### Cryptanalysis of 2 round Keccak-384

Rajendra Kumar , Nikhil Mittal, Shashank Singh

Center for Cybersecurity, Indian Institute of Technology Kanpur, Indian Institute of Science Education and Research Bhopal

Indocrypt 2018, Delhi



#### Table of contents

- 1. Introduction
- 2. Known Attacks
- 3. Our Contribution
- 4. Conclusion

#### Outline

- Introduction
- 2 Known Attacks
- Our Contribution
- 4 Conclusion

•  $H: \{0,1\}^* \to \{0,1\}^n$  where n is a fixed value.

- $H: \{0,1\}^* \to \{0,1\}^n$  where n is a fixed value.
- Given m, easy to compute H(m).

- $H: \{0,1\}^* \to \{0,1\}^n$  where n is a fixed value.
- Given m, easy to compute H(m).
- Computationally hard problems:

- $H: \{0,1\}^* \to \{0,1\}^n$  where n is a fixed value.
- Given m, easy to compute H(m).
- Computationally hard problems:
  - **1** Preimage: Given H(m), Find message m.

- $H: \{0,1\}^* \to \{0,1\}^n$  where n is a fixed value.
- Given m, easy to compute H(m).
- Computationally hard problems:
  - **1** Preimage: Given H(m), Find message m.
  - **2** Second-Preimage: Given m, Find m' such that H(m) = H(m').

- $H: \{0,1\}^* \to \{0,1\}^n$  where n is a fixed value.
- Given m, easy to compute H(m).
- Computationally hard problems:
  - **1** Preimage: Given H(m), Find message m.
  - **2** Second-Preimage: Given m, Find m' such that H(m) = H(m').
  - 3 Collision: Find m and m', such that H(m) = H(m').

- $H: \{0,1\}^* \to \{0,1\}^n$  where n is a fixed value.
- Given m, easy to compute H(m).
- Computationally hard problems:
  - **1** Preimage: Given H(m), Find message m.
  - 2 Second-Preimage: Given m, Find m' such that H(m) = H(m').
  - **3** Collision: Find m and m', such that H(m) = H(m').
- Hash functions are used for Authentication, Non-repudiation and Integrity.



• Components of the Construction.

- Components of the Construction.
  - f: underlying function on fixed length strings.

- Components of the Construction.
  - f: underlying function on fixed length strings.
  - 2 r: rate (block size)

- Components of the Construction.
  - f: underlying function on fixed length strings.
  - 2 r: rate (block size)
  - opad: padding rule (10\*1)

- Components of the Construction.
  - f: underlying function on fixed length strings.
  - 2 r: rate (block size)
  - opad: padding rule (10\*1)



Figure: Sponge Construction Z = Sponge[f, pad, r](N, d)

Credit: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

#### State

• State is represented by 5-by-5-by-w bits.

#### State

- State is represented by 5-by-5-by-w bits.
- Converting Strings to State Arrays; A[x, y, z] = S[w(5y + x) + z].



Figure: A state in Keccak

#### Keccak-p Permutation

• Round- A round of Keccak-p permutation. Consist of five transformations, called Step Mappings  $(\theta, \rho, \pi, \chi, \iota)$ 

• XOR each bit in the state with the parities of two columns.

• XOR each bit in the state with the parities of two columns.



Figure: Credit:https://keccak.team/figures.html

• For all pairs (x,z)

$$C[x,z] = A[x,0,z] \oplus A[x,1,z] \oplus A[x,2,z] \oplus A[x,3,z] \oplus A[x,4,z]$$

• For all pairs (x,z)

$$C[x,z] = A[x,0,z] \oplus A[x,1,z] \oplus A[x,2,z] \oplus A[x,3,z] \oplus A[x,4,z]$$
 For all triples (x,y,z)

$$A'[x,y,z] = A[x,y,z] \oplus C[x-1,z] \oplus C[x+1,z-1]$$

### Specification of $\rho$

ullet  $\rho$ : Rotate the bits of each lane by predefind constants.

#### Specification of $\rho$

 $oldsymbol{
ho}$  : Rotate the bits of each lane by predefind constants.



Figure: Credit:https://keccak.team/figures.html

### Specification of $\pi$

•  $\pi$ : Rearrange the position of the Lanes.

### Specification of $\pi$

•  $\pi$ : Rearrange the position of the Lanes.

for all triples (x, y, z)

$$A'[x, y, z] = A[(x + 3y) \mod 5, x, z]$$





Figure: Credit:https://keccak.team/figures.html

### Specification of $\chi$ and $\iota$

 χ: XOR each bit with a non linear function of two other bits in its row.

### Specification of $\chi$ and $\iota$

- $\chi$ : XOR each bit with a non linear function of two other bits in its row.
- For all triples (x, y, z)

$$A'[x,y,z] = A[x,y,z] \oplus (\overline{(A[(x+1),y,z])}).A[(x+2),y,z])$$

### Specification of $\chi$ and $\iota$

- $\chi$ : XOR each bit with a non linear function of two other bits in its row.
- For all triples (x, y, z)

$$A'[x,y,z] = A[x,y,z] \oplus (\overline{(A[(x+1),y,z])}).A[(x+2),y,z])$$

• ι: XOR the lane(0,0) with the round constant and other lanes are unaffected. Round dependent step Mapping.

• Round( $A, i_r$ ) =  $\iota(\chi(\pi(\rho(\theta(A)))), i_r)$ .

- Round( $A, i_r$ ) =  $\iota(\chi(\pi(\rho(\theta(A)))), i_r)$ .
- Consists of  $n_r$  rounds of Round.

- Round(A,  $i_r$ ) =  $\iota(\chi(\pi(\rho(\theta(A)))), i_r)$ .
- Consists of  $n_r$  rounds of Round.
- Keccak- $p[b, n_r](S)$ 
  - Convert S into a state Array A.

- Round(A,  $i_r$ ) =  $\iota(\chi(\pi(\rho(\theta(A)))), i_r)$ .
- Consists of  $n_r$  rounds of Round.
- Keccak- $p[b, n_r](S)$ 
  - Convert S into a state Array A.
  - ② For  $i_r$  from 0 to  $n_r 1$ , let  $A = \text{Round}(A, i_r)$ .

- Round(A,  $i_r$ ) =  $\iota(\chi(\pi(\rho(\theta(A)))), i_r)$ .
- Consists of  $n_r$  rounds of Round.
- Keccak- $p[b, n_r](S)$ 
  - Convert S into a state Array A.
  - ② For  $i_r$  from 0 to  $n_r 1$ , let  $A = \text{Round}(A, i_r)$ .
  - **1** Convert A into String S' of length b.

- Round(A,  $i_r$ ) =  $\iota(\chi(\pi(\rho(\theta(A)))), i_r)$ .
- Consists of  $n_r$  rounds of Round.
- Keccak- $p[b, n_r](S)$ 
  - Convert S into a state Array A.
  - ② For  $i_r$  from 0 to  $n_r 1$ , let  $A = \text{Round}(A, i_r)$ .
  - **3** Convert A into String S' of length b.
  - Return S'.



#### KECCAK-384 and 2-round KECCAK-384

• Keccak-384 = Keccak- $p[1600, 24][\text{rate} = 1600 - 2 \cdot 384].$ 

#### Keccak-384 and 2-round Keccak-384

• Keccak-384 = Keccak- $p[1600, 24][\text{rate} = 1600 - 2 \cdot 384].$ 

• 2-round Keccak-384 = Keccak- $p[1600, 2][\text{rate} = 1600 - 2 \cdot 384]$ .

### Outline

- Introduction
- 2 Known Attacks
- Our Contribution
- 4 Conclusion

| No. of | Hash length             | Time Complexity | Reference |
|--------|-------------------------|-----------------|-----------|
| rounds |                         |                 |           |
| 1      | Keccak- 224/256/384/512 | 1               | [KRA18]   |
|        |                         |                 |           |

| No. of | Hash length             | Time Complexity | Reference |
|--------|-------------------------|-----------------|-----------|
| rounds |                         |                 |           |
| 1      | Keccak- 224/256/384/512 | 1               | [KRA18]   |
| 2      | Keccak- 224/256         | 2 <sup>33</sup> | [NPRM11]  |
|        |                         |                 |           |

| No. of | Hash length             | Time Complexity                  | Reference |
|--------|-------------------------|----------------------------------|-----------|
| rounds |                         |                                  |           |
| 1      | Keccak- 224/256/384/512 | 1                                | [KRA18]   |
| 2      | Keccak- 224/256         | 2 <sup>33</sup>                  | [NPRM11]  |
| 2      | Keccak- 224/256         | 1                                | [GLS16]   |
| 2      | Keccak- 384/512         | $2^{129}/2^{384}$                | [GLS16]   |
| 3      | Keccak- 224/256/384/512 | $2^{97}/2^{192}/2^{322}/2^{484}$ | GLS16     |
| 4      | Keccak- 224/256         | $2^{213}/2^{251}$                | [GLS16]   |
|        |                         | •                                | '         |

| No. of | Hash length             | Time Complexity                  | Reference |
|--------|-------------------------|----------------------------------|-----------|
| rounds |                         |                                  |           |
| 1      | Keccak- 224/256/384/512 | 1                                | [KRA18]   |
| 2      | Keccak- 224/256         | 2 <sup>33</sup>                  | [NPRM11]  |
| 2      | Keccak- 224/256         | 1                                | [GLS16]   |
| 2      | Keccak- 384/512         | $2^{129}/2^{384}$                | [GLS16]   |
| 3      | Keccak- 224/256/384/512 | $2^{97}/2^{192}/2^{322}/2^{484}$ | [GLS16]   |
| 4      | Keccak- 224/256         | $2^{213}/2^{251}$                | [GLS16]   |
| 4      | Keccak- 384/512         | $2^{378}/2^{506}$                | [MPS13]   |

| No. of | Hash length             | Time Complexity                  | Reference |  |
|--------|-------------------------|----------------------------------|-----------|--|
| rounds |                         |                                  |           |  |
| 1      | Keccak- 224/256/384/512 | 1                                | [KRA18]   |  |
| 2      | Keccak- 224/256         | 2 <sup>33</sup>                  | [NPRM11]  |  |
| 2      | Keccak- 224/256         | 1                                | [GLS16]   |  |
| 2      | Keccak - 384/512        | $2^{129}/2^{384}$                | [GLS16]   |  |
| 3      | Keccak- 224/256/384/512 | $2^{97}/2^{192}/2^{322}/2^{484}$ | [GLS16]   |  |
| 4      | Keccak- 224/256         | $2^{213}/2^{251}$                | [GLS16]   |  |
| 4      | Keccak- 384/512         | $2^{378}/2^{506}$                | [MPS13]   |  |

### Outline

- Introduction
- 2 Known Attacks
- Our Contribution
- Conclusion

• We will represent a state by 25 Lanes.

- We will represent a state by 25 Lanes.
- Each lane in a state will be represented by a variable which is a 64-bit array.(example: a<sub>0</sub>)

- We will represent a state by 25 Lanes.
- Each lane in a state will be represented by a variable which is a 64-bit array.(example: a<sub>0</sub>)
- A variable with a number in round bracket " $(\cdot)$ " represents the shift of the bits in array towards MSB. (example:  $a_0(4)$ )

- We will represent a state by 25 Lanes.
- Each lane in a state will be represented by a variable which is a 64-bit array.(example: a<sub>0</sub>)
- A variable with a number in round bracket " $(\cdot)$ " represents the shift of the bits in array towards MSB. (example:  $a_0(4)$ )
- A variable with a number in square bracket " $[\cdot]$ " represents the bit value of the variable at that index.(examples:  $a_0[3]$ )



#### 2-round Keccak



Figure: Two round of Keccak-384

### Initial State

| 0                     | 0                     | 0                     | 0     | 0     |
|-----------------------|-----------------------|-----------------------|-------|-------|
| 0                     | 0                     | 0                     | 0     | 0     |
| $a_1$                 | $b_1$                 | <i>c</i> <sub>2</sub> | 0     | 0     |
| a <sub>2</sub>        | <i>b</i> <sub>2</sub> | <i>c</i> <sub>1</sub> | $d_1$ | $e_1$ |
| <i>a</i> <sub>0</sub> | <i>b</i> <sub>0</sub> | <i>c</i> <sub>0</sub> | $d_0$ | $e_0$ |

Figure: Setting of Initial State in the Attack

 $oldsymbol{ heta}$  step mapping diffuses message bits to full state.

 $oldsymbol{ heta}$  step mapping diffuses message bits to full state.

• Aim: Control the diffusion.

 $oldsymbol{ heta}$  step mapping diffuses message bits to full state.

Aim: Control the diffusion.

How: Put condition on message bits.

- ullet step mapping diffuses message bits to full state.
- Aim: Control the diffusion.
- How: Put condition on message bits.
- Conditions to make column parity zero:

$$a_2 = a_0 \oplus a_1, \quad b_2 = b_0 \oplus b_1, \quad c_2 = c_0 \oplus c_1$$
  
 $d_1 = d_0 \quad \text{and} \quad e_1 = e_0.$  (1)



### State 1 to State 2



Figure: Diagram for 2-round preimage attack on Keccak-384

### Final State



Figure: Final State

### Observations

 $\boldsymbol{\chi}$  is a row dependent operation.

#### Observations

 $\chi$  is a row dependent operation.



Figure: Computation of  $\chi^{-1}$ 

#### Observations

 $\chi$  is a row dependent operation.



Figure: Computation of  $\chi^{-1}$ 



Figure: Computation of  $\chi^{-1}$ 

## $\chi$ and $\iota$ inverse



State 4

Figure: Diagram for 2-round preimage attack on  ${\rm Keccak}$ -384

#### State 4 to State 3



Figure: Diagram for 2-round preimage attack on KECCAK-384

#### State 1 to 4



Figure: Diagram for 2-round preimage attack on  ${\it Keccak-384}$ 

#### State 2 to State 3

State 2

| c <sub>0</sub> (62) | d <sub>1</sub> (55) | 0                   | 0 | 0 |                                   |           |          |          |                      | h' <sub>4</sub> (50) |
|---------------------|---------------------|---------------------|---|---|-----------------------------------|-----------|----------|----------|----------------------|----------------------|
| e <sub>0</sub> (27) | a <sub>2</sub> (36) | b <sub>1</sub> (10) | 0 | 0 |                                   |           |          |          | h'_3(43)             |                      |
| b <sub>0</sub> (1)  | c <sub>1</sub> (6)  | 0                   | 0 | 0 | $\xrightarrow{\chi,\iota,\theta}$ |           |          | h'_2(21) |                      |                      |
| d <sub>0</sub> (28) | e <sub>1</sub> (20) | a <sub>1</sub> (3)  | 0 | 0 |                                   |           | h'_1(20) |          |                      | 1                    |
| a <sub>0</sub> (0)  | b2(44)              | c <sub>2</sub> (43) | 0 | 0 |                                   | $h'_0(0)$ |          |          | h' <sub>5</sub> (36) |                      |

Figure: Intermediate States in 2-round preimage attack on  ${\rm Keccak}$ -384

State 3

• Fix  $d_0$ ,  $d_1$  as constants (with condition that  $d_0 = d_1$ ).

- Fix  $d_0$ ,  $d_1$  as constants (with condition that  $d_0 = d_1$ ).
- In state 2, we have  $11 \cdot 64$  free variables.

- Fix  $d_0$ ,  $d_1$  as constants (with condition that  $d_0 = d_1$ ).
- In state 2, we have  $11 \cdot 64$  free variables.
- And we need to satisfy  $7 \cdot 64$  Boolean equations and  $4 \cdot 64$  column parity conditions.

- Fix  $d_0$ ,  $d_1$  as constants (with condition that  $d_0 = d_1$ ).
- In state 2, we have  $11 \cdot 64$  free variables.
- And we need to satisfy  $7 \cdot 64$  Boolean equations and  $4 \cdot 64$  column parity conditions.
- So, we expect a solution.

- Fix  $d_0$ ,  $d_1$  as constants (with condition that  $d_0 = d_1$ ).
- In state 2, we have  $11 \cdot 64$  free variables.
- And we need to satisfy  $7 \cdot 64$  Boolean equations and  $4 \cdot 64$  column parity conditions.
- So, we expect a solution.
- We do find the possible solution subspace.

• In state 3, the values of  $i^{\rm th}$ -slice depend on the  $(i-1)^{\rm th}$  and  $i^{\rm th}$ -slice of state 2.

- In state 3, the values of  $i^{\rm th}$ -slice depend on the  $(i-1)^{\rm th}$  and  $i^{\rm th}$ -slice of state 2.
- We first find the set of input message bits which satisfy the small collection of consecutive slices of state 3.

- In state 3, the values of  $i^{\rm th}$ -slice depend on the  $(i-1)^{\rm th}$  and  $i^{\rm th}$ -slice of state 2.
- We first find the set of input message bits which satisfy the small collection of consecutive slices of state 3.
- We then merge the solutions to find message bits which satisfy large collection of consecutive slices.

# Possible solutions for groups of 3 slices

• Consider a group of 3 slices (for example take the first 3 slices).

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
  - $a_0[0,1,2]$ ,  $a_1[3,4,5]$ ,  $a_2[36,37,38]$
  - $b_0[1,2,3]$ ,  $b_1[10,11,12]$ ,  $b_2[44,45,46]$
  - $c_0[62, 63, 0], c_1[6, 7, 8], c_2[43, 44, 45]$
  - $e_0[27, 28, 29], e_1[20, 21, 22]$

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
  - $a_0[0,1,2]$ ,  $a_1[3,4,5]$ ,  $a_2[36,37,38]$
  - $b_0[1,2,3]$ ,  $b_1[10,11,12]$ ,  $b_2[44,45,46]$
  - $c_0[62, 63, 0], c_1[6, 7, 8], c_2[43, 44, 45]$
  - $e_0[27, 28, 29], e_1[20, 21, 22]$
- Once we fix these message bits in the State 2, the slice 1 and slice 2 of State 3 get fixed.

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
  - $a_0[0,1,2]$ ,  $a_1[3,4,5]$ ,  $a_2[36,37,38]$
  - $b_0[1,2,3]$ ,  $b_1[10,11,12]$ ,  $b_2[44,45,46]$
  - $c_0[62, 63, 0], c_1[6, 7, 8], c_2[43, 44, 45]$
  - $e_0[27, 28, 29], e_1[20, 21, 22]$
- Once we fix these message bits in the State 2, the slice 1 and slice 2 of State 3 get fixed.
- Furthermore there is no dependency between these message bits.

- Consider a group of 3 slices (for example take the first 3 slices).
- It contains the following message bits
  - $a_0[0,1,2]$ ,  $a_1[3,4,5]$ ,  $a_2[36,37,38]$
  - $b_0[1,2,3]$ ,  $b_1[10,11,12]$ ,  $b_2[44,45,46]$
  - $c_0[62, 63, 0], c_1[6, 7, 8], c_2[43, 44, 45]$
  - $e_0[27, 28, 29], e_1[20, 21, 22]$
- Once we fix these message bits in the State 2, the slice 1 and slice 2 of State 3 get fixed.
- Furthermore there is no dependency between these message bits.
- Thus the total possible solutions for this 3-slice  $= 2^{33-2\cdot7} = 2^{19}$ .



• This is obtained by merging two groups of 3 slices.

- This is obtained by merging two groups of 3 slices.
- Consider, for example, the first two 3-slices (first 6 slices). It contains the following message bits:
  - $a_0[0-5]$ ,  $a_1[3-8]$ ,  $a_2[36-41]$
  - $b_0[1-6]$ ,  $b_1[10-15]$ ,  $b_2[44-49]$
  - $c_0[62-3]$ ,  $c_1[6-11]$ ,  $c_2[43-48]$
  - $e_0[27-32]$ ,  $e_1[20-25]$

- This is obtained by merging two groups of 3 slices.
- Consider, for example, the first two 3-slices (first 6 slices). It contains the following message bits:
  - $a_0[0-5]$ ,  $a_1[3-8]$ ,  $a_2[36-41]$
  - $b_0[1-6]$ ,  $b_1[10-15]$ ,  $b_2[44-49]$
  - $c_0[62-3]$ ,  $c_1[6-11]$ ,  $c_2[43-48]$
  - $e_0[27-32]$ ,  $e_1[20-25]$
- During merging, we get to compute the bit values of slice 3 of the State 3 as well.

- This is obtained by merging two groups of 3 slices.
- Consider, for example, the first two 3-slices (first 6 slices). It contains the following message bits:
  - $a_0[0-5]$ ,  $a_1[3-8]$ ,  $a_2[36-41]$
  - $b_0[1-6]$ ,  $b_1[10-15]$ ,  $b_2[44-49]$
  - $c_0[62-3]$ ,  $c_1[6-11]$ ,  $c_2[43-48]$
  - $e_0[27-32]$ ,  $e_1[20-25]$
- During merging, we get to compute the bit values of slice 3 of the State 3 as well.
- Since, we already have the correct bit values of slice 3 of the State 3, and there is no dependency between the above message bit variables, we end up having total possible solutions  $= 2^{2 \cdot 19 7} = 2^{31}$ .

• Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices.

- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices.
- Consider, for example, the first 12 slices. It contain the following message bits:
  - $a_0[0-11]$ ,  $a_1[3-14]$ ,  $a_2[36-47]$
  - $b_0[1-12]$ ,  $b_1[10-21]$ ,  $b_2[44-55]$
  - $c_0[62-9]$ ,  $c_1[6-17]$ ,  $c_2[43-54]$
  - $e_0[27-38]$ ,  $e_1[20-31]$

- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices.
- Consider, for example, the first 12 slices. It contain the following message bits:
  - $a_0[0-11]$ ,  $a_1[3-14]$ ,  $a_2[36-47]$ •  $b_0[1-12]$ ,  $b_1[10-21]$ ,  $b_2[44-55]$ •  $c_0[62-9]$ ,  $c_1[6-17]$ ,  $c_2[43-54]$
  - $e_0[27-38]$ ,  $e_1[20-31]$
- As before, here we again get the values of slice 6 of State 3.

- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices.
- Consider, for example, the first 12 slices. It contain the following message bits:
  - $a_0[0-11]$ ,  $a_1[3-14]$ ,  $a_2[36-47]$ •  $b_0[1-12]$ ,  $b_1[10-21]$ ,  $b_2[44-55]$ •  $c_0[62-9]$ ,  $c_1[6-17]$ ,  $c_2[43-54]$
  - $e_0[27-38]$ ,  $e_1[20-31]$
- As before, here we again get the values of slice 6 of State 3.
- But, in contrast to 6-slice, the bit variables are not independent. The bit variables  $e_0[27-31]$  and  $e_1[27-31]$  are dependent.



- Similar to the case of 6-slice, the solution for a 12-slice is obtained by merging two 6-slices.
- Consider, for example, the first 12 slices. It contain the following message bits:
  - $a_0[0-11]$ ,  $a_1[3-14]$ ,  $a_2[36-47]$ •  $b_0[1-12]$ ,  $b_1[10-21]$ ,  $b_2[44-55]$ •  $c_0[62-9]$ ,  $c_1[6-17]$ ,  $c_2[43-54]$
  - $e_0[27-38]$ ,  $e_1[20-31]$
- As before, here we again get the values of slice 6 of State 3.
- But, in contrast to 6-slice, the bit variables are not independent. The bit variables  $e_0[27-31]$  and  $e_1[27-31]$  are dependent.
- Hence, the total possible solutions =  $2^{2 \cdot 31 5 7} = 2^{50}$ .



• This is obtained by merging two groups of 12 slices.

- This is obtained by merging two groups of 12 slices.
- For example, consider the first 24 slices i.e.,

• 
$$a_0[0-23]$$
,  $a_1[3-26]$ ,  $a_2[36-59]$ 

• 
$$b_0[1-24]$$
,  $b_1[10-33]$ ,  $b_2[44-3]$ 

• 
$$c_0[62-21]$$
,  $c_1[6-29]$ ,  $c_2[43-2]$ 

• 
$$e_0[27-50]$$
,  $e_1[20-43]$ 

- This is obtained by merging two groups of 12 slices.
- For example, consider the first 24 slices i.e.,
  - $a_0[0-23]$ ,  $a_1[3-26]$ ,  $a_2[36-59]$
  - $b_0[1-24]$ ,  $b_1[10-33]$ ,  $b_2[44-3]$
  - $c_0[62-21]$ ,  $c_1[6-29]$ ,  $c_2[43-2]$
  - $e_0[27-50]$ ,  $e_1[20-43]$
- This is very much similar to the 12 slice solution. In this case we get 7 dependencies and hence the total number of possible solutions is equal to  $2^{2\cdot 50-7-7} = 2^{86}$ .

• This is done by merging two groups of 24 slices.

- This is done by merging two groups of 24 slices.
- For example, take first 48 slices. It contain the following message bits for  $a_0, a_1, a_2$

 $1^{\rm st}$  group :

$$\begin{vmatrix}
a_0 \to 0, 1, 2, \dots, 23 \\
a_1 \to 3, 4, 5, \dots, 26 \\
a_2 \to 36, 37, 38, \dots, 59
\end{vmatrix}$$
(2)

 $2^{\rm nd}$  group :

$$\begin{vmatrix}
a_0 \to 24, 25, 26, \dots, 47 \\
a_1 \to 27, 28, 29, \dots, 50 \\
a_2 \to 60, 61, 62, \dots, 19
\end{vmatrix}.$$
(3)

- This is done by merging two groups of 24 slices.
- For example, take first 48 slices. It contain the following message bits for  $a_0, a_1, a_2$

 $1^{\rm st}$  group :

$$\begin{vmatrix}
a_0 \to 0, 1, 2, \dots, 23 \\
a_1 \to 3, 4, 5, \dots, 26 \\
a_2 \to 36, 37, 38, \dots, 59
\end{vmatrix}$$
(2)

 $2^{\rm nd}$  group :

$$\begin{vmatrix}
a_0 \to 24, 25, 26, \dots, 47 \\
a_1 \to 27, 28, 29, \dots, 50 \\
a_2 \to 60, 61, 62, \dots, 19
\end{vmatrix}.$$
(3)

• Dependent variables are  $a_0[36-47,3-19]$ ,  $a_1[36-47,3-19]$  and  $a_2[36-47,3-19]$ .



- This is done by merging two groups of 24 slices.
- For example, take first 48 slices. It contain the following message bits for  $a_0, a_1, a_2$

 $1^{\rm st}$  group :

$$\begin{vmatrix}
a_0 \to 0, 1, 2, \dots, 23 \\
a_1 \to 3, 4, 5, \dots, 26 \\
a_2 \to 36, 37, 38, \dots, 59
\end{vmatrix}$$
(2)

 $2^{\rm nd}$  group:

$$\begin{vmatrix}
a_0 \to 24, 25, 26, \dots, 47 \\
a_1 \to 27, 28, 29, \dots, 50 \\
a_2 \to 60, 61, 62, \dots, 19
\end{vmatrix}.$$
(3)

- Dependent variables are  $a_0[36-47, 3-19]$ ,  $a_1[36-47, 3-19]$  and  $a_2[36-47, 3-19]$ .
- Total dependent variables are (29 + 23 + 24 + 7) = 83



- This is done by merging two groups of 24 slices.
- For example, take first 48 slices. It contain the following message bits for  $a_0$ ,  $a_1$ ,  $a_2$

 $1^{\rm st}$  group :

$$\begin{vmatrix}
a_0 \to 0, 1, 2, \dots, 23 \\
a_1 \to 3, 4, 5, \dots, 26 \\
a_2 \to 36, 37, 38, \dots, 59
\end{vmatrix}$$
(2)

 $2^{\rm nd}$  group :

$$\begin{vmatrix}
a_0 \to 24, 25, 26, \dots, 47 \\
a_1 \to 27, 28, 29, \dots, 50 \\
a_2 \to 60, 61, 62, \dots, 19
\end{vmatrix}.$$
(3)

- Dependent variables are  $a_0[36-47, 3-19]$ ,  $a_1[36-47, 3-19]$  and  $a_2[36-47, 3-19]$ .
- Total dependent variables are (29 + 23 + 24 + 7) = 83
- Total possible solutions =  $2^{2 \cdot 86 83 7} = 2^{82}$ .

 Thus, using above method, we find the possible solutions for 48-slices, 12-slices and 4-slices.

- Thus, using above method, we find the possible solutions for 48-slices, 12-slices and 4-slices.
- For finding the solution for the last consicutive 16 slices, we merge possible solution of its consituent 12-slice and 4-slice.

- Thus, using above method, we find the possible solutions for 48-slices, 12-slices and 4-slices.
- For finding the solution for the last consicutive 16 slices, we merge possible solution of its consituent 12-slice and 4-slice.
- Final solution space is obtained by merging the solution space of first 48 slices and the last 16 slices.

- Thus, using above method, we find the possible solutions for 48-slices, 12-slices and 4-slices.
- For finding the solution for the last consicutive 16 slices, we merge possible solution of its consituent 12-slice and 4-slice.
- Final solution space is obtained by merging the solution space of first 48 slices and the last 16 slices.
- Space complexity of the attack  $= 2^{87}$ .

- Thus, using above method, we find the possible solutions for 48-slices, 12-slices and 4-slices.
- For finding the solution for the last consicutive 16 slices, we merge possible solution of its consituent 12-slice and 4-slice.
- Final solution space is obtained by merging the solution space of first 48 slices and the last 16 slices.
- Space complexity of the attack =  $2^{87}$ .
- Time complexity of the attack =  $2^{88}$ .



# Implementation of attack on ${ m KECCAK}[b=400,c=192]$

• We have implemented the attack for 2-round KECCAK[b=400,c=192].

# Implementation of attack on $ext{KECCAK}[b=400,c=192]$

- We have implemented the attack for 2-round KECCAK[b=400,c=192].
- Machine Specification: 132GB RAM, 20 Cores.

# Implementation of attack on $\mathrm{KECCAK}[b=400,c=192]$

- We have implemented the attack for 2-round Keccak[b=400,c=192].
- Machine Specification: 132GB RAM, 20 Cores.
- The average running time = 60 minutes.

# Implementation of attack on $\mathrm{KECCAK}[b=400,c=192]$

- We have implemented the attack for 2-round Keccak[b=400,c=192].
- Machine Specification: 132GB RAM, 20 Cores.
- The average running time = 60 minutes.
- URL: https://github.com/nickedes/keccak

#### Outline

- Introduction
- 2 Known Attacks
- Our Contribution
- 4 Conclusion

#### Conclusion

 We have presented a preimage attack on the 2 rounds of round reduced Keccak-384.

#### Conclusion

- We have presented a preimage attack on the 2 rounds of round reduced Keccak-384.
- It is not yet practical but close to it.

#### Conclusion

- We have presented a preimage attack on the 2 rounds of round reduced Keccak-384.
- It is not yet practical but close to it.
- Future work: Variant(s) of this attack for more round of Keccak.

# Thank You

# Questions?

#### References I



Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to cryptanalysis of round-reduced keccak

In Advances in Cryptology—ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22, pages 249–274. Springer, 2016.



Rajendra Kumar, Mahesh Sreekumar Rajasree, and Hoda AlKhzaimi. Cryptanalysis of 1-round keccak.

In *International Conference on Cryptology in Africa*, pages 124–137. Springer, 2018.



Paweł Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanalysis of round-reduced keccak. In *International Workshop on Fast Software Encryption*, pages 241–262. Springer, 2013.

#### References II



María Naya-Plasencia, Andrea Röck, and Willi Meier.

Practical analysis of reduced-round keccak.

In *International Conference on Cryptology in India*, pages 236–254. Springer, 2011.