1 Description of the model. Field theoretic formulation

test

$$S_{v}(v',v) = v'D_{v}v'/2 + v'\{-\nabla_{t} + \nu_{0}\partial^{2}\}v + \omega_{0}\nu_{0}^{3}v'_{i}(\partial_{i}\theta)\partial^{2}\theta$$
 (1)

$$S(v, v', \theta, \theta') = S_v(v', v) + \theta' D_{\theta} \theta' / 2 + \theta' \{ -\nabla_t + k_0 \partial^2 \} \theta$$
 (2)

Feynman rules.

$$\langle v, v' \rangle_0 = \langle v', v \rangle_0^T = (-i\omega + \nu_0 k^2)^{-1}$$
 (3)

$$\langle v, v \rangle_0 = P_{ij} D_0 k^{4-d-y} | -i\omega + \nu_0 k^2 |^{-2}$$
 (4)

$$\langle \theta, \theta' \rangle_0 = \langle \theta', \theta \rangle_0^T = (-i\omega + \nu_0 k^2)^{-1} \tag{5}$$

$$\langle \theta, \theta \rangle_0 = K_0 k^{2-d-y} | -i\omega + \nu_0 k^2 |^{-2}$$
 (6)

$$\langle v_i', \theta, \theta \rangle_0 = -i\omega_0 \nu_0^3 [p_i k^2 + p^2 k_i] \tag{7}$$

p,k - momentum of field θ .

$$\langle \theta', v_i, \theta \rangle_0 = -ip_i \tag{8}$$

p - momentum of field θ' , because $\partial_i v_i = 0$.

$$\langle v_i', v_k, v_s \rangle_0 = -i[p_k \delta_{is} + p_s \delta_{ik}] \tag{9}$$

p - momentum of field v'.

2 Canonical dimensions, UV divergences and the renormalization

F	v	v^{\prime}	θ	heta'	ν	ω, ω_0	D, D_0	k, k_0	g, g_0	u
d_F^k	-1	d+1	$-\frac{1}{2}z + 1$	$d + \frac{1}{2}z - 1$	-2	z	y-6	-2	y	0
d_F^{ω}	1	-1	$-\frac{1}{2}$	$\frac{1}{2}$	1	0	3	1	0	0
d_F	1	d-1	$-\frac{1}{2}z$	$d + \frac{1}{2}z$	0	z	y	0	y	0

The role of the coupling constants is played by the parameters $g_0 = D/\nu_0^3$, $u_0 = k_0/\nu_0$, and ω_0 . The model is logarithmic at y = z = 0.