Complexity of Cubically Regularized Newton Method for Minimizing Uniformly Convex Functions

Nikita Doikov

Yurii Nesterov

Catholic University of Louvain, Belgium

FGS-19, Nice September 18, 2019

- 1. Introduction: first-order nondegeneracy
- 2. Regularization of Newton method
- 3. Universal Cubic Newton
- 4. Numerical examples

- 1. Introduction: first-order nondegeneracy
- 2. Regularization of Newton method
- 3. Universal Cubic Newton
- 4. Numerical examples

Review: Gradient descent for smooth strongly convex functions

Optimization problem

$$f^* = \min_{x \in \mathbb{R}^n} f(x)$$

- ▶ Problem class: $\mu I \leq \nabla^2 f(x) \leq LI$, $\forall x \in \mathbb{R}^n$
- ► Gradient Method: $x_{k+1} = x_k \frac{1}{\alpha_k} \nabla f(x_k)$ = $\underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{\alpha_k}{2} \|y - x_k\|^2 \right\}$
- Linear convergence rate. Set $\alpha_k = L$. Then $f(x_k) f(x_{k+1}) \geq \frac{1}{2I} \|\nabla f(x_k)\|^2 \geq \frac{\mu}{I} (f(x_k) f^*).$

Review: First order Nondegeneracy

▶ Problem class: $\mu I \leq \nabla^2 f(x) \leq LI$, $\forall x \in \mathbb{R}^n$.

The **condition number** of f:

$$\kappa \equiv \frac{\mu}{L} \leq 1.$$

▶ Iteration complexity. $f(x_N) - f^* \le \varepsilon$

Gradient Method:
$$N = O\left(\frac{1}{\kappa}\log\frac{f(x_0)-f^*}{\varepsilon}\right)$$
.

Fast Gradient Method:
$$N = O\left(\sqrt{\frac{1}{\kappa}}\log\frac{f(x_0) - f^*}{\varepsilon}\right)$$
.

Second Order Methods: ?

Damped Newton method

$$x_{k+1} = x_k - \frac{1}{\alpha_k} (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

$$= \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{\alpha_k}{2} \langle \nabla^2 f(x_k)(y - x_k), y - x_k \rangle \right\}$$

▶ Global convergence. Set $\alpha_k = L/\mu$.

$$f(x_k) - f(x_{k+1}) \geq \frac{\mu}{2L} \langle (\nabla^2 f(x_k))^{-1} \nabla f(x_k), \nabla f(x_k) \rangle$$

$$\geq \frac{\mu}{2L^2} ||\nabla f(x_k)||^2 \geq \frac{\mu^2}{L^2} (f(x_k) - f^*).$$

► Complexity: $N = O\left(\frac{1}{\kappa^2}\log\frac{f(x_0) - f^*}{\varepsilon}\right)$. It is worse than GM!

Our work: we use Regularization of Newton method [Nesterov & Polyak 06; Grapiglia & Nesterov 17] and show global linear rate of convergence which is faster than for Gradient Methods.

- 1. Introduction: first-order nondegeneracy
- 2. Regularization of Newton method
- 3. Universal Cubic Newton
- 4. Numerical examples

Functions with Hölder continuous Hessian

For $\nu \in [0,1]$ Hessian of f is Hölder continuous of degree ν on a convex set $C \subseteq \text{dom } f$ iff

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \mathcal{H}_f(\nu) \|y - x\|^{\nu}, \quad \forall x, y \in C.$$

 $\nu = 1$. Lipschitz continuous Hessian:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \mathcal{H}_f(1)\|y - x\|$$

 $\nu = 0$. Hessian with bounded variation:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \mathcal{H}_f(0)$$

Note: for $\mu I \leq \nabla^2 f(x) \leq LI$ we have

$$\mathcal{H}_f(0) \leq L - \mu.$$

Regularization of Newton iterations

For $\nu \in [0,1]$:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \mathcal{H}_f(\nu) \|y - x\|^{\nu}, \quad \forall x, y \in C.$$

Bound for Quadratic approximation:

$$|f(y) - Q(x;y)| \le \frac{\mathcal{H}_f(\nu)}{(1+\nu)(2+\nu)} ||y - x||^{2+\nu}, \text{ where}$$

$$Q(x;y) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle.$$

Regularized Newton step:

$$T_{\nu,H}(x) \stackrel{\text{def}}{=} \underset{y \in C}{\operatorname{argmin}} \Big\{ Q(x;y) + \frac{H}{(1+\nu)(2+\nu)} \|y - x\|^{2+\nu} \Big\}$$

Iterations: $x_{k+1} = T_{\nu,H_k}(x_k), k \ge 0.$

[Nesterov & Polyak 06; Grapiglia & Nesterov 17]

Uniformly convex functions

 $f: \operatorname{dom} f \to \mathbb{R}$ is called **uniformly convex** of degree $p \geq 2$ on a convex set $C \subseteq \operatorname{dom} f$ iff

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\sigma_f(p)}{p} ||x - y||^p, \quad \forall x, y \in C.$$

 $\sigma_f(p)$ – constant of uniform convexity.

- ▶ Strongly convex functions: p = 2, $\mu = \sigma_f(2)$.
- Example:

$$f(x) = \frac{1}{p} ||x - x_0||^p, \quad p \ge 2$$

is uniformly convex of degree p with constant $\sigma_f(p) = 2^{2-p}$.

Sum of convex and uniformly convex functions gives uniformly convex.

How to measure nondegeneracy?

 $\min_{x} f(x)$

▶ Hölder Hessian of degree $\nu \in [0, 1]$:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \mathcal{H}_f(\nu) \|x - y\|^{\nu}, \quad \forall x, y \in C.$$

▶ Uniformly convex of degree $p \ge 2$:

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\sigma_f(p)}{p} ||x - y||^p, \quad \forall x, y \in C.$$

Which ν and p to use?

$$O\Big((\mathcal{H}_f(\nu))^{\alpha}(\sigma_f(p))^{\beta}\log\frac{f(x_0)-f^*}{\varepsilon}\Big)$$
 # of iterations

Physical dimensions: [f] and [x]. Then

$$[\mathcal{H}_f(\nu)] = \frac{[f]}{[x]^{2+\nu}}, \ [\sigma_f(p)] = \frac{[f]}{[x]^p}, \ \Big[(\mathcal{H}_f(\nu))^{\alpha} (\sigma_f(p))^{\beta} \Big] = \frac{[f]^{\alpha+\beta}}{[x]^{\alpha(2+\nu)+\beta p}}.$$

$$\alpha + \beta = 0$$
 and $\alpha(2 + \nu) + \beta p = 0$ \Rightarrow $p = 2 + \nu$

Linear rate of regularized Newton

Fix $\nu \in [0,1]$. Model of the objective:

$$M_{\nu,H}(x;y) \stackrel{\text{def}}{=} Q(x;y) + \frac{H}{(1+\nu)(2+\nu)} ||y-x||^{2+\nu}$$

Regularized Newton step: $T_{\nu,H}(x) \stackrel{\text{def}}{=} \underset{v \in C}{\operatorname{argmin}} M_{\nu,H}(x;y).$

Iterations: $x_{k+1} = T_{\nu,H_k}(x_k), \quad k \ge 0$

New result: Theorem 1

- ▶ Let $0 < \mathcal{H}_f(\nu) < +\infty$.
- ▶ Let $\sigma_f(2+\nu) > 0$.
- ▶ Let $0 \le H_k \le \beta \mathcal{H}_f(\nu)$ and $f(x_{k+1}) \le M_{\nu,H_k}(x_k;x_{k+1})$, $\forall k$.

Then: $f(x_K) - f^* \le \varepsilon$ for

$$K = O\left(\max\{1, \left(\frac{\mathcal{H}_f(\nu)}{\sigma_f(2+\nu)}\right)^{\frac{1}{1+\nu}}\} \cdot \log\frac{f(x_0) - f^*}{\varepsilon}\right).$$

Condition number of degree ν .

Denote

$$\gamma_f(\nu) \stackrel{\text{def}}{=} \frac{\sigma_f(2+\nu)}{\mathcal{H}_f(\nu)}$$

second-order condition number of degree $\nu \in [0,1]$.

Properties (unbounded case, diam $C = +\infty$):

- 1. $\gamma_f(\nu) \leq \frac{1}{1+\nu}, \quad \nu \in (0,1].$
- 2. Let for some $\nu > 0$ we have $\gamma_f(\nu) > 0$. Then

$$\gamma_f(\nu') = 0 \quad \forall \nu' \in [0,1] \setminus \{\nu\}.$$

In practice we may not know exact value for ν . Universal methods?

- 1. Introduction: first-order nondegeneracy
- 2. Regularization of Newton method
- 3. Universal Cubic Newton
- 4. Numerical examples

Composite optimization problem

$$F^* = \min_{x \in \text{dom } F} F(x) \stackrel{\text{def}}{=} f(x) + h(x).$$

- f is a smooth part, $\gamma_f(\nu) > 0$ for some $\nu \in [0, 1]$.
- ▶ $h: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a composite part (possibly nonsmooth but *simple*).

Cubically regularized (composite) Newton:

$$x_{k+1} = T_{H_k}(x_k), \quad k \ge 0$$

for

$$T_H(x) \stackrel{\text{def}}{=} \underset{y \in \text{dom } F}{\operatorname{argmin}} M_H(x; y)$$

where
$$M_H(x; y) \stackrel{\text{def}}{=} Q(x; y) + \frac{H}{6} ||y - x||^3 + h(y)$$
.

$$Q(x;y) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle$$

$$M_H^*(x) \stackrel{\text{def}}{=} M_H(x; T_H(x))$$

Universal method

Algorithm 1 Adaptive cubically regularized Newton method

Initialization: Choose $x_0 \in \text{dom } F$, $H_0 > 0$.

Iterations: $k \ge 0$.

1: Find minimum integer $i_k \ge 0$ s.t. it holds

$$F(T_{H_k 2^{i_k}}(x_k)) \leq M_{H_k 2^{i_k}}^*(x_k).$$

- 2: Make the Cubic step $x_{k+1} := T_{H_k 2^{i_k}}(x_k)$.
- 3: Set $H_{k+1} := H_k 2^{i_k 1}$.

[Nesterov-Polyak 06; Cartis-Gould-Toint 11; Grapiglia-Nesterov 17]

Global convergence

New result: Theorem 2

Let $\gamma_f(\nu) > 0$ for some $\nu \in [0, 1]$.

Then $F(x_K) - F^* \le \varepsilon$ for

$$K = O\left(\max\{1, \left(\gamma_f(\nu)\right)^{\frac{-1}{1+\nu}}\} \cdot \log \frac{F(x_0) - F^*}{\varepsilon}\right).$$

Total number of oracle calls N_K during K iterations is bounded as:

$$N_{\mathcal{K}} \leq 2K + \log_2 \frac{\kappa_f(\nu)}{\varepsilon^{(1-\nu)/(2+\nu)}H_0}$$

The algorithm does not use real $\nu \in [0,1]$ and adapt to the best possible bound:

$$O\Big(\max\{1,\inf_{\nu\in[0,1]}(\gamma_f(\nu))^{\frac{-1}{1+\nu}}\}\cdot\frac{F(x_0)-F^*}{\varepsilon}\Big).$$

Local convergence

Classic Newton method achieves local quadratic convergence under the conditions

- 1. Strong convexity: $\sigma_f(2) > 0$.
- **2.** Hessian is Lipschitz continuous: $\mathcal{H}_f(1) < +\infty$.
- 3. Initial point x_0 close to the optimum x^* .

For Adaptive cubically regularized Newton we have:

$$F(x_{k+1}) - F^* \le \frac{9\mathcal{H}_f^2(1)}{2\sigma_f^3(2)} (F(x_k) - F^*)^2, \quad \forall k.$$

And the region of quadratic convergence is

$$\mathcal{Q} = \left\{ x \in \operatorname{dom} F : F(x) - F^* \leq \frac{2\sigma_f^3(2)}{9\mathcal{H}_f^2(1)} \right\}.$$

Number of iterations to find ε -solution:

$$O\bigg(\log\log\frac{\sigma_f^3(2)}{\mathcal{H}_f^2(1)\boldsymbol{\varepsilon}}\bigg).$$

The same order as for Classic Newton.

Cubic Newton vs. Gradient Method

Composite minimization problem: $\min_{x \in \mathbb{R}^n} F(x) \stackrel{\text{def}}{=} f(x) + h(x)$.

- ▶ Problem class: $\mu I \leq \nabla^2 f(x) \leq LI$. **Gradient Method** needs $O\left(\frac{L}{\mu}\log\frac{F(x_0)-F^*}{\varepsilon}\right)$ iterations to find ε-solution.
- Problem class: for some $\nu \in [0,1]$ it holds $\gamma_f(\nu) > 0$. Adaptive Cubic Newton needs

$$O\Big(\max\{1,\inf_{\nu\in[0,1]} \left(\gamma_f(\nu)\right)^{\frac{-1}{1+\nu}}\}\log\frac{F(x_0)-F^*}{\varepsilon}\Big) \text{ iterations to find } \varepsilon\text{-solution, without knowledge of }\nu. \text{ (Until entering }\mathcal{Q}\text{)}.$$

Note:

$$(\gamma_f(0))^{-1} \leq \frac{L-\mu}{\mu} < \frac{L}{\mu}.$$

Consider $\tilde{f}(x) = f(x) + \frac{1}{2} \langle Ax, x \rangle$. Then

$$\tilde{L} = L + \lambda_{\mathsf{max}}(A)$$
 but $(\gamma_{\tilde{f}}(\nu))^{-1} \leq (\gamma_{f}(\nu))^{-1}$.

 \Rightarrow Cubic Newton is not affected by any quadratic parts of F.

Cubic Newton vs. Classic Newton

Composite minimization problem:
$$\min_{x \in \mathbb{R}^n} F(x) \stackrel{\text{def}}{=} f(x) + h(x)$$
.

- ▶ Arithmetical complexity of every iteration: $O(n^3)$.
- Strongly convex functions with Lipschitz Hessian: local quadratic convergence.
- Strongly convex functions with bounded Hessian,

$$\mu I \leq \nabla^2 f(x) \leq LI$$
:

$$O\left(\left(\frac{L}{\mu}\right)^2 \log \frac{F(x_0) - F^*}{\varepsilon}\right)$$
 for **Damped Newton method**,

$$O\left(\frac{L-\mu}{\mu}\log\frac{F(x_0)-F^*}{\varepsilon}\right)$$
 for Adaptive Cubic Newton.

- 1. Introduction: first-order nondegeneracy
- 2. Regularization of Newton method
- 3. Universal Cubic Newton
- 4. Numerical examples

Log-sum-exp

$$\min_{x \in \mathbb{R}^n} f(x) = \log \left(\sum_{i=1}^m e^{\langle a_i, x \rangle} \right) + \frac{\mu}{2} \langle x, x \rangle.$$

- $ightharpoonup a_1, \ldots, a_m \in \mathbb{R}^n$ given data.
- ▶ Denote $B \equiv \sum_{i=1}^{m} a_i a_i^T \succeq 0$, and use $||x|| \equiv \langle Bx, x \rangle^{1/2}$.
- We have

$$\mathcal{H}_f(0) \leq 1, \qquad \mathcal{H}_f(1) \leq 2.$$

▶ For any $\nu \in [0,1]$:

$$\mathcal{H}_f(\nu) \leq (\mathcal{H}_f(0))^{1-\nu} \cdot (\mathcal{H}_f(1))^{\nu} \leq 2^{\nu}.$$

Log-sum-exp convergence

$$\min_{x \in \mathbb{R}^n} f(x) = \log \left(\sum_{i=1}^m e^{\langle a_i, x \rangle} \right) + \frac{\mu}{2} \langle x, x \rangle.$$

Log-sum-exp, ill-conditioned problem

$$\min_{x \in \mathbb{R}^n} f(x) = \log \left(\sum_{i=1}^m e^{\langle a_i, x \rangle} \right) + \frac{\mu}{2} \langle x, x \rangle.$$

Conclusion

- ▶ Second-order condition number $\gamma_f(\nu)$ of degree $\nu \in [0,1]$.
- Adaptive cubically regularized Newton achieves linear rate of convergence when $\gamma_f(\nu)>0$ for some $\nu\in[0,1]$. The main complexity factor is $\left(\gamma_f(\nu)\right)^{\frac{-1}{1+\nu}}$.
- The algorithm is universal: it does not need to know right $\nu \in [0,1]$ and any other parameters of the class.
- ► For the class $f \in \mathcal{S}_{\mu,L}^{2,1}$: $\mu I \preceq \nabla^2 f(x) \preceq LI$ provided complexity bounds for Cubic Newton are always better than for Gradient Method.

Thank you for your attention!