

산업현장 낙상 사고 예방을 위한 loT기반 솔루션

산업안전 안전고리 Safe Ring

| Contents

건설현장 낙상사고 예방을 위한 모듈형 스마트 안전 시스템

프로젝트 개요

산업 현장에서 사고가 빈번하게 발생하고 있으며, 기존 안전 시스템의 한계로 인해 사고 예방이 어려운 상황

- 산업재해의 주요 원인 중 '낙상' 사고의 비율
- 기존 안전장비의 착용 확인 불가, 위치 파악 불가 문제
- 실시간 정보 부재로 인한 대응 지연

산업안전의 중요성

산업 현장의 안전 문제

- 매년 수많은 근로자가 산업 현장에서 사고를 당하며, 이로 인해 생명과 재산의 피해가 발생

사회적 책임

기업은 근로자의 안전을 보호할 책임이 있으며,
 산업안전은 기업의 사회적 신뢰와 이미지에 큰 영향을 미침

법적 요구사항

- 산업안전 관련 법규(산업안전보건법 등)에 따라, 안전 시스템을 도입해야 하는 법적 의무가 있음

시스템의 한계

시간모니터링부족

- 현재 대부분의 산업 현장에서는 위험 지역을 실시간으로 모니터링할 수 있는 시스템이 부족

사고 예방의 미비점

- 사고 발생 후 대처는 이루어지지만, 사전 예방을 위한 시스템이 부족하여 예방적 조치가 약함

사고발생후대응

사고 발생 후에는 대응이 이루어지지만,
 사고가 발생한 뒤 피해를 최소화하는 데는 한계가 있음

산업안전 시스템 도입의 필요성

- 효율적인 사고 예방: 기존의 안전 시스템은 사고 예방에 한계가 있어, 실시간 위치 추적, 위험 지역 경고 등의 첨단 기술을 활용할 필요성
- 법적 규제 강화:정부의 안전 규제가 강화되고 있어, 기업들이 법규를 준수하고 사고를 예방하기 위한 스마트 안전 시스템이 필수적

아이디어 제안

기존 안전벨트를 스마트하게 바꾸는 모듈형 시스템

- 기존 산업 안전벨트는 낙상 감지 및 착용 여부 확인이 불가함
- 사고 시 위치 파악이 어려워 실시간 대응에 한계가 있음

Solution 1

안전고리 체결 감지

카라비너가 체결되었는지 감지하는 IR 센서, 착용자를 구분할 수 있도록 ID 부여

낙상 감지

낙상 시 자동 제어를 위한 리트랙터와 센서, 충격을 완화할 완충 랜야드와 리트랙터

Solution 3

빠른 대처

낙상 발생 시 정확하고 빠르게 위치를 확인할 수 있는 BLE 비콘, LoRa 통신 모듈

도입 비용은 낮추고, 현장 맞춤 적용성은 높이며 모듈화로 설계하여 기존 시스템을 교체하지 않고도 장착 가능

시스템 구조도

작업자의 착용 상태부터 사고 발생까지, 자동으로 연결되는 구조

작업자의 움직임과 센서 데이터를 중심으로 착용 여부, 위치 정보, 낙상 발생 여부가 하나의 MCU를 통해 통합 처리되고, LoRa 통신으로 관리자에게 실시간 전송됨

BLE 비콘

- > 각 층 벽면에 설치
- > MCU가 비콘 신호를 인식하여 위치(층) 확인

카라비너 + IR 센서

- > 금속 난간 체결 여부 감지
- > 착용 상태 정보 MCU로 전송

리트랙터 + 래칫기어 감지

- > 낙상 발생 시 래칫기어가 자동 제동(리트랙터도 제동 가능)
- > 포지션 센서가 낙상 여부 감지

MCU (중앙 제어)

- > IR, BLE, 포지션 센서 신호 수집
- > 착용 상태 + 대상 + 위치 + 낙상 여부 통합 판단
- > LoRa 모듈을 통해 원거리 관리자 서버로 송신

관리자 플랫폼

- > 실시간 위치 및 이상상황 대시보드 표시
- > 낙상 발생 시 경보 알림, 위치 확인 가능

작동시나리오 착용부터 사고 감지까지 자동으로!

1. 작업자 착용

스마트 모듈이 부착되니 하네스를 착용하고, 카라비너를 난간에 체결

-> IR센서가 체결 여부를 감지함

작업자가 이동하면서 BLE 비콘 신호 수신

-> 층별 위치 실시간 인식

3. 낙상 발생

낙상 시 리트랙터와 래칫기어가 제동

-> 포지션 센서(리미트 스위치)가 낙상 감지

4. 데이터 전송

MCU가 착용 상태, 위치, 낙상 여부 통합

-> LoRa 통신을 통해 관리자에게 실시간 전송

시스템 구성도

시스템 구성도 및 데이터 흐름

- 기존 산업 안전벨트는 낙상 감지 및 착용 여부 확인이 불가함
- 사고 시 위치 파악이 어려워 실시간 대응에 한계가 있음

사용자(근로자) 낙상 전/후 시스템 구성도

 나상 전
 >>>

 ID 확인

- 1) 사용자가 벨트를 착용
- **2) EEPROM**에 저장된 사용자 고유 ID를 MCU가 읽음
- 3) 센서가 데이터를 묶어 관리할 준비

착용 여부 감지

- 1) IR 센서 사용
- 2) 고리에 걸리면 빛이 반사/차단되어 착용 감지
- 3) IR 수신기가 **디지털 신호**를 MCU에 전달 연결됨(HIGH (0)) 해제됨(LOW (1))

초기 데이터 전송

- 1) MCU로 정보 수집
 - 사용자 ID
 - 착용 상태(IR 센서)
 - 현재 위치(GPS)
- 2) 데이터를 **LoRa 통신**으로 전송 LoRa > 게이트 웨이 > 서버

실시간 모니터링 시작

- 1) MCU가 주기적으로 센서 상태 점검 (예:30초~1분)
 - IR 센서 : 탈착 여부 변화 감지
 - GPS : 위치 이동 추적

낙상 후

낙상 사고 발생

- 1) 낙상 시, 안전벨트 내부의 레칫기어가 작동하여 급제동됨
- 2) 리미트 스위치가 눌리면서 낙상 상태 감지
- 3) MCU는 이를 fallDetected = true 로 인식
- 4) 동시에 GPS 모듈로 위치 확인, BLE 비콘 신호로 층 확인

낙상 알림 정보 전송

- 1) MCU는 다음 정보를 포함한 **패킷을 전송**
 - 사용자 ID (EEPROM)
 - 착용 여부 (IR)
 - 낙상 여부 (포지션 센서)
 - 위치 좌표/시간 (GPS,비콘)
- 2) 전송 방식 LoRa > 게이트웨이 > 클라우드 서버

관리자에게 실시간 알림

- 1) 이벤트 DB에 저장
- 2) 알림 API호출 > 관리자 앱/웹에 실시간 알림 발송
 - 알림 팝업 수신
 - 사용자 위치 지도 표시
 - 낙상 이력 조회
 - 구조 요청 판단 및 조치 가능

낙상 이후 상태 기록

- 1) 벨트가 해제될 때까지 IR 센서와 포지션 센서 상태 기록 지속
- 2) MCU는 전원 종료 전까지 모든 로그 기록
- 3) 전원 OFF시 EEPROM 또는 내부 Flash에 최근 이력 저장 가능

기술 구성 요소

모듈형 하드웨어 구성 설명

IR 센서, BLE, LoRa 등 주요 센서를 모듈화하여 통합형 스마트 안전 시스템을 구성

기존 하네스와 모듈화 시스템 결합 이미지

IR 센서 내장 카라비너

- 금속 구조물에 체결 시 적외선 반사 감지를 통해 착용 여부 자동 인식
- 미체결 시 경고 기능, 관리자 수동 확인 불필요
- 체결 시 관리자에게 사용자 개별 ID 전송

리트랙터 + 래칫기어 낙상 감지 장치

- 낙상 시 래칫기어 자동 제동
- 완충 랜야드로 낙상 시 충격 흡수
- 포지션 센서(리미트 스위치)가 제동 감지하여 낙상 여부 판단

BLE 비콘 기반 층별 위치 인식

- 건물 각 층에 설치된 BLE 비콘 신호 수신
- 가장 큰 신호에 입력된 숫자로 층 구분
- GPS 미지원 실내에서도 층 단위 위치 추적 가능

MCU + LoRa 통신 모듈

- IR, ID, 낙상, 위치 정보를 통합 분석
- LoRa 통신으로 관리자 플랫폼에 실시간 전송
- 낙상 시 빠른 대응 가능

관리자 웹 UXUI 예시 관리자가 관리하는 웹 페이지 예시

작업자의 위치, 착용 여부, 낙상 상황을 한눈에 확인할 수 있는 **직관적인 관리자 전용 대시보드 제공** 실시간 알림, 층별 맵 뷰, 이력 조회 기능으로 **신속한 대응과 기록 관리가 가능**

빨간색 알림 : 낙상 발생 시 긴급 알림으로 제일 상단에서 보여짐

<mark>파란색 알림</mark> : 안전고리가 잘 연결됐을 시엔 파란색 알림으로 실시간 알림이 뜸

노란색 알림 : 안전고리가 잘 연결되지 않았을 경우엔 노란색 알림으로 확인하라는 알림이 뜸

회색 알림 : 과거 알림 이력을 나타냄

기대 효과 및 차별성

특허 검색을 통해 아이디어와 비교해보고 차이점 도출하기

안전 고리 체결 감지 장치

등록번호 1020200054294

- 고정 수단의 삽입 여부, 굵기, 길이를 판단
- 안전 고리가 정상 체결되었는지 확인
- 작업자가 정확히 로프를 고정했는지 실시간 감지

산업안전그네용 충격흡수죔줄

등록번호 10-1797672

- 훅을 통해 안전대와 고정지지대에 체결
- 다양한 형태의 충격흡수장치와 호환 가능
- 추락 시 충격을 완충 및 분산하여 부상 위험 최소화

자동 속도변환장치의 브레이크장치

등록번호 1009449720000

• 자동 속도변환장치에 브레이크가 작동

- 브레이크어댑터와 패드가 허브쉘을 마찰로 제동
- 정회전폴, 역회전폴, 변속방지폴, 폴제어링으로 구동 방향 제어

기존 특허 내용과의 차이점

스마트 감지 + 실시간 통신

적외선 센서와 LoRa 통신을 통해 체결 상태를 실시간 감지하고, 낙상 사고를 즉시 관리자에게 전송한다.

사용자 식별(ID 시스템)

EEPROM에 사용자 고유 ID를 저장해 RFID 없이도 작업자를 식별하고, 사고 발생 시 사용자 정보까지 추적할 수 있다.

종합 사고 대응 시스템

체결 확인, 낙상 감지, 제동, 사용자 식별, 위치 전송까지 통합된 안전 관리 솔루션을 제공한다.

기대 효과 및 차별성

기존 시스템과 다른 차별성

- 1. 실내 위치 인식 가능 (BLE 기반 층 구분)
- 2. 자동 착용 인식 기능 → 관리자 수동 점검 불필요
- 3. 낙상 시 자동 제동 및 관리자 실시간 알림

I. BLE 기반 실내 위치 인식

기대효과

- 건물 내부에서도 **층별 정확한 위치 파악** 가능
- 사고 발생 시 즉시 위치 데이터 관리자에게 전송 > 신속한 대응 가능
- 근로자 동선 분석을 통한 안전 관리 최적화

차별성

- GPS가 닿지 않는 실내 환경에서도 실시간 위치 추적 가능
- 저전력 BLE 비콘 기반 > 구축 비용과 유지비 절감

2. IR 센서를 활용한 자동 인식

기대효과

- 안전고리 미체결 시 관리자에게 경고 알림 전송
- 관리자 수동 점검 최소화 > 인건비/오류 확률 감소
- 착용 여부 로그화로 사고 시 착용 여부 증빙 가능

차별성

- 착용 인식 완전 자동화 (사용자 앱/버튼 조작 불필요)
- 장비 일체형 X > **외부 환경에 영향 받지 않음**

3. LoRa 실시간 전송 시스템

기대효과

- 낙상 사고 발생 시 래칫기어의 제동 감지로 즉각 반응
- 관리자에게 실시간 알림 전송 **> 골든타임 확보**
- 사고 데이터 자동 기록 > 사후 분석 및 대응 가능

차별성

- 래칫기어 + MCU + LoRa 통신으로 사고 감지 및 전송까지 자동화
- 장거리 저전력 통신 가능 > 대형 현장에서도 안정적 작동

활용 방안 및 도입 전략

기존 제품과 결합하는 모듈 방식

표준 하네스에 부착 가능 > 도입 용이성 증가

기존 하네스와 호환되는 모듈형 구성

> 별도의 전용 장비 없이 표준 안전벨트에 **부착만으로 사용 가능**

도입 부담 ↓ 중소 현장부터 대형 현장까지 빠른 적용 가능 02

다양한 산업군으로의 **확장 가능성**

건설현장

고층 작업자 낙상사고 예방

플랜트 산업

넓은 부지 내 실내/외 구분 위치 추적

물류센터

고소작업 차량 운용 시 실시간 모니터링 활용

03

기업 맞춤형 커스터마이징 가능

장비 수량, 작업, 환경, 통신 방식(LoRa, BLE)에 따라 맞춤 설계 가능

관리자 플랫폼 연동으로 **통합 안전관리 시스템 구축 유리**

활용 방안 및 도입 전략 모듈형 아이템의 수익 구조

하드웨어 판매 + 구독형 플랫폼 + 데이터 활용 + 유지보수로 구성된 혼합형 구조로 도입 장벽이 낮음 건설안전법 강화 추세에 맞춰 시장성을 확보하면서도 **지속적인 수익 흐름**을 만들 수 있음

1. B2B 장비 판매 수익 (1회성 또는 초기 도입 비용)

대상: 건설사, 플랜트 운영사, 물류업체 등 산업현장 관리자

내용 : 모듈형 스마트 카라비너 + 리트랙터 + MCU + LoRa 단말기 일괄 납품

특징 : 기존 안전벨트 시스템에 부착 > 신규 하네스 구매 없이 도입 가능

수익 방식: 장비 단가 x 납품 수량 (ex. 1개당 20~30만원 수준)

3. 데이터 기반 부가 서비스

대상: 보험사, 산업안전 컨설팅 업체 등

내용: 낙상 위험 패턴, 미착용 이력, 작업자 행동 분석 등 데이터 제공

수익 방식: 데이터 API 제공 계약 또는 정기 리포트 판매

2. 월 구독형 서비스 수익 (SaaS 모델)

대상: 관리자용 플랫폼 사용자 (기업)

내용: 관리자 대시보드, 실시간 모니터링, 낙상 시력 기록 등 기능 제공

특징 : 지속적인 플랫폼 사용료를 통해 안정적인 수익 확보

요금제 예시: 사용자 수 기준 Basic/Standard/Premium 플랜

4. A/S 및 장비 교체 수익

대상: 기존 도입 업체

내용 : IR 센서, MCU 등 모듈의 정기 점검, 배터리 교체, 부품 교환

수익 방식: 연간 유지보수 계약 or 건별 서비스 요금

감사합니다.