# Where are they looking? Topicos de Investigación I

Arotoma Bacilio, Bitzer Nazareth Bedon Vasquez, Bruno Fabio Huarcaya Canal, Oscar Mejia Puma, Miguel Angel

> Universidad Nacional de Ingeniería Facultad de Ciencias

Escuela Profesional de Ciencia de la Computación



## Introducción



## Where are they looking Team Bomb!

## Introducción

## Detalles del Trabajo



El desarrollo del presente trabajo incluye:

- Estructuración de los datos.
- 2. Preparación de los modelos.
- Evaluación de modelos.
- 4. Validación de resultados.
- Análisis y Conclusiones.

## Introducción

Porqué localización de interiores



## Las aplicaciones más frecuentes son:

- Marketing en retail (publicidad, oferta, cupones).
- Orientación en interiores (guías).
- Eficiencia en la atención (grado de incidencia).



## Where are they looking Team Bomb!

Introducción

#### Porqué localización de interiores

finición del Proble

### Indoor Location

Casos de Prueb

Modelos de Aprendizaje Accuracy y Error Medio

### Resultado

Caso 1

Caso 3

## Introducción Porqué Machine Learning



## Soluciones para indoor location



Ecuación de Rappaport:

RSSI = -10 n log(d) + tx Power

Propuesta:

Modelar usando Machine Learning.

## Where are they looking Team Bomb!

### .....

Porqué localiza

Porqué Machine Learning

### Indoor Location

Indoor Location

Modelos de Aprendizaje Accuracy y Error Medio

### Resultados

Caso 1

Caso 3

## Introducción Definición del Problema



## Area Experimental



## Where are they looking Team Bomb!

#### ntroducción

Porqué localizaci

Porqué Machine Learning Definición del Problema

### Contract Contract

Caene de Prueh

Modelos de Aprendizaj

#### Resultado

Caso 1

Caso 3

Conclusione



## Casos de Prueba

El presente trabajo evalua la eficiencia para tres tipos de sucesos.

Caso 1:

**Emisor:** Microcontroller BLE 4.0, a un único nivel de potencia.

Receptor: Raspberry Pi con antena BLE 4.0.

► Caso 2:

**Emisor:** Beacon BLE 4.0, a siete niveles de potencia.

Receptor: Raspberry Pi con antena BLE 4.0.

Caso 3:

**Emisor:** Beacon BLE 4.0, a siete niveles de potencia.

Receptor: Smartphone BLE 4.0.

## Where are they looking Team Bomb!

Introduccion

Porqué Machine Learning

## Indoor Location

Casos de Prueba

Modelos de Aprendizaje Accuracy y Error Medio

### Resultados

Caso 1

Caso 3

Casos de Prueba



## Caso 1: microController → RPI2



Where are they looking Team Bomb!

#### troducción

Porqué localización de interiores

Porqué Machine Learnin

### Indoor Location

### Casos de Prueba

Modelos de Aprendizaj

#### 200 ultodon

Caso 1

0 0 0

Conclusiones

Casos de Prueba

# T.

## Caso 2: Beacon → RPI2

Be07 Be08 Be09 Be10 Be11 Sector



## Where are they looking Team Bomb!

#### troducción

Porqué localización de interiores

efinición del Proble

### Indoor Location

Casos de Prueba

Accuracy y Error Medio

### Resultados

Caso 1

Caso 3

Be08 Be09 Be10 Be11 Sector

Casos de Prueba



## Caso 3: Beacon → Smartphone



## Where are they looking Team Bomb!

#### troducción

Porqué localización de interiores

orqué Machine Learni

### Indoor Location

## Casos de Prueba

Accuracy v Error Medic

### Resultados

Caso 1

Caso 3

# Indoor Location Modelos de Aprendizaje





Where are they looking Team Bomb!

#### Introducción

Porqué localización de interiores

efinición del Problem

Casos de Prueba

Modelos de Aprendizaje

### Resultados

Caso 1

0----

Conclusiones

# Indoor Location Precisión y Error



## Precisión

 $Precision = nAciertos/nTest \times 100\%$ 

## Error Métrico



$$dv = |p/3 - y/3| \times 1.5 - 1.0$$
$$dh = |p\%3 - y\%3| \times 1.5 - 1.0$$
$$d = \sqrt{dv^2 + dh^2}$$

## Where are they looking Team Bomb!

IIIIIOGGCCIOII

interiores

## Indoor Location

Casos de Prueb

Modelos de Aprendizaje

## Accuracy y Error Medio

### Resultados

Caso 1

Caso 3

Caso 1: microController → RPI2







## Where are they looking Team Bomb!

## Caso 1

Caso 1: microController → RPI2







## Where are they looking Team Bomb!

Porqué localizació

orqué Machine Learning

#### Indoor Location

Casos de Prueba

Modelos de Aprendizaje

### Resultados

## Caso 1

Caso 3

Caso 1: microController  $\rightarrow$  RPI2



## Clasificación

| Modelo | Precisión (%) | Error Medio (m) |
|--------|---------------|-----------------|
| LoR    | 49.90         | 0.53            |
| MLP    | 67.44         | 0.32            |
| LDA    | 49.82         | 0.51            |
| KNN    | 82.50         | 0.19            |
| CART   | 80.95         | 0.20            |
| NB     | 65.85         | 0.36            |
| SVM    | 80.38         | 0.20            |
| AB     | 86.33         | 0.15            |
| GBM    | 88.05         | 0.13            |
| RF     | 87.07         | 0.14            |
| ET     | 87.19         | 0.14            |

## Regresión

| regresion |               |                |  |  |  |  |  |  |  |
|-----------|---------------|----------------|--|--|--|--|--|--|--|
| Modelo    | Precisión (%) | Error Medio (m |  |  |  |  |  |  |  |
| LiR       | 7.47          | 0.65           |  |  |  |  |  |  |  |
| Lasso     | 7.14          | 0.65           |  |  |  |  |  |  |  |
| EN        | 7.14          | 0.65           |  |  |  |  |  |  |  |
| KNN       | 52.67         | 0.32           |  |  |  |  |  |  |  |
| CART      | 52.06         | 0.36           |  |  |  |  |  |  |  |
| SVR       | 43.29         | 0.41           |  |  |  |  |  |  |  |
| AB        | 58.02         | 0.27           |  |  |  |  |  |  |  |
| GBM       | 45.65         | 0.37           |  |  |  |  |  |  |  |
| RF        | 53.57         | 0.31           |  |  |  |  |  |  |  |
| ET        | 54.14         | 0.30           |  |  |  |  |  |  |  |

## Where are they looking Team Bomb!

#### ntroducción

Porqué localización de interiores

efinición del Problem

### Indoor Location

asos de Prueba

Modelos de Aprendizaje

### esultados

Caso 1

aso 3

Caso 2: Beacon → RPI2





## Where are they looking Team Bomb!

#### troducción

Porqué localización de interiores

orqué Machine Learning

### Indoor Location

Casos de Prueba

Modelos de Aprendizaje

### Resultados

Caso 1



Caso 2: Beacon → RPI2



## Where are they looking

## Resultados de Precisión y Error por Clasificación

|        |         |       |       |       |       |       | •     |
|--------|---------|-------|-------|-------|-------|-------|-------|
| Modelo | Tx=0x01 | 0x02  | 0x03  | 0x04  | 0x05  | 0x06  | 0x07  |
| LoR    | 60.29   | 47.24 | 51.66 | 57.28 | 50.07 | 62.35 | 83.93 |
| MLP    | 68.22   | 67.55 | 64.93 | 68.29 | 67.38 | 72.17 | 82.79 |
| LDA    | 57.09   | 45.37 | 49.70 | 56.59 | 47.71 | 58.71 | 75.02 |
| KNN    | 78.98   | 80.90 | 83.03 | 81.95 | 78.55 | 86.83 | 90.92 |
| CART   | 75.71   | 76.38 | 80.32 | 78.82 | 72.19 | 87.05 | 90.13 |
| NB     | 66.76   | 63.46 | 70.06 | 69.97 | 62.50 | 72.84 | 88.12 |
| SVM    | 74.55   | 75.09 | 81.37 | 79.51 | 74.70 | 85.19 | 90.31 |
| AB     | 81.67   | 81.91 | 85.97 | 82.93 | 79.44 | 89.66 | 92.93 |
| GBM    | 84.44   | 85.43 | 87.71 | 87.60 | 83.73 | 91.52 | 93.97 |
| RF     | 81.60   | 84.21 | 86.05 | 84.88 | 81.14 | 90.25 | 92.66 |
| ET     | 82.47   | 83.13 | 86.95 | 85.71 | 80.92 | 90.25 | 92.49 |
|        |         |       |       |       |       |       |       |

| Modelo | Tx=0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 |
|--------|---------|------|------|------|------|------|------|
| LoR    | 0.32    | 0.49 | 0.49 | 0.35 | 0.52 | 0.32 | 0.15 |
| MLP    | 0.26    | 0.28 | 0.35 | 0.29 | 0.34 | 0.26 | 0.16 |
| LDA    | 0.34    | 0.5  | 0.51 | 0.36 | 0.53 | 0.36 | 0.23 |
| KNN    | 0.17    | 0.17 | 0.18 | 0.15 | 0.23 | 0.12 | 0.09 |
| CART   | 0.21    | 0.21 | 0.22 | 0.18 | 0.29 | 0.13 | 0.1  |
| NB     | 0.26    | 0.32 | 0.32 | 0.26 | 0.38 | 0.24 | 0.11 |
| SVM    | 0.21    | 0.24 | 0.19 | 0.19 | 0.28 | 0.14 | 0.09 |
| AB     | 0.16    | 0.16 | 0.15 | 0.14 | 0.21 | 0.1  | 0.07 |
| GBM    | 0.13    | 0.13 | 0.13 | 0.1  | 0.17 | 0.08 | 0.06 |
| RF     | 0.16    | 0.13 | 0.16 | 0.12 | 0.19 | 0.1  | 0.07 |
| ET     | 0.15    | 0.15 | 0.14 | 0.11 | 0.21 | 0.09 | 0.07 |

## Team Bomb!



Caso 2: Beacon → RPI2







## Where are they looking Team Bomb!

Caso 2



Caso 2: Beacon → RPI2



## Resultados de Precisión y Error por Regresión

|        |         |       |       |       |       |       | •     |
|--------|---------|-------|-------|-------|-------|-------|-------|
| Modelo | Tx=0x01 | 0x02  | 0x03  | 0x04  | 0x05  | 0x06  | 0x07  |
| LiR    | 18.18   | 14.43 | 14.40 | 15.54 | 10.36 | 15.48 | 20.52 |
| Lasso  | 18.76   | 15.00 | 13.12 | 15.54 | 10.28 | 14.58 | 20.79 |
| EN     | 17.75   | 14.86 | 13.05 | 15.40 | 10.21 | 14.66 | 21.31 |
| KNN    | 47.78   | 48.03 | 48.94 | 54.22 | 42.90 | 54.39 | 59.65 |
| CART   | 46.18   | 46.09 | 48.04 | 51.36 | 41.64 | 54.61 | 60.09 |
| SVR    | 33.09   | 36.68 | 39.67 | 43.90 | 36.17 | 47.84 | 55.46 |
| AB     | 52.36   | 52.05 | 54.37 | 57.28 | 49.19 | 59.08 | 61.14 |
| GBM    | 45.09   | 44.44 | 43.51 | 48.36 | 37.87 | 49.26 | 55.37 |
| RF     | 49.82   | 48.89 | 51.81 | 55.05 | 43.05 | 55.73 | 58.08 |
| ET     | 50.40   | 49.46 | 51.13 | 54.15 | 41.72 | 55.36 | 59.21 |

| Modelo | Tx=0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 |
|--------|---------|------|------|------|------|------|------|
| LiR    | 0.53    | 0.60 | 0.66 | 0.60 | 0.68 | 0.62 | 0.52 |
| Lasso  | 0.53    | 0.60 | 0.66 | 0.60 | 0.68 | 0.62 | 0.52 |
| EN     | 0.53    | 0.60 | 0.66 | 0.60 | 0.68 | 0.62 | 0.52 |
| KNN    | 0.31    | 0.30 | 0.32 | 0.28 | 0.36 | 0.28 | 0.24 |
| CART   | 0.35    | 0.35 | 0.36 | 0.33 | 0.43 | 0.30 | 0.25 |
| SVR    | 0.43    | 0.41 | 0.40 | 0.39 | 0.45 | 0.35 | 0.28 |
| AB     | 0.28    | 0.28 | 0.28 | 0.26 | 0.32 | 0.25 | 0.22 |
| GBM    | 0.34    | 0.35 | 0.38 | 0.34 | 0.41 | 0.33 | 0.27 |
| RF     | 0.29    | 0.30 | 0.31 | 0.28 | 0.36 | 0.28 | 0.24 |
| ET     | 0.29    | 0.30 | 0.31 | 0.28 | 0.36 | 0.28 | 0.24 |

## Where are they looking

Team Bomb!

#### Introducción

Porqué localización de interiores

Definición del Probler

### Indoor Location

Casos de Prueb

Modelos de Aprendizaje

## esultados

## Caso 1

Caso 2

Caso 3: Beacon  $\rightarrow$  Smartphone







## Where are they looking Team Bomb!

Caso 3

Modelo Tx=0x01

10.01 9.64 8.19

10.01 9.64 8.19 8.77 11.06 10.97 14.73

9.35 9.56

13.83 13.25 13.26 13.71 13.25 11.89 15.4

11.26 10.16 10.07 9.69 12.71 11.61 14 51

13.83 13.20 13.34 13.71 13.25 11.81 15.63

13.83

0.88 0.89 0.95 0.97 0.90 0.91 0.82

0.94 1.00 0.94 1.11 0.90 0.89 0.90

0.88 0.88 0.96 0.96

0.88 0.89 0.96 0.96 0.90 0.91 0.81

0.88 0.89 0.95 0.97 0.90 0.91 0.80

0.87 0.89 0.94 0.97 0.91 0.90 0.82

0.88 0.89 0.95 0.97 0.90 0.91 0.82

7.55

LoR

MLP

LDA

KNN

CART

NB

AB

NB

SVM

GBM

AB

RF

ET

SVM

Caso 3: Beacon → Smartphone

0x020x030x04

6.65

8.7

9 18 8.42 8.37 9.71

6.99 7 14 7.51 9.09 13.28

11.41

13.31 13.74 13.25 11.89

11.09 10.65 14.73

Resultados de Precisión y Error por Clasificación

0.79

0.91 0.81



## Where are they looking Team Bomb!

Caso 3



Caso 3: Beacon  $\rightarrow$  Smartphone







## Where are they looking Team Bomb!

#### troducción

Porqué localización de interiores

orqué Machine Learning

#### ndoor Location

Casos de Prueba

Modelos de Aprendizaje

### esultados

Caso 1

Caso 3

Conclusiones

Jonciusiones

ET

Caso 3: Beacon  $\rightarrow$  Smartphone



## Resultados de Precisión y Error por Regresión

0.74 0.66

0.74 0.66

|        | G.C     |      | 00.  | 0.0  | ,    |      |       |  |
|--------|---------|------|------|------|------|------|-------|--|
| Modelo | Tx=0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07  |  |
| LiR    | 7.04    | 6.55 | 6.13 | 5.77 | 8.57 | 9.09 | 11.05 |  |
| Lasso  | 7.04    | 6.55 | 6.13 | 5.77 | 8.57 | 9.09 | 11.05 |  |
| EN     | 7.04    | 6.55 | 6.13 | 5.77 | 8.57 | 9.09 | 11.05 |  |
| KNN    | 7.12    | 7.79 | 8.33 | 7.17 | 6.69 | 7.13 | 10.16 |  |
| CART   | 7.69    | 7.92 | 8.09 | 5.83 | 8.57 | 9.21 | 11.94 |  |
| SVR    | 7.72    | 9.12 | 8.01 | 7.59 | 9.15 | 9.49 | 12.05 |  |
| AB     | 7.69    | 7.82 | 7.61 | 5.83 | 8.60 | 9.13 | 11.83 |  |
| GBM    | 7.69    | 7.92 | 8.09 | 5.80 | 8.57 | 9.21 | 11.94 |  |
| RF     | 7.55    | 7.87 | 8.09 | 6.38 | 8.60 | 9.21 | 11.94 |  |
| ET     | 7.69    | 7.92 | 8.09 | 5.83 | 8.57 | 9.21 | 11.94 |  |
| Modelo | Tx=0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07  |  |
| LiR    | 0.76    | 0.78 | 0.78 | 0.77 | 0.76 | 0.75 | 0.67  |  |
| Lasso  | 0.76    | 0.78 | 0.78 | 0.77 | 0.76 | 0.75 | 0.67  |  |
| EN     | 0.76    | 0.78 | 0.78 | 0.77 | 0.76 | 0.75 | 0.67  |  |
| KNN    | 0.81    | 0.79 | 0.83 | 0.79 | 0.82 | 0.80 | 0.73  |  |
| CART   | 0.75    | 0.75 | 0.75 | 0.75 | 0.75 | 0.74 | 0.66  |  |
| SVR    | 0.75    | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.66  |  |
| AB     | 0.75    | 0.76 | 0.76 | 0.75 | 0.75 | 0.74 | 0.66  |  |
| GBM    | 0.75    | 0.75 | 0.75 | 0.75 | 0.75 | 0.74 | 0.66  |  |

0.75

## Where are they looking Team Bomb!

#### troducción

Porqué localización de interiores

efinición del Problen

### Indoor Location

Casos de Prueba

Modelos de Aprendizaje

### esultados

Caso 1



Conclusiones

Jondiusiones

## Conclusiones



- ▶ A menor nivel de potencia, mayor precisión.
- ► El caso 3 presenta muy bajo rendimiento, debido a que los cinco sensores colocados son linealmente dependientes.
- ► El caso 2 tiene la más alta precisión, llegando hasta un 93.97%, muy recomendable para ambientes reducidos y de mayor afinamiento.
- Los algoritmos lineales en clasificación tienen menor precisión.
- Los algoritmos de conjunto tienen mayor precisión.
- Los algoritmos de clasificación tienen mayor representatividad.
- El error métrico promedio varía desde 0.06m hasta 1.5m a partir del extremo del sector.

## Where are they looking Team Bomb!

#### Introducción

Porqué localizació

Porqué Machine Learning

### . . . . .

Casos de Prueh

Modelos de Aprendizaje

### Resultados

Caso 1

Caso 3

## Gracias por su atención

