DBSCAN

Density-based Spatial Clustering of Applications with Noise

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

DBSCAN

- **DBSCAN** is a *density-based* clustering algorithm which groups points that are *closely packed* together in feature space.
 - "A density-based algorithm for discovering clusters in large spatial databases with noise"

Martin Ester , Hans-Peter Kriegel , Jörg Sander , Xiaowei Xu, 1996

 Unlike K-means, it does not require the number of clusters to be known in advance, but it has other hyperparameters which define the density of the clusters it looks for.

- Let X be a dataset of points.
- ϵ -neighborhood of a point p is the set of points within an area of radius ϵ around the point.

$$N_{\epsilon}(p) = \{ q \in X | \operatorname{dist}(p, q) \le \epsilon \}$$

- Let X be a dataset of points.
- ϵ -neighborhood of a point p is the set of points within an area of radius ϵ around the point.

$$N_{\epsilon}(p) = \{ q \in X | \operatorname{dist}(p, q) \le \epsilon \}$$

• A point p is a **core point** if its ϵ -neighborhood has at least MinPts points.

$$|N_{\epsilon}(p)| \geq MinPts$$

- p is a **border point** if it is in the ϵ -neighborhood of a core point, but it is not itself a core point.
- All points which are neither core points nor border points are noise points.

• A point q is **directly density-reachable** from a point p if p is a core point and q is in the ϵ -neighborhood of p.

$$|N_{\epsilon}(p)| \ge MinPts$$
 and $q \in N_{\epsilon}(p)$

• A point q is **directly density-reachable** from a point p if p is a core point and q is in the ϵ -neighborhood of p.

$$|N_{\epsilon}(p)| \ge MinPts$$
 and $q \in N_{\epsilon}(p)$

- q is **density-reachable** from p if there is a chain of points $p_1, p_2, ..., p_n \in X$ with $p_1 = p$, $p_n = q$ such that p_{i+1} is *directly density-reachable* from p_i
- p and q are **density-connected** if there is a point $o \in X$ such that both p and q are *density-reachable* from o.

• A point q is **directly density-reachable** from a point p if p is a core point and q is in the ϵ -neighborhood of p.

$$|N_{\epsilon}(p)| \ge MinPts$$
 and $q \in N_{\epsilon}(p)$

- q is **density-reachable** from p if there is a chain of points $p_1, p_2, ..., p_n \in X$ with $p_1 = p$, $p_n = q$ such that p_{i+1} is *directly density-reachable* from p_i
- p and q are **density-connected** if there is a point $o \in X$ such that both p and q are *density-reachable* from o.
- A cluster $C \subset X$ is a set of points which satisfies two conditions:
 - Maximality: $\forall p, q \in X$, if $p \in C$ and q is density-reachable from $p \Rightarrow q \in C$
 - \circ Connectivity: $\forall p, q \in C$, p and q are density-connected

A cluster contains both core and border points.

p and q are density-connected

DBSCAN Algorithm

```
1 for every point p \in X:
   if p is a core point:
        label p with a unique cluster id
        for every point q \in X which is density-reachable from p:
            label q with the same cluster id as p
   else if p has no label:
        label p as "noise" # might get relabeled later
```

More Detailed Pseudocode

```
def DBSCAN(X, \epsilon, minPts):
c = 0
                                                 # cluster index
for p in X:
      if p.label is not None:
                                                  # previously processed
           continue
      neighbors = find neighborhood(p, X, \epsilon)
                                                  # find points in e-neighborhood
      if len(neighbors) < minPts:</pre>
           p.label = "noise"
                                                   # if not core point label as 'noise' (for now)
           continue
                                                  # increment cluster
      c = c + 1
      p.label = c
                                                  # label first point in the new cluster
      S = neighbors - \{p\}
                                             # e-neighbors of p which we add to the cluster and try to expand
      for q in S:
           if q.label == "noise":
                q.label = c
                                                 # it was labeled as noise, but it is actually a border point
           if q.label is not None:
                continue
                                                   # either border point or in some other cluster
           q.label = c
                                                   # add the point to the cluster
           neighbors = find neighborhood(q, X, \epsilon) # find e-neighborhood
           if len(neighbors) >= minPts: # check if also core point
                S = S \cup neighbors
```

DBSCAN Results

- DBSCAN can handle non-convex cluster of various shapes.
- It doesn't require the *number of clusters* to be known in advance.
- The distance metric can also be considered a hyperparameter.
 - Euclidean distance is the most common.

• DBSCAN is *very sensitive* to hyperparameters ϵ and *minPts*.

- DBSCAN is *very sensitive* to hyperparameters ϵ and *minPts*.
- An heuristic for choosing ϵ and *minPts*:
 - \circ Choose a number k (typically \sim 4).
 - For each point $\vec{x}^{(i)}$, compute the distance d_{ik} to its k^{th} nearest neighbor.
 - \circ Sort the points by d_{ik} and plot the corresponding curve.
 - Set $\epsilon \approx d_{ik}$ for a *i* for which the curve has a large change in slope.
 - \circ Set minPts = k.
- All points under this threshold will be core points.
- It doesn't work very well for clusters with varying densities.

- DBSCAN is *very sensitive* to hyperparameters ϵ and *minPts*.
- An heuristic for choosing ϵ and *minPts*:
 - \circ Choose a number k (typically \sim 4).
 - For each point $\vec{x}^{(i)}$, compute the distance d_{ik} to its k^{th} nearest neighbor.
 - \circ Sort the points by d_{ik} and plot the corresponding curve.
 - o Set $\epsilon \approx d_{ik}$ for a i for which the curve has a large change in slope.
 - \circ Set minPts = k.
- All points under this threshold will be core points.
- It doesn't work very well for clusters with varying densities.

- DBSCAN is *very sensitive* to hyperparameters ϵ and *minPts*.
- An heuristic for choosing ϵ and *minPts*:
 - \circ Choose a number k (typically \sim 4).
 - For each point $\vec{x}^{(i)}$, compute the distance d_{ik} to its k^{th} nearest neighbor.
 - \circ Sort the points by d_{ik} and plot the corresponding curve.
 - Set $\epsilon \approx d_{ik}$ for a *i* for which the curve has a large change in slope.
 - \circ Set minPts = k.
- All points under this threshold will be core points.
- It doesn't work very well for clusters with varying densities.

- DBSCAN is *very sensitive* to hyperparameters ϵ and *minPts*.
- An heuristic for choosing ϵ and *minPts*:
 - \circ Choose a number k (typically \sim 4).
 - For each point $\vec{x}^{(i)}$, compute the distance d_{ik} to its k^{th} nearest neighbor.
 - \circ Sort the points by d_{ik} and plot the corresponding curve.
 - \circ Set $\epsilon \approx d_{ik}$ for a i for which the curve has a large change in slope.
 - \circ Set minPts = k.
- All points under this threshold will be core points.
- It doesn't work very well for clusters with varying densities.

Summary

- **DBSCAN** is a *density-based* clustering algorithm which groups points which are closely packed together and marks as noise (outliers) points which are in low density regions.
- DBSCAN defines a cluster as a group of points which are density-connected to each other
 - Which means that for any pair of points, there is a chain of **core points** (i.e. points with enough neighbors in a given area) connecting them.
- Unlike *K-means*, DBSCAN can find clusters or *arbitrary shapes* and does not require the *number of clusters* to be known in advance.
- It has two *hyperparameters*, ϵ (the radius of neighborhood around core points) and *minPts* (the minimum number of neighbors which define a core point) which are quite hard to tune.

Keywords

