Ré-identification sans coordination dans les types de données répliquées sans conflits

Matthieu Nicolas (matthieu.nicolas@loria.fr)
20 décembre 2022

Rapporteurs: Hanifa Boucheneb Professeure, Polytechnique Montréal

Davide Frey Chargé de recherche, HdR, Inria Rennes Bretagne-Atlantique

Examinateurs : Hala Skaf-Molli Professeure des Universités, Nantes Université, LS2N
Stephan Merz Directeur de Recherche, Inria Nancy - Grand Est

Olivier Perrin Professeur des Universités, Université de Lorraine, LORIA

Gérald Oster Maître de conférences, Université de Lorraine, LORIA

Encadrants ·

MUTE*, un exemple de Local-First Software (LFS)[1]

- · Application pair-à-pair
- · Permet de rédiger collaborativement des documents texte
- · Garantit la confidentialité & souveraineté des données
- *. Disponible à: https://mutehost.loria.fr
- [1]. localfirstsoftware2019.

· Noeuds peuvent être déconnectés

- · Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

- Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

- · Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

- · Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

- · Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

- · Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)

- · Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)
- Doit garantir convergence à terme [1]...
- ...malgré ordres différents d'intégration des modifications

^{[1]. 10.1145/224057.224070}

- · Noeuds peuvent être déconnectés
- Doivent pouvoir travailler sans coordination synchrone préalable (par ex. consensus)
- Doit garantir convergence à terme [1]...
- ...malgré ordres différents d'intégration des modifications

Nécessite des mécanismes de résolution de conflits

Taille du texte comparée à taille de la séquence répliquée

Taille du texte comparée à taille de la séquence répliquée

Constat

- 1% contenu...
- · ...99% métadonnées

Taille du texte comparée à taille de la séquence répliquée

Constat

- · 1% contenu...
- · ...99% métadonnées

Et ça augmente!

Taille du texte comparée à taille de la séquence répliquée

Constat

- 1% contenu...
- · ...99% métadonnées

Et ça augmente!

Impact

- · Surcoût mémoire...
- ...mais aussi surcoût en calculs et en bande-passante

Comment peut-on <mark>réduire le surcoût</mark> des

applications pair-à-pair?

mécanismes de résolution de conflits dans les

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

^{[2].} shapiro_2011_crdt.

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- Permettent modifications sans coordination
- Garantissent la convergence forte

^{[2].} shapiro_2011_crdt.

Conflict-free Replicated Data Types (CRDTs)[2]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- Permettent modifications sans coordination
- Garantissent la convergence forte

Convergence forte

Ensemble des noeuds ayant intégrés le même ensemble de modifications obtient des états équivalents, sans nécessiter d'actions ou messages supplémentaires

^{[2].} shapiro_2011_crdt.

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

Type Séquence usuel

· Changements des indices est source de conflits

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

- [3]. 2009-treedoc-preguica.
- [4]. 2013-logootsplit.

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

 Nécessaire que les identifiants appartiennent à un espace dense

^{[3]. 2009-}treedoc-preguica.

^{[4]. 2013-}logootsplit.

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

 Nécessaire que les identifiants appartiennent à un espace dense

$$id_0 <_{id} id_{0.5} <_{id} id_1$$

- [3]. 2009-treedoc-preguica.
- [4]. 2013-logootsplit.

Type Séquence usuel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assignent des identifiants de position [3] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

 Nécessaire que les identifiants appartiennent à un espace dense

$$id_0 <_{id} id_{0.5} <_{id} id_1$$

Utilise LogootSplit^[4] comme base

- [3]. 2009-treedoc-preguica.
- [4]. 2013-logootsplit.

Identifiant

· Composé d'un ou plusieurs tuples de la forme

pos^{nodeld nodeSeq}

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1}$$

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id}$$
 ? $<_{id} i_1^{B1}$

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id} i_0^{B1} f_0^{A1} <_{id} i_1^{B1}$$

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

 Note l'intervalle d'identifiants d'un bloc : pos^{nodeld nodeSeq} begin..end

 $i_{0..1}^{B1}$

Limites de LogootSplit

Sources de la croissance des métadonnées

- · Augmentation non-bornée de la taille des identifiants
- · Fragmentation de la séquence en un nombre croissant de blocs

Diminution des performances du point de vue mémoire, calculs et bande-passante

Figure 1 – Taille du contenu comparée à la taille de la séquence LogootSplit

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5], pour Treedoc

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...

^{[5].} zawirski:hal-01248197.

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5], pour Treedoc

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

^{[5].} zawirski:hal-01248197.

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [5], pour Treedoc

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

Inadaptée aux applications pair-à-pair

^{[5].} zawirski:hal-01248197.

• . •

Proposition

Mécanisme de renommage supportant les

renommages concurrents