import pandas as pd
import numpy as np

df=pd.read_csv(r"/content/credit_card (1).csv")
df

₽		CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS
	0	C10001	40.900749	0.818182	95.40	0.00	
	1	C10002	3202.467416	0.909091	0.00	0.00	
	2	C10003	2495.148862	1,000000	773.17	773.17	
	3	C10004	1666.670542	0.636364	1499.00	1499.00	
	4	C10005	817.714335	1.000000	16.00	16.00	
	8945	C19186	28.493517	1.000000	291.12	0.00	
	8946	C19187	19.183215	1.000000	300.00	0.00	
	8947	C19188	23.398673	0.833333	144.40	0.00	
	8948	C19189	13.457564	0.833333	0.00	0.00	
	8949	C19190	372.708075	0.666667	1093.25	1093.25	
	8950 ro	ws × 18 co	lumns				

8950 rows × 18 columns

Saved successfully!

df.size

161100

df.shape

(8950, 18)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8950 entries, 0 to 8949
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	CUST_ID	8950 non-null	object
1	BALANCE	8950 non-null	float64
2	BALANCE FREQUENCY	8950 non-null	float64

3	PURCHASES	8950	non-null	float64
4	ONEOFF_PURCHASES	8950	non-null	float64
5	INSTALLMENTS_PURCHASES	8950	non-null	float64
6	CASH_ADVANCE	8950	non-null	float64
7	PURCHASES_FREQUENCY	8950	non-null	float64
8	ONEOFF_PURCHASES_FREQUENCY	8950	non-null	float64
9	PURCHASES_INSTALLMENTS_FREQUENCY	8950	non-null	float64
10	CASH_ADVANCE_FREQUENCY	8950	non-null	float64
11	CASH_ADVANCE_TRX	8950	non-null	int64
12	PURCHASES_TRX	8950	non-null	int64
1 3	CREDIT_LIMIT	8949	non-null	float64
14	PAYMENTS	8950	non-null	float64
15	MINIMUM_PAYMENTS	8637	non-null	float64
16	PRC_FULL_PAYMENT	8950	non-null	float64
17	TENURE	8950	non-null	int64

dtypes: float64(14), int64(3), object(1)

memory usage: 1.2+ MB

df.describe()

		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMEN
	count	8950.000000	8950.000000	8950.000000	8950.000000	
	mean	1564.474828	0.877271	1003.204834	592.437371	
	std	2081.531879	0.236904	2136.634782	1659.887917	
	min	0.000000	0.000000	0.000000	0.000000	
	25%	128.281915	0.888889	39.635000	0.000000	
	F00/	070 005004	1.000000	361.280000	38.000000	
Save	ed succe	ssfully!	× 1.000000	1110.130000	577.405000	
	max	19043.138560	1.000000	49039.570000	40761.250000	
	4					•

df.head(10)

```
BALANCE BALANCE FREQUENCY PURCHASES ONEOFF PURCHASES INSTALLME
         CUST ID
                    40.900749
      0
         C10001
                                         0.818182
                                                       95.40
                                                                           0.00
         C10002 3202.467416
                                         0.909091
                                                        0.00
                                                                           0.00
      1
         C10003 2495.148862
                                         1.000000
                                                      773.17
                                                                         773.17
         040004 4000 070540
                                                      4 400 00
                                                                        4 400 00
                                         0 000004
df.isnull().sum()
     CUST ID
                                             0
     BALANCE
                                             0
     BALANCE FREQUENCY
                                             0
     PURCHASES
                                             0
     ONEOFF_PURCHASES
                                             0
     INSTALLMENTS_PURCHASES
                                             0
     CASH ADVANCE
                                             0
     PURCHASES_FREQUENCY
                                             0
     ONEOFF_PURCHASES_FREQUENCY
                                             0
     PURCHASES INSTALLMENTS FREQUENCY
                                             0
     CASH_ADVANCE_FREQUENCY
                                             0
     CASH ADVANCE TRX
                                             0
     PURCHASES TRX
                                             0
     CREDIT LIMIT
                                             1
     PAYMENTS
                                             0
     MINIMUM PAYMENTS
                                           313
     PRC FULL PAYMENT
                                             0
     TENURE
                                             0
     dtype: int64
Columnas nulas=df[['MTNITMIM DAVMENTS', 'CREDIT LIMIT']]
 Saved successfully!
    maxv=df[nombre].max()
    minv=df[nombre].min()
    print('Columna: {}\n ===> Promedio: {}\n ===> Valor Max: {}\n ===> Valor Min: {}\n'.forma
     Columna: MINIMUM_PAYMENTS
      ===> Promedio: 864.2065423050828
      ===> Valor Max: 76406.20752
      ===> Valor Min: 0.019163
     Columna: CREDIT LIMIT
      ===> Promedio: 4494.449450364621
      ===> Valor Max: 30000.0
      ===> Valor Min: 50.0
from sklearn.preprocessing import StandardScaler
import seaborn as sns
#Graficos
```

```
import matplotlib.pyplot as plt

plt.figure(1 , figsize = (30, 4))
n = 0
for x in ['MINIMUM_PAYMENTS','CREDIT_LIMIT']:
    n += 1
    plt.subplot(1 , 3 , n)
    plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
    sns.histplot(df[x] , bins = 20)
    plt.title('Plot of {}'.format(x))
plt.show()
```



```
Saved successfully! X LIMIT'].median(),inplace=True)
```

df.isnull().sum()

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	0
PAYMENTS	0
MINIMUM_PAYMENTS	0
PRC_FULL_PAYMENT	0

6

TENURE dtype: int64

df.head()

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLME
0	C10001	40.900749	0.818182	95.40	0.00	
1	C10002	3202.467416	0.909091	0.00	0.00	
2	C10003	2495.148862	1.000000	773.17	773.17	
3	C10004	1666.670542	0.636364	1499.00	1499.00	
4	C10005	817.714335	1.000000	16.00	16.00	
4						>

```
plt.figure(1 , figsize = (45, 50))
n = 0
for x in df.columns[1:18]:
    n += 1
    plt.subplot(5 , 4 , n)
    sns.histplot(df[x] , bins = 20)
    plt.title('Plot of {}'.format(x))
plt.show()
```


columns=['BALANCE', 'PURCHASES', 'ONEOFF_PURCHASES', 'INSTALLMENTS_PURCHASES', 'CASH_ADVANCE' 'PAYMENTS', 'MINIMUM_PAYMENTS']

for c in columns:

```
df[Range]=0
    df.loc[((df[c]>0)&(df[c]<=500)),Range]=1
    df.loc[((df[c]>500)&(df[c]<=1000)),Range]=2
    df.loc[((df[c]>1000)&(df[c]<=3000)),Range]=3</pre>
    df.loc[((df[c]>3000)&(df[c]<=5000)),Range]=4
    df.loc[((df[c]>5000)&(df[c]<=10000)),Range]=5
    df.loc[((df[c]>10000)),Range]=6
columns=['BALANCE_FREQUENCY', 'PURCHASES_FREQUENCY', 'ONEOFF_PURCHASES_FREQUENCY', 'PURCHASES
         'CASH_ADVANCE_FREQUENCY', 'PRC_FULL_PAYMENT']
for c in columns:
    Range=c+' RANGE'
    df[Range]=0
    df.loc[((df[c]>0)&(df[c]<=0.1)),Range]=1
    df.loc[((df[c]>0.1)&(df[c]<=0.2)),Range]=2
    df.loc[((df[c]>0.2)&(df[c]<=0.3)),Range]=3
    df.loc[((df[c]>0.3)&(df[c]<=0.4)),Range]=4
    df.loc[((df[c]>0.4)&(df[c]<=0.5)),Range]=5
    df.loc[((df[c]>0.5)&(df[c]<=0.6)),Range]=6
    df.loc[((df[c]>0.6)&(df[c]<=0.7)),Range]=7
    df.loc[((df[c]>0.7)&(df[c]<=0.8)),Range]=8
    df.loc[((df[c]>0.8)&(df[c]<=0.9)),Range]=9</pre>
    df.loc[((df[c]>0.9)&(df[c]<=1.0)),Range]=10
COTUMBE-LIDIDCHYCEC TDAL CVCH VUNVVNCE LXX.]
 Saved successfully!
    Range=c+' RANGE'
    df[Range]=0
    df.loc[((df[c]>0)&(df[c]<=5)),Range]=1
    df.loc[((df[c]>5)&(df[c]<=10)),Range]=2
    df.loc[((df[c]>10)&(df[c]<=15)),Range]=3</pre>
    df.loc[((df[c]>15)&(df[c]<=20)),Range]=4</pre>
    df.loc[((df[c]>20)&(df[c]<=30)),Range]=5</pre>
    df.loc[((df[c]>30)&(df[c]<=50)),Range]=6
    df.loc[((df[c]>50)&(df[c]<=100)),Range]=7
    df.loc[((df[c]>100)),Range]=8
df.drop(['CUST_ID','BALANCE', 'BALANCE_FREQUENCY', 'PURCHASES',
       'ONEOFF_PURCHASES', 'INSTALLMENTS_PURCHASES', 'CASH_ADVANCE',
       'PURCHASES_FREQUENCY', 'ONEOFF_PURCHASES_FREQUENCY',
       'PURCHASES_INSTALLMENTS_FREQUENCY', 'CASH_ADVANCE_FREQUENCY',
       'CASH_ADVANCE_TRX', 'PURCHASES_TRX', 'CREDIT_LIMIT', 'PAYMENTS',
       'MINIMUM_PAYMENTS', 'PRC_FULL_PAYMENT' ], axis=1, inplace=True)
```

```
Features= np.asarray(df)
```

```
Features
```

```
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import cosine similarity
```

```
n_clusters=15
cost=[]
for i in range(1,n_clusters):
    kmean= KMeans(i)
    kmean.fit(Features)
    Saved successfully!

pit.plot(cost, 'bx-')
```

[<matplotlib.lines.Line2D at 0x7f29f1480150>]

kmean= KMeans(4)
kmean.fit(Features)

labels=kmean.labels_

clusters=pd.concat([df, pd.DataFrame({'cluster':labels})], axis=1)
clusters.head()

	TENURE	BALANCE_RANGE	PURCHASES_RANGE	ONEOFF_PURCHASES_RANGE	INSTALLMENTS_P
0	12	1	1	0	
1	12	4	0	0	
2	12	3	2	2	
3	12	3	3	3	
4	12	2	1	1	
4					>

```
for c in clusters:
```

```
grid= sns.FacetGrid(clusters, col='cluster')
grid.map(plt.hist, c)
```


500 -