

FCC ID: YAI-TONAL Report No.: T180614D03-RP1 ISED: 20480-TONAL

Page: 1 / 43 Rev.: 01

RADIO TEST REPORT

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard FCC Part 15.247 and IC RSS-247 issue 2

Product name Wireless Console Module

Brand Name InnoComm Mobile

Model No. Hercules

Test Result Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Tested by:

Sam Chuang Manager Jerry Chuang Engineer

my Chung

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 43
Report No.: T180614D03-RP1 Rev.: 01

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	September 18, 2018	Initial Issue	ALL	May Lin
01	September 25, 2018	1. Update KDB 937606 to KDB 414788 in	P.28-29	May Lin

Page: 3 / 43 Rev.: 01

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	EUT CHANNEL INFORMATION	5
1.3	ANTENNA INFORMATION	5
1.4	MEASUREMENT UNCERTAINTY	6
1.5	FACILITIES AND TEST LOCATION	7
1.6	INSTRUMENT CALIBRATION	8
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	9
2.	TEST SUMMERY	10
3.	DESCRIPTION OF TEST MODES	11
3.1	THE WORST MODE OF OPERATING CONDITION	11
3.2	THE WORST MODE OF MEASUREMENT	12
3.3	EUT DUTY CYCLE	13
4.	TEST RESULT	14
4.1	AC POWER LINE CONDUCTED EMISSION	14
4.2	6dB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)	17
4.3	OUTPUT POWER MEASUREMENT	20
4.4	POWER SPECTRAL DENSITY	22
4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	24
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION	28
ΔΡΡΕ	ENDIX 1 - PHOTOGRAPHS OF FUT	

Page: 4 / 43
Report No.: T180614D03-RP1 Rev.: 01

1. GENERAL INFORMATION

1.1 EUT INFORMATION

InnoComm Mobile Technology Corp. FCC: 3F, No. 6, Hsin Ann Rd., Hsinchu Science Park, Hsinchu , Taiwan , 30078 IC: 3F, No. 6, Hsin Ann Rd., Hsinchu ,30078, Taiwan
InnoComm Mobile Technology Corp. FCC: 3F, No. 6, Hsin Ann Rd., Hsinchu Science Park, Hsinchu , Taiwan , 30078 IC: 3F, No. 6, Hsin Ann Rd., Hsinchu ,30078, Taiwan
Wireless Console Module
Hercules
N/A
InnoComm Mobile
June 14, 2018
July 18 ~ September 13, 2018
BLE: 0.0014 (EIRP: 0.0032)
Power by power supply (DC 15V) Power by host system via USB
v1.0
v1.0

Page: 5 / 43 Rev.: 01

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	GFSK for BLE-1Mbps
Number of channel	40 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Telef do 7 (140) 00: 10:20 10 diadoc 0:0:1 Table 4 and 1400 GETT Table 1 for test charmes						
Number of frequencies to be tested						
Frequency range in Number of Location in frequency which device operates frequencies range of operation						
1 MHz or less	1	Middle				
1 MHz to 10 MHz	2	1 near top and 1 near bottom				
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom				

1.3 ANTENNA INFORMATION

Antenna Type	☐ PIFA ☐ PCB ☑ Dipole ☐ Coils
Antenna Gain	Gain: 3.76dBi

Page: 6 / 43
Report No.: T180614D03-RP1 Rev.: 01

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 43
Report No.: T180614D03-RP1 Rev.: 01

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Dally Hong	-
Radiation	Jerry Chuang	-
RF Conducted	Jerry Chuang	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Page: 8 / 43 Rev.: 01

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Name of Equipment	Model	Serial Number	Calibration Date	Calibration Due			
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	07/31/2017	07/30/2018		
Directional Couplers	Agilent	87301D	MY44350252	07/25/2017	07/24/2018		
Power Meter	Anritsu	ML2495A	1012009	09/18/2017	09/17/2018		
Power Seneor	Anritsu	MA2411B	1126148	02/06/2018	02/05/2019		
Signal Analyzer	R&S	FSV 40	101073	10/02/2017	10/01/2018		
Divider	Solvang Technology	STI08-0015	800	N.C.R	N.C.R		

AC Conducted Emissions Test Site						
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration						
LISN	R&S	ENV216	101054	02/06/2018	02/05/2019	
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/09/2018	02/08/2019	
EMI Test Receiver	R&S	ESCI	101203	11/02/2017	11/01/2018	
CABLE	EMCI	CFD300-NL	CERF	07/03/2018	07/02/2019	

3M 966 Chamber Test Site							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Band Reject Filters	MICRO TRONICS	BRM 50702	120	05/14/2018	05/13/2019		
Bilog Antenna	Sunol Sciences	JB3	A030105	07/13/2018	07/12/2019		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	06/29/2018	06/28/2019		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	06/29/2018	06/28/2019		
Digital Thermo- Hygro Meter	WISEWIND	1206	D07	02/08/2018	02/07/2019		
Double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	08/20/2018	08/19/2019		
Loop Ant	COM-POWER	AL-130	121051	03/21/2018	03/20/2019		
Pre-Amplifier	EMEC	EM330	060609	06/29/2018	06/28/2019		
Pre-Amplifier	HP	8449B	3008A00965	06/29/2018	06/28/2019		
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/31/2018	05/30/2019		
Antenna Tower	ccs	CC-A-1F	N/A	N.C.R	N.C.R		
Controller	ccs	CC-C-1F	N/A	N.C.R	N.C.R		
Turn Table	ccs	CC-T-1F	N/A	N.C.R	N.C.R		

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 9 / 43
Report No.: T180614D03-RP1 Rev.: 01

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	Equipment	Brand	Model	Series No.	FCC ID	
	N/A					

	Support Equipment									
No. Equipment Brand Model Series No. FCC										
1	DC Power Source	GWINSTEK	SPS-3610	N/A	N/A					
2	NB(H)	Acer	Aspire 4320 series	N/A	QDS-BRCM1018					
3	NB	Lenovo	TP00056A	N/A	PD97260HU					

1.8 Test methodology and applied standards

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 DTS Meas Guidance, RSS-247 Issue 2 and RSS-GEN Issue 5

Page: 10 / 43 Rev.: 01

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.3	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(2)	RSS-247(5.2)(a)	4.2	6 dB Bandwidth	Pass
-	RSS-GEN 6.7	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)	RSS-247(5.4)(d)	4.3	Output Power Measurement	Pass
15.247(e)	RSS-247(5.2)(b)	4.4	Power Spectral Density	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Emission	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Spurious Emission	Pass

Page: 11 / 43
Report No.: T180614D03-RP1 Rev.: 01

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BT4.0 Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2440MHz 3.Highest Channel : 2480MHz

^{1.} EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

Page: 12 / 43 Rev.: 01

3.2 THE WORST MODE OF MEASUREMENT

	AC Power Line Conducted Emission						
Test Condition	AC Power line conducted emission for line and neutral						
Power supply Mode	Mode 1: EUT power by power supply (DC 15V) Mode 2: EUT power by host system via USB						
Worst Mode	☐ Mode 1 ☐ Mode 2 ☐ Mode 3 ☐ Mode 4						
F	Radiated Emission Measurement Above 1G						
Test Condition	Band edge, Emission for Unwanted and Fundamental						
Power supply Mode	Mode 1: EUT power by power supply (DC 15V) Mode 2: EUT power by host system via USB						
Worst Mode							
Worst Position	 □ Placed in fixed position. ☑ Placed in fixed position at X-Plane (E2-Plane) □ Placed in fixed position at Y-Plane (E1-Plane) □ Placed in fixed position at Z-Plane (H-Plane) 						
Worst Polarity							
F	Radiated Emission Measurement Below 1G						
Test Condition	Radiated Emission Below 1G						
Power supply Mode	Mode 1: EUT power by power supply (DC 15V) Mode 2: EUT power by host system via USB						
Worst Mode	Mode 1						

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (X-Plane and Horizontal) were recorded in this report
- 3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page: 13 / 43
Report No.: T180614D03-RP1 Rev.: 01

3.3 EUT DUTY CYCLE

Duty Cycle							
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)				
BLE	0.4100	0.6300	65.08%				

Page: 14 / 43
Report No.: T180614D03-RP1 Rev.: 01

4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBμV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

^{*} Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result

Pass

Page: 15 / 43 Rev.: 01

Test Data

Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak Iimit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1700	38.86	16.21	0.11	38.97	16.32	64.96	54.96	-25.99	-38.64	Pass
0.1940	45.91	32.52	0.11	46.02	32.63	63.86	53.86	-17.84	-21.23	Pass
0.2060	43.95	29.39	0.11	44.06	29.50	63.37	53.37	-19.31	-23.87	Pass
0.2500	38.97	29.05	0.11	39.08	29.16	61.76	51.76	-22.68	-22.60	Pass
1.8180	38.55	27.47	0.15	38.70	27.62	56.00	46.00	-17.30	-18.38	Pass
2.0220	39.05	29.47	0.15	39.20	29.62	56.00	46.00	-16.80	-16.38	Pass

Page: 16 / 43 Rev.: 01

Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBu)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1700	36.18	15.74	0.14	36.32	15.88	64.96	54.96	-28.64	-39.08	Pass
0.1940	44.01	30.41	0.13	44.14	30.54	63.86	53.86	-19.72	-23.32	Pass
0.2100	40.11	21.88	0.13	40.24	22.01	63.21	53.21	-22.97	-31.20	Pass
1.8820	36.10	25.27	0.16	36.26	25.43	56.00	46.00	-19.74	-20.57	Pass
4.8580	37.80	34.26	0.21	38.01	34.47	56.00	46.00	-17.99	-11.53	Pass
5.2420	39.35	35.53	0.22	39.57	35.75	60.00	50.00	-20.43	-14.25	Pass

Page: 17 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.2 6dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a)(2) RSS-247 section 5.2(a) and RSS-GEN 6.7

6 dB Bandwidth :

Limit Shall be at least 500kHz

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

4.2.4 Test Result

	Test mode: BLE mode / 2402-2480 MHz									
Channel	Frequency (MHz)	OBW(99%) (MHz)	6dB BW (MHz)	6dB limit (kHz)						
Low	2402	1.0289	0.703							
Mid	2440	1.0246	0.703	>500						
High	2480	1.0289	0.668							

Page: 18 / 43 Rev.: 01

Test Data (6dB BANDWIDTH)

Page: 19 / 43 Rev.: 01

Test Data (BANDWIDTH 99%)

Page: 20 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

IC

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.

Limit	 ✓ Antenna not exceed 6 dBi : 30dBm ☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] ☐ Point-to-point operation
	☐ Point-to-point operation

Average output power: For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Page: 21 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.3.4 Test Result

Peak output power:

BLE Mode										
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)	FCC/IC Limit (dBm)		
BLE	0	2402	1.35	5.11	0.0014	0.0032				
Data rate:	19	2440	1.12	4.88	0.0013	0.0031	30	36		
1Mbps	39	2480	0.69	4.45	0.0012	0.0028				

Average output power:

BLE Mode							
Config.	СН	Freq. (MHz)	AV Power (dBm)				
BLE	0	2402	0.92				
Data rate:	19	2440	0.82				
1Mbps	39	2480	0.34				

Page: 22 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :
-------	---

4.4.2 Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

4.4.4 Test Result

	Test mode: BLE mode / 2402-2480 MHz							
Channel	Frequency (MHz)	PSD (dBm)	IC/FCC limit (dBm)					
Low	2402	-15.99						
Mid	2440	-16.59	8					
High	2480	-17.09						

Page: 23 / 43 Rev.: 01

Test Data

Page: 24 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.5.3 Test Setup

Page: 25 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.5.4 Test Result

Test Data

Date: 18 JUL 2018 15:09:10

Page: 26 / 43 Rev.: 01

Page: 27 / 43 Rev.: 01

Page: 28 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

Remark

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 29 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.6.2 Test Procedure

Test method Refer as KDB 558074 D01, Section 12.1.

- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Remark:

- 1. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

4. The SA setting following:

- (1) Below 1G: RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace= Max hold.
- (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle ≥ 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW=1/T.

Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW Setting	
BLE	65.08%	0.4100	2.439	2.7KHz	

Page: 30 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.6.3 Test Setup

9kHz ~ 30MHz

30MHz ~ 1GHz

Page: 31 / 43 Rev.: 01

Above 1 GHz

Page: 32 / 43
Report No.: T180614D03-RP1 Rev.: 01

4.6.4 Test Result

Band Edge Test Data

Test Mode:	BLE Low CH	Temp/Hum	22.3(°C)/ 41%R	
Test Item	Band Edge	Test Date	September 13, 20	
Polarize	Vertical	Test Engineer	Jerry Chuang	
Detector	Peak			
120.0 dBuV/m				
			Limit1: — Limit2: —	
			2	
80				
		Į.		
more distribution of the second secon	holomorphismatik, Afrikaniseljim valgerim feftikasishtil harishtil televili	Australia Maria Ma	Maryuntun horasanti	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2372.118	52.52	-3.10	49.42	74.00	-24.58	peak
2	2401.902	99.26	-3.13	96.13	1	-	peak

Page: 33 / 43 Rev.: 01

Test Mode:		BLE Low CH			Temp/Hum		22	22.3(°C)/ 41%RH					
Test Item				Bar	nd Ec	lge			Test D	ate	Sep	tember 1	3, 20
Pc	larize				ertica			Te	st Eng	gineer		Jerry Chu	
Dε	tector			A۱	erag	е						•	
110.0	dBuV/m												
												Limit1: —	-
												Limit2: —	_
												2	
70													
								1					
30.0		Total Audientica (Caracana)		****				*		****		/ L	
2310	.000 2320	.20 23	30.40	2340.60	2350	0.80	2361.00	2371	.20 23	81.40	2391.60	2412.0	O MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2367.834	39.32	-3.09	36.23	54.00	-17.77	AVG
2	2402.106	98.64	-3.13	95.51	-	-	AVG

Page: 34 / 43 Rev.: 01

Test Mode:	BLE High CH	Temp/Hum	22.3(°C)/ 41%R	
Test Item	Band Edge	Test Date	September 13, 20	
Polarize	Vertical	Test Engineer	Jerry Chuang	
Detector	Peak			
120.0 dBuV/m				
			Limit1: — Limit2: —	
<u></u>				
80				
Annamary a	2 Mangapapi kapang dipakan dalah dikan dan sanan ana daka pan kabanan	eret voor die voorgele soorste voor ook voor voor gegen te voor voor gebe	troplane for a facility for the forest contraction and a process.	
40.0				
2470.000 2478.20	2486.40 2494.60 2502.80 2511.00	2519.20 2527.40 25	35.60 2552.00 MHz	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.840	95.77	-2.73	93.04	-	ı	peak
2	2485.662	50.99	-2.70	48.29	74.00	-25.71	peak

Page: 35 / 43 Rev.: 01

Test Mode:	BLE High CH	Temp/Hum	22.3(°C)/ 41%R	
Test Item	Band Edge	Test Date	September 13, 20	
Polarize	Vertical	Test Engineer	Jerry Chuang	
Detector	Average			
110.0 dBuV/m				
			Limit1: —	
			Limit2: —	
_				
70				
70				
	2			
30.0				
2470.000 2478.20 248	86.40 2494.60 2502.80 2511.00	2519.20 2527.40 25	35.60 2552.00 MHz	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.086	95.59	-2.73	92.86	-	-	AVG
2	2497.552	39.02	-2.64	36.38	54.00	-17.62	AVG

Page: 36 / 43 Rev.: 01

Above 1G Test Data

Test Mode:	BLE Low CH	Temp/Hum	22.3(°C)/ 41%RH
Test Item	Harmonic	Test Date	September 13, 2018
Polarize	Vertical	Test Engineer	Jerry Chuang
Detector	Peak and Average		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	37.53	3.09	40.62	74.00	-33.38	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 37 / 43
Report No.: T180614D03-RP1 Rev.: 01

Test Mode:	BLE Low	BLE Low CH		o/Hum	22.3(°C)/ 41%RH		
Test Item	Harmo	Harmonic		Test Date		September 13, 20	
Polarize	Horizor	ntal	Test E	ngineer	Jerry	Chuang	
Detector	Peak and A	verage					
110.0 dBuV/m							
					Limit1:	-	
					Limit2:		
70							
1							
Ĭ X							
30.0							
1000.000 3550.00 6	00.00 8650.00 112	00.00 13750.00	16300.00	18850.00 21	400.00	26500.00 MHz	

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	35.85	3.09	38.94	74.00	-35.06	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 38 / 43
Report No.: T180614D03-RP1 Rev.: 01

Test Mode:	BLE Mid CH	Temp/Hum	22.3(°C)/ 41%RI	
Test Item	Harmonic	Test Date	September 13, 20	
Polarize	Vertical	Test Engineer	Jerry Chuang	
Detector	Peak and Average)		
110.0 dBuV/m				
			Limit1: —— Limit2: ——	
70				
70				
ı				
30.0				

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4880.000	36.43	3.60	40.03	74.00	-33.97	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 39 / 43 Rev.: 01

Test Mode:	BLE Mid CH	Temp/Hum	22.3(°C)/ 41%RH	
Test Item	Harmonic	Test Date	September 13, 201	
Polarize	Horizontal	Test Engineer	Jerry Chuang	
Detector	Peak and Average			
110.0 dBuV/m				
			Limit1: — Limit2: —	
70				
30.0	00.00 8650.00 11200.00 13750.00	16300.00 18850.00 21	400.00 26500.00 MHz	

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4880.000	35.34	3.60	38.94	74.00	-35.06	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 40 / 43
Report No.: T180614D03-RP1 Rev.: 01

Test Mode:	BLE High CH	Temp/Hum	22.3(°C)/ 41%RI	
Test Item	Harmonic	Test Date	September 13, 20	
Polarize	Vertical	Test Engineer	Jerry Chuang	
Detector	Peak and Average			
110.0 dBuV/m				
			Limit1: — Limit2: —	
70				
1 *				
30.0				

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	37.77	4.14	41.91	74.00	-32.09	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 41 / 43
Report No.: T180614D03-RP1 Rev.: 01

Test Mode:	BLE	BLE High CH		/Hum	22.3(°C)/ 41%RH	
Test Item	На	Harmonic		Date	September 13, 201	
Polarize	Hor	rizontal	Test Er	ngineer	Jerry Chuang	
Detector	Peak ar	nd Average				
110.0 dBuV/m						
					Limit1: —	
					Limit2: —	
70						
) ×						
30.0						

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.000	37.07	4.14	41.21	74.00	-32.79	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 42 / 43 Rev.: 01

Below 1G Test Data

Test Mode:	BT Mode	Temp/Hum	22.3(°C)/ 41%RH
Test Item	30MHz-1GHz	Test Date	September 13, 2018
Polarize	Vertical	Test Engineer	Jerry Chuang
Detector	Peak and Quasi-peak		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
240.4900	39.61	-9.64	29.97	46.02	-16.05	peak
337.4900	38.00	-6.70	31.30	46.02	-14.72	peak
425.7600	34.75	-3.85	30.90	46.02	-15.12	peak
600.3600	32.39	-0.79	31.60	46.02	-14.42	peak
731.3100	30.71	1.84	32.55	46.02	-13.47	peak
866.1400	30.23	4.01	34.24	46.02	-11.78	peak

Page: 43 / 43 Report No.: T180614D03-RP1 Rev.: 01

Test Mode:	BT Mode	Temp/Hum	22.3(°C)/ 41%RH
Test Item	30MHz-1GHz	Test Date	September 13, 2018
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak and Quasi-peak		

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
239.5200	42.86	-9.67	33.19	46.02	-12.83	peak
299.6600	41.15	-7.51	33.64	46.02	-12.38	peak
400.5400	32.74	-4.78	27.96	46.02	-18.06	peak
646.9200	30.29	0.60	30.89	46.02	-15.13	peak
733.2500	32.80	1.86	34.66	46.02	-11.36	peak
867.1100	32.61	4.03	36.64	46.02	-9.38	peak