1 1 a) Fin relle tour k oz r slig at vi for alle reelle toux has $x^{2} + 4x + 20 = r\left(x + h\right)^{2} + 1$ $x + 4 \times + 20 = 1 \times 4 \times 1 + 1$ = F (x + L x h + h 2) + F =Xr+2xh+h++ 5 marliner overfresieter og setter opp his hingest Kanel Ellahe 8 = 2 k $20 = h^2 + \gamma$

12 Gelzu benieur viv de a 3 av Forder en vare i begres som d'an du saverer X_ at oanse Slavy h Yn at 1 oniza Zu ant 2 ange a) beginne at $\begin{pmatrix} x_{1} & x_{1} \\ y_{2} & x_{1} \end{pmatrix} = \begin{pmatrix} x_{1} \\ y_{2} \\ y_{3} \end{pmatrix}$ $\begin{pmatrix} x_{1} & y_{1} \\ y_{3} \\ y_{4} \end{pmatrix}$

5
$$\mathbb{R}$$

6 $u = arcen(x)$ $\int arcond dx$
 $x = can (x)$
 $dx = -6in (x)$
 $-\int u cin (x)$
 $f(x) = sin(x^2)$ $f(x) = sin(x^2)$ $f(x) = sin(x^2)$ $f(x) = sin(x^2)$
 $f(x) = sin(x^2)$ $f(x) = sin(x^2)$ $f(x) = sin(x^2)$
 $f(x) = sin(x^2)$ $f(x) = sin(x^2)$ $f(x) = sin(x^2)$
 $f(x) = sin(x^2)$ $f(x) = sin(x^2)$ $f(x) = sin(x^2)$ $f(x) = sin(x^2)$
 $f(x) = sin(x^2)$ $f(x) =$