本 国 特 B

PATENT OFFICE JAPANESE GOVERNMENT 12.09.00

09/806992 別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

-

2000年 3月10日 REC'D 27 OCT 2000

BU

顧 Application Number:

特願2000-067485

人 Applicant (s):

アルプス電気株式会社 三菱化学株式会社 油化電子株式会社

7800/0252

WIPO

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年10月13日

特許庁長官 Commissioner, Patent Office

特2000-067485

【書類名】

特許願

【整理番号】

J04992

【提出日】

平成12年 3月10日

【あて先】

特許庁長官殿

【国際特許分類】

H01L 21/68

【発明の名称】

磁気ディスク用磁気ヘッドの搬送用トレイ

【請求項の数】

5

【発明者】

【住所又は居所】 東京都大田区雪谷大塚町1番7号 アルプス電気株式会

社内

【氏名】

田中 繁

【発明者】

【住所又は居所】 三重県四日市市大治田三丁目3番17号 油化電子株式

会社 四日市工場内

【氏名】

浅野 悦司

【発明者】

【住所又は居所】 三重県四日市市東邦町1番地 三菱化学株式会社 四日

市事業所内

【氏名】

田中 智彦

【発明者】

【住所又は居所】 三重県四日市市東邦町1番地 三菱化学株式会社 四日

市事業所内

【氏名】

鷺坂 功一

【特許出願人】

【識別番号】

000010098

【氏名又は名称】

アルプス電気株式会社

【特許出願人】

【識別番号】

000005968

【氏名又は名称】

三菱化学株式会社

特2000-067485

【特許出願人】

【識別番号】

393032125

【氏名又は名称】

油化電子株式会社

【代理人】

【識別番号】

100086911

【弁理士】

【氏名又は名称】

重野 剛

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第224192号

【出願日】

平成11年 8月 6日

【手数料の表示】

【予納台帳番号】

004787

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9004861

【包括委任状番号】 9608148

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 磁気ディスク用磁気ヘッドの搬送用トレイ

【特許請求の範囲】

【請求項1】 アーム部品と、該アーム部品の先端に取り付けられたヘッドチップと、該ヘッドチップに結線されたリード線とを有する磁気ディスク用磁気ヘッドを搬送するためのトレイにおいて、

該トレイは、導電性ポリカーボネート樹脂組成物を射出成形してなるものであ り、

少なくとも磁気ヘッドの搭載される部位の表面抵抗値が $1 \times 10^3 \sim 1 \times 10^12_{\Omega}$ で、かつ表面粗さが、カットオフ波長2.5 mmの測定において、十点平均粗さ (Rz) が 5μ m以下であることを特徴とする磁気ディスク用磁気ヘッドの搬送用トレイ。

【請求項2】 アーム部品と、該アーム部品の先端に取り付けられたヘッドチップと、該ヘッドチップに結線されたリード線とを有する磁気ディスク用磁気ヘッドを搬送するためのトレイにおいて、

該トレイは、導電性ポリカーボネート樹脂組成物を射出成形してなるものであ り、

少なくとも磁気ヘッドの搭載される部位の表面抵抗値が $1 \times 10^3 \sim 1 \times 10^{12}$ Ω で、かつ表面粗さが、カットオフ波長2.5 mmの測定において、カッティングレベル10% 負荷長さ率(tp)が1%以上で、中心線より ± 0 .1 μ m以上のピークカウント(Pc)が測定長1 c m当たり100以下であることを特徴とする磁気ディスク用磁気ヘッドの搬送用トレイ。

【請求項3】 請求項2において、カットオフ波長2.5 mmの測定において、十点平均粗さ (Rz) が $5\sim50\mu$ mであることを特徴とする磁気ディスク用磁気ヘッドの搬送用トレイ。

【請求項4】 請求項1ないし3のいずれか1項において、該導電性ポリカーボネート樹脂組成物が、繊維径5μm以下の導電性繊維及び/又はDBP吸油量が100cc/100g以上の炭素系導電性充填材を含有することを特徴とする磁気ディスク用磁気ヘッドの搬送用トレイ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ハードディスクドライブ用の磁気ヘッドを搭載し、加工、洗浄、移送、保管等を行うトレイに係り、特に、磁気抵抗効果型ヘッド(MRヘッド)を搬送するのに好適な磁気ヘッド取り扱い用ポリカーボネート樹脂成形体よりなるトレイに関する。

[0002]

【従来の技術】

磁気ヘッドは、一般に、アーム部品と、該アーム部品の先端に取り付けられた ヘッドチップと、該ヘッドチップに結線されたリード線とを有する。MRヘッド は、ヘッドチップとしてMR素子(磁気抵抗素子)を用いたものである。

[0003]

最近のハードディスクのめざましい高密度化、高容量化は、磁気ヘッド技術によるところが大きい。即ち、従来の薄膜ヘッドが、信号磁界がコイルに接近する際に発生する電流によって信号を検知するのに対して、近年開発されたMRヘッドは、MR素子に微弱なセンス電流を流し、信号磁界を電流の抵抗値によって検出するものであり、その機構により、検出感度が飛躍的に向上し、メディアの狭トラック化で大容量化が可能とされた。そして、最近では更に大容量化を狙ったGMRヘッドも出現している。

[0004]

このようなMRヘッドはMR素子の微少電流(センス電流)の抵抗変化により 磁気を感知するという機構によるため、微弱なノイズ電流でもMR素子を損傷さ せてしまう危険性が大きい。このため、磁気ヘッドのトレイとの電位差に起因す る静電気放電や、ヘッドとトレイとの接触により生じる接触電流に対して、従来

[0005]

即ち、MRへッドの組み付け工程においては、ヘッドチップにリード線が結線され、このヘッドチップがアーム部品に組み付けられる。このリード線(金属線)にはポリイミドが被覆されているが、ポリイミドと金属線との接触電位差に起因して接触部は常に電荷分離した、電気的に不安定な状態にある。この結果、リード線先端が磁気ヘッドのトレイ等に接触した際、接触部における電荷のやりとりがより生じ易くなり、損傷の危険性が高くなる。

[0006]

従来の磁気ヘッド用トレイの表面抵抗値は10¹~10²Ω/口程度であり、 静電気放電によるヘッドチップの損傷の危険性はないものの、トレイの表面抵抗 が低すぎることによる、ヘッドチップとトレイ間、または周辺部品とトレイ間の 過度な接触電流による損傷が深刻な問題となっている。

[0007]

即ち、磁気ヘッドはチップと呼ばれる半導体素子、信号を伝達するリード線、 及びジンバルと呼ばれる金属製の板ばね状支持部品より構成され、リード線は、 ポリイミドによって被覆されている。かかる磁気ヘッドは、トレイ上に直接接触 した状態で搭載されて、組立て、洗浄、搬送、取り出しを経るが、その際、何度 もトレイより脱着されるため、トレイ表面と磁気ヘッドとの接触で摩擦が生じる

[0008]

一方、従来の磁気ヘッド搬送用トレイ用トレイは、ポリカーボネートに導電性を付与するための炭素繊維が配合された材料が使用され、このような導電性ポリカーボネート樹脂組成物で構成される磁気ヘッド搬送用トレイの表面は、炭素繊維が露出しており、更に成形時の表面での微細な流れムラによって、極めて粗い状態になっている。

[0009]

このため、この表面粗さに起因して、磁気ヘッドとの接触や摩擦時に、磁気ヘッドのポリイミド皮膜やリード線が損傷する問題が生じている。

[0010]

【発明が解決しようとする課題】

本発明は上記従来の実情に鑑みてなされたものであって、磁気ヘッドとの接触 や摩擦による磁気ヘッドの損傷の危険性の少ない磁気ディスク用磁気ヘッドの搬 送用トレイを提供することを目的とする。

[0011]

【課題を解決するための手段】

本発明の磁気ディスク用磁気ヘッドの搬送用トレイは、導電性ポリカーボネート樹脂組成物を射出成形してなるものであり、少なくとも磁気ヘッドの搭載される部位の表面抵抗値が $1\times10^3\sim1\times10^{12}\,\Omega$ で、かつ表面粗さが、カットオフ波長 2. $5\,\mathrm{mm}$ の測定において、下記①又は②を満足することを特徴とする

[0012]

- ① 十点平均粗さ(Rz)が5μm以下
- ② カッティングレベル10%負荷長さ率(tp)が1%以上で、中心線より ±0.1μm以上のピークカウント(Pc)が測定長1cm当たり100以下 表面抵抗値が上記の範囲であれば、帯電防止性に優れるだけでなく、トレイと の接触における過大な接触電流が防止できるため、磁気ヘッドの損傷を防止する ことができる。

[0013]

また、表面粗さが上記①又は②を満たすものであれば、磁気ヘッドとの接触や 摩擦による磁気ヘッドの損傷を防止することができる。

[0014]

本発明の磁気ディスク用磁気ヘッドの搬送用トレイは、とりわけMRヘッド用トレイとして好適である。

[0015]

本発明のトレイを構成する導電性ポリカーボネート樹脂組成物は、繊維径 5 μ m以下の導電性繊維及び/又はDBP吸油量が100 c c/100 g以上の炭素系導電性充填材を含有することが好ましく、特に、繊維径100 n m以下で、長

さ/径比が5以上の炭素フィブリルを含有することが好ましい。

[0016]

【発明の実施の形態】

以下に本発明の実施の形態を詳細に説明する。

[0017]

本発明の磁気ディスク用磁気ヘッドの搬送用トレイの表面抵抗値は、2探針プローブを用いた測定において、 $1\times10^3\sim1\times10^{12}$ Ω 、好ましくは $1\times10^4\sim1\times10^{11}$ Ω 、より好ましくは $1\times10^5\sim1\times10^{10}$ Ω である。表面抵抗値がこの範囲であると、帯電防止性に優れるだけでなく、トレイとの接触における過大な接触電流が防止できるため、磁気ヘッドへの損傷が少ない。

[0018]

なお、一般に表面抵抗値とは、測定サンプルの厚みや幅方向への電流の回り込みを考慮して、抵抗値を形状要因で換算することにより (Ω/□) の単位で得られるが、本発明の磁気ディスク用磁気ヘッドの搬送用トレイのように複雑な形状の場合、この換算が極めて困難である。一方、実用においては、形状を含んだ上での見かけの抵抗値が重要であり、必ずしも形状で換算された単位 (Ω/□) を用いる必要はない。従って、本発明においては、上記表面抵抗値 (Ω) で評価する。

[0019]

また、本発明の磁気ディスク用磁気ヘッドの搬送用トレイは、表面粗さが、カットオフ波長2.5mmの測定において、下記①又は②を満足するものである。

[0020]

- ① 十点平均粗さ(Rz)が5μm以下
- ② カッティングレベル10%負荷長さ率(tp)が1%以上で、中心線より ±0.1μm以上のピークカウント(Pc)が測定長1cm当たり100以下 ここで、十点平均粗さ(Rz)とは、粗さ曲線の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和より算出して求める。従って、Rzの数値は、小さいほど平滑な表面であることを示す。

[0021]

なお、極めて平滑な表面の場合、山及び谷が測定範囲内に5個以上存在しない と算出が不可能である。そのような場合には、本発明では最大山と最大谷の和、 すなわちRmaxで置き換えることが出来る。

[0022]

一方、カッティングレベル10%の負荷長さ率(tp)とは、粗さ曲線から基準長さだけ抜き取り、最も高い山頂から10%低いレベルで、平均線と平行に切断したときに得られる切断長さの和(負荷長さ)の基準長さに対する比を百分率で表したものをいう(JIS B0601)。

[0023]

また、±0.1μm以上のピークカウント(Pc)とは粗さ曲線の平均線から ±0.1μmの高さ及び深さに平均線と平行に線を引き、その線を縦方向に横切 る凹凸が、基準長さ内にいくつあるかをカウントしたものである。

[0024]

十点平均粗さ(R z)が 5 μ m以下の平滑度の高い表面粗さであれば、ポリイミド被覆材などの磁気ヘッドへの傷付き性は少ない。

[0025]

また、十点平均粗さ (Rz) が 5μ mを超えても、カッティングレベル 10% の負荷長さ率 (tp) が 1%以上で、かつ前記ピークカウント <math>(Pc) が 1cm あたり 100以下、望ましくは 80以下であると、磁気ヘッドへの傷付きが少なく良好となる。

[0026]

逆に、十点平均粗さ(R z)が 5 μ mを超え、カッティングレベル10%の負荷長さ率(t p)が 1%より小さいと、突起の先端が鋭利になり、磁気ヘッドへの損傷が大きくなる。また、十点平均粗さ(R z)が 5 μ mを超え、カッティングレベル10%の負荷長さ率(t p)が 1%以上でピークカウント(P c)値が100を超える表面粗さであると、磁気ヘッドへの損傷が大きくなる。

[0027]

ところで、本発明のトレイのように、非結晶性で比較的溶融粘度の高いポリカ

ーボネート樹脂に導電性充填材を配合した樹脂組成物の射出成形品の表面は、金型表面を転写し難く、流動性、充填材の形状、収縮及び成形条件等に起因する表面付近での流れムラや充填材の露出によって表面粗さが形成される。

[0028]

かかる状態での表面粗さは、Pc値で表される凹凸の数が本発明の範囲以下であれば山と谷の傾斜がなだらかになり、山の頂点が緩やかになる。このことによって磁気ヘッドとの摩擦において"引っ掻き"の効果が減少する。逆にPc値が100を超えると個々の山が鋭利な突起となり、磁気ヘッドへの損傷を引き起こす。ピークカウント(Pc)は10以上80以下において特に磁気ヘッドの損傷性が少なくなる。

[0029]

本発明の表面粗さは、金型表面の転写性を改良したポリカーボネート樹脂組成物を用いて、金型表面を放電加工、エッチング、サンドブラストなどによる処理 によって意識的に粗らして、それを転写した場合においても同様である。

[0030]

特に、磁気ヘッドをトレイに搭載した状態にて水中洗浄及びその後の乾燥工程を行う場合、磁気ヘッドと接触する部位のトレイ表面の十点平均粗さ(Rz)が小さいと、その間に浸透した洗浄水の乾燥性が低下し、乾燥効率を低下させるという問題が生じることがある。更に、磁気ヘッド用トレイの場合、磁気ヘッドの目視検査において、トレイの表面の平滑性が良すぎると、光の反射率が大きくなり、検査に支障をきたす。

[0031]

かかる観点から、磁気ヘッド用トレイの磁気ヘッドの搭載される部位の表面粗さは、十点平均粗さ(Rz)が $5~\mu$ m以上 $5~0~\mu$ m以下でカッティングレベル 1~0%の負荷長さ率(1~00%以上、かつピークカウント(Pc)が 1~00以下、好ましくは 1~00以上 8~00以下であることが好ましい。

[0032]

本発明のトレイは、ヘッドスペースガスクロマトグラムにより、例えば、下記 測定方法で測定した塩素化炭化水素発生量が 0.1 μg/g以下のものが好適で ある。

<発生ガス量測定方法>

トレイより切り出した分析サンプル(22mm(長さ)×10mm(幅)×3mm(厚さ))2ピース(総表面積12.6cm²)を、容量22mLのバイヤル中で、内標としてnーオクタンを10μL添加して、加熱温度85℃、平衡時間16時間の条件でガスを抽出した後、ガスクロマトグラム(GC)にて測定し、イオンクロマトグラムにおけるnーオクタンとの面積比より発生量を算出する。ただし、分析サンプルの形状は上記長さ、幅、厚さに何ら制限されず、また、分析サンプルの総表面積が異なる場合には、12.6cm²に換算すれば良い。

[0033]

この塩素化炭化水素発生量が 0. 1 μg/g以下であればヘッドへの悪影響は極めて少ない。塩素化炭化水素発生量は、望ましくは 0. 0 2 μg/g以下である。

[0034]

また、ヘッドへの悪影響を考慮した場合、総アウトガス量は1μg/g以下、特に0.5μg/g以下、塩化メチレン発生量は0.1μg/g以下、炭化水素発生量は0.5μg/g以下、特に0.2μg/g以下であることが望ましい。なお、この炭化水素とは、後述のポリカーボネート樹脂の製造において使用されるn-ヘプタンや、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン等である。

[0035]

本発明において、導電性充填材を含有するポリカーボネート樹脂組成物を成形 することにより、このようなガス発生量のトレイを得る方法について、以下に説 明する。

[0036]

本発明において、ポリカーボネート樹脂としては、例えば界面重合法、ピリジン法、クロロホーメート法などの溶液法により、二価フェノール系化合物をホスゲンと反応させることによって製造される一般的なものを使用できる。この場合、トレイからの揮発成分となる、重合溶媒として用いた塩化メチレンなどの塩素

化炭化水素等を、得られるトレイに残留させない方法としては、例えば以下の(A), (C), (D) の方法が挙げられる。また、下記(B) の如く、溶媒を用いない方法で製造されたポリカーボネート樹脂を用いる方法も有効である。

- (A) 塩素化炭化水素溶液として得られたポリカーボネート樹脂を精製するに当り、ポリカーボネート樹脂の水懸濁液を得、これを濾過や遠心分離等により湿潤粉末を得る。例えば、ポリカーボネートの塩化メチレン溶液に、n-ヘプタンなどのポリカーボネート樹脂の貧溶媒(ポリカーボネートが溶解しないか、溶解しても僅かな溶媒)を沈殿が生じない程度添加してなる樹脂液を、温水中に滴下し、適宜湿式粉砕を行いながら貧溶媒を留去する(以下、この方法を「温水滴下精製」と記す。)。このとき、80~100℃に加熱しながら貧溶媒を留去する際、腐食性の揮発性ガスの原因となる塩化メチレン等の塩素化炭化水素が効率よく除去される。
- (B) 重合溶媒を使用しない重合方法により得られたポリカーボネート樹脂(例えば、特開平4-103626号公報等に開示されたポリカーボネート樹脂)を使用する。
- (C) 溶融混練又は溶融成形に当り、真空脱気する。例えば、通常の精製方法、或いは上記(A)法又は(B)法により得られたポリカーボネート樹脂をベント付き押し出し機に供給して、ベントより真空脱気することにより、溶媒を除去する。この際、特開平9-29738号公報に記載されるように、原料粉末或いは溶融状態の樹脂に水を添加すると、残存溶媒の除去の点で好適である。
- (D) 通常の精製方法或いは、上記(A)~(C)の方法より得られたポリカーボネート樹脂を使用した樹脂組成物を用いて成形したトレイを、アニールすることによって揮発成分を除去する。この場合、アニール処理は、80℃以上の温度で30分以上行うのが好ましい。このアニール処理温度が140℃を超えるとトレイの寸法変化や変形を引き起こす可能性があり、また、アニール処理時間が20時間を超えても揮発成分の除去効果の向上は望めないことから、アニール処理は80~140℃で30分~20時間とするのが好ましい。

[0037]

なお、上記(A)~(D)の方法のうち、(A)法では、塩素化炭化水素は低

減できるものの、n-ヘプタンなどの貧溶媒成分が残留する可能性が高い。n-ヘプタンはヘッドを腐食することはないものの、最近のより高密度化されたMR素子においては、ヘッド素子表面への微少なデポジットの危険性が問題とされることから、前述の如く、n-ヘプタン等の炭化水素発生量についても、極力抑えることが望まれる。

[0038]

このようなn-ヘプタンや、オリゴマー、その他の低分子量揮発成分も効率的 に除去する点からは、特に、(C)法の真空脱気による溶媒除去法が望ましい。 この(C)法の押し出し機での真空脱気は、導電性充填材を溶融混練により複合 化する際に行っても良いし、この混練前又は混練後に行っても良い。

[0039]

このようなポリカーボネート樹脂としては、市販品を使用することができ、例えば、三菱エンジニアリングプラスチック社製の「ノバレックス」、「ユーピロン」、帝人化成社製の「タフロン」、GEプラスチック社製の「レキサン」などが使用できる。これらのポリカーボネート樹脂の中でも、280℃、2.16Kgにて測定したメルトフローレート (MFR) が3g/10分以上、特に6g/10分以上のものが、磁気ヘッド用トレイの表面粗さをコントロールしやすい点で望ましい。

[0040]

本発明において、導電性充填材としては、導電性を有する、粒子状、フレーク 状、短繊維状などの各種のフィラーを使用することができる。

[0041]

具体的には、アルミニウム、銀、銅、亜鉛、ニッケル、ステンレス、真鍮、チタンなどの金属系フィラー、各種カーボンブラック、黒鉛(人工黒鉛、天然黒鉛)、ガラス状カーボン粒子、ピッチ系炭素繊維、PAN系炭素繊維、グラファイトウィスカー、炭素フィブリル等の炭素系充填材、酸化亜鉛、酸化スズ、酸化インジウム等の金属酸化物系充填材などの導電性充填材が挙げられる。なお、金属酸化物系フィラーのなかでも格子欠陥の存在により余剰電子が生成して導電性を示すものの場合には、ドーパントを添加して導電性を増加させたものを用いても

良い。この場合、例えば、酸化亜鉛にはアルミニウム、酸化スズにはアンチモン、酸化インジウムにはスズ等がそれぞれドーパントとして用いられる。また、炭素繊維などに金属をコーティングしたり、チタン酸カリウムウィスカーやホウ酸アルミニウムウィスカーの表面に導電性酸化スズを形成した複合系導電性フィラーを使用することもできる。

[0042]

上述の導電性充填材の中でも、繊維径 5 μ m以下の導電性繊維又はDBP吸油量が100 c c / 100 g以上の炭素系導電性充填材を用いると、成形体表面への充填材の露出が少なく、また露出したとしても、磁気ヘッド用への損傷が少なく、更には表面抵抗値を適正な範囲内にコントロールし易い点で望ましい。

[0043]

繊維径 5 μ m以下の導電性繊維としては、酸化亜鉛ウィスカ、酸化チタンウィスカなどの導電性ウィスカやチタン酸カリウムウィスカやホウ酸アルミニウムウィスカの表面に導電性酸化スズを形成した複合系導電性繊維が挙げられる。これらの繊維充填材は、アスペクト比(繊維長√繊維径比)が5以上、望ましくは10以上のものが望ましい。なお、ここでいう繊維径、繊維長は、顕微鏡観察して5点測定した平均値である。

[0044]

また、DBP吸油量が100cc/100g以上のものとしては具体的にはファーネスブラック、アセチレンブラック、ケッチェンブラック、などのカーボンブラックや、炭素フィブリルなどを挙げることができる。

[0045]

DBP吸油量が100cc/100g以上のものが好ましい理由は次の通りである。

[0046]

即ち、DBP吸油量が大きいほど充填材の表面積が大きいことを表しており、 従って、一般にDBP吸油量の数値が大きいものほど微細な形状なものとなる。 一方、導電性充填材の配合による樹脂の導電性の発現は、導電性充填材同士の連 続的な接触による導電経路の形成により、導電性充填材間の距離が10~30Å 程度離れた不完全な接触状態においては、充填材間に電子のホッピングによる電気伝導が生じる。このホッピングによる導電性は導電性充填材の内部での導電性に比較して低い。ところで、トレイには、後述の如く、表面抵抗値(或いは導電性)が中位に安定していることが望まれる。従って、樹脂内部に導電性充填材の不完全な接触状態を多数形成することにより、樹脂組成物の導電性を中位(例えば10⁶Ω)に安定して得ることが望ましい。DBP吸油量が大きく微細な形状の充填材ほど、このような不完全な接触状態が形成される確率が高いため、本発明では、上述のようなDBP吸油量の大きい導電性充填材を用いるのが好ましい

[0047]

本発明においては、上述の導電性充填材のなかでも、特に炭素フィブリル、とりわけ繊維径が100nm以下の炭素フィブリルが好ましく、例えば特表平8-508534号公報に記載されているものを使用することができる。

[0048]

炭素フィブリルは、当該フィブリルの円柱状軸に実質的に同心的に沿って沈着されているグラファイト外層を有し、その繊維中心軸は直線状でなく、うねうねと曲がりくねった管状の形態を有する。この、炭素フィブリルの繊維径は製法に依存し、ほぼ均一なものであるが、ここで言う繊維径とは顕微鏡観察して5点測定した平均値を指す。炭素フィブリルの繊維径が100nmより大きいと、樹脂中でのフィブリル同士の接触が不十分となり、安定した抵抗値が得られにくい。従って、炭素フィブリルとしては繊維径100nm以下のものが好ましい。

[0049]

特に、炭素フィブリルの繊維径が20nm以下であると、万が一炭素フィブリルがトレイの表面から脱落し、ヘッド等に付着した場合であっても、作動時のヘッドとハードディスクとのクリアランスは繊維径より比較的大きい(50μm程度)ため、ディスククラッシュの危険性が低下するので好ましい。

[0050]

一方、炭素フィブリルの繊維径は、0.1 n m以上、特に0.5 n m以上であることが好ましい。繊維径がこれより小さいと、製造が著しく困難である。

[0051]

また、炭素フィブリルは、長さと径の比(長さ/径比、即ちアスペクト比)が 5以上のものが好ましく、特に100以上、とりわけ1000以上の長さ/径比 を有するものが好ましい。なお、この炭素フィブリルの長さ/径比は、透過型電 子顕微鏡での観察において、5点の実測値の平均値によって得られる。

[0052]

また、微細な管状の形態を有する炭素フィブリルの壁厚み(管状体の壁厚)は、通常 $3.5\sim75$ n m程度である。これは、通常、炭素フィブリルの外径の約 $0.1\sim0.4$ 倍に相当する。

[0053]

炭素フィブリルはその少なくとも一部分が凝集体の形態である場合、原料となる樹脂組成物中に、面積ベースで測定して約50μmより大きい径を有するフィブリル凝集体、望ましくは10μmよりも大きい径を有するフィブリル凝集体を含有していないことが望ましい。

[0054]

このような炭素フィブリルは、市販品を使用することができ、例えば、ハイペリオンカタリシスインターナショナル社の「BN」が使用可能である。

[0055]

本発明において、ポリカーボネート樹脂組成物中の導電性充填材の添加量は、例えば、導電性充填材が炭素繊維の場合、2~30重量%、特に5~15重量%とするのが好ましく、導電性ウィスカ等の繊維径5μm以下の導電性繊維の場合、2~50重量%、特に10~40重量%とするのが好ましく、DBP吸油量100cc/100g以上のカーボンブラック等の炭素系導電性充填材の場合、0.5~30重量%、特に5~25重量%とするのが好ましく、また、炭素フィブリルの場合、0.25~8重量%、特に0.5~5重量%とするのが好ましい。

[0056]

導電性充填材の添加量が上記の範囲よりも少ないと導電性が発現しにくく、一方これより多いと、組成物の流動性が低下することにより、表面粗さのコントロールが困難になり、また、粉塵の発生が増大する、成形性が顕著に低下するなど

の問題が生じるため望ましくない。

[0057]

本発明では、導電性充填材として、高分子型の帯電防止剤を使用することもできる。この場合、例えば、ポリエーテル、4級アンモニウム塩、スルホン酸塩等の導電性単位をブロックもしくはランダムに組み込んだ高分子や、特開平1-259051号公報に記載されているような、ホウ素原子を分子中に有する高分子電荷移動型結合体などが使用できる。

[0058]

特に、高分子型帯電防止剤のなかでも、ポリエーテル系高分子帯電防止剤が耐熱性の点で望ましい。具体的には、ポリエチレンオキシド、ポリエーテルエステルアミド、ポリエーテルアミドイミド、エチレンオキシドーエピハロヒドリン共重合体、メトキシポリエチレングリコールー(メタ)アクリレート共重合体等、好ましくは、ポリエーテルエステルアミド、ポリエーテルアミドイミド、より好ましくはポリエーテルエステルアミドが挙げられる。

[0059]

このような高分子型帯電防止剤の添加量は、ポリカーボネート樹脂組成物中に 1~50重量%、特に5~30重量%とするのが好ましい。

[0060]

上述の各種導電性充填材は、1種類を単独で使用しても、2種以上のものを組 み合わせて使用しても良い。

[0061]

本発明に係るトレイを成形するためのポリカーボネート樹脂組成物には、必要に応じて、本発明の目的を損なわない範囲で各種の添加成分を配合することができる。例えば、ガラス繊維、シリカ繊維、シリカ・アルミナ繊維、チタン酸カリウム繊維、ほう酸アルミニウム繊維等の無機繊維状強化材、アラミド繊維、ポリイミド繊維、フッ素樹脂繊維等の有機繊維状強化材、タルク、炭酸カルシウム、マイカ、ガラスビーズ、ガラスパウダー、ガラスバルーン等の無機充填材、フッ素樹脂パウダー、二硫化モリブデン等の固体潤滑剤、パラフィンオイル等の可塑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、相溶化剤

、防曇剤、アンチブロッキング剤、スリップ剤、分散剤、着色剤、防菌剤、蛍光 増白剤等といった各種添加剤を配合することができる。

[0062]

また、このポリカーボネート樹脂組成物には、本発明の目的を損なわない範囲で各種の樹脂をブレンドして用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等の脂肪族ポリオレフィンや脂環族ポリオレフィン、芳香族ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、各種ポリアミド(ナイロン6、66、ナイロン610、ナイロンMXD6等)、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルケトン、アクリル系樹脂、スチレン系樹脂、変性ポリフェニレンエーテル、液晶性ポリエステル等の非オレフィン系樹脂をブレンドすることができる。更に、スチレン系エラストマー(スチレンーブタジエン共重合体等)、オレフィン系エラストマー(エチレンープロピレン共重合体等)、ポリエステルエラストマー、ポリウレタンエラストマー、ポリアミドエラストマーなどの各種の熱可塑性エラストマーを併用添加しても良い。

[0063]

なお、本発明に係るトレイは、曲げ弾性率が100000 K g / c m 2 以下、特に20000 ~ 80000 K g / c m 2 であることが望ましい。曲げ弾性率がこれより高くなると、磁気ヘッドの傷付きが大きくなる傾向にあり、望ましくない。

[0064]

本発明のトレイの製造方法には、特に制限はなく、通常の熱可塑性樹脂の加工 方法で製造できる。例えば、ポリカーボネート樹脂に導電性充填材を予め混合し た後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押し出し機、二軸 混練押し出し機、ニーダーなどで溶融混練することによってポリカーボネート樹 脂組成物を製造することができ、その後、射出成形法により、この樹脂組成物を 所定形状に成形してトレイを得ることができる。

[0065]

射出成形法としては、一般的な射出成形法の他に、インサート射出成形法による金属部品その他の部品との一体成形や、二色射出成形法、コアバック射出成形法、サンドイッチ射出成形法、インジェクションプレス成形法等の各種成形法を用いることができる。射出成形においては、樹脂温度、金型温度、成形圧力によって得られるトレイの表面抵抗値が変化するので、目的に応じて適切な条件を設定する必要がある。

[0066]

本発明のトレイは、純水500m1中に、表面積100~1000cm²のトレイを浸漬し、40KHzの超音波を60秒間印加したときに、該トレイの表面から脱落する粒径1μm以上のパーティクルの数(以下、この値を「パーティクル発生量」と称す。)が5000pcs/cm²以下であるような、表面の均一性、安定性に優れたものが好ましい。このようなトレイであれば、ひっかきや摩耗、洗浄により脱落するパーティクルによる磁気ヘッドの物理的ないし化学的な汚染や損傷を防止することができる。

[0067]

このパーティクル発生量が $5000pcs/cm^2$ を超えると、ひっかきや摩擦、洗浄時に脱落したパーティクルによる汚染や損傷の問題がある。本発明では、特に、パーティクル発生量は $1000pcs/cm^2$ 以下であることが好ましい。

[0068]

また、本発明の磁気ディスク用磁気ヘッドの搬送用トレイは、純水50m1中に表面積 $100cm^2$ のトレイを浸漬して60℃で60分間攪拌したときに、トレイから溶出するクロルイオン量(以下、この値を「クロルイオン溶出量」と称す。)が 0.01μ g/cm 2 以下であることが、クロルイオンによる腐食等の問題を防止する上で好ましい。

[0069]

このクロルイオン溶出量が $0.01 \mu g / cm^2$ を超えると、洗浄時に溶出したクロルイオンによる腐食や使用時の異物発生の問題がある。クロルイオン溶出量は特に $0.005 \mu g / cm^2$ 以下であることが好ましい。

[0070]

ところで、導電性充填材として炭素繊維を用いたトレイにあっては、炭素繊維の表面処理剤である有機性成分が磁気ヘッドに付着してヘッドを汚染、損傷させたり、ヘッドとディスク間の異物となる問題が懸念される。この問題を防止するために、本発明では、次に述べる不揮発性有機物溶出量の測定方法で測定したときのトレイからの不揮発性有機物の溶出量がトレイの単位表面積当り0.5 μg/c m ² 以下であることが好ましい。

[0071]

<不揮発性有機物溶出量の測定方法>

旭ガラス社製フロン系洗浄剤「アサヒクリンAK-225」500m1にトレイを浸漬し、超音波($40\,\mathrm{KHz}$ 、0.5 $\mathrm{W/cm}^2$)を60秒間印加する。抽出液を $100\,\mathrm{C}$ にて揮発させて、残留分の重量を測定する。

[0072]

【実施例】

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。

[0073]

なお、以下の実施例及び比較例において用いたポリカーボネート樹脂組成物の 調製方法は次の通りである。

<ポリカーボネート樹脂組成物の調製方法>

下記のポリカーボネート樹脂1,2又は3に導電性充填材(組成物A~E,G~I)又は帯電防止剤(組成物F)を表1に示す割合で配合し、池見鉄工社製2軸混練押出機PCM45(スクリュ長L/スクリュ径D=32)で表1の条件にて溶融混練して組成物A~Iのペレットを得た。ただし、炭素フィブリルの配合混練は、予め15重量%の添加量で分散させた炭素フィブリルマスターバッチを使用して、所定の含有量となるように添加した。

[0074]

用いた材料の詳細は次の通りである。

[0075]

ポリカーボネート樹脂1: 三菱エンジニアリングプラスチック社製「ノバレ

ックス 7022」 (MFR=13g/10分 280℃ 2.16kg)

ポリカーボネート樹脂2: 三菱エンジニアリングプラスチック社製「ノバレ

ックス 7025」 (MFR=8g/10分 280℃ 2.16kg)

ポリカーボネート樹脂3: 三菱エンジニアリングプラスチック社製「ユーピ

ロンS2000」 (MFR=12g/10分 280℃ 2.16kg)

炭 素 繊 維 : PAN系炭素繊維 (繊維径 7 μ m, 繊維長 6 m m (エポキシサイジング))

導電性ウィスカ : 三井金属社製 酸化錫コートホウ酸アルミニウム ウィスカ「パストラン 5 1 1 0」 (平均繊維径 0.8 μm, 平均繊維長 2 4 μm)

カーボンブラック : 電気化学社製「デンカブラック」 (DBP吸油量 190cc/100g)

炭素フィブリル : ハイペリオンカタリシスインターナショナル社製「BN」(DBP吸油量700cc/100g, 平均繊維径10nm, 平均繊維長1μm以上)

高分子型帯電防止剤・ 東レ社製 ポリエーテルエステルアミド「PAS-40T」

なお、各ポリカーボネート樹脂組成物について、JIS K 7 2 0 3 に準拠して測定した曲げ弾性率は表 1 に示す通りである。

[0076]

【表1】

*° 1,	木。リカーボネート樹脂組成物No.	A	В	0	Q	m	ഥ	ŋ	Ξ	_
	木・リカーホ・ネート樹脂1	90	80	82			80	95.7	95.7	
匠	ポリカーホ・ネート樹脂2			sa	2.26	08				
11 Min	ポリカーホ・ネート街脂3	Θ		- 4						95.7
∮ □	炭素繊維	10				20				
(導電性ウィスカ		20							
の電	カーホンンブラック			18						
₹:)	炭素747"小			Antid.	4.3			4.3	4.3	4.3
	高分子型帯電防止剤			*			20			
ù	混練温度(℃)	300	320	280	320	300	260	300	320	320
京篠	スクリュ回転数(RPM)	100	100	200	300	100	100	100	300	300
条点	吐出量(kg/h)	40	30	30	20	40	30	30	20	20
<u> </u>	ペント(kPa)	<10	<10	<10	<10	開放	<10	開放	<10	<10
***	曲げ弾性率 (kg/cm²)	65000	42000	25800	24900	120000	20500	24800	25200	25100
				100						

[0077]

各ポリカーボネート樹脂組成物から成形して得たトレイの形状及び寸法は、図1 (斜視図)及び図2(a)(平面図)、(b)(図2(a)のB-B線に沿う

[0078]

また、各種物性等の評価方法は次の通りである。

<表面抵抗値評価>

図1,2に示すトレイについて、磁気ヘッドが接触する図2(a)の斜線を付した範囲の任意の5ヶ所について、2探針プローブで、プローブ先端:2mmφ、プローブ中心間距離:20mmにて下記プローブ間印可電圧にて表面抵抗値を測定し、平均値を算出した。

表面抵抗値が10³ Ω以上10⁹ Ω未満の場合: 10 V

表面抵抗値が10⁹ Ω以上の場合 : 100 V

ただし、表面抵抗値 10^8 Ω 以上の測定には、プローブ先端を 5 mm ϕ として、更に厚み 2 mm t、 直径 5 mm ϕ 、 10 Ω c m以下の導電性シリコンゴムをアセンブリして、サンプル表面との密着が安定するようにして測定した。

[0079]

また、測定機としては次のものを用いた。

表面抵抗値 10^2 Ω 以上、 10^4 Ω 未満の場合:アドバンテスト社製「髙抵抗計R 8340」

表面抵抗値 10^4 Ω 以上の場合 : ダイヤインスツルメント社製

「ハイレスタAP」

(なお、比較例1の表面抵抗値 10^{1} Ω の測定には、ダイヤインスツルメント社製「ロレスタ1P (4探針プローブ)」を用いた。)

<表面粗さ>

東京精密社製 表面粗さ計「サーフコム」を使用して、測定条件:カットオフ 波長2.5mm、測定長5mm、測定スピード0.3mm/Sにて測定した。

測定は、磁気ヘッドが接触する図2(a)の斜線を付した範囲の任意の5ヶ所について行い、各パラメータの平均値を算出した。また、Pc値は2倍して1cm当たりの数値に換算した。

<損傷性試験>

磁気ヘッドへの損傷性評価として、図3に示す方法にて、磁気ヘッドが接触する図2(a)の斜線を付した範囲から採取したトレイ材(サンプル)11に対して、磁気ヘッドのリード線として使用される、基材にポリイミドを使用したフレキシブルプリント配線基板(FPC)(幅10mm)12を、ゴムシート13を取り付けた荷重(100g,直径40mm)14で押し付け、スパン80mmで10往復摺動させて、試験後の配線基板12の表面を光学顕微鏡にて50~100倍で観察し、以下の基準で判定した。

なお、損傷試験用サンプル11は事前に全て純水洗浄を行い、表面に付着した ゴミを取り除いた。また、事前洗浄及び損傷性試験は全てクリーンルーム内で行った。

◎: 傷が全く観察されない。

〇: 傷が6本未満で、傷深さが銅配線へ達していない。

×: 傷が6本以上で、傷深さが銅配線へ達している。

<磁気ヘッドの腐食試験≫

このトレイにMRへッドを12個搭載して、ガラス製の容器 (容量201.5 mL) 中で、80℃、90%、95時間放置した。その後、MRヘッドをトレイから取り出し、100倍の顕微鏡にてMR素子部の腐食の有無を観察し、下記基準で評価を行い、結果を表1に示した。

〇…磁気ヘッド(素子)に、腐食は見られなかった。

×…全ての磁気ヘッド(素子)のパーマロイにより構成されている部位に腐食が発生した。

<ガス発生量の測定>

別に、トレイより分析サンプルとして22mm(長さ) $\times 10mm$ (幅) $\times 3mm$ (厚さ)のサンプルを2ピース(総表面積 $12.6cm^2$)切り出して、内標としてn-オクタンを 10μ L添加した容量22mLのバイヤル中で、加熱温度85℃、平衡時間16時間の条件でガスを抽出した。

[0080]

バイヤル中に発生したガスをガスクロマトグラム(GC/MS)にて測定した。このときの測定条件は以下に示す通りである。

[0081]

装 : 島津製作所社製「GC/MS QP5050」

カ ラ ム :CHROMPAK PORAPLOT Q 0.32

 $mm \times 25m$

カラム温度 : 35~240℃ (10℃/min)

注入口温度 :230℃

インターフェース温度:280℃

トレイガス : ヘリウム

注入口圧力 : 100K Pas

全 流 量 :60mL/min

注 入 量 :2mL

発生ガスの定性分析の結果、主成分はn-ヘプタン、アセトン、1-プロペン、2-プロパノール、及びその他の微量成分であった。

[0082]

総アウトガス量、塩化メチレン発生量、n-ヘプタン発生量をそれぞれ以下の 式により算出し、結果を表1に示した。

総アウトガス量 (μg/g)

= (サンプル総ピーク面積-ブランク総ピーク面積)

/(n-オクタンのピーク面積/n-オクタンの重量(g))×1

/ (サンプル重量(g))

塩化メチレン発生量(μg/g)

= (塩化メチレンピーク面積)

/ (n-オクタンのピーク面積/n-オクタンの重量(g))×1

/ (サンプル重量(g))

ヘプタン発生量 (μg/g)

= (ヘプタンピーク面積)

/ (n-オクタンのピーク面積/n-オクタンの重量(g))×1

/ (サンプル重量(g))

<パーティクル発生量>

純水500m1に図1,2の形状に形成したトレイ(総表面積420.8cm²)1枚を浸漬し、超音波(40KHz、0.5W/cm²)を60秒間印加した。その後、抽出した純水を液中パーティクルカウンターにて吸引し、粉塵粒子径1μm以上の数量を測定した。なお、測定に際しては、前処理として、トレイを純水により8分間超音波洗浄した後に、100℃のオーブン中にて30分乾燥を行った。作業は全てクリーンルーム内で行った。また、サンプル浸漬の際には全てガラス製容器を用いた。

<クロルイオン溶出量>

純水480m1に図1,2の形状に成形したトレイ(総表面積420.cm²)2枚をポリプロピレン容器中で浸漬し、60℃のウォーターバス中で60分攪拌した。その後、イオンを抽出した純水中のクロルイオンをイオンクロマトグラフ法にて分析した。

<不揮発性有機物溶出量>

旭ガラス社製フロン系洗浄剤「アサヒクリンAK-225」500mlに、図 1,2の形状のトレイサシプル(総表面積420:8cm²)を浸漬し、超音波 (40KHz、0.5W/cm²)を60秒間印加した。抽出液をアルミパン上 で100℃にて揮発させて、残留分の重量を測定した。

[0083]

実施例1

[0084]

実施例2

実施例1において、成形温度を310℃に変えたこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した。

[0085]

実施例3

ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物Bに変え、また、磁気ヘッドが接触する図2(a)の斜線部に相当する部分の金型面をエッチングにて表面をシボ加工し、Rz18.5μm、カッティングレベル10%でのtp値1.4%、±0.1μm以上のピークカウント(Pc)が測定長1cm当たり35の表面粗さに仕上げて、射出成形温度280℃、金型温度90℃にて射出成形したこと以外は実施例1と同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した。

[0086]

実施例4

実施例1において、ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物Cに変え、成形温度300℃で射出成形したこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した

[0087]

実施例5

実施例1において、ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物Dに変え、成形温度290℃で射出成形したこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した

[0088]

実施例6

実施例5において、金型を実施例3と同様な金型表面とし、成形温度300℃で射出成形したこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した。

[0089]

実施例7

実施例3において、ポリカーボネート樹脂組成物をポリカーボネート樹脂組成

物Fに変え、成形温度280℃で射出成形したこと以外は同様にしてトレイを成 形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した

[0090]

比較例1

実施例1において、ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物Eに変えたこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した。

[0091]

比較例2

実施例3において、金型表面を放電加工により、R z 19.2 μm、カッティングレベル10%でのtp値0.5%、±0.1 μm以上のピークカウント(Pc)が測定長1 c m 当たり101の表面粗さに仕上げたこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した。

[0092]

実施例8

実施例1において、ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物Gに変えたこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した。

[0093]

実施例9

実施例1において、ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物Hに変えたこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの測定と損傷性試験を行い、結果を表2に示した。

[0094]

実施例10

実施例1において、ポリカーボネート樹脂組成物をポリカーボネート樹脂組成物 I に変えたこと以外は同様にしてトレイを成形し、表面抵抗値及び表面粗さの

測定と損傷性試験を行い、結果を表2に示した。

[0095]

【表2】

ル クロルイオン	ド 発生量 溶出量 溶出量 素子腐食 (PCS / cm²) (μg/cm²) (μg/cm²) (μg/cm²)	O 2650 0.008 0.59	O 2120 0.007 0.55	O 4100 <0.005 0.54	O 13160	O 340 0.0010 0.45	O 380 <0.005 0.42	O 190	x 360 <0.005 ×	O 290 <0.005 0.40	O 320 <0.005 0.48	x 5230 0.0171 0.72	
nーヘプタン	発生量 (μ8/8)	QN	Q	Q	S	ΩN	QN	S	QN	ON	Ö	QN	8.
塩化メチレン ローヘプタン	発生量 (μ8/8)	QN	Q	QN	0.02	QN	QN	0.03	0.14	QN	QN	0.12	
総アウト	ガス盤 (με/ε)	0.22	0.21	0.17	0.28	0.09	0.11	0.36	1.2	0.20	0.18	0.75	
損傷		0	0	0	0	0	0	0	0	0	0	×	
*	Pc (/cm)	76	48	26	242	80	32	25	103	67	92	154	
表面組さ	tp10	8.3	2.3	10.1	0.7	0.9	6.5	9.2	1.1	0.8	8.0	4	
表面	Rz	14.9	9.76	11.4	3.32	1.12	17.7	12.1	1.20	0.98	1.02	18.6	
表面抵抗値 (Ω)		1×10 ⁴	2×10^3	7×10 ⁹	4×108	6×10 ⁷	9×10 ⁷	5×10 ¹¹	6×10 ⁷	8 × 10 ⁶	7×10 ⁶	1×10 ¹	
		-	2	က	4 A	ις	ဗ	7	8	တ	10	比 1	
					₩.	#	`	€				<u> </u>	۰

Ж

[0096]

表2より、本発明のトレイは、摩擦によるヘッドの損傷の問題が殆どなく、また表面抵抗値が中位に安定しており、ヘッドへの電気的な損傷も少ないことがわかる。

[0097]

また、表1より本発明のトレイは、塩化メチレン等の発生量が極めて少なく、 ヘッドチップの腐食の危険性が少ない上に、ヘッドの汚染及びそれによる損傷の 問題が殆どないことがわかる。

[0098]

【発明の効果】

以上詳述した通り、本発明によれば、接触電流や摩擦による磁気ヘッドのヘッドチップの損傷の問題のない磁気ディスク用磁気ヘッドの搬送用トレイが提供される。

【図面の簡単な説明】

【図1】

実施例及び比較例において製造した磁気ヘッド搬送用のトレイを示す斜視図である。

【図2】

図2 (a) は図1に示すトレイの平面図、図2 (b) は図2 (a) のB-B線に沿う断面図である。

【図3】

実施例及び比較例における損傷性試験方法を示す断面図である。

【符号の説明】

- 1 トレイ本体
- 2 位置決めリブ
- 3 位置決めボス
- 4 磁気ヘッド
- 11 トレイ材
- 12 配線基板

- 13 ゴムシート
- 14 荷重

【書類名】 図面

【図1】

【図2】

【図3】

【書類名】 要約書

【要約】

【課題】 接触電流や摩擦による磁気ヘッドの損傷の危険性の少ない磁気ディスク用磁気ヘッドの搬送用トレイを提供する。

【解決手段】 導電性ポリカーボネート樹脂組成物を射出成形してなるトレイであって、該トレイの表面抵抗値が $1\times10^3\sim1\times10^{12}\,\Omega$ で、かつ表面粗さが、カットオフ波長2.5 mmの測定において、十点平均粗さ (Rz) が $5\,\mu$ m 以下であるか、或いは、カッティングレベル10%負荷長さ率 (tp) が1%以上で、中心線より $\pm0.1\mu$ m以上のピークカウント (Pc) が測定長1cm当たり100以下である磁気ディスク用磁気ヘッドの搬送用トレイ。

【選択図】 図1

認定・付加情報

特許出願の番号

特願2000-067485

受付番号

50000290055

書類名

特許願

担当官

宇留間 久雄

7277

作成日

平成12年 5月19日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000010098

【住所又は居所】

東京都大田区雪谷大塚町1番7号

【氏名又は名称】

アルプス電気株式会社

【特許出願人】

【識別番号】

000005968

【住所又は居所】

東京都千代田区丸の内二丁目5番2号

【氏名又は名称】

三菱化学株式会社

【特許出願人】

【識別番号】

393032125

【住所又は居所】

東京都港区芝五丁目31番19号

【氏名又は名称】

油化電子株式会社

【代理人】

申請人

【識別番号】

100086911

【住所又は居所】

東京都新宿区新宿2丁目5番10号 日伸ビル9

階 重野国際特許事務所

【氏名又は名称】

重野 剛

【書類名】

手続補正書

【提出日】

平成12年 4月 6日

【あて先】

特許庁長官 殿

【事件の表示】

【出願番号】

特願2000-67485

【補正をする者】

【識別番号】

000010098

【氏名又は名称】

アルプス電気株式会社

【補正をする者】

【識別番号】

000005968

【氏名又は名称】

三菱化学株式会社

【補正をする者】

【識別番号】

393032125

【氏名又は名称】 油化電子株式会社

【代理人】

【識別番号】

100086911

【弁理士】

【氏名又は名称】

重野 剛

【発送番号】

019824

【手続補正 1】

【補正対象書類名】

特許願

【補正対象項目名】

委任状

【補正方法】

追加

【補正の内容】

【提出物件の目録】

【物件名】

委任状 1

(B)20000680082

委 任 状

平成 /≥ 年 ⊀ 月 6 日

私儀識別番号 100086911 弁理士 重 野 剛氏を以て

代理人として下記事項を委任します。

 平成11年特許顧224192号に基づく特許法第41条 第1項の規定による優先権の主張およびその取り下げ並びに 本件特許出顧

に関する一切の件並びに本件に関する放棄者しくは取下げ、出願変更、 拒絶査定不服及び補正却下の決定に対する審判の請求並びに取下げ。

2. 上記出願乂は平成 年

•

片

に基づく特許法第41条第1項及び実用新案法第8条第1項の優先権主張並 びにその取下げ。

- 3. 上記出願の分割出願及び補正却下の決定に対する新たな出願に関する一切 の件並びに本件に関する上記事項一切。
- 4. 上記出願に関する審査請求、優先審査に関する事情説明書の提出、刊行物の提出、証明の請求及び上記出願又は審判請求に関する物件の下附を受けること。
- 5. 第1項に関する通常実施権許諾の裁定請求、 装定取消請求並びにそれ等に 対する答弁、取下其他本件に関する提出資類及び物件の下附を受けること。
- 6. 上記各項に関し行政不服審査法に基づく諸手続を為すこと。
- 7. 上記事項を処理する為、復代理人を選任及び解任すること。

由 所 東京都大田区雪谷大塚町1番7号

アルプス電気株式会社

代交者 片 岡 政

認定・付加情報

特許出願の番号

特願2000-067485

受付番号

20000680082

書類名

手続補正書

担当官

寺内 文男

7068

作成日

平成12年 5月19日

<認定情報・付加情報>

【補正をする者】

【識別番号】

000010098

【住所又は居所】

東京都大田区雪谷大塚町1番7号

【氏名又は名称】

アルプス電気株式会社

【補正をする者】

【識別番号】

000005968

【住所又は居所】

東京都千代田区丸の内二丁目5番2号

【氏名又は名称】

三菱化学株式会社

【補正をする者】

【識別番号】

393032125

【住所又は居所】

東京都港区芝五丁目31番19号

【氏名又は名称】

油化電子株式会社

【代理人】

申請人

【識別番号】

100086911

【住所又は居所】

東京都新宿区新宿2丁目5番10号 日伸ビル9

階 重野国際特許事務所

【氏名又は名称】

重野 剛

【提出された物件の記事】

【提出物件名】

委任状(代理権を証明する書面)

1

出願人履歴情報

識別番号

[000010098]

1. 変更年月日 1990年 8月27日

[変更理由] 新規登録

住 所 東京都大田区雪谷大塚町1番7号

氏 名 アルプス電気株式会社

識別番号

[000005968]

1. 変更年月日

1994年10月20日

[変更理由]

名称変更

住 所

東京都千代田区丸の内二丁目5番2号

氏 名

三菱化学株式会社

出願人履歴情報

識別番号

[393032125]

1. 変更年月日

1997年 4月17日

[変更理由]

住所変更

住 所

東京都港区芝五丁目31番19号

氏 名

油化電子株式会社

THIS PAGE BLANK (USPTO)