The Network Layer: Control Plane

Michael Brodskiy

Professor: E. Bernal Mor

November 9, 2023

- Network-Layer Functions
 - Forwarding (data plane)
 - Routing: determine route taken by packets from source to destination (control plane)
 - * Two approaches to structuring a network control plane:
 - · Per-router plane (traditional)
 - · Software-defined
- Per-Router Control Plane
 - Individual routing algorithm components in each and every router interact in the control plane
- Logically Centralized Control Plane (SDN)
 - Remote controller computers, installs forwarding tables (aka flow tables) in routers)
- Routing Protocols
 - Routing protocol goal: determine "good" paths (equivalently, routes) from sending hosts to receiving hosts, through network of routers
 - * Path: sequence of routers that packets traverse from given initial source host to destination host
 - * "Good": least "cost", "fastest", "least congested"
 - * Routing is a top networking challenge
- Graph Abstraction: Link Costs
 - $-c_{a,b}$ is the cost of a direct link connecting a and b

- * Cost is defined by network operator: could always be 1, or inversely related to link capacity, or proportional to length, etc.
- The overall cost is a sum of all the costs from link to link
- The goal of a routing algorithm is to identify the least-cost path (aka shortest path) from sources to destination
- If all links have the same cost, the least-cost path is the path with the minimal number of links

• Routing Algorithm Classification

- Centralized or global: all routers have complete topology, link cost info ("link state" algorithms)
- Decentralized: iterative process of computation, exchange of info with neighbors ("distance vector" algorithms)
- Static: routes change slowly over time
- Dynamic: routes change more quickly (periodic updates or in response to link cost changes)

• Djikstra's Link-State Routing Algorithm

- Centralized: network topology and link costs known to all nodes
 - * Accomplished vie "link state broadcast"
 - * All nodes have same info
- Computes least cost paths from one node ("source") to all other nodes
 - * Gives forwarding table for that node
- Iterative: after k iterations, know least cost path to k destinations