Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	22 October 2022
Team ID	PNT2022TMID04852
Project Name	Classification of Arrhythmia By Using Deep Learning With 2-D ECG Spectral Image Representation
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story	User Story / Task	Story Points	Priority	Team Members
		Number				
Sprint-	Download The	USN-1	We can download the Dataset contains	4	Low	Priyanka.V
1	Dataset		Six classes			Raajeev Ranjjan.R
Sprint-	Import The	USN-2	We can import ImageDataGenerator	4	Low	Pushpamala.R
1	ImageDataGenerator					Raajeev Ranjjan.R
	Library					
Sprint-	Configure	USN-3	We can configure the	6	Medium	Ragavi.R
1	ImageDataGenerator		ImageDataGenerator class			Pushpamala.R
	class					Priyanka.V
Sprint-	Apply the	USN-4	We can apply ImageDataGenerator to	6	Medium	Pushpamala.R
1	ImageDataGenerator		train dataset			Ragavi.R

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement (Epic)	Story		Points		
		Number				
	functionality to					Ragavi.R
	Trainset and Dataset					
Sprint-	Import Libraries	USN-5	We can import required Libraries	1	Low	Ragavi.R
2						
Sprint-	Initialize the Model	USN-6	Initializing the Image recognition model	1	Low	Priyanka.V
2						Raajeev Ranjjan.R
Sprint-	Adding CNN layer	USN-7	We can add Convolutional Neural	2	High	Pushpamala.R
2			Network(CNN) used for image/object			Raajeev Ranjjan.R
			recognition and classification			
Sprint-	Adding Dense Layer	USN-8	We can add Dense Layer in which each	4	High	Priyanka.V
2			neuron receives input from all the			Ragavi.R
			neurons of previous layer			Pushpamala R

Sprint-	Configure The	USN-9	We can configure The Learning process	4	High	Priyanka.V
2	Learning Process		which is a method, mathematical logic or			Raajeev Ranjjan.R
			algorithm that improves the network's			Ragavi.R
			performance and/or training time.			Pushpamala R
Sprint-	Train the Model	USN-10	We can train our model with our image	4	High	Priyanka.V
2			dataset. fit_generator functions used to			Raajeev Ranjjan.R
			train a deep learning neural network			
Sprint-	Save the Model	USN-11	We can save The model with .h5	2	Medium	Ragavi.R
2			extension			Pushpamala R
Sprint-	Test the model	USN-12	We can Test the model through Loaded	2	Medium	Priyanka.V
2			necessary libraries, the saved model			Raajeev Ranjjan.R

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement (Epic)	Story		Points		
		Number				
Sprint-	Create Html files	USN-13	We use HTML to create the front end	8	High	Priyanka.V
3			part of the web page.			Pushpamala R
Sprint-	Build Python code	USN-14	We build the flask file 'app.py' which is	8	High	Raajeev Ranjjan.R
3			a web framework written in python for			Ragavi.R
			server-side scripting.			
Sprint-	Run the App	USN-15	We can run the App	4	Medium	Ragavi.R
3						Pushpamala R
Sprint-	Register IBM Cloud	USN-16	We can register IBM Cloud	8	Medium	Raajeev Ranjjan.R
4						Ragavi.R
Sprint-	Train the model on	USN-17	We can Train Out model on IBM	12	High	Priyanka.V
4	IBM					Raajeev Ranjjan.R

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story	Duration	Sprint Start	Sprint End Date	Story Points	Sprint Release Date
	Points		Date	(Planned)	Completed (as	(Actual)
					on Planned	
					End Date)	
Sprint-1	20	5 Days	24 Oct 2022	28 Oct 2022	20	28 Oct 2022
Sprint-2	20	5 Days	30 Oct 2022	04 Nov 2022	20	04 Nov 2022
Sprint-3	20	5 Days	06 Nov 2022	11 Nov 2022	20	11 Nov 2022
Sprint-4	20	5 Days	13 Nov 2022	18 Nov 2022	20	18 Nov 2022

Velocity:

To calculate the team's average velocity (AV) per iteration unit

Where,

$$Av = Sprint^{Velocity}$$
 duration

Average Velocity - Story points per day

Sprint duration - Number of days (Duration) for Sprints

Velocity - Points per Sprint

Average Velocity is 4 points per Sprint Av = 205 = 5

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Burndown Chart

