Exhibit

**500** 

## 48F512 512K FLASH<sup>™</sup> EEPROM

MELIMINARY DATA SHEET

October 1988

g,

- 84K Byte FLASH Eresable Non-Volatile Memory
- Low Power CMOS Process
- Electrical Byte Write and Chip/Sector Erase
- Input Latches for Writing and Erasing
- # Fast Read Access Time
- Single High Voltage for Writing and Erasing
- FLASH EEPROM Cell Technology
- lideal for Low-Cost Program and Data Storage Minimum 100 Cycle Endurance
- Optional 1000 Cycle Endurance Screening
- Minimum 10 Year Data Retention
- 5V± 10% V<sub>CO</sub> 0° Cto + 70° C Temperature Range
- Silicon Signature\*
- JEDEC Standard Byte Wide Pinout
- 32 Pin DIP
- 32 Pin J-Bend Plastic Leaded Chip Carrier

### . Block Diagram



### Pin Names

| A0-A0           | COLUMN ADDRESS INPUT             |
|-----------------|----------------------------------|
| Ag-Ais          | ROW ADDRESS INPUT                |
| ÇE              | CHIP ENABLE                      |
| ŌĒ              | OUTPUT ENABLE                    |
| WE              | WRITE ENABLE                     |
| 1000.7          | DATA INPUT (WRITE)/OUTPUT (READ) |
| N.C.            | NO INTERNAL CONNECTION           |
| V <sub>pp</sub> | WRITE/ERASE INPUT VOLTAGE        |
| D.U.            | DON'T USE                        |

Silicon Signature is a registered trademark of SEEQ Technology. RASH is a trademark of SEEQ Technology.

## Pin Configurations

PLASTIC LEADED CHIP CARRIER TOP VIEW





SEEQ Technology, Incorporated

2-1

HELIMINARY DATA SHEET

#### Description

The 48F512 is a 512K bit CMOS FLASH EEPROM organized as 64K x 8 bits. SEEO's 48F512 brings together the high density and cost effectiveness of UVEPROMs, with the electrical erase, in-circuit reprogrammability and package options of EEPROMs.

On-chip latches and timers permit simplified microprocessor interface, freeing the microprocessor to perform other tasks once write/erase/read cycles have been initiated. The memory array is divided into 128 sectors, with each sector containing 512 bytes. Each sector can be individually erased, or the chip can be bulk erased before reprogramming.

Endurance, the number of times each byte can be written, is specified at 100 cycles with an optional screen for 1000 cycles available. Electrical write/ erase capability allows the 48F512 to accommodate a wide range of plastic, ceramic and surface mount packages.

#### Read

Reading is accomplished by presenting a valid address with chip enable and output enable at  $V_{lL}$ , write enable at  $V_{lH}$  and  $V_{pp}$  at any level. See timing waveforms for A.C. parameters.

#### Erase and Write

Latches on address, data and control inputs permit erasing and writing using normal microprocessor bus timing. Address inputs are latched on the falling edge of write enable or chip enable, whichever is later, while data inputs are latched on the rising edge of write enable or chip enable, whichever is earlier. The write enable input is noise protected; a pulse of less than 20 ns. will not initiate a write or erase. In addition, chip enable, output enable and write enable must be in the proper state to initiate a write or erase. Timing diagrams depict write enable controlled writes; the timing also applies to chip enable controlled writes.

#### Sector Erase

Sector erase changes all bits in a sector of the array to a logical one. It requires that the  $V_{PP}$  pin be brought to a high voltage and a write cycle performed. The sector to be erased is defined by address inputs  $A_3$  through  $A_{15}$ . The data inputs must be all ones to begin the erase. Following a write of 'FF', the part will wait for time  $I_{ABORT}$  to allow aborting the erase by writing again. This permits recovering from an unintentional sector erase if, for example, in loading a block of data a byte of 'FF' was written. After the

 $t_{ABORT}$  delay, the sector erase will begin. The erase is accomplished by following the erase algorithm in figure 2.  $V_{PP}$  can be brought to any 1 LL level or left at high voltage after the erase.

#### Chip Erase

Chip erase changes all bits in the memory to a logical one. Refer to figure 3 for the chip crase algorithm.  $V_{pp}$  can be brought to any TTL level or left at high voltage after the erase.

### Sector and Chip Erase Algorithm

To reduce the sector and chip erase times, a software erase algorithm is used. Refer to figures 2 and 3 for the sector erase and chip erase flow charts.

#### **Byte Write**

A byte write is used to change any 1 in a byte to a 0. To change a bit in a byte from a 0 to a 1, the byte must be erased first via either sector erase or chip erase.

Data are organized in the 48F512 in a group of bytes called a sector. The memory array is divided into 128 sectors of 512 bytes each. Individual bytes are written as part of a sector write operation. The programming algorithm for either chip or sector write is detailed in figure 1.

Sectors are written by applying a high voltage to the VPP pin and writing individual non-FF bytes in sequential order. Each byte write is automatically latched on-chip, so that the user can do a normal microprocessor write cycle and then wait a minimum of Iwc ns. for the self-timed write to complete. Each byte write incrementally programs bits that are to become a zero. A write loop has been completed when all non-FF data for all desired blocks have been written. After 10 loops, a read-verification is performed. For any bytes which do not verify, a fill-in programming loop is performed. Sectors need not be written separately; the entire device or any combination of sectors can be written using the write algorithm. the number of loops required. Sectors need not be written separately; the entire device or any combination of sectors can be written using the write algorithm. Because bytes can only be written as part of a sector write, if data is to be added to a partially written sector or one or more bytes in a sector must be changed, the contents of the sector must first be read into system RAM; the bytes can then be added to the block of data in RAM and the sector written using the sector write algorithm.

Powe

This is disable V<sub>CC</sub> is are proin the table)

High

The V<sub>Pi</sub> There i musi n device transier mum 0 frequen at each lance s sag whi erase c)

Silicor

Seen C Produc

### Mode:

Hend Standby Byle wri

Chip era Chip era Sector e

#### Absolut

Temperall Slorage Under bia:

All Inputs i

V<sub>PP</sub> pin wili

-See(

SEEQ Technology, Incorporated

## Power Up/Down Protection

This device contains a V<sub>CC</sub> sense circuit which disables internal erase and write operations when V<sub>CC</sub> is below 3.5 volts. In addition, erases and writes are prevented when any control input (CE, OE, WE) is in the wrong state for writing or erasing (see mode

## High Voltage Input Protection

The  $V_{PP}$  pin is at a high voltage for writing and erasing. There is an absolute maximum specification which must not be exceeded, even briefly, or permanent device damage may result. To minimize switching transients on this pin we recommend using a minimum 0.1 uf decoupling capacitor with good high frequency response connected from V<sub>PP</sub> to ground al each device. In addition, sufficient bulk capacilance should be provided to minimize  $V_{pp}$  voltage ag when a device goes from standby to a write or

### Silicon Signature Bytes

| Seeg Code           | Ao  | Data (Hex) |
|---------------------|-----|------------|
| Product code 48F512 | Va  | 94         |
| 10001 0000 487512   | Vpi | 1A         |

### Silicon Signature

A row of fixed ROM is present in the 48F512 which contains the device's Silicon Signature. Silicon Signature contains data which identifies Scen as the manufacturer and gives the product code. This allows device programmers to match the programming specification against the product which is to be

Silicon Signature is read by raising address A, to 12 ± 0.5 V and bringing all other address inputs plus chip enable and output enable to  $V_{I\!L}$  with  $V_{CC}$  at 5 V The two Silicon Signature bytes are selected by address input Ao Silicon Signature is functional at room temperature only (25°C.)

### Mode Selection Table

| MODE                    |                 |                 |                 |     |         |                  |                  |
|-------------------------|-----------------|-----------------|-----------------|-----|---------|------------------|------------------|
| Read                    | ČĒ              | 36              | WE              |     | 1       |                  |                  |
| Slandby                 | Vn              | V <sub>IL</sub> |                 | Vpp | A9.15   | A <sub>0.8</sub> | D <sub>0.7</sub> |
| Byte write              | V <sub>PH</sub> | ×               | Vne             | X   | Address | Address          |                  |
|                         | V <sub>R</sub>  |                 | X               | X   | X       | X                |                  |
| Chip erase select       | V <sub>R</sub>  | V <sub>BH</sub> | Va              | Vp  | Address |                  | HI-Z             |
| Chip erase              |                 | Vive            | V <sub>fL</sub> | TIL |         | Address          | Diri             |
| Sector erase            | Va              | V <sub>IM</sub> | Va              | Vp  | ×       | X                | ×                |
|                         | V <sub>R</sub>  | Van             | Vn              |     | X       | X                | FF.              |
| Absolute Maximum Street |                 |                 |                 | Vp  | Address | X                | FF               |
| "WOULD IMAXIMUM Strop   |                 |                 |                 |     |         |                  | r                |

## Absolute Maximum Stress Ratings

| unperature.           | ······································ |
|-----------------------|----------------------------------------|
| Soage                 | -65°C10+125°C                          |
| Unpuls except Vpp and | -10°C to +85°C                         |

upuls with Respect to Vss +7 V to -0.5 V

Is pin with respect to  $V_{SS}$  . . . 14 V

E.S.D. Characteristics[1]

| VZAT | Parameter<br>E.S.D. Tolerance | >2000 V | Test Conditions MIL-S1D 883 Method 3015 |
|------|-------------------------------|---------|-----------------------------------------|
| Cha  | aclerization                  |         |                                         |

Note 1: Characterization data-not testerl

SEQ Technology, Incorporated

481-512 PRELIMINARY DATA SHEET

### **Recommended Operating Conditions**

|                                | 48F512                      |
|--------------------------------|-----------------------------|
| V <sub>CC</sub> supply voltage | 5V ± 10%                    |
| Temperature range              | 0°C to 70°C (amblent temp.) |

### Capacitance[2] IA 25°C, I 1 MII/

| Symbol | Parameter          | Value  | Test Conditions     |
|--------|--------------------|--------|---------------------|
| Cin    | Input capacitance  | 6 pt.  | VIN= 0 V            |
| Cout   | Output capacitance | 12 pl. | V <sub>NO</sub> 0 V |

Note 2: This parameter is only sampled and not 100% tested.

# DC Operating Characteristics Over the V<sub>CC</sub> and temperature range

|                  | i                                                              |         |                        |                                       |                                                                                                                                                                                           |
|------------------|----------------------------------------------------------------|---------|------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol           | Parameter                                                      | Min.    | Max.                   | Unit                                  | Test Conditions                                                                                                                                                                           |
| l <sub>IM</sub>  | Input leakage high                                             |         | 1                      | μА                                    | V <sub>IN</sub> = V <sub>CC</sub>                                                                                                                                                         |
| l <u>u</u>       | Input leakage low                                              |         | -1                     | μА                                    | V <sub>P4</sub> = 0.1 v                                                                                                                                                                   |
| la               | Output leakage                                                 |         | 10                     | μА                                    | V <sub>IN</sub> = V <sub>CC</sub>                                                                                                                                                         |
| Vp               | Program/erase voltage                                          | 11.75   | 13                     | v                                     | 7.64 - 1.00                                                                                                                                                                               |
| V <sub>PR</sub>  | V <sub>PP</sub> Voltage during read                            | 0       | V,                     | v                                     | <del></del>                                                                                                                                                                               |
| Ірр              | V <sub>P</sub> current Standby mode Read mode Byte write Erase |         | 200<br>200<br>40<br>80 | JIA<br>JIA<br>MA<br>MA                | CE = V <sub>B1</sub> , V <sub>PP</sub> = V <sub>P</sub><br>CE = V <sub>R</sub> , V <sub>PP</sub> = V <sub>P</sub><br>V <sub>PP</sub> = V <sub>P</sub><br>V <sub>PP</sub> = V <sub>P</sub> |
| lcc1             | Standby V <sub>CC</sub> current                                | CMOS    | 100                    | μА                                    | CE = Vcc -0.3 v                                                                                                                                                                           |
| lcc2             | Standby V <sub>CC</sub> current                                | TTL     | 5                      | mA                                    | CE - V <sub>M</sub> min.                                                                                                                                                                  |
| lcca             | Active V <sub>CC</sub> current                                 |         | 60                     | mA                                    | · CE = V <sub>a</sub>                                                                                                                                                                     |
| Va               | Input low voltage                                              | -0.3    | 0.8                    | V                                     | 00.00                                                                                                                                                                                     |
| V <sub>BH</sub>  | input high vottage                                             | 2.0     | 7.0                    | · ··· · · · · · · · · · · · · · · · · | -                                                                                                                                                                                         |
| Va               | Output low voltage                                             |         | 0.45                   | <u>`</u>                              |                                                                                                                                                                                           |
| VoHi             | Output level (TTL)                                             | 2.4     |                        | V                                     | lon = -400µA                                                                                                                                                                              |
| V <sub>OH2</sub> | Output level (CMOS)                                            | Vcc-0.4 |                        | V                                     | 10H = -100HA                                                                                                                                                                              |

SEEQ Technology, Incorporated -

2-4

SE MD40

0 In, In; Tii

ditions

:đ.

512 TA SHEET

READ

48F512 PRELIMINARY DATA BHEET

| Symbol Parameter |                     | 48F512<br>-200 |      | 48F512<br>-250 |      | 48F512<br>-300 |       |      |
|------------------|---------------------|----------------|------|----------------|------|----------------|-------|------|
|                  | Parameter           | Min.           | Max. | Min.           | Max. | Min.           |       |      |
| pc               | Read cycle time     | 200            |      | 250            |      |                | Mex.  | Unit |
| lu               | Address to data     |                | 200  | 230            | ļ    | 300            |       | ns   |
| tı               | CE to data          | ·              |      |                | 250  |                | 300   | ns   |
| br               | OE to data          |                | 200  |                | 250  |                | 300   | ns   |
| 4                | OE/CE to data float |                | 75   |                | 100  |                | 150   | ns   |
| ы                | Output hold time    |                | 50   |                | 60   |                | 100   |      |
|                  | Output hold time    | 0              |      | 0              |      | 0              | - 100 | ns   |
|                  |                     |                |      |                |      | •              |       | D.S. |

### Read Timing



### AC Test Conditions

Ovout load: 1 TTL gate and C(load) 100 pt. how hise and fall times: < 20 ns. how pulse levels: 0.45 V to 2.4 V Iming measurement reference level:
houts 1 V and 2 V
Outputs 0.8 V and 2 V

AC Characteristics (over the Vcc and temperature range)

6000 Technology, Incorporated

PRELIMINARY DATA SHEET

### AC Characteristics

(Over the V<sub>CC</sub> and temperature range)

#### BYTE WRITE

| Symbol           |                            | 48F512<br>-200 |      | 48F512<br>-250 |      | 48F512<br>-300 |      |      |
|------------------|----------------------------|----------------|------|----------------|------|----------------|------|------|
|                  | Parameter                  | Min.           | Max. | Mln.           | Max. | Min.           | Mnx. | Unit |
| lvps             | V <sub>PP</sub> setup time | 2              |      | 2              | l    | 2              |      | 113  |
| lvpu             | V <sub>PP</sub> hold time  | 250            |      | 250            |      | 250            |      | μs   |
| 1cs              | CE setup time              | 0              |      | 0              |      | 0              |      | ns   |
| Сн               | CE hold time               | 0              |      | 0              |      | 0              |      | ns   |
| loes             | OE setup time              | 10             |      | 10             |      | 10             |      | ns   |
| t <sub>OEH</sub> | OE hold time               | 10             |      | 10             |      | 10             |      | ns   |
| las              | Address setup time         | 20             |      | 20             |      | 20             |      | ns   |
| <b>T</b> AH      | Address hold time          | 100            |      | 100            |      | 100            |      | ns   |
| tos              | Data setup time            | 50             |      | 50             |      | 50             | 1    | ns   |
| l <sub>OH</sub>  | Data hold time             | 0              |      | 0              |      | 0              |      | ns   |
| lwp              | WE pulse width             | 100            |      | 100            |      | 100            |      | ns   |
| two              | Write cycle time           | 100            | 150  | 100            | 150  | 100            | 150  | 115  |
| twa              | Write recovery time        |                | 1.5  |                | 1.5  |                | 1.5  | ms   |

Note: In A.C. characteristics, all inputs to the device, e.g., setup time, hold time and cycle time, are tributated as a minimum time; the user must provide a valid state on that input or wait for the state minimum time to assure proper operation. All outputs from the device, e.g. access time, erase time, recovery time, are tabulated as a maximum time, the device will perform the operation within the stated time.

### Byte Write Timing



-SEEQ Technology, Incorporated

MD400062/-

2-6

S(

01-512
PRELIMINARY DATA SHEET

Figure 1 48F512 Write Algorithm



AC Characteristics (Over the V<sub>CC</sub> and temperature range)

### SECTOR ERASE

| Symbol         |                            | 48F512<br>-200 |      | 48F512<br>-250 |      | 48F512<br>-300 |          |      |
|----------------|----------------------------|----------------|------|----------------|------|----------------|----------|------|
|                | Parameter                  | Min.           | Max. | Min.           | Max. | Min.           | Мвх.     | Unit |
| typs           | V <sub>PP</sub> setup time | 2              |      | 2              | ll   | 5              |          | 110  |
|                | V <sub>PP</sub> hold time  | 500            |      | 500            |      | 500            |          | ms   |
| lvpu           | CE setup time              | 0              |      | 0              |      | 0              |          | ns   |
| les            | OE setup time              | 0              |      | 0              |      | 0              |          | ns   |
| loes           | Address setup time         | 20             |      | 20             |      | 20             | <u> </u> | ns   |
| tas            | Address hold time          | 100            |      | 100            |      | 100            | <u> </u> | ns   |
| lan<br>los     | Data setup time            | 50             |      | 50             |      | 50             |          | ns   |
| ton            | Data hold time             | 0              |      | 0              |      | 0              |          | ns   |
| twp            | WE pulse width             | 100            |      | 100            |      | 100            |          | ns   |
| lch            | CE hold time               | 0              |      | 0              |      | 0              |          | ns   |
|                | OE hold time               | 0              |      | 0              |      | 0              |          | ns   |
| loeh<br>Ierase | Sector erase time          |                | 500  |                | 500  |                | 500      | ms   |
| LABORT         | Sector erase delay         | 1              | 250  |                | 250  |                | 250      | 113  |
| ten ten        | Erase recovery time        |                | 250  |                | 250  |                | 250      | ms   |

### Sector Erase Timing



SEEQ Technology, Incorporated MD400062/-

2-8

SE MD401

Figure 2 48F512 Sector Erase Algorithm



2-9

PRELIMINARY DATA SHEET

AC Characteristics (Over the V<sub>CC</sub> and temperature range) CHIP ERASE

| Symbol          |                            | 48F512<br>-200 |      | 48F512<br>-250 |      | 48F512<br>-300 |      |      |
|-----------------|----------------------------|----------------|------|----------------|------|----------------|------|------|
|                 | Parameter                  | Min.           | Mex. | Min.           | Mox. | Min.           | Мох. | Unit |
| typs            | V <sub>PP</sub> setup time | 2              |      | 2              |      | 2              |      | 115  |
| TUPH            | V <sub>PP</sub> hold time  | 500            |      | 500            |      | 500            |      | ms   |
| lcs             | CE setup time              | 0              |      | 0              |      | 0              |      | กร   |
| loss            | OE setup time              | 0              |      | 0              |      | 0              |      | ns   |
| los             | Data setup time            | 50             |      | 50             |      | 50             |      | ns   |
| tон             | Data hold time             | 0              |      | 0              |      | 0              |      | ns   |
| lwp             | WE pulse width             | 100            |      | 100            |      | 100            |      | ns   |
| t <sub>CH</sub> | CE hold time               | 0              |      | 0              |      | 0              |      | ns   |
| <b>TOEH</b>     | OE hold time               | 0              |      | 0              |      | 0              |      | ns   |
| TERASE          | Chip erase time            |                | 500  |                | 500  |                | 500  | ms   |
| len             | Erase recovery time        |                | 250  |                | 250  |                | 250  | ms   |

### Chip Erase Timing



-SECQ Technology, Incorporated MD400062/-

2-10

Se1

