Computer Graphics and Image Processing Lecture 8

Muhammad Usman Ghani Khan

Department of Computer Science & Engineering UET, Lahore

Autumn Semester

Outline

Applications of Morphology

Agenda

Today Discussion

- Once segmentation is complete, morphological operations can be used to remove imperfections in the segmented image and provide information on the form and structure of the image
- In this lecture we will consider
 - What is morphology?
 - Simple morphological operations
 - Compound operations
 - Morphological algorithms

1, 0, Black & White?

- Throughout all of the following slides whether 0 and 1 refer to white or black is a little interchangeable
- All of the discussion that follows assumes segmentation has already taken place and that images are made up of 0s for background pixels and 1s for object pixels
- After this it doesn't matter if 0 is black, white, yellow, green

Morphology - Definition

- Morphology: a branch of biology that deals with the form and structure of animals and plants
- Morphological image processing is used to extract image components for representation and description of region shape, such as boundaries, skeletons, and the convex hull

What Is Morphology?

Definition

 Morphological image processing (or morphology) describes a range of image processing techniques that deal with the shape (or morphology) of features in an image

Uses of Morphology

 Morphological operations are typically applied to remove imperfections introduced during segmentation, and so typically operate on bi-level images

Quick Example

morphological processing

Structuring Elements, Hits & Fits

- Fit: All on pixels in the structuring element cover on pixels in the image
- Hit: Any on pixel in the structuring element covers an on pixel in the image

All morphological processing operations are based on these simple ideas

Structuring Elements, Hits & Fits

- Fit: All on pixels in the structuring element cover on pixels in the image
- Hit: Any on pixel in the structuring element covers an on pixel in the image

Structuring Elements

- Structuring elements can be any size and make any shape
- However, for simplicity we will use rectangular structuring elements with their origin at the middle pixel

0	1	0
1	1	1
0	1	0

0	0	1	0	0
0	1	1	1	0
1	1	1	1	1
0	1	1	1	0
0	0	1	0	0

Fitting & Hitting

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

Structuring Element 1

0	1	0
1	1	1
0	1	0

Structuring Element 2

Fitting & Hitting

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	B	1	1	1	0	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	A	1	1	1	0
0	0	0	0	0	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

Structuring Element 1

0	1	0
1	1	1
0	1	0

Structuring Element 2

Fundamental Operations

- Fundamentally morphological image processing is very like spatial filtering
- The structuring element is moved across every pixel in the original image to give a pixel in a new processed image
- The value of this new pixel depends on the operation performed
- There are two basic morphological operations: erosion and dilation

Erosion

- Erosion of image f by structuring element s is given by $f \ominus s$
- The structuring element s is positioned with its origin at (x, y) and the new pixel value is determined using the rule:

$$g(x, y) = \begin{cases} 1 \text{ if } s \text{ fits } f \\ 0 \text{ otherwise} \end{cases}$$

Erosion Example 1

Original image

Erosion by 3*3 square structuring element

Erosion by 5*5 square structuring element

In these examples a 1 refers to a black pixel!

Erosion Example 2

What Is Erosion For?

Erosion can split apart joined objects

Erosion can strip away extrusions

Erosion shrinks objects

Dilation

- Erosion of image f by structuring element s is given by $f \oplus s$
- The structuring element s is positioned with its origin at (x, y) and the new pixel value is determined using the rule:

$$g(x,y) = \begin{cases} 1 \text{ if } s \text{ hits } f \\ 0 \text{ otherwise} \end{cases}$$

Dilation Example 1

Dilation by 3*3 square structuring element

Dilation by 5*5 square structuring element

In these examples a 1 refers to a black pixel!

Dilation Example 2

Original image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

After dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Structuring element

What Is Dilation Used For?

Dilation can repair breaks

Dilation can repair intrusions

Erosion enlarge objects

Compound Operations

- More interesting morphological operations can be performed by performing combinations of erosions and dilations
- The most widely used of these compound operations are:
 - Opening
 - Closing

Opening

 Opening of image f by structuring element s denoted by f ∘ s is simply an erosion followed by a dilation

$$f \circ s = (f \ominus s) \oplus s \tag{1}$$

Note a disc shaped structuring element is used

Opening Example

Closing

Closing of image f by structuring element s denoted by f · s
is simply dilation followed by erosion

$$f \cdot s = (f \oplus s) \ominus s \tag{2}$$

Note a disc shaped structuring element is used

Closing Example

Morphological Processing Example

Morphological Algorithms

- Using the simple technique we have looked at so far we can begin to consider some more interesting morphological algorithms
- We will look at:
 - Boundary extraction
 - Region filling
- There are lots of others as well though:
 - Extraction of connected components
 - Thinning/thickening
 - Skeletonisation

Boundary Extraction

- Extracting the boundary (or outline) of an object is often extremely useful
- The boundary can be given simply as

Boundary Extraction Example

 A simple image and the result of performing boundary extraction using a square 3 * 3 structuring element

Region Filling

 Given a pixel inside a boundary, region filling attempts to fill that boundary with object pixels (1s)

Region Filling Equation

• The key equation for region filling is

$$X_k = (X_{k-1} \oplus B) \cap A^c$$
 $k = 1, 2, 3 \dots$

- Where X₀ is simply the starting point inside the boundary,
 B is a simple structuring and A^c is the complement of A
- This equation is applied repeatedly until X_K is equal to X_{K-1}
- Finally the result is unioned with the original boundary

Region Filling Step By Step

Region Filling Step By Step

Region Filling Step By Step

Region Filling Example

Summary

- The purpose of morphological processing is primarily to remove imperfections added during segmentation
- The basic operations are erosion and dilation
- Using the basic operations we can perform opening and closing
- More advanced morphological operation can then be implemented using combinations of all of these