Elementos de Matemática Discreta

Resumo

Rafael Rodrigues

LEIC Instituto Superior Técnico 2023/2024

Contents

1 Teste 1								
2	Test	Teste 2						
	2.1	Teorema Chinês do Resto	4					
	2.2	Algoritmo RSA						
	2.3	Equações Diofantinas	,					
		Pequeno Teorema de Fermat						
3	Test	te 3						
	3.1	Funções Geradoras	;					
	3.2	Algoritmo FFT						
	3.3	Grafos						
		3.3.1 Algoritmo de Kruskal						
		3.3.2 Algoritmo de Dijkstra						
		3.3.3 Teorema de Kuratowski						

1 Teste 1

2 Teste 2

Congruências

1.
$$a+c \equiv_n b+d$$

2.
$$a^k \equiv_n b^k \to a \equiv_n b$$

5.
$$ac \equiv_n bc \rightarrow a \equiv_{\frac{n}{n-c}} b$$

6.
$$x\equiv_{pq} a$$
 , sse $x\equiv_p a$ e $x\equiv_q a$ com $p\frown q=1$

2.1 Teorema Chinês do Resto

1. Escrever o sistema na forma normal

$$\begin{cases} x \equiv_{c_1} a_1 \\ x \equiv_{c_2} a_2 \\ x \equiv_{c_3} a_3 \end{cases}$$

2. Verificar se os módulos são primos entre si

i.
$$M = \prod c_i$$

i. Verificar se
$$a_i - a_j = xt$$
 para $x = gcd(c_i, c_j)$

ii.
$$M = lcm(c_1, ..., c_k)$$

3. Aplicar o algoritmo

(a) Construir a tabela:

a_i	c_i	n_i	$mod(n_i, c_i)$	\tilde{n}_i	$a_i n_i \tilde{n}_i$
		$c_2 \times c_3$			
		$c_1 \times c_3$			
		$c_1 \times c_2$			

(b) Calcular a solução particular:
$$x_0 = \sum a_i n_i \tilde{n}_i$$

(c) Calcular a solução geral:
$$x = x_0 + Mk$$
, com $k \in \mathbb{Z}$.

iii. Fatorizar M e utilizar cada um dos fatores como novo c_i

2.2 Algoritmo RSA

1. Criar as chaves, usando dois números primos diferentes p e q:

- Chave pública (N, e)
- Chave privada (N, d)
- (a) $N = p \times q$
- (b) Para encontrar e ou d resolver equação diofantina: $1=(e\times d)+[(p-1)(q-1)\times k]$
- 2. Encriptar mensagem M usando a chave pública: $M^e \equiv_N R$
- 3. Desencriptar mensagem Rusando a chave privada: $R^d \equiv_N M$

Algoritmo de Saunderson

a_i	q_i	x_i	y_i
100		1	0
49	2	0	1
2	24	1	-2
1	2	-24	49
0			

$$x_{i+1} = x_{i-1} - q_i x_i$$

$$y_{i+1} = y_{i-1} - q_i y_i$$

2.3 Equações Diofantinas

- 1. Escrever equação diofantina: () $x \pm ($)y =
- 2.4 Pequeno Teorema de Fermat
- 3 Teste 3
- 3.1 Funções Geradoras
- 3.2 Algoritmo FFT
- 3.3 Grafos
- 3.3.1 Algoritmo de Kruskal
- 3.3.2 Algoritmo de Dijkstra
- 3.3.3 Teorema de Kuratowski