Алгебра. Конспект 2 сем.

Мастера Конспектов

(по материалам лекций В. А. Петрова, а также других источников)

12 февраля 2021 г.

Некоторые записи по алгебре.

Содержание

1	Лекция 30.	3
2	Лекция 31.	6
3	Лекция 32.	8
4	Лекция 33.	11

1 Лекция 30.

Пусть R - кольцо главных идеалов, а M - конечно порождённый R-модуль (левый).

$$m_1,\ldots,m_n\in M,\ M=\{\sum r_im_i|r_i\in R\}$$

Пусть $\varphi: R^n \to M$ - функция, которая действует по правилу $e_i \mapsto m_i$ (базисные элементы R^n (именно тривиального базиса) в элементы m_i).

Тогдя ядро $\operatorname{Ker} \varphi \leq R^n$ - подмодуль. Причём равен он $\{(r_i) | \sum r_i m_i = 0\}$ - соотношения (линейные) между m_i . А также он есть свободный модуль R^k , $k \leq n$.

$$\operatorname{Ker} \varphi = R^k, \ R^k \le R^n$$
$$\psi : R^k \to R^n$$

Подходящей заменой базиса в R^k и R^n можно добиться того, чтобы ψ стала диагональной матрицей (с нижними нулевыми строками, естественно) и числами $d_1|d_2|\dots|d_k$ на диагонали.

Тогда $M \cong R^{n-k} \oplus R/(d_i) \oplus \ldots \oplus R/(d_k)$ (это планируется доказывать, но перед этим нужно ввести несколько определений).

Определение 1. Пусть R кольцо (не обязательно коммутативное), тогда M - uuклический, если он порождён одним элементом ($M = \{rm | r \in R\}$).

Пусть $\theta:R\to M$ - гомоморфизм R-модулей, действующий по правилу $r\mapsto rm,$ он сюръективен и $M\simeq R/\mathop{\rm Ker} \theta$ по теореме о гоморфизме.

$$\operatorname{Ker} \theta = \{ r \in R | rm = 0 \} \le R,$$

что также является левым идеалом.

А если R - область главных идеалов, то циклический модуль выглядит как R/(d). Если d=0, то R - свободный модуль ранга 1, а если он не равен нулю, то это есть модуль кручения $\forall x \in M \ dx = 0$.

Теорема 1. Конечнопорождённый модуль над областью главных идеалов - конечная прямая сумма циклических модулей.

Была доказана в прошлом семестре (не у нас). Однаком мы можем сформулировать следствие:

Следствие 1. Конечнопорождённая абелева группа - конечная прямая сумма циклических групп.

Пусть R - область, M - R-модуль, тогда подмодуль кручения -

$$Tors(M) = \{ m \in M | \exists r \neq 0, rm = 0 \}$$

Утверждение 1. Tors(M) - модмодуль в M.

Нужно выполнить проверку этого утверждения, но для этого достаточно проверить, что всё хорошо с нулём (он там лежит и $1 \cdot 0 = 0$), а затем несколько свойств:

$$m_1, m_2 \in \text{Tors}(M), r_1, r_2 \neq 0, r_1 m_1 = r_2 m_2 = 0,$$

тогда

$$r_1r_2(m_1+m_2)=0, r_1r_2\neq 0,$$

а также, если

$$m \in \text{Tors}(M), s \in R, rm = 0 \Rightarrow r(sm) = rsm = s(rm) = 0.$$

Пусть $r \in R, \ r \neq 0, \ M[r] := \{m \in M: \ rm = 0\} \leq M$ - подмодуль, p - пргстой элемент R. Рассмотрим $M[p] \leq M[p^2] \leq M[p^3] \leq \dots$ - получили цепочку вложенных модулей. $M_p := \bigcup_{i \geq 1} M[p^i]$ - подмодуль, p-кручение в M.

Сейчас начнётся пиздец. Наша цель: доказать, что $\mathrm{Tors}(M) \cong \bigoplus_{p-\mathrm{простое}} M_p$. N_i - модули $i \in I$, $\bigoplus := \{(n_i)_{i \in I} | n_i \in N_i$, почти все $n_i = 0\}$, операции покомпонентные. Это, получается, (бесконечная) прямая сумма модулей.

Теорема 2. (О примарном разложении). Пусть R - область главных идеалов, M - R-модуль. Тогда $\bigoplus M_p \to \text{Tors}(M)$, дествующий по правилу $(m_p) \mapsto \sum m_p$ (конечная сумма) - изоморфизм модулей.

Доказательство. Докажем всё по порядку:

- Докажем, что это гомоморфизм. $(m_p + n_p) \mapsto \sum m_p + n_p = \sum m_p + \sum n_p$, а также $(rm_p) \mapsto \sum rm_p = r(\sum m_p)$.
- Теперь нужно доказать сюръективность. $m \in \text{Tors}(m), rm = 0, r = \prod_{i=1}^n p_i^{\alpha_i},$ где p_i простое. Рассмотрим линейное разложение НОД:

$$r_1 p_2^{\alpha_2} \dots p_n^{\alpha_n} + \dots + r_n p_1^{\alpha_1} \dots p_{n-1}^{\alpha_{n-1}} = 1.$$

Тогда если мы домножим равенство на m, получим, что $r_i = \frac{rm}{p_i^{\alpha_i}} \in M_{p_i}$, тогда получим, что $(r_1 p_2^{\alpha_2} \dots p_n^{\alpha_n} m, \dots, r_n p_1^{\alpha_1} \dots p_{n-1}^{\alpha_{n-1}} m) \mapsto m$.

• Осталась инъективность. Пусть $0 \neq (m_p) \mapsto 0$, возьмём наименьшее число индексов, что $\sum m_p = 0$. А теперь начнём его уменьшать. Пусть у нас есть $p_1, \ldots, p_n, p_i^{\alpha_i} m_{p_i} = 0$. Всё домножим на $p_n^{\alpha_n}$, получим $\sum p_n^{\alpha_n} m_p = 0$. Тогда раньше было $m_{p_n} \neq 0$, а теперь $p_n^{\alpha_n} m_{p_m} = 0$. Докажем, что ничего, кроме последнего не обнулилось. Предположим противное, $p_1^{\alpha_1} m_1 = 0$, $p_n^{\alpha_n} m_1 = 0$, но $p_1^{\alpha_1}$, $p_n^{\alpha_n}$ - взаимно просты, тогда есть линейное разложение $r_1 p_1^{\alpha_1} + r_n p_n^{\alpha_n} = 1$, домножим на m, получим $r_1 p_1^{\alpha_1} m_1 + r_n p_n^{\alpha_n} m_1 = m_1$, но оба они не могут быть равны нулю.

Сейчас будем заниматься в основном кольцом многочленов. Пусть R = F[t], F - поле, V - R-модуль. В частности, V - F-модуль, то векторное пространство $A: v \to tv$ - F-линейное отображение $V \to V$ оператор. Линейные операторы образуют кольцо (сумма - поточечно, умножение - композиция). A(v) или Av.

$$(a_0 + a_1t + \dots + a_nt^n)V = a_0v + a_1Av + \dots + a_nA^nv$$

V - векторное порстранство с оператором, значит, F[t] - модуль.

Пусть a - матрица $n \times n$ $F^n \to F^n$, F[t] - модуль на F^n . F[t] - как модуль над собой векторное пространство со счётным базисом.

Утверждение 2. Пусть V возьмём конечнопорождённый модуль над F[t], тогда V - конечномерное векторное пространство над F тогда и только тогда, когда V = Tors(V) (как F[t]-модуль).

Доказательство. $F[t]^n \oplus F[t]/(f_i) \oplus \ldots \oplus F[t]/(f_k)$, где $f_i \neq 0$. Если $n \neq 0$, то в V есть бесконечномерное подпространство F[t]. Если n = 0, то $\dim_F F[t]/(f_i) = \deg f_i < \infty$.

Теперь рассмотрим матрицы. Пусть dim $V=n,\,A:V\to V$. Если зафиксировать базис в V, получается матрица $a\,\,n\times n$. Взали другой базис, получим матрицу перехода $c.\,\,V\to V$ посредством A, причём стороны соответственно изоморфны вот таким вещам (по центру, я не умею так круго чертить, загляните в лекцию) $F^n \xrightarrow{c^{-1}} F^n \xrightarrow{a} F^n \xrightarrow{c} F^n$. И, кстати, $a\sim c^{-1}ac$ (сопряжённая матрица).

Рассмотрим модуль F[t]/(f), что также есть V, A. Поймём, что такое f. Он обладает таким свойством: $(f) = \operatorname{Ker}(F[t \to F[t/(f)]]) = \{g(t)|\ g(t) \cdot v = 0\ \forall v \in V\}$. Однако последнее равенство неочевидно. По определению там может быть написано $\{g(t)|\ g(t)\cdot [1]=0\}$, но $[h(t)] = h(t)\cdot 1$, поэтому он обнуляется $g(t)\colon g(t)\cdot [h(t)] = h(t)\cdot g(t)\cdot [1] = 0$, откуда и получаем искомое.

Давайте теперь запишем это в терминах оператора. Если

$$g(t) = a_0 + a_1 t + \ldots + a_k t^k,$$

тогда

$$g(t) \cdot v = a_0 v + a_1 A v + \ldots + a_k A^k v.$$

Каждый раз писать такие длинные вещи неудобно, поэтому введём следующее обозначение:

$$g(A) := a_0 v + a_1 A + \ldots + a_k A^k.$$

В силу того, что A коммутирует с собой, то такая запись корректна. Тогда мы можем переписать:

$$\{q(t)|\ q(t)\cdot v = 0\ \forall v\in V\} = \{q(t)|\ q(A)v = 0\ \forall v\in V\},\$$

но если последнее выполнено для любого $v \in V$, то получаем, что оператор - тождественный нуль, получаем $\{g(t)|\ g(A)=0\}.$

Также можно пойти и в обратныую сторону, то есть, пусть мы знаем A, рассмотрим $\{g(t)|g(A)=0\}$. Это - идеал в F[t], скажем, что это (f(t)), тогда f(t) мы будем называть минимальным многочленом оператора A. Можно заметить, что минимальный многочлен не равен нулю, если у нас имеется конечномерное пространство, не может быть такого, что никакой многочлен A не обнуляет. Покажем это.

Найдём некую линейную зависимость между степенями A. Рассмотрим Id,A,A^2,\ldots элементы кольца операторов. Рассмотрим это кольцо как векторное пространство над F. Если $\dim V=\mathrm{T}$, то у полученного пространства размерность есть n^2 , то есть, конечна. Потому бесконечной линейно независимой системы быть не может, тогда когда-то мы получим линейную зависимость:

$$a_0 + a_1 A + \ldots + a_k A^k = 0,$$

тогда отсюда мы и нашли требуемый многочлен.

2 Лекция 31.

Начинаем опять с оператора. Рассматриваем векторной пространство V над каким-то полем F и мы действуем на него оператором $A:V\to V$. Мы его также рассматривали как F[t] модуль, $t\cdot v=Av$. Мы определили минимальный многочлен A такой, что $\{g(t)\in F[t]|g(a)=0\}$ $\lhd F[t]$, причём F[t]=(f(t)) - идеал унитарного (нуо) многочлена. Такой f(t) и называется минимальным многочленом.

Теперь немного понятнее на языке модулей. Рассмотрим V - F[t]-модуль, а также $\mathrm{Ann}(V) := \{r \in V | rv = 0, \ \forall v \in V\}$. Это - идеал в R, причём даже двусторонний (можно будет потом записать проверку). Причём получаем, что $\mathrm{Ann}(V) = (f(t))$, легко заметить, что они совпадают.

g(A)v=0, но тогда

$$g = a_0 + a_1 t + \dots + a_k t^k$$

 $g = a_0 + a_1 A v + \dots + a_k A^t v = 0$

что также и равно $g(t) \cdot v$. Тогда $f(A)v = g(t) \cdot v$ как оператор и из структуры модуля соответственно. Тогда $g(A) = 0 \Leftrightarrow g(A) \cdot v = 0$ для любого $v \in V \Leftrightarrow g(t) \cdot v = 0 \ \forall v \in V \Leftrightarrow g(t) \in \mathrm{Ann}(v)$.

Мы уже начинали рассматривать такой модуль: F[t]/(f(t)) - F[t]-модуль, имеем также $V, Av = t \cdot v$. Мы хотим придумать базис V, в которм матрица A имеет простой вид. Возьмём такой базис: $[1], [t], \ldots, [t^{k-1}]$, тогда $[t^k] = -a_0[1] - \ldots - a_{k-1}[t^{k-1}]$. Как выглядит матрица A в этом базисе?

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \dots & 0 & -a_{k-2} \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{pmatrix}$$

Такая матрица называется фробениусовой клеткой. А вообще, в итоге мы получили, что если V - циклический F[t]-модуль, то A в некотором базисе записывается фробениусовой клеткой, причём последним столбцом будут коэффициенты минимального многочлена, только со знаком "минус".

А если модуль не циклический (произвольный и с конечномерным V), то мы можем его разложить в прямую сумма циклических:

$$F[t]/(f_1(t)) \oplus F[t]/(f_2(t)) \oplus \ldots \oplus F[t]/(f_m(t)),$$

причём мы можем даже потребовать, чтобы $f_1|f_2|\dots|f_n$.

Умножение на t будет действовать поккординатно.

Для каждого слагаемого мы умеем выписывать матрицу оператора A в подходящем базисе. Матрица A тогда выглядит на всём пространстве как цепочка фробениусовых клеток, расставленных по порядку по диагонали.

Зададимся теперь вопросом: чему же в таком случае равен минимальный многочлен? Ответ таков:

$$A = f_m(t),$$

причём принципиально условие цепочки делений.

Как считать инвариантные факторы (то есть, $f_1(t), \ldots, f_n(t)$)? Рассмотрим V и F[t]. e_1, \ldots, e_n - базис V как векторное пространство над F, а тем более, это система образующих V как F[t]-модуля. Какими соотношениями обладает этот набор? $t \cdot e_i = Ae_i$ - линейная комбинация e_1, \ldots, e_n . Это соотношение между e_i с коэффициентами из f(t), получаем $(t \cdot I - A)e_i = 0$.

Мы имеем n образующих и n таких последних соотношений. Рассмотрим матрицу $(t \cdot I - A)$, она имеет размер $n \times n$ над F[t] и выглядит так:

$$\begin{pmatrix} t - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & t - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & -a_{nn} \end{pmatrix}$$

Домножим её слева и справа на обратимые над F[t] матрица и приведём её к диагональному виду, а на диагонали будут расставлены f_1, \ldots, f_m (перед которыми n-m единиц). Последний многочлен будет минимальным многочленом A.

Сравним определители этих матриц. Определитель обратимой матрицы лежит в $F[t]^* = F^*$. Идеал, порождённый в F[t] определителем, не поменяется, тогда

$$(\det(t\cdot I-A))=(f_1(t)\ldots f_n(t)),$$

тогда $\det(t \cdot I - A)$) $\in F[t]$ мы будем называть характеристическим многочленом матрицы A (обозначаем $\chi_A(t)$). Имеет он степень n, причём он ещё и унитарный в силу того, что максимальная степень будет содержаться в $(t - a_{11})(t - a_{22}) \dots (t - a_{nn})$.

Причём тогда мы можем получить такое равенство из того, что и характеристический многочлен, и призведение f_i унитарно:

$$\chi_a(t) = f_1(t) \cdot \ldots \cdot f_n(t),$$

откуда минимальный многочлен делит характеристический многочлен, а характеристический делит минимальный в степени n.

Наборы неприводимых делителей у минимаьлного и характеристического многочленов совпадают. В частности, наборы корней без учёта кратности совпадают.

Теорема 3. (Теорема Гамильтона-Кэли). Минимальный многочлен делит характеристичесий, имеет такие эке корни [и у них совпадают неприводимые делители].

Приступим теперь к рассмотрению нильпотентным операторам.

Определение 2. $A:V \to V$ - *нильпотентный*, если $A^k=0$ для некоторого k.

Нужно теперь научиться понимать, когда это выполнено. Берём $k:A^k=0,A^{k-1}\neq 0$ (наименьшее возможное?). Минимальный многочлен у A - t^k , потому что он подходит, и никакой его делитель не подходит. Какой же характеристический многочлен у A? Это есть t^n , где $n=\dim V$ из теоремы Гамильтона-Кэли.

Пусть $A^k=0$ - минимальная такая степень. Рассмотрим V как F[t]-модуль.

$$F[t]/(t^{k_1}) \oplus F[t]/(t^{k_2}) \oplus \ldots \oplus F[t]/(t^{k_m}), k_1 < k_2 < \ldots < k_m = k,$$

а само k мы называем cmene+bbo нильпотентности. Кстати, фробениусова клетка нильпотентного оператора теперь выглядит ещё лучше, весь правый столбец теперь состоит из нулей (в подходящем базисе). В общем случае, она составлена из квадратиков такого вида. Получили мы матрицу строгонижнетреугольного вида.

Определение 3. *Нижнетреугольная матрица* - всё, выше главной диагонали - нули. *Строгонижнетреугольная матрица* - ещё и диагональ - нули.

Как найти такой базис (без формы Смита)? Запишем по индукции:

$$V[t] = \{v \in V | tv = 0\} = \text{Ker}(A),$$

$$V[t^{2}] = \{v \in V | t^{2}v = 0\} = \text{Ker}(A^{2}),$$

$$...$$

$$V[t^{k-1}] = \text{Ker}(A^{k-1}),$$

$$V[t^{k}] = \text{Ker}(A^{k}) = V.$$

Рассмотрим цепочку вложенных пространств:

$$0 < \text{Ker}(A) < \text{Ker}(A^2) < \dots < \text{Ker}(A^{k-1}) < V.$$

Посмотрим на образ A (то есть, $\operatorname{Im} A$), он попадёт в $\operatorname{Ker}(A^{k-1})$, а вот $A(\operatorname{Ker}(A^{k-2})) \leq \operatorname{Ker}(A^{k-2})$.

Осталось найти тот самый базис, в котором матрица A имеет нужный вид. Рассмотрим фактор-пространство $V/\operatorname{Ker}(A^{k-1})$, и выберем в нём базис. Это даёт нам относительный базис V относительно $\operatorname{Ker}(A^{k-1})$ (скажем, это e_1,\ldots,e_s). Тогда что с ними происходит: $e_1.Ae_1,\ldots,A^{k-1}e_1$, причём получается, что все они не равны нулю, так как они не лежат в классе нуля.

Рассмотрим $\langle e_1.Ae_1, \dots, A^{k-1}e_1 \rangle$ - A переводит его в себя. Рассмотрим матрицу A в данном базисе, это как раз будет фробениусова клетка размера k. Так проделаем для каждого элемента базиса и получим s фробениусовых клеток размера k, где s также было размерностью отфакторизованного пространства, тогда $s = \dim V - \dim \operatorname{Ker}(A^{k-1})$.

Теперь рассмотрим $\operatorname{Ker}(A^{k-1})/(\operatorname{Ker} A^{k-2} + \operatorname{Im} A)$ - подпространство, порождённое $\operatorname{Ker} A^{k-2}$ и $\operatorname{Im} A$. Возьмём относительный базис $e_{1,1},\ldots,e_{s_1,1}$, опять перейдём к $\langle e_{1,1}.Ae_{1,1},\ldots,A^{k-1}e_{1,1}\rangle$ - тут A имеет матрицу в виде фробениусовой клетки размера k-1 (если фробениусовых клеток такого размера нет, это пространство равно нулю). s_1 - количество таких клеток.

W, наконец, клетки размера k-i: $\mathrm{Ker}(A^{k-i})/(\mathrm{Ker}(\mathring{A}^{k-i-1})+\mathrm{Im}\,A^i)$, рассмотрим тут базис и проделаем аналогичные операции.

3 Лекция 32.

Примечание 1. В предыдущей лекции была допущены небольшая ошибка, в месте, где записано $\operatorname{Ker} A^i/(\operatorname{Ker} A^{i-1} + \operatorname{Im} A^{n-i})$, нужно записать $\operatorname{Ker} A^i/(\operatorname{Ker} A^{i-1} + (\operatorname{Im} A \cap \operatorname{Ker} A^i))$.

Допустим, у нас есть два разных поля: пусть раньше мы рассуждали над полем K, а сейчас есть ещё $L \geq K$. Над K было векторное пространство V с базисом e_1,\ldots,e_n . Мы можем рассмотреть такое же пространство над L, размерности тоже n. Рассмотрим V_L - пространство, натянутое на e_1,\ldots,e_n над L, то есть, все линейные комбинации вида $\{\alpha_1e_1+\ldots+\alpha_ne_n\}$. То есть, dim $V=\dim V_L=n$. Тогда понятно, если у нас есть оператор $A:V\to V$, то мы можем его продолжить до оператора $A_L:V_L\to V_L$.

Представить себе это можно по-разному. Представим себе матрицу изначального оператора в этом базисе, это какая-то матрица $M_n(K) \subseteq M_n(L)$ - можем "расширить", и получим, что первое - подкольцо второго. И тогда можно написать оператор с точно такой же матрицей на L. Можно также сказать, что мы рассматриваем $A(\alpha_1e_1+\ldots+\alpha_ne_n)$, тогда раскроем

по линейности $\alpha_1 A(e_1) + \ldots + \alpha_n A(e_n)$, и посчитаем необходимые элементы внутри первого кольца.

Что же меняется при переходе от ожного поля к другому? У нас есть инвариантные факторы, например, если у нас есть оператор A, то для него есть многочлены $f_1, \ldots, f_m \in K[t]$ (последний - минимальный). Тогда для A_L они также инвариантны, причём даже минимальный многочлен такой же. Давайте вспомним, как они строятся в терминах оператора A.

Пусть у нас имеется матрица a (перехода A), рассмотрим матрицу $a-t\cdot I$, тогда инвариантные факторы - $\frac{\text{НОД(все миноры порядка }i-1)}{\text{НОД(все миноры порядка }i)}$. А наибольший общий нелитель не зависит от того, в каком поле ме его рассматривали. Значит, инвариантные факторы не изменятся.

Мы знаем, что в каком-то базисе матрицу A можно привести к фробениусовой форме (на диагонали - квадратики, последняя клетка - соответствующая f_m).

Определение 4. $\operatorname{End}(V) = \{A : V \to V\}$ - множество всех линейных операторов (эндоморфизмы V). Кстати, это кольцо (поточечное сложение и композиция), которое изоморфно $M_n(K)$, посредством выбора базиса.

Пусть c - матрица перехода при изменении базиса и A - операотр с матрицей a, тогда в новом базисе у него будет матрица $c^{-1}ac$ - conpsженная к a матрица.

Определение 5. A, B - $conps ж \ddot{e}$ нные, если существует C - обратимый $B = C^{-1}AC$.

Сформулируем такую теорему, которую мы уже по сути доказали:

Теорема 4. A, B сопряжены тогда и только тогда, когда у них одинаковые инвариантные факторы.

Доказательство. Найдём базис, в котором матрица A записывается в фробениусовой нормальной форме. Существует какой-то другой базис, в котором матрица B записывается точно также. Тогда нужно взять просто матрицу, которая переведёт один базис в другой. В обратную сторону - если A известно в какой фробениусовой форме, то легко определить, что f_i - инвариантные факторы.

 $Cnedcmbue\ 2.\ A, B$ сопряжены тогда и только тогда, когда A_L, B_L сопряжены. Анаолгично можно записать и для матриц из изоморфности колец.

Приведём другое доказательство второго пункта в случае бесконечного K. Мы хотим найти такую обратимую матрицу, что ac=cb. Пусть с - матрица с неизвестными коэффициентами. Тогда у нас имеется система однородных линейных уравнений на $x_{i,j}$, где $c=(x_{i,j})$. Она имеет нетривиальное решение над L, причём набор решений образует подпространство L^{n^2} размерности K. Тогда над базовым полем K размерность подпространства будет точно такая же, поскольку метод Гаусса не зависит от поля, над которым мы работаем, поэтому он выдаст одинаковые ответы для K и для L.

Возьмём базис в этом подпространстве: c_1, \ldots, c_k . Рассмотрим всевозможные комбинации $\{\lambda_1 c_1 + \ldots + \lambda_k c_k\}$, и будме искать такую линейную комбинацию, определитель которой не равен нулю. Мы знаем, что над L такие существуют, потому что над L у нас есть решение. Но определитель - суть многочлен от λ_i , причём ненулевой, поскольку над L можно найти такие λ_i , значение при которые не нуль. А поскольку поле K бесконечное, то можно такие коэффициенты найти и над K (индукция по k). Доказательство завершили.

Рассмотрим теперь за место L алгебраическое замыкание $K, K \leq K$. Мы уже знаем, что есть фробениусова нормальная форма, но она не очень удобна. Рассмотрим оператор

 $A_{\overline{K}}$. Применим для кольца $\overline{K}[t]$ теорему о строении модулей над кольцами главных идеалов, но сначала применим примарное разложение. То есть, возьмём какой-то неприводимый многочлен над алгебраически замкнутым полем, он линейный $(t-\lambda)$. И начинаем теперь образовывать блоки. У нас есть $V_{\overline{K}}[t-\lambda] = \{v: (t-\lambda)v = 0\} = \{v: Av = \lambda V\}$ - собственное подпространство, соответствующее собственному числу λ . $v \neq 0$ из этого множества - собственные векторы, соответствующие собственному числу λ .

Нас интересуют в качестве λ - корни минимального многослена (корни характеристического) (чтобы мы получали ненулевые множества), но можно и проще, преобразуем к $(A-\lambda I)v=0$, но это раносильно тому, что $\det(A-\lambda I)=0$, что и равносильно первому. Далее мы смотрим на степени $V_{\overline{K}}[(t-\lambda)^2]=\{v:(t-\lambda)^2v=0\}$, и так далее, а затем берём объединенение $V_{\lambda}=\bigcup_{i\geq 1}V_{\overline{K}}[(t-\lambda)^i]$, это - корневое подпространство, отвечающее собственному числу λ . Не стоит путать это с собственным подпространством (по сути, первый и последний член цепи).

Из общей теории мы теперь знаем, что $V_{\overline{K}}=\oplus V_{\lambda}$, где суммируем по λ - собственным числам. Мы получили корневре разложение. Посмотрим теперь, что происходит на каком-то корневом подпространстве. Ограничим $A|_{V_{\lambda}}$, тогда минимальный многочлен этого ограничения - $(t-\lambda)^k$. А если рассмотреть оператор $A-\lambda I$, то его минимальный многочлен будет t^k , то есть, ограничение такой вещи нильпотентное, то есть, матрица будет состоять из квадратиков по диагонали, на диагонали которых нули, а под ними - диагональ из единиц. А вот если мы вернёмся к изначальному сужению, то мы получим матрицу, состоящую из эксордановых блоков, это то же самое, что и предыдущая матрица, только на главной диагонали везде λ .

Сама матрица A тогда будет состоять из кучи таких блоков для всех λ по диагонали, и целиком такое представление A будет называться экордановой нормальной формой. Таким образом, для любого ооператора существует базис, в котором матрица выглядит в такой форме.

Рассмотрим такой важный частный случай. Пусть имеется характеристический многочлен $\chi_A(t)$ (по сути, $\det(\lambda I-A)$), и степень его тогда есть размерность пространства (n). Предположим, что он раскладывается в произведение линейных $(t-\lambda_1)\dots(t-\lambda_n)$ (это какое-то условие на характеристический многочлен (НОД $(\chi_A(t),\chi_A'(t))=1)$). Но всё же, если они все различны, то жорданова форма просто диагональная, так как на диагонали под ними просто ничего не поместится, квадратики единичные. В каком же базисе матрица имеет такой вид? Для того, чтобы это понять, достаточно решить $Av_i=\lambda_i v_i, v_i=\neq 0$. Такой базис, который мы найдём, ∂ иагонализирует матрицу. Пока что всё это происходило над алгебраическим замыканием.

Перейдём к случаю $K=\mathbb{R}, \overline{K}=\mathbb{C}$ и придумаем вещественную жорданову форму (именно её, а не фробениусову, потому что она удобнее). Для этого, нам нужно разобрать немного подробнее процедуру переходу из поля в замыкание с одним и тем же базисом $(V \to V_{\mathbb{C}})$. Как нам тогда восстановить $V_{\mathbb{C}}$? Вообще, никак, но если ввести некую дополнительную структуру это можно сделать. Хочется ввести на $V_{\mathbb{C}}$ какую-то инволюцию - аналог комплексного сопряжения. Если у нас уже есть базис, то пусть $\overline{z_1e_1+\ldots+z_ne_n}=\overline{z_1}e_1+\ldots+\overline{z_n}e_n$, это операция из $V_{\mathbb{C}}$ в $V_{\mathbb{C}}$, которая не будет линейной, а будет полулинейной, то есть, выполнено $\overline{zv}=\bar{z}\bar{v}$, а не $\overline{zv}=z\bar{v}$. С суммой же всё нормально. Получили мы полулинейный оператор, который является инволюцией.

А само V тогда восстанавливается: $V = \{v \in V_{\mathbb{C}} : \bar{v} = v\}$. Это уже пространство над \mathbb{R} такой же размерности.

Итого, вещественные векторные пространства по сути есть комплексные векторные пространства такой же размерности с полулинейной инволюцией. Придумаем теперь вещественный аналог жордановой формы. Пусть есть $V, A: V \to V$, тогда $V_{\mathbb{C}}$ назовём комплек-

 $cuфикацией\ V$, а наоборот - oseществелением. Также мы можем рассмотреть и комплексификацию $A_{\mathbb{C}}:V_{\mathbb{C}}\to V_{\mathbb{C}}$. Есть базис, в котором он представляется жордановой начальной формой. У A есть характеристический многочлен $f(t)\in\mathbb{R}[t]$, у которого есть вещественные корни α_i и мнимые λ_j вместе со своими сопряжёнными парами. Пусть λ - комплексный корень этого многочлена, тогда у нас сеть корневые пространства V_λ и $V_{\bar{\lambda}}$, тогда их сумма устойчива относительно нашей полулинейной инволюции. Потому что, допустим, $Av=\lambda v$, тогда $\overline{AV}=\lambda \bar{v}$, но про A мы знаем, что у его матрицы коэффициенты вещественные, поэтому $\overline{Av}=A\bar{v}$ (можно расписать умножение матрицы на столбец для наглядности).

Таким образом, если v - собственный вектор, отвечающий λ , то \bar{v} - собственный вектор, отвечающий $\bar{\lambda}$, и со степенью, конечно, то же самое: $(A-\lambda I)^i v=0$, тогда $\overline{(A-\lambda I)^i}\bar{v}=0=0$ = $(A-\bar{\lambda}I)^i v$. То есть, вся эта прямая сумма относительно λ и его сопряжённого, будет устойчивой относительно нашей полуинволюции. Мы знаем, что вещественное векторное пространство это то же самое, что и комплексное с полуинволюцией, тогда все пары λ_i и их сопряжённый будут объединяться в пары и давать вещественные подпространства.

4 Лекция 33.

В прошлый раз мы рассматривали V - векторное пространство над полем вещественных чисел и какой-то оператор $A:V\to V$, а также его комплексификацию $V_{\mathbb C}$ и переход от одного к другому брагодаря полулинейному отображению.

V над вещественными разбивается в сумму пространств, часть из них соответствует вещественным корням, а часть - мнимым.

$$V = \bigoplus_{\lambda = \bar{\lambda}} V_{\lambda}^{\mathbb{R}} \bigoplus_{\lambda \neq \bar{\lambda}} V_{\lambda, \bar{\lambda}}^{\mathbb{R}}.$$

Как выглядит ограничение оператора A на эти подпространства? Давайте начнём с какого-то жорданового блока (для начала, случай $\lambda \neq \bar{\lambda}$). Обозначим базис данной жордановой формы v_1, \ldots, v_k , тогда

$$A_{\mathbb{C}}v_1 = \lambda v_1 + v_2,$$

$$A_{\mathbb{C}}v_2 = \lambda v_2 + v_3,$$

$$\vdots$$

$$A_{\mathbb{C}}v_{k-1} = \lambda v_{k-1} + v_k,$$

$$A_{\mathbb{C}}v_k = \lambda v_k.$$

Что плохо в эитх векторах, почему их нельзя спустить до нашего пространства над вещественными? Они могут быть не инвариантны относительно инволюции. Применим ко всему, кроме $A_{\mathbb{C}}$ черту. Это означает, что в пару к данному жордановому блоку идёт другой жорданов блок, базис которого соответственно сопряжён изначальному, а на диагонали стоят $\bar{\lambda}$. Пусть теперь у нас есть v_1 и $\bar{v_1}$. Чтобы получить вектор, инвариантный относительно инволюции, надо их сложить. Также можно вычесть и умножить на i, нетрудно проверить, что эта вещь также будет инвариантна относительно инволюции.

И теперь возьмём прямую сумму тех самых парных пространств, но сделаем замену базиса на $v_j + \bar{v_j}$, $i(v_j - \bar{v_j})$ по всем j. Несложно просерить, что это также базис, однако теперь все его элементы инвариантны относительно инволюции, а значит, просто "живут" в самом V. Осталось переписать матрицу A в новом базисе. Тут какая-то муть с вычислениями, в итоге получается

$$\begin{pmatrix} \operatorname{Re}(\lambda) & -\operatorname{Im}(\lambda) \\ \operatorname{Im}(\lambda) & \operatorname{Re}\lambda \end{pmatrix}$$

- расставлены по диагонали квадратиками 2×2 , а под каждым из них - единичные матрички 2×2 .

Кстати, $\mathbb{C} \leq M_2(\mathbb{R})$ посредством перехода λ в такие матрицы. Теперь пора перейти к случаю вещественного λ .

Возможны два варианта: v_1 и $\bar{v_1}$ могут быть либо линейно зависимы, либо линейно независимы (раньше-то они лежали в разных пространствах, а сейчас такое утверждать нельзя). В первом случае скажем, что $\bar{v_1} = \alpha v_1$. Тогда α может равняться чему-то на единичной окружности, так как из инволюции $\alpha \bar{\alpha} = 1$.

Лемма 1. (Простейший случай теоремы Гильберта 90). Если $\alpha \bar{\alpha} = 1$, то существует β такой, что $\alpha = \frac{\beta}{\beta}$ (всё в \mathbb{C}).

Эта лемма была к рассуждению о том, что если $v_1 \to \beta v_1$, то $\overline{\beta v_1} = \overline{\beta} \alpha v_1 = \overline{\beta} \frac{\alpha}{\beta} (\beta v_1)$, тогда мы и выбираем $\frac{\beta}{\beta} = \alpha$. То есть, можем считать, что $v_1 = \overline{v_1}$.

Но тогда v_1 лежит в нашем вещественном пространстве, и то, что им порождено, также лежит в этом пространстве ($v_1 \in V$, $v_2 = Av_1 - \lambda v_1 \in V$, и так далее). То есть, в этом случае, жорданов блок так и остаётся жордановым блоком в том же самом базисе.

Ну и, наконец, если $\langle v_1 \rangle \neq \langle \bar{v_1} \rangle$ - сделаем то же, что и раньше, от того, комплексное λ или вещественное, зависело только то, будет ли система базисом или нет. То есть, матрица состоит из блоков 2×2 с λ по диагонали, под которыми, опять-таки, единичные 2×2 . А если перенумеровать базис (сначала идут нечётные, а потом чётные), то просто получатся два жордановых блока одинакового размера. Окончательно, теорема такая:

Теорема 5. Есть V, A, $\chi_A(t)$, корни которого есть λ_i - мнимые и α_j - вещественные (причём, суммарно количество корней - размерность пространства, конечно же). Тогда в некотором базисе A имеет вид блочный, состоящий из жордановых блоков, каждый из соответствующих комплексным λ_i , $\bar{\lambda_i}$ выглядит как квадратик 2×2 , вид которого был показан выше, под каждым из которых единичная матричка 2×2 , а что касается вещественных, они просто выглядят без изменений, обычная жорданова форма.

Вернёмся опять к ситуации алгебраически замкнутого поля. Мы говорили, что если $\chi_A(t)$ имеет различные корни λ_i , то A диагонализируема и принимает вид - n её корней по диагонали по порядку. Давайте поймём, когда все корни $f(t) \in K[t]$ в \overline{K} различны. Мы уже знаем, что можно сказать, что требуемо соотношение $\mathrm{HOД}(f(t),f'(t))=1$, но мы хотим переписать это в каком-то более явном виде многочлена от коэффициентов. Пусть у нас есть f(t) и g(t), $\deg(t)=n$, $\deg(g)=m$. Как узнать по коэффициентам f и g, когда их $\mathrm{HOД}$ есть единица. Так мы перешли к теме pesyльтанты.

Для начала, немного в общих чертах. Если HOД=1, то существуют p, q: pf+qg=1. Давайте расссмотрим гомоморфизм $F[t] \times F[t] \to F[t]$, действующий по правилу $(p,q) \to pf+qg$. Это F-линейное отображение (не гомоморфизм колец), причём единица представляется тогда и только тогда, когда оно сюръективно. Критерий хороший, плохо только то, что трудно проверить сюръективность.

Рассмотрим $F[t]/(g) \oplus F[t]/(f) \to F[t]/(fg)$ по формуле $([p], [q]) \mapsto ([pf+qg])$. Необходимо, конечно, проверить корректность этого отображения (но это - в запись, если интересно). Размерность пространств из отобажения - m+n у обоих. Тогда матрица отображения квадратная, и сюръективность отображения контроллируется определителем. Осталось выпи-

сать матрицу отображения в каком-то базисе. Пусть $f = a_n t^n + \ldots + a_0, g = b_m t^m + \ldots + b_0$. Тогда в базисах - степенях t от нулевой до n-ой, m-ой и n+m-ой соответственно, матрица так и выглядит:

$$\begin{pmatrix} a_0 & 0 & 0 & \dots & 0 & b_0 & 0 & \dots & 0 \\ a_1 & a_0 & 0 & \dots & 0 & b_1 & b_0 & \dots & 0 \\ a_2 & a_1 & a_0 & \dots & 0 & b_2 & b_1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & a_{n-2} & \dots & a_i & \vdots & \vdots & \ddots & \vdots \\ 0 & a_n & a_{n-1} & \dots & a_{i+1} & b_m & b_{m-1} & \dots & b_j \\ 0 & 0 & a_n & \dots & a_{i+2} & 0 & b_m & \dots & b_{j+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_n & 0 & 0 & \dots & b_m \end{pmatrix}$$

W чуть менее легко, чем её написание, мы можем найти её определитель, который и называется результантом f и g (как многочлен). Таким образом, сформулируем теорему:

Теорема 6.
$$HOД(f,g) = 1 \Leftrightarrow Res(f,g) \neq 0$$

Следствие 3. f не имеет кратных корней в \bar{F} тогда и только тогда, когда $\mathrm{Res}(f,f') \neq 0$. И, кстати, если определить дискриминант в общем случае: $\mathrm{disc}(f) = \frac{\mathrm{Res}(f,f')}{a_n}$, то можно говорить, что дискриминант не равен нулю.

Таким образом, мы узнали, что кратность еорней контроллируется каким-то многочленом, которых зависит от коэффициентов изначальных многочленов. Благодаря принципу продолжения алгебраических тождеств можно перейти к плотности диагонализируемых матрици. Каков принцип? Пусть, имеются матрицы $n \times n$, хотим проверить, что какой-то многочлен от коэффициентов равен нулю $P(a_{ij})=0$ - хотим проверить (например, мы хотим доказать теорему Гамильтона-Кэли: $\chi_A(A)=0$). Мы хотим, чтобы многочлен принимал значение нуль также и при коэффициентах сопряжённой матрицы. Тогда достаточно это проверять только для диагональных матриц - если это выполнено для диагональных, то выполнено и для всех.

(сюда можно пару чертежей пояснения перенести)

Почему этот принцип верен? Перейдём сначала к \bar{K} , затем рассмотрим $\mathrm{disc}(\chi_A(t))$. Тогда если дискриминант не равен нулю, то матрица диагонализуема, то есть, сопряжена с диагональной, а тогда многочлен P на ней обнуляется. То есть, если дискриминант не равен нулю, то P=0, применяем принцип продолжения и получим, что P тождественно равен нулю. Сам принцип - по сути тавтология, просто надо умножить P на дискриминант, это всегда нуль, тогда и получаем, что требовалось.