3. Übung zu Optische Technologien

21. Oktober 2014

 Berechnen Sie die Schnittweite x₂ für Strahlen, die im Abstand h von der optischen Achse einfallen. Beginnen Sie mit der Berechnung von α und β, dann berechnen Sie x₁ und schließlich x₂.

> Benutzen Sie dann ein Tabellenkalkulationsprogramm z.B Excel oder Origin, um x_2 in Abhängigkeit von h zu berechnen und grafisch darzustellen.

Berechnen Sie die Schnittweite x₂ für Strahlen, die im Abstand h von der optischen Achse einfallen. Beginnen Sie mit der Berechnung von α und β, dann berechnen Sie x₁ und schließlich x₂. Die Mittendicke der Linse sei t_c = 0,5; Radius R = 1.

Benutzen Sie dann ein Tabellenkalkulationsprogramm z.B Excel oder Origin, um x_2 in Abhängigkeit von h zu berechnen und grafisch darzustellen

3. Benutzen Sie die Ergebnisse der Aufgaben 1 und 2, um die sphärische Aberration quantitativ zu ermitteln. Bestimmen Sie zuerst die Lage der Hauptebenen der Plankonvexlinse, so dass Sie die Schnittweiten jetzt bzgl. der zugehörigen Hauptebene angeben können. Bestimmen Sie daraus die longitudinale und die transversale sphärische Aberration.

Sphärische Aberration

Skizze für die Berechnung des Schnittpunkts x_2 , der die Brennweite bestimmt. Je größer h, um so kleiner wird x_2 . Weil die Linse asymmetrisch durchstrahlt wird, ist dieser Effekt sehr ausgeprägt.

Sphärische Aberration

Skizze für die Berechnung des Schnittpunkts x_2 , der die Brennweite bestimmt. Je größer h, um so kleiner wird x_2 . Da die Linse relativ symmetrisch durchstrahlt wird, ist dieser Effekt nicht so groß wie im asymmetrischen Fall.