UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the May/June 2006 question paper

9702 PHYSICS

9702/06

Paper 6

Maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page	1		cheme	Syllabus		
			GCE A – Ma	y/June 2006	9702	06	
Ор	tion	A - A	Astrophysics and Cosmology				
1	1 Planet:		almost circular orbits all in nearly the same plane			B1 B1	
	Cor	net:	highly elliptical orbits in many different planes			B1 B1	[4]
2	(a)		an) density natter in the Universe			M1 A1	[2]
	(b)	(i)	symmetrical curve below given touching given line at 'present t			M1 A1	[2]
		(ii)	<i>H</i> ₀ not known with any certainty mass of matter in the Universe extent of Universe unknown (allow 1 of the last 2 marks for	not known		B1 B1 B1	[3]
3	1 light-year = 0.306 pc (allow 0.3 pc) 1.3×10^{10} light-years = 3.98×10^{3} Mpc $v = H_0 d$ speed = $60 \times 3.98 \times 10^{3} = 2.39 \times 10^{5}$ km s ⁻¹					C1 C1 C1	
	ratio)	= $(2.39 \times 10^5 \text{ x } 10^3)/(3.0 \times 10^8)$ = 0.8			A 1	[4]
4	e.g. vast expense money could be spent on humanitarian aid					(M1) (A1)	
	observations possible that cannot be made on Earth since atmosphere limits observations					(M1) (A1)	
	technological/scientific developments on Earth greater understanding of Universe leads to 'spin off' benefits for individuals					(M1) (M1) (A1)	
	Any	sen	sible comments, 1 each to max	5		B5	[5]
Op	tion	F - T	he Physics of Fluids				
5	(a)	con	servation of volume/mass/densi	ty or incompressible		B1	[1]
	(b)	cor	servation of energy			B1	[1]
6	(a)	high	near jet is moving at speed ner speed air has a lower ssure	OR water in jet is moving at spe OR high-speed water has lower		B1 B1	
		be)	cause) air is dragged along by er jet	OR air is drawn into water jet		B1	
			outside pump) is not moving	OR loss of air reduces pressure)	B1	[4]
	(b) (i) air/water in pump has a higher speed so greater pressure difference					M1 A1	[2]

Mark Scheme

Page 1

Syllabus

Paper

	Page	2	Mark Scheme	Syllabus	F	Paper
			GCE A – May/June 2006	9702		06
		(ii)	no change in speed of air so no change in pressure of the difference of the differe	•	M1 A1	[2]
			(allow any logical argument based on liquid causing more/less	drag on air))	
7	(a)		y currents have kinetic energy OR cause extra drag y currents caused by		М1	
			vement of the car OR energy required to overcome a energy (of eddy currents) is derived from car's fuel		A1 A1	[3]
	(b)	(i)	power = force × speed so power = $\frac{1}{2}C_DA\rho v^2 \times v$ and A and ρ are constants		B1 B1	[2]
		(ii)	$84 \times 10^3 = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times v_{\text{max}}^3$ $v_{\text{max}} = 63 \text{ m s}^{-1}$		C1 A1	[2]
		(iii)	$P = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times (63 + 9)^3$ P = 126 kW ratio = 126 / 84 = 1.5		C1 C1 A1	[3]
Ор	tion	М -	Medical Physics			
8	(a)	app cau	rnating voltage lied across (piezo-electric) crystal ses crystal to vibrate stal dimensions such as to give resonance (in US range)		B1 B1 B1 B1	[4]
	(b)		velength at 1 MHz is shorter greater detail is possible		B1 B1	[2]
9	e.g.		d as a scalpel (1) ner detail: causes (explosive) vaporisation of intracellular water CO ₂ laser (1) IR radiation strongly absorbed by water (1) laser beam focused to give high power density (1) no/very little bleeding (1) accurate guidance (1)	(1)		
	e.g.		air of retina (1) ner detail: focused laser beam onto retina (1) melts tissue and forms a weld (1) (pulsed) ruby or argon laser (1)			
		any	two examples: named (1) plus further detail (2)		В6	[6]
	(allo	ow u	o to two marks for each diagnostic technique)			
10	(a)	whe	imum intensity (of sound) detected ere intensity = (sound) power per unit area at a stated frequency are is 1×10^{-12} W m ⁻² kHz (allow 2 kHz \rightarrow 3 kHz)		M1 A1 B1 B1	[4]

Page 3		Mark Scheme		Р	Paper	
		GCE A – May/June 2006	9702		06	
(b)	(i)	intensity = $(0.14 \times 10^{-6})/(54 \times 10^{-6}) = 2.6 \times 10^{-3} \text{ W m}^{-2}$ $IL = 10 \text{ Ig } (2.6 \times 10^{-3})/(1 \times 10^{-12})$ = 94 dB		C1 C1 A1	[3]	
	(ii)	comment e.g. would be perceived as being loud could cause tinnitus over a short period of time could cause deafness over a long period of time higher level than is acceptable in the workplace	.			
		any appropriate comment, 1 mark		В1	[1]	
ption I	P -	Environmental Physics				
. ,	wate at ti	mes of low usage of electrical power er pumped from low-level to high-level reservoir mes of high/sudden demand for electrical power er released to pass through turbines		B1 B1 B1 B1	[4]	
	ene	trical energy generated = $78 \times 10^6 \times 4.0 \times 3600 = 1.12 \times 10^{12} \text{ J}$ rgy to be stored = $(1.12 \times 10^{12})/0.75 = 1.5 \times 10^{12} \text{ J}$ $\times 10^{12} = \rho Vgh$ = $1.0 \times 10^3 \times V \times 9.8 \times 95$		C1 C1 C1		
	V =	$1.6\times10^6~\text{m}^3$		A 1	[4]	
	(tha	it is impossible to convert all of a given amount of thermal energy t is) $W < Q_{\rm H}$ — W) is energy rejected at temperature $T_{\rm L}$		B1 B1 B1	[3]	
(b)	W/C	$Q_{H} = 1 - T_{L}/T_{H}$		В1	[1]	
(c)	effic	siency = $1 - 313/393$ = 0.20		C1 A1	[2]	
3 (a)	(i)	e.g. industry setting up people preparing to go to work starting to cook breakfast				
		(allow any two sensible suggestions, 1 each)		B2	[2]	
	(ii)	e.g. change in temperature with use of heaters/air conditioning holiday or workday with more power used by industry when not	on holiday			
		(allow any two sensible suggestions, 1 each)		B2	[2]	

	Page 4		Mark Scheme	Syllabus	Pape	r			
			GCE A – May/June 2006	9702	06				
	(b)	(i) <u>sudden</u> increase in demand (as appliances are used)		E	31				
		(ii)	increased demand in the afternoon	E	31	[2]			
		(allo	ow any two sensible suggestions in (i) and (ii))						
Op	Option T - Telecommunications								
14	(a)		tantaneous) displacement of information signal ermines the frequency of the carrier wave		//1 \1	[2]			
	(b)	(i)	12 V	E	31	[1]			
		(ii)	650 kHz	E	31	[1]			
		(iii)	550 kHz	E	31	[1]			
		(iv)	3000	E	31	[1]			
15	(a)	ana	logue-to-digital converter (do not allow ADC)	E	3 1	[1]			
	(b)	con	trols the time at which samples are taken	E	31	[1]			
	(c)	ena	bles higher frequency components in signal to be 'detected'	E	31	[1]			
16	(a)		ctromagnetic shielding for the inner conductor braid is earthed		31 31	[2]			
	(b)	so r	eased bandwidth means more information can be carried more calls can be transmitted simultaneously er links are required	E	31 31 31	[3]			
17	(a)	inte	cross-talk/cross-linking rference/picking up atmospherics/picking up man-made radiatior te noise associated with vibrating atoms	1					
		(an	y two, 1 each)	E	32	[2]			
	(b)	(i)	number of dB = 10 lg (P_2/P_1) 35 = 10 lg $(P/{7.6 \times 10^{-6}})$ P = 0.024 W		C1 A1	[2]			
		(ii)	number of dB = 10 lg $(2.6/0.024)$ = 20.3 length = 20.3/5.8 = 3.5 km		C1 A1	[2]			