Para empezar leeremos el dataset food, el mismo con el que estabamos trabajando hasta ahora en Weka.

```
food <- read.csv(file="http://www.sc.ehu.es/ccwbayes/docencia/md/selected-dbs/clustering/
food.csv",header=TRUE, sep=",")</pre>
```

Estas son las columnas de nuestro dataset:

```
colnames(food)
## [1] "Name" "Energy" "Protein" "Fat" "Calcium" "Iron"
```

Eliminamos la primera columna, que corresponde al nombre de cada comida y ejecutamos el algoritmo k-means. En concreto buscaremos clasificar las instancias en dos clusters (parámetro: centers=2).

```
foodNumeric <- food[,-1]
library(stats)
kmeans.res <- kmeans(foodNumeric,centers=2)</pre>
```

Si imprimimos el resultado podremos ver algunos datos sobre los clusters generados: media de las variables para cada cluster, el cluster al que pertenece cada instancia en forma de vector y la cohesion del clustering en función de la suma de cuadrados.

```
print(kmeans.res)
```

```
## K-means clustering with 2 clusters of sizes 9, 18
##
## Cluster means:
##
      Energy Protein
                               Calcium
                                          Iron
                         Fat
## 1 331.1111
                 19 27.555556 8.777778 2.466667
## 2 145.5556
                 19 6.444444 61.555556 2.338889
##
## Clustering vector:
   ##
##
## Within cluster sum of squares by cluster:
       23751.03 178738.40
## [1]
##
   (between_SS / total_SS = 52.7 %)
##
## Available components:
##
## [1] "cluster"
                    "centers"
                                  "totss"
                                                             "tot.withinss"
                                                "withinss"
## [6] "betweenss"
                    "size"
                                  "iter"
                                               "ifault"
```

Además podemos acceder a varios componentes del resultado del clustering mediante el token \$, por ejemplo el vector que indica el cluster de cada instancia (\$cluster).

```
kmeans.res$cluster
```

De esta manera podemos combinar nuestro dataset original con la asignación obtenida del k-means.

foodWithCluster <- cbind(food, cluster=kmeans.res\$cluster)
foodWithCluster</pre>

##		Name	Energy	Protein	Fat	Calcium	Iron	cluster
##	1	Braised Beef	340	20	28	9	2.6	1
##	2	Hamburger	245	21	17	9	2.7	1
##	3	Roast Beef	420	15	39	7	2.0	1
##	4	Beef steak	375	19	32	9	2.6	1
##	5	Canned Beef	180	22	10	17	3.7	2
##	6	Broiled Chicken	115	20	3	8	1.4	2
##	7	Canned Chicken	170	25	7	12	1.5	2
##	8	Beef Heart	160	26	5	14	5.9	2
##	9	Roast Lamb Leg	265	20	20	9	2.6	1
##	10	Roast Lamb Shoulder	300	18	25	9	2.3	1
##	11	Smoked Ham	340	20	28	9	2.5	1
##	12	Pork Roast	340	19	29	9	2.5	1
##	13	Pork Simmered	355	19	30	9	2.4	1
##	14	Beef Tongue	205	18	14	7	2.5	2
##	15	Veal Cutlet	185	23	9	9	2.7	2
##	16	Baked Bluefish	135	22	4	25	0.6	2
##	17	Raw Clams	70	11	1	82	6.0	2
##	18	Canned Clams	45	7	1	74	5.4	2
##	19	Canned Crab meat	90	14	2	38	0.8	2
##	20	Fried Haddock	135	16	5	15	0.5	2
##	21	Broiled Mackerel	200	19	13	5	1.0	2
##	22	Canned Mackerel	155	16	9	157	1.8	2
##	23	Fried Perch	195	16	11	14	1.3	2
##	24	Canned Salmon	120	17	5	159	0.7	2
##	25	Canned Sardines	180	22	9	367	2.5	2
##	26	Canned Tuna	170	25	7	7	1.2	2
##	27	Canned Shrimp	110	23	1	98	2.6	2

Para ver nuestro cluster cargaremos el paquete factoextra, que dibujará un gráfico del dataset clusterizado. install.packages("factoextra")

library(factoextra)

- ## Loading required package: ggplot2
- ## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

¿Qué representan los dos ejes de la siguiente gráfica? ¿Y sus porcentajes entre paréntesis?

• Dado que nuestro problema tiene 5 variables descriptoras no sería posible representar los individuos en una gráfica, pero por defecto la funcion fviz_cluster realizará el analisis de componentes principales (PCA) sobre nuestro problema para poder poder dibujar los individuos en un espacio 2D. Por tanto los ejes son los componentes principales resultado del analisis PCA, que serán combinación lineal de las antiguas variables descriptoras; y los porcentajes representan la cantidad de varianza que recoge cada componente.

¿Qué muestra la gráfica? Explica

- En la gráfica se nos muestran los individuos en función del valor que tienen en las nuevas componentes principales y se recogen en dos grupos por colores, cada grupo es un cluster. Además de representar cada individuo con un poligono pequeño tambien se representa el centroide del cluster mediante uno más grande.
 - El centroide es la media aritmetica de los valores para los componentes principales de todos los individuos del cluster, a la hora de evaluar se usa la distancia hasta este para decidir si un individuo está en el cluster correcto o está más cerca de otro y se debería cambiar.