Exponentials and Logarithms

Theory:

- In an expression b^a , b is called the **base** and a the **exponent** or **power**.
- The exponential function of base b is the function b^x .
- The logarithm function to base b is the function $\log_b(x)$.
- The most common bases used are 10 and e; the logarithm to base e is called the **natural logarithm** and denoted $\ln(x)$.
- The logarithm and exponential functions are inverses, so:

$$b^{\log_b(x)} = x = \log_b(b^x).$$

• Laws of exponents:

$$b^{n+m} = b^n b^m, b^{-n} = \frac{1}{b^n}, (b^n)^m = b^{nm}.$$

• Laws of logarithms:

$$\log_b(nm) = \log_b(n) + \log_b(m), \qquad \log_b(n^m) = m \log_b(n).$$

• The change-of-base rule for logarithms:

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}.$$

• The graphs of the log and exponential functions for a selection of bases are shown below.

Practice:

- 1. Sketch the graph of $y = e^x$.
- 2. Sketch the graph of $y = \left(\frac{1}{2}\right)^x$.
- 3. Sketch the graph of $y = \log(x)$.
- 4. Solve $e^x = 2$.
- 5. Solve $\log_{10}(x) = 4$.
- 6. Solve $\log_3(3x) = 4$.
- 7. Solve $10^{3+x} = 19000$.
- 8. Solve $e^{3x+2} = 5$.
- 9. Solve $\ln(5x 1) = 2$.
- 10. Solve $10^{3x}10^{x-1} = 100$.
- 11. Solve ln(5x) ln(2) = 4.
- 12. Solve $2\ln(x) + \ln(5) = 2$.
- 13. We will derive the change-of-base rule. Let $y = a^x$ for some a > 0, $a \ne 1$.
 - (a) Write down $\log_a(y)$.
 - (b) Let b be any positive number different from 1. Write down $\log_b(y)$.
 - (c) Substituting your answer from part (a) into part (b), write an equation linking $\log_b(x)$ and $\log_a(x)$.
- 14. Using the change-of-base rule, solve $4^x = 3$.
- 15. Solve $2^{3x-1} = 7$.
- 16. Suppose $x = ae^{kt}$ for some parameters a and k. Suppose also that the initial value of x is 7, and $x(1) = 7e^2$. Find a and k.
- 17. Suppose $x = ab^t$ for some parameters a and b. Given that x(1) = 3 and x(3) = 10, plot the graph of $\ln(x)$ against t. Use your graph to find the values of a and b.
- 18. Suppose $y = ax^n$. Given that y(1) = 5 and y(5) = 100, plot the graph of $\log(y)$ against $\log(x)$, and hence find the values of a and n.

- 19. Suppose there is an island with a plentiful supply of vegetation and no predators. Ten rabbits are introduced to this island. The rabbit population P at time t years is modelled by $P = P_0 e^{\lambda t}$.
 - (a) What is the value of P_0 ?
 - (b) Suppose that after 1 year the rabbit population is 100. What is the value of λ ?
 - (c) Find the rabbit population after 2 years.
 - (d) What does the rabbit population do as t gets very large? Does this seem realistic? What assumptions might need to be revised in light of this?
- 20. After a patient takes some medication, the concentration x of that medication in their bloodstream gradually decreases according to $x = ae^{\lambda t}$, where t is the time in hours.
 - (a) Would you expect λ to be positive or negative?
 - (b) What does the parameter a represent?
 - (c) Find an expression for the time t at which the concentration is half of its initial value. This time is called the **half-life** of the medication.
 - (d) What proportion of the initial concentration remains after 5 half-lives?
 - (e) After how many half-lives is the concentration down to 10% of its initial value?
 - (f) Suppose that the half-life of a particular medicine is 6 hours. What is the value of λ ?
 - (g) Suppose that the initial concentration of medicine in the bloodstream is 10mg mol^{-1} (milligrams per mole), and use the value of λ from the previous part. After how long will the concentration of medicine be 1mg mol^{-1} ?