MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 1 - OCTOBER 2013 ROUND 5 INEQUALITIES & ABSOLUTE VALUE**

ANSWERS

- A) _____
- B) _____
- C) _____
- A) Let $y = \begin{cases} \frac{|n|}{n} & \text{for } n \neq 0 \\ c & \text{for } n = 0 \end{cases}$, where n denotes an integer and c denotes a real number. If $\sum_{n=-1}^{n=2013} y = 0$, compute c.

If
$$\sum_{n=-1}^{n=2013} y = 0$$
, compute c

[Fear not! Σ is the summation symbol.

By way of example,
$$\sum_{n=3}^{n=5} (2n-1) = (2 \cdot 3 - 1) + (2 \cdot 4 - 1) + (2 \cdot 5 - 1) = 5 + 7 + 9 = 21.$$

B) Solve for *x*:

$$\left|2x+1\right| > \left|x-5\right|$$

C) Determine <u>all</u> real values of x for which each of the fractions $\frac{1}{x+5}$, $\frac{1}{13x-60}$, $\frac{1}{5-x}$ are positive and the sequence formed by these three fractions is in strictly increasing order.

namely
$$\frac{1}{x+5} < \frac{1}{13x-60}$$
 and $\frac{1}{13x-60} < \frac{1}{5-x}$.