

Location Recommendation & Route Planning

H.P. Hsieh NCKU EE

Sources of Geo-Social Location Data

- GPS Devices
 - In-car GPS
 - Personal GPS logger
- Location-based services + mobile phone
 - Check-in actions and records
 - E.g. Facebook, Foursquare, Twitter
- Digital Camera
 - Geo-tagged photos
 - E.g. Flickr, Instagram, Panoramio

Such user mobility records reveal how people travel around an area!

User-Generated Geo-Locations

- Geographical Footprints
 - A sequence/set of location data points with
 - Latitude-longitude records
 - Time stamps

ID	Timestamp	Location
"Peter"	2010-04-02 13:12	37.5, -122.5
"Peter"	2010-04-02 15:22	37.2, -123.5

Represent the spatial-temporal human activities

Human movement

Taxi movement

Animal movement

Location Recommendation

This is my first time visiting Florence, where are the best to go?

It's dinner time now. Which one should I choose among thousands of restaurants?

Location & Route Recommendation

- Location, Point-of-Interest (POI), Venue
 - A geographical point with specific function that users may find useful or interesting
 - E.g. restaurant, store, landmark
- Given
 - A set of historical user-generated location data
 - Query/Requirement: depict the user needs
 - Information about the desired places Location Rec.

Route Rec.

- Recommend
 - A set of locations/venues/POI
 - A sequence of locations/venues/POI
 - Satisfy the query requirements as much as possible

Location & Route Recommendation

Location Recommendation vs. Location Prediction

- Location Recommendation
 - Recommend NEW locations (never visited before)
- Location Prediction
 - Predict the next existing locations (had ever visited)
- General considered factors
 - Current location info
 - Current time
 - User history/preference
 - Social interaction

Route Planning can be viewed as the successive applications of location recommendation.

Location/Route Rec on Geo-Social Media

 User check-in actions bridge the geo-social gap between real world and online social network

Check-in at New Venues

- People seek to discover new locations
 - 80%-90% of visited places are new
 - 60%-80% of check-ins occur at new places

General Location Rec Strategies

- Popularity: rank locations using # of check-ins
- Content Filtering: using venue type preference
- Social Filtering: rank locations using # of check-ins by friends
- Home Distance: geo-distance from home
- K-NN User Similarity (CF)
- Place Network (Item Similarity)
- Matrix Factorization

friend link

check-in link

A Random Walk Around The City

- collective check-in behaviors (graph structure) and personalized bias.
- RWR can be applied to users with no **check-ins**. (cold start)

Dragician @10

* 4							
	Foursquar	re	Gowalla				
	popularity	rwr	popularity	rwr			
in	0.235	0.222	0.175	0.144			
on	0.204	0.196	0.313	0.258			
as	0.247	0.232	0.248	0.197			
/er	0.233	0.200	0.285	0.236			
lon	0.264	0.262	0.311	0.244			
Angeles	0.212	0.196	0.281	0.242			
York	0.192	0.185	0.280	0.242			
	0.265	0.256	0.271	0.204			
Francisco	0.208	0.200	0.220	0.183			
le le	0.238	0.218	0.264	0.226			

Visited

Method	APK	Precision@10	Recall@10	City	popularity	rwr	popularity	rwr
Random	0.500	0.000	0.003	Austin	0.235	0.222	0.175	0.144
Popular	0.228	0.026	0.089	Boston	0.204	0.196	0.313	0.258
				Dallas	0.247	0.232	0.248	0.197
Activity	0.228	0.025	0.087	Denver	0.233	0.200	0.285	0.236
Home	0.383	0.008	0.026	London	0.264	0.262	0.311	0.244
Social	0.392	0.015	0.049	Los Angeles	0.212	0.196	0.281	0.242
	0.392	0.015	0.049	New York	0.192	0.185	0.280	0.242
kNN	0.443	0.003	0.011	Paris	0.265	0.256	0.271	0.204
PlaceNet	0.337	0.026	0.077	San Francisco	0.208	0.200	0.220	0.183
				Seattle	0.238	0.218	0.264	0.226
MF	0.281	0.004	0.014	Seoul	0.210	0.226	0.410	0.381
RW	0.217	0.028	0.094	Average	0.228	0.217	0.278	0.232
-			·					

Tutorials on Location Recommendation

- Jiliang Tang, Jie Tang, Huan Liu.
 Recommendation in Social Media. @ ACM KDD 2014.
- Huiji Gao, Jiliang Tang, and Huan Liu.
 Personalized Location Recommendation on Location-based Social Networks. @ ACM RecSys 2014.
- Yu Zheng.
 Location-based Social Networks. @ WWW 2012.

Survey Papers:

A. Noulas, S. Scellato, N. Lathia, C. Mascolo: A Random Walk around the City: New Venue Recommendation in Location-Based Social Networks. SocialCom 2012.

Jie Bao, Yu Zheng, David Wilkie, and Mohamed F. Mokbel. A Survey on Recommendations in Location-based Social Networks. Geoinformatica 2014.

Yonghong Yu and Xingguo Chen. A Survey of Point-of-Interest Recommendation in Location-Based Social Networks. AAAI Trajectory-based Behavior Analytics Workshop 2015.

Route Recommendation: Examples

	Query	Preferable Routes	Illustration
1) 2)	A set of locations Time span of route	A route pass through these locations within time span	The second secon
1) 2) 3)	A source loc. A destination loc. A number of route length	A route starting from source and arrive at the destination, with length satisfied	SET OF THE PROPERTY OF THE PRO
1) 2)	A city or an area A set of labels of interests	A route in such area, which contains locations possessing such labels	Ouer San

Category of Geo-Social Trajectory Data

	GPS Trajectory	Uncertain Trajectory
Data Source	GPS recorders, in-car GPS tracer	Check-in actions in LBS Meta info in Geo-tagged Photos
Data Points	Simply Geographical Coordinates Points	Point of Interests (POI) e.g. landmark, restaurant
Property	Smoothly and continuously record every fixed distance/time period	Discretely and sparsely performed by users in LBS and taken by cameras
Sample Rate	High	Low

Challenges on Route Recommendation

GPS Trajectory

- How to find meaningful and/or popular places?
- How to tackle efficiently million-scale geo-data points for query processing?

Uncertain Trajectory

- Do not detail the sequences of movement
- Raise uncertainty between consecutive points

Route Planning: Overview

Route Query: Location Query

Location Query

- Required Locations: needed to be pass thru
- Visiting Order: order of required locations
- Geo-Distance: geographical range or the tolerable distance between locations

Route Query: Context Query

Context Query

- Visiting/Stay Time: whether the visiting time of a location is proper or the staying time of a location
- Transit Time: the time for transiting between locations
- Travel Duration: the total traveling duration in the route

- Financial Cost: the budget of a route
- Top-K retrieval: whether or not to return top-k preferable routes

Route Query: Social Query

Social Query

- Popularity of locations
- User Preference: whether or not to consider user's past visiting history
- Group or Social factor: group trips or the locations that friends had ever visited
- Activity Labels: specifying the labels or types of locations in the route

Approaches & Advanced Tasks

Approaches

Graph Search

[Chen'11], [Zheng'11], [Wei'12]

Pattern Mining

[Tang'11], [Zheng'12], [Tang'13]

Prediction/Inference

[Jeung'08], [Xue'13], [Hsieh'14]

Advanced Tasks

Tackling Uncertainty

[Zheng'12], [Wei'12]

Internal Routes

[Lu'11], [Tseng'12]

Route with auxiliary info

[Cheng'11], [Cao'12]

(a) Uncertain trajectories

(b) A 3.5-hour path.

Route Queries of Targeted Studies

		Loca	tion Q	uery		Con	text Q	uery		9	Social	Query	,
		QL	VO	DI	VT	TT	TD	CO	TK	РО	UP	GS	AL
ata	[Tang'13]												
Z D	[Chen'11]												
ectoi	[Zheng'11]												
Traje	[Tang'11]												
GSP Trajectory Data	[Jeung'08]												
	[Xue'13]												
О	[Wei'12]												
tain Dat	[Hsieh'14]												
Uncertain ectory Dat	[Zheng'12]												
Uncertain Trajectory Data	[Cao'12]												
Ë	[Lu'10]												

Approach Overview: Graph Search

Graph Construction G

	Trajectory Data	Road Net		
Nodes	Locations	Road Segments		
Edges	Traversal	Intersection		
Node Weights	Popularity / Satisfaction / Traffic			
Edge Weight	Transition Probability / Frequency			

- Design an objective function f(r) based on query, e.g.
 - E.g. visiting/transition popularity, label cover
 - With some constraints, e.g. travel time, financial cost
- Find a route/path r in G such that f(r) is optimized

Challenges on Route Recommendation

GPS Trajectory

- How to find meaningful and/or popular places?
- How to tackle efficiently million-scale geo-data points for query processing?

Uncertain Trajectory

- Do not detail the sequences of movement
- Raise uncertainty between consecutive points

Route Planning: Overview

Approach Overview: Graph Search

Graph Construction G

	Trajectory Data	Road Net		
Nodes	Locations	Road Segments		
Edges	Traversal	Intersection		
Node Weights	Popularity / Satisfaction / Traffic			
Edge Weight	Transition Proba	ability / Frequency		

- Design an objective function f(r) based on query, e.g.
 - E.g. visiting/transition popularity, label cover
 - With some constraints, e.g. travel time, financial cost
- Find a route/path r in G such that f(r) is optimized

Discovering Popular Routes

 Given a source and a destination location, find the most popular route in between

Count the number of trajectories on different paths connecting two locations

There could be no trajectory connecting two locations at all

- Construct a transfer network
 - Node: traj intersection, Edge: contiguous traj
 - Turning Probs on edges

$$Pr_d(n_i \to n_j) = \frac{\sum_{traj \in (n_i, n_j)} func(traj, d)}{\sum_{traj \in all \ outgoing \ edges} func(traj, d)}$$

 Extend Dijkstra's algorithm to find the route with highest probability

Approach Overview: Pattern Matching/Mining

Each trajectory = a sequence of geo-points / locations

- Pattern Mining
 - Mining the frequent subsequences constrained by the query requirements
 - Subsequence Pruning: keep closed ones (to save complexity)
 - Subsequence Merge: from local route to global route
- Pattern Matching
 - Find individuals with similar behaviors of movements
 - Nearest-nearest query processing (given some locations)

Mining Traveling Companions

- Discover the group of objects that move together (with similar patterns of movements)
 - E.g. migration path, driving direction, travel paths
- Recommend routes from your companion
- Clustering objects and apply sequential pattern mining

Size threshold = 4 Duration threshold = 4 snapshots

 $\{o_1, o_2, o_3, o_4\}$ is the traveling companion

Approach Overview: Recommendation/Prediction

- Given an existing sub-route, successively predict/recommend the next locations
 - Till the user requirement is satisfied
 - E.g. Route Length k, Travel Time. Arrive the destination
- Select the next locations
 - Unsupervised method
 - Location info. E.g. popularity, density, incoming flow
 - Estimate the probability P(candidateLoc | curSubRoute)
 - Supervised method
 - Choose a set of candidate locations
 - Extract route/Location-aware features
 - Apply supervised learning methods e.g. SVM

Proper Visiting Time of a Place [Hsieh'14]

- Given a source and/or destination location, and the current time, can we recommend a route, in which each location can be visited with a pleasant experience
- Pleasant visiting of places should consider visiting time, e.g.
 - People usually visit the Empire State Building from about 12:00 to the mid night (night view is popular)
 - People tend to visit the Madison Square Garden in the early evening for a basketball game
 - The proper time to visit the Central Park is during daytime
 - Time Square is preferred from afternoon to midnight.

Recommending Pleasant Routes

- Given a start location and time, recommend a route such that each location can be visited with the best experience
- Successively predicting the next location
 - Based on current location and time
- Features, e.g.
 - Geo-distance
 - Time difference
 - Transition time
 - Popularity
 - Transfer probability
 - Location category

Advanced Task: Tackling Uncertainty

- Sequences of check-in data are uncertain, discrete, and considered as low-sampling rate routes
- Given the original check-in sequences, can we estimate its original route from the samples?

Simple Reference trajectory

Spliced Reference trajectory

Advanced Task: Internal Routes

Real Scenarios

- "Want to have a one-day trip in an unfamiliar city, Beijing. Any route suggestion to visit famous places?"
- "I am going to visit the Forbidden City in Beijing, with 3 hours. What's the route within the palace?"
 Merge Paths
- Expected results Using Geo-tagged Photos 1
 - One-day trip in Beijing: 3 hours in Forbidden City → 2 hours in Tian An Men Square → 2 hours in Qian Men.

Advanced Task: Route with Aux. Info.

- Consider a user who wants to a one-day trip for a unfamiliar city. She might pose a query:
 - Find the most popular route from my hotel such that it passes by "shopping mall", "restaurant", and "museum", and time spent on the road is within 4hr
- Keyword-aware Route Query
 - (a) Start and end locations (hotel)
 - (b) A set of keywords (shopping mall, restaurant, museum)
 - (c) Budget limit (with 4hr)
 - (d) A function f calculating the score of a route (popularity)
- Goals: Satisfying (a)(b)(c) and optimizing f

Graph and Route: Illustration

- Objective scor Query = $\langle v_0, v_7, \{t_1, t_2, t_3\}, 8 \rangle$
- Budget score
- Feasible route

Route Planning: Summary In George Springs The Cherinosto GS trajectory Data Location Query **Data** Social Query **Graph Search** Pattern Matching & Mining Prediction, Learning, & Inference **Approach**

Location/Route Rec: Opportunities

Urban Computing

- Apply real-time and heterogeneous urban sensors data
 - E.g. air quality, traffic flow, weather info,
- Enable smarter / fine-grained route planning, e.g.

Potential Tasks	Data
Find fast driving routes	Instant Traffic Flow
Recommend healthy/fresh venues	Air Quality Monitoring
Provide routes with commuting time	Public Transportation and Road Network
Recommend weather-based locations	Temperature, weather conditions

Location/Route Rec: Opportunities (cont.)

Microblogging

- Social contents provide rich user experience and event information on locations
 - E.g. venue opinion, collective sentiments
 - E.g. exhibitions, ball games, movies, concerts
- Planning routes based on sentiments and events

Potential Tasks	Data
Planning routes maximizing rating	Venue rating
Event-centric route planning	Event location, time, and schedule
Recommend "positive" locations	Sentiments detected
Coordinate the group trip members	Location-based social network

References: Route Planning Approaches

Graph Search

- Z. Chen et al. Discovering Popular Routes from Trajectories. In ICDE 2011.
- Y. Zheng and X. Xie. Learning Travel Recommendations from Usergenerated GPS Traces. In ACM TIST 2011.

Pattern Mining

- L. A. Tang et al. A Framework of Traveling Companion Discovery on Trajectory Data Streams. In ACM TIST 2013.
- L.-A. Tang et al. Retrieving k-Nearest Neighboring Trajectories by a Set of Point Locations. In SSTD 2011.

Prediction/Inference

- H. Jeung et al. A Hybrid Prediction Model for Moving Objects, In ICDE 2008
- A. Y. Xue et al. Destination Prediction by Sub-Trajectory Synthesis and Privacy Protection Against Such Prediction, In ICDE 2013
- H.-P. Hsieh et al. Measuring and Recommending Time-Sensitive Routes from Location-based Data. In ACM TIST 2014

References: Advanced Tasks

Deal with Data Uncertainty

- L.-.Y. Wei et al. Constructing Popular Routes from Uncertain Trajectories.
 In ACM KDD 2012.
- K. Zheng et al. Reducing Uncertainty of Low-Sampling-Rate Trajectories.
 In IEEE ICDE 2012.

Internal Route Planning

- X. Lu et al. Photo2Trip: Generating Travel Routes from Geo-tagged Photos for Trip Planning. In ACM MM 2010.
- Y.-T. Zheng et al. Mining Travel Patterns from Geotagged Photos. In ACM TIST 2012.

Route with Auxiliary Information

- A.-J. Cheng et al. Personalized Travel Recommendation by Mining People Attributes from Community-Contributed Photos. In ACM MM 2011.
- X. Cao et al. Keyword-aware Optimal Route Search. In VLDB 2012.