Digital Electronics Verilog Lab 2

Submitted By:

Saurabh Kumar SC ID: SC22B146

Course: DIGITAL ELECTRONICS AND VLSI DESIGN LAB (AV232)

LAB SHEET

Question No. 1 Design a Three Input majority gate circuit in verilog coding by predefined gates or by Boolean expression. Sol: **Truth Table:**

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

The reduced **boolean** expression using K-Map should be:

F = (A and B) or (B and C) or (C and A)

Code:

module majorityGate(
input A,B,C,
output O);
assign O = (A&B)|(B&C)|(C&A);
endmodule

Schematic:

Simulation:

Synthesis:

Question No. 2 Make a BCD to seven segment display circuit.

[You can use behavioural or procedural statement]

[You can arrange the 7 LEDs as your requirement]

Sol: The reduced **boolean** expression should be:

a = A or C or (B and D) or (not B and not D)

b = (not B) or (not C and not D) or (C and D)

c = B or (not C) or D

d = (not B and not D) or (C and not D) or (B and not C and D) or (not B and C) or A

e = (not B and D) or (C and not D)

f = A or (not C and not D) or (B and not C) or (B or not D)

g = (not B and C) or (C and not D) or (B and not C) or (B and not C) or A

Code:

```
module BCDto7Segment(

input A,B,C,D,

output a,b,c,d,e,f,g);

assign a = A/C/(B&D)/((^B)&(^D));

assign b = (^B)/((^C)&(^D))/(C&D);

assign c = B/(^C)/D;

assign d = ((^B)&(^D))/(C&(^D))/(B&(^C)&D)/((^B)&C)/A;

assign e = ((^B)&D)/(C&(^D));
```

 $assign \ f = A / ((^{\sim}C) & (^{\sim}D)) / (B & (^{\sim}C)) / (B & (^{\sim}D)); \\ assign \ g = ((^{\sim}B) & C) / (C & (^{\sim}D)) / (B & (^{\sim}C)) / (B & (^{\sim}C)) / A; \\ end module$

Schematic:

Simulation:

Synthesis:

Question No. 3 (i) Make one 4:2 Encoder unit.

Sol: The reduced **boolean** expression should be:

A = D2 or D3 B = D1 or D3

Code:

module encoder(
input D1,D2,D3,D4,
output A,B);
assign A = D2|D3;
assign B = D1|D3;
endmodule

Schematic:

Simulation:

Synthesis:

Question No. 3 (ii) Make a MUX from that Encoder unit.

Sol: The reduced **boolean** expression should be:

F = (not A and not B and D1) or (not A and B and D2) or (A and not B and D3) or (A and B and D4)

Code:

```
module\ mux(\\ input\ D1,D2,D3,D4,A,B,\\ output\ F);\\ assign\ F = ((^A)&(^B)&(D1))|((^A)&(B)&(D2))|((A)&(^B)&(D3))|((A)&(B)&(D4));\\ end module
```

Schematic:

Simulation:

Synthesis:

ASSIGNMENT

Question No. 1 Design a Full Adder circuit in verilog by nand gate only. **Sol: Code:**

```
module aasignQ1(
 input A,B,Cin,
 output S, Cout);
// S = ((A xor B) nand ((A xor B) nand Cin)) nand (Cin nand ((A xor B) nand Cin))
//
      -wire 1-
                   -wire1-
                                                   -wire1-
//
                     -----wire2-----
                                         -----wire2-----
//
                                 -----wire4-----
      -----wire3-----
      -----Sum------
  wire wire1, wire2, wire3, wire4;
  wire w1,w2,w3;
  nand(w1,A,B); //w1 = ^{\sim}(AB)
  nand(w2,A,w1); //w2 = ^{(Aw1)}
  nand(w3,B,w1); //w3 = ^(Bw1)
  nand(wire1,w2,w3); //wire1 = A xor B
  nand(wire2,wire1,Cin);
  nand(wire3,wire1,wire2);
  nand(wire4,wire2,Cin);
```

nand(S,wire3,wire4);
nand(Cout,w1,wire2);

endmodule

Schematic and Boolean Expression:

Boolean Exporession:

Sum =
$$A \oplus B \oplus Cin$$

= $\overline{(A \oplus B).\overline{(A \oplus B)}Cin}.\overline{Cin.\overline{(A \oplus B)}Cin}$,
where $A \oplus B = \overline{A \cdot \overline{AB}}.\overline{B \cdot \overline{AB}}$

Cout =
$$\frac{a}{a}$$
 AB + (A \oplus B) Cin
= $\frac{a}{a}$ Cin (A \oplus B). $\frac{a}{a}$ B

Question No. 2 Design a 2:1 Mux circuit in verilog by nor gate only. **Sol: Code:**

```
module muxUsingNor(
input I0,I1,S,
output F);

wire w1,w2,w3,w4,w5;
nor(w1,I0,I1);
nor(w2,I0,S);
nor(w3,S,S);
nor(w4,w3,I1);
nor(w5,w1,w2);
nor(F,w4,w5);
endmodule
```

Boolean Expression:

Design a 2:1 Mux circuit in verilog by non gate only.

$$\begin{array}{lll}
I_{1} & & F = I_{0}S + I_{1}S \\
\hline
F = I_{0}S$$

Schematic:

