מטלת מנחה 14 - אלגברה לינארית 1

328197462

15/01/2023

שאלה 1

V יהיו U,W_1,W_2 תתי-מרחבים לינאריים של מרחב לינארי U,W_1,W_2

סעיף א

סעיף ב

:עבור $V=\mathbb{R}^2$ נגדיר

$$U={\sf Sp}(\{(1,1)\})$$
 $W_1={\sf Sp}(\{(1,0)\})$ $W_2={\sf Sp}(\{(0,1)\})$.
$$(U\cap W_1)+(U\cap W_2)\subseteq U\cap (W_1+W_2)$$
 אז לפי סעיף א של שאלה זו מתקיים

 $.v\notin (U\cap W_1)+(U\cap W_2)$ וגם $v\in U\cap (W_1+W_2)$ כיקח ניקח v=(1,1)וניקח נחשב:

$$U\cap (W_1+W_2)=\operatorname{Sp}(\{(1,1)\})\cap (\operatorname{Sp}(\{(1,0)\})+\operatorname{Sp}(\{(0,1)\}))\mathop{=}\limits_{7.6.8}$$
שאלה $\operatorname{Sp}(\{(1,1)\})\cap (\operatorname{Sp}(\{(1,0),(0,1)\}))=$
$$=\operatorname{Sp}(\{(1,1)\})\cap \mathbb{R}^2=$$

$$=\operatorname{Sp}(\{(1,1)\})\ni (1,1)=v$$

$$\begin{split} (U \cap W_1) + (U \cap W_2) &= (\operatorname{Sp}(\{(1,1)\}) \cap \operatorname{Sp}(\{(1,0)\})) + (\operatorname{Sp}(\{(1,1)\}) + \operatorname{Sp}(\{(0,1)\})) = \\ &= \{\underline{0}\} + \{\underline{0}\} = \\ &= \{\underline{0}\} \not\ni (1,1) = v \end{split}$$

ולכן מתקיימת הכלה חזקה בין תתי-המרחבים.

שאלה 2

יהיו $V=\mathsf{Sp}\{w_1,w_2\}$, $U=\mathsf{Sp}\{u_1,u_2\}$ יהיו $W=\mathsf{Sp}\{w_1,w_2\}$, $U=\mathsf{Sp}\{u_1,u_2\}$ יהיו מניחים כי $A=\{u_1,u_2,w_1\}$ תלויה לינארית.

סעיף א

נראה כי $u_1 \in U$ בדרך השלילה.

נניח בשלילה כי $\mathsf{Sp}\{u_1,u_2\}$ מאחר והקבוצה $\{u_1,u_2\}$ היא בסיס ולכן בלתי תלויה לינארית, נסיק לפי שאלה 8.1.8 כי $w_1 \notin \mathsf{Sp}\{u_1,u_2\} \cup \{u_1,u_2\} \cup \{u_1,u_2\} \cup \{u_1,u_2\} \cup \{u_1,u_2\}$

 $w_1 \in U \cap W$ נקבל, נקבל, $w_1 = 1 \cdot w_1 + 0 \cdot w_2 \in \mathsf{Sp}\{w_1, w_2\} = W$ כעת, מאחר ו

סעיף ב

ניזכר במשפט המימדים 8.3.6

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

 $U\cap W$ יש בסיסים בגודל 2 ומכאן ב $U=\dim U=\dim W=2$. עלינו למצוא את מימד תת-המרחב לשני תתי-המרחבים U,W

 $\operatorname{dim}(U\cap W)\leq 2$ נסיק $U\cap W\subseteq U,W$ לפי משפט 3.8.4, עבור

בנוסף, אם $\lim(U\cap W)=0$, אז נסיק את השוויון W=U=W בסתירה לנתון כי U,W תתי-מרחבים שונים. מכאן נובע אי-השוויון $\lim(U\cap W)=0$ מאחר ו $\lim(U\cap W)=0$ בינוסף, נסיק (הוקטור נמצא בקבוצה בלתי תלויה לינארית), נסיק dim $\lim(U\cap W)=1$ ובסך הכל $\lim(U\cap W)=1$

 $\mathsf{.dim}(U+W) = \mathsf{dim}\, U + \mathsf{dim}\, W - \mathsf{dim}(U\cap W) = 2+2-1 = 3$ נציב במשפט המימדים ונקבל

 $.w_2 \notin U$ בעלת 3 וקטורים ומוכלת בU+W נראה כי הקבוצה בת"ל, כלומר $\{u_1,u_2,w_2\}$ בעלת 3 בעלת 3 בעלת 3 $.w_2 \in U$ נניח כי $.w_2 \in U$, ולפי שאלה 7.5.16 נסיק:

$$W = \mathsf{Sp}\{w_1, w_2\} \subseteq \mathsf{Sp}\{u_1, u_2\} = U$$

U=W וזאת בסתירה לנתון! משוויון המימדים נובע, לפי משפט 3.8.4, כי

(U+W) בעלת 3 וקטורים ולכן קבוצה היא בסיס ל $\{u_1,u_2,w_2\}$ מצאנו כי