The University of Sheffield Department of Electronic and Electrical Engineering

EEE117 Problem Sheet

Sources, Resistors and Circuits

- Q1 The circuit of figure 1 shows a 5A current source connected to a 3V voltage source.
 - (i) What is the value of I_S ? [-5A]
 - (ii) One source is acting as an energy source and the other as an energy sink; which one is acting as an energy source? [5A]

(iii) How much power is the driving source delivering? [15W]

Figure 1

For the circuit diagrams of figure 2, identify the the circuits by which the source can drive current from its positive end, around a circuit to its negative end. Define the circuits by writing down the current path in terms of node numbers and components (eg: 7, R_4 , 3, R_6 , 1, R_2 , 5). [1, R_1 ,2; 1, R_1 ,2, R_2 ,4;1, R_1 ,2, R_3 ,4, R_3 ,3; 1, R_1 ,3, R_3 ,2; 1, R_1 ,2 and 1, R_2 ,3, R_4 ,2 and 1, R_3 ,3, R_4 ,2; 1, R_1 ,2 and 1, R_3 ,4, R_5 ,2]

Figure 2

- Q3 In the circuits of figure 2, $R_1=1\Omega$, $R_2=2\Omega$, $R_3=3\Omega$, $R_4=4\Omega$, $R_5=5\Omega$ and $V_5=10V$.
 - (i) Find I_S for each circuit. [10.00A, 3.33A, 1.67A, 4.55A, 11.92A, 11.25A]
 - (ii) Find the voltage across R_3 for each of circuits (b) to (e) giving the node number at the positive end of that voltage difference in each case. [0V; 5V,2; 5.45V,3; 2.31V,1; 3.75V,1]
 - (iii) For each circuit, find the power delivered by the source and the power dissipated in R_2 (where R_2 exists). [100,-; 33.3,22.2; 16.7,5.6; 45.5,14.9; 119.2,2.7; 112.5,0; units all W]

- Q4 The resistors in this question all have a resistance of 1 k Ω unless indicated otherwise. For parts (4.1) to (4.9) of this question evaluate
 - (i) the resistance between terminals **A** and **B**
 - (ii) the current, I, assuming that the network is driven by a 10 V source with its positive end at \mathbf{A}
 - (iii) the voltage across R_1 in each circuit.

 $[1.33 \text{ k}\Omega, 2.5 \text{ mA}, 2.5 \text{ V}, 3.33 \text{ mA}]$

(iv) the value of *I* if the 10 V voltage source was changed into a 10 mA current source driving a positive current into node **A**

 $[789~\Omega,4~\text{mA},2~\text{V},3.16~\text{mA}]$