Calage de la courbe des taux et couverture.

Antonin Chaix - Richard Guillemot

Master IFMA

9 Février 2018

Quel est le Payoff d'un FRA receveur de taux Fixe K?

Le flux:

- ullet a) $K-L(T_f,T_1,T_2)$ payé en T_1
- b) $\frac{K-L(t,T_1,T_2)}{1+\delta L(t,T_1,T_2)}$ payé en T_1
- c) $\frac{K-L(T_f,T_1,T_2)}{1+\delta L(T_f,T_1,T_2)}$ payé en T_1
- d) $\frac{K-L(T_f,T_1,T_2)}{1+\delta L(t,T_1,T_2)}$ payé en T_1

Quel est le Payoff d'un FRA receveur de taux Fixe K?

Le flux:

- a) $K L(T_f, T_1, T_2)$ payé en T_1 FAUX
- b) $\frac{K-L(t,T_1,T_2)}{1+\delta L(t,T_1,T_2)}$ payé en T_1 **FAUX**
- c) $\frac{K-L(T_f,T_1,T_2)}{1+\delta L(T_f,T_1,T_2)}$ payé en T_1 **VRAI!**
- d) $\frac{K-L(T_f,T_1,T_2)}{1+\delta L(t,T_1,T_2)}$ payé en T_1 **FAUX**

Le 29 Janvier 2018 j'achète un contrat futur Eurodollar (contrat en dollar sur LIBOR 3M) Mars 2018 à **99.84**.

Aujourd'hui le LIBOR 3M vaut **0.22%**, le 21 Mars 2018 le LIBOR 3M a augmenté de **40bp**.

Entre le 29 Janvier et le 21 Mars,

- a) j'ai reçu 1 000 euros d'appels de marge.
- b) j'ai payé 1 150 euros d'appels de marge.
- c) j'ai payé 1 000 euros d'appels de marge.
- d) j'ai reçu 1 150 euros d'appels de marge.

Le 29 Janvier 2018 j'achète un contrat futur Eurodollar (contrat en dollar sur LIBOR 3M) Mars 2018 à **99.84**.

Aujourd'hui le LIBOR 3M vaut **0.22%**, le 21 Mars 2018 le LIBOR 3M a augmenté de **40bp**.

Entre le 29 Janvier et le 21 Mars,

- a) j'ai reçu 1 000 euros d'appels de marge. FAUX
- b) j'ai payé 1 150 euros d'appels de marge. VRAI!
- c) j'ai payé 1 000 euros d'appels de marge. FAUX
- d) j'ai reçu 1 150 euros d'appels de marge. FAUX

Soit un emprunt qui sur nominal *N*.

On reçoit un nominal N en T_0 .

On ne paie aucun intérêt tout au long de la vie de l'emprunt.

On rembourse le nominal N à l'échéance T_n .

La valeur de cet emprunt est égale à :

- a) la jambe fixe du swap de marché (pour cet échéancier).
- b) 0.
- c) la jambe variable du swap de marché (pour cet échéancier).
- d) 100.

Soit un emprunt qui sur nominal N.

On reçoit un nominal N en T_0 .

On ne paie aucun intérêt tout au long de la vie de l'emprunt.

On rembourse le nominal N à l'échéance T_n .

La valeur de cet emprunt est égale à :

- a) la jambe fixe du swap de marché (pour cet échéancier).
 VRAI!
- b) 0. FAUX
- c) la jambe variable du swap de marché (pour cet échéancier).
 VRAI!
- d) 100. FAUX

Je suis "long" (sous entendu long des obligations), c'est à dire que je gagne de l'argent quand les taux baissent, :

- a) si j'ai emprunté à taux fixe.
- b) si j'ai prêté à taux fixe.
- c) si j'ai emprunté à taux variable.
- d) si j'ai prêté à taux variable.
- e) si j'ai contracté un swap où je paie le taux fixe.
- f) si j'ai contracté un swap où je reçois le taux fixe.

Je suis "long" (sous entendu long des obligations), c'est à dire que je gagne de l'argent quand les taux baissent, :

- a) si j'ai emprunté à taux fixe. FAUX
- b) si j'ai prêté à taux fixe. VRAI!
- c) si j'ai emprunté à taux variable Insensible aux taux.
- d) si j'ai prêté à taux variable **Insensible aux taux**.
- e) si j'ai contracté un swap où je paie le taux fixe. FAUX
- f) si j'ai contracté un swap où je reçois le taux fixe. VRAI!

La courbe des taux : le problème

Voici la courbe des taux interbancaires EURIBOR qui prévaut au 29/01/2014 (t la date de valeur ou asofdate) :

	Plots	Quote		Plots	Quote
MM	2D	0.16%	SWAP	5Y	1.08%
MM	1M	0.24%	SWAP	7Y	1.43%
MM	3M	0.30%	SWAP	10Y	1.95%
MM	6M	0.40%	SWAP	12Y	2.02%
MM	12M	0.57%	SWAP	15Y	2.13%
SWAP	2Y	0.48%	SWAP	20Y	2.29%
SWAP	3Y	0.64%	SWAP	25Y	2.43%
SWAP	4Y	0.86%	SWAP	30Y	2.57%

Comment calculer les facteurs d'actualisation et les taux zéro coupon associés aux 16 dates suivantes ? 2D, 2D+1M, 2D+3M, 2D+6M, 2D+12M, 2D+1Y, 2D+2Y, 2D+3Y, 2D+4Y, 2D+5Y, 2D+7Y, 2D+10Y, 2D+12Y, 2D+15Y, 2D+20Y, 2D+25Y, 2D+30Y.

L'interpolation linéaire

On utilisera la composition continue pour définir les taux zéro coupon :

$$B(t, T) = e^{-r(t, T) \times \delta}$$

On utlisera la convention Act 365 pour le calcul de la fraction d'année :

$$\delta = \frac{T - t}{365}$$

Si on a besoin d'un facteur d'actualisation qui ne fait pas partie des plots, on peut interpoler linéairement le taux zéro coupon :

$$r(T) = \frac{T_i - T}{T_i - T_{i-1}} \times r(T_{i-1}) + \frac{T - T_{i-1}}{T_i - T_{i-1}} \times r(T_i)$$

T est compris entre T_{i-1} et T_i , 2 plots de la courbe.

Algorithme Bootstrap : les taux monétaires

Le plot 2D est particulier car démarre aujourd'hui :

$$B(t,2D) = \frac{1}{1 + \frac{2}{360} \times 0.16\%} = 0.999991$$
$$r(t,2D) = -\frac{365}{2} * \ln(0.999991) = 0.162\%$$

Attention le taux 1M comme tous les autres taux monétaires (sauf le taux 2D) commence dans 2 jours!

$$B(t, 2D + 1M) = B(t, 2D) \frac{1}{1 + \frac{1}{12} \times \frac{365}{360} \times 0.24\%} = 0.999788$$
$$r(t, 2D + 1M) = -\frac{1}{\frac{2}{365} + \frac{1}{12}} * \ln(0.999788) = 0.238\%$$

Algorithme Bootstrap : les taux monétaires

Le taux 3M:

$$B(t, 2D + 3M) = B(t, 2D) \frac{1}{1 + \frac{1}{4} \times \frac{365}{360} \times 0.30\%} = 0.999231$$

$$r(t, 2D + 3M) = -\frac{1}{\frac{2}{365} + \frac{1}{4}} * ln(0.999231) = 0.301\%$$

Le taux 6M:

$$B(t, 2D + 6M) = B(t, 2D) \frac{1}{1 + \frac{1}{2} \times \frac{365}{360} \times 0.40\%} = 0.997967$$

$$r(t, 2D + 6M) = -\frac{1}{\frac{2}{365} + \frac{1}{2}} * \ln(0.997967) = 0.403\%$$

Algorithme Bootstrap : les taux monétaires

Le taux 9M:

$$B(t, 2D + 9M) = B(t, 2D) \frac{1}{1 + \frac{3}{4} \times \frac{365}{360} \times 0.48\%} = 0.996354$$
$$r(t, 2D + 9M) = -\frac{1}{\frac{2}{365} + \frac{3}{4}} * \ln(0.996354) = 0.483\%$$

Le taux 12M:

$$B(t,2D+12M) = B(t,2D) \frac{1}{1+1 \times \frac{365}{360} \times 0.57\%} = 0.994245$$
$$r(t,2D+12M) = -\frac{1}{\frac{2}{365}+1} * \ln(0.994245) = 0.574\%$$

Rappelons la formule du taux de swap :

$$S(t, T_0, T_n) = \frac{B(t, T_0) - B(t, T_n)}{\sum_{i=1}^n \delta_i^F B(t, T_i^F)}$$

Par inversion on obtient la formule suivante du dernier facteur d'actualisation en fonction des autres zéro coupons (a priori déjà calculés) et du taux de swap :

$$B(t, T_n) = \frac{B(t, T_0) - S(t, T_0, T_n) \sum_{i=1}^{n-1} \delta_i^F B(t, T_i^F)}{1 + S(t, T_0, T_n)}$$

Le taux 2Y:

$$B(t, 2D + 2Y) = \frac{0.999991 - 0.48\% \times 0.994245}{1 + 0.48\%} = 0.990465$$
$$r(t, 2D + 2Y) = -\frac{1}{\frac{2}{365} + 2} \times \ln(0.990465) = 0.477\%$$

Le taux 3Y:

$$B(t, 2D + 3Y) = \frac{0.999991 - 0.64\% \times (0.994245 + 0.990465)}{1 + 0.64\%}$$
$$= 0.981011$$

$$r(t, 2D + 3Y) = -\frac{1}{\frac{2}{365} + 3} \times \ln(0.981011) = 0.638\%$$

Le taux 4Y:

$$B(t,2D+4Y) = \frac{0.999991 - 0.86\% \times (0.994245 + ... + 0.981011)}{1 + 0.86\%}$$
$$= 0.966177$$

$$r(t, 2D + 4Y) = -\frac{1}{\frac{2}{365} + 4} \times \ln(0.966177) = 0.859\%$$

Le taux 5Y:

$$B(t,2D+5Y) = \frac{0.999991 - 1.08\% \times (0.994245 + ... + 0.966177)}{1 + 1.08\%}$$

= 0.947295

$$r(t, 2D + 5Y) = -\frac{1}{\frac{2}{365} + 5} \times \ln(0.947295) = 1.081\%$$

Dans le cas du plot 7Y cela se complique un peu car nous ne disposons pas du plot 6Y.

Il va falloir l'interpoler. Attention le résultat de l'interpolation dépend de la valeur du taux zéro coupon lui même.

Nous allons alors directement résoudre l'équation suivante :

$$Swap(7Y) = f(r(2D + 7Y))$$

Nous n'échapperons pas à une résolution numérique de l'équation.

r(2D+7Y)	r(2D+6Y)	B(t,2D+5Y)	Swap(7Y)	f'
5.000%	3.041%	0.833087	4.605	0.822
1.140%	1.111%	0.935472	1.139	0.976
1.438%	1.260%	0.927125	1.428	0.963
1.440%	1.261%	0.927072	1.430	0.963

De la même façon on calcule les taux zéro coupons restants :

plot	taux zéro	zéro coupon	taux de swap
10Y	1.990%	0.819465	1.95%
12Y	2.058%	0.781042	2.02%
15Y	2.173%	0.721734	2.13%
20Y	2.350%	0.624867	2.29%
25Y	2.518%	0.532775	2.43%
30Y	2.704%	0.444290	2.57%

Les ratios de couverture

Un opérateur de marché gère un portefeuille. Afin de minimiser le risque de marché, il doit réduire le plus possible son exposition aux taux d'intérêt.

Pour cela il va calculer des ratios de couverture.

Soit un portefeuille, sa valeur, le PNL (Profit and Loss), est la somme des valeurs P_i des M produits qui le compose :

$$PNL = \sum_{i=1}^{M} P_i = f(t, Q_1, Q_2, ...Q_N)$$

Le portefeuille, comme ses composants, est une fonction de N cotations de marché. Dans le cas des taux d'intérêts, ce sont les cotations des instruments qui composent la courbe des taux.

Les ratios de couverture

Les **sensibilités** correspondent aux dérivées de la fonction f relativement au cotations de marché.

En pratique pour calculer les sensibilités on utilise une des 2 méthodes suivantes :

• La méthode cumulative :

$$H_i = f(Q_1 + 1bp, ..., Q_i + 1bp, Q_{i+1}, ..., Q_N) - f(Q_1 + 1bp, ..., Q_i, Q_{i+1}, ..., Q_N)$$

La méthode itérative :

$$H_i = f(Q_1, ..., Q_i + 1 \text{bp}, Q_{i+1}, ..., Q_N) - f(Q_1, ..., Q_i, Q_{i+1}, ..., Q_N)$$

Dans les 2 cas, la courbe est recalée après chaque **bump** de 1 point de base (1e-4).

Les ratios de couverture

Par construction de la méthode de calcul de sensibilité, un produit (money market ou swap) qui fait partie la courbe des taux n'est sensible qu'à sa propre cotation. Nous appellerons h_i cette sensibilité pour un nominal unitaire.

Les ratios r_i de couverture du portefeuille sont définis ainsi :

$$r_i = \frac{H_i}{h_i}$$

Ils réprésentent le nominal de chacun des produits de marché qu'il faudrait traiter pour totalement neutraliser le risque de taux du portefeuille.

Exemple de ratios de couverture.

Sensibilités et ratios de couverture d'un swap de marché receveur de taux fixe, de nominal 100 Mios EUR, de maturité 10 ans.

Exemple de ratios de couverture.

Sensibilités et ratios de couverture d'un swap de marché receveur de taux fixe, de nominal 100 Mios EUR, de maturité 9 ans. On remarque ici l'influence de l'interpolation linéaire.

Exemple de ratios de couverture.

Sensibilités et ratios de couverture d'un swap de marché **forward** receveur de taux fixe, de nominal 100 Mios EUR, qui démarre dans 5 ans et mature dans 5 ans.

Bump de la courbe des taux

Ci-dessous l'impact sur les taux zéro coupon d'un bump de 1bp des taux de marché.

	2D	1M	3M	6M	9M	12M	2Y	3Y	4Y	5Y	7Y	10Y	12Y	15Y	20Y	25Y	30Y
TOTAL	1.01	1.01	1.01	1.01	1.01	1.01	0.99	0.99	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.03	1.05
2D	1.01	0.06	0.02	0.01													
1M		0.95															
3M			0.99														
6M				1.00													
9M					1.00												
12M						1.00											
2Y							0.99										
3Y								1.00									
4Y									1.01								
5Y										1.02	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)		
7Y											1.04	(0.04)	(0.03)	(0.03)	(0.02)	(0.02)	(0.02)
10Y												1.09	(0.05)	(0.04)	(0.03)	(0.03)	(0.03)
12Y													1.12	(0.05)	(0.04)	(0.04)	(0.03)
15Y														1.16	(0.09)	(0.08)	(0.07)
20Y															1.23	(0.13)	(0.12)
25Y																1.35	(0.16)
30Y																	1.50

Un bump de 1bp de tous les taux de marché est à peu près équivalent à un bump de 1bp des taux zéro coupon.

Sensibilité et convexité

Si on considère une courbe de taux zéro coupon constante et égale à R au format actuariel à composition annuelle :

$$B(t,T) = \frac{1}{(1+R)^{T-t}}$$

On peut facilement exprimer la valeur d'un swap standard EUR (fréquence fixe annuelle et fréquence variable semestrielle), de tenor N années, receveur de taux fixe K et de nominal unitaire.

$$\mathbf{PV}_F(t) = K imes \sum_{i=1}^n rac{1}{(1+R)^i} \mathbf{PV}_V(t) = 1 - rac{1}{(1+R)^N}$$

Par souci de simplicité :

- on considère qu'avec la convention Bond Basis une année est exactement égale à 1.
- on ignore les 2 jours ouvrés qui précèdent le démarrage du swap.

Sensibilité et convexité

Dans cet environment le taux de swap se simplifie :

$$S = \frac{1 - \frac{1}{(1+R)^N}}{\sum_{i=1}^n \frac{1}{(1+R)^i}}$$
$$= R$$

R et le taux de swap (S) s'identifient parfaitement.

La valeur d'un swap de marché receveur de taux fixe s'écrit alors :

$$PV_{Swap}(t) = (K - S) \times LVL$$

On peut alors calculer la sensibilité du swap de marché de la façon suivante :

$$\frac{\partial \mathbf{PV}_{Swap}}{\partial S} = LVL + \underbrace{(K - S)}_{=0} \times \frac{\partial LVL}{\partial S} = LVL$$

Sensibilité et convexité

On peut facilement exprimer la sensibilité et la convexité par rapport au taux de swap lui même :

$$\begin{array}{ll} \frac{\partial PV_{\textit{F}}(t)}{\partial \textit{S}} = \textit{K} \times \frac{\partial \textit{LVL}}{\partial \textit{S}} & \frac{\partial PV_{\textit{V}}(t)}{\partial \textit{S}} = \textit{LVL} + \textit{S} \times \frac{\partial \textit{LVL}}{\partial \textit{S}} \\ \frac{\partial^2 PV_{\textit{F}}(t)}{\partial \textit{S}^2} = \textit{K} \times \frac{\partial^2 \textit{LVL}}{\partial \textit{S}^2} & \frac{\partial^2 PV_{\textit{V}}(t)}{\partial \textit{S}^2} = 2 \times \frac{\partial \textit{LVL}}{\partial \textit{S}} + \textit{S} \times \frac{\partial^2 \textit{LVL}}{\partial \textit{S}^2} \end{array}$$

avec:

$$\frac{\partial LVL}{\partial S} = -\sum_{i=1}^{n} \frac{i}{(1+R)^{i+1}} \quad \frac{\partial^{2}LVL}{\partial S^{2}} = \sum_{i=1}^{n} \frac{i(i+1)}{(1+R)^{i+2}}$$

Application numérique :

On considère :

- nominal: 100 000 000 d'euros.
- un swap receveur de taux fixe.
- 3 ténors 10Y, 20Y, 30Y c'est à dire N = 10,20,30.
- 2 niveaux de marché R = K = 2% et 3%.

Sensibilité et convexité avec des taux à 2%

		PV	Sensi	Convexité
	LVL	90 kEUR	-47 EUR/bp	0 EUR/bp/bp
10Y	Fixe	18 Mios EUR	-9 kEUR/bp	7 EUR/bp/bp
101	Variable	18 Mios EUR	80 kEUR/bp	-87 EUR/bp/bp
	Swap	0 Mios EUR	-90 kEUR/bp	94 EUR/bp/bp
	LVL	164 kEUR	-158 EUR/bp	0 EUR/bp/bp
20Y	Fixe	33 Mios EUR	-32 kEUR/bp	44 EUR/bp/bp
201	Variable	33 Mios EUR	132 kEUR/bp	-272 EUR/bp/bp
	Swap	0 Mios EUR	-163 kEUR/bp	316 EUR/bp/bp
	LVL	224 kEUR	-308 EUR/bp	1 EUR/bp/bp
30Y	Fixe	45 Mios EUR	-62 kEUR/bp	122 EUR/bp/bp
301	Variable	45 Mios EUR	162 kEUR/bp	-493 EUR/bp/bp
	Swap	0 Mios EUR	-224 kEUR/bp	616 EUR/bp/bp

Sensibilité et convexité avec des taux à 3%.

		PV	Sensi	Convexité
	LVL	85 kEUR	-44 EUR/bp	0 EUR/bp/bp
10Y	Fixe	26 Mios EUR	-13 kEUR/bp	10 EUR/bp/bp
101	Variable	26 Mios EUR	72 kEUR/bp	-77 EUR/bp/bp
	Swap	0 Mios EUR	-85 kEUR/bp	87 EUR/bp/bp
	LVL	149 kEUR	-137 EUR/bp	0 EUR/bp/bp
20Y	Fixe	45 Mios EUR	-41 kEUR/bp	56 EUR/bp/bp
201	Variable	45 Mios EUR	107 kEUR/bp	-219 EUR/bp/bp
	Swap	0 Mios EUR	-149 kEUR/bp	275 EUR/bp/bp
	LVL	196 kEUR	-253 EUR/bp	0 EUR/bp/bp
30Y	Fixe	59 Mios EUR	-76 kEUR/bp	146 EUR/bp/bp
301	Variable	59 Mios EUR	120 kEUR/bp	-361 EUR/bp/bp
	Swap	0 Mios EUR	-196 kEUR/bp	507 EUR/bp/bp

Illustration de la convexité.

La courbe des taux est constante et égale au taux acturariel à composition annuelle 2%.

Notre portefeuille contient un seul swap 10 ans receveur de taux fixe 100bp au dessus du taux de marché (**Swap 1**) de nominal 100 millions d'euros. Nous allons le couvrir avec un swap de même maturité payeur de taux fixe égal au niveau de marché (**Swap 2**).

Swap	Sensibilité
Swap 1	-179 kEUR/bp
Swap 2	-163 kEUR/bp

Il nous faut donc traiter 110 Mios ($\frac{179}{163} \times$ 100 Mios EUR) d'euros de swap de marché (**Swap 2**).

Illustration de la convexité.

		PV	Sensi	Convexité
	Fixe	16 Mios EUR/bp	-16 kEUR/bp	22 EUR/bp/bp
-100bp	Variable	33 Mios EUR/bp	132 kEUR/bp	-272 EUR/bp/bp
	Swap	-16 Mios EUR/bp	-148 kEUR/bp	294 EUR/bp/bp
	Fixe	33 Mios EUR/bp	-32 kEUR/bp	44 EUR/bp/bp
0bp	Variable	33 Mios EUR/bp	132 kEUR/bp	-272 EUR/bp/bp
	Swap	0 Mios EUR/bp	-163 kEUR/bp	316 EUR/bp/bp
	Fixe	49 Mios EUR/bp	-47 kEUR/bp	66 EUR/bp/bp
100bp	Variable	33 Mios EUR/bp	132 kEUR/bp	-272 EUR/bp/bp
	Swap	16 Mios EUR/bp	-179 kEUR/bp	338 EUR/bp/bp

La convexité du portefeuille couvert :

$$338 - \frac{179}{163} \times 316 = -8.5 \text{ EUR/bp/bp}$$

Illustration de la convexité

Si le taux d'intérêt augmente brusquement de 50bp (nous ignorons le passage du temps). La valeur de notre portefeuille couvert au premier ordre diminue de 10 kEUR.

R	PNL	ΔPNL
2%	16.351 Mios EUR	
3%	16.341 Mios EUR	-10.072 kEUR
1%	16.340 Mios EUR	-11.205 kEUR

En effet ce portefeuille possède une convexité négative de -8.5 euros bp 2 du au décalage de taux fixe. On explique assez précisément ce mouvement de PNL par un développement limité (< 1 kEUR inexpliqué) :

$$\Delta PNL = \underbrace{\mathsf{Sensi}}_{0} \times \Delta R + \frac{1}{2} \times \underbrace{\mathsf{Convexit\acute{e}}}_{-8.5} \times \underbrace{\Delta R^2}_{2500} = -10.5 \text{kEUR}$$

Illustration de la convexité

On remarque dans notre exemple, que le swap de marché "sous-couvre" notre position initiale.

Problème:

- Que se passe t-il, dans notre exemple précédent, à l'inverse si le taux fixe du swap initial est décalé de 100bp à la baisse par rapport au marché.
- Appliquer la même analyse à la courverture d'un swap de marché 20 ans pour 100 Mios de nominal par un swap de marché de maturité 10 ans puis par un swap de marché de maturité 30 ans.