EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 3	11ème Mars 2022

Veuillez télécharger vos solutions à l'exercice 8 sur la page Moodle du cours avant le dimanche dimanche 27 mars, 18h.

1 Exercices

Exercice 1.

Dans chacun des cas suivants, déterminer si l'affirmation suivante est vraie ou fausse. Justifier la réponse par un raisonnement ou un contre-exemple.

- 1. L'image d'un idéal bilatère par un homomorphisme d'anneaux est encore un idéal bilatère.
- 2. La préimage d'un idéal bilatère par un homomorphisme d'anneaux est encore un idéal bilatère.

Exercice 2.

Considérons l'homomorphisme

$$\xi_p: \begin{array}{ccc} \mathbb{Z}[t] & \to & \mathbb{F}_p[t] \\ \sum_{i=0}^n a_i t^i & \mapsto & \sum_{i=0}^n [a_i] t^i \end{array}$$

qui envoye un polynôme à coefficients dans \mathbb{Z} au polynôme obtenu par réduction des coefficients mod p. Montrez que la préimage $\xi_p^{-1}(I)$ d'un idéal $I \in \mathbb{F}_p[t], I \neq 0, I \neq \mathbb{F}_p[t]$ n'est pas principal.

Exercice 3.

Soient m et n deux entiers naturels et (m) et (n) les deux idéaux principaux de \mathbb{Z} correspondants.

- 1. **Identité de Bézout.** Soit d le pgdc de m et n. Montrer qu'il existe des entiers relatifs a, b tels que am + bn = d.
- 2. Identifier les idéaux $(m) \cdot (n)$, $(m) \cap (n)$ et (m) + (n).

Exercice 4.

Soit $f: A \to B$ un homomorphisme d'anneaux.

- 1. Montrer que car(B) divise car(A), mais qu'en général $car(B) \neq car(A)$.
- 2. Montrer que si f est injectif alors car(B) = car(A).
- 3. Montrer que si A est commutatif et car(A) = p, un nombre premier, alors l'application $F: A \to A$ définie par $F(a) = a^p$ est un homomorphisme d'anneaux.
- 4. Calculer la caractéristique de l'anneau $\mathbb{Z}[i]/(i-2)$.

Exercice 5.

Soit $A = \mathbb{Z}/250\mathbb{Z}$.

- 1. Trouver tous les diviseurs de zéro et tous les éléments inversibles de A.
- 2. Trouver tous les idéaux de A qui contiennent [50].

Exercice 6.

Soit A le sous-anneau de $M_2(\mathbb{Z})$ des matrices de la forme $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$ où $a,b,c \in \mathbb{Z}$. Montrez que le sous-ensemble K des matrices pour lesquelles $5 \mid a$ et $11 \mid b$ est un idéal bilatère et construire un isomorphisme (en deux temps) $A/K \to \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z}$.

Exercice 7. 1. Montrer que $\mathbb{C}[x,y]/(x) \cong \mathbb{C}[y]$ (donner la forme explicite de l'isomorphisme).

- 2. Construire un homomorphisme d'anneaux $\mathbb{C}[x,y] \to \mathbb{C}[x] \times \mathbb{C}[y]$ dont le noyau est (xy).
- 3. Identifier l'image de cet homomorphisme et en conclure que $\mathbb{C}[x,y]/(xy)$ est isomorphe au sous-anneau de $\mathbb{C}[x] \times \mathbb{C}[y]$ formé des couples de polynômes (p(x), q(y)) tels que p(0) = q(0).

2 Exercice Bonus

Exercice 8.

Let $p \in \mathbb{N}$ be a prime number, ν_p be the p-adic valuation on \mathbb{Q} , and let R be the valuation ring of ν_p .

- 1. Show that every $q \in \mathbb{Q} \setminus \{0\}$ with $\nu_p(q) = 0$ is an invertible element of R.
- 2. Show that (0) and (p^n) for $n \in \mathbb{N}$ is a complete list of ideals of R, and that all ideals in this list are different.
- 3. Show that $R/(p^n) \cong \mathbb{Z}/(p^n)$
- 4. Denote by R_p the valuation ring we obtain for different choices of p. Show that the different R_p 's as well as \mathbb{Z} are pairwise non-isomorphic rings (here we ask for isomorphism as abstract rings, so not as subrings of \mathbb{Q}).

3 Exercice supplémentaire

Cet exercice était l'exercice bonus de l'année 2021 (l'exercice ne sera pas dans l'examen).

Exercice 9.

Soit A un anneau commutatif. Notons que s'il existe un homomorphisme d'anneaux injectif $K \hookrightarrow A$ où K est un corps, alors A a la structure d'un K-espace vectoriel. D'ailleurs, pour V un K-espace vectoriel,

$$\operatorname{End}_K(V) := \{ \phi : V \to V \mid \phi \text{ est } K \text{ linéaire} \}$$

est un anneau, avec l'addition et la composition de fonctions comme opérations. On définit le **crochet de Lie** sur $\operatorname{End}_K(V)$ de la manière suivante :

$$\operatorname{End}_{K}(V) \times \operatorname{End}_{K}(V) \to \operatorname{End}_{K}(V)$$
$$(\phi, \psi) \mapsto [\phi, \psi] := \phi \circ \psi - \psi \circ \phi$$

Supposons maintenant que A est un anneau commutatif tel que $K \hookrightarrow A$ où K est un corps. Nous désignons par $m_a \in \operatorname{End}_K(A)$ la multiplication par un élément $a \in A$,

$$m_a: \begin{array}{ccc} A & \rightarrow & A \\ x & \mapsto & ax \end{array}.$$

Nous définissons les opérateurs K-différentiels sur A de degré au plus n inductivement par :

- $D_{\leq -1}(A) = \{m_0\},\$
- $D_{<0}(A) = \{m_a \mid a \in A\},\$
- pour n > 0, posons $D_{\leq n}(A) = \{ \psi \in \operatorname{End}_K(A) \mid [\psi, m_a] \in D_{\leq n-1}(A) \ \forall a \in A \}.$

Remarquez que $D_{\leq n}(A) \subseteq D_{\leq n+1}(A)$. On définit

$$D(A) := \bigcup_{n \ge -1} D_{\le n}(A) \subset \operatorname{End}_K(A).$$

On peut montrer que D(A) est un sous-anneau de $\operatorname{End}_K(A)$, mais il n'est pas nécessaire de le vérifier. On remarque que pour chaque $K\ni\lambda\mapsto m_\lambda\in D_{\leq 0}(A)$ est le plongement de K dans D(A) qui donne la structure d'espace vectoriel sur K.

A partir de maintenant, nous considérons le cas A = K[x].

1. Montrer que le crochet de Lie

$$\begin{array}{ccc} D(K[x]) \times D(K[x]) & \to & D(K[x]) \\ (F,G) & \mapsto & [F,G] \end{array}$$

est K-bilinéaire.

- 2. Soit $\frac{\partial}{\partial x} \in \text{End}_K(K[x])$ défini par $\frac{\partial}{\partial x}(x^i) = i \cdot x^{(i-1)}$ pour tout $i \in \mathbb{N}$. Montrez que $\left[\frac{\partial}{\partial x}, m_x\right] = m_1$.
- 3. Prenons $\frac{\partial}{\partial x}$ comme au-dessus. Montrez que $\left[\frac{\partial}{\partial x}, m_{x^j}\right] = j \cdot m_{x^{(j-1)}}$ pour $j \in \mathbb{N}$.
- 4. Prenons $\frac{\partial}{\partial x}$ comme au-dessus. Montrez que $\frac{\partial}{\partial x} \in D_{\leq 1}(K[x])$.