Association Analysis (3)

FP-Tree/FP-Growth Algorithm

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets.

Building the FP-Tree

- 1. Scan data to determine the support count of each item.

 Infrequent items are discarded, while the frequent items are sorted in decreasing support counts.
- 2. Make a second pass over the data to construct the FPtree.
 - As the transactions are read, before being processed, their items are sorted according to the above order.

First scan – determine frequent 1-itemsets, then build header

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	{B,C,E}

8
7
7
5
3

FP-tree construction

After reading TID=1:

•	null
•	B:1()
	D .1
A	\cdot 1

TID	Items	
1	{A,B}	
2	{B,C,D}	
3	$\{A,C,D,E\}$	
4	$\{A,D,E\}$	
5	{A,B,C}	
6	$\{A,B,C,D\}$	
7	{B,C}	
8	{A,B,C}	
9	$\{A,B,D\}$	
10	{B,C,E}	

After reading TID=2:

FP-Tree Construction

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

Header table

Item		Pointer
В	8	
Α	7	
С	7	
D	5	
Е	3	

Chain pointers help in quickly finding all the paths of the tree containing some given item.

FP-Tree size

• The size of an FPtree is typically smaller than the size of the uncompressed data because many transactions often share a few items in common.

• **Bestcase** scenario:

 All transactions have the same set of items, and the FPtree contains only a single branch of nodes.

• Worstcase scenario:

- Every transaction has a unique set of items.
- As none of the transactions have any items in common, the size of the FP tree is effectively the same as the size of the original data.
- The size of an FPtree also depends on how the items are ordered.
 - If the ordering scheme in the preceding example is reversed,
 - i.e., from lowest to highest support item, the resulting FPtree probably is denser (shown in next slide).
 - Not always though...ordering is just a heuristic.

An FPtree representation for the data set with a different item ordering scheme.

FP-Growth (I)

- FPgrowth generates frequent itemsets from an FPtree by exploring the tree in a bottomup fashion.
- Given the example tree, the algorithm looks for frequent itemsets ending in **E** first, followed by **D**, **C**, **A**, and finally, **B**.
- Since every transaction is mapped onto a path in the FPtree, we can derive the frequent itemsets ending with a particular item, say, **E**, by examining only the paths containing node **E**.
- These paths can be accessed rapidly using the pointers associated with node **E**.

Paths containing node E

Conditional FP-Tree for E

- We now need to build a conditional FP-Tree for E, which is the tree of itemsets ending in E.
- It is not the tree obtained in previous slide as result of deleting nodes from the original tree.
- Why? Because the order of the items change.
 - In this example, C has a higher count than B.

Conditional FP-Tree for E

The set of paths containing E.

Insert each path (after truncating E) into a new tree.

Header table

Adding up the counts for D we get 2, so {E,D} is frequent itemset.

We continue recursively.

Base of recursion: When the tree has a single path only.

FP-Tree Another Example

Transactions

Freq. 1-Itemsets. Supp. Count ≥2

ABCEFO

A C G

ΕI

ACDEG

ACEGL

E J

ABCEFP

A C D

ACEGM

ACEGN

A:8	
C:8	
E:8	
G:5	
B:2	
D:2	
F:2	

Transactions with items sorted based on frequencies, and ignoring the infrequent items.

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

A C E G

FP-Tree after reading 1st transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 2nd transaction

ACEBF

ACG

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 3rd transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 4th transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 5th transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 6th transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 7th transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 8th transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Tree after reading 9th transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 10th transaction

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

Conditional FP-Trees

Build the conditional FP-Tree for each of the items.

For this:

- 1. Find the paths containing on focus item. With those paths we build the conditional FP-Tree for the item.
- 2. Read again the tree to determine the new counts of the items along those paths. Build a new header.
- 3. Insert the paths in the conditional FP-Tree according to the new order.

Conditional FP-Tree for F

There is only a single path containing F

Recursion

- We continue recursively on the conditional FP-Tree for F.
- However, when the tree is just a single path it is the base case for the recursion.
- So, we just produce all the subsets of the items on this path merged with F.

Conditional FP-Tree for D

Paths containing D after updating the counts

The other items are removed as infrequent.

The tree is just a single path; it is the base case for the recursion.

So, we just produce all the subsets of the items on this path merged with D.

$$\{D\} \{A,D\} \{C,D\} \{A,C,D\}$$

Exercise: Complete the example.