কাজ, হ্মমতা ও স্বক্তি

High voltage for Board CQ

For any suggestions or queries, please contact us.

Type 1 - কাজ

এ অধ্যায় কিন্তু অনেকগুলো কনসেপ্ট। এই ছোট ছোট কনসেপ্ট গুলো থেকে কয়েকটা টপিক মিলে একসাথে একটা CQ হয় . তাই শুধু এই অধ্যায়ের সূত্র মুখস্ত না করে সবগুলো কনসেপ্ট একটু ভালোমতো বুঝে ম্যাথগুলো করার ট্রাই করো।

প্রয়োজর্নীয় সূত্রাবর্লী

 $i.W = \vec{F}.\vec{S}$ দুইটি ভেক্টর রাখি দেওয়া থাকলে এদের ডট গুণ

ii.W = Fscos heta o বল ও সর্গের মধ্যবর্তী কোন

नपूना प्रश्व

একটি বস্তু সরলপথে (3,2,-1) থেকে (2,-1,4) বিন্ধুতে গেলো৷ এর ওপর ক্রিয়ার্শীল বল $\vec{F}=4\hat{\imath}-3\hat{\jmath}+2\hat{k}$ । কাজ নির্ণয় কর।

মমাধান :

বলের দিকে অতিক্রান্ত ভেক্টর দূরত্ব,

$$\vec{r} = (2-3)\hat{i} + (-1-2)\hat{j} + \{4-(-1)\}\hat{k}$$
 2 0 1 8
= $-\hat{i} - 3\hat{i} + 5\hat{k}$

ক্রিয়াশীল বল, $\vec{F}=4\hat{i}-3\hat{j}+2\hat{k}$

সুতরাং, কাজ

$$W = \vec{F} \cdot \vec{r}$$

$$= (-\hat{i} - 3\hat{j} + 5\hat{k})(4\hat{i} - 3\hat{j} + 2\hat{k})$$

$$= (-1 \times 4) + (-3 \times -3) + (5 \times 2)$$

$$= -4 + 9 + 10$$

2N বল কোনো নির্দিষ্ট ভরের বস্তুর উপর ক্রিয়া করায় বস্তুটি বলের দিকের সাথে 60° কোন উৎপন্ন করে 5m সরে গেলা কাজের পরিমান নির্নয় কর।

সমাধান :

আমরা জানি, $W = Fs \cos\theta$

 $= 5 \times 2 \times \cos 60^{\circ}$

= 5J

এখানে,

বল F = 2N

সরণ S = 5m

মধ্যবৰ্তী কোণ = 60°

∴ কাজ W = ?

<mark>আনুভূমিকের সাথে 60° কোনে 5m লম্বা একটি হেলানো তলের পাদদেশ থেকে র্সার্যদেশে 10~kg ভরের একটি ব্লক তুলতে হবে। তলকে ঘর্ষণহীন ধরে ব্লকটিকে প্লব গতিতে তুলতে কত কাজ করতে হবে নির্ণয় কর।</mark>

মমাধান:

আমরা জানি,

কৃতকাজ W হলে,

 $= FS\cos\theta$

 $= mgScos \theta$

 $= 10 \text{ kg} \times 9.8 \text{ ms}^{-2} \times 5 \text{ m} \times$

cos 30°

= 424.35 J

সুতরাং বলটিকে তুলতে কাজের পরিমাণ

424.35 J

এখানে, সরণ, $S=5\,m$ ভর, $m=10\,kg$ অভিকর্ষজ ত্বরণ, $g=9.8\,ms^{-2}$ বল ও সরণের অন্তর্ভুক্ত কোণ, $\theta=$ হেলানো তল ও উল্লম্বের অন্তর্ভুক্ত

কোণ = $90^{\circ} - 60^{\circ} = 30^{\circ}$

কৃতকাজ, W=?

একজন ছুতোর মেঝের ওপরে কাঠ দিয়ে বোঝাই একটি ট্রলি দড়িতে বেঁধে 10m টেনে নিয়ে গেলা দড়ির টান 200N এবং তা অনুভূমিকের সাথে 37° কোণে ওপরের দিকে। ছুতোর কর্তৃক কৃতকাজ নির্নয় করা সে যদি অনুভূমিকভাবে বল প্রয়োগ করত তবে কত কাজ হতো?

| উত্তর: 1597.27 J; 2000J]

একটি বরফ খন্ডকে দড়ির মাহায্যে মচ্পূর্ণ অনুভূমিক তলের উপর 5 m দূরত্ব টেনে আনা হলো দড়ির টান 10N এবং দড়িটি উক্ত তলের মাথে 30° কোণে থাকলে কৃত কাজের পরিমাণ নির্ণয় কর। [উত্তর: 43.3 J]

আনত তলে কাজ:

W = mghএখানে, h =ভূমি থেকে লম্ব উচ্চতা h = 10m

আনত তলে যেখানে থাকবে মেখান থেকে ভূমি পর্যন্ত লম্ব দূরত্ব।

 $h = l \sin\theta$

SINCE 2018

অনুভূমিকের মাথে 60° কোণে 5m লম্ব একটি হেলানো তলের পাদদেশ থেকে শ্রমিদেশে 10 kg ভরের একটি ব্লক তুলতে হবে। তলকে ঘর্ষণর্হীন ধরে ব্লকটিকে প্লব গতিতে তুলতে কত কাজ করতে হবে নির্ণয় করো।

এখানে, চিত্র থেকে,

$$\frac{h}{5m} = \sin 60^{\circ}$$

 $\therefore h = 5m \times \sin 60^{\circ}$

এখানে, ব্লকের ভর, $m = 10 \ kg$

ধরি, উচ্চতা = h

বের করতে হবে, কাজ W=?

এখন,

কাজ W =বল \times বলের দিকে সরণের উপাংশ

 $= mg \times h$

 $= 10 kg \times 9.8 ms^{-2} \times 4.330127 m$

 $= 424.35 \ kg \ m^2 s^{-2}$

= 424.35 J

150kg ভরের এক ব্যক্তি 50kg ভরের একটি বোঝা নিয়ে 4m র্মীর্ঘ একটি সিঁড়ি বেয়ে নামল৷ যদি সিঁড়িটি দেওয়ালের সাথে 60° কোলে থাকে তবে সে কত কাজ করল তা নির্ণয় কর৷

মমাধান:

বলের দিকে অতিক্রান্ত দূরত্ব অর্থাৎ

উচ্চতা h হলে,

 $\frac{h}{4} = \cos 60^{\circ}$

বা, $h = 4 \times \cos 60^{\circ}$

= 2 m

সুতরাং,

মোট কাজ $= F \times h$

 $= mg \times h$

 $= 200 \times 9.8 \times 2$

= 3920 J

এখানে,

মোট ভর, m = 150 + 50

= 200 kg

দেওয়াল ও সিঁড়ির মধ্যবর্তী কোণ,

 $= 60^{\circ}$

SIN ি সিঁড়ির দৈর্ঘ্য = 4m

 $g = 9.8 \, ms^{-2} \, 4m$

60° h

অনুভূমিকের মাথে 30° কোণে 12m লম্বা একটি হেলানো তলের পাদদেশ থেকে র্মার্যদেশে 20~kg ভরের একটি ব্লক তুলতে হবে। তলকে ঘর্ষণর্হীন ধরে ব্লকটিকে প্লব গতিতে তুলতে কত কাজ করতে হবে নির্ণয় করো।

70 kg ভরের একটি বালক 15 kg ভরের ২টি বাক্স নিয়ে একটি 7m দৈর্ঘ্যের মিঁড়িতে উঠে। মিঁড়িটি একটি দেয়ালের মাথে 45° কোণে আনত থাকলে মিঁড়ির উপরে উঠতে বালকটিকে অভিকর্ম বলের বিহুদ্ধে কত কাজ করতে হবে? উত্তর: 4850.75 /

মূর্চীপত্রে ফেরত

Type ২ - গতিশক্তি ও বিভব শক্তি

গতিশক্তি ও বিভব শক্তি এর ম্যাথ নবম দশম শ্রেণি থেকে করে আসতেছো । এখানেও মোটামুটি সব কিছুই সেইম ।

প্রয়োজর্নীয় সূত্রাবর্লী

গতিশক্তি
$$E_k=rac{1}{2}mv^2$$
 $v^2=2gh$

এখানে h = বস্তু যেখান থেকে পরতে শুরু করেছে তা থেকে যে বিন্দুতে বেগ নির্ণয় করব তার উলম্ব দূরত্ব

বি**ডব শক্তি** Ep = mgh. এখানে h = ভূমি থেকে ঐ বিন্দুর উলম্ব দূরত্ব।

Shortcuts

- গতিশক্তি বিভব শক্তির n গুণ $= \frac{ \sum |N| C E}{n+1}$
- বিভব শক্তি গতিশক্তির n গুণ $= rac{nh}{n+1}$

P

- $\bullet \quad E_k = \frac{p^2}{2m}$
- অভিকর্ষের টানে স্থিরাবস্থান থেকে মুক্তভাবে পড়ন্ত বস্তুর t তম মেকেন্ডে হারানো স্থিতিশক্তি বা অর্জিত গতিশক্তি $E_k=$

$$\frac{1}{2}mg^2(2t-1)$$

মূর্চীপত্রে ফেরত

50~kg ভরের একটি বোমা ভূ–পৃষ্ঠ থেকে 1~km উঁচুতে অবস্থিত একটি বিমান থেকে ফেলে দেওয়া হলো৷ (i) 10s পরে এবং (ii) ভূমি স্পর্স করার পূর্ব মুহূর্তে এর গতিসক্তিকত?

মমাধান:

(i) ধরি, 10 s পর গতিশক্তি, K_1 10s পর বেগ v_1 হলে,

$$V_1 = V_o + gt$$

$$= 0 + gt$$

$$\therefore V_1 = gt$$

10 s পর গতিশক্তি,

$$K_1 = \frac{1}{2}m \times (gt)^2$$

এখানে

বোমার ভর, m = 50 kg

উচ্চতা, $h = 1 \, km$

$$= 1 \times 10^3 m$$

আদিবেগ, $v_o=0$

অভিকর্ষজ ত্বরণ, $g = 9.8 \ ms^{-2}$

$$= \frac{1}{2} \times 50 \ kg \times (9.8 \ ms^{-2} \times 10 \ s)^{2}$$
$$= 2.4 \times 10^{5} \ J$$

সুতরাং $10\,s$ পর গতিশক্তি হবে $2.4\, imes\!10^5\,J_{
m C\,E}\,$ $_2$ $_0$ $_1$ $_8$

(ii) ধরি, ভূমি স্পর্শ করার পূর্ব মুহূর্তে গতিশক্তি, K_2

ভূমি স্পর্শ করার পূর্ব মুহূর্তে বেগ v_2 হলে,

$$V_2^2 = V_0^2 + 2gh$$

বা,
$$V_2^2 = 2gh$$

$$\therefore K_2 = \frac{1}{2}mv_2^2 = \frac{1}{2}m \times 2 gh$$

$$=\frac{1}{2} \times 50 \ kg \times 2 \times 9.8 \ ms^{-3} \times 10^{3} m$$

$$= 4.9 \times 10^5 I$$

সুতরাং ভূমি স্পর্শ করার পূর্ব মুহূর্তে গতিশক্তি হবে $=4.9 imes 10^5 J$

মমতল রাস্ভায় চলন্ত $1600 \ kg$ ভরের একটি গাড়িকে যখন ব্রেক কষে থামিয়ে দেওয়া হয়, তখন 500kJ তাপ উৎপন্ন হয়। ব্রেক প্রয়োগের পূর্ব মুহূর্ত্তে গাড়িটির বেগ কত ছিল?

মমাধান:

আমরা জানি,

গতিশক্তি,
$$E_k = \frac{1}{2}mv^2$$

বা,
$$500 \times 10^3 \text{ J} = \frac{1}{2} \text{mv}^2$$

বা,
$$v^2 = \frac{500 \times 10^3 \text{ J} \times 2}{1600 \text{ kg}} = 625 \text{ m}^2 \text{ s}^{-2}$$

$$\therefore v = 25 \text{ms}^{-1}$$

সুতরাং ব্রেক প্রয়োগের পূর্ব মুহূর্তে গাড়িটির বেগ

ছিল 25 ms⁻¹

এখানে

গাড়ীর ভর, $m\,=\,1600\,kg$

গতিশক্তি তথা তাপশক্তি,

$$E_{k} = 500 \, kJ$$

$$= 500 \times 10^3 J$$

ব্রেক প্রয়োগের পূর্ব মুহূর্তে বেগ,

$$v = ?$$

500 g ভরবিশিষ্ট কোনো বস্তু একটি জাহাজের উপর হতে 10 m নিচে পানিতে পড়লা (i) বস্তুটির প্রাথমিক বিভবসক্তি (ii) বস্তুটির মর্বোচ্চ গতিসক্তি (iii) বস্তুটির যে বেগ নিয়ে পানির তলকে স্পর্শ করে তা নির্ণয় কর।

মমাধান:

(i) আমরা জানি,

প্রাথমিক স্থিতিশক্তি, $E_P=\ mgh$

বা, $E_P = 0.5 kg \times 9.8 ms^2 \times$

10 m

= 49 I

সূতরাং বস্তুটির প্রাথমিক স্থিতিশক্তি 49 /

এখানে বস্তুর ভর, m=500~g

$$= 0.5 kg$$

সরণ = উচ্চতা, h = 10 m

বিভব শক্তি, $E_P = ?$

গতিশক্তি, $E_K=?$

পানি স্পর্শ করার মুহূর্তে বেগ, v=?

(ii) বস্তুর প্রাথমিক বিভব শক্তি = বস্তুর সর্বোচ্চ
 গতিশক্তি অর্থাৎ E_P = E_k

$$\therefore Ek = 49 J$$

সুতরাং বস্তুর সর্বোচ্চ গতিশক্তি 49 J

(iii) আবার,
$$v^2 = v_0^2 + 2gh$$

বা,
$$v^2 = 0 + 2 \times 9.8 \, ms^2 \times 10 \, m$$

$$= 196 m^2 s^{-2}$$

$$v = 14 \text{ ms}^{-1}$$

সুতরাং বস্তুটি $14\ ms^{-1}$ বেগে পানিকে স্পর্শ করবে।

অভিকর্ষজ ত্বরণ, $g=9.8\ ms^{-2}$ আদিবেগ, $v_o=0\ ms^{-1}$

h মিটার উঁচু স্থান থেকে একটি বস্তু পড়ে গেল। কোথায় এর গতিখক্তি বিভব খক্তির অর্ধিক হবে?

ধরি, m ভরের বস্তুটি h উচ্চতা থেকে পড়ার সময় χ মিটার অতিক্রম করার পর P বিন্দুতে এর গতিশক্তি বিভব শক্তির অর্ধেক হয়,

শর্তানুসারে,

$$\frac{1}{2}mv^2 = \frac{1}{2}mg(h-x)$$

বা,
$$v^2 = g(h - x)$$

বা,
$$2gx = g(h - x)$$

$$[\because v_0 = 0$$
 হওয়ায় $v^2 = 2gx$]

বা,
$$2x = h - x$$

বা,
$$3x = h$$

$$\therefore x = \frac{h}{3}$$

ভূমি থেকে P বিন্দুর উচ্চতা, $OP = h - \frac{1}{3} h = \frac{2}{3} h$

∴ভূমি থেকে আদি উচ্চতার দুই-তৃতীয়াংশ উচ্চতায় গতিশক্তি বিভব শক্তির অর্ধেক হবে।

একটি বস্তুকে h m উচ্চতা থেকে ফেলে দেওয়া হলো৷ ভূমি হতে 10m উচ্চতায় বস্তুটির গতিখক্তি বিভবখক্তির দ্বিগুণ হলে কত উচ্চতা থেকে বস্তুটি ফেলা হয়েছিল?

মমাধান:

ধরি, h উচ্চতা হতে m ভরের বস্তুকে ফেলে দেওয়া হলো।

10m উচ্চতায় বস্তুটির বেগ,

$$v^2 = v_0^2 + 2 g(h - 10)$$

$$= 0 + 2 g(h - 10) = 2 g(h - 10)$$

::গতিশক্তি =
$$\frac{1}{2}$$
 mv² = $\frac{1}{2}$ m · 2 g(h - 10)

$$= mg(h - 10)$$

10 উচ্চতায় স্থিতিশক্তি = mg × 10

প্রামতে,
$$mg(h - 10) = 2 \times mg \times 10$$

বা,
$$h - 10 = 20$$

$$\therefore$$
 h = 30 m

অতএব, বস্তুটিকে $30\ m$ উচ্চতা হতে ফেলা হয়েছিল।

একটি রাইফেলের গুলি একটি তক্তাকে ঠিক ভেদ করতে পারে। যদি গুলির বেগ চার গুণ করা হয়, তবে অনুরূপ কয়টি তক্তা ভেদ করতে পারবে?

মমাধান :

১ম ক্ষেত্ৰে, গতিশক্তি,

$$K_1 = \frac{1}{2}mv^2$$

একটি তঁক্তা ভেদ করতে প্রয়োজনীয় শক্তি। ২য় ক্ষেত্রে, গতিশক্তি,

$$K_2 = \frac{1}{2}m (4v)^2$$

$$=\frac{1}{2}m\ 16v^2$$

$$=\frac{1}{2}mv^2 \times 16$$

= 16 × একটি তক্তা ভেদ করতে প্রয়োজনীয় গতিশক্তি। বেগ 4 গুণ করা হলে গুলিটি অনুরূপ 16 টি তক্তা ভেদ করতে পারবে। এখানে.

১ম ক্ষেত্রে,

গুলির বেগ = $v m s^{-1}$

গুলির ভর = m

২য় ক্ষেত্রে.

গুলির বেগ = $4v \, ms^{-1}$

হাতুড়ি – পেরেক:

- \blacksquare অনুত্মিক $W = F_x = \frac{1}{2} mv^2 + mgx$
- \blacksquare উলম্ব $W=rac{1}{2}\ mv^2$
- পানি ঘেমে পরিণত করতে কৃতকাজ = Vρgh
- m ভরের কোনো গুলি V বেগে দেয়ালে S দূরত্ব ভেদ করে থেমে গেলে $\frac{1}{2}mv^2 = Fx$

অনুভূমিক কাঠের ওপর একটি পেরেক উল্লম্বভাবে রাখা আছে। $1\,kg$ ভরের হাতুড়ি দ্বারা $1\,ms^{-1}$ বেগে পেরেকের ওপর আঘাত করায় এটি 0.015m কাঠের মধ্যে ঢুকে গেলে গড় বাধাদানকার্রী বল কত?

মমাধান :

আমরা জানি, হাতুড়ির বিভব শক্তি + গতিশক্তি = কাঠের প্রতিরোধ বলের বিরুদ্ধে কাজ

বা,
$$mg \times \frac{1}{2} mv^2 = Fx$$

$$\therefore F = mg + \frac{mv^2}{2x}$$

$$= 1 \times 9.8 + \frac{1 \times 1^2}{2 \times 0.015} = 43.13 \text{ N}$$

এখানে,
হাতুড়ির ভর, $m=1\,kg$ হাতুড়ির বেগ, $h=4\,ms^{-1}$ পেরেকের সরণ, $x=0.015\,m$ অভিকর্মজ ত্বরণ, $g=9.8\,ms^{-2}$

প্র্যাকটিস প্রবলেম

0.50kg ভরের একটি বোমা ভূমি হতে 1km উঁচুতে অবস্থিত একটি বিমান থেকে ফেলে দেয়া হলো। ভূমি স্পর্শ করার পূর্ব মুহূর্তে এর গতিসক্তি নির্ণয় কর।

ডিবর: $4.9 \times 10^3 J$]

2kg ভরের একটি পাথর 20m উচু থেকে ছেড়ে দেয়া হলো৷ ভূ-পৃষ্ঠকে স্পর্শ করার পূর্ব মুহূর্তে এর গতিখন্ডি নির্ণয় কর। [উত্তর: 392J]

100g ভরের একটি বস্তু 10 m উপর থেকে নিচে পড়ে৷ ভূপৃষ্ঠকে স্পর্স করার পূর্ব মুহূর্তে এর গতিখক্তি কত জুল হবে? [উত্তর: 9.8 J]

1.5 kg ভরের একটি বস্তুকে 30 m/s বেগে উপরের দিকে নিক্ষেপ করা হল৷ 2 sec পর এর গতিখন্ডি কত হবে? [উত্তর: 81.12 J]

একটি রাইফেলের গুলি নির্দিষ্ট পুরুত্ত্বের একটি ভক্তা ভেদ কর্ত্ত পারে৷ ঐরূপ 16টি ভক্তা ভেদ কর্ত্ত হলে এর বেগ কত গুণ৷ হতে হবে?

[উত্তর: 4 পুণ]

একটি রাইফেলের গুলি নির্দিষ্ট পুরুত্ত্বের দুটি তক্তা ভেদ করতে পারে। গুলির বেগ তিনগুণ করা হলে ঐরূপ কতটি তক্তা ভেদ। করতে পারবে?

[উত্তর: 18টি]

একটি রাইফেলের গুলি নির্দিষ্ট পুরুত্বের কাঠের ব্লক ভেদ করতে পারে। গুলির বেগ অর্থিক করা হলে এর কত অংশ ভেদ করতে পারবে? তিত্তর: 0.25 জংশ

মূর্চীপত্রে ফেরত

Type 2 – শক্তির নিত্যতা

এই টপিক থেকে ঘ নাম্বারে প্রশ্ন চলে এসেছে ধরে নিতে পারো । এটা কয়েকটা সাব টপিক আছে এখানে বিস্তারিতভাবে স্টেপ বাই স্টেপ দেখানো হয়েছে । একবার দেখে নিয়ে তারপর নিজে প্র্যাকটিস করিও ।

type-1: উলম্ব

বস্তুটি উপর থেকে নিচে পরলে শক্তির নিত্যতা মেনে চলে কিনা?

মমাধান:

A বিন্দুতে, গতিশক্তি, $E_{KA}=0$ [বস্তুটি স্থির]

বিভবশক্তি,
$$E_{PA} = mgh_A$$

$$= 10 \times 9.8 \times 10 = 980 \text{ J}$$

মোট শক্তি, $E_A = 0 + 980 = 980 \,\mathrm{J}$

B বিন্দুতে

$$E_{KB} = \frac{1}{2} m v_B^2 B$$
$$= \frac{1}{2} \times 10 \times 117.6 = 588J$$

B বিন্দুতে বেগ,

$$V_B^2 = U^2 + 2gh_{AB}$$

 $=2gh_{AB}$

$$= 2 \times 9.8 \times (10 - 4) = 117.6 \text{ m}^2\text{s}^{-2}$$

$$E_{PB} = mgh_B$$
$$= 10 \times 9.8 \times 4 = 392 \text{ J}$$

$$E_B = 588 + 392 = 980$$
J

SINCE 2018

 $h_B = 4m$ (গতিশক্তির সময় দূরত্ব হিসাব হবে উপর থেকে নিচে কিন্তু বিভবের সময় নিচ থেকে উপরে)

C বিন্দুতে

$$E_{kc} = \frac{1}{2}mv_c^2$$

$$= \frac{1}{2}m \times 96$$

$$= 2 \times 9.8 \times 10 = 980 \text{ J}$$

$$v_c^2 = 2gh_{AC}$$

$$= 2 \times 9.8 \times 10 = 196 \text{ J}$$

$$E_{PC} = mgh_c$$

$$= m \times g \times 0 = 0 \text{ J}$$

 $E_c = 980 + 0 = 9800J$

সেহেতু, $E_A = E_B = E_C$ নিত্যতা মেনে চলে। এখানে শুধু দুই ধরনের শক্তি ছিল তাই দুইটা বের করেছি, ঘর্ষণ থাকলে ঘর্ষণ দ্বারা কাজও যোগ হতো।

type-2: আনত তল

২৬. বস্তুটি A থেকে C তে ঘর্ষনর্হীন ভাবে গড়িয়ে পরলে শক্তির নিত্যতা মেনে চলে

কিনা?

মমাধান:

গতিশক্তি
$$E_{KA} = 0$$
 [বস্তু স্থির]

বিভব শক্তি
$$E_{PA} = mgh_A$$

$$= 10 \times 10 \times 9.8 = 980 J$$

$$E_A = 980J$$

$$E_{KB} = \frac{1}{2} m V_B^2$$

$$= \frac{1}{2} m (U_B^2 + 2ah_{AB})$$

$$= \frac{1}{2}m (0^2 + 2 \times gsin30^\circ \times 10)$$

= 490*I*

$$AB = \frac{1}{2}AC$$

$$=\frac{1}{2}\times\frac{10}{\sin 30^{\circ}}=10\ m$$

বিভব শক্তি

$$E_{PB}=\ mgh_{B}\
ightarrow$$
ভূমি থেকে উচ্চতা

$$= 10 \times 9.8 \times 5 = 490$$

$$E_B = 490 + 490 = 980J$$

$$h_B = 10 \times \sin 30^\circ$$

$$= 5m$$

$$E_{PA} = 0 \ [h_c = 0]$$
 $E_{KA} = m(U^2 + 2ah_{AC})$ $AC = 20m$
 $= \frac{1}{2} \times 10 \times 2 \times gsin30^\circ \times 20 = 980J$
 $E_C = 980 \ J$
 $E_A = E_B = E_C$ নিত্যতা মেনে চলে।

type-3: মরল দোলক

P,Q,R বিন্ধুত্ত মান্দ্রিক নিত্যতা প্রযোজ্য কিনা যাচাই কর৷ 18

মমাধান:

$$m = 0.02 kg$$

$$L = 0.98m$$

R অর্থাৎ সবচেয়ে উপরের বিন্দুর গতিশক্তি শূন্য এবং P সবচেয়ে নিচের বিন্দুর বিভব শক্তি =0 , Q এ গতিশক্তি ও বিভব শক্তি উভয় থাকবে।

R বিন্দুতে,

গতিশক্তি $E_{KR} = 0$

মূর্চীপত্রে ফেরত

বিভবশক্তি
$$E_{PR} = mgh_{PR}$$

$$= mgL (1 - \cos 40^{\circ})$$

$$= 0.045I$$

$$E_P = 0.045I$$

$$h_{PR} = L - L \cos 40^{\circ}$$

$$=L(1-Cos40)$$

Q বিন্দুতে গতিশক্তি,

$$E_{KQ} = \frac{1}{2} m v_Q^2$$

$$=\frac{1}{2}m(2gh_{RQ})$$

$$= mg L(\cos 25^{\circ} - \cos 40)$$

$$= 0.027J$$

বিভব শক্তি,

$$E_{PQ} = mgL (1 - cos\theta_2)$$

$$= 0.02 \times 9.8 \times 0.98(1 - Cos\ 25^{\circ})$$

$$= 0.018 J$$

মোট শক্তি
$$E_Q~=~0.027+~0.018=0.045\,J$$

P বিন্দুতে,

গতিশক্তি,

$$E_{KP} = \frac{1}{2} m V_p^2$$

$$= \frac{1}{2}m \times 2 \times g \ (h_L - h_R)$$

$$= \frac{1}{2} \times m \times 2 \times g(0.98 - L\cos 40^{\circ})$$

$$= 0.045 J$$

$$E_{PQ} = mgL (1 - cos\theta_2)$$
 $h_{RQ} = h_Q - h_R$
= 0.02 × 9.8 × 0.98(1 - Cos 25°) = $L \cos 25^\circ - L \cos 40^\circ$
= 0.019 L

General case: কোণ দেওয়া থাকলে

R বিন্দু বিভব শক্তি,

$$= mgh_P \rightarrow R$$

$$= mg L(1 - \cos\theta_2)$$

যে বাহু তার কোন

$$Q$$
 বিন্দুতে বিভব শক্তি, $= mgh_P o Q$

$$= mg L (1 - cos\theta_1)$$

$$=\frac{1}{2}mV_Q^2$$

$$= \frac{1}{2}m + 2 \times g(h_Q - h_R)$$

$$= \frac{1}{2}m \times 2 \times g \times L(\cos\theta_1 - \cos\theta_2)$$

P বিন্দুতে গতি শক্তি,

SINCE 2018

$$= \frac{1}{2} \times m \times 2 \times g \ (h_P - h_R)$$

$$= \frac{1}{2} \times m \times 2 \times g \times L(Cos0^{\circ} - Cos\theta_2)$$

চিত্রে C বিন্দু একটি সরল দোলকের সর্বাধিক সরণ নির্দেশ করছে। ববের ভর 30~gm।

মূর্চীপত্রে ফেরত

উর্দ্দীপকে যান্দ্রিক শক্তির নিত্যতা মূত্র পালিত হয় কি না । B ও C অবস্থানের ভিত্তিতে গাণিতিকভাবে মতামত দাও।

উদ্দীপক অনুযায়ী,

বরের ভর,
$$m = 20 \ gm = 20 \times 10^{-3} \ kg$$

চিত্র অনুযায়ী,
$$OA = OB = OC = 2m$$

$$MC = 0.2m$$

$$NB = 0.1$$

$$\triangle$$
 OMC \bigcirc

$$OC^2 = OM^2 + MC^2$$

বা,
$$2^2 = 0M^2 + (0.2)^2$$

বা,
$$OM^2 = 2^2 - (0.2)^2$$

বা,
$$OM = \sqrt{2^2 - (0.2)^2}$$

$$...$$
 OM = 1.99 m

$$AM = OA - OM = (2 - 1.99)m = 0.01 m$$

অনুরূপভাবে ON =
$$\sqrt{2^2 - (0.1)^2} = 1.997$$
 m^E 2 0 1 8

$$AN = OA - ON = (2 - 1.997)m = 0.003 m$$

$$U_c = mg \times AM$$

$$= 20.\times 10^{-3} \times 10.07 \times 0.01$$

$$= 0.002014 J$$

$$C$$
 বিন্দুতে বরের গতিশক্তি, $K_C=0$

$$\therefore$$
 ে বিন্দুতে মোট শক্তি, $\mathrm{E_c} = \mathrm{U_c} + \mathrm{K_c}$

$$= 0.002014 + 0$$

$$= 002014 J$$

B বিন্দুর ক্ষেত্রে,

B বিন্দুতে বরের গতিশক্তি,
$$\mathrm{K_B} = \frac{1}{2} \; \mathrm{m} v^2$$

$$v^2 = 2 \text{ g} \times \text{MN}[\text{MN} = \text{AM} - \text{AN} = 0.01 - 0.003)\text{m} = 0.007]$$

$$\therefore K_{\rm B} = \frac{1}{2} \text{ m} v^2 = \frac{1}{2} \text{ m} \times 2 \text{ gMN}$$

$$= mg \times MN$$

$$=20 \times 10^{-3} \times 10.07 \times 0.007$$

$$= 0.0014098 J$$

B বিন্দুতে বরের বিভবশক্তি, $U_R=mg imes AN$

$$=20 \times 10^{-3} \times 10.07 \times 0.003$$

$$= 0.0006042 J$$

$$_{
m B}$$
 বিন্দুতে মোট শক্তি, $_{
m B}={
m U}_{
m B}+{
m K}_{
m B}$

$$= (0.0006042 + 0.014098)J$$

= 0.002014 J

অতএব, দোলায়মান দোলকটি B ও C অবস্থানে শক্তির নিত্যতা সূত্র পালন করে।

উপরের উর্দ্দীপকে 0.02 kg ভরের একটি 🔒 বস্তুকে বিন্দু থেকে 1m লদ্বা মুতার মাহায্যে ঝুলানো হলো। A বিন্দু মর্বোচ্চ বিস্তার নির্দেশ कर्त्व या 0 विन्तृत्व 30° कान छे९भन्न कर्त्व, এটিকে A বিন্দু পর্যন্ত টেনে ছেড়ে দেয়া হলে এটি দুলতে শুরু করে। $[g = 9.8 \, ms^{-2}]$

- (গ) উদ্দীপকের B বিন্দুতে দোলকটির গতিখক্তি বের কর।
- (ঘ) উর্দ্দীপকে ব্যবহৃত দোলকটি যান্দ্রিক শক্তির নিত্যতা মূত্র মেনে চলে কিনা-গাণিতিক বিস্লেষণপূর্বক মতামত দাও।

শিশুপার্কে স্থাপিত একটি ম্লিপারের উচ্চতা BC = 2m এবং হেলানো তলটি 30° কোণে ঢালু। 25~kg ভরের একজন শিশু ম্লিপারের শীর্ষ বিন্দু (B) থেকে ঘর্ষণহীনভাবে ম্লিপিং করে ভূমিতে A বিন্দুতে পৌছে।

(গ) আনত ম্লিপারের দৈর্ঘ্য হিমাব কর।

(ঘ) উর্দ্দীপক অনুমারে ম্লিপারের 'দৈর্ঘ্যের এক চতুর্থাংখ দূরত্ব (D) ও অর্ধিক দূরত্ব (E) অতিক্রমকালে যান্দ্রিক খক্তির পরিমাণ মমান হবে৷ কি না? গাণিতিভাবে যাচাই কর৷

 $1800\ kg$ ভরের একটি গাড়ি $60\ kg$ ভরের একজন দ্রাইভারমহ পাশের চিত্রের আনত তল বরাবর ইঞ্জিনের মর্বোচ্চ ক্ষমতা ব্যবহার করে A বিন্দু হতে B বিন্দুতে পৌঁছাতে গাড়িটি $30\ \sec$ মন্ময় নেমা $[g=9.8\ ms^{-2}]$ C E 2 0 1 8

গ) গাড়িটির ইঞ্জিনের অস্বক্ষমতা নির্ণয় কর৷

(ঘ) উর্দ্ধীপকের গাড়িটি অনুভূমিক রাস্তায় 10s - এর মধ্যে স্থিরাবস্থা থেকে $60 \ kmh^{-1}$ বেগ অর্জন করতে পারবে কিনা তার গাণিতিক ব্যাখ্যা কর৷

একটি দালানের ছাদের সাথে দুটি মই লাগানো আছে। একটি মই এব দৈর্ঘ্য 5 m এবং এটি অনুভূমিকের সাথে 60° কোণ করে রয়েছে। দির্ভীয় মইটির দৈর্ঘ্য 6 m এবং এটি অনুভূমিকের সাথে 46.2° কোণ করে রয়েছে। দুইজন নির্মাণ স্থামিক উভয়ে 20 kg বোঝা নিয়ে। মিনিটে ভিন্ন ভিন্ন মই ব্যবহার করে ছাদে উঠতে পারেন। প্রথম মই বেয়ে যিনি উঠিন তার ভর 60 kg এবং দির্ভীয় মই বেয়ে যিনি উঠিন তার ভর 70 kg

- (গ) প্রথম শ্রমিকের ক্ষেত্রে ছাদে উঠার জন্য মধ্পাদিত কাজ নির্ণয় কর।
- (ঘ) উভয় শ্রমিকের ক্ষমতা অভিন্ন হবে কী? গাণিতিকভাবে বিশ্লেষণ কর।

চিত্রে প্রদর্শিত গাড়িটি A বিন্দু হতে $20m/\sec$ বেগে AC তলে নামছে। গাড়ির চালক ব্রেক করায় গাড়িটি 50m দূরত্ব অতিক্রম করে থেমে যায়।

- (গ) র্কী পরিমাণ গতি প্রতিরোধকার্মী বল গাড়িটির উপর ক্রিয়া করে নির্ণয় কর।
- (ঘ) উদ্দীপকে শক্তির সংরক্ষণশীলতার নীতি পালিত হবে কি? গাণিতিক যুক্তি সহ মতামত দাও।

প্রতিটি $0.125m^3$ আয়তনের এবং 250kg ভরের 4টি ব্লককে পরপর মাজিয়ে স্কন্ড তিরি করা হলো।

- (গ) উদ্দীপকে বর্ণিত স্তদ্ভের উপর হতে কোনো একটি বস্তুকে ফেলে দিলে ভূমি হতে কত উচ্চতায় এর গতিখক্তি বিভব শক্তির দ্বিগুণ হবে?
- (ঘ) উদ্ভটিকে আনুভূমিকের মাথে 30° কোলে আনত রাখতে কাজ ও উদ্দীপকে বর্ণিত স্কন্ধ তৈরিতে কাজের তুলনামূলক গাণিতিক বিস্লেষণ দাও।

রাফিদ উপরের চিত্র অনুযার্মী একটি 0.2kg ভরের বস্তু দুলাচ্ছে।

- গ) A বিন্দুতে বস্তুটির বেগ নির্ণয় করা
- (ঘ) উদ্দীপকের বস্তুটি শক্তির সংরক্ষণ সূত্রকে সমর্থন করে কি-না-গাণিতিকভাবে ব্যাখ্যা দাও।

Type 3 – কুয়া থেকে পানি

কুয়া থেকে পানি উত্তোলনের ম্যাথ তো জাতীয় প্রবলেম । অনেকের এখানে h নিয়ে প্রবলেম হয় । আশা করি সব কনফিউশন ক্লিয়ার হবে ।

প্রয়োজর্নীয় সূত্রাবর্লী

কুয়া থেকে পানি তোলার ম্যাথ এ সবচেয়ে প্রবলেম করে h o অর্থাৎ ভরকেন্দ্রের সরণ। সবসময় মনে রাখবা,

$$h = \frac{$$
উপরের স্থরের মরণ+নিচের স্থরের মরণ

$$//h = \frac{$$
খালি $+$ যতটুকু খালি করতে হবে $\frac{}{2}$

পূর্ণ কুয়া খালি কর্ত্ত,

$$h' = \frac{0+h}{2} = \frac{h}{2}$$
পূৰ্ণ কুয়া অৰ্থিক খালি করতে,

SINCE 2018

$$h' = \frac{0 + \frac{h}{2}}{2} = \frac{h}{4}$$

কুয়া থেকে পানি তোলার পর আরো নানা কাজ করতে পারে, যেমন নির্দিষ্ট বেগে নিক্ষেপ কিংবা H উচ্চতা উপরে উঠানো। V বেগে নিক্ষেপ করলে,

$$W_{total} = mgh' + \frac{1}{2}mv^2$$

m কিন্তু পানির ভর

$$m = \rho V$$

$$m = \rho \pi r^2 h$$

এই h কিন্তু পানি কতটুকু ছিল।

একটি পানিপূর্ণ কুয়ার গর্ভীরতা 10m, ব্যাম 4m। 20 মিনিটে কুয়াটিকে পানিশূন্য কর্তে পারে এমন পান্দেপর ক্ষমতা নির্ণয় কর।

মমাধান:

আমরা জানি,

$$P=rac{W}{t}$$
 কিন্তু কাজ, $W=F imes h$ এখানে F হচ্ছে পানির ওজন, $F=mg$ কিন্তু m হচ্ছে কুয়ার পানির ভর।

পানির ঘনত্ব ρ এবং আয়তন V হলে,

$$m = V\rho$$

কিন্তু পানির আয়তন হচ্ছে কুয়ার আয়তন।

$$: V = \pi r^2 l$$

সুতরাং
$$P = \frac{W}{t} = \frac{Fh}{t}$$

$$= \frac{\text{mgh}}{\text{t}} = \frac{\text{V}\rho\text{gh}}{\text{t}} = \frac{\pi \text{r}^2 l\rho\text{gh}}{\text{t}}$$

 $= \frac{3.14 \times (2 \text{ m})^2 \times 10 \text{ m} \times 10^3 \text{kgm}^{-3} \times 9.8 \text{ m s}^{-2} \times 5 \text{ m}}{1200 \text{ s}}$

$$=\frac{5128.67}{746}$$
 H.P

$$= 6.87 \text{ H.P}$$

এখানে.

কুয়ার গভীরতা, $l=10~\mathrm{m}$

কুয়ার ব্যাস, d = 4 m

 \therefore কুয়ার ব্যাসার্ধ, r=2 m

সময়, t = 20 min

 $= 20 \times 60s = 1200s$

পানি উঠানোর কার্যকর বা গড় উচ্চতা,

$$h = \frac{0+10 \text{ m}}{2} = 5 \text{ m}$$

NCE 2018

একটি ইঞ্জিল 20m গর্ভীর একটি কুপ হতে প্রতি মিনিটে $100\ kg$ পানি তোলে। ইঞ্জিন কর্তৃক বল এবং ইঞ্জিনের ক্ষমতা নির্ণয় করো।

মমাধান:

আমরা জানি, F = mg $= 100 kg \times 9.8 ms^{-2} = 980 N$ আবার, $P = \frac{W}{t} = \frac{mgh}{t}$ $= \frac{980 \times 20}{60}$ = 326.66 W

এখানে, গভীরতা, h=20~mসময়, $t=1 \min=60~s$ পানির ভর, m=100~kgপ্রযুক্ত বল, F=?ক্ষমত, P=?

একটি পানিপূর্ণ কুয়ার গর্ভীরতা 12m এবং ব্যাস 1.8m। একটি পাম্প 24 মিনিটে কুয়াটিকে পানিসূন্য করতে পারে। পাম্পটির অস্বক্ষমতা কত? [উত্তর: 1.67HP]

একটি পানিপূর্ণ ভূ-গর্ভস্থ জলাধারের গর্ভীরতা 7.5 m এবং চোঙাকৃতি জলাধারের ব্যাম 4m। যে পাম্প 30 মিনিটে জলাধারকে সম্পূর্ণ খালি করতে পারে তার ক্ষমতা কত H.P?

श्राकिम CQ

পানিপূর্ণ একটি কুয়ার গর্ভীরতা 10m ব্যাম 2m। কুয়াটিকে পানিশূন্য করার জন্য 2HP ক্ষমতার একটি পাচ্প চালু করা হলো৷ অর্থিক পানি শূন্য হওয়ার পর পাচ্পটি নন্ট হলে 3HP ক্ষমতার অপর একটি পাচ্প চালু করে কুয়াটিকে পানিশূন্য করা হলো৷

- (গ) উর্দ্ধীপকের ১ম পাম্পটি মিনিটে কী পরিমাণ পানি উত্তোলন করবে? বের করা
- (ঘ) উদ্দীপকের উভয় পাঙ্গের ক্ষেত্রে প্রয়োজর্নীয় সময় একই ছিলো কি– না? গাণিতিক বিস্লেষণের মাধ্যমে যাচাই কর৷

একটি পানিপূর্ণ কুয়ার গর্ভীরতা 12m এবং ব্যামার্ষ 1.2m। একটি পাচ্প 20 মিনিটে কুয়াটিকে পানিখূন্য করতে পারে। পাচ্পটির ক্ষমতা। 52% নন্ট হলেও পাচ্পটালক কুয়াটির মন্দপূর্ণ পানি একই পাচ্প দ্বারা দ্বিপুণ মময়ে খালি করা মন্ডব বলে মন্ডব্য করেন।

- (গ) কুয়াটিকে পানিশূন্য কর্তে কৃতকাজের পরিমাণ নির্ণয় কর।
- (ঘ) উদ্দীপকে পাদপঢ়ালকের মন্তব্যের যথার্থতা বিস্লেষণ কর৷

একটি পানিপূর্ণ কুয়ার গর্ভীরতা 14m এবং ব্যাস 2.4m। একটি পাচ্প 22 মিনিটে কুয়াটিকে পানিশূন্য করতে পারে। কিন্তু এক-তৃতীয়াংশ পানি উত্তোলন করার পর পাচ্পটি নন্ট হয়ে যায়। পরে 70% দক্ষতার আর একটি পাচ্প যুক্ত করে 30 মিনিটে বাকি পানি উত্তোলন করা হয়।

- (গ) ১ম পাম্পটি কত সময়ব্যাপী কাজ করে তা নির্ণয় কর।
- (ঘ) কোন পাম্পটির ক্ষমতা বেন্দি? গণিতিকভাবে বিস্লেষণ কর।

4m ব্যামবিশিষ্ট একটি পানিপূর্ণ কুয়ায় একটি পাচ্প $5\ kg$ পানিকে $20\ m$ উচ্চতায় তুলে $10\ ms^{-1}$ বেগে নিক্ষেপ করে৷ $5\ HP$ ক্ষমতার অন্য একটি পাচ্প পানিপূর্ণ কুয়াকে পানিসূন্য করে৷

- (গ) ১ম পাদেপর শক্তি নির্ণয় কর৷
- (ঘ) কুয়াটি পানিশূন্য কর্তে কোন পাচ্পটির কম সময় লাগ্বে? গাণিতিকভাবে বিশ্লেষণ কর৷

Type 4 –কৰ্ম দক্ষতা

প্রয়োজনীয় সূত্রাবলী

১. কৃত কাজ
$$W = mgh$$

২. প্রাপ্ত ক্ষমতা
$$P=rac{W}{t}$$

৩. ক্ষমতা,
$$P = Fv$$

৪. কর্ম মকতা
$$\eta = \frac{P}{P'} \times 100\%$$

এখানে,

m = বস্তু বা ব্যক্তির ভর
g = অভিকর্মজ ত্বরণ
h = ভূ-পৃষ্ঠ থেকে বস্তু বা ব্যক্তির উচ্চতা

$$P' = \mathbf{g}$$
কৃত ক্ষমতা $t = \mathbf{N}$ ময়

একটি মোটর মিনিটে $5.5 \times 10^5 kg$ পানি 100m উপরে ওঠাতে পারে। মোটরটির কার্যদক্ষতা 70% হলে এর ক্ষমতা নির্ণয় কর।

মমাধান :

আমরা জানি, কৃত কাজ W হলে,

কার্যকর ক্ষমতা,

$$P = \frac{W}{t} = \frac{Fh}{t}$$

$$=\frac{\mathrm{mgh}}{\mathrm{t}}$$

$$= \frac{5.5 \times 10^5 \text{ kg} \times 9.8 \text{ m s}^{-2} \times 100 \text{ m}}{60 \text{ s}}$$

$$= 8.98 \times 10^6 \text{ W}$$

আবার,
$$0.7P' = P$$

বা,
$$0.7P' = 8.98 \times 10^6 \text{ W}$$

$$\therefore P' = 1.28 \times 10^7 \text{ W}$$

এখানে,

SINC \equiv পানির ভর, $m=5.5 imes10^5~\mathrm{kg}$

$$P = P'$$
 এর $70\% = \frac{70}{100}P'$

$$= 0.7P'$$

অভিকর্ষজ ত্বরণ,

$$g = 9.8 \text{ ms}^{-2}$$

একটি পাচ্প 4.9 মিনিটে কুয়া থেকে 10,000 লিটার পানি 6m গড় উচ্চতায় তুলতে পারে। পাচ্পের ক্ষমতার 80% কার্যকর হলে এর ক্ষমতা নির্ণয় করো।

মমাধান:

আমরা জানি,

$$P = \frac{W}{t} = \frac{mgh}{t}$$

$$=\frac{10000\times9.8\times6}{4.9\times60}$$

$$= 2000 W$$

কিন্তু,
$$\eta = \frac{P}{P'} = 80\%$$

বা,
$$P = 0.8P'$$

$$\therefore P' = \frac{P}{0.8}$$

$$= 2500 W$$

$$= 2.5 kW$$

এখানে,

পানির পরিমান = 10,000

লিটার = 10,000 kg

 \therefore পানির ভর, $m=10000~\mathrm{kg}$

গড় উচ্চতা, h=6m

সময়, t = 4.9

মিনিট = 4.9 × 60s

দক্ষতা, n=80% পাম্পের প্রকৃত

ক্ষমতা, P = ?

৩৬. একটি পানিপূর্ণ কুয়ার দৈর্ঘ্য 3m, পুন্থ 2m ও গর্ভীরতা 20m। 70% কর্মদক্ষতা বিশিষ্ট একটি পান্দপ 20 মিনিটে কুয়াটাকে পানিশূন্য করতে পারে। পান্দপটির অশ্বক্ষমতা নির্ণয় কর। [CUET: '04-05, '09-10]

মমাধান :

$$v = 3 \times 2 \times 20 = 120 \text{ m}^3$$

$$P_{\text{out}} = P_{\text{in}} \times \frac{70}{100} = 0.7 P_{\text{in}}$$

$$h = \frac{20}{2} = 10$$

$$\therefore P_{\text{out}} = \frac{w}{t} = \frac{mgh}{t} = \frac{\rho vgh}{t}$$

$$\Rightarrow 0.7P_{\text{in}} = \frac{1000 \times 120 \times 9.8 \times 10}{20 \times 60}$$

$$\Rightarrow P_{\text{in}} = 14000 \text{ W}$$

$$P_{in} = 18.767 \text{H.} P$$

মূর্চীপত্রে ফেরত

কোনো কুয়া থেকে 30m উপরে পানি তোলার জন্য 5kW এর একটি পাম্প ব্যবহার করা হয়। পান্দেপর কর্মদক্ষতা 90% হলে পুতি মিনিটে কত লিটার পানি তোলা যাবে? [BUET: '18-19] $[g = 9.8m/\text{sec}^2]$

মমাধান :

কার্যকর ক্ষমতা,

$$P = 5 \times 10^3 \times \frac{90}{100}$$

= 4500 W

এখন, Pt = mgh

$$\therefore m = \frac{Pt}{gh} = \frac{4500 \times 60}{9.8 \times 30}$$

= 918.367 kg

= 918.367 L

[: 1kg ভরের পানির আয়তন 1L]

এখানে. $P' = 5 \text{ kW} = 5 \times 10^3 \text{ W}$ h = 30 m $g = 9.8 \text{ ms}^{-2}$ $t = 1 \min = 60 sec$

একটি পাদপ 4.9 মিনিটে কুয়া থেকে 10,000 লিটার পানি 6m গড় উচ্চতায় তুলতে পারে৷ পান্দেপর ক্ষমতা ৪০% কার্যকর হলে৷ এর ক্ষমতা নির্ণয় কর৷

[উত্তর: 2.5 kW]

একটি কুয়া থেকে ইঞ্জিনের মাহায্যে প্রতি মিনিটে $1500\ kg$ পানি $100\ m$ গড় উচ্চতায় উত্তোলন করা হয়৷ যদি ইঞ্জিনের কার্যকর৷ ক্ষমতা 70% হয়, তাহলে এর অখ্বন্ধমতা কত? ডিবর: 46,92 hp]

একটি কুয়া থেকে ইঞ্জিনের মাহায্যে প্রতি মিনিটে $1000\ kg$ পানি $10\ m$ গড় উচ্চতায় উঠানো হয়। যদি ইঞ্জিনটি ক্ষমতা 40% নষ্ট হয়, তাহলে এর অস্বক্ষমতা নির্ণয় কর?

ডিবর: 3,649 hp]

100m গর্ভীর একটি কুয়া থেকে ইঞ্জিনের সাহায্যে প্রতি মিনিটে $1000\ kg$ পানি উঠানো হয়। যদি ইঞ্জিনটির ক্ষমতা 42% নস্ট হয়। তাহলে এর অশ্বক্ষমতা নির্ণয় কর।

[উত্তর: 37,75H,P]

কোন কুয়া থেকে 20m উপরে পানি তোলার জন্য 6kW এর একটি পাম্প ব্যবহার করা হচ্ছে। পান্দেপর দক্ষতা ৪৪.0% হলে প্রতি মিনিটে কত লিটার পানি তোলা যাবে?

ডিবর: 1616,325 litre]

Type 5 –কৃতকাজ ও গতিশক্তি সংক্রান্ত:

প্रয়োজर्नीय সূত্রাবর্লी

১. কুতকাজ
$$W = Fx$$

২ গতিশক্তির পরিবর্তন

$$= \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$$

এখানে,

F = প্ৰয়োগকৃত বল

x = বল পুয়োগে ফলে সরণ

 $v_0 =$ বল প্রয়োগের পূর্বের বেগ

v = বল প্রয়োগের পরের বেগ

$$\therefore Fx = \frac{1}{2}mv^2 - \frac{1}{2}m_0^2$$

10cm × 10cm × 3cm আকৃতির একটি ইটের ভর 10kg ইটটিকে আনুভূমিক হতে উলম্ব অবস্থায় নিতে কৃতকাজ =?

SINCE 2018

মমাধান :

W = mgh

$$= 10 \times 9.8 \left(\frac{0.1}{2} - \frac{0.03}{2} \right)$$

$$= 3.43J$$

একটি মুষম ইটের মাইজ $6cm \times 8cm \times 10cm$ এর ভর 2.5~kg যেটি ভূপৃষ্ঠে এমনভাবে আছে যে তার একটি বৃহত্তম তল ভূমির ওপর অবস্থিত এই ইটকে তার একটি মুদ্রতম তলের উপর দাড় করাতে কত কাজ =?

মমাধান:

$$W = mg\left(\frac{0.1}{2} - \frac{0.06}{2}\right)$$

$$= 0.49J$$

স্তম্ভ বানাতে $W=mgh\ n_{c_2}=mghrac{n(n-1)}{2}$

 $0.008\,m^3$ আয়তন বিশিষ্ট ঘনক আকৃতির 10 টি পাথর স্তম্ভকে পরপর মাজিয়ে ১টি উচু স্তম্ভ বানাতে কৃতকাজ = ? প্রতিটি পাথরের ভর $0.1~{
m kg}$

মমাধান:

$$v = h^3 : n = \sqrt{0.008} = 0.2 \text{ m}$$

$$w = mgn \frac{n(n-1)}{2}$$

$$= 0.4 \times 9.8 \times 0.2 \times \frac{10(10-1)}{2}$$

= 8.82 J

মোম তৈরিতে কৃতকাজ:

$$w = mgh$$

$$= PAdgh$$

$$1 \ km^2$$
 জায়ণা জুড়ে $2mm$ বৃদ্ধিপাত হলো। $h=1 \ km$ হলে $w=?$

$$w = mgh$$

$$= \rho Adgh$$

$$= 1000 \times (1000)^2 \times 2 \times 10^{-3} \times 10^3 \times 9.6$$

$$= 1.96 \times 10^{10}$$