Jason Dykstra

Problem 1 - DES

Part a - Extend input to 48 bits

Given input: 0110011000011111100100010100110

Given expansion table:

DES Expansion Table

	Е									
32	1	2	3	4	5					
4	5	6	7	8	9					
8	9	10	11	12	13					
12	13	14	15	16	17					
16	17	18	19	20	21					
20	21	22	23	24	25					
24	25	26	27	28	29					
28	29	30	31	32	1					

(Bit 32 goes in position 0, bit 1 goes in position 1, etc.)

Part b - Add (XOR) given round key to the expanded input

Part c - Using 8 S-boxes, find 32 bit output of substitution step

Use result from part b to create 8 S-box inputs simply by separating every 8 bits

S-box inputs: 010100, 111010, 010000, 111101, 001110, 111010, 110100, 000010

Used this table to find 4 digit output of each S-box (image from wikipedia)

c		Middle 4 bits of input															
S ₅		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
Outor bits	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

Output: 00110011100001010110001111001100

Part d - Permute the S-box output using the permutation table

Given permutation table:

Permutation table

	Р									
16	7	20	21	29	12	28	17			
1				5			10			
2	8	24	14	32	27	3	9			
19	13	30	6	22	11	4	25			

(Bit 16 goes in position 0, bit 7 goes in position 1, etc.)

Result: 11001000001101000111001110100011

All calculations/steps for this part can be found in this spreadsheet, if you're curious:) https://docs.google.com/spreadsheets/d/12JRjCk4_APuoPmlZnTe8mhkawVXdUi4DTXcou0qDHLI/edit?usp=sharing

Problem 2 - AES

Part a - Convert the given 128 bit input to hexadecimal form

Given input:

Part b - Write the input in a state diagram (4x4 matrix)

Simply write out the hexadecimal representation in a 4x4 matrix, filling from top to bottom, left to right

State diagram:

56	44	81	9E
E2	ВЗ	1E	85
19	DB	9D	F3
B2	43	ЗА	4F

Part c - Apply SubBytes step: use AES S-box to substitute the input

Given AES S-box table:

AES S-box Table

	1								7	7							
		0	1	2	3	4	5	6	7	8	9	a	ь	С	d	e	f
	0	63	7c	77	7ъ	f2	6Ъ	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	ь7	fd	93	26	36	3f	f7	CC	34	a5	e5	f1	71	d8	31	15
	3	04	с7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	Ъ2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3Ъ	d6	ь3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d 0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	Ъ6	da	21	10	ff	f3	d2
x	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	Ъ8	14	de	5e	0Ъ	ф
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	ь	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8Ъ	8a
	d	70	3e	Ъ5	66	48	03	f6	0e	61	35	57	ь9	86	c1	1d	9e
	e	e1	f8	98	11	69	d9	8e	94	9Ъ	1e	87	e9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	Ъ0	54	bb	16

Result:

B1	1B	0C	0B
98	6D	72	97
D4	В9	5E	0D

37 1 <i>A</i>	80	84
---------------	----	----

Part d - Apply shift rows step

Shift first row left by 0 indexes Shift second row left by 1 indexes Shift third row left by 2 indexes Shift fourth row left by 3 indexes (With wrapping)

Result:

B1	1B	0C	0B
6D	72	97	98
5E	0D	D4	В9
84	37	1A	80

Part e - Apply MixColumns Step

Using polynomial: $P(x) = x^8 + x^4 + x^3 + x + 1$

Transformation matrix used:

02	03	01	01
01	02	03	01
01	01	02	03
03	01	01	02

Essentially, Multiply transformation matrix above with the result from part d.

Important: Operations are as follows

02 • 01111111 = 11111110 (Shift by one)

• If bit shifted off is a 1, then XOR result with 1B (00011011)

03 • 01111111 = (02 • 01111111) ⊗ 01111111 (perform 02 operation then XOR with original self)

01 • 01111111 = 0111111 (No modification)

Converted answer from part d to binary:

		•	•
00010100	10011010	01110100	10011100
00001101	11011111	01000100	01110000
11110111	00101010	00000110	01100001

11101000	00111100	01100011	00100111
----------	----------	----------	----------

Picture of work:

(Note: cells 1 and 4 are incorrect, I fixed this after I took the picture)

Answer in hexadecimal:

14	9A	74	9C
0D	DF	44	70
F7	2A	06	61
E8	3C	63	27

Part f - add round key

Input (answer from part e in binary):

Given round key:

Answer (XOR of both):

(Work for problems 1 and 2 can be found on this spreadsheet:

https://docs.google.com/spreadsheets/d/12JRjCk4_APuoPmlZnTe8mhkawVXdUi4DTXcou0qD HLI/edit?usp=sharing)

Problem 3 Modular Arithmetic

Part a

- 1. 19
- 2. 17
- 3. 6
- 4. 2 (assuming the operation is: (15*29 + 11*15)mod23)

Part b

- 1. 15
- 2. 7
- 3. 15
- 4. No modular inverse

Part c

All numbers that are divisible by 2 and 3 are elements of modulo 216 with no multiplicative inverse