Multi-layer Neural Network BP Algo. – example & implementation

CS385 Machine Learning – A.N.N.

B.P. Example – the Network

B.P. Example – Feed Forward

B.P. Example – Learning (stochastic)

$$w_{3,5} = w_{3,5} + \alpha \cdot \delta_5 \cdot o_3$$

$$w_{4,5} = w_{4,5} + \alpha \cdot \delta_5 \cdot o_4 \quad ---$$

$$w_{0,5} = w_{0,5} + \alpha \cdot \delta_5 \cdot 1$$

$$\delta_3 = o_3 \cdot (1 - o_3) \cdot (\delta_5 \cdot w_{3,5} + \delta_6 \cdot w_{3,6})$$

$$\delta_4 = o_4 \cdot (1 - o_4) \cdot (\delta_5 \cdot w_{4,5} + \delta_6 \cdot w_{4,6})$$

$$w_{1,3} = w_{1,3} + \alpha \cdot \delta_3 \cdot x_1 \qquad w_{1,4} = w_{1,4} + \alpha \cdot \delta_4 \cdot x_1$$

$$w_{2,3} = w_{2,3} + \alpha \cdot \delta_3 \cdot x_2 \qquad w_{2,4} = w_{2,4} + \alpha \cdot \delta_4 \cdot x_2$$

$$w_{0,3} = w_{0,3} + \alpha \cdot \delta_3 \cdot 1 \qquad w_{0,4} = w_{0,4} + \alpha \cdot \delta_4 \cdot 1$$

BP algorithm (stochastic + sigmoid)

- Step0 define # of layers, # of nodes
- Step1 initialize parameters: weights and bias
- Step2 feed forward
 - Calculate output for each non-input layer node
- Step3 back propagate
 - Compute error for each non-input layer node i
 - Update parameters
- Step4 Convergence
 - Compute cost function
 - Repeat step2 until convergence

$$\begin{split} \delta_i &= error_i \cdot o_i \cdot (1 - o_i) \\ error_i &= (y - o_i) & \text{output-layer} \\ error_i &= \sum_j \ \delta_i * w_{i,j} & \text{hidden-layer} \\ w_{k,i} &= w_{k,i} + \ \alpha \cdot \delta_i \cdot o_k \end{split}$$

XOR with 2 nodes hidden layer

X1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0

Parameter initialization

- To avoid symmetry breaking problem, the initial value for the weights would not be zeros any longer,
- small randomized values
 - $w_{i1.1} = 0.02$ (randomly generated)
 - $w_{i2.1} = 0.03$
 - $w_{0.1} = 0$
 - $w_{i1.2} = 0.01$
 - $w_{i2.2} = 0.02$
 - $w_{0.2} = 0$
 - $w_{1,3} = 0.01$
 - $w_{2.3} = 0.03$
 - $w_{0,3} = 0$

Feed forward – input(0,0)

- Instead, they would be a small randomized value
 - $o_1 = sigmoid(0) = 0.5$
 - $o_2 = sigmoid(0) = 0.5$
 - $o_3 = sigmoid(0.5 \cdot 0.01 + 0.5 \cdot 0.03 + 0) = 0.505$

Back propagate – input(0,0)

We have

- o[3]={0.5, 0.5, 0.505}
- $o_3 = 0.505$, and y = 0

• Error (output)

•
$$\delta_3 = (y - o_3) \cdot o_3 \cdot (1 - o_3) = (0 - 0.505)0.505(1 - 0.505) = -0.126$$

Hidden-Output Weight

•
$$w_{1.3} = w_{1.3} + \alpha \cdot \delta_3 \cdot o_1 = 0.01 + 0.1 \cdot -0.126 \cdot 0.5 = -0.0037$$

•
$$w_{2,3} = w_{2,3} + \alpha \cdot \delta_3 \cdot o_2 = 0.03 + 0.1 \cdot -0.126 \cdot 0.5 = -0.0237$$

•
$$w_{0,3} = w_{0,3} + \alpha \cdot \delta_3 = 0 + 0.1 \cdot -0.126 = -0.0126$$

Back propagate – input(0,0)

- We have
 - o[3]={0.5, 0.5, 0.505}
 - $\delta[3]=\{?,?,-0.126\}$
- Error (hidden-output)

•
$$\delta_1 = (\delta_3 w_{1,3}) o_1 (1 - o_1) = (-0.126) \cdot 0.01 \cdot 0.5 \cdot (1 - 0.5) = -0.000315$$

•
$$\delta_2 = (\delta_3 w_{2,3}) o_2 (1 - o_2) = (-0.126) \cdot 0.03 \cdot 0.5 \cdot (1 - 0.5) = -0.000945$$

Input-Hidden

•
$$w_{i1.1} = w_{i1.1} + \alpha \cdot \delta_1 \cdot x_1 = 0.02 + 0.1 \cdot -0.000315 \cdot 0 = 0.02$$

•
$$w_{i2.1} = w_{i2.1} + \alpha \cdot \delta_1 \cdot x_2 = 0.03 + 0.1 \cdot -0.000315 \cdot 0 = 0.03$$

•
$$w_{0,1} = w_{0,1} + \alpha \cdot \delta_1 = 0 + 0.1 \cdot -0.000315 = -0.0000315$$

•
$$w_{i_{1,2}} = w_{i_{1,2}} + \alpha \cdot \delta_2 \cdot x_1 = 0.01 + 0.1 \cdot -0.000945 \cdot 0 = 0.01$$

•
$$w_{i2,2} = w_{i2,2} + \alpha \cdot \delta_2 \cdot x_2 = 0.02 + 0.1 \cdot -0.000945 \cdot 0 = 0.02$$

•
$$w_{0,2} = w_{0,2} + \alpha \cdot \delta_2 = 0 + 0.1 \cdot -0.000945 = -0.0000945$$

Activation Functions

- sigmoid
 - Gradient vanishing
 - Output is not zero-centered slow down the learning
 - Power operation time cost
- tanh (Hyperbolic Tangent)
 - Gradient vanishing
 - Output is not zero-centered
 - Power operation
- Relu
 - Gradient vanishing
 - Output is not zero-centered
 - Power operation
 - Dead Relu Problem

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(\mathbf{x}) \cdot (1 - \sigma(\mathbf{x}))$$

$$anh x = rac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$1 - f(x)^2$$

$$ReLU = max(0, x)$$

$$f'(x) = \begin{cases} 0, x < 0 \\ 1, x \ge 0 \end{cases}$$

XOR with 2 nodes hidden layer - vectorization

- Hidden layer
 - tanh
- Output layer
 - sigmoid

XO	X1	X2	Y
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- X 4 × 3
- Y 4 × 1

Parameter initialization

Hidden layer

• Wh =
$$\begin{bmatrix} 0 & 0.02 & 0.03 \\ 0 & 0.01 & 0.02 \end{bmatrix}$$

- Output layer
 - Wo = $\begin{bmatrix} 0 & 0.01 & 0.03 \end{bmatrix}$

$w_{i1,1}$	=	0.02
$w_{i2,1}$	=	0.03
$W_{0,1}$	=	0
$w_{i1,2}$	=	0.01
$W_{i2,2}$	=	0.02
$W_{0,2}$	=	0
	= (0.01
$w_{2,3} =$	= (0.03
$W_{0,3}$	=	0

Feed forward – Hidden layer output

$$\bullet \ \mathsf{X} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

• Wh =
$$\begin{bmatrix} 0 & 0.02 & 0.03 \\ 0 & 0.01 & 0.02 \end{bmatrix}$$

• Oh=tanh(Wh·X^T)=
$$\begin{bmatrix} o_1^{(1)} & o_1^{(2)} & o_1^{(3)} & o_1^{(4)} \\ o_2^{(1)} & o_2^{(2)} & o_2^{(3)} & o_2^{(4)} \end{bmatrix}$$

Feed forward — output layer output

• Oh=
$$\begin{bmatrix} o_1^{(1)} & o_1^{(2)} & o_1^{(3)} & o_1^{(4)} \\ o_2^{(1)} & o_2^{(2)} & o_2^{(3)} & o_2^{(4)} \end{bmatrix}$$

• Ino=
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ o_1^{(1)} & o_1^{(2)} & o_1^{(3)} & o_1^{(4)} \\ o_2^{(1)} & o_2^{(2)} & o_2^{(3)} & o_2^{(4)} \end{bmatrix}$$
 Wo = $\begin{bmatrix} 0 & 0.01 & 0.03 \end{bmatrix}$

Wo =
$$\begin{bmatrix} 0 & 0.01 & 0.03 \end{bmatrix}$$

• Oo=sigmoid(Wo ·Ino) =
$$\begin{bmatrix} o_3^{(1)} & o_3^{(2)} & o_3^{(3)} & o_3^{(4)} \end{bmatrix}$$

Output layer - Error computing

• Oo=
$$\begin{bmatrix} o_3^{(1)} & o_3^{(2)} & o_3^{(3)} & o_3^{(4)} \end{bmatrix}$$

•
$$\delta o = (Y^T - Oo) \circ Oo \circ (1 - Oo) = \begin{bmatrix} \delta_3^{(1)} & \delta_3^{(2)} & \delta_3^{(3)} & \delta_3^{(4)} \end{bmatrix}$$

• (o: element wise product)

Hidden – output weight update

•
$$\delta o = \begin{bmatrix} \delta_3^{(1)} & \delta_3^{(2)} & \delta_3^{(3)} & \delta_3^{(4)} \end{bmatrix}$$

• Wo = Wo + $\alpha \cdot (\delta o \cdot Ino^{T})/4$

Hidden layer - Error computing

$$\bullet \ \delta o = \begin{bmatrix} \delta_3^{(1)} & \delta_3^{(2)} & \delta_3^{(3)} & \delta_3^{(4)} \end{bmatrix}$$

Wo =
$$\begin{bmatrix} 0 & 0.01 & 0.03 \end{bmatrix}$$
 Wo' = $\begin{bmatrix} 0.01 & 0.03 \end{bmatrix}$

Oh=
$$\begin{bmatrix} o_1^{(1)} & o_1^{(2)} & o_1^{(3)} & o_1^{(4)} \\ o_2^{(1)} & o_2^{(2)} & o_2^{(3)} & o_2^{(4)} \end{bmatrix}$$

•
$$\delta h = (Wo'^T \cdot \delta o) \circ (1 - Oh \circ Oh) = \begin{bmatrix} \delta_1^{(1)} & \delta_1^{(2)} & \delta_1^{(3)} & \delta_1^{(4)} \\ \delta_2^{(1)} & \delta_2^{(2)} & \delta_2^{(3)} & \delta_2^{(4)} \end{bmatrix}$$

input – hidden weight update

$$\bullet \ \delta h = \begin{bmatrix} \delta_1^{(1)} & \delta_1^{(2)} & \delta_1^{(3)} & \delta_1^{(4)} \\ \delta_2^{(1)} & \delta_2^{(2)} & \delta_2^{(3)} & \delta_2^{(4)} \end{bmatrix}$$

• Wh = Wh + $\alpha \cdot (\delta h \cdot X)/4$

