Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3215	К работе допущен
Студент Васильков Дмитрий Алексеевич	Работа выполнена
Преподаватель <u>Тимофеева Эльвира</u> <u>Олеговна</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений пятисекундного интервала времени.

- 2. Задачи, решаемые при выполнении работы.
- 1) Провести многократные измерения пятисекундного интервала времени.
- 2) Построить гистограмму распределения результатов измерения.
- 3) Вычислить среднее значение и дисперсию полученной выборки.
- 4) Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 3. Объект исследования.

Промежуток времени в пять секунд

4. Метод экспериментального исследования.

Многократное сравнение замеров пяти секунд

5. Рабочие формулы и исходные данные.

функция Гаусса (плотность вероятности)

$$\rho\left(t\right) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(t - \langle t \rangle\right)^{2}}{2\sigma^{2}}\right)$$

Выборочное среднеквадратичное отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

Максимальное значение плотности распределения

$$\rho_{\rm max} = \frac{1}{\sigma\sqrt{2\pi}}.$$

Математическое ожидание

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^{N} t_i$$

Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{rac{1}{N\left(N-1
ight)} \sum_{i=1}^{N} \left(t_i - \langle t
angle_N
ight)^2}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	секундомер	цифровой	0-5 с	0.01 c

^{7.} Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

№	t_i, c	$t_i - \langle t \rangle_N, \ c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	4,280	-0,726	0,527
2	4,300	-0,706	0,499
3	4,430	-0,576	0,332
4	4,500	-0,506	0,256
5	4,550	-0,456	0,208
6	4,600	-0,406	0,165
7	4,830	-0,176	0,031
8	4,830	-0,176	0,031
9	4,850	-0,156	0,024
10	4,850	-0,156	0,024
11	4,860	-0,146	0,021
12	4,870	-0,136	0,019
13	4,880	-0,126	0,016
14	4,880	-0,126	0,016
15	4,890	-0,116	0,014
16	4,900	-0,106	0,011
17	4,910	-0,096	0,009
18	4,920	-0,086	0,007
19	4,920	-0,086	0,007
20	4,920	-0,086	0,007
21	4,930	-0,076	0,006
22	4,930	-0,076	0,006

23	4,930	-0,076	0,006
24	4,940	-0,066	0,004
25	4,950	-0,056	0,003
26	4,950	-0,056	0,003
27	4,950	-0,056	0,003
28			
29	4,950 4,960	-0,056	0,003
30		-0,046	0,002
31	4,960	-0,046	0,002
32	4,960	-0,046	0,002
	4,960	-0,046	0,002
33	4,960	-0,046	0,002
34	4,970	-0,036	0,001
35	4,970	-0,036	0,001
36	4,980	-0,026	0,001
37	4,980	-0,026	0,001
38	4,980	-0,026	0,001
39	4,980	-0,026	0,001
40	4,990	-0,016	0,000
41	5,000	-0,006	0,000
42	5,000	-0,006	0,000
43	5,000	-0,006	0,000
44	5,000	-0,006	0,000
45	5,000	-0,006	0,000
46	5,010	0,004	0,000
47	5,010	0,004	0,000
48	5,010	0,004	0,000
49	5,020	0,014	0,000
50	5,020	0,014	0,000
51	5,020	0,014	0,000
52	5,020	0,014	0,000
53	5,030	0,024	0,001
54	5,030	0,024	0,001
55	5,030	0,024	0,001
56	5,030	0,024	0,001
57	5,030	0,024	0,001
58	5,040	0,034	0,001
59	5,050	0,044	0,002
60	5,050	0,044	0,002
61	5,050	0,044	0,002
62	5,050	0,044	0,002
63	5,050	0,044	0,002
64	5,060	0,054	0,003
65	5,060	0,054	0,003
66	5,060	0,054	0,003
67	5,060	0,054	0,003
68	5,070	0,064	0,004
4			

69	5,080	0,074	0,005
70	5,080	0,074	0,005
71	5,080	0,074	0,005
72	5,080	0,074	0,005
73	5,090	0,084	0,007
74	5,090	0,084	0,007
75	5,090	0,084	0,007
76	5,100	0,094	0,009
77	5,100	0,094	0,009
78	5,100	0,094	0,009
79	5,110	0,104	0,011
80	5,110	0,104	0,011
81	5,110	0,104	0,011
82	5,120	0,114	0,013
83	5,120	0,114	0,013
84	5,130	0,124	0,015
85	5,130	0,124	0,015
86	5,140	0,134	0,018
87	5,160	0,154	0,024
88	5,160	0,154	0,024
89	5,160	0,154	0,024
90	5,180	0,174	0,030
91	5,190	0,184	0,034
92	5,190	0,184	0,034
93	5,190	0,184	0,034
94	5,200	0,194	0,038
95	5,220	0,214	0,046
96	5,300	0,294	0,086
97	5,320	0,314	0,098
98	5,380	0,374	0,140
99	5,530	0,524	0,274
100	5,570	0,564	0,318

$\langle t \rangle_N$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = \dots \ c$	$ ho_{max} = \dots \ c^{-1}$	$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$
5,006	0,000	0,908	0,193

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Границы интералов, c	ΔN	$\frac{\Delta N}{N\Delta t}$,	c^{-1}	t, c	ρ ,	c^{-1}
4,28 - 4,42	2		0,143	4,350		0,006
4,42 - 4,56	3		0,215	4,490		0,058
4,56 - 4,70	1		0,072	4,630		0,309

4,70 - 4,84	2	0,143	4,770	0,977
4,84 - 4,98	31	2,218	4,910	1,826
4,98 - 5,12	44	3,148	5,050	2,015
5,12 - 5,26	12	0,858	5,260	0,870
5,26 - 5,40	3	0,215	5,330	0,506
5,40 - 5,54	1	0,072	5,470	0,115
5,54 - 5,68	1	0,072	5,610	0,015

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

	Интервал, с		ΔM ΔN		, c ΔN ΔN		D
	ОТ	до	ΔIV	N	1		
$\langle t \rangle_N \pm \sigma_N$	4,813	5,199	88,000	0,880	0,683		
$\langle t \rangle_N \pm 2\sigma_N$	4,620	5,392	92,000	0,920	0,954		
$\langle t \rangle_N \pm 3\sigma_N$	4,427	5,585	98,000	0,980	0,997		

11. Графики (перечень графиков, которые составляют Приложение 2).

Вывод

12. Проделав данную лабораторную работу, мы произвели оценку точности измерений прибора и на основе произведенных замеров вычислили матожидание полученного результата, стандартное отклонение, распределение результатов. Также была построена гистограмма для распределения результатов.