COMPARISON_MediaPipe+CNN+LSTM

June 21, 2025

```
[1]: from modules.SignLanguageProcessor import load_and_preprocess_data,parse_frame
     import os
[2]: ROOT PATH = ''
     sequences,labels,label_map = load_and_preprocess_data(os.path.
      ⇔join(ROOT_PATH, 'data'))
[3]: num_classes = len(label_map)
[4]: len(labels)
[4]: 5643
[5]: sequences.shape
[5]: (5643, 3, 61, 3)
[6]: from sklearn.model_selection import train_test_split
     X_train, X_temp, y_train, y_temp = train_test_split(
         sequences, labels, test_size=0.4, stratify=labels, random_state=42
     X_val, X_test, y_val, y_test = train_test_split(
         X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
[7]: import numpy as np
     def normalize landmark data(X):
         Normalize the landmark features (x, y) to have zero mean and unit variance
      \hookrightarrowacross the training set.
         Assumes X shape is (N, F, L, T), where F=3 (x, y, vis).
         X = X.copy()
         # Flatten across all samples, landmarks, and frames
         x_vals = X[:, 0, :, :].flatten()
         y_vals = X[:, 1, :, :].flatten()
```

```
# Compute mean and std
         x_mean, x_std = np.mean(x_vals), np.std(x_vals)
         y_mean, y_std = np.mean(y_vals), np.std(y_vals)
          # Normalize
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X, (x_mean, x_std), (y_mean, y_std)
      def apply_normalization(X, x_mean, x_std, y_mean, y_std):
         X = X.copy()
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X
 [8]: def reshape_frames_for_cnn(X, y):
         X = X.transpose(0, 3, 2, 1) # (N, T, L, F)
         X = X[..., np.newaxis] # (N, T, L, F, 1)
         return X,y
 [9]: X_train_norm, (x_mean, x_std), (y_mean, y_std) =
      →normalize_landmark_data(X_train)
      X_val_norm = apply_normalization(X_val, x_mean, x_std, y_mean, y_std)
      X test_norm = apply_normalization(X_test, x_mean, x_std, y_mean, y_std)
      X train_cnn, y_train_cnn = reshape_frames_for_cnn(X_train_norm, y_train)
      X_val_cnn, y_val_cnn = reshape_frames_for_cnn(X_val_norm, y_val)
      X_test_cnn, y_test_cnn = reshape_frames_for_cnn(X_test_norm, y_test)
      print(X_train_cnn.shape)
      print(y_train_cnn.shape)
     (3385, 3, 61, 3, 1)
     (3385,)
[10]: input_shape = X_train_cnn.shape[1:]
      print(input_shape)
     (3, 61, 3, 1)
[11]: import tensorflow as tf
      train_ds = tf.data.Dataset.from_tensor_slices((X_train_cnn, y_train_cnn))
      train_ds = train_ds.shuffle(buffer_size=1000).batch(64).prefetch(tf.data.
       →AUTOTUNE)
```

```
val_ds = tf.data.Dataset.from_tensor_slices((X_val_cnn, y_val_cnn))
      val_ds = val_ds.batch(64).prefetch(tf.data.AUTOTUNE)
      test_ds = tf.data.Dataset.from_tensor_slices((X_test_cnn, y_test_cnn))
      test_ds = test_ds.batch(64).prefetch(tf.data.AUTOTUNE)
[19]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import TimeDistributed, Conv2D, MaxPooling2D,
       →Flatten, Input
      from tensorflow.keras.layers import LSTM, Dropout, Dense, BatchNormalization
      model = Sequential([
          Input((3, 61, 3, 1)),
          TimeDistributed(Conv2D(32, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Dropout(0.25)),
          TimeDistributed(Conv2D(64, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Flatten()),
          LSTM(128, return_sequences=False),
          Dropout(0.5),
          Dense(num_classes, activation='softmax')
      ])
      model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', u
       →metrics=['accuracy'])
[20]: history = model.fit(train_ds,validation_data=val_ds, epochs=50, batch_size=64)
     Epoch 1/50
                       7s 60ms/step -
     53/53
     accuracy: 0.0507 - loss: 3.6923 - val_accuracy: 0.0806 - val_loss: 3.4596
     Epoch 2/50
     53/53
                       3s 51ms/step -
     accuracy: 0.1152 - loss: 3.2279 - val_accuracy: 0.0912 - val_loss: 3.1668
     Epoch 3/50
     53/53
                       3s 48ms/step -
     accuracy: 0.1367 - loss: 3.0772 - val_accuracy: 0.1293 - val_loss: 3.0201
     Epoch 4/50
     53/53
                       3s 51ms/step -
     accuracy: 0.1592 - loss: 2.9782 - val_accuracy: 0.1453 - val_loss: 2.9099
     Epoch 5/50
                       3s 52ms/step -
     53/53
     accuracy: 0.1810 - loss: 2.8905 - val_accuracy: 0.2002 - val_loss: 2.8233
```

```
Epoch 6/50
53/53
                 3s 48ms/step -
accuracy: 0.2183 - loss: 2.7815 - val_accuracy: 0.2117 - val_loss: 2.7393
Epoch 7/50
53/53
                 3s 47ms/step -
accuracy: 0.2265 - loss: 2.7112 - val_accuracy: 0.2427 - val_loss: 2.6644
Epoch 8/50
53/53
                 3s 54ms/step -
accuracy: 0.2851 - loss: 2.5682 - val_accuracy: 0.2799 - val_loss: 2.6393
Epoch 9/50
53/53
                 3s 51ms/step -
accuracy: 0.3132 - loss: 2.4698 - val_accuracy: 0.3003 - val_loss: 2.5923
Epoch 10/50
53/53
                 3s 51ms/step -
accuracy: 0.3256 - loss: 2.4252 - val_accuracy: 0.3020 - val_loss: 2.4991
Epoch 11/50
53/53
                 3s 50ms/step -
accuracy: 0.3545 - loss: 2.3281 - val_accuracy: 0.3029 - val_loss: 2.4149
Epoch 12/50
53/53
                 3s 54ms/step -
accuracy: 0.3917 - loss: 2.1795 - val_accuracy: 0.3339 - val_loss: 2.3556
Epoch 13/50
53/53
                 3s 49ms/step -
accuracy: 0.4134 - loss: 2.0929 - val_accuracy: 0.4039 - val_loss: 2.2474
Epoch 14/50
53/53
                 3s 51ms/step -
accuracy: 0.4289 - loss: 2.0593 - val_accuracy: 0.4172 - val_loss: 2.1792
Epoch 15/50
53/53
                 3s 52ms/step -
accuracy: 0.4478 - loss: 1.9414 - val_accuracy: 0.4198 - val_loss: 2.1114
Epoch 16/50
53/53
                 3s 54ms/step -
accuracy: 0.4768 - loss: 1.8474 - val_accuracy: 0.4057 - val_loss: 2.1733
Epoch 17/50
53/53
                 3s 55ms/step -
accuracy: 0.4839 - loss: 1.8162 - val_accuracy: 0.4756 - val_loss: 1.9977
Epoch 18/50
53/53
                 3s 57ms/step -
accuracy: 0.5030 - loss: 1.7098 - val_accuracy: 0.4774 - val_loss: 1.9651
Epoch 19/50
53/53
                 3s 53ms/step -
accuracy: 0.5434 - loss: 1.5988 - val_accuracy: 0.5102 - val_loss: 1.8605
Epoch 20/50
53/53
                 3s 61ms/step -
accuracy: 0.5671 - loss: 1.5555 - val_accuracy: 0.5261 - val_loss: 1.8027
Epoch 21/50
53/53
                 3s 61ms/step -
accuracy: 0.5879 - loss: 1.4889 - val accuracy: 0.5536 - val loss: 1.6867
```

```
Epoch 22/50
53/53
                 3s 54ms/step -
accuracy: 0.5861 - loss: 1.4140 - val_accuracy: 0.5757 - val_loss: 1.6500
Epoch 23/50
53/53
                 3s 56ms/step -
accuracy: 0.6328 - loss: 1.3359 - val_accuracy: 0.6058 - val_loss: 1.5774
Epoch 24/50
53/53
                 4s 74ms/step -
accuracy: 0.6420 - loss: 1.3187 - val_accuracy: 0.5421 - val_loss: 1.6943
Epoch 25/50
53/53
                 4s 78ms/step -
accuracy: 0.6433 - loss: 1.2622 - val_accuracy: 0.5270 - val_loss: 1.6817
Epoch 26/50
53/53
                 4s 79ms/step -
accuracy: 0.6593 - loss: 1.2080 - val_accuracy: 0.5226 - val_loss: 1.6613
Epoch 27/50
53/53
                 4s 78ms/step -
accuracy: 0.6716 - loss: 1.1873 - val_accuracy: 0.6058 - val_loss: 1.5274
Epoch 28/50
53/53
                 4s 71ms/step -
accuracy: 0.6944 - loss: 1.1506 - val_accuracy: 0.5757 - val_loss: 1.5156
Epoch 29/50
53/53
                 3s 60ms/step -
accuracy: 0.7052 - loss: 1.1038 - val_accuracy: 0.5864 - val_loss: 1.5028
Epoch 30/50
53/53
                 3s 60ms/step -
accuracy: 0.7004 - loss: 1.0738 - val_accuracy: 0.6050 - val_loss: 1.4674
Epoch 31/50
53/53
                 3s 58ms/step -
accuracy: 0.7274 - loss: 0.9806 - val_accuracy: 0.6023 - val_loss: 1.4380
Epoch 32/50
53/53
                 3s 47ms/step -
accuracy: 0.7023 - loss: 1.0166 - val_accuracy: 0.5846 - val_loss: 1.4293
Epoch 33/50
53/53
                 3s 48ms/step -
accuracy: 0.7274 - loss: 0.9633 - val_accuracy: 0.6484 - val_loss: 1.3223
Epoch 34/50
53/53
                 3s 52ms/step -
accuracy: 0.7472 - loss: 0.9066 - val_accuracy: 0.6457 - val_loss: 1.3168
Epoch 35/50
53/53
                 3s 58ms/step -
accuracy: 0.7527 - loss: 0.8753 - val_accuracy: 0.6572 - val_loss: 1.2775
Epoch 36/50
53/53
                 3s 60ms/step -
accuracy: 0.7483 - loss: 0.8848 - val_accuracy: 0.6900 - val_loss: 1.2040
Epoch 37/50
53/53
                 4s 69ms/step -
accuracy: 0.7688 - loss: 0.8282 - val accuracy: 0.6962 - val loss: 1.1737
```

```
Epoch 38/50
     53/53
                       3s 60ms/step -
     accuracy: 0.7735 - loss: 0.8184 - val_accuracy: 0.6811 - val_loss: 1.1797
     Epoch 39/50
     53/53
                       3s 61ms/step -
     accuracy: 0.7750 - loss: 0.7760 - val_accuracy: 0.6829 - val_loss: 1.1854
     Epoch 40/50
     53/53
                       3s 58ms/step -
     accuracy: 0.7845 - loss: 0.7461 - val_accuracy: 0.6643 - val_loss: 1.2882
     Epoch 41/50
     53/53
                       3s 59ms/step -
     accuracy: 0.7848 - loss: 0.7711 - val_accuracy: 0.6528 - val_loss: 1.3329
     Epoch 42/50
     53/53
                       3s 61ms/step -
     accuracy: 0.7865 - loss: 0.7324 - val_accuracy: 0.6696 - val_loss: 1.2521
     Epoch 43/50
     53/53
                       3s 60ms/step -
     accuracy: 0.7881 - loss: 0.7324 - val_accuracy: 0.6501 - val_loss: 1.2915
     Epoch 44/50
     53/53
                       3s 58ms/step -
     accuracy: 0.8081 - loss: 0.6850 - val_accuracy: 0.6776 - val_loss: 1.1597
     Epoch 45/50
     53/53
                       3s 55ms/step -
     accuracy: 0.8023 - loss: 0.6634 - val_accuracy: 0.6980 - val_loss: 1.1118
     Epoch 46/50
     53/53
                       3s 63ms/step -
     accuracy: 0.7997 - loss: 0.6798 - val_accuracy: 0.6599 - val_loss: 1.1908
     Epoch 47/50
     53/53
                       3s 57ms/step -
     accuracy: 0.8149 - loss: 0.6753 - val_accuracy: 0.6634 - val_loss: 1.1857
     Epoch 48/50
     53/53
                       3s 57ms/step -
     accuracy: 0.8166 - loss: 0.6374 - val_accuracy: 0.6475 - val_loss: 1.2377
     Epoch 49/50
     53/53
                       3s 51ms/step -
     accuracy: 0.8062 - loss: 0.6589 - val_accuracy: 0.6492 - val_loss: 1.2095
     Epoch 50/50
     53/53
                       3s 56ms/step -
     accuracy: 0.8419 - loss: 0.5885 - val_accuracy: 0.6767 - val_loss: 1.1418
[21]: test loss, test accuracy = model.evaluate(test ds)
      print(f"Test Accuracy: {test_accuracy:.4f}")
      print(f"Test Loss: {test_loss:.4f}")
      1/18
                       Os 17ms/step -
     accuracy: 0.6094 - loss: 1.1868
     18/18
                       Os 9ms/step -
     accuracy: 0.6504 - loss: 1.1274
```

```
Test Accuracy: 0.6723
Test Loss: 1.0921
```

```
[22]: import matplotlib.pyplot as plt from sklearn.metrics import classification_report, confusion_matrix import seaborn as sns
```

```
[23]: plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.ylabel('Loss')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```



```
[24]: y_true, y_pred = [], []
target_names = [label_map[i] for i in range(len(label_map))]
for X_batch, y_batch in test_ds:
    y_true.append(y_batch.numpy())

batch_pred = model.predict(X_batch, verbose=0)
    y_pred.append(np.argmax(batch_pred, axis=1))
```

```
y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)
print(classification_report(
    y_true, y_pred,
    digits=3,
    target_names=target_names
))
cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
labels = [label_map[i] for i in range(len(label_map))]
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
            xticklabels=labels, yticklabels=labels)
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix - Test Set")
plt.show()
```

c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

	precision	recall	f1-score	support
Α	0.591	0.650	0.619	20
В	0.458	0.478	0.468	23
C	0.750	0.444	0.558	27
D	0.409	0.429	0.419	21
E	0.783	0.692	0.735	26
F	0.773	0.708	0.739	24
G	0.492	1.000	0.659	29
Н	0.654	0.680	0.667	25
Ι	0.818	0.900	0.857	30

J	0.957	0.733	0.830	30
K	0.519	0.538	0.528	26
L	1.000	0.296	0.457	27
М	0.426	0.935	0.586	31
N	0.000	0.000	0.000	32
0	1.000	0.032	0.062	31
Р	0.406	0.520	0.456	25
Q	0.434	0.742	0.548	31
R	1.000	0.231	0.375	26
S	0.792	0.633	0.704	30
Т	0.394	0.500	0.441	26
U	0.909	0.714	0.800	28
Λ	0.913	0.808	0.857	26
W	0.667	0.519	0.583	27
Х	0.371	0.591	0.456	22
Y	0.290	0.692	0.409	26
Z	0.826	0.679	0.745	28
baca	1.000	0.562	0.720	16
bantu	1.000	0.857	0.923	14
bapak	0.846	0.733	0.786	15
buangairkecil	1.000	1.000	1.000	8
buat	1.000	0.938	0.968	16
halo	0.818	0.900	0.857	20
ibu	1.000	0.667	0.800	6
kamu	0.704	0.864	0.776	22
maaf	0.913	1.000	0.955	21
makan	0.769	0.588	0.667	17
mau	1.000	1.000	1.000	20
nama	0.697	0.920	0.793	25
pagi	0.950	0.792	0.864	24
paham	0.821	0.920	0.868	25
sakit	1.000	0.800	0.889	5
sama-sama	0.867	0.929	0.897	28
saya	0.500	0.769	0.606	13
selamat	0.882	0.714	0.789	21
siapa	0.769	0.625	0.690	16
tanya	0.824	0.700	0.757	20
tempat	0.778	0.875	0.824	8
terima-kasih	0.783	0.900	0.837	20
terlambat	0.895	1.000	0.944	17
tidak	1.000	0.588	0.741	17
tolong	0.833	0.556	0.667	18
accuracy			0.672	1129
macro avg	0.751	0.693	0.690	1129
weighted avg	0.725	0.672	0.660	1129

