Classificação de falhas com extreme learning machine

Geração de falhas

- Geração dos dados simulandos as falhas:
 - 1) Falha 2 (Blockage in Tank Outlet)
 - 2) Falha 6 (Leak from pump)
 - 3) Falha 7 (Loss of pump pressure)
- Para as 3 falhas foi obtido 1000 amostras
- Para falha 2 foi gerado dados balanceados(500 exemplos normais e 500 de falhas) e dados desbalanceados(900 exemplos normaos e 100 de falhas

Geração de falhas

- Para falha 6 foi gerado dados com 700 exemplos normais e 300 exemplos de falhas
- Para a falha 7 foi gerado dados com 600 exemplos normais e 400 exemplos com falhas

Utilização do PCA para visualização

('Samples for falha normal and falha', '2', 'falha comeca em', 900)

('Samples for falha normal and falha', '6', 'falha comeca em', 300)

Utilizando o ELM(sem o kernel)

- Metodologia utilizada.
 - 1) Número de neurônios na cadama oculta variou entre 100 e 4000.
 - 2) Utilização de cross-validation(10-folds) para cada escolha de número de neurônios.
 - 3) A melhor acurácia obtida no grid search foi utilizada então para executar o modelo final
 - 4) No modelo final os dados são dividos em 60% treino e 40% teste e obtido o confusionmatrix.

Utilizando o ELM(com kernel rbf e polinomial)

- Metodologia utilizada.
 - 1) RBF: gamma(-20,20), Poly: coef(-20,20)
 - 2) Utilização de cross-validation(10-folds) para cada escolha de número de neurônios.
 - 3) A melhor acurácia obtida no grid search foi utilizada então para executar o modelo final
 - 4) No modelo final os dados são dividos em 60% treino e 40% teste e obtido o confusionmatrix

