

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

عنوان: تكليف سوم درس مباني بينايي كامپيوتر

نام و نام خانوادگی: علیرضا ابره فروش شماره دانشجویی: ۹۸۱۶۶۰۳ نیم سال تحصیلی: بهار ۱۴۰۰/۱۴۰۱ مدرّس: دکتر نادر کریمی دستیاران آموزشی: بهنام ساعدی - محمدرضا مزروعی

١

١.١ الف

mirror padding \.\.\

در این روش مقادیر خارج از مرز با مقادیر متناظرشان (قرینه نسبت به محور مرزی افقی یا عمودی) مقداردهی میشوند.

۲.۱.۱ میانگین پیکسلهای همسایههای موجود

در این روش میانگین سطح روشنایی بین پیکسلهایی از کرنل گرفته میشود که وجود دارند. به عبارت دیگر به پیکسلهایی که در کرنل وجود ندارند مقدار میانگین پیکسلهای موجود را میدهیم و فیلتر میانگین را روی همهی پیکسلهای مرزی اجرا میکنیم.

۲.۱ پ

وزن پیکسلهای نزدیک به مرکز در فیلتر گوسی بیشتر از وزن این پیکسلها در فیلتر میانگین است. از آنجایی که در zero-padding پیکسلهای خراج از مرز با صفر مقداردهی میشوند، هنگام اعمال فیلتر میانگین، وزن آنها (پیکسلهای صفر) نسبت به فیلتر گوسی بیشتر است و نقاط مرزی را تیرهتر میکند.

٢

چون جمع وزن پیکسلها در کرنل میانگین برابر یک است پس مجموع سطح روشنایی پیکسلها قبل و بعد از اعمال فیلتر میانگین $w(x,y)=\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$ باهم برابر است. در مورد فیلتر گوسی نیز همین قضیه رخ می دهد. از آنجایی که انتگرال inf تابع برابر می شود. توجه شود که در مثال برابر یک است، پس قبل و بعد از اعمال فیلتر گوسی مجموع سطح روشنایی پیکسلها باهم برابر می شود. توجه شود که در مثال مطرح شده در آموزش مجازی این مجموع اند کی قبل و بعد از اعمال فیلترها متفاوت است و به این دلیل است که با مقادیر تقریبی سروکار داریم برای مثال در فیلتر میانگین وقتی سطح روشنایی ۱۰۰ را بر ۹ تقسیم می کنیم، مقدارِ $11.\overline{1}$ به دست می آید، اما در محاسبات از $10.\overline{1}$ صرف نظر می شود. به همین ترتیب درمورد فیلتر گوسی این اتفاق رخ میدهد.

٣

Algorithm 1.7

ابتدا تصاویر آبی و قرمز معیار برای ارقام ۱ تا ۹ تولید می کنیم (پیش پردازش). هر تصویر را می خوانیم و در هر مرحله (تا زمانی که پیکسل آبی یا قرمز وجود داشته باشد) موقعیت مکانی رقم رنگیای که بالاتر و چپتر است را پیدا می کنیم و مقدار MSE (متناظرا نرم ۱) بین آن قطعه از تصویر و تمام ارقام معیار همرنگ تولید شده در مرحله ی پیش پردازش (و دارای ابعاد برابر با قطعه ی پیدا شده (با استفاده از resize)) را محاسبه می کنیم. مینیمم این مقادیر با احتمال بسیار بالا مربوط به رقم مورد نظر است. آن را به آرایه ی ارقام درون تصویر اضافه می کنیم و سپس آن قطعه را تماما سیاه می کنیم تا در مرحله بعد رقم بعدی پیدا شود. به این شکل جمع ارقام موجود در همه تصاویر با دقت ۱۰۰ درصد به دست می آید.

Preprocessing 7.7

عليه ضا ابه فروش

```
ı clc
2 clear
  close all
  imtool close all
  %generating template image of numbers to compare each element of image with
  for k = 0: 9
       I = imread(['images\' num2str(k) '.png']);
       min_row = 1000;
       max_row = 0;
10
       min_column = 1000;
11
       max_column = 0;
       for i = 1: size(I, 1)
13
           for j = 1: size(I, 2)
               if (I(i, j, 1) < 200)
15
                   if (i < min_row)</pre>
                       min_row = i;
                   end
                   if (i > max_row)
                       max_row = i;
20
                   end
21
                   if (j < min_column)</pre>
                       min_column = j;
23
                   end
                   if (j > max_column)
25
                       max_column = j;
                   end
               end
           end
29
       end
30
       Red = uint8(zeros(max_row - min_row + 1, max_column - min_column + 1, 3));
       Blue = uint8(zeros(max_row - min_row + 1, max_column - min_column + 1, 3));
32
       for i = min_row: max_row
33
           for j = min_column: max_column
               Red(i - min_row + 1, j - min_column + 1, 1) = 255;
35
               Red(i - min_row + 1, j - min_column + 1, 2: 3) = I(i, j, 2: 3);
```

20

21

22

if (min_row == 100000)

digit = 0;

else

```
Blue(i - min_row + 1, j - min_column + 1, 1: 2) = I(i, j, 1: 2);
37
               Blue(i - min_row + 1, j - min_column + 1, 3) = 255;
           end
       end
41
  %
         imtool(I);
  %
         imtool(Red);
         imtool(Blue);
       imwrite(Red, ['images\p' int2str(k) '.png']);
45
       imwrite(Blue, ['images\n' int2str(k) '.png']);
46
  end
                                                                                 Function
                                                                                            ٣.٣
  function sum_of_values = sumOnImage(I)
  %SUMONIMAGE Summary of this function goes here
      X = I;
      values = 0;
      digit = 1;
      while(true)
           [min_row, max_row, min_column, max_column, digit] = getDigit(X);
           if (digit == 0)
               break;
           end
           X(min_row: max_row, min_column: max_column, :) = 0;
11
           %imtool(X);
12
           values(end + 1) = digit;
13
       end
      sum_of_values = sum(values);
15
  end
16
17
  function [min_row, max_row, min_column, max_column, digit] = getDigit(X)
  %GETDIGIT Summary of this function goes here
```

علیرضا ابره فروش

[min_row, max_row, min_column, max_column, sign] = getBoundaries(X);

```
J = X(min_row: max_row, min_column: max_column, :);
24
           mse_of_numbers = zeros(1, 9);
           if sign == 0
               for i = 1: 9
                   num_pic = imread(['images\p' num2str(i) '.png']);
                   mse_of_numbers(i) = immse(J, imresize(num_pic, size(J(:, :, 1))));
               end
           else
31
               for i = 1: 9
32
                   num_pic = imread(['images\n' num2str(i) '.png']);
33
                   mse_of_numbers(i) = immse(J, imresize(num_pic, size(J(:, :, 1))));
               end
           end
           [min_value, digit] = min(mse_of_numbers);
37
           if sign == 1
38
               digit = -digit;
           end
       end
41
  end
42
43
  function [min_row, max_row, min_column, max_column, sign] = getBoundaries(I)
  %GETBOUNDARIES Summary of this function goes here
      min_row = 100000;
46
      max_row = -100000;
47
      min_column = 100000;
48
      max_column = -100000;
      sign = 0;
      white_pixel = 255 * ones(1, 1, 3);
51
      black_pixel = zeros(1, 1, 3);
52
      top_row = 0;
53
      top_column = 0;
      break_flag = 0;
      for i = 1: size(I, 1)
           for j = 1: size(I, 2)
57
               if (~isequal(I(i, j, :), white_pixel) && ~isequal(I(i, j, :), black_pixel))
                   top_row = i;
```

```
top_column = j;
                     if (I(i, j, 1) == 255)
61
                         sign = 0;
                     end
                     if (I(i, j, 3) == 255)
                         sign = 1;
                     end
                     break_flag = 1;
                     break;
                end
70
            end
            if (break_flag)
                break;
72
            end
73
       end
74
       break_flag = 0;
75
       if sign == 0
            for i = top_row: top_row + 50
77
                if (i <= 0)</pre>
                     continue;
79
                end
                for j = top_column - 35: top_column + 35
                     if (j <= 0)</pre>
82
                         continue;
83
                     end
84
                     if (~isequal(I(i, j, :), white_pixel) && ~isequal(I(i, j, :), black_pixel
85
       ))
                         if (i < min_row)</pre>
                              min_row = i;
87
                         end
                         if (i > max_row)
                              max_row = i;
                         end
91
                         if (j < min_column)</pre>
                              min_column = j;
93
                         end
```

```
if (j > max_column)
                                max_column = j;
                           end
                       end
                  end
             end
100
        else
             for i = top_row: top_row + 50
102
                  if (i <= 0)</pre>
103
                       continue;
104
                  end
105
                  for j = top_column - 35: top_column + 35
106
                       if (j <= 0)</pre>
107
                           continue;
                       end
109
                       if (~isequal(I(i, j, :), white_pixel) && ~isequal(I(i, j, :), black_pixel
110
        ))
                           if (i < min_row)</pre>
111
                                min_row = i;
112
                           end
113
                           if (i > max_row)
114
                                max_row = i;
                           end
116
                           if (j < min_column)</pre>
117
                                min_column = j;
118
                           end
119
                           if (j > max_column)
120
                                max_column = j;
121
                           end
122
                       end
123
                  end
124
             end
        end
126
   end
127
```

Driver code 4.7

عليرضا ابره فروش عليرضا ابره فروش

```
ı clc
2 clear
  close all
  imtool close all
  6 dirinfo = dir("images\Q3");
name_of_images = {dirinfo.name};
ground_truth = zeros(1, 100);
9 my_result = zeros(1, 100);
  box_color = {'green'};
  for i = 3: size(name of images, 2)
      current_image_name = char(name_of_images(i));
      temp = strsplit(current_image_name, "_");
      kemp = strsplit(char(temp(3)), ".");
      g_t = str2double(kemp(1));
      ground_truth(i) = g_t;
      I = imread(['images\Q3\' current_image_name]);
      J = I;
      m r = sumOnImage(I);
      my_result(i) = m_r;
20
      J = insertText(J, [350 756;], num2str(m_r), 'boxColor', box_color, 'FontSize', 22);
      imwrite(J, ['images\A3\' current_image_name]);
22
  end
23
  correct_guesses = my_result == ground_truth;
  percentage = 100 * (sum(correct_guesses) - 2) / (size(my_result, 2) - 2)
```

Algorithm 1.5

۴

برای هر پیکسل دارای نویز فلفل نمکی (سطح روشنایی و ۲۵۵) یک کرنل ۳ در ۳ نظر می گیریم و آن را با میانگین سطح روشنایی پیکسلهای همسایه شد کرنل ۳ در ۳ که دارای نویز نیستند (در صورت وجود) مقداردهی می کنیم.سطح روشنایی سایر پیکسلها (که یا همه ی همسایه هاشان نویز هستند یا خودشان فاقد نویز) را بدون تغییر می گذاریم. با فرض اینکه تصویر اصلی فاقد سطح روشنایی و یا ۲۵۵ باشد (یا به تعداد کم) الگوریتم را تا جایی که هیچ پیکسل با سطح روشنایی و یا ۲۵۵ باقی نماند تکرار می کنیم. این کار در تصاویر با نویز بالا که در آن بسیاری از پیکسلها در همسایگیهای ۳ در ۳ی خود همسایه ی غیر نویز ندارند می تواند تا حدی کیفیت تصاویر را ارتقا دهد. توجه شود که در صورتی که تصویر اصلی تعداد زیادی پیکسل و یا ۲۵۵ داشته باشد آنگاه این حدی کیفیت تصاویر را ارتقا دهد. توجه به اینکه ممکن است الگوریتم به تعداد زیادی اجرا شود (با توجه به درصد نویز و میزان

9 for d = 0.1: 0.1: 0.9

پراکندگی آن) در کاربردهایی که زمان اهمیت دارد میتواند نا کارآمد باشد.

Function 7.5

```
function K = removeNoise(J)
  %REMOVENOISE Summary of this function goes here
      K = J;
      for i = 1: size(K, 1)
          for j = 1: size(K, 2)
               if (K(i, j) == 0 \mid \mid K(i, j) == 255)\%comment this to include
  %
                 all pixels
                   arr = [];
                   for k = i - 1: i + 1
                       for 1 = j - 1: j + 1
                           if (k > 0 \&\& k < size(K, 1) \&\& 1 > 0 \&\& 1 < size(K, 2))
                               if (K(k, 1) > 0 && K(k, 1) < 255)
12
                                   arr(end + 1) = K(k, 1);
13
                               end
14
                           end
                       end
                   end
17
                   K(i, j) = mean(arr);
18
               end%comment this to include all pixels
           end
       end
22 end
                                                                            Driver code 7.5
ı clc
2 clear
3 close all
4 imtool close all
6 I = imread("images\Q4\House.tif");
7 my_psnr_values = [];
8 med_psnr_values = [];
```

```
J = imnoise(I, 'salt & pepper', d);
       K = removeNoise(J);
       while (ismember(0, K) || ismember(255, K))
           K = removeNoise(K);
       end
      L_prime = medfilt2(J);
15
       L = J;
       for i = 1: size(L, 1)%to apply to all pixels comment this loop and use L_prime
17
       instead of L
           for j = 1: size(L, 2)
               if (L(i, j) == 0 || L(i, j) == 255)
                   L(i, j) = L_prime(i, j);
               end
21
           end
22
23
       my_psnr_values(end + 1) = psnr(K, I);
       med_psnr_values(end + 1) = psnr(L, I);
  end
26
  my_psnr_values
  mean(my_psnr_values)
  med_psnr_values
30 mean(med_psnr_values)
```

Results ۴.۶

۱.۴.۶ اعمال الگوریتم روی پیکسلهای دارای نویز

مقدار نویز	مقدار PSNR										
	Bridge		Boat		Peppers		House				
	Median	روش شما	Median	روش شما	Median	روش شما	Median	روش شما			
١٠٪.	34.2685	35.5608	36.9305	38.4299	39.5897	39.8929	37.5208	41.2446			
۲۰٪.	29.1947	32.3510	30.8115	35.1030	31.6369	36.9182	30.8793	38.0098			
٣٠٪.	24.2216	30.3418	24.9933	33.0565	25.7074	35.0742	25.3376	35.6030			
4.7.	19.8592	28.7748	20.4020	31.3515	20.7401	33.0959	20.3952	33.6473			
۵۰٪.	16.2266	27.2865	16.6014	29.9160	16.5719	31.6668	16.4084	31.8117			
۶۰٪.	13.1765	25.8880	13.4030	28.4420	13.3855	30.1246	13.6071	30.3997			
Y• 7.	10.6323	24.3311	10.9112	26.7086	10.7682	28.1435	10.8164	28.2111			
٨٠٪.	8.4913	22.5335	8.7927	24.7861	8.6039	25.9394	8.7580	25.6044			
٩٠٪.	6.7577	20.0949	6.9537	21.8315	6.8026	22.3678	6.9176	22.6665			
میانگین	18.0921	27.4625	18.8666	29.9583	19.3118	31.4693	18.9600	31.9109			

۲.۴.۴ اعمال الگوريتم روى تمام پيكسلها

	مقدار PSNR										
مقدار نویز	Bridge		Boat		Peppers		House				
	Median	روش شما	Median	روش شما	Median	روش شما	Median	روش شما			
١٠٪.	26.4097	26.4315	29.5318	28.9522	33.0908	30.9779	31.0373	31.5807			
۲۰٪.	24.7094	26.1935	26.7574	28.6520	28.4362	30.5863	27.0972	31.1686			
٣٠٪.	21.6243	25.8358	22.7045	28.2411	23.4262	30.1847	22.2786	30.6399			
4.7.	17.9888	25.3857	18.5878	27.7388	18.7552	29.6208	18.3987	29.9686			
۵۰٪.	14.6814	24.7770	14.9653	27.0795	15.1718	28.8453	14.8342	27.7914			
۶٠ ⁻ /.	11.8506	23.1835	12.1876	26.0641	12.2067	27.7857	12.0371	27.6941			
Y•'/.	9.7641	22.8620	9.9448	24.3833	9.8579	26.2016	9.9807	25.6126			
٨٠٪.	7.9810	21.1757	8.1638	22.9033	7.9377	23.6133	8.0554	23.6689			
9 • 7.	6.4092	19.2518	6.6635	20.7581	6.4928	20.6154	6.6111	21.1087			
میانگین	15.7132	23.8996	16.6118	26.0858	17.2639	27.6034	16.7034	27.6926			

منابع