Previous Works

ullet Performer (Choromanski et al.,) uses a finite-dimensional map arphi to approximate exponential • Vectors with larger norms require φ with larger dimension

• $\varphi(x) \doteq \text{elu}(x) + 1$ (Katharopoulos et al. '20), $\varphi(x) \doteq \text{relu}(x)$

• Other works consider arbitrary φ instead of first defining $\mathrm{sim}(\ \cdot\ ,\ \cdot\)$

Model quality is worse compared to softmax

Is softmax necessary? Do any other functions with similar properties work?

• Always ≥ 0

• Consider $sim(q,k) = \langle q,k \rangle^p$ where $p \geq 2$ is an even integer

• Increases as $\langle q, k \rangle$ goes up

Previous Works

- Performer (Choromanski et al.,) uses a finite-dimensional map ϕ to approximate exponential
 - Vectors with larger norms require ϕ with larger dimension
- Other works consider arbitrary ϕ instead of first defining $\mathrm{sim}(\,\cdot\,,\,\cdot\,)$
 - $\varphi(x) \doteq \text{elu}(x) + 1$ (Katharopoulos et al. '20), $\varphi(x) \doteq \text{relu}(x)$
 - Model quality is worse compared to softmax
- Is softmax necessary? Do any other functions with similar properties work?
- Consider $sim(q, k) = \langle q, k \rangle^p$ where $p \ge 2$ is an even integer
 - Always ≥ 0
 - Increases as $\langle q, k \rangle$ goes up

Perplexities on Wiki-40B

