

THEME: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN HEALTHCARE

TITLE: MEDPREDICT - ADVANCED MEDICAL PREDICTION SYSTEM USING RANDOMFOREST CLASSIFIER ALGORITHM

DR M.G.R EDUCATIONAL AND RESEARCH INSTITUTE

REG NO:221121101018 ANUSHA.C REG NO:221121101062 JASHWANTH.G

□ INTRODUCTION :

- ➤ **Medical prediction** plays a crucial role in early disease detection, reducing mortality rates, and enabling timely treatment.
- Traditional diagnosis relies on **blood tests**, **ECGs**, **MRIs**, and doctor consultations, which can be time-consuming and expensive.
- ➤ AI-powered medical prediction systems offer automated, fast, and accurate disease detection using machine learning models.
- ➤ MedPredict is an advanced multi-disease prediction system that uses the RandomForest Classifier to diagnose:
 - 1 .Heart Disease
 - 2. Diabetes
 - 3. Stroke
 - 4. High Blood Pressure (Hypertension)
 - 5. Fatty Liver
 - 6. Anemia

EXISTING WORK:

- > Traditional Disease Diagnosis:
 - Manual medical checkups, lab tests, and specialist consultations.
 - High cost, longer wait times, and limited accessibility.
- AI-Based Medical Prediction Systems:
 - Several ML algorithms have been used for disease classification, including Decision Trees,
 SVM, Naïve Bayes, and Neural Networks.
 - However, most models either lack accuracy or are too complex for real-time implementation.
- Limitations of Existing Systems:
 - Many lack user-friendly interfaces.
 - Require high computational power or cloud dependency.
 - Do not integrate IoT-based real-time data collection

> DATASET & FEATURE SELECTION

• Used Kaggle for Collecting datasets

***** Key Features:

- Heart Disease: BP, cholesterol, ECG, age, smoking.
- Diabetes: Glucose, BMI, insulin, age, family history.
- Stroke: BP, heart disease history, BMI, smoking.
- Kidney Disease: Creatinine, urea, BP, RBC, sodium.
- **Hypertension:** BP, weight, sodium intake, heart rate.

> MACHINE LEARNING MODEL

***** Why RandomForest?

- Handles high-dimensional medical data.
- Works well with imbalanced datasets.
- Provides higher accuracy than traditional classifiers.

***** Training Process:

- Data preprocessing & feature selection.
- Training with hyperparameter tuning.
- Model evaluation (accuracy 88.23)

Random Forest

> GUI IMPLEMENTATION :

Tkinter (Desktop GUI):

• Lightweight, offline use, simple input & instant predictions.

> PROGRAM OUTPUT:

□ FUTURE SCOPE :

- 1. Heart Disease
- 2. Hypertension (High Blood Pressure)
- 3. Diabetes (Type 1 & Type 2)
- 4. Stroke
- 5. Chronic Kidney Disease (CKD)
- 6. Liver Disease (Cirrhosis, Hepatitis)
- 7. Thyroid Disorders (Hypothyroidism, Hyperthyroidism)
- 8. Anemia
- 9. Leukemia (Blood Cancer)
- 10. Lung Diseases (COPD, Asthma)
- 11. HIV/AIDS
- 12. Hepatitis B & C
- 13. Rheumatoid Arthritis (RA)
- 14. Systemic Lupus Erythematosus (SLE)
- 15. Osteoporosis

- 16. Sepsis (Blood Infection)
- 17. Polycystic Ovary Syndrome (PCOS)
- 18. Prostate Cancer
- 19. Breast & Ovarian Cancer
- 20. Colorectal Cancer
- 21. Alzheimer's Disease & Dementia
- 22. Depression & Anxiety Disorders
- 23. Blood Clotting Disorders (DVT, Hemophilia)
- 24. Malnutrition & Vitamin Deficiencies
- 25. Pancreatic Diseases (Pancreatitis, Cancer)
- 26. Inflammatory Bowel Disease (IBD, Crohn's, Ulcerative Colitis)
- 27. Metabolic Syndrome (Obesity, Insulin Resistance)
- 28. Tuberculosis (TB)
- 29. Hyperlipidemia (High Cholesterol)
- 30. Hormonal Imbalances (Testosterone, Estrogen Disorders)

□ EXISTING IOT DEVICES VS MEDPREDICT IOT DEVICE

Feature	Existing IoT Devices	MedPredict IoT Device
Multi-Disease	Most devices are disease-specific	Detects multiple diseases using
Detection	(diabetes, ECG, BP, ketones).	blood and urine analysis.
Integrated Blood &	Most devices analyze either blood	Combines blood and urine analysis
Urine Testing	or urine, not both.	for comprehensive health
		monitoring.
AI-Powered Disease	Limited or no AI predictions.	Uses trained ML models (MedPredict
Prediction		AI) for disease forecasting.
Bluetooth & Mobile	Available in some devices but	Bluetooth-enabled data transfer for
Connectivity	mostly for data viewing only.	real-time analysis and prediction.
Cost-Effectiveness	Devices like Cue are expensive due	A reusable system, reducing costs in
1	to disposable cartridges.	the long run.
Data Storage &	Most devices provide only instant	Stores and analyzes long-term health
Trends Analysis	readings without historical	trends via AI.
1	tracking.	
Customizable ML	Generic algorithms with no user-	Personalized AI predictions based on
Models	specific tuning.	user's historical data.
User-Friendly Home	Some devices require complex	Designed for easy home use with
Testing	setup or hospital use.	instant mobile alerts.
Offline Functionality	Most require internet/cloud access	Can operate offline, processing data
1	for processing.	locally before syncing.
Integration with	Limited integration with doctors or	Connects with doctors via reports
Telemedicine	hospitals.	sent from the mobile app.

☐ COMMON TESTS:

Test	Diseases Predicted	
Blood Glucose (Sugar)	Type 1 & Type 2 Diabetes, Metabolic Syndrome	
Cholesterol	Heart Disease, Stroke, Atherosclerosis	
CBC (Complete Blood Count)	Anemia, Leukemia Infections, Blood Disorders	
Liver Function Tests	Hepatitis, Cirrhosis, Fatty Liver Disease, Liver Cancer	
Kidney Function Tests	Kidney Disease, Acute Kidney Injury, Chronic Kidney Disease	
Thyroid Function	Hypothyroidism, Hyperthyroidism	
Vitamin & Mineral Levels	Osteoporosis, Anemia, Neurological Disorders	
Coagulation Tests	Blood Clotting Disorders, DVT, Pulmonary Embolism	
CRP & ESR (Inflammatory Markers)	Inflammatory Diseases, Cardiovascular Disease, Autoimmune Disorders	
Genetic Tests	Cancer, Alzheimer's Disease, Heart Disease, Genetic Disorders	
Tumor Markers	Various Cancers (Breast, Ovarian, Prostate, etc.)	
Autoimmune Disease Tests	Lupus, Rheumatoid Arthritis, Autoimmune Hepatitis	
Urinalysis & Microalbuminuria	Kidney Disease, Diabetes, Urinary Tract Infections, Bladder Cancer	

☐ AI GENERATED IOT DEVICE IMAGE :

☐ MEDPREDICT IOT DEVICE - SENSOR LIST AND FUNCTIONS

1. Blood Analysis Sensors

Sensor Name	Function	Use in MedPredict
Glucometer Sensor (e.g., CGM Sensors like FreeStyle Libre)	Measures blood glucose levels	Helps in diabetes prediction
Optical Blood Sensor (PPG - Photoplethysmography)	Measures oxygen saturation (SpO2), pulse rate, and blood volume changes	Used for detecting heart conditions and respiratory issues
Electrochemical Sensor	Detects specific biomarkers like cholesterol, uric acid, hemoglobin, etc.	Useful for heart disease and kidney function monitoring
pH Sensor	Measures blood acidity levels	Used in metabolic disorder detection
Lactate Sensor	Detects lactic acid levels	Helps in muscle fatigue and sepsis detection
Biosensors (Lab-on-a-Chip)	Detects enzymes, proteins, and hormonal levels	Can be used for thyroid, liver, and kidney disease detection

2. Urine Analysis Sensors

Sensor Name	Function	Use in MedPredict
pH Sensor	Measures urine acidity	Helps in detecting kidney stones, UTIs, and metabolic disorders
Urine Glucose Sensor	Measures glucose levels in urine	Helps in diabetes monitoring
Protein Sensor (Albumin Detector)	Detects protein leakage in urine (albuminuria)	Early detection of kidney disease
Ketone Sensor	Measures ketone levels in urine	Useful for diabetes and ketoacidosis detection
Nitrate & Leukocyte Sensor	Detects infection-related compounds	Helps in UTI detection
Creatinine Sensor	Measures creatinine levels	Used for kidney function monitoring
Uric Acid Sensor	Detects uric acid levels	Helps in diagnosing gout and kidney issues
Specific Gravity Sensor	Measures urine concentration	Used to detect hydration levels and kidney function

JERUSALEM

3. Supporting Sensors

Sensor Name	Function	Use in MedPredict
Temperature Sensor (DS18B20 or MLX90614)	Measures body temperature	Helps in fever and infection monitoring
Heart Rate & ECG Sensor (AD8232, MAX30102)	Measures heart rate and ECG signals	Used for cardiac disease risk prediction
Blood Pressure Sensor (MPX5050GP, BP Monitoring Module)	Measures systolic & diastolic blood pressure	Helps in hypertension monitoring
Oxygen Sensor (SpO2 - MAX30100, MAX30102)	Measures oxygen saturation levels	Useful in respiratory and cardiac disease detection
Bluetooth/Wi-Fi Module (ESP32, HC-05)	Enables data transmission to the phone app	Sends test data to MedPredict Al application for analysis

□ CONCLUSION:

- JERUSALEM

 COLLEGE OF ENGS
- **❖ MedPredict AI-Powered Advanced Medical Prediction System** is a revolutionary step toward **early disease detection** and **comprehensive health monitoring**.
- Multi-Disease Diagnosis: Predicts heart disease, diabetes, stroke, kidney disease, and more.
- AI & IoT Integration: Real-time blood & urine analysis via IoT devices with AI-driven insights.
- Affordable & User-Friendly: A cost-effective solution for home-based health monitoring.
- **Future Scope**: Expanding to more diseases, integrating telemedicine, and real-time wearable monitoring.
- MedPredict aims to transform healthcare by making disease prediction accessible, accurate, and AI-powered!

□ REFERENCES:

1. Machine Learning for Early Disease Prediction

Jiang, F., et al. (2017). "Artificial Intelligence in Healthcare: Past, Present, and Future." Artificial Intelligence in Medicine.

DOI: 10.1016/j.artmed.2017.10.004

2. IoT-Based Healthcare Monitoring Systems

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2021). "Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions." Future Generation Computer Systems. DOI: 10.1016/j.future.2013.01.010

3. Wearable Biosensors for Continuous Health Monitoring

Bonato, P. (2020). "Wearable Sensors and Systems for Health Monitoring." IEEE Sensors Journal.

DOI: 10.1109/JSEN.2020.2972212

4. Al-Based Prediction of Heart Disease

Lundervold, S. M., & Lundervold, A. (2019). "AI-Based Decision Support for Cardiovascular Disease Diagnosis." Journal of Biomedical Informatics.

DOI: 10.1016/j.jbi.2019.103208

5. IoT and AI for Diabetes Monitoring

A. Hussain et al. (2021). "Smart Healthcare Systems for Diabetes Prediction and Monitoring Using IoT and Machine

6. Blood and Urine Biomarkers for Disease Detection

K. Patel et al. (2020). "Advances in Biosensors for Non-Invasive Disease Detection Using Blood and Urine Samples." Biosensors and Bioelectronics.

DOI: 10.1016/j.bios.2020.112417

7. Al-Driven Diagnosis of Chronic Kidney Disease (CKD)

J. Smith et al. (2019). "Chronic Kidney Disease Prediction Using Machine Learning Models." International Journal of Medical Informatics.

DOI: 10.1016/j.ijmedinf.2019.104012

8. Real-Time Health Data Transmission via Bluetooth and IoT

M. Shah et al. (2022). "IoT and Bluetooth-Based Real-Time Health Monitoring Systems." Sensors Journal.

DOI: 10.3390/s22072654

THANK YOU