Методы машинного обучения. Обучение без учителя: поиск ассоциативных правил

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-21-22 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 1 марта 2022

Методы обучения без учителя (unsupervised learning)

Выявление структуры данных на основе сходства:

- кластеризация (clustering)
- оценивание плотности распределения (density estimation)
- одноклассовая классификация (anomaly detection)

Преобразование признакового пространства:

- Метод главных компонент (principal components analysis)
- Матричные разложения (matrix factorization)
- Автокодировщики (autoencoders)
- Многомерное шкалирование (multidimensional scaling)

Поиск взаимосвязей в данных путём синтеза учителя:

- Поиск ассоциативных правил (association rule learning)
- Самостоятельное обучение (self-supervised learning)
- Состязательные сети (generative adversarial net)

Содержание

- 🕕 Задачи поиска ассоциативных правил
 - Определения и обозначения
 - Прикладные задачи
 - Связь с логическими закономерностями
- Алгоритм APriory
 - Этап 1: поиск частых наборов
 - Этап 2: выделение ассоциативных правил
 - Развитие алгоритмов индукции ассоциативных правил
- 3 Алгоритм FP-Growth
 - Этап 1: построение префиксного FP-дерева
 - Этап 2: поиск частых наборов по FP-дереву
 - Эффективность алгоритма FPGrowth

Определения и обозначения

X — пространство объектов $X^{\ell} = \{x_1, \dots, x_{\ell}\} \subset X$ — обучающая выборка $\mathscr{F} = \{f_1, \dots, f_n\}, \ f_j \colon X \to \{0,1\}$ — бинарные признаки (items)

Каждому подмножеству $\varphi\subseteq\mathscr{F}$ соответствует конъюнкция

$$\varphi(x) = \bigwedge_{f \in \varphi} f(x), \quad x \in X$$

Если arphi(x)=1, то «признаки из arphi совместно встречаются у x»

Частота встречаемости (поддержка, support) φ в выборке X^ℓ

$$\nu(\varphi) = \frac{1}{\ell} \sum_{i=1}^{\ell} \varphi(x_i)$$

Если $\nu(\varphi)\geqslant \delta$, то «набор φ частый» (frequent itemset) Параметр δ — минимальная поддержка, MinSupp

Определения и обозначения

Определение

Ассоциативное правило (association rule) $\varphi \to y - \exists \tau$ о пара непересекающихся наборов $\varphi, y \subseteq \mathscr{F}$ таких, что: 1) наборы φ и у совместно часто встречаются,

$$\nu(\varphi \cup y) \geqslant \delta;$$

2) если встречается φ , то часто встречается также и y,

$$\nu(y|\varphi) \equiv \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \geqslant \varkappa.$$

 $\nu(y|\varphi)$ — значимость (confidence) правила.

Параметр δ — минимальная поддержка, MinSupp.

Параметр \varkappa — минимальная значимость, MinConf.

Классический пример

Анализ рыночных корзин (market basket analysis) [1993]

признаки — товары (предметы, items) объекты — чеки (транзакции)

 $f_j(x_i)=1$ — в i-м чеке зафиксирована покупка j-го товара.

Пример: «если куплен хлеб φ , то будет куплено и молоко y с вероятностью $\nu(y|\varphi)=60\%$; причём оба товара покупаются совместно с вероятностью $\nu(\varphi\cup y)=2\%$ ».

Возможные применения:

- оптимизировать размещение товаров на полках,
- формировать персональные рекомендации,
- планировать рекламные кампании (промо-акции),
- более эффективно управлять ценами и ассортиментом.

Ассоциативные правила — это логические закономерности

Определение

Предикат $\varphi(x)$ — логическая закономерность класса $c \in Y$

$$\mathsf{Supp}(\varphi) = \frac{p(\varphi)}{\ell} \geqslant \delta; \qquad \mathsf{Conf}(\varphi) = \frac{p(\varphi)}{p(\varphi) + n(\varphi)} \geqslant \varkappa$$

$$p(arphi) = \# ig\{ x_i \in X^\ell \colon arphi(x_i) = 1 \ \text{и} \ y(x_i) = c ig\} \quad +$$
 примеры класса с $n(arphi) = \# ig\{ x_i \in X^\ell \colon arphi(x_i) = 1 \ \text{и} \ y(x_i) \neq c ig\} \quad -$ примеры класса с

Для «arphi o y» возьмём целевой признак $y(x) = \bigwedge_{f \in y} f(x)$. Тогда

$$\nu(\varphi \cup y) \equiv \mathsf{Supp}_1(\varphi) \geqslant \delta; \quad \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \equiv \mathsf{Conf}_1(\varphi) \geqslant \varkappa$$

Вывод: различия двух определений — чисто терминологические

Два этапа построения правил. Свойство антимонотонности

Поскольку $\varphi(x) = \bigwedge_{f \in \varphi} f(x)$ — конъюнкция, имеет место

свойство антимонотонности:

для любых $\psi, \varphi \subset \mathscr{F}$ из $\varphi \subset \psi$ следует $\nu(\varphi) \geqslant \nu(\psi)$.

Следствия:

- lacktriangle если ψ частый, то все его подмножества $\varphi \subset \psi$ частые.
- $oldsymbol{arphi}$ если arphi не частый, то все наборы $\psi\supsetarphi$ также не частые.
- **3** $\nu(\varphi \cup \psi) \leqslant \nu(\varphi)$ для любых φ, ψ .

Два этапа поиска ассоциативных правил:

- поиск частых наборов (многократный просмотр транзакционной базы данных).
- выделение ассоциативных правил (простая эффективная процедура в оперативной памяти).

Алгоритм APriory (основная идея — поиск в ширину)

```
вход: X^{\ell} — обучающая выборка; \delta = \text{MinSupp}; \varkappa = \text{MinConf};
выход: R = \{(\varphi, y)\} — список ассоциативных правил;
множество всех частых исходных признаков:
 G_1 := \{ f \in \mathscr{F} \mid \nu(f) \geqslant \delta \};
для всех j = 2, ..., n
     множество всех частых наборов мощности j:
      G_i := \{ \varphi \cup \{f\} \mid \varphi \in G_{i-1}, \ f \in G_1 \setminus \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \};
    если G_i = \emptyset то
      выход из цикла по j;
R := \varnothing:
для всех \psi \in G_i, j = 2, \ldots, n
 AssocRules (R, \psi, \varnothing);
```

Выделение ассоциативных правил

Этап 2. Простой рекурсивный алгоритм, выполняемый быстро, как правило, полностью в оперативной памяти.

```
функция AssocRules (R, \varphi, y)
    вход: (\varphi, y) — ассоциативное правило;
    выход: R — список ассоциативных правил;
    для всех f \in \varphi: \mathrm{id}_f > \max_{g} (\mathsf{чтобы} \ \mathsf{uзбежать} \ \mathsf{повторов} \ y)
         \varphi' := \varphi \setminus \{f\}; \quad y' := y \cup \{f\};
         если \nu(y'|\varphi') \geqslant \varkappa то
             добавить ассоциативное правило (\varphi', y') в список R;
          если |\varphi'| > 1 то
           AssocRules (R, \varphi', y');
```

 id_f — порядковый номер признака f в $\mathscr{F} = \{f_1, \dots, f_n\}$

Модификации алгоритмов индукции ассоциативных правил

- Более эффективные структуры данных для быстрого поиска частых наборов.
- Поиск правил по случайной подвыборке объектов при пониженных δ,\varkappa , проверка правил на полной выборке.
- Иерархические алгоритмы, учитывающие иерархию признаков (например, товарное дерево).
- Учёт времени: инкрементные и декрементные алгоритмы.
- Учёт времени: поиск последовательных шаблонов (sequential pattern).
- Учёт информации о клиентах.

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	υс	ца	ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	-	dbc
-	b	С	_	_	-	_	bс
a	b	_	d	_	-	_	dba
-	b	_	d	е	-	-	dbe
-	b	С	_	е	_	g	Ъсе
-	_	С	d	_	f	-	dс
a	b	_	d	_	-	-	dba

 $(корень <math>v_0$ не показан)

при $\delta=\frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

м	атլ	υс	ца,	слова			
a	-	-	d	-	f	_	d a
а	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	b c
a.	b	_	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
_	-	С	d	-	f	_	d c
а	b	-	d	-	-	-	d b a

d: 8 b: 7 c: 5 a: 4

(корень v_0 не показан)

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	υс	ца	слова			
a	-	-	d	-	f	_	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	_	-	-	d b c
-	b	С	-	-	-	_	bс
a.	b	_	d	_	-	-	d b a
-	b	_	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	_	С	d	_	f	-	d c
a.	b	_	d	_	_	_	d b a

(корень v_0 не показан) d:8 b: 7 c: 5

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

м	атլ	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	-	_	dcae
-	b	_	d	_	-	_	d b
-	b	С	d	_	-	-	d b c
-	b	С	-	_	-	-	Ъс
a.	b	_	d	_	-	-	d b a
-	b	_	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	_	С	d	_	f	_	d c
a.	b	_	d	_	-	-	d b a

(корень v₀ не показан)

d: 8

b: 7

c: 5

a: 4

e: 3

e: 1

при $\delta=rac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца,	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	_	_	_	-	Ъс
a.	b	_	d	_	_	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	_	е	_	g	b c e
-	_	С	d	_	f	-	d c
		_					d b a

при $\delta=rac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	_	_	dcae
-	b	_	d	_	_	_	d b
-	b	С	d	_	_	_	d b c
-	b	С	-	-	-	-	bс
а	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
_	b	С	-	е	-	g	b c e
	_	С	d	-	f	_	d c

(корень v_0 не показан)

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца,	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	-	dbc
-	b	С	_	_	_	-	Ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	_	g	b c e
_	_	С	d	_	f	_	d c

(корень *v*₀ не показан)

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	_	dbc
-	b	С	_	_	_	_	Ъс
a	b	_	d	_	_	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	-	С	d	-	f	-	d c
	4		d				d b a

d: 8 b: 7 b: 4 b: 1 c: 5 c: 1 c: 1 a: 1 c: 1

(корень v_0 не показан)

при $\delta=\frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

м	атլ	эи	ца,	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	-	dbc
-	b	С	_	_	_	-	Ъс
a	b	_	d	_	_	-	dba
-	b	_	d	е	_	-	dbe
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	f	-	d c
a	b	_	d	_	-	_	d b a

 $(корень <math>v_0$ не показан)

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	υс	ца	, ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	-	-	dcae
-	b	_	d	_	-	-	d b
-	b	С	d	_	-	-	d b c
-	b	С	_	-	-	-	bс
a	b	_	d	-	-	-	dba
-	b	_	d	е	-	-	d b e
-	b	С	_	е	_	g	Ъсе
-	_	С	d	-	f	-	d c
a	b	-	d	-	-	_	d b a

(корень *v*₀ не показан)

при $\delta=\frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

ма	Τļ	иі	ца,	ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	-	С	d	е	-	-	dcae
- '	b	_	d	_	_	-	d b
- '	b	С	d	_	_	-	dbc
- '	b	С	_	_	_	-	bс
a	b	_	d	_	_	-	dba
- '	b	_	d	е	_	-	dbe
- '	b	С	-	е	_	g	bсе
-	-	С	d	_	f	-	dс
a	b	_	d	_	_	_	d b a

d: 8 b: 7 c: 5

(корень v_0 не показан)

при $\delta=\frac{3}{\ell}$ признаки f, g не частые

В каждой вершине v дерева T задаётся тройка $\langle f_v, c_v, S_v \rangle$:

- ullet признак $f_{v} \in \mathscr{F}$;
- ullet множество дочерних вершин $S_{
 u}\subset T$;
- ullet счётчик поддержки $c_v = \ell
 u(arphi_v)$ набора $arphi_v = \{f_u \colon u \in [v_0, v]\}$, где $[v_0, v]$ путь от корня дерева v_0 до вершины v.

Обозначения:

$$V(T,f)=\left\{v\in T\colon f_v=f
ight\}$$
 — все вершины признака (уровня) f . $C(T,f)=\sum\limits_{v\in V(T,f)}c_v$ — сумма счётчиков поддержки признака f .

Свойства FP-дерева T, построенного по всей выборке X^{ℓ} :

- \bigcirc $\frac{1}{\ell}C(T,f)=\nu(f)$ поддержка признака f.
- $oldsymbol{0}$ T содержит информацию о $u(\varphi)$ всех частых наборов φ .

FP-дерево содержит информацию о всех частых наборах

Как по FP-дереву найти $\nu(\varphi)$ для произвольного набора φ :

- lacktriangledown выделить пути $[v_0,v]$, содержащие все признаки из arphi
- \bigcirc суммировать c_{v} нижних вершин всех таких путей

Пример: $\varphi=\{\text{``c''},\text{``e''}\}$, две записи, два пути, $\nu(\varphi)=\frac{2}{\ell}$:

матрица,	$\ell=10$	слова
a d	- f -	d a
a - c d	e	dcae
- b - d		d b
-bcd		d b c
- b c -		Ъс
ab-d		dba
- b - d	e	d b e
- b c -	e – g	Ъсе
c d		dс
ab-d		dba

Алгоритм FP-growth

```
вход: X^{\ell} — обучающая выборка;
выход: FP-дерево T; \langle f_v, c_v, S_v \rangle для всех вершин v \in T;
упорядочить признаки f \in \mathscr{F}: \nu(f) \geqslant \delta по убыванию \nu(f);
ЭТАП 1: построение FP-дерева T по выборке X^{\ell}
для всех i:=1,\ldots,\ell
    v := v_0:
    для всех f \in \mathscr{F} таких, что f(x_i) = 1, по убыванию \nu(f)
         если нет дочерней вершины u \in S_v: f_u = f то
            создать новую вершину u; S_v := S_v \cup \{u\};
          f_u := f; \quad c_u := 0; \quad S_u := \varnothing;
       c_u := c_u + 1; \quad v := u;
ЭТАП 2: рекурсивный поиск частых наборов по FP-дереву Т
\mathsf{FP}-find(T, \emptyset, \emptyset);
```

Этап 2: рекурсивный поиск частых наборов по FP-дереву

FP-find (T, φ, R) находит по FP-дереву T все частые наборы, содержащие *частый набор* φ , и добавляет их в список R.

Две идеи эффективной реализации FP-find:

- 1. Вместо T достаточно передать условное FP-дерево $T|\varphi$, это FP -дерево, порождаемое подвыборкой $\{x_i \in X^\ell \colon \varphi(x_i) = 1\}$
- 2. Будем добавлять в φ только те признаки, которые находятся выше в FP-дереве. Так мы переберём все подмножества $\varphi\subseteq\mathscr{F}.$

Пример:
$$\varphi = \{\text{"c"}, \text{"e"}\}$$
 признаки для добавления в $\varphi \in \{\frac{d:8}{b:7}, \frac{d:8}{b:7}, \frac{d:8}{b:7}, \frac{d:8}{a:4}, \frac{d:8}{a:1}, \frac{b:2}{a:1}, \frac{d:8}{a:1}, \frac{d:8$

Этап 2: рекурсивный поиск частых наборов по FP-дереву

```
функция FP-find (T, \varphi, R)

вход: FP-дерево T, частый набор \varphi, список наборов R;

выход: добавить в R все частые наборы, содержащие \varphi;

для всех f \in \mathscr{F} \colon V(T, f) \neq \varnothing по уровням снизу вверх

если C(T, f) \geqslant \ell \delta то

добавить частый набор \varphi \cup \{f\} в список R;

T' := T | f — условное FP-дерево;

найти по T' все частые наборы, включающие \varphi и f:

FP-find (T', \varphi \cup \{f\}, R);
```

Условное FP-дерево T' = T|f можно построить быстро, используя только FP-дерево T и не заглядывая в выборку.

Условное FP-дерево

Пусть FP-дерево T построено по подвыборке $U\subseteq X^\ell$.

Опр. Условное FP-дерево (conditional FP-tree) T' = T|f — это FP-дерево, порождаемое подвыборкой $\left\{x_i \in U \colon f(x_i) = 1\right\}$, из которого удалены все вершины признака f и ниже.

Пример: CFP-дерево T | "e"

Быстрое построение условного FP-дерева T'=T|f|

```
вход: FP-дерево T, признак f \in \mathscr{F}; выход: условное FP-дерево T' = T|f;

1 оставить в дереве только вершины на путях из вершин v признака f снизу вверх до корня v_0: T' := \bigcup_{v \in V(T,f)} [v,v_0];

2 поднять значения счётчиков c_v
```

- от вершин $v \in V(T',f)$ снизу вверх по правилу $c_u := \sum\limits_{w \in S_u} c_w$ для всех $u \in T'$;
- 3 удалить из T^\prime все вершины признака f;

В дереве T' = T|f остаются только признаки выше f, т.к. в момент вызова FP-find все наборы, содержащие признаки ниже f, уже просмотрены.

Эффективность алгоритма FPGrowth

Зависимость \log_{10} времени работы алгоритма от MinSupp в сравнении с другими алгоритмами (на данных census).

Нижние кривые — две разные реализации FP-growth.

Christian Borgelt. An Implementation of the FP growth Algorithm. 2005.

Резюме в конце лекции

- Поиск ассоциативных правил обучение без учителя.
- Ассоциативное правило (по определению) почти то же самое, что логическая закономерность.
- Простые алгоритмы типа APriory вычислительно неэффективны на больших данных.
- FP-growth один из самых эффективных алгоритмов поиска ассоциативных правил.
- Для практических приложений используются его инкрементные и/или иерархические обобщения.