目录

1	Introduction		
	1.1	Weil Conjecture	1
	1.2	etale cohomology	3
2	Weil sheaves		
	2.1	Several Frobenius	3
	2.2	Deligne's theorem	7
	2.3	Weil sheaf	8
3	Wei	ght	12
	3.1	convergence of L-function	12
	3.2	semicoutinuity thorem of weight	14
	3.3	Real sheaves	18
	3.4	radius of convergence	19

1 Introduction

The goal of the note is to prove the Riemann hypothesis part of the Weil conjecture.

1.1 Weil Conjecture

We fix the following notation. Denote by $k = \mathbb{F}_q$ the finite field of q elements. \overline{k} an algebraic closure of k and k_n a degree n extension of k. A variety is a scheme X over k such that X is integral and the structure morphism $X \to Spec(k)$ is separated and of finite type.

 X_0 will denote a variety over k, and $X := X_0 \times_k \overline{k}$. The idea is to compute how many F_{q^r} -points there are on X_0 . Denote $N_r = \#X_0(F_{q^r})$ For this, we introduce a formal power series.

Definition 1.1.1 The zeta function for X_0 is defined as the formal power series

$$Z(X_0,t) = exp(\sum_{r=1}^{\infty} N_r \frac{t^r}{r}) \in \mathbb{Q}[[t]].$$

Example 1.1.2. Let $X_0 = Spec(F_q)$. Then

$$Z(X_0,t) = exp(\sum_{r=1}^{\infty} 1 \cdot \frac{t^r}{r}) = \frac{1}{1-t}.$$

Example 1.1.3. Let $X_0 = P^1$. Then

$$Z(X_0,t) = exp(\sum_{r=1}^{\infty} (1+q^r) \frac{t^r}{r}) = \frac{1}{(1-t)(1-qt)}.$$

These two are rational functions, Weil also compute several other complicated examples. This made him formulate the following conjecture:

Conjecture 1.1 Let X_0 be a smooth projective variety over k of dimension n, and $Z(t) = Z(X_0, t)$.

- 1. Rationality: Z(t) is a rational function.
- 2. Function equation:

$$Z(\frac{1}{q^n t}) = \pm q^{nE/2} t^E \cdot Z(t).$$

Here $E = \Delta \cdot \Delta$, where $\Delta \subseteq X_0 \times X_0$ is the diagonal.

3. Riemann hypothesis: The rational function has a special form:

$$Z(t) = \frac{P_1(t)P_3(t)\dots P_{2n-1}(t)}{P_0(t)P_2(t)\dots P_{2n}(t)}$$

where each $P_i(t)$ satisfies the following properties:

- (a) $P_0(t) = 1 t \in \mathbb{Z}[t]$.
- (b) $P_{2n}(t) = 1 q^n t \in \mathbb{Z}[t]$.
- (c) For $1 \le i \le 2n 1$, we have

$$P_i(t) = \prod_j (1 - \alpha_{ij}t) \in \mathbb{Z}[t].$$

where each α_{ij} is an algebraic integer, and $|\alpha_{ij}| = q^{i/2}$. $|\cdot|$ denotes the complex norm for ant embedding of $\mathbb{Z}[\alpha_{ij}]$ in \mathbb{C} .

We mainly focus on (3), (1) and (2) are covered in general courses on etale cohomology.

1.2 etale cohomology

2 Weil sheaves

2.1 Several Frobenius

Now, fix a scheme X_0 of finite type over $k, X := X_0 \times_k \overline{k}$ with $\pi : X \to X_0$ the projection morphism. Let $F : \alpha \mapsto \alpha^{1/q}$ be the *geometric* frobenius automorphism of \overline{k} .

Definition 2.1.1 The base change $F_X := id \ X_0 \times_k F$ acts as an automorphism of X. I will call this the *Galois-theoretic geometric Frobenius* automorphism of X to emphasize that this is coming from $Gal(\bar{k}/k)$.

There are several other Frobenius morphisms:

Definition 2.1.2 The absolute Frobenius endmorphism of an F_{q^r} -scheme Y is the morphism σ_Y : $Y \to Y$ which is the identity on the underlying topological space |Y| and which is the map $\alpha \mapsto \alpha^q$ on the structure sheaf.

Definition 2.1.3 The relative Frobenius endomorphism of X is the morphism $Fr_X : \sigma_{X_0} \times_k id_{\overline{k}}$.

Proposition 2.1.4 $\sigma_X \circ F_X = Fr_X$

Now we analysis the action of these frobenius on cohomology group.

For any X-scheme Y, let $Y(q/X) = Y \times_{X,\sigma_X} X$. We have following Cartesian diagram

$$Y^{(q/X)} \xrightarrow{\pi_2} Y$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad X$
 $X \xrightarrow{G_X} X$

where π_1 and π_2 are the projections. We have a commutative diagram

$$\begin{array}{ccc}
Y & \xrightarrow{\sigma_Y} & Y \\
\downarrow & & \downarrow \\
X & \xrightarrow{\sigma_X} & X
\end{array}$$

We define the *Frobenius morphism* $Fr_{Y/X}$ of Y relative to X to be the X-morphism $Fr_{Y/X}: Y \to Y(q/X)$ such that $\pi_1 Fr_{Y/X} = \sigma_Y$.

Proposition 2.1.5 The relative Frobenius morphism $Fr_{Y/X}: Y \to Y(q/X)$ is integral, radiciel, and surjective. If Y is etale over X, then $Fr_{Y/X}$ is an isomorphism.

Proof. Clearly σ_X , σ_Y and π_1 are integral, radiciel and surjective. So $Fr_{Y/X}$ has the same property. If Y is etale over X, then $Fr_{Y/X}$ is also etale. Therefore $Fr_{Y/X}$ is an isomorphism.

For any character p scheme S. Let \mathscr{G} be sheaf on S. For any etale S-scheme U, since $Fr_{U/S}$ is an isomorphism, the restriction map $\mathscr{G}(U^{(q/S)}) \to \mathscr{G}(U)$ is an isomorphism. Thus we have an isomorphism $\sigma_{S*}\mathscr{G} \to \mathscr{G}$. Its inverse $\mathscr{G} \to \sigma_{S*}\mathscr{G}$ defines a morphism

$$\sigma_{\mathscr{G}}^*:\sigma_{S}^*\mathscr{G}\to\mathscr{G}.$$

We also define a morphism $\sigma_{\mathscr{G}}^* : \sigma_S^* K \to K$ for any object K in the derived category $D(S) = D(S, \mathbb{Z})$ of sheaves of abelian group on S.

Proposition 2.1.6 *Let* $K \in obD^+(X)$. *Then composite*

$$H^{i}(X,K) \to H^{i}(X,\sigma_{X}^{*}K) \stackrel{\sigma_{K}^{*}}{\to} H^{i}(X,K)$$

is identity for each i, where the first homomorphism is the composite

$$H^{i}(X,K) \stackrel{adj}{\to} H^{i}(X,R\sigma_{X*}\sigma_{X}^{*}K) \cong H^{i}(X,\sigma_{X}^{*}K).$$

Let \mathscr{G}_0 be a sheaf on X_0 , let $\pi: X \to X_0$ be the projection, and let $\mathscr{G} = \pi^* \mathscr{G}_0$ be the inverse image of \mathscr{G}_0 . Define

$$Fr_{\mathscr{G}_0}^*: Fr_X^*\mathscr{G} \to \mathscr{G}$$

to be the morphism induced from $\sigma_{\mathscr{G}_0}^*:\sigma_X^*\mathscr{G}_0\to\mathscr{G}_0$ by base change, that is, the composite

$$Fr_X^*\mathscr{G} = Fr_X^*\pi^*\mathscr{G}_0 \cong \pi^*\sigma_{X_0}^*\mathscr{G}_0 \overset{\pi^*(\sigma_{\mathscr{G}_0}^*)}{\to} \pi^*\mathscr{G}_0 = \mathscr{G}.$$

For any $K_0 \in obD(X_0)$, we can define $Fr_{K_0}^* : Fr_K^* \to K$ where $K = \pi^*K_0$. On the other hand, we have an isomorphism $F_X^*\mathscr{G} \cong \mathscr{G}$ define as the composite

$$F_X^*\mathscr{G} = F_X^*\pi^*\mathscr{G}_0 \cong (\pi \circ F_X)^*\mathscr{G}_0 = \pi^*\mathscr{G}_0 = \mathscr{G}.$$

Proposition 2.1.7 Notation as above. For any $K_0 \in obD^+(X_0)$, the composite denote by FR_K^*

$$H^{i}(X,K) \rightarrow H^{i}(X,Fr_{X}^{*}K) \stackrel{Fr_{K_{0}}^{*}}{\rightarrow} H^{i}(X,K)$$

and the composite

$$H^i(X,K) \to H^i(X,F_X^*K) \cong H^i(X,K)$$

are the same.

Let x be a closed point of X_0 with [k(x):k]=n. Then \overline{x} is a fixed point of Fr^n . Then n-th iteration of $Fr^*_{\mathscr{G}}$ induces a homomorphism $Fr_{X_{\overline{x}}}^{n*}:\mathscr{G}_{\overline{x}}\to\mathscr{G}_{\overline{x}}$. Let $f_x:\mathscr{G}_{\overline{x}}\to\mathscr{G}_{\overline{x}}$ be the action on $\mathscr{G}_{\overline{x}}$ of the Frobenius substitution $\alpha\mapsto\alpha^{q^n}$ in $Gal(\overline{k}/k(x))$.

Proposition 2.1.8 With the above notation, the homomorphism $Fr_{X_{\overline{X}}}^{n*}: \mathscr{G}_{\overline{X}} \to \mathscr{G}_{\overline{X}}$ and $f_x: \mathscr{G}_{\overline{X}} \to \mathscr{G}_{\overline{X}}$ are inverse to each other.

Let X_0 be a compactifiable scheme over $F_q = k$ of character p, A a noetherian \mathbb{Z}/ℓ^n -algebra with $(\ell,p) = 1$, $K_0 \in obD^b_{ctf}(X_0,A)$. Choose a compactification $\overline{X_0}$ of X_0 , let $\overline{X} = \overline{X_0} \otimes_k \overline{k}$, and $j: X \hookrightarrow \overline{X}$ be the open immersion. Still denote by $FR_K^*: R\Gamma_c(X,K) \to R\Gamma_c(X,K)$

$$R\Gamma_{c}(X,K) \cong R\Gamma(\overline{X},j_{!}K)$$

$$\rightarrow R\Gamma(\overline{X},Fr_{\overline{X}}^{*}j_{!}K)$$

$$\cong R\Gamma(\overline{X},j_{!}Fr_{X}^{*}K)$$

$$\stackrel{Fr_{K_{0}}^{*}}{\rightarrow} R\Gamma(\overline{X},j_{!}K)$$

$$\cong R\Gamma_{c}(X,K)$$

$$X \xrightarrow{j} \overline{X}$$

$$\downarrow^{Fr_{X}} \qquad \downarrow^{Fr_{\overline{X}}}$$

$$X \xrightarrow{\sigma_{X}} X \xrightarrow{j} \overline{X} \longrightarrow Spec\overline{k}$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$X_{0} \xrightarrow{\sigma_{X_{0}}} X_{0} \xrightarrow{j_{0}} \overline{X_{0}} \longrightarrow Speck$$

Proposition 2.1.9 The action of Fr_X on cohomology group $FR^*_{\mathscr{G}}: H^i_c(X,\mathscr{G}) \to H^i_c(X,\mathscr{G})$ agrees with the Galois action of the automorphism F_X .

If \overline{x} is an \overline{k} -point of X fixed by Fr_X , then $Fr_{K_0}^*: Fr_X^*K \to K$ induces a morphism $Fr_{X_{\overline{x}}}^*: K_{\overline{x}} \to K_{\overline{x}}$. We have following formula.

Theorem 2.1.1 (Lefschetz trace formula). Let $X^{Fr_X} \cong X_0(F_q)$ be the set of fixed points of Fr_X on $X(\overline{F_q}) \cong X_0(\overline{F_q})$. We have

$$\sum_{\overline{x}\in X^{Fr_X}} Tr(Fr_{X_{\overline{x}}}^*, K_{\overline{x}}) = Tr(FR_K^*, R\Gamma_c(X, K)).$$

Define the L-function of K_0 to be

$$L(X_0, K_0, s) = \prod_{x \in |X_0|} \frac{1}{\det(1 - \frac{1}{q^{sd(x)}} f_x^{-1}, K_{\overline{x}})}$$

where

$$\frac{1}{\det(1 - \frac{1}{q^{sd(x)}}f_x^{-1}, K_{\overline{x}})} = \prod_i \det(1 - \frac{1}{q^{sd(x)}}f_x^{-1}, \mathcal{H}^i(K_{\overline{x}}))^{(-1)^i}$$

Making the change of variable $t = q^{-s}$, we can also define the L-function as

$$L(X_0, K_0, s) = \prod_{x \in |X_0|} \frac{1}{\det(1 - t^{d(x)} f_x^{-1}, K_{\overline{x}})}$$

Since $Fr_{X_{\overline{x}}}^{n*} = f_x^{-1}$, we have

$$L(X_0, K_0, t) = \prod_{x \in |X_0|} det(1 - t^{d(x)} F_{X_{\overline{X}}}^{deg(x)}, \mathcal{G}_{\overline{X}})^{-1}$$

Theorem 2.1.2 (Grothendieck). Notation as above, we have

$$L(X_0, K_0, t) = \prod_{i} det(1 - FR_K^*t, H_c^i(X, K))^{(-1)^{i+1}}$$

Lemma 2.1.3 Let V be a finite dimensional vector space and F an endomorphism of V. Then

$$det(1-tF|V)^{-1} = exp(\sum_{r=1}^{\infty} Tr(F^r) \frac{t^r}{r})$$

Proposition 2.1.10 Let X_0 be projective and smooth over k, of dimension n. Then $P_i(t) = det(1 - FR_{\mathbb{Q}_\ell}^*t, H^i(X, \mathbb{Q}_\ell))$

Proof. Lefschetz trace formula tells us that

$$N_r = \sum_{i=0}^{2n} (-1)^i Tr(FR_{\mathbb{Q}_\ell}^*, H^i(X, \mathbb{Q}_\ell))$$

So by Lemma2.1.3the zeta function is just

$$\begin{split} Z(X_0,t) &= exp(\sum_{r=1}^{\infty} \sum_{i=0}^{2n} (-1)^i Tr(FR_{\mathbb{Q}_{\ell}}^*{}^r, H^i(X, \mathbb{Q}_{\ell})) \frac{t^r}{r}) \\ &= \prod_{i=0}^{2n} [exp(\sum_{r=1}^{\infty} Tr(FR_{\mathbb{Q}_{\ell}}^*{}^r, H^i(X, \mathbb{Q}_{\ell})) \frac{t^r}{r})]^{(-1)^i} \\ &= \prod_{i=0}^{2n} det(1 - FR_{\mathbb{Q}_{\ell}}^*t, H^i(X, \mathbb{Q}_{\ell}))^{(-1)^{i+1}} \end{split}$$

So if we fix an embedding $\tau:\mathbb{Q}_\ell\to\mathbb{C}$, then Riemann hypothesis is equivalent that $\tau(\alpha)=q^{i/2}$ for all eigenvalues α of $FR_{\mathbb{Q}_\ell}^*(F_X)$ on $H^i(X,\mathbb{Q}_\ell)$. We will use language of weight for a sheaf to analysis this statement.

2.2 Deligne's theorem

Definition 2.2.1 Let β be a real number, \mathscr{G}_0 is a $\overline{\mathbb{Q}_\ell}$ sheaf on X_0 . Fix $\tau:\overline{\mathbb{Q}_\ell}\cong\mathbb{C}$

1. Choose a \overline{k} -point $\overline{x} \in X$ lying over $x \in |X_0|$. We say that \mathscr{G}_0 is τ -pure of weight β if for every $x \in |X_0|$, and all eigenvalues $\alpha \in \overline{\mathbb{Q}_\ell}$ of $F_{X_{\overline{x}}}^{deg(x)}$ on $\mathscr{G}_{0\overline{x}}$, we have

$$|\tau(\alpha)| = (q^{deg(x)})^{\beta/2}.$$

2. We say \mathcal{G}_0 is τ -mixed if there is a finite filtration of subsheaves

$$0 = \mathcal{G}_0^{(0)} \subseteq \mathcal{G}_0^{(1)} \subseteq \dots \subseteq \mathcal{G}_0^{(r)} = \mathcal{G}_0$$

such that $\mathcal{G}_0^{(j)}/\mathcal{G}_0^{(j-1)}$ is τ -pure of some weight.

In addition

3. If $V \in Rep_{\overline{\mathbb{Q}_{\ell}}}^{cont}(Gal(\overline{k}/k))$, then we say V is τ -pure of weight β if for all eigenvalues $\alpha \in \overline{\mathbb{Q}_{\ell}}$ of F_X on V, we have

$$|\tau(\alpha)| = q^{\beta/2}$$
.

Remark. The constant sheaf $\overline{\mathbb{Q}_{\ell}}$ is pure of weight 0 and the tate twist $\overline{\mathbb{Q}_{\ell}}(1)$ is pure of weight -2. Since $\chi(F) = \frac{1}{q}$ for the cyclotimic character

$$\chi: Gal(\overline{k}/k) \to \mathbb{Z}_{\ell}^{\times}$$

Proposition 2.2.2 Let X_0 be a smooth, geometrically connected variety of dimension n, \mathscr{F} be a τ pure of weight β lisse $\overline{\mathbb{Q}_\ell}$ sheaf. Then $H^0(X,\mathscr{F}) \supset H^0_c(X,\mathscr{F})$ is τ -pure of weight β ,

Proof. For any $x \in |X_0|$, $H^0(X, \mathscr{F}) = \mathscr{F}_{\overline{x}}^{\pi_1(X,\overline{x})} \subseteq \mathscr{F}_{\overline{x}}$. So any eigenvalue of $H^0(X, \mathscr{F})$ is an eigenvalue of $\mathscr{F}_{\overline{x}}$.

Theorem 2.2.1 (Main theorem of Weil II) . Let $f: X_0 \to Y_0$ be a separated morphism of schemes of finite type over F_q . If \mathcal{G}_0 is a $\overline{\mathbb{Q}_\ell}$ -sheaf on X_0 that is τ -mixed of weight $\leq n$, then for every integer $i \geq 0$ the sheaf $R^i f_! \mathcal{G}_0$ is τ -mixed of weight $\leq n + i$.

Corollary 1 If X_0 is a smooth proper variety over F_q of dimension n, and \mathcal{G}_0 is τ -pure of weight w, then $R^i f_* \mathcal{G}_0$ is τ -pure of weight w + i.

Proof. We know $(R^i f_* \mathscr{G}_0)_{\overline{x}} = H^i(X, \mathscr{G})$. By theorem 2.2.1 $H^i(X, \mathscr{G})$ is τ -mixed of weight $\leq w + i$. By poincare duality

$$H^{i}(X,\mathscr{G}) \cong (H^{2n-i}(X,\mathscr{G}^{\vee}))^{\vee}(-n)$$

 $H^{2n-i}(X, \mathcal{G}^{\vee})$ is τ -mixed of weight $\leq -w + 2n - i$, so the right side has τ -mixed of weight $\geq w - 2n + i + 2n = w + i$. Namely $R^i f_* \mathcal{G}_0$ is τ - pure of weight w + i.

Remark 2.2.1 This is immediately implies Weil I(which the case $\mathscr{G}_0 = \overline{\mathbb{Q}_\ell}$, of weight 0). Also notice that we assume that X_0 is only proper, not necessarily projective.

2.3 Weil sheaf

Definition 2.3.1 A Weil sheaf \mathcal{G}_0 on X_0 consists of a constructible $\overline{\mathbb{Q}_\ell}$ -sheaf on X, plus a specified isomorphism $F_{\mathcal{G}_0}: F_X^*\mathcal{G} \to \mathcal{G}$. A lisse Weil sheaf on X_0 is a Weil sheaf \mathcal{G}_0 such that the corresponding constructible $\overline{\mathbb{Q}_\ell}$ -sheaf \mathcal{G} on X is lisse.

Notice that every constructible $\overline{\mathbb{Q}_{\ell}}$ -sheaf \mathscr{G} is canonically a Weil sheaf, via the canonical isomorphism $F_X^*\pi^*\mathscr{G}_0 \xrightarrow{\sim} (\pi \circ F_X)^* = \pi^*\mathscr{G}_0$.

Proposition 2.3.2 Assume that X_0 is geometrically connected and x is a point of X_0 . Then the functor $\mathscr{F} \mapsto \mathscr{F}_{\overline{x}}$ defines an equivalence of categories from the category of lisse $\overline{\mathbb{Q}_{\ell}}$ -sheaves to the category of continuous finite-dimensional representation of $\pi_1(X_0, \overline{x})$ over $\overline{\mathbb{Q}_{\ell}}$.

Remark 2.3.1 A $\overline{\mathbb{Q}_{\ell}}$ -representation for $\pi_1(X,\overline{x})$ is a homomorphism $\pi_1(X,\overline{x}) \to GL(V)$ for some finite dimensional $\overline{\mathbb{Q}_{\ell}}$ -vector space V such that we can find a finite extension E of \mathbb{Q}_{ℓ} in $\overline{\mathbb{Q}_{\ell}}$ and a finite dimensional E-vector space V_E with a continuous $\pi_1(X,\overline{x})$ -action with the property that $V \cong V_E \otimes_E \overline{\mathbb{Q}_{\ell}}$. And the homomorphism $\pi_1(X,\overline{x}) \to GL(V)$ is the composite

$$\pi_1(X,\overline{x}) \to GL(V_E) \to GL(V_E \otimes_E \overline{\mathbb{Q}_\ell}) \cong GL(V).$$

Recall that we have the monodromy exact sequence

where $Gal(\overline{k}/k) \cong \hat{\mathbb{Z}}$ with topological generator F. The Weil group $W(\overline{k}/k)$ is defined to be the infinite cyclic subgroup generated by F.

Definition 2.3.3 . The Weil group of X_0 , denoted by $W(X_0, \overline{x})$, is the inverse image of $W(\overline{k}/k)$ under the first exact sequence. We call the map $W(X_0, \overline{x}) \to W(\overline{k}/k) \cong \mathbb{Z}$, which the latter isomorphism sending F to 1. We will use σ to denote any degree one element. Clearly, $W(X_0, \overline{x}) = \pi_1(X, \overline{x}) \rtimes \langle \sigma \rangle$ with $\sigma \in \pi_1(X_0, \overline{x})$ which is a degree one element.

Proposition 2.3.4 σ *act on X by F*_X := $id_{X_0} \times_k F$.

Proof. For each positive integer n, F is an automorphism of k_n . Denote $X_n = X_0 \times_k k_n$, then $\{X_n\}_{n \geq 0}$ is a direct system with affine transition maps, So $X = \lim_{\leftarrow} X_n$. F act on every X_n by $id_{X_0} \times_k F$, these actions are compatible. We are done.

Now we have

Proposition 2.3.5 Assume that X_0 is geometrically connected and x is a point of X. Then the functor $\mathcal{G}_0 \mapsto \mathcal{G}_{0\overline{x}}$ defines an equivalence of categories from the category of lisse Weil-sheaves to the category of continuous finite-dimensional representation of $W(X_0, \overline{x})$ over $\overline{\mathbb{Q}_\ell}$.

Proof. We have an action $\pi_1(X, \overline{x}) \to GL(\mathscr{G}_{\overline{x}})$, and need to prove it can factor by $W(X_0, \overline{x})$. This just above proposition.

Special case. Lisse rank 1 Weil sheaf on $Spec\mathbb{F}_q$ are the same thing as characters

$$\phi:W(\overline{F_q}/F_q)\to \overline{\mathbb{Q}_\ell}^*$$

with $\phi(F) = b$. Conversely, any $b \in \overline{\mathbb{Q}_{\ell}}^*$ gives a Weil sheaf \mathscr{L}_b on $Spec\mathbb{F}_q$. We wil also us \mathscr{L}_b to denote the pullback of this sheaf to X_0 .

Now we are curious about how different Weil sheaf and general $\overline{\mathbb{Q}_{\ell}}$ -sheaf, following are some criteria. First, we have a criterion for a lisse Weil sheaf to be a $\overline{\mathbb{Q}_{\ell}}$ -sheaf.

Proposition 2.3.6 A lisse Weil sheaf \mathscr{G}_0 on a geometrically connected finite type k-scheme X_0 is an ordinary $\overline{\mathbb{Q}_\ell}$ -sheaf if and only if some (or equivalent, any) degree-1 element $\sigma \in W(X_0, \overline{x})$ acts on $\mathscr{G}_{0\overline{x}}$ with eigenvalues which are ℓ -adic units (i.e units of \mathscr{O}_E).

Proof. Denote $V = \mathscr{G}_{\overline{x}}$ with dimension n, then $Aut_{\overline{\mathbb{Q}_{\ell}}}(V) \cong GL_n(\overline{\mathbb{Q}_{\ell}})$. By proposition 2.3.5, the question is just whether the $\overline{\mathbb{Q}_{\ell}}$ -representation (ρ, V) of $W(X_0, \overline{x})$ given by the action of $W(X_0, \overline{x})$ on V extends to a representation of $\pi_1(X_0, \overline{x})$.

Assume image $\pi_1(X, \overline{x}) \to GL_n(\overline{\mathbb{Q}_\ell})$ is contained in $GL_n(E_0)$ for some finite extension E_0 of \mathbb{Q}_ℓ . Then the image of $W(X_0, \overline{x})$ is generated by the images of $\pi_1(X, \overline{x})$ and of σ , so we can increase E_0 to include the matrix coefficients of $\rho(\sigma)$ and its eigenvalues. Then the representation is defined over some finite extension E of \mathbb{Q}_ℓ . Let $\{e_1, e_2 \cdots e_n\}$ is a basis of E.

$$\pi_1(X,\overline{x}) \longrightarrow W(X_0,\overline{x}) \stackrel{\rho}{\longrightarrow} GL_n(E) \stackrel{}{\longrightarrow} GL_n(\overline{\mathbb{Q}_\ell})$$

$$\downarrow \qquad \qquad ?$$

$$\pi_1(X_0,\overline{x})$$

 (\Rightarrow) . If the representation can extend to $\pi_1(X_0, \overline{x})$, then there is a $\pi_1(X_0, \overline{x})$ -stable lattice $T \cong \mathscr{O}_E^n$, so $\pi_1(X_0, \overline{x})$ factor through $GL_n(\mathscr{O}_E)$, and the eigenvalues of an element of $GL_n(\mathscr{O}_E)$ are ℓ -adic units.

(\Leftarrow). Note that $\pi_1(X_0, \overline{x})$ is the profinite completion of $W(X_0, \overline{x})$, so any continuous homomorphism from $W(X_0, \overline{x})$ to a profinite group extends to $\pi_1(X_0, \overline{x})$. If $W(X_0, \overline{x})$ stabilizes a lattice T, then the map $W(X_0, \overline{x}) \to GL_n(E)$ factors through the profinite group $GL_n(\mathscr{O}_E)$. So we need to show that if the eigenvalues of $\rho(\sigma)$ are ℓ -adic units, then there is a $W(X_0, \overline{x})$ -stable lattice.

We can use multiplicative Jordan decomposition theorem for $\rho(\sigma)$ to write

$$\rho(\sigma) = \sigma_{ss} \cdot \sigma_{uu}$$

with σ_{ss} semisimple and σ_{uu} unipotent. By splitting V into the eigenspaces of σ_{ss} and construct a stable lattice in each subspace, we can assume σ_{ss} acts on V by multiplicating an ℓ -adic unit. Therefore, any lattice is stable for σ_{ss} . Let $\sigma_{uu} = 1 + N$, with $N^k = 0$ for some $k \ge 0$. Let $L = \mathscr{O}_E e_1 + \mathscr{O}_E e_2 + \cdots + \mathscr{O}_E e_n$. Then $M = L + \sigma_{uu}L + \cdots + \sigma_{uu}^{k-1}L$ is stable under σ_{uu} and therefore also by $\rho(\sigma)$.

Theorem 2.3.1 Let X_0 be a finite type scheme over \mathbb{F}_q , and let $\mathscr{G}_0 = (F_X^* \mathscr{G} \xrightarrow{\sim} \mathscr{G})$ be a Weil sheaf on X_0 . Then

1. If X_0 is normal and geometrically connected, and if \mathcal{G}_0 is irreducible and lisse of rank r, then \mathcal{G}_0 is an etale $\overline{\mathbb{Q}_\ell}$ -sheaf on X_0 if and only if $\wedge^r \mathcal{G}_0$ is an etale $\overline{\mathbb{Q}_\ell}$ -sheaf.

Corollary 1. For any smooth, irreducible sheaf \mathcal{G}_0 , there exists some \mathcal{L}_b and some \mathcal{F}_0 an etale $\overline{\mathbb{Q}_\ell}$ -sheaf such that $\mathcal{G}_0 \cong \mathcal{F}_0 \otimes \mathcal{L}_b$.

2. For a general smooth Weil sheaf G_0 on a normal, geometrically connected X_0 , there exists a filtration

$$0 = \mathscr{G}_0^{(0)} \subseteq \mathscr{G}_0^{(1)} \subseteq \cdots \subseteq \mathscr{G}_0^{(r)} = \mathscr{G}_0$$

where $\mathscr{G}_0^{(j)}/\mathscr{G}_0^{(j-1)} \cong \mathscr{F}_0^{(j)} \otimes \mathscr{L}_{b_j}$. Here $\mathscr{F}_0^{(j)}$ is lisse etale $\overline{\mathbb{Q}_\ell}$ -sheaf, and \mathscr{L} is a Weil sheaf. **Corollary2**.(Grothendieck trace formula for Weil sheaves). Given a smooth weil sheaf \mathscr{G}_0 on X_0 , define

$$L(X_0,\mathcal{G}_0,t) = \prod_{x \in |X_0|} det(1-t^{d(x)}F_{X_{\overline{x}}}^{deg(x)},\mathcal{G}_{\overline{x}})^{(-1)}$$

Then it can be computed as

$$L(X_0,\mathcal{G}_0,t) = \prod_{i=0}^{2\dim X} \det(1-FR_{\mathscr{G}}^*t,H_c^i(X,\mathscr{G}))^{(-1)^{i+1}}$$

Proof. $(1 \Rightarrow Corollary 1)$ we have

$$\wedge^{n}(\mathscr{G}_{0}\otimes\mathscr{L}_{det(\sigma)^{-1/n}})=\wedge^{n}(\mathscr{G}_{0})\otimes\mathscr{L}_{det(\sigma)^{-1}}$$

where $det(\sigma)$ is the determinant of action of σ on $\mathcal{G}_{\overline{x}}$. The eigenvalues of right side by action of σ is 1, So by proposition 2.3.6, we are done.

 $(2 \Rightarrow \textbf{\textit{Corollary 2}})$ In the irreducible case, $\mathscr{G}_0 \cong \mathscr{F}_0 \otimes \mathscr{L}_b$ and $\mathscr{G}_{\overline{x}} \cong \mathscr{F}_{\overline{x}} \otimes \mathscr{L}_{b\overline{x}}$. Then

$$det(1-t^{d(x)}F_{X_{\overline{x}}}^{deg(x)},\mathscr{G}_{\overline{x}}) = det(1-t^{d(x)}b^{deg(x)}F_{X_{\overline{x}}}^{deg(x)},\mathscr{F}_{\overline{x}})$$

and

$$det(1 - FR_{\mathscr{G}}^*t, H_c^i(X, \mathscr{G})) = det(1 - FR_{\mathscr{G}}^*tb, H_c^i(X, \mathscr{F}))$$

So by Grothendieck trace formula of etale sheaf, we are done.

For general case, use filtration of (2).

3 Weight

Definition 3.0.1 *Let* β *be a real number.* \mathscr{G}_0 *is a (Weil) sheaf on* X_0 *. Fix* $\tau : \overline{\mathbb{Q}_l} \cong \mathbb{C}$

1. Choose a \overline{k} -point $\overline{x} \in X$ lying over $x \in |X_0|$. The Weil group $W(\overline{k}/k(x))$ acts on the stalk at $\mathcal{G}_{0\overline{x}}$ via the geometric frobenius $F_x : \mathcal{G}_{0\overline{x}} \to \mathcal{G}_{0\overline{x}}$. We say that \mathcal{G}_0 is τ -pure of weight β if for every $x \in |X_0|$, and all eigenvalues $\alpha \in \overline{\mathbb{Q}_l}$ of F_x , we have

$$|\tau(\alpha)| = N(x)^{\beta/2}.$$

2. We say \mathcal{G}_0 is τ -mixed if there is a finite filtration of subsheaves

$$0 = \mathcal{G}_0^{(0)} \subseteq \mathcal{G}_0^{(1)} \subseteq \cdots \subseteq \mathcal{G}_0^{(r)} = \mathcal{G}_0$$

such that $\mathcal{G}_0^{(j)}/\mathcal{G}_0^{(j-1)}$ is τ -pure of some weight.

- 3. \mathscr{G}_0 is pure of weight β if it is τ -pure of weight β for all $\tau: \overline{\mathbb{Q}_l} \cong \mathbb{C}$
- 4. \mathcal{G}_0 is mixed if there exists a finite filtration as in (2) such that all quotient are pure.

Definition 3.1.2. For a scheme X_0/k and sheaf \mathcal{G}_0 on X_0 , we define the **maximal weight** of \mathcal{G}_0 (with respect to τ)as

$$\omega(\mathscr{G}_0) := \sup_{x \in |X_0|} \sup_{\alpha \text{ eigenvalue of } F_x} \frac{\log(|\tau(\alpha)|^2)}{\log N(x)}$$

For convenience, we define $\omega(0) = -\infty$.

3.1 convergence of L-function

In this section, we prove that the weight of a weil sheaf controls the convergence of its L-function.

Lemma 3.1.1 Let X_0/k be a scheme. Then we have estimate

$$|X_0(k_n)| = O(q^{ndimX_0})$$

Lemma 3.1.2 *Let* V *be a finite dimensional vector space and* F *an endomorphism of* V, *and* $d \in \mathbb{N}$ *is a non-negative integer. Then*

$$\frac{d}{dt}logdet(1-t^dF|V)^{-1} = \sum_{n\geq 1} Tr(F^n)dt^{dn-1}$$

Proof. We have formula by linear algebra

$$det(1 - t^{d}F|V)^{-1} = exp(\sum_{n>1} Tr(F^{n}) \frac{t^{dn}}{n})$$

taking derivatives, we have

$$\frac{d}{dt}det(1 - t^{d}F|V)^{-1} = (\sum_{n \ge 1} Tr(F^{n})dn \frac{t^{dn-1}}{n}) \cdot exp(\sum_{n \ge 1} Tr(F^{n}) \frac{t^{dn}}{n})$$
$$= (\sum_{n \ge 1} Tr(F^{n})dt^{dn-1}) \cdot det(1 - t^{d}F|V)^{-1}$$

This is just lemma.

Proposition 3.1.1 Let \mathcal{G}_0 be a sheaf on X_0 and β is a real number such that $w(\mathcal{G}_0) \leq \beta$. Then the L-function

$$\tau L(X_0, \mathcal{G}_0, t) = \prod_{x \in |X_0|} \tau det(1 - t^{d(x)} F_x, \mathcal{G}_{0\overline{x}})$$

converges for all $|t| < q^{-\beta/2 - dim X_0}$

Proof. By complex analysis we know the logarithmic derivative of a complex valued function has poles precisely as the original function has poles or zeroes. We will suppress τ , it makes no difference. so taking logarthmic we have

$$\frac{d}{dt}logL(X_0,\mathcal{G}_0,t) = \sum_{x \in |X_0|} \frac{d}{dt}log(det(1 - t^{d(x)}F_x,\mathcal{G}_{0\overline{x}}))$$
(1)

$$\stackrel{by(1)}{=} \sum_{x \in |X_0|} \sum_{n \ge 1} d(x) Tr(F_x^n) t^{d(x)n-1}$$
 (2)

$$= \sum_{n\geq 1} \left(\sum_{x\in |X_0|: d(x)|n} d(x) \left(Tr(F_x^{n/d(x)}) \right) \right) t^{n-1}.$$
 (3)

Let $r:=\max_{x\in |X_0|} dim_{\overline{\mathbf{Q_l}}} \mathscr{G}_{0\overline{x}}$, then $w(\mathscr{G}_0)\leq \beta$ implies

$$|Tr(F_x^{n/d(x)})| \le |r\alpha^{n/d(x)}| \le rq^{n\beta/2}$$

Hence

$$\begin{split} \frac{d}{dt}logL(X_{0},\mathcal{G}_{0},t) &= \sum_{n\geq 1} (\sum_{x\in |X_{0}|:d(x)|n} d(x)(Tr(F_{x}^{n/d(x)})))t^{n-1} \\ &\leq \sum_{n\geq 1} (\sum_{x\in |X_{0}|:d(x)|n} d(x)\cdot (rq^{n\beta/2}))t^{n-1} \\ &= \sum_{n\geq 1} |X_{0}(k_{n})|\cdot (rq^{n\beta/2}))t^{n-1} \\ &\leq C\cdot rq^{dimX_{0}+\beta/2} \sum_{n\geq 1} (tq^{dimX_{0}+\beta/2})^{n-1} \end{split}$$

The last inequality follows Lemma 3.1.1, since we have

$$|X_0(k_n)| \le C(q^{ndimX_0})$$

for some constan C. so logarithmic derivative converges for all $|t| < q^{-\beta/2 - dimX_0}$. Then $L(X_0, \mathcal{G}_0, t)$ converges for $|t| < q^{-\beta/2 - dimX_0}$ Let $N \in \mathbb{Z}_{\geq 1}$ be an integer.

3.2 semicoutinuity thorem of weight

Lemma 3.2.1 Let X_0/k be a smooth irreducible affine curve, with $U_0 \stackrel{j_0}{\hookrightarrow} X_0$ a nonempty open subset. Let \mathcal{G}_0 be a (weil) sheaf on X_0 such that $\mathcal{G}_0 \to j_{0*}j_0^*\mathcal{G}_0$ is an isomorphism and $j_0^*\mathcal{G}_0$ is lisse. Then

$$H_c^0(X,\mathcal{G}) = 0$$

Proof. Let $Z \subseteq X$ is proper subvariety, $V = X \setminus Z$. $V \neq \emptyset$ since X is not proper. $H^0_c(X, \mathscr{G}) \subseteq \bigcup_{Z \subseteq X \ proper} H^0_Z(X, \mathscr{G})$. So we need to show

$$H_Z^0(X,\mathscr{G}) := Ker(H^0(X,\mathscr{G}) \to H^0(V,\mathscr{G}|_V)) = 0$$

for all proper subvariety Z. by $\mathscr{G}_0 \to j_{0*}j_0^*\mathscr{G}_0$, we rewrite this as

$$H_Z^0(X,\mathscr{G}) = Ker(H^0(U,\mathscr{G}\mid_U) \to H^0(U \cap V,\mathscr{G}\mid_{U \cap V}))$$

The intersection $U \cap V$ is not empty since X is irreducible. Let η is the generic point of U. $\mathscr{G}|_{U}$ is lisse implies for any $u \in U$, the specialization map $\mathscr{G}_{\bar{u}} \to \mathscr{G}_{\bar{\eta}}$ is an isomorphism. Namely any section vanishes on $U \cap V$ also vanishes on U, consequently $H_Z^0(X,\mathscr{G}) = 0$.

Proposition 3.2.1 (semicontinuity of weight for curve) Let X_0/k be a smooth irreducible curve, with $U_0 \stackrel{j_0}{\hookrightarrow} X_0$ a nonempty open subset. Denote $S_0 = X_0 \setminus U_0$ to be the complement of U_0 . Let \mathscr{G}_0 be a (weil) sheaf on X_0 such that the restriction $j_0^*\mathscr{G}_0$ is smooth and $H_S^0(X,\mathscr{G}) = 0$. Then

$$w(j_0^* \mathcal{G}_0) \le \beta \implies w(\mathcal{G}_0) \le \beta$$

Proof. We can reduce to 1. $\mathscr{G}_0 \cong j_{0*}j_0^*\mathscr{G}_0$ and 2. X_0 is affine .

1.Denote $i_0: S_0 \to X_0$. Then the assumption $H^0_S(X, \mathscr{G}) = 0$ implies $\mathscr{G}_0 \hookrightarrow j_{0*}j_0^*\mathscr{G}_0(\operatorname{since} H^0(S, i^!\mathscr{G}) = H^0_S(X, \mathscr{G}) = 0$, so for all $s \in S$, $(i^!\mathscr{G})_s = 0$). $j_{0*}j_0^*\mathscr{G}$ satisfies the condition of proposition $(i^!j_* = 0)$, so replace \mathscr{G}_0 by $j_{0*}j_0^*\mathscr{G}_0$, we have

$$w(j_0^*j_0,j_0^*\mathcal{G}_0) = w(j_0^*\mathcal{G}_0) \leq \beta \Longrightarrow w(j_0,j_0^*\mathcal{G}_0) \leq \beta \Longrightarrow \quad w(\mathcal{G}_0) \leq \beta$$

2.If X_0 is projective, take $u \in U$ is closed in X, then $O_{X,u}$ is a dicrete valuation ring, so $X \setminus u$ is affine. we have following commutative diagrams.

$$\begin{array}{cccc}
S & \xrightarrow{i'} & X \setminus u & U \setminus u & \xrightarrow{j'} & X \setminus u \\
\downarrow id \downarrow & & \downarrow p & & \downarrow p \\
S & \xrightarrow{i} & X & U & \xrightarrow{j'} & X
\end{array}$$

Assume proposition is right for X_0 affine , then j_0' and $p_0^*\mathscr{G}_0$ satisfies the proposition. Because by Excision Theorem we have $H^0_S(X\setminus u,p^*\mathscr{G})=H^0_S(X,\mathscr{G})=0$. So if $w(j_0^*\mathscr{G}_0)\leq \beta$, then $w(j_0'^*p_0^*\mathscr{G}_0)=w(p_0'j_0^*)\mathscr{G}_0\leq \beta$, by assumption $w(p_0^*\mathscr{G}_0)\leq \beta$. and weight of \mathscr{G}_0 at u is also less than β since $u\in U$. Hence $w(\mathscr{G}_0)\leq \beta$.

Now assume $\mathscr{G}_0 \cong j_{0*}j_0^*\mathscr{G}_0$ and X_0 is affine, by lemma 3.2.1. $H_c^0(X,\mathscr{G}) = 0$, then the Grothendieck-Lefschetz trace formula implies

$$L(X_0, \mathcal{G}_0, t) = \frac{\det(1 - Ft \mid H^1(X, \mathcal{G}))}{\det(1 - Ft \mid H^2(X, \mathcal{G}))}$$

Define $\mathscr{F}_0:=j_0^*\mathscr{G}_0$. For $u\in |U_0|$, this corresponds to a representation $V=\mathscr{F}_{\bar{u}}$ of $\pi_1(U,\bar{u})$.

Hence

$$\begin{split} H_c^2(X,\mathscr{G}) &= H_c^2(U,\mathscr{F}) \\ &= H^0(U, \check{\mathscr{F}}(1))^{\vee} \\ &= H^0(U, \check{\mathscr{F}} \otimes \overline{\mathbb{Q}}_{\ell}(1))^{\vee} \\ &= H^0(U, \check{\mathscr{F}})^{\vee} \otimes \overline{\mathbb{Q}}_{\ell}(-1) \\ &= ((V^{\vee})^{\pi_1(U, \overline{u})})^{\vee} \otimes \overline{\mathbb{Q}}_{\ell}(-1) \\ &= (V_{\pi_1(U, \overline{u})})^{\vee} \otimes \overline{\mathbb{Q}}_{\ell}(-1) \\ &= (V_{\pi_1(U, \overline{u})}) \otimes \overline{\mathbb{Q}}_{\ell}(-1) \end{split}$$

It follows that the poles of $L(X_0, \mathcal{G}_0, t)$ are of form $1/\alpha q$ where α is a eigenvalue of F_u on $V_{\pi_1(U,\overline{u})}$ (since geometric frobenius acts by q^{-1} on $\overline{\mathbb{Q}}_\ell(1)$. By definition of coinvariance, $\alpha^{d(u)}$ is an eigenvalue on V. Therefore by assumption $w(\mathscr{F}_0) \leq \beta$, we have $|\tau(\alpha^{d(u)})| \leq q^{d(u)\beta/2}$, i.e

$$|\tau(\frac{1}{\alpha q})| > q^{-\beta/2 - 1}$$

so $L(X_0, \mathcal{G}_0, t)$ converges for $|t| < q^{-\beta/2-1}$.

On the other hand, we can write

$$L(X_0, \mathcal{G}_0, t) = L(U_0, j_0^* \mathcal{G}_0, t) L(S_0, i_0^* \mathcal{G}_0, t)$$

Moreover, by proposition 3.2.1 $L(U_0, j_0^* \mathcal{G}_0, t)$ also converges for $|t| < q^{-\beta/2-1}$. Therefore, none of the factors $L(S_0, i_0^* \mathcal{G}_0, t)$ can have poles in this region(which is a finite product since $|S_0|$ is finite). If α is an eigenvalue of $F_{\overline{s}}$ on $\mathcal{G}_{0\overline{s}}$, then any d(s)-root of $\tau(\frac{1}{\alpha})$ will be a pole. So

$$|\tau(\frac{1}{\alpha})| \ge (q^{-\beta/2-1})^{d(s)}$$

i.e

$$|\tau(\frac{1}{\alpha})| \le (q^{\beta/2+1})^{d(s)} = N(s)^{\frac{\beta+2}{2}}$$

namely

$$w(\mathcal{G}_0) \leq \beta + 2$$

Finally, we use a tensor trick. For any $k \ge 1$, consider $j_{0*}(\mathscr{F}_0^{\otimes k})$, If α is an eigenvalue of F on $j_{0*}(\mathscr{F}_0)$, then α^k is an eigenvalue of

$$(j_{0*}(\mathscr{F}_0))^{\otimes k}$$

Applying previous argument to $j_{0*}(\mathscr{F}_0^{\otimes k})$, we have $w(j_{0*}(\mathscr{F}_0^{\otimes k})) \leq k\beta + 2$ since $w(\mathscr{F}_0^{\otimes k}) \leq k\beta$ Now by the injectivity of the homomorphism

$$(j_{0*}(\mathscr{F}_0))^{\otimes k}_{\overline{s}} \hookrightarrow (j_{0*}(\mathscr{F}_0^{\otimes k}))_{\overline{s}}$$

we have

$$w(j_{0*}(\mathscr{F}_0)) \leq \beta + \frac{k}{2}$$

Since k is arbitrary, we are done.

Lemma 3.2.2 If X_0 is a normal, irreducible algebraic scheme over k, and \mathcal{G}_0 is irreducible and smooth, and $j_0: U_0 \hookrightarrow X_0$ where is an open subscheme of X_0 , then $j_0^*\mathcal{G}_0$ is also irreducible.

Proof. X_0 is normal implies $\pi_1(U_0, \overline{a}) \to \pi_1(X_0, \overline{a})$. By representation, We know if $G \to G/H \to GL(V)$, such that the second arrow is an irreducible representation, then the compositum is also irreducible.

all of arguments is to prove the following

Theorem 3.2.3 (Semicontinuity).Let \mathcal{G}_0 be a lisse sheaf on a finit type scheme X_0/k and $j_0: U_0 \hookrightarrow X_0$ be an open subscheme. Then,

- 1. $w(\mathcal{G}_0) = w(j_0^*\mathcal{G}_0)$.
- 2. if $(j_0^*\mathcal{G}_0)$ is τ -pure of weight β , then \mathcal{G}_0 is τ -pure of weight β .
- 3. Let X_0 be normal and irreducible, \mathscr{G}_0 be irreducible. If $(j_0^*\mathscr{G}_0)$ is τ -mixed, then \mathscr{G}_0 is τ -pure.
- 4. Suppose that X_0 is connected, $j_0^*\mathcal{G}_0$ is τ -mixed and \mathcal{G}_0 is τ -pure of weight β at a single point $x \in |X_0|$, then \mathcal{G}_0 is τ -pure of weight β .

Proof.

1. Since $v: X_0^v \to X_0$ is surjective, $w(v^*\mathscr{G}_0) = w(\mathscr{G}_0)$. By take normalization X^v of X_{0red} we can reduce to that X_0 is a normal geometrically integral scheme. The assumption that \mathscr{G}_0 is lisse on X_0 is used to prove $H^0_{X\setminus U}(X,\mathscr{G})=0$. If $dimX_0=1$, we are done by the semicontinuity theorem for curve above. If $dimX_0>1$, $\overline{\{\eta\}}=X_0$ we can connect any point of $X_0\setminus U_0$ to the generic point η of U_0 by a curve C_0 . (GTM52 exercise4.11.)

$$U_0 \underset{X_0}{\times} C_0 \xrightarrow{j'_0} C_0$$

$$f'_0 \downarrow \qquad \qquad \downarrow^{f_0}$$

$$U_0 \xrightarrow{j_0} X_0$$

By curve case we know $w(f_0^*\mathscr{G}_0)=W(j_0^{'*}f_0^*\mathscr{G}_0)$. Since \mathscr{G}_0 is lisse and the four terms of diagram contain η , so $w(f_0^*\mathscr{G}_0)=w(\mathscr{G}_0)$ and $w(j_0^{'*}f_0^*\mathscr{G}_0)=w(j_0^*\mathscr{G}_0)$. Hence $w(\mathscr{G}_0)=w(j_0^*\mathscr{G}_0)$.

- 2. Since $j_0^! = j_0^*$ is exact, dual commute with j_0^* . Apply (1) to \mathscr{G}_0 and \mathscr{G}_0^{\vee} , we have $w(\mathscr{G}_0) = \beta$ and $w(\mathscr{G}_0^{\vee}) = -\beta$. We are done.
 - 3. Apply lemma 3.2.1: $j_0^* \mathcal{G}_0$ is irreducible, and so it is τ -pure. Then apply (2).

4.we can assume X_0 be normal. Furthmore it is enough to proof the cliam for all the irreducible constituents of \mathcal{G}_0 , which allows us to assume \mathcal{G}_0 is irreducible. Now just apply (2)(3).

Definition 3.2.2 Let \mathcal{G}_0 be a weil sheaf on a finite type scheme X_0/k . Then there is an open dense subscheme $j_0: U_0 \hookrightarrow X_0$ such that $j_0^*\mathcal{G}_0$ is lisse on U_0 . we define $w_{gen}(\mathcal{G}_0) := w(j_0^*\mathcal{G}_0)$.

Remark, by theorem 3.2.3 the definition is independent of the choice of U_0 . Therefore we define a notion of maximal weight for a Weil sheaf not necessarily lisse.

3.3 Real sheaves

Definition 3.3.1 Let X_0 be a scheme of finite type over k and \mathscr{G}_0 a Weil sheaf on X_0 . Fix $\tau : \overline{\mathbb{Q}_\ell} \to^\cong \mathbb{C}$. We say \mathscr{G}_0 is τ -real, if for any $x \in |X_0|$,

$$\tau det(1 - F_x t \mid \mathscr{G}_{0\overline{x}}) \in \mathbb{R}[t] \subseteq \mathbb{C}[t]$$

Definition 3.3.2 Furthmore Assume that \mathcal{G}_0 is τ -pure of weight β , then we define its τ -complex conjugate to be

$$\overline{\mathscr{G}_0} := \mathscr{G}_0^{\vee} \otimes \chi_b$$

where $b \in \mathbb{Q}_{\ell}^{\times}$ such that $\tau(b) = q^{\beta}$.

Lemma 3.3.1 If \mathcal{G}_0 is τ -pure of weight β , then $\mathcal{G}_0 \oplus \overline{\mathcal{G}_0}$ is τ -pure of weight β and τ -real.

*Proof.*If $\alpha_1, \alpha_2 \dots \alpha_n$ are eigenvalues of $\mathcal{G}_{0\bar{x}}$ by the action of F_x , then $\alpha_1^{-1}, \alpha_2^{-1} \dots \alpha_n^{-1}$ are eigenvalues of $\mathcal{G}_{0\bar{x}}^{\vee}$. The eigenvalue of χ_b under action of F_x is just $b^{d(x)}$. Therefore

$$\tau det(1 - F_x t \mid (\mathcal{G}_0 \oplus \overline{\mathcal{G}_0})_{\overline{x}}) = \tau(1 - \alpha_1 t)(1 - \alpha_2 t) \dots (1 - \alpha_n t)(1 - \frac{b^{d(x)}}{\alpha_1} t)(1 - \frac{b^{d(x)}}{\alpha_2} t) \dots (1 - \frac{b^{d(x)}}{\alpha_n} t) \\
= (1 - \tau(\alpha_1) t)(1 - \tau(\alpha_2) t) \dots (1 - \tau(\alpha_n) t)(1 - \frac{q^{\beta d(x)}}{\tau(\alpha_1)} t)(1 - \frac{q^{\beta d(x)}}{\tau(\alpha_2)} t) \dots (1 - \frac{q^{\beta d(x)}}{\tau(\alpha_n)} t) \\
= (1 - \tau(\alpha_1) t)(1 - \tau(\alpha_2) t) \dots (1 - \tau(\alpha_n) t)(1 - \overline{\tau(\alpha_1)} t)(1 - \overline{\tau(\alpha_2)} t) \dots (1 - \overline{\tau(\alpha_n)} t)$$

Clearly, $\tau det(1 - F_x t \mid (\mathscr{G}_0 \oplus \overline{\mathscr{G}_0})_{\overline{x}}) \in \mathbb{R}[t]$. And weight of χ_b is 2β . We are done.

3.4 radius of convergence

The goal of this section is to give an alternate description for what the max weight $w(\mathcal{G}_0)$ is, at least in the case that \mathcal{G}_0 is a τ -mixed sheaf on a smooth curve. It turns out that $w(\mathcal{G}_0)$ determined the radius of convergence of a certain power series we now introduce.

Definition 3.4.1 *The main definition is the following function:*

$$f^{\mathscr{G}_0} = f_n^{\mathscr{G}_0} : \left\{ egin{array}{l} X_0(k_n)
ightarrow \mathbb{C} \ \overline{x} \mapsto au Tr(F_x^{n/d(x)}, \mathscr{G}_{0\overline{x}}) \end{array}
ight.$$

where $x \in |X_0|$, and \bar{x} is a geometric point lying over it:

Definition 3.4.2 For any two functions $f, g: X_0(k_n) \to \mathbb{C}$, we define their inner product by

$$(f,g)_n = \sum_{y \in X_0(k_n)} f(y) \overline{g(y)}$$

and norm

$$||f||_n^2 = (f, f)_n$$

Now since

$$(f^{\mathscr{G}_{0}},1)_{n} = \sum_{y \in X_{0}(k_{n})} f^{\mathscr{G}_{0}}(y) = \sum_{y \in X_{0}(k_{n})} \tau Tr(F_{x}^{n/d(x)},\mathscr{G}_{0\overline{x}}) = \sum_{\substack{x \in |X_{0}|\\d(x)|n}} d(x)\tau Tr(F_{x}^{n/d(x)},\mathscr{G}_{0\overline{x}})$$

so 2 becomes

$$\frac{d}{dt}logL(X_0, \mathcal{G}_0, t) = \sum_{n \ge 1} (\sum_{\substack{x \in |X_0| \\ d(x)|n}} d(x) (Tr(F_x^{n/d(x)}, \mathcal{G}_{0\overline{x}}))) t^{n-1} = \sum_{n \ge 1} (f^{\mathcal{G}_0}, 1)_n t^{n-1}$$

Definition 3.4.3 We define

$$\phi^{\mathscr{G}_0}(t) = \sum_{n=1}^{\infty} \|f^{\mathscr{G}_0}\|_n^2 \cdot t^{n-1}$$

A reason for introducing $\phi^{\mathcal{G}_0}(t)$ is because it might work better with the Fourier transform, which will come later. We want to determine its convergence radius.

Lemma 3.4.1 There is a constant C independent from n such that

$$||f^{\mathcal{G}_0}||_n^2 \le C \cdot q^{n(w(\mathcal{G}_0) + dimX_0)}$$

for all $n \in \mathbb{Z}_{\geq 1}$, so $\phi^{\mathcal{G}_0}(t)$ converges for $|t| < q^{-w(\mathcal{G}_0) - dimX_0}$.

Proof. First

$$|f^{\mathscr{G}_0}(x)|^2 = |\tau Tr(F_x^{n/d(x)})|^2 \leq r^2 \cdot q^{n \cdot w(\mathscr{G}_0)} \quad \text{where } r := \max_{x \in |X_0|} \dim_{\overline{\mathbf{Q}_1}} \mathscr{G}_{0\overline{x}}$$

so

$$||f^{\mathcal{G}_0}||_n^2 = \sum_{x \in X_0(k_n)} |f^{\mathcal{G}_0}(x)|^2 \le \#X_0(k_n) \cdot r^2 \cdot q^{n \cdot w(\mathcal{G}_0)} \le C \cdot q^{n(w(\mathcal{G}_0) + dimX_0)}$$

We want to know whether $q^{-w(\mathcal{G}_0)-dimX_0}$ is exactly the radius of convergence. The main is that this is in fact is the radius of convergence, in some nice cases.

Before stating, we introduce a new notation:

Definition 3.4.4 We define the L^2 -norm of a sheaf \mathcal{G}_0 as

$$\|\mathscr{G}_0\| = \sup\{\rho \in \mathbb{R} \mid \limsup_{n} \frac{\|f^{\mathscr{G}_0}\|_n^2}{q^{n(\rho + \dim X_0)}} > 0\}$$

Note that by above discussion, we always have

$$\|\mathscr{G}_0\| \leq w(\mathscr{G}_0).$$

The following theorem tells us that we sometimes can get the opposite inequality.

Theorem 3.4.2 (Radius of Convergence). Let \mathcal{G}_0 be a τ -mixed sheaf on a finite type scheme X_0/k of $dim X_0 \leq 1$. Then we have:

- (1) $\|\mathscr{G}_0\| = \max\{w(\mathscr{G}_0) 1, w_{gen}(\mathscr{G}_0)\}$
- (2) Assume that X_0 is a smooth curve. If $H^0_S(X, \mathcal{G}_0) = 0$ for all closed subsets S of X, then

$$\|\mathscr{G}_0\| = w(\mathscr{G}_0).$$

Proof. Part (2) follows (1) and Proposition 3.2.1. Therefore we need to prove (1).