Lecture Notes for Machine Learning in Python

Professor Eric Larson Introduction, Syllabus, Data Types

Class Logistics and Agenda

- Agenda:
 - Introductions
 - Syllabus
 - Overview of Machine Learning
 - Types of Data and Representation
- My approach to this course:
 - Programming
 - Math
 - Applications and Analytics

Introductions & Course Syllabus

Introductions

- Me
 - Eric Larson
- You
 - Name, department, grad/ugrad
 - Something true or false

FAQ

- Text:
 - Recommended: Python Machine Learning, Raschka & Mirjalili, Second edition
- Use Canvas for posted course material
- Prerequisite:
 - Linear Algebra, Calculus
 - Basic statistics and probability
 - Python programming
- Version of python: 3.X
 - Install through Anaconda
 - Use conda environments
 - JupyterLab (notebooks)
- Most Used Libraries: Numpy, Pandas, Scikit-Learn, Matplotlib, Keras with Tensorflow

How will you grade participation?

- Participation will be graded in the course:
 - Distance students will answer these questions via canvas upload
 - must upload the questions throughout semester for full credit
- Choose to respond to the question:
 - Do you think this will work?
 - A: Yes this is going to work
 - B: This is **not** going to work
 - C: I am not even here

Canvas Syllabus

- Assignments
- Grading Rubrics
- Participation
- Course Schedule
- In-Class Assignments
- Difference between 5000 and 7000

Machine Learning Overview

A History of Machine Learning

- Historically builds from disciplines statistics and computer science (algorithms)
- Its really just algorithms for optimizing weights

- 1952: Arthur Samuel IBM creates checker program
- 1957: Rosenblatt, Neural Network Perceptron
- 1967: Nearest Neighbor Pattern Recognition
- 1970's: Al Winter
- 1990's: Volley of "New" Machine learning Algorithms
- 2001: Breiman's Random Forests
- ~2004: Modern Support Vector Machines with Kernels
- 2005: Second Al Winter
- ~2010: Deep Learning Convolutional Networks
- **2015**: Deep Learning becomes buzz word, you hear about it and take this course

What is Machine Learning?

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. **Machine learning** focuses on the development of computer programs that can change when exposed to new data.

What is machine learning? - Definition from WhatIs.com whatis.techtarget.com/definition/machine-learning

About this result • Feedback

Data Preprocessing Features Training Error %

Data Preprocessing Features Testing 10

section 1

Machine Learning is part of Data Mining

Z

Prediction Methods

- Use some variables to predict unknown or future values of other variables
- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining

- Classification
- Regression
- Deviation Detection
- Clustering
- Association Rule Discovery
- Sequential Pattern Discovery

Problem Types in Machine Learning

Classification: Definition

Classification: Definition

Classification: Malware

- Classify files as malware based on structure, size, and naming.
- Approach:
 - Use already classified malware files
 - Must translate name to set of features
 - {malware, not malware} decision forms the class attribute
 - Collect various malware examples and a number of safe files, providing labels for each and a set of features

Training Set

TID	Name	Size	Class
1	erte.dll	916 b	not
2	fufu.bin	1M	yes
3	exe.exe	1G	not
4	ex.py	113 b	not

Unknown

TID	Name	Size
1	asdf.dll	11b

Classifying: Objects in Images

Image Net:

- 14 million images
- 200 Labeled Categories
- 1000 Location Labels

Attributes:

Images

section 1

Regression

- Predict a value of a given continuous valued variable based on the values of other variables
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Predicting lung function as a function of gender, weight, height

Training Set

TI	Gend.	Weight	Asthma	LF
1	M	175lbs	N	85%
2	F	150lbs	N	87.3%
3	F	155lbs	Y	90%
4	M	225lbs	Y	65.2 %

Unknown

TI	Gend.	Weight	Asthma
1	M	160lbs	N

Self Test

- A. classification
 - **B.** regression
 - C. not Machine Learning
 - Dividing up customers by potential profitability?
 - Extracting frequency of sound?

Types of Data and Categorization

Table Data

- Collection of data instances and their features
- A feature is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
- A collection of features describe an instance

Objects, records, points, samples, cases, entities, Instances

Attributes, variables, fields, characteristics, **Features**

	<i>(</i>)
TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	N	26.6	31-40	negative
3	Y	23.3	31-40	positive
4	Ν	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Y	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Y	35.3	21-30	negative
9	N	30.5	51-60	positive
10	Y	37.6	51-60	positive

Types of Attributes

Nominal attribute: distinctness

e.g., ID numbers, eye color, zip codes

```
    Distinctness: = ≠
```

Ordinal attribute: distinctness & order

 e.g., rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}

```
• Order: < >
```

Interval attribute: distinctness, order, & addition

e.g., calendar dates, temperatures in Celsius or Fahrenheit.

```
∘ Addition: + -
```

Ratio attribute: all properties

e.g., temperature in Kelvin, length, time, counts

```
Multiplication: * /
```

Feature Type Representation

	Attribute	Representation Transformation	Comments
ete	Nominal	Any permutation of values one hot encoding	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	new_value =a * old_value + b where a and b are constants float	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
CO	Ratio	new_value = a * old_value float	Length can be measured in meters or feet.

Self Test

- Are these A. interval or B. ratio:
 - Height above sea level
 - interval or ratio depending on if sea level is considered arbitrary
- Are these A. ordinal, B. nominal, or C. binary?
 - military rank
 - ordinal
 - coat check number
 - nominal

Before Next Lecture

- Before next class:
 - install python on your laptop
 - install anaconda distribution of python
- Look at Python primer if you need review
 - I made ~4 hours of YouTube content…
 - https://www.youtube.com/playlist?
 list=PL7IPdRN5E0YKCnVI-fvx8j00CWVeGTsrV

Demo

If time: Jupyter Notebooks and Numpy

01_Numpy and Pandas Intro.ipynb

Lecture Notes for Machine Learning in Python

Professor Eric Larson Numpy, Pandas, Document Features

Class Logistics and Agenda

- Canvas? Anaconda Installs?
- Distance transfers?
- Agenda:
 - Numpy
 - Data Quality
 - Attributes Representation
 - documents
 - The Pandas eco-system
 - loading and manipulating attributes

Demo

"Finish"
Jupyter Notebooks
and Numpy

01_Numpy and Pandas Intro.ipynb

Data Quality

Review of Feature Data

Data Quality Problems

- Noise and outliers
 - remove if you know its noise/outlier
- Missing values
 - replace or ignore
- Duplicate data
 - clean entries or merge

Missing Values

- Reasons for missing values
 - Information is **not collected** (e.g., people decline to give their age and weight)
 - Features may **not be applicable** to all cases (e.g., annual income for children)
 - UCI ML Repository: 90% of repositories have missing data

HOW?

- Handling missing values
 - Eliminate Data Objects
 - Impute Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (talk about later)

Imputation

- When is it probably fine to impute missing data:
 - (A) When there is not much missing data
 - (B) When the missing feature is mostly predictable from another feature
 - (C) When there is not much missing data for each subgroup of the data
 - (D) When it is the class you want to predict

Split-Impute-Combine

TID	Pregnant	ВМІ	Age	Diabetes
1	Y	33.6	41-50	positive
2	Ν	26.6	31-40	negative
3	Υ	23.3	?	positive
4	Ν	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Υ	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

split: pregnant

split: BMI > 32

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	>32	41-50	positive
8	Υ	>32	?	negative
10	Υ	>32	51-60	positive

Mode: none, can't impute

TID	Pregnant	ВМІ	Age	Diabetes
3	Y	<32	?	positive
6	Y	<32	21-30	negative
7	Υ	<32	21-30	positive

Mode: 21-30

Data Representation

Feature Type Representation

	Attribute	Representation Transformation	Comments
ete	Nominal	Any permutation of values one hot encoding	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	new_value =a * old_value + b where a and b are constants float	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
ဝိ	Ratio	new_value = a * old_value float	Length can be measured in meters or feet.

Data Tables as Variable Representations

	<u>Φ</u>
	\overline{O}
L	$\overline{\alpha}$
Г	

TID	Pregnant	BMI	Age	Eye Color	Diabetes
1	Υ	33.6	41-50	brown	positive
2	Ν	26.6	31-40	hazel	negative
3	Υ	23.3	31-40	blue	positive
4	Ν	28.1	21-30	brown	inconclusive
5	Ν	43.1	31-40	blue	positive
6	Υ	25.6	21-30	hazel	negative

Internal Rep.

TID

Data Tables as Variable Representations

Table

	_	
	\bigcirc	
	<u>(1)</u>	
_	\simeq	
Ĺ	\perp	
_		
_	7	
	CU	
	\subseteq	
	云	
	W	
	<u> </u>	

TID	Pregnant	ВМІ	Age	Eye Color	Diabetes
1	Υ	33.6	41-50	brown	positive
2	Ν	26.6	31-40	hazel	negative
3	Υ	23.3	31-40	blue	positive
4	Ν	28.1	21-30	brown	inconclusive
5	Ν	43.1	31-40	blue	positive
6	Υ	25.6	21-30	hazel	negative

TID	Binary	Float	Ordinal	Object	Diabetes
1	1	33.6	2	hash(0)	1
2	0	26.6	1	hash(1)	0
3	1	23.3	1	hash(2)	1
4	0	28.1	0	hash(0)	2
5	0	43.1	1	hash(2)	1
6	1	25.6	0	hash(1)	0

Bag of Words

Bag of words model

TID	Pregnant	BMI	Chart Notes	Diabetes
1	Υ	33.6	Complaints of fatigue wh	positive
2	Ν	26.6	Sleeplessness and some	negative
3	Υ	23.3	First saw signs of rash o	positive
4	Ν	28.1	Came in to see Dr. Steve	inconclusive
5	Ν	43.1	First diagnosis for hospit	positive
6	Υ	25.6	N/A	negative

Vocabulary

TID	Sleep	Fatigue	Weight	Rash	First	Sight
1	0	1	0	0	2	0
2	1	1	0	0 Imbor of	1	1 rences
3	1	1	0	2	1	1

Feature Hashing

what happens when we get more words?

TID	Slee	Fati	Wei	Ras	First	Sigh	Why	Fox	Bro	Lazy	Dog	Etc	Stev
1	0	1	0	0	2	0	0	0	0	1	0	2	0
2	1	1	0	0	1	1	0	0	4	0	1	3	0
3	1	1	0	2	1	1	1	0	1	0	0	1	0

or we could have a hashing function, h(x) = y

TID	h(x)=1	h(x)=2	h(x)=3	h(x)=4	h(x)=5	h(x)=6
1	0	1	0	1	2	0
2	1	1	4	0	2	1
3	2	1	1	2	1	1

multiple words mapped to one feature (want to minimize collisions or make collisions meaningful)

Term-Frequency, Inverse-Document-Frequency

TID	Slee	Fati	Wei	Ras	First	Sigh	Why	Fox	Bro	Lazy	Dog	Etc	Stev
1	0	0.05	0	0	0.34	0	0	0	0	1	0	0.86	0
2	0.1	0.05	0	0	0.12	0.25	0	0	1.21	0	1	1.02	0
3	0.1	0.05	0	0.27	0.12	0.25	0.02	0	0.45	0	0	0.1	0

term frequency $tf(t,d) = f_{td}, t \in T \text{ and } d \in D$ "num occurrences of t in doc d"/"words in d"

inverse document frequency: normalize occurrences

$$\mathrm{idf}(t,d) = \log \frac{|D|}{|n_t|}, \text{ where } n_t = d \in D \text{ with } t \in d$$
 "total docs"/"num docs with t "

$$\begin{split} & \text{tf-idf}(t,d) = \text{tf}(t,d) \cdot \text{idf}(t,d) \\ & \text{tf-idf}(t,d) = \text{tf}(t,d) \cdot (1+\text{idf}(t,d)) \quad \text{smoothed} \quad \end{split}$$

TF-IDF

- The tf-idf value can never be greater than one.
 - (A) true
 - (B) false
 - (C) it depends on IDF normalization

term frequency $tf(t,d) = f_{td}, t \in T \text{ and } d \in D$ "num occurrences of t in doc d"/"words in d"

inverse document frequency: normalize occurrences

$$\mathrm{idf}(t,d) = \log \frac{|D|}{|n_t|}, \text{ where } n_t = d \in D \text{ with } t \in d$$
 "total docs"/"num docs with t "

$$tf\text{-}idf(t,d) = tf(t,d) \cdot idf(t,d)$$

Demo

Sklearn and Pandas

TF-IDF

DataFrames

Loading

Indexing

Imputing

02_Document Feature Engineering.ipynb

Other Tutorials:

http://vimeo.com/59324550

For Next Lecture

- Before next class:
 - install seaborn
 - install plotly
 - look at pandas table data and look at additional tutorials

- Next Week: Data Visualization
- End of Next Week:
 - Lab One Due, Table or Text Data

