R and Stata Parallels

For Categorical Data Analysis

Andy Grogan-Kaylor 2023-09-05

Table of contents

This is an evolving and growing document. Comments, questions, corrections and clarifications are all welcome.

Concept	Stata	R
Get Data	use "dta"	load("RData")
Descriptives	summarize	<pre>summary()</pre>
Cross-Tabulation	tabulate x y	$table(x, y)^{1}$
Cross-Tabulation With Row	tabulate x y, row col	<pre>prop.table(table(x, y), margins =</pre>
and Column Percentages)
		gmodels::CrossTable(x, y) 2
ChiSquare Test	tabulate x y, row col chisq	chisq.test(table(x, y)) 3
Logistic Regression	logit y x	<pre>glm(y ~ x, data =, family =</pre>

¹For the sake of parsimony, in my R table, prop.table, and gmodels::CrossTable syntax, I am using single columns of data, e.g. x and y, but R could as easily use the dataset\$variable syntax e.g. table(dataset\$variable)

²gmodels::CrossTable offers nicer formatting that may be easier to read, especially for those accustomed to Stata or SAS. ³Stata shows the Cross-Tabulation Table together with the χ^2 test while R only shows the results of the χ^2 test.

Concept	Stata	R
Probit Regression	probit y x	<pre>glm(y ~ x, data =, family = binomial(link = "probit"))</pre>
Ordered Logistic Regression	ologit y x	polr(y ~ x, data =, Hess = $TRUE$) ⁴
Multinomial Logistic Regression	mlogit y x	$multinom(y \sim x, data =)^5$
Poisson Regression	poisson y x	<pre>glm(y ~ x, family="poisson", data=</pre>
Negative Binomial Regression	nbreg y x	$glm.nb(y \sim x, data =)^6$

Created by Andy Grogan-Kaylor: http://www.umich.edu/~agrogan; agrogan@umich.edu

⁴Requires library(MASS) ⁵Requires library(nnet) ⁶Requires library(MASS)