华东师范大学期中试卷 2017—2018 学年第一学期

姓名:				学号:					
专业:									
		专业必修				_			
				三	四	总分	阅卷人签名	1	
<u> </u>	、填匀	を と 題(毎:	空 4 分	,共	计 28	分)			
1. $f(x)$ 在点 x_0 连续是 $f(x)$ 在点 x_0 可导的 条件 $f(x)$ 在点 x_0 可导是 $f(x)$ 在点 x_0 可微的条件。 (填写充分、必要、充分必要)									
2.	设 <i>y</i> =	$x \cos x$,	则 y ⁽¹	.00)=_			o		
3. 设 $f(x)$ 和 $g(x)$ 都可导,已知函数 $y = f\left(\arctan\frac{1-x}{1+x}\right)g(x^2)$,则其微分 $dy =$ 。									
f'($(x_0) = f$	$f''(x_0) =$	0, <i>f</i> '''	$(x_0) \neq$: 0,贝	x =	成内具有三阶 x_0 是否为 $_{}$ 。(填写 $_{-}$	函数 $f(x)$	
		数 <i>f</i> (x) = 西定理条				(x) = x	a^2-4x+6	在区间 [0), 1]
		¥题(毎) m · **				分)			
1.	(A) 0	$m_{\chi\to 0}$ + χ^{χ}	守」-		<u> </u>	(C) 2		() (D) e	

- 2. 曲线 $y = (x-1)\sqrt[3]{x^5}$ 有上凸区间_____。

- (A) $(-\infty, 0)$ (B) $\left(0, \frac{1}{4}\right)$ (C) $\left(\frac{1}{4}, \infty\right)$ (D) $\left(-\infty, \frac{1}{4}\right)$
- 3. 已知曲线 $y = \frac{x^3}{1+x}$,则下列说法错误的是_____。 ()
 - A. 曲线有垂直渐近线
- B. 曲线有水平渐近线
- C. 曲线有极小值点
- D. 曲线有拐点
- 4. 已知可微函数 y = f(u(v(x))),下列微分表达式错误的有____()
 - A. dy = f'(u)du

- B. dy = f'(u(v(x)))dx
- C. dv = f'(u)u'(v)dv
- D. dy = f'(u)u'(v)v'(x)dx

三、 证明题和计算题(共5题,计56分)

- 1. (8分) 求由方程 $x^{y} + y^{x} = 0$ 确定的隐函数 y(x) 的导数。
- 2. (10 分) 求由参数方程 $\begin{cases} x = 6t + t^3 \\ y = t + \arctan \end{cases}$ 确定的函数 y(x) 的一 阶导数和二阶导数。
- 3. (14 分) (1) 分别写出函数 $f(x) = \ln x$ 和 $g(x) = \cos(x-1)^2$ 在 x = 1 处的带皮亚诺余项的 n 阶泰勒公式。(10分)
 - (2) 利用泰勒展开公式求极限 (4分)

$$\lim_{x \to 1} \frac{(x-1)^3 \ln x - 1 + \cos(1-x)^2}{(1-x)^4}$$

- 4. (12 分) 设函数 y = f(x) 在 [a,b] 上连续,在 (a,b)内可微, 且 f(a) = f(b) = 0, 证明方程 $f'(x) - f(x)\cos x = 0$ 在 (a,b) 内 一定有解。
- 5. (12 分) 证明不等式:

当
$$e^2 < a < b < e^3$$
时, $\ln^2 b - \ln^2 a > \frac{3}{e^3} (b - a)$