FIT3158 Note - W4 Scheduling problem

• type	Post
Oreated date	@October 28, 2022 2:03 PM
	Business
i≡ tags	Decision Making
	Published
	School
≡ summary	
≡ slug	
≡ password	
∷ Author	
Priority	
Origin	
Ø URL	
✓ Youtube	
≡ icon	

An Employee Scheduling Problem: Air-Express

An express shipping company – guarantees o/night delivery

Day of Week	Workers Needed	Shift	Days Off	Wage
Sunday	18	1	Sun & Mon	\$680
Monday	27	2	Mon & Tue	\$705
Tuesday	22	3	Tue & Wed	\$705
Wednesday	26	4	Wed & Thr	\$705
Thursday	25	5	Thr & Fri	\$705
Friday	21	6	Fri & Sat	\$680
Saturday	19	7	Sat & Sun	\$655

- Various hubs across the country shipments go to hubs, then on to their destination
- Manager of Baltimore hub is concerned about labour costs and wants to investigate the most effective way of scheduling of workers
- Hub open 7 days per week
- # packages varies from 1 day to the next
- An estimate of the number of workers needed on each day of the week has been calculated using historical data

Step 1: Defining the Decision Variables

 X_1 = the number of workers assigned to shift 1

 X_2 = the number of workers assigned to shift 2

 X_3 = the number of workers assigned to shift 3

 X_4 = the number of workers assigned to shift 4

 X_5 = the number of workers assigned to shift 5

 X_6 = the number of workers assigned to shift 6

 X_7 = the number of workers assigned to shift 7

Step 2:Defining the Objective Function

Minimize the total wage expense.

Step 3: Defining the Constraints

Step 4: Implementing the Model

Workers required each day

$$\begin{array}{l} 0X_1 + 1X_2 + 1X_3 + 1X_4 + 1X_5 + 1X_6 + 0X_7 >= 18 \; Sunday \\ 0X_1 + 0X_2 + 1X_3 + 1X_4 + 1X_5 + 1X_6 + 1X_7 >= 27 \; \} \; Monday \\ 1X_1 + 0X_2 + 0X_3 + 1X_4 + 1X_5 + 1X_6 + 1X_7 >= 22 \; \} \; Tuesday \\ 1X_1 + 1X_2 + 0X_3 + 0X_4 + 1X_5 + 1X_6 + 1X_7 >= 26 \; \} \; Wednesday \\ 1X_1 + 1X_2 + 1X_3 + 0X_4 + 0X_5 + 1X_6 + 1X_7 >= 25 \; \} \; Thursday \\ 1X_1 + 1X_2 + 1X_3 + 1X_4 + 0X_5 + 0X_6 + 1X_7 >= 21 \; \} \; Friday \\ 1X_1 + 1X_2 + 1X_3 + 1X_4 + 1X_5 + 0X_6 + 0X_7 >= 19 \; \} \; Saturday \end{array}$$

Non-negativity & integrality conditions

 $X_i \ge 0$ and integer for all i

Implementing the Model

See file Lecture 4.xlsm (AirExpress)

