EXHIBIT H

Exhibit H - U.S. Patent No. 8,477,514 - Samsung EP-TA800, EP-TA845, S2MM101

Title: POWER SYSTEM WITH POWER CON VERTERS HAVING AN ADAPTIVE CONTROLLER

Priority Date: Dec. 01, 2006

Filed Date: Feb. 22, 2010

Issued Date: Jul. 02, 2013

Expiration Date: Dec. 01, 2026

Inventors: Daniel A. Artusi; Ross Fosler;

Allen F. Rozman

Claims: 1, 5, & 16

Preliminary - Subject to Change

Claim 1

A (CON) power converter coupled to a (LD) load, comprising:

- a (PS) power switch configured to conduct for a (DC) duty cycle to provide an (OC) output characteristic at an (OUT) output; and
- a (PCC) power converter controller configured to receive a (S) signal from said (LD) load indicating a (OP) system operational state of said (LD) load and

control an (IOC) internal operating characteristic of said (CON) power converter as a function of said (S) signal.

Claim 5

The (CON) power converter as recited in claim 1 wherein said (IOC) internal operating characteristic is selected from the group consisting of:

a gate drive voltage level of said power switch of said power converter, a switching frequency of said power converter, and an (VBUS) internal direct current bus voltage of said (CON) power converter.

Preliminary – Subject to Change

a (PS) power switch configured to conduct for a duty cycle to provide an (OC) output characteristic at an (OUT) output; and

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

Claim 1

For the USB Type-C solution, two pins on the connector, CC1 and CC2, are used to establish and manage the Source-to-Sink connection. When the device is connected through a hub, the connection between a Sink (UFP) on the hub and the Source (host port) and the connection between the Sink (device port) and a Source (DFP on the hub), are treated as separate connections. Functionally, the configuration channel is used to serve the following purposes.

- Detect attach of USB ports, e.g. a Source to a Sink
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish data roles between two attached ports
- \mathbf{OC}
- Discover and configure VBUS: USB Type-C Current modes or <u>USB Power Delivery</u>

 $\textbf{Source:} \ https://usb.org/sites/default/files/USB\%20Type-C\%20Spec\%20R2.0\%20-\%20August\%202019.pdf,\ Note:\ The\ citation\ pertains\ to\ only\ the\ document\ excerpt\ not\ the\ schematics\ or\ other\ data.$

Claim 1 a power switch configured to conduct for a (DC) duty cycle to provide an (OC) output characteristic at an output; and \mathbf{OC} VBUS_OUT= 5V, no load Gate of Q01 VBUS_OUT=5V, 3A load OC VBUS_OUT= 5V, 3.5A load OC VBUS_OUT= 5V, ~3.6A load Note: The charger will hold up the VBUS_OUT voltage at ~4.5V under a 3.5A load but the charger shuts down when the load is increased beyond that. This O-scope capture was taken as the charger was going into one of those over-current protection shutdowns when the load was increased to ~3.6A. Immediately $after this \ capture, the \ VBUS_OUT \ voltage \ drops \ to \ OV.$

a (PCC) power converter controller configured to receive a (S) signal from said (LD) load indicating a (OP) system operational state of said (LD) load and

IC22 works in conjunction with IC21 and IC01.

Claim 1

DFN-14	Pin Name	Туре	Pin Description	
1	DIS	Analog Output	Discharging circuit. Used for fast discharging of output capacitor.	
2	DRV	Analog Output	External circuit drive. Can be used to drive optocoupler LED with automatic current limiting for transmitting signals to primary side.	
3	Voc	Power Supply	IC power supply.	
4	DET	Analog Input	AC unplug detect.	
5	V _{eus}	Analog Input/ Output	Monitor V _{BUS} voltage after N-FET switch.	
6	V _{BUS_G}	Analog Input/ Output	Connect to external N-FET gate pin for gate-source voltage control.	
7	CC2	Analog Input/ Output	Configuration Channel 2.	
8	CC1	Analog Input/ Output	Configuration Channel 1.	
9	IS-	Analog Input	Output current sensing terminal - (for current sensing resistor).	
10	IS+	Analog Input	Output current sensing terminal + (for current sensing resistor).	
11.	SD	Analog Input/ Output	Connect to an external NTC resistor to measure the power adapter temperature.	
12	D-	Analog Input/ Output	USB D- signal.	
13	GND	Ground	Ground.	
14	D+	Analog Input/	USB D+ signal.	

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0 30-Mar-2020, Note: The citation pertains to only the document excerpt not the schematics or other data.

control an (IOC) internal operating characteristic of said (CON) power converter as a function of said signal.

CON

Claim 1

iW1791

AC/DC Primary-Side Rapid Charge™ PWM Controller with High Resolution Voltage/Current Control

IOC

 Proprietary optimized load adaptive maximum constant frequency PWM switching with quasi-resonant operation achieves best size, efficiency, and common mode noise

Source: Dialog Semiconductor iW1791 AC/DC Primary Side Rapid Charge PWM Controller with High Resolution Voltage/Current Control, Product Summary Rev. 1.51 05-OCT-2018

8

Exhibit H - U.S. Patent No. 8,477,514 - Samsung EP-TA800

The (CON) power converter as recited in claim 1 wherein said (IOC) internal operating characteristic is selected from the group consisting of:

IOC

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0

Pin Number DFN-14	Pin Name	Туре	Pin Description
1	DIS	Analog Output	Discharging circuit. Used for fast discharging of output capacitor.
2	DRV	Analog Output	External circuit drive. Can be used to drive optocoupler LED with automatic current limiting for transmitting signals to primary side.
3	V _{cc}	Power Supply	IC power supply.
4	DET	Analog Input	AC unplug detect.
5	V _{BUS}	Analog Input/ Output	Monitor V _{BUS} voltage after N-FET switch.
6	V _{BUS_G}	Analog Input/ Output	Connect to external N-FET gate pin for gate-source voltage control.
7	CC2	Analog Input/ Output	Configuration Channel 2.
8	CC1	Analog Input/ Output	Configuration Channel 1.
9	IS-	Analog Input	Output current sensing terminal - (for current sensing resistor).
10	IS+	Analog Input	Output current sensing terminal + (for current sensing resistor).

Exhibit H - U.S. Patent No. 8,477,514 – Samsung EP-TA800

a gate drive voltage level of said power switch of said power converter, a switching frequency of said power converter, and an (VBUS) internal direct current bus voltage of said (CON) power converter.

Pin Number DFN-14	Pin Name	Туре	Pin Description	
1	DIS	Analog Output	Discharging circuit. Used for fast discharging of output capacitor.	
2	DRV	Analog Output	External circuit drive. Can be used to drive optocoupler LED with automatic current limiting for transmitting signals to primary side.	
3	Vcc	Power Supply	IC power supply.	
4	DET	Analog Input	AC unplug detect.	
5	V _{BUS}	Analog Input/ Output	Monitor $\lor_{ exttt{BUS}}$ voltage after N-FET switch. $VBUS$	
6	V _{BUS_G}	Analog Input/ Output	Connect to external N-FET gate pin for gate-source voltage control.	
7	CC2	Analog Input/ Output	Configuration Channel 2.	
8	CC1	Analog Input/ Output	Configuration Channel 1.	
9	IS-	Analog Input	Output current sensing terminal - (for current sensing resistor).	
10	IS+	Analog Input	Output current sensing terminal + (for current sensing resistor).	

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0

Claim 1 (CON) power converter coupled to a (LD) load, comprising:
(PS) power switch configured to conduct for a (DC) duty cycle to provide an (OC) output characteristic at n (OUT) output; and
(PCC) power converter controller configured to receive a (S) signal from said (LD) load indicating a (OP) ystem operational state of said (LD) load and
ontrol an (IOC) internal operating characteristic of said (CON) power converter as a function of said (S) ignal.

11

Preliminary - Subject to Change

a (PS) power switch configured to conduct for a duty cycle to provide an (OC) output characteristic at an (OUT) output; and

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

Claim 1

For the USB Type-C solution, two pins on the connector, CC1 and CC2, are used to establish and manage the Source-to-Sink connection. When the device is connected through a hub, the connection between a Sink (UFP) on the hub and the Source (host port) and the connection between the Sink (device port) and a Source (DFP on the hub), are treated as separate connections. Functionally, the configuration channel is used to serve the following purposes.

- Detect attach of USB ports, e.g. a Source to a Sink
- Resolve cable orientation and twist connections to establish USB data bus routing
- · Establish data roles between two attached ports
- UC
- Discover and configure VBUS: USB Type-C Current modes or <u>USB Power Delivery</u>

CG2_0OHM USB-C connector

A1 (GND)
B12 (GND)
B12 (GND)
B14 (VBLS)
B15 (SDLPNC)
A7 (D)
A7 (D)
B2 (SBUPNC)
A7 (D)
B3 (SBUPNC)
A7 (D)
B4 (SBUPNC)
B5 (CC2)
A8 (SBUPNC)
B5 (CC2)
A8 (SBUPNC)
B1 (GND)
A12 (GND)

A12 (GND)

CG1_0OHM

Source: https://usb.org/sites/default/files/USB%20Type-C%20Spec%20R2.0%20-%20August%202019.pdf, Note: The citation pertains to only the document excerpt not the schematics or other data.

Exhibit H - U.S. Patent No. 8,477,514 – Samsung EP-TA845

a (PCC) power converter controller configured to receive a (S) signal from said (LD) load indicating a (OP) system operational state of said (LD) load and

OP

Highly Integrated, Compact Footprint

- <u>Multi-mode Quasi-Resonant (QR) / DCM / CCM flyback controller,</u> high-voltage switch, secondary-side sensing and synchronous rectifier driver
- Optimized efficiency across line and load range

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Note: The citation pertains to only the document excerpt not the schematics or other data.

control an (IOC) internal operating characteristic of said (CON) power converter as a function of said signal.

Claim 1

Highly Integrated, Compact Footprint

- Multi-mode Quasi-Resonant (QR) / DCM / CCM flyback controller, high-voltage switch, secondary-side sensing and synchronous rectifier driver
- · Optimized efficiency across line and load range
- Integrated FluxLink™, HIPOT-isolated, feedback link
- · Instantaneous transient response

IOC

- Drives low-cost N-channel FET series load switch
- Integrated 3.6 V supply for external MCU

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Note: The citation pertains to only the document excerpt not the schematics or other data.

Exhibit H - U.S. Patent No. 8,477,514 – Samsung S2MM101

Claim 16
A method of operating a (SYS) power system, comprising:
enabling operation of components of a (PRO) processor system to establish a (DRN) state of power drain
thereof;
providing a (S) signal to identify operation of said (PRO) processor system in said (DRN) state of power drain; sensing a (PL) power level of said state of power drain in response to said (S) signal; and
controlling an (IOC) internal operating characteristic of a (PC) power converter as a function of said (PL) power level.

Preliminary – Subject to Change

Exhibit H - U.S. Patent No. 8,477,514 - Samsung S2MM101

enabling operation of components of a (PRO) processor system to establish a (DRN) state of power drain thereof;

PRO

4.5.2.2 Connection State Machine Requirements

Entry into any unattached state when "directed from any state" shall not be used to override tDRP toggle.

A DRP or a Sink may consume default power from VBUS in any state where it is not required to provide VBUS.

The following two tables define the electrical states for a CC pin in both a Source and a Sink. Every port has CC1 and CC2 pins, each with its own individual CC pin state. The combination of a port's CC1 and CC2 pin states are be used to define the conditions under which a port transitions from one state to another.

Table 4-14 Source Port CC Pin State

CC Pin State	Port partner CC Termination	Voltage Detected on CC when port asserts Rp	
SRC.Open	Open, Rp	Above <u>vOPEN</u>	
SRC.Rd	Rd	Within the <u>vRd</u> range (i.e., between minimum <u>vRd</u>)	
SRC.Ra	Ra	Below maximum vRa	

Table 4-15 Sink Port CC Pin State

CC Pin State	Port partner CC Termination	Voltage Detected on CC when port asserts Rd	
SNK.Rp Rp		Above minimum vRd-Connect	
SNK.Open	Open, Ra, Rd	Below maximum vRa	

Sink

Port asserting Rd on CC and when attached is consuming power from VBUS; most commonly a Device.

Referring to Figure 4-7, a port that behaves as a Source has the following functional characteristics:

- The Source uses a FET to enable/disable power delivery across VBUS and initially the Source has VBUS disabled.
- 2. The Source supplies pull-up resistors (\underline{Rp}) on CC1 and CC2 and monitors both to detect a Sink. The presence of an \underline{Rd} pull-down resistor on either pin indicates that a Sink is being attached. The value of \underline{Rp} indicates the initial USB Type-C Current level supported by the host.
- The Source uses the CC pin pull-down characteristic to detect and establish the correct routing for the SuperSpeed USB data path and determine which CC pin is intended for supplying VCONN.
- 4. Once a Sink is detected, the Source enables VBUS and VCONN.
- 5. The Source can dynamically adjust the value of <u>Rp</u> to indicate a change in available <u>USB Type-C Current to a Sink.</u>

The source functional model detects CC1/CC2 and dynamically adjusts the current, voltage x current is the state of power drain.

enabling operation of components of a (PRO) processor system to establish a (DRN) state of power drain thereof;

Claim 16

enabling operation of components of a (PRO) processor system to establish a (DRN) state of power drain thereof;

Claim 16

Exhibit H - U.S. Patent No. 8,477,514 - Samsung S2MM101

providing a (S) signal to identify operation of said (PRO) processor system in said (DRN) state of power drain;

Table 3-5 USB Type-C Receptacle Interface Pin Assignments for USB 2.0-only Support

Pin	Signal Name	Description	Mating Sequence	Pin	Signal Name	Description	Mating Sequence
A1	GND	Ground return	First	B12	GND	Ground return	First
A2				B11			
A3				B10			
A4	Vaus	Bus Power	First	B9	Vaus	Bus Power	First
A5	CC1	Configuration S	Second	B8	SBU2	Sideband Use (SBU)	Second
A6	Dp1	Positive half of the <u>USB 2.0</u> differential pair – Position 1	Second	В7	Dn2	Negative half of the <u>USB 2.0</u> differential pair - Position 2	Second
A7	Dn1	Negative half of the <u>USB 2.0</u> differential pair - Position 1	Second	В6	Dp2	Positive half of the <u>USB 2.0</u> differential pair - Position 2	Second
A8	SBU1	Sideband Use (SBU)	Second	B5	CC2	Configuration S	Second
A9	Vaus	Bus Power	First	B4	Vaus	Bus Power	First
A10				В3			
A11				B2			
A12	GND	Ground return	First	B1	GND	Ground return	First

Table 4-10 Source Perspective

S

CC1	CC2	State	Position
Open	Open	Nothing attached	N/A
Rd	Open	Sink attached DRN	0
0pen	Rd	Sink attached	(2)
Open	Ra	Powered cable without Sink attached	1
Ra	Open	Powered cable without Sink attached	Ø
Rd	Ra	Powered cable with Sink, VCONN-Powered Accessory (VPA), or VCONN-Powered USB	①
Ra	Rd	Device (VPD) attached	2
Rd	Rd	Debug Accessory Mode attached (Appendix B)	N/A
Ra	Ra	Audio Adapter Accessory Mode attached (<u>Appendix A</u>)	N/A

Referring to Figure 4-7, a port that behaves as a Source has the following functional characteristics:

- The Source uses a FET to enable/disable power delivery across VBUs and initially the Source has VBUS disabled.
- Source has visio disasties.

 2. The Source supplies pull-up resistors (Rp) on CC1 and CC2 and monitors both to detect a Sink. The presence of an Rd pull-down resistor on either pin indicates that a Sink is being attached. The value of Rp indicates the initial USB Type-C Current level supported by the host.

 3. The Source uses the CC pin pull-down characteristic to detect and establish the correct routing for the SuperSpeed USB data path and determine which CC pin is intended for supplying VCONN.

The Source can dynamically adjust the value of \underline{Rp} to indicate a change in available USB Type-C Current to a Sink.

Exhibit H - U.S. Patent No. 8,477,514 - Samsung S2MM101

providing a (S) signal to identify operation of said (PRO) processor system in said (DRN) state of power drain;

PRO

4.5.2.2 Connection State Machine Requirements

Entry into any unattached state when "directed from any state" shall not be used to override tDRP toggle.

A DRP or a Sink may consume default power from VBUs in any state where it is not required to provide VBUs. \bigcirc

The following two tables define the electrical states for a CC pin in both a Source and a Sink. Every port has CC1 and CC2 pins, each with its own individual CC pin state. The combination of a port's CC1 and CC2 pin states are be used to define the conditions under which a port transitions from one state to another.

Table 4-14 Source Port CC Pin State

CC Pin State	Port partner CC Termination	Voltage Detected on CC when port asserts Rp	
SRC.Open	Open, Rp	Above <u>vOPEN</u>	
SRC.Rd	Rd	Within the <u>vRd</u> range (i.e., between minimum <u>vRd</u>)	
SRC.Ra	a Ra Below maximum vRa		

Table 4-15 Sink Port CC Pin State

CC Pin State	Port partner CC Termination	Voltage Detected on CC when port asserts Rd
SNK.Rp	Rp	Above minimum vRd-Connect
SNK.Open	Open, Ra, Rd	Below maximum vRa

Sink

Port asserting Rd on CC and when attached is consuming power from VBUS; most commonly a Device.

Referring to Figure 4-7, a port that behaves as a Source has the following functional characteristics:

- 1. The Source uses a FET to enable/disable power delivery across VBUS and initially the Source has VBUS disabled.
- 2. The Source supplies pull-up resistors (Rp) on CC1 and CC2 and monitors both to detect a Sink. The presence of an Rd pull-down resistor on either pin indicates that a Sink is being attached. The value of Rp indicates the initial USB Type-C Current level supported by the host.
- The Source uses the CC pin pull-down characteristic to detect and establish the correct routing for the SuperSpeed USB data path and determine which CC pin is intended for supplying VCONN.
- 4. Once a Sink is detected, the Source enables VBUS and VCONN.
- 5. The Source can dynamically adjust the value of Rp to indicate a change in available USB Type-C Current to a Sink.

The source functional model detects CC1/CC2 and dynamically adjusts the current, voltage x current is the state of power drain.

Source: Universal Serial Bus Type-C Cable and Connector Specification, Release 2.0, August 2019; Note: The citation pertains to only the document excerpt not the schematics or other data.

Preliminary - Subject to Change

sensing a (PL) power level of said state of power drain in response to said (S) signal; and

Claim 16

Figure 4-7 Source Functional Model for CC1 and CC2

The Source can dynamically adjust the value of Rp to indicate a change in available USB Type-C Current to a Sink.

Exhibit H - U.S. Patent No. 8,477,514 - Samsung S2MM101

sensing a (PL) power level of said state of power drain in response to said (S) signal; and

Mode of Operation	Voltage	Current	Notes	
USB 2.0	5 V	See <u>USB 2.0</u>		
USB 3.2	5 V	See <u>USB 3.2</u>		
USB4	5 V	1.5 A	See Section 5.3.	
USB BC 1.2	5 V	1.5 A¹	Legacy charging	
USB Type-C Current @ 1.5 A	5 V	1.5 A	Supports higher power devices	
USB Type-C Current @ 3.0 A	5 V	3 A	Supports higher power devices	
USB PD	Configurable up to 20 V	Configurable up to 5 A	Directional control and power level management	

State	Source Behavior	Sink Behavior	
Nothing attached	Sense CC pins for attach Do not apply VBus or VCONN	Sense VBus for attach	
Sink attached	Sense CC for orientation Sense CC for detach Apply VBUS and VCONN	Sense CC pins for orientation Sense loss of VBUS for detach	
Powered cable without Sink attached	Sense CC pins for attach Do not apply VBUS or VCONN	Sense VBUS for attach	
Powered cable with Sink, Vconn-Powered Accessory, or Vconn- Powered USB Device attached	Sense CC for orientation Sense CC for detach Apply VBUS and VCONN Detect VPD and remove VBUS	If accessories or VPDs are supported, see Source Behavior with exception that VBUS is not applied., otherwise, N/A.	
Debug Accessory Mode attached	Sense CC pins for detach Reconfigure for debug	Sense VBUS for detach Reconfigure for debug	
Audio Adapter Accessory Mode attached	Sense CC pins for detach Reconfigure for analog audio	If accessories are supported, see Source Behavior, otherwise, N/A	

Precedence	Mode of Operation		Nominal nce Mode of Operation Voltage		Maximum Current
Highest			Configurable	5 A	
Lowest	USB Type-C Current @ 3.0 A		5 V	3.0 A	
	USB Type-C Current	@ 1.5 A	5 V	1.5 A	
	USB BC 1.2		5 V	Up to 1.5 A1	
	n c leuenn	USB 3.2	5 V	See USB 3.2	
	Default USB Power	USB 2.0	5 V	See USB 2.0	

Preliminary – Subject to Change

