

《数值计算方法》

方程求根的迭代法

讲授人:杨程

时间: 2021-2022学年

秋季学期

Email: yang_cheng@nun.edu.cn

复习

1、取步长h=0.2,用欧拉方法解初值问题:

$$\begin{cases} y' = -y - xy^2 \\ y(0) = 1 \end{cases} (0 \le x \le 0.6)$$

解: 由题可知 $f(x,y) = -y - xy^2$ h = 0.2

则欧拉公式为:

$$\begin{cases} y_0 = 1 \\ y_{n+1} = y_n + 0.2(-y_n - x_n y_n^2), (n = 0.1.2) \end{cases}$$

因此得: $y(0.2) \approx y_1 = 0.8$

$$y(0.4) \approx y_2 = 0.6144$$
 $y(0.6) \approx y_3 = 0.4613$

2、用改进的欧拉方法计算初值问题: $\begin{cases} y' = \frac{1}{x}y - \frac{1}{x}y^2 \\ y(1) = 0.5 \end{cases}$

取步长h=0.1, 并与精确解 $y(x) = \frac{x}{1+x}$ 比较。

解: 由题可知
$$f(x,y) = \frac{1}{x}y - \frac{1}{x}y^2$$
 $h = 0.1$

则改进的欧拉公式为:

$$\begin{cases} \bar{y}_{n+1} = y_n + 0.1 \left(\frac{1}{x_n} y_n - \frac{1}{x_n} y_n^2 \right) \\ y_{n+1} = y_n + \frac{0.1}{2} \left[\left(\frac{1}{x_n} y_n - \frac{1}{x_n} y_n^2 \right) + \left(\frac{1}{x_{n+1}} \bar{y}_{n+1} - \frac{1}{x_{n+1}} \bar{y}_{n+1}^2 \right) \right], (n = 0,1,2,3,4) \end{cases}$$

X _n	y n	精确解	误差
1.1	0. 523835	0. 523810	-0.000026
1.2	0. 545500	0. 545455	-0.000045
1.3	0. 565277	0. 565217	-0.000060
1.4	0. 583404	0. 583333	-0.000071
1.5	0.600079	0.600000	-0.000079

3、写出用四阶经典龙格-库塔方法求解初值问题 $\begin{cases} y' = 8 - 3y \\ y(0) = 2 \end{cases}$ 的计算公式,取步长h=0.2,并计算y(0.4)的近似值,小数点后至少保留4位。

解: 由题可知
$$f(x,y) = 8 - 3y$$
 $h = 0.2$ 对于n=1, x_1 =0.2时 $k_1 = hf(x_0, y_0) = h(8 - 3y_0) = 0.2(8 - 3 \times 2) = 0.4$ $k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{1}{2}k_1\right) = 0.2\left[8 - 3\left(y_0 + \frac{1}{2}k_1\right)\right] = 0.28$ $k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{1}{2}k_2\right) = 0.2\left[8 - 3\left(y_0 + \frac{1}{2}k_2\right)\right] = 0.316$ $k_4 = hf(x_0 + h, y_0 + k_3) = 0.2[8 - 3(y_0 + k_3)] = 0.2104$ $y(0.2) \approx y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 2.3004$

对于n=2, x₂=0.4时

$$k_1 = hf(x_1, y_1) = h(8 - 3y_1) = 0.2(8 - 3 \times 2.3004) = 0.2198$$

$$k_2 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}k_1\right) = 0.2\left[8 - 3\left(y_1 + \frac{1}{2}k_1\right)\right] = 0.1538$$

$$k_3 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}k_2\right) = 0.2\left[8 - 3\left(y_1 + \frac{1}{2}k_2\right)\right] = 0.1736$$

$$k_4 = hf(x_1 + h, y_1 + k_3) = 0.2[8 - 3(y_1 + k_3)] = 0.1156$$

$$y(0.4) \approx y_2 = y_1 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 2.4654$$

方程求根的迭代法

根的搜索与二分法

2 迭代法

3 牛顿法

弦截法

代数方程求根问题是一个古老的数学问题,早在16世纪就找到了三次、四次方程的求根公式。但直到19世纪才证明 n > 5 次的一般代数方程式不能用代数公式求解。因此需要研究用数值方法求得满足一定精度的代数方程式的近似解。

在工程和科学技术中许多问题常常归结为求解非线性方程式问题,例如在控制系统的设计领域,研究人口增长率等。

本章将介绍这种类型方程的近似解的数值方法。设有一 非线性方程:

$$f(x) = 0 \tag{#}$$

其中 f(x)为实变量 x 的非线性函数。

定义 **1** (1) 如果有 x^* 使 $f(x^*) = 0$,则称 x^* 为方程 (#) 的根,或称为函数 f(x) 的零点。

(2) 当
$$f(x)$$
 为多项式时,即方程为
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0 (a_n \neq 0)$$

称 f(x) = 0为 n 次代数方程。当 f(x) 包含指数函数或三角函数等特殊函数时,称 f(x) = 0为超越方程。

(3) 如果 $f(x) = (x - x^*)^m g(x)$,其中 $g(x^*) \neq 0$, m 为正整数,则称 x^* 为 f(x) = 0 的 m 重根。当 m=1时称 x^* 为 f(x) = 0 的单根。

先叙述两个基本定理。

定理 1 (代数基本定理)

设 f(x) = 0 为具有**复系数**的 n 次代数方程,则 f(x) = 0 于复数域上恰有 n 个根(r 重根计算 r 个)。如果 f(x) = 0 为**实系数**代数方程,则复数根成对出现,即当 $\alpha + i\beta(\beta \neq 0)$ 是 f(x) = 0 的复根,则 $\alpha - i\beta$ 亦是 f(x) = 0 的根。

定理2(零点定理)

- (1) 设 f(x)于 [a,b]上连续:
- (2) 且 $f(a) \cdot f(b) < 0$,则存在有 $x^* \in (a,b)$ 使 $f(x^*) = 0$ 即 f(x)于 (a,b) 内存在实的零点。

设有非线性实系数方程:

$$f(x) = 0$$

问题:需要求出方程的所有实根(或复根)。

SCHOOL OR CULL TWO LAW SHIFT OF THE STATE OF

根的搜索与二分法

6.1.1 根的搜索

设有非线性方程:

$$f(x) = 0 \tag{1.1}$$

其中,f(x)为f(x)上连续函数且设 $f(a)\cdot f(b)<0$ 。则由连续函数的性质知,方程(1.1) $\{aa,b\}$ 0 内至少有一个实根。

这时,我们称区间f(x)为方程(1.1)的有根区间。

寻找方程(1.1)的有根区间,通常有两种方法:作图法、 逐步搜索法。

1、作图法

作图法就是作出 y = f(x) 的粗略图像,由此确定 y = f(x) 与 x 轴交点的粗略位置。

但是当函数y = f(x)比较复杂时,其图形不容易作出,所以这种方法只是在函数f(x)比较简单时适用。

2、逐步搜索法

逐步搜索法即适当选取某一区间 [a,b] ,从 $x_0 = a$ 出发,按照事先选择的步长 h = (b-a)/N (N为正整数),逐点计算 $x_k = a + kh$ 处的函数值 $f(x_k)$,当 $f(x_k)$ 与 $f(x_{k+1})$ 的值异号时,那么 $[x_k, x_{k+1}]$ 就是方程 f(x) = 0 的一个有根区间。

例题: 找出下面方程的有根区间。

$$x^3 - 1.8x^2 + 0.15x + 0.65 = 0$$

解: 假设

$$f(x) = x^3 - 1.8x^2 + 0.15x + 0.65$$

取 a = -1, b = 2, 因为 f(-1) < 0, f(2) > 0, 所以方程在 [-1,2] 内至少有一个实根。

又取N=4, 步长 h = (b-a)/N = 3/4 = 0.75 , 于是从 $x_0 = -1$ 出发,取h = 0.75 , 向右逐点计算 $f(x_k)$ 的值,列表如下:

x_i	-1	-0.25	0.5	1.25	2
$f(x_i)$	-2.3	0.484375	0.55	-0.021875	1.75

由上表可以看出,在区间[-1, -0.25],[0.5,1.25] 和[1.25,2] 内各有一个根。

这种逐步搜索寻找有根区间的方法,在计算机上很方便实现,只需要将函数 f(x) 排成一个程序,然后由键盘输入起点 x_0 及步长 h ,根据计算的结果,调整步长的大小,总可以把 区间找出来。

6.1.2 二分法

假设f(x) 为连续函数,方程 f(x) = 0 的有根区间是[a,b] ,为了研究方便,假定 f(a) < 0, f(b) > 0

求方程 (1.1) 实根 x^* 的二分法过程,就是**将含根区间** [a,b] 逐步分半,检查函数符号的变化,以便确定含根的充分小区间。

二分法叙述如下;记 $a_1 = a, b_1 = b$

第一步分半计算(k=1):

将 $[a_1,b_1]$ 分半,计算中点 $x_1 = (a_1+b_1)/2$ 及 $f(x_1)$,如果 $f(a_1)\cdot f(x_1)<0$ 则根一定在区间 $[a_1,x_1] \equiv [a_2,b_2]$ 内,否则根一定在区间 $[x_1,b_1] \equiv [a_2,b_2]$ 内 (若 $f(x_1)=0$,则 $x_1=x^*$)。于是得到长度缩小一半的含根区间 $[a_2,b_2]$,即 $f(a_2)\cdot f(b_2)<0$,且 $b_2-a_2=\frac{1}{2}(b_1-a_1)$

第**k**步分半计算: 重复上述过程,设已完成第**1**步,•••,第**k**-**1**步分半计算得到含根区间 $[a_1,b_1] \supset [a_2,b_2] \supset \cdots \supset [a_k,b_k]$,且满足:

- (1) $f(a_k) \cdot f(b_k) < 0, \exists \exists x^* \in [a_k, b_k];$
- (2) $b_k a_k = \frac{1}{2^{k-1}}(b-a)$;
- (3) 计算 $x_k = (a_k + b_k)/2$ 且有

$$k > (\ln(b-a) - \ln \varepsilon) / \ln 2$$
 (1.2)

当 $k \to \infty$ 时,区间 $[a_k, b_k]$ 的长度必然趋于零,即这些区间最终收缩于一点 x^* 显然就是方程 x^* 即根。

在实际计算时,只要二分的次数 k 足够大,就可取最后区间的中点 $x_k = \frac{a_k + b_k}{2}$ 作为方程 f(x) = 0 的根的近似值,即: $x^* = \frac{a_k + b_k}{2}$

$$|x^* - x_k| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^k}$$

$$b_k - a_k = \frac{b - a}{2^{k-1}}$$

所以只需要: $|x^* - x_k| \le \frac{b-a}{2^k} < \varepsilon$ 便可停止计算。

$$k > (\ln(b-a) - \ln \varepsilon) / \ln 2$$

练习:设 $x^3 - 1.8x^2 + 0.15x + 0.65 = 0$,试用二分法求该方程在区间 [0.5,1.25] 内根的近似值。

解:由于f(0.5) > 0, f(1.25) < 0, 所以[0.5,1.25] 为有根区间。

取
$$x_1 = \frac{0.5 + 1.25}{2} = 0.875$$
 开始计算

n	X _n	f(x _n)符号	有根区间
1	0.875	+	(0.875,1.25)
2	1.0625	-	(0.875,1.0625)
3	0.96875	+	(0.96875,1.0625)
4	1.015625	-	(0.96875,1.015625)
5	0.9921875	+	(0.9921875,1.015625)
6	1.00390625	-	(0.9921875,1.00390625)

因此, 所求根的近似值为:

$$x^* \approx \frac{1}{2}(0.9921875 + 1.00390625) = 0.998046875$$

所产生的误差是:

$$|x^* - x_6| \le \frac{1}{2^6} (1.25 - 0.5) = 0.005859$$

练习:

用二分法求方程 $x^3 + 4x^2 - 10 = 0$ 在[1,2]内的一个实根,要求精确到小数点后两位。

解: 令
$$f(x) = x^3 + 4x^2 - 10$$
 $a_1 = 1, b_1 = 2$
计算: $x_1 = \frac{a_1 + b_1}{2} = 1.5$ $f(x_1) = f(1.5) = 2.375 > 0$
 $f(a_1) = -5 < 0, f(b_1) = 14 > 0$
取区间[1,1.5] $a_2 = 1, b_2 = 1.5$ $x_2 = \frac{a_2 + b_2}{2} = 1.25$
 $f(x_2) = -1.796875 < 0$

取区间[1.25,1.5]
$$a_3 = 1.25, b_3 = 1.5$$
 $x_3 = \frac{a_3 + b_3}{2} = 1.375$ $f(x_3) = 0.162109375 > 0$

取区间[1.25,1.375]
$$a_4 = 1.25, b_4 = 1.375$$

$$x_4 = \frac{a_4 + b_4}{2} = 1.3125$$
 $f(x_4) = -0.8483886719 < 0$

取区间[1.3125,1.375]
$$a_5 = 1.3125, b_5 = 1.375$$

$$x_5 = \frac{a_5 + b_5}{2} = 1.34375$$
 $f(x_5) = -0.350982666 < 0$

取区间[1.34375,1.375]
$$a_6 = 1.34375, b_6 = 1.375$$

$$x_6 = \frac{a_6 + b_6}{2} = 1.359375$$
 $f(x_6) = -0.096408844 < 0$

$$a_7 = 1.359375, b_7 = 1.375$$

$$x_7 = \frac{a_7 + b_7}{2} = 1.3671875$$
 $f(x_7) = 0.0323557854 > 0$

取区间[1.359375,1.3671875]

$$a_8 = 1.359375, b_8 = 1.3671875$$

若取近似根
$$x^* \approx x_8 = \frac{a_8 + b_8}{2} = 1.36328125$$

$$|x_8 - x^*| \le \frac{1}{2} (1.3671875 - 1.359375)$$

$$\approx 0.0039 < \frac{1}{2} \times 10^{-2}$$
事后任计

$$k > (\ln(b-a) - \ln \varepsilon) / \ln 2$$

也可以利用先验估计 $|x_n - x^*| \le \frac{b-a}{2^n} \le \frac{1}{2} \times 10^{-2}$, 先解出二分次数 $n \ge 8$, 再计算近似根。

利用区间二分法求非线性方程 f(x) = 0 根的原理比较简单,但是收敛速度慢,且不易求偶数重根。

例题 用二分法求 $f(x) = x^6 - x - 1 = 0$ 于 [1,2] 内一个实根,且要求精确到小数后第3位(即要求 $\left|x^* - x_k\right| < \frac{1}{2} \times 10^{-3}$)。显然, $f(1) \cdot f(2) < 0$ 。

解 由 $\varepsilon = 0.5 \times 10^{-3}$,由公式 (1.2) 可确定所需分半次数 k = 11 。计算结果如下表(表1)。

表 1

k	a_k	b_k	x_k	$f(x_k)$
1	1.0	2.0	1.5	8.890625
2	1.0	1.5	1.25	1.564697
3	1.0	1.25	1.125	-0.097713
4	1.125	1.25	1.1875	0.616653
5	1.125	1.1875	1.15625	0.233269
6	1.125	1.15625	1.140625	0.0615778
7	1.125	1.140625	1.132813	-0.0195756
8	1.132813	1.140625	1.136719	0.0206190
9	1.132813	1.136719	1.134766	4.307×10^{-4}
10	1.132813	1.134766	1.133789	-0.00959799
11	1.133789	1.134766	1.134277	-0.0045915

- 二分法优点是简单,且对 f(x) 只要求连续即可。可用二分法求出 f(x) = 0 于 [a,b] 内全部实根。但二分法不能求复数及偶数重根。
- **二分法:** 设有方程 f(x) = 0,其中 f(x)于 [a,b]连续,且满足条件 $f(a) \cdot f(b) < 0$ (且设于 [a,b]内只有一个实根)。
 - (1) 计算 $x_0 = (a_k + b_k)/2$, $f(x_k)$, $h = (b_k a_k)/2$; $k = 1, 2, \dots, N_0$
 - (2) 如果 $|f(x_k)| < \varepsilon_1$ 或 $h < \varepsilon_2$ 则输出 $x_k, f(x_k), k$;
 - (3) 如果 $f(a_k) \cdot f(x_k) < 0$ 则 $a_{k+1} = a_k, b_{k+1} = x_k$ 否则 $a_{k+1} = x_k, b_{k+1} = b_k$

其中 N_0 表示给定的最大分半次数,当 $|f(x)| < \varepsilon_1$ 或 $h < \varepsilon_2$ 时分半终止, f_{max} 为一大数。

PART 2 迭代法

一、迭代法的基本思想

求非线性方程 f(x) = 0 的根的迭代法是指: 从给定的一个或几个初始近似值 $x_0, x_1, ..., x_r$ 出发,按某种方法产生一个迭代序列 $x_0, x_1, ..., x_r, x_{r+1}, ..., x_n, ...$,使得此迭代序列收敛于非线性方程 f(x) = 0 的一个根 x^* ,即 $\lim_{n \to \infty} x_n = x^*$ 。

迭代法是一种逐次逼近法。它是求解代数方法,超越方程 及方程组的一种基本方法,但存在收敛性及收敛快慢问题。

为了用迭代法求非线性方程f(x) = 0 的近似值,首先需要将此方程转化为等价的方程:

$$x = g(x) \tag{2.1}$$

显然,将f(x) = 0转化为等价方程(2.1)的方法是很多的。

例如: 方程 $f(x) = x - \sin x - 0.5 = 0$ 可用不同方法转化为等价方程:

(a)
$$x = \sin x + 0.5 = g_1(x)$$

(b)
$$x = \sin^{-1}(x - 0.5) = g_2(x)$$

定义 (迭代法) 设方程为 x = g(x)

选取方程的一个初始近似 ^{x₀} ,且按下述逐次代入法,构造一近似解序列:

$$\begin{cases} x_1 = g(x_0) \\ x_2 = g(x_1) \\ \vdots \\ x_{k+1} = g(x_k) \\ \vdots \end{cases}$$
(2.2)

这种方法称为**迭代法**(或称为**单点迭代法**)。g(x) 称为 **迭代函数**。

二、迭代法的收敛性

定义 如果由迭代法产生的序列 $\{x_k\}$ 有极限存在,即 $\lim_{k\to\infty} x_k = x^*$,则称 $\{x_k\}$ 为收敛或称迭代过程(2.2)收敛。否则称 $\{x_k\}$ 不收敛。

设 g(x) 为连续函数,且有 $\lim_{k\to\infty} x_k = x^*$,则有 $x^* = g(x^*)$ 即 x^* 为方程(2.1)的解(称 x^* 为函数的不动点)。

事实上,由迭代过程(2.2)两边取极限,则有

$$x^* = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} g(x_k) = g(\lim_{k \to \infty} x_k) = g(x^*)$$

显然在由方程 f(x) = 0 转化为等价的方程 x = g(x) 时,选择不同的迭代函数 g(x) 就会产生不同的序列 $\{x_k\}$ (即使初始值 x_0 选择一样),且这些序列的收敛情况也不会相同。

例 对前面例子中方程 $f(x) = x - \sin x - 0.5 = 0$,考查用迭代法求根

(a)
$$x_{k+1} = \sin x_k + 0.5, (k = 0,1,\cdots)$$

(b)
$$x_{k+1} = \sin^{-1}(x_k - 0.5), (k = 0,1,\cdots)$$

k	$(a)x_k$	$(b)x_k$	$(a)f(x_k)$
0	1.0	1.0	
1	1.341471	0.523599	
2	1.473820	0.023601	
3	1.495301	-0.496555	
4	1.497152	-1.487761	
5	1.497285		
6	1.497300		
7	1.497300		- 3.6 × 10 ⁻⁷

由计算看出,选取的两个迭代函数 $g_1(x),g_2(x)$ 分别构造序列 $\{x_k\}$ 收敛情况不一样(初始值都为1.0),在 (a) 种情况 $\{x_k\}$ 收敛且 $x^* \approx 1.497300$ 。

在(b) 种情况出现计算 $\arcsin(x_4 - 0.5) = \arcsin(-1.987761)$ 无定义。因此,对于用迭代法求方程 f(x) = 0 近似根需要研究下述问题:

- (1) 如何选取迭代函数 g(x) 使迭代过程 $x_{k+1} = g(x_k)$ 收敛。
- (2) 若 $\{x_k\}$ 收敛较慢时,怎样加速 $\{x_k\}$ 收敛。

三、迭代法的几何意义

从几何上解释,求方程 x = g(x) 根的问题,是求曲线与 y = g(x) 直线 y = x 交点的横坐标 x^* 。当迭代函数 g(x) 的导数 g'(x) 在根 x^* 处满足下述几种条件时,从几何上来考查迭代过程 $x_{k+1} = g(x_k)$ 的收敛情况如下**图**。

从曲线 x = g(x)上一点 $P_0(x_0, g(x_0))$ 出发,沿着平行于x 轴方方向前进交 y = x 于一点 Q_0 ,再从 Q_0 点沿平行于 y 轴方向前进交 y = g(x) 于 P_1 点,显然, P_1 的横坐标就是 $x_1 = g(x_0)$ 。继续这过程就得到序列 $\{x_k\}$,且从几何上观察知在 **(1) (2)** 情况下 $\{x_k\}$ 收敛于 x^* ,在 **(3) (4)** 情况不收敛于 x^* 。

由迭代法的几何意义可知,为了保证迭代过程收敛,应该要求迭代函数的导数满足条件 |g'(x)| < 1,当 $x \in [a,b]$ 。

四、迭代法的收敛性判定及误差估计

- 1、大范围收敛方法(全局收敛方法): 从任意可取的初始值出发都能保证收敛。
- 2、局部收敛方法: 选取的初始值必须充分接近所要求的根, 才能保证迭代序列收敛于非线性方程 f(x) = 0 所要求的根。

1、大范围收敛性

定理3 设有方程 x = g(x)

- (1) 设 g(x) 于 [a,b] 一阶导数存在;
- (2) 当 $x \in [a,b]$ 时有 $g(x) \in [a,b]$;
- (3) g'(x) 满足条件: $|g'(x)| \le L < 1$, $\stackrel{.}{=}$ $x \in [a, b]$.

则有:

- (a) x = g(x) 在 [a,b]上有唯一解 x^* ;
- (b) 对任意选取初始值 $x_0 \in [a,b]$, 迭代过程 $x_{k+1} = g(x_k)$ 收敛,即 $\lim_{k \to \infty} x_k = x^*$

(c)
$$|x^* - x_k| \le \frac{1}{1 - L} |x_{k+1} - x_k|;$$

(d) 误差估计
$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0| (k = 1, 2, \cdots)$$

定理3中的假设条件 $|g'(x)| \le L < 1 当 x \in [a,b]$ 。在一般情况下,可能对于大范围的含根区间不满足,而在根的邻近是成立的。

2. 局部收敛性

定理4(迭代法**局部收敛性**)设给定方程 x = g(x)

- (1) 设 x^* 为方程的解;
- (2) 设 g(x) 在 x^* 的邻近**连续可微**且有

(根据 g'(x) 在 x* 邻近连续性, 此条件即为存在 x* 的一个邻域

 $S = \{x | |x - x^*| \le \delta\}$ 使 $|g'(x)| \le L < 1$, 当 $x \in S$ 时成立)

则对任意取初值 $x_0 \in S$, 迭代过程 $x_{k+1} = g(x_k)$ $(k = 0,1,2,\cdots)$

收敛于 x^* (称迭代过程具有**局部收敛性**)。

3. 迭代法的收敛速度

定义1 设 $\lim_{k\to\infty} x_k = x^*$, 若存在 $p \ge 1$, c > 0 使

$$\lim_{k \to \infty} \frac{\left| x^* - x_{k+1} \right|}{\left| x^* - x_k \right|^p} = c$$

则称序列 $\{x_k\}$ 是p阶收敛的,p=1时是**线性收敛**的,p>1时是**超线性**收敛的,p=2时是**平方收敛**的。

定理5 设x*为g的不动点,整数p>1, $g^{(p)}(x)$ 在x*的邻域连续,且满足:

$$g'(x^*) = g''(x^*) = \dots = g^{(p-1)}(x^*) = 0, g^{(p)}(x^*) \neq 0$$

则迭代法 $x_{k+1} = g(x_k)$ 产生的序列 $\{x_k\}$ 在 x^* 的邻域是p阶收敛的,且有:

$$\lim_{k \to \infty} \frac{\left| x^* - x_{k+1} \right|}{\left| x^* - x_k \right|^p} = \frac{g^{(p)}(x^*)}{p!}$$

2021-11-18 43

例 试用迭代法解方程: $f(x) = x - \ln(x+2) = 0$

解 (1) 显然有

$$f(0) \cdot f(2) < 0$$

 $f(-1.9) \cdot f(-1) < 0$

即知,方程于[0,2]及[-1.9,-1]内有根,记为 x_1^* 及 x_2^* 。

(2) 考查取初值 $x_0 \in [0,2]$ 迭代过程 $x_{k+1} = \ln(x_k + 2)$ 的收敛性,其中迭代函数为 $g_1(x) = \ln(x + 2)$ 。

显然, $g_1(0) = \ln 2 \approx 0.6931 > 0$, $g_1(2) = \ln 4 \approx 1.386 < 2$ 及 $g_1(x)$ 为增函数,则有当 $0 \le x \le 2$ 时, $0 \le g_1(x) \le 2$ 。又由

$$g_1'(x) = \frac{1}{x+2}$$

2021-11-18 45

$$|g_1'(x)| = \frac{1}{x+2} \le g_1'(0) = \frac{1}{2} < 1, \stackrel{\text{def}}{=} x \in [0,2]$$

于是,由**定理3**可知,当初值 $x_0 \in [0,2]$ 时迭代过程 $x_{k+1} = \ln(x_k + 2)$ 收敛。

如果要求 x_1^* 近似根准确到小数后第6位 即要求 $\left|x_1^* - x_k\right| \le \frac{1}{2} \times 10^{-6}$)。

由右表可知

$$|x_{15} - x_{14}| \approx 10^{-7}, \pm L = \frac{1}{2}$$

所以

$$|x_{1}^{*} - x_{14}| \le \frac{1}{1 - L} |x_{15} - x_{14}| \approx 2 \times 10^{-7} < 0.5 \times 10^{-6}$$

$$x_{1}^{*} \approx 1.461931$$

$$|f(x_{14})| \approx 0.8 \times 10^{-7}$$

k	$x_{k+1} = \ln(x_k + 2)$	
0	0.0	
1	0.69314718	
2	0.99071046	
•	•	
14	1.1461931	
15	1.1461932	

(3) 为了求 [-1.9,-1] 内方程的根,考察迭代过程

$$x_{k+1} = \ln(x_k + 2) \tag{1}$$

显然
$$|g_1'(x)| = \frac{1}{x+2} > g'(-1) = 1, \text{当} x \in [-1.9, -1]$$

所以,迭代过程**(1)**(初值 $x_0 \in [-1.9,-1], x_0 \neq x_2^*$ 不收敛于 x_2^* **(4)**可将方程转化等价方程

$$e^{x} = x + 2, \vec{\boxtimes} x = e^{x} - 2 \equiv g_{2}(x)$$

$$g_2(x) \in [-1.804, -1.6321], \stackrel{\omega}{=} x \in [-1.9, -1]$$

且有

$$g_2(x) = e^x$$
 $|g_2(x)| \le g_2(-1) \approx 0.368 < 1, \exists x \in [-1.9, -1]$

所以, 当选取 $x_0 \in [-1.9, -1]$ 时迭代方程

$$x_{k+1} = e^{x_k} - 2(k = 0, 1, \cdots)$$

收敛。如取 $x_0 = -1$,则迭代12次有

$$x_2^* \approx x_{12} = -1.841405660$$

且有

$$\left| f(x_{12}) \right| \approx 0.2 \times 10^{-8}$$

由上例可见,对于方程 f(x)=0,迭代函数 g(x) 选取不同,相应由迭代法产生的 $\{x_k\}$ 收敛情况也不一样。因此,我们应该选取迭代函数 x=g(x), 使构造的迭代过程 $x_{k+1}=g(x_k)$ 收敛且收敛较快。

五、迭代法求解方程的一般步骤

- (1) 选取解的初始估计 x_1 ;
- (2) 对于 $k = 1, 2, \dots, N_0$ 计算 $x_{k+1} = g(x_k)$, 其中 N_0 为给 定的最大迭代次数。当 $|x_{k+1} x_k| < \varepsilon$ 时 ($|f(x_k)| < \varepsilon$ 或

 $\frac{|x_{k+1}-x_k|}{|x_k|} < \mathcal{E}$, 其中 \mathcal{E} 为给定精度要求) 迭代终止。

PART 3 牛顿法

对于非线性方程 f(x) = 0 , 如何构造迭代函数, 才能保证迭代序列一定收敛于方程的根?

一个重要的途径是用近似方程代替原方程。解非线性方程 f(x) = 0 的牛顿方迭代法是一种将非线性函数线性化的方法。

牛顿方法的**最大优点是**在方程单根附近具有较高的收敛速度。 牛顿方法可用来计算 f(x) = 0 的实根,还可计算代数方程的复根。

Newton法公式推导

设有非线性方程 f(x) = 0 , 其中 f(x) 在 [a,b] 上一阶连续可微,且 $f(a) \cdot f(b) < 0$;

又设 x_0 是 f(x) 的一个零点 $x^* \in (a,b)$ 的近似值, $f'(x_0) \neq 0$,现 考虑用过曲线 y = f(x) 上点 $P(x_0, f(x_0))$ 的**切线近似代替函数** f(x) ,即用线性函数

$$y = f(x_0) + f'(x_0)(x - x_0)$$

代替f(x)。且用切线(即线性函数)的零点,记为 x_1 ,作为方程 f(x) = 0 的根 x^* 的近似值,即求解

$$f(x_0) + f'(x_0)(x - x_0) = 0$$

2021-11-18 52

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \tag{3.1}$$

一般,若已求得 x_k ,将**(3.1)**中 x_0 换为 x_k ,重复上述过程,即求得方程 f(x)=0 根的牛顿方法的计算公式

$$\begin{cases} x_0(\partial f_0) \\ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} (k = 0,1,2,\cdots) \end{cases}$$
 (3.2)

误差分析

下面利用 f(x) 的泰勒公式进行误差分析。设已知 f(x)=0 根 x^* 的第 k 次近似 x_k ,于是 f(x) 在 x_k 点泰勒公式为(设 f(x) 二次连续可微):

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(c)}{2!}(x - x_k)^2$$
 (3.3)

其中c在x与 x_k 之间。

如果用线性函数 $P(x) = f(x_k) + f'(x_k)(x - x_k)$ 近似代替 f(x), 其误差为 $\frac{f''(c)}{2!}(x - x_k)^2$ 。且用 P(x) = 0根记为 x_{k+1} 作为 f(x) = 0的根 x^* 的近似值又得到牛顿公式

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

现在 (3.3) 中取 $x = x^*$,则有

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(c)}{2!}(x^* - x_k)^2$$

于是
$$x^* = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(c)}{2f'(x_k)} (x^* - x_k)^2$$

(设 $f'(x_k) \neq 0$)。利用牛顿公式(3.2) 即得误差关系式:

$$x^* - x_{k+1} = \left[\frac{f''(c)}{2f'(x_k)}\right](x^* - x_k)^2$$
 (3.4)

误差公式(**3.4**)说明 x_{k+1} 的误差是与 x_k 误差的平方成比例的。当初始误差(即 $x^* - x_0 \equiv \varepsilon_0$)是充分小时,以后迭代的误差将非常快的减少。

由计算公式(3.2)可知,用牛顿法求方程f(x) = 0 根,每计算一步需要计算一次函数值 $f(x_k)$ 以及一次导数 $f'(x_k)$ 。

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

例 用牛顿法求 $f(x) = e^{-x/4}(2-x)-1=0$ 根。

解 显然, $f(0) \cdot f(2) < 0$, 方程于 [0,2] 内有一根。求导

$$f'(x) = e^{-x/4}(x-6)/4$$

牛顿法计算公式为:

$$x_{k+1} = x_k - \frac{e^{-x_k/4}(2-x_k)-1}{e^{-x_k/4}(x_k-6)/4}, (k = 0,1,2,\cdots)$$

求得近似值 $x^* \approx 0.783596$, $f(x_6) \approx -3.8 \times 10^{-8}$

说明当初值 x_0 选取靠近根 x^* 时牛顿法收敛且收敛较快,当初值不是选取接近方程根时,牛顿法可能会给出发散的结果。

表 	取 $x_0 = 1.0$
k	\mathcal{X}_k
0	1.0
1	-1.155999
2	0.189438
3	0.714043
4	0.782542
5	0.783595
6	0.783596

χ χ $\chi_0 = 0.0$		
$\underline{}$	\mathcal{X}_k	
0	8.0	
1	34.778107	
2	869.1519	
3	:	
•		
	发散	

取 x = 80

牛顿法误差估计

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

设 x^* 为 f(x) = 0 的根,其中 f(x) 在 x^* 邻近具有连续的一阶导数,且 $f'(x^*) \neq 0$, x_k 为由牛顿法得到的近似值,考虑 x_k 误差估计。

利用中值公式有 $f(x_k) = f(x_k) - f(x^*) = f'(c_k)(x_k - x^*)$

其中 c_k 在 x_k 与 x^* 之间。

当 x_k 充分接近 x^* 时,则有

$$x^* - x_k = -\frac{f(x_k)}{f'(c_k)}, f'(c_k) \approx f'(x_k)$$

又由牛顿法公式,则 $x^* - x_k = -\frac{f(x_k)}{f'(x_k)} = x_{k+1} - x_k$

$$x^* - x_k = -\frac{f(x_k)}{f'(x_k)} = x_{k+1} - x_k$$

因此,在用牛顿法求 f(x)=0 单根 x^* 时,一般可用 $|x_{k+1}-x_k|$ 来估计 x_k 的误差,即当 x_k 充分接近 x^* 时,若

$$\left| x_{k+1} - x_{k} \right| \leq \varepsilon$$

得到:

$$\left|x^* - x_k\right| \le \varepsilon$$

因此,计算时,对于牛顿法可用当 $|x_{k+1}-x_k| \leq \varepsilon$ 时迭代终止。

例 对于前面例子中,对于 $f(x) = x^6 - x - 1 = 0$,在区间[1,2] ,使 用牛顿法计算一实根。

解:
$$f(x) = x^6 - x - 1, f'(x) = 6x^5 - 1$$

由牛顿法计算公式有:

$$\begin{cases} x_0 = 1.5 \\ x_{k+1} = x_k - \frac{x_k^6 - x_k - 1}{6x_k^5 - 1} (k = 0, 1, \dots) \end{cases}$$

方程的真根 $x^* = 1.134724138$, 求得的近似根 x_6 具有8位有

效数字。且

$$x^* - x_3 = -4.72 \cdot 10^{-3}$$
$$x_4 - x_3 = -4.68 \cdot 10^{-3}$$

$$x_4 - x_3 = -4.68 \cdot 10^{-3}$$

k	\mathcal{X}_k	$f(x_k)$	$x_k - x_{k-1}$
0	1.5	8.89×10^{1}	
1	1.30049088	2.54×10^{1}	-2.00×10^{-1}
2	1.18148042	5.38×10^{-1}	-1.19×10^{-1}
3	1.13945559	4.92×10^{-2}	-4.20×10^{-2}
4	1.13477763	5.50×10^{-4}	-4.68×10^{-3}
5	1.13472415	6.08×10^{-8}	-5.35×10^{-5}
6	1.13472414	-4.00×10^{-9}	-1.00×10^{-8}

例 设 c > 0, 试用牛顿法建立计算 $x = \sqrt{c}$ 的公式。

解 开方问题即为求解方程 $f(x) = x^2 - c = 0$ 。 现用牛顿法解此方程,

如下图

$$f(x) = x^2 - c = 0, f'(x) = 2x$$

于是可得计算 $x = \sqrt{c}$ 的公式

$$x_{k+1} = x_k - \frac{x_k^2 - c}{2x_k} = \frac{1}{2}(x_k + \frac{c}{x_k})(k = 0, 1, 2, \dots)$$

易知,上述迭代过程,对任意 选取初值 $x_0 > 0$ 都是收敛的。 试计算 $x = \sqrt{10}$, 要求 $\left| x_{k+1} - x_k \right| < 10^{-6}$ 时迭代终止。

k	\mathcal{X}_k
0	1.0
1	5.5
2	3.65909091
3	3.19600508
4	3.16245562
5	3.16227767
6	3.16227766

所以 $\sqrt{10} \approx 3.16227766$

例 用牛顿法求方程

$$f(x) = (x-4.3)^2(x^2-54) =$$

 $x^4 - 8.6x^3 - 35.51x^2 + 464.4x - 998.46 = 0$ 的正实根。

解 方程在 [7,8]内有一实根,在 [4,5]内有二重根(下图)。

(1) 用牛顿法计算[7,8]内单根,要求 $|x_{k+1}-x_k| < 10^{-6}$ 。

k	\mathcal{X}_k	$x_k - x_{k-1}$
0	7.0	
1	7.0485612	0.485612
2	7.36041	-0.125205
3	7.34857	-0.118×10^{-1}
4	7.34847	-0.102×10^{-3}
5	7.34847	-0.758×10^{-8}

 $x_5 = 7.34847$ 即为所要求的近似根。

(2) 用牛顿法求 [4,5] 内重根。

k	\mathcal{X}_k	$x_k - x_{k-1}$
0	4.0	
1	4.145408	0.145408
2	4.22138	0.038952
3	4.26033	0.038952
4	4.28007	0.019740
5	4.29001	0.009939
:	:	:

需要迭代19次,则有 $x_{19}=4.30000$,且 $\left|x_{19}-x_{18}\right|=0.612\times10^{-6}$ 。

由此例可见,牛顿方法在单根附近具有较快的收敛速度(达到一定的精度所需要的迭代次数较少),而用一般牛顿法求[4,5]内二重根时收敛较慢。这种情况牛顿方法可改进如下:

设 x^* 为 f(x) = 0 二重根 (即 $f(x) = (x - x^*)^2 g(x)$ 且 $g(x^*) \neq 0$)。 这种情况可定义一个函数: $u(x) = \frac{f(x)}{f'(x)}$

显然, x^* 为其单根,于是可用牛顿求法解 u(x) = 0

且计算公式为: $\begin{cases} x_{k+1} = x_k - \frac{u(x_k)}{u'(x_k)}, (k = 0,1,\dots) \\ u'(x) = \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} \\ = 1 - \frac{f(x)f''(x)}{(f'(x))^2} \end{cases}$

k	\mathcal{X}_k	$x_k - x_{k-1}$
0	4.0	
1	4.308129	0.308129
2	4.300001	-0.812×10^{-2}
3	4.300000	-0.807×10^{-5}
4	4.300000	-0.660×10^{-9}

用公式计算[4,5]内方程 f(x)=0二重根,只迭代**4 次**就得到满足精度要求 $|x_{k+1}-x_k|<10^{-6}$ 的二重根,**但这方法付出的** 代价是需要计算 f''(x) 。

PART 4

弦截法

牛顿迭代法虽然具有收敛速度快的优点,但每迭代一次都要计算导数 $f'(x_k)$,当 f(x)比较复杂时,不仅每次计算 $f'(x_k)$ 带来很多不便,而且还可能十分麻烦,如果用不计算导数的迭代方法,往往只有线性收敛的速度。

本节介绍的弦截法便是一种不必进行导数运算的求根方法。 弦截法在迭代过程中不仅用到前一步 x_k 处的函数值,而且 还使用 x_{k-1} 处的函数值来构造迭代函数,这样做能提高迭代的收敛速度。

弦截法的基本思想

若函数f(x)比较复杂,求导可能有困难,此时可将牛顿公式中f'(x)近似用差商来代替,即

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

于是得到计算公式:

$$\begin{cases} \chi_{k+1} = \chi_k - \frac{f(\chi_k)}{f(\chi_k) - f(\chi_{k-1})} (\chi_k - \chi_{k-1}) \\ (k = 1, 2, \dots) \end{cases}$$
 (4.1)

(4.1)就是弦截法公式。

弦截法公式 (4.1) 可从下述 想法得到:

设方程 f(x) = 0 ,且 $f(a) \cdot f(b) < 0$, 在 [a,b] 连续,若已知 x_{k-1}, x_k ,则可 用通过两点 $P_1(x_{k-1}, f(x_{k-1}))$ 和 $P_2(x_k, f(x_k))$ 的线性函数 P(x) 近似 代替 f(x) 。

于是,求 P(x) = 0 的根记为 x_{k+1} 作为 f(x) = 0 的近似根,其中 P(x) 为:

$$P(x) = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

可以证明,弦截法具有超线性收敛,收敛的阶约为1.618,它与前面介绍的一般迭代法一样都是线性化方法,但也有区别。

即一般迭代法在计算 x_k 时只用到前一步的值 x_{k+1} ,故称之为单点迭代法;而弦截法在求 x_{k+1} 时要用到前两步的结果 x_{k-1} 和 x_k ,使用这种方法必须给出两个初始近似根 x_0 , x_1 ,这种方法称为多点迭代法。

例 用弦截法求方程 $x = e^{-x}$ 在 $x_0 = 0.5$ 初始 值邻近的一个根。要求 $|x_{k+1} - x_k| < 0.0001$

解: 取 $x_0 = 0.5$, $x_1 = 0.6$, 令 $f(x) = x - e^{-x}$ 利用弦截迭代公式

$$x_{k+1} = x_k - \frac{(x_k - e^{-x_k})}{(x_k - x_{k-1}) - (e^{-x_k} - e^{-x_{k-1}})} (x_k - x_{k-1})$$

计算结果,

易见取近似根 $x_4 \approx 0.56714$ 则可满足精度要求。

抛物线法

以 x_k, x_{k-1} 和 x_{k-2} 为插值节点,得到插值函数

$$p_2(x) = f(x_k) + f[x_k, x_{k-1}](x - x_k)$$

+ $f[x_k, x_{k-1}, x_{k-2}](x - x_k)(x - x_{k-1})$

 $\diamondsuit p_2(x) = 0$,得到两个零点:

$$x_{k+1} = x_k - \frac{2f(x_k)}{\omega \pm \sqrt{\omega - 4f(x_k)f[x_k, x_{k-1}, x_{k-2}]}},$$

式中 $\omega = f[x_k, x_{k-1}] + f[x_k, x_{k-1}, x_{k-2}](x_k - x_{k-1}).$

$$\Rightarrow x_{k+1} = x_k - \frac{2f(x_k)}{\omega + \operatorname{sgn}(\omega)\sqrt{\omega - 4f(x_k)f[x_k, x_{k-1}, x_{k-2}]}}.$$

抛物线法按阶p=1.840收敛到x*.

弦截法与牛顿法的比较:

- > 弦截法与牛顿法都是线性化方法;
- ▶牛顿法需要一个初始值,而弦截法需要两个初始值;
- ▶ 弦截法只需要计算函数值,而牛顿法既要计算函数值, 还要计算导数值,弦截法计算强度小于牛顿法;
- > 弦截法收敛速度稍慢于牛顿法。

20XXPOWERPOINT 感谢观看 THANGKS!

单击此处添加您的副标题文字