5x5 antagonistic game

The problem can be formalized as

$$V \to \max$$
.

subject to

$$P^{\mathrm{T}}X > V$$
, $1^{\mathrm{T}}X = 1$, $X > 0$.

By moving V from RHS to LHS and introducing slack variables this problem can be reduced to a linear program:

$$\begin{cases}
-V \to \min, \\
\begin{pmatrix}
-1 & -1 & 0 & V \\
\vdots & \ddots & P^{T} \\
-1 & 0 & -1 & X_{1} \\
\hline
0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
V \\
s_{1} \\
\vdots \\
s_{n} \\
x_{1} \\
\vdots \\
x_{n}
\end{pmatrix} = \begin{pmatrix}
0 \\
\vdots \\
0 \\
1
\end{pmatrix},$$

$$V, s, X > 0.$$

Octave solution:

```
[m, n] = size(P);
A = [-ones(n,1), -eye(n), P'; zeros(1,n+1), ones(1,m)];
b = [zeros(n,1);1];
c = [1; zeros(size(A,2)-1,1)];
X = glpk(-c,A,b);
V = c'*X;
The result is:
>> P =
  0.500000 0.500000 0.400000 0.500000
                                            0.201000
  0.500000 \quad 0.400000 \quad 0.700000 \quad 0.101000 \quad 0.600000
  0.201000 0.300000 0.400000 0.100000
                                            0.700000
  0.300000 0.600000 0.700000 0.300000
                                            0.200000
  0.400000 0.400000 0.300000 0.010000
                                             0.200000
>> X'
ans =
            0.00000 0.33259 0.00000
  0.66741
                                          0.00000
>> V = 0.36696
```

13. ЗАДАННЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Примечание. Для обеспечения индивидуального варианта решения к данным, помеченным * прибавляются два последних числа из номера зачетной кинжки. Если исходные данные представлены в виде десятичной дроби, то изменяется дробная часть. Например, номер зачетной книжки имеет вид ххххххх53, исходные данные задачи принимают значение 1000* = 1000 + 53 = = 1053 или 0,2* = 0,2 + 0,53 = 0,73. Если по условию задачи требуется значение параметра из интервала [0,1], а в результате при изменении дробной части получается число больше 1, целая часть числа отбрасывается.

13.1. Теория игр

Задача 1 (планирование выпуска побочной продукции)

В городе имеются два предприятия, которые, помимо своих основвых изделий, могут выпускать для населения побочную продукцию одного я того же назначения, но разных типов. Первое предприятие может выпусgать продукцию типов $D_1, ..., D_5$, а второе – типов $M_1, ..., M_5$. В городе найдет сбыт 1000* единиц товара всех видов. Прогнозируемая доля сбыта продукции первым предприятием задана таблицей.

KILLINI				Табл	ица 13.
Предприятие I	Предприятие 2				
	M_1	M ₂	M ₃	M ₄	M ₅
n.	0,5	0,5	0,4	0,5	0,2*
D	0,5	0,4	0,7	0,1*	0,6
<u>D</u> 2	0,2*	0,3	0,4	0,1	0,7
<i>D</i> ₃	0,3	0,6	0,7	0,3	0,2
D ₄				0*	0,2
D ₁	0.4	0,4	0,3	0*	

, Требуется определить количество изделий каждого типа, выпускаемого каждым предприятием.

Залача 2

Администрации театра нужно решить, сколько заказать программок для представлений. Стоимость заказа 200 фунтов стерлингов (GBP) плюс 30 пенсов за штуку. Программки продаются по 60 пенсов за штуку, и к тому же доход от рекламы составит дополнительные 300 GBP. Из прошлого опыта известна посещаемость театра (табл. 13.2).