Figures and discussion

Anirudh Shankar

May 2025

1 Chaotic orbits

Setup:

- Single step PPO
- (non rotating) Bar potential with: $M_{bar}=1e10M\odot, a=5000pc, b=1500pc, c=1000pc, \Omega_p=0.0$
- \bullet Rewards based on the lyapunov exponent, damped when leaving the 1pc box
- $\bullet\,$ initialized in a 1 pc box

1.1 Two body orbits

- Point sources
- 1e10 $M\odot$

Figure 1: Orbits 1

Figure 2: Orbits 2

Figure 3: Orbits 3

1.2 Two tracer orbits

Figure 4: Orbits 1

Figure 5: Orbits 2

Figure 6: Orbits 3

Figure 7: Orbits 4

2 Rocket mission

- Solar system in 2D*
- 3 body system with circular orbits*
- Rocket deployed from LEO (low earth orbit, earth radius + 300 km)
- Agent chooses thrust magnitude and direction
- Targets with increasing difficulties:
 - 1. GEO (geostationary orbit, 35768 km) -; sanity check to make sure agent is learning
 - 2. L1 point (between the earth and the Sun)
 - 3. Venus
 - 4. Mars
 - 5. Jupiter
- Three destination types: radius to be exceeded, destination planet, destination coordinates
- Rocket science where- thrust decreases rocket mass, with limited usable mass
- Rocket captured when too close to a planet
- solve_ivp calls between timesteps

2.1 Trials without agent

Figure 8: Rocket capture

Figure 9: GEO reached