Note: Only the first three problems are solved completely below. Solutions to 7-10 are provided on this <u>lecture video</u> as well as <u>these corresponding slides</u>. Solution outlines to 11-13 are below.

1.
$$P \rightarrow Q \vdash \sim Q \rightarrow \sim P$$

1.
$$P \rightarrow Q$$
 A

 2. $| \sim Q$
 $H \rightarrow I$

 3. $| P$
 $H \sim I$

 4. $| Q$
 $1,3 \rightarrow E$

 5. $| Q \& \sim Q$
 $2,4 \& I$

 6. $| \sim P$
 $3-5, \sim I$

 7. $\sim Q \rightarrow \sim P$
 $2-6, \rightarrow I$

2.
$$P \& Q \vdash \sim (P \rightarrow \sim Q)$$

1. P & Q A
2.
$$| P \rightarrow \sim Q$$
 H
3. $| P$ 1, &E
4. $| \sim Q$ 2,3 $\rightarrow E$
5. $| Q$ 1, &E
6. $| Q \& \sim Q$ 4,5 &I
7. $| \sim (P \rightarrow \sim Q)$ 2-6, $| \sim I$

3.
$$(P \& Q) \rightarrow (R \lor S), \sim (R \lor S) \vdash \sim (P \& Q)$$

1.
$$(P \& Q) \rightarrow (R \lor S)$$

11. $\sim (P \rightarrow Q) \mid P \& \sim Q$

Outline of proof.

Since you are trying to prove a conjunction, consider proving each conjunct independently by ~I.

For the first leg, hypothesize \sim P. From here it's not clear what to do, but you know you need a contradiction, and the only formula you can contradict is the assumption, which means that you want to prove (P \rightarrow Q).

Proceed by \rightarrow I, hypothesizing P. This give you a contradiction to work with, and so you can derive Q by hypothesizing \sim Q for \sim I. This will allow you to show (P \rightarrow Q) which contradiction the assumption, giving you \sim P and thus P.

Proceed similarly to prove \sim Q, by hypothesizing Q for \sim I and deriving (P \rightarrow Q) once again.

12. $S \leftrightarrow T$, $T \lor S \vdash \sim (T \rightarrow \sim S)$

Outline of proof.

Since you have a disjunction, you will want to use vE to derive the conclusion twice, each time by ~I.

So you first show T \rightarrow ~(T \rightarrow ~S), by hypothesizing T for \rightarrow I and then (T \rightarrow ~S) for ~I.

By involving the biconditional, you will arrive at a contradiction in a few steps.

Repeat the procedure for the second disjunct S, then draw the conclusion by vE.

13. $Q \rightarrow R \mid \neg Q \lor R$

Outline of proof.

Hypothesize \sim (\sim Q v R) for \sim I.

The problem now is to generate a contradiction which takes some creativity.

If you look at your hypothesis, you'll see it affords you the opportunity to prove Q by hypothesizing ~Q and using vI to derive a contradiction.

But if you have Q, you have R by \rightarrow E, and then you can use vI again to contradiction the original hypothesis.