# MATH 213 - Lecture 21: $L^2$ space, inner product on $L^2$ , and computing Fourier coefficients

Lecture goals: know what the standard inner product in  $L^2$  is and know how to use it to compute Fourier coefficients of  $\tau$ -periodic functions. Also get you to fill out the SCP survey.

In general properly defining a dot product for functions is a huge issue so we will only work with a special class of functions called "Lebesgue square integrable functions" or  $L^2$  functions which makes things nice:

# Definition 1: $L^2$ functions

A complex valued function f is in the class  $L^2([a,b]])$  if

$$\int_{a}^{b} |f(x)|^{2} dx$$

exists and is finite.

f is in the class  $L^2$  if

$$\int_{-\infty}^{\infty} |f(x)|^2 dx$$

exists and is finite.

 $L^2$  and  $L^2([a,b])$  form vector spaces so ideas from MATH 115 can be used (with proper adjustments). Now if f is a member of  $L^2([-\tau/2,\tau/2])$  for some fixed  $\tau$  then our goal is to write

$$f(t)$$
 " = "  $\sum_{n=-\infty}^{\infty} c_n e^{\frac{2\pi n}{\tau} jt}$  for  $t \in [-\tau/2, \tau/2]$ .

To do this we need to somehow solve for the  $c_n$ s....

By comparison with how we solved

$$\vec{b} = c_1 \vec{v}_1 + \ldots + c_n \vec{v}_n$$

for an orthogonal basis  $\{v_1, \ldots, v_n\}$ We need a....



# Inner product for $L^2([-\tau,\tau])$

Recall that if  $\vec{x}, \vec{y} \in \mathbb{C}^n$  then

$$\vec{x} \cdot \vec{y} = x_1 \overline{y_1} + x_2 \overline{y_2} + \ldots + x_n \overline{y_n}.$$

Now if f and g are complex valued functions, then the "dot product", which will be called an inner product, should follow a similar definition.

The summation becomes integration!!

## Definition 2: Standard Inner product on $L^2([a,b])$

If f and g are complex valued functions in  $L^2([a,b])$  then the **standard inner** product is

$$\langle f, g \rangle = \frac{1}{b-a} \int_{a}^{b} f(t) \overline{g(t)} dt.$$

#### Theorem 1: Existence of Inner Product

If  $f, g \in L^2([a, b])$  then  $\langle f, g \rangle$  exists and is finite.

We skip the proof since it needs some real analysis...

#### Theorem 2

The set of complex exponentials  $\left\{e^{\frac{2\pi n}{\tau}jt}|n\in\{0,\pm1,\pm2,\ldots\}\right\}$  is an orthonormal basis for a <u>subspace</u> of  $L^2([-\tau/2,\tau/2])$ .

**Partial proof:** We will not prove that the collection is linearly independent but will prove that they are orthonormal.

Now that we have an orthonormal basis for a subset of  $L^2([-\tau/2, \tau/2])$ , we can project any function in  $L^2(-\tau/2, \tau]$  into our basis  $\{e^{\frac{2\pi n}{\tau}jt}|n\in\{0,\pm 1,\pm 2,\ldots\}\}$  by using our inner product.

Note that since we are doing a projection and the basis may not be (is not...) a basis for  $L^2([-\tau/2, \tau/2])$ , the result of projecting into this basis may not be equal to the original function in the traditional sense.

### Definition 3: Fourier Series - Complex Form

If  $f \in L^2([-\tau/2, \tau/2])$  then the **Fourier series in complex form** of f(t) is  $\sum_{n=-\infty}^{\infty} c_n e^{\frac{2\pi n}{\tau} jt}$  where the  $c_n$  are found by projecting f into the basis of complex exponentials.

Theorem 3: Fourier Coefficients for Series in Complex Form If  $f \in L^2([-\tau/2, \tau/2])$  then the Fourier coefficients  $c_n$  of f(t) are

$$c_n = \left\langle f(t), e^{\frac{2\pi n}{\tau} jt} \right\rangle.$$

If f is real valued than  $c_n = \overline{c_{-n}}$ .

#### **Proof:**

# Compute the things!!

# Example 1

Compute the Fourier series of  $f:[-0.5,0.5]\to\mathbb{R}$  defined by

$$f(t) = \sin(2\pi t)$$

If possible simplify the complex exponentials to real valued terms.

## Example 2

Compute the Fourier series of  $f: [-\tau/2, \tau/2] \to \mathbb{R}$  defined by

$$f(t) = \begin{cases} -1 & t \in [-\tau/2, 0) \\ 1 & t \in [0, -\tau/2] \end{cases}$$

If possible simplify the complex exponentials to real valued terms. Plot f(t) along with several terms of the Fourier series.

## Example 3

Compute the Fourier series of  $f: [-\pi, \pi] \to \mathbb{R}$  defined by

$$f(t) = \frac{1}{2}(\pi - |t|)$$

If possible simplify the complex exponentials to real valued terms. Plot f(t) along with several terms of the Fourier series.