An introduction to Kontsevich's invariants, and why it can detect exotic phenomena

Xujia Chen

March 6, 2024

e.g. Given a smooth manifold M, is there another smooth manifold M' homeomorphic but not diffeomorphic to M? "exotic pair"

e.g. Given a smooth manifold M, is there another smooth manifold M' homeomorphic but not diffeomorphic to M? "exotic pair"

▶ No exotic pair in dimension 2 or 3. [Rado (1925), Moise (1952)]

e.g. Given a smooth manifold M, is there another smooth manifold M' homeomorphic but not diffeomorphic to M? "exotic pair"

- ▶ No exotic pair in dimension 2 or 3. [Rado (1925), Moise (1952)]
- First examples: $M = S^7$ [Milnor (1956)] Many developments since then.

e.g. Given a smooth manifold M, is there another smooth manifold M' homeomorphic but not diffeomorphic to M? "exotic pair"

- ▶ No exotic pair in dimension 2 or 3. [Rado (1925), Moise (1952)]
- First examples: $M = S^7$ [Milnor (1956)] Many developments since then.
- $ightharpoonup M=S^4$: one of the most famous open conjectures in topology

Another question concerning exotic phenomena:

M: smooth manifold, possibly with boundary ∂M

$$\mathsf{Diff}_{\partial}(M) := \{ f: M \to M \text{ diffeomorphism}, \\ \exists \text{ neighborhood } U \text{ of } \partial M \text{ such that } f|_U = \mathsf{Id} \} \\ \mathsf{Homeo}_{\partial}(M) := \{ f: M \to M \text{ homeomorphism}, \\ \exists \text{ neighborhood } U \text{ of } \partial M \text{ such that } f|_U = \mathsf{Id} \}$$

 $\mathrm{Diff}_{\partial}(M)$ and $\mathrm{Homeo}_{\partial}(M)$ both have natural group structures and natural topologies.

The inclusion map $\mathsf{Diff}_\partial(M) \to \mathsf{Homeo}_\partial(M)$ is continuous.

Another question concerning exotic phenomena:

M: smooth manifold, possibly with boundary ∂M

$$\mathsf{Diff}_{\partial}(M) := \{ f : M \to M \text{ diffeomorphism}, \\ \exists \text{ neighborhood } U \text{ of } \partial M \text{ such that } f|_U = \mathsf{Id} \} \\ \mathsf{Homeo}_{\partial}(M) := \{ f : M \to M \text{ homeomorphism}, \\ \exists \text{ neighborhood } U \text{ of } \partial M \text{ such that } f|_U = \mathsf{Id} \} \\$$

 $\mathrm{Diff}_{\partial}(M)$ and $\mathrm{Homeo}_{\partial}(M)$ both have natural group structures and natural topologies.

The inclusion map $\mathsf{Diff}_\partial(M) \to \mathsf{Homeo}_\partial(M)$ is continuous.

Q: Is it a homotopy equivalence?

 $M = D^n$: the standard *n*-dimensional disk (ball)

 $\mathsf{Diff}_{\partial}(D^n) \qquad \mathsf{Homeo}_{\partial}(D^n)$

 $M = D^n$: the standard *n*-dimensional disk (ball)

$$\mathsf{Diff}_{\partial}(D^n) \qquad \mathsf{Homeo}_{\partial}(D^n)$$

"Alexander Trick" \implies Homeo $_{\partial}(D^n)$ is contractible

 $M = D^n$: the standard *n*-dimensional disk (ball)

$$\mathsf{Diff}_\partial(D^n) \qquad \mathsf{Homeo}_\partial(D^n)$$

"Alexander Trick" \Longrightarrow Homeo $_{\partial}(D^n)$ is contractible

Is $\mathsf{Diff}_{\partial}(D^n)$ contractible?

 $M=D^n$: the standard n-dimensional disk (ball)

$$\mathsf{Diff}_\partial(D^n) \qquad \mathsf{Homeo}_\partial(D^n)$$

"Alexander Trick" \Longrightarrow Homeo $_{\partial}(D^n)$ is contractible

Is $\mathsf{Diff}_{\partial}(D^n)$ contractible?

n=2,3: Yes [Smale (1958), Cerf (1969), Hatcher (1983)]

 $M = D^n$: the standard *n*-dimensional disk (ball)

$$\mathsf{Diff}_{\partial}(D^n) \qquad \mathsf{Homeo}_{\partial}(D^n)$$

"Alexander Trick" \Longrightarrow Homeo $_{\partial}(D^n)$ is contractible

Is $\mathsf{Diff}_\partial(D^n)$ contractible?

```
n=2,3: Yes [Smale (1958), Cerf (1969), Hatcher (1983)] n\geq 4: No! (n\geq 5 case: known for decades; n=4 case: [Watanabe (2018)])
```

In general, the homotopy groups of $\mathrm{Diff}_{\partial}(D^n)$ are still largely unknown.

► They are invariants of (some) smooth 3-manifolds / fiber bundles / knots.

- ► They are invariants of (some) smooth 3-manifolds / fiber bundles / knots.
- ► Constructed in [Kontsevich (1992)], motivated by perturbative Chern-Simons theory.

- ► They are invariants of (some) smooth 3-manifolds / fiber bundles / knots.
- ► Constructed in [Kontsevich (1992)], motivated by perturbative Chern-Simons theory.

 $[Watanabe] \implies These invariants can detect exotic phenomena.$

They have since become an important tool in studying the topology of diffeomorphism groups.

- ► They are invariants of (some) smooth 3-manifolds / fiber bundles / knots.
- ► Constructed in [Kontsevich (1992)], motivated by perturbative Chern-Simons theory.

 $[Watanabe] \implies These invariants can detect exotic phenomena.$

They have since become an important tool in studying the topology of diffeomorphism groups.

Q: How to understand the role smooth structure plays in Kontsevich's invariants?

- ► They are invariants of (some) smooth 3-manifolds / fiber bundles / knots.
- ► Constructed in [Kontsevich (1992)], motivated by perturbative Chern-Simons theory.

 $[Watanabe] \implies These invariants can detect exotic phenomena.$

They have since become an important tool in studying the topology of diffeomorphism groups.

Q: How to understand the role smooth structure plays in Kontsevich's invariants?

Today:

- 1, introduction to Kontsevich's invariants
- 2, give a perspective on this question

M: d-dimensional smooth manifold

 Γ : trivalent graph, e.g.

 $V(\Gamma){:=}\mathsf{vertex}\ \mathsf{set}\ \mathsf{of}\ \Gamma$

M: d-dimensional smooth manifold

 Γ : trivalent graph, e.g.

$$V(\Gamma){:=}\mathsf{vertex}\ \mathsf{set}\ \mathsf{of}\ \Gamma$$

$$\Delta = \{(x, y) \in M \times M | x = y\}$$

M: d-dimensional smooth manifold

 Γ : trivalent graph, e.g.

$$V(\Gamma){:=}\mathsf{vertex}\ \mathsf{set}\ \mathsf{of}\ \Gamma$$

$$\Delta = \{(x, y) \in M \times M \mid x = y\}$$

For each edge e or Γ , choose a generic "submanifold" $\Omega_e \subset M \times M$ such that $\partial \Omega_e = \Delta$

M: d-dimensional smooth manifold

 Γ : trivalent graph, e.g.

$$V(\Gamma){:=}\mathsf{vertex}\ \mathsf{set}\ \mathsf{of}\ \Gamma$$

$$\Delta = \{(x, y) \in M \times M \mid x = y\}$$

For each edge e or Γ , choose a generic "submanifold" $\Omega_e\subset M\times M$ such that $\partial\Omega_e=\Delta$

Count embeddings $V(\Gamma) \hookrightarrow M$ such that for every edge e, the two points connected by

for every edge e, the two points connected by e lie on Ω_e .

M: d-dimensional smooth manifold

 Γ : trivalent graph, e.g.

 $V(\Gamma)$:=vertex set of Γ

$$\Delta = \{(x, y) \in M \times M \mid x = y\}$$

For each edge e or Γ , choose a generic "submanifold" $\Omega_e \subset M \times M$ such that $\partial \Omega_e = \Delta \cup p_{\infty} \times M \cup M \times p_{\infty}$.

Kontsevich's invariant:

Count embeddings $V(\Gamma)\hookrightarrow M$ such homology sphere; fix $p_\infty\in M$

for every edge e, the two points connected by e lie on Ω_e .

Solution: assume M is a \mathbb{Z} -

 $M\colon d$ -dimensional smooth manifold <

 Γ : trivalent graph, e.g.

 $V(\Gamma)$:=vertex set of Γ

$$\Delta = \{(x, y) \in M \times M | x = y\}$$

For each edge e or Γ , choose a generic "submanifold" $\Omega_e \subset M \times M$ such that $\partial \Omega_e = \Delta \cup p_{\infty} \times M \cup M \times p_{\infty}$.

Kontsevich's invariant:

Count embeddings $V(\Gamma) \hookrightarrow M$ such t

for every edge e, the two points connected by e lie on Ω_e .

Assume d=3; or consider a family of manifolds ("fiber bundle") instead of just one

Solution: assume M is a \mathbb{Z} -

homology sphere; fix $p_{\infty} \in M$

M: d-dimensional smooth manifold <

Assume d=3; or consider a family of manifolds ("fiber bundle") instead of just one

Γ: trivalent graph, e. Need to control the

 $V(\Gamma)$:=vertex set directions Ω approaches Δ Solution: assume a framing on

$$\Delta = \{(x,y) \in M \mid p_{\infty} \text{ and use } \overline{\mathsf{Conf}}_S(M,p_{\infty})\}$$

For each edge e or Γ , choose a generic "submanifold" $\Omega_e \subset M imes M$ such that $\overline{\ \ }$ $\partial \Omega_e = \Delta \cup p_{\infty} \times M \cup M \times p_{\infty}.$

Kontsevich's invariant:

Count embeddings $V(\Gamma) \hookrightarrow M$ such

for every edge e, the two points connected by e lie on Ω_e .

Impossible when M is closed. Solution: assume M is a \mathbb{Z} homology sphere; fix $p_{\infty} \in M$

Given a finite set S,

$$\mathsf{Conf}_{S}(M, p_{\infty}) := \{ (p_{i})_{i \in S} \in M^{S} \mid p_{i} \neq p_{j}, \forall i \neq j; p_{i} \neq p_{\infty}, \forall i \}$$

Given a finite set S,

$$\mathsf{Conf}_{S}(M, p_{\infty}) := \{ (p_{i})_{i \in S} \in M^{S} \mid p_{i} \neq p_{j}, \forall i \neq j; p_{i} \neq p_{\infty}, \forall i \}$$

It has a natural compactification, the "Fulton-MacPherson (Axelrod-Singer) compactification", $\overline{{\rm Conf}}_S(M,p_\infty)$:

Given a finite set S,

$$\mathsf{Conf}_{S}(M, p_{\infty}) := \{ (p_{i})_{i \in S} \in M^{S} \mid p_{i} \neq p_{j}, \forall i \neq j; p_{i} \neq p_{\infty}, \forall i \}$$

It has a natural compactification, the "Fulton-MacPherson (Axelrod-Singer) compactification", $\overline{\mathsf{Conf}}_S(M,p_\infty)$:

lacktriangle defined by doing a sequence of real oriented blow-ups to M^S ;

Given a finite set S,

$$\mathsf{Conf}_{S}(M, p_{\infty}) := \{ (p_{i})_{i \in S} \in M^{S} \mid p_{i} \neq p_{j}, \forall i \neq j; p_{i} \neq p_{\infty}, \forall i \}$$

It has a natural compactification, the "Fulton-MacPherson (Axelrod-Singer) compactification", $\overline{\mathrm{Conf}}_S(M,p_\infty)$:

ightharpoonup defined by doing a sequence of real oriented blow-ups to M^S ;

Given a finite set S,

$$\mathsf{Conf}_{S}(M, p_{\infty}) := \{ (p_{i})_{i \in S} \in M^{S} \mid p_{i} \neq p_{j}, \forall i \neq j; p_{i} \neq p_{\infty}, \forall i \}$$

It has a natural compactification, the "Fulton-MacPherson (Axelrod-Singer) compactification", $\overline{\mathrm{Conf}}_S(M,p_\infty)$:

ightharpoonup defined by doing a sequence of real oriented blow-ups to M^S ;

Given a finite set S,

$$\mathsf{Conf}_{S}(M, p_{\infty}) := \{ (p_{i})_{i \in S} \in M^{S} \mid p_{i} \neq p_{j}, \forall i \neq j; p_{i} \neq p_{\infty}, \forall i \}$$

It has a natural compactification, the "Fulton-MacPherson (Axelrod-Singer) compactification", $\overline{\mathsf{Conf}}_S(M,p_\infty)$:

ightharpoonup defined by doing a sequence of real oriented blow-ups to M^S ;

▶ is a manifold with boundary and corners.

$$\label{eq:conf2} \begin{split} \overline{\mathrm{Conf}}_2(M,p_\infty) &:= \overline{\mathrm{Conf}}_{\{1,2\}}(M,p_\infty) \\ \mathrm{take} \ M \times M; \\ \mathrm{blow} \ \mathrm{up} \ p_\infty \times p_\infty; \\ \mathrm{then} \ \mathrm{blow} \ \mathrm{up} \ \Delta, \ p_\infty \times M, \ M \times p_\infty. \end{split}$$

$$\label{eq:conf2} \begin{split} \overline{\mathrm{Conf}}_2(M,p_\infty) &:= \overline{\mathrm{Conf}}_{\{1,2\}}(M,p_\infty) \\ \mathrm{take} \ M \times M; \\ \mathrm{blow} \ \mathrm{up} \ p_\infty \times p_\infty; \\ \mathrm{then} \ \mathrm{blow} \ \mathrm{up} \ \Delta, \ p_\infty \times M, \ M \times p_\infty. \end{split}$$

$$\label{eq:conf2} \begin{split} \overline{\mathrm{Conf}}_2(M,p_\infty) &:= \overline{\mathrm{Conf}}_{\{1,2\}}(M,p_\infty) \\ \mathrm{take} \ M \times M; \\ \mathrm{blow} \ \mathrm{up} \ p_\infty \times p_\infty; \\ \mathrm{then} \ \mathrm{blow} \ \mathrm{up} \ \Delta, \ p_\infty \times M, \ M \times p_\infty. \end{split}$$

 $\begin{array}{l} \overline{\mathrm{Conf}}_2(M,p_\infty) := \overline{\mathrm{Conf}}_{\{1,2\}}(M,p_\infty) \\ \mathrm{take} \ M \times M; \\ \mathrm{blow} \ \mathrm{up} \ p_\infty \times p_\infty; \\ \mathrm{then} \ \mathrm{blow} \ \mathrm{up} \ \Delta, \ p_\infty \times M, \ M \times p_\infty. \end{array}$

Assume there is a framing F on $M\backslash p_{\infty}$, "standard" near p_{∞} . Then F induces a map

$$F: \partial \overline{\mathrm{Conf}}_2(M, p_\infty) \to S^{d-1}.$$

 $\label{eq:conf2} \begin{array}{l} \overline{\mathrm{Conf}}_2(M,p_\infty) := \overline{\mathrm{Conf}}_{\{1,2\}}(M,p_\infty) \\ \mathrm{take} \ M \times M; \\ \mathrm{blow} \ \mathrm{up} \ p_\infty \times p_\infty; \\ \mathrm{then} \ \mathrm{blow} \ \mathrm{up} \ \Delta, \ p_\infty \times M, \ M \times p_\infty. \end{array}$

Assume there is a framing F on $M\backslash p_{\infty}$, "standard" near p_{∞} . Then F induces a map

$$F: \partial \overline{\mathsf{Conf}}_2(M, p_\infty) \to S^{d-1}.$$

$$S\mathcal{N}(\Delta \setminus (p_{\infty} \times p_{\infty})) \approx ST(\Delta \setminus (p_{\infty} \times p_{\infty})) \approx$$

$$ST(M \backslash p_{\infty}) \xrightarrow{\hspace{1cm} F \hspace{1cm}} (M \backslash p_{\infty}) \times S^{d-1} \xrightarrow{\operatorname{proj.}} S^{d-1}$$

M: 3-dimensional \mathbb{Z} -homology sphere

 $p_{\infty} \in M$ a point

F: framing on $M \backslash p_{\infty}$, "standard" near p_{∞}

 $\Gamma\!\!:$ trivalent graph satisfying certain condition.

M: 3-dimensional \mathbb{Z} -homology sphere

 $p_{\infty} \in M$ a point

F: framing on $M \setminus p_{\infty}$, "standard" near p_{∞}

 $\Gamma\!\!:$ trivalent graph satisfying certain condition.

A propagator Ω is a "submanifold" in $\overline{\operatorname{Conf}}_2(M,p_\infty)$ such that $\exists v \in S^2, \ \partial \Omega = F^{-1}(v).$

M: 3-dimensional \mathbb{Z} -homology sphere

 $p_{\infty} \in M$ a point

F: framing on $M \backslash p_{\infty}$, "standard" near p_{∞}

 $\Gamma\!\!:$ trivalent graph satisfying certain condition.

A propagator Ω is a "submanifold" in $\overline{\mathrm{Conf}}_2(M,p_\infty)$ such that $\exists v \in S^2, \ \partial \Omega = F^{-1}(v).$

Every edge e induces a "forgetful map"

$$f_e: \overline{\mathrm{Conf}}_{V(\Gamma)}(M,p_\infty) \to \overline{\mathrm{Conf}}_2(M,p_\infty).$$

M: 3-dimensional \mathbb{Z} -homology sphere

 $p_{\infty} \in M$ a point

F: framing on $M \backslash p_{\infty}$, "standard" near p_{∞}

 $\Gamma\!\!:$ trivalent graph satisfying certain condition.

A propagator Ω is a "submanifold" in $\overline{\mathsf{Conf}}_2(M,p_\infty)$ such that $\exists v \in S^2, \ \partial \Omega = F^{-1}(v).$

Every edge e induces a "forgetful map"

$$f_e: \overline{\mathrm{Conf}}_{V(\Gamma)}(M,p_\infty) \to \overline{\mathrm{Conf}}_2(M,p_\infty).$$

For every edge e, choose a generic propagator Ω_e , then Kontsevich's invariant for (M,F,Γ) is

$$\#\Big(\bigcap_{e\in E(\Gamma)}f_e^{-1}(\Omega_e)\subset\overline{\mathrm{Conf}}_{V(\Gamma)}(M,\infty)\Big).$$

Kontsevich's invariants for fiber bundles

M: d-dimensional \mathbb{Z} -homology sphere

Suppose we are given

- ▶ a smooth section $s_{\infty}: B \to E$ and τ : a trivialization of π near s_{∞} ,
- \blacktriangleright a vertical framing F on $E \backslash s_{\infty}$ that is "standard" near s_{∞} ,
- lacktriangledown a trivalent graph Γ satisfying certain condition, e.g.

Fiberwise construction of $\overline{\mathsf{Conf}}_S(M,p_\infty)$

$$\overline{\mathsf{Conf}}_S(\pi, s_\infty) \to B.$$

Fiberwise construction of
$$\overline{\mathsf{Conf}}_S(M, p_\infty)$$
 \to $\overline{\mathsf{Conf}}_S(\pi, s_\infty) \to B.$

$$F: \partial \overline{\mathsf{Conf}}_2(\pi, s_\infty) \to S^{d-1}.$$

Fiberwise construction of
$$\overline{\mathsf{Conf}}_S(M, p_\infty)$$

 $\to \overline{\mathsf{Conf}}_S(\pi, s_\infty) \to B.$

$$F: \partial \overline{\mathsf{Conf}}_2(\pi, s_\infty) \to S^{d-1}.$$

Every edge e of Γ induces a "forgetful map":

$$f_e: \overline{\mathrm{Conf}}_{V(\Gamma)}(\pi,s_\infty) \to \overline{\mathrm{Conf}}_2(\pi,s_\infty).$$

Fiberwise construction of
$$\overline{\mathsf{Conf}}_S(M, p_\infty)$$

 $\to \overline{\mathsf{Conf}}_S(\pi, s_\infty) \to B.$

$$F: \partial \overline{\mathsf{Conf}}_2(\pi, s_\infty) \to S^{d-1}.$$

Every edge e of Γ induces a "forgetful map":

$$f_e: \overline{\mathrm{Conf}}_{V(\Gamma)}(\pi,s_\infty) \to \overline{\mathrm{Conf}}_2(\pi,s_\infty).$$

For every edge e of Γ , choose a generic "submanifold" $\Omega_e \subset \overline{\mathsf{Conf}}_2(\pi, s_\infty)$ such that $\exists v \in S^{d-1}$, $\partial \Omega_e = F^{-1}(v)$.

Fiberwise construction of
$$\overline{\mathsf{Conf}}_S(M, p_\infty)$$

 $\to \overline{\mathsf{Conf}}_S(\pi, s_\infty) \to B.$

$$F: \partial \overline{\mathsf{Conf}}_2(\pi, s_\infty) \to S^{d-1}.$$

Every edge e of Γ induces a "forgetful map":

$$f_e: \overline{\mathrm{Conf}}_{V(\Gamma)}(\pi,s_\infty) \to \overline{\mathrm{Conf}}_2(\pi,s_\infty).$$

For every edge e of Γ , choose a generic "submanifold" $\Omega_e \subset \overline{\mathsf{Conf}}_2(\pi, s_\infty)$ such that $\exists v \in S^{d-1}$, $\partial \Omega_e = F^{-1}(v)$.

Kontsevich's invariant:

$$\hbox{ count (with sign)} \qquad \bigcap f_e^{-1}(\Omega_e) \subset \overline{\operatorname{Conf}}_{V(\Gamma)}(\pi,s_\infty).$$

[Watanabe(2018)]: constructed $(D^4,\partial D^4)$ -fiber bundles with non-trivial Kontsevich's invariants \Longrightarrow They are non-trivial as smooth fiber bundles

These bundles are all trivial as topological fiber bundles.

[Watanabe(2018)]: constructed $(D^4,\partial D^4)$ -fiber bundles with non-trivial Kontsevich's invariants \Longrightarrow They are non-trivial as smooth fiber bundles

These bundles are all trivial as topological fiber bundles.

Q: How to understand the role smooth structure plays in Kontsevich's invariants?

Q: How to understand the role smooth structure plays in Kontsevich's invariants?

Notice: the real oriented blow up operation depends on the smooth structure in an essential way

Q: How to understand the role smooth structure plays in Kontsevich's invariants?

Notice: the real oriented blow up operation depends on the smooth structure in an essential way

e.g. it is not functorial with respect to homeomorphisms:

Q: How to understand the role smooth structure plays in Kontsevich's invariants?

Notice: the real oriented blow up operation depends on the smooth structure in an essential way

e.g. it is not functorial with respect to homeomorphisms:

A: The smooth structure is "used up" at the stage of constructing $\overline{\mathsf{Conf}}_2(\pi, s_\infty)$ and the framing map F.

Theorem (C.'23)

Kontsevich's invariants only depend on the topology of

$$\overline{\mathrm{Conf}}_2(\pi,s_\infty) \xrightarrow[f_2]{f_1} E \xrightarrow{\pi} B \ , \quad \partial \overline{\mathrm{Conf}}_2(\pi,s_\infty) \xrightarrow{F} S^{d-1}.$$

Theorem (C.'23)

Kontsevich's invariants only depend on the topology of

$$\overline{\mathrm{Conf}}_2(\pi,s_\infty) \xrightarrow[f_2]{f_1} E \xrightarrow{\pi} B \ , \quad \partial \overline{\mathrm{Conf}}_2(\pi,s_\infty) \xrightarrow{F} S^{d-1}.$$

Remark: Should be closely related to embedding calculus.

Theorem (C.'23)

Kontsevich's invariants only depend on the topology of

$$\overline{\mathrm{Conf}}_2(\pi,s_\infty) \xrightarrow{f_1} E \xrightarrow{\pi} B \ , \quad \partial \overline{\mathrm{Conf}}_2(\pi,s_\infty) \xrightarrow{F} S^{d-1}.$$

Remark: Should be closely related to embedding calculus.

Remark: related work Lin-Xie ('23) showing that Kontsevich's invariants only depend on the "formal smooth structure".

⇒ Kontsevich's invariants are not very helpful in detecting exotic smooth 4-manifolds.

Thank you!