1 Обратная задача

Решение будет опираться, прежде всего, на то, что оси для 4-6 джоинтов пересекаются в одной точке. Для таких цепей решение для первых трех углов есть в общем виде (через корни полиномов ≤ 4 степени) в работе D. Pieper.

Первый шаг решения - определение точки пересечения осей. Сначала, определяется матрица Aeq, описывающая систему координат TCP (даны XYZWPR, $c_w = \cos W, s_w = \dots$):

$$Aeq = \begin{bmatrix} c_r c_p & c_r s_p s_w - s_r c_w & c_r s_p c_w + s_r s_w & X \\ s_r c_p & s_r s_p s_w + c_r c_w & s_r s_p c_w - c_r s_w & Y \\ -s_p & c_p s_w & c_p c_w & Z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\hat{p}=(0,0,d_6,1).T$ - координаты точки пересечения в системе координат TCP \Rightarrow Aeq \cdot $\hat{p}=p$ - координаты этой же точки в мировой СК

Из-за удобного расположения осей в Fanuc-е задача очень сильно упрощается:

1) благодаря тому, что у j2 и j3, во-перых, оси совпадают с Oy у j1, и, вовторых, смещение вдоль z отсутствует, углы джоинтов 1-3 можно вычислить геометрически:

$$\theta_1 \in \{\arctan 2(p_y, p_x), \arctan 2(p_y, p_x) + \pi\}$$

Знание θ_1 переводит поиск θ_2, θ_3 в простую плоскую задачу. Будет два решения (решения образуют параллелограм - разные углы, но координаты конечной точки те же)

2) из $theta_1, theta_2, theta_3$ получается матрица перехода после первых 3 джоинтов $T=A_1A_2A_3$. Матрица поворота, соотв $T-R_1$, матрица поворота для $Aeq-R_f$, тогда матрица поворота $R=R_1^TR_f$. у Fanuc-а джоинты 4-6 есть по сути углы эйлера - вокруг Z, вокруг -Y, вокруг Z, а затем вокруг X на π .

Тогда $\theta_4, -\theta_5, \theta_6$ - углы ZYZ для матрицы поворота $R \cdot \mathrm{diag}\{1, -1, -1\}$ (формулы углов, например, отсюда; $\theta_4, \theta_5, \theta_6 = \alpha, \beta, \gamma$)

агссоя дает 2 значения θ_5 противоположных знаков

Всего получается 8 решений (три неоднозначности, по 2 варианта каждая)