Lecture One

Section 1.1 – Polynomials and Factoring

Polynomials

Adding and Subtracting Polynomials

Properties of Real numbers

For all real numbers *a*, *b*, and *c*:

$$a+b=b+a$$
 Commutative properties

ab = ba

$$(a+b)+c=a+(b+c)$$
 Associative properties

(ab)c = a(bc)

$$a(b+c) = ab + ac$$
 Distributive properties

Add or subtract as indicated

a)
$$(8x^3 - 4x^2 + 6x) + (3x^3 + 5x^2 - 9x + 8)$$

 $(8x^3 - 4x^2 + 6x) + (3x^3 + 5x^2 - 9x + 8) = 8x^3 - 4x^2 + 6x + 3x^3 + 5x^2 - 9x + 8$
 $= (8x^3 + 3x^3) + (-4x^2 + 5x^2) + (6x - 9x) + 8$
 $= 11x^3 + x^2 - 3x + 8$

b)
$$\left(-4x^4 + 6x^3 - 9x^2 - 12\right) + \left(-3x^3 + 8x^2 - 11x + 7\right)$$

 $\left(-4x^4 + 6x^3 - 9x^2 - 12\right) + \left(-3x^3 + 8x^2 - 11x + 7\right) = -4x^4 + 6x^3 - 3x^3 - 9x^2 + 8x^2 - 11x - 12 + 7$
 $= -4x^4 + 3x^3 - x^2 - 11x - 5$

c)
$$(2x^2 - 11x + 8) - (7x^2 - 6x + 2)$$

 $(2x^2 - 11x + 8) - (7x^2 - 6x + 2) = 2x^2 - 11x + 8 - 7x^2 + 6x - 2$
 $= -5x^2 - 5x + 6$

Multiply

a)
$$8x(6x-4)$$

 $8x(6x-4) = 8x(6x) - 8x(4)$
 $= 48x^2 - 32x$

b)
$$(3p-2)(p^2+5p-1)$$

 $(3p-2)(p^2+5p-1)=3p^3+15p^2-3p-2p^2-10p+2$
 $=3p^3+13p^2-13p+2$

c)
$$(x+2)(x+3)(x-4)$$

 $(x+2)(x+3)(x-4) = (x^2+3x+2x+6)(x-4)$
 $= (x^2+5x+6)(x-4)$
 $= x^3+5x^2+6x-4x^2-20x-24$
 $= x^3+x^2-14x-24$

Find
$$(2m-5)(m+4)$$

$$(2m-5)(m+4) = 2mm + 2m(4) - 5m - 5(4)$$
$$= 2m^2 + 8m - 5m - 20$$
$$= 2m^2 + 3m - 20$$

Find
$$(2k-5)^2$$

$$(2k-5)^{2} = (2k-5)(2k-5)$$
$$= 4k^{2} - 10k - 10k + 25$$
$$= 4k^{2} - 20k + 25$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)(a+b) = a^{2} - b^{2}$$

Perform the indicated operations:
$$2(3x^2 + 4x + 2) - 3(-x^2 + 4x - 5)$$

 $2(3x^2 + 4x + 2) - 3(-x^2 + 4x - 5) = 6x^2 + 8x + 4 + 3x^2 - 12x + 15$
 $= 9x^2 - 4x + 19$

Perform the indicated operations: (3t-2y)(3t+5y)

$$(3t - 2y)(3t + 5y) = 9t^{2} + 15ty - 6yt - 10y^{2}$$
$$= 9t^{2} + 9yt - 10y^{2}$$

Perform the indicated operations: $(2a-4b)^2$

$$(2a-4b)^{2} = (2a)^{2} - 2(2a)(4b) + (4b)^{2}$$

$$= 4a^{2} - 16ab + 16b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

Factoring

Prime Factorization

A process that allows us to write a composite number as a product of two or more prime numbers.

$$72 = 2.36$$

$$= 2.6.6$$

$$= 2.2.3.2.3$$

$$= 2^{3}3^{2}$$

The Greatest Common Factor (GCF)

The largest factor that two or more numbers (or terms) have in common

Find GCF (18, 36)

4

18:
$$23^2 \rightarrow 1, 2, 3, 6, 9, \underline{18}$$

36: $2^23^2 \rightarrow 1, 2, 3, 4, 6, 9, 12, \underline{18}, 36$ GCF (18, 36) = 18 (is the greatest common factor)

Find GCF (27, 45)

$$27 = 3^{3}$$

 $45 = \frac{3^{2} 5}{3^{2}}$

$$GCF(27, 45) = 9$$

Find GCF (40, 56) $40 = 2^3 5$

$$40 = 2^{3} 5$$

$$56 = \frac{2^{3} 7}{2^{3}}$$

GCF
$$(40, 56) = 8$$

Find GCF (80, 60)

$$80 = 2^4$$
 5
 $60 = \frac{2^2 \ 3}{2^2} \frac{5}{5}$

$$GCF(80, 60) = 20$$

Factor out the greatest common factor

a)
$$12p-18q$$

 $12p-18q = 6(2p-3q)$

b)
$$8x^3 - 9x^2 + 15x$$

 $8x^3 - 9x^2 + 15x = x(8x^2 - 9x + 15)$

Factoring Trinomial

Factor
$$y^2 + 8y + 15$$

Product	Sum
15	8
15 x 1	15 + 1
3 x 5	3 + 5

$$y^2 + 8y + 15 = (y+3)(y+5)$$

Factor
$$4x^2 + 8xy - 5y^2$$

 $4x^2 + 8xy - 5y^2 = (2x - y)(2x + 5y)$

Special Factorization

$$a^{2}-b^{2} = (a-b)(a+b)$$

$$a^{2}+2ab+b^{2} = (a+b)^{2}$$

$$a^{2}-2ab+b^{2} = (a-b)^{2}$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

Factor

a)
$$64p^2 - 49q^2$$

 $64p^2 - 49q^2 = (8p)^2 - (7q)^2$
 $= (8p - 7q)(8p + 7q)$

- b) $x^2 + 36$ $x^2 + 36$ can't be factored (in real number) it is prime.
- c) $x^2 + 12x + 36$ $x^2 + 12x + 36 = (x+6)^2$
- d) $9y^2 24yz + 16z^2$ $9y^2 - 24yz + 16z^2 = (3y)^2 - 2(3y)(4z) + (4z)^2$ $= (3y - 4z)^2$
- e) $y^3 8$ $y^3 - 8 = y^3 - 2^3$ $= (y-2)(y^2 + 2y + 4)$
- f) $m^3 + 125$ $m^3 + 125 = (m+5)(m^2 - 5m + 25)$
- g) $8k^3 27z^3$ $8k^3 - 27z^3 = (2k)^3 - (3z)^3$ $= (2k - 3z)((2k)^2 + 6kz + (3z)^2)$ $= (2k - 3z)(4k^2 + 6kz + 9z^2)$
- h) $p^4 1$ $p^4 - 1 = (p^2)^2 - (1)^2$ $= (p^2 - 1)(p^2 + 1)$ $= (p - 1)(p + 1)(p^2 + 1)$

Factor:
$$60m^4 - 120m^3n + 50m^2n^2$$

 $60m^4 - 120m^3n + 50m^2n^2 = 10m^2(6m^2 - 12mn + 5n^2)$

Factor:
$$y^2 - 4yz - 21z^2$$

 $y^2 - 4yz - 21z^2 = (y+3z)(y-7z)$

Factor:
$$4a^2 + 10a + 6$$

 $4a^2 + 10a + 6 = 2(2a^2 + 5a + 3)$
 $= 2(2a+3)(a+1)$

Factor:
$$16a^4 - 81b^4$$

$$16a^4 - 81b^4 = (4a^2)^2 - (9b^2)^2$$

$$= (4a^2 - 9b^2)(4a^2 + 9b^2)$$

$$= ((2a)^2 - (3b)^2)(4a^2 + 9b^2)$$

$$= (2a - 3b)(2a + 3b)(4a^2 + 9b^2)$$