EECS (6A DIS 3A

my omail: moses won @ berkeley.edu

New OH time (mine + other TAS/ASES): W 10AM-12PM (HW party but)

conceptual Q's)

OH/HWP: oh.eecs/6a.org

Today's topics/fakeaways

- 2) Matrices as geometric operations: Rotation matrix
- 3) Whether Operations are commutative

1

EECS 16A Designing Information Devices and Systems I Pall 2020 Discussion 3A

Suggestions on problem prioritization for when doing individual work or collaborating with groupmates:

- (a) Ask the TA to walk through 1(a) or limit time on 1(a).
- (b) Work through 2 parts 1 and 2 for the rest of the time remaining.
- (c) Try 1(b) as practice after having seen 1(a).

1. Span Proofs

Given some set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, show the following:

(a) $\operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = \operatorname{span}\{\alpha \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}, \text{ where } \alpha \text{ is a non-zero scalar}$

In other words, we can scale our spanning vectors and not change their span.

(b) (Practice)

$$span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} = span\{\vec{v}_1 + \vec{v}_2, \vec{v}_2, ..., \vec{v}_n\}$$

In other words, we can replace one vector with the sum of itself and another vector and not change their span.

2. Visualizing Matrices as Operations

This problem is going to help you visualize matrices as operations. For example, when we multiply a vector by a "rotation matrix," we will see it "rotate" in the true sense here. Similarly, when we multiply a vector by a "reflection matrix," we will see it be "reflected." The way we will see this is by applying the operation to all the vertices of a polygon and seeing how the polygon changes.

Your TA will now show you how a unit square can be rotated, scaled, or reflected using matrices!

Part 1: Rotation Matrices as Rotations

- (a) We are given matrices T_1 and T_2 , and we are told that they will rotate the unit square by 15° and 30°, respectively. Design a procedure to rotate the unit square by 45° using only T_1 and T_2 , and plot the result in the IPython notebook. How would you rotate the square by 60°?
- (b) Try to rotate the unit square by 60° using only one matrix. What does this matrix look like?
- (c) T_1 , T_2 , and the matrix you used in part (b) are called "rotation matrices." They rotate any vector by an angle θ . Show that a rotation matrix has the following form:

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

where θ is the angle of rotation. To do this consider rotating the unit vector $\begin{bmatrix} cos(\alpha) \\ sin(\alpha) \end{bmatrix}$ by θ degrees using the matrix **R**.

[] (a) Criven a set of n vectors {\vec{v}_1,\vec{v}_2,...,\vec{v}_n}} Show that span { vi, v2, ..., vn} = span { xv1, v2, ..., vn}, x = 0 Span ~ Solutions to AX=\$ Proof steps X (1) Read the statement La What are we being asked to show? - set of all linear combinations of a set of vectors 2) Write what you know. (in notation) (starting pint) P = Span { V1, ..., Vn} 3) Write what you want to P= B1V1+B2V2+ ...+ Bn Vn prove (also in notation)
(end point/goal) Span $\{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\} = \{ (\overrightarrow{v_1} + ... + o\overrightarrow{v_n}) \}$ 4) Similarities in 2) (3) 1.5vit ... + 3vin / 5) Simple example (6) Manipulate both start tend. We want to show that two sets are equal ? Justify each step. {a,b,c,d} ≠ {a,b,c,d} (7) Try other proof approaches Not equal because an object. In second set des not appear in first * Findable in hote 4, reduced steps in "Proof notes" on 9/10 block in schedule on website Insight: for sets to be equal everything in first set must be in second set and vice versa $(\Box) \stackrel{\rightarrow}{p} \in Span \{ \overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_N} \} \stackrel{\rightarrow}{\Rightarrow} \stackrel{\rightarrow}{p} \in Span \{ \alpha \overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_N} \}$ (N q e Span Str, V2,..., Vn } = q e Span [Vi, V2, ..., Vn]

B = Span { av, v2, ...vn}

1= Span {vi, ... 1 vn }

B(D)ASB (A)BSA

Prove (D) > (definition) pe Span [vi,,...,vn] A $\vec{p} = \beta_1 \vec{v}_1 + \beta_2 \vec{v}_2 + \cdots + \beta_n \vec{v}_n$ by define of span (justification) Want that pe Span { Ni , viz, -- , vin} $A \vec{p} = \delta_1(\alpha \vec{v_1}) + \delta_2 \vec{v_2} + \cdots + \delta_n \vec{v_n}$ Choose Vi. Yz= /2 $\delta_{n} = \beta_{n}$ p= β(ανί) + β2ν2+ ··· + βηνη because of rules of mult./div, p < Span & dvi, vz,...,vn } by defn. Prove (D) q & Span { av, 1, v2, ..., vn} => q & Span { vi, ..., vn} $\overline{Q} = \chi_1(\overline{\chi \chi_1}) + \chi_2 \overline{\chi_2} + \cdots + \chi_N \overline{\chi_N}$ by definition $\vec{q} = (\alpha x_1) \vec{v_1} + x_2 \vec{v_2} + \cdots + x_n \vec{v_n}$ (because multiplication) is associative) q, is a linear combination of $\vec{v}_1, \dots, \vec{v}_n$ € = Span { v, v2, ..., vn } by defin.

Since (1), (1): The sets must be equal span (1), ..., ving=span (xvi,..., ving)

2(a) If T. rotates by IS° (CCW) and To votates by	30°(ccw)
$2/a$) If T, rotates by $15^{\circ}(ccw)$ and T_2 votates by how to variate by $45^{\circ}(ccw)$ av $60^{\circ}(ccw)$?	CCW Cannter Cladwist
Q: What does it mean to votate a square / haw as using matrices Ti, Tz?	r we
A; T, V = W C V after its recent volution of 1s	
matrix vector Va v3 V3 V3 V1 T, Vi = Wi has been votated	
Tiv > 15° votated T2(Tiv) -> 15° votated them 30° votated > 4	so volated
$\begin{bmatrix} \\ 2\chi 2 \\ 2\chi 1 \end{bmatrix}$	
TITZV randhor way to got 45°	

2 © Show that a votation matrix has form
$$\begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta \end{bmatrix}$$
 $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$? $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$? $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$? $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$ $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$? $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$ $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$? $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$ $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$? $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$ $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$? $\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$ $\begin{bmatrix} \cos$

(**Definition:** A vector,
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$
, is a unit vector if $\sqrt{v_1^2 + v_2^2 + \dots} = 1$.)

(Hint: Use your trigonometric angle sum identities: $\cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)$ and $\sin(\theta_1 + \theta_2) = \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2)$

- (d) (**Practice**) Now, we want to get back the original unit square from the rotated square in part (b). What matrix should we use to do this? (**Note:** Don't use inverses! Answer this question using your intuition, we will visit inverses very soon in lecture!)
- (e) (**Practice**) Use part (d) to obtain the "inverse" rotation matrix for a matrix that rotates a vector by θ . Multiply the inverse rotation matrix with the rotation matrix and vice-versa. What do you get?
- (f) (Practice) What are the matrices that reflect a vector about the (i) x-axis, (ii) y-axis, and (iii) x = y

Part 2: Commutativity of Operations

A natural question to ask is the following: Does the *order* in which you apply these operations matter? Follow your TA to obtain the answers to the following questions!

- (a) Let's see what happens to the unit square when we rotate the square by 60° and then reflect it along the y-axis.
- (b) Now, let's see what happens to the unit square when we first reflect the square along the y-axis and then rotate it by 60° .
- (c) Try to do steps (a) and (b) by multiplying the reflection and rotation matrices together (in the correct order for each case). What does this tell you?
- (d) If you reflected the unit square twice (along any pair of axes), do you think the order in which you applied the reflections would matter? Why/why not?

(Practice) Part 3: Distributivity of Operations

(a) The distributivity property of matrix-vector multiplication holds for any vectors and matrices. Show for general $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ and $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$ that $\mathbf{A}(\vec{v}_1 + \vec{v}_2) = \mathbf{A}\vec{v}_1 + \mathbf{A}\vec{v}_2$.