

Introduction To Programming

<u>Decimal Number System (DNS):</u>

In Decimal Number System there are **10** unique digits i.e. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Therefore, DNS is **Base**₁₀.

Binary Number System (BNS):

In Binary Number System there are **2** unique digits i.e. {0, 1}. Therefore, BNS is **Base**₂. In Binary Number System,

$$0 + 0 = 1$$
; $0 + 1 = 1$; $1 + 0 = 1$; $1 + 1 = 10$;

Octal Number System (ONS):

In Octal Number System there are **8** unique digits i.e. {0, 1, 2, 3, 4, 5, 6, 7}. Therefore, ONS is **Base**₈. In Octal Number System,

$$3 + 4 = 7$$
; $4 + 5 = 11$; $5 + 6 = 13$; $23 = 27$;

HexaDecimal Number System (HNS):

In HexaDecimal Number System there are **16** unique digits i.e. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}. Therefore, HNS is **Base**₁₆. In HexaDecimal Number System,

$$3 + 4 = 7$$
; $10 = A$; $15 = F$; $15 + 10 = 19$; $15 + 12 = 1B$;

<u>Decimal Numbers</u>	Binary Numbers	Octal Numbers	<u>HexaDecimal</u> <u>Numbers</u>
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12

To change number in any number system just check the **base** of that number system i.e., for decimal system the base is **10**, for binary system the base is **2**, for octal system the base is **8** and for hexadecimal system the base is **16**.

Decimal System to any Number System Conversion:

Formula:

Base	Quotient	Remainder

We'll divide the **Base** with the **Quotient** till the **Quotient** column becomes **0**, and write the number system form of the decimal number in the reverse order of the **Remainder** column.

• Suppose we need to find 27 in its Binary form.

2	27	Remainder (in reverse order)
2	13	1 ♠
2	6	1
2	3	0
2	1	1
2	0	1

Therefore, 27 in binary form is 11011.

• Suppose we need to find 43 in its Binary form.

2	43	Remainder (in reverse order)
2	21	1 ,
2	10	1 T
2	5	0
2	2	1
2	1	0
2	O	1 4

Therefore, **43** in binary form is **101011**.

Any Number System to Decimal System Conversion:

Let's consider a number 278, we can write this number as:

$$2 \times 10^{2} + 7 \times 10^{1} + 8 \times 10^{0} = 278$$

In the above example we can see that the base is 10. Similarly, a binary number, octal number and hexadecimal number can be converted to its equivalent decimal from with base as 2, 8 and 16 respectively.

• Suppose we need to find 101 in its **Decimal** form.

We can convert 101 as:

$$1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5$$

Therefore, 101 in decimal form is $\underline{5}$.

• Suppose we need to find 110101 in its **Decimal** form.

We can convert 110101 as:

$$1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 16 + 0 + 4 + 0 + 1 = 53$$

Therefore, 110101 in decimal form is 53.

• Suppose we need to find AC2 in its Decimal form.

We can convert AC2 as:

$$\frac{10}{10} \times 16^2 + \frac{12}{10} \times 16^1 + \frac{2}{10} \times 16^0 = 2560 + 192 + 2 = \frac{2754}{10}$$

Moore's Law:

It states that, in every 2 years the capacity of transistor will be increased by double.

History of Languages:

A computer only understands **binary form**. The language which computer understands is called **Machine Language**. A Machine Language is that language which consists of either '0' or '1'.

Eg: 010101000101;

To write Machine Language manually was a tough task and sometimes mistakes might happen. Therefore, to resolve this issue, an **assembler** was introduced which converts the **assembly language** submitted by user to computer into machine language (understandable to computer) i.e., **assembler** worked as a translator between user and computer.

Later on, more advancements were made to make a language which was similar to our speaking language which we termed as **high-level language**.

High-Level Language made our writing code convenient than before.

Eg: Java, Python, etc.

Machine Language is faster than Assembly Language and Assembly Language is faster than High-Level Language. This is because Assembly Language and High-Level Language are converted to Machine Language via some medium whereas Machine Language requires no conversion and is directly understandable to computer.

Data:

Programmers main goal should be to store maximum amount of data in minimum space, fetch data in less amount of time and arrange data in a sorted fashion.