List of Schemes

Contents

I	List of Algebraic Varieties	2
1	A Quartic Curve	2
2	The Lemniscate of Bernoulli	4
3	A Blowup Algebra	5
4	A Surface	8
5	An Elliptic Curve	9

Part I

List of Algebraic Varieties

1 A Quartic Curve

Let $A = \mathbb{Z}[x, y]/f$ where

$$f = (y - x^2 + 5x - 5)(y + x^2 - 5x + 5) - 1 = uv - 1$$
(1)

where we set $u = y - x^2 + 5x - 5$ and $v = y + x^2 - 5x + 5$. Note that from the expression of f in (1) we see that u and v are units in A. Here we are describing A as a quotient of a polynomial ring, but we can also describe it as a finite module extension over a polynomial ring. Namely, we can write it as $A = \mathbb{Z}[y][\sqrt{g}]$ where

$$f = y^2 - (x-1)(x-2)(x-3)(x-4) = y^2 - g,$$
(2)

where g = (x-1)(x-2)(x-3)(x-4). The expression of f in (2) is nice because we can read off information like the discriminant of A over $\mathbb{Z}[y]$. Basically from (2) we can read off useful information of A viewed as a finite module extension, whereas from (1) we can read off useful information of A viewed as a quotient. Both expressions give rise to the same ring A at the end of the day. Next we set $X = \operatorname{Spec} A$. To get an idea of what X looks like, we consider the canonical morphism $X \to \operatorname{Spec} \mathbb{Z}$. For each positive prime p, we obtain the fiber $X_p = X_{\mathbb{F}_p}$ of this canonical morphism at the prime ideal $\langle p \rangle$:

$$X_p = \operatorname{Spec}(\mathbb{F}_p \otimes_{\mathbb{Z}} A) = \operatorname{Spec}(\mathbb{F}_p[x,y]/f).$$

We also obtain the fiber $X_0 = X_0$ of this canonical morphism at the generic point 0:

$$X_0 = \operatorname{Spec}(\mathbb{Q} \otimes_{\mathbb{Z}} A) = \operatorname{Spec}(\mathbb{Q}[x, y]/f).$$

Note $X_{\mathbb{Q}}$ is just the pullback of the morphism $\operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$ with respect to the canonical map $X \to \operatorname{Spec} \mathbb{Z}$. We can specialize even further by setting X_K to be the pullback of the composite $\operatorname{Spec} K \to \operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$ with respect to the canonical map $X \to \operatorname{Spec} \mathbb{Z}$:

$$X_K = \operatorname{Spec}(K \otimes_{\mathbb{Z}} A) = \operatorname{Spec}(K[x,y]/f).$$

The closed points of X_K correspond to the maximal ideals of K[x,y]/f, and when K is algebraically closed, these correspond to the points of the variety $V_K(f)$.

We now consider $X_{\mathbb{R}} = \operatorname{Spec}(\mathbb{R}[x,y]/f)$, viewed as an \mathbb{R} -scheme (thus the canonical morphism is $X_{\mathbb{R}} \to \operatorname{Spec} \mathbb{R}$). To get an idea of what $X_{\mathbb{R}}$ looks like, we shall look at its \mathbb{R} -valued points $X_{\mathbb{R}}(\mathbb{R}) = V_{\mathbb{R}}(f) = C$ pictured below:

If we equip $X(\mathbb{R})$ with the Euclidean topology. Then we see that it is disconnected since

$$X(\mathbb{R}) = (\{u > 0\} \cap X(\mathbb{R})) \cup (\{u < 0\} \cap X(\mathbb{R})),$$

however in the Zariski topology, $X(\mathbb{R})$ is irreducible since f is irreducible over \mathbb{R} , so certainly $X(\mathbb{R})$ is connected in the Zariski topology. The Jacobian matrix of f is given by

$$J_f = \begin{pmatrix} \partial_x f \\ \partial_y f \end{pmatrix} = \begin{pmatrix} 4x^3 + 30x^2 - 70x + 50 \\ 2y \end{pmatrix}.$$

In particular, it's easy to see that $J_f(a,b) := J_f \mod \mathfrak{m}_{a,b} \neq 0$ for all closed points $\mathfrak{m}_{a,b} \in X(\mathbb{R})$. It follows that $X(\mathbb{R})$ is smooth. Alternatively, we have

$$df = \partial_x f dx + \partial_y f dy = (4x^3 + 30x^2 - 70x + 50)dx + 2ydy.$$

Thus when we set df = 0, then for $y \neq 0$, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4x^3 + 30x^2 - 70x + 50}{2y}. (3)$$

The DeRham complex of *A* is given by

$$\Omega_A := 0 \to A \to$$

Now, we want to see what the curve looks like at in affine neighborhood of the point at infinity [0:1:0]. To do this let $\widetilde{A} = \mathbb{Z}[x,z]/\widetilde{f}$ where

$$\widetilde{f} = \widetilde{y}^2 - (\widetilde{x} - \widetilde{y})(\widetilde{x} - 2\widetilde{y})(x - 3\widetilde{y})(x - 4\widetilde{y}),\tag{4}$$

and set $\widetilde{X} = \operatorname{Spec} \widetilde{A}$. To get an idea of what $\widetilde{X}_{\mathbb{R}}$ looks like, we shall look at its \mathbb{R} -valued points $\widetilde{X}_{\mathbb{R}}(\mathbb{R}) = V_{\mathbb{R}}(\widetilde{f}) = \widetilde{C}$ pictured below

The closed points of $\widetilde{X}_{\mathbb{R}}$ have the form $\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}} = \langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle$ where $(\widetilde{a},\widetilde{b}) \in \mathbb{R}^2$ such that $\widetilde{f}(\widetilde{a},\widetilde{b}) = 0$. We have a ring isomorphism $\widetilde{\varphi} \colon \widetilde{A}_{\widetilde{y}} \to A_y$ given by $\widetilde{\varphi}(\widetilde{x}) = x/y$ and $\widetilde{\varphi}(\widetilde{y}) = 1/y$, with inverse $\varphi \colon A_y \to \widetilde{A}_{\widetilde{y}}$ given by $\varphi(x) = \widetilde{x}/\widetilde{y}$ and $\varphi(y) = 1/\widetilde{y}$. Notice that

$$\widetilde{\varphi}(\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}) = \varphi(\langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle)$$

$$= \langle x/y - \widetilde{a}, 1/y - \widetilde{b} \rangle$$

$$= \langle x - \widetilde{a}y, 1 - \widetilde{b}y \rangle$$

$$= \langle x - \widetilde{a}y, y - 1/\widetilde{b} \rangle$$

$$= \langle x - \widetilde{a}/\widetilde{b}, y - 1/\widetilde{b} \rangle$$

$$= \langle x - a, y - b \rangle$$

$$= \mathfrak{m}_{a,b},$$

where we set $a = \widetilde{a}/\widetilde{b}$ and $b = 1/\widetilde{b}$. It follows that ${}^{a}\widetilde{\varphi}(\mathfrak{m}_{a,b}) = \widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}$. Now observe that

$$d\widetilde{x} = \frac{ydx - xdy}{y^2}$$
 and $d\widetilde{y} = -\frac{dy}{y^2}$.

2 The Lemniscate of Bernoulli

Let
$$A = \mathbb{Z}[x, y]/f$$
 where

$$f = (x^2 + y^2)^2 + y^2 - x^2$$

and we set $X = \operatorname{Spec} A$. One can show that the set of integer solutions to the equation f = 0 is given by $\{(\pm 1, 0), (0, 0)\}$. On the other hand, the \mathbb{R} -valued points $X(\mathbb{R})$ can be visualized below

$$f = (y - x^2 + 5x - 5)(y + x^2 - 5x + 5) - 1 = uv - 1$$
(5)

where we set $u = y - x^2 + 5x - 5$ and $v = y + x^2 - 5x + 5$. Note that from the expression of f in (1) we see that u and v are units in A. Here we are describing A as a quotient of a polynomial ring, but we can also describe it as a finite module extension over a polynomial ring. Namely, we can write it as $A = \mathbb{Z}[y][\sqrt{g}]$ where

$$f = y^2 - (x - 1)(x - 2)(x - 3)(x - 4) = y^2 - g, (6)$$

where g = (x-1)(x-2)(x-3)(x-4). The expression of f in (2) is nice because we can read off information like the discriminant of A over $\mathbb{Z}[y]$. Basically from (2) we can read off useful information of A viewed as a finite module extension, whereas from (1) we can read off useful information of A viewed as a quotient. Both expressions give rise to the same ring A at the end of the day.

Next we set $X = \operatorname{Spec} A$. To get an idea of what X looks like, we first look at its \mathbb{R} -valued points: $X(\mathbb{R}) = \operatorname{Spec} \mathbb{R} \otimes_{\mathbb{Z}} A = \operatorname{Spec} \mathbb{R}[x,y]/f$. We can visualize the \mathbb{R} -valued points of X in the picture below:

The thick black curve is $X(\mathbb{R}) = V_{\mathbb{R}}(f)$ whereas the thick red curve is $V_{\mathbb{R}}(u)$. Notice that $V_{\mathbb{R}}(u)$ and $X(\mathbb{R})$ do not intersect: this is because u is a unit in A (and hence a unit in $\mathbb{R} \otimes_{\mathbb{Z}} A$). The point is that $u(\mathfrak{p}) := u \mod \mathfrak{p} \neq 0$ for all $\mathfrak{p} \in X$. The closed points of $X(\mathbb{R})$ have the form $\mathfrak{m}_{a,b} = \langle x - a, y - b \rangle$ where $(a,b) \in \mathbb{R}^2$ such that f(a,b) = 0. There's also the generic point $\eta \in X(\mathbb{R})$ corresponding to the 0 ideal.

If we equip $X(\mathbb{R})$ with the Euclidean topology. Then we see that it is disconnected since

$$X(\mathbb{R}) = (\{u > 0\} \cap X(\mathbb{R})) \cup (\{u < 0\} \cap X(\mathbb{R})),$$

however in the Zariski topology, $X(\mathbb{R})$ is irreducible since f is irreducible over \mathbb{R} , so certainly $X(\mathbb{R})$ is connected in the Zariski topology. The Jacobian matrix of f is given by

$$J_f = \begin{pmatrix} \partial_x f \\ \partial_y f \end{pmatrix} = \begin{pmatrix} 4x^3 + 30x^2 - 70x + 50 \\ 2y \end{pmatrix}.$$

In particular, it's easy to see that $J_f(a,b) := J_f \mod \mathfrak{m}_{a,b} \neq 0$ for all closed points $\mathfrak{m}_{a,b} \in X(\mathbb{R})$. It follows that $X(\mathbb{R})$ is smooth. Alternatively, we have

$$df = \partial_x f dx + \partial_y f dy = (4x^3 + 30x^2 - 70x + 50)dx + 2ydy.$$

Thus when we set df = 0, then for $y \neq 0$, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4x^3 + 30x^2 - 70x + 50}{2y}. (7)$$

The DeRham complex of A is given by

$$\Omega_A := 0 \to A \to$$

Now, we want to see what the curve looks like at in affine neighborhood of the point at infinity [0:1:0]. To do this let $\widetilde{A} = \mathbb{Z}[x,z]/\widetilde{f}$ where

$$\widetilde{f} = \widetilde{y}^2 - (\widetilde{x} - \widetilde{y})(\widetilde{x} - 2\widetilde{y})(x - 3\widetilde{y})(x - 4\widetilde{y}), \tag{8}$$

and set $\widetilde{X} = \operatorname{Spec} \widetilde{A}$. We can visualize the \mathbb{R} -valued points of \widetilde{X} in the picture below

The closed points of $\widetilde{X}(\mathbb{R})$ have the form $\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}} = \langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle$ where $(\widetilde{a},\widetilde{b}) \in \mathbb{R}^2$ such that $\widetilde{f}(\widetilde{a},\widetilde{b}) = 0$. We have a ring isomorphism $\widetilde{\varphi} \colon \widetilde{A}_{\widetilde{y}} \to A_y$ given by $\widetilde{\varphi}(\widetilde{x}) = x/y$ and $\widetilde{\varphi}(\widetilde{y}) = 1/y$, with inverse $\varphi \colon A_y \to \widetilde{A}_{\widetilde{y}}$ given by $\varphi(x) = \widetilde{x}/\widetilde{y}$ and $\varphi(y) = 1/\widetilde{y}$. Notice that

$$\widetilde{\varphi}(\widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}) = \varphi(\langle \widetilde{x} - \widetilde{a}, \widetilde{y} - \widetilde{b} \rangle)$$

$$= \langle x/y - \widetilde{a}, 1/y - \widetilde{b} \rangle$$

$$= \langle x - \widetilde{a}y, 1 - \widetilde{b}y \rangle$$

$$= \langle x - \widetilde{a}y, y - 1/\widetilde{b} \rangle$$

$$= \langle x - \widetilde{a}/\widetilde{b}, y - 1/\widetilde{b} \rangle$$

$$= \langle x - a, y - b \rangle$$

$$= \mathfrak{m}_{a,b},$$

where we set $a = \widetilde{a}/\widetilde{b}$ and $b = 1/\widetilde{b}$. It follows that ${}^{a}\widetilde{\varphi}(\mathfrak{m}_{a,b}) = \widetilde{\mathfrak{m}}_{\widetilde{a},\widetilde{b}}$. Now observe that

$$d\widetilde{x} = \frac{ydx - xdy}{y^2}$$
 and $d\widetilde{y} = -\frac{dy}{y^2}$.

3 A Blowup Algebra

Let $R = \mathbb{k}[x,y]/\langle y^2 - x^3 - x^2 \rangle$, let $Q = \langle \overline{x}, \overline{y} \rangle$ (we drop the overlines from \overline{x} and \overline{y} in just write x and y in onder to simplify notation in what follows), and equip R with the Q-filtration making $R = (Q^n)$ into a filtered ring. Let

$$\varphi \colon R[u,v] \to \mathrm{bl}(R)$$

be the unique surjective *R*-algebra homomorphism such that $\varphi(u) = xt$ and $\varphi(v) = yt$. The kernel of φ is an ideal of R[u,v] which is homogeneous in the variables u,v:

$$\ker \varphi = \langle v^2 - (x+1)u^2, xv - yu \rangle.$$

Thus we see that $bl(R) \cong \mathbb{k}[x, y, u, v]/\mathfrak{a}$ where

$$\mathfrak{a} = \langle v^2 - (x+1)u^2, xv - yu, y^2 - x^3 - x^2 \rangle.$$

In particular, $\operatorname{bl}(R)$ corresponds to an algebraic subset $Z\subseteq \mathbb{A}^2_{x,y}\times \mathbb{P}^1_{u,v}$. Let $A=R[v]/\langle v^2-(x+1),xv-y\rangle$, so A corresponds to the affine open $U=\mathbb{A}^2\times \operatorname{D}(u)$. We can localize further by setting $B=A_x=R[v]/\langle v-x/y\rangle$, so B corresponds to the affine open $\operatorname{D}(x)\times\operatorname{D}(u)$. We have a canonical ring homomorphism $\iota\colon R\to A$ where ι is the inclusion map. Let us try to understand this homomorphism from a geometric point of view. Let $V=V_K(y^2-x^3-x^2)$ be affine algebraic subset of $\mathbb{A}^2(K)$ defined by the equation $y^2=x^3+x^2$. The closed points of Spec R are in one-to-one correspondence with the points of V: they are all of the form

$$\mathfrak{p}_{(a,b)} = \langle x - a, y - b \rangle$$

where $(a, b) \in V$, that is, where $a, b \in \mathbb{k}$ such that $b^2 = a^3 + a^2$. If $\mathbb{k} = \mathbb{R}$, we can visualize the closed points of Spec R as below:

Note that Spec R also has a generic point η corresponding to the zero ideal of R. The closed points of Spec A correspond to the points of the affine open set U: they have the form

$$\mathfrak{p}_{(a,b),[1:t]} = \langle x - a, y - b, v - t \rangle$$

where $a, b, t \in \mathbb{k}$ such that $b^2 = a^3 + a^2$, at = b, and $t^2 = a + 1$. Note that if $a \neq 0$, then we automatically get $t^2 = a + 1$. If $\mathbb{k} = \mathbb{R}$. we can visualize the points of Spec A as below:

In particular, for $a \neq 0$, the prime $\mathfrak{p}_{(a,b),[1:t]}$ corresponds to the point $(a,b) \in V$ together with the unique line y = tx that passes through that point and the origin, where t represents the slope of that line. There are two points lying over the origin: namely $\mathfrak{p}_{(0,0),[1:1]}$ and $\mathfrak{p}_{(0,0),[1:-1]}$, corresponding to the origin $(0,0) \in V$ together with the lines y = x and y = -x respectively. The map $\iota \colon R \to A$ induces a continuous map ${}^a\iota \colon \operatorname{Spec} A \to \operatorname{Spec} R$ given by

$${}^{\mathrm{a}}\iota(\mathfrak{p}_{(a,b),[1,t]})=\mathfrak{p}_{(a,b)}.$$

This corresponds to the projection map $\pi\colon U\to V$ given by

$$\pi(a,b,t)=(a,b).$$

Notice that in the image above there are "missing" points. For instance, we drew a vertical dashed line in the image above; it should correspond to the line x = 0, but it has nowhere to go under this projection. In fact, this missing line corresponds to the extra point in Proj(bl(R)) which doesn't belong to A.

Definition 3.1. A hyperellitpic curve is an algebraic curve of genus g > 1, given by an equation of the form

$$y^2 + h(x)y = f(x),$$

where f is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0).

4 A Surface

Let $a \in \mathbb{k}$ and let $S_t = V_{\mathbb{k}}(f_t) \subseteq \mathbb{A}^3_{\mathbb{k}}$ where

$$f_t = (x_1^2 + x_2^2 - 1)^2 + (x_2^2 + x_3^2 - 1)^2 - t = g_1^2 + g_2^2 - t = ||g||^2 - t$$

where $g = (g_1, g_2)$, where $g_1 = x_1^2 + x_2^2 - 1$ and $g_2 = x_2^2 + x_3^2 - 1$. When $k = \mathbb{R}$ and t = 0.1, we can picture $S_{0.1}$ as below:

The Jacobian matrix of f_t is given by

$$J_{f_t} = egin{pmatrix} \partial_x f_t \ \partial_y f_t \ \partial_z f_t \end{pmatrix} = 4 egin{pmatrix} x_1 g_1 \ x_2 (g_1 + g_2) \ x_3 g_2 \end{pmatrix}.$$

We write $\Delta_t = V(J_{f_t}) = \{a \in \mathbb{A}^3_{\mathbb{k}} \mid J_{f_t}(a) = 0\}$. Given $a \in \mathbb{A}^3_{\mathbb{k}}$, we have $a \in \Delta_t$ if and only if $a = \mathbf{0}$ or $a \in V_{\mathbb{k}}(g_1, g_2)$ (meaning $g_1(a) = g_2(a) = 0$). In particular, if $t \neq 0, 2$, then S_t has no singular points since $S_t \cap \Delta_t = \emptyset$ in this case. If t = 2, then $\mathbf{0}$ is a singular point since $\mathbf{0} \in S_2 \cap \Delta_2$. If t = 0, then S_0 has lots of singular points. For instance, $\{(\pm 1, 0, \pm 1), (\pm 1, 0, \mp 1)\}$ are all singular points.

We can desribe S_t as being the fibre at $t \in \mathbb{k}$ with respect to the morphism of affine \mathbb{k} -schemes $\pi \colon S \to \mathbb{A}^1_{\mathbb{k},\tau}$ (here we are indicating that the coordinate ring of $\mathbb{A}^1_{\mathbb{k},\tau}$ is given by $\mathbb{k}[\tau]$) where $S = \operatorname{Spec}(\mathbb{k}[x_1, x_2, x_3, \tau]/f_{\tau})$ and where π corresponds to the morphism of \mathbb{k} -algebras $\iota \colon \mathbb{k}[\tau] \to \mathbb{k}[x_1, x_2, x_3, \tau]/f_{\tau}$ (which is just inclusion map). In particular, let $\varepsilon_t \colon \operatorname{Spec} \mathbb{k} \to \mathbb{A}^1_{\mathbb{k},\tau}$ be the morphism of affine \mathbb{k} -schemes which corresponds to the \mathbb{k} -algebra homomorphism $\mathbb{k}[\tau] \to \mathbb{k}[\tau]/\langle \tau - t \rangle \simeq \mathbb{k}$ which sends τ to $t \in \mathbb{k}$. Then S_t is the pullback of $\pi \colon S \to \mathbb{A}^1_{\mathbb{k},\tau}$ with respect to $\varepsilon_t \colon \operatorname{Spec} \mathbb{k} \to \mathbb{A}^1_{\mathbb{k},\tau}$. In particular, the corresponding \mathbb{k} -algebra of S_t is given by

$$\mathbb{k}[x_1,x_2,x_3]/f_t \simeq (\mathbb{k}[x_1,x_2,x_3,\tau]/f_\tau) \otimes_{\mathbb{k}} \mathbb{k}[\tau]/\langle \tau-t \rangle.$$

Note that the morphism of affine \mathbb{k} -schemes $\pi \colon S \to \mathbb{A}^1_{\mathbb{k},\tau}$ is flat since the inclusion map of \mathbb{k} -algebras $\iota \colon \mathbb{k}[\tau] \to \mathbb{k}[x_1, x_2, x_3, \tau]/f_{\tau}$ is flat.

5 An Elliptic Curve

We study the Elliptic curve E defind by the equation $y^2=x^3-51$. In particular, set $f=y^2-x^3+51$. Then $f=y^2-x^3+51$