Last time: RNNs and LSTMs

e.g., activity recognition

e.g., frame-level video annotation

e.g., image captioning

e.g., machine translation

Image: Andrej Karpathy

A basic neural language model

training data: natural sentences

I think therefore I am

I like machine learning

I am not just a neural network

in reality there could be several million of these

how are these represented?

tokenize the sentence (each word is a token)

simplest: one-hot vector

more complex: word embeddings (we'll cover this later)

We'll talk about **real** language models much more later

A few details

Question: how do we use such a model to complete a sequence (e.g., give it "I think..." and have it finish it?)

If we want to come up with an entirely new sequence, start with a special <START> token

train model to output <EOS>
token when sequence ends

A conditional language model

What do we expect the training data to look like?

How do we tell the RNN what to generate?

What if we condition on another sequence?

Sequence to sequence models

typically two separate RNNs (with different weights)

trained end-to-end on paired data (e.g., pairs of French & English sentences)

A more realistic example

- Multiple RNN layers
- ➤ Each RNN layer uses LSTM cells (or GRU)
- > Trained end-to-end on pairs of sequences
- > Sequences can be different lengths

Not just for cute puppies!

- > Translate one language into another language
- > Summarize a long sentence into a short sentence
- > Respond to a **question** with an **answer**
- Code generation? text to Python code

For more, see: Ilya Sutskever, Oriol Vinyals, Quoc V. Le. Sequence to Sequence Learning with Neural Networks. 2014.

Decoding with beam search

Decoding the most likely sequence

What we should have done

How many possible decodings are there?

for M words, in general there are M^T sequences of length T

any one of these might be the optimal one!

Decoding is a **search** problem

We could use any tree search algorithm

But exact search in this case is **very** expensive

Fortunately, the **structure** of this problem makes some simple **approximate search** methods work **very well**

Decoding with approximate search

Basic intuition: while choosing the **highest-probability** word on the first step may not be optimal, choosing a **very low-probability** word is very unlikely to lead to a good result

Equivalently: we can't be greedy, but we can be *somewhat* greedy

This is not true in general! This is a guess based on what we know about sequence decoding.

Beam search intuition: store the **k** best sequences **so far**, and update each of them.

special case of $\mathbf{k} = 1$ is just greedy decoding

often use k around 5-10

Decoding is a **search** problem

Beam search example

$$p(y_{i,1:T_y}|x_{i,1:T}) = \prod_{t=1}^{T_y} p(y_{i,t}|x_{i,1:T}, y_{i,0:t-1}) \qquad \log p(y_{i,1:T_y}|x_{i,1:T}) = \sum_{t=1}^{T_y} \log p(y_{i,t}|x_{i,1:T}, y_{i,0:t-1})$$

in practice, we sum up the log probabilities as we go (to avoid underflow)

Example (CS224n, Christopher Manning): **translate** (**Fr->En**): <u>il a m'entarté</u> (he hit me with a pie) **k** = 2 (track the 2 most likely hypotheses) no perfectly equivalent English word, makes this hard

log-prob

Beam search summary

$$\log p(y_{i,1:T_y}|x_{i,1:T}) = \sum_{t=1}^{T_y} \log p(y_{i,t}|x_{i,1:T}, y_{i,0:t-1})$$

there are k of these

at each time step t:

1. for each hypothesis $y_{1:t-1,i}$ that we are tracking: find the top k tokens $y_{t,i,1},...,y_{t,i,k}$

very easy, we get this from the softmax log-probs

- 2. sort the resulting k^2 length t sequences by their total log-probability
- 3. keep the top k
- 4. advance each hypothesis to time t+1

When do we stop decoding?

Let's say one of the highest-scoring hypotheses ends in <END>

Save it, along with its score, but do **not** pick it to expand further (there is nothing to expand)

Keep expanding the **k** remaining best hypotheses

until we have **N** hypotheses that end in <EOS>

Which sequence do we pick?

At the end we might have something like this:

he hit me with a pie

$$\log p = -4.5$$

he threw a pie

$$log p = -3.2$$

I was hit with a pie that he threw

$$log p = -7.2$$

$$\log p(y_{i,1:T}|x_{i,1:T}) = \sum_{t=1}^{T} \log p(y_{i,t}|x_{i,1:T}, y_{i,0:t-1})$$

Problem: p < 1 always, hence log p < 0 always

The longer the sequence the lower its total score (more negative numbers added together)

Simple "fix": just divide by sequence length $\mathrm{score}(y_{i,1:T}|x_{i,1:T}) = \frac{1}{T} \sum_{t=1}^{T} \log p(y_{i,t}|x_{i,1:T},y_{i,0:t-1})$

Beam search summary

score
$$(y_{i,1:T}|x_{i,1:T}) = \frac{1}{T} \sum_{t=1}^{T} \log p(y_{i,t}|x_{i,1:T}, y_{i,0:t-1})$$

at each time step t:

- 1. for each hypothesis $y_{1:t-1,i}$ that we are tracking: find the top k tokens $y_{t,i,1},...,y_{t,i,k}$
- 2. sort the resulting k^2 length t sequences by their total log-probability
- 3. save any sequences that end in EOS
- 4. keep the top k
- 5. advance each hypothesis to time t+1 if t < H

return saved sequence with highest score

Attention

The bottleneck problem

Idea: what if we could somehow "peek" at the source sentence while decoding?

Can we "peek" at the input?

compare query to each key to find the closest one

key vector (represents what type of info is present at this step)

some function (e.g., linear layer + ReLU)

(crude) intuition: key might encode "the subject of the sentence," and query might ask for "the subject of the sentence"

In reality what keys and queries mean is learned – we do not have to select it manually!

Attention

attention score for (encoder) step t to (decoder) step l

RNN encoder activations at step t

query: $q_l = q(s_l)$

what does "send" mean?

who receives it?

output: $\hat{y}_l = f(s_l, a_l)$

next RNN layer if using multi-layer (stacked) RNN

next decoder step
$$\bar{s}_l = \left[\begin{array}{c} s_{l-1} \\ a_{l-1} \\ x_l \end{array} \right]$$

(kind of like appending a to the input)

 $\alpha_{t,l} = \frac{\exp(e_{t,l})}{\sum_{t'} \exp(e_{t',l})}$

send $a_l = \sum_t \alpha_{t,l} h_t$ \longleftarrow approximates h_t for $\arg \max_t e_{t,l}$

Attention Walkthrough (Example)

Attention Walkthrough (Example)

Attention Walkthrough (Example)

Attention Equations

Encoder-side:

$$k_t = k(h_t)$$

Decoder-side:

$$q_l = q(s_l)$$

$$e_{t,l} = k_t \cdot q_l$$

$$\alpha_{t,l} = \frac{\exp(e_{t,l})}{\sum_{t'} \exp(e_{t',l})}$$

$$a_l = \sum_t \alpha_t h_t$$

Could use this in various ways:

concatenate to hidden state: $\begin{vmatrix} s_{l-1} \\ a_{l-1} \\ x_l \end{vmatrix}$

use for readout, e.g.: $\hat{y}_l = f(s_t, a_l)$

concatenate as input to next RNN layer

Attention Variants

Simple key-query choice: k and q are identity functions

$$k_t = h_t$$
 $q_l = s_l$

Decoder-side:

$$e_{t,l} = h_t \cdot s_l$$

$$\alpha_{t,l} = \frac{\exp(e_{t,l})}{\sum_{t'} \exp(e_{t',l})}$$

$$a_l = \sum_t \alpha_t h_t$$

Attention Variants

Linear multiplicative attention:

$$k_t = W_k h_t \qquad q_l = W_q s_l$$
 Decoder-side: just learn this matrix
$$e_{t,l} = h_t^T W_k^T W_q s_l = h_t^T W_e s_l$$

$$\alpha_{t,l} = \frac{\exp(e_{t,l})}{\sum_{t'} \exp(e_{t',l})}$$

$$a_l = \sum_t \alpha_t h_t$$

Attention Variants

Learned value encoding:

Encoder-side:

$$k_t = k(h_t)$$

Decoder-side:

$$\begin{aligned} q_l &= q(s_l) \\ e_{t,l} &= k_t \cdot q_l \\ \alpha_{t,l} &= \frac{\exp(e_{t,l})}{\sum_{t'} \exp(e_{t',l})} \\ a_l &= \sum_t \alpha_t v(h_t) \end{aligned}$$
 some learned function

Attention Summary

Every encoder step t produces a key k_t

Every decoder step l produces a query q_l

Decoder gets "sent" encoder activation h_t corresponding to largest value of $k_t \cdot q_l$ actually gets $\sum_t \alpha_t h_t$

Why is this **good**?

- ➤ Attention is **very** powerful, because now all decoder steps are connected to **all** encoder steps!
- Connections go from O(T) to O(1)
- Gradients are much better behaved (O(1) propagation length)
- Becomes very important for very long sequences
- > Bottleneck is much less important
- > This works much better in practice

