Assignment 16

Matish Singh Tanwar

Abstract-This document solves a problem of Linear Algebra.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment 16

1 Problem

Let

$$\mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \tag{1.0.1}$$

where $x,y \in \mathbb{R}$ such that

$$x^2 + y^2 = 1 \tag{1.0.2}$$

Then, we must have:

Then, we must have:
1)
$$\mathbf{A}^{\mathbf{n}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \forall n \geq 1$$

where $\mathbf{x} = \cos(\frac{\theta}{n}), \mathbf{y} = \sin(\frac{\theta}{n})$
2) $trace(\mathbf{A}) \neq 0$
3) $\mathbf{A}^{\mathbf{T}} = \mathbf{A}^{-1}$

- 4) **A** is similar to a diagonal matrix over \mathbb{C}

2 SOLUTION

$\mathbf{A}^{\mathbf{n}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \forall n \geq 1$ $\text{where } \mathbf{x} = \cos(\frac{\theta}{n}), \mathbf{y} = \sin(\frac{\theta}{n})$ $\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{2} = \mathbf{A}.\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{2} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{3} = \mathbf{A}^{2}.\mathbf{A} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{3} = \begin{pmatrix} \cos(\frac{3\theta}{n}) & \sin(\frac{3\theta}{n}) \\ -\sin(\frac{3\theta}{n}) & \cos(\frac{3\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{3} = \begin{pmatrix} \cos(\frac{3\theta}{n}) & \sin(\frac{3\theta}{n}) \\ -\sin(\frac{3\theta}{n}) & \cos(\frac{3\theta}{n}) \end{pmatrix}$ \vdots \vdots
where $x = \cos(\frac{\theta}{n}), y = \sin(\frac{\theta}{n})$ $\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{2} = \mathbf{A}.\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{2} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{3} = \mathbf{A}^{2}.\mathbf{A} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$
$\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{2} = \mathbf{A}.\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{2} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{3} = \mathbf{A}^{2}.\mathbf{A} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$
$\mathbf{A}^{2} = \mathbf{A}.\mathbf{A} = \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{2} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{3} = \mathbf{A}^{2}.\mathbf{A} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$
$\mathbf{A}^{2} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix}$ $\mathbf{A}^{3} = \mathbf{A}^{2}.\mathbf{A} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$
$\mathbf{A}^{3} = \mathbf{A}^{2}.\mathbf{A} = \begin{pmatrix} \cos(\frac{2\theta}{n}) & \sin(\frac{2\theta}{n}) \\ -\sin(\frac{2\theta}{n}) & \cos(\frac{2\theta}{n}) \end{pmatrix} \begin{pmatrix} \cos(\frac{\theta}{n}) & \sin(\frac{\theta}{n}) \\ -\sin(\frac{\theta}{n}) & \cos(\frac{\theta}{n}) \end{pmatrix}$
$\mathbf{A}^{3} = \begin{pmatrix} \cos(\frac{3\theta}{n}) & \sin(\frac{3\theta}{n}) \\ -\sin(\frac{3\theta}{n}) & \cos(\frac{3\theta}{n}) \end{pmatrix}$
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
·
$\mathbf{A^n} = \begin{pmatrix} \cos(\frac{n\theta}{n}) & \sin(\frac{n\theta}{n}) \\ -\sin(\frac{n\theta}{n}) & \cos(\frac{n\theta}{n}) \end{pmatrix}$
$\mathbf{A^n} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \qquad \forall n \ge 1$ Hence, correct
trace(A) \neq 0 Let, $x = 0$, $y = 1$, Substitute in (1.0.1)
$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
$trace(\mathbf{A}) = 0$
Hence,incorrect
$\mathbf{A}^{\mathbf{T}} = \mathbf{A}^{-1} \qquad \qquad \mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$
$\mathbf{A}^{\mathbf{T}} = \mathbf{A}^{-1}$ $\mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ $\mathbf{A}^{\mathbf{T}} = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$
(x y)(x -y)
$\frac{(-y x)(y x)}{(x^2+y^2-xy+xy)}$
$\begin{pmatrix} x + y - xy + xy \\ -xy + xy & x^2 + y^2 \end{pmatrix}$
$\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ $\begin{pmatrix} x^2 + y^2 & -xy + xy \\ -xy + xy & x^2 + y^2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$
$\mathbf{A}\mathbf{A}^{\prime} = \mathbf{I} = \mathbf{A}^{\prime}\mathbf{A}$
$\implies \mathbf{A} = \mathbf{A}^{-1}$ $\implies \mathbf{A} \text{ is an orthogonal matrix}$
\implies A is an orthogonal matrix. Hence,correct.

Ontions	Evnlanation
Options	Explanation
A is similar to a diagonal matrix over C Using Spectral Theorem	Every real orthogonal matrix is diagonalizable over \mathbb{C} A is orthogonal from above.
	Since, $x, y \in \mathbb{R}$. So, A is a real orthogonal matrix.
$\mathbf{A} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$	$det(\mathbf{A} - \lambda \mathbf{I})) = 0$
, ,	$(x - \lambda)^2 + y^2 = 0$ $\lambda_1 = x - iy \qquad \lambda_2 = x + iy$
	For two eigen values λ_1, λ_2 let heir corresponding eigen vectors be $\mathbf{V_1}, \mathbf{V_2}$
Finding V ₁	$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{V_1} = 0$ $(\mathbf{A} - \lambda_1 \mathbf{I}) = \begin{pmatrix} iy & y \\ -y & iy \end{pmatrix}$
	By Elementary row operations we get,
	$(\mathbf{A} - \lambda_1 \mathbf{I}) = \begin{pmatrix} iy & y \\ 0 & 0 \end{pmatrix}$ $\mathbf{V_1} = \begin{pmatrix} i \\ 1 \end{pmatrix}$
	\ /
Finding V_2	$(\mathbf{A} - \lambda_2 \mathbf{I}) \mathbf{V_2} = 0$
	$(\mathbf{A} - \lambda_2 \mathbf{I}) = \begin{pmatrix} -iy & y \\ -y & -iy \end{pmatrix}$
	By Elementary row operations we get,
	$(\mathbf{A} - \lambda_2 \mathbf{I}) = \begin{pmatrix} -iy & y \\ 0 & 0 \end{pmatrix}$
A DDD-1	$\mathbf{V_2} = \begin{pmatrix} -i \\ 1 \end{pmatrix}$
$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$	P is a matrix containing eigen vectors of A ,D is the diagonal matrix where diagonals are the eigen values of A
	$\mathbf{P}^{-1} = \frac{1}{2i} \begin{pmatrix} 1 & i \\ -1 & i \end{pmatrix}$
	$\mathbf{A} = \frac{1}{2i} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x - iy & 0 \\ 0 & x + iy \end{pmatrix} \begin{pmatrix} 1 & i \\ -1 & i \end{pmatrix}$
	Hence, A is similar to a diagonal matrix over ℂ Hence,correct.

TABLE : Finding Correct Option