

Course code	Course Name	L-T-P Credits	Year of Introduction
CS465	BIOINFORMATICS	3-0-0-3	2016

Course Objectives:

- To introduce concepts and data representations in bioinformatics
- To introduce fundamentals of Sequence alignment and Gene Recognition
- To discuss predictive methods using DNA and Protein Sequences

Syllabus:

Introduction to bioinformatics and molecular biology: Databases tools and their uses, Data searches and Pairwise Alignments, Multiple Sequence Alignments, Molecular Phylogenetic, Genomics and Gene Recognition, Protein and RNA structure Prediction

Expected Outcome:

The Students will be able to:

- i. interpret the concepts of bioinformatics
- ii. identify different types of biological sequence
- iii. analyse multiple sequences and find conserved regions
- iv. predict RNA and Protein secondary structures
- v. analyse genomic sequences and identify encoded gene regions

References:

- 1. S C Rastogi, N Mendiratta and P Rastogi, "Bioinformatics: Methods and Applications", ISBN: 978-81-203-4785-4, published by PHI Learning Private Limited, New Delhi, 2015
- 2. D E Krane and M L Raymer, Fundamental Concepts of Bioinformatics, ISBN 978-81-7758-757-9, Pearson Education, 2006.
- 3. Andreas D.Baxevanis, B F Francis Ouellette, "Bioinformatics A Practical Guide to the Analysis of Genes and Proteins", Third Edition, 2005-2006, ISBN: 978-81-265-2192-0, published by John Wiley & Sons INC., U.K.
- 4. Neil C Jones and Pavel A Pevzner, An Introduction to Bioinformatics Algorithms, MIT press, 2004.

Course Plan

Module	Contents	Hours	End Sem. Exam Marks
I	Bioinformatics and Computational Biology, Nature & Scope of Bioinformatics. The central dogma of molecular biology and bio-sequences associated with it, RNA classification –coding and non coding RNA- mRNA, tRNA, miRNA and sRNA, RNAi. DNA and RNA structure – Nucleic Acid structure and function, Genetic Code, Genes and Evolution	6	15%
II	Importance of databases - Biological databases-primary sequence databases, Composite sequence databases- Secondary databases- nucleic acid sequence databases - Protein sequence data bases - structure databases, Types of databases, Data retrieval tools - Entrez	8	15%

	FIRST INTERNAL EXAM				
III	Sequence alignment – local/global, pairwise sequence alignment, scoring methods. Needleman and Wunsch algorithm, global and local alignments. Multiple sequence alignment. Scoring matrices: basic concept of a scoring matrix, Matrices for nucleic acid and proteins sequences, PAM and BLOSUM series, principles based on which these matrices are derived. Differences between distance & similarity matrix.	8	20%		
IV	Introduction, Advantages, Phylogenetic Trees, Tree topologies, Methods for phylogenetic analysis- Distance Matrix methods, Character based methods. HMM (Hidden Markov Model): Introduction to HMM, Forward algorithm, Viterbi algorithm, applications in Bioinformatics	6	15%		
	SECOND INTERNAL EXAM	T	I		
V	General introduction to Gene expression in prokaryotes and eukaryotes- Prokaryotic Genomes – Gene structure, GC content, Gene Density, Eukaryotic Genomes- Gene structure, GC content, Gene Density, Gene Expression, Transposition, Gene prediction approaches.	8	20%		
VI	Protein and RNA structure Prediction: Predicting RNA secondary structure - Nussinov Algorithm, Energy minimisation methods - Zuker Algorithm. Amino Acids, Polypeptide Composition, Protein Structures, Algorithm for protein folding, Structure prediction	6	15%		
	END SEMESTER EXAM				

Question Paper Pattern (End semester exam)

1. There will be *FOUR* parts in the question paper – A, B, C, D

2. Part A

- a. Total marks: 40
- b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

a. Total marks: 18

- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks: 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.

