Project-2: Auto-Callable Barrier Notes with Contingent Coupons

S&P 500:

https://www.sec.gov/Archives/edgar/data/927971/000121465922011753/b930221424b2.htm

Group:

<u>Venu Madhav Menday (vmenday2)</u> Vineeth Kotala (vkotala2)

Contents

Introduction:	2
Value:	
Data:	
Bloomberg data:	
Crank Nicolson Model:	
Assumptions:	5
Model:	
	7
Results:	
Sensitivity analysis:	11

BMO \$438,000 Autocallable Barrier Notes with Contingent Coupons due November 03, 2023 Linked to the S&P 500® Index

				- 1						
n	1	r	\smallfrown	М	11	IC:	h	\sim	n	•
			. ,	u		и.		. ,		_

Value:

The estimated value of a note is \$975.94

Data:

Most of the data is picked from the term sheet while data on interest rates, underlying volatility and dividend yield are taken from the Bloomberg portal.

		Time (Yrs)	Days
Pricing Date	9/28/2022	0.0000	0
Settlement Date	10/03/2022	0.0137	5
Valuation Date	10/31/2023	1.0904	398
Maturity Date	11/03/2023	1.0986	401

Underlying asset	S&P 500
Principal Amount / Face Value	\$1,000.00
Underlying Initial value	\$3,719.04
Coupon Barrier 50% of the initial value	\$2,789.28
Downside threshold 50% of the initial value	\$2,789.28
Annual Contingent Coupon rate	11.60%
Monthly coupon rate	0.9667%
Coupon dollar amount	\$9.67
Data collected from Bloomberg (*refer to screenshots)	
Volatility (Implied volatility of European call ATM at maturity)	0.25855
Risk neutral rate -log(Df)/T where Df discount factor from OIS	0.04212
Risk-free rate	0.04212
Dividend yield (Annual, assumed to be continuous)	0.01814

Assumption on observation and coupon payment dates:

Dates marked in red are those where automatic redemption is applicable.

Observation Dates	Days	Coupon Payment Dates	Days
3-Nov-22	36	31-Oct-22	33
3-Dec-22	66	30-Nov-22	63
3-Jan-23	97	31-Dec-22	94
3-Feb-23	128	31-Jan-23	125
3-Mar-23	156	28-Feb-23	153
3-Apr-23	187	29-Mar-23	182
3-May-23	217	30-Apr-23	214
3-Jun-23	248	31-May-23	245
3-Jul-23	278	30-Jun-23	275
3-Aug-23	309	31-Jul-23	306
3-Sep-23	340	31-Aug-23	337
3-Oct-23	370	30-Sep-23	367
3-Nov-23	401	31-Oct-23	398

Bloomberg data:

Figure 1Volatility

Figure 2Discount factors for Interest rates

Figure 1Dividend Yield

Crank Nicolson Model:

Assumptions:

- 1. We estimated the value of BMO notes with S&P500 as our underlying asset for which we assumed the implied volatilities of European options from Bloomberg as the volatility for our pricing model.
- 2. Implied volatility ATM at maturity is considered assuming a higher probability of $S_T >= S_0$.
- 3. USD OIS rates are taken as Interest rates. Both risk neutral and risk-free rates are assumed to be same for the sake of simplicity.
 - a. Risk-neutral rate (r1), used for estimating the risk-neutral probabilities, is calculated between the Trade date and the Valuation date, by linear interpolation of discount factors available for dates in Bloomberg.
 - b. Similarly risk-free rate (r2), used for discounting the value of options between steps of the grid, is calculated between the Trade date and Maturity date
- 4. Dividends are assumed to be continuous since the underlying asset is an index.

Linear Interpolation of	S.No	Dates	Discount factor
discount factors for dates 1	1	9/29/2023	0.958991
& 2 gives discount factor	2	3/29/2024	0.938812
for date 3	3	11/3/2023	0.9551104

Model:

Grid Structure: for final converged estimate

jmax (number of delta S movements)	1000
imax (number of time steps)	398 X 4
SU (maximum value of S in grid)	$2.5 \times S_0$

Defining Function:

We have defined our primary function "CNFD_1" with 17 input parameters given below, and further two more functions are defined for analysis of results and sensitivity study.

CNFD_1(Face, S0, K, Barr, Tv, Tm, tcp, tob, tauto, cpn, r1, r2, q, sigma, SU, imax, jmax)

Definition of input parameters of function CNFD_1()				
Face	Principle value			
S0	Underlying initial value			
K	Autocall barrier			
Barr	Coupon barrier			
Tv	Valuation Date			
Tm	Maturity Date			
tcp	Coupon payment dates			

tob	Observation dates	
tauto	Automatic redemption beginning date	
срп	Annual Contingent Coupon rate	
r1	Risk neutral rate	
r2	Risk free rate	
q	Dividend yield (annual continuous)	
sigma	Volatility	
SU	Maximum price of underlying for the grid	
imax	maximum time steps	
jmax	maximum delta S steps	

	Definition of variables inside the function					
V1	Option value matrix when trigger event is observed					
V2	Option value matrix when trigger event has not occurred					
A, B, C, D, D1, D2, D3 alpha, CN_S	Parameters from PDE to be solved to get Option values					
dt	delta t					
dS	delta S					
jb	barrier position in stock steps					
ji	Stock Initial level					
icp1	Coupon payment dates					
icp	nearest time point before coupon payment dates					
inc	Time points close to coupon payments before Automatic redemption begins					
iob1	Observation dates					
iob / ibarrier	nearest time point before the observation date					
iauto	nearest time points before autocallable observation dates					
TNCi	Next coupon payment date					
cpk	Array of accrued coupons for calculating option value on observation dates before automatic redemption					
jcritreal	Stock steps of initial level					
jcrit	Nearest dS step before S0					
jcritB	Nearest dS step after barrier					
Vcrit	Adjusted option value at S0 and time zero					
Blambda	lambda					
cnfddb_res ult	final result					
fun1()	function based on primary function CNFD_1 to analyze option values with change in volatilities with one input sigma while others remaining constant					
CNFD_disc barrier()	function based on primary function CNFD_1 to analyze change in option values wrt to change in jmax					

Methodology:

The model is constructed in two stages,

- 1. Firstly construction of grid considering Trigger event occurred
- 2. And secondly using the former to construct a new grid assuming trigger event has not occurred

The primary difference between two grids, as it can be seen the picture given below,

- Payment at maturity
- Lower boundary condition, and hence we had to split the for loop for calculating PDE parameters A, B, C, D as given in the snippet of code.

Function Overview:

S.No	Steps
1	Inputs from term sheet and bloomberg are defined
2	Function CNFD_1
2.1	Empty list is created to save results
2.2	Creating of required arrays with dummy values:
	Two matrices with dummy values (zeros) for saving option prices from grid with trigger event
	and another grid with no trigger event are created
	Similarly arrays for saving probabilities and parameters (alpha and Z (CN_S) are also created
2.3	Then we set up structure for grid by using t_Steps and S_steps, and marking barrier points,
	coupon payment points
	Calculating Option values and probabilities
2.4	Calculate option values at maturity
2.5	Iterated calculating option and probability values for time steps backwards conditional on
	barrier positions
2.6	Defined lower boundary condition; used values from grid with trigger for creating lower
	boundary condition for grid with no trigger
2.7	Iterated for ABCD values using option values at maturity
2.8	Defined upper boundary condition
2.9	Dmax
2.10	Computed intermediate values, alpha and CN_S
2.11	Then finally calculated option values starting from upper boundary condition (mechanism
	shown in the pictures in later section)
2.12	Finally computed option value at S_0 from grid with no trigger adjusting if required

Formulae for computing parameters and stepwise flow:

rorminac for computing parameters and stepwise now.				
Lower boundary condition	Α	0		
	В	1		
	С	0		
	D	0		
Upper boundary condition	Α	0		
	В	1		
	С	0		
	D	Formula in grid		

Aj
$$V_{j-1}^{i}$$
 + Bj V_{j}^{i} + $C_{j}V_{j+1}^{i}$ = D_{j}^{i}

When,

$$A_{j} = \frac{1}{4} \left(\sigma^{2}j^{2} - (x-2)j\right)$$

$$B_{j} = \left(-\frac{\sigma^{2}j^{2}}{2} - \frac{r}{2} - \frac{1}{\Delta t}\right)$$

$$C_{j} = \frac{1}{4} \left(\sigma^{2}j^{2} + (x-2)j\right)$$

$$D_{j} = D_{j} + D_{2} + D_{3}$$

When,

$$D_{i} = -V_{j-1}^{i+1} \left(\sigma^{2}j^{2} - (x-2)j\right)^{i/4}$$

$$D_{2} = -V_{j}^{i+1} \left(\frac{1}{\Delta t} - \frac{\sigma^{2}j^{2}}{2} - \frac{r}{2}\right)$$

$$D_{3} = -V_{j+1}^{i+1} \left(\sigma^{2}j^{2} + (x-2)j\right)^{i/4}$$

By whire the above quations starting at j=0 which is love boundary condition, we get respective alphas of z's;

Now we solve for v; starting from journe using upper boundary condition, of solve futter down till j=0

$$\begin{cases}
\alpha_{0} = B_{0} \\
z_{0} = D_{0}
\end{cases}
\rightarrow
\begin{cases}
\alpha_{j} = B_{j} - (A_{j} c_{j-1}) \\
\alpha_{j-1}
\end{cases}
\rightarrow
\begin{cases}
\gamma_{j} = Z_{j} \alpha_{j} \\
\alpha_{j} - (A_{j} z_{j-1})
\end{cases}
\rightarrow
\begin{cases}
\gamma_{j} = Z_{j} - c_{j} v_{j+1} \\
\alpha_{j}
\end{cases}$$

$$\begin{cases}
\gamma_{j} = Z_{j} - c_{j} v_{j+1} \\
\alpha_{j}
\end{cases}$$

$$\begin{cases}
\gamma_{j} = Z_{j} - c_{j} v_{j+1}
\end{cases}$$

$$\begin{cases}
\gamma_{j} = Z_{j} - c_{j} v_{j+1}
\end{cases}$$

Figure illustrating step wise solving of equations for calculating option values:

Each section is further modeled using two sub steps each,

- 1. Option values at barrier positions where present values of coupons are added as described in the grid picture before automatic redemption and the upper boundary value is discounted from next autocall coupon date to the current time.
- 2. Options values at rest of the grid

Results:

We have noticed that after reaching to 1000 S_steps the convergence rate is very low, <0.015 dollars/100 steps, therefore the value is computed with 1000 S_steps and 398*4 t_steps

```
[{'S_steps': 1000,
   't_steps': 1592,
   'CN': 975.9356496051284,
   'Barrier Lambda': 0.999999999999865}]
```

Sensitivity analysis:

We have evaluated the value of options using a range of

- $S_{steps} (100 1000)$ and
- $t_{steps} 398 \text{ X} (1 \text{ to } 10) = (1194 \text{ to } 3980).$
- We have also tried to analyze the change in value with respect to volatility while others kept constant.

Volatility:-

Volatility	Option value	
0.33039	930.398115	
0.25855	975.935650	

The implied volatility at $0.75 S_0$ is 33.04% while at initial level i.e S_0 is 25.86% which resulted in a significant variation in the option value, therefore the range of option price could be between (930.398 to 975.936)

Non-linearity & Convergence:-

Since the model error is a function of square of delta S and delta t, therefore the convergence is quick.

We tried to fit the barrier on the nodes of the grid which reduced our non-linearity errors which is evident from the smooth convergence given below.

	S_steps	t_steps	CN	Barrier Lambda
0	50	1592	973.328215	1.0
1	100	1592	974.771551	1.0
2	150	1592	975.217500	1.0
3	200	1592	975.433954	1.0
4	250	1592	975.561737	1.0
5	300	1592	975.646054	1.0
6	350	1592	975.705853	1.0
7	400	1592	975.750467	1.0
8	450	1592	975.785029	1.0

Given below is the smooth convergence observed with respect to t_steps:

But to understand the effect of non-linearity issue we have selected grid which positions barrier off the grid nodes, thus resulting in the following nonlinear convergence.

	S_steps	t_steps	CN	Barrier Lambda
45	190	1592	975.400066	1.0
46	192	1592	978.544752	0.4
47	194	1592	976.400729	0.8
48	196	1592	979.528507	0.2
49	198	1592	977.437236	0.6

