

ADS-10

Matemática Discreta

Aula 08 – Relações: propriedades

Prof Carlota

Uma <u>endorrelação</u> em S é qualquer relação R em que o <u>domínio e contradomínio são iguais a S</u>. Dizemos que <u>R é uma relação em S</u>. As endorrelações podem ser representadas por um grafo orientado ou por uma matriz de adjacências.

Exemplo: Sendo $S = \{1, 2, 3\}$ e $R: S \rightarrow S$, definido pelos pares $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (3,1)\}$, podemos ter as seguintes representações:

Tipos de endorrelações em S Seja R uma relação binária em um conjunto S.

- $R \in REFLEXIVA$ se $\forall x \in S$ temos $(x, x) \in R$.
- $R \in SIMÉTRICA se \forall x, y \in S temos$ $(x, y) \in R \Rightarrow (y, x) \in R.$
- $R \in ANTISSIMÉTRICA$ se $\forall x, y \in S$ temos $(x, y) \in R$ e $(y, x) \in R \Rightarrow x = y$.
- $R ext{ \'e TRANSITIVA se } \forall x, y, z \in S ext{ temos}$ $(x, y) \in R ext{ e } (y, z) \in R \Rightarrow (x, z) \in R.$

Em outras palavras:

R não é reflexiva se $\exists x \in S$ tal que $(x, x) \notin R$.

R <u>não</u> é simétrica se $\exists x, y \in S$ tais que $(x,y) \in R$ mas $(y,x) \notin R$.

R <u>não</u> é antissimétrica se $\exists x, y \in S$ com $x \neq y$ tais que $(x, y) \in R$ e $(y, x) \in R$.

R não é TRANSITIVA se $\exists x, y, z \in S$ tais que $(x, y) \in R$ e $(y, z) \in R$ mas $(x, z) \notin R$.

RESUMO

Propriedades:

R é simétrica $\Leftrightarrow R = R^{-1}$ R é antissimétrica $\Leftrightarrow R \cap R^{-1} \subseteq \{(x, x) | x \in S\}$.

Exemplo A relação ≤ no conjunto N é:

- Reflexiva porque $\forall x \in \mathbb{N}, x \leq x$.
- Não é simétrica porque 3 ≤ 4 mas 4 ≰ 3.
- Antissimétrica porque $x \le y$ e $y \le x$ implica que x = y.
- Transitiva porque $x \le y$ e $y \le z$ implica que $x \le z$.

(Por exemplo: $3 \le 4 \text{ e } 4 \le 7 \text{ e } 3 \le 7$.)

OBS: Uma relação pode ser simétrica e antissimétrica.

Exemplo:

Sendo
$$S = \{0,1\} e \ xRy \leftrightarrow x = y^2,$$

$$R = \{(0,0), (1,1)\}$$

Isto é, $\forall x \in S$, $(x, x) \in R$. Logo, S é simétrica.

R não possui elementos da forma (x, y) com $x \neq y$. Logo, S é automaticamente antissimétrica.

OBS: Uma relação pode não ser simétrica e nem antissimétrica.

Exemplo:

Sendo $S = \{1, 2, 3\}$ e $R = \{(1,2), (2,1), (1,3)\}$

Não é simétrica: (1,3) ∈ R mas (3,1) ∉ R.

Não é antissimétrica: (1,2), $(2,1) \in R$ mas $1 \neq 2$.

Exercício 1: Sendo $S = \{1, 2, 3\}$ e R: $S \rightarrow S$, construa a matriz de cada relação.

EXERCÍCIO 2 Seja $S = \{0,1,2,4,6\}$. Teste se as relações binárias em S a seguir são reflexivas, simétricas, antissimétricas ou transitivas. Construa a matriz da relação de cada relação e represente-as por meio de um grafo.

a)
$$R = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}$$

b) $R = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$

c)
$$R = \{(0,1), (1,2), (0,2), (2,0), (2,1), (1,0), (0,0), (1,1), (2,2)\}$$

$$d) R = \emptyset$$

EXERCÍCIO 3 Seja $S = \mathbb{Z}_+$ e R, a relação de divisibilidade $xRy \leftrightarrow x \mid y$. Mostre que esta relação é reflexiva, antissimétrica e transitiva, mas não é simétrica.

<u>Definição</u>: Seja *R* uma relação num conjunto *S*.

• Se R é uma relação reflexiva, simétrica e transitiva (RST) então R é uma relação de equivalência.

- Se R é uma relação reflexiva, antissimétrica e transitiva (RAT) então R é uma relação de ordem parcial em S e S é chamado conjunto parcialmente ordenado (PO).
- Estas relações podem ser representados por um diagrama de Hasse.

Diagrama de Hasse - Exemplo

$$S = \{a, b, c, d, e, f\}$$

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (a, c), (a, d), (a, e), (d, e)\}$$

e é sucessor_ imediato de d

> d é <u>predecessor</u> <u>imediato</u> de *e*

a é predecessor de e

Elementos Maximais / Minimais

Hasse para Ordem Total ou Cadeia

$$S = \{1,2,3\}$$
 $xRy \leftrightarrow x \le y$
 $R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (2,3)\}$

Já foi visto que esta relação é RAT.

Todo elemento está relacionado a todos os outros. Então R é relação de ordem total ou cadeia.

Exercício 4

Seja $S = \{a, b, c, d, e, f\}$ e a relação definida pelo diagrama de Hasse ao lado.

- a) Verificar a existência de máximo, mínimo e elementos maximais e minimais.
- b) Determinar os subconjuntos de *S* com três elementos totalmente ordenados.

Exercício 5 Para cada um dos diagramas de Hasse abaixo, liste os pares ordenados que pertencem à relação de ordem correspondente.

Referências

- LIPSCHUTZ, Seymour; LIPSON, Marc Lars. Matemática Discreta. 3.ed. Porto Alegre: Bookman, 2013.(https://integrada.minhabiblioteca.com.br/#/books/9788565837781)
- MENEZES, Paulo Blauth. Matemática Discreta para Computação e Informática. Col. Livros Didáticos, V.16. Bookman, 2008. (https://integrada.minhabiblioteca.com.br/#/books/9788582600252)
- GERSTING, Judith L. Fundamentos Matemáticos para a Ciência da Computação. Rio de Janeiro: LTC, 2004.

MENEZES, Paulo Blauth et. al. **Aprendendo Matemática Discreta com Exercícios.** Vol. 19. São Paulo: Artmed Editora S.A., 2009.

(https://integrada.minhabiblioteca.com.br/#/books/9788577805105)

Rosen, Kenneth H. **Matemática discreta e** suas aplicações. 6. ed. São Paulo: McGraw-Hill Interamericana do Brasil Ltda., 2009 (https://integrada.minhabiblioteca.com.br/#/books/9788563308399)