

So far we have briefly covered

- 1. OS definition
- 2. OS evolution
- 3. The computer architecture managed by OS

OS Services

OS Services

OS services?

Provisions of OS supports for:

- · Convenience of the User and
- · Efficiency of computer system operation

OS Services

Services for the user's convenience:

- Program Execution
- I/O Operation
- File Manipulation
- Communication
- Error Detection

OS Services: Program Execution

Program Execution

OS provides for Loading, Running, and Ending of User programs.

OS Services: I/O Operation

I/O operation

OS provides for actual execution of I/O operations.

OS Services: File Manipulation

File Manipulation
OS provides for:
reading from, writing into,
creating, and deleting files.

OS Services: Communication

Communication

OS provides for exchange of information between two processes which may take place in one of the following two methods:

- a. Shared memory
- b. Message passing

OS Services: Communication

(b) Message Passing

OS Services: Error Detection

Error Detection

OS provides for detecting and handling of both hardware and software errors

OS Services

Services for the efficiency:

- · Resource Allocation
- Accounting
- Protection

OS Services: Resource Allocation

Resource Allocation

- Special allocation category
 - Allocation of resources that need customized allocation routines (e.g., allocation of CPU, allocation of Memory, etc.)
- General allocation category
 Allocation of resources that need general allocation routines (e.g., Vo devices)

OS Services: Accounting

Accounting

OS provides for collecting information that are used for:

Billing and Reconfiguration

OS Services: Protection

OS provides for protecting: processes from each other and The system from intruders.

Protections

protection

I/O Protection
Memory Protection
CPU Protection

Protections

I/O Protection

Dual mode Monitor mode User Mode mode-bit

Protection

Memory Protection

Fence Register Lower and upper bound registers Base and Limit Registers

Changing the contents of any of the above registers is a privileged instructions.

Protection

CPU Protection

Timer

Fixed Variable

Protections

Variable Timer is used to setup:

- 1. CPU time allowed for a loop
- 2. Time slice length

Timer setting and its contents modification are privileged instructions.

OS Services

How to invoke OS Services:

- System Calls
- System Programs

OS Services

What is a system call?

It is a small program by which a process asks for a service from the OS

: It is an interface between a process and OS

System Calls

Example:

The system calls in completing the process of reading from a file.

get name of the file open file read data close file

System Calls

The number of system calls are different for different operating systems and they are in hundreds:

Windows 7 Over 600
FreeBSD Over 500
NetBSD Over 400
Linux Over 300

System Calls

Most of the system calls are hidden from the programmer by the compiler and by the runtime support routines.

Example

A Write statement is compiled to a runtime support routine that in turn is responsible for invoking right system calls to execute a write statement.

System Calls

System Calls Categories:

Process Control File management Device management Information maintenance Communications

System Calls: process Control

Process Control

create process, load, execute halt execution, (end, abort) terminate process get process attributes, set process attributes wait for time, wait event, signal event allocate and free memory

System Calls: process Control

Process controller behavior in a single-tasking system (MS-DOS)

System Calls: process Control

Process controller behavior in a multi-tasking system

System Calls: File Manipulation

File Manipulation create file, delete file open, close read, write, reposition get file attributes, set file attributes

System Calls: Device Management

Device Management

request device, release device read, write, reposition get device attributes, set device attributes logically attach or detach devices.

System Calls: Information maintenance

Information maintenance

get time or date

set time or date

get system data, set system data

get process, file, or device attributes

set process, file, or device attributes

System Calls: Communications

Communications
create, delete communication connections
send, receive messages
transfer status information
attach and detach remote devices

System Calls: Communications

Communication between two Processes

(Processes may be on the same machine or different machines connected by a network facility.)

Message-Passing Model Shared-Memory Model

Communications between two processes on two different machines demand the involvement of network facilities that will be discussed in future)

A reminder

Parameter passing into the OS

Using Registers
Using a block of the memory
Using a stack

OS Services

Accessibility:

System calls for UNIX are callable by C or C++ programs.

System calls for Modern Microsoft Windows platform are part of the Win32 API (Application Programmer Interface) and they are callable by all the compilers written for Microsoft windows.

System Programs

What is a System Program?

It is a large program by which a user asks for a service from the OS

:: It is an interface between a user and OS

Example:

A Word Processor

System Programs

What are the differences between a "System call" and a "System Program"?

- System call is a much smaller program than system program
- Several system calls are involved in one system program
- System call provides an interface between a process and OS whereas a system program provides an interface between user and OS