Floating Point Numbers

Review of Numbers

- Computers are made to deal with numbers
- What can we represent in N bits?
 - Unsigned integers:

to $2^{N} - 1$

• Signed Integers (Two's Complement)

-2(N-1)

to $2^{(N-1)} - 1$

Signed Integers

$$-2^{(N-1)} - 1$$
 to $2^{(N-1)} - 1$

$$2^{(N-1)}$$
 -

Other Numbers

- What about other numbers?
 - Very large numbers? (seconds/century) $3,155,760,000_{10}$ (3.15576₁₀ x 10⁹)
 - Very small numbers? (atomic diameter) $0.00000001_{10} (1.0_{10} \times 10^{-8})$
 - Rationals (repeating pattern)
 - 2/3 (0.666666666...)
 - Irrationals

```
2^{1/2} (1.414213562373...)
```

- Transcendentals
- e (2.718...), $\pi (3.141...)$
- All represented in scientific notation

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value Representation

$$5 3/4 = 23/4$$
 $101.112 = 4 + 1 + 1/2 + 1/4$
 $2 7/8 = 23/8$ $10.1112 = 2 + 1/2 + 1/4 + 1/8$
 $1 7/16 = 23/16$ $1.01112 = 1 + 1/4 + 1/8 + 1/16$

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

```
Value Representation
1/3 0.01010101[01]...2
1/5 0.001100110011[0011]...2
1/10 0.0001100110011[0011]...2
```

- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Objective

- To understand the fundamentals of floatingpoint representation
- To know the IEEE-754 Floating Point Standard

Patriot Missile

- Gulf War I
- Failed to intercept incoming Iraqi scud missile (Feb 25, 1991)
- 28 American soldiers killed

GAO Report: GAO/IMTEC-92-26 Patriot Missile Software Problem http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot Design

- Intended to operate only for a few hours
 - Defend Europe from Soviet aircraft and missile
- Four 24-bit registers (1970s design!)
- Kept time with integer counter: incremented every 1/10 second
- Calculate speed of incoming missile to predict future positions:

```
velocity = loc_1 - loc_0/(count_1 - count_0) * 0.1
```

• But, cannot represent 0.1 exactly!

Floating Imprecision

• 24-bits:

$$0.1 = 1/2^4 + 1/2^5 + 1/2^8 + 1/2^9$$

$$+ 1/2^{12} + 1/2^{13} + 1/2^{16} + 1/2^{17}$$

$$+ 1/2^{20} + 1/2^{21}$$

$$= 209715 / 2097152$$
Error is $0.2/2097152 = 1/10485760$

One hour = 3600 seconds 3600 * 1/10485760 * 10 = 0.0034s 20 hours = 0.0687s

Miss target! (137 meters)

Two weeks before the incident, Army officials received Israeli data indicating some loss in accuracy after the system had been running for 8 consecutive hours. Consequently, Army officials modified the software to improve the system's accuracy. However, the modified software did not reach Dhahran until February 26, 1991--the day after the Scud incident.

GAO Report

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

Example: $15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes **E** (but is not equal to E)
 - frac field encodes M (but is not equal to M)

Exponential Notation

• The following are equivalent representations of 1,234

123,400	. 0	x	10-2	
12,340	. 0	x	10-1	
1,234	. 0	Х	100	
123	. 4	X	101	
12	34	X	10 ²	
1	. 234	X	103	
0	.1234	X	104	

The representations differ in that the decimal place – the "point" — "floats" to the left or right (with the appropriate adjustment in the exponent).

Parts of a Floating Point Number

IEEE 754 Standard

- Most common standard for representing floating point numbers
- Single precision: 32 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (23 bits)
- Double precision: 64 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (11 bits)
 - Mantissa (52 bits)

Prof. Willian Kahan

Single Precision Format

Normalization

- The mantissa is *normalized*
- Has an implied decimal place on left
- Has an implied "1" on left of the decimal place
- E.g.,

 - Represents... $1.101_2 = 1.625_{10}$
- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Excess Notation

- To include +ve and –ve exponents, "excess" notation is used
- Single precision: excess 127
- Double precision: excess 1023
- The value of the exponent stored is larger than the actual exponent
- E.g., excess 127,
 - Exponent \rightarrow 10000111
 - Represents... 135 127 = 8

Example

• Single precision

$$+1.11_2 \times 2^3 = 1110.0_2 = 14.0_{10}$$

Hexadecimal

- It is convenient and common to represent the original floating point number in hexadecimal
- The preceding example...

0	100	0001	0 110	0000	0000	0000	0000	0000
	4		6	0	0	0	0	0

Converting <u>from</u> Floating Point

• E.g., What decimal value is represented by the following 32-bit floating point number?

C17B0000₁₆

- Step 1
 - Express in binary and find S, E, and M

• Step 2

• Find "real" exponent, *n*

```
• n = E - 127
= 10000010_2 - 127
= 130 - 127
= 3
```

- Step 3
 - Put S, M, and *n* together to form binary result
 - (Don't forget the implied "1." on the left of the mantissa.)

```
-1.1111011_2 \times 2^n =
```

$$-1.1111011_2 \times 2^3 =$$

- Step 4
 - Express result in decimal

Answer: -15.6875

Converting <u>from</u> Floating Point

• E.g., What decimal value is represented by the following 32-bit floating point number?

42808000 ₁₆

Converting to Floating Point

• E.g., Express 36.5625₁₀ as a 32-bit floating point number (in hexadecimal)

- Step 1
 - Express original value in binary

```
36.5625_{10} =
```

100100.10012

• Step 2

• Normalize

```
100100.1001<sub>2</sub> =
```

$$1.001001001_2 \times 2^5$$

- Step 3
 - Determine S, E, and M

- Step 4
 - Put S, E, and M together to form 32-bit binary result

```
0 10000100 001001001000000000000<sub>2</sub>
S E M
```

- Step 5
 - Express in hexadecimal

Answer: 42124000₁₆

Converting to Floating Point

• E.g., Express 6.5₁₀ as a 32-bit floating point number (in hexadecimal)

Converting to Floating Point

• E.g., Express 0.1 as a 32-bit floating point number (in hexadecimal)

Zero, Infinity, and NaN

Zero

- Exponent field E = 0 and fraction F = 0
- +0 and –0 are possible according to sign bit S

Infinity

- Infinity is a special value represented with maximum E and F = 0
 - For single precision with 8-bit exponent: maximum E = 255
 - For double precision with 11-bit exponent: maximum E = 2047
- Infinity can result from overflow or division by zero
- $-+\infty$ and $-\infty$ are possible according to sign bit S

NaN (Not a Number)

- NaN is a special value represented with maximum E and $F \neq 0$
- Result from exceptional situations, such as 0/0 or sqrt(negative)
- Operation on a NaN results is NaN: Op(X, NaN) = NaN

Simple 6-bit Floating Point Example

S Exponent³ Fraction²

- 6-bit floating point representation
 - Sign bit is the most significant bit
 - Next 3 bits are the exponent with a bias of 3
 - Last 2 bits are the fraction
- Same general form as IEEE
 - Normalized, denormalized
 - Representation of 0, infinity and NaN
- Value of normalized numbers $(-1)^{S} \times (1.F)_{2} \times 2^{E-3}$
- Value of denormalized numbers $(-1)^5 \times (0.F)_2 \times 2^{-2}$

Values Related to Exponent

Exp.	exp	Е	2 ^E	
0	000	-2	1/4	Denormalized
1	001	-2	1/4	
2	010	-1	1/2	
3	011	0	1	Ni a voca di sa d
4	100	1	2	Normalized
5	101	2	4	
6	110	3	8	
7	111	n/a		Inf or NaN

Dynamic Range of Values

	0.140	fuco		volue
S	exp	frac	Е	value
0	000	00	-2	0
0	000	01	-2	1/4*1/4=1/16
0	000	10	-2	2/4*1/4=2/16
0	000	11	-2	3/4*1/4=3/16
0	001	00	-2	4/4*1/4=4/16=1/4=0.25
0	001	01	-2	5/4*1/4=5/16
0	001	10	-2	6/4*1/4=6/16
0	001	11	-2	7/4*1/4=7/16
0	010	00	-1	4/4*2/4=8/16=1/2=0.5
0	010	01	-1	5/4*2/4=10/16
0	010	10	-1	6/4*2/4=12/16=0.75
0	010	11	-1	7/4*2/4=14/16

smallest denormalized

largest denormalized

smallest normalized

Dynamic Range of Values

S	exp	frac	Е	value
0	011	00	0	4/4*4/4=16/16=1
0	011	01	0	5/4*4/4=20/16=1.25
0	011	10	0	6/4*4/4=24/16=1.5
0	011	11	0	7/4*4/4=28/16=1.75
0	100	00	1	4/4*8/4=32/16=2
0	100	01	1	5/4*8/4=40/16=2.5
0	100	10	1	6/4*8/4=48/16=3
0	100	11	1	7/4*8/4=56/16=3.5
0	101	00	2	4/4*16/4=64/16=4
0	101	01	2	5/4*16/4=80/16=5
0	101	10	2	6/4*16/4=96/16=6
0	101	11	2	7/4*16/4=112/16=7

Dynamic Range of Values

S	exp	frac	Е	value
0	110	00	3	4/4*32/4=128/16=8
0	110	01	3	5/4*32/4=160/16=10
0	110	10	3	6/4*32/4=192/16=12
0	110	11	3	7/4*32/4=224/16=14
0	111	00		8
0	111	01		NaN
0	111	10		NaN
0	111	11		NaN

largest normalized

Floating Point Addition Example

- Consider adding: $(1.111)_2 \times 2^{-1} + (1.011)_2 \times 2^{-3}$
 - For simplicity, we assume 4 bits of precision (or 3 bits of fraction)
- Cannot add significands ... Why?
 - Because exponents are not equal
- How to make exponents equal?
 - Shift the significand of the lesser exponent right until its exponent matches the larger number
- $(1.011)_2 \times 2^{-3} = (0.1011)_2 \times 2^{-2} = (0.01011)_2 \times 2^{-1}$
 - Difference between the two exponents = -1 (-3) = 2
 - So, shift right by 2 bits
- Now, add the significands:

Addition Example

- So, $(1.111)_2 \times 2^{-1} + (1.011)_2 \times 2^{-3} = (10.00111)_2 \times 2^{-1}$
- However, result $(10.00111)_2 \times 2^{-1}$ is NOT normalized
- Normalize result: $(10.00111)_2 \times 2^{-1} = (1.000111)_2 \times 2^{0}$
 - In this example, we have a carry
 - So, shift right by 1 bit and increment the exponent
- Round the significand to fit in appropriate number of bits
 - We assumed 4 bits of precision or 3 bits of fraction
- Round to nearest: $(1.000111)_2 \approx (1.001)_2$
 - Renormalize if rounding generates a carry
- Detect overflow / underflow
 - If exponent becomes too large (overflow) or too small (underflow)

Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess 127	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2 ⁻¹²⁶	2 ⁻¹⁰²²
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴
Decimal range	approx. 10^{-38} to 10^{38}	approx. 10^{-308} to 10^{308}
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴

Figure B-5. Characteristics of IEEE floating-point numbers.

Summary: IEEE Floating Point Single Precision (32 bits)

1 8 bits 23 bits

Sign		Exponent			Fraction	
31	30		23	22		0

Exponent values: 0 zeroes 1-254 exp + 127 255 infinities, NaN

Value = $(1 - 2*Sign)(1 + Fraction)^{Exponent - 127}$

Denormalized Values

- Condition
 - exp = 000...0
- Value
 - Exponent value E = -Bias + 1
 - Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac
- Cases
 - $\exp = 000...0$, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0

Special Values

- Condition
 - $\exp = 111...1$
- Cases
 - $\exp = 111...1$, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - $exp = 111...1, frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\operatorname{sqrt}(-1)$, $\infty \infty$

Interesting Numbers

• Description exp frac Numeric Value

• Zero 00...00 00...00 0.0

• Smallest Pos. Denorm. $00...00 \quad 00...01$ $2^{-\{23,52\}} \times 2^{-\{126,1022\}}$

• Single $\approx 1.4 \times 10^{-45}$

• Double $\approx 4.9 \times 10^{-324}$

• Largest Denormalized $00...00 \ 11...11 \ (1.0 - \epsilon) \ X \ 2^{-\{126,1022\}}$

• Single $\approx 1.18 \times 10^{-38}$

• Double $\approx 2.2 \text{ X } 10^{-308}$

• Smallest Pos. Normalized 00...01 00...00 1.0 X 2^{- {126,1022}}

Just larger than largest denormalized

• One 01...11 00...00 1.0

• Largest Normalized 11...10 11...11 $(2.0 - \epsilon) \times 2^{\{127,1023\}}$

• Single $\approx 3.4 \times 10^{38}$

• Double $\approx 1.8 \times 10^{308}$

Visualization: Floating Point Encodings

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exp, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (s=0 only)

 $v = (-1)^s M 2^E$ norm: $E = \exp - Bias$ denorm: E = 1 - Bias

	s exp	frac	E	Value
	0 000	0 000	-6	0
	0 000	0 001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0 000	0 010	-6	$2/8*1/64 = 2/512$ $(-1)^{0}(0+1/4)*2^{-6}$
numbers	•••			
	0 000	0 110	-6	6/8*1/64 = 6/512
	0 000	0 111	-6	7/8*1/64 = 7/512 largest denorm
	0 000	1 000	-6	8/8*1/64 = 8/512 smallest norm
	0 000	1 001	-6	$9/8*1/64 = 9/512$ $(-1)^{0}(1+1/8)*2^{-6}$
	•••			
	0 011	0 110	-1	14/8*1/2 = 14/16
	0 011	0 111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0 011	1 000	0	8/8*1 = 1
numbers	0 011	1 001	0	9/8*1 = 9/8 closest to 1 above
	0 011	1 010	0	10/8*1 = 10/8
	•••			
	0 111	0 110	7	14/8*128 = 224
	0 111	0 111	7	15/8*128 = 240 largest norm
	0 111	1 000	n/a	inf

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
- s exp frac

 1 3-bits 2-bits
- Bias is $2^{3-1}-1=3$
- Notice how the distribution gets denser toward zero.

