Raționamentul științific

Curs 7

Ok, but before that...

Aveți întrebări legate de ce am discutat săptămâna trecută?

Andrei te-a invitat să participi la un grup de discuție legat de un draft pe care l-a scris de curând. Ți-a plăcut foarte mult ideea lui Andrei din articol și le-o menționezi prietenilor care crezi că ar fi interesați de așa ceva. Mihai, un coleg dintr-un an mai mare, îți cere draftul lui Andrei, deoarece i se pare foarte interesant ce i-ai povestit. Mai mult, știi că Mihai lucrează la ceva similar pentru lucrarea sa de disertație, ceea ce înseamnă că articolul i-ar fi chiar foarte util. Îl cunoști foarte bine pe Mihai, ai încredere în el și știi sigur că draftul i-ar fi foarte util. Cum procedezi?

 Dacă cineva copiază dintr-un draft al unui articol un pasaj pe care autorul/autorii îl șterg atunci când revizuiesc manuscrisul, putem spune că persoana în cauză a plagiat? Ce contează mai mult: procentul de text plagiat dintr-o lucrare, dacă există sau nu intenție sau dacă plagiatorul a avut beneficii în urma actului? Argumentați.

Dacă preluarea are loc după o compilație lipsită de originalitate, fără autor recunoscut, se mai poate vorbi de plagiat?

În cazul unui plagiat într-o lucrare de licență, disertație sau teză de doctorat, cine are o responsabilitate mai mare: studentul sau profesorul coordonator?

Dimensiune:

• 6000 – 12000 caractere (cu tot cu spații)

Font:

• Times New Roman, 12, spațiere 1,5

Structură:

- introducere
- argument pro
- argument contra
- respingerea argumentului contra
- concluzie
- bibliografie (minimum două intrări)

Alte cerințe:

- diacritice
- fără plagiat

Barem de corectare:

- 0.3 pentru realizarea corectă a referințelor și bibliografiei
- 0.2 pentru o exprimare corectă
- 0.1 pentru diacritice
- 0.5 pentru structură
- 0.5 pentru calitatea argumentului și claritatea expunerii
- 0.4 pentru calitatea contraargumentului, răspunsul la contraargument și claritatea expunerii

Introducerea IA în domeniul medical

• Introducere: ce o să fac în acest eseu? De ce?

• **Definirea termenilor:** IA, domeniul medical (= termen deja înțeles, DAR am nevoie de anumite limitări?)

- Cercetare: articole, cărți, interviuri, conferințe
- Unde? (NU WIKIPEDIA!!!!!!) Please.

Verificarea unei surse

- Verificarea informației: cel mai simplu e să căutați în 2-3 locuri respectiva informație, pentru a fi siguri că e corectă
- Evitați articolele non-științifice (de tip can-can)
- Evitați site-urile neverosimile

Introducerea IA în domeniul medical

• Argument pro:

• Argument contra:

Răspuns contraargument.

• Concluzii:

Evitați

- Generalizările pripite
- Stereotipurile
- Bifurcațiile
- Panta alunecoasă
- Citarea în afara contextului
- Argumentele evaluative nesusținute!
- Atacurile la persoană

 Dacă observați că teza inițială trebuie slăbită, nu ezitați să o faceți!

 Dacă cel mai puternic contraargument nu poate fi combătut în totalitate, încercați doar să îl slăbiți (arătați că nu e general, că nu se suține în totalitate, că nu e atât de aplicabil, etc)

Metoda științifică

Metoda științifică

- Ipoteze = enunțuri ce pot fi adevărate sau false.
- Amintiți-vă distincția între enunțuri declarative, interogative și imperative – doar primele pot avea valori de adevăr.
- Metoda științifică -> testarea ipotezelor

- Proces bazat pe:
- Adunarea sau cumularea dovezilor,
- Selectarea celei mai bune ipoteze

Şi nu pe:

- Intuiții: "am senzația că P, deci P."
- Tradiție: "timp de atâtea veacuri am considerat că P, deci P este adevărată."
- Popularitate: "multă lume consideră că P, deci P este adevărată."
- Autoritate: "cercetătorul X consideră că P, deci P."
- Preferințe personale: "îmi place să cred că P, deci P."
- Proces failibil!

- (1) (*Define*) Definește ipoteza pe care dorești s-o testezi.
- (2) (*Evidence*) Adună dovezi pro sau contra ipotezei.
- (3) (*Alternatives*) Află care sunt ipotezele alternative.
- (4) (*Rank*) Ordonează ierarhic ipotezele și selecteaz-o pe cea mai bună dintre acestea.

- (1) (Define) Definește ipoteza pe care dorești s-o testezi.
- definițiile trebuie să fie clare (implicit, trebuie să ne fie clar ce înseamnă fiecare cuvânt folosit).

Ex.: "Fiecare persoană are o aură".

Întrebare: ce înseamnă "aură"?

- (1) (*Define*) Definește ipoteza pe care dorești s-o testezi.
- definițiile trebuie să fie precise.

Ex.:"A investi în aur este profitabil"

Întrebări:

- Vorbești despre a cumpăra aur, obiecte ce conțin aur sau activități conectate cu prelucrarea aurului etc.? Nu este clar.
- Este vorba despre o investiție profitabilă pe termen lung sau scurt?
- Cât de profitabil?

Un enunț mai clar ar fi următorul: "banii investiți în aur sunt feriți de efectele inflației."

- (1) (*Define*) Definește ipoteza pe care dorești s-o testezi.
- Trebuie să fie clar domeniul ipotezei.
- Ipoteza cuantifică peste toate, unele, majoritatea obiectelor?

Ex.:

- "Toate lebedele sunt albe" este clar falsă.
- "Unele lebede sunt albe" este adevărată, dar poate nu ne oferă informație interesantă.
- "Majoritatea lebedelor sunt albe" este clar interesantă, dar este nevoie de clarificarea termenului "majoritatea" (peste 50%?).

- (2) (Evidence) Adună dovezi pro sau contra ipotezei.
- Faptele pot confirma ipoteza = pot spori plauzibilitatea acesteia (încrederea pe care o acordăm acesteia)
- Faptele pot infirma ipoteza = pot scădea plauzibilitatea acesteia.
- Unele dovezi sunt mai convingătoare decât altele. Spre exemplu, a descoperi lebede albe în țări de pe continente diferite este o dovadă mai convingătoare pentru plauzibilitatea ipotezei "Toate lebedele sunt albe". Desigur, nu este o dovadă finală!
- Cu cât avem mai multe fapte ce confirmă ipoteza, cu atât aceasta este mai plauzibilă!
- Atenție la *confirmation bias*: tindem să ignorăm sau să diminuăm importanța faptelor ce nu ne confirma ipotezele!

(3) (Alternatives) Află care sunt ipotezele alternative.

Ex.: încălzirea globală este cauzată de acțiunea umană?

Alternativă: încălzirea globală este cauzată de factori ce exclud acțiunile oamenilor.

Rezolvare: geologii verifică variația temperaturii de-a lungul timpului. Dacă variația temperaturii nu a depășit anumiți parametri, putem spune că nu noi suntem cauza încălzirii globale.

- A concepe ipoteze alternative presupune imaginație!
- Activitatea de găsire a ipotezelor alternative este supusă prejudecăților.

- (4) (Rank). Schemă de raționament:
 - 1. Deținem o mulțime E de fapte.
 - 2. Ipotezele X, Y, Z sunt consistente cu E.
 - 3. X este cea mai bună explicație pentru E.

Deci:

4. X este cel mai probabil adevărată.

Cum anume selectăm cea mai bună ipoteză? Ce anume contribuie la calitatea unei ipoteze? Ce face o ipoteză să fie bună?

O ipoteză bună oferă predicții. Ce contează:

- numărul predicțiilor
 - acuratețea predicțiilor
 - precizia predicțiilor

Întrebare: dacă predicțiile sunt infirmate, renunțăm imediat la ipoteză?

Răspuns: nu neapărat. Testăm asumpțiile auxiliare.

Exemplu: Să zicem că vrem să testăm următoarea ipoteză: apa îngheață la 0 grade Celsius. Folosind un termometru, observăm, surprinzător, că nu se întâmplă așa. Înseamnă aceasta ca am respins ipoteza? Nu imediat: trebuie testată și asumpția auxiliară conform căreia termometrul indică în mod corect temperatura. Dacă acesta era stricat, nu ar trebui să ne suprindă faptul că experimentul nostru a eșuat.

Ipotezele bune dezvăluie mecanisme cauzale.

Exemplu:

Ipoteză: vânzarile crescute de înghețată explică creșterea numărului rănilor cauzate de mușcături de rechin

Evenimentele sunt puternic **corelate!** Dar este primul o explicație bună pentru al doilea? Oferă această explicație **cauza** celui de-al doilea eveniment? Nu.

Simpla existență a unei **corelații** între două evenimente nu ar trebui să ne inspire încrederea într-o **relație cauzală** între cele două. Corelația între cele două poate fi explicată simplu (și apoi ignorată întreaga ipoteză): vânzările de înghețată cresc în timpul verii, atunci când multe persoane înoată în mare.

Ipotezele bune sunt coerente.

- Ipotezele ar trebui să fie consistente logic (să nu implice absurdități/contradicții).
- Ipotezele **bune** sunt consistente cu teorii științifice deja acceptate.

O ipoteză bună este simplă (briciul lui Ockham):

- o teorie bună stipulează existența câtor mai puține entități.

Sursa ipotezei este importantă:

- Este autorul ei un expert în domeniul în care ipoteza este utilă?
- Este autorul ei o persoană creditată/de încredere? Face adeseori afirmații slab fondate?
- Există conflicte de interese?

Exemplu: companiile de tutun și afirmațiile cu privire la cât de puțin nociv este tutunul.

Ignaz Semmelweis (1818 – 1865) – a introdus spălatul pe mâini printre practicile igienice din spitale – înainte ca **ipoteza germenilor** (Louis Pasteur 1822 - 1895) să fie acceptată! Istoria medicinei: ce anume cauzează boli

prcum răceala, holera etc.?

Două ipoteze: Ipoteza germenilor (Pasteur) vs. Impoteza miasmelor (Galen 130 - 210)

- Clinica 1: rata mortalității materne: 10%
- Clinica 2: rata mortalității materne: 4%

Ce anume explică cel mai bine diferența între cele două?

- Semmelweis a luat în considerare următoarele posibilități (ipoteze alternative):
- (1) Suprapopularea în cazul clinicii 1. Infirmată: clinica 2 era mai aglomerată!
- (2) Diferența de temperatură (climat diferit). Infirmată: același climat/temperatură.
- (3) Practici religioase diferite în clinice. Infirmată.
- (4) Diferențe în ce privește igiena.

Dovezi încurajatoare:

- (1) Un medic decedat în clinica 2 prezenta aceeași patologie cu a mamelor bolnave.
- (2) Medicul fusese îngrijit de aceleași persoane.

Alte observații:

- (1) În clinica 2 exista și o morgă.
- (2) Persoanele care îngrijeau bolnavii se ocupau și de autopsii.
- Explicația lui Semmelweis oferă și un mecanism cauzal (aproximativ): "
 particulele cadaverice intră în contact cu bolnavii, deoarece îngrijitorii se
 ocupă și de autopsii"
- Explicația lui Semmelweis era consistentă, dar nu neapărat în acord și cu teoria populară cu privire la transmiterea bolilor: teoria generării spontane + teoria miasmelor.
- Explicația lui Semmelweis era consistentă, totuși, cu teoriile noi, dar nu încă populare, avansate de Athanasius Kircher, John Snow, Agostino Bassi.

John Show Jon Snow vs. John Snow

- Pro: "King in the North",
- Contra: personaj fictiv...

- Pro: nu e personaj fictiv, a descoperit legătura între calitatea apei și apariția holerei folosind metode statistice.
- Contra: not the King of the North, just one life, already dead (1813 - 1858)

Observație 1: apariția holerei este conectată cu un loc urât mirositor (mlaștini, apă "stricată")

Observație 2: apariția holerei este conectată cu condiții sanitare slabe.

Teoria miasmelor era consistentă cu Obs. 1 & 2.

Teoria germenilor era consistentă cu Obs. 1 & 2.

Egalitate (până acum)

Dar:

Observație 3: Numărul persoanelor care se îmbolnăvesc de holera este mai mare în zona în care se află fântâna X.

Observație 4: Numărul scade cu cât ne îndepărtăm de fântană.

Teoria germenilor este singura care explică suficient de bine Observatiile 3 ți 4.

Metoda lui Mill

Problema: să zicem că am observat un eveniment E. Cum îi aflăm cauza?

Algoritm:

- (1) Propunem o mulțime de cauze posibile (candidate la un titlu de "cauză").
- (2) Colectăm informație. Ce evenimente au precedat evenimentului E? (există evenimente ale căror cauze se află în viitor?!)
- (3) Folosește următoarele 5 reguli:

Metoda acordului

- Daca mai multe situatii ce au drept efect evenimentul E au o singura cauza in comun C, atunci C este cauza lui E.
 - Exemplu: toate persoanele bolnave de SIDA au contractat virusul HIV (deși sunt de etnii diferite, au vârste sau orientări sexuale diferite).
- Defect: regula acordului nu ne asigură de suficiența cauzală!
 Exemplu: nu este suficient să fi contractat HIV pentru a avea SIDA (dar este necesar)

Situația		Efect		
	A	В	C	E
1	Da	Nu	Da	Da
2	Nu	Da	Da	Da
3	Da	Da	Da	Da

Metoda diferențelor

• Dacă un grup G1 de situații conduce la un eveniment E și un grup G2 de situații nu conduce la E, și singura diferență între G1 și G2 este că evenimentul C apare în G1 dar nu și în G2, atunci C este cauza lui E.

Situația		Efect		
	A	В	C	E
1	Da	Nu	Da	Da
2	Da	Nu	Da	Da
3	Da	Nu	Nu	Nu

Metoda cumulului

- Să zicem că un grup G1 de situații duce la un eveniment E, iar un grup G2 nu. Dacă C este singurul factor comun al situațiilor din G1 și singurul factor absent din G2, atunci C este cauza lui E.
- Dacă C este singurul eveniment ce a avut loc atunci și doar atunci când E a avut loc, atunci C este cauza lui E.

Situația	Cauze posibile				Efect
	A	В	С	D	E
1	Da	Da	Da	Da	Da
2	Da	Nu	Da	Nu	Da
3	Da	Nu	Nu	Da	Nu

Metoda variațiilor concomitente

- Dacă o variație a unui factor C este urmată de o variație (răspuns) a efectului E, atunci C este cauza lui E.
- Intuiție: caracteristicile efectului se schimbă în funcție de caracteristicile cauzei.
- Exemplu: odată cu creşterea poluării creşte și numărul atacurilor de astm + odată cu diminuarea poluării scade numărul atacurilor de astm = poluarea este cauza atacurilor de astm.

Situația	Cauze posibile	Efect
	С	E
1	Da	Da
2	Da/Da	Da/Da
3	Da/Da/Da	Da/Da/Da

Metoda reziduurilor

- Dacă o mulțime de condiții cauzează o serie de efecte, și unele dintre efecte pot fi explicate făcând apel la condiții anterioare, atunci restul efectelor sunt cauzate de restul condițiilor.
- ="Metoda eliminării"
- Exemplu: două cărți au dispărut din bibliotecă; doar două persoane au avut acces la bibliotecă în acea zi. Prima persoană recunoaște ca a luat una dintre cărți. Concluzie: a doua persoană a luat cealalăt carte.
- Exemplu: astronomii puteau explica orbitele tuturor planetelor mai puțin Uranus. Orbita lui Uranus nu putea fi explicată folosind date despre orbitele celorlalte planete. Concluzia lui Leverrier: trebuie să existe o planetă în plus, a cărei influențe asupra lui Uranus să-i explice orbita.

Limite ale metodelor lui Mill

- Nu întotdeauna cauza reală este una dintre candidatele luate în considerare! Deci aplicarea lor nu garantează răspunsul corect.
- Efectul ar putea avea mai multe cauze!
 - Exemplu: mai multe persoane se îmbolnăvesc după ce mănâncă unul sau mai multe dintre cele 3 feluri oferite. Ceea ce este comun tuturor persoanelor este că au mâncat stridii. Metoda acordului: stridiile sunt cauza. Dar este posibil ca stridiile să fi fost ok, iar salata și supa să fi fost stricate. De asemenea, toata lumea a mâncat (în afara stridiilor) ori salată ori supă (nu pe amândouă). Atunci avem două cauze ale îmbolnăvirii.

Suppose your family went out together for a buffet dinner, but when you got home all of you started feeling sick and experienced stomach aches. How do you determine the cause of the illness? Suppose you draw up a table of the food taken by each family member :

Member / Food taken	Oyster	Beef	Salad	Noodles	Fallen ill?
Mum	Yes	Yes	Yes	Yes	Yes
Dad	Yes	No	No	Yes	Yes
Sister	Yes	Yes	No	No	Yes
You	Yes	No	Yes	No	Yes

Member / Food taken	Oyster	Beef	Salad	Noodles	Fallen ill?
Mum	Yes	Yes	Yes	Yes	Yes
Dad	Yes	Yes	Yes	Yes	Yes
Sister	Yes	Yes	Yes	Yes	Yes
You	Yes	Yes	No	Yes	No

Member / Food taken	Oyster	Beef	Salad	Noodles	Fallen ill?
Mum	Yes	Yes	Yes	Yes	Yes
Dad	Yes	Yes	No	Yes	Yes
Sister	Yes	Yes	Yes	No	Yes
You	Yes	No	No	Yes	No

@ marketoonist.com