

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

SIGUD

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:			Tecnológica										
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:							
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO													
NOMBRE DEL ESPACIO ACADÉMICO: FÍSICA DE ONDAS													
Código del espacio académico:			24701	Número de créditos académicos:				3					
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	5					
Tipo de espacio académico:			Asignatura	х	Cátedra								
			NATUR/	ALEZA DEL ESPACIO ACA	DÉMICO:								
Obligatorio Básico	- X -		atorio mentario		Electivo Intrínseco		Electivo Extrínseco						
CARÁCTER DEL ESPACIO ACADÉMICO:													
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:					
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:													
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:					

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

Se sugiere que el estudiante haya cursado física mecánica y fundamentos de matemáticas aplicadas. Son valiosas las nociones básicas de cálculo diferencial e integral, álgebra lineal, y conocimientos elementales de programación científica. Se espera además que el estudiante demuestre pensamiento lógico, capacidad de abstracción, y disposición hacia el trabajo experimental.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La asignatura de Física de Ondas brinda las bases conceptuales para comprender fenómenos fundamentales como la propagación de señales, la interacción materia-energía, y la naturaleza cuántica de la materia, pilares esenciales en los desarrollos tecnológicos de la Industria 4.0. El estudio de la teoría ondulatoria y cuántica permite abordar problemas actuales en telecomunicaciones, sensores inteligentes, láseres, nanotecnología, computación cuántica, óptica cuántica e inteligencia artificial.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General

Comprender los principios fundamentales de la física ondulatoria y moderna para aplicarlos en el análisis de fenómenos físicos relacionados con la propagación, detección, procesamiento y cuantización de señales en entornos tecnológicos e industriales contemporáneos.

Objetivos Específicos

Analizar matemáticamente el comportamiento de sistemas ondulatorios en medios físicos y tecnológicos.

Comprender la dualidad onda-partícula y sus implicaciones en tecnologías emergentes.

Introducir formalmente los conceptos básicos de la mecánica cuántica moderna.

Conectar fenómenos ondulatorios con el diseño y funcionamiento de sensores, redes de comunicación, láseres y sistemas ópticos.

Aplicar conceptos físicos en la modelación computacional y la simulación de fenómenos ondulatorios.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación

Fortalecer competencias en análisis matemático y modelado de sistemas físicos ondulatorios y cuánticos.

Relacionar principios de la física moderna con tecnologías como telecomunicaciones, sensores ópticos y computación cuántica.

Desarrollar pensamiento crítico, experimental y computacional mediante prácticas de laboratorio y simulación.

Fomentar una conciencia ética sobre el uso de tecnologías derivadas de la física moderna.

Resultados de Aprendizaje

Analiza modelos matemáticos de ondas y los aplica a fenómenos físicos reales.

Interpreta resultados experimentales sobre propagación, interferencia, difracción y resonancia.

Aplica principios de física cuántica en la interpretación de fenómenos microfísicos.

Simula y modela procesos ondulatorios usando herramientas computacionales básicas.

Relaciona principios físicos con aplicaciones tecnológicas en sensores, comunicaciones y energía.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos del Movimiento Ondulatorio (4 semanas)

Tipos de ondas: mecánicas, electromagnéticas, acústicas

Ecuación de onda y soluciones senoidales

Energía, potencia e intensidad de las ondas

Ondas estacionarias y resonancia

Aplicaciones en telecomunicaciones y sensores de ultrasonido

2. Dualidad Onda-Partícula y Fotónica (4 semanas)

Efecto fotoeléctrico y Leyes de Einstein

Modelos atómicos (Bohr, espectros atómicos)

Rayos X y radiación electromagnética

Introducción a la fotónica: LEDs, láseres y comunicaciones ópticas

3. Naturaleza Cuántica de la Materia (4 semanas)

Ondas de De Broglie

Principio de incertidumbre de Heisenberg

Experimentos de doble rendija

Aplicaciones en sensores cuánticos y microscopía de túnel

4. Introducción a la Mecánica Cuántica (4 semanas)

Ecuación de Schrödinger unidimensional

Partícula en una caja, barreras de potencial y efecto túnel

Oscilador armónico cuántico

Aplicaciones tecnológicas: resonadores MEMS/NEMS, nanotecnología, bits cuánticos

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Se aplicarán estrategias de enseñanza activa con base en aprendizaje por proyectos, resolución de problemas, simulaciones computacionales (como PhET, GeoGebra, Python o MATLAB), y experimentos de laboratorio con sensores y materiales de bajo costo. Las clases teóricas se complementarán con lecturas dirigidas, análisis de casos, y talleres colaborativos.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorios de ondas y óptica, sensores de luz y sonido, osciloscopios, software de simulación (PhET, Python, MATLAB), acceso a bases de datos científicas. kits de experimentación remota o virtual..

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se sugiere la organización de visitas a centros de investigación o laboratorios de óptica, telecomunicaciones o nanofísica. También pueden proponerse prácticas de campo donde se analicen fenómenos acústicos, vibraciones o propagación electromagnética en entornos urbanos o industriales.

XI. BIBLIOGRAFÍA

Krane, K. (1991). Física Moderna. Ed. Limusa

Tipler, P., & Mosca, G. (2005). Física para la ciencia y la tecnología. Ed. Reverté

Resnick, R., & Eisberg, R. (1978). Física Cuántica. Ed. Limusa

Alonso, M. & Finn, E. (1971). Física Cuántica y Estadística. Ed. Fondo Educativo

Feynman, R. (2011). The Feynman Lectures on Physics

Simuladores y recursos digitales: https://phet.colorado.edu, https://www.geogebra.org

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricula	r:
--------------------------------------	----

Fecha aprobación por Consejo Curricular: Número de acta: