TD II: Espérances et lois conditionnelles

22 Septembre 2025-26 Septembre 2025

- Master I Isifar
- Probabilités

Exercice 1 (Espérance conditionnelle/tribu atomique).

Cours

Espérance conditionnelle par rapport à une tribu engendrée par une partition dénombrable.

- 1. Soit $(A_n, n \in \mathbb{N}^*)$ une partition de Ω et $\mathcal{F} = \sigma(A_n, n \geq 1)$ la tribu engendrée par les $A_n, n \geq 1$. Rappelons qu'une v.a.r. Y est \mathcal{F} -mesurable si et seulement si il existe une suite de réls (a_n) telle que $Y = \sum_{n \geq 1} a_n \mathbf{1}_{A_n}$. Exprimer $\mathbb{E}[X \mid \mathcal{F}]$.
- 2. Soient X, Y deux variables i.i.d. $\sim \text{Ber}(p)$. On considère $\mathcal{G} = \sigma(\{X + Y = 0\})$. Calculer $\mathbb{E}[X \mid \mathcal{G}]$, $\mathbb{E}[Y \mid \mathcal{G}]$. Les variables obtenues sont-elles toujours indépendantes?

Exercice 2 (Conditionnement continu).

Soient (X,Y) un couple de v.a. réelles intégrables de densité jointe $f,g:\mathbb{R}^2\to\mathbb{R}$ borélienne telle que $g(X,Y)\in\mathbb{L}^1$.

Rappeler l'expression de ϕ, ψ telles que

$$\mathbb{E}[g(X,Y) \mid Y] = \phi(Y), \quad \mathbb{E}[g(X,Y)|X] = \psi(X).$$

- 1. On considère (X,Y) de densité jointe $f(x,y)=\frac{1}{x}\mathbf{1}_{\{0\leq y\leq x\leq 1\}}$. Quelle est la loi de X? Calculer la distribution conditionnelle $f_{Y|X}$ de Y sachant X. Calculer $\mathbb{P}(X^2+Y^2\leq 1|X)$, puis en déduire $\mathbb{P}(X^2+Y^2\leq 1)$.
 - Pour simplifier l'expression obtenue on pourra utiliser que $x \to \sqrt{1-x^2} \tanh^{-1}(\sqrt{1-x^2}) = \sqrt{1-x^2} \frac{1}{2}\ln(1+\sqrt{1-x^2}) + \frac{1}{2}\ln(1-\sqrt{1-x^2})$ est une primitive de $x \to \frac{\sqrt{1-x^2}}{x}$.
- 2. Dans le cas général, montrer que $\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y]$. Que vaut $\mathbb{E}[Y]$ dans l'exemple de la question précédente?
- 3. Montrer, dans le cas général, que

$$\mathbb{E}[\mathbb{E}[Y|X]q(X)] = \mathbb{E}[Yq(X)],$$

pour toute fonction g telle que les deux espérances sont définies. Que vaut $\mathbb{E}[Yg(X) \mid X]$?

Exercice 3 (Partiel passé).

Partiel passé

Soient $0 \le r \le p \le 1$ tels que $1 - 2p + r \ge 0$. Soient X_1, X_2 tels que

$$\begin{split} \mathbb{P}(X_1 = 1, X_2 = 1) &= r, \quad \mathbb{P}(X_1 = 0, X_2 = 1) = p - r, \\ \mathbb{P}(X_1 = 1, X_2 = 0) &= p - r, \quad \mathbb{P}(X_1 = 0, X_2 = 0) = 1 - 2p + r. \end{split}$$

1. Quelle est la loi de X_1 ? celle de X_2 ?

2. Calculer $Y = \mathbb{E}[X_1 \mid X_2]$ et vérifier que

$$Y = \begin{cases} \frac{p-r}{1-p} \text{ avec probabilité } 1-p \\ \frac{r}{p} \text{ avec probabilité } p. \end{cases}$$

3. Rappelons que par définition $\text{Var}[X_1 \mid X_2] = \mathbb{E}[X_1^2 \mid X_2] - \mathbb{E}[X_1 \mid X_2]^2$. Montrer que

$$\mathrm{Var}[X_1 \mid X_2] = \left(\frac{p-r}{1-p} - \left(\frac{p-r}{1-p}\right)^2\right) \mathbf{1}_{\{X_2 = 0\}} + \left(\frac{r}{p} - \left(\frac{r}{p}\right)^2\right) \mathbf{1}_{\{X_2 = 1\}}.$$

4. Que vaut $\operatorname{Var}(\mathbb{E}[X_1 \mid X_2])$? $\mathbb{E}[\operatorname{Var}[X_1 \mid X_2]]$? Vérifier qu'on a bien

$$Var(X_1) = Var(\mathbb{E}[X_1 \mid X_2]) + \mathbb{E}[Var[X_1 \mid X_2]].$$

Exercice 4 (Conditionnement).

Soit (X_n) une suite de v.a. i.i.d intégrables, et $S_n = \sum_{i=1}^n X_i$.

- 1. Que valent $\mathbb{E}[X_1 \mid X_2], \mathbb{E}[S_n \mid X_1], \mathbb{E}[S_n \mid S_{n-1}]$?
- 2. Montrer que si les paires de variables $(X,Z),\,(Y,Z)$ ont la même loi jointe, alors pour toute fonction réelle positive (ou satisfaisant une condition d'intégrabilité), $\mathbb{E}[f(X)\mid Z]=\mathbb{E}[f(Y)\mid Z]$. En déduire $\mathbb{E}[X_1\mid S_n]$.

Exercice 5 (Examen passé).

(Examen passé)

Soit $(X_n,n\geq 0)$ une suite de variables i.i.d, avec $X_1\sim \mathrm{Ber}(1/2).$ On pose $S_n=\sum_{i=1}^n(X_i-1/2),$ $\mathcal{F}_n=\sigma(X_1,...,X_n).$

Calculer $\mathbb{E}[S_n \mid \mathcal{F}_5]$ en fonction de n. Quelle est la loi de cette variable aléatoire?

Exercice 6 (Partiel passé).

Soient $\{\mathbf{e}_i, i \in \mathbb{N}\}$ des variables i.i.d exponentielles de paramètre 1. Pour $n \in \mathbb{N}^*$ on note $S_n := \sum_{i=1}^n \mathbf{e}_i$.

1. On note f_n la fonction de densité de la variable S_n . Montrer que pour tout $t \geq 0$

$$f_n(t) = \frac{t^{n-1}}{(n-1)!} \exp(-t).$$

- 2. Pour $t > 0, n \in \mathbb{N}^*$, que vaut $\mathbb{P}(S_n \le t)$?
- 3. On fixe t > 0 et on suppose $X_t \sim \text{Poisson}(t)$. Que vaut $\mathbb{P}(X_t \geq n)$, pour $n \in \mathbb{N}^*$?
- 4. Sur la demi-droite \mathbb{R}_+ on place les points S_1, S_2, S_3, \ldots On note N_t le nombre de ces points qui tombent dans l'intervalle [0,t]. Exprimer l'événement $\{N_t \geq n\} = \{S_n \leq t\}$. Déterminer la loi de N_t à l'aide des questions préc'dentes.
- 5. Montrer que, conditionnellement à $\{N_t = 1\}$, la loi de \mathbf{e}_1 est uniforme sur [0, t].
- 6. Conditionnellement à $\{N_t = 2\}$, quelle est la loi du vecteur $(\mathbf{e}_1; \mathbf{e}_2)$?

Exercice 7 (CC2 2023).

On considère

$$X \sim \mathcal{N} \left(\begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 & -1 & -1 \\ 1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 5 \end{pmatrix} \right).$$

1. Calculer $\mathbb{E}[X_3\mid X_4],$ et déterminer la loi conditionnelle de X_3 sachant $X_4.$

2. On pose
$$A=\begin{pmatrix}2&1\\1&2\end{pmatrix},\,B=\begin{pmatrix}-1&-1\\-1&0\end{pmatrix}$$
. Calculer BA^{-1} , puis vérifier que

$$BA^{-1}B^T = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

3. Déterminer $\mathbb{E}\left[\begin{pmatrix} X_3 \\ X_4 \end{pmatrix} \mid \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}\right]$. et la loi conditionnelle de $\begin{pmatrix} X_3 \\ X_4 \end{pmatrix}$ sachant $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$.

Exercice 8 (Partiel passé).

Soit $(X_1, X_2, X_3) \sim \mathcal{N}(\mu, M)$ où

$$\mu = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad M = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

- 1. Quelle est la loi du couple (X_1, X_2) ?
- 2. Déterminer α un réel tel que $Y = X_1 + X_2$ est indépendante de X_1 . Que vaut $\mathbb{E}[Y]$? \mathbb{V} ar(Y) ?
- 3. En déduire $\mathbb{E}[X_2\mid X_1].$ Quelle est la loi conditionnelle de X_2 sachant X_1 ?
- 4. Déterminer un réel β tels que $Z=\beta X_1+X_3$ est indépendante de X_1 . En déduire

$$\mathbb{E}[X_3 \mid X_1], \quad \mathbb{E}[X_3^2 \mid X_1].$$

5. Calculer $\mathbb{E}[X_1^2X_2 + X_3^2X_1 \mid X_1]$.

Exercice 9 (Examen passé).

Soit $(X_1, X_2, X_3) \sim \mathcal{N}(\mu, M)$, où

$$\mu = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad M = \begin{pmatrix} 1 & 1/2 & 2 \\ 1/2 & 1 & 1 \\ 2 & 1 & 3 \end{pmatrix}.$$

Calculer $\mathbb{E}[X_1+2X_2\mid X_3].$ Quelle est la loi conditionnelle de X_1+2X_2 sachant X_3 ?

Exercice 10 (CC2 2023).

On suppose dans cet exercice que (X,Y) est un couple de variables aléatoires tel que pour toute $\phi: \mathbb{R}^2 \to \mathbb{R}_+$ borélienne,

$$\mathbb{E}[\phi(X,Y)] = \sum_{n \ge 1} \frac{2}{3^n \sqrt{2\pi n}} \int_{\mathbb{R}} \phi(n,y) \exp\left(-\frac{y^2}{2n}\right) dy.$$

- 1. Montrer que $X \sim \text{Geom}(2/3)$.
- 2. Vérifier que pour une fonction $f: \mathbb{R} \to \mathbb{C}$ telle que $f(Y) \in \mathbb{L}^1$, on a

$$\mathbb{E}[f(Y)\mid X] = \sum_{n\geq 1} \left(\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi n}} f(y) \exp\left(-\frac{y^2}{2n}\right) dy \right) \mathbb{I}_{\{X=n\}}$$

%1. En déduire que pour tout $k \in \mathbb{N}$, %

$$\mathbb{E}[Y^k \mid X] = \frac{k!}{X^{2k}}$$

- 3. Calculer $\mathbb{E}[\exp(itY) \mid X], t \in \mathbb{R}$, quelle est la loi conditionnelle de Y sachant X?
- 4. Déduire que si $t \in \mathbb{R}$

$$\mathbb{E}[\exp(itY)] = \frac{2\exp\left(-\frac{t^2}{2}\right)}{3 - \exp\left(-\frac{t^2}{2}\right)}.$$

Exercice 11 (Partiel passé).

Partie I

On considère le couple (X, Z) de densité jointe

$$f(x,z) := (z-x) \exp(-z) \mathbf{1}_{\{z \ge x \ge 0\}}.$$

- 1. Calculer la loi de X, puis celle de Z.
- 2. En déduire que

$$f_{X\mid Z}(x\mid z) = \frac{2(z-x)}{z^2} \mathbf{1}_{\{0 \leq x \leq z, z > 0\}}.$$

- 3. Calculer $\mathbb{E}[X \mid Z]$, puis $Var[X \mid Z]$.
- 4. Calculer $f_{Z|X}(z\mid x)$, puis démontrer que $\mathbb{E}[Z\mid X]=X+2$.
- 5. Quelle est la loi du couple (X, Z X)? En déduire la loi de Z X.

Partie II

- 1. Soit z > 0. On suppose que $U_1^z \sim \text{Unif}[0, z], U_2^z \sim \text{Unif}[0, z]$ et que U_1^z est indépendante de U_2^z . Calculer la densité de $\min(U_1^z, U_2^z)$.
- 2. On suppose à présent que conditionnellement à Z, $U_1^Z \sim \text{Unif}[0, Z]$, $U_2^Z \sim \text{Unif}[0, Z]$ et que U_1^Z est (toujours conditionnellement à Z) indépendante de U_2^Z . Montrer que, conditionnellement à Z, $\min(U_1^Z, U_2^Z)$ a la même loi que X.
- 3. Soient X_1, X_2, X_3 trois variables indépendantes, toutes trois distribuées suivant la distribution exponentielle de paramètre 1. On note $S = X_1 + X_2 + X_3$. Déterminer la loi de (X_1, S) . Que vaut $\mathbb{E}[X_1 \mid S]$? $\mathbb{E}[S \mid X_1]$? Montrer finalement que conditionnellement à S, le couple $(X_1, X_1 + X_2)$ a la même loi que $(\min(U_1^S, U_2^S), \max(U_1^S, U_2^S))$.

Exercice 12 (Partiel passé).

Pour $(x,y) \in \mathbb{R}^2$ on définit

$$f(x,y) := \frac{4y}{x^3} \mathbf{1}_{\{0 < x < 1, 0 < y < x^2\}}.$$

Vérifier que f est bien une densité de probabilité, puis calculer les densités marginales f_X , f_Y .

Calculer $f_{Y|X}(y \mid x)$ et en déduire que

$$\mathbb{E}[Y \mid X] = \frac{2}{3}X^2.$$

Montrer que

$$f_{X\mid Y}(x\mid y) = \frac{2y}{1-y}\frac{1}{x^3}\mathbf{1}_{\{0 < x < 1, 0 < y < x^2\}},$$

puis calculer $\mathbb{E}[X \mid Y]$.

Exercice 13 (CC2 2023).

Dans cet exercice on suppose que

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \right),$$

et on pose $U = X^2$.

- 1. Vérifier que $U \sim \text{Gamma}(1/2, 1/4)$.
- 2. Montrer que (X,Y) possède une densité jointe g que l'on déterminera.
- 3. Montrer que (U,Y) possède la densité jointe

$$f(u,y) = \frac{1}{4\pi\sqrt{u}} \left(\exp\left(-\frac{u}{2} - y^2 + y\sqrt{u}\right) + \exp\left(-\frac{u}{2} - y^2 - y\sqrt{u}\right) \right) \mathbb{I}_{\{u>0\}}.$$

4. Calculer $f_{Y|U}(y\mid u)$. En déduire $\mathbb{E}[Y\mid U], \mathbb{E}[Y^2\mid U]$ et $\mathrm{Var}(Y\mid U)$. Vérifier qu'on a bien

$$\mathrm{Var}[Y] = \mathbb{E}[\mathrm{Var}[Y \mid U]] + \mathrm{Var}[\mathbb{E}[Y \mid U]] \,.$$

5. On suppose que conditionnellement à U, ξ et Z sont indépendantes avec $\xi \sim \text{Ber}(1/2)$ et $Z \sim \mathcal{N}\left(\frac{\sqrt{U}}{2}, \frac{1}{2}\right)$. Montrer que conditionnellement à U, $(2\xi - 1)Z$ a même loi que Y. Vérifier alors les calculs de la question précédente.

Indications

1. rappelle que pour $a>0, \lambda>0,$ la densité d'une variable $G\sim \operatorname{Gamma}(a,\lambda)$ est donnée par

$$f_G(x) = \frac{\lambda^a x^{a-1}}{\Gamma(a)} \exp(-\lambda x) \mathbb{I}_{\{x>0\}}$$

- 2. On fera attention à distinguer les domaines $D_1 = \mathbb{R}_-^* \times \mathbb{R}$ et $D_2 = \mathbb{R}_+^* \times \mathbb{R}$ pour pouvoir considérer les \mathcal{C}^1 -difféomorphismes $\Psi_1 : \begin{cases} D_1 \to \mathbb{R}_+^* \times \mathbb{R} \\ (x,y) \to (x^2,y) \end{cases}$, $\Psi_2 : \begin{cases} D_2 \to \mathbb{R}_+^* \times \mathbb{R} \\ (x,y) \to (x^2,y) \end{cases}$.
- 3. Pour $\alpha \in \mathbb{R}$, les deux premiers moments de la variable $\zeta \sim \mathcal{N}\left(\alpha \frac{\sqrt{u}}{2}, \frac{1}{2}\right)$ sont

$$\mathbb{E}[\zeta] = \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} y \exp\left(-\left(y - \alpha \frac{\sqrt{u}}{2}\right)^2\right) dy$$

$$= \alpha \frac{\sqrt{u}}{2},$$

$$\mathbb{E}[\zeta^2] = \mathbb{E}[\zeta]^2 + \operatorname{Var}[\zeta] = \int_{\mathbb{R}} \frac{1}{\sqrt{\pi}} y^2 \exp\left(-\left(y - \alpha \frac{\sqrt{u}}{2}\right)^2\right) dy$$

$$= \alpha^2 \frac{u}{4} + \frac{1}{2}$$

Exercice 14 (Rattrapage passé).

Soit $X = (X_1, X_2, X_3) \sim \mathcal{N}(0, M)$, où

$$M := \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 5 \end{pmatrix},$$

- 1. Montrer que det(M) = 0. Le vecteur X possède-t-il une densité dans \mathbb{R}^3 ?
- 2. Trouver $a \in \mathbb{R}$ tel que X_1 et $Y = X_2 aX_1$ soient indépendantes. Calculer $\mathrm{Var}(Y)$ et en déduire la loi de (X_1,Y) .
- 3. Trouver la loi conditionnelle de X_2 sachant X_1 .

Exercice 15 (Combinaison linéaire de gaussiennes).

On considère $X_0 = 0$, et $(X_n)_{n \ge 1}$ une suite de variables aléatoires réelles indépendantes, identiquement distribuées suivant la loi normale centrée réduite.

On introduit les variables

$$Y_i = \frac{X_i - X_{i-1}}{i}, i \ge 1.$$

Pour $n \geq 1$, montrer que le vecteur $(Y_1, ..., Y_n)$ est gaussien, puis calculer le vecteur moyenne et la matrice de covariances de $(Y_1, ..., Y_n)$.

Calculer, pour $n \ge 1$, $\mathbb{E}[Y_{n+1} \mid Y_n]$.

Exercice 16 (Loi jointe à densité).

Soient (X,Y) dont la loi jointe a pour densité $f(x,y) = x(y-x) \exp(-y), 0 \le x \le y < \infty$. On introduit la notation $f_{X|Y}(x|y) := f(x,y)/f_Y(y)$ lorsque le quotient est > 0, 0 sinon.

- 1. Exprimer $f_{X|Y}(x|y)$, puis $f_{Y|X}(y|x)$.
- 2. En déduire les expressions de $\mathbb{E}[X|Y]$, $\mathbb{E}[Y|X]$.

Exercice 17 (Exponentielles conditionnées).

Soient Y, Z deux v.a.r. indépendantes $\sim \exp(\lambda)$ où $\lambda > 0$. On pose X = Y + Z. Quelle est la loi conditionnelle de Y sachant X? Que vaut $\mathbb{E}[Y|X]$? En déduire l'expression de $\mathbb{E}[Y|X]$

Exercice 18 (Gaussiennes corrélées).

Soient X et Y deux variables aléatoires indépendantes, toutes deux normales centrées réduites. On définit pour $\sigma_1 > 0, \sigma_2 > 0, |\rho| \le 1$,

$$U = \sigma_1 X, \quad V = \sigma_2 \rho X + \sigma_2 \sqrt{1 - \rho^2} Y.$$

- 1. Quelle est la loi de (U, V)?
- 2. Que vaut $\mathbb{E}[UV]$?
- 3. Que vaut $\mathbb{E}[U \mid V]?\mathbb{E}[V \mid U]?\mathrm{Var}[U \mid V]?\mathrm{Var}[V \mid U]?$

Exercice 19 (Gaussiennes corrélées (2)).

Soit Z=(X,Y) un vecteur aléatoire gaussien à valeurs dans \mathbb{R}^2 . On suppose que $E(X)=E(Y)=0, \, \mathrm{Var}(X)=\mathrm{Var}(Y)=1$ et que $\mathrm{Cov}(X;Y)=\rho$ avec $|\rho|^2\neq 1$. On pose $U=X-\rho Y, V=\sqrt{1-\rho^2}Y$.

- 1. Quelles sont les lois de U et V? Les v.a. U et V sont-elles indépendantes?
- 2. Calculer $\mathbb{E}(U^2V^2)$, $\mathbb{E}(UV^3)$, $\mathbb{E}(V^4)$. En déduire $\mathbb{E}(X^2Y^2)$.
- 3. Retrouver ce dernier résultat par conditionnement.

Exercice 20 (Gaussiennes).

Soient U, V, W trois v.a.r. gaussiennes centrées réduites. On pose

$$Z = \frac{U + VW}{\sqrt{1 + W^2}}.$$

- 1. Quelle est la loi conditionnelle de Z sachant W?
- 2. En déduire que Z et W sont indépendantes et donner la loi de Z.

Exercice 21 (Maxima d'exponentielles).

Soient X_1 et X_2 des v.a. indépendantes, de lois exponentielles de paramètres respectifs λ_1 et λ_2 .

- 1. Calculer $\mathbb{E}[\max(X_1, X_2) \mid X_1]$.
- 2. Calculer $\mathbb{E}[\max(X_1; X_2)]$.

Exercice 22 (Densités jointes).

On pose $h(x) = \frac{1}{\Gamma(a+1)} \exp(-x) x^{a-1}$ (a>0 fixé) et $D=\{0< y< x\}$. Soit $f(x,y)=h(x)\mathbf{1}_D(x,y)$:

- 1. Montrer que f est une densité de probabilité sur \mathbb{R}^2 . On considère dans la suite un couple (X,Y) de v.a.r. de densité f.
- 2. Les v.a. X et Y/X sont-elles indépendantes?
- 3. Quelle est la loi conditionnelle de Y sachant X?
- 4. Soit U une v.a.r. indépendante du couple (X,Y) telle que $\mathbb{P}(U=1)=p$ et $\mathbb{P}(U=0)=1-p$. On pose Z=UX+(1-U)Y. Quelle est l'espérance conditionnelle de Z sachant X?

Exercice 23.

Soit $(X_n, n \in \mathbb{N})$ une suite de v.a.r.i.i.d. de densité f et fonction de répartition F. Soient $N := \min\{n \geq 1: X_n > X_0\}$ et

 $M := \min \{ n \geq 1 : X_0 \geq X_1 \geq \ldots \geq X_{n-1} < X_n \}.$

- 1. Trouver $\mathbb{P}(N=n)$, puis montrer que la fonction de répartition de X_N est $F+(1-F)\log(1-F)$ (on pourra conditionner par les événements $\{N=n\}, n\in\mathbb{N}$).
- 2. Exprimer $\mathbb{P}(M=m), m \geq 1$.
- 3. On suppose dans cette question que $f=\mathbf{1}_{[0,1]}$. Pour $x\in(0,1)$ on introduit $R^x:=\min\{n\geq 1: X_1+\ldots+X_n>x\}$. Montrer que $\mathbb{E}[\mathbf{1}_{\{R^x>n\}}\mid X_n]=\Phi(X_n)$ où $\Phi(u)=\mathbb{I}_{\{u< x\}}\mathbb{P}(R^{x-u}>n-1)$. En déduire $H_n(x):=\mathbb{P}(R^x>n)$.

Exercice 24.

Soient X et Y deux v.a.r. indépendantes de loi uniforme sur [0,1].

- 1. Quelle est l'espérance conditionnelle de $(Y X)_+$ sachant X?
- 2. Quelle est la loi conditionnelle de $(Y X)_+$ sachant X?

Exercice 25.

Soient X_1, X_2, X_3 trois v. a. r. gaussiennes centrées réduites indépendantes. On pose $U=2X_1-X_2-X_3, V=X_1+X_2+X_3, W=3X_1+X_2-4X_3$.

1. Quelles sont les lois de U, V et W? Quels sont les couples de v.a. indépendantes parmi les couples (U, V), (U, W), (V, W)?

2. Montrer qu'il existe $a \in \mathbb{R}$ tel que W = aU + Z avec U et Z indépendantes. En déduire $\mathbb{E}(W \mid U)$.

Exercice 26.

Soient X et Y deux v. a. r. gaussiennes centrées réduites indépendantes. On pose Z=X+Y , W=X-Y.

- 1. Montrer que Z et W sont indépendantes. Quelle est la loi de W?
- 2. En déduire l'espérance conditionnelle et la loi conditionnelle de X sachant Z.
- 3. Calculer $\mathbb{E}(XY \mid Z)$ et $\mathbb{E}(XYZ \mid Z)$.