Problem I. Long Jumps

Time limit 2000 ms **Mem limit** 262144 kB

Polycarp found under the Christmas tree an array a of n elements and instructions for playing with it:

- At first, choose index i ($1 \le i \le n$) starting position in the array. Put the chip at the index i (on the value a_i).
- While $i \leq n$, add a_i to your score and move the chip a_i positions to the right (i.e. replace i with $i+a_i$).
- If i > n, then Polycarp ends the game.

For example, if n = 5 and a = [7, 3, 1, 2, 3], then the following game options are possible:

- Polycarp chooses i=1. Game process: $i=1 \stackrel{+7}{\longrightarrow} 8$. The score of the game is: $a_1=7$.
- Polycarp chooses i=2. Game process: $i=2\stackrel{+3}{\longrightarrow}5\stackrel{+3}{\longrightarrow}8$. The score of the game is: $a_2+a_5=6$.
- Polycarp chooses i=3. Game process: $i=3\stackrel{+1}{\longrightarrow}4\stackrel{+2}{\longrightarrow}6$. The score of the game is: $a_3+a_4=3$.
- Polycarp chooses i=4. Game process: $i=4\stackrel{+2}{\longrightarrow} 6$. The score of the game is: $a_4=2$.
- Polycarp chooses i=5 . Game process: $i=5\stackrel{+3}{\longrightarrow} 8$. The score of the game is: $a_5=3$.

Help Polycarp to find out the maximum score he can get if he chooses the starting index in an optimal way.

Input

The first line contains one integer t ($1 \le t \le 10^4$) — the number of test cases. Then t test cases follow.

The first line of each test case contains one integer n ($1 \le n \le 2 \cdot 10^5$) — the length of the array a.

The next line contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^9$) — elements of the array a.

It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, output on a separate line one number — the maximum score that Polycarp can get by playing the game on the corresponding array according to the instruction from the statement. Note that Polycarp chooses any starting position from 1 to n in such a way as to maximize his result.

Sample 1

Input	Output
4 5 7 3 1 2 3 3 2 1 4 6 2 1000 2 3 995 1 5 1 1 1 1 1	7 6 1000 5

Note

The first test case is explained in the statement.

In the second test case, the maximum score can be achieved by choosing i=1.

In the third test case, the maximum score can be achieved by choosing i=2.

In the fourth test case, the maximum score can be achieved by choosing i=1.