第六章 類比信號處理

- 讀取類比值
- 從序列埠讀取類比輸入值
- 使用光敏電阻製作小 夜燈
- 認識運算放大器
- 拍手控制開關

讀取類比值

對Arduino而言,類比資料就是0V到5V之間的電壓變化值,例如:0.8V, 2.7V, 3.6V, ...。

類比轉成數位的過程

讀取類比值的語法

從序列埠讀取類比輸入值

用可變電阻建立一個「電壓調節器」,讓輸出電壓隨著電阻值的變化而改變,藉以模擬類比資料。


```
const byte potPin = A0;
int val;

void setup() {
   Serial.begin(9600);
}

void loop() {
   val = analogRead(potPin);
   Serial.println(val);
   delay(500);
}
```


光敏電阻

光敏電阻的阻值會隨著照度(亦即,光的亮度)變化。照度越高,阻值越低。光敏電阻的受光面,有鋸齒狀的感光材料。

測試條件	CdS電阻值	10ΚΩ分壓值	4.7KΩ分壓值	1KΩ分壓值
用高亮度LED照射	165Ω	0.08v	0.16v	0.7v
緊急出口指示燈	1ΚΩ	0.45v	0.87v	2.5v
客廳日光燈	3.3ΚΩ	1.24v	2.06v	3.83v
室內暗處	18ΚΩ	3.21v	3.96v	4.73v
用黑色膠布遮蓋	>2MΩ	4.95v	4.98v	4.99v

電阻分壓電路

在電子迴路中,流出的電流等 於流入的電流。計算電流時, 需要把所有電阻值加總。

$$5V \xrightarrow{R_1} 1 \xrightarrow{R_2} R_2 \qquad \Rightarrow \qquad I = \frac{V}{R} \Rightarrow \qquad I = \frac{5V}{20K\Omega + 30K\Omega} \Rightarrow \qquad 0.0001A$$

$$V_{CC} \xrightarrow{+ 0.1 \text{mA}} V_2 = I \times R_2 \quad \Rightarrow \quad V_2 = I \times R_2 \quad \Rightarrow \quad 0.1 \text{mA} \times 30 \text{K}\Omega = 3 \text{V}$$

$$V_{CC} \xrightarrow{+ 0.1 \text{mA}} V_2 \quad \Rightarrow \quad V_2 = I \times R_2 \quad \Rightarrow \quad V_2 = I \times R_2 \quad \Rightarrow \quad 0.1 \text{mA} \times 30 \text{K}\Omega = 3 \text{V}$$

$$V_{CC} \xrightarrow{+ 0.1 \text{mA}} V_2 \quad \Rightarrow \quad V_2 = I \times R_2 \quad \Rightarrow \quad V_2 = I \times R_2$$

電阻分壓代表分配電壓,使用 兩個電阻構成的分壓電路與電 壓計算公式:

電源
$$\frac{R_1}{R_2}$$
 輸出電壓 $\frac{R_2}{R_1}$ 輸出電壓 $\frac{R_2}{R_1 + R_2}$ 輸出電壓 $\frac{R_2}{R_1 + R_2}$

使用光敏電阻製作小夜燈

使用光敏電阻和另一個電阻構成分壓電路;光敏電阻會隨著 光線變化改變阻值。

使用光敏電阻開關燈

```
void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
void loop() {
 // put your main code here, to run
repeatedly:
float val = analogRead(A1);
Serial.println(val);
if (val>322) {
 digitalWrite(13, HIGH); }
else {
 digitalWrite(13, LOW);
delay(500);
```


使用光敏電阻計數

```
int count=0:
int s=0:
void setup() {
 // put your setup code here, to run once:
Serial.begin(9600); }
void loop() {
 // put your main code here, to run repeatedly:
float val=analogRead(A0);
Serial.print(val);
Serial.print(" counter: ");
 if (val>350) {
 s=1:
 delay(100); }
if (val<300) {
 count =count+s;
 s=0;  }
Serial.println(count);
if (Serial.available()) {
 char reset = Serial.read();
 if(reset="0") {
  count = 0; } }
delay(1000); }
```


- 一分鐘回饋:
- https://goo.gl/forms/0C6jWOW5MTX9paos1

