\leftarrow Optimization algorithms

Quiz, 10 questions

	Congratulations! You passed!	Next Item
~	1 / 1 point	
1.		
Which	notation would you use to denote the 3rd layer's activations when the input is the 7th e	xample from the 8th minibatch?
0	$a^{[3]\{8\}(7)}$	
Corr	rect	
	$a^{[3]\{7\}(8)}$	
	$a^{[8]\{7\}(3)}$	
	$a^{[8]\{3\}(7)}$	
	1/1	
~	1/1 point	
2.		
Which	of these statements about mini-batch gradient descent do you agree with?	
	Training one epoch (one pass through the training set) using mini-batch gradient descusing batch gradient descent.	ent is faster than training one epoch
	You should implement mini-batch gradient descent without an explicit for-loop over d algorithm processes all mini-batches at the same time (vectorization).	fferent mini-batches, so that the
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is fast descent.	er than one iteration of batch gradient
Corr	rect	
	1/1	
~	1/1 point	

3.

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

Correct

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient ${\bf Qptimization\ algorithms}$

Quiz, 10 questions

Un-selected is correct

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making
progress.

Correct

Un-selected is correct

1/1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

\bigcirc	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is
	wrong.

Correct

Optimization algorithms

5

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

Correct

1/1 point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

Correct

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha=rac{1}{1+2*t}lpha_0$$

1/1 point

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $p_t = \beta v \ \text{Ptimization}$ what would happen to your red curve as you vary β ? (Check the two that, apply stions

8. Consider Optimization algorithms

Quiz, 10 questions

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent with momentum	(small β), (2) is s	radient descent with	momentum (small	β). (3) is gradient desce	ntء
(1) is gradient descent with momentum	(3111a11 ρ), (z) 13 ξ	gradient descent with	momentum (sman	ρ), (3) is gradient descr	2110

(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

(1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)

1/1 point

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try using Adam

Correct

Try initializing all the weights to zero

Un-selected is correct

Try mini-batch gradient descent

Correct

24/2018	Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - Home Coursera		
<u> </u>	Try tuning the learning rate $lpha$ Optimization algorithms		
Corre	ရှင်မြူuiz, 10 questions		
	Try better random initialization for the weights		
Corre	Correct		
~	1/1 point		
10.			
Which	of the following statements about Adam is False?		
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.		
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)		
	Adam combines the advantages of RMSProp and momentum		
0	Adam should be used with batch gradient computations, not with mini-batches.		
Corre	ect		

