Mini Curso 10

ESCOAMENTO MULTIFÁSICO: UMA APLICAÇÃO EM MISTURAS GÁS-LÍQUIDO PARA PADRÃO INTERMITENTE

Parte I – Conceitos Básicos

Prof. Eugênio Spanó Rosa
Departamento de Energia – FEM
erosa@fem.unicamp.br
www.2pfg.fem.unicamp.br

Plano da Apresentação

- 1. Introdução
- 2. Conceitos básicos
- 3. Padrões de Escoamentos e Mapas
- 4. Regime Golfadas
- 5. Balanços Volumétricos

O Que é Escoamento Multifásico?

São **misturas** onde duas ou mais **fases imiscíveis**, separadas por uma interface, escoam simultaneamente.

O que é Fase?

Uma região do espaço delimitada por uma interface de espessura infinitesimal que encerra em seu interior um material (gas, líquido ou sólido) com composição química homogênea e propriedades definíveis.

Coreeq 2012 – Prof. Eugênio S. Rosa

Dimensão Característica das Fases

- A. <u>Gás-Ar</u> –> escala molecular, partículas indistinguíveis, tratamento pela teoria clássica de misturas (termodin).
- **B.** <u>Óleo-Água</u> -> emulsão, escala intermediária, dominado por forças viscosas, tratamento micro-hidrodinâmica.
- C. <u>Ar-Água</u> -> mistura com dimensões macroscópicas, fases distinguíveis. <u>Teoria de Esc. Multifásicos aplica-se nesta escala.</u>

Em Que Difere o Escoamento Multifásico do Monofásico?

Duas ou mais fases ao serem transportados por um fluido interagem entre si trocando massa, quantidade de movimento e energia. É necessário modelar as forças interfaciais. Exemplos do dia a dia...

Exemplo da interação entre uma 'partícula' sólida e o ar!

O ar, ao passar pela automóvel, é defletido gerando uma força no carro (arrasto e sustentação). Por sua vez o carro exerce uma força igual e contrária no fluido. Forças interfaciais são iguais e contrárias.

Uma gota de líquido em ar.

Há casos onde a forma da partícula se deforma devido a troca de quantidade de movimento com o fluido

População de bolhas em água

Fenômenos onde há partículas, com diversos tamanhos, que interagem entre si e com o meio contínuo trocando massa, quantidade de movimento e energia.

Foco desta apresentação

- Escoamento gás-líquido
- Na sequencia são apresentados uma série de fenômenos envolvendo escoamento gás-líquido.
- Procure identificar:
 - A forma das fases
 - Os mecanismos físicos envolvidos: força peso, força centrífuga, inércia, viscosidade, transf. calor
 - A origem das forças interfaciais, as áreas interfaciais, potencial para transferência de calor e massa

Exemplos

Exemplos continuação...

Exemplos continuação...

CANAL SUP. LIVRE

HIDROCICLONE

REATOR GAS-LÍQ

Escoamentos gás-líquido podem ser governados por uma diversidade de fenômenos tornando desafiador a sua modelagem.

The blind man and the elephant - wikipedia

Redefinindo o foco da apresentação

- Noções básicas de escoamento gás-líquido em tubulações.
- Aplicação: produção de óleo e gás

Coreeq 2012 – Prof. Eugênio S. Rosa

EVOLUÇÃO DA PROFUNDIDADE DE PRODUÇÃO DE PETRÓLEO OFFSHORE NO BRASIL

Mistura Bifásica Gás-Líquido

- · Coexistem no escoamento as fases líquida e gás.
- A distribuição espacial das fases é classificada qualitativamente por padrões.

Gás Aumentando

Métodos de Análise Escoamento Multifásico

- <u>Experimental</u> observa, realiza medidas e em condições controladas de laboratório.
- <u>Fenomenológica ou Mecanicista</u> uso de modelos físicos simples que possibilitam uma solução analítica/numérica do problema (Shoham e Wallis).
- <u>Equações Médias</u> reduzem a complexidade do processamento computacional realizando um processo de média nas equações de transporte.
- <u>CFD</u> resolve as equações de transporte a partir dos princípios básicos de conservação (técnicas de seguimento de interface, VOF etc).

2. Conceitos básicos

- Variáveis 1D do Escoamento bifásico
- Modelo 1D de Deslizamento (drift)
- Modelo 1D Homogêneo

Fração de gás $\rightarrow \alpha = A_G/A$

$$\rightarrow \alpha = A_G/A$$

Fração de líquido \rightarrow (1- α) = A₁/A

Vel. Superficial Líq. \rightarrow J₁ = U₁ (1- α) = Q₁/A

Vel. Superficial Gas \rightarrow J_G = U_G α = Q_G/A

Vel. Mistura \rightarrow J = J₁ + J₆

Vel. Deslizamento $\rightarrow U_{G,J} = U_{G} - J$

G.B. Wallis. One Dimensional Two-Phase Flow. McGraw-Hill, New York, 1969.

Relação Cinemática de Deslizamento

Marco histórico na área (<u>Zuber</u>
 <u>e Findlay</u>). Relaciona a fração
 de vazio com a velocidade
 superficial:

$$U_G = \frac{J_G}{\alpha} = C_0 \cdot J + U_{G,J}$$

C₀ e U_{G,J} são parâmetros .

- U_G é representado pela soma de dois componentes:
 - i. transporte por J
 - ii. Parcela de deslizamento

Os parâmetros C₀ e U_{G,i}

• Padrão bolhas dispersas: $0.9 < C_0 < 1.2$, o parâmetro é dependente do perfil de α (core-peak ou wall-peak) e do tamanho da bolha; $U_{G,J}$ depende do regime da bolha (stokes, newton, distorcido, etc) usualmente expresso $U_{G,J} = (1-\langle \alpha \rangle) \sqrt{\frac{4}{3} \frac{d_p}{C_D} \frac{\Delta \rho}{\rho_f} g Sen\theta}$ em função de C_D :

• Padrão Golfadas: $C_0 \cong 1.2$ (±0.1) para regime turbulento; $U_{G,J}$ dependência: ângulo de inclinação θ , Re, Eo. Para escoamento vertical ar-água, d> 25mm:

$$U_{\rm G,J} = 0.345 \sqrt{\frac{\Delta \rho}{\rho_{\rm f}} \, gd}$$

Os parâmetros C₀ e U_{G,j}

• Padrão anular: este é padrão já possui as fases separadas! α é determinado a partir de um balanço de forças:

$$-\frac{\tau_{wf}S_{wf}}{\left(1-\left\langle\alpha\right\rangle\right)A}+\frac{\tau_{i}S_{i}}{\left(1-\left\langle\alpha\right\rangle\right)\left\langle\alpha\right\rangle A}-\left(\rho_{f}-\rho_{p}\right)g_{z}=0$$

as tensões dependem das velocidades das fases e do lpha

• Ishii expressa C_0 por meio de uma solução aproximada da eq. acima, $C_0 \cong 1$ e propõe $\langle v_{p,i} \rangle^{\alpha} = 0$.

Relação de Fechamento para lpha

A fração de vazio pode ser estimada pela relação de Zuber
 & Findlay :

$$\alpha = \frac{J_G}{C_0 \cdot J + U_{G,J}}$$

 Sendo que as velocidades estão relacionadas com as vazões volumétricas da seção

$$J_G = \alpha U_G \equiv \frac{Q_G}{A}$$
 e $J_L = (1 - \alpha)U_L \equiv \frac{Q_L}{A}$

Verificação para escoamento em bolhas dispersas

Escoamento Homogêneo

• Quando as fases estão fortemente acopladas , não há movimento relativo entre elas, portanto $U_G = U_L = J$ então $C_0 = 1$ e $U_{G,J} = 0$. Neste caso:

$$\frac{J_G}{\alpha} = \alpha_0 \cdot J + U_{G,J} \qquad \longrightarrow \qquad \alpha_h = \frac{J_G}{J}$$

• Comparando $\alpha_{\rm h}$ contra α encontra-se:

$$\rightarrow \frac{\alpha}{\alpha_h} = \frac{1}{C_0 + U_{G,J}/J} \le 1$$

- α_h pode ser tomado como um limite superior de α . Isto é, se vc encontrar $\alpha > \alpha_h$ verifique seus cálculos!
- Há exceções onde Co \sim 0.9 (bolhas) e pode ser que Co+ $U_{G,J}/J < 1$

3. Mapas de Padrões Gás Líquido

- Mapa padrão para escoamento vertical e mecanismos de transição.
- Mapa de padrão para escoamento horizontal e mecanismos de transição .

Padrões Gás Líquido

- Padrões de escoamento são <u>descritores linguísticos</u> que descrevem como o arranjo das fases gás e líquido está distribuídos espacialmente ou temporalmente.
- Bolhas, intermitente e anular são alguns dos descritores empregados para escoamentos de gás e líquido.

• Pode-se associar a cada arranjo de fases (padrões) forças interfaciais que por sua vez vão definir o escoamento bifásico.

Mapas para Padrões Gás Líquido

- Mapas de padrões são cartas que identificam a transição entre um padrão e outro por meio da velocidade das fases.
- Uma **transição** entre padrões ocorre quando o padrão vigente se torna **instável**.
- Transições entre padrões são definidas por análise de estabilidade do escoamento que depende de:
 - força g,
 - da geometria (diâmetro, rugosidade, inclinação),
 - propriedades do escoamento (P, T, z_i, vazões)
 - e propriedade dos fluidos (ρ , μ , σ).

3.1 Mapa Vertical – Taitel (1980)

Identificação Padrões – ar-água, \(\phi \) 26mm, Le/D 200

3.1 Mapa Padrão Escoamento Vertical

<u>Churm</u> – um regime agitado, próximo ao injetor que eventualmente atinge o padrão slug (Taitel 1980).

Churn – um regime de transição entre o slug e o anular. Hewiit & Jayanti (1993) definiram os sub-padrões slugchurn (slug instável) e churn-anular (semi-anular).

Exemplo: distância injetor le/d=200 (J_L,J_G) área azul -> slug (J_L,J_G) área vermelha -> churn

3.1 Interpretação das linhas de transição

- O padrão muda continuamente e não aos saltos ao cruzar a linha como sugere o mapa!
- A linha é uma indicação da região onde ele muda, p. ex., de bolhas para intermitente note porém que existe o capa esférica entre estes dois padrões.

Interpretação das linhas de transição

 Se você não se convenceu de que é difícil identificar uma transição tente você mesmo definir uma p/ a figura abaixo!

Mapa Vertical & Fração Vazios

 Mapas poderiam ser feitos em termos da fração de vazios ou mesmo do gradiente de pressão (Shohan, 2005)

Como se Criam Slugs – Esc. Vertical?

- O aumento da concentração de gás faz com que as bolhas coalesçam formando bolhas alongadas (α > 0.25, Taitel 1980).
- -Disputa entre turbulência (quebra de bolha) e coalescência.
- máximo empacotamento α = 0.52 e escoamento homogêneo
- Tubulações com diâmetros superiores a 100mm (4") não formam slugs; transicionam bolhas->agitado->anular (Azzopardi, 2008)
- Fenômeno não capturado pelo mapa e também pouco estudado (transições, estabilidade da bolha etc)

3.2 Mapa Horizontal – Taitel (1976) Identificação Padrões – ar-água, φ 25mm

3.2 Como se criam Slugs – esc. horizontal?

Em escoamentos quase horizontais, quando o gás aumenta ele deixa de ser estratificado e passa a ser ondulado.

As ondas que se formam devem-se a instabilidade de Kelvin Helmholtz. Quando elas tocam a parte superior do tubo elas 'prendem' uma bolsa de gás que eventualmente vão se segregando e formam os slug

3.2 O que é instabilidade de Kelvin-Helmholtz?

Ela ocorre quando há o escoamento entre duas correntes paralelas (com ou sem viscosidade) submetido a uma perturbação (onda) inicial.

A condição para o início da instabilidade:

$$\rho_1 v_1^2 / \lambda > \rho_2 g$$

O exemplo mais familiar é o vento sobre águas calmas. As menores ondulações são amplificadas para pequenas ondas e eventualmente para ondas que quebram formando espumas brancas. Veja revisão em <u>Funada & Joseph (2001)</u>

4. Padrão Golfadas

Definições: 'slug' ou 'intermittent' (inglês); golfadas de líquido ou intermitente.

- Sub definições: 'slug' (pistão aerado), 'plug' (pistão não aerado p/ horizontal.
- Características do padrão golfadas
- Velocidade nariz da bolha
- Linhas de corrente e perfis de velocidades
- Mecanismo interação entre bolhas
- Coalescência
- Perfis de bolhas
- Fração de líquido no pistão e mecanismos de aeração

Referências gerais: 'annual review Fabre' e 'Slug flow Fabre'.

4.1 Slug Flow: características & nomenclatura

Sequencia de pistões de líquido seguidos por bolhas alongadas. Ele ocorre em tubulações horizontais, verticais e inclinadas:

- Lf → comprimento filme de líquido
- LS → comprimento pistão de líquido
- $\delta f \rightarrow espessura filme de líquido$
- Rf → fração líquido no filme
- RS → fração líquido no pistão
- Ut → velocidade translação nariz da bolha
- VGf → vel. gás na bolha
- VLf → vel. líquido no filme
- VGS → vel. gás no pistão
- VLS → vel. líquido no pistão

4.1 SLUG FLOW: características

- 1. O 'slug flow' é um padrão com a alternância no espaço e no tempo dos pistões de líquido (padrão bolhas dispersas) e a bolha alongada (padrão fases separadas anular)
- 2. A intermitência entre pistão e bolha é irregular (não periódica) no espaço e no tempo;

- 3. Ou, as bolhas e pistões não ocorrem com tamanhos e periodicidade definidas.
- 4. Há interações cinemáticas e dinâmicas entre as sucessivas bolhas e pistões que introduzem flutuações de tamanhos e velocidades.

Escoamento vertical ascendente (ar-água), diâmetro 26mm, J_L = 30 cm/s & J_G = 60 cm/s

4.2 Velocidade Translação do Nariz da Bolha

- O nariz da bolha viaja mais rápido que todos os outros elementos do escoamento.
- Seu modelo cinemático é 'parecido' com a relação de 'drift flux' apresentada.

$$Ut = C_0 J + C_{\infty} \sqrt{g.D \left(\frac{\rho_L - \rho_G}{\rho_L}\right)}$$

- C é a velocidade de deslizamento
- C₀ é o parâmetro de distribuição

4.2 Parâmetro de deslizamento, C∞

- Para água e diâmetros maiores que 30mm C_{∞} é constante.
- Vertical $C_{\infty} = 0.34$
- Hor. $C_{\infty} = 0.54$
- Informações adicionais em: Gomez (2010), Fabre (1992), Viana & Joseph (2003) e Clift, Grace and Weber 1978.

Escoamento vertical, White e Beardmore 1962

4.2 Parâmetro de Distribuição, C₀

 É definido de forma aproximada como sendo a razão entre as velocidades média e máxima do líquido na tubulação <u>Nicklin</u> (1962), <u>Polonsky</u> (1999).

$$C_{0} \cong \frac{U_{\text{Max}}}{\overline{U}} \Rightarrow \begin{cases} \text{Re}_{J} < 1000 \rightarrow C_{0} \cong 2.0 \\ \text{Re}_{J} > 1000 \rightarrow \begin{cases} vertical \rightarrow C_{0} \cong 1.2 \\ horizon \rightarrow C_{0} \cong 1.0 - 1.2 \end{cases}$$

- Bendiksen (1984) propõe uma dependência com Froude definido por J/(gD)^{0.5}
- Informações adicionais em Gomez (2010) e Fabre (1992)

C₀ e C_∞ sem efeitos da tensão superficial e para líquidos com viscosidade baixa

Author	$V_B = C_0 j + C_1 \sqrt{gD}$		Re	Geometry
	C_0	C_1		
Nicklin et al. (1962)	1,2	0,351	> 8000	Vertical
Dukler e Hubbard (1975)	1,022 + 0,021 ln Re _j	-	30000 to 400000	Horizontal
	1,10 $Fr_i \le 2,26$	$0,44 Fr_i \le 2,26$		
Ferré (1979)	$1,30 2,26 < Fr_j < 8,28$	$0 2,26 \le Fr_j < 8,28$		Horizontal
	$1,02 Fr_j \ge 8,28$	$3 Fr_j \ge 8,28$		
Bendiksen (1984)	$\begin{vmatrix} 1,05+0,15(\sin\beta)^2 & Fr_{j_L} < 3,5 \\ 1,2 & Fr_{j_L} \ge 3,5 \end{vmatrix}$	$0,54\cos\beta + 0,35\sin\beta Fr_{j_L} < 3,5$ $0,35\sin\beta Fr_{j_L} \ge 3,5$		Horizontal and Vertical
Dukler et al. (1985)	1,225	-	> 8000	Horizontal and Vertical
Théron (1989)	$1,3 - \frac{0,23}{\Gamma} + 0,13(\sin\beta)^2$	$\left(-0.5 + \frac{0.8}{\Gamma}\right)\cos\beta + 0.35\sin\beta$		Horizontal and Vertical
Manolis (1995)	1,033 $Fr_j < 2,86$	$0,477 ext{ } Fr_j < 2,86$		
	$1,216 Fr_j \ge 2,86$	$0 Fr_j \ge 2,86$		
Woods e Hanratty (1996)	$1,1 ext{ } Fr_i < 3,1$	$0.52 ext{ } Fr_i < 3.1$		Horizontal
	$1,2 Fr_j \ge 3,1$	$0 Fr_j \ge 3,1$		
Petalas e Aziz (1998)	$\frac{1,64 + 0,12 \text{sen}\beta}{\text{Re}_{j}^{0,031}}$	-		Horizontal and Vertical
	(Fr)	Ċ.		

Where: $Fr_{j_L} = \frac{j_L}{\sqrt{gD}}$; $\Gamma = 1 + \left(\frac{Fr_j}{Fr_{Crit}}\cos\beta\right)$, with $Fr_{crit} = 3.5$; $Re_j = \frac{\rho_L jD}{\mu_L}$; $\beta = Pipe$ inclination from horizontal

Mito x Fato: $C_0 = 1.2$ não é uma constante universal! Veja espalhamento dos valores por Bendiksen, \pm 0.2

Coreeq 2012 – Prof. Eugênio S. Rosa

Medidas Experimental VB médio

4.3 Linhas de corrente e perfil velocidades

Referencial movendo-se com a bolha e estacionário

 Na bolha não há grad P; U_f > 0 mas seu valor é pequeno pois o mecanismo de arrasto pelo gás da bolha não é eficiente.

4.3 Linhas de corrente e perfil velocidades

Referencial movendo-se com a bolha e estacionário

- Na bolha não há gradiente de Pressão;
- O filme desce em 'queda livre', U_f < 0;
- Esta é uma diferença 'substantiva' em relação ao escoamento horizontal.

4.4 Mecanismo de interação entre bolhas

- Se LS < <u>LS_{stable}</u> (Dukler 1985) então a esteira da bolha montante (1) interfere no Ut da bolha jusante (2).
- A bolha (2) é acelerada pq Umax cresce!
- Se U_t(2) > U_t(1), LS diminui com o tempo até que B(2) coalesce com B(1) & LS=0 mecanismo instável.
- Populações LS < Ls_{stable} tendem a desaparecer, 'slug desenvolvido'.

- A massa de gás da B2 e B3 se somam para formar nB2
- A medida que LS₂₋₃ diminui o líquido é transferido aumentando LS₃₋₄.
- Na coalescência LS₂₋₃ desaparece! LS₃₋₄ aumenta.
- A coalescência é o único mecanismo que faz aumentar LS

3.4 Evolução de LS

ar-água, horz., d = 25mm, (JL,JG) (33;67) cm/s

LS/D comprimento médio

LS/D populações

Taxa coalescência, % #bolhas por D

3.4 Lei de Esteira

Moissis & Griffith (1962) (esc. vertical)

$$V = V_{\infty} \left[1 + 8 \exp\left(-1.06 \frac{L_{S}}{D}\right) \right]$$

Barnea & Taitel (1993) - vertical Nydal & Banerjee (1995) - vertical Grenier (1997) - horizontal

3.4 LS_{stable} – falta de concordância

- O comprimento estável do pistão é aquele onde não há mais interação entre a bolha a montante e jusante.
- Ele governa o fenômeno de coalescência e também o critério para transição 'churn' (Taitel 1980).
- Inspecionando as leis de esteira verifica-se que LS_{stable} ~10D, entretanto para estudos de transição considera-se LS_{stable} ~16D e outros até 32D!
- Observe também que as leis de esteira não possuem dependência com Re.

4.5 Perfil da Bolha

 O perfil da bolha (body) é determinado a partir do 'modelo 1D de fases separadas' (aula #2).
 Conhecendo-se o perfil pode-se determinar R_f.

- A forma da bolha é determinada unicamente por
 U_t entre outros parâmetros.
- Assim para um J constante as bolhas deverão apresentar o mesmo perfil!

4.5 Perfil da bolha para escoamento horizontal

(Fagundes Neto, 1999)

3.5 Nariz da bolha

 A medida que J aumenta a tendência do nariz da bolha é deslocar em direção ao centro da tubulação.

Oliveira et al. 2012 - EBECEM

#1 (33,67) FLOW #2 (33, 133) FLOW (33, 167)FLOW #5 **(67, 67)** FLOW #6 (67, 133) FLOW (67, 167)FLOW Coreed 2012 – Prof. Eugênio S. Rosa

3.6 Fração de líquido no pistão de líquido e mecanismo de aeração do pistão de líquido

- Correlações para determinação de RS não são confiáveis.
- Em geral elas aplicam-se para o conjunto de dados onde foram obtidas mas não trazem generalidade para outras aplicações.
- Modelos para aeração do pistão de líquido estão em desenvolvimento; <u>Fernandes</u> (1983), <u>Brauner</u> (2004), <u>Guet</u> (2006)

4.6 Mecanismo aeração por impacto de jato numa piscina

Iniciação do processo de entranhamento de gás pelo impacto do jato na piscina

4.6 Mecanismo aeração por impacto de jato numa piscina

Transporte do gás pelo impacto do jato, Chanson (1999) http://www.uq.edu.au/~e2hchans

4.6 Abordagem

- Trabalhos recentes (Barnea e Guet)
 modelam aeração considerando 3 regiões:
 - (i) filme de líquido na bolha
 - (ii) esteira da bolha
 - (iii) região do pistão de líquido
- Vazão gás produzida no filme Q_{Ge}
- Vazão gás retorna p/ bolha em W, Q_{Gb}
- Vazão gás no pistão $S\infty$, Q_{Gs}
- Balanço: a vazão líquida que vai para o pistão é dada por: Q_{Ge}-Q_{Gb}=Q_{Gs}
- Considera-se LS > LS_{stable}, portanto o escoamento está desenvolvido e 'periódico'.

4.6 Aeração para escoamentos vertical e horizontal são distintas.

 Vertical, D > 50 mm, Vb < Ut vel. Bolhas dispersas menor vel. bolha alongada (Taitel 1980); portanto o LS_∞ fica aerado em toda sua extensão.

 Escoamento horizontal, Vb ~ Ut, não há deslizamento pq 'g' atua transversal a direção principal do escoamento. A tendência é que haja somente a região de esteira com recirculação, dificilmente o pistão fica todo aerado.

5. Balanços Volumétricos

- Conceito de célula
- Fator de intermitência
- J_L e J_G médios na seção
- Balanço fase líquida (scooping)
- Balanço fase gás (scooping)
- Fração de gás na célula
- Sumário de relações

5.1 Conceito de célula

 A célula é constituída por um pistão seguido por uma bolha. Ela é um elemento 'quase periódico' no escoamento.

Cell time: Tu Cell length: Lu

5.1 Conceito de célula unitária

- A célula unitária foi originalmente proposta por Wallis (1969):
- 1. LS > LSstable, não há interação entre bolhas visinhas
- 2. Os pistões e bolhas possuem os mesmos tamanhos (médios)
- 3. <u>De (1) e (2) conclui-se que escoamento é periódico sem interação entre bolhas!</u>
- Neste cenário não é necessário resolver o escoamento em toda a extensão da linha mas basta resolvê-lo para uma única célula pois esta se repete em todo o tubo.
- Esta abordagem simplificou o problema e permitiu que os primeiros modelos surgissem.

5.2 Fator de Intermitência, β

 A dificuldade de modelar o escoamento intermitente é o fato que o pistão e a bolha se alternam no espaço e no tempo.

 O fator de intermitência é um parâmetro utilizado para ponderar propriedades no espaço ou tempo.

$$\beta = Lf/(Lf+LS) = Lf/LU$$

5.2 Fator de Intermitência, β

 Reconhecendo que os comprimentos Lf e LS podem ser expressos produto da velocidade da bolha e o tempo de duração (L=T*U), então

$$\beta = Tf/(Tf+TS) = Tf/TU$$

 β também pode ser expresso pela fração de líquido reconhecendo que: RU = RS(1-β)+Rf β, onde Ru é a fração de líquido da célula, portanto:

$$\beta = (RU-RS)/(Rf+RS)$$

5.3 J_L e J_G médios no espaço (tempo)

• As vazões mássicas de líquido e de gás que atravessam uma seção transversal do tubo podem também ser expressas por meio de médias ponderadas no espaço (ou tempo) que utilizam as velocidades da bolha e pistão; $\overline{R_{\rm f}} = \frac{1}{\rm Lf} \int\limits_0^{\rm Lf} R_{\rm f}(z) dz$

$$\dot{M}_{L} = \rho_{L} \cdot V_{LS} \cdot A \cdot RS \cdot (1 - \beta) + \rho_{L} \cdot \overline{V_{Lf}} \cdot A \cdot \overline{R}_{f} \cdot \beta$$

$$\dot{M}_{G} = \rho_{G} \cdot V_{GS} \cdot A \cdot (1 - RS) \cdot (1 - \beta) + \rho_{G} \cdot V_{Gf} \cdot A \cdot (1 - \overline{R}_{f}) \cdot \beta$$

• Dividindo as expressões de vazão mássica por ρA, chega-se às definições das velocidades superficiais

$$\begin{split} &J_{L} = V_{LS} \cdot RS \cdot \left(1 - \beta\right) + \overline{V}_{Lf} \cdot \overline{R}_{f} \cdot \beta \\ &J_{G} = V_{GS} \cdot \left(1 - RS\right) \cdot \left(1 - \beta\right) + V_{Gf} \cdot \left(1 - \overline{R}_{f}\right) \cdot \beta \end{split}$$

5.3 J -> vel. superficial mistura

Somando J_L e J_G vamos encontrar:

$$\boldsymbol{J}_{L} + \boldsymbol{J}_{G} = \boldsymbol{J} = \left[\boldsymbol{V}_{Lf} \cdot \overline{\boldsymbol{R}}_{f} + \boldsymbol{V}_{Gf} \cdot \left(1 - \overline{\boldsymbol{R}}_{f} \right) \right] \cdot \boldsymbol{\beta} + \left[\boldsymbol{V}_{LS} \cdot \boldsymbol{R} \boldsymbol{S} + \boldsymbol{V}_{GS} \cdot \left(1 - \boldsymbol{R} \boldsymbol{S} \right) \right] \cdot \left(1 - \boldsymbol{\beta} \right)$$

 Como o volume da mistura que atravessa qualquer seção transversal da tubulação é o mesmo, podemos identificar J no primeiro e segundo termos:

$$\begin{split} J &= V_{Lf} \cdot \overline{R}_f + \overline{V}_{Gf} \cdot \left(1 - \overline{R}_f\right) & \text{na região do filme} \\ J &= V_{LS} \cdot RS + V_{GS} \cdot \left(1 - RS\right) & \text{na região do pistão} \end{split}$$

 Substituindo estas definições na equação inicial verificamos a identidade:

$$J = J\beta + J(1-\beta) \equiv J$$

5.4 Balanço fase líquida seguindo uma célula

 A massa de líquido dentro da célula dividida pelo período 'tu' é:

$$\dot{\mathbf{M}}_{L}^{cell} = \left(\frac{LS \cdot RS + LB \cdot \overline{Rf}}{tu}\right) \cdot \rho_{L} \cdot A \quad \text{onde} \quad \overline{Rf} = \frac{1}{Lf} \int_{0}^{Lf} Rf(z) dz$$

- Esta é a massa transportada pela célula no período 'tu'
- Como ela está relacionada com a vazão mássica do líquido?

5.4 Comportamento pistão de líquido

- O líquido contido no pistão ao se deslocar com a 'célula' avança sobre o líquido da bolha a sua frente.
- 2. O filme de líquido <u>incorporado</u> pela frente do pistão é acelerado enquanto que o líquido <u>liberado</u> na sua cauda é desacelerado.
- 3. A velocidade do liq no filme é menor que a velocidade do líq no pistão que por sua vez é menor que a velocidade da bolha

5.4 'SCOOPING MODEL' (Dukler 1975)

 Uma célula 'i' viajando com U_t irá continuamente capturar uma massa de líquido da célula 'i+1' e descarregá-la na célula 'i-1'

Isto pode ser melhor compreendido movendo-se com Ut

Para LS > LS_{stable}, a vazão mássica de líquido que (i) captura de de (i+1) é igual aquela que ele descarrega para (i-1)

5.4 'SCOOPING MODEL' (Dukler 1975)

 Considerando que uma parte do líquido é capturada e transferida de uma unidade para outra, então pode-se relacionar as vazões mássicas de líquido que cruza a seção do tubo com aquela transportada pela célula através de:

$$\dot{\mathbf{M}}_{L} = \mathbf{M}_{L}^{\text{cell}} - \dot{\mathbf{M}}_{LX} \text{ onde } \mathbf{M}_{L}^{\text{cell}} = \left(\frac{LS \cdot RS + Lf \cdot \overline{Rf}}{tu}\right) \cdot \rho_{L} \cdot \mathbf{A}$$

- onde M_{LX} é a massa de líquido pega pela (i) liberada para a (i-1) célula
- Como calcular M_{IX}?

5.4 Vazão mássica fase líquido 'Scooping'

 Um balanço de massa para um referencial que se move com Ut revela a vazão mássica que entra e sai da célula pelo efeito 'scooping'.

5.4 Vel. superficial líquido devido scooping, J_L

 A velocidade superficial do líquido, JL, é obtida dividindo-se o fluxo de massa liquido por (ρL*A)

$$J_{L} = \frac{\dot{M}_{L}}{\rho_{L} \cdot A} = \left(\frac{LS \cdot RS + Lf \cdot \overline{Rf}}{tu}\right) - \frac{\dot{M}_{LX}}{\rho_{L} \cdot A}$$

• Substituindo na expressão acima : $T_U = Lu/U_t$; MLX = $(U_t-V_{LS}).\rho_L.A.RS$, $\beta = L_f/L_u$ vamos encontrar:

$$J_{L} = V_{LS} \cdot RS + Ut \cdot (1 - RS) \cdot \beta - Ut \cdot (1 - \overline{R_{f}}) \cdot \beta$$

5.5 Balanço fase gás seguindo uma célula

A massa de gás dentro da célula dividida pelo seu período 'tu' é:

$$\dot{M}_{G}^{cell} = \left(\frac{LS \cdot (1 - RS) + Lf \cdot (1 - \overline{R_f})}{tu}\right) \cdot \rho_{G} \cdot A$$

- Esta é a massa transportada na célula por unidade de tempo
- Ela pode ser re-arranjada em termos da velocidade da Ut de forma que o 2º termo do lado direito fica 'parecido ' M_{LX}

$$\dot{M}_{G}^{cell} = \left[\underbrace{\left(\frac{LS + Lf}{tu} \right)}_{IJt} - \left(\frac{LS \cdot RS + Lf \cdot \overline{R_{f}}}{tu} \right) \right] \cdot \rho_{G} \cdot A$$

- A vazão mássica na tubulação é igual a massa transportada pela célula menos a massa transportada pelo 'scooping'.
- Ela pode ser re-arranjada em termos da velocidade da Ut de forma que o 2º termo do lado direito fica 'parecido ' M_L

5.5 Vazão mássica de gás na tubulação

 A vazão mássica de gás na tubulação é igual a massa transportada pela célula menos a massa transportada pelo 'scooping'.

$$\dot{M}_{G} = M_{G}^{cell} - \dot{M}_{GX} \text{ onde } M_{G}^{cell} = \left| Ut - \left(\frac{LS \cdot RS + Lf \cdot \overline{Rf}}{tu} \right) \right| \cdot \rho_{G} \cdot A$$

• A velocidade superficial do gás, J_G , é obtida dividindo-se o fluxo de massa de gás por (ρ_G^*A)

$$J_{G} = \frac{\dot{M}_{G}}{\rho_{G} \cdot A} = Ut - \left(\frac{LS \cdot RS + Lf \cdot \overline{Rf}}{tu}\right) - \frac{\dot{M}_{GX}}{\rho_{G} \cdot A}$$

5.5 Vel. superficial gás devido scooping, J_G

 A vazão mássica de gás devido ao scooping é obtida de forma similar aquela utilizada para a fase líquida:

$$\dot{M}_{GX} = \rho_G \cdot (Ut - V_{GS}) \cdot A \cdot (1 - RS)$$

• Substituindo na expressão M_G : $T_U = Lu/U_t$; $M_{GX} = (U_t - V_{GS}) \cdot \rho_G \cdot A \cdot (1 - R_S)$, $\beta = L_f/L_u$ vamos encontrar:

$$J_{G} = Ut \cdot \left[(1-\beta) \cdot (1-RS) + \beta \cdot (1-R_{f}) \right] - \left(Ut - V_{GS} \right) \cdot (1-RS)$$

• Se $R_S = 1$ (pistão não aerado) $JG = U_t \cdot \beta \cdot (1 - R_f)$ isto é, todo gás é transportado pela bolha com velocidade $U_t!$

Fração de líquido na célula Ru

Considerando que:

$$\int_{L} R_{U} = RS(1-\beta) + R_{f}\beta$$

$$J_{L} = V_{LS} \cdot RS + Ut \cdot (\overline{R_{f}} - RS) \cdot \beta$$

Eliminando R_f nas duas expressões encontra-se:

$$R_{_{\mathrm{U}}} = \frac{J_{_{\mathrm{L}}} + \ Ut - V_{_{\mathrm{LS}}} \cdot RS}{Ut} \quad \text{ou} \quad \alpha_{_{\mathrm{U}}} = 1 - \frac{J_{_{\mathrm{L}}} + \ Ut - V_{_{\mathrm{LS}}} \cdot RS}{Ut}$$

Paradoxalmente, a fração de líquido (ou de gás) não dependem das propriedades do filme!

5.6 Fração de líquido na célula Ru

Considerando que: $J \equiv J_L + J_G = V_{LS} \cdot RS + V_{GS} \cdot (1 - RS)$

Utilizando a eq. acima pode-se expressar Ru e α u em função de J_{G} :

$$R_{U} = 1 - \frac{J_{G}}{Ut} + (1 - RS) \cdot \frac{\left(Ut - VGS\right)}{Ut} \quad \text{ou} \quad \alpha_{U} = \frac{J_{G}}{Ut} - (1 - RS) \cdot \frac{\left(Ut - VGS\right)}{Ut}$$

Para escoamentos horizontais com baixas velocidades o pistão terá pouco gás, portanto RS 1 e Ru e α u podem ser aproximados por:

$$R_{U} \cong \frac{J_{L}}{Ut}$$
 ou $\alpha_{U} \cong \frac{J_{G}}{Ut}$

Pode-se mostrar, utilizando a relação de drift e a hipótese de escoamento homogêneo, que a fração de gás na célula deve estar contida no intervalo:

$$\frac{J_G}{Ut} \le \alpha_U \le \frac{J_G}{J}$$

Sumário dos balanços

- 2 variáveis independentes: J_L e J_G
- 11 variáveis dependentes: Ut, V_{LF} , V_{LS} , V_{GF} , V_{GS} , RS, R_f , J, β , Lf e LS
- 10 equações (algumas linearmente dependentes)
- veja dedução detalhada dos balanços em Ferraz (2013)

1)
$$J_{L} = V_{LS} \cdot RS \cdot (1 - \beta) + V_{Lf} \cdot R_{f} \cdot \beta$$

2)
$$J_{G} = V_{GS} \cdot (1 - RS) \cdot (1 - \beta) + V_{Gf} \cdot (1 - \overline{R}_{f}) \cdot \beta$$

3)
$$J_L = V_{LS} \cdot RS + Ut \cdot (1 - RS) \cdot \beta - Ut \cdot (1 - \overline{R_f}) \cdot \beta$$

4)
$$J_{G} = Ut \cdot \left[(1-\beta) \cdot (1-RS) + \beta \cdot (1-R_{f}) \right] - \left(Ut - V_{GS} \right) \cdot (1-RS)$$

5)
$$(V_{Lf} - Ut) \cdot R_f = (V_{LS} - Ut) \cdot RS$$

6)
$$\left(V_{Gf} - Ut\right) \cdot \left(1 - R_f\right) = \left(V_{GS} - Ut\right) \cdot \left(1 - RS\right)$$

7)
$$J = V_{LS} \cdot RS + V_{GS} \cdot (1 - RS)$$

8)
$$J = V_{Lf} \cdot \overline{R}_f + V_{Gf} \cdot \left(1 - \overline{R}_f\right)$$

$$9) \quad J = J_L + J_G$$

10)
$$\beta = Lf/(Lf + LS)$$

Sumário dos balanços

Considere as equações (5) a (8)

$$(VGf - UT) \cdot (1 - Rf) = (VGS - UT) \cdot (1 - RS)$$
$$(VLf - UT) \cdot Rf = (VLS - UT) \cdot RS$$
$$J = VGf \cdot (1 - Rf) + VLf \cdot Rf$$
$$J = VLS \cdot RS + VGS \cdot (1 - RS)$$

Resolver para VGf, VLf, VGS, VLS em função de UT, J, Rf e RS. O conjunto de equações pode ser re-escrito na forma matricial:

$$\begin{bmatrix} (1-Rf) & Rf & 0 & 0 \\ 0 & 0 & RS & (1-RS) \\ 0 & Rf & -RS & 0 \\ (1-Rf) & 0 & 0 & -(1-RS) \end{bmatrix} \begin{bmatrix} VGf \\ VLf \\ VLS \\ VGS \end{bmatrix} = \begin{bmatrix} J \\ J \\ UT \cdot (Rf - RS) \\ UT \cdot (RS - Rf) \end{bmatrix}$$

Solução do sistema

As equações (5) a (8) formam um sistema indeterminado; resolvendo para VGS,

$$V_{LF} = \frac{J + (Rf - RS).Ut - (1 - RS).V_{GS}}{Rf}$$

$$V_{LS} = \frac{J - (1 - RS).V_{GS}}{RS}$$

$$V_{Gf} = \frac{(RS - Rf).UT - (1 - RS).V_{GS}}{(1 - Rf)}$$

- As variáveis independentes passam a ser: Ut, V_{GS}, Rf e RS. O seu conhecimento virá de equações de fechamento tiradas de dados experimentais.
- Elas constituem a base dos modelos de célula unitária, assunto da aula #2

FIM

OBRIGADO!

Bibliografia: Seção (1)

- Wallis, Graham, B. "One-Dimensional Two-Phase Flow", McGraw Hill 1969
- Brennen C. E. "Fundamentals of Multifphase Flow", Cambridge 2005
- Barbosa, J. "Introdução aos Escoamentos Bifásicos Gás-Líquido" 2a EBEM
 2012 Curitiba PR.
- Shohan, O. "Mechanistica modelling of gas-liquid two-phase flow in pipes" SPE Books 2005 - apresenta de forma didática os mecanismos dos mapas

Bibliografia: Seção (2)

- Wallis, Graham, B. "One-Dimensional Two-Phase Flow", McGraw Hill 1969
- Zuber N. and Findlay, J.A., "Average volumetric concentrations in two phase systems", J. Heat Transfer, november, 1965.
- Barbosa, J. "Introdução aos Escoamentos Bifásicos Gás-Líquido" 2a EBEM
 2012 Curitiba PR.
- Rosa, E.S., "Escoamento multifásico isotérmico", Artmed editora, 2012

Referências Parte (3)

- Taitel, "Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes" AIChE J., 26, 1980.
- Taitel, Y. and Dukler, A.E. "A model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow", AIChE J. (vol. 22, n.1, pp. 47-55), 1976.
- Funada and Joseph, "Viscous potential flow analysis of Kelvin-Helmholtz
- instability in a channel" J. Fluid Mech, 45 (2001) revisão de KH aplicado formação slugs horizontal.
- Shohan, O. "Mechanistica modelling of gas-liquid two-phase flow in pipes" SPE Books 2005 apresenta de forma didática os mecanismos dos mapas
- Jayanti and Hewiit Prediction of the slug-to-churn flow transition in vertical two-phase flow, Int. J. Multiphase Flow, 18, 1992
- Rosa, E.S. "Performance comparison of artificial neural networks and expert systems applied flow pattern identification in vertical ascendant gas—liquid flows, Int. J.
 Multiphase Flow, 36, 2010 - comenta em detalhes as características dos padrões no esc.
 Vertical
- Omebere-Iyari, N.K., Azzopardi, B.J. Prasser, H-M. "The characteristics of gas/liquid flow in large risers at high pressures", Int. J. Multiphase Flow, 34, 2008

Referências Parte (4)

- Taitel, "Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes" AIChE J., 26, 1980.
- Dukler, A.B. "A physical model to predict the minimun stable slug lenght", Chem. Engn. Sci, 40, 1985.
- Gomez, L. Estudo Experimental de Escoamentos Líquido-Gás Intermitentes Em Tubulações Inclinadas, dissertação de mestrado Unicamp 2010
- Ferraz "ESTUDO EXPERIMENTAL DA RELAÇÃO DE DESLIZAMENTO NO ESCOAMENTO VERTICAL DE AR-ÁGUA NO PADRÃO INTERMITENTE", 30 EBECEM Curitiba PR - 2012
- Fabre, J. and Liné, A. "Modeling of Two-Phase Slug Flow", Ann. Ver. Fluid Mechanics, 1992, 24:21-46
- Nicklin, "Two phase flow in vertical tubes", Trans Int. Chem Eng. 40, (1962),
- Polonsky, "The relation between the Taylor bubble motion and the velocity field ahead of it", Int. J. Multiphase Flow, 25, (1999).
- Bendiksen, "An experimental investigation of the motion of long bubbles in inclined tubes", Int. J. Multiphase Flow, 10, (1984)
- Moissis & Griffith "Entrance effect on two phase slug flow", J. Heat Transfer, feb, (1962)
- Fagundes Neto, "Shape of long bubbles in horizontal slug Flow", Int. J. Multiphase Flow, 10, 1999
- Oliveira et al. "EXPERIMENTAL STUDY OF SHAPE OF ELONGATED BUBBLES IN HORIZONTAL TWO-PHASE INTERMITTENT FLOW" 30 EBECEM Curitiba PR 2012
- Fernandes, "Hydrodynamic Model for gas-Liquid Slug Flow in Vertical Tubes", AIChE J., 29, (1983),
- Brauner and Ulmann, "Modelling of gas entrainment from Taylor bubbles", Int. J. Multiphase Flow, 30, (2004),
- Guet, "Void fraction in vertical gas-liquid slug flow_Influence of liquid slug content", Chem. Eng. Sci, 61 (2006)
- Viana and Joseph, "Universal correlation for the rise velocity of long gas bubbles in round pipes", J. Fluid Mech, 494,
 2003
- Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles, Chap. 2, p. 26. Academic.

Referências Parte (5)

- Taitel, Y. and Barnea, D. "Two-Phase Slug Flow", 1990 Academic Press
- Dukler and Hubbard, "A Model for Gas-Liquid Slug Flow in Horizontal and Near Horizontal Tubes", Ind. Eng. Chem., Fundam . Vol. 14. No. 4, 1975