

Kategorisieren der Marsoberfläche mithilfe von Unsupervised Learning durch Backpropagation

Merlin Scholz merlin.scholz@tu-dortmund.de

Mustererkennung, Informatik XII, Technische Universität Dortmund 20. November 2019

Inhalt

- Motivation
- ▶ Verwandte Arbeiten
- ▶ Vorgehensweise
- ▶ Referenzen

Motivation: Neuronale Netze zur Bildsegmentierung

- ► Neuronale Netzwerke werden oft zur Bildsegmentierung genutzt
- Voraussetzung: Manuell erstellte Ground Truth um das Netzwerk zu trainieren

Abbildung: Beispiel: CityScapes Dataset[4]

Motivation: (Fehlende) Ground Truths

Ground Truth nicht immer vorhanden: Beispiel Marsoberfläche

- Zu großer Datensatz
- Notwendigkeit von Experten
- ⇒ Manuelle Erstellung nicht kostengünstig oder zeiteffizient möglich

Lösungsansatz:

Anfangs zufällige Klassifizierung durch Segmentierungsalgorithmus weiter optimieren

Verwandte Arbeiten: Segmentierung nach

Kanezaki[6]] Asako Kanezaki; Unsupervised Image Segmentation by Backpropagation[6]:

- Unüberwachtes Lernen der Segmentierung
- Anfangs zufällige Ergebnisse werden mit Clusteringalgorithmus vereint
- Zielfunktion: Softmax-Loss zwischen Ergebnis des NN und des optimierten Ergebnisses
- NN wird auf diese Zielfunktion hin optimiert (Backpropagation)

Abbildung: Vorgehensweise nach Kanezaki[6]

Verwandte Arbeiten: Crater Detection via CNNs[3]

Vorgehensweise: Implementierung

- ► Grundlegende Idee ähnlich zu Kanezaki[6], basierend auf PyTorch
- ▶ Benutzung von Python Bibliotheken nicht immer möglich (zu große Eingabedaten, bspw. bei SLIC[1])
- ⇒ Speichereffizienter neu implementieren, ggf. über Sliding-Window-Verfahren
- ► Für bessere Performance wird oft auf Cython[2] zurück gegriffen

Vorgehensweise: Erweiterung

Zur Optimierung der Ergebnisse werden einzelne Teile des Algorithmus ersetzt:

- ► Ersetzen des relativ einfachen Neuronalen Netzes durch größere, bspw. ImageNet, Faster R-CNNs, YOLOv3, etc.
- Ersetzen des SLIC Clusteringalgorithmus durch bspw. k-Means Clustering oder Mean-Shift Clustering

Vorgehensweise: Evaluierung

Um die Alternativen evaluieren zu können, wird der Algorithmus auf Datensätze mit vorhandenen Ground Truths angewandt:

- ► Common Objects In Context[7] oder das Cityscapes Dataset[5]
- ⇒ Weit verbreitete Datensätze zur Bildsegmentierung
- ► The Prague Texture Segmentation Datagenerator and Benchmark [8]
- ⇒ Den zu analysierenden Daten sehr ähnlich, also realitätsnaher

Die generierten Resultate werden mit den jeweils zugehörigen Ground Truths verglichen.

Hinweis

Metriken, die auf Clusterlabels basieren sind nur eingeschränkt nutzbar

Hinweis

Zum Vergleich müssen die jeweiligen NNs den selben Seed nutzer

Vorgehensweise: Evaluierung

Um die Alternativen evaluieren zu können, wird der Algorithmus auf Datensätze mit vorhandenen Ground Truths angewandt:

- ► Common Objects In Context[7] oder das Cityscapes Dataset[5]
- ⇒ Weit verbreitete Datensätze zur Bildsegmentierung
- ► The Prague Texture Segmentation Datagenerator and Benchmark[8]
- ⇒ Den zu analysierenden Daten sehr ähnlich, also realitätsnaher

Die generierten Resultate werden mit den jeweils zugehörigen Ground Truths verglichen.

Hinweis

Metriken, die auf Clusterlabels basieren sind nur eingeschränkt nutzbar

Hinweis

Zum Vergleich müssen die jeweiligen NNs den selben Seed nutzer

Vorgehensweise: Evaluierung

Um die Alternativen evaluieren zu können, wird der Algorithmus auf Datensätze mit vorhandenen Ground Truths angewandt:

- ► Common Objects In Context[7] oder das Cityscapes Dataset[5]
- ⇒ Weit verbreitete Datensätze zur Bildsegmentierung
- ► The Prague Texture Segmentation Datagenerator and Benchmark[8]
- ⇒ Den zu analysierenden Daten sehr ähnlich, also realitätsnaher

Die generierten Resultate werden mit den jeweils zugehörigen Ground Truths verglichen.

Hinweis

Metriken, die auf Clusterlabels basieren sind nur eingeschränkt nutzbar

Hinweis

Zum Vergleich müssen die jeweiligen NNs den selben Seed nutzen

S. 15, 2010.

Recognition (CVPR) 2016

Referenzen

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn und K. Smith: *Cython: The Best of Both Worlds*. Computing in Science Engineering, 13(2):31 –39, 2011.

J. P. COHEN, H. Z. LO, T. LU und W. DING: Crater Detection via Convolutional Neural Networks.
arXiv e-prints, S. arXiv:1601.00978, Jan 2016.

M. CORDTS, M. OMRAN, S. RAMOS, T. REHFELD, M. ENZWEILER, R. BENENSON, U. FRANKE, S. ROTH und B. SCHIELE: *The Cityscapes Dataset for Semantic Urban Scene Understanding*. In: *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016.

M. CORDTS, M. OMRAN, S. RAMOS, T. REHFELD, M. ENZWEILER, R. BENENSON, U. FRANKE, S. ROTH und B. SCHIELE: *The Cityscapes Dataset for Semantic Urban Scene Understanding*.

In: Proc. of the IEEE Conference on Computer Vision and Pattern