Tutorial: Mean Difference Test

T-test, ANOVA, Chi-sq

Number Analytics LLC
March 2017

Coca cola vs Pepsi, taste better?

How to test blind taste test results

Is there significant taste difference?

Number Analytics

Statistical Tests for Differences

Choose the correct statistic test

Area of Application	Level Scaling	Subgroups	Test	Example
Hypotheses about frequency	Nominal	All	Chi-square	Do customer industry types differ by company size ?
Metric Hypotheses (Interval about means or ratio)		One	One Sample T-test	Is the purchase frequency different from 1.5?
	(Interval or	Two	Independent Samples T-test	Is the purchase frequency greater for email promotion responders than that for non-responders?
		r	Paired Sample T-test	Is the average brand score different after exposure to a new TV ad? (before and after)
		Three or more	One-way ANOVA	Is the purchase frequency different by company size?

Number Analytics

One Sample T-test

One Sample T-test

One Sample T-test

Is the overall rating significantly different than 4?

Please select the data file below

Your own file

You can choose your own file by uploading it to the cloud.

ata_ttest							
1	Α	В					
1	Rating	female					
2	9	1					
3	4	1					
4	3	1					
5	6	0					
6	9	0					
7	7	1					
8	5	0					
9	6	0					

One Sample T-test

One Sample T-test 3 STEPS! Easy to apply!

Now click on 'Run'!

One Sample t-test

One Samples T-test

t_value	pvalue	
1.439	0.16	Rating is indifferent from 4

Conclusion: Rating is not different from 4 on average.

N (# of observation	Average of Y	S.D.	MAX	MIN
51.00	4.47	2.34	10.00	1.00

Independent Samples T-test

Now we're interested to know whether the rating for female group is significantly different from rating for male group.

Please upload the Data file below

- Sample
- Your own file

Independent Sample T-test

t value	p value	Equal variance test	Interpretation
0.09825	0.922	Equal variance supported	There is no significant difference by female on the means of Rating

SPSS style output

Independent Samples Test

		Test f Equa	Levene's t-test for Equality of Means Test for Equal Variances							
		F	Sig.	t	df	Sig (2- tailed)	Mean difference	Std. Error difference	Lower 95% Conf. Int.	Higher 95% Conf. Int.
Rating	Equal variances assumed	2.73	0.105	0.09825	49	0.922	0.0652174	0.663817	-1.26877	1.39921
	Equal variances not assumed			0.09673	43.569	0.923	0.0652174	0.67419	-1.2939	1.42434

Paired sample t-test

Paired Sample T-test

Please upload the Data file below

- Sample
- Your own file

Unlike the independent samples T-tes t, paired sample T-test is applied to th e same group comparing two outcom es like music preference rating scores across different songs

Paired Sample T-test

Paired Samples T-test

t_value	pvalue	
3.261	0.0013	There is a very significant difference on the means of Q1 and Q2 with confidence level 99%

	Q1	Q2
Mean	3.467	3.234
S.D.	0.1039	0.1009

ANOVA (Analysis of Variance) Test

ANOVA

M1 = M2 = M3 = M4

Please select data below

- Sample
- Yours ♠ (change)

Rating	Ethnicity
9	Japanese
4	Hispanic
3	Chinese

How about the rating among different ethnical groups?

data_anova					
	Α	В			
1	Rating	Ethnicity			
2	9	Japanese			
3	4	Hispanic			
4	3	Chinese			
5	6	Chinese			
6	9	White			
7	7	Korean			
8	5	White			
9	6	Hispanic			
10	1	White			
11	3	Other Asian			

.1 1 1

ANOVA difference test

Browse Data

Select a dependent variable

Rating Ethnicity

Progress

Select a grouping variable

ANOVA Result

P value 0.32 (>0.05)

Conclusion: Rating is indifferent across ethnicity.

Fvalue	pvalue	
1.207	0.32	Rating is indifferent acrosss Ethnicity

P Value: Exact Probability of getting a computed test statistic that is due to chance. The smaller the p value, the smaller the probability that the observed result occurred by chance

SPSS style output

Basic

SPSS style

Warning

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	50.98	8.00	6.37	1.21	0.32
Within Groups	221.73	42.00	5.28		
Total	272.71	50.00			

Chi-Square Test

Please upload the Data file below

- Sample
- Your Own file

Clear

- Cross-tab is a frequency table of two or three variables
- Used to examine association between two or 3 variables (usually 2)
- H₀: there is a relation between variable X
 and variable Y
- Variables take a limited number of values, for example:

Consumers: gender, ethnicity

Business: industry, company size

Chi-Square Test

Browse Data

Select a Dependent Variable (y)

Ethnicity female Select Independent Variables (X)

Chi-square test

P value greater than 0.05, reject H0.

Conclusion: There is no relation between gender and ethnicity

Crosstab table

FACTOR	0	1
2+ race	0	1
African American	2	3
Asian Indian	4	1
Chinese	2	2
Hispanic	3	7
Japanese	0	1
Korean	1	2
Other Asian	1	3
White	10	8