CS-201Computational Physics

Lab-1 07 . 02 . 2020

Arkaprabha Banerjee 201801408 Shantanu Tyagi 201801015

1 Euler, Taylor second order and Taylor third order Plots

1.1
$$f(x) = -x^2$$
 ; $x(0) = 1$; $0 \le t \le 2$, $\Delta t = 0.01$

Analytical solution : x(t) = 1/t

1.2
$$f(x) = 0.25x (1 - 0.05x)$$
 ; $x(0)=1$; $0 \le t \le 2$, $\Delta t = 0.01$

Analytical Solution : $x(t) = e^{0.25t}/(0.95 + 0.05e^{0.25t})$

1.3 f(x) = 1-2x ; x(0)=2 ; $0 \le t \le 1$, $\Delta t = 0.01$ Analytical Solution : $x(t) = 1.5e^{-2t} + 0.5$

1.4
$$f(x) = x(1 + e^{2t})$$
 ; $x(0)=1$; $0 \le t \le 2$, $\Delta t = 0.01$

Analytical Solution: $x(t) = e^{-0.5 + t + 0.5 (e^2t)}$

1.5 $f(x) = -x + \sin(4\Pi t)$; x(0)=1; $0 \le t \le 2$, $\Delta t = 0.01$ Analytical Solution: $x(t) = \frac{\sin(4\Pi t) - 4\Pi\cos(4\Pi t) + (0.5 + 8\Pi^2 + 4\Pi)e^{-t}}{1 + 16\Pi^2}$

1.6
$$f(x) = -2x + e^{-2t}$$
 ; $x(0)=0.1$; $0 \le t \le 1$, $\Delta t = 0.01$

Analytical Solution : $x(t) = e^{-2t} (t + 0.1)$

1.7 $f(x) = t^2 - x$; x(0)=1; $0 \le t \le 1$, $\Delta t = 0.01$

Analytical Solution : $x(t) = t^2 - 2t + 2 - e^{-t}$

