Binders Unbound

Stephanie Weirich¹ Brent Yorgey¹ Tim Sheard²

 1 University of Pennsylvania

 $^2 {\sf Portland\ State\ University}$

NJPLS Princeton University April 8, 2011

Lambda calculus

Let's implement the lambda calculus:

$$t ::= x \mid t \mid t \mid \lambda x.t$$

in Haskell.

Lambda calculus

Let's implement the lambda calculus:

$$t ::= x \mid t \mid t \mid \lambda x.t$$

in Haskell.

First try:

$$\begin{array}{c|c} \mathbf{data} \ E = \mathit{Var} \ \mathit{String} \\ \mid \ \mathit{App} \ E \ E \\ \mid \ \mathit{Lam} \ \mathit{String} \ E \end{array}$$

Lambda calculus

Let's implement the lambda calculus:

$$t ::= x \mid t \mid t \mid \lambda x.t$$

in Haskell.

First try:

$$\begin{array}{c|c} \mathbf{data} \ E = \mathit{Var} \ \mathit{String} \\ \mid \ \mathit{App} \ E \ E \\ \mid \ \mathit{Lam} \ \mathit{String} \ E \end{array}$$

subst ::
$$String \rightarrow E \rightarrow E \rightarrow E$$

subst $x \ u \ t = \dots$?

...with Unbound

$$t ::= x \mid t \mid t \mid \lambda x.t$$

```
\label{eq:type_norm} \begin{split} \mathbf{type} \ N &= \mathbf{Name} \ E \\ \mathbf{data} \ E &= \mathit{Var} \ \mathit{N} \\ &\mid \mathit{App} \ E \ E \\ &\mid \mathit{Lam} \ (\mathbf{Bind} \ \mathit{N} \ \mathit{E}) \end{split}
```

...with Unbound

$$t ::= x \mid t \mid t \mid \lambda x.t$$

$$\begin{array}{l} \textbf{type} \ N = \textbf{Name} \ E \\ \textbf{data} \ E = Var \ N \\ & \mid \ App \ E \ E \\ & \mid \ Lam \ (\textbf{Bind} \ N \ E) \end{array}$$

...and now we get these for free!

$$\begin{array}{ll} \mathrm{subst} :: N \to E \to E \to E \\ \mathrm{fv} &:: E \to [\, N \,] \\ \dots \end{array}$$

Example (parallel reduction)

```
red :: \mathsf{Fresh} \ m \Rightarrow E \rightarrow m \ E
red(Var x) = return(Var x)
red (Lam \ b) = do
   (x,e) \leftarrow \mathsf{unbind}\ b
   e' \leftarrow red e
   case e' of
      App e'' (Var y)
           \mid x \equiv y \land \neg (x \in \mathsf{fv}\ e'')
              \rightarrow return e''
      \_ \rightarrow return (Lam (bind <math>x e'))
```

Example (parallel reduction)

```
red (App e_1 e_2) = \mathbf{do}
   e_1' \leftarrow red \ e_1
   case e'_1 of
       Lam\ b \rightarrow \mathbf{do}
           (x, e') \leftarrow \mathsf{unbind}\ b
           e_2' \leftarrow red \ e_2
           return (subst x e_2' e')
       \rightarrow do
           e_2' \leftarrow red \ e_2
           return (App e'_1 e'_2)
```

 $\mathbf{U}\mathbf{N}\mathbf{B}\mathbf{O}\mathbf{U}\mathbf{N}\mathbf{D}$ provides a set of $\underline{\mathsf{type}}$ combinators for expressing binding structure.

What other sorts of binding structure can we encode?

Binding multiple names

Instead of λx . λy . λz . t,

 $\lambda x y z. t$

Binding multiple names

Instead of λx . λy . λz . t,

 $\lambda x y z. t$

$$\mathbf{data}\ E = \ \dots \\ |\ \mathit{Lam}\ (\mathbf{Bind}\ [N]\ E)$$

Let

let
$$x = e_1$$
 in e_2
(x bound in e_2)

Let

First try:

$$(x \text{ bound in } e_2)$$

$$(x \text{ bound in } e_2)$$

$$\text{try:}$$

$$\text{data } E = \dots$$

$$\mid \ Let \ E \ (\textbf{Bind} \ N \ E)$$

Let

let
$$x = e_1$$
 in e_2
(x bound in e_2)

Better:

Multi-let

let
$$x_1 = e_1, \ldots, x_n = e_n$$
 in e

$$(x_i \text{ bound in } e)$$

```
\mathbf{data}\ E = \ \dots \\ |\ \mathit{Let}\ (\mathbf{Bind}\ [(N, \mathbf{Embed}\ E)]\ E)
```

Recursive binding

How about

letrec $x_1 = e_1, \ldots, x_n = e_n$ in e $(x_i \text{ bound in } e \text{ and all } e_j)?$

Recursive binding

```
How about
```

letrec
$$x_1 = e_1, \ldots, x_n = e_n$$
 in e

$$(x_i \text{ bound in } e \text{ and all } e_j)?$$

Recursive binding:

let*

What about

let* $x_1 = e_1, \ldots, x_n = e_n$ in e $(x_i \text{ bound in } e \text{ and } e_j \text{ for } j > i)$?

let*

What about

let*
$$x_1 = e_1, \ldots, x_n = e_n$$
 in e

$$(x_i \text{ bound in } e \text{ and } e_j \text{ for } j > i)$$
?

Working but suboptimal:

Nested binding?

Nested binding?

$$\mathsf{let*} \ x_1 = e_1, \dots, x_n = e_n \ \mathsf{in} \ e$$

$$\mathsf{Better:}$$

$$\mathsf{data} \ \mathit{LetList} = \mathit{Nil} \\ | \ \mathit{Binding} \ (\mathsf{Rebind} \ (N, \mathsf{Embed} \ E) \\ | \ \mathit{LetList})$$

$$\mathsf{data} \ E = \dots \\ | \ \mathit{LetStar} \ (\mathsf{Bind} \ \mathit{LetList} \ E)$$

Want to know more? Read our paper!

On Hackage:

http://hackage.haskell.org/package/unbound/

cabal install unbound