

Day 46 機器學習

梯度提升機-程式碼撰寫

Coding 練習日

楊証琨

知識地圖機器學習-模型選擇-梯度提升機程式碼撰寫

機器學習概論 Introduction of Machine Learning

監督式學習 Supervised Learning

前處理 Processing 探索式 數據分析 Exploratory Data Analysis

特徵 工程 Feature Engineering 模型 選擇 Model selection

參數調整 Fine-tuning

集成 Ensemble 非監督式學習 Unsupervised Learning

> 分群 Clustering

降維 Dimension Reduction

模型選擇 Model selection

概論

驗證基礎

預測類型

評估指標

基礎模型 Basic Model

線性回歸 Linear Regression

邏輯斯回歸 Logistic Regression

套索算法 LASSO

嶺回歸 Ridge Regression

樹狀模型 Tree based Model

決策樹 Decision Tree

隨機森林 Logistic Regression

梯度提升機 Gradient Boosting Machine

本日知識點目標

- 了解梯度提升機的程式碼應用
- 如何使用 Sklearn 來建立梯度提升機的模型
- 了解模型中各項參數的意義

使用 Sklearn 中的梯度提升機

可以看到如同隨機森林,我們一樣從 sklearn.ensemble 這裏 import 進來,代表梯度提升機同樣是個集成模型,透過多棵決策樹依序生成來得到結果,緩解原本決策樹容易過擬和的問題,實務上的結果通常也會比決策樹來得好

from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor clf = GradientBoostingClassifier()

使用 Sklearn 中的梯度提升機

- 同樣是樹的模型,所以像是 max_depth, min_samples_split 都與決策樹相同
- 可決定要生成數的數量,越多越不容易過擬和,但是運算時間會變長

from sklearn.ensemble import GradientBoostingClassifier

常見問題

Q:隨機森林與梯度提升機的特徵重要性結果不相同?

A: 決策樹計算特徵重要性的概念是,觀察某一特徵被用來切分的次數而定。假設有兩個一模一樣的特徵,在隨機森林中每棵樹皆為獨立,因此兩個特徵皆有可能被使用,最終統計出來的次數會被均分。在梯度提升機中,每棵樹皆有關連,因此模型僅會使用其中一個特徵,另一個相同特徵的重要性則會消失

參考資料

請跳出PDF至官網Sample Code&作業 開始解題

