

Ecrit réparti n°1: vendredi 14 octobre 2016

Durée: 1 h 30 – Sans document ni téléphone - Calculatrice autorisée

Exercice 1:

On s'intéresse à une installation électrique triphasée 230 V/400 V 50 Hz comportant :

- 4 lampes 230 V / 100 W chacune et 1 lampe 230 V / 200 W,
- une machines triphasée M₁ de 1,2 kW avec un facteur de puissance de 0,6 arrière,
- une machines triphasée M₂ de 1,2 kW avec un facteur de puissance de 0,8 arrière,
- une batterie de trois condensateurs couplés en étoile, chaque condensateur ayant une capacité C telle que $C\omega=10^{-3}~\Omega^{-1}$.
- a. Représenter le principe de raccordement de tous les récepteurs pour obtenir une installation triphasée équilibrée (réponse sur le sujet).
- b. Calculer la puissance active, la puissance réactive, la puissance apparente et le facteur de puissance de l'installation.
- c. Quel est le rôle de la batterie de condensateurs ? Remplit-elle pleinement ce rôle ? Que peut-on faire pour améliorer très simplement la situation, si besoin ?

Document-réponse pour la question a.

1	
2	
3	
3	
N	

Exercice 2:

Une ligne de distribution monophasée alimente une charge inductive consommant la puissance active P, sous un facteur de puissance $\cos \varphi$ et une tension \underline{U} . La ligne est caractérisée par son impédance inductive jX_L et est alimentée par une source de tension U_r . Le courant débité par la ligne est noté \underline{I} .

On donne les valeurs numériques suivantes :

$$X_L = 50 \Omega$$
, $U = |\underline{U}| = 15 kV$, $P = 240 kW$ et $\cos \varphi = 0.8$.

- a. Calculer le module du courant débité par la ligne.
- b. Calculer l'impédance complexe de la charge $\underline{Z} = R + jX$.
- c. On choisit \underline{I} comme référence des phases. Calculer alors \underline{U} , \underline{U}_L , \underline{U}_r et $U_r = |\underline{U}_r|$.
- d. Représenter $\underline{I}, \underline{U}, \underline{U}_L$ et \underline{U}_r dans le plan complexe (diagramme de Fresnel).
- e. La charge augmente sans modification du facteur de puissance et vaut maintenant $P = 300 \, kW$. La tension U doit être maintenue à 15 kV. Que valent alors \underline{I} et \underline{U}_r ?
- f. Afin de limiter les pertes en ligne, on souhaite imposer $I=20\,A$, malgré la charge $P=300\,kW$. Pour cela, on rajoute un condensateur en parallèle de la charge, comme indiqué ci-dessous.
 - L'ensemble "charge+condensateur" forme une nouvelle charge. Quelle est sa puissance apparente?
 - En déduire la puissance réactive du condensateur, puis la valeur de sa réactance $X_c = \frac{1}{C\omega}$.

Exercice 3:

On souhaite charger une batterie à l'aide d'une alimentation continue. On utilise pour cela le montage représenté ci-dessous. Les interrupteurs sont supposés parfaits.

L'alimentation et la batterie sont modélisées par des sources de tension continue de valeurs respectives U et E, avec U > E (les résistances internes sont négligées).

L'interrupteur K1 est commandé par un signal périodique de fréquence f. Il est fermé pendant l'intervalle $[0, \alpha T[$ et ouvert pendant l'intervalle $[\alpha T, T[$ $(T = \frac{1}{f}, 0 \le \alpha \le 1)$.

On étudie le fonctionnement du système en régime permanent et en régime de conduction continue. Pour cela, on suppose qu'à l'instant t=0 le courant de sortie vaut $i_s(0)=i_m>0$.

A aucun moment de l'exercice on ne cherchera à calculer la valeur de i_m.

- a. Comment s'appelle ce type de convertisseur? A quoi sert-il?
- b. Quel est le rôle de l'inductance L? Que se passe-t-il si on la supprime?
- c. On se place sur l'intervalle de temps $[0, \alpha T[$: déterminer les expressions des tensions et courants v_e , i_e , v_{K1} , i_{K1} , v_{K2} , i_{K2} , v_s , i_s , définis sur la figure. Justifier l'état passant ou bloqué de la diode K2.
- d. On se place sur l'intervalle de temps $[\alpha T, T[$: déterminer les expressions des tensions et courants v_e , i_e , v_{K1} , i_{K1} , v_{K2} , i_{K2} , v_s , i_s , définis sur la figure. Justifier l'état passant ou bloqué de la diode K2.
- e. Tracer les chronogrammes des tensions et courants v_s , i_s , v_{K1} , i_{K1} , v_{K2} , i_{K2} , v_e , i_e . (Utiliser le document réponse).

- f. Calculer les valeurs moyennes $\langle v_{K2} \rangle$, $\langle v_L \rangle$ et $\langle v_s \rangle$. En déduire la valeur du rapport cyclique α en fonction des données de U et E.
- g. Déterminer l'ondulation de courant $\Delta i=i_M-i_m$, où i_M est la valeur maximale de l'intensité de i_S . Comment peut-on diminuer cette ondulation ?

Document-réponse pour la question e.

