

Московский государственный Т<u>Е</u>Хнический университет им. Н.Э.Баумана

Кафедра "Технологии Приборостроения"

Метод функций Грина для моделирования процесса токоперноса в РТД

Студент: Е.Ю. Власов

Преподаватель: Н.А. Ветрова

Москва, 2017

Содержание

1.	Вве	дение	2
2.	Усл	овие	3
3.	Teo	ретическая часть	4
	1.	Функция Грина. Определение	4
	2.	Уширение уровней	4
	3.	Открытые системы	5
	4.	Общая постановка задачи	8
	5.	Локальная плотность состояний	10
	6.	Функция Грина	10
	7.	Фурье-образ	11
	8.	Матрица, описывающее уширение	12
	9.	Канал с двумя контактами	12
	10.	Входящий и исходящий токи	14
		10.1. Канал с одним контактом	14
		10.2. Канал с двумя контактами	14
	11.	Функция пропускания	15
4.	Пра	ктическая часть	17

1. Введение

Резонансно тупнельный диод - полупроводниковый элемент электрической цепи с нелинейной вольт-амперной характеристикой, в котором используется туннелирование носителей заряда через окруженную двумя потенциальными барьерами потенциальную яму.

В $PT\mathcal{A}$ используется гетероструктура, в которой потенциальная яма для носителей заряда, например, для электронов, отделена от контактных легированных областей потенциальными барьерами. Например, область потенциальной ямы может состоять из GaAs, области потенциальных барьеров — из $Ga_{1-x}Al_xAs$, внешние области — с легированного донорами GaAs.

Для описния процессов токопереноса в подобных моделях широко применяется метод функций Грина (NonEquilibriumGreen'sFction), который будет подробно рассмотрен в данной работе в применении к расчету BAX резонансно туннельной структуры.

2. Условие

При помощи метода функций Грина смоделировать ток через структуру, подобную РТД. Получить ВАХ смоделированной структуры.

Рис. 1. Пример смоделированной структуры

3. Теоретическая часть

1. Функция Грина. Определение

Функция Грина используется для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородной краевой задачи). Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-х гг.

Функция Грина гамильтониана является одной из ключевых функций и связана с плотностью состояний. Функции Грина помогают находить стационарные и нестационарные решения, в том числе при разнообразных граничных условиях.

Функция Грина G(x,s) линейного дифференциального оператора L=L(x), действующего на обобщённых функциях на подмножестве евклидового пространства R^n в точке s — это любое решение уравнения вида

$$LG(x,s) = \delta(x-s)$$

где δ — это дельта-функция. Это свойство функции Грина может использоваться для решения дифференциального уравнения вида

$$Lu(x) = f(x)$$

Функция Грина — это обратный оператор к $L: G(x,s) = L^{-1}$.

2. Уширение уровней

Рассмотрим пример канала, соединенного с одним контактом.

Поскольку будет учитываться лишь один контакт, канал просто приходит с ним в равновесие, и ток в стационарных условиях отуствует. В подобной постановке задачи не требуется учитывать роль нескольких контактов и рассматривать неравновесные ситуации.

В этом случае, при соединении канала с массивным контактом, дискретные уровни уширяются и формируется непрерывная плотность состояний, как показано ниже (Рис.2).

Уширение уровней γ возникает как следствие соотношения неопределенностей $\gamma = \frac{\hbar}{\tau}$, связывающего уширения со скоростью ухода $\frac{1}{\tau}$ электрона из канала в контакт.

Запишем уравнение Шредингера, описывающее систему канал-контакт (см. Рис. 2).

$$E\left(\begin{array}{c} \psi \\ \Phi \end{array}\right) = \left(\begin{array}{cc} H & \tau \\ \tau^+ & H_R \end{array}\right) \left(\begin{array}{c} \psi \\ \Phi \end{array}\right)$$

Рис. 2. Канал, соединенный с одним контактом. Уширение уровней формирует непрерывную плотность состояний

Для удобства расчета и избегания проблем с преобразованием размерностей матриц H и H_R , контакт можно исключить из последнего уравнения, чтобы получить уравнение исключительно для канала, имеющее следующий вид

$$E\{\psi\} = [H + \Sigma] \{\psi\} + \{S\}$$

Здесь слагаемое $\{S\}$ описывает возбуждение канала электронными волнами из контакта, в то время как матрица co6cmsenho-энергетической функции $[\Sigma]$ определяет модификацию гамильтониана H.

Теперь с наличием источника данная система больше не является закрытой. Перейдем к рассмотрению открытых систем.

3. Открытые системы

Рассмотрим полубесконечную одномерную проволоку, описываемую однозонным гамильтонианом в приближении эффективной массы. Такая структура схематически показана на рис.3.

Если бы канал не взаимодействовал с контактом, он описывался бы уравненем

$$E\psi = (E_c + 2T_0)\psi$$

Как только возникает связь с контактом, это уравнение меняется и принимает сле-

Рис. 3. Канал, описываемый матрицей H, взаимодействует с контактом (взаимодействие определяется матрицей τ), которому, в свою очередь, отвечает матрица H_R .

дующий вид

$$E\psi = (E_c + 2T_0)\psi - t_0\Psi_{-1}$$

где волновые функции Ψ_n в контактах удовлетворяют бесконечной последовательности уравнений (с n<0)

$$E\Psi_n = -t_0\Psi_{n-1} + (E_c + 2t_0)\Psi_n - t_0\Psi_{n+1}$$

Поскольку все уравнения этой бесконечной последовательности имеют одинаковую структуру, можно записать решение в виде плоских волн, задаваемых квантовым числом k. Предполагая, что решение может быть представлено волной, приходящей из контакта и волной, отраженной в канале, можно записать, что

$$\Psi_n = B \exp(inka) + C \exp(-inka)$$

где $E = E_c + 2t_0(1 - \cos ka)$.

Можно записать, что

$$\psi = \Psi_0 = B + C$$

И

$$\Psi_{-1} = B \exp(-ika) + C \exp(ika)$$

Рис. 4. Простой пример: полубесконечная проволока. Первая точка системы "0"рассматривается как канал, а вся оставшаяся часть как контакт.

Тогда исключая C приходим к выражению вида

$$\Psi_{-1} = \psi \exp(ika) + B \left[\exp(-ika) - \exp(ika) \right]$$

Подставляя далее последнее выражение в изначально рассматриваемое (для открытой системы), имеем

$$E\psi = (E_c + 2t_0)\psi - t_0 \exp(ika)\psi + t_0 B [\exp(ika) - \exp(-ika)] = H\psi + \Sigma\psi + S$$

которое имеет необходимый вид, с функциями вида

$$\Sigma = -t_0 \exp(ika)$$

И

$$S = it_0 2B \sin ka$$

Стоить обратиить внимание на то, что собственно-энергетическая функция Σ неэрмитова и не зависит от амплитуд B и C волновой функции. Она введена для того, чтобы описать уход волновой функции из канала в контакт. Слагаемое S, с другой

стороны , связано с возбуждением состояний канала, волнами, идущими из контакта, и поэтому оно пропорционально амплитуде B.

4. Общая постановка задачи

Рассмотрим вначале канал без электронов, не связанный с контактом, как это показано на рис.4.

Рис. 5. а - канал без электронов внутри, отсоединенный от контатков. б - при соединении с контактом волновые функции Ψ_R проникают вглубь структуры, формируя влновую функцию ψ , которая, в свою очередь, порождает рассеянную волну χ в контакте.

Пусть электроны в контакте описываются волновыми функциями Ψ_R , удовлетворяющими уравнению Шредингера для изолированного контакта

$$[EI_R - H_R] \Psi_R = 0$$

где H_R гамильтониан контакта, I_R -единичная матрица. Изменив слегка это уравнение, моно записать его как

$$[EI_R - H_R + i\eta] \Psi_R = \{S_R\}$$

где $[\eta] = 0^+ [I_R]$ есть произведение положительной б.м. величины. Это значение будет описывать повторную инжекцию электронов в контакте из внешних источников,

что существенно для поддержания контакта в равновесии при постоянном значении электрохимического потенциала.

Когда канал связывается с контактом, как показано на рис.46, волновые функции в контакте расплываются, и формируется волновая функция ψ в структуре, которая, в свою очередь, порождает рассеянную волну χ . Полная волновая функция составной системы будет удовлетворять блочному уравнению Шредингера, которое может быть записано в виде двух блоков

$$\begin{pmatrix} EI_R - H_R + i\eta & -\tau^+ \\ -\tau & EI - H \end{pmatrix} \begin{pmatrix} \Psi_R + \chi \\ \psi \end{pmatrix} = \begin{pmatrix} S_R \\ 0 \end{pmatrix}$$

где H есть гамилтониан структуры.

Предполагая, что слагаемое S_R в правой части, остается неизменным, преобразуем уравнению к виду

$$[EI_R - H_R + i\eta] \{\chi\} - \tau^+ \{\psi\} = 0$$
$$[EI - H] \psi\} - \tau \{\chi\} = \tau \{\Psi_R$$

Откуда получим

$$\{\chi\} = G_R \tau^+ \{\psi\}$$
$$G_R = [EI_R - H_R + i\eta]^{-1}$$

и подставляя это во второе уравнение

$$[EI - H - \Sigma][\psi] = [S] \tag{1}$$

где введены обозначения

$$\Sigma = \tau G_R \tau^+$$
$$S = \tau \Psi_R$$

Уравнение 1 имеет вид, удобный для продолжения работы, а из предыдущего следует, что величина G_R описывает свойства изолированного контакта, поскольку в него входит лишь гамильтониан контакта H_R . Эта величина называется функцией Γ рина изолированного контакта.

5. Локальная плотность состояний

Рассмотрим систему, состоящую из канала и контакта. В системе, имеющей собственные значения ε_{α} , плотность состояний будет определяться выражением

$$D(E) = \sum_{alpha} \delta(E - \varepsilon_{\alpha}) \tag{2}$$

В общем случае, с учетом пространственного распределения электронной плотности, уравнение 2 преобразуется к уравнению локальной плотности состояний (LDOS) $D(\vec{r};E)$, которое следует определить как функцию, учитывающую вес каждого уровня, пропорциональный квадрату модуля волновой функции в данной точке \vec{r} :

$$D(\vec{r}; E) = \sum_{\alpha} |\Psi_{\alpha}(\vec{r})|^2 \delta(E - \varepsilon_{\alpha})$$

Это выражение можно рассматривать как деленный на 2π диагональный элемент другой более общей величины, называемой спектральной функцией, которая определяется как

$$A(\vec{r}, \vec{r'}, E) = 2\pi \sum_{\alpha} \psi_{\alpha}(\vec{r'}) \delta(E - \varepsilon_{\alpha}) \psi_{\alpha}^{*}(\vec{r'})$$
(3)

Которую, в матричном представлении, можно записать в виде

$$[A(E)] = 2\pi\delta(E[I] - [H])$$

Если использовать собственные функции оператора H в качестве базисных, то в таком представлении матрица H будет диагональной, а следовательно диагональной будет и матрица A(E).

Подобно тому, как диагональые элементы матрицы плотности определяют локальную элктронную плотность, полное число состояний определяется следом спектральной матрицы A, деленным на 2π , и поэтому не зависит от представления. Это число может быть получено из исходного преставления с.ф. в виде

$$D(E) = \frac{1}{2\pi} Tr \left[A(E) \right] = \sum_{\alpha} \delta(E - \varepsilon_{\alpha})$$
(4)

6. Функция Грина

Для вычислений спекртальный функций удобно пользоваться следующим равенством (равенство Лапласа) (при условии, что η - величина б.м.):

$$2\pi\delta(E - \varepsilon_{\alpha}) = \left[\frac{2\eta}{(E - \varepsilon_{\alpha})^2 + \eta^2}\right] = i\left[\frac{1}{E - \varepsilon_{\alpha} + i0^+} - \frac{1}{E - \varepsilon_{\alpha} - i0^+}\right]$$

Которое, с учетом сказанного ранее, представимо в виде

$$2\pi\delta(EI - H) = i\{\left[(E + i0^{+})I - H\right]^{-1} - \left[(E - i0^{+}) - H\right]^{-1}\}$$

где 0^+ обозначает положительную б.м. величину.

Тогда, записывая последнее в матричной форме, получаем

$$A(E) = i \left[G(E) - G^{\dagger}(E) \right] \tag{5}$$

где $G(E) = [(E+i0^+)I - H]^{-1}$ - запаздывающая функция Грина, а $G^+(E) = [(E-i0^+)I - H]^{-1}$ - опережающая. Полная функция Грина может бть получена из предыдущего выражения в виде

$$\vec{G} = \begin{pmatrix} G & G_{dR} \\ G_{Rd} & G_{RR} \end{pmatrix} = \begin{pmatrix} (E+i0^{+})I - H & -\tau \\ -\tau^{+} & (E+i0^{+})I_{R} - H_{R} \end{pmatrix}^{-1}$$

Стоить отметить, что эффективность метода функций Грина обусловлена тем, что необходимый блок матрицы G можно вычислить точно, исходя из соотношения

$$G = \left[(E + i0^{+})I - H - \Sigma(E) \right]^{-1}$$

7. Фурье-образ

Функцию Грина можно рассматривать как решение уравнения Шредингера, описывающее отклик на импульсное воздействие. Если исользовать в качестве базисы собственные состояния H, то матрица G будет диагональной.

Теперь необходимо рассмотреть Фурье-образ функции G вида

$$[G^{R}(t)] = \int_{-\infty}^{+\infty} \frac{dE}{2\pi\hbar} e^{-iEt/\hbar} [G(E)]$$

который также является диагональной матрицей. Исходя из этого, можно записать

$$\left(i\hbar\frac{d}{dt}-[H]\right)\left[G^{R}(t)\right]=\left[I\right]\delta(t)$$

что позволяет интерпретировать функцию $G^R(t)$ как откли к уравнения Шредингера на дельта-образный импульс

$$\left(i\hbar\frac{d}{dt} - [H]\right)\left\{\Phi(t)\right\} = 0$$

8. Матрица, описывающее уширение

В самом общем случае, собственно-энергетическая функция, мнимая часть которой определяет уширение и время жизни на уровне, предствима в виде матрицы, и, следовательно, следует говорить о матрице уширения, равной ее антиэрмитовой части

$$\Gamma(E) = i \left[\Sigma(E) - \Sigma^{+}(E) \right]$$

Эта часть собственно-энергетической функции ответственна за уширение уровня, в то время как эрмитова составляющая

$$\Sigma_H(E) = \frac{1}{2} \left[\Sigma(E) + \Sigma^+(E) \right]$$

определяет поправку к гамильтониану. В итоге запишем, что

$$H + \Sigma(E) = [H + \Sigma_H(E)] - \frac{i\Gamma(E)}{2}$$

9. Канал с двумя контактами

Рис. 6. Канал с двумя контактами

Прдположим, что до сединения с каналом электроны в контактах истока и стока имели волновые функции Φ_1 и Φ_2 , удовлетворяющим уравнению Шредингера для

изолированных контактов

$$[EI - H_1 + i\eta] \{\Phi_1\} = \{S_1\}$$
$$[EI - H_2 + i\eta] \{\Phi_2\} = \{S_2\}$$

где H_1 и H_2 - гамильтонианы первого и второго контактов. Полная волновая функция системы будет удовлетворять комбинированному уравнению составной системы, состоящей из первого контакта, канала и второго контакта, а также рассиваемых волн χ_1, χ_2 :

$$\begin{pmatrix} EI - H_1 + i\eta & -\tau_1^+ & 0 \\ -\tau_1 & EI - H & -\tau_2 \\ 0 & -\tau_2^+ & EI - H_2 + i\eta \end{pmatrix} \begin{pmatrix} \Phi_1 + \chi_1 \\ \psi \\ \Phi_2 + \chi_2 \end{pmatrix} = \begin{pmatrix} S_1 \\ 0 \\ S_2 \end{pmatrix}$$
(6)

Из первой и последней строки путем матричных преобразований получим, что

$$\{\chi_1\} = G_1 \tau_1^+ \{\psi\}$$
$$\{\chi_2\} = G_2 \tau_2^+ \{\psi\}$$

где функция Грина первого резервуара

$$G_1 = [EI - H_1 + i\eta]^{-1}$$

и второго

$$G_2 = [EI - H_2 + i\eta]^{-1}$$

Исключим χ_1 и χ_2 из второго уравнения системы, после чего получим

$$[EI - H - \Sigma_1 - \Sigma_2] \{\psi\} = \{S\}$$
 (7)

в котором матрицы собственно-энергетических функций определены следующим образом

$$\Sigma_1 = \tau_1 G_1 \tau_1^+$$

$$\Sigma_2 = \tau_2 G_2 \tau_2^+$$

Соответствующие матрицы уширения задаются выражениями

$$\Gamma_1 = \tau_1 A_1 \tau_1^+$$

$$\Gamma_2 = \tau_2 A_2 \tau_2^+$$

где $A_i = i \left[G_i - G_i^+ \right]$ пекртальная функция первого (второго) канала.

Теперь функция Грина будет определяться следующим уравнением

$$G = [EI - H - \Sigma_1 - \Sigma_2]^{-1} \tag{8}$$

Тогда справедлива запись

$$\{\psi\} = G\{S\} \tag{9}$$

10. Входящий и исходящий токи

10.1. Канал с одним контактом

Рассмотрим вновь канал, соединенный с одним контактом и описывающийся временным уравнением вида

$$i\hbar \frac{d}{dt} \left(\begin{array}{c} \psi \\ \Phi \end{array} \right) = \left(\begin{array}{cc} H & \tau \\ \tau^+ & H_R - i\eta \end{array} \right) \left(\begin{array}{c} \psi \\ \Phi \end{array} \right)$$

с помощью чего найдем скорость изменения во времени электронной плотности вероятности внутри канала, определяемой как

$$Tr\left[\psi\psi^{+}\right] = Tr\left[\psi^{+}\psi\right] = \psi^{+}\psi$$

Далее можно записать выражение для потока

$$I = \frac{d}{dt}\psi^{+}\psi = \frac{Tr\left[\psi^{+}\tau\Phi - \Phi^{+}\tau^{+}\psi\right]}{i\hbar}$$
(10)

Имея в виду, что $\Phi = \Phi_R + \chi$, можно разделить поток на две составляющие - входящий поток, пропорциональный падающей волне Φ_R , и исходящий, пропорциональный рассеянной волне χ :

$$J = \frac{Tr\left[\psi^{+}\tau\Phi_{R} - \Phi_{R}^{+}\tau^{+}\psi\right]}{i\hbar} - \frac{Tr\left[\chi^{+}\tau^{+}\psi - \psi^{+}\tau\chi\right]}{i\hbar}$$

$$J_{input} = \frac{SS^{+}A}{\hbar}$$
(11)

Входящий ток будем определять как

$$I_{input} = \frac{1}{\hbar} \int \frac{dE}{2\pi} f_0(E - \mu) Tr \left[\Gamma A \right]$$
 (12)

Исходящий:

$$I_{o}utput = \frac{1}{\hbar} \int \frac{dE}{2\pi} Tr \left[\Gamma A f_{0} \right]$$
 (13)

10.2. Канал с двумя контактами

Перейдем к расчету входящего и исходящего токов в канале, имеющем 2 контакта (см.рис. 10.2). Будем рассматривать одну из границ, к примеру, относящуюся к контакту истока и запишем входящий поток в виде

Рис. 7. Канал с двумя контактами с входящим и исходящим токами в канале

$$J_1 = \frac{Tr\left[\psi^+ \tau_1 \Phi_1 - \Phi_1^+ \tau_1^+ \psi\right]}{i\hbar} - \frac{Tr\left[\chi_1^+ \tau_1^+ \psi - \psi^+ \tau_1 \chi_1\right]}{i\hbar}$$

Используя соотношения $\psi = GS$ и $\{S\} = \tau_1\{\Phi_1\} + \tau_2\{\Phi_2\}$ выражение для входящего в канал тока

$$I_{input} = \frac{1}{\hbar} \int \frac{dE}{2\pi} f_1(E) Tr \left[\Gamma_1 A \right]$$

Исходящий ток

$$I_{output} = \frac{1}{\hbar} \int \frac{dE}{2\pi} f_1(E) Tr \left[\Gamma_1 A f_1 \right]$$

11. Функция пропускания

Получим явное выражение для величины протекающего тока. Эт выражение позволяет рассматривать задачу о протекании тока с другой точки зрения и устанавливает связь с методом функций пропускания. Исходя из предыдущего, запишем

$$I_1 = T_{12}(E) [f_1(E) - f_2(E)]$$

 $T_{12}(E) = Tr [\Gamma_1 A_2]$

$$I_2 = T_{21}(E) [f_2(E) - f_1(E)]$$

$$T_{21}(E) = Tr \left[\Gamma_2 A_1 \right]$$

Если выполняется равенство $Tr\left[\Gamma_{2}A_{1}\right]=Tr\left[\Gamma_{1}A_{2}\right]$, то можно ожидать, что токи в двух контактах будут равны по величине и противоположны по направлению.

$$Tr\left[\Gamma_{1}A\right]=Tr\left[\Gamma_{1}G\Gamma G^{+}\right]=Tr\left[\Gamma G^{+}\Gamma_{1}G\right]=Tr\left[\Gamma A_{1}\right]$$

Вычитая $Tr\left[\Gamma_1A_1\right]$ из обеих частей уравнения, получаемый результат $Tr\left[\Gamma_2A_1\right]=Tr\left[\Gamma_1A_2\right]$. Это позволяет записать следующее выражение для тока

$$I = \frac{q}{h} \int_{-\infty}^{+\infty} dE T(E) \left[f_1(E) - f_2(E) \right]$$
 (14)

где величина

$$T(E) = Tr\left[\Gamma_1 A_2\right] = Tr\left[\Gamma_2 A_1\right] = Tr\left[\Gamma_1 G \Gamma_2 G^+\right] = Tr\left[\Gamma_2 G \Gamma_1 G^+\right]$$

называется функцией или коэффициентом пропускания.

Рис. 8. Пример полученной зависимости величины тока от напряжения в резонансно туннельной тсруктуре методом функций Грина

4. Практическая часть

```
clear all;
clc;
hbar = 1.064e-34;
e = 1.6e-19;
m0 = 9.1e-31;
m = 0.067*m0;
k = 8.617e-5i
T = 300;
kT = k*T;
Ef = 0.15;
magic\_coef = (e^2)/(2*pi*hbar);
a = 5e-10;
t0 = (hbar^2)/(2*m*(a^2)*e);
n_points = 46; %LEFTx2 +center of profile
U_prof = U_back_n_prof();
% z = [1:length(u)];
% plot (z./100,u,'LineWidth',3);
% title('Potential Profile');
% ylabel('E,eV');
% grid on
H = Hamiltonian(t0,U_prof,n_points);
step V = 100;
V_final = linspace(0,2,step_V);
I = 0;
for t = 1:step_V
    V = V_final(t);
    n_E = 201;
    E = linspace(-0.9, 0.9, n_E);
    mu 1 = Ef + V/2;
    mu_2 = Ef - V/2;
    f1 = 1./(1+exp((E-mu 1)./kT));
    f2 = 1./(1+exp((E-mu_2)./kT));
    U = V/2*[ones(1,15), linspace(1, -1, 16), -1*ones(1,15)]';
    delta_E = E(2)-E(1);
    I_final(t) = I_Green(n_points,E,t0,U,U_prof,H,f1,f2,delta_E,n_E);
    I = 0;
end
%Drawing
figure
plot(V_final,I_final*10^6, 'r','LineWidth',3);
title('m_{eff} = 0.067\cdotm_e a = 0.5 nm')
grid on
xlabel('Voltage,V')
ylabel('Current, \muA')
```


