Nome: Rogério Marcos Fernandes Neto NUSP: 10284632 Curso: Bacharelado em Ciência da Computação MAC0320 - Introdução à Teoria dos Grafos

LISTA 4

E16. Provar (nos moldes da prova vista em aula para o algoritmo de Kruskal) que o algoritmo descrito a seguir constrói uma árvore geradora de custo mínimo.

ALGORITMO DESAPEGADO

Entrada: Grafo conexo G = (V, A), com custos c_a em cada aresta $a \in A$. Saída: Árvore ótima T (árvore geradora de custo mínimo).

- 1. (Ordenação) Ordene as arestas de G em ordem não-crescente de seus custos. Chame-as de a_1, a_2, \ldots, a_m , sendo $c(a_1) \ge c(a_2) \ge \cdots \ge c(a_m)$.
- 2. $T \leftarrow G$.
- 3. Para i=1 até m faça se $T-a_i$ é conexo então $T\leftarrow T-a_i$
- 4. Devolva T

Solução:

Prova. Seja G um grafo e seja T a árvore geradora de custo mínimo constuída pelo algoritmo DESAPEGADO.

Notemos, primeiramente, que T realmente é uma árvore geradora. O algoritmo remove arestas enquanto o grafo resultante for conexo. Portanto, T é um grafo conexo minimal, ou seja, é uma árvore.

Iremos provar agora que T realmente é ótima. Seja $A(T) = \{e_1, \ldots, e_k\}$, onde $c(e_i) \geq c(e_j)$ se i < j. Seja T^* uma árvore geradora ótima de G com mais arestas em comum com T. Suponha, por absurdo, que $T \neq T^*$.

Seja $e_j = uv$ a primeira aresta em A(T) tal que $e_j \notin A(T^*)$ (isso é, $\{e_1, \ldots, e_{j-1}\} \in A(T^*)$) e seja P o único caminho em T^* que conecta u a v. Como e_j não foi removida da árvore T significa que no momento de avaliação de e_j , e_j era uma ponte e portanto, pelo menos alguma aresta xy diferente de e_j no circuito formado por $P + e_j$ foi removida antes do algoritmo chegar a e_j . Como xy está em P então xy está em T^* e como xy foi avaliada antes de e_j então temos que $c(xy) \geq c(e_j)$.

Seja $T' = T^* - xy + e_j$. Note que T é uma árvore, pois foi mantida a quantidade de arestas e conexidade. Além disso, note que $c(T') = c(T^*) - c(xy) + c(e_j) \le c(T^*)$, mas como T^* é ótima então temos que $c(T') = c(T^*)$. Portanto T' também é ótima. Entretanto, T' é uma árvore ótima com mais arestas em comum com T do que T^* , contradizendo a escolha de T^* . Assim, devemos ter $T = T^*$.