Anime Faces Generation Corresponding to Human Faces

Advisor: Professor Hiroshi Ishikawa Research on Computer Vision and Pattern Analysis Wang Yiwen 5120FG52 July 18th, 202

Content

- 1. Background
- 2. Target
- 3. Literature Review
- 4. Method
- 5. Result
- 6. Summary

Background

People want to project themselves into the digital world.

Facebook CEO Mark Zuckerberg speaks to an avatar of himself during a live-streamed virtual and augmented reality conference to announce the rebrand of Facebook as Meta. © Facebook/Reuters

Objective

An image of real human face

An image of a similar anime face

Literature Review GAN

G: generate images from noise D: distinguish between genuine/ fake

An example of a Generative Adversarial Networks (GAN).

Literature Review StyleGAN

Latent $\mathbf{z} \in \mathcal{Z}$ Noise Synthesis network q Normalize Const 4×4×512 Mapping network style AdaIN Conv 3×3 FC style FC FC Upsample FC Conv 3×3 FC B ← AdaIN Conv 3×3 $\mathbf{w} \in \mathcal{W}$ style AdaIN ...

(b) Style-based generator

StyleGAN is GAN with a new generator consists of

- a mapping network to provide style
- a synthesis network to generate images

AdaIN
$$(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$

Literature Review Previous works doing this task

input "GANs&Roses" "Swapping AutoEncoder" Proposed Method cons of previous works:

- 1. reflecting almost no facial appearances from the input
- 2. too close to the input and few anime artifact

GANs&Roses

An image-to-image framework generating images by extracting and combining content and style

Swapping AutoEncoder

An image-to-image framework generating images by converting the input images into latent code and dividing it into structure code and texture code

Proposed Method Generation

We use styleGAN to train

pre-train generator on FFHQ dataset

Flickr-Faces-HQ consists of 70,000 high-quality PNG images and contains considerable variation in terms of age, ethnicity and image background.

fine-tune generator on a different dataset (Anime)

We use an anime dataset consisting of 60k+ images from Kaggle, which is an online community platform for data scientists and machine learning enthusiasts.

Proposed Method Reverse Generation

To find the latent code that realizes the image, using optimization

- 1. fix the generator and initiate a random&learnable latent vector
- 2. generate from this latent vector and compare output&input
- 3. edit the latent code until output is almost the same as input

Proposed Method Cross Domains Reverse Generation

g ori: stylegan2 generator trained on FFHQ

g_fin_4: g_ori finetuned with 4 layers on anime dataset

purpose

Not require correspondence between two domains when training.

But suppose two different domains share latent at a higher semantic level.

Result Final Examples

- 1. reverse generation does well for women with long hair & big eyes
- 2.salient colors in the input affect the whole of output.
- 3.the contours of the anime faces' hair are not clear

input

output

Result Anime Images from Fine-tuned Generator

All of the images here are generated from random latent vectors.

The fine-tuned generator can generate nice anime images with little training cost

Result Reverse Generaion

When finding the similar latent code, we can generate almost the same images. For a different domain, we can find a most similar image.

Reverse generate with the pre-trained generator left: intput image right: reverse generated image

Reverse generate with the fine-tuned generator left: intput image right: reverse generated image

Summary

This thesis

- creates anime similar to input real-life human faces
- based on forward and reverse generation
- requires the image correspondence of two domains in latent space

input

output