ALEVELS P3 MARKING SCHEME TRIG COMPOUND ANGLE T2

	EITHER:	Use $tan(A \pm B)$ formula correctly to obtain an equation in $tan x$ 1+ $tan x$ 2(1- $tan x$)	M1	
		State or imply the equation $\frac{1+\tan x}{1-\tan x} = \frac{2(1-\tan x)!}{1+\tan x}$ or equivalent	A1	
		Transform to an expanded horizontal quadratic equation in tan <i>x</i>	M1	
		Obtain given answer correctly	A1	
	OR:	Use $sin(A \pm B)$ and $cos(A \pm B)$ formulae correctly to obtain an		
		equation in sin x and cos x	M1	
		Using values of sin 45° and cos 45°, or their equality, obtain an	A 4	
		expanded horizontal equation in sin <i>x</i> and cos <i>x</i>	A1 M1	
		Transform to a quadratic equation in tan <i>x</i> Obtain given answer correctly	A1	4
(::)	0 - 1 41 -	·	144	
(ii)		given quadratic and calculate an angle in degrees or radians	M1	
		e answer e.g. 80.3° cond answer 9.7° and no others in the range	A1 A1	3
		swers outside the given range.]	AI	3
	Use $\tan 45^{\circ} =$	- 1	M1(dep*)	
(ii)	Obtain tan <i>x</i> = Obtain answer Obtain secon [Ignore answ	wen answer able attempt to solve the given quadratic for one value of $\tan x$ = $-1\pm\sqrt{2}$, or equivalent in the form $(a\pm\sqrt{b})/c$ (accept 0.4, -2.4) or $x=22.5^{\circ}$ d answer $x=112.5$ and no others in the range ers outside the range.]	M1 A1 A1 A1 A1	[3]
(ii)	Obtain tan x = Obtain answe Obtain secon [Ignore answ	wen answer able attempt to solve the given quadratic for one value of $\tan x$ = $-1 \pm \sqrt{2}$, or equivalent in the form $(a \pm \sqrt{b})/c$ (accept 0.4, -2.4) or $x = 22.5^{\circ}$ d answer $x = 112.5$ and no others in the range	A1 M1 A1	
(ii) 3 (i)	Obtain tan x = Obtain answe Obtain secon [Ignore answ [Treat answe	wen answer able attempt to solve the given quadratic for one value of $\tan x$ = $-1\pm\sqrt{2}$, or equivalent in the form $(a\pm\sqrt{b})/c$ (accept 0.4, -2.4) or $x=22.5^{\circ}$ d answer $x=112.5$ and no others in the range ers outside the range.]	A1 M1 A1	
	Obtain tan x = Obtain answer Obtain secon [Ignore answer Treat answer Use tan(A =	when answer able attempt to solve the given quadratic for one value of $\tan x$ able attempt to solve the given quadratic for one value of $\tan x$ and $x = -1 \pm \sqrt{2}$, or equivalent in the form $(a \pm \sqrt{b})/c$ (accept 0.4, -2.4) for $x = 22.5^{\circ}$ d answer $x = 112.5$ and no others in the range ers outside the range.] It is in radians as a MR and deduct one mark from the marks for the angles.]	M1 A1 A1 A1 A1	
	Obtain tan x = Obtain answe Obtain secon [Ignore answ [Treat answe] Use tan(A = Obtain a course Correct	when answer able attempt to solve the given quadratic for one value of $\tan x$ able attempt to solve the given quadratic for one value of $\tan x$ and $x = -1 \pm \sqrt{2}$, or equivalent in the form $(a \pm \sqrt{b})/c$ (accept 0.4, -2.4) for $x = 22.5^{\circ}$ d answer $x = 112.5$ and no others in the range ers outside the range.] It is in radians as a MR and deduct one mark from the marks for the angles.] The solution of the solution in the formula correctly at least once to obtain an equation in θ are exact values of θ and θ and θ throughout	M1 A1 A1 A1 A1 M1	[4]
	Obtain tan x = Obtain answe Obtain secon [Ignore answ [Treat answe] Use tan(A = Obtain a course Correct	when answer able attempt to solve the given quadratic for one value of $\tan x$ able attempt to solve the given quadratic for one value of $\tan x$ and $x = -1 \pm \sqrt{2}$, or equivalent in the form $(a \pm \sqrt{b})/c$ (accept 0.4, -2.4) for $x = 22.5^{\circ}$ d answer $x = 112.5$ and no others in the range error outside the range.] for a sin radians as a MR and deduct one mark from the marks for the angles.] for the angles of the solution of t	M1 A1 A1 A1 A1	
3 (i)	Obtain tan x = Obtain answer Obtain secon [Ignore answer Treat answer Use tan(A = Obtain a correct Obtain the Make reaso	when answer able attempt to solve the given quadratic for one value of $\tan x$ $=-1\pm\sqrt{2}$, or equivalent in the form $(a\pm\sqrt{b})/c$ (accept 0.4, -2.4) for $x=22.5^{\circ}$ d answer $x=112.5$ and no others in the range ers outside the range.] rs in radians as a MR and deduct one mark from the marks for the angles.] formula correctly at least once to obtain an equation in $\tan\theta$ for the exact values of $\tan 30^{\circ}$ and $\tan 60^{\circ}$ throughout given equation correctly	M1 A1 A1 A1 A1 A1 A1 A1 M1 A1 M1	[4]
3 (i)	Obtain answer Obtain secon [Ignore answer Treat answer Use tan(A = Obtain a correct Obtain the Make reaso Obtain answer	able attempt to solve the given quadratic for one value of $\tan x$ $= -1 \pm \sqrt{2}$, or equivalent in the form $(a \pm \sqrt{b})/c$ (accept 0.4, -2.4) for $x = 22.5^{\circ}$ d answer $x = 112.5$ and no others in the range ers outside the range.] rs in radians as a MR and deduct one mark from the marks for the angles.] formula correctly at least once to obtain an equation in $\tan \theta$ for the exact values of $\tan 30^{\circ}$ and $\tan 60^{\circ}$ throughout given equation correctly	M1 A1 A1 A1 A1 M1 A1	[4]

Substitute throughout for tan α or for tan β M1(dep*) Obtain 2 $\tan^2 \beta + \tan \beta - 1 = 0$ or $\tan^2 \alpha + \tan \alpha - 2 = 0$, or equivalent A1 Solve a 3-term quadratic and find an angle M1 Obtain answer $\alpha = 45^{\circ}$, $\beta = 26.6^{\circ}$ A1 Obtain answer $\alpha = 116.6^{\circ}$, $\beta = 135^{\circ}$ A1 [6] [Treat answers given in radians as a misread. Ignore answers outside the given range.] [SR: Two correct values of α (or β) score A1; then A1 for both correct α , β pairs] Attempt use of cos(A + B) formula to obtain an equation in $cos \theta$ and $sin \theta$ M15 Use trig formula to obtain an equation in tan θ (or cos θ , sin θ or cot θ) M1 Obtain tan $\theta = 1/(4 + \sqrt{3})$ or equivalent (or find cos θ , sin θ or cot θ) A1 Obtain answer $\theta = 9.9^{\circ}$ **A**1 Obtain θ = 189.9°, and no others in the given interval **A**1 [5] [Ignore answers outside the given interval. Treat answers in radians as a misread (0.173, 3.31). [The other solution methods are *via* cos $\theta = \pm (4 + \sqrt{3}) / \sqrt{1 + (4 + \sqrt{3})^2}$ or $\sin \theta = \pm 1/\sqrt{1 + (4 + \sqrt{3})^2}$.] 6 (i) Use $tan(A \pm B)$ formula correctly at least once and obtain an equation in $tan\theta$ M1Obtain a correct horizontal equation in any form **A**1 Use $\tan 60^{\circ} = \sqrt{3}$ throughout M1Obtain the given equation correctly **A**1 [4] (ii) Set $k = 3\sqrt{3}$ and obtain $\tan^2 \theta = \frac{1}{11}$ **B**1 B1√ Obtain answer 16.8° B1√ [3] Obtain answer 163.2° [Ignore answers outside the given interval. Treat answers in radians (0.293 and 2.85) as a misread.] (i) Use $\tan (A + B)$ and $\tan 2A$ formulae to obtain an equation in $\tan x$ M1Obtain a correct equation in tan x in any form A₁ Obtain an expression of the form $a \tan^2 x = b$ M1 Obtain the given answer A1 [4] (ii) Substitute k = 4 in the given expression and solve for xM1Obtain answer, e.g. $x = 16.8^{\circ}$ A₁ Obtain second answer, e.g. $x = 163.2^{\circ}$, and no others in the given interval A1 [3] [Ignore answers outside the given interval. Treat answers in radians as a misread and deduct A1 from the marks for the angles.]

(iii) Substitute k = 2, show $\tan^2 x < 0$ and justify given statement correctly

M1*

B1

[1]

Use $tan(A \pm B)$ formula and obtain an equation in $tan \alpha$ and $tan \beta$

	(i) Either	Use $cos(A \pm B)$ correctly at least once	M1	
		State correct complete expansion	A 1	
		Confirm given answer $\cos \theta$ with explicit use of $\cos 60^{\circ} = \frac{1}{2}$	A1	
		SR: "correct" answer from sign errors in both expansions is B1 only		
	<u>Or</u>	Use correct $\cos A + \cos B$ formula	M1	
		State correct result e.g. $2\cos\left(\frac{2\theta}{2}\right)\cos\left(\frac{-120}{2}\right)$	A1	
		Confirm given answer $\cos \theta$ with explicit use of $\cos \left(\pm 60^{\circ} \right) = \frac{1}{2}$	A1	[3]
	(ii) State or	imply $\frac{\cos 2x}{\cos x} = 3$	B1	
	Obtain	equation $2\cos^2 x - 3\cos x - 1 = 0$	B1	
		three-term quadratic equation for $\cos x$	M1	
	Obtain	$\frac{1}{4}(3-\sqrt{17})$ or exact equivalent and, finally, no other	A1	[4]
13	Use $tan(A \pm$	B) and obtain an equation in tan θ and tan ϕ	M1*	
	Substitute th	roughout for tan θ or for tan ϕ	dep M1*	
	Substitute til	ϕ	uep MII	
		$\theta^2 \theta - \tan \theta - 4 = 0 \text{ or } 3 \tan^2 \phi - 5 \tan \phi - 2 = 0$, or 3-term equivalent	A1	
	Obtain 3 tan Solve a 3-ter	$^{2}\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^{2}\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle	_	
	Obtain 3 tan Solve a 3-ter Obtain answ	$\theta^2 \theta - \tan \theta - 4 = 0 \text{ or } 3 \tan^2 \phi - 5 \tan \phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$	A1 M1 A1	
	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answer	$^{2}\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^{2}\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle	A1 M1	[6]
14	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answe [SR: Two co	$^2\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$ er $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ ers in radians as a misread. Ignore answers outside the given interval.] rrect values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.]	A1 M1 A1	[6]
14	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answe [SR: Two co	$^2\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$ er $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ ers in radians as a misread. Ignore answers outside the given interval.]	A1 M1 A1 A1	[6]
14	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answ [SR: Two co	$^2\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$ er $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ ers in radians as a misread. Ignore answers outside the given interval.] recet values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.] by $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2}\cos A$ to find value of $\tan A$ $\tan A = 3$	A1 M1 A1 A1	[6]
14	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answe [SR: Two co State or impl Divide by co Obtain tan 2 Use identity	$^2\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$ er $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ ers in radians as a misread. Ignore answers outside the given interval.] recet values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.] by $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2}\cos A$ cos A to find value of $\tan A$ $A = 3$ $\sec^2 B = 1 + \tan^2 B$	A1 M1 A1 A1 B1 B1	[6]
14	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answ [SR: Two co State or impl Divide by co Obtain tan Use identity Solve three-t	$^2\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$ er $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ ers in radians as a misread. Ignore answers outside the given interval.] rect values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.] by $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2}\cos A$ by $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2}\cos A$ cos $\cos A = 1 + \tan^2 B$ compare the remaining equation and find $\sin B = 1 + \tan^2 B$ compare the remaining equation and find $\sin B = 1 + \tan^2 B$ compare the remaining equation and find $\tan B = 1 + \tan^2 B$ compare the remaining equation and find $\tan B = 1 + \tan^2 B$	A1 M1 A1 A1 B1 M1 A1	[6]
14	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answe [SR: Two co State or impl Divide by co Obtain tan A Use identity Solve three-to	$^2\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$ er $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ ers in radians as a misread. Ignore answers outside the given interval.] recet values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.] by $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2}\cos A$ cos A to find value of $\tan A$ $A = 3$ $\sec^2 B = 1 + \tan^2 B$ erm quadratic equation and find $\tan B$ $A = \frac{3}{2}$ only	A1 M1 A1 A1 B1 B1	[6]
14	Obtain 3 tan Solve a 3-ter Obtain answ Obtain answ [Treat answe [SR: Two co State or impl Divide by co Obtain tan A Use identity Solve three-to	$^2\theta - \tan\theta - 4 = 0 \text{ or } 3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent m quadratic and find an angle er $\theta = 135^\circ$, $\phi = 63.4^\circ$ er $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ ers in radians as a misread. Ignore answers outside the given interval.] rect values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.] by $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2}\cos A$ by $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2}\cos A$ cos $\cos A = 1 + \tan^2 B$ compare the remaining equation and find $\sin B = 1 + \tan^2 B$ compare the remaining equation and find $\sin B = 1 + \tan^2 B$ compare the remaining equation and find $\tan B = 1 + \tan^2 B$ compare the remaining equation and find $\tan B = 1 + \tan^2 B$	A1 M1 A1 A1 B1 M1 A1	[6]

Question	Answer	Marks
15	Use correct $tan(A \pm B)$ formula and express LHS in terms of $tan \theta$	M1
	Using $\tan 60^{\circ} = \sqrt{3}$ and $\cot \theta = 1/\tan \theta$, obtain a correct equation in $\tan \theta$ in any	A1
	Reduce the equation to one in $\tan^2 \theta$ only	M1
	Obtain $11 \tan^2 \theta = 1$, or equivalent	A1
	Obtain answer 16.8°	A1
		5

Question	Answer	Marks
16(i)	Use trig formulae and obtain an equation in $\sin x$ and $\cos x$	M1*
	Obtain a correct equation in any form	A1
	Substitute exact trig ratios and obtain an expression for tan x	M1(dep*)
	Obtain answer $\tan x = \frac{-(6+\sqrt{6})}{(6-\sqrt{2})}$ or equivalent	A1
		4
16(ii)	State answer, e.g. 118.5°	B1
	State second answer, e.g. 298.5°	B1ft
		2

Question	Answer	Marks
17	Use correct tan $(A \pm B)$ formula and obtain an equation in tan θ	M1
	Obtain a correct equation in any form	A1
	Reduce to $3 \tan^2 \theta = 1$, or equivalent	A1
	Obtain answer $x = 30^{\circ}$	A1
	Obtain answer $x = 150^{\circ}$	A1
	OR: use correct $\sin(A \pm B)$ and $\cos(A \pm B)$ to form equation in $\sin \theta$ and $\cos \theta$ M1A1	
	Reduce to $\tan^2 \theta = \frac{1}{3}$, $\sin^2 \theta = \frac{1}{4}$, $\cos^2 \theta = \frac{3}{4}$ or $\cot^2 \theta = 3$ A1 etc.	
		5

Question	Answer	Marks
18	Use trig formula and obtain an equation in $\sin \theta$ and $\cos \theta$	M1*
	Obtain an equation in $\tan \theta$	M1(dep*)
	Obtain $\tan \theta = 1/(4-\sqrt{3})$, or equivalent	A1
	Obtain final answer $\theta = 23.8^{\circ}$ and no others in range	A1
		4

Question	Answer	Marks
19	Use correct trig formula and obtain an equation in $\tan \theta$	M1
	Obtain a correct horizontal equation in any form	A1
	Reduce to $2\tan^2\theta + 3\tan\theta - 1 = 0$	A1
	Solve 3-term quadratic and find a value of θ	M1
	Obtain answer 15.7°	A1
	Obtain answer 119.(3)°	A1
		6

Question	Answer	Marks
20(i)	Use $tan (A + B)$ formula to express the LHS in terms of $tan 2x$ and $tan x$	M1
	Using the $\tan 2A$ formula, express the entire equation in terms of $\tan x$	M1
	Obtain a correct equation in tan x in any form	A1
	Obtain the given form correctly	A1
		4
20 (ii)	Use correct method to solve the given equation for x	M1
	Obtain answer, e.g. $x = 26.8^{\circ}$	A1
	Obtain second answer, e.g. $x = 73.7^{\circ}$ and no other	A1
		3