Project Title: Bankruptcy Prediction System Using Machine Learning

Abstract:

This project presents a machine learning—based binary classification system designed to predict corporate bankruptcy based on a company's financial and operational risk indicators. The system leverages supervised learning to classify firms as either "bankrupt" or "non-bankrupt" using a trained model and provides an accessible interface through a web-based application developed with Streamlit.

1. Introduction:

Financial instability and bankruptcy pose major risks to stakeholders in any economy. Accurate and early prediction of bankruptcy can help investors, auditors, and corporate decision-makers mitigate losses and implement corrective measures. This project aims to create a predictive system that classifies companies based on various risk factors using machine learning techniques.

2. Methodology:

2.1 Input Features:

The model uses six numerical input variables representing different types of risk:

- Industrial Risk
- Management Risk
- Financial Flexibility
- Credibility
- Competitiveness
- Operating Risk

Each variable is treated as a continuous numerical input and collectively forms a six-dimensional feature vector:

$$x = [x1, x2, x3, x4, x5, x6]$$

2.2 Model Training and Prediction:

A machine learning model (serialized using Python's pickle module) was trained on historical bankruptcy data using supervised learning techniques. The model approximates a function:

were,

0 represents a bankrupt company and

1 represents a non-bankrupt company.

Upon receiving the input vector \vec{x} , the model generates a prediction:

$$y=f(x^{\rightarrow})$$

The model likely uses classification algorithms such as Random Forest, Logistic Regression, or Support Vector Machines (not explicitly stated in the deployment file), trained to minimise classification error.

3. System Deployment:

A user-friendly interface is developed using **Streamlit**, a Python library for creating interactive web applications. Users can input values for each of the six risk parameters through the interface. Upon clicking the **Predict** button, the app displays one of two possible outcomes:

- "The company is going to be bankrupt" (if y=0)
- "The company is non-bankrupt" (if y=1)

This real-time predictive tool can be used by financial institutions or corporate analysts as a decision-support system.

4. Mathematical Concepts Utilized:

- Vector representation of multivariate input data.
- **Binary classification**, where the target output $y \in \{0,1\}$.
- Function approximation using machine learning algorithms.
- Model persistence and reuse via Pickle serialisation.
- Implicit use of decision boundaries and probabilistic learning to separate the classes in the feature space.

5. Conclusion:

This project successfully demonstrates the application of machine learning for early bankruptcy detection. By integrating predictive analytics with an intuitive user interface, it offers a scalable and accessible solution for financial risk evaluation. Future enhancements could include adding explainable AI (XAI) components to interpret the model's decisions and incorporating additional financial indicators for improved accuracy.