第3章 词法分析

Part II 自动机

至要内容

- DFA
- NFA
- NFA=>DFA

有穷自动机

有穷自动机(也称有限自动机)作为一种识别装置,它能准确地识别正规集,即识别正规文法所定义的语言和正规式所表示的集合,引入有穷自动机这个理论,正是为词法分析程序的自动构造寻找特殊的方法和工具

有穷自动机分为两类:

确定的有穷自动机(Deterministic Finite Automata)

不确定的有穷自动机(Nondeterministic Finite Automata)

确定的有穷自动机

Deterministic Finite Automata

确定的有穷自动机DFA

DFA定义:

- 一个确定的有穷自动机 (DFA) M是一个五元组: $M = (K, \Sigma, f, S, Z)$, 其中
- 1. K是一个有穷集,它的每个元素称为一个状态;
- 2. Σ是一个有穷字母表,它的每个元素称为一个输入符号,所以也称Σ为输入符号表;

DFA定义

- 3. f 为转换函数,是在 $K \times \Sigma \to K$ 上的映射,即,如 $f(k_i, a) = k_j$,($k_i \in K$, $k_j \in K$) 意味着,如果当前状态为 k_i ,输入符为a时,将转换为下一个状态 k_i ,我们把 k_i 称作 k_i 的一个后继状态;
- 4. S∈K是唯一的一个初态;
- 5. Z⊂ K是一个终态集,终态也称可接受状态或结束状态。

一个DFA的例子:

DFA M = ({S, U, V, Q}, {a, b}, *f*, S, {Q}), 其中 *f*定义为:

$$f(S, a) = U$$

$$f(V, a) = U$$

$$f(S, b) = V$$

$$f(V, b) = Q$$

$$f(U, a) = Q$$

$$f(Q, a) = Q$$

$$f(U, b) = V$$

$$f(Q, b) = Q$$

一个DFA可以表示成一个状态图(或称状态转换图)

- 假定DFA M含有m个状态,n个输入字符,那么这个状态图含有m个结点,每个结点最多有n个弧射出;
- 整个图含有唯一一个初态结点和若干个终态结点, 初态结点冠以双箭头"⇒"或标以"-",终态结点 用双圈表示或标以"+";
- 若 $f(k_i, a)=k_j$,则从状态结点 k_i 到状态结点 k_j 画标记为a的弧;

DFA 的状态图表示

$$f(S, a) = U$$
 $f(V, a) = U$
 $f(S, b) = V$ $f(V, b) = Q$
 $f(U, a) = Q$ $f(Q, a) = Q$
 $f(U, b) = V$ $f(Q, b) = Q$

一个DFA还可以用一个矩阵表示:

该矩阵的行表示状态,列表示输入字符, 矩阵元素表示相应状态行和输入字符列 下的新状态,即k行a列为f(k,a)的值。

用双箭头"⇒"标明初态;否则第一行即是初态,相应终态行在表的右端标以1,非终态标以0。

DFA 的矩阵表示

学符	a	b	
S	U	V	0
U	Q	V	0
V	U	Q	0
Q	Q	Q	1

DFA作为一种识别机制

Σ*上的符号串t在DFA M上运行

一个输入符号串t,(将它表示成 Tt_1 的形式, 其中 $T \in \Sigma$, $t_1 \in \Sigma^*$)在DFA $M = (K, \Sigma, f, S, Z)$ 上运行的定义为:

 $f(Q, Tt_1) = f(f(Q, T), t_1)$,其中QEK

扩充转换函数 f 为 $K \times \Sigma^* \rightarrow K$ 上的映射,且: $f(k_i, ε) = k_i$

Σ*上的符号串 t 被DFA M接受:

 $M=(K, \Sigma, f, S, Z)$,

若 t∈ Σ *, f(S, t)=P,其中S为M的开始状态, P∈Z,Z为终态集,

则称t为DFA M所接受(识别)

```
例:证明t=baab被下图的DFA所接受。
  f(S, baab)
   = f(f(S,b),aab)
   = f(V, aab)
   = f(f(V, a), ab)
   = f(\mathbf{U}, \mathbf{ab})
                                              a
   = f(f(\mathbf{U}, \mathbf{a}), \mathbf{b})
                              a
                                                     b, a
   =f(\mathbf{Q},\mathbf{b})
                                              a
   Q属于终态
                                                b
```

DFA M所能接受的符号串的全体记为L(M)

对于任何两个有穷自动机M和M',如果L(M)=L(M'),则称M与M'是等价的

结论:

Σ上一个符号串集V⊂Σ*是正规的,当且仅当 存在一个Σ上的确定有穷自动机M,使得 V=L(M) DFA的确定性表现在转换函数 $f: K \times \Sigma \to K$ 是一个单值函数,也就是说,对任何状态 $k \in K$,和输入符号 $a \in \Sigma$,f(k,a)唯一地确定了下一个状态

从状态转换图来看,若字母表Σ含有n个输入字符,那么任何一个状态结点最多有n 条弧射出,而且每条弧以一个不同的输入字符标记

用程序来模拟DFA的行为:

```
DFA M = (K, Σ, f, S, Z) 的行为的模拟程序
   K:=S;
   c:=getchar;
   while c<>eof do
      K:=f(K,c);
       c:=getchar;
   if K is in Z then return ('yes')
              else return ('no')
```

Review

DFA M= (K, Σ, f, S, Z)

- 1) A finite set of states, one of which is designated the initial state or *start state*, and some of which are designated as final states.
- 2) An alphabet of possible input symbols.
- 3) A finite set of transitions that specifies for each state and for each symbol of the input alphabet, which state to go to next.

DFA examples

DFA examples

FA 等价

不确定的有穷自动机

Nondeterministic Finite Automata

有穷自动机

有穷自动机(即有限自动机)是一种形式系统, 也是一种识别装置,能识别正规集,即正规文 法所定义的语言和正规式所表示的集合

有穷自动机分类

确定的有穷自动机(Deterministic Finite Automata)

不确定的有穷自动机(Nondeterministic Finite Automata)

确定的有穷自动机DFA:回顾

- 一个确定的有穷自动机**DFA** M是一个五元组: $M = (K, \Sigma, f, S, Z)$, 其中
 - K是一个有穷集,它的每个元素称为一个状态;
 - $-\Sigma$ 是一个有穷字母表,它的每个元素称为一个输入符号,所以也称 Σ 为输入符号表;
 - f 为转换函数,是K×Σ→K上的映射, $f(k_i, a) = k_j$ (k_i ∈K, k_j ∈K) 意味着,如果当前状态为 k_i ,输入符号为a时,将转换为下一个状态 k_i ;
 - S∈K是唯一的初态;
 - Z⊆K是一个终态集,终态也称可接受状态或结束状态。

对比DFA: NFA不确定性体现在哪?

DFA	NFA	
有穷状态集K		
有穷字母表∑		
转换函数 f: K×Σ→K	×	
唯一初态S∈K	?	
终态集 <mark>Z⊆K</mark>		

DFA转换函数:如何引入不确定性?

转换函数 $f: K \times \Sigma \rightarrow K$

$$f(S, a) = U$$
 $f(V, a) = U$
 $f(S, b) = V$ $f(V, b) = Q$
 $f(U, a) = Q$ $f(Q, a) = Q$
 $f(U, b) = V$ $f(Q, b) = Q$

DFA识别机制:如何引入不确定性?

例:证明t=baab被下图所示DFA所接受

$$f(S, baab)$$
 $= f(f(S, b), aab)$
 $= f(V, aab)$
 $= f(f(V, a), ab)$
 $= f(U, ab)$
 $= f(f(U, a), b)$
 $= f(Q, b)$
 $= Q$
 $O属于终态集$

扩充的转换函数

 $f: \mathbf{K} \times \Sigma^* \rightarrow \mathbf{K}$

确定性:_ 唯一路径

不确定性: 不唯一路径

NFA转换函数:如何刻画多条路径?

例:字符串t = baab的多条识别路径

$$f(S, a) = C$$
 $f(C, a) = Q$
 $f(S, b) = V$ $f(U, b) = V$
 $f(V, a) = U$ $f(V, b) = Q$
 $f(V, b) = Q$ $f(V, b) = Q$
 $f(V, b) = Q$ $f(V, b) = Q$

NFA转换函数: $f: K \times \Sigma \rightarrow 2^K$

DFA转换函数 → NFA转换函数

$$f(S, a) = U$$
 $f(U, a) = Q$
 $f(S, b) = V$ $f(U, b) = V$
 $f(V, a) = U$ $f(Q, a) = Q$
 $f(V, b) = Q$ $f(Q, b) = Q$
 $f(V, b) = Q$ $f(V, b) = Q$
 $f(V, b) = Q$ $f(V, b) = Q$

转换函数 $f: K \times \Sigma \to K$ — 转换函数 $f: K \times \Sigma \to 2^K$

不确定的有穷自动机NFA: 定义

- 一个不确定的有穷自动机NFA M是一个五元组 $M = (K, \Sigma, f, S, Z)$,其中
 - K是一个有穷集,它的每个元素称为一个状态;
 - $-\Sigma$ 是一个有穷字母表,它的每个元素称为一个输入符号,所以也称 Σ 为输入符号表;
 - f 为转换函数,是 $K \times \Sigma \to 2^K$ 上的映射, $f(k_i, a) = \{k_{j1}, ..., k_{jn}\}$ ⊆ K,如果当前状态为 k_i ,输入符号为a 时,将转换为 $\{k_{i1}, ..., k_{in}\}$ 中的某个状态;
 - S⊆K是初态集;
 - Z⊆K是一个终态集,终态也称可接受状态或结束 状态。

NFA M=(K, Σ , f, S, Z)的识别机制

- ∑*上的符号串 t 在NFA M上运行
 - 一个输入符号串 \mathbf{t} = $\mathbf{T}\mathbf{t}_1$, 其中 \mathbf{T} ∈ Σ , \mathbf{t}_1 ∈ Σ * (转换函数扩充为 \mathbf{K} × Σ * \rightarrow 2 \mathbf{K}),则

$$f(Q, Tt_1) = f(f(Q, T), t_1)$$
,其中QEK

- · ∑*上的符号串 t 被NFA M接受(识别)
 - $若t \in \Sigma^*, f(S_0, t) = P, S_0 \in S, 则$ $P \cap Z \neq \emptyset$

NFA M所能接受的符号串的全体记为L(M)

结论:

 Σ 上一个符号串集VC Σ *是正规的,当且仅当存在一个 Σ 上的不确定的有穷自动机M,使得V=L(M)

NFA 示例

例子:

```
NFA M = ({S, P, Z}, {0, 1}, f, {S, P}, {Z})

其中,

f(S, 0) = {P}

f(Z, 0) = {P}

f(P, 1) = {Z}

f(Z, 1) = {P}
```

状态图表示

$$f(S, 0) = \{P\}$$

 $f(Z, 0) = \{P\}$
 $f(P, 1) = \{Z\}$
 $f(Z, 1) = \{P\}$
 $f(S, 1) = \{S, Z\}$

矩阵表示

	0	1	
S	{ P }	$\{S,Z\}$	0
P	{}	{ Z }	0
Z	{ P }	{ P }	1

	0	1	
S	P	S,Z	0
P	•	Z	0
Z	P	P	1

f为 $K \times \Sigma^*$ 到K的子集(2^K)的一种映射

具有ε转移的不确定有穷自动机

定理

对任何一个具有ε转移的不确定的有穷自动机 NFA N,一定存在一个不具有ε转移的不确定 的有穷自动机NFA M,使得L(M)=L(N)

与上例等价的一个NFA:

(0|1)*(000|111)(0|1)*

DFA是NFA的特例。对每个NFAN一定存在一个DFAM,使得 L(M)=L(N); 对每个NFAN 存在着与之等价的DFAM

有一种算法,可以将NFA转换成接受同样语言的DFA。这种算法称为**子集法**

与某一NFA等价的DFA不唯一

NFA => DFA

子集法

NFA=>DFA, 如何确定地刻画多条路径?

例:字符串t=baab 的多条识别路径

- 从NFA的矩阵表示中可以看出,表项通常是一状态的集合;而在DFA的矩阵表示中,表项是一个状态;
- 因此,从NFA到DFA的基本构造思路是: DFA的每一个状态对应NFA的一组状态
- DFA使用它的状态去记录在NFA读入一个 输入符号后可能达到的所有状态

NFA确定化算法

NFA N=(K, Σ , f, K₀, K_t), 按如下方法构造一个 DFA M=(S, Σ , d, S₀, S_t), 使得L(M)=L(N):

1. M的状态集S由**K的一些子集**组成。用 $[S_1 S_2...S_j]$ 表示S的元素,其中 $S_1, S_2, ...S_j$ 是K的状态。并且约定,状态 $S_1, S_2, ...S_j$ 是 按某种规则排列的,即对于子集 $\{S_1, S_2\} = \{S_2, S_1\}$ 来说,S的状态就是 $[S_1 S_2]$;

- 2. M和N的输入字母表是相同的,即为 Σ ;
- 3. 转换函数是这样定义的:

$$d([S_1 S_2 ... S_j], a) = [R_1 R_2 ... R_t], 其中$$
 $\{R_1, R_2, ..., R_t\} = \varepsilon$ -
 $closure(move(\{S_1, S_2, ..., S_j\}, a))$

- 4. S₀=ε-closure(K₀)为M的开始状态;
- 5. $S_t = \{[S_i S_k ... S_e], 其中[S_i S_k ... S_e] \in S且$ $\{S_i, S_k, ..., S_e\} \cap K_t \neq \Phi\}$

定义: 对状态集I的运算

1. 状态集I的ε-闭包 表示为ε-closure(I), 定义为一状态集, 是状态集I中的任何状态S经任意条ε弧而能到达的状态的集合 状态集合I的任何状态S都属于ε-closure(I)

2. 状态集I的a弧转换 表示为move(I,a), 定义为状态集J, 其中J是所有那些可从I中的某一状态经过一条a弧而到达的状态的全体

例子: 对状态集合I的运算

I={1}, \(\epsilon\)-closure(I)={1,2}; I={5}, \(\epsilon\-closure(I)={5,6,2}; move({1,2},a)={5,3,4}; \(\epsilon\-closure({5,3,4})={2,3,4,5,6,7,8};

构造NFA N状态K的子集的算法

假定所构造的子集族为C,即C= $(T_1, T_2, ... T_I)$,其中 $T_1, T_2, ... T_I$ 为状态K的子集。

1 开始,令 ϵ -closure(K_0)为C中唯一成员,并且它是未被标记的。

```
2 while (C中存在尚未被标记的子集T) do
  标记T:
 for 每个输入字母a do
    U:= \varepsilon-closure(move(T,a));
   if U不在C中 then
      将U作为未标记的子集加在C中
```

NFA的确定化

例子

	Ia	Ib
{i,1,2}	{1,2,3}	{1,2,4}
{1,2,3}	{1,2,3,5,6,f}	{1,2,4}
{1,2,4}		
{1,2,3,5,6,f}		

		Ia		Ib	
{i,1,2}	S	{1,2,3}	A	{1,2,4}	В
{1,2,3}	A	$\{1,2,3,5,6,f\}$	C	{1,2,4}	В
{1,2,4}	В	{1,2,3}	A	{1,2,4,5,6,f}	D
{1,2,3,5,6,f}	C	{1,2,3,5,6,f}	C	{1,2,4,6,f}	E
{1,2,4,5,6,f}	D	{1,2,3,6,f}	F	{1,2,4,5,6,f}	D
{1,2,4,6,f}	E	$\{1,2,3,6,f\}$	F	{1,2,4,5,6,f}	D
$\{1,2,3,6,f\}$	F	$\{1,2,3,5,6,f\}$	C	$\{1,2,4,6,f\}$	E

等价的DFA

NFA的确定化: 例子

作业

• 1 (1)(3)