

PERO ANTES....

LO QUE DEBÍA!

COMPARACIÓN DINÁMICO VS ESTÁTICO

MODELACIÓN POR LANDSLIDE

AHORA SI.... ©

METEOTSUNAMI

Meteotsunami en el puerto de Ciudadella, Isla de Menorca. (Rabinovich y Montserrat, 1998)

CARACTERÍSTICAS

- PUERTOS O BAHÍAS CON ALTA AMPLIFICACIÓN Y RESONANCIA.
- LUGARES GEOGRÁFICOS CERRADOS O SEMI-CERRADOS.
- ANOMALÍA ATMOSFÉRICA A PEQUEÑA ESCALA.
- PROPAGACIÓN HACIA LA ENTRADA DEL PUERTO O BAHÍA.
- RESONANCIA.

Fuente: Centro Superior de Investigaciones Científicas (CSIC).

Fuente: <http://cazatormentas.net>. Desarrollo de la Rissaga o meteotsunan acaecido en Ciutadella (Maó), 16 de junio de 2006.

Generation of a Meteotsunami

Registros de tsunami y meteotsunami

Espectros de tsunami y meteotsunami

Meteotsunami en Vela Luka Croacia, el 21 de Junio de 1978

Meteotsunami en el Golfo de México Ciudad de Panamá, Florida. El 28 de marzo de 2014

TSUNAMI POR METEORITOS

El Impacto

$$\eta(r,0) = D_c \left(\frac{1-r^2}{R_c^2}\right) \qquad ; \mid r \mid \le R_D$$

$$\eta(r,0) = 0 \qquad ; \mid r \mid > R_D$$

Evolución de la condición inicial

