

Foundations of Computing I

Fall 2014

Review: Modular Arithmetic

Let a and b be integers, and m be a positive integer. We say a *is congruent to b modulo m* if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m.

Review: Division Theorem

Let a be an integer and d a positive integer. Then there are *unique* integers q and r, with $0 \le r < d$, such that a = dq + r.

 $q = a \operatorname{div} d$ $r = a \operatorname{mod} d$

Review: Divisibility

Integers a, b, with a \neq 0, we say that a *divides* b if there is an integer k such that b = ka. The notation a | b denotes "a divides b."

CSE 311: Foundations of Computing

Fall 2013

Lecture 11: Modular arithmetic and applications

Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

Proof: Suppose that $a \equiv b \pmod{m}$.

By definition: $a \equiv b \pmod{m}$ implies $m \mid (a - b)$ which by definition implies that a - b = km for some integer k.

Therefore a=b+km. Taking both sides modulo m we get a mod m=(b+km) mod m = b mod m.

Suppose that a mod m = b mod m.

By the division theorem, $a = mq + (a \mod m)$ and

 $b = ms + (b \mod m)$ for some integers q, s.

 $a - b = (mq + (a \mod m)) - (ms + (b \mod m))$

 $= m(q - s) + (a \mod m - b \mod m)$

= m(q - s) since a mod m = b mod m

Therefore m |(a-b)| and so $a \equiv b \pmod{m}$.

Modular Arithmetic: Another Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Modular Arithmetic: Another Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some integer k such that a - b = km, and some integer j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of mod gives us $a + c \equiv b + d \pmod{m}$.

Modular Arithmetic: Another-nother Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Modular Arithmetic: Another-nother Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some integer k such that a - b = km, and some integer j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + jmb + bd$.

Re-arranging gives us ac - bd = m(kjm + kd + jb). Using the definition of mod gives us $ac \equiv bd \pmod{m}$.

Example

Let n be an integer.

Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Example

```
Let n be an integer.
Prove that n^2 \equiv 0 \pmod{4} or n^2 \equiv 1 \pmod{4}
```

```
Let's start by looking at a small example: 0^2 = 0 \equiv 0 \pmod{4}

1^2 = 1 \equiv 1 \pmod{4}

2^2 = 4 \equiv 0 \pmod{4}

3^2 = 9 \equiv 1 \pmod{4}

4^2 = 16 \equiv 0 \pmod{4}

It looks like

n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}, and n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}.
```

Example

```
Let n be an integer.

Prove that n^2 \equiv 0 \pmod{4} or n^2 \equiv 1 \pmod{4}
```

```
Let's start by looking at a small example:
Case 1 (n is even):
                                                           0^2 = 0 \equiv 0 \pmod{4}
     Suppose n \equiv 0 \pmod{2}.
                                                           1^2 = 1 \equiv 1 \pmod{4}
     Then, n = 2k for some integer k.
                                                           2^2 = 4 \equiv 0 \pmod{4}
     So, n^2 = (2k)^2 = 4k^2. So, by
                                                           3^2 = 9 \equiv 1 \pmod{4}
     definition of congruence,
                                                           4^2 = 16 \equiv 0 \pmod{4}
     n^2 \equiv 0 \pmod{4}.
                                             It looks like
                                                   n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}, and
Case 2 (n is odd):
                                                   n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}.
     Suppose n \equiv 1 \pmod{2}.
     Then, n = 2k + 1 for some integer k.
     So, n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1. So,
by definition of congruence, n^2 \equiv 1 \pmod{4}.
```

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2: If $x = \sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$ then representation is $b_{n-1}...b_2 b_1 b_0$

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

• For n = 8:

99: 0110 0011 18: 0001 0010

Sign-Magnitude Integer Representation

n-bit signed integers

Suppose $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose $0 \le x < 2^{n-1}$, x is represented by the binary representation of x Suppose $0 \le x \le 2^{n-1}$, -x is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to y mod 2ⁿ so arithmetic works mod 2ⁿ

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8:

99: 0110 0011 -18: 1110 1110

Sign-Magnitude vs. Two's Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

Sign-Magnitude

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two's complement

Two's Complement Representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
- To compute this: Flip the bits of x then add 1:
 - All 1's string is $2^n 1$, so Flip the bits of $x = \text{replace } x \text{ by } 2^n - 1 - x$

Basic Applications of mod

- Hashing
- · Pseudo random number generation
- · Simple cipher

Hashing

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M-1\}$...

...into a small set of locations $\{0,1,\ldots,n-1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n
 - or $hash(x) = (ax + b) \bmod p$
- · Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

Simple Ciphers

- Caesar cipher, A = 1, B = 2, . . .
 - HELLO WORLD
- Shift cipher

$$- f(p) = (p + k) \mod 26$$

$$-f^{-1}(p) = (p - k) \mod 26$$

- More general
 - $f(p) = (ap + b) \mod 26$

modular exponentiation mod 7

Х	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

а	a ¹	a ²	a³	a ⁴	a ⁵	a ⁶
1						
2						
3						
4						
5						
6						

modular exponentiation mod 7

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a^6
1						
2						
3						
4						
5						
6						

modular exponentiation mod 7

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1