Roli	No.:	 	

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch : ECE Semester : III

Title of the Course : Control System Course Code : ECL 251

Time: 2Hours Maximum Marks: 25

Note:

 Questions are printed on BOTH sides. Answers should be CLEAR, TO THE POINT AND LEGIBLE.

• All parts of a single question must be answered together and in the same sequence as given in question paper. ELSE QUESTION SHALL NOT BE EVALUATED.

Q. 1 Consider mechanical system is shown in fig. 1. Here, K_1 , K_2 and K_3 are spring constants; f_{v1} , f_{v2} and f_{v3} are damping coefficients; M_1 , M_2 are masses; and f(t) is the applied translational force. Find the electrical PARALLEL analog of the system. [4]

Q.2 A mechanical rotational system is shown in fig. 2. In the system, every gear experiences rotational friction which is reflected by damping coefficients D_1 , D_2 and D_3 . If the applied torque T(t) is 5 N-m, find the angular position $\theta_3(t)$ of J_3 . (Assume the direction of T and θ_3 is same and anti clock-wise)

Figure 2

Q.3 A block diagram is shown in fig. 3. Find the transfer function C(s)/R(s) by block diagram reduction method.

Q.4 A Signal Flow Graph is given in fig. 4. Find the transfer function by utilization of the Mason's Gain Formula. Clearly state all the forward paths and touching /non-touching loops with their path gain.
[6]

- **Q.5** The depicted plot is the step response of a first order control system. Find the following:
 - (1) Time Constant T
 - (2) Rise Time T_r
 - (3) Settling Time T_s
 - (4) Exponential frequency.

[5]

[4]