سم الله الرحمن الرحيم

REPUBLIQUE ISLAMIQUE DE MAURITANIE MINISTERE DE L'EDUCATION NATIONALE DIRECTION DE L'ENSEIGNEMENT SECONDAIRE SERVICE DES ENAMENS

Honneur-Fraternité - Justice Séries : C & TMGM Sujet : Mathématiques Durée : 4heures

Durée :4heures Coefficients :9&6

Exercice1(5 points)

Dans l'ensemble des nombres complexes \mathbb{C} , on considère l'équation (E) d'inconnue z telle que : $z^2 - (4\cos t)z + 4 + 5\sin^2 t = 0$ où $t \in [0; \pi[$ est un paramètre réel.

- 1. Résoudre, dans C l'équation (E), on notera z et z les solutions de (E) avec Im(z) > 0 (1,5pt)
- 2. Le plan complexe étant muni d'un repère orthonormé $(O; \overline{u}, \overline{v})$. Soient $M_{\underline{v}}$ et $M_{\underline{v}}$ les deux points d'affixes respectives z et z.
- a) Démontrer que lorsque le paramètre t décrit $[0; \pi]$ les points M_1 et M_2 décrivent une ellipse Γ dont on donnera une équation cartésienne. (0,75pt)
- b) Donner les élément caractéristiques de la courbe Γ puis la construire dans le repère (O; u, v). (0,75pt)
- c) Placer sur le graphique les points M_1 et M_2 pour $t = \frac{\pi}{6}$. (0,5pt)
- Soit f l'application du plan dans lui même qui à tout point M(x; y) d'affixe z associe le point

$$M'(x'; y')$$
 d'affixe z' tel que z' = $\frac{5z + z}{4}$.

a) Ecrire x' et y' en fonction de x et y.

- (0,5pt)
- b) On pose $f(\Gamma) = \Gamma'$, donner une équation cartésienne de la courbe Γ' , vérifier que Γ' est un cercle dont on donnera le centre et le rayon puis le construire dans le repère précédent. (0.5pt)
- c) En déduire une méthode géométrique qui permet de construire l'ellipse Γ point par point à partir de Γ'.(0,5pt)

Exercice2(5 points)

Dans le plan orienté, on considère trois cercles Γ_1 , Γ_2 et Γ_3 de même rayon et de centres respectifs M. N et P, ces trois cercles sont concourants en un point K et se coupent deux à deux en A. B et C tels que:

- Γ et Γ se coupent en A et K :
- Γ_{2} et Γ_{3} se coupent en **B** et **K** :
- Γ et Γ se coupent en C et K.
- Faire une construction illustrant les données précédentes.

(1pt)

- 2. On pose $\mathbf{r}_1 = \mathbf{s}_{(KB)} \mathbf{os}_{(KA)}$, $\mathbf{r}_2 = \mathbf{s}_{(KP)} \mathbf{os}_{(KC)}$ et $\mathbf{f} = \mathbf{s}_{(KB)} \mathbf{os}_{(KA)} \mathbf{os}_{(KC)}$.
 - a) Déterminer la nature de chacune des transformations r et r . (0,5pt)
- b) Déterminer r(M) et r(M) : que peut on en déduire ? (0,75pt)
- c) En déduire que f est une réflexion dont on donnera l'axc. (0,5pt)
- 3.a) Montrer que (KA, KB) = (KC, KP) [\pi] et écrire(sans le démontrer) deux relations semblables.(0.75pt)
- b) Vérifier que $(\overline{KA}, \overline{BC}) = \frac{\pi}{2} [\pi]$. (0,5pt)

Baccelaureat 2003	Session Complementaire	Epreuve de Mathématiques	Séries C&TMGM	1/2

c) En déduire que K est l'orthocentre du triangle ABC. (0,5pt)

4. Soient Γ et Γ les deux cercles circonscrits respectivement aux tringles ABC et MNP .

Montrer que les cinq cercles Γ_1 , Γ_2 , Γ_3 , Γ_4 et Γ_5 sont de même rayon. (0,5pt)

Problème(10 points)

On considére la fonction numérique \mathbf{f}_n définie sur \mathbb{R} par : $\mathbf{f}_n(\mathbf{x}) = (2 + \sin(n\mathbf{x}))e^{1+n\mathbf{x}}$ où $\mathbf{n} \in \mathbb{N}$ et soit (C) sa courbe représentative dans un repère orthonormé (O; \mathbf{i} , \mathbf{j}).

Partie A : Etude et représentation graphique de la fonction f

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = f(x) = (2 + \sin x)e^{1+x}$.

1.a) Démontrer que:
$$\forall x \in IR$$
; $\cos x + \sin x = \sqrt{2} \cos(x - \frac{\pi}{4})$. (0.5pt)

b) En déduire que:
$$\forall x \in IR$$
; $f'(x) = (2 + \sqrt{2}\cos(x - \frac{\pi}{4})e^{1+x})$ et que f est strictement croissante. (0,75pt)

2.a) Démontrer l'inégalité suivante:
$$\forall x \in \mathbb{R}, \quad e^{l+x} \le f(x) \le 3e^{l+x}$$
 [1]. (0,5pt)

b) A l'aide de [1] calculer
$$\lim_{x \to -\infty} f(x)$$
. $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ et interpréter géométriquement. (1pt)

 Dresser le tableau des variations de f et montrer que f réalise une bijection de R sur un intervalle que l'on déterminera. (0,75pt)

4. Montrer que:
$$\forall x \in IR$$
; $f''(x) = 2(1 + \cos x)e^{1+x}$. (0.5pt)

5.a) Montrer que la courbe (
$$\Gamma_1$$
) est située entre deux courbes Γ_1 et Γ_2 représentatives de deux fonctions que l'on déterminera (Γ_1 au dessus de Γ_2). (0,5pt)

b) Déterminer les points de contact de (C_1) avec Γ_1 et Γ_2 . Montrer que (C_1) est tangente à Γ_1 et Γ_2 en leurs points de contact (On dit que deux courbes sont tangentes en un point si elles ont la même tangente en ce point). (1pt) 6. Construire, dans le même repère $(O; \vec{i}, \vec{j})$, les courbes (C), Γ et Γ pour $\mathbf{x} \in [-\pi; \pi]$. (0,5pt)

respectives x = 0 et x = 1. (0,5pt)

Partie B : Calcul d'une intégrale

On pose: $A = \int_{-1}^{1} f(x) dx$.

1. Démontrer que:
$$A_n = \frac{2}{n}e^{1+n} - \frac{2}{n}e + \int_0^1 \sin(nx)e^{1+nx}dx$$
. (1pt)

2. On pose:
$$\mathbf{J}_{n} = \int_{0}^{1} \sin(n\mathbf{x}) e^{1+n\mathbf{x}} d\mathbf{x} \quad \text{et} \quad \mathbf{J}_{n} = \int_{0}^{1} \cos(n\mathbf{x}) e^{1+n\mathbf{x}} d\mathbf{x}.$$

a) En utilisant l'intégration par parties montrer que:

$$I_n = \frac{\sin n}{n} e^{1+n} - J_n \text{ et } J_n = \frac{\cos n}{n} e^{1+n} - \frac{e}{n} + I_n.$$
 (0,75pt)

h) En déduire I et J en fonction de n. (0,75pt)

b) Calculer A et comparer ce résultat avec celui de la question A.7). (0,5pt)

FIN.

Baccalauréat 2003 Session Complementaire Epreuve de Mathématiques Séries C&TMGM 2/2