UNIVERSIDAD NACIONAL DE LA MATANZA INTELIGENCIA DE NEGOCIOS

Tecnologías Inteligentes para Explotación de Información

Profesor: Mg. Diego Basso

Curso 2017

Uso de las Tecnologías

- ¿Cómo se usan las tecnologías para resolver un problema?

 - Problema ⇒ Inteligencia de Negocio
- Construcción de modelos para descubrir conocimiento y soporte a la toma de decisiones:
 - Predictivos o Descriptivos
 - Entrenamiento + Prueba
 - Evaluación del modelo construido

TECNOLOGÍAS DE EXPLOTACIÓN DE INFORMACIÓN

- Basadas en Análisis Estadístico
 - Análisis de varianza
 - Regresión
 - Prueba Chi-cuadrado
 - Análisis de agrupamiento
 - Análisis de determinantes
 - Series de tiempo
- o Basadas en Sistemas Inteligentes
 - Algoritmos de inducción TDIDT
 - Redes Neuronales SOM
 - Redes Bayesianas
 - Redes Neuronales Back-Propagation

Modelos Predictivos

- Son modelos de aprendizaje supervisado que permiten predecir el resultado de variables de interés a partir de los valores de otras variables.
- Se tiene un conjunto de *casos de entrenamiento* donde cada caso contiene un conjunto de **atributos** y uno de ellos es la **clase** a clasificar.
- Se separa un conjunto de *casos de prueba* para predecir nuevos casos y probar el modelo.
- Los nuevos casos deben ser asignados a su clase con la máxima exactitud y precisión posible.

TAREA DE CLASIFICACIÓN

Casos de Prueba

TECNOLOGÍAS PARA CLASIFICACIÓN

- o Árboles de Decisión
 - Algoritmos de inducción TDIDT
 - Métodos basados en reglas
- Redes Bayesianas
 - Naïve-Bayes (Bayes Ingenuo)
- Vecinos más cercanos
 - K-Means

ALGORITMOS DE INDUCCIÓN TDIDT

- La familia TDIDT (*Top Down Induction Trees*) pertenece a los métodos inductivos del Aprendizaje Automático que aprenden a partir de ejemplos preclasificados.
 - Atributos predictores ⇒ Se particionan en diferentes ramas de acuerdo a los valores que el atributo puede tomar.
 - □ Pueden ser discretos o continuos.
 - Atributo clase ⇒ Decide la clase asignada (variable objetivo)
 - □ Debe ser discretizado.
- o Generan árboles y reglas de decisión a partir de ejemplos preclasificados.

ALGORITMOS DE INDUCCIÓN TDIDT

- Se trata de identificar y ubicar en la parte superior del árbol a los atributos que mejor separan los ejemplos o muestras.
- Para encontrar los mejores atributos utiliza la teoría de la información, determinando qué atributo aporta la mayor ganancia de información (o menor pérdida de información) al tomar un determinado valor.
- Algoritmos utilizados ID3, C4.5 y C5

ALGORITMO TDIDT - EJEMPLO 1

- Presentación intuitiva del proceso de inducción.
- Evaluación de otorgamiento de préstamos a clientes
 - Atributo clase: Otorgar Préstamo

Cliente	Moroso	Antigüedad	Ingresos	Trabajo Fijo	Otorgar Préstamo
1	Si	>5	12K – 20K	Si	No
2	No	< 1	12K – 20K	Si	Si
3	Si	1-5	> 20K	Si	No
4	No	>5	> 20K	No	Si
5	No	<1	> 20K	Si	Si
6	Si	1-5	12K – 20K	Si	No
7	No	1-5	> 20K	Si	Si
8	No	<1	< 12K	Si	No
9	No	>5	12K – 20K	No	No
10	Si	1-5	< 12K	No	No

Casos de Entrenamiento

ALGORITMO TDIDT - APLICACIÓN

o Caso de Prueba

Cliente	Moroso	Antigüedad	Ingresos		Otorgar Préstamo
11	No	1-5	12K – 20K	Si	?

ALGORITMO TDIDT - EJEMPLO 2

- o Predicción de resultados de exámenes
 - Atributo clase: Resultado Parcial

Trabajos Prácticos	Actividad Virtual	Actividad Presencial	Resultado Parcial
Bien	Alta	Alta	Aprobó
Bien	Baja	Alta	No Aprobó
Muy Bien	Alta	Alta	Aprobó
Regular	Alta	Alta	Aprobó
Regular	Alta	Baja	No Aprobó
Regular	Baja	Baja	No Aprobó
Muy Bien	Baja	Baja	Aprobó
Bien	Baja	Baja	No Aprobó
Bien	Alta	Baja	Aprobó
Regular	Baja	Baja	No Aprobó
Bien	Alta	Baja	Aprobó
Muy Bien	Alta	Alta	Aprobó
Regular	Baja	Baja	Aprobó
Regular	Alta	Alta	Aprobó

ALGORITMO TDIDT - APRENDIZAJE

- o Construcción de reglas del tipo IF-THEN
 - $\mathbf{R_1}$: IF Trabajos Prácticos = 'Muy Bien' THEN Resultado Parcial = 'Aprobó'
 - ${f R}_2$: IF (Trabajos Prácticos = 'Bien') AND (Actividad Virtual = 'Baja') THEN Resultado Parcial = 'No Aprobó'
 - R₃: IF (Trabajos Prácticos = 'Bien') AND (Actividad Virtual = 'Alta') THEN Resultado Parcial = 'Aprobó'
 - ${f R}_4$: IF (Trabajos Prácticos = 'Regular') AND (Actividad Presencial = 'Baja') THEN Resultado Parcial = 'No Aprobó'
 - R₅: IF (Trabajos Prácticos = 'Regular') AND (Actividad Presencial = 'Alta') THEN Resultado Parcial = 'Aprobó'

REDES BAYESIANAS

- Una red bayesiana es un grafo acíclico dirigido compuesto de nodos y arcos.
- Los nodos representan las variables aleatorias (o atributos).
- Los arcos representan dependencias probabilísticas de cada variable.
 - El arco entre dos variables, significa una influencia directa de una variable sobre otra.
 - Probabilidad condicional (Teorema de Bayes).
- Representan la relación causa-efecto entre atributos.
- o Dan a una medida cuantitativa y probabilística de la importancia de los atributos en un problema de clasificación de clases.

- Las variables *Ladrón* y *Terremoto* son causas para que se dispare una Alarma.
 - Existe una probabilidad a priori para Ladrón y Terremoto.
 - ¿Cuál es la probabilidad de que suene o no la alarma?
- o Ladrón y Terremoto son condicionalmente independientes entre sí dada la variable Alarma.

CLASIFICADOR BAYESIANO NAÏVE-BAYES

- Considera que cada atributo predictor A_i y el atributo clase C son variables aleatorias.
- o Las relaciones de dependencia entre los atributos A_i son condicionalmente independientes entre sí dado el atributo clase C.

- o Dado un registro con atributos A_1 , A_2 ,..., A_n el objetivo es predecir la clase C.
- Se busca encontrar el valor de C que maximice la probabilidad $p(C/A_1, A_2,..., A_n)$.

REDES BAYESIANAS

- Obtener una red bayesiana a partir de datos, es un proceso de aprendizaje.
 - Aprendizaje Estructural
 - Aprendizaje Paramétrico
- Proceso de inferencia
 - Predicciones a partir de observaciones

• Se tienen los siguientes datos:

	Ambiente	Temperatura	Humedad	Viento	Juega Tenis
1	Soleado	Alta	Alta	Leve	No
2	Soleado	Alta	Alta	Fuerte	No
3	Nublado	Alta	Alta	Leve	Si
4	Lluvioso	Media	Alta	Leve	No
5	Lluvioso	Baja	Normal	Fuerte	No
6	Lluvioso	Baja	Normal	Fuerte	No
7	Nublado	Baja	Normal	Leve	Si
8	Soleado	Media	Alta	Leve	Si
9	Soleado	Baja	Normal	Leve	Si
10	Lluvioso	Media	Normal	Leve	No
11	Soleado	Media	Normal	Fuerte	Si
12	Nublado	Media	Alta	Fuerte	Si
13	Nublado	Alta	Normal	Leve	Si
14	Lluvioso	Media	Alta	Fuerte	No

• Queremos saber si se jugará al tenis bajo las siguientes condiciones:

Ambiente	Temperatura	Humedad	Viento	Juega Tenis
Soleado	Baja	Alta	Fuerte	?

- El atributo clase a predecir es Juega Tenis cuyos valores serán Si o No.
- ${\color{blue} \bullet}$ El nuevo caso será clasificado como clase C_j si $P(C_j) \prod_{i=1}^n P(A_i \,|\, C_j) \text{ es máximo.}$

Aprendizaje Estructural

o Relaciones de dependencia e independencia

Aprendizaje Paramétrico

- Determinar probabilidades a priori de cada clase y las probabilidades condicionales.
- Analizando los 14 casos tenemos:

	Valores que toma	Cantidad de Casos	% casos totales
	Soleado	5	35,7%
Ambiente	Nublado	4	28,6%
	Lluvioso	5	35,7%
_	Alta	4	28,6%
Temperatura	Media	6	42,8%
	Baja	4	28,6%
	Alta	7	50%
Humedad	Normal	7	50%
	Leve	8	57,2%
Viento	Fuerte	6	42,8%

Casos <sub>Juega Tenis =
$$S_i$$</sub> = 7
Casos _{Juega Tenis = N_o} = 7

$$P(Juega_{Si}) = 0.5 = 50\%$$

 $P(Juega_{No}) = 0.5 = 50\%$

o Desglosando los casos según si juegan o no al tenis:

Cantidad Casos

	Valores que toma	Clase = Juega Tenis Si No	
	Soleado	3	2
Ambiente	Nublado	4	0
	Lluvioso	0	5
	Alta	2	2
Temperatura	Media	3	3
	Baja	2	2
	Alta	3	4
Humedad	Normal	4	3
	Leve	5	3
Viento	Fuerte	2	4

Casos totales = 14

Casos $_{\text{Juega Tenis}} = 7$

Casos $_{\text{Juega Tenis}} = N_0 = 7$

• Obtenemos las probabilidades condicionales:

Probabilidades

	Valores que toma	Clase = Juega Tenis Si No	
	Soleado	3/7 = 42,8%	2/7 = 28,6%
Ambiente	Nublado	4/7 = 57,2%	0
·	Lluvioso	0	5/7 = 71,4%
	Alta	2/7 = 28,6%	2/7 = 28,6%
Temperatura	Media	3/7 = 42,8%	3/7 = 42,8%
·	Baja	2/7 = 28,6%	2/7 = 28,6%
	Alta	3/7 = 42,8%	4/7 = 57,2%
Humedad	Normal	4/7 = 57,2%	3/7 = 42,8%
	Leve	5/7 = 71,4%	3/7 = 42,8%
Viento	Fuerte	2/7 = 28,6%	4/7 = 57,2%

Casos totales = 14

Proceso de Inferencia

Proceso de Inferencia

• Juega Tenis = Si

Proceso de Inferencia

Juega Tenis = No

• Predicción a realizar:

Ambiente	Temperatura	Humedad	Viento	Juega Tenis
Soleado	Baja	Alta	Fuerte	?

 $P(Juega_{Si}) = 0.5$ $P(Juega_{No}) = 0.5$

• $P(Juega_{Si}) = 0.428 \times 0.286 \times 0.428 \times 0.286 \times 0.5 = 0.0075$

• $P(Juega_{No}) = 0.286 \times 0.286 \times 0.572 \times 0.572 \times 0.5 = 0.0133$

HUMEDAD				
Alta Normal	57,2% 42,8%	1		

VIENTO				
Leve Fuerte	42,8% 57,2%	_ 1		

- Normalizando:
 - $P(Juega_{Si}) = 0.0075 / (0.0075 + 0.0133) = 36\%$
 - $P(Juega_{No}) = 0.0133 / (0.0075 + 0.0133) = 64\%$

Ambiente	Temperatura	Humedad	Viento	Juega Tenis
Soleado	Baja	Alta	Fuerte	?

• El clasificador va a predecir que no se juega al tenis con una probabilidad del 64%.

Métricas de Evaluación

- Se focalizan en analizar la capacidad de predicción y clasificación de clases del modelo construido.
- o Matriz de Confusión: Permite comparar el resultado obtenido a partir del modelo predictivo construido con los resultados de los datos de prueba del modelo.
- Métricas utilizadas (en entrenamiento y prueba)
 - Exactitud del modelo
 - Precisión del modelo
- Otras métricas utilizadas
 - Cobertura de una regla
 - Precisión de una regla

o Estructura de una matriz de confusión de 2 clases.

		Clase Clasificada		
		Clase A	Clase B	Total
Clase Real	Clase A	N° casos clasificados como A y son de clase A (NCVA)	N° casos clasificados como B pero son de clase A (NCFB)	Total de casos de la clase A
	Clase B	N° casos clasificados como A pero son de clase B (NCFA)	N° casos clasificados como B y son de clase B (NCVB)	Total de casos de la clase B
	Total	Total de casos clasificados como clase A	Total de casos clasificados como clase B	Número total de casos (NTC)

- Las métricas NCVA y NCVB representan los valores clasificados correctamente por el modelo.
- Las métricas NCFA y NCFB representan los errores (la confusión) entre las clases.

• Exactitud del modelo: Proporción de casos clasificados correctamente respecto del número total de casos utilizados. Evalúa la capacidad de generalización del modelo para predecir y clasificar nuevos casos.

Exactitud (M) =
$$\frac{\sum_{i=1}^{n} NCV_{i}}{N^{\circ} \text{ casos usados}}$$

- ALTA exactitud ⇒ Clasificaciones correctas ≥ 70% casos.
- BAJA exactitud ⇒ Clasificaciones correctas < 70% casos. Modelo poco confiable.

• Precisión del modelo: Proporción de casos reales de una clase respecto del total de casos clasificados por el modelo en esa misma clase. Evalúa la efectividad del modelo para clasificar casos a una clase particular.

Precisión (C_i) =
$$\frac{NCV_i}{NCV_i + NCF_i}$$

- ALTA precisión ⇒ Modelo efectivo para predecir y clasificar nuevos casos.
- Precisión MEDIA ⇒ Modelo inestable. Posible confusión en clasificación y predicción.
- BAJA precisión ⇒ El modelo confunde las clases. Modelo poco efectivo.

Modelos de Clasificación - Ejemplo

- o Consideremos una matriz de confusión con 900 casos de clientes que pueden o no cerrar sus cuentas bancarias:
 - Clase SI Se va del banco
 - Clase No No se va del banco

Clase Clasificada

		Si	No
Clase	Si	455	29
Real	No	32	384

839 predicciones correctas

61 predicciones incorrectas

Exactitud (M) =
$$93,2\%$$

Precisión (
$$C_{No}$$
) = 92,9%

Precisión (
$$C_{Si}$$
) = 93,4%

Modelos de Clasificación - Ejemplo

- o No todos los errores tienen el mismo costo para el banco.
 - El error en los falsos No (29 casos) es mucho más costoso para el banco ya que no se va a tomar ninguna acción y el cliente se va a ir.
 - El banco puede asignar un valor de costo a cada una de las celdas que representan un error en la clasificación para poder comparar soluciones de modelos.

Modelos Descriptivos

- No realizan predicciones.
- Analizan otros aspectos de los datos.
- Problemas tratados
 - Segmentación o Agrupamiento (Clustering)
 - Reglas de Asociación
- Tecnologías utilizadas
 - Redes Neuronales SOM
 - Algoritmo Apriori (descubrimiento de ítems frecuentes)

REDES NEURONALES

Neurona Biológica

Neurona Artificial

Casos de entrenamiento con sus respuestas Casos de Prueba

REDES NEURONALES SOM

- Mapas Auto-Organizados de Kohonen (SOM)
 - Entrenamiento no supervisado
 - Posee 2 capas de neuronas
 - Entrada Un nodo por cada dato
 - Salida Un nodo por cada categoría
- Produce una partición o segmentación (desconocida "apriori") de los datos de entrada en categorías de datos con características similares (clusters).
- Los nodos de la capa de salida reciben impulsos de la capa de entrada.

REDES NEURONALES SOM

- Cada vez que se presenta un registro de entrada, las neuronas "compiten" y una se define como la ganadora.
- Si se presenta un registro de entrada parecido al anterior, es muy posible que el ganador sea el mismo nodo de salida.

PROCESO INTUITIVO DE AGRUPAMIENTO

- o Los registros semejantes van a parar a la misma categoría (cluster).
- Una vez entrenado, el mapa de Kohonen se puede usar para categorizar nuevos registros.

- Dado un conjunto de transacciones se quiere encontrar reglas que puedan predecir la ocurrencia de un ítem a partir de otros ítems de la transacción.
- Análisis de Canasta (Market Basket Analysis)

Ticket ID	Ítems
1	Pan, Leche
2	Pan, Pañales, Cerveza, Huevos
3	Leche, Pañales, Cerveza, Gaseosa
4	Pan, Leche, Pañales, Cerveza
5	Pan, Leche, Pañales, Gaseosa

Ejemplos de Reglas

 ${Pañales} \rightarrow {Cerveza}$ ${Cerveza, Pan} \rightarrow {Leche}$

- \circ Reglas de Asociación X \rightarrow Y representan implicancias.
 - Antecedente → Consecuente

Métricas de Evaluación

• Cobertura de la Regla: Proporción de casos a los que se le puede aplicar cada regla.

 $COBER(R) = \frac{N^{\circ} casos \ que \ satisfacen \ la \ aplicación \ de \ la \ regla \ R}{N^{\circ} casos \ totales \ de \ la \ clase}$

- Toma valores entre 0 y 1.
- Reglas con mayor cobertura:
 - Representativas y útiles para obtener características que definen el comportamiento de una clase.
 - Credibilidad e interés del modelo para clasificar nuevos casos a una clase.
- o Aplicable también a modelos de clasificación.

REGLAS DE ASOCIACIÓN - EJEMPLO

• Ítems de compras:

Ticket ID	Ítems
1	Pan, Leche
2	Pan, Pañales, Cerveza, Huevos
3	Leche, Pañales, Cerveza, Gaseosa
4	Pan, Leche, Pañales, Cerveza
5	Pan, Leche, Pañales, Gaseosa

o Consideremos las siguientes reglas:

• {Leche, Pañales} \rightarrow {Cerveza} Cober(R) = 2/5 = 0.4

• {Leche, Cerveza} \rightarrow {Pañales} Cober(R) = 2/5 = 0.4

• {Pañales, Cerveza} \rightarrow {Leche} Cober(R) = 2/5 = 0.4

• {Cerveza} \rightarrow {Leche, Pañales} Cober(R) = 2/5 = 0.4

• $\{Pan\} \rightarrow \{Pa\tilde{n}ales, Gaseosa\}$ Cober(R) = 1/5 = 0.2

• Precisión de la Regla: Proporción de casos que cumplen con la regla respecto del total de casos considerados en la precondición de la misma.

 $Prec(R) = \frac{N^{\circ} casos que satisfacen la aplicación de la regla R}{N^{\circ} casos que satisfacen la precondición}$

- Toma valores entre 0 y 1.
- Cuanto mayor sea la precisión de una regla más confiable e interesante resulta para asociar ítems y descubrir nuevo conocimiento.
- o Aplicable también a modelos de clasificación.

REGLAS DE ASOCIACIÓN – EJEMPLO

• Utilizando los mismos ítems de compra:

Ticket ID	Ítems
1	Pan, Leche
2	Pan, Pañales, Cerveza, Huevos
3	Leche, Pañales, Cerveza, Gaseosa
4	Pan, Leche, Pañales, Cerveza
5	Pan, Leche, Pañales, Gaseosa

• Considerando las reglas anteriores:

• $\{Leche, Pañales\} \rightarrow \{Cerveza\}$

Prec(R) = 2/3 = 0.67

• $\{Leche, Cerveza\} \rightarrow \{Pañales\}$

Prec(R) = 2/2 = 1

• $\{Pa\tilde{n}ales, Cerveza\} \rightarrow \{Leche\}$

Prec(R) = 2/3 = 0.67

• $\{Cerveza\} \rightarrow \{Leche, Pañales\}$

Prec(R) = 2/3 = 0.67

• $\{Pan\} \rightarrow \{Pa\tilde{n}ales, Gaseosa\}$

Prec(R) = 1/4 = 0.25

- Conclusiones obtenidas:
 - {Leche, Pañales} \rightarrow {Cerveza}
 - {Leche, Cerveza} \rightarrow {Pañales}
 - $\{Pañales, Cerveza\} \rightarrow \{Leche\}$
 - $\{Cerveza\} \rightarrow \{Leche, Pañales\}$
 - $\{Pan\} \rightarrow \{Pa\tilde{n}ales, Gaseosa\}$

- $Cober(R) = 0.4 \quad Prec(R) = 0.67$
- $Cober(R) = 0.4 \quad Prec(R) = 1$
- Cober(R) = 0.4 Prec(R) = 0.67
- $Cober(R) = 0.4 \quad Prec(R) = 0.67$
- $Cober(R) = 0.2 \quad Prec(R) = 0.25$
- La regla {Leche, Cerveza} → {Pañales} es la que mejor describe características de consumo, y la que genera mayor confianza e interés para descubrir patrones de compra frecuente.
- Reglas con alta precisión pero baja cobertura son irrelevantes y de poco interés en un modelo de explotación de información.

PRÁCTICA CON TANAGRA PREDICCIÓN / CLASIFICACIÓN

Caso Práctico – Oftalmología

- Archivo: Oftalmologia.xls
- Preguntas:
 - ¿Cuántos registros tiene el archivo?
 - ¿Cuántos atributos tiene y de qué tipo son?
 - ¿Cuál es la distribución de valores del atributo clase? ¿Está bien balanceado?
- Visualización de los datos

	EDAD	PADECIMIENTO	ASTIGMATISMO	LAGRIMEO	TIPO DE LENTE
1	joven	hipermétrope	si	reducido	ninguno
2	joven	hipermétrope	si	normal	duro
3	joven	hipermétrope	no	reducido	ninguno
4	joven	hipermétrope	no	normal	suave
5	joven	miope	si	reducido	ninguno
6	joven	miope	si	normal	duro
7	joven	miope	no	reducido	ninguno
8	joven	miope	no	normal	suave
9	pre-presbiópico	hipermétrope	si	reducido	ninguno
10	pre-presbiópico	hipermétrope	si	normal	ninguno
11	pre-presbiópico	hipermétrope	no	reducido	ninguno
12	pre-presbiópico	hipermétrope	no	normal	suave

Algoritmos de Inducción TDIDT

- Algoritmo a utilizar ID3
 - Ejecutar el algoritmo con la parametrización por defecto.
 - Evaluar el resultado obtenido.
 - Visualizar el árbol de decisión.
- Ajuste de parámetros
 - Ejecutar el algoritmo con la nueva parametrización.
 - Evaluar el resultado obtenido.
 - Visualizar el árbol de decisión.

o Algoritmo ID3

Decision tree

- LAGRIMEO in [reducido] then TIPO DE LENTE = ninguno (100,00 % of 12 examples)
- LAGRIMEO in [normal]
 - ASTIGMATISMO in [si]
 - PADECIMIENTO in [hipermétrope] then TIPO DE LENTE = ninguno (66,67 % of 3 examples)
 - PADECIMIENTO in [miope] then TIPO DE LENTE = duro (100,00 % of 3 examples).
 - ASTIGMATISMO in [no]
 - PADECIMIENTO in [hipermétrope] then TIPO DE LENTE = suave (100,00 % of 3 examples)
 - PADECIMIENTO in [miope] then TIPO DE LENTE = suave (66,67 % of 3 examples)

- Evaluación del algoritmo ID3
 - N° casos entrenamiento: 24 casos
 - □ Ninguno = 15 casos / Duro = 4 casos / Suave = 5 casos

	ninguno	duro	suave	Sum
ninguno	14	0	1	15
duro	1	3	0	4
suave	0	0	5	5
Sum	15	3	6	24

Exactitud (M) =
$$91,7\%$$

Precisión (
$$C_{Ninguno}$$
) = 93,3%

Precisión (
$$C_{Duro}$$
) = 100%

Precisión (
$$C_{Suave}$$
) = 83,3%

- N° reglas obtenidas: 5
- Cobertura $(R_i) > 100 / N^{\circ}$ reglas

Cober
$$(R_i) > 20\%$$

Clase (Ninguno)	Clase (Duro)	Clase (Suave)
$Cober(R_1) = 12/15 = 80\%$	$Cober(R_3) = 3/4 = 75\%$	$Cober(R_4) = 3/5 = 60\%$
$Cober(R_2) = 2/15 = 13,3\%$		Cober(R_5) = 2/5 = 40%

- Algoritmo a utilizar C4.5
 - Ejecutar el algoritmo con la parametrización por defecto.
 - Evaluar el resultado obtenido.
 - Visualizar el árbol de decisión.
- Ajuste de parámetros
 - Ejecutar el algoritmo con la nueva parametrización.
 - Evaluar el resultado obtenido.
 - Visualizar el árbol de decisión.

C4.5 parameters	
Parameters	1
Min size of leaves :	3
Confidence level :	0,25

• Algoritmo C4.5

Decision tree

- LAGRIMEO in [reducido] then TIPO DE LENTE = ninguno (100,00 % of 12 examples)
- LAGRIMEO in [normal]
 - ASTIGMATISMO in [si]
 - PADECIMIENTO in [hipermétrope] then TIPO DE LENTE = ninguno (66,67 % of 3 examples)
 - PADECIMIENTO in [miope] then TIPO DE LENTE = duro (100,00 % of 3 examples)
 - ASTIGMATISMO in [no] then TIPO DE LENTE = suave (83,33 % of 6 examples)

• Evaluación del algoritmo C4.5

	ninguno	duro	suave	Sum
ninguno	14	0	1	15
duro	1	3	0	4
suave	0	0	5	5
Sum	15	3	6	24

Exactitud (M) =
$$91,7\%$$

Precisión (
$$C_{Ninguno}$$
) = 93,3%

Precisión (
$$C_{Duro}$$
) = 100%

Precisión (
$$C_{Suave}$$
) = 83,3%

- N° reglas obtenidas: 4
- Cobertura $(R_i) > 100 / N^{\circ} \text{ reglas}$ Cober $(R_i) > 25\%$

Clase (Ninguno)	Clase (Duro)	Clase (Suave)	
$Cober(R_1) = 12/15 = 80\%$	$Cober(R_3) = 3/4 = 75\%$	$Cober(R_4) = 5/5 = 100\%$	
$Cober(R_2) = 2/15 = 13,3\%$			

• El algoritmo C4.5 es el que mejor predice cómo clasificar.

Clasificación con Redes Bayesianas

• Aprendizaje Estructural

- Algoritmo a utilizar Naïve-Bayes
 - Ejecutar el algoritmo con la parametrización por defecto.
 - Evaluar el resultado obtenido.

• Evaluación del algoritmo

	ninguno	duro	suave	Sum
ninguno	14	0	1	15
duro	0	4	0	4
suave	0	0	5	5
Sum	14	4	6	24

Exactitud (M) =
$$95,8\%$$

Precisión (C_{Ninguno}) = 100%

Precisión (C_{Duro}) = 100%

Precisión (C_{Suave}) = $83,3\%$

- Aprendizaje Paramétrico
 - Probabilidades a priori para cada Tipo de Lente

Prior distribution of class attribute "TIPO DE LENTE"

Values	Count	Percent	Histogram
ninguno	15	62,50 %	
duro	4	16,67 %	
suave	5	20,83 %	

• Proceso de Inferencia

	TIPO DE LENTE	
	Ninguno	0%
	Duro	100%
	Suave	0%
_		

EDAD	
Joven	50%
Pre-presbiópico	25 %
Presbiópico	25 %

PADECIMIENTO	
Hipermétrope	25 %
Miope	75 %

ASTIGMATISMO	
SI	100%
NO	0%

LAGRIMEO	
Reducido	0%
Normal	100%

• Proceso de Inferencia

• ¿Qué conocimiento obtenemos en base a los resultados del análisis de cada tipo de lente?

