2A Multivariable Calculus 2020

Differentiation

Find the derivatives of the following functions

a)
$$y = (2x + 3)^6$$

b)
$$y = \frac{3}{\sin(2x)}$$

c)
$$y = \sqrt{x+7}$$

d)
$$y = x^3 \tan(x)$$

e)
$$y = \frac{\ln x}{x}$$

$$f) y = \cos(3x + 2)$$

g)
$$y = \frac{1+\sqrt{x}}{1-\sqrt{x}}$$

h)
$$y = e^{x^2}$$

i)
$$y = \sec(\sqrt{x}) + 3$$

$$j) \ y = \sin^{-1} x$$

a)
$$12(2x+3)^5$$
 b) $-6\csc(2x)\cot(2x)$ c) $\frac{1}{2\sqrt{x+7}}$ d) $3x^2$ to

a)
$$12(2x+3)^5$$
 b) $-6\csc(2x)\cot(2x)$ c) $\frac{1}{2\sqrt{x+7}}$ d) $3x^2\tan(x) + \frac{x^3}{\cos^2 x}$ e) $\frac{1-\ln x}{x^2}$ f) $-3\sin(3x+2)$ g) $\frac{1}{\sqrt{x}(1-\sqrt{x})^2}$ h) $2xe^{x^2}$ i) $\frac{\sec\sqrt{x}\tan\sqrt{x}}{2\sqrt{x}}$ j) $\frac{1}{\sqrt{1-x^2}}$

Integration

Compute the following integrals Q2

a)
$$\int xe^x dx$$

b)
$$\int \frac{x}{2x^2 + 5x + 2}$$

c)
$$\int e^{-x} \sin(2x) dx$$

$$d) \int \frac{3}{4x^2 - 1} \, dx$$

e)
$$\int \frac{\cos x}{4 + \sin^2 x} \, dx$$

f)
$$\int xe^{-4x^2} dx$$

g)
$$\int \sin x \cos x \, dx$$

h)
$$\int_0^8 \frac{\cos(\sqrt{x+1})}{\sqrt{x+1}} \, dx$$

i)
$$\int \ln x \, dx$$

j)
$$\int \frac{2+3x+x^2}{x(x^2+1)} dx$$

Solution

a)
$$xe^{x} - e^{x} + C$$
 b) $\frac{2}{3} \ln|x+2| - \frac{1}{6} \ln|2x+1| + C$ c) $-e^{-x} \left(\frac{2}{5} \cos 2x + \frac{1}{5} \sin 2x\right) + C$
d) $\frac{3}{4} \ln\left|\frac{2x-1}{2x+1}\right| + C$ e) $\frac{1}{2} \tan^{-1} \left(\frac{\sin x}{2}\right) + C$ f) $\frac{-1}{8} e^{-4x^{2}} + C$ g) $\frac{-1}{4} \cos(2x) + C$ h) $2 \sin 3 - 2 \sin 1$ i) $x \ln x - x + C$ j) $2 \ln x + 3 \tan^{-1} x - \frac{1}{2} \ln(x^{2} + 1) + C$.

Vector algebra

Q3 Let
$$\mathbf{a} = (1,5,3)$$
, $\mathbf{b} = (2,4,7)$, $\mathbf{c} = (2,0,-1)$. Find $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \times \mathbf{b}$, $\mathbf{b} \times \mathbf{c}$, $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$.

$$\mathbf{a} \cdot \mathbf{b} = 43$$
, $\mathbf{a} \times \mathbf{b} = (23, -1, -6)$, $\mathbf{b} \times \mathbf{c} = (-4, 16, -8)$, $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = 52$.

Suppose that ${\boldsymbol u}$ and ${\boldsymbol v}$ are unit vectors and the angle between them is $\pi/4$. Let $\mathbf{a} = \mathbf{u} + 3\sqrt{2}\mathbf{v}$. By considering $\mathbf{a} \cdot \mathbf{a}$, find $|\mathbf{a}|$.

Solution
$$|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{25} = 5.$$

Let **u** and **v** be non-zero *parallel* vectors. Find $\mathbf{u} \times \mathbf{v}$. Q₅

Solution —

$$\mathbf{u} \times \mathbf{v} = 0$$

Q6 Let **a** and **b** be non-zero vectors, simplify $(\mathbf{a} + 2\mathbf{b}) \times (3\mathbf{a} - 4\mathbf{b})$. Solution —

$$(\mathbf{a} + 2\mathbf{b}) \times (3\mathbf{a} - 4\mathbf{b}) = -10\mathbf{a} \times \mathbf{b}.$$

Q7 Let $\mathbf{a} = (-5, 4, 2)$ and $\mathbf{b} = (-2, 1, 2)$. Calculate $\mathbf{a} \times \mathbf{b}$ and hence find the two unit vectors perpendicular to both \mathbf{a} and \mathbf{b} .

$$\mathbf{a} \times \mathbf{b} = (6,6,3).$$
 The two unit vectors are $\pm \left(\frac{2}{3},\frac{2}{3},\frac{1}{3}\right)$.

Q8 Let
$$\mathbf{a} = (1, 2, 3)$$
, $\mathbf{b} = (2, -1, 1)$ and $\mathbf{c} = (1, 4, -1)$.

- a) Obtain the value of $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ by working out the value of a 3×3 determinant.
- b) Without performing separate determinant expansions, write down the values of $\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})$ and $\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a})$.

Solution ———

a)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 30$$
 b) $\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = 30$, $\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a}) = -30$.