

Arquitetura de Computadores

Prof. Marcos Grillo marcos.grillo@anhanguera.com

Apresentação da Disciplina

PLANO DE ENSINO E APRENDIZAGEM						
CURSO: Ciência da Computação						
Disciplina:	Período Letivo:	Série:	Periodo:	Semestre de	Ano de Ingresso:	
Arquitetura de Computadores	2° sem/2013	6ª Série	Não definido	Ingresso:	2011	
C.H. Teórica:		C.H. Outras: C.H. Total:		tal:		
40	20 60					

Ementa

Arquiteturas RISC e CISC. Pipeline. Paralelismo de Baixa Granularidade. Processadores Superescalares e Superpipeline. Multiprocessadores. Multicomputadores. Arquiteturas Paralelas e não Convencionais. Microprocessadores e Computadores Pessoais. Organização de Memória. Sistemas de Entrada e Saída, Sistemas de vídeo, Som e Outros.

Objetivos

Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.)

Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoalis, multicomputadores e multiprocessadores.

Apresentação da Disciplina

	Cronograma de Aulas			
Semana nº.	Tema			
1	Estrutura básica de um computador pessoal			
2	Estrutura e Funcionamento da CPU: conjunto de instruções			
3	Estrutura e Funcionamento da CPU: ciclo de instruções			
4	Arquitetura RISC e CISC			
5	Registradores: tipos de registradores			
6	Registradores mais utilizados em computadores pessoais			
7	Arquitetura Pipeline			
8	Atividades de Avaliação.			
9	Memorias: principal			
10	Memorias: Secundária, cache			
11	Dispositivos de entradas e saída			
12	Barramento: Tipos, arquitetura, adaptadores			
13	Sistema de video: GPU, Memórias, VGA, HDMI, 3D			
14	Sistema multimídia			
15	Análise de desempenho de computadores (Benchmark)			
16	Arquitetura de computadores com paralelismo: Cluster, Cloud.			
17	Computadores dedicados e embarcados			
18	Prova Escrita Oficial			
19	Exercícios de Revisão.			
20	Prova Substitutiva			

Cronograma de Aulas - 1ª etapa.

- Estrutura básica de um computador pessoal
- Estrutura e Funcionamento da CPU: conjunto de instruções
- Estrutura e Funcionamento da CPU: ciclo de instruções
- Arquitetura RISC e CISC
- Registradores: tipos de registradores
- Registradores mais utilizados em computadores pessoais
- Arquitetura Pipeline
- Atividades de Avaliação.

Cronograma de Aulas - 2ª etapa.

- Memorias: principal;
- Memorias: Secundária, cache;
- Dispositivos de entradas e saída;
- Barramento: Tipos, arquitetura, adaptadores;
- Sistema de vídeo;
- Sistema multimídia;
- Análise de desempenho de computadores (Benchmark);
- Arquitetura de computadores com paralelismo;
- Computadores dedicados e embarcados;
- Prova Escrita Oficial;
- Exercícios de Revisão;
- Prova Substitutiva;

Fluxo dos dados

Barramento / Memória / CPU

Registradores.

▶ Um registrador é um circuito digital formado por n flipflops, de modo a poder armazenar simultaneamente (e de maneira independente) n bits.

GAJSKI, Daniel D. Principles of Digital Design, New Jersey: Prentice Hall, 1997 (ISBN)

Registradores mais utilizados

- AX / AH e AL Acumulador, mas pode ser utilizado para outra finalidade;
- BX / BH e BL Índice, mas geralmente é utilizado para gerenciamento de memória;
- CX / CH e CL Contador, utilizado em loops para contar o número de vezes;
- ▶ SI Índice de Origem Em instruções que movem blocos de memória ele é o endereço inicial do bloco;
- ▶ DI Índice de Destino Em instruções que movem blocos de memória ele é o endereço final do bloco;

Registradores mais utilizados

- DS Segmento de Dados Este registrador contém o valor de segmento, todas as instruções de acesso à memória vão se utilizar deste valor para acessar a memória;
- SP Ponteiro da Pilha Também utilizado pelo processador para ver o endereço onde serão armazenados os dados da pilha (FIFO, LIFO, etc);
- ▶ IP Ponteiro de Instruções Assim como o SP, o processador usa este registrador para saber em qual endereço da memória está a instrução a ser executada no momento.

Registradores mais utilizados

- Contador de programa (PC Program Counter), que aponta para a próxima instrução a executar;
- ▶ **Registrador de instrução** (IR Instruction Register) que armazena a instrução em execução;

Clock CPU ou Ciclo da máquina

- Clock é a base de frequência na CPU para sincronizar as operações;
- Medida em Hz (Hertz) que 1 Hz = 1 ciclo por segundo;

- Clock não tem haver com desempenho (fabricantes diferentes = desempenho e arquitetura interna diferentes);
- Maior clock = Maior dispersão de temperatura = Maior consumo.

Clock CPU ou Ciclo da máquina

Monociclo

1,25 nS 1,25 x 10 -9 Clock de 800 Mhz

- Baixo consumo;
- Baixo aquecimento;
- Muito utilizado em equipamentos portáteis;
- Utiliza o maior tempo de ciclo para a conclusão de uma operação.

Multiciclo

0,36 nS 2.700.000.000 vezes por segundo Clock 2,7 Ghz

- Oposto no monociclo, utiliza a instrução de menor tempo;
- Utilizado em processadores de computadores pessoais / Servidores.

Ciclo de instruções - Básico

- 1 Calculo do endereço da memória que contêm a instrução;
- 2 Busca de instrução (registrador IR);
- 3 Cálculo do endereço do operando;
- 4 Busca do operando;
- 5 Decodificação da instrução;
- 6 Execução;
- 7 Armazenamento dos resultados (dados).

Ciclo de instruções - Básico

