QUALIFYING ENAM

Moring 1300

Al ebra

- 1. a. Give an example of an abelian group
 - b. Give an example of a non-abelian group.
- 2. Let G be a group and let x c G. Define the set

$$C_{C}(x) = \{y \in G \mid xy = yx\}.$$

Show that $C_G(x)$ is a subgroup of G.

- 3. Show that no group can be the union of two proper subgroups.
- 4. Let R be a ring which has a multiplicative identity 1. Show that if 1' is any other multiplicative identity than 1 = 1'.
- 5. Let I depote the ring of integers. Prove that

- 5. Let m be a positive integer and let \mathbb{Z} be the ring of integers. Prove that $\frac{\mathbb{Z}}{(p)}$ is a field if and only if p is a prime number.
- 7. Let Q be the field of rational numbers, let p be a prime number, and let

 $I_{(p)} = \{\frac{a}{b} \in \mathbb{Q} \mid a, b \text{ are relatively prime and } \}$ not divide b).

From that $\mathcal{L}_{(m)}$ is a subring of \mathbb{Q}

- 3. Let Q be the field of rational numbers and let Q[x] denote the ring of polynomials in the indeterminate x with coefficients in Q. Let (x^2+1) denote the ideal in Q generated by the polynomial x^2+1 . Prove that $\frac{Q[x]}{(x^2+1)}$ is a field.
- Let Q be the field of rational numbers and let
 V = ((a, b, c) | a, b, c ε Q) be the vector space whose operations are given by

$$(a_1, b_1, c_1) + (a_2, b_2, c_2) = (a_1 + b_1, a_2 + b_2, c_1 + c_2)$$

 $r(a,b,c) = (rs, rb, rc)$

for r, a, b, c,
$$s_1$$
, b_1 , c_1 , a_2 , b_2 , $c_2 \in \mathbb{Q}$. Now let
$$W = \{(a, b, c) \in V \mid 2a - 3b + \frac{1}{3}c = 0\}.$$

Prove that W is a vector subspace of V.

- 10. Let V be a 2-dimensional vector space over a field F and let $T:V\to V$ be a linear transformation such that
 - (1) T / Oy

(11)
$$\tau^2 = 0_V$$
.

Prove that there exists a unique 1-dimensional subspace $W\subseteq V$ such that T(w)=0 for all $w\in W$.

Dr. Let 4 b2 the following.

i. We a see argument to show $f(x) = \frac{1}{x^2}$ is continuous on $f(x) = \frac{1}{x^2}$.

on the second ast of meal numbers is uncountable.

- in States in the shoulded real valued function on the closed in the continuities of forms a secondary subset of [0, 1]. Prove f is Riemann for gradic on [0, 1].
- Suppose it is a continuous real valued function on the contains $\{0, 1\}$ and $\int_0^1 x^2(x) dx = 0$. Prove f(x) = 0 for all x in [0, 1].
- Supposed the differentiable real valued function on the solution that the limits $\lim_{x\to +\infty} f(x)$ and $\lim_{x\to +\infty} f'(x)$ beth related to the finite. Prove $\lim_{x\to +\infty} f'(x) = 0$.
- 5. Let i be a continuous function on $[0,\pi]$. Prove if $(0,\pi)$ sin(rer) (x=0).
- The first the power series of acusarganes for the power series

$$\lim_{n \to \infty} \frac{1 - 1 \cdot n + 1}{n} = \log_{\alpha}$$