YOLOv3 Custom & OpenCV

Team: 이현정, 전은진, 조형권

CONTENTS

- **1** Introduction
- **12** YOLOv3 Custom
- 03 Results
- **14** References

01 Introduction

02 PyQt5

03 OpenCV

Introduction

YOLOv3를 Custom 하여 도로 위의 사람을 인식하도록 학습시킨 모델을 만들어서 OpenCV와 PyQt5로 만든 GUI에 적용시켰다.

01. Introduction

02 PyQt5

03 OpenCV

04 YOLOv3

PyQt5

PyQt5는 Qt5 어플리케이션 프레임워크에 대한 파이썬 버전이다. Qt는 플랫폼에 관계없이 다양한 기능을 포함하는 C++ 라이브러리이자 개발툴이다.

01 Introduction

02 PyQt5

03 OpenCV

04 YOLOv3

OpenCV

OpenCV 는 주로 실시간 컴퓨터 비전을 목표로 하는 프로그래밍 기능 라이브러리입니다.

01 Introduction

02 PyQt5

03 OpenCV

04 YOLOv3

OpenCV 이란?

- 인텔에서 만든 강력한 영상처리 라이브러리.
- 기초 영상 처리에서 부터 고급 수준의 영상처리까지 많은 양의 알고 리즘들이 함수로 구현되어 있다.
- 오픈소스로서 스펙만 맞추면 자신의 알고리즘도 라이브러리에 등록 시킬 수 있다.

01 Introduction

02 PyQt5

03 OpenCV

04 YOLO

YOLO (You Only Look Once)

<그림 1> YOLOv1 그리드

YOLO는 빠르게 이미지에서 객체를 탐지하는 모델이다.

01 Introduction

02 PyQt5

03 OpenCV

04 YOLO

YOLO (You Only Look Once)

장점

- 간단한 처리과정으로 속도가 매우 빠르다. 또한 기존의 다른 real-time detection system들과 비교할 때,2배 정도 높은 mAP를 보인다.
- Image 전체를 한 번에 바라보는 방식으로 class에 대한 맥락적 이해도가 높다. 이로인해 낮은 b ackgound error(False-Positive)를 보인다.
- Object에 대한 좀 더 일반화된 특징을 학습한다. 가령 natural image로 학습하고 이를 artwork에 테스트 했을때, 다른 Detection System들에 비해 훨씬 높은 성능을 보여준다.

단점

- 상대적으로 낮은 정확도 (특히, 작은 object에 대해)

YOLOv3 Custom

YOLOv3 Custom

01 Data Labeling

02 Custom Files

03 Pretrained Model

Data Labeling

labelimg를 사용하여 약 70장의 이미지를 라벨링 하였다.

Q2 YOLOv3 Custom

01 Data Labeling

02 Custom Files

03 Pretrained Model

Custom Files

Classes.names

classes.names

custom_data.data

custom_data.data

```
■ custom_data.data - Windows 메모장
파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)
classes = 2
```

train = /content/drive/MyDrive/darknet/custom/train.txt valid = /content/drive/MyDrive/darknet/custom/test.txt

names = /content/drive/MyDrive/darknet/custom/classes.names backup = backup

O2 YOLOv3 Custom

01 Data Labeling

02 Custom Files

03 Pretrained Model

Custom Files

train.txt

파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)

/content/drive/MyDrive/darknet/custom/person01.jpg /content/drive/MyDrive/darknet/custom/person03.jpg /content/drive/MyDrive/darknet/custom/person04.jpg /content/drive/MyDrive/darknet/custom/person05.jpg /content/drive/MyDrive/darknet/custom/person05.jpg /content/drive/MyDrive/darknet/custom/person07.jpg /content/drive/MyDrive/darknet/custom/person08.jpg /content/drive/MyDrive/darknet/custom/person09.jpg /content/drive/MyDrive/darknet/custom/person10.jpg /content/drive/MyDrive/darknet/custom/person11.jpg /content/drive/MyDrive/darknet/custom/person12.jpg /content/drive/MyDrive/darknet/custom/person13.jpg /content/drive/MyDrive/darknet/custom/person13.jpg

test.txt

파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)

/content/drive/MyDrive/darknet/custom/person25.jpg
/content/drive/MyDrive/darknet/custom/person26.jpg
/content/drive/MyDrive/darknet/custom/person27.jpg
/content/drive/MyDrive/darknet/custom/person28.jpg
/content/drive/MyDrive/darknet/custom/person29.jpg
/content/drive/MyDrive/darknet/custom/person30.jpg
/content/drive/MyDrive/darknet/custom/person31.jpg
/content/drive/MyDrive/darknet/custom/Jaywalking20.jpg
/content/drive/MyDrive/darknet/custom/Jaywalking21.jpg
/content/drive/MyDrive/darknet/custom/Jaywalking23.jpg
/content/drive/MyDrive/darknet/custom/Jaywalking23.jpg
/content/drive/MyDrive/darknet/custom/Jaywalking24.jpg
/content/drive/MyDrive/darknet/custom/Jaywalking25.jpg
/content/drive/MyDrive/darknet/custom/Jaywalking25.jpg

Train, Test 데이터셋은 8:2로 나눈다.

O3 YOLOv3 Custom

01 Data Labeling

02 Custom Files

03 Pretrained Model

Pretrained Model

1000, 2000, 3000, 4000 번 weights를 비교한 결과 4000번 학습한 Weights의 결과가 가장 좋게 나왔다.


```
# 1. qt를 사용하여 GUI 프로그램 환경 구축
      # https://for-sign.tistory.com/40
                                                                                          29
                                                                                                 class Ui(QtWidgets.QDialog):
      from PyQt5 import QtCore, QtGui
                                                                                          30
                                                                                                     def __init__(self):
      from PyQt5 import QtWidgets, uic
                                                                                          31
                                                                                                         super(Ui, self).__init__()
      from PyQt5.QtGui import QPixmap, QImage
                                                                                                         vic.loadUi('video_load.ui', self)
                                                                                           32
                                                                                           33
6
      import sys
      import cv2
                                                                                                         self.loadBtn = self.findChild(QtWidgets.QPushButton, 'loadBtn')
                                                                                          34
                                                                                                         self.loadBtn.clicked.connect(self.loadBtnClicked)
      import numpy as np
                                                                                          35
9
                                                                                          36
                                                                                                         self.procRun = self.findChild(QtWidgets.QPushButton, 'procRun')
10
      from time import sleep
                                                                                          37
                                                                                                         self.procRun.clicked.connect(self.procRunClicked)
11
      #비디오 재생을 위해 스레드 생성
                                                                                          38
                                                                                                         # self.photo = self.findChild(QtWidgets.QLabel, 'photo')
12
      import threading
                                                                                                         # self.photo.setScaledContents(True)
                                                                                          39
13
                                                                                                         self.result = self.findChild(QtWidgets.QLabel, 'result')
                                                                                           40
14
      ### output file ###
                                                                                                         self.fnameEdit = self.findChild(QtWidgets.QLineEdit, 'fnameEdit')
                                                                                           41
15
      fourcc = cv2.VideoWriter_fourcc(*"MJPG")
                                                                                                         self.fnameEdit.clear()
                                                                                           42
16
      writer = cv2. VideoWriter('output.avi', fourcc, 30, (800,600), True)
                                                                                          43
                                                                                                         self.out_check = False
17
      44
18
                                                                                           45
                                                                                                         self.show()
19
      # Yolo EE
      net = cv2.dnn.readNet("weights/custom-train-yolo_final.weights", "custom-train-yolo.cfg") 46
20
21
      classes = []
                                                                                           47
                                                                                                     def processingImage(self, img_gray, img_src):
22
      with open("classes.names", "r") as f:
                                                                                          48
23
          classes = [line.strip() for line in f.readlines()]
                                                                                                         # 여기에 이미지 프로세싱을 진행하고 output으로 리턴하면 오른쪽에 결과 영상 출력됨
                                                                                          49
24
      layer_names = net.getLayerNames()
                                                                                                         # output = img_src.copy() #원본영상 그대로 리턴
                                                                                          50
      output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
25
                                                                                                         output = img_gray.copy() # 그래이 영상 리턴
                                                                                          51
      colors = np.random.uniform(0, 255, size=(len(classes), 3))
                                                                                                         return output
```

```
82
                                                                                                                              path = 'figure/'
                                                                                                            83
          def displayOutputImage(self, img_dst, mode):
54
                                                                                                            84
55
             img_info = img_dst.shape
                                                                                                            85
56
              if img_dst.ndim == 2:
                                                                                                            86
                 qImg = QImage(img_dst, img_info[1], img_info[0], img_info[1] * 1, QImage.Format_Grayscale8)
57
                                                                                                            87
58
              else:
                 qImg = QImage(img_dst, img_info[1], img_info[0], img_info[1] * img_info[2],QImage.Format_BGR888)
59
                                                                                                            88
60
                                                                                                            89
              self.pixmap = QtGui.QPixmap(qImg)
61
                                                                                                            90
              self.p = self.pixmap.scaled(600, 450, QtCore.Qt.IgnoreAspectRatio) # 프레임 크기 조정
62
                                                                                                            91
63
                                                                                                            92
64
              # 결과 영상만
                                                                                                            93
65
              self.result.setPixmap(self.p)
                                                                                                            94
                                                                                                                              while True:
             self.result.update()
66
                                                                                                            95
67
68
              # if mode == 0:
                                                                                                                                  if self.ret:
                                                                                                            96
                   self.photo.setPixmap(self.p)
69
                                                                                                            97
                   self.photo.update() # 프레임 띄우기
70
                                                                                                            98
71
              # else:
                                                                                                            99
                   self.result.setPixmap(self.p)
72
                                                                                                            .00
                                                                                                                                       else:
                   self.result.update() # 프레임 띄우기
73
                                                                                                            01
74
                                                                                                            .02
                                                                                                                                   else:
75
              sleep(0.01) # 영상 1프레임당 0.01초로 이걸로 영상 재생속도 조절하면됨 0.02로하면 0.5배속인거임
76
                                                                                                            03
                                                                                                                                       break
77
          def procRunClicked(self):
                                                                                                            04
78
              self.out_check = True
                                                                                                            .05
                                                                                                                              cap.release()
                                                                                                                              cv2.destroyAllWindows()
                                                                                                            .06
```

```
def loadBtnClicked(self):
    filter = "All Videos(*.mp4; *.mov; *.avi);;MOV (*.mov);;MP4(*.mp4);;AVI(*.avi)"
    fname = QtWidgets.QFileDialog.getOpenFileName(self, "파일로드", path, filter)
    self.filename = str(fname[0])
    self.fnameEdit.setText(self.filename)
    self.video_thread()
def Video_to_frame(self, MainWindow):
    cap = cv2.VideoCapture(self.filename)
        self.ret, self.frame = cap.read() #영상의 정보 저장
            if self.out_check == True:
                self.process_result()
                self.displayOutputImage(self.frame_out, 1)
                self.displayOutputImage(self.frame, 0)
```

138

```
def process_result(self):
                                                                                                                     indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
108
                                                                                                    140
              #self.frame_out = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
189
                                                                                                   141
                                                                                                                     font = cv2.FONT_HERSHEY_PLAIN
110
              self.frame_out = self.frame.copy()
                                                                                                   142
                                                                                                                     for i in range(len(boxes)):
111
              여기부터 작업할 코드 작성하면 됩니다.
                                                                                                                         if i in indexes:
                                                                                                    143
               self.frame_out = cv2.resize(self.frame, None, fx=0.4, fy=0.4)
112
113
              height, width, channels = self.frame.shape
                                                                                                                              x, y, w, h = boxes[i]
                                                                                                    144
114
              # Detecting objects
                                                                                                                              label = str(classes[class_ids[i]])
                                                                                                    145
              blob = cv2.dnn.blobFromImage(self.frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
115
                                                                                                                              color = colors[i]
                                                                                                    146
116
              net.setInput(blob)
                                                                                                                              cv2.rectangle(self.frame_out, (x, y), (x + w, y + h), color, 2)
                                                                                                    147
              outs = net.forward(output_layers)
117
                                                                                                                              cv2.putText(self.frame_out, label, (x, y - 5), font, 3, color, 3)
118
                                                                                                    148
              class_ids = []
119
                                                                                                    149
              confidences = []
120
                                                                                                   150
                                                                                                                     ### output file ###
              boxes = []
121
                                                                                                   151
                                                                                                                     writer.write(cv2.resize(self.frame_out, (800, 600)))
              for out in outs:
122
123
                  for detection in out:
                                                                                                                     ###########
                                                                                                    152
                      scores = detection[5:]
124
                                                                                                   153
                     class_id = np.argmax(scores)
125
                                                                                                                 def video_thread(self):
                                                                                                    154
                      confidence = scores[class_id]
126
                     if confidence > 0.4:
                                                                                                   155
                                                                                                                     thread = threading.Thread(target=self.Video_to_frame, args=(self,))
127
                         # Object detected
128
                                                                                                                     thread.daemon = True # 프로그램 종료시 프로세스도 함께 종료 (백그라운드 재생 X)
                                                                                                   156
                         center_x = int(detection[0] * width)
129
                                                                                                    157
                                                                                                                     thread.start()
                         center_y = int(detection[1] * height)
130
                                                                                                   158
                         w = int(detection[2] * width)
131
                         h = int(detection[3] * height)
132
                                                                                                   159
                         # 3/#
133
                                                                                                            app = QtWidgets.QApplication(sys.argv)
                                                                                                    160
                         x = int(center_x - w / 2)
134
                                                                                                   161
                                                                                                            window = Ui()
                         y = int(center_y - h / 2)
135
                                                                                                   162
                                                                                                            app.exec_()
136
                         boxes.append([x, y, w, h])
                         confidences.append(float(confidence))
137
                         class_ids.append(class_id)
```


참조

References

- [1] OpenCV. (2021, June 16). OpenCV. https://opencv.org/
- [2] PyQt5. (2021, March 10). PyPl. https://pypi.org/project/PyQt5/
- [3] Python으로 OpenCV를 사용하여 YOLO Object detection. (2020, April 13). tistory. https://bong-sik.tistory.com/16

召人自出日

Team: 이현정, 전은진, 조형권