Business Case: Delhivery - Feature Engineering

Problem Statement: About Delhivery

Delhivery is the largest and fastest-growing fully integrated player in India by revenue in Fiscal 2021. They aim to build the operating system for commerce, through a combination of world-class infrastructure, logistics operations of the highest quality, and cutting-edge engineering and technology capabilities.

The Data team builds intelligence and capabilities using this data that helps them to widen the gap between the quality, efficiency, and profitability of their business versus their competitors.

Approach to understanding the problem and getting to insights

First we will understand the data we have received, and then check what possible operation we can do to analyse the data better and observe patterns to provide solutions.

Importing the relevant libraries

```
import pandas as pd
import numpy as np
import matplotlib as plt
import seaborn as sns
pd.set_option('display.max_columns', None)
```

Loading CSV as Dataset

In [432...

df.head()

Checking if the data is loaded as dataframe

Out[432	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_center	destination_nan		
	0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP (Gujari		
	1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP (Gujara		

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	$destination_center$	destination_nan
	2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP (Gujara
3	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP (Gujara
,	4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP (Gujari

Checking the shape of the data

```
df.shape
In [433...
           (136557, 24)
```

Out[433...

In [435...

Checking column name

```
In [434...
           df.columns
Out[434...
          Index(['data', 'trip_creation_time', 'route_schedule_uuid', 'route_type',
                  'trip_uuid', 'source_center', 'source_name', 'destination_center',
                  'destination_name', 'od_start_time', 'od_end_time',
                 'start_scan_to_end_scan', 'is_cutoff', 'cutoff_factor',
                  'cutoff_timestamp', 'actual_distance_to_destination', 'actual_time',
                  'osrm_time', 'osrm_distance', 'factor', 'segment_actual_time',
                  'segment_osrm_time', 'segment_osrm_distance', 'segment_factor'],
                 dtype='object')
```

OBSERVATION: This data consists of 136557 checkpoints described across 24 columns.

Checking data type of each column

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 136557 entries, 0 to 136556
Data columns (total 24 columns):
    Column
                                   Non-Null Count Dtype
    -----
    data
                                   136557 non-null object
1 trip creation time
                                   136557 non-null object
 2 route schedule uuid
                                   136557 non-null object
 3 route_type
                                   136557 non-null object
```

```
trip_uuid
                                   136557 non-null object
    source center
                                   136557 non-null object
 6 source name
                                   136285 non-null object
    destination center
                                   136557 non-null object
    destination name
                                   136329 non-null object
 9 od start time
                                   136556 non-null object
 10 od end time
                                   136556 non-null object
 11 start scan to end scan
                                   136556 non-null float64
 12 is cutoff
                                   136556 non-null object
 13 cutoff_factor
                                   136556 non-null float64
                                   136556 non-null object
 14 cutoff_timestamp
 15 actual_distance_to_destination 136556 non-null float64
 16 actual time
                                   136556 non-null float64
 17 osrm time
                                   136556 non-null float64
 18 osrm distance
                                   136556 non-null float64
 19 factor
                                   136556 non-null float64
                                   136556 non-null float64
 20 segment actual time
 21 segment osrm time
                                   136556 non-null float64
 22 segment osrm distance
                                   136556 non-null float64
 23 segment factor
                                   136556 non-null float64
dtypes: float64(11), object(13)
memory usage: 25.0+ MB
```

OBSERVATION: The time column should be of correct datatype, that is: datetime

Convert the od_start_time and od_end_time to datetime data type

```
df["trip creation time"] = pd.to datetime(df["trip creation time"])
In [436...
           df["od start time"] = pd.to datetime(df["od start time"])
           df["od end time"] = pd.to datetime(df["od end time"])
          df.info()
In [437...
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 136557 entries, 0 to 136556
          Data columns (total 24 columns):
              Column
                                             Non-Null Count
                                                              Dtype
              -----
                                              -----
           0
              data
                                             136557 non-null object
              trip creation time
                                             136557 non-null datetime64[ns]
           2 route schedule uuid
                                             136557 non-null object
           3 route type
                                             136557 non-null object
           4 trip uuid
                                             136557 non-null object
           5 source center
                                             136557 non-null object
           6 source name
                                             136285 non-null object
           7
              destination center
                                             136557 non-null object
              destination name
                                             136329 non-null object
              od start time
                                             136556 non-null datetime64[ns]
           10 od end time
                                             136556 non-null datetime64[ns]
           11 start scan to end scan
                                             136556 non-null float64
           12 is cutoff
                                             136556 non-null object
           13 cutoff factor
                                             136556 non-null float64
           14 cutoff_timestamp
                                             136556 non-null object
```

```
actual_distance_to_destination 136556 non-null float64
    actual time
                                    136556 non-null float64
    osrm time
17
                                   136556 non-null float64
18 osrm_distance
                                   136556 non-null float64
19 factor
                                   136556 non-null float64
 20 segment_actual_time
                                   136556 non-null float64
21 segment osrm time
                                   136556 non-null float64
22 segment_osrm_distance
                                   136556 non-null float64
23 segment_factor
                                   136556 non-null float64
dtypes: datetime64[ns](3), float64(11), object(10)
memory usage: 25.0+ MB
```

Checking for missing vaules in column

In [438... d

df.isnull().sum()

Out[438...

0 0 data trip_creation_time route_schedule_uuid 0 route_type trip_uuid 0 source center source_name 272 destination_center destination_name 228 od_start_time 1 od end time $start_scan_to_end_scan$ is_cutoff 1 cutoff_factor 1 cutoff timestamp 1 $actual_distance_to_destination$ actual_time osrm_time 1 osrm distance

	0
factor	1
segment_actual_time	1
segment_osrm_time	1
segment_osrm_distance	1
segment_factor	1

dtype: int64

OBSERVATION: There are missing values in columns: source_name, destination_name, and segment factor. Since the missing values are less than 1% of the total data, we can directly drop the NULL values.

Dropping the NULL values from the dataset

source center 0

```
In [439... df = df.dropna(how ='any')
```

Checking the shape of data after dropping NULL Values

```
In [440... df.shape
Out[440... (136059, 24)
```

OBSERVATION: The new dataset is decreased by less than 1% of the actual raw dataset. This is acceptable for further Data Analysis.

In [441... df_null_check = df.isnull().sum()

Checking to see if there are any NULL values in the new dataset.

	0
source_name	0
destination_center	0
destination_name	0
od_start_time	0
od_end_time	0
start_scan_to_end_scan	0
is_cutoff	0
cutoff_factor	0
cutoff_timestamp	0
$actual_distance_to_destination$	0
actual_time	0
osrm_time	0
osrm_distance	0
factor	0
segment_actual_time	0
segment_osrm_time	0
segment_osrm_distance	0
segment_factor	0

dtype: int64

OBSERVATION: No NULL values in the new dataset.

Checking the statistical summary of raw data

In [443...

df.describe()

Out[443...

	trip_creation_time	od_start_time	od_end_time	start_scan_to_end_scan	cutoff_factor	$actual_distance_to_destination$	actual_time	osrm_tim
count	136059	136059	136059	136059.000000	136059.000000	136059.000000	136059.000000	136059.00000
mean	2018-09-22 12:37:09.315812352	2018-09-22 17:02:24.815698432	2018-09-23 09:14:34.558658816	971.666520	235.486304	236.630012	421.868241	216.10698

	trip_creation_time	od_start_time	od_end_time	start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	osrm_tim
min	2018-09-12 00:00:16.535741	2018-09-12 00:00:16.535741	2018-09-12 00:50:10.814399	20.000000	9.000000	9.000055	9.000000	6.00000
25%	2018-09-17 02:21:59.831977984	2018-09-17 06:26:04.219940096	2018-09-18 01:02:03.127152896	162.000000	22.000000	23.386336	52.000000	27.00000
50%	2018-09-22 02:14:33.861478912	2018-09-22 06:18:11.753445888	2018-09-23 02:08:09.761019904	456.000000	66.000000	66.217249	133.000000	65.00000
75%	2018-09-27 17:53:19.027942912	2018-09-27 22:05:12.999181056	2018-09-28 12:13:41.675546112	1673.000000	286.000000	287.854860	525.000000	265.00000
max	2018-10-03 23:59:42.701692	2018-10-06 00:08:33.866586	2018-10-08 03:00:24.353479	7898.000000	1927.000000	1927.447705	4532.000000	1686.00000
std	NaN	NaN	NaN	1042.379854	346.228069	346.454324	602.208577	309.26424

Checking if any orders are returned to source location.

In [444...

returned orders = df.groupby("trip uuid").apply(lambda group: pd.DataFrame({"Returned Packages": [any(group["source center"] == group["d returned orders.head()

<ipython-input-444-887a70d66ffd>:1: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprec ated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.

returned orders = df.groupby("trip uuid").apply(lambda group: pd.DataFrame({"Returned Packages": [any(group["source center"] == group ["destination_center"])]})).reset_index()

Out[444...

	trip_uuid	level_1	Returned_Packages
0	trip-153671041653548748	0	False
1	trip-153671042288605164	0	False
2	trip-153671043369099517	0	False
3	trip-153671046011330457	0	False
4	trip-153671052974046625	0	False

In [445...

true_instances = returned_orders[returned_orders['Returned_Packages'] == True].index.tolist() true instances

Out[445... []

OBSERVATION: The below shows if any values are TRUE for Returned Packages. Since the returned list is empty, it means no packages were returned.

The current details are split for different trips as per different check-points for that trips. Data can be analysed better if the times of each check-points can be summed up for each trip ID.

```
df_combined_times = df.groupby("trip_uuid")[["segment_actual_time", "segment_osrm_time", "segment_osrm_distance"]].sum()
In [446...
            df combined times["segment osrm distance"] = np.round(df combined times["segment osrm distance"], 2)
            df combined times = df combined times.rename(columns = {"segment_osrm_time" : "accumulated_osrm_time", "segment_actual_time" : "accumula
            df combined times.head()
Out[446...
                                   accumulated actual time accumulated osrm time accumulated osrm distance
                          trip_uuid
           trip-153671041653548748
                                                   1548.0
                                                                         1008.0
                                                                                                 1320.47
           trip-153671042288605164
                                                    141.0
                                                                           65.0
                                                                                                   84.19
           trip-153671043369099517
                                                   3308.0
                                                                         1941.0
                                                                                                 2545.27
                                                     59.0
                                                                                                   19.88
           trip-153671046011330457
                                                                           16.0
```

```
df_combined_times_1 = df.groupby(["trip_uuid","destination_center"])[["actual_time", "osrm_time", "osrm_distance"]].last()
    df_combined_times_1 = df_combined_times_1.reset_index()
    df_combined_times_1 = df_combined_times_1.groupby("trip_uuid")[["actual_time", "osrm_time", "osrm_distance"]].sum()
    df_combined_times_1.head()
```

115.0

146.79

Out [447... actual time osrm_time osrm_distance

trip-153671052974046625

trip_uuid			
trip-153671041653548748	1562.0	717.0	991.3523
trip-153671042288605164	143.0	68.0	85.1110
trip-153671043369099517	3347.0	1740.0	2354.0665
trip-153671046011330457	59.0	15.0	19.6800
trip-153671052974046625	341.0	117.0	146.7918

340.0

Calculation of time difference between OSRM time and Actual Time to know how much time error present present in the OSRM time calculation.

```
In [448...

df_combined_times_1 = df_combined_times_1.reset_index()

df_combined_times = pd.merge(df_combined_times, df_combined_times_1, on = "trip_uuid")

df_combined_times.head()
```

Out[448	trip_uuid	accumulated_actual_time	accumulated_osrm_time	accumulated_osrm_distance	actual_time	osrm_time	osrm_distance
	0 trip-153671041653548748	1548.0	1008.0	1320.47	1562.0	717.0	991.3523
	1 trip-153671042288605164	141.0	65.0	84.19	143.0	68.0	85.1110

2 trip-153671043369099517 3308.0 1941.0 2545.27 3347.0 1740.0 2354.0665 **3** trip-153671046011330457 59.0 16.0 19.88 59.0 15.0 19.6800

4 trip-153671052974046625 340.0 115.0 146.79 341.0 117.0 146.7918

Creating a dataframe with custom names and necessary features to analyse data in a better way.

```
In [449...
           od_start_time = df.groupby('trip_uuid')['od_start_time'].first()
           od start time = od start time.reset index()
           od start time = od start time.rename(columns={'od start time': 'trip start time'})
           df combined times = df combined times.merge(od start time, on='trip uuid', how='left').reset index(drop=True)
           df combined times["trip start date"] = df combined times["trip start time"].dt.date
           trip start location = df.groupby('trip uuid')['source name'].first()
           trip end location = df.groupby('trip uuid')['destination name'].last()
           trip_end_location = trip_end_location.reset_index()
           trip start location = trip start location.reset index()
           df combined times = df combined times.merge(trip start location, on='trip uuid', how='left').reset index(drop=True)
           df combined times = df combined times.merge(trip end location, on='trip uuid', how='left').reset index(drop=True)
           df combined times = df combined times.drop(columns=['trip start time'])
           df combined times.head()
```

Out[449... trip uuid accumulated actual time accumulated osrm time accumulated osrm distance actual time osrm time osrm distance trip start date

1008.0 2018-09-12 1548.0 1320.47 1562.0 717.0 991.3523 153671041653548748 141.0 2018-09-12 65.0 84.19 143.0 68.0 85.1110 153671042288605164 2018-09-12 3308.0 1941.0 2545.27 3347.0 1740.0 2354.0665 153671043369099517 59.0 16.0 19.88 59.0 15.0 19.6800 2018-09-12 153671046011330457

340.0 115.0 146.79 341.0 117.0 146.7918 2018-09-12 Bella 153671052974046625

od_start_time = df.groupby('trip_uuid')['od_start_time'].first() In [450... od start time = od start time.reset index() od start time = od start time.rename(columns={'od_start_time': 'trip_start_time'})

```
df_combined_times = df_combined_times.merge(od_start_time, on='trip_uuid', how='left').reset_index(drop=True)
df_combined_times.head()
```

Out[450...

	trip_uuid	$accumulated_actual_time$	$accumulated_osrm_time$	$accumulated_osrm_distance$	actual_time	osrm_time	osrm_distance	trip_start_date	
0	trip- 153671041653548748	1548.0	1008.0	1320.47	1562.0	717.0	991.3523	2018-09-12	I
1	trip- 153671042288605164	141.0	65.0	84.19	143.0	68.0	85.1110	2018-09-12	-
2	trip- 153671043369099517	3308.0	1941.0	2545.27	3347.0	1740.0	2354.0665	2018-09-12	Bang
3	trip- 153671046011330457	59.0	16.0	19.88	59.0	15.0	19.6800	2018-09-12	
4	trip- 153671052974046625	340.0	115.0	146.79	341.0	117.0	146.7918	2018-09-12	Bella
•									>

Creating a column for Starting Point and Ending Point of a trip using States names

```
df_combined_times["source_name"] = df_combined_times["source_name"].str.split("(").str[1]
    df_combined_times["source_name"] = df_combined_times["source_name"].str.split(")").str[0]
    df_combined_times["source_name"] = df_combined_times["source_name"].apply(lambda x : x.upper())
    df_combined_times["destination_name"] = df_combined_times["destination_name"].str.split("(").str[1]
    df_combined_times["destination_name"] = df_combined_times["destination_name"].str.split(")").str[0]
    df_combined_times["destination_name"] = df_combined_times["destination_name"].apply(lambda x : x.upper())
    df_combined_times.head()
```

Out[451...

••	trip_uuid	$accumulated_actual_time$	${\it accumulated_osrm_time}$	${\it accumulated_osrm_distance}$	actual_time	osrm_time	osrm_distance	trip_start_date	SO
	trip- 153671041653548748	1548.0	1008.0	1320.47	1562.0	717.0	991.3523	2018-09-12	
	trip- 1 153671042288605164	141.0	65.0	84.19	143.0	68.0	85.1110	2018-09-12	K
	trip- 153671043369099517	3308.0	1941.0	2545.27	3347.0	1740.0	2354.0665	2018-09-12	K
	trip- 153671046011330457	59.0	16.0	19.88	59.0	15.0	19.6800	2018-09-12	МАН
	trip- 153671052974046625	340.0	115.0	146.79	341.0	117.0	146.7918	2018-09-12	K

```
od start = df.groupby('trip uuid')['od start time'].first()
In [452...
            od end = df.groupby('trip uuid')['od end time'].last()
            df_combined_times = df_combined_times.set_index('trip_uuid').merge(od_start, left_index=True, right_index=True).reset_index()
            df combined times = df combined times.set index('trip uuid').merge(od end, left index=True, right index=True).reset index()
            df combined times["trip duration"] = (df combined times["od end time"] - df combined times["od start time"]).dt.total seconds()/60
            df combined times.head()
Out[452...
                        trip uuid accumulated actual time accumulated osrm time accumulated osrm distance actual time osrm time osrm distance trip start date
                            trip-
                                                  1548.0
                                                                         1008.0
                                                                                                  1320.47
                                                                                                               1562.0
                                                                                                                           717.0
                                                                                                                                      991.3523
                                                                                                                                                   2018-09-12
              153671041653548748
                            trip-
                                                   141.0
                                                                           65.0
                                                                                                    84.19
                                                                                                                143.0
                                                                                                                            68.0
                                                                                                                                       85.1110
                                                                                                                                                   2018-09-12
              153671042288605164
                            trip-
                                                  3308.0
                                                                         1941.0
                                                                                                  2545.27
                                                                                                               3347.0
                                                                                                                          1740.0
                                                                                                                                     2354.0665
                                                                                                                                                   2018-09-12
              153671043369099517
                            trip-
                                                                                                                 59.0
                                                     59.0
                                                                           16.0
                                                                                                    19.88
                                                                                                                            15.0
                                                                                                                                       19.6800
                                                                                                                                                   2018-09-12 MAH
              153671046011330457
                                                   340.0
                                                                          115.0
                                                                                                   146.79
                                                                                                                341.0
                                                                                                                           117.0
                                                                                                                                      146.7918
                                                                                                                                                   2018-09-12
              153671052974046625
            df start t to end t = df.groupby("trip uuid")[["start scan to end scan", "actual distance to destination"]].last()
In [453...
            df start t to end t = df start t to end t.reset index()
            df combined times = df combined times.merge(df start t to end t, on = "trip uuid")
            df combined times.head()
Out[453...
                        trip uuid accumulated actual time accumulated osrm time accumulated osrm distance actual time osrm time osrm distance trip start date
                            trip-
                                                  1548.0
                                                                         1008.0
                                                                                                                                                   2018-09-12
                                                                                                  1320.47
                                                                                                               1562.0
                                                                                                                           717.0
                                                                                                                                      991.3523
              153671041653548748
                            trip-
                                                   141.0
                                                                           65.0
                                                                                                    84.19
                                                                                                                143.0
                                                                                                                            68.0
                                                                                                                                       85.1110
                                                                                                                                                   2018-09-12
              153671042288605164
                                                  3308.0
                                                                         1941.0
                                                                                                  2545.27
                                                                                                               3347.0
                                                                                                                          1740.0
                                                                                                                                                   2018-09-12
                                                                                                                                     2354.0665
              153671043369099517
                                                     59.0
                                                                           16.0
                                                                                                    19.88
                                                                                                                 59.0
                                                                                                                            15.0
                                                                                                                                       19.6800
                                                                                                                                                   2018-09-12 MAH
              153671046011330457
                                                   340.0
                                                                          115.0
                                                                                                   146.79
                                                                                                                341.0
                                                                                                                           117.0
                                                                                                                                      146.7918
                                                                                                                                                   2018-09-12
              153671052974046625
```

```
In [454...

df_route_type = df.groupby("trip_uuid")["route_type"].first()

df_route_type.reset_index()

df_combined_times = df_combined_times.merge(df_route_type, on = "trip_uuid")

df_combined_times.head()
```

Out[454...

	trip_uuid	accumulated_actual_time	accumulated_osrm_time	accumulated_osrm_distance	actual_time	osrm_time	osrm_distance	trip_start_date	SO
0	trip- 153671041653548748	1548.0	1008.0	1320.47	1562.0	717.0	991.3523	2018-09-12	
1	trip- 153671042288605164	141.0	65.0	84.19	143.0	68.0	85.1110	2018-09-12	K
2	trip- 153671043369099517	3308.0	1941.0	2545.27	3347.0	1740.0	2354.0665	2018-09-12	K
3	trip- 153671046011330457	59.0	16.0	19.88	59.0	15.0	19.6800	2018-09-12	MAH
4	trip- 153671052974046625	340.0	115.0	146.79	341.0	117.0	146.7918	2018-09-12	K
4									+

Organising the columns in a better way

In [455...

df_combined_times.describe()

Out[455...

	accumulated_actual_time	accumulated_osrm_time	accumulated_osrm_distance	actual_time	osrm_time	osrm_distance	trip_start_time	od_start_t
count	13886.000000	13886.000000	13886.000000	13886.000000	13886.000000	13886.000000	13886	13
mean	354.517068	181.261270	223.717758	357.224471	161.361011	204.427524	2018-09-22 13:11:41.328608768	2018-09 13:11:41.328608
min	9.000000	6.000000	9.070000	9.000000	6.000000	9.072900	2018-09-12 00:00:16.535741	2018-09 00:00:16.535
25%	66.000000	30.000000	32.540000	67.000000	29.000000	30.715050	2018-09-17 03:49:13.747945728	2018-09 03:49:13.747945
50%	147.000000	65.000000	69.890000	148.500000	60.000000	65.279050	2018-09-22 03:44:51.733427968	2018-09 03:44:51.733427
75%	364.000000	184.000000	217.410000	367.000000	168.000000	206.312975	2018-09-27 19:52:50.196828928	2018-09 19:52:50.196828
max	6230.000000	2564.000000	3523.630000	6265.000000	2032.000000	2840.081000	2018-10-04 20:15:07.233819	2018-10 20:15:07.23
std	558.675986	315.760533	418.230841	563.367162	272.139846	371.500357	NaN	

```
In [456...

df_combined_times = df_combined_times.loc[:, ['trip_uuid', 'route_type', 'source_name', 'trip_start_date', 'destination_name', 'od_end_t

df_combined_times["od_end_time"] = df_combined_times["od_end_time"].dt.date

df_combined_times = df_combined_times.rename(columns = {"od_end_time" : "trip_end_date"})

df_combined_times.head()
```

Out[456...

	trip_uuid	route_type	source_name	trip_start_date	destination_name	trip_end_date	trip_duration	$actual_distance_to_destination$	start_scan_to_end
0	trip- 153671041653548748	FTL	MADHYA PRADESH	2018-09-12	HARYANA	2018-09-13	2260.109800	383.759164	:
1	trip- 153671042288605164	Carting	KARNATAKA	2018-09-12	KARNATAKA	2018-09-12	181.611874	24.644021	
2	trip- 153671043369099517	FTL	KARNATAKA	2018-09-12	PUNJAB	2018-09-14	3934.362520	237.439610	
3	trip- 153671046011330457	Carting	MAHARASHTRA	2018-09-12	MAHARASHTRA	2018-09-12	100.494935	17.175274	
4	trip- 153671052974046625	FTL	KARNATAKA	2018-09-12	KARNATAKA	2018-09-12	718.349042	41.317614	
4									>

Checking which day was most busy in the data.

```
In [457... most_busy_days = df_combined_times['trip_start_date'].value_counts().sort_index()
most_busy_days
```

Out[457...

count

```
trip_start_date
  2018-09-12
                 647
  2018-09-13
                 689
  2018-09-14
                662
  2018-09-15
                775
  2018-09-16
                570
  2018-09-17
                672
  2018-09-18
                743
  2018-09-19
                 641
  2018-09-20
                675
```

count

trip start date

•	
2018-09-21	681
2018-09-22	705
2018-09-23	575
2018-09-24	607
2018-09-25	646
2018-09-26	656
2018-09-27	606
2018-09-28	575
2018-09-29	569
2018-09-30	480
2018-10-01	560
2018-10-02	510
2018-10-03	593
2018-10-04	49

dtype: int64

```
In [458...
    most_busy_days = df_combined_times['trip_start_date'].value_counts().sort_index().reset_index()
    most_busy_day = sns.barplot(data = most_busy_days, x = "count", y = "trip_start_date")
    bars = most_busy_day.patches
    bars[3].set_facecolor("red")
    # bars[6].set_facecolor("orange")
    # bars[10].set_facecolor("green")
    most_busy_day.set(xlabel = "Number of trips", ylabel = "Trip Date", title = 'Plot of Number of Trip v/s Trip Date')

Out[458...

[Text(0.5, 0, 'Number of trips'),
    Text(0, 0.5, 'Trip Date'),
    Text(0.5, 1.0, 'Plot of Number of Trip v/s Trip Date')]
```

Plot of Number of Trip v/s Trip Date

OBSERVATION: 15th September, 2018 had the most number of trips - 775 trips.

Checking which State handles most trips.

```
In [459... df_top_10_city = df_combined_times["source_name"].value_counts().head(10)

df_top_10_destination_name = df_combined_times["destination_name"].value_counts().head(10)

df_most_busy_city = df_top_10_city.reset_index().merge(df_top_10_destination_name.reset_index(), left_on="source_name", right_on="destindex", right_on="destination_name"])

df_most_busy_city = df_most_busy_city.rename(columns=["destination_name"])

df_most_busy_city = df_most_busy_city.rename(columns = {"count_x" : "from_state", "count_y" : "to_state"})

df_most_busy_city
```

\cap u+	
Out	サンフ

	city_name	from_state	to_state
0	MAHARASHTRA	2524	2440
1	KARNATAKA	2089	2144
2	HARYANA	1574	1568
3	TAMIL NADU	1018	1004
4	DELHI	756	635
5	TELANGANA	733	789
6	GUJARAT	692	704
7	UTTAR PRADESH	677	692
8	WEST BENGAL	632	667
9	PUNJAB	587	647

```
In [460... df_most_busy_city.plot(x = "city_name", y=["from_state", "to_state"], kind="bar")
```

Out[460... <Axes: xlabel='city_name'>

OBSERVATION: Maharashtra is the busiest state handling 2682 trips as source_center and 2591 trips as destination_center. It is followed by Karnataka and Haryana.

	city_name	from_state	to_state
0	GOA	62	60
1	CHANDIGARH	43	27
2	CHHATTISGARH	40	40
3	HIMACHAL PRADESH	31	36
4	Jammu & Kashmir	16	14
5	DADRA AND NAGAR HAVELI	15	13
6	PONDICHERRY	12	10
7	MIZORAM	4	6
8	NAGALAND	4	1
9	ARUNACHAL PRADESH	3	22

In [462... df_least_busy_city.plot(x = "city_name", y=["from_state", "to_state"], kind="bar")

Out[462... <Axes: xlabel='city_name'>

OBSERVATION: Nagaland is the least busiest state handling 5 trips as source_center and 1 trips as destination_center. It is followed by Mizoram.

Checking busiest inter-state corridor

```
In [463...
busy_corridor = df_combined_times[df_combined_times["source_name"] != df_combined_times["destination_name"]]
busiest_corridor_trip_count = busy_corridor.groupby(["source_name", "destination_name"])["trip_uuid"].count().sort_values(ascending=Fals busiest_corridor_trip_count = busiest_corridor.reset_index() busiest_corridor.head()
```

_			г.	/1	-	-	
()	11.	т.	Ι.	ZL	h	-<	
\circ	u	<u>. </u>	ш.	_	\cup	\mathcal{L}	

	source_name	destination_name	trip_uuia
0	DELHI	HARYANA	378
1	HARYANA	DELHI	294
2	DELHI	UTTAR PRADESH	90
3	HARYANA	UTTAR PRADESH	88
4	HARYANA	PUNJAB	78

In [464...

busy_corridor

Out[464...

	trip_uuid	route_type	source_name	trip_start_date	destination_name	trip_end_date	trip_duration	actual_distance_to_destination	start_scan_to
0	trip- 153671041653548748	FTL	MADHYA PRADESH	2018-09-12	HARYANA	2018-09-13	2260.109800	383.759164	
2	trip- 153671043369099517	FTL	KARNATAKA	2018-09-12	PUNJAB	2018-09-14	3934.362520	237.439610	
12	trip- 153671121411074590	FTL	TELANGANA	2018-09-12	KARNATAKA	2018-09-12	996.217031	177.510885	
15	trip- 153671143043841452	FTL	UTTAR PRADESH	2018-09-12	MADHYA PRADESH	2018-09-12	514.616477	129.749996	
33	trip- 153671320412492075	FTL	KARNATAKA	2018-09-12	TELANGANA	2018-09-12	916.941170	163.989437	
•••									
13817	trip- 153860641799000683	Carting	DELHI	2018-10-03	HARYANA	2018-10-04	238.373830	40.489470	
13822	trip- 153860698042160875	FTL	MAHARASHTRA	2018-10-03	PUNJAB	2018-10-05	2661.132086	173.510827	
13824	trip- 153860723585992237	FTL	KARNATAKA	2018-10-03	TELANGANA	2018-10-04	781.643506	96.160037	
13831	trip- 153860787916550213	Carting	DELHI	2018-10-03	HARYANA	2018-10-04	128.067879	45.977014	
13864	trip- 153861014185597051	FTL	MADHYA PRADESH	2018-10-03	HARYANA	2018-10-05	2182.120429	267.020528	

2857 rows × 15 columns

```
In [465...
```

```
busiest_corridor_avg_time = busy_corridor.groupby(["source_name", "destination_name"])["actual_time"].mean().sort_values(ascending=False
busiest_corridor_avg_time = busiest_corridor_avg_time.reset_index()
busiest_corridor_avg_time
```

Out[465...

	source_name	destination_name	actual_time
0	ASSAM	MAHARASHTRA	5457.000000
1	MAHARASHTRA	ASSAM	5067.000000
2	TAMIL NADU	HARYANA	3606.000000
3	KARNATAKA	PUNJAB	3376.562500
4	PUNJAB	KARNATAKA	3374.666667
125	UTTAR PRADESH	RAJASTHAN	92.333333
126	PUNJAB	CHANDIGARH	69.538462
127	DADRA AND NAGAR HAVELI	GUJARAT	48.333333
128	GUJARAT	DAMAN & DIU	43.000000
129	GUJARAT	DADRA AND NAGAR HAVELI	35.538462

130 rows × 3 columns

In [466...

busiest_corridor_avg_dist = busy_corridor.groupby(["source_name", "destination_name"])["actual_distance_to_destination"].mean().sort_val
busiest_corridor_avg_dist = busiest_corridor_avg_dist.reset_index()
busiest_corridor_avg_dist.head()

Out[466...

	source_name	destination_name	actual_distance_to_destination
0	HARYANA	TAMIL NADU	1721.318473
1	PUNJAB	KARNATAKA	1703.183750
2	HARYANA	KARNATAKA	1689.694725
3	MAHARASHTRA	WEST BENGAL	1628.807438
4	ASSAM	MAHARASHTRA	1628.663803

```
In [467...
```

```
df_busiest_corridor_info = busiest_corridor_trip_count.merge(busiest_corridor_avg_time, on = ["source_name", "destination_name"])
df_busiest_corridor_info = df_busiest_corridor_info.merge(busiest_corridor_avg_dist, on = ["source_name", "destination_name"])
df_busiest_corridor_info = df_busiest_corridor_info.rename(columns = {"trip_uuid" : "trip_count", "actual_time" : "avg_time", "actual_di
df_busiest_corridor_info.head()
```

Out[467		index	source_name	destination_name	trip_count	avg_time	avg_distance
	0	0	DELHI	HARYANA	378	142.150794	41.308429
	1	1	HARYANA	DELHI	294	123.370748	44.194511
	2	2	DELHI	UTTAR PRADESH	90	398.266667	130.901959
	3	3	HARYANA	UTTAR PRADESH	88	317.988636	109.622126
	4	4	HARYANA	PUNJAB	78	369.358974	167.022416

OBSERVATION: The busiest inter-city corridor is Delhi - Haryana with trip_count of 378, avg_time for trip of 142.15 and avg_distance of 41.3.

HYPOTHESIS TESTING:

1) Testing if the difference trip_duration and start_scan_to_end_scan is significant using **TWO SAMPLE T-TEST**

```
df tdsses = df combined times.copy()
In [468...
             df tdsses["diff trip duration scan"] = df tdsses["trip duration"] - df tdsses["start scan to end scan"]
             df tdsses.head()
Out[468...
                         trip_uuid route_type
                                                 source_name trip_start_date destination_name trip_end_date trip_duration actual_distance_to_destination start_scan_to_end
                                                     MADHYA
                             trip-
                                          FTL
                                                                  2018-09-12
                                                                                     HARYANA
                                                                                                  2018-09-13
                                                                                                              2260.109800
                                                                                                                                             383.759164
               153671041653548748
                                                    PRADESH
                             trip-
                                       Carting
                                                  KARNATAKA
                                                                  2018-09-12
                                                                                   KARNATAKA
                                                                                                  2018-09-12
                                                                                                               181.611874
                                                                                                                                              24.644021
               153671042288605164
                             trip-
                                          FTL
                                                                                      PUNJAB
                                                                                                                                             237.439610
                                                  KARNATAKA
                                                                  2018-09-12
                                                                                                  2018-09-14
                                                                                                              3934.362520
               153671043369099517
                                       Carting MAHARASHTRA
                                                                  2018-09-12
                                                                                MAHARASHTRA
                                                                                                  2018-09-12
                                                                                                               100.494935
                                                                                                                                             17.175274
               153671046011330457
                                                                                                                                              41.317614
                                          FTL
                                                  KARNATAKA
                                                                  2018-09-12
                                                                                   KARNATAKA
                                                                                                  2018-09-12
                                                                                                               718.349042
               153671052974046625
             df_tdsses.describe()
In [469...
Out[469...
                   trip_duration actual_distance_to_destination start_scan_to_end_scan
                                                                                      actual_time accumulated_actual_time
                                                                                                                             osrm_time accumulated_osrm_time osrm_dis
            count 13886.000000
                                                                                    13886.000000
                                                                                                             13886.000000 13886.000000
                                                                                                                                                                13886.00
                                                13886.000000
                                                                       13886.000000
                                                                                                                                                  13886.000000
                                                  112.203313
                                                                                      357.224471
                                                                                                                            161.361011
            mean
                     547.481429
                                                                         366.983869
                                                                                                               354.517068
                                                                                                                                                    181.261270
                                                                                                                                                                   204.42
```

	trip_duration	actual_distance_to_destination	start_scan_to_end_scan	actual_time	accumulated_actual_time	osrm_time	accumulated_osrm_time	osrm_dis
std	670.405221	249.958253	512.948026	563.367162	558.675986	272.139846	315.760533	371.50
min	23.461468	9.002461	20.000000	9.000000	9.000000	6.000000	6.000000	9.07
25%	151.212210	20.336659	112.000000	67.000000	66.000000	29.000000	30.000000	30.7:
50%	288.308647	35.482491	193.000000	148.500000	147.000000	60.000000	65.000000	65.27
75%	672.193738	75.766009	387.000000	367.000000	364.000000	168.000000	184.000000	206.31
max	7898.551955	1927.447705	7898.000000	6265.000000	6230.000000	2032.000000	2564.000000	2840.08

Creating a function to remove outliers from data

```
def remove_outliers_iqr(df_in, column_in):
    q1 = df_in[column_in].quantile(0.25)
    q2 = df_in[column_in].quantile(0.75)
    iqr = q2 -q1
    lower_bound = q1 - 1.5 * iqr
    upper_bound = q2 + 1.5 * iqr
    df_out = df_in[(df_in[column_in] >= lower_bound) & (df_in[column_in] <= upper_bound)]
    return df_out</pre>
```

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.hist(df_tdsses["diff_trip_duration_scan"], bins=50, edgecolor='black')
plt.xlabel("Difference (Trip Duration - Scan Time)")
plt.ylabel("Frequency")
plt.title("Histogram of frequency of difference between Trip Duration and Scan Time")
plt.grid(True)
plt.show()
```


One trip has 3575 min difference between trip_duration and start_scan_to_end_scan. Delhivery needs to see in detail what happened during this trip to avoid similar time delay on other trips.

In [472... most_delayed_trip = df_tdsses[df_tdsses["diff_trip_duration_scan"] == df_tdsses["diff_trip_duration_scan"].max()]
most_delayed_trip

Out[472... trip_uuid route_type source_name trip_start_date destination_name trip_end_date trip_duration actual_distance_to_destination start_scan_to_er

7192 trip_
153762877083011555 FTL KARNATAKA 2018-09-22 PUNJAB 2018-09-25 4395.09742 236.729936

```
In [473... df_melted = pd.melt(df_tdsses.reset_index(), id_vars = ["index"], value_vars = ["trip_duration", "start_scan_to_end_scan"])
sns.boxplot(x = "variable", y = "value", data = df_melted)
plt.title("Box plot for trip_duration and start_scan_to_end_scan")
plt.show()
```


Removing outliers from the data for first hypothesis testing and plot

101.212537

241.232971

434.753024

522.946584

mean std

```
In [474... data_without_outliers = remove_outliers_iqr(df_tdsses, 'diff_trip_duration_scan')

In [475... data_without_outliers.describe()

Out[475... trip_duration actual_distance_to_destination start_scan_to_end_scan actual_time accumulated_actual_time osrm_time accumulated_osrm_time osrm_discount 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.000000 12610.00000 12610.00000 12610.00000 12610.00000 12610.000000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 12610.00000 126
```

281.652498

453.692249

279.243854

449.624460

124.824187

217.165045

139.981285

252.768832

155.60

296.47

345.697542

499.455847

	trip_duration	actual_distance_to_destination	start_scan_to_end_scan	actual_time	accumulated_actual_time	osrm_time	accumulated_osrm_time	osrm_dis
min	23.461468	9.002461	20.000000	9.000000	9.000000	6.000000	6.000000	9.07
25%	142.736354	19.409633	108.000000	63.000000	62.000000	28.000000	29.000000	29.04
50%	254.301224	32.211022	182.000000	126.000000	124.000000	53.000000	57.000000	52.8!
75%	505.013967	64.024816	345.000000	292.000000	289.000000	129.000000	148.000000	155.1:
max	7898.551955	1927.447705	7898.000000	4532.000000	4504.000000	1686.000000	1938.000000	2326.19

```
In [476... plt.figure(figsize=(10, 6))
    plt.hist(data_without_outliers["diff_trip_duration_scan"], bins=50, edgecolor='black')
    plt.xlabel("Difference (Trip Duration - Scan Time)")
    plt.ylabel("Frequency")
    plt.title("Histogram of frequency of difference between Trip Duration and Scan Time")
    plt.grid(True)
    plt.show()
```

Histogram of frequency of difference between Trip Duration and Scan Time


```
from scipy import stats
    t_statistic, p_value = stats.ttest_rel(data_without_outliers["trip_duration"], data_without_outliers["start_scan_to_end_scan"])
    print("t-statistic:", t_statistic)
    print("p-value:", p_value)

alpha = 0.05
    if p_value < alpha:
        print("Reject the null hypothesis. There is a significant difference between the trip_duration and start_scan_to_end_scan.")
    else:
        print("Fail to reject the null hypothesis. No significant difference between the trip_duration and start_scan_to_end_scan.")</pre>
```

t-statistic: 66.20000827034092
p-value: 0.0
Reject the null hypothesis. There is a significant difference between the trip_duration and start_scan_to_end_scan.
actual_time aggregated value and OSRM time aggregated value

```
In [478...
```

```
df_act_osrm_diff = df_combined_times["actual_time"] - df_combined_times["osrm_time"]
df_act_osrm_test = pd.concat([df_combined_times["actual_time"], df_combined_times["osrm_time"], df_act_osrm_diff], axis = 1)
df_act_osrm_test = df_act_osrm_test.rename(columns = {0 : "diff_actual_time_osrm_time"})
df_act_osrm_test
```

Out[478...

	actual_time	osrm_time	diff_actual_time_osrm_time
0	1562.0	717.0	845.0
1	143.0	68.0	75.0
2	3347.0	1740.0	1607.0
3	59.0	15.0	44.0
4	341.0	117.0	224.0
•••			
13881	83.0	62.0	21.0
13882	21.0	12.0	9.0
13883	282.0	48.0	234.0
13884	264.0	179.0	85.0
13885	275.0	68.0	207.0

13886 rows × 3 columns

In [479...

df_act_osrm_test.describe()

Out[479...

	actual_time	osrm_time	diff_actual_time_osrm_time
count	13886.000000	13886.000000	13886.000000
mean	357.224471	161.361011	195.863460
std	563.367162	272.139846	312.036942
min	9.000000	6.000000	-58.000000
25%	67.000000	29.000000	33.000000
50%	148.500000	60.000000	81.000000
75%	367.000000	168.000000	200.750000
max	6265.000000	2032.000000	4235.000000

```
In [480... df_melted_1 = pd.melt(df_act_osrm_test.reset_index(), id_vars = ["index"], value_vars = ["actual_time", "osrm_time"])
sns.boxplot(x = "variable", y = "value", data = df_melted_1)
plt.title("Box plot for actual_time aggregated value and OSRM time aggregated value")
plt.show()
```

Box plot for actual_time aggregated value and OSRM time aggregated value

Removing outliers

Out[482...

```
In [481... df_act_osrm_test_wo_outliers = remove_outliers_iqr(df_act_osrm_test, 'diff_actual_time_osrm_time')
In [482... df_act_osrm_test_wo_outliers.describe()
```

		actual_time	osrm_time	diff_actual_time_osrm_time
	count	12255.000000	12255.00000	12255.000000
	mean	191.572664	90.04235	101.530314
	std	181.943938	96.58130	98.634021

	actual_time	osrm_time	diff_actual_time_osrm_time
min	9.000000	6.00000	-58.000000
25%	62.000000	27.00000	29.000000
50%	120.000000	51.00000	65.000000
75%	266.500000	120.00000	144.000000
max	1160.000000	709.00000	452.000000

```
In [483...
    t_statistic, p_value = stats.ttest_rel(df_act_osrm_test_wo_outliers["actual_time"], df_act_osrm_test_wo_outliers["osrm_time"])
    print("t-statistic:", t_statistic)
    print("p-value:", p_value)

alpha = 0.05
    if p_value < alpha:
        print("Reject the null hypothesis. There is a significant difference between the means of actual time and OSRM time.")
    else:
        print("Fail to reject the null hypothesis. No significant difference between the means of actual time and OSRM time.")

t-statistic: 113.95297059478418</pre>
```

Reject the null hypothesis. There is a significant difference between the means of actual time and OSRM time.

actual_time aggregated value and segment actual time aggregated value

```
In [484...

df_atav = df.groupby(["trip_uuid", "destination_center"] )[["actual_time"]].last()

df_atav = df_atav.reset_index()

df_atav = df_atav.groupby("trip_uuid")["actual_time"].sum()

df_atav
```

Out[484... actual_time

p-value: 0.0

trip_uuid	
trip-153671041653548748	1562.0
trip-153671042288605164	143.0
trip-153671043369099517	3347.0
trip-153671046011330457	59.0
trip-153671052974046625	341.0
•••	
trip-153861095625827784	83.0
trip-153861104386292051	21.0

actual_time

trip_uuid	
trip-153861106442901555	282.0
trip-153861115439069069	264.0
trip-153861118270144424	275.0

13886 rows × 1 columns

dtype: float64

```
In [485...

df_atav_seg = df.groupby(["trip_uuid"])["segment_actual_time"].sum()

df_atav = df_atav.reset_index()

df_atav = df_atav.merge(df_atav_seg, left_on='trip_uuid', right_on='trip_uuid')

df_atav = df_atav.reset_index()

df_atav
```

Out[485...

	index	trip_uuid	actual_time	segment_actual_time
0	0	trip-153671041653548748	1562.0	1548.0
1	1	trip-153671042288605164	143.0	141.0
2	2	trip-153671043369099517	3347.0	3308.0
3	3	trip-153671046011330457	59.0	59.0
4	4	trip-153671052974046625	341.0	340.0
13881	13881	trip-153861095625827784	83.0	82.0
13882	13882	trip-153861104386292051	21.0	21.0
13883	13883	trip-153861106442901555	282.0	281.0
13884	13884	trip-153861115439069069	264.0	258.0
13885	13885	trip-153861118270144424	275.0	274.0

13886 rows × 4 columns

```
In [486... df_atav["diff_actual_time_segment_actual_time"] = df_atav["actual_time"] - df_atav["segment_actual_time"]
df_atav
```

Out	1106
Out	48b

	index	trip_uuid	actual_time	segment_actual_time	diff_actual_time_segment_actual_time
0	0	trip-153671041653548748	1562.0	1548.0	14.0
1	1	trip-153671042288605164	143.0	141.0	2.0
2	2	trip-153671043369099517	3347.0	3308.0	39.0
3	3	trip-153671046011330457	59.0	59.0	0.0
4	4	trip-153671052974046625	341.0	340.0	1.0
•••					
13881	13881	trip-153861095625827784	83.0	82.0	1.0
13882	13882	trip-153861104386292051	21.0	21.0	0.0
13883	13883	trip-153861106442901555	282.0	281.0	1.0
13884	13884	trip-153861115439069069	264.0	258.0	6.0
13885	13885	trip-153861118270144424	275.0	274.0	1.0

13886 rows × 5 columns

In [487...

df_atav.describe()

Out[487...

	index	actual_time	segment_actual_time	diff_actual_time_segment_actual_time
count	13886.000000	13886.000000	13886.000000	13886.000000
mean	6942.500000	357.224471	354.517068	2.707403
std	4008.687254	563.367162	558.675986	15.587310
min	0.000000	9.000000	9.000000	-692.000000
25%	3471.250000	67.000000	66.000000	1.000000
50%	6942.500000	148.500000	147.000000	1.000000
75%	10413.750000	367.000000	364.000000	3.000000
max	13885.000000	6265.000000	6230.000000	49.000000

```
In [488... df_melted_2 = pd.melt(df_atav.reset_index(), id_vars = ["trip_uuid"], value_vars = ["actual_time", "segment_actual_time"])
sns.boxplot(x = "variable", y = "value", data = df_melted_2)
```

Box plot for actual_time aggregated value and segment actual time aggregated value

In [489... df_atav_out = remove_outliers_iqr(df_atav, "diff_actual_time_segment_actual_time")

In [490... df_atav_out.describe()

Out[490...

	index	actual_time	segment_actual_time	diff_actual_time_segment_actual_time
count	12226.000000	12226.000000	12226.000000	12226.000000
mean	6968.800671	206.758057	205.156306	1.601750
std	4024.241243	230.690712	229.885216	1.545385
min	1.000000	9.000000	9.000000	0.000000
25%	3491.250000	62.000000	61.000000	0.000000
50%	6984.500000	119.000000	118.000000	1.000000
75%	10474.750000	268.000000	265.000000	2.000000
max	13885.000000	3051.000000	3051.000000	6.000000

```
t_statistic, p_value = stats.ttest_rel(df_atav_out["actual_time"], df_atav_out["segment_actual_time"])
print("t-statistic:", t_statistic)
print("p-value:", p_value)

alpha = 0.05
if p_value < alpha:
    print("Reject the null hypothesis. There is a significant difference between actual_time aggregated value and segment actual time ag else:
    print("Fail to reject the null hypothesis. No significant difference between the actual_time aggregated value and segment actual time t-statistic: 114.60415429602853
p-value: 0.0</pre>
```

Reject the null hypothesis. There is a significant difference between actual_time aggregated value and segment actual time aggregated value.

osrm distance aggregated value and segment osrm distance aggregated value

```
In [492...

df_odav = df.groupby(["trip_uuid", "destination_center"] )[["osrm_distance"]].last()

df_odav = df_odav.reset_index()

df_odav = df_odav.groupby("trip_uuid")["osrm_distance"].sum()

df_odav
```

Out [492... osrm_distance

trip_uuid	
trip-153671041653548748	991.3523
trip-153671042288605164	85.1110
trip-153671043369099517	2354.0665
trip-153671046011330457	19.6800
trip-153671052974046625	146.7918
trip-153861095625827784	73.4630
trip-153861104386292051	16.0882
trip-153861106442901555	58.9037
trip-153861115439069069	171.1103
trip-153861118270144424	80.5787

13886 rows × 1 columns

dtype: float64

```
df_odav_seg = df.groupby(["trip_uuid"])["segment_osrm_distance"].sum()
df_odav = df_odav.reset_index()
df_odav = df_odav.merge(df_odav_seg, left_on='trip_uuid', right_on='trip_uuid')
df_odav = df_odav.reset_index()
df_odav["diff_osrm_distance_segment_osrm_distance"] = df_odav["segment_osrm_distance"] - df_odav["osrm_distance"]
df_odav
```

Out[493...

	index	trip_uuid	osrm_distance	segment_osrm_distance	diff_osrm_distance_segment_osrm_distance
(0	trip-153671041653548748	991.3523	1320.4733	329.1210
1	. 1	trip-153671042288605164	85.1110	84.1894	-0.9216
2	2 2	trip-153671043369099517	2354.0665	2545.2678	191.2013
3	3	trip-153671046011330457	19.6800	19.8766	0.1966
4	4	trip-153671052974046625	146.7918	146.7919	0.0001
1388	13881	trip-153861095625827784	73.4630	64.8551	-8.6079
13882	13882	trip-153861104386292051	16.0882	16.0883	0.0001
13883	13883	trip-153861106442901555	58.9037	104.8866	45.9829
13884	13884	trip-153861115439069069	171.1103	223.5324	52.4221
1388	13885	trip-153861118270144424	80.5787	80.5787	0.0000

13886 rows × 5 columns

In [494...

df_odav.describe()

Out[494...

	index	osrm_distance	segment_osrm_distance	diff_osrm_distance_segment_osrm_distance
count	13886.000000	13886.000000	13886.000000	13886.000000
mean	6942.500000	204.427524	223.717759	19.290235
std	4008.687254	371.500357	418.230836	62.574964
min	0.000000	9.072900	9.072900	-63.777600
25%	3471.250000	30.715050	32.536550	0.000000
50%	6942.500000	65.279050	69.893950	1.070050

index osrm_distance segment_osrm_distance diff_osrm_distance_segment_osrm_distance

75%	10413.750000	206.312975	217.413800	11.066075
max	13885.000000	2840.081000	3523.632400	814.338100

```
In [495... df_melted_3 = pd.melt(df_odav.reset_index(), id_vars = ["trip_uuid"], value_vars = ["osrm_distance", "segment_osrm_distance"])
sns.boxplot(x = "variable", y = "value", data = df_melted_3)
plt.title("Box plot for osrm distance aggregated value and segment osrm distance aggregated value")
plt.show()
```

Box plot for osrm distance aggregated value and segment osrm distance aggregated value


```
In [496... df_odav_out = remove_outliers_iqr(df_odav, "diff_osrm_distance_segment_osrm_distance")
In [497... df_odav_out.describe()
```

\cup	u L	-)	/	

	illuex	osi iii_uistance	segment_osm_uistance	dili_osilii_distance_seginent_osilii_distance
count	11642.000000	11642.000000	11642.000000	11642.000000
mean	6960.771345	106.179303	109.061455	2.882152
std	4016.936646	143.249945	144.799905	6.958126
min	1.000000	9.072900	9.072900	-16.560000
25%	3491.250000	27.902875	29.045550	0.000000
50%	6961.500000	46.804600	52.472000	0.003700
75%	10444.750000	135.382300	138.896125	4.597875
max	13885.000000	2191.403700	2191.403700	27.638800

index osrm distance segment osrm distance diff osrm distance segment osrm distance

```
In [498...
    t_statistic, p_value = stats.ttest_rel(df_odav["osrm_distance"], df_odav["segment_osrm_distance"])
    print("t-statistic:", t_statistic)
    print("p-value:", p_value)

alpha = 0.05
    if p_value < alpha:
        print("Reject the null hypothesis. There is a significant difference between the means of osrm_distance and segment_osrm_distance.")
else:
        print("Fail to reject the null hypothesis. No significant difference between the means of osrm_distance and segment_osrm_distance.")

t-statistic: -36.326662531995815
p-value: 4.16124894311804e-276
Reject the null hypothesis. There is a significant difference between the means of osrm_distance and segment_osrm_distance.")</pre>
```

hypothesis testing/ visual analysis between osrm time aggregated value and segment osrm time aggregated value

 Out [500...
 index
 trip_uuid
 osrm_time
 segment_osrm_time
 diff_osrm_time_segment_osrm_time

 0
 0
 trip-153671041653548748
 717.0
 1008.0
 291.0

	index	trip_uuid	osrm_time	segment_osrm_time	diff_osrm_time_segment_osrm_time
1	1	trip-153671042288605164	68.0	65.0	-3.0
2	2	trip-153671043369099517	1740.0	1941.0	201.0
3	3	trip-153671046011330457	15.0	16.0	1.0
4	4	trip-153671052974046625	117.0	115.0	-2.0
•••					
13881	13881	trip-153861095625827784	62.0	62.0	0.0
13882	13882	trip-153861104386292051	12.0	11.0	-1.0
13883	13883	trip-153861106442901555	48.0	88.0	40.0
13884	13884	trip-153861115439069069	179.0	221.0	42.0
13885	13885	trip-153861118270144424	68.0	67.0	-1.0

13886 rows × 5 columns

In [501...

df_otav.describe()

Out[501...

	index	osrm_time	segment_osrm_time	diff_osrm_time_segment_osrm_time
count	13886.000000	13886.000000	13886.000000	13886.000000
mean	6942.500000	161.361011	181.261270	19.900259
std	4008.687254	272.139846	315.760533	55.656760
min	0.000000	6.000000	6.000000	-22.000000
25%	3471.250000	29.000000	30.000000	-1.000000
50%	6942.500000	60.000000	65.000000	1.000000
75%	10413.750000	168.000000	184.000000	14.000000
max	13885.000000	2032.000000	2564.000000	691.000000

```
In [502... df_melted_5 = pd.melt(df_otav.reset_index(), id_vars = ["trip_uuid"], value_vars = ["osrm_time", "segment_osrm_time"])
sns.boxplot(x = "variable", y = "value", data = df_melted_5)
plt.title("Box plot for osrm time aggregated value and segment osrm time aggregated value")
plt.show()
```

Box plot for osrm time aggregated value and segment osrm time aggregated value

In [503... df_otav_out = remove_outliers_iqr(df_otav, "diff_osrm_time_segment_osrm_time")

In [504... df_otav_out.describe()

Out[504...

	index	osrm_time	segment_osrm_time	diff_osrm_time_segment_osrm_time
count	12007.000000	12007.000000	12007.000000	12007.000000
mean	6946.192055	93.731906	97.760140	4.028234
std	4014.461562	119.210060	121.901811	8.497559
min	1.000000	6.000000	6.000000	-22.000000
25%	3483.000000	27.000000	28.000000	-1.000000
50%	6939.000000	50.000000	53.000000	0.000000
75%	10428.500000	120.000000	127.000000	6.000000
max	13885.000000	1611.000000	1611.000000	36.000000

Hot encoding of categorical variables

```
In [506...

df_route_type = df.groupby("trip_uuid")["route_type"].first()

df_route_type.reset_index()

df_route_type
```

Out[506...

route_type

trip_uuid	
trip-153671041653548748	FTL
trip-153671042288605164	Carting
trip-153671043369099517	FTL
trip-153671046011330457	Carting
trip-153671052974046625	FTL
trip-153861095625827784	Carting
trip-153861104386292051	Carting
trip-153861106442901555	Carting
trip-153861115439069069	Carting
trip-153861118270144424	FTL

13886 rows × 1 columns

dtype: object

```
df_route_type.value_counts()
In [507...
Out[507...
                      count
           route_type
              Carting
                       8363
                  FTL
                       5523
          dtype: int64
            df_combined_times['route_type'] = df_combined_times['route_type'].map({'FTL':0, 'Carting':1})
In [508...
            df combined times.head()
Out[508...
                        trip uuid route type
                                               source name trip start date destination name trip end date trip duration actual distance to destination start scan to end
                                                   MADHYA
                                                               2018-09-12
                                                                                  HARYANA
                                                                                              2018-09-13
                                                                                                          2260.109800
                                                                                                                                       383.759164
              153671041653548748
                                                   PRADESH
                                                KARNATAKA
                                                               2018-09-12
                                                                                KARNATAKA
                                                                                                           181.611874
                                                                                                                                        24.644021
                                                                                              2018-09-12
              153671042288605164
                                          0
                                                KARNATAKA
                                                               2018-09-12
                                                                                   PUNJAB
                                                                                                          3934.362520
                                                                                                                                       237.439610
                                                                                              2018-09-14
              153671043369099517
                            trip-
                                                                            MAHARASHTRA
                                                                                                           100.494935
                                          1 MAHARASHTRA
                                                               2018-09-12
                                                                                              2018-09-12
                                                                                                                                        17.175274
              153671046011330457
                            trip-
                                                               2018-09-12
                                                                                KARNATAKA
                                                                                              2018-09-12
                                                                                                           718.349042
                                                                                                                                        41.317614
                                                KARNATAKA
              153671052974046625
          Normalize/ Standardize the numerical features using MinMaxScaler or StandardScaler
            df scaled = df combined times.copy()
In [509...
            df scaled = df scaled.drop(columns = ["trip uuid", "trip start date", "trip end date", "source name", "destination name"])
            df scaled
Out[509...
                  route type trip duration actual distance to destination start scan to end scan actual time accumulated actual time osrm time accumulated osrm time
               0
                              2260.109800
                                                                                                                         1548.0
                                                                                                                                                          1008.0
                                                            383.759164
                                                                                     1260.0
                                                                                                 1562.0
                                                                                                                                    717.0
                                                                                       58.0
                                                                                                                                      68.0
                               181.611874
                                                             24.644021
                                                                                                  143.0
                                                                                                                          141.0
                                                                                                                                                            65.0
                2
                               3934.362520
                                                            237.439610
                                                                                      834.0
                                                                                                 3347.0
                                                                                                                         3308.0
                                                                                                                                    1740.0
                                                                                                                                                          1941.0
                3
                               100.494935
                                                             17.175274
                                                                                      100.0
                                                                                                   59.0
                                                                                                                           59.0
                                                                                                                                     15.0
                                                                                                                                                            16.0
```

	route_type	trip_duration	actual_distance_to_destination	start_scan_to_end_scan	actual_time	accumulated_actual_time	osrm_time	accumulated_osrm_time
4	0	718.349042	41.317614	485.0	341.0	340.0	117.0	115.0
•••								
13881	1	405.485842	31.261599	105.0	83.0	82.0	62.0	62.0
13882	1	60.590521	15.513784	60.0	21.0	21.0	12.0	11.0
13883	1	422.119867	19.349008	248.0	282.0	281.0	48.0	88.0
13884	1	348.512862	33.673835	91.0	264.0	258.0	179.0	221.0
13885	0	354.407571	40.546740	287.0	275.0	274.0	68.0	67.0

13886 rows × 10 columns

In [510...

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df_scaled)
df_scaled_data = pd.DataFrame(scaled_data, columns = df_scaled.columns)
df_scaled_data.head()

Out[510...

•••		route_type	trip_duration	$actual_distance_to_destination$	start_scan_to_end_scan	actual_time	accumulated_actual_time	osrm_time	accumulated_osrm_time	osrm
	0	-1.230534	2.554709	1.086444	1.741011	2.138603	2.136347	2.041814	2.618340	
	1	0.812655	-0.545764	-0.350308	-0.602390	-0.380271	-0.382198	-0.343075	-0.368208	
	2	-1.230534	5.052173	0.501047	0.910488	5.307166	5.286766	5.801046	5.573217	
	3	0.812655	-0.666765	-0.380189	-0.520508	-0.529380	-0.528979	-0.537835	-0.523394	
	4	-1.230534	0.254881	-0.283600	0.230083	-0.028800	-0.025986	-0.163014	-0.209854	

In [511...

df_scaled_data.describe()

Out[511...

	route_type	trip_duration	$actual_distance_to_destination$	start_scan_to_end_scan	actual_time	accumulated_actual_time	osrm_time	accumulated_osrn
count	1.388600e+04	1.388600e+04	1.388600e+04	1.388600e+04	1.388600e+04	1.388600e+04	1.388600e+04	1.38860
mean	-4.707614e-17	-3.326032e- 17	-2.558486e-17	4.042408e-17	-2.200298e- 17	3.019013e-17	-2.046789e- 17	-2.14912
std	1.000036e+00	1.000036e+00	1.000036e+00	1.000036e+00	1.000036e+00	1.000036e+00	1.000036e+00	1.00003
min	-1.230534e+00	-7.816747e-	-4.128872e-01	-6.764747e-01	-6.181351e-	-6.184793e-01	-5.709072e-	-5.55064

	route_type	trip_duration	$actual_distance_to_destination$	start_scan_to_end_scan	actual_time	$accumulated_actual_time$	osrm_time	accumulated_osrn
		01			01		01	
25%	-1.230534e+00	-5.911104e- 01	-3.675412e-01	-4.971128e-01	-5.151790e- 01	-5.164486e-01	-4.863888e- 01	-4.7905!
50%	8.126555e-01	-3.866052e- 01	-3.069456e-01	-3.391964e-01	-3.705079e- 01	-3.714578e-01	-3.724727e- 01	-3.68207
75%	8.126555e-01	1.860320e-01	-1.457788e-01	3.902316e-02	1.735259e-02	1.697455e-02	2.439638e-02	8.6737!
max	8.126555e-01	1.096551e+01	7.262452e+00	1.468236e+01	1.048692e+01	1.051718e+01	6.874063e+00	7.54630

INSIGHTS:

- 1. The data is of 23 Days starting from 2018-09-12 and ending on 2018-10-04.
- 2. The data has 136557 entries across 24 columns. But the analysis is performed on 136059 after removing some incomplete rows/data.
- 3. No packages were returned to source location. That means all the packages were transported and delivered as destination.
- 4. 13886 trips were made during these 23 days.
- 5. Most busy day was 2018-09-15, on which 775 trips were made.
- 6. Maharashtra is the busiest state in terms of trips which are made from and to state, followed by Karnataka and Haryana.
- 7. Nagaland is the least busiest state handling 5 trips as source_center and 1 trips as destination_center. It is followed by Mizoram.
- 8. The busiest inter-city corridor is Delhi Haryana with trip_count of 378, avg_time for trip of 142.15 and avg_distance of 41.3
- 9. Based on Hypothesis tests done between:
 - trip_duration and start_scan_to_end_scan
 - actual_time aggregated value and OSRM time aggregated value
 - actual_time aggregated value and segment actual time aggregated value
 - osrm distance aggregated value and segment osrm distance aggregated value
 - osrm time aggregated value and segment osrm time aggregated value

It is observed that there is significant difference betweeen actual values and OSRM values.

10. Frequency of Carting is 8363 and FTL 5523 for the trips.

RECOMMENDATIONS:

1. Looking at the data, it can be seen that the number of trips were mostly in the range of 500 to 600. It can be incressed to 700 - 800 range with better planning and management for better business and profits.

- 2. Maharashtra, Karnataka, and Haryana are strong states for business since they have the most trips IN and OUT. We need to focus on these states to make a robust model which we can replicate in other target states and futher move on to international trips.
- 3. Eastern states have very few trips. It may be mostly due to limitations in mode of transportation or difficulty in movement. We need to study local geography of these states and innovate to create more trips in these States to increase foothold and provide our service before competetion.
- 4. Inter-state trip is comparatively less that inter-city trips as seen from number of inter-city trips (Maharashta at more than 2000 trips) and number of inter-state trips (DELHI HARYANA 378 trips). We should tap the business opportunity of inter-state trip and move on to international trips.
- 5. The algorithm used for calculating the OSRM parameters should be optimized to have it more closer to actual parameters. This will lead us to better management of trips setting better customer satisfaction.