3.2 (3) Эквивалентность следующих утверждений: множество перечислимо, полухарактеристическая функция множества вычислима, множество является областью определения вычислимой функции, множество является проекцией разрешимого множества пар.

Теорема. Следующие утверждения для непустого $S \subseteq \mathbb{N}$ эквивалентны:

- 1) S перечислимо (существует печатающая машина, такая, что $\forall x \in S$ х встречается в потоке вывода, $\forall x \notin S$ х не встречается в потоке вывода);
- 2) Полухарактеристическая функция множества (равная 0 на элементах S и не определённая вне S) вычислима;
- 3) S область определения вычислимой функции (если существует алгоритм, её вычисляющий, то есть такой алгоритм A, что $\forall f(n)$ определённых для некоторого n алгоритм A остановится на входе n и напечатает f(n), иначе не остановится на входе n);
- 4) S проекция разрешимого (существует алгоритм, который по любому натуральному п определяет, принадлежит ли оно множеству) множества пар.
- \blacktriangle (1) \Rightarrow (2). Запускаем эту печатающую машину. Если она выдаёт x, то значение полухарактеристической функции 1, иначе \bot .
 - $(2) \Rightarrow (3)$. S область определения характеристической функции, описанной ранее.
- $(3) \Rightarrow (1)$. Пусть S область определения вычислимой функции f, вычисляемой алгоритмом B. Тогда есть алгоритм, перечисляющий A: параллельно запускать B на входах 0, 1, 2, ..., делая всё больше шагов (1 шаг на входах 0 и 1, 2 шага на входах 0, 1, 2, и.т.д.); напечатать все номера, на которых B остановился.
- $(1)\Rightarrow (4)$. S = $\{x|\exists n(x,n)\in B\}$ проекция множества $B=\{(x,n):$ х в первых n шагах алгоритма, перечисляющего S $\}$
- $(4) \Rightarrow (1)$. for (x=0;; ++x)for (y=0;; ++y) $\{if((x,y) \in B) \text{ cout } << x;$ $if((y,x) \in B) \text{ cout } << y; \}$