Analogue Electronics

Xiping Hu

 $\rm https://hxp.plus/$

June 2, 2020

Contents

1	Bas	sics of Circuits
	1.1	The direction of current and voltage
	1.2	How to determine whether a component is consuming or providing energy
	1.3	Eletcronic Components
		1.3.1 Resistors
		1.3.2 Power Sources
	1.4	Kirchhoff's Laws
		1.4.1 Kirchhoff's Current Law
		1.4.2 Kirchhoff's Voltage Law
	1.5	Gain of an Amplifier Circuit
2	One	erational Amplifier
_	2.1	Operational Amplifier
	$\frac{2.1}{2.2}$	Ideal Operational Amplifier
	$\frac{2.2}{2.3}$	Closed-looped Amplifier
	۷.5	
		2.3.1 Non-inverting Operational Amplifier
	2.4	
	2.4	••
		2.4.1 Subtraction Circuit 1 2.4.2 Sum Circuit 1
		2.4.3 Integrating Circuit
		2.4.4 Differential Circuit
3	Dio	odes 18
	3.1	Semiconductors
		3.1.1 Intrinsic Semiconductor
		3.1.2 Extrinsic Semiconductor
	3.2	P-N Junction and Diode
		3.2.1 Breakdown of P-N Junction
	3.3	Diode modeling
		3.3.1 Mathematically idealized diode
		3.3.2 Ideal diode in series with voltage source
		3.3.3 Diode with voltage source and current-limiting resistor
		3.3.4 Diode in Small Signal Circuits
	3.4	Applications of Diodes
		3.4.1 Rectifier Circuit
		3.4.2 Limiting Circuit
		3.4.3 Switching Circuit
	3.5	Diodes for Special Usage
		3.5.1 Zener diode
		3.5.2 Photodiode
		3.5.3 Light-emitting diode
		3.5.4 Schottky diode

4 CONTENTS

4	MO	SFET and A															21
	4.1	Classification															21
			Enhancemen														21
			Depletion-me														22
			MOSFET .														23
	4.2	Static Working	g Point							 	 	 	 				24
	4.3	Early Effect .															24
	4.4	Three types of	Amplifier Ci	rcuit						 	 	 	 				25
		4.4.1 Commo	on Source Am	plifier	Cir	cuit				 	 	 	 				25
		4.4.2 Commo	on Drain Am _l	olifier	Circ	uit .				 	 	 	 				26
		4.4.3 Commo	on Gate Amp	lifier (Circu	iit .				 	 	 	 				27
5	Bip	olar Junction															29
	5.1	Electronic Syn	nbol							 	 	 	 				29
	5.2	Control Princi	ple							 	 	 	 				30
	5.3	Three Types of	of Amplifier C	ircuit						 	 	 	 				30
	5.4	Static Working	g Point							 	 	 	 				30
	5.5	Model of Smal	ll Signal							 	 	 	 				31
	5.6	Compound Tr	ansistor							 	 	 	 				31
6	Free	quency Respo															33
	6.1	Low-Frequency															33
			on-Source Am														33
		6.1.2 Commo	on-Emitter A	nplifie	er .					 	 	 	 				34
	6.2	High-Frequence	y							 	 	 	 				35
		6.2.1 Unity-0	Gain Frequen	су						 	 	 	 				35
			on-Source Am														36
		6.2.3 Comme	on-Emitter A	$nplifi\epsilon$	er .					 	 	 	 				37
7	Ans	ologuo Intogra	tod Circuit	,													30
7		alogue Integra															39
7	Ana 7.1	MOSFET Cur	rent Source														39
7		MOSFET Cur 7.1.1 MOSF	rent Source ET Current N	 Iirror						 	 	 	 				39 39
7		MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad	rent Source ET Current M e Current Mi	Iirror						 	 	 	 	 			39 39 39
7		MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin	rent Source ET Current M e Current Mi ned Current M	Iirror rror . Iirror			 			 	 	 	 	 			39 39 39 40
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET	rent Source ET Current M e Current Mi ned Current M Current Mirro	Iirror rror . Iirror or .						 	 	 	 	 	 	 	39 39 39 40 40
7		MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current	rent Source ET Current M e Current Mi ned Current M Current Mirro Source	Iirror rror . Iirror or						 		 	 	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	39 39 39 40 40 41
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current S 7.2.1 BJT C	rent Source ET Current M e Current M ned Current M Current Mirro Source urrent Mirror	Mirror . Mirror . Mirror						 		 	 				39 39 39 40 40 41 41
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current S 7.2.1 BJT C 7.2.2 Micro	rent Source ET Current M e Current M ned Current M Current Mirro Source urrent Mirror Current Source	Iirror . Iirror . Iirror . Iirror						 		 · · · · · · · · · · · · · · · · · · ·	 				39 39 39 40 40 41 41 41
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Current	rent Source ET Current M e Current M ned Current M Current Mirro Source urrent Mirror Current Sourc t Source with	firror fi	Out	put			ce			 		· · · · · · · · · · · · · · · · · · ·			39 39 39 40 40 41 41 41 42
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin	rent Source ET Current M e Current Mi ned Current Mirro Source urrent Mirror Current Source t Source with ned Current S	firror firror	Out	out		stan				 					39 39 40 40 41 41 41 42 42
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An	rent Source ET Current M e Current Mi ned Current Mirro Source urrent Mirror Current Source t Source with ned Current Source nplifier	firror firror	Out	put			ce			 					39 39 39 40 40 41 41 41 42 42 43
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF	rent Source ET Current M e Current Mi ned Current Mirro Source urrent Mirror Current Sourc t Source with ned Current S nplifier ET	firror fi		put	Resi					 					39 39 40 40 41 41 42 42 43 43
7	7.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF	rent Source ET Current M e Current Mi ned Current Mirro Source urrent Mirror Current Source t Source with ned Current Source nplifier	firror fi		put	Resi					 					39 39 39 40 40 41 41 41 42 42 43
	7.17.27.3	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT .	rent Source ET Current M e Current Mi ned Current Mirro Source urrent Mirror Current Sourc t Source with ned Current S nplifier ET	firror fi		put	Resi					 					39 39 40 40 41 41 42 42 43 43 43
8	7.1 7.2 7.3	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback	rent Source ET Current M e Current Mi ned Current Mirro Source urrent Mirror Current Source t Source with ned Current S nplifier ET	firror firror . Mirror or													39 39 40 40 41 41 42 42 43 43 43
	7.1 7.2 7.3 Fee 8.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential Ar 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac	rent Source ET Current M e Current Mi ned Current Mirro Source urrent Mirror Current Source t Source with ned Current S nplifier ET	firror rror . Mirror or			Resi		ce								39 39 39 40 40 41 41 41 42 42 43 43 43 45
	7.1 7.2 7.3 Fee 8.1 8.2	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an	rent Source ET Current M e Current Mi ned Current Mirror Source urrent Mirror Current Source t Source with ned Current S mplifier ET	firror rror . Mirror or	Out	put	Resi		cce								39 39 39 40 40 41 41 41 42 42 43 43 43 45 45
	7.1 7.2 7.3 Fee 8.1 8.2 8.3	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an Four Basic Fee	rent Source ET Current M e Current Mi ned Current Mirror Source urrent Mirror Current Source t Source with ned Current S nplifier ET	firror rror . firror or			Resi		cce								39 39 39 40 40 41 41 42 42 43 43 43 45 45 46
	7.1 7.2 7.3 Fee 8.1 8.2	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an	rent Source ET Current M e Current Mi ned Current Mirror Source urrent Mirror Current Source t Source with ned Current S nplifier ET	firror rror . firror or			Resi		cce								39 39 39 40 40 41 41 41 42 42 43 43 43 45 45
8	7.1 7.2 7.3 Feed 8.1 8.2 8.3 8.4	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an Four Basic Fee Positive or Ne	rent Source ET Current M e Current Mi ned Current Mirror Source urrent Mirror Current Source t Source with ned Current S nplifier ET	firror rror . firror or			Resi		cce								39 39 39 40 40 41 41 41 42 43 43 43 45 45 46 46
	7.1 7.2 7.3 Fee 8.1 8.2 8.3 8.4 Pow	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an Four Basic Fee Positive or Ne	rent Source ET Current M e Current Mi ned Current Mirror Source urrent Mirror Current Source t Source with ned Current S nplifier ET	firror firror	Out		Resi		cce								39 39 39 40 41 41 41 42 43 43 43 45 46 46 46
8	7.1 7.2 7.3 Fee 8.1 8.2 8.3 8.4 Pow 9.1	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an Four Basic Fee Positive or Ne ver Amplifiers Classfication of	rent Source ET Current M e Current Mi ned Current M Current Mirror Source urrent Mirror Current Source t Source with ned Current S nplifier ET k Structure d Gain edback Topolo gative of Power Amp	firror fror	Out		Resi		cce								39 39 39 40 41 41 41 42 42 43 43 43 45 46 46 47
8	7.1 7.2 7.3 Fee 8.1 8.2 8.3 8.4 Pow 9.1 9.2	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an Four Basic Fee Positive or Ne ver Amplifiers Classfication of Some Example	rent Source ET Current M e Current Mi ned Current Mi Current Mirror Source urrent Mirror Current Source t Source with ned Current S mplifier ET k Structure d Gain edback Topolo gative of Power Amp e Circuits .	firror rror . firror or			Resi		ce								39 39 39 40 41 41 41 42 42 43 43 43 45 46 46 47 48
8	7.1 7.2 7.3 Fee 8.1 8.2 8.3 8.4 Pow 9.1 9.2 9.3	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an Four Basic Fee Positive or Ne ver Amplifiers Classfication of Some Example Power Output	rent Source ET Current M e Current Mi ned Current Mirror Source urrent Mirror Current Source t Source with ned Current S mplifier ET k Structure d Gain edback Topolo gative f Power Amp e Circuits	firror rror . Mirror or			Resi		ce								39 39 39 40 40 41 41 42 42 43 43 43 45 45 46 46 47 48 48
8	7.1 7.2 7.3 Fee 8.1 8.2 8.3 8.4 Pow 9.1 9.2	MOSFET Cur 7.1.1 MOSF 7.1.2 Cascad 7.1.3 Combin 7.1.4 JFET BJT Current 7.2.1 BJT C 7.2.2 Micro 7.2.3 Curren 7.2.4 Combin Differential An 7.3.1 MOSF 7.3.2 BJT dback Basic Feedbac Bandwidth an Four Basic Fee Positive or Ne ver Amplifiers Classfication of Some Example	rent Source ET Current M e Current Mi ned Current Mirror Source urrent Mirror Current Source t Source with ned Current S mplifier ET k Structure d Gain edback Topolo gative f Power Amp e Circuits	firror rror . Mirror or			Resi		ce								39 39 39 40 41 41 41 42 42 43 43 43 45 46 46 47 48

CONTENTS	5
----------	---

10.1	Four Types of Filters
10.2	Filter with source
10.3	Sallen-Key Filtering Circuit
10.4	Voltage Comparator
10.5	Trigger
10.6	Generation of Square Waveforms
10.7	Generation of Triangle Waveforms

6 CONTENTS

Chapter 1

Basics of Circuits

1.1 The direction of current and voltage

In complex problems, we can not always know the direction of currents or voltage. The usual solution is to assume a direction, and use it to solve problems. If the solution of current or voltage, is positive, then the position is just what we assumed, and vice versa.

1.2 How to determine whether a component is consuming or providing energy

For resistors, resistors are always consuming energy.

For power sources, if the direction of current is from the positive electrode to the negative electrode, then the power source is consuming energy, and vice versa.

1.3 Eleteronic Components

1.3.1 Resistors

U = -IR

1.3.2 Power Sources

(Controlled) Voltage Source

P = UI

The resistance of an ideal voltage source is: 0

Note that an ideal voltage source must not be short-circuited.

(Controlled) Current Source

The current through a current source is only decided by the source itself.

The resistance of an ideal current source is : ∞

Note that an ideal current source must not be open-circuited.

1.4 Kirchhoff's Laws

- \bullet branch
- \bullet node
- loop
- \bullet mesh

1.4.1 Kirchhoff's Current Law

For each node in the circuit, as the node can not accumulate charges, the sum of current is zero.

$$\sum I = 0$$

1.4.2 Kirchhoff's Voltage Law

For each loop in circuit, the sum of the voltage in of all branches is zero.

$$\sum U=0$$

1.5 Gain of an Amplifier Circuit

	Voltage	Current	Transresistance	Transconductance	Power
Gain	$A_v = \frac{v_o}{v_i}$	$A_i = \frac{i_o}{i_i}$	$A_r = \frac{v_o}{i_i}$	$A_g = \frac{i_o}{v_i}$	$A_p = \frac{P_o}{P_i}$
Gain in dB	$20 \lg A_v $	$20 \lg A_i $	$20\lg A_r $	$20\lg A_g $	$10\lg A_p$

Chapter 2

Operational Amplifier

2.1 Operational Amplifier

(a) the model of an operational amplifier

(b) How the output voltage varies

We define r_i as the input impedance, r_o as the output impedance. v_p as the non-inverting input, v_n the inverting input.

Usually, we have $v_p \approx v_n$, $r_i \approx \infty$, $r_o \approx 0$.

Note that the output voltage of a operational amplifier has limits, called **Bandwidth**. When the input voltage exceeds the limits, it outputs the maximum or minimum value.

$$A_v = \frac{v_o}{v_i} = A_{vo} \cdot \frac{R_L}{R_o + R_L}$$

The output resistance may infect the gain of amplifier. The larger R_L is, the more A_v approaches A_{vo} , while the ideal case is when $R_o = 0$

2.2 Ideal Operational Amplifier

For ideal operational amplifier:

- $v_p = v_n$, $i_i = 0$, $r_i = \infty$
- $r_o = 0, v_o = A_{vo} (v_p v_n)$
- $bandwidth = \infty$

Here is a model which shows all the feature of an ideal operational comparator:

Figure 2.2: An ideal operational amplifier

2.3 Closed-looped Amplifier

Usually operational amplifiers are used with vegetative feedback to ensure its stability. We apply a portion of output voltage to input, reducing the gain of a circuit.

2.3.1 Non-inverting Operational Amplifier

Figure 2.3: An non-inverting amplifier

$$A_{vo} = \frac{R_2 + R_1}{R_1} = 1 + \frac{R_2}{R_1}$$

Note that when $R_2 \ll R_1$, $A_{vo} = 1$, $v_i = v_o$.

2.3.2 Inverting Operational Amplifier

Figure 2.4: An inverting amplifier

$$A_{vo} = -\frac{R_2}{R_1}$$

2.4 Applications of operational amplifiers

2.4.1 Subtraction Circuit

An subtraction circuit can calculate the difference of inverting input and non-inverting input.

Figure 2.5: A subtraction circuit

$$\begin{cases} \frac{v_{i2} - v_p}{R_2} = \frac{v_p}{R_3} \\ \frac{v_{i1} - v_n}{R_1} = \frac{v_n - v_o}{R_4} \end{cases}$$

$$\begin{cases} R_3 (v_{i2} - v_p) = R_2 v_p & \Rightarrow v_p = \frac{R_3}{R_2 + R_3} v_{i2} \\ R_4 (v_{i1} - v_n) = R_1 (v_n - v_0) & \Rightarrow v_n = \frac{R_4 v_{i1} + R_1 v_o}{R_4 + R_1} \end{cases}$$

$$\frac{R_3}{R_2 + R_3} v_{i2} = \frac{R_4 v_{i1} + R_1 v_o}{R_4 + R_1}$$

$$\frac{R_3 (R_4 + R_1)}{R_2 + R_3} v_{i2} = R_4 v_{i1} + R_1 v_o$$

 \Rightarrow

$$v_o = \frac{\frac{R_4}{R_1} + 1}{\frac{R_2}{R_3} + 1} v_{i2} - \frac{R_4}{R_1} v_{i1} = \left(1 + \frac{R_4}{R_1}\right) \frac{\frac{R_3}{R_2}}{1 + \frac{R_3}{R_2}} v_{i2} - \frac{R_4}{R_1} v_{i1}$$

If $R_4/R_1 = R_3/R_2 = r$, then

$$v_o = (1+r)\frac{r}{1+r}v_{i2} - rv_{i1} = r(v_{i2} - v_{i1})$$

$$A_v = r = \frac{R_4}{R_1} = \frac{R_3}{R_2}$$

2.4.2 Sum Circuit

An sum circuit adds the inverting input and the non-inverting input.

Figure 2.6: Sum Circuit

Similarly, we have

$$\begin{cases} \frac{v_{i1} - v_n}{R_1} + \frac{v_{i2} - v_n}{R_2} = \frac{v_n - v_o}{R_3} \\ v_n = v_p = 0 \end{cases}$$

 \Rightarrow

$$\frac{v_{i1}}{R_1} + \frac{v_{i2}}{R_2} = \frac{-v_o}{R_3}$$

$$v_o = -\left(\frac{R_3}{R_1}v_{i1} + \frac{R_3}{R_2}v_{i2}\right)$$

When we set

$$R_1 = R_2 = R_3$$

We have

$$v_o = -(v_{i1} + v_{i2})$$

2.4.3 Integrating Circuit

Figure 2.7: integrating circuit

$$C = \frac{Q}{U} \Rightarrow U = \frac{Q}{C} = \frac{1}{C} \int I \, dt = \frac{1}{C} \int \frac{v_i}{R} \, dt = \frac{1}{RC} \int v_i \, dt$$

$$0 - v_o = U$$

 \Rightarrow

$$v_o = -\frac{1}{RC} \int v_i \, \mathrm{d}t$$

We define

$$\tau = RC$$

Then

$$-v_o = \frac{1}{\tau} \int v_1 \mathrm{d}t$$

2.4.4 Differential Circuit

Figure 2.8: differential circuit

$$\begin{cases} i_i = \frac{\mathrm{d}Q}{\mathrm{d}t} = C\frac{\mathrm{d}v_i}{\mathrm{d}t} \\ i = \frac{v_o}{R} \\ i_i = i \end{cases}$$

 \Rightarrow

$$-v_o = RC \frac{\mathrm{d}v_i}{\mathrm{d}t} = \tau \frac{\mathrm{d}v_i}{\mathrm{d}t}$$

Chapter 3

Diodes

3.1 Semiconductors

3.1.1 Intrinsic Semiconductor

An intrinsic semiconductor, also called as undoped semiconductor, is a pure semiconductor without and significant dopant species present. Two factors are responsible to the current pass through it:

- Excited electrons
- Holes

However, we seldom use intrinsic semiconductors.

3.1.2 Extrinsic Semiconductor

An extrinsic semiconductor is a semiconductor that has been doped, which has more features and provides more charge carriers.

P-type semiconductor

P-type semiconductors are created by doping some electron accepter elements during manufacture. It has more holes, holes are major carriers of the current.

N-type semiconductor

N-type semiconductors are created by doping some electron donor elements during manufacture. It has more electrons, electrons are major carriers of the current.

3.2 P-N Junction and Diode

When we combine the 2 types of extrinsic semiconductor together, we found some interesting features. As p-type semiconductors use holes to transmit currents, n-type semiconductors use electrons to transmit currents, and, to make life easier, we take holes as positive charges. When the two types of semiconductors are put together, at the contact surface, diffusion phenomenon occur.

Some holes traveled into the n-type semiconductor, some electrons traveled into the p-type semiconductor. And after that, an inner electric field formed, which hinders the p-n junction from carrying currents.

To ease the effect above, we need to add some positive voltage at p-type semiconductor, and also add some negative voltage at n-type semiconductor. And if we add negative voltage at n-type semiconductor, positive voltage at p-type semiconductor, the effect will be intensified.

16 CHAPTER 3. DIODES

Figure 3.1: PN Junction at equilibrium state

In conclusion, if we add forward voltage (from p to n), the diode acts as a short circuit. If we add reversed voltage, the diode acts like an open circuit. And if the reversed voltage is big enough, it will cause the diode broken-through, and the current flow through it will increase tremendously.

3.2.1 Breakdown of P-N Junction

There are two types of breakdown

- electricity breakdown, which is invertible
- heat breakdown, which cause permanent damage

3.3 Diode modeling

3.3.1 Mathematically idealized diode

Firstly, consider a mathematically idealized diode. In such an ideal diode, if the diode is reverse biased, the current flowing through it is zero. This ideal diode starts conducting at 0 V and for any positive voltage an infinite current flows and the diode acts like a short circuit. The I-V characteristics of an ideal diode are shown below:

Figure 3.2: I-V characteristic of an ideal diode.

3.3. DIODE MODELING

3.3.2 Ideal diode in series with voltage source

Now consider the case when we add a voltage source in series with the diode in the form shown below:

When forward biased, the ideal diode is simply a short circuit and when reverse biased, an open circuit.

(b) I-V characteristic of an ideal diode with a series voltage source.

Figure 3.3: Ideal diode in series with voltage source

3.3.3 Diode with voltage source and current-limiting resistor

The last thing needed is a resistor to limit the current, as shown below:

(b) I-V characteristic of an ideal diode with a series voltage source and resistor.

Figure 3.4: Diode with voltage source and current-limiting resistor

The real diode now can be replaced with the combined ideal diode, voltage source and resistor and the circuit then is modelled using just linear elements. If the sloped-line segment is tangent to the real diode curve at the Q-point, this approximate circuit has the same small-signal circuit at the Q-point as the real diode.

18 CHAPTER 3. DIODES

3.3.4 Diode in Small Signal Circuits

Figure 3.5: I-V Characteristic of Diode in Small Signal

$$r_d = \frac{1}{g_d} = \frac{V_T}{I_{DQ}}$$

Where, in the condition of T = 300 K,

$$V_T = 26 \text{ mV}$$

3.4 Applications of Diodes

3.4.1 Rectifier Circuit

Figure 3.6: A Simple Rectifier Circuit

Figure 3.7: A Bridged Rectifier Circuit

3.4.2 Limiting Circuit

Figure 3.8: A Limiting Circuit

3.4.3 Switching Circuit

Figure 3.9: A Switching Circuit, $v_o = 5$ V holds only if all the input voltage is 5 V

3.5 Diodes for Special Usage

3.5.1 Zener diode

A Zener diode is manufactured to be broken-through. It is used to stabilize voltages. As we can know from the I-V characteristic of an diode, when the diode is broken-through, change in current only cause little change in voltage.

Figure 3.10: Zener Diode's electronic symbol and I-V characteristic

3.5.2 Photodiode

A photodiode is a semiconductor device that converts light into an electrical current. The current is generated when photons are absorbed in the photodiode.

3.5.3 Light-emitting diode

A light-emitting diode (LED) is a semiconductor light source that emits light when current flows through it.

20 CHAPTER 3. DIODES

3.5.4 Schottky diode

The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action.

Chapter 4

MOSFET and Amplifying Circuit

4.1 Classification of MOSFET

Figure 4.1: MOSFET Block diagram

4.1.1 N-type Enhancement-mode MOSFET

Only when $V_{GS} > V_{TN} > 0$, N-Channel will be formed, MOSFET is conductive. V_{TN} is called the Threshold Voltage.

Figure 4.2: The I-V Characteristic of N-type Enhancement-mode MOSFET

4.1.2 N-type Depletion-mode MOSFET

The only difference between Enhancement-mode and Depletion-mode is the charges in oxide, which made $V_{TN} < 0$

Figure 4.3: The I-V Characteristic of N-type Depletion-mode MOSFET

4.1.3 P-type MOSFET

Figure 4.4: The Electronic Symbol of P-type MOSFET

Figure 4.5: The I-V Characteristic of N-type Depletion-mode MOSFET

4.2 Static Working Point

To calculate the static working point of a MOSFET

$$\begin{cases} V_{GSQ} = V_{GG} \\ I_{DQ} = K_n \left(V_{GSQ} - V_{TN} \right)^2 \\ V_{DSQ} = V_{DD} - I_{DQ} R_d \end{cases}$$

Note that $V_{DSQ} > V_{GSQ} - V_{TN}$ must be verified to ensure that MOSFET is working in active mode. Then for small AC signal, the current at drain is

$$i_D = 2K_n \left(V_{GSO} - V_{TN} \right) v_{GS} = g_m v_{GS}$$

4.3 Early Effect

 ${\bf Figure~4.6:~MOSFET\text{-}Early\text{-}Effect}$

$$i_D = K_n \left(v_{GS} - V_{TN} \right)^2 \left(1 + \lambda v_{DS} \right)$$

$$r_{ds} = \left. \frac{\partial v_{DS}}{\partial i_D} \right|_{V_{GSQ}} = \frac{1}{\lambda K_n \left(V_{GSQ} - V_{TN} \right)^2} \approx \frac{1}{\lambda I_{DQ}} = \frac{V_A}{I_{DQ}}$$

Where V_A is called the Early Voltage

$$V_A = \frac{1}{\lambda}$$

4.4 Three types of Amplifier Circuit

4.4.1 Common Source Amplifier Circuit

$$\begin{cases} V_{GSQ} = \left(\frac{R_{g2}}{R_{g1} + R_{g2}}\right) V_{DD} \\ I_{DQ} = K_n \left(V_{GSQ} - V_{TN}\right)^2 \\ V_{DSQ} = V_{DD} - I_{DQ} R_t I_d \end{cases}$$

$$g_m = 2K_n \left(V_{GSQ} - V_{TN} \right)$$

$$A_v = -g_m \left(r_{ds} \parallel R_d \right)$$

$$R_i = R_{gs1} \parallel R_{gs2}$$

$$R_o = R_d \parallel R_d \approx R_d$$

4.4.2 Common Drain Amplifier Circuit

$$\begin{cases} V_{GSQ} = \frac{R_{g2}}{R_{g1} + R_{g2}} \cdot V_{DD} - I_{DQ}R_s \\ I_{DQ} = K_n \left(V_{GSQ} - V_{TN} \right)^2 \\ V_{DSQ} = V_{DD} - I_{DQ}R_s \end{cases}$$

$$g_m = 2K_n \left(V_{GSQ} - V_{TN} \right)$$

$$A_{v} = \frac{g_{m}\left(R_{s} \parallel r_{ds}\right)}{1 + g_{m}\left(R_{s} \parallel r_{ds}\right)} \approx 1$$

$$R_i = R_{g1} \parallel R_{g2}$$

$$R_o = R_s \parallel r_{ds} \parallel \frac{1}{g_m}$$

4.4.3 Common Gate Amplifier Circuit

$$\begin{cases} I_{DQ} = K_n (V_{GSQ} - V_{TN})^2 = I \\ V_{DSQ} = V_{DD} - I_{DQ} R_d + V_{GSQ} \end{cases}$$

$$g_m = 2K_n \left(V_{GSQ} - V_{TN} \right)$$

$$A_v = g_m \left(R_d \parallel R_L \right)$$

$$R_i \approx \frac{1}{g_m}$$

$$R_o \approx R_d$$

Chapter 5

Bipolar Junction Transistor

5.1 Electronic Symbol

The arrow represents the direction of current.

5.2 Control Principle

$$\alpha = \frac{I_c}{I_e} \qquad \beta \quad = \frac{I_c}{I_b} \qquad \alpha = \frac{\beta}{1+\beta} \qquad I_e \quad = (1+\beta)\,I_b$$

$$I_E = I_{ES} \exp \left(V_{BE} / V_T \right)$$
 $V_T = 26 \text{ mV}$

5.3 Three Types of Amplifier Circuit

5.4 Static Working Point

$$\begin{split} I_{BQ} &= \frac{V_{BB} - V_{BEQ}}{R_b} \\ V_{BEQ} &= 0.7 \text{ V} \\ I_{CQ} &= \beta I_{BQ} \\ V_{CEQ} &= V_{CC} - I_{CQ} R_C \end{split}$$

Note that the static working point is not associated with small signals discussed below.

5.5 Model of Small Signal

When T = 300 K

$$r_{be} = 200 \ \Omega + (1 + \beta) \frac{26 \text{ mV}}{I_{CQ} \text{ (mA)}}$$

5.6 Compound Transistor

Chapter 6

Frequency Response

Figure 6.1: Sketch of the gain of amplifier versus frequency

6.1 Low-Frequency

6.1.1 Common-Source Amplifier

$$A_{M}=-\frac{R_{G}}{R_{G}+R_{sig}}\left[g_{m}\left(R_{D}\parallel R_{L}\right)\right]$$

$$\begin{aligned} \omega_{p1} &= \frac{1}{C_{C1} \left(R_G + R_{sig} \right)} \\ \omega_{p2} &= \frac{g_m}{C_S} \\ \omega_{p3} &= \frac{1}{C_{C2} \left(R_D + R_L \right)} \end{aligned}$$

$$\frac{V_o}{V_{sig}} = A_M \left(\frac{s}{s+\omega_{p1}}\right) \left(\frac{s}{s+\omega_{p2}}\right) \left(\frac{s}{s+\omega_{p3}}\right)$$

$$f_L \approx f_{p2} = \frac{\omega_{p2}}{2\pi} = \frac{1}{2\pi \left(C_s/g_m\right)}$$

6.1.2 Common-Emitter Amplifier

$$A_{M} = -\frac{\left(R_{B} \parallel r_{\pi}\right)}{\left(R_{B} \parallel r_{\pi}\right) R_{sig}} g_{m} \left(R_{C} \parallel R_{L}\right)$$

$$\omega_{p1} = \frac{1}{C_{C1} \left[\left(R_B \parallel r_\pi \right) + R_{sig} \right]}$$

$$\omega_{p2} = \frac{1}{C_E \left[r_e + \frac{R_B \parallel R_{sig}}{\beta + 1} \right]}$$

$$\omega_{p3} = \frac{1}{C_{C2} \left(R_C + R_L \right)}$$

 $f_L \approx f_{p2}$

6.2 High-Frequency

6.2.1 Unity-Gain Frequency

MOSFET

$$\frac{I_o}{I_i} = \frac{g_m}{s\left(C_{gs} + C_{gd}\right)} \qquad \omega_T = \frac{g_m}{\left(C_{gs} + C_{gd}\right)} \qquad f_T = \frac{g_m}{2\pi \left(C_{gs} + C_{gd}\right)}$$

BJT

$$V_{b} \stackrel{f}{\stackrel{}{=}} V_{x} \stackrel{f}{$$

$$\frac{I_c}{I_b} = \frac{g_m r_\pi}{1 + s \left(C_\pi + C_\mu \right) r_\pi} = \frac{\beta_0}{1 + s \left(C_\pi + C_\mu \right) r_\pi} \qquad \omega_\beta = \frac{1}{\left(C_\pi + C_\mu \right) r_\pi} \qquad \omega_T = \beta_0 \omega_\beta = \frac{g_m}{C_\pi + C_\mu}$$

6.2.2 Common-Source Amplifier

$$\omega_{H} = \frac{1}{C_{in}R'_{sig}}$$
 $A_{M} = -\frac{R_{G}}{R_{G} + R_{sig}}g_{m}R'_{L}$ $f_{H} = \frac{\omega_{H}}{2\pi} = \frac{1}{2\pi C_{in}R'_{sig}}$

6.2.3 Common-Emitter Amplifier

$$\begin{split} V_{\text{sig}}' &= V_{\text{sig}} \, \frac{R_B}{R_B + R_{\text{sig}}} \, \frac{r_\pi}{r_\pi + r_x + (R_{\text{sig}} \| R_B)} \\ R_L' &= r_o \| R_C \| R_L \\ R_{\text{sig}}' &= r_\pi \| [r_x + (R_B \| R_{\text{sig}})] \end{split}$$

$$A_{M} = -\frac{R_{B}}{R_{B} + R_{sig}} \frac{r_{\pi}}{r_{\pi} + r_{x} + (R_{sig} \parallel R_{B})} \left(g_{m}R'_{L}\right) \qquad f_{H} = \frac{\omega_{H}}{2\pi} = \frac{1}{2\pi C_{in}R'_{sig}}$$

Analogue Integrated Circuits

7.1 MOSFET Current Source

7.1.1 MOSFET Current Mirror

$$I_o = I_{D2} = K_n (V_{GS} - V_{TN})^2$$

7.1.2 Cascade Current Mirror

The larger output resistance, the more stability of output current.

$$r_o = r_{ds4} + r_{ds2} (1 + g_m r_{ds4}) \approx g_m r_{ds4} r_{ds2}$$

7.1.3 Combined Current Mirror

$$\begin{cases} I_2 = \frac{(W/L)_2}{(W/L)_1} I_{REF} \\ I_3 = \frac{(W/L)_3}{(W/L)_1} I_{REF} \\ I_4 = I_3 \\ I_5 = \frac{(W/L)_5}{(W/L)_4} I_4 \end{cases}$$

7.1.4 JFET Current Mirror

$$i_D = I_o = I_{DSS} \left(1 + \lambda v_{DS} \right)$$

$$r_o = \frac{1}{\lambda I_{DSS}}$$

7.2 BJT Current Source

7.2.1 BJT Current Mirror

$$I_{C2} = I_{C1} \approx I_{REF} \approx \frac{V_{CC}}{R}$$

$$r_o = r_{ce}$$

7.2.2 Micro Current Source

$$I_o = \frac{\Delta V_{BE}}{R_{e2}}$$

$$r_o \approx r_{ce2} + \left(1 + \frac{\beta R_{e2}}{r_{be2} + R_{e2}}\right)$$

7.2.3 Current Source with High Output Resistance

$$I_{REF} = \frac{V_{CC} - V_{BE3} - V_{BE2} + V_{EE}}{R}$$

$$I_o \approx I_{C2} = \frac{A_3}{A_1} \cdot I_{REF}$$

7.2.4 Combined Current Source

$$I_{REF} = \frac{V_{CC} + V_{EE} - V_{BE1} + V_{EB4}}{R_1}$$

7.3 Differential Amplifier

7.3.1 MOSFET

7.3.2 BJT

Feedback

8.1 Basic Feedback Structure

$$x_o = Ax_i$$
 $x_f = \beta x_o$ $x_i = x_s - x_f$

$$A_f = \frac{x_0}{x_s} = \frac{Ax_i}{x_i + \beta Ax_i} = \frac{A}{1 + A\beta} \approx \frac{1}{\beta} \qquad (A\beta \gg 1)$$

8.2 Bandwidth and Gain

$$\omega_{Hf} = \omega_H \cdot (1 + A_M \beta)$$
 $\omega_{Lf} = \omega_L / (1 + A_M \beta)$

8.3 Four Basic Feedback Topologies

Feedback Type	Usage	Gain	Input Resistance	Output Resistance	
Series-Shunt	$Voltage \rightarrow Voltage$	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = (1 + A\beta) R_i$	$R_{of} = \frac{R_o}{1 + A\beta}$	
Shunt-Series	Current o Current	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = \frac{R_i}{1 + A\beta}$	$R_{of} = (1 + A\beta) R_o$	
Series-Series	$Voltage \rightarrow Current$	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = (1 + A\beta) R_i$	$R_{of} = (1 + A\beta) R_o$	
Shunt-Shunt	$Current \to Voltage$	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = \frac{R_i}{1 + A\beta} R_i$	$R_{of} = \frac{R_o}{1 + A\beta}$	

8.4 Positive or Negative

Amplifier Type	Common S	Common G	Common D	Common E	Common B	Common C
Sign of A_v	_	+	+	_	+	_

Power Amplifiers

9.1 Classification of Power Amplifiers

Output stages are classified according to the collector current waveform that results when an input signal is applied.

 2π

(b) Class C

 3π

 ωt

 2π

(a) Class AB

9.2 Some Example Circuits

(a) Class A Output Stage

(b) Class B Output Stage

 $V_{\rm CC}$

9.3 Power Output

$$V_{om} = \frac{V_{om+} + V_{om-}}{2}$$
$$P_{om} = \left(\frac{V_{om}}{\sqrt{2}}\right)^2 \cdot \frac{1}{R_L}$$

9.4 Crossover Distortion Avoiding

(a) Class AB Output Stage with Double Source

(b) Class AB Output Stage with Single Source

Filters and Signal Generators

10.1 Four Types of Filters

10.2 Filter with source

10.3 Sallen-Key Filtering Circuit

10.4 Voltage Comparator

10.5 Trigger

10.6 Generation of Square Waveforms

10.7 Generation of Triangle Waveforms

