

The Tensor Voting Framework

Gérard Medioni

Chi-Keung Tang

University of Southern California

Hong Kong University of Science and Technology

Motivation

- Computational framework to address a wide range of computer vision problems
- Computer Vision attempts to infer scene descriptions from one or more images
 - Primitives and constraints might vary from problem to problem
 - Many problems can be formulated as perceptual organization problems in an appropriate space

Need for Constraints

- Since the problem has infinite number of solutions, constraints need to be imposed
- Constraints may be
 - non-consistent
 - difficult to implement

Perceptual Organization

Gestalt principles:

- Proximity
- Similarity
- Good continuation
- Closure
- Common fate
- Simplicity

The Smoothness Constraint

Matter is cohesive

Smoothness

Difficult to implement, as true "almost everywhere" only

Overview

- Related Work
- Tensor Voting in 2-D
- Tensor Voting in 3-D
- Tensor Voting in N-D
- Application to Vision Problems
- Stereo
- Visual Motion

- Binary-Space-Partitioned Images
- 3-D Surface Extraction from Medical Data
- Epipolar Geometry Estimation for Non-static Scenes
- Image Repairing
- Range and 3-D Data Repairing
- Video Repairing
- Luminance Correction
- Conclusions

Related Work

Regularization

- Computer vision problems are inverse problems and ill-posed
- Constraints needed to derive solution
- Can be formulated as optimization

- > Selection of objective function is not trivial
- > Iterative

Relaxation Labeling

- Problems posed as the assignment of labels to tokens
- Remove labels that violated constraints and iteratively restrict solution space
- Continuous, discrete, deterministic and stochastic implementations

> Iterative

Robust Methods

- Model fitting based on robust statistics of data
- Classification of data as inliers and outliers
- Deterministic: M-estimators, LMedS etc.
- Stochastic: RANSAC etc.
- Very robust to noise

Can operate only with limited and known a priori models

Level Set Methods

- Solutions represented implicitly as zerolevel iso-contours or iso-surfaces of multivariate functions
- Evolve according to optimization criterion

- > Sensitive to initialization
- > Iterative

Clustering

- Group or partition the data according to affinity measures
 - Affinities encoded as edges of graph
- Partition the data by cutting the graph in a way that results in minimum disassociation between clusters (global decision)
 - Generalized eigenvalue problem
- Stochastic variants also exist

Structural Saliency

- Structural Saliency is a property of the structure as a whole
 - Parts of the structure are not salient in isolation
- Shashua and Ullman defined saliency measure based on proximity and curvature variation
- Large number of methods from Computer Science and Neuroscience
- Based on local interactions between tokens
- > Saliency defined as scalar

Grouping with Cooperative and Inhibitive Fields

- Grossberg, Mingolla, Todorovic: Boundary Contour System and Feature Contour System
- Heitger and von der Heydt: computational model of Neural Contour Processing
- Williams and Jacobs: Stochastic Completion Fields
- Other recent techniques using fields or kernels that facilitate feature cooperation and inhibition have been reported

Grouping with Cooperative and Inhibitive Fields

- Similarities with Tensor Voting:
 - Influence decays with distance and curvature
 - Gaussian attenuation
 - 8-shaped fields
 - Circular arcs as smooth paths between tokens
- Representation with tensors is richer
- Tokens of different structure types can be simultaneously processed and interact with each other within the Tensor Voting Framework

Overview

- Related Work
- Tensor Voting in 2-D
- Tensor Voting in 3-D
- Tensor Voting in N-D
- Application to Vision Problems
- Stereo
- Visual Motion

- Binary-Space-Partitioned Images
- 3-D Surface Extraction from Medical Data
- Epipolar Geometry Estimation for Non-static Scenes
- Image Repairing
- Range and 3-D Data Repairing
- Video Repairing
- Luminance Correction
- Conclusions

Tensor Voting in 2-D

- Representation with tensors
- Tensor voting and voting fields
- First order voting
- Vote analysis and structure inference
- Examples
- Illusory contours

The Tensor Voting Framework

- Data Representation: Tensors
- Constraint Representation: Voting fields
 - enforce smoothness
- Communication: Voting
 - non-iterative
 - no initialization required

Desirable Properties of the Representation

Local

Layered

Object-centered

Our Approach in a Nutshell

• Each input site propagates its information in a neighborhood

• Each site collects the information cast there

Salient features correspond to local extrema

Properties of Tensor Voting

- Non-Iterative
- Can extract all features simultaneously
- One parameter (scale)
- Non-critical thresholds
- Efficient

Second Order Symmetric Tensors

- Second order, symmetric non-negative definite tenosrs
- Equivalent to:
 - Ellipse
 - Special cases: "ball" and "stick" tensors

$$T = \lambda_{1} \cdot e_{1}e_{1}^{T} + \lambda_{2} \cdot e_{2}e_{2}^{T} =$$

$$= (\lambda_{1} - \lambda_{2})e_{1}e_{1}^{T} + \lambda_{2}(e_{1}e_{1}^{T} + e_{2}e_{2}^{T})$$

$$\begin{bmatrix} a^2 + b^2 & a^2 \\ a^2 & a^2 \end{bmatrix} = \begin{bmatrix} a^2 & a^2 \\ a^2 & a^2 \end{bmatrix} + \begin{bmatrix} b^2 & 0 \\ 0 & 0 \end{bmatrix}$$

Second Order Symmetric Tensors

Properties captured by second order symmetric Tensor

shape: orientation certainty

size: feature saliency

Representation with Second Order Symmetric Tensors

Input	Second Order Tensor	Eigenvalues	Quadratic Form
n\		$\lambda_1=1$ $\lambda_2=0$	$\begin{bmatrix} n_x^2 & n_x n_y \\ n_x n_y & n_y^2 \end{bmatrix}$
		$\lambda_1 = \lambda_2 = 1$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Design of the Voting Field

Saliency Decay Function

- σ scale of voting, s: arc length, κ curvature
- Votes attenuate with length of smoothest path
- Straight continuation is favored over curved

Scale of Voting

- The Scale of Voting is the single critical parameter in the framework
- Essentially defines size of voting neighborhood
 - Gaussian decay has infinite extend, but it is cropped to where votes remain meaningful (e.g. 1% of voter saliency)

Scale of Voting

- The Scale is a measure of the degree of Smoothness
- Smaller scales correspond to small voting neighborhoods, fewer votes
 - Preserve details
 - More susceptible to outlier corruption
- Larger scales correspond to large voting neighborhoods, more votes
 - Bridge gaps
 - Smooth perturbations
 - Robust to noise

Scale of Voting

- Results are not sensitive to reasonable selections of scale
- Quantitative evaluations in the remainder

Fundamental Stick Voting Field

Fundamental Stick Voting Field

All other fields in any N-D space are generated from the Fundamental Stick Field:

- Ball Field in 2-D
- Stick, Plate and Ball Field in 3-D
- Stick, ..., Ball Field in N-D

2-D Ball Field

Ball field computed by integrating the contributions of rotating stick

$$\mathbf{B}(P) = \int \mathbf{S}(P) d\theta$$

2-D Voting Fields

Each input site propagates its information in a neighborhood

votes with

votes with

votes with

Voting

- Voting from a ball tensor is isotropic
 - Function of distance only
- The stick voting field is aligned with the orientation of the *stick* tensor

Need for First Order Information

- Second order tensors are insensitive to signed orientation
- They cannot discriminate between interior points and terminations of perceptual structures

Polarity Vectors

- Representation augmented with Polarity Vectors (first order tensors)
- Sensitive to direction from which votes are received
- Exploit property of boundaries to have all their neighbors on the same side of the half-space

Polarity

..... Input

Saliency

Polarity

First Order Voting

- Votes are cast along the tangent of the smoothest path
- Vector votes instead of tensor votes
- Accumulated by vector addition

First Order Voting Fields

• Magnitude is the same as in the second order case

$$S(s,\kappa) = e^{-(\frac{s^2 + c\kappa^2}{\sigma^2})}$$

• First-order Ball field can be derived from the first-order Stick Field after integration

First and Second Order Voting

- Both votes are based on the *second order information* (first order vector has to be initialized as zero)
- The second order tensor is decomposed into the Stick and Ball components
- Each component casts a first and second order vote

Vote Collection

Each site collects the information cast there

• By tensor addition (for second order votes):

$$V_{SO} = \sum V_{\rm i}$$

• By vector addition (for first order votes):

$$V_{FO} = \sum v_i$$

Tensor Addition

Each site accumulates second order votes by tensor addition:

$$\bullet$$
 + $-$ = \bullet

Results of accumulation are usually generic tensors

Second Order Vote Interpretation

Salient features correspond to local extrema At each site

$$T = \lambda_{1} \cdot e_{1}e_{1}^{T} + \lambda_{2} \cdot e_{2}e_{2}^{T} =$$

$$= (\lambda_{1} - \lambda_{2})e_{1}e_{1}^{T} + \lambda_{2}(e_{1}e_{1}^{T} + e_{2}e_{2}^{T})$$

First Order Vote Interpretation (curves)

- Tokens near terminations accumulate first order votes from consistent direction
- Tokens along smooth structures receive opposite votes that cancel out

First Order Vote Interpretation (regions)

- Tokens near discontinuities accumulate first order votes from consistent direction
- Tokens in the interior of smooth structures receive contradicting votes that cancel out

Structure Inference in 2-D

Structure Type	Saliency	Tensor Orientation	Polarity	Polarity orientation
Curve inlier A	High λ_1 - λ_2	Normal: e ₁	Low	-
Curve endpoint B	High λ_1 - λ_2	Normal: e ₁	High	Normal to e ₁
Region inlier C	High λ ₂	-	Low	-
Region boundary D	High λ ₂	-	High	Normal to boundary
Junction E	Distinct	-	Low	-
	locally max			
	λ_2			
Outlier	Low	-	Indifferent	-

Sensitivity to Scale

Input

$$\sigma = 50$$

$$\sigma = 500$$

$$\sigma = 5000$$

Curve saliency as a function of scale

Blue: curve saliency at A

Red: curve saliency at B

Sensitivity of Orientation to Scale

Circle with radius 100 (unoriented tokens)

Scale	Average angular error (degrees)
50	1.01453
100	1.14193
200	1.11666
300	1.04043
400	0.974826
500	0.915529
750	0.813692
1000	0.742419
2000	0.611834
3000	0.550823
4000	0.510098
5000	0.480286

As more information is accumulated, the tokens better approximate circle

Sensitivity of Orientation to Scale

Square 200x200 (unoriented tokens)

Scale	Average angular error (degrees)	
50	1.11601e-007	
100	0.138981	
200	0.381272	
300	0.548581	
400	0.646754	
500	0.722238	
750	0.8893	
1000	1.0408	
2000	1.75827	
3000	2.3231	
4000	2.7244	
5000	2.98635	

Junctions are detected and excluded

As scale increases to unreasonable levels (>1000) corners get rounded

Examples in 2-D

Input

Gray: curve inliers
Black: curve endpoints
Red: junctions

Examples in 2-D

Input

Curves and endpoints only

Curves, endpoints and regions

Examples in 2-D

Input

Curve and region inliers

Illusory Contours

- Aligned endpoints interpreted by HVS as forming illusory contours
- Layered scene interpretation

Illusory Contours in the Tensor Voting Framework

- Endpoint detection
- Used as inputs for illusory contour inference
- Use polarity vector (parallel curve's tangent) as curve normal

Illusory Contours and Voting Fields

- Since polarity vector (tangent of detected curve segment) serves curve normal
- => fields orthogonal to regular ones
- Illusory contours are convex
 - Votes cast only to half-space away from original curve segments

Illusory Contour Example

Input

Detected endpoints and polarity vectors

Illusory contour