MATH 138 LECTURE 4

1 Fundamental Theorem of Calculus (Part 1):

Suppose f is continuous on an interval I containing a point a. For each x in I, let

$$F(x) = \int_{a}^{x} f(t)dt$$

Then, F is differentiable on I and F'(x) = f(x) or $\frac{d}{dx}(\int_a^x f(t)dt) = f(x)$.

Proof:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left(\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt \right)$$

$$= \frac{1}{h} \left(\int_{a}^{x+h} f(t)dt + \int_{x}^{a} f(t)dt \right)$$

$$= \frac{1}{h} \left(\int_{x}^{x+h} f(t)dt + \int_{a}^{x+h} f(t)dt \right)$$

$$= \frac{1}{h} \int_{x}^{x+h} f(t)dt \text{ (by additivity)}$$

This is just the average value of f over [x, x + h].

By the average value theorem, there is a point c in [x, x+h] such that $f(c)=\frac{F(x+h)-F(x)}{h}$. As $h\to 0$, then $c\to x$ and $f(c)\to f(x)$. Thus,

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$

Example 1: Find $\frac{d}{dx}(\int_0^x sin(t)dt)$.

$$\frac{d}{dx}(\int_0^x \sin(t)dt) = \frac{d}{dx}(\int_a^x f(t)dt)$$
$$= f(x)$$
$$= \sin(x)$$

Example 2: Find $\frac{d}{dx}(\int_0^{x^2} sin(t)dt)$.

Let $u = x^2$. Then,

$$y(u) = \int_0^u f(t)dt$$
$$= \int_0^u \sin(t)dt$$

Additionally,

$$y(x) = \int_0^{x^2} = y(u(x))$$

We can see that $y(u) = \int_0^u \sin(t)dt$.

By the fundamental theorem of calculus, $\frac{dy}{du} = \sin(u)$.

$$\frac{dy}{du} = \sin(u)$$

$$\frac{du}{dx} = \frac{d}{dx}x^2 = 2x$$

By the chain rule,

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
$$\frac{dy}{dx} = \sin(u) \frac{du}{dx}$$
$$= \sin(x^2) \cdot 2x$$

Therefore, $\frac{d}{dx} \int_0^{x^2} \sin(t) dt = 2x \sin(x^2)$.

Extended Version of the Fundamental Theorem of Calculus:

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t)dt = f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x)$$

Example 3: Compute the derivative. $\frac{d}{dx} \int_0^{\sqrt{x}} \sin(t^2) dt$

Let $f(t) = sin(t^2)$, g(x) = 0, and $h(x) = \sqrt{x}$. Then f(h(x)) = sin(x).

Thus,
$$\frac{d}{dx} \int_0^{\sqrt{x}} \sin(t^2) dt = \sin(x) \cdot \frac{1}{2\sqrt{x}}$$
.

2 Displacement

If s(t) denotes the displacement of an object at time t and v(t) denotes the velocity, then $\frac{ds}{dt} = v(t)$. Displacement equals the area under the graph of the velocity function.

$$F(x) = \int_{a}^{x} f(t)dt, \text{ then } F'(x) = f(x).$$

3 The Antiderivative

Antiderivative: A function G is said to be an antiderivative of a function g if G'(x) = g(x).

Example 4: Find the antiderivative of cos(x).

The antiderivative of cos(x) is sin(x) because $\frac{d}{dx}sin(x)=cos(x)$. Since the antiderivative is not unique, we write that the antiderivative is

$$sin(x) + C$$
, where C is a constant.

If F(x) is an antiderivative of f(x), then every antiderivative of f(x) is of the form F(x) + C.

Indefinite Integral: The indefinite integral of f(x) is the collection of all antiderivatives of f.

Notation: $\int f(x)dx$

Function	Indefinite Integral
1	x + C
$x^n, n \neq -1$	$\frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}$	ln(x) + C
e^x	$e^x + C$
cos(x)	sin(x) + C
sin(x)	-cos(x) + C
$sec^2(x)$	tan(x) + C
$csc^2(x)$	-cot(x) + C
sec(x)tan(x)	sec(x) + C

4 Summary

Using the Fundamental Theorem of Calculus Part I, we can find the original function through differentiating its integral. In general, remember

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t)dt = f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x)$$

Antiderivatives are functions that when derived, equal the original function. In general, F'(x) = f(x).

Antiderivatives, unlike derivatives, are not unique. Thus a family of antiderivatives take the form F(x)+C.