COMP2610 / 6261 — Information Theory

Lecture 13: Symbol Codes for Lossless Compression

Robert C. Williamson

Research School of Computer Science The Australian National University

17 September, 2018

Last time

Proof of the source coding theorem

- Foundational theorem, but impractical
- Requires potentially very large block sizes

The theorem also only considers uniform coding schemes

- Could variable length coding help?
- Does entropy turn up for such codes as well?

This time

Variable-length codes

Prefix codes

Kraft's inequality

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

The Kraft Inequality

Summary

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

- 2 The Kraft Inequality
- 3 Summary

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

- $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\bullet \ \{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

Examples:

- $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\bullet \ \{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \dots, a_l\}$.

A function $c: A_X \to \{0,1\}^+$ is a **code** for X.

• The binary string c(x) is the **codeword** for $x \in A_X$

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

Examples:

- $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\bullet \ \{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \dots, a_l\}$.

A function $c: A_X \to \{0,1\}^+$ is a **code** for X.

- The binary string c(x) is the **codeword** for $x \in A_X$
- The **length** of the codeword for for x is denoted $\ell(x)$. Shorthand: $\ell_i = \ell(a_i)$ for $i = 1 \dots, I$.

Notation:

- If A is a finite set then A^N is the set of all *strings of length N*.
- $A^+ = \bigcup_N A^N$ is the set of all finite strings

Examples:

- $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\bullet \ \{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \dots, a_l\}$.

A function $c: A_X \to \{0,1\}^+$ is a **code** for X.

- The binary string c(x) is the **codeword** for $x \in A_X$
- The **length** of the codeword for for x is denoted $\ell(x)$. Shorthand: $\ell_i = \ell(a_i)$ for $i = 1 \dots, I$.
- The **extension** of c assigns codewords to any sequence $x_1x_2...x_N$ from A^+ by $c(x_1...x_N) = c(x_1)...c(x_N)$

Examples

X is an ensemble with $A_X = \{a, b, c, d\}$

Examples

X is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

ullet Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have length 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$

Examples

X is an ensemble with $A_X = \{a, b, c, d\}$

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to $\mathtt{000100100001}$

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 (Variable-Length Code):

• Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$
- In this case $\ell_1 = 1, \, \ell_2 = 2, \, \ell_3 = \ell_4 = 3$

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$
- In this case $\ell_1 = 1$, $\ell_2 = 2$, $\ell_3 = \ell_4 = 3$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to $\mathtt{0100}$

Unique Decodeability

Recall that a code is lossless if for all $x, y \in A_X$

$$x \neq y \implies c(x) \neq c(y)$$

This ensures that if we work with a single outcome, we can uniquely decode the outcome

When working with variable-length codes, it will be convenient to also require the following:

Unique Decodeability

Recall that a code is lossless if for all $x, y \in A_X$

$$x \neq y \implies c(x) \neq c(y)$$

This ensures that if we work with a single outcome, we can uniquely decode the outcome

When working with variable-length codes, it will be convenient to also require the following:

Uniquely Decodable

A code c for X is **uniquely decodable** if no two strings from \mathcal{A}_X^+ have the same codeword. That is, for all $\mathbf{x},\mathbf{y}\in\mathcal{A}_X^+$

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

This ensures that if we work with a sequence of outcomes, we can still uniquely decode the individual elements

Examples:

ullet $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ▶ Uniform + Lossless ⇒ Uniquely decodable

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ► Uniform + Lossless ⇒ Uniquely decodable
- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

Examples:

- \bullet $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ► Uniform + Lossless ⇒ Uniquely decodable
- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

▶ The code is of course lossless

- \bullet $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ► Uniform + Lossless ⇒ Uniquely decodable
- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

- The code is of course lossless
- ▶ Lossless ⇒ Uniquely decodable

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ► Uniform + Lossless ⇒ Uniquely decodable
- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

- The code is of course lossless
- ▶ Lossless ⇒ Uniquely decodable
- $C_3 = \{0, 10, 110, 111\}$ is uniquely decodable

- \bullet $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ► Uniform + Lossless ⇒ Uniquely decodable
- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

- The code is of course lossless
- ▶ Lossless ⇒ Uniquely decodable
- $C_3 = \{0, 10, 110, 111\}$ is uniquely decodable
 - We can easily segment a given code string scanning left to right

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ▶ Uniform + Lossless ⇒ Uniquely decodable
- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

- The code is of course lossless
- ▶ Lossless ⇒ Uniquely decodable
- $C_3 = \{0, 10, 110, 111\}$ is uniquely decodable
 - We can easily segment a given code string scanning left to right
 - e.g. 0110010 → 0, 110, 0, 10

"Self-punctuating" property

The code $C_3 = \{0, 10, 110, 111\}$ has a "self-punctuating" property

"Self-punctuating" property

The code $C_3 = \{0, 10, 110, 111\}$ has a "self-punctuating" property

Trivial to segment a given code string into individual codewords

- Keep scanning until we match a codeword
- Once matched, add new segment boundary, and proceed to rest of string

"Self-punctuating" property

The code $C_3 = \{0, 10, 110, 111\}$ has a "self-punctuating" property

Trivial to segment a given code string into individual codewords

- Keep scanning until we match a codeword
- Once matched, add new segment boundary, and proceed to rest of string

Once our current segment matches a codeword, no ambiguity to resolve

Why? No codeword is a prefix of any other

Not true for every uniquely decodable code, e.g. $C_4 = \{0, 01, 011\}$

ullet First bit $0 \rightarrow$ no certainty what the symbol is

Prefix Codes

a.k.a prefix-free or instantaneous codes

A simple property of codes **guarantees** unique decodeability

Prefix property

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

Prefix Codes

a.k.a prefix-free or instantaneous codes

A simple property of codes **guarantees** unique decodeability

Prefix property

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{c}\mathbf{t}$.

Can you create \mathbf{c}' by gluing something to the end of \mathbf{c} ?

• **Example**: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

a.k.a prefix-free or instantaneous codes

A simple property of codes **guarantees** unique decodeability

Prefix property

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{ct}$.

Can you create \mathbf{c}' by gluing something to the end of \mathbf{c} ?

• Example: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code $C = \{c_1, ..., c_l\}$ is a **prefix code** if for every codeword $c_i \in C$ there is no prefix of c_i in C.

In a stream, no confusing one codeword with another

Prefix Codes: Examples

Examples:

• $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix-free

• $C_2 = \{0, 10, 110, 111\}$ is prefix-free

• $C_2' = \{1, 10, 110, 111\}$ is *not* prefix free since $c_3 = 110 = c_1c_2$

• $C_2'' = \{1, 01, 110, 111\}$ is *not* prefix free since $c_3 = 110 = c_110$

Prefix Codes as Trees

 $C_1 = \{0001, 0010, 0100, 1000\}$

		000 .	0000
	00	000 0001 0010 0010 0011 0100 0101 0110 0111 0111 1000 1001 1011 1010 1100 1100 1100	
	00		
0		001	0011
U		0.4.0	0100
	0.1	01 0101 0110	0101
	01		0110
			0111
		100	1000
	10	100	1001
	10		1010
1		101	1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

Prefix Codes as Trees

$$\textit{C}_2 = \{0, 10, 110, 111\}$$

	000	0000
00	000 0001 0010 0010 0011 0100 0100 0101 0110 0111 1000 1001 1011 1010 1100	0001
00		0010
	001	0011
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0100
01		0101
01		0110
		0111
	100	1000
10	100	1001
	101	1010
	101	1011
	110	1100
11	110	1101
	111	1110
	010 0 011 0 100 1 101 1 110 1 111 1	1111
	00 01 10	00 001 01 010 011 10 100 101 110

Prefix Codes as Trees

$$C_2' = \{1, 10, 110, 111\}$$

			0000
		000	0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
	10	101	1010
1		101	1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

Prefix Codes are Uniquely Decodeable

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
0		040	0100
	01	010	0101
	01	011	0110
			0111
			1000
	10	100	1001
		101	1010
1		101	1011
1		110	1100
	11	110	1101
			1110
		111 1110	

- If $\ell^* = \max\{\ell_1, \dots, \ell_l\}$ then symbol is decodeable after seeing at most ℓ^* bits
- Consider $C_2 = \{0, 10, 110, 111\}$
 - If $c(\mathbf{x}) = 0 \dots$ then $x_1 = a$
 - If $c(\mathbf{x}) = 1 \dots$ then $x_1 \in \{b, c, d\}$
 - If $c(\mathbf{x}) = 10...$ then $x_1 = b$
 - ▶ If $c(\mathbf{x}) = 11...$ then $x_1 \in \{c, d\}$

Uniquely Decodeable Codes are Not Always Prefix Codes

A uniquely decodeable code is not necessarily a prefix code

```
Example: C_1 = \{0, 01, 011\}
```

- 00 . . . → first codeword
- 010... → second codeword
- 011 . . . → third codeword

Example:
$$C_2 = \{0, 01, 011, 111\}$$

• This is the reverse of the prefix code $C_2' = \{0, 10, 110, 111\}$

Relating various types of codes

Note that e.g.

 $Prefix \implies Uniquely Decodable$

but

Why prefix codes?

While prefix codes do not represent **all** uniquely decodable codes, they are convenient to work with

It will be easy to generate prefix codes (Huffman coding, next lecture)

Further, we can quickly establish if a given code is **not** prefix

Testing for unique decodability is non-trivial in general

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

Summary

- $L_1 = \{4, 4, 4, 4\}$
- $L_2 = \{1, 2, 3, 3\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
U		001	0100
	01	010	0101
		011	0110
			0111
	10	100	1000
			1001
	10	101	1010
1		101	1011
,		110	1100
	11	110	1101
		111	1110
		101 -	1111

- $L_1 = \{4, 4, 4, 4\} C_1 = \{0001, 0010, 0100, 1000\}$
- $L_2 = \{1, 2, 3, 3\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

		000	0000
	00	000	0001
	00	001	0010
0		000 0001 001 0010 001 0011 010 0100 0101 011 0110 100 1000 1001 101 1010 110 1010 110 1100 110 1110	
U			
	01	010	0101
01	01	011	0110
		011	0111
		100	1000
	10		1001
			0011 0100 0101 0110 0111 1000 1001 1010 1010 1100 1100
1		101	1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- $L_2 = \{1, 2, 3, 3\} C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000
	00	000	0000
		001	0010
0			0011
Ü		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
	10	101	1010
1		101	1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}

• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}

• L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, \dots, \dots, \dots\}
```

L₄	$= \{$	1,3	3, 3	, 3,	3,	4}
---------------------------------	--------	-----	------	------	----	----

	000	0000
00	000	0001
00	001	0010
	001	0011
		0100
01	010	0101
01	011	0110
		0111
10	100	1000
	100	1001
10	101	1010
	101	1011
	110	1100
11	110	1101
	111	1110
	111	1111
	00 01 10	001 010 011 100 101 110

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}

• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}

• L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, 01, \dots, \dots\}
```

•	L_4	=	{1 ,	, 3,	3,	3,	3,	4}
---	-------	---	-------------	------	----	----	----	----

	000	0000
00	000	0001
00	001	0010
	001	0011
01	010	0100
	010	0101
01	011	0110
	011	0111
	100	1000
10		1001
10	101	1010
	101	1011
	110	1100
11	110	1101
	111	1110
	111	1111
	00 01 10	001 010 011 100 101 110

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}

• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}

• L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, 01, 100, \dots\}
```

•	L_4	=	{1	, 3,	3,	3,	3,	4}
---	-------	---	----	------	----	----	----	----

			0000
		000	0001
	00		0010
		001	0011
0			0100
	01	010	0101
	01	011	0110
		011	0111
	10	100 101	1000
			1001
	10		1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

Suppose someone said "I want prefix codes with codewords lengths":

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}
• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}
```

•
$$L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, 01, 100, 1010, \}$$

• $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000
		000	0001
	00	001	0010
0		001 00	0011
U		010	0100
	01		0101
	01	011	0110
			0111
	10	100	1000
			1001
	10		1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- $L_2 = \{1, 2, 3, 3\} C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\} C_3 = \{00, 01, 100, 1010, 1011\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

00	000 0000 0001 001 0010 010 0101 011 0110 011 1000	0000
		0001
00		0010
		0011
	010	0100
01	010	0101
01	011	0110
	011	0111
10	010 0101 011 0110 0111 1000	1000
		1001
10		1010
		1011
	110	1100
11	110	1101
- 11		1110
	111	1111
	00 01 10	00 001 010 010 011 100 101 110

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- $L_2 = \{1, 2, 3, 3\} C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\} C_3 = \{00, 01, 100, 1010, 1011\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$ Impossible!

	00	000	0000
			0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		011	0111
	10	100	1000
			1001
	10		1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_l\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_I\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_I\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples:

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_I\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples:

- **①** $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$
- ② $C_2 = \{0, 10, 110, 111\}$ is prefix and $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} = 1$

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1,\ldots,\ell_I\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples:

- $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$
- ② $C_2 = \{0, 10, 110, 111\}$ is prefix and $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} = 1$
- **1** Lengths $\{1,2,2,3\}$ give $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{2}{4} + \frac{1}{8} > 1$ so no prefix code

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

		000	0000
	00	000	0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	01	011	0110
		011	0111
	10	100	1000
			1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
			1111

• 2 x 2-bit codewords: {00,01}

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

- 1		000	0000
	00	000	0001
		001	0010
0		001	0011
0		010	0100
	01	010	0101
	01	011	0110
		011	0111
	10	100	1000
			1001
			1010
1		101	1011
		110	1100
	11	1 110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

			0000
	- 00	000	0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	٠.	011	0110
		VII	0111
		100	1000
	10		1001
		101	1010
1			1011
		110	1100
	11	110	1101
		111	1110
		1111	1111

- 2 x 2-bit codewords: {00,01}
 - 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

			0000
	00	000	0001
		001	0010
0		001	0011
0		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
 - 4 x 3-bit codewords: {000,001,010,011}
 - 8 x 4-bit codewords: {0000,0001,...,0111}
- \bullet In general, an $\ell\text{-bit}$ codeword excludes
 - $2^{k-\ell}$ x k-bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

			0000
	00	000	0001
		001	0010
0		001	0011
0		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
 - 4 x 3-bit codewords: {000,001,010,011}
 - 8 x 4-bit codewords: {0000,0001,...,0111}
- \bullet In general, an $\ell\text{-bit}$ codeword excludes
 - $2^{k-\ell}$ x k-bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000
	00	000	0001
		001	0010
0		100	0011
U			0100
	01	010	0101
	01	011	0110
			0111
		100	1000
	10		1001
	101	101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000, 001, 010, 011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 2^{k-ℓ} x k-bit codewords

For lengths $L = \{\ell_1, \dots, \ell_I\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_I\}$, there will be

$$\sum_{i=1}^{I} 2^{\ell^* - \ell}$$

excluded ℓ^* -bit codewords.

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

		000	0000
	- 00		0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	٠.	011	0110
			0111
		100	1000
	10		1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 2^{k-ℓ} x k-bit codewords

For lengths $L = \{\ell_1, \dots, \ell_I\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_I\}$, there will be

$$\sum_{i=1}^{l} 2^{\ell^* - \ell_i} \leq 2^{\ell^*}$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000
	- 00	000	0001
		001	0010
0		001	0011
0		010	0100
	01	010	0101
	01	011	0110
			0111
		100	1000
	10		1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 2^{k-ℓ} x k-bit codewords

For lengths $L = \{\ell_1, \dots, \ell_I\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_I\}$, there will be

$$\frac{1}{2^{\ell^*}} \sum_{i=1}^{l} 2^{\ell^* - \ell_i} \le 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

0	00	000	0000
			0001
		001	0010
			0011
	01	010	0100
			0101
		011	0110
			0111
1	10	100	1000
			1001
		101	1010
			1011
	11	110	1100
			1101
		111	1110
			1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 2^{k-ℓ} x k-bit codewords

For lengths $L = \{\ell_1, \dots, \ell_l\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_l\}$, there will be

$$\sum_{i=1}^{I} 2^{-\ell_i} \leq 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

Kraft inequality: other direction

Suppose we are given lengths satisfying

$$\sum_{i=1}^{l} 2^{-\ell_i} \leq 1$$

Then, we can construct a code by:

- \bullet Picking the first (remaining) node at depth $\ell_1,$ and using it as the first codeword
- Removing all descendants of the node (to ensure the prefix condition)
- Picking the next (remaining) node at depth ℓ_2 , and using it as the second codeword
- Removing all descendants of the node (to ensure the prefix condition)
- •

Kraft inequality: comments

Kraft's inequality actually holds more generally for uniquely decodable codes

Harder to prove

Note that if a given code has lengths that satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \leq 1$$

it does not mean the given code necessarily is prefix

Just that we can construct a prefix code with these lengths

Summary

Key ideas from this lecture:

- Prefix and Uniquely Decodeable variable-length codes
- Prefix codes are tree-like
- Every Prefix code is Uniquely Decodeable but not vice versa
- The Kraft Inequality:
 - ▶ Code lengths satisfying $\sum_i 2^{-\ell_i} \le 1$ implies Prefix/U.D. code exists
 - ▶ Prefix/U.D. code implies $\sum_{i} 2^{-\ell_i} \le 1$

Relevant Reading Material:

- MacKay: §5.1 and §5.2
- Cover & Thomas: §5.1, §5.2, and §5.5

Next time

Bound on expected length for a prefix code

Shannon codes

Huffman coding