

- Probability that event A has occurred given that event B has definitely occurred
- Conditional Probability of A given B is denoted as P(A | B)
- $P(A \mid B) = P(A \cap B) / P(B)$

Ex. Probability of a Customer is going to churn given that she is a female.

Event B = Customer is female Event A = Customer Churn

Ex. Probability of a Customer is going to churn given that she is a female.

	gender	age	occupation	churn
0	Male	young	salaried	0
1	Male	young	self_employed	0
2	Male	old	self_employed	0
3	Male	young	self_employed	0
4	Female	young	salaried	1
5	Male	old	salaried	0
6	Female	young	self_employed	1
7	Male	young	self_employed	0
8	Male	young	salaried	1
9	Male	young	salaried	0
10	Male	young	self_employed	1
11	Female	young	self_employed	1
12	Male	young	retired	0
13	Female	young	self_employed	0
14	Male	old	self_employed	0

Ex. Probability of a Customer is going to churn given that she is a female.

Total Customers → 15

$$P(A \mid B) = P(A \cap B) / P(B)$$

 $P(A \mid B) = (3/15) / (4/15)$

$$= \frac{3}{4} \rightarrow 0.75$$

What if $P(A \mid B) = P(A)$??

Event B has no impact on the likelihood of Event A.

A is **Independent** of the event B.

Ex.Entrepreneurial Skill is independent of the length of hair

If $P(A \mid B) \neq P(A)$??

Event B has impact on the occurance of Event A.

A is **Dependent** on the event B

Ex. Chances of Contracting Polio

For two independent events A and B,

$$P(A | B) = P(A) \text{ or } P(B | A) = P(B)$$

For two independent events A and B,

$$P(A \mid B) = P(A) \text{ or } P(B \mid A) = P(B)$$

By Conditional Probability Calculations

$$P(A \mid B) = P(A \cap B) = P(A)$$

For two independent events A and B,

$$P(A \mid B) = P(A) \text{ or } P(B \mid A) = P(B)$$

By Conditional Probability Calculations

$$P(A \mid B) = P(A \cap B) = P(A)$$

For two events to be independent

$$P(A \cap B) = P(A) \cdot P(B)$$

Event A: Draw a card from the deck. Probability of card being a face card?

Put that card back in the deck.

Event B: Again Draw a card from the deck. Probability of card being a face card?

Event A: Draw a card from the deck. Probability of card being a face card?

Don't Put that card back in the deck.

Event B: Again Draw a card from the deck. Probability of card being a face card?

Event A: Card is Face Card in first drawn 12 choices among 52 cards

Event B: Card is Face Card in second drawn 11 choices among 51 cards

Bayes Theorem

An alternative to calculate the conditional probability

$$P(A | B) = P(A \cap B) / P(B) \dots (1)$$

$$P(B | A) = P(B \cap A) / P(A) \dots (2)$$

$$P(A \mid B) = P(B \mid A) \cdot P(A) / P(B)$$

Bayes Theorem

Thank You!

Ex. Two different bank managers randomly greet to one customer.

What is the probability that both of them will choose self employed customer?

Self Employed =9

Salaried = 1

Sample Space = {Salaried, Self Employed, Retired } Event A: Manager 1 choosing self employed person

$$P(A) = 9/15$$

 $P(B | A) = 9/15 = P(B)$
 $P(A \cap B) = P(A).P(B | A)$

Event B : Manager 2 = $9/15 \times 9/15$ choosing self = 99/225employed person = 0.44

Ex. One bank managers randomly greet to two different customers.

What is the probability that he will choose self employed customer both the times?

