複雑な事象について

佐々木 裕1

東亞合成株式会社

¹hiroshi_sasaki@mail.toagosei.co.jp

Outline

- ① 流れるということについて、もう少し
 - ニュートン流体を見直しましょう
 - 流動を表すモデル
 - 局所的な応力と粘度
- ② 非ニュートン流体
 - 身近な液体とその分類
 - 非ニュートン流体とは
 - 非ニュートン性の発現
- ③ 実事象についても少しだけ考えましょう。
 - 簡単な分類
 - シアシニングについて
 - シアシックニングについて

この章でのお話

この章では、「複雑な事象」についての議論を進めていきます。

以前にも述べましたように、実際の事象は非常に複雑なものとなっています。この複雑な現象を考察するために、最もシンプルなニュートン流体の流動を表すモデルを振り返った上で、それとの相違という形で考えていきましょう。

- 流れるということについて、もう少し。
- 非ニュートン流体とは?
- 実事象についても少しだけ考えましょう。

- ① 流れるということについて、もう少し
 - ニュートン流体を見直しましょう
 - 流動を表すモデル
 - 局所的な応力と粘度
- ② 非ニュートン流体
 - 身近な液体とその分類
 - 非ニュートン流体とは
 - 非ニュートン性の発現
- ③ 実事象についても少しだけ考えましょう。
 - 簡単な分類
 - シアシニングについて
 - シアシックニングについて

ニュートン流体を見直しましょう 流動を表すモデル 局所的な応力と粘度

ニュートンの法則

ニュートンの法則

せん断応力 = 粘度×せん断速度

$$\tau = \eta \dot{\gamma}$$

- ずり応力はずり速度に比例。
- 比例定数の粘度は、ずり速度によらずに一定。

液体の流動を表すモデル

水面に板を浮かべたモデル

- 水深方向に n+1 層に分割
 - 水面の板との境目を 0
 - 水底との境目を n
- 液体の内部では、
 - 水深に応じて流れる速度の分布
 - 最も単純な状態: 速度勾配が一定

液体を考えるときに重要な事項

- 固体と接している液体はその相対的な移動速度が同じ
 - 移動する板と接している $\mathbf{R} \ 0$ は板と同じ速度 v で流れ、
 - 地面に接している層 n は流れない。

液体の流動について

- 評価の対象である液体の内部では、
 - 水深に応じて、流れる速度の分布が生じる
- 液体の流れる速度は、
 - 水深 y の関数として v(y)
 - ullet 速度勾配と呼ばれ、その単位は $[{
 m s}^{-1}]$

速度勾配は、せん断変形を記述する無次元量であるせん 断ひずみ γ の時間変化(微分) \Leftrightarrow せん断速度

$$\frac{\mathrm{d}v}{\mathrm{d}y} = \dot{\gamma}[s^{-1}]$$

液体の力学モデル

- せん断速度 $\dot{\gamma}$ に比例し、
- せん断応力 *[⊤]* が生じ、
- 比例定数が粘度 η

$$\tau=\eta\dot{\gamma}$$

上記の比例関係が成立す る液体がニュートン流体

注意点

- 速度勾配に従って、各層ごとにせん断応力が発生
- その値は、局所的なせん断速度に比例して変化。
- 逆に言えば、せん断速度によらずに粘度が一定。

液体の応力とは?(再掲)

- マクロな変形(例えば、ずり変形)を付与
 - ミクロにも粒子近傍の並び方が変化
- 一粒子に着目すると、
 - その粒子を取り巻く周りの粒子とのポテンシャル場が 変化して、「歪んだかご」
 - 「歪んだかご」の中で、居心地が悪くなる。
 - その結果として局所的な応力が発現
- その積分値として、マクロな応力
 - 「歪んだかご」からの脱出 ⇔ ミクロな応力が消失
 - マクロにも流動

粘度が「せん断速度」に依存しない理由

せん断応力の由来

- 仮想的な面で生じる せん断応力の由来は、
 - 面を通しての粒子の 相互作用に起因
 - 相対的な速度差に、 比例する
- この相互作用は、
 - 「歪んだかご」から の脱出頻度にも比例
 - 多体の相互作用が、 「居心地の悪さ」

ニュートン流体では

- 隣接する粒子間の相互 作用が、せん断速度や せん断応力に非依存。
- 結果、粘度が一定。
- ただし、適正な範囲で。

ニュートン流体を見直しましょう 流動を表すモデル 局所的な応力と粘度

少しだけ大粒子が入った場合

- ニュートン流体に球状粒子が入った場合。
 - アインシュタインが理論的に導出
 - 剛直な球を希薄に懸濁した溶液
- 仮定条件
 - 球の半径は、液体粒子より遥かに大きい。
 - 球状粒子間の相互作用はない。
 - 液体粒子は球状粒子に固着している。
- 下式を使って、砂糖分子の大きさと分子数を概算
 - 砂糖水の濃度と粘度との関係から求めた。

アインシュタインの粘度式

 $\eta = \eta_0 (1 + 2.5\phi)$

 η_0 は液体の粘度、 ϕ は球状粒子の体積分率

アインシュタインの粘度式

アインシュタインの水中を移動する砂糖粒子モデル(大球:砂糖分子、小球:水分子)。

- すべての水分子の水平変位は、その相対位置を保ちながら起こる。
- ② 水分子の回転は、その相対位置を保ちながら起こる。
- ③ 水の膨張・収縮は三次元で起こる。

- ① 流れるということについて、もう少し
 - ニュートン流体を見直しましょう
 - 流動を表すモデル
 - 局所的な応力と粘度
- ② 非ニュートン流体
 - 身近な液体とその分類
 - 非ニュートン流体とは
 - 非ニュートン性の発現
- 実事象についても少しだけ考えましょう。
 - 簡単な分類
 - シアシニングについて
 - シアシックニングについて

身近な液体

身の回りにある各種の液体(流れるもの)の比較

この絵のサイトへのリンク

- 一般的には左図のよう に、流れやすさを一覧 に表す。
- 一応は、粘度の順番で 並べて比較している。
- それで十分なのだろうか?

身近な液体

身の回りにある各種の液体(流れるもの)の比較

この絵のサイトへのリンク

- 一般的には左図のよう に、流れやすさを一覧 に表す。
- 一応は、粘度の順番で 並べて比較している。
- それで十分なのだろうか?
- 実は、測り方によって は順位は前後する場合 も多い。

各種の応答特性の分類

ビンガム氏が作成した分類図

- 図の左側が弾性応答で、右側が流動特性
- 単純に二分されるわけでもなく、粘性と弾性を 併せ持ったものが多く存在。

Nature 1942 v149-3790, p702 この絵のサイトへのリンク

非ニュートン流体とは

非ニュートン流体とは?

- 簡単に言えば、ニュートン流動と異なる流動特性を示すもの。
 - ずり応力が線形ではない。
 - 変形状態(ずり速度や加える力が変化)に依存して、粘度が変化する。

16/25

その原因は多数あるが、基本的に内部に構造を有する 物質で生じる。

非ニュートン性の発現は?

非ニュートン性発現の直感的理解

- 物質の内部構造に由来して応力(粘度)が増加、減少
 - 物質の内部構造に由来する特徴的時間が存在
 - 内部構造が崩壊、再構築するための特徴的な時間
- 外部からの変形に関わる時間(レート)との比が大事
 - 物質中の内部構造が持つ特徴的な時間よりも短い時間 (速い速度)で変形
 - 内部構造が変化するため巨視的な粘度が変化
 - 非ニュートン性が発現
 - 内部の特徴時間よりゆっくり変形
 - その範囲では、粘度は変形速度に依存しない。
 - ニュートニアンとして応答。

様々なせん断速度

以下に様々な工程における大体のせん断速度の範囲を、 簡単にまとめた。

工程	せん断速度
粒子の沈降	$10^{-6} \sim 10^{-3}$
表面張力によるレベリング	$10^{-2} \sim 10^{-1}$
重力による液垂れ	$10^{-1} \sim 10^1$
押し出し	$10^0 \sim 10^3$
ボトルからの流れ出し	$10^1 \sim 10^2$
噛む、飲む	$10^1 \sim 10^2$
混合攪拌	$10^1 \sim 10^3$
塗工	$10^0 \sim 10^4$

- ① 流れるということについて、もう少し
 - ニュートン流体を見直しましょう
 - 流動を表すモデル
 - 局所的な応力と粘度
- ② 非ニュートン流体
 - 身近な液体とその分類
 - 非ニュートン流体とは
 - 非ニュートン性の発現
- ③ 実事象についても少しだけ考えましょう。
 - 簡単な分類
 - シアシニングについて
 - シアシックニングについて

シアシニングとシアシックニング

- ひずみ速度の変化に対して、 以下の2つに大まかに分類
 - シア・シニング
 - チクソトロピック流体
 - ずり速度の増加により 粘度が低下
 - シア・シックニング
 - ダイラタント流体
 - ずり速度の増加により 粘度が上昇
- ◉ (参考)ニュートン流体
 - 粘度がずり速度に依存しない。
 - ずり速度が上がれば、応力 は増加することに注意。

シアシニングについて

シア・シニングの挙動

- 静置状態では内部構造が 形成されて高粘度。
- 高せん断速度が付与されることで、
 - 内部構造が崩壊して粘度が低下。
- せん断速度の低下により、粘度が再上昇。

この画像のサイト

塗膜の液垂れ防止

塗膜の液垂れ

- 塗布後に、
- 内部構造の再形成が遅くて、
- 塗料の粘度が低すぎた 場合、
- 塗膜の液垂れ発生

Copyright© O-WELL Co.,Ltd. All rights reserved

この画像のサイト

設計のポイント

具体的には、生地状態に復帰したときの内部構造の再構築 に必要な特徴的な時間を短くすることが大事になります。

ビンガム流体

- 降伏値を有する流体
 - ある一定の力がかかるまでは固体。
 - 降伏値を超えると流動
- チクソトロピック流体とほぼ類似の挙動
 - 内部構造が一旦崩壊すると、相互作用が一気に小さく。
- 実例
 - バター
 - 歯磨き粉

ダイラタンシーについて

適正な体積分率の粒子は、 水中で自由に運動しているので、 全体としては流動できる液体。

粒子の見かけの体積が増加。 表面の水が内部に引き込まれ、 全体として固体化。

- おなじ大きさの球形粒子の水を吸った状態を考える。
- 最密充填では空隙率は26%で、これ以上の水があれば流動。
- 急激な外力により単純立方格子になると空隙率は48%にな るため、水は全部内部へ吸いこまれる。
- こすり合う粒子ができて体積が幾分膨張、もろい固体となる。_{24/25}

おまけ

スイーツとダイラタンシー

水によるエネルギー散逸