0.0.1 recap

Construction of \mathbb{R} . R = set of all cauchy sequences of rational numbers.

We say that $(a_n)^{\tilde{}}(b_n)$ if their difference $(a_n - b_n)$ converges to 0. $\mathbb{R} := R/\tilde{} = \text{set}$ of equivalence classes.

Lemma 0.1 Every cauchy sequence is bdd, i.e. there is some M s.t. $|a_n| \leq M$

Lemma 0.2 Every Cauchy sequene (a'n) that doesn't converge to 0, is bounded away from 0, i.e. $\exists \varepsilon > 0$ and $N \in \mathbb{N}$ s.t. $\forall n > N, |a_n| > \varepsilon$.

Proposition 0.3 ($\tilde{}$ is an equivalence relation) 1. Reflexivity: (a_n) (a_n)

- 2. Symmetry: (a_n) (b_n) then $a_n b_n \to 0$
 - $b_n a_n \to 0$
 - so (b_n) (a_n)
- 3. Transitivity: Suppose (a_n) (b_n) and (b_n) (c_n) .

So
$$(a_n - b_n) \to 0$$
 and $(b_n - c_n) \to 0$

 $\forall \varepsilon > 0 \exists N_1 \in \mathbb{N} \text{ s.t. if } n > N_1, \text{ then } |a_n - b_n| < \frac{\varepsilon}{2} \text{ } \forall \varepsilon > 0 \exists N_2 \in \mathbb{N} \text{ s.t. if } n > N_2, \text{ then } |b_n - c_n| < \frac{\varepsilon}{2}$

 $N = \max N_1, N_2 and n > N.$

$$|a_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \varepsilon.$$

Define $\mathbb{R} = \text{set of real numbers} := R/$. Elements of \mathbb{R} are $[(a_n)]$

0.0.2 p-adics

 $p \in \mathbb{N}$ prime.

We can define a new metric on \mathbb{Q} . Let $x \in \mathbb{Q}$. Write x uniquely as $x = p^a \frac{r}{s}$, where $r, s, a \in \mathbb{Z}$. and $p \mid / s$ and $p \mid / s$.

Example 0.4 p = 3, $x = \frac{7}{6}$, $x = (3^{-1})(\frac{7}{2})$. $|x|_3 = 3$

$$|x|_p := p^{-a}$$
.

If $x, y \in \mathbb{Q}$, $|x - y|_p$ is the p-adic distance.

0.0.3 \mathbb{R} is well defined.

$$\mathbb{Q} \hookrightarrow \mathbb{R} \ q \mapsto [(q, q, q, q, q)]$$

If $p \neq q$ then $i_p \neq i_q$ be $[p-q, p-q, p-q, \ldots] \neq [(0,0,0,0,0)]$

in \mathbb{R} we have a 0 := [(0,0,0,0,0)] and 1 := [(1,1,1,1,.)]

Properties.

- 1. Addition: $[(a_n)] + [(b_n)] = [(a_n +_{\mathbb{Q}} b_n)]$ a) Well defined.
 - b) $(a_n) + (b_n)$ is a cauchy seq.
 - c) commutativity, associativity, $0 + [(a_n)] = [(a_n)]$
- 2. Multiplication $[a_n] \cdot_{\mathbb{R}} [(b_n)] := [(a_n \cdot_{\mathbb{Q}} b_n)]$ a) This is well defined.

Proof: LEt
$$[(a_n)] = [(c_n)], [(b_n)] = [(d_n)]$$
 Want $[(a_n b_n)] = [(c_n d_n)].$

WTS
$$(a_n b_n - c_n d_n) \to 0$$
 We know $a_n - c_n \to 0$

We know
$$b_n - d_n \to 0$$
 $a_n b_n - c_n d_n = a_n b_n - b_n c_n + b_n c_n - c_n d_n$

$$= b_n(a_n - c_n) + c_n(b_n - d_n).$$

$$|a_n b_n - c_n d_n| \le |b_n| |(a_n - c_n)| + |c_n| |b_n - d_n|.$$

Let M be an upper bound for $|b_n|, |c_n|$

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n > N, \text{ we have } |a_n - c_n < \frac{\varepsilon}{2M}|$$

$$|b_n - d_n < \frac{\varepsilon}{2M}|$$
.

$$|a_n b_n - c_n d_n| < \varepsilon.$$

3. Division:

Let
$$[(a_n)] \in \mathbb{R}$$
 and $[(a_n) \neq 0]$. There is some $[(b_n)] \in \mathbb{R}$, s.t. $[(a_n)] \cdot [(b_n)] = [(1, 1, 1, 1, 1, ...)] = 1$

By Lemma 2, If
$$[(a_n)] \neq 0$$
 then some $\varepsilon 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n > N$, $|a_n| > \varepsilon$

$$\implies$$
 eventually $a_n \neq 0$.

Define
$$b_n$$
 as follows: if $n \leq N$, set $b_n = 1$. If $n > N$, set $b_n = \frac{1}{a_n}$

$$a_n b_n = \text{if } n \leq N, a_n$$

if
$$n > N$$
, 1

$$\implies [(a_n b_n)] = [(1, 1, 1, 1..)]$$

Prop: b_n is cauchy.

$$|b_m - b_n| = \left| \frac{1}{a_m} - \frac{1}{a_n} \right| = \left| \frac{a_n - a_m}{a_m a_n} \right|$$

Theorem 0.5 \mathbb{R} is a field.

$$(\mathbb{Q}_p \text{ is a field.})$$

4. Order Relation

We say that $[(a_n)] \ge [(b_n)]$ if either $[(a_n)] = [(b_n)]$ or $\exists N \in \mathbb{N}$ s.t. $\forall n > \mathbb{N}, a_n - b_n \ge 0$.

 $Thm : \leq \text{is a total oreder on } \mathbb{R}.$

0.0.4 Completeness of \mathbb{R}

Since \mathbb{R} is ordered, Completeness \iff lubproperty