2 α				4 i 3 k r 3 + 6 k ³ r 3	$\frac{r_3-4t_3)}{2)^2 r_3 t_3}$		$\frac{3-4t_3)}{3-3}$
$ au_1^{\#2}$	0	0	0	- 4 3 k r 3 +	$\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{2(2(r_1)r_2)^2}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_{3-4}t_3}{3(k+2k^3)^2r_3t_3}$	0	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{2\sqrt{2}(2+r_3-2)}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	41
${\mathfrak r}_1^{\#1}{}_+\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_1^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
·	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1+}^{#2} +^{\alpha\beta}$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{\#2} + \alpha$

-							
$f_{1^-}^{\#2} _{lpha}$	0	0	0	$-\frac{2}{3}$ \vec{l} kt_3	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	3 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	$\frac{t_2}{2}$	$\begin{bmatrix} -\frac{1}{3} ikt_2 \end{bmatrix}$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0

 $\omega_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $f_{1}^{#1} + \alpha \beta$

 $\omega_{1}^{#,1} + \alpha$ $\omega_{1}^{#,2} + \alpha$ $f_{1}^{#,1} + \alpha$ $f_{1}^{#,2} + \alpha$

	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints		
SO(3) irreps		
$\tau_{0^{+}}^{\#2} == 0$	1	
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1	
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3	
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3	
$\sigma_{1+}^{\#1}{}^{\alpha\beta} = \sigma_{1+}^{\#2}{}^{\alpha\beta}$	3	
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5	
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5	
Total #:	24	

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
$f_{0}^{#2}$	0	0	0	0	
$f_{0}^{\#1}$	$-i\sqrt{2}kt_3$	$2 k^2 t_3$	0	0	
$\omega_{0}^{\#1}$	<i>t</i> ₃	$i\sqrt{2}kt_3$	0	0	
	$\omega_{0}^{\#1}$ †	$f_0^{\#1}$ †	$f_{0}^{#2}$ †	$\omega_{0^-}^{\#1} \dotplus$	

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$^{#1}_{2}$ † $^{\alpha\beta\chi}$	0	0	0

?	$J^P = 0^-$
?	$\frac{1}{k^{\mu}}$
	?

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)

)
?	k^{μ}
	į.