Feuille d'exercice n° 26 : Matrices et applications linéaires

Exercice 1 () Soit h l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 définie par rapport à deux bases $\mathscr{B} = (e_1, e_2, e_3)$ et $\mathscr{C} = (f_1, f_2)$ par la matrice $A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$.

1) On prend dans \mathbb{R}^3 la nouvelle base $\mathscr{B}' = (e'_1, e'_2, e'_3)$ définie par :

$$e'_1 = e_2 + e_3, \quad e'_2 = e_3 + e_1, \quad e'_3 = e_1 + e_2.$$

Quelle est la nouvelle matrice A_1 de h?

2) On choisit pour base de \mathbb{R}^2 la nouvelle base $\mathscr{C}'=(f_1',f_2')$ définie par :

$$f_1' = \frac{1}{2}(f_1 + f_2), \quad f_2' = \frac{1}{2}(f_1 - f_2),$$

en conservant la base \mathscr{B}' de \mathbb{R}^3 . Quelle est la nouvelle matrice A_2 de h?

Exercice 2 Soit $n \in \mathbb{N}^*$.

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que :

$$\forall X \in \mathcal{M}_n(\mathbb{K}) \quad AXB = 0.$$

Montrer que A = 0 ou B = 0.

Exercice 3 (Soit φ une application linéaire de \mathbb{R}^2 dans lui-même telle que $\varphi \neq 0$ et $\varphi^2 = 0$. Soit $x \in \mathbb{R}^2$ tel que $\varphi(x) \neq 0$. Montrer que $\{x, \varphi(x)\}$ est une base de \mathbb{R}^2 . Déterminer la matrice de φ dans cette base.

Exercice 4 ($^{\circ}$) Soit A une matrice carrée d'ordre 2, et soit φ l'application de $M_2(\mathbb{R})$ dans lui même, envoyant M sur AM. Montrer que φ est linéaire et déterminer sa matrice sur la base canonique de $M_2(\mathbb{R})$.

Exercice 5 (\bigcirc \bigcirc \bigcirc Soit E un espace vectoriel de dimension finie, notée n.

- 1) Soit φ un projecteur de E, peut-on trouver une base dans laquelle la matrice de φ est particulièrement simple ?
- 2) Même question pour une symétrie.

Exercice 6 ($^{\infty}$) Soit φ définie sur $\mathbb{R}_2[X]$ par $P \mapsto (X^2 + 2)P'' + (X + 1)P' + P$.

- 1) Vérifier que φ est un endomorphisme de $\mathbb{R}_2[X]$.
- 2) Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_2[X]$.
- 3) Déterminer Ker(φ 5Id). Calculer φ (1) et φ (X + 1).
- 4) En déduire une base de $\mathbb{R}^2[X]$ dans laquelle la matrice de φ est diagonale.

Exercice 7 ()

1) On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{pmatrix}.$$

Donner une base de Ker f et Im f.

2) Soit f l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \begin{pmatrix} -11 & 7 & 0 & 3 \\ 0 & 1 & 11 & 2 \\ 1 & 0 & 7 & 1 \end{pmatrix}.$$

Déterminer le rang de f, ainsi qu'une base de son noyau et de son image. Donner une équation de l'image.

Exercice 8 (\bigcirc \bigcirc \bigcirc) Soit $M = \begin{pmatrix} -35 & -7 & -22 \\ -6 & 0 & -4 \\ 57 & 11 & 36 \end{pmatrix}$.

- 1) En interprétant M comme étant la matrice d'un endomorphisme d'un espace vectoriel E, montrer qu'il existe une base (I,J,K) telle que cet endomorphisme a dans cette base pour matrice une matrice diagonale avec 1, 2, -2 sur la diagonale.
- **2)** Calculer alors M^n pour tout $n \in \mathbb{Z}$.
- 3) Exprimer en fonction de n les termes u_n , v_n , w_n où u_n , v_n , w_n sont les termes généraux de 3 suites vérifiant :

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} &= -35u_n - 7v_n - 22w_n \\ v_{n+1} &= -6u_n - 4w_n \\ w_{n+1} &= 57u_n + 11v_n + 36w_n \end{cases}, \text{ avec } u_0 = v_0 = w_0 = 1.$$

Exercice 9 Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Un endomorphisme φ de E est représenté canoniquement par la matrice $A = \begin{pmatrix} 3 & 3 & c \\ 1 & -2 & d \\ a & b & f \end{pmatrix}$. Déterminer les réels a, b, c, d, f de façon que l'endomorphisme φ vérifie les deux conditions suivantes :

- 1) Ker φ est engendré par le vecteur $u=e_1+2e_2+3e_3$;
- 2) Im φ est engendré par les deux vecteurs $v = e_2 3e_3$ et $w = 3e_1 5e_3$.

Exercice 10 (Calculer, s'il existe, l'inverse de chacune des matrices suivantes. Donner le rang de chacune des matrices non inversibles.

1)
$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 3) $\begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 0 \end{pmatrix}$ 5) $\begin{pmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 1 & 1 & -2 & 1 \\ 1 & 1 & 1 & -2 \end{pmatrix}$ 7) $\begin{pmatrix} 0 & 0 & \dots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_2 & \dots & 0 \\ a_1 & 0 & \dots & 0 \end{pmatrix}$ 2) $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix}$ 4) $\begin{pmatrix} 0 & 1 & 0 & 4 \\ 4 & 2 & 1 & 3 \\ 13 & 2 & 1 & 9 \\ 7 & 2 & 1 & 5 \end{pmatrix}$ 6) $\begin{pmatrix} 1 & \overline{z} & \overline{z}^2 \\ z & 1 & \overline{z} \\ z^2 & z & 1 \end{pmatrix}$

Exercice 11 Soit $n \in \mathbb{N}^*$.

Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$ à coefficients diagonaux dominants, c'est-à-dire telle que :

$$\forall i \in [1, n] \quad |a_{i,i}| > \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{i,j}|.$$

Montrer que A est inversible.

Exercice 12 () Montrer que la famille $(X^3 + 2X + 1, X^3 - 2X^2 + 2, X^3 - 2X^2 + 1, X^3 + X)$ est une base de $\mathbb{R}_3[X]$ au moyen d'une technique matricielle.

Exercice 13 ($^{\circ}$) Soit a et b deux réels, et A la matrice

$$A = \begin{pmatrix} a & 2 & -1 & b \\ 3 & 0 & 1 & -4 \\ 5 & 4 & -1 & 2 \end{pmatrix}.$$

Montrer que $rg(A) \ge 2$. Pour quelles valeurs de a et b a-t-on rg(A) = 2?

Exercice 14 Déterminer les matrices $M \in \mathcal{M}_3(\mathbb{K})$ telles que $M^2 = 0$.

Exercice 15 Calculer les noyaux des matrices suivantes.

1)
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 3 & 2 & -1 & 3 \\ \lambda & 3 & -2 & 0 \\ -1 & 0 & -4 & 3 \end{pmatrix}$$
 2) $B = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & \lambda \\ -4 & 4 & -4 \\ 6 & 4 & 0 \end{pmatrix}$ 3) $C = \begin{pmatrix} 1 & 1 & -1 & 2 \\ \lambda & 1 & 1 & 1 \\ 1 & -1 & 3 & -3 \\ 4 & 2 & 0 & \lambda \end{pmatrix}$

Exercice 16 Déterminer l'inverse des matrices suivantes (si cet inverse existe) :

$$\diamondsuit = \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}, \ \heartsuit = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & 3 \\ 4 & 0 & 2 \end{pmatrix}, \ \spadesuit = \begin{pmatrix} 1 & a & a^2 & . & . & a^n \\ 0 & 1 & a & a^2 & . & a^{n-1} \\ 0 & 0 & 1 & a & . & . \\ . & . & . & . & . & . \\ 0 & . & . & . & 0 & 1 \end{pmatrix}, \ \clubsuit = \begin{pmatrix} 1 & 2 & 3 & . & . & n \\ 0 & 1 & 2 & 3 & . & n-1 \\ 0 & 0 & 1 & . & . & . \\ . & . & . & . & . & . \\ 0 & . & . & . & 0 & 1 \end{pmatrix}.$$

Exercice 17 Discuter, selon le paramètre réel m, la dimension des ensembles des solutions des systèmes suivants.

1)
$$(\mathscr{S}): \left\{ \begin{array}{lll} x+my+z & = & 0 \\ mx+y+mz & = & 0 \end{array} \right.$$
 2) $(\mathscr{T}): \left\{ \begin{array}{lll} x+y+mz & = & 0 \\ x+my+z & = & 0 \\ mx+y+z & = & 0 \end{array} \right.$

Exercice 18 Soit $M = \begin{pmatrix} -10 & 6 & 14 \\ 1 & -1 & -1 \\ -8 & 5 & 11 \end{pmatrix}$.

Montrer que M est semblable à une matrice particulièrement simple, que l'on déterminera.

Exercice 19 (\nearrow) Résoudre l'équation $X^2 + X = A$ d'inconnue $X \in \mathcal{M}_2(\mathbb{R})$, avec $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. *Indication*: on commencera par étudier complétement A.

Exercice 20 Trouver toutes les formes linéaires f sur $\mathcal{M}_n(\mathbb{K})$ vérifiant :

$$\forall A, B \in \mathscr{M}_n(\mathbb{K}), \ f(AB) = f(BA).$$

Indication: pour deux matrices élémentaires $E_{i,j}$ et $E_{k,\ell}$, calculer le produit $E_{i,j}E_{k,\ell}$.

Exercice 21 (\circlearrowleft) On considère une suite de variables aléatoires (T_n) à valeurs dans $\{x, y, z\}$, définie par le graphe de transition suivant. Par exemple, l'arête du bas signifie que $\forall n \in \mathbb{N}, \ P(T_{n+1} = x | T_n = z) = \frac{3}{10}$.

FIGURE 1 – Graphe de transition pour la suite (T_n) .

Pour tout $n \in \mathbb{N}^*$, on pose

$$x_n = P(T_n = x), \quad y_n = P(T_n = y), \quad z_n = P(T_n = z) \quad \text{et} \quad X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}.$$

- 1) Montrer qu'il existe $A \in \mathcal{M}_3(\mathbb{R})$ telle que, pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.
- 2) On note φ l'endomorphisme canoniquement associé à A. Déterminer les droites vectorielles de \mathbb{R}^3 stables par φ . En déduire une base relativement à laquelle la matrice de φ est diagonale.
- 3) La suite (X_n) converge-t-elle? Que peut-on dire de sa limite?
- 4) Déterminer l'expression de X_n en fonction de n.

