Polonkai Dávid (GPNWZT)

Miskolci Egyetem

2022

- Egy pénzösszeget milyen módon tudunk elérni kisebb címletekből?
- ► Hátizsák feladat speciális esete
- Dinamikus programozással megoldható (részekre bontás)

Hátizsák feladat

Túrázni megyünk. Miket vigyünk a túrára a hátizsákunkba?

Legyen n a lehetséges tárgyak száma.

B a teherbírásunk.

Legyen $a_1, a_2, ..., a_n$ a tárgyak súlya.

Legyen $c_1, c_2, ..., c_n$ a tárgyak értéke (hasznossága)

 x_j (0 vagy 1), a j. tárgyat a hátizsákba helyezzük vagy sem.

Feltételek:

$$\sum_{j=1}^{n} c_j x_j \to \mathit{max}$$

$$\sum_{j=1}^n a_j x_j \le B$$

Tehát a nálunk található tárgyak a lehető leghasznosabbak legyenek, de a tömegük ne haladja meg a teherbírásunkat.

Egy pénzösszeget akarunk pontosan kifizetni egy adott pénzrendszer címleteivel úgy, hogy minimális számú pénzdarabot használunk fel.

n a pénzrendszer címleteinek a száma.

Legyen $a_1, a_2, ..., a_n$ az egyes címletek értékei.

Legyen B a kifizetendő összeg.

 x_j egész szám a j címelet darabszámát mutatja.

Feltételek:

$$\sum_{j=1}^n x_j \to min$$

$$\sum_{j=1}^{n} a_j x_j = B$$

Tehát a lehető legkevesebb címlettel fizessük ki a B összeget.

Létezik-e megoldás?

 $A = \{a_1, a_2, ..., a_n\}$ a címletek halmaza.

b egy pozitív egész szám.

 $\sum_{a \in S} = B$, ahol $S \subseteq A$.

Megjegyzés: a címletek csak egyszer használhatóak fel, tehát x_j 0 vagy 1 lehet, és tetszőleges egész számok lehetnek.

Létezik-e megoldás

Egy megoldás:

$$B = a_{i_1} + \cdots + a_{i_k}, i_1 < \dots < i_k$$

Ekkor

$$B-a_{i_k}=a_{i_1}+\cdots+a_{i_{k-1}}$$

megoldása lesz annak a feladatnak, amelyben a felváltandó érték: $B-a_{i_k}$, felváltásához legfeljebb $(a_1,...,a_{i_{k-1}})$ címleteket használhatjuk.

Részproblémákra bontás

Minden (X, i) $(1 \le X \le B, 1 \le i \le n)$ számpárra, X felváltható-e az első $a_1, ..., a_i$ pénzzel.

V(X, i) = Igaz, ha az első i pénzzel előállítható.

V(X,i) = Hamis, ha az első i pénzzel nem állíható elő.

Részproblémák eredménye (Rekurzív megoldás)

$$V(X,i) \Leftrightarrow \begin{cases} X = a_i \lor \\ i > 1 \land V(X,i-1) \lor \\ i > 1 \land > a_i \land V(X-a_i,i-1) \end{cases}$$

Részproblémák eredménye (Táblázatos módszer)

Kiszámítási sorrend módosítása, hogy először azokat számoljuk ki, amelyek szükségesek a későbbi számításokhoz.

(X,i) probléma összetevői: (X,i-1) és $(X-a_i,i-1)$

Ezért a következő táblázatot soronként alulról felfele, balról jobbra töltjük ki.

Táblázat

1. ábra. A pénzváltás táblázata

A Pénzváltás probléma, egy felváltás eloállítása

Megoldás csak akkor létezhet, ha az aktuális problémára nézve V[B,n]=Igaz.

Keressük azt a legkisebb i értéket, amelyre V[B,i]=Igaz, tehát V[B,i-1]=Hamis.

Ebből tujuk, hogy a_i pénz szerepel a B-ben.

Folytatva ezt a folyamatot $B - a_i$ -re és i - 1-re,

azaz $V[B-a_i,i-1]$ -re addig, amíg B=0-t nem kapunk.

Optimális pénzváltás

Az előző diában bemutatott mohó stratégia nem optimális, mivel 8 = 5+1+1+1 eredményt adna.

Az optimális megoldáshoz a már előzőleg bevezetett részproblémákra bontást alkalmazzuk.

Minden (X,i) $(1 \le X \le B, 1 \le i \le n)$ számpárra, legkevesebb hány pénz összegeként lehet az X-et előállítani legfeljebb az első $i\{a_1,\ldots,a_i\}$ pénz felhasználásával. Ha nincs megoldás, akkor legyen n+1.

A probléma optimális megoldása: Opt(X, i) Az optimális megoldás értéke: X = 0-ra és i = 0-ra, Opt(X, 0) = n + 1 és Opt(0, i) = 0. Mindezek alapján az alábbi rekurzív összefüggés írható fel

Optimális pénzváltás

$$Opt(X,i) = egin{cases} \infty & \text{ha } i = 0 \land X > 0 \\ 0 & \text{ha} X = 0 \\ Opt(X,i-1) & \text{ha} X < a_i \\ min(Opt(X,i-1), & & & \\ 1 + Opt(X-a_i,i-1)) & \text{ha} X \geq a_i \end{cases}$$

Optimális pénzváltás

Az előző rekurzív kifejezést, színtén táblázatba tudjuk foglalni, mivel Opt(X,i)-nek legfeljebb $Opt(X-a_i,i-1)$ -re vagy Opt(X,i-1)-re van szüksége.

A táblázatból a felváltás előállítását, a már bemutatott módszer módosításával hajthatjuk végre.

Optimális pénzváltás, egy optimális felváltás előállítása

Megoldás csak akkor létezhet, ha az aktuális problémára nézve $V[B,n]<\infty$.

Keressük azt a legkisebb i értéket, amelyre $V[B, i] \rightarrow min$, tehát V[B, i-1] > V[B, i] (hiszen $a_i > a_{i-1}$).

Ebből tujuk, hogy a_i pénz szerepel a B optimális felváltásában.

Folytatva ezt a folyamatot $B-a_i$ -re és i-1-re,

azaz $V[B - a_i, i - 1]$ -re addig, amíg B = 0-t nem kapunk.

Végtelen aprópénz

Egy pénzösszeget akarunk pontosan kifizetni egy adott pénzrendszer címleteivel úgy, hogy minimális számú pénzdarabot használunk fel és az egyes címletekből korlátlan mennyiség áll rendelkezésre

n a pénzrendszer címleteinek a száma.

Legyen $a_1, a_2, ..., a_n$ az egyes címletek értékei.

Legyen B a kifizetendő összeg.

 x_j egész szám a j címelet darabszámát mutatja.

Feltételek:

$$\sum_{j=1}^n x_j \to \min$$

$$\sum_{j=1}^{n} a_j x_j = B$$

Tehát a lehető legkevesebb címlettel fizessük ki a B összeget.

Végtelen aprópénz

$$E(0)=0$$

$$E(B)=1+\min\left\{ \begin{aligned} E(B-a_1) &\text{ ahol } B-a_1>=0\\ E(B-a_2) &\text{ ahol } B-a_2>=0\\ \dots\\ E(B-a_n) &\text{ ahol } B-a_n>=0\\ \text{Ha mindegyik esetben } B-a_x<0,\\ \text{ akkor nem bontható fel} \end{aligned} \right\}$$

Ahol E(x), az x érték felbontásához szükséges érmék számát tartalmazza. Mindezekből a rekurzív megoldás egyértelmű.

Végtelen aprópénz dinamikus programozás

Ha az előzőleg használt módszert használjuk, azaz eltároljuk a kiszámított megoldásokat, és E(1)-től E(B)-ig haladunk, megkapjuk a dinamikus programozott megoldást.

Felhasznált irodalmak

- 1. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás jegyzet
- 2. Dr. Házy Attila: Nemlineáris optimalizálás. (elektronikus jegyzet)
- 3. J. W. Wright. 1975. The Change-Making Problem. J. ACM 22,
- $1 \; \text{(Jan. 1975)}, \; 125-128. \; \; \text{https://doi.org/} \\ 10.1145/321864.321874$
- 4. (BME Programozási stratégiák órai feladatok)

KÖSZÖNÖM A FIGYELMET!

https://davidpolonkai.github.io/change_making_problem/