

Data Communication (CE14773)

Chungnam National University

Dept. of Computer Science and Engineering

Computer Communication Laboratory

Sangdae Kim - 00반 / Cheonyong Kim- 01반

- Gratuitous ARP
- ♦ IP
- Homework
 - * Requirement

Hardware type

Protocol type

Length of hardware address

Length of protocol address

Opcode (ARP Request)

Sender's hardware address

Sender's protocol address

Target's hardware address

Target's protocol address

ff:ff:ff:ff:ff
00:60:08:A7:47:63
0x0806
1
0x0800
6
4
1
00:60:08:A7:47:63
168.188.129.63
???????
168.188.129. 63

Features of gratuitous ARP

- It occurs when a host sends an ARP request looking for its own IP address.
- This is usually done when the interface is configured at bootstrap time.
- It lets a host determine if another host is already configured with the same IP address.
- If a reply is received, the error message "duplicate IP address sent from Ethernet address: a:b:c:d:d:f' is logged on the console.

Features of gratuitous ARP

- If the host sending the gratuitous ARP has just changed its hardware address.
 - ❖ If Interface card replaced or Host Changed.
- Update old hardware address Entry in ARP cache
 - * if a host receives an ARP request from an IP address that is already in the receiver's cache,
 - then that cache entry is updated with the sender's hardware address from the ARP request.
- This is done for any ARP request received by the host.

Gratuitous ARP Operation

Gratuitous ARP Operation

IP (Internet Protocol)

- ◆ IP is the workhorse protocol of the TCP/IP protocol suite.
- ◆ IP provides an unreliable, connectionless datagram delivery service.
 - Unreliable
 - ◆ There are no guarantees that an IP datagram successfully gets to its destination.
 - ◆ IP provides a best effort service.
 - When something goes wrong, such as a router temporarily running out of buffers, IP has a simple error handing algorithm.

Connectionless

- ◆ IP does not maintain any state information about successive datagrams.
- ◆ This means that IP datagrams can get delivered out of order.

Protocol Format - IP

Figure 6. IP datagram, showing the fields in the IP header

- ♦ IP Header(1)
 - version
 - ◆ The current protocol version : 4 -> IPv4
 - header length
 - ◆ The number of 32-bit words in the header, including any options.
 - Since this is a 4-bit field, it limits the header to 60 bytes.

- ♦ IP Header(2)
 - type of service(TOS)
 - ◆ 3-bit precedence field
 - This is ignored today.
 - ◆4 TOS bits
 - Minimize delay
 - Maximize throughput
 - Maximize reliability
 - Minimize monetary cost
 - ♦ an unused bit
 - Must be 0.

♦ IP Header(3)

- total length(in bytes)
 - ◆ The total length of the IP datagram in bytes
 - ◆ Using this field and the header length field, we know where the data portion of the IP datagram starts, and its length.
 - ◆ Since this is a 16-bit field, the maximum size of an IP datagram is 65535 bytes.
 - ◆ This field also changes when a datagram is fragmented.
- **❖** Identification
 - ◆ Uniquely identifies each datagram sent by a host.
 - ◆ It normally increments by one each time a datagram is sent.

- ♦ IP Header(4)
 - Flags
 - ◆ Relative fragmentation
 - fragment offset
 - ◆ Relative fragmentation
 - ❖ time to live(TTL)
 - ◆ Sets an upper limit on the number of routers through which a datagram can pass.
 - ◆ It limits the lifetime of the datagram.
 - Protocol
 - ◆ It identifies which protocol gave the data for IP to send.

♦ IP Header(5)

- header checksum
 - ◆ This is calculated over the IP header only.
 - ◆ It does not cover any data that follows the header.
- source IP address & destination IP address
 - ◆ 32-bit value
- option(if any)
 - ◆ Is variable-length list of optional information for the datagram.
 - ◆ Option field always ends on a 32-bit boundary.
 - ◆ This assures that the IP header is always a multiple of 32 bits.

