M-way tree

Module-2

M-way search tree:

- The **m-way** search trees are multi-way trees which are generalized versions of binary trees where each node contains multiple elements.
- In an m-way tree of order \mathbf{m} , each node contains a maximum of $\mathbf{m} \mathbf{1}$ elements and \mathbf{m} children.
- Multiway tree of order 5

• Elements are present in ascending order at every level.

M-way search tree:

- The goal of m-way search tree of height h calls for the search time complexity is O(h).
- An m-way search tree of $\bf n$ elements ranges from a minimum height of $\log_{\bf m} ({\bf n}+1)$ to a maximum of $\bf n$.

Ex: Suppose you want to build a 3-way search tree (m = 3) with n=26 elements.

According to the formula: $h_{\min} = \log_{m} (n+1) = \log_{3} (26+1) = \log_{3} (27) = 3$

• The number of elements in an m-way search tree of height **h** ranges from a minimum of **h** to a maximum of m^h-1.

Insertion in m-way tree

Eg. Create a m-way search tree with order=3.

Insert elements 14, 32, 11, 6, 7, 4, 3, 88, 93,54, 37, 21, 17, 89, 62, 64, 75, 35, 36

- Insert keys in node till key count == m-1
- 2) If Node full(no of keys == m-1) insert key to left sub tree node where key k_new < key_parent
- 3) If Node full(no of keys == m-1) insert key to right sub tree node where key k_new > key_parent
- 4) Repeat Process

Insertion in m-way tree

Case 1: Deletion of key with no subtrees --> Simply delete key from node

Case 2a: Deletion of key with left subtree --> Replace largest value from left subtree with value to be deleted. Delete largest value from left subtree.

Case 2b: Deletion of key with right subtree --> Replace smallest value from right subtree with value to be deleted. Delete smallest value from right subtree.

Case 3: Deletion of key with both left and right subtrees --> Replace smallest value for RST or Replace largest value from LST with the key value to be deleted. Then delete this replaced value.

Delete 3 (case1)

Delete 37 (case 2a)

Delete 54 (case 2b)

Delete 14 (case 3)

1st way to replace with largest value from left subtree

Delete 14 (case 3)

2nd way to replace with smallest value from right subtree

Given a following m-way tree. Insert 6 and 146 in above tree.

Given a following m-way tree. Insert 6 and 146 in above tree.

• Here we can not insert 146 in following node.

Because if 146 will be added after 141 and this will lead to violation of property of m-way tree. In that case
the following node will become left child of 146.

Therefore we will add 146 as left child of above node(of key=148)