Dérivation et étude de fonctions numériques

Exercice 1 : Calculer les limites suivantes :

1.
$$\lim_{n \to +\infty} n^3 + \frac{3}{\sqrt{n}} - \frac{1}{n^8} + 8$$
; $\lim_{n \to +\infty} -n^3 + 6n^2 - n + 9$

2.
$$\lim_{n \to +\infty} \frac{-2n+n^2+1}{n^3-6n^2+n-1}$$
; $\lim_{n \to +\infty} n-5\sqrt{n}$

3.
$$\lim_{n \to +\infty} n^2 - n + (-1)^n$$
; $\lim_{n \to +\infty} \frac{5 + 2\sqrt{n}}{2 - 3\sqrt{n}}$

4.
$$\lim_{n \to +\infty} \sqrt{n^2 + 1} - n$$
; $\lim_{n \to +\infty} (n - 2) \frac{1}{\sqrt[5]{n^3}}$

Exercice 2 : Soit (u_n) la suite numérique définie par:

$$u_0 = -1$$
 et $u_{n+1} = \frac{9}{6 - u_n}$

- 1. Montrer par récurrence que : $(\forall n \in \mathbb{N})$: $u_n < 3$.
- 2. Étudier la monotonie de la suite (u_n) .
- 3. On considère la suite (v_n) définie par :

$$(\forall n \in \mathbb{N}) : v_n = \frac{1}{u_n - 3}$$

- (a) Montrer que (v_n) est une suite arithmétique. Préciser la raison et le premier terme.
- (b) Exprimer v_n puis u_n en fonction de n.
- 1. Calculer en fonction de n la somme :

$$S_n = v_1 + v_2 + \ldots + v_n$$

2. En déduire la limite : $\lim_{n\to+\infty} S_n$.

Exercice 3 : On considère la suite (u_n) définie par

2.

- $u_0=1$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{3u_n+2}{u_n+2}$ 1) Montrer par récurrence que : $(\forall\,n\in\mathbb{N})$ $1\leq u_n<$
- 2) Montrer que : $(\forall n \in \mathbb{N}) u_{n+1} u_n =$ $\frac{-(u_n+1)(u_n-2)}{(u_n+1)(u_n-2)}$
 - 3) Étudier la monotonie de la suite (u_n) .
 - 4) En déduire que la suite (u_n) est convergente.