Lecture 6 - Jan 31, 2023

- Reinforcemement Learning Preliminaries
 - · State, Action, Reward, Policy
 - · Returns and Expected Returns
- · State Value Function
 - · State-Action Value Fundion
 - · Bellman Equation and optimality

Project 1 - Due Feb 7

Wendsdays, 12 pm - (pm (in-person)

Fridays, 12pm-1pm (virtual)

MDP(S,A,R,P) ineliate — R(s,a,sr) P(s'1s,a)Experted $R(s,a) = \sum_{s'} P(s'1s,a) R(s,a,s')$

Task Episodic

Cantinuing

9	10	11	12
8		14	13
7		16	15
6	5		
4	3	2	1
Wa	II E	Bump	Goal

(8.9) 19 -1 - 1 - 11Continuing Task

Gt = Rt+1 + 8 Rf+2+ 8 Rf+3+--
Discount Fauts

0<7<1

Episodic = Continuing Tasks

$$\begin{array}{c|c} R_{t+1} & R_{t+2} \\ \hline C_{t} & C_{t+1} \\ \hline C_{t} & C_{t+1} \\ \hline C_{t+1} & C_{t+1} \\ C_{t+1} & C_{t+1} \\ \hline C_{t+1} & C_{t+1} \\ \hline C_{t+1} & C_{t+1} \\ C_{t+1} & C_{t+1} \\ \hline C_{t+1} & C_{t+1} \\ \hline C_{t+1} & C_{t+1} \\ C$$

(3) = R+1 + YR+2 + -- + 8R++ 7 R++ 7 R++ 1 R++-

$$\pi = \left(\begin{array}{c} T \\ \end{array}\right) \rightarrow \pi(s^{1})$$

$$\pi'(s^{3})$$

9 🕇	10	11	12
8 1		14人	13 人
7 1		16	15
6 1	5		
4 🎷	3 1	2	1
Wa	II E	Bump	Goal

Expeded Return = Expeded Accomplated Revery

$$V(S_t) = E[G_t] S_t = 15$$
, T^{\dagger}

State-Value function

$$P(S'|S=1S, Q=L) = \begin{cases} 0.9 & S'=16 \\ 2\frac{0.1}{3} & S'=15 \\ \frac{0.1}{3} & S'=13 \end{cases}$$

	x'			
9 →	10	11	12 J	
8 1		14人	13 ,	
7 1		16	15	
6 1	5			
4 🎌	3 1	2	1	
Wal	I E	Bump	Goal	

$$= \sum_{trajeltonies} P_t^j G_b^j$$

$$\mathcal{R}(A_1 \alpha^1, A) = 0$$

$$R(A, \alpha!, B) = 5$$

$$R(B,a',A)=0$$

$$P(a') \xrightarrow{A} M(a') = \begin{cases} A & \downarrow k & B \\ O & \downarrow \\ B & \downarrow S \\ O & \downarrow S \\ O$$

$$P(a^2) = M(a^2) = \begin{cases} A & k & B \\ 0 & 1 \end{cases}$$

$$k-1 & B & 1$$

$$\pi' = \begin{bmatrix} a \\ a \end{bmatrix} \quad \pi' = \begin{bmatrix} a^1 \\ a^2 \end{bmatrix} \quad \pi' = \begin{bmatrix} a^2 \\ a^2 \end{bmatrix} \quad \pi' = \begin{bmatrix} a^2 \\ a^2 \end{bmatrix}$$

$$\pi' = \begin{bmatrix} \pi'(A) \\ \pi'(B) \end{bmatrix} = \begin{bmatrix} a' \\ a' \end{bmatrix}$$
 Stay at your state

$$\frac{\mathcal{S}_b}{A} \qquad \frac{\mathcal{H}(A) = \alpha'}{\mathcal{R}(A, \alpha', A) = 0} \qquad \frac{\mathcal{H}(A) = \alpha'}{\mathcal{R}(A, \alpha', A) = 0} \qquad - - - .$$

Expetes Acumulated Rewards Starting from A and following Palicy X

$$\begin{array}{c|c}
\hline
B & \pi'(B) = \alpha^{1} \\
\hline
R(B, \alpha^{1}, B) = 5 & +5 \\
\hline
\end{array}$$

$$= 5 + 85 + 8^{2}5 + 8^{3}5 + - - -$$

$$= 5 \quad \frac{1}{1-r} = \frac{5}{1-0.9} = 50$$

$$\mathcal{T} = \begin{bmatrix} \mathcal{X}(A) \\ \mathcal{X}(B) \end{bmatrix} = \begin{bmatrix} \alpha^2 \\ \alpha^1 \end{bmatrix}$$

$$V_{\pi^{2}}(A) = 4 + 85 + 8^{2}5 + 8^{3}5 + \cdots$$

$$= 4 + 85 \left(1 + 8 + 8^{2} + \cdots \right) = 49$$

$$\frac{7^{2}(8)=a^{1}}{5}$$

$$\frac{7^{2}(8)=a^{1}}{5}$$

V72(B) = 5+85+865+---= 5 (1+8+82-)=50

$$\pi' = \begin{cases} \pi'(1) \\ \vdots \\ \pi'(15) \end{cases} = \begin{cases} L \\ U \\ \vdots \\ L \end{cases}$$

Determins ti'C

9	10	11	12
8 1		14人	13 ,
7 1		16	15
6 🛧	5		
4 1	3 1	2	1
Wal	I E	Bump	Goal

994	10%	1196	1297
8 <i>9</i> 3		149	13 ⁸
792		16	15 ⁹⁹
6 ⁹¹	5 90		
470	389	288	187
Wal	l E	Bump	Goal

$$\frac{77^{1}(13) = D}{-1} \frac{77^{1}(15)}{15} \frac{15}{89}$$

VxI(F)=

986	1 8 7	11 ⁸ 8	1297
889		149	13 ⁹ 8
7 ·		16	15 ⁹⁹
6	5		
4	3	2	1
Wall Bump Goal			Goal

9	10	11₺	12 J
8 1		14,	13 ,
7 1		16	15
6 1	6 5		
4 "	3 1	2	1
Wal	I E	Bump	Goal

	1		
9	10	11	12
8		14	13
7		16	15
6	5		
4	3	2	1
Wall Bun		Bump	Goal

9 🌡	101	11/	12
8 💃		14 /	134
7.₺		16	15
6₺	5		
4	3	2	1
Wall Bump			Goal

State-Action Value Function

$$Q_{\pi}(S, \alpha) = E[G_t | S_t = S, a_t = \alpha, \pi]$$

9→	10	17	12↓
8 1		14	13 人
7 1		16	15
6 1	5		
4 7	3 1	2	1
Wa	II E	Bump	Goal

Qx(15, V)=

$$\mathbb{Q}(S, \mathcal{T}(S)) = \mathbb{Q}(S)$$