TAREAS TEMA 2

Álvaro Morales Sánchez – 18240

■ Tarea 1

Se meten las constantes, el intervalo y la función (de manera function handle). Se hace un programa empleando el marco teórico de la bisección.

Código empleado:

```
a=3;
b=1/8;
c=1/2;
f=@(x) (1/2-x)+(a*x)/(1+((x-c)/b)^2);
E=1;
T=10^{(-4)}
a=0;
b=1;
         □ while E>T
               xm=0.5*(a+b);
               fx=f(xm);
               fa=f(a);
               fb=f(b);
               if fa*fx<0
                    b=xm;
               else
                    a=xm;
               end
               E=abs(fx)
          -end
```

Resultado:

```
E =
4.2898e-05

fx =
4.2898e-05

xm =
0.8224
```

■ Tarea 2

Similar al anterior pero modificando el código buscando el máximo en vez del cero.

```
a=3;
b=1/8;
c=1/2;
f=@(x) (1/2-x)+(a*x)/(1+((x-c)/b)^2);
E=1;
T=10^(-4)
a=0;
b=1;
```

```
while E>T
    xm=0.5*(a+b);
    fx=f(xm);
    fa=f(a);
    fb=f(b);

if fa*fx<fa*fb
        a=xm;
else
        b=xm;
end
    fx2=f(b)
    E=abs(fx2-fx)
end</pre>
```

```
E =

0

fx =

1.5000

xm =

0.5000
```

■ Tarea 3

El resultado final debe ser una matriz 15x15 compuesta por distintas matrices de unos o ceros de 5x5. La idea que se llevará a cabo será crear una matriz 15x15 de ceros o unos y otra de 5x5 de la opuesta a la anterior. Seguidamente se añadirá la matriz 5x5 en las posiciones correspondientes hasta llegar al resultado buscado.

```
A=zeros(15);

B=ones(5);

A(1:5,1:5)=A(1:5,1:5)+B;

A(11:15,1:5)=A(11:15,1:5)+B;

A(1:5,11:15)=A(1:5,11:15)+B;

A(11:15,11:15)=A(11:15,11:15)+B;

A(6:10,6:10)=A(6:10,6:10)+B;
```


Otras opciones:

- -Usar bucle for y meter un uno componente a componente. Ejemplo: A(i,j)=A(i,j)+1
- -Crear una matriz concatenando matrices o vectores, similar a lo empleado. Ejemplo:

```
B=ones(5);
C=zeros(5);
Ap=[B C B; C B C; B C B];
```

■ Tarea 4

Para llegar al resultado pedido, se opta por comenzar crear una matriz 7x7 de ceros, al ser el tamaño final y ser el cero el que más la compone. Después a partir de vectores de unos, doses y treses; se sacan matrices diagonales con las diagonales correspondientes. Para terminar se suman todas.

```
A=zeros(7);
unos=ones(7,1);
diagunos=diag(unos);
dos=[2 2 2 2 2 2];
diagdos1=diag(dos,1);
diagdos2=diag(dos,-1);
tres=[3 3 3 3 3];
diagtres1=diag(tres,2);
diagtres2=diag(tres,-2);
A=A+diagunos+diagdos1+diagdos2+diagtres1+diagtres2;
```

1	Α														
PLOTS		VAR	VARIABLE		VIEW										
	4	⊘ Open ∨	Rows		Columns				₽₩ TI	ranspose					
	lew from election ▼	Print ▼	1		1		Insert -	Delete ▼	a ↓ Se	ort ▼					
	VAR	ABLE	SEL		ECTION		EDIT								
⊞ 7x7 double															
	1	2	3		4		5	(5	7		8	9	10	11
1		1	2	3	(0	(0	0		0				
2		2	1	2	3	3	(0	0		0				
3		3	2	1	2	2		3	0		0				
4		0	3	2	1	1		2	3		0				
5		0	0	3		2		1	2		3				
6		0	0	0		3		2	1		2				
7		0	0	0	()		3	2		1				
8															
9											-				
10											-				
11 12											-				
13															
14											+				
15															

Tarea 5

Para resolver el sistema conviene usar la función mldivide ('\'). Para usar dicha función habría que crear una matriz con los números que acompañan a las incógnitas y un vector con las soluciones.

```
A=[1 0 1 0 2; 0 2 0 0 3; 2 0 3 0 1; 0 0 0 4 0; 4 0 3 0 5];
b=[14 19 16 16 38];
b=b';
x=A\b;
```


JXT double							
	1	2	3				
1	14						
2	19						
3	16						
4	16						
5	38						
6							
7							
0							

3x1 double

	1	2
1	1	
2	2	
3	3	
4	4	
2 3 4 5 6	5	
6		