الكترونيك ا

جلسه اول: معرفی

محمدرضا اشرف دانشگاه صنعتی شاهرود

اهداف درس

🗅 هدف:

- آشنایی کلی با دو قطعه الکترونیکی: دیود و ترانزیستور
- □ آشنایی با فیزیک و ساختار دیود، آشنایی با مدارات دیودی و مدارات ترانزیستوری، تحلیل و طراحی انواع یکسوکنندههای دیودی، تحلیل و طراحی منابع تغذیه ساده،
- BJT و FET تحلیل و طراحی تقویت کنندههای BJT و BJT تحلیل و طراحی تقویت کنندههای تک ترانزیستوری BJT و BJT

اهداف درس

سرفصل درس

- □ معرفی میکروالکترونیک (۲ جلسه):
- چند مثال از دنیای میکروالکترونیک، مروری بر مدار ۱
- □ آشنایی مقدماتی با فیزیک نیمههادی و پیوند PN (۲ جلسه):
 - □ مواد نیمههادی، پیوند PN، شکست دیود
 - □ معرفی دیود و کاربرد آن (۶ جلسه):
- آشنایی با دیود و فیزیک آن، مدل دیود، تحلیل مدارات دیودی شامل عملکرد سیگنال
 بزرگ و سیگنال کوچک، کاربرد دیود (یکسوکننده، رگولاتور، محدودکننده، دوبرابر
 کننده و ...)
 - □ آشنایی با عملکرد ترانزیستور BJT (۴ جلسه):
- ا فیزیک و عملکرد ترانزیستور BJT، مشخصه و نواحی کاری و مدلهای ترانزیستور BJT، بایاس ترانزیستور BJT

سرفصل درس

- □ تقویت کننده ترانزیستوری تک طبقه (۶ جلسه):
- معرفی مدل سیگنال کوچک، معرفی تقویت کنندههای امیتر مشترک، کلکتور مشترک و
 بیس مشترک، اثر میلر، مدارات بوت استرپ و بحث سویینگ
 - FET و تقویت کنندههای آن (۲ جلسه) *: FET و ساختار داخلی، نحوه عملکرد و مدلهای مداری
 - * در صورت کفایت زمان تدریس خواهد شد

سرفصل درس

الكترونيك

تعداد واحد: 2 (نظری)

بیشنیاز: مدارهای الکتریکی ا

همتياز: -

همدف: آشنایی با خواص فیزیکی، ساختار و مدلسازی عناصر نیمه هادی و کاربرد آنها در مدارهای ساده

شرح درس :

مقدمه : فیزیک نیمه هادی، نیمه هادیهای ذاتی و غیر ذاتی، پیوندPN

دیود و مدارهای دیودی

توانزیستور دوقطبی (BJT): بایاسینگ و پایداری حرارتی، رفتار و مدل سیگنال کوچک

تقویت کننده های پایه : ولتار، جریان، هدایت انتقالی، مقاومت انتقالی، مدل های ایده آل و غیر ایده آل

تقویت کننده های تک طبقه BJT : امیتر مشتر ک، بیس مشتر ک، کلکتور مشتر ک

ترانزیستورهای MOSFET) FET و JFET) : بایاسینگ، رفتار و مدل سیگنال کوچک

تقویت کننده های تک طبقه MOSFET : سورس مشترک، گیت مشترک، درین مشترک

مراجع

- B. Razavi, Fundamentals of Microelectronics, Wiley, 2008.
- A.S. Sedra & K.C. Smith, Microelectronic Circuits, 6th ed., Oxford University Press, 2010.
- 3. A.M. Sodagar, Analysis of Bipolar and CMOS Amplifiers, CRC Press, 2007.
- R.C. Jaeger & T.N. Blalock, Microelectronic Circuit Design, 2nd ed., McGraw Hill, 2003.

🛭 مراجع اصلی:

- □ Behzad Razavi, Fundamentals of Microelectronics.
- □ Sedra and Smith, *Microelectronics Circuit*.

🛭 مراجع کمکی:

- □ مبانی الکترونیک، جلد اول، میرعشقی
 - الکترونیک ۱، تقی شفیعی
- □ R. C. Jeager and T. N. Blalock, *Microelectronic Circuit Design*.
- □ Gray, et al., Analysis and Design of Analog Integrated Circuits.

ارزشیابی (نمرات اصلی)

- کوییزها: (۱۲ نمره)
- □ کوییز ۱: مبحث فیزیک، مدل های دیود و مدلهای دیود (۴ نمره): شنبه ۱۷ اسفند
 - کوییز ۲: مبحث کاربرد دیود (۴ نمره): شنبه ۳۰ فروردین
- □ کوییز ۳: مبحث بایاس ترانزیستور و مدل سیگنال کوچک و انواع تقویت کننده (۴ نمره): دوشنبه ۲۹ اردیبهشت
 - کوییز ۱ و ۲ در کلاس حل تمرین گرفته خواهد شد.
 - پایان ترم: (۶ نمره)
 - مباحث مربوط به ترانزیستور: طبق اعلام آموزش دانشکده
 - 🛭 پروژه شبیه سازی: (۲ نمره)
 - □ پروژه ۱: طراحی و شبیه سازی با دیود (۱ نمره): پنج شنبه ۳ اردیبهشت
 - □ پروژه ۲: طراحی و شبیه سازی تقویت کننده با ترانزیستور (۱ نمره): یکشنبه ۱۱ خرداد

ارزشیابی (نمرات مازاد)

- در صورت کسب حداقل ۶ نمره از مجموع نمرات کوییز و پایان ترم (۱۸ نمره)، دانشجویان مشمول نمره مازاد زیر خواهند بود:
 - پروژه عملی اختیاری (تا ۲ نمره اضافی): سه شنبه ۱۳ خرداد

- در صورت حضور در جلسه اول و دوم، دانشجویان مشمول نمرات مازاد زیر خواهند
 شد:
 - □ حل تمرین: (تا ۱ نمره اضافی): شنبه ۱۲-۱۴، کلاس ۶، جناب آقای معافی
 - 🛭 نمره ارفاقی نهایی

راه های ارتباطی

- اطلاع رسانی:
- □ کانال اطلاع رسانی در پیام رسان (با افتخار) ایرانی سروش:

@drashraf.sut

پست الکترونیکی:

m.r.ashraf@chmail.ir

برنامه هفتگی

18-11	14-18	17-14	17-1.	١٠-٨	
<mark>الکترونیک ۱</mark> (ک. ۱۲)	<mark>مبدل داده</mark> (ک. ۸)	_	دفتر انجمنهای علمی (پردیس مرکزی)	دفتر انجمنهای علمی (پردیس مرکزی)	شنبه
مطالعه و تحقیق	<mark>* مبدل داده</mark> ک. ۷)	-	<mark>مدار۱</mark> (ک. ۱۲)	<mark>پاسخ گویی</mark>	۱شنبه
ا لکترونیک ۱ ** (ک. ۱۲)	مطالعه و تحقیق	-	جلسه گروه	<mark>پاسخ گویی</mark>	۲شنبه
دفتر انجمنهای علمی (پردیس مرکزی)	دفتر انجمنهای علمی (پردیس مرکزی)	-	<mark>پاسخ گویی</mark>	<mark>مدار۱</mark> (ک. ۱۲)	۳شنبه
مطالعه و تحقیق	مطالعه و تحقیق	-	مطالعه و تحقیق	مطالعه و تحقیق	۴شنبه

نگاه کلی به جلسات

12

پروژه

- 🛭 گروه های دونفری:
- 🗖 پروژه ۱ (۱ نمره):
- □ طراحی و شبیه سازی یک مولد ولتاژ سینوسی با استفاده از دیود (اجباری)

- 🛭 پروژه ۲ (۱ نمره):
- طراحی و شبیه سازی یک تقویت کننده خاص با استفاده از ترانزیستور (اجباری)
 - 🗖 پروژه اختیاری
 - ساخت و تست یک مدار مشخص:
 - ם روی برد بورد
 - روی بورد هزار سوراخ
 - ت روی بورد مدار چاپی (PCB) (به کمک نرم افزار آلتیوم)

پروژه

ם برد بورد (BreadBoard):

پروژه

ם برد هزارسوراخ (BreadBoard):

يروژه

□ برد مدار چاپی (PCB):

نرم افزار

- 🛭 نرم افزارهای مورد نیاز:
 - Orcad Pspice •
 - نرم افزارهای جانبی:
- Protel/Altium Designer -
- C-language Programming •
- AVR/PIC/ARM Microcontrollers -
 - 🛭 ابزارهای مورد نیاز:
 - ם برد بورد
 - 🛭 مولتی متر
 - هویه و لحیم

معرفي ميكروالكترونيك

اولین سیستم های الکترونیکی از لامپ های خلأ استفاده می کردند.

- نقاط ضعف لامپ های خلأ
- سایز بزرگ و طول عمر پایین

- - □ سایز کوچک تر + طول عمر بیشتر

معرفي ميكروالكترونيك

- □ علم میکروالکترونیک در سال ۱۹۶۰ ظهور کرد
- □ علم تجمیع تعداد زیاد ترانزیستور بر روی یک تراشه (مدار مجتمع)

آنالوگ و دیجیتال

- سیگنال دیجیتال:
- □ فقط مقادیر صفر و یک را می تواند اختیار کند

🛭 سیگنال آنالوگ:

□ تمام مقادیر را در یک محدوده مشخص می تواند اختیار کند

آنالوگ و دیجیتال

🛭 چرا آنالوگ؟

- تمام سیگنال های اطرافمان آنالوگ هستند
- برخی سیگنال ها برای اعمال به بخش دیجیتال نیاز به تقویت دارند

چرا دیجیتال؟

- 🛭 نویز کمتر
- سرعت کمتر
- پیچیدگی کمتر و پیاده سازی راحت تر
- ابزارهای شبیه سازی و پیاده سازی در دسترس است

چالش های طراحی در آنالوگ

🗅 ساعت های خورشیدی

HOW IT WORKS

Sunlight and any artificial light are absorbed through the crystal and dial. CITIZEN uses special filters which allow a wide range of dial colors and styles.

A solar cell beneath the dial converts any form of light into electrical energy to power the watch. With regular exposure to light, Eco-Drive continuously recharges itself for a lifetime of use.

Eco-Drive's revolutionary Eco-Drive Energy Cell stores enough energy to power the watch up to an astonishing 5-years (depending on model) even in the dark.

باتری قلب (ضربان ساز قلب یا پیس میکر)

□ فرستنده و گیرنده صوتی

□ فرستنده و گیرنده صوتی

- ם فرکانس صوتی: ۲۰ هرتز تا ۲۰ کیلوهرتز
 - اندازه آنتن با فرکانس نسبت عکس دارد
- □ فرکانس ۱/۵ گیگاهر تز ← آنتن ۵ سانتی متر

□ اولین آنتن:

آقای مارکونی: ۱۵۰ متر طول

□ فرستنده صوتی

 \neg تبدیل فرکانس یایین به فرکانس های بالا \rightarrow توسط ضرب کننده یا میکسر

$$\cos(2\pi f_1 t) \times \cos(2\pi f_c t) = \frac{1}{2} \left[\cos(2\pi (f_1 + f_C)t) + \cos(2\pi (f_1 - f_C)t) \right]$$

- \Box تولید سیگنال سینوسی \to توسط اسیلاتور یا نوسان ساز
- \Box تقویت ولتا \dot{c} خروجی از میکروفون \rightarrow توسط تقویت کننده

🗅 گیرنده صوتی

- \Box تقویت سیگنال و حذف نویز \to توسط تقویت کننده کم نویز
- □ تبدیل فرکانس بالا به فرکانس های پایین ← توسط ضرب کننده یا میکسر

$$\cos(2\pi(f_1 + f_C)t) \times \cos(2\pi f_c t) = \frac{1}{2} \left[\cos(2\pi f_1 t) + \cos(2\pi(f_1 + 2f_C)t) \right]$$

- \Box تولید سیگنال سینوسی \to توسط اسیلاتور یا نوسان ساز
 - \neg حذف سیگنال های اضافی \rightarrow توسط فیلتر
 - \Box تقویت سیگنال \rightarrow توسط تقویت کننده \Box

□ دوربین دیجیتال

- □ یک دوربین ۶ مگاپیکسل حدود ۲۵۰۰ ردیف و ۲۵۰۰ ستون آرایه ازاین سنسورها دارد
- هر کدام از سنسورها بسته به نوری که به آن می رسد
 جریانی تولید می کند
 - جریان وارد خازن شده و تبدیل به ولتاژ می شود.
 - 🗖 هر چه مقدار جریان بیشتر، ولتاژ خازن بیشتر.

- □ دوربین دیجیتال
- ولتاثر ذخیرہ شدہ روی خازن بسیار کم است \rightarrow تقویت ولتاثر توسط تقویت کنندہ سیگنال آنالوگ باید تبدیل به دیجیتال شود \rightarrow توسط مبدل آنالوگ به دیجیتال

