Clasificación de enfermedades

114

Introducción

de

ılı.

417

11/

〈龠〉

Dado que el arroz es uno de los alimentos de mayor consumo, es importante proteger sus cultivos de las plagas que puedan afectarlos.

Dada esta situación, en este proyecto se realiza la construcción de un clasificador de dichas enfermedades a partir de imágenes de hojas de arroz.

Objetivos

Principal

Obtener el nombre de la enfermedad a partir de la imagen de una hoja de arroz infectada.

Específicos

Plantear diferentes modelos y realizar pruebas con ellos para identificar e implementar el que genere mejores resultados.

120 imágenes jpg de hojas de arroz infectadas por enfermedades.

3 clases según el tipo de enfermedad.

40 imágenes en cada clase.

Clases

Bacterial leaf blight

Desarrollo

Preprocesamiento

- Cargue de dataset.
- Redimensionar imágenes 128x128.
- Conversión a grises/rgb.
- Asignación de etiquetas.
- División 20% test, 80% train.

Pruebas con CNN

- Creación de 5 modelos de CNN.
- Variación de kernel, funciones de activación, capas, epochs.
- Gráficas comparativas de accuracy y loss.

02

Pruebas con clasificadores

- RandomForestClassifier (varía profundidad).
- DecisionTreeClassifier (varía profundidad).
- SVC (varía kernel).
- Gráficas de accuracy comparativas para cada caso.

()4

Implementación y evidencia 🔊

• Uso del mejor modelo obtenido para clasificar imágenes del set de testeo.

Resultados obtenidos

CLASIFICADOR	ACCURACY		OBSERVACIONES
RANDOM FOREST CLASSIFIER	0.625		PROFUNDIDAD = 4
DECISIONTREECLASSIFIER	0.5833		PROFUNDIDAD=5
SVC	0.5833		CON KERNELS POLY Y RBF
	ACCURACY	LOSS	
MODELO 1 CNN	0.7917	0.6813	CON 39 EPOCHS
MODELO 2 CNN	0.5833	0.6293	CON 17 EPOCHS
MODELO 3 CNN	0.6250	0.6275	CON 29 EPOCHS
MODELO 4 CNN	0.5833	0.6266	CON 30 EPOCHS
MODELO 5 CNN	0.8333	0.3546	CON 39 EPOCHS

Modelo 5 CNN

Mod	lel	: "	'sec	uent.	ial 4"

Layer (type)	Output Shape	Param #						
conv2d_12 (Conv2D)	(None, 126, 126, 32)	896						
<pre>max_pooling2d_12 (MaxPoolin g2D)</pre>	(None, 63, 63, 32)	0						
conv2d_13 (Conv2D)	(None, 61, 61, 64)	18496						
<pre>max_pooling2d_13 (MaxPoolin g2D)</pre>	(None, 30, 30, 64)	0						
conv2d_14 (Conv2D)	(None, 28, 28, 128)	73856						
<pre>max_pooling2d_14 (MaxPoolin g2D)</pre>	(None, 14, 14, 128)	0						
dropout_3 (Dropout)	(None, 14, 14, 128)	0						
flatten_4 (Flatten)	(None, 25088)	0						
dense_8 (Dense)	(None, 256)	6422784						
dense_9 (Dense)	(None, 3)	771						

Resultados con el modelo 5 de CNN

Enfermedad (dada por el clasificador): Leaf smut Enfermedad real: Leaf smut

Enfermedad (dada por el clasificador): Bacterial leaf blight Enfermedad real: Bacterial leaf blight

Enfermedad (dada por el clasificador): Brown spot Enfermedad real: Brown spot

