Structural Optimization for Large-Scale Problems

Lecture 3: Second-order methods. Systems of nonlinear equations

Yurii Nesterov

Minicourse: November 15, 16, 22, 23, 2024 (SDS, Shenzhen)

Outline

Historical remarks

Trust region methods

Cubic regularization of second-order model

Accelerated Cubic Newton

Solving the system of nonlinear equations

Numerical experiments

Historical remarks

至1 历史方法

0 4顿流

Problem: $f(x) \rightarrow \min : x \in \mathbb{R}^n$

is treated as a non-linear system f'(x) = 0.

Newton method: $x_{k+1} = x_k - [f''(x_k)]^{-1} f'(x_k)$.

Standard objections:

- ▶ The method is not always well defined (det $f''(x_k) = 0$).
- Possible divergence.
- Possible convergence to saddle points or even to local maximums.
- Chaotic global behavior.

Pre-History (see Ortega, Rheinboldt [1970].)

② 对华顿底的改进

- ▶ Bennet [1916]: Newton's method in general analysis.
- ► Levenberg [1944]: Regularization. If $f''(x) \not\succ 0$, then use $d = G^{-1}f'(x)$ with $G = f''(x) + \gamma I \succ 0$. (See also Marquardt [1963].)
- Kantorovich [1948]: Proof of local quadratic convergence.
 Assumptions:
 - a) $f \in C^3(\mathbb{R}^n)$.
 - b) $||f''(x) f''(y)|| \le L_2||x y||$.
 - c) $f''(x^*) > 0$.
 - d) $x_0 \approx x^*$.

Global convergence: Use line search (good advice).

Global performance: Not addressed.

Modern History (see in Conn, Gould and Toint [2000]

3 Trust region approach

Main idea: Trust Region Approach.

1. Use some norm $\|\cdot\|_k$ for defining trust region

$$\mathcal{B}_k = \{x \in \mathbb{R}^n: \|x - x_k\|_k \le r_k\}$$
. (确保各次移动不超过 r)

- 2. Denote $m_k(x) = f(x_k) + \langle f'(x_k), x x_k \rangle + \frac{1}{2} \langle G_k(x x_k), x x_k \rangle$. Variants: $G_k = f''(x_k)$, $G_k = f''(x_k) + \gamma_k I > 0$, etc.
- 3. Compute the trial point $\hat{x}_k = \arg\min_{x \in \mathcal{B}_k} m_k(x)$.
- 4. Compute the ratio $\rho_k = \frac{f(x_k) f(\hat{x}_k)}{f(x_k) m_k(\hat{x}_k)} = \frac{+的F落值}{m的F落值}$ (确保逼近的准确性)
- 5. In accordance to ρ_k , either accept $x_{k+1} = \hat{x}_k$, or update the value r_k and repeat the steps above.

Comments

Advantages:

- ightharpoonup More parameters \Rightarrow Flexibility
- Convergence to a point, which satisfies second-order necessary optimality condition:

$$f'(x^*) = 0, \quad f''(x^*) \succeq 0.$$

▶ In case of Euclidean norm, the auxiliary problem is one-dimensional:

Find
$$\lambda > 0$$
: $\|(G_k + \lambda I)^{-1} f'(x_k)\| = r_k$.

Disadvantages:

- Complicated strategies for parameters' coordination.
- For certain $\|\cdot\|_k$ the auxiliary problem is difficult.
- Line search abilities are quite limited.
- Unselective theory.
- ► Global complexity issues are not addressed.

Development of numerical schemes

Classical style: Problem formulation \Rightarrow Method

Examples:

- Gradient and Newton methods in optimization.
- Runge-Kutta method for ODE, etc.

2. Modern style:

Problem formulation \Rightarrow Method

Examples:

- Non-smooth convex minimization.
- Smooth minimization: $\min_{x \in Q} f(x)$, with $f \in C^{1,1}$.

Gradient mapping (Nemirovsky& Yudin 77):

$$x_+ = T(x) \equiv \arg\min_{y \in Q} m_1(y),$$

$$m_1(y) \equiv f(x) + \langle f'(x), y - x \rangle + \frac{L_1}{2} ||y - x||^2.$$

Justification: $f(y) \leq m_1(y)$ for all $y \in Q$.

\$2 unconstrained convex problem: second-order model with cubic regularization (Cubic Newton Method)

Using the second-order model

Problem:
$$f(x) \rightarrow \min : x \in \mathbb{R}^n$$
 Let $f \in C^3$ be convex.

Assumption: $||f''(x) - f''(y)|| \le L_2 ||x - y||$ Hessian Lipschitz cont. $\forall x, y \in \mathbb{R}^n$. Define

$$m_2(x,y) = f(x) + \langle f'(x), y - x \rangle + \frac{1}{2} \langle f''(x)(y-x), y - x \rangle,$$

$$m'_2(x,y) = f'(x) + f''(x)(y-x).$$

Lemma 1:

泰勒展升

$$|f(y) - m_2(x,y)| \le \frac{1}{6}L_2||y - x||^3$$
, $||f'(y) - m'_2(x,y)|| \le \frac{1}{2}L_2||y - x||^2$

Proof: By Taylor formula, we have

$$f(y) - m_2(x,y) = \frac{1}{2} \int_0^1 (1-\tau)^2 D^3 f(x+\tau(y-x))[y-x]^3 d\tau$$

$$f'(y) - m_2'(x,y) = \int_0^1 (1-\tau)D^2 f(x+\tau(y-x))[y-x]^2 d\tau.$$

Corollary: For any x and y from \mathbb{R}^n ,

descent lemma (\$ L. E. E.)

$$f(y) \le m_2(x,y) + \frac{1}{6}L_2||y-x||^3$$

Cubic regularization

现实中山通常和,园此人为添加来 constant M

For
$$M > 0$$
, denote $\hat{f}_M(x, y) = m_2(x, y) + \frac{1}{6}M\|y - x\|^3$ and

$$T_M(x) = \arg\min_{y} \ \hat{f}_M(x,y), \quad \bar{f}_M(x) \stackrel{\text{def}}{=} \hat{f}_M(x,T_M(x)).$$

Note that
$$\overline{f_M(x)} \le \min_{y} \left[f(y) + \frac{L_2+M}{6} ||y-x||^3 \right]$$

First-order optimality condition

$$f'(x) + f''(x)(T-x) + \frac{M}{2}r(T-x) = 0, \quad r = ||T-x||$$
 (*)

Thus, we need to solve the equation (为了样出了m(x))

$$||f''(x)(T-x)+\frac{M}{2}rI)^{-1}f'(x)||=r$$

(Compare with Trust Region.)

Main properties

Denote $r_M(x) = ||x - T_M(x)||$. Multiplying (*) by $T_M - x$, we get:

$$\langle f'(x), T_M - x \rangle + \langle f''(x)(T_M - x), T - x \rangle + \frac{M}{2}r^3 = 0.$$

If $M \geq L_2$, then

$$f(T_M) \leq \overline{f}_M(x) = f(x) - \frac{1}{2} \langle f''(x)(T_M - x), T_M - x \rangle - \frac{M}{3} r_M^3$$

Note that by (*) we have

$$\langle f'(T_M), x - T_M \rangle = \langle f'(T_M) - m_2'(x, T_M) - \frac{M}{2}r_M(T_M - x), x - T_M \rangle$$

 $\geq \frac{M - L_2}{2}r_M^3.$

On the other hand,

$$||f'(T_M)|| = ||f'(T_M) - m_2'(x, T_M) - \frac{M}{2}r_M(T_M - x)|| \le \frac{L_2 + M}{2}r_M^2.$$

Therefore,

descent lemma (monotoncity)

$$f(x) - f(T_M) \ge \langle f'(T_M), x - T_M \rangle \ge \frac{M - L_2}{2} \left[\frac{2}{L_2 + M} \| f'(T_M) \| \right]^{3/2}$$

For
$$M = 3L_2$$
, we get $\langle f'(T_M), x - T_M \rangle \ge \frac{1}{2\sqrt{2L_2}} \|f'(T_M)\|^{3/2}$.

Globar rate of convergence, I

Let us assume that we know $M \geq L_2$. Let us choose $x_0 \in \mathbb{R}^n$ and consider the following method: $\boxed{x_{k+1} = T_M(x_k)} \text{ Locally method.}$

Assumption: The level sets of the objective function are bounded:

$$||x-x^*|| \leq D$$
, $\forall x : f(x) \leq f(x_0)$.

Since the method is monotone, we have $\|x_k - x^*\| \leq D$, $k \geq 0$. Therefore,

$$f(x_{k+1}) \leq \min_{y} \left[f(y) + \frac{L_2 + M}{6} \|y - x_k\|^3 \right]$$

$$\leq \min_{0 \leq \alpha \leq 1} \left[f((1 - \alpha)x_k + \alpha x^*) + \frac{(L_2 + M)\alpha^3}{6} \|x_k - x^*\|^3 \right]$$

$$\leq \min_{0 \leq \alpha \leq 1} \left[f(x_k) - \alpha(f(x_k) - f^*) + \frac{(L_2 + M)\alpha^3}{6} D^3 \right].$$

The optimal solution of this problem is $\alpha_k^* = \min \left\{ 1, \sqrt{\frac{2(f(x_k) - f^*)}{(L_2 + M)D^3}} \right\}$.

If
$$\alpha_k^* < 1$$
, then $f(x_{k+1}) \le f(x_k) - \frac{2}{3} \sqrt{\frac{2}{(L_2 + M)D^3}} (f(x_k) - f^*)^{3/2}$.

Globar rate of convergence, II

Denote $\mu_k = f(x_k) - f^*$ and $\gamma = \frac{(L_2 + M)D^3}{6}$. For k = 0, we have:

$$\mu_1 \le \max_{\mu_0} \left\{ \gamma, \mu_0 - \frac{2}{3\sqrt{3\gamma}} \mu_0^{3/2} \right\} = \gamma.$$

Thus, $\alpha_k^* < 1$ for all $k \ge 1$, and we conclude that

$$\frac{1}{\mu_{k+1}^{1/2}} - \frac{1}{\mu_k^{1/2}} = \frac{\mu_k^{1/2} - \mu_{k+1}^{1/2}}{\mu_k^{1/2} \mu_{k+1}^{1/2}} = \frac{\mu_k - \mu_{k+1}}{\mu_k^{1/2} \mu_{k+1}^{1/2} (\mu_k^{1/2} + \mu_{k+1}^{1/2})} \ge \frac{\mu_k - \mu_{k+1}}{2\mu_k^{3/2}} \ge \frac{1}{3\sqrt{3\gamma}}.$$

This means that $\frac{1}{\mu_{\nu}^{1/2}} \ge \frac{1}{\sqrt{\gamma}} + \frac{k-1}{3\sqrt{3\gamma}}$.

Thus, we have proved the following bound:
$$|f(x_k) - f^* \le \frac{(L_2 + M)D^3}{6\left(1 + \frac{k-1}{3\sqrt{3}}\right)^2} |$$

Local quadratic convergence: Assume $f''(x) \ge \mu I$ with $\mu > 0$.

Then
$$x - T_M = [f''(x) + \frac{M}{2}r_MI]^{-1}f'(x)$$
. Therefore,

$$r_{\mathcal{M}} = \|[f''(x) + \frac{M}{2}r_{\mathcal{M}}I]^{-1}f'(x)\| \le \frac{1}{\mu}\|f'(x)\|.$$

$$||f'(T_M)|| \leq \frac{L_2+M}{2\mu^2} ||f'(x)||^2$$
 局部二阶收敛 (不差子特额法)

Accelerated Newton Method Accelerated Newton: Cubic prox-function

Xo: starting point

Denote
$$d(x) = \frac{1}{3} ||x - x_0||^3$$
.

Lemma. Cubic prox-function is *uniformly convex*: for all $x, y \in \mathbb{R}^n$,

$$\langle d'(x) - d'(y), x - y \rangle \ge \frac{1}{2} ||x - y||^3,$$

$$d(x) - d(y) - \langle d'(y), x - y \rangle \geq \frac{1}{6} ||x - y||^3.$$

Moreover, its Hessian is Lipschitz continuous:

$$||d''(x) - d''(y)|| \le 2||x - y||, \ x, y \in \mathbb{R}^n.$$

In our constructions, we are going to use d(x) instead of the standard *strongly convex* prox-functions.

Prox-function
$$d(x)$$
: a differentiable strongly convex function: $d(y) \geq d(x) + \langle \nabla d(x), y - x \rangle + \frac{1}{2} \|x - y\|^2, \quad x, y \in \text{rint } Q.$ Let $d(x)$ attain its minimum on Q at x_0 , and $\underline{d(x_0)} = 0$. Thus, $d(x) \geq \frac{1}{2} \|x - x_0\|^2, \quad x \in Q.$

Linear Estimating Functions

(Compare with 1st-order methods)

We recursively update the following sequences.

- Sequence of estimating functions $\psi_k(x) = \ell_k(x) + d(x)$, $k \ge 0$, where $\ell_k(x)$ are linear and $\ell_0(x) \equiv 0$.
- ightharpoonup A minimizing sequence $\{x_k\}_{k=0}^{\infty}$.
- Sequence of scaling parameters $\{A_k\}_{k=0}^{\infty}$: $A_{k+1} \stackrel{\text{def}}{=} A_k + a_{k+1}$, with $A_0 = 0$.

 $\psi_{k} = l_{k}(x) + d(x)$

These objects have to satisfy the following relations:

(*):

$$\psi_k(x) \leq A_k f(x) + d(x), \quad \text{for all } x \in \mathbb{R}^n.$$

$$(\Rightarrow \underbrace{A_k(f(x_k) - f(x^*))}_{\uparrow \text{ as } k\uparrow} \leq d(x^*).)$$

For k=0, we have $A_0=0$ and $\psi_0^*=0$.

One interation

Denote
$$v_k = \arg\min_{x} \ \psi_k(x)$$
.

For some $a_{k+1} > 0$ and $M = 3L_2$, define

$$\alpha_k = \frac{a_{k+1}}{A_k + a_{k+1}} \in (0,1),$$

$$y_k = (1 - \alpha_k)x_k + \alpha_k v_k,$$

$$x_{k+1} = T_M(y_k),$$

$$\psi_{k+1}(x) = \psi_k(x) + a_{k+1}[f(x_{k+1}) + \langle f'(x_{k+1}), x - x_{k+1} \rangle].$$

Theorem 1. Let us choose $M = 3L_2$ and $A_0 = 0$.

Let the coefficients $\{a_k\}_{k\geq 1}$ satisfy the following condition:

$$\left| \frac{(A_k + a_{k+1})^2 \ge \frac{64}{9} L_2 a_{k+1}^3}{(k \ge 0)} \right|$$

Then, for all $k \geq 0$, we have

$$A_k f(x_k) \le \psi_k^* \equiv \min_{x} \psi_k(x)$$

⇒如此构造的fAkg可使(*)口满足

Proof of Theorem 1

Note that

$$\psi_{k}(v_{k+1}) \geq \psi_{k}^{*} + \frac{1}{6}\|v_{k+1} - v_{k}\|^{3} \geq A_{k}f(x_{k}) + \frac{1}{6}\|v_{k+1} - v_{k}\|^{3}$$

$$\geq A_{k}[f(x_{k+1}) + \langle f'(x_{k+1}), x_{k} - x_{k+1} \rangle] + \frac{1}{6}\|v_{k+1} - v_{k}\|^{3}.$$
Therefore, $\psi_{k+1}^{*} = \psi_{k}(v_{k+1}) + a_{k+1}[f(x_{k+1}) + \langle f'(x_{k+1}), v_{k+1} - x_{k+1} \rangle]$

$$\geq A_{k+1}f(x_{k+1}) + \langle f'(x_{k+1}), a_{k+1}v_{k+1} + A_{k}x_{k} - A_{k+1}x_{k+1} \rangle + \frac{1}{6}\|v_{k+1} - v_{k}\|^{3}.$$
Note that $a_{k+1}\langle f'(x_{k+1}), v_{k+1} - v_{k} \rangle + \frac{1}{6}\|v_{k+1} - v_{k}\|^{3}$

$$\geq -\frac{2\sqrt{2}}{3} \left[a_{k+1}\|f'(x_{k+1})\| \right]^{3/2}, \text{ and}$$

$$\langle f'(x_{k+1}), a_{k+1}v_{k} + A_{k}x_{k} - A_{k+1}x_{k+1} \rangle = A_{k+1}\langle f'(x_{k+1}), y_{k} - x_{k+1} \rangle$$

$$\geq \frac{A_{k+1}}{2\sqrt{2L_{2}}} \|f'(x_{k+1})\|^{3/2}.$$

Hence, we get inequality $A_{k+1} \geq \frac{8}{3} \sqrt{L_2} a_{\nu+1}^{3/2}$.

16 / 25

Global rate of convergence

Th.2. Sequence $A_k = \frac{1}{3L_2} \left(\frac{k}{4}\right)^3$, $k \ge 0$, satisfies condition of Theorem 1.

Hence, for any $k \ge 1$, we have $f(x_k) - f(x^*) \le \frac{3L_2}{2} ||x_0 - x^*||^3 \left(\frac{4}{k}\right)^3$

Proof. For $B_{k+1} \stackrel{\text{def}}{=} (k+1)^3$ and $b_{k+1} \stackrel{\text{def}}{=} B_{k+1} - B_k$, $k \ge 0$, we have $B_{k+1}^{2/3} = (k+1)^2 \ge \frac{1}{3}[3k^2 + 3k + 1] = \frac{1}{3}b_{k+1}$.

Let us define $A_{k+1} = \alpha B_{k+1}$ with some $\alpha > 0$. Then

$$A_{k+1} \ge \alpha \left[\frac{1}{3\alpha} a_{k+1} \right]^{3/2}.$$

Thus, we need to choose $\frac{1}{3\sqrt{3\alpha}} = \frac{8}{3}\sqrt{L_2}$.

Accelerated CNM

Initialization: Set $\psi_0(x) = d(x)$. Define $A_k = \frac{1}{3L_2} \left(\frac{k}{4}\right)^3$, $k \ge 0$.

Iteration
$$k$$
, $(k \ge 0)$: $v_k = \arg\min_{x \in \mathbb{R}^n} \psi_k(x)$,

$$y_k = \frac{A_k}{A_{k+1}} x_k + \frac{a_{k+1}}{A_{k+1}} v_k, \quad x_{k+1} = T_{3L_2}(y_k),$$

$$\psi_{k+1}(x) = \psi_k(x) + a_{k+1}[f(x_{k+1}) + \langle f'(x_{k+1}), x - x_{k+1} \rangle].$$

Remark:

Instead of recursive computation of $\psi_k(x)$, we can update only one vector:

$$s_0 = 0, \quad s_{k+1} = s_k + a_{k+1}f'(x_{k+1}), \quad k \ge 1.$$

Then v_k can be computed by an explicit expression.

至4 Second-order method 筋 nondegeneray (为了确定 CMM 的 complexity) Global non-degeneracy

non-degenerate problem 的定义

Standard setting: for convex $f \in C^2(\mathbb{R}^n)$, define positive constants σ_1 and L_1 such that

$$|\sigma_1||h||^2 \leq \langle f''(x)h,h\rangle \leq |L_1||h||^2$$

for all $x, y, h \in \mathbb{R}^n$. The value $\gamma_1(f) = \frac{\sigma_1}{L_1}$ is called the *condition number* of f.

(Compatible with definition in Linear Algebra.) How good is the gradient for approaching the optima?

Geometric interpretation: $\frac{\langle f'(x), x-x^* \rangle}{\|f'(x)\| \cdot \|x-x^*\|} \ge \frac{2\sqrt{\gamma_1(f)}}{1+\gamma_1(f)}, \ x \in \mathbb{R}^n.$

Complexity: (1st-order methods)

PGM: $O\left(\frac{1}{\gamma_1(f)} \cdot \ln \frac{1}{\epsilon}\right)$, **FGM:** $O\left(\frac{1}{\sqrt{\gamma_1(f)}} \cdot \ln \frac{1}{\epsilon}\right)$.

It does not work for 2nd-order schemes:

$$f(x_k) - f^* \leq \frac{3L_2}{2} ||x_0 - x^*||^3 \left(\frac{4}{k}\right)^3$$
.

Hessian & Lip-const

Global 2nd-order non-degeneracy

Assumption: for any $x, y \in \mathbb{R}^n$, function $f \in C^2(\mathbb{R}^n)$ satisfies inequalities

$$||f''(x) - f''(y)|| \le L_2||x - y||,$$

$$\langle f'(x) - f'(y), x - y \rangle \geq \sigma_2 ||x - y||^3,$$

where $\sigma_2 > 0$. We call the value $\gamma_2(f) = \frac{\sigma_2}{L_2} \in (0,1)$ the **2nd-order** condition number of function f.

(Invariant w.r.t. addition of convex quadratic functions.)

Example: $\gamma_2(d) = \frac{1}{4}$.

Justification: $\frac{\sigma_2}{3} \|x_k - x^*\|^3 \le f(x_k) - f^* \le \frac{3L_2}{2} \|x_0 - x^*\|^3 \left(\frac{4}{k}\right)^3$.

Hence, in $O\left(\frac{1}{[\gamma_2(f)]^{1/3}}\right)$ iterations we halve the distance to x^* .

Complexity bound: (Accelerated CNM with restart)

$$O\left(\frac{1}{[\gamma_2(f)]^{1/3}}\cdot \ln\frac{1}{\epsilon}\right)$$
 iterations.

Solving the systems of nonlinear equations

1. Standard Gauss-Newton method

Problem: Find $x \in \mathbb{R}^n$ satisfying the system $F(x) = 0 \in \mathbb{R}^m$.

 $\forall x, y \in \mathbb{R}^n \quad \|F'(x) - F'(y)\| \le L\|x - y\|.$ **Assumption:**

Gauss-Newton method: Choose a merit function $\phi(u) \geq 0$, $\phi(0) = 0$, $u \in \mathbb{R}^m$.

Compute
$$x_+ \in \text{Arg} \min_{y} \left[\phi(F(x) + F'(x)(y - x)) \right].$$

Usual choice: $\phi(u) = \sum_{i=1}^{n} u_i^2$. (Justification: *Why not?*)

(根据先前的讨论,这只是一个 idea of method)

Remarks

- ▶ Local quadratic convergence $(m \ge n, \text{ non-degeneracy and } F(x^*) = 0$ (?)).
- ▶ If m < n, then the method is not well-defined.
- No global complexity results.

Modified Gauss-Newton method

Lemma. For all $x, y \in \mathbb{R}^n$, we have

$$||F(y) - F(x) - F'(x)(y - x)|| \le \frac{1}{2}L||y - x||^2.$$

Corollary. Denote f(y) = ||F(y)||. Then

$$f(y) \le ||F(x) + F'(x)(y - x)|| + \frac{1}{2}L||y - x||^2.$$

Modified method:

$$x_{k+1} = \arg\min_{y} \left[\|F(x_k) + F'(x_k)(y - x_k)\| + \frac{1}{2}L\|y - x_k\|^2 \right].$$

Remarks

- The merit function is non-smooth.
- Nevertheless, $f(x_{k+1}) < f(x_k)$ unless x_k is a stationary point.
- Quadratic convergence for non-degenerate solutions.
- Global efficiency bounds.
- ▶ Problem of finding x_{k+1} is convex.
- ightharpoonup Different norms in \mathbb{R}^n and \mathbb{R}^m can be used.

Testing CNM: Chebyshev oscilator

Consider
$$f(x) = \frac{1}{4}(1-x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i+1)} - p_2(x^{(i)}))^2$$
,

with $p_2(\tau) = 2\tau^2 - 1$.

Note that p_2 is a Chebyshev polynomial: $p_k(\tau) = \cos(k \arccos(\tau))$.

Hence, the equations for the "central path" is

$$x^{(i+1)} = p_2(x^{(i)}) = p_4(x^{(i-1)}) = \ldots = p_{2^i}(x^{(1)}).$$

This is an exponential oscillation! However, all coefficients in function and derivatives are small.

NB: f(x) is unimodular and $x^* = (1, ..., 1)$.

In our experiments we usually take $x_0 = (-1, 1, \dots, 1)$.

Drawback: $x_0 - 2\nabla f(x_0) = x^*$. Hence, sometimes we use $x_0 = (-1, 0.9, \dots, 0.9)$.

Solving Chebyshev oscilator by CN: $\|\nabla f(x)\|_{(2)} \leq 10^{-8}$

n	lter	DF	GNorm	NumF	Time (s)
2	14	$7.0\cdot 10^{-19}$	$4.2 \cdot 10^{-09}$	18	0.032
3	33	$1.1\cdot 10^{-24}$	$7.5 \cdot 10^{-12}$	51	0.031
4	82	$1.7\cdot 10^{-20}$	$9.3\cdot10^{-10}$	148	0.047
5	207	$4.5 \cdot 10^{-19}$	$1.2\cdot 10^{-09}$	395	0.078
6	541	$1.0\cdot 10^{-17}$	$5.6 \cdot 10^{-09}$	1062	0.266
7	1490	$1.4\cdot10^{-18}$	$2.9 \cdot 10^{-09}$	2959	0.609
8	4087	$2.7 \cdot 10^{-17}$	$9.1\cdot10^{-09}$	8153	1.782
9	11205	$1.6\cdot 10^{-16}$	$9.6 \cdot 10^{-09}$	22389	5.922
10	30678	$2.7\cdot10^{-15}$	$9.6 \cdot 10^{-09}$	61335	18.89
11	79292	$7.7 \cdot 10^{-14}$	$1.0\cdot 10^{-08}$	158563	57.813
12	171522	$9.7\cdot10^{-13}$	$9.9 \cdot 10^{-09}$	343026	144.266
13	385353	$1.3\cdot 10^{-11}$	$9.9 \cdot 10^{-09}$	770691	347.094
14	938758	$2.1\cdot 10^{-11}$	$1.0\cdot 10^{-08}$	1877500	1232.953
15	2203700	$7.8\cdot10^{-11}$	$1.0\cdot10^{-08}$	4407385	3204.359

Other methods

	Trust	region	Knitro	Minos	5.5	Snopt	
n	Inner	lter	lter	Iter	NFG	Iter [#]	NFG
3	129	50	30	44	120	106	78
4	431	123	80	136	309	268	204
5	1310	299	203	339	793	647	509
6	3963	722	531	871	2022	1417	1149*
7	12672	1921	1467	2291	5404	* * *	
8	40036	5234	4040	6109	14680		
9	120873	13907	11062	11939	28535		
10	358317	36837	29729*	* * *			
11	842368	78854	* * *				
12	2121780	182261					

Notation: * early termination, (***) numerical difficulties/ inaccurate solution, # needs an alternative starting point.

Trust region: very reliable, but T(12) = 2577 sec (Matlab), $T(n) = Const * (4.5)^n$.