Channel Systems

Lecture #4 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

October 29, 2008

Overview Lecture #4

- What is a channel system?
- Example: alternating bit protocol
- From channel systems to transition systems
- The modeling language NanoPromela
- Examples
- Semantics of NanoPromela models

Channels

- Processes communicate via *channels* ($c \in Chan$)
- Channels are first-in, first-out buffers
- Channels are typed (wrt. their content dom(c))
- Channels buffer messages (of appropriate type)
- Channel capacity = maximum # messages that can be stored
 - if $cap(c) \in \mathbb{N}$ then c is a channel with finite capacity
 - if $cap(c) = \infty$ then c has an infinite capacity
 - if cap(c) > 0, there is some "delay" between sending and receipt
 - if cap(c) = 0, then communication via c amounts to handshaking

Channels

- Process P_i = program graph PG_i + communication actions
 - c!e transmit the value of expression e along channel c
 - c?x receive a message via channel c and assign it to variable x
- $Comm = \{ c!e, c?x \mid c \in Chan, e \in Expr, x \in Var. \ dom(x) \supseteq dom(c) = dom(e) \}$
- Sending and receiving a message
 - c!e puts the value of e at the rear of the buffer c (if c is not full)
 - c?x retrieves the front element of the buffer and assigns it to x (if c is not empty)
 - if cap(c) = 0, channel c has no buffer
 - if cap(c)=0, sending and receiving can takes place simultaneously this is called *synchronous message passing* or *handshaking*
 - if cap(c) > 0, sending and receiving can never take place simultaneously this is called asynchronous message passing

Channel systems

A program graph over (Var, Chan) is a tuple

$$PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

where

$$\rightarrow$$
 \subseteq $Loc \times Cond(Var) \times (Act \cup Comm) \times Loc$

A *channel system CS* over $(\bigcup_{0 < i \le n} Var_i, Chan)$:

$$CS = [PG_1 \mid \ldots \mid PG_n]$$

with program graphs PG_i over (Var_i , Chan)

Communication actions

Handshaking

- if cap(c) = 0, then process P_i can perform $\ell_i \xrightarrow{c!e} \ell_i'$ only
- ... if P_j , say, can perform $\ell_j \xrightarrow{c?x} \ell'_j$
- the effect corresponds to the (atomic) distributed assignment x := value(e)

Asynchronous message passing

- if cap(c) > 0, then process P_i can perform $\ell_i \xrightarrow{c!e} \ell'_i$
- . . . if and only if less than $\emph{cap}(c)$ messages are stored in c
- P_j may perform $\ell_j \xrightarrow{c?x} \ell'_j$ if and only if the buffer of c is not empty
- then the first element of the buffer is extracted and assigned to x (atomically)

	executable if	effect
c!e	c is not "full"	Enqueue(c, value(e))
c?x	c is not empty	$\langle x := Front(c); Dequeue(c) \rangle;$

The alternating bit protocol

The alternating bit protocol: sender

The alternating bit protocol: receiver

© JPK

8

Channel evaluations

- A channel evaluation ξ is
 - a mapping from channel $c \in Chan$ onto a sequence $\xi(c) \in dom(c)^*$ such that
 - current length cannot exceed the capacity of c: $len(\xi(c)) \leq cap(c)$
 - $\xi(c) = v_1 v_2 \dots v_k$ ($cap(c) \ge k$) denotes v_1 is at front of buffer etc.
- $\xi[c:=v_1\dots v_k]$ denotes the channel evaluation

$$\xi[c := v_1 \dots v_k](c') = \begin{cases} \xi(c') & \text{if } c \neq c' \\ v_1 \dots v_k & \text{if } c = c'. \end{cases}$$

• Initial channel evaluation ξ_0 equals $\xi_0(c) = \varepsilon$ for any c

Transition system semantics of a channel system

Let $CS = [PG_1 \mid ... \mid PG_n]$ be a *channel system* over (*Chan*, *Var*) with

$$PG_i = (Loc_i, Act_i, Effect_i, \rightsquigarrow_i, Loc_{0,i}, g_{0,i}), \quad \text{for } 0 < i \leq n$$

TS(CS) is the *transition system* $(S, Act, \rightarrow, I, AP, L)$ where:

- $S = (Loc_1 \times ... \times Loc_n) \times Eval(Var) \times Eval(Chan)$
- $Act = (\biguplus_{0 < i \le n} Act_i) \uplus \{\tau\}$
- $\bullet \hspace{0.1in} \rightarrow \hspace{0.1in}$ is defined by the inference rules on the next slides
- $I = \left\{ \langle \ell_1, \dots, \ell_n, \eta, \xi_0 \rangle \mid \forall i. \ (\ell_i \in Loc_{0,i} \land \eta \models g_{0,i}) \land \forall c. \xi_0(c) = \varepsilon \right\}$
- $AP = \biguplus_{0 < i \le n} Loc_i \uplus Cond(Var)$
- $L(\langle \ell_1, \ldots, \ell_n, \eta, \xi \rangle) = \{ \ell_1, \ldots, \ell_n \} \cup \{ g \in \mathit{Cond}(\mathit{Var}) \mid \eta \models g \}$

Inference rules (I)

• Interleaving for $\alpha \in Act_i$:

$$\frac{\ell_{i} \xrightarrow{g:\alpha} \ell'_{i} \land \eta \models g}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{n}, \eta, \xi \rangle \xrightarrow{\alpha} \langle \ell_{1}, \dots, \ell'_{i}, \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = \textit{Effect}(\alpha, \eta)$

• Synchronous message passing over $c \in Chan$, cap(c) = 0:

$$\frac{\ell_{i} \xrightarrow{g:c?x} \ell'_{i} \wedge \ell_{j} \xrightarrow{g':c!e} \ell'_{j} \wedge \eta \models g \wedge g' \wedge i \neq j}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{j}, \dots, \ell_{n}, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_{1}, \dots, \ell'_{i}, \dots, \ell'_{j}, \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = \eta[x := \eta(e)]$.

Inference rules (II)

- Asynchronous message passing for $c \in Chan$, cap(c) > 0:
 - receive a value along channel c and assign it to variable x:

$$\frac{\ell_{i} \xrightarrow{g:c?x} \ell'_{i} \land \eta \models g \land len(\xi(c)) = k > 0 \land \xi(c) = v_{1} \dots v_{k}}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{n}, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_{1}, \dots, \ell'_{i}, \dots, \ell_{n}, \eta', \xi' \rangle}$$

where $\eta' = \eta[x := v_1]$ and $\xi' = \xi[c := v_2 \dots v_k]$.

- transmit value $\eta(e) \in dom(c)$ over channel c:

$$\frac{\ell_{i} \xrightarrow{g:c!e} \ell'_{i} \land \eta \models g \land len(\xi(c)) = k < cap(c) \land \xi(c) = v_{1} \dots v_{k}}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{n}, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_{1}, \dots, \ell'_{i}, \dots, \ell_{n}, \eta, \xi' \rangle}$$

where $\xi' = \xi[c := v_1 \, v_2 \dots v_k \, \eta(e)]$.

Handling unexpected messages

sender S	timer	receiver R	channel c	channel d	event
$snd_msg(0)$	off	wait(0)	Ø	Ø	
$st_tmr(0)$	off	wait(0)	$\langle m,0 angle$	Ø	message with bit 0
					transmitted
wait(0)	on	wait(0)	$\langle m,0 angle$	Ø	
$snd_msg(0)$	off	wait(0)	$\langle m,0 angle$	Ø	timeout
$st_tmr(0)$	off	wait(0)	$\langle m,0 \rangle \langle m,0 \rangle$	Ø	retransmission
$st_tmr(0)$	off	$pr_msg(0)$	$\langle m,0 angle$	Ø	receiver reads
					first message
$st_tmr(0)$	off	$\mathit{snd_ack}(0)$	$\langle m,0 angle$	Ø	
$st_tmr(0)$	off	wait(1)	$\langle m,0 angle$	0	receiver changes
					into mode-1
$st_tmr(0)$	off	$pr_msg(1)$	Ø	0	receiver reads
					retransmission
$st_tmr(0)$	off	wait(1)	Ø	0	and ignores it
:	:	:	:	:	

nanoPromela

- Promela (Process Meta Language) is modeling language for SPIN
 - SPIN = most widely used model checker
 - developed by Gerard Holzmann (Bell Labs, NASA JPL)
 - ACM Software Award 2002
- nanoPromela is the core of Promela
 - shared variables and channel-based communication
 - formal semantics of a Promela model is a channel system
 - processes are defined by means of a guarded command language
- No actions, statements describe effect of actions

nanoPromela

nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \dots | \mathcal{P}_n]$ with \mathcal{P}_i a process A process is specified by a statement:

x is a variable in Var, expr an expression and c a channel, g_i a guard assume the Promela specification is type-consistent

Conditional statements

if
$$:: g_1 \Rightarrow \mathsf{stmt}_1 \ldots :: g_n \Rightarrow \mathsf{stmt}_n$$
 fi

- Nondeterministic choice between statements stmt_i for which g_i holds
- Test-and-set semantics:

(deviation from Promela)

- guard evaluation + selection of enabled command + execution first atomic step of selected statement is all performed atomically
- The if—fi—command blocks if no guard holds
 - parallel processes may unblock a process by changing shared variables
 - e.g., when y=0, if $y>0 \Rightarrow x:=42$ fi waits until y exceeds 0
- Standard abbreviations:
 - if g then stmt_1 else stmt_2 fi \equiv if $:: g \Rightarrow \mathsf{stmt}_1 :: \neg g \Rightarrow \mathsf{stmt}_2$ fi
 - if g then stmt_1 fi \equiv if $:: g \Rightarrow \mathsf{stmt}_1 :: \neg g \Rightarrow \mathsf{skip}$ fi

Iteration statements

do $:: g_1 \Rightarrow \mathsf{stmt}_1 \ldots :: g_n \Rightarrow \mathsf{stmt}_n \ \mathsf{od}$

- Iterative execution of nondeterministic choice among $g_i \Rightarrow \text{stmt}_i$
 - where guard g_i holds in the current state
- No blocking if all guards are violated; instead, loop is aborted
- do $:: g \Rightarrow$ stmt od \equiv while g do stmt od
- No break-statements to abort a loop (deviation from Promela)

Peterson's algorithm

The nanoPromela-code of process \mathcal{P}_1 is given by the statement:

```
\begin{array}{ll} \textbf{do} & \text{::} & \mathsf{true} \Rightarrow & \mathsf{skip}; \\ & \mathsf{atomic}\{b_1 := \mathsf{true}; x := 2\}; \\ & \textbf{if} & :: & (x = 1) \lor \neg b_2 \Rightarrow \textit{crit}_1 := \mathsf{true} \ \textbf{fi} \\ & \mathsf{atomic}\{\textit{crit}_1 := \mathsf{false}; b_1 := \mathsf{false}\} \end{array}
```

od

Beverage vending machine

The following nanoPromela program describes its behaviour:

```
do :: true \Rightarrow skip;

if :: nsprite > 0 \Rightarrow nsprite := nsprite - 1

:: nbeer > 0 \Rightarrow nbeer := nbeer - 1

:: nsprite = nbeer = 0 \Rightarrow skip

fi

:: true \Rightarrow atomic{nbeer := max; nsprite := max}

od
```

Formal semantics

The semantics of a nanoPromela-statement over (Var, Chan) is a program graph over (Var, Chan).

The program graphs PG_1, \ldots, PG_n for the processes $\mathcal{P}_1, \ldots, \mathcal{P}_n$ of a nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \ldots | \mathcal{P}_n]$ constitute a *channel system* over (Var, Chan)

Example:

Sub-statements

© JPK

21

Inference rules

where id denotes an action that does not change the values of the variables

$$x := \exp r \xrightarrow{\operatorname{true} : \operatorname{assign}(x, \operatorname{expr})} \operatorname{exit}$$

assign(x, expr) denotes the action that only changes x, no other variables

$$c?x \xrightarrow{\mathsf{true} : c?x} \mathsf{exit}$$
 $c!\mathsf{expr} \xrightarrow{\mathsf{true} : c!\mathsf{expr}} \mathsf{exit}$

Inference rules

$$\begin{split} & \texttt{atomic}\{x_1 := \mathsf{expr}_1; \dots; x_m := \mathsf{expr}_m\} \xrightarrow{\mathsf{true} : \alpha_m} \mathsf{exit} \\ & \texttt{where} \ \alpha_0 = \mathit{id}, \ \alpha_i = \mathit{Effect}(\mathsf{assign}(x_i, \mathsf{expr}_i), \mathit{Effect}(\alpha_{i-1}, \eta)) \ \mathsf{for} \ 1 \leqslant i \leqslant m \\ & \underbrace{\mathsf{stmt}_1 \xrightarrow{g:\alpha} \mathsf{stmt}_1' \neq \mathsf{exit}}_{\mathsf{stmt}_1; \ \mathsf{stmt}_2} \xrightarrow{\mathsf{stmt}_1'; \ \mathsf{stmt}_2} \\ & \underbrace{\mathsf{stmt}_1 \xrightarrow{g:\alpha} \mathsf{stmt}_1'; \mathsf{stmt}_2}_{\mathsf{stmt}_1; \ \mathsf{stmt}_2} \xrightarrow{g:\alpha} \mathsf{stmt}_1'; \mathsf{stmt}_2} \end{split}$$

Inference rules

$$\begin{array}{c} & \underbrace{\mathsf{stmt}_i \xrightarrow{h:\alpha} \mathsf{stmt}_i'} \\ & \mathsf{cond_cmd} \xrightarrow{g_i \wedge h:\alpha} \mathsf{stmt}_i' \\ \\ & \underbrace{\mathsf{stmt}_i \xrightarrow{h:\alpha} \mathsf{stmt}_i' \neq \mathsf{exit}} \\ & \underbrace{\mathsf{loop} \xrightarrow{g_i \wedge h:\alpha} \mathsf{stmt}_i' \neq \mathsf{exit}} \\ & \underbrace{\mathsf{loop} \xrightarrow{g_i \wedge h:\alpha} \mathsf{exit}} \\ \\ & \underbrace{\mathsf{loop} \xrightarrow{g_i \wedge h:\alpha} \mathsf{stmt}_i' \neq \mathsf{exit}} \\ \\ & \underbrace{\mathsf{loop} \xrightarrow{g_i \wedge h:\alpha} \mathsf{loop}} \\ \\ & \underbrace{\mathsf{loop} \xrightarrow{g_i \wedge h:\alpha} \mathsf{loop}} \\ \\ \end{array}$$