Olimpiada Națională de Matematică Etapa Națională, Timișoara, 20 aprilie 2017

SOLUŢII ŞI BAREME ORIENTATIVE - CLASA a 7-a

Problema 1. Se consideră mulțimea $M = \left\{ \frac{a}{\overline{ba}} + \frac{b}{\overline{ab}} \mid a, b \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \right\}.$

- a) Arătați că mulțimea M nu conține niciun număr natural.
- b) Determinați cel mai mic și cel mai mare element din mulțimea M.

b)
$$\frac{a}{\overline{ba}} + \frac{b}{\overline{ab}} = \frac{10(a^2 + b^2) + 2ab}{10(a^2 + b^2) + 101ab} = 1 - \frac{99ab}{10(a^2 + b^2) + 101ab} = 1 - \frac{99}{101 + 10(\frac{a}{b} + \frac{b}{a})}$$
 2p

Întrucât unul dintre numerele $\frac{a}{b}$ și $\frac{b}{a}$ este mai mare sau egal cu 1, fără a restrânge generalitatea, putem presupune $a \geq b$. Notând $p = \frac{a}{b}$, problema revine la a determina valorile extreme ale sumei $p + \frac{1}{n}$, unde $p \geq 1$.

Deoarece $p+\frac{1}{p}\geq 2$, cu egalitate pentru p=1 (adică a=b), rezultă că min $M=1-\frac{99}{101+10\cdot 2}=\frac{2}{11}$ $\mathbf{1p}$

Considerând $p > q \ge 1$, avem $\left(p + \frac{1}{p}\right) - \left(q + \frac{1}{q}\right) = \frac{(p-q)(pq-1)}{pq} > 0$, deci $p + \frac{1}{p} > q + \frac{1}{q}$. Ca urmare, maximul sumei $p + \frac{1}{p}$ se atinge dacă p este maxim, ceea ce se obține când a = 9,

Problema 2. Se consideră triunghiul ABC, în care $m(\not \triangleleft A) = 90^{\circ}$, $m(\not \triangleleft B) = 30^{\circ}$, iar D este piciorul înălțimii din A. Fie punctul $E \in (AD)$ astfel încât DE = 3AE și F piciorul perpendicularei din D pe dreapta BE.

- a) Arătați că $AF \perp FC$.
- b) Determinați măsura unghiului AFB.

Problema 3. În pătratul ABCD se notează cu M mijlocul laturii [AB], cu P proiecția punctului B pe dreapta CM și cu N mijlocul segmentului [CP]. Bisectoarea unghiului DAN intersectează dreapta DP în punctul Q. Arătați că patrulaterul BMQN este paralelogram.

Soluţie.
$$\Delta BMC \sim \Delta PBC \Rightarrow \frac{BM}{PB} = \frac{BC}{PC} \Rightarrow CP = 2BP \Rightarrow [BP] \equiv [PN] \equiv [NC] \dots \mathbf{1p}$$

Deoarece triunghiurile ANE şi DPC sunt isoscele, rezultă

m ((\widehat{ANP})	+m	$\widehat{(DPN)}$	= m	\widehat{DEC}	+m	\widehat{DCE}	$) = 90^{\circ},$
-----	-------------------	----	-------------------	-----	-----------------	----	-----------------	-------------------

de unde obținem $DP \perp AN$. Cum $AQ \perp DN$, rezultă că Q este ortocentrul trunghiului ADN
deci $NQ \perp AD$
Ca urmare, $NQ \parallel AM$, iar din (1) rezultă că $AMNQ$ este paralelogram. Segmentele $[AM]$ ş
[NQ] sunt paralele și congruente, deci $[BM]$ și $[NQ]$ sunt paralele și congruente, adică $BMQN$
este paralelogram 1r

Problema 4. Determinați numerele prime scrise cu $n \geq 3$ cifre care au proprietatea că, pentru fiecare $k \in \{1, 2, ..., n-2\}$, prin eliminarea oricăror k cifre ale sale se obține un număr prim.

Soluție. Vom arăta că soluțiile problemei sunt 113, 131, 137, 173, 179, 197, 311, 317, 431, 617 și 719. Fie $N = \overline{a_n a_{n-1} ... a_1 a_0}$ un număr ca în enunț. Au loc următoarele afirmații:

- **A3**: N are cel mult o cifră pară, iar aceasta poate fi doar a_n , deoarece, în caz contrar, eliminând toate cifrele aflate la dreapta cifrei pare, se obține un număr compus (par) 1p
- **A4:** N nu poate conține cifra 5. Evident, N nu ar putea avea decât cel mult o cifră egală cu 5, iar aceasta ar putea fi doar a_n , iar din (A3) rezultă că N nu are cifre pare. Cum N conține cel mult o cifră dintre 3 și 9, N are cel puțin una dintre cifrele 1 și 7. Prin eliminări convenabile, se poate obține un număr format cu cifrele 5 și 1 sau cu 5 și 7, care nu este prim 1p

Dacă N este format cu trei cifre impare, atunci N are trei cifre din mulțimea $\{1,3,7,9\}$, dintre care una este 3 sau 9, iar celelalte două sunt din mulțimea $\{1,7\}$. Verificând combinațiile și condițiile enunțului, obținem soluțiile: 113, 131, 137, 173, 179, 197, 311, 317, 719 **2p**