**8.1.** Sei  $A \in \mathbb{R}^{d \times d}$  und  $\omega > s(A) := \max\{\operatorname{Re} \lambda \, | \, \lambda \in \sigma(A)\}$ . Zeigen Sie: Es gibt ein  $M \geq 1$ , so daß  $|e^{tA}| \leq Me^{\omega t}, \qquad t \geq 0.$ 

Warum gilt diese Aussage nicht, wenn lediglich  $\omega \geq s(A)$  gefordert wird? Sei A = V J V mil V regulair und J Jordansche Wormallaum mil J= drag (J, , f, ..., fn) und Ji die Jordan - Kärtchen zu den rugehörigen EU 2, ..., 2, n Wir denken an die Zeilensummennorgen. [1 e t ] = | V e t V-1 | ( = | | V | | | V-1 | | | let | | = | | V | | V-1 | | diag(et 11, ... et 1 n) | | = = ||V||||V-7|| max [ ||e+1+1||, ..., ||e+1+1||} =: x Nach Lemma 3.16 ist | | et 14 | et 4 | | 1 t \frac{1}{1} \frac{1}{2} \tau \frac{1}{2} \fra also  $||e^{\xi |_{H}}|| = |e^{2ut}|_{\mathcal{Z}_{h}(t)} = |e^{2e(2u)t}|_{\mathcal{Z}_{h}(t)} = |e^{2e(2u)t}|_{\mathcal{Z}_{h}(t)} = |e^{2e(2u)t}|_{\mathcal{Z}_{h}(t)} = |e^{2ut}|_{\mathcal{Z}_{h}(t)}$ und wi exhallen x = | | V | | | V - 7 | max { 2x(t) | h = (1,..., n } ? e w t 4 vi 1= 11 ed 11 = 11 V V - 1 11 \( \text{I \( V \( \text{I \( \text{V \( \text{I \( \text{V \) \} \} \) \\ \ext{V \( \text{V \( \text{V \( \text{V \( \text{V \) \} \) \\ \ext{V \( \text{V \) \} \\ \text{V \( \text{V \) \} \\ \text{V \( \) \\ \ext{V \( \text{V \( \text{V \( \text{V \( \text{V \( \) \| \ext{V \( \text{V \( \text{V \( \text{V \( \text{V \( \) \\ \exi{V \( \text{V \( \) \\ \ext{V \( \text{V \| \ext{V \( \) \| \exi{V \( \ext{V \( \) \| \exi{V \( \ext{V \( \) \| \exi{V \( \ext{V also M:= 4V1111V-111 mox [2u(4) [4 6 61, ..., n } } = 1 und V+ ≥0: 11e+ 11 4 M ewt



## 8.3. Eine skalare ODE der Form

$$y' = g(t)y + h(t)y^2 + k(t)$$

heißt Riccatigleichung<sup>1</sup>. Sei  $y_1$  eine Lösung dieser Gleichung.

a) Überprüfen Sie, daß jede Lösung x der Bernoullischen ODE

$$x' = (g(t) + 2y_1(t)h(t))x + h(t)x^2$$

eine Lösung  $y = y_1 + x$  der Riccatischen Gleichung erzeugt.

b) Geben Sie die allg. Lösung der ODE

$$y' = 3\left(2(t+1)^2 - \frac{1}{t+1}\right)y - 3(t+1)y^2 - 3(t+1)^3 + 4$$

an. Hinweis: versuchen Sie ein lineares Polynom als spezielle Lösung.

a) 
$$y' = y, 1 + x' = g y + h y^{2} + h + g x + 2y, h x + 4x^{2} = g (y, x) + h (y + x)^{2} + h = y + h + y^{3} + de$$

b)  $y' = y, 1 + x' = g y + h y^{2} + h + g x + 2y, h x + 4x^{2} = g (y, x) + h (y + x)^{2} + h = y + h + y^{3} + de$ 

b)  $y' = y, 1 + x' = g y + h + g^{2} + h + g + h + g + de$ 

b)  $y' = y, 1 + x' = g y + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = g y + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = g y + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = g y + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = g y + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = y, 1 + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = y, 1 + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = y, 1 + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = y, 1 + h + g^{2} + h + g + de$ 
 $y' = y, 1 + x' = y, 1 + h + g^{2} + h + g + de$ 
 $y' = y, 1 + h + g^{2} + h$ 

## **8.4.** (Gradientensysteme)

- a) Sei d = 1 und  $f \in C(\mathbb{R}; \mathbb{R})$ . Zeigen Sie: die autonome ODE y' = f(y) hat eine Ljapunovfunktion. Ist die von Ihnen angegebene Funktion eine strikte Ljapunovfunktion?
- b) Sei d > 1 und  $f \in C(\mathbb{R}^d; \mathbb{R}^d)$ . Die ODE y' = f(y) heißt heißt Gradientensystem, falls es  $F \in C^1(\mathbb{R}^d; \mathbb{R})$  gibt mit  $\nabla F = f$ . Zeigen Sie: Die ODE hat eine strikte Ljapunovfunktion.
- a) ges.: V ∈ C1 (R,R) mil V f ≤ 0

 $V(y) := -\int_{0}^{y} f(x) dx \Rightarrow V'(y) = -f(y)$  nowh dem from the production of vol. Kallentink Sals 8.4.5)

∀y ∈ 1R\f<sup>-1</sup>(0): V'(y) f(y) = - (f(y))² <0, nach Sah 5. 13 ist also Veine

Strike Lyapunov funktion

b)  $V \in C^{\gamma}(\mathbb{R}^d, \mathbb{R})$ : V = -F = -f

=> ty = 12 1 1 -1(0): V(y) . f(y) = - (f(y). f(y)) = - || f(y)||2 <0

Also ist V stribete Sjapnenov funktion

**8.5.** Sei  $H:C^2(\mathbb{R}^{2d};\mathbb{R})$ . Das zu H gehörende Hamiltonsche System ist gegeben durch

$$q' = \partial_p H(q, p)$$
  
$$p' = -\partial_q H(q, p)$$

Zeigen Sie, daß H eine Ljapunov<br/>funktion für das System ist. Geben Sie an, welche Ruhelagen des Systems stabil und welche asymptotisch stabil sind.

Geben Sie die stabilen und asymptotisch stabilen Ruhelagen für die konkrete Funktion

$$H(p,q) = \frac{1}{2}p^2 + (1 - \cos q)$$

In ER of 5 
$$\begin{cases} P : \mathbb{R}^{1d} \to \mathbb{R}^{2d} : \begin{pmatrix} A_{p} \end{pmatrix} \mapsto \begin{pmatrix} \partial_{p} H(f_{p}^{1}) \\ \partial_{q} H(f_{p}^{1}) \end{pmatrix} \\ A_{p} : \mathbb{R}^{1d} : \nabla H(f_{p}^{1}) \cdot f(f_{p}^{1}) = \begin{pmatrix} \partial_{p} H(f_{p}^{1}) \\ \partial_{q} H(f_{p}^{1}) \end{pmatrix} = \partial_{q} H(f_{p}^{1}) \cdot \partial_{p} H(f_{p}^{1}) - \partial_{p} H(f_{p}^{1}) - \partial_{p} H(f_{p}^{1}) - \partial_{p} H(f_{p}^{1}) = 0 \leq 0 \end{cases}$$

$$\text{Multiple Constants of the first of the proportion bettinen}$$

$$P : \mathbb{R}^{1d} \to \mathbb{R}^{2d} : \begin{pmatrix} A_{p} : A_{$$

$$y' = A(t)y$$

von den Eigenwerten der Matrix A(t) nicht auf die Stabilität der Ruhelage y=0 schließen kann. Es sei

$$A(t) = \begin{pmatrix} -1 + \frac{3}{2}\cos^2 t & 1 - \frac{3}{2}\sin t\cos t \\ -1 - \frac{3}{2}\sin t\cos t & -1 + \frac{3}{2}\sin^2 t \end{pmatrix}.$$

Zeigen Sie:

a) die Eigenwerte  $\lambda_{1,2}(t)$  von A(t),  $t \in \mathbb{R}$  haben negativen Realteil.

$$y(t) = e^{t/2} \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$$

ist eine Lösung der ODE.

c) Die Lösung 
$$y = 0$$
 ist instabil.

b)  $X(1) = (-1 + \frac{1}{4} \cos^2 - \lambda) (-7 + \frac{1}{4} \cos^2 - \lambda) - (1 - \frac{1}{4} \sin \cos x) (-1 - \frac{1}{4} \sin \cos x) = \frac{1}{4}$ 

$$= (1 - \frac{1}{4} \sin^2 + \frac{1}{4} \cos^2 + \frac{1}{4} \cos^2 \sin x) (-\frac{1}{4} \cos^2 x) (-\frac{1}{$$