GAZETA MATEMATICĂ

REVISTĂ DE CULTURĂ MATEMATICĂ PENTRU TINERET SERIA B

Fondată în anul 1895

ANUL CXIV nr. 1

ianuarie 2009

ARTICOLE ŞI NOTE MATEMATICE

CÂTEVA CHESTIUNI DESPRE FUNCȚIILE PERIODICE

DE NELU CHICHIRIM

Abstract. This article presents some possibilities to use continuity when dealing with problems involving periodicity.

Keywords: periodic function, continuity, uniform continuity, density.

MSC: 26A09, 26A15.

Definiția 1. Funcția $f : \mathbb{R} \to \mathbb{R}$ este periodică dacă există $T \in \mathbb{R}^*$ cu proprietatea că $f(x+T) = f(x), \forall x \in \mathbb{R}$.

Numărul T din definiția anterioară se numește perioada funcției f.

Observația 1. Dacă T este o perioadă a funcției f, atunci $k \cdot T$ este o perioadă a funcției f, $\forall k \in \mathbb{Z}^*$.

Propoziția 1. Dacă $f: \mathbb{R} \to \mathbb{R}$ este periodică (cu o perioadă T) atunci funcția $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(ax+b), $a,b \in \mathbb{R}$, $a \neq 0$, este periodică și o perioadă a ei este $T' = \frac{T}{a}$.

Demonstrație. $g\left(x + \frac{T}{a}\right) = f(ax + T + b) = f(ax + b) = g(x), \forall x \in \mathbb{R}.$

Propoziția 2. Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ are proprietatea că există $T \neq 0$ astfel încât f(x+T) - f(x) = c, $\forall x \in \mathbb{R}$, atunci există o funcție $g: \mathbb{R} \to \mathbb{R}$ periodică, cu perioada T, astfel încât f(x) = g(x) + ax, $\forall x \in \mathbb{R}$, unde $a = \frac{c}{T}$.

Demonstrație. Fie $g(x)=f(x)-\frac{c}{T}x, \forall x\in\mathbb{R}$. Atunci $g(x+T)-g(x)=f(x+T)-f(x)-c=0, \forall x\in\mathbb{R}$.

Propoziția 3. Dacă $f : \mathbb{R} \to \mathbb{R}$ este periodică și continuă, atunci f este mărginită și își atinge marginile.

Demonstrație. Avem $f(x+T)=f(x), \ \forall x\in\mathbb{R}$, unde T>0 este o perioadă a lui f. Din teorema lui Weierstrass rezultă că $f(\mathbb{R})=f([0,T])==[a,b],\ a,b\in\mathbb{R},\ a< b$.

1

Propoziția 4. $Dacă f : \mathbb{R} \to \mathbb{R}$ este periodică și continuă, atunci f este uniform continuă pe \mathbb{R} .

Demonstrație. Fie T>0 o perioadă a funcției f. Deoarece f este continuă pe compactul [0,2T], rezultă că f este uniform continuă pe acest interval. Deci, $\forall \varepsilon>0, \exists \, \delta_{\varepsilon}>0 \; (\delta_{\varepsilon}< T), \, \text{astfel încât pentru orice } a,b\in [0,2T]$ cu $|a-b|<\delta_{\varepsilon}, \, \text{avem } |f(a)-f(b)|<\varepsilon.$

Fie acum $x, y \in \mathbb{R}$, cu x < y și $y - x < \delta_{\varepsilon}$.

Alegem $a=x-nT,\,b=y-nT,\,$ unde $n=\left[\frac{x}{T}\right]$. Obţinem $0\leq a< T$ și $b-a=y-x<\delta_{\varepsilon}< T.$ Deci b< a+T<2T.

Rezultă că $a, b \in [0, 2T]$ și $|a - b| < \delta_{\varepsilon}$. Obținem atunci:

$$|f(a) - f(b)| < \varepsilon \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Deci, f este uniform continuă pe \mathbb{R} .

Propoziția 5 (Teorema de densitate Kronecker). $Dacă T \in \mathbb{R} \setminus \mathbb{Q}$, atunci mulțimea $A = \{m + nT \mid m, n \in \mathbb{Z}\}$ este densă în \mathbb{R} .

Demonstrație. Pentru început se arată că, pentru orice $\varepsilon>0,$ există $a\in A$ astfel încât $0< a<\varepsilon.$

Fie $\varepsilon > 0$. Există $n \in \mathbb{N}^*$ cu proprietatea $\frac{1}{n} < \varepsilon$. Considerăm numerele $\{T\}, \{2T\}, \dots, \{(n+1)T\}$, unde $\{\}$ desemnează partea fracționară. Acestea sunt n+1 numere distincte în (0,1). Rezultă că există $i \neq j$ astfel încât:

$$0 < \{iT\} - \{jT\} < \frac{1}{n}.$$

Obţinem $(i-j)T+[jT]-[iT]<\varepsilon.$ Notând k=i-j, m=[jT]-[iT], vom avea:

$$0 < m + kT < \varepsilon$$
.

Fie atunci $a = m + nT \in A$. Am găsit astfel $a \in A$, cu $0 < a < \varepsilon$.

Considerăm acum $y>x,\ x,y\in\mathbb{R}$ și $\varepsilon=y-x>0$. Rezultă că există $a\in A,$ cu $0< a<\varepsilon.$ Fie $n=\left[\frac{x}{a}\right]+1$. Obținem na>x. Dar $n\leq\frac{x}{a}+1$ implică $na\leq x+a< x+\varepsilon=y,$ deci na< y. Rezultă în final că $na\in(x,y);$ cum $na\in A,$ teorema este demonstrată.

Aplicații

A1. Dacă funcția $f : \mathbb{R} \to \mathbb{R}$ este periodică, continuă și neconstantă, rezultă că funcția $g : \mathbb{R} \to \mathbb{R}$, $g(x) = f(x^2)$ nu este periodică.

Soluție. Fie T > 0 o perioadă a funcției f.

Presupunem prin absurd că g este periodică. Cum g este continuă, rezultă g este uniform continuă.

Fie $a, b \in [0, T]$. Avem:

$$\lim_{n \to \infty} \left(\sqrt{a + nT} - \sqrt{b + nT} \right) = 0 \xrightarrow{g \text{ unif.cont.}}$$

$$g \xrightarrow{\text{unif.cont.}} \lim_{n \to \infty} \left(g \left(\sqrt{a + nT} \right) - g \left(\sqrt{b + nT} \right) \right) = 0.$$

Obţinem:

$$0 = \lim_{n \to \infty} (f(a + nT) - f(b + nT)) = f(a) - f(b),$$

deci f(a) = f(b), adică f este constantă, fals.

A2. Fie functia $f: \mathbb{R} \to \mathbb{R}$ periodică, continuă și neconstantă. Atunci, funcția $g: \mathbb{R} \to \mathbb{R}, \ g(x) = f(x) + f(x^2)$ nu este periodică.

Soluție. Presupunem prin absurd că g este periodică. Deoarece g este continuă rezultă că q este uniform continuă. Fie T>0 o perioadă pentru f. Cum f este periodică și continuă, rezultă că funcția f este uniform continuă.

Fie
$$a, b \in \mathbb{R}$$
. Rezultă $\lim_{n \to \infty} \left(\sqrt{a + nT} - \sqrt{b + nT} \right) = 0$ deci: $\lim_{n \to \infty} \left(f\left(\sqrt{a + nT} \right) - f\left(\sqrt{b + nT} \right) \right) = 0$ şi

$$\lim_{n \to \infty} \left(g\left(\sqrt{a + nT}\right) - g\left(\sqrt{b + nT}\right) \right) = 0.$$

Folosind faptul că $g(x) = f(x) + f(x^2)$, obținem:

$$\lim_{n\to\infty} \left(f\left(a+nT\right) - f\left(b+nT\right) \right) = 0,$$

adică f(a) = f(b), deci f este constantă, contradicție.

A3. Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este periodică, continuă și există $T_1, T_2 >$

>0 cu $T_1 \in \mathbb{Q}$, $T_2 \notin \mathbb{Q}$ perioade pentru funcția f, atunci f este constantă. Soluție. Cum $T_1 \in \mathbb{Q}$, avem $T_1 = \frac{p}{q}$, cu $p, q \in \mathbb{N}^*$, deci $qT_1 = p$ și astfel p este perioadă pentru f. Cum $p \in \mathbb{N}^*$, rezultă că pT_2 este perioadă pentru f și atunci $mp + npT_2$ este perioadă pentru f.

Obtinem $f(mp + npT_2) = f(0), \forall m, n \in \mathbb{Z}, \text{ deci } f(px) = \text{constant},$ $\forall x \in A = \{m + nT_2 \mid m, n \in \mathbb{Z}\}$, iar aceasta este densă în \mathbb{R} . Deoarece f este continuă, rezultă $f(px) = \text{constant}, \forall x \in \mathbb{R}, p \neq 0, \text{deci } f = \text{constant}$ ă.

A4. Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este mărginită și există T > 0 astfel încât $f(x+T)-f(x)=c, \forall x\in\mathbb{R}, atunci\ f\ este\ periodică,\ de\ perioadă\ T\ (c=0).$

Soluție. Conform Propoziției 2 avem $f(x) = g(x) + ax, \forall x \in \mathbb{R}$, unde g este periodică de periodică T. Obținem f(nT) = g(nT) + anT = g(0) + naT. Cum f este mărginită, avem că șirul $\{g(0) + naT\}_{n \geq 1}$ este mărginit, deci aT = 0, adică a = 0, prin urmare f = g. Rezultă că f este periodică de perioadă T.

A5. Dacă $f, g : \mathbb{R} \to \mathbb{R}$ sunt funcții periodice cu perioadele $T_1 > 0$, respectiv $T_2 > 0$ și $\frac{T_1}{T_2} \in \mathbb{Q}$, atunci f + g este periodică.

Soluție. $\frac{T_1}{T_2} = \frac{\bar{m}}{n}, m, n \in \mathbb{N}^* \Rightarrow mT_2 = nT_1 = T$. Obținem că T este o perioadă comună a funcțiilor f și q.

Rezultă $(f+g)(x+T) = f(x+T) + g(x+T) = f(x) + g(x), \forall x \in \mathbb{R},$ deci f + g este periodică.

A6. Dacă $f,g: \mathbb{R} \to \mathbb{R}$ sunt funcții periodice, continue, neconstante şi f+g este periodică, atunci $\frac{T_1}{T_2} \in \mathbb{Q}$ pentru orice T_1 perioadă a lui f și T_2 perioadă a lui g.

Soluție. Presupunem prin absurd că $\frac{T_1}{T_2} \notin \mathbb{Q}$, deci $T_2 = a \cdot T_1$, unde $a \in \mathbb{R} \setminus \mathbb{Q}$.

Deoarece f+g este periodică avem că funcția $h: \mathbb{R} \to \mathbb{R}, h(x) = f(T_1x) + g(T_1x)$ este periodică.

Fie $u, v \in \mathbb{R} \to \mathbb{R}$, $u(x) = f(T_1x)$, $v(x) = g(T_1x)$. Rezultă că u, v sunt continue, periodice, neconstante, u are perioada 1, v are perioada a. Cum u+v este periodică, rezultă că există T>0 astfel încât u(x+T)+v(x+T)=u(x)+v(x), $\forall x \in \mathbb{R}$. Deci $u(x+T)-u(x)=v(x)-v(x+T)\stackrel{\text{not}}{=} H(x)$, $\forall x \in \mathbb{R}$.

Cum u are perioada 1, rezultă că funcția u(x+T)-u(x) are perioada 1, deci H are perioada 1.

Cum v are perioada a, rezultă că funcția v(x)-v(x+T) are perioada a, deci H are perioada a. Dar H este continuă, $1 \in \mathbb{Q}$, $a \notin \mathbb{Q}$ și din $\mathbf{A3}$ obținem că H este constantă. Rezultă u(x+T)-u(x)= constant. Cum u este continuă și periodică, rezultă că u este mărginită. Din $\mathbf{A4}$ deducem că $u(x+T)-u(x)=0, \forall x\in \mathbb{R}$.

Obţinem astfel că u şi v au perioada T. Dacă $T \in \mathbb{Q}$, rezultă că v are perioadele a şi T, deci, conform $\mathbf{A3}$, v = constantă, fals. Dacă $T \notin \mathbb{Q}$, rezultă că u are perioadele 1 şi T, deci, conform $\mathbf{A3}$, u = constantă.

Observație. Dacă f sau g nu este continuă atunci afirmația $\mathbf{A6}$ nu este adevărată.

Contraexemplu. Fie $A = \{m + n\pi \mid m, n \in \mathbb{Z}\}.$

Funcția $f(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$ este constantă și $A \setminus \{0\}$ este mulțimea perioadelor sale.

Funcţia $g(x)=\sin x, \ \forall x\in\mathbb{R}$ este periodică şi neconstantă. Atunci avem că $(f+g)(x)=\left\{ \begin{array}{ll} 1+\sin x, & x\in A\\ \sin x, & x\notin A \end{array} \right.$ este periodică, $T=2\pi.$ Dacă luăm $T_1=1$ o perioadă pentru f şi $T_2=2\pi$ o perioadă pentru g, nu rezultă că $\frac{T_1}{T_2}\in\mathbb{Q}.$

BIBLIOGRAFIE

[1] Gh. Sireţchi, Calcul diferențial și integral, Editura Ştiinţifică și Enciclopedică, Bucureşti, 1965.

Profesor, Colegiul Național "Mircea cel Bătrân" Constanța

CONJECTURA LUI ANDRICA ÎN CONEXIUNE CU ALTE CONJECTURI DESPRE NUMERE PRIME

DE MARCEL ŢENA

În memoria Profesorului Laurențiu Panaitopol

Abstract. These notes show how the confirmation of Andrica's conjecture about consecutive primes, verified for all positive prime less than 2^{53} , leads to proofs of *Legendre*'s conjecture and *Ruiz*'s conjecture.

Keywords: prime, Andrica's, Legendre's, Sierpinski's, Schinzel's, Ruiz's, Golomb's conjectures, Bertrand's postulate.

MSC: 11A41

În lucrarea [1], din 1986, matematicianul român *Dorin Andrica* de la Universitatea "Babeș- Bolyai" din Cluj-Napoca, a emis următoarea ipoteză:

Conjectura lui Andrica: $Dacă p_n$ este al n-lea număr prim pozitiv, atunci:

$$\sqrt{p_{n+1}} - \sqrt{p_n} < 1$$

pentru orice $n \in \mathbb{N}^*$.

Valabilitatea afirmației a fost dovedită cu ajutorul calculatorului pentru toate numerele prime mai mici ca 2^{53} (*I. Ghory*, în 2000).

În 1798 matematicianul francez A. M. Legendre a formulat:

Conjectura lui Legendre: Între oricare două pătrate perfecte consecutive există cel puțin un număr prim.

In 1845 matematicianul francez J. Bertrand a formulat:

Postulatul lui Bertrand: Pentru oricare număr natural $n \geq 2$, în intervalul (n, 2n) există cel puțin un număr prim.

Cinci ani mai târziu, în 1850, matematicianul rus *P. L. Cebâşev* a dat o demonstrație acestei afirmații, transformând-o într-o teoremă. Există mai multe demonstrații pentru postulatul lui *Bertrand*, una recentă, aparţinând autorului acestor rânduri, putând fi consultată în [7].

În 1958 matematicianul polonez W. Sierpinski a formulat:

Conjectura lui Sierpinski: Pentru oricare numere naturale n și k astfel încât $2 \le k \le n$, în intervalul ((k-1)n,kn) există cel puţin un număr prim.

În fine, în 1961 matematicianul polonez A. Schinzel a formulat:

Conjectura lui Schinzel: Pentru orice $x \ge 117$, în intervalul $(x, x + \sqrt{x})$ există cel puțin un număr prim.

Se pare că însuşi Legendre formulase această conjectură, dar sub forma mai slabă "pentru x suficient de mare".

In lucrarea de față studiem unele conexiuni logice ce pot fi făcute cu aceste conjecturi, dar și cu altele ce vor fi prezentate ceva mai încolo.

Propoziția 1. Conjectura lui Schinzel \Rightarrow Conjectura lui Sierpinski.