Architecture of CNN compared to Normal Neural Network

Basic Neural Network

Convolution

We can think of images as two-dimensional functions. Many important image transformations are convolutions where you convolve the image function with a very small, local function called a "kernel."

From < http://colah.github.io/posts/2014-07-Understanding-Convolutions/>

Layers

Input Layer:

Input Tensor Size: [batch, in height, in width, in channels]

Convolution Layer:

Filter size = [filter height, filter width, in channels, out channels]

Depth = out channels = Number of Filters

Stride

3 x 3 Output Volume

Zero-Padding:

Parameter Sharing:

Convolution Layer Demo:

Pooling Layer:

spatial size of the representation to reduce the amount of parameters and computation in the network, and hence to also control over fitting

Fully Connected layer:

Dense Layer RELU

Layer Pattern

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC