

INTEGER NUMBERS

Why

We want to subtract numbers.¹

Definition

Consider the set $\omega \times \omega$. This set is the set of ordered pairs of ω . In other words, the ordered pairs of natural numbers.

We call two such pairs (a, b) and (c, d) equivalent a + d = b + c. Briefly, the intuition is that (a, b) represents a less b, or in the usual notation "a - b".² So this equivalence relation says these two are the same if a - b = c - d. Rearranging gives a + d = b + c.

Proposition 1. Integer equivalence is an equivalence relation.³

We define the set of integer numbers to be the set of equivalence classes (see Equivalence Relations) under integer equivalence on $\omega \times \omega$. We call an element of the set of integer numbers an integer number or an integer. We call the set of integer numbers the set of integers or integers for short.

Notation

We denote the set of integers by **Z**. If we denote integer equivalence by \sim then **Z** = $(\omega \times \omega)/\sim$.

¹Future editions will change this why. In particular, by referencing Inverse Elements and the lack thereof in ω .

²This account will be expanded in future editions.

³The proof is straightforward. It will be included in future editions.

