Ферма + Соq: ВТФ из Глобальной Нормализации по основанию 2 $(\Gamma H(2))$

Мы представляем прочтение рукописи Г.Л. Деденко в рамках глобальной нормализации (с явным основанием). Единственной гипотезой является постулат $\Gamma H(2)$: для любого предполагаемого контрпримера в натуральных числах к уравнению Ферма

$$x^n + y^n = z^n \qquad (n > 2),$$

должно выполняться равенство покрытия

$$2^n = 2 \cdot n$$
.

Вместе с элементарным фактом о росте $2^n > 2 \cdot n$ для всех $n \ge 3$, это немедленно приводит к противоречию, и, следовательно, доказывает Великую теорему Ферма (ВТФ).

Что формализовано в Сод.

• ГН(2) кодируется непосредственно над натуральными числами:

$$\forall n > 2, x, y, z \in \mathbb{N}, \quad x^n + y^n = z^n \Rightarrow 2^n = 2 \cdot n.$$

- Используя элементарные леммы о росте, Соq доказывает, что из $2^n = 2 \cdot n$ следует $n \in \{1,2\}$ (pow_eq_linear_positive); таким образом, решений для n > 2 не существует (FLT_from_GN2).
- Удобная «обертка» для вещественных чисел использует предикат pow 2 n = 2 * INR n и леммы-связки (covers_two_nat, INR_two_mul_nat) для восстановления $2^n = 2 \cdot n$ над \mathbb{N} (GN2_R_implies_GN2). Это приводит к fermat_last_theorem_from_GN2_R.
- Ограничения по четности, вытекающие из стандартной параметризации $(z := m^n + p^n, x := m^n p^n)$, доказываются отдельно для полноты $(\text{sum_diff_from_parameters_R/Z}, \text{parity_condition_Z})$ и ne требуются на заключительном этапе.

Мотивация и доказательство. Обсуждение $f(n) = (2n)^{1/n}$ мотивирует форму нормализации (с явным основанием 2), но *не* используется в основном доказательстве условного утверждения $\Gamma H(2) \Rightarrow BT\Phi$.

Репозиторий (код и PDF): github.com/Gendalf71/FLT-Coq

Рис. 1: Формальный конвейер: $\Gamma H(2) \Rightarrow BT\Phi$ (Coq).

Пакет включает:

- FLT.v: Разработка на Coq (без Admitted); доказательства компилируются.
- Блок-схема рассуждений (рисунок выше).
- Пояснительные PDF (EN/RU), обновленные до прочтения в рамках Γ H(2).

Дополнительные материалы:

- Реконструкция доказательства Ферма (ResearchGate) RU
- Формализация и обсуждение EN