Who's Leaving and Why: A Data-Driven Look at Employee Attrition

Part 1 of the HR Analytics Series

Problem

- 16% of employees were leaving, creating costs and operational risk.
- High-risk segments identified: fresh hires, Sales Representatives, and employees working overtime.
- HR lacked clear insights into why employees leave and which interventions work.

Process

Descriptive Analysis (Excel Dashboard)

- Segmented employees by department, role, tenure, gender, income, satisfaction, and overtime.
- Built an interactive dashboard to identify trends and high-risk groups instantly.
- Key metrics highlighted:

- Fresh Hires (0-1 yr): 34.88% attrition

- Sales Representatives: 39.76% attrition

- Employees with Overtime: 30.53% attrition

- Lower-income employees: 28.61% attrition

Predictive Analysis (Python - Logistic Regression)

- Built a Logistic Regression model to estimate attrition probability.
- Top drivers of leaving:
 - OverTime
 - Low Job Satisfaction
 - Single employees
 - Specific **job roles** (e.g., Laboratory Technicians)
- **Protective factors:** High Job Satisfaction, longer tenure (>5 yrs)
- Created visualizations for recruiter-friendly storytelling:
 - OverTime vs attrition probability bar chart

- Job Satisfaction Probability Curves
- Feature importance chart

Visualizations:

OverTime Probability Bar Chart

Dashboard Preview

A snapshot of the Excel dashboard showing department-level churn, role-specific risks, and satisfaction breakdowns.

Model Evaluation:

Metric	Class 0 - Stay	Class 1 - Leave
Precision	0.88	0.69
Recall	0.99	0.15
F1-score	0.93	0.24
Accuracy	0.87	-

This model predicts employees are likely to **stay** very well, while predicting leaving employees is harder due to class imbalance. Still, it provides actionable insights into **which factors most influence turnover.**

Results/Insights

- High-risk segments: Fresh Hires, Sales Representatives, Overtime employees
- Predictive drivers: OverTime, low Job Satisfaction, single employees, and certain job roles.
- Protective factors: High Job Satisfaction, Longer Tenure
- Actionable outcomes:
 - Monitor **overtime** and implement workload guardrails
 - Enhance **onboarding and early support** for fresh hires
 - Increase job satisfaction and engagement initiatives for at-risk employees

Combining descriptive + predictive analysis, HR can move from reactive exits to proactive retention strategies.

What I'd Explore Next

- Integrate exit interview data for qualitative insights
- Explore seasonal attrition patterns
- Layer employee engagement survey data for richer predictive signals
- Analyze promotion history and remote vs in-office trends

Tools Used

- Microsoft Excel: Dashboard creation, pivot tables
- Python: Pandas, scikit-learn (Logistic Regression), matplotlib (plots)

Why This Project Matters

- Demonstrates ability to combine descriptive and predictive HR analytics
- Highlights actionable insights for decision-making
- Showcases technical skills (Excel + Python) and business understanding

Explore The Project

- GitHub
- Portfolio