# MAT1830

Lecture 14: Examples of Functions

The functions discussed in the last lecture were familiar functions of real numbers. Many other examples occur elsewhere, however.

#### 14.1 Functions of several variables

We might define a function

$$\operatorname{sum}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
 by  $\operatorname{sum}(x, y) = x + y$ .

Because the domain of this function is  $\mathbb{R} \times \mathbb{R}$ , the inputs to this function are ordered pairs (x,y) of real numbers. Because its codomain in  $\mathbb{R}$ , we are guaranteed that each output will be a real number. This function can be thought of as a function of two variables x and y.

Similarly we might define a function

binomial : 
$$\mathbb{R} \times \mathbb{R} \times \mathbb{N} \to \mathbb{R}$$

by

$$binomial(a, b, n) = (a + b)^n.$$

Here the inputs are ordered triples (x, y, n) such that x and y are real numbers and n is a natural number. We can think of this as a function of three variables.

**Question** What are the ordered pairs which define the function sum :  $\{1,2\} \times \{1,2\} \to \mathbb{N}$  defined by sum(x,y) = x + y?

## Answer

We have sum((1,1)) = 2, sum((1,2)) = 3, sum((2,1)) = 3, and sum((2,2)) = 4.

So  $\{ ((1,1),2), ((1,2),3), ((2,1),3), ((2,2),4) \}.$ 

**Note** We often abbreviate f((x, y)) to f(x, y) and so on when dealing with multivariable functions.

**Question 14.1** Suggest domains and codomains for the following functions.

gcd domain: 
$$\mathbb{Z} \times \mathbb{Z} - \{(0,0)\}$$
 codomain:  $\mathbb{N}$ 

reciprocal domain:  $\mathbb{R}-\{0\}$  codomain:  $\mathbb{R}-\{0\}$ 

Flux Exercise (LQMTZZ)

Suggest a domain and a codomain for a  $\cap$  (intersection) function for sets of real numbers.

A. domain:  $\mathbb{R} \times \mathbb{R}$ , codomain:  $\mathbb{R}$ 

B. domain:  $\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R})$ , codomain:  $\mathcal{P}(\mathbb{R})$ 

C. domain:  $\mathcal{P}(\mathbb{R})$ , codomain:  $\mathcal{P}(\mathbb{R})$ 

D. domain:  $\mathbb{R} \times \mathbb{R}$ , codomain:  $\mathcal{P}(\mathbb{R})$ 

**Example** Input:  $(\{1, 2, 3, 4\}, \{2, 3, \pi\})$  Ouput:  $\{2, 3\}$ 

### **Answer**

The function must output a \*set\* of real numbers.

So the codomain must be the set containing all sets of real numbers.

 $\mathbb R$  is the set of real numbers, so  $\mathcal P(\mathbb R)$  is the set of all sets of real numbers.

The function must accept a \*pair\* of \*sets\* of real numbers.

So the domain must be the set containing all pairs of sets of real numbers.

 $\mathcal{P}(\mathbb{R})$  is the set of all sets of real numbers, so  $\mathcal{P}(\mathbb{R}) \times \mathcal{P}(\mathbb{R})$  is the set of pairs of sets of real numbers.

So B.

#### 14.2 Sequences

An infinite sequence of numbers, such as

An infinite sequence of numbers, such a 
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots,$$

can be viewed as the function  $f: \mathbb{N} \to \mathbb{R}$  defined by  $f(n) = 2^{-n}$ . In this case, the inputs to

f are natural numbers, and its outputs are real numbers.

Any infinite sequence  $a_0, a_1, a_2, a_3, \ldots$  can be viewed as a function  $g(n) = a_n$  from  $\mathbb N$  to some set containing the values  $a_n$ .

For each of the following sequences, find a function f such that the sequence is  $f(0), f(1), f(2), \ldots$ 

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \dots$$
  $f: \mathbb{N} \to \mathbb{Q}, \ f(n) = \frac{1}{n+1}$ 

$$5, 1, -3, -7, -11, -15, \dots$$
  $f: \mathbb{N} \to \mathbb{Z}, f(n) = 5 - 4n$   
 $4, 12, 36, 108, 324, 972, \dots$   $f: \mathbb{N} \to \mathbb{Z}, f(n) = 4(3^n)$ 

$$4, 12, 36, 108, 324, 972, \dots$$
  $f: \mathbb{N} \to \mathbb{Z}, f(n) = 4(3^n)$ 



#### 14.3 Characteristic functions

A subset of  $\mathbb{N} = \{0, 1, 2, 3, ...\}$  can be represented by its characteristic function. For example, the set of squares is represented by the func-

tion 
$$\chi: \mathbb{N} \to \{0,1\}$$
 defined by 
$$\chi(n) = \left\{ \begin{array}{ll} 1 & \text{if $n$ is a square} \\ 0 & \text{if $n$ is not a square} \end{array} \right.$$

which has the following sequence of values

 $110010000100000010000000100000000000100\dots$ 

(with 1s at the positions of the squares  $0, 1, 4, 9, 16, 25, 36, \ldots$ ).

Any property of natural numbers can likewise be represented by a characteristic function. For example, the function  $\chi$  above represents the property of being a square. Thus any set or property of natural numbers is represented by a function

$$\chi: \mathbb{N} \to \{0,1\}.$$
 Characteristic functions of two or more vari-

ables represent relations between two or more objects. For example, the relation  $x \leq y$  between real numbers x and y has the characteristic function  $\chi : \mathbb{R} \times \mathbb{R} \to \{0,1\}$  defined by

$$\chi(x,y) = \begin{cases} 1 & \text{if } x \leqslant y \\ 0 & \text{otherwise.} \end{cases}$$

Question 14.2 If A and B are subsets of  $\mathbb N$  with characteristic functions  $\chi_A(n)$  and  $\chi_B(n)$ , then what set does the function  $\chi_A(n)\chi_B(n)$  represent?

#### **Answer**

If  $n \in A$  and  $n \in B$  then  $\chi_A(n)\chi_B(n) = 1 \times 1 = 1$ .

If  $n \in A$  and  $n \notin B$  then  $\chi_A(n)\chi_B(n) = 1 \times 0 = 0$ .

If  $n \notin A$  and  $n \in B$  then  $\chi_A(n)\chi_B(n) = 0 \times 1 = 0$ .

If  $n \notin A$  and  $n \notin B$  then  $\chi_A(n)\chi_B(n) = 0 \times 0 = 0$ .

So  $\chi_A(n)\chi_B(n)$  is the characteristic function of  $A \cap B$ .

**Question** defined by

Let d be a positive integer. If  $\chi_d:\mathbb{N} \to \{0,1\}$  is a function

$$\chi_d(x) = \begin{cases} 1, & \text{if } x \text{ divides } d; \\ 0, & \text{if } x \text{ does not divide } d. \end{cases}$$

then what is  $1\chi_d(1) + 2\chi_d(2) + 3\chi_d(3) + \cdots + d\chi_d(d)$ ?

#### **Answer**

The sum of the positive divisors of d.

**Question** How many functions are there with domain  $\{1,2,3,4\}$  and codomain  $\{-1,0,1\}$ ?

#### **Answer**

The domain has 4 elements. (There are 4 possible inputs.) For each input, we can decide if it's mapped to -1 or 0 or 1. We can do this in  $\underbrace{3 \times 3 \times \cdots \times 3}_{4} = 3^{4} = 81$  ways.

Question How many functions are there with domain X and codomain Y?

#### **Answer**

The domain has |X| elements. (There are |X| possible inputs.) For each input, we have |Y| options for where it's mapped to. We can do this in  $\underline{|Y| \times |Y| \times \cdots \times |Y|} = |Y|^{|X|}$  ways.

|X|

#### 14.4 Boolean functions

The connectives  $\land$ ,  $\lor$  and  $\neg$  are functions of variables whose values come from the set  $\mathbb{B} = \{\mathsf{T},\mathsf{F}\}$  of Boolean values (named after George Boole)

$$\neg:\mathbb{B}\to\mathbb{B}$$

and it is completely defined by giving its values on T and F, namely

$$\neg T = F$$
 and  $\neg F = T$ 

This is what we previously did by giving the

truth table of  $\neg$ .

$$\wedge$$
 and  $\vee$  are functions of two variables, so

$$\wedge: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$

and

$$\vee \cdot \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

They are completely defined by giving their values on the pairs  $\{T,T\}, \{T,F\}, \{F,T\}, \{F,F\}$  in  $\mathbb{B} \times \mathbb{B}$ , which is what their truth tables do.

Flux Exercise (LQMTZZ)

Let  $\mathbb{B} = \{0,1\}$ . How many functions are there with domain  $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$  and codomain  $\mathbb{R}^2$ 

$$\mathbb{B} \times \mathbb{B} \times \cdots \times \mathbb{B}$$
 and codomain  $\mathbb{B}$ ?

A.  $n^2$ 

B.  $2^{(n^2)}$ 

 $C_{n}$   $2^{n}$ 

D.  $2^{(2^n)}$ 

#### **Answer**

The domain has  $2^n$  elements. (There are  $2^n$  possible inputs.)

For each input, we can decide if it's mapped to 0 or 1. We can do this in  $2 \times 2 \times \cdots \times 2 = 2^{(2^n)}$  ways.

So D.

For n = 2 there are  $2^{\binom{2^2}{3}} = 2^4 = 16$ .

For n = 3 there are  $2^{(2^3)} = 2^8 = 256$ . For n = 4 there are  $2^{(2^4)} = 2^{16} = 65536$ .

# **Example (Hamming distance)**

Let  $B_n$  be the set of all binary strings of length n.

Hamming distance is a function  $h: B_n \times B_n \to \mathbb{N}$  defined by h(s,t) equals the number of places in which s and t disagree.

For example, h(000, 101) = 2, h(011, 010) = 1, h(10111, 01000) = 5. A set of binary strings of length n such that any two different strings in the set have Hamming distance at least d is called a *binary error* correcting code of length n and distance d.

These are useful in sending information across noisy channels.

```
{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} is a binary code of length 4 and distance 2.
```

If we only send strings in this set across a channel and at most one error occurs in each string then we will be able to detect the errors.

```
 \{0000000, 1110000, 1001100, 0111100, 0101010, 1011010, 1100110, 0010110, \\ 1101001, 0011001, 0100101, 1010101, 1000011, 0110011, 0001111, 1111111 \}  is a binary code of length 7 and distance 3.
```

If we only send strings in this set across a channel and at most one error occurs in each string then we will be able to *correct* the errors on the fly.



# 14.5\* Characteristic functions and subsets of $\mathbb{N}$

Mathematicians say that two (possibly infinite) sets A and B have the same cardinality (size) if there is a one-to-one and onto function from A to B. This function associates each element of A with a unique element of B and vice-versa. With this definition, it is not too hard to show that, for example,  $\mathbb N$  and  $\mathbb Z$  have the same cardinality (they are both "countably infinite").

It turns out, though, that  $\mathcal{P}(\mathbb{N})$  has a strictly greater cardinality than  $\mathbb{N}$ . We can prove this by showing: no sequence  $f_0, f_1, f_2, f_3, \ldots$  includes all characteristic functions for subsets of  $\mathbb{N}$ . (This shows that there are more characteristic functions than natural numbers.)

In fact, for any infinite list  $f_0, f_1, f_2, f_3, \ldots$  of characteristic functions, we can define a characteristic function f which is not on the list. Imagine each function given as the infinite sequence of its values, so the list might look like this:

 $f_0$  values 0101010101...  $f_1$  values 0000011101... $f_2$  values 1111111111...

 $f_3$  values  $000\underline{0}0000000...$  $f_4$  values  $1001\underline{0}01001...$ 

Now if we switch each of the underlined values to its opposite, we get a characteristic function

$$f(n) = \begin{cases} 1 & \text{if } f_n(n) = 0\\ 0 & \text{if } f_n(n) = 1 \end{cases}$$

which is different from each function on the list. In fact, it has a different value from  $f_n$  on the number n.

For the given example, f has values

The construction of f is sometimes called a "diagonalisation argument", because we get its values by switching values along the diagonal in the table of values of  $f_0, f_1, f_2, f_3, \ldots$