COMP 543: Tools & Models for Data Science Linear Regression

Chris Jermaine & Risa Myers

Rice University

Linear Regression

- Most common model in data science! (Logistic Regression is very common as well)
 - Have a set of training data
 - Bunch of (x_i, y_i) pairs
 - x_i is a vector of real-valued "regressors"
 - y_i is a real-valued "response"
 - Want to learn a model that, given a new x, can predict y

Linear Regression

- Model is exceedingly simple
 - Predict y as $x \cdot r$
 - r is a vector of "regression coefficients"
 - $x \cdot r$ is the dot product op: $x \cdot r = \sum_{j} x_j \times r_j$

Regression Coefficient Example

- Specify the weight/importance and direction of each feature
- Weight is indicated with magnitude
- Direction is indicated by the sign

Predicting 30-day Mortality

	Regression Coefficient
Feature	value
MaleGender	-0.0662
Race	0.042
Age	-0.005
Charlson Comorbidity Index	-0.0075
ASA score	-0.323
Presurgical LOS	-0.0127
Start Location	0.2058
Enterectomy ^a	0.1233
Intercept	3.4723

^aprocedure to remove part of the intestine

Intuition behind Regression Coefficients

- Specify the weight/importance and direction of each feature
- Weight is indicated with magnitude
- Direction is indicated by the sign

How to Learn?

- Turns out there is a closed-form
 - Let the matrix **X** store the training data
 - ith row in **X** is ith training point, x_i
 - **y** is column vector storing responses
 - Then closed form least-squares estimate for r is:

$$\hat{r} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

■ This minimizes loss:

$$\sum_{i} (y_i - \sum_{j} x_{i,j} \times r_j)^2$$

■ But this can be problematic for "Big Data"... why?

Problematic for "Big Data"

- Matrix may be too big to fit in memory
- e.g. 1 Billion point data set

More Reasonable Big Data Formulation

■ Compute $(\mathbf{X}^T\mathbf{X})^{-1}$ as:

$$\left(\sum_{i} x_{i}^{\mathrm{T}} x_{i}\right)^{-1}$$

- Note: assumes x_i is a row vector
- $\mathbf{z}_{i}^{\mathrm{T}}x_{i}$ is outer product of x_{i} with itself
- Recall from lab that $x_i^T x_i$ is the sum of the outer products of the matrix rows
- ? What's great about this formulation?

More Reasonable Big Data Formulation

■ Compute $(\mathbf{X}^T\mathbf{X})^{-1}$ as:

$$\left(\sum_{i} x_{i}^{\mathrm{T}} x_{i}\right)^{-1}$$

- Note: assumes x_i is a row vector
- $\mathbf{x}_i^{\mathrm{T}} x_i$ is outer product of x_i with itself
- Recall from lab that $x_i^T x_i$ is the sum of the outer products of the matrix rows
- What's great about this formulation?
- It can be parallelized!
- Distribute blocks (say 100) of rows at a time
- Compute the products
- Collect, reassemble, sum, then invert

More Reasonable Big Data Formulation

■ Goal: Compute

$$\hat{r} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

1 Compute $(\mathbf{X}^T\mathbf{X})^{-1}$ as:

$$\left(\sum_{i} x_{i}^{\mathrm{T}} x_{i}\right)^{-1}$$

2 Compute X^Ty as:

$$\left(\sum_{i}(x_{i}\times y_{i})\right)^{\mathrm{T}}$$

■ #2 can also be parallelized

Still, Bad for Very High-D Data

? Why?

Problematic for Very High-D Data

- Inverting **X** can be expensive, if the number of dimensions is high
 - $\blacksquare \approx 100 \text{K} \times 100 \text{K}$ is an upper limit for a single machine
 - Easily get to this size with 4-grams in text
- ? What's the solution?

Still, Bad for Very High-D Data

- What's the solution?
- Gradient descent!
 - Very simple!
 - Take the partial derivative of the loss function wrt r_i is:

$$\frac{\partial}{\partial r_j} \sum_{i} (y_i - \sum_{j'} x_{i,j'} \times r_{j'})^2 = \sum_{i} -2(y_i - \hat{y}_i) x_{i,j}$$

- Where \hat{y}_i is prediction for y_i given current model
- Again, the last term can be parallelized

Gradient Descent Algorithm

```
\begin{array}{l} r^0 \leftarrow \text{non-stupid guess for } r;\\ iter \leftarrow 1;\\ \text{repeat } \{\\ \textbf{for each } j\\ \Delta_j \leftarrow \sum_i -2(y_i - \hat{y}_i)x_{i,j}\\ r^{iter+1} \leftarrow r^{iter} - \lambda \Delta;\\ iter \leftarrow iter+1;\\ \} \text{ while (change in loss } > \mathcal{E}) \end{array}
```

Intuitively satisfying

- Say our estimate (\hat{y}_i) for point i is too large
- That is, $y_i \hat{y}_i$ is negative (example, -0.05)
- If $x_{i,j}$ is positive (ex: 2.0), point i will try to pull Δ_j so it is positive: contribution to Δ_i is -2(-0.05)2.0 = 0.2
- Since $r^{iter+1} \leftarrow r^{iter} \lambda \Delta$, point i will try to decrease r_j : will contribute a decrease of $\lambda 0.2$
- So point *i* will want the regression coefficient to decrease, which makes sense

Why Is This a Good Big Data Algorithm?

- It's linear in number of data points
- Also linear in number of regressors (features)
- In particular, nice for sparse data (common in really high dimensions)
 - If $x_{i,j}$ is zero, no contribution to Δ_j

How To Add an Intercept?

- Add an extra column to each data point
- Always has a "1" value
- ? Why will this work?

How To Add an Intercept?

- Add an extra column to each data point
- Always has a "1" value
- Why will this work?
 - The model can learn a regression coefficient for that dimension
 - This is the intercept

How To Handle Categorical Data?

- Easiest: during training, treat "yes" as +1, "no" as -1
 - When applying model: > 0 becomes "yes"
 - When applying model: < 0 becomes "no"
- But generally understood to leave accuracy on the table. Why?
 - Every "yes"/"no" treated same way
 - Tries to map all "yes" to +1
 - Tries to map all "no" to -1
 - Even though not all "yes" (and all "no") cases are the same

Why is this a Problem?

- Example: given (parents' years in school, salary) is someone a college graduate?
 - One person's parents have a PhD, make \$500K, point is (21,500)
 - Another person's parents have some college, make \$60K, point is (14,50)
 - LR for categorical data tries map both to +1
 - \blacksquare Rather than letting first map to arbitrarily large value (like +10), a really solid "yes"
 - \blacksquare And letting the second map to a smaller value (like +0.5) since a less solid "yes"
- Answer: logistic regression... will consider next time
 - Under topic of "generalized linear models"
 - Are a general class of probabilistic models based on LR
 - Logistic regression will allow more obvious "yes" cases to fall far above decision boundary
 - While obvious "no" cases fall far below

Questions?