

PROJEKT INŻYNIERSKI

Tytuł pracy dyplomowej inżynierskiej

Jakub KULA Nr albumu: 296849

Kierunek: Automatyka i Robotyka **Specjalność:** Technologie Informacyjne

PROWADZĄCY PRACĘ

dr inż. Szymon Ogonowski, prof. PŚ
KATEDRA Katedry Pomiarów i Systemów Sterowania
Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2023

Tytuł pracy

Tytuł pracy dyplomowej inżynierskiej

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczowe

(2-5 slow (fraz) kluczowych, oddzielonych przecinkami)

Thesis title

Thesis title in English

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Key words

(2-5 keywords, separated by commas)

Spis treści

1	Wst	gęp	1
	1.1	Wprowadznie	1
		1.1.1 Cel pracy	1
		1.1.2 zakres pracy	1
	1.2	Osadzenie problemu w dziedzinie	1
	1.3	Charakterystyka rozdziałów	1
		1.3.1 Nazwa pierwszego rozdziału	2
		1.3.2 Nazwa drugiego rozdziału	2
		1.3.3 Nazwa Trzeciego rozdziału	2
	1.4	Wkład autora	2
2	Wy	magania i narzędzia	3
	2.1	Python	3
	2.2	Tensorflow	3
	2.3	Inne bibloteki	3
		2.3.1 Pandas	3
		2.3.2 Matlibplot	3
		2.3.3 Numpy	3
		2.3.4 Sckit-learn	3
	2.4	CUDA toolkit	3
3	Mo	delowanie sieci neuronowej	5
	3.1	Metodologia Projektowania Modelu Sieci Neuronowej	5
	3.2	Dane Wejściowe i Proces Przetwarzaniatle	5
	3.3	Projektowanie i Ocena Modeli	5
4	Mo	delowanie zbiornika CWU	7
	4.1	Metodologia	7
		4.1.1 Opis matematyczny modelu	7
	4.2	Wyniki symulacji	7

5	Optymalizacja	9					
	5.1 Funkcja kosztów	9					
	5.2 Funkcja komfortu	9					
6	Weryfikacja i walidacja	11					
7	Podsumowanie i wnioski	13					
В	Bibliografia						
$\mathbf{S}_{\mathbf{I}}$	Spis skrótów i symboli						
Źı	Źródła						
Li	ista dodatkowych plików, uzupełniających tekst pracy	23					
$\mathbf{S}_{\mathbf{I}}$	pis rysunków	25					
$\mathbf{S}_{\mathbf{I}}$	pis tabel	27					

Wstęp

1.1 Wprowadznie

wprowadzenie w problem/zagadnienie

1.1.1 Cel pracy

1.1.2 zakres pracy

1.2 Osadzenie problemu w dziedzinie

osadzenie tematu w kontekście aktualnego stanu wiedzy ($state\ of\ the\ art$) o poruszanym problemie

studia literaturowe [3, 4, 2, 1] - opis znanych rozwiązań (także opisanych naukowo, jeżeli problem jest poruszany w publikacjach naukowych), algorytmów,

1.3 Charakterystyka rozdziałów

Krótkie wprowadzenie do zawartości Zarys głównych punktów i celów rozdziału

- 1.3.1 Nazwa pierwszego rozdziału
- 1.3.2 Nazwa drugiego rozdziału
- 1.3.3 Nazwa Trzeciego rozdziału

1.4 Wkład autora

jednoznaczne określenie wkładu autora, w przypadku prac wieloosobowych – tabela z autorstwem poszczególnych elementów pracy

Wzory

$$y = \frac{\partial x}{\partial t} \tag{1.1}$$

jak i pojedyncze symbole x i y składa się w trybie matematycznym.

Wymagania i narzędzia

- 2.1 Python
- 2.2 Tensorflow
- 2.3 Inne bibloteki
- 2.3.1 **Pandas**
- 2.3.2 Matlibplot
- 2.3.3 Numpy
- 2.3.4 Sckit-learn

2.4 CUDA toolkit

Opis narzędzi które były uzywane podczas programowania, Wiekszy opis pythona i tensorflow, ich "specyfikacja" plusy i minusy, jakie były inne mozliwe wybory oraz czemu zostały wybrane akurat te rozwiązania, krótszy opis pozostałych biblotek uzytych podczas programownia takich jak numpy, plotlib czy pandas

Opis narzędzi które zostały uzyte w celu optymalizacji pracy pythona, takie jak wirtalne środowisko Conda, czy nvdia CUDA

- wymagania funkcjonalne i niefunkcjonalne
- przypadki użycia (diagramy UML) dla prac, w których mają zastosowanie
- opis narzędzi, metod eksperymentalnych, metod modelowania itp.
- metodyka pracy nad projektowaniem i implementacją dla prac, w których ma to zastosowanie

Modelowanie sieci neuronowej

3.1 Metodologia Projektowania Modelu Sieci Neuronowej

Wstep teoretyczny o modelowaniu, opisanie rzeczy takich jak, warstwy, neurony, funckje aktywacjie, funkcje kosztu, optymalizator, liczba epok, batch size, walidacha, funckaj strat

3.2 Dane Wejściowe i Proces Przetwarzaniatle

3.3 Projektowanie i Ocena Modeli

Opisanie prob wybrania modelu testowe, oraz na jakich zbiorach były uczone. Wyniki symulacji i przeprowadzanych testów. Wybór najlepszego modelu, dostrajanie go. Przedstawienie końcowych wyników, plotowanie rzeczy typu wykres loss od czasu.

- wymagania sprzętowe i programowe
- sposób instalacji
- sposób aktywacji
- kategorie użytkowników
- sposób obsługi
- administracja systemem
- kwestie bezpieczeństwa
- przykład działania

Rysunek 3.1: Podpis rysunku po rysunkiem.

• scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)

Jeśli "Specyfikacja zewnętrzna":

- wymagania sprzętowe i programowe
- sposób instalacji
- sposób aktywacji
- kategorie użytkowników
- sposób obsługi
- administracja systemem
- kwestie bezpieczeństwa
- przykład działania
- scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)

Modelowanie zbiornika CWU

4.1 Metodologia

4.1.1 Opis matematyczny modelu

4.2 Wyniki symulacji

Przedstawienie modelu warstwowego, równań stanu, pokazanie wyników symulacji modelu

Jeśli "Specyfikacja wewnętrzna":

- przedstawienie idei
- architektura systemu
- opis struktur danych (i organizacji baz danych)
- komponenty, moduły, biblioteki, przegląd ważniejszych klas (jeśli występują)
- przegląd ważniejszych algorytmów (jeśli występują)
- szczegóły implementacji wybranych fragmentów, zastosowane wzorce projektowe
- diagramy UML

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int** a; (biblioteka listings). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 4.1, a naprawdę długie fragmenty – w załączniku.

Rysunek 4.1: Pseudokod w listings.

Optymalizacja

- 5.1 Funkcja kosztów
- 5.2 Funkcja komfortu

Weryfikacja i walidacja

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tabela 6.1: Nagłówek tabeli jest nad tabelą.

	metoda												
				alg. 3	alg. 4	$\gamma = 2$							
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$						
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365						
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630						
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045						
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614						
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217						
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640						
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209						
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059						
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768						
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362						
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724						

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] Imię Nazwisko i Imię Nazwisko. *Tytuł strony internetowej.* 2021. URL: http://gdzies/w/internecie/internet.html (term. wiz. 30.09.2021).
- [2] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu konferencyjnego".
 W: Nazwa konferecji. 2006, s. 5346–5349.
- [3] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu w czasopiśmie". W: *Tytuł czasopisma* 157.8 (2016), s. 1092–1113.
- [4] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. *Tytuł książki*. Warszawa: Wydawnictwo, 2017. ISBN: 83-204-3229-9-434.

Dodatki

Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

 $MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)$

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E \,$ zbi
ór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

3.1	Podpis rysunku po rysunkiem	6
4.1	Pseudokod w listings	8

Spis tabel

6.1	Nagłówek tabeli	jest nad	tabela.		 							12