Long Distance Coach 長距離バス解説

今西 健介 (@japlj)

情報オリンピック 2016-2017 春季トレーニング合宿 競技日3

長距離バスが目的地に行きたい 水を飲みます

長距離バスが目的地に行きたい 水を飲みます

長距離バスが目的地に行きたい 水を飲みます

長距離バスが目的地に行きたい 水を飲みます

長距離バスが目的地に行きたい水を飲みます

- ▶途中の補給地点で給水器学に◇を補給できる
 - ◊ 1個で W 円かかる
- ▶運転手♥と乗客♥♥♥が周期的に◇を飲む
 - 乗客 j は時刻 $D_j + kT$ に \Diamond を 1 個飲む
- ▶ ♦ が無いと客は怒って帰る
 - 乗客jが帰る $\odot \rightarrow \odot$ と C_j 円かかる
 - 運転手が帰ると 💣 なので回避せねばならない

制約

◇を飲む周期目的地域までの時間

$$1 \le T \le X \le 1,000,000,000$$

▶
$$1 \leq D_j < T$$
 ← ◇を最初に飲む時刻

$$1 \le C_j \le 1,000,000,000$$

小課題 1 (16点)

► N ≤ 8

▼ < はい全探索で常勝で~す</p>

M ≤ 8

? ? ? ? ? ? ? ? ? ?

 $1 \le T \le X \le 1,000,000,000,000$

△を飲む回数が数千億回とか!??

図にする

- ▶各学につき補給する ◇の個数の候補は O(M) 通り
- ▶探索候補は全部で O((M+1)N+1) 通り
 - ▶実際はもっと少ない
- ② 2秒で間に合うかなあ……?

実装によっては間に合わないよ

この補給地点はこの人を帰らせる権利を持っている

この補給地点は

この補給地点はこう

この補給地点はこうかこう

この補給地点はこうかこうかこう

もうすこしよく見る

この補給地点はこうかこうかこうかこう

安心できる小課題1の解法

- ▶先にそれぞれの客を帰すか送り届けるか決める
 - ▶ これは *O*(2*M*) 通り
- ▶すると各学で何個 ◇ を補給するか決まる
- ② 2秒で間に合うかなあ……?

余裕があるよ

問題の言い換え

補給地点→帰せる人の区間

	0	1	2	3	4	5	6	7
					4	3		
T	8	9	10	11	12	13	14	15
2 T	16	17	18	19	20	21	22	23
3T	24	25	26	27	28	29 =	X	

問題の言い換え

補給地点→帰せる人の区間

	0	1	2	3	4	5	6	7
T	8	9	10	11	12	13	14	15
2 <i>T</i>	16	17	18	19	20	21	22	23
3T	24	25	26	27	28	29 =	$\cdot X$	

問題の言い換え

補給地点→帰せる人の区間

多項式になったで賞(46点)

各学を「後ろから連続する何人かを帰せる区間」と見てなんか DP とかしてください 3 乗以内になれば大丈夫です多分

ちゃんと DP できたで賞 (71点)

dp[i][j] := 人 i まで見ていて

人iを学jで追い返したときの最小コスト

すこし詳しく

dp[i][j] := 人 i まで見ていて

人iを学jで追い返したときの最小コスト

▶dp[i][] := 人 i まで見ていて人 i を送り届ける場合

更新式

- ▶dp[i][j] += dp[i + 1][j] + (人iを学jで帰すコスト)
 - 🌱 j がすでにある場合
- ▶dp[i][j] = min{dp[i + 1][常]} + (人iを響jで帰す)
 - ▶ 🏲 j が人 i と i+1 の間で出てくる場合
- ▶dp[i][] = min{dp[i + 1][☆]} + (人iを送り届ける)

人\学	FREE	1	2	3	4	5	6	7	8
9									
8									
7									
6									
5									
4									
3									
2									
1									

すこし詳しく

dp[i][j] := 人 i まで見ていて

人iを学jで追い返したときの最小コスト

▶dp[i][] := 人 i まで見ていて人 i を送り届ける場合

更新式

- ▶dp[i][j] += dp[i + 1][j] + (人iを学jで帰すコスト)
 - 学 j がすでにある場合
- ▶dp[i][j] = min{dp[i + 1][辩]} + (人iを膋jで帰す)
 - ▶ ずjが人iとi+1の間で出てくる場合
- ▶dp[i][] = mjn{dp[i + 1][常]} + (人iを送り届ける)

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	*	*	*	*	*
8	1	min	をとる	5					
7									
6									
5									
4									
3									
2									
1									

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	*	*	*	*	*
8	*	*	*	*	*	*	*	*	*
7	J	min	をとる	5					
6									
5									
4									
3									
2									
1									

すこし詳しく

dp[i][j] := 人 i まで見ていて

人iを学jで追い返したときの最小コスト

▶dp[i][] := 人 i まで見ていて人 i を送り届ける場合

更新式

- ▶dp[i][j] += dp[i + 1][j] + (人iを学jで帰すコスト)
 - 🌱 j がすでにある場合
- ▶dp[i][j] = mjn{dp[i + 1][常]} + (人iを膋jで帰す)
 - ▶ 🎢 j が人 i と i+1 の間で出てくる場合
- ▶dp[i][] = min{dp[i + 1][常]} + (人iを送り届ける)

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	∞	*	*	*	*
8	*	*	*	*	∞	*	*	*	*
7	*	*	*	*	∞	*	*	*	*
6									
5						\ <u> </u>			
4							6 と 7		
3							4 が	始まる	
2									
1									

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	∞	*	*	*	*
8	*	*	*	*	∞	*	*	*	*
7	*	*	*	*	∞	*	*	*	*
6						min :	をとる		
5						,			
4						人	6 と 7	の間	で
3						7	4 がタ	始まる	
2									
1									

すこし詳しく

dp[i][j] := 人 i まで見ていて

人iを学jで追い返したときの最小コスト

▶dp[i][]:=人iまで見ていて人iを送り届ける場合

更新式

- ▶dp[i][j] += dp[i + 1][j] + (人iを学jで帰すコスト)
- 뿣 j がすでにある場合
- ▶dp[i][j] = min{dp[i + 1][辩]} + (人iを膋jで帰す)
 - ▶ 🏲 j が人 i と i+1 の間で出てくる場合
- ▶dp[i][] = min{dp[i + 1][常]} + (人iを送り届ける)

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	∞	*	*	*	*
8	*	*	*	*	∞	*	*	*	*
7	*	*	*	*	∞	*	*	*	*
6	*	*	*	*	* •	*	* 5 * * 1 ~ 7	* :帰すコ <i>フ</i>	*
5					•		32740	ご)市 9 コン	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4									
3									
2									
1									

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	∞	*	*	*	*
8	*	*	*	*	∞	*	*	*	*
7	*	*	*	*	∞	*	*	*	*
6	*	*	*	*	* •	*	* 5を 学 4て	* 過去っこ	*
5					*	$K \mathrel{\sqsubseteq}$			
4					•		4を膋4て	が帰る コン	()
3									
2									
1									

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	∞	*	*	*	*
8	*	*	*	*	∞	*	*	*	*
7	*	*	*	*	∞	*	*	*	*
6	*	*	*	*	* •	*	* 5を 学 4で	* ぬはオコ‐	*
5					*	$\prec =$			
4					, <		4を膋4で	が帰る コン	X F
3								_	
2					11	也の列	によら	ず決	まる
1					+				

人\学	FREE	1	2	3	4	5	6	7	8
9	*	*	*	*	∞	*	*	*	*
8	*	*	*	*	∞	*	*	*	*
7	*	*	*	*	∞	*	*	*	*
6	*	*	*	*	* •	*	* 5 * * 1 ~ 7	* :帰すコ <i>フ</i>	*
5					*	$K \sqsubseteq$			
4					. •		4を ↑ 4て	帰すコス	< F
3									
2					l 1t	也の列	によら	ず決	まる
1					+				

人\学	FREE	1	2	3	4	5	6	7	8
9									
8									
7	t	ららか	じめ足	とされ て	ている	と思っ	ってお	<	
6		(mi	n に景	響は	ないこ	とに	主意)		
5									
4					•				
3			+(C[3]+	····+C	[9]			
2			+(C[2]+	····+C	[9]			
1			+(C[1]+	····+C	[9]			

人\学	FREE	1	2	3	4	5	6	7	8
9									
8									
7									
6					登場				
5									
4						直線的	ク1~+ 首	1 1	
3						旦冰口	ソルニュロ	ŊΗ	
2									
1					+				

人\学	FREE	1	2	3	4	5	6	7	8
9									
8			登場						
7		登場					登場		
6					登場			登場	
5						登場			
4				登場					
3									登場
2									
1		+	+	+	+	+	+	+	+

Convex Hull Trick

Convex Hull Trick

- ▶汎用テク&バリエーションも多いので詳細は各自
 - 蟻本にもある?ネット上にも結構解説がある
- ▶要らない直線を管理しつつ頑張っていけば……
 - ●いやあ大変だったなぁ……
 - ???????????
- $1 \le T \le X \le 1,000,000,000,000$

要らない直線の判定法

▶3 直線 $y_i = a_i x + b_i$ (i=1,2,3) が $a_1 > a_2 > a_3$ のとき

$$(a_2-a_1)(b_3-b_2) \ge (b_2-b_1)(a_3-a_2)$$

$$1 \le T \le X \le 1,000,000,000,000$$

世はまさに大オーバーフロー時代

- ▶回避方法1: 頑張る
 - ▶a/d ≥ b/c を判定しようとする
 - ▶整数部分が違うなら簡単で 同じ時は mod をとって小数部分を再帰比較する
- ▶回避方法2: doubleる
 - ▶どうせそんなきわどいケースないでしょ……
- ▶回避方法3: __int128
 - ▶パソコンに詳しい人向け

得点分布

