Heuristic Analysis of Search Algorithms and Planning Graphs

Austin Totty

Problem 1

Below is a table with information regarding problem 1. Of the non-heuristic searches, DFS was the fastest and expanded the fewest nodes. Of the heuristic searches with A*, ignore_preconditions was faster, but levelsum expanded fewer nodes.

	Problem 1					
	Expansions	Goal tests	New nodes	Plan length	Time	
BFS	43	56	180	6	0.3546833866	
DFS	21	22	84	20	0.1343715547	
A* (constant heuristic)	55	57	224	6	0.335447558	
A* (ignore_precond)	41	43	170	6	0.2820590539	
A* (levelsum)	11	13	50	6	0.8867961899	

Problem 2

Below is a table with information regarding problem 2. Of the non-heuristic searches, DFS was the fastest and expanded the fewest nodes. Of the heuristic searches with A*, ignore_preconditions was faster, but levelsum expanded fewer nodes.

	Problem 2				
	Expansions	Goal tests	New nodes	Plan length	Time
BFS	1923	2672	15352	9	45.97717874
DFS	82	83	511	77	1.903286081
A* (constant heuristic)	2723	2725	21368	9	60.72963981
A* (ignore_precond	876	878	7199	9	20.16962518

)					
A* (levelsum)	238	240	1911	9	87.25437523

Problem 3

Below is a table with information regarding problem 3. Of the non-heuristic searches, DFS was the fastest and expanded the fewest nodes. Of the heuristic searches with A*, ignore_preconditions was faster, but levelsum expanded fewer nodes.

	Problem 3				
	Expansions	Goal tests	New nodes	Plan length	Time
BFS	14663	18098	129631	12	513.2798851
DFS	408	409	3364	392	11.24713236
A* (constant heuristic)	18235	18237	159716	12	494.1599941
A* (ignore_precond)	5040	5042	44944	12	134.0663204
A* (levelsum)	325	327	3002	12	359.1089114

Conclusions

For each of these problems, depth-first search found a solutions extremely quickly; it outperformed every other method I evaluated. However, the resulting plan lengths from depth-first search are unreasonably long to serve as practical solutions to the problems. The best solution to these problems was found using A* with the ignore_preconditions heuristic, which found the solution faster than A* with levelsum. The latter search performed fewer expansions, goal tests, and expanded fewer new nodes. As described in Norvig and Russell's book, the ignore_preconditions heuristic adds more edges the to the graph, making it easier to solve (and reduces the computation time).