Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

(Университет ИТМО)

Факультет прикладной информатики
Образовательная программа Мобильные и сетевые технологии
Направление подготовки 09.03.03 Мобильные и сетевые технологии

Практическая работа №2

"Изучение общих принципов построения IP-сетей (адресация и маршрутизация)." вариант 5

Обучающийся: Данилова Анастасия Алексеевна К3239

Проверил: Харитонов Антон Юрьевич

Санкт-Петербург,

Цель работы:	1
Порядок выполнения работы:	
Структура сети и ІР-адреса	3
Разбивка сетей на подсети	4
Сеть 4: 172.0.0.0/8 (разбить на 3 подсети)	4
Сеть 6: 10.1.16.0/20 → разбить на 2 подсети	4
Сеть 8: 169.254.0.0/16 → разбить на 2 подсети	5
На примере подсети 4 определим широковещательный адрес, максимально	
возможное количество узлов и диапазон адресов	5
Схема сети	6
Таблицы	6
Выполнение моделирования сети в Cisco Packet Tracer	8
Создание М2:	8
Создание М7:	10
До настройки:	10
Создание М5:	10
Создание сетей	10
Соединение устройств	13
Тестирование	13
Таблицы маршрутизации	14

Цель работы:

Изучить основные принципы IP-адресации. Получить практические навыки в построении сетей и подсетей разных классов с использованием современных возможностей протокола IP. Изучить базовые принципы маршрутизации в IP-сетях. Научиться конфигурировать сетевое оборудование с помощью симулятора CISCO PacketTracer.

Порядок выполнения работы:

Исходя из списка задач по вариантам, мне предстоит выполнить задания для 5 варианта

177				
146	145	3 Мобилки		KC 3 K23 1.2
147	146	1	367771	Абакунов Кирилл Вячеславович
148	147	147 2 408163 Аплеев Дмитрий Артурович	Аплеев Дмитрий Артурович	
149	148 3 412892 Березина Софья Константин	Березина Софья Константиновна		
150	149	4 408339		<u>Быков Павел Сергеевич</u>
151	150	5	5 317628 Данилова Анастасия Алексеевна	
152	151	6	412929	<u>Дедкова Анастасия Викторовна</u>
153	152	7 368133		Дущенко Даниил Александрович
154	153	8	368143	Ef https://ieu.ifma.wu/pla/anau/f3n=21

Nº	Номера	Номера сетей		
вариант	маршрутизаторов			
а				
1	1,2,4	1, 3(2), 4(3), 7(4)		
2	1,2,5	1, 3(3), 4(4), 8(3)		
3	2,5,6	4(5), 8(4), 9(2)		
4	2.5.4	4(2), 8(5), 7(5)		
5	2,5,7	4(3), 6(2), 8(2)		
6	4,5,7	6(3), 7(6), 8(3)		
7	7,5,6	6(4), 8(4), 9(3)		
8	5,7,3	2, 5(2), 6(5), 8(5)		
9	3,7,2	2, 4(4), 5(3), 6(5)		
10	1,2,7	1, 3(4) , 4(4),		
		6(2)		
11	4,2,7	7(2), 4(5), 6(3)		
12	7,3,6	2, 6(4), 5(4), 9(4)		
13	3,6,5	2, 5(5), 8(6), 9(5)		

Сеть	IP-адреса сетей
1	194.44.183.16/28*
2	195.58.228.138/30*
3	192.168.32.0/19
4	172.0.0.0/8
5	193.10.16.0/20
6	10.1.16.0/20
7	195.56.78.0/24
8	169.254.0.0/16
9	62.16.0.0/12

Для моего варианта необходимо использовать маршрутизаторы 2, 5 и 7, а также сети с номерами 4(3), 6(2), и 8(2), где числа в скобках означают количество подсетей, на которые нужно разбить соответствующие сети.

Структура сети и ІР-адреса

Сеть состоит из трёх маршрутизаторов (М2, М5, М7) и трёх сетей, которые нужно разбить на подсети:

Сеть состоит из трёх маршрутизаторов (М2, М5, М7) и трёх сетей, которые нужно разбить на подсети:

- Сеть 4: 172.0.0.0/8 → разбить на 3 подсети.
- Сеть 6: $10.1.16.0/20 \rightarrow$ разбить на 2 подсети.
- Сеть 8: $169.254.0.0/16 \rightarrow$ разбить на 2 подсети.

Разбивка сетей на подсети

Сеть 4: 172.0.0.0/8 (разбить на 3 подсети)

 $N = log_2 3$ (3 подсети)

8 единиц, так как к ним еще прибавляется еще 2 разряда, кодирующих подсеть, то длина маски составляет 10 битов

Определим адреса подсетей и маски. Закодируем номера подсетей в двоичной системе:

подсеть 1: 01 подсеть 2: 10 подсеть 3: 11

Запишем полученные адреса:

широковещательный адрес: 172.127.255.255

подсеть 2: 10101100.10000000.00000000.00000000

⇒ 172.128.0.0

широковещательный адрес: 172.191.255.255

подсеть 3: 10101100.11000000.00000000.00000000 ⇒ 172.192.0.0

широковещательный адрес: 172.255.255.255

инверсия маски: 0.63.255.255

Определим маску для остальных подсетей (у остальных сетей напишу решение без разъяснений):

<u>Сеть 6: 10.1.16.0/20</u> → разбить на 2 подсети.

мин число битов = 2 11111111.11111111.1111<mark>00</mark>00.00000000

длина маски = 22 подсеть 1: 01 подсеть 2: 10

подсеть 1: 00001010.00000001.00010100.00000000 ⇒ 10.1.20.0

широковещательный адрес: 10.1.23.255

подсеть 2: 00001010.00000001.00011000.00000000 ⇒ 10.1.24.0

широковещательный адрес: 10.1.27.255

инверсия маски: 0.0.3.225

<u>Сеть 8: 169.254.0.0/16</u> → разбить на 2 подсети.

мин число битов = 2

1111111.11111111.00000000.00000000

длина маски = 18 подсеть 1: 01 подсеть 2: 10

широковещательный адрес: 169.254.127.255

подсеть 2: 10101001.111111110.10000000.00000000 ⇒ 169.254.128.0

широковещательный адрес: 169.254.191.255

инверсия маски: 0.0.63.255

На примере подсети 4 определим широковещательный адрес, максимально возможное количество узлов и диапазон адресов.

Широковещательный адрес определяется как побитовое логическое ИЛИ между IP-адресом и инверсией маски.

Максимально возможное количество узлов определяется количеством разрядов, отведенных под номер узла. В нашем случае длина маски 10 разрядов, тогда под узел остается 32 - 10 = 22 разряда. Тогда максимально возможно количество узлов $2^{22} - 2 = 4194302$ узлов. Номера узлов будут лежать в диапазоне от номера сети 193.10.18.0 до широковещательного адреса 193.10.19.255. В этом случае диапазон выглядит следующим образом: 172.64.0.1 - 172.127.255.254 Аналогично выполним разбивку других сетей.

Схема сети

В результате получим следующую схему сети:

Таблицы

В таблице 1.3 сведены адреса интерфейсов маршрутизаторов. Адреса взяты из входной схемы или назначены произвольно из диапазонов соответствующих подсетей.

Таблица 1.3 – Адреса интерфейсов маршрутизаторов

	Номер	
Маршрутизатор	интерфейса	ІР-адрес

	1	172.127.255.254/10
	2	172.191.255.254/10
2	3	172.255.255.254/10
	4	9.7.0.254/16
	5	9.6.0.254/16
	1	9.6.0.253/16
5	2	9.8.0.254/16
)	3	169.254.127.254/18
	4	169.254.191.254/18
	1	9.7.0.253/16
7	2	10.1.27.254/22
'	3	10.1.23.254/22
	4	9.8.0.253/16

Для полученной сети составим таблицы маршрутизации для M2, M5 и M7.

Таблица 1.4 Таблица маршрутизации маршрутизатора М2

Адрес сети	Маска сети	Адрес шлюза	Номер интерфейса
172.64.0.0	255.192.0.0	0.0.0.0	1
172.128.0.0	255.192.0.0	0.0.0.0	2
172.192.0.0	255.192.0.0	0.0.0.0	3
9.7.0.0	255.255.0.0	0.0.0.0	4
10.1.16.0	255.255.240.0	9.7.0.253	4
9.6.0.0	255.255.0.0	0.0.0.0	5
169.254.0.0	255.255.0.0	9.6.0.253	5

Таблица 1.5 Таблица маршрутизации маршрутизатора М5

Адрес сети	Маска сети	Адрес шлюза	Номер интерфейса
9.6.0.0	255.255.0.0	0.0.0.0	1
172.0.0.0	255.0.0.0	9.6.0.254	1
9.8.0.0	255.255.0.0	0.0.0.0	2
10.1.16.0	255.255.240.0	9.8.0.253	2
169.254.64.0	255.255.192.0	0.0.0.0	3
169.254.128.0	255.255.192.0	0.0.0.0	4

Таблица 1.6 Таблица маршрутизации маршрутизатора М7

Адрес сети	Маска сети	Адрес шлюза	Номер интерфейса
9.7.0.0	255.255.0.0	0.0.0.0	1
172.0.0.0	255.0.0.0	9.7.0.254	1
10.1.24.0	255.255.252.0	0.0.0.0	2
10.1.20.0	255.255.252.0	0.0.0.0	3
9.8.0.0	255.255.0.0	0.0.0.0	4
169.254.0.0	255.255.0.0	9.8.0.254	4

Выполнение моделирования сети в Cisco Packet Tracer

Создание М2:

Создаем маршрутизатор Router-PT-Empty и кликаем на него

Выключаем его, и выбираем в качестве дополнительного модуля – модуль с одним FastEthernet портом – PT-ROUTER-NM-1CFE. Устанавливаем их, включаем роутер и заходим в CLI

Переименовываем роутер, просматриваем состояние интерфейсов, настраиваем интерфейсы в режиме консольного ввода

В конце отображено состояние интерфейсов.

Создание М7:

До настройки:

Router#show ip int	brief						
Interface	IP-Address	OK?	Method	Status		Protocol	
FastEthernet0/0	unassigned	YES	unset	administratively	down	down	
FastEthernet1/0	unassigned	YES	unset	administratively	down	down	
FastEthernet2/0	unassigned	YES	unset	administratively	down	down	
FastEthernet3/0	unassigned	YES	unset	administratively	down	down	
Router#							

После настройки:

M7#show ip int brief			
Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/0	9.7.0.253	YES manual up	up
FastEthernet1/0	10.1.24.254	YES manual up	up
FastEthernet2/0	10.1.20.254	YES manual up	up
FastEthernet3/0	9.8.0.253	YES manual up	up

Создание М5:

До настройки:

Router>enable						
Router#show ip int b	rief					
Interface	IP-Address	OK?	Method	Status		Protocol
FastEthernet0/0	unassigned	YES	unset	administratively	down	down
FastEthernet1/0	unassigned	YES	unset	administratively	down	down
FastEthernet2/0	unassigned	YES	unset	administratively	down	down
FastEthernet3/0	unassigned	YES	unset	administratively	down	down
Router#						

После настройки:

M5#show ip int brief				
Interface	IP-Address	OK? Method	Status	Protocol
FastEthernet0/0	9.6.0.253	YES manual	up	up
FastEthernet1/0	9.8.0.254	YES manual	up	up
FastEthernet2/0	169.254.64.254	YES manual	up	up
FastEthernet3/0	169.254.128.254	YES manual	up	up
M5#				

Создание сетей

Создадим соответствующее количество станций нашей программе:

Кликнем на одно из устройств:

Выберем режим конфигурации ІР:

M2:

• PC0

IPv4 Address	172.64.0.1
Subnet Mask	255.192.0.0
Default Gateway	172.64.0.254

• PC1

IPv4 Address	172.128.0.1
Subnet Mask	255.192.0.0
Default Gateway	172.128.0.254

• PC2

IPv4 Address	172.192.0.1
Subnet Mask	255.192.0.0
Default Gateway	172.192.0.254

M5:

• PC3

IPv4 Address	169.254.128.1
Subnet Mask	255.255.192.0
Default Gateway	169.254.128.254

PC4

IPv4 Address	169.254.64.1
Subnet Mask	255.255.192.0
Default Gateway	169.254.64.254

M7:

• PC5

IPv4 Address	10.1.24.1
Subnet Mask	255.255.252.0
Default Gateway	10.1.24.1

PC6

IPv4 Address	10.1.20.1
Subnet Mask	255.255.252.0
Default Gateway	10.1.20.254

Соединение устройств

Выбираем медный кабель (Cross-Over) и подсоединяем FastEthernet порт компьютера к FastEthernet0/0 порту роутера. Получается что-то такое:

Далее подключаем оставшиеся устройства в соответствии с портами на схемах.

Получилось так:

Тестирование

Попробуем пройти путь от PC3 169.254.128.1 До PC5 10.1.24.1

```
C:\>ping 10.1.24.1

Pinging 10.1.24.1 with 32 bytes of data:

Reply from 169.254.128.254: Destination host unreachable. Reply from 169.254.128.254: Destination host unreachable.

Ping statistics for 10.1.24.1:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

```
Fracing route to 10.1.24.1 over a maximum of 30 hops:
      0 ms
                0 ms
                           0 ms
                                      169.254.128.254
 2
      0 ms
                           6 ms
                                      169.254.128.254
 3
                0
                  ms
                                      Request timed out.
 4
      0 ms
                                      169.254.128.254
                             ms
 5
                                      Request timed out.
                  ms
                           0
 6
      0 ms
                 *
                                      169.254.128.254
                             ms
                0 ms
                                      Request timed out.
                                      169.254.128.254
 8
      0 ms
                *
                           5
                             ms
                 0 ms
 9
                                      Request timed out.
 10
      0 ms
```

```
C:\> tracert 10.1.24.1
Tracing route to 10.1.24.1 over a maximum of 30 hops:
      0 ms
                0 ms
                           0 ms
                                     169.254.128.254
      0 ms
                           6 ms
                                     169.254.128.254
                0 ms
                                     Request timed out.
      0 ms
                           0 ms
                                     169.254.128.254
                0 ms
                                     Request timed out.
      0 ms
                           0 ms
                                     169.254.128.254
                                     Request timed out.
                0 ms
                                     169.254.128.254
      0 ms
                           5 ms
                0 ms
                                     Request timed out.
       0 ms
Control-C
^C
```

Таблицы маршрутизации

Результат ожидаемый: узел недостижим, так как пока таблица маршрутизации не заполнена, маршрутизатор M2 не знает о сети 10.1.24.1/22

```
M2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     9.0.0.0/16 is subnetted, 2 subnets
C
        9.6.0.0 is directly connected, FastEthernet4/0
        9.7.0.0 is directly connected, FastEthernet3/0
     172.64.0.0/10 is directly connected, FastEthernet0/0
С
     172.128.0.0/10 is directly connected, FastEthernet1/0
C
     172.192.0.0/10 is directly connected, FastEthernet2/0
```

Настроим таблицу маршрутизатора для М2:

Вводим маршруты, которых нет в изначальной таблице:

```
M2(config-if) #ip route 10.1.16.0 255.255.240.0 9.7.0.253 M2(config) #ip route 169.254.0.0 255.255.0.0 9.6.0.253 M2(config) #exit
```

Таблица маршрутов после настройки:

```
M2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     9.0.0.0/16 is subnetted, 2 subnets
        9.6.0.0 is directly connected, FastEthernet4/0
C
        9.7.0.0 is directly connected, FastEthernet3/0
     10.0.0.0/20 is subnetted, 1 subnets
S
        10.1.16.0 [1/0] via 9.7.0.253
     169.254.0.0/16 [1/0] via 9.6.0.253
S
С
     172.64.0.0/10 is directly connected, FastEthernet0/0
С
     172.128.0.0/10 is directly connected, FastEthernet1/0
     172.192.0.0/10 is directly connected, FastEthernet2/0
```

Аналогично заполним для роутеров М5 и М7:

M5:

```
M5>show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

9.0.0.0/16 is subnetted, 2 subnets

C 9.6.0.0 is directly connected, FastEthernet0/0

9.8.0.0 is directly connected, FastEthernet1/0

169.254.0.0/18 is subnetted, 2 subnets

C 169.254.64.0 is directly connected, FastEthernet2/0

C 169.254.128.0 is directly connected, FastEthernet3/0
```

После настройки:

```
M5#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

9.0.0.0/16 is subnetted, 2 subnets
C 9.6.0.0 is directly connected, FastEthernet0/0
0.0.0/20 is subnetted, 1 subnets
S 10.1.16.0 [1/0] via 9.8.0.253
169.254.0.0/18 is subnetted, 2 subnets
C 169.254.64.0 is directly connected, FastEthernet2/0
169.254.128.0 is directly connected, FastEthernet3/0
S 172.0.0.0/8 [1/0] via 9.6.0.254
```

M7:

```
M7>enable
M7#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     9.0.0.0/16 is subnetted, 2 subnets
C
        9.7.0.0 is directly connected, FastEthernet0/0
C
        9.8.0.0 is directly connected, FastEthernet3/0
     10.0.0.0/22 is subnetted, 2 subnets
C
       10.1.20.0 is directly connected, FastEthernet2/0
        10.1.24.0 is directly connected, FastEthernet1/0
C
```

После настройки:

```
M7#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     9.0.0.0/16 is subnetted, 2 subnets
С
        9.7.0.0 is directly connected, FastEthernet0/0
С
        9.8.0.0 is directly connected, FastEthernet3/0
     10.0.0.0/22 is subnetted, 2 subnets
С
        10.1.20.0 is directly connected, FastEthernet2/0
        10.1.24.0 is directly connected, FastEthernet1/0
S
    169.254.0.0/16 [1/0] via 9.8.0.254
    172.0.0.0/8 [1/0] via 9.7.0.254
```

Теперь попробуем с РС4 пингануть РС6:

```
C:\>ping 10.1.20.1 with 32 bytes of data:

Reply from 10.1.20.1: bytes=32 time<1ms TTL=126
Reply from 10.1.20.1: bytes=32 time<1ms TTL=126
Reply from 10.1.20.1: bytes=32 time=17ms TTL=126
Reply from 10.1.20.1: bytes=32 time<1ms TTL=126
Ping statistics for 10.1.20.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 17ms, Average = 4ms

C:\>
```

```
C:\>tracert 10.1.20.1

Tracing route to 10.1.20.1 over a maximum of 30 hops:

1 0 ms 0 ms 0 ms 169.254.64.254
2 0 ms 0 ms 0 ms 9.8.0.253
3 0 ms 0 ms 0 ms 10.1.20.1

Trace complete.
```

Заключение

В ходе выполнения лабораторной работы были изучены принципы разбиения сети на подсети, принципы маршрутизации в IP-сетях, настроены статические маршруты и проведен анализ таблиц маршрутизации на маршрутизаторах. А также было проведено моделирование сетей в Cisco Packet Tracer