CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- P ² NP

COMPLEXITY CLASSES P = NP

- $o P \subseteq NP$
 - Why?
 - Is $P \subset NP$ or is P = NP?
 - oThe question is often referred to as the $P \stackrel{?}{=} NP$ problem

COMPLEXITY CLASSES P = NP

- Arguments:
 - \bullet $P \subset NP$
 - •There is a long list of problems known to be in NP (i.e. certificates can be verified in polynomial time)

but not known to be in \mathbb{P} (i.e. no one has found a polynomial time algorithm for solving them)

- Examples: ISO, KNAPSACK, TSP
- \bullet P = NP
 - o No problem has been proved to be in $\mathbb{NP} \mathbb{P}$