Networks & Storage

Overview

- Networking from the inside out
- SMP vs NUMA
- TCP/IP, Infiniband, RoCE, iWARP
- Performance of current systems
- Topologies
- Future trends
- Storage Parallel File-systems vs. single disk
- Summary

Inside the box: SMP vs. NUMA

FSB: Front Side Bus

- QuickPath (Intel) &
- HyperTransport (AMD) are NUMA technologies

History: Network of Networks

- TCP/IP US DoD project to connect networks from different vendors
- Designed to be fault tolerant
- IP: Move packets from node to node (4 byte address)
- TCP: Responsible for safe delivery (can trigger retransmission)

TCP/IP

Example: Traditional TCP/IP Networking Stack

User Application Web browser **Application** HTTP TCP **Transport** Network IP Link Ethernet driver Hardware **Ethernet**

Sockets: Example Server

```
#!/usr/bin/env python
import socket
TCP IP = '127.0.0.1'
TCP_PORT = 5005
BUFFER SIZE = 1024
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((TCP_IP, TCP_PORT))
s.listen(1)
conn, addr = s.accept()
print 'Connection address:', addr
while 1:
  data = conn.recv(BUFFER_SIZE)
  if not data: break
  print "received data:", data
  conn.send(data) # echo
conn.close()
```


Sockets: Example Client

```
#!/usr/bin/env python
import socket
TCP IP = '127.0.0.1'
TCP_PORT = 5005
BUFFER SIZE = 1024
MESSAGE = "Hello, World!"
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((TCP_IP, TCP_PORT))
s.send(MESSAGE)
data = s.recv(BUFFER SIZE)
s.close()
print "received data:", data
```

- Sockets provide a simple application interface
- But, we pay a price for copying buffers..

HPC & Networking

All well & good, but in HPC, we want the fastest possible networking..

Infiniband

Different design criteria to TCP/IP:

- · A 'messaging service' over a persistent channel
- All hosts use Infiniband Fabric interconnect
- 'Stack bypass' no O/S involvement
- Application can access messaging service directly
- Leads to lower latency communications

Infiniband

Application

Infiniband
Messaging
Service

There is still an Infiniband network stack, but much is offloaded onto the Host Channel Adapter (HCA)

S/W Transport Interface

Transport

Network

Link

Physical

RDMA Message Transport Service

RDMA:
Remote
Direct
Memory
Access

Infiniband: Many provided protocols

Introduction to Infiniband for End Users: Paul Grun, Infiniband Trade Association

IB versus Ethernet

- Ethernet is commodity (& so cheaper..?)
- Many practitioners have knowledge of ethernet
- Competition between Ethernet and IB around bandwidth: 40 & 100 Gbit/s are in deployed today in IB (QDR in BCp3=32Gbit/s, FDR=54Gbit/s, EDR in BCp4=100Gbit/s)
 - See: https://en.wikipedia.org/wiki/InfiniBand
- But what to do about the TCP/IP latency?

RoCE: RDMA over (Converged) Ethernet

Application

Messaging Service

- Low latencies
- but no TCP/IP
 - not routable
 - Lacks TCP flow management

IWARP: Internet Wide Area RDMA Protocol

- TCP/IP is implemented on the NIC
- Routable, but how much extra latency?

Latency

	within-socket	across-sockets	QDR IB	10G RoCE	tcp/ip
0 byte msg	0.12us	0.25us	2.03us	2.2us	10.5us

Bandwidth

Bandwidth

10Gbit/s = 1250Mbytes/s

32Gbit/s = 4000Mbytes/s (QDR IB)

Network Topologies

Torus – good for neighbour exchanges (e.g. halo-exchange) Tree – cost effective, good for collective operations

Networking Future

- Bandwidth Improvements:
 - 40 & 100 Gbit/s Ethernet
 - EDR (100Gbit/s), HDR (200Gbit/s) IB
- Latency reductions:
 - Many vendors will be integrating the network adapter into the processor's silicon die
 - This will bring higher performance and also consume power
 - Taking longer than expected though.

Storage

"If you solve a compute problem, you are rewarded with a storage problem!"

Bottlenecks

You can have the most processors, fastest network and best code, but your applications will stall creating output or reading input if you don't have commensurate storage

Serial vs. Parallel File Systems

Serial File System

- Parallel: network/disk load is spread→ faster
- But:
 - Small files are hard to split and so reside on a single disk → back to the serial situation
 - Try not to use small files..

Parallel File System

Parallel File System vs Local Disk

watch out for caching effects...

Test1 – 'large' files:

wget https://www.kernel.org/pub/linux/kernel/v3.x/testing/linux-3.10-rc7.tar.xz time cp linux-3.10-rc7.tar.xz linux-3.10-rc7.tar.xz.copy

1.5s (~50MB/s) vs. 0.7s (~100MB/s)

Test2 – small files:

tar --use-compress-program=xz -xf linux-3.10-rc7.tar.xz (~570MB unpacked) time cp -r linux-3.10-rc7 linux-3.10-rc7.copy

3m46s (2.5MB/s) vs 4.3s (~133MB/s)

Parallel File System vs Local Disk

Things are not looking too good for the parallel file system!

Empirical Disk Comparisons

University of BRISTOI

© Gethin Williams and Simon McIntosh-Smith

Multiple clients

File copying bandwidths for a large file (~350Mb)

	Clients x1	Clients x4	Clients x8
Desktop	~65MB/s	~10MB/s	~0.5MB/s
Parallel fs	~160MB/s	~130MB/s	~67MB/s

Parallel File System vs Local Disk

- So where does that leave us?
 - We <u>need</u> a shared filesystem on a cluster (think home directories) and parallel file systems provide (very) good aggregate performance.
 - Parallel file systems can deliver bandwidths far in excess of that of a single disk (or SSD).
 - Since the shared file-system is at the far end of a network connection, latency has to suffer. For <u>some</u> workloads this implies that would do well to use of both kinds of storage on offer.

- ~85TB of capacity on BCp2
 - How many files in total?
 - What % of files 0-2KB?
 - What % of files <= 64KB?

- ~85TB of capacity on BCp2
 - How many files in total? 60Million
 - What % of files 0-2KB?
 - What % of files <= 64KB?

- ~85TB of capacity on BCp2
 - How many files in total? 60Million
 - What % of files 0-2KB? 33%!
 - What % of files <= 64KB?

- ~85TB of capacity on BCp2
 - How many files in total? 60Million
 - What % of files 0-2KB? 33%!
 - What % of files <= 64KB? ~76%
- 64KB is the stripe size for, e.g., Panasas, i.e. no parallel gain for ¾ of the files on the system.
- This is not atypical for an HPC filesystem.
- You're the next generation—spread the word!

Hierarchical Storage Management (HSM)

- Applications read from, and write to fastest storage medium
- Policies are used to automatically demote cohorts of 'cold' data and promote cohorts of 'hot' data.

Summary

- We need to see systems in the round:
 - Networking and storage are key to HPC, just as are processors and access to memory.
- HPC networks are designed for low latency & high bandwidth, but will always be limited on both of these dimensions.
- Parallel file systems can offer better performance—if used intelligently.
- HSM is driven by a desire for performance but also storage economics.

