Midterm study guide: calculus

 $Visit\ tinyurl.com/sections 10 a\ for\ my\ discussion\ resources.$

October 22nd, 2024

calculus content so far is from Chapters 1, 2, and 3 of the textbook. Here are some things you should know for xam (feel free to use this as a checklist):
The unit circle
The definitions of functions, domains, ranges, increasing, decreasing, even/odd functions (1.1)
The general form of linear functions, polynomials, power functions, rational functions, algebraic functions, trigonometric functions, exponential functions, and logarithmic functions (1.2)
How to find the domains and ranges of the above functions (1.2)
The exponent rules (e.g. $x^a x^b = x^{a+b}$), logarithm rules (e.g. $\log(a^b) = b \log a$), and trigonometry rules (1.4, 1.5)
The general form of horizontal shifts to the left and to the right, vertical shifts up and down, horizontal stretches/squeezes, vertical stretches/squeezes (1.3)
Obtaining the equation of the transformation of a function from the graph of its transformation (1.3)
How to compose several functions (1.3)
Once again, the unit circle
The definition of a one-to-one function, and that one-to-one functions have inverses (1.3)
How to find the inverse of a function (1.5)
Limit laws for adding, subtracting, multiplying, dividing, and exponentiating sequences (2.1)
Limit laws for r^n (2.1)
The definitions of convergent and divergent sequences (2.1)
Finding $\lim_{n\to\infty} r^n$ for various values of n (2.1)
The definition of a limit at infinity, and how limits at infinity relate to horizontal asymptotes (2.2)
Using limit laws with limits at infinity (2.2)
Strategies for evaluating limits (combining fractions, dividing the numerator/denominator by the highest power of x , multiplying/dividing by the conjugate) (2.2, 2.4)
The unit circle!!!
The limit laws for sums, differences, products, quotients, and exponentiation (2.3)
The direct substitution property for polynomials: If f is a polynomial, then $\lim_{x\to a} f(x) = f(a)$ (2.4)
If direct substitution gives us an indeterminate form (i.e. $\frac{0}{0},\frac{\infty}{\infty},\infty\cdot 0$, etc), we must modify the function somehow using the limit laws or other properties (2.4)
The definition of a finite limit, and how finite limits connect to vertical asymptotes (2.3)
Solving limits using the squeeze theorem (2.4)
The limit definition of continuity, and how to find where functions are continuous (by first finding all of their discontinuities) (2.5)
The limit definition of continuity from the left, right, and on an interval (2.5)
If f and g are continuous at g, then so are $f + g$, $f - g$, fg and f/g (assuming $g(g) \neq 0$), (2.5)

Where polynomial, rational, root, exponential, power, logarithmic, trigonometric, and inverse trigonometric functions are continuous (2.5)
Continuity of compositions of functions (2.5)
The statement of the Intermediate Value Theorem (IVT) (2.5)
Finding the instantaneous rate of change (e.g. velocity given the change in position function) (3.1)
The two different limit definitions of a derivative: $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ and $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$
The definition of differentiability (the limit must exist and cannot be $\pm\infty)$ (3.2)
If something is differentiable at a , it is continuous at a , and the reverse does not necessarily hold! (3.2)
The power rule (derivative of x^n) (3.2)
The derivative of $c \cdot f(x)$, $f(x) + g(x)$, and $f(x) - g(x)$ (3.3)
The derivative of $\sin x$, \cos , x , $\tan x$, and e^x (3.3)
The product rule (derivative of $f(x) \cdot g(x)$) (3.4)
Applying the product rule to a product of three functions $f(x)g(x)h(x)$ (3.4)
The quotient rule (derivative of $f(x)/g(x)$) (3.4)
The derivatives of $\arctan, \tan, \sec, \csc, \cot$ (3.4)
The chain rule and the conditions for it to be used (3.5)
Applying the chain rule to a composition of three functions $f(g(h(x)) \ (3.5)$
The derivative of e^x (3.5)
The derivative of b^x for arbitrary b (3.5)
How to use implicit differentiation (3.5)
How and when to use logarithmic differentiation (3.5)
The derivative of $\log_b x$ (3.7)
The derivatives of $\ln x$ and $\ln x $ (3.7)
For the last time, the unit circle
\bigstar The two ways to write e as a limit: $\lim_{x\to 0}(1+x)^{1/x}$ and $e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$
\bigstar The linear approximation (tangent line approximation) for $f(x)$ at $x=a$ (3.8)
★ Newton's method for approximating roots (3.8)
\bigstar How to find the <i>n</i> th degree Taylor polynomial centered at a (3.8)

Help! I'm stuck on....

- ...finding limits of sequences: check out this 30 minute video (lots of examples!)
- ...the definition of a **function**: check out this 14 minute video
- ...the **domains and ranges** of different types of functions: check out this 18 minute video, or if you'd like a ton of problems you can skip around this very long video
- ...solving problems with increasing and decreasing functions: check out this 11 minute video
- ...determining if a function is **even or odd**: check out this 12 minute video

- ...using exponent laws: check out this 13 minute video
- ...using logarithm laws: check out this 5 minute video
- ...squeeze/stretch transformations: check out this 8 minute video
- ...compositions of functions: check out this 5 minute video
- ...solving problems about limits at infinity: check out this 13 minute video (tons of examples)
- ...solving problems with the **limit laws**: check out this 12 minute video
- ...intution for the Squeeze Theorem: check out this 11 minute video
- ...intuition for **continuity**: check out this 13 minute video
- ...how to tell where a function is continuous: check out this 10 minute video
- ...what continuity from the left/right means: check out this 3 minute video
- ...what the limits of **compositions** of functions are: check out this 5 minute video
- ...what the Intermediate Value Theorem (IVT) says: check out this 8 minute video
- ...how to use IVT to find roots: check out this 13 minute video
- ...how to evaluate limits at infinity/horizontal asymptotes: check out this 19 minute video
- ...how to find the instantaneous rate of change: this 4 minute video
- ...the **limit definition** of a derivative: check out this 23 minute video (watch at 2x)
- ...the other limit definition of a derivative: check out this 8 minute video
- ...what differentiability means and how it relates to continuity: check out this 9 minute video
- ...the **product rule** and how to use it: check out this 11 minute video
- ...the quotient rule and how to use it: check out this 11 minute video
- ...motivation for the chain rule: check out this 15 minute video
- ...examples with the chain rule: check out this 18 minute video
- ...understanding implicit differentiation: check out this 11 minute video
- ...how and when to use logarithmic differentiation: check out this 13 minute video
- ...how and when to use linear approximation: check out parts of this 54 minute video with tons of examples
- ...motivation for Taylor series: check out this 22 minute video