Application of the Lottery Ticket Hypothesis in NLP and Early Pruning

Intermission

(b) 100 samples from the MNIST training set.

Source: https://www.mdpi.com/applsci/applsci-09-03169/article_deploy/html/images/applsci-09-03169-a001-550.ipg

Source: https://www.bonaccorso.eu/wp-content/uploads/2016/07/28019400581_e1eb13ccc8_b.jpg

Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab

Tim Unverzagt

Structure

Introduction

Motivation

Background

Related Work

Task Definition

Progress

Outlook

Structure

Introduction

Motivation

Context of the thesis

Background

Related Work

Task Definition

Progress

Content of the thesis

Outlook

Initial Thoughts

- Many good reasons to initialize & train neural networks with many parameters
- Empirical evidence that many networks can be reduced after training while maintaining performance
 - aka. "Pruning"
 - Desirable due to bias towards small models (Ockham's razor)

Initial Thoughts

- Many good reasons to initialize & train neural networks with many parameters
- Empirical evidence that many networks can be reduced after training while maintaining performance
 - aka. "Pruning"
 - Desirable due to bias towards small models (Ockham's razor)

- Main Question:
 - "How important are the pruned weights during training?"

Lottery Ticket Hypothesis

- Mot
- Back
- Task
- Pro
- Out

- Due to the sheer number of "small" subnetworks in a "huge" network at least one such subnetwork has been initialized favorably for the given task
 - Name said subnetwork "lottery-ticket"

Lottery Ticket Hypothesis

- Due to the sheer number of "small" subnetworks in a "huge" network at least one such subnetwork has been initialized favorably for the given task
 - Name said subnetwork "lottery-ticket"
- The lottery-ticket can be trained as a standalone-network achieving a similar performance to the original

- Mot
- **Back**

- Due to the sheer number of "small" subnetworks in a "huge" network at least one such subnetwork has been initialized favorably for the given task
 - Name said subnetwork "lottery-ticket"
- The lottery-ticket can be trained as a standalone-network achieving a similar performance to the original
- A lottery-ticket can be identified by analysis of the fully trained original network
 - e.g. keeping only the weights of the largest magnitude finds a lottery ticket

Motivation

Motivation

Time & Memory

- Speedup during execution just as regular pruning
 - But remarkable compression rate: up to ~50x
- Decrease in memory usage during execution
- Possible speedup during development
 - There might be a way to identify lottery tickets early

Motivation

Time & Memory

- Speedup during execution just as regular pruning
- Decrease in memory usage during execution
- Possible speedup during development
 - There might be a way to identify lottery tickets early

Interpretability

- Understanding lottery-tickets might enhance our knowledge of neural networks in general
 - Finding a way to identify a lottery-ticket might help understanding how exactly neural networks learn

Background – Neural Networks Basics

Source: "Biology 2e" OpenStax Sec.35.2

Background – Neural Networks Basics

Background – Neural Networks

Background – Neural Networks Basics

Int

Mot

Back

Task

Pro

Out

https://openstax.org/resources/ee34862d28dde2838ca58b4ff73225a93afbee38

"Biology 2e" OpenStax Sec.35.2

Out = $\phi((\Sigma_i x_i) + b)$

Source:

https://www.researchgate.net/profile/Soufiane_Belharbi/ publication/326439111/figure/fig2/AS:669487372181508 @1536629636103/Perceptron-model-Notation-x-i-is-thei-th-component-of-x-the-same-as-x-i-in

"Neural Networks Regularization Trough Representation Learning" p. 17

Related Work

Task

Out

Fully Connected Neural Network

https://hackernoon.com/hn-images/1*Kdnux0Kw1yQ4D8dq__mYCA.png

Convolution in Neural Networks

Convolutional Neural Network Architecture (Lenet-5)

Source: https://api.intechopen.com/media/chapter/58989/media/F4.png

Language Models

Source: https://samyzaf.com/ML/nlp/w ord2vec2.png

Related Work – CNN in NLP

"Convolutional Neural Networks for Sentence Classification"

- 2014
- Task:
 - Varying Classifications
- Datasets:
 - Movie reviews
 - SST-1, SST-2
 - Subjectivity dataset
 - TREC question dataset
 - Customer reviews
 - **MPQA**

Related Work – CNN in NLP

"Convolutional Neural Networks for Sentence Classification"

Mot

Task

Pro

Out

Source: "Convolutional Neural Networks for Sentence Classification" Figure 1

Related Work - Pruning

Source:

https://www.mdpi.com/applsci/applsci-09-03169/article_deploy/html/images/applsci-09-03169-g001-550.jpg

"Learning both Weights and Connections for Efficient Neural Networks" Figure.3

Related Work – Pruning

"Learning both Weights and Connections for efficient Neural **Networks**"

- 2015
- Task:
 - Image Classification (ImageNet)
- Architectures:
 - LeNet (300-100-FC, 5-CNN)
 - **AlexNet**
 - VGG-16
- Compression:
 - 9x to 13x

Related Work – Pruning

"ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression"

- **2017**
- Task:
 - Image Classification (ImageNet)
- Architectures:
 - VGG-16
 - ResNet-50
- Compression:
 - Up to ~17x

Related Work – Pruning

"The Lottery Ticket Hypothesis: Finding Sparse, Trainable **Neural Networks**"

- 2019
- Task:
 - Image Classification (MNIST)
- Architectures:
 - Lenet (300-100-FC, Conv-2, Conv-4, Conv-6)
 - **VGG-19**
 - ResNet-18
- Compression:
 - \sim 20x to \sim 50x

Related Work – Early Pruning

Mot

"Really should we pruning after model be totally trained? Pruning based on a small amount of training"

- 2019
- Task:
 - Image Classification (MNIST, CIFAR-10)
- Architectures:
 - **Unspecified CNN**
 - **VGG-19**
- Compression --- Training Speed-Up:
 - ~10x --- 10x

Related Work – Network Architecture Search

"Rethinking the Value of Network Pruning"

- 2018
- Observation:
 - Randomizing weights does not worsen a pruned network
- Weights are not essential to the quality of pruned network
- Pruning at its core is about finding suitable network architectures

Related Work - Network Architecture Search

Mot

"Network Architecture Search: A Survey"

2019

• [...]

Task I

Reproduction

- No source-code available
 - Produce own source-code for the experiments in the paper
- Verify source-code by running experiments

Task II

Original context for the paper

Image Classification Task:

Dataset: "MNIST"

Varying FCNN and CNN Model:

Find comparable context in NLP

Topic Classification Task:

Dataset: "Reuters-21578"

Model: TBD

Pro

Check if the Lottery-Ticket-Hypothesis holds

Task III

Early Retrieval of Lottery Tickets

- Original method
 - "Select" all weights of the "fully trained" network over a certain percentile
 - Reset weights to original intial value
 - Retrain network
 - Repeat (Optional)
- Adaptation
 - "Select" weights earlier / develop early stopping criteria
 - "Select" weights based on other metrics (Optional)

Progress – Python-project

Progress – Backend

Progress – Experiment(s)

Remaining Work

Remaining parts of the framework

- **Custom Convolutional Layer**
- Support for iterative Pruning

More experiments

- MNIST / Lenet-CNN-6
- MNIST / VGG-18
- Reuters / TBD
- MNIST / Lenet-FCN / Early Pruning

Thank you for your attention! Questions?

