Primer on Semiconductors

Unit 4: Carrier Transport, Recombination, and Generation

Lecture 4.6: Unit 4 Recap

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Landauer approach

$$I = \frac{2q}{h} \int \mathcal{I}(E) M(E) (f_1(E) - f_2(E)) dE$$

Fundamental constants Tr

Transmission:

$$0 < \mathcal{T}(E) < 1$$

No. of Channels

Lundstrom: 2018

Ideal "Landauer" contacts

Transmission

Channels

A channel is a state with a velocity.

(Easily generalized to arbitrary band structures in 2D and 3D.)

How current flows

Fermi window under small bias

$$W_F(E) = \left(-\frac{\partial f_0}{\partial E}\right)$$

$$\int W_F(E)dE = 1$$

Small bias conductance

$$I = GV$$
 A

$$G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \qquad S$$

$$G = \frac{2q^2}{h} \mathcal{T}(E_F) M(E_F) \qquad (T = 0 \text{ K})$$

$$G = \frac{2q^2}{h}M(E_F)$$
 ($T = 0$ K and ballistic)

Quantized conductance in nanostructures.

Small bias conductance

$$\mathcal{T}(E) = \frac{\lambda(E)}{\lambda(E) + L} \to \frac{\lambda(E)}{L} \to J_n = \sigma_n \frac{d(F_n/q)}{dx}$$

$$\sigma_n$$
: Conductivity (S/m) $\rho_n = 1/\sigma_n$: Resistivity (Ohm-m)

$$n$$
: electron density $\sigma = nau$ a : magnitude of the

 $\sigma_n = nq\mu_n$ q: magnitude of the electronic charge

 μ_n : mobility m²/V-s

$$J_x = n\mu_n \frac{dF_n}{dx}$$

Drift-diffusion equation

$$J_{x} = n\mu_{n} \frac{dF_{n}}{dx}$$

$$n = N_C e^{(F_n - E_C)/k_B T}$$

$$J_{x} = n\mu_{n}\mathcal{E} + qD_{n}\frac{dn}{dx}$$

$$D_n/\mu_n = k_B T/q$$

Einstein Relation

Drift-diffusion equation

$$J_{px} = p\mu_p \vec{\nabla} F_p \qquad \vec{J}_p = \vec{J}_{p-drift} + \vec{J}_{p-diff} = pq\mu_p \vec{\mathcal{E}} - qD_p \vec{\nabla} p$$

current = drift current + diffusion current

$$J_{nx} = n\mu_n \vec{\nabla} F_n \qquad \vec{J}_n = \vec{J}_{n-drift} + \vec{J}_{n-diff} = nq\mu_n \vec{\mathcal{E}} + qD_n \vec{\nabla} n$$

total current = electron current + hole current

$$\vec{J} = \vec{J}_p + \vec{J}_n$$

$$\mu_p = \frac{\upsilon_T \lambda_0}{2\left(k_B T/q\right)} = \frac{q\tau}{m_p^*}$$

$$D_p / \mu_p = D_n / \mu_n = k_B T/q$$
 (Einstein, 1905)

Drift-diffusion equation

(**bulk** semiconductors assumed)

Recombination

When excess carriers are introduced, a semiconductor responds by trying to restore equilibrium.

$$\Delta n(t) = \Delta n(t=0)e^{-t/\tau_n}$$
 (low level injection)

The minority carrier lifetime is controlled by radiative, Auger, or defect-assisted process – or by some combination of these.

Recombination processes

1) Band-to-band radiative recombination

dominates in direct gap semiconductors makes lasers and LEDs possible

2) Auger recombination

dominates when the carrier densities are very high (heavily doped semiconductors or lasers)

3) SRH recombination

dominates in high quality, indirect gap semiconductors and in low quality direct gap semiconductors

Generation processes

1) Optical generation

Inverse of radiative recombination

2) Thermal generation

Inverse of SRH recombination

3) Impact ionization

Inverse of Auger recombination

Unit 4 summary

1) Out of equilibrium, currents can flow:

$$J_{nx} = n\mu_n \vec{\nabla} F_n \qquad \vec{J}_n = nq\mu_n \vec{\mathcal{E}} + qD_n \vec{\nabla} n$$

2) Out of equilibrium, excess carriers recombine:

$$\Delta n(t) = \Delta n(t=0)e^{-t/\tau_n}$$

3) Out of equilibrium, carriers can be generated by processes such as optical absorption and impact ionization.

Vocabulary

Absorption coefficient

Auger recombination

Ballistic transport

Band-to-band recombination

Channels

Conductivity

Diffusive transport

Drift-diffusion equation

Drift velocity

Einstein relation

Electrochemical potential

Excess carriers

Impact ionization

Landauer approach

Mobility

Fermi window

Fick's Law

Low level injection

Minority carrier lifetime

Mean-free-path (MFP)

MFP for backscattering

Modes

Quantized conductance

Quasi-Fermi level

Radiative recombination

Resistivity

SRH recombination

Thermal velocity

Vocabulary (cont.)

Thermalization
Transmission
Velocity vs. field characteristic
Vertical transition