Modern Physics

basics

CONTENTS

I	Special Relativity	3
1	Special Relativity	5
2	Special Relativity - Notes2.1 Dynamics2.2 Electromagnetism	7 8 11
II	General Relativity	15
3	General Relativity	17
4	General Relativity - Notes	19
II	II Statistical Mechanics	21
5	Statistical Physics	23
6	Statistical Physics - Notes	25
I	V Quantum Mechanics	27
7	Quantum Mechanics7.1 Mathematical tools for quantum mechanics7.2 Postulates of Quantum Mechanics7.3 Non-relativistic Mechanics7.4 Many-body problem	29 29 30 30 37
8	Quantum Mechanics - Notes	39
Pr	roof Index	41

If you want ot start a new basics-book, it could be a good idea to start from this template.

Please check out the Github repo of the project, basics-book project, and the landing page of the project.

- Special Relativity
 - Special Relativity
 - Special Relativity Notes
- General Relativity
 - General Relativity
 - General Relativity Notes
- Statistical Mechanics
 - Statistical Physics
 - Statistical Physics Notes
- Quantum Mechanics
 - Quantum Mechanics
 - Quantum Mechanics Notes

CONTENTS 1

2 CONTENTS

Part I Special Relativity

CHAPTER

ONE

SPECIAL RELATIVITY

- Electromagnetism and the need for new relativity
- Space-time, Lorentz transformations,...
- Mechanics: kinematics, dynamics,...
- Electromagnetism: Maxwell's equations, potentials, Lorentz force, energy balance

SPECIAL RELATIVITY - NOTES

An event is determined by spatio-temporal information together, t, \vec{r} . Absolute nature of physics needs vector algebra and calculus formalism

$${\bf X} = c\,t\,{\bf e}_0 + \vec{r} = c\,t\,{\bf e}_0 + x^1{\bf e}_1 + x^2{\bf e}_2 + x^3{\bf e}_3 = X^\alpha{\bf E}_\alpha\;,$$

having used Cartesian coordinates for the space coordinate.

Minkowski metric reads

$$g_{\alpha\beta} = \mathbf{E}_{\alpha} \cdot \mathbf{E}_{\beta} = \text{diag}\{-1, 1, 1, 1\}$$

The reciprocal basis reads $\mathbf{E}_{\alpha} \cdot \mathbf{E}^{\beta} = \delta_{\alpha}^{\beta}$, $\mathbf{E}_{\alpha} = g_{\alpha\beta} \mathbf{E}^{\beta}$, s.t. the elementary interval between two events can be written as

$$d\mathbf{X} = dX^{\alpha} \, \mathbf{E}_{\alpha} = \underbrace{dX^{\alpha} \, g_{\alpha\beta}}_{=dX_{\beta}} \, \mathbf{E}^{\beta} = dX_{\beta} \, \mathbf{E}^{\beta} \; ,$$

having used Cartesian coordinates,

$$X^0 = ct$$
 $X^1 = x$ $X^2 = y$ $X^3 = z$
 $X_0 = ct$ $X_1 = -x$ $X_2 = -y$ $X_3 = -z$

Its "length", or better pseudo-norm with Minkowski metric, is invariant and reads

$$ds^2 = d{\bf X} \cdot d{\bf X} = (dX_\alpha {\bf E}^\alpha) \cdot \left(dX^\beta {\bf E}_\beta \right) = c^2 \, dt^2 - (dx^1)^2 - (dx^2)^2 - (dx^3)^2 = c^2 \, dt^2 - |d\vec{r}|^2$$

Note: ds is invariant **todo** prove it. And/or add a section about the role of invariance.

For a co-moving observer, $d\vec{r}' = \vec{0}$, and t' is commonly indicated with τ , and its differential is invariant itself, being the product of a constant (c is a universal constant in special relativity) and an invariant quantity.

$$ds^2 = c^2 dt'^2 - |d\vec{r}'|^2 = c^2 d\tau^2$$
.

Given the invariant nature of ds,

$$ds^2 = c^2 d\tau^2 = c^2 dt^2 - |d\vec{r}|^2 = c^2 dt^2 \left[1 - \frac{1}{c^2} \frac{|d\vec{r}|^2}{dt^2} \right] = c^2 dt^2 \left[1 - \frac{|\vec{v}|^2}{c^2} \right]$$

and thus

$$ds = c d\tau = \gamma^{-1}(v/c) c dt$$
,

with
$$\gamma(w) = \frac{1}{\sqrt{1-w^2}}$$
.

4-Velocity Given the parametric representation of an event in space-time as a function of its proper time, $\mathbf{X}(\tau)$ or coordinate s, $\mathbf{X}(s)$ the derivative w.r.t. this parameter is defined as the 4-velocity of the event in space time. Using Cartesian coordinates inducing constant and uniform basis \mathbf{E}_{α} , as a function of the observer time t, ct, $x^i(t)$, and the transformation of coordinates $t(\tau)$, with differential $dt = \frac{1}{2} d\tau$

$$\mathbf{U}(\tau) := \mathbf{X}'(\tau) = \frac{d}{d\tau} \left(X^{\alpha}(\tau) \mathbf{E}_{\alpha} \right) = \frac{dt}{d\tau} (ct \mathbf{E}_{0} + x^{i}(t) \mathbf{E}_{i}) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i}(t) \mathbf{E}_{i} \right) = \gamma(v/c) \left(c \mathbf{E}_{0} + \dot{x}^{i$$

or

$$\mathbf{U}(s) := \mathbf{X}'(s) = \frac{dt}{ds} \frac{d}{dt} \mathbf{X}(t) = \dots = \gamma(v/c) \left(\mathbf{E}_0 + \frac{\vec{v}}{c} \right) \ .$$

Note: Using s as the parameter, **U** is non-dimensional, and has pseudo-norm = 1,

$$\mathbf{U}(s) \cdot \mathbf{U}(s) = \gamma^2 \underbrace{\left(1 - \frac{|\vec{v}|^2}{c^2}\right)}_{=\gamma^{-2}} = 1.$$

Using τ as the parameter, U has physical dimension of a velocity and pseudo-norm = c.

4-acceleration $X''(\tau)$ or X''(s), **todo**

2.1 Dynamics

4-momentum

$$\mathbf{P} = m\mathbf{U}$$

Using Cartesian coordinates and τ as independent variable,

$$\mathbf{P} = m\mathbf{U} = m\frac{d\mathbf{X}}{d\tau} = m\gamma(c, \vec{v}) .$$

The spatial component is γ times the 3-dimensional momentum $\vec{p} = m\vec{v}$; the time component reads

$$P^0 = m\gamma(w)c,$$

and for small ratio $w:=\frac{v}{c}$ it can be expanded in Taylor series around w=0 as

$$\gamma(w) \sim \gamma(0) + w \gamma'(0) + \frac{1}{2} w^2 \gamma''(0) + o(w^2)$$
,

with

$$\begin{split} \gamma(w)|_{w=0} &= \left. \frac{1}{\sqrt{1-w^2}} \right|_{w=0} = 1 \\ \gamma'(w)|_{w=0} &= \left. -\frac{1}{2}(1-w^2)^{-\frac{3}{2}}(-2w) \right|_{w=0} = w(1-w^2)^{-\frac{3}{2}} = 0 \\ \gamma''(w)|_{w=0} &= \left. \left((1-w^2)^{-\frac{3}{2}} + w \left(-\frac{3}{2} \right) (1-w^2)^{-\frac{5}{2}}(-2w) \right) \right|_{w=0} = \\ &= \left. \left((1-w^2)^{-\frac{3}{2}} + 3w^2(1-w^2)^{-\frac{5}{2}} \right) \right|_{w=0} = 1 \end{split}$$

and thus

$$\gamma(w) = 1 + \frac{1}{2}w^2 + o(w^2)$$

and

$$\gamma(v/c)\,m\,c \sim m\,c\left(1+\frac{v^2}{c^2}\right) = \frac{1}{c}\left(mc^2 + \frac{1}{2}m|\vec{v}|^2\right)$$

Thus, recognizing energy $(E=\gamma mc^2)$ and 3-momentum $(\vec{p}=m_3\vec{v})$, with $m_3:=\gamma m$, the 4-momentum can be written as

$$\mathbf{P} = m\mathbf{U} = \gamma m \left(1, \frac{\vec{v}}{c}\right) =: \frac{1}{c} \left(\frac{E}{c}, \vec{p}\right)$$

Its pseudo-norm reads

$$m^2 = \mathbf{P} \cdot \mathbf{P} = \frac{1}{c^4} \left(E^2 - c^2 |\vec{p}|^2 \right)$$

and thus the relation between E, \vec{p} , m and c,

$$E^2 = m^2 c^4 + c^2 |\vec{p}|^2 \; ,$$

from which, for $\vec{v} = \vec{0} \rightarrow \vec{p} = \vec{0}$,

$$E^2 = m^2 c^4 \; ,$$

and keeping only the solution with positive energy (todo reference to Dirac's equation and anti-matter?)

$$E = mc^2$$
.

2.1.1 Lagrangian approach

Free particle.

$$\mathbf{0} = \frac{d\mathbf{P}}{ds} = \frac{d}{ds} \left(m\mathbf{X}'(s) \right)$$

Weak form

$$\begin{aligned} 0 &= \mathbf{W}(s) \cdot \frac{d}{ds} \left(m \mathbf{X}'(s) \right) = \\ &= \frac{d}{ds} \left[m \mathbf{W}(s) \cdot \mathbf{X}'(s) \right] - m \mathbf{W}'(s) \cdot \mathbf{X}'(s) = \end{aligned}$$

Using generalized coordinates $q^k(s)$, the event can be written in parametric form as $\mathbf{X}(q^k(s),s)$, while the velocity reads

$$\mathbf{U}(s) = \mathbf{X}'(s) = \frac{d}{ds}\mathbf{X}(q^k(s), s) = q^{k'}(s)\underbrace{\frac{\partial \mathbf{X}}{\partial q^k}(q^k(s), s)}_{= \underbrace{\frac{\partial \mathbf{X}'}{\partial s'}}} + \underbrace{\frac{\partial \mathbf{X}}{\partial s}(q^k(s), s)}_{= \underbrace{\frac{\partial \mathbf{X}'}{\partial s'}}} = \mathbf{U}(q^{k'}(s), q^k(s), s)$$

Choosing $\mathbf{W} = \frac{\partial \mathbf{X}}{\partial q^k} = \frac{\partial \mathbf{X}'}{\partial q^{k'}}$ in the weak form,

$$\begin{split} 0 &= \frac{d}{ds} \left[m \mathbf{W} \cdot \mathbf{X}' \right] - m \mathbf{W}' \cdot \mathbf{X}' = \\ &= \frac{d}{ds} \left[m \frac{\partial \mathbf{X}'}{\partial q^{k'}} \cdot \mathbf{X}' \right] - m \frac{d}{ds} \frac{\partial \mathbf{X}}{\partial q^{k}} \cdot \mathbf{X}' = \\ &= \frac{1}{2} \left[\frac{d}{ds} \left(\frac{\partial}{\partial q^{k'}} \left(m \mathbf{X}' \cdot \mathbf{X}' \right) \right) - \frac{\partial}{\partial q^{k}} \left(m \mathbf{X}' \cdot \mathbf{X}' \right) \right] = \end{split}$$

2.1. Dynamics 9

Defining

$$f\left(q^{k'}(s),q^k(s),s\right) = -m\mathbf{X}'\left(q^{k'}(s),q^k(s),s\right)\cdot\mathbf{X}'\left(q^{k'}(s),q^k(s),s\right) = -m\;,$$

multiplying by a "regular" generic function w(s), neglecting factor $\frac{1}{2}$ and integrating by parts

$$\begin{split} 0 &= -\int_{s=s_a}^{s_b} w(s) \left[\frac{d}{ds} \frac{\partial f}{\partial q^{k'}} - \frac{\partial f}{\partial q^k} \right] ds = \\ &= -\left[w(s) \frac{\partial f}{\partial q^{k'}} \right]_{s=s_a}^{s_b} + \int_{s=s_a}^{s_b} \left[w'(s) \frac{\partial f}{\partial q^{k'}} + \frac{\partial f}{\partial q^k} \right] ds = \\ &= -\left[w(s) \frac{\partial f}{\partial q^{k'}} \right]_{s=s_a}^{s_b} + \delta \int_{s=s_a}^{s_b} f\left(q^{k'}(s), q^k(s), s \right) ds \; . \end{split}$$

Thus, provided that $w(s_1) = w(s_2) = 0$, equation of motion of free particle implies stationariety of functional

$$\int_{s=s_a}^{s_b} f\left(q^{k'}(s), q^k(s), s\right) \, ds \; ,$$

i.e.

$$\delta \int_{s=s_{-}}^{s_{b}} f\left(q^{k'}(s), q^{k}(s), s\right) ds = 0$$

Using t as independent parameter, $ds=\gamma^{-1}\,c\,dt,$ the functional can be recast as

$$\int_{t=t_a}^{t_b} -m\,c\,\sqrt{1-\frac{|\vec{v}|^2}{c^2}}\,dt\;,$$

to find the (3-dimensional) Lagrangian (multiply by c to get the right physical dimension; check if it's required and wheter it's possible to make c appear before),

$$\mathcal{L} = - \sqrt{1 - \frac{|\vec{v}|^2}{c^2}} \, m \, c^2 \, ,$$

and retrieve 3-momentum as (being $\vec{v} = \vec{r}$)

$$\begin{split} \vec{p} &:= \frac{\partial \mathcal{L}}{\partial \dot{\vec{r}}} = \\ &= -mc^2 \frac{1}{2} \left(1 - \frac{|\vec{v}|^2}{c^2} \right)^{-\frac{1}{2}} \left(-2\frac{\vec{v}}{c^2} \right) = \\ &= m \left(1 - \frac{|\vec{v}|^2}{c^2} \right)^{-\frac{1}{2}} \vec{v} = \\ &= \gamma \, m \, \vec{v} \; , \end{split}$$

and energy as

$$\begin{split} E &:= \vec{p} \cdot \vec{v} - \mathcal{L} = \\ &= \gamma \, m \, |\vec{v}|^2 + \gamma^{-1} \, m \, c^2 = \\ &= \gamma \, m \, c^2 \left(\frac{|\vec{v}|^2}{c^2} + \gamma^{-2} \right) = \\ &= \gamma \, m \, c^2 \left(\frac{|\vec{v}|^2}{c^2} + 1 - \frac{|\vec{v}|^2}{c^2} \right) = \\ &= \gamma \, m \, c^2 \; . \end{split}$$

2.2 Electromagnetism

2.2.1 Classical electromagnetic theory

Maxwell equations

Maxwell equations read

$$\begin{cases} \nabla \cdot \vec{d} = \rho_f \\ \nabla \times \vec{e} + \partial_t \vec{b} = \vec{0} \\ \nabla \cdot \vec{b} = 0 \\ \nabla \times \vec{h} - \partial_t \vec{d} = \vec{j}_f \end{cases}$$

or in vacuum, with $\rho_f=\rho,\,\vec{j}=\vec{j}_f,\,\vec{d}=\varepsilon_0\vec{e},\,\vec{b}=\mu_0\vec{h}$

$$\begin{cases} \nabla \cdot \vec{e} = \frac{\rho}{\varepsilon_0} \\ \nabla \times \vec{e} + \partial_t \vec{b} = \vec{0} \\ \nabla \cdot \vec{b} = 0 \\ \nabla \times \vec{b} - \mu_0 \varepsilon_0 \partial_t \vec{e} = \mu_0 \vec{j} \end{cases}$$

Electromagnetic potentials

The electromagnetic field can be written in terms of the electromagnetic potentials

$$\begin{cases} \vec{b} = \nabla \times \vec{a} \\ \vec{e} = -\partial_t \vec{a} - \nabla \varphi \end{cases}$$

Lorentz force

A particle in motion in a electromagnetic field is subject to Lorentz force. In classical electromagnetism, the expression of Lorentz force reads

$$\vec{F} = q \left(\vec{e} - \vec{b} \times \vec{v} \right) \; , \label{eq:F}$$

whose power is

$$\vec{v}\cdot\vec{F} = \vec{v}\cdot q\left(\vec{e} - \vec{b}\times\vec{v}\right) = q\vec{v}\cdot\vec{e}\;.$$

2.2.2 Electromagnetic potential

$$\begin{split} \left\{ \begin{split} \vec{b} &= \nabla \times \vec{a} \\ \vec{e} &= -\partial_t \vec{a} - \nabla \varphi \end{split} \right. \\ \mathbf{A} &= \mathbf{E}_\alpha A^\alpha = \frac{\varphi}{c} \mathbf{E}_0 + \vec{a} \end{split}$$

$$\mathbf{\nabla} \mathbf{A} = \left(\mathbf{E}^\alpha \frac{\partial}{\partial X^\alpha} \right) \left(A^\beta \mathbf{E}_\beta \right) = \frac{\partial A^\beta}{\partial X^\alpha} \mathbf{E}^\alpha \otimes \mathbf{E}_\beta = g_{\alpha\gamma} \frac{\partial A^\beta}{\partial X^\alpha} \mathbf{E}_\gamma \otimes \mathbf{E}_\beta \;. \end{split}$$

whose components may be collected in a 2-dimensional array (first index for rows, second index for columns),

$$(\nabla \mathbf{A})^{\beta}_{\alpha} = \frac{\partial A^{\beta}}{\partial X^{\alpha}} = \begin{bmatrix} c^{-2}\partial_{t}\varphi & c^{-1}\partial_{x}\varphi & c^{-1}\partial_{y}\varphi & c^{-1}\partial_{z}\varphi \\ c^{-1}\partial_{t}a_{x} & \partial_{x}a_{x} & \partial_{y}a_{x} & \partial_{z}a_{x} \\ c^{-1}\partial_{t}a_{y} & \partial_{x}a_{y} & \partial_{y}a_{y} & \partial_{z}a_{y} \\ c^{-1}\partial_{t}a_{z} & \partial_{x}a_{z} & \partial_{y}a_{z} & \partial_{z}a_{z} \end{bmatrix}$$

or covariant-covariant coomponents,

$$(\nabla \mathbf{A})_{\alpha\beta} = \frac{\partial A_{\beta}}{\partial X^{\alpha}} = g_{\beta\gamma} \frac{\partial A^{\gamma}}{\partial X^{\alpha}} = \begin{bmatrix} c^{-2}\partial_{t}\varphi & c^{-1}\partial_{x}\varphi & c^{-1}\partial_{y}\varphi & c^{-1}\partial_{z}\varphi \\ -c^{-1}\partial_{t}a_{x} & -\partial_{x}a_{x} & -\partial_{y}a_{x} & -\partial_{z}a_{x} \\ -c^{-1}\partial_{t}a_{y} & -\partial_{x}a_{y} & -\partial_{y}a_{y} & -\partial_{z}a_{y} \\ -c^{-1}\partial_{t}a_{z} & -\partial_{x}a_{z} & -\partial_{y}a_{z} & -\partial_{z}a_{z} \end{bmatrix}$$

or contravariant-contravariant coomponents,

$$(\nabla \mathbf{A})^{\alpha\beta} = \frac{\partial A^{\beta}}{\partial X_{\alpha}} = g_{\beta\gamma} \frac{\partial A^{\alpha}}{\partial X^{\gamma}} = \begin{bmatrix} c^{-2}\partial_{t}\varphi & -c^{-1}\partial_{x}\varphi & -c^{-1}\partial_{y}\varphi & -c^{-1}\partial_{z}\varphi \\ c^{-1}\partial_{t}a_{x} & -\partial_{x}a_{x} & -\partial_{y}a_{x} & -\partial_{z}a_{x} \\ c^{-1}\partial_{t}a_{y} & -\partial_{x}a_{y} & -\partial_{y}a_{y} & -\partial_{z}a_{y} \\ c^{-1}\partial_{t}a_{z} & -\partial_{x}a_{z} & -\partial_{y}a_{z} & -\partial_{z}a_{z} \end{bmatrix}$$

The electromagnetic field tensor is defined as the anti-symmetric part of the gradient of the 4-electromagnetic potential,

$$\mathbf{F} = \left[\mathbf{\nabla} \mathbf{A} - \left(\mathbf{\nabla} \mathbf{A} \right)^T \right]$$

whose components may be collected in a 2-dimensional array (first index for rows, second index for columns),

$$F^{\alpha\beta} = \begin{bmatrix} 0 & -\frac{\underline{e}^T}{c} \\ \frac{\underline{e}}{c} & \underline{b}_{\times} \end{bmatrix} \qquad , \qquad F_{\alpha\beta} = \begin{bmatrix} 0 & \frac{\underline{e}^T}{c} \\ -\frac{\underline{e}}{c} & \underline{b}_{\times} \end{bmatrix}$$

2.2.3 Electromagnetic field and electromagnetic field equations

The pair of Maxwell equations

$$\begin{cases} \rho_f = \nabla \cdot \vec{d} \\ \vec{j}_f = -\partial_t \vec{d} + \nabla \times \vec{h} \end{cases}$$

can be re-written in 4-formalism, using 4-gradient in Cartesian coordinates

$$\mathbf{\nabla} = \mathbf{E}^{\alpha} \frac{\partial}{\partial X^{\alpha}} = \mathbf{E}_{0} \frac{\partial}{c \partial t} + \mathbf{E}_{i} \frac{\partial}{\partial x^{i}} = \mathbf{E}_{0} \frac{\partial}{c \partial t} + \nabla ,$$

and the definition of the 4-current density vector

$$\mathbf{J} = J^{\alpha} \mathbf{E}_{\alpha} = c \rho \, \mathbf{E}_0 + \vec{j}$$

so that

$$c\rho\mathbf{E}_0 + \vec{j} = \boldsymbol{\nabla}\cdot\mathbf{F} = \boldsymbol{\nabla}\cdot[(0\,\mathbf{E}_0 + c\vec{d})\otimes\mathbf{E}_0 + (-\mathbf{E}_0c\vec{d} + \vec{h}_\times)]\;,$$

with the displacement field tensor,

$$\mathbf{D} = D^{\alpha\beta} \, \mathbf{E}_{\alpha} \, \mathbf{E}_{\beta} \; ,$$

with components (rows for the first index, columns for the second index)

$$D^{\alpha\beta} = \begin{bmatrix} 0 & -cd_x & -cd_y & -cd_z \\ cd_x & 0 & -h_z & h_y \\ cd_y & h_z & 0 & -h_x \\ cd_z & -h_y & h_x & 0 \end{bmatrix} = \begin{bmatrix} 0 & -c\underline{d}^T \\ c\underline{d} & \underline{h}_\times \, . \end{bmatrix}$$

The pair of Maxwell equations

$$\begin{cases} \nabla \cdot \vec{b} = 0 \\ \partial_t \vec{b} + \nabla \times \vec{e} = \vec{0} \end{cases}$$

can be re-written in 4-formalism as

$$0 = \partial_{\mu} F_{\eta\xi} + \partial_{\eta} F_{\xi\mu} + \partial_{\xi} F_{\mu\eta}$$

Among these $64 = 4^3$ equations, there are only 4 independent equations.

• If 2 indices are the same, the corresponding equation is the identity 0=0. As an example, if $\mu=\eta$

$$0 = \partial_{\mu} F_{\mu\xi} + \partial_{\mu} \underbrace{F_{\xi\mu}}_{-F_{\mu x i}} + \partial_{\xi} \underbrace{F_{\mu\mu}}_{=0} = 0 \; , \label{eq:final_state}$$

thus only combinations with different indices may provide some information.

Given the ordered set of indices (μ, η, ξ), switching a pair of indices provides the same equation. As an example, switching μ and η

$$\begin{split} 0 &= \partial_{\eta} F_{\mu\xi} + \partial_{\mu} F_{\xi\eta} + \partial_{\xi} F_{\eta\mu} = \\ &= \partial_{\eta} (-F_{\xi\mu}) + \partial_{\mu} (-F_{\eta\xi}) + \partial_{\xi} (-F_{\mu\eta}) \;. \end{split}$$

Thus, only 4 combination of different indices, without taking order into account, provide independent information

$$\begin{aligned} &(1,2,3): &&0 = \partial_1 F_{23} + \partial_2 F_{31} + \partial_3 F_{12} = \partial_x (-b_x) + \partial_y (-b_y) + \partial_z (-b_z) \\ &(2,3,0): &&0 = \partial_2 F_{30} + \partial_3 F_{02} + \partial_0 F_{23} = \partial_y \left(-\frac{e_z}{c} \right) + \partial_z \left(\frac{e_y}{c} \right) + \partial_{ct} (-b_x) \\ &(3,0,1): &&0 = \partial_3 F_{01} + \partial_0 F_{13} + \partial_1 F_{30} = \partial_z \left(\frac{e_x}{c} \right) + \partial_{ct} (-b_y) + \partial_x \left(-\frac{e_z}{c} \right) \\ &(0,1,2): &&0 = \partial_0 F_{12} + \partial_1 F_{20} + \partial_2 F_{01} = \partial_{ct} (-b_z) + \partial_x \left(-\frac{e_y}{c} \right) + \partial_y \left(\frac{e_x}{c} \right) \end{aligned}$$

i.e.

$$\begin{split} &(1,2,3): \quad 0 = -\nabla \cdot \vec{b} \\ &(2,3,0): \quad 0 = -\frac{1}{c} \left[\partial_t b_x + (\partial_y e_z - \partial_z e_y) \right] \\ &(3,0,1): \quad 0 = -\frac{1}{c} \left[\partial_t b_y + (\partial_z e_x - \partial_x e_z) \right] \\ &(0,1,2): \quad 0 = -\frac{1}{c} \left[\partial_t b_z + (\partial_x e_y - \partial_y e_x) \right] \end{split}$$

i.e.

$$\begin{cases} 0 = \nabla \cdot \vec{b} \\ \vec{0} = \partial_t \vec{b} + \nabla \times \vec{e} \end{cases}$$

2.2.4 Point particle in electromagnetic field

Lorentz 4-force acting on a point charge of electric charge charge q reads

$$\mathbf{f} = \mathbf{F} \cdot \mathbf{J} = q \, \mathbf{F} \cdot \mathbf{U} \, .$$

so that the dynamical equation reads

$$m \mathbf{X}'' = q \mathbf{F} \cdot \mathbf{X}'$$

2.2.5 Energy balance

$$\frac{\partial u}{\partial t} = \frac{\partial \vec{s}}{\partial t} = \frac{\partial \vec{s$$

. . .

$$\boldsymbol{\nabla}\cdot\boldsymbol{T}=-\boldsymbol{F}\cdot\boldsymbol{J}$$

Part II General Relativity

СНАРТ	ER
THRE	ΞΕ

GENERAL RELATIVITY

СНАРТЕ	ER
FOU	R

GENERAL RELATIVITY - NOTES

Part III Statistical Mechanics

CHAPTER	
FIVE	

STATISTICAL PHYSICS

CHAPTER	
SIX	

STATISTICAL PHYSICS - NOTES

Part IV Quantum Mechanics

QUANTUM MECHANICS

- Principles and postulates
 - statistics and measurements outcomes (Heisenberg built its matrix mechanics only on observables...)
 - CCR
- angluar momentum, spin, and atom

7.1 Mathematical tools for quantum mechanics

Definition 1 (Operator)

Definition 2 (Adjoint operator)

Given an operator $\hat{A}:U\to V$, its self-adjoint $\hat{A}^*:V\to U$ is the operator s.t.

$$(\mathbf{v},~\hat{A}\mathbf{u})_V=(\mathbf{u},\hat{A}^*\mathbf{v})_U$$

holds for $\forall \mathbf{u} \in U, \mathbf{v} \in V$.

Definition 3 (Hermitian (self-adjoint) operator)

If $\hat{A}: U \to U$, it is a self-adjoint operator if $\hat{A}^* = \hat{A}$.

Self-adjoint operators have real eigenvalues, and orthogonal eigenvectors (at least those associated to different eigenvalues; those associated with the same eigenvalues can be used to build an orthogonal set of vectors with orthogonalization process).

7.2 Postulates of Quantum Mechanics

- ...
- Canonical Commutation Relation (CCR) and Canonical Anti-Commutation Relation...
- ...

7.3 Non-relativistic Mechanics

7.3.1 Statistical Interpretation and Measurement

Wave function

The state of a system is described by a wave function $|\Psi\rangle$

todo

- properties: domain, image,...
- unitary $1 = \langle \Psi | \Psi \rangle = |\Psi|^2$, for statistical interpretation of $|\Psi|^2$ as a density probability function

Operators and Observables

Physical **observable** quantities are represented by *Hermitian operators*. Possible outcomes of measurement are the eigenvalues of the operator

Given \hat{A} and the set of its eigenvectors $\{|A_i\rangle\}_i$ (todo continuous or discrete spectrum..., need to treat this difference quite in details), with associated eigenvalues $\{a_i\}_i$

$$\begin{split} \hat{A}|A_i\rangle &= a_i|A_i\rangle \\ |\Psi\rangle &= |A_i\rangle\langle A_i|\Psi\rangle = |A_i\rangle\Psi_i^A \\ \langle A_j|\Psi\rangle &= \langle A_j|A_i\rangle\langle A_i|\Psi\rangle = \Psi_j^A \end{split}$$

and thus

$$\begin{split} \Psi_j^A &= \langle A_j | \Psi \rangle \\ \Psi_j^{A*} &= \langle \Psi | A_j \rangle \end{split}$$

• identity operator $\sum_i |A_i\rangle\langle A_i|=\mathbb{I}$, since

$$\sum_i |A_i\rangle\langle A_i|\Psi\rangle = \sum_i |A_i\rangle\langle A_i|\Psi_j^AA_j\rangle = \sum_i |A_i\rangle\delta_{ij}\Psi_j^A = \sum_i |A_i\rangle\Psi_i^A = |\Psi\rangle$$

· Normalization:

$$1 = \langle \Psi | \Psi \rangle = \Psi_j^{A*} \underbrace{\langle A_j | A_i \rangle}_{\delta_{ii}} \Psi_i^A = \sum_i \left| \Psi_i^A \right|^2$$

with $|\Psi_i^A|^2$ that can be interpreted as the probability of finding the system in state $|\Psi_i^a\rangle$

• Expected value of the physical quantity in the a state $|\Psi\rangle$, with possible values a_i with probability $|\Psi_i^A|^2$

$$\begin{split} \bar{A}_{\Psi} &= \sum_{i} a_{i} |\Psi_{i}^{A}|^{2} = \\ &= \sum_{i} a_{i} \Psi_{i}^{A*} \Psi_{i}^{A} = \\ &= \sum_{i} a_{i} \langle \Psi | A_{i} \rangle \langle A_{i} | \Psi \rangle = \\ &= \langle \Psi | \left(\sum_{i} a_{i} |A_{i} \rangle \langle A_{i} | \right) |\Psi \rangle = \\ &= \langle \Psi | \hat{A} |\Psi \rangle = \end{split}$$

since an operator \hat{A} can be written as a function of its eigenvalues and eigenvectors

$$\begin{split} \left(\sum_i a_i |A_i\rangle\langle A_i|\right)\Psi\rangle &= \left(\sum_i a_i |A_i\rangle\langle A_i|\right)c_k |A_k\rangle = \\ &= \sum_i a_i |A_i\rangle c_i = \\ &= \sum_i \hat{A} |A_i\rangle c_i = \\ &= \hat{A} \sum_i |A_i\rangle c_i = \hat{A} |\Psi\rangle \;. \end{split}$$

Space Representation

Position operator $\hat{\mathbf{r}}$ has eigenvalues \mathbf{r} identifying the possible measurements of the position

$$\hat{\mathbf{r}}|\mathbf{r}\rangle = \mathbf{r}|\mathbf{r}\rangle$$
,

being \mathbf{r} the result of the measurement (position in space, mathematically it could be a vector), and $|\mathbf{r}\rangle$ the state function corresponding to the measurement \mathbf{r} of the position.

• Result of measurement, \mathbf{r} , is a position in space. As an example, it could be a point in an Euclidean space $P \in E^n$. It could be written using properties of Dirac's delta "function"

$$\mathbf{r} = \int_{\mathbf{r}'} \delta(\mathbf{r}' - \mathbf{r}) \, \mathbf{r}' d\mathbf{r}'$$

• Projection of wave function over eigenstates of position operator

$$\begin{split} \langle \mathbf{r} | \Psi \rangle(t) &= \Psi(\mathbf{r},t) = \int_{\mathbf{r}'} \delta(\mathbf{r} - \mathbf{r}') \Psi(\mathbf{r}',t) d\mathbf{r}' = \\ &= \int_{\mathbf{r}'} \langle \mathbf{r} | \mathbf{r}' \rangle \Psi(\mathbf{r}',t) d\mathbf{r}' = \\ &= \int_{\mathbf{r}'} \langle \mathbf{r} | \mathbf{r}' \rangle \langle \mathbf{r}' | \Psi \rangle(t) d\mathbf{r}' = \\ &= \langle \mathbf{r} | \underbrace{\left(\int_{\mathbf{r}'} | \mathbf{r}' \rangle \langle \mathbf{r}' | d\mathbf{r}' \right)}_{=\hat{\mathbf{l}}} |\Psi \rangle(t) \;. \end{split}$$

• having used orthogonality (todo why? provide definition and examples of operators with continuous spectrum)

$$\langle \mathbf{r}' | \mathbf{r} \rangle = \delta(\mathbf{r}' - \mathbf{r})$$

• Expansion of a state function $|\Psi\rangle(t)$ over the basis of the position operator

$$|\Psi\rangle(t) = \hat{\mathbf{1}}|\Psi\rangle(t) = \left(\int_{\mathbf{r}'} |\mathbf{r}'\rangle\langle\mathbf{r}'d\mathbf{r}'\right) |\Psi\rangle(t) = \int_{\mathbf{r}'} |\mathbf{r}'\rangle\langle\mathbf{r}'|\Psi\rangle(t)\,d\mathbf{r}'\;.$$

· Unitariety and probability density

$$1 = \langle \Psi | \Psi \rangle(t) = \langle \Psi | \left(\int_{\mathbf{r}'} |\mathbf{r}' \rangle \langle \mathbf{r}' d\mathbf{r}' \right) | \Psi \rangle$$
$$= \int_{\mathbf{r}'} \langle \Psi | \mathbf{r}' \rangle \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}'$$
$$= \int_{\mathbf{r}'} \Psi^*(\mathbf{r}', t) \Psi(\mathbf{r}', t) d\mathbf{r}'$$
$$= \int_{\mathbf{r}'} |\Psi(\mathbf{r}', t)|^2 d\mathbf{r}'$$

and thus $|\Psi(\mathbf{r},t)|^2$ can be interpreted as the **probability density function** of measuring position of the system equal to \mathbf{r}' .

• Average value of the operator

$$\begin{split} \bar{\mathbf{r}} &= \langle \Psi | \hat{\mathbf{r}} | \Psi \rangle = \\ &= \int_{\mathbf{r}'} \langle \Psi | \mathbf{r}' \rangle \langle \mathbf{r}' | d\mathbf{r}' | \hat{\mathbf{r}} | \int_{\mathbf{r}''} | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \Psi \rangle d\mathbf{r}'' \\ &= \int_{\mathbf{r}'} \int_{\mathbf{r}''} \langle \Psi | \mathbf{r}' \rangle \langle \mathbf{r}' | \hat{\mathbf{r}} | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \Psi \rangle d\mathbf{r}' d\mathbf{r}'' = \\ &= \int_{\mathbf{r}'} \int_{\mathbf{r}''} \langle \Psi | \mathbf{r}' \rangle \underbrace{\langle \mathbf{r}' | \mathbf{r}'' \rangle}_{=\delta(\mathbf{r}' - \mathbf{r}'')} \mathbf{r}'' \langle \mathbf{r}'' | \Psi \rangle d\mathbf{r}' d\mathbf{r}'' = \\ &= \int_{\mathbf{r}'} \langle \Psi | \mathbf{r}' \rangle \mathbf{r}' \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}' = \\ &= \int_{\mathbf{r}'} \Psi^*(\mathbf{r}', t) \mathbf{r}' \Psi(\mathbf{r}', t) d\mathbf{r}' = \\ &= \int_{\mathbf{r}'} |\Psi(\mathbf{r}', t)|^2 \mathbf{r}' d\mathbf{r}' . \end{split}$$

Momentum Representation

Momentum operator as the limit of ...**todo** prove the expression of the momentum operator as the limit of the generator of translation

$$\langle \mathbf{r} | \hat{\mathbf{p}} = -i\hbar \nabla \langle \mathbf{r} |$$

• Spectrum

$$\hat{f p}|{f p}
angle={f p}|{f p}
angle$$
 $\langle{f r}|\hat{f p}|{f p}
angle=-i\hbar
abla\langle{f r}|{f p}
angle={f p}\langle{f r}|{f p}
angle$

and thus the eigenvectors in space base $\mathbf{p}(\mathbf{r}) = \langle \mathbf{r} | \mathbf{p} \rangle$ are the solution of the differential equation

$$-i\hbar\nabla\mathbf{p}(\mathbf{r})=\mathbf{p}\mathbf{p}(\mathbf{r})\;,$$

that in Cartesian coordinates reads

$$-i\hbar\partial_j p_k({\bf r}) = p_j p_k({\bf r})$$

$$p_k(\mathbf{r}) = p_{k,0} \exp \left[i \frac{p_j}{\hbar} r_j \right]$$

or

$$\langle {f r}|{f p}
angle = {f p}({f r}) = {f p}_0 \exp\left[irac{{f p}\cdot{f r}}{\hbar}
ight]$$

todo

– normalization factor $\frac{1}{(2\pi)^{\frac{3}{2}}}$

$$\mathcal{F}\{\delta(x)\}(k) = \int_{-\infty}^{\infty} \delta(x)e^{-ikx} dx = 1$$

- Fourier transform and inverse Fourier transform: definitions and proofs (link to a math section)
- representation in basis of wave vector operator $\hat{\mathbf{k}}$, $\hat{\mathbf{p}} = \hbar \hat{\mathbf{k}}$

From position to momentum representation

Momentum and wave vector, $\mathbf{p} = \hbar \mathbf{k}$

$$\begin{split} \langle \mathbf{p} | \Psi \rangle &= \langle \mathbf{p} | \int_{\mathbf{r}'} | \mathbf{r}' \rangle \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}' = \\ &= \int_{\mathbf{r}'} \langle \mathbf{p} | \mathbf{r}' \rangle \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}' = \\ &= \frac{1}{(2\pi)^{3/2}} \int_{\mathbf{r}'} \exp \left[i \frac{\mathbf{p} \cdot \mathbf{r}}{\hbar} \right] \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}' = \end{split}$$

Relation between position and wave-number representation can be represented with a Fourier transform

$$\begin{split} \langle \mathbf{k} | \Psi \rangle &= \langle \mathbf{k} | \int_{\mathbf{r}'} | \mathbf{r}' \rangle \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}' = \\ &= \int_{\mathbf{r}'} \langle \mathbf{k} | \mathbf{r}' \rangle \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}' = \\ &= \frac{1}{(2\pi)^{3/2}} \int_{\mathbf{r}'} \exp\left[i\mathbf{k} \cdot \mathbf{r}'\right] \langle \mathbf{r}' | \Psi \rangle d\mathbf{r}' = \\ &= \frac{1}{(2\pi)^{3/2}} \int_{\mathbf{r}'} \exp\left[i\mathbf{k} \cdot \mathbf{r}'\right] \Psi(\mathbf{r}') d\mathbf{r}' = \\ &= \mathcal{F}\{\Psi(\mathbf{r})\}(\mathbf{k}) \end{split}$$

7.3.2 Schrodinger Equation

$$i\hbar \frac{d}{dt}|\Psi\rangle = \hat{H}|\Psi\rangle$$

being \hat{H} the Hamiltonian operator and $|\Psi\rangle$ the wave function, as a function of time t as an independent variable.

Stationary States

Eigenspace of the Hamiltonian operator

$$\hat{H}|\Psi_k\rangle = E_k|\Psi_k\rangle$$
,

with E_k possible values of energy measurements. If no eigenstates with the same eigenvalue exists, then...otherwise... Without external influence todo be more detailed!, energy values and eigenstates of the systems are constant in time.

Thus, exapnding the state of the system $|\Psi\rangle$ over the stationary states gives $|\Psi_k\rangle$, $|\Psi\rangle=|\Psi_k\rangle c_k(t)$, and inserting in Schrodinger equation

$$i\hbar \dot{c}_k |\Psi_k\rangle = c_k E_k |\Psi_k\rangle$$

and exploiting orthogonality of eigenstates, a diagonal system for the amplitudes of stationary states ariese,

$$i\hbar\dot{c}_k = c_k E_k$$
.

whose solution reads

$$c_k(t) = c_{k,0} \exp \left[-i \frac{E_k}{\hbar} t \right]$$

Thus the state of the system evolves like a superposition of monochromatic waves with frequencies $\omega_k = \frac{E_k}{h}$,

$$\begin{split} |\Psi\rangle &= |\Psi_k\rangle c_k(t) = |\Psi_k\rangle c_{k,0} \exp\left[-i\frac{E_k}{\hbar}t\right] \,. \\ \frac{d}{dt}\bar{A} &= \frac{d}{dt}\left(\langle\Psi|\hat{A}|\Psi\rangle\right) = \\ &= \frac{d}{dt}\langle\Psi|\hat{A}|\Psi\rangle + \langle\Psi|\frac{d\hat{A}}{dt}|\Psi\rangle + \langle\Psi|\hat{A}\frac{d}{dt}|\Psi\rangle = \\ &= \langle\Psi|\frac{d\hat{A}}{dt}|\Psi\rangle + \frac{i}{\hbar}\langle\Psi|\hat{H}\hat{A}|\Psi\rangle - \frac{i}{\hbar}\langle\Psi|\hat{A}\hat{H}|\Psi\rangle = \\ &= \langle\Psi|\left(\frac{i}{\hbar}[\hat{H},\hat{A}] + \frac{d\hat{A}}{dt}\right)|\Psi\rangle \,. \end{split}$$

Pictures

- Schrodinger
- · Heisenberg
- Interaction

Schrodinger

If \hat{H} not function of time

$$\begin{split} |\Psi\rangle(t) &= \exp\left[-i\frac{\hat{H}}{\hbar}(t-t_0)\right] |\Psi\rangle(t_0) = \hat{U}(t,t_0)|\Psi\rangle(t_0) \\ \\ \bar{A} &= \langle\Psi|\hat{A}|\Psi\rangle = \langle\Psi_0|\hat{U}^*(t,t_0)\hat{A}\hat{U}(t,t_0)|\Psi_0\rangle \end{split}$$

Heisenberg

. .

for \hat{H} independent from time t,

$$\begin{split} \frac{d}{dt}\bar{\mathbf{r}} &= \overline{\frac{i}{\hbar}\left[\hat{H},\hat{\mathbf{r}}\right]} \\ \frac{d}{dt}\bar{\mathbf{p}} &= \overline{\frac{i}{\hbar}\left[\hat{H},\hat{\mathbf{p}}\right]} \end{split}$$

Hamiltonian Mechanics

From Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = Q_q$$

q generalized coordinates, $p:=\frac{\partial L}{\partial \dot{q}}$ generalized momenta.

Hamiltonian

$$H(p,q,t) = p\dot{q} - L(\dot{q},q,t)$$

Increment of the Hamiltonian

$$\begin{split} dH &= \partial_p H dp + \partial_q H dq + \partial_t H dt \\ dH &= \dot{q} dp + p d\dot{q} - \partial_{\dot{q}} L d\dot{q} - \partial_q L dq - \partial_t L dt = \\ &= \dot{q} dp - \partial_q L dq - \partial_t L dt = \\ &= \dot{q} dp - \left(\dot{p} + Q_q \right) dq - \partial_t L dt = \\ &\left\{ \begin{aligned} \frac{\partial H}{\partial p} &= \dot{q} \\ \frac{\partial H}{\partial q} &= -\frac{\partial L}{\partial q} = -\dot{p} + Q_q \\ \frac{\partial H}{\partial t} &= -\frac{\partial L}{\partial t} \end{aligned} \right. \end{split}$$

Physical quantity f(p(t), q(t), t). Its time derivative reads

$$\begin{split} \frac{df}{dt} &= \frac{\partial f}{\partial p} \dot{p} + \frac{\partial f}{\partial q} \dot{q} + \frac{\partial f}{\partial t} = \\ &= \frac{\partial f}{\partial p} \left[-\frac{\partial H}{\partial q} + Q_q \right] + \frac{\partial f}{\partial q} \frac{\partial H}{\partial p} + \frac{\partial f}{\partial t} = \\ &= \{H, f\} + \partial_t f + Q_q \partial_p f \end{split}$$

If $Q_q=0$, the correspondence between quantum mechanics and classical mechanics

$$\frac{df}{dt} = \{H, f\} + \partial_t f \qquad \leftrightarrow \qquad \frac{d}{dt} \overline{\hat{f}} = \frac{\overline{i}}{\hbar} [\hat{H}, \hat{f}] + \frac{\overline{\partial \hat{f}}}{\partial t}$$

$$\{H, f\} \qquad \leftrightarrow \qquad \frac{i}{\hbar} [\hat{H}, \hat{f}]$$

Interaction

7.3.3 Matrix Mechanics

Attualization of 1925 papers

...to find the canonical commutation relation,

$$\begin{split} [\hat{\mathbf{r}},\hat{\mathbf{p}}] &= i\hbar\mathbb{I}\,\hat{\mathbf{1}}\,. \\ [\hat{\mathbf{r}},\hat{\mathbf{p}}] &= \hat{\mathbf{r}}\hat{\mathbf{p}} - \hat{\mathbf{p}}\hat{\mathbf{r}} = \\ &= \hat{\mathbf{r}}\int_{\mathbf{r}}|\mathbf{r}\rangle\langle\mathbf{r}|d\mathbf{r}\hat{\mathbf{p}} - \hat{\mathbf{p}}\int_{\mathbf{r}}|\mathbf{r}\rangle\langle\mathbf{r}|d\mathbf{r}\,\hat{\mathbf{r}}\,\int_{\mathbf{r}'}|\mathbf{r}'\rangle\langle\mathbf{r}'|d\mathbf{r}' = \\ &= -\int_{\mathbf{r}}\mathbf{r}|\mathbf{r}\rangle i\hbar\nabla\langle\mathbf{r}|\,d\mathbf{r} - \hat{\mathbf{p}}\int_{\mathbf{r}}\int_{\mathbf{r}'}|\mathbf{r}\rangle\mathbf{r}'\,\frac{\langle\mathbf{r}|\mathbf{r}'\rangle}{\delta(\mathbf{r}-\mathbf{r}')}\langle\mathbf{r}'|d\mathbf{r}' = \\ &= -\int_{\mathbf{r}}\mathbf{r}|\mathbf{r}\rangle i\hbar\nabla\langle\mathbf{r}|\,d\mathbf{r} - \hat{\mathbf{p}}\int_{\mathbf{r}}\mathbf{r}|\mathbf{r}\rangle\langle\mathbf{r}|d\mathbf{r} = \\ &= -\int_{\mathbf{r}}\mathbf{r}|\mathbf{r}\rangle i\hbar\nabla\langle\mathbf{r}|\,d\mathbf{r} - \int_{\mathbf{r}'}|\mathbf{r}\rangle\langle\mathbf{r}|d\mathbf{r}\,\hat{\mathbf{p}}\int_{\mathbf{r}'}\mathbf{r}'|\mathbf{r}'\rangle\langle\mathbf{r}'|d\mathbf{r}' = \\ &= -\int_{\mathbf{r}}\mathbf{r}|\mathbf{r}\rangle i\hbar\nabla\langle\mathbf{r}|\,d\mathbf{r} + \int_{\mathbf{r}}|\mathbf{r}\rangle i\hbar\nabla\langle\mathbf{r}|d\mathbf{r}\int_{\mathbf{r}'}\mathbf{r}'|\mathbf{r}'\rangle\langle\mathbf{r}'|d\mathbf{r}' = \dots \\ [\hat{\mathbf{r}},\hat{\mathbf{p}}]\,|\Psi\rangle = -\int_{\mathbf{r}}\mathbf{r}|\mathbf{r}\rangle i\hbar\nabla\Psi(\mathbf{r},t) + \int_{\mathbf{r}}|\mathbf{r}\rangle i\hbar\nabla\left(\mathbf{r}\Psi(\mathbf{r},t)\right) = \\ &= -\int_{\mathbf{r}}|\mathbf{r}\rangle i\hbar\left[\mathbf{r}\nabla\Psi(\mathbf{r},t) + \mathbb{I}\Psi(\mathbf{r},t) + \mathbf{r}\nabla\Psi(\mathbf{r},t)\right] = \\ &= i\hbar\int_{\mathbf{r}}|\mathbf{r}\rangle\langle\mathbf{r}|d\mathbf{r}|\Psi\rangle\;, \end{split}$$

and since $|\Psi\rangle$ is arbitrary

$$[\hat{\mathbf{r}}, \hat{\mathbf{p}}] = i\hbar \mathbb{I}\hat{\mathbf{1}}$$
.

$$[\hat{r}_a, \hat{p}_b] = i\hbar \delta_{ab} \; .$$

7.3.4 Heisenberg Uncertainty "principle"

- Heisenberg uncertainty "principle" is a relation between product of variance of two physical quantities and their commutation,
- todo relation with measurement process and outcomes. Commutation as a measurement process: first measure B and then A, or first measure A and then B

$$\sigma_A \sigma_B \geq \frac{1}{2} \left| \overline{[\hat{A}, \hat{B}]} \right| .$$

Proof of Heisenberg uncertainty "principle"

$$\begin{split} \sigma_A^2 \sigma_B^2 &= \langle \Psi | \left(\hat{A} - \bar{A} \right)^2 | \Psi \rangle \langle \Psi | \left(\hat{B} - \bar{B} \right)^2 | \Psi \rangle = \\ &= \langle (\hat{A} - \bar{A}) \Psi | (\hat{A} - \bar{A}) \Psi \rangle \langle (\hat{B} - \bar{B}) \Psi | (\hat{B} - \bar{B}) \Psi \rangle = \\ &= \| (\hat{A} - \bar{A}) \Psi \|^2 \| (\hat{B} - \bar{B}) \Psi \|^2 = \\ &\geq \left| \langle (\hat{A} - \bar{A}) \Psi | (\hat{B} - \bar{B}) \Psi \rangle \right|^2 = \\ &= \left| \langle \Psi | (\hat{A} - \bar{A}) (\hat{B} - \bar{B}) \Psi \rangle \right|^2 = \\ &= \left| \langle \Psi | (\hat{A} - \bar{A}) (\hat{B} - \bar{B}) \Psi \rangle \right|^2 = \\ &= \left| \langle \Psi | \hat{A} \hat{B} - \hat{A} \bar{B} - \bar{A} \hat{B} + \bar{A} \bar{B} | \Psi \rangle \right|^2 = \\ &= \left| \langle \Psi | \hat{A} \hat{B} - \bar{A} \bar{B} | \Psi \rangle \right|^2 = \\ &= \left| \frac{\langle \Psi | (\hat{A} \hat{B} - \hat{B} \hat{A} | \Psi \rangle)}{2i} \right|^2 = \\ &= \frac{\left| \langle \Psi | (\hat{A} , \hat{B}) | \Psi \rangle \right|^2}{4} = \frac{1}{4} \left| \overline{[\hat{A} , \hat{B}]} \right|^2 \end{split}$$

having used Cauchy triangle inequality and

$$|z| = \frac{\operatorname{re}\{z\} + \operatorname{re}\{z^*\}}{2} = \frac{\operatorname{im}\{z\} - \operatorname{im}\{z^*\}}{2i}$$

Hesienberg uncertainty principles applied to position and momentum reads

$$\sigma_{r_a}\sigma_{p_b} \geq \frac{1}{2} \left| \overline{[\hat{r}_a,\hat{p}_b]} \right| = \frac{\hbar}{2} \delta_{ab} \; .$$

7.4 Many-body problem

Wave function with symmetries: Fermions and Bosons

CHA	APTER
EI	GHT

QUANTUM MECHANICS - NOTES

PROOF INDEX

Adjoint Operator

Adjoint Operator (ch/quantum-mechanics/intro), 29

Operator

Operator (ch/quantum-mechanics/intro), 29

Self-Adjoint Operator

Self-Adjoint Operator (ch/quantum-mechanics/intro), 29