最後一組 Midterm Report

M11215032 葉品和 M11215052 陳奕帆 M11215066 鄭宜珊

1. Dataset

We use the dataset "**Students Performance in Exams**" from Kaggle. There are a total of 8 attributes. The first 5 attributes are quasi-identifier, and the last 3 attributes are sensitive attributes.

2. Anonymizing Algorithm

In the "race/ethnicity" attribute, there are a total of 5 categories, namely "group A" to "group E." Among them, "group C" and "group D" appear the most frequent, accounting for 32% and 26%, respectively. As a result, we have modified the remaining 3 categories to "other" to achieve anonymity.

There are 6 different categories in attribute "parental level of education". "some college" appears the most frequently(23%), "associate's degree" is the second, it has about 22%. We combine the rest of the categories into two combinations. "some high school" and "high school" to "before college". "bachelor's degree" and "master's degree" to "bachelor's and master's degree".

We use the mondrian algorithm to produce the data based on different k, l and t. Initially, the Mondrian algorithm assigns all data records to one group. It then iteratively partitions the data on the attribute values to split each group into two subsets. The split subsets are added back to the list for further partitioning if the partitioning meets the user-defined "k", "l", "t" constraints. Otherwise, another attribute is selected for partitioning the group.

If no attribute yields a valid partition that meets the constraints for a group, that group is added to the output dataset.

The iteration continues until no more groups can be further partitioned. Finally, generalization is applied on the attribute values in the output groups to meet the k-anonymity, l-diversity and t-closeness requirements defined by the user.

gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_course	math_score	reading_score	writing_score
male	group D	high school	free/reduced	none	75	74	66
female	group D	high school	free/reduced	none	39	52	46
male	group D	some high school	free/reduced	none	62	49	52
female	group E	associate's degree	free/reduced	none	50	56	54
male	group C	high school	standard	none	71	79	71

(a) original data

gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_course	reading_score	writing_score	math_score
male	other	associate's degree,bachelor's and master's degree	standard	none	60	60	70
male	group C	NaN	standard	none	60	60	60
female	other	NaN	free/reduced	none	80	80	80
male	other	NaN	free/reduced	completed	70	70	70
female	other	associate's degree,bachelor's and master's degree	standard	none	60	60	50

(b) anonymized data (k=10, l=10, t=0.3)

3. Machine Learning

In the preprocessing phase, we applied one-hot encoding to map the categorical attributes "race/ethnicity" and "gender". The attribute "parental level of education" was mapped to numeric values from 1 to 7, corresponding to the 7 levels of education. The "lunch" and "test preparation course" attributes were encoded into boolean values.

We've used the SVM algorithm to predict the attribute "writing score". Then, we used 3 metrics, including "Mean Square Error(MSE)", "Root Mean Square Error(RMSE)", and "Explained Variance Score", "R-Squared" to evaluate our model. The figures below show the results of the original data and the anonymized data after preprocessing.

parental_level_of_education	lunch	test_preparation_course	math_score	reading_score	writing_score	female	male	group_C	group_D	other
7	True	False	70	70	70					1
3	True	True	60	90	80					0
7	True	False	90	90	90					1
5	False	False	40	50	40					1
3	True	False	70	70	70	0	1	1	0	0
(c) original data (preprocessed)										
parental_level_of_education	lunch	test_preparation_course	reading_sco	re writing_sco	re math_score	female	male	group_C	group_D	other

parental_level_of_education	1unch	test_preparation_course	reading_score	writing_score	math_score	female	male	group_C	group_D	other
1	False	False	20	20						1
1	False	False	30	20	10					1
1	False	False	30							1
1	False	False	30	30	30					1
1	False	False	40	40	30	1	0	0	0	1

(d) anonymized data (preprocessed)

4. Results

(1) Predict attribute: "writing score"

(2) train with original data:

original data:
Mean Squared Error (MSE): 12.6090
Root Mean Squared Error (RMSE): 3.5450
R-squared (R^2): 0.9443
Explained Variance Score: 0.9449

(3) train with anonymized data (different k, l, t):

$l \setminus t$	0.2	0.3			
5	red	blue			
10	green	black			

(red line coincides with blue line and black line)

5. Responsibilities

葉品和	data collection, Mondrian algorithm(l-diversity), integrating, report, result plot
陳奕帆	Mondrian algorithm(k-anonymity), ML(preprocessing), report, video
鄭宜珊	Mondrian algorithm(t-closeness), ML(result measurement), report

6. Video

 $\underline{https://youtu.be/PWxChaRz_0o}$