

이동식 액화도시가스 야드 트랙터 충전의 시설·기술·검사 기준

가스기술기준위원회 심의·의결: 2021년 9월 10일

산업통상자원부 슝인 : 2021년 10월 8일

# 가 스 기 술 기 준 위 원 회

위 원 장 최 병 학 : 강릉원주대학교 교수

부위원장 장 기 현 : 귀뚜라미 전무

당 연 직 홍 순 파 : 산업통상자워부 에너지안전과장

곽 채 식 : 한국가스안전공사 안전관리이사

**고압가스분야** 최 병 학 : 강릉워주대학교 교수

송 성 진 : 성균관대학교 부총장 이 범 석 : 경희대학교 교수

윤 춘 석 : (주)한울이앤알 대표이사

안 영 훈 : (주)한양 부사장

액화석유가스분야 안 형 환 : 한국교통대학교 교수

권 혁 면 : 연세대학교 연구교수 천 정 식 : (주)E1 대표이사

강 경 수 : 한국에너지기술연구원 책임

이 용 권 : (주)대연 부사장

도시가스분야 신 동 일 : 명지대학교 교수

김 정 훈 : 한국기계전기전자시험연구원 수석

정 인 철 : (주)예스코 이사 장 기 현 : 귀뚜라미 전무

도시가스분야 이 광 원 : 호서대학교 교수

정 호 영 : 전남대학교 교수

강 인 용 : 에이치앤파워(주) 대표 백 운 봉 : 한국표준과학연구원 책임

이 기준은 「고압가스 안전관리법」 제22조의2, 「액화석유가스의 안전관리 및 사업법」 제27조의2 및 「도시가스사업법」 제17조의5에 따라 가스기술기준 위원회에서 정한 상세기준으로, 이 기준에 적합하면 동 법령의 해당 기준에 적합한 것으로 보도록 하고 있으므로 이 기준은 반드시 지켜야 합니다.

|  | Korea Gas Safety Code |
|--|-----------------------|
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |
|  |                       |

| KGS Code 제·개정 이력 |                                       |  |  |
|------------------|---------------------------------------|--|--|
| 종목코드번호           | KGS FP655 <sup>2021</sup>             |  |  |
| 코 드 명            | 이동식 액화도시가스 야드 트랙터 충전의 시설·기술·<br>검사 기준 |  |  |

| 제 · 개 정 일 자 | 내 용                         |
|-------------|-----------------------------|
| 2021. 1.12  | 제 정 (산업통상자원부 공고 제2021-013호) |
| 2021. 8. 9. | 제 정 (산업통상자원부 공고 제2021-583호) |
| 2021.10. 8. | 제 정 (산업통상자원부 공고 제2021-699호) |
|             | - 이 하 여 백 -                 |
|             |                             |
|             |                             |
|             |                             |
|             |                             |
|             |                             |
|             |                             |
|             |                             |
|             |                             |
|             |                             |
|             |                             |

# <u>목 차</u>

| 1. 일반사항                | 1      |
|------------------------|--------|
| 1.1 적용범위               | 1      |
| 1.2 기준의 효력             | 1      |
| 1.3 용어 정의              | 1      |
| 1.4 기준의 준용             | 4      |
| 1.5 경과조치               | 4      |
| 2. 시설기준                | 5      |
| 2.1 배치기준               | 5      |
| 2.1.1 보호시설과의 거리        | 5      |
| 2.1.2 화기와의 거리          | 5      |
| 2.1.3 다른 설비와의 거리(내용없음) |        |
| 2.1.4 사업소경계와의 거리       | 6      |
| 2.1.5 도로경계와의 거리        | 6      |
| 2.1.6 철도와의 거리          | 6      |
| 2.1.7 공지의 확보(해당 없음)    | 6      |
| 2.2 기초기준               |        |
| 2.2.1 지반조사(해당 없음)      | 6      |
| 2.2.2 기초공사(해당 없음)      | 6      |
| 2.2.3 저장탱크 고정(해당 없음)   | ·····7 |
| 2.3 저장설비기준             |        |
| 2.3.1 저장설비 재료(해당 없음)   | 7      |
| 2.3.2 저장설비 구조(해당 없음)   | 7      |
| 2.3.3 저장설비 설치          | ·····7 |
| 2.4 가스설비기준             | 7      |
| 2.4.1 가스설비 재료          | 8      |
| 2.4.2 가스설비 구조          | 8      |
| 2.4.3 가스설비 두께 및 강도     | 8      |
| 2.4.4 가스설비 설치          | 8      |
| 2.4.5 가스설비 성능          | 10     |
| 2.5 배관설비 기준            | 10     |
| 2.5.1 배관설비 재료          | 10     |

|   | 2.5.2 배관설비 구소              | ·16 |
|---|----------------------------|-----|
|   | 2.5.3 배관설비 두께              | ·16 |
|   | 2.5.4 배관설비 접합              | ·18 |
|   | 2.5.5 배관설비 신축흡수조치          | ·19 |
|   | 2.5.6 배관설비 절연조치            | -20 |
|   | 2.5.7 배관 설치                | ·21 |
|   | 2.5.8 배관부대설비 설치            | .22 |
|   | 2.5.9 배관설비 성능              | ·23 |
|   | 2.5.10 배관설비 표시             | ·23 |
| 2 | .6 사고예방설비기준                | ·23 |
|   | 2.6.1 과압안전장치 설치            | ·23 |
|   | 2.6.2 가스누출검지경보장치 설치        | -35 |
|   | 2.6.3 긴급차단장치 설치            | ·37 |
|   | 2.6.4 역류방지장치 설치            | -39 |
|   | 2.6.5 역화방지장치 설치(내용 없음)     | -39 |
|   | 2.6.6 위험감시 및 제어장치 설치       | -39 |
|   | 2.6.7 오발진방지장치 설치           | -39 |
|   | 2.6.8 전기방폭설비 설치            | -39 |
|   | 2.6.9 환기설비 설치              | -39 |
|   | 2.6.10 부식방지설비 설치           | -39 |
|   | 2.6.11 정전기 제거 설비 설치        | -40 |
|   | 2.6.12 전도방지설비 설치(해당 없음)    | •41 |
|   | 2.6.13 절연설비 설치(내용 없음)      | •41 |
|   | 2.6.14 내부반응 감시설비 설치(내용 없음) | •41 |
|   | 2.6.15 위험사태발생 방지설비 (내용 없음) | •41 |
|   | 2.6.16 인터록 제어장치 설치(내용 없음)  | •41 |
|   | 2.6.17 가스치단장치 설치           | •41 |
|   | 2.6.18 긴급분리장치 설치           | •41 |
|   | 2.6.19 충전기 보호설비 설치         | •42 |
|   | 2.6.20 화염검지기 설치            | ·43 |
| 2 | .7 피해저감설비기준                | ·43 |
|   | 2.7.1 방류둑 설치               | ·43 |
|   | 2.7.2 방호벽 설치               | •44 |
|   | 2.7.3 살수장치 설치(해당 없음)       | •48 |
|   |                            |     |

# Korea Gas Safety Code

| 2.7.4  | l 제독설비 설치(해당 없음) ······      | 48 |
|--------|------------------------------|----|
| 2.7.5  | 5 중화·이송설비 설치(해당 없음)          | 48 |
| 2.7.6  | 5 풍향계 설치(해당 없음)              | 48 |
| 2.7.7  | 7 소화설비 설치                    | 48 |
| 2.7.8  | 3 통행시설 설치(해당 없음)             | 48 |
| 2.7.9  | ) 온도상승방지설비 설치                | 48 |
| 2.8 부  | 대설비 기준                       | 49 |
| 2.8.1  | . 계측설비 설치                    | 49 |
| 2.8.2  | 2 비상전력설비 설치                  | 50 |
| 2.8.3  | 3 통신설비 설치                    | 51 |
| 2.8.4  | l 운영시설물 설치 ·····             | 52 |
| 2.8.5  | 5 안전유지설비 설치(해당 없음)           | 52 |
| 2.8.6  | 6 안전공급설비 설치(해당 없음)           | 52 |
| 2.8.7  | 7 벤트시스템 설치(해당 없음)            | 52 |
| 2.9 亚  | 시기군                          | 52 |
| 2.9.1  | . 경계표시                       | 52 |
| 2.9.2  | 2 식별표지 및 위험표지                | 54 |
| 2.9.3  | 3 경계책(내용 없음)                 | 55 |
| 2.10   | 1 밖의 기준(내용 없음) ·····         | 55 |
|        |                              |    |
|        | 근                            |    |
| 3.1 안  | 전유지기준                        | 55 |
|        | 기초 유지관리(내용 없음)               |    |
| 3.1.2  | 2 저장설비 유지관리(내용 없음)           | 55 |
|        | 3 가스설비 유지관리                  |    |
|        | l 배관 유지관리(내용 없음) ·····       |    |
|        | 5 사고예방설비 유지관리                |    |
|        | 5 피해저감설비 유지관리(내용 없음)         |    |
| 3.1.7  | 7 부대설비 유지관리                  | 58 |
| _      | 전기준                          |    |
|        | . 충전 준비                      |    |
|        | ? 충전 작업                      |    |
| 3.2.3  | } 충전 사후 <del>조</del> 치 ····· | 59 |
| 3.3 점기 | 검기준                          | 59 |

| 3.3.1 전체시설 점검(내용 없음)5.        |
|-------------------------------|
| 3.3.2 기초점검(내용 없음)             |
| 3.3.3 저장설비 점검(내용 없음)5.        |
| 3.3.4 가스설비 점검5.               |
| 3.3.5 배관점검(내용 없음)61           |
| 3.3.6 사고예방설비 점검61             |
| 3.3.7 피해저감설비 점검61             |
| 3.3.8 부대설비 점검62               |
| 3.4 수리·청소 및 철거기준62            |
| 3.4.1 수리·청소 및 철거준비 ·······62  |
| 3.4.2 수리·청소 및 철거 작업 ·······63 |
| 3.4.3 수리 및 청소 사후조치64          |
|                               |
| 4. 검사기준                       |
| 4.1 검사항목                      |
| 4.1.1 중간검사                    |
| 4.1.2 완성검사                    |
| 4.1.3 정기검사                    |
| 4.1.4 수시검사6은                  |
| 4.2 검사방법                      |
| 4.2.1 중간검사 방법67               |

# 이동식 액화도시가스 야드 트랙터 충전의 시설·기술·검사 기준

# 1. 일반시항

### 1.1 적용범위

이 기준은 「도시가스시업법 시행규칙」(이하 "규칙"이라 한다) 제2조제3항제5호에 따른 가스 충전시설 중 이동식 액화도시가스 야드 트랙터 충전시설(자동차에 고정된 탱크를 이용하여 액화도시가스를 「항만법 시행령」 별표 5 제8호에 따른 야드 트랙터에 충전하는 시설을 말한다)의 시설·기술·검사에 대하여 적용한다.

# 1.2 기준의 효력

1.2.1 이 기준은 「도시가스사업법」(이하 "법" 이라한다) 제17조의5제2항에 따라 「고압가스안전 관리법」제33조의2에 따른 가스기술기준위원회의 심의·의결(안건번호 제2021-7호, 2021년 9월 10일)을 거쳐 산업통상자원부장관의 승인(산업통상자원부 공고 제2021-699호, 2021년 10월 8일)을 받은 것으로 법 제17조의5제1항에 따른 상세기준으로서의 효력을 가진다.

1.2.2 이 기준을 지키고 있는 경우에는 법 제17조의5제4항에 따라 「도시가스시업법 시행규칙」 (이하 "규칙"이라 한다) 별표6의2 제5호에 적합한 것으로 본다.

# 1.3 용어 정의

이 기준에서 사용하는 용어의 뜻은 다음과 같다.

- 1.3.1 "가연성가스" 란 아크릴로니트릴·아크릴알데히드·아세트알데히드·아세틸렌·암모니아·수소·황화수소·시안화수소·일산화탄소·이황화탄소·메탄·염화메탄·브롬화메탄·에탄·염화에탄·염화비닐·에틸렌·산화에틸렌·프로판·싸이크로프로판·프로필렌·산화프로필렌·부탄·부타디엔·부틸렌·메틸에테르·모노메틸아민·디메틸아민·트리메틸이민·에틸아민·벤젠·에틸벤젠 그 밖에 공기 중에서 연소하는 가스로서 폭발한계(공기와 혼합된 경우 연소를 일으킬수 있는 공기 중의 가스의 농도의 한계를 말한다. 이하 같다)의 하한이 10퍼센트 이하인 것과 폭발한계의 상한과 하한의 차가 20퍼센트 이상인 것을 말한다.
- 1.3.2 "액화가스" 란 가압·냉각 등의 방법으로 액체 상태로 되어 있는 것으로서 대기압에서의 끓는점이 섭씨 40도 이하 또는 상용의 온도 이하인 것을 말하다.

- 1.3.3 "압축가스" 란 일정한 압력에 의하여 압축되어 있는 가스를 말한다.
- 1.3.4 "가스충전시설" 이란 도시가스충전사업소 내 도시가스를 충전하기 위하여 설치하는 저장설비, 처리설비, 압축가스설비, 충전설비, 배관설비 및 그 부속설비를 말한다.
- 1.3.5 "저장설비" 란 도시가스를 충전 · 저장하기 위한 설비를 말한다.
- 1.3.6 "차량에 고정된 탱크" 란 고압가스의 수송·운반을 위하여 차량에 고정 설치된 탱크를 말하다.
- 1.3.7 "충전차량" 이란 액화도시가스를 야드 트랙터에 충전하기 위한 탱크가 고정된 차량을 말하다.
- 1.3.8 "충전용기" 란 도시가스의 충전질량 또는 충전압력의 2분의 1 이상이 충전되어 있는 상태의 용기를 말한다.
- 1.3.9 "잔가스용기" 란 도시가스의 충전질량 또는 충전압력의 2분의 1 미만이 충전되어 있는 상태의 용기를 말한다.
- 1.3.10 "가스설비" 란 가스충전시설 중 도시가스가 통하는 부분을 말한다.
- 1.3.11 "고압가스설비" 란 가스설비 중 고압가스가 통하는 부분을 말한다.
- 1.3.12 "처리설비" 란 압축·액화나 그 밖의 방법으로 도시가스를 처리할 수 있는 설비로서 도시가스의 충전에 필요한 압축기, 기화기 및 펌프를 말한다.
- 1.3.13 "감압설비" 란 도시가스의 압력을 낮추는 설비를 말한다.
- 1.3.14 "처리능력" 이란 처리설비 또는 감압설비에 따라 압축 · 액화 그 밖의 방법으로 1일에 처리할 수 있는 도시가스의 양으로 다음 기준에 따른다.
- **1.3.14.1** 처리능력은 공정흐름도(PFD, process flow diagram)의 물질수지(material balance)를 기준으로 액화가스는 무게(kg)로 압축가스는 용적(온도 0℃, 게이지압력 OPa의 상태를 기준으로 한 m²)으로 계산한다.
- 1.3.15 "불연재료" 란 「건축법 시행령」 제2조제10호에 따른 불연재료를 말한다.
- 1.3.16 "방호벽" 이란 높이 2미터 이상, 두께 120 mm 이상의 철근콘크리트 또는 이와 같은 수준 이상의 강도를 가지는 구조의 벽을 말한다.

1.3.17 "보호시설" 이란 다음의 제1종보호시설 및 제2종보호시설을 말한다.

### 1.3.17.1 제1종보호시설

- 1.3.17.1.1 다음 중 어느 하나에 해당하는 건축물((4)의 경우에는 공작물을 포함한다)
- (1) 「초・중등교육법」 제2조에 따른 학교 및 「고등교육법」 제2조에 따른 학교
- (2) 「유아교육법」 제2조제2호에 따른 유치원
- (3) 「영유아보육법」 제2조제3호에 따른 어린이집
- (4) 「어린이놀이시설 안전관리법」 제2조제2호에 따른 어린이놀이시설
- (5) 「노인복지법」 제36조제1항제2호에 따른 경로당
- (6) 「청소년활동진흥법」 제10조제1호에 따른 청소년수련시설
- (7) 「학원의 설립·운영 및 과외교습에 관한 법률」 제2조제1호에 따른 학원
- (8) 「의료법」 제3조제2항제1호 및 제3호에 따른 의원급 의료기관 및 병원급 의료기관
- (9) 「도서관법」 제2조제1호에 따른 도서관
- (10) 「전통시장 및 상점가 육성을 위한 특별법」 제2조제1호에 따른 전통시장
- (11) 「공중위생관리법」 제2조제1항제2호 및 제3호에 따른 숙박업 및 목욕장업의 시설
- (12) 「영화 및 비디오물의 진흥에 관한 법률」 제2조제10호에 따른 영화상영관
- (13) 「건축법 시행령」 별표 1 제6호에 따른 종교시설
- (14) 「장사 등에 관한 법률」 제29조제1항에 따른 장례식장
- 1.3.17.1.2 사람을 수용하는 건축물(「건축법」 제2조제1항제2호에 따른 건축물을 말하며, 가설 건축물과 「건축법 시행령」 별표 1 제18호가목에 따른 창고는 제외한다)로서 사실상 독립된 부 분의 연면적이 1천㎡ 이상인 것
- 1.3.17.1.3 「건축법 시행령」 별표 1 제5호가목・나목 및 라목에 따른 공연장・예식장 및 전시장에 해당하는 건축물, 그 밖에 이와 유사한 시설로서 「소방시설 설치유지 및 안전관리에 관한법률 시행령」 별표 4에 따라 산정된 수용인원이 300명 이상인 건축물
- 1.3.17.1.4 「사회복지사업법」 제2조제4호에 따른 사회복지시설로서 사회복지시설 신고증에 따른 수용 정원이 20명 이상인 건축물
- 1.3.17.1.5 「문화재보호법」 제2조제2항에 따른 지정문화재로 지정된 건축물

#### 1.3.17.2 제2종보호시설

- (1) 「건축법 시행령」 별표 1 제1호 및 제2호에 따른 단독주택 및 공동주택
- (2) 사람을 수용하는 건축물(「건축법」 제2조제1항제2호에 따른 건축물을 말하며, 가설건축물과 「건축법 시행령」 별표 1 제18호가목에 따른 창고는 제외한다)로서 사실상 독립된 부분의 연면적이 100㎡ 이상 1천㎡ 미만인 것
- 1.3.18 "충전설비" 란 야드 트랙터의 용기에 도시가스를 충전하기 위한 설비로서 충전기 및 그 부속설비를 말한다.

- 1.3.19 "압축가스설비" 란 압축기를 통해 압축된 가스를 저장하기 위한 설비로서 압력용기를 말한다.
- 1.3.20 "설계압력" 이란 고압가스용기 등의 각부의 계산두께 또는 기계적 강도를 결정하기 위하여 설계된 압력을 말한다.
- 1.3.21 "상용압력" 이란 내압시험압력 및 기밀시험압력의 기준이 되는 압력으로서 사용상태에서 해당설비 등의 각부에 작용하는 최고사용압력을 말한다.
- 1.3.22 "설정압력(set pressure)" 이란 안전밸브의 설계상 정한 분출압력 또는 분출개시압력으로서 명판에 표시된 압력을 말한다.
- 1.3.23 "축적압력(accumulated pressure)" 이란 내부유체가 배출될 때 안전밸브에 의하여 축적되는 압력으로서 그 설비 내에서 허용될 수 있는 최대압력을 말한다.
- 1.3.24 "초과압력(over pressure)" 이란 안전밸브에서 내부유체가 배출될 때 설정압력 이상으로 올라가는 압력을 말한다.
- 1.3.25 "평형 벨로우즈형 안전밸브(balanced bellows safety valve)" 란 밸브의 토출측 배압의 변화에 따라 성능특성에 영향을 받지 않는 안전밸브를 말한다.
- 1.3.26 "일반형 안전밸브(conventional safety valve)" 란 밸브의 토출 측 배압의 변화에 의하여 직접적으로 성능특성에 영향을 받는 안전밸브를 말한다.
- 1.3.27 "배압(back pressure)" 이란 배출물 처리설비 등으로부터 안전밸브의 토출 측에 걸리는 압력을 말한다.
- 1.3.28 "비상전력등" 이란 정전 등의 경우에 제조설비 등을 안전하게 유지하고 안전하게 정지시키기 위하여 필요한 최소용량을 갖춘 전력 및 공기 등 또는 이와 동등 이상인 것을 말한다.

# 1.4 기준의 준용

액화도시가스의 운반을 위한 충전차량의 운반기준 및 시설·기술 기준은 KGS FP211(고압가스용기 및 차량에 고정된 탱크 충전의 시설·기술·검사·안전성평가 기준), KGS AC113(고압가스용 차량에 고정된 탱크 제조의 시설·기술·검사 기준), KGS GC206(고압가스 운반등의 기준) 및 KGS GC207(고압가스 운반차량의 시설·기술 기준)을 따른다.

### 1.5 경과조치

#### 1.5.1 상세기준에 관한 경괴조치 <신설 21.8.9.>

이 상세기준은 공포한 날로부터 적용한다.

### 1.5.2 방류둑 설치에 관한 경과조치 <신설 21.8.9.>

2021년 8월 9일 이전에 설치된 시설은 2.7.1의 개정 기준에 적합한 것으로 본다.

# 1.6 용품 사용제한

가스충전시설에 설치·사용하는 제품이 「고압가스 안전관리법」 또는 「액화석유가스의 안전관리 및 사업법」에 따라 검사를 받아야 하는 것인 경우에는 그 검사에 합격한 것으로 한다.

# 2. 시설기준

# 2.1 배치기준

가스충전시설은 「항만법」제2조제4호에 따른 항민구역 중 육상구역에 설치하고, 충전차량의 설 치대수는 1대로 하며, 가스충전시설은 다음의 기준을 따른다.

#### 2.1.1 보호시설과의 거리

- 2.1.1.1 충전장소(지면에 표시한 충전차량의 주정차 장소 이하 같다)는 그 외면으로부터 제1종보호시설(사업소 안에 있는 보호시설을 제외한다. 이하 같다)까지 20 m, 제2종보호시설까지 14 m의 안전거리를 유지한다.
- 2.1.1.2 처리설비로부터 30 m 이내에 보호시설(시업소 안에 있는 보호시설 및 전용공업지역 안에 있는 보호시설을 제외한다)이 있는 경우에는 처리설비의 주위에 도시가스폭발에 따른 충격을 견딜 수 있는 2.7.2.1에 따른 방호벽을 설치한다. 다만, 처리설비 주위에 방류둑 설치 등 액확산 방지조치를 한 경우에는 그렇지 않다.

### 2.1.2 화기외의 거리

충전장소, 처리설비 및 충전설비의 외면과 전선, 화기(그 설비안의 것을 제외한다)를 취급하는 장소 및 인화성물질 또는 가연성물질 저장소와의 사이에는 그 화기가 차량에 고정된 탱크, 처리설비 및 충전설비에 악영향을 미치지 않도록 다음 기준에 따른 거리를 유지한다.

2.1.2.1 충전장소, 처리설비 및 충전설비는 고압전선(직류의 경우에는  $750\,\mathrm{V}$ 를 초과하는 전선을, 교류의 경우에는  $600\,\mathrm{V}$ 를 초과하는 전선을 말한다)까지 수평거리  $5\,\mathrm{m}$ , 저압전선(직류의 경우에는  $750\,\mathrm{V}$  이하의 전선을, 교류의 경우에는  $600\,\mathrm{V}$  이하의 전선을 말한다)까지  $1\,\mathrm{m}$  이상의 거리를 유지한다.

- 2.1.2.2 충전장소·처리설비 및 충전설비의 외면으로부터 화기(그 설비 내의 것을 제외한다)를 취급하는 장소까지는 8 m 이상의 우회거리를 유지한다.
- 2.1.2.3 충전장소·처리설비 및 충전설비는 인화성물질 또는 가연성물질의 저장소로부터 8 m 이 상의 거리를 유지한다.
- 2.1.2.4 충전장소·처리설비 및 충전설비는 화기(그 설비 안의 것은 제외한다)를 취급하는 장소까지 8m 이상의 우회거리를 두거나 가스가 유동하는 것을 방지하기 위하여 다음 기준에 따라 유동 방지시설을 설치한다.
- 2.1.2.4.1 유동방지시설은 높이 2m 이상의 내화성 벽으로 하고, 가스설비 등 화기를 취급하는 장소와 우화수평거리 8m 이상을 유지한다.
- 2.1.2.4.2 불연성 건축물 안에서 화기를 사용하는 경우 가스설비 등으로부터 수평거리 8m 이내에 있는 건축물 개구부는 방화문 또는 망입유리로 폐쇄하고, 사람이 출입하는 출입문은 2중문으로 한다.

# 2.1.3 다른 설비와의 거리(내용없음)

#### 2.1.4 시업소경계와의 거리

충전장소, 처리설비 및 충전설비는 그 외면(충전장소의 경우 그 중심)으로부터 사업소경계(항만경계를 사업소경계로 보며, 사업소경계가 바다·호수·하천·도로 등의 경우에는 그 반대편 끝을 경게로 본다)까지 10 m 이상의 안전거리를 유지한다. 다만, 충전장소, 처리설비 및 충전설비 주위에 2.7.2.1에 따른 방호벽을 설치하는 경우에는 5 m 이상의 안전거리를 유지할 수 있다.

#### 2.1.5 도로경계외의 거리

충전설비는 2.1.4에 불구하고 「도로법」에 따른 도로경계까지 5m 이상의 거리를 유지한다.

#### 2.1.6 철도와의 거리

충전장소, 처리설비 및 충전설비는 그 외면(충전장소의 경우 그 중심)으로부터 철도까지는 30 m 이상의 거리를 유지한다.

# 2.1.7 궁지의 확보(해당 없음)

### 2.2 기초기준

충전장소·처리설비 및 충전설비의 기초는 지반침하로 인하여 그 설비 및 충전치량에 유해한 영향을 끼치지 않도록 견고한 철근콘크리트로 하며, 지진발생 시 처리설비를 보호하기 위하여 지지구조물 및 기초는 KGS GC203(가스시설 및 지상 가스배관 내진설계 기준)에 따라 지진의 영향에 대하여 안전한 구조로 설계·제작 및 설치하고, 그 성능을 유지한다.

- 2.2.1 지반조사(해당 없음)
- 2.2.2 기초공사(해당 없음)
- 2.2.3 저장탱크 고정(해당 없음)
- 2.3 저장설비기준
- 2.3.1 저장설비 재료(해당 없음)
- 2.3.2 저장설비 구조(해당 없음)
- 2.3.3 저장설비 설치
- 2.3.3.1 저장탱크 설치(해당 없음)
- 2.3.3.2 저장실 설치(해당 없음)

# 2.3.3.3 저장탱크 부압피괴 방지조치

차량에 고정된 탱크에는 내부압력이 외부압력보다 낮아짐에 따라 그 탱크가 파괴되는 것을 방지하기 위하여 다음의 부압파괴방지설비를 설치한다.

- (1) 압력계
- (2) 압력경보설비
- (3) 그 밖의 다음 중 어느 하나 이상의 설비
- (3-1) 진공안전밸브
- (3-2) 다른 저장탱크 또는 시설로부터의 가스도입배관(균압관)
- (3-3) 압력과 연동하는 긴급차단장치를 설치한 냉동제어설비
- (3-4) 압력과 연동하는 긴급차단장치를 설치한 송액설비

### 2.3.3.4 저장탱크 괴충전 방지 조치(해당 없음)

# 2.3.3.5 저장설비 보호조치

저장설비는 충전소에 출입하는 야드 트랙터의 진·출입로 이외의 장소에 설치하며, 야드 트랙터에 의한 충격 등으로부터 저장설비를 보호할 수 있는 조치를 한다. 다만, 2.7.2.1에 따른 방호벽 또는 방류둑 설치 등 액확산방지조치를 한 경우에는 야드 트랙터에 의한 충격 등으로부터 저장설비를 보호할 수 있는 조치를 하지 않을 수 있다.

# 2.4 기스설비기준

#### 2.4.1 기스설비 재료

가스설비 및 충전설비의 재료는 그 도시가스의 취급에 적합한 기계적 성질 및 화학적 성분을 가 진 것을 사용하다.

# 2.4.2 기스설비 구조

가스설비는 가스가 누출되지 않는 구조로 한다.

### 2.4.3 기스설비 두께 및 강도

가스설비는 그 도시가스를 안전하게 취급할 수 있도록 적합한 강도 및 두께를 가지는 것으로 한 다

### 2.4.4 기스설비 설치

가스충전시설에는 도시가스시설의 안전을 확보하기 위하여 다음 기준에 따른 가스설비를 설치한 다.

# 2.4.4.1 기스설비 설치위치

처리설비 및 충전설비는 지상에 설치하는 것을 원칙으로 한다. 다만 처리설비는 충전차량에 설치할 수 있다.

# 2.4.4.2 기스설비 설치 방법

가스충전시설에 설치하는 처리설비 및 충전설비 등은 그 가스충전시설 및 충전작업의 안전성을 확보할 수 있도록 다음 기준에 따라 설치한다.

#### 2.4.4.2.1 처리설비

- (1) 처리설비는 불연재료로 격리된 구조물 안에 설치한다. 다만, 2.7.2.1에 따른 방호벽을 설치한 경우 또는 방류둑을 설치한 경우에는 불연재료로 격리된 구조물 안에 설치하지 않을 수 있다.
- (2) 처리설비는 충분한 환기(환기구의 환기가능면적 합계가 바닥면적 1 m²마다 300 cm² 이상)를 유지할 수 있도록 한다. 다만, 충분한 환기를 유지할 수 없을 경우에는 기계 환기설비(환기능력이 바닥면적 1 m²마다 0.5 m²/분 이상)를 갖추도록 한다.
- (3) 처리설비는 충전소에 출입하는 야드 트랙터의 진·출입로 이 외의 장소에 설치하며, 야드 트랙터로 인한 충격 등으로부터 처리설비를 보호할 수 있는 조치를 한다. 다만, 2.7.2.1에 따른 방호벽 또는 방류둑을 설치한 경우에는 야드 트랙터로 인한 충격 등으로부터 처리설비를 보호할 수 있는 조치를 하지 않을 수 있다.

# 2.4.4.2.2 압축장치(해당 없음)

# 2.4.4.2.3 충전설비

- (1) 충전설비는 지상에 고정하여 설치한다.
- (2) 상부에 지붕을 설치하는 경우에는 불연성 또는 난연성의 재료를 사용하고, 액화도시가스가 누출되었을 때 가스가 체류할 수 없는 구조로 설치한다.
- (3) 충전설비의 주위에는 야드 트랙터의 충돌로부터 충전기를 보호하기 위해 높이 30 cm 이상, 두께가 12 cm 이상인 철근콘크리트 또는 이와 같은 수준 이상의 강도를 가진 구조물을 설치한다.
- (4) 충전설비에는 충전 중인 야드 트랙터 용기가 최고충전압력에 도달하면 가스공급이 자동으로 차단하도록 하는 장치를 설치한다.
- (5) 가스충전구는 완전한 접속이 이루어지지 않을 경우 가스의 흐름을 차단하는 구조로 한다.
- (6) 충전설비에는 수동으로 운전되는 차단밸브를 설치한다.
- (7) 충전기 캐비닛은 불연재료로 하고 수분이 침하 또는 응축되지 않도록 한다.
- (8) 충전기 캐비닛은 배관 및 전기설비의 연결을 위한 공간 및 조정과 검사를 위한 개구부를 설치한다.
- (9) 충전기 캐비닛에는 환기를 위하여 상부에 한개, 하부에 한개 등 두개 이상의 환기구를 설치한다. 환기구는 충분한 환기를 위하여 다른 높이 및 다른 방향으로 설치되도록 한다.
- (10) 충전기에 설치된 밸브·계량기기 그 밖에 관련 기기는 액화도시가스 충전에 적합한 것을 사용하다.

### 2.4.4.2.4 충전기 인전장치

- (1) 야드 트랙터 충전 시 과압을 방지하기 위하여 충전 배관에 압력방출밸브를 설치하고, 이 압력방출밸브는 일반 작동 압력의 1.38배 미만으로 설정한다.
- (2) 충전기는 긴급차단장치와 연동하여 운전되도록 설치하고, 긴급차단장치는 야드 트랙터로의 가스흐름 및 충전기의 전기흐름을 차단하는 구조로 한다.
- (3) 긴급차단장치는 충전지역으로부터 떨어진 위치에 설치하고, 긴급차단장치의 작동방법은 충전 소 사무실, 압축기 및 저장설비에 비치한다.
- (4) 제어회로는 긴급차단장치가 작동하였을 때 또는 전기가 차단되었을 때 차단된 시스템이 안전 상태로 복원된 후 수동으로 리셋 또는 작동할 때까지 차단된 상태로 있도록 한다.
- (5) 충전차량 및 충전기 사이 배관에는 충전기에 공급되는 전기가 치단되었을 때 차단하는 밸브를 설치한다.

# 2.4.4.2.5 충전연결구

- (1) 충전노즐은 운전을 방해할 수 있는 외부물질의 축적을 방지하도록 설치하고, 충전시스템(충전호스, 배관 및 충전연결구)은 야드 트랙터 연료 시스템 및 충전 기기로의 공기 유입을 방지하는 구조로 한다.
- (2) 충전연결구는 야드 트랙터 충전 후 커플링 탈착 시 압력이 방출되고, 감압 방출된 가스는 안전한 방법으로 벤트하는 구조로 한다.
- (3) 충전연결구에는 커플링의 이탈을 예방하기 위한 잠금장치 등이 작동하고, 노즐은 충전호스와 노즐 연결 시 또는 자동이탈을 차단하는 자체 차단구 등 방출을 방지하기 위한 장치를 갖추는 구 조로 한다.

#### 2.4.4.2.6 고정식펌프 설치

- (1) 펌프의 기초는 동결되지 않도록 설계 및 시공한다.
- (2) 펌프에는 차단밸브를 설치하고 펌프를 병렬로 설치할 경우에는 토출배관에 역류방지밸브를 각각 설치한다.
- (3) 펌프에는 안전밸브나 릴리프밸브를 설치하여 펌프에 과압(渦取)이 발생하지 않도록 한다.

#### 2.4.4.2.7 기회장치 설치(해당 없음)

# 2.4.4.2.8 압력조정기 설치(해당 없음)

#### 2.4.4.2.9 호스설치

- (1) 충전설비에 사용하는 호스(금속호스를 포함한다)는 도시가스의 침식작용에 견딜 수 있는 것으로 한다.
- (2) 호스는 팽창·수축·충격 및 진동을 고려하여 고정 설치한다.
- (3) 충전호스의 길이는 8 m 이하인 것에 한정한다.
- (4) 충전호스는 다음 기준에 따른다.
- (4-1) 충전호스는 적외선 노출로 인한 주름 및 크랙에 견디는 것으로 한다.
- (4-2) 충전호스 어셈블리와 피팅류 사이의 전기 저항은  $1.0\Omega$  미만으로 하고, 호스 외부는 비전기 전도 물질로 제조된 것으로 한다.
- (4-3) 충전호스에는 제조자, 최대운전압력, 운전온도범위 및 가스 적합성에 대하여 표시한 것으로 한다.
- (4-4) 충전호스의 손상, 잘림, 크랙, 부풀음 또는 갈라짐 등에 대하여 사용 전에 육안검사하고, 6 개월마다 비눗물 또는 이와 같은 수준 이상의 방법으로 누출검사를 실시한다.
- (4-5) 충전호스는 제조자의 사용연한 이전에 교체하고, 육안 검사 또는 누출 검사에서 불합격한 충전호스는 교체한다.

#### 2.4.5 기스설비 성능

가스설비는 그 도시가스를 안전하게 취급할 수 있도록 다음 기준에 따른 내압성능 및 기밀성능을 가진 것으로 한다.

# 2.4.5.1 기스설비 기밀성능

배관·튜브·호스 및 배관계 등은 도시가스를 안전하게 수송할 수 있도록 하기 위하여 설치 후 상용압력 이상의 압력으로 기밀시험을 실시하여 이상이 없는 것으로 한다.

#### 2.4.5.2 기스설비 내입성능

고압가스설비는 상용압력의 1.5배(그 구조상 물에 의한 내압시험이 곤란하여 공기·질소 등의 기체로 내압시험을 실시하는 경우 및 압력용기 및 그 압력용기에 직접 연결되어 있는 배관의 경우에는 1.25배) 이상의 압력(이하 "내압시험압력"이라 한다)으로 내압시험을 실시하여 이상이 없는 것으로 한다.

# 2.5 배관설비 기준

### 2.5.1 배관설비 재료

배관·관이음매 및 밸브(이하 "배관등"이라 한다)의 재료는 도시가스를 취급하기에 적합한 기계적 성질 및 화학적 성분을 가지는 것으로서, 다음 기준에 적합한 것으로 한다.

#### 2.5.1.1 배관재료 적용 제외

고압가스설비에 설치하여 고압의 도시가스를 수송하는 배관등(이하 "고압배관등" 이라 한다)과 중압이하의 도시가스를 수송하는 배관등의 재료에 적용한다. 다만, 다음 배관은 2.5.1에 따른 배관설비 재료 기준을 적용하지 않는다.

- (1) 최고사용압력이 98 № 이상인 배관
- (2) 최고사용 온도가 815 ℃를 초과하는 배관
- (3) 직접화기를 받는 배관
- (4) 이동제조설비용 배관

# 2.5.1.2 고압배관등의 재료

고압의 압력을 받는 부분(이하 "내압부분"이라 한다)에 사용하는 재료는 가스의 종류·성질· 온도 및 압력 등의 사용조건에 따라 다음 기준에서 정한 규격의 재료 또는 이와 동등 이상의 화학적 성분 및 기계적 성질을 가진 재료를 사용한다.

- (1) 관 재료
- (1-1) KS D 3562(압력배관용 탄소강관)
- (1-2) KS D 3563(보일러 및 열교환기용 탄소강관)
- (1-3) KS D 3564(고압배관용 탄소강관)
- (1-4) SPS-KOSA0013-D3570-5078(고온배관용 탄소강관)<sup>1)</sup>
- (1-5) SPS-KOSA0015-D3573-5079(배관용 합금강 강관)<sup>2)</sup>
- (1-6) KS D 3576(배관용 스테인리스 강관)
- (1-7) KS D 3572(보일러 열교환용 합금강관)
- (1-8) KS D 3577(보일러 열교환용 스테인리스 강관)
- (1-9) KS D 3569(저온 배관용 강관)
- (1-10) KS D 3758(배관용 이음매 없는 니켈·.크롬·철합금관)
- (1-11) KS D 5301(이음매 없는 구리 및 구리합금 관)
- (1-12) KS D 5539(이음매 없는 니켈 동합금관)
- (1-13) KS D 6761(이음매 없는 알루미늄 및 알루미늄 합금관)
- (1-14) KS D 5574(타이타늄 및 타이타늄합금-이음매 없는 관
- (1-15) KS 허가제품인 폴리에틸렌 피복강관
- (2) 형·판·대재
- (2-1) KS D 3503(일반구조용 압연강재)
- (2-2) KS D 3560(보일러 및 압력 용기용 탄소강 및 몰리브데넘강 강판)

- (2-3) KS D 3515(용접구조용 압연강재)
- (2-4) KS D 3521(압력용기용 강판)
- (2-5) KS D 3540(중·상온 압력용기용 탄소강판)
- (2-6) KS D 3538(보일러 및 압력용기용 망가니즈 몰리브데넘강 및 망가니즈 몰리브데넘 니켈 강 강판)
- (2-7) KS D 3541(저온 압력용기용 탄소강 강판)
- (2-8) KS D 3752(기계구조용 탄소강재)
- (2-9) KS D 3867(기계 구조용 합금강 강재) 중 니켈 크로뮴강
- (2-10) KS D 3867(기계 구조용 합금강 강재) 중 니켈 크로뮴 몰리브데넘강
- (2-11) KS D 3867(기계 구조용 합금강 강재) 중 크로뮴강
- (2-12) KS D 3867(기계 구조용 합금강 강재) 중 크로뮴 몰리브데넘강
- (2-13) KS D 3867(기계 구조용 합금강 강재) 중 망가니즈강 및 망가니즈 크로뮴강
- (2-14) KS D 3543(보일러 및 압력용기용 크로뮴 몰리브데넘강 강판)
- (2-15) KS D 3756(알루미늄 크롬 몰리브덴 강재)
- (2-16) KS D 3705(열간 압연 스테인리스 강판 및 강대)
- (2-17) KS D 3698(냉간압연 스테인리스 강판 및 강대)
- (2-18) KS D 3732(내열강판)
- (2-19) KS D 3532(내식내열 초합금판)
- (2-20) KS D 5201(구리 및 구리합금의 판 및 띠)
- (2-21) KS D 5546(니켈 및 니켈합금 판 및 조)
- (2-22) KS D 6701(알루미늄 및 알루미늄 합금판 및 조)
- (2-23) KS D 6759(알루미늄 및 알루미늄합금 압출형재)
- (2-24) KS D 6000(타이타늄 및 타이타늄합금의 판 및 띠)

### (3) 단조품

- (3-1) KS D 3710(탄소강 단강품)
- (3-2) KS D 4125(저온압력용기용 단강품)
- (3-3) KS D 4115(압력용기용 스테인리스강 단강품)
- (3-4) SPS-KFCA-D6770-5022(알루미늄 및 알루미늄 합금단조품) 1)

# (4) 주조품

- (4-1) SPS-KFCA-D4101-5004(탄소강 주강품)<sup>2)</sup>
- (4-2) SPS-KFCA-D4106-5009(용접구조용 주강품)<sup>3)</sup>
- (4-3) SPS-KFCA-D4103-5006(스테인리스강 주강품)<sup>4)</sup>
- (4-4) SPS-KFCA-D4107-5010(고온 고압용 주강품)<sup>5)</sup>
- (4-5) SPS-KFCA-D4111-5012(저온 고압용 주강품)
- (4-6) SPS-KFCA-D4302-5016(구상 흑연 주철품)<sup>7)</sup>
- (4-7) SPS-KOSA0179-ISO5922-5244(가단 주철품) 중 흑심 가단 주철품<sup>8)</sup>
- (4-8) SPS-KOSA0179-ISO5922-5244((기단 주철품) 중 백심 기단 주철품<sup>9)</sup>
- (4-9) SPS-KOSA0179-ISO5922-5244(가단 주철품) 중 퍼얼라이트 가단주철품<sup>10)</sup>
- (4-10) KGS AC111 부록 J에서 정한 덕타일 철주조품

- (4-11) KGS AC111 부록 J에서 정한 멜리어블 철주조품
- (4-12) KS D 6024(구리 및 구리합금 주물) 중 청동주물
- (4-13) KS D 6008(알루미늄 합금주물)

#### (5) 봉재료

- (5-1) KS D 3503(일반구조용 압연강재)
- (5-2) KS D 3526(마봉강용 일반강재)
- (5-3) KS D 3592(냉간압조용 탄소강 선재)
- (5-4) KS D 3752(기계 구조용 탄소 강재)
- (5-5) KS D 3706(스테인리스 강봉)
- (5-6) KS D 3731(내열 강봉)
- (5-7) KS D 3531(내식 내열 초합금 봉)
- (5-8) KS D 5101(구리 및 구리 합금 봉) 중 무산소동, 타프피치동, 인탈산동, 황동, 쾌삭황동, 단조용황동, 네이벌황동)
- (5-9) KS D 6763(알루미늄 및 알루미늄 합금 봉 및 선)
- (5-10) KS D 5604(티탄늄 및 티타늄 합금봉)

#### [비고]

- 1. (2-1)과 (2-3)의 재료에 대하여는 2.5.1.5.3(1)의 사용제한을 따른다.
- 2. (2-3)의 재료에 대하여는 2.5.1.5.3(2)의 사용제한을 따른다.
- 3. (4-6), (4-7), (4-8) 및 (4-9)의 재료에 대하여는 2.5.1.5.4(1)의 사용제한을 따른다.
- 4. (4-6)과 (4-7)의 재료에 대하여는 2.5.1.5.4(2)의 사용제한을 따른다.
- 5. (4-10)과 (4-11)의 재료에 대하여는 2.5.1.5.4(3)의 사용제한을 따른다.

### 2.5.1.3 중입이이의 배관재료

고압배관등 외의 배관에 사용되는 재료는 사용조건에 따라 다음의 재료 또는 이와 같은 수준 이상의 화학적 성분 및 기계적 성질을 갖는 재료를 사용한다. 다만, 2.5.1.2 및 2.5.1.4에 따른 도시가스 배관 재료 배관이음매 및 밸브는 중압 이하의 배관등에 사용할 수 있다.

### (1) 관재료

- (1-1) KS D 3507(배관용 탄소강관)
- (1-2) KS D 3583(배관용 아크 용접 탄소강 강관)
- (1-3) KS 표시허가 제품인 가스용 폴리에틸렌관. 다만, 상용압력이 0.1№ 미만인 지하매설 배관에만 사용할 수 있다.
- (1-4) KS M 3404(일반용 경질 염화 비닐관). 다만, 염소가스용으로 외부의 충격이나 열의 영향을 받지 않도록 피트 등 방호조치를 한 경우에만 사용할 수 있다.
- (2) 관이음매
- (2-1) KS D 3507(배관용 탄소강관)
- (2-2) KS B 1543(강제 맞대기 용접식 관이음쇠)
- (2-3) KS B 1531(나사식 가단 주철제 관 이음쇠)
- (2-4) KS로 규정된 관플랜지는 KS B 1501(철강체 관플랜지의 압력단계)에 따른 범위 안에서 가스설비의 중압이하의 배관등에 사용할 수 있다. 다만, 회주철제 플랜지는 사용하지 않는다.

### 2.5.1.4 배관 이음매 및 밸브

배관 이음매 및 밸브는 가스의 종류·성질·온도 및 압력 등의 사용조건에 따라 다음에 적합한 것 또는 이와 같은 수준 이상의 기계적 성질을 가진 것을 사용한다.

- (1) 용접식 관이음매
- (1-1) KS B 1542(배관용 강제 삽입 용접식 관 이음쇠)
- (1-2) KS B 1543(배관용 강판제 맞대기 용접식 관 이음쇠)
- (2) 관플랜지 이음매
- (2-1) KS B 1501(철강제 관 플랜지의 압력 단계)
- (2-2) KS B 1519(관 플랜지의 개스킷 자리 치수)
- (2-3) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)
- **(2-4)** KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 5K 플랜지의 기본치수
- (2-5) KS B 1510(구리 합금제 관 플랜지의 기본 치수)
- (2-6) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 10K 플랜지의 기본치수
- (2-7) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 16K 플랜지의 기본치수
- **(2-8)** KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 20K 플랜지의 기본치수
- (2-9) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 30K 플랜지의 기본치수
- **(2-10)** KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 40K 플랜지의 기본치수
- (2-11) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 63K 플랜지의 기본치수
- (2-12) KS B 1503(강제용접식 관 플랜지)
- (2-13) (2-1)부터 (2-12)까지의 KS에 따른 플랜지는 KS B 1501(철강제 관 플랜지의 압력 단계)에 따른 범위 안에서 고압배관등에 사용할 수 있다.
- (3) 밸브
- (3-1) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 글로브밸브
- (3-2) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 앵글 밸브
- (3-3) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 바깥나사 게이트 밸브
- (3-4) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 스윙체크 밸브
- (3-5) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 글로브 밸브
- (3-6) KS B 2361(주강 플랜지형 밸브)의 20K 플랜지형 앵글 밸브
- (3-7) KS B 2361(주강 플랜지형 밸브)의 20K 플랜지형 바깥나사 게이트 밸브
- (3-8) KS B 2361(주강 플랜지형 밸브)의 20K 플랜지형 스윙체크 밸브
- (3-9) KS B 2301(청동밸브)

# 2.5.1.5 배관설비 재료 사용제한

- 2.5.1.5.1 배관재료는 KS B 6750(압력용기-설계 및 제조 일반) 중 부표1-2에 표시된 허용응력 값에 대응하는 온도 범위를 초과하여 사용하지 않고, 같은 수준 이상의 재료는 설계온도에 대하여 다음 방법에 따라 충격시험을 실시하여 불합격한 것은 0 ℃ 미만에서 사용되는 배관등의 재료로 사용하지 않는다.
- (1) 충격시험에 사용하는 시험편은 다음 기준에 따른다.
- (1-1) 시험편의 양쪽 끝으로부터 용접선에 수직으로 폭 부분을 50 mm 잘라낸 나머지 부분의 열 영향부 및 용착금속부에서 채취한 것으로 한다.
- (1-2) 시험편의 형상과 치수는 KS B 0809(금속재료 충격시험편)의 4호 시험편에 의한다. 다만, 시험편의 치수에 따라 시험편 두께를  $10 \, \mathrm{mmz}$  할 수 없을 경우에는 시험편 두께를  $7.5 \, \mathrm{mm} \cdot 5 \, \mathrm{mm}$  또는  $2.5 \, \mathrm{mm}$  중 그 시험편의 치수에 따라 가장 큰 것으로 한다.
- (2) 충격시험은 모든 시험편에 대하여 모재의 설계온도 이하에서 KS B 0810(금속재료 충격시험 방법)의 샤르파충격시험에 따라 실시하고, 모든 시험편의 흡수에너지가 표 2.5.1.5.1①에 따른 그 모재의 최소인장강도에 대응한 최소흡수에너지값((1-2)의 단서의 경우에는 그 시험편두께에 따라 표 2.5.1.5.1②에 따른 시험편 두께에 대응한 값을 표 2.5.1.5.1①의 값으로 대체한 값) 이상일 때에 이를 합격으로 한다.

| 재료의 최소인장강도  | 최소 <del>흡수</del> 에너지(단위 : J) |         |  |
|-------------|------------------------------|---------|--|
| δ (N/mm)    | 3개의 평균치                      | 1개의 최소치 |  |
| δ≤450       | 18                           | 14      |  |
| 450 < δ≤520 | 20                           | 16      |  |
| 520 < δ≤660 | 27                           | 20      |  |
| 660 < δ     | 27                           | 27      |  |

표 2.5.1.5.1① 최소인장강도에 대응한 최소흡수에너지값

표 2.5.1.5.1② 시험편의 두께에 대응한 최소흡수에너지

| 10 | 7.5                  | 5                                | 2.5                                        |
|----|----------------------|----------------------------------|--------------------------------------------|
| 27 | 20                   | 14                               | 7                                          |
| 20 | 15                   | 10                               | 5                                          |
| 18 | 14                   | 9                                | 5                                          |
| 16 | 12                   | 8                                | 4                                          |
| 14 | 11                   | 7                                | 4                                          |
|    | 27<br>20<br>18<br>16 | 27 20<br>20 15<br>18 14<br>16 12 | 27 20 14<br>20 15 10<br>18 14 9<br>16 12 8 |

- 2.5.1.5.2 다음 재료는 고압배관등의 내압부분에 사용하지 않는다.
- (1) 탄소 함유량이 0.35 % 이상의 탄소강재 및 저합금강 강재로서 용접구조에 사용되는 재료, 다만, KS D 3710(탄소강 단강품)과 같이 탄소함유량의 규정이 없는 재료는 탄소함유량을 확인한후에 사용한다.
- (2) KS D 3507(배관용 탄소강관)
- (3) KS D 3583(배관용 아이크 용접 탄소강관)

(4) SPS-KFCA-D4301-5015(회주철품)

2.5.1.5.3 다음의 구리·구리합금 및 니켈동합금은 배관재료로 사용하지 않는다.

- (1) KS B 6750(압력용기-설계 및 제조 일반) 중 허용인장응력치에 대응하는 온도를 초과하는 것. 다만, 압력계·액면계 연결관에 사용하는 것을 제외한다.
- (2) 구리 및 구리의 함유량이 62%를 초과하는 합금으로 내부 유체에 아세틸렌이 함유된 것

2.5.1.5.4 알루미늄 및 알루미늄합금은 KS B 6750(압력용기 — 설계 및 제조일반) 중 부표 1.3 에 표시된 허용인장력치에 대응하는 온도를 초과하여 사용하지 않는다. 다만, 압력계·액면계 연결관에 사용하는 것을 제외한다.

2.5.1.5.5 타이타늄은 KS B 6750(압력용기-설계 및 제조 일반) 중 부표2에 표시된 허용인장응력치에 대응하는 온도를 초과하여 사용하지 않는다.

### 2.5.2 배관설비 구조

배관은 도시가스를 안전하게 수송할 수 있도록 다음 기준에 적합한 구조를 가진 것으로 한다.

2.5.2.1 배관 구조는 수송되는 도시가스의 중량, 배관등의 내압, 배관등 및 그 부속설비의 자체무게, 토압, 수압, 열차하중, 아드 트랙터 하중, 부력 그 밖의 주하중과 풍화중, 설하중, 온도변화의 영향, 진동의 영향, 지진의 영향, 배닻으로 인한 충격의 영향, 파도 및 조류의 영향, 설치 시의 하중의 영향, 다른 공사로 인한 영향과 그 밖의 종하중으로 인해 생기는 응력에 대한 안전성이 있는 것으로 한다.

# 2.5.3 배관설비 두께

배관설비의 두께는 상용압력의 2배 이상의 압력에 항복을 일으키지 않도록 다음 기준에 따라 계산한 두께 이상으로 한다.

2.5.3.1 배관 두께 계산식은 다음과 같다.

(1) 외경과 내경의 비가 1.2미만인 경우

$$t = \frac{PD}{2\frac{f}{s} - P} + C \cdots (2.1)$$

(2) 외경과 내경의 비가 1.2이상인 경우

$$t = \frac{D}{2} \left( \sqrt{\frac{\frac{f}{s} + P}{\frac{f}{s} - P}} - 1 \right) + C \cdots (2.2)$$

식(2.1) 및 식(2.2)에서

t: 배관의 두께(mm)의 수치

P : 상용압력(MPa)의 수치

D: 내경에서 부식여유에 상당하는 부분을 뺀 부분(mm)의 수치

f: 재료의 인장강도(Nmm)규격 최소치이거나 항복점(N/mm)규격 최소치의 1.6배

C : 관내면의 부식여유의 수치(mm)

S : 안전율로서 표 2.5.3.1의 환경의 구분에 따라 각각 같은 표의 오른쪽 난에 나타낸 수치

표 2.5.3.1 환경 구분에 따른 안전율 S

| 구분 | 환 경                                          | 안전율 |  |
|----|----------------------------------------------|-----|--|
| А  | 공로 및 가옥에서 100 m 이상의 거리를 유지하고 지상에 가설되는 경우와    | 3.0 |  |
|    | 공로 및 가옥에서 50 m 이상의 거리를 유지하고 지하에 매설되는 경우      | 3.0 |  |
| В  | 공로 및 가옥에서 50 m 이상 100 m 미만의 거리를 유지하고 지상에 가설되 |     |  |
|    | 는 경우와 공로 및 가옥에서 50m 미만의 거리를 유지하고 지하에 매설되는    | 3.5 |  |
|    | 경우                                           |     |  |
| С  | 공로 및 가옥에서 50 m 미만의 거리를 유지하고 지상에 가설되는 경우와 지   | 4.0 |  |
|    | 하에 매설되는 경우                                   |     |  |

2.5.3.2 배관의 두께는 다음 기준에 따른 두께 이상으로 한다.

(1) 배관용 스테인레스 강관을 사용할 때의 최소 두께

표 2.5.3.2(1) 배관용 스테인리스 강관 최소 두께

| 호칭지름 |       | 나시를 내지 | ] 않는 경우 | 나시를 낸 경우 |       |  |
|------|-------|--------|---------|----------|-------|--|
| A    | В     | 두께(mm) | 스케줄번호   | 두께(mm)   | 스케줄번호 |  |
| 6    | 1/8   | 1.0    | 5S      | 1.7      | 40    |  |
| 8    | 1/4   | 1.2    | 5S      | 2.0      | 20S   |  |
| 10   | 3/8   | 1.2    | 5S      | 2.0      | 20S   |  |
| 15   | 1/2   | 1.65   | 5S      | 0.5      | 20S   |  |
| 20   | 3/4   | 1.65   | 5S      | 2.5      | 20S   |  |
| 25   | 1     | 1.65   | 5S      | 2.8      | 10S   |  |
| 32   | 1 1/4 | 1.65   | 5S      | 2.8      | 10S   |  |
| 40   | 1 1/2 | 1.65   | 5S      | 2.8      | 10S   |  |
| 50   | 2     | 1.65   | 5S      | 2.8      | 10S   |  |
| 65   | 2 1/2 | 2.1    | 5S      | 3.2      | _     |  |
| 80   | 3     | 2.1    | 5S      | 3.2      | _     |  |
| 90   | 3 1/2 | 2.1    | 5S      | 3.2      | _     |  |
| 100  | 4     | 2.1    | 5S      | 3.2      | _     |  |
| 125  | 5     | 2.8    | 5S      | 3.4      | _     |  |
| 150  | 6     | 2.8    | 5S      | 3.5      | _     |  |
| 200  | 8     | 2.8    | 5S      | 3.9      | _     |  |
| 250  | 10    | 3.4    | 5S      | 4.5      | _     |  |
| 300  | 12    | 4.0    | 5S      | 4.9      | _     |  |

(2) 그 밖의 강관을 사용할 때의 최소 두께

호칭지름 두께(mm) 스케쥴 번호 나시를 낸 경우 나시를 내지 않은 경우 Α В 6 1/8 1.7 1.7 40 8 1/4 2.2 2.2 40 3/8 40 10 2.8 2.8 1/22.8 2.8 40 15 3/4 2.9 2.9 40 20 25 1 40 3.4 3.4 32 1 1/4 3.6 3.6 40 1 1/2 3.7 3.7 40 40 50 3.9 3.9 40 2 1/2 20 65 4.5 4.5 80 3 4.5 4.5 20 90 3 1/2 4.5 4.5 20 100 4 4.9 4.9 20 125 5 5.1 5.1 20 150 6 5.5 5.5 20 200 8 6.4 6.4 20 250 10 6.4 6.4 20 300 12 20 6.4 6.4 10 350 14 6.4 16 10 400 6.4 450 18 6.4 10 20 10 500 6.4

표 2.5.3.2(2) 배관용 스테인리스 강관 외의 강관 최소 두께

(3) 폴리에틸렌관을 사용할 때의 최소 두께는 KS M 3514[가스용 폴리에틸렌(PE)관]의 표 5, 표 6. 표 7에 규정된 두께

### 2.5.4 배관설비 접합

배관은 도시가스의 누출을 방지할 수 있도록 다음 기준에 따라 접합하고, 이를 확인하기 위하여 필요한 경우에는 비파괴시험을 한다.

- 2.5.4.1 배관등의 접합은 용접을 한다. 다만, 용접이 적당하지 않은 경우에는 안전확보에 필요한 강도를 갖는 플랜지접합 또는 나사접합 이음쇠 방식으로 할 수 있으며, 이 경우에는 점검을 할 수 있는 조치를 한다.
- 2.5.4.2 배관등의 용접은 아크용접 또는 그 밖에 이와 같은 수준 이상의 효과를 갖는 용접방법으로 한다.
- 2.5.4.3 압력계, 액면계, 온도계와 그 밖의 계기류를 배관에 부착하는 부분은 반드시 용접으로 한

다. 다만, 호칭지름 25 mm 이하의 것은 제외한다.

2.5.4.4 다음의 경우 또는 장소에는 2.5.4.1 전단의 기준에 불구하고 플랜지접합으로 할 수 있다.

- (1) 수시로 분해하여 청소·점검을 하는 부분을 접합할 경우나 특히 부식되기 쉬운 곳으로서 수 시점검을 하거나 교환할 필요가 있는 곳
- (2) 정기적으로 분해하여 청소·점검·수리를 하는 반응기, 탑, 저장탱크, 열교환기 또는 회전기계와 접합하는 곳(해당 설비 전·후의 첫 번째 이음매에 한정한다)
- (3) 수리·청소·철거 시 맹판 설치를 필요로 하는 부분을 접합하는 경우 및 신축이음매의 접합 부분을 접합하는 경우

2.5.4.5 2.5.4.4에 따라 플랜지 접합으로 할 때의 안전상 필요한 플랜지의 강도는 다음 기준에 따른다.

2.5.4.5.1 플랜지의 강도 및 재료는 상용압력 0.2 № 이상의 것으로서 각각 사용압력에 따라 KS B 1511(철강제 관플랜지의 기본 치수 및 치수 허용차)에 따른 것 또는 이와 같은 수준 이상의 것으로 한다.

2.5.4.5.2 가스켓 시트의 형식은 압입형 또는 오목형(凹형)이나 렌스링용 테이퍼형의 것을 사용한다. 다만, 상용압력 6.2 IPa 이하의 것으로서, 해당 상용압력에서 누출을 방지하기 위하여 충분히조일 수 있는 구조의 것에는 평면시트 또는 전면시트를 사용할 수 있다.

2.5.4.6 안전확보에 필요한 강도를 갖는 플랜지(flange)의 계산에 사용하는 설계압력은 상당압력 (相當壓力)과 내압(內壓)과의 합으로 하고 KS B 6750(압력용기-설계 및 제조 일반)에 따른다.

$$P_d = P + P_{eq}$$

여기에서

Pd: 안전확보에 필요한 강도를 갖는 플랜지의 계산에 사용하는 설계압력(MPa)

P : 배관의 설계내압(MPa)

Peq : 상당압력(MPa)으로, 다음 식으로 구할 것

$$P_{eq} = \frac{0.16M}{\pi G^3} + \frac{0.04F}{\pi G^2}$$

여기에서

M: 주하중(主荷重)등에 의하여 생기는 합성굽힘 모멘트(N·cm)

F: 주하중 등에 따라 생기는 축방향의 힘(N). 다만, 인장력을 양(+)으로 한다.

G: 가스켓 반력이 걸리는 위치를 통과하는 원의 지름(cm)

# 2.5.5 배관설비 신축흡수조치

배관에는 온도의 변화로 인한 길이의 변화에 따른 신축을 흡수하기 위하여 다음 기준에 따라 조

치를 한다.

2.5.5.1 배관을 지하에 매설하는 경우에는 되메울 때 충분히 다지고, 배관은 균일하며, 적당한 마찰력을 가진 흙 중에 지지되도록 한다.

2.5.5.2 배관을 지상에 설치하는 경우에는 아래의 계산식에 의해 신축량을 계산하고, 굽힘관, 루우프 또는 벨로즈형이나 슬라이드형 신축이음매를 사용하는 등의 방법으로 신축량을 흡수할 수 있도록 한다.

신축량 = 선팽창계수×온도차×배관길이

여기에서 온도차는 예상되는 최고 또는 최저의 사용온도와 주위 평균온도와의 차를 고려한다. 또한 선팽창계수는 탄소강에 적용할 때는  $11.7 \times 10^{-6}$  으로 하고, 탄소강 이외의 재료에 적용할 때는 공인되는 값을 사용한다.

2.5.5.3 지상에 설치한 배관을 지지하는 행거, 서포트 등은 배관의 신축을 저해하지 않도록 배관을 지지하는 것으로 한다. 다만, 배관을 고정함으로써 배관에 과대한 응력이 발생할 우려가 없는 것이 명확한 경우에는 그러하지 않는다.

### 2.5.6 배관설비 절연조치

배관에는 그 배관의 유지관리에 지장이 없고, 그 배관에 대한 위해의 우려가 없도록 하기 위하여 다음 기준에 따라 절연설비를 설치한다.

- 2.5.6.1 배관장치에는 필요에 따라 안전용접지 또는 이와 유사한 장치를 설치한다.
- 2.5.6.2 배관장치는 안전확보를 위하여 지지물에 이상전류가 흘러 배관장치가 대지전위(對地電位)로 인하여 부식이 예상되는 다음의 장소에 설치된 지지물과 그 밖의 구조물로부터 절연시키고 절연용 물질을 삽입한다. 다만, 절연이음물질 사용 등의 방법에 따라 매설배관에 부식이 방지될 수있는 경우에는 절연조치를 하지 않을 수 있다.
- (1) 누전에 의하여 전류가 흐르기 쉬운 곳
- (2) 직류전류가 흐르고 있는 선로(線路)의 자계(磁界)에 의하여 유도전류가 발생하기 쉬운 곳
- (3) 흙 속 또는 물 속에서 미로전류(謎路電流)가 흐르기 쉬운 곳
- 2.5.6.3 배관장치에 접속되어 있는 기기와 그 밖의 설비가 배관의 부식방지에 해로운 영향을 미칠 우려가 있는 경우에는 해당설비와 배관을 절연이음 물질로 절연한다. 다만, 해당 설비에 대한 양극의 설치 등으로 전기방식의 효과를 얻을 수 있는 경우에는 절연을 하지 않을 수 있다.
- 2.5.6.4 배관을 구분하여 전기방식하는 것이 필요한 경우 지하에 매설된 배관의 부분과의 경계, 배관의 분기부 및 지하에 매설된 부분 등에는 절연이음물질을 설치한다.
- 2.5.6.5 피뢰기(피뢰침 및 고압철탑기 등과 이들 접지케이블과 매설지선을 말한다)의 접지장소에

근접하여 배관을 매설하는 경우에는 다음 기준에 따라 절연조치를 한다.

- 2.5.6.5.1 피뢰기와 배관 사이의 거리 및 흙의 전기저항 등을 고려하여 배관을 설치하고 필요한 경우에는 배관의 피복, 절연재의 설치 등으로 절연조치를 한다.
- 2.5.6.5.2 피뢰기의 낙뢰전류(落雷電流)가 가스기기 및 그 밖의 설비를 지나서 배관에 전류가 흐를 우려가 있는 경우에 2.5.6.3 및 2.5.6.4에 따라 절연이음 물질을 설치하여 절연하고 배관의 부식방지에 해로운 영향을 미치지 않는 방법으로 배관을 접지한다.
- **2.5.6.5.3** 2.5.6.5.1 및 2.5.6.5.2의 경우에는 절연을 위한 조치를 보호하기 위하여 필요한 경우에 스파크 간극 등을 설치한다.

### 2.5.7 배관 설치

배관은 수송하는 가스의 특성 및 설치 환경조건을 고려하여 위해의 우려가 없도록 다음 기준에 따라 설치한다.

# 2.5.7.1 배관 설치장소 선정

- 2.5.7.1.1 배관은 건축물의 내부 또는 기초 밑에 설치하지 않는다. 다만, 그 건축물에 가스를 공급하기 위한 배관은 건축물 내부에 설치할 수 있다.
- **2.5.7.1.2** 가스충전시설의 배관(가스미터, 주밸브등은 제외)은 야드 트랙터의  $\mathbf{Q} \cdot \mathbf{\hat{z}}$ 입시 영향을 받지 않도록 적합하게 설치한다.
- 2.5.7.1.3 배관은 과거의 실적이나 환경조건의 변화(토지조성 등으로 인하여 지형의 변경이나 배수의 변화 등)를 고려해 땅의 붕괴, 산사태 등의 발생이 예상되는 곳을 통과하지 않도록 한다.
- 2.5.7.1.4 배관은 지반침하가 현저하게 진행 중인 곳이나 과거의 실적으로 미루어 지반침하의 우려가 추정되는 곳을 통과하지 않도록 한다.

### 2.5.7.2 배관 매설

배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 대한 위해의 우려가 없도록 다음 기준에 따라 설치한다.

- 2.5.7.2.1 배관은 지면으로부터 최소한 1 m 이상의 깊이에 매설하며, 공도(公道)의 지하에는 그 위를 통과하는 차량의 교통량 및 배관의 관경 등을 고려하여 더 깊은 곳에 매설한다.
- 2.5.7.2.2 도로폭이 8m 이상인 공도의 횡단부 지하에는 지면으로부터 1.2m 이상인 곳에 매설한다.
- 2.5.7.2.3 (1) 또는 (2)에서 정한 매설값이를 유지할 수 없을 경우에는 커버플레이트, 케이싱 등

을 사용하여 보호한다.

### 2.5.7.2.4 배관 철도부지 매설 (해당 없음)

#### 2.5.7.2.5 배관 이천구역 매설 (해당 없음)

#### 2.5.7.3 배관 노출설치

가스충전시설에 설치하는 노출배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 대한 위해의 우려가 없도록 다음 기준에 따라 설치한다.

- 2.5.7.3.1 배관의 부식방지와 검사 및 보수를 위하여 지면으로부터 30 cm 이상의 거리를 유지한다.
- 2.5.7.3.2 배관의 손상방지를 위하여 주위 상황에 따라 방책이나 가드레일 등의 방호조치를 한다.
- 2.5.7.3.3 지상에 설치하는 배관을 지지하는 행거, 서포트 등은 배관의 신축을 저해하지 않도록 배관을 지지하는 것으로 한다. 다만, 배관을 고정함으로써 배관에 과대한 응력이 발생할 우려가 없는 것이 명확한 경우에는 그러하지 않는다.
- 2.5.7.3.4 배관 또는 튜브를 굽힘으로써 배관이나 튜브의 강도가 약화될 우려가 있는 곳에서는 굽 힘작업을 하지 않는다.
- **2.5.7.3.5** 배관의 단열재료는 불연성 또는 난연성 재료를 사용하고, 화재나 열·냉기·물 등에 노출 시 그 특성이 변하지 않는 것으로 한다.
- 2.5.7.3.6 배관지지물은 화재나 초저온 액체의 유출 등을 충분히 견딜 수 있고 과다한 열전달을 예방하도록 설계한다.
- 2.5.7.3.7 배관이 건축물의 벽을 통과하는 부분에는 부식방지피복조치를 하고 보호관을 설치한다.

# 2.5.7.4 배관의 수중설치 (해당 없음)

- 2.5.7.5 배관 해저설치 (해당 없음)
- 2.5.7.6 배관 해상설치 (해당 없음)
- 2.5.7.7 내진설계 (해당 없음)

# 2.5.8 배관부대설비 설치

배관은 그 배관의 안전한 유지·관리를 위하여 다음 기준에 따라 필요한 설비를 설치하거나 필요한 조치를 강구한다. 2.5.8.1 수취기 설치(해당없음)

2.5.8.2 압력계 및 온도계 설치

배관은 그 배관에 대한 위해의 우려가 없도록 배관의 적당한 곳에 압력계 및 온도계를 설치한다. 다만, 초저온 또는 저온의 액화가스 배관의 경우에는 온도계 설치를 생략할 수 있다.

#### 2.5.9 배관설비 성능

배관  $\cdot$  튜브  $\cdot$  호스 및 배관계 등은 도시가스를 안전하게 수송할 수 있도록 하기 위하여 다음 기준에 따라 내압시험 및 기밀시험을 한다.

2.5.9.1 배관·튜브·호스 및 배관계 등은 4.2.1.5에 따른 누출 및 기밀성능을 갖도록 한다.

2.5.9.2 배관·튜브·호스 및 배관계 등은 최고사용압력의 1.5배(고압의 배관으로서 공기·질소등의 기체로 내압시험을 실시하는 경우에는 1.25배) 이상의 압력에서 내압성능을 갖도록 한다.

### 2.5.10 배관설비 표시

배관의 안전을 확보하기 위하여 그 배관의 외부에는 도시가스를 사용하는 배관임을 명확하게 식별할 수 있도록 표시를 한다.

# 2.6 시고예방설비기준

#### 2.6.1 괴입인전장치 설치

저장설비·완충탱크·처리설비 등에는 그 설비의 압력이 상용압력을 초과하는 경우 즉시 그 압력을 상용압력 이하로 되돌릴 수 있도록 하기 위하여 다음 기준에 따라 과압안전장치를 설치한다.

# 2.6.1.1 괴입인전장치 선정

가스설비 등에서의 압력상승 특성에 따라 다음 기준에 따라 과압안전장치를 선정한다.

- (1) 기체 및 증기의 압력상승을 방지하기 위하여 설치하는 안전밸브
- (2) 급격한 압력상승 등에 따라 안전밸브를 설치하는 것이 부적당한 경우에 설치하는 파열판
- (3) 펌프 및 배관에서 액체의 압력상승을 방지하기 위하여 설치하는 릴리프밸브 또는 안전밸브
- (4) (1)부터 (3)까지의 안전장치와 병행 설치할 수 있는 자동압력제어장치(고압가스설비 등의 내압이 상용의 압력을 초과한 경우 해당 고압가스설비 등으로의 가스유입량을 감소시키는 방법 등으로 해당 고압가스설비 등 내의 압력을 자동적으로 제어하는 장치)

# 2.6.1.2 괴입인전장치 설치위치

과압안전장치는 고압가스설비 중 압력이 최고허용압력 또는 설계압력을 초과할 우려가 있는 다음 구역마다 설치한다.

- (1) 내 · 외부 요인에 의한 압력상승이 설계압력을 초과할 우려가 있는 압력용기 등
- (2) 토출측의 막힘으로 인한 압력상승이 설계압력을 초과할 우려가 있는 펌프의 출구측
- (3) 배관 내의 액체가 2개 이상의 밸브로 차단되어 외부열원에 의한 액체의 열팽창으로 파열이 우려되는 배관
- (4) (1)부터 (3)까지 이외에 압력조절실패, 이상반응, 밸브의 막힘 등으로 인한 압력상승이 설계 압력을 초과 할 우려가 있는 고압가스설비 또는 배관 등

#### 2.6.1.3 괴입인전장치 구조 및 재질

2.6.1.3.1 안전장치는 한국산업규격 또는 관련규격에 적합한 것으로 한다.

2.6.1.3.2 과압안전장치의 구조 및 재질은 그 과압안전장치가 설치되는 가스설비 등의 안에 있는 도시가스의 압력 및 온도에 견딜 수 있고, 그 도시가스에 내식성이 있는 것으로 한다.

### 2.6.1.4 괴입안전장치 분출면적

안전밸브·파열판 또는 릴리프밸브의 분출면적이나 유출면적은 다음 계산식에 따라 계산한 면적 이상으로 한다.

- (1) 기체 또는 증기로 분출되는 경우
- (1-1) 임계흐름압력이 배압보다 크거나 같은 경우(음속흐름)

$$A = \frac{13160W \sqrt{TZ}}{CK_{d}K_{b}K_{c}P_{1}\sqrt{M}} \cdots (2.3)$$

$$A = \frac{35250V \sqrt{TZM}}{CK_{d}K_{b}K_{c}P_{1}} \cdots (2.4)$$

$$A = \frac{189750V \sqrt{TZG}}{CK_{d}K_{b}K_{c}P_{1}} \cdots (2.5)$$

(1-2) 임계흐름압력이 배압보다 작은 경우(아음속흐름)

$$A = \frac{17.9W}{F_{2}K_{b}K_{c}} \sqrt{\frac{ZT}{MP_{1}(P_{1} - P_{2})}} \cdots (2.6)$$

$$A = \frac{47.95V}{F_{2}K_{b}K_{c}} \sqrt{\frac{ZTM}{P_{1}(P_{1} - P_{2})}} \cdots (2.7)$$

$$A = \frac{258V}{F_{2}K_{b}K_{c}} \sqrt{\frac{ZTG}{P_{1}(P_{1} - P_{2})}} \cdots (2.8)$$

식 (2.3)부터 식 (2.8)까지에서 k,  $P_1$ ,  $P_2$ , A, W, V, G, C, T, M, Z 및 K는 각각 다음 수치를 나타내는 것으로 한다.

P1: 분출량 결정압력(절대압력으로 설정압력과 초과압력의 합)(kPa)

$$\frac{P_{cf}}{P_1} = \left[\frac{2}{k+1}\right]^{\frac{k}{k-1}} \cdots (2.9)$$

여기에서

 $P_{cf}$ : 임계흐름압력(절대압력을 말한다)(kPa(a))

 $\mathbf{k}$  : 비열비 $(\frac{C_p}{C})$ 의 수치

 Cp : 정압비열,

 Cv : 정적비열

P2: 대기압을 포함하는 배압(절대압력을 말한다) (kPa)

A : 필요분출면적(mm)

W : 2.6.1.6에서 정한 필요분출량(kg/h)

C: 비열용량계수로서 그림 2.6.1.4① 또는 표 2.6.1.4①에서 정한 값

T : 분출량 결정압력에서 가스의 절대온도(K)

M: 가스의 분자량

Ka: 분출계수(제작자의 설계분출계수)로서 안전밸브는 0.975, 파열판은 0.62로 한다.

표 2.6.1.4① 비열용량계수

| k    | С   | k    | С   | k    | С   | k    | С   |
|------|-----|------|-----|------|-----|------|-----|
| 1.00 | 315 | 1.26 | 343 | 1.52 | 366 | 1.78 | 386 |
| 1.01 | 317 | 1.27 | 344 | 1.53 | 367 | 1.79 | 386 |
| 1.02 | 318 | 1.28 | 345 | 1.54 | 368 | 1.80 | 387 |
| 1.03 | 319 | 1.29 | 346 | 1.55 | 369 | 1.81 | 388 |
| 1.04 | 320 | 1.30 | 347 | 1.56 | 369 | 1.82 | 389 |
| 1.05 | 321 | 1.31 | 348 | 1.57 | 370 | 1.83 | 389 |
| 1.06 | 322 | 1.32 | 349 | 1.58 | 371 | 1.84 | 390 |
| 1.07 | 323 | 1.33 | 350 | 1.59 | 372 | 1.85 | 391 |
| 1.08 | 325 | 1.34 | 351 | 1.60 | 373 | 1.86 | 391 |
| 1.09 | 326 | 1.35 | 352 | 1.61 | 373 | 1.87 | 392 |
| 1.10 | 327 | 1.36 | 353 | 1.62 | 374 | 1.88 | 393 |
| 1.11 | 328 | 1.37 | 353 | 1.63 | 375 | 1.89 | 393 |
| 1.12 | 329 | 1.38 | 354 | 1.64 | 376 | 1.90 | 394 |
| 1.13 | 330 | 1.39 | 355 | 1.65 | 376 | 1.91 | 395 |
| 1.14 | 331 | 1.40 | 356 | 1.66 | 377 | 1.92 | 395 |
| 1.15 | 332 | 1.41 | 357 | 1.67 | 378 | 1.93 | 396 |
| 1.16 | 333 | 1.42 | 358 | 1.68 | 379 | 1.94 | 397 |
| 1.17 | 334 | 1.43 | 359 | 1.69 | 379 | 1.95 | 397 |
| 1.18 | 335 | 1.44 | 360 | 1.70 | 380 | 1.96 | 398 |
| 1.19 | 336 | 1.45 | 360 | 1.71 | 381 | 1.97 | 398 |
| 1.20 | 337 | 1.46 | 361 | 1.72 | 382 | 1.98 | 399 |
| 1.21 | 338 | 1.47 | 362 | 1.73 | 382 | 1.99 | 400 |
| 1.22 | 339 | 1.48 | 363 | 1.74 | 383 | 2.00 | 400 |
| 1.23 | 340 | 1.49 | 364 | 1.75 | 384 |      |     |
| 1.24 | 341 | 1.50 | 365 | 1.76 | 384 |      |     |
| 1.25 | 342 | 1.51 | 365 | 1.77 | 385 |      |     |

 $K_b$ : 배압보정계수로서 대기압이면 1, 평형벨로우즈형(balanced bellows type)은 그림 2.6.1.4②,

일반형(conventional type)은 그림 2.6.1.43에서 구한 값

 $K_c$ : 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0

Z : 그림 2.6.1.4④에서 나타낸 압축계수의 값. 단, 명확하지 않은 경우는 Z=1.0

V : 2.6.1.6에서 규정하는 필요분출량 [Nm³/min(0 ℃, 101.325kha(a))]

G: 표준상태에서의 가스비중[0°C, 101.325kh(a))]으로 공기 1을 기준으로 한다.

 $F_2$ : 아음속계수로서 그림 2.6.1.45에서 구한 값 또는 다음 식 (2.10)에 따라 계산한 값

$$F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^{\frac{2}{k}}\left[\frac{1-r^{\frac{(k-1)}{k}}}{1-r}\right]} \cdots (2.10)$$

여기에서  $r: P_9/P_1$ 

# (2) 액체로 분출되는 경우

식 (2.11)에 따라 분출면적을 산출한다. 다만, 산업통상자원부장관이 그 성능을 인정하는 경우에는 식 (2.12)에 따라 분출면적을 산출할 수 있다.

$$A = \frac{11.78Q}{K_d K_w K_c K_v K_p} \sqrt{\frac{G}{(1.25P - P_b)}} \cdots (2.11)$$

$$11.78Q \sqrt{\frac{G}{G}} \qquad (2.12)$$

$$A = \frac{11.78Q}{K_d K_w K_c K_v} \sqrt{\frac{G}{(P_1 - P_2)}} \cdots (2.12)$$

식 (2.11) 및 식 (2.12)식에서

A : 필요분출면적(mm)

Q: 필요분출량(L/min)

 $K_c$ : 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0으로 한다.

 $K_{a}$ : 분출계수(제작자의 설계분출계수)로서 안전밸브는 0.65, 파열판은 0.62로 한다.

 $K_w$ : 배압보정계수로서 대기압이면 1, 평형벨로우즈형(balanced bellows type)은 그림 2.6.1.4⑥에서 구한 값으로 하며, 일반형(conventional type)은 특별히 보정하지 않는다.

K,: 점도보정계수로서 그림 2.6.1.47에서 구한 값 또는 다음 식에 따라 계산한 값으로 한다.

$$K_v = (0.9935 + \frac{2.878}{R^{0.5}} + \frac{342.75}{R^{1.5}})^{-1.0}$$

$$R = \frac{Q (18800 \times G)}{\mu \sqrt{A}}$$

$$R = \frac{85220 \times Q}{U \sqrt{A}}$$

여기에서

R: 레이놀드수(reynold's Number)

 $\mu$ : 분출온도에서의 절대점도(centipoise)

U: 분출온도에서의 절대점도(saybolt universal seconds, SSU)

K。: 과압보정계수로서 그림 2.6.1.48에서 구한 값

P : 설정압력[kPa(g)]

P<sub>b</sub> : 총배압[kPa(g)]

P1: 분출량 결정압력(설정압력과 초과압력의 합) [kPa(g)]

P<sub>2</sub>: 배압[kPa(g)]

G: 분출온도에서의 비중으로 표준상태에서 물을 기준으로 한다.

# (3) 수증기(Steam)로 분출되는 경우

$$A = \frac{190.4W}{P_1 K_d K_b K_c K_N K_{sh}}$$

여기에서

A : 필요분출면적(mm) W : 필요분출량(kg/h)

 $K_b$ : 배압보정계수로서 대기압이면 1, 평형벨로우즈형(balanced bellows type)은 그림2.6.1.4②, 일반형(conventional type)은 그림 2.6.1.4③에서 구한 값

 $K_c$ : 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0으로 한다

 $K_d$ : 분출계수(제작자의 설계분출계수)로서 안전밸브는 0.975, 파열판은 0.62로 한다

K<sub>n</sub>: Napier 방정식에 의한 보정계수로서 P1이 10339 kPa(a) 이하인 경우 1, P1이 10339 kPa(a) 초과 22057 kPa(a) 이하인 경우에는 다음 식에서 구한 값

$$\mathbf{K_n} = \frac{0.02764 \mathbf{P_1} - 1000}{0.03324 \mathbf{P_1} - 1061}$$

 $K_{sh}$  : 과열수증기 보정계수로서 표 2.6.1.42에서 구한 값

표 2.6.1.4② 과열 수증기 보정계수

| 설정   | 성압력  |         | 온도(°C/°F) |         |         |         |         |         |          |          |          |
|------|------|---------|-----------|---------|---------|---------|---------|---------|----------|----------|----------|
| MPa  | psig | 149/300 | 204/400   | 260/500 | 316/600 | 371/700 | 427/800 | 482/900 | 538/1000 | 593/1100 | 649/1200 |
| 0.10 | 15   | 1.00    | 0.98      | 0.93    | 0.88    | 0.84    | 0.80    | 0.77    | 0.74     | 0.72     | 0.70     |
| 0.14 | 20   | 1.00    | 0.98      | 0.93    | 0.88    | 0.84    | 0.80    | 0.77    | 0.74     | 0.72     | 0.70     |
| 0.28 | 40   | 1.00    | 0.99      | 0.93    | 0.88    | 0.84    | 0.81    | 0.77    | 0.74     | 0.72     | 0.70     |
| 0.41 | 60   | 1.00    | 0.99      | 0.93    | 0.88    | 0.84    | 0.81    | 0.77    | 0.75     | 0.72     | 0.70     |
| 0.55 | 80   | 1.00    | 0.99      | 0.93    | 0.88    | 0.84    | 0.81    | 0.77    | 0.75     | 0.72     | 0.70     |
| 0.69 | 100  | 1.00    | 0.99      | 0.93    | 0.88    | 0.84    | 0.81    | 0.77    | 0.75     | 0.72     | 0.70     |
| 0.83 | 120  | 1.00    | 0.99      | 0.94    | 0.89    | 0.84    | 0.81    | 0.78    | 0.75     | 0.72     | 0.70     |
| 0.90 | 140  | 1.00    | 0.99      | 0.94    | 0.89    | 0.85    | 0.81    | 0.78    | 0.75     | 0.72     | 0.70     |
| 1.10 | 160  | 1.00    | 0.99      | 0.94    | 0.89    | 0.85    | 0.81    | 0.78    | 0.75     | 0.72     | 0.70     |
| 1.24 | 180  | 1.00    | 0.99      | 0.94    | 0.89    | 0.85    | 0.81    | 0.78    | 0.75     | 0.72     | 0.70     |
| 1.38 | 200  | 1.00    | 0.99      | 0.95    | 0.89    | 0.85    | 0.81    | 0.78    | 0.75     | 0.72     | 0.70     |
| 1.52 | 220  | 1.00    | 0.99      | 0.95    | 0.89    | 0.85    | 0.81    | 0.78    | 0.75     | 0.72     | 0.70     |
| 1.66 | 240  | _       | 1.00      | 0.96    | 0.90    | 0.85    | 0.81    | 0.78    | 0.75     | 0.72     | 0.70     |

| 1.79         260         -         1.00         0.96         0.90         0.85         0.81         0.78         0.75         0.72           1.93         280         -         1.00         0.96         0.90         0.85         0.81         0.78         0.75         0.72           2.07         300         -         1.00         0.96         0.90         0.85         0.81         0.78         0.75         0.72           2.41         350         -         1.00         0.96         0.90         0.86         0.82         0.78         0.75         0.72           2.76         400         -         1.00         0.96         0.91         0.86         0.82         0.78         0.75         0.72           3.45         500         -         1.00         0.96         0.92         0.86         0.82         0.78         0.75         0.73           4.14         600         -         1.00         0.97         0.92         0.87         0.82         0.79         0.75         0.73           5.52         800         -         -         1.00         0.95         0.88         0.83         0.79         0.76         0.73 | 0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 2.07       300       -       1.00       0.96       0.90       0.85       0.81       0.78       0.75       0.72         2.41       350       -       1.00       0.96       0.90       0.86       0.82       0.78       0.75       0.72         2.76       400       -       1.00       0.96       0.91       0.86       0.82       0.78       0.75       0.72         3.45       500       -       1.00       0.96       0.92       0.86       0.82       0.78       0.75       0.73         4.14       600       -       1.00       0.97       0.92       0.87       0.82       0.79       0.75       0.73         5.52       800       -       -       1.00       0.95       0.88       0.83       0.79       0.76       0.73         6.90       1000       -       -       1.00       0.96       0.89       0.84       0.78       0.76       0.73         8.61       1250       -       -       1.00       0.97       0.91       0.85       0.80       0.77       0.74                                                                                                                                                                                   | 0.70<br>0.70<br>0.70                         |
| 2.41       350       -       1.00       0.96       0.90       0.86       0.82       0.78       0.75       0.72         2.76       400       -       1.00       0.96       0.91       0.86       0.82       0.78       0.75       0.72         3.45       500       -       1.00       0.96       0.92       0.86       0.82       0.78       0.75       0.73         4.14       600       -       1.00       0.97       0.92       0.87       0.82       0.79       0.75       0.73         5.52       800       -       -       1.00       0.95       0.88       0.83       0.79       0.76       0.73         6.90       1000       -       -       1.00       0.96       0.89       0.84       0.78       0.76       0.73         8.61       1250       -       -       1.00       0.97       0.91       0.85       0.80       0.77       0.74                                                                                                                                                                                                                                                                                                          | 0.70                                         |
| 2.76       400       -       1.00       0.96       0.91       0.86       0.82       0.78       0.75       0.72         3.45       500       -       1.00       0.96       0.92       0.86       0.82       0.78       0.75       0.73         4.14       600       -       1.00       0.97       0.92       0.87       0.82       0.79       0.75       0.73         5.52       800       -       -       1.00       0.95       0.88       0.83       0.79       0.76       0.73         6.90       1000       -       -       1.00       0.96       0.89       0.84       0.78       0.76       0.73         8.61       1250       -       -       1.00       0.97       0.91       0.85       0.80       0.77       0.74                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.70                                         |
| 3.45       500       -       1.00       0.96       0.92       0.86       0.82       0.78       0.75       0.73         4.14       600       -       1.00       0.97       0.92       0.87       0.82       0.79       0.75       0.73         5.52       800       -       -       1.00       0.95       0.88       0.83       0.79       0.76       0.73         6.90       1000       -       -       1.00       0.96       0.89       0.84       0.78       0.76       0.73         8.61       1250       -       -       1.00       0.97       0.91       0.85       0.80       0.77       0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |
| 4.14       600       -       1.00       0.97       0.92       0.87       0.82       0.79       0.75       0.73         5.52       800       -       -       1.00       0.95       0.88       0.83       0.79       0.76       0.73         6.90       1000       -       -       1.00       0.96       0.89       0.84       0.78       0.76       0.73         8.61       1250       -       -       1.00       0.97       0.91       0.85       0.80       0.77       0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.70                                         |
| 5.52     800     -     -     1.00     0.95     0.88     0.83     0.79     0.76     0.73       6.90     1000     -     -     1.00     0.96     0.89     0.84     0.78     0.76     0.73       8.61     1250     -     -     1.00     0.97     0.91     0.85     0.80     0.77     0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| 6.90     1000     -     -     1.00     0.96     0.89     0.84     0.78     0.76     0.73       8.61     1250     -     -     1.00     0.97     0.91     0.85     0.80     0.77     0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.70                                         |
| 8.61 1250 1.00 0.97 0.91 0.85 0.80 0.77 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.70                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.71                                         |
| 1000 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.71                                         |
| 10.30   1500   -   -   -   1.00   0.93   0.86   0.81   0.77   0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.71                                         |
| 12.10     1750     -     -     -     1.00     0.94     0.86     0.81     0.77     0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                         |
| 13.79 2000 1.00 0.95 0.85 0.80 0.76 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.69                                         |
| 17.19     2500     -     -     -     1.00     0.95     0.82     0.78     0.73     0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.66                                         |
| 20.69 3000 1.00 0.82 0.74 0.69 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.62                                         |



그림 2.6.1.4① 열용량비  $k=C_p/C_v$ 



그림 2.6.1.4② 밸런스 밸로우즈형 안전밸브 배압보정계수



그림 2.6.1.4③ 일반형(conventional) 안전밸브 배압조정계수



그림 2.6.1.4④ 압축계수





그림 2.6.1.4⑥ 밸런스 벨로우즈형 안전밸브 배압보정계수



**R=레이놀드 수** 그림 2.6.1.4⑦ 점도로 인한 용량보정계수



그림 2.6.1.4⑧ 과압보정계수

# 2.6.1.5 괴입인전장치 축적압력

안전밸브·파열판 또는 릴리프밸브(이하 2.6.1.5에서 "안전밸브"라 한다)의 축적압력은 다음 기준에 따른다. 이 경우 안전밸브의 축적압력·설정압력 및 초과압력의 보기는 표 2.6.1.5와 같다.

# (1) 분출원인이 화재가 아닌 경우

(1-1) 안전밸브를 1개 설치한 경우의 안전밸브의 축적압력은 최고허용사용압력(MAWP: maximum allowable working pressure. 이하 같다)의 110% 이하로 한다.

(1-2) 안전밸브를 2개 이상 설치한 경우의 안전밸브의 축적압력은 최고허용사용압력의 116% 이하로 한다.

# (2) 분출원인이 화재인 경우

안전밸브의 축적압력은 안전밸브의 수량에 관계없이 최고허용사용압력의 121% 이하로 한다.

안전밸브 1개 설치 안전밸브 2개 이상 설치 원 인 최고설정압력 최고축적압력 초과압력 최고설정압력 최고축적압력 초과압력 첫번째 밸브 100 % 110% 10% 100 % 116% 16% 화재 시가 아닌 경우 추가된 밸브 105 % 116% 11 % 첫번째 밸브 100 % 121 % 21 % 100 % 121 % 21 % 화재시인 추가된 밸브 16% 105 % 121 % 경우 나머지 밸브 110% 121 % 11 % 주)모든 수치는 최고허용사용압력 %임

표 2.6.1.5 안전밸브의 축적압력, 설정압력 및 초과압력

# 2.6.1.6 괴입인전장치 분출량

안전밸브나 파열판에서 필요분출랑은 다음의 2.6.1.6.1부터 2.6.1.6.3까지에 따라 구한 값(2.6.1.6.1이나 2.6.1.6.2에 따라 구한 앙이 해당 설비내의 도시가스앙을 초과하는 경우에는 해당 설비내의 도시가스앙 이상으로 한다.

2.6.1.6.1 액화가스의 고압가스설비 등이 외부화재에 노출되어 분출되는 경우[다음 2.6.1.6.3 에서 정한 경우를 제외한대

(1) 압력용기 등의 하부지면에 배수구 및 소화설비가 있는 경우

$$W = \frac{37,140A^{0.82}F}{L} \cdots (2.13)$$

(2) 압력용기 등의 하부지면에 배수구 및 소화설비가 없는 경우

$$W = \frac{61,000A^{0.82}F}{L} \cdots (2.14)$$

식 (2.13) 및 식 (2.14) 에서

W : 시간당 필요분출량(kg/h)

A: 내부 액화가스가 접촉하고 있는 압력용기 등의 면적(m²)으로 화재 시 지면으로부터 수직높이 7.6 m까지 내부 액화가스가 접촉한 면적을 계산한다.

F: 환경계수로서 압력용기 등에 단열재를 사용하는 경우에는 표 2.6.1.6 또는 다음 식 (2.15)에 따른다. 다만, 단열재의 재질은 화재 시 화염에 충분히 견딜 수 있는 것으로 한정한다.

$$F = \frac{\kappa (904^{\circ}C - T_f)}{57,000t} \cdots (2.15)$$

여기에서

 $\kappa$ : T<sub>i</sub>와 940 ℃의 평균온도로 계산된 열전도도(kal·m/mh℃) 다만, 암면과 칼슘실리게이트(calcium silicate)의 경우에는 다음 식으로 산정할 수 있다.

$$\kappa = 0.03 + (2 \times 10^{-4} \text{ T}_{\text{f}})$$

T<sub>f</sub>: 유체온도(℃)

t : 단열두께(m)

L: 분출량 결정압력에서의 액화가스 증발잠열(kg/kg)

F: 표 2.6.1.6의 환경계수

표 2.6.1.6 환경계수

| 구분 | 압력용기 등의 환경                   |                | F값    |
|----|------------------------------|----------------|-------|
| 1  | 노출(Bare) 된                   | l 압력용기등        | 1     |
|    |                              | 단열재의 전열계수(κ/t) |       |
| 2  | 단열된 압력용기등<br>(분출 시 유체온도 15℃) | 19.5 kra√m³h°C | 0.3   |
|    |                              | 9.8 kca√m²h°C  | 0.15  |
|    |                              | 4.9 kca√m°h°C  | 0.075 |
|    |                              | 3.3 kca∤m³h°C  | 0.05  |

|   | 2.4 ka/mħ℃<br>2.0 ka/mħ℃ |              | 0.0376 |
|---|--------------------------|--------------|--------|
|   |                          |              | 0.03   |
|   |                          | 1.6 ka√m°h°C | 0.026  |
| 3 | 물분무장치가 설치된 경우            |              | 1      |
| 4 | 감압시설 및 액이송설비가 설치된 경우     |              | 1      |
| 5 | 지상에 설치하고 흙으로 덮은 저장탱크     |              | 0.03   |
| 6 | 지하매설 저장탱크                |              | 0.00   |

2.6.1.6.2 압축가스의 고압가스설비등[다음 2.6.1.6.3에서 정한 경우를 제외한다]

$$W = 0.28V \gamma d^2$$

여기에서

W : 시간당 소요분출량(kg/h)

V : 도입관내의 압축가스유속(m/sec)

 $\gamma$ : 안전장치의 입구측의 가스밀도 $(kg/m^3)$ 

d : 도입관의 내경(cm)

2.6.1.6.3 펌프에서 시간당의 토출량(kg/h)을 시간당의 소요 분출량으로 한다.

2.6.1.6.4 고압가스설비 안의 기체 및 증기가 외부화재에 노출되어 분출되는 경우

$$W = 0.277 (MP_1)^{0.5} \frac{(T_w - T_1)^{1.25} A}{T_1^{1.1506}}$$

여기에서

W : 필요 분출량(kg/h)

A: 용기의 노출표면적(m²)

P1: 분출량 결정압력(절대압력으로 설정압력과 초과압력의 합을 말한다) [kh(a)]

M : 기체 또는 증기의 분자량

 $T_w$ : 용기표면온도(탄소강의 최대용기표면온도를  $865\,\mathrm{K}$ 로 권장되며, 그 외의 합금강의 경우 좀 더 높은 온도를 권장),  $\mathrm{K}$ 

 $T_1$ : 분출시 온도로서 다음 식에 의해 계산된 값으로 한다.

$$T_1 = T_n \left( \frac{P_1}{P_n} \right)$$

여기에서

P<sub>n</sub>: 정상운전압력[kPa(a)] T<sub>n</sub>: 정상운전온도(K)

2.6.1.7 과압안전장치 작동압력

2.6.1.7.1 고압가스설비 등에 부착하는 과압안전장치는 압력이 상용압력을 초과한 경우에 그 압력을 직접 받는 부분마다 각각 2.6.1.5에서 정한 압력 이하에서 작동되는 것으로 한다.

26.1.7.2 액화가스의 고압가스설비 등에 부착되어 있는 스프링식 안전밸브는 상용의 온도에서 그 고압가스설비등 내의 액화가스의 상용의 체적이 그 고압가스설비 등 내의 내용적의 98 %까지 팽창하게 되는 온도에 대응하는 그 고압가스설비 등 안의 압력에서 작동하는 것으로 한다.

# 2.6.1.8 기스방출관 설치

저장설바처리설비의 안전장치에는 방출관을 설치하고, 방출관의 높이는 지상으로부터 5 m 이상 수직으로 설치하며, 방출관에는 적절한 빗물방지용캡을 설치한다. 다만, 저장설비의 방출관은 지상으로부터 5 m의 높이 또는 차량에 고정된 탱크의 정상부로부터 2 m의 높이 중 높은 위치로 한다.

#### 2.6.1.9 국제공인기준적용 특례

안전밸브나 파열판의 분출량결정 및 설치는 API, ASME, ISO 공인기준을 적용한 경우와 그 밖에 산업통상자 원부장관과 한국가스안전공사가 협의하여 인정하는 국제적인 공인기준을 적용한 경우에는 2.6.1.1부터 2.6.1.8까지에도 불구하고 적합한 것으로 본다.

#### 2.6.2 기스누출검지경보장치 설치

가스충전시설에는 가스가 누출될 경우 이를 신속히 검지하여 효과적으로 대응할 수 있도록 하기 위하여 다음 기준에 따라 가스누출검지경보장치(이하 "검지경보장치"라 한다)를 설치한다.

#### 2.6.2.1 검지경보장치 기능

검지경보장치는 누출된 가스를 검지하여 경보를 울리면서 자동으로 가스통로를 차단하는 것으로서 다음 기능을 가진 것으로 한다.

- 2.6.2.1.1 경보는 접촉연소방식, 격막갈바니전지방식, 반도체방식, 그 밖의 방식으로 검지엘리먼트의 변화를 전기적 신호에 따라 이미 설정하여 놓은 가스농도(이하 "경보농도"라 한다)에서 자동적으로 울리는 것으로 한다. 이 경우 가연성가스 경보기는 담배연기 등, 독성가스용 경보기는 담배연기, 기계세척유 가스, 등유의 증발가스, 배기가스 및 탄화수소계 가스 등 잡가스에는 경보하지 않는 것으로 한다.
- 2.6.2.1.2 경보농도는 검지경보장치의 설치장소, 주위 온도에 따라 폭발 하한계의 1/4 이하로 한다.
- 2.6.2.1.3 경보기의 정밀도는 경보농도 설정치에 대하여 ±25% 이하로 한다.
- 2.6.2.1.4 검지에서 발신까지 걸리는 시간은 경보농도의 1.6배 농도에서 보통 30초 이내로 한다.
- 2.6.2.1.5 검지경보장치의 경보정밀도는 전원의 전압 등 변동이  $\pm 10\%$  정도일 때에도 저하되지 않는 것으로 한다.
- 2.6.2.1.6 지시계의 눈금은 가연성가스용은 '0~폭발 하한계 값'을 명확하게 지시하는 것으로 한다.
- 2.6.2.1.7 경보를 발신한 후에는 원칙적으로 분위기중 가스농도가 변화하여도 계속 경보를 울리고, 그 확인 또는 대책을 강구함에 따라 경보가 정지되는 것으로 한다.

2.6.2.1.8 자동적으로 긴급차단 신호를 발하는 농도 설정치는 1.25 % 이하의 값으로 한다.

## 2.6.2.2 검지경보장치 구조

검지경보장치의 구조는 다음 기준에 적합한 것으로 한다.

26.221 충분한 강도(특히 검지엘리먼트와 발신회로는 내구성을 갖는 것일 것)를 갖고, 취급과 정비(특히 검지엘리먼트의 교체 등)가 쉬운 것으로 한다.

2.6.2.2.2 가스에 접촉하는 부분은 내식성의 재료 또는 충분한 부식방지 처리를 한 재료를 사용하고 그 외의 부분은 도장이나 도금처리가 양호한 재료로 한다.

2.6.2.2.3 검지경보장치는 방폭 성능을 가진 것으로 한다.

2.6.2.2.4 2개 이상의 검출부에서 검지신호를 수신하는 경우 수신회로는 경보를 울리는 다른 회로가 작동하고 있을 때에도 해당 검지경보장치가 작동하여 경보를 울릴 수 있는 것으로서 경보를 울리는 장소를 식별할 수 있는 것으로 한다.

2.6.2.2.5 수신회로가 작동상태에 있는 것을 쉽게 식별할 수 있는 것으로 한다.

2.6.2.2.6 경보는 램프의 점등 또는 점멸과 동시에 경보를 울리는 것으로 한다.

# 2.6.2.3 검지경보장치 설치장소 및 설치개수

2.6.2.3.1 검지경보장치는 다음 장소에 설치한다.

- (1) 충전차량 주변
- (2) 개별 충전설비 본체 내부
- (3) 밀폐형 피트내부에 설치된 배관접속(용접접속을 제외한다)부 주위
- (4) 펌프 주변

2.6.2.3.2 검지경보장치는 다음에서 정한 수 이상으로 설치한다.

- (1) 충천차량 주변에는 2개
- (2) 충전설비 내부에는 1개
- (3) 배관접속부마다 10m 이내에 1개
- (4) 펌프주변에는 1개

표 2.6.2.3 검지경보장치 설치 개수

| 설치 장소 | 설치 개수(이상) |
|-------|-----------|
| 충전차량  | 2개        |
| 충전설비  | 1개        |

| 밀폐형 피트 내부 배관 | 10 m 마다 1개 |
|--------------|------------|
| 펌프 주변        | 1개         |

2.6.2.3.3 다음의 배관부분에는 검지경보장치의 검출부를 설치한다.

- (1) 긴급차단 장치의 부분(밸브피트를 설치한 곳에는 해당 밸브 피트 안)
- (2) 슬리이브관, 2중관 또는 방호구조물 등으로 밀폐되어 설치(매설을 포함한다)되는 부분
- (3) 누출된 가스가 체류하기 쉬운 구조인 부분

2.6.2.3.4 검지경보장치의 검출부는 가스비중, 주위상황, 가스설비 높이 등 조건에 따라 적절한 높이에 설치한다.

2.6.2.3.5 검지경보장치의 경보부, 램프의 점등 또는 점멸부는 관계자가 상주하는 곳으로 경보가 울린 후 각종 조치를 하기에 적합한 장소에 설치한다.

# 2.6.3 긴급치단장치 설치

가스충전시설에는 긴급 시 가스의 누출을 효과적으로 차단하기 위하여 다음 기준에 따라 긴급차단장치를 설치한다.

## 2.6.3.1 치량에 고정된 탱크에 긴급치단장치 설치

차량에 고정된 탱크에는 다음 기준에 따라 긴급차단장치를 설치한다.

2.6.3.1.1 차량에 고정된 탱크에 부착된 배관(액상의 가스를 송출 또는 이입하는 것에만 적용하고, 차량에 고정된 탱크와 배관과의 접속부분을 포함한다)에는 차량에 고정된 탱크 근처 및 충전설비로부터 5 m 이상 떨어진 장소에서 조작할 수 있는 긴급차단장치를 설치한다. 다만, 액상의 가연성가스를 이입하기 위하여 설치된 배관에 역류방지밸브를 설치한 경우에는 긴급차단장치를 설치한 것으로 볼 수 있다.

2.6.3.1.2 2.6.3.1.1에 따른 배관에는 긴급차단장치에 딸린 밸브 외에 2개 이상의 밸브를 설치하고 그 중 1개는 그 배관에 속하는 차량에 고정된 탱크의 가장 가까운 부근에 설치한다. 이 경우 그 차량에 고정된 탱크의 가장 가까운 부근에 설치한 밸브는 가스를 송출 또는 이입하는 때 외에는 잠그어 둔다.

26.3.1.3 긴급차단장치 또는 역류방지밸브는 차량에 고정된 탱크 주밸브(main valve) 외측으로서 가능한 한 차량에 고정된 탱크에 가까운 위치나 차량에 고정된 탱크의 내부에 설치하되, 차량에 고정된 탱크의 주밸브(main valve) 와 겸용해서는 안된다.

2.6.3.1.4 긴급차단장치 또는 역류방지밸브를 설치할 때에는 차량에 고정된 탱크의 침해나 부상, 배관의 열팽창·지진 그 밖의 외력의 영향을 고려한다.

## 2.6.3.2 차량에 고정된 탱크 외의 고압가스설비에 긴급차단정치 설치

가스충전시설에는 충전설비 근처 및 충전설비로부터 5 m 이상 떨어진 장소에 긴급할 때 가스의 누출을 효과적으로 차단할 수 있도록 하기 위하여 긴급차단장치를 다음 기준에 따라 설치한다.

**26.3.21** 충전설비 근처 및 충전설비로부터 5m 이상 떨어진 장소에는 수동 긴급치단장치를 각각 설치하고 이 장치가 작동될 경우에는 펌프 및 충전설비에 공급되는 전원과 가스공급이 자동으로 차단되도록 한다.

2.6.3.2.2 긴급차단장치의 차단조작 위치는 수송되는 가스의 대량유출에 따라 충분히 안전한 장소로한다.

2.6.3.2.3 긴급차단장치가 작동되거나 전원이 차단된 경우에는 처리설비 및 충전설비가 정지되고, 이 경우 처리설비 및 충전설비를 수동으로 조작하거나 재조정할 경우에만 처리설비 및 충전설비가 작동될 수 있는 구조로 한다.

2.6.3.2.4 5톤을 초과하는 저장 용량을 가진 가스충전시설에는 화염검지기 및 가스누출검지기 등의 신호에 의해 작동되는 자동 긴급차단시스템을 설치하고, 긴급차단장치가 작동되는 경우에는 2.6.3.2.3와 같이 처리설비 및 충전설비를 수동으로 조작하거나 재조정할 경우에만 처리설비 및 충전설비가 작동될 수 있는 구조로 한다.

# 2.6.3.3 긴급차단장치 차단조작기구 및 기능

2.6.3.3.1 긴급차단장치의 조작 동력원은 차단밸브의 구조에 따라 액압, 기압, 전기(어느 것이나 정전시에 비상전력 등으로 사용 가능하게 한 것) 또는 스프링 등으로 한다.

2.6.3.3.2 긴급차단장치를 조작할 수 있는 위치는 해당 차량에 고정된 탱크로부터 5 m 이상 떨어진 곳(방류둑 등을 설치한 경우에는 그 외측)이고 액화가스의 대량유출 시에 대비하여 안전한 장소로 한다. 또한 상기 위치 이외의 주변 상황에 따라서 해당 차단조작을 신속히 할 수 있는 위치로 한다.

2.6.3.3.3 차단조작은 간단히 할 수 있고 확실하고 신속히 차단되는 구조로 한다.

26.3.3.4 제조자나 수라자가 긴급차단장치를 제조 또는 수리하였을 경우 긴급차단장치는 KS B 2304(밸브 검사통칙)에서 정하는 기준에 따라 수압시험 방법으로 밸브시이트의 누출검사를 하여 누출되지 않는 것으로 한다. 다만 수압대신에 공기 또는 질소 등의 기압을 사용하여 누출검사를 하는 경우에는 차압 0.5~0.6 \mathbb{N} 에서 분당 누출랑이 50 \mathbb{n} \text{\text{\sigma}} \text{\sigma} \te

#### 2.6.3.4 긴급차단장치 개폐표시

긴급차단장치의 개폐상태를 표시하는 시그널램프 등을 설치하는 경우 그 설치위치는 해당 저장탱크의 송출 또는 이입에 관련된 계기실 또는 이에 준하는 장소로 한다.

# 2.6.3.5 긴급차단장치 수격작용 방지조치

긴급차단장치 또는 역류방지밸브에는 그 차단에 따라 그 긴급차단장치 또는 역류방지밸브 및 접속하는

배관등에서 수격작용(water hammer)이 발생하지 않는 조치를 강구하다.

# 2.6.3.6 수동조작밸브 설치(내용 없음)

#### 2.6.4 역류방지장치 설치

펌프 등 위험성이 높은 기스설비에는 역류를 효과적으로 차단할 수 있도록 역류방지밸브를 설치 하다.

# 2.6.5 역회방지장치 설치(내용 없음)

#### 2.6.6 위험감시 및 제어장치 설치

가스충전시설에는 충전차량의 위치 및 충전상태를 모니터링 할 수 있는 장치를 설치한다.

### 2.6.7 오발진방지장치 설치

가스충전시설에는 야드 트랙터의 오발진으로 인한 충전기 및 충전 호스의 파손을 방지할 수 있는 조치를 취한다.

#### 2.6.8 전기방폭설비 설치

가스충전시설에 설치 · 사용하는 전기설비 중 위험장소 안에 있는 전기설비는 누출된 가스의 점화원이되는 것을 방지하기 위하여 KGS GC101(가스시설의 폭발위험장소 종류 구분 및 범위산정에 관한 기준) 및 KGS GC102(방폭전기기기의 설계, 선정 및 설치에 관한 기준)에 따라 방폭성능을 갖도록 설치한다.

# 2.6.9 환기설비 설치

가스설비 및 저장설비에서 누출된 가스가 충전장소에 체류하지 않도록 다음 기준에 따라 환기설비를 설치하고 환기가 잘 되지 않는 곳에는 강제환기시설을 설치한다.

2.6.9.1 공기보다 가벼운 기연성가스의 경우 가스의 성질, 처리 또는 저장하는 가스의 양, 설비의 특성 및 실의 넓이 등을 고려하여 충분한 면적을 가진 2 방향 이상의 개구부 또는 강제환기시설을 설치하거나 이들을 병설하여 환기를 양호하게 한 구조로 한다.

2.6.9.2 공기보다 무거운 기연성가스의 경우 가스의 성질, 처리 또는 저장하는 가스의 양, 설비의 특성 및 실의 넓이 등을 고려하여 충분한 면적을 갖고 바닥면에 접하여 2방향 이상의 개구부 또는 바닥면 가까이에 흡입구를 갖춘 강제환기설비를 설치하거나 이들을 병설하여 주로 바닥면에 접한 부분의 환기를 양호하게 한 구조로 한다.

#### 2.6.10 부식방지설비 설치

충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 부식방지조치를 강구한다.

# 2.6.10.1 저장설비 부식방지설비 설치

충전차량의 외면에는 부식방지를 위하여 도장을 한다.

# 2.6.10.2 배관 부식방지설비 설치

지상 또는 지하에 설치하는 배관에는 부식을 방지하기 위하여 다음 기준에 따라 부식방지조치를 강구한다.

2.6.10.2.1 배관을 지상에 설치하는 경우에는 그 외면에 녹이 슬지 않도록 도장을 한다.

26.10.22 부식성이 있는 가스의 수송용 배관에는 해당 가스에 침식되지 않는 재료를 사용하며 배관내면의 부식정도에 따른 부식여유를 두거나 코팅 등으로 내면부식방지조치를 한다.

2.6.10.2.3 수송되는 가스나 배관재료에 대하여 부식성이 없다고 인정되는 경우(실용상 충분히 탈수한 경우에도 포함한다)에는 원칙적으로 부식여유를 고려하지 않을 수 있다.

2.6.10.2.4 배관을 지하에 매설하는 경우에는 아스팔트 또는 콜타르, 에나펠 등의 도장재와 주트(jute : 황마), 비닐론크로스, 글래스매트 또는 글래스크로스 등의 피복재와의 조합에 따른 도복장(塗覆裝) 또는 이들과 같은 수준 이상의 성능을 가지는 합성수지나 아스팔트마스틱 등의 도장으로 배관의 외면을 보호한다.

2.6.10.2.5 지하에 설치하는 배관에는 KGS GC202(가스시설 전기방식 기준)에 따라 전기부식방지 조치를 한다.

2.6.10.2.6 보온 · 보냉된 배관 중 빗물유입, 누수, 살수설비 등에 노출되어 있는 부분 및 응축 등으로 인한 국부부식이나 응력부식균열이 발생할 수 있는 부분에는 부식방지조치를 한다.

2.6.10.2.7 보온 · 보냉된 배관에는 다음 기준에 따라 부식진행 여부 등을 확인할 수 있는 조치를 하고, 점검주기, 점검방법 및 판정기준 등을 안전관리규정에 명시한다.

- (1) 점검구의 설치
- (2) 그 밖에 가능한 방법

#### 2.6.11 정전기 제거 설비 설치

가스충전시설에는 그 설비에서 발생한 정전기가 점화원으로 되는 것을 방지하기 위하여 다음 기준에 따라 정전기 제거설비를 설치한다.

**2.6.11.1** 차량에 고정된 탱크, 처리설비 및 충전설비[접지저항치의 총합이  $100 \Omega$ (피뢰설비를 설치한 것은 총합  $10 \Omega$ )이하의 것을 제외한다! 등에서 발생하는 정전기를 제거하는 설비를 설치한다.

2.6.11.2 차량에 고정된 탱크, 처리설비 및 충전설비 등은 단독으로 접지한다. 다만, 기계가 복잡하게 연결되어 있는 경우 및 배관등으로 연속되어 있는 경우에는 본당용 접속선으로 접속하여 접지할 수 있다.

26.11.3 본딩용 접속선 및 접지접속선은 단면적 5.5 m² 이상의 것(단선은 제외한다)을 사용하고 경납붙임, 용접, 접속금구 등을 사용하여 확실히 접속한다.

- 2.6.11.4 접지 저항치는 총합  $100 \Omega$ (피뢰설비를 설치한 것은 총합  $10 \Omega$ ) 이하로 한다.
- 2.6.12 전도방지설비 설치(해당 없음)
- 2.6.13 절연설비 설치(내용 없음)
- 2.6.14 내부반응 감시설비 설치(내용 없음)
- 2.6.15 위험사태발생 방지설비 (내용 없음)
- 2.6.16 인터록 제어장치 설치(내용 없음)
- 2.6.17 기스치단장치 설치
- 2.6.17.1 충전기에는 충전 중인 용기가 최고충전압력에 도달하면 가스공급을 자동으로 차단하는 장치를 설치한다.
- 26.17.2 연료보급 커넥터는 완전한 접속이 이루어지지 않는 경우 가스의 흐름을 차단하는 인터록(interlock) 장치를 갖추거나 충전라인이 분리됨과 동시에 연료보급 커넥터가 자동으로 폐쇄되는 자기폐쇄기능을 갖춘다.
- 2.6.17.3 충전차량에는 충전원 이외의 자가 충전할 수 없도록 적절한 신원확인 시스템을 설치한다.

## 2.6.18 긴급분리장치 설치

충전호스에는 충전중 아드 트랙터의 오발진으로 인한 충전기 및 충전호스의 파손을 방지하기 위해 다음 기준에 따라 긴급분리장치를 설치한다.

- 2.6.18.1 긴급분리장치는 분리되었을 때 노즐로의 도시가스를 자동으로 차단하고, 재사용 가능한 장치일 경우 재 연결 시 재사용 전에 운전조건에서 누출시험을 실시한다.
- 2.6.18.2 긴급분리장치는 이탈 시 연결부의 양쪽을 차단하는 이중 차단형태로 한다.
- 2.6.18.3 긴급분리장치에는 다음과 같은 표시를 한 것을 설치한다.
- (1) 설계압력
- (2) 가스흐름 방향
- (3) 1회 사용 장치 또는 재사용 금지 여부
- 26.18.4 긴급분리장치 가장 끝부분 사이의 전기 저항은  $1.0\Omega$  이하로 하고, 저항 값의 측정은 대기압에서 제조자의 설계 압력에 노출되는 동안 측정한다.

26.18.5 야드 트랙터가 충전호스와 연결된 상태로 출발할 경우 가스의 흐름이 차단될 수 있도록 긴급분리장치를 지면 또는 지지대에 고정 설치한다.

2.6.18.6 긴급분리장치는 각 충전설비마다 설치한다.

2.6.18.7 긴급분리장치는 수평방향으로 당길 때 666.4 N(68 kgf) 미만의 힘으로 분리되는 것으로 한다.

2.6.18.8 긴급분리장치와 충전설비 시어에는 충전자가 접근하기 쉬운 위치에 90° 회전의 수동밸브를 설치한다.

#### 2.6.19 충전기 보호설비 설치

충전설비의 주위에는 야드 트랙터의 충돌로부터 충전기를 보호하기 위하여 다음 기준에 따라 방호조치를 한다.

2.6.19.1 보호대는 다음 중 어느 하나를 만족하는 것으로 한다.

- (1) 두께 12 cm 이상의 철근콘크리트
- (2) 호칭지름 100 A 이상의 KS D 3507(배관용 탄소 강관) 또는 이와 동등 이상의 기계적 강도를 가진 강관
- 2.6.19.2 보호대의 높이는 80 cm 이상으로 한다.
- 2.6.19.3 보호대는 차량의 충돌로부터 충전기를 보호할 수 있는 형태로 한다. 다만, 말뚝형태일 경우 말뚝은 2개 이상을 설치하고, 간격은 1.5 m 이하로 한다.
- 2.6.19.4 보호대의 기초는 다음 중 어느 하나를 만족하는 것으로 한다.
- (1) 철근콘크리트제 보호대는 콘크리트 기초에 25 cm 이상의 깊이로 묻고, 바닥과 일체가 되도록 콘크리트를 타설한다.
- (2) 강관제 보호대는 (4-1)과 같이 콘크리트 기초에 묻거나, KS B 1016(기초볼트)에 따른 앵 커볼트를 사용하여 표 2.6.19.4(2) 및 그림 2.6.19.4(2) 와 같이 콘크리트 기초에 고정한다.

표 2.6.19.4(2) 강관제 보호대의 받침대 치수

| 보호대 관지름                                                             | 받침대 치수(mm) |            |  |  |  |
|---------------------------------------------------------------------|------------|------------|--|--|--|
| D                                                                   | a, b       | Т          |  |  |  |
| 100 A 이상                                                            | D+100 이상   | 6 ± 0.5 이상 |  |  |  |
| [비고] 받침대의 재료는 KS D 3503(일반구조용 압연강재) 또는 이와 동등 이상의 기계적 강도를 갖는 것으로 한다. |            |            |  |  |  |



그림 2.6.19.4(2) 강관제 보호대의 받침대 설치 방법

2.6.19.4 보호대의 외면에는 아간식별이 가능하도록 야광 페인트로 도색하거나 야광 테이프 또는 반시지 등으로 표시하다.

### 2.6.20 회염검지기 설치

충전기 주변 및 발화 위험이 존재하는 장소에는 화염검지기를 설치한다.

# 2.7 피해저김설비기준

가스충전시설에는 차량에 고정된 탱크로부터 가스가 누출되는 경우 재해 확대를 방지하기 위하여 액확산방 지조치 등 적절한 조치를 취하고, 배관에는 배관을 보호하기 위하여 온도상승 방지조치 등 필요한 조치를 강구한다.

#### 2.7.1 방류독 설치

차량에 고정된 탱크의 저장능력이 500톤 이상(서로 인접하여 설치된 것은 그 저장능력의 합계)인 것의 주위에는 그 저장탱크를 보호하고 그 저장탱크로 부터 가스가 누출되는 경우 재해 확대를 방지하기 위하여 다음의 기준에 따라 방류둑을 설치한다. 다만, 차량에 고정된 탱크가 이중방호 및 완전방호 또는 멤브레인(membrane) 방호구조로 설계되었을 경우에는 탱크 주위에 방류둑 또는 이와 동등 이상의 효과가 있는 시설을 설치하지 않을 수 있다. <개정 21. 8. 9.>

### 2.7.1.1 방류독 기능

방류둑은 차량에 고정된 탱크의 액화가스가 액체 상태로 누출된 경우 액체 상태의 가스가 차량에 고정된 탱크 주위의 한정된 범위를 벗어나서 다른 곳으로 유출되는 것을 방지하는 기능을 갖는 것으로 한다.

# 2.7.1.2 방류둑 용량

방류둑의 수용용량은 최대저장용량의 110% 이상으로 한다.

## 2.7.1.3 방류독 재료 및 구조

방류둑의 재료 및 구조는 다음 기준에 적합한 것으로 한다.

2.7.1.3.1 방류둑은 액밀한 것으로 한다.

- 2.7.1.3.2 방류둑은 그 높이에 상당하는 해당 액화가스의 액두압에 견딜 수 있는 것으로 한다.
- 2.7.1.3.3 방류둑의 재료는 콘크리트 또는 이와 동등 이상의 강도를 가지는 것으로 한다.

#### 2.7.1.4 방류둑 내외부 부속설비 설치

방류둑의 내측 및 그 외면으로부터 10 m이내에는 그 저장탱크의 부속설비 외의 것을 설치하지 않는다. 다만, 다음 설비는 방류둑 내부 또는 그 외면으로부터 10 m 이내에 설치할 수 있다.

# 2.7.1.4.1 방류둑 내부에 설치할 수 있는 시설 및 설비

- (1) 해당 저장설비에 속하는 송출 및 송액설비, 불활성가스의 저장탱크, 불분무장치 또는 살수장치(저장탱크 외면에서 방류둑까지 20 m를 초과하는 경우에는 방류둑 외측에서 조작할 수 있는 소화설비를 포함한다) 가스누출검지경보설비(검지부에 한정한다), 재해설비(누출된 가스를 흡입하는 부분에 한정한다), 조명설비, 계기시스템, 배수설비, 배관 및 그 파이프랙(pipe rack)와 이들에 부속하는 시설 및 설비
- (2) (1)에서 정한 것 이외의 것으로서 안전확보에 지장이 없는 시설 및 설비

# 2.7.1.4.2 방류둑 외부 10 m 이내에 설치할 수 있는 시설 및 설비

- (1) 해당 저장설비에 속하는 송출 및 송액설비, 불활성가스의 저장탱크, 열교환기, 가스누출검지경보설비, 재해설비, 조명설비, 누출된 가스의 확산을 방지하기 위하여 설치된 건물형태의 구조물, 계기시스템, 배관 및 그 파이프랙과 이들에 부속하는 시설 및 설비
- (2) 배관(신축이음매 이외의 부분이 지면에서 4 m 이상의 높이를 가진 것에 한정한다) 및 그 파이프랙, 방소화설비, 통로(해당 사업소에 설치된 것에 한정한다) 또는 지하에 매설되어 있는 시설(지상중량물의 하중에 견딜 수 있는 조치를 한 것에 한정한다)
- (3) (1) 및 (2)에서 정한 것 이외의 것으로서 안전확보에 지장이 없는 시설 및 설비

# 2.7.2 방호벽 설치

2.1.1.2 보호시설과의 거리, 2.1.4 사업소경계와의 거리, 2.4.4.2.1 처리설비 보호조치에 따른 방호벽은 다음 기준에 따라 설치한다.

## 2.7.2.1 철근콘크리트제 방호벽 설치

철근콘크리트 방호벽은 그림 27.21① 및 그림 27.2.1②와 같이 충전차량, 처리설비 및 충전설비 외면으로 부터 방호벽 상단 및 앙쪽 끝을 지나는 직선이 보호시설과 만나지 않도록 다음 기준에 따라 설치한다.



그림 2.7.2.1① 방호벽 설치 예(측면도)



그림 2.7.2.1② 방호벽 설치 예(평면도)

**2.7.2.1.1** 직경  $9 \, \mathrm{mm}$  이상의 철근을 가로세로  $400 \, \mathrm{mm}$  이하의 간격으로 배근하고 모서리 부분의 철근을 확실히 결속한 두께  $120 \, \mathrm{mm}$  이상, 높이  $2\,000 \, \mathrm{mm}$  이상으로 한다.

# 2.7.2.1.2 기초는 다음 기준에 따른다.

- (1) 일체로 된 철근콘크리트 기초로 한다.
- (2) 그림 2.7.2.1.2과 같이 높이는 350 mm 이상, 되메우기 깊이는 300 mm 이상으로 한다.
- (3) 기초의 두께는 방호벽 최하부 두께의 120% 이상으로 한다.



그림 2.7.2.1.2 철근콘크리트제 방호벽 설치예

# 2.7.2.2 콘크리트블럭제 방호벽 설치

콘크리트블럭제 방호벽은 다음 기준에 따라 설치한다.

**2.7.2.2.1** 철근을 2.7.2.1.1과 같이 배근결속하고 블럭공동부에는 콘크리트 몰타르를 채운 두께는 150 mm 이상, 높이는 2 000 mm 이상으로 한다.

**2.7.2.2.2** 두께 150 mm 이상, 간격 3 200 mm 이하의 보조벽을 그림 2.7.2.2.2와 같이 본체와 직각으로 설치한다.



2.7.2.2.3 보조벽은 그림 2.7.2.2.3과 같이 방호벽면으로부터 400 mm 이상 돌출한 것으로 하고, 그 높이는 방호벽의 높이보다 400 mm 이상 아래에 있지 않도록 한다.



그림 2.7.2.2.3 보조벽의 높이

2.7.2.2.4 기초는 일체로 된 철근콘크리트 기초이고, 기초의 높이는 350 mm 이상으로 하되, 되메우기 깊이는 300 mm 이상으로 한다.

## 2.7.2.3 강판제 방호벽 설치

강판제 방호벽은 다음 기준에 따라 설치한다.

**2.7.2.3.1** 두께 6 mm(허용공차 : ±0.6 mm) 이상의 강판 또는 두께 3.2 mm(허용공차 : ±0.34 mm) 이상의 강판에 30 mm×30 mm 이상의 앵글강을 가로세로 400 mm 이하의 간격으로 용접 보강한 강판을 1 800

mm 이하의 간격으로 세운 지주와 용접 결속하여 높이 2000 mm 이상으로 한다.

# 2.7.2.3.2 앵글강의 보강은 그림 2.7.2.3.2와 같이 한다.



그림 2.7.2.3.2 강판제 방호벽의 앵글강 보강

2.7.2.3.3 지주는 1,800 mm 이하의 간격으로 하되 벽면과 모서리 및 벽면 양쪽 끝에도 설치한다.

2.7.2.3.4 지주와 벽면은 그림 2.7.2.3.4와 같이 필렛 용접으로 결속하고, 모서리 부의 지주는 모서리의 안쪽에, 벽부의 지주는 벽면의 바깥쪽(바깥쪽에 설치하기 곤란한 경우에는 안쪽에 설치할 수 있다)에 설치한다.



그림 2.7.2.3.4 지주의 설치방법

2.7.2.3.5 지주 규격은 표 2.7.2.3.5의 치수 이상으로 한다.

표 2.7.2.3.5 지주로 사용하는 형강의 치수(㎜)

| 등변 ㄱ 강 | 100×100 |
|--------|---------|
| I 형 강  | 100×75  |
| H 형 강  | 100×100 |
| ㄷ 형 강  | 100×50  |

# 2.7.2.3.6 기초는 다음 기준에 따른다.

- (1) 일체로 된 철근콘크리트 기초로 한다.
- (2) 높이는 350 mm 이상, 되메우기 깊이는 300 mm 이상으로 한다.
- (3) 지주는 그림 2.7.2.3.6의 보기와 같이 기초에 400 mm 이상의 깊이로 문거나, M20 이상의 앵커볼트를 사용하여 고정시킨다.





지주를 기초에 앵커볼트로 고정하는 구조

그림 2.7.2.3.6 강판제 방호벽의 고정방법 보기

## 2.7.3 실수장치 설치(해당 없음)

## 2.7.4 제독설비 설치(해당 없음)

### 2.7.5 중화 · 이송설비 설치(해당 없음)

# 2.7.6 풍향계 설치(해당 없음)

# 2.7.7 소화설비 설치

가스충전시설의 주변에는 등급 20-B:C 이상의 소화기를 비치한다.

# 2.7.8 통행시설 설치(해당 없음)

## 2.7.9 온도상승방지설비 설치

## 2.7.9.1 저장탱크의 온도상승방지설비 설치

# 2.7.9.1.1 온도상승방지설비 설치 범위

온도상승방지설비를 설치하여야 하는 차량에 고정된 탱크는 가연성가스 저장탱크 또는 가연성 물질을 취급하는 설비와 (1)부터 (3)까지의 거리 이내에 있는 저장탱크로 한다.

- (1) 방류둑을 설치한 가연성가스저장탱크의 경우 해당 방류둑 외면으로부터 10 m 이내
- (2) 방류둑을 설치하지 않은 가연성가스저장탱크의 경우 해당 저장탱크 외면으로부터 20 m 이내
- (3) 가연성물질을 취급하는 설비의 경우 그 외면으로부터 20 m 이내

# 2.7.9.1.2 액화가스 저장탱크 온도상승방지설비 설치

액화가스저장탱크(치량에 고정된 탱크에 부속하는 액면계, 밸브류를 포함한다. 이하 같다)는 (1), (2)

또는 이들의 혼합에 의하며, 지주에 대하여는 (3)에 따른다. 이 경우 보냉을 위하여 단열재를 사용한 초저온 · 저온 저장탱크[2중각(二重殼)단열구조를 말한다!로서 해당 단열재의 두께가 주변의 화재를 고려하여 충분한 내화성을 갖고 있을 때에는 그 상태에서 저장탱크 온도상승방지조치를 한 것으로 본다. (1) 저장탱크 표면적 1 m당 5L/분 이상의 비율로 계산된 수량을 저장탱크 전 표면에 분무[살수(撒水)를 포함한다. 이하 같대 할 수 있도록 고정된 장치를 설치한다. 이 경우 저장탱크가 암면두께 25 mm 이상 또는 이와 동등 이상의 내화성능을 가지는 단열재로 피복되고 그 외측을 두께 0.35 mm이상의 KS D 3506(용융 아연도금 강판 및 강대) SBHG2 또는 이와 동등 이상의 강도와 내화성능을 가진 재료로 피복한 것(이하 "준내화구조저장탱크"라 한다)에는 그 표면적 1 m당 2.5L/분 이상의 비율로 계산된 수량을 분무시킬 수 있는 고정된 장치를 설치한다.

- (2) 저장탱크 외면으로부터의 거리가  $40 \, \mathrm{m}$  이내인 위치에, 저장탱크를 향하여 어느 방향에서도 방수할 수 있는 소화전(호스끝 수압  $0.3 \, \mathrm{lm}$  이상, 방수능력  $400 \, \mathrm{L/E}$  이상의 것을 말한다. 이하 같다)을 해당 저장탱크 표면적  $50 \, \mathrm{m}$ 당 1개의 비율로 계산된 수 이상 설치한다. 이 경우 준내화구조저장탱크에는 해당 저장탱크의 표면적  $100 \, \mathrm{m}$ 당 소화전 1개의 비율로 계산된 수 이상의 소화전을 설치한다.
- (3) 높이  $1 \, \mathrm{m}$  이상의 지주(구조물 위에 설치된 저장탱크에는 해당 구조물의 지주를 말한다)에는 두께  $50 \, \mathrm{mm}$  이상의 내화콘크리트 또는 이와 동등 이상의 내화성능을 가지는 불연성의 단열재로 피복한다. 다만, (1) 또는 (2)에서 정한 물분무장치나 소화전을 지주에 살수시킬 수 있도록 설치한 경우에는 해당조치를 한 것으로 볼 수 있다.

# 2.7.9.1.3 온도상승방지설비의 수원

(1) 분무장치와 소화전 등은 해당 설비를 30분 이상 연속하여 동시에 방수할 수 있는 수량을 가지는 수워에 접속하다.

# 2.7.9.2 배관의 온도상승방지조치

배관에는 다음 기준에 따라 그 온도를  $40^{\circ}$ C 이하로 유지할 수 있는 조치를 강구한다. 다만, 열팽창안전밸브의 설치 등 안전조치를 한 경우에는 온도를  $40^{\circ}$ C 이하로 유지할 수 있는 조치를 하지 않을 수 있다.

- (1) 배관에 가스를 공급하는 설비에는 상용온도를 초과한 가스가 배관에 송입되지 않도록 조치한다.
- (2) 배관을 지상에 설치하는 경우 온도의 이상상승을 방지하기 위하여 부식방지도로를 칠한 후 은백색도로로 재도장하는 등의 조치를 한다. 다만, 지상설치 부분의 길이가 짧은 경우에는 그러하지 않는다.
- (3) 배관을 교량 등에 설치할 경우에는 가능하면 교량 하부에 설치하여 직사광선을 피하도록 조치한다.

## 2.8 부대설비 기준

사업소에는 사업소에서 긴급사태가 발생하는 것을 방지하고 긴급사태 발생 시 그 확대를 방지하기 위하여 압력계 · 액면계 · 비상전력설비 · 통신설비 · 소화기 등 필요한 설비를 설치한다.

#### 2.8.1 계측설비 설치

# 2.8.1.1 압력계 설치

- 28.1.1.1 충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 압력계를 설치한다.
- (1) 충전소에는 표준이 되는 압력계를 2개 이상 비치한다.

- (2) 펌프의 토출압력, 충전차량의 저장압력, 충전설비의 충전압력을 지시하기 위한 압력계를 각각 설치한다. (3) 압력계의 지시눈금은 압력계가 부착되는 설비의 설계압력의 최소 150 %까지 지시할 수 있는 것으로 한다.
- 2.8.1.1.2 고압가스설비에 설치하는 압력계는 상용압력의 1.5배 이상 2배 이하의 최고눈금이 있는 것으로 하고, 압축액화 그 밖의 방법으로 처리할 수 있는 가스의 용적이 1일 100 ㎡ 이상인 사업소에는 『국가표준기 본법』에 따른 제품인증을 받은 압력계를 2개 이상 비치한다.

### 2.8.1.2 액면계 설치

차량에 고정된 탱크에는 다음 기준에 따라 액면계를 설치한다.

- 2.8.1.2.1 액면계는 평형반사식 유리액면계, 평형투시식 유리액면계 및 플로트(float)식·치압식·정전용 량식·편위식·고정튜브식 또는 회전튜브식이나 슬립튜브식 액면계 등에서 액화가스의 종류와 저장탱크의 구조 등에 적합한 구조와 기능을 가지는 것으로 선정·사용한다.
- **2.8.1.2.2** 유리액면계로 사용하는 유리는 KS B 6208(보일러용 수면계 유리)중 기호 B 또는 P의 것 또는 이와 같은 수준 이상의 것으로 한다.
- 2.8.1.2.3 유리를 사용한 액면계에는 액면을 확인하기 위한 필요한 최소면적 이외의 부분을 금속제 등의 덮개로 보호하여 그의 파손을 방지하는 조치를 한다.
- 2.8.1.2.4 일반고압가스설비에 설치하는 고정튜브식 또는 회전튜브식이나 슬립튜브식 액면계는 그 액면계 로부터 가스가 방출되었을 때 인화 또는 중독의 우려가 없는 가스의 경우에만 사용한다.
- 2.8.1.2.5 저장탱크(가연성가스 및 독성가스에 한한다)와 유리제게이지를 접속하는 상하 배관에는 자동식 및 수동식의 스톱밸브를 설치한다. 다만, 자동식 및 수동식 기능을 함께 갖춘 경우에는 각각 설치한 것으로 볼 수 있다.

### 2.8.1.3 온도계 설치(내용 없음)

# 2.8.2 비상전력설비 설치

가스충전시설에는 정전 등으로 인하여 가스충전시설의 기능이 상실되지 않도록 다음 기준에 따라 비상전력설비를 설치한다. 단, 화염검지기와 가스검지기의 기능이 상실되지 않도록 무정전전원장치를 설치한다.

2.8.2.1 비상전력 등은 정전 등으로 인해 그 충전설비 등의 기능이 상실되지 않도록 지체 없이 전환될 수 있는 방식이고 안전에 필요한 설비는 표 2.8.2.1에 나타낸 것 또는 이들과 같은 수준 이상으로 인정되는 것 중 같은 종류를 포함하여 두 가지 이상(평상시에 사용되는 전력을 포함한다)을 보유하도록 조치한다.

### 표 2.8.2.1 기스충전시설 별 비상전력의 종류

| 비상전력등<br>설비 | 타처공급전력 | 자가발전 | 축전지장치 | 엔진구동발전 | 스팀터빈구동발<br>전 | 공기 또는<br>질소설비 |
|-------------|--------|------|-------|--------|--------------|---------------|
| 자동제어장치      | 0      | 0    | 0     |        |              | Δ             |
| 긴급차단장치      | 0      | 0    | 0     |        |              | Δ             |
| 살수장치        | 0      | 0    | 0     | 0      | 0            |               |
| 방소화설비       | 0      | 0    | 0     | 0      | 0            |               |
| 냉각수펌프       | 0      | 0    | 0     | 0      | 0            |               |
| 물분무장치       | 0      | 0    | 0     | 0      | 0            |               |
| 비상조명설비      | 0      | 0    | 0     |        |              |               |
| 가스누설검지경보설비  | 0      | 0    | 0     |        |              |               |
| 통신시설        | 0      | 0    | 0     |        |              |               |

### [비고]

- 1. 위 표에서 ○표는 비상전력 중에서 두 가지 이상 보유하는 것을 표시하며, △표는 공기를 사용하는 자동제어장치 또는 긴급차 단장치에 반드시 보유하도록 조치할 것을 표시한다.
- 2. 자가발전은 항상 가동되는 것으로서 같은 선로에 타처로부터 공급되는 전력 또는 별도의 자가발전설비와 병렬로 수전할 수 있는 것으로 한다.
- 3. 살수장치, 방소화설비, 냉각수펌프, 물분무장치 등에 엔진 또는 스팀터빈 구동 시 펌프를 사용하는 경우에는 이 표의 비상전력 등을 보유하는 조치를 하지 않을 수 있다.
- 4. 자동제어장치 또는 긴급차단장치는 정전 등의 경우 1 또는 2에 정한 바에 관계없이 자동 또는 원격수동으로 즉시 안전하게 작동될 수 있는 것을 갖춤으로서 갈음할 수 있다.
- 5. 다음의 5.1 및 5.2는 비상전력 등을 보유한 것으로 본다.
- 5.1 정전 시에 그 기능이 상실되지 않을 것
- 5.1.1 긴급차단장치 중 와이어 등으로 작동되는 것
- 5.1.2 물분무장치·방소화설비 및 살수장치 중 항상 필요한 용수량을 필요한 수두압으로 유지할 수 있는 물탱크 또는 저수지 등을 확보하고 있는 상태에서 펌프를 사용하지 않는 경우
- 5.1.3 통신시설 중 메가폰
- 5.2 비상조명 또는 통신시설로서 전지를 사용하는 것은 항상 사용할 수 있는 예비전지를 보유하고 있거나 충전식 전지일 것

## 2.8.3 통신설비 설치

충전소 안에는 긴급사태가 발생한 경우에 이를 신속히 전파할 수 있도록 사업소의 규모·구조에 적합한 표 2.8.3의 통신설비를 설치한다.

# 표 2.8.3 통신설비의 구비조건

| 사항별(통신범위)               | 설치(구비)하는 통신설비 | 비고                      |
|-------------------------|---------------|-------------------------|
| 1. 안전관리자가 상주하는 사업소와 현장사 | 1) 구내전화       | 시무소가 동일한 위치에 있는 경우에는 제외 |
| 업소와의 사이 또는 현장사무소 상호간    | 2) 구내방송설비     | 한다.                     |
|                         | 3) 인터폰        |                         |
|                         | 4) 페이징설비      |                         |
| 2. 사업소 안 전체             | 1) 구내빙송설비     |                         |
|                         | 2) 사이렌        |                         |
|                         | 3) 휴대용 확성기    |                         |
|                         | 4) 페이징설비      |                         |
|                         |               |                         |

|                          | 5) 메가폰                   |                         |
|--------------------------|--------------------------|-------------------------|
| 3. 종업원 상호간(사업소 안 임의의 장소) | 1) 페이징설비                 | 시무소가 동일한 위치에 있는 경우에는 제외 |
|                          | 2) 휴대용 확성기               | 한다.                     |
|                          | 3) 트랜시버(계기 등에 대하여 영향이 없는 |                         |
|                          | 경우에 한정한다)                |                         |
|                          | 4) 메가폰                   |                         |

#### [비고]

- 1. 사항별 2, 3의 메가폰은 해당 사업소 안 면적이 1500 m² 이하인 경우에 한정한다.
- 2. 위의 표 중 통신설비는 사업소의 규모에 적합하도록 1 가지 이상을 구비한다.

# 2.8.4 운영시설물 설치

## 2.8.4.1 계기실 설치(내용 없음)

# 2.8.4.2 건축물 설치

사업소 내 건축물의 창 등의 유리는 망입유리나 안전유리로 한다.

# 2.8.4.3 조명등 설치

기스충전시설의 방류둑 근처 및 밸브등의 조작위치에는 조명등을 설치한다.

# 2.8.5 인전유지설비 설치(해당 없음)

## 2.8.6 인전공급설비 설치(해당 없음)

## 2.8.7 벤트시스템 설치(해당 없음)

## 2.9 표시기준

# 2.9.1 경계표시

가스충전시설의 안전을 확보하기 위하여 필요한 곳에는 도시가스를 취급하는 시설 또는 일반인의 출입을 제한하는 시설이라는 것을 명확하게 알아볼 수 있도록 다음 기준에 따라 경계표지를 설치한다.

#### 2.9.1.1 도시가스 충전시업소 경계표지

- 2.9.1.1.1 도시가스충전사업소에 설치하는 경계표지는 다음 기준에 따라 설치한다.
- (1) 시업소의 경계표지는 해당 사업소의 출입구(경계울타리, 담 등에 설치되어 있는 것) 등 외부에서 보기 쉬운 곳에 게시한다.
- (2) 시업소 내 시설 중 일부만이 도시가스시업법의 적용을 받을 때에는 해당 시설이 설치되어 있는 구획, 건축물 또는 건축물 내에 구획된 출입구 등 외부로부터 보기 쉬운 장소에 게시한다. 이 경우해당 시설에 출입 또는 접근할 수 있는 장소가 여러 방향일 때에는 그 장소마다 게시한다.

(3) 경계표지는 법의 적용을 받고 있는 사업소 또는 시설임을 외부 사람이 명확하게 식별할 수 있는 크기로 한다. 또한 해당 사업소에서 준수하여야 할 안전 확보에 필요한 주의사항을 부기할 수 있다.

| ○ ○ 가스 충 전 소        |  |
|---------------------|--|
|                     |  |
| 출 입 금 지             |  |
|                     |  |
| 화 기 절 대 엄 금         |  |
|                     |  |
| ○ ○ 가스 저 장 소        |  |
|                     |  |
| ○ ○ 가스 기 계 실        |  |
| 그림 2.9.1.1.1 표시의 보기 |  |

2.9.1.1.2 사업소에는 시설의 안전확보에 필요한 사항을 기재한 게시판을 사업소 주위의 보기 쉬운 위치에 설치하고, 황색바탕에 흑색글씨로 "충전 중 엔진정지"라고 기재한 표지판 및 백색바탕에 붉은 글씨로 "화기엄금"이라고 기재한 표지판을 설치한다.

# 2.9.1.2 기스충전 장소 경계표지

용기에 가스를 충전하는 장소에는 다음 기준에 따라 경계표지를 설치한다.

2.9.1.2.1 가스를 충전하는 작업을 하고 있는 가스가스설비 주변으로써 제3자가 보기 쉬운 장소에 경계표지를 게시한다. 이 경우 해당 설비에 접근할 수 있는 방향이 여러 곳일 경우에는 각각의 방향에 대하여 게시한다.

2.9.1.2.2 표지에는 도시가스 충전 작업 중이라는 것 및 그 부근에서 화기사용을 절대 금지한다는 주의문을 명확히 알 수 있도록 기재한다.

도 시 가 스 충 전 중 화기절대 엄금

그림 2.9.1.2 표지의 보기

# 2.9.1.3 배관의 경계표지

배관의 경계표지는 다음 기준에 따라 설치한다.

2.9.1.3.1 표지판은 배관이 설치되어 있는 경로에 따라 배관의 위치를 정확히 알 수 있도록 설치한다. 다만, 표지판의 설치로 인하여 교통 등의 장해가 우려되는 경우에는 배관으로부터 가장 가까우며, 일반인이 보기 쉬운 장소를 선택하여 설치할 수 있다.

2.9.1.3.2 지하에 설치된 배관은 500 m 이하의 간격으로, 지상에 설치된 배관은 1000 m 이하의 간격으로 설치하며, 배관의 위치를 알기 어려운 곳(굽어지는 곳, 분리되는 곳, 다른 가스배관과 교차되는 곳 등)에 대해서는 표지판을 추가로 설치한다. 다만, 지상에 설치한 배관의 경우 배관의 표면에 가스의 종류.

연락처 등을 표시한 때에는 이를 표지판에 갈음할 수 있다.

2.9.1.3.3 하나의 도로에 2개 이상의 도시가스배관이 함께 설치되어 있는 경우에는 사업자간에 협의하여 공동표지판을 2.9.1.3.1과 2.9.1.3.2 에 따라 설치한다.

2.9.1.3.4 표지판에는 도시가스의 종류, 설치구역명, 배관설치(매설)위치, 신고처, 회사명 및 연락처등을 명확하게 기재한다.

## 제○○구역 도시가스배관의 표지판

이 지역에는 아래와 같이 도시가스배관이 설치(매설)되어 있습니다. 가스누출이나 그 밖의 이상을 발견하신 분은 즉시 신고 또는 연락하여 주시기 바랍니다.

신고처 : 한국가스안전공사 또는 소방서(119)

| 고압기스의 종류 | 표지판에서 본<br>배관위치 | 회사명 및 연락처                 |
|----------|-----------------|---------------------------|
| 00       | ○방향<br>○m지점     | (予)〇〇<br><b>お</b> ○○-〇○○○ |
| 00       | ○방향<br>○m지점     | (予)〇〇<br><b>お</b> ○○-〇○○○ |
| 00       | ○방향<br>○m지점     | (予)〇)<br><b>3</b> 〇)-〇)〇) |

그림 2.9.1.3 표지의 보기

# 2.9.1.4 저장탱크 표시(해당 없음)

## 2.9.2 식별표지 및 위험표지

# 2.9.2.1 충전치량 주·정차 위치 표시

- 2.9.2.1.1 충전장소의 지면에는 충전차량의 주정차 위치와 진입 및 진출 방향을 표시한다.
- 2.9.2.1.2 충전장소의 지면에는 눈에 잘 띄는 곳에 "액화도시가스 충전장소"라는 표시를 한다.

## 2.9.2.2 야드 트랙터 주·정치선 표시

2.9.2.1.1 충전장소의 충전기앞(또는 옆) 노면에 충전할 야드 트랙터 주 · 정차선과 진입 및 진출 방향을 표시한다.

2.9.2.1.2 주·정차선의 표시는 충전기와 주·정차선이 1 m 이상 이격되도록 표시한다.

### 2.9.2.3 인전수칙 표지판 설치

가스충전시설에는 눈에 잘 보이는 곳에 충전순서, 충전 작업 준수사항 등을 포함한 안전수칙을 명시한 표지판을 설치한다.

#### 2.9.3 경계책(내용 없음)

# 2.10 그 밖의 기준(내용 없음)

# 3. 기술기준

# 3.1 인전유지기준

### 3.1.1 기초 유지관리(내용 없음)

## 3.1.2 저장설비 유지관리(내용 없음)

# 3.1.3 기스설비 유지관리

가스설비의 안전성 및 작동성을 확보하고 가스설비 주위에서의 위해요소 발생을 방지하기 위하여 다음 기준에 상응하는 조치를 강구한다.

## 3.1.3.1 진동방지 조치

가스설비 중 진동이 심한 곳에는 진동을 최소한도로 줄일 수 있는 조치를 한다.

## 3.1.3.2 기스설비 접속

가스설비를 이음쇠로 접속할 때에는 그 이음쇠와 접속되는 부분에 잔류응력이 남지 않도록 조립하고 이음쇠밸브류를 나시로 조일 때에는 무리한 하중이 걸리지 않도록 하며, 상용의 압력이 19.6 № 이상이되는 곳의 나사는 나사게이지로 검사한 것으로 한다.

#### 3.1.3.3 밸브 또는 콕의 조작

가스설비에 설치한 밸브나 콕(조작스위치로 그 밸브나 콕을 개폐하는 경우에는 그 조작스위치를 말한다. 이하 "밸브등"이라 한다)에는 다음 기준에 따라 종업원이 그 밸브등을 적절히 조작할 수 있는 조치를 한다.

3.1.3.3.1 각 밸브등에는 그 명칭 또는 플로시트(flow sheet)에 따른 기호, 번호 등을 표시하고 그 밸브등의 핸들 또는 별도로 부착한 표시판에 해당 밸브등의 개폐방향(조작스위치로 그 밸브등이 설치된 가스설비에 안전상 중대한 영향을 미치는 밸브등에는 그 밸브등의 개폐상태를 포함한다)이 표시되도록

하다.

- 3.1.3.3.2 밸브등(조작스위치로 개폐하는 것을 제외한다)이 설치된 배관에는 그 밸브등의 기까운 부분에 쉽게 식별할 수 있는 방법으로 그 배관 내의 가스 그 밖에 유체의 종류 및 방향이 표시되도록 한다.
- 31.3.33 밸브등을 조작하여 그 밸브등이 설치된 충전설비 등에 안전상 중대한 영향을 미치는 밸브등(입력을 구분하는 경우에는 압력을 구분하는 밸브, 안전밸브의 주밸브, 긴급차단밸브, 긴급방출용밸브, 제어용공기 및 안전용불활성가스 등의 송출 또는 이입용밸브, 조정밸브, 감압밸브, 차단용 맹판 등)에는 작업원이 그 밸브등을 적절히 조작할 수 있도록 다음과 같은 조치를 강구한다.
- (1) 밸브등에는 그 개폐상태를 명시하는 표시판을 부착한다. 이 경우 특히 중요한 조정밸브 등에는 개도계(開度計)를 설치한다.
- (2) 안전밸브의 주밸브 및 보통 사용하지 않는 밸브등(긴급용의 것을 제외한다)은 함부로 조작할 수 없도록 자물쇠의 채움, 봉인, 조작금지 표시의 부착이나 조작 시에 지장이 없는 범위 내에서 핸들을 제가하는 등의 조치를 하고, 내압ㆍ기밀시험용 밸브등은 플러그 등의 마감 조치로 이중차단기능이 이루어지 도록 강구한다.
- (3) 계기판에 설치한 긴급차단밸브, 긴급방출밸브 등의 버턴핸들(button handle), 노칭다바이스핸들(not ching device handle) 등 (갑자기 작동할 염려가 없는 것을 제외한다)에는 오조작 등 불시의 사고를 방자하기 위해 덮개, 캡 또는 보호장치를 사용하는 등의 조치를 함과 동시에 긴급차단밸브 등의 개폐상태를 표시하는 시그널램프 등을 계기판에 설치한다. 또한 긴급차단밸브의 조작위치가 2 곳 이상일 경우 보통 사용하지 않는 밸브등에는 "함부로 조작하여서는 안된다"는 뜻과 그것을 조작할 때의 주의사항을 표시한다.
- 3.1.3.3.4 밸브등의 조작위치에는 그 밸브등을 확실하게 조작할 수 있도록 필요에 따라 발판을 설치한다.
- 3.1.3.3.5 밸브등을 조작하는 장소에는 밸브등의 조작에 필요한 조도를 150 Lux 이상으로 유지한다. 이 경우 계기실(가스충전시설에 충전을 제어하기 위해 기기를 집중적으로 설치한 실을 말한다. 이하 같다) 및 계기실 이외의 계기판에는 비상조명장치를 설치한다.
- 3.1.3.3.6 밸브등의 조작은 다음 기준에 따라 실시한다.
- (1) 밸브등의 조작에 대하여 유의 할 사항을 작업기준 등에 정하여 작업원에게 주지시킨다.
- (2) 조작함으로써 관련된 가스설비 등에 영향을 미치는 밸브등의 조작은 조작 전 후에 관계처와 긴밀한 연락을 취하여 상호 확인하는 방법을 강구한다.
- (3) 액화가스의 밸브등에 대하여는 액봉상태로 되지 않도록 폐지 조작을 한다.
- (4) 계기실 이외에서 밸브등을 직접 조작하는 경우에는 계기실에 있는 계기의 지시에 따라서 조작할 필요가 있으므로 계기실과 해당 조작 장소 간 통신시설로 긴밀한 연락을 취하면서 적절하게 대처한다.
- 3.1.3.3.7 밸브등에 무리한 힘을 가하지 않도록 하기 위하여 다음 기준에 따라 조치를 한다. (1) 직접 손으로 조작하는 것을 원칙으로 한다. 다만, 직접 손으로 조작하기가 어려운 밸브에 대하여는 밸브렌치(valve wrench) 등을 사용할 수 있다.

(2) (1)의 단서 기준에 따라 밸브등의 조작에 밸브렌치 등을 사용하는 경우에는 해당 밸브등의 재질 및 구조에 대하여 안전한 개폐에 필요한 표준토크를 조작력 등의 일정 조작 조건에서 구하여 얻은 길이의 밸브렌치 또는 토크렌치(torque wrench: 한가지 기능형으로 한다)로 조작한다. 또한, 이 경우에는 다음 예와 같은 명확한 표시를 그 밸브에 기재하고 밸브렌치 등에도 소정의 표시를 부착한다.

# 밸브렌치제○호

비고: ○호는 사업소에서 정한 일련번호 등을 나타낸다.

# 3.1.3.4 스톱밸브의 유지관리

안전밸브 또는 방출밸브에 설치된 스톱밸브는 그 밸브의 수리 등을 위하여 특별히 필요한 때를 제외하고는 항상 완전히 열어놓는다.

#### 3.1.3.5 기연성물질 취급

가스설비의 부근에는 가연성 액체 등의 위험물과 연소하기 쉬운 물질을 두지 않는다.

### 3.1.3.6 충전직업 금지(내용 없음)

# 3.1.3.7 시<del>오</del>전 등

가스설비의 기밀시험이나 시운전을 하는 때에는 불활성가스를 사용한다. 다만, 부득이하여 공기를 사용하는 경우에는 그 설비 중에 있는 가스를 방출한 후에 실시하며, 온도를 그 설비에 사용하는 윤활유의 인화점 이하로 유지한다.

### 3.1.3.8 윤활제의 선택 및 사용(해당없음)

3.1.3.9 충전소에는 휴대용 가스누출검지기를 비치한다.

## 3.1.4 배관 유지관리(내용 없음)

#### 3.1.5 시고예방설비 유지관리

# 3.1.5.1 긴급치단장치

긴급차단장치는 매년 1회 이상 밸브시트의 누출 및 작동검사를 실시하여 그 누출량이 안전상 지장이 없는 지를 확인하고 개폐 조작기능 등이 원활하고 확실하게 되는지를 확인한다.

#### 3.1.5.2 정전기제거설비

정전기 제거설비를 정상상태로 유지하기 위하여 다음 사항을 확인한다.

- (1) 지상에서 접지 저항치
- (2) 지상에서의 접속부의 접속상태
- (3) 지상에서의 절선 그 밖에 손상부분의 유무

# 3.1.5.3 충전차량의 위치 및 충전상태 모니터링

2.6.6에 따른 장치를 이용하여 충전차량의 위치 및 충전상태를 모니터링하고, 적절한 조치를 취한다.

#### 3.1.6 피해저감설비 유지관리(내용 없음)

#### 3.1.7 부대설비 유지관리

## 3.1.7.1 비상전력설비

비상전력등은 그 기능을 정기적으로 검사하여 사용상 지장이 없게 한다.

# 3.2 충전기준

### 3.2.1 충전 준비

- 3.2.1.1 충전설비에서 가스충전작업을 하는 때에는 그 외부로부터 보기 쉬운 곳에 충전 작업중임을 알리는 표시를 한다.
- 3.2.1.2 가스를 충전하는 때에는 충전설비에서 발생하는 정전기를 제거하는 조치를 한다.
- **3.2.1.3** 가스를 용기에 충전하기 위하여 밸브나 충전용 지관을 기열할 필요가 있을 때에는 열습포나 40~  $\mathbb C$  이하의 물을 사용한다.

## 3.2.2 충전 직업

액화도시가스 충전작업의 안전확보를 위하여 필요한 안전수칙을 준수하고, 액화도시가스의 안전성 유지를 위하여 다음 기준에 따라 충전기준을 준수한다.

- 3.2.2.1 액화도시가스를 용기에 충전할 때에는 용기의 최고충전압력 이하로 충전한다.
- 3.2.2.2 야드 트랙터에 액화도시가스를 충전할 때에는 엔진을 정지시키고, 야드 트랙터의 주차브레이크를 채우도록 한다.
- 3.2.2.3 야드 트랙터의 용기에 유해한 양의 수분 및 유화물이 포함되지 않도록 한다.
- 3.2.2.4 충전중에는 충전치량으로부터 5 m 이내에 다른 야드 트랙터의 접근을 금지한다.
- 3.2.2.5 충전중에는 충전장소 및 야드 트랙터 주위에 충전작업 관련자 이외의 자의 출입을 금한다.

- 3.2.2.6 충전차량은 사업소의 지정된 장소에 주정차하여야 하며, 충전작업 전에 충전차량이 움직이지 못하도록 견인차량을 분리하고 확실하게 고정한다.
- 3.2.2.7 충전차량에 의한 충전작업은 반드시 지정된 사업소에서 실시하고, 이동하는 경우를 제외하고는 충전차량을 사업소 외의 지역에 주정차하지 않는다
- 3.2.2.8 충전작업은 항만법 제33조에 따라 시설장비의 검사를 받은 야드 트랙터에만 실시하다.
- 3.22.9 화기를 취급하는 곳이나 인화성의 물질 또는 발화성의 물질이 있는 곳 및 그 부근에서는 기연성가스를 충전하지 않는다.

### 3.2.3 충전 시후조치

- 3.2.3.1 액화도시가스의 충전이 끝난 후에는 그 배관 안에 남아있는 액화도시가스로 인한 위해가 발생하지 않도록 조치한다.
- 3.2.3.2 액화도시가스의 충전이 끝난 후에는 접속 부분을 완전히 분리시킨 후에 야드 트랙터를 움직이도록 한다.

# 3.3 점검기준

가스충전시설의 안전 확보를 위하여 설치한 설비에 대해 다음 기준에 따라 주기적으로 작동상황을 점검하고 그 결과 이상이 있을 때에는 그 설비가 정상적으로 작동할 수 있도록 필요한 조치를 강구한다.

# 3.3.1 전체시설 점검(내용 없음)

## 3.3.2 기초점검(내용 없음)

### 3.3.3 저장설비 점검(내용 없음)

# 3.3.4 기스설비 점검

가스충전시설의 사용개시 전과 사용종료 후에는 반드시 그 가스충전시설에 속하는 설비의 이상 유무를 점검하는 것 외에 1일 1회 이상 가스설비의 작동상황에 대하여 점검 및 확인을 하고 이상이 있을 때에는 그 설비의 보수 등 필요한 조치를 한다.

### 3.3.4.1 사용 전·후 점검

가스설비의 사용개시 및 종료 시에는 다음 작업 수칙에 따라 그 가스설비의 이상 유무를 점검한다.

# 3.3.4.1.1 점검직업 준비

(1) 안전관리총괄자는 사전에 안전관리담당자와 협의하여 점검계획을 정하고 이를 각각의 안전관리

부문 담당자에게 철저히 주지시킨다. 이를 변경한 때에도 또한 같다.

- (2) 점검계획을 기준으로 점검표를 작성하고 점검원에게 실시요령 및 주의 사항을 철저히 주지시킨다.
- (3) 점검계획에는 지시 및 보고체계를 명시한다.
- (4) 점검에 사용하는 공구, 측정기구, 보호구 등을 준비하고 이를 확인한다.

#### 3.3.4.1.2 사용개시 전 점검사항

- (1) 가스설비에 있는 내용물의 상황
- (2) 계기류의 기능 특히 인터록(interlock), 긴급용시켄스, 경보 및 자동제어장치의 기능
- (3) 긴급차단 및 긴급방출장치, 통신설비, 제어설비, 정전기방지 및 제거설비 그 밖에 안전설비의 기능
- (4) 각 배관계통에 부착된 밸브 등의 개폐상황 및 맹판의 탈착·부착 상황
- (5) 회전기계의 윤활유 보급상황 및 회전구동상황
- (6) 가스설비의 전반적인 누출 유무
- (7) 액화도시가스가 체류하기 쉬운 곳의 해당 가스농도
- (8) 전기, 물, 증기, 공기 등 유틸리티시설의 준비상황
- (9) 안전용 불활성가스 등의 준비상황
- (10) 비상전력 등의 준비상황
- (11) 그 밖에 필요한 사항의 이상 유무

# 3.3.4.1.3 사용종료 시 점검사항

- (1) 사용종료직전에 각 설비의 운전상황
- (2) 사용종료 후에 가스설비에 있는 잔유물의 상황
- (3) 가스설비내의 가스, 액등의 불활성가스 등에 의한 치환상황, 특히 수리점검 작업상 설비 내에 사람이 들어갈 경우에는 공기로의 치환상황
- (4) 개방하는 가스설비와 다른 가스설비와의 차단상황
- (5) 가스설비의 전반에 대하여 부식, 마모, 손상, 폐쇄, 결합부의 풀림, 기초의 경사 및 침하, 그 밖의 이상 유무

#### 3.3.4.2 일일점검

운전 중인 가스설비에 대해서는 1일1회 이상 다음 기준에 따라 해당 설비 등의 작동상황에 대하여이상 유무를 점검한다.

# 3.3.4.2.1 점검기준

- (1) 점검하는 설비, 부문, 항목, 점검방법, 판정기준, 조치 등을 기재한 점검표를 작성한다.
- (2) 점검표에 지시, 보고체계 등을 정한다.
- (3) 점검에 사용하는 공구, 측정기구, 보호구 등의 준비상황을 확인한다.

# 3.3.4.2.2 운전 중의 점검시항

- (1) 가스설비로부터의 누출
- (2) 계기류의 지시, 경보, 제어의 상태
- (3) 가스설비의 온도, 압력, 유량 등 조업조건의 변동상황
- (4) 가스설비의 외부부식, 마모, 균열, 그 밖의 손상 유무

- (5) 회전기계의 진동, 이상음, 이상온도상승, 그 밖의 작동상황
- (6) 탑류, 저장탱크류, 배관 등의 진동 및 이상음
- (7) 가스누출 경보장치 및 가스경보기의 상태
- (8) 접지접속선의 단선, 그 밖의 손상유무
- (9) 그 밖에 필요한 사항의 이상 유무

#### 3.3.4.3 점검결과 조치

운전 중인 가스설비에 대한 점검결과 이상이 발견되었을 때에는 다음 기준에 따라 해당 설비의 보수 그 밖에 위험방지조치를 강구하고, 또한 가스설비에서 일어날 수 있는 이상사태를 가상하여 미리 각각의 조치에 대한 작업 기준 등을 작성 비치하여 긴급 시에 지시, 보고 및 연락계통 그밖에 필요한 조치에 관한 비상연락망체계를 정한다.

- 3.3.4.3.1 가스설비에서 발생한 이상의 정도에 따라 다음 중 어느 하나 이상의 조치를 강구하여 위험을 방지한다.
- (1) 이상이 발견된 설비에 대한 원인의 규명과 제거
- (2) 예비기로 교체
- (3) 부하의 저하
- (4) 이상을 발견한 설비 또는 공정의 운전정지 후 보수
- 3.3.4.3.2 이상상태로 인하여 가스설비의 운전을 정지한 경우에는 이상 원인을 규명하여 적절한 조치를 하고 안전을 확인한 후 운전을 재개한다.

# 3.3.4.4 점검기록

운전 중인 가스설비의 점검결과에 따른 보수 등 실시기록을 작성 및 비치하고 이를 검토하여 설비의 열화경향 그 밖의 특성을 파악하고 차기 점검, 보수 등의 계획과 설비개선 등에 활용한다.

## 3.3.5 배관점검(내용 없음)

#### 3.3.6 사고예방설비 점검

# 3.3.6.1 괴입인전장치 성능

과압안전장치는 1년에 1회 이상 2.6.1에 따른 압력에서 작동하도록 조정한다.

## 3.3.6.2 정전기제거설비 기능 확인

정전기 제거설비를 정상상태로 유지하기 위하여 다음 사항을 확인하다.

- (1) 지상에서 접지 저항치
- (2) 지상에서의 접속부의 접속 상태
- (3) 지상에서의 절선 그 밖에 손상부분의 유무

# 3.3.7 피해저감설비 점검

#### 3.3.7.1 물분무장치 등 점검

물분무장치 등은 매월 1회 이상 작동상황을 점검하여 원활하고 확실하게 작동하는지 확인하고 그 기록을 작성 및 유지한다. 다만, 동결할 우려가 있는 경우에는 펌프구동만으로 통수시험을 갈음할 수 있다.

#### 3.3.8 부대설비 점검

# 3.3.8.1 액면계 점검

슬립튜브식 액면계의 패킹을 주기적으로 점검하고 이상이 있을 때에는 교체한다.

#### 3.3.8.2 압력계 점검

충전용 주관의 압력계는 매월 1회 이상, 그 밖의 압력계는 3월에 1회 이상 「국가표준기본법」에 의한 교정을 받은 압력계로 그 기능을 검사한다.

#### 3.3.8.3 안전밸브 점검

안전밸브(액체의 열팽창으로 인한 배관의 파열방지용 안전밸브는 제외한다. 이하 3.3.8.3에서 같다)는 4년(압력용기에 설치된 안전밸브는 그 압력용기의 내부에 대한 재검사주기)에 1회 이상 조정하여 2.6.1.7에서 정한 압력 이하에서 작동하도록 한다.

#### 3.3.8.3 비상전력 점검

비상전력은 그 기능을 정기적으로 검사하여 사용상 지장이 없도록 한다.

# 3.4 수리·청소 및 철거기준

가스설비를 수리·청소 및 철거하는 때에는 그 작업의 안전 확보와 그 설비의 작동성 유지를 위하여 다음 작업 안전수칙에 따라 수리 및 청소를 한다.

#### 3.4.1 수리·청소 및 철거준비

# 3.4.1.1 직업계획 수립

가스설비의 수리·청소 및 철거(이하 "수리등"이라 한다)를 할 때에는 해당 수리등의 작업내용, 일정, 책임자 그 밖의 작업담당구분, 지휘체제, 안전상의 조치, 소요자재 등을 정한 작업계획을 미리 해당 작업의 책임자 및 관계자에게 주지시키는 동시에 그 작업계획에 따라 해당 책임자의 감독 하에 실시한다.

#### 3.4.1.2 기스의 치환

가연성가스설비의 수리등을 할 때에는 다음 기준에 따라 미리 그 내부의 가스를 불활성가스 또는 물 등 해당 가스와 반응하지 않은 가스 또는 액체로 치환한다.

# 3.4.1.2.1 기연성가스 기스설비

- (1) 가스설비의 내부가스를 그 압력이 대기압 가까이 될 때까지 다른 저장탱크 등에 회수한 후 잔류가스를 서서히 안전하게 방출하거나 연소장치에 유도하여 연소시키는 방법으로 대기압이 될 때까지 방출한다.
- (2) (1)의 처리를 한 후에는 잔류가스를 불활성가스 또는 물이나 스팀 등 해당 가스와 반응하지 않은

가스 또는 액체로 서서히 치환한다. 이 경우에 가스방출 방법은 (1)을 따른다.

- (3) (1) 및 (2) 의 잔류가스를 대기 중에 방출할 경우에는 방출한 가스의 착지농도가 해당 가연성가스의 폭발하한계의 1/4 이하가 되도록 방출관으로부터 서서히 방출시킨다. 이 농도확인은 가스검지기 그밖에 해당 가스농도식별에 적합한 분석방법(이하 "가스검지기등"이라 한다)으로 한다.
- (4) 치환 결과를 가스검지기등으로 측정하고 해당 가연성가스의 농도가 그 가스의 폭발하한계의 1/4 이하가 될 때까지 치환을 계속한다.

#### 3.4.1.2.2 기스치환의 생략

수리등의 작업 대상 및 작업내용이 다음 기준에 해당하는 것은 3.4.1.2에도 불구하고 가스치환 작업을 하지 않을 수 있다.

- (1) 가스설비의 내용적이 1 m³ 이하인 것
- (2) 출입구의 밸브가 확실히 폐지되어 있고 내용적이 5 m² 이상의 가스설비에 이르는 시이에 2개 이상의 밸브를 설치한 것
- (3) 사람이 그 설비의 밖에서 작업하는 것
- (4) 화기를 사용하지 않는 작업인 것
- (5) 설비의 간단한 청소 또는 가스켓의 교환 그 밖에 이들에 준비하는 경미한 작업인 것

#### 3.4.2 수리 · 청소 및 철거 직업

#### 3.4.2.1 기스 재치환

가스설비의 수리등을 위하여 작업원이 그 가스설비 안에 들어갈 때에는 3.4.1.2의 치환작업에 사용된 가스 또는 액체를 다음 기준에 따라 공기로 재치환하고 수리등을 하는 중에는 산소의 농도를 수시로 확인한다. 이 경우 3.4.1.2에 따른 치환을 불활성가스 등으로 하는 경우에는 특히 주의한다.

- 3.4.2.1.1 가연성 가스설비의 재치환작업은 가스설비 내부에 남아있는 가스 또는 액체가 공기와 충분히 혼합되어 혼합된 가스가 방출관, 맨홀 등으로부터 대기 중에 방출되어도 유해한 영향을 끼칠 염려가 없는 것을 확인한 후 3.4.1.2의 치환방법에 따라 실시한다.
- **3.4.2.1.2** 공기로 재치환 한 결과를 산소측정기 등으로 측정하여 산소의 농도가 18 % 부터 22 %까지로 된 것이 확인될 때까지 공기로 반복하여 치환한다.

# 3.4.2.2 기스 누출방지 조치

가스설비를 개방하여 수리등을 할 경우에는 다음 기준에 따라 가스가 누출되지 않도록 조치를 강구한다.

- 3.4.2.2.1 3.4.1.2에 따른 가스치환 조치(불활성가스의 경우에는 이에 준한 조치)가 완료된 후(해당 개방한 부분에 설치한 회수용 배관 등으로부터 직접 가스를 회수하는 경우에는 3.4.1.2의 조치를 하기 전)에는 개방하는 가스설비의 전후 밸브를 확실히 닫고 개방하는 부분의 밸브 또는 배관의 이음매에 맹판을 설치하다. 다만, 3.4.1.2.2에 해당하는 경우에는 맹판을 설치하지 않을 수 있다.
- 3.4.2.2.2 설비의 기능상 또는 작업상 수시로 개방할 필요가 있는 가스설비에 대한 작업(3.4.1.2.2에 따른 작업에만 적용한다)은 3.4.2.2.1 또는 다음 기준 중 어느 하나의 기준에 따라 실시한다. 다만,

다음 기준에 따라 작업하는 경우에는 그 작업 기준을 안전관리 규정에 명확하게 규정한다.

- (1) 개방하는 가스설비에 접속하는 배관 출입구에 2중으로 밸브를 설치하고, 2중 밸브 중간에 가스를 회수 또는 방출 할 수 있는 회수용 배관 등을 설치하여 그 회수용 배관 등을 통하여 가스를 회수 또는 방출하여 개방한 부분에 가스의 누출이 없음을 확인한다. 이 경우에 대기압 이하의 가스는 회수 또는 방출하지 않을 수 있다.
- (2) 개방하는 가스설비의 부분 및 그 전후부분의 상용압력이 대기압에 가까운 설비(독성가스 이외의 가스설비로서 압력계를 설치한 것에 한정한다)는 그 설비에 접속하는 배관의 밸브를 확실히 닫고 해당 부분에 가스의 누출이 없음을 확인한다.

# 3.4.2.3 그 밖에 안전조치

3.4.2.1나 3.4.2.2의 조치를 하였을 때에는 밸브의 닫힌 부분이나 맹판의 설치부분에 밸브조작 또는 맹판 제거의 금지표시를 하고, 지물쇠 채움 또는 봉인을 하거나 감시원을 배치하는 등의 조치를 한다. 이 경우 계기판 등에 설치된 조작 스위치 및 핸들 등에도 동일한 조치를 한다.

# 3.4.3 수리 및 청소 사후조치

가스설비의 수리등을 완료한 때에는 다음 기준에 따라 그 가스설비가 정상으로 작동하는지를 확인한다.

- 3.4.3.1 내압강도에 관계가 있는 부분으로 용접으로 보수의 실시 또는 부식 등으로 인하여 내압강도가 저하되었다고 인정될 경우에는 비피괴검사, 내압시험 등으로 내압강도를 확인한다.
- 3.4.3.2 기밀시험을 실시하여 누출이 없는 것을 확인한다.
- 3.4.3.3 계기류가 소정의 위치에서 정상으로 작동하는 것을 확인한다.
- 34.3.4 수리등을 위하여 개방된 부분의 밸브 등은 개폐상태가 정상으로 복구되고 설치한 맹판 및 표시등이 제거되어 있는지 확인한다.
- 3.4.3.5 안전밸브, 역류방지밸브, 긴급차단장치 그 밖의 안전장치가 소정의 위치에서 이상 없이 작동하는지 확인한다.
- 3.4.3.6 회전기계 내부에 이물질이 없고 구동상태의 정상여부 및 이상 진동, 이상 음이 없는지 확인한다.
- 3.4.3.7 기연성가스의 가스설비는 그 내부가 불활성가스등으로 치환되어 있는기를 확인한다.

# 4. 검사기준

# 4.1 검사항목

# 4.1.1 중간검사

가스충전시설의 중간검사 항목은 다음과 같다.

- (1) 2.4.5에 따른 가스설비의 기밀 또는 내압성능
- (2) 2.5.4에 따른 한국가스안전공사가 지정하는 부분의 비파괴시험을 하는 공정
- (3) 2.5.7.2에 따른 배관 지하매설 공정
- (4) 2.7.2에 따른 방호벽 기초설치 공정

# 4.1.2 완성검사

가스충전시설의 완성검사 항목은 1(일반사항) 및 2(시설기준)에 따른 항목으로 한다. 다만, 중간검사에서 확인된 검사항목은 제외할 수 있다.

# 4.1.3 정기검사

가스충전시설의 정기검시는 1, 2 및 3(3.1.3.2는 제외)에 정한 항목으로 한다.

- (1) 1.6에 따른 용품사용제한
- (2) 2.1에 따른 배치기준
- (3) 2.3.3.3에 따른 저장탱크 부압파괴 방지조치
- (4) 2.3.3.5에 따른 저장설비 보호조치
- (5) 2.4.1.에 따른 가스설비 재료
- (6) 2.4.2에 따른 가스설비 구조
- (7) 2.4.4.1 및 2.4.4.2에 따른 가스설비 설치
- (8) 2.4.5에 따른 가스설비의 성능(누출검사에 한함)
- (9) 2.5.2에 따른 배관설비 구조
- (10) 2.5.5에 따른 배관설비 신축흡수조치
- (11) 2.5.7.1.1에 따른 배관 설치장소 선정
- (12) 2.5.7.3에 따른 배관 노출설치
- (13) 2.5.8.2에 따른 압력계 및 온도계
- (14) 2.5.9에 따른 배관설비의 성능(누출검사에 한함)
- (15) 2.5.10에 따른 배관설비 표시
- (16) 2.6.1에 따른 과압안전장치 설치
- (17) 2.6.2에 따른 가스누설검지경보장치 설치
- (18) 2.6.3에 따른 긴급차단장치 설치
- (19) 2.6.4에 따른 역류방지장치 설치
- (20) 2.6.6에 따른 위험감시 및 제어장치 설치
- (21) 2.6.7에 따른 오발진방지 설치

- (22) 2.6.8에 따른 전기방폭설비설치
- (23) 2.6.9에 따른 환기설비 설치
- (24) 2.6.10에 따른 부식방지설비 설치
- (25) 2.6.11에 따른 정전기제거설비 설치
- (26) 2.6.17에 따른 가스차단장치 설치
- (27) 2.6.18에 따른 긴급분리장치 설치
- (28) 2.6.19에 따른 충전기 보호설비 설치
- (29) 2.6.20에 따른 화염검지기 설치
- (30) 2.7.1에 따른 방류둑 설치
- (31) 2.7.2에 따른 방호벽 설치
- (32) 2.7.7에 소화설비 설치
- (33) 2.7.9에 따른 온도상승방지설비 설치
- (34) 2.8.1에 따른 계측설비 설치
- (35) 2.8.2 및 3.1.7.1에 따른 비상전력설비 설치
- (36) 2.8.3에 따른 통신설비 설치
- (37) 2.8.4에 따른 운영시설물 설치
- (38) 2.9에 따른 표시기준
- (39) 3.1.3.1에 따른 진동방지조치
- (40) 3.1.3.3에 따른 밸브 또는 콕의 조작
- (41) 3.1.3.4에 따른 스톱밸브의 유지관리
- (42) 3.1.3.5에 따른 가연성물질 취급
- (43) 3.1.3.6에 따른 충전작업 금지
- (44) 3.1.5에 따른 사고예방설비 유지관리
- (45) 3.2.3에 따른 충전작업
- (46) 3.3.4에 따른 가스설비 점검
- (47) 3.3.7.1에 따른 물분무장치 등 점검
- (48) 3.3.8에 따른 부대설비 점검

#### 4.1.4 수시검사

수시검시는 4.1.3에서 정한 정기검사 항목 가운데 다음에 열거하는 안전장치의 유지 · 관리상태 중 필요한 사항과 법 제26조에 따른 안전관리규정 이행실태에 대하여 실시한다.

- (1) 안전밸브
- (2) 긴급차단장치
- (3) 화염 및 가스누출검지경보장치
- (4) 소화기 또는 소화안전장치
- (5) 안전제어장치
- (5) 강제환기시설
- (6) 안전용 접지 및 방폭전기기기
- (7) 그 밖에 안전관리상 필요한 사항

# 4.2 검사방법

중간검사, 완성검사, 정기검사 및 수시검사는 그 검사대상시설이 그 종류별 대상항목의 시설기준 및 기술기준에 적합한지 명확하게 판정할 수 있도록 다음 기준에 따른 방법으로 실시하고, 세부적 인 방법은 한국가스안전공사 사장이 정하는 바에 따른다.

# 4.2.1 중간검사 방법

중간검사는 다음 검사방법에 따라 실시한다.

# 4.2.1.1 중간검사 대상지정

중간검사를 받아야할 공정 중 비파괴시험 및 배관의 매설깊이 확인을 위한 공정은 배관의 경우 중간검사 대상 지정개소는 검사대상의 배관(법 제15조제6항에 따른 완성검사대상의 배관을 말한다. 이하 같다) 길이 500m마다 1 개소 이상으로 하고, 지정한 부분의 길이의 합은 검사대상 배관길이의 10 % 이상이 되도록 한다.

#### 4.2.1.2 기초 확인방법(해당 없음)

#### 4.2.1.3 배관 확인방법

배관을 지하에 설치하는 경우 시설기준 및 기술기준에 적합하여야 하며 배관을 매설하기 위한 공정별 진행은 검사원의 확인 후 진행한다. 검사원의 확인 전에 설치자가 임의로 공정을 진행한 경우에는 검사원은 불합격 처리하다.

# 4.2.1.4 용접 및 비피괴 성능 확인방법

- 4.2.1.4.1 용접기구 및 용접재료는 KS D 7004(연강용피복아크용접봉) 등 관련규격에 규정된 용접에 적합한 기구 및 재료가 사용되는지 확인한다.
- 4.2.1.4.2 용접시공은 적합한 용접절차서(W.P.S)에 따라 진행한다.
- 4.21.4.3 용접부의 비파괴시험방법이 관련기준에 적합한지를 확인하고, 비파괴검사를 실시한자가 서명한 결과보고서 및 필름을 첨부받아 적합 여부를 확인하여 처리한다.
- 4.21.4.4 그 밖에 작업공정은 검사원의 확인 없이 제작자나 설치자가 임의로 진행한 경우 불합격처리한다.

#### 4.2.1.5 내압 및 기밀시험방법

내압 및 기밀시험은 가스설비나 배관의 설치가 완료되어 시험을 실시할 수 있는 상태의 공정에서 다음 기준에 따라 실시한다.

# 4.2.1.5.1 내압시험방법

(1) 내압시험은 원칙적으로 수압으로 실시한다. 다만, 부득이한 이유로 물을 채우는 것이 부적당한

경우에는 공기나 위험성이 없는 기체의 압력으로 할 수 있다.

(2) 고압가스설비와 배관에 대하여 공기 등의 기체의 압력으로 내압시험을 실시하는 경우에는 작업을 안전하게 하기 위하여 그 설비의 길이이음때, 원주이음때(배관은 그 설치장소에서 용접을 한 것으로써 바깥지름 160 ㎜를 넘는 관의 원주이음때에만 적용한다) 및 경판의 제작을 위한 이음때 중 맞대기용접에 의한 강관용접부의 전 길이(관에서는 용접부 전 길이의 20% 이상)에 대해서는 내압시험 전에 KS B 0845(강 용접 이음부의 방사선투과검사)에 따라 방사선투과 시험을 하고 그 등급분류가 2류(범주2)이상임을 확인한다.

다만, 완성검사의 경우 배관의 길이 이음매에 대해서는 해당 배관을 제조한 사업소에서 내압시험을 실시한 시험성적서 등으로 확인할 수 있는 것은 그렇지 않다. 또한 다음의 용접부에 대해서는 KS D 0213(강자성 재료의 자분탐상검사 방법 및 지분 모양 분류) 또는 KS B 0816(침투 탐상 시험 방법 및 침투 지시 모양의 분류)에 따라 탐상시험을 하고 표면 및 그 밖의 부분에 유해한 결함이 없음을 확인한다. <개정 21.10.08.>

- (2−1) 인장강도 규격값의 최소값이 568 N/m² 이상인 탄소강강판을 사용한 고압가스설비의 용접부
- (2-2) 판두께가 25 ㎜ 이상인 탄소강 강판을 사용한 고압가스설비의 용접부
- (2-3) 개구부, 노즐부(nozzle stub), 보강재 등의 부착물을 고압가스설비에 부착한 부분의 용접부(배관에 관한 것은 제외한다)
- (2-4) 배관의 원주이음매에 관한 용접부로서 그 설치장소에서 용접을 한 것 중 방사선투과시험을 하지 않은 것
- (3) 내압시험은 해당설비가 취성파괴를 일으킬 우려가 없는 온도에서 실시한다.
- (4) 내압시험은 상용입력의 1.5배(공기 등 기체의 압력에 의한 내압시험은 상용압력의 1.25배) 이상으로 하고, 규정압력을 유지하는 시간은 5분에서 20분간을 표준으로 한다. 다만, 초고압(압력을 받는 금속부의 온도가 −50 ℃ 이상 350 ℃ 이하인 고압카스설비의 상용압력 98 ㎞를 말한다. 이하 같다)의 고압카스설비와 초고압의 배관에 대해서는 1.25배(운전압력이 충분히 제어 될 수 있는 경우에는 공기 등 기체에 의한 상용압력의 1.1배) 이상의 압력으로 실시할 수 있다.
- (5) 내압시험에 종사하는 시람의 수는 작업에 필요한 최소인원으로 하고, 관측 등을 하는 경우에는 적절한 방호시설을 설치하고 그 뒤에서 한다.
- (6) 내압시험을 하는 장소 및 그 주위는 잘 정돈하여 긴급한 경우 대피하기 좋도록 하고 2차적으로 인체에 피해가 발생하지 않도록 한다.
- (7) 내압시험은 내압시험압력에서 팽창, 누설 등의 이상이 없을 때 합격으로 한다.
- (8) 내압시험을 공기 등 기체의 압력에 의해 하는 경우에는 먼저 상용압력의 50 %까지 승입하고 그후에는 상용압력의 10 %씩 단계적으로 승압하여 내압시험압력에 달하였을 때 누설 등의 이상이 없고, 그후 압력을 내려 상용압력으로 하였을 때 팽창, 누설 등의 이상이 없으면 합격으로 한다.
- (9) 내압시험에 필요한 준비는 검사 신청인이 한다.

#### 4.2.1.5.2 기밀시험방법

가스설비와 배관의 기밀시험은 다음 기준에 따라 실시한다.

- (1) 기밀시험은 원칙적으로 공기나 위험성이 없는 기체의 압력으로 실시한다.
- (2) 기밀시험은 그 설비가 취성 파괴를 일으킬 우려가 없는 온도에서 한다.
- (3) 기밀시험압력은 상용압력 이상으로 하되, 0.7 따를 초과하는 경우 0.7 때 압력 이상으로 한다. 이경우 다음 표와 같이 시험할 부분의 용적에 대응한 기밀유지시간 이상을 유지하고 처음과 마지막 시험의 측정압력차가 압력측정기구의 허용오차 내에 있는 것을 확인한다. (처음과 마지막 시험의 온도차가

있는 경우에는 압력차에 대해서 보정한다)

표 4.2.1.5.2 시험 용적에 따른 기밀유지시간

| 압력측정기구                       | 용 적              | 기밀유지시간               |  |  |  |  |
|------------------------------|------------------|----------------------|--|--|--|--|
| 압력계 또는 자기압력기록계               | 1 m³ 미만          | 48분                  |  |  |  |  |
|                              | 1 m³ 이상 10 m³ 미만 | 480분                 |  |  |  |  |
|                              | ]() m' 이삿        | 48×V분(다만, 2880분을 초과한 |  |  |  |  |
|                              |                  | 경우는 2880분으로 할 수 있다)  |  |  |  |  |
| [비고] V는 피시험부분의 용적(단위: m²)이다. |                  |                      |  |  |  |  |

- (4) 검사의 상황에 따라 위험이 없다고 판단되는 경우에는 해당 가스설비에 저장 또는 처리되는 가스를 사용하여 기밀시험을 할 수 있다. 이 경우 압력은 단계적으로 올려 이상이 없음을 확인하면서 승압한다.
- (5) 기밀시험은 기밀시험압력에서 누설 등의 이상이 없을 때 합격으로 한다.
- (6) 기밀시험에 종사하는 인원은 작업에 필요한 최소인원으로 하고, 관측 등은 적절한 장해물을 설치하고 그 뒤에서 한다.
- (7) 기밀시험을 하는 장소 및 그 주위는 잘 정돈하여 긴급한 경우 대피하기 좋도록 하고 2차적으로 인체에 피해가 발생하지 않도록 한다.
- (8) 기밀시험 및 누출검사에 필요한 준비는 검사 신청인이 한다.

### 4.2.1.6 방호벽 확인방법

방호벽의 적정설치 여부는 실측하여 확인한다.

# 4.2.1.7 그 밖의 검사

그 밖의 검사에 필요한 사항은 한국가스안전공사 사장이 정하는 바에 따른다.

### 4.2.2 완성검사 및 정기검사 방법

완성검사 및 정기검사의 항목별 검사방법은 다음과 같으며, 시설검사 시 용기 등의 검사품 여부를 확인한다.

#### 4.2.2.1 인전거리

충전장소 및 처리설비 외면과 제1, 2종 보호시설과 안전거리 유지 여부를 실측한다.

# 4.2.2.2 검지경보장치

가스충전시설에 설치된 검지경보장치의 설치 여부와 성능 등을 확인한다.

# 4.2.2.3 긴급치단장치

- (1) 가스설비에 설치한 긴급차단장치의 설치상황은 도면으로 확인한다.
- (2) 검사품인지를 확인하고, 작동기능을 작동시험 또는 기록으로 확인한다.
- (3) 밸브시트의 누설 여부는 기록으로 확인한다.

# 4.2.2.4 저장탱크등의 구조 및 설치

- (1) 저장탱크의 적정설치여부를 측정 확인한다.
- (2) 저장탱크, 방류둑 및 긴급차단장치의 적정 설치여부, 저장탱크의 능력 및 방류둑의 용량의 적정 여부를 기록과 도면으로 확인한 후 도면과 일치 여부 등을 실측한다.

#### 4.2.2.5 배관등

- (1) 배관의 적정설치 여부를 측정 · 확인한다.
- (2) 배관을 지상 또는 지하에 매설한 경우에는 보기 쉬운 곳에 연락처 등 필요한 시항을 기록한 표지판이 설치되어 있는지 육안으로 확인한다.
- (3) 배관에는 부식을 방지하는 조치를 하였는지 확인하고 도면과 일치 여부를 실측한다.
- (4) 배관을 지하에 매설하는 경우 적합하게 설치하였는지 관련서류, 육안확인 및 실측한다.
- (5) 배관을 지상에 설치하는 경우 도면 및 기록에 의해 적합하게 설치하였는지 육안 확인 및 실측하다.

### 4.2.2.6 방호벽

방호벽 적정설치 여부를 실측으로 확인한다.

#### 4.2.2.7 화기와의 거리

가스설비 및 저장설비 주위의 화기취급상황에 대한 도면과 일치 여부 확인 및 거리등을 실측한다.

# 4.2.2.8 경계표지

경계표지 및 경계책 설치장소의 도면과 일치 여부를 확인하고 적정설치 여부를 측정 · 확인한다.

### 4.2.2.9 액면계

- (1) 액면계의 종류, 설치상황에 대한 도면과 일치 여부 및 작동상태를 확인한다.
- (2) 액면계에 설치된 스톱밸브 및 역류방지밸브 작동시험 확인한다.

# 4.2.2.10 저온저장탱크 피괴방지 조치

가연성가스 저온저장탱크의 부압방지조치 설치상황에 대해서는 도면과 일치여부를 확인하고 성능은 기록으로 확인한다.

# 4.2.2.11 온도상승방지 장치

물분무장치 또는 살수장치의 설치상황이 도면과 일치하는지 여부를 확인하고, 성능은 작동시험으로 확인한다.

#### 4.2.2.12 부식방지도장

차량에 고정된 탱크의 외면에 도장을 하였는지 확인한다.

# 4.2.2.13 저장탱크의 표시

차량에 고정된 탱크의 도장 및 가스명칭이 적정하게 표시되어 있는지 확인한다.

# 4.2.2.14 기스설비의 기초

가스설비의 기초를 관련서류나 도면으로 확인 및 측정한다.

# 4.2.2.15 기스설비의 재료

가스설비의 재료는 제조자의 시험성적서로 확인한다.

### 4.2.2.16 기스설비의 구조

가스설비는 가스누출여부에 대하여 기밀시험을 실시하고, 내압시험을 기체로 실시한 경우에는 기밀시험을 생략한다. 다만, 정기검사 시 다음과 같은 경우에는 발포액, 누설검지기 또는 디지털압력계 등으로 누출검사를 실시한다.

- (1) 가스설비 또는 배관이 가동 중에 있는 경우
- (2) 가스설비 또는 배관 안에 촉매가 충전되어 있는 경우
- (3) 그 밖에 기밀시험을 실시하는 것이 현저히 곤란한 경우

### 4.2.2.17 방폭구조

방폭지역을 도면으로 확인하고, 전기설비의 방폭성능을 성적서, 명판 등으로 확인한다.

# 4.2.2.18 불연재료 등

배관에 설치된 불연재료 또는 난연재료의 설치상황이 도면과 일치 여부 및 재료의 시험성적서를 확인한다.

# 4.2.2.19 고압가스설비의 내압능력

- (1) 고압가스설비의 내압·기밀시험 기준은 4.2.1.5를 준용하고, 동 검사방법은 자기압력기록계 등을 사용하여 계측 및 확인한다.
- (2) 「고압가스 안전관리법」 제17조제1항 및 제2항에 따라 검시에 합격한 용기·냉동기·특정설비에 대한 내압시험은 합격증명서의 확인으로, 펌프 · 압축기 등에 대한 내압시험은 제조자의 시험성적서 확인으로 갈음한다.
- (3) 튜브 및 호스로 설치된 배관계로서 상용압력이상으로 기밀시험을 실시한 경우에는 내압시험을 생략한다.

#### 4.2.2.20 기스설비의 강도 등

가스설비의 두께와 강도는 KS표시 허가제품 또는 이와 동등 이상의 재료인지 여부를 시험성적서나 규격 등 서류로 확인하고, 확인이 불가능한 경우는 두께와 강도를 계측한다.

# 4.2.2.21 압력계

가스설비에 적합한 규격(눈금범위)의 압력계를 도면과 맞게 설치되었는지 를 확인한다.

#### 4.2.2.22 인전장치 등

가스설비에 안전장치와 안전밸브가 적정하게 설치되어 있는지 여부 및 검사품 여부를 확인한다.

# 4.2.2.23 역류방지밸브

역류방지밸브의 규격 및 설치장소가 도면과 일치하는지 여부를 확인한다.

#### 4.2.2.24 기스설비실 저장설비실

가스설비실 · 저장설비실의 휘기구조, 설비설치상황이 도면과 일치 여부 확인하고 성능시험을 실시하다.

# 4.2.2.25 정전기 제거

정전기 제거조치가 적정하게 설치되어 있는지 다음 사항을 확인 및 계측한다.

- (1) 지상에서 접지 저항치
- (2) 지상에서의 접속부의 접속상태
- (3) 지상에서의 절선 그 밖에 손상부분의 유무

# 4.2.2.26 통신시설

통신시설의 구비상황을 확인하고, 작동시험을 실시하여 성능을 확인한다.

#### 4.2.2.27 퉁행시설(해당없음)

#### 4.2.2.28 표준압력계

표준압력계의 비치사항과 주기적인 검 · 교정검사 실시 여부를 확인한다.

# 4.2.2.29 내진설계

펌프 등의 내진설계에 대하여 관련서류 및 도면으로 적합하게 설치되었는지를 확인 또는 측정한다.

#### 4.2.2.30 회염검지기

화염검지기의 설치장소가 도면과 일치하는 지를 확인한다.

# 4.2.2.31 누출확산방지조치

배관을 특수성지반 중에 설치하는 경우 도시가스의 종류에 따라 안전한 방법으로 누출된 가스의 확산방지조 치 여부와 도시가스의 종류 및 압력과 배관의 주위상항에 따라 필요한 장소에는 2중관 및 가스누출검지경보장 치를 설치하였는지 확인하다.

#### 4.2.2.32 위험감시 및 제어장치 설치

가스충전시설에는 충전상태 모니터링 장치가 설치되어 있는지 도면 또는 기록으로 확인하고 작동상태에서 성능을 확인한다.

# 4.2.2.33 기스누출검지경보장치

가스누출검지경보장치가 적정하게 설치되어 있는지 확인하고, 작동시켜 성능을 확인한다.

#### 4.2.2.34 긴급치단장치 등

긴급차단장치 위치·기능·개폐표시 등 적정설치 여부 및 검사품 여부를 확인한다.

# 4.2.2.35 안전용 접지

안전용 접지 등의 상태를 확인 및 계측한다.

#### 4.2.2.36 피뢰설비

배관장치에는 피뢰설비를 설치하였는지 확인한다.

# 4.2.2.37 비상전력

비상전력설비 구비 여부 및 작동상태를 확인한다.

# 4.2.2.38 기스충전시설의 규모 등

가스충전시설의 변경허가·승인·신고 등 대상 여부를 확인한다.

# 4.2.2.39 그 밖의 검사

그 밖의 검사방법은 한국가스안전공사 사장이 정하는 바에 따른다.

# KGS Code 기호 및 일련번호 체계

KGS(Korea Gas Safety) Code는 가스관계법령에서 정한 시설·기술·검사 등의 기술적인 사항을 상세기준으로 정하여 코드화한 것으로 가스기술기준위원회에서 심의·의결하고 산업통상자원부에서 승인한 가스안전 분야의 기술기준입니다.



| 분류                            |                       | 종류 및 첫째 자리 번호  |     | 분류                  |            | 종류 및 첫째 자리 번호          |     |
|-------------------------------|-----------------------|----------------|-----|---------------------|------------|------------------------|-----|
| (App A) (Apparatus)  8-7 (Con | 기구(A)<br>(Appliances) | 냉동장치류<br>배관장치류 | 1 2 |                     | 제조・충전      | 고압가스 제조시설<br>고압가스 충전시설 | 1 2 |
|                               |                       | 밸브류            | 3   |                     | (P)        | LP가스 충전시설              | 3   |
|                               |                       | 압력조정장치류        | 4   |                     | (Productio | 도시가스 도매 제조시설           | 4   |
|                               |                       | 호스류            | 5   |                     | n)         | 도시가스 일반 제조시설           | 5   |
|                               |                       | 경보차단장치류        | 6   |                     |            | 도시가스 충전시설              | 6   |
|                               |                       | 기타 기구류         | 9   |                     |            | 고압가스 판매시설              | 1   |
|                               | 연소기                   | 보일러류           | 1   | 시설                  | 판매・공급      | LP가스 판매시설              | 2   |
|                               | (B) (Burners)         | 히터류            | 2   | (F)<br>(Facilities) | (S)        | LP가스 집단공급시설            | 3   |
|                               |                       | 레인지류           | 3   |                     | (Supply)   | 도시가스 도매 공급시설           | 4   |
|                               |                       | 기타 연소기류        | 9   |                     |            | 도시가스 일반 공급시설           | 5   |
|                               | 용기(C)                 | 탱크류            | 1   |                     | 저장ㆍ사용      | 고압가스 저장시설              | 1   |
|                               |                       | 실린더류           | 2   |                     |            | 고압가스 사용시설              | 2   |
|                               |                       | 캔류             | 3   |                     | (U)        | LP가스 저장시설              | 3   |
|                               | (Containers)          | 복합재료 용기류       | 4   |                     |            | LP가스 사용시설              | 4   |
|                               |                       | 기타 용기류         | 9   |                     | (Use)      | 도시가스 사용시설              | 5   |
|                               | 수소<br>(T)             | 수소추출기류         | 1   |                     |            | 수소 연료 사용시설             | 6   |
|                               |                       | 수전해장치류         | 2   | 일반                  | 공통         | 기본사항                   | 1   |
|                               | (H)<br>(Hydrogen)     | 연료전지           | 3   | (G)                 | (C)        | 공통사항                   | 2   |
|                               | (1 tyur Ogert)        | C C            |     | (General)           | (Common)   | 0 0 1 0                |     |

