

LINGUAGENS FORMAIS E AUTÓMATOS / COMPILADORES

ANÁLISE SINTÁTICA ASCENDENTE

Artur Pereira / Miguel Oliveira e Silva <{artur, mos}@ua.pt>

DETI, Universidade de Aveiro

Considere a gramática

que representa uma declaração de variáveis a la C

- Como reconhecer a palavra " $u = i \ v$, v;" como pertencente à linguagem definida pela gramática dada?
- Se u pertence à linguagem definida pela gramática, então $D \Rightarrow^+ u$
- Tente-se chegar lá andando no sentido contrário ao de uma derivação, ie. de u para D

•

•

```
\begin{array}{lll} \begin{tabular}{lll} $\bot$ v , v ; \\ & \Leftarrow T \ v \ , v ; \\ & \Leftarrow T \ L \ , v ; \\ & \Leftarrow T \ L \ ; \\ & \Leftarrow T \ L \ ; \\ & \Leftarrow D \end{array} & (\begin{tabular}{lll} $(\begin{tabular}{lll} $(\begin{tab
```

Colocando ao contrário

$$D \Rightarrow T L ; \Rightarrow T L , v ; \Rightarrow T v , v ; \Rightarrow i v , v ;$$

vê-se que corresponde a uma derivação à direita

 A tabela seguinte mostra como, na prática, se realiza esta (retro)derivação

pilha	entrada	ação
\$	i v , v ; \$	deslocamento
\$ i	v, v; \$	redução por $ au ightarrow \mathtt{i}$
\$ T	v, v; \$	deslocamento
\$ 7 v	, v ; \$	redução por $L o { t v}$
\$ T L	, v ; \$	deslocamento
\$ T L ,	v ; \$	deslocamento
\$ T L , v	; \$	redução por $L ightarrow L$, $_{ extstyle extstyle extstyle extstyle } $
\$ T L	; \$	deslocamento
\$ T L ;	\$	redução por $ extstyle D ightarrow extstyle T L $;
\$ D	\$	aceitação

 Veja-se a reação deste procedimento a uma entrada errada, por exemplo a palavra i v v;.

pilha entrada		ação
\$	ivv;\$	deslocamento
\$ i	v v ; \$	redução por $T ightarrow \mathtt{i}$
\$ T	v v ; \$	deslocamento
\$ T v	v ; \$	rejeição

ullet Se se transformar v em L, atinge-se uma configuração que não corresponde ao prefixo de nenhuma produção existente

 O procedimento acabado de descrever pode acarretar situações ambíguas chamadas conflitos. Considere a gramática

$$S \rightarrow i c S$$
 $\mid i c S \in S$
 $\mid a$

e a palavra i cica e a

pilha	entrada	ação
\$	icicaea\$	deslocamento
\$ i	cicaea\$	deslocamento
\$ ic	icaea\$	deslocamento
\$ici	caea\$	deslocamento
\$icic	aea\$	deslocamento
\$icica	ea\$	redução por $S o ext{a}$
sicic S	e a \$	conflito : redução por $S ightarrow \mathtt{i} \mathtt{c} S$
		ou deslocamento para tentar
		S ightarrow ic S e S ?

 Também pode haver conflitos entre reduções (reduce-reduce conflict). Considere a gramática

$$S \rightarrow A$$
 $\mid B$
 $A \rightarrow c$
 $\mid A \text{ a}$
 $B \rightarrow c$
 $\mid B \text{ b}$

e a palavra c

pilha	entrada	ação
\$	c \$	deslocamento
\$ C	\$	conflito: redução usando $A ightarrow c$ ou $B ightarrow c$?

ANÁLISE SINTÁTICA ASCENDENTE LFA+C-1819 7 / 26

 Veja-se agora a situação de um falso conflito. Considere a gramática

$$S \rightarrow a \mid (S) \mid aP \mid (S) S$$

 $P \rightarrow (S) \mid (S) S$

e reconheça-se a palavra a (a) a

•	entrada	3
\$	a (a) a\$	deslocamento
\$ a	(a)a\$	redução usando $S o$ a
		ou deslocamento para tentar $S o a P$?

 Deslocamento, porque se se optasse pela redução no topo da pilha ficaria um S e (∉ follow(S)

• Optando pelo deslocamento e continuando...

pilha	entrada	ação
\$	a (a) a\$	deslocamento
\$ a	(a)a\$	deslocamento, porque (\notin follow(S)
\$ a(a)a\$	deslocamento
\$ a(a) a \$	redução por $S o ext{a}$
\$a(<i>S</i>) a \$	deslocamento
\$ a(S)	a \$	deslocamento, porque a \notin follow(P)
\$ a(S)a	\$	redução por $S o ext{a}$
\$ a(S) S	\$	redução por $ extit{P} ightarrow (extit{S}) extit{S}$
\$ a P	\$	redução por $S o ext{a}$ P
\$ S	\$	aceitação

ANÁLISE SINTÁTICA ASCENDENTE LFA+C-1819 9 / 26

- Pode ser possível alterar uma gramática de modo a eliminar a fonte de conflito
- Considerando que se pretendia optar pelo deslocamento, a gramática seguinte gera a mesma linguagem que a do slide 6 e está isenta de conflitos.

$$S \rightarrow a$$
 \mid i c S
 \mid i c S' e S
 $S' \rightarrow a$
 \mid i c S' e S'

- Q Como determinar de forma sistemática a ação a realizar (deslocamento, redução, aceitação, rejeição)?
- Q Como o fazer?

pilha	entrada	ação
\$	ivv;\$	deslocamento
\$ i	v v ; \$	redução por $ au ightarrow \mathtt{i}$
\$ T	v v ; \$	deslocamento
\$ 7 v	v ; \$	rejeição

- A ação a realizar em cada passo do procedimento de reconhecimento — deslocamento, redução, aceitação ou rejeição — depende da configuração em cada momento
- Uma configuração é formada pelo conteúdo da pilha mais a parte da entrada ainda não processada
- A pilha é conhecida na realidade, é preenchida pelo procedimento de reconhecimento
- Da entrada, em cada momento, apenas se conhece o lookahead

pilha	entrada	ação
\$	ivv;\$	deslocamento
\$ i	v v ; \$	redução por $ au ightarrow \mathtt{i}$
\$ T	v v ; \$	deslocamento
\$ 7 v	v ; \$	rejeição

- Quantos símbolos da pilha usar?
- Poder-se-á usar apenas um?
- Se se quiser e puder construir um reconhecedor que apenas use o símbolo no topo, uma pilha onde se guardam os símbolos terminais e não terminais tem pouco interesse
- Mas pode-se definir um alfabeto adequado para a pilha

- Os símbolos a colocar na pilha devem representar estados no processo de deslocamento-redução
- O alfabeto da pilha representa assim o conjunto de estados nesse processo de reconhecimento
- Cada estado representa um conjunto de itens
- Um item representa o quanto de uma produção já foi processado e o quanto ainda falta processar
- Usa-se um ponto (⋅) sobre a produção para o indicar
- A produção $A \rightarrow B_1 \ B_2 \ B_3$ introduz 4 itens:

$$A \rightarrow B_1 B_2 B_3$$

$$A \ \rightarrow \ B_1 \cdot B_2 \ B_3$$

$$A \rightarrow B_1 B_2 \cdot B_3$$

$$A \ \rightarrow \ B_1 \ B_2 \ B_3 \ \cdot$$

• A produção $A \rightarrow \varepsilon$ introduz um único item:

$$A \rightarrow \cdot$$

Considere a gramática

$$S \rightarrow E$$

 $E \rightarrow a \mid (E)$

- Reconhecer a palavra $u = u_1 u_2 \cdots u_n$, significa reduzir $u \circ a S \circ a$
- Então, o estado inicial pode ser definido por

$$Z_0 = \{S \rightarrow \cdot E \}$$

- O facto de o ponto (·) se encontrar imediatamente à esquerda de um símbolo não terminal, significa que para se avançar no processo de reconhecimento é preciso obter esse símbolo
- Isso é considerado juntando ao conjunto Z₀ os itens iniciais das produções cuja cabeça é E

$$Z_0 = \{ \; S
ightarrow \cdot E \; \} \; \cup \; \{ \; E
ightarrow \cdot$$
a , $E
ightarrow \cdot$ (E) $\}$

ANÁLISE SINTÁTICA ASCENDENTE LFA+C-1819 15 / 26

$$Z_0 = \{ S \rightarrow \cdot E \} \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

 O estado Z₀ pode evoluir por ocorrência de um E, um a ou um (, que correspondem aos símbolos que aparecem imediatamente à direita do ponto (·)

$$Z_1 = \delta(Z_0, E) = \{ S \to E \cdot \$ \}$$

 $Z_2 = \delta(Z_0, a) = \{ E \to a \cdot \}$
 $Z_3 = \delta(Z_0, () = \{ E \to (\cdot E) \}$

 Z₃ tem de ser extendido pela função de fecho, uma vez que o ponto (·) ficou imediatamente à esquerda de um símbolo não terminal (E)

$$Z_3 = \delta(Z_0, () = \{ E \rightarrow (\cdot E) \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

 Z₁ representa um situação de aceitação se o símbolo à entrada (lookahead) for igual a \$ e de erro caso contrário

$$Z_1 = \delta(Z_0, E) = \{ S \rightarrow E \cdot \$ \}$$

• Z_2 representa uma possível situação de redução pela regra E
ightarrow a

$$Z_2 = \delta(Z_0, a) = \{ E \rightarrow a \cdot \}$$

 no entanto, só faz sentido fazê-lo se o símbolo à entrada (lookahead) for um elemento do conjunto follow(E); caso contrário corresponde a uma situação de erro

Voltando ao Z₃

$$Z_3 = \delta(Z_0, () = \{ E \rightarrow (\cdot E) \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

Z₃ pode evoluir por ocorrência de um E, um a ou um (

$$Z_4 = \delta(Z_3, E) = \{ E \rightarrow (E \cdot) \}$$

 $\delta(Z_3, a) = Z_2$
 $\delta(Z_3, () = Z_3$

- apenas um novo estado foi gerado (Z_4)
- Z₄ apenas evolui por ocorrência de)

$$Z_5 = \delta(Z_4,)) = \{E \rightarrow (E) \cdot \}$$

Pondo tudo junto

$$Z_{0} = \{ S \to \cdot E \} \} \cup \{ E \to \cdot a, E \to \cdot (E) \}$$

$$Z_{1} = \delta(Z_{0}, E) = \{ S \to E \cdot \$ \}$$

$$Z_{2} = \delta(Z_{0}, a) = \{ E \to a \cdot \}$$

$$Z_{3} = \delta(Z_{0}, ()) = \{ E \to (\cdot E) \} \cup \{ E \to \cdot a, E \to \cdot (E) \}$$

$$Z_{4} = \delta(Z_{3}, E) = \{ E \to (E \cdot) \}$$

$$Z_{5} = \delta(Z_{4},)) = \{ E \to (E) \cdot \}$$

Análise sintática ascendente LFA+C-1819 19 / 26

TABELA DE DECISÃO DE UM REC. ASCENDENTE

- A tabela de decisão de um reconhecedor ascendente é uma dupla matriz
 - as linhas são indexadas pelo alfabeto da pilha (conjunto de conjuntos de itens)
 - as colunas são indexadas pelos símbolos terminais (uma das matrizes) e não terminais (a outra) da gramática
- Estas matrizes representam respetivamente as funções ACTION e GOTO
 - ACTION tem como argumentos um estado (símbolo da pilha) e um símbolo terminal (incluindo o \$) e define a ação a realizar (shift, reduce, accept ou error)
 - GOTO mapeia um estado e um símbolo não terminal num estado, sendo usada após uma operação de redução

	a	()	\$	E
Z_0	shift, Z ₂	shift, Z ₃			Z_1
Z_1				accept	
Z_2			reduce, $E o$ a	reduce, $E o a$	
Z_3	shift, Z ₂	shift, Z ₃			Z_4
Z_4			shift, Z ₅		
Z_5			reduce, $E \rightarrow (E)$	reduce, $E \rightarrow (E)$	

ALGORITMO DE RECONHECIMENTO

 Com base numa tabela deste tipo, o procedimento de reconhecimento pode ser implementado pelo seguinte algoritmo

ALGORITMO

```
push (Z_0)
forever
    if top() == Z_1 && lookahead() == $
         ACCEPT
    action = table[top(),lookahead()]
    if action is (shift, Z_i)
         adv(); push(Z_i);
    else if action is (reduce A \rightarrow \alpha)
         pop |\alpha| símbolos; push(table[top(), A]);
    else
         REJECT
```

RECONHECEDOR ASCENDENTE: EXEMPLO

• Aplicando este algoritmo à palavra ((a))

pilha	entrada	ação
Z_0	((a))\$	shift Z ₃
Z_0 Z_3	(a))\$	shift Z ₃
Z_0 Z_3 Z_3	a))\$	shift Z ₂
Z_0 Z_3 Z_3 Z_2)) \$	reduce $E o a$
Z_0 Z_3 Z_3		goto Z ₄
Z_0 Z_3 Z_3 Z_4)) \$	shift Z ₅
$\overline{Z_0}$ Z_3 Z_3 Z_4 Z_5) \$	reduce $E \rightarrow (E)$
Z_0 Z_3) \$	goto Z ₄
$Z_0 Z_3 Z_4$) \$	shift Z ₅
$\overline{Z_0} Z_3 Z_4 Z_5$	\$	reduce $E \rightarrow (E)$
Z_0	\$	goto Z ₁
Z_0 Z_1	\$	accept

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S \rightarrow a \mid (S) \mid aP \mid (S) S$$

 $P \rightarrow (S) \mid (S) S$

 O primeiro passo corresponde a alterar a gramática de modo ao símbolo inicial não aparecer do lado direito

$$S_0
ightarrow S$$

 $S
ightarrow$ a $|$ (S) $|$ a P $|$ (S) S
 $P
ightarrow$ (S) $|$ (S) S

 O passo seguinte corresponde a calcular o conjunto de conjunto de itens

continuando

$$\begin{split} Z_7 &= \delta(Z_5,S) = \{P \to (S \cdot), P \to (S \cdot) S \} \\ Z_8 &= \delta(Z_6,)) = \{S \to (S) \cdot, S \to (S) \cdot S \} \\ & \cup \{S \to \cdot a, S \to \cdot (S), S \to \cdot a P, S \to \cdot (S) S \} \\ Z_9 &= \delta(Z_7,)) = \{P \to (S) \cdot, P \to (S) \cdot S \} \\ & \cup \{S \to \cdot a, S \to \cdot (S), S \to \cdot a P, S \to \cdot (S) S \} \\ Z_{10} &= \delta(Z_8,S) = \{S \to (S) S \cdot \} \\ Z_{11} &= \delta(Z_9,S) = \{P \to (S) S \cdot \} \\ \delta(Z_8,a) &= \delta(Z_9,a) = Z_2 \\ \delta(Z_8, ()) &= \delta(Z_9, ()) = Z_3 \end{split}$$

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S \rightarrow \varepsilon \mid a B \mid b A$$

$$A \rightarrow a S \mid b A A$$

$$B \rightarrow a B B \mid b S$$