СИСТЕМЫ ТЕХНИЧЕСКОГО ЗРЕНИЯ

ВВЕДЕНИЕ

COCTAB KYPCA

- Элементы теории алгоритмов
 - Общее представление о решении вычислительных задач на ЭВМ
 - Некоторые алгоритмы линейной алгебры, интегрирование дифференциальных уравнений
 - Реализация изученных алгоритмов на языке C++
 - 3 «лабораторных» работы

- Элементы технического зрения
 - Основные понятия компьютерного зрения
 - Методы улучшение изображения
 - Методы поиска элементов на изображении
 - Основы фреймворка OpenCV
 - 2 «лабораторных работы»

КАК ПОЛУЧИТЬ ЗАЧЁТР

- Практическая часть
 - Самостоятельно написать 5 «лабораторных» программ
 - Ответить на контрольные вопросы
- Теоретическая часть
 - 1 вопрос по численным методам и алгоритмам
 - 1 вопрос по техническому зрению

- Решение поисковых и осмотровых задач
- Совместная работа нескольких АНПА
- Необходимость решения задачи совместной навигации

- У каждого АНПА ограниченная область поиска
- Нельзя допускать пропуски при обследовании акватории
- Чересчур большое перекрытие увеличение времени обследования

• Как можно обеспечить требуемую точность взаимного расположения АНПА?

- Применение ГАНС с длинной базой
- Возможность коррекции ИНС
- Сколько нужно маяков?

- Скорость звука ≈1500м/с
- Нам нужно как минимум 3 буя
- Сколько времени понадобится на обмен?

Бухта	Размеры	Ориентирово чная площадь
Авачинская губа	12X8	70
Севастопольск ая бухта	2X1.2	2
Невская губа	15X15	200
Каспийск	20X5	100

- В случае схемы «запросответ»
 - Каждый АНПА посылает запрос
 - Ждёт ответа
 - Повторяет для каждого буя

Можно ли уменьшить затраты времени на навигацию?

- Схема аналогичная GPS
 - Запросы с АНПА не посылаются
 - Маяки в фиксированные моменты сообщают точное время

- Осложнения
 - Необходимо синхронизовать обмены
 - Часы точного времени

- У нас есть координаты
- X_i, Y_i, t_i 2 координаты и время получения посылки
- Как определить собственные координаты X_0, Y_0 ?

WE

$$R_i^2 = (x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2$$

- Построим попарные разности
- $R_i^2 R_j^2 = (x_i x_0)^2 (x_j x_0)^2 + (y_i y_0)^2 (y_j y_0)^2 + (z_i z_0)^2 (z_j z_0)^2$

$$v^{2}(t_{i}^{2} - t_{j}^{2}) = (x_{i}^{2} - x_{j}^{2}) + 2x_{0}(x_{i} - x_{j}) + (y_{i}^{2} - y_{j}^{2}) + 2y_{0}(y_{i} - y_{j}) + (z_{i}^{2} - z_{j}^{2}) + 2z_{0}(z_{i} - z_{j})$$

- ullet Таких уравнений \mathcal{C}_n^k
- Три неизвестных x_0, y_0, z_0
- Все остальные параметры известны

СИСТЕМА ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

$$2x_0(x_i - x_j) + 2y_0(y_i - y_j) + 2z_0(z_i - z_j) = v^2(t_i^2 - t_j^2) - (x_i^2 - x_j^2) - (y_i^2 - y_j^2) - (z_i^2 - z_j^2), \quad i, j = \overline{1, n}, \quad i \neq j$$

$$\begin{pmatrix} 2(x_i - x_j) & 2(y_i - y_j) & 2(z_i - z_j) \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

$$= \begin{pmatrix} v^2(t_i^2 - t_j^2) - (x_i^2 - x_j^2) - (y_i^2 - y_j^2) - (z_i^2 - z_j^2) \\ ... \end{pmatrix}$$

СИСТЕМА ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

- Получаем систему из n уравнений для 3 переменных
- Точного решения не существует

СИСТЕМА ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

- Для решения используется метод наименьших квадратов (МНК)
- Идея в минимизации нормы невязки

$$Ax=b$$
 $r=b-Ax$ - невязка $\min r^2=\min\sum_{i=1}^n r_i^2=\min(b-Ax)^T(b-Ax)$ $A^TAx=A^Tb$

система из трёх уравнений с тремя переменными

ПРИМЕР ЗАДАЧИ — ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ

ПРИМЕР ЗАДАЧИ — ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ

ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ БИНАРИЗАЦИЯ ИЗОБРАЖЕНИЯ

ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ БИНАРИЗАЦИЯ ИЗОБРАЖЕНИЯ

ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ — ОБХОД КОНТУРА

ПОИСК ЛЮКА — ДВА КОНТУРА

- Почему два контура?
- На самом деле мы ищем кольцо, то есть фигуру, ограниченную двумя эллипсами
- Кроме того, по одному внешнему эллипсу мы не сможем восстановить определить координаты

ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ

- После обработки мы получаем массив точек контура (x_i, y_i)
- Нужно убедиться в том, что они представляют собой эллипс
- Как это сделать?

ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ

• Уравнение эллипса в общем виде

$$Ax^2 + By^2 + Cxy + Dx + Ey + 1 = 0$$

- Такое уравнение справедливо для каждой (x_i, y_i)
- Получаем систему из *i* уравнений с 5 неизвестными снова метод наименьших квадратов

ПОИСК ЛЮКА КОМИНГС-ПЛОЩАДКИ - ПРОЕКЦИОННЫЕ СООТНОШЕНИЯ

• Проекционные соотношения позволяют нам однозначно определить ориентацию кольца — как именно оно наклонено

