EECS 340: Assignment 6

Shaochen (Henry) ZHONG, sxz517 Yuhui ZHANG, yxz2052

Due and submitted on 04/20/2020 EECS 340, Dr. Koyutürk

Problem 1

Hi Grader! Please note the boxes in following diagrams are merely provided for visualization purposes, they are not propertionally graphed. Thanks.

(a)

- Greedy Choice: (a1)
- Optimal Choice: (a2, a3)

(b)

- Greedy Choice: (a1)
- Optimal Choice: (a2, a3)

(c)

- Greedy Choice: (a1)
- Optimal Choice: Any combination between one of {a2, a4, a5, a6} and one of {a3, a7, a8, a9}.

Problem 2

Problem 3

(a)

Assume we have a set of coins with value of $\{\$1,\$5,\$8\}$ and we are looking to exchange n=20.

The greedy chioce will lead to a solution $\{2 \times \$8, 4 \times \$1\}$ for a totle of 6 coins, however the optimal solution should be $\{4 \times \$5\}$ for total of 4 coins. 4 < 6 and thus disprove the greedy choice property.

(b)

Assuming we have an optimal solution of $S = \langle x_0, x_1, x_2, ..., x_k \rangle$, where each x_i respectively represent the amount of c_i coin in the avaliable coin denominations $\{c_1, c_2, ..., c_k\}$ for $1 \le i \le k$.

We may observe that there must be $x_i < \frac{c_{i+1}}{c_i}$ for all $1 \le i \le k$; as otherwise we may have solution $S' = \langle x'_o, x'_1, x'_2, ..., x'_k \rangle$ with $x'_i = x_i - \frac{c_{i+1}}{c_i}$ and $x'_{i+1} = x_{i+1} + 1^1$. Due to the fact that $\frac{c_{i+1}}{c_i}$ is at least 2, S' will be a more optimal solution than S' and therefore voids the optimal assumption of S. Thus, the property of $x_i < \frac{c_{i+1}}{c_i}$ must be held in the optimal solution. Knowing this property, we may safely reach the optimal solution S by keep greedily picking

Knowing this property, we may safely reach the optimal solution S by keep greedily picking the coins with largest c value possible $(c_{\text{max}} \leq n)$. Since if we don't pick – or don't pick the largest amount possible of – c_i coin(s) at one point, we will have to pick more c_j coins after (for $1 \leq j < i \leq n$), and that will result in a less optimal solution.

This increment might have to be repeatedly done until the condition of $x_i < \frac{c_{i+1}}{c_i}$ is reached.