ătăcğtgaac caagaagat taaaagagtt actaaggaag 601 gcggatgcgg gtgaggggg tttgaaattg tccccatggt ttaggctagt 651 ğgtggacaac ttcttgttca aatggtggga tcatgtccaa aaggggacac 701 tcaatgaagc aattgacatg aaaaccattc ataagttgat atgaaaaatg 751 gttaatatt atggtggtgg tttggagcta ataatttgtg tgttcaagtc tcggtccttc ttttttaac gtttttttt tttcttttat tgggagtgtt 801 851 tattgtgtac ttgtaacgta ggccctttgg ttacgcttta agagtttaat 901 aaagaaccac cgttaattta aaaaaaaaa aaaaaaaa

FIG. 20

Chlamydomonas reinhardtii Ipil

(Note: the isomerase cDNA probably ends at ca. base 1103; the second half of the cDNA is similar to extensin and other hydroxyproline-rich structural proteins)

1 51 101 151 201 251 301 351 401 451 501 551 601 651	ggcacgagct aactacctca cgctgttttc gatgtcataa ccagagcgca caaagccgtg aggactttca cctgggaagg tgcttggtgg cgactgccac accgcgcctt cagcagcgcg ctgctgctcg cggcggcggt	tctgctccag actcccactt acctgtctta	taactcgcgg	atcgggaatt caacacattt gcattgcttt cagtttcatc gggcgtccat tccgccctgt gcgaatggcg acttcatgca ctaggcaccg ccagccctgc ccgacggccg ccgggtgtgt gccggacgag gcatcaaggc	tggaagcttg cgcgcgccat agatcgcttt gagcccaagc gcgcctcgcg ggccgggagc agttcgtcaa gcgggacgag ccaacaagta ggccgcctgc actgctgctg ggaccaacac gtggacctgc ggcggcggtg
1101 1151 1201 1251 1301	cggcagccga aaaggggaag ttgtgatgcg cgggcgtgag gcgatgggta gcatagcgtg	caggggcggg gcgtgggatg cgtgtgtgta catgtgtgtg	agcgggggat aggtctgaag cgtgagcgac cggagggtcg gcggctgcgc	gaatgggaat acagggggaa aaagccggga gtgggtcggt gggtatgtgg	gtgaatgcga aatcgggggg ggcggaccgc cggttgcgcg gcacccgggc
1351 1401 1451 1501	acggaggaga ggcgggcctc ggggctgcac tcacttggtg	aggcácácge actectggte ccatatgage aggtggggeg	aggtggcgcg gtgcccagtg ggcgcactgc aggtggctgt	gaggtgtgtc gtctcgtggg cgcgctgggc gggcggcggg	aggggccatg cagagtggca taagtcctta cgcagtggca
1551 1601 1651 1701 1751	gaaggacacg ggcggatagc tgcaggccgc cgttggggag gggcgcctga	gatatgacgt gagaagcggg gtgccgcctg gtagtggcgg	cggtggcagg caggcgcggc ccacaggagg	cgctgtaatg aggccgcagg gcggggggg cgcaggaggc	cgggagaatg ctgcagcacc cctgagtaat agcagcagga
1801 1851	ggacgagctg gtggccata	g gagggacccg c aaaaaaaaaa	ttggcaaccc aaaa	. uuggeege	, 30304464

رز جر

FIG. 21A

Tagetes erecta Ipil ccaaaaacaa ctcaaatctc ctccgtcgct cttactccgc catgggtgac gactccggca tggatgctgt tcagcgacgt ctcatgtttg acgatgaatg 101 cattttggtg gatgagtgtg acaatgtggt gggacatgat accaaataca attgtcactt gatggagaag attgaaacag gtaaaatgct gcacagagca ttcagcgttt ttctattcaa ttcaaaatac gagttacttc ttcagcaacg 151 201 251 gtctgcaacc aaggtgacat ttcctttagt atggaccaac acctgttgca ğccatccact ctăcağagaa tccgagcttg ttcccgaaaa cgcccttgga gtaagaaatg ctgcacagag gaagctgttg gatgaactcg gtatccctgc 301 351 tgaagatgtt cccgttgatc agtttactcc tttaggtcgc atgctctaca 401 aggetecate tgatggaaag tggggagaac atgaaettga etacetaett tteatagtga gagaegttge tgtaaaeeeg aacceagatg aagtggegga 451 501 551 tatcaaatat gtganccang aagagttaaa ggagctgcta aggaaagcag atgcggggga ggagggtttg aagctgtctc catggttcag gttagtggtt 601 gataacttet tgttcaagtg gtgggatcat gtgcaaaagg gtacactcac 651 tgaagcaatt gatatgaaaa ccatacacaa gctgatatag aaacacaccc 701 tčaačcgaaa agttcaagcc taataattcg ggttgggtcg ggtctaccat caattgttt tttctttaa gaagttttaa tctctatttg agcatgttga 751 801 851 ttcttgtctt ttgtgtgtaa gattttgggt ttcgtttcag ttgtaataat 901 gaaccattga tggtttgcaa tttcaagttc ctatcgacat gtagtgatct 951 aaaaaa

FIG. 21B

Oryza sative Ipil cctccctttg cctcgcgcag aggcggccgc gccttctccg ccgcgaggat ggccggcgcc gccgccgcg tggaggacgc cgggatggac gaggtccaga agcggctcat gttcgacgac gaatgcattt tggtggatga acaagacaat 101 gttgttggcc atgaatcaaa atataactgc catctgatgg aaaaaatcga 201 atctgaaaat ctacttcata gggctttcag tgtattcctg ttcaactcaa aatafgaact cctactccag caacgatctg caacaaaggt tacatttcct ctagtttgga ccaacacttg ctgcagccat cctctgtacc gtgagtctga 251 301 gcttatacag gaaaactacc ttggtgttag aaatgctgct cagaggaagc 351 tcttggatga gctgggcatc ccagctgaag atgtgccagt tgaccaattc acccctcttg gtcggatgct ttacaaggcc ccatctgatg gaaaatgggg 401 451 501 tgaacacgag čttgactacc tgctgttcat cgtccgcgac gtgaaggtag tcccgaaccc ggacgaagtg gccgatgtga aatacgtgag ccgtgagcag ctgaaggagc tcatccgcaa agcggacgcc ggagaggaag gcctgaagct 551 601 gtčtcččtěg ttccggčtgg tfgffgačaa čftčcfčatě ěgctěgtěgg 651 atcacgtcga gaaaggcacc ctcaacgagg ccgtggacat ggagaccatc cacaagctga agtaaggact gcgatgttgt ggctggaaag aatgatcctg 701 751 aagactctgt tcttgtgctg ctgcatatta ctcttaccag ggaagttgca 801 gaagtcagaa gaagcttttg tatgtttctg ggtttggagc ttggaagtgt tgggctctgc tgactgagag attcccttat agagtgtcta tgttaattta 851 901 gcaaacttct atattataca tgattagtta attgttcggt gtctgaataa 951 āgaacaatag catgttccat gtttatttgc t 1001

241 255 256 270 VAVNPNPDEVADIKY VSHEELKELLRKADA 188 VGLDPNPDEVADIKY VNREELKELLRKADA 236 VAVNPNPDEVADIRY VNREELKELLRKADA 188 VKYDPNPDEVADAKY VNREELKEILRKADA 190 VKYOPNPDEVADAKY VNREELREILRKADA 190 VKVQPNPDEVAEIKY VSREELKELVKKADA 190 VKLQPNPDEVAEIKY VSREELKELVKKADA 190 VTLAPNPDEVDEVRY VTQEELRQMMQP 247 VTLAPNPDEVDEVRY VTQEELRQMMQP 259 VSLQPNPDEVDATRY VTLPELQSMMA 259	Tagetes erecta (marigold) Lactuca sativa (romaine lettuce) Lactuca sativa (romaine lettuce) Adonis palaestina (pheasant's eye) Adonis palaestina (pheasant's eye) Oryza sativa (rice) Arabidopsis thaliana Haematococcus pluvialis Chlamydomonas reinhardtii
240 241 20 VAVNPNPDEV 20 VGLDPNPDEV 20 VKYDPNPDEV 20 VKYDPNPDEV 20 VKYQPNPDEV 20 VKYQPNPDEV 30 VKYQPNPDEV	Tagetes er Lactuca so Lactuca so Adonis pal Adonis pal Oryza sati Arabidopsi Arabidopsi Haematocoo Haematocoo
AGRKLLDELGIPAED VPVDGFTPLGRMLYKAPSDGKAG EHELDYLLFIVRD VAVNPNPDEVADJKY VSHEELKELLRKADA AQRKLLDELGIPAED VPVDGFTPLGRMLYKAPSDGKAG EHELDYLLFIVRD VGLDPNPDEVADJKY VSHEELKELLRKADA AQRKLLDELGIPAED VPVDEFTPLGRILYKAPSDGKAG EHELDYLLFIVRD VAVNPNPDEVADJRY VNREELKELLRKADA AQRKLLDELGIPAED VPVDEFTPLGRILYKAPSDGKAG EHELDYLLFIVRD VKYDPNPDEVADJRY VNREELKEILRKADA AQRKLLDELGIPAED VPVDEFTPLGRILYKAPSDGKAG EHELDYLLFIVRD VKYDPNPDEVADJAKY VNREELREILRKADA AQRKLLDELGIPAED VPVDEFTPLGRMLYKAPSDGKAG EHELDYLLFIVRD VKYOPNPDEVADJKY VSREELKELIRKADA AQRKLLDELGIVAED VPVDEFTPLGRMLYKAPSDGKAG EHELDYLLFIVRD VKVQPNPDEVADJKY VSREELKELVKKADA AJRKLEHELGIPAHQ LPASAFRFLTRLHYC AADVQPAATQSALMG EHENDYLLFIRAN VTLAPNPDEVDEVRY VTQEELRQYMQPAIRKLEHELGIPAHQ LPASAFRFLTRLHYC AADVQPAATQSALMG EHENDYLLFIRAN VTLAPNPDEVDEVRY VTQEELRQYMQPAVRKLUBELGIPAHQ LPASAFRFLTRLHYC AADVQPAATQSALMG EHENDYLLFIRAN VTLAPNPDEVDEVRY VTQEELRQYMQPAVRKLUBELGIPAHQ LPASAFRFLTRLHYC AADVQPAATQSALMG EHENDYLLFIRAN VTLAPNPDEVDEVRY VTQEELRQYMQPAVRKLQHELGIPPEQ VPASSFSFLTRLHYC AADTATHG-PAAEWG EHEVDYVLFVRPQQP VSLQPNPDEVDEVRY VTQEELRQYMA	GEEGLKLSPWFRLVV DNFLFRAWDHVQK GTLTEAIDMKTI HKLI GEEGVKLSPWFRLVV DNFLFRAWDHVQK GTLTEAIDMKTI HKLI 232 GEEGLKLSPWFRLVV DNFLFRAWDHVQK GTLNEAIDMKTI HKLT 229 GEEGLKLSPWFRLVV DNFLFRAWDHVEE GKIKDVADMKTI HKLT 234 GEEGLKLSPWFRLVV DNFLFRAWDHVER GTIKEVADMKTI HKLT 234 GEEGLKLSPWFRLVV DNFLMKWWDHVEK GTLNEAVDMETI HKLK 236 GEEGLKLSPWFRLVV DNFLMKWWDHVEK GTLVEAIDMKTI HKL 237 GEEGLKLSPWFRLVV DNFLMKWWDHVEK GTLTEAADMKTI HKL 238 -DNGLQWSPWFRIIA ARFLERWAADLDA ALNTDKHEDWGTV HHINEA 305 -DPGLSWSPWFRILA TQPAFLPAWWGDLKR RWRPGGSRLSDWGTI HRVM 307
1 T.erecta 1 2 L.sativa 1 3 L.sativa 2 4 A.palaestina 2 5 A.palaestina 1 6 O.sativa 1 7 A.thaliana 1 8 A.thaliana 2 9 H.pluvialis 1 10 H.pluvialis 2	1 T.erecta 1 2 L.sativa 1 3 L.sativa 2 4 A.palaestina 2 5 A.palaestina 1 6 O.sativa 1 7 A.thaliana 1 8 A.thaliana 2 9 H.pluvialis 1 10 H.pluvialis 2 11 C.reinhardtii 1

F16.22B

+5

32 / 45 FIG. 24 A FIG. 23A FIG. 23 FIG. 24B FIG. 23B FIG. 24 FIG.23C FIG. 25A FIG.23D FIG. 25

FIG. 25B FIG. 25C

FIG.28A FIG. 26A FIG. 28 FIG. 26 FIG. 26B FIG. 28B

Comparison using GAP program of the Genetics Computer Group Gap Weight: 50 Average match: 10.000 Length Weight: 3 Average Mismatch: 0.000 Quality: 17392 Length: 1904 Ratio: 9.411 Gaps: 3 Percent Similarity: 95.331 Percent Identity: 95.331 Match display thresholds for the alignment(s): = IDENTITY := 5 . = 1
Adonis palaestina ϵ -cyclase #3 x Adonis palaestina ϵ -cyclase #5
1 gagagaaaaagagtgttatattaatgttactgtcgcattcttgcaacac. 49
1aaaggagtgttctattaatgttactgtcgcattcttgcaacact 44
50 .atattcagactccattttcttgttttctcttcaaaacaacaactaatg 98
45 tatattcaaactccattttctttttcttttcaaaacaaca
99 tga.cggagtatctagctatggaactacttggtgttcgcaacctcatctc 147
95 tgagcagagtatetggetatggaactaettggtgttegeaaceteatete 144
148 ttcttgccctgtctggacttttggaacaagaaaccttagtagttcaaaac 197
145 ttcttgccctgtgtggacttttggaacaagaaaccttagtagttcaaaac 194
198 tagcttataacatacatcgatatggttcttcttgtagagtagattttcaa 247
195 tagettataacatacategatategeteettettettegagagtagattetteaa 244
248 gtgagggctgatggtggaagcgggagtagaacttctgttgcttataaaga 297
245 gtgágagótgátggtágáágóggágtágáagttótgttgóttátááágá 294
298 gggttttgtggacgaggaggattttatcaaagctggtggttctgagcttt 347
295 gggttttgtgaagaggattttatcaaagctggtggttctgagcttt 344
348 tgtttgtccaaatgcagcaaacaaagtctatggagaaacaggccaagctc 397
345 tgtttgtccaaatgcagcaaacaaagtctatggagaaacaggccaagctc 394

398	gccgataagttgccaccaatacctttcggagaatctgtgatggacttggt	447
395	gccgataagttgccaccaataccttttggagaatccgtgatggacttggt	
448	tgtaataggttgtggacctgctggtctttcactggctgcagaagctgcta	497
445	tgtaataggttgtggacctgctggtctttcactggctgcagaagctgcta	494
498	agctaggcttgaaagttggccttattggtcctgatcttccttttacaaat	547
495	agctagggttgaaagttggccttattggtcctgatcttccttttacaaat	544
	111111111111111111111111111111111111111	
	aattatggtgtgtgggaagacgagttcaaagatcttggacttgaacgttg	
	tatcgagcatgcttggaaggacaccatcgtatatcttgacaatgatgctc	
	tatcgagcatgcttggaaggacaccatcgtatatcttgataatgatgctc	
	ctgtccttattggtcgtgcatatggacgagttagccggcatttgctgcat	
698	gaagagttgctgaaaaggtgtgtcgagtcaggtgtatcatatctgaattc	
695	gaggagttgctgaaaaggtgtgtggagtcaggtgtatcatatctggattc	
748	taaagtggaaaggatcactgaagctggtgatggccatagtcttgtagttt	797
745	taaagtggaaaggatcactgaagctggtgatggccatagccttgtagttt	794
798	gtgaaaacgacatctttatcccttgcaggcttgctactgttgcatctgga	847
795	gtgaaaatgagatctttatcccttgcaggcttgctactgttgcatctgga	844
	gcagcttcagggaaacttttggagtatgaagtaggtggccctcgtgtttg	
	tgtccaaactgcttatggtgtggaggttgaggtggagaacaatccatacg	947
395	LULCCAAACCOCTTATOOOTOOAOOTTOAOOTOOACAAFCCAFACO	$\Omega \Lambda \Lambda$

FIG. 23C

948 व	atcccaacttaatggtatttatggactacagagactatatgcaacagaaa	997
945 a		994
998 1	ttacagtgctcggaagaagaatatccaacatttctctatgtcatgcccat	1047
995	ttacagtgctcggaagaagaatatccaacatttctctatgtcatgcccat	1044
1048 (gtcgccaacaagacttttttttgaggaaacctgtttggcctcaaaagatg	1097
1045	gtcgccaacaagacttttttttgaggaaacctgtttggcctcaaaagatg	1094
1098	ccatgcctttcgatctactgaagagaaaactaatgtcacgattgaagact	1147
1095	ccatgccattcgatctactgaagagaaaactgatgtcacgattgaagact	1144
	ctgggtatccaagttacaaaaatttatgaagaggaatggtcttatattcc	1197
	ctgggtatccaagttacaaaagtttatgaagaggaatggtcatatattcc	1194
	tgttgggggttctttaccaaacacagagcaaaagaacctagcatttggtg	1247
	tgttggtggttctttaccaaacacagagcaaaagaacctagcatttggtg	1244
	ctgcagcaagcatggtgcatccagcaacaggctattcggttgtacgatca	1297
	ctgcagcaagcatggtgcatccagcaacaggctattcggttgtacggtca	1294 1347
	ctatcagaagctccaaaatatgcttctgtaattgcaaagattttgaagca	
	ctgtcagaagctccaaaatatgcttctgtaattgcaaagatttgaagca	
	agataactctgcatatgtggtttctggacaaagcagtgcagtaaacattt	
	agataactctgcgtatgtggtttctggacaaagtagtgcagtaaacattt	
	caatgcaagcatggagcagtctttggccaaaggagcgaaaacgtcaaaga	
	caatgcaagcatggagcagtctttggccaaaggagcgaaaacgtcaaaga gcattctttcttttcgggttagagcttattgtgcagctagatattgaagc	•
	gcattctttctttcgggttagagcttattgtgcagctagatattgaagc 	
C++1	year terretely actually a second of the seco	

1498	aaccagaacgttctttagaaccttcttccgcttgccaacttggatgtggt	1547
1495	aaccagaacattctttagaaccttcttccgcttgccaacttggatgtggt	1544
1548	ggggtttccttgggtcttcactatcatctttcgatcttgtattgtttcc	1597
1545	ggggtttccttgggtcttcactatcatctttcgatctcgtcttgttttcc	1594
1598	atgtacatgtttgttttggccccgaacagcatgaggatgtcacttgtgag	1647
1595	atgtacatgtttgttttggcgccaaacagcatgaggatgtcacttgtgag	1644
1648	acatttgctttcagatccttctggtgcagttatggttaaagcttacctcg	1697
1645	acatttgctttcagatccttctggtgcagttatggtaagagcttacctcg	1694
	aaaggtaatctgttttatgaaactatagtgtctcattaaataaatga	1744
	aaaggtagtctcatctattattaaactctagtgtttcaccaaataaat	1744
	ggatccttcgtatatgtatatgatcatctctatgtatatcctatattcta	1794
	ġġatċċttċġaatgtġtatatġatċatċtċtatġtatatċċtgtactċta	1794
	atctcataaagtaatcgaaaattcattgatagaaaaaaaa	1844
	àtctcataaagtaaatgccgggtttgatattgttgtgtcaaaccggccaa	1844
	aaaa	1848
1845	tgatataaagtaaatttattgatacaaaagtagtttttttt	1894

FIG. 23D

•		0.				
	ogram of Ge 62.cmp	netics Compu	ter Group	FIG.	24 A	:
Perce	Gap Weigh Length Weigh Quali Rat nt Similari display thr	ht: 4 ty: 2728 io: 5,147 ty: 99,623	Average N	Length: Gaps: Identity:	2.912 -2.003 530 0 99.057	
Adonis	palaestina	ε-cyclase	#3 x <i>Adonis</i> ,	palaestina	ε-cyclase #	5
			SSKLAYNIHRYO SSKLAYNIHRYO			
	111.11111111	1111111111	SELLFVQMQQTK SELLFVQMQQTK			
1		11111111111	EAAKLGLKVGLI EAAKLGLKVGLI		1111	
			NDAPVLIGRAYO NDAPVLIGRAYO			
			LVVCENDIFIPO			
1			NPYDPNLMVFME			
		11111111111	SKDAMPFDLLKF SKDAMPFDLLKF			

351	KIYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSLSEAPK	400
351	:	400
401	YASVIAKILKODNSAYVVSGOSSAVNISMOAWSSLWPKERKRORAFFLFG	450
401		450
451	LELIVOLDIEATRTFFRTFRLPTWMWWGFLGSSLSSFDLVLFSMYMFVL	500
451		500
501	APNSMRMSLVRHLLSDPSGAVMVKAYLER* 530	
501		

FIG. 24B

		a L
	. 103 102 102 100 100 100 100 100 100 100 100	54 205 204 204 209 202 202 191 181 182 182 183
**		
		160 * 180 * 200 *
-	KILVE KILVE KILSE KILSE TIKKE TIKKE	
100	HEKOK HEKOK HEKOK HESOS BOAGS BOAGS LIVPE LIVPE LIVPE LIVPE	**=====================================
	ALLE ALLE ALLE ALLE ALLE ALLE ALLE	WANTER BEAUTIES OF THE SERVICE OF TH
*	COMOCO COMO	24 A A C C C C C C C C C C C C C C C C C
	ILFV LLFV LLFV VCVK VCVK VCVK	NEST STREET OF THE STREET OF T
	GGSE GGSE GGSE GGSE GGSE GGSE GGSE GGSE	DDDP DDKP VDAP VDAP DDCP DNDP NNTK NNTK KSTK KSTK
8	DEVKE DETKE DETKE DETKE DETKE DETKE TIL TIL TIL TIL TIC TIC TIC TIC	
	ADEER VDEER VDEER VDEER VDEER VACE VFCE VFCE VFCE VFCE VFCE VFCE VFCE VF	RETT RETT ROTT ROTT ROTY ROTY SGAA SGAA SGAA SGAA
*	OF GF GF GF CGWF- CGWF CGW	180 TEHVO TEHVO TO DATE
	AVRE AYKE AYKE VUKQ VUKQ KLQN KCQK KSQF KKHK	
9	SRSSV SRTSV SRTSV SRTSV SRTSV SDSCV NSTS TFRSV TFRSV TFRSV SPSP	KOLG KOLG KOLG KOLG KOLG KOLG KOLG KOLG
	35SG 36SG 36SG 36SG 36SG 36SG 36SG 36SG 36	
	ASGG VRAD VRAD VRAD VRAD VRAD SCN SKCN SKCN SKCN SKCN SKCN SKCN SKCN	YGVW YGVW YGVW YGVW
*	VOFQ VOFQ VOFG VE VHGF VHGF SNKF	NNAW NNAW NNAW NNAW NNAW NNAW NNAW NNAW
	YRNI RFGL - CSV RASGGGSSGS ESCVAVREDF ADEEDFYKAGGSE I LFVQMQQNKDMDEQSKLVDKIJPP IS YNI HRYGSSCRVDFQVRADGGSGSRSSVAYKEGF VDEEDFIKAGGSEL LFVQMQQTKSMEKQAKLADKIJPP IP YNI HRYGSSCRVDFQVRADGGSGSRTSVAYKEGF VDEEDFIKAGGSEL LFVQMQQTKSMEKQAKLADKIJPP IP RRFTNL SA - SSSLRQI KCSAKSDR CVVDKQG I SVADEEDFYKAGGSEL LFVQMQQTKSMEKQAKLADKIJP IP EKS I FLAY - EQY ESKCNSSSGSDSCVVDKEDF EEEDFYKAGGSEL LFVQMQQTKSMESQSKL SEKIJAQI P KTPNKLDF I PQFHGFE LCSNNPYHSRVRLGVKRA I KIV SSVVSGSAAL LDL VPETKKENIJ DFEL RTHNKL BFL PTLHGFA EKQHL VSTSKLQNQYFRIASRNIH PCRNGTVKASSSAL LEL VPETKKENIJ DFEL KTPNNL EFL LPPHHGF AVKAS FRSEKHHNFGSRKFCEGLG KGVCVKASSSAL LEL VPETKKENIJ DFEL KTPNNL EFL LPPHHGF AVKAS FRSEKHHNFGSRKFCETL KGVCVKASSSAL LEL VPETKKENIJ DFEL KTPNNL EFL LPPHHGF AVKAS FRSEKHHNFGSRK I CENWG KGVCVKASSSAL LEL VPETKKENIJ DFEL KTPNRL ELLYPLHELA KRHFL SPSPNPQNPNFKFFSRKPYQKKCRNGY I GVSSNQL L LOL VPETKKENIJ DFDL RTHNRL ELLYPLHELA KRHFL SPSPNPQNPNFKFFSRKPYQKKCRNGY I GVSSNQL L LOL VPETKKENIJ DFDL	
40	VIRFG HRYG HRYG SIFLA SIRYT NNLE NNLE NNLE NNSE	
	YSYRY LAYNI QQRR QQRR CQEKS CQECS CQECS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQETS CQUE	NVGL NVGL SVCS SVCS SVCS SVCS SVCS SVCS SVCS SVC
*	FPVVKRYSYRNIRFGL-CSVRASGGGSSGSSCSAVREDFADEEDFVKAGGSEILFVQMQQIKSMEVQAKLVDKIJPPIS NLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKEGFVDEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKIPPIP NLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKEGFVDEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKIPPIP HKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADEEDFIKAGGSELLFVQMQQTKSMEKQAKLADKIPPIP WSGGELCQEKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADEEDYIKAGGSELLFVQMQQTKSMESQSKLSEKIAQIP WSGGELCQEKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADEEDYIKAGGSELLFVQMQQTKSMESQSKLSDEIRQIS WSGGELCQEKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADEEDYIKAGGSELLFVQMQQTKSMESQSKLSDEIRQIS WSGGELCQEKSIFLAY-EQYESKCNSSSGSSSSSCVVDKEDFSSVVSGSSALLELVPETKKENIDFEL WDTLLRTHNKLEFLLPHHGFEKQHLVSTSKLQNQVFRIASRNIHPCRNGTVKARGSSALLELVPETKKENIDFEL WDTLLRTPNNLEFLHPVHGFSVKVSAFSSVKSQKFGAKKFCEGLGSRSVCVKASSSALLELVPETKKENIDFEL WDTLLKTPNKLEFLHPVHGFSVKASSFNSVKPHKFGSRKICENMGKGVCVKASSSALLELVPETKKENIDFEL WDTLLRTHNRLELLYPLHELAKRHFLSPSPNPQNPNFKFFSRKPYQKKCRNGYIGVSSNQLLDLVPETKKENIDFEL	120 * 140 * DGALDARESAKLIĞI KYGL IĞDUĞ— ESWOLVVIĞCĞPAGLALAAESAKLIĞI KYGL IĞDUĞ— ESWOLVVIĞCĞPAGLSLAAEAAKLIĞI KYGL IĞDUĞ— ESWOLVVIĞCĞPAGLALAAESAKLIĞI KYGL IĞDUĞ— OTVLDL VVIĞCĞPAGLALAAESAKLIĞI KYGL IĞPDUĞ— OTVLDL VVIĞCĞPAGLALAAESAKLIĞI KYGL IĞPDUĞ— OTVLDL VVIĞCĞPAGLALAAESAKLIĞI KYGL IĞPDUĞ— SQVVÖLAVVĞCĞPAGLAVAQQVSEAĞL KYCS IDĞS—PKI SVVVÖLAVVĞCĞPAGLAVAQQVSEAĞL KYCS IDĞN—PKI SLVVÖLAVVĞCĞPAGLAVAQQVSEAĞL KYCS IDĞN—PKI NVVVÖLAVVĞCĞPAGLAVAQQVSEAĞL KYCS IDĞN—PKI NVVVÖLAVVĞCĞPAGLAVAQQVSEAĞL KYCS IDĞN—PKI NVVVÖLAVVĞCĞP SGLAVAQQVSEAĞL KYCS IDĞN—PKI
	STRNI STRNI	140 AAESAI AAESAI AAESAI AAESAI AAESAI AAESAI AQQVSE AQQVSE AQQVSE AQQVSE AQQVSE
	\$ 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	GLAV GLAL GLSL GLAL GLAV GLAV GLAV GLAV GLAV GLAV
20	SCPW SCPW TCPRI	* 8 8 8 8 8 8 8 8 8 8
	MAVS - IS: WAVF	120 DGALDHWYIGCGBAGLALAAE ESWDLWYIGCGBAGLSLAAE ESWDLWYIGCGBAGLSLAAE OTVLDLWYIGCGBAGLALAAE OTVLDLWYIGCGBAGLALAAE OTVLDLWYIGCGBAGLALAAE SQVVDLAVVGCGBAGLAVAQQ GVVVDLAVVGCGBAGLAVAQQ GVVVDLAVVGCGBAGLAVAQQ GVVVDLAVVGCGBAGLAVAQQ
*	MTATI	SOVODI DE LE SOVOD
	MECVGARNF-AAWAVSTFPSWS-CRRKFPVVKRYSYRNIRFGL-CSVRASGGGSSGSESCVAVREDFADEEDFVKAGGSE1LFVQXQQYKCMDEQSKLVDKIPPIS MELLGVRNLISSCPVWT-FGTRNLSSSKLAYNIHRYGSSCRVDPGVRAGGSGSSSSSVAYKEGFVDEEDFIKAGGSELLFVQXQQYKSMEKQAKLADKIPPIP MELLGVRNLISSCPVWT-FGTRNLSSSKLAYNIHRYGSSCRVDFQVRAGGSGSTSVAYKEGFVDEEDFIKAGGSELLFVQXQQYKSMEKQAKLADKIPPIP MECFGARWMTATWAVFTCPRFTDCNIRHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADEEDFIKAGGSELFVQXQQKKOMQQQKKLSDEIRQIP MECVGARWMTATWAFTCPRFTDCNIRHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADEEDFIKAGGSGLLFVQXQQKKOMQQQKKLSDEIRQIP MECVGARWMTATWAFTCPRFTM	120 * 140 * 160 * 160 * 180 * 180 * 200 *
ΣĀ		120 * 140 * 160 * 160 * 180 * 200 *
25		** ** ** ** ** ** ** ** ** ** ** ** **
(ה) ה	dopsi fel fel fel fel fopsi fopsi fel fel fel fel fel fel fel fel fel fel	E E E E E E E E E E E E E E E E E E E
FIG. 25A	ArabidopsisE AdonisEl AdonisE2 LettuceEE TomatoE ArabidopsisB AdonisB PepperB TomatoB TomatoB MarigoldB	PotatoE ArabidopsisE AdonisE1 AdonisE2 LettuceEE TomatoE ArabidopsisB AdonisB PepperB TomatoB PepperB TomatoB AdonisB DaffodilB
 - à		RA A A A A A A A A A A A A A A A A A A

÷:

40/45 88 291 282 289 ĠŶŚYLSSKŶŒRITEAPNGYSLIEĞEGNITÎPCRLATVĄŚĠAAĞGKFLEŶELGGPRVCŸQTÄŶĞIEFĒŸENNŔŶŨPOĽŃVĠŊĠ---SKHKPESLEAKYPTFLŸŃ௸ ĨĠŶĨĹŶĹŊSKŶĎŖĨVEATNGQSĹVEĈŒĠŎŶVĨŢPĊŖFVŤVĀŠĠAĄŠĠĸFĹQŶĘĹĠSPŖŶSŲĠŢŔŶĠŶĔŶĎŊŇŖĠſŨĎŚĿŶŊŦŖŶŖĠŶ---ĹŔĦĎAQSĹEAKŶPŦFĹŶĄŴŖĄ EVDNNEEDPS LIVER FROM TROY --- VRHDAQS LEAKY PTFLY AMBA ĞŸSYLDSKÄERITEAGOGHSLVVÇENEIFÜPCRLATVÄSGAAĞGKLLEKEVGGPRVCVÇTAYĞVEVÜŞENNÜYÖPNÜÄVFMÜYRDİY——MQQKLQCSEEEYPTFLYÜMÜM GYSYLNSKYJERITEAGDGHSLVVÇENDIFİLPCRLATVASGAASGKLLEİZEVGGPRVCVQTAYGVEVEVEVENIPYÖPNLÜVFMOYROY ----MQQKLQCSEEEYPTFLYİMDM BYDPSUNVEMOYRDY --- TKHKSQSLEAQYPTFLYWNPM PYÖPDCMVEMDYRDY---TNEKVRSLEAEYPTFLYAMPM ſĠ-FŜRCLVQÑD-KPYNPGYQVÄYĞIVĄEVDGHPFQVDKŴFMDWRDKHLDSYPELKERNSKIPTFLYAMAF ĠŶĸFĦQAĸĸĨſĸvIH-EESKSLLĪĞNDGITĪJNATVVLDĀŢĠ-FŜRCLVQŶĎ-KPYNPGŸĞŶĀŸĠĪMĀĒŶĒEĦŖFĎĽDĶŶĹĠŊĸĠĸŔĠSHLNEKLELKDKNRKIPTFLŸĄŴŖF KKFHQAKKIKVIH-EESKSMLIČINGI TIOATVVLOATG-FÄRSLVQKO-KPYNPGYQVAYGI LAEVEEHREDVNKMVFMDARQSHLKNNVELKERNSRIPTFLYAMPF ŴĸFHQAKŴIKVIH-EESKSMLĽĈNDGI TĬŢQATVVLDÄŤG-FŜRSLVQĬD-KPYNPGYQVĄŶĞI LĄĔŸEEHŨFŨVNKÑVFNDÁRDSHLKNNTOLKERNSRĽPTFLYĄMPF ĠŶĸŦĦĦĦĸŶĨſĸvih-Eeaksmličndgvījgatvvldātg-FšrclvgŶD-kpykpgyġŷayĠtlaĒŸeehPfūtskávumomroshlgnnmelkernrkvptflyampf ĠŶĸFĦQAKŶĬſĸvih-Eelkslličndgvījgatlvldātg-FšrslvgŶD-kpynpgyġŶaŸĠtlaĔŸeeHPfōYDkŷJFmomroshldonletkarnsriptflyampf ĠĨ LAĔŸEEHĤFÛVDKŶLFMOWRDSHLDQNLEI KARNSR IPTFLYAMPF ĨĠĨĨŔŖĦŖŎŦĬŶĴŶĸŎĸĦ-EEEKSYLĬŹSDĠVŢĨĮĎARVŶĽĎſĬŖĬĠ-ŖŜŖĊĹŶĠŶĬŎ-KPŶŇPĠŶĨŶŶŶŖĨĹŹĘŶŒŦĤŔſĠĬŶŌŶŶŶŖŶŖŶŖŶŖŶŖŶŖŶŖ ĠŴSYLSSKŸĎS I TEASDGLRL VAČĎDNNVÍ PCRLATVÁSGAAŠGKLLQŶEVGGPRVCVÓTÁYĞVEVĚVENS <u>Ġ</u>ŴSYLSSK<u>Ŵ</u>ERITEAPNGLSLIEŒĠĠŊITĬPCRLATVĀŚĠĄĠĠĸLLQŶĘLGĠPRVCŲĢŤÁŶĠſĒVĒVĒSŢ GWLYLNSKNORIVEATNGHSLVECEGDVVIIPCRFVTVĀSGAĀGKFLONELGGPRVSVQTĀNGVEV OWKFHQSKÄTNVVH-EEANSTVVCSDGVKÄQASVVLDATG ArabidopsisE ArabidopsisB **AarigoldE** .ettuceEE **darigold**B)affodilB Adonis E2 Adonis E1 TomatoE AdonisB obaccoB PepperB [omatoB

WO 99/63055

393 395 391 393 ENSYITHVEGSTRINTEGKTLAFGAAASAVHPATGYSVVRSLSEAPKCAFVLANTURONHSKNMLTSS TKSRĽFFEFICLASKOVMPFOLLKTKLMURUOTUGIRILKTYEEFISYIPYGGSLANTEOKNLAFGAAASMYHPATGYSYYRSUSEAPKYASVIAETUREETTKQINS--SPTRUFFEETCLASKDAMPFDLLKRKLMSRLIKTLIGI QVTKI VEEENSYI PIVGGSL PINTEQKNLAFGAAASNIVHPATGYSIVIRSI SEAPKYASVIAKILKQDNSAYVVSGQ SPTKI FFEET CLASREAMPFINLLKSKLMSRLIKAM GIRITRTY EFFMS YIT PLOG TOTAL FICA AND HIT FOR AND TOTAL STORY OF THE FEET CLASS OF THE STORY OF SPTRLFFEETCLASKDAMPFDLLKRKLMSRLIKTLIGIQVTKVYEFENSYI PVGGSLPNTEQKNLAFGAABNVHPATGYSVYRSLSEARKYABVTAK (LKQDNSAYVVSGQ SPTRYFFEETCLASKDAMPFDLLKKKLMURUNTUGVRIKEIYEEFUSYIHVGGSLANTEOKTLAFGAAASAVHPATGYSYVRSLSEAPKCASVLANTLROHYSKNMLTS-SPTKVIFIFETICI JASKEAMPFELLKTKLMSRLIKTMGI RITKTVIEFE JASYI PVISGSL PINTEOKNLAFIGA JASAN HPATGYSIVINSI SEAPINYAN IAKTLIGKGNSKOMLDHG SSNRTFILEETSLVARPGLRMEDIQERWAARIKHLGINVKRIEGDERCVI PYGGFILPVLPORVVGTGBTAGVVHPSTGYPVARTLAAAPIVANAVRYLGSPSSN----S SSTRÍFELE FÍSLVARPGLKMEDI QERMAVRLKHLÍGI KVKSTEEDERCVÍT FÍNGGÞL FÍVL ÞÓRVLGLÍGI FÁRMVHFSTGYMVÁRTLJAÁAFI VÁKSTI RYLNNEKSM---VAD KTLAAAPIVANSIVOYLVSDSGL----SSTKIFILETISLYARPGLRFEDIQERWARIKHLIGIKVKSIFFICKIFINGGPLPVLPQRVVGIGGTAGMVHPSTGMVARFILAAARVVAKSIVQYLGSDRSL----SSNKIFILEETSLYARPGLRMDDIQERMVÄRLINHLIGIKVKSIEFDEHOVIPMGGSLPVIPQRVVGTGGTÄGLVHPSTGYMVÄRTLÄAARVVÄNAIIHYLGSEKDL----SSNRIFILE FISLYARPGLOMDDIQE RAWARLSHIGIKVKSI EEDEHCVI PAGGPL PVL PQRVGIGG TAGAVHIST GYMVARTLAAA PVVANAI I QYLSSERSH----SSNRIFILEETSLYARPGLRIDDIQERAWARLAHLGIKVKSIEEDEHCLIFPKGGPLPIVLPQRVVGTGGTAGAYHPSTGYWARTLAAAAVVANAIIQYLGSERSH---SSNRIHEETSLVARPGLKMEDIQERNVARLINHIGIRIKSIEEDERCKIRKGEPLEVIRGERVIRKSIEEDER VIRAGERIAAN KOOTGESTAGENIYHE 340 FEEGGJASKDAMPFDLLKKKLMÜRÜNTÜĞVRIKETYÊ ArabidopsisE ArabidopsisB ettuceEE MariqoldE Daffodi 1B **Aarigold**B Adonis E2 PotatoE Idonis E1 FobaccoB AdonisB Pepper8 omatoE TómatoB

F16. 25B

		مياجي	· -
41/4	45		
378 524 529 529 529 533 501 502 503 500 503 503 503 503 503 503	: 103 : 102 : 102 : 107 : 100 : 84	: 57 : 208 : 207 : 207	: 212 : 205 : 194
* "LTF	IPPIS IPPIP IPPIP IAQIP IRQIS	220 VENEVI VESEVS CVESEVS	ESGVS ESGVS ESGVS
0 TLIRTY TMIKTY TMIKTY TLIRTY TLIRTY TMINNI NMINNI	SKLVDK AKLADK AKLADK SKLSEK SKLSDE SSLSQK		A X T
540 SUPTGATI SUPTGATI SUPTGATI SUPTGATI TVP-LVNF	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* 5 5 5 5	
* LIRHLE LVRHCE	G C C C C C C C C C C C C C C C C C C C	GRVSR GRVSR GRVSR GRVSR	GRVHR GRVSR GRVSR
UDWRRGI UNLRKGI USWRYSI USWRKGI USREE UTSREE UTCRVEI UTCRVEI	SELFA SELFA SELFA SOLVA	200 LIGRAY TIGRAY LIGRAY	RIGRAY LIGRAY LIGRAY
520 MFV LAPP MFV LAPP MFV LAPP MFT I LAPP MF	VRASGGGSSGSESCVAVREDFADEEDFVKAGGSETTÉVOMONICIVADECISKÍ VDKLIPPTS VDFQVRADGGSGSRSSVAYKEGFVDEEDFTKAGGSETLÍFVQMONICIVADECISKÍ VDKLIPPTS VDFQVRADGGSGSRTSVAYKEGFVDEEDFTKAGGSETLÍFVQMONICIKSVEKQAKLADKLIPPTP SLRQTKCSAKSDRCVVDKQSTSVADEEDYVKAGGSETLFVQMONICIKSVESQSKLSEKLJAQTP YESKCNSSSGSDSCVVDKEDFADEEDYTKAGGSETLFVQMONICIVADAQSKLSDELRQTSKQTKCNAAKSQLVVKQETEEEEDYVKAGGSETLFVQMONICIVADAQSSTSSGSGVLIPRVP	* 200 * SOMEDE KOLGUQACTEHAMADITIVY LODODRI UTGRAVGRVSRH LHEEL URR GVWEDE FNOLGEQKCTEHVWRETTIVY LODOKRT TIGRAVGRVSRH LHEEL URR GVWEDE FKOLGERCTEHAMKOTTIVY LONDARV GRAVGRVSRH LHEEL URR	ODADPI ODOČEPI ODNOPI
MEALY VIFALY VIFSWY VIFSWY VIFSWY VIFEUSI VIFGUSI VIFGUSI VIFGUSI VIFGUSI	-ADEEC		DTLVYL OTTVYL OTVVYL
SXADU SSFOL SSFOL SSFOL FLPEL FLPEL *	AVREDF- VYKEGF- VOKGGIS VOKEDF- VOKEDF-	180 ACTEHVWF RCTEHVWF RCTEHAWK	I EHSK
MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFIGSS MOGFISSS MOG	SSESCVA SSRSSVA SSRTSVA SSRTSVA SSDSCVA	רפוסאכ ורפוסאכ ורפובאכ	רפובפל
PKWY COC STANDS OF TWANTS	SGGGSSC SADGGSC SADGGSC CCSAKSE CCNSSSC CCNAAKS	DEFK COEFK COEFK	60EFK
ARERU RIFFRL RIFFRL RIFFRL RAFFOL DAFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL MFFOL	SVRAZ SVDEQVI SVDEQVI SSLRQII QYESI	160 TNNYGVI TNNYGVI TNNYGVI	INNYGVI
GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST GIRST	YRNIRFGL-C YNIHRYGSSC YNIHRYGSSC YNIHRYGSSC RRFTNLSA-S EKSIFLAY-E	SPOLPF	SPOLPF SPOLPF SPOLPF
STONAL STONAL STANAL ST	MECUGARNE-AAMAVSTFPSWS-CRRKFPVVKRYSYRNIRFGL-CSVRASGGGSSGSESCVAVREDFADEEDFYKAGGGELLFVQMQQIKSYEKGAKLADKLPPIS MELLGVRNLISSCPVMT-FGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRSSVAYKEGFVDEEDFIKAGGSELLFVQMQQIKSYEKQAKLADKLPPIP MELLGVRNLISSCPVWT-FGTRNLSSSKLAYNIHRYGSSCRVDFQVRADGGSGSRTSVAYKEGFVDEEDFIKAGGSELLFVQMQQIKSYEKQAKLADKLPPIP MECFGARNMTATWAVFTCPRFTDCNIRHKFSLLKQRRFTNLSA-SSSLRQIKCSAKSDRCVVDKQGISVADEEDYVKAGGSELFFVQMQRIKSYESGSKLSEKLAQIP MECVGVQNV-GAWAVLTRPRLNRWSGGELCQEKSIFLAY-EQYESKCNSSSGSDSCVVDKEDFADEEDYVKAGGSELLFVQMQQNKSYSYDAQSSLSDELRQIS MSMRAG-HMTATMAAFTCPRFMTSIRYTKQIKCNAAKSQLVVKQEIEEEEDYVKAGGSELLFVQMQQNKSYSDAQSSISQKLPRVP	* 200 * 220 GUKVGLIGPOLPFTNNYGVWEDEFNOLGLQACTEHVWRETTYYLODOKPITIGRAYGRVSRHLLHEELURRGVESGVS GUKVGLIGPOLPFTNNYGVWEDEFNOLGLGACTEHVWRETTYYLODOKPITIGRAYGRVSRRILHEELURRGVESGVS GUKVGLIGPOLPFTNNYGVWEDEFKOLGLERCTEHAWKOTTYYLONDAPVLIGRAYGRYSRHLLHEELUKRCVESGVS	LGENYGEIGPDLPFTNNYGVAQDEFIGLGGEGCIEHSWKDFLVYLODADPIRIGRAYGRYARDLLHEELLRRCYESGYS LGENYGLYGPDLPFTNNYGVWEDEFKDLGLQACIEHVWRDFIVYLODDEPILIGRAYGRYSRHFLHEELLKRCYENGYL LGENYAEIGPDLPFTNNYGVWEDEFIGLGLEGCIEHVWRDTVVYLODNDFILIGRAYGRYSRDLLHEELFTROYESGYS
FGALI FGALI	RKFPVKR STRNLSSSK STRNLSS STRN	O ESAKLG EAAKLG EAAKLG	ESAKLG ESAKLG ESAKLG
2	S-CRRK IT-FGTR IT-FGTR TDCNIR	140 GLSLANE GLSLANE	8 8 9 8 8 9 8 8 9 8 9 9
20 20 20 20 20 20 20 20 20 20 20 20 20 2	STEPSING SSCPWN SSCPWN SSCPWN FTCPRE	120 * 140 DGALOHVV IGCGPAGLALAAESAKI ESVADLVV IGCGPAGLSLAAEGAKI	NCTLGLVVTGCGPAGLALAAESAKI QTVLDLVVTGCGPAGLALAAESAKI JSNCTLGLVVTGCGPAGLALAGESAKI
* APPTILL APPT		W WOLVY	
STPS-ISTQAWITLWPGERKRORSFFLFGLA SSAVNISRQAWDTLWPFERKRORAFFLFGLA SSAVNISRQAWDTLWPFERKRORAFFLFGLE SSAVNISRQAWFTLWPFERKRORAFFLFGLE KYT-NISRQAWFTLWPFERKRORAFFLFGLA RYTTNISRQAWFTLWPFERKRORAFFLFGLA RYTTNISRQAWFTLWPFERKRORAFFLFGLA SSIPSISTQAWNTLWPFERKRORAFFLFGLA SGDELSAAVWKDLWPFERRROREFFCFGWD -SGNELSTAVWKDLWPFERRROREFFCFGWD VTGDDLAAGIWRELWPFERRROREFFCFGWD -SGNDLSADVWKDLWPFERRROREFFCFGWD -SGNDLSADVWKDLWPFERRROREFFCFGWD -SGNDLSADVWKDLWPFERRROREFFCFGWD -SGNDLSADVWKDLWPFERRROREFFCFGWD	MECVGARNF-AAMAVSTFPSWS-CRRKFPVV MELLGVRNLISSCPVMT-FGTRNLSS MELLGVRNLISSCPVWT-FGTRNLSS MECFGARNMTATMAVFTCPRFTDCNIRHKFS MECVGVQNV-GAMAVLTRPRLNRWSGG	120 06 ES	IGOVELLILIVVIGCGPAGLALAAESAKI NGOTVLDLVVIGCGPAGLALAAESAKI IGGGGDSNCTLIDLVVIGCGPAGLALAGESAKI
ω		<u> </u>	 ශි.ැද්ැයු:
F G. 2 Potatoc Arabidopsisc Adoniscil Lettucece Tomatoc Marigoldc Arabidopsis Pepper Tomatob Towatob Marigolds Marigolds PaffodilB PaffodilB	PotatoE ArabidopsisE AdonisEl AdonisE2 LettuceEE TomatoE MarigoldE	E opsisE E1 E2	eeff E Jdf
F G. PotatoE Arabidops AdonisE1 LettuceEE TomatoE Arabidops AdonisB PepperB TomatoB TomatoB MarigoldB DaffodilB TomatoB TobaccoB	PotatoE Arabidops AdonisE1 AdonisE2 LettuceEE TomatoE	PotatoE ArabidopsisE AdonisE1 AdonisE2	LettuceEE TomatoE MarigoldE

F16. 26B

43/45

WO 99/63055

FIG. 28A

Gap Weight: 12 Average Match: 2.912. Length Weight: 4 Average Mismatch: -2.003 Quality: 1837 Length: 534 Ratio: 3.499 Gaps: 3 Percent Similarity: 76.381 Percent Identity: 69.905 Match display thresholds for the alignment(s): = IDENTITY := 2 . = 1
Arabidopsis x Lettuce
1 MECVGARNF.AAMAVSTFPSWSCRRKFPVVKRYSYRNIRFGLCSVRA 46 46
47 SGGGSSGSESCVAVREDFADEEDFVKAGGSEILFVQMQQNKDMDEQSKLV 96
97 DKLPPISIGDGALDHVVIGCGPAGLALAAESAKLGLKVGLIGPDLPFTNN 146 : .
147 YGVWEDEFNDLGLQKCIEHVWRETIVYLDDDKPITIGRAYGRVSRRLLHE 196 : :: :
197 ELLRRCVESGVSYLSSKVDSİTEASDGLRLVACDDNNAIPCRLATVASGA 246
201 ÉLLRRCVÉSGVSÝLSSKVERÍTEÁPNGYSLIECEGNITÍPCRLÁTVÁSGÁ 250
247 ASGKLLQYEVGGPRVCVQTAYGVEVEVENSPYDPDQMVFMDYRDYTNEKV 296 : . : .
297 RSLEAEYPTFLYAMPMTKSRLFFEETCLASKDVMPFDLLKTKLMLRLDTL 346
301 ESLEAKYPTFLYVMAMSPTKIFFEETCLASREAMPFNLLKSKLMSRLKAM 350

FIG. 28B

347	GIRILKTYEEEWSYIPVGGSLPNTEQKNLAFGAAASMVHPATGYSVVRSL	396
351	:	400
397	SEAPKYASVIAEILREETTKQINSNISRQAWDTLWPPERKRQRAF	441
401	. . :: . :. : : SEAPNYAAVIAKILRQDQSKEMISLGKYTNISKQAWETLWPLERKRQRAF	450
442	FLFGLALIVOFDTEGIRSFFRTFFRLPKWMWQGFLGSTLTSGDLVLFALY	491
451	. .	500
	MFVISPNNLRKGLINHLISDPTGATMIKTYLKV* 525	
501	. : : : : MFVIAPHSLRMELVRHLLSDPTGATMVKAYLTI* 534	

SEQUENCE LISTING

<11	.0> (CUNN) SUN,	NGHA ZAIF	M JF REN	ļ., F	RANC	is x	۲.								
<12	0 < 0 !	> GENES OF CAROTENOID BIOSYNTHESIS AND METABOLISM AND METHODS OF USE THEREOF														
<13	0> 8	3172-	9023													
<14 <14	0> N 1> 1	ЮТ Y .999-	ET A	SSIG	NED											
<15 <15	0> 0 1> 1	9/08 998-	8,72 06-0	4 2												
<15 <15	0> 0 1> 1	9/08 998-	8,72 06-0	5 2												
<16	0> 6	1														
<17	0> F	aten	tIn	Ver.	2.0											
<21 <21	0> 1 1> 1 2> D 3> A	860 NA	dops	is t	hali.	ana										
	1> C		(1	680)												
	0> 1 AAAG	GAA .	ATAA'	TTAG	AT TO	CCTC	TTTC'	T GC	TTGC	ТАТА	CCT	TGAT.	AGA .	ACAA	TATAAC	60
AAT(GGTG	TAA	GTCT'	TCTC	GC T	GTAT'	rcga:	А АТ'	TATT'	TGGA	GGA	ggaa.	Me		G TGT u Cys	117
STT /al	GGG Gly 5	GCT Ala	AGG Arg	AAT Asn	TTC Phe	GCA Ala 10	GCA Ala	ATG Met	GCG Ala	GTT Val	TCA Ser 15	ACA Thr	TTT Phe	CCG Pro	TCA Ser	165
rgg rp 20	AGT Ser	TGT Cys	CGA Arg	AGG Arg	AAA Lys 25	TTT Phe	CCA Pro	GTG Val	GTT Val	AAG Lys 30	AGA Arg	TAC Tyr	AGC Ser	TAT Tyr	AGG Arg 35	213
AAT Asn	ATT Ile	CGT Arg	TTC Phe	GGT Gly 40	TTG Leu	TGT Cys	AGT Ser	GTC Val	AGA Arg 45	GCT Ala	AGC Ser	GGC Gly	GGC Gly	GGA Gly 50	AGT Ser	261
CC Ser	GGT Gly	AGT Ser	GAG Glu 55	AGT Ser	TGT Cys	GTA Val	GCG Ala	GTG Val 60	AGA Arg	GAA Glu	GAT Asp	TTC Phe	GCT Ala 65	GAC Asp	GAA Glu	309
AA Slu	GAT Asp	TTT Phe 70	GTG Val	AAA Lys	GCT Ala	GGT Gly	GGT Gly 75	TCT Ser	GAG Glu	ATT Ile	CTA Leu	TTT Phe 80	GTT Val	CAA Gln	ATG Met	357
AG	CAG	AAC	AAA	GAT	ATG	GAT	GAA	CAG	тст	AAG	СТТ	GTT	САТ	AAG	ምም ር	405

PCT/US99/12121

WO 99/63055

Gln	Gln 85	Asn	Lys	Asp	Met	Asp 90	Glu	Gln	Ser	Lys	Leu 95	Val	Asp	Lys	Leu	
CCT Pro 100	CCT Pro	ATA Ile	TCA Ser	ATT Ile	GGT Gly 105	GAT Asp	GGT Gly	GCT Ala	TTG Leu	GAT Asp 110	His	GTG Val	GTT Val	ATT Ile	GGT Gly 115	453
					Leu								AAG Lys			501
TTA Leu	AAA Lys	GTT Val	GGA Gly 135	CTC Leu	ATT Ile	GGT Gly	CCA Pro	GAT Asp 140	CTT Leu	CCT Pro	TTT Phe	ACT Thr	AAC Asn 145	AAT Asn	TAC Tyr	549
GGT Gly	GTT Val	TGG Trp 150	GAA Glu	GAT Asp	GAA Glu	TTC Phe	AAT Asn 155	GAT Asp	CTT Leu	GGG Gly	CTG Leu	CAA Gln 160	AAA Lys	TGT Cys	ATT Ile	597
GAG Glu	CAT His 165	GTT Val	TGG Trp	AGA Arg	GAG Glu	ACT Thr 170	ATT Ile	GTG Val	TAT Tyr	CTG Leu	GAT Asp 175	GAT Asp	GAC Asp	AAG Lys	CCT Pro	645
ATT Ile 180	ACC Thr	ATT Ile	GGC Gly	CGT Arg	GCT Ala 185	TAT Tyr	GGA Gly	AGA Arg	GTT Val	AGT Ser 190	CGA Arg	CGT Arg	TTG Leu	CTC Leu	CAT His 195	693
GAG Glu	GAG Glu	CTT Leu	TTG Leu	AGG Arg 200	AGG Arg	TGT Cys	GTC Val	GAG Glu	TCA Ser 205	GGT Gly	GTC Val	TCG Ser	TAC Tyr	CTT Leu 210	AGC Ser	741
													AGA Arg 225			789
GCT Ala	TGT Cys	GAC Asp 230	GAC Asp	AAT Asn	AAC Asn	GTC Val	ATT Ile 235	CCC Pro	TGC Cys	AGG Arg	CTT Leu	GCC Ala 240	ACT Thr	GTT Val	GCT Ala	837
													GGT Gly			885
AGA Arg 260	GTC Val	TGT Cys	GTG Val	CAA Gln	ACT Thr 265	GCA Ala	TAC Tyr	GGC Gly	GTG Val	GAG Glu 270	GTT Val	GAG Glu	GTG Val	GAA Glu	AAT Asn 275	933
AGT Ser	CCA Pro	TAT Tyr	GAT Asp	CCA Pro 280	GAT Asp	CAA Gln	ATG Met	GTT Val	TTC Phe 285	ATG Met	GAT Asp	TAC Tyr	AGA Arg	GAT Asp 290	TAT Tyr	981
													ACG Thr 305			1029
													GAG Glu			1077
													ACG Thr			1125

WO	99/63055	•

PCT/US99/12121

325		330	33	35	- 2
ATG TTA AGA Met Leu Arg 340	TTA GAT ACA Leu Asp Thr 345	CTC GGA ATT Leu Gly Ile	CGA ATT CT Arg Ile Le 350	TA AAG ACT TAC eu Lys Thr Tyr	GAA 1173 Glu 355
GAG GAG TGG Glu Glu Trp	TCC TAT ATC Ser Tyr Ile 360	CCA GTT GGT Pro Val Gly	GGT TCC TI Gly Ser Le 365	IG CCA AAC ACC eu Pro Asn Thr 370	GAA 1221 Glu
GIN Lys Asn	CTC GCC TTT Leu Ala Phe 375	GGT GCT GCC Gly Ala Ala 380	Ala Ser Me	TG GTA CAT CCC et Val His Pro 385	GCA 1269 Ala
ACA GGC TAT Thr Gly Tyr 390	TCA GTT GTG Ser Val Val	AGA TCT TTG Arg Ser Leu 395	TCT GAA GC Ser Glu Al	CT CCA AAA TAT la Pro Lys Tyr 400	GCA 1317 Ala
TCA GTC ATC Ser Val Ile 405	GCA GAG ATA Ala Glu Ile	CTA AGA GAA Leu Arg Glu 410	GAG ACT AC Glu Thr Th 41	CC AAA CAG ATC or Lys Gln Ile 15	AAC 1365 Asn
AGT AAT ATT Ser Asn Ile 420	TCA AGA CAA Ser Arg Gln 425	GCT TGG GAT Ala Trp Asp	ACT TTA TG Thr Leu Tr 430	GG CCA CCA GAA	AGG 1413 Arg 435
AAA AGA CAG . Lys Arg Gln .	AGA GCA TTC Arg Ala Phe 440	TTT CTC TTT Phe Leu Phe	GGT CTT GC Gly Leu Al 445	CA CTC ATA GTT La Leu Ile Val 450	CAA 1461 Gln
Phe Asp Thr	GAA GGC ATT Glu Gly Ile 455	AGA AGC TTC Arg Ser Phe 460	TTC CGT AC	CT TTC TTC CGC or Phe Phe Arg 465	CTT 1509 Leu
CCA AAA TGG 2 Pro Lys Trp 1 470	ATG TGG CAA Met Trp Gln	GGG TTT CTA Gly Phe Leu 475	GGA TCA AC Gly Ser Th	CA TTA ACA TCA or Leu Thr Ser 480	GGA 1557 Gly
GAT CTC GTT (Asp Leu Val : 485	CTC TTT GCT Leu Phe Ala	TTA TAC ATG Leu Tyr Met 490	TTC GTC AT Phe Val II 49	TT TCA CCA AAC e Ser Pro Asn	AAT 1605 Asn
Leu Arg Lys	GGT CTC ATC Gly Leu Ile 505	Asn His Leu	ATC TCT GA Ile Ser As 510	AT CCA ACC GGA	GCA 1653 Ala 515
ACC ATG ATA A	AAA ACC TAT Lys Thr Tyr 520	CTC AAA GTA Leu Lys Val	TGATTTACTT	ATCAACTCTT	1700
AGGTTTGTGT A	TATATATGT TO	GATTTATCT GA	ATAATCGA TC	CAAAGAATG GTATG	TGGGT 1760
TACTAGGAAG T	TGGAAACAA AC	CATGTATAG AA	TCTAAGGA GT	GATCGAAA TGGAG	ATGGA 1820
AACGAAAAGA A	AAAAATCAG TO	TTTGTTTT GT	GGTTAGTG		1860

<210> 2 <211> 524 <212> PRT <213> Arabidopsis thaliana

WO 99/63055

360

420

480

Glu Thr Cys Leu Ala Ser Lys Asp Val Met Pro Phe Asp Leu Leu Lys 325 330 335											
Thr Lys Leu Met Leu Arg Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys 340 345 350											
Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro 355 360 365											
Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val 370 375 380											
His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro 385 390 395 400											
Lys Tyr Ala Ser Val Ile Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys 405 410 415											
Gln Ile Asn Ser Asn Ile Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro 420 425 430											
Pro Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu 435 440 445											
Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe 450 455 460											
Phe Arg Leu Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Thr Leu 465 470 475 480											
Thr Ser Gly Asp Leu Val Leu Phe Ala Leu Tyr Met Phe Val Ile Ser 485 490 495											
Pro Asn Asn Leu Arg Lys Gly Leu Ile Asn His Leu Ile Ser Asp Pro 500 505 510											
Thr Gly Ala Thr Met Ile Lys Thr Tyr Leu Lys Val 515											
<210> 3 <211> 956 <212> DNA <213> Arabidopsis thaliana											
<400> 3 GCTCTTTCTC CTCCTCCT ACCGATTTCC GACTCCGCCT CCCGAAATCC TTATCCGGAT	60										
TCTCTCCGTC TCTTCGATTT AAACGCTTTT CTGTCTGTTA CGTCGTCGAA GAACGGAGAC	120										
AGAATTCTCC GATTGAGAAC GATGAGAGAC CGGAGAGCAC GAGCTCCACA AACGCTATAG	180										
ACGCTGAGTA TCTGGCGTTG CGTTTGGCGG AGAAATTGGA GAGGAAGAAA TCGGAGAGGT	240										
CCACTTATCT AATCGCTGCT ATGTTGTCGA GCTTTTGGTAT CACTTCTATG GCTGTTATGG	300										

CTGTTTACTA CAGATTCTCT TGGCAAATGG AGGGAGGTGA GATCTCAATG TTGGAAATGT

TTGGTACATT TGCTCTCTC GTTGGTGCTG CTGTTGGTAT GGAATTCTGG GCAAGATGGG

CTCATAGAGC TCTGTGGCAC GCTTCTCTAT GGAATATGCA TGAGTCACAT CACAAACCAA

WO 99/63055

PCT/US99/12121

540

600

660

720

780

840 .

900 956

					-										
GAG	AAGG.	ACC	GTTT	GAGC'	TA A	ACGA'	rgtt:	T TT	GCTA'	TAGT	GAA	CGCT	GGT (CCAG	CGATTG
GTC	TCCT	CTC	TATT	GGAT'	TC T'	rcaa'	TAAA	G GA	CTCG!	rtcc [°]	TGG	TCTC'	rgc '	TTTG	GCGCC'G
GGT	TAGG	CAT .	AACG	GTGT'	TT G	GAAT(CGCC'	r AC	ATGT:	ГТGТ	CCA	CGAT	GGT (CTCG'	rgcaca
AGCGTTTCCC TGTAGGTCCC ATCGCCGACG TCCCTTACCT CCGAAAGGTC GCCGCCGCTC															
ACCAGCTACA TCACACAGAC AAGTTCAATG GTGTACCATA TGGACTGTTT CTTGGACCCA															
AGGAATTGGA AGAAGTTGGA GGAAATGAAG AGTTAGATAA GGAGATTAGT CGGAGAATCA															
AAT	CATA	CAA :	AAAG	GCCT	CG G	SCTC	CGGG:	r cg	AGTT	CGAG	TTC	rtga(CTT	AAAT	CAAGTT
TTA	AATC	CCA .	AATT	CTTT'	TT T	rgtc	rtct	G TC	ATTA	rgat	CAT	CTTA	AGA (CGGT	CT
<21 <21	TTAAATCCCA AATTCTTTTT TTGTCTTCTG TCATTATGAT CATCTTAAGA CGGTCT <210> 4 <211> 294 <212> PRT <213> Arabidopsis thaliana														
	0> 4	Ser	Sar	Sor	S-2-	Ωb ~	7	Db -	7	7	.		_	_	
1	1110		261	5	Ser	1111	ASP	rne	10	ren	Arg	Leu	Pro	Lys 15	Ser
Leu	Ser	Gly	Phe 20	Ser	Pro	Ser	Leu	Arg 25	Phe	Lys	Arg	Phe	Ser 30	Val	Cys
Tyr	Val	Val 35	Glu	Glu	Arg	Arg	Gln 40	Asn	Ser	Pro	Ile	Glu 45	Asn	Asp	Glu
Arg	Pro 50	Glu	Ser	Thr	Ser	Ser 55	Thr	Asn	Ala	Ile	Asp 60	Ala	Glu	Tyr	Leu
Ala 65	Leu	Arg	Leu	Ala	Glu 70	Lys	Leu	Glu	Arg	Lys 75	Lys	Ser	Glu	Arg	Ser 80
Thr	Tyr	Leu	Ile	Ala 85	Ala	Met	Leu	Ser	Ser 90	Phe	Gly	Ile	Thr	Ser 95	Met.
Ala	Val	Met	Ala 100	Val	Tyr	Tyr	Arg	Phe 105	Ser	Trp	Gln	Met	Glu 110	Gly	Gly
Glu	Ile	Ser 115	Met	Leu	Glu	Met	Phe 120	Gly	Thr	Phe	Ala	Leu 125	Ser	Val	Gly
Ala	Ala 130	Val	Gly	Met	Glu	Phe 135	Trp	Ala	Arg	Trp	Ala 140	His	Arg	Ala	Leu
Trp 145	His	Ala	Ser	Leu	Trp 150	Met	Asn	His	Glu	Ser 155	His	His	Lys	Pro	Arg 160
Glu	Gly	Pro	Phe	Glu 165	Leu	Asn	Asp	Val	Phe 170	Ala	Ile	Val	Asn	Ala 175	Gly
Pro	Ala	Ile	Gly 180	Leu	Leu	Ser	Tyr	Gly 185	Phe	Phe	Asn	Lys	Gly 190	Leu	Val

۲.

Pro Gly Leu Cys Phe Gly Ala Gly Leu Gly Ile Thr Val Phe Gly Ile 195 200

- Ala Tyr Met Phe Val His Asp Gly Leu Val His Lys Arg Phe Pro Val 210 220
- Gly Pro Ile Ala Asp Val Pro Tyr Leu Arg Lys Val Ala Ala Ala His 225 230 235 240
- Gln Leu His His Thr Asp Lys Phe Asn Gly Val Pro Tyr Gly Leu Phe 245 250 255
- Leu Gly Pro Lys Glu Leu Glu Glu Val Gly Gly Asn Glu Glu Leu Asp 260 265 270
- Lys Glu Ile Ser Arg Arg Ile Lys Ser Tyr Lys Lys Ala Ser Gly Ser 275 280 285
- Gly Ser Ser Ser Ser Ser 290
- <210> 5
- <211> 162
- <212> PRT
- <213> Alicalgenes sp.
- <400> 5
- Met Thr Gln Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15
- Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30
- Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45
- Asn Asp Leu Tyr Gly Val Val Phe Ala Val Leu Ala Thr Ile Leu Phe 50 55 60
- Thr Val Gly Ala Tyr Trp Trp Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80
- Met Thr Val Tyr Gly Leu Ile Tyr Phe Ile Leu His Asp Gly Leu Val 85 90 95
- His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Arg Gly Tyr Phe Arg 100 105 110
- Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125
- His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140
- Lys Gln Asp Leu Lys Arg Ser Gly Val Leu Arg Pro Gln Asp Glu Arg 145 150 155 160
- Pro Ser
- <210> 6
- <211> 175
- <212> PRT
- <213> Erwinia herbicola

Ile Ala Ala Phe Thr His Arg Tyr Ile Met His Gly Trp Gly Trp Arg
20 .25 30

Trp His Glu Ser His His Thr Pro Arg Lys Gly Val Phe Glu Leu Asn 35 40 45

Asp Leu Phe Ala Val Val Phe Ala Gly Val Ala Ile Ala Leu Ile Ala 50 55 60

Val Gly Thr Ala Gly Val Trp Pro Leu Gln Trp Ile Gly Cys Gly Met 65 70 75 80

Thr Val Tyr Gly Leu Leu Tyr Phe Leu Val His Asp Gly Leu Val His 85 90 95

Gln Arg Trp Pro Phe His Trp Ile Pro Arg Arg Gly Tyr Leu Lys Arg 100 105 110

Leu Tyr Val Ala His Arg Leu His His Ala Val Arg Gly Arg Glu Gly 115 120 125

Cys Val Ser Phe Gly Phe Ile Tyr Ala Arg Lys Pro Ala Asp Leu Gln 130 135 140

Ala Ile Leu Arg Glu Arg His Gly Arg Pro Pro Lys Arg Asp Ala Ala 145 150 155 160

Lys Asp Arg Pro Asp Ala Ala Ser Pro Ser Ser Ser Pro Glu 165 170 175

<210> 7

<211> 175

<212> PRT

<213> Erwinia uredovora

<400> 7

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly
1 5 10 15

Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 25 30

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu 50 55 60

Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly 65 70 75 80

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110

WO 99/63055

60

120

Leu	Lys	Arg 115	Leu	Tyr	Met	Ala	His 120	Arg	Met	His	His	Ala 125	Val	Arg	Gly
Lys	Glu 130	Gly	Cys	Val	Ser	Phe 135	Gly	Phe	Leu	Tyr	Ala 140	Pro	Pro	Leu	Ser
Lys 145	Leu	Gln	Ala	Thr	Leu 150	Arg	Glu	Arg	His	Gly 155	Ala	Arg	Ala	Gly	Ala 160
Ala	Arg	Asp	Ala	Gln 165	Gly	Gly	Glu	Asp	Glu 170	Pro	Ala	Ser	Gly	Lys 175	
<21:	0> 8 1> 10 2> PI 3> A	RT	acte	rium	auri	ianti	icum								,
	0> 8 Thr	Asn	Phe	Leu 5	Ile	Val	Val	Ala	Thr 10	Val	Leu	Val	Met	Glu 15	Leu
Thr	Ala	Tyr	Ser 20	Val	His	Arg	Trp	Ile 25	Met	His	Gly	Pro	Leu 30	Gly	Trp
Gly	Trp	His 35	Lys	Ser	His	His	Glu 40	Glu	His	Asp	His	Ala 45	Leu	Glu	Lys
Asn	Asp 50	Leu	Tyr	Gly	Leu	Val 55	Phe	Ala	Val	Ile	Ala 60	Thr	Val	Leu	Phe
Thr 65	Val	Gly	Trp	Ile	Trp 70	Ala	Pro	Val	Leu	Trp 75	Trp	Ile	Ala	Leu	Gly 80
Met	Thr	Val	Tyr	Gly 85	Leu	Ile	Tyr	Phe	Val 90	Leu	His	Asp	Gly	Leu 95	Val
His	Trp	Arg	Trp 100	Pro	Phe	Arg	Tyr	Ile 105	Pro	Arg	Lys	Gly	Tyr 110	Ala	Arg
Arg	Leu	Tyr 115	Gln	Ala	His	Arg	Leu 120	His	His	Ala	Val	Glu 125	Gly	Arg	Asp
His	Cys 130	Val	Ser	Phe	Gly		Ile				Pro 140	Val	Asp	Lys	Leu
Lys 145	Gln	Asp	Leu	Lys	Met 150	Ser	Gly	Val	Leu	Arg 155	Ala	Glu	Ala	Gln	Glu 160
Arg	Thr														
<212	l> 95 2> Di	AF	dopsi	is th	nalia	ana									
<400 CCA	_	rcc (SCCTO	cccc	ST TI	TTTT	rccga	A TCC	CGATO	CTCC	GGT	SCCG <i>P</i>	AGG P	ACTC	AGCTGT

TTGTTCGCGC TTTCTCAGCC GTCACCATGA CCGATTCTAA CGATGCTGGA ATGGATGCTG

WO 99/63055 PCT/US99/12121

TTCAGAGACG	ACTCATGTTT	GAAGACGAAT	GCATTCTCGT	TGATGAAAAT	AATCGTGTGG	180
TGGGACATGA	CACTAAGTAT	AACTGTCATC	TGATGGAAAA	GATTGAAGCT	GAGAATTTAC	240
TTCACAGAGC	TTTCAGTGTG	TTTTTATTCA	ACTCCAAGTA	TGAGTTGCTT	CTCCAGCAAC	300
GGTCAAAAAC	AAAGGTTACT	TTCCCACTTG	TGTGGACAAA	CACTTGTTGC	AGCCATCCTC	360
TTTACCGTGA	ATCCGAGCTT	ATTGAAGAGA	ATGTGCTTGG	TGTAAGAAAT	GCCGCACAAA	420
GGAAGCTTTT	CGATGAGCTC	GGTATTGTAG	CAGAAGATGT	ACCAGTCGAT	GAGTTCACTC	480
CCTTGGGACG	CATGCTTTAC	AAGGCACCTT	CTGATGGGAA	ATGGGGAGAG	CACGAAGTTG	540
ACTATCTACT	CTTCATCGTG	CGGGATGTGA	AGCTTCAACC	AAACCCAGAT	GAAGTGGCTG	600
AGATCAAGTA	CGTGAGCAGG	GAAGAGCTTA	AGGAGCTGGT	GAAGAAAGCA	GATGCTGGCG	660
ATGAAGCTGT	GAAACTATCT	CCATGGTTCA	GATTGGTGGT	GGATAATTTC	TTGATGAAGT	720
GGTGGGATCA	TGTTGAGAAA	GGAACTATCA	CTGAAGCTGC	AGACATGAAA	ACCATTCACA	780
AGCTCTGAAC	TTTCCATAAG	TTTTGGATCT	TCCCCTTCCC	ATAATAAAT	TAAGAGATGA	840
GACTTTTATT	GATTACAGAC	AAAACTGGCA	ACAAAATCTA	TTCCTAGGAT	TTTTTTTTGC	900
ATTTATTTA	CTTTTGATTC	ATCTCTAGTT	TAGTTTTCAT	СТТАААААА	AAAA	954
<210> 10 <211> 996 <212> DNA <213> Arab	idopsis tha	liana		·		
<400> 10 CACCAATGTC	TGTTTCTTCT	ТТАТТТААТС	TCCCATTGAT	TCGCCTCAGA	TCTCTCGCTC	60
				TCTGTCATCG		120
				GACAGATACT		180
GTATGGATGC	TGTTCAGAGA	CGTCTCATGT	TTGAGGATGA	ATGCATTCTT	GTTGATGAAA	240
CTGATCGTGT	TGTGGGGCAT	GTCAGCAAGT	ATAATTGTCA	TCTGATGGAA	AATATTGAAG	300
CCAAGAATTT	GCTGCACAGG	GCTTTTAGTG	TATTTTTATT	CAACTCGAAG	TATGAGTTGC	360
TTCTCCAGCA	AAGGTCAAAC	ACAAAGGTTA	CGTTCCCTCT	AGTGTGGACT	AACACTTGTT	420
GCAGCCATCC	TCTTTACCGT	GAATCAGAGC	TTATCCAGGA	CAATGCACTA	GGTGTGAGGA	480
ATGCTGCACA	AAGAAAGCTT	CTCGATGAGC	TTGGTATTGT	AGCTGAAGAT	GTACCAGTCG	540
ATGAGTTCAC	TCCCTTGGGA	CGTATGCTGT	ACAAGGCTCC	TTCTGATGGC	AAATGGGGAG	600
AGCATGAACT	TGATTACTTG	CTCTTCATCG	TGCGAGACGT	GAAGGTTCAA	CCAAACCCAG	660

720

780

ATGAAGTAGC TGAGATCAAG TATGTGAGCC GGGAAGAGCT GAAGGAGCTG GTGAAGAAAG

CAGATGCAGG TGAGGAAGGT TTGAAACTGT CACCATGGTT CAGATTGGTG GTGGACAATT

BNSDOCID: <WO 996305541 IA>

WO 99/63055	

4	
1	
•	

PCT/US99/12121

TCTTGATGAA	GTGGTGGGAT	CATGTTGAGA	AAGGAACTTT	GGTTGAAGCT	ATAGACATGA	840
AAACCATCCA	CAAACTCTGA	ACATCTTTTT	TTAAAGTTTT	ТАААТСААТС	AACTTTCTCT	900
TCATCATTTT	TATCTTTTCG	ATGATAATAA	TTTGGGATAT	GTGAGACACT	TACAAAACTT	960
CCAAGCACCT	CAGGCAATAA	TAAAGTTTGC	GGCCGC			996
<210> 11 <211> 1165 <212> DNA <213> Haema	atococcus pi	luvialis			·	
	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCCCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA	AGCTCAGGAG	CATGCAGATG	ACGCTCATGC	180
AGCCCAGCAT	CTCAGCCAAT	CTGTCGCGCG	CCGAGGACCG	CACAGACCAC	ATGAGGGGTG	240
CAAGCACCTG	GGCAGGCGGG	CAGTCGCAGG	ATGAGCTGAT	GCTGAAGGAC	GAGTGCATCT	300
TGGTGGATGT	TGAGGACAAC	ATCACAGGCC	ATGCCAGCAA	GCTGGAGTGT	CACAAGTTCC	360
TACCACATCA	GCCTGCAGGC	CTGCTGCACC	GGGCCTTCTC	TGTGTTCCTG	TTTGACGATC	420
AGGGGCGACT	GCTGCTGCAA	CAGCGTGCAC	GCTCAAAAAT	CACCTTCCCA	AGTGTGTGGA	480
CGAACACCTG	CTGCAGCCAC	CCTTTACATG	GGCAGACCCC	AGATGAGGTG	GACCAACTAA	540
GCCAGGTGGC	CGACGGAACA	GTACCTGGCG	CAAAGGCTGC	TGCCATCCGC	AAGTTGGAGC	600
ACGAGCTGGG	GATACCAGCG	CACCAGCTGC	CGGCAAGCGC	GTTTCGCTTC	CTCACGCGTT	660
TGCACTACTG	TGCCGCGGAC	GTGCAGCCAG	CTGCGACACA	ATCAGCGCTC	TGGGGCGAGC	720
ACGAAATGGA	CTACATCTTG	TTCATCCGGG	CCAACGTCAC	CTTGGCGCCC	AACCCTGACG	780
AGGTGGACGA	AGTCAGGTAC	GTGACGCAAG	AGGAGCTGCG	GCAGATGATG	CAGCCGGACA	840
ACGGGCTGCA	ATGGTCGCCG	TGGTTTCGCA	TCATCGCCGC	GCGCTTCCTT	GAGCGTTGGT	900
GGGCTGACCT	GGACGCGGCC	CTAAACACTG	ACAAACACGA	GGATTGGGGA	ACGGTGCATC	960
ACATCAACGA	AGCGTGAAAG	CAGAAGCTGC	AGGATGTGAA	GACACGTCAT	GGGGTGGAAT	1020
TGCGTACTTG	GCAGCTTCGT	ATCTCCTTTT	TCTGAGACTG	AACCTGCAGT	CAGGTCCCAC	1080
AAGGTCAGGT	AAAATGGCTC	GATAAAATGT	ACCGTCACTT	TTTGTCGCGT	ATACTGAACT	1140
CCAAGAGGTC	AAAAAAAAA	AAAAA				1165

<210> 12 <211> 1135 <212> DNA

<213> Haematococcus pluvialis

PCT/US99/12121

WO 99/63055	

<400> 12 CTCGGTAGCT	GGCCACAATC	GCTATTTGGA	ACCTGGCCCG	GCGGCAGTCC	GATGCCGCGA	60
TGCTTCGTTC	GTTGCTCAGA	GGCCTCACGC	ATATCCCGCG	CGTGAACTCC	GCCCAGCAGC	120
CCAGCTGTGC	ACACGCGCGA	CTCCAGTTTA	AGCTCAGGAG	CATGCAGCTG	CTTTCCGAGG	180
ACCGCACAGA	CCACATGAGG	GGTGCAAGCA	CCTGGGCAGG	CGGGCAGTCG	CAGGATGAGC	240
TGATGCTGAA	GGACGAGTGC	ATCTTGGTAG	ATGTTGAGGA	CAACATCACA	GGCCATGCCA	300
GCAAGCTGGA	GTGTCACAAG	TTCCTACCAC	ATCAGCCTGC	AGGCCTGCTG	CACCGGGCCT	360
TCTCTGTGTT	CCTGTTTGAC	GATCAGGGGC	GACTGCTGCT	GCAACAGCGT	GCACGCTCAA	420
AAATCACCTT	CCCAAGTGTG	TGGACGAACA	CCTGCTGCAG	CCACCCTTTA	CATGGGCAGA	480
CCCCAGATGA	GGTGGACCAA	CTAAGCCAGG	TGGCCGACGG	AACAGTACCT	GGCGCAAAGG	540
CTGCTGCCAT	CCGCAAGTTG	GAGCACGAGC	TGGGGATACC	AGCGCACCAG	CTGCCGGCAA	600
GCGCGTTTCG	CTTCCTCACG	CGTTTGCACT	ACTGTGCCGC	GGACGTGCAG	CCAGCTGCGA	660
CACAATCAGC	GCTCTGGGGC	GAGCACGAAA	TGGACTACAT	CTTGTTCATC	CGGGCCAACG	720
TCACCTTGGC	GCCCAACCCT	GACGAGGTGG	ACGAAGTCAG	GTÄCGTGACG	CAAGAGGAGC	780
TGCGGCAGAT	GATGCAGCCG	GACAACGGGC	TTCAATGGTC	GCCGTGGTTT	CGCATCATCG	840
CCGCGCGCTT	CCTTGAGCGT	TGGTGGGCTG	ACCTGGACGC	GGCCCTAAAC	ACTGACAAAC	900
ACGAGGATTG	GGGAACGGTG	CATCACATCA	ACGAAGCGTG	AAGGCAGAAG	CTGCAGGATG	960
TGAAGACACG	TCATGGGGTG	GAATTGCGTA	CTTGGCAGCT	TCGTATCTCC	TTTTTCTGAG	1020
ACTGAACCTG	CAGAGCTAGA	GTCAATGGTG	CATCATATTC	ATCGTCTCTC	TTTTGTTTTA	1080
GACTAATCTG	TAGCTAGAGT	CACTGATGAA	TCCTTTACAA	CTTTCAAAAA	AAAAA	1135
<210> 13 <211> 960 <212> DNA <213> Taget	ces erecta					
<400> 13	СТСАААТСТС	CTCCCTCCCT	· • • • • • • • • • • • • • • • • • • •	CATCCCTCAC	Ch Cmaaaaa	60
	TCAGCGACGT	4		•		60
	GGGACATGAT					120
	GCACAGAGCA					180
						240
	GTCTGCAACC					300
*	CTACAGAGAA					360
	NNNNNNNNN		•			420
иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	иииииииии	480

,

WO 99/63055			,	PCT/US99/12121
и инининини инининини инининини	иииииииии	инининини	ทททททททท	N 540
и пинининини пинининини инининини	имимимими	иииииииии	иииииииии	N 600

					_	
ииииииииии	ииииииииии	ииииииииии	ииииииииии	иииииииии	имимимими	600
ииииииииии	иииииииии	имимимими	имимимими	иииииииии	иииииииии	660
имимимими	ииииииииии	TCATGTGCAA	AAGGGTACAC	TCACTGAATG	CAATTTGATA	720
TGAAAACCAT	ACACAAGCTG	ATATAGAAAC	ACACCCTCAA	CCGAAAAGCA	AGCCTAATAA	780
TTCGGGTTGG	GTCGGGTCTA	CCATCAATTG	TTTTTTTTTT	TTAACAACTT	TTAATCTCTA	840
TTTGAGCATG	TTGATTCTTG	TCTTTTGTGT	GTAAGATTTT	GGGTTTCGTT	TCAGTTGTAA	900
TAATGAACCA	TTGATGGTTT	GCAATTTCAA	GTTCCTATCG	ACATGTAGTG	ממממממדידמ	960

<210> 14

<211> 305

<212> PRT

<213> Haematococcus pluvialis

<400> 14

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile

Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala Ser Lys Leu Glu

Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu Leu His Arg Ala 105

Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu Leu Gln Gln

Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp Thr Asn Thr Cys 135

Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu Val Asp Gln Leu

Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys Ala Ala Ile

Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His Gln Leu Pro Ala 180 185

Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Val 200

Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu His Glu Met Asp 210 215 220

Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp 225 230 235 240

Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met 245 250 255

Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile 260 265 270

Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu 275 280 285

Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu 290 295 300

Ala 305

<210> 15

<211> 293

<212> PRT

<213> Haematococcus pluvialis

<400> 15

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn
1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Leu Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly 35 40 45

Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys
50 55 60

Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75 80

Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu 85 90 95

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110

Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp
115 120 125

Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140

Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys
145 150 155 160

Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175

Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys

180 185 190

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln.Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 215 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 230 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His 275 280 285

His Ile Asn Glu Ala 290

<210> 16

<211> 284

<212> PRT

<213> Arabidopsis thaliana

<400> 16

Met Ser Val Ser Ser Leu Phe Asn Leu Pro Leu Ile Arg Leu Arg Ser 1 5 10 15

Leu Ala Leu Ser Ser Ser Phe Ser Ser Phe Arg Phe Ala His Arg Pro
20 25 30

Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe Arg Ala Phe Ser 35 40 45

Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met Asp Ala Val Gln 50 60

Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Thr Asp 65 70 75 80

Arg Val Val Gly His Val Ser Lys Tyr Asn Cys His Leu Met Glu Asn 85 90 95

Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe 100 105 110

Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Asn Thr Lys Val 115 120 125

Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr 130 135 140

Arg Glu Ser Glu Leu Ile Gln Asp Asn Ala Leu Gly Val Arg Asn Ala 145 150 . 155 160

Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Val Ala Glu Asp Val 165 170 175

Pro Val Asp Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro 180 . 185 190

Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile 195 200 205

Val Arg Asp Val Lys Val Gln Pro Asn Pro Asp Glu Val Ala Glu Ile 210 215 220

Lys Tyr Val Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp 225 230 235 240

Ala Gly Glu Glu Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val 245 250 255

Asp Asn Phe Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Leu 260 265 270

Val Glu Ala Ile Asp Met Lys Thr Ile His Lys Leu 275 280

<210> 17

<211> 287

<212> PRT

<213> Clarkia breweri

<400> 17

Met Ser Ser Ser Met Leu Asn Phe Thr Ala Ser Arg Ile Val Ser Leu
1 5 10 15

Pro Leu Leu Ser Ser Pro Pro Ser Arg Val His Leu Pro Leu Cys Phe 20 25 30

Phe Ser Pro Ile Ser Leu Thr Gln Arg Phe Ser Ala Lys Leu Thr Phe 35 40 45

Ser Ser Gln Ala Thr Thr Met Gly Glu Val Val Asp Ala Gly Met Asp 50 60

Ala Val Gln Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp 65 70 75 80

Glu Asn Asp Lys Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu 85 90 95

Met Glu Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val 100 105 110

Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala 115 120 125

Thr Lys Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His 130 135 140

Pro Leu Tyr Arg Glu Ser Glu Leu Ile Asp Glu Asn Cys Leu Gly Val 145 150 155 160

Arg Asn Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala 165 170 175

Glu Asp Leu Pro Val Asp Gln Phe Ile Pro Leu Ser Arg Ile Leu Tyr

180 185

Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu 195 200 205

Leu Phe Ile Ile Arg Asp Val Asn Leu Asp Pro Asn Pro Asp Glu Val 210 215 220

Ala Glu Val Lys Tyr Met Asn Arg Asp Asp Leu Lys Glu Leu Leu Arg 225 230 235 240

Lys Ala Asp Ala Glu Glu Glu Gly Val Lys Leu Ser Pro Trp Phe Arg 245 250 255

Leu Val Val Asp Asn Phe Leu Phe Lys Trp Trp Asp His Val Glu Lys 260 265 270

Gly Ser Leu Lys Asp Ala Ala Asp Met Lys Thr Ile His Lys Leu 275 280 285

<210> 18

<211> 261

<212> PRT

<213> Arabidopsis thaliana

<400> 18

Thr Gly Pro Pro Pro Arg Phe Phe Pro Ile Arg Ser Pro Val Pro Arg
1 5 10 15

Thr Gln Leu Phe Val Arg Ala Phe Ser Ala Val Thr Met Thr Asp Ser 20 25 30

Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe Glu Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val Gly His Asp Thr 50 55 60

Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu Leu 65 70 75 80

His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu 85 90 95

Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro Leu Val Trp Thr
100 105 110

Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu Ile Glu 115 120 125

Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Phe Asp 130 135 140

Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp Glu Phe Thr Pro 145 150 155 160

Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly Glu
165 170 175

His Glu Val Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Leu Gln 180 185 190

Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val Ser Arg Glu Glu 195 200 205

Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp Glu Ala Val Lys 210 220

Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Met Lys Trp 225 230 235 240

Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala Ala Asp Met Lys 245 250 255

Thr Ile His Lys Leu 260

<210> 19

<211> 288

<212> PRT

<213> Saccharomyces cerevisiae

<400> 19

Met Thr Ala Asp Asn Asn Ser Met Pro His Gly Ala Val Ser Ser Tyr 1 5 10 15

Ala Lys Leu Val Gl
n Asn Gl
n Thr Pro Glu Asp Ile Leu Glu Glu Phe 20
 25
 30

Pro Glu Ile Ile Pro Leu Gln Gln Arg Pro Asn Thr Arg Ser Ser Glu 35 40 45

Thr Ser Asn Asp Glu Ser Gly Glu Thr Cys Phe Ser Gly His Asp Glu 50 55 60

Glu Gln Ile Lys Leu Met Asn Glu Asn Cys Ile Val Leu Asp Trp Asp 65 70 75 80

Asp Asn Ala Ile Gly Ala Gly Thr Lys Lys Val Cys His Leu Met Glu 85 90 95

Asn Ile Glu Lys Gly Leu Leu His Arg Ala Phe Ser Val Phe Ile Phe 100 105 110

Asn Glu Gln Gly Glu Leu Leu Gln Gln Arg Ala Thr Glu Lys Ile 115 120 125

Thr Phe Pro Asp Leu Trp Thr Asn Thr Cys Cys Ser His Pro Leu Cys 130 135 140

Ile Asp Asp Glu Leu Gly Leu Lys Gly Lys Leu Asp Asp Lys Ile Lys 145 150 155 160

Gly Ala Ile Thr Ala Ala Val Arg Lys Leu Asp His Glu Leu Gly Ile 165 170 175

Pro Glu Asp Glu Thr Lys Thr Arg Gly Lys Phe His Phe Leu Asn Arg 180 185 190

Ile His Tyr Met Ala Pro Ser Asn Glu Pro Trp Gly Glu His Glu Ile 195 200 205

Asp Tyr Ile Leu Phe Tyr Lys Ile Asn Ala Lys Glu Asn Leu Thr Val

Asn Pro Asn Val Asn Glu Val Arg Asp Phe Lys Trp Val Ser Pro Asn 225 230 235 240

220

Asp Leu Lys Thr Met Phe Ala Asp Pro Ser Tyr Lys Phe Thr Pro Trp 245 250 255

Phe Lys Ile Ile Cys Glu Asn Tyr Leu Phe Asn Trp Trp Glu Gln Leu 260 265 270

Asp Asp Leu Ser Glu Val Glu Asn Asp Arg Gln Ile His Arg Met Leu 275 280 285

<210> 20

<211> 456

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
 sequence of four plant B-cyclases

<400> 20

Met Asp Thr Leu Leu Lys Thr Pro Asn Leu Glu Phe Leu Pro His Gly
1 5 10 15

Phe Val Lys Ser Phe Ser Lys Phe Gly Lys Cys Glu Gly Val Cys Val 20 25 30

Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr Lys Lys Glu Asn 35 40 45

Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys Gly Val Val Asp
50 55 60

Leu Ala Val Val Gly Gly Pro Ala Gly Leu Ala Val Ala Gln Gln 65 70 75 80'

Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp Pro Pro Lys Leu 85 90 95

Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met 100 105 110

Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp Ser Gly Ala Val Tyr Ile 115 120 125

Asp Asp Thr Lys Asp Leu Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln 130 135 140

Leu Lys Ser Lys Met Met Gln Lys Cys Ile Asn Gly Val Lys Phe His 145 150 155 160

Gln Ala Lys Val Ile Lys Val Ile His Glu Glu Lys Ser Met Leu Ile 165 170 175

Cys Asn Asp Gly Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly 180 185 190

Phe Ser Arg Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln

A ...

195 200 205

Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Lys 210 220

Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Asn Glu Leu Lys 235 240

Glu Arg Asn Ser Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser 245 250 255

Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly Leu 260 265 270

Arg Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu His Leu Gly 275 280 285

Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys Val Ile Pro Met 290 295 300

Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val Gly Ile Gly Gly 305 310 315 320

Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr 325 330 335

Leu Ala Ala Pro Val Val Ala Asn Ala Ile Ile Tyr Leu Gly Ser 340 345 350

Glu Ser Ser Gly Glu Leu Ser Ala Glu Val Trp Lys Asp Leu Trp Pro 355 360 365

Ile Glu Arg Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile 370 375 380

Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg Arg Phe Phe Asp Ala Phe 385 390 395 400

Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser Ser Arg Leu 405 410 415

Phe Leu Pro Glu Leu Ile Val Phe Gly Leu Ser Leu Phe Ser His Ala 420 425 430

Ser Asn Thr Ser Arg Glu Ile Met Thr Lys Gly Thr Pro Leu Val Met 435 440 445

Ile Asn Asn Leu Leu Gln Asp Glu 450 455

<210> 21

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 21

Met Glu Cys Val Gly Ala Arg Asn Phe Ala Ala Met Ala Val Ser Thr 1 5 10 . 15

Phe Pro Ser Trp Ser Cys Arg Arg Lys Phe Pro Val Val Lys Arg Tyr 20 25 30

Ser Tyr Arg Asn Ile Arg Phe Gly Leu Cys Ser Val Arg Ala Ser Gly 40 Gly Gly Ser Ser Gly Ser Glu Ser Cys Val Ala Val Arg Glu Asp Phe Ala Asp Glu Glu Asp Phe Val Lys Ala Gly Gly Ser Glu Ile Leu Phe Val Gln Met Gln Gln Asn Lys Asp Met Asp Glu Gln Ser Lys Leu Val Asp Lys Leu Pro Pro Ile Ser Ile Gly Asp Gly Ala Leu Asp His Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala Ala Glu Ser Ala 120 Lys Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Glu Asp Glu Phe Asn Asp Leu Gly Leu Gln Lys Cys Ile Glu His Val Trp Arg Glu Thr Ile Val Tyr Leu Asp Asp 170 Asp Lys Pro Ile Thr Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg Arg Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Asp Ser Ile Thr Glu Ala Ser Asp Gly Leu Arg Leu Val Ala Cys Asp Asp Asn Asn Val Ile Pro Cys Arg Leu Ala 235 Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Gln Tyr Glu Val Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Ser Pro Tyr Asp Pro Asp Gln Met Val Phe Met Asp Tyr Arg Asp Tyr Thr Asn Glu Lys Val Arg Ser Leu Glu Ala Glu Tyr Pro Thr Phe Leu Tyr Ala Met Pro Met Thr Lys Ser Arg Leu Phe Phe Glu 310 315 Glu Thr Cys Leu Ala Ser Lys Asp Val Met Pro Phe Asp Leu Leu Lys 330 Thr Lys Leu Met Leu Arg Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys 345 Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro

355 360 365

Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val 370 375 380

His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro 385 390 395 400

Lys Tyr Ala Ser Val Ile Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys 405 410 415

Gln Ile Asn Ser Asn Ile Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro 420 425 430

Pro Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu 435 440 445

Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe 450 455 460

Phe Arg Leu Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Thr Leu 465 470 475 480

Thr Ser Gly Asp Leu Val Leu Phe Ala Leu Tyr Met Phe Val Ile Ser 485 490 495

Pro Asn Asn Leu Arg Lys Gly Leu Ile Asn His Leu Ile Ser Asp Pro 500 505 510

Thr Gly Ala Thr Met Ile Lys Thr Tyr Leu Lys Val 515 520

<210> 22

<211> 1898

<212> DNA

<213> Adonis palaestina

<400> 22 AAAGGAGTGT TCTATTAATG TTACTGTCGC ATTCTTGCAA CACTTATATT CAAACTCCAT 60 TTTCTTCTTT TCTCTTCAAA ACAACAAACT AATGTGAGCA GAGTATCTGG CTATGGAACT 120 ACTTGGTGTT CGCAACCTCA TCTCTTCTTG CCCTGTGTGG ACTTTTGGAA CAAGAAACCT 180 TAGTAGTTCA AAACTAGCTT ATAACATACA TCGATATGGT TCTTCTTGTA GAGTAGATTT 240 TCAAGTGAGA GCTGATGGTG GAAGCGGGAG TAGAAGTTCT GTTGCTTATA AAGAGGGTTT 300 TGTGGATGAA GAGGATTTTA TCAAAGCTGG TGGTTCTGAG CTTTTGTTTG TCCAAATGCA 360 GCAAACAAG TCTATGGAGA AACAGGCCAA GCTCGCCGAT AAGTTGCCAC CAATACCTTT 420 TGGAGAATCC GTGATGGACT TGGTTGTAAT AGGTTGTGGA CCTGCTGGTC TTTCACTGGC 480 TGCAGAAGCT GCTAAGCTAG GGTTGAAAGT TGGCCTTATT GGTCCTGATC TTCCTTTTAC 540 AAATAATTAT GGTGTGGGG AAGACGAGTT CAAAGATCTT GGACTTGAAC GTTGTATCGA 600 GCATGCTTGG AAGGACACCA TCGTATATCT TGATAATGAT GCTCCTGTCC TTATTGGTCG 660 TGCATATGGA CGAGTTAGTC GACATTTGCT ACATGAGGAG TTGCTGAAAA GGTGTGTGGA 720

					" >,	
GTCAGGTGTA	TCATATCTTG	ATTCTAAAGT	GGAAAGGATC	ACTGAAGCTG	-	780
TAGCCTTGTA	GTTTGTGAAA	ATGAGATCTT	TATCCCTTGC	AGGCTTGCTA	CTGTTGCATC	840
TGGAGCAGCT	TCAGGGAAAC	TTTTGGAGTA	TGAAGTAGGT	GGCCCTCGTG	TTTGTGTCCA	900
AACCGCTTAT	GGGGTGGAGG	TTGAGGTGGA	GAACAATCCA	TACGATCCCA	ACTTAATGGT	960
ATTCATGGAC	TACAGAGACT	ATATGCAACA	GAAATTACAG	TGCTCGGAAG	AAGAATATCC	1020
AACATTTCTC	TATGTCATGC	CCATGTCGCC	AACAAGACTT	TTTTTTGAGG	AAACCTGTTT	1080
GGCCTCAAAA	GATGCCATGC	CATTCGATCT	ACTGAAGAGA	AAACTGATGT	CACGATTGAA	1140
GACTCTGGGT	ATCCAAGTTA	CAAAAGTTTA	TGAAGAGGAA	TGGTCATATA	TTCCTGTTGG	1200
TGGTTCTTTA	CCAAACACAG	AGCAAAAGAA	CCTAGCATTT	GGTGCTGCAG	CAAGCATGGT	1260
GCATCCAGCA	ACAGGCTATT	CGGTTGTACG	GTCACTGTCA	GAAGCTCCAA	AATATGCTTC	1320
TGTAATTGCA	AAGATTTTGA	AGCAAGATAA	CTCTGCGTAT	GTGGTTTCTG	GACAAAGTAG	1380
TGCAGTAAAC	ATTTCAATGC	AAGCATGGAG	CAGTCTTTGG	CCAAAGGAGC	GAAAACGTCA	1440
AAGAGCATTC	TTTCTTTTTG	GATTAGAGCT	TATTGTGCAG	CTAGATATTG	AAGCAACCAG	1500
AACATTCTTT	AGAACCTTCT	TCCGCTTGCC	AACTTGGATG	TGGTGGGGTT	TCCTTGGGTC	1560
TTCACTATCA	TCTTTCGATC	TCGTCTTGTT	TTCCATGTAC	ATGTTTGTTT	TGGCGCCAAA	1620
CAGCATGAGG	ATGTCACTTG	TGAGACATTT	GCTTTCAGAT	CCTTCTGGTG	CAGTTATGGT	1680
AAGAGCTTAC	CTCGAAAGGT	AGTCTCATCT	АТТАТТАААС	TCTAGTGTTT	CACCAAATAA	1740
ATGAGGATCC	TTCGAATGTG	TATATGATCA	TCTCTATGTA	TATCCTGTAC	TCTAATCTCA	1800
TAAAGTAAAT	GCCGGGTTTG	ATATTGTTGT	GTCAAACCGG	CCAATGATAT	AAAGTAAATT	1860
TATTGATACA	AAAGTAGTTT	TTTTCCTTAA	AAAAAAA			1898

<210> 23

<400> 23

<211> 529

<212> PRT

<213> Adonis palaestina

Met Glu Leu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp 1 5 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val 50 55 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

									~						
Gln	Met	Gln	Gln	Thr 85	Lys	Ser	Met	Glu	Lys 90	Gln	Ala	Lys	Leu	Ala 95	Asp
Lys	Leu	Pro	Pro 100	Ile	Pro	Phe	Gly	Glu 105	Ser	.Val	Met	Asp	Leu 110	Val	Val
Ile	Gly	Cys 115	Gly	Pro	Ala	Gly	Leu 120	Ser	Leu	Ala	Ala	Glu 125	Ala	Ala	Lys
Leu	Gly 130	Leu	Lys	Val	Gly	Leu 135	Ile	Gly	Pro	Asp	Leu 140	Pro	Phe	Thr	Asn
Asn 145	Tyr	Gly	Val	Trp	Glu 150	Asp	Glu	Phe	Lys	Asp 155	Ļeu	Gly	Leu	Glu	Arg 160
Cys	Ile	Glu	His	Ala 165	Trp	Lys	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180	Ile	Gly	Arg	Ala	Tyr 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195	Glu	Leu	Leu	Lys	Arg 200	Cys	Val,	Glu	Ser	Gly 205	Val	Ser	Tyr
Leu	Asp 210	Ser	Lys	Val	Glu	Arg 215	Ile	Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
Leu 225	Val	Val	Cys	Glu	Asn 230	Glu	Ile	Phe	Ile	Pro 235	Cys	Arg	Leu	Ala	Thr 240
Val	Ala	Ser	Gly	Ala 245	Ala	Ser	Gly	Lys	Leu 250	Leu	Glu	Tyr	Glu	Val 255	Gly
Gly	Pro	Arg	Val 260	Cys	Val	Gln	Thr	Ala 265	Tyr	Gly	Val	Glu	Val 270	Glu	Val
Glu	Asn	Asn 275	Pro	Tyr	Asp	Pro	Asn 280	Leu	Met	Val	Phe	Met 285	Asp	Tyr	Arg
Asp	Tyr 290	Met	Gln	Gln	Lys	Leu 295	Gln	Cys	Ser	Glu	Glu 300	Glu	Tyr	Pro	Thr
Phe 305	Leu	Tyr	Val	Met	Pro 310	Met	Ser	Pro	Thr	Arg 315		Phe	Phe	Glu	Glu 320
Thr	Cys	Leu	Ala	Ser 325	Lys	Asp	Ala	Met	Pro 330	Phe	Asp	Leu	Leu	Lys 335	Arg
Lys	Leu	Met	Ser 340	Arg	Leu	Lys	Thr	Leu 345	Gly	Ile	Gln	Val	Thr 350	Lys	Val
Tyr	Glu	Glu 355	Glu	Trp	Ser	Tyr	Ile 360	Pro	Val	Gly	Gly	Ser 365	Leu	Pro	Asn
Thr	Glu 370	Gln	Lys	Asn	Leu	Ala 375	Phe	Gly	Ala	Ala	Ala 380	Ser	Met	Val	His
Pro 385	Ala	Thr	Gly	Tyr	Ser 390	Val	Val	Arg	Ser	Leu 395	Ser	Glu	Ala	Pro	Lys 400
Tyr	Ala	Ser	Val	Ile	Ala	Lys	Ile	Leu	Lys	Gln	Asp	Asn	Ser	Ala	Tyr

PCT/US99/12121

415

wo 9	99/63055	
------	----------	--

410

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 455 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 475 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr 485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His
500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Arq

<210> 24

<211> 1370

<212> DNA

<213> Potato

<400> 24

TAGCGGAGGA TGAGTTCAAA GATCTTGGTC TTCAAGCCTG CATTGAACAT GTTTGGCTGG 60 GATACCATTG TATATCTTGA TGATGATGAT CCTATTCTTA TTGGCCGTGC CTATGGAAGA 120 GTTAGTCGCC ATTTACTGCA CGAGGAGTTA CTCAAAAGGT GTGTGGAGGC AGGTGTTTTG 180 TATCTAAACT CGAAAGTGGA TAGGATTGTT GAGGCCACAA ATGGCCACAG TCTTGTAGAG 240 TGCGAGGGTG ATGTTGTGAT TCCCTGCAGG TTTGTGACTG TTGCATCGGG AGCAGCCTCG 300 GGGAAATTCT TGCAGTATGA GTTGGGAGGT CCTAGAGTTT CTGTTCAAAC AGCTTATGGA 360 GTGGAAGTTG AGGTCGATAA CAATCCATTT GACCCGAGCC TGATGGTTTT CATGGATTAT 420 AGAGACTATG TCAGACACGA CGCTCAATCT TTAGAAGCTA AATATCCAAC ATTTCTCTAT 480 GCCATGCCCA TGTCTCCAAC ACGAGTCTTT TTCGAGGAAA CTTGTTTGGC TTCAAAAGAT 540 GCAATGCCAT TCGATCTGTT AAAGAAAAAA TTGATGTTAC GATTGAACAC CCTCGGTGTA 600 AGAATTAAAG AAATTTATGA GGAGGAATGG TCTTACATAC CAGTTGGAGG ATCTTTGCCA 660 AATACAGAAC AAAAAACACT TGCATTTGGT GCTGCTGCTA GCATGGTTCA TCCAGCCACA 720 GGTTATTCAG TCGTCAGATC ACTGTCTGAA GCTCCAAAAT GCGCCTTCGT GCTTGCAAAT 780 ATATTACGAC AAAATCATAG CAAGAATATG CTTACTAGTT CAAGTACCCC GAGTATTTCA 840 ACTCAAGCTT GGAACACTCT TTGGCCACAA GAACGAAAAC GACAAAGATC GTTTTTCCTA 900

WO 99/63055

					•	
TTTGGACTGG	CTCTGATATT	GCAGCTGGAT	ATTGAGGGGA	TAAGGTCATT	TTTCCGCGCG	960
TTCTTCCGTG	TGCCAAAATG	GATGTGGCAG	GGATTTCTTG	GTTCAAGTCT	TTCTTAGCAG	1020
ACCTCATGTT	ATTTGCCTTC	TACATGTTTA	TTATTGCACC	AAATGACATG	AGAAGAGGCT	1080
TAATCAGACA	TCTTTTATCT	GATCCTACTG	GTGCAACATT	GATAAGAACT	TATCTTACAT	1140
TTTAGAGTAA	ATTCCTCCTA	CAATAGTTGT	TGAAAGAGGC	CTCATTACTT	CAGATTCATA	1200
ACAGAAATCG	CGGTCTCTCG	AGGCCTTGTA	TATAACATTT	TCACTAGGTT	AATATTGCTT	1260
GAATAAGTTG	CACAGTTTCA	GTTTTTGTAT	CTGCTTCTTT	TTTGTCCAAG	ATCATGTATT	1320
GACCAATTTA	TATACATTGC	CAGTATATAT	AAATTTTATA	AAAAAAAA		1370
<210> 25 <211> 377 <212> PRT <213> Potat	:0				·	

<400> 25

Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile Glu His Val Trp

Arg Asp Thr Ile Val. Tyr Leu Asp Asp Asp Pro Ile Leu Ile Gly

Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu

Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp

Arg Ile Val Glu Ala Thr Asn Gly His Ser Leu Val Glu Cys Glu Gly

Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala Ser Gly Ala Ala

Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Gly Pro Arg Val Ser Val

Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp 120

Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp 135

Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro 150 155 -

Met Ser Pro Thr Arg Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys 170

Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Leu Met Leu Arg Leu 180

Asn Thr Leu Gly Val Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser 200

Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala

Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser

Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu

Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 295

Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 315

Val Pro Lys Met Met Trp Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala

Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp 345

Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala 360

Thr Leu Ile Arg Thr Tyr Leu Thr Phe

<210> 26

<211> 533

<212> PRT

<213> Chimeric lettuce/potato

Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe 10

Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu

Leu Lys Gly Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg

Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln

Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser

Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln

Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile

Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala

بن جر 115 120 125 Ala Glu Ser Ala Lys Leu Gly Leu Asn Val Gly Leu Ile Gly Pro Asp 135 Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Gln Asp Glu Phe Ile Gly 150 Leu Gly Leu Glu Gly Cys Ile Glu His Ser Trp Lys Asp Thr Leu Val Tyr Leu Asp Asp Ala Asp Pro Ile Arg Ile Gly Arg Ala Tyr Gly Arg Val His Arg Asp Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu 200 Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Glu Arg Ile Thr Glu Ala Pro Asn Gly Tyr Ser Leu Ile Glu Cys Glu Gly Asn Ile Thr Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Phe Leu Glu Tyr Glu Leu Gly Gly Pro Arg Val Ser Val Gln Thr Ala Tyr Gly 265 Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp Pro Ser Leu Met Val 280 Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro Met Ser Pro Thr Arg 310 Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Leu Met Leu Arg Leu Asn Thr Leu Gly Val 345 Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly 360 Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu 390 395 Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser Thr Pro Ser Ile Ser 425 Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu Arg Lys Arg Gln Arg

- Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu Gln Leu Asp Ile Glu
 450 455 460
- Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg Val Pro Lys Trp Met 465 470 475 480
- Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa Ala Asp Leu Met Leu 485 490 495
- Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn Asp Met Arg Arg Gly 500 505 510
- Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly Ala Thr Leu Ile Arg 515 520 525
- Thr Tyr Leu Thr Phe 530
- <210> 27
- <211> 374
- <212> PRT
- <213> Arabidopsis thaliana
- <400> 27
- Glu Asp Glu Phe Asn Asp Leu Gly Leu Gln Lys Cys Ile Glu His Val 1 5 10 15
- Trp Arg Glu Thr Ile Val Tyr Leu Asp Asp Asp Lys Pro Ile Thr Ile 20 25 30
- Gly Arg Ala Tyr Gly Arg Val Ser Arg Arg Leu Leu His Glu Glu Leu 35 40 45
- Leu Arg Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Ser Ser Lys Val
- Asp Ser Ile Thr Glu Ala Ser Asp Gly Leu Arg Leu Val Ala Cys Asp 65 70 75 80
- Asp Asn Asn Val Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala 85 90 95
- Ala Ser Gly Lys Leu Leu Gln Tyr Glu Val Gly Gly Pro Arg Val Cys 100 105 110
- Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val Glu Asn Ser Pro Tyr 115 120 125
- Asp Pro Asp Gln Met Val Phe Met Asp Tyr Arg Asp Tyr Thr Asn Glu 130 135 140
- Lys Val Arg Ser Leu Glu Ala Glu Tyr Pro Thr Phe Leu Tyr Ala Met 145 150 155 160
- Pro Met Thr Lys Ser Arg Leu Phe Phe Glu Glu Thr Cys Leu Ala Ser 165 170 175
- Lys Asp Val Met Pro Phe Asp Leu Leu Lys Thr Lys Leu Met Leu Arg
- Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys Thr Tyr Glu Glu Glu Trp

200	205	े ज हैं

Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Asn 215

Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr 235

Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys Tyr Ala Ser Val Ile 250

Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys Gln Ile Asn Ser Asn Ile 260 265

Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro Pro Glu Arg Lys Arg Gln

Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Phe Asp Thr 295

Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe Phe Arg Leu Pro Lys Trp 310 315

Met Trp Gln Gly Phe Leu Gly Ser Thr Leu Thr Ser Gly Asp Leu Val 330

Leu Phe Ala Leu Tyr Met Phe Val Ile Ser Pro Asn Asn Leu Arg Lys

Gly Leu Ile Asn His Leu Ile Ser Asp Pro Thr Gly Ala Thr Met Ile 360

Lys Thr Tyr Leu Lys Val 370

<210> 28

<211> 1002

<212> DNA

<213> Adonis palaestina

<400> 28

ATTCATCTTC AGCAGCGCTG TCGTACTCTT TCTATATCTT CTTCCATCAC TAACAGTAGT 60 CGCCGACGGT TGAATCGGCT ATTCGCCTCA ACGTCAACTA TGGGTGAAGT CACTGATGCT 120 GGAATGGATG CTGTTCAGAA GCGGCTCATG TTCGACGACG AATGTATTTT GGTGGATGAG 180 AATGACAAGG TCGTCGGGCA TGATTCCAAA TACAACTGTC ATTTGATGGA AAAGATAGAG 240 GCAGAAAATT TGCTTCACAG AGCCTTCAGT GTTTTCTTGT TCAACTCAAA ATATGAATTG 300 CTTCTTCAGC AACGATCCGC CACAAAGGTA ACATTCCCGC TCGTATGGAC AAACACATGT 360 TGCAGTCATC CTCTCTTCG TGATTCCGAG CTCATAGAAG AAAATTATCT CGGTGTACGA 420 AACGCTGCAC AAAGAAAGCT TTTAGACGAG CTAGGCATTC CAGCTGAAGA TGTCCCAGTT 480 GATGAATTTA CTCCTCTTGG TCGCATTCTT TACAAAGCTC CATCTGACGG CAAATGGGGA 540 GAGCACGAAT TGGACTATCT CCTATTTATT GTCCGAGATG TGAAATACGA TCCAAACCCA 600

WO 99/63055 PCT/US99/12121

GATGAAGTTG	CTGATGCTAA	GTATGTTAAT	CGCGAGGAGT	TGAGAGAGAT	ACTGAGAAAA	660
GCTGATGCTG	GTGAAGAGGG	ACTCAAGTTG	TCTCCTTGGT	TTAGATTGGT	TGTTGATAAC	720
TTTTTGTTCA	AGTGGTGGGA	TCATGTAGAG	CAGGGTACGA	TTAAGGAAGT	TGCTGACATG	780
AAAACTATCC	ACAAGTTGAC	TTAAGAGGAC	TTCTCTCCTC	TGTTCTACTA	TTTGTTTTTT	840
GCTACAATAA	GTGGGTGGTG	ATAAGCAGTT	TTTCTGTTTT	СТТТААТТТА	TGGCTTTTGA	900
ATTTGCCTCG	ATGTTGAACT	TGTAACATAT	TTAGACAAAT	ATGAGACCTT	GTAAGTTGAA	960
TTTGAGGCTG	AATTTATATT	TTTGGGAACA	TAATAATGTT	AA		1002
<210> 29 <211> 1271 <212> DNA <213> Adon:	is palaestir	na				
<400> 29	ርፕሞጥርርርጥርር	מררמררמידרמ	AACCCACCCA	AATTTCTCTG	ma	60
				CCTTGTTTAC		60
				GGCCCCTTTC		120
				TCTTCTCCAC		180
						240
				AGCAGCGTTG		300
				TTGAATCGGC		360
				GCCGTCCAGA		420
				GTCGTCGGAC		480
				TTGCTTCACA	,	540
				CAACGATCTG		600
				CCCCTCTTCC		660
				CAAAGGAAGC		720
			•	ACTCCTCTTG		780
				CTGGACTATC		840
				GCTGACGCTA		900
				GGTGAAGAGG		960
				AAGTGGTGGG		1020
				CACAAGTTGA		1080
		•		TGGATGGTGA		1140
				TGTTGAACTT		1200
TAGTCAAATA	TGAGACCTTG	TGAGTTGAAT	TTGAGGTTAT	ATTTATAGTT	TTGGGAACAT	1260

PCT/US99/12121

WO 99/63055	

ААААААААА	in the factor of	1271
<210> 30 <211> 1109 <212> DNA <213> Haematococcus pluvialis		
<400> 30 TGGAACCTGG CCCGGCGCA GTCCGATGCC GCGATGCTTC GTTCGTTGCT	C. C. C. C. C. C. C. C. C. C. C. C. C. C	
ACGCATATCC CGCGCGTGAA CTCCGCCCAG CAGCCCAGCT GTGCACACGC		60
		120
TTTAAGCTCA GGAGCATGCA GCTGCTTGCC GAGGACCGCA CAGACCACAT		180
AGCACCTGGG CAGGCGGCA GTCGCAGGAT GAGCTGATGC TGAAGGACGA		240
GTGGATGCTG ACGACAACAT CACAGGCCAT GCCAGCAAGC TGGAGTGCCA	CAAATTCCTA	300
CCACATCAGC CTGCAGGCCT GCTGCACCGG GCCTTCTCTG TGTTCCTGTT	TGACGACCAG	360
GGGCGACTGC TGCTGCAACA GCGTGCACGC TCAAAAATCA CCTTCCCAAG	TGTGTGGACG	420
AACACCTGCT GCAGCCACCC TCTACATGGG CAGACCCCAG ATGAGGTGGA	CCAACTAAGC	480
CAGGTGGCCG ACGGCACAGT ACCTGGCGCA AAAGCTGCTG CCATCCGCAA	GTTGGAGCAC	540
GAGCTGGGGA TACCAGCGCA CCAGCTGCCG GCAAGCGCGT TTCGCTTCCT	CACGCGTTTG	600
CACTACTGTG CCGCGGACGT GCAGCCGGCT GCGACACAAT CAGCGCTCTG	GGGCGAGCAC	660.
GAGATGGACT ACATCTTATT CATCCGGGCC AACGTCACCT TGGCGCCCAA	CCCTGACGAG	720
GTGGACGAAG TCAGGTACGT GACGCAAGAG GAGCTGCGGC AGATGATGCA	GCCGGACAAC	780
GGGTTGCAAT GGTCGCCGTG GTTTCGCATC ATCGCCGCGC GCTTCCTTGA	GCGTTGGTGG	840
GCTGACCTGG ACGCGGCCCT AAACACTGAC AAACACGAGG ATTGGGGAAC	GGTGCATCAC	900
ATCAACGAAG CGTGAAGGCA GAAGCTGCAG GATGTGAAGA CACGTCATGG	GGTGGAATTG	960
CGTACTTGGC AGCTTCGTAT CTCCTTTTTC TGAGACTGAA CCTGCAGAGC	TAGAGTCAAT	1020
GGTGCATCAT ATTCATCGTC TCTCTTTTGT TTTAGACTAA TCTGTAGCTA	GAGTCACTGA	1080
TGAATCCTTT ACAACTTTCA AAAAAAAA		1109
<210> 31 <211> 985 <212> DNA <213> Lactuca sativa		·
<400> 31 TGCCAAAATG TTGAAATTTC CCCCTTTTAA AACCATTGCT ACCATGATCT	CTTCTCCATA	60
TTCTTCCTTC TTGCTGCCTC GGAAATCTTC TTTCCCTCCA ATGCCGTCTC	TCGCAGCCGC	120
TAGTGTTTTC CTCCACCCTC TTTCGTCTGC CGCTATGGGC GATTCCAGCA	TGGATGCTGT	180
CCAGCGACGT CTCATGTTCG ATGACGAATG CATTTTGGTG GATGAGAATG	ACAAAGTGGT	240
TGGCCATGAT ACTAAATACA ATTGTCATTT GATGGAGAAG ATTGAAAAGG	GAAATATGCT	300

WO 99/63055	

ACACAGAGGA TTCAGTGTGT TCTTGTTCAA CTCGAAATAT GAATTACTCC TTCAGCAACG TTCTGCAACC AAGGTGACTT TCCCTTTGGT ATGACAACA ACGTGTTGCA GCCATCCACT 420 ATACAGGGAG AGGAGCTTA TTGACGAAAA CGCCCTTGGG GTGAGGAATG CTGCACAGAG 480 GAAGCTCCTG GATGAACTCG GCATCCCTG AGCAGTGTT CCGGTGATG AGTTCACTCC 540 ATTGGGTGCC ATTCTATACA AGGCCGCATC GGATGGAAGA TGGGGGAGAC ATGAACTTGA 600 TTACCTGCTG TTTATGGTAC GTGATGTGG TTTGGATCG AACCCAGATG AAGTGAAAGA 660 TGTAAAATAT GTGAACCGG AAGACCTAA GGACTGTAA AGGAAGGGG ATGCTGGTGA 720 AGAGGGTGTG AAGCCGGC AAGACCCTAAC CGAACTTT GATATCAAAA CAATCCACAA 840 ACTCACATAA AAACACTAC CTAGTAGGAG AGAGCATTT GATATCAAAA CAATCCACAA 840 ACTCACATAA AAACACTAC CTAGTAGGA AGAGCATTT TTGGATACT TGTTTATGTT 900 GAAATTGAAA TTCAGATGAA TGCTTGTATT TATTTCTATT TGGACAAACT TCAACTTCTT 966 ATTTGCTACCT TATCAGAAAA AAAAA 988 <2210							
ATACAGGGAG AGTGAGCTTA TTGACGAAAA CGCCCTTGGG GTGAGGAATG CTGCACAGAG (AGAGCTCCTG GATGAACTCG GATGAACTCG GATGAACTCG AGCAGATGTT CGGGTTGATG AGTTCACTCC (ATTGAGCTCG ATCTATACA AGGCCGCATC GGATGGAAGG TGGGGAGAAC ATGAACTTGA (AGAGCTGGA ATTGACTTGA CAGAGCTGGA AGGCCGATG TTTATGGTAC GTGAGTGTGG TTGACACTGG AAGAGCTGGA AAGAGCTGGA AAGAGCTGGA AAGAGCGGA ATGAACTGA (AGAGCGGA AGAGCGGA AGAGCGGA AGAGCGGA AGAGCGGAAC ATGAACTGAC (AGAGCGGA AGAGCGGA AC CGAGAGTTAT ATGATATACA CAATCCACAAA AACACTACA CTAGTAGGAA AGAGCATAT ATGAGAAAA CAATCCACAAA ACACTACA CTAGTAGGAA AGAGCGATTAT ATGAGAAAAT TGATATATGT (AGAATTGAAAA TTCAGATGAAA AAAAA (AGATCACAA AAAAA (AGATCACAA AAAAA (AGATCACAA AAAAA (AGATCACAA AAAAA (AGATCACAA AAAAA (AGATCACAA AAAAA (AGATCACA AAAAA (AGATCACA AAAAA (AGATCACA AAAAA (AGATCACA AAAAA (AGATCACA AAAAA (AGATCACA AAAAACCTTCT CACTTAACCG CGCCATGGG TGACGATTCC GGCATGAGCG (ACTTCACC ACCATAACCG CCGCCATGGG TGACGATTCC GGCATGACCG (ACTTCACC ACCATAACCG CCGCCATGGG TGACGATTCC GGCATGACCA (ACCATAACCA ACCATAACCA CCGCCATGGG TGACGATTCC GGCATGACAA AATGACAATG (ACCATCACAA ACCATATGTC ACTTGATGAA AATGCAATTT CTCTTCAGC (ACCTTCACC ACCATAACCAA ACCATATGTC ACTTGATGAA AAACACTATA CTCCTTCAGC (ACCTTCACC ACCATAACCAA ACCATATGTC ACTTGATGAA AAACACTATA CTCCTTCAGC (ACCTTCATGA AACCATGAA AACCAATGAA AACCAATGTC TTGATGAAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA AACCAATGAA CCTGCGAAA AACCAAGGAG CTAAATTCCC CTCCTGAAAA AAACACCTT TGCAGCCAA AACCACCT GAGAGAACC TACAAGAGAA CCTGCAACAA AACCAATGAA CCAAACCCT GAGAGAACCA CTCTGAGAAA AACCAATGAA AACCAATGAA CACCTGAAGAGAC TTCAAAAGAACA TAAATTGCT CAACAGGAC CTCTGAAGAACC TTCTGAGAAAAAACCATTC AAAAGGAGA TTAAAAAGAATT ACAAAGAACA TAAATTGCTG AAAACCATTC AAAAGGAGAC TTAAAAAAAACAATT ACAAAGAACAA TAAATTGTG AAAACCATTC AAAAGGAGAC TTAAAAAAAACCATTC TAAAAAAAACAATTA ATGAAAAAACCATTC AAAAGGAGAC TTAAAAAAAACAATTA ATTAAAAAAAACAATTA ATTAAAAAAAA	ACACAGAGCA	TTCAGTGTGT	TCTTGTTCAA	CTCGAAATAT	GAATTACTCC	TTCAGCAACG	360
ATTGGGTCCC GATGAACTCG GCATCCCTGG AGCAGATGTT CCGGTTGATG AGTTCACTCC ATTGGGTCCC ATTCTATACA AGGCCCCATC GGATGGAAAG TGGGGAGAAC ATGAACTTGA ATTGGGTCCC ATTCTATACA AGGCCCGATC GGATGGAAAG TGGGGAGAAC ATGAACTTGA TTACCTGCTG TTTATGGTAC GTGATGTTGG TTTGGATCCG AACCCAGATG AAGTGAAAGAA AGAGGTGAAA AGAGCTGCAC GGAATTGGTA AGGAAGAGCGAA AGAGCTGAA AGAGCTGAAA AGAGGTGGTG AAGCCTGCC CGTGGTTCAA ATTGATGTC GATAATTCT TGTTTCAGTG 780 GTGGGATCGA CTCCATAAGG GAACCCTAAC CGAAGCTATT GATATGAAAA CAATCCACAA 840 ACTCACATAA AAACACTACA CTAGTAGGAA AGAGGATTAT ATGAGATATT TGTTATATGT 900 GAAATTGAAA TTCAGAAAAA AAAAA CCIAC TATCAGAAAAA AAAAA C210> 32 C11> 988 C212> DNA C211> 988 C212> DNA C213> Lactuca sativa C400> 32 TATTCGCTTC AAAATCCTCT CCATTAACTG CTCAAATCTC CACCTTCGCC GGTCTTAATC TCCGCCCGGCG CACTTTCACC ACCATAACCG CCGCCATGGG TGACGATTC GGCATGGACG 120 CTGTCCAGAG ACGTCTCATG TTTGATGATG AATGCAATTT GGTGATGAA AATGACAATG 180 TTCTTGGGCA TGATACCAAA TACAATTGTC ACTTGATTC GGTGATGAA AATGACAATG 180 TCCTTCATGA AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAAGGTCAGA AACCAAGGTG ACATTTCTT TGGTATGGA GAAGATTGAA AATGACAATG 180 TCCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGA GAAGATTGAA AATGCACATC 360 CACTATACAG AGAATCGGAG TTAATTCCC ACATTGAGA AAACACCTGT TGCAGCCATC 360 CACATTAACAG AGAATCGGAG TTAATTCCC ACATTGAGGA TGTTCCAGTT GATGAGTTCA 480 CACATTAACAG AGAATCGGAG TTAATTCCC ACATTGAGGA TGTTCCAGTT GATGAGTTCA 480 CACATTAACAG AGAATCGGAG TTAATTCCC ACTTGATGGA CAAACACCTT TGCAGCCATC 360 CACATTAACAG AGAATCGGAG TTAATTCCC ACTTGATGGA CAACACCCT GATGAGTTCA 480 CACATTAACAG AGAATCGGAG TTAATTCCC TGCGTGAAGA TGTTCCAGTT GATGAGTTCA 480 CACATTAACAG AGAATCGGAG TTAATTCCC TGCGTGAGA CCCTAAACCCT GATGAGTTCA 480 CACATTAACA ATACGTGAAC CAAGAAGCT TAAAAGAGCT ACTAAAGGAG GCGATGCGG 660 CACATTAACAA ATACCTACA AAGAGGCT TAAAAGAGCT ACTAAAGAGC TATTGTTCA 720 AATGGTGGAG TTAAATTC TCCCATGGT TTAAAGAGCT ACTAAAGAGC AATACCCT GATGAGGTGT 780 AATGGTGGAG TCTGAAAATG CAAGAGAGT TAAAAGAGCT ATAATTTTT TTTCTTTTT TTCTTTTTT TGGGAGGTGT 780 AATGGTGGGA TCAAGAAAAAG GTTAAATTT ATGGGGA	TTCTGCAACC	AAGGTGACTT	TCCCTTTGGT	ATGGACAAAC	ACGTGTTGCA	GCCATCCACT	420
ATTGGGTCGC ATTCTATACA AGGCCGCATC GGATGGAAAG TGGGGAGAAC ATGAACTTGA 600 TTACCTGCTG TTTATGGTAC GTGATGTTGG TTTGGATCCG AACCCAGATG AAGTGAAAGA TGTAAAAATAT GTGAACCGGG AAGAGCTGAA GGAATTGGTA AGGAAGGCGG ATGCTGGTGA 720 AGAGGGTGTG AAGCTGTCCC CGTGGTTCAA ATTGATTGTC GATAATTCT TGTTTCAGTG 780 GTGGGATCGA CTCCATAAGG GAACCCTAAC CGAAGCTATT GATATGAAAA CAATCCACAA 840 ACTCACATAA AAACACTACA CTAGTAGGAG AGAGGATTAT ATGAGATATT TGTTATATGT 900 GAAAATTGAAA TCAGAAAAA AAAAA **C210> 32 C211> 988 <*212> DNA <*213> Lactuca sativa **C400> 32 TATTCGCTTC AAAATCCTT CCATTAACTG CTCAAATCTC CACCTTCGCC GGTCTTAATC CCGCCGGGG CACTTTCACC ACCATAACCG CCGCCATGGG TGACGATTCA GGCATGGACG 120 CTGTCCAGAG ACGTCTCATG TTTGATGATG AATGCATTT GGTTGATGAA AAACACTACA TCAGATGAT TCAGATGAA 180 TCCTTCGGCA TGATACCAAA TACAATTGTC ACTGATGGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATCAGT GTATTTTATT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAGA AACCAAGGTG ACATTTCCTT TGGTATGGA GAAGATTGAG AAAGATAATT 240 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGA AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGA TTAATTCCC AAAATCCCC TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CACATTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAAACCCTGT TGCAGCCATC 360 CACACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTC TACAAGGCTC CATCTGATGG AAAATGCCCT TGAGAGCTGG GACAATGAAG 540 CTGGACATTAG ATACCTACC CAAGAGAGT TAAAAGCCTT TGGGGTCAGA CTCTTGTTCA 720 AATGGTGGG TTTGAAATTG TCCCCATGGT TAAAAGAGTT ACTAAGGAAC GCGAATCCGG 660 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAC TTCTTGTTCA 720 AATGGTGGGA TCATGCCAA AAGGGGACC TCAATGAAGC AATTGACATG AAAACCATTC 780 AATGGTGGGA TCATGTCCAA AAGGGGACC TCAATGAAGC AATTGACATG AAAACCATTC 780 AATGGTGGGA TCATGTCCAA AAGGGGACC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAGGTGGA TCATGTCCAA AAGGGGACC TCAATGAAGC AATTGAACCA TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACC TCAATGAAGC A	ATACAGGGAG	AGTGAGCTTA	TTGACGAAAA	CGCCCTTGGG	GTGAGGAATG	CTGCACAGAG	480
TTACCTECTE TITATEGTAC GTGATGTTG TTTGGATCCG AACCCAGATG AAGTGAAAGA 660 TGTAAAAATAT GTGAACCGGG AAGAGCTGAA GGAATTGGTA AGGAAGGCGG ATGCTGGTGA 720 AGAGGGTGTG AAGCTGTCCC CGTGGTTCAA ATTGATTGTC GATAATTTCT TGTTTCAGTG 780 GTGGGATCGA CTCCATAAGG GAACCCTAAC CGAAGCTATT GATATGAAAA CAATCCACAA 840 ACTCACATAA AAACACTACA CTAGTAGGAG AGAGGATTAT ATGAGATATT TGTTATATGT 900 GAAATTGAAA TTCAGATGAA TGCTTGTATT TATTTCTATT TGGACAAACT TCAACTTCTT 960 TTTGCTACCT TATCAGAAAA AAAAA 9885 <211> 988 <2121> DNA <211> 988 <212> DNA <213> Lactuca sativa <400> 32 TATTCGCTTC AAAATCTCTT CCATTAACTG CTCAAATCTC CACCTTCGCC GGTCTTAATC 60 CCGCCGGGG CACTTTCACC ACCATAACCG CCGCCATGGG TGACGATTC GGCATGGACG 120 CTGTCCAGAG ACGTCTCATG TTTGATGATG AATGCATTTT GGTTAGATAA AAAGATCAATG 180 TTCTTGGGCA TGATACCAAA TACAATTGTC ACTGATGGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGA AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGA TTAATCCCG AAAATCCCT TGGGGTCAGA AATGCACATC 360 CACACTATACAG AGAATCGGA TTAATCCCG AAAATCCCT TGGGGTCAGA AATGCACATC 360 CACACTATACAG AGAATCGGA TTAATCCCG AAAATCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CACCTGAAGA TGTTCCAGGTT GATAGCTAC 480 CACACTATACAG AGAATCGGA TTAATCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CACCTGAAGA TGTTCCAGGTT GATAGGTTCA 480 CACACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGCGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCAAACCCT GATGAGGTGG 660 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGGGTT ACTAAGGAAC TTCTTGTTCA 720 AATGGTGGGA TTTGAAATTG TCCCCATGGT TTAGGCTAG CAACACCCT GATGAGCTGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TAAAAGAGTT ACTAAGGAAC TTCTTGTTCA 720 AATGGTGGGA TCATGCCAA AAGGGGACC TCAATGAAGC AATTGAACCATTC 780 ATAGGTGGA TCATGCCAA AAGGGGACC TCAATGAAGC AATTGAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGGTGGG	GAAGCTCCTG	GATGAACTCG	GCATCCCTGG	AGCAGATGTT	CCGGTTGATG	AGTTCACTCC	540
TGTAAAATAT GTGAACCGGG AAGAGCTGAA GGAATTGGTA AGGAAGGCGG ATGCTGGTGA 720 AGAGGGTGTG AAGCTGTCCC CGTGGTTCAA ATTGATTGTC GATAATTTCT TGTTTCAGTG 780 GTGGGATCGA CTCCATAAGG GAACCCTAAC CGAAGCTATT GATATGAAAA CAATCCACAA 840 ACTCACATAA AACACTACA CTAGTAGGA AGAGGATTAT ATGAGATATT TGTTATATGT 900 GAAATTGAAA TTCAGATGAA TGCTTGTATT TATTTCTATT TGGACAAACT TCAACTTCTT 960 TTTGCTACCT TATCAGAAAA AAAAA ***C210	ATTGGGTCGC	ATTCTATACA	AGGCCGCATC	GGATGGAAAG	TGGGGAGAAC	ATGAACTTGA	600
AGAGGGTTG AACCTGTCCC CGTGGTTCAA ATTGATTGTC GATAATTTCT TGTTTCAGTG GAGGGGTGGACCG CTCCATAAGG GAACCCTAAC CGAAGCTATT GATATGAAAA CAATCCACAA 840 ACCTCACATAA AACACTACA CTAGTAGGAG AGAGGATTAT ATGAGATATT TGTTATATGT 900 GAAATTGAAA TTCAGATGAA 7GCTTGTATT TATTTCTATT TGGACAAACT TCAACTTCTT 960 TTTGCTACCT TATCAGAAAA AAAAA 9AAAA 985 <211> 988 <212> DNA <211> 988 <212> DNA <213> Lactuca sativa CCATTAACG CCGCCATGGG TGACGATCC GGCATGGACG 120 TTTCTTCAGACAA TCCATCATT TTGATAACT CACCTTCGCC GGTCTTAATC GCTGTCCAGACA ACCTCCATCA TTTCAGACAA TCCATCACC CCGCCATGGG TGACGATTCC GGCATGGACG 120 TTCTTCTGGCA ACCTCCACA TCCACCTTCAGC GGCATGGACG 120 TTCTTCTGGCA ACCTCCACA TCCACCTTCAGC GGCATGGACG 120 TCCTCTCAGA ACGCTCCAATTCT ACCACTTCAGC ACCACTTCAGC ACCATTAACCG CCGCCATGGG TGACGATTCC GGCATGGACG 120 TCCTTCAGAA ACCACTCAT TTGATGATGA AATGCAATT CACTCTCAGC ACCACTCAGA ACCACTATACAA ATACCAATTA CTCCTTCAGC 300 TCCTTCAGAA AACCACTGT TGCAGCAATC 130 AAAGGTCAGA AACCAAGGTG ACAATTCCTT TGGTATGGAA AAACACCTGT TGCAGCCATC 360 AAAGGTCAGA AACCAAGGGT ACATTTCCTT TGGTATGGAA AAACACCTGT TGCAGCCATC 360 AAAAGGTCAGA AACCAAGGGT TCAGAGGAGA TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAACTATAACCA AAACACCTGT TGCAGCCATC 360 AAACACTTCAGA AAACACCTGT TGCAGCCATC 360 AAACACTTCAGC AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAACTATAACCA AAACACCTGT TGCAGCCATC CACCTATACCA AAACACCTGT TCCAGAGATCAA CTCCAGACCTT CACCTAGAGA TCCTTCAGC AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AAACACCTG AAAATGCGAG TCCAAACCCT AAAAGAGATC AAAAAGACTC AACACCTG AAACACCTG AAAACCATTC AAAGGGGAGA TCATGAAAAAAAACATTC AAAGGGAGAG TCAAACAACACTG AAAACCATTC AAAGAGAGT AAAACACTG AAAACCATTC AAAAGAGGT AAAACACTG AAAACCATTC AAAACACTG AAAACACTTC AA	TTACCTGCTG	TTTATGGTAC	GTGATGTTGG	TTTGGATCCG	AACCCAGATG	AAGTGAAAGA	660
GTGGGATCGA CTCCATAAGG GAACCCTAAC CGAAGCTATT GATATGAAAA CAATCCACAA ACTCACATAA AAACACTACA CTAGTAGGAG AGAGGATTAT ATGAGATATT TGTTATATGT 900 GAAATTGAAA TTCAGATGAA TGCTTGTATT TATTTCTATT TGGACAAACT TCAACTTCTT 960 TTTGGTACCT TATCAGAAAA AAAAA 985 Columbia</td <td>TGTAAAATAT</td> <td>GTGAACCGGG</td> <td>AAGAGCTGAA</td> <td>GGAATTGGTA</td> <td>AGGAAGGCGG</td> <td>ATGCTGGTGA</td> <td>720</td>	TGTAAAATAT	GTGAACCGGG	AAGAGCTGAA	GGAATTGGTA	AGGAAGGCGG	ATGCTGGTGA	720
ACTCACATAA AAACACTACA CTAGTAGGAG AGAGGATTAT ATGAGATATT TGTTATATGT 960 GAAATTGAAA TTCAGATGAA TGCTTGTATT TATTTCTATT TGGACAAACT TCAACTTCTT 960 TTTGCTACCT TATCAGAAAA AAAAA 985 Columbia</td <td>AGAGGGTGTG</td> <td>AAGCTGTCCC</td> <td>CGTGGTTCAA</td> <td>ATTGATTGTC</td> <td>GATAATTTCT</td> <td>TGTTTCAGTG</td> <td>780</td>	AGAGGGTGTG	AAGCTGTCCC	CGTGGTTCAA	ATTGATTGTC	GATAATTTCT	TGTTTCAGTG	780
GAAATTGAAA TTCAGATGAA TGCTTGTATT TATTTCTATT TGGACAAACT TCAACTTCTT 960 TTTGCTACCT TATCAGAAAA AAAAA 9ASAA 985 Columbia</td <td>GTGGGATCGA</td> <td>CTCCATAAGG</td> <td>GAACCCTAAC</td> <td>CGAAGCTATT</td> <td>GATATGAAAA</td> <td>CAATCCACAA</td> <td>840</td>	GTGGGATCGA	CTCCATAAGG	GAACCCTAAC	CGAAGCTATT	GATATGAAAA	CAATCCACAA	840
CACCATACAGA ACCAAGGTG ACATTTCCTT TAGATACA ACCATTCCAGAGAGA ACCATTCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	ACTCACATAA	AAACACTACA	CTAGTAGGAG	AGAGGATTAT	ATGAGATATT	TGTTATATGT	900
<pre><210> 32 <211> 988 <212> DNA <213> Lactuca sativa </pre> <pre><400> 32 TATTCGCTC AAAATCTCT CCATTAACTG CTCAAATCTC CACCTTCGCC GGTCTTAATC 60 TCCGCCGGCG CACTTTCACC ACCATAACCG CCGCCATGGG TGACGATTCC GGCATGGACG 120 CTGTCCAGAG ACGTCTCATG TTTGATGATG AATGCATTTT GGTTGATGAA AATGACAATG 180 TTCTTGGGCA TGATACCAAA TACAATGTC ACTTGATGAG GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 CTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACA TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGGTGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC ATTGACATG AAAACCATTC 780 ATAAGGTGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC ATTGACATG AAAACCATTC 780 ATAAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGCTTTATT TGGGAGGTGTT 990</pre>	GAAATTGAAA	TTCAGATGAA	TGCTTGTATT	TATTTCTATT	TGGACAAACT	TCAACTTCTT	960
<pre><211> 988 <212> DNA <213> Lactuca sativa </pre> <pre><400> 32 TATTCGCTTC AAAATCTCTT CCATTAACTG CTCAAATCTC CACCTTCGCC GGTCTTAATC 60 TCCGCCGGCG CACTTTCACC ACCATAACCG CCGCCATGGG TGACGATTCC GGCATGGACG 120 CTGTCCAGAG ACGTCCATG TTTGATGATG AATGCATTTT GGTTGATGAA AATGACAATG 180 TTCTTGGGCA TGATACCAAA TACAATTGTC ACTTGATGGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TAAGAGAGT ACTAAGGAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACAT AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTC TTTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGGTGTT 900</pre>	TTTGCTACCT	TATCAGAAAA	AAAAA				985
TATTCGCTTC AAAATCTCTT CCATTAACTG CTCAAATCTC CACCTTCGCC GGTCTTAATC 60 TCCGCCGGCG CACTTTCACC ACCATAACCG CCGCCATGGG TGACGATTCC GGCATGGACG 120 CTGTCCAGAG ACGTCTCATG TTTGATGATG AATGCATTTT GGTTGATGAA AATGACAATG 180 TTCTTGGGCA TGATACCAAA TACAATTGTC ACTTGATGGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTCCCT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 CTGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 CTGAGGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900	<211> 988 <212> DNA	uca sativa					
TCCGCCGGCG CACTTCACC ACCATAACCG CCGCCATGGG TGACGATTCC GGCATGGACG 120 CTGTCCAGAG ACGTCTCATG TTTGATGATG AATGCATTTT GGTTGATGAA AATGCAATG 180 TTCTTGGGCA TGATACCAAA TACAATTGTC ACTTGATGGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAAGGTCAGA AACCAAGGTG ACATTCCTT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTCCCT GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900		7 7 7 7 MCMCMM		CMC2 2 2 mone			
CTGTCCAGAG ACGTCTCATG TTTGATGATG AATGCATTT GGTTGATGAA AATGACAATG 180 TTCTTGGGCA TGATACCAAA TACAATTGTC ACTTGATGGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTTGTG 840 TGTTCAAGTC TCGGTCCTC TTTTTTTAC GTTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900							60
TTCTTGGCA TGATACCAAA TACAATTGTC ACTTGATGA GAAGATTGAG AAAGATAATT 240 TGCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 660 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900							
TGCTTCATAG AGCATTCAGT GTATTTTAT TCAATTCAAA ATACGAATTA CTCCTTCAGC 300 AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAAATG GTTAATATTT ATGGTGGTGG TTTTGGAGCTA ATAATTTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900							180
AAAGGTCAGA AACCAAGGTG ACATTTCCTT TGGTATGGAC AAACACCTGT TGCAGCCATC 360 CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTC TTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900						•	240
CACTATACAG AGAATCGGAG TTAATTCCCG AAAATGCCCT TGGGGTCAGA AATGCTGCAC 420 AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900							300
AGAGGAAGCT TCTAGATGAA CTCGGTATCC CTGCTGAAGA TGTTCCAGTT GATGAGTTCA 480 CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900							360
CAACTTTAGG TCGCATGTTG TACAAGGCTC CATCTGATGG AAAATGGGGT GAACATGAAG 540 TTGATTACCT ACTCTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTTT TTGTGTTTTAT TGGGAGTGTT 900							420
TTGATTACCT ACTCTCCTC GTGCGTGACG TTGCCGTGAA CCCCAAACCCT GATGAGGTGG 600 CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900							480
CGGACATTAG ATACGTGAAC CAAGAAGAGT TAAAAGAGTT ACTAAGGAAG GCGGATGCGG 660 GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900							540
GTGAGGAGGG TTTGAAATTG TCCCCATGGT TTAGGCTAGT GGTGGACAAC TTCTTGTTCA 720 AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900	TTGATTACCT	ACTCTTCCTC	GTGCGTGACG	TTGCCGTGAA	CCCAAACCCT	GATGAGGTGG	600
AATGGTGGGA TCATGTCCAA AAGGGGACAC TCAATGAAGC AATTGACATG AAAACCATTC 780 ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900	CGGACATTAG	ATACGTGAAC	CAAGAAGAGT	TAAAAGAGTT	ACTAAGGAAG	GCGGATGCGG	660
ATAAGTTGAT ATGAAAAATG GTTAATATTT ATGGTGGTGG TTTGGAGCTA ATAATTTGTG 840 TGTTCAAGTC TCGGTCCTTC TTTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900	GTGAGGAGGG	TTTGAAATTG	TCCCCATGGT	TTAGGCTAGT	GGTGGACAAC	TTCTTGTTCA	720
TGTTCAAGTC TCGGTCCTTC TTTTTTTAAC GTTTTTTTT TTTCTTTTAT TGGGAGTGTT 900	AATGGTGGGA	TCATGTCCAA	AAGGGGACAC	TCAATGAAGC	AATTGACATG	AAAACCATTC	780
	ATAAGTTGAT	ATGAAAAATG	GTTAATATTT	ATGGTGGTGG	TTTGGAGCTA	ATAATTTGTG	840
TATTGTGTAC TTGTAACGTA GGCCCTTTGG TTACGCTTTA AGAGTTTAAT AAAGAACCAC 960	TGTTCAAGTC	TCGGTCCTTC	TTTTTTTAAC	GTTTTTTTT	TTTCTTTTAT	TGGGAGTGTT	900
	TATTGTGTAC	TTGTAACGTA	GGCCCTTTGG	TTACGCTTTA	AGAGTTTAAT	AAAGAACCAC	960

PCT/US99/12121

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

ССТТААТТТА ААААААААА ААААААА 988 <210> 33 <211> 1874 <212> DNA <213> Chlamydomonas reinhardtii GGCACGAGCT CGAGTTTGTT TTACCATGAC ATCGGGAATT TGGAAGCTTG AACTACCTCA 60 ATTACTCAAG TAACTCGCGG CAACACATTT CGCGCGCCAT CGCTGTTTTC TCTGCTCCAG 120 CTACCGAGCA GCATTGCTTT AGATCGCTTT GATGTCATAA ACTCCCACTT ATATGAGATC 180 CAGTTTCATC GAGCCCAAGC CCAGAGCGCA ACCTGTCTTA AGCCGCGGCA GGGCGTCCAT 240 GCGCCTCGCG CAAAGCCGTG CTCTCGTTGC GCGTGTCAGC TCCGCCCTGT GGCCGGGAGC 300 AGGACTTTCA CAGGCTCAAA GCGTTGCGGT GCGAATGGCG AGTTCGTCAA CCTGGGAAGG 360 CACGGGCCTG AGCCAGGATG ACTTCATGCA GCGGGACGAG TGCTTGGTGG TGGACGAGCA 420 GGACCGGCTG CTAGGCACCG CCAACAAGTA CGACTGCCAC CGCTTCGAGG CGGCCAAGGG 480 CCAGCCCTGC GGCCGCCTGC ACCGCGCCTT CTCCGTGTTC CTGTTCAGCC CCGACGGCCG 540 ACTGCTGCTG CAGCAGCGC CAGCCAGCAA GGTGACGTTC CCGGGTGTGT GGACCAACAC 600 CTGCTGCTCG CACCCGCTGG CGGGCCAGGC GCCGGACGAG GTGGACCTGC CGGCGGCGGT 660 AGCCTCGGGC CAGGTGCCGG GCATCAAGGC GGCGGCGGTG CGCAAGCTGC AGCACGAGCT 720 GGGGATACCG CCGGAGCAGG TTCCCGCCTC CTCCTTCTCC TTCCTCACGC GTCTGCACTA 780

CTGCGCCGCC GACACCGCCA CGCACGGCCC GGCGGCGGAG TGGGGCGAGC ACGAGGTGGA

CTACGTGCTG TTCGTGCGGC CGCAGCAGCC CGTCAGCCTG CAGCCCAACC CAGACGAGGT

GGACGCCACG CGCTACGTGA CGCTGCCGGA GCTTCAGTCC ATGATGGCGG ACCCCGGCCT

CAGCTGGAGC CCCTGGTTCC GCATCCTGGC CACACAGCCC GCCTTCCTGC CCGCCTGGTG

GGGCGACCTG AAGCGGCGCT GGCGCCCGGG CGGCAGCCGA CTGTCGGACT GGGGCACCAT

CCACCGCGTC ATGTGAAGAA AAAGGGGAAG CAGGGGGGGG AGCGGGGGAT GAATGGGAAT

GTGAATGCGA TTGTGATGCG GCGTGGGATG AGGTCTGAAG ACAGGGGGGAA AATCGGGGGG

CGGGCGTGAG CGTGTGTGTA CGTGAGCGAC AAAGCCGGGA GGCGGACCGC GCGATGGGTA

CATGTGTGTG CGGAGGGTCG GTGGGTCGGT CGGTTGCGCG GCATAGCGTG TTGTGTGTGT

GCGGCTGCAG GGGTATGTGG GCACCCGGGC ACGGAGGAGA AGGCACACGC AGGTGGCGCG

GAGGTGTGTC AGGGGCCCATG GGCGGGCCTC ACTCCTGGTC GTGCCCAGTG GTCTCGTGGG

CAGAGTGGCA GGGGCTGCAC CCATATGAGC GGCGCACTGC CGCGCTGGGC TAAGTCCTTA

TCACTTGGTG AGGTGGGCG AGGTGGCTGT GGGCGGCGGG CGCAGTGGCA GAAGGACACG

GTGTGTGAGC GGTGGAGCTC TGGCCGTGCC GGCCGTGAGG GGCGGATAGC GATATGACGT

1110 00/600			D.OTT. (1000 (1010)
WO 99/63055	_	 ,	PCT/US99/12121

TGTGCTTGGC	CGCTGTAATG	CGGGAGAATG	TGCAGGCCGC	GAGAAGCGGG	CGGTGGCAGG	1680
AGGCCGCAGG	CTGCAGCACC	CGTTĠGGGAG	GTGCCACCTG	CAGGCGCGGC	GCCGGGCGGG	1740
CCTGAGTAAT	GGGCGCCTGA	GTAGTGGCGG	CCACAGGAGG	CGCAGGAGGC	AGCAGCAGGA	1800
GGACGAGCTG	GAGGGACCCG	TTGGCAACCC	AAGGTTGCGC	GTGTAACATA	GTGGCCATAC	1860
AAAAAAAA	AAAA					1874
<210> 34 <211> 954 <212> DNA <213> Taget	es erecta				·	
<400> 34 CCAAAAACAA	СТСАААТСТС	CTCCGTCGCT	CTTACTCCGC	CATGGGTGAC	GACTCCGGCA	60
TGGATGCTGT	TCAGCGACGT	CTCATGTTTG	ACGATGAATG	CATTTTGGTG	GATGAGTGTG	120
ACAATGTGGT	GGGACATGAT	ACCAAATACA	ATTGTCACTT	GATGGAGAAG	ATTGAAACAG	180
GTAAAATGCT	GCACAGAGCA	TTCAGCGTTT	TTCTATTCAA	TTCAAAATAC	GAGTTACTTC	240
TTCAGCAACG	GTCTGCAACC	AAGGTGACAT	TTCCTTTAGT	ATGGACCAAC	ACCTGTTGCA	300
GCCATCCACT	CTACAGAGAA	TCCGAGCTTG	TTCCCGAAAA	CGCCCTTGGA	GTAAGAAATG	360
CTGCACAGAG	GAAGCTGTTG	GATGAACTCG	GTATCCCTGC	TGAAGATGTT	CCCGTTGATC	420
AGTTTACTCC	TTTAGGTCGC	ATGCTCTACA	AGGCTCCATC	TGATGGAAAG	TGGGGAGAAC	480
ATGAACTTGA	СТАССТАСТТ	TTCATAGTGA	GAGACGTTGC	TGTAAACCCG	AACCCAGATG	540
AAGTGGCGGA	TATCAAATAT	GTGACCAGAA	GAGTTAAAGG	AGCTGCTAAG	GAAAGCAGAT	600
GCGGGGGAGG	AGGGTTTGAA	GCTGTCTCCA	TGGTTCAGGT	TAGTGGTTGA	TAACTTCTTG	660
TTCAAGTGGT	GGGATCATGT	GCAAAAGGGT	ACACTCACTG	AAGCAATTGA	TATGAAAACC	720
ATACACAAGC	TGATATAGAA	ACACACCCTC	AACCGAAAAG	TTCAAGCCTA	ATAATTCGGG	780
TTGGGTCGGG	TCTACCATCA	ATTGTTTTTT	TCTTTTAAGA	AGTTTTAATC	TCTATTTGAG	840
CATGTTGATT	CTTGTCTTTT	GTGTGTAAGA	TTTTGGGTTT	CGTTTCAGTT	GTAATAATGA	900
ACCATTGATG	GTTTGCAATT	TCAAGTTCCT	ATCGACATGT	AGTGATCTAA	AAAA	954
<210> 35 <211> 1031 <212> DNA <213> Oryza	a sativa					
<400> 35 CCTCCCTTTG	CCTCGCGCAG	AGGCGGCCGC	GCCTTCTCCG	CCGCGAGGAT	GGCCGGCGCC	60
GCCGCCGCCG	TGGAGGACGC	CGGGATGGAC	GAGGTCCAGA	AGCGGCTCAT	GTTCGACGAC	120
GAATGCATTT	TGGTGGATGA	ACAAGACAAT	GTTGTTGGCC	ATGAATCAAA	ATATAACTGC	180
CATCTGATGG	АААААТСБА	ATCTGAAAAT	CTACTTCATA	GGGCTTTCAG	TGTATTCCTG	240

WO 99/63055

PCT/US99/12121

TTCAACTCAA	AATATGAACT	CCTACTCCAG	CAACGATCTG	CAACAAAGGT	TACATTTCCT	300
CTAGTTTGGA	CCAACACTTG	CTGCAGCCAT	CCTCTGTACC	GTGAGTCTGA	GCTTATACAG	360
GAAAACTACC	TTGGTGTTAG	AAATGCTGCT	CAGAGGAAGC	TCTTGGATGA	GCTGGGCATC	420
CCAGCTGAAG	ATGTGCCAGT	TGACCAATTC	ACCCCTCTTG	GTCGGATGCT	TTACAAGGCC	480
CCATCTGATG	GAAAATGGGG	TGAACACGAG	CTTGACTACC	TGCTGTTCAT	CGTCCGCGAC	540
GTGAAGGTAG	TCCCGAACCC	GGACGAAGTG	GCCGATGTGA	AATACGTGAG	CCGTGAGCAG	600
CTGAAGGAGC	TCATCCGCAA	AGCGGACGCC	GGAGAGGAAG	GCCTGAAGCT	GTCTCCCTGG	660
TTCCGGCTGG	TTGTTGACAA	CTTCCTCATG	GGCTGGTGGG	ATCACGTCGA	GAAAGGCACC	720
CTCAACGAGG	CCGTGGACAT	GGAGACCATC	CACAAGCTGA	AGTAAGGACT	GCGATGTTGT	780
GGCTGGAAAG	AATGATCCTG	AAGACTCTGT	тсттстсстс	CTGCATATTA	CTCTTACCAG	840
GGAAGTTGCA	GAAGTCAGAA	GAAGCTTTTG	TATGTTTCTG	GGTTTGGAGC	TTGGAAGTGT	900
TGGGCTCTGC	TGACTGAGAG	ATTCCCTTAT	AGAGTGTCTA	TGTTAATTTA	GCAAACTTCT	960
ATATTATACA	TGATTAGTTA	ATTGTTCGGT	GTCTGAATAA	AGAACAATAG	CATGTTCCAT	1020
GTTTATTTGC	T					1031
				•		

<210> 36 <211> 232

<212> PRT

<213> Tagetes erecta

<400> 36

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe

Asp Asp Glu Cys Ile Leu Val Asp Glu Cys Asp Asn Val Val Gly His,

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Thr Gly Lys

Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 85 90

Val Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Gln Phe 115

Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp 135

- Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Ala 145 150 155 160
- Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Lys Tyr Val Ser His 165 170 175
- Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly 180 185 190
- Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195 200 205
- Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Thr Glu Ala Ile Asp 210 215 220
- Met Lys Thr Ile His Lys Leu Ile 225 230
- <210> 37
- <211> 280
- <212> PRT
- <213> Lactuca Sativa
- <400> 37
- Met Leu Lys Phe Pro Pro Phe Lys Thr Ile Ala Thr Met Ile Ser Ser 1 5 10 15
- Pro Tyr Ser Ser Phe Leu Leu Pro Arg Lys Ser Ser Phe Pro Pro Met 20 25 30
- Pro Ser Leu Ala Ala Ala Ser Val Phe Leu His Pro Leu Ser Ser Ala 35 40 45
- Ala Met Gly Asp Ser Ser Met Asp Ala Val Gln Arg Arg Leu Met Phe 50 55 60
- Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly His 65 70 75 80
- Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Gly Asn 85 90 95
- Met Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 100 105 110
- Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val 115 120 125
- Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 130 135 140
- Ile Asp Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 145 150 155 160
- Leu Asp Glu Leu Gly Ile Pro Gly Ala Asp Val Pro Val Asp Glu Phe
 165 170 175
- Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Ala Ser Asp Gly Lys Trp 180 185 190
- Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Met Val Arg Asp Val Gly

F 1

195

9/63055

200 205

Leu Asp Pro Asn Pro Asp Glu Val Lys Asp Val Lys Tyr Val Asn Arg 210 215 220

Glu Glu Leu Lys Glu Leu Val Arg Lys Ala Asp Ala Gly Glu Gly 225 230 235 240

Val Lys Leu Ser Pro Trp Phe Lys Leu Ile Val Asp Asn Phe Leu Phe 245 250 255

Gln Trp Trp Asp Arg Leu His Lys Gly Thr Leu Thr Glu Ala Ile Asp 260 265 270

Met Lys Thr Ile His Lys Leu Thr 275 280

<210> 38

<211> 229

<212> PRT

<213> Lactuca Sativa

<400> 38

Met Gly Asp Asp Ser Gly Met Asp Ala Val Gln Arg Arg Leu Met Phe 1 5 10 15

Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Asn Val Leu Gly His 20 25 30

Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Lys Asp Asn 35 40 45

Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu 50 55 60

Leu Leu Leu Gln Gln Arg Ser Glu Thr Lys Val Thr Phe Pro Leu Val 65 70 75 80

Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser Glu Leu 85 90 95

Ile Pro Glu Asn Ala Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu 100 105 110

Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe 115 120 125

Thr Thr Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp 130 135 140

Gly Glu His Glu Val Asp Tyr Leu Leu Phe Leu Val Arg Asp Val Ala 145 150 155 160

Val Asn Pro Asn Pro Asp Glu Val Ala Asp Ile Arg Tyr Val Asn Gln 165 170 175

Glu Glu Leu Lys Glu Leu Leu Arg Lys Ala Asp Ala Gly Glu Gly 180 185 190

Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe 195 200 205

Lys Trp Trp Asp His Val Gln Lys Gly Thr Leu Asn Glu Ala Ile Asp 210 225 220

Met Lys Thr Ile His

<210> 39

<211> 295

<212> PRT

<213> Adonis Palaestina

<400> 39

Met Ser Ser Ile Arg Ile Asn Pro Leu Tyr Ser Ile Phe Ser Thr Thr
1 5 10 15

Thr Lys Thr Leu Ser Ala Ser Cys Ser Ser Pro Ala Val His Leu Gln 20 25 30

Gln Arg Cys Arg Thr Leu Ser Ile Ser Ser Ser Ile Thr Asn Ser Pro 35 40 45

Arg Arg Gly Leu Asn Arg Leu Phe Ala Ser Thr Ser Thr Met Gly Glu 50 60

Val Ala Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu Met Phe Asp 65 70 75 80

Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val Gly Tyr Asp 85 90 95

Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala Glu Asn Leu 100 105 110

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu 115 120 125

Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro Leu Val Trp 130 135 140

Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser Glu Leu Ile 145 150 155 160

Glu Glu Asn Phe Leu Gly Val Arg Asn Ala Ala Gln Arg Lys Leu Leu 165 170 175

Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp Glu Phe Thr 180 185 190

Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly Lys Trp Gly 195 200 205

Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp Val Lys Tyr 210 215 220

Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val Asn Arg Glu 225 230 235 240

Glu Leu Lys Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu Glu Gly Ile
245 250 255

Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe Leu Phe Lys

265

270

Trp Trp Asp His Val Glu Glu Gly Lys Ile Lys Asp Val Ala Asp Met 275 280 285

Lys Thr lle His Lys Leu Thr 290 295

<210> 40

<211> 234

<212> PRT

<213> Adonis Palaestina

<400> 40

Met Gly Glu Val Thr Asp Ala Gly Met Asp Ala Val Gln Lys Arg Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Asn Asp Lys Val Val 20 25 ' 30

Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala 35 40 45

Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys
50 55 60

Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys Val Thr Phe Pro 65 70 75 80

Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Phe Arg Asp Ser 85 90 95

Glu Leu Ile Glu Glu Asn Tyr Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110

Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp Val Pro Val Asp 115 120 125

Glu Phe Thr Pro Leu Gly Arg Ile Leu Tyr Lys Ala Pro Ser Asp Gly 130 135 140

Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile Val Arg Asp 145 150 155 160

Val Lys Tyr Asp Pro Asn Pro Asp Glu Val Ala Asp Ala Lys Tyr Val 165 170 175

Asn Arg Glu Glu Leu Arg Glu Ile Leu Arg Lys Ala Asp Ala Gly Glu 180 185 190

Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205

Leu Phe Lys Trp Trp Asp His Val Glu Gln Gly Thr Ile Lys Glu Val 210 215 220

Ala Asp Met Lys Thr Ile His Lys Leu Thr 225 230

<210> 41 <211> 238

÷ 1.

<212> PRT <213> Oryza Sativa

Gln Lys Arg Leu Met Phe Asp Asp Glu Cys Ile Leu Val Asp Glu Gln
20 25 30

Asp Asn Val Val Gly His Glu Ser Lys Tyr Asn Cys His Leu Met Glu 35 40 45

Lys Ile Glu Ser Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu 50 60

Phe Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Ala Thr Lys
65 70 75 80

Val Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu 85 90 95

Tyr Arg Glu Ser Glu Leu Ile Gln Glu Asn Tyr Leu Gly Val Arg Asn 100 105 110

Ala Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Pro Ala Glu Asp 115 120 125

Val Pro Val Asp Gln Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala 130 135 140

Pro Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe 145 150 155 160

Ile Val Arg Asp Val Lys Val Val Pro Asn Pro Asp Glu Val Ala Asp 165 170 175

Val Lys Tyr Val Ser Arg Glu Gln Leu Lys Glu Leu Ile Arg Lys Ala 180 . 185 . 190

Asp Ala Gly Glu Glu Leu Lys Leu Ser Pro Trp Phe Arg Leu Val 195 200 205

Val Asp Asn Phe Leu Met Gly Trp Trp Asp His Val Glu Lys Gly Thr 210 215 220

Leu Asn Glu Ala Val Asp Met Glu Thr Ile His Lys Leu Lys 225 230 235

<210> 42

<211> 233

<212> PRT

<213> Arabidopsis thaliana

<400> 42

Met Thr Asp Ser Asn Asp Ala Gly Met Asp Ala Val Gln Arg Arg Leu
1 5 10 15

Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Asn Asn Arg Val Val 20 25 30

- Gly His Asp Thr Lys Tyr Asn Cys His Leu Met Glu Lys Ile Glu Ala 35 40 45
- Glu Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe Asn Ser Lys 50 55 60
- Tyr Glu Leu Leu Gln Gln Arg Ser Lys Thr Lys Val Thr Phe Pro 65 70 75 80
- Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr Arg Glu Ser 85 90 95
- Glu Leu Ile Glu Glu Asn Val Leu Gly Val Arg Asn Ala Ala Gln Arg 100 105 110
- Lys Leu Phe Asp Glu Leu Gly Ile Val Ala Glu Asp Val Pro Val Asp 115
- Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro Ser Asp Gly 130 140
- Lys Trp Gly Glu His Glu Val Asp Tyr Leu Leu Phe Ile Val Asp Asp 145 150 155 160
- Val Lys Leu Gln Pro Asn Pro Asp Glu Val Ala Glu Ile Lys Tyr Val 165 170 175
- Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp Ala Gly Asp 180 185 190
- Glu Ala Val Lys Leu Ser Pro Trp Phe Arg Leu Val Val Asp Asn Phe 195 200 205
- Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Ile Thr Glu Ala 210 215 220
- Ala Asp Met Lys Thr Ile His Lys Leu 225 230
- <210> 43
- <211> 293
- <212> PRT
- <213> Haematococcus pluvialis
- <400> 43
- Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15
- Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30
- Arg Ser Met Gln Leu Leu Ser Glu Asp Arg Thr Asp His Met Arg Gly 35 40 45
- Ala Ser Thr Trp Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys 50 55 60
- Asp Glu Cys Ile Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala 65 70 75 80
- Ser Lys Leu Glu Cys His Lys Phe Leu Pro His Gln Pro Ala Gly Leu

Leu His Arg Ala Phe Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu 100 105 110

Leu Leu Gln Gln Arg Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp 115 120 125

Thr Asn Thr Cys Cys Ser His Pro Leu His Gly Gln Thr Pro Asp Glu 130 135 140

Val Asp Gln Leu Ser Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys 145 150 155 160

Ala Ala Ala Ile Arg Lys Leu Glu His Glu Leu Gly Ile Pro Ala His 165 170 175

Gln Leu Pro Ala Ser Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys 180 185 190

Ala Ala Asp Val Gln Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu 195 200 205

His Glu Met Asp Tyr Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala 210 215 220

Pro Asn Pro Asp Glu Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu 225 230 235 240

Leu Arg Gln Met Met Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp 245 250 255

Phe Arg Ile Ile Ala Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu 260 265 270

Asp Ala Ala Leu Asn Thr Asp Lys His Glu Asp Trp Gly Thr Val His

His Ile Asn Glu Ala 290

<210> 44

<211> 304

<212> PRT

<213> Haematococcus pluvialis

<400> 44

Met Leu Arg Ser Leu Leu Arg Gly Leu Thr His Ile Pro Arg Val Asn 1 5 10 15

Ser Ala Gln Gln Pro Ser Cys Ala His Ala Arg Leu Gln Phe Lys Leu 20 25 30

Arg Ser Met Gln Met Thr Leu Met Gln Pro Ser Ile Ser Ala Asn Leu 35 40 45

Ser Arg Ala Glu Asp Arg Thr Asp His Met Arg Gly Ala Ser Thr Trp 50 55 60

Ala Gly Gly Gln Ser Gln Asp Glu Leu Met Leu Lys Asp Glu Cys Ile 65 70 75 80

WO 99/63055

- Leu Val Asp Val Glu Asp Asn Ile Thr Gly His Ala Ser Lys Leu Glu 85 90 95
- Cys His Lys Phe Leu Pro His Pro Ala Gly Leu Leu His Arg Ala Phe 100 105 110
- Ser Val Phe Leu Phe Asp Asp Gln Gly Arg Leu Leu Gln Gln Arg 115 120 125
- Ala Arg Ser Lys Ile Thr Phe Pro Ser Val Trp Thr Asn Thr Cys Cys 130 135
- Ser His Pro Leu His Gly Gln Thr Pro Asp Glu Val Asp Gln Leu Ser 145 150 155 160
- Gln Val Ala Asp Gly Thr Val Pro Gly Ala Lys Ala Ala Ala Ile Arg 165 170 175
- Lys Leu Glu His Glu Leu Gly Ile Pro Ala His Gln Leu Pro Ala Ser 180 185 190
- Ala Phe Arg Phe Leu Thr Arg Leu His Tyr Cys Ala Ala Asp Val Gln
 195 200 205
- Pro Ala Ala Thr Gln Ser Ala Leu Trp Gly Glu His Glu Met Asp Tyr 210 215 220
- Ile Leu Phe Ile Arg Ala Asn Val Thr Leu Ala Pro Asn Pro Asp Glu 225 230 235 240
- Val Asp Glu Val Arg Tyr Val Thr Gln Glu Glu Leu Arg Gln Met Met
 245 250 255
- Gln Pro Asp Asn Gly Leu Gln Trp Ser Pro Trp Phe Arg Ile Ile Ala 260 265 270
- Ala Arg Phe Leu Glu Arg Trp Trp Ala Asp Leu Asp Ala Ala Leu Asn 275 280 285
- Thr Asp Lys His Glu Asp Trp Gly Thr Val His His Ile Asn Glu Ala 290 295 300
- <210> 45
- <211> 307
- <212> PRT
- <213> Chlamydomonas reinhardtii
- <400> 45
- Met Arg Ser Ser Phe Ile Glu Pro Lys Pro Arg Ala Gln Pro Val Leu 1 15
- Ser Arg Gly Arg Ala Ser Met Arg Leu Ala Gln Ser Arg Ala Leu Val 20 25 30
- Ala Arg Val Ser Ser Ala Leu Trp Pro Gly Ala Gly Leu Ser Gln Ala 35 40 45
- Gln Ser Val Ala Val Arg Met Ala Ser Ser Ser Thr Trp Glu Gly Thr 50 55 60
- Gly Leu Ser Gln Asp Asp Phe Met Gln Arg Asp Glu Cys Leu Val Val

WO 99/63055

65					70					7,5					80		
Asp	Glu	Gln	Asp	Arg 85	Leu	Leu	Gly	Thr	Ala 90	Asn	Lys	Tyr	Asp	Cys 95	His		
Arg	Phe	Glu	Ala 100	Ala	Lys	Gly	Gln	Pro 105	Cys	Gly	Arg	Leu	His 110	Arg	Ala		
Phe	Ser	Val 115	Phe	Leu	Phe	Ser	Pro 120	Asp	Gly	Arg	Leu	Leu 125	Leu	Gln	Gln		
Arg	Ala 130	Ala	Ser	Lys	Val	Thr 135	Phe	Pro	Gly	Val	Trp 140	Thr	Asn	Thr	Cys		
Cys 145	Ser	His	Pro	Leu	Ala 150	Gly	Gln	Ala	Pro	Asp 155	Glu	Val	Asp	Leu	Pro 160		
Ala	Ala	Val	Ala	Ser 165	Gly	Gln	Val	Pró	Gly 170	Ile	Lys	Ala	Ala	Ala 175	Val		
Arg	Lys	Leu	Gln 180	His	Glu	Leu	Gly	Ile 185	Pro	Pro	Glu	Gln	Val 190	Pro	Ala		
Ser	Ser	Phe 195	Ser	Phe	Leu	Thr	Arg 200	Leu	His	Tyr	Cys	Ala 205	Ala	Asp	Thr		
Ala	Thr 210	His	Gly	Pro	Ala	Ala 215	Glu	Trp	Gly	Glu	His 220		Val	Asp	Tyr		
Val 225	Leu	Phe	Val	Arg	Pro 230	Gln	Gln	Pro	Val	Ser 235		Gln	Pro	Asn	Pro 240		
Asp	Glu	Val	Asp	Ala 245		Arg	Tyr	Val	Thr 250	Leu	Pro	Glu	Leu	Gln 255	Ser		
Met	Met	Ala	Asp 260		Gly	Leu	Ser	Trp 265	Ser	Pro	Trp	Phe	Arg 270	Ile	Leu ,		
Ala	Thr	Gln 275		Ala	Phe	Leu	Pro 280		Trp	Trp	Gly	Asp 285		Lys	Arg		
Arg	Trp 290		Pro	Gly	Gly	Ser 295		Leu	Ser	Asp	300		Thr	Ile	His		
Arg 305	Val	Met	•														
<21 <21	0> 4 1> 1 2> D 3> A	848 NA	is pa	alaes	stina	ı											
< 4 0 GAG	0> 4 GAGAA	6 AAA	GAG	rgtt <i>i</i>	ATA	'AAT'	rgtt <i>i</i>	AC TO	STCG	CATTO	C TTO	CAA	CACA	TAT	rcagact	6	C
CCA	TTTI	CTT	GTT:	TCT	CTT (CAAA	ACAA	CA A	ACTA	ATGT	G AC	GGAG'	PATC	TAG	CTATGGA	12	(
ACI	ACTI	GGT	GTT	CGCA	ACC :	CAT	CTCT'	rc T	rgcc	CTGT	C TG	GACT'	ГТТG	GAA	CAAGAAA	18	(
CCI	TAGT	TAGT	TCA	AAAC'	TAG (CTTA'	TAAC	AT A	CATC	GATA'	T GG	TTCT'	TCTT	GTA	GAGTAGA	24	(

WO 99/63055

					1 - 2 2	
TTTTCAAGTG	AGGGCTGATG	GTGGAAGCGG	GAGTAGAACT	TCTGTTGCTT		300
TTTTGTGGAC	GAGGAGGATT	TTATCAAAGC	TGGTGGTTCT	GAGCTTTTGT	TTGTCCAAAT	360
GCAGCAAACA	AAGTCTATGG	AGAAACAGGC	CAAGCTCGCC	GATAAGTTGC	CACCAATACC	420
TTTCGGAGAA	TCTGTGATGG	ACTTGGTTGT	AATAGGTTGT	GGACCTGCTG	GTCTTTCACT	480
GGCTGCAGAA	GCTGCTAAGC	TAGGCTTGAA	AGTTGGCCTT	ATTGGTCCTG	ATCTTCCTTT.	540
TACAAATAAT	TATGGTGTGT	GGGAAGACGA	GTTCAAAGAT	CTTGGACTTG	AACGTTGTAT	600.
CGAGCATGCT	TGGAAGGACA	CCATCGTATA	TCTTGACAAT	GATGCTCCTG	TCCTTATTGG	660
TCGTGCATAT	GGACGAGTTA	GCCGGCATTT	GCTGCATGAA	GAGTTGCTGA	AAAGGTGTGT	720
CGAGTCAGGT	GTATCATATC	TGAATTCTAA	AGTGGAAAGG	ATCACTGAAG	CTGGTGATGG	780
CCATAGTCTT	GTAGTTTGTG	AAAACGACAT	CTTTATCCCT	TGCAGGCTTG	CTACTGTTGC	840
ATCTGGAGCA	GCTTCAGGGA	AACTTTTGGA	GTATGAAGTA	GGTGGCCCTC	GTGTTTGTGT	900
CCAAACTGCI	TATGGTGTGG	AGGTTGAGGT	GGAGAACAAT	CCATACGATC	CCAACTTAAT	960
GGTATTTATO	GACTACAGAG	ACTATATGCA	ACAGAAATTA	CAGTGCTCGG	AAGAAGAATA	1020
TCCAACATTI	CTCTATGTCA	TGCCCATGTC	GCCAACAAGA	СТТТТТТТТ	AGGAAACCTG	1080
TTTGGCCTCA	AAAGATGCCA	TGCCTTTCGA	TCTACTGAAG	AGAAAACTAA	TGTCACGATT	1140
GAAGACTCT	G GGTATCCAAC	TTACAAAAA	TTATGAAGAG	GAATGGTCTT	ATATTCCTGT	1200
TGGGGGTTC	r TTACCAAAC	A CAGAGCAAA	A GAACCTAGCA	TTTGGTGCT	CAGCAAGCAT	1260
GGTGCATCC	A GCAACAGGC	r ATTCGGTTG	r ACGATCACTA	TCAGAAGCT	CAAAATATGC	1320
TTCTGTAAT	r GCAAAGATT	r TGAAGCAAG	A TAACTCTGC	ATATGTGGTT	r CTGGACAAAG	1380
CAGTGCAGT	A AACATTTCA	A TGCAAGCAT	G GAGCAGTCT	TGGCCAAAG	G AGCGAAAACG	1440
TCAAAGAGC	A TTCTTTCTT	T TCGGGTTAG	A GCTTATTGT	G CAGCTAGAT	A TTGAAGCAAC	1500
CAGAACGTT	C TTTAGAACC	T TCTTCCGCT	T GCCAACTTG	ATGTGGTGG	G GTTTCCTTGG	1560
GTCTTCACT	A TCATCTTTC	G ATCTTGTAT	T GTTTTCCAT	G TACATGTÍT	G TTTTGGCCCC	1620
GAACAGCAT	G AGGATGTCA	C TŢGTGAGAC	A TTTGCTTTC	A GATCCTTCT	G GTGCAGTTAT	1680
GGTTAAAGC	T TACCTCGAA	A GGTAATCTG	T TTTATGAAA	C TATAGTGTC	T CATTAAATAA	1740
ATGAGGATO	C TTCGTATAT	G TATATGATC	A TCTCTATGT	а татсстата	T TCTAATCTCA	1800
TAAAGTAAT	C GAAAATTCA	TGATAGAAA	AAAAAAA A	AAAAAAA A		1848

<210> 47

Met Glu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp

<211> 529

<212> PRT

^{. &}lt;213> Adonis palaestina

<400> 47

				-											7.2
1				5					10					15	
Thr	Phe	Gly	Thr 20	Arg	Asn	Leu	Ser	Ser 25	Ser	Lys	Leu	Ala	Туг 30	Asn	lle
His	Arg	Tyr 35	Gly	Ser	Ser	Cys	Arg 40	Val	Asp	Phe	Gln	Val 45	Arg	Ala	Asp
Gly	Gly 50	Ser	Gly	Ser	Arg	Ser 55	Ser	Val	Ala	Tyr	Lys 60	Glu	Gly	Phe	Val
Asp 65	Glu	Glu	Asp	Phe	Ile 70	Lys	Ala	Gly	Gly	Ser 75	Glu	Leu	Leu	Phe	Val 80
Gln	Met	Gln	Gln	Thr 85	Lys	Ser	Met	Glu	Lys 90	Gln	Ala	Lys	Leu	Ala 95	Asp
Lys	Leu	Pro	Pro 100	Ile	Pro	Phe	Gly	Glu 105	Ser	Val	Met	Asp	Leu 110	Val	Val
Ile	Gly	Cys 115	Gly	Pro	Ala	Gly	Leu 120	Ser	Leu	Ala	Ala	Glu 125	Ala	Ala	Lys
Leu	Gly 130		Lys	Val	Gly	Leu 135	Ile	Gly	Pro	Asp	Leu 140	Pro	Phe	Thr	Asn
Asn 145	Tyr	Gly	Val	Trp	Glu 150		Glu	Phe	Lys	Asp 155	Leu	Gly	Leu	Glu	Arg 160
Cys	Ile	Glu	His	Ala 165		Lys	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180		Gly	Arg	Ala	Tyr 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195		Lev	Lev	Lys	200	Cys	: Val	Glu	Ser	Gly 205	v Val	Ser	Tyr ,
Leu	Asp 210		Lys	s Val	Glu	Arc 215		Thr	Glu	ı Ala	Gly 220	/ Asp	Gly	His	Ser
Leu 225		Val	L Cys	s Glu	Asr 230		ı Ile	e Phe	e Ile	235	Cys	s Arg	g Lev	a Ala	240
Val	. Ala	a Sea	r Gl	y Ala 24!		a Ser	r Gly	y Lys	250	u Lei O	Gl د	тул	r Glu	val 255	L Gly 5
Gl ₃	y Pro	o Ar	g Va 26		s Vai	l Glı	n Th	r Ala 26	а Ту: 5	r Gl	y Vai	l Gl	u Val 270	l Glu	ນ Vai

Glu Asn Asn Pro Tyr Asp Pro Asn Leu Met Val Phe Met Asp Tyr Arg

Asp Tyr Met Gln Gln Lys Leu Gln Cys Ser Glu Glu Glu Tyr Pro Thr

Phe Leu Tyr Val Met Pro Met Ser Pro Thr Arg Leu Phe Phe Glu Glu

Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Arg

280

295

47

330

285

335

305

Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Val 340 345 350

Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn 355 360 365

Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His 370 375 380

Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys 385 390 395 400

Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr 405 410 415

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 435 440 445

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 455 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 475 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr 485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Ara

<210> 48

<211> 378

<212> PRT

<213> Potato

<400> 48

Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile Glu His Val Trp
1 5 10 15

Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Pro Ile Leu Ile Gly
20 25 30

Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu 35 40 45

Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn Ser Lys Val Asp 50 55 60

Arg Ile Val Glu Ala Thr Asn Gly His Ser Leu Val Glu Cys Glu Gly 65 70 75 80

Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala Ser Gly Ala Ala 85 90 95

Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Gly Pro Arg Val Ser Val 100 105 110

Gln Thr Ala Tyr Gly Val Glu Val Glu Val Asp Asn Asn Pro Phe Asp 115 120 125

Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Val Arg His Asp 130 135 140

Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu Tyr Ala Met Pro 145 150 155 160

Met Ser Pro Thr Arg Val Phe Phe Glu Glu Thr Cys Leu Ala Ser Lys 165 170 175

Asp Ala Met Pro Phe Asp Leu Leu Lys Lys Lys Leu Met Leu Arg Leu 180 185 190

Asn Thr Leu Gly Val Arg Ile Lys Glu Ile Tyr Glu Glu Glu Trp Ser 195 200 205

Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn Thr Glu Gln Lys Thr Leu 210 215 220

Ala Phe Gly Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser 225 230 235 240

Val Val Arg Ser Leu Ser Glu Ala Pro Lys Cys Ala Phe Val Leu Ala 245 250 255

Asn Ile Leu Arg Gln Asn His Ser Lys Asn Met Leu Thr Ser Ser Ser 260 265 270

Thr Pro Ser Ile Ser Thr Gln Ala Trp Asn Thr Leu Trp Pro Gln Glu 275 280 285

Arg Lys Arg Gln Arg Ser Phe Phe Leu Phe Gly Leu Ala Leu Ile Leu 290 295 300

Gln Leu Asp Ile Glu Gly Ile Arg Ser Phe Phe Arg Ala Phe Phe Arg 305 310 315 320

Val Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Ser Leu Ser Xaa 325 330 335

Ala Asp Leu Met Leu Phe Ala Phe Tyr Met Phe Ile Ile Ala Pro Asn 340 345 350

Asp Met Arg Arg Gly Leu Ile Arg His Leu Leu Ser Asp Pro Thr Gly 355 360 365

Ala Thr Leu Ile Arg Thr Tyr Leu Thr Phe 370 . 375

<210> 49

<211> 524

<212> PRT

<213> Arabidopsis thaliana

<400> 49

Glu Thr Cys Leu Ala Ser Lys Asp Val Met Pro Phe Asp Leu Leu Lys

325 330 335

Thr Lys Leu Met Leu Arg Leu Asp Thr Leu Gly Ile Arg Ile Leu Lys 340 345 350

Thr Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro 355 360 365

Asn Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ser Met Val $370 \hspace{1.5cm} 375 \hspace{1.5cm} 380$

His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro-385 390 395 400

Lys Tyr Ala Ser Val Ile Ala Glu Ile Leu Arg Glu Glu Thr Thr Lys
405
410
415

Gln Ile Asn Ser Asn Ile Ser Arg Gln Ala Trp Asp Thr Leu Trp Pro
420 425 430

Pro Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Ala Leu 435 440 445

Ile Val Gln Phe Asp Thr Glu Gly Ile Arg Ser Phe Phe Arg Thr Phe 450 455 460

Phe Arg Leu Pro Lys Trp Met Trp Gln Gly Phe Leu Gly Ser Thr Leu 465 470 475 480

Thr Ser Gly Asp Leu Val Leu Phe Ala Leu Tyr Met Phe Val Ile Ser 485 490 495

Pro Asn Asn Leu Arg Lys Gly Leu Ile Asn His Leu Ile Ser Asp Pro 500 505 510

Thr Gly Ala Thr Met Ile Lys Thr Tyr Leu Lys Val

<210> 50

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 50

Met Glu Leu Cly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp 1 5 . 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Ser Ser Val Ala Tyr Lys Glu Gly Phe Val
50 55 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val
65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp

Lys	Leu	Pro	Pro 100	Ile	Pro	Phe	Gly	Glu 105	Ser	Val	Met	Asp	Leu 110	Val	Val
Ile	Gly	Cys 115	Gly	Pro	Ala	Gly	Leu 120	Ser	Leu	Ala	Ala	Glu 125	Ala	Ala	Lys
Leu	Gly 130	Leu	Lys	Val	Gly	Leu 135	Ile	Gly	Pro	Asp	Leu 140	Pro	Phe	Thr	Asn
Asn 145	Tyr	Gly	Val	Trp	Glu 150	Asp	Glu	Phe	Lys	Asp 155		Gly	Leu	Glu	Arg 160
Cys	Ile	Glu	His	Ala 165	Trp	Lys	Asp	Thr	Ile 170	Val	Tyr	Leu	Asp	Asn 175	Asp
Ala	Pro	Val	Leu 180	Ile	Gly	Arg	Ala	Tyr, 185	Gly	Arg	Val	Ser	Arg 190	His	Leu
Leu	His	Glu 195	Glu	Leu	Leu	Lys	Arg 200	Cys	Val	Glu	Ser	Gly 205	Val	Ser	Tyr
Leu	Asp 210	Ser	Lys	Val	Glu	Arg 215	Ile	Thr	Glu	Ala	Gly 220	Asp	Gly	His	Ser
Leu 225	Val	Val	Cys	Glu	Asn 230	Glu	Ile	Phe	Ile	Pro 235	Cys	Arg	Leu	Ala	Thr 240
Val	Ala	Ser	Gly	Ala 245	Ala	Ser	Gly	Lys	Leu 250	Leu	Glu	Tyr	Glu	Val 255	Gly
Gly	Pro	Arg	Val 260	Cys	Val	Gln	Thr	Ala 265	Tyr	Gly	Val	Glu	Val 270	Glu	Val
Glu	Asn	Asn 275	Pro	Tyr	Asp	Pro	Asn 280	Leu	Met	Val	Phe	Met 285	Asp	Tyr	Arg
Asp	Tyr 290	Met	Gln	Gln	Lys	Leu 295	Gln	Cys	Ser	Glu	Glu 300	Glu	Tyr	Pro	Thr
Phe 305	Leu	Tyr	Val	Met	Pro 310	Met	Ser	Pro	Thr	Arg 315	Leu	Phe	Phe	Glu	Glu 320
Thr	Cys	Leu	Ala	Ser 325	Lys	Asp	Ala	Met	Pro 330	Phe	Asp	Leu	Leu	Lys 335	Arg
Lys	Leu	Met	Ser 340	Arg	Leu	Lys	Thr	Leu 345	Gly	Ile	Gln	Val	Thr 350	Lys	Val
Tyr	Glu	Glu 355	Glu	Trp	Ser	Tyr	Ile 360	Pro	Val	Gly	Gly	Ser 365	Leu	Pro	Asn
Thr	Glu 370	Gln	Lys	Asn	Leu	Ala 375	Phe	Gly	Ala	Ala	Ala 380	Ser	Met	Val	His
Pro 385	Ala	Thr	Gly	Tyr	Ser 390	Val	Val	Arg	Ser	Leu 395	Ser	Glu	Ala	Pro	Lys 400
Tyr	Ala	Ser	Val	Ile 405	Ala	Lys	Ile	Leu	Lys 410	Gln	Asp	Asn	Ser	Ala 415	Tyr

Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp 420 425 430

Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu 435 440 445

Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr 450 455 460

Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 465 470 480

Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr 485 490 495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Arg Ala Tyr Leu Glu 515 520 525

Arg

<210> 51

<211> 529

<212> PRT

<213> Adonis palaestina

<400> 51

RNSDOCID: WO GORANESA 1 IA-

Met Glu Leu Gly Val Arg Asn Leu Ile Ser Ser Cys Pro Val Trp

1 10 15

Thr Phe Gly Thr Arg Asn Leu Ser Ser Ser Lys Leu Ala Tyr Asn Ile 20 25 30

His Arg Tyr Gly Ser Ser Cys Arg Val Asp Phe Gln Val Arg Ala Asp 35 40 45

Gly Gly Ser Gly Ser Arg Thr Ser Val Ala Tyr Lys Glu Gly Phe Val 50 55 60

Asp Glu Glu Asp Phe Ile Lys Ala Gly Gly Ser Glu Leu Leu Phe Val 65 70 75 80

Gln Met Gln Gln Thr Lys Ser Met Glu Lys Gln Ala Lys Leu Ala Asp 85 90 95

Lys Leu Pro Pro Ile Pro Phe Gly Glu Ser Val Met Asp Leu Val Val 100 105 110

Ile Gly Cys Gly Pro Ala Gly Leu Ser Leu Ala Ala Glu Ala Ala Lys 115 120 125

Leu Gly Leu Lys Val Gly Leu Ile Gly Pro Asp Leu Pro Phe Thr Asn 130 135 140

Asn Tyr Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Glu Arg 145 150 155 160

3055	
	 _

Cys Ile Glu His Ala Trp Lys Asp Thr Ile Val Tyr Leu Asp Asn Asp 170 Ala Pro Val Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Leu Leu His Glu Glu Leu Leu Lys Arg Cys Val Glu Ser Gly Val Ser Tyr Leu Asn Ser Lys Val Glu Arg Ile Thr Glu Ala Gly Asp Gly His Ser Leu Val Val Cys Glu Asn Asp Ile Phe Ile Pro Cys Arg Leu Ala Thr Val Ala Ser Gly Ala Ala Ser Gly Lys Leu Leu Glu Tyr Glu Val Gly Gly Pro Arg Val Cys Val Gln Thr Ala Tyr Gly Val Glu Val Glu Val 265 Glu Asn Asn Pro Tyr Asp Pro Asn Leu Met Val Phe Met Asp Tyr Arg Asp Tyr Met Gln Gln Lys Leu Gln Cys Ser Glu Glu Glu Tyr Pro Thr 295 Phe Leu Tyr Val Met Pro Met Ser Pro Thr Arg Leu Phe Phe Glu Glu 310 Thr Cys Leu Ala Ser Lys Asp Ala Met Pro Phe Asp Leu Leu Lys Arg Lys Leu Met Ser Arg Leu Lys Thr Leu Gly Ile Gln Val Thr Lys Ile 345 Tyr Glu Glu Glu Trp Ser Tyr Ile Pro Val Gly Gly Ser Leu Pro Asn 360 Thr Glu Gln Lys Asn Leu Ala Phe Gly Ala Ala Ala Ser Met Val His Pro Ala Thr Gly Tyr Ser Val Val Arg Ser Leu Ser Glu Ala Pro Lys Tyr Ala Ser Val Ile Ala Lys Ile Leu Lys Gln Asp Asn Ser Ala Tyr Val Val Ser Gly Gln Ser Ser Ala Val Asn Ile Ser Met Gln Ala Trp Ser Ser Leu Trp Pro Lys Glu Arg Lys Arg Gln Arg Ala Phe Phe Leu Phe Gly Leu Glu Leu Ile Val Gln Leu Asp Ile Glu Ala Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp Trp Gly Phe 475 Leu Gly Ser Ser Leu Ser Ser Phe Asp Leu Val Leu Phe Ser Met Tyr

485

490

495

Met Phe Val Leu Ala Pro Asn Ser Met Arg Met Ser Leu Val Arg His 500 505 510

Leu Leu Ser Asp Pro Ser Gly Ala Val Met Val Lys Ala Tyr Leu Glu 515 520 525

Arg

<210> 52

<211> 533

<212> PRT

<213> Lettuce

<400> 52

Met Glu Cys Phe Gly Ala Arg Asn Met Thr Ala Thr Met Ala Val Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Cys Pro Arg Phe Thr Asp Cys Asn Ile Arg His Lys Phe Ser Leu 20 25 30

Leu Lys Gln Arg Arg Phe Thr Asn Leu Ser Ala Ser Ser Ser Leu Arg 35 40 45

Gln Ile Lys Cys Ser Ala Lys Ser Asp Arg Cys Val Val Asp Lys Gln 50 55 60

Gly Ile Ser Val Ala Asp Glu Glu Asp Tyr Val Lys Ala Gly Gly Ser 65 70 75 80

Glu Leu Phe Phe Val Gln Met Gln Arg Thr Lys Ser Met Glu Ser Gln 85 90 95

Ser Lys Leu Ser Glu Lys Leu Ala Gln Ile Pro Ile Gly Asn Cys Ile 100 105 110

Leu Asp Leu Val Val Ile Gly Cys Gly Pro Ala Gly Leu Ala Leu Ala 115 120 125

Ala Glu Ser Ala Lys Leu Gly Leu Asn Val Gly Leu Ile Gly Pro Asp 130 135 140

Leu Pro Phe Thr Asn Asn Tyr Gly Val Trp Gln Asp Glu Phe Ile Gly 145 150 155 160

Leu Gly Leu Glu Gly Cys Ile Glu His Ser Trp Lys Asp Thr Leu Val 165 170 175

Tyr Leu Asp Asp Ala Asp Pro Ile Arg Ile Gly Arg Ala Tyr Gly Arg 180 185 190

Val His Arg Asp Leu Leu His Glu Glu Leu Leu Arg Arg Cys Val Glu 195 200 205

Ser Gly Val Ser Tyr Leu Ser Ser Lys Val Glu Arg Ile Thr Glu Ala 210 215 220

Pro Asn Gly Tyr Ser Leu Ile Glu Cys Glu Gly Asn Ile Thr Ile Pro

	wo	99/63	055		,										-]
225					230					235					240
Cys	Arg	Leu	Ala	Thr 245	Val	Ala	Ser	Gly	Ala 250	Ala	Ser	Gly	Lys	Phe 255	Leu
Glu	Tyr	Glu	Leu 260	Gly	Gly	Pro	Arg	Val 265	Cys	Val	Gln	Thr	Ala 270	Tyr	Gly
Ile	Glu	Val 275	Glu	Val	Glu	Asn	Asn 280	Pro	Tyr	Asp	Pro	Asp 285	Leu	Met	Val
Phe	Met 290	Asp	Tyr	Arg	Asp	Phe 295	Ser	Lys	His	Lys	Pro 300	Glu	Ser	Leu	Glu.
Ala 305	Lys	Tyr	Pro	Thr	Phe 310	Leu	Tyr	Val	Met	Ala 315	Met	Ser	Pro	Thr	Lys 320
Ile	Phe	Phe	Glu	Glu 325	Thr	Cys	Leu	Ala	Ser 330	Arg	Glu	Ala	Met	Pro 335	Phe
Asn	Leu	Leu	Lys 340	Ser	Lys	Leu	Met	Ser 345	Arg	Leu	Lys	Ala	Met 350	Gly	Ile
Arg	Ile	Thr 355	Arg	Thr	Tyr	Glu	Glu 360	Glu	Trp	Ser	Tyr	11e 365	Pro	Val	Gly
Gly	Ser 370	Leu	Pro	Asn	Thr	Glu 375	Gln	Lys	Asn	Leu	Ala 380	Phe	Ġly	Ala	Ala
Ala 385	Ser	Met	Val	His	Pro 390	Ala	Thr	Gly	Tyr	Ser 395	Val	Val	Arg	Ser	Leu 400
Ser	Glu	Ala	Pro	Asn 405	Tyr	Ala	Ala	Val	Ile 410	Ala	Lys	Ile	Leu	Arg 415	Gln
Asp	Gln	Ser	Lys 420	Glu	Met	Ile	Ser	Leu 425	Gly	Lys	Tyr	Thr	Asn 430	Ile	Ser
Lys	Gln	Ala 435	Trp	Glu	Thr	Leu	Trp 440	Pro	Leu	Glu	Arg	Lys 445	Arg	Gln	Arg
Ala	Phe 450	Phe	Leu	Phe	Gly	Leu 455	Ser	His	Ile	Val	Leu 460	Met	Asp	Leu	Glu
Gly	Thr	Arg	Thr	Phe	Phe	Arg	Thr	Phe	Phe	Arg	Leu	Pro	Lvs	Trp	Met

Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Lys Trp Met 470 475 480

Trp Trp Gly Phe Leu Gly Ser Ser Leu Ser Ser Thr Asp Leu Ile Ile 490

Phe Ala Leu Tyr Met Phe Val Ile Ala Pro His Ser Leu Arg Met Glu 505

Leu Val Arg His Leu Leu Ser Asp Pro Thr Gly Ala Thr Met Val Lys 515 520

Ala Tyr Leu Thr Ile 530

<210> 53

<211> 526 <212> PRT

<213> Tomato

<400> 53

Met Glu Cys Val Gly Val Gln Asn Val Gly Ala Met Ala Val Leu Thr 1 5 10 15

Arg Pro Arg Leu Asn Arg Trp Ser Gly Gly Glu Leu Cys Gln Glu Lys
20 25 30

Ser Ile Phe Leu Ala Tyr Glu Gln Tyr Glu Ser Lys Cys Asn Ser Ser 35 40 45

Ser Gly Ser Asp Ser Cys Val Val Asp Lys Glu Asp Phe Ala Asp Glu 50 55 60

Glu Asp Tyr Ile Lys Ala Gly Gly Ser Gln Leu Val Phe Val Gln Met 65 70 75 80

Gln Gln Lys Lys Asp Met Asp Gln Gln Ser Lys Leu Ser Asp Glu Leu 85 90 95

Arg Gln Ile Ser Ala Gly Gln Thr Val Leu Asp Leu Val Val Ile Gly 100 105 110

Cys Gly Pro Ala Gly Leu Ala Leu Ala Ala Glu Ser Ala Lys Leu Gly 115 120 125

Leu Asn Val Gly Leu Val Gly Pro Asp Leu Pro Phe Thr Asn Asn Tyr 130 135 140

Gly Val Trp Glu Asp Glu Phe Lys Asp Leu Gly Leu Gln Ala Cys Ile 145 150 155 160

Glu His Val Trp Arg Asp Thr Ile Val Tyr Leu Asp Asp Asp Glu Pro 165 170 175

Ile Leu Ile Gly Arg Ala Tyr Gly Arg Val Ser Arg His Phe Leu His 180 185 190

Glu Glu Leu Lys Arg Cys Val Glu Ala Gly Val Leu Tyr Leu Asn 195 200 205

Ser Lys Val Asp Arg Ile Val Glu Ala Thr Asn Gly Gln Ser Leu Val 210 215 220

Glu Cys Glu Gly Asp Val Val Ile Pro Cys Arg Phe Val Thr Val Ala 225 230 235 240

Ser Gly Ala Ala Ser Gly Lys Phe Leu Gln Tyr Glu Leu Gly Ser Pro 245 250 255

Asn Pro Phe Asp Pro Ser Leu Met Val Phe Met Asp Tyr Arg Asp Tyr 275 280 285

Leu Arg His Asp Ala Gln Ser Leu Glu Ala Lys Tyr Pro Thr Phe Leu 290 295 300

Tyr 305	Ala	Met	Pro	Met	Ser 310	Pro	Thr	Arg	Val	Phe 315	Phe	Glu	Glu	Thr	Cys 320
Leu	Ala	Ser	Lys	Asp 325	Ala	Met	Pro	Phe	Asp 330	Leu	Leu	Lys	Lys	Lys 335	Leu
Met	Leu	Arg	Leu 340	Asn	Thr	Leu	Gly	Val 345	Arg	Ile	Lys	Glu	11e 350	Tyr	Glu
Glu	Glu	Trp 355	Ser	Tyr	Ile	Pro	Val 3 <u>6</u> 0	Gly	Gly	Ser	Leu	Pro 365	Asn	Thr	Glu
Gln	Lys 370	Thr	Leu	Ala	Phe	Gly 375	Ala	Ala	Ala	Ser	Met 380	Val	His	Pro	Ala
Thr 385	Gly	Tyr	Ser	Val	Val 390	Arg	Ser	Leu	Ser	Glu 395	Ala	Pro	Lys	Cys	Ala 400
Ser	Val	Leu	Ala	Asn 405	Ile	Leu	Arg	Gln	His 410	Tyr	Ser	Lys	Asn	Met 415	Leu
Thr	Ser	Ser	Ser 420	Ile	Pro	Ser	Ile	Ser 425	Thr	Gln	Ala	Trp	Asn 430	Thr	Leu
Trp	Pro	Gln 435	Glu	Arg	Lys	Arg	Gln 440	Arg	Ser	Phe	Phe	Leu 445	Phe	Gly	Leu
Ala	Leu 450	lle	Leu	Gln	Leu	Asp 455	Ile	Glu	Gly	Ile	Arg 460	Ser	Phe	Phe	Arg
Ala 465	Phe	Phe	Arg	Val	Pro 470	Lys	Trp	Met	Trp	Gln 475	Gly	Phe	Leu		Ser 480
Ser	Leu	Ser	Ser	Ala 485	Asp	Leu	Met	Leu	Phe 490	Ala	Phe	Tyr	Met	Phe 495	Ile
Ile	Ala	Pro	Asn 500	Asp	Met	Arg	Lys	Gly 505	Leu	Ile	Arg	His	Leu 510	Leu	Ser
Asp	Pro	Thr 515	Gly	Ala	Thr	Leu	Ile 520	Arg	Thr	Tyr	Leu	Thr 525	Phe		

<210> 54

<211> 516

<212> PRT

<213> Tagetes erecta

<400> 54

BRICOCIO -MIO MOSACERE IA-

Met Ser Met Arg Ala Gly His Met Thr Ala Thr Met Ala Ala Phe Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Pro Arg Phe Met Thr Ser Ile Arg Tyr Thr Lys Gln Ile Lys Cys 20 25 30

Asn Ala Ala Lys Ser Gln Leu Val Val Lys Gln Glu Ile Glu Glu Glu 35 40 45

Glu Asp Tyr Val Lys Ala Gly Gly Ser Glu Leu Leu Phe Val Gln Met 50 55 60

BNSDOCID: <WO - 006305581 IAS

Gln 65	Gln	Asn	Lys	Ser	Met 70	Asp	Ala	Gln	Ser	Ser 75	Leu	Ser	Gln	Lys	Leu 80
Pro	Arg	Val	Pro	Ile 85	Gly	Gly	Gly	Gly	Asp 90	Ser	Asn	Cys	Ile	Leu 95	Asp
Leu	Val	Val	Ile 100	Gly	Cys	Gly	Pro	Ala 105	Gly	Leu	Ala	Leu	Ala 110	Gly	Glu
Ser	Ala	Lys 115	Leu	Gly	Leu	Asn	Val 120	Ala	Leu	Ile	Gly	Pro 125	Asp	Leu	Pro
Phe	Thr 130	Așn	Asn	Tyr	Gly	Val 135	Trp	Glu	Asp	Glu	Phe 140	Ile	Gly	Leu	Gly
Leu 145	Glu	Gly	Cys	Ile	Glu 150	His	Val	Trp	Arg	Asp 155	Thr	Val	Val	Tyr	Leu 160
Asp	Asp	Asn	Asp	Pro 165	Ile	Leu	Ile	Gly	Arg 170	Ala	Tyr	Gly	Arg	Val 175	Ser
Arg	Asp	Leu	Leu 180	His	Glu	Glu	Leu	Leu 185	Thr	Arg	Суѕ	Met	Glu 190	Ser	Gly
Val	Ser	Tyr 195	Leu	Ser	Ser	Lys	Val 200	Glu	Arg	Ile	Thr	Glu 205	Ala	Pro	Asn
Gly	Leu 210	Ser	Leu	Ile	Glu	Cys 215	Glu	Gly	Asn	Ile	Thr 220	Ile	Pro	Cys	Arg
Leu 225	Ala	Thr	Val	Ala	Ser 230	Gly	Ala	Ala	Ser	Gly 235	Lys	Leu	Leu	Gln	Tyr 240
Glu	Leu	Gly	Gly	Pro 245	Arg	Val	Cys	Val	Gln 250	Thr	Ala	Tyr	Gly	Ile 255	Glu
Val	Glu	Val	Glu 260	Ser	Ile	Pro	Tyr	Asp 265	Pro	Ser	Leu	Met	Val 270	Phe	Met
Asp	Tyr	Arg 275	Asp	Tyr	Thr	Lys	His 280	Lys	Ser	Gln	Ser	Leu 285	Glu	Ala	Gln
Tyr	Pro 290	Thr	Phe	Leu	Tyr	Val 295	Met	Pro	Met	Ser	Pro 300	Thr	Lys	Val	Phe
Phe 305	Glu	Glu	Thr	Cys	Leu 310	Ala	Ser	Lys	Glu	Ala 315	Met	Pro	Phe	Glu	Leu 320
Leu	Lys	Thr	Lys	Leu 325	Met	Ser	Arg	Leu	Lys 330	Thr	Met	Gly	Ile	Arg 335	Ile
Thr	Lys	Thr	Tyr 340	Glu	Glu	Glu	Trp	Ser 345	Tyr	Ile	Pro	Val	Gly 350	Gly	Ser
Leu	Pro	Asn 355	Thr	Glu	Gln	Lys	Asn 360	Leu	Ala	Phe	Gly	Ala 365	Ala	Ala	Ser
Met	Val 370	His	Pro	Ala	Thr	Gly 375	Tyr	Ser	Val	Val	Arg 380	Ser	Leu	Ser	Glu
Ala	Pro	Asn	Tyr	Ala	Ala	Val	Ile	Ala	Lys	Ile	Leu	Gly	Lys	Gly	Asn

PCT/US99/12121

390 395 Ser Lys Gln Met Leu Asp His Gly Arg Tyr, Thr Thr Asn Ile Ser Lys 405 410 Gln Ala Trp Glu Thr Leu Trp Pro Leu Glu Arg Lys Arg Gln Arg Ala 425 Phe Phe Leu Phe Gly Leu Ala Leu Ile Val Gln Met Asp Ile Glu Gly Thr Arg Thr Phe Phe Arg Thr Phe Phe Arg Leu Pro Thr Trp Met Trp 455 Trp Gly Phe Leu Gly Ser Ser Leu Ser Ser Thr Asp Leu Ile Ile Phe 475 Ala Phe Tyr Met Phe Ile Ile Ala Pro His Ser Leu Arg Met Gly Leu Val Arg His Leu Leu Ser Asp Pro Thr Gly Gly Thr Met Leu Lys Ala 500 505 Tyr Leu Thr Ile 515 <210> 55 <211> 501 <212> PRT <213> Arabidopsis thaliana <400> 55 Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Asp Phe Phe Ile Pro Gln Phe His Gly Phe Glu Arg Leu Cys Ser Asn Asn Pro Tyr His Ser Arg Val Arg Leu Gly Val Lys Lys Arg Ala Ile Lys Ile Val Ser Ser Val Val Ser Gly Ser Ala Ala Leu Leu Asp Leu Val Pro Glu Thr Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Leu Tyr Asp Thr Ser Lys Ser Gln Val Val Asp Leu Ala Ile Val Gly Gly Pro Ala Gly Leu Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp 105

Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp

Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr Thr Trp Ser

Gly Ala Val Val Tyr Val Asp Glu Gly Val Lys Lys Asp Leu Ser Arg

135

WO 99/63055

145	1				150					155					160
Pro	Туг	Gly	Arg	Val 165	Asn	Arg	Lys	Gln	Leu 170	Lys	Ser	Lys	Met	Leu 175	Gln
Lys	Cys	Ile	Thr 180	Asn	Gly	Val	Lys	Phe 185	His	Gln	Ser	Lys	Val 190		Asn
Val	Val	His 195	Glu	Glu	Ala	Asn	Ser 200	Thr	Val	Val	Cys	Ser 205	Asp	Gly	Val
Lys	Ile 210	Gln	Ala	Ser	Val	Val 215	Leu	Asp	Ala	Thr	Gly 220	Phe	Ser	Arg	Cys
Leu 225	Val	Gln	Tyr	Asp	Lys 230	Pro	Tyr	Asn	Pro	Gly 235	Tyr	Gln	Val	Ala	Tyr 240
Gly	Ile	Val	Ala	Glu 245	Val	Asp	Gly	His	Pro 250	Phe	Asp	Val	Asp	Lys 255	Met
Val	Phe	Met	Asp 260	Trp	Arg	Asp	Lys	His 265	Leu	Asp	Ser	Tyr	Pro 270	Glu	Leu
Lys	Glu	Arg 275	Asn	Ser	Lys	Ile	Pro 280	Thr	Phe	Leu	Tyr	Ala 285	Met	Pro	Phe
Ser	Ser 290	Asn	Arg	Ile	Phe	Leu 295	Glu	Glu	Thr	Ser	Leu 300	Val	Ala	Arg	Pro
Gly 305	Leu	Arg	Met	Glu	Asp 310	Ile	Gln	Glu	Arg	Met 315	Ala	Ala	Arg	Leu	Lys 320
His	Leu	Gly	Ile	Asn 325	Val	Lys	Arg	Ile	Glu 330	Glu	Asp	Glu	Arg	Cys 335	Val
Ile	Pro	Met	Gly 340	Gly	Pro	Leu	Pro	Val 345	Leu	Pro	Gln	Arg	Val 350	Val	Gly
Ile	Gly	Gly 355	Thr	Ala	Gly	Met	Val 360	His	Pro	Ser	Thr	Gly 365	Tyr	Met	Val
Ala	Arg 370	Thr	Leu	Ala	Ala	Ala 375	Pro	Ile	Val	Ala	Asn 380	Ala	Ile	Val	Arg
Tyr 385	Leu	Gly	Ser	Pro	Ser 390	Ser	Asn	Ser	Leu	Arg 395	Gly	Asp	Gln	Leu	Ser 400
Ala	Glu	Val	Trp	Arg 405	Asp	Leu	Trp	Pro	Ile 410	Glu	Arg	Arg	Arg	Gln 415	Arg
Glu	Phe	Phe	Cys 420	Phe	Gly	Met	Asp	11e 425	Leu	Leu	Lys	Leu	Asp 430	Leu	Asp
Ala	Thr	Arg 435	Arg	Phe	Phe	Asp	Ala 440	Phe	Phe	Asp	Leu	Gln 445	Pro	His	Tyr
Trp	His 450	Gly	Phe	Leu	Ser	Ser 455	Arg	Leu	Phe	Leu	Pro 460	Glu	Leu	Leu	Val
Phe 465	Gly	Leu	Ser	Leu	Phe 470	Ser	His	Ala	Ser	Asn 475	Thr	Ser	Arg	Leu	Glu 480

Ile Met Thr Lys Gly Thr Val Pro Leu Ala Lys Met Ile Asn Asn Leu 485 490 495

Val Gln Asp Arg Asp 500

<210> 56

<211> 502

<212> PRT

<213> Adonis palaestina

<400> 56

Met Asp Thr Leu Leu Arg Thr His Asn Lys Leu Glu Leu Leu Pro Thr 1 5 10 15

Leu His Gly Phe Ala Glu Lys Gln His Leu Val Ser Thr Ser Lys Leu 20 25. 30

Gln Asn Gln Val Phe Arg Ile Ala Ser Arg Asn Ile His Pro Cys Arg 35 40 45

Asn Gly Thr Val Lys Ala Arg Gly Ser Ala Leu Leu Glu Leu Val Pro 50 55 60

Glu Thr Lys Lys Glu Asn Leu Glu Phe Asp Leu Pro Ala Tyr Asp Pro 65 70 . 75 80

Ser Arg Gly Ile Val Val Asp Leu Ala Val Val Gly Gly Pro Ala 85 90 95

Gly Leu Ala Ile Ala Gln Gln Val Ser Glu Ala Gly Leu Leu Val Cys 100 105 110

Ser Ile Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val 115 120 125

Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Thr 130 135 140

Thr Trp Ser Gly Ala Val Val Tyr Thr Asp Asp Asn Ser Lys Lys Tyr 145 150 155 160

Leu Asp Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys 165 170 175

Met Leu Gln Lys Cys Val Thr Asn Gly Val Lys Phe His Gln Ala Lys 180 185 190

Val Ile Lys Val Ile His Glu Glu Ser Lys Ser Leu Leu Ile Cys Asn 195 200 205

Asp Gly Ile Thr Ile Asn Ala Thr Val Val Leu Asp Ala Thr Gly Phe 210 215 220

Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln 225 230 235 240

Val Ala Tyr Gly Ile Met Ala Glu Val Glu Glu His Pro Phe Asp Leu 245 250 255

- Asp Lys Met Leu Phe Met Asp Trp Arg Asp Ser His Leu Asn Glu Lys 260 265 270
- Leu Glu Leu Lys Asp. Lys Asn Arg Lys Ile Pro Thr Phe Leu Tyr Ala 275 280 285
- Met Pro Phe Ser Ser Thr Lys Ile Phe Leu Glu Glu Thr Ser Leu Val 290 295 300
- Ala Arg Pro Gly Leu Arg Phe Glu Asp Ile Gln Glu Arg Met Val Ala 305 310 315 320
- Arg Leu Lys His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu 325
- Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg 340 345 350
- Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly 355 360 365
- Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Lys Ser 370 380
- Ile Val Gln Tyr Leu Gly Ser Asp Arg Ser Leu Ser Gly Asn Glu Leu 385 390 395 400
- Ser Ala Glu Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Gln 405 410 415
- Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu 420 425 430
- Gln Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro His 435 440 445
- Tyr Trp His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Leu 450 455 460
- Phe Phe Gly Leu Ser Leu Phe Ser His Ala Ser Asn Ala Ser Arg Ile 465 470 475 480
- Glu Ile Met Ala Lys Gly Thr Val Pro Leu Val Asn Met Met Asn Asn 485
- Leu Ile Gln Asp Thr Asp 500
- <210> 57
- <211> 498
- <212> PRT
- <213> Pepper
- <400> 57
- Met Asp Thr Leu Leu Arg Thr Pro Asn Asn Leu Glu Phe Leu His Gly
 1 10 15
- Phe Gly Val Lys Val Ser Ala Phe Ser Ser Val Lys Ser Gln Lys Phe 20 25 30

Gly Ala Lys Lys Phe Cys Glu Gly Leu Gly Ser Arg Ser Val Cys Val Lys Ala Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys Gly Val Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile Asp Pro 105 Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp Ser Gly 135 Ala Ala Val Tyr Ile Asp Asp Lys Thr Thr Lys Asp Leu Asn Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met Gln Lys Cys Ile Leu Asn Gly Val Lys Phe His Gln Ala Lys Val Ile Lys Val 185 Ile His Glu Glu Ser Lys Ser Met Leu Ile Cys Asn Asp Gly Ile Thr 200 Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg Ser Leu 215 Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Val Asn Lys Met Val 250 Phe Met Asp Trp Arg Asp Ser His Leu Lys Asn Asn Val Glu Leu Lys 265 Glu Arg Asn Ser Arg Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly Leu Gly Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu Ser His 305 310 315 Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys Val Ile 330 Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala

÷ []

355 360 365

Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile Gln Tyr 370 375 380

Leu Ser Ser Glu Arg Ser His Ser Gly Asp Glu Leu Ser Ala Ala Val 385 390 395 400

Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Arg Gln Arg Glu Phe Phe
405 410 415

Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala Thr Arg. 420 425 430

Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly 435 440 445

Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val Phe Gly Leu 450 455 460

Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Leu Glu Ile Met Thr 465 470 475 480

Lys Gly Thr Leu Pro Leu Val His Met Ile Asn Asn Leu Leu Gln Asp 485 490 495

Lys Glu

<210> 58

<211> 500

<212> PRT

<213> Tomato

<400> 58

Met Asp Thr Leu Leu Lys Thr Pro Asn Asn Leu Glu Phe Leu Asn Pro 1 5 10 15

His His Gly Phe Ala Val Lys Ala Ser Thr Phe Arg Ser Glu Lys His 20 25 30

His Asn Phe Gly Ser Arg Lys Phe Cys Glu Thr Leu Gly Arg Ser Val 35 40 45

Cys Val Lys Gly Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr
50 .55 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys
65 70 75 80

Gly Val Val Val Asp Leu Ala Val Val Gly Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gl
n Gl
n Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile 100
 $105\,$ $110\,$

Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp

ان ما 135 140 Ser Gly Ala Ala Val Tyr Ile Asp Asp Asn Thr Ala Lys Asp Leu His 150 155 Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met Gln Lys Cys Ile Met Asn Gly Val Lys Phe His Gln Ala Lys Val Ile 185 Lys Val Ile His Glu Glu Ser Lys Ser Met Leu Ile Cys Asn Asp Gly 200 Ile Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg Ser Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala 230 Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Val Asn Lys 250 Met Val Phe Met Asp Trp Arg Asp Ser His Leu Lys Asn Asn Thr Asp 265 Leu Lys Glu Arg Asn Ser Arg Ile Pro Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg Pro Gly Leu Arg Ile Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu 310 315 Asn His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys 330 Leu Ile Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val 345 Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met 360 Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile Gln Tyr Leu Gly Ser Glu Arg Ser His Ser Gly Asn Glu Leu Ser Thr 395 Ala Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala 425 Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp 440 His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val Phe

450

Li

Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Phe Glu Ile 465 470 475 480

Met Thr Lys Gly Thr Val Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495

Gln Asp Lys Glu 500

<210> 59

<211> 500

<212> PRT

<213> Tobacco

<400> 59

BNSDOCID: <WO

996305541 145

Met Asp Thr Leu Leu Lys Thr Pro Asn Lys Leu Glu Phe Leu His Pro 1 5 10 15

Val His Gly Phe Ser Val Lys Ala Ser Ser Phe Asn Ser Val Lys Pro 20 25 30

His Lys Phe Gly Ser Arg Lys Ile Cys Glu Asn Trp Gly Lys Gly Val 35 40 45

Cys Val Lys Ala Lys Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80

Gly Leu Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Val Ser Ile 100 105 110

Asp Pro Ser Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp 130 135 140

Ser Gly Thr Val Val Tyr Ile Asp Asp Asn Thr Thr Lys Asp Leu Asp 145 150 155 160

Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met 165 170 175

Gln Lys Cys Ile Leu Asn Gly Val Lys Phe His His Ala Lys Val Ile 180 185 190

Lys Val Ile His Glu Glu Ala Lys Ser Met Leu Ile Cys Asn Asp Gly
195 200 205

Val Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg 210 215 220

Cys Leu Val Gln Tyr Asp Lys Pro Tyr Lys Pro Gly Tyr Gln Val Ala 225 230 235 240

Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Thr Ser Lys 245

Met Val Leu Met Asp Trp Arg Asp Ser His Leu Gly Asn Asn Met Glu 260

Leu Lys Glu Arg Asn Arg Lys Val Pro Thr Phe Leu Tyr Ala Met Pro 275 280 285

Phe Ser Ser Asn Lys Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg 290 295 300

Pro Gly Leu Arg Met Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu 305 310 315 320

Asn His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys 325 330 335

Val Ile Pro Met Gly Gly Ser Leu Pro Val Ile Pro Gln Arg Val Val 340 345 350

Gly Thr Gly Gly Thr Ala Gly Leu Val His Pro Ser Thr Gly Tyr Met 355 360 365

Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile 370 375 380

His Tyr Leu Gly Ser Glu Lys Asp Leu Leu Gly Asn Glu Leu Ser Ala 385 390 395 400

Ala Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Arg Gln Arg Glu

Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala 420 425 430

Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp 435 440 445

His Gly Phe Leu Ser Ser Arg Leu Tyr Leu Pro Glu Leu Ile Phe Phe 450 455 460

Gly Leu Ser Leu Phe Ser Arg Ala Ser Asn Thr Ser Arg Ile Glu Ile 465 470 475. 480

Met Thr Lys Gly Thr Leu Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495

Gln Asp Thr Glu . 500

<210> 60

<211> 511

<212> PRT

<213> Tagetes erecta

<400> 60

Met Asp Thr Phe Leu Arg Thr Tyr Asn Ser Phe Glu Phe Val His Pro 1 5 10 15

BNISDOCID -WO

Ser Asn Lys Phe Ala Gly Asn Leu Asn Asn Leu Asn Gln Leu Asn Gln 20 25 30

Ser Lys Ser Gln Phe Gln Asp Phe Arg Phe Gly Pro Lys Lys Ser Gln 35 40 45

Phe Lys Leu Gly Gln Lys Tyr Cys Val Lys Ala Ser Ser Ser Ala Leu 50 . 55 60

Leu Glu Leu Val Pro Glu Ile Lys Lys Glu Asn Leu Asp Phe Asp Leu 65 70 75 80

Pro Met Tyr Asp Pro Ser Arg Asn Val Val Val Asp Leu Val Val Val Val Val 95

Gly Gly Gly Pro Ser Gly Leu Ala Val Ala Gln Gln Val Ser Glu Ala 100 105 110

Gly Leu Thr Val Cys Ser Ile Asp Pro Ser Pro Lys Leu Ile Trp Pro 115 120 125

Asn Asn Tyr Gly Val Trp Val Asp Glu Phe Glu Ala Met Asp Leu Leu 130 135 140

Asp Cys Leu Asp Thr Thr Trp Ser Ser Ala Val Val Tyr Ile Asp Glu 145 150 155 160

Lys Ser Thr Lys Ser Leu Asn Arg Pro Tyr Ala Arg Val Asn Arg Lys 165 170 175

Gln Leu Lys Thr Lys Met Leu Gln Lys Cys Ile Ala Asn Gly Val Lys 180 185 190

Phe His Gln Ala Lys Val Ile Lys Val Ile His Glu Glu Leu Lys Ser 195 200 205

Leu Leu Ile Cys Asn Asp Gly Val Thr Ile Gln Ala Thr Leu Val Leu 210 215 220

Asp Ala Thr Gly Phe Ser Arg Ser Leu Val Gln Tyr Asp Lys Pro Tyr 225 230 235 240

Asn Pro Gly Tyr Gln Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu 245 250 255

His Pro Phe Asp Val Asp Lys Met Leu Phe Met Asp Trp Arg Asp Ser 260 265 270

His Leu Asp Gln Asn Leu Glu Ile Lys Ala Arg Asn Ser Arg Ile Pro 275 280 285

Thr Phe Leu Tyr Ala Met Pro Phe Ser Ser Thr Arg Ile Phe Leu Glu 290 295 300

Glu Thr Ser Leu Val Ala Arg Pro Gly Leu Lys Met Glu Asp Ile Gln 305 310 315 320

Glu Arg Met Ala Tyr Arg Leu Lys His Leu Gly Ile Lys Val Lys Ser 325 330 335

Ile Glu Glu Asp Glu Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro

340 345 350 Val Leu Pro Gln Arg Val Leu Gly Ile Gly Gly Thr Ala Gly Met Val 360 His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Pro Ile Val Ala Lys Ser Ile Ile Arg Tyr Leu Asn Asn Glu Lys Ser Met Val Ala Asp Val Thr Gly Asp Asp Leu Ala Ala Gly Ile Trp Arg Glu Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Glu Gly Thr Arg Arg Phe Phe 440 Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp His Gly Phe Leu Ser 455 Ser Arg Leu Phe Leu Pro Glu Leu Val Thr Phe Gly Leu Ser Leu Phe 470 Gly His Ala Ser Asn Thr Cys Arg Val Glu Ile Met Ala Lys Gly Thr 490 Leu Pro Leu Ala Thr Met Ile Gly Asn Leu Val Arg Asp Arg Glu 500 505

<210> 61

<211> 503

<212> PRT

<213> Daffodil

<400> 61

Met Asp Thr Leu Leu Arg Thr His Asn Arg Leu Glu Leu Leu Tyr Pro 1 5 10 15

Leu His Glu Leu Ala Lys Arg His Phe Leu Ser Pro Ser Pro Asn Pro 20 25 30

Gln Asn Pro Asn Phe Lys Phe Phe Ser Arg Lys Pro Tyr Gln Lys Lys 35 40 45

Cys Arg Asn Gly Tyr Ile Gly Val Ser Ser Asn Gln Leu Leu Asp Leu 50 55 60

Val Pro Glu Ile Lys Lys Glu His Leu Glu Phe Asp Leu Pro Leu Tyr 65 70 75 80

Asp Pro Ser Lys Ala Leu Thr Leu Asp Leu Ala Val Val Gly Gly 85 90 95

Pro Leu Ala Arg Ser Cys Ser Thr Ser Leu Gly Gly Gly Leu Ser Val

Val Ser Ile Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly

BNSDOCID: < WO

115 120 Val Trp Val Asp Glu Phe Glu Asp Met Asp Leu Leu Asp Cys Leu Asp 135 Ala Thr Trp Ser Gly Ala Ile Val Tyr Val Asp Asp Arg Ser Thr Lys 155 Asn Leu Ser Arg Pro Tyr Ala Arg Val Asn Arg Lys Asn Leu Lys Ser Lys Met Met Lys Lys Cys Val Ser Asn Gly Val Arg Phe His Gln Ala Thr Val Val Lys Ala Met His Glu Glu Glu Lys Ser Tyr Leu Ile Cys 200 Ser Asp Gly Val Thr Ile Asp Ala Arg Val Val Leu Asp Ala Thr Gly Phe Ser Arg Cys Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp 245 Val Asp Lys Met Val Phe Met Asp Trp Arg Asp Ser His Leu Asn Gly 265 Lys Ala Glu Leu Asn Glu Arg Asn Ala Lys Ile Pro Thr Phe Leu Tyr 280 Ala Met Pro Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu 295 Val Ala Arg Pro Gly Leu Lys Met Glu Asp Ile Gln Glu Arg Met Val 315 Ala Arg Leu Asn His Leu Gly Ile Arg Ile Lys Ser Ile Glu Glu Asp Glu Arg Cys Val Ile Pro Met Gly Gly Pro Leu Pro Val Ile Pro Gln 345 Arg Val Val Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met Val Ala Arg Thr Leu Ala Ala Ala Pro Ile Val Ala Asn 375 Ser Ile Val Gln Tyr Leu Val Ser Asp Ser Gly Leu Ser Gly Asn Asp Leu Ser Ala Asp Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg 410 Gln Arg Glu Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp 425 Leu Glu Gly Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro 440

Val Pro Phe Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Cys Lys 465 470 475 480

Leu Glu Ile Met Ala Lys Gly Thr Leu Pro Leu Val Asn Met Ile Asn 485 490 495

Asn Leu Val Gln Asp Arg Asp 500

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/12121

	FC170399	12121
A. CLASSIFICATION OF SUBJECT MATTER IPC(6): Please See Extra Sheet. US CL: 435/189, 193, 233, 252.3, 320.1, 325; 536/23.2 According to International Patent Classification (IPC) or to both	h national classification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system follow	ved by classification symbols)	· · · · · · · · · · · · · · · · · · ·
U.S. : 435/189, 193, 233, 252.3, 320.1, 325; 536/23.2	, ,	
Documentation searched other than minimum documentation to	he extent that such documents are incl	uded in the fields searched
Electronic data base consulted during the international search (Please See Extra Sheet.	name of data base and, where practic	able, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.
WO 97/36998 A1 (UNIVERSITY (PARK) 09 October 1997, see entire No:1.	OF MARYLAND COLLECTION OF MARYLAND COLLECTION OF THE PROPERTY	SE 1-8
·		
Further documents are listed in the continuation of Box	C. See patent family annex	
 Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance 	"T" later document published after the date and not in conflict with the the principle or theory underlying	international filing date or priority application but cited to understand the invention
E earlier document published on or after the international filing date	"X" document of particular relevance considered novel or cannot be con	the claimed invention cannot be
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance	the claimed invention cannot be
"O" document referring to an oral disclosure, use, exhibition or other means	considered to involve an inver	tive step when the document is such documents, such combination
P document published prior to the international filing date but later than the priority date claimed	*&* document member of the same p	
Date of the actual completion of the international search 02 AUGUST 1999	15 SEP 1999	search report
Name and mailing address of the ISA.US Commissioner of Patents and Trademarks Box PCT	Authorized officer	
Washington, D.C. 20231	BRADLEY S. MAYHEW	fui
Facsimile No. (703) 305-3230	Telephone No. (703) 368-0196	, ,

BNSDOCID WO COCCEPT IS A 210 (second sheet)(July 1992)*

International application No. PCT/US99/12121

A. CLASSIFICATION	OF	SUBJECT	MATTER:
IPC (6):			

C12N 1/21, 5/10, 9/10, 15/53, 15/54, 15/61, 15/63; C12P 23/00; C12Q 1/68

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

Dialog and APS

search terms: 1PP, epsilon cyclase, lycopene cyclase, isopentenyl pyrophosphate isomerase and isopentenyl diphosphate isomerase

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items chec	cked:
☐ BLACK BORDERS	·
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	` .
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)