Д.В.Карпов

Теория графов. Глава 2. Пути и циклы.

Д.В.Карпов

2024

• В этом разделе в рассматриваемых графах возможны кратные рёбра и петли.

Определение

- 1) Эйлеров путь в графе G это путь, проходящий по каждому ребру ровно один раз.
- 2) Эйлеров цикл в графе G это цикл, проходящий по каждому ребру ровно один раз.
- Разумеется, эйлеров путь и цикл в графе могут иметь самопересечения по вершинам.

Теорема 1

Связный граф G — эйлеров, если и только если степени всех вершин G четны.

- \Rightarrow . Каждый раз, проходя через вершину v, эйлеров цикл проходит по двум ребрам, поэтому $d_G(v)$ четна.
- —. Начнем путь в произвольной вершине а и будем идти, удаляя из графа пройденные ребра, пока это возможно.
- Так как все степени четны, наш путь обязательно закончится в вершине a. В результате получится цикл Z.
- Пусть G_1, \ldots, G_k компоненты графа G E(Z). Степени всех вершин каждой из компонент четны. Поэтому, в каждом графе G_i есть эйлеров цикл Z_i .
- Поскольку граф G связен, то для каждого $i \in [1..k]$ существует вершина $u_i \in V(G_i)$, лежащая на цикле Z. Тогда по вершине u_i несложно состыковать циклы Z и Z_i в один.
- Проделав такую операцию последовательно для циклов Z_1, \ldots, Z_k , мы получим искомый эйлеров цикл в графе G.

Следствие

Связный граф G имеет эйлеров путь, если и только если в графе G нет вершин нечетной степени или таких вершин ровно две.

Доказательство.

- \Rightarrow . Пусть ЭП имеет концы a и b. Если a=b, то наш путь ЭЦ, а значит, степени всех вершин четны. Если же $a\neq b$, то в графе ровно две вершины нечетной степени концы пути a и b.
- Количество вершин нечетной степени в графе четно.Если их нет, то в графе есть даже ЭЦ.

Определение

- 1) Гамильтонов путь в графе G это простой путь, проходящий по каждой вершине графа.
- 2) Гамильтонов цикл в графе G это простой цикл, проходящий по каждой вершине графа.
- 3) Граф называется *гамильтоновым*, если в нем есть гамильтонов цикл.

Лемма 1

Пусть n>2, $a_1\dots a_n$ — максимальный путь в графе G, причём $d_G(a_1)+d_G(a_n)\geq n$. Тогда в графе есть цикл длины n.

Д.В. Карпов

- ullet Если вершины a_1 и a_n смежны, то $a_1 a_2 \dots a_n$ искомый цикл.
- ullet Пусть a_1 и a_n несмежны. Понятно, что $\mathrm{N}_G(a_1),\mathrm{N}_G(a_n)\subset\{a_2,\ldots,a_{n-1}\}.$
- Пусть вершина a_n смежна с a_k , а вершина a_1 смежна с a_{k+1} . Тогда в графе есть цикл из n вершин: $a_1a_2 \dots a_k a_n a_{n-1} \dots a_{k+1}$ (см. рисунок).
- ullet Пусть $\mathrm{N}_G(a_n)=\{a_{i_1},\ldots,a_{i_\ell}\}$, тогда либо в графе есть цикл длины n, либо $a_{i_1+1},\ldots a_{i_\ell+1}
 ot\in\mathrm{N}_G(a_1)$, следовательно, $d_G(a_1)\le n-1-d_G(a_n)$.
- Противоречие завершает доказательство леммы.

Теорема 2

- (O. Ore, 1960.) 1) Если для любых двух несмежных вершин $u, v \in V(G)$ выполняется $d_G(u) + d_G(v) \ge v(G) 1$, то в графе G есть гамильтонов путь.
- 2) Если v(G) > 2 и для любых двух несмежных вершин $u, v \in V(G)$ выполняется $d_G(u) + d_G(v) \ge v(G)$, то в графе G есть гамильтонов цикл.
- Доказательство. 1) Случай, когда в графе G ровно две вершины, очевиден. Далее пусть v(G) > 2.
- Граф G связен. (Пусть a и b две несмежные вершины графа, тогда $d_G(a)+d_G(b)\geq v(G)-1$, откуда следует, что $\mathrm{N}_G(a)\cap\mathrm{N}_G(b)\neq\varnothing$, то есть, вершины a и b связаны.)

- Пусть $a_1 \dots a_n$ наибольший простой путь графа G. Поскольку граф G связен и v(G)>2, то $n\geq 3$. Предположим, что $n\leq v(G)-1$.
- В графе есть цикл на n вершинах: при $a_1a_n \in E(G)$ это очевидно, а при $a_1a_n \notin E(G)$ мы имеем $d_G(a_1) + d_G(a_n) \geq v(G) 1 \geq n$ и цикл существует по лемме 1 в графе G есть цикл Z из n вершин.
- ullet Так как граф связен, существует не вошедшая в этот цикл вершина, смежная хотя бы с одной из вершин цикла. Тогда и путь на n+1 вершине, противоречие. Таким образом, в графе есть ГП.
- 2) Гамильтонов путь в графе уже есть по пункту 1. Пусть n=v(G) и это путь $a_1\dots a_n$.
- Если вершины a_1 и a_n смежны, то $a_1 \dots a_n \Gamma$ Ц. Если $a_1 a_n \notin E(G)$, то $d_G(a_1) + d_G(a_n) \ge v(G) = n$ и Γ Ц есть по Лемме 1.

А теперь приведем прямое следствие теоремы Оре.

Следствие

(G. A. Dirac, 1952.) 1) Если $\delta(G) \geq \frac{v(G)-1}{2}$, то в графе G есть гамильтонов путь.

2) Если $\delta(G) \geq \frac{v(G)}{2}$, то в графе G есть гамильтонов цикл.

Лемма 2

Пусть $ab \notin E(G)$, $d_G(a) + d_G(b) \ge v(G)$. Тогда граф G — гамильтонов, если и только если граф G + ab — гамильтонов.

Доказательство.

- ⇒. Очевидно.
- \Leftarrow . Пусть граф G+ab гамильтонов. Если ГЦ в графе G+ab не проходит по ребру ab, то этот цикл есть и в графе G.
- Пусть ГЦ в графе G+ab проходит по ребру ab. Тогда в графе G есть гамильтонов ab-путь. По лемме 1 в графе G существует ГЦ.

Определение

Рассмотрим произвольный граф G. Если существуют две несмежные вершины $a,b\in V(G)$, для которых $d_G(a)+d_G(b)\geq v(G)$, то добавим в граф ребро ab. Далее продолжим процесс с полученным графом, и так далее, до тех пор, пока это возможно. Полученный в результате граф назовем *замыканием* графа G и обозначим через C(G).

• Непосредственно из леммы 2 следует достаточно интересный результат:

Следствие

- (V. Chvatal, 1974.) Граф G гамильтонов, если и только если его замыкание C(G) гамильтонов граф.
- Найти гамильтонов цикл в замыкании обычно гораздо проще, чем в исходном графе.

Лемма 3

Замыкание графа G определено однозначно (не зависит от порядка добавления рёбер).

Доказательство.

- Пусть в результате двух разных цепочек добавления рёбер были получены различные графы G_1 и G_2 .
- Тогда есть ребра, добавленные при построении G_1 , которых не добавили при построении G_2 . Рассмотрим такое ребро ab, добавленное самым первым.
- ullet Пусть G_0 граф, к которому добавили ab. Тогда $d_{G_0}(a) + d_{G_0}(b) \geq v(G)$.
- Однако, все рёбра, которые добавили к G при построении G_0 , добавлены и при построении G_2 (мы так выбрали ребро ab!). Поэтому, $d_{G_2}(a)+d_{G_2}(b)\geq v(G)$, а значит, процесс построения замыкания, давший нам G_2 , не закончен: нужно добавить ребро ab. Противоречие.

Теорема 3

(V. Chvatal, 1972) Пусть $d_1 \leq d_2 \leq \cdots \leq d_n$ — последовательность степеней вершин графа G, а для каждого $i \in [1..n-1]$ выполняется неравенство $d_i + d_{n-i} \geq n$. Тогда граф G — гамильтонов.

Доказательство.

- ullet Докажем, что замыкание C(G) гамильтонов граф.
- ullet Пусть $V(G)=\{v_1,\ldots,v_n\}$, причем $d_G(v_i)=d_i$. При $i+j\geq n$ $d_G(v_i)+d_G(v_i)=d_i+d_i\geq d_i+d_{n-i}\geq n,$

следовательно, вершины v_i и v_j смежны в C(G).

ullet Теперь легко построить ГЦ в C(G).

При n=2m+1 он будет иметь вид $v_1v_2mv_2v_2m-1\dots v_mv_{m+1}v_{2m+1}$.

При n=2m цикл будет иметь вид $v_1v_{2m-1}v_2v_{2m-2}\dots v_{m-1}v_{m+1}v_mv_{2m}\dots v_{m-1}v_{m+2m}v_{2m}\dots v_{m-1}v_{m}v_{2m}\dots v_{m}v_{2m}\dots v_$

Определение

Для графа G и натурального числа d обозначим через G^d граф на вершинах из V(G), в котором вершины x и y смежны тогда и только тогда, когда $\mathrm{dist}_G(x,y) \leq d$.

Теорема 4

(G. Chartrand, S. F. Kapoor, 1969.) Для любого связного графа G с $v(G) \ge 3$ и ребра $e \in E(G)$ в графе G^3 существует гамильтонов цикл, содержащий ребро e.

Доказательство. • Достаточно доказать теорему для случая, когда G — дерево (иначе выделим остовное дерево, содержащее ребро e).

• Мы докажем утверждение индукцией по количеству вершин. База для дерева на трех или четырех вершинах очевидна (тогда G^3 — это полный граф).

Д.В. Карпов

- ullet Пусть для меньших чем G всех деревьев теорема доказана.
- Пусть e=uv, тогда в графе G-uv две компоненты связности $U\ni u$ и $V\ni v$. Пусть $G_u=G(U)$ и $G_v=G(V)$. НУО $|U|\ge 3$. Тогда в G_u^3 есть ГЦ, содержащий инцидентное u ребро $ux\in E(G)$.
- Если $|V| \geq 3$, то аналогично мы построим ГЦ в графе G_v^3 , содержащий инцидентное вершине v ребро $vy \in E(G)$ и соединим эти два цикла в один, заменив рёбра ux и vy на uv и xy, см. рисунок а (из $\mathrm{dist}_G(x,y)=3$ следует $xy \in E(G^3)$).

Остаются очевидные случаи, когда |V| < 3. При $V = \{v\}$ мы заменим в ГЦ графа G_u^3 ребро ux на uv и vx (рис. b). При $V = \{v, y\}$, очевидно, $vy \in E(G)$ и мы заменим в ГЦ графа G_u^3 ребро ux на uv, vy и yx (рис. c).

Д.В.Карпов

Материалы курса можно найти вот здесь:

logic.pdmi.ras.ru/~dvk/ITMO/