

BABD

Masters in Business Analytics and Big Data

Regression

Mauricio Soto - mauricioabel.soto@polimi.it

Supervised Learning

Under/Over-fitting

Quality measures - Regression

Coefficient of determination

$$R^2 = 1 - \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 / \sum_{i=1}^{m} (y_i - \bar{y})^2$$

Mean Absolute Error:

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$$

Mean Squared Error:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error : $RMSE = \sqrt{MSE}$

Supervised Learning Workflow

Regression Models

- Heuristics Methods
 - Nearest Neighbours
 - Regression Trees
- Optimization based Methods
 - Linear models
 - Support vector machine
 - Neural Networks

Simple linear regression

► Deterministic model

$$Y = wX + b$$

Probabilistic model

$$Y = w X + b + \varepsilon$$

Regression models (n=1)

linear

$$Y = b + \sum_{i=1}^{n} w_i X_i = b + w_1 X_1 + w_2 X_2 + \cdots + w_n X_n = b + Xw$$

quadratic

$$Y = b + Xw + X^{2}d \qquad Z = X^{2}$$
$$= b + Xw + Zd$$

exponential

$$Y = e^{b+Xw} \qquad Z = logY$$
$$= b + Xw$$

Simple linear regression

Residuals

$$e_i = y_i - f(x_i) = y_i - wx_i - b$$
 $i \in \mathcal{M}$

Least square regression

$$SSE = \sum_{i=1}^{m} e_i^2 = \sum_{i=1}^{m} [y_i - wx_i - b]^2$$

Least square linear regression

$$\frac{\partial SSE}{\partial b} = -2\sum_{i=1}^{m} [y_i - wx_i - b] = 0 \Rightarrow \qquad \qquad w \sum_{i=1}^{m} x_i + bm = \sum_{i=1}^{m} y_i$$

$$\frac{\partial SSE}{\partial w} = -2\sum_{i=1}^{m} [y_i - wx_i - b]x_i = 0 \Rightarrow \qquad \qquad w \sum_{i=1}^{m} x_i^2 + b\sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i$$

$$w \sum_{i=1}^{m} x_i + bm = \sum_{i=1}^{m} y_i$$

 $\sum_{i=1}^{m} x_i^2 + b \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i$

Least square linear regression

$$\frac{\partial SSE}{\partial b} = -2\sum_{i=1}^{m} [y_i - wx_i - b] = 0 \Rightarrow \qquad \qquad w \sum_{i=1}^{m} x_i + bm = \sum_{i=1}^{m} y_i$$

$$\frac{\partial SSE}{\partial w} = -2\sum_{i=1}^{m} [y_i - wx_i - b]x_i = 0 \Rightarrow \qquad w \sum_{i=1}^{m} x_i^2 + b\sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i$$

$$w \sum_{i=1}^{m} x_i + bm = \sum_{i=1}^{m} y_i$$
$$\sum_{i=1}^{m} x_i^2 + b \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i$$

$$w^* = \frac{\sigma_{xy}}{\sigma_{xx}}, \quad b^* = \overline{\mu}_y - w^* \overline{\mu}_x$$

$$\sigma_{xx} = \sum_{i=1}^{m} (x_i - \overline{\mu}_x)^2$$

$$\sigma_{xy} = \sum_{i=1}^{m} (x_i - \overline{\mu}_x)(y_i - \overline{\mu}_y)$$

Least square multiple linear regression

► If we extend the matrix *X* with a vector of "ones" then the linear model can be expressed as

$$y = Xw + e$$

$$SSE = \sum_{i=1}^{m} e_i^2 = ||e||^2 = (y - Xw)^{\top} (y - Xw)$$

$$\nabla SSE = -2X^{\top}y + 2X^{\top}Xw = 0$$

$$X^{\top}Xw = X^{\top}y$$

$$w^* = (X^\top X)^{-1} X^\top y$$

Least square multiple linear regression

► Solution:

$$w^* = (X^\top X)^{-1} X^\top y$$

Predicted values

$$\hat{y} = Xw^* = (X(X^{\top}X)^{-1}X^{\top})y = Hy$$

► Hat matrix

$$H = X(X^{T}X)^{-1}X^{T}, \qquad H^{2} = H$$

Residuals

$$e = y - \hat{y} = (I - H)y$$

General Linear Models

▶ We consider a set of bases functions: polynomials, kernels, etc.

$$Y = \sum_{h} w_h g_h(X_1, X_2, \dots, X_n) + b + \varepsilon$$

▶ For example, for n = 2

$$Y = X_1 w_1 + X_2 w_2 + X_1^2 w_3 + X_2^2 w_4 + [X_1 X_2] w_5 + b + \varepsilon$$

Linear Models Regularization

Ridge:

$$\min_{w} \lambda ||w||^2 + ||e||^2 = \min_{w} \lambda ||w||^2 + (y - Xw)^{\top} (y - Xw)$$

Lasso:

$$\min_{w} \lambda |w| + ||e||^2 = \min_{w} \lambda |w| + (y - Xw)^{\top} (y - Xw)$$

Regularization effect

Residual assumptions

Independence,
$$E(\varepsilon_i|\mathbf{x_i}) = 0$$
, $Var(\varepsilon_i|\mathbf{x_i}) = \sigma^2$

Homoscedasticity

Heteroscedasticity

Heteroscedasticity

Random Cloud (No Discernible Pattern)

Bow Tie Shape (Pattern)

Fan Shape (Pattern)

Linear models - Significance of coefficients

- By assuming residuals independent and normal distributio
- Variance of coefficients

$$Var(\hat{w}) = (X'X)^{-1}\sigma^2 \quad \hat{w} \sim \mathcal{N}(w, (X'X)^{-1}\sigma^2)$$

Empirical Variance

$$\hat{\sigma} = \frac{SSE}{m-n-1} = \frac{\sum_{i=1}^{m} (y_i - \mathbf{w}' \mathbf{x_i})^2}{m-n-1} = \frac{\mathbf{y}'(\mathbf{I} - \mathbf{H})\mathbf{y}}{m-n-1}$$

$$(m-n-1)\,\hat{\sigma}^2 \sim \sigma^2 \chi^2_{m-n-1}$$

▶ Under the null hypothesis $w_i = 0$ then

$$\frac{\hat{w}_i}{\hat{\sigma}\sqrt{(X'X)_{ii}}} \sim t_{m-n-1}$$

Linear models - Significance of coefficients

coef std err t $P> t $ [0.025	0.975]
const 22.5693 0.245 92.144 0.000 22.088	23.051
CRIM -0.8678 0.298 -2.909 0.004 -1.455	-0.281
ZN 0.9310 0.365 2.551 0.011 0.213	1.649
INDUS 0.5166 0.494 1.045 0.297 -0.456	1.489
CHAS 0.0671 0.270 0.249 0.804 -0.463	0.598
NOX -1.6601 0.532 -3.121 0.002 -2.706	-0.614
RM 3.3925 0.340 9.971 0.000 2.723	4.062
AGE -0.2093 0.429 -0.488 0.626 -1.052	0.634
DIS -2.7910 0.475 -5.879 0.000 -3.725	-1.857
RAD 2.3790 0.650 3.660 0.000 1.100	3.658
TAX -2.1962 0.718 -3.059 0.002 -3.608	-0.784
PTRATIO -2.0690 0.325 -6.372 0.000 -2.708	-1.430
B 0.5860 0.298 1.965 0.050 -0.001	1.173
LSTAT -3.4712 0.432 -8.032 0.000 -4.321	-2.621

Normal residual assumption

Graphical distribution

- Graphically compare error distribution against a normal distribution with QQ-plots
- Apply an hypothesis test to check the normality of the errors (Kolmogorov–Smirnov, D'Agostino, etc.)

Multi-collinearity of features

$$Var(\hat{w}_j) = rac{\sigma^2}{(m-1)Var(X_j)} imes rac{1}{1-R_j^2}$$

where R_j is the coefficient of determination for the linear regression explaining X_j with the remaining explanatory variables

Variance inflation factor

$$VIF_j = \frac{1}{1 - R_i^2}$$

if bigger than five indicates the existence of multicollinearity.

KNN K-nearest Neighbours

- \triangleright k: number of neighbours
- neighbour weights
- distances

Regression tree

- variability measure: mse (variance from mean), mae (error from median)
- ▶ max_depth
- min_samples_split: minimum number of samples to split an internal node
- min_sample_leaf: minimum number of samples required to be at a leaf node

Multi-Layer Perceptron

- ▶ hidden_layer_sizes: $(n_1, n_2, ..., n_L)$
- activation: identity, logistic, tanh, relu
- alpha regularization term parameter
- Resolution algorithm parameters: solver, tol, batch_size, learning_rate, max_iter.

SVR

$$\min_{w,b,\zeta,\zeta^*} \frac{1}{2} ||w|| + C \sum_{i=1}^n (\zeta_i + \zeta_i^*)$$
subject to $y_i - w^T \phi(x_i) - b \le \varepsilon + \zeta_i$,
$$w^T \phi(x_i) + b - y_i \le \varepsilon + \zeta_i^*$$
,
$$\zeta_i, \zeta_i^* \ge 0, i = 1, ..., n$$

- C: inverse of regularization strength
- \triangleright ε : tolerance
- kernel
- ► Resolution algorithm parameters

Ensemble Methods

Gradient Boost

Motivation:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(a)}{3!}(x - x_0)^3 + \cdots$$

- 1. Train a weak learner F_0 and compute predictions $x^{(k)}$
- 2. For k = 1, ..., K
 - Compute the difference between the target y and the predictions of the current learner

$$\hat{y}_{k-1} = F_{k-1}(x_i)$$

 Train a weak learner that minimize the loss function (error)

$$f_k = \arg\min_f L_m = \arg\min_f \sum_{i=1}^n I(y_i, F_{m-1}(x_i) + f(x_i))$$

$$F_k = F_{k-1} + \lambda f_k$$

- n_estimators: Number of estimators (K)
- base_estimator: Weak estimator type
- lacktriang learning_rate: weights of estimator in final decision (λ)