

## UNIVERSIDADE DO ESTADO DO AMAZONAS – UEA ESCOLA SUPERIOR DE TECNOLOGIA – EST

# AMANDA DA SILVA BARBOSA BENILTON SEIXAS ANDRADE EMERSON DA SILVA MUNIZ INGRID MAYUMI FONSECA ONO

SENSORES E INSTRUMENTAÇÃO ELETRÔNICA

MANAUS-AM

2021

# AMANDA DA SILVA BARBOSA BENILTON SEIXAS ANDRADE EMERSON DA SILVA MUNIZ INGRID MAYUMI FONSECA ONO

#### TERMÔMETRO DIGITAL

Relatório técnico-científico apresentado à Universidade do Estado do Amazonas, ao curso de Engenharia Eletrônica para obtenção parcial da disciplina de sensores e instrumentação eletrônica.

Professor: Weverson dos Santos

Cirino

MANAUS – AM

2021

### SUMÁRIO

| 1. IN | TRODUÇÃO                              | 4  |
|-------|---------------------------------------|----|
| 2. Ol | BJETIVO                               | 5  |
| 3. Dl | ESENVOLVIMENTO DO PROJETO             | 6  |
| 4. ES | SPECIFICAÇÕES INICIAIS                | 7  |
| 4.1.  | Arduino UNO                           | 7  |
| 4.2.  | Sensor de umidade e temperatura DHT11 | 8  |
| 4.3.  | Display LCD                           | 9  |
| 4.4.  | Protoboard                            | 10 |
| 4.5.  | Buzzer                                | 10 |
| 5. ES | SPECIFICAÇÕES FINAIS                  | 11 |
| 5.1.  | Suporte termômetro                    | 11 |
| 5.2.  | Bateria Alcalina 9V                   | 13 |
| 5.3.  | Transistor BC337                      | 13 |
| 6. FU | JNCIONAMENTO DO PROTÓTIPO             | 13 |
| 6.1.  | Fator de correção                     | 19 |
| 6.2.  | Visualização final                    | 19 |
| 7. CO | ONCLUSÕES                             | 21 |
| 8. CI | RONOGRAMA (5W2H)                      | 22 |
| 9 RI  | EFERÊNCIAS BIBLIOGRÁFICAS             | 23 |

#### 1. INTRODUÇÃO

O projeto do termômetro digital é de extrema importância para a aplicação dos conhecimentos adquiridos na primeira parte do Curso de Sensores e Instrumentação Eletrônica. Os dados e referências servem de ideia para outros projetos a serem estudados. O trabalho trata de um termômetro digital utilizando uma placa Arduino Uno, sensor DTH-11, display LCD I2C para indicar a temperatura do ambiente, ou seja a temperatura que estará sendo medida em tempor real, um *Buzzer* para informar quando o termômetro atingir temperaturas fora do controle, cuja temperatura mínimo é 25,2°C e a temperatura máximo é 32,6°C.

#### 2. **OBJETIVO**

O objetivo principal é implementar um protótipo de um termômetro digital. Sendo assim, colocar em prática o que foi estudado ao longo do curso ministrado, aplicando o uso do sensor DHT11, controlado pelo Arduino UNO, para monitorar a temperatura ambiente. No projeto, o valor da temperatura será exibido em um display LCD I2C, junto com os valores máximo e mínimo registrados desde que o microcontrolador foi ligado ou reiniciado.

#### 3. DESENVOLVIMENTO DO PROJETO

Sensores de temperatura são dispositivos que identificam a temperatura de um determinado equipamento, processo ou do próprio ambiente, podendo ser utilizados no monitoramento e controle para que se mantenham as condições adequadas de funcionamento ou conforto térmico.

Para o circuito do projeto fez-se uso do módulo DHT11. A ligação do mesmo utiliza apenas um pino para ligação à placa Arduino UNO, uma característica do sensor DHT11 é que ele não fornece informações "quebradas" de temperatura. Isso significa que o sensor vai mostrar as informações de, por exemplo, 18, 20, 25 graus, mas não as casas decimais de 18.2 ou 25.6 graus.

Em primeiro instante será feita a programação no Arduino com a ideia de representar os sinais de saída do sensor de temperatura no display. Assim, o sensor de temperatura DHT11 transforma a temperatura indicada em sinais elétricos que será exibido no Display LCD.



Figura 1. Montagem Inicial do circuito

Fonte: Elaborada pelo Autor

#### Materiais utilizados:

- Arduino UNO;
- Sensor de temperatura DTH11;
- Display LCD (LiquidCrystalI2C);
- Protoboard;
- Buzzer;
- Resistor;
- Transistor;

#### 4. ESPECIFICAÇÕES INICIAIS

#### 4.1. Arduino UNO

O Arduino Uno é uma placa baseada no microcontrolador Atmega328 e possui estrutura de entradas e saídas, sendo possível a conexão com o sensor. O Arduino possui prototipagem eletrônica open-source que se baseia em hardware e software flexíveis e simples de usar. O microcontrolador na placa é programado com a linguagem de programação Arduino, com base na linguagem Wiring, que possui código aberto e é uma abstração do C/C++ para se programar em microcontroladores. Já o ambiente de desenvolvimento Arduino, baseado no ambiente Processing. A placa pode ser alimentada pela conexão USB ou por uma fonte de alimentação externa. [1]

O software utilizado para executar a programação é o IDE Arduino, que é editor de código, compilador e depurador. Os softwares para Arduino são chamados de Sketches e possuem as características de cortar/colar e buscar/substituir o texto. [1]

Para programar tem-se os componentes de estruturas, variáveis, operadores booleanos, de comparação e aritméticos, estrutura de controle e funções digitais e analógicas.



Figura 2. Placa Arduino UNO

Fonte: https://produto.mercadolivre.com.br/

Tabela 1. Especificação Placa Arduino UNO

| ESPECIFICAÇÃO                       |                                                                  |  |  |  |
|-------------------------------------|------------------------------------------------------------------|--|--|--|
| Microcontrolador                    | ATmega328                                                        |  |  |  |
| Tensão de operação                  | 5V                                                               |  |  |  |
| Tensão de alimentação (recomendada) | 7-12V                                                            |  |  |  |
| Tensão de alimentação (limite)      | 6-20V                                                            |  |  |  |
| Entradas e saídas digitais          | 14 das quais 6 podem ser PWM                                     |  |  |  |
| Entradas analógicas                 | 6                                                                |  |  |  |
| Corrente contínua por pino de I/O   | 40 mA                                                            |  |  |  |
| Corrente contínua para o pino 3.3V  | 50 mA                                                            |  |  |  |
| Memória Flash                       | 32 KB (ATmega328) dos quais 0.5 KB são usados pelo<br>bootloader |  |  |  |
| Memória SRAM                        | 2 KB (ATmega328)                                                 |  |  |  |
| EEPROM                              | 1 KB (ATmega328)                                                 |  |  |  |
| Velocidade do Clock                 | 16 MHz                                                           |  |  |  |
| Dimensões                           | 68,58mm x 53,34mm                                                |  |  |  |
| Peso                                | 150g                                                             |  |  |  |

Fonte: https://www.baudaeletronica.com.br/

#### 4.2. Sensor de umidade e temperatura DHT11

O Sensor de Umidade e Temperatura DHT11 é um sensor de temperatura e umidade que permite fazer leituras de temperaturas entre 0 a 50 Celsius e umidade entre 20 a 90%, muito usado para projetos com Arduino. [2]

O elemento sensor de temperatura é um termistor do tipo NTC e o sensor de umidade é do tipo HR202, o circuito interno faz a leitura dos sensores e se comunica a um microcontrolador através de um sinal serial de uma via. Confira a pinagem nas imagens. [2]

Figura 3. Sensor de temperatura e umidade DHT11



Fonte: Datasheet DHT11

Tabela 2. Especificação sensor DHT11

| ESPECIFICAÇÃO                      |                                              |  |  |  |
|------------------------------------|----------------------------------------------|--|--|--|
| Dimensões                          | 23mm x 12mm x 5mm (incluindo terminais)      |  |  |  |
| Alimentação                        | 3,0 a 5,0 VDC (5,5 Vdc máximo)               |  |  |  |
| Corrente                           | 200uA a 500mA, em stand by de 100uA a 150 Ua |  |  |  |
| Faixa de medição de umidade        | 20 a 90% UR                                  |  |  |  |
| Faixa de medição de temperatura    | 0° a 50°C                                    |  |  |  |
| Precisão de umidade de medição     | ± 5,0% UR                                    |  |  |  |
| Precisão de medição de temperatura | ± 2.0 °C                                     |  |  |  |
| Tempo de resposta                  | < 5s                                         |  |  |  |

Fonte: vidadesilicio.com.br/

#### 4.3. Display LCD

Fonte:

O Módulo Adaptador I2C para Display LCD (16X2 / 20X4) foi desenvolvido com a finalidade de simplificar a conexão de display LCD (16X2 / 20X4) ao microcontrolador. Para uma conexão de 4 bits entre o display LCD (16X2 / 20X4) e o microcontrolador é necessário ao menos 6 cabos, logo, se o microcontrolador tiver poucas portas digitais isso poderá ser um problema. Com o Módulo Adaptador I2C para Display LCD (16X2 / 20X4) é necessário apenas 2 cabos de comunicação entre o display LCD (16X2 / 20X4) e o microcontrolador. [3]

Em um projeto mais extenso e que é necessário à utilização de muitas portas digitais por parte de outros dispositivos, o Módulo Adaptador I2C para Display LCD (16X2 / 20X4) pode ser a solução simples e prática para que você economize algumas portas digitais na ligação do seu display LCD (16X2 / 20X4). [3]

Figura 4. Módulo adaptador I2C para display LCD





Próprio autor

Tabela 3. Especificação Display LCD com módulo I2C.

| ESPECIFICAÇÃO                                          |                         |  |  |  |
|--------------------------------------------------------|-------------------------|--|--|--|
| Controlador                                            | PCF8574T                |  |  |  |
| Tensão de operação                                     | 5VDC                    |  |  |  |
| Interface                                              | I2C                     |  |  |  |
| Compatibilidade                                        | display LCD 16×2 e 20×4 |  |  |  |
| Trimpot para ajustar o contraste do display LCD        |                         |  |  |  |
| Pinos para ligar / desligar o backlight do display LCD |                         |  |  |  |

Fonte: https://blogmasterwalkershop.com.br/

#### 4.4. Protoboard

É a ferramenta eletrônica que vai ser utilizada na ligação do sensor com o Arduino. É um excelente componente para a montagem de circuitos eletrônicos, por ser de fácil utilização, rápida e prática para a montagem do projeto. Depois que passamos a entender como é o percurso da corrente elétrica fica muito fácil usar esse componente. Essa ferramenta foi usada somente para montagem inicial do protótipo.

Figura 5. Protoboard



Fonte: Próprio autor

#### 4.5. Buzzer

O Buzzer Ativo 5V é um componente indicado para efeitos sonoros em projetos eletrônicos como alarmes, sistemas de sinalização, jogos, brinquedos, etc. [4]

O buzzer do tipo ativo contém um circuito oscilador embutido, assim basta ser energizado para que o mesmo comece a emitir um beep contínuo. Ao conectar o buzzer ativo no circuito, verificar a polaridade (pinos + e -). [4]

Figura 6. Buzzer



Fonte: https://www.baudaeletronica.com.br/

Tabela 4. Especificação Buzzer

| ESPECIFICAÇÃO      |        |  |
|--------------------|--------|--|
| Tensão de trabalho | 4 a 8V |  |
| Tensão recomendada | 5V     |  |
| Corrente máxima    | 40mA   |  |
| Diâmetro           | 12mm   |  |
| Altura             | 10mm   |  |
| Peso               | 1,6g   |  |
| Peso com embalagem | 1,8g   |  |

Fonte: https://www.usinainfo.com.br/

#### 5. ESPECIFICAÇÕES FINAIS

Para melhor compreensão do projeto o protótipo inicial foi montado no protoboard, com todas as conexões necessárias, logo após a compilação e carregamento do código na placa fez uso dos componentes representados abaixo.

#### 5.1. Suporte termômetro

Para suporte do termômetro foi confeccionado em impressora 3D a estrutura representada na Figura 7, o design foi feito no software *Inventor da Autodesk*.

Figura 7. Suporte para o termômetro digital



**Fonte: Print Software Inventor Autodesk** 

Figura 8. Impressão do suporte em Impressora 3D



Fonte: Próprio Autor

Após a confecção da base para suporte do protótipo como um todo, obteve-se como resultado a estrutura apresentada logo abaixo:

Figura 9. Representação final



Fonte: Próprio Autor

#### 5.2. Bateria Alcalina 9V

Para alimentação da placa Arduino UNO fez uso de uma bateria de 9V conforme a Figura 10.

Figura 10. Bateria



Fonte: https://produto.mercadolivre.com.br/

#### 5.3. Transistor BC337

Para controle de acionamento desnecessário do buzzer foi utilizado um transistor NPN BC337.

#### 6. FUNCIONAMENTO DO PROTÓTIPO

O esquema para auxiliar na montagem no protótipo foi feito no *Software Kicad* e está representado na Figura 11 .



Figura 11. Esquemático do Protótipo

Fonte: Próprio autor

Devido à utilização display com módulo I2C, a montagem tornou-se algo mais simples considerando-se que esse protocolo de comunicação serial é um dos mais práticos, simples e de baixo custo disponíveis no mercado, para projetos

microcontrolados. O protocolo I2C se torna uma mão na roda, visto que possibilita uma modularidade de dispositivos.

O versionamento dos arquivos do protótipo foi feito no GitHub devido a facilidade do controle de versões dos arquivos e compartilhamento entre os participantes da equipe e se encontra no seguinte endereço: <a href="https://github.com/benilton02/termometro\_digital">https://github.com/benilton02/termometro\_digital</a>.

Fez-se uso da biblioteca *ArduinoThreads* no código do termômetro digital. Esta biblioteca implementa e ajuda a:

- Agendar, gerenciar e simplificar tarefas paralelas e periódicas, definir tempo fixo ou variável entre as corridas;
- Organizar o código em qualquer tipo de projeto, coloque todas as leituras do sensor em uma discussão, mantenha o circuito principal limpo;
- Esconder a complexidade do gerenciamento de threads;
- Executar tarefas de "pseudo-background" usando interrupções de temporizador;

Piscar um *LED* geralmente é a primeira coisa que um usuário do Arduino aprende. E isso demonstra que realizar periodicamente uma única tarefa, como alternar o estado de um LED, é realmente fácil. No entanto, pode-se descobrir rapidamente que gerenciar várias tarefas periódicas não é tão simples se as tarefas têm horários diferentes. [5]

Deve-se notar que estes não são "threads" no significado real do termo em ciência da computação: as tarefas são implementadas como funções que são executadas periodicamente. Por um lado, isso significa que a única maneira de uma tarefa render a CPU é retornado ao chamador e, portanto, não é aconselhável *delay* fazer longas esperas dentro de qualquer tarefa. Por outro lado, isso torna o *ArduinoThreads* amigável com a memória, já que nenhuma pilha precisa ser alocada por tarefa. [5]

No programa em questão foram incluídas as bibliotecas necessárias para execução do projeto: *LiquidCrystal\_I2C*, *ThreadController*, *Thread* e *dth11*. O usuário define um objeto Thread para cada uma dessas tarefas e, em seguida, permite que a biblioteca gerencie sua execução programada. Logo após foram definidas constantes para o código e a especificação do devido pino a ser utilizado, conforme o especificado no código o sensor de temperatura DTH11 lerá a cada 700ms.

Para a programação deste protótipo, fez-se uso do sketch abaixo:

```
#include <LiquidCrystal I2C.h>
#include <ThreadController.h>
#include <Thread.h>
#define row 2
#define column 16
ThreadController threadController = ThreadController();
Thread showLcdThread = Thread();
Thread buzzerThread = Thread();
dht DHT;
float minValueCelsius;
float maxValueCelsius;
float celsius;
```

```
return minValueCelsius;
```

As informações adquiridas pelo sensor DHT11 são enviadas para o Arduino e exibidas no display LCD I2C na unidade Celsius (°C) conforme a Figura 13. Uma montagem inicial foi feita para aplicação do código acima citado e apresentação da temperatura no display.

Temp: 33, 88° 34, 88° C

Figura 12. Circuito montado no protoboard

Fonte: Próprio autor

Após alguns testes foi possível perceber alguns acionamentos desnecessários do buzzer, e para evitar possíveis problemas na aquisição dos dados advindos do sensor e acionamentos indesejáveis foi acoplado ao circuito um transistor para que o dispositivo não acione com qualquer interferência. Logo o circuito inicial foi alterado, e uma nova versão foi elaborada no *Software Proteus*, conforme representado na Figura 13.



Figura 13. Esquemático

**Fonte: Print Software Proteus** 

Por questão de estética do circuito, a montagem foi feita em uma placa universal conforme representado na Figura 14.

Figura 14. Circuito montado na placa universal



Fonte: Próprio autor

#### 6.1. Fator de correção

O fator de correção foi determinado fazendo-se aquisição da temperatura medida por um sensor comercial e subtraindo-se da temperatura medida pelo sensor utilizado no projeto DHT11, obtivemos como resultado o valor 0,2, podemos ver na figura 15.

DE NEST US SET ALL AMAX

Figura 15. Circuito montado na placa universal

Fonte: Próprio autor

#### 6.2. Visualização final

Após todas as atualizações e modificações necessárias, para a comprovação e efetivação do funcionamento do protótipo do termômetro digital, foram feitos testes e comparações com um termômetro comercial, e podemos efetivar o real funcionamento do protótipo, na Figuras 16 a demonstração.



Figura 16. Circuito montado na placa universal

Fonte: Próprio autor

Para Visualização do vídeo de explicação do projeto basta acessar o link: <a href="https://drive.google.com/drive/folders/1vqIIG1QsWd9qqYDe4cfI24rv3g0pfQa4?usp=s">https://drive.google.com/drive/folders/1vqIIG1QsWd9qqYDe4cfI24rv3g0pfQa4?usp=s</a> haring

#### 7. CONCLUSÕES

Colocar em prática o que foi visto ao longo da unidade apresentada foi primordial para aplicação de todo o conhecimento adquirido nas aulas. Com a obtenção positiva dos resultados, o processo do aprendizado chegou ao nível esperado, ocorrendo uma expansão dos conhecimentos, conciliando cada área da tecnologia, despertando também a curiosidade em fazer outros projetos em nossas residências envolvendo outras ideias e experimentos.

### 8. CRONOGRAMA (5W2H)

#### Link para o cronograma:

## $\frac{https://docs.google.com/spreadsheets/d/1wbIWk6-iwrk5nlDe8a9g54l2NCYMPKfO}{J0tCxBJIQ/edit?usp=sharing}$

#### 9. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Souza, Fábio. **Introdução ao Arduino Primeiros Passos na plataforma**. Embarcados, 2013. Disponível: <a href="https://www.embarcados.com.br/arduino-primeiros-passos/">https://www.embarcados.com.br/arduino-primeiros-passos/</a>>. Acesso em 09 de mai. de 2021
- [2] **Sensor de Umidade e Temperatura DHT11**. FILIPEFLOP. Disponível em: <a href="https://www.filipeflop.com/produto/sensor-de-umidade-e-temperatura-dht11/">https://www.filipeflop.com/produto/sensor-de-umidade-e-temperatura-dht11/</a>>. Acesso em 09 de mai, de 2021
- [3] Oliveira, Euler. Como usar com Arduino Módulo Adaptador I2C para Display LCD (16x2 / 20x4). Master Walker. Disponível em:
- <a href="https://blogmasterwalkershop.com.br/arduino/como-usar-com-arduino-modulo-adaptador-i2c-para-display-lcd-16x2-20x4">https://blogmasterwalkershop.com.br/arduino/como-usar-com-arduino-modulo-adaptador-i2c-para-display-lcd-16x2-20x4</a>. Acesso em 09 de mai. de 2021
- [4] Buzzer Ativo 5V. FILIPEFLOP. Disponível em:
- <a href="https://www.filipeflop.com/produto/buzzer-ativo-5v/">https://www.filipeflop.com/produto/buzzer-ativo-5v/</a>>. Acesso em 09 de mai. de 2021
- [5] Seidel, Ivan. ArduinoThreads. Disponível em:
- <a href="https://github.com/ivanseidel/ArduinoThread">https://github.com/ivanseidel/ArduinoThread</a>. Acesso em 13 de mai. de 2021
- [6] All Data Sheet. DHT11. Disponível em:
- <a href="https://www.alldatasheet.com/view.jsp?Searchword=Dht11%20datasheet">https://www.alldatasheet.com/view.jsp?Searchword=Dht11%20datasheet</a>>. Acesso em 13 de mai, de 2021
- [7] **All Data Sheet**. BC377. Disponível em:
- <a href="https://www.alldatasheet.com/view.jsp?Searchword=Bc337%20datasheet&gclid=Cj0KCQjw78yFBhCZARIsAOxgSx2qwFVrXxBsz7A0k7R0-ygYig9fylBLDEJNPzrqL6geDiES7Eh6PVEa8rvYEALw\_wcB">https://www.alldatasheet.com/view.jsp?Searchword=Bc337%20datasheet&gclid=Cj0KCQjw78yFBhCZARIsAOxgSx2qwFVrXxBsz7A0k7R0-ygYig9fylBLDEJNPzrqL6geDiES7Eh6PVEa8rvYEALw\_wcB</a>. Acesso em 13 de mai. de 2021