Lean 3 and and mathlib

Markus Himmel

Lean 3 and Lean 4

Lean 3 and Lean 4
have similar
underlying logic and
syntax

Lean 4 has some
very nice advantages
over Lean 3, but it is
only just becoming
production—ready

Goal: port Lean 3
library and
infrastructure to
Lean 4

Interactive theorem proving is fun, but often also annoying

How can we reduce the friction of formalisation?

Better proofs

Can we find alternative approaches to theorems that are easier to formalize?

Automation

Can we make the system smart enough to solve all "maths—trivial" goals for us?

Libraries

Can we build a standard library that is so complete that we can jump right into our proof without worrying about fundamentals?

Let's see some of the automation in Lean 3

Unlike most theorem provers, Lean has a large monolithic mathematics library

Algebra

- Algebra hierarchy
- Linear algebra
- Groups, rings, modules

Unlike most theorem provers, Lean has a large monolithic mathematics library

Analysis

- Real/complex numbers, quaternions
- Measure theory, integration theory
- Lebesgue measure, Bochner integral
- Calculus
- Calculation of integrals
- Missing: Differential equations, complex analysis

Unlike most theorem provers, Lean has a large monolithic mathematics library

Category theory

- Limits, adjunctions, monads
- Monadicity theorems
- Adjoint functor theorems
- Enriched, triangulated, abelian, monoidal categories

Unlike most theorem provers, Lean has a large monolithic mathematics library

Combinatorics

- Pigeonhole principles
- Hall's marriage theorem
- Ramsey theory
- Derangement formula
- Partition theorem
- Game theory

Unlike most theorem provers, Lean has a large monolithic mathematics library

Computer Science

- DFAs, NFAs, regular expressions
- Turing machines, computability
- Halting problem
- Primitive/partial recursive functions

Unlike most theorem provers, Lean has a large monolithic mathematics library

Geometry

- Analytic geometry
- Manifolds
- Schemes

Unlike most theorem provers, Lean has a large monolithic mathematics library

Number theory

- Quadratic reciprocity
- Elementary number theory
- Lucas-Lehmer primality test
- p-adic numbers
- e is transcendental
- Missing: algebraic number theory

Unlike most theorem provers, Lean has a large monolithic mathematics library

Numerical mathematics

• Missing: everything

Unlike most theorem provers, Lean has a large monolithic mathematics library

Probability theory

• Missing: almost everything

Unlike most theorem provers, Lean has a large monolithic mathematics library

Topology

- Stone-Čech compactification
- Urysohn's lemma
- Tychonoff's theorem
- Compact-open topology
- Missing: algebraic topology

If you liked the course and want to do more Lean

For now, Lean 3 is the way to go

Get involved!

- Pick a topic/theorem you like and start formalising
- Ask on Zulip if you get stuck or need inspiration
- 3 You will pick up Lean 3 syntax as you go

https://leanprover-community.github.io/

- One URL for everything Lean 3
- Contains links to installation instructions, learning resources and documentation
- Any questions? Just message me or make a thread on Zulip