Honors Logic, Lecture 16 - Modal Logic

Brian Weatherson

2022-10-26

- In particular, why not just use first order logic to quantify over possibilities?
- Instead of saying $\Box p$, say $\forall w: p(w)$ or something?
- This is a non-rhetorical question; in lots of situations we do say something more like ∀w: p(w).

Historically, four reasons.

1. Scepticism about the w, such as Prior on time.

Historically, four reasons.

- 1. Scepticism about the w, such as Prior on time.
- 2. Scepticism about p(w), as in worries about truth.

Historically, four reasons.

- 1. Scepticism about the w, such as Prior on time.
- 2. Scepticism about p(w), as in worries about truth.
- 3. More natural/intuitive to talk about \square than about r.

Historically, four reasons.

- 1. Scepticism about the w, such as Prior on time.
- 2. Scepticism about p(w), as in worries about truth.
- 3. More natural/intuitive to talk about \square than about r.
- 4. We want to understand \square , and thinking about r helps us do that.

We are going to do this in K, then in K ρ , then in K $\rho\tau$, then in K $\rho\sigma$, then finally in K $\rho\sigma\tau$, which is equivalent to Kv.

Start with the tableau for K.

$$\neg(\Diamond p \supset \Box \Diamond p), 0$$

$$\Diamond p, 0$$

$$\neg \Box \Diamond p, 0$$

$$\Diamond \neg \Diamond p, 0$$

$$0r1$$

$$p, 1$$

$$0r2$$

$$\neg \Diamond p, 2$$

$$\Box \neg p, 2$$

Now let's extend the tableau for $K\rho$.

$\neg(\lozenge p\supset\Box\lozenge p)$, 0	0r0
$\Diamond p, 0$	1r1
$\neg\Box\Diamond p,0$	2r2
$\Diamond \neg \Diamond p, 0$	$\neg p, 2$
0r1	
p, 1	
0r2	
$\neg \Diamond p, 2$	
$\Box \neg p, 2$	

That is also a tableau for $K\rho\tau$.

$\neg(\lozenge p\supset\Box\lozenge p)$, 0	0r0
$\Diamond p, 0$	1r1
$\neg\Box\Diamond p,0$	2r2
$\Diamond \neg \Diamond p, 0$	$\neg p, 2$
0r1	
p, 1	
0r2	
$\neg \Diamond p, 2$	
$\Box \neg p, 2$	

To do the tableau for $K\rho\sigma$, we need a couple more lines, but it's still open.

$\neg(\lozenge p\supset\Box\lozenge p)$, 0	0 <i>r</i> 0
$\Diamond p,0$	1r1
$\neg\Box\Diamond p,0$	2 <i>r</i> 2
$\lozenge \neg \lozenge p, 0$	$\neg p, 2$
0r1	2r0
<i>p</i> , 1	1r0
0r2	$\neg p, 0$
$\neg \Diamond p, 2$	
$\Box \neg p, 2$	

To do the tableau for $K\rho\sigma\tau$, we need more lines, and now it closes.

$\neg(\lozenge p\supset\Box\lozenge p)$, 0	0r0
$\Diamond p, 0$	1r1
$\neg\Box\Diamond p,0$	2 <i>r</i> 2
$\Diamond \neg \Diamond p, 0$	$\neg p, 2$
$0r\overline{1}$	2r0
p, 1	1 <i>r</i> 0
0r2	$\neg p, 0$
$\neg \Diamond p, 2$	2 <i>r</i> 1
$\Box \neg p, 2$	$\neg p, 1$
-	\boldsymbol{x}

The tableau for Kv, is a bit simpler, because it doesn't include r lines.

$$\neg(\Diamond p \supset \Box \Diamond p), 0$$

$$\Diamond p, 0$$

$$\neg \Box \Diamond p, 0$$

$$\Diamond \neg \Diamond p, 0$$

$$p, 1$$

$$\neg \Diamond p, 2$$

$$\Box \neg p, 2$$

$$\neg p, 2$$

$$\neg p, 0$$

$$\neg p, 1$$

$$x$$

This is not very intuitive, but it is a little interesting mathematically.

- It's the characteristic axiom of models that are 'linear'.
- I don't think I'll have time today to say what a characteristic axiom is; the priority today is getting the formalism down.
- But hopefully we'll have some time for it next week.

Start with an open tableau in K.

$$\neg(\Box(\Box p \supset q) \lor \Box(\Box q \supset p)), 0$$

$$\neg\Box(\Box p \supset q), 0$$

$$\neg\Box(\Box q \supset p), 0$$

$$\Diamond\neg(\Box p \supset q), 0$$

$$\Diamond\neg(\Box p \supset q), 1$$

$$0r1$$

$$\neg(\Box q \supset p), 2$$

$$0r2$$

$$\Box p, 1$$

$$\neg q, 1$$

$$\Box q, 2$$

$$\neg p, 2$$

Now onto $K\rho$, which is still open.

$$\neg(\Box(\Box p \supset q) \lor \Box(\Box q \supset p)), 0 \qquad 0r0 \\
\neg\Box(\Box p \supset q), 0 \qquad 1r1 \\
\neg\Box(\Box q \supset p), 0 \qquad 2r2 \\
\diamondsuit\neg(\Box p \supset q), 0 \qquad p, 1 \\
\diamondsuit\neg(\Box q \supset p), 0 \qquad q, 2 \\
\neg(\Box p \supset q), 1 \\
0r1 \\
\neg(\Box q \supset p), 2 \\
0r2 \\
\Box p, 1 \\
\neg q, 1 \\
\Box q, 2 \\
\neg p, 2$$

That's also an open tableau for $K\rho\tau$.

$$\neg(\Box(\Box p \supset q) \lor \Box(\Box q \supset p)), 0 \qquad 0r0 \\
\neg\Box(\Box p \supset q), 0 \qquad 1r1 \\
\neg\Box(\Box q \supset p), 0 \qquad 2r2 \\
\diamondsuit\neg(\Box p \supset q), 0 \qquad p, 1 \\
\diamondsuit\neg(\Box q \supset p), 0 \qquad q, 2 \\
\neg(\Box p \supset q), 1 \qquad 0r1 \\
\neg(\Box q \supset p), 2 \qquad 0r2 \\
\Box p, 1 \\
\neg q, 1 \\
\Box q, 2 \\
\neg p, 2$$

 $K
ho\sigma$ needs a few more lines, but is still open.

$\neg(\Box(\Box p\supset q)\vee\Box(\Box q\supset p)),0$	0 <i>r</i> 0
$\neg\Box(\Box p\supset q), 0$	1 <i>r</i> 1
$\neg\Box(\Box q\supset p), 0$	2 <i>r</i> 2
$\lozenge \neg (\Box p \supset q), 0$	p, 1
$\Diamond \neg (\Box q \supset p), 0$	q, 2
$\neg(\Box p\supset q), 1$	1 <i>r</i> 0
0r1	2 <i>r</i> 0
$\neg(\Box q\supset p), 2$	p, 0
0r2	q, 0
$\Box p, 1$	
$\neg q, 1$	
$\Box q, 2$	
$\neg p, 2$	

But K $ho\sigma au$ closes

$\neg(\Box(\Box p\supset q)\vee\Box(\Box q\supset p)),0$	0 <i>r</i> 0
$\neg\Box(\Box p\supset q), 0$	1r1
$\neg\Box(\Box q\supset p), 0$	2 <i>r</i> 2
$\Diamond \neg (\Box p \supset q), 0$	p, 1
$\lozenge \neg (\Box q \supset p), 0$	q, 2
$\neg(\Box p\supset q), 1$	1 <i>r</i> 0
0r1	2 <i>r</i> 0
$\neg(\Box q\supset p), 2$	p, 0
0r2	q, 0
$\Box p, 1$	1 <i>r</i> 2
$\neg q, 1$	p, 2
$\Box q, 2$	X
$\neg p, 2$	

Next example is this one, which is the characteristic axiom of transitive models.

Let's skip K and go straight to $K\rho$, since it's open.

$$\neg(\Box p \supset \Box \Box p), 0$$

$$\Box p, 0$$

$$\neg \Box Dp, 0$$

$$0r0$$

$$p, 0$$

$$\Diamond \neg \Box p, 0$$

$$0r1$$

$$\neg \Box p, 1$$

$$p, 1$$

$$1r1$$

$$\Diamond \neg p, 1$$

$$1r2$$

$$\neg p, 2$$

$$2r2$$

It takes just a bit more work to get $K\rho\sigma$.

$$\neg(\Box p \supset \Box \Box p), 0 \qquad \qquad \Diamond \neg p, 1 \\
\Box p, 0 \qquad \qquad 1r2 \\
\neg \Box \Box p, 0 \qquad \qquad \neg p, 2 \\
0r0 \qquad \qquad 2r2 \\
p, 0 \qquad \qquad 2r1 \\
\Diamond \neg \Box p, 0 \qquad \qquad 1r0 \\
0r1 \\
\neg \Box p, 1 \\
p, 1 \\
1r1$$

I bolded the new lines, but they don't have any interesting implications.

But this closes in $K\rho\tau$, and hence in $K\rho\sigma\tau$ and in Kv.

$$\neg(\Box p \supset \Box \Box p), 0 \qquad \qquad \Diamond \neg p, 1 \\
\Box p, 0 \qquad \qquad 1r2 \\
\neg \Box \Box p, 0 \qquad \qquad \neg p, 2 \\
0r0 \qquad \qquad 2r2 \\
p, 0 \qquad \qquad 0r2 \\
\Diamond \neg \Box p, 0 \qquad \qquad p, 2 \\
0r1 \qquad \qquad x \\
\neg \Box p, 1 \\
p, 1 \\
1r1$$

And we get p is both true and false at 2.

This obviously isn't a logical truth!

• But the tableau for it in Kv is annoying.

A model

- There are infinitely many points.
- They can all access each other.
- p is true at all of them.