Discrete Mathematics: Lecture 4

- Last time:
 - Chap 8.1: Applications of recurrence relations
 - Chap 8.2: Solving linear recurrence relations
- Today:
 - Chap 8.3: Divide-and-conquer algorithms and recurrence relations
- Assignment 2 due in two weeks

Review of last time

- Modeling with recurrence relation
- Solving linear homogeneous recurrence relations(线性齐次递 推关系) with constant coefficients
- Solving linear nonhomogeneous recurrence relations with constant coefficients
 - the general form of solutions
 - the form of a particular solution when $F(n) = p(n)s^n$
 - example: $a_n = a_{n-1} + n$, find all solutions, find the solution s.t. $a_1 = 1$

Divide-and-conquer algorithms (分治算法)

- Many recursive algorithms take a problem with a given input and divide it into one or more smaller problems.
- Examples: binary search, merge sort
- Divide-and-conquer algorithms
 - divide a problem into one or more instances of the same problem of smaller size and
 - conquer the problem by using the solutions of the smaller problems to find a solution of the original problem, perhaps with some additional work
- We will use recurrence relations to analyze the computational complexity of divide-and-conquer algorithms.

Divide-and-conquer recurrence relations

- Suppose that a recursive algorithm divides a problem of size n into a subproblems, each of size n/b, and
- \bullet g(n) extra operations are required in the conquer step
- Let f(n) represent the number of operations required to solve a problem of size n
- Then f(n) = af(n/b) + g(n), called a divide-and-conquer recurrence relation
- Examples: binary search, merge sort, finding the maximum and minimum of a sequence

Example: fast multiplication of integers

•
$$a = (a_{2n-1}a_{2n-2}...a_1a_0)_2$$
, $b = (b_{2n-1}b_{2n-2}...b_1b_0)_2$

- $a = 2^n A_1 + A_0$, $b = 2^n B_1 + B_0$, where
- $A_1 = (a_{2n-1} \dots a_{n+1} a_n)_2$, $A_0 = (a_{n-1} \dots a_1 a_0)_2$,
- $B_1 = (b_{2n-1} \dots b_{n+1} b_n)_2$, $B_0 = (b_{n-1} \dots b_1 b_0)_2$,
- $ab = (2^{2n} + 2^n)A_1B_1 + 2^n(A_1 A_0)(B_0 B_1) + (2^n + 1)A_0B_0$
- f(2n) = 3f(n) + Cn

Example: fast matrix multiplication

- Multiplying two $n \times n$ matrices use $O(n^3)$ operations
- There are more efficient divide-and-conquer algorithms
- Reduce the multiplication of two $n \times n$ matrices to 7 multiplications of two $(n/2) \times (n/2)$ matrices and 15 additions of $(n/2) \times (n/2)$ matrices
- $f(n) = 7f(n/2) + 15n^2/4$

Theorem 1

Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + c,$$

whenever b divides $n, a \ge 1, b > 1$ is an integer, and c is a positive real number. Then

$$f(n)$$
 is $O(n^{\log_b a})$ if $a > 1$, and $O(\log n)$ if $a = 1$.

Furthermore, when $n = b^k$, where k is a positive integer,

$$f(n) = C_1 n^{\log_b a} + C_2,$$

where $C_1 = f(1) + c/(a-1)$ and $C_2 = -c/(a-1)$.

Examples of applying Theorem 1

- Let f(n) = 5f(n/2) + 3 and f(1) = 7. Find $f(2^k)$. Also, estimate f(n) if f is an increasing function.
- Binary search
- Finding the maximum and minimum of a sequence

Master Theorem

Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + cn^d,$$

whenever $n=b^k$, where k is a positive integer, $a \ge 1$, b is an integer greater than 1, c is a positive real number, and d is a nonnegative real number. Then

$$f(n) \text{ is } \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

Proof: By iterative approach, we can show that if $n = b^k$, then

- ② if $a \neq b^d$, then $f(n) = C_1 n^d + C_2 n^{\log_b a}$, where C_1 and C_2 are certain constants

Examples of applying Master Theorem

- Merge sort
- Fast integer multiplication
- Fast matrix multiplication