数据库系统概论

An Introduction to Database System

第二章 关系数据库(2)

CHANGONIAN CHINESES IN CHINESES IN CHINESES IN CHANGONIAN CHINESES IN CHINESE

第二章 关系数据库

- 2.1 关系数据结构及其形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.6 小结

1. 关系代数

一种抽象的查询语言,用对关系的运算来表达查询。

2. 关系代数运算的分类—— 按运算符的不同可分为 传统的集合运算 专门的关系运算

运	算 符	含义	运り	草 符	含义
集合	U	并	比较	>	大 于
		差		≱	大于等于
运 算 符	n	交	运算符	<	小 于
				€	小于 等 于
				=	等于
				≠	不等于
专门的	×	广义笛卡尔积	逻辑	-	非
关 系	σ	选择		\wedge	与
运 算 符	π	投 影	运算符	V	或
	M	连接		6.	
	-	除			

CHANGO ONLINE CHANGE OF SCIENCE IN CONTROL O

概述(续)

- 集合运算符

- 将关系看成元组的集合
- 运算是从关系的"水平"方向即行的角度来进行

- 专门的关系运算符

• 不仅涉及行而且涉及列

- 算术比较符

• 辅助专门的关系运算符进行操作

- 逻辑运算符

• 辅助专门的关系运算符进行操作

1. 关系代数

一种抽象的查询语言,用对关系的运算来表达查询。

2. 关系代数运算的分类—— 按运算符的不同可分为 传统的集合运算 专门的关系运算

运	算 符	含义	运り	草 符	含义
集合	U	并	比较	>	大 于
		差		≱	大于等于
运 算 符	n	交	运算符	<	小 于
				€	小于 等 于
				=	等于
				≠	不等于
专门的	×	广义笛卡尔积	逻辑	-	非
关 系	σ	选择		\wedge	与
运 算 符	π	投 影	运算符	V	或
	M	连接		6.	
	-	除			

CHANGO ONLINE CHANGE OF SCIENCE IN CONTROL O

概述(续)

- 集合运算符

- 将关系看成元组的集合
- 运算是从关系的"水平"方向即行的角度来进行

- 专门的关系运算符

• 不仅涉及行而且涉及列

- 算术比较符

• 辅助专门的关系运算符进行操作

- 逻辑运算符

• 辅助专门的关系运算符进行操作

3. 表示记号

(1) $R, t \in R, t[A_i]$

设关系模式为 $R(A_1, A_2, \dots, A_n)$

R设为一个关系。

 $t \in R$ 表示 $t \in R$ 的一个元组

t[A] 则表示元组 t 中相应于属性 A_i 的一个分量

(2) A, t[A], A

若 $A=\{A_{i1}, A_{i2}, \dots, A_{ik}\}$,其中 A_{i1}, A_{i2} , \dots , A_{ik} 是 A_1 , A_2 , \dots , A_n 中的一部分,则 A_n 称为属性列或域列。 $t[A]=(t[A_n], t[A_n],$ \cdots , $t[A_{ii}]$)表示元组 t 在属性列 A 上诸分量的集 合。 A 则表示 {A₁, A₂, ···, A_n} 中去掉 $\{A_{ii}, A_{ii}, \cdots, A_{ii}\}$ 后剩余的属性组。

(3) $t_r t_s$

R为n目关系,S为m目关系。 t_r $\in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。它是一个n+m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。

4) 象集 Zx

给定一个关系 R (X, Z), X和 Z为属性组。当 t[X]=x时, x在 R 中的象集(Images Set)为:

 $Zx = \{ t[Z] \mid t \in \mathbb{R}, t[X] = x \}$

它表示 R 中属性组 X 上值为 x 的诸元组在 Z 上分量的集合。

例如:见 P55

VIII	OF SCIENCE	•
	1/1 /	ᆂ
	《人	末
	/4 */	1

$$Zx1={z1,z2,z3}$$

$$Zx2=\{z2,z3\}$$

$Zx3={z1,z3}$

X	Ζ
x1	z1
x1	z2
x1	z3
x2	z2
x2	z 3
х3	z1
х3	z 3

2.4 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

2.4.1 传统的集合运算

- 并
- 差
- · 交
- 广义笛卡尔积

1. 并(Union)

· R和S

- -具有相同的目n(即两个关系都有n个属性)
- -相应的属性取自同一个域

• *R*∪S

- 仍为 n 目关系,由属于 R 或属于 S 的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

注意:一个元组在并集中只出现一次

并(续)

R

A	B	C
a1	b1	c1
a1	b2	c2
a2	b2	c1

 $R \cup S$

A	B	C
a1	b1	c1
a1	b2	c2
a1	<i>b</i> 3	c2
a2	b2	c1

S

A	В	C
a1	b2	c2
a1	b3	c2
a2	b2	c1

2. 差 (Difference)

- · R和S
 - -具有相同的目n
 - -相应的属性取自同一个域
- R S
 - 仍为n 目关系,由属于R 而不属于S 的所有元组组成

$$R -S = \{ t | t \in R \land t \notin S \}$$

差(续)

R

A	В	C
a1	b1	c1
a1	b2	c2
a2	b2	c1

R-S

A	B	C
a1	b1	c1

S

A	В	C
a1	b2	c2
a1	b3	c2
a2	b2	c1

3. 交(Intersection)

- · R和S
 - 具有相同的目 n
 - -相应的属性取自同一个域
- R∩S
 - 仍为 n 目关系,由既属于 R 又属于 S 的元组 组成 $R\cap S = \{t|t \in R \land t \in S\}$

$$R \cap S = R - (R - S)$$

注意:一个元组在交集中只出现一次

交 (续)

R

A	В	C
a1	b1	c1
a1	b2	c2
a2	b2	c1

 $R \cap S$

A	B	C
a1	b2	c2
a2	b2	c1

S

A	B	C
a1	b2	c2
a1	b3	c2
a2	b2	c1

4. 广义笛卡尔积(Extended

Cartesian Product)

- R
 - -n 目关系, k_1 个元组
- · S
 - -m 目关系, k_2 个元组
- · R×S
 - -列: (n+m)列的元组的集合
 - 元组的前 n 列是关系 R 的一个元组
 - 后 m 列是关系 S 的一个元组
 - -行: $k_1 \times k_2$ 个元组
 - $R \times S = \{t_r t_s | t_r \in R \land t_s \in S \}$

广义笛卡尔积 (续)

	A	B	C
R	a1	b1	c1
	a1	b2	c2
	a2	b2	c1

 $R \times S$

	A	B	C
S	a1	b2	c2
	a1	b3	c2
	a2	b2	c1

A	B	C	A	B	C
a1	b1	c1	a1	b2	c2
a1	b1	c1	a1	b3	c2
a1	b1	c1	a2	b2	c1
a1	b2	c2	a1	b2	c2
a1	b2	c2	a1	b3	c2
a1	b2	c2	a2	b2	c1
a2	b2	c1	a1	b2	c2
a2	b2	c1	a1	b3	c2
a2	b2	c1	a2	b2	c1

2.4 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

2.4.2 专门的关系运算

- 选择
- 投影
- 连接
- 除

1. 选择(Selection)

- 1) 选择又称为限制(Restriction)
- 2) 选择运算符的含义
 - 在关系 R 中选择满足给定条件的诸元组

$$\sigma_{\mathsf{F}}(R) = \{t | t \in R \land F(t) = ' \not \exists '\}$$

- F: 选择条件,是一个逻辑表达式,基本形式为:

```
[\neg(]X_1\theta Y_1[])[\varphi[\neg(]X_2\theta Y_2[])]...
```

- θ: 比较运算符(>,≥,<,≤,=或<>)
- X₁, Y₁等:属性名、常量、简单函数;

属性名也可以用它的序号来代替;

- φ:逻辑运算符(∧或∨)
- []:表示任选项
- …: 表示上述格式可以重复下去

关系运算——选择 (**O**)

- 从关系 R 中选择符合条件的元组构成新的 关系
- σF(R), 表示从 R 中选择满足条件 (使逻辑表达式 F 为真)的元组
- 行的运算

・例:

Ssex = '男' AND Sdept = 'IS' (Student)

Student

学 号	姓 名	性别	年 龄	所在系
Sno	Sname	Ssex	Sage	Sdept
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

查询信息系(IS系)全体学生

$$σSdept = 'IS'$$
 (Student) $Φ5 = 'IS'$ (Student)

$$\sigma_{5=1S'}$$
 (Student)

查询年龄小于 20 岁的学生

 $\sigma_{\text{Sage} < 20}$ (Student) 或 $\sigma_{4 < 20}$ (Student)

7490 · 20				
Sno	Sname	Ssex	Sage	Sdept
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

Student

CHANGCHUR CHANGCRUR TO SCIENCE

2. 投影 (Projection)

- 1)投影运算符的含义
 - 从R中选择出若干属性列组成新的关系

$$\pi_{A}(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

列的运算

投影运算的结果中,也要去隙 某些列,而且还可能取消某。

之后不仅取消了原关系中的

关系运算——投影(□)

• 例: $\pi_{Ssex,Sage}(student)$ 或 $\pi_{3,4}(student)$

Student					
学 号	姓 名	性别		年 龄	所在系
Sno	Sname	Ssex		Sage	Sdept
95001	李勇	男		20	 CS
95002	刘晨	女		19	IS
95003	王敏	女		18	MA
95004	张立	男		19	IS
	:				

3. 连接(Join)

- · 1)连接也称为 8 条件连接
- 2)连接运算的含义
 - 从两个关系的笛卡尔积中选取属性间满足一定 条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A]\theta t_s[B] \}$$

- A和B:分别为R和S上度数相等且可比的属性组
- 0: 比较运算符
- 连接运算从 R 和 S 的广义笛卡尔积 R×S 中选取 (R 关系) 在 A 属性组上的值与 (S 关系) 在 B 属性组上值满足比较关系的元组。

条件连接

?	
	?

A	В	C
a_1	b 1	5
a_1	b_2	6
a_2	b ₃	8
a_2	<i>b</i> ₄	12

S

B

 b_1

 b_2

 \boldsymbol{b}_3

 b_3

 b_5

E

3

10

2

M	r S
' < 1	E
	· <

A	R.B	C	S.B	E
a_1	\boldsymbol{b}_1	5	b_2	7
a_1	\boldsymbol{b}_1	5	b_3	10
a_1	b_2	6	b_2	7
a_1	b_2	6	b ₃	10
a_2	b_3	8	b_3	10

连接(续)

- 3) 两类常用连接运算
 - -等值连接(equijoin)
 - 什么是等值连接
 - 是一种特殊的条件连接, θ 为 " = " 的连接运算称 为等值连接
 - 等值连接的含义
 - -从关系 *R* 与 *S* 的广义笛卡尔积中选取 *A* 、 *B* 属性值相等的那些元组,即等值连接为:

$$R_{A=B}^{\triangleright}S = \{ \hat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

等值连接

R			S		$\mathbf{R} \mathbf{\times} \mathbf{S}$				
A	В	C	В	E		R.B=S.B			
a_1 a_1	$egin{array}{c} b_1 \ b_2 \end{array}$	5	b ₁	3	A	R.B	С	S.B	E
a_2	b_3	8	<i>b</i> ₂	7	a_1	b ₁	5	b_1	3
$\underline{a_2}$	<i>b</i> ₄	12	b_3 b_3	10	a_1	b_2	6	b_2	7
			b ₅	2	a_2	b_3	8	\boldsymbol{b}_3	10
					a_2	b_3	8	b_3	2

连接(续)

- -自然连接(Natural join)
 - 什么是自然连接
 - 自然连接是一种特殊的等值连接
 - »两个关系中进行比较的分量必须是相同的属性组
 - »在结果中把重复的属性列去掉
 - 自然连接的含义 $R \cap S = \{ t_r t_s \mid t_r \in R \land t_s \in S \land t_r [B] = t_s [B] \}$

自然连接

<i>R</i>			S	
	В	С	В	E
a_1	<i>b</i> 1	5	b_1	3
a_1	b_2	6		·
a_2	b_3	8	b_2	7
a ₂	b ₄	12	b_3	10
			b_3	2
			b_5	2

R	S		
<u> </u>	В	C	E
a_1	b ₁	5	3
a_1	b_2	6	7
a_2	, b ₃	8	10
a_2	b_3	8	2

连接(续)

一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

连接(续)

等值连接 ₹ R.B=S.B

自然连接 R ⋈ S

$oxedsymbol{A}$	R.B	<i>C</i>	S.B	E
a ₁	b ₁	5	b ₁	3
<i>a</i> ₁	\boldsymbol{b}_2	6	\boldsymbol{b}_2	7
a_2	b ₃	8	b ₃	10
a_2	b_3	8	b ₃	2

A	В	<i>C</i>	E
a_1	\boldsymbol{b}_1	5	3
a_1	\boldsymbol{b}_2	6	7
a_2	\boldsymbol{b}_3	8	10
a_2	b ₃	8	2

连接(续)

- 如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),那么这种连接叫做外连接(outer join)。
- · 如果把左边关系 R 中要舍弃的元组保留就叫做左外连接(left outer join 或 left join);
- 如果把右边关系R中要舍弃的元组保留就叫做右外连接(right outer join 或 right join n);

R			S						R	[⋈] _{R.B=S.B} S				R ×	S	
	В	C		В	E		A	R.B	C	S.B	E		A	В	C	E
a_1	b,	5		b ₁	3		a_1	b ₁	5	b ₁	3		a_1	b ₁	5	3
a_1		6	,	b ₂	7		a_1	b_2	6	b_2	7		a_1	b_2	6	7
a ₂	Ι.	12	-	b ₃	10		a_2	b ₃	8	b ₃	10		a_2	b ₃	8	10
a ₂	- 04			b ₃	2		a_2	b_3	8	b ₃	2		а	h	8	2
				b ₅	2			3					a_2	b ₃	0	
	A	В	c	Ŀ		- 		3	C	E		Т	В	С	Ε	_
•	<i>a</i> ₁	b ₁	5	3		a_1	b	,	5	3	a	\dashv	b_1	5	3	_
	a_1	b ₂	6	7	,	a_1	b	2	6	7	a_1	i	b_2	6	7	
	a ₂	b_3	8	1()	a_2	Ь	٦.	8	10	a_1		b_3	8	10	
	a_1	b_3	8	2		a_2	b	3	8	2	a_2		\boldsymbol{b}_3	8	2	
	a_2	b_4	12	וטא	LL	a_2	b,	4	12	NULL	NUI	.1.	b_5	NULL	2	
_	NULI.	b_{\S}	NULL	2	_		.1				_				<u> </u>	_
		(a) §	卜连接				(l	b) 左射	上连接	ŧ			(c) 2	右外连接	ı	_

4. 除(Division)

给定关系R(X, Y)和S(Y, Z),其中X,Y,Z为属 性组。R中的Y与S中的Y可以有不同的属性名,但必 须出自相同的域集。R与S的除运算得到一个新的关 系 P(X) , P 是 R 中满足下列条件的元组在X 属性列上 的投影:元组在X上分量值x的象集Y,包含S在Y上投 影的集合。 $R \div S = \{t_r[X] \mid t_r \in R \land \pi_v(S) \subseteq Y_v\}$

 Y_{\cdot} : x在R中的象集, $x = t_{\cdot}[X]$

除(续)

• 2)除操作是同时从行和列角度进行运算

除(续)

	A	В	\boldsymbol{C}
	a_1	\boldsymbol{b}_1	$c_2^{}$
	a_2	\boldsymbol{b}_3	c_7
R	a_3	\boldsymbol{b}_4	c_6
I	a_1	\boldsymbol{b}_2	c_3
	a_4	\boldsymbol{b}_6	c_6
	a_2	\boldsymbol{b}_2	c_3
	a ₁	\boldsymbol{b}_2	c_{1}

В	C	D
b ₁	$c_2^{}$	d_1
b_2	c_{1}	d_1
b ₂	c_3	d_2

R ÷S
A
a_1

\boldsymbol{A}	В	C
a_1	b_1	c_2
a_2	b ₃	c_7
a ₃	b ₄	c_6
a_1	b ₂	c_3
a_4	b ₆	c_6
a_2	b ₂	c_3
a_1	b ₂	c_1

В	\boldsymbol{C}	D
b_1	c_2	d_1
b ₂	c_1	d_1
b ₂	c_3	d ₂

$$R \div S$$
 A
 a_1

在关系R中,A可以取四个值{a1, a2, a3, a4}

 a_1 的象集为 $\{(b_1, c_2), (b_2, c_3), (b_2, c_1)\}$

 a_2 的象集为 $\{(b_3, c_7), (b_2, c_3)\}$

 a_3 的象集为 { (b_4, c_6) }

 a_4 的象集为 {(b_6 , c_6)}

S在(B, C)上的投影为

{(b1, c2), (b2, c1), (b2, c3)}

只有 a_1 的象集包含了S在(B, C)属性组上的投影

所以 $R \div S = \{a_1\}$

除(÷)举例

Examples of Division A/B

sno.	pno.
s1	p 1
s 1	p2
s 1.	p3
s1.	p4
s2	p1 .
s2	p2
s3 .	p2
s4	p2
s <u>4</u>	p <u>4</u>

pno	
p2	

B1

sno.
s1
s2
s3.
s4

A/B1

pno.
p2
p4
DO

*B*2

sno
s 1
s4

A/B2

pno
p 1
p2
p4

B3.

sno s1

A/B3

	Student					
	学 号	姓 名	性 別	年龄	所在系	
	Sno	Sname	Ssex	Sage	Sdept	
	95001	李勇	男	20	CS	
	95002	刘晨	女	19	IS	
	95003	王敏	女	18	MA	
	95004	张立	男	19	IS	
			(a)			
Course				SC		
课程号	课程名	先行课	学分		课程号	成绩
Cno	Cname	Cpno	Ccredit	Sno	Cno	Grade
1	数据库	5	4	95001	l	92
2	数学		2	95001	2	85
3	信息系统	1	4	95001	3	88
4	操作系统	6	3	95002	2	90
5	数据结构	7	4	95002	3	80
6	数据处理		2			
7	PASCAL 语言	6	4		(c)	

5. 综合举例

以学生 - 课程数据库为例 (P.56)

[例7] 查询至少选修 1 号课程和 3 号课程的学生号码

首先建立一个临时关系 K:

然后求: $\Pi_{Sno.Cno}(SC) \div K$

Cno				
1				
3				

CHANGO TO ME CHANGO TO PERSON TO PER

综合举例(续)

• 例 7续 Π_{Sno.Cno}(SC)

95001 象集 {1, 2, 3}

95002 象集 {2, 3}

$$\Pi_{Cno}(K)=\{1, 3\}$$

于是: Π_{Sno.Cno}(SC)÷*K*={95001}

Sno	Cno
95001	1
95001	2
95001	3
95002	2
95002	3

综合举例(续)

[例 8] 查询选修了2号课程的学生的学号。

```
\pi_{Sno} (\sigma_{Cno='2'} (SC))

= { 95001, 95002}
```


综合举例(续)

[例9] 查询至少选修了一门其直接先行课为5号课程的课程的学生姓名。

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course SC Student))$$

或

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course))$$
 $SC \pi_{No, Sname}(Student))$

或

$$\pi_{\text{Sname}} (\pi_{\text{Sno}} (\sigma_{\text{Cpno='5'}} (\text{Course}) \quad \text{SC}) \quad \pi_{\text{SX}}, \text{ Sname} (\text{Student}))$$

综合举例(续)

[例 10] 查询选修了全部课程的学生号码和姓名。

$$\pi_{Sno, Cno}$$
 (SC) $\div \pi_{Cno}$ (Course) $\pi_{Sno, Sname}$ (Student)

1.设有如图所示的关系 R、W 和 D, 计算下列关系代数: ₩

(1) R1=
$$\Pi_{YF}(R)$$
 (2) R2= $\sigma_{P>5\cap T=e}(R)$

(3) R3=
$$R \infty W$$
 (4) R4= $\Pi_{[2],[1],[6]}(\sigma_{[3]=[5]}(R \times D)_{+}$

(5) R5=
$$R \div D +$$

-	2 ()1/4 /			
ب	Р	Q	Τ	Υ
له	2	b	C	d
el.	9	а	e	f
له	2	ь	е	f

	3		Υ
2	۵	O	а
ത	æ	Φ	f
2	Ь	e	f
ത	а	д	е
7	g	Φ	f
7	g	c	д

关系R

T	Υ	В		
С	ъ	m		
С	а	n		
Ч	f	n		

关系W

Т	Υ
С	d
е	f

关系D

- 2.设关系 R、S 和 S'如图 2.1 所示,计算: ₩
- (1) R1=R∪S'; (2) R2=R-S'; (3) R3=R×S; ↓
- (4) R4=R $\infty_{A=C}$ S= $\sigma_{A=C}(R\times S)$; (5) R5=R ∞ S= $\prod_{A,B,C} \sigma_{R,B=S,B}(R\times S)$.

关系R

А	В	
æ	b	
C	b	
д	е	

关系S

В	С
b	c
e	а
Ь	d

关系5

А	В	
Ь	С	
C	Ь	
Ь	d	

【例 2.68】设有如图 2.24 所示的两个关系 E1 和 E2, 其中 E2 是从 E1 中经过关系运算 形成的结果,试给出该运算表达式。

LI			
Α	В	C	
1	2	3	
4	5	6	
7	8	9	

F1

EZ		
В	C	
5	6	
8	9	

EO

图 2.24 关系 E1 和 E2

答: 从 E1 生成 E2 经过的关系运算是 π 2,3(δ B>2(E1))或 δ B>2(π 2,3(E1))。

长春理工大学计算机科学技术学院


```
设教学数据库有 3 个关系
学生关系 S (Sno, Sname, age, sex)
成绩关系 SC (Sno, Cno, grade)
课程关系 C (Cno, Cname, teacher)
```

S: 学生信息表

SNO	SNAME	AGE	SEX
1	李强	23	男
2	刘丽	22	女
5	张友	22	男

SC: 学生选课成绩表

SNO	CNO	GRADE
1	K1	83
2	K1	85
5	K1	92
2	K5	90
5	K5	84
5	K8	80

C: 课程信息表

CNO(课号)	CNAME (课名)	TEACHER(教师)
k1	C语言	王华
k5	数据库原理	程军
k8	编译原理	程军

"程军"老师所授课程的课程号CNO和课程名CNAME。

 $\prod_{\mathit{CNO},\mathit{CNAME}}(oldsymbol{\sigma}_{\mathit{TEACHER}="程军"}(C))$

(2) 检索年龄大于21的男学生学号SNO和姓名SNAME。

$$\prod_{\mathit{SNO},\mathit{SNAME}} (\sigma_{\mathit{AGE}>21\land\mathit{SEX}="男"}(S))$$

(3) 检索至少选修"程军"老师所授全部课程的学生姓名SNAME。

$$\prod_{SNAME} (S \infty (\prod_{SNO,CNO} (SC) \div \prod_{CNO} (\sigma_{TEACHER = "Reger}(C))))$$

(4) 检索"李强"同学不学课程的课程号。

$$\prod_{CNO}(C) - \prod_{CNO}(\sigma_{NAME="*}(s) \otimes SC)$$

秦至少选修两门课程的学生学号。

$$\prod_{SNO} (\sigma_{[1]=[4]\wedge[2]\neq[5]}(SC\times SC))$$

(6)检索全部学生都选修的课程的课程号和课程名。

$$\prod_{CNO,CNAME} (C \infty (\prod_{CNO,SNO} (SC) \div \prod_{SNO} (S)))$$

(7)检索选修课程包含"程军"老师所授课程之一的学生学号。

$$\prod_{SNO}(SC\infty\prod_{CNO}(\sigma_{TEACHER="7282"}(C)))$$

(8)检索选修课程号为k1和k5的学生学号。

$$\prod_{SNO,CNO}(SC) \div \prod_{CNO} (\sigma_{CNO='k1' \lor CNO='k5'}(C))$$

AND	(9)检索选修全部课程的学生姓名;	
(10)检索选修课程包含学号为2的学生所修课程的学生	学号。
_ 	1)检索选修课程名为"C语言"的学生学号和姓名。	
(1	1)似系处形体在为 6 时子生子与神姓石。]
		┙

(9)检索选修全部课程的学生姓名;

$$\prod_{SNAME} (S \infty (\prod_{SNO,CNO} (SC) \div \prod_{CNO} (C)))$$

(10)检索选修课程包含学号为2的学生所修课程的学生学号。

$$\prod_{SNO,CNO}(SC) \div \prod_{CNO}(\sigma_{SNO='2'}(SC))$$

(11)检索选修课程名为"C语言"的学生学号和姓名。

$$\prod_{SNO,SNAME} (S \infty \prod_{SNO} (SC \infty (\sigma_{CNAME='C$$
语言'}(C)))

小结

关系代数运算

- 关系代数运算

并、差、交、笛卡尔积、投影、选择、连接、除

- 基本运算

并、差、笛卡尔积、投影、选择

- 交、连接、除

可以用 5 种基本运算来表达 引进它们并不增加语言的能力,但可以简化表达

小结(续)

- 关系代数表达式
 - 关系代数运算经有限次复合后形成的式子
- 典型关系代数语言
 - ISBL (Information System Base Language)
 - 由 IBM United Kingdom 研究中心研制
 - 用于 PRTV (Peterlee Relational Test Vehicle)实 验系统