-Olivier Begasat

M-n dim closed oranted manifold

$$LM = {^{\infty}(S^{1} \rightarrow M)}$$

e: LM → M , C→ ((0)

String topology an algebraic structure on H*(LM)

The: (Ith. (IM), , B) - BV algebra.

Givenuot 2-TQFT S_M : S_N (S_N) = $H_*(LM)$ S_N (S_N) = $\left\{ \cdot : H_*(LM) \xrightarrow{602} (M_*(LN)) \right\}$

almost correct as $H_{*}(LM) \neq \text{spirite dimensional}$

Loop product:

$$\cdot: C_{i}(lm) \otimes C_{i}(lm) \longrightarrow C_{i+j-n}(lm)$$

· = ι amalgamation of \cap on $H_*(\Pi)$ and Ponteyagin product on $H_*(\Omega, \Pi)$

(- simplices in LM:

x: si→ LM y: si→ LM ~ hy

parametered by x ny where the book at every interaction pt = roncatenation

Prop : · descends to homology & defines Hi (IM) x Hj (IM) -> Hi (IM) of loops at x and y.

H= (Lm) = H++n (Lm)

· $H_*\otimes H_*\longrightarrow H_*$ is also 0, also viative, graded commutative Prop.

$$g: LM \times S' \longrightarrow LM$$
 $(C \cdot \Theta) (4) = c (4+\Theta)$
 $\alpha: \Delta^{i} \longrightarrow LM$
 $O \cap O \cap A^{i}$
 $Bx - family of loops for ametrized by $\Delta^{i} \times S^{i}$
 $B \text{ descends fo } H_{*}(LM) \text{ and gives a degree 1 operator.}$
 $B(x) = f_{*}(\alpha \times [S^{i}]) \implies B^{2} = 0$
 $Chas - Sultivan$
 $A(LM, \cdot, B)$ is a $BV - algebra_{*}$.

1) • geoded commutative associative$

H* (LM, ·, B) is a BV-algebra;

- 3) B has order 2 wit .

$$B \neq derivation$$
 $B(x,y) - Bx \cdot y - (-1)^{|x|} x \cdot By = \{x,y\} - (-1)^{|x|}$

Map of algebras

$$\Omega_{m}M \longrightarrow LM$$
 finite codumension embedding

 $m_0 \longrightarrow M$ gives $V_{m_0 \hookrightarrow LM}$

Pontryagin-Thum Tubular nbd (IZCIM)

 $H_*(LM) \simeq HH^*(C^*(M))$ M simply connected. SM: 2-TQFT Sm(5) - Hm(LM) S, (\$\frac{1}{5}) = . $\geq_{g,p,q}$ LMXLM maps (S -> M) out LM codim n embedding Do Pontryagin thom again. We get a map H* ([uxru) - ollopse H* (thom (e* 1 H = uxm)) H_{1-n} (8,N) -out + H_{*} (LM) ≥g,β, g | p≥1 p-circles + trees Sullivan Chord diagram - at each vortex is rejetic ordering of incoming edges Codin of M = # circular vertices

= n (# arc. vertices - # toos) = - X. n

X (Sullivan - chord oliagram) = X = g. p. q

X (diag. obtained by contrading trees)

Given a surface $\geq_{g,p,q}$ \sim category of fat graphs $\operatorname{Fat}_n(g)$ $|\operatorname{Fat}_n(g)|_n$ f-top space of metric fat graphs f classifying space of morphing class group of $\geq_{g,p,q}$