MLR Model Checking

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

- Model selection vs. model checking
- Continue with model checking (regression diagnostics)

Model selection vs. model checking

Assume
$$y|\mathbf{x} = f(\mathbf{x}) + \epsilon$$

- model selection focuses on how you construct $f(\cdot)$;
- lacktriangleright model checking asks whether the ϵ match the assumed form.

Model checking: possible challenges

Two major areas of concern

- Global lack of fit, or general breakdown of model assumptions
 - Linearity
 - ▶ Unbiased, uncorrelated errors $E(\epsilon|x) = E(\epsilon) = 0$
 - Constant variance $Var(y|x) = Var(\epsilon|x) = \sigma^2$
 - ► Independent errors
 - Normality of errors
- Effect of influential points and outliers

Model checking: possible solutions

- Global lack of fit, or general breakdown of model assumptions
 - Residual analysis QQ plots, residual plots against fitted values and predictors
 - Adjusted variable plots
- Effect of influential points and outliers
 - Measure of leverage, influence, outlying-ness

Residual plots: verifying assumptions

Which assumptions are these plots evaluating?

Assumption violations are not often this obvious (but sometimes they are!).

QQ-plots for checking Normality of residuals

QQ plot defined

QQ-plot stands for quantile-quantile plot, and is used to compare two distributions. If the two distributions are the same, then each point (which represents a quantile from each distribution) should lie along the y=x line.

For a single (x, y) point

- x =a specific quantile for the N(0,1) distribution
- y = the same quantile from the (standardized, if needed) sample of data

example: Gaussian or Normal(0,1) distribution

```
d1 <- rnorm(1000)
layout(matrix(1:2, nrow = 1))
hist(d1, breaks = 50, xlim = c(-6, 6))
qqnorm(d1, pch = 19)
qqline(d1)</pre>
```


example: Student's T-distribution with 6 d.f.

```
d1 <- rt(1000, df = 5)
layout(matrix(1:2, nrow = 1))
hist(d1, breaks = 50, xlim = c(-6, 6))
qqnorm(d1, pch = 19)
qqline(d1)</pre>
```


example: Truncated Gaussian

```
d1 <- rnorm(1000)
d1 <- subset(d1, abs(d1) < 2)
layout(matrix(1:2, nrow = 1))
hist(d1, breaks = 50, xlim = c(-6, 6))
qqnorm(d1, pch = 19)
qqline(d1)</pre>
```


QQ-plots for our three fits from earlier

Model checking: possible solutions

- Global lack of fit, or general breakdown of model assumptions
 - Residual analysis QQ plots, residual plots against fitted values and predictors
 - Adjusted variable plots
- Effect of influential points and outliers
 - Measure of leverage, influence, outlying-ness

Isolated points

Points can be isolated in three ways

- Leverage point outlier in x, measured by hat matrix
- Outlier outlier in y, measured by residual
- Influential point a point that largely affects β
 - ▶ Deletion influence; $|\hat{\beta} \hat{\beta}_{(-i)}|$
 - Basically, a high-leverage outlier

Quantifying leverage

We measure leverage (the "distance" of \mathbf{x}_i from the distribution of \mathbf{x}) using

$$h_{ii} = \mathbf{x}_i^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i$$

where h_{ii} is the $(i,i)^{th}$ entry of the hat matrix. Where, recall

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$

Quantifying Leverage via the Hat Matrix

Note that

$$\sum_{i} h_{ii} \stackrel{def}{=} tr(\mathbf{H}) = p$$

where p is the total number of independent predictors (i.e. β s) in your model (including a β_0 if you have one).

What counts as "big" leverage?

- Average leverage is p/n
- Typical rules of thumb are 2p/n or 3p/n
- Leverage plots can be useful as well

Example Leverage plot with lung data

Outliers

- When we refer to "outliers" we typically mean "points that don't have the same mean structure as the rest of the data"
- Residuals give an idea of "outlying-ness", but we need to standardize somehow
- We can use the fact that $Var(\hat{\epsilon}_i) = \sigma^2(1 h_{ii})$...

Outliers

The standardized residual is given by

$$\hat{\epsilon}_i^* = rac{\hat{\epsilon}_i}{\sqrt{Var(\hat{\epsilon}_i)}} = rac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{(1-h_{ii})}}$$

The Studentized residual is given by

$$t_i = \frac{\hat{\epsilon}_{(-i)}}{\hat{\sigma}_{(-i)}\sqrt{(1-h_{ii})}} = \hat{\epsilon}_i^* \left(\frac{n-p}{n-p-\hat{\epsilon}_i^{*2}}\right)^{1/2}$$

Studentized residuals follow a t_{n-p-1} distribution.

Influence

Intuitively, "influence" is a combination of outlying-ness and leverage. More specifically, we can measure the "deletion influence" of each observation: quantify how much $\hat{\boldsymbol{\beta}}$ changes if an observation is left out.

- $|\hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}_{(-i)}|$
- Cook's distance is

$$D_{i} = \frac{(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{(i)})^{T}(\mathbf{X}^{T}\mathbf{X})(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{(i)})}{p\hat{\sigma}^{2}}$$

$$= \frac{(\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(-i)})^{T}(\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(-i)})}{p\hat{\sigma}^{2}}$$

$$= \frac{1}{p}\hat{\epsilon}_{i}^{2}\frac{h_{ii}}{1 - h_{ii}}$$

Handy R functions

Suppose you fit a linear model in R;

- hatvalues gives the diagonal elements of the hat matrix h_{ii} (leverages)
- rstandard gives the standardized residuals
- rstudent gives the studentized residuals
- cooks.distance gives the Cook's distances

Built-in R plots for 1m objects

You can also use the plot.lm() function to look at leverage, outlying-ness, and influence all together. Recall that

$$D_i = \frac{1}{p}\hat{\epsilon}_i^2 \frac{h_{ii}}{1 - h_{ii}}$$

plot(mlr, which = 5)

Today's big ideas

- Model checking
- Up next: model **selection**!