Lernzettel Mathe

- Lernzettel Mathe
 - Analysis
 - * Kurvendiskussion
 - * e-Funktionen
 - * Integration
 - Stochastik
 - Analytische Geometrie
 - * Vektoren
 - * Geraden
 - * Ebenen

Analysis

Kurvendiskussion

- 1. Symmetrie
- 2. Nullstellen

$$f(x) = 0$$

3. Extrema

$$f'(x)=0$$

$$f''(x_E)<0\Rightarrow {\sf Maximum}$$

$$f''(x_E)>0\Rightarrow {\sf Minimum}$$

$$f''(x_E)=0\Rightarrow {\sf keine\ Aussage}$$

4. Wendepunkte

$$f''(x)=0$$

$$f'''(x_W)<0\Rightarrow {\sf Wendepunkt(L-r)}$$
 $f'''(x_W)>0\Rightarrow {\sf Wendepunkt(R-l)}$ $f'''(x_W)=0\Rightarrow {\sf keine Aussage}$

e-Funktionen

Integration

Mit der Integration lässt sich der Flächeninhalt unter einer Funktion berechnen.

$$\int_{a}^{b} f(x)dx$$

Name	Bedeutung
a	untere Integrationsgrenze
b	obere Integrationsgrenze
f(x)	Integral
dx	Differenzial

Ableiten

$$\frac{f(x) \qquad x^n}{f'(x) \quad n \cdot x^{n-1}}$$

Aufleiten

$$\frac{f(x) \qquad x^n}{F(x) \quad \frac{1}{n+1} \cdot x^{n+1}}$$

Produktregel

$$f(x) = u(x) \cdot v(x)$$

$$f' = u' \cdot v + u \cdot v'$$

Kettenregel

Stochastik

Analytische Geometrie

Vektoren

Betrag eines Vektors

Der Betrag eines Vektors ist die Länge eines seiner Pfeile.

Beispiel

$$\overrightarrow{AB} = \begin{pmatrix} 2\\4\\4 \end{pmatrix}$$

$$|\overrightarrow{AB}| = \sqrt{2^2 + 4^2 + 4^2} = \sqrt{36} = 6$$

Skalarprodukt

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

 $ec{a}\cdotec{b}$ ist eine reelle Zahl

Kreuzprodukt/Normalenvektor

Figure 1: Kreuzprodukt

$$\vec{a}\times\vec{b}=\vec{c}$$

Winkel zwischen zwei Vektoren

Geraden

Geradengleichungen

Parametergleichung

Figure 2: Parametergleichung

$$g: \vec{x} = \vec{a} + r \cdot \vec{m}$$

- \vec{x} : beliebiger Raumvektor
- \vec{a} : Stützvektor/Ortsvektor
- \vec{m} : Richtungsvektor
- $\cdot r$: Geradenparameter

Normalenform

$$g: \vec{n}_g \cdot (\vec{x} - \vec{a}) = 0$$

- \vec{x} : beliebiger Raumvektor
- \vec{a} : Stützvektor/Ortsvektor
- \vec{n}_g : Normalenvektor von g

Punkt auf der Gerade

Schnittpunkt zweier Geraden

Schnittwinkel zweier Geraden

Schnittpunkt Gerade und Ebene

Schnittwinkel Gerade und Ebene

Ebenen

Ebenengleichung

Parameterform

Figure 3: Parametergleichung

$$E: \vec{x} = \vec{a} + r \cdot \vec{b} + s \cdot \vec{c}$$

• \vec{x} : beliebiger Raumvektor

• \vec{a} : Stützvektor/Ortsvektor

• \vec{b}, \vec{c} : Richtungsvektor

• r, s: Ebenenparameter

Normalenform

Figure 4: Parametergleichung

$$E: \vec{n}_E \cdot (\vec{x} - \vec{a}) = 0$$

- \vec{x} : beliebiger Raumvektor
- \vec{a} : Stützvektor/Ortsvektor
- \vec{n}_E : Normalenvektor von E

Koordinatenform

$$E: ax + by + cz = d$$

- ullet a,b,c: Koordinaten des Normalenvektors
- d: Skalarprodukt von \vec{n} (Normalenvektor) und \vec{a} (Stützvektor/Ortsvektor)

Schnittgerade zweier Ebenen

Schnittwinkel zweier Ebenen