

Theropod forelimb design and evolution

KEVIN M. MIDDLETON* AND STEPHEN M. GATESY

Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, U.S.A.

Received August 1998; accepted for publication December 1998

We examined the relationship between forelimb design and function across the 230-million-year history of theropod evolution. Forelimb disparity was assessed by plotting the relative contributions of the three main limb elements on a ternary diagram. Theropods were divided into five functional groups: predatory, reduced, flying, wing-propelled diving, and flightless. Forelimbs which maintained their primitive function, predation, are similarly proportioned, but non-avian theropods with highly reduced forelimbs have relatively longer humeri. Despite the dramatically different forces imparted by the evolution of flight, forelimb proportions of basal birds are only slightly different from those of their non-avian relatives. An increase in disparity accompanied the subsequent radiation of birds. Each transition to flightlessness has been accompanied by an increase in relative humeral length, which results from relatively short distal limb elements. We introduce theoretical predictions based on five biomechanical and developmental factors that may have influenced the evolution of theropod limb proportions.

© 2000 The Linnean Society of London

ADDITIONAL KEY WORDS:—Aves – bipedalism – Dinosauria – disparity – flight – limb morphology – locomotion – morphospace – Theropoda – wing.

CONTENTS

Introduction	. 150
Material and methods	. 151
Systematics and terminology	. 151
Data collection	
Analysis: ternary diagrams	. 152
Disparity index	
Functional groups	
Results	
All theropods	. 154
Predatory	. 154
Reduced	
Flying	. 155
Wing-propelled diving	
Flightless	
Discussion	
Predatory	160

^{*} Corresponding author. Email: Kevin_Middleton@brown.edu

Reduced												160
Origin of flight												162
Flying birds												162
Wing-propelled diving												162
Flightless												163
Limb proportion theor												163
Conclusions and prospects												167
Acknowledgements												167
References												167
Appendix 1												172
Appendix 2												173
Appendix 3	•	,	,		•				,		,	184

INTRODUCTION

One of the fundamental features of any limb's design is the relative proportions of its skeletal components. These proportions are often expressed as the ratio of two bone lengths, such as the femorotibial and humeroradial indices (Howell, 1965). Such ratios are thought to have functional significance for limb use because they reflect the basic layout of an appendage's compound lever system. Most frequently, proportions have been employed to identify and categorize mammalian limbs specialized for running, weight support, or digging (Gregory, 1912; Osborn, 1929; Smith & Savage, 1956; Garland & Janis, 1993; Gebo & Rose, 1993; Carrano, 1997). Proportions have also been invoked as indicators of cursoriality in dinosaurs (e.g. Osborn, 1916; Ostrom, 1976a; Coombs, 1978; Colbert, 1989; Holtz, 1995a; Sereno et al., 1996). The majority of work to date has focused on limbs used for terrestrial locomotion. Such limbs bear loads by transmitting muscular, gravitational, and inertial forces to the substrate, and thus lend themselves to hypotheses based on lever mechanisms.

Comparatively little is known about limbs that are not loaded in this manner. Forelimbs used during flight, prey capture, or food manipulation likely experience mechanical forces quite different from those used exclusively during terrestrial locomotion but with a few exceptions (Mattison & Giffin, 1989; Mattison, 1993; Christiansen, 1997), remain relatively unexplored. Theoretical predictions are few, and many questions remain unanswered. For example, how well does the relative size of skeletal elements reflect limb function? How should a predatory forelimb be constructed, and how might this arrangement differ from that of a wing? Are limb proportions informative about the evolutionary origin of flight and secondary loss of volant function? Do the demands of flight impose strong constraints on wing design?

Theropod dinosaurs are an ideal group in which to examine these questions. Theropods were primitively bipedal (Gauthier, 1986; Sereno, 1997) and remained so throughout their 230-million-year history, thereby freeing the forelimb from a significant role in terrestrial locomotion. This liberation was accompanied by the evolution of a wide diversity of forelimb morphologies. From a primitive predatory morphology, at least two lineages evolved highly reduced forelimbs. A third lineage transformed the forelimb into a feathered wing for generating aerodynamic forces during flight (Ostrom, 1976b; Gauthier, 1986; Chiappe, 1995; Chiappe, Norell & Clark, 1996; Padian & Chiappe, 1998). Although over 98% of extant birds use their

Figure 1. Simplified cladogram of Theropoda (after Sereno, 1997). *Eoraptor* from Sereno *et al.* (1993); *Daspletosaurus* from Paul (1988); *Deinonychus*, *Archaeopteryx*, and *Columba* from Chatterjee (1997).

wings exclusively for aerial flight, several groups also fly underwater, and many other lineages have become flightless (for a comprehensive review, see Livezey, 1995). Herein, we examine forelimb disparity in the morphologically and functionally diverse clade Theropoda.

MATERIAL AND METHODS

Systematics and terminology

Throughout this paper, we employ the phylogenetic hypotheses of Gauthier (1986), supplemented by the work of Holtz (1994a) and Sereno (1997) for subsequently described fossil taxa. We follow the cladistic analyses proposed by Chiappe *et al.* (1996) for basal birds and by Sibley & Ahlquist (1990) for extant birds. All members of the clade Aves are included in Theropoda. Thus, theropods include the most recent common ancestor of *Archaeopteryx* and all modern birds, as well as all of its descendants (Fig. 1). We will use the term theropod to refer to any member of this clade, both avian and non-avian, unless further restricted. For example, non-avian theropods will be denoted as such, and bird or avian will be used to refer to members of Aves (Fig. 1).

As in our previous study of theropod hind limbs (Gatesy & Middleton, 1997), we again distinguish taxonomic diversity (number of species) from functional diversity (scope of limb use) and disparity ('range of anatomical design' or morphological diversity; Gould, 1991: 412; Foote, 1989, 1993, 1997; Wagner, 1995).

Data collection

Lengths of the humerus, radius, and metacarpal II were measured for this study. Although a wealth of non-avian theropods is presently known, the paucity of specimens with sufficiently complete forelimbs restricted our data set. From the literature, we collected data for 23 individuals of 20 species (Appendix 1). The length of the carpometacarpus was used as the third limb element for birds; lengths of individual carpal elements were excluded from non-bird measurements. For ease of use, we will refer to the three elements as humerus, radius, and carpometacarpus in both birds and non-avian theropods. Bird forelimbs (Appendix 2) were measured on specimens housed at the Museum of Comparative Zoology, Cambridge, MA (MCZ) and the Yale Peabody Museum, New Haven, CT (YPM). Wing element measurements were made with either digital calipers or ruler of 543 individuals from 324 species of 260 genera in 82 families. Nineteen of the 23 modern avian orders are represented. Additionally, measurements of fossil (32 forelimbs from 28 species) and extant birds (78 forelimbs from 46 species) were taken from the literature (Appendix 3). Inclusion of mean lengths allowed the use of additional data from published specimens, which often come from fossil deposits in which bones cannot be associated positively with a single individual.

Analysis: ternary diagrams

The lengths of the humerus, radius, and carpometacarpus were added together to obtain total forelimb length. Each of the three elements was then divided by limb length to calculate its percentage of the total. Traditionally, bivariate plots have been used to study theropod limb morphology and function (Coombs, 1978; Gatesy, 1991; Holtz, 1995a). However, interpreting all three variables in such graphs proves cumbersome (Gatesy & Middleton, 1997). Ternary diagrams were used to determine the range of morphological diversity present in theropod forelimb proportions. Such diagrams depict the relative contributions of three variables to a whole and have common applications in geology and genetics. They have been used less frequently for morphological variables (Kershaw & Riding, 1978; Fortey, 1983; Mattison & Giffin, 1989; Alexander, 1991; Mattison, 1993; Gatesy & Middleton, 1997; Carrano, 1998; Clark *et al.*, 1998). A ternary diagram consists of three axes oriented at 120° to one another, each running from zero to 100% (Fig. 2). A limb proportion ternary represents a size-free morphospace composed of all the possible combinations of three limb element percentages.

Disparity index

To facilitate comparison between two limbs and to quantify maximal group ranges, we calculated the linear distance between pairs of points. This distance, divided by the maximum possible distance between two points (from one vertex to another) yields a disparity index (DI). Two points at opposite vertices of a ternary diagram have a disparity index of 100, while two points at the same location have a disparity index of 0. We define the disparity index as a unitless value rather than a percentage to avoid confusion with individual limb element proportions. For the

Figure 2. Methodology for ternary morphospace visualization. A, a ternary diagram consists of three axes (I, II, and III), each oriented at 120° to one another. B, a tripartite limb, in this case of *Archaeopteryx*, showing the fractional contributions of its three main segments. C, a forelimb proportion morphospace showing the position of *Archaeopteryx* (A). Hypothetical limbs (1–5) are shown with their respective positions in morphospace. *Archaeopteryx* skeleton modified from Ostrom (1976b). All limb segment orientations are arbitrary and used for comparison only.

purposes of this study, we considered each data point independent and did not try to correct for phylogenetic relationships between taxa (Felsenstein, 1985; Garland, Harvey & Ives, 1992; Garland & Janis, 1993).

Functional groups

Because our goal was to explore the relationship between proportions and function, we separated all taxa into five functional groups based on forelimb use: (1) predatory, (2) reduced, (3) flying, (4) wing-propelled diving, and (5) flightless. Membership was determined either by direct observation or inference; no functional group is monophyletic. Note that the 'flightless' functional group includes only secondarily flightless avians and not primitively flightless non-avian theropods. Our analysis will focus primarily on the disparity within and transitions between these five functional groups.

RESULTS

All theropods

Theropod forelimb proportions are not evenly distributed in ternary morphospace (Figs 3A, 4); instead, large empty areas exist, particularly at radius over 50% and carpometacarpus greater than c. 45%. Birds overlap non-avian theropod proportions such that just a single non-bird lies outside the range of birds (Figs 3B, 4). However, birds occupy large areas of proportion morphospace unexploited by non-birds. Among all theropods, the humeral contribution varies the greatest (25–70%). The radius spans 30% (20–50%), while the carpometacarpus spans 35%. The disparity index for the most distant taxa was 43 (Camotaurus to swifts), indicating that the descendants of the ancestor of theropods radiated to cover a range encompassing almost half of the maximum potential morphological difference.

Non-avian theropods occupy a subset of this range. The humerus spans 25%, the radius 21%, and the carpometacarpus just 11%. The disparity index is 25 between *Carnotaurus* and *Herrerasaurus*, the most proportionally different non-avian theropods. In contrast, bird humeri have a 40% range (24–64%), while the radius covers almost 30% (19–48%), and the carpometacarpus 35% (8–43%). This final range is deceptively high because of a small group with relatively long carpometacarpi; most fall between 8% and 30%. The disparity index among avian theropods is 36 (ostriches to swifts).

Predatory

Proportions of non-avians retaining predatory limbs are clustered with a humerus between 45% and 55%, a radius of 29% to 40%, and a carpometacarpus from 12% to 20% (Fig. 5, Table 1). The disparity index is only 7.8. Members of this functional group have functionally tridactyl, grasping or raking limbs.

Figure 3. Forelimb proportion distribution for all theropods plotted in ternary morphospace. A, theropods are found in a small subset of the overall potential morphospace. B, when expanded, this distribution reveals that the range of avian theropods (•) almost completely overlaps the area occupied by non-avian theropods (○). Only one non-bird (*Camotaurus*) has proportions that fall outside the range of birds.

Reduced

Forelimb length is significantly reduced relative to hind limb length (Table 2) in tyrannosaurids (*Tarbosaurus*, *Daspletosaurus*, and *Albertosaurus*) as well as in *Carnotaurus*, a Late Cretaceous abelisaurid (Fig. 5). This functional group is characterized by proportionally longer humeri than non-avian theropods which retain predatory forelimbs. In both of these independent lineages, the humerus is elongate relative to the other forelimb elements (greater than 55%). *Carnotaurus* represents the most extreme condition of all theropods that retain three limb elements. Its humerus composes 72% of the forelimb, the radius 19%, and the carpometacarpus just 9%.

Flying

Non-avian theropods that retain predatory forelimbs, including those considered most closely related to birds, such as *Ingenia*, *Sinornithoides*, and *Deinonychus* (Sereno,

Figure 4. Forelimb proportions for all theropods categorized by functional group. Non-birds are restricted to humeral percentages less than 45%; all flying birds have humeral values greater than or equal to 45%. Note the high degree of overlap among other functional groups.

1997), share similar, but not identical, proportions with early birds such as *Archaeopteryx* and *Concornis*. *Deinonychus* and *Archaeopteryx* are nearly co-proportional, with a disparity index of only 2.5.

Several general patterns can be recognized within the flying bird cloud (Fig. 6A). First, birds that fly in air have a humerus that makes up no more than about 45% of the forelimb. Humeral contribution spans 20% (DI=21) between swifts and murres, which have the lowest and highest humeral values, respectively. Second, hummingbirds (Trochiliformes) and swifts (Apodiformes) lie outside the main group of flying birds, due to their elongate carpometacarpus, which approaches half of the wing length. Almost 10% of the maximum possible morphological difference separates hummingbirds from lories, which have the highest carpometacarpal values in the main group of flying birds (Fig. 6A). Finally, humeral percentage appears to correlate with aerial maneuverability (Fig. 6B). The most maneuverable fliers (passerines, hummingbirds, and swifts) have the relatively shortest humeri, whereas the least maneuverable fliers (albatrosses, alcids, cuckoos, grebes, and loons) have the relatively longest.

Wing-propelled diving

We sampled birds from three (alcids, penguins, diving petrels) evolutionary transitions to wing-propelled diving (Figs 4, 6). All have proportionately longer

Figure 5. Forelimb proportions of non-avian theropods and early birds. Most non-birds are clustered between 45% and 55% humerus, near the basal theropod, *Eoraptor* (boxed), which may represent primitive theropod proportions. Tyrannosaurids and *Camotaurus* have highly reduced forelimbs relative to their hind limbs (bold). Note the close proximity of early birds (circled) to their most closely related non-bird taxa (underlined). Non-avian symbols: **Ab**, *Albertosaurus*; Al, *Allosaurus*; Ax, *Alxasaurus*; **Ca**, *Camotaurus*; Cm, *Compsognathus*; Co, *Coelophysis*; **Da**, *Daspletosaurus*; De, *Deinonychus*; Di, *Dilophosaurus*; Dn, *Deinocheirus*; Eo, *Eoraptor*; Ga, *Gallimimus*; He, *Herrerasaurus*; In, *Ingenia*; Or, *Ornithomimus*; Sn, *Sinornithoides*; St, *Struthiomimus*; Sy, *Syntarsus*; **Ta**, *Tarbosaurus*; Xu, *Xuanhanosaurus*. Avian symbols: Al, *Archaeopteryx* (London); A2, *Archaeopteryx* (Berlin); A3, *Archaeopteryx* (Solnhofen); A4, *Archaeopteryx* (Eichstätt); A5, *Archaeopteryx* (SAV); A6, *Archaeopteryx* (Maxberg); Cc, *Concornis*; Ct, *Cathayornis*; No, *Noguerornis*.

Table 1. Percentage ranges for each of the three main forelimb elements for each functional group

	Humerus	Radius	Carpometacarpus
Predatory	45-54%	29-40%	12-20%
Reduced	55-72%	19-27%	9-19%
Flying	24-45%	30-48%	15-43%
Flightless	40-64%	19-39%	8-24%
Wing-propelled diving	41-62%	25-38%	12-29%

humeri than the vast majority of birds. Alcids that fly in both water and air have the highest humeral proportions of any aerial fliers (45% in the common murre, *Uria aalge*). Extinct alcids with relatively longer humeri (c. 50% in the great auk, *Plautus impennes*, and c. 60% in mancalline auks) lost the ability to fly in air. The disparity index between wing-propelled diving birds and volant birds is 0 because these two functional groups overlap.

Table 2. Hind limb length (mm), forelimb length (mm), and forelimb/hind limb ratios for selected theropods. Note that limb lengths are the sum of the lengths of the three main segments, excluding phalanges. See Appendices 1 and 3 for sources

Taxon	Hind limb	Forelimb	Fore/hind
Albertosaurus libratus (AMNH 5664)	1928	365	0.19
Albertosaurus libratus (NCM 2120)	2634	578	0.22
Syntarsus rhodesiensis (QG 1)	563	187	0.33
Allosaurus fragilis (USNM 4734)	1867	655	0.35
Compsognathus longipes (BSP AS I 536)	211	78	0.37
Dilophosaurus wetherilli (UCMP 38302)	1437	567	0.39
Sinornithoides youngi (IVPP V.9612)	449	177	0.39
Coelophysis bauri (AMNH 7223)	559	224	0.40
Ingenia yanshini (GI 100/30)	633	268	0.42
Eoraptor lunensis (PVS J 512)	390	169	0.43
Struthiomimus altus (AMNH 5339)	1380	641	0.46
Herrerasaurus ischigualastensis (PVSJ 373)	825	386	0.47
Coelophysis bauri (AMNH 7224)	544	256	0.47
Ornithomimus edmontonicus (ROM 851)	1220	582	0.48
Gallimimus bullatus (GI 100/11)	1915	995	0.52
Deinonychus antirrhopus (MCZ 4371)	882	536	0.61
Archaeopteryx lithographica (Eichstätt)	120	94	0.79
Archaeopteryx bavarica (SAV)	160	133	0.83
Archaeopteryx lithographica (Solnhofen)	204	186	0.91
Archaeopteryx lithographica (Berlin)	158	146	0.92
Archaeopteryx lithographica (London)	182	174	0.96
Cathayornis yandica (IVPP V.9769A/B)	69	67	0.97

Flightless

Flight has been lost independently numerous times in at least 34 families of birds, including both extant and extinct forms (Livezey, 1995). We sampled 22 species of flightless birds from 12 of these families. Reduction of the distal wing elements relative to total forelimb length, resulting in a higher humeral proportion, is seen in all flightless birds (Fig. 6). This reduction causes these birds to overlap non-avian theropods in some proportions. Ratites consistently have, proportionally, among the longest humeri (e.g. short distal elements) of all birds. Flightless birds with volant relatives also exhibit a shift toward increased humeral percentage. For example, flightless members of the grebes, cormorants, ducks, parrots, and pigeons all have higher humeral proportions than do flighted members of their orders. The disparity index among flightless birds is 29, from ostriches (Struthio) to a flightless goose (Cnemiornis). The humerus is the most variable in contribution, spanning 30% in these two taxa. These figures underestimate the actual disparity. Hesperornithiformes may not have ossified the forelimb distal to the humerus or lost these segments. If the latter were true, hesperornithiformes would be located at 100% humerus. Moas appear to have the lost the entire wing, and thus cannot even be plotted.

DISCUSSION

Data from this study created intriguing distribution patterns when plotted in a ternary morphospace. Groups that we treated as functionally homogenous often proved to be more disparate than expected (Fig. 4). Theropod forelimb proportions are functionally diagnostic in some cases, but are frequently less informative due to conservation or homoplasy; similarly proportioned limbs can have vastly different

Figure 6. Forelimb proportions for selected groups of birds. A, maneuverable birds like swallows, martins, swifts, and hummingbirds have the lowest humeral contributions. As humeral contribution increases, maneuverability decreases. Loons, grebes, cuckoos, and alcids are among the least maneuverable and have high humeral percentages. B, diagrammatic forelimbs of ten birds. The first four on the left are flightless. Note the variation in proportions with flight style in the remaining six.

functions. Our discussion will focus on two central themes, within-group disparity and between-group transitions, followed by an attempt to address theropod forelimb proportions from a more biomechanical perspective.

Predatory

We hypothesized that theropods retaining this function would have highly disparate forelimbs, reflecting the potential for diverse non-locomotor designs. However, proportional variation among predatory forelimbs was very low (DI = 7.8). Such low disparity was particularly unexpected in light of the broad taxonomic sampling, tremendous size variation, and purported functional specializations of taxa in our data set. Although representatives from all major clades of non-birds are present, phylogenetic patterns are not evident in their morphospace distribution. For example, data from three ornithomimids (*Omithomimus, Struthiomimus, Gallimimus*) are spread across the entire point cluster (Fig. 5). Predatory proportions are also unaffected by absolute limb size; forelimbs spanned more than an order of magnitude in overall length. Although *Deinocheirus* (1798 mm) has a forelimb 23 times longer than that of *Compsognathus* (77 mm), these two taxa are separated by less than five disparity units (Fig. 5).

We grouped forelimbs together as predatory, but within this category more specific functional hypotheses have been proposed. For Struthionimus alone, suggestions have included: clamping and hooking (Nicholls & Russell, 1985), climbing (Gregory in Osborn, 1916), and insectivory (Beebe in Osborn, 1916). Digging has been suggested for Galliminus (Osmólska, Roniewicz & Barsbold, 1972), uncovering food items for all ornithomimids (Russell, 1972), and grasping or raking for *Herrerasaurus* (Sereno, 1993). Osmólska & Roniewicz (1969: 15) concluded that the forelimbs of Deinocheirus were ill-suited for prehension, but more likely used for "tearing dead or weakly agile prey asunder". Therizinosaurids such as Alxasaurus have been interpreted as herbivores, which used their extremely long forelimbs for grasping foliage (Russell & Russell, 1993; Russell, 1997). Chatterjee (1997) concluded that the long hands and swivel wrists of dromaeosaurids were used for climbing up vertical tree trunks. The ambiguity surrounding such ecologically relevant behaviours points out how little is known about this area of theropod biology. If non-avian theropods exhibited such functional diversity, evidence cannot be found in intramembral proportions alone. Specializations are likely more obvious in other aspects of skeletal morphology, such as the phalanges (Holtz, 1994b, 1995b; Gatesy & Middleton, 1997).

Reduced

Although predatory limb morphology was retained by the majority of non-birds, two lineages, tyrannosaurids (e.g. *Tyrannosaurus*, *Albertosaurus*, *Daspletosaurus*, *Tarbosaurus*) and abelisaurids (*Carnotaurus*) independently evolved highly reduced forelimbs relative to their hind limbs (Table 1, Fig. 7). The forelimb is approximately 20% of hind limb length in *Albertosaurus* and only about 14% in *Carnotaurus*. Non-birds with reduced forelimbs cover a broad range of humeral proportions, from 55% to 72%. The lower end of this humeral range approaches predatory proportions.

The function, if any, of tyrannosaur forelimbs has a long history of debate. Hypotheses range from 'apparently useless' (Bakker, 1986: 272) to an active role in clutching prey to the chest (Smith & Carpenter, 1990; Carpenter & Smith, 1995), assisting the hind limbs when rising from the ground (Newman, 1970), and clasping during mating (Osborn, 1906). Proportion data do not support or falsify any of these hypotheses, but reveal only that tyrannosaur forelimbs are displaced from

Figure 7. Relative proportions of forelimb and hind limb in various theropods. Note the extremely reduced forelimbs of *Carnotaurus* and *Tyrannosaurus*, in which forelimb length is less than 20% of the hind limb length. Forelimb/hind limb ratio is 46% in *Struthiomimus*, 61% in *Deinonychus*, and 96% in *Archaeopteryx*. This pattern is even more pronounced when phalanges and unguals are included. *Carnotaurus* modified from Bonaparte, Novas & Coria (1990); *Tyrannosaurus* modified from Heilmann (1927); *Allosaurus* after Paul (1987); *Sinornithoides* modified from Russell & Dong (1993a); *Coelophysis*, *Struthiomimus*, *Deinonychus*, and *Archaeopteryx* modified from Padian & Chiappe (1997).

other presumed predatory non-avian theropods. Although this derived position in morphospace may indicate specialization for a new role, the direction of this shift from primitive proportions is similar to that seen in birds with reduced function.

Origin of flight

The forelimb proportions of Archaeopteryx and other early birds do not deviate substantially from those of non-birds that retain the primitive function of predation (Fig. 4). The disparity index is only 2.5 between Deinonychus and Archaeopteryx, no larger than intraspecific disparity among specimens of Archaeopteryx, Coelophysis, or Daspletosaurus. This similarity suggests that the evolution of flight did not necessarily involve large-scale reproportioning of forelimb elements. However, proportional homogeneity among non-avian theropods masks many important differences important to the origin of flight. One example is the ratio of forelimb to hind limb length (excluding phalanges), which is highly variable (Table 2). Non-avian theropods most closely related to birds have proportionately longer forelimbs than do more basal theropods (Fig. 7; Heilmann, 1927; Padian & Chiappe, 1997). Deinonychus, a dromaeosaur closely allied to birds, has a forelimb that is 61% of hind limb length, whereas values of 30–50% are most common in theropods further from avian ancestry. Wings of the five specimens of Archaeopteryx for which hind limbs are known range from 79% to 96% of hind limb length.

Flying birds

Given the extreme biomechanical demands of flight, the disparity among volant avian forelimbs was not anticipated. Flying may be less restrictive of limb proportions than previously thought. However, we interpret wing disparity as evidence of skeletal adaptation to different types of flight. If wings are specialized, their proportions should vary according to flight style (Norberg & Rayner, 1987; Rayner, 1988). One such pattern may be relative humerus length, which appears to correlate inversely with aerial maneuverability. As humeral contribution decreases, maneuverability increases. For instance, swallows, martins, and other Passeriformes have the shortest relative humerus length of all birds except swifts and hummingbirds. Qualitatively, these birds are considered very maneuverable fliers. Conversely, birds that are widely regarded as poorly maneuvering fliers (including loons, grebes, cuckoos, and alcids) have the highest relative humeral percentages of all flying birds, approaching the percentage (c. 45%) beyond which flying birds are absent (Fig. 6).

Another example is hummingbirds (Trochiliformes) and swifts (Apodiformes), which share extremely proportioned wings that are 9.7 disparity units outside the main cloud of flying birds (Fig. 6). These similar skeletal morphologies have been attributed to convergence (Cohn, 1968), but molecular evidence (Sibley & Ahlquist, 1990) suggests their unusual wing design was likely present in their most recent common ancestor. Despite superficially different flight behaviors (hovering and backward flight in hummingbirds, high-speed aerial foraging in swifts) these clades share the ability to produce thrust during the upstroke (Savile, 1950). Increased area for attachment of the stiff primary feathers relative to the secondaries may account for their exploitation of novel ternary morphospace (Savile, 1950; Cohn, 1968).

Wing-propelled diving

Wing-propelled diving birds may be considered in two categories, those that are also aerial fliers and those that are flightless. The alcids and diving petrels, which

are the only wing-propelled diving birds that also fly in air, share proportion morphospace with birds that are not wing-propelled divers (Fig. 6). The wings of these birds are likely constrained by the conflicting requirements of aerial and aquatic flight. Flightless wing-propelled divers, including penguins, some alcids, and *Chendytes*, span a range along the humeral axis from those of volant birds (40–45% humerus) to near ostriches (>60% humerus). Such disparity and overlap make it difficult to distinguish adaptation for wing-propelled diving from changes due to the relaxation of aerial flight demands.

Flightless

Proportional differences between flightless birds and their volant relatives suggest that when flight is abandoned, the constraints that formerly shaped the wing are relaxed. Flightlessness is invariably associated with decreased distal element contribution relative to humeral percentage (Fig. 6). The shift of flightless birds toward the lower left on the ternary is not only found in birds with vestigial limbs, such as kiwis. Flightless birds that use their wings for display (ostriches) or aquatic locomotion (Great Auk, *Chendytes*, *Mancalla*, *Praemancalla*) have relatively longer humeri than their volant relatives.

The contentious Late Cretaceous theropod Mononykus has been described as a flightless bird (Perle et al., 1993, 1994) and the sister taxon to all birds other than Archaeopteryx. However, the avian status of Mononykus has been repeatedly questioned (Ostrom, 1994; Wellnhofer, 1994; Zhou, 1995; Feduccia, 1996; Chatterjee, 1997) in part due to its unusual forelimb morphology. Wellnhofer (1994: 306), for example, stated that "it would be very difficult to imagine how a primitive bird wing, such as that of Archaeopteryx, could have evolved into a forelimb like that of Mononykus". Similarly, Ostrom (1994: 172) concluded that Mononykus "never flew and never had a volant ancestry" (but see Chiappe, Norell & Clark, 1997; Padian & Chiappe, 1998). The short, stout, forelimb of Mononykus precludes flight, but does its design give clues to the limb function of its ancestors? Forelimb proportions of Mononykus (58%:28%:14%) place it within the region occupied by both flightless birds and non-avian theropods (Fig. 7). If Mononykus is not a bird, its proportions appear be those of a non-avian theropod with reduced forelimbs, having undergone a shift in proportion similar to tyrannosaurs and Carnotaurus. On the other hand, if Mononykus had volant ancestors, they likely had humeral percentages less than 45%, which increased after the loss of flight. Thus, the ternary location confirms that Mononykus could not fly, but is unable to discriminate between primary and secondary flightlessness.

Limb proportion theory

As obligate bipeds, theropods possessed forelimbs free from locomotor constraints that were present in quadrupedal archosaurs. Those archosaurs which used their forelimbs during terrestrial locomotion consistently had forelimbs with relatively longer humeri and radii as well as short metacarpals. Theropod forelimbs are localized to an area of less than 20% of the total proportion morphospace (Fig. 3). We hoped that by visualizing this pattern and the distribution of theropods within

it, we might gain insight into the factors influencing limb design in this clade. Herein we offer initial hypotheses for non-terrestrial forelimb design from a more theoretical and biomechanical perspective. We address five potential factors: limb folding, limb inertia, spatial access, minimum proportions, and developmental pathways.

Limb folding

During bipedal locomotion, interference between limbs could be reduced by tucking the forelimbs up against the body. Limb folding is likely most important in theropods with relatively long forelimbs and those that must protect flight feathers from damage. A limb's proportions will affect how compactly it can fold. Predicted proportions for optimal limb folding depend on the degree of flexibility at the shoulder, elbow, wrist, metacarpophalangeal (MP), and interphalangeal (IP) joints. Primitively, the wrist in theropods appears to have been less mobile than the other joints. Compact limb folding with a stiff wrist could have been achieved by bringing the humerus against the body and flexing the elbow, MP, and IP joints. A limb's folded length would be minimized if the humerus were 50% of limb length (Fig. 8A). The radius and carpometacarpus would sum to 50%, forming a V-configuration limb in which the MP joint was nearest the shoulder. Predatory non-birds have humeri approximately 50% of the forelimb (Fig. 3); this would be predicted if the wrist was more restricted than the elbow, such that the forearm and palm effectively constituted a single segment during folding.

In contrast, the wrist of most birds can undergo substantial ulnar deviation, enabling them to fold the wings up in a Z-configuration (Fig. 8B). This flexibility first evolved in non-avian theropods and is present, at least to some degree, in forms such as *Deinonychus* (Ostrom, 1969; Gauthier & Padian, 1985). The ideal proportions for Z-folding would be for the humerus, radius, and hand (carpometacarpus + phalanges) to be of equal length. Having the humerus and radius of comparable length positions the wrist near the shoulder when the limb is fully folded. The wings of many flying birds lie on or near the midline of the ternary diagram, indicating that they have humeri and radii of similar length (Fig. 3). We did not measure phalanges, but if their length were added to the carpometacarpus it would raise the proportions of many wings closer to the center of the ternary (33%:33%:33%). Flightless birds are likely freed from folding constraints because their wings are either relatively small (e.g. ratites) or have less mobile joints for aquatic use (Raikow, Bicanovsky & Bledsoe, 1988).

Limb inertia

Wings that flap would benefit from minimizing limb inertia. Although feathers make up the distal portion, skeletal elements and soft tissues form the framework of the wing. If elements were proportioned to reduce total limb inertia, the proximal segments should be shortened because they bear the most muscle. In contrast to folding, high frequency flapping would favour a humerus shorter than the radius; such limbs are found on the right half of the ternary (Fig. 8B). The radius is up to 50% longer than the humerus in some birds, including the most maneuverable fliers, which might benefit from inertial reduction.

Spatial access

During predation, theropod forelimbs access regions around the shoulder to grasp and clutch prey. When the fully extended limb is rotated about the shoulder joint,

Figure 8. Factors potentially influencing limb design. Proportions favored for each factor are shown as shaded regions of ternary morphospace. Simplified limb models consist of humerus (thick line), radius (medium line), wrist joint (circle) and carpometacarpus (thin line). See text for details.

its distal tip delineates a spherical volume of space in which the limb operates. Proportions affect a limb's ability to reach the space within its maximum span. Only a subset of possible limb proportions allow access to the entire volume of the sphere.

To permit full accessibility, limbs should be restricted to a triangular subset of morphospace in which no element is more than 50% of the limb (Fig. 8C). If one element were more than half the limb length, the other two segments would not be long enough to reach the innermost volume around the shoulder. Despite the simplicity of this model, which does not include phalanges or restrict joint movement, theropod distribution within the morphospace conforms remarkably well to these predictions. Most theropods are found within a central region of the ternary, with radii up to ϵ . 48% and carpometacarpi up to ϵ . 43%. Predatory non-birds have humeri approximately 50% of the limb. However, the humerus is up to 70% of limb length in a few theropods, those whose limbs are reduced with questionable functionality.

Minimum proportions

Regions near the edges of ternary morphospace may be off limits due to the constructional demands of joints and muscles (Fig. 8D). First, the absolute lengths of the humerus, radius and carpometacarpus may be restricted by the amount of bone needed to form complete joints on each end. Even if the diaphysis (shaft) were eliminated, the two articular ends would have a finite length. This restriction may have a proximo-distal gradient. The humerus, as a single element at the base of the limb, has a larger diameter and more expansive joint surface than the paired bones of the forearm or the multiple elements of the hand. Second, the functional demands of muscle may set minimum bone lengths. Because bone and muscle lengths are correlated, a very short bone will carry very short muscles, with few sarcomeres in series. Such a muscle will have a limited operational range, and may not be capable of the length changes required for proper joint excursion. For example, a very short humerus would bear a very short humerotriceps muscle, which could limit elbow mobility. Again, proximal elements may be influenced more than distal ones. Phalanges and carpals, for example, lack long, fleshy muscle attachments and can therefore be both absolutely and relatively short. However, we do not know what these minima might be. Camotaurus provides evidence that they are as low as 20% for the radius and 10% for the carpometacarpus. However, even a minimum proportion of 5% for each element would reduce the area of viable ternary morphospace by one fourth.

Developmental pathways

A final factor that likely biases the distribution of theropod limb proportions is embryonic development and growth. Paedomorphosis is one of the primary mechanisms that have been proposed for the evolution of flightlessness (Livezey, 1995). A ternary diagram may be a convenient way to visualize limb proportion ontogeny in extant birds. Changes in wing proportions from embryonic limb formation through adulthood should form a trajectory through proportion morphospace. Preliminary analysis of wing growth in *Larus californicus* reveals such a shift. The humerus progressively decreases in relative length from c. 43% in hatchlings to c. 38% in adults of this gull (data courtesy of D. Carrier). If other species grow along a similar trajectory (towards relatively shorter humeri, Fig. 8E), the presence of theropods in the lower left of the ternary could be described by heterochrony. Changes in developmental timing could lead to adult flightless birds with proportions resembling a juvenile stage of their flying ancestor.

CONCLUSIONS AND PROSPECTS

Despite many recent advances in theropod palaeobiology, the evolution of limb design remains poorly understood. The paucity of functional studies may result from an inability to compare limbs of vastly different size, shape, and function. In this study we present the distribution of theropod forelimb elements in a morphospace. Such a visualization of disparity is a foundation for functional study, because it reveals patterns which require explanation. We selected five factors that we think may play a role in the evolution of theropod forelimb design. Clearly, our predictions do not completely explain the distribution of theropods in proportion morphospace, but they are a first step towards understanding theropod disparity. More realistic models incorporating joint mobility data and phalanges may help answer questions raised by our data. One that we find particularly intriguing is the absence of flying birds with humeri greater than 45% of the limb. Is this a true biomechanical limit imposed by flight, a side effect of other factors such as limb folding, or just a product of chance?

In a larger sense, our study highlights a conspicuous lack of vertebrate disparity studies in light of invertebrate analyses [ammonoids (Saunders & Swan, 1984; Swan & Saunders, 1987), arthropods (Briggs & Fortey, 1989; Foote, 1989; Gould, 1991, 1993; Briggs, Fortey & Wills, 1992a,b; Ridley, 1993; Lee, 1992; Foote & Gould, 1993; Wills, Briggs & Fortey, 1994), crinoids (Foote, 1994a,b, 1995a,b, 1996), gastropods (Wagner, 1995), rostroconch molluscs (Wagner, 1997), blastozoan echinoderms (Foote, 1992), and priapulids (Wills, 1998)]. We echo Gould's (1991: 420) plea "to define a full range of the abstract (and richly multivariate) space into which all organisms may fit (the morphospace)". As with invertebrates, studies of vertebrate morphological disparity possess tremendous potential for insights into major patterns of evolution.

ACKNOWLEDGEMENTS

We express our deepest gratitude to R. Paynter of the Museum of Comparative Zoology, Cambridge, MA and F. Sibley of the Yale Peabody Museum, New Haven, CT, for access to specimens in their care. We thank D. Carrier, M. Norell, and P. Sereno for sharing their data. This work has benefited from conversations with M. Carrano, J. Hutchinson, K. Padian, C. Sidor, and D. Warrick. We acknowledge past and present members of the Brown University Morphology Group for their comments on an earlier draft of this manuscript, as well as K. Padian and an anonymous reviewer for their valuable remarks. This work was supported by National Science Foundation grant IBN-94-07367 to SMG. This is GRIPS Contribution No. 6.

REFERENCES

Alexander RMcN. 1991. Optimization of gut structure and diet for higher vertebrate herbivores.
 Philosophical Transactions of the Royal Society of London B 333: 249–255.
 Bakker RT. 1986. The Dinosaur Heresies. New York: William Morrow & Co.

Barsbold R, Maryanska T, Osmólska H. 1990. Oviraptorosauria. In: Weishampel DB, Dodson P, Osmólska H, eds. *The Dinosauria*. Berkely: University of California Press, 249–258.

Berger AJ. 1952. The comparative functional anatomy of the pelvic appendage in three genera of Cuculidae. *American Midland Naturalist* **47:** 513–605.

Bonaparte JF, Novas FE, Coria RA. 1990. Carnotaurus sastrei Bonaparte, the horned, lightly built carnosaur from the Middle Cretaceous of Patagonia. Contributions in Science, Natural History Museum of Los Angeles County 416: 1–42.

Briggs DEG, Fortey RA. 1989. The early radiation and relationships of the major arthropod groups. *Science* **246:** 241–243.

Briggs DEG, Fortey RA, Wills MA. 1992a. Morphological disparity in the Cambrian. *Science* 256: 1670–1673.

Briggs DEG, Fortey RA, Wills MA. 1992b. Cambrian and Recent morphological disparity. Science 258: 1817–1818.

Campbell KE Jr, Tonni EP. 1983. Size and locomotion in teratorns (Aves: Teratornithidae). Auk 100: 390–403.

Carrano MT. 1998. Locomotion in non-avian dinosaurs: Integrating data from hindlimb kinematics, in vivo strains, and bone morphology. *Paleobiology* 24: 450–469.

Carpenter K, Smith MB. 1995. Osteology and functional morphology of the forelimb in tyrannosaurids as compared with other theropods (Dinosauria). *Journal of Vertebrate Paleontology* 15 (supplement to No. 3): 21A.

Chatterjee S. 1997. The Rise of Birds. Baltimore: Johns Hopkins University Press.

Chiappe LM. 1995. The first 85 million years of avian evolution. Nature 378: 349-355.

Chiappe LM, Norell MA, Clark JM. 1996. Phylogenetic position of Mononykus (Aves: Alvarezsauridae) from the Late Cretaceous of the Gobi Desert. Memoirs of the Queensland Museum 39: 557–582.

Chiappe LM, Norell MA, Clark JM. 1997. Mononykus and birds: methods and evidence. Auk 114: 300–302.

Christiansen P. 1997. Forelimbs and hands. In: Currie PJ, Padian K, eds. Encyclopedia of Dinosaurs. London: Academic Press, 245–253.

Clark JM, Hopson JA, Hernández RR, Fastovsky DE, Montellano M. 1998. Foot posture in a primitive pterosaur. *Nature* 391: 886–889.

Cohn JMW. 1968. The convergent flight mechanism of swifts (Apodi) and hummingbirds (Trochili) (Aves). Unpublished Ph.D. dissertation. University of Michigan, Ann Arbor.

Colbert EH. 1989. The Triassic dinosaur Coelophysis. Museum of Northern Arizona Bulletin 57: 1-160.

Coombs WP Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. *Quarterly Review of Biology* 53: 393–418.

Dong Z. 1984. A carnosaur from the Middle Jurassic of the Sichuan Basin. *Vertebrata PalAsiatica* **22:** 214–218.

Dong Z. 1993. A Lower Cretaceous enantiornithine bird from the Ordos Basin of Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences 30: 2177–2179.

Feduccia A. 1996. The Origin and Evolution of Birds. New Haven: Yale University Press.

Feduccia A, Voorhies MR. 1992. Crowned cranes (Gruidae: *Balearica*) in the Miocene of Nebraska. In: Campbell KE Jr, ed. *Papers in Avian Paleontology, Honoring Pierce Brodkorb.* Los Angeles: Natural History Museum of Los Angeles County, 240–248.

Felsenstein J. 1985. Phylogenies and the comparative method. American Naturalist 125: 1–15.

Fisher HI. 1946. Adaptations and comparative anatomy of the locomotor apparatus of new world vultures. *American Midland Naturalist* **35:** 545–727.

Foote M. 1989. Perimeter-based Fourier analysis: A new morphometric method applied to the trilobite cranidium. *Journal of Paleontology* 63: 880–885.

Foote M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences of the United States of America 89: 7325–7329.

Foote M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19: 185–204.

Foote M. 1994a. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphospace. *Paleobiology* **20:** 320–344.

Foote M. 1994b. Morphology of Ordovician-Devonian crinoids. *University of Michigan Museum of Paleontology Contributions* 29: 1–39.

Foote M. 1995a. Morphological diversification in Paleozoic crinoids. *Paleobiology* 21: 273–299.

Foote M. 1995b. Morphology of Carboniferous and Permian crinoids. University of Michigan Museum of Paleontology Contributions 29: 135–184.

- **Foote M. 1996.** Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. *Science* **274:** 1492–1495.
- **Foote M. 1997.** The evolution of morphological diversity. *Annual Review of Ecology and Systematics* **28:** 129–152.
- Foote M, Gould SJ. 1992. Cambrian and Recent morphological disparity. Science 258: 1816.
- Forster CA, Sampson SD, Chiappe LM, Krause DW. 1998. The theropod ancestry of birds: new evidence from the Late Cretaceous of Madagascar. *Science* 279: 1915–1919.
- Fortey RA. 1983. Geometric constraints in the construction of grapholite stipes. *Paleobiology* 9: 116–125. Garland T Jr, Harvey PH, Ives AR. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. *Systematic Biology* 41: 18–32.
- Garland T Jr, Janis CM. 1993. Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? Journal of Zoology, London 229: 133–151.
- **Gatesy SM. 1991.** Hind limb scaling in birds and other theropods: implications for terrestrial locomotion. *Journal of Morphology* **209:** 83–96.
- Gatesy SM, Middleton KM. 1997. Bipedalism, flight, and the evolution of theropod locomotor diversity. Journal of Vertebrate Paleontology 17: 308–329.
- Gauthier J. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences 8: 1-55.
- Gauthier J, Padian K. 1985. Phylogenetic, functional and aerodynamic analysis of the origin of birds. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P, eds. The Beginnings of Birds: Proceedings of the International Archaeopteryx Conference, Eichstätt 1984. Eichstätt: Freunde des Jura-Museums Eichstätt.
- **Gebo DL, Rose KD. 1993.** Skeletal morphology and locomotor adaptation in *Prolimnocyon atavus*, an Early Eocene hyaenodontid creodont. *Journal of Vertebrate Paleontology* **13:** 125–144.
- **Gilmore CW. 1920.** Osteology of the carnivorous dinosauria in the United States National Museum, with special references to the genera *Antrodemus* (*Allosaurus*) and *Ceratosaurus. Bulletin of the United States National Museum* **110:** 1–154.
- Gould SJ. 1989. Wonderful Life. New York: W. W. Norton and Company.
- **Gould SJ. 1991.** The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: Why we must strive to quantify morphospace. *Paleobiology* **17:** 411–423.
- Gould SJ. 1993. How to analyze Burgess Shale disparity a reply to Ridley. Paleobiology 19: 522–523.
 Gregory WK. 1912. Notes on the principles of quadrupedal locomotion and on the mechanisms of the limbs in hoofed animals. Annals of the New York Academy of Sciences 22: 267–294.
- Heilmann G. 1927. The Origin of Birds. London: Witherby.
- Hesse A. 1992. A new species of Messelomis (Aves: Gruiformes: Messelornithidae) from the Middle Eocene Green River Formation. In: Campbell KE Jr, ed. Papers in Avian Paleontology, Honoring Pierce Brodkorb. Los Angeles: Natural History Museum of Los Angeles County, 171–178.
- Holtz TR Jr. 1994a. The phylogenetic position of the Tyrannosauridae: Implications for theropod systematics. Journal of Paleontology 68: 1100–1117.
- **Holtz TR Jr. 1994b.** Predatory adaptations of the skull and unguals of modern and extinct carnivorous amniotes. *Journal of Vertebrate Paleontology* **13** (supplement to No. 3): 29A–30A.
- **Holtz TR Jr. 1995a.** The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). *Journal of Vertebrate Paleontology* **14:** 480–519.
- Holtz TR Jr. 1995b. Adaptive trends in major subgroups of theropods and related taxa. Journal of Vertebrate Paleontology 15 (supplement to No. 3): 35A.
- Houde P, Haubold H. 1987. Palaeotis weigelti restudied: A small middle Eocene ostrich (Aves: Struthioniformes). Palaeovertebrata 17: 27–42.
- Houde P, Olson SL. 1992. A radiation of coly-like birds from the Eocene of North America. In: Campbell KE Jr, ed. Papers in Avian Paleontology, Honoring Pierce Brodkorb. Los Angeles: Natural History Museum of Los Angeles County, 137–160.
- Howard H. 1976. A new species of flightless auk from the Miocene of California (Alcidae: Mancallinae).
 Smithsonian Contributions to Paleobiology 27: 141–146.
- Howell AB. 1965. Speed in Animals. New York: Hafner.
- **Hunter JP. 1998.** Key innovations and the ecology of macroevolution. *Trends in Ecology & Evolution* **13:** 31–36.
- Kershaw S, Riding R. 1978. Parameterization of stromatoporoid shape. Lethaia 11: 233–242.
- Lacasa Ruiz A. 1989. Nuevo genero de ave fosil del Yacimiento Neocomiense del Montsec (provincia de Lerida, España). Estudios Geologicos 45: 417–425.

- Lee MSY. 1992. Cambrian and Recent morphological disparity. Science 258: 1816–1817.
- Livezey BC. 1989a. Phylogenetic relationships and incipient flightlessness of the extinct Auckland Islands Merganser. Wilson Bulletin 101: 410–435.
- Livezey BC. 1989b. Flightlessness in grebes (Aves, Podicipedidae): Its independent evolution in three genera. Evolution 43: 29–54.
- **Livezey BC. 1992.** Flightlessness in the Galápagos Cormorant (*Compsohalieus [Nannopterum] harrist*): Heterochrony, giantism and specialization. *Zoological Journal of the Linnean Society* **105**: 155–224.
- Livezey BC. 1993. Morphology of flightlessness in *Chendytes*, fossil seaducks (Anatidae: Mergini) of coastal California. *Journal of Vertebrate Paleontology* 13: 185–199.
- Livezey BC. 1995. Heterochrony and the evolution of avian flightlessness. In: McNamara KJ, ed. Evolutionary Change and Heterochrony. Chichester: John Wiley & Sons Ltd, 169–193.
- **Livezey BC, Humphrey PS. 1986.** Flightlessness in steamer ducks (Anatidae: *Tachyeres*): Its morphological bases and probable evolution. *Evolution* **40:** 540–558.
- **Lowe PR. 1928.** A description of *Atlantisia rogersi*, the diminutive and flightless rail of Inaccessible Island (southern Atlantic), with some notes of flightless rails. *Ibis*, *12th Series* **4:** 99–131.
- Maleev EA. 1974. [Giant carnosaurs of the family Tyrannosauridae]. Trudy/Sovmestnaia Sovetsko-Mongol'škaia Paleontologicheskaia Ekspeditsiia 1: 132–191. [In Russian].
- Mattison RG. 1993. Are avian lifestyles of the present a key to behaviors of the past? Journal of Vertebrate Paleontology 13 (supplement to No. 3): 49A.
- Mattison RG, Giffin EG. 1989. Limb use and disuse in ratites and tyrannosaurids. *Journal of Vertebrate Paleontology* 9 (supplement to No. 3): 32A.
- Mourer-Chauviré C. 1992. The Galliformes (Aves) from the phosphorites du Quercy (France): Systematics and biostratigraphy. In: Campbell KE Jr, ed. *Papers in Avian Paleontology, Honoring Pierce Brodkorb*. Los Angeles: Natural History Museum of Los Angeles County, 67–95.
- Newman BH. 1970. Stance and gait in the flesh-eating dinosaur Tyrannosaurus. Biological Journal of the Linnean Society 2: 119–123.
- Nicholls EL, Russell AP. 1985. Structure and function of the pectoral girdle and forelimb of *Struthiomimus altus* (Theropoda: Ornithomimidae). *Palaeontology* 28: 643–677.
- **Norberg UM. 1979.** Morphology of the wings, legs and tail of three coniferous forest tits, the goldcrest, and the treecreeper in relation to locomotor pattern and feeding station selection. *Philosophical Transactions of the Royal Society of London B* **287:** 131–165.
- Norberg UM, Rayner JMV. 1987. Ecological morphology in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. *Philosophical Transactions of the Royal Society of London B* 316: 335–427.
- Olson SL. 1992. A new family of primitive landbirds from the lower Eocene Green River Formation of Wyoming. In: Campbell KE Jr, ed. *Papers in Avian Paleontology, Honoring Pierce Brodkorb*. Los Angeles: Natural History Museum of Los Angeles County, 127–136.
- **Osborn HF. 1906.** Tyrannosaurus, Upper Cretaceous carnivorous dinosaur (second communication). Bulletin of the American Museum of Natural History **22:** 281–296.
- Osborn HF. 1916. Skeletal adaptations of Ornitholestes, Struthiomimus, Tyrannosaurus. Bulletin of the American Museum of Natural History 35: 733-771.
- Osborn HF. 1929. The Titanotheres of ancient Wyoming, Dakota, and Nebraska. *United States Geological Survey Monograph* 55.
- Osmólska H, Roniewicz E. 1969. Deinocheiridae, a new family of theropod dinosaurs. *Palaeontologia Polonica* 21: 5–19.
- Osmólska H, Roniewicz E, Barsbold R. 1972. A new dinosaur, *Galliminus bullatus* n. gen., n. sp. (Ornithomimidae) from the Upper Cretaceous of Mongolia. *Palaeontologia Polonica* 27: 103–143.
- Ostrom JH. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. *Bulletin of the Peabody Museum of Natural History* 30: 1–165.
- **Ostrom JH. 1976a.** On a new specimen of the Lower Cretaceous theropod dinosaur *Deinonychus antirrhopus. Breviora* **439:** 1–21.
- Ostrom JH. 1976b. Archaeopteryx and the origin of birds. Biological Journal of the Linnean Society 8: 91–182.
- Ostrom JH. 1978. The osteology of Compsognathus longipes Wagner. Zitteliana 4: 73–118.
- Ostrom JH. 1994. On the origin of birds and of avian flight. In: Prothero DR, Schoch RM, eds. *Major Features of Vertebrate Evolution*. Knoxville, TN: Paleontological Society, 160–177.
- Padian K, Chiappe LM. 1997. Bird origins. In: Currie PJ, Padian K, eds. Encyclopedia of Dinosaurs. London: Academic Press, 71–79.

- Padian K, Chiappe LM. 1998. The origin and early evolution of birds. Biological Reviews 73: 1–42.
 Paul GS. 1987. The science and art of restoring the life appearance of dinosaurs and their relatives.
 In: Czerkas SJ, Olsen EC, eds. Dinosaurs Past and Present, Vol 2. Seattle: University of Washington Press, 5–49.
- Paul GS. 1988. Predatory dinosaurs of the world: A complete illustrated guide. New York: Simon & Schuster.
 Perle A, Norell MA, Chiappe LM, Clark JM. 1993. Flightless bird from the Cretaceous of Mongolia. Nature 362: 623–626.
- Perle A, Chiappe LM, Barsbold R, Clark JM, Norell MA. 1994. Skeletal morphology of Mononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. American Museum Novitates 3105: 1–29.
- **Peters DS. 1992.** A new species of owl (Aves: Strigiformes) from the Middle Eocene Messel Oil Shale. In: Campbell KE Jr, ed. *Papers in Avian Paleontology, Honoring Pierce Brodkorb.* Los Angeles: Natural History Museum of Los Angeles County, 67–95.
- **Raath MA. 1969.** A new coelurosaurian dinosaur from the Forest Sandstone of Rhodesia. *Amoldia* 4: 1–25.
- Raikow RJ, Bicanovsky L, Bledsoe AH. 1988. Forelimb joint mobility and the evolution of wing-propelled diving in birds. Auk 105: 446–451.
- Rayner JMV. 1988. Form and function in avian flight. Current Ornithology 5: 1-66.
- Ridley M. 1993. Analysis of the Burgess Shale. Paleobiology 19: 519-521.
- Russell DA. 1970. Tyrannosaurs from the Late Cretaceous of western Canada. *National Museum of Natural Science, Publications in Paleontology* 1: 1–34.
- **Russell DA. 1972.** Ostrich dinosaurs from the Late Cretaceous of western Canada. *Canadian Journal of Earth Sciences* **9:** 375–402.
- Russell DA, Russell DE. 1993. Mammal-dinosaur convergence. National Geographic Research and Exploration 9: 70–79.
- Russell DA. 1997. Therizinosauria. In: Currie PJ, Padian K, eds. Encyclopedia of Dinosaurs. London: Academic Press, 729–730.
- Russell DA, Dong Z. 1993a. The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences 30: 2107–2127.
- Russell DA, Dong Z. 1993b. A nearly complete skeleton of a new troodontid dinosaur from the Early Cretaceous of the Ordos Basin, Inner Mongolia, People's Republic of China. *Canadian Journal* of Earth Sciences 30: 2163–2173.
- Sanz JL, Chiappe LM, Buscalioni AD. 1995. The osteology of Concomis lacustris (Aves: Enantiornithes) from the Lower Cretaceous of Spain and a reexamination of its phylogenetic relationships. American Museum Novitates 3133: 1–23.
- Saunders WB, Swan ARH. 1984. Morphology and morphologic diversity of mid-Carboniferous (Naumurian) ammonoids in time and space. *Paleobiology* 10: 195–228.
- Savile DBO. 1950. The flight mechanism of swifts and hummingbirds. Auk 67: 499-504.
- **Sereno PC. 1993.** The pectoral girdle and forelimb of the basal theropod *Herrerasaurus ischigualastensis. Journal of Vertebrate Paleontology* **13:** 425–450.
- Sereno PC. 1997. The origin and evolution of dinosaurs. *Annual Review of Earth and Planetary Sciences* 25: 435–489.
- Sereno PC, Forster CA, Rogers RR, Monetta AM. 1993. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. *Nature* 361: 64–66.
- Sereno PC, Dutheil DB, Iarochene M, Larsson HCE, Lyon GH, Magwene PM, Sidor CA, Varricchio DJ, Wilson JA. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. *Science* 272: 986–990.
- Sibley CG, Ahlquist JE. 1990. Phylogeny and Classification of Birds: a Study in Molecular Evolution. New Haven: Yale University Press.
- Simpson GG. 1946. Fossil penguins. Bulletin of the American Museum of Natural History 87: 1–99.
- Smith JM, Savage RJG. 1956. Some locomotory adaptations in mammals. Zoological Journal of the Linnean Society of London 42: 603–622.
- Smith MB, Carpenter K. 1990. Forelimb biomechanics of Tyrannosaurus rex. Journal of Vertebrate Paleontology 9 (supplement to No. 3): 43A.
- Storer RW. 1976. The Pleistocene Pied-billed Grebes (Aves: Podicipedidae). Smithsonian Contributions to Paleobiology 27: 147–153.
- **Swan ARH, Saunders WB. 1987.** Function and shape in late Paleozoic (mid-Carboniferous) ammonoids. *Paleobiology* **13:** 297–311.

Wagner PJ. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21: 248–272.

Wagner PJ. 1997. Patterns of morphologic diversification among the Rostroconchia. *Paleobiology* 23: 115–150.

Welles SP. 1984. Dilophosaurus wetherilli (Dinosauria, Theropoda) osteology and comparisons. Palae-ontographica A 185: 85–180.

Wellnhofer P. 1974. Das fünfte Skelettexemplar von Archaeopteryx. Palaeontographica A. 147: 85–180.

Wellnhofer P. 1988. Ein neues Exemplar von Archaeopteryx. Archaeopteryx 6: 1-30.

Wellnhofer P. 1993. Das siebte Exemplar von Archaeopteryx aus den Solnhofener Schichten. Archaeopteryx 11: 1–48.

Wellnhofer P. 1994. New data on the origin and early evolution of birds. Comptes Rendus de l'Academie des Sciences à Paris, Série II 319: 299–308.

Wills MA. 1998. Cambrian and Recent disparity: the picture from priapulids. *Paleobiology* 24: 177–199.
Wills MA, Briggs DEG, Fortey RA. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. *Paleobiology* 20: 93–130.

Worthy TH, Holdaway RN, Sorenson MD, Cooper AC. 1997. Description of the first complete skeleton of the extinct New Zealand Goose *Cnemiornis calcitrans* (Aves: Anatidae), and a reassessment of the relationships of *Cnemiornis. Journal of Zoology, London* 243: 695–723.

Zhou Z. 1995. Is *Mononykus* a bird? Auk **112:** 958–963.

Zhou Z, Jin F, Zhang J. 1992. Preliminary report on a Mesozoic bird from Liaoning, China. *Chinese Science Bulletin* 37: 1365–1368.

 $\begin{array}{c} \text{APPENDIX 1} \\ \text{Non-avian theropod limb segment lengths (in mm; H, humerus; R, radius; MC, metacarpal II;} \\ & \dagger, \text{ulna)} \end{array}$

Species	Number	Н	R	MC	Source
Albertosaurus libratus	NCM 2120	324	156	98	Russell (1970)
Albertosaurus libratus	AMNH 5664	205	100	60	Russell (1970)
Allosaurus fragilis	USNM 4734	310	222	123	Gilmore (1920)
Alxasaurus elesitaiensis	IVPP 88402	375	245	111	Russell & Dong (1993a)
Carnotaurus sastrei	MACN-CH 894	285	73	37	Bonaparte, Novas & Coria (1990)
Coelophysis bauri	AMNH 7223	120	65	39	Colbert (1989)
Coelophysis bauri	AMNH 7224	134	82	40	Colbert (1989)
Compsognathus longipes	BSP AS I 536	∼ 39	24	14	Ostrom (1978)
Daspletosaurus torosus	NMC 8506	357	171	120	Russell (1970)
Daspletosaurus torosus	NMC 11315	225	96	58	Russell (1970)
Deinocheirus mirificus	ZPAL MgD-I/6	938	630	230	Osmólska & Roniewicz (1969)
Deinonychus antirrhopus	MCZ 4371	254	192	>90	Ostrom (1976a)
Dilophosaurus wetherilli	UCMP 37302	270	192	105	Welles (1984)
Eoraptor lunensis	PVSJ 512	85	63	21	Sereno (pers. comm.)
Gallimimus bullatus	GI 100/11	530	350	115	Osmólska, Roniewicz & Barsbold (1972)
Herrerasaurus ischigualastensis	PVSJ 373	~175	153	58	Sereno (1993)
Ingenia yanshini	GI 100/30	∼ 135	~91	∼ 42	Barsbold et al. (1990)
Ornithomimus edmontonicus†	ROM 851	276	206	100	Russell (1972)
Sinornithoides youngi	IVPP V9612	~83	59.1	~ 35	Russell & Dong (1993b)
Struthiomimus altus	AMNH 5339	310	228	103	Osborn (1916)
Syntarsus rhodesiensis	QG 1	100	61	26	Raath (1969)
Tarbosaurus efremovi	PIN 552-1	255	110	60	Maleev (1974)
Xuanhanosaurus qilixiaensis	IVPP V6729	265	202	109	Dong (1984)

 $\label{eq:APPENDIX 2}$ Avian limb segment lengths (in mm; H, humerus; R, radius; CM, carpometacarpus)

Species	Н	R	CM	Specimen Number
STRUTHIONIFORMES				
Struthionidae				
Struthio camelus	395.0	120.0	100.0	MCZ 2686
Struthio camelus	377.0	120.0	98.0	MCZ 2686
Struthio camelus	268.0	81.0	72.0	MCZ 1628
Struthio camelus	294.0	96.3	75.2	YPM 4347
Rheidae	451.0	30.3	70.4	11111 1017
Rhea americana	260.0	184.0	77.0	MCZ 2083
Rhea americana	281.0	210.0	78.0	YPM 11524
Casuariidae	201.0	210.0	70.0	11 W1 1132+
Casuaris bennetti	69.0	39.0	22.0	MC7 display
	72.3	42.4	23.8	MCZ display YPM 4351
Casuarius sp.				
Casuarius sp.	62.9	35.1	21.4	YPM 2123
Dromecius novaehollandiae	89.0	65.0	43.0	MCZ 198
Dromecius novaehollandiae	92.0	62.0	45.0	MCZ 1627
Apterygidae	00.0	17.5	- 1	MO7 200
Apteryx oweni	39.2	17.5	5.1	MCZ 308
TINAMIFORMES				
Tinamidae				
Crypturellus boucardi	49.0	48.5	28.7	MCZ 2750
Crypturellus noctivagus	58.2	54.9	32.5	MCZ 276
Nothura maculosa	43.3	41.3	24.7	MCZ 1653
Tinamus major	75.0	72.2	42.6	MCZ 2774
Tinamus tao	80.0	80.9	45.8	MCZ 3705
CRACIFORMES				
Cracidae				
Crax alberti	109.0	105.0	53.0	MCZ 209
Crax mitu	110.0	107.0	55.0	MCZ 3575
Crax pauxi	110.0	111.0	56.0	MCZ 2121
1				
Ortalis vetula	60.0	50.0	27.5	MCZ 3099
Penelope purpascens	92.0	87.0	46.0	MCZ 293
Penelopina nigra	118.0	113.0	54.0	MCZ 2084
Megapodiidae	05.0	0.0	45.0	1.607.055
Macrocephalon maleo	85.0	86.0	45.8	MCZ 355
GALLIFORMES				
Phasianidae				
Agriocharis ocellata	131.0	116.7	64.1	MCZ 2878
Agriocharis ocellata	119.0	108.0	61.0	MCZ 3049
Agriocharis ocellata	125.0	113.0	64.0	MCZ 3046
Bonasa umbellus	49.1	41.9	28.1	MCZ 7935
Bonasa umbellus	51.9	43.3	27.4	MCZ 7371
Bonasa umbellus	49.5	42.3	27.0	MCZ 6061
Bonasa umbellus	50.8	42.3	27.7	MCZ 7666
Centrocercus urophasianus	95.1	80.3	43.7	MCZ 110
Centrocercus urophasianus	87.7	85.0	46.6	MCZ 1441
Coturnix coturnix	33.6	26.7	18.8	MCZ 3164
Coturnix coturnix	33.8	27.1	18.7	MCZ 3298
Coturnix delegorguei	31.4	25.3	17.1	MCZ 3230 MCZ 3037
Excalfactoria chinensis	25.9	20.3	13.8	MCZ 7497
Gallus gallus	99.5	86.5	51.0	SMG pers. coll.
Gatius gatius Lagopus mutus	63.4	54.1	33.5	MCZ 1469
Lophortyx gambelli	33.1	26.9	17.5	MCZ 7254
Meleagris gallopavo	144.0	129.0	73.0	MCZ 7157
Meleagris gallopavo	129.0	119.0	65.0	MCZ 819
Meleagris gallopavo	156.0	138.0	78.0	MCZ 1494
Pavo cristatus	131.0	108.0	63.0	MCZ 311

K. M. MIDDLETON AND S. M. GATESY

APPENDIX 2—continued

Species	Н	R	CM	Specimen Number
GALLIFORMES				
Phasianidae				
Pavo cristatus	126.0	103.0	61.0	MCZ 2651
Tetrao urogallus	98.9	90.0	51.8	MCZ 315
Tetrao urogallus	131.1	119.7	67.6	MCZ 314
Tympanuchus cupido	65.6	55.4	34.9	MCZ 2193
Numididae				
Guttera pucherani	74.0	64.0	38.0	MCZ 2098
Numida meleagris	79.0	66.0	38.0	MCZ 1648
Odontophoridae				
Callipepla squamata	33.9	29.2	17.4	MCZ 1254
Colinus nigrogularis	32.5	26.6	17.3	MCZ 5029
Colinus virginianus	35.6	28.5	17.9	MCZ 7347
Colinus virginianus	36.1	29.1	18.9	MCZ 7337
Dactylortyx thoracicus	37.4	33.4	18.9	MCZ 2786
	43.8	39.3	23.0	MCZ 2727
Odontophorus guttatus Odontophorus guttatus	42.5	38.3	20.9	MCZ 2727 MCZ 2770
1 0	74.3	50.5	40.9	1410L 4110
ANSERIFORMES				
Anhimidaea	012.0	920 A	106.0	MC7 1207
Anhima comuta	213.0	238.0	106.0	MCZ 1387
Anhima comuta	183.0	181.0	90.0	MCZ 6993
Chauna chavaria	175.0	192.0	94.0	MCZ 307
Dendrocygnidae	00.0	02.0	FO.0	1407.050
Dendrocygna autumnalis	92.0	93.0	52.0	MCZ 273
Dendrocygna bicolor	95.0	93.0	49.0	MCZ 7071
Anatidae				3.500 =05-
Aix sponsa	67.0	51.0	43.0	MCZ 7372
Alopochen aegyptiacus	138.0	126.0	83.0	MCZ 260
Anas clypeata	73.0	58.0	44.5	MCZ 7105
Anas platyrhynchos	89.0	67.0	56.0	MCZ 1898
Anas platyrhynchos	74.0	56.0	45.0	MCZ 1914
Anas rubripes	89.0	70.0	56.0	MCZ 2850
Anas specularoides	95.0	78.0	58.0	MCZ 3053
Anser caerulescens	138.0	129.0	75.0	MCZ 1883
Anser erythropus	181.0	164.0	104.0	MCZ 330
Anser fabalis	147.0	131.0	83.0	MCZ 262
Aythya marila	79.0	64.0	43.0	MCZ 1471
Biziura lobata	104.0	88.0	60.0	MCZ 2067
Branta canadensis	185.0	164.0	104.0	MCZ 6738
Branta canadensis	170.0	153.0	95.0	MCZ 7645
Branta leucopsis	142.0	127.0	80.0	MCZ 6931
Bucephala albeola	64.0	52.0	37.0	MCZ 1915
Cairina moschata	110.0	88.0	68.0	MCZ 1901
Callonetta leucophrys	60.0	50.0	38.0	MCZ 7445
Cereopsis novaehollandiae	168.0	157.0	90.0	MCZ 7095
Chloëphaga picta	162.0	147.0	89.0	MCZ 3031
Clangula hyemalis	70.0	58.0	44.0	MCZ 6497
Cygnus atratus	163.0	149.0	95.0	MCZ 6936
Cygnus cygnus	269.0	260.0	132.0	MCZ 335
Cygnus columbianus?	310.0	275.0	145.0	MCZ 3544
Histrionicus histrionicus	69.0	55.0	43.0	MCZ 2957
Melanitta fusca	96.0	83.0	58.0	MCZ 6956
	53.0	40.0	27.0	MCZ 5094
Merganetta armata	33.0 86.0	62.0		
Mergus caster			44.0	MCZ 1436
Mergus merganser	85.0	60.5	43.7	MCZ 1436
Mergus merganser	102.1	78.6	61.8	MCZ 318
Mergus serrator	90.0	70.0	52.0	MCZ 2835
Netta peposaca	94.0	75.0	53.0	MCZ 2988
Oxyura australis	78.0	62.0	36.0	MCZ 1437

THEROPOD FORELIMB DISPARITY

APPENDIX 2—continued

Species	Н	R	CM	Specimen Number
Anatidae				
Plecopterus gambensis	178.0	158.0	94.5	MCZ 196
Somateria mollissima	110.0	89.0	67.0	MCZ 7453
Tachyeres brachypterus	114.0	85.0	62.0	MCZ 2204
Tadorna tadorna	113.0	101.0	69.0	MCZ 7538
PICIFORMES				
Ramphastidaea				
Pteroglossus aracari	70.0	81.0	34.0	MCZ 1498
Ramphastos toco	70.0	81.0	34.0	MCZ 6051
Picidae				
Colaptes cafer	41.0	41.6	21.5	MCZ 3624
Dryocopus pileatus	54.5	57.7	30.5	MCZ 1396
Melanerpis erythrocephalus	38.5	39.6	19.5	MCZ 1397
Picus viridis	40.8	43.7	21.5	MCZ 346
GABULIFORMES	10.0	10.7	21.0	1102 010
Bucconidae				
Monasa morphoeus	30.7	40.4	15.4	MCZ 6107
	30.7	TU.T	13.7	MICE UIU/
BUCEROTIFORMES Bucerotidae				
Bucerotidae Buceros bicornis	197.0	101.0	66.0	MC7 7050
	137.0	181.0	66.8	MCZ 1446
Buceros rhinoceros	133.0	186.0	67.0	MCZ 1446
TROGONIFORMES				
Trogonidae	40.0			3.007.0000
Trogon massena	42.8	44.7	23.0	MCZ 2769
CORACIIFORMES				
Momotidae				
Momotus mexicanus	37.7	42.1	18.3	MCZ 3065
Alcedinidae				
Alcedo atthis	25.0	29.5	12.9	MCZ 2721
Alcedo atthis	19.9	23.7	9.7	MCZ 84
Halcyonidae				
Dacelo novaeguineae	64.0	76.6	32.4	MCZ 2079
Halcyon chloris	35.8	43.1	17.9	MCZ 1777
Halcyon chloris	34.9	42.9	16.8	MCZ 7002
Halcyon chloris	37.3	46.3	18.2	MCZ 6907
Halcyon sancta	30.5	36.7	15.2	MCZ 1802
Halcyon sancta	29.5	36.1	15.0	MCZ 6768
Cerylidae				
Megaceryle alcyon	46.4	55.2	25.1	MCZ 7285
CUCULIFORMES				
Opisthocomidae				
Opisthocomus hoatzin	69.0	63.1	40.3	MCZ 3617
Opisthocomus hoatzin	69.3	64.6	36.4	MCZ 5084
Opisthocomus hoatzin	71.0	65.0	38.0	YPM 2437
Neomorphidae	71.0	55.0	50.0	
Geococcyx californianus	47.0	38.0	21.0	MCZ 1495
PSITTACIFORMES	17.0	50.0	41.0	11102 1100
Psittaciformes Psittacidae				
Amazona farinosa	65.3	74.7	46.2	MCZ 3384
Amazona farinosa	66.7	77.3	47.5	MCZ 3062
Amazona farinosa	64.8	72.1	42.9	MCZ 2869
Ara macao	87.4	104.1	69.8	MCZ 3704
Ara macao	78.6	92.7	61.3	MCZ 6930
Ara macao	82.2	97.4	59.0	MCZ 2241
Calyptorhynchus magnificus	78.8	91.0	59.2	MCZ 359
Cacatua galerita	87.5	97.0	53.0	MCZ 1392
Cacatua galerita	86.2	96.7	54.0	MCZ 1974

K. M. MIDDLETON AND S. M. GATESY

APPENDIX 2—continued

Species	Н	R	CM	Specimen Number
PSITTACIFORMES				
Psittacidae				
Kakatoe leadbeateri	66.8	75.7	46.3	MCZ 1991
Nestor meridionalis	65.0	68.3	49.3	MCZ 1490
Pionus senilis	42.9	48.0	33.3	MCZ 2899
Pionus senilis	42.1	47.8	32.5	MCZ 2886
Probisciger aterrionus	86.8	99.7	55.8	MCZ 1491
Probisciger aterrionus	76.8	89.6	49.5	MCZ 1369
Strigops habroptilus	78.9	71.8	43.6	MCZ 309
Trichoglossus ornatus	27.9	28.5	20.9	MCZ 1926
Trichoglossus ornatus	26.0	25.8	20.3	MCZ 1929
Trichoglossus ornatus	26.4	27.5	20.9	MCZ 1997
APODIFORMES	20.1	27.0	40.5	1102 1337
Apodidae				
	12.2	17.7	20.7	MCZ 2077
Apus apus Apus apus	12.9	16.5	20.7	MCZ 349
Apus apus Chaetura pelagica	9.2	12.1	16.3	MCZ 349 MCZ 3118
TROCHILIFORMES	3.4	14.1	10.5	MICE JIIO
Trochilidae				
	2.0	4.0	5.0	MCZ 7644
Archilochus colubris	3.8	4.0	5.2	MCZ 7644
Archilochus colubris	3.9	4.0	5.6	MCZ 7397
Glaucis hirsuta	6.6	6.7	8.3	MCZ 6140
Patagona gigas	10.2	11.4	14.3	MCZ 246
STRIGIFORMES				
Tytonidae	00.0	01.0	40.0	1.507.050
Tyto alba	83.0	91.0	43.0	MCZ 352
Tyto alba	84.0	90.0	43.0	MCZ 656
Strigidae	40.0			1.000.0000
Aegolius acadica	40.0	44.3	19.7	MCZ 3772
Aegolius funereus	43.4	48.8	22.0	MCZ 2828
Asio flammeus	78.1	85.5	40.9	MCZ 6053
Asio otus	78.2	84.9	41.0	MCZ 7534
Bubo africanus	102.0	113.0	50.0	MCZ 255
Bubo virginianus	130.0	143.0	65.0	MCZ 2174
Bubo virginianus	130.0	146.0	66.0	MCZ 7017
Ciccaba virgata	77.0	85.0	37.5	MCZ 3007
Nyctea scadiaca	156.0	169.0	84.0	MCZ 6933
Otus asio	54.5	58.0	28.5	MCZ 3763
Otus asio	57.5	61.0	30.0	MCZ 6009
Pulsatrix perspicata	109.0	116.0	50.0	MCZ 3702
Speotyto cunicularia	61.0	73.0	35.0	MCZ 270
Strix varia	114.0	120.0	56.0	MCZ 1414
Strix varia	98.0	102.0	48.0	MCZ 2934
Steatornithidae				
Steatornis caripensis	73.6	105.0	44.3	MCZ 1404
Aegothelidae				
Podargus ocellatus	87.7	97.0	40.7	MCZ 1400
Caprimulgidae				
Caprimulgus ridgwayi	31.3	36.4	20.2	MCZ 2974
Caprimulgus vociferus	32.0	39.5	21.5	MCZ 1402
Caprimulgus vociferus	31.5	37.0	19.0	MCZ 2416
Chordeiles minor	43.0	49.0	28.0	MCZ 7266
Chordeiles minor	40.0	47.0	25.5	MCZ 3783
Chordeiles minor	41.2	47.0	26.1	MCZ 1480
Nyctidromus albicollis	35.0	40.6	22.2	MCZ 3422
COLUMBIFORMES				
Columbidae				

THEROPOD FORELIMB DISPARITY

APPENDIX 2—continued

Species	Н	R	$^{\mathrm{CM}}$	Specimen Number
COLUMBIFORMES				
Columbidae				
Columba aquatrix	50.6	52.8	35.6	MCZ 6798
Columba cayennensis	39.6	42.6	28.2	MCZ 5012
Columba livia	44.1	47.2	33.0	MCZ 1250
Columba speciosa	42.8	43.6	29.0	MCZ 4062
Columbina talpacoti	21.2	22.2	14.0	MCZ 3514
Ducula aenea	55.9	57.8	36.3	MCZ 7543
Ectopistes migratorius	42.4	44.2	30.5	MCZ 2355
Geotrygon montana	34.5	37.8	24.3	MCZ 2759
Leptoptila verreauxi	34.2	35.4	22.9	MCZ 3591
Ocyphaps lophotes	37.6	35.3	23.6	MCZ 279
Zenaidura macrocoura	31.0	32.4	21.8	MCZ 2109
•	31.0	34.4	41.0	MGZ 2109
GRUIFORMES				
Otidae				
Ardeotus australis	220.0	239.0	101.0	MCZ 2856
Ardeotus kori	246.0	262.0	118.0	MCZ 2192
Chlamydotis undulata	135.0	144.0	70.0	MCZ 194
Chlamydotis undulata	109.0	112.0	58.0	MCZ 297
Gruidae				
Balearica pavonina	201.0	213.0	92.0	MCZ 3601
Balearica pavonina	198.0	206.0	94.0	MCZ 2952
Balearica pavonina	188.0	190.0	88.0	MCZ 200
Grus antigone	277.0	306.0	125.0	MCZ 6600
Grus canadensis	214.0	237.0	108.0	MCZ 2483
Grus canadensis	235.0	255.0	121.0	MCZ 7482
Grus canadensis	208.0	223.0	97.0	MCZ 1336
Grus leucogeranus	266.0	287.0	123.0	MCZ 339
Grus paradisea	214.0	231.0	106.0	MCZ 7481
•	171.0	194.0	93.0	MCZ 7461 MCZ 3036
Grus virgo				
Grus virgo	215.0	229.0	104.0	MCZ 7569
Grus virgo	178.0	194.0	95.0	MCZ 208
Heliornithidae	100.0	1000	FO.0	MOV OFFI
Aramus guarauna	103.0	106.0	58.0	MCZ 3576
Aramus guarauna	110.0	111.0	62.0	MCZ 1383
Cariamidae				
Cariama cristata	107.0	97.0	50.0	MCZ 1011
Cariama cristata	103.0	96.0	55.0	MCZ 207
Rallidae				
Gallirallus australis	53.5	37.3	28.4	YPM 13391
Gallirallus australis	55.2	39.0	29.0	YPM 13475
Gallirallus australis	50.5	35.1	25.7	YPM 13420
Gallirallus australis	56.2	38.1	28.0	YPM 13421
Gallirallus australis	59.0	38.3	29.9	YPM 556
Porphyrio porphyrio	75.5	64.4	42.6	MCZ 321
CICONIIFORMES				
Scolopacidae	40.0	E 4 O	20.1	MC7 1940
Bartramia longicauda	49.8	54.0	30.1	MCZ 1246
Bartramia longicauda	49.7	53.6	31.1	MCZ 2107
Limosa fedoa	76.4	80.9	44.8	MCZ 1384
Numenius americanus	100.7	108.7	55.0	MCZ 454
Numenius arquata	94.4	100.9	53.5	MCZ 2108
Numenius arquata	95.6	99.1	53.5	MCZ 1385
Phalaropus lobatus	28.2	28.3	18.1	MCZ 2702
Phalaropus fulicarius	33.6	33.0	20.1	MCZ 7369
Tringa flavipes	42.7	44.1	25.5	MCZ 2693
Tringa flavipes	40.7	42.5	25.8	MCZ 2657

Species	Н	R	CM	Specimen Number
Jacanidae				
Actophilornis albinucha	48.4	52.4	34.1	MCZ 284
Jacana spinosa	39.8	40.4	22.6	MCZ 7013
Jacana spinosa	40.4	42.1	23.2	MCZ 6943
Jacana spinosa	37.4	40.5	22.6	MCZ 7060
Burhinidae				
Burhinus capensis	71.9	76.2	36.7	MCZ 6978
Burhinus capensis	82.4	88.7	43.4	MCZ 5077
Burhinus magnirostris	99.9	104.8	46.9	MCZ 285
Charadriidae				
Himantopus himantopus	51.9	54.3	31.8	MCZ 191
Himantopus himantopus	56.3	59.7	35.2	YPM 2192
Himantopus himantopus	59.8	62.3	36.8	YPM 5950
Himantopus leucocephalus	50.4	51.1	28.7	YPM 13424
Himantopus mexicanus	56.4	60.0	32.6	YPM 6108
Recurvirostra americana	69.5	68.8	39.8	MCZ 33
Recurvirostra americana	70.4	70.7	41.0	MCZ 31
Recurvirostra americana	65.7	66.1	39.0	MCZ 29
Recurvirostra americana	70.4	73.9	43.5	MCZ 3300
Recurvirostra americana	68.9	69.3	39.9	MCZ 2760
Recurvirostra americana	71.7	71.8	40.7	MCZ 32
Vanellus chilensis	69.7	77.2	41.1	MCZ 6928
Vanellus chilensis	73.3	79.5	42.9	MCZ 7010
Glareolidae	70.0	75.5	12.0	WIGZ 7010
Dromas ardeola	70.2	72.2	36.6	MCZ 2991
Laridae	70.2	, 2.2	50.0	11102 2001
Alca torda	77.2	60.1	41.6	MCZ 3688
Alca torda	78.0	61.7	41.9	MCZ 2956
Alca torda	77.9	60.9	40.4	MCZ 2867
Catharacta skua	140.3	137.0	70.5	MCZ 358
Cepphus grylle	60.2	49.7	34.6	MCZ 2995
Cepphus grylle	59.2	49.1	33.8	MCZ 4097
Cerorhinca monocerata	68.5	54.6	37.5	MCZ 7676
Cerorhinca monocerata	69.9	55.2	38.0	MCZ 7697
Cerorhinca monocerata	68.9	53.1	36.1	MCZ 7696
Fratercula arctica	64.4	49.0	33.5	MCZ 2994
Fratercula arctica	64.1	49.0	34.2	MCZ 6006
Fratercula arctica	58.9	44.6	31.4	MCZ 1434
Larus argentatus	139.9	148.5	78.3	MCZ 2712
0	91.7	100.0	52.5	MCZ 7271
Larus atricilla	144.0	155.0	80.0	MCZ 7271 MCZ 723
Larus leucopterus	118.0	125.0	67.0	MCZ 723 MCZ 2843
Larus leucopterus	150.8	165.0	85.1	MCZ 2643 MCZ 1617
Larus merinus	79.3	87.8	48.4	MCZ 1617 MCZ 6832
Larus pipixcan Plautus alle	43.2			
Plautus alle Plautus alle	43.9	33.0 33.0	22.8 23.5	MCZ 3425 MCZ 1865
				MCZ 1865
Plantus alle	43.2	34.4 56.2	23.0 45.1	MCZ 1871 MCZ
Plantus impennes	104.2			
Plantus impennes	104.2	55.3 54.6	44.3	MCZ 18220 MCZ
Plantus impennes	106.7	54.6	44.3	MCZ
Plautus impennes	101.3	55.0	43.4	MCZ
Plautus impennes	105.0	56.1	43.3	MCZ
Rissa tridactyla	83.0	88.0	48.0	MCZ 1502
Rynchops nigra	75.0	91.0	46.0	MCZ 1426
Stercorarius parasiticus	96.1	97.2	49.4	MCZ 183
Sterna fuscata	63.0	73.0	38.0	MCZ 3375
Sterna hirundo	54.0	62.0	33.0	MCZ 2147
Sterna maxima	88.0	106.0	53.0	MCZ 1427
Sterna striata	58.0	67.0	35.0	MCZ 5015

THEROPOD FORELIMB DISPARITY

APPENDIX 2—continued

pecies	Н	R	CM	Specimen Number
Laridae				
Uria aalge	86.9	61.1	43.4	MCZ 6991
Uria aalge	86.3	62.5	43.3	MCZ 2989
Uria aalge	92.0	69.1	45.5	MCZ 3690
Uria lomvia	87.7	66.8	45.4	MCZ 7029
Uria lomvia	87.6	65.3	43.9	MCZ 6925
Uria lomvia	92.1	69.8	46.9	MCZ 7018
Accipitridae				
Accipiter gentilis	95.0	100.0	56.0	MCZ 216
Aquila chrysaetus	181.0	201.0	102.0	MCZ 1419
Buteo jamaicensis	118.0	130.0	66.0	MCZ 7793
Buteo magnirostris	64.0	67.0	35.0	MCZ 2743
Buteo rufinus	114.0	118.0	61.0	MCZ 6912
Circus cyaneus	96.0	107.0	57.0	MCZ 1417
Elanus leucurus	80.0	90.0	44.0	MCZ 3430
Geranospiza caerulescens	77.0	80.0	40.0	MCZ 3032
Gypaetus barbatus	222.0	233.0	114.0	MCZ 329
Gyps fulvus	251.0	296.0	132.0	MCZ 1412
Haliaeetus leucocephalus	211.0	231.0	113.0	MCZ 3519
Harpia harpyia	182.0	202.0	88.0	MCZ 3333
Hieraeetus fasciatus	150.0	168.0	83.0	MCZ 211
Melierax metabates?	95.0	95.0	50.0	MCZ 7127
Milvus migranus	109.0	120.0	60.0	MCZ 7127 MCZ 241
	142.0	156.0	75.0	MCZ 241 MCZ 213
Neophron percnopterus Pandion haliaetus	146.0	178.0	88.0	MCZ 7607
		125.0	63.0	MCZ 7607 MCZ 253
Pernis apivorus	118.0 115.0	129.0		
Spizaetus ornatus	113.0	129.0	60.0	MCZ 2839
Sagittariidae	183.0	170.0	89.0	MC7 1005
Sagittarius serpentarius		178.0		MCZ 1925
Sagittarius serpentarius	179.0	175.0	86.0	YPM 14510
Falconidae	00.0	07.0	50.0	MO7 004
Falco jugger	88.0	97.0	59.0	MCZ 294
Falco sparverius	45.0	46.0	26.0	MCZ 7402
Herpetotheres cachinnans	85.0	88.0	44.0	MCZ 2931
Phalacoboenus australis	116.0	107.0	65.0	MCZ 252
Polyborus plancus	104.0	104.0	55.0	MCZ 1496
Polyborus plancus	103.0	102.0	58.0	MCZ 2845
Podicipedidae	110.0	00.0	50.7	MO7 0051
Aechmophorus occidentalis	113.2	98.3	50.7	MCZ 2951
Podiceps auritus	77.8	68.3	34.3	MCZ 6429
Podiceps auritus	74.4	64.2	32.4	MCZ 7099
Podiceps auritus	75.3	66.0	31.7 35.2	MCZ 7163
Podiceps auritus	77.2	67.3		MCZ 6044
Podiceps auritus	79.7	70.3	34.3	MCZ 2726
Podiceps caspicus	69.6	63.4	31.9	MCZ 4076
Podiceps caspicus	69.2	61.1	29.8	MCZ 4076
Podiceps caspicus	69.4	62.0	31.3	MCZ 4080
Podiceps grisegena	117.2	102.9	46.6	MCZ 1015
Podilymbus podiceps	79.3	71.8	36.2	MCZ 1466
Podilymbus podiceps	67.6	60.9	30.7	MCZ 7647
Podilymbus podiceps	68.1	61.1	31.5	MCZ 7648
Phaethontidae	0.0	00.0	40.0	3.507.0050
Phaethon lepturus	81.8	83.3	42.3	MCZ 2073
Phaethon lepturus	85.1	86.7	43.5	MCZ 1798
Phaethon lepturus	83.8	85.0	42.5	MCZ 1765
Sulidae				
Morus bassanus	218.0	185.0	90.2	MCZ 3443
Sula sp.	173.0	182.0	79.7	MCZ 455
Sula variegata	153.0	156.0	71.0	MCZ 6959

pecies	Н	R	$_{\mathrm{CM}}$	Specimen Number
Anhingidae				
Anhinga anhinga	108.0	103.1	60.5	MCZ 1483
Anhinga anhinga	130.5	111.8	65.2	MCZ 3615
Phalacrocoracidae				
Phalacrocorax auritus	141.5	144.3	67.9	MCZ 7537
Phalacrocorax bougainvilli	153.5	163.0	67.6	MCZ 6953
Phalacrocorax carbo	160.0	166.0	76.1	MCZ 1447
Phalacrocorax urile	139.5	146.0	65.7	MCZ 722
Ardeidae				
Ardea cocoi	164.0	174.0	82.8	MCZ 3706
Ardea goliath	201.0	235.0	107.0	MCZ 1452
Ardea goliath	197.0	211.0	96.0	MCZ 202
Ardea herodias	195.0	221.0	102.0	MCZ 7038
Ardea herodias	190.0	207.0	100.0	MCZ 1970
Ardea herodias	188.0	217.0	101.0	MCZ 2473
Ardeola ralloides	75.7	83.4	43.2	MCZ 7237
Botaurus lentiginosus	114.0	119.0	67.0	MCZ 1759
Botaurus lentiginosus	113.0	120.0	65.0	MCZ 1499
Botaurus lentiginosus	105.0	112.0	68.0	MCZ 1279
Botaurus stellaris	138.0	144.0	77.0	MCZ 2064
Butorides striata	65.9	67.4	34.5	MCZ 3573
Butorides striata	62.1	65.9	34.8	MCZ 5014
Butorides virescens	72.4	78.2	42.0	MCZ 1860
Cochlearius cochlearius	99.0	110.0	52.0	MCZ 3517
Cochlearius cochlearius	93.0	101.0	48.0	MCZ 2201
Egretta alba	144.0	166.0	76.0	MCZ 6731
Egretta alba	155.0	178.0	84.0	MCZ 6954
Egretta caerulea	92.4	104.8	52.8	MCZ 6977
Egretta gularis	100.3	108.7	56.6	MCZ 226
Egretta thula	100.6	114.4	54.6	MCZ 7301
Egretta thula	94.1	108.5	53.4	MCZ 7616
Egretta thula	85.9	100.5	47.9	MCZ 3821
Nycticorax sp.	105.7	118.4	58.6	MCZ 7000
Pilherodias pileatus	66.9	70.2	36.3	MCZ 3830
Tigrisoma lineatum	98.1	107.6	52.5	MCZ 3831
Phoenicopteridae				
Pheonicopterus antiquarum	206.0	218.0	97.0	MCZ 1445
Pheonicopterus antiquarum	193.0	202.0	92.0	MCZ 289
Phoenicopterus ruber	188.0	197.0	88.0	MCZ 7731
Phoenicopterus ruber	212.0	221.0	105.0	MCZ 7572
Phoenicopterus ruber	182.0	191.0	87.0	MCZ 7053
Phoenicopterus ruber	204.0	215.0	97.0	MCZ 6736
Phoenicopterus ruber	180.0	191.0	87.0	MCZ 1939
Phoenicopterus ruber	191.0	198.0	93.0	MCZ 2950
Phoenicopterus ruber	196.0	208.0	94.0	MCZ 2884
Threskiornithidae				
Ajaia ajaja	134.0	151.0	74.0	MCZ 6534
Ajaia ajaja	129.0	143.0	69.0	MCZ 6533
Eudocimus ruber	92.0	101.0	54.0	MCZ 7528
Eudocimus ruber	89.0	96.0	52.0	MCZ 7446
Eudocimus ruber	92.0	100.0	55.0	MCZ 6741
Eudocimus ruber	90.0	97.0	51.0	MCZ 6987
Guara rubra	90.0	100.0	51.0	MCZ 3450
Guara rubra	91.0	94.0	50.0	MCZ 1378
Guara rubra	92.0	93.0	53.0	MCZ 326
Platalea leucoroidia	145.0	161.0	80.0	MCZ 1468
Plegadis falcinellus	92.0	99.0	54.0	MCZ 6983
Plegadis sp.	90.0	97.0	52.0	MCZ 6955

Species	Н	R	$_{\mathrm{CM}}$	Specimen Number
Threskiornithidae				
Plegadis falcinellus?	95.0	99.0	55.0	MCZ 7288
Theristicus melanopis	115.0	122.0	65.0	MCZ 206
Theristicus melanopis	121.0	132.0	66.0	MCZ 295
Pelecanidae				
Pelecanus erythrorhnchos	315.0	347.0	143.0	MCZ 7480
Pelecanus erythrorhnchos	317.0	344.0	150.0	MCZ 2914
Pelecanus occidentalis	271.0	315.0	126.0	MCZ 1448
Pelecanus occidentalis	268.0	323.0	125.0	MCZ 1956
Ciconiidae				
Cathartes aura	133.0	149.0	72.0	MCZ 1372
Ciconia maguari	223.0	246.0	106.0	MCZ 7483
Ciconia nigra	206.0	222.0	113.0	MCZ 6997
Ciconia nigra	202.0	224.0	112.0	MCZ 6747
Ciconia nigra	180.0	205.0	97.0	MCZ 290
Coragyps atratus	124.0	132.0	69.0	MCZ 3577
Jabiru mycteria	237.0	262.0	119.0	MCZ 1377
Leptoptilus crumeniferus	238.0	299.0	125.0	MCZ 338
Leptoptilus dubius	278.0	373.0	163.0	MCZ 337
Mycteria americana	163.0	195.0	92.0	MCZ 3442
Mycteria ibis	158.0	178.0	84.0	MCZ 288
Mycteria ibis	176.0	204.0	96.0	MCZ 6740
Mycteria sp.	199.0	220.0	97.0	MCZ 1745
Sarcorhamphus papa	166.0	199.0	88.0	MCZ 6960
Vultur gryphus	260.0	299.0	131.0	MCZ 342
Xenorhynchus asiaticus	216.0	245.0	107.0	MCZ 261
Fregatidae	7			
Fregata aquila	186.0	238.0	114.0	MCZ 1354
Fregata sp.	150.0	190.0	92.0	MCZ 7744
Spheniscidae				
Aptenodytes patagonica	110.0	82.2	68.0	MCZ 7208
Aptenodytes patagonica	115.0	83.5	71.2	MCZ 7478
Aptenodytes patagonica	116.0	92.0	72.0	YPM 2351
Eudyptes chrysolophus	59.4	44.2	35.3	MCZ 6022
Eudyptes crestatus	59.4	44.4	37.9	MCZ 6428
Eudyptula minor	46.7	31.3	25.3	MCZ 6025
Eudyptula minor	45.0	30.0	25.5	MCZ 1451
Eudyptula minor	49.7	33.3	25.5	YPM 13356
Megadyptes antipodes	73.7	57.7	43.7	YPM 13392
Spheniscus demersus	67.1	47.6	39.9	YPM 15882
Spheniscus humboldti	69.2	46.5	39.7	MCZ 7040
Spheniscus humboldti	70.8	47.9	40.3	MCZ 6957
Spheniscus humboldti	76.1	50.8	42.1	MCZ 7571
Spheniscus mendiculus	54.2	37.1	30.5	MCZ 3638
Spheniscus sp.	67.0	47.0	44.7	MCZ 142(5)
Gaviidae	07.0	17.0	17.7	11102 114(0)
Gavia immer	198.0	158.0	100.1	MCZ 1432
Gavia immer	200.0	160.0	106.1	MCZ 1432 MCZ 1658
Gavia immer	192.0	158.0	101.0	MCZ 1661
Gavia immer	177.0	144.0	90.5	MCZ 2148
Gavia immer	194.0	151.0	88.0	MCZ 2593
Gavia immer	196.0	155.0	102.5	MCZ 3030
Gavia immer Gavia immer	180.0	139.0	91.9	MCZ 3030 MCZ 7019
	187.0		96.0	MCZ 7019 MCZ 7103
Gavia immer		150.0		
Gavia immer	170.0	138.0	90.1	MCZ 7893 MCZ 7894
Gavia immer	198.0	159.0	104.0	MCZ 7894 MCZ 7895
Gavia immer	195.0	157.0	108.0	MCZ 7895
Gavia immer Gavia immer	207.0 167.0	167.0 132.0	113.0 86.4	MCZ 7896 MCZ 7903

pecies	Н	R	$_{\mathrm{CM}}$	Specimen Number
Gaviidae				
Gavia immer	199.0	156.0	100.8	MCZ 7904
Gavia immer	196.0	153.0	99.9	MCZ 7905
Gavia immer	192.0	155.0	102.0	MCZ 7912
Gavia immer	177.0	141.0	95.2	MCZ 7913
Gavia immer	195.0	153.0	99.7	MCZ 7914
Gavia immer	185.0	153.0	96.7	MCZ 7915
Gavia immer	200.0	160.0	105.4	MCZ 7916
Gavia immer	191.0	151.0	99.6	MCZ 7917
Gavia immer	194.0	154.0	102.1	MCZ 7918
Gavia immer	190.0	151.0	100.4	MCZ 7919
Gavia immer	204.0	163.0	105.0	MCZ 7920
Gavia immer	193.0	155.0	99.2	MCZ 7921
Gavia immer	180.0	145.0	93.3	MCZ 7939
Gavia immer	180.0	145.0	96.0	MCZ 7940
Gavia immer	181.0	154.0	99.0	MCZ 7941
Gavia immer	194.0	157.0	98.9	MCZ 7942
Gavia immer	211.0	167.0	111.0	MCZ 7943
Gavia immer	185.0	145.0	93.4	MCZ 7944
Gavia immer	210.0	165.0	108.8	MCZ 7945
Gavia immer	208.0	167.0	110.0	MCZ 7945 MCZ 7946
Gavia immer	211.0	164.0	108.5	MCZ 7947
Gavia immer Gavia immer	205.0	158.0	106.3	MCZ 7947 MCZ 7948
Gavia immer				MCZ 7950
	184.0	148.0	95.9	
Gavia immer	192.0	153.0	100.5	MCZ 7951
Gavia immer	176.0	139.0	91.4	MCZ 7952
Gavia immer	173.0	136.4	90.7	MCZ 7956
Gavia immer	208.0	171.0	109.0	MCZ 7957
Gavia sp.	182.0	142.0	91.0	MCZ 417
Gavia sp.	176.0	138.0	91.0	MCZ 899
Gavia stellata	140.5	111.4	76.7	MCZ 7009
Gavia stellata	138.3	107.8	73.1	MCZ 6996
Gavia stellata	136.6	108.6	67.0	MCZ 6531
Gavia stellata	128.5	104.5	70.7	MCZ 6913
Procellariidae				
Daption capense	97.5	80.7	42.4	MCZ 3873
Daption capense	89.1	83.4	42.3	MCZ 6056
Daption capense	84.0	78.8	42.0	MCZ 6496
Daption capense	88.0	79.0	40.0	MCZ 6970
Daption capense	89.0	82.0	44.0	MCZ 2955
Diomedea chrysostoma	264.0	263.0	104.0	MCZ 5006
Diomedea exulans	438.0	447.0	150.0	MCZ 408
Diomedea exulans	394.0	397.0	145.0	MCZ 2481
Diomedea exulans	398.0	405.0	142.0	MCZ 6191
Diomedea immutabilis	247.0	256.0	99.0	MCZ 3050
Diomedea immutabilis	257.0	252.0	102.0	MCZ 2959
Diomedea nigripes	287.0	287.0	108.0	MCZ 2999
Fregatta grallaria	25.5	21.5	17.0	MCZ 6756
Fregatta grallaria	25.5	21.5	17.0	MCZ 6752
Fulmarus glacialis	97.2	90.3	47.5	MCZ 4079
Fulmarus glacialis	106.0	98.0	50.0	MCZ 4078
Fulmarus glacialis	102.0	96.0	49.0	MCZ 4090
Fulmarus glacialis	107.0	102.0	51.0	MCZ 5011
Oceanites oceanicus	22.5	19.5	15.5	MCZ 2984
Oceanites oceanicus	23.0	19.5	15.5	MCZ 6722
Oceanodroma leucorhoa	37.0	35.0	21.0	MCZ 7883
Oceanodroma leucorhoa	37.5 37.5	35.5	21.0	MCZ 6058
	37.3	55.5	41.0	111 OE 0000

Species	Н	R	CM	Specimen Number
Procellariidae				
Pelecanoides urinatrix	44.7	34.6	25.2	MCZ 6141
Phoebetria fusca	242.0	230.0	98.0	MCZ 2949
Phoebetria palpebrata	235.0	239.0	92.0	MCZ 2953
PASSERIFORMES				
Eurylaimidae				
Calyptomina viridis	27.3	32.2	17.0	MCZ 7349
Eurylaimus ochromalus	20.1	22.6	12.8	MCZ 2982
Passeridae				
Anthus correndera	19.9	21.2	11.2	MCZ 3138
Budytes flavus	17.1	20.3	11.5	MCZ 3091
Motacilla alba	19.6	23.7	13.0	MCZ 6945
Bombycillidae				
Bombycilla cedrorum	20.7	24.6	13.6	MCZ 2713
Tyrannidae				
Campostoma obsoletum	12.1	14.4	8.1	MCZ 6285
Empidonax flaviventris	14.4	18.6	9.7	MCZ 7877
Muscigralla brevicauda	17.9	19.4	10.2	MCZ 6304
Muscisaxicola plauinucha	22.3	28.3	17.1	MCZ 7213
Myiobius barbatus	14.4	17.7	8.6	MCZ 3509
Pitangus sulforatus	30.1	39.6	18.2	MCZ 3358
Platyrhinchus mystaceus	14.7	16.9	8.6	MCZ 3451
Pyrocephalus rubinus	17.2	20.4	11.8	MCZ 6500
Rupicola rupicola	45.3	57.5	29.0	MCZ 3699
Tyrannus tyrannus	24.0	32.2	17.5	MCZ 2557
Tyrannus tyrannus	25.3	32.8	18.1	MCZ 1404
Tyrannus verticalis	26.1	34.8	19.3	MCZ 7600
Certhiidae				
Certhia familiaris	13.0	16.5	8.3	MCZ 1487
Furnariidae				
Dedrocolaptes certhia	27.2	31.9	17.9	MCZ 3842
Furnarius rufus	26.0	26.0	15.3	MCZ 6030
Thamnophilidae				
Taraba major	25.5	25.2	12.5	MCZ 4083
Rhynocryptidae	20.0	20.2	12.0	1.102 1000
Conopophaga castaneiceps	18.8	19.0	8.9	MCZ 6014
Scelorchilus albicollis	22.2	20.0	11.6	MCZ 224
Pittidae	44.4	_0.0	11.0	
Pitta erythrogaster	30.1	32.8	17.3	MCZ 6581
Menuridae	50.1	54.0	17.0	
Menura novaehollandiae	60.4	59.0	33.8	MCZ 313
Alaudidae	00.1	00.0	00.0	
Eremophila alpestris	23.2	26.0	14.6	MCZ 7440
Eremophila alpestris	23.0	25.8	14.1	MCZ 7440 MCZ 7439
Melanocorypha yeltoniensis	29.4	31.1	18.8	MCZ 188
Mirafa javanica	22.1	22.9	12.6	MCZ 7290
Hirundinidae	44.1	44.3	14.0	11102 1230
Delichon urbica	15.0	21.3	12.0	MCZ 1479
Hirundo rustica	14.5	21.5	12.8	MCZ 1479 MCZ 2697
Hirundo rustica Hirundo rustica	14.3	19.7	13.2	MCZ 4004
	21.8		17.0	MCZ 4004 MCZ 1481
Progne subis	41.8	31.2	17.0	MCZ 1401
Corvidae	40.0	42.0	02.5	MO7 6475
Coracina caeruleogrisea	40.6	43.8	23.5	MCZ 6475
Corcorax melanorhamphus	54.7	55.7	32.0	MCZ 291
Dicrurus macroceros	28.4	39.1	19.9	MCZ 3288
Pityriasis gymnocephala	37.0	38.4	21.3	MCZ 230
Strepera graculina	53.6	63.5	35.5	MCZ 277

pecies	Н	R	CM	Specimen Number
Sittidae				
Sitta carolinensis	18.3	21.4	12.8	MCZ 2526
Cinclidae				
Cinclus cinclus	20.5	23.0	14.2	MCZ 361
Sylviidae				
Garrulax striatus	31.5	31.5	18.2	MCZ 286
Muscicapidae				
Myiophoneus caeruleus	41.5	46.6	25.3	MCZ 6059
Turdus migratorius	27.2	30.0	18.2	MCZ 2701
Sturnidae				
Gracula religiosa	40.3	46.4	29.1	MCZ 7027
Toxostoma rufium	27.3	27.2	14.9	MCZ 1801
Vireonidae				
Gymnorhina tibicen	56.0	61.3	37.2	MCZ 1405
Fringillidae				
Habia rubica	21.7	23.2	12.0	MCZ 2455
Callaeatidae				
Heteralocha acutirostis	42.1	41.8	24.0	MCZ 350

APPENDIX 3

Avian limb segment lengths taken from the literature (in mm; H, humerus; R, radius; CM, carpometacarpus; *, mean; †, ulna; ‡, MCII; m, male; f, female)

Species	Н	R	CM	Source
STRUTHIONIFORMES				
Struthionidae				
Palaeotis weigelti	~117	72.0	34.0	Houde & Haubold (1987)
GALLIFORMES				
Paraortigidae				
Palaeortyx gallica*†	41.0	42.1	20.6	Mourer-Chauviré (1992)
Paraortyx lorteti*†	40.0	36.8	21.1	Mourer-Chauviré (1992)
ANSERIFORMES				
Anatidae				
Chendytes lawi*†	68.1	24.9	24.5	Livezey (1993)
Cnemiornis calcitrans	158.0	115.9	63.2	Worthy et al. (1997)
Lophodytes cucullatus (m)*†	67.8	55.5	40.8	Livezey (1989a)
Lophodytes cucullatus (f)*†	64.9	53.1	39.2	Livezey (1989a)
Melanitta fusca (m)*†	104.7	93.2	60.0	Livezey (1993)
Melanitta fusca (f)*†	98.3	88.5	57.3	Livezey (1993)
Mergus australis (m)†	72.1	57.7	40.7	Livezey (1989a)
Mergus australis (f)*†	68.3	54.8	38.7	Livezey (1989a)
Mergus merganser (m)*†	96.4	81.4	58.7	Livezey (1989a)
Mergus merganser (f)*†	88.2	74.2	53.1	Livezey (1989a)
Mergus serrator (m)*†	88.2	72.8	51.4	Livezey (1989a)
Mergus serrator (f)*†	81.6	68.1	47.9	Livezey (1989a)
Somateria mollissima (m)*†	118.5	104.7	72.0	Livezey (1993)
Somateria mollissima (f)*†	110.0	100.3	68.7	Livezey (1993)
Tachyeres brachypterus (m)*	124.1	91.7	66.0	Livezey & Humphrey (1986)
Tachyeres brachypterus (f)*	117.1	87.7	62.4	Livezey & Humphrey (1986)

Species	H	R	CM	Source
Tachyeres leucocephalus (m)*	122.5	94.4	66.3	Livezey & Humphrey
Tachyeres leucocephalus (f)*	115.8	90.2	62.4	(1986) Livezey & Humphrey
Tachyeres patachonicus (m)*	124.1	96.2	67.2	(1986) Livezey & Humphrey
Tachyeres patachonicus (f)*	118.0	91.7	63.5	(1986) Livezey & Humphrey (1986)
Tachyeres pteneres (m)*	132.6	95.5	68.9	Livezey & Humphrey (1986)
Tachyeres pteneres (f)*	125.1	90.2	64.6	Livezey & Humphrey (1986)
CUCULIFORMES				()
Coccyzidae				
Coccyzus americanus*	29.6	26.7	15.6	Berger (1952)
Coccyzus erythropthalmus*	27.9	24.7	14.6	Berger (1952)
Cuculidae				
Crotophaga sulcirostris* Neomorphidae	33.5	25.9	16.8	Berger (1952)
Geococcyx californianus* Foratidae	45.1	35.4	20.0	Berger (1952)
Foro panarium	52.5	44.5	26.7	Olson (1992)
STRIGIFORMES				
Palaeoglaucidae				
Palaeoglaux artophoron	~40	∼ 49	∼ 24	Peters (1992)
GRUIFORMES				
Gruidae				
Balearica exigua*	149.5	169.8	82.2	Feduccia & Voorhies (1992)
Rallidae				(1332)
Atlantisia rogersi	20.0	14.0	9.0	Lowe (1928)
Messelornithidae				,
Messelornis neartica	35.5	33.5	19.0	Hesse (1992)
CICONIIFORMES				,
Laridae				
Mancalla cedrosensis	73.5	29.3	15.6	Howard (1976)
Mancalla diegense	76.5	30.9	15.3	Howard (1976)
Praemancalla wetmorei	82.7	35.8	15.7	Howard (1976)
Accipitridae	02.7	33.0	13.7	110ward (1370)
Accipiter cooperii	71.2	69.6	39.9	Fisher (1946)
Aquila chrysaetos*	189.8	209.9	102.9	Fisher (1946)
Astur atricapillus	96.0	98.0	51.1	Fisher (1946)
Buteo jamaicensis	113.7	128.8	64.1	Fisher (1946)
Podicipedidae	113.7	120.0	07.1	risher (1340)
Podiceps occipitalis (m)*†	66.2	60.8	29.4	Livezey (1989b)
Podiceps occipitalis (f)*†	65.6	61.1	28.8	Livezey (1989b)
	71.5	64.1	30.6	Livezey (1989b)
Podiceps taczanowskii (m)*† Podiceps taczanowskii (f)*†	67.1	61.0	29.1	Livezey (1989b)
Podilymbus gigas (m)*†	85.8	76.6	36.9	
Podilymbus gigas (ft)*†	79.7		33.7	Livezey (1989b)
Podilymbus gigas (1)*† Podilymbus podiceps (f)*†	69.6	71.8 62.7	33.2	Livezey (1989b) Storer (1976)
	69.6 75.8			Storer (1976)
Podilymbus podiceps (m)*†		70.0	33.9	Livezey (1989b)
Podilymbus podiceps (f)*†	71.7	66.4	31.8	Livezey (1989b)
Rollandia microptera (m)*†	71.6	54.6	29.0	Livezey (1989b)
Rollandia microptera (f)*†	67.4	52.0	27.6	Livezey (1989b)
Rollandia rolland (m)*†	57.2	51.0	26.3	Livezey (1989b)
Rollandia rolland (f)*†	55.7	49.9	25.3	Livezey (1989b)

Species	Н	R	CM	Source
Phalacrocoracidae				
Compsohalieus harrisi (m)*	101.6	82.9	41.4	Livezey (1992)
Compsohalieus harrisi (f)*	92.0	75.7	39.6	Livezey (1992)
Compsohalieus penicillatus (m)*	147.6	156.6	65.0	Livezey (1992)
Compsohalieus penicillatus (f)*	137.7	145.3	60.9	Livezey (1992)
Compsohalieus perspicillatus	172.8	189.2	76.9	Livezey (1992)
Hypoleucus auritus (m)*	152.1	160.8	72.6	Livezey (1992)
Hypoleucus auritus (f)*	143.6	152.2	70.0	Livezey (1992)
Leucocarbo bougainvilli (m)*	156.7	170.6	68.3	Livezey (1992)
Leucocarbo bougainvilli (f)*	154.3	168.6	66.7	Livezey (1992)
Microcarbo melanoleucos (m)*	107.3	111.3	54.6	Livezey (1992)
Microcarbo melanoleucos (f)*	102.9	107.3	52.3	Livezey (1992)
Notocarbo atriceps (m)*	142.6	152.6	64.4	Livezey (1992)
Notocarbo atriceps (f)*	138.0	147.2	62.8	Livezey (1992)
Phalacrocorax carbo (m)*	169.3	178.9	80.8	Livezey (1992)
Phalacrocorax carbo (f)*	155.6	165.8	75.5	Livezey (1992)
Stictocarbo magellanicus (m)*	116.6	124.2	55.7	Livezey (1992)
Stictocarbo magellanicus (f)*	114.1	119.7	55.3	Livezey (1992)
Stictocarbo urile (m)*	137.8	147.8	65.7	Livezey (1992)
Stictocarbo urile (f)*	125.6	134.1	60.7	Livezey (1992)
Ciconiidae				
Cathartes aura*	150.0	169.5	82.8	Fisher (1946)
Cathartes aura†	143.3	171.8	81.2	Campbell & Tonni (1983)
Coragyps atratus*	134.0	146.0	75.0	Fisher (1946)
Coragyps atratus†	134.0	155.4	75.6	Campbell & Tonni (1983)
Gymnogyps californianus*	266.0	293.0	132.0	Fisher (1946)
Gymnogyps californianus†	273.0	315.5	140.0	Campbell & Tonni (1983)
Gymnogyps californianus†	266.0	308.0	132.0	Campbell & Tonni (1983)
Sarcorhamphus papa*	169.0	197.0	89.0	Fisher (1946)
Sarcorhamphus papa†	167.4	205.3	88.2	Campbell & Tonni (1983)
Teratornis merriami†	317.0	421.0	167.0	Campbell & Tonni (1983)
Vultur gryphus†	280.7	341.0	144.2	Campbell & Tonni (1983)
Vultur gryphus†	280.0	340.6	139.5	Campbell & Tonni (1983)
Vultur gryphus*	280.0	326.0	139.5	Fisher (1946)
Spheniscidae				
Aptenodytes patagonica*	117.4	84.7	72.5	Simpson (1946)
Palaeospheniscus patagonicus*	75.2	57.3	51.2	Simpson (1946)
Palaeospheniscus robustus*	83.7	62.7	58.9	Simpson (1946)
Procellariidae				
Diomedea exulans†	405.9	400.5	138.3	Campbell & Tonni (1983)
PASSERIFORMES				
Certhiidae				
Certhia familiaris*†	12.7	15.7	9.0	Norberg (1979)
Regulidae				3 (
Regulus regulus*	9.6	12.9	7.2	Norberg (1979)
Paridae				8 (111)
Parus ater*†	12.7	15.1	8.7	Norberg (1979)
Parus cristatus*†	13.9	16.3	9.1	Norberg (1979)
Parus montanus*†	13.6	16.3	9.0	Norberg (1979)
SANDCOLEIFORMES				3 (-7
Sandcoleidae				
Sandcoleidae Sandcoleus copiosus	46.3	41.2	25.9	Houde & Olson (1992)
Sanacoieus copiosus Anneavis anneae				,
	41.7	37.0	21.6	Houde & Olson (1992)
Chascacocolius oscitans	26.5	23.8	15.9	Houde & Olson (1992)
MESOZOIC BIRDS		_		
Archaeopteryx bavarica	~55	53.0	25.0	Wellnhofer (1993)
Archaeopteryx lithographica	83.0	∼ 69	34.3 +	- Wellnhofer (1988)

Species	Н	R	СМ	Source
MESOZOIC BIRDS				
Archaeopteryx lithographica	75.0	65.0	34.4	Wellnhofer (1974)
Archaeopteryx lithographica	72.0	63.0	∼ 33	Wellnhofer (1974)
Archaeopteryx lithographica	63.5	54.4	28.0	Wellnhofer (1974)
Archaeopteryx lithographica‡	41.5	35.0	17.8	Wellnhofer (1974)
Cathayornis yandica	27.0	26.0	14.0	Zhou, Jin & Zhang (1992)
Concornis lacustris	31.1	27.4	14.1	Sanz, Chiappe &
				Buscalioni (1995)
Mononykus olecranus	36.6	18.1	8.6	Perle et al. (1994)
Noguerornis gonzalezi	22.0	23.3	11.3	Lacasa Ruiz (1989)
Unnamed Enantiornithine	31.0	41.0	~ 18.5	Dong (1993)