

Sentiment Analysis Service in a DevOps environment

Oindrilla Chatterjee

Data Scientist

Al Center of Excellence

Sentiment Analysis

NLP? How does it work?

Natural language processing helps computers understand, interpret and manipulate human language.

What will we learn today?

- How we narrowed down to a single service
- How we improved the service
- Lessons learnt going through the process
- Usage of the framework
- How to implement such a service

Ways of performing sentiment analysis

Machine Learning Classifier

Deep Learning Model

Composition of our initial service

Accuracy of sentence classification

Eg. Total Negative Sentences in Dataset: 159 | Misclassified: 136

Foreign languages were being misinterpreted as English

Eg. En realidad no me ayudaron , el SLA de 1hora nunca se cumplió y lo solucioné por mi cuenta en este caso - tagged as **Positive Means Negative**

Domain specific sentences mis-classified

Quick responses from the analyst assigned to the case. - marked as **Negative**. Should be **Positive** in context of customer reviews. Words like consistent, immediate, in-depth, skilled, polite etc indicate positive sentiment in the context of customer service.

Training Data VADER TextBlob P1 P2 P3 **Predictions** w2 w3 w1

Weighted majority vote

Final Prediction

Classifiers

Weights

Pf

Improvements in performance

What is Entity Detection?

Entities in the context of NLP are terms/tokens which signify important information. They are mainly proper nouns in the sentence pertaining to places, people, products, organizations, events etc

Unable to identify context-specific terms

Eg. Ansible, RHEL7, RHEL 8, OpenShift, Red Hat Cloudforms etc-terms were not recognized by the NER system

Non-entities classified as entities

Quick updates can be put in via the support portal.

[{'name': 'Quick', 'category': 'ORG'}]

Mis-classify entities

Proactive support from the RHEL engineer:

[{'name': 'RHEL', 'category': 'ORG'}]

Steps Taken

Created Balanced training data to re-train SpaCy's NER model

Examples of terms introduced:

Entities	True Classification
Red Hat	ORG
Redhat	ORG
OpenShift	PRODUCT
rhel	PRODUCT
RH	ORG
Ansible	PRODUCT
RHEL	PRODUCT
Red Hat Cloudforms	PRODUCT
RHEL 7	PRODUCT
RHEL7	PRODUCT
RHEL 6	PRODUCT
RHEL8	PRODUCT
RHEL 8	PRODUCT
RHEL6	PRODUCT

Entity results on a sentence with previous NER model vs updated NER model

- Higher number of context specific entities recognized
- Better classification of entities
- Lower non-entity detection

Deep learning

Recurrent Neural Networks(RNNs) with Long Short Term Memory(LSTM) Units

02 F1 scores of LSTM based model

Training data requirements

Transfer Learning? How does it apply in NLP?

- Pre-training allows a model to capture and learn a variety of linguistic phenomena
- Address difficult challenges in ML research, availability of data and resources

Bidirectional Encoder Representation from Transformers (BERT)

What makes BERT different?

Contextual representation

Contextual models instead generate a representation for each word in a sentence based on context

Deeply bidirectional unsupervised language representation

Technique of masking out some words in the input and then condition each word bidirectionally to predict the masked words

Models relationships between sentences

Is the second sentence the actual next sentence that comes after the first or just a random sentence?

Transformer Architecture

Compared to RNNs which is very sequential, Transformer architecture is able to take full advantage of GPUs and TPUs and make training must faster

Comparative Results

Why is this important?

- 1. **Better** classification or sentiment annotation
- 2. Annotating a single sentiment for **entire review/piece of text/paragraph** as opposed to initial service
- 3. Models take much lesser time to train using **GPUs**

Continual improvement of the system

Introducing Feedback

Lessons Learnt

- Evaluation of versions of the model -- we are not limited to F1 Scores
- Lack of variability when developing context-specific models

Demo

How do you build such a system?

- Open Data Hub is an open-source data and AI platform for the hybrid cloud: https://opendatahub.io
- Meta project to integrate open source projects into a practical service
- Red Hat's internal data science and Al platform

To learn more:

Watch recording of Pete MacKinnon and Juana Nakfour's talk on ML pipelines with Kubeflow, Argo and Open Data Hub

Thank you

ochatter@redhat.com

