Построение модели для классификации входящих звонков в голосовом помощнике

Цель проекта

 Увеличение автоматизации, которая позволит компании снизить трудоемкость колл-центра и перераспределить ресурсы на более важные задачи.

Задача проекта

• Построить модель, которая будет классифицировать тематику звонка, и на основе данной тематики решать запросы клиентов.

Что было сделано командой

 Размечены данные (использовали несколько подходов). Построена модель, которая классифицирует тематику звонка.

Base line

1. Тематическое моделирование. Нужно выделить темы и разметить данные.

Было решено использовать один из подходов <u>LDA</u>, <u>CTM</u>, GSDMM. В результате тематического моделирования планировалось выделить темы, о которых говорят клиенты в своих вопросах. Условный пример:

- Получить код товара
- Узнать срок хранение заказ

2. Построить модель классификации на размеченных данных

В качестве модели классификатора попробовать <u>fasttext</u>.

Base line

Как решали задачу на этом этапе:

1. Сделали развед анализ.

Посмотрели какие данные, сколько дублей, частота повторения идентичных вопросов и т д.

2. Предобработали текстовые данные

- а. Удалили стоп-слова (из библиотеки nltk.corpus)
- b. Нормализовали текстовые данные
- с. Удалили знаки препинания, символы
- d. Удалили выбросы

3. Разметили данные при помощи алгоритма LDA

Выделили 4 и 8 классов (два датасета)

4. Построили модель классификации fasttext (на 4-ех классах)

Получили accuracy 0.97

Выводы по итогам base line

Мы поняли, что классификатор на данном датасете работает достаточно хорошо, и задача скорее сводится именно к кластеризации (максимально корректной разметке данных).

Дальнейшие шаги по разметке данных

Решили дополнительно попробовать два варианта разметки данных кроме LDA:

- 1. K-means. Данный метод показал более адекватные результаты по сравнению с LDA.
- 2. Логика + K-means. Как размечали логикой:
 - а) Нормализовали текстовые данные
- б) При помощи value_counts выделяли самые большие классы по вхождению слов и словосочетаний из метода value_counts. Таким образом удалось выделить 11 основных классов которые составили около 65% от всего датасета. Остальные 9 менее однозначных класса выделили при помощи метода kmeans.

После разметки у нас получилось два размеченных датасета:

- 1. По методу kmeans
- 2. Логическим методом + kmeans

Дальнейшие шаги по модели классификации

На основе размеченных данных, для каждого из датасетов обучили три классификатора

Итоги

Тип размеченных данных	Модель классификации	Кол-во классов	Accuracy
kmeans	fasttext	19	0.93
kmeans	random_forest	19	0.95
kmeans	rubert	19	0.92 (на двух эпохах)
логика+kmeans	fasttext	20	0.96
логика+kmeans	random_forest	20	0.96
логика+kmeans	rubert	20	0.95 (на первой эпохе)

По итогам нашей работы лучшее решение было получено в результате:

- 1. Разметка гибридный подход (логика + kmeans)
- Модель классификатора Хорошие результаты показали random forest и fasttext. Fastext очень легковесный и считается в десятки, а то и в сотни раз быстрее всех остальных, а качество по метрикам не хуже. Также стоит отметить rubert transformer. Нам хватило ресурсов на одну эпоху, но даже на ней ассигасу 95%. Возможно у rubert самый большой потенциал по качеству классификации. Но его минус, что он требует очень много ресурсов

EDA

- Посмотрели как распределенные вопросы по частоте упоминания (уже на данном этапе стало понятно, что большинство вопросов связано с небольшим кол-вом классов, а вся сложность выделить оставшиеся классы)
- Поискали и удали выбросы (по минимальному кол-ву символов и методом боксплота)

Тематическое моделирование. Как выделяли темы:

1. LDA. Использовали решение из библиотеки gensim. В качестве метрики мы использовалась когерентность. Кол-во тем выбирали по методу локтя. Тематику классов определяли исходя из визуализации, которая показывает вхождение наиболее вероятных токенов в топике

Тематическое моделирование.

2. К-means. Преобразовываем наши текстовые строки в вектора с помощью TFIDF метода. Далее при помощи метода локтя ищем излом для определения оптимального количества кластеров, которое указываем для К-Means модели. После строим облака слов для визуализации текстов из кластеров. В Облаках, превалирующие тексты выделены более крупным шрифтом для удобства и визуализации.

Модели классификации

Random forest:

- 1. Для преобразования текста в вектора используем TfidfVectorizer()
- 2. Обучаем модель

Fasttext:

- 1. Подготовка данных (очистка, нормализация, удаление стоп слов)
- 2. Преобразуем размеченные классы в нужный формат
- 3. Обучаем модель используя библиотек fasttext

Модели классификации

Rubert transformers:

- 1. Подготовка данных (очистка, нормализация, удаление стоп слов)
- 2. Токенезируем текстовые данные используя AutoTokenize, используя библиотеку transformers
- 3. Эмбендинги DeepPavlov
- Размер батча 16
- 5. learning_rate 5e-5,
- 6. Кол-во эпох 3
- 7. Оптимайзер Адам