Linguaggi

10: Semantica intuizionista (cenni)

Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

18/11/2020

Outline

Semantica intuizionista (cenni)

Semantica intuizionista

Wikipedia: "Nella filosofia della matematica, l'intuizionismo è un approccio alla matematica in cui ogni oggetto matematico è considerato un prodotto dell'attività costruttiva della mente umana. Per l'intuizionismo, l'esistenza di un ente è equivalente alla possibilità della sua costruzione. Vengono quindi rifiutate le dimostrazioni che implicano esplicitamente l'utilizzo di insiemi a cardinalità infinita e l'utilizzo in questi casi dei ragionamenti basati sul principio del terzo escluso."

Semantica intuizionista ≈ semantica dell'evidenza (evidenza = costruzione) della conoscenza diretta (evidenza = conoscenza diretta) della calcolabilità (evidenza = programma)

Semantica intuizionista

Confronta: matematica come

- scoperta (in logica classica)
- invenzione (in logica intuizionista)

Cibo per la mente:

- come sarà la matematica di un alieno senza parti discrete (dita, intelligenze individuali, etc.)?
- e quella di un alieno che veda in maniera discreta percependo solamente un'immagine ogni 2s?

Evidenze indirette vs evidenze dirette

Cos'è un'evidenza indiretta?

Il poliziotto riceve la concitata chiamata del matematico: c'è un omicida nell'aula. Infatti nessuno è entrato e uscito (come si evince dalle telecamere) e nell'aula c'è un uomo con un pugnale conficcato nelle scapole e non può essersi pugnalato così da solo. Quindi non può non esserci un omicida. Il poliziotto chiede: "e chi è?" Risposta: e chi lo sa!

So che c'è \neq so chi è: la prima affermazione non richiede una evidenza diretta, la seconda sì.

In logica classica: $\exists x.P(x)$ significa "so che c'è un x t.c. P(x)". In logica intuizionista: $\exists x.P(x)$ significa "so chi è quell'x t.c. P(x)" (dalla prova posso ricavare un algoritmo per capire chi è)

Evidenze indirette, prove per assurdo e logica classica

Teorema: esistono infiniti numeri primi.

Dimostrazione classica: per assurdo assumiamo che ne esista solamente un insieme finito $\{p_1,\ldots,p_n\}$ e consideriamo $q=p_1*\ldots*p_n+1$, che non può essere primo in quanto maggiore di ognuno dei p_i . Quindi, poichè q non è primo, esiste almeno un i e un k t.c. $q=p_i*k$. Quindi $1=q-p_1*\ldots*p_n=p_i*k-p_1*\ldots*p_n=p_i*(k-p_1*\ldots*p_{i-1}*p_{i+1}*\ldots*p_n)$. Il che è assurdo poichè nessun numero primo p_i divide 1. Quindi esistono infiniti numeri primi. Qed.

E quali sono questi numeri primi? Il teorema non ne fornisce nessuno!

Prove classiche vs prove intuizioniste

Teorema: per ogni *n*, *n* è pari o non è pari. Dimostrazione classica: ovvio per EM. Qed.

5 è pari? la prova classica non ce lo dice

Dimostrazione intuizionista: procediamo per induzione strutturale su *n*.

Caso O: 0 = 2 * 0 e quindi 0 è pari.

Caso Sm: per ipotesi induttiva m è pari oppure non lo è. Procediamo per casi: se m è pari allora esiste k t.c. m = 2 * k e Sm = 2 * k + 1 non è pari in quanto non divisibile per due; se m non è pari allora esiste k t.c. m = 2 * k + 1 e Sm = 2 * k + 2 = 2 * (k + 1) e quindi Sm è pari. Qed.

La prova contiene un algoritmo per ricorsione strutturale: 5 è dispari perchè 4 è pari perchè 3 è dispari perchè 2 è pari perchè 1 è dispari perchè 0 è pari

Prove classiche vs prove intuizioniste

Tutte le prove intuizioniste di $\forall i.\exists o.P(i,o)$ (per ogni input esiste un output in relazione P con l'input) contengono un algoritmo per calcolare o a partire da i.

Una dimostrazione classica dello stesso enunciato può essere molto più breve perchè fa solo metà del lavoro, ci dice che *o* esiste, ma non ci spiega come calcolarlo.

Quando non esiste nessun algoritmo in grado di determinare o a partire da i (la funzione da i a o non è calcolabile, vedi pacco di lucidi sui paradossi) allora le uniche dimostrazioni sono classiche.

Contro il modello classico

Nella semantica classica

- Il valore di verità di ogni enunciato è sempre determinato
- Il valore di verità di ogni enunciato è immutabile

Queste ipotesi sono appropriate per la verità "platonica", ma non per la conoscenza e per mondi non deterministici.

- Prima o poi per la strada passerà una cinquecento viola
- La posizione di una particella è esattamente x e il suo momento è w
- I due numeri reali x e y sono uguali
- Dalla scheda sonora leggerò come rumore bianco il seguente pattern
- Il seguente programma f diverge sull'input z

Semantiche intuizioniste

Nelle semantiche intuizioniste

- Il valore di verità di ogni enunciato è determinato solo quando se ne ha una prova/evidenza DIRETTA (un ALGORITMO)
- Il valore di verità di ogni enunciato può passare in maniera monotona dall'essere indeterminato all'avere un determinato valore che non cambia più (scopro almeno un algoritmo o dimostro che non può esserci)
- Prima o poi per la strada passerà una cinquecento viola
- La posizione di una particella è esattamente x e il suo momento è w
- I due numeri reali x e y sono uguali
- Dalla scheda sonora leggerò come rumore bianco il seguente pattern
 - Il seguente programma f diverge sull'input z_{a}

Semantiche intuizioniste

Diverse semantiche "equivalenti" ispirate da principi differenti:

- Semantica alla Kripke (o dei mondi possibili):
 - L'insieme delle denotazioni è {0,1} ma questa volta 1 significa VERO e 0 significa IGNOTO. Si ha che A è FALSO quando ¬A vale 1, non quando A vale 0.
 - I mondi assegnano a ogni variabile proposizionale una denotazione $\{0,1\}$, ma possono evolvere: se un mondo v è tale che v(A) = 0 allora può evolvere in un mondo v' uguale a v, tranne che per v'(A) = 1.
 - La funzione [F]^v è definita in maniera complessa per tenere conto del fatto che il mondo v può evolvere. (OMESSA)
 - se v(A) = 0 allora $v \not\Vdash A \lor \neg A$
 - LE DENOTAZIONI {0,1} SONO LIVELLI DI CONOSCENZA, NON ALGORITMI!
- Semantica di Brouwer-Heyting-Kolmogorov

Semantiche intuizioniste

Diverse semantiche "equivalenti" ispirate da principi differenti:

- Semantica alla Kripke (o dei mondi possibili)
- Semantica di Brouwer-Heyting-Kolmogorov:
 - Formula F = descrizione di un problema es. $\forall i. \exists o. P(i, o)$
 - Denotazione di F = insieme di evidenze, ovvero insieme di algoritmi conosciuti per il problema F
 - Insieme vuoto = assenza di algoritmi ≈ falsità;
 Insieme non vuoto = almeno un algoritmo = ≈ verità
 - Un connettivo descrive un problema a partire da altri problemi
 - La denotazione di un connettivo è un insieme di algoritmi che risolvono il problema composto usando gli algoritmi per i problemi semplici

Semantica di Brouwer-Heyting-Kolmogorov

Definizione: un mondo v è una funzione dall'insieme $\{A, B, \ldots\}$ all'insieme di tutti gli insiemi di algoritmi.

- $\bullet \ \llbracket A \rrbracket^v = v(A)$
- $\bullet \ \llbracket \bot \rrbracket^{v} = \emptyset$
- $\llbracket \top \rrbracket^v = \{\star\}$ (\top è un problema banale e \star lo risolve)
- [F ∧ G]^v = [F]^v × [G]^v
 (I'∧ chiede di risolvere entrambi i problemi;
 algoritmo = coppia di un algoritmo per F e uno per G)
- [F ∨ G]]^V = [F]]^V ⊕ [G]]^V
 (l'∨ chiede di risolvere uno dei due problemi dicendo quale; algoritmo = coppia ⟨b, π⟩ dove
 b = 0 a π à un algoritmo per F oppure
 - b = 0 e π è un algoritmo per F oppure
 - b=1 e π è un algoritmo per G)
- $\llbracket F \Rightarrow G \rrbracket^v = \llbracket G \rrbracket^{v} \rrbracket^{F} \rrbracket^v$ (procedure che mappano soluzioni a F in soluzioni a G)

Semantica di Brouwer-Heyting-Kolmogorov

Esempio: $\Vdash A \land (A \Rightarrow B) \Rightarrow B$.

In ogni mondo v si ha

$$\llbracket A \wedge (A \Rightarrow B) \Rightarrow B \rrbracket^{v} = \llbracket B \rrbracket^{v \llbracket A \rrbracket^{v} \times \llbracket A \Rightarrow B \rrbracket^{v}}$$

Sia $f(\langle a, g \rangle) = g(a)$.

Si ha $f \in \llbracket B \rrbracket^{v \llbracket A \rrbracket^v \times \llbracket A \Rightarrow B \rrbracket^v}$; infatti

- $\langle a,g \rangle \in \llbracket A \rrbracket^v \times \llbracket A \Rightarrow B \rrbracket^v$ quindi
- $a \in \llbracket A \rrbracket^v$ e $g \in \llbracket A \Rightarrow B \rrbracket^v = \llbracket B \rrbracket^{v \llbracket A \rrbracket^v}$ e quindi
- $g(a) \in [\![B]\!]^v$ come richiesto

Quindi, f è un algoritmo che risolve il problema $A \land (A \Rightarrow B) \Rightarrow B$ in ogni mondo v e quindi $A \land (A \Rightarrow B) \Rightarrow B$ è una tautologia.

Logica intuizionista: risultati omessi

- ② Per A particolari (es. A = n è pari) si può dimostrare $A \lor \neg A$ dando un algoritmo (nell'esempio: l'algoritmo ci dice se n è pari oppure no). In tal caso A si dice decidibile.
- ③ $\forall \neg \neg A \Rightarrow A$ il fatto che non possa non esserci un algoritmo per un problema A ignoto non ci dà un algoritmo per A
- Teorema: per ogni Γ, F, se Γ ⊩ F in logica intuizionista allora Γ ⊩ F anche in logica classica La logica intuizionista ci parla di conoscenza algoritmica (vero ≈ so qual'è la soluzione), quella classica di verità (vero ≈ so che c'è la soluzione)

Logica intuizionista: risultati omessi

Teorema (correttezza): per ogni Γ e F, se $\Gamma \vdash F$ senza usare la RAA allora $\Gamma \Vdash F$ in logica proposizionale intuizionista. Dimostrazione: omessa.

Ovvero: se riesco a dimostrare F a partire da Γ allora ricavo (almeno un) algoritmo che risolva il problema F usando algoritmi per i problemi in Γ (es. una libreria di codice per Γ).

Teorema (completezza debole): per ogni insieme finito di formule Γ e per ogni F, se $\Gamma \Vdash F$ in logica proposizionale intuizionista allora $\Gamma \vdash F$ senza usare la RAA. Dimostrazione: omessa.

Conclusioni

- La semantica intuizionista non assume determinatezza del mondo e immutabilità e ci parla di conoscenza (algoritmica) e non di semplice verità
- La deduzione naturale proposizionale SENZA usare la RAA è completa per la semantica intuizionista
- Le prove intuizioniste sono preferibili a quelle classiche ove possibile: esse contengono un algoritmo che può essere esplicitato
- Dal punto di vista della conoscenza/algoritmico la RAA è pura magia: ⊢ A ∨ ¬A significherebbe per ogni A sapere se A vale oppure no / avere un algoritmo che per ogni A o risolve A oppure dimostra che A è insolubile

Sulla completezza della logica proposizionale classica

Teorema di completezza (forte) per la logica proposizionale classica: per ogni Γ , F, se $\Gamma \Vdash F$ allora $\Gamma \vdash F$.

Teorema di completezza debole per la logica proposizionale classica: per ogni Γ , F t.c. Γ sia un insieme finito, se $\Gamma \Vdash F$ allora $\Gamma \vdash F$.

La versione debole è dimostrabile usando la meta-logica intuizionista, ovvero c'è un algoritmo che dati Γ (finito) e F permette di costruire un albero di deduzione naturale per $\Gamma \vdash F$.

La versione forte è dimostrabile solo usando la meta-logica classica, ovvero l'albero di deduzione naturale per $\Gamma \vdash F$ esiste, ma non c'è un algoritmo che permette di costruirlo.

Sulla completezza della logica proposizionale classica

Intuizioni:

- che nel caso forte non vi sia un algoritmo è abbastanza intuitivo: l'algoritmo in un tempo finito dovrebbe saper analizzare un'infinità di ipotesi (Γ) per scegliere quali usare
- l'algoritmo per il caso debole funziona in questo modo: siano V₁, V₂,..., V_n le variabili che occorrono in Γ (finito!) e F. L'albero inizia per casi su V₁ ∨ ¬V₁ (per EM), in ogni ramo va per casi su V₂ ∨ ¬V₂, etc. fino ad andare per casi su V_n ∨ ¬V_n. A questo punto ogni ramo ci parla di un solo mondo e si può dimostrare la tesi a partire dalle ipotesi con una prova intuizionista meccanica.
- che ci sia una dimostrazione in meta-logica classica del caso forte è sorprendente! (vedi slide dopo)

Teorema di compattezza per la logica proposizionale classica

Il teorema di completezza forte ha come corollario il sorprendente teorema di compattezza:

Teorema di compattezza: per ogni Γ , F, se $\Gamma \Vdash F$ allora esiste un $\Delta \subseteq \Gamma$, Δ finito t.c. $\Delta \Vdash F$.

Dimostrazione: siano Γ , F t.c. $\Gamma \Vdash F$. Per il teorema di completezza forte si ha $\Gamma \vdash F$. Quindi c'è un albero di deduzione naturale, necessariamene finito, che dimostra F e le cui foglie non scaricate formano un sottoinsieme finito Δ di Γ t.c. $\Delta \vdash F$. Per il teorema di correttezza si ha $\Delta \Vdash F$. Qed.

Teorema di compattezza per la logica proposizionale classica

Perchè il teorema di compattezza è sorprendente?

- Esistono infiniti mondi
- ② In Γ ⊩ F le ipotesi Γ filtrano via i mondi fino a quando quelli che restano non soddisfano tutti F
- Infinite ipotesi (quando Γ è infinito) permettono di filtrare via un'infinità di mondi in modo molto preciso
- Il teorema di compattezza ci dice che in verità un numero finito di ipotesi contenute in Γ sono già sufficienti a filtrare via abbastanza mondi da rendere comunque F vera nei rimanenti

Ovviamente il teorema di compattezza è dimostrabile solo in una meta-logica classica (un algoritmo dovrebbe scegliere da infinite ipotesi Γ quelle da tenere).

Teorema di compattezza per la logica proposizionale classica

Il fallimento del teorema di compattezza quando le logiche diventano più complesse è il principale responsabile dell'impossibilità di raggiungere la completezza per tali logiche:

- logiche più ricche a livello di connotazioni richiedono mondi più complessi, il cui insieme finisce per avere cardinalità maggiore
- le prove rimangono sempre oggetti finiti e pertanto possono sempre usare solamente un numero finito di ipotesi
- un numero finito di ipotesi diventa insufficiente per filtrare via dall'insieme di tutti i mondi quelli che non soddisfano la conclusione del teorema da dimostrare