

Thesis Defense

GraphSLAM Algorithm Implementation for Solving SLAM

Author: Franco Curotto

Thesis Adviser: Martin Adams

Commission Members: Marcos Orchard

Jorge Silva

March 5, 2016

- You may be wondering what GraphSLAM and SLAM
- My work is ... in the field of robotics

Motivation

Robots Before

Motivation

Robots Before

Robots Now

-- Motivation

either stationary [reference photo], or had limited mobility, usually by following a reference [reference photo].

• Robots nowadays need to be much more versatile, autonomous and robust

Robots in the past were restricted to do simple, repetitive tasks, and were

- Robots nowadays need to be much more versatile, autonomous and robust [reference photos].
- In particular robots must be able to move freely in an open environment.

Motivation

Mobile Robots

- Move around known environments without getting lost.
- Explore new environments, and "remember" them.
- React to unexpected changes.
- Perform their tasks in **suboptimal conditions**.

- Motivation

- Move around known environments without getting lost
 Explore new environments, and "remember" them.
- · React to unexpected changes.
- · Perform their tasks in suboptimal conditions
- A robot must be able to identify where in the scenario he is standing on.
- For example if you buy a robot for your house, he never has seen your house before, so he must be able to explore it and remember it for later use.
- For example when the environment changes, or when there is something moving on the room.

SLAM

Simultaneous Localization And Mapping (SLAM)

The problem were an agent must simultaneously estimate its current position (localization), and construct a map of its environment (mapping).

SLAM

Simultaneous Localization And Mapping (SLAM)

The problem were an agent must simultaneously estimate its current position (localization), and construct a map of its environment (mapping).

Odometry and Measurements

Sensors can be used to:

- Keep track of the robot movements (odometry)
- Sense nearby objects positions (measurements)

Sensors are noisy. We can use probabilistic methods to improve sensors estimates.

GraphSLAM

GraphSLAM translate the SLAM problem into a graph.

- Nodes represents robot poses or landmarks.
- Edges represents robot odometry or measurements.

Goal: Find the nodes positions that most accurately represents the sensors data (edges).

GraphSLAM

GraphSLAM translate the SLAM problem into a graph.

- Nodes represents robot poses or landmarks.
- Edges represents **robot** odometry or **measurements**.

Goal: Find the nodes positions that most accurately represents the sensors data (edges).

We want to find the maximum likelihood of posterior probability:

$$p(\mathbf{x}_{0:k}, \mathbf{m}|\mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

We want to find the maximum likelihood of posterior probability:

$$p(\mathbf{x}_{0:k}, \mathbf{m} | \mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

Which can be formulated as:

$$F(\boldsymbol{y}) := -\log(\rho(\boldsymbol{y}|\boldsymbol{z}_{1:k},\boldsymbol{u}_{1:k})) = \sum_{\langle i,j\rangle \in \mathcal{E}} \boldsymbol{e}_{ij}(\boldsymbol{y})^T \boldsymbol{\Omega}_{ij} \boldsymbol{e}_{ij}(\boldsymbol{y})$$

We want to find the maximum likelihood of posterior probability:

$$p(\mathbf{x}_{0:k}, \mathbf{m}|\mathbf{z}_{1:k}, \mathbf{u}_{1:k})$$

Which can be formulated as:

$$F(\mathbf{y}) := -\log(p(\mathbf{y}|\mathbf{z}_{1:k}, \mathbf{u}_{1:k})) = \sum_{\langle i,j\rangle \in \mathcal{E}} \mathbf{e}_{ij}(\mathbf{y})^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}(\mathbf{y})$$

- y: state vector (junction of robot poses and landmarks positions)
- **z**_{1:k}: landmarks measurements
- $u_{1:k}$: odometry measurements
- ullet e_{ij} : error function (difference between current estimate and data)
- Ω_{ii} : Information matrix of measurements

Gauss-Newton algorithm

• 1° order Taylor expansion around current estimate:

$$F(\mathbf{\ddot{y}} + \mathbf{\Delta y}) = k + 2\mathbf{b}\mathbf{\Delta y} + \mathbf{\Delta y}^{\mathsf{T}}\mathbf{H}\mathbf{\Delta y}$$
 (1)

Minimization of :

$$\mathbf{H} \Delta \mathbf{y}^* = -\mathbf{b} \tag{2}$$

Estimate update:

$$\mathbf{y}^* = \mathbf{\breve{y}} + \mathbf{\Delta}\mathbf{y}^* \tag{3}$$

- **y**̈: current estimate
- Δy : small disturbance around \ddot{y}
- b: Information vector
- **H**: Information matrix
- y*: New estimate

Structure of the Linearized System

Information matrix **H** is intrinsically **sparse**.

Structure of the Linearized System

Information matrix **H** is intrinsically **sparse**.

Structure of the Linearized System

Information matrix **H** is intrinsically **sparse**.

Implementation

Implementation details

Results

Conclusions

Thesis Defense

GraphSLAM Algorithm Implementation for Solving SLAM

Author: Franco Curotto

Thesis Adviser: Martin Adams

Commission Members: Marcos Orchard

Jorge Silva

March 5, 2016