Section 6.4

Penn State University

Math 141 - Section 001 - Summer 2016

6.4*: General Logarithmic and Exponential Functions

We discussed the exponential function with base e in the previous section. There are plenty of cases where we wish to take the exponent of numbers other than e. The definition of the general exponential function is $a^x = e^{x \ln a}$. I should emphasize the meaning of the word *definition*. When we say "the definition of a^x is $a^x = e^{x \ln a}$," what we mean is that a^x is just a shorthand for $e^{x \ln a}$. Whenever you deal with an expression involving a general exponential, it is almost always the case that rewriting it using the definition is a good first step.

Note that if a = e, then $e^{x \ln e} = e^x$. All the usual properties of exp function apply to general exponential functions (3). $\frac{d}{dx}(a^x) = a^x \ln a$ (4) and $\int a^x dx = \frac{a^x}{\ln a} + C$ (p440) are formulas that you should know how to derive, and eventually memorize.

Exercise 1. Differentiate 5^x .

Solution: By the formula, $(5^x)' = \ln 5 \cdot 5^x$.

Exercise 2. Differentiate $f(x) = 3^{\cos 2x}$.

Solution: By the chain rule, $f(x) = \ln 3.3^{\cos 2x} \cdot (\cos 2x)' = -2 \ln 3.3^{\cos 2x} \cdot \sin 2x$.

There is a nice discussion of how know when to use the Power Rule or Exponential Rule on p441, which you should read carefully.

Exercise 3. Differenciate $y = x^{\sqrt{x}}$.

Now that we know what general exponential functions are, we can also define general log functions. The textbook's definition is that the log function with base a is the inverse of $a^x(5)$. But it's easier to think of it simply as $\log_a x = \frac{\ln x}{\ln a}(6)$. A consequence of this formula is that $\frac{d}{dx} \log_a x = \frac{1}{x \ln a}$.

Problems

- 1. Find $(x^4 + 5^x)'$.
- 2. Evaluate $\int x^4 + 5^x dx$.
- 3. Evaluate $\int x2^{x^2} dx$.
- 4. Find $(x^{\cos x})'$.
- $5. \int \frac{\log_{10} x}{x} dx.$
- $6. \int \frac{2^x}{2^x+1} dx.$
- 7. (Exam 1 Sample B) If $f(x) = 3^x$, find the second derivative f'(x).
- 8. (Exam 1 Sample B) If $f(x) = x^{2x}$, find f'(e).
- 9. (Exam 1 Sample C) Differentiate $y = 3^{x^2}$.