CS4618: Artificial Intelligence I

Reinforcement Learning

Derek Bridge School of Computer Science and Information Technology University College Cork

Initialization

```
In [1]: %reload_ext autoreload
%autoreload 2
%matplotlib inline
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Reinforcement learning

- The agent carries out an action
- A teacher or the environment provides a reward (or punishment), often delayed, that acts as positive (or negative) reinforcement
 - making it more (or less) likely that the agent will execute that action if it find itself in the same or similar situation in the future
- For simplicity, in this lecture, we assume a fully-observable, deterministic environment

Reward

Cumulative reward

• Cumulative reward:

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$$

or

$$\sum_{t=0}^{t=\infty} \gamma^t r$$

where γ is the **discount rate** $(0 \le \gamma \le 1)$

• The task of the agent is to learn an action function that maximises cumulative reward

Action-value function

- Assume 2 Boolean sensors and 3 actions
- Compare

Percept	Action
00	MOVE
01	TURN(RIGHT, 2)
10	MOVE
11	TURN(LEFT, 2)

Percept	Action	Q
00	MOVE	
00	TURN(RIGHT, 2)	
00	TURN(LEFT, 2)	
01	MOVE	
01	TURN(RIGHT, 2)	
01	TURN(LEFT, 2)	
10	MOVE	
10	TURN(RIGHT, 2)	
10	TURN(LEFT, 2)	
11	MOVE	:
11	TURN(RIGHT, 2)	
11	TURN(LEFT, 2)	

• Class exercise: Suppose the agent has m touch sensors (returning 0 or 1) and n different actions. How many rows will the table contain?

What is Q?

- $Q(\mathbf{s}, a)$ is an *estimate* of the cumulative reward the agent will receive if, having sensed \mathbf{s} , it chooses to execute action a
- \bullet Hence, having sensed ${\bf \textit{s}}$, choose action a for which $Q({\bf \textit{s}},a)$ is highest: $\arg\max_a Q({\bf \textit{s}},a)$

Class exercise

Given this table

Percept	Action	Q
:	••	:
01	MOVE	0.2
01	TURN(RIGHT, 2)	0.1
01	TURN(LEFT, 2)	0.7
:	:	

- Suppose *s* is 01
- What is $\arg\max_a Q(\mathbf{s}, a)$?

Q-learning

- Start wih random *Q*-values (or all zero)
- ullet Improve by trial-and-error: choose actions, get rewards, update Q-values

```
QLearning(\epsilon)

• s = SENSE();
• do forever

• rand = a randomly-generated number in [0, 1);
• if rand < \epsilon
• \circ Choose action a randomly;
else
• \circ a = \arg\max_a Q(s, a);
• r = EXECUTE(a),
• s' = SENSE();
• Q(s, a) = r + \gamma \times \max_{a'} Q(s', a');
• s = s';
```

Exploration vs. Exploitation

- Exploration:
 - \blacksquare Choose an action which may not be the best action according to the current Q values. But it may gain you new experience and improve the Q values
- Exploitation:
 - lacktriangledown Choose the action which is best according to the current Q values. It may gain you reward
- ullet The so-called ϵ -greedy policy (where $0 \le \epsilon \le 1$) is the simplest way to balance exploration and exploitation

Updating *Q*-values

• From the algorithm:

$$Q(\mathbf{s}, a) = r + \gamma \times \max_{a'} Q(\mathbf{s'}, a')$$

- The new value is the reward for the latest action *r* plus our highest current estimate of the cumulative reward it can receive
- ullet Over the course of repeated actions, the Q-values will get better and better:
 - lacktriangledown When one Q-value improves then the Q-values of its immediate predecessors will also improve next time they get updated

Class exercise

Given this table

Percept	Action	Q
:	••	
10	MOVE	5
10	TURN(RIGHT, 2)	4
10	TURN(LEFT, 2)	1
11	MOVE	0
11	TURN(RIGHT, 2)	4
11	TURN(LEFT, 2)	6

- Suppose current percept is 10
 Assuming exploitation, which action will be chosen?
- Suppose reward is 3, next percept is 11 and γ is 1 Using $Q(\mathbf{s}, a) = r + \gamma \times \max_{a'} Q(\mathbf{s'}, a')$, update the table

Concluding remarks

- Reinforcement Learning underpins a lot of current success in game playing
- But it is seeing real use in other areas, e.g. robot motion control
- For real use, you need more sophisticated algorithms:
 - To handle non-deterministic environments
 - To improve convergence
 - To build a model of the environment
 - To scale up, and
 - To represent the policy in a way that allows the agent to generalise from what it learns

In []:	