I. Matematické základy informatiky

Update: 7. května 2018

1 Konečné automaty, regulární výrazy, uzávěrové vlastnosti třídy regulárních jazyků.

1.1 Konečné automaty (KA)

Konečný automat (KA) tvoří množina stavů, vstupní abceda, přechodová funkce, počáteční a koncové stavy. Můžeme jej znázornit jako tabulku, graf či strom.

Konečné automaty se dělí na **determistické** a **nedetermistické**. Deterministický konečný automat má pouze jeden počáteční stav a přechodová funkce vrací jeden stav. Zatímco nedeterministický KA může mít více počátečních stavů a přechodová funkce vrací množinu stavů.

- Slovo přijaté automatem je taková sekvence symbolů (ze vstupní abecedy), pro kterou automat skončí v koncovém stavu.
- Regulární jazyk je takový jazyk (množina slov) který lze popsat konečným automatem.

1.1.1 Deterministický konečný automat (DKA)

Skládá se ze **stavů** a **přechodů**. Jeden ze stavů je označen jako **počáteční stav** a některé jsou označeny jako **přijímací**. **Je definován jako uspořádaná pětice** $(Q, \Sigma, \delta, q_0, F)$, kde:

- \bullet Q je konečná neprázdná množina stavů.
- Σ (sigma) je konečná neprázdná množina vstupních symbolů, tzv. **vstupní abeceda**.
- δ (delta) je **přechodová funkce**, $\delta: Q \times \Sigma \to Q$.
- q_0 je počáteční stav, $q_0 \in Q$.
- F je neprázdná množina koncových neboli přijímajících stavů, $F \subseteq Q$.

Příklad

- $Q = \{1, 2, 3, 4, 5\}, \Sigma = \{a, b\}, F = \{1, 4, 5\}$
- $\delta(1,a) = 2$; $\delta(1,b) = 1$; $\delta(3,a) = 1$; $\delta(3,b) = 4$; $\delta(2,a) = 4$; $\delta(2,b) = 5$; $\delta(4,a) = 1$; $\delta(4,b) = 3$; $\delta(5,a) = 4$; $\delta(5,b) = 5$

1.1.2 (Zobecněný) Nedeterministický konečný automat ((Z)NKA)

Formálně je NKA definován jako pětice $A = (Q, \Sigma, \delta, I, F)$, s tím rozdílem, že oproti deterministickému KA má **více počátečních stavů** a **přechodová funkce vrací množinu** stavů. V případě ZNKA zde existují navíc **nulové epsilon** (ϵ) přechody:

- δ je přechodová funkce, vrací množinu stavů, $\delta: Q \times \Sigma \to P(Q)$, v případě **ZNKA** $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to P(Q)$.
- I je konečná množina počátečních stavů, $I \in Q$.

Na rozdíl od deterministického automatu:

- Může z jednoho stavu vést **libovolný počet přechodů** označených stejným symbolem (i **nulové** ϵ v případě ZNKA).
- Není zde nutné, aby z každého stavu vystupovaly všechny symboly, které do něj vstoupily

 nemusí ošetřovat všechny varianty, pouze odhadne, kterou cestou půjde.
- Nedeterministický automat přijímá dané slovo, jestliže existuje alespoň jeden jeho výpočet, který vede k přijetí tohoto slova.
- V automatu může být víc než jeden počáteční stav.
- Lze ho převést na deterministický (formou tabulky). Při převodu automatu, který má n stavů může mít výsledný nedeterministický až 2ⁿ stavů.

1.1.3 Normovaný tvar

Začnu v počátečním stavu a procházím navštívené stavy a vytvářím tabulku. Každý KA má **právě 1** normovaný tvar. Také lze tímto způsobem zjistit, zda jsou automaty **ekvivalentní**.

1.2 Regulární výrazy

Regulární výraz je **řetězec popisující celou množinu řetězců**, konkrétně **regulární jazyk**. Regulární výrazy také můžeme chápat jako jednoduchý způsob, jak **popsat konečný automat** umožňující generovat všechna možná slova patřící do daného jazyka.

V regulárních výrazech využíváme znaky **abecedy** a symboly pro **sjednocení**, **zřetězení** a **iterace** regulárních výrazů. Za regulární výraz se považuje i samotný znak abecedy (např. a) stejně jako **prázdné slovo** ϵ a **prázdný jazyk** \emptyset .

1.2.1 Definice regulárních výrazů

Regulární výrazy popisují jazyky nad abecedou $A=\Sigma:\emptyset,\epsilon,a$ (kde $a\in\Sigma$) jsou regulární výrazy:

- Ø označuje **prázdný jazyk**,
- ϵ označuje jazyk $\{\epsilon\}$,
- a označuje jazyk $\{a\}$.

Dále, jestliže α , β jsou regulární výrazy, pak i $(\alpha + \beta)$, $(\alpha \cdot \beta)$, $(\alpha *)$ jsou regulární výrazy, kde:

- $(\alpha + \beta)$ označuje **sjednocení** jazyků označených α a β ,
- $(\alpha \cdot \beta)$ označuje **zřetězení** jazyků označených α a β ,
- $(\alpha*)$ označuje **iteraci** jazyka označeného α .

Neexistují žádné další regulární výrazy než ty definované podle předchozích dvou bodů.

Příklady

Ve všech případech je $\Sigma = \{0, 1\}$:

- 01 (0 a 1) ... jazyk tvořený jedním slovem 01,
- 0+1 (0 nebo 1) ... jazyk tvořený dvěma slovy 0 a 1,
- $(01)^*$... jazyk tvořený slovy ϵ , 01, 0101, 010101, ...,
- $(0+1)^*$... jazyk tvořený všemi slovy nad abecedou $\{0,1\}$,
- (01)*111(01)* ...jazyk tvořený všemi slovy obsahující podslovo 111, předcházení i následované libovolným počtem slov 01,
- (0+1)*00+(01)*111(01)* ... jazyk tvořený všemi slovy, která buď končí 00 nebo obsahují podslovo 111 předcházené i následované libovolným počtem slov 01,
- (0+1)*1(0+1)* ... jazyk tvořený všemi slovy obsahujícími alespoň jeden symbol 1,
- 0*(10*10*)* ... jazyk tvořený všemi slovy obsahujícími sudý počet symbolů 1.

1.3 Uzávěrové vlastnosti třídy regulárních jazyků

Uzavřenost množiny nad operací znamená, že výsledek operace s libovolnými prvky z množiny bude opět spadat do dané množiny. Třídu regulárních jazyků značíme **REG**. Regulární výrazy (tedy i KA) jsou uzavřené vůči operacím:

- Sjednocení, průnik, doplněk je-li $L_1, L_2 \in REG$, pak také $L_1 \cup L_2, L_1 \cap L_2, L'_1$ jsou v REG.
- Zřetězení, iterace je-li $L_1, L_2 \in \text{REG}$, pak také $L_1 \cdot L_2, L_1^*$ jsou v REG.
- **Zrcadlový obraz** je-li $L \in REG$, pak také L^R jsou v REG.

1.3.1 Operace sjednocení, zřetězení, iterace a zrcadlový obraz u KA

- Iterace spojíme koncové stavy jednoho KA s počátečními druhého KA ϵ přechodem. Na obrázku generuje automat A^* jazyk $L(A^*) = L(A)^*$, který je iterací jazyku generovaného modrého automatu A.
- Zřetězení spojíme koncové stavy jednoho s počátečními stavy druhého. Na obrázku generuje konečný automat AB jazyk $L(AB) = L(A) \cdot L(B)$.

- Sjednocení L(A+B) = L(A) + L(B) získáme tak, že vytvoříme nový počáteční stav, ze kterého vedeme ϵ přechody do počátečních stavů obou automatů. Poté obdobě z koncových stavů obou automatů vedeme ϵ přechody do nového koncového.
- Zrcadlový obraz pustíme automat pozpátku, celý jej převrátíme. Přehodíme orientaci všech přechodů, z počátečních stavů uděláme koncové a naopak.

 Doplněk – u DKA provedeme prohození označení příjmajících a ostatních stavů, u NKA je nejprve nutné provézt převod na DKA.

2 Bezkontextové gramatiky a jazyky. Zásobníkové automaty, jejich vztah k bezkontextovým gramatikám.

2.1 Bezkontextové gramatiky (BG)

Bezkontextová gramatika definuje **bezkontextový jazyk**. Je tvořena **neterminály** (proměnné), **terminály** (konstanty) a **pravidly**, které každému neterminálu definují přepisovací pravidla. Jeden neterminál označíme jako **startovní**, kde začínáme a podle pravidel je dál přepisujeme na výrazy složené z terminálu a neterminálu. Jakmile už není co přepisovat, výraz obsahuje už jen neterminály, získali jsme **slovo**.

- Je uzavřená vůči operacím sjednocení, zřetězení, iteraci a zrcadlový obraz.
- Ke každé bezkontextové gramatice existuje ekvivalentní zásobníkový automat.

2.1.1 Formální definice BG

Bezkontextová gramatika je definována jako uspořádaná čtveřice $G = (\Pi, \Sigma, S, P)$, kde:

- Π (velké pí) je konečná množina **neterminálních** symbolů (neterminálů).
- Σ je konečná množina **terminálních** symbolů (terminálů), $\Pi \cap \Sigma = \emptyset$.
- S je počáteční neterminál, $S \in \Sigma$.
- P je konečná množina **přepisovacích pravidel**, $P \subseteq \Pi \times (\Pi \cup \Sigma)^*$.

2.1.2 Základní pojmy

- Bezkontextový jazyk formální jazyk, který je akceptovaný nějakým zásobníkovým automatem.
- Derivace slova jedno konkrétní odvození slova pomocí gramatiky, tedy záznam postupných přepisů od startovního neterminálu po konečné slovo. Derivace se podle postupu při přepisování dělí na:
 - levou přepisujeme nejprve levé neterminály,
 - pravou přepisujeme nejprve pravé neterminály.
- Derivačni strom grafické znázornění derivace slova stromem. Pro všechny možné derivace (levou, pravou, moji) by měl derivační strom být stejný. Není-li tomu tak jedná se o nejednoznačnou gramatiku, což je nežádoucí jev.
 - Špatně = A \rightarrow A | ϵ (lze generovat až N způsoby), Správně = A $\rightarrow \epsilon$
- Chomského normální forma gramatika může obsahovat pouze pravidla typu: $\mathbf{A} \to \mathbf{BC}$ nebo $\mathbf{A} \to \mathbf{a}$ nebo $\mathbf{S} \to \epsilon$ (pokud gramatika generuje pouze prázdný řetězec).
- Nevypouštějící gramatika neobsahuje ϵ (epsilon) přechody.

 $A\Rightarrow aBBb\Rightarrow abCABb\Rightarrow abCaBBbBb\Rightarrow abCaBbBb\Rightarrow abbaBbBb\Rightarrow abbaBbb\Rightarrow abbabb$

2.2 Zásobníkové automaty (ZA)

Slouží k **rozpoznání bezkontextových jazyků**. S využitím zásobníků si může pamatovat kolik a jaké znaky přečetl, což je potřeba právě k rozpoznání bezkontextového jazyka. Zásobníkový automat je v podstatě konečný automat rozšířený o zásobník.

- ZA na základě aktuálního znaku na pásce, prvního znaku v zásobníku a aktuálního stavu změní svůj stav a přepíše znak v zásobníku podle daných pravidel.
- ZA **přijímá** dané slovo, jestliže skončí v konfiguraci (q, ϵ, ϵ) , tedy když se přečte celé vstupní slovo a zásobník je **prázdný**.
- Konfigurace je dána: aktuálním stavem, obsahem pásky a obsahem zásobníku.
- Deterministický nesmí se objevit stejná konfigurace vícekrát.

2.2.1 Formální definice zásobníkového automatu

Zásobníkový automat M je definován jako šestice $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, kde:

- ullet Q je konečná neprázdná množina **stavů**.
- Σ je konečná neprázdná množina vstupních symbolů (vstupní abeceda).
- Γ (velká gamma) je konečná neprázdná množina **zásobníkových symbolů**.
- δ je **přechodová funkce** (konečná množina instrukcí), $\delta: Q \times (\Sigma \cup \epsilon) \times \Gamma \beta P_{\text{fin}}(Q \times \Gamma^*)$.
- q_0 je počáteční stav, $q_0 \in Q$.
- Z_0 je počáteční zásobníkový symbol, $Z_0 \in \Gamma$.

2.2.2 Definice instrukcí (pravidel) v ZA

Instrukce (sady instrukcí reprezentují přechodovou funkci δ) definují **chování automatu**:

$$(q, a, X) \to (q', \alpha), \text{ kde } a \in \Sigma.$$
 (1)

Tato instrukce je aplikovatelná jen v situaci (neboli konfiguraci), kdy **řídicí jednotka** je ve stavu q, **čtecí hlava** na vstupní pásce čte symbol a a na vrcholu zásobníku je symbol X. Pokud je **instrukce aplikována**, vykoná se následující:

- 1. řídicí jednotka **přejde do stavu** q,
- 2. čtecí hlava na vstupní pásce se posune o jedno políčko doprava,
- 3. vrchní symbol v zásobníku se **odebere** (vymaže),
- 4. na vrchol zásobníku se přidá řetězec α tak, že jeho nejlevější symbol je aktuálním vrcholem zásobníku.

Pravidlo	$oxed{ ext{Akce } (\mathbf{Z} = \mathbf{z}\hat{\mathbf{a}}\mathbf{sobn}\hat{\mathbf{i}}\mathbf{k})}$	Význam	
$\delta(q_1, a, X) \to (q_1, YX)$	přidání prvku do Z	na začátek zásobníku se vloží Y	
$\delta(q_1, a, X) \to (q_1, Y)$	přepsání prvku v Z	první prvek zásobníku se přepíše na ${\cal Y}$	
$\delta(q_1, a, X) \to (q_1, \epsilon)$	smazání prvku ze Z	první prvek zásobníku se smaže neboli	
		nahradí prázdným slovem ϵ	
$\delta(q_1, a, X) \to (q_2, X)$	změna stavu stav q_1 se změní na stav q_2		
$\delta(q_1, a, X) \to \emptyset$	pád automatu ukončení výpočtu, slovo nebylo přijat		

2.3 Převod BG na zásobníkový automat

Využívá se tzv. metody shora-dolů, která obsahuje pouze 1 stav:

- 1. pro všechny **neterminály** vypíšu pravidla typu: $(q, \epsilon, A) \to \{(q, B), (q, C)\},$
- 2. všechny **terminály** přepíšu na pravidla typu: $(q, a, a) \rightarrow (q, \epsilon)$.

Příklad

Vstupní gramatika: Instrukce, převedené dle výše uvedených pravidel:

$$S \to A \mid B$$

$$(Q, \epsilon, S) \to \{(q, A), (q, B)\}$$

$$A \to a$$

$$(Q, \epsilon, A) \to (q, a)$$

$$B \to (c)$$

$$(Q, \epsilon, B) \to (q, (c))$$

$$\Sigma = \{A, B, S\} \qquad (Q, a, a) \to (q, \epsilon)$$

$$\Gamma = \{a, c, (,)\} \qquad (Q, (, () \to (q, \epsilon) + (Q, c, c) \to (q, \epsilon) + (Q, (, () \to (q, \epsilon) + (Q, (, (, () \to (q, \epsilon) + (Q, q, \epsilon) + (Q, (q, \epsilon) + (Q, q, \epsilon) + (Q, q, \epsilon) + (Q, q, \epsilon) + (Q, q, q, \epsilon) + (Q, q, q, q) +$$

3 Matematické modely algoritmů -Turingovy stroje a stroje RAM. Složitost algoritmu, asymptotické odhady. Algoritmicky nerozhodnutelné problémy.

4 Třídy složitosti problémů. Třída PTIME a NPTIME, NPúplné problémy.

5 Jazyk predikátové logiky prvního řádu. Práce s kvantifikátory a ekvivalentní transformace formulí.

6 Pojem relace, operace s relacemi, vlastnosti relací. Typy binárních relací. Relace ekvivalence a relace uspořádání.

7	Pojem operace a obecný pojem algebra. Algebry s jednou a dvěma binárními operacemi.					

8 FCA – formální kontext, formální koncept, konceptuální svazy. Asociační pravidla, hledání často se opakujících množin položek.

Metrické a topologické prostory – metriky a podobnosti.

10 Shlukování.

11	Náhodná veličina. Základní typy náhodných veličin. Funkce určující rozdělení náhodných veličin.		

12 Vybraná rozdělení diskrétní a spojité náhodné veličiny - binomické, hypergeometrické, negativně binomické, Poissonovo, exponenciální, Weibullovo, normální rozdělení.

13 Popisná statistika. Číselné charakteristiky a vizualizace kategoriálních a kvantitativních proměnných.

14 Metody statistické indukce. Intervalové odhady. Princip testování hypotéz. Okruhy pokývají předměty Teoretická informatika, Pravděpodobnost a statistika, Matematika pro zpracování znalostí