Brian D. Fitzpatrick

February 23, 2022

Overview

Bases

Definition Examples

Fundamental Subspaces

Bases

Examples

Digraphs

Bases of Null(A)Bases of $Null(A^T)$

Definition

Definition

Definition

A list of vectors $\beta = \{ {m v}_1, {m v}_2, \ldots, {m v}_d \}$ in a vector space V is a basis if

Spanning Axiom

$$\mathsf{Span}\{oldsymbol{v}_1,\ldots,oldsymbol{v}_d\}=V$$

Definition

Definition

A list of vectors $\beta = \{ {m v}_1, {m v}_2, \dots, {m v}_d \}$ in a vector space V is a basis if

Spanning Axiom

Linear Independence Axiom

 $\mathsf{Span}\{oldsymbol{v}_1,\ldots,oldsymbol{v}_d\}=V$

 $igl(oldsymbol{v}_1,\ldots,oldsymbol{v}_digr)$ linearly independent

Definition

Definition

A list of vectors $\beta = \{ \textbf{\textit{v}}_1, \textbf{\textit{v}}_2, \dots, \textbf{\textit{v}}_d \}$ in a vector space V is a basis if

Spanning Axiom

Linear Independence Axiom

$$\mathsf{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_d\}=V$$

 $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_d\}$ linearly independent

We think of a basis as a minimal spanning set.

Examples

Example

Consider the vector space $V\subset\mathbb{R}^3$ given by

$$V = \mathsf{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix} \right\}$$

Examples

Example

Consider the vector space $V\subset \mathbb{R}^3$ given by

$$V = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix} \right\}$$

Examples

Example

Consider the vector space $V\subset \mathbb{R}^3$ given by

$$V = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \cdot v \\ 2 \\ 4 \\ 6 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix} \right\}$$

Examples

Example

Consider the vector space $V\subset\mathbb{R}^3$ given by

Examples

Example

Consider the vector space $V\subset\mathbb{R}^3$ given by

Examples

Example

Consider the vector space $V\subset \mathbb{R}^3$ given by

These vectors are all dependent.

Examples

Example

Consider the vector space $V \subset \mathbb{R}^3$ given by

These vectors are all dependent. Choosing any one gives a basis of V.

$$V = \mathsf{Span}\{[1\ 2\ 3]^{\mathsf{T}}\} \qquad V = \mathsf{Span}\{[2\ 4\ 6]^{\mathsf{T}}\} \qquad V = \mathsf{Span}\{[-1\ -2\ -3]^{\mathsf{T}}\}$$

Examples

Example

Consider the vector space $V \subset \mathbb{R}^3$ given by

These vectors are all dependent. Choosing any one gives a basis of V.

$$V = \mathsf{Span}\{[\begin{smallmatrix} 1 & 2 & 3 \end{bmatrix}^\mathsf{T}\} \qquad V = \mathsf{Span}\{[\begin{smallmatrix} 2 & 4 & 6 \end{bmatrix}^\mathsf{T}\} \qquad V = \mathsf{Span}\{[\begin{smallmatrix} -1 & -2 & -3 \end{bmatrix}^\mathsf{T}\}$$

Vector spaces have infinitely many bases!

Examples

Example

To find vectors $\mathbf{v} \in \text{Null}(A)$, we must solve $A\mathbf{v} = \mathbf{0}$ for \mathbf{v} .

$$\mathsf{rref} \begin{bmatrix} -\frac{2}{1} & -\frac{1}{12} & \frac{5}{9} & \frac{25}{68} \\ -\frac{1}{3} & -\frac{12}{12} & \frac{9}{9} & \frac{68}{68} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 16 \\ 0 & 1 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Examples

Example

To find vectors $\mathbf{v} \in \text{Null}(A)$, we must solve $A\mathbf{v} = \mathbf{0}$ for \mathbf{v} .

Examples

Example

To find vectors $\mathbf{v} \in \text{Null}(A)$, we must solve $A\mathbf{v} = \mathbf{0}$ for \mathbf{v} .

$$\operatorname{rref} \begin{bmatrix} A & \searrow \\ \frac{2}{1} & \frac{1}{5} & \frac{25}{25} \\ -\frac{1}{1} & -\frac{12}{2} & \frac{9}{68} & \frac{68}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 16 \\ 0 & 1 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} -3 & c_1 - 16 & c_2 \\ c_1 + 7 & c_2 \\ c_1 \\ c_2 \end{bmatrix} = c_1 \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \cdot \begin{bmatrix} -16 \\ 7 \\ 0 \\ 1 \end{bmatrix}$$

Examples

Example

To find vectors $\mathbf{v} \in \text{Null}(A)$, we must solve $A\mathbf{v} = \mathbf{0}$ for \mathbf{v} .

$$\operatorname{rref} \begin{bmatrix} A \longrightarrow \\ -1 & -12 & 9 & 68 \\ 3 & 5 & 4 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 16 \\ 0 & 1 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} -3 & c_1 - 16 & c_2 \\ c_1 + 7 & c_2 \\ c_1 \\ c_2 \end{bmatrix} = c_1 \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \cdot \begin{bmatrix} -16 \\ 7 \\ 0 \\ 1 \end{bmatrix}$$

Here, we have shown that

$$\mathsf{Null}(A) = \mathsf{Span}\{ \begin{bmatrix} \ -3 & 1 & 1 & 0 \ \end{bmatrix}^\mathsf{T}, \begin{bmatrix} \ -16 & 7 & 0 & 1 \ \end{bmatrix}^\mathsf{T} \}$$

Examples

Example

To find vectors $\mathbf{v} \in \text{Null}(A)$, we must solve $A\mathbf{v} = \mathbf{0}$ for \mathbf{v} .

$$\operatorname{rref} \begin{bmatrix} A & \longrightarrow \\ \frac{2}{1} & \frac{1}{5} & \frac{25}{25} \\ -\frac{1}{1} & -\frac{12}{2} & \frac{9}{68} \\ \frac{8}{3} & \frac{5}{4} & \frac{4}{13} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 16 \\ 0 & 1 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} -3 & c_1 - 16 & c_2 \\ c_1 + 7 & c_2 \\ c_1 & c_2 \end{bmatrix} = c_1 \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \cdot \begin{bmatrix} -16 \\ 7 \\ 0 \\ 1 \end{bmatrix}$$

Here, we have shown that

$$\mathsf{Null}(A) = \mathsf{Span}\{\begin{bmatrix} -3 & 1 & 1 & 0 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} -16 & 7 & 0 & 1 \end{bmatrix}^\mathsf{T}\}$$

Examples

Example

To find vectors $\mathbf{v} \in \text{Null}(A)$, we must solve $A\mathbf{v} = \mathbf{0}$ for \mathbf{v} .

Here, we have shown that

$$\mathsf{Null}(A) = \mathsf{Span}\{\begin{bmatrix} -3 & 1 & 1 & 0 \end{bmatrix}^\intercal, \begin{bmatrix} -16 & 7 & 0 & 1 \end{bmatrix}^\intercal\}$$

Examples

Example

To find vectors $\mathbf{v} \in \text{Null}(A)$, we must solve $A\mathbf{v} = \mathbf{0}$ for \mathbf{v} .

$$\operatorname{rref} \begin{bmatrix} A & & & \\ -1 & 15 & 25 \\ 3 & 5 & 4 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 16 \\ 0 & 1 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} -3 & c_1 - 16 & c_2 \\ c_1 + 7 & c_2 \\ c_1 \\ c_2 \end{bmatrix} = c_1 \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \cdot \begin{bmatrix} -16 & c_2 \\ 7 \\ 0 \\ 1 \end{bmatrix}$$
"pivot solutions" to $A\mathbf{v} = \mathbf{0}$

Here, we have shown that

$$\mathsf{Null}(A) = \mathsf{Span}\{\begin{bmatrix} -3 & 1 & 1 & 0 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} -16 & 7 & 0 & 1 \end{bmatrix}^\mathsf{T}\}\$$

This is called the *pivot basis* of Null(A).

Bases

Theorem

Bases

Theorem

Bases

Theorem

Bases

Theorem

Examples

Example

Consider the calculations

$$\mathsf{rref} \begin{bmatrix} -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathsf{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} \begin{array}{c} A & \longrightarrow \\ -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{array} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{ref}\begin{bmatrix}
 -2 & 3 & -1 \\
 -7 & 10 & -2 \\
 -4 & 6 & -2 \\
 -9 & 13 & -3
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & -4 \\
 0 & 1 & -3 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}$$

Examples

Example

Consider the calculations

$$\begin{array}{c}
A \longrightarrow \\
\text{rref} \begin{bmatrix}
-2 - 7 - 4 - 9 \\
3 & 10 & 6 & 13 \\
-1 - 2 - 2 & -3
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\operatorname{rref} \begin{bmatrix} A^{\mathsf{T}} & & & \\ -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} A^{\mathsf{T}} & & & \\ -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Examples

Example

Consider the calculations

Examples

Example

Consider the calculations

Examples

Example

Consider the calculations

$$\begin{array}{c|c}
A & \longrightarrow \\
 & 3 & 10 & 6 & 13 \\
 & 1 & -2 & -2 & -3
\end{array} = \begin{bmatrix}
 & 0 & 2 & 1 \\
 & 0 & 1 & 0 & 1 \\
 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Examples

Example

Consider the calculations

$$\begin{array}{c|c}
A \longrightarrow \\
 & -4 - 9 \\
 & 10 & 6 & 13 \\
 & -1 - 2 - 2 - 3
\end{array} = \begin{bmatrix}
 & 0 & 2 & 1 \\
 & 0 & 10 & 1 \\
 & 0 & 0 & 0
\end{bmatrix}$$

Examples

Example

Consider the calculations

$$\operatorname{rref}\begin{bmatrix} -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \operatorname{rref}\begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{ref} \begin{bmatrix}
-2 & 3 & -1 \\
-7 & 10 & -2 \\
-4 & 6 & -2 \\
-9 & 13 & -3
\end{bmatrix} = \begin{bmatrix}
1 & 0 & -4 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

Examples

Example

Consider the calculations

$$\begin{array}{c}
A & \longrightarrow \\
\text{rref} \begin{bmatrix} -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \text{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\beta_1 =$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} \begin{matrix} A & & & \\ -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This information gives bases of the four fundamental subspaces.

 $\beta_{1} = \{ \begin{bmatrix} -2 & 3 & -1 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} -7 & 10 & -2 \end{bmatrix}^{\mathsf{T}} \}$ $\beta_{2} = \{ \begin{bmatrix} 1 & 0 & -4 \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 0 & 1 & -3 \end{bmatrix}^{\mathsf{T}} \}$ Null(A)

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} \begin{array}{c} A \\ -2 \\ 3 \\ 10 \\ -1 \\ -2 \\ -2 \\ -3 \end{array} \right] = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\beta_{1} = \{ [-2 - 7 - 4 - 9]^{\mathsf{T}}, [3 \ 10 \ 6 \ 13]^{\mathsf{T}} \}$$

$$\beta_{1} = \{ [-2 \ 3 - 1]^{\mathsf{T}}, [-7 \ 10 \ -2]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [1 \ 0 \ -4]^{\mathsf{T}}, [0 \ 1 \ -3]^{\mathsf{T}} \}$$

$$Null(A)$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\beta_{1} = \{ [-2 - 7 - 4 - 9]^{\mathsf{T}}, [3 \ 10 \ 6 \ 13]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [-2 \ 3 - 1]^{\mathsf{T}}, [-7 \ 10 \ -2]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [1 \ 0 \ -4]^{\mathsf{T}}, [0 \ 1 \ -3]^{\mathsf{T}} \}$$

$$Null(A)$$

$$Null(AT)$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} \begin{matrix} A & & & \\ -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\beta_{1} = \{ [-2 - 7 - 4 - 9]^{\mathsf{T}}, [3 \ 10 \ 6 \ 13]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [-2 \ 3 - 1]^{\mathsf{T}}, [-7 \ 10 \ -2]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [1 \ 0 \ -4]^{\mathsf{T}}, [0 \ 1 \ -3]^{\mathsf{T}} \}$$

$$Null(A)$$

$$Null(AT)$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} A & & & \\ -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} A & & & \\ -2 & -7 & -4 & -9 \\ 3 & 10 & 6 & 13 \\ -1 & -2 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{ref} \begin{bmatrix}
-2 & 3 & -1 \\
-7 & 10 & -2 \\
-4 & 6 & -2 \\
-9 & 13 & -3
\end{bmatrix} = \begin{bmatrix}
1 & 0 & -4 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -2 & 10 & -2 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -2 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -2 & 10 & -2 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\beta_{1} = \{ [-2 - 7 - 4 - 9]^{\mathsf{T}}, [3 \ 10 \ 6 \ 13]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [1 \ 0 \ 2 \ 1]^{\mathsf{T}}, [0 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [1 \ 0 \ 2 \ 1]^{\mathsf{T}}, [0 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{3} = \{ [-2 \ 0 \ 1 \ 0]^{\mathsf{T}}, [-1 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{4} = \{ [-2 \ 0 \ 1 \ 0]^{\mathsf{T}}, [-1 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{5} = \{ [-2 \ 0 \ 1 \ 0]^{\mathsf{T}}, [-1 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

Examples

Example

Consider the calculations

Examples

Example

Consider the calculations

$$\operatorname{rref} \begin{bmatrix} -2 & 3 & -1 \\ -7 & 10 & -2 \\ -4 & 6 & -2 \\ -9 & 13 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\beta_{1} = \{ [-2 - 7 - 4 - 9]^{\mathsf{T}}, [3 \ 10 \ 6 \ 13]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [1 \ 0 \ 2 \ 1]^{\mathsf{T}}, [0 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{2} = \{ [1 \ 0 \ 2 \ 1]^{\mathsf{T}}, [0 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{3} = \{ [-2 \ 0 \ 1 \ 0]^{\mathsf{T}}, [-1 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{4} = \{ [-2 \ 0 \ 1 \ 0]^{\mathsf{T}}, [-1 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

$$\beta_{5} = \{ [4 \ 3 \ 1]^{\mathsf{T}} \}$$

$$\beta_{6} = \{ [-2 \ 0 \ 1 \ 0]^{\mathsf{T}}, [-1 \ 1 \ 0 \ 1]^{\mathsf{T}} \}$$

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

$$oldsymbol{v}_{c_1} = egin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \ -1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

$$oldsymbol{v}_{c_1} = egin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \ -1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

$$oldsymbol{v}_{c_1} = egin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \ -1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

$$m{v}_{c_1} = egin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \ & m{v}_{c_2} = egin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \qquad m{v}_{c_2} = egin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$oldsymbol{a_1} \quad oldsymbol{a_2} \quad oldsymbol{a_3} \quad oldsymbol{a_4} \quad oldsymbol{a_5} \ oldsymbol{v_{c_2}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

$$m{v}_{c_1} = egin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \ & m{v}_{c_2} = egin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \qquad m{v}_{c_2} = egin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

Let $\{c_1, \ldots, c_k\}$ be cycles, each passing through exactly one purged vector.

$$m{v}_{c_1} = egin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \ m{v}_{c_2} = egin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \qquad m{v}_{c_2} = egin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Then $\{\boldsymbol{v}_{c_1},\ldots,\boldsymbol{v}_{c_k}\}$ is a basis of Null(A).

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bases of Null(A)

Theorem

Purge the minimum number of arrows necessary to break all cycles.

Let $\{c_1, \ldots, c_k\}$ be cycles, each passing through exactly one purged vector.

$$m{v}_{c_1} = egin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \ m{v}_{c_2} = egin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \qquad m{v}_{c_2} = egin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

 $Then~\{\boldsymbol{v}_{c_1},\ldots,\boldsymbol{v}_{c_k}\}~is~a~basis~of~\mathrm{Null}(A).~Here,~\mathrm{Null}(A) = \underset{\text{product}}{\mathsf{Span}}\{\boldsymbol{v}_{c_1},\boldsymbol{v}_{c_2}\}.$

Bases of $Null(A^T)$

Theorem

Let $\{G_1,\ldots,G_k\}$ be the connected components of a digraph G.

Bases of $Null(A^T)$

Theorem

Let $\{G_1,\ldots,G_k\}$ be the connected components of a digraph G.

Bases of $Null(A^T)$

Theorem

Let $\{G_1,\ldots,G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{\mathbf{v}_{G_1},\dots,\mathbf{v}_{G_k}\}.$

$$oldsymbol{v}_1 \quad oldsymbol{v}_2 \quad oldsymbol{v}_3 \quad oldsymbol{v}_4 \quad oldsymbol{v}_5 \ oldsymbol{v}_{G_1} = egin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Bases of $Null(A^T)$

Theorem

Let $\{G_1,\ldots,G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{\mathbf{v}_{G_1},\dots,\mathbf{v}_{G_k}\}.$

$$oldsymbol{v}_1 \quad oldsymbol{v}_2 \quad oldsymbol{v}_3 \quad oldsymbol{v}_4 \quad oldsymbol{v}_5 \ oldsymbol{v}_{G_1} = egin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Bases of $Null(A^T)$

Theorem

Let $\{G_1,\ldots,G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{\mathbf{v}_{G_1},\dots,\mathbf{v}_{G_k}\}.$

$$oldsymbol{v}_{G_1} = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & oldsymbol{v}_3 & oldsymbol{v}_4 & oldsymbol{v}_5 \ oldsymbol{v}_{G_1} = egin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Bases of $Null(A^T)$

Theorem

Let $\{G_1, \ldots, G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{ \boldsymbol{v}_{G_1}, \dots, \boldsymbol{v}_{G_k} \}$.

$$m{v}_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5^{\ \ \ \ } \qquad \qquad m{v}_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5^{\ \ \ \ } \qquad m{v}_{G_1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix} \qquad m{v}_{G_2} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{v}_{G_2} = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \end{bmatrix}$$

Bases of $Null(A^T)$

Theorem

Let $\{G_1, \ldots, G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{ \boldsymbol{v}_{G_1}, \dots, \boldsymbol{v}_{G_k} \}$.

Bases of $Null(A^T)$

Theorem

Let $\{G_1, \ldots, G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{ \boldsymbol{v}_{G_1}, \dots, \boldsymbol{v}_{G_k} \}$.

$$\mathbf{v}_1$$
 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4 \mathbf{v}_5
 $\mathbf{v}_{G_2} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}$

Bases of $Null(A^T)$

Theorem

Let $\{G_1, \ldots, G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{ \boldsymbol{v}_{G_1}, \dots, \boldsymbol{v}_{G_k} \}$.

$$m{v}_{G_1} = egin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \qquad m{v}_{G_2} = egin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$$

These vectors form a basis of $Null(A^{T})$.

Bases of $Null(A^T)$

Theorem

Let $\{G_1, \ldots, G_k\}$ be the connected components of a digraph G.

Consider the associated classification vectors $\{ \boldsymbol{v}_{G_1}, \dots, \boldsymbol{v}_{G_k} \}$.

These vectors form a basis of $\text{Null}(A^{\intercal})$. Here, $\text{Null}(A^{\intercal}) = \text{Span}\{\boldsymbol{v}_{G_1}, \boldsymbol{v}_{G_2}\}$.

