Homework 2

Field Distribution. (a) Show that a single TEM plane wave $E_x(y, z) = A \exp(-jk_y y) \exp(-j\beta z)$ cannot satisfy the boundary conditions, $E_x(\pm d/2, z) = 0$ at all z, in the mirror waveguide illustrated in Fig. 7.1-1.

(b) Show that the sum of two TEM plane waves written as $E_x(y, z) = A_1 \exp(-jk_{y1}y) \exp(-j\beta_1z) + A_2 \exp(-jk_{y2}y) \exp(-j\beta_2z)$ does satisfy the boundary conditions if $A_1 = \pm A_2$, $\beta_1 = \beta_2$, and $k_{y1} = -k_{y2} = m\pi/d$, $m = 1, 2, \dots$

Note that : for (b) find the conditions that the sum of waves satisfy the boundary conditions, not to "show" or "proof" , i.e. consider, even / odd modes

Figure 7.1-1 Planar-mirror waveguide.

Modal Dispersion. Light of wavelength $\lambda_o = 0.633~\mu m$ is transmitted through a mirror waveguide of mirror separation $d = 10~\mu m$ and n = 1. Determine the number of TE and TM modes. Determine the group velocities of the fastest and the slowest mode. If a narrow pulse of light is carried by all modes for a distance of 1 m

in the waveguide, how much does the pulse spread as a result of the differences of the group velocities?

Parameters of a Dielectric Waveguide. Light of free-space wavelength $\lambda_o = 0.87 \,\mu\text{m}$ is guided by a thin planar film of width $d = 2 \,\mu\text{m}$ and refractive index $n_1 = 1.6$ surrounded by a medium of refractive index $n_2 = 1.4$.

- (a) Determine the critical angle θ_c and its complement $\bar{\theta}_c$, the numerical aperture NA, and the maximum acceptance angle for light originating in air (n = 1).
- (b) Determine the number of TE modes.
- 3. (c) Determine the bounce angle θ and the group velocity v of the m = 0 TE mode.

Single-Mode Waveguide. What is the largest thickness d of a planar symmetric dielectric waveguide with refractive indices $n_1 = 1.50$ and $n_2 = 1.46$ for which there is only one TE mode at $\lambda_o = 1.3 \ \mu \text{m}$? What is the number of modes if a waveguide with this thickness is used at $\lambda_o = 0.85 \ \mu \text{m}$ instead?

Mode Cutoff. Show that the cutoff condition for TE mode m > 0 in a symmetric slab waveguide with $n_1 \approx n_2$ is approximately $\lambda_o^2 \approx 8n_1 \Delta n d^2/m^2$, where $\Delta n = n_1 - n_2$.

Modes of a Rectangular Dielectric Waveguide. A rectangular dielectric waveguide has a square cross section of area 10^{-2} mm² and numerical aperture NA = 0.1. Use (7.3-3) to plot the number of TE modes as a function of frequency ν . Compare your results with Fig. 7.2-4.

Modes. A step-index fiber has radius $a = 5 \mu m$, core refractive index $n_1 = 1.45$, and fractional refractive-index change $\Delta = 0.002$. Determine the shortest wavelength λ_c for which the fiber is a single-mode waveguide. If the wavelength is changed to $\lambda_c/2$, identify the indices (l, m) of all the guided modes.

Propagation Constants and Wavevector (Step-Index Fiber). A step-index fiber of radius $a=20~\mu \text{m}$ and refractive indices $n_1=1.47$ and $n_2=1.46$ operates at $\lambda_o=1.55~\mu \text{m}$. Using the quasi-plane wave theory and considering only guided modes with azimuthal index l=1:

8. (a) Determine the smallest and largest propagation constants.

6.

7.

9.

Modal Dispersion in Step-Index Fibers. Determine the core radius of a multimode step-index fiber with a numerical aperture NA = 0.1 if the number of modes M = 5000 when the wavelength is 0.87 μ m. If the core refractive index $n_1 = 1.445$, the group index $N_1 = 1.456$, and Δ is approximately independent of wavelength, determine the modal-dispersion response time σ_{τ} for a 2-km fiber.