数字电路 Digital Circuits and System

李文明 liwenming@ict.ac.cn

时序逻辑电路

时序逻辑电路

- 时序逻辑电路概述
- 时序逻辑电路的分析方法
- 若干常用的时序逻辑电路
- 时序逻辑电路的设计方法
- 时序逻辑电路的竞争-冒险现象

同步时序逻辑电路的一般设计步骤(1)

- 1. 逻辑抽象: 画出状态转换图或状态转换表
 - 分析给定的逻辑问题,确定输入变量、输出变量以及电路的状态数。通常取原因(或条件)作为输入逻辑变量,取结果作输出逻辑变量
 - 定义输入/输出逻辑状态以及每个电路状态的含意,并对电路状态进行编号
 - 按设计要求列出状态转换表,或画出状态转换图
- 2. **状态化简**: 若两个状态在相同的输入下有相同的输出,并转换到同一个次态,则称为等价状态;等价状态可以合并
- 3. **状态分配**(编码)
 - 确定触发器数目 //
 - 确定电路的状态数M, 应满足 $2^n-1 < M < 2n$
 - 进行状态编码,将电路的状态和触发器状态组合对应起来

同步时序逻辑电路的一般设计步骤(2)

- 4. **选定触发器类型**。由状态转换图(或状态转换表)和选定的状态编码、触发器的类型,写出电路的状态方程、驱动方程和输出方程
- 5. 画出逻辑图
- 6. 检查自启动。若电路不能自启动,则应采取下面措施:

时序逻辑电路设计举例—逻辑抽象

设计一个带有进位输出端的十三进制计数器

- 1. **确定输入输出变量**:由于电路没有输入变量,故属于穆尔型同步时序电路。设进位输出信号为C,有进位输出为C=1,无进位输出时C=0
- **2. 画出状态转换图**:根据题意,M = 13, 其状态转换图如图

时序逻辑电路设计—状态表

- 3. 给出状态表:由于M=13,故应取n=4 ,取其中的13个状态,不能再简化。 按十进制数取0000~1100十三个状态
- 4. 写输出端的状态方程, 画出卡诺图

	Q_1Q_0	$Q_1 = 0$		Q_1	=1			
Q_3Q_2		00	01	11	10			
Q_3	00	0001/0	0010/0	0100/0	0011/0			
=0	01	0101/0	0110/0	1000/0	0111/0			
Q_3	11	0000/1	Xxxx/0	Xxxx/0	Xxxx/0			
<u> </u>	10	1001/0	1010/0	1100/0	1011/0			
		$Q_3^*Q_2^*Q_1^*Q_0^*/C$						

状态变化	Q_3	Q_2	Q_1	Q_0	10进制	<i>C</i>
S_0	0	0	0	0	0	0
S_1	0	0	0	1	1	0
S_2	0	0	1	0	2	0
S_3	0	0	1	1	ß	0
S_4	0	1	0	0	4	0
$\boldsymbol{\mathcal{S}}_{5}$	0	1	0	1	5	0
S_6	0	1	1	0	6	0
S ₇	0	1	1	1	7	0
S ₈	1	0	0	0	8	0
S ₉	1	0	0	1	9	0
S ₁₀	1	0	1	0	10	0
S ₁₁	1	0	1	1	11	0
S ₁₂	1	1	0	0	12	1
S_0	0	0	0	0	13	0

时序逻辑电路设计—逻辑化简(1)

Q₃^{*} Q₂^{*} Q₁^{*} 输出端的卡诺图

$$Q_1Q_0$$
 $Q_1=0$ $Q_1=1$
 Q_3Q_2 00 01 11 10
 Q_3^* 00 0 0 0 0
 Q_3^* 01 0 0 1 0
 Q_3^* 11 0 x x x
 Q_3^* 10 1 1 1 1

$$\begin{cases} Q_3^* = Q_3 Q_2' + Q_2 Q_1 Q_0 \\ Q_2^* = Q_2' Q_1 Q_0 + Q_3' Q_2 Q_1' + Q_3' Q_2 Q_0' \\ Q_1^* = Q_1 Q_0' + Q_1' Q_0 \end{cases}$$

		Q_1Q_0	$Q_1 = 0$		$Q_1 = 1$	
Ç	Q_3Q_2		00	01	11	10
	Q_3	00	0	1	0	1
0*	=0	01	0	1	0	1
τı	Q_3	11	0	X	X	X
	<u>"</u>	10	0	1	0	1

时序逻辑电路设计—逻辑化简(2)

Q_n^{*}, C 输出端的卡诺图

• 状态方程
$$\begin{cases} Q_3^* = Q_3 Q_2' + Q_2 Q_1 Q_0 \\ Q_2^* = Q_2' Q_1 Q_0 + Q_3' Q_2 Q_1' + Q_3' Q_2 Q_0' \\ Q_1^* = Q_1' Q_0 + Q_1 Q_0' \\ Q_0^* = Q_3' Q_0' + Q_2' Q_0' \end{cases}$$
• 输出方程: $C = Q_3 Q_2$

时序逻辑电路设计—触发器映射

- 选用JK触发器实现, 其特性方程: $Q^* = JQ' + K'Q$
- 把状态方程改写成触发器特性方程的标准形式,删除了 Q_3^* 中的约束项 $Q_3Q_2Q_1Q_0$

$$\begin{cases} Q_3^* = Q_3 Q_2' + Q_2 Q_1 Q_0 (Q_3 + Q_3') = Q_2 Q_1 Q_0 \cdot Q_3' + Q_2' \cdot Q_3 \\ Q_2^* = Q_1 Q_0 \cdot Q_2' + (Q_3' Q_1' + Q_3' Q_0') \cdot Q_2 = Q_1 Q_0 \cdot Q_2' + Q_3' (Q_1 Q_0)' \cdot Q_2 \\ Q_1^* = Q_1' Q_0 + Q_1 Q_0' = Q_0 \cdot Q_1' + Q_0' \cdot Q_1 \\ Q_0^* = Q_3' Q_0' + Q_2' Q_0' = (Q_3 Q_2)' \cdot Q_0' + 1 \cdot Q_0 \\ C = Q_3 Q_2 \end{cases}$$

• 得到触发器的驱动方程:

$$\begin{cases}
J_3 = Q_2 Q_1 Q_0, & K_3 = Q_2 \\
J_2 = Q_1 Q_0, & K_2 = (Q_3' (Q_1 Q_0)')' \\
J_1 = Q_0, & K_1 = Q_0 \\
J_0 = (Q_3 Q_2)', & K_0 = 1
\end{cases}$$

时序逻辑电路设计—画出逻辑图

• 根据驱动方程,画逻辑图

$$J_3 = Q_2 Q_1 Q_0, \quad K_3 = Q_2$$

 $J_2 = Q_1 Q_0, \quad K_2 = (Q_3' (Q_1 Q_0)')'$
 $J_1 = Q_0, \quad K_1 = Q_0$
 $J_0 = (Q_3 Q_2)', \quad K_0 = 1$

时序逻辑电路设计—自启动检查

● 电路的状态方程和输出方程:

$$\begin{cases} Q_3^* = Q_2 Q_1 Q_0 \cdot Q_3' + Q_2' \cdot Q_3 \\ Q_2^* = Q_1 Q_0 \cdot Q_2' + Q_3' (Q_1 Q_0)' \cdot Q_2 \\ Q_1^* = Q_0 \cdot Q_1' + Q_0' \cdot Q_1 \\ Q_0^* = (Q_3 Q_2)' \cdot Q_0' + 1 \cdot Q_0 \\ C = Q_3 Q_2 \end{cases}$$

根据状态方程画出状态图,电路可以 从其他状态进入有效循环状态,能够 自启动

时序逻辑电路设计—序列检测器(1)

● 例,设计一个串行数据检测器,要求 在连续输入3个或3个以上"1"时输 出为"1",其余情况下输出为"0"

- 1. 逻辑抽象,画出状态转换图
 - 用X(1位)表示输入数据
 - 用Y(1位)表示输出(检测结果)

时序逻辑电路设计—序列检测器(2)

2. 状态分配,取n=2, Q_1Q_0 的取值分别代表3个状态, $S_0=00$, $S_1=01$, $S_2=10$

	Q_1Q_0	$Q_1 = 0$		$Q_1 = 1$			
X		00	01	11	10		
	0	0	0	X	0		
	1	0	1	X	1		
		$\boldsymbol{Q_1^*} = \boldsymbol{X}\boldsymbol{Q_0} + \boldsymbol{X}\boldsymbol{Q_1}$					

CICU	C I		V I	_		
	00	01	11	10		
0	0	0	X	0		
1	1	0	X	0		
$\boldsymbol{Q_0^*} = \boldsymbol{X}\boldsymbol{Q_1'}\boldsymbol{Q_0'}$						

 $0_1 = 1$

 $O_1 = 0$

 $Q_{1}Q_{0}$

X

Q	Q_1Q_0	$Q_1 = 0$		Q_1 =1	
X		00	01	11	10
	0	0	0	X	0
	1	0	0	X	1

$$Y = XQ_1$$

时序逻辑电路设计—序列检测器(3)

3. 选用JK触发器,从状态方程得到驱动方程

$$\begin{cases} Q_1^* = XQ_1 + XQ_0 = XQ_1 + XQ_0(Q_1 + Q_1') = (XQ_0) \cdot Q_1' + (X')' \cdot Q_1 \\ J_1 = XQ_0, & K_1 = X' \\ Q_0^* = XQ_1'Q_0' = (XQ_1') \cdot Q_0' + 1' \cdot Q_0 \\ J_0 = XQ_1', & K_0 = 1 \\ Y = XQ_1 \end{cases}$$

4. 画逻辑图

时序逻辑电路设计—序列检测器(4)

5. 检查电路能否自启动

- 将状态 " $Q_1Q_0=11$ " 代入状态方程和输出方程
- -X=0时, $Q_1^*Q_0^*=00, Y=0$
- -X=1时, $Q_1^*Q_0^*=10, Y=1$

电路可以自启动

时序逻辑电路的自启动设计(1)

- 设计过程中考虑自启动的问题,可以省略 检查自启动步骤,避免不能自启动时,所 需的设计修改过程
- 例,设计一个能自启动 7 进制计数器,已 知该计数器的状态转换图如下

状态转换表

Q_1	Q_2	Q_3	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Q_{3}^{*}	C
0	0	1	1	0	0	0
1	0	0	0	1	0	0
0	1	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	1	1	1	0
1	1	1	0	1	1	0
0	1	1	0	0	1	1

时序逻辑电路的自启动设计(2)

● 求解状态方程

	$\boldsymbol{Q}_2 \boldsymbol{Q}_3$	Q_2	=0	$Q_2 = 1$			
Q_1		00	01	11	10		
	0	X	0	0	0		
	1	1	1	1	1		
		$oldsymbol{Q_2^*}$					

Q_1	Q_2	Q_3	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Q_{3}^{*}	С
0	0	1	1	0	0	0
1	0	0	0	1	0	0
0	1	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	1	1	1	0
1	1	1	0	1	1	0
0	1	1	0	0	1	1

$$\begin{cases}
Q_1^* = Q_2'Q_3 + Q_2Q_3' \\
Q_2^* = Q_1 \\
Q_3^* = Q_2 \\
C = Q_1'Q_2Q_3
\end{cases}$$

时序逻辑电路的自启动设计(3)

- 任意项处理
 - 在卡诺图化简中, 如果将×项圈入, 则当作"1"处理, 否则作"0"处理
 - 这就给无效状态(×)指定了次态,如果要电路自启动,必须把无效状态的次态改为有效状态
- 前面的化简都没包含×,即 000的次态仍是000,电路不能自启动
- 需要把000的次态取成有效状态, 电路就会自启动
- 若修改Q*的卡诺图,得到新状态方程:

$$\begin{cases}
Q_1^* = Q_2'Q_3 + Q_2Q_3' = Q_2 \oplus Q_3 \\
Q_2^* = Q_1 + Q_2'Q_3' \\
Q_3^* = Q_2 \\
C = Q_1'Q_2Q_3
\end{cases}$$

时序逻辑电路的自启动设计(4)

● 如采用JK触发器实现,由特性方程: $Q^* = JQ' + K'Q$,修改状态方程

时序逻辑电路的自启动设计(5)

● 画出完整状态图,验证可自启动

● 修改状态方程时,也可以选择其他两个 触发器,目标是得到的函数式最简

当存在多个无效状态时,必须使每个无效状态都能直接或间接地转为某一有效状态,才能保证电路自启动

时序逻辑电路

- 时序逻辑电路概述
- 时序逻辑电路的分析方法
- 若干常用的时序逻辑电路
- 时序逻辑电路的设计方法
- 时序逻辑电路的竞争-冒险现象

时序逻辑电路的竞争-冒险现象

- 竞争-冒险产生的原因
 - 组合逻辑电路部分的尖峰脉冲
 - 存储电路部分: 输入信号和时钟信号同时改变, 会引起触发器误动作

异步时序电路的竞争-冒险举例

● 第3个触发器的J、K输入与CLK可能同时变化,或者JK的变化早于CLK,引起输出错误

同步时序逻辑电路的竞争-冒险现象

在大规模同步时序电路中, 每个触发器的时钟、数据会 沿不同路径传输,存在延迟 时间差异,仍有可能发生存 储电路的竞争-冒险现象

● 解决方法:

- 优化布局布线
- 精确设计时钟树
- 完整的时序仿真

问题和建议?

