Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Hidden-Markov-Modelle

Tobias Scheffer Thomas Vanck

Hidden-Markov-Modelle: Wozu?

- Spracherkennung:
 - Akustisches Modell.
- Geschriebene Sprache:
 - Part-of-Speech-Tagging,
 - Informationsextraktion.
- Biologie:
 - Finden von Genen in der DNA.

Markov-Prozesse

- $X_1, ..., X_n$: Zufallsvariablen.
- Allgemein gilt: $P(X_1,...,X_n) = P(X_1) \prod_{i=1}^n P(X_i | X_{i-1},...,X_1)$
- Zufallsvariablen bilden eine Markovkette, gdw: $P(X_1,...,X_n) = P(X_1) \prod_{i=1}^{n} P(X_i \mid X_{i-1})$
- Jede Variable X_i nur von Vorgänger X_{i-1} abhängig.
- Markov-Modell:
 Probabilistischer endlicher
 Automat, Folge der Zustände
 ist Markov-Kette.
- (Andrei Markov, 1856-1922)

Markov-Modell

- Zustände 1,..., N (Folge der Zustände ist Markov-Kette),
- Transitionswahrscheinlichkeiten a_{ij} ; $\sum_{j=1}^{N} a_{ij} = 1$
- Startwahrscheinlichkeiten π_i .
- Zustand zur Zeit t: q_t.

P(Artikel, Nomen, Nomen, Verb)?

Hidden-Markov-Modell

- Folge der Zustände ist nicht sichtbar.
- Statt dessen: Zustände emittieren Beobachtungen
 O_t (mit Wahrscheinlichkeit b_i(O_t)).

Hidden-Markov-Modell, Definitionen

- Zustände $\Omega = \{1,...,N\}$ q_t: Zustand zur Zeit t.
- Übergangswahrscheinlichkeiten $A = \{a_{ij}\}$
- Startwahrscheinlichkeiten $\pi = {\pi_i = P(q_1 = i)}$
- Beobachtungswahrscheinlichkeiten $B = \{b_i(O_t) = P(O_t | q_t = i)\}$
- HMM definiert durch Parameter $\lambda = (A, B, \pi)$

Markov-Annahmen

Markov-Annahme für Zustandsfolgen:

$$P(q_t | q_{t-1},...,q_1) = P(q_t | q_{t-1})$$

Markov-Annahme für Beobachtungen:

$$P(O_t | q_t, q_{t-1}, ..., q_1) = P(O_t | q_t)$$

Drei Basisprobleme

- Problem 1: Likelihood einer Beobachtungsfolge:
 - "Wie gut passt ein Modell zu einer Beobachtungsfolge?"
 - Berechne $P(O_1,...,O_T | \lambda)$
- Problem 2: Optimale Zustandskette finden:
 - "Welche Zustandskette hat die Beobachtung am wahrscheinlichsten erzeugt?"
 - Berechne $P(q_1,...,q_T \mid O_1,...,O_T,\lambda)$
- Problem 3: Lernproblem
 - "Gegeben viele Beobachtungsfolgen, finde die Parameter des HMMs!"
 - Berechne $\operatorname{argmax}_{\lambda} P(\{(O_1,...,O_T),...\} \mid \lambda)$

"Wie gut passt ein Modell zur Beobachtungsfolge?"

$$P(O_1,...,O_T \mid \lambda) = \sum_{alle(q_1,...,q_T)} P(O_1,...,O_T \mid q_1,...,q_T,\lambda) P(q_1,...,q_T \mid \lambda)$$

$$= \sum_{alle(q_1,...,q_T)} b_{q_1}(O_1)...b_{q_T}(O_T) \pi_{q_1} a_{q_1q_2}...a_{q_{T-1}q_T}$$

- # Summanden = N^T.
- Auswertung exponentiell in der Länge der Eingabe.
- Bei Auswertung werden dieselben
 Wahrscheinlichkeiten wiederholt berechnet
- Gesucht: polynomieller Algorithmus.
- Dynamische Programmierung: Zwischenergebnisse speichern.

Trellis

Trellis: Array über Zustände x Zeit.

Rekursive Hilfsvariablen

$$\gamma_t(i) = P(q_t = i \mid O_1, ..., O_T, \lambda)$$

"Forward"

Wahrscheinlichkeit einer initialen
 Beboachtungsfolge und eines Zustands:

$$\alpha_t(i) = P(O_1, ..., O_t, q_t = i \mid \lambda)$$

Theorem:

$$\alpha_1(i) = \pi_i b_i(O_1)$$

$$\alpha_{t+1}(j) = \left(\sum_{i=1}^{N} \alpha_{t}(i)a_{ij}\right)b_{j}(O_{t+1})$$

- Nach Theorem kann α durch dynamische Programmierung berechnet werden:
 - Initialisiere $\alpha_1(i)$.
 - Für t von 2 bis T: berechne $\alpha_t(i)$ unter Verwendung der schon bestimmten $\alpha_{t-1}(i)$.

"Forward": Beweis

Induktionsverankerung:

$$\alpha_1(i) = P(O_1, q_1 = i \mid \lambda)$$

= $P(q_1 = i \mid \lambda)P(O_1 \mid q_1 = i, \lambda) = \pi_i b_i(O_1)$

■ Induktionsschritt t → t+1

$$\begin{split} \alpha_{t+1}(j) &= P(O_1, ..., O_{t+1}, q_{t+1} = j \mid \lambda) = \sum_{i=1}^{N} P(O_1, ..., O_{t+1}, q_t = i, q_{t+1} = j \mid \lambda) \\ &= \sum_{i=1}^{N} P(O_1, ..., O_t, q_t = i \mid \lambda) P(q_{t+1} = j \mid q_t = i, O_1, ..., O_t, \lambda) \\ &\quad P(O_{t+1} \mid q_{t+1} = j, q_t = i, O_1, ..., O_t, \lambda) \\ &= \sum_{i=1}^{N} P(O_1, ..., O_t, q_t = i \mid \lambda) P(q_{t+1} = j \mid q_t = i, \lambda) P(O_{t+1} \mid q_{t+1} = j, \lambda) \\ &= \left(\sum_{i=1}^{N} \alpha_t(i) a_{ij}\right) b_j(O_{t+1}) \end{split}$$

"Forward": Termination

- $P(O_1,...,O_T \mid \lambda) = \sum_i \alpha_T(i)$
- Beweis:

$$P(O_1,...,O_T | \lambda) = \sum_i P(O_1,...,O_T,q_T = i | \lambda) = \sum_i \alpha_T(i)$$

Problem 1 gelöst

- Problem 1 ist gelöst, nämlich das Lösen von $P(O_1,...,O_T \mid \lambda)$
 - kann nun effizient durchgeführt werden.
- Nächste Folien beschreiben Erweiterungen, die für Problem 3 benötigt werden.

"Backward"

- $\beta_{t}(i) = P(O_{t+1}, ..., O_{T} | q_{t} = i, \lambda)$
- Theorem:

$$\beta_{T}(i) = 1$$

$$\boldsymbol{\beta}_{t}(i) = \left(\sum_{j=1}^{N} a_{ij} b_{j}(O_{t+1}) \boldsymbol{\beta}_{t+1}(j)\right)$$

- Nach dem Theorem kann β durch dynamische Programmierung bestimmt werden:
 - Initialisiere $\beta_T(i)=1$.
 - Für t von T-1 bis 1: bestimme $\beta_t(i)$ unter Verwendung der $\beta_{t+1}(j)$.

"Backward": Beweis

Induktionsverankerung:

$$\beta_{T-1}(i) = P(O_T | q_{T-1} = i, \lambda)$$

$$= \sum_{j} P(O_T | q_T = j, q_{T-1} = i, \lambda) P(q_T = j | q_{T-1} = i, \lambda)$$

$$= \sum_{j} P(O_T | q_T = j, \lambda) a_{ij}$$

$$= \sum_{j} P(O_T | q_T = j, \lambda) a_{ij} \beta_T(j)$$

"Backward": Beweis

■ Induktionsschritt t+1 → t

$$\begin{split} &\beta_{t}(i) = P(O_{t+1}, ..., O_{T} \mid q_{t} = i, \lambda) \\ &= \sum_{j} P(O_{t+1}, ..., O_{T}, q_{t+1} = j \mid q_{t} = i, \lambda) \\ &= \sum_{j} P(O_{t+1}, ..., O_{T} \mid q_{t+1} = j, q_{t} = i, \lambda) P(q_{t+1} = j \mid q_{t} = i, \lambda) \\ &= \sum_{j} P(O_{t+2}, ..., O_{T} \mid q_{t+1} = j, q_{t} = i, \lambda) P(q_{t+1} = j \mid q_{t} = i, \lambda) \\ &P(O_{t+1} \mid q_{t+1} = j, q_{t} = i, \lambda) \\ &= \sum_{j} P(O_{t+2}, ..., O_{T} \mid q_{t+1} = j, \lambda) P(q_{t+1} = j \mid q_{t} = i, \lambda) P(O_{t+1} \mid q_{t+1} = j, \lambda) \\ &= \sum_{j} \beta_{t+1}(j) a_{ij} b_{j}(O_{t+1}) \end{split}$$

"Forward Backward": Wahrscheinlichkeit eines Zustandes

- P(Zustand i zur Zeit t | Beobachtungssequenz)

$$\begin{aligned} & \qquad \qquad \gamma_{t}(i) = P(q_{t} = S_{i} \mid O_{1}, ..., O_{T}, \lambda) \\ & = \frac{P(q_{t} = S_{i}, O_{1}, ..., O_{T} \mid \lambda)}{P(O_{1}, ..., O_{T} \mid \lambda)} \\ & = \frac{P(q_{t} = S_{i}, O_{1}, ..., O_{t}, O_{t+1}, ..., O_{T} \mid \lambda)}{P(O_{1}, ..., O_{T} \mid \lambda)} \\ & = \frac{P(q_{t} = S_{i}, O_{1}, ..., O_{t} \mid \lambda)P(O_{t+1}, ..., O_{T} \mid q_{t} = i, \lambda)}{P(O_{1}, ..., O_{T} \mid \lambda)} \\ & = \frac{\alpha_{t}(i)\beta_{t}(i)}{P(O_{1}, ..., O_{T} \mid \lambda)} \end{aligned}$$

Forward-Backward-Algorithmus

- (Forward)
- Initialisiere $\alpha_1(i) = \pi_i b_i(O_1)$ (alle Zustände i)
- Für t von 1 bis T-1
- Berechne (für alle j) $\alpha_{t+1}(j) = \left(\sum_{i=1}^{N} \alpha_{t}(i) a_{ij}\right) b_{j}(O_{t+1})$ Berechne $P(O_{1},...,O_{T} \mid \lambda) = \sum_{i} \alpha_{T}(i)$
- (Backward)
- Initialisiere $\beta_T(i) = 1$
- Für t von T-1 bis 1
 - Berechne (für alle i)
 - Berechne (für alle i)

$$\beta_{i}(t) = \left(\sum_{j=1}^{N} a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j)\right)$$

$$\gamma_{t}(i) = \frac{\alpha_{t}(i) \beta_{t}(i)}{P(O_{1}, \dots, O_{T} \mid \lambda)}$$

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{P(O_1, ..., O_T \mid \lambda)}$$

Forward-Backward-Algorithmus

- Läuft mit quatratischem Aufwand
- Berechnet $\gamma_t(i) = P(q_t = i \mid O_1, ..., O_T, \lambda)$ und $P(O_1, ..., O_T \mid \lambda)$

"Welches Modell passt am besten?"

- Bsp: Worterkennung. Ein HMM für jedes Wort, das erkannt werden soll.
- Gegeben: Sprachsignal (Beobachtungssequenz), gesucht: Welches der Wörter wurde gesagt?
- $= \arg \max_{k} P(\lambda_{k} \mid O_{1}, ..., O_{T})$ $= \arg \max_{k} P(O_{1}, ..., O_{T} \mid \lambda_{k}) P(\lambda_{k})$
- Likelihood durch Forward-Algorithmus, A-Priori-Wahrscheinlichkeit durch Abzählen der Worthäufigkeit in der Trainingsmenge.

Problem 2: Was ist die optimale Zustandskette?

- Beispiele:
 - Part-of-Speech-Tagging, ein Zustand pro Part-of-Speech,
 - Gensequenzanalyse, Zustände entsprechen Tags, mit denen das Genom annotiert werden soll.
- Möglichkeit 1: Welcher einzelne Zustand zur Zeit t passt am besten zur Beobachtungsfolge?
 - $arg \max_{i} \gamma_{t}(i) = arg \max_{i} P(q_{t} = i \mid O_{1}, ..., O_{T}, \lambda)$
 - Bestimmung durch Forward-Backward-Algorithmus
- Möglichkeit 2: Welche komplette Zustandsfolge passt am besten zur Beobachtungsfolge?
 - \bullet arg max_(q₁,...,q_T) $P(q_1,...,q_T | O_1,...,O_T,\lambda)$
 - Bestimmen mit Viterbi-Algorithmus

Viterbi-Algorithmus, Theorem

- $\delta_t(i) = \max_{q_1,...,q_{t-1}} P(q_1,...,q_{t-1},q_t = i,O_1,...,O_t \mid \lambda)$
- Theorem:

$$\delta_{t+1}(j) = (\max_{i} \delta_{t}(i)a_{ij}) b_{j}(O_{t+1})$$

Beweis:

$$\begin{split} & \delta_{t+1}(j) = \max_{q_1, \dots, q_t} P(q_1, \dots, q_t, q_{t+1} = j, O_1, \dots, O_{t+1} \mid \lambda) \\ & = \max_{q_1, \dots, q_t} P(q_1, \dots, q_t, O_1, \dots, O_t \mid \lambda) P(q_{t+1} = j \mid q_t, \dots) P(O_{t+1} \mid q_{t+1} = j, \dots) \\ & = \left(\max_i \left(\max_{q_1, \dots, q_{t-1}} P(q_1, \dots, q_t = i, O_1, \dots, O_t \mid \lambda) \right) a_{ij} \right) b_j(O_{t+1}) \\ & = \left(\max_i \delta_t(i) a_{ij} \right) b_j(O_{t+1}) \end{split}$$

Zustand zur Zeit t auf wahrscheinlichstem Pfad: $\Psi_{t}(j)$

Viterbi-Algorithmus

- Initialisierung: $\delta_1(i) = \pi_i b_i(O_1)$
- Initialisierung: $\psi_1(i) = 0$
- Für t von 1 bis T-1 und j von 1 bis N:
 - $\delta_{t+1}(j) = \left(\max_{i} \delta_{t}(i) a_{ij}\right) b_{j}(O_{t+1})$ $\psi_{t+1}(j) = \left(\arg\max_{i} \delta_{t}(i) a_{ii}\right)$
- Termination $q_T^* = \arg \max_i \delta_T(i)$
- Für t von T-1 bis 1

$$\bullet \ q_{t}^{*} = \psi_{t+1}(q_{t+1}^{*})$$

Ausgabe der Zustandsfolge $q_1^*,...,q_T^*$

Problem 3: Lernproblem

- Gegeben: Sammlung von Beobachtungsfolgen.
- Gesucht HMM-Parameter λ.
- Sichtbare Zustände
 - Z.B. Part-of-Speech-Tagging: Jede Beobachtung ist mit dem zugehörigen Zustand markiert.
 - Schätzen der Parameter durch Zählen der Starthäufigkeiten, Transitionen, Beobachtungen.
- Unsichtbare Zustände
 - Z.B. Worterkennung: Nur Sprachsignal gegeben, Zustandsfolgen sind unbekannt.
 - Lernen der Parameter durch Baum-Welch-Algorithmus.

Sichtbare Zustände

Trainingsmenge

$$S = \left\langle (O^{(1)}, Q^{(1)}), \dots, (O^{(m)}, Q^{(m)}) \right\rangle$$

$$O^{(k)} = O_1^{(k)}, \dots, O_{T_k}^{(k)}$$

$$Q^{(k)} = q_1^{(k)}, \dots, q_{T_k}^{(k)}$$

- Schätze $\pi_i = (\#Beispielsequenzen k mit <math>q_1^{(k)} = i)/m$
- Schätze $a_{ij} = (\#Stellen \ mit \ q_t^{(k)} = i, q_{t+1}^{(k)} = j) / (\#Stellen \ mit \ q_t^{(k)} = i)$
- Schätze $b_i(O) = (\#Stellen mit q_t^{(k)} = i, O_t^{(k)} = O) / (\#Stellen mit q_1^{(k)} = i)$

Unsichtbare Zustände

Trainingsmenge

$$S = \langle O^{(1)}, ..., O^{(m)} \rangle$$

 $O^{(k)} = O_1^{(k)}, ..., O_{T_k}^{(k)}$

- Zustände unbekannt
- Forward-Backward kann
 Zustandswahrscheinlichkeiten berechnen, braucht dafür aber Modell,
- Können Modell schätzen (letzte Folie), brauchen dafür aber Zustandswahrscheinlichkeiten.

Baum-Welch-Algorithmus

- Wenn die Zustände der Beobachtungen bekannt wären, könnte man die Parameter durch Abzählen der Häufigkeiten in Trainingsmenge schätzen.
- Instanz des EM-Algorithmus.
- Beginne mit zufälligen Parametern und iteriere zwei Schritte bis zur Konvergenz
 - Berechne die Zustände durch Forward-Backward-Algorithmus auf Grundlage des aktuellen Modells
 - Schätze die Parameter des Modells auf Grundlage berechneter Zustände.

Baum-Welch-Algorithmus

- Hilfsvariable: $\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O_1, ..., O_T, \lambda)$
- Berechnung:

$$\begin{split} &P(q_{t}=i,q_{t+1}=j\,|\,O_{1},...,O_{T}\,|\,\lambda)\\ &=\frac{P(q_{t}=i,q_{t+1}=j,O_{1},...,O_{T}\,|\,\lambda)}{P(O_{1},...,O_{T}\,|\,\lambda)}\\ &=\frac{1}{P(O_{1},...,O_{T}\,|\,\lambda)}P(O_{1},...,O_{t},q_{t}=i\,|\,\lambda)P(q_{t+1}=j\,|\,q_{t}=i,O_{1},...,O_{T},\lambda)\\ &\times P(O_{t+1}\,|\,q_{t+1}=j,q_{t}=i,O_{1},...,O_{t},\lambda)P(O_{t+2},...,O_{T}\,|\,q_{t+1}=j,q_{t}=i,O_{1},...,O_{t+1},\lambda)\\ &=\frac{1}{P(O_{1},...,O_{T}\,|\,\lambda)}P(O_{1},...,O_{t},q_{t}=i\,|\,\lambda)P(q_{t+1}=j\,|\,q_{t}=i,\lambda)\\ &\times P(O_{t+1}\,|\,q_{t+1}=j,\lambda)P(O_{t+2},...,O_{T}\,|\,q_{t+1}=j,\lambda)\\ &=\frac{\alpha_{t}(i)a_{ij}b_{j}(O_{t+1})\beta_{t+1}(j)}{P(O_{1},...,O_{T}\,|\,\lambda)} \end{split}$$

Baum-Welch-Algorithmus

- Trainingsmenge $S = \langle O^{(1)}, ..., O^{(m)} \rangle; O^{(k)} = O_1^{(k)}, ..., O_{T_k}^{(k)}$
- Zustände unbekannt
- 1. Initialisiere λ zufällig.
- 2. Wiederhole bis Konvergenz: Für alle k von 1 bis m
 - Berechne die α , β , γ durch Forward-Backward
 - Für i und j von 1 bis N, berechne $\xi_t(i,j)$
 - Schätze $\pi_i^{(k)} = \gamma_1(i)$
 - Schätze $a_{ij}^{(k)} = \sum_{t} \xi_{t}(i,j) / \sum_{t} \gamma_{t}(i)$
 - Schätze $b_i^{(k)}(O) = \sum_{t:O_t = Q} \gamma_t(i) / \sum_t \gamma_t(i)$ Mittle Schätzer für λ über m Beispiele und
- 3. Mittle Schätzer für λ über m Beispiele und Wiederhole ab Schritt 2.

Problem 3 ist gelöst

 Problem 3 wird vom Baum-Welch Algorithmus gelöst.

Skalierung

- Forward-Backward und Viterbi multiplizieren viele Wahrscheinlichkeiten auf, numerisch kommt dabei schnell 0 heraus.
- Mit negativen Log-Wahrscheinlichkeiten arbeiten, statt mit Wahrscheinlichkeiten.
- Forward-Backward- und Viterbi lassen sich entsprechend umformulieren.