武汉大学数学与统计学院

《高等数学》(第一学期)期中考试试题3

一、试解下列各题: (5×5')

1、设函数
$$f(x) = \begin{cases} \frac{1 - e^{\tan x}}{\arcsin \frac{x}{2}} & x > 0 \\ ae^{2x} & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,求 a 的值。

- 2、求极限: $\lim_{x \to \infty} x[\ln(1+x) \ln x]$
- 3、确定函数 $f(x) = |x| \sin \frac{1}{x}$ 的间断点, 并判定其类型。

4.
$$\lim_{x \to 0} \frac{(1 - \cos x)(1 + x^2)^{\frac{1}{\ln(1 + x^2)}}}{\ln(1 + x^2)}$$

- 5、设 $f(x) = \lim_{t \to \infty} (1 + \frac{1}{t})^{2xt} \cdot x$,求曲线y = f(x)的拐点。
- 二、计算下列各题: (5×5')
 - $1 \cdot \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n})$

3、设函数
$$f(x) = \begin{cases} e^{2x} + b & x \le 0 \\ \sin ax & x > 0 \end{cases}$$
问: a 、 b 为何值时, $f(x)$ 在 $x = 0$ 处可导并求 $f'(0)$ 。

- 4、设 $y = \sin^2 x$,求 $y^{(2004)}$
- 5、设 y = y(x) 由方程 $y = 1 + xe^{y}$ 确定,求 $\frac{d^{2}y}{dx^{2}}$

三、(8分) 设
$$f(x) = \frac{x^2}{2(x+1)^2}$$

求: 1) 函数 f(x) 的单调增加、单调减少区间,极大、极小值;

2) 曲线 y = f(x) 的凸性区间、拐点、渐近线方程。

四、(10 分)设
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = 1 + t^2 \\ y = \cos t \end{cases}$$
 所确定,

- 1) 求曲线 y = y(x) 在 $t = \frac{\pi}{2}$ 对应点处的切线方程;
- 2)求 $\lim_{x\to 1^+} \frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\lim_{x\to 1^+} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$

五、(6 分) 用定义证明: 若 f(x)、g(x) 都在区间 I 上一致连续,则 f(x) + g(x) 也在区间 I 上一致连续。

六、(10 分) 设
$$a > 0, b > 0, c > 0, A(x) = \begin{cases} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} x \neq 0, \\ c & x = 0 \end{cases}$$

- 1). 讨论 A(x) 在 x = 0 处的连续性;
- 2). 讨论 $\lim_{x\to +\infty} A(x)$ 、 $\lim_{x\to -\infty} A(x)$ 、 $\lim_{x\to 0} A(x)$ 、A(-1)、A(1) 五者之间的大小关系。

七、(8分)设f(x)在[a,b]上连续,在(a,b)内可导,f(a)=f(b)=0,试证: $\forall \alpha \in R, \exists \xi \in (a,b)$ 使得 $\alpha f(\xi)=f'(\xi)$

八、(8 分)设 y = f(x) 二阶可导,且 f(0) = 0, f'(0) = 0, $f''(0) \neq 0$, u(x) 是曲线 y = f(x) 在点 P(x, f(x)) 处的切线在 x 轴上的截距,求 $\lim_{x\to 0} \frac{f(u)}{f(x)}$.

武汉大学数学与统计学院

《高等数学》(第一学期)期中考试试题3参考解答

一、试解下列各题:

1、设函数
$$f(x) = \begin{cases} \frac{1 - e^{\tan x}}{\arcsin \frac{x}{2}} & x > 0 \\ ae^{2x} & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,求 a 的值。

$$\Re \colon \lim_{n \to 0^{-}} f(x) = \lim_{n \to 0^{-}} ae^{2x} = a \quad \lim_{n \to 0^{+}} f(x) = \lim_{n \to 0^{+}} \frac{1 - e^{\tan x}}{\arcsin \frac{x}{2}} = \lim_{n \to 0^{+}} \frac{-\tan x}{\frac{x}{2}} = -2$$

又 f(x) 在 x = 0 处连续,故a = -2

 $2 \cdot \lim_{x \to +\infty} x[\ln(1+x) - \ln x]$

解:
$$\lim_{x \to +\infty} x[\ln(1+x) - \ln x] = \lim_{x \to +\infty} x \ln(1+\frac{1}{x}) = 1$$

3、确定函数 $f(x) = |x| \sin \frac{1}{x}$ 的间断点, 并判定其类型。

解:由在x = 0处f(x)无意义,故x = 0是函数f(x)的间断点,又 $\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| \sin \frac{1}{x} = 0$ 故x = 0是f(x)的第一类可去间断点。

4.
$$\lim_{x \to 0} \frac{(1 - \cos x)(1 + x^2)^{\frac{1}{\ln(1 + x^2)}}}{\ln(1 + x^2)}$$

$$\Re: \lim_{x \to 0} \frac{(1 - \cos x)(1 + x^2)^{\frac{1}{\ln(1 + x^2)}}}{\ln(1 + x^2)} = \lim_{x \to 0} \frac{\frac{1}{2}x^2(1 + x^2)^{\frac{1}{x^2}}}{x^2} = \frac{1}{2}e$$

5、设 $f(x) = \lim_{t \to \infty} (1 + \frac{1}{t})^{2xt} \cdot x$, 求曲线y = f(x)的拐点。

解 由
$$f(x) = \lim_{t \to \infty} (1 + \frac{1}{t})^{2xt} \cdot x = x \lim_{t \to \infty} (1 + \frac{1}{t})^{2xt} = xe^{2x}$$

$$f'(x) = (2x+1)e^{2x}, f''(x) = (4x+4)e^{2x} \Leftrightarrow f''(x) = (4x+4)e^{2x} = 0 \Rightarrow x = -1$$
又 $f'''(x) = 4(2x+3)e^{2x}, f'''(0) = 12 \neq 0$ 所以点 $(-1, -e^{-2})$ 为拐点。

二、计算下列各题:

1. $\limsup^2 (\pi \sqrt{n^2 + n})$

解:
$$\lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n}) = \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi + n\pi)$$

$$= \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n) = \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi + n\pi)$$

$$= \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n) = \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi + n\pi)$$

$$= \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n) = \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi + n\pi)$$

$$= \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n) = \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi + n\pi)$$

$$= \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n) = \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi + n\pi)$$

$$= \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n) = \lim_{n \to \infty} \sin^2(\pi \sqrt{n^2 + n} - n\pi + n\pi)$$

解:
$$dy = \{e^{\sin x}\cos x + x^{\arctan x}\left[\frac{\ln x}{1+x^2} + \frac{\arctan x}{x}\right]\}dx$$

3、设函数
$$f(x) = \begin{cases} e^{2x} + b & x \le 0 \\ \sin ax & x > 0 \end{cases}$$
 问: a 、 b 为何值时, $f(x)$ 在 $x = 0$ 处可导并求 $f'(0)$.

解:由 f(x) 在 x = 0 处可导,故 f(x) 在 x = 0 点处连续,所以 $f_{-}(0) = f_{+}(0)$ 即有 $b+1=0 \Rightarrow b=-1$ 得 f(0)=0,又 f(x) 在 x=0 处可导,故 $f'_{-}(0)=f'_{+}(0)$ 即:

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{e^{2x} - 1}{x} = 2$$
 $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\sin ax - 0}{x} = a$ 故有: $a = 2$,所以 $f'(0) = 2$

4、设 $y = \sin^2 x$,求 $y^{(2004)}$

解:
$$y^{(2004)} = (\sin^2 x)^{(2004)} = (\sin 2x)^{(2003)} = 2^{2003} \sin(2x + \frac{2003\pi}{2}) = -2^{2003} \cos 2x$$

5、设
$$y = y(x)$$
 由方程 $y = 1 + xe^{y}$ 确定,求 $\frac{d^{2}y}{dx^{2}}$

解:
$$y' = xe^{y}y' + e^{y}$$
, 所以 $y' = \frac{e^{y}}{1 - xe^{y}}$;
$$y'' = \frac{2e^{y}y' + xe^{y}(y')^{2}}{1 - xe^{y}} = \frac{e^{2y}(2 - xe^{y})}{(1 - xe^{y})^{3}} = \frac{e^{2y}(3 - y)}{(2 - y)^{3}}$$

三、设 $f(x) = \frac{x^2}{2(x+1)^2}$ 求: 1) 函数f(x)的单调增加、单调减少区间,极大极小值;

2) 曲线 y = f(x) 的凸性区间、拐点、渐近线方程。

解: 定义域为: (-∞,-1) ∪(-1,+∞)

$$y' = \frac{x}{(1+x)^3} \quad \Leftrightarrow y' = 0 \Rightarrow \text{ } \pm \text{ } x = 0$$

$$y'' = \frac{1-2x}{(1+x)^3} \quad \Leftrightarrow y'' = 0 \Rightarrow y = 1$$

$$y'' = \frac{1 - 2x}{(1 + x)^4} \Leftrightarrow y'' = 0 \Rightarrow x = \frac{1}{2}$$

х	$(-\infty,-1)$	41	(-1,0)	0	$(0,\frac{1}{2})$	$\frac{1}{2}$	$(\frac{1}{2},+\infty)$
<i>y</i> ′	+				+		+
<i>y</i> "	+		+		+		_
У	单增		单减	极小值 0	单增		单增
y = f(x)	下凸		不凸		下凸	拐点 $(\frac{1}{2}, \frac{1}{18})$	上凸

1) 故单调增加区间为: $(-\infty,-1)$ 、 $(0,+\infty)$ 单调减少区间为: (-1,0)极小值为: f(0) = 0, 无极大值。

2) 下凸区间为:
$$(-\infty,-1)$$
 $(-1,\frac{1}{2})$ 上凸区间为: $(\frac{1}{2},+\infty)$

据点为: $(\frac{1}{2}, \frac{1}{18})$ x = -1 为垂直渐近线, $y = \frac{1}{2}$ 为水平渐近线, 无斜渐近线。

四、设y=y(x)由参数方程 $\begin{cases} x=1+t^2\\ y=\cos t \end{cases}$ 所确定,1)求曲线 y=y(x) 在 $t=\frac{\pi}{2}$ 对应点处的切线方程;2)求

$$\lim_{x\to 1^+}\frac{dy}{dx} \not= \lim_{x\to 1^+}\frac{d^2y}{dx^2}.$$

解: 1).
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{-\sin t}{2t} = -\frac{\sin t}{2t}$$
; $\frac{dy}{dx}|_{t=\frac{\pi}{2}} = -\frac{1}{\pi}$

故切线方程为:
$$y = -\frac{1}{\pi}(x-1) + \frac{\pi}{4}$$

2)
$$\pm \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(-\frac{\sin t}{2t} \right) \cdot \frac{dt}{dx} = \frac{d}{dt} \left(-\frac{\sin t}{2t} \right) \cdot \frac{1}{\frac{dx}{dt}}$$

$$\frac{d}{dt} \left(-\frac{\sin t}{2t} \right) \cdot \frac{1}{t} \cos t - \sin t = 1 \quad \sin t - t \cos t$$

$$=\frac{d}{dt}\left(-\frac{\sin t}{2t}\right)\cdot\frac{1}{2t}=-\frac{1}{2}\frac{t\cos t-\sin t}{t^2}\cdot\frac{1}{2t}=\frac{\sin t-t\cos t}{4t^3}.$$

五、用定义证明: 若f(x)、g(x)都在区间 I 上一致连续,则f(x)+g(x) 也在区间 I 上一致连续。

证明: $\forall \varepsilon > 0$, 由 f(x)、g(x)都在区间 I 上一致连续, 必存在 $\delta_1 > 0$, $\delta_2 > 0$ 使得对

 $\forall x_1, x_2 \in I$, 只要 $|x_1 - x_2| < \delta_1$ 就有 $|f(x_1) - f(x_2)| < \varepsilon/2$ 只要 $|x_1 - x_2| < \delta_2$ 就 有 $|g(x_1)-g(x_2)|<\varepsilon/2$ 取 $\delta=\min\{\delta_1,\delta_2\}$

对 $\forall x_1$ 、 x_2 ∈ I ,只要 ,就有

 $|[f(x_1)+g(x_1)]-[f(x_2)+g(x_2)]|=|f(x_1)-f(x_2)+g(x_1)-g(x_2)|$

$$<|f(x_1)-f(x_2)|+|g(x_1)-g(x_2)|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon$$

由定义知, $f(x)+g(x)$ 也在区间 I 上一致连续。

由定义知,
$$f(x) + g(x)$$
 也在区间
六、设 $a > 0, b > 0, c > 0$, $A(x) = \begin{cases} (\frac{a^x + b^x}{2})^{\frac{1}{x}} & x \neq 0 \\ c & x = 0 \end{cases}$

- 1). 讨论 A(x) 在 x = 0 处的连续性;
- 2). 讨论 $\lim_{x\to +\infty} A(x)$ 、 $\lim_{x\to -\infty} A(x)$ 、 $\lim_{x\to 0} A(x)$ 、A(-1)、A(1) 五者之间的大小关系.

解 1). 由
$$\lim_{x\to 0} A(x) = \lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} = \lim_{x\to 0} \exp\left[\frac{1}{x}\ln\left(\frac{a^x + b^x}{2}\right)\right] = \lim_{x\to 0} \frac{a^x \ln a + b^x \ln b}{a^x + b^x}$$

$$=\lim_{x\to 0}\frac{\ln a + \ln b}{2} = \sqrt{ab}$$

即知, 当 $c = \sqrt{ab}$ 时, A(x)在x = 0处连续.

而
$$\lim_{x \to +\infty} A(x) = 2^{\frac{-1}{x}} \max(a,b) \left[1 + \left(\frac{\min(a,b)}{\max(a,b)} \right)^x \right]^{\frac{1}{x}} = \max(a,b)$$
 , 同 理 可 求 得

 $\lim_{x \to -\infty} A(x) = \min(a,b) ,$

则所考虑的五者大小关系为 $\lim_{x\to +\infty} A(x) \ge A(1) \ge \lim_{x\to 0} A(x) \ge A(-1) \ge \lim_{x\to -\infty} A(x)$,

或:
$$\max(a,b) \ge \frac{a+b}{2} \ge \sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}} \ge \min(a,b)$$
.

七、设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导, f(a)=f(b)=0 ,试证: $\forall \alpha \in R, \exists \xi \in (a,b)$ 使得 $\alpha f(\xi)=f'(\xi)$ 。

证明: 令 $\varphi(x) = e^{-\alpha x} f(x)$ 则 $\varphi(x)$ 在 [a,b] 上满足罗尔定理条件,故存在 $\xi \in (a,b)$ 使得 $\varphi'(\xi) = f'(\xi)e^{-\alpha \xi} - \alpha f(\xi)e^{-\alpha \xi} = 0$ 即 $\alpha f(\xi) = f'(\xi)$

八、设 y = f(x) 二阶可导,且 f(0) = 0, f'(0) = 0, $f''(0) \neq 0$, u(x) 是曲线 y = f(x) 在点 P(x, f(x)) 处 的切线在 x 轴上的截距,求 $\lim_{x\to 0} \frac{f(u)}{f(x)}$.

解 切线方程为 Y-f(x)=f'(x)(X-x) 所以曲线 y=f(x) 在点(x,f(x)) 处的切线在x轴上的截距

为
$$Y = 0 \Rightarrow X = x - \frac{f(x)}{f'(x)}$$

$$\lim_{x \to 0} u(x) = \lim_{x \to 0} \left(x - \frac{f(x)}{f'(x)}\right) = \lim_{x \to 0} \left(x - \frac{\frac{f(x) - f(0)}{x}}{\frac{f'(x) - f'(0)}{x}}\right) = 0 - \frac{f'(0)}{f''(0)} = 0$$

又
$$f(0) = 0, f'(0) = 0, f''(0) \neq 0$$
 和泰勒公式

$$f(u) = f(0) + f'(0)u + \frac{f''(0)}{2!}u^2 + o(u^2) = \frac{f''(0)}{2!}u^2 + o(u^2)$$

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + o(x^2) = \frac{f''(0)}{2!}x^2 + o(x^2)$$

$$f'(x) = f'(0) + f''(0)x + o(x) = f''(0)x + o(x)$$

$$\overline{m} \quad \lim_{x \to 0} \frac{f(u)}{f(x)} = \lim_{x \to 0} \frac{\frac{f''(0)}{2!}u^2 + o(u^2)}{\frac{f''(0)}{2!}x^2 + o(x^2)} = \lim_{x \to 0} \frac{u^2(x)}{x^2} = (\lim_{x \to 0} \frac{u(x)}{x})^2$$

所以有
$$\lim_{x\to 0} \frac{f(x)}{xf'(x)} = \lim_{x\to 0} \frac{\frac{f''(0)}{2!}x^2 + o(x^2)}{x(f''(0)x + o(x))} = \lim_{x\to 0} \frac{\frac{f''(0)}{2!} + \frac{o(x^2)}{x^2}}{f''(0) + \frac{o(x)}{x^2}} = \frac{1}{2}$$

故有
$$\lim_{x\to 0} \frac{u(x)}{x} = 1 - \frac{1}{2} = \frac{1}{2}$$
 所以有 $\lim_{x\to 0} \frac{f(u)}{f(x)} = \lim_{x\to 0} \frac{u^2(x)}{x^2} = (\lim_{x\to 0} \frac{u(x)}{x})^2 = \frac{1}{4}$