

RNS INSTITUTE OF TECHNOLOGY

Autonomous Institution, Affiliated to VTU

2024 Scheme

I Semester B.E. Degree Examination-Model Question Paper

Time: 3 hrs Max. Marks: 100

Engineering Mathematics I (ME Branch)

Instructions to Candidates:

- 1. Answer any 5 full questions, selecting at least one question from each module.
- 2. Missing data may be suitably assumed.

Q.No.		Module-1	Marks	COs
Q1	a	. Find the angle of intersection of the pair of curves $r = a(1 - \cos \theta)$ and $r = 2a\cos\theta$.	6	CO2
	b	Derive angle between radius vector and tangent.	7	CO1
	c	Find the radius of curvature for $x^4 + y^4 = 2$ at $(1, 1)$	7	CO1
		OR		
Q2	a	Show that $r = 4 \sec^2 \frac{\theta}{2}$ and $r = 9 \csc^2 \frac{\theta}{2}$ the pair of curves cut orthogonally.	6	CO1
	b	Derive the radius of curvature of a cartesian curve.	7	CO1
	c	Find the Pedal equation of the curve $\frac{2a}{r} = 1 - \cos \theta$	7	CO1
		Module-2		
Q3	a	Expand $log(1 + x)$ by Maclaurin's series up to the term containing x^4 .	6	CO2
	b	Find the maximum and minimum values of the function $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.	7	CO2
	c	A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions of the box requiring least material for its construction.	7	CO2
		OR		
Q4	a	Using Maclaurin's series, Prove that $\sqrt{1 + \sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} + \cdots$	6	CO2
	b	If $x + y + z = u$, $y + z = uv$ and $z = uvw$ find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.	7	CO2
	c	Find the volume of the greatest rectangular parallelepiped that can be	7	CO2
		inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.		
		Module-3		
Q5	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$	6	CO3

	b	Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + a} = 1$								CO3
		where α is a parameter.								
	С	Solve xyp^2	-		= 0				7	CO3
		20110 107 17		7 77 1 27					1	
0(0.1. (2)	2 .)		OR					002
Q6	a Solve $(x^2 + y^2 + x)dx + xydy = 0$							6	CO3	
	b	Water at temperature $10^{\circ}C$ takes 5 minutes to warm up to $20^{\circ}C$ at room								CO3
		temperature of 40°C. Find the temperature of the water after 20 minutes.								CO2
	С	Find the general solution of the equation $(px - y)(py + x) = a^2p$ by							7	CO3
		reducing into Clairaut's form by taking the substitution $X = x^2$, $Y = y^2$.								
07		Module-4								CO4
Q7	a	An experiment gave the following values:							6	CO4
		v (ft/min)	350	400	500		600	٦		
			61	26	7	'	26	_		
		t (min)				41				
						y the re	elation v	= atb. Find the		
	b	best possible values of a and b.In a partially destroyed lab record only the lines of regression of y								CO4
	on x and x on y are available as $4x - 5y + 33 = 0$ and $20x - 9y = 0$								7	04
		107 respectively. Calculate \bar{x} , \bar{y} and coefficient correlation between								
		x and y.								
	c	7 7 5							7	CO4
		x 1	6 :	5 10		2 4	4 9	7 8		
		y 6	4	9 8	$1 \qquad \boxed{2}$	2 3	3 10	5 7		
		Calculate the rank correlation coefficient.								
					OR					00.4
Q8	a							east square sense	6	CO4
		for the following data and hence estimate y when $x = 6$.								
		y	10	12	13		16	19		
	b	b Find the coefficient of correlation and the lines of regression for the data							7	CO4
		x 1	2	3	4	5	6	7		
		y 9	8	10	12	11	13	14		
	С				ion coefficient for the following data					CO4
		x 68		75 50			78 40	55 60		
	y 62 58 68 45 81 60 68 48 50 70							<u> </u>		
	Module-5									

Q9	a	Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$	6	CO5
	b	Use Gauss Jordan method to solve the system of equations $2x + 5y + 7z = 52, 2x + y - z = 0, x + y + z = 9$	7	CO5
	c	For what values of λ and μ so that the equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ have (i) Unique solution (ii) No solution (iii) infinite number of solutions	7	CO5
		OR		
Q10	a	Using Rayleigh power method to find the largest eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} X^{(0)} = [1,1,1]^T$	6	CO5
	b	Use Gauss Seidel method to solve the system of equations $20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25$	7	CO5
	С	Using modern mathematical tool write a program/code to test the consistency of the equations, $x + 2y - z = 1$, $2x + y + 4z = 2$, $3x + 3y + 4z = 1$	7	CO5