UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD I

CONCEPTOS BÁSICOS Y SIMPLIFICACIÓN ALGEBRAICA DE SISTEMAS DIGITALES COMBINACIONALES.

SISTEMAS DIGITALES I SDU115

Ejemplos de Diseño

Agenda

• Ejemplos de diseño.

Objetivo

Desarrollar diferentes aplicaciones de diseño de circuitos digitales con compuertas básicas, a partir de descripciones verbales.

Procedimiento:

- 1. A partir de la descripción verbal del problema elaborar una tabla de verdad.
- 2. Detectar cantidad de entradas (lo que se quiere censar o detectar y también los números a operar algebraicamente en operaciones aritméticas o los códigos origen en las conversiones).
- 3. Asignar estados lógicos, por ejemplo: cerrado 1, abierto 0; encendido 1, apagado 0; suena 1, no suena 0, válido 1, no válido 0, par 1, impar 0, etc.
- 4. Si son n variables de entrada, la tabla tendrá 2ⁿ combinaciones de dichas variables (independiente del problema a resolver) escritas en binario.

Procedimiento:

- 5. Detectar cantidad de salidas, EN ELLAS SE RESUELVE EL PROBLEMA, suene una alarma, detectado, encienda un LED, resultado de operaciones aritméticas o lógicas, código destino a la hora de la conversión.
- 6. Obtener la Ecuación POS o SOP de la tabla para cada una de las variables de salida, según corresponda.
- 7. Simplificar (Obtener la mínima expresión)
- 8. Dibujar el circuito a partir de la ecuación simplificada.

Ejemplos:

1. Suene una alarma cuando la mayoría de tres computadores están encendidos.

Que se quiere censar? El estado, encendido o apagado de tres computadores. 3 entradas, computador encendido = 1, apagado = 0, una alarma de salida 1 suena (2 o 3 computadores encendidos), 0 no suena (ninguno o 1 computador encendido). $2^3 = 8$, combinaciones de las variables de entrada escritas en binario.

	Α	В	С	Х	Comentario		
0	0	0	0	0	No suena, ninguno encendido		
1	0	0	1	0	No suena, uno encendido		
2	0	1	0	0	No suena, uno encendido		
3	0	1	1	1	Suena, 2 encendidos		
4	1	0	0	0	No suena, uno encendido		
5	1	0	1	1	Suena, 2 encendidos		
6	1	1	0	1	Suena, 2 encendidos		
7	1	1	1	1	Suena, 3 encendidos		

Trabajando en SOP

$$X = \sum m (3, 5, 6, 7)$$

$$X = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

De 3 y 7 de 5 y 7 de 6 y 7
$$X = BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$$

$$X = BC + AC + AB$$

DIBUJE EL CIRCUITO

Ejemplo:

2. Encienda un LED cuando aparezcan códigos no válidos del 8421.

Que se quiere detectar? Combinaciones de 4 bits no validas en el 8421 (4 entradas = 16 combinaciones escritas en binario) El LED (1 Salida) enciende (1) si es no válido y está apagado (0) si es válido.

Tabla E2:

	Α	В	С	D	Х	Comentario	
0	0	0	0	0	0	Válido	
1	0	0	0	1	0	Válido	
2	0	0	1	0	0	Válido	
3	0	0	1	1	0	Válido	
4	0	1	0	0	0	Válido	
5	0	1	0	1	0	Válido	
6	0	1	1	0	0	Válido	
7	0	1	1	1	0	Válido	
8	1	0	0	0	0	Válido	
9	1	0	0	1	0	Válido	
10	1	0	1	0	1	No Válido	
11	1	0	1	1	1	No Válido	
12	1	1	0	0	1	No Válido	
13	1	1	0	1	1	No Válido	
14	1	1	1	0	1	No Válido	
15	1	1	1	1	1	No Válido	

Ejemplo:

2. Encienda un LED cuando aparezcan códigos no válidos del 8421.

Que se quiere detectar? Combinaciones de 4 bits no validas en el 8421 (4 entradas = 16 combinaciones escritas en binario) El LED (1 Salida) enciende (1) si es no válido y está apagado (0) si es válido.

Trabajando en SOP

$$X = \sum m (10, 11, 12, 13, 14, 15)$$

$$X = A\overline{B}C\overline{D} + A\overline{B}CD + AB\overline{C}\overline{D} + ABC\overline{D} + ABC\overline{D} + ABCD$$

$$X = A\overline{B}C(\overline{D} + D) + AB\overline{C}(\overline{D} + D) + ABC(\overline{D} + D)$$

$$X = A\overline{B}C + AB\overline{C} + ABC$$

$$X = A\overline{B}C + ABC + AB\overline{C} + ABC$$

$$X = AC(\overline{B} + B) + AB(\overline{C} + C)$$

$$X = AC + AB$$

Dibuje el circuito.

Ejemplo:

3. Multiplique 2 números K y L de dos bits cada uno

Si K y L son de dos bits, serán 4 bits de entrada, 16 combinaciones escritas en binario

К	Decimal	Ы	
AB ₂		CD ₂	
00	0	00	
01	1	01	
10	2	10	
11	3	11	

Los números mayores a multiplicar son 3 X 3 resultado 9, se necesitan 4 dígitos binarios para representar el 9, por lo tanto, el sistema tendrá 4 salidas.

tabla:

	Α	В	С	D	W	Х	Υ	Z	Comentario
0	0	0	0	0	0	0	0	0	0 x 0 = 0
1	0	0	0	1	0	0	0	0	0 x 1 = 0
2	0	0	1	0	0	0	0	0	0 x 2 = 0
3	0	0	1	1	0	0	0	0	0 x 3 = 0
4	0	1	0	0	0	0	0	0	1 x 0 = 0
5	0	1	0	1	0	0	0	1	1 x 1 = 1
6	0	1	1	0	0	0	1	0	1 x 2 = 2
7	0	1	1	1	0	0	1	1	1 x 3 = 3
8	1	0	0	0	0	0	0	0	2 x 0 = 0
9	1	0	0	1	0	0	1	0	2 x 1 = 2
10	1	0	1	0	0	1	0	0	2 x 2 = 4
11	1	0	1	1	0	1	1	0	2 x 3 = 6
12	1	1	0	0	0	0	0	0	3 x 0 = 0
13	1	1	0	1	0	0	1	1	3 x 1 = 3
14	1	1	1	0	0	1	1	0	3 x 2 = 6
15	1	1	1	1	1	0	0	1	3 x 3 = 9

Debe obtenerse una ecuación para cada salida, como si solo existiera cada una de ellas

$$W = \sum m (15);$$

$$X = \sum m (10, 11, 14);$$

$$X = A\overline{B}C\overline{D} + A\overline{B}CD + ABC\overline{D}$$

$$X = A\overline{B}C(\overline{D} + D) + AC\overline{D}(\overline{B} + B)$$

$$X = A\overline{B}C + AC\overline{D}$$

$$Y = \sum m (6, 7, 9, 11, 12, 14);$$

$$Y = \overline{A}BC\overline{D} + \overline{A}BCD + A\overline{B}CD + A\overline{B}CD + AB\overline{C}\overline{D} + ABC\overline{D}$$

$$Y = \overline{A}BC(\overline{D} + D) + A\overline{B}D(\overline{C} + C) + AB\overline{D}(\overline{C} + C)$$

$$Y = \overline{A}BC + A\overline{B}D + AB\overline{D}$$

$$Z = \sum m (5, 7, 13, 15);$$

$$Z = \overline{A}B\overline{C}D + \overline{A}BCD + AB\overline{C}D + ABCD$$

$$Z = \overline{A}BD + ABD$$

$$Z = BD + BD$$

El circuito queda:

HASTA LA PROXIMA