

Human in the image

Computational Vision, 09/05/2025

Matteo Moro

Action classification – problem definition

Problem definition

Problem: Identify the action happening in a video clip

Challenges:

- 1) Number of people involved
- 2) Where the action is happening?
- 3) Background / context information

Problem definition

video

Action localization

Before the deep learning era

KTH Action dataset

hand waving

boxing

Schuldt, Christian, Ivan Laptev, and Barbara Caputo. "Recognizing human actions: a local SVM approach." Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.. Vol. 3. IEEE, 2004.

Weizmann dataset

eli is jumping from left to right

daria is side-walking from left to right

daria is waking from right to left

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

Actions == space-time objects

Local features

Local features

Sparse vs dense features

Space-time descriptors

Multi-scale space-time patches

Deep Learning era

UCF101

Soomro, Khurram, Amir Roshan Zamir, and Mubarak Shah. "UCF101: A dataset of 101 human actions classes from videos in the wild." arXiv preprint arXiv:1212.0402 (2012).

HMDB51

Brush air

Kick

Kuehne, Hildegard, et al. "HMDB: a large video database for human motion recognition." 2011 International conference on computer vision. IEEE, 2011.

Spatio-temporal (3D) Convolutional Neural Networks

Carreira, Joao, and Andrew Zisserman. "Quo vadis, action recognition? a new model and the kinetics dataset." proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Two-stream Networks

RGB and optical flow

Simonyan, Karen, and Andrew Zisserman. "Two-stream convolutional networks for action recognition in videos." Advances in neural information processing systems 27 (2014).

Skeleton-based action classification

Semantic features over time

Yan, Sijie, Yuanjun Xiong, and Dahua Lin. "Spatial temporal graph convolutional networks for skeleton-based action recognition." Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018.

Graph neural network

Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI open 1 (2020): 57-81.

Practical example - BABEL

Babel

Samples of 3D human poses while performing actions.

babel60 & babel120 → 60 or 120 actions labels

Each sample is composed by 150 "frames" and 25 3D keypionts

Babel60 → 45473 samples

Babel120 → 48978 samples

Punnakkal, Abhinanda R., et al. "BABEL: Bodies, action and behavior with english labels." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Babel - walk

Punnakkal, Abhinanda R., et al. "BABEL: Bodies, action and behavior with english labels." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Babel - throw

Punnakkal, Abhinanda R., et al. "BABEL: Bodies, action and behavior with english labels." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Pipeline

Number of poses

- 10

8

UniGe