ANSWERS TO ODD-NUMBERED EXERCISES

Exercise Set 0.1 (Page 12)

- **1.** (a) -2.9, -2.0, 2.35, 2.9 (b) none (c) y = 0 (d) $-1.75 \le x \le 10^{-1}$ 2.15 (e) $y_{\text{max}} = 2.8$ at x = -2.6; $y_{\text{min}} = -2.2$ at x = 1.2
- 3. (a) yes (b) yes (c) no (d) no
- **5.** (a) 1999, about \$47,700 (b)1993, \$41,600 (c) first year
- 7. (a) -2; 10; 10; 25; 4; $27t^2 2$ (b) 0; 4; -4; 6; $2\sqrt{2}$; f(3t) = 1/(3t)for t > 1 and f(3t) = 6t for $t \le 1$
- **9.** (a) domain: $x \neq 3$; range: $y \neq 0$ (b) domain: $x \neq 0$; range: $\{-1, 1\}$ (c) domain: $x \le -\sqrt{3}$ or $x \ge \sqrt{3}$; range: $y \ge 0$ (d) domain: $-\infty < x < +\infty$; range: $y \ge 2$

 - (e) domain: $x \neq (2n + \frac{1}{2}) \pi$, $n = 0, \pm 1, \pm 2, ...$; range: $y \geq \frac{1}{2}$ (**f**) domain: $-2 \le x < 2$ or x > 2; range: $0 \le y < 2$ or y > 2
- 11. (a) no; births and deaths (b) decreases for 8 hours, takes a jump upward, and repeats

- **15.** function; $y = \sqrt{25 x^2}$
- 19. False; for example, the graph of the function $f(x) = x^2 1$ crosses the x-axis at $x = \pm 1$.
- 21. False; the range also includes 0.
- **23.** (a) 2, 4 (b) none (c) $x \le 2$; $4 \le x$ (d) $y_{min} = -1$; no maximum
- **25.** $h = L(1 \cos \theta)$

27. (a)
$$f(x) = \begin{cases} 2x+1, & x < 0 \\ 4x+1, & x \ge 0 \end{cases}$$
 (b) $g(x) = \begin{cases} 1-2x, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x-1, & x > 1 \end{cases}$

- **29.** (a) V = (8 2x)(15 2x)x
 - **(b)** 0 < x < 4
- **31.** (a) L = x + 2y
- **(b)** L = x + 2000/x
- (c) $0 < V \le 90$, approximately
- (c) $0 < x \le 100$ (d) $x \approx 45$ ft, $y \approx 22$ ft

- (d) V appears to be maximal for $x \approx 1.7$.
- 300 250 200 150 100 50 20 40 60 80 100

- **33.** (a) $r \approx 3.4, h \approx 13.7$ (b) taller (c) $r \approx 3.1$ cm, $h \approx 16.0$ cm, $C \approx 4.76$ cents
- **35.** (i) x = 1, -2 (ii) g(x) = x + 1, all x
- 37. (a) 25° F (b) 13° F (c) 5° F 39. 15° F

Exercise Set 0.2 (Page 24)

A46 Answers to Odd-Numbered Exercises

23.

(b)
$$y = \begin{cases} 0, & x \le 0 \\ 2x, & x > 0 \end{cases}$$

27.
$$3\sqrt{x-1}$$
, $x \ge 1$; $\sqrt{x-1}$, $x \ge 1$; $2x-2$, $x \ge 1$; $2, x > 1$

29. (a) 3 (b) 9 (c) 2 (d) 2 (e)
$$\sqrt{2+h}$$
 (f) $(3+h)^3+1$

31.
$$1-x, x \le 1; \sqrt{1-x^2}, |x| \le 1$$

31.
$$1-x, x \le 1; \sqrt{1-x^2}, |x| \le 1$$

33. $\frac{1}{1-2x}, x \ne \frac{1}{2}, 1; -\frac{1}{2x} - \frac{1}{2}, x \ne 0, 1$ 35. $x^{-6} + 1$
37. (a) $g(x) = \sqrt{x}, h(x) = x + 2$ (b) $g(x) = |x|, h(x) = x^2 - 3x + 5$

37. (a)
$$g(x) = \sqrt{x}$$
, $h(x) = x + 2$ (b) $g(x) = |x|$, $h(x) = x^2 - 3x + 5$

39. (a)
$$g(x) = x^2$$
, $h(x) = \sin x$ (b) $g(x) = 3/x$, $h(x) = 5 + \cos x$

41. (a)
$$g(x) = x^3$$
, $h(x) = 1 + \sin(x^2)$
(b) $g(x) = \sqrt{x}$, $h(x) = 1 - \sqrt[3]{x}$

Responses to True-False questions may be abridged to save space.

- **43.** True; see Definition 0.2.1.
- 45. True; see Theorem 0.2.3 and the definition of even function that follows.

51.
$$\pm 1.5, \pm 2$$
 53. $6x + 3h, 3w + 3x$ **55.** $-\frac{1}{x(x+h)}, -\frac{1}{xu}$

57. f: neither, g: odd, h: even

- **63.** (a) even (b) odd (c) even (d) neither (e) odd (f) even
- **67. (a)** *y*-axis
- **69.**
- (b) origin
- (c) x-axis, y-axis, origin

75. yes; $f(x) = x^k$, $g(x) = x^n$

Exercise Set 0.3 (Page 35)

1. (a) y = 3x + b (c) **(b)** y = 3x + 6

- 3. (a) y = mx + 2 (c) **(b)** y = -x + 2
 - y-intercepts represent current value of item being depreciated.

(d) x-intercept: x = 1

y = -3(x - 1)

-60

11. (a) VI **(b)** IV (c) III

> (d) V (e) I (f) II

15. (a)

17. (a)

19. $y = (x + 1)^2 - 1$ 15

21. (a) newton-meters $(N \cdot m)$ (b) $20 N \cdot m$

(c)	V(L)	0.25	0.5	1.0	1.5	2.0
	$P(N/m^2)$	80×10^3	40×10^3	20×10^3	13.3×10^3	10×10^3

- **23.** (a) $k = 0.000045 \text{ N} \cdot \text{m}^2$
 - **(b)** 0.000005 N
 - (d) The force becomes infinite; the force tends to zero.

Responses to True-False questions may be abridged to save space.

- **25.** True; see Figure 0.3.2(*b*).
- **27.** False; the constant of proportionality is $2 \cdot 6 = 12$.
- **29.** (a) II; y = 1, x = -1, 2 (b) I; y = 0, x = -2, 3 (c) IV; y = 2**(d)** III; y = 0, x = -2
- **31.** (a) $y = 3\sin(x/2)$ (b) $y = 4\cos 2x$ (c) $y = -5\sin 4x$
- **33.** (a) $y = \sin[x + (\pi/2)]$ (b) $y = 3 + 3\sin(2x/9)$ (c) $y = 1 + 2\sin\left(2x - \frac{\pi}{2}\right)$
- **35.** (a) amplitude = 3, period = $\pi/2$ (b) amplitude = 2, period = 2

(c) amplitude = 1, period = 4π

37. $x = \frac{5\sqrt{13}}{2} \sin\left(2\pi t + \tan^{-1}\frac{1}{2\sqrt{3}}\right)$

A48 Answers to Odd-Numbered Exercises

Exercise Set 0.4 (Page 48)

- 1. (a) yes (b) no (c) yes (d) no
- 3. (a) yes (b) yes (c) no (d) yes (e) no (f) no
- **5.** (a) yes (b) no
- 7. (a) 8, -1, 0
 - **(b)** [-2, 2], [-8, 8]
- 9. $\frac{1}{7}(x+6)$
- 11. $\sqrt[3]{(x+5)/3}$
- **15.** $\begin{cases} (5/2) x, & x > 1/2 \\ 1/x, & 0 < x \le 1/2 \end{cases}$

- 21. (a) $f^{-1}(x) = \frac{-b + \sqrt{b^2 4a(c x)}}{2a}$ (b) $f^{-1}(x) = \frac{-b \sqrt{b^2 4a(c x)}}{2a}$

(b)
$$f^{-1}(x) = \frac{-b - \sqrt{b^2 - 4a(c - x)}}{2a}$$

- **23.** (a) $y = (6.214 \times 10^{-4})x$ (b) $x = \frac{10^{-4}}{6.214}y$
 - (c) how many meters in y miles
- **25. (b)** symmetric about the line y = x **27.** 10

Responses to True-False questions may be abridged to save space.

- **31.** False; $f^{-1}(2) = 2$
- 33. True; see Theorem 0.4.3.
- 35. $\frac{4}{5}$, $\frac{3}{5}$, $\frac{3}{4}$, $\frac{5}{3}$, $\frac{5}{4}$
- **37.** (a) $0 \le x \le \pi$ (b) $-1 \le x \le 1$ (c) $-\pi/2 < x < \pi/2$ **(d)** $-\infty < x < +\infty$ **39.** $\frac{24}{25}$
- **41.** (a) $\frac{1}{\sqrt{1+x^2}}$ (b) $\frac{\sqrt{1-x^2}}{x}$ (c) $\frac{\sqrt{x^2-1}}{x}$ (d) $\frac{1}{\sqrt{x^2-1}}$
- **43.** (a)
- **45.** (a) $x = 2.76258 \,\text{rad}$ (b) $\theta = 217.59^{\circ}$
- **47.** (a) 0.25545, error (b) $|x| \le \sin 1$
- **49.** (a) $\cot^{-1}(x)$
- $\csc^{-1}(x)$
- **(b)** $\cot^{-1} x$: all x, $0 < y < \pi$
- $\csc^{-1} x$: $|x| \ge 1$, $0 < |y| < \pi/2$
- **51.** (a) 55.0° (b) 33.6° (c) 25.8° **53.** (a) 21.1 hours (b) 2.9 hours

Exercise Set 0.5 (Page 61)

- **1.** (a) -4 (b) 4 (c) $\frac{1}{4}$ **3.** (a) 2.9690 (b) 0.0341
- **5.** (a) 4 (b) -5 (c) 1 (d) $\frac{1}{2}$ **7.** (a) 1.3655 (b) -0.3011
- **9.** (a) $2r + \frac{s}{2} + \frac{t}{2}$ (b) s 3r t
- 11. (a) $1 + \log x + \frac{1}{2} \log(x 3)$ (b) $2 \ln |x| + 3 \ln \sin x \frac{1}{2} \ln(x^2 + 1)$ 13. $\log \frac{256}{3}$ 15. $\ln \frac{\sqrt[3]{x}(x+1)^2}{\cos x}$ 17. 0.01 19. e^2 21. 4

- 23. $\sqrt{3/2}$ 25. $-\frac{\ln 3}{2 \ln 5}$ 27. $\frac{1}{3} \ln \frac{7}{2}$ 29. -2
- 31. (a) domain: $(-\infty, +\infty)$; range: $(-1, +\infty)$

(b) domain: $x \neq 0$; range: $(-\infty, +\infty)$

33. (a) domain: $x \neq 0$; range: $(-\infty, +\infty)$

(b) domain: $(-\infty, +\infty)$; range: (0, 1]

43. $x \approx 1.471, 7.857$

Responses to True-False questions may be abridged to save space.

- 35. False; exponential functions have constant base and variable exponent.
- **37.** True; $\ln x = \log_e x$ **39.** 2.8777, -0.3174
- $log_2 x$ 41. $\ln x$ $-\log_5 x$
- **(d)** $y = (\sqrt{5})^x$ **45.** (a) no **(b)** $y = 2^{x/4}$ (c) $y = 2^{-x}$

- **47.** $\log \frac{1}{2} < 0$, so $3 \log \frac{1}{2} < 2 \log \frac{1}{2}$ **49.** 201 days
- **51.** (a) 7.4, basic (b) 4.2, acidic (c) 6.4, acidic (d) 5.9, acidic
- **53.** (a) 140 dB, damage (b) 120 dB, damage (c) 80 dB, no damage (d) 75 dB, no damage
- 55. ≈ 200 57. (a) $\approx 5 \times 10^{16} \,\text{J}$ (b) ≈ 0.67

► Chapter 0 Review Exercises (Page 63)

- **5.** (a) $C = 5x^2 + (64/x)$ (b) x > 0
- 7. (a) V = (6-2x)(5-x)x ft³
 - **(b)** 0 < x < 3
 - (c) $3.57 \text{ ft} \times 3.79 \text{ ft} \times 1.21 \text{ ft}$

11.	x	-4	-3	-2	-1	0	1	2	3	4
	f(x)	0	-1	2	1	3	-2	-3	4	-4
	g(x)	3	2	1	-3	-1	-4	4	-2	0
	$(f\circ g)(x)$	4	-3	-2	-1	1	0	-4	2	3
	$(g \circ f)(x)$	-1	-3	4	-4	-2	1	2	0	3

- **13.** 0, -2 **15.** $1/(2-x^2)$, $x \neq \pm 1, \pm \sqrt{2}$
- **17.** (a) odd (b) even (c) neither (d) even
- 19. (a) circles of radius 1 centered on the parabola $y = x^2$ (b) parabolas congruent to $y = x^2$ that open up with vertices on the line y = x/2

- **(b)** January 11 **(c)** 122 days
- **23.** A: $\left(-\frac{2}{3}\pi, 1 \sqrt{3}\right)$; B: $\left(\frac{1}{3}\pi, 1 + \sqrt{3}\right)$; C: $\left(\frac{2}{3}\pi, 1 + \sqrt{3}\right)$; $D: \left(\frac{5}{3}\pi, 1 - \sqrt{3}\right)$
- **27.** (a) $\frac{1}{2}(x+1)^{1/3}$ (b) none (c) $\frac{1}{2}\ln(x-1)$ (d) $\frac{x+2}{x-1}$ (e) $\frac{1}{2+\sin^{-1}x}$ (f) $\tan\left(\frac{1}{3x}-\frac{1}{3}\right)$, $x<-\frac{2}{3\pi-2}$ or $x>\frac{2}{3\pi+2}$
- **29.** (a) $\frac{33}{65}$ (b) $\frac{56}{65}$ **31.** $\frac{10^{60}}{63360} \approx 1.6 \times 10^{55}$ miles **33.** 15x + 2**(b)** $-\frac{\pi}{2}$, 0, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$; $-\frac{\pi}{4}$, $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$

(b) about 10 years **(c)** 220 sheep

- **39. (b)** 3.654, 332105.108
- **41.** (a) f is increasing (b) asymptotes for f: x = 0 and $x = \pi/2$; asymptotes for f^{-1} : y = 0 (as $x \to -\infty$) and $y = \pi/2$ (as $x \to +\infty$)

Exercise Set 1.1 (Page 77)

- **1.** (a) 3 (b) 3 (c) 3 (d) 3
- 3. (a) -1 (b) 3 (c) does not exist (d) 1
- **5.** (a) 0 (b) 0 (c) 0 (d) 3 **7.** (a) $-\infty$ (b) $-\infty$ (c) $-\infty$ (d) 1
- **9.** (a) $+\infty$ (b) $+\infty$ (c) 2 (d) 2 (e) $-\infty$ (f) the lines x = -2, x = 0, x = 2

11.	x	-0.01	-0.001	-0.0001	0.0001	0.001	0.01
	f(x)	0.99502	0.99950	0.99995	1.00005	1.00050	1.00502

The limit appears to be 1.

13. (a) $\frac{1}{3}$ (b) $+\infty$ (c) $-\infty$ **15.** (a) 3 (b) does not exist

Responses to True-False questions may be abridged to save space.

- 17. False; see Example 6.
- 19. False; the one-sided limits must also be equal.

31. (a) rest length (b) 0. As speed approaches c, length shrinks to zero.

Exercise Set 1.2 (Page 87)

- 1. (a) -6 (b) 13 (c) -8 (d) 16 (e) 2 (f) $-\frac{1}{2}$
- 3. 6 5. $\frac{3}{4}$ 7. 4 9. $-\frac{4}{5}$ 11. -3 13. $\frac{3}{2}$ 15. $+\infty$
- 17. does not exist 19. $-\infty$ 21. $+\infty$ 23. does not exist 25. $+\infty$
- **27.** $+\infty$ **29.** 6 **31.** (a) 2 (b) 2 (c) 2

Responses to True-False questions may be abridged to save space.

33. True; this is Theorem 1.2.2(a). 35. False; see Example 9. 37. $\frac{1}{4}$

41. (a) Theorem 1.2.2(a) does not apply.

45. The left and/or right limits could be $\pm \infty$; or the limit could exist and equal any preassigned real number.

Exercise Set 1.3 (Page 96)

- 1. (a) $-\infty$ (b) $+\infty$ 3. (a) 0 (b) -1
- 5. (a) -12 (b) 21 (c) -15 (d) 25 (e) 2 (f) $-\frac{3}{5}$ (g) 0(h) does not exist
- 7. (a)

x	0.1	0.01	0.001	0.0001	0.00001	0.000001
f(x)	1.471128	1.560797	1.569796	1.570696	1.570786	1.570795

The limit appears to be $\pi/2$. (b) $\pi/2$

A50 Answers to Odd-Numbered Exercises

9. $-\infty$ 11. $+\infty$ 13. $\frac{3}{2}$ 15. 0 17. 0 19. $-\infty$ 21. $-\frac{1}{7}$

23.
$$-\frac{\sqrt[3]{5}}{2}$$
 25. $-\sqrt{5}$ 27. $1/\sqrt{6}$ 29. $\sqrt{3}$ 31. 0 33. 1

 2 37. $-\infty$ 39. e

Responses to True-False questions may be abridged to save space.

- **41.** False; 1^{∞} is an indeterminate form. The limit is e^2 .
- **43.** True; consider $f(x) = (\sin x)/x$.
- **45.** $\lim_{t \to -\infty} n(t) = +\infty$; $\lim_{t \to -\infty} e(t) = c$ **47.** (a) $+\infty$ (b) -5
- **51.** (a) no (b) yes; $\tan x$ and $\sec x$ at $x = n\pi + \pi/2$, and $\cot x$ and $\csc x$ at $x = n\pi, n = 0, \pm 1, \pm 2, ...$
- 55. $+\infty$ 57. $+\infty$ 59. 1 61. *e*

67. (a) e (c) e^a **69.** x + 2 **71.** $1 - x^2$ **73.** $\sin x$

Exercise Set 1.4 (Page 106)

- **1.** (a) |x| < 0.1 (b) |x 3| < 0.0025 (c) |x 4| < 0.000125
- **3.** (a) $x_0 = 3.8025, x_1 = 4.2025$ (b) $\delta = 0.1975$
- 5. $\delta = 0.0442$
- 7. $\delta = 0.13$
- 9. $\delta = 0.05$
- **11.** $\delta = 0.05$

- **13.** $\delta = \sqrt[3]{8.001} 2 \approx 8.332986 \cdot 10^{-5}$ **15.** $\delta = 1/505 \approx 0.000198$
- **17.** $\delta = 1$ **19.** $\delta = \frac{1}{3}\epsilon$ **21.** $\delta = \epsilon/2$ **23.** $\delta = \epsilon$ **25.** $\delta = \epsilon$
- **29.** (b) 65 (c) $\epsilon/65$; 65; 65; $\epsilon/65$ **31.** $\delta = \min(1, \frac{1}{\epsilon}\epsilon)$
- 33. $\delta = \min\left(\frac{1}{2}, \frac{\epsilon}{2}\right)$ 35. $\delta = 2\epsilon$
- **39.** (a) $\sqrt{10}$ (b) 99 (c) -10 (d) -101
- 41. (a) $-\sqrt{\frac{1-\epsilon}{\epsilon}}$; $\sqrt{\frac{1-\epsilon}{\epsilon}}$ (b) $\sqrt{\frac{1-\epsilon}{\epsilon}}$ (c) $-\sqrt{\frac{1-\epsilon}{\epsilon}}$
- **43.** 10 **45.** 999 **47.** -202 **49.** -57.5 **51.** $N = \frac{1}{\sqrt{2}}$
- **53.** $N = -\frac{5}{2} \frac{11}{2\epsilon}$ **55.** $N = (1 + 2/\epsilon)^2$ **57.** (a) $|x| < \frac{1}{10}$ (b) $|x 1| < \frac{1}{1000}$ (c) $|x 3| < \frac{1}{10\sqrt{10}}$ (d) $|x| < \frac{1}{10}$
- **59.** $\delta = 1/\sqrt{M}$ **61.** $\delta = 1/M$ **63.** $\delta = 1/(-M)^{1/4}$ **65.** $\delta = \epsilon$
- **67.** $\delta = \epsilon^2$ **69.** $\delta = \epsilon$ **71.** (a) $\delta = -1/M$ (b) $\delta = 1/M$
- **73.** (a) N = M 1 (b) N = M 1
- **75.** (a) 0.4 amps (b) about 0.39474 to 0.40541 amps (c) $3/(7.5 + \delta)$ to $3/(7.5 - \delta)$ (d) $\delta \approx 0.01870$ (e) current approaches $+\infty$

Exercise Set 1.5 (Page 118)

- 1. (a) not continuous, x = 2 (b) not continuous, x = 2
 - (c) not continuous, x = 2 (d) continuous (e) continuous
- (f) continuous
- 3. (a) not continuous, x = 1, 3 (b) continuous
 - (c) not continuous, x = 1 (d) continuous
 - (e) not continuous, x = 3 (f) continuous
- 5. (a) no (b) no (c) no (d) yes (e) yes (f) no (g) yes

7. (a) **(b)**

- 9. (a) (b) One second could cost you one dollar.
- **11.** none **13.** none **15.** -1/2, 0 **17.** -1, 0, 1 **19.** none

Responses to True-False questions may be abridged to save space.

- 23. True; the composition of continuous functions is continuous.
- **25.** False; let f and g be the functions in Exercise 6.
- 27. True; $f(x) = \sqrt{f(x)} \cdot \sqrt{f(x)}$
- **29.** (a) k = 5 (b) $k = \frac{4}{3}$ **31.** k = 4, m = 5/3
- 33. (a) **↑** ^y **(b)**
- 35. (a) x = 0, not removable **(b)** x = -3, removable (c) x = 2, removable; x = -2, not removable
- **37.** (a) $x = \frac{1}{2}$, not removable; at x = -3, removable **(b)** (2x-1)(x+3)
- **45.** f(x) = 1 for $0 \le x < 1$, f(x) = -1 for $1 \le x \le 2$
- **49.** x = -1.25, x = 0.75 **51.** x = 2.24

Exercise Set 1.6 (Page 125)

- 1. none 3. $x = n\pi, n = 0, \pm 1, \pm 2, ...$
- 5. $x = n\pi, n = 0, \pm 1, \pm 2, \dots$
- 7. $2n\pi + (\pi/6), 2n\pi + (5\pi/6), n = 0, \pm 1, \pm 2, ...$
- **9.** $\left[-\frac{1}{2}, \frac{1}{2}\right]$ **11.** (0, 3) and $(3, +\infty)$ **13.** $(-\infty, -1]$ and $[1, +\infty)$
- **15.** (a) $\sin x$, $x^3 + 7x + 1$ (b) |x|, $\sin x$ (c) x^3 , $\cos x$, x + 1
- 17. 1 19. $-\pi/6$ 21. 1 23. 3 25. $+\infty$ 27. $\frac{7}{3}$
- **29.** 0 **31.** 0 **33.** 1 **35.** 2 **37.** does not exist **39.** 0

41. (a)

х	4	4.5	4.9	5.1	5.5	6
f(x)	0.093497	0.100932	0.100842	0.098845	0.091319	0.076497

The limit appears to be $\frac{1}{10}$. (b) $\frac{1}{10}$

Responses to True-False questions may be abridged to save space.

- **43.** True; use the Squeezing Theorem.
- 45. False; consider $f(x) = \tan^{-1} x$.
- **47.** (a) Using degrees instead of radians (b) $\pi/180$
- **49.** $k = \frac{1}{2}$ **51. (a)** 1 **(b)** 0 **(c)** 1
- **53.** $-\pi$ **55.** $-\sqrt{2}$ **57.** 1 **59.** 5 **61.** $-|x| \le x \cos(50\pi/x) \le |x|$
- **63.** $\lim_{x \to 0} \sin(1/x)$ does not exist
- 65. The limit is 0.

69. (a) Gravity is strongest at the poles and weakest at the equator.

Chapter 1 Review Exercises (Page 128)

- **1.** (a) 1 (b) does not exist (c) does not exist (d) 1 (e) 3 (f) 0 (g) 0 (h) 2 (i) $\frac{1}{2}$
- **3.** (a) 0.405 **5.** 1 **7.** −3/2 **9.** 32/3
- **11.** (a) y = 0 (b) none (c) y = 2 **13.** 1 **15.** 3 k **17.** 0
- **19.** e^{-3} **21.** \$2001.60, \$2009.66, \$2013.62, \$2013.75
- 23. (a) 2x/(x-1) is one example.
- **25.** (a) $\lim_{x \to 2} f(x) = 5$ (b) $\delta = 0.0045$
- **27.** (a) $\delta = 0.0025$ (b) $\delta = 0.0025$ (c) $\delta = 1/9000$ (Some larger values also work.)
- **31.** (a) -1, 1 (b) none (c) -3, 0 **33.** no; not continuous at x = 2
- **35.** Consider f(x) = x for $x \neq 0$, f(0) = 1, a = -1, b = 1, k = 0.

► Chapter 1 Making Connections (Page 130)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

- **4.** (a) The circle through the origin with center $(0, \frac{1}{8})$
 - (b) The circle through the origin with center $(0, \frac{1}{2})$
 - (c) The circle does not exist.
 - (d) The circle through the origin with center $(0, \frac{1}{2})$
 - (e) The circle through (0, 1) with center at the origin.
 - (**f**) The circle through the origin with center $\left(0, \frac{1}{2g(0)}\right)$
 - (g) The circle does not exist.

Exercise Set 2.1 (Page 140)

- 1. (a) 4 m/s (b) © 5 © 4 3 15 2 09 1 10 15 Time (s)
- 3. (a) 0 cm/s (b) t = 0, t = 2, and t = 4.2 (c) maximum: t = 1; minimum: t = 3 (d) -7.5 cm/s
- 5. straight line with slope equal to the velocity
- 7. Answers may vary. 9. Answers may vary.

15. (a) $2x_0$ (b) -2 **17.** (a) 1 +**(b)** $\frac{3}{2}$ $\frac{1}{2\sqrt{x_0}}$

Responses to True-False questions may be abridged to save space.

- 19. True; set h = x 1, so x = 1 + h and $h \to 0$ is equivalent to $x \to 1$.
- 21. False; velocity is a ratio of change in position to change in time.
- **23.** (a) 72° F at about 4:30 P.M. (b) 4° F/h (c) -7° F/h at about 9 P.M.
- 25. (a) first year
 - (b) 6 cm/year
 - (c) 10 cm/year at about age 14

- **27.** (a) 19,200 ft (b) 480 ft/s (c) 66.94 ft/s (d) 1440 ft/s
- **29.** (a) 720 ft/min (b) 192 ft/min

Exercise Set 2.2 (Page 152)

- 1. 2, 0, -2, -1 5.
- **3. (b)** 3 **(c)** 3

- 7. y = 5x 169. 4x, y = 4x - 2
- **11.** $3x^2$; y = 0
- **13.** $\frac{1}{2\sqrt{x+1}}$; $y = \frac{1}{6}x + \frac{5}{3}$ **15.** $-1/x^2$ **17.** 2x 1
- **19.** $-1/(2x^{3/2})$ **21.** 8t+1
- 23. (a) D (b) F (c) B (d) C (e) A (f) E

A52 Answers to Odd-Numbered Exercises

Responses to True-False questions may be abridged to save space.

- **27.** False; f'(a) = 0 **29.** False; for example, f(x) = |x|
- **31.** (a) \sqrt{x} , 1 (b) x^2 , 3 **33.** -2
- 35. y = -2x + 1

37. (b)

w	1.5	1.1	1.01	1.001	1.0001	1.00001
[f(w)-f(1)]/(w-1)	1.6569	1.4355	1.3911	1.3868	1.3863	1.3863

- **39.** (a) 0.04, 0.22, 0.88 (b) best: $\frac{f(2) f(0)}{2 0}$; worst: $\frac{f(3) f(1)}{3 1}$ (c) positive
- (d) \$1000
- **43.** (a) $F \approx 200 \text{ lb}, dF/d\theta \approx 50 \text{ lb/rad}$ (b) $\mu = 0.25$
- **45.** (a) $T \approx 115^{\circ} \text{F}, dT/dt \approx -3.35^{\circ} \text{F/min}$ (b) k = -0.084

Exercise Set 2.3 (Page 161)

- 1. $28x^6$ 3. $24x^7 + 2$ 5. 0 7. $-\frac{1}{3}(7x^6 + 2)$ 9. $-3x^{-4} 7x^{-8}$ 11. $24x^{-9} + (1/\sqrt{x})$
- 13. $f'(x) = ex^{e-1} \frac{\sqrt{10}}{x^{(1+\sqrt{10})}}$
- **15.** $12x(3x^2+1)$ **17.** 7 **19.** 2t-1 **21.** 15 **23.** -8 **25.** 0
- **27.** 0 **29.** 32t **31.** $3\pi r^2$

Responses to True-False questions may be abridged to save space.

- 33. True; apply the difference and constant multiple rules.
- **35.** False; $\frac{d}{dx} [4f(x) + x^3] \Big|_{x=2} = [4f'(x) + 3x^2] \Big|_{x=2} = 32$
- **37.** (a) $4\pi r^2$ (b) 100π **39.** y = 5x + 17
- **41.** (a) 42x 10 (b) 24 (c) $2/x^3$ (d) $700x^3 96x$
- **43.** (a) $-210x^{-8} + 60x^2$ (b) $-6x^{-4}$ (c) 6a
- **45.** (a) 0 **49.** $(1, \frac{5}{6})(2, \frac{2}{3})$ 1.5 **(b)** 112 (c) 360

- **51.** $y = 3x^2 x 2$ **53.** $x = \frac{1}{2}$
- **55.** $(2+\sqrt{3}, -6-4\sqrt{3}), (2-\sqrt{3}, -6+4\sqrt{3})$ **57.** $-2x_0$ **61.** $-\frac{2GmM}{r^3}$ **63.** f'(x) > 0 for all $x \neq 0$
- **65.** yes, 3
- **67.** not differentiable at x = 1 **69.** (a) $x = \frac{2}{3}$ (b) $x = \pm 2$ **71.** (b) yes

- **73.** (a) $n(n-1)(n-2)\cdots 1$ (b) 0 (c) $a_n n(n-1)(n-2)\cdots 1$
- **79.** $-12/(2x+1)^3$ **81.** $-2/(x+1)^3$

Exercise Set 2.4 (Page 168)

- **1.** 4x + 1 **3.** $4x^3$ **5.** $18x^2 \frac{3}{2}x + 12$
- 7. $-15x^{-2} 14x^{-3} + 48x^{-4} + 32x^{-5}$ 11. $\frac{-3x^2 8x + 3}{(x^2 + 1)^2}$ 13. $\frac{3x^2 8x}{(3x 4)^2}$ 15. $\frac{x^{3/2} + 10x^{1/2} + 4 3x^{-1/2}}{(x + 3)^2}$
- 17. $2(1+x^{-1})(x^{-3}+7)+(2x+1)(-x^{-2})(x^{-3}+7)+$

 $(2x+1)(1+x^{-1})(-3x^{-4})$ 19. $3(7x^6+2)(x^7+2x-3)^2$ 21. $\frac{7}{16}$

- **23.** -29 **25.** 0 **27.** (a) $-\frac{37}{4}$ (b) $-\frac{23}{16}$
- **29.** (a) 10 (b) 19 (c) 9 (d) -1 31. $-2 \pm \sqrt{3}$ 33. none 35. -2
- **39.** F''(x) = xf''(x) + 2f'(x)
- **41.** R'(120) = 1800; increasing the price by Δp dollars increases revenue by approximately $1800\Delta p$ dollars.
- **43.** $f'(x) = -nx^{-n-1}$

Exercise Set 2.5 (Page 172)

- 1. $-4\sin x + 2\cos x$ 3. $4x^2\sin x 8x\cos x$
- 5. $(1+5\sin x 5\cos x)/(5+\sin x)^2$ 7. $\sec x \tan x \sqrt{2}\sec^2 x$ 9. $-4\csc x \cot x + \csc^2 x$ 11. $\sec^3 x + \sec x \tan^2 x$ 13. $-\frac{\csc x}{1+\csc x}$
- **15.** 0 **17.** $\frac{1}{(1+x\tan x)^2}$ **19.** $-x\cos x 2\sin x$
- **21.** $-x \sin x + 5 \cos x$ **23.** $-4 \sin x \cos x$
- **25.** (a) y = x (b) $y = 2x (\pi/2) + 1$ (c) $y = 2x + (\pi/2) 1$
- **29.** (a) $x = \pm \pi/2, \pm 3\pi/2$ (b) $x = -3\pi/2, \pi/2$ (c) no horizontal tangent line (d) $x = \pm 2\pi, \pm \pi, 0$
- **31.** 0.087 ft/deg **33.** 1.75 m/deg

Responses to True-False questions may be abridged to save space.

- 35. False; by the product rule, $g'(x) = f(x) \cos x + f'(x) \sin x$.
- 37. True; $f(x) = (\sin x)/(\cos x) = \tan x$, so $f'(x) = \sec^2 x$.
- **39.** $-\cos x$ **41.** 3, 7, 11, ...
- **43.** (a) all x (b) all x (c) $x \neq (\pi/2) + n\pi, n = 0, \pm 1, \pm 2, ...$ (d) $x \neq n\pi, n = 0, \pm 1, \pm 2, \dots$ (e) $x \neq (\pi/2) + n\pi, n = 0, \pm 1,$ $\pm 2, \ldots$ (f) $x \neq n\pi, n = 0, \pm 1, \pm 2, \ldots$ (g) $x \neq (2n + 1)\pi, n = 0,$ $\pm 1, \pm 2, \dots$ (h) $x \neq n\pi/2, n = 0, \pm 1, \pm 2, \dots$ (i) all x

Exercise Set 2.6 (Page 178)

- **1.** 6 **3.** (a) $(2x-3)^5$, $10(2x-3)^4$ (b) $2x^5-3$, $10x^4$

- 5. (a) -7 (b) -8 7. $37(x^3 + 2x)^{36}(3x^2 + 2)$ 9. $-2\left(x^3 \frac{7}{x}\right)^{-3}\left(3x^2 + \frac{7}{x^2}\right)$ 11. $\frac{24(1 3x)}{(3x^2 2x + 1)^4}$ 13. $\frac{3}{4\sqrt{3x}\sqrt{4 + \sqrt{3x}}}$ 15. $-\frac{2}{x^3}\cos\left(\frac{1}{x^2}\right)$ 17. $-20\cos^4 x \sin x$
- 19. $-\frac{3}{\sqrt{x}}\cos(3\sqrt{x})\sin(3\sqrt{x})$ 21. $28x^6\sec^2(x^7)\tan(x^7)$
- $2\sqrt{\cos(5x)}$
- **25.** $-3[x + \csc(x^3 + 3)]^{-4}[1 3x^2\csc(x^3 + 3)\cot(x^3 + 3)]$

- 27. $10x^3 \sin 5x \cos 5x + 3x^2 \sin^2 5x$ 29. $-x^3 \sec \left(\frac{1}{x}\right) \tan \left(\frac{1}{x}\right) + 5x^4 \sec \left(\frac{1}{x}\right)$ 31. $\sin(\cos x) \sin x$ 33. $-6 \cos^2(\sin 2x) \sin(\sin 2x) \cos 2x$ 35. $35(5x+8)^6(1-\sqrt{x})^6 \frac{3}{\sqrt{x}}(5x+8)^7(1-\sqrt{x})^5$ 37. $\frac{33(x-5)^2}{(2x+1)^4}$ 39. $-\frac{2(2x+3)^2(52x^2+96x+3)}{(4x^2-1)^9}$
- **41.** $5[x \sin 2x + \tan^4(x^7)]^4 [2x \cos 2x + \sin 2x + 28x^6 \tan^3(x^7) \sec^2(x^7)]$
- **43.** y = -x **45.** y = -1 **47.** $y = 8\sqrt{\pi}x 8\pi$ **49.** $y = \frac{7}{2}x \frac{3}{2}$
- **51.** $-25x\cos(5x) 10\sin(5x) 2\cos(2x)$ **53.** $4(1-x)^{-3}$
- **55.** $3 \cot^2 \theta \csc^2 \theta$ **57.** $\pi(b-a) \sin 2\pi \omega$

Responses to True-False questions may be abridged to save space.

- **61.** False; by the chain rule, $\frac{d}{dx}[\sqrt{y}] = \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = \frac{f'(x)}{2\sqrt{f(x)}}$
- **63.** False; by the chain rule, $dy/dx = (-\sin[g(x)]) \cdot g'(x)$.
- **65.** (c) f = 1/T (d) amplitude = 0.6 cm, $T = 2\pi/15$ seconds per oscillation, $f = 15/(2\pi)$ oscillations per second
- 67. $\frac{7}{24}\sqrt{6}$ 69. (a) 10 lb/in^2 , $-2 \text{ lb/in}^2/\text{mi}$ (b) $-0.6 \text{ lb/in}^2/\text{s}$
- 73. (c) $-\frac{1}{x}\cos\frac{1}{x} + \sin\frac{1}{x}$ (d) limit as x goes to 0 does not exist 75. (a) 21 (b) -36 77. 1/(2x) 79. $\frac{2}{3}x$ 83. f'(g(h(x)))g'(h(x))h'(x)

► Chapter 2 Review Exercises (Page 181)

- **3.** (a) 2x (b) 4 **5.** 58.75 ft/s **7.** (a) 13 mi/h (b) 7 mi/h
- 9. (a) $-2/\sqrt{9-4x}$ (b) $1/(x+1)^2$
- **11.** (a) x = -2, -1, 1, 3 (b) $(-\infty, -2), (-1, 1), (3, +\infty)$ (c) (-2, -1), (1, 3) (d) 4
- 13. (a) 78 million people per year (b) 1.3% per year
- **15.** (a) $x^2 \cos x + 2x \sin x$ (c) $4x \cos x + (2 x^2) \sin x$
- 17. (a) $(6x^2 + 8x 17)/(3x + 2)^2$ (c) $118/(3x + 2)^3$
- **19.** (a) 2000 gal/min (b) 2500 gal/min **21.** (a) 3.6 (b) -0.777778
- **23.** f(1) = 0, f'(1) = 5 **25.** y = -16x, y = -145x/4
- **29.** (a) $8x^7 \frac{3}{2\sqrt{x}} 15x^{-4}$ (b) $(2x+1)^{100}(1030x^2 + 10x 1414)$
- 31. (a) $\frac{(x-1)(15x+1)}{2\sqrt{3x+1}}$ (b) $-3(3x+1)^2(3x+2)/x^7$
- **33.** $x = -\frac{7}{2}, -\frac{1}{2}, 2$ **35.** $y = \pm 2x$
- **37.** $x = n\pi \pm (\pi/4), n = 0, \pm 1, \pm 2, \dots$ **39.** $y = -3x + (1 + 9\pi/4)$
- **41.** (a) $40\sqrt{3}$ (b) 7500

Chapter 2 Making Connections (Page 184)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

- **2.** (c) k = 2 (d) h'(x) = 0
- 3. (b) $f' \cdot g \cdot h \cdot k + f \cdot g' \cdot h \cdot k + f \cdot g \cdot h' \cdot k + f \cdot g \cdot h \cdot k'$ 4. (c) $\frac{f' \cdot g \cdot h f \cdot g' \cdot h + f \cdot g \cdot h'}{\sigma^2}$

Exercise Set 3.1 (Page 190)

- 1. (a) $(6x^2 y 1)/x$ (b) $4x 2/x^2$ 3. $-\frac{x}{y}$ 5. $\frac{1 2xy 3y^3}{x^2 + 9xy^2}$ $-v^{3/2}$ $1 2xv^2\cos(x^2y^2)$
- 7. $\frac{-y^{3/2}}{x^{3/2}}$ 9. $\frac{1-2xy^2\cos(x^2y^2)}{2x^2y\cos(x^2y^2)}$
- 11. $\frac{1-3y^2\tan^2(xy^2+y)\sec^2(xy^2+y)}{3(2xy+1)\tan^2(xy^2+y)\sec^2(xy^2+y)}$ 13. $-\frac{8}{9y^3}$ 15. $\frac{2y}{x^2}$

17.
$$\frac{\sin y}{(1+\cos y)^3}$$
 19. $-1/\sqrt{3}$, $1/\sqrt{3}$

Responses to True-False questions may be abridged to save space.

- 21. False; the graph of f need only coincide with a portion of the graph of the equation in x and y.
- 23. False; the equation is equivalent to $x^2 = y^2$ and y = |x| satisfies this

25.
$$-15^{-3/4} \approx -0.1312$$
 27. $-\frac{9}{13}$ **29.** $\frac{2t^3 + 3a^2}{2a^3 - 6at}$ **31.** $-\frac{b^2\lambda}{a^2\omega}$

35. (a)
$$y$$
 (c) $x = -y^2$ or $x = y^2 + 1$

37.
$$a = \frac{1}{4}, b = \frac{5}{4}$$

Exercise Set 3.2 (Page 195)

1.
$$1/x$$
 3. $1/(1+x)$ 5. $2x/(x^2-1)$ 7. $\frac{1-x^2}{x(1+x^2)}$ 9. $2/x$

11.
$$\frac{1}{2x\sqrt{\ln x}}$$
 13. $1 + \ln x$ 15. $2x \log_2(3 - 2x) - \frac{2x^2}{(\ln 2)(3 - 2x)}$
17. $\frac{2x(1 + \log x) - x/(\ln 10)}{(1 + \log x)^2}$ 19. $1/(x \ln x)$ 21. $2 \csc 2x$

17.
$$\frac{2x(1+\log x)-x/(\ln 10)}{(1+\log x)^2}$$
 19. $1/(x\ln x)$ 21. $2\csc 2x$

23.
$$-\frac{1}{x}\sin(\ln x)$$
 25. $2\cot x/(\ln 10)$ 27. $\frac{3}{x-1} + \frac{8x}{x^2+1}$

29.
$$-\tan x + \frac{3x}{4 - 3x^2}$$

Responses to True-False questions may be abridged to save space.

31. True; $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ 33. True; 1/x is an odd function.

35.
$$x\sqrt[3]{1+x^2} \left[\frac{1}{x} + \frac{2x}{3(1+x^2)} \right]$$

35.
$$x\sqrt[3]{1+x^2} \left[\frac{1}{x} + \frac{2x}{3(1+x^2)} \right]$$

37. $\frac{(x^2-8)^{1/3}\sqrt{x^3+1}}{x^6-7x+5} \left[\frac{2x}{3(x^2-8)} + \frac{3x^2}{2(x^3+1)} - \frac{6x^5-7}{x^6-7x+5} \right]$
39. (a) $-\frac{1}{x^6-7x+5}$ (b) $-\frac{1}{x^6-7x+5}$

39. (a)
$$-\frac{1}{x(\ln x)^2}$$
 (b) $-\frac{\ln 2}{x(\ln x)^2}$

41.
$$y = ex - 2$$
 43. $y = -x/e$ **45.** (a) $y = x/e$ **47.** $A(w) = w/2$

51.
$$f(x) = \ln(x+1)$$
 53. (a) 3 (b) -5 **55.** (a) 0 (b) $\sqrt{2}$

Exercise Set 3.3 (Page 201)

1. (b)
$$\frac{1}{9}$$
 3. $-2/x^2$ **5.** (a) no (b) yes (c) yes (d) yes

1. (b)
$$\frac{1}{9}$$
 3. $-2/x^2$ 5. (a) no (b) yes (c) yes (d) yes 7. $\frac{1}{15y^2 + 1}$ 9. $\frac{1}{10y^4 + 3y^2}$ 13. $f(x) + g(x), f(g(x))$

15.
$$7e^{7x}$$
 17. $x^2e^x(x+3)$ 19. $\frac{4}{(e^x+e^{-x})^2}$
21. $(x\sec^2x+\tan x)e^{x\tan x}$ 23. $(1-3e^{3x})e^{x-e^{3x}}$
25. $\frac{x-1}{e^x-x}$ 27. $2^x\ln 2$ 29. $\pi^{\sin x}(\ln \pi)\cos x$

21.
$$(x \sec^2 x + \tan x)e^{x \tan x}$$
 23. $(1 - 3e^{3x})e^{x - e^{3x}}$

25.
$$\frac{x-1}{e^x-x}$$
 27. $2^x \ln 2$ **29.** $\pi^{\sin x} (\ln \pi) \cos x$

31.
$$(x^3 - 2x)^{\ln x} \left[\frac{3x^2 - 2}{x^3 - 2x} \ln x + \frac{1}{x} \ln(x^3 - 2x) \right]$$

33.
$$(\ln x)^{\tan x} \left[\frac{\tan x}{x \ln x} + (\sec^2 x) \ln(\ln x) \right]$$

A54 Answers to Odd-Numbered Exercises

35.
$$(\ln x)^{\ln x} \left[\frac{\ln(\ln x)}{x} + \frac{1}{x} \right]$$
 37. $(x^3 + x^2 - 4x + 1)e^x$

39.
$$((\ln 3)x^2 + 2x + (\ln 3)\sqrt{x} + 1/(2\sqrt{x}))3^x$$

41.
$$(\ln 4)(3\cos x - e^x)4^{3\sin x - e^x}$$
 43. $3/\sqrt{1 - 9x^2}$

45.
$$-\frac{1}{|x|\sqrt{x^2-1}}$$
 47. $3x^2/(1+x^6)$ **49.** $-\frac{\sec^2 x}{\tan^2 x} = -\csc^2 x$

51.
$$\frac{e^x}{|x|\sqrt{x^2-1}} + e^x \sec^{-1} x$$
 53. 0 **55.** 0 **57.** $-\frac{1}{2\sqrt{x}(1+x)}$

Responses to True-False questions may be abridged to save space.

59. False; consider
$$y = Ae^x$$
. **61.** True; use the chain rule.

65.
$$\frac{(3x^2 + \tan^{-1} y)(1 + y^2)}{(1 + y^2)e^y - x}$$
 67. (b) $1 - (\sqrt{3}/3)$

69. (b)
$$y = (88x - 89)/7$$

77. 3 79. $\ln 10$ 81. 12π 83. 9.8t; if the fluid offers no resistance, then the speed will increase at a constant rate of 9.8 m/s.

Exercise Set 3.4 (Page 208)

1. (a) 6 (b)
$$-\frac{1}{3}$$
 3. (a) -2 (b) $6\sqrt{5}$

5. (b)
$$A = x^2$$
 (c) $\frac{dA}{dt} = 2x \frac{dx}{dt}$ **(d)** 12 ft²/ min

5. **(b)**
$$A = x^2$$
 (c) $\frac{dA}{dt} = 2x \frac{dx}{dt}$ **(d)** $12 \text{ ft}^2/\text{min}$
7. **(a)** $\frac{dV}{dt} = \pi \left(r^2 \frac{dh}{dt} + 2rh \frac{dr}{dt}\right)$ **(b)** $-20\pi \text{ in}^3/\text{s}$; decreasing

9. (a)
$$\frac{d\theta}{dt} = \frac{\cos^2 \theta}{x^2} \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right)$$
 (b) $-\frac{5}{16}$ rad/s; decreasing

11.
$$\frac{4\pi}{15}$$
 in²/min 13. $\frac{1}{\sqrt{\pi}}$ mi/h 15. 4860π cm³/min 17. $\frac{5}{6}$ ft/s

19.
$$\frac{125}{\sqrt{61}}$$
 ft/s 21. 704 ft/s

25.
$$\frac{9}{20\pi}$$
 ft/min **27.** 125π ft³/min **29.** 250 mi/h

31.
$$\frac{36\sqrt{69}}{25}$$
 ft/min 33. $\frac{8\pi}{5}$ km/s 35. $600\sqrt{7}$ mi/h

37. (a)
$$-\frac{60}{7}$$
 units per second (b) falling 39. -4 units per second

41.
$$x = \pm \sqrt{\frac{-5 + \sqrt{33}}{2}}$$
 43. 4.5 cm/s; away **47.** $\frac{20}{9\pi}$ cm/s

Exercise Set 3.5 (Page 217)

1. (a)
$$f(x) \approx 1 + 3(x - 1)$$
 (b) $f(1 + \Delta x) \approx 1 + 3\Delta x$ (c) 1.06

3. (a)
$$1 + \frac{1}{2}x$$
, 0.95, 1.05

17.
$$|x| < 1.692$$

19. |x| < 0.3158 **21. (a)** 0.0174533 **(b)** $x_0 = 45^{\circ}$ **(c)** 0.694765

33. 0.780398 **37.** (a) 0.5, 1 (b)

39. $3x^2 dx$, $3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$

41.
$$(2x-2) dx$$
, $2x \Delta x + (\Delta x)^2 - 2\Delta x$

43. (a)
$$(12x^2 - 14x) dx$$
 (b) $(-x \sin x + \cos x) dx$

45. (a)
$$\frac{2-3x}{2\sqrt{1-x}} dx$$
 (b) $-17(1+x)^{-18} dx$

Responses to True–False questions may be abridged to save space.

- **47.** False; dy = (dy/dx) dx **49.** False; consider any linear function.
- **51.** 0.0225 **53.** 0.0048 **55.** (a) ± 2 ft² (b) side: $\pm 1\%$; area: $\pm 2\%$
- **57.** (a) opposite: ± 0.151 in; adjacent: ± 0.087 in

(b) opposite: $\pm 3.0\%$; adjacent: $\pm 1.0\%$

- **59.** $\pm 10\%$ **61.** ± 0.017 cm² **63.** $\pm 6\%$ **65.** $\pm 0.5\%$ **67.** $15\pi/2$ cm³
- **69.** (a) $\alpha = 1.5 \times 10^{-5} / {}^{\circ}\text{C}$ (b) 180.1 cm long

Exercise Set 3.6 (Page 226)

1. (a) $\frac{2}{3}$ (b) $\frac{2}{3}$

Responses to True-False questions may be abridged to save space.

- 3. True; the expression $(\ln x)/x$ is undefined if $x \le 0$.
- 5. False; applying L'Hôpital's rule repeatedly shows that the limit is 0.
- 7. 1 9. 1 11. -1 13. 0 15. $-\infty$ 17. 0 19. 2 21. 0
- **23.** π **25.** $-\frac{5}{3}$ **27.** e^{-3} **29.** e^2 **31.** $e^{2/\pi}$ **33.** 0 **35.** $\frac{1}{2}$
- 37. $+\infty$ 39. 1 41. 1 43. 1 45. 1 47. (b) 2

53. no horizontal asymptote 55. y = 1

- 57. (a) 0 (b) $+\infty$ (c) 0 (d) $-\infty$ (e) $+\infty$ (f) $-\infty$ 59. 1
- **61.** does not exist **63.** Vt/L **67.** (a) no (b) Both limits equal 0.
- 69. does not exist

Chapter 3 Review Exercises (Page 228)

1. (a)
$$\frac{2-3x^2-y}{x}$$
 (b) $-\frac{1}{x^2}-2x$ 3. $-\frac{y^2}{x^2}$

21

5.
$$\frac{y \sec(xy) \tan(xy)}{1 - x \sec(xy) \tan(xy)}$$
 7. $-\frac{21}{16y^3}$

9.
$$2/(2-\pi)$$
 13. $(\sqrt[3]{4}/3, \sqrt[3]{2}/3)$

9.
$$2/(2-\pi)$$
 13. $(\sqrt[3]{4}/3, \sqrt[3]{2}/3)$
15. $\frac{1}{x+1} + \frac{2}{x+2} - \frac{3}{x+3} - \frac{4}{x+4}$ 17. $\frac{1}{x}$ 19. $\frac{1}{3x(\ln x + 1)^{2/3}}$
21. $\frac{1}{(\ln 10)x \ln x}$ 23. $\frac{3}{2x} + \frac{2x^3}{1+x^4}$ 25. $2x$ 27. $e^{\sqrt{x}}(2+\sqrt{x})$

21.
$$\frac{1}{(\ln 10)x \ln x}$$
 23. $\frac{3}{2x} + \frac{2x}{1+x^4}$ 25. $2x$ 27. $e^{\sqrt{x}}(2+\sqrt{x})$

29.
$$\frac{2}{\pi(1+4x^2)}$$
 31. $e^x x^{(e^x)} \left(\ln x + \frac{1}{x} \right)$ **33.** $\frac{1}{|2x+1|\sqrt{x^2+x}}$

35.
$$\frac{x^3}{\sqrt{x^2+1}} \left(\frac{3}{x} - \frac{x}{x^2+1} \right)$$

(d) curve must have a horizontal tangent line between x = 1 and x = e(e) x = 2

39. e^2 **41.** $e^{1/e}$ **43.** No; for example, $f(x) = x^3$. **45.** $(\frac{1}{3}, e)$

(b) $P(t) \to 19$ (c) $P'(t) \rightarrow 0$

- 53. $+\infty$, $+\infty$: yes; $+\infty$, $-\infty$: no; $-\infty$, $+\infty$: no; $-\infty$, $-\infty$: yes
- **55.** $+\infty$ **57.** $\frac{1}{9}$ **59.** 500π m²/min
- **61.** (a) -0.5, 1, 0.5 (b) $\pi/4$, 1, $\pi/2$ (c) 3, -1.0
- **63.** (a) between 139.48 m and 144.55 m (c) $|d\phi| \le 0.98^{\circ}$

► Chapter 3 Making Connections (Page 230)

Answers are provided in the Student Solutions Manual.

Exercise Set 4.1 (Page 241)

(b) f' > 0, f'' < 0

- 3. A: dy/dx < 0, $d^2y/dx^2 > 0$; B: dy/dx > 0, $d^2y/dx^2 < 0$; C: dy/dx < 0, $d^2y/dx^2 < 0$ 5. x = -1, 0, 1, 2
- **7.** (a) [4, 6] (b) [1, 4], [6, 7] (c) (1, 2), (3, 5) (d) (2, 3), (5, 7) (e) x = 2, 3, 5
- **9.** (a) [1, 3] (b) $(-\infty, 1]$, [3, $+\infty$) (c) $(-\infty, 2)$, $(4, +\infty)$ (d) (2, 4)(e) x = 2, 4

Responses to True-False questions may be abridged to save space.

- 11. True; see definition of decreasing: $f(x_1) > f(x_2)$ whenever $0 \le x_1 < x_2 \le 2$.
- 13. False; for example, $f(x) = (x 1)^3$ is increasing on [0, 2] and f'(1) = 0.
- **15.** (a) $[3/2, +\infty)$ (b) $(-\infty, 3/2]$ (c) $(-\infty, +\infty)$ (d) none (e) none
- **17.** (a) $(-\infty, +\infty)$ (b) none (c) $(-1/2, +\infty)$ (d) $(-\infty, -1/2)$ (e) -1/2
- **19.** (a) $[1, +\infty)$ (b) $(-\infty, 1]$ (c) $(-\infty, 0), (\frac{2}{3}, +\infty)$ (d) $(0, \frac{2}{3})$ (e) $0, \frac{2}{3}$

21. (a)
$$\left[\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right]$$
 (b) $\left(-\infty, \frac{3-\sqrt{5}}{2}\right], \left[\frac{3+\sqrt{5}}{2}, +\infty\right)$

- (c) $\left(0, \frac{4-\sqrt{6}}{2}\right), \left(\frac{4+\sqrt{6}}{2}, +\infty\right)$ (d) $(-\infty, 0), \left(\frac{4-\sqrt{6}}{2}, \frac{4+\sqrt{6}}{2}\right)$ (e) 0, $\frac{4 \pm \sqrt{6}}{2}$ 23. (a) $[-1/2, +\infty)$ (b) $(-\infty, -1/2]$ (c) (-2, 1)
- (d) $(-\infty, -2)$, $(1, +\infty)$ (e) -2, 1
- **25.** (a) $[-1, 0], [1, +\infty)$ (b) $(-\infty, -1], [0, 1]$ (c) $(-\infty, 0), (0, +\infty)$ (d) none (e) none
- **27.** (a) $(-\infty, 0]$ (b) $[0, +\infty)$ (c) $(-\infty, -1), (1, +\infty)$ (d) (-1, 1) (e) -1, 1
- **29.** (a) $[0, +\infty)$ (b) $(-\infty, 0]$ (c) (-2, 2)(d) $(-\infty, -2), (2, +\infty)$ (e) -2, 2
- **31.** (a) $[0, +\infty)$ (b) $(-\infty, 0]$ (c) $\left(-\sqrt{\frac{1+\sqrt{7}}{3}}, \sqrt{\frac{1+\sqrt{7}}{3}}\right)$

$$(\mathbf{d})\left(-\infty, -\sqrt{\frac{1+\sqrt{7}}{3}}\right), \left(\sqrt{\frac{1+\sqrt{7}}{3}}, +\infty\right) \quad (\mathbf{e}) \pm \sqrt{\frac{1+\sqrt{7}}{3}}$$

- 33. increasing: $[-\pi/4, 3\pi/4]$; decreasing: $[-\pi, -\pi/4], [3\pi/4, \pi]$; concave up: $(-3\pi/4, \pi/4)$; concave down: $(-\pi, -3\pi/4), (\pi/4, \pi)$; inflection points: $-3\pi/4$, $\pi/4$
- **35.** increasing: none; decreasing: $(-\pi, \pi)$; concave up: $(-\pi, 0)$; concave down: $(0, \pi)$; inflection point: 0
- **37.** increasing: $[-\pi, -3\pi/4]$, $[-\pi/4, \pi/4]$, $[3\pi/4, \pi]$; decreasing: $[-3\pi/4, -\pi/4], [\pi/4, 3\pi/4];$ concave up: $(-\pi/2, 0), (\pi/2, \pi);$ concave down: $(-\pi, -\pi/2)$, $(0, \pi/2)$; inflection points: $0, \pm \pi/2$

- **41.** $1 + \frac{1}{3}x \sqrt[3]{1+x} \ge 0$ if x > 0 **43.** $x \ge \sin x$
- 47. 200

points of inflection at x = -2, 2; concave up on [-5, -2], [2, 5]; concave down on [-2, 2]; increasing on [-3.5829, 0.2513]and [3.3316, 5]; decreasing on [-5, -3.5829],

[0.2513, 3.3316]

- **49.** -2.464202, 0.662597, 2.701605 **53.** (a) true (b) false
- 57. (c) inflection point (1, 0); concave up on $(1, +\infty)$; concave down on $(-\infty, 1)$

Answers to Odd-Numbered Exercises

- 69. the eighth day

Exercise Set 4.2 (Page 252)

- **5.** (b) nothing (c) f has a relative minimum at x = 1, g has no relative extremum at x = 1.
- 7. critical: $0, \pm \sqrt{2}$; stationary: $0, \pm \sqrt{2}$
- **9.** critical: -3, 1; stationary: -3, 1 **11.** critical: 0, ± 5 ; stationary: 0
- 13. critical: $n\pi/2$ for every integer n; stationary: $n\pi + \pi/2$ for every integer n

Responses to True-False questions may be abridged to save space.

- 15. False; for example, $f(x) = (x-1)^2(x-1.5)$ has a relative maximum at x = 1, but f(2) = 0.5 > 0 = f(1).
- 17. False; to apply the second derivative test (Theorem 4.2.4) at x = 1, f'(1) must equal 0.

21. (a) none (b) x = 1 (c) none

23. (a) 2 (b) 0 (c) 1, 3 (d)

- **25.** 0 (neither), $\sqrt[3]{5}$ (min) **27.** -2 (min), 2/3 (max) **29.** 0 (min)
- **31.** -1 (min), 1 (max) **33.** relative maximum at (4/3, 19/3)
- 35. relative maximum at $(\pi/4, 1)$; relative minimum at $(3\pi/4, -1)$
- 37. relative maximum at (1, 1); relative minima at (0, 0), (2, 0)
- 39. relative maximum at (-1, 0); relative minimum at (-3/5, -108/3125)

- **41.** relative maximum at (-1, 1); relative minimum at (0, 0)
- **43.** no relative extrema **45.** relative minimum at (0, ln 2)
- 47. relative minimum at $(-\ln 2, -1/4)$
- **49.** relative maximum at (3/2, 9/4); relative minima at (0, 0), (3, 0)
- **51.** intercepts: (0, -4), (-1, 0), (4, 0); stationary point: (3/2, -25/4) (min); inflection points: none

53. intercepts: (0, 5), $\left(\frac{-7 \pm \sqrt{57}}{4}, 0\right)$, (5, 0); (-2, 49)stationary points: (-2, 49) $(\max), (3, -76) (\min);$ inflection point: (1/2, -27/2)

55. intercepts: (-1, 0), (0, 0), (2, 0); stationary points: (-1, 0) (max),

$$\left(\frac{1+\sqrt{3}}{2}, \frac{9+6\sqrt{3}}{4}\right) \text{(max)};$$
 inflection points: $\left(-\frac{1}{\sqrt{2}}, \frac{5}{4} - \sqrt{2}\right)$,
$$\left(\frac{1}{\sqrt{2}}, \frac{5}{4} + \sqrt{2}\right),$$

57. intercepts: (0, -1), (-1, 0), (1, 0); stationary points: (-1/2, -27/16) (min), (1,0) (neither); inflection points: (0, -1), (1, 0)

59. intercepts: (-1, 0), (0, 0), (1, 0); stationary points: (-1, 0) (max), $\left(-\frac{1}{\sqrt{5}}, -\frac{16}{25\sqrt{5}}\right)$ (min),

$$\sqrt{5}$$
, $25\sqrt{5}$ (max), (1, 0) (min); $\left(\frac{1}{\sqrt{5}}, \frac{16}{25\sqrt{5}}\right)$ (max), (1, 0) (min);

61. (a)

(b)

-0.2

(c)

65. relative min of 0 at $x = \pi/2, 3\pi/2$; relative max of 1 at $x = \pi$

67. relative min of -1/e at x = 1/e

69. relative min of 0 at x = 0; relative max of $1/e^2$ at x = 1

71. relative minima at x = -3.58, 3.33;relative max at x = 0.25

- 73. relative maximum at $x \approx -0.272$; relative minimum at $x \approx 0.224$
- 75. relative maximum at x = 0; relative minima at $x \approx \pm 0.618$
- **77. (a)** 54 **(b)** 9

79. (b)

Exercise Set 4.3 (Page 264)

1. stationary points: none; inflection points: none; asymptotes: x = 4, y = -2; asymptote crossings: none

5. stationary point: (0,0); inflection points: $\left(\pm \frac{2}{\sqrt{2}}, \frac{1}{4}\right)$;

asymptote: y = 1; asymptote crossings: none

asymptote crossing: (2, 3)

inflection point: (6, 25/9); asymptotes: x = 0, y = 3;

13. stationary points: none; inflection points: none; asymptotes: x = 1, y = -1; asymptote crossings: none

 $(4, \frac{11}{4})$

15. (a)

y = 3

(b)

3. stationary points: none; inflection point: (0, 0); asymptotes: $x = \pm 2, y = 0$; asymptote crossings: (0,0)

7. stationary point: (0, -1); inflection points: (0, -1),

$$\left(-\frac{1}{\sqrt[3]{2}}, -\frac{1}{3}\right);$$

asymptotes: x = 1, y = 1; asymptote crossings: none

9. stationary point: (4, 11/4); 11. stationary point: (-1/3, 0); inflection point: (-1, 1); asymptotes: x = 1, y = 9; asymptote crossing: (1/3, 9)

A58 Answers to Odd-Numbered Exercises

19. stationary point: $\left(-\frac{1}{3\sqrt{2}}, \frac{3}{2}\sqrt[3]{\sqrt{2}}\right)$ inflection point: (1, 0); asymptotes: $y = x^2, x = 0$; asymptote crossings: none

21. stationary points: (-4, -27/2), (2, 0); inflection point: (2, 0); asymptotes: x = 0, y = x - 6; asymptote crossing: (2/3, -16/3)

23. stationary points: (-3, 23), (0, -4); inflection point: (0, -4); asymptotes: x = -2, $y = x^2 - 2x$; asymptote crossings: none

25. (a) VI (b) I (c) III (d) V (e) IV (f) II

Responses to True-False questions may be abridged to save space.

- **27.** True; if deg $P > \deg Q$, then f(x) is unbounded as $x \to \pm \infty$; if deg $P < \deg Q$, then $f(x) \to 0$ as $x \to \pm \infty$.
- **29.** False; for example, $f(x) = (x 1)^{1/3}$ is continuous (with vertical tangent line) at x = 1, but $f'(x) = \frac{1}{3(x 1)^{2/3}}$ has a vertical asymptote at x = 1.
- 31. critical points: $(\pm 1/2, 0)$; 33. critical points: (-1, 1), (0, 0); inflection points: none inflection points: none

35. critical points: (0,0), (1,3); inflection points: (0,0), $(-2,-6\sqrt[3]{2})$. It's hard to see all the important features in one graph, so two graphs are shown:

37. critical points: (0, 4), (1, 3); inflection points: (0, 4), (8, 4)

39. extrema: none;

41. minima: $x = 7\pi/6 + 2\pi n$ for integers n; maxima: $x = \pi/6 + 2\pi n$ for integers n; inflection points: $x = 2\pi/3 + \pi n$ for integers n

43. relative minima: 1 at $x = \pi$; -1 at $x = 0, 2\pi$; relative maxima: 5/4 at $x = -2\pi/3, 2\pi/3, 4\pi/3, 8\pi/3$; inflection points where $\cos x = \frac{-1 \pm \sqrt{33}}{8} : (-2.57, 1.13), (-0.94, 0.06), (0.94, 0.06), (2.57, 1.13), (3.71, 1.13), (5.35, 0.06), (7.22, 0.06), (8.86, 1.13)$

- 45. (a) $+\infty$, 0 (b) (b) (c) (a) 0, $+\infty$ (b) (b) (b) (c) 0.3(c) (-1, -0.37) (d) (0.29, 0.05)
- **49.** (a) 0, 0 (b) relative max = 1/e at $x = \pm 1$; relative min = 0 at x = 0; inflection points where $x = \pm \sqrt{\frac{5 \pm \sqrt{17}}{4}}$: about $(\pm 0.47, 0.18), (\pm 1.51, 0.23)$; asymptote: y = 0

51. (a) $-\infty$, 0 **(b)** relative max = $-e^2$ at x = 2:

> no relative min: no inflection points; asymptotes: y = 0, x = 1

53. (a) $0, +\infty$ **(b)** critical points at x = 0.2; relative min at x = 0, relative max at x = 2; points of inflection at $x = 2 \pm \sqrt{2}$;

- 55. (a) $+\infty$, 0 **(b)**
- 57. (a) $+\infty$, 0 **(b)** ↑ ^y
- **59.** (a) +∞, 0 (b) no relative max; relative min = $-\frac{3}{2a}$ at $x = e^{-3/2}$; inflection point: $(e^{3/2}, 3e/2)$;

no asymptotes. It's hard to see all the important features in one graph, so two graphs are shown:

- **61.** (a)
- **(b)** relative max at x = 1/b; inflection point at x = 2/b

63. (a) does not exist, 0

(b) $y = e^x$ and $y = e^x \cos x$ intersect for $x = 2\pi n$, and $y = -e^x$ and $y = e^x \cos x$ intersect for $x = 2\pi n + \pi$, for all integers n.

65. (a) x = 1, 2.5, 3, 4 (b) $(-\infty, 1], [2.5, 3]$ (c) relative max at x = 1, 3;

relative min at x = 2.5 (**d**) $x \approx 0.6, 1.9, 4$

- **67.** 100
- **69.** Graph misses zeros at x = 0, 1and min at x = 5/6.

Exercise Set 4.4 (Page 272)

1. relative maxima at x = 2, 6; absolute max at x = 6; relative min at x = 4; absolute minima at x = 0, 4

- (c) ↑ ^y
- 7. $\max = 2$ at x = 1, 2; min = 1 at x = 3/2
- 9. $\max = 8$ at x = 4;

 $\min = -1 \text{ at } x = 1$

- 11. maximum value $3/\sqrt{5}$ at x = 1; minimum value $-3/\sqrt{5}$ at x = -1
- 13. $\max = \sqrt{2} \pi/4$ at $x = -\pi/4$; $\min = \pi/3 - \sqrt{3} \text{ at } x = \pi/3$
- 15. maximum value 17 at x = -5; minimum value 1 at x = -3. Responses to True-False questions may be abridged to save space.
- 17. True; see the Extreme-Value Theorem (4.4.2).
- 19. True; see Theorem 4.4.3.
- **21.** no maximum; min = -9/4 at x = 1/2
- 23. maximum value f(1) = 1; no minimum
- 25. no maximum or minimum
- **27.** max = $-2 2\sqrt{2}$ at $x = -1 \sqrt{2}$; no minimum
- **29.** no maximum; min = 0 at x = 0, 2

A60 Answers to Odd-Numbered Exercises

- 31. maximum value 48 at x = 8; minimum value 0 at x = 0, 20
- 33. no maximum or minimum

35. $\max = 2\sqrt{2} + 1$ at $x = 3\pi/4$; $\min = \sqrt{3}$ at $x = \pi/3$

37. maximum value $\frac{27}{8}e^{-3}$ at $x = \frac{3}{2}$; minimum value $64/e^{8}$ at x = 4

39. $\max = 5 \ln 10 - 9$ at x = 3; $\min = 5 \ln(10/9) - 1$ at x = 1/3

41. maximum value $\sin(1) \approx 0.84147$; minimum value $-\sin(1) \approx -0.84147$

- **43.** maximum value 2; minimum value $-\frac{1}{4}$
- **45.** max = 3 at $x = 2n\pi$; min = -3/2 at $x = \pm 2\pi/3 + 2n\pi$ for any integer n **49.** 2, at x = 1
- 53. maximum y = 4 at $t = \pi$, 3π ; minimum y = 0 at t = 0, 2π

Exercise Set 4.5 (Page 283)

- 1. (a) 1 (b) $\frac{1}{2}$ 3. 500 ft parallel to stream, 250 ft perpendicular
- 5. 500 ft (\$3 fencing) × 750 ft (\$2 fencing) 7. 5 in × $\frac{12}{5}$ in
- 9. $10\sqrt{2} \times 10\sqrt{2}$ 11. 80 ft (\$1 fencing), 40 ft (\$2 fencing)
- 15. maximum area is 108 when x = 2
- 17. maximum area is 144 when x = 2
- **19.** 11,664 in³ **21.** $\frac{200}{27}$ ft³ **23.** base 10 cm square, height 20 cm
- 25. ends $\sqrt[3]{3V/4}$ units square, length $\frac{4}{3}\sqrt[3]{3V/4}$
- 27. height = $2R/\sqrt{3}$, radius = $\sqrt{2/3}R$
- 31. height = radius = $\sqrt[3]{500/\pi}$ cm 33. L/12 by L/12 by L/12
- 35. height = $L/\sqrt{3}$, radius = $\sqrt{2/3}L$
- 37. height = $2\sqrt[3]{75/\pi}$ cm, radius = $\sqrt{2}\sqrt[3]{75/\pi}$ cm
- 39. height = 4R, radius = $\sqrt{2}R$
- **41.** $R(x) = 225x 0.25x^2$; R'(x) = 225 0.5x; 450 tons
- **43.** (a) 7000 units (b) yes (c) \$15 **45.** 13,722 lb **47.** $3\sqrt{3}$
- **49.** height = $r/\sqrt{2}$ **51.** $1/\sqrt{5}$ **53.** $(\sqrt{2}, \frac{1}{2})$ **55.** $(-1/\sqrt{3}, \frac{3}{4})$
- **57.** (a) π mi (b) $2 \sin^{-1}(1/4)$ mi **59.** $4(1+2^{2/3})^{3/2}$ ft
- **61.** 30 cm from the weaker source **63.** $\sqrt{24} = 2\sqrt{6}$ ft

Exercise Set 4.6 (Page 294)

- 1. (a) positive, negative, slowing down
 - (b) positive, positive, speeding up
- (c) negative, positive, slowing down
- 3. (a) left
 - (b) negative
 - (c) speeding up
 - (d) slowing down

Responses to True-False questions may be abridged to save space.

- False; a particle has positive velocity when its position versus time graph is increasing; if that positive velocity is decreasing, the particle would be slowing down.
- False; acceleration is the derivative of velocity (with respect to time);
 speed is the absolute value of velocity.
- **13.** (a) 6.2 ft/s^2 (b) t = 0 s

15. (a)	t	S	v	а
	1	0.71	0.56	-0.44
	2	1	0	-0.62
	3	0.71	-0.56	-0.44
	4	0	-0.79	0
	5	-0.71	-0.56	0.44
		_		

- (b) stopped at t = 2; moving right at t = 1; moving left at t = 3, 4, 5
- (c) speeding up at t = 3; slowing down at t = 1, 5; neither at t = 2, 4
- **17.** (a) $v(t) = 3t^2 6t$, a(t) = 6t 6
 - **(b)** s(1) = -2 ft, v(1) = -3 ft/s, |v(1)| = 3 ft/s, a(1) = 0 ft/s² **(c)** t = 0, 2 s **(d)** speeding up for 0 < t < 1 and 2 < t, slowing down for 1 < t < 2 **(e)** 58 ft
- **19.** (a) $v(t) = 3\pi \sin(\pi t/3)$, $a(t) = \pi^2 \cos(\pi t/3)$ (b) s(1) = 9/2 ft, $v(1) = \text{speed} = 3\sqrt{3}\pi/2$ ft/s, $a(1) = \pi^2/2$ ft/s² (c) t = 0 s, 3 s (d) speeding up: 0 < t < 1.5, 3 < t < 4.5; slowing down: 1.5 < t < 3, 4.5 < t < 5 (e) 31.5 ft
- 21. (a) $v(t) = -\frac{1}{3}(t^2 6t + 8)e^{-t/3}$, $a(t) = \frac{1}{9}(t^2 12t + 26)e^{-t/3}$ (b) $s(1) = 9e^{-1/3}$ ft, $v(1) = -e^{-1/3}$ ft/s, speed $= e^{-1/3}$ ft/s, $a(1) = \frac{5}{2}e^{-1/3}$ ft/s² (c) t = 2 s, 4 s
 - (d) speeding up: $2 < t < 6 \sqrt{10}, 4 < t < 6 + \sqrt{10}$; slowing down: $0 < t < 2, 6 \sqrt{10} < t < 4, 6 + \sqrt{10} < t$ (e) $8 - 24e^{-2/3} + 48e^{-4/3} - 33e^{-5/3}$
- 23. (a) $\sqrt{5}$

(c) speeding up for $\sqrt{5} < t < \sqrt{15}$; slowing down for $0 < t < \sqrt{5}$ and $\sqrt{15} < t$

- **33.** (a) 12 ft/s (b) t = 2.2 s, s = -24.2 ft
- **35.** (a) $t = 2 \pm 1/\sqrt{3}$, $s = \ln 2$, $v = \pm \sqrt{3}$ (b) t = 2, s = 0, a = 6

39. (b) $\frac{2}{3}$ unit (c) $0 \le t < 1$ and t > 2

Exercise Set 4.7 (Page 300)

- **1.** 1.414213562 **3.** 1.817120593 **5.** $x \approx 1.76929$
- 7. $x \approx 1.224439550$ 9. $x \approx -1.24962$ 11. $x \approx 1.02987$
- **13.** $x \approx 4.493409458$

15. $x \approx 0.68233$

17. -0.474626618, 1.395336994 **19.** $x \approx 0.58853$ or 3.09636

Responses to True-False questions may be abridged to save space.

- **21.** True; $x = x_{n+1}$ is the x-intercept of the tangent line to y = f(x) at $x = x_n$.
- 23. False; for example, if $f(x) = x(x-3)^2$, Newton's Method fails (analogous to Figure 4.7.4) with $x_1 = 1$ and approximates the root x = 3for $x_1 > 1$.
- **25. (b)** 3.162277660 **27.** -4.098859132
- **29.** x = -1 or $x \approx 0.17951$ **31.** (0.589754512, 0.347810385)
- **33. (b)** $\theta \approx 2.99156 \text{ rad or } 171^{\circ}$ **35.** -1.220744085, 0.724491959
- **37.** i = 0.053362 or 5.33% **39.** (a) The values do not converge.

Exercise Set 4.8 (Page 308)

- 7. $c = -\sqrt{5}$ **1.** c = 4 **3.** $c = \pi$ **5.** c = 1
- 9. (a) [-2, 1]**(b)** $c \approx -1.29$ (c) -1.2885843

Responses to True-False questions may be abridged to save space.

- 11. False; Rolle's Theorem requires the additional hypothesis that f is differentiable on (a, b) and f(a) = f(b) = 0; see Example 2.
- 13. False; the Constant Difference Theorem applies to two functions with equal derivatives on an interval to conclude that the functions differ by a constant on the interval.
- **15.** (b) $\tan x$ is not continuous on $[0, \pi]$. **25.** $f(x) = xe^x - e^x + 2$
- **35. (b)** $f(x) = \sin x, g(x) = \cos x$
- **41.** a = 6, b = -3**37.** y = f(x)g(x)

► Chapter 4 Review Exercises (Page 310)

- **1.** (a) $f(x_1) < f(x_2)$; $f(x_1) > f(x_2)$; $f(x_1) = f(x_2)$ **(b)** f' > 0; f' < 0; f' = 0
- 3. (a) $\left[\frac{5}{2}, +\infty\right)$ (b) $\left(-\infty, \frac{5}{2}\right]$ (c) $\left(-\infty, +\infty\right)$ (d) none (e) none
- **5.** (a) $[0, +\infty)$ (b) $(-\infty, 0]$ (c) $(-\sqrt{2/3}, \sqrt{2/3})$ (d) $(-\infty, -\sqrt{2/3}), (\sqrt{2/3}, +\infty)$ (e) $-\sqrt{2/3}, \sqrt{2/3}$
- 7. (a) $[-1, +\infty)$ (b) $(-\infty, -1]$ (c) $(-\infty, 0), (2, +\infty)$ (d) (0, 2) (e) 0, 2
- **9.** (a) $(-\infty, 0]$ (b) $[0, +\infty)$ (c) $(-\infty, -1/\sqrt{2}), (1/\sqrt{2}, +\infty)$ (d) $(-1/\sqrt{2}, 1/\sqrt{2})$ (e) $\pm 1/\sqrt{2}$
- 11. increasing on $[\pi, 2\pi]$; decreasing on $[0, \pi]$; concave up on $(\pi/2, 3\pi/2)$; concave down on $(0, \pi/2)$, $(3\pi/2, 2\pi)$; inflection points: $(\pi/2, 0), (3\pi/2, 0)$

13. increasing on $[0, \pi/4]$, $[3\pi/4, \pi]$; decreasing on $[\pi/4, 3\pi/4]$; concave up on $(\pi/2, \pi)$; concave down on $(0, \pi/2)$; inflection point: $(\pi/2, 0)$

A62 Answers to Odd-Numbered Exercises

- 17. $-\frac{b}{2a} \le 0$ 19. x = -1 21. (a) at an inflection point
- **25.** (a) $x = \pm \sqrt{2}$ (stationary points) (b) x = 0 (stationary point)
- 27. (a) relative max at x = 1, relative min at x = 7, neither at x = 0(b) relative max at $x = \pi/2$, $3\pi/2$; relative min at $x = 7\pi/6$, $11\pi/6$ (c) relative max at x = 5
- 29. $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = +\infty$; relative min at x = 0; points of inflection at $x = \frac{1}{2}$, 1; no asymptotes

31. $\lim_{x \to +\infty} f(x)$ does not exist; critical point at x = 0; relative min at x = 0; point of inflection when $1 + 4x^2 \tan(x^2 + 1) = 0$; vertical asymptotes at $x = \pm \sqrt{\pi \left(n + \frac{1}{2}\right)} - 1$, $n = 0, 1, 2, \dots$

33. critical points at x = -5, 0; relative max at x = -5, relative min at x = 0; points of inflection at $x \approx -7.26, -1.44, 1.20$; horizontal asymptote y = 1 for $x \to \pm \infty$

35. $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = -\infty$; critical point at x = 0;

> no extrema; inflection point at x = 0(f changes concavity);

no asymptotes

- 37. no relative extrema 39. relative min of 0 at x = 0
- **41.** relative min of 0 at x = 0 **43.** relative min of 0 at x = 0
- **45.** (a) -40
- **(b)** relative max at $x = -\frac{1}{20}$; relative min at $x = \frac{1}{20}$

(c) The finer details can be seen when graphing over a much smaller *x*-window.

47. (a)

horizontal asymptote y = 1/3vertical asymptotes at $x = (-1 \pm \sqrt{13})/6$

- **53.** (a) true (b) false
- **55.** (a) no max; min = -13/4 at x = 3/2 (b) no max or min (c) no max; min $m = e^2/4$ at x = 2
 - (d) no max; min $m = e^{-1/e}$ at x = 1/e
- **57.** (a) minimum value 0 for $x = \pm 1$; (b) max = 1/2 at x = 1; no maximum min = 0 at x = 0

(c) maximum value 2 at x = 0; minimum value $\sqrt{3}$ at $x = \pi/6$

(d) maximum value $f(-2-\sqrt{3})\approx 0.84;$ minimum value

- **59.** (a)
- (b) minimum: (-2.111985, -0.355116);maximum: (0.372591, 2.012931)
- **61.** width = $4\sqrt{2}$, height = $3\sqrt{2}$ **63.** 2 in square
- **65.** (a) yes (b) yes
- 67. (a) $v = -2\frac{t(t^4 + 2t^2 1)}{(t^4 + 1)^2}$, $a = 2\frac{3t^8 + 10t^6 12t^4 6t^2 + 1}{(t^4 + 1)^3}$ (b)

- **69.** $x \approx -2.11491, 0.25410, 1.86081$
- 71. $x \approx -1.165373043$
- 73. $249 \times 10^6 \text{ km}$
- **75.** (a) yes, c = 0 (b) no
- (c) yes, $c = \sqrt{\pi/2}$
- 77. use Rolle's Theorem

► Chapter 4 Making Connections (Page 314)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

1. (a) no zeros (b) one (c) $\lim_{x \to +\infty} g'(x) = 0$

- **2.** (a) (-2.2, 4), (2, 1.2), (4.2, 3)
 - **(b)** critical numbers at x = -5.1, -2, 0.2, 2;
 - local min at x = -5.1, 2; local max at x = -2;

no extrema at x = 0.2; $f''(1) \approx -1.2$

- 3. x = -4, 5 4. (d) f(c) = 0
- **6.** (a) route (i): 10 s; route (iv): 10 s

(b)
$$2 \le x \le 5$$
; $\frac{4\sqrt{10}}{2.1} + \frac{5}{0.7} \approx 13.166 \text{ s}$

- (d) route (i) or (iv); 10 s

Exercise Set 5.1 (Page 321)

			/ 8	(6 /				
1.	n	2	5	10	50	100		
	A_n	0.853553	0.749739	0.710509	0.676095	0.671463		

3.	n	2	5	10	50	100
	A_n	1.57080	1.93376	1.98352	1.99935	1.99984

5.	n	2	5	10	50	100
	A_n	0.583333	0.645635	0.668771	0.688172	0.690653

7.	n	2	5	10	50	100
	A_n	0.433013	0.659262	0.726130	0.774567	0.780106

9.	n	2	5	10	50	100
	A_n	3.71828	2.85174	2.59327	2.39772	2.37398

11.	n	2	5	10	50	100
	A_n	1.04720	0.75089	0.65781	0.58730	0.57894

13. 3(x-1) **15.** x(x+2) **17.** (x+3)(x-1)

Responses to True-False questions may be abridged to save space.

- 19. False; the limit would be the area of the circle 4π .
- 21. True; this is the basis of the antiderivative method.
- **23.** area = A(6) A(3) **27.** f(x) = 2x; a = 2

Exercise Set 5.2 (Page 330)

- 1. (a) $\int \frac{x}{\sqrt{1+x^2}} dx = \sqrt{1+x^2} + C$
 - $\mathbf{(b)} \int (x+1)e^x dx = xe^x + C$
- 5. $\frac{d}{dx} \left[\sqrt{x^3 + 5} \right] = \frac{3x^2}{2\sqrt{x^3 + 5}}$, so $\int \frac{3x^2}{2\sqrt{x^3 + 5}} dx = \sqrt{x^3 + 5} + C$. 7. $\frac{d}{dx} [\sin(2\sqrt{x})] = \frac{\cos(2\sqrt{x})}{\sqrt{x}}$, so $\int \frac{\cos(2\sqrt{x})}{\sqrt{x}} dx = \sin(2\sqrt{x}) + C$. 9. (a) $(x^9/9) + C$ (b) $\frac{7}{12}x^{12/7} + C$ (c) $\frac{2}{9}x^{9/2} + C$ 11. $\frac{5}{2}x^2 \frac{1}{6x^4} + C$ 13. $-\frac{1}{2}x^{-2} \frac{12}{7}x^{5/4} + \frac{8}{3}x^3 + C$ 15. $(x^2/2) + (x^5/5) + C$ 17. $3x^{4/3} \frac{12}{7}x^{7/3} + \frac{3}{10}x^{10/3} + C$

- 19. $\frac{x^2}{2} \frac{2}{x} + \frac{1}{3x^3} + C$ 21. $2 \ln|x| + 3e^x + C$ 23. $-3\cos x 2\tan x + C$ 25. $\tan x + \sec x + C$
- **27.** $\tan \theta + C$ **29.** $\sec x + C$ **31.** $\theta \cos \theta + C$
- 33. $\frac{1}{2}\sin^{-1}x 3\tan^{-1}x + C$ 35. $\tan x \sec x + C$

Responses to True-False questions may be abridged to save space.

- **37.** True; this is Equations (1) and (2).
- **39.** False; the initial condition is not satisfied since y(0) = 2.

- **43.** (a) $y(x) = \frac{3}{4}x^{4/3} + \frac{5}{4}$
- (a) $y(x) = \frac{\pi}{4}x^3 + \frac{\pi}{4}$ (b) $y = -\cos t + t + 1 \pi/3$ (c) $y(x) = \frac{2}{3}x^{3/2} + 2x^{1/2} \frac{8}{3}$ 45. (a) $y = 4e^x 3$ (b) $y = \ln|t| + 5$
- **47.** $s(t) = 16t^2 + 20$ **49.** $s(t) = 2t^{3/2} 15$
- **51.** $f(x) = \frac{4}{15}x^{5/2} + C_1x + C_2$ **53.** $y = x^2 + x 6$
- **55.** $f(x) = \cos x + 1$ **57.** $y = x^3 6x + 7$

- **67. (b)** $\pi/2$ **69.** $\tan x x + C$
- 71. (a) $\frac{1}{2}(x \sin x) + C$ (b) $\frac{1}{2}(x + \sin x) + C$
- 73. $v = \frac{1087}{\sqrt{273}} T^{1/2} \text{ ft/s}$

- Exercise Set 5.3 (Page 338)

 1. (a) $\frac{(x^2+1)^{24}}{24} + C$ (b) $-\frac{\cos^4 x}{4} + C$
- 3. (a) $\frac{1}{4} \tan(4x+1) + C$ (b) $\frac{1}{6} (1+2y^2)^{3/2} + C$
- 5. (a) $-\frac{1}{2}\cot^2 x + C$ (b) $\frac{1}{10}(1 + \sin t)^{10} + C$ 7. (a) $\frac{2}{7}(1 + x)^{7/2} \frac{4}{5}(1 + x)^{5/2} + \frac{2}{3}(1 + x)^{3/2} + C$ **(b)** $-\cot(\sin x) + C$
- 9. (a) $\ln |\ln x| + C$ (b) $-\frac{1}{5}e^{-5x} + C$

A64 Answers to Odd-Numbered Exercises

11. (a)
$$\frac{1}{3} \tan^{-1}(x^3) + C$$
 (b) $\sin^{-1}(\ln x) + C$

15.
$$\frac{1}{40}(4x-3)^{10}+C$$
 17. $-\frac{1}{7}\cos 7x+C$ **19.** $\frac{1}{4}\sec 4x+C$

21.
$$\frac{1}{2}e^{2x} + C$$
 23. $\frac{1}{2}\sin^{-1}(2x) + C$ **25.** $\frac{1}{21}(7t^2 + 12)^{3/2} + C$

15.
$$\frac{1}{40}(4x-3)^{10} + C$$
 17. $-\frac{1}{7}\cos 7x + C$ 19. $\frac{1}{4}\sec 4x + C$ 21. $\frac{1}{2}e^{2x} + C$ 23. $\frac{1}{2}\sin^{-1}(2x) + C$ 25. $\frac{1}{21}(7t^2 + 12)^{3/2} + C$ 27. $\frac{3}{2(1-2x)^2} + C$ 29. $-\frac{1}{40(5x^4+2)^2} + C$ 31. $e^{\sin x} + C$

33.
$$-\frac{1}{6}e^{-2x^3} + C$$
 35. $\tan^{-1}e^x + C$ 37. $\frac{1}{5}\cos(5/x) + C$

33.
$$-\frac{1}{6}e^{-2x^3} + C$$
 35. $\tan^{-1}e^x + C$ 37. $\frac{1}{5}\cos(5/x) + C$
39. $-\frac{1}{15}\cos^5 3t + C$ 41. $\frac{1}{2}\tan(x^2) + C$ 43. $-\frac{1}{6}(2-\sin 4\theta)^{3/2} + C$

45.
$$\sin^{-1}(\tan x) + C$$
 47. $\frac{1}{6}\sec^3 2x + C$ **49.** $-e^{-x} + C$

51.
$$-e^{-2\sqrt{x}} + C$$
 53. $\frac{1}{6}(2y+1)^{3/2} - \frac{1}{2}(2y+1)^{1/2} + C$

55.
$$-\frac{1}{2}\cos 2\theta + \frac{1}{6}\cos^3 2\theta + C$$
 57. $t + \ln|t| + C$

59.
$$\int [\ln(e^x) + \ln(e^{-x})] dx = C$$

61. (a)
$$\sin^{-1}\left(\frac{1}{3}x\right) + C$$
 (b) $\frac{1}{\sqrt{5}}\tan^{-1}\left(\frac{x}{\sqrt{5}}\right) + C$

(c)
$$\frac{1}{\sqrt{\pi}} \sec^{-1} \left(\frac{x}{\sqrt{\pi}} \right) + C$$

(c)
$$\frac{1}{\sqrt{\pi}} \sec^{-1} \left(\frac{x}{\sqrt{\pi}} \right) + C$$

63. $\frac{1}{b} \frac{(a+bx)^{n+1}}{n+1} + C$ 65. $\frac{1}{b(n+1)} \sin^{n+1} (a+bx) + C$

67. (a)
$$\frac{1}{2}\sin^2 x + C_1$$
; $-\frac{1}{2}\cos^2 x + C_2$ (b) They differ by a constant.
69. $\frac{2}{15}(5x+1)^{3/2} - \frac{158}{15}$ 71. $y = -\frac{1}{2}e^{2t} + \frac{13}{2}$

69.
$$\frac{2}{15}(5x+1)^{3/2} - \frac{158}{15}$$
 71. $y = -\frac{1}{2}e^{2t} + \frac{13}{2}$

73. (a)
$$\sqrt{x^2+1}+C$$

75.
$$f(x) = \frac{2}{9}(3x+1)^{3/2} + \frac{7}{9}$$

77. 1280

Exercise Set 5.4 (Page 350)

1. (a) 36 (b) 55 (c) 40 (d) 6 (e) 11 (f) 0 **3.**
$$\sum_{k=1}^{10} k$$
 5. $\sum_{k=1}^{10} 2k$

7.
$$\sum_{k=1}^{6} (-1)^{k+1} (2k-1)$$
 9. (a) $\sum_{k=1}^{50} 2k$ (b) $\sum_{k=1}^{50} (2k-1)$ 11. 5050

13. 2870 **15.** 214,365 **17.**
$$\frac{3}{2}(n+1)$$
 19. $\frac{1}{4}(n-1)^2$

Responses to True-False questions may be abridged to save space.

- **21.** True; by parts (a) and (c) of Theorem 5.4.2.
- **23.** False; consider [a, b] = [-1, 0]

25. (a)
$$\left(2 + \frac{3}{n}\right)^4 \cdot \frac{3}{n}$$
, $\left(2 + \frac{6}{n}\right)^4 \cdot \frac{3}{n}$, $\left(2 + \frac{9}{n}\right)^4 \cdot \frac{3}{n}$, $\left(2 + \frac{3(n-1)}{n}\right)^4 \cdot \frac{3}{n}$, $(2+3)^4 \cdot \frac{3}{n}$ (b) $\sum_{k=0}^{n-1} \left(2 + k \cdot \frac{3}{n}\right)^4 \frac{3}{n}$

- **27.** (a) 46 (b) 52 (c) 58 **29.** (a) $\frac{\pi}{4}$ (b) 0 (c) $-\frac{\pi}{4}$
- **31.** (a) 0.7188, 0.7058, 0.6982 (b) 0.6928, 0.6931, 0.6931 (c) 0.6688, 0.6808, 0.6882
- **33.** (a) 4.8841, 5.1156, 5.2488 (b) 5.3471, 5.3384, 5.3346 (c) 5.6841, 5.5156, 5.4088
- 35. $\frac{15}{4}$ 37. 18 39. 320 41. $\frac{15}{4}$ 43. 18 45. 16 47. $\frac{1}{3}$ 49. 0 51. $\frac{2}{3}$ 53. (b) $\frac{1}{4}(b^4 a^4)$
- 55. $\frac{n^2 + 2n}{4}$ if *n* is even; $\frac{(n+1)^2}{4}$ if *n* is odd 57. $3^{17} 3^4$ 59. $-\frac{399}{400}$ 61. (b) $\frac{1}{2}$ 65. (a) yes (b) yes

Exercise Set 5.5 (Page 360)

1. (a)
$$\frac{71}{6}$$
 (b) 2 **3.** (a) $-\frac{117}{16}$ (b) 3 **5.** $\int_{-1}^{2} x^2 dx$

7.
$$\int_{-3}^{3} 4x(1-3x) dx$$

9. (a)
$$\lim_{\max \Delta x_k \to 0} \sum_{k=1}^n 2x_k^* \Delta x_k; a = 1, b = 2$$

(b)
$$\lim_{\max \Delta x_k \to 0} \sum_{k=1}^n \frac{x_k^*}{x_k^* + 1} \Delta x_k; a = 0, b = 1$$

- **17.** (a) 2 **(b)** 4 **(c)** 10 **(d)** 10 **19.** (a) 0.8 **(b)** -2.6(c) - 1.8(d) -0.3
- **21.** -1 **23.** 3 **25.** -4 **27.** $(1+\pi)/2$

Responses to True-False questions may be abridged to save space.

- **29.** False; see Theorem 5.5.8(*a*).
- **31.** False; consider f(x) = x 2 on [0, 3].
- **33.** (a) negative (b) positive **37.** $\frac{25}{7}\pi$ **39.** $\frac{5}{7}$
- 45. (a) integrable (b) integrable (c) not integrable (d) integrable

Exercise Set 5.6 (Page 373)

1. (a)
$$\int_0^2 (2-x) dx = 2$$
 (b) $\int_{-1}^1 2 dx = 4$ (c) $\int_1^3 (x+1) dx = 6$

- 5. $\frac{65}{4}$ 7. 14 9. $\frac{3}{2}$ 11. (a) $\frac{4}{3}$ (b) -7 13. 48 15. 3 17. $\frac{844}{5}$
- **19.** 0 **21.** $\sqrt{2}$ **23.** $5e^3 10$ **25.** $\pi/4$ **27.** $\pi/12$ **29.** -12
- 31. (a) 5/2 (b) $2 \frac{\sqrt{2}}{2}$ 33. (a) e + (1/e) 2 (b) 1
- 35. (a) $\frac{17}{6}$ (b) $F(x) = \begin{cases} \frac{x^2}{2}, \\ \frac{x^3}{3} + \end{cases}$ Responses to True–False quantity

Responses to True-False questions may be abridged to save space.

- 37. False; since |x| is continuous, it has an antiderivative.
- 39. True; by the Fundamental Theorem of Calculus.
- **41.** 0.6659; $\frac{2}{3}$ **43.** 3.1060; 2 tan 1 **45.** 12 **47.** $\frac{9}{2}$
- **49.** area = 1
- **51.** area = $e + e^{-1} 2$

- **53. (b)** degree mode, 0.93
- 55. (a) change in height from age 0 to age 10 years; inches
 - (b) change in radius from time t = 1 s to time t = 2 s; centimeters
 - (c) difference between speed of sound at 100°F and at 32°F; feet per second (d) change in position from time t_1 to time t_2 ; centimeters
- **57.** (a) $3x^2 3$ **59.** (a) $\sin(x^2)$ (b) $e^{\sqrt{x}}$ **61.** $-x \sec x$
- **63.** (a) 0 (b) 5 (c) $\frac{4}{5}$
- **65.** (a) x = 3 (b) increasing on $[3, +\infty)$, decreasing on $(-\infty, 3]$ (c) concave up on (-1, 7), concave down on $(-\infty, -1)$ and $(7, +\infty)$
- **67.** (a) $(0, +\infty)$ (b) x = 1
- **69.** (a) 120 gal (b) 420 gal (c) 2076.36 gal **71.** 1

Exercise Set 5.7 (Page 382)

- 1. (a) displacement = 3; distance = 3
 - (b) displacement = -3; distance = 3
 - (c) displacement $= -\frac{1}{2}$; distance $= \frac{3}{2}$
 - (d) displacement = $\frac{3}{2}$; distance = 2
- 3. (a) 35.3 m/s (b) 51.4 m/s 5. (a) $t^3 t^2 + 1$ (b) $4t + 3 \frac{1}{3}\sin 3t$
- 7. (a) $\frac{3}{2}t^2 + t 4$ (b) $t + 1 \ln t$
- 9. (a) displacement = 1 m; distance = 1 m
 - **(b)** displacement = -1 m; distance = 3 m
- 11. (a) displacement = $\frac{9}{4}$ m; distance = $\frac{11}{4}$ m
 - (b) displacement = $2\sqrt{3} 6$ m; distance = $6 2\sqrt{3}$ m
- **13.** 4, 13/3 **15.** 296/27, 296/27
- **17.** (a) $s = 2/\pi$, v = 1, |v| = 1, a = 0
 - **(b)** $s = \frac{1}{2}$, $v = -\frac{3}{2}$, $|v| = \frac{3}{2}$, a = -3 **19.** $t \approx 1.27$ s

21. 180 150 120 100 50 -50 60 -100

Responses to True-False questions may be abridged to save space.

- **23.** True; if $a(t) = a_0$, then $v(t) = a_0t + v_0$.
- **25.** False; consider $v(t) = \sin t$ on $[0, 2\pi]$.

- (c) 120 cm, -20 cm (d) 131.25 cm at t = 6.5 s
- **33.** (a) $-\frac{121}{5}$ ft/s² (b) $\frac{70}{33}$ s (c) $\frac{60}{11}$ s **35.** 280 m **37.** 50 s, 5000 ft
- **39.** (a) 16 ft/s, -48 ft/s (b) 196 ft (c) 112 ft/s
- **41.** (a) 1 s (b) $\frac{1}{2}$ s **43.** (a) 6.122 s (b) 183.7 m (c) 6.122 s (d) 60 m/s
- **45.** (a) 5 s (b) 272.5 m (c) 10 s (d) -49 m/s(e) 12.46 s (f) 73.1 m/s

Exercise Set 5.8 (Page 388)

- 1. (a) 4 (c) $\uparrow y$ **(b)** 2
- **13.** (a) 5.28 (b) 4.305 (c) 4 **15.** (a) $-\frac{1}{6}$ (b) $\frac{1}{2}$ Responses to True–False questions may be abridged to save space.
- **19.** False; let $g(x) = \cos x$; f(x) = 0 on $[0, 3\pi/2]$.
- **21.** True; see Theorem 5.5.4(*b*).
- **23.** (a) $\frac{263}{4}$ (b) 31 **25.** 1404 π lb **27.** 97 cars/min **31.** 27

Exercise Set 5.9 (Page 393)

- **1.** (a) $\frac{1}{2} \int_{1}^{5} u^{3} du$ (b) $\frac{3}{2} \int_{9}^{25} \sqrt{u} du$ (c) $\frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos u du$
- (d) $\int_1^2 (u+1)u^5 du$ 3. (a) $\frac{1}{2} \int_{-1}^1 e^u du$ (b) $\int_1^2 u du$ 5. 10 7. 0 9. $\frac{1192}{15}$ 11. $8 (4\sqrt{2})$ 13. $-\frac{1}{48}$ 15. $\ln \frac{21}{13}$
- **17.** $\pi/6$ **19.** $25\pi/6$ **21.** $\pi/8$ **23.** $2/\pi$ m **25.** 6 **27.** $\pi/18$
- **29.** 1/21 **31.** 2 **33.** $\frac{2}{3}(\sqrt{10}-2\sqrt{2})$ **35.** $2(\sqrt{7}-\sqrt{3})$ **37.** 1
- **39.** 0 **41.** $(\sqrt{3}-1)/3$ **43.** $\frac{106}{405}$ **45.** $(\ln 3)/2$ **47.** $\pi/(6\sqrt{3})$
- **49.** $\pi/9$ **51.** (a) $\frac{23}{4480}$ **53.** (a) $\frac{5}{3}$ (b) $\frac{5}{3}$ (c) $-\frac{1}{2}$ **57.** Method 2 **59.** Method 1 **61.** $\approx 48,233,500,000$ **63. (a)** 0.45 **(b)** 0.461
- **65.** $(\ln 7)/2$ **67.** (a) $2/\pi$ **71.** (b) $\frac{3}{2}$ (c) $\pi/4$

Exercise Set 5.10 (Page 406)

- (c)
- 3. (a) 7 (b) -5 (c) -3 (d) 6
- **5.** 1.603210678:

magnitude of error is < 0.0063

- 7. (a) x^{-1} , x > 0 (b) x^2 , $x \neq 0$ (c) $-x^2$, $-\infty < x < +\infty$ (d) -x, $-\infty < x < +\infty$ (e) x^3 , x > 0 (f) $\ln x + x$, x > 0(g) $x - \sqrt[3]{x}, -\infty < x < +\infty$ (h) $e^x/x, x > 0$
- 9. (a) $e^{\pi \ln 3}$ (b) $e^{\sqrt{2} \ln 2}$ 11. (a) \sqrt{e} (b) e^2 13. $x^2 x$
- **15.** (a) 3/x (b) 1 **17.** (a) 0 (b) 0 (c) 1

Responses to True-False questions may be abridged to save space.

- **19.** True; both equal $-\ln a$.
- **21.** False; the integrand is unbounded on [-1, e] and thus the integrand is
- **23.** (a) $2x^3\sqrt{1+x^2}$ (b) $-\frac{2}{3}(x^2+1)^{3/2}+\frac{2}{5}(x^2+1)^{5/2}-\frac{4\sqrt{2}}{15}$
- **25.** (a) $-\cos(x^3)$ (b) $-\tan^2 x$ **27.** $-3\frac{3x-1}{9x^2+1} + 2x\frac{x^2-1}{x^4+1}$
- **29.** (a) $3x^2 \sin^2(x^3) 2x \sin^2(x^2)$ (b) $\frac{2}{1-x^2}$
- **31.** (a) F(0) = 0, F(3) = 0, F(5) = 6, F(7) = 6, F(10) = 3(b) increasing on $\begin{bmatrix} \frac{3}{2}, 6 \end{bmatrix}$ and $\begin{bmatrix} \frac{37}{4}, 10 \end{bmatrix}$, decreasing on $\begin{bmatrix} 0, \frac{3}{2} \end{bmatrix}$ and $\begin{bmatrix} 6, \frac{37}{4} \end{bmatrix}$ (c) maximum $\frac{15}{2}$ at x = 6, minimum $-\frac{9}{4}$ at $x = \frac{3}{2}$

- **33.** $F(x) = \begin{cases} (1 x^2)/2, & x < 0\\ (1 + x^2)/2, & x \ge 0 \end{cases}$ **35.** $y(x) = x^2 + \ln x + 1$
- 37. $y(x) = \tan x + \cos x (\sqrt{2}/2)$
- **39.** $P(x) = P_0 + \int_0^x r(t) dt$ individuals **41.** I is the derivative of II.
- **43.** (a) t = 3 (b) t = 1, 5(c) t = 5 (d) t = 3(e) F is concave up on $(0, \frac{1}{2})$ and (2, 4), concave down on $(\frac{1}{2}, 2)$ and (4, 5).

- **45.** (a) relative maxima at $x = \pm \sqrt{4k+1}$, k = 0, 1, ...; relative minima at $x = \pm \sqrt{4k-1}$, k = 1, 2, ...
 - **(b)** $x = \pm \sqrt{2k}, k = 1, 2, ..., \text{ and at } x = 0$
- **47.** $f(x) = 2e^{2x}$, $a = \ln 2$ **49.** 0.06 0.2

Chapter 5 Review Exercises (Page 408)

- 1. $-\frac{1}{4x^2} + \frac{8}{3}x^{3/2} + C$ 3. $-4\cos x + 2\sin x + C$
- 5. $3x^{1/3} 5e^x + C$ 7. $\tan^{-1} x + 2\sin^{-1} x + C$
- **9.** (a) $y(x) = 2\sqrt{x} \frac{2}{3}x^{3/2} \frac{4}{3}$ (b) $y(x) = \sin x 5e^x + 5$ (c) $y(x) = \frac{5}{4} + \frac{3}{4}x^{4/3}$ (d) $y(x) = \frac{1}{2}e^{x^2} - \frac{1}{2}$
- **13.** $\frac{1}{2} \sec^{-1}(x^2 1) + C$ **15.** $\frac{1}{3}\sqrt{5 + 2\sin 3x} + C$
- 17. $-\frac{1}{3a}\frac{1}{ax^3+b}+C$
- **19.** (a) $\sum_{k=0}^{14} (k+4)(k+1)$ (b) $\sum_{k=5}^{19} (k-1)(k-4)$
- **21.** $\frac{32}{3}$ **23.** 0.35122, 0.42054, 0.38650
- **27.** (a) $\frac{3}{4}$ (b) $-\frac{3}{2}$ (c) $-\frac{35}{4}$ (d) -2 (e) not enough information (f) not enough information
- **29.** (a) $2 + (\pi/2)$ (b) $\frac{1}{3}(10^{3/2} 1) \frac{9\pi}{4}$ (c) $\pi/8$ **31.** 48 **33.** $\frac{2}{3}$ **35.** $\frac{3}{2} \sec 1$ **37.** $\frac{5}{2}$ **39.** $\frac{52}{3}$ **41.** $e^3 e$
- **43.** area = $\frac{1}{6}$ 0.2
 - **47.** (a) $x^3 + 1$
- 57. **(b)** $\frac{\pi}{2}$; $\tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right) = \frac{\pi}{2}$
- **59.** (a) F(x) is 0 if x = 1, positive if x > 1, and negative if x < 1. **(b)** F(x) is 0 if x = -1, positive if $-1 < x \le 2$, and negative if $-2 \le x < -1$.
- **61.** (a) $\frac{4}{3}$ (b) e 1 **63.** $\frac{3}{10}$ **67.** $\frac{1}{4}t^4 \frac{2}{3}t^3 + t + 1$ **69.** $t^2 3t + 7$ **71.** 12 m, 20 m **73.** $\frac{1}{3}$ m, $\frac{10}{3} 2\sqrt{2}$ m
- 75. displacement = -6 m; distance = $\frac{13}{2}$ m
- **77.** (a) 2.2 s (b) 387.2 ft **79.** $v_0/2$ ft/s **81.** $\frac{121}{5}$ **83.** $\frac{2}{3}$ **85.** 0
- **87.** $2-2/\sqrt{e}$ **89.** (a) e^2 (b) $e^{1/3}$

► Chapter 5 Making Connections (Page 412)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

- **1. (b)** $b^2 a^2$ **2.** 16/3 **3.** 12
- **4.** (a) the sum for f is m times that for g

(b)
$$m \int_0^1 g(x) dx = \int_0^m f(x) du$$

5. (a) they are equal (b) $\int_{0}^{3} g(x) dx = \int_{0}^{9} f(u) du$

Exercise Set 6.1 (Page 419)

- **1.** 9/2 **3.** 1 **5.** (a) 4/3 (b) 4/3 **7.** 49/192 **9.** 1/2 **11.** $\sqrt{2}$
- **13.** $\frac{1}{2}$ **15.** $\pi 1$ **17.** 24 **19.** 37/12 **21.** $4\sqrt{2}$ **23.** $\frac{1}{2}$
- 25. $\ln 2 \frac{1}{2}$

Responses to True-False questions may be abridged to save space.

- 27. True; use area Formula (1) with f(x) = g(x) + c.
- 29. True; the integrand must assume both positive and negative values. By the Intermediate-Value Theorem, the integrand must be equal to 0 somewhere in [a, b].
- **31.** $k \approx 0.9973$ **33.** 9152/105 **35.** $9/\sqrt[3]{4}$
- **37.** (a) 4/3 (b) $m = 2 \sqrt[3]{4}$ **39.** 1.180898334
- **41.** 0.4814, 2.3639, 1.1897 **43.** 2.54270

- **45.** racer 1's lead over racer 2 at time t = 0
- 47. the increase in population from 1960 to 2010 49. $a^2/6$

Exercise Set 6.2 (Page 428)

- **1.** 8π **3.** $13\pi/6$ **5.** $(1-\sqrt{2}/2)\pi$ **7.** 8π **9.** 32/5 **11.** $256\pi/3$
- **13.** $2048\pi/15$ **15.** 4π **17.** $\pi^2/4$ **19.** 3/5 **21.** 2π **23.** $72\pi/5$ **25.** $\frac{\pi}{2}(e^2-1)$

Responses to True—False questions may be abridged to save space.

- 27. False; see the solids associated with Exercises 9 and 10.
- 29. False: see Example 2 where the cross-sectional area is a linear function
- **31.** $4\pi ab^2/3$ **33.** π **35.** $\int_a^b \pi [f(x) k]^2 dx$ **37. (b)** $40\pi/3$
- **39.** $648\pi/5$ **41.** $\pi/2$ **43.** $\pi/15$ **45.** $40,000\pi$ ft³ **47.** 1/30
- **49.** (a) $2\pi/3$ (b) 16/3 (c) $4\sqrt{3}/3$ **51.** 0.710172176 **53.** π
- **57. (b)** left ≈ 11.157 ; right ≈ 11.771 ; $V \approx \text{average} = 11.464 \,\text{cm}^3$
- **59.** $V = \begin{cases} 3\pi h^2, & 0 \le h < 2\\ \frac{1}{3}\pi(12h^2 h^3 4), & 2 \le h \le 4 \end{cases}$ **61.** $\frac{2}{3}r^3 \tan\theta$ **63.** $16r^3/3$

Exercise Set 6.3 (Page 436)

- **1.** $15\pi/2$ **3.** $\pi/3$ **5.** $2\pi/5$ **7.** 4π **9.** $20\pi/3$ **11.** $\pi \ln 2$ **13.** $\pi/2$

Responses to True-False questions may be abridged to save space.

- 17. True; this is a restatement of Formula (1).
- 19. True; see Formula (2).
- **21.** $2\pi e^2$ **23.** 1.73680 **25.** (a) $7\pi/30$ (b) easier **27.** (a) $\int_0^1 2\pi (1-x)x \, dx$ (b) $\int_0^1 2\pi (1+y)(1-y) \, dy$ **29.** $7\pi/4$ **31.** $\pi r^2 h/3$ **33.** $V = \frac{4}{3}\pi (L/2)^3$ **35.** b = 1

Exercise Set 6.4 (Page 441)

1. $L = \sqrt{5}$ **3.** $(85\sqrt{85} - 8)/243$ **5.** $\frac{1}{27}(80\sqrt{10} - 13\sqrt{13})$ **7.** $\frac{17}{6}$

Responses to True-False questions may be abridged to save space.

- **9.** False; f' is undefined at the endpoints ± 1 .
- 11. True; if f(x) = mx + c over [a, b], then $L = \sqrt{1 + m^2}(b a)$, which is equal to the given sum.
- 13. $L = \ln(1 + \sqrt{2})$

- **(b)** dy/dx does not exist at x = 0. (8,4) (c) $L = (13\sqrt{13} + 80\sqrt{10} - 16)/27$
- across the line y = x.

17. (a) They are mirror images (b) $\int_{1/2}^{2} \sqrt{1+4x^2} \, dx$, $\int_{1/4}^{4} \sqrt{1+\frac{1}{4x}} \, dx$,

(c)
$$\int_{1/4}^{4} \sqrt{1 + \frac{1}{4y}} \, dy$$
, $\int_{1/2}^{2} \sqrt{1 + 4y^2} \, dy$

- (e) The first: Both are underestimates of the arc length, so the larger one is more accurate.
- **(f)** 4.0724, 4.0662 **(g)** 4.0729

19. (a) They are mirror images across the line y = x.

 $x = \tan^{-1} u$ transforms the first integral

(c)
$$\int_0^{\sqrt{3}} \sqrt{1 + \frac{1}{(1+y^2)^2}} \, dy$$
, $\int_0^{\pi/3} \sqrt{1 + \sec^4 y} \, dy$

- (d) 2.0566, 2.0567
- (e) The second: Both are underestimates of the arc length, so the larger one is more accurate. (f) 2.0509, 2.0571 (g) 2.0570
- **23.** 4354 ft **25.** 196.31 yards **27.** $(2\sqrt{2}-1)/3$
- **29.** π **31.** $L = \sqrt{2}(e^{\pi/2} 1)$ **33. (b)** 9.69 **(c)** 5.16 cm

Exercise Set 6.5 (Page 447)

- **1.** $35\pi\sqrt{2}$ **3.** 8π **5.** $40\pi\sqrt{82}$ **7.** 24π **9.** $16\pi/9$
- **11.** 16, $911\pi/1024$ **13.** $S \approx 14.42$ **15.** $S \approx 22.94$

Responses to True-False questions may be abridged to save space.

- **17.** True; use Formula (1) with $r_1 = 0$, $r_2 = r$, $l = \sqrt{r^2 + h^2}$.
- 19. True; the sum telescopes to the surface area of a cylinder.
- **21.** 14.39 **23.** $S = \int_a^b 2\pi [f(x) + k] \sqrt{1 + [f'(x)]^2} dx$
- 33. $\frac{8}{3}\pi(17\sqrt{17}-1)$ 35. $\frac{\pi}{24}(17\sqrt{17}-1)$

Exercise Set 6.6 (Page 456)

1. 7.5 ft·lb **3.** d = 7/4 **5.** 100 ft·lb **7.** 160 J **9.** 20 lb/ft

Responses to True-False questions may be abridged to save space.

- 11. False; the work done is the same.
- **13.** True; joules **15.** $47,385\pi$ ft·lb **17.** 261,600 J
- **19.** (a) 926,640 ft·lb (b) hp of motor = 0.468 **21.** 75,000 ft·lb
- **23.** 120,000 ft·tons **25.** (a) 2,400,000,000/ x^2 lb **(b)** $(9.6 \times 10^{10})/(x + 4000)^2$ lb **(c)** 2.5344×10^{10} ft·lb
- **27.** $v_f = 100 \,\mathrm{m/s}$
- **29.** (a) decrease of $4.5 \times 10^{14} \text{ J}$ (b) ≈ 0.107 (c) $\approx 8.24 \text{ bombs}$

Exercise Set 6.7 (Page 465)

- 1. (a) positive: m_2 is at the fulcrum, so it can be ignored; masses m_1 and m_3 are equidistant from position 5, but $m_1 < m_3$, so the beam will rotate clockwise. (b) The fulcrum should be placed $\frac{50}{7}$ units to the right of m_1 .
- 3. $(\frac{1}{2}, \frac{1}{2})$ 5. $(1, \frac{1}{2})$ 7. $(\frac{2}{3}, \frac{1}{3})$ 9. $(\frac{5}{14}, \frac{38}{35})$ 11. $(\frac{2}{3}, \frac{1}{3})$
- **13.** $\left(-\frac{1}{2}, 4\right)$ **15.** $\left(\frac{1}{2}, \frac{8}{5}\right)$ **17.** $\left(\frac{9}{20}, \frac{9}{20}\right)$ **19.** $\left(\frac{49}{48}, \frac{7}{3} \ln 2\right)$
- **23.** $\frac{4}{3}$; $(\frac{3}{5}, \frac{3}{8})$ **25.** 3; $(0, \frac{2}{3})$ **27.** 8; $(\frac{\pi}{2}, \frac{\pi}{8})$ **29.** $\ln 4 1$; $(\frac{4 \ln 4 3}{4 \ln 4 4}, \frac{(\ln 2)^2 + 1 \ln 4}{\ln 4 1})$ Responses to True–False questions may be abridged to save space.

- 31. True; use symmetry. 33. True; use symmetry.
- **35.** $\left(\frac{2a}{3}, 0\right)$ **37.** $(\bar{x}, \bar{y}) = \left(0, \frac{(a+2b)c}{3(a+b)}\right)$

Exercise Set 6.8 (Page 472)

- 1. (a) F = 31,200 lb; $P = 312 \text{ lb/ft}^2$ **(b)** F = 2,452,500 N; P = 98.1 kPa
- 3. 499.2 lb 5. 8.175×10^5 N 7. 1,098,720 N 9. yes
- **11.** $\rho a^3 / \sqrt{2}$ lb

Responses to True-False questions may be abridged to save space.

13. True; this is a consequence of inequalities (4).

A68 Answers to Odd-Numbered Exercises

- 15. False; by Equation (7) the force can be arbitrarily large for a fixed volume of water.
- **17.** 61,748 lb **19.** 9.81×10^9 N **21.** (b) $80\rho_0$ lb/min

Exercise Set 6.9 (Page 482)

- **1.** (a) ≈ 10.0179 (b) ≈ 3.7622 (c) $15/17 \approx 0.8824$
- (d) ≈ -1.4436 (e) ≈ 1.7627 (f) ≈ 0.9730 3. (a) $\frac{4}{3}$ (b) $\frac{5}{4}$ (c) $\frac{312}{313}$ (d) $-\frac{63}{16}$

	$\sinh x_0$	$\cosh x_0$	$tanh x_0$	coth x ₀	sech x ₀	$\operatorname{csch} x_0$
(a)	2	$\sqrt{5}$	$2/\sqrt{5}$	$\sqrt{5/2}$	1/√5	1/2
(b)	3/4	5/4	3/5	5/3	4/5	4/3
(c)	4/3	5/3	4/5	5/4	3/5	3/4

- 9. $4\cosh(4x 8)$ 11. $-\frac{1}{x} \operatorname{csch}^{2}(\ln x)$ 13. $\frac{1}{x^{2}} \operatorname{csch}\left(\frac{1}{x}\right) \coth\left(\frac{1}{x}\right)$ 15. $\frac{2 + 5\cosh(5x)\sinh(5x)}{\sqrt{4x + \cosh^{2}(5x)}}$ 17. $x^{5/2} \tanh(\sqrt{x}) \operatorname{sech}^{2}(\sqrt{x}) + 3x^{2} \tanh^{2}(\sqrt{x})$ 19. $\frac{1}{\sqrt{9 + x^{2}}}$ 21. $\frac{1}{(\cosh^{-1}x)\sqrt{x^{2} 1}}$ 23. $-\frac{(\tanh^{-1}x)^{-2}}{1 x^{2}}$ 25. $\frac{\sinh x}{|\sinh x|} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$ 27. $-\frac{e^{x}}{2x\sqrt{1 x}} + e^{x} \operatorname{sech}^{-1}x$ 29. $\frac{1}{x} \sinh^{2}x + C$ 31. $\frac{1}{x} (\tanh^{-1}x)^{3/2} + C$ 22. If x = 0

- **29.** $\frac{1}{7} \sinh^7 x + C$ **31.** $\frac{2}{3} (\tanh x)^{3/2} + C$ **33.** $\ln(\cosh x) + C$
- 35. 37/375 37. $\frac{1}{3} \sinh^{-1} 3x + C$ 39. $-\operatorname{sech}^{-1}(e^x) + C$
- **41.** $-\cosh^{-1}|2x| + C$ **43.** $\frac{1}{2}\ln 3$

Responses to True-False questions may be abridged to save space.

- **45.** True; see Figure 6.9.1 **47.** True; $f(x) = \sinh x$
- **49.** 16/9 **51.** 5π **53.** $\frac{3}{4}$
- **55.** (a) $+\infty$ (b) $-\infty$ (c) 1 (d) -1 (e) $+\infty$ (f) $+\infty$
- **63.** |u| < 1: $\tanh^{-1} u + C$; |u| > 1: $\tanh^{-1}(1/u) + C$
- **65.** (a) ln 2 (b) 1/2 **71.** 405.9 ft

73. (a)

- (b) 1480.2798 ft
- (c) ± 283.6249 ft
- (d) 82°

75. (b) 14.44 m **(c)** 15 ln 3 \approx 16.48 m

► Chapter 6 Review Exercises (Page 485)

- 7. (a) $\int_a^b (f(x) g(x)) dx + \int_b^c (g(x) f(x)) dx +$ $\int_{c}^{d} (f(x) - g(x)) dx$ **(b)** 11/4
- **9.** $4352\pi/105$ **11.** $3/2 + \ln 4$ **13.** 9 **15.** $\frac{\pi}{6} \left(65^{3/2} 37^{3/2} \right)$
- 17. $3\sqrt{3}$ 19. (a) $W = \frac{1}{16} J$ (b) 5 m 21. $\left(\frac{8}{5}, 0\right)$ 23. (a) $F = \int_0^1 \rho x 3 dx$ N (b) $F = \int_1^4 \rho (1+x) 2x dx$ lb/ft²

(c)
$$F = \int_{-10}^{0} 9810|y| 2\sqrt{\frac{125}{8}(y+10)} \, dy \, N$$

► Chapter 6 Making Connections (Page 487)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

1. (a)
$$\pi A_1$$
 (b) $a = \frac{A_1}{2A_2}$ **2.** 1,010,807 ft·lb **3.** $\int_0^a 2\pi r f(r) dr$

Exercise Set 7.1 (Page 491)

- 1. $-2(x-2)^4 + C$ 3. $\frac{1}{2}\tan(x^2) + C$ 5. $-\frac{1}{3}\ln(2+\cos 3x) + C$

- 7. $\cosh(e^x) + C$ 9. $e^{\tan x} + C$ 11. $-\frac{1}{30}\cos^6 5x + C$ 13. $\ln(e^x + \sqrt{e^{2x} + 4}) + C$ 15. $2e^{\sqrt{x-1}} + C$ 17. $2\sinh\sqrt{x} + C$ 19. $-\frac{2}{\ln 3}3^{-\sqrt{x}} + C$ 21. $\frac{1}{2}\coth\frac{2}{x} + C$ 23. $-\frac{1}{4}\ln\left|\frac{2 + e^{-x}}{2 e^{-x}}\right| + C$
- **25.** $\sin^{-1}(e^x) + C$ **27.** $-\frac{1}{2}\cos(x^2) + C$ **29.** $-\frac{1}{\ln 16}4^{-x^2} + C$
- **31.** (a) $\frac{1}{2}\sin^2 x + C$ (b) $-\frac{1}{4}\cos 2x + C$
- 33. **(b)** $\ln \left| \tan \frac{x}{2} \right| + C$ **(c)** $\ln \left| \cot \left(\frac{\pi}{4} \frac{x}{2} \right) \right| + C$

Exercise Set 7.2 (Page 498)

- 1. $-e^{-2x}\left(\frac{x}{2}+\frac{1}{4}\right)+C$ 3. $x^2e^x-2xe^x+2e^x+C$
- 5. $-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + C$ 7. $x^2\sin x + 2x\cos x 2\sin x + C$
- 9. $\frac{x^2}{2} \ln x \frac{x^2}{4} + C$ 11. $x(\ln x)^2 2x \ln x + 2x + C$
- **13.** $x \ln(3x-2) x \frac{2}{3} \ln(3x-2) + C$ **15.** $x \sin^{-1} x + \sqrt{1-x^2} + C$
- 17. $x \tan^{-1}(3x) \frac{1}{6}\ln(1+9x^2) + C$ 19. $\frac{1}{2}e^x(\sin x \cos x) + C$
- **21.** $(x/2)[\sin(\ln x) \cos(\ln x)] + C$ **23.** $x \tan x + \ln|\cos x| + C$
- **25.** $\frac{1}{2}x^2e^{x^2} \frac{1}{2}e^{x^2} + C$ **27.** $\frac{1}{4}(3e^4 + 1)$ **29.** $(2e^3 + 1)/9$
- 31. $3 \ln 3 2$ 33. $\frac{5\pi}{6} \sqrt{3} + 1$ 35. $-\pi/2$
- 37. $\frac{1}{3} \left(2\sqrt{3}\pi \frac{\pi}{2} 2 + \ln 2 \right)$

Responses to True—False questions may be abridged to save space.

- 39. True; see the subsection "Guidelines for Integration by Parts."
- **41.** False; e^x isn't a factor of the integrand.
- **43.** $2(\sqrt{x}-1)e^{\sqrt{x}}+C$ **47.** $-(3x^2+5x+7)e^{-x}+C$
- 49. $(4x^3 6x) \sin 2x (2x^4 6x^2 + 3) \cos 2x + C$
- **51.** $\frac{e^{-x}}{a^2 + b^2} (a \sin bx b \cos bx) + C$ **53.** (a) $\frac{1}{2} \sin^2 x + C$
- **55.** (a) A = 1 (b) $V = \pi(e 2)$ **57.** $V = 2\pi^2$ **59.** $\pi^3 6\pi$
- **61.** (a) $-\frac{1}{4}\sin^3 x \cos x \frac{3}{8}\sin x \cos x + \frac{3}{8}x + C$ (b) 8/15
- **65.** (a) $\frac{1}{3} \tan^3 x \tan x + x + C$ (b) $\frac{1}{3} \sec^2 x \tan x + \frac{2}{3} \tan x + C$ (c) $x^3e^x - 3x^2e^x + 6xe^x - 6e^x + C$
- **69.** $(x+1)\ln(x+1) x + C$ **71.** $\frac{1}{2}(x^2+1)\tan^{-1}x \frac{1}{2}x + C$

Exercise Set 7.3 (Page 506)

- 1. $-\frac{1}{4}\cos^4 x + C$ 3. $\frac{\theta}{2} \frac{1}{20}\sin 10\theta + C$
- 5. $\frac{1}{3a}\cos^3 a\theta \cos a\theta + C$ 7. $\frac{1}{2a}\sin^2 ax + C$
- 9. $\frac{1}{3}\sin^3 t \frac{1}{5}\sin^5 t + C$ 11. $\frac{1}{8}x \frac{1}{32}\sin 4x + C$
- **13.** $-\frac{1}{10}\cos 5x + \frac{1}{2}\cos x + C$ **15.** $-\frac{1}{3}\cos(3x/2) \cos(x/2) + C$
- **17.** 2/3 **19.** 0 **21.** 7/24 **23.** $\frac{1}{2} \tan(2x-1) + C$
- **25.** $\ln|\cos(e^{-x})| + C$ **27.** $\frac{1}{4} \ln|\sec 4x + \tan 4x| + C$
- **29.** $\frac{1}{3} \tan^3 x + C$ **31.** $\frac{1}{16} \sec^4 4x + C$ **33.** $\frac{1}{7} \sec^7 x \frac{1}{5} \sec^5 x + C$
- 35. $\frac{1}{4} \sec^3 x \tan x \frac{5}{8} \sec x \tan x + \frac{3}{8} \ln|\sec x + \tan x| + C$
- 37. $\frac{1}{3} \sec^3 t + C$ 39. $\tan x + \frac{1}{3} \tan^3 x + C$
- **41.** $\frac{1}{8} \tan^2 4x + \frac{1}{4} \ln|\cos 4x| + C$ **43.** $\frac{2}{3} \tan^{3/2} x + \frac{2}{7} \tan^{7/2} x + C$
- **45.** $\frac{1}{2} \frac{\pi}{8}$ **47.** $-\frac{1}{2} + \ln 2$ **49.** $-\frac{1}{5} \csc^5 x + \frac{1}{3} \csc^3 x + C$
- 51. $-\frac{1}{2}\csc^2 x \ln|\sin x| + C$

Responses to True-False questions may be abridged to save space.

- 53. True; $\int \sin^5 x \cos^8 x \, dx = \int \sin x (1 \cos^2 x)^2 \cos^8 x \, dx =$ $-\int (1-u^2)^2 u^8 du = -\int (u^8 - 2u^{10} + u^{12}) du$
- 55. False; use this identity to help evaluate integrals of the form $\int \sin mx \cos nx \, dx$.
- **59.** $L = \ln(\sqrt{2} + 1)$ **61.** $V = \pi/2$

69. (a) $\frac{2}{3}$ (b) $3\pi/16$ (c) $\frac{8}{15}$ (d) 5π

Exercise Set 7.4 (Page 513)

1.
$$2\sin^{-1}(x/2) + \frac{1}{2}x\sqrt{4-x^2} + C$$
 3. $8\sin^{-1}\left(\frac{x}{4}\right) - \frac{x\sqrt{16-x^2}}{2} + C$

5.
$$\frac{1}{16} \tan^{-1}(x/2) + \frac{x}{8(4+x^2)} + C$$
 7. $\sqrt{x^2-9} - 3 \sec^{-1}(x/3) + C$

9.
$$-(x^2+2)\sqrt{1-x^2}+C$$
 11. $\frac{\sqrt{9x^2-4}}{4x}+C$ 13. $\frac{x}{\sqrt{1-x^2}}+C$ 15. $\ln|\sqrt{x^2-9}+x|+C$ 17. $\frac{-x}{9\sqrt{4x^2-9}}+C$

15.
$$\ln |\sqrt{x^2-9}+x|+C$$
 17. $\frac{-x}{9\sqrt{4x^2-9}}+C$

19.
$$\frac{1}{2}\sin^{-1}(e^x) + \frac{1}{2}e^x\sqrt{1 - e^{2x}} + C$$
 21. $2/3$ 23. $(\sqrt{3} - \sqrt{2})/2$

25.
$$\frac{10\sqrt{3}+18}{243}$$

243
Responses to True–False questions may be abridged to save space.

27. True; with the restriction
$$-\pi/2 \le \theta \le \pi/2$$
, this substitution gives $\sqrt{a^2 - x^2} = a \cos \theta$ and $dx = a \cos \theta d\theta$.

29. False; use the substitution
$$x = a \sec \theta$$
 with $0 \le \theta < \pi/2$ ($x \ge a$) or $\pi/2 \le \theta < \pi$ ($x \le -a$).

31.
$$\frac{1}{2} \ln(x^2 + 4) + C$$

33.
$$L = \sqrt{5} - \sqrt{2} + \ln \frac{2 + 2\sqrt{2}}{1 + \sqrt{5}}$$
 35. $S = \frac{\pi}{32} \left[18\sqrt{5} - \ln(2 + \sqrt{5}) \right]$

37.
$$\tan^{-1}(x-2) + C$$
 39. $\sin^{-1}\left(\frac{x-1}{2}\right) + C$

41.
$$\ln(x-3+\sqrt{(x-3)^2+1})+C$$

43.
$$2\sin^{-1}\left(\frac{x+1}{2}\right) + \frac{1}{2}(x+1)\sqrt{3-2x-x^2} + C$$

45.
$$\frac{1}{\sqrt{10}} \tan^{-1} \sqrt{\frac{2}{5}} (x+1) + C$$
 47. $\pi/6$

49.
$$u = \sin^2 x$$
, $\frac{1}{2} \int \sqrt{1 - u^2} du$
= $\frac{1}{4} [\sin^2 x \sqrt{1 - \sin^4 x} + \sin^{-1} (\sin^2 x)] + C$

51. (a)
$$\sinh^{-1}(x/3) + C$$
 (b) $\ln\left(\frac{\sqrt{x^2 + 9}}{3} + \frac{x}{3}\right) + C$

1.
$$\frac{A}{x-3} + \frac{B}{x+4}$$
 3. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}$

Exercise Set 7.5 (Page 521)

1.
$$\frac{A}{x-3} + \frac{B}{x+4}$$
 3. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}$
5. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{Dx + E}{x^2 + 2}$ 7. $\frac{Ax + B}{x^2 + 5} + \frac{Cx + D}{(x^2 + 5)^2}$

9.
$$\frac{1}{5} \ln \left| \frac{x-4}{x+1} \right| + C$$
 11. $\frac{5}{2} \ln |2x-1| + 3 \ln |x+4| + C$

13.
$$\ln \left| \frac{x(x+3)^2}{x-3} \right| + C$$
 15. $\frac{x^2}{2} - 3x + \ln|x+3| + C$

17.
$$3x + 12 \ln|x - 2| - \frac{2}{x - 2} + C$$

19.
$$\ln |x^2 - 3x - 10| + C$$

19.
$$\ln |x^2 - 3x - 10| + C$$

21. $x + \frac{x^3}{3} + \ln \left| \frac{(x-1)^2(x+1)}{x^2} \right| + C$

23.
$$3 \ln |x| - \ln |x - 1| - \frac{5}{x - 1} + C$$

25.
$$\frac{2}{x-3} + \ln|x-3| + \ln|x+1| + C$$

27. $\frac{2}{x+1} - \frac{1}{2(x+1)^2} + \ln|x+1| + C$

27.
$$\frac{2}{x+1} - \frac{1}{2(x+1)^2} + \ln|x+1| + C$$

29.
$$-\frac{7}{34} \ln|4x - 1| + \frac{6}{17} \ln(x^2 + 1) + \frac{3}{17} \tan^{-1} x + C$$

31. $3 \tan^{-1} x + \frac{1}{2} \ln(x^2 + 3) + C$

31.
$$3 \tan^{-1} x + \frac{1}{2} \ln(x^2 + 3) + C$$

33.
$$\frac{x^2}{2} - 2x + \frac{1}{2}\ln(x^2 + 1) + C$$

Responses to True-False questions may be abridged to save space.

35. True; partial fractions rewrites proper rational functions P(x)/Q(x) as a sum of terms of the form $\frac{A}{(Bx+C)^k}$ and/or $\frac{Dx+E}{(Fx^2+Gx+H)^k}$.

37. True;
$$\frac{2x+3}{x^2} = \frac{2x}{x^2} + \frac{3}{x^2} = \frac{2}{x} + \frac{3}{x^2}$$

37. True;
$$\frac{2x+3}{x^2} = \frac{2x}{x^2} + \frac{3}{x^2} = \frac{2}{x} + \frac{3}{x^2}$$
.
39. $\frac{1}{6} \ln \left(\frac{1-\sin\theta}{5+\sin\theta} \right) + C$ 41. $e^x - 2\tan^{-1} \left(\frac{1}{2}e^x \right) + C$

43.
$$V = \pi \left(\frac{19}{5} - \frac{9}{4} \ln 5\right)$$
 45. $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x+1}{\sqrt{2}}\right) + \frac{1}{x^2 + 2x + 3} + C$

47.
$$\frac{1}{8} \ln|x-1| - \frac{1}{5} \ln|x-2| + \frac{1}{12} \ln|x-3| - \frac{1}{120} \ln|x+3| + C$$

Exercise Set 7.6 (Page 531)

- **1.** Formula (60): $\frac{4}{3}x + \frac{4}{9}\ln|3x 1| + C$
- 3. Formula (65): $\frac{1}{5} \ln \left| \frac{x}{5+2x} \right| + C$
- 5. Formula (102): $\frac{1}{5}(x-1)(2x+3)^{3/2} + C$
- 7. Formula (108): $\frac{1}{2} \ln \left| \frac{\sqrt{4-3x}-2}{\sqrt{4-3x}+2} \right| + C$
- **9.** Formula (69): $\frac{1}{8} \ln \left| \frac{x+4}{x-4} \right| + C$
- 11. Formula (73): $\frac{x}{2}\sqrt{x^2-3} \frac{3}{2}\ln|x+\sqrt{x^2-3}| + C$
- **13.** Formula (95): $\frac{x}{2}\sqrt{x^2+4} 2\ln(x+\sqrt{x^2+4}) + C$
- 15. Formula (74): $\frac{x}{2}\sqrt{9-x^2} + \frac{9}{2}\sin^{-1}\frac{x}{2} + C$
- 17. Formula (79): $\sqrt{4-x^2} 2 \ln \left| \frac{2 + \sqrt{4-x^2}}{x} \right| + C$
- 19. Formula (38): $-\frac{\sin 7x}{14} + \frac{1}{2}\sin x + C$ 21. Formula (50): $\frac{x^4}{16}[4\ln x 1] + C$
- 23. Formula (42): $\frac{e^{-2x}}{13}[-2\sin(3x) 3\cos(3x)] + C$
- **25.** Formula (62): $\frac{1}{2} \int \frac{u \, du}{(4-3u)^2} = \frac{1}{18} \left[\frac{4}{4-3e^{2x}} + \ln|4-3e^{2x}| \right] + C$
- 27. Formula (68): $\frac{2}{3} \int \frac{du}{u^2 + 4} = \frac{1}{3} \tan^{-1} \frac{3\sqrt{x}}{2} + C$
- **29.** Formula (76): $\frac{1}{2} \int \frac{du}{\sqrt{u^2 9}} = \frac{1}{2} \ln|2x + \sqrt{4x^2 9}| + C$
- 31. Formula (81): $\frac{1}{4} \int \frac{u^2}{\sqrt{2-u^2}} du = -\frac{1}{4} x^2 \sqrt{2-4x^4}$ $+\frac{1}{4}\sin^{-1}\left(\sqrt{2}x^{2}\right)+C$
- 33. Formula (26): $\int \sin^2 u \, du = \frac{1}{2} \ln x \frac{1}{4} \sin(2 \ln x) + C$
- 35. Formula (51): $\frac{1}{4} \int ue^u du = \frac{1}{4} (-2x 1)e^{-2x} + C$
- 37. $u = \sin 3x$, Formula (67): $\frac{1}{3} \int \frac{du}{u(u+1)^2}$ $=\frac{1}{3}\left(\frac{1}{\sin 3x + 1} + \ln \left| \frac{\sin 3x}{\sin 3x + 1} \right| \right) + C$
- **39.** $u = 4x^2$, Formula (70): $\frac{1}{8} \int \frac{du}{u^2 1} = \frac{1}{16} \ln \left| \frac{4x^2 1}{4x^2 + 1} \right| + C$
- **41.** $u = 2e^x$, Formula (74): $\frac{1}{2} \int \sqrt{3 u^2} du = \frac{1}{2} e^x \sqrt{3 4e^{2x}}$
 - $+\frac{3}{4}\sin^{-1}\left(\frac{2e^{x}}{\sqrt{3}}\right)+C$
- **43.** u = 3x, Formula (112): $\frac{1}{3} \int \sqrt{\frac{5}{3}u u^2} du = \frac{18x 5}{36} \sqrt{5x 9x^2}$ $+\frac{25}{216}\sin^{-1}\left(\frac{18x-5}{5}\right)+C$

Answers to Odd-Numbered Exercises

45.
$$u = 2x$$
, Formula (44): $\int u \sin u \, du = \sin 2x - 2x \cos 2x + C$

47.
$$u = -\sqrt{x}$$
, Formula (51): $2\int ue^u du = -2(\sqrt{x}+1)e^{-\sqrt{x}} + C$

49.
$$x^2 + 6x - 7 = (x + 3)^2 - 16$$
, $u = x + 3$, Formula (70):
$$\int \frac{du}{u^2 - 16} = \frac{1}{8} \ln \left| \frac{x - 1}{x + 7} \right| + C$$

47.
$$u = -\sqrt{x}$$
, Formula (31): $2 \int ue \ du = -2(\sqrt{x} + 1)e^{-x} + 49$. $x^2 + 6x - 7 = (x + 3)^2 - 16$, $u = x + 3$, Formula (70):
$$\int \frac{du}{u^2 - 16} = \frac{1}{8} \ln \left| \frac{x - 1}{x + 7} \right| + C$$
51. $x^2 - 4x - 5 = (x - 2)^2 - 9$, $u = x - 2$, Formula (77):
$$\int \frac{u + 2}{\sqrt{9 - u^2}} du = -\sqrt{5 + 4x - x^2} + 2 \sin^{-1} \left(\frac{x - 2}{3} \right) + C$$
53. $u = \sqrt{x - 2}$, $\frac{2}{5}(x - 2)^{5/2} + \frac{4}{3}(x - 2)^{3/2} + C$
55. $u = \sqrt{x^3 + 1}$,

53.
$$u = \sqrt{x-2}, \frac{2}{5}(x-2)^{5/2} + \frac{4}{2}(x-2)^{3/2} + C$$

55.
$$u = \sqrt{x^3 + 1}$$
, $\frac{2}{3} \int u^2 (u^2 - 1) du = \frac{2}{15} (x^3 + 1)^{5/2} - \frac{2}{9} (x^3 + 1)^{3/2} + C$

57.
$$u = x^{1/3}$$
, $\int \frac{3u^2}{u^3 - u} du = \frac{3}{2} \ln|x^{2/3} - 1| + C$

59.
$$u = x^{1/4}, 4 \int \frac{1}{u(1-u)} du = 4 \ln \frac{x^{1/4}}{|1-x^{1/4}|} + C$$

61.
$$u = x^{1/6}$$

$$6\int \frac{u^{3}}{u-1} du = 2x^{1/2} + 3x^{1/3} + 6x^{1/6} + 6\ln|x^{1/6} - 1| + C$$

63.
$$u = \sqrt{1+x^2}$$
, $\int (u^2 - 1) du = \frac{1}{3} (1+x^2)^{3/2} - (1+x^2)^{1/2} + C$

63.
$$u = \sqrt{1+x^2}$$
, $\int (u^2 - 1) du = \frac{1}{3} (1+x^2)^{3/2} - (1+x^2)^{1/2} + C$
65. $\int \frac{1}{1+\frac{2u}{1+u^2} + \frac{1-u^2}{1+u^2}} \frac{2}{1+u^2} du = \int \frac{1}{u+1} du$

$$= \ln|\tan(x/2) + 1| + C$$

67.
$$\int \frac{d\theta}{1-\cos\theta} = \int \frac{1}{u^2} du = -\cot(\theta/2) + C$$

$$= \ln|\tan(x/2) + 1| + C$$
67.
$$\int \frac{d\theta}{1 - \cos \theta} = \int \frac{1}{u^2} du = -\cot(\theta/2) + C$$
69.
$$\int \frac{1}{\frac{2u}{1 + u^2} + \frac{2u}{1 + u^2} \cdot \frac{1 + u^2}{1 - u^2}} \cdot \frac{2}{1 + u^2} du = \int \frac{1 - u^2}{2u} du$$

$$= \frac{1}{2} \ln|\tan(x/2)| - \frac{1}{4} \tan^2(x/2) + C$$

71.
$$x = \frac{4e^2}{1+e^2}$$
 73. $A = 6 + \frac{25}{2}\sin^{-1}\frac{4}{5}$ 75. $A = \frac{1}{40}\ln 9$

77.
$$V = \pi(\pi - 2)$$
 79. $V = 2\pi(1 - 4e^{-3})$

81.
$$L = \sqrt{65} + \frac{1}{8} \ln(8 + \sqrt{65})$$
 83. $S = 2\pi \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$

91.
$$\frac{1}{31}\cos^{31}x\sin^{31}x + C$$

93. $-\frac{1}{9}\ln|1+x^{-9}| + C$

Exercise Set 7.7 (Page 544)

1.
$$\int_0^3 \sqrt{x+1} \, dx = \frac{14}{3} \approx 4.66667$$

(a)
$$M_{10} = 4.66760$$
; $|E_M| \approx 0.000933996$

(b)
$$T_{10} = 4.66480; |E_T| \approx 0.00187099$$

(c)
$$S_{20} = 4.66667$$
; $|E_S| \approx 9.98365 \times 10^{-7}$

3.
$$\int_0^{\pi/2} \cos x \, dx = 1$$

(a)
$$M_{10} = 1.00103$$
; $|E_M| \approx 0.00102882$

(b)
$$T_{10} = 0.997943$$
; $|E_T| \approx 0.00205701$

(c)
$$S_{20} = 1.00000$$
; $|E_S| \approx 2.11547 \times 10^{-7}$

5.
$$\int_{1}^{3} e^{-2x} dx = \frac{-1 + e^4}{2e^6} \approx 0.0664283$$

(a)
$$M_{10} = 0.0659875$$
; $|E_M| \approx 0.000440797$

(b)
$$T_{10} = 0.0673116$$
; $|E_T| \approx 0.000883357$

(c)
$$S_{20} = 0.0664289$$
; $|E_S| \approx 5.87673 \times 10^{-7}$

7. (a)
$$|E_M| \le \frac{9}{3200} = 0.0028125$$

(b)
$$|E_T| \le \frac{9}{1600} = 0.005625$$

(b)
$$|E_T| \le \frac{9}{1600} = 0.005625$$

(c) $|E_S| \le \frac{81}{10.240,000} \approx 7.91016 \times 10^{-6}$

9. (a)
$$|E_M| \le \frac{\pi^3}{19,200} \approx 0.00161491$$

(b)
$$|E_T| \le \frac{\pi^3}{9600} \approx 0.00322982$$

(c)
$$|E_S| \le \frac{\pi^5}{921,600,000} \approx 3.32053 \times 10^{-7}$$

11. (a) $|E_M| \le \frac{1}{75e^2} \approx 0.00180447$

11. (a)
$$|E_M| \leq \frac{1}{75a^2} \approx 0.00180447$$

(b)
$$|E_T| \le \frac{2}{75e^2} \approx 0.00360894$$

(c)
$$|E_S| \le \frac{1}{56.250e^2} \approx 2.40596 \times 10^{-6}$$

13. (a)
$$n = 24$$
 (b) $n = 34$ (c) $n = 8$

15. (a)
$$n = 13$$
 (b) $n = 18$ (c) $n = 4$

17. (a)
$$n = 43$$
 (b) $n = 61$ (c) $n = 8$

Responses to True-False questions may be abridged to save space.

- 19. False; T_n is the average of L_n and R_n .
- **21.** False; $S_{50} = \frac{2}{3}M_{25} + \frac{1}{3}T_{25}$ **23.** $g(x) = \frac{1}{24}x^2 \frac{3}{8}x + \frac{13}{12}$

25.
$$S_{10} = 1.49367$$
; $\int_{-1}^{1} e^{-x^2} dx \approx 1.49365$

27.
$$S_{10} = 3.80678$$
; $\int_{-1}^{2} x\sqrt{1+x^3} dx \approx 3.80554$

29.
$$S_{10} = 0.904524$$
; $\int_0^1 \cos x^2 dx \approx 0.904524$
31. (a) $M_{10} = 3.14243$; error $E_M \approx -0.000833331$

31. (a)
$$M_{10} = 3.14243$$
; error $E_M \approx -0.00083333$

(b)
$$T_{10} = 3.13993$$
; error $E_T \approx 0.00166666$

(c)
$$S_{20} = 3.14159$$
; error $E_S \approx 6.20008 \times 10^{-10}$

33.
$$S_{14} = 0.693147984$$
, $|E_S| \approx 0.000000803 = 8.03 \times 10^{-7}$

47. (a) max
$$|f''(x)| \approx 3.844880$$
 (b) $n = 18$ (c) 0.904741

49. (a) The maximum value of
$$|f^{(4)}(x)|$$
 is approximately 12.4282. (b) $n = 6$ (c) $S_6 = 0.983347$

Exercise Set 7.8 (Page 554)

- 1. (a) improper; infinite discontinuity at x = 3 (b) not improper
 - (c) improper; infinite discontinuity at x = 0
 - (d) improper; infinite interval of integration
 - (e) improper; infinite interval of integration and infinite discontinuity at x = 1 (f) not improper
- 3. $\frac{1}{2}$ 5. $\ln 2$ 7. $\frac{1}{2}$ 9. $-\frac{1}{4}$ 11. $\frac{1}{3}$ 13. divergent 15. 0
- 17. divergent 19. divergent 21. $\pi/2$ 23. 1 25. divergent
- **27.** $\frac{9}{2}$ **29.** divergent **31.** $\pi/2$

Responses to True-False questions may be abridged to save space.

- **33.** True; see Theorem 7.8.2 with $p = \frac{4}{3} > 1$.
- 35. False; the integrand $\frac{1}{x(x-3)}$ is continuous on [1, 2].
- 37. 2 39. 2 41. $\frac{1}{2}$
- **43.** (a) 2.726585 (b) 2.804364 (c) 0.219384 (d) 0.504067 **45.** 12
- **47.** -1 **49.** $\frac{1}{3}$ **51.** (a) $V = \pi/2$ (b) $S = \pi[\sqrt{2} + \ln(1 + \sqrt{2})]$
- **53. (b)** 1/e **(c)** It is convergent. **55.** $V = \pi$

59.
$$\frac{2\pi NI}{kr} \left(1 - \frac{a}{\sqrt{r^2 + a^2}} \right)$$
 61. Method 1

63. (b)
$$2.4 \times 10^7 \text{mi-lb}$$
 65. (a) $\frac{1}{s^2}$ (b) $\frac{2}{s^3}$ (c) $\frac{e^{-3s}}{s}$

- **1.** $\frac{2}{27}(4+9x)^{3/2}+C$ **3.** $-\frac{2}{3}\cos^{3/2}\theta+C$ **5.** $\frac{1}{6}\tan^3(x^2)+C$
- 7. (a) $2\sin^{-1}(\sqrt{x/2}) + C$; $-2\sin^{-1}(\sqrt{2-x}/\sqrt{2}) + C$; $\sin^{-1}(x-1) + C$
- 9. $-xe^{-x} e^{-x} + C$ 11. $x \ln(2x+3) x + \frac{3}{2} \ln(2x+3) + C$
- 13. $(4x^4 12x^2 + 6)\sin(2x) + (8x^3 12x)\cos(2x) + C$

- 13. $(4x^4 12x^2 + 6)\sin(2x) + (8x^3 12x)\cos(2x) + C$ 15. $\frac{1}{2}\theta \frac{1}{20}\sin 10\theta + C$ 17. $-\frac{1}{6}\cos 3x + \frac{1}{2}\cos x + C$ 19. $-\frac{1}{8}\sin^3(2x)\cos 2x \frac{3}{16}\cos 2x\sin 2x + \frac{3}{8}x + C$ 21. $\frac{9}{2}\sin^{-1}(x/3) \frac{1}{2}x\sqrt{9 x^2} + C$ 23. $\ln|x + \sqrt{x^2 1}| + C$ 25. $\frac{x\sqrt{x^2 + 9}}{2} \frac{9\ln(|\sqrt{x^2 + 9} + x|)}{2} + C$ 27. $\frac{1}{5}\ln\left|\frac{x 1}{x + 4}\right| + C$ 29. $\frac{1}{2}x^2 2x + 6\ln|x + 2| + C$ 31. $\ln|x + 2| + \frac{4}{x + 2} \frac{2}{(x + 2)^2} + C$

- **33.** (a) $\ln \frac{\sqrt{x^2 1}}{|x|} + C$, |x| > 1 (b) $\ln \frac{\sqrt{1 x^2}}{|x|} + C$, 0 < |x| < 1(c) $-\ln|x| + \frac{1}{2}\ln|x^2 - 1| + C$, $x \neq 0, \pm 1$ 35. Formula (40): $-\frac{\cos 16x}{32} + \frac{\cos 2x}{4} + C$ 37. Formula (113): $\frac{1}{24}(8x^2 - 2x - 3)\sqrt{x - x^2} + \frac{1}{16}\sin^{-1}(2x - 1) + C$ 39. Formula (28): $\frac{1}{2}\tan 2x - x + C$

- **41.** $\int_{1}^{3} \frac{1}{\sqrt{x+1}} = 4 2\sqrt{2} \approx 1.17157$ **(a)** $M_{10} = 1.17138; |E_{M}| \approx 0.000190169$

 - **(b)** $T_{10} = 1.17195$; $|E_T| \approx 0.000380588$
- (c) $S_{20} = 1.17157$; $|E_S| \approx 8.35151 \times 10^{-8}$ 43. (a) $|E_M| \le \frac{1}{1600\sqrt{2}} \approx 0.000441942$ (b) $|E_T| \le \frac{1}{800\sqrt{2}} \approx 0.000883883$
- (c) $|E_S| \le \frac{7}{15,360,000\sqrt{2}} \approx 3.22249 \times 10^{-7}$ 45. (a) n = 22 (b) n = 30 (c) n = 6 47. 1 49. 6 51. e^{-1} 53. $a = \pi/2$ 55. $\frac{x}{3\sqrt{3+x^2}} + C$ 57. $\frac{5}{12} \frac{1}{2} \ln 2$
- **59.** $\frac{1}{6}\sin^3 2x \frac{1}{10}\sin^5 2x + C$ **61.** $\frac{2}{13}e^{2x}\cos 3x + \frac{3}{13}e^{2x}\sin 3x + C$
- 63. $-\frac{1}{6} \ln|x-1| + \frac{1}{15} \ln|x+2| + \frac{1}{10} \ln|x-3| + C$ 65. $4-\pi$ 67. $\ln \frac{\sqrt{e^x+1}-1}{\sqrt{e^x+1}+1} + C$ 69. $\frac{\pi}{12} + \frac{\sqrt{3}}{2} 1$
- 71. $\sqrt{x^2+2x+2}+2\ln(\sqrt{x^2+2x+2}+x+1)+C$ 73. $\frac{1}{2(a^2+1)}$

► Chapter 7 Making Connections (Page 559)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

- 3. (a) $\Gamma(1) = 1$ (c) $\Gamma(2) = 1$, $\Gamma(3) = 2$, $\Gamma(4) = 6$
- **5. (b)** 1.37078 seconds

Exercise Set 8.1 (Page 566)

3. (a) first order (b) second order

Responses to True-False questions may be abridged to save space.

- 5. False; only first-order derivatives appear.
- **7.** True; it is third order.
- **15.** $y(x) = e^{-2x} 2e^x$ **17.** $y(x) = 2e^{2x} 2xe^{2x}$
- **19.** $y(x) = \sin 2x + \cos 2x$ **21.** $y(x) = -2x^2 + 2x + 3$
- **23.** y(x) = 2/(3-2x) **25.** $y(x) = 2/x^2$
- 27. (a) $\frac{dy}{dt} = ky^2$, $y(0) = y_0$ (k > 0) (b) $\frac{dy}{dt} = -ky^2$, $y(0) = y_0$ (k > 0)

29. (a) $\frac{ds}{ds} = \frac{1}{2}s$ (b) $\frac{d^2s}{ds^2} = 2\frac{ds}{ds}$ **33.** (b) L/2

Exercise Set 8.2 (Page 575)

- 1. y = Cx 3. $y = Ce^{-\sqrt{1+x^2}} 1, C \neq 0$ 5. $2 \ln |y| + y^2 = e^x + C$ 7. $y = \ln(\sec x + C)$
- 9. $y = \frac{1}{1 C(\cos x \cot x)}, y = 0$ 11. $y^2 + \sin y = x^3 + \pi^2$ 13. $y^2 2y = t^2 + t + 3$

Responses to True-False questions may be abridged to save space.

- **21.** True; since $\frac{1}{f(y)} dy = dx$. **23.** True; since $(\frac{1}{2})^5 32 = 1$.
- **29.** (a) y'(t) = y(t)/50, y(0) = 10,000 (b) $y(t) = 10,000e^{t/50}$ (c) $50 \ln 2 \approx 34.66 \text{ hr}$ (d) $50 \ln(4.5) \approx 75.20 \text{ hr}$
- **31.** (a) $\frac{dy}{dt} = -ky, k \approx 0.1810$ (b) $y = 5.0 \times 10^7 e^{-0.181t}$ (c) $\approx 219,000$ atoms (d) 12.72 days
- **33.** $50 \ln(100) \approx 230.26 \, \text{days}$ **35.** 3.30 days
- **39. (b)** 70 years **(c)** 20 years **(d)** 7%
- **43.** (a) no (b) same, r% **45.** (b) $\ln(2)/\ln(5/4) \approx 3.106 \text{ hr}$
- **47. (a)** \$1491.82 **(b)** \$4493.29 **(c)** 8.7 years

- **53.** $y_0 \approx 2, L \approx 8, k \approx 0.5493$
- 55. (a) $y_0 = 5$ (b) L = 12 (c) k = 1 (d) t = 0.3365 (e) $\frac{dy}{dt} = \frac{1}{12}y(12 y), y(0) = 5$
- 57. (a) $y = \frac{1000}{1 + 49e^{-0.115t}}$

A72 Answers to Odd-Numbered Exercises

t	0	1	2	3	4	5	6	7
y(t)	20	22	25	28	31	35	39	44
t	8	9	10	11	12	13	14	
y(t)	49	54	61	67	75	83	93	

- **59.** (a) $T = 21 + 74e^{-kt}$ (b) 6.22 min **61.** (a) $v = c \ln \frac{m_0}{m_0 kt} gt$ (b) 3044 m/s
- **63.** (a) $h \approx (2 0.003979t)^2$ (b) 8.4 min
- **65.** (a) v = 128/(4t+1), $x = 32\ln(4t+1)$

Exercise Set 8.3 (Page 584)

5. $y \rightarrow 1$ as $x \rightarrow +\infty$

7.	n	0	1	2	3	4	5	6	7	8
	x_n	0	0.5	1	1.5	2	2.5	3	3.5	4
	y_n	1.00	1.50	2.07	2.71	3.41	4.16	4.96	5.82	6.72

9.	n	0	1	2	3	4
	t_n	0.00	0.50	1.00	1.50	2.00
	y_n	1.00	1.27	1.42	1.49	1.53

Responses to True-False questions may be abridged to save space.

- 13. True; the derivative is positive.
- **15.** True; $y = y_0$ is a solution if y_0 is a root of p.
- 17. **(b)** $y(1/2) = \sqrt{3}/2$ 19. **(b)** The *x*-intercept is ln 2. 23. **(a)** $y' = \frac{2xy y^3}{3xy^2 x^2}$ **(c)** $xy^3 x^2y = 2$
- **25. (b)** $\lim_{n \to +\infty} y_n = \lim_{n \to +\infty} \left(\frac{n+1}{n} \right)^n = e$

Exercise Set 8.4 (Page 592)

- 1. $y = e^{-3x} + Ce^{-4x}$ 3. $y = e^{-x}\sin(e^x) + Ce^{-x}$ 5. $y = \frac{C}{\sqrt{x^2 + 1}}$
- 7. $y = \frac{x}{2} + \frac{3}{2x}$ 9. $y = 4e^{x^2} 1$

Responses to True-False questions may be abridged to save space.

- 11. False; $y = x^2$ is a solution to dy/dx = 2x, but $y + y = 2x^2$ is not.
- 13. True; it will approach the concentration of the entering fluid.

$17. \lim_{x \to +\infty} y = \left\{\right.$	$+\infty$ if y $-\infty$, if y	$v_0 \ge 1/4$ $v_0 < 1/4$
---	-------------------------------------	---------------------------

(b) $y = -(x+1) + 2e^{x}$

x_n	0	0.2	0.4	0.6	0.8	1.0
$y(x_n)$	1	1.24	1.58	2.04	2.65	3.44
Absolute error	0	0.04	0.10	0.19	0.30	0.46
Percentage error	0	3	6	9	11	13

- **21.** (a) $200 175e^{-t/25}$ oz (b) 136 oz **23.** 25 lb **27.** (a) $I(t) = 2 2e^{-2t}$ A (b) $I(t) \rightarrow 2$ A

► Chapter 8 Review Exercises (Page 594)

- 1. (a) linear (b) both (c) separable (d) neither
- 3. $y = \tan(x^3/3 + C)$ 5. $\ln|y| + y^2/2 = e^x + C$ and y = 0
- 7. $y^{-4} + 4\ln(x/y) = 1$

13.	n	0	1	2	3	4	5	6	7	8
	x_n	0	0.5	1	1.5	2	2.5	3	3.5	4
	y_n	1	1.50	2.11	2.84	3.68	4.64	5.72	6.91	8.23

- **15.** $y(1) \approx 1.00$ 0 0.2 0.6 0.8 1.0 0.4 $y_n = 1.00$ 1.20 1.26 1.10 0.94 1.00
- **17.** (a) $y \approx 2e^{0.1386t}$ (b) $y = 5e^{0.015t}$ (c) $y \approx 0.5995e^{0.5117t}$ (d) $y \approx 0.8706e^{0.1386t}$ 19. $y = e^{-2x} + Ce^{-3x}$
- **21.** $y = -1 + 4e^{x^2/2}$ **23.** $y = 2 \operatorname{sech} x + \frac{1}{2}(x \operatorname{sech} x + \sinh x)$
- 25. about 646 oz

Chapter 8 Making Connections (Page 595)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

- 1. **(b)** $y = 2 3e^{-2x}$
- 3. (a) du/dx = (f(u) u)/x (b) $x^2 2xy y^2 = C$

Exercise Set 9.1 (Page 605)

1. (a)
$$\frac{1}{3^{n-1}}$$
 (b) $\frac{(-1)^{n-1}}{3^{n-1}}$ (c) $\frac{2n-1}{2n}$ (d) $\frac{n^2}{\pi^{1/(n+1)}}$
3. (a) 2, 0, 2, 0 (b) 1, -1, 1, -1 (c) $2(1+(-1)^n)$; $2+2\cos n\pi$

- 5. (a) The limit doesn't exist due to repeated oscillation between -1and 1. **(b)** -1; 1; -1; 1; -1 **(c)** no
- 7. $\frac{1}{3}$, $\frac{2}{4}$, $\frac{3}{5}$, $\frac{4}{6}$, $\frac{5}{7}$; converges, $\lim_{n \to +\infty} \frac{n}{n+2}$ 9. 2, 2, 2, 2, 2; converges, $\lim_{n \to +\infty} 2 = 2$
- 11. $\frac{\ln 1}{1}$, $\frac{\ln 2}{2}$, $\frac{\ln 3}{3}$, $\frac{\ln 4}{4}$, $\frac{\ln 5}{5}$; converges, $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$
- **13.** 0, 2, 0, 2, 0; diverges **15.** -1, $\frac{16}{9}$, $-\frac{54}{28}$, $\frac{128}{65}$, $-\frac{250}{126}$; diverges
- 17. $\frac{6}{2}$, $\frac{12}{8}$, $\frac{20}{18}$, $\frac{30}{32}$, $\frac{42}{50}$; converges, $\lim_{n \to +\infty} \frac{1}{2} \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) = \frac{1}{2}$ 19. e^{-1} , $4e^{-2}$, $9e^{-3}$, $16e^{-4}$, $25e^{-5}$; converges, $\lim_{n \to +\infty} n^2 e^{-n} = 0$
- **21.** 2, $\left(\frac{5}{3}\right)^2$, $\left(\frac{6}{4}\right)^3$, $\left(\frac{7}{5}\right)^4$, $\left(\frac{8}{6}\right)^5$; converges, $\lim_{n \to +\infty} \left[\frac{n+3}{n+1}\right]^n = e^2$
- 23. $\left\{ \frac{2n-1}{2n} \right\}^{+\infty}$; converges, $\lim_{n \to +\infty} \frac{2n-1}{2n} = 1$
- 25. $\left\{ (-1)^{n+1} \frac{1}{3^n} \right\}_{n=1}^{+\infty}$; converges, $\lim_{n \to +\infty} (-1)^{n+1} \frac{1}{3^n} = 0$
- 27. $\left\{ (-1)^{n+1} \left(\frac{1}{n} \frac{1}{n+1} \right) \right\}_{n=1}^{+\infty}$

converges,
$$\lim_{n \to +\infty} (-1)^{n+1} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 0$$

29. $\left\{\sqrt{n+1} - \sqrt{n+2}\right\}_{n=1}^{+\infty}$; converges, $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n+2}) = 0$

Responses to True-False questions may be abridged to save space.

- 31. True; a sequence is a function whose domain is a set of integers.
- 33. False; for example, $\{(-1)^{n+1}\}$ diverges with terms that oscillate between 1 and -1. 35. The limit is 0.
- 37. for example, $\{(-1)^n\}_{n=1}^{+\infty}$ and $\{\sin(\pi n/2) + 1/n\}_{n=1}^{+\infty}$ 39. (a) 1, 2, 1, 4, 1, 6 (b) $a_n = \begin{cases} n, & n \text{ odd} \\ 1/2^n, & n \text{ even} \end{cases}$ (c) $a_n = \begin{cases} 1/n, & n \text{ odd} \\ 1/(n+1); & n \text{ even} \end{cases}$
 - (d) (a) diverges; (b) diverges; (c) $\lim_{n \to \infty} a_n = 0$
- **43.** (a) $(0.5)^{2n}$ (c) $\lim_{n \to +\infty} a_n = 0$ (d) $-1 \le a_0 \le 1$

49. (a) N = 4 (b) N = 10 (c) N = 1000

Exercise Set 9.2 (Page 613)

- 1. strictly decreasing 3. strictly increasing 5. strictly decreasing
- 7. strictly increasing 9. strictly decreasing 11. strictly increasing Responses to True-False questions may be abridged to save space.
- 13. True; $a_{n+1} a_n > 0$ for all n is equivalent to $a_1 < a_2 < a_3 < \cdots < a_n < a$
- **15.** False; for example, $\{(-1)^{n+1}\} = \{1, -1, 1, -1, ...\}$ is bounded but diverges.
- 17. strictly increasing 19. strictly increasing
- 21. eventually strictly increasing 23. eventually strictly increasing
- 25. Yes; the limit lies in the interval [1, 2].
- **27.** (a) $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$ (e) L=2 **29.** (a) $60, \frac{1500}{7} \approx 214.3, \frac{3750}{13} \approx 288.5, \frac{75,000}{251} \approx 298.8$ (d) L=300

Exercise Set 9.3 (Page 621)

- **1.** (a) 2, $\frac{12}{5}$, $\frac{62}{25}$, $\frac{312}{125}$; $\frac{5}{2} \left(1 \left(\frac{1}{5}\right)^n\right)$; $\lim_{n \to \infty} s_n = \frac{5}{2}$ (converges)
 - **(b)** $\frac{1}{4}$, $\frac{3}{4}$, $\frac{7}{4}$, $\frac{15}{4}$; $-\frac{1}{4}(1-2^n)$; $\lim_{n \to +\infty} s_n = +\infty$ (diverges)
- (c) $\frac{1}{6}$, $\frac{1}{4}$, $\frac{3}{10}$, $\frac{1}{3}$; $\frac{1}{2}$ $\frac{1}{n+2}$; $\lim_{n \to +\infty} s_n = \frac{1}{2}$ (converges) 3. $\frac{4}{7}$ 5. 6 7. $\frac{1}{3}$ 9. $\frac{1}{6}$ 11. diverges 13. $\frac{448}{3}$
- **15.** (a) Exercise 5 (b) Exercise 3 (c) Exercise 7 (d) Exercise 9 Responses to True-False questions may be abridged to save space.
- 17. False; an infinite series converges if its sequence of partial sums converges.
- 19. True; the sequence of partial sums $\{s_n\}$ for the harmonic series satisfies $s_{2^n} > \frac{n+1}{2}$, so this series diverges.
- **21.** 1 **23.** $\frac{532}{99}$ **27.** 70 m **29.** (a) $S_n = -\ln(n+1)$; $\lim_{n \to \infty} S_n = -\infty$ (diverges)

(b)
$$S_n = \sum_{k=2}^{n+1} \left[\ln \frac{k-1}{k} - \ln \frac{k}{k+1} \right], \lim_{n \to +\infty} S_n = -\ln 2$$

- 31. (a) converges for |x| < 1; $S = \frac{x}{1 + x^2}$
- (b) converges for |x| > 2; $S = \frac{1}{x^2 2x}$ (c) converges for x > 0; $S = \frac{1}{e^x 1}$ 33. $a_n = \frac{1}{2^{n-1}}a_1 + \frac{1}{2^{n-1}} + \frac{1}{2^{n-2}} + \dots + \frac{1}{2}, \lim_{n \to +\infty} a_n = 1$

Exercise Set 9.4 (Page 629)

- 1. (a) $\frac{4}{3}$ (b) $-\frac{3}{4}$
- **3.** (a) p = 3, converges (b) $p = \frac{1}{2}$, diverges (c) p = 1, diverges (d) $p = \frac{2}{3}$, diverges
- 5. (a) diverges (b) diverges (c) diverges (d) no information
- 7. (a) diverges (b) converges
- 9. diverges 11. diverges 13. diverges 15. diverges 17. diverges
- 19. converges 21. diverges 23. converges 25. converges for p > 1
- **29.** (a) diverges (b) diverges

Responses to True-False questions may be abridged to save space.

- 31. False; for example, $\sum_{k=0}^{\infty} 2^{-k}$ converges to 2, but $\sum_{k=0}^{\infty} \frac{1}{2^{-k}} = \sum_{k=0}^{\infty} 2^k$ diverges.
- 33. True; see Theorem 9.4.4.
- **35.** (a) $(\pi^2/2) (\pi^4/90)$ (b) $(\pi^2/6) (5/4)$ (c) $\pi^4/90$
- 37. (a) $\frac{1}{11} < \frac{1}{6}\pi^2 s_{10} < \frac{1}{10}$ 39. (a) $\int_{n}^{+\infty} \frac{1}{x^4} dx = \frac{1}{3n^3}$; apply Exercise 36(b) (b) n = 6(c) $\frac{\pi^4}{90} \approx 1.08238$ 41. converges

Exercise Set 9.5 (Page 636)

- 1. (a) converges (b) diverges 5. converges 7. converges
- 9. diverges 11. converges 13. inconclusive 15. diverges
- 17. diverges 19. converges

Responses to True-False questions may be abridged to save space.

- 21. False; the limit comparison test uses a limit of the quotient of corresponding terms taken from two different sequences.
- 23. True; use the limit comparison test with the convergent series $\sum (1/k^2)$.
- 25. converges 27. converges 29. converges 31. converges
- 33. diverges 35. converges 37. diverges 39. converges
- 41. converges 43. diverges 45. converges 47. converges
- 49. converges

Answers to Odd-Numbered Exercises

51.
$$u_k = \frac{k!}{1 \cdot 3 \cdot 5 \cdots (2k-1)}; \rho = \lim_{k \to +\infty} \frac{k+1}{2k+1} = \frac{1}{2};$$
 converges **53.** (a) converges **(b)** diverges **55.** (a) converges

Exercise Set 9.6 (Page 646)

- 3. diverges 5. converges 7. converges absolutely 9. diverges
- 11. converges absolutely 13. conditionally convergent 15. divergent
- 17. conditionally convergent 19. conditionally convergent
- 21. divergent 23. conditionally convergent 25. converges absolutely
- 27. converges absolutely

Responses to True-False questions may be abridged to save space.

- 29. False; an alternating series has terms that alternate between positive
- 31. True; if a series converges but diverges absolutely, then it converges conditionally.
- **33.** |error| < 0.125 **35.** |error| < 0.1 **37.** n = 9999
- **39.** n = 39,999 **41.** $|error| < 0.00074; s_{10} \approx 0.4995; S = 0.5$
- **49.** (a) If $a_k = \frac{(-1)^k}{\sqrt{k}}$, then $\sum a_k$ converges and $\sum a_k^2$ diverges. If $a_k = \frac{(-1)^k}{k}$, then $\sum a_k$ converges and $\sum a_k^2$ also converges. **(b)** If $a_k = \frac{1}{L}$, then $\sum a_k^2$ converges and $\sum a_k$ diverges. If $a_k = \frac{1}{L^2}$, then $\sum a_k^2$ converges and $\sum a_k$ also converges.

Exercise Set 9.7 (Page 657)

- **1.** (a) $1 x + \frac{1}{2}x^2$, 1 x (b) $1 \frac{1}{2}x^2$, 1
- 3. (a) $1 + \frac{1}{2}(x 1) \frac{1}{9}(x 1)^2$ (b) 1.04875 5. 1.80397443
- 7. $p_0(x) = 1$, $p_1(x) = 1 x$, $p_2(x) = 1 x + \frac{1}{2}x^2$, $p_3(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{2!}x^3$ $p_4(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{3!}x^3 + \frac{1}{4!}x^4; \sum_{n=1}^{\infty} \frac{(-1)^k}{k!}x^k$
- **9.** $p_0(x) = 1$, $p_1(x) = 1$, $p_2(x) = 1 \frac{\pi^2}{2!}x^2$, $p_3(x) = 1 \frac{\pi^2}{2!}x^2$, $p_4(x) = 1 - \frac{\pi^2}{2!}x^2 + \frac{\pi^4}{4!}x^4; \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k \pi^{2k}}{(2k)!}x^{2k}$ (See Exercise 74 of Section 0.2.)
- **11.** $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x \frac{1}{2}x^2$, $p_3(x) = x \frac{1}{2}x^2 + \frac{1}{3}x^3$, $p_4(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4; \sum_{k=0}^{n} \frac{(-1)^{k+1}}{k} x^k$
- **13.** $p_0(x) = 1$, $p_1(x) = 1$, $p_2(x) = 1 + \frac{x^2}{2}$, $p_3(x) = 1 + \frac{x^2}{2}, p_4(x) = 1 + \frac{x^2}{2} + \frac{x^4}{4!}; \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{1}{(2k)!} x^{2k}$ (See Exercise 74 of Section 0.2.)
- **15.** $p_0(x) = 0$, $p_1(x) = 0$, $p_2(x) = x^2$, $p_3(x) = x^2$, $p_4(x) = x^2 - \frac{1}{6}x^4$; $\sum_{k=0}^{\lfloor n/2 \rfloor - 1} \frac{(-1)^k}{(2k+1)!} x^{2k+2}$ (See Exercise 74 of Section 0.2.
- **17.** $p_0(x) = e$, $p_1(x) = e + e(x 1)$, $p_2(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2,$ $p_3(x) = e + e(x-1) + \frac{e}{2}(x-1)^2 + \frac{e}{2!}(x-1)^3,$ $p_4(x) = e + e(x-1) + \frac{e}{2}(x-1)^2 + \frac{e}{2!}(x-1)^3 + \frac{e}{4!}(x-1)^4;$ $\sum_{k=0}^{n} \frac{e}{k!} (x-1)^k$

- **19.** $p_0(x) = -1$, $p_1(x) = -1 (x+1)$, $p_2(x) = -1 - (x+1) - (x+1)^2$ $p_3(x) = -1 - (x+1) - (x+1)^2 - (x+1)^3$ $p_4(x) = -1 - (x+1) - (x+1)^2 - (x+1)^3 - (x+1)^4;$ $\sum_{k=1}^{n} (-1)(x+1)^k$
- **21.** $p_0(x) = p_1(x) = 1, p_2(x) = p_3(x) = 1 \frac{\pi^2}{2} \left(x \frac{1}{2} \right)^2$ $p_4(x) = 1 - \frac{\pi^2}{2} \left(x - \frac{1}{2} \right)^2 + \frac{\pi^4}{4!} \left(x - \frac{1}{2} \right)^4;$ $\sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k \pi^{2k}}{(2k)!} \left(x - \frac{1}{2} \right)^{2k}$ (See Exercise 74 of Section 0.2.)
- **23.** $p_0(x) = 0$, $p_1(x) = (x 1)$, $p_2(x) = (x 1) \frac{1}{2}(x 1)^2$, $p_3(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3,$ $p_4(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4;$ $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} (x-1)^{k}$
- **25.** (a) $p_3(x) = 1 + 2x x^2 + x^3$ **(b)** $p_3(x) = 1 + 2(x-1) - (x-1)^2 + (x-1)^3$
- **27.** $p_0(x) = 1$, $p_1(x) = 1 2x$, $p_2(x) = 1 - 2x + 2x^2,$ $p_3(x) = 1 - 2x + 2x^2 - \frac{4}{3}x^3$

29. $p_0(x) = -1$, $p_2(x) = -1 + \frac{1}{2}(x - \pi)^2$, $p_4(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4$ $p_6(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4$

Responses to True-False questions may be abridged to save space.

- 31. True; $y = f(x_0) + f'(x_0)(x x_0)$ is the first-degree Taylor polynomial for f about $x = x_0$.
- **33.** False; $p_6^{(4)}(x_0) = f^{(4)}(x_0)$ **35.** 1.64870 **37.** IV

(b)

x	-1.000	-0.750	-0.500	-0.250	0.000	0.250	0.500	0.750	1.000
f(x)	0.431	0.506	0.619	0.781	1.000	1.281	1.615	1.977	2.320
$p_1(x)$	0.000	0.250	0.500	0.750	1.000	1.250	1.500	1.750	2.000
$p_2(x)$	0.500	0.531	0.625	0.781	1.000	1.281	1.625	2.031	2.500

(c)
$$|e^{\sin x} - (1+x)| < 0.01$$

for $-0.14 < x < 0.14$

(d)
$$\left| e^{\sin x} - \left(1 + x + \frac{x^2}{2} \right) \right| < 0.01$$

1.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$$
 3. $\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{(2k)!} x^{2k}$ 5. $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$

7.
$$\sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k}$$
 9. $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+2}$ 11. $\sum_{k=0}^{\infty} \frac{e}{k!} (x-1)^k$

13.
$$\sum_{k=0}^{\infty} (-1)(x+1)^k$$
 15. $\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{(2k)!} \left(x - \frac{1}{2}\right)^{2k}$

17.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (x-1)^k$$
 19. $-1 < x < 1; \frac{1}{1+x}$

21.
$$1 < x < 3$$
; $\frac{1}{3-x}$ **23.** (a) $-2 < x < 2$ (b) $f(0) = 1$; $f(1) = \frac{2}{3}$

Responses to True-False questions may be abridged to save space.

- **25.** True; see Theorem 9.8.2(*c*).
- 27. True; the polynomial is the Maclaurin series and converges for all x.
- **29.** R = 1; [-1, 1) **31.** $R = +\infty$; $(-\infty, +\infty)$ **33.** $R = \frac{1}{5}$; $\left[-\frac{1}{5}, \frac{1}{5}\right]$
- **35.** R = 1; [-1, 1] **37.** R = 1; (-1, 1] **39.** $R = +\infty$; $(-\infty, +\infty)$
- **41.** R = 1; [-1, 1] **43.** $R = \frac{4}{3}$; $\left(-\frac{19}{3}, -\frac{11}{3}\right)$ **45.** R = 1; (-2, 0]
- **47.** R = 1; [-2, 0] **49.** $R = +\infty$; $(-\infty, +\infty)$ **51.** $(-\infty, +\infty)$
- **57.** radius = R **63.** (a) n = 5; $s_5 \approx 1.1026$ (b) $\zeta(3.7) \approx 1.10629$

Exercise Set 9.9 (Page 676)

3.
$$0.069756$$
 5. 0.99500 7. 0.99619 9. 0.5208
11. (a) $\sum_{k=1}^{\infty} 2 \frac{(1/9)^{2k-1}}{2k-1}$ (b) 0.223

- **13.** (a) 0.4635; 0.3218 (b) 3.1412 (c) no
- **15.** (a) error $\leq 9 \times 10^{-8}$ (b)

17. (a)
$$\sum_{k=0}^{\infty} (-1)^k x^k$$
 (b) $1 + \frac{x}{3} + \sum_{k=2}^{\infty} (-1)^{k-1} \frac{2 \cdot 5 \cdots (3k-4)}{3^k k!} x^k$ (c) $\sum_{k=0}^{\infty} (-1)^k \frac{(k+2)(k+1)}{2} x^k$ 23. 23.406%

Exercise Set 9.10 (Page 686)

1. (a)
$$1 - x + x^2 - \dots + (-1)^k x^k + \dots$$
; $R = 1$

(b)
$$1 + x^2 + x^4 + \dots + x^{2k} + \dots$$
; $R = 1$

(c)
$$1 + 2x + 4x^2 + \dots + 2^k x^k + \dots = \frac{1}{2}$$

(c)
$$1 + 2x + 4x^2 + \dots + 2^k x^k + \dots; R = \frac{1}{2}$$

(d) $\frac{1}{2} + \frac{1}{2^2} x + \frac{1}{2^3} x^2 + \dots + \frac{1}{2^{k+1}} x^k + \dots; R = 2$

3. (a)
$$(2+x)^{-1/2} = \frac{1}{2^{1/2}} - \frac{1}{2^{5/2}}x + \frac{1 \cdot 3}{2^{9/2} \cdot 2!}x^2 - \frac{1 \cdot 3 \cdot 5}{2^{13/2} \cdot 3!}x^3 + \cdots$$

(b) $(1-x^2)^{-2} = 1 + 2x^2 + 3x^4 + 4x^6 + \cdots$

(b)
$$(1-x^2)^{-2} = 1 + 2x^2 + 3x^4 + 4x^6 + \cdots$$

5. (a)
$$2x - \frac{2^3}{3!}x^3 + \frac{2^5}{5!}x^5 - \frac{2^7}{7!}x^7 + \dots; R = +\infty$$

(b)
$$1 - 2x + 2x^2 - \frac{4}{3}x^3 + \cdots$$
; $R = +\infty$

(c)
$$1 + x^2 + \frac{1}{2!}x^4 + \frac{1}{3!}x^6 + \cdots$$
; $R = +\infty$

(d)
$$x^2 - \frac{\pi^2}{2}x^4 + \frac{\pi^4}{4!}x^6 - \frac{\pi^6}{6!}x^8 + \cdots; R = +\infty$$

7. (a)
$$x^2 - 3x^3 + 9x^4 - 27x^5 + \cdots$$
; $R = \frac{1}{3}$

(a)
$$2x^2 + \frac{2^3}{3!}x^4 + \frac{2^5}{5!}x^6 + \frac{2^7}{7!}x^8 + \dots; R = +\infty$$

(c)
$$x - \frac{3}{2}x^3 + \frac{3}{8}x^5 + \frac{1}{16}x^7 + \cdots; R = 1$$

9. (a)
$$x^2 - \frac{2^3}{4!}x^4 + \frac{2^5}{6!}x^6 - \frac{2^7}{8!}x^8 + \cdots$$

(b)
$$12x^3 - 6x^6 + 4x^9 - 3x^{12} + \cdots$$

11. (a)
$$1 - (x - 1) + (x - 1)^2 - \dots + (-1)^k (x - 1)^k + \dots$$
 (b) $(0,2)$

13. (a)
$$x + x^2 + \frac{x^3}{3} - \frac{x^5}{30} + \cdots$$
 (b) $x - \frac{x^3}{24} + \frac{x^4}{24} - \frac{71}{1920}x^5 + \cdots$

15. (a)
$$1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + \frac{61}{220}x^6 + \cdots$$
 (b) $x - x^2 + \frac{1}{2}x^3 - \frac{1}{20}x^5 + \cdots$

19.
$$2-4x+2x^2-4x^3+2x^4+\cdots$$

(a)
$$x - \frac{1}{4!}x + \frac{6!}{6!}x - \frac{8!}{8!}x + \cdots$$

(b) $12x^3 - 6x^6 + 4x^9 - 3x^{12} + \cdots$
11. (a) $1 - (x - 1) + (x - 1)^2 - \cdots + (-1)^k(x - 1)^k + \cdots$ (b) $(0,2)$
13. (a) $x + x^2 + \frac{x^3}{3} - \frac{x^5}{30} + \cdots$ (b) $x - \frac{x^3}{24} + \frac{x^4}{24} - \frac{71}{1920}x^5 + \cdots$
15. (a) $1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + \frac{61}{720}x^6 + \cdots$ (b) $x - x^2 + \frac{1}{3}x^3 - \frac{1}{30}x^5 + \cdots$
19. $2 - 4x + 2x^2 - 4x^3 + 2x^4 + \cdots$
25. $[-1, 1]; [-1, 1)$ 27. (a) $\sum_{k=0}^{\infty} x^{2k+1}$ (b) $f^{(5)}(0) = 5!, f^{(6)}(0) = 0$
(c) $f^{(n)}(0) = n!c_n = \begin{cases} n! & \text{if } n \text{ odd} \\ 0 & \text{if } n \text{ even} \end{cases}$

(c)
$$f^{(n)}(0) = n!c_n = \begin{cases} n! & \text{if } n \text{ odd} \\ 0 & \text{if } n \text{ even} \end{cases}$$

29. (a) 1 (b)
$$-\frac{1}{3}$$
 31. 0.3103 **33.** 0.200

35. (a)
$$\sum_{k=0}^{\infty} \frac{x^{4k}}{k!}$$
; $R = +\infty$ 37. (a) 3/4 (b) $\ln(4/3)$

39. (a)
$$x - \frac{1}{6}x^3 + \frac{3}{40}x^5 - \frac{5}{112}x^7 + \cdots$$

39. (a)
$$x - \frac{1}{6}x^3 + \frac{3}{40}x^5 - \frac{5}{112}x^7 + \cdots$$

(b) $x + \sum_{k=1}^{\infty} (-1)^k \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2^k k! (2k+1)} x^{2k+1}$ (c) $R = 1$

41. (a)
$$y(t) = y_0 \sum_{k=0}^{\infty} \frac{(-1)^k (0.000121)^k t^k}{k!}$$
 (c) 0.9998790073 y_0

43.
$$2\pi\sqrt{\frac{L}{g}}\left(1+\frac{k^2}{4}+\frac{9k^4}{64}\right)$$

► Chapter 9 Review Exercises (Page 689)

- 9. (a) true (b) sometimes false (c) sometimes false
 - (d) true (e) sometimes false (f) sometimes false
 - (g) false (h) sometimes false (i) true
 - (j) true (k) sometimes false (l) sometimes false

11. (a)
$$\left\{ \frac{n+2}{(n+1)^2 - n^2} \right\}_{n=1}^{+\infty}$$
; converges, $\lim_{n \to +\infty} \frac{n+2}{(n+1)^2 - n^2} = \frac{1}{2}$

(b)
$$\left\{ (-1)^{n+1} \frac{n}{2n+1} \right\}_{n=1}^{+\infty}$$
; diverges
15. (a) converges (b) converges 17. (a) converges (b) diverges
19. (a) diverges (b) converges 21.

- **19.** (a) diverges (b) converges **21.** $\frac{1}{4.599}$
- **23.** (a) 2 (b) diverges (c) 3/4 (d) $\pi/4$ **25.** p > 1
- **29.** (a) $p_0(x) = 1$, $p_1(x) = 1 7x$, $p_2(x) = 1 7x + 5x^2$, $p_3(x) = 1 - 7x + 5x^2 + 4x^3, p_4(x) = 1 - 7x + 5x^2 + 4x^3$
- 33. (a) $e^2 1$ (b) 0 (c) $\cos e$ (d) $\frac{1}{3}$ 37. (a) $x \frac{2}{3}x^3 + \frac{2}{15}x^5 \frac{4}{315}x^7$ (b) $x \frac{2}{3}x^3 + \frac{2}{15}x^5 \frac{4}{315}x^7$

Chapter 9 Making Connections (Page 691)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

1. (a)
$$\frac{a \sin \theta}{1 - \cos \theta}$$
 (b) $a \csc \theta$ (c) $a \cot \theta$

2. (a)
$$A = 1$$
, $B = -2$ (b) $s_n = 2 - \frac{2^{n+1}}{3^{n+1} - 2^{n+1}}$; 2
4. (a) 124.58 < d < 124.77 (b) 1243 < s < 1424

4. (a)
$$124.58 < d < 124.77$$
 (b) $1243 < s < 1424$

6. (b)
$$v(t) \approx v_0 - \left(\frac{cv_0}{m} + g\right)t + \frac{c^2}{2m^2}\left(v_0 + \frac{mg}{c}\right)t^2$$

A76 Answers to Odd-Numbered Exercises

Exercise Set 10.1 (Page 700)

1. (a) $y = x + 2(-1 \le x \le 4)$

(c)	t	0	1	2	3	4	5
	х	-1	0	1	2	3	4
	у	1	2	3	4	5	6

- **13.** $x = 5\cos t$, $y = -5\sin t$ $(0 \le t \le 2\pi)$ **15.** x = 2, y = t
- **17.** $x = t^2$, $y = t (-1 \le t \le 1)$

(b)	t	0	1	2	3	4	5
	х	0	5.5	8	4.5	-8	-32.5
	у	1	1.5	3	5.5	9	13.5

(c) $t = 0, 2\sqrt{3}$ (d) $0 < t < 2\sqrt{2}$ (e) t = 2

- 23. (a) IV (b) II (c) V (d) VI (e) III (f) I 25. (b) $\frac{1}{2}$ (c) $\frac{3}{4}$
- **27. (b)** from (x_0, y_0) to (x_1, y_1) (c) x = 3 - 2(t - 1), y = -1 + 5(t - 1)

29.

Responses to True-False questions may be abridged to save space.

- 33. False; $x = \sin t$, $y = \cos^2 t$ describe only the portion of the parabola $y = 1 - x^2 \text{ with } -1 \le x \le 1.$
- 35. True; $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{12t^3 6t^2}{x'(t)}$

- **39.** (a) $x = 4\cos t$, $y = 3\sin t$ (b) $x = -1 + 4\cos t$, $y = 2 + 3\sin t$
- **41.** -4, 4 **43.** both are positive **45.** 4, 4 **47.** $2/\sqrt{3}$, $-1/(3\sqrt{3})$
- **49.** $\sqrt{3}$, 4 **51.** $y = -e^{-2}x + 2e^{-1}$
- **53.** (a) $0, \pi, 2\pi$ (b) $\pi/2, 3\pi/2$
- **55.** (a)

57. y = 2x - 8, y = -2x + 8 **59.**

$$t = 0, \pi/2, \pi, 3\pi/2, 2\pi$$

- **61.** (a) $\frac{dy}{dx} = \frac{3\sin t}{1 3\cos t}$ (b) $\theta \approx -0.4345$ **63.** (a) ellipses with fixed center, varying shapes and sizes
- (b) ellipses with varying center, fixed shape, size, and orientation (c) circles of radius 1 with centers on line y = x - 1
- **65.** $\frac{1}{3}(5\sqrt{5}-8)$ **67.** 3π **69.** $\frac{\sqrt{10}}{2}(e^2-e^{-2})$
- **73.** (b) $x = \cos t + \cos 2t$, $y = \sin t + \sin 2t$ (c) yes
- **75.** $S = 49\pi$ **77.** $S = \sqrt{2}\pi$

Exercise Set 10.2 (Page 716)

- 3. (a) $(3\sqrt{3}, 3)$ **(b)** $(-7/2, 7\sqrt{3}/2)$
 - (c) $(3\sqrt{3}, 3)$
 - $(\mathbf{d})(0,0)$
 - (e) $(-7\sqrt{3}/2, 7/2)$
 - $(\mathbf{f})(-5,0)$
- **5.** (a) $(5, \pi)$, $(5, -\pi)$ (b) $(4, 11\pi/6)$, $(4, -\pi/6)$ (c) $(2, 3\pi/2), (2, -\pi/2)$ (d) $(8\sqrt{2}, 5\pi/4), (8\sqrt{2}, -3\pi/4)$ (e) $(6, 2\pi/3), (6, -4\pi/3)$ (f) $(\sqrt{2}, \pi/4), (\sqrt{2}, -7\pi/4)$
- 7. (a) (5, 0.92730) (b) (10, -0.92730) (c) (1.27155, 2.47582)
- **9.** (a) circle (b) line (c) circle (d) line
- **11.** (a) $r = 3 \sec \theta$ (b) $r = \sqrt{7}$ (c) $r = -6 \sin \theta$ (d) $r^2 \cos \theta \sin \theta = 4/9$

15.

- **17.** (a) r = 5 (b) $r = 6\cos\theta$ (c) $r = 1 \cos\theta$
- **19.** (a) $r = 3\sin 2\theta$ (b) $r = 3 + 2\sin \theta$ (c) $r^2 = 9\cos 2\theta$

21.

23.

25.

27.

29.

31.

35.

37.

39.

Limaçon

43.

Eight-petal rose

Responses to True-False questions may be abridged to save space.

- 47. True; $\left(-1, \frac{\pi}{3}\right)$ describes the same point as $\left(1, \frac{\pi}{3} + \pi\right)$, which describes the same point as $\left(1, \frac{\pi}{3} + \pi - 2\pi\right) = \left(1, -\frac{2\pi}{3}\right)$
- **49.** False; $-1 < \sin 2\theta < 0$ for $\pi/2 < \theta < \pi$, so this portion of the graph is in the fourth quadrant.
- **51.** $0 \le \theta \le 4\pi$

53. $0 \le \theta \le 8\pi$

55. $0 \le \theta \le 5\pi$

- **57.** (a) $-4\pi < \theta < 4\pi$
- **61.** (a) $\pi/2$

(b)

Answers to Odd-Numbered Exercises

63. (a) $\pi/2$

(b)

67. (a) $r = 1 + \frac{\sqrt{2}}{2}(\cos\theta + \sin\theta)$ (b) $r = 1 + \sin\theta$

(c)
$$r = 1 - \cos \theta$$
 (d) $r = 1 - \frac{\sqrt{2}}{2} (\cos \theta + \sin \theta)$

69. $(3/2, \pi/3)$ **73.** $\sqrt{2}$

Exercise Set 10.3 (Page 726)

1.
$$\sqrt{3}$$
 3. $\frac{\tan 2 - 2}{2 \tan 2 + 1}$ 5. 1/2 7. 1, 0, -1

9. horizontal:
$$(3a/2, \pi/3), (0, \pi), (3a/2, 5\pi/3);$$
 vertical: $(2a, 0), (a/2, 2\pi/3), (a/2, 4\pi/3)$

11.
$$(0,0), (\sqrt{2}/4, \pi/4), (\sqrt{2}/4, 3\pi/4)$$

17.

 $\theta = \pm \pi/4$

 $\theta = \pi/2, \pm \pi/6$

$$\theta = \pm \pi/3$$

- **19.** $L = 2\pi a$ **21.** L = 8a
- **23. (b)** ≈ 2.42

(c)	n	2	3	4	5	6	7	
	L	2.42211	2.22748	2.14461	2.10100	2.07501	2.05816	
	n	8	9	10	11	12	13	14
	L	2.04656	2.03821	2.03199	2.02721	2.02346	2.02046	2.01802

n	15	16	17	18	19	20
L	2.01600	2.01431	2.01288	2.01167	2.01062	2.00971

25. (a)
$$\int_{\pi/2}^{\pi} \frac{1}{2} (1 - \cos \theta)^2 d\theta$$
 (b)
$$\int_{0}^{\pi/2} 2 \cos^2 \theta \, d\theta$$
 (c)
$$\int_{0}^{\pi/2} \frac{1}{2} \sin^2 2\theta \, d\theta$$
 (d)
$$\int_{0}^{2\pi} \frac{1}{2} \theta^2 \, d\theta$$
 (e)
$$\int_{-\pi/2}^{\pi/2} \frac{1}{2} (1 - \sin \theta)^2 \, d\theta$$
 (f)
$$\int_{0}^{\pi/4} \cos^2 2\theta \, d\theta$$

- **27.** (a) πa^2 (b) πa^2 **29.** 6π **31.** 4π **33.** $\pi 3\sqrt{3}/2$ **35.** $\pi/2 \frac{1}{4}$ **37.** $10\pi/3 4\sqrt{3}$ **39.** π **41.** $9\sqrt{3}/2 \pi$
- **43.** $(\pi + 3\sqrt[4]{3})/4$ **45.** $\pi 2$

Responses to True-False questions may be abridged to save space.

- 47. True; apply Theorem 10.3.1: $\cos \frac{\theta}{2} \Big|_{\theta=3\pi} = 0$ and $\frac{dr}{d\theta} \Big|_{\theta=3\pi} =$ $\frac{1}{2} \neq 0$, so the line $\theta = 3\pi$ (the x-axis) is tangent to the curve at
- **49.** False; the area of the sector is $\frac{\theta}{2\pi} \cdot \pi r^2 = \frac{1}{2}\theta r^2$.

51. (b)
$$a^2$$
 (c) $2\sqrt{3} - \frac{2\pi}{3}$ **53.** $8\pi^3 a^2$

59. π/16

65. π^2

67. $32\pi/5$

Exercise Set 10.4 (Page 744)

1. (a)
$$x = y^2$$
 (b) $-3y = x^2$ (c) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (d) $\frac{x^2}{4} + \frac{y^2}{9} = 1$

(e)
$$y^2 - x^2 = 1$$
 (f) $\frac{x^2}{4} - \frac{y^2}{4} = 1$

3. (a) focus: (1, 0); vertex: (0, 0);

(b) focus: (0, -2); vertex: (0, 0);

- 11. (a) vertices: $(\pm 4, 0)$; foci: $(\pm 5, 0)$;
- **(b)** vertices: $(0, \pm 2)$;
- foci: $(0, \pm 2\sqrt{10})$; asymptotes: $y = \pm x/3$

13. (a) $c^2 = 3 + 5 = 8$, $c = 2\sqrt{2}$

$$(-2,3) \frac{(x+1)^2}{1} - \frac{(y-3)^2}{2} = 1$$

$$c^2 = 1 + 2 = 3, c = \sqrt{3}$$

$$y - 3 = -\sqrt{2}(x+1)$$

$$(-2,3)$$

$$(-1 - \sqrt{3},3) \bullet \qquad (-1 + \sqrt{3},3)$$

15. (a)
$$y^2 = 12x$$
 (b) $x^2 = -y$ **17.** $y^2 = 2(x - 1)$

15. (a)
$$y^2 = 12x$$
 (b) $x^2 = -y$ **17.** $y^2 = 2(x - 1)$
19. (a) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (b) $\frac{x^2}{16} + \frac{y^2}{25} = 1$

21. (a)
$$\frac{x^2}{81/8} + \frac{y^2}{36} = 1$$
 (b) $\frac{(x+1)^2}{4} + \frac{(y-2)^2}{5} = 1$

23. (a)
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
 (b) $\frac{y^2}{4} - \frac{x^2}{9} = 1$

25. (a)
$$\frac{y^2}{9} - \frac{x^2}{16} = 1$$
, $\frac{x^2}{16} - \frac{y^2}{9} = 1$ (b) $\frac{x^2}{9/5} - \frac{y^2}{36/5} = 1$

Responses to True-False questions may be abridged to save space.

- 27. False; the description matches a parabola.
- **29.** False; the distance from the parabola's focus to its directrix is 2p; see Figure 10.4.6.
- **31.** (a) 16 ft (b) $8\sqrt{3}$ ft **35.** $\frac{1}{16}$ ft
- **39.** $\frac{1}{32}(x-4)^2 + \frac{1}{36}(y-3)^2 = 1$ **41.** 96 **45.** $L = D\sqrt{1+p^2}, T = \frac{1}{2}pD$ **47.** (64.612, 200)

49. (a)
$$V = \frac{\pi b^2}{3a^2} (b^2 - 2a^2) \sqrt{a^2 + b^2} + \frac{2}{3} ab^2 \pi$$

$$\mathbf{(b)} V = \frac{2b^4}{3a}\pi$$

55.
$$k = \pm 4$$
; (2, 1), (-2, -1)

57.
$$\left(\pm \frac{3\sqrt{13}}{2}, -9\right)$$

59. (a) $(x-1)^2 - 5(y+1)^2 = 5$, hyperbola

(b)
$$x^2 - 3(y+1)^2 = 0$$
, $x = \pm \sqrt{3}(y+1)$, two lines

(c)
$$4(x + 2)^2 + 8(y + 1)^2 = 4$$
, ellipse

(d)
$$3(x+2)^2 + (y+1)^2 = 0$$
, the point $(-2, -1)$ (degenerate case)

(e)
$$(x + 4)^2 + 2y = 2$$
, parabola

(f)
$$5(x+4)^2 + 2y = -14$$
, parabola

Answers to Odd-Numbered Exercises

Exercise Set 10.5 (Page 753)

- **1.** (a) $x' = -1 + 3\sqrt{3}$, $y' = 3 + \sqrt{3}$ **3.** $y'^2 x'^2 = 18$, hyperbola
 - **(b)** $3x'^2 y'^2 = 12$

5. $\frac{1}{3}x'^2 - \frac{1}{2}y'^2 = 1$, hyperbola 7. $y' = x'^2$, parabola

9. $y'^2 = 4(x'-1)$, parabola **11.** $\frac{1}{4}(x'+1)^2 + y'^2 = 1$, ellipse

- 13. $x^2 + xy + y^2 = 3$
- **19.** vertex: (0,0); focus: $(-1/\sqrt{2},1/\sqrt{2})$; directrix: $y=x-\sqrt{2}$
- **21.** vertex: (4/5, 3/5); focus: (8/5, 6/5); directrix: 4x + 3y = 0
- 23. foci: $\pm (4\sqrt{7}/5, 3\sqrt{7}/5)$; vertices: $\pm (16/5, 12/5)$; ends: $\pm(-9/5, 12/5)$
- **25.** foci: $(1 \sqrt{5}/2, -\sqrt{3} + \sqrt{15}/2), (1 + \sqrt{5}/2, -\sqrt{3} \sqrt{15}/2);$ vertices: $(-1/2, \sqrt{3}/2), (5/2, -5\sqrt{3}/2);$ ends: $(1+\sqrt{3}, 1-\sqrt{3}), (1-\sqrt{3}, -1-\sqrt{3})$
- **27.** foci: $\pm(\sqrt{15}, \sqrt{5})$; vertices: $\pm(2\sqrt{3}, 2)$; asymptotes: $y = \frac{5\sqrt{3} \pm 8}{11}x$
- **29.** foci: $\left(-\frac{4}{\sqrt{5}} \pm 2\sqrt{\frac{13}{5}}, \frac{8}{\sqrt{5}} \pm \sqrt{\frac{13}{5}}\right);$

vertices: $(2/\sqrt{5}, 11/\sqrt{5}), (-2\sqrt{5}, \sqrt{5});$ asymptotes: $y = 7x/4 + 3\sqrt{5}$, $y = -x/8 + 3\sqrt{5}/2$

Exercise Set 10.6 (Page 761)

- 1. (a) $e = 1, d = \frac{3}{2}$
- **(b)** $e = \frac{1}{2}, d = 3$

- 3. (a) parabola, opens up
- (b) ellipse, directrix above the pole

- 5. (a) $r = \frac{6}{4 + 3\cos\theta}$ (b) $r = \frac{1}{1 + \cos\theta}$ (c) $r = \frac{12}{3 + 4\sin\theta}$ 7. (a) $r_0 = 2, r_1 = 6; \frac{1}{12}x^2 + \frac{1}{16}(y + 2)^2 = 1$
- **(b)** $r_0 = \frac{1}{3}$, $r_1 = 1$; $\frac{9}{4} \left(x \frac{1}{3} \right)^2 + 3y^2 = 1$
- 9. (a) $r_0 = 1$, $r_1 = 3$; $(y 2)^2 \frac{x^2}{2} = 1$

(b)
$$r_0 = 1, r_1 = 5; \frac{(x+3)^2}{4} - \frac{y^2}{5} = 1$$

- **11.** (a) $r = \frac{12}{2 + \cos \theta}$ (b) $r = \frac{64}{25 15\sin \theta}$
- 13. $r = \frac{5\sqrt{2} + 5}{1 + \sqrt{2}\cos\theta}$ or $r = \frac{5\sqrt{2} 5}{1 + \sqrt{2}\cos\theta}$ Responses to True–False questions may be abridged to save space.

- 19. True; the eccentricity e of an ellipse satisfies 0 < e < 1 (Theorem 10.6.1).
- 21. False; eccentricity correlates to the "flatness" of an ellipse, which is independent of the distance between its foci.
- **23.** (a) $T \approx 248 \text{ yr}$

(b) $r_0 = 29.6645 \text{ AU} \approx 4,449,675,000 \text{ km},$

25. (a) $a \approx 178.26 \,\text{AU}$ **(b)** $r_0 \approx 0.8735 \text{ AU}$, $r_1 \approx 355.64 \,\mathrm{AU}$ (c) $r \approx \frac{1.74}{1 + 0.9951 \cos \theta}$ AU

27. 563 km, 4286 km

► Chapter 10 Review Exercises (Page 763)

- 1. $x = \sqrt{2}\cos t$, $y = -\sqrt{2}\sin t$ $(0 \le t \le 3\pi/2)$ 3. (a) -1/4, 1/4
- **5.** (a) $t = \pi/2 + n\pi$ for $n = 0, \pm 1, \ldots$ (b) $t = n\pi$ for $n = 0, \pm 1, \ldots$
- 7. (a) $(-4\sqrt{2}, -4\sqrt{2})$ (b) $(7/\sqrt{2}, -7/\sqrt{2})$ (c) $(4\sqrt{2}, 4\sqrt{2})$ (d) (5,0) (e) (0,-2) (f) (0,0)
- **9.** (a) (5, 0.6435) (b) $(\sqrt{29}, 5.0929)$ (c) (1.2716, 0.6658)
- 11. (a) parabola (b) hyperbola (c) line (d) circle
 - 15.

- **19.** (a) -2, 1/4 (b) $-3\sqrt{3}/4$, $3\sqrt{3}/4$
- **21.** (a) The top is traced from right to left as t goes from 0 to π . The bottom is traced from right to left as t goes from π to 2π , except for the loop, which is traced counterclockwise as t goes from $\pi + \sin^{-1}(1/4)$ to $2\pi - \sin^{-1}(1/4)$. **(b)** y = 1
 - (c) horizontal: $t = \pi/2, 3\pi/2$; vertical: $t = \pi + \sin^{-1}(1/\sqrt[3]{4})$, $2\pi - \sin^{-1}(1/\sqrt[3]{4})$
 - (d) $r = 4 + \csc \theta$, $\theta = \pi + \sin^{-1}(1/4)$, $\theta = 2\pi \sin^{-1}(1/4)$

23. $A = 6\pi$ **25.** $A = \frac{5\pi}{12} - \frac{\sqrt{3}}{2}$ **27.**

29.

31.

focus: (9/4, -1); vertex: (4, -1);

directrix: x = 23/4

foci: $(0, \pm \sqrt{21})$; vertices: $(0, \pm 5)$;

ends: $(\pm 2, 0)$

- **39.** $x^2 = -16y$ **41.** $y^2 x^2 = 9$
- **43. (b)** $x = \frac{v_0^2}{g} \sin \alpha \cos \alpha; y = y_0 + \frac{v_0^2 \sin^2 \alpha}{2g}$
- **45.** $\theta = \pi/4$; $5(y')^2 (x')^2 = 6$; hyperbola
- **47.** $\theta = \tan^{-1}(1/2)$; $y' = (x')^2$; parabola
- **49.** (a) (i) ellipse; (ii) right; (iii) 1 (b) (i) hyperbola; (ii) left; (iii) 1/3 (c) (i) parabola; (ii) above; (iii) 1/3 (d) (i) parabola;
- 51. (a) $\frac{(x+3)^2}{25} + \frac{(y-2)^2}{9} = 1$ (b) $(x+2)^2 = -8y$ (c) $\frac{(y-5)^2}{4} 16(x+1)^2 = 1$
- **53.** 15.86543959

► Chapter 10 Making Connections (Page 766)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

(c)
$$L = \int_{-1}^{1} \left[\cos^2 \left(\frac{\pi t^2}{2} \right) + \sin^2 \left(\frac{\pi t^2}{2} \right) \right] dt = 2$$

2. (a) $P:(b\cos t, b\sin t);$

 $Q:(a\cos t, a\sin t);$

 $R: (a \cos t, b \sin t)$

Exercise Set 11.1 (Page 771)

1. (a) (0,0,0), (3,0,0), (3,5,0), (0,5,0), (0,0,4), (3,0,4), (3, 5, 4), (0, 5, 4)

(b) (0, 1, 0), (4, 1, 0), (4, 6, 0), (0, 6, 0), (0, 1, -2),

(4, 1, -2), (4, 6, -2), (0, 6, -2)

3. (4, 2, -2), (4, 2, 1), (4, 1, 1), (4, 1, -2), (-6, 1, 1),

- 5. (a) point (b) line parallel to the y-axis (c) plane parallel to the yz-plane
- **9.** radius $\sqrt{74}$, center (2, 1, -4) **11. (b)** (2, 1, 6) **(c)** area 49
- **13.** (a) $(x-7)^2 + (y-1)^2 + (z-1)^2 = 16$ **(b)** $(x-1)^2 + y^2 + (z+1)^2 = 16$ (c) $(x + 1)^2 + (y - 3)^2 + (z - 2)^2 = 14$ (d) $(x + \frac{1}{2})^2 + (y - 2)^2 + (z - 2)^2 = \frac{5}{4}$ 15. $(x - 2)^2 + (y + 1)^2 + (z + 3)^2 = r^2$;
- (a) $r^2 = 9$ (b) $r^2 = 1$ (c) $r^2 = 4$

Responses to True-False questions may be abridged to save space.

- 19. False; see Figure 11.1.6.
- **21.** True; see Figure 11.1.3.
- **23.** sphere, center (-5, -2, -1), radius 7
- 25. sphere; center $(\frac{1}{2}, \frac{3}{4}, -\frac{5}{4})$, radius $\frac{3\sqrt{6}}{4}$
- 27. no graph

A82 Answers to Odd-Numbered Exercises

(c)

33. (a) -2y + z = 0 (b) -2x + z = 0 (c) $(x - 1)^2 + (y - 1)^2 = 1$ (d) $(x - 1)^2 + (z - 1)^2 = 1$

- 47. largest distance, $3 + \sqrt{6}$; smallest distance, $3 \sqrt{6}$
- **49.** all points outside the circular cylinder $(y + 3)^2 + (z 2)^2 = 16$
- **51.** $r = (2 \sqrt{3})R$ **53. (b)** $y^2 + z^2 = e^{2x}$

Exercise Set 11.2 (Page 782)

5. (a) $\langle 3, -4 \rangle$

- 7. (a) $\langle -1, 3 \rangle$ (b) $\langle -7, 2 \rangle$ (c) $\langle -3, 6, 1 \rangle$
- **9.** (a) (4, -4) (b) (8, -1, -3)
- 11. (a) $-\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$ (b) $18\mathbf{i} + 12\mathbf{j} 6\mathbf{k}$ (c) $-\mathbf{i} 5\mathbf{j} 2\mathbf{k}$ (d) $40\mathbf{i} 4\mathbf{j} 4\mathbf{k}$ (e) $-2\mathbf{i} 16\mathbf{j} 18\mathbf{k}$ (f) $-\mathbf{i} + 13\mathbf{j} 2\mathbf{k}$
- **13.** (a) $\sqrt{2}$ (b) $5\sqrt{2}$ (c) $\sqrt{21}$ (d) $\sqrt{14}$
- **15.** (a) $2\sqrt{3}$ (b) $\sqrt{14} + \sqrt{2}$ (c) $2\sqrt{14} + 2\sqrt{2}$ (d) $2\sqrt{37}$ (e) $(1/\sqrt{6})\mathbf{i} + (1/\sqrt{6})\mathbf{j} (2/\sqrt{6})\mathbf{k}$ (f) 1

Responses to True-False questions may be abridged to save space.

- 17. False; $\|\mathbf{i} + \mathbf{j}\| = \sqrt{2} \neq 1 + 1 = 2$
- 19. True; one in the same direction and one in the opposite direction.
- **21.** (a) $(-1/\sqrt{17})\mathbf{i} + (4/\sqrt{17})\mathbf{j}$ (b) $(-3\mathbf{i} + 2\mathbf{j} \mathbf{k})/\sqrt{14}$ (c) $(4\mathbf{i} + \mathbf{j} \mathbf{k})/(3\sqrt{2})$
- **23.** (a) $\langle -\frac{3}{2}, 2 \rangle$ (b) $\frac{1}{\sqrt{5}} \langle 7, 0, -6 \rangle$
- **25.** (a) $\langle 3\sqrt{2}/2, 3\sqrt{2}/2 \rangle$ (b) $\langle 0, 2 \rangle$ (c) $\langle -5/2, 5\sqrt{3}/2 \rangle$ (d) $\langle -1, 0 \rangle$
- **27.** $\langle (\sqrt{3} \sqrt{2})/2, (1 + \sqrt{2})/2 \rangle$
- 29. (a) $\langle -2, 5 \rangle$ $-2i + 5j \wedge y$ -5 -5 -5

- **31.** $\left\langle -\frac{2}{3}, 1 \right\rangle$ **33.** $\mathbf{u} = \frac{5}{7}\mathbf{i} + \frac{2}{7}\mathbf{j} + \frac{1}{7}\mathbf{k}, \mathbf{v} = \frac{8}{7}\mathbf{i} \frac{1}{7}\mathbf{j} \frac{4}{7}\mathbf{k}$
- 35. $\sqrt{5}$, 3 37. (a) $\pm \frac{5}{3}$ (b) 3
- 39. (a) $\langle 1/\sqrt{10}, 3/\sqrt{10} \rangle$, $\langle -1/\sqrt{10}, -3/\sqrt{10} \rangle$ (b) $\langle 1/\sqrt{2}, -1/\sqrt{2} \rangle$, $\langle -1/\sqrt{2}, 1/\sqrt{2} \rangle$ (c) $\pm \frac{1}{\sqrt{26}} \langle 5, 1 \rangle$
- 41. (a) the circle of radius 1 about the origin
 - (b) the closed disk of radius 1 about the origin
 - (c) all points outside the closed disk of radius 1 about the origin
- 43. (a) the (hollow) sphere of radius 1 about the origin
 - (b) the closed ball of radius 1 about the origin
 - (c) all points outside the closed ball of radius 1 about the origin
- **45.** magnitude = $30\sqrt{5}$ lb, $\theta \approx 26.57^{\circ}$
- 47. magnitude $\approx 207.06 \text{ N}, \theta = 45^{\circ}$
- **49.** magnitude $\approx 94.995 \text{ N}, \theta \approx 28.28^{\circ}$
- 51. magnitude ≈ 9.165 lb, angle $\approx -70.890^{\circ}$
- **53.** ≈ 183.02 lb, 224.13 lb **55.** $450\sqrt{2} + 150\sqrt{6}$ lb, $300 + 300\sqrt{3}$ lb
- **57.** (a) $c_1 = -2$, $c_2 = 1$

Exercise Set 11.3 (Page 792)

- **1.** (a) -10; $\cos \theta = -1/\sqrt{5}$ (b) -3; $\cos \theta = -3/\sqrt{58}$ (c) 0; $\cos \theta = 0$ (d) -20; $\cos \theta = -20/(3\sqrt{70})$
- 3. (a) obtuse (b) acute (c) obtuse (d) orthogonal
- 5. $\sqrt{2}/2$, 0, $-\sqrt{2}/2$, -1, $-\sqrt{2}/2$, 0, $\sqrt{2}/2$
- 7. (a) vertex B (b) 82° , 60° , 38° 13. r = 7/5
- **15.** (a) $\alpha = \beta \approx 55^{\circ}$, $\gamma \approx 125^{\circ}$ (b) $\alpha \approx 48^{\circ}$, $\beta \approx 132^{\circ}$, $\gamma \approx 71^{\circ}$
- **19.** (a) $\approx 35^{\circ}$ (b) 90°
- **21.** 64°, 41°, 60° **23.** 71°, 61°, 36°

25. (a)
$$\left\langle \frac{2}{3}, \frac{4}{3}, \frac{4}{3} \right\rangle$$
, $\left\langle \frac{4}{3}, -\frac{7}{3}, \frac{5}{3} \right\rangle$
(b) $\left\langle -\frac{74}{49}, -\frac{111}{49}, \frac{222}{49} \right\rangle$, $\left\langle \frac{270}{49}, \frac{62}{49}, \frac{121}{49} \right\rangle$
27. (a) $\langle 1, 1 \rangle + \langle -4, 4 \rangle$ (b) $\left\langle 0, -\frac{8}{5}, \frac{4}{5} \right\rangle + \left\langle -2, \frac{13}{5}, \frac{26}{5} \right\rangle$

Responses to True-False questions may be abridged to save space.

- **29.** True; $\mathbf{v} + \mathbf{w} = \mathbf{0}$ implies $0 = \mathbf{v} \cdot (\mathbf{v} + \mathbf{w}) = ||\mathbf{v}||^2 \neq 0$, a contradiction.
- **31.** True; see Equation (12). **33.** $\sqrt{564/29}$ **35.** 169.8 N
- 37. 375 ft·lb 39. $-5\sqrt{3}$ J 47. (a) 40° (b) $x \approx -0.682328$

Exercise Set 11.4 (Page 803)

(c) $\mathbf{v} = \langle 1, 4, 1 \rangle$ is orthogonal to **b**

- **1.** (a) $-\mathbf{j} + \mathbf{k}$ **3.** $\langle 7, 10, 9 \rangle$ **5.** $\langle -4, -6, -3 \rangle$
- 7. (a) $\langle -20, -67, -9 \rangle$ (b) $\langle -78, 52, -26 \rangle$
- (c) $\langle 0, -56, -392 \rangle$ (d) $\langle 0, 56, 392 \rangle$
- 9. $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$, 0 11. $\pm \frac{1}{\sqrt{6}}\langle 2, 1, 1 \rangle$ Responses to True–False questions may be abridged to save space.

- 13. True; see Theorem 11.4.5(c).
- 15. False; let $\mathbf{v} = \mathbf{u} = \mathbf{i}$ and let $\mathbf{w} = 2\mathbf{i}$.
- 17. $\sqrt{59}$ 19. $\sqrt{374}/2$
- **21.** 80 **23.** -3 **25.** 16 **27.** (a) yes (b) yes (c) no
- **29.** (a) 9 (b) $\sqrt{122}$ (c) $\sin^{-1}\left(\frac{9}{14}\right)$
- **31.** (a) $2\sqrt{141/29}$ (b) $6/\sqrt{5}$ **33.** $\frac{2}{3}$ **37.** $\theta = \pi/4$
- 39. (a) $10\sqrt{2}$ lb·ft, direction of rotation about P is counterclockwise looking along $\overrightarrow{PQ} \times \mathbf{F} = -10\mathbf{i} + 10\mathbf{k}$ toward its initial point **(b)** 10 lb·ft, direction of rotation about P is counterclockwise looking along -10i toward its initial point
 - (c) 0 lb·ft, no rotation about P
- **41.** $\approx 36.19 \text{ N·m}$ **45.** $-8\mathbf{i} 20\mathbf{j} + 2\mathbf{k}, -8\mathbf{i} 8\mathbf{k}$ **49.** 1.887850

Exercise Set 11.5 (Page 810)

- **1.** (a) $L_1: x = 1, y = t, L_2: x = t, y = 1, L_3: x = t, y = t$ **(b)** L_1 : x = 1, y = 1, z = t, L_2 : x = t, y = 1, z = 1, L_3 : x = 1, y = t, z = 1, L_4 : x = t, y = t, z = t
- 3. (a) x = 3 + 2t, y = -2 + 3t; line segment: $0 \le t \le 1$ **(b)** x = 5 - 3t, y = -2 + 6t, z = 1 + t; line segment: 0 < t < 1
- **5.** (a) x = 2 + t, y = -3 4t (b) x = t, y = -t, z = 1 + t
- 7. (a) P(2,-1), $\mathbf{v} = 4\mathbf{i} \mathbf{j}$ (b) P(-1,2,4), $\mathbf{v} = 5\mathbf{i} + 7\mathbf{j} 8\mathbf{k}$
- 9. (a) $\langle -3, 4 \rangle + t \langle 1, 5 \rangle$; -3i + 4j + t(i + 5j)**(b)** (2, -3, 0) + t(-1, 5, 1); $2\mathbf{i} - 3\mathbf{j} + t(-\mathbf{i} + 5\mathbf{j} + \mathbf{k})$

Responses to True-False questions may be abridged to save space.

- 11. False; the lines could be skew.
- 13. False; see part (b) of the solution to Example 3.
- **15.** x = -5 + 2t, y = 2 3t **17.** x = 3 + 4t, y = -4 + 3t
- **19.** x = -1 + 3t, y = 2 4t, z = 4 + t
- **21.** x = -2 + 2t, y = -t, z = 5 + 2t
- **23.** (a) x = 7 (b) $y = \frac{7}{3}$ (c) $x = \frac{-1 \pm \sqrt{85}}{6}$, $y = \frac{43 \mp \sqrt{85}}{18}$ **25.** (-2, 10, 0); (-2, 0, -5); the line does not intersect the *yz*-plane.
- **27.** (0, 4, -2), (4, 0, 6) **29.** (1, -1, 2) **33.** The lines are parallel.
- **35.** The points do not lie on the same line.
- **39.** $\langle x, y \rangle = \langle -1, 2 \rangle + t \langle 1, 1 \rangle$
- 41. the point 1/n of the way from (-2, 0) to (1, 3)
- **43.** the line segment joining the points (1, 0) and (-3, 6)
- **45.** (5, 2) **47.** $2\sqrt{5}$ **49.** distance = $\sqrt{35/6}$
- **51.** (a) $x = x_0 + (x_1 x_0)t$, $y = y_0 + (y_1 y_0)t$, $z = z_0 + (z_1 z_0)t$ **(b)** $x = x_1 + at$, $y = y_1 + bt$, $z = z_1 + ct$

- **53. (b)** $\langle x, y, z \rangle = \langle 1 + 2t, -3 + 4t, 5 + t \rangle$
- **55. (b)** 84° **(c)** x = 7 + t, y = -1, z = -2 + t
- **57.** x = t, y = 2 + t, z = 1 t
- **59.** (a) $\sqrt{17}$ cm (b) 10

(d) $\sqrt{14}/2$ cm

Exercise Set 11.6 (Page 819)

- **1.** x = 3, y = 4, z = 5 **3.** x + 4y + 2z = 28 **5.** z = 0
- 7. x y = 0 9. y + z = 1 11. 2y z = 1
- 13. (a) parallel (b) perpendicular (c) neither
- 15. (a) parallel (b) neither (c) perpendicular
- 17. (a) point of intersection is $(\frac{5}{2}, \frac{5}{2}, \frac{5}{2})$ (b) no intersection

Responses to True-False questions may be abridged to save space.

- 21. True; each will be the negative of the other.
- 23. True; the direction vector of L must be orthogonal to both normal vectors.
- **25.** 4x 2y + 7z = 0 **27.** 4x 13y + 21z = -14
- **29.** x + y 3z = 6 **31.** x + 5y + 3z = -6
- **33.** $x + 2y + 4z = \frac{29}{2}$ **35.** x = 5 2t, y = 5t, z = -2 + 11t
- **37.** 7x + y + 9z = 25 **39.** yes
- **41.** $x = -\frac{11}{7} 23t$, $y = -\frac{12}{7} + t$, z = -7t
- **43.** $\frac{5}{3}$ **45.** $5/\sqrt{54}$ **47.** $25/\sqrt{126}$
- **49.** $(x-2)^2 + (y-1)^2 + (z+3)^2 = \frac{121}{14}$ **51.** $5/\sqrt{12}$

Exercise Set 11.7 (Page 830)

- 1. (a) elliptic paraboloid, a = 2, b = 3
 - **(b)** hyperbolic paraboloid, a = 1, b = 5
 - (c) hyperboloid of one sheet, a = b = c = 4
 - (d) circular cone, a = b = 1 (e) elliptic paraboloid, a = 2, b = 1
 - (**f**) hyperboloid of two sheets, a = b = c = 1
- 3. (a) $-z = x^2 + y^2$, circular paraboloid opening down the negative z-axis

- **(b)** $z = x^2 + y^2$, circular paraboloid, no change
- (c) $z = x^2 + y^2$, circular paraboloid, no change
- (d) $z = x^2 + y^2$, circular paraboloid, no change

Answers to Odd-Numbered Exercises

(e) $x = y^2 + z^2$, circular paraboloid opening along the positive x-axis

(f) $y = x^2 + z^2$, circular paraboloid opening along the positive y-axis

- **5.** (a) hyperboloid of one sheet, axis is y-axis
 - **(b)** hyperboloid of two sheets separated by yz-plane
 - (c) elliptic paraboloid opening along the positive x-axis
 - (d) elliptic cone with x-axis as axis
 - (e) hyperbolic paraboloid straddling the x-axis
 - (f) paraboloid opening along the negative y-axis

(b)
$$x = 0$$
: $z = 4y^2$;
 $y = 0$: $z = x^2$;
 $z = 0$: $x = y = 0$

(c)
$$x = 0$$
: $\frac{y^2}{16} - \frac{z^2}{4} = 1$;
 $y = 0$: $\frac{x^2}{9} - \frac{z^2}{4} = 1$;
 $z = 0$: $\frac{x^2}{9} + \frac{y^2}{16} = 1$

- 9. (a) $4x^2 + z^2 = 3$; ellipse (b) $y^2 + z^2 = 3$; circle (c) $y^2 + z^2 = 20$; circle (d) $9x^2 y^2 = 20$; hyperbola

 - (e) $z = 9x^2 + 16$; parabola (f) $9x^2 + 4y^2 = 4$; ellipse

Responses to True-False questions may be abridged to save space.

- 11. False; "quadric" refers to second powers.
- 13. False; none of the cross sections need be circles.

Elliptic cone

Hyperboloid of two sheets

Hyperbolic paraboloid

Hyperboloid of one sheet

35. (1,0,0)

paraboloid

Circular paraboloid

↓ Z

(1,0,0)

 $+z^2 = 1$

39.

Ellipsoid

- **41.** (a) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (b) 6, 4 (c) $(\pm\sqrt{5}, 0, \sqrt{2})$ (d) The focal axis is parallel to the x-axis.
- $\frac{x^2}{4} \frac{x^2}{4} = 1$ **(b)** $(0, \pm 2, 4)$ **(c)** $(0, \pm 2\sqrt{2}, 4)$ (d) The focal axis is parallel to the y-axis.
- **45.** (a) $z + 4 = y^2$ (b) (2, 0, -4) (c) $(2, 0, -\frac{15}{4})$ (d) The focal axis is parallel to the z-axis.
- 47. circle of radius $\sqrt{2}$ in the plane z = 2, centered at (0, 0, 2)

49. $y = 4(x^2 + z^2)$ **51.** $z = (x^2 + y^2)/4$ (circular paraboloid)

Exercise Set 11.8 (Page 837)

- 1. (a) $(8, \pi/6, -4)$ (b) $(5\sqrt{2}, 3\pi/4, 6)$ (c) $(2, \pi/2, 0)$ (d) $(8, 5\pi/3, 6)$
- 3. (a) $(2\sqrt{3}, 2, 3)$ (b) $(-4\sqrt{2}, 4\sqrt{2}, -2)$ (c) (5,0,4) (d) (-7,0,-9)
- **5.** (a) $(2\sqrt{2}, \pi/3, 3\pi/4)$ (b) $(2, 7\pi/4, \pi/4)$ (c) $(6, \pi/2, \pi/3)$ (d) $(10, 5\pi/6, \pi/2)$
- 7. (a) $(5\sqrt{6}/4, 5\sqrt{2}/4, 5\sqrt{2}/2)$ (b) (7, 0, 0)(c) (0, 0, 1) (d) (0, -2, 0)
- **9.** (a) $(2\sqrt{3}, \pi/6, \pi/6)$ (b) $(\sqrt{2}, \pi/4, 3\pi/4)$ (c) $(2, 3\pi/4, \pi/2)$ (d) $(4\sqrt{3}, 1, 2\pi/3)$
- **11.** (a) $(5\sqrt{3}/2, \pi/4, -5/2)$ (b) $(0, 7\pi/6, -1)$ (c) (0, 0, 3) (d) $(4, \pi/6, 0)$

Responses to True-False questions may be abridged to save space.

- **15.** True; see Figure 11.8.1*b*.
- 17. True; see Figures 11.8.3 and 11.8.4.

- **35.** (a) z = 3 (b) $\rho = 3 \sec \phi$ **37.** (a) $z = 3r^2$ (b) $\rho = \frac{1}{3} \csc \phi \cot \phi$
- **39.** (a) r = 2 (b) $\rho = 2 \csc \phi$ **41.** (a) $r^2 + z^2 = 9$ (b) $\rho = 3$
- **43.** (a) $2r \cos \theta + 3r \sin \theta + 4z = 1$ **(b)** $2\rho \sin \phi \cos \theta + 3\rho \sin \phi \sin \theta + 4\rho \cos \phi = 1$
- **45.** (a) $r^2 \cos^2 \theta = 16 z^2$ (b) $\rho^2 (1 \sin^2 \phi \sin^2 \theta) = 16$
- 47. all points on or above the paraboloid $z = x^2 + y^2$ that are also on or below the plane z = 4
- 49. all points on or between concentric spheres of radii 1 and 3 centered at
- **51.** spherical: $(4000, \pi/6, \pi/6)$; rectangular: $(1000\sqrt{3}, 1000, 2000\sqrt{3})$
- **53.** (a) $(10, \pi/2, 1)$ (b) (0, 10, 1) (c) $(\sqrt{101}, \pi/2, \tan^{-1} 10)$

► Chapter 11 Review Exercises (Page 838)

- 3. **(b)** -1/2, $\pm \sqrt{3}/2$ **(d)** true
- 5. $(x+3)^2 + (y-5)^2 + (z+4)^2 = r^2$; (a) $r^2 = 16$ (b) $r^2 = 25$ (c) $r^2 = 9$
- **7.** (7, 5)
- **9.** (a) $-\frac{3}{4}$ (b) $\frac{1}{7}$ (c) $(48 \pm 25\sqrt{3})/11$ (d) $c = \frac{4}{3}$
- 13. 13 ft·lb 15. (a) $\sqrt{26}/2$ (b) $\sqrt{26}/3$ 17. (a) 29 (b) $\frac{29}{\sqrt{65}}$ 19. x = 4 + t, y = 1 t, z = 221. x + 5y z 2 = 0 23. $a_1a_2 + b_1b_2 + c_1c_2 = 0$ **19.** x = 4 + t, y = 1 - t, z = 2
- 25. (a) hyperboloid of one sheet (b) sphere (c) circular cone
- **27.** (a) $z = x^2 y^2$ (b) xz = 1

Answers to Odd-Numbered Exercises

29. (a)

(b)

(c)

31. (a)

(b)

(c)

► Chapter 11 Making Connections (Page 840)

Answers are provided in the Student Solutions Manual.

Exercise Set 12.1 (Page 845)

- 1. $(-\infty, +\infty)$; $\mathbf{r}(\pi) = -\mathbf{i} 3\pi\mathbf{j}$ 3. $[2, +\infty)$; $\mathbf{r}(3) = -\mathbf{i} \ln 3\mathbf{j} + \mathbf{k}$
- 5. $\mathbf{r} = 3\cos t\mathbf{i} + (t + \sin t)\mathbf{j}$ 7. $x = 3t^2, y = -2$
- **9.** the line in 2-space through (3, 0) with direction vector $\mathbf{a} = -2\mathbf{i} + 5\mathbf{j}$
- 11. the line in 3-space through the point (0, -3, 1) and parallel to the vector $2\mathbf{i} + 3\mathbf{k}$
- 13. an ellipse centered at (0, 0, 1) in the plane z = 1
- **15.** (a) slope $-\frac{3}{2}$ (b) $(\frac{5}{2}, 0, \frac{3}{2})$

17. (a)

19.
$$\mathbf{r} = (1 - t)(3\mathbf{i} + 4\mathbf{j}), 0 \le t \le 1$$

21. x = 2

23. $(x-1)^2 + (y-3)^2 = 1$

25. $x^2 - y^2 = 1, x \ge 1$

27.

29.

Responses to True-False questions may be abridged to save space.

- 31. False; the natural domain of a vector-valued function is the intersection of the domains of its component functions.
- 33. True; $\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 (0 \le t \le 1)$ represents the line segment in 3-space that is traced from \mathbf{r}_0 to \mathbf{r}_1 .
- **35.** $x = t, y = t, z = 2t^2$

37. $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} \pm \frac{1}{3}\sqrt{81 - 9t^2 - t^4}\mathbf{k}$ **43.** $c = 3/(2\pi)$

- **47.** (a) III, since the curve is a subset of the plane y = -x
 - (b) IV, since only x is periodic in t and y, z increase without bound
 - (c) II, since all three components are periodic in t
 - (d) I, since the projection onto the yz-plane is a circle and the curve increases without bound in the x-direction

Exercise Set 12.2 (Page 856)

- 1. $(\frac{1}{3}, 0)$ 3. $2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$ 5. (a) continuous (b) not continuous
- **9.** $(\sin t)$ **j 11.** $\mathbf{r}'(2) = \langle 1, 4 \rangle$

- **19.** x = 1 + 2t, y = 2 t**21.** $x = 1 - \sqrt{3}\pi t$, $y = \sqrt{3} + \pi t$, z = 1 + 3t23. $\mathbf{r} = (-\mathbf{i} + 2\mathbf{j}) + t(2\mathbf{i} + \frac{3}{4}\mathbf{j})$ **25.** $\mathbf{r} = (4\mathbf{i} + \mathbf{j}) + t(-4\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ **27.** (a) i - j + k (b) -i + k (c) 0 **29.** $7t^6$; $18t^5\mathbf{i} - 10t^4\mathbf{j}$ 31. $3ti + 2t^2i + C$
- **33.** $\langle te^t e^t, t \ln t t \rangle + \mathbf{C}$ **35. j 37.** $(5\sqrt{5} 1)/3$
- 39. $\frac{52}{3}i + 4j$

Responses to True-False questions may be abridged to save space.

- **41.** False; for example, $\mathbf{r}(t) = \langle t, |t| \rangle$ is continuous at t = 0, but the specified limit doesn't exist at t = 0.
- **43.** True; see the definition of $\int_{0}^{\infty} \mathbf{r}(t) dt$.
- **45.** $(t^2+1)\mathbf{i} + (t^3-1)\mathbf{j}$
- **47.** $y(t) = (\frac{1}{2}t^2 + 2)\mathbf{i} + (e^t 1)\mathbf{j}$
- **49.** (a) (-2, 4, 6) and (1, 1, -3) (b) 76° , 71° **51.** 68°

Exercise Set 12.3 (Page 866)

- **1.** smooth **3.** not smooth, $\mathbf{r}'(1) = \mathbf{0}$ **5.** $L = \frac{3}{2}$ **7.** $L = e e^{-1}$
- **9.** L = 28 **11.** $L = 2\pi\sqrt{10}$ **13.** $\mathbf{r}'(\tau) = 4\mathbf{i} + 8(4\tau + 1)\mathbf{j}$
- **15.** $\mathbf{r}'(\tau) = 2\tau e^{\tau^2} \mathbf{i} 8\tau e^{-\tau^2} \mathbf{j}$

Responses to True-False questions may be abridged to save space.

17. False; $\|\mathbf{r}'(t)\| dt$ is a scalar that represents the arc length of the curve in 2-space traced by $\mathbf{r}(t)$ from t = a to t = b (Theorem 12.3.1).

- 19. False; \mathbf{r}' isn't defined at the point corresponding to the origin. 21. (a) $x = \frac{s}{\sqrt{2}}$, $y = \frac{s}{\sqrt{2}}$ (b) $x = y = z = \frac{s}{\sqrt{3}}$
- 23. (a) $x = 1 + \frac{s}{3}$, $y = 3 \frac{2s}{3}$, $z = 4 + \frac{2s}{3}$ (b) $(\frac{28}{3}, -\frac{41}{3}, \frac{62}{3})$ 25. $x = 3 + \cos s$, $y = 2 + \sin s$, $0 \le s \le 2\pi$ 27. $x = \frac{1}{3}[(3s+1)^{2/3} 1]^{3/2}$, $y = \frac{1}{2}[(3s+1)^{2/3} 1]$, $s \ge 0$

- 29. $x = \left(\frac{s}{\sqrt{2}} + 1\right) \cos \left[\ln \left(\frac{s}{\sqrt{2}} + 1\right)\right],$

$$y = \left(\frac{s}{\sqrt{2}} + 1\right) \sin\left[\ln\left(\frac{s}{\sqrt{2}} + 1\right)\right],$$

$$0 \le s \le \sqrt{2}(e^{\pi/2} - 1)$$

- 33. $x = 2a \cos^{-1}[1 s/(4a)]$ $-2a(1 - [1 - s/(4a)]^2)^{1/2}(2[1 - s/(4a)]^2 - 1),$ $y = \frac{s(8a - s)}{8a} \text{ for } 0 \le s \le 8a$ 35. (a) 9/2 (b) $9 - 2\sqrt{6}$ 37. (a) $\sqrt{3}(1 - e^{-2})$ (b) $4\sqrt{5}$
- 39. (a) $g(\tau) = \pi(\tau)$ (b) $g(\tau) = \pi(1 \tau)$ 41. 44 in 43. (a) $2t + \frac{1}{t}$ (b) $2t + \frac{1}{t}$ (c) $8 + \ln 3$

Exercise Set 12.4 (Page 872)

- 5. $\mathbf{T}(1) = \frac{2}{\sqrt{5}}\mathbf{i} + \frac{1}{\sqrt{5}}\mathbf{j}, \mathbf{N}(1) = \frac{1}{\sqrt{5}}\mathbf{i} \frac{2}{\sqrt{5}}\mathbf{j}$
- 7. $\mathbf{T}\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}, \mathbf{N}\left(\frac{\pi}{3}\right) = -\frac{1}{2}\mathbf{i} \frac{\sqrt{3}}{2}\mathbf{j}$ 9. $\mathbf{T}\left(\frac{\pi}{2}\right) = -\frac{4}{\sqrt{17}}\mathbf{i} + \frac{1}{\sqrt{17}}\mathbf{k}, \mathbf{N}\left(\frac{\pi}{2}\right) = -\mathbf{j}$
- 11. $\mathbf{T}(0) = \frac{1}{\sqrt{3}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k}, \mathbf{N}(0) = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$
- **13.** x = s, y = 1 **15.** $\mathbf{B} = \frac{4}{5}\cos t\mathbf{i} \frac{4}{5}\sin t\mathbf{j} \frac{3}{5}\mathbf{k}$ **17.** $\mathbf{B} = -\mathbf{k}$
- 19. $T\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}(-\mathbf{i} + \mathbf{j}), \mathbf{N}\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}(\mathbf{i} + \mathbf{j}),$

 $\mathbf{B}\left(\frac{\pi}{4}\right) = \mathbf{k}$; rectifying: $x + y = \sqrt{2}$; osculating: z = 1;

- Responses to True-False questions may be abridged to save space.
- 21. False; $\mathbf{T}(t)$ points in the direction of increasing parameter but may not be orthogonal to $\mathbf{r}(t)$. For example, if $\mathbf{r}(t) = \langle t, t \rangle$, then $\mathbf{T}(t) = \langle 1/\sqrt{2}, 1/\sqrt{2} \rangle$ is parallel to $\mathbf{r}(t)$.
- 23. True; $\mathbf{T}(s) = \mathbf{r}'(s)$, the unit tangent vector, and $\mathbf{N}(s) = \frac{\mathbf{r}''(s)}{\|\mathbf{r}''(s)\|}$, the unit normal vector, are orthogonal, so $\mathbf{r}'(s)$ and $\mathbf{r}''(s)$ are orthogonal.

Exercise Set 12.5 (Page 879)

- 1. $\kappa \approx 2$ 3. (a) I is the curvature of II. (b) I is the curvature of II. 5. $\frac{6}{|t|(4+9t^2)^{3/2}}$ 7. $\frac{12e^{2t}}{(9e^{6t}+e^{-2t})^{3/2}}$ 9. $\frac{4}{17}$ 11. $\frac{1}{2\cosh^2 t}$
- 13. $\kappa = \frac{2}{5}$, $\rho = \frac{5}{2}$ 15. $\kappa = \frac{\sqrt{2}}{3}$, $\rho = \frac{3\sqrt{2}}{2}$ 17. $\kappa = \frac{1}{4}$ Responses to True–False questions may be abridged to save space.

- 19. True; see Example 1: a circle of radius a has constant curvature 1/a.
- **21.** False; see Definition 12.5.1: the curvature of the graph of $\mathbf{r}(s)$ is
- $\|\mathbf{r}''(s)\|$, the length of $\mathbf{r}''(s)$. 25. 1 27. $\frac{e^{-1}}{(1+e^{-2})^{3/2}}$ 29. $\frac{96}{125}$ 31. $\frac{1}{\sqrt{2}}$

Answers to Odd-Numbered Exercises

37. (a)
$$\kappa = \frac{|12x^2 - 4|}{[1 + (4x^3 - 4x)^2]^{3/2}}$$

(c) $\rho = \frac{1}{4}$ for $x = 0$ and $\rho = \frac{1}{8}$ when $x = \pm 1$

41.
$$\frac{3}{2\sqrt{2}}$$
 43. $\frac{2}{3}$ **45.** $\rho = 2|p|$ **47.** $(3,0), (-3,0)$

51. (b)
$$\rho = \sqrt{2}$$
 (c)

55.
$$a = \frac{1}{2r}$$

63. $\tau = \frac{2}{(t^2 + 2)^2}$
65. $\tau = -\frac{\sqrt{2}}{(e^t + e^{-t})}$

Exercise Set 12.6 (Page 891)

- 1. $\mathbf{v}(t) = -3\sin t \mathbf{i} + 3\cos t \mathbf{j}$ $\mathbf{a}(t) = -3\cos t\mathbf{i} - 3\sin t\mathbf{j}$ $\|\mathbf{v}(t)\| = 3$
- 3. $\mathbf{v}(t) = e^t \mathbf{i} e^{-t} \mathbf{j}$ $\mathbf{a}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j}$ $\|\mathbf{v}(t)\| = \sqrt{e^{2t} + e^{-2t}}$

5.
$$\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \|\mathbf{v}\| = \sqrt{3}, \mathbf{a} = \mathbf{j} + 2\mathbf{k}$$

7.
$$\mathbf{v} = -\sqrt{2}\mathbf{i} + \sqrt{2}\mathbf{j} + \mathbf{k}, \|\mathbf{v}\| = \sqrt{5}, \mathbf{a} = -\sqrt{2}\mathbf{i} - \sqrt{2}\mathbf{j}$$

13. minimum speed $3\sqrt{2}$ when $\mathbf{r} = 24\mathbf{i} + 8\mathbf{j}$

- **(b)** maximum speed = 6, minimum speed = 3
- (d) The maximum speed first occurs when $t = \pi/6$.

17.
$$\mathbf{v}(t) = (1 - \sin t)\mathbf{i} + (\cos t - 1)\mathbf{j};$$

 $\mathbf{r}(t) = (t + \cos t - 1)\mathbf{i} + (\sin t - t + 1)\mathbf{j}$

10.
$$\mathbf{v}(t) = (t + \cos t - 1)\mathbf{i} + (\sin t - t + 1)\mathbf{j}$$

19. $\mathbf{v}(t) = (1 - \cos t)\mathbf{i} + \sin t\mathbf{j} + e^t\mathbf{k}$;
 $\mathbf{r}(t) = (t - \sin t - 1)\mathbf{i} + (1 - \cos t)\mathbf{j} + e^t\mathbf{k}$

21. 15° **23.** (a)
$$0.7\mathbf{i} + 2.7\mathbf{j} - 3.4\mathbf{k}$$
 (b) $\mathbf{r}_0 = -0.7\mathbf{i} - 2.9\mathbf{j} + 4.8\mathbf{k}$

25.
$$\Delta \mathbf{r} = 8\mathbf{i} + \frac{26}{3}\mathbf{j}, s = (13\sqrt{13} - 5\sqrt{5})/3$$

27.
$$\Delta \mathbf{r} = 2\mathbf{i} - \frac{2}{3}\mathbf{j} + \sqrt{2}\ln 3\mathbf{k}; s = \frac{8}{3}$$

31. (a)
$$a_T = 0$$
, $a_N = \sqrt{2}$ (b) $a_T \mathbf{T} = \mathbf{0}$, $a_N \mathbf{N} = \mathbf{i} + \mathbf{j}$ (c) $1/\sqrt{2}$

33. (a)
$$a_T = 2\sqrt{5}$$
, $a_N = 2\sqrt{5}$ (b) $a_T \mathbf{T} = 2\mathbf{i} + 4\mathbf{j}$, $a_N \mathbf{N} = 4\mathbf{i} - 2\mathbf{j}$ (c) $2/\sqrt{5}$

35. (a)
$$a_T = -7/\sqrt{6}$$
, $a_N = \sqrt{53/6}$

(b)
$$a_T \mathbf{T} = -\frac{7}{6} (\mathbf{i} - 2\mathbf{j} + \mathbf{k}), a_N \mathbf{N} = \frac{13}{6} \mathbf{i} + \frac{5}{3} \mathbf{j} + \frac{7}{6} \mathbf{k}$$
 (c) $\frac{\sqrt{53}}{6\sqrt{6}}$

37.
$$a_T = -3$$
, $a_N = 2$, $\mathbf{T} = -\mathbf{j}$, $\mathbf{N} = \mathbf{i}$ **39.** $-3/2$

41.
$$a_N = 8.41 \times 10^{10} \text{ km/s}^2$$

43.
$$a_N = 18/(1+4x^2)^{3/2}$$
 45. $a_N = 0$

Responses to True-False questions may be abridged to save space.

- 47. True; the velocity and unit tangent vectors have the same direction, so
- 49. False; in this case the velocity and acceleration vectors will be parallel, but they may have opposite direction.
- 53. \approx 257.20 N
- **55.** $40\sqrt{3}$ ft **57.** 800 ft/s **59.** 15° or 75° **61.** (c) ≈ 14.942 ft
- **63.** (a) $\rho \approx 176.78 \,\mathrm{m}$ (b) $\frac{125}{4} \,\mathrm{m}$
- **65.** (b) R is maximum when $\alpha = 45^{\circ}$, maximum value v_0^2/g
- **67. (a)** 2.62 s **(b)** 181.5 ft
- **69.** (a) $v_0 \approx 83 \text{ ft/s}, \alpha \approx 8^{\circ}$ (b) 268.76 ft

Exercise Set 12.7 (Page 901)

- **7.** 7.75 km/s **9.** 10.88 km/s
- 11. (a) minimum distance = 220,680 mi, maximum distance = 246,960 mi **(b)** 27.5 days
- **13.** (a) 17,224 mi/h (b) $e \approx 0.071$, apogee altitude = 819 mi

► Chapter 12 Review Exercises (Page 902)

- 3. the circle of radius 3 in the xy-plane, with center at the origin
- 5. a parabola in the plane x = -2, vertex at (-2, 0, -1), opening upward
- **11.** x = 1 + t, y = -t, z = t **13.** $(\sin t)\mathbf{i} (\cos t)\mathbf{j} + \mathbf{C}$
- **15.** $y(t) = (\frac{1}{3}t^3 + 1)\mathbf{i} + (t^2 + 1)\mathbf{j}$ **17.** 15/4 **19.** $\mathbf{r}(s) = \frac{s-3}{3}\mathbf{i} + \frac{12-2s}{3}\mathbf{j} + \frac{9+2s}{3}\mathbf{k}$ **25.** 3/5 **27.** 0 **29.** (a) speed (b) distance traveled
- - (c) distance of the particle from the origin
- 33. (a) $\mathbf{r}(t) = (\frac{1}{6}t^4 + t)\mathbf{i} + (\frac{1}{2}t^2 + 2t)\mathbf{j} (\frac{1}{4}\cos 2t + t \frac{1}{4})\mathbf{k}$ **(b)** 3.475 **35.** 10.65 km/s **37.** 24.78 ft

Chapter 12 Making Connections (Page 904)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

1. (c) (i)
$$\mathbf{N} = \frac{1}{\sqrt{5}}\mathbf{i} - \frac{2}{\sqrt{5}}\mathbf{j}$$
 (ii) $\mathbf{N} = -\mathbf{j}$
2. (b) (i) $\mathbf{N} = -\sin t\mathbf{i} - \cos t\mathbf{j}$

(ii)
$$\mathbf{N} = \frac{-(4t + 18t^3)\mathbf{i} + (2 - 18t^4)\mathbf{j} + (6t + 12t^3)\mathbf{k}}{2\sqrt{81t^8 + 117t^6 + 54t^4 + 13t^2 + 1}}$$

- 3. (c) $\kappa(s) \to +\infty$, so the spiral winds ever tighter.
- 4. semicircle: 53.479 ft; quarter-circle: 60.976 ft; point: 64.001 ft

Exercise Set 13.1 (Page 914)

- **1.** (a) 5 (b) 3 (c) 1 (d) -2 (e) $9a^3 + 1$ (f) $a^3b^2 a^2b^3 + 1$
- 3. (a) $x^2 y^2 + 3$ (b) $3x^3y^4 + 3$ 5. $x^3e^{x^3(3y+1)}$
- 7. (a) $t^2 + 3t^{10}$ (b) 0 (c) 3076
- **9.** (a) 2.5 mg/L (b) $C(100, t) = 20(e^{-0.2t} e^{-t})$ (c) $C(x, 1) = 0.2x(e^{-0.2} - e^{-1}) \approx 0.09x$
- **11.** (a) WCI = 17.8° F (b) WCI = 22.6° F **13.** (a) 30° F (b) 22.5° F
- **15.** (a) 66% (b) 73.5% (c) 60.6%
- 17. (a) 19 (b) -9 (c) 3 (d) $a^6 + 3$ (e) $-t^8 + 3$ (f) $(a + b)(a b)^2b^3 + 3$

- 19. $(y+1)e^{x^2(y+1)z^2}$ **21.** (a) $80\sqrt{\pi}$ (b) n(n+1)/2
- 23.
- 27. (a) all points above or on the line y = -2 (b) all points on or within the sphere $x^2 + y^2 + z^2 = 25$ (c) all points in 3-space

Responses to True-False questions may be abridged to save space.

35.

- 29. True; the interval [0, 1] is the intersection of the domains of $\sin^{-1} t$
- 31. False; the natural domain is an infinite solid cylinder.

- 43. (a) hyperbolas (b) parabolas (c) noncircular ellipses (d) lines **45. (a)** \$130 **(b)** \$275 **47.** (a) $1 - x^2 -$
- **49.** (a) A (b) B (c) increase (d) decrease (e) increase (f) decrease

53.

- **61.** concentric spheres, common center at (2, 0, 0)
- 63. concentric cylinders, common axis the y-axis
- **65.** (a) $x^2 2x^3 + 3xy = 0$ (b) $x^2 2x^3 + 3xy = 0$ (c) $x^2 - 2x^3 + 3xy = -18$
- **67.** (a) $x^2 + y^2 z = 5$ (b) $x^2 + y^2 z = -2$ (c) $x^2 + y^2 z = 0$

(b) the path xy = 4

- **75.** (a) The graph of g is the graph of f shifted one unit in the positive x-direction.
 - **(b)** The graph of g is the graph of f shifted one unit up the z-axis.
 - (c) The graph of g is the graph of f shifted one unit down the y-axis and then inverted with respect to the plane z = 0.

Exercise Set 13.2 (Page 925)

- **1.** 35 **3.** −8 **5.** 0
- 7. (a) along x = 0 limit does not exist
 - **(b)** along x = 0 limit does not exist
- **9.** 1 **11.** 0 **13.** 0 **15.** limit does not exist **17.** $\frac{8}{3}$ **19.** 0
- **21.** limit does not exist **23.** 0 **25.** 0 **27.** 0

Responses to True-False questions may be abridged to save space.

- 29. True; by the definition of open set.
- **31.** False; let $f(x, y) = \begin{cases} 1, & x \le 0 \\ -1, & x > 0 \end{cases}$ and let g(x, y) = -f(x, y).
- 33. (a) no (d) no; yes 37. $-\pi/2$ 39. no

Answers to Odd-Numbered Exercises A90

49. all of 3-space **51.** all points not on the cylinder $x^2 + z^2 = 1$

Exercise Set 13.3 (Page 936)

- **1.** (a) $9x^2y^2$ (b) $6x^3y$ (c) $9y^2$ (d) $9x^2$ (e) 6y (f) $6x^3$ (g) 36 (h) 12
- 3. $18xy 15x^4y$, $9x^2 3x^5$
- 5. $(16x + 40)(x^2 + 5x 2y)^7$, $-16(x^2 + 5x 2y)^7$
- 7. $-\frac{7}{q}e^{-7p/q}, \frac{7p}{q^2}e^{-7p/q}$
- 9. $(15x^2y + 7y^2)\cos(5x^3y + 7xy^2), (5x^3 + 14xy)\cos(5x^3y + 7xy^2)$
- **11.** (a) $\frac{3}{8}$ (b) $\frac{1}{4}$ **13.** (a) $-4\cos 7$ (b) $2\cos 7$
- **15.** $\partial z/\partial x = -4$; $\partial z/\partial y = \frac{1}{2}$ **17.** (a) 4.9 (b) 1.2
- 19. z = f(x, y) has II as its graph, f_x has I as its graph, and f_y has III as

Responses to True-False questions may be abridged to save space.

- **21.** True; on y = 2, f(x, 2) = c is a constant function of x.
- 23. True; z must be a linear function of x and y.
- **25.** $8xy^3e^{x^2y^3}$, $12x^2y^2e^{x^2y^3}$
- 27. $x^3/(y^{3/5} + x) + 3x^2 \ln(1 + xy^{-3/5}), -\frac{3}{5}x^4/(y^{8/5} + xy)$ 29. $-\frac{y(x^2 y^2)}{(x^2 + y^2)^2}, \frac{x(x^2 y^2)}{(x^2 + y^2)^2}$
- **31.** $(3/2)x^2y(5x^2-7)(3x^5y-7x^3y)^{-1/2}$
- $(1/2)x^{3}(3x^{2}-7)(3x^{5}y-7x^{3}y)^{-1/2}$ 33. $\frac{y^{-1/2}}{y^{2}+x^{2}}, -\frac{xy^{-3/2}}{y^{2}+x^{2}} \frac{3}{2}y^{-5/2}\tan^{-1}\left(\frac{x}{y}\right)$
- 35. $-\frac{4}{3}y^2 \sec^2 x (y^2 \tan x)^{-7/3}, -\frac{8}{3}y \tan x (y^2 \tan x)^{-7/3}$
- 37. -6, -21 39. $1/\sqrt{17}, 8/\sqrt{17}$
- **41.** (a) $2xy^4z^3 + y$ (b) $4x^2y^3z^3 + x$ (c) $3x^2y^4z^2 + 2z$ (d) $2y^4z^3 + y$ (e) $32z^3 + 1$ (f) 438
- **43.** 2z/x, z/y, $\ln(x^2y\cos z) z\tan z$
- **45.** $-y^2z^3/(1+x^2y^4z^6)$, $-2xyz^3/(1+x^2y^4z^6)$, $-3xy^2z^2/(1+x^2y^4z^6)$
- 47. $yze^z \cos(xz)$, $e^z \sin(xz)$, $ye^z (\sin(xz) + x \cos(xz))$
- **49.** $x/\sqrt{x^2+y^2+z^2}$, $y/\sqrt{x^2+y^2+z^2}$, $z/\sqrt{x^2+y^2+z^2}$
- **51.** (a) *e* (b) 2*e* (c) *e*

- **59.** (a) $\partial V/\partial r = 2\pi rh$ (b) $\partial V/\partial h = \pi r^2$ (c) 48π (d) 64π
- **61.** (a) $\frac{1}{5} \frac{\text{lb}}{\text{in}^2 \cdot \text{K}}$ (b) $-\frac{25}{8} \frac{\text{in}^5}{\text{lb}}$
- **63.** (a) $\frac{\partial V}{\partial l} = 6$ (b) $\frac{\partial V}{\partial w} = 15$ (c) $\frac{\partial V}{\partial h} = 10$

67. (a) $\pm \sqrt{6}/4$ **69.** -x/z, -y/z

71.
$$-\frac{2x + yz^2 \cos(xyz)}{xyz \cos(xyz) + \sin(xyz)}; -\frac{xz^2 \cos(xyz)}{xyz \cos(xyz) + \sin(xyz)}$$

73. -x/w, -y/w, -z/w

75.
$$-\frac{yzw\cos(xyz)}{2w + \sin(xyz)}, -\frac{xzw\cos(xyz)}{2w + \sin(xyz)}, -\frac{xyw\cos(xyz)}{2w + \sin(xyz)}$$

- **77.** $e^{x^2}, -e^{y^2}$

79.
$$f_x(x, y) = 2xy^3 \sin(x^6y^9), f_y(x, y) = 3x^2y^2 \sin(x^6y^9)$$

81. (a) $-\frac{\cos y}{4\sqrt{x^3}}$ (b) $-\sqrt{x}\cos y$ (c) $-\frac{1}{2\sqrt{x}}\sin y$ (d) $-\frac{1}{2\sqrt{x}}\sin y$

- 83. (a) $6\cos(3x^2+6y^2)-36x^2\sin(3x^2+6y^2)$
 - **(b)** $12\cos(3x^2+6y^2)-144y^2\sin(3x^2+6y^2)$

(c)
$$-72xy \sin(3x^2 + 6y^2)$$
 (d) $-72xy \sin(3x^2 + 6y^2)$
85. $-32y^3$ 87. $-e^x \sin y$ 89. $\frac{20}{(4x - 5y)^2}$ 91. $\frac{2(x - y)}{(x + y)^3}$
93. (a) $\frac{\partial^3 f}{\partial x^3}$ (b) $\frac{\partial^3 f}{\partial y^2 \partial x}$ (c) $\frac{\partial^4 f}{\partial x^2 \partial y^2}$ (d) $\frac{\partial^4 f}{\partial y^3 \partial x}$

- **95.** (a) $30xy^4 4$ (b) $60x^2y^3$ (c) $60x^3y^2$
- **97.** (a) -30 (b) -125 (c) 150
- **99.** (a) $15x^2y^4z^7 + 2y$ (b) $35x^3y^4z^6 + 3y^2$ (c) $21x^2y^5z^6$
 - (d) $42x^3y^5z^5$ (e) $140x^3y^3z^6 + 6y$ (f) $30xy^4z^7$ (g) $105x^2y^4z^6$
- **107.** $\frac{\partial f}{\partial v} = 8vw^3x^4y^5, \frac{\partial f}{\partial w} = 12v^2w^2x^4y^5, \frac{\partial f}{\partial x} = 16v^2w^3x^3y^5,$ $\frac{\partial f}{\partial y} = 20v^2w^3x^4y^4$
- **109.** $\frac{\partial f}{\partial v_1} = \frac{2v_1}{v_3^2 + v_4^2}, \frac{\partial f}{\partial v_2} = \frac{-2v_2}{v_3^2 + v_4^2}, \frac{\partial f}{\partial v_3} = \frac{-2v_3(v_1^2 v_2^2)}{(v_3^2 + v_4^2)^2},$ $\frac{\partial f}{\partial v_4} = \frac{-2v_4(v_1^2 - v_2^2)}{(v_3^2 + v_4^2)^2}$ **111.** (a) 0 (b) 0 (c) 0 (d) 0 (e) $2(1 + yw)e^{yw} \sin z \cos z$
- (f) $2xw(2 + yw)e^{yw} \sin z \cos z$
- 113. $-i \sin(x_1 + 2x_2 + \cdots + nx_n)$
- **115.** (a) xy-plane, $12x^2 + 6x$ (b) $y \ne 0, -3x^2/y^2$
- **117.** $f_x(2,-1) = 11$, $f_y(2,-1) = -8$
- 119. (b) does not exist if $y \neq 0$ and x = -y

Exercise Set 13.4 (Page 947)

- 1. 5.04 3. 4.14 9. dz = 7 dx 2 dy 11. $dz = 3x^2y^2 dx + 2x^3y dy$ 13. $dz = \frac{y}{1 + x^2y^2} dx + \frac{x}{1 + x^2y^2} dy$ 15. dw = 8 dx 3 dy + 4 dz17. $dw = 3x^2y^2z dx + 2x^3yz dy + x^3y^2 dz$ 19. $dw = \frac{yz}{1 + x^2y^2z^2} dx + \frac{xz}{1 + x^2y^2z^2} dy + \frac{xy}{1 + x^2y^2z^2} dz$ 21. $df = 0.10, \Delta f = 0.1009$ 23. $df = 0.03, \Delta f \approx 0.029412$

- **25.** $df = 0.96, \Delta f \approx 0.97929$

Responses to True-False questions may be abridged to save space.

- 27. False; see the discussion at the beginning of this section.
- 29. True; see Theorems 13.4.3 and 13.4.4.
- 31. The increase in the area of the rectangle is given by the sum of the areas of the three small rectangles, and the total differential is given by the sum of the areas of the upper left and lower right rectangles.
- **33.** (a) $L = \frac{1}{5} \frac{4}{125}(x-4) \frac{3}{125}(y-3)$ (b) 0.000176603
- **35.** (a) L = 0 (b) 0.0024
- **37.** (a) L = 6 + 6(x 1) + 3(y 2) + 2(z 3) (b) -0.00481
- **39.** (a) L = e + e(x 1) e(y + 1) e(z + 1) (b) 0.01554
- **45.** 0.5 **47.** 1, 1, -1, 2 **49.** (-1, 1) **51.** (1, 0, 1) **53.** 8%
- **55.** *r*% **57.** 0.3%
- **59.** (a) (r+s)% (b) (r+s)% (c) (2r+3s)% (d) $(3r+\frac{s}{2})\%$
- **61.** $\approx 39 \text{ ft}^2$

Exercise Set 13.5 (Page 956)

- **1.** $42t^{13}$ **3.** $3t^{-2}\sin(1/t)$ **5.** $-\frac{10}{3}t^{7/3}e^{1-t^{10/3}}$ **7.** $\frac{dw}{dt} = 165t^{32}$
- 9. $-2t\cos t^2$ 11. 3264 13. 0
- 17. $24u^2v^2 16uv^3 2v + 3$, $16u^3v 24u^2v^2 2u 3$
- 19. $-\frac{2\sin u}{3\sin v}$, $-\frac{2\cos u\cos v}{3\sin^2 v}$ 21. e^u , 0 23. $3r^2\sin\theta\cos^2\theta 4r^3\sin^3\theta\cos\theta$,
- 25. $\frac{1}{3}\sin^{2}\theta\cos\theta + r^{4}\sin^{4}\theta + r^{3}\cos^{3}\theta 3r^{4}\sin^{2}\theta\cos^{2}\theta$ 26. $\frac{x^{2} + y^{2}}{4x^{2}y^{3}}, \frac{y^{2} 3x^{2}}{4xy^{4}}$ 27. $\frac{\partial z}{\partial r} = \frac{2r\cos^{2}\theta}{r^{2}\cos^{2}\theta + 1}, \frac{\partial z}{\partial \theta} = \frac{-2r^{2}\cos\theta\sin\theta}{r^{2}\cos^{2}\theta + 1}$ 29. $\frac{dw}{d\rho} = 2\rho(4\sin^{2}\phi + \cos^{2}\phi), \frac{\partial w}{\partial \phi} = 6\rho^{2}\sin\phi\cos\phi, \frac{dw}{d\theta} = 0$
- **31.** $-\pi$ **33.** $\sqrt{3}e^{\sqrt{3}}$, $(2-4\sqrt{3})e^{\sqrt{3}}$ **35.** -0.779 rad/s

Responses to True-False questions may be abridged to save space.

- 37. False; the symbols ∂z and ∂x have no individual meaning.
- **39.** False; consider z = xy, x = t, y = t.
- **41.** $-\frac{1}{3x^2y^2 \sin y}$
- 43. $-\frac{ye^{xy}}{xe^{xy} + ye^y + e^y}$ 45. $\frac{2x + yz}{6yz xy}$, $\frac{xz 3z^2}{6yz xy}$
- 47. $\frac{15\cos 3z + 3}{15\cos 3z + 3}$, $\frac{15\cos 3z + 3}{15\cos 3z + 3}$
- 61. $\frac{\partial w}{\partial \rho} = (\sin \phi \cos \theta) \frac{\partial w}{\partial x} + (\sin \phi \sin \theta) \frac{\partial w}{\partial y} + (\cos \phi) \frac{\partial w}{\partial z},$ $\frac{\partial w}{\partial \phi} = (\rho \cos \phi \cos \theta) \frac{\partial w}{\partial x} + (\rho \cos \phi \sin \theta) \frac{\partial w}{\partial y} (\rho \sin \phi) \frac{\partial w}{\partial z},$ $\frac{\partial w}{\partial \theta} = -(\rho \sin \phi \sin \theta) \frac{\partial w}{\partial x} + (\rho \sin \phi \cos \theta) \frac{\partial w}{\partial y}$
- **65.** (a) $\frac{dw}{dt} = \sum_{i=1}^{4} \frac{\partial w}{\partial x_i} \frac{dx_i}{dt}$ (b) $\frac{\partial w}{\partial v_j} = \sum_{i=1}^{4} \frac{\partial w}{\partial x_i} \frac{\partial x_i}{\partial v_j}, j = 1, 2, 3$

Exercise Set 13.6 (Page 968)

- **1.** $6\sqrt{2}$ **3.** $-3/\sqrt{10}$ **5.** -320 **7.** -314/741 **9.** 0 **11.** $-8\sqrt{2}$
- **13.** $\sqrt{2}/4$ **15.** $5/\sqrt{3}$ **17.** -8/63 **19.** $1/2 + \sqrt{3}/8$ **21.** $2\sqrt{2}$
- **23.** $1/\sqrt{5}$ **25.** $-\frac{3}{2}e$ **27.** $3/\sqrt{11}$ **29.** (a) 5 (b) 10 (c) $-5\sqrt{5}$
- **31.** III **33.** $\cos(7y^2 7xy)(-7y\mathbf{i} + (14y 7x)\mathbf{j})$
- $\left(\frac{-84y}{(6x-7y)^2}\right)\mathbf{i} + \left(\frac{84x}{(6x-7y)^2}\right)\mathbf{j} \quad \mathbf{37.} \quad -9x^8\mathbf{i} 3y^2\mathbf{j} + 12z^{11}\mathbf{k}$
- 39. $\nabla w = \frac{x}{x^2 + y^2 + z^2} \mathbf{i} + \frac{y}{x^2 + y^2 + z^2} \mathbf{j} + \frac{z}{x^2 + y^2 + z^2} \mathbf{k}$ 41. $40\mathbf{i} + 32\mathbf{j}$ 43. $-36\mathbf{i} 12\mathbf{j}$ 45. $4(\mathbf{i} + \mathbf{j} + \mathbf{k})$

- **51.** $\pm (-4\mathbf{i} + \mathbf{j})/\sqrt{17}$ **53.** $\mathbf{u} = (3\mathbf{i} 2\mathbf{j})/\sqrt{13}, \|\nabla f(-1, 1)\| = 4\sqrt{13}$
- **55.** $\mathbf{u} = (4\mathbf{i} 3\mathbf{j})/5, \|\nabla f(4, -3)\| = 1$ **57.** $\frac{1}{\sqrt{2}}(\mathbf{i} \mathbf{j}), 3\sqrt{2}$
- **59.** $\frac{1}{\sqrt{2}}(-\mathbf{i}+\mathbf{j}), \frac{1}{\sqrt{2}}$
- **61.** $\mathbf{u} = -(\mathbf{i} + 3\mathbf{j})/\sqrt{10}, -\|\nabla f(-1, -3)\| = -2\sqrt{10}$
- **63.** $\mathbf{u} = (3\mathbf{i} \mathbf{j})/\sqrt{10}, -\|\nabla f(\pi/6, \pi/4)\| = -\sqrt{5}$
- **65.** $(\mathbf{i} 11\mathbf{j} + 12\mathbf{k})/\sqrt{266}, -\sqrt{266}$

Responses to True-False questions may be abridged to save space.

- **67.** False; they are equal. **69.** False; let $\mathbf{u} = \mathbf{i}$ and let f(x, y) = y.
- 71. $8/\sqrt{29}$

- **73.** (a) $\approx 1/\sqrt{2}$
 - (b) 5 × y $-\nabla f(4,4)$
- 75. $9x^2 + y^2 = 9$
- 77. $36/\sqrt{17}$
- **79.** (a) $2e^{-\pi/2}i$
- 81. $-\frac{5}{3}(2\mathbf{i} \mathbf{j} 2\mathbf{k})$ **87.** $x(t) = e^{-8t}$, $y(t) = 4e^{-2t}$
- C = -10 < 5C = -15-3
- (c) $\nabla f = [2x 2x(x^2 + 3y^2)]e^{-(x^2+y^2)}$ i **91.** (a) $+[6y-2y(x^2+3y^2)]e^{-(x^2+y^2)}$ **j** (d) x = y = 0 or x = 0, $y = \pm 1$ or
 - $x = \pm 1, y = 0$

Exercise Set 13.7 (Page 975)

- **1.** (a) x + y + 2z = 6 (b) x = 2 + t, y = 2 + t, z = 1 + 2t(c) 35.26°
- 3. tangent plane: 3x 4z = -25;

normal line: x = -3 + (3t/4), y = 0, z = 4 - t

- 5. tangent plane: 9x 4y 10z = -76; normal line: x = -4 + 9t, y = 5 - 4t, z = 2 - 10t
- 7. tangent plane: 48x 14y z = 64; normal line: x = 1 + 48t, y = -2 - 14t, z = 12 - t
- 9. tangent plane: x y z = 0; normal line: x = 1 + t, y = -t, z = 1 - t
- 11. tangent plane: 3y z = -1; normal line: $x = \pi/6, y = 3t, z = 1 - t$
- **13.** (a) all points on the *x*-axis or *y*-axis (b) (0, -2, -4)
- **15.** $(\frac{1}{2}, -2, -\frac{3}{4})$ **17.** (a) (-2, 1, 5), (0, 3, 9) (b) $\frac{4}{3\sqrt{14}}, \frac{4}{\sqrt{222}}$

Responses to True-False questions may be abridged to save space.

- 19. False; they need only be parallel.
- 21. True; see Formula (15) of Section 13.4. 23. $\pm \frac{1}{\sqrt{227}}$ (i j 15k) 27. (1, 2/3, 2/3), (-1, -2/3, -2/3)
- **29.** x = 1 + 8t, y = -1 + 5t, z = 2 + 6t
- **31.** x = 3 + 4t, y = -3 4t, z = 4 3t

Exercise Set 13.8 (Page 985)

- 1. (a) minimum at (2, -1), no maxima
 - (b) maximum at (0, 0), no minima (c) no maxima or minima
- 3. minimum at (3, -2), no maxima 5. relative minimum at (0, 0)
- 7. relative minimum at (0, 0); saddle points at $(\pm 2, 1)$
- **9.** saddle point at (1, -2) **11.** relative minimum at (2, -1)
- 13. relative minima at (-1, -1) and (1, 1) 15. saddle point at (0, 0)

Answers to Odd-Numbered Exercises

- 17. no critical points 19. relative maximum at (-1, 0)
- 21. saddle point at (0, 0); relative minima at (1, 1) and (-1, -1)

Responses to True-False questions may be abridged to save space.

- **23.** False; let f(x, y) = y.
- 25. True; this follows from Theorem 13.8.6.
- **27. (b)** relative minimum at (0,0)
- **31.** absolute maximum 0, absolute minimum -12
- 33. absolute maximum 3,
- absolute minimum -135. absolute maximum $\frac{33}{4}$,
- absolute minimum $-\frac{1}{4}$
- **37.** 16, 16, 16
- **39.** maximum at (1, 2, 2)
- **41.** $2a/\sqrt{3}$, $2a/\sqrt{3}$, $2a/\sqrt{3}$
- 43. length and width 2 ft, height 4 ft
- **45.** (a) x = 0: minimum -3, maximum 0;
- x = 1: minimum 3, maximum 13/3;
 - y = 0: minimum 0, maximum 4;
 - y = 1: minimum -3, maximum 3
 - **(b)** y = x: minimum 0, maximum 3;
 - y = 1 x: maximum 4, minimum -3
 - (c) minimum -3, maximum 13/3
- **47.** length and width $\sqrt[3]{2V}$, height $\sqrt[3]{2V}/2$ **51.** $y = \frac{3}{4}x + \frac{19}{12}$
- **53.** y = 0.5x + 0.8
- **55.** (a) y = 79.22 + 0.1571t (b) (c) about 81.6 years
- 80.4 80.0 4 5
- **57.** (a) $P = \frac{2798}{21} + \frac{171}{350}T$ (b) $\frac{190}{6}$
 - (c) $T \approx -272.7096^{\circ} \text{C}$

Exercise Set 13.9 (Page 996)

- 1. (a) 4 3. (a)
 - (c) maximum $\frac{101}{4}$. minimum -531.5
- 5. maximum $\sqrt{2}$ at $(-\sqrt{2}, -1)$ and $(\sqrt{2}, 1)$, minimum $-\sqrt{2}$ at $(-\sqrt{2}, 1)$ and $(\sqrt{2}, -1)$
- 7. maximum $\sqrt{2}$ at $(1/\sqrt{2}, 0)$, minimum $-\sqrt{2}$ at $(-1/\sqrt{2}, 0)$
- **9.** maximum 6 at $(\frac{4}{3}, \frac{2}{3}, -\frac{4}{3})$, minimum -6 at $(-\frac{4}{3}, -\frac{2}{3}, \frac{4}{3})$

11. maximum is $1/(3\sqrt{3})$ at $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$, $(1/\sqrt{3}, -1/\sqrt{3}, -1/\sqrt{3}), (-1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3}),$ and $(-1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3})$; minimum is $-1/(3\sqrt{3})$ at $(1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3}), (1/\sqrt{3}, -1/\sqrt{3}, 1/\sqrt{3}),$ $(-1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$, and $(-1/\sqrt{3}, -1/\sqrt{3}, -1/\sqrt{3})$

Responses to True-False questions may be abridged to save space.

- 13. False; a Lagrange multiplier is a scalar.
- 15. False; we must solve three equations in three unknowns.
- 17. $\left(\frac{3}{10}, -\frac{3}{5}\right)$ 19. $\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{6}\right)$
- **21.** (3, 6) is closest and (-3, -6) is farthest **23.** $5(\mathbf{i} + \mathbf{j} + \mathbf{k})/\sqrt{3}$
- **25.** 9, 9, 9 **27.** $(\pm\sqrt{5}, 0, 0)$ **29.** length and width 2 ft, height 4 ft
- **33.** (a) $\alpha = \beta = \gamma = \pi/3$, maximum 1/8

► Chapter 13 Review Exercises (Page 997)

- **1.** (a) xy (b) $e^{r+s} \ln(rs)$
- **5.** (a) not defined on line y = x (b) not continuous
- **9.** (a) 12 Pa/min (b) 240 Pa/min
- **15.** df (the differential of f) is an approximation for Δf (the change in f)
- 17. $dV = -0.06667 \text{ m}^3$; $\Delta V = -0.07267 \text{ m}^3$ 19. 2
- $\frac{-f_y^2 f_{xx} + 2f_x f_y f_{xy} f_x^2 f_{yy}}{f_y^3}$ **25.** $\frac{7}{2} + \frac{4}{5} \ln 2$ **27.** $-7/\sqrt{5}$
- **29.** (0,0,2), (1,1,1), (-1,-1,1) **31.** $\left(-\frac{1}{3},-\frac{1}{2},2\right)$
- 33. relative minimum at (15, -8)
- **35.** saddle point at (0,0), relative minimum at (3,9)
- 37. absolute maximum of 4 at $(\pm 1, \pm 2)$, absolute minimum of 0 at $(\pm\sqrt{2}, 0)$ and $(0, \pm 2\sqrt{2})$
- **39.** $I_1:I_2:I_3=\frac{1}{R_1}:\frac{1}{R_2}:\frac{1}{R_3}$
- **41.** (a) $\partial P/\partial L = c\alpha L^{\alpha-1}K^{\beta}$, $\partial P/\partial K = c\beta L^{\alpha}K^{\beta-1}$

Chapter 13 Making Connections (Page 999)

Answers are provided in the Student Solutions Manual.

Exercise Set 14.1 (Page 1007)

- 1. 7 3. 2 5. 2 7. 3 9. $1 \ln 2$ 11. $\frac{1 \ln 2}{2}$
- **17.** (a) 37/4 (b) exact value = 28/3; differ by $1/1\overline{2}$

Responses to True-False questions may be abridged to save space.

- 23. False; ΔA_k is the area of such a rectangular region.
- **25.** False; $\iint f(x, y) dA = \int_{1}^{5} \int_{2}^{4} f(x, y) dy dx$.
- **29.** 19 **31.** 8 **33.** $\frac{1}{3\pi}$ **35.** 48 **37.** $1 \frac{2}{\pi}$ **39.** $\frac{14}{3}$ °C
- 41. 1.381737122 43. first integral equals $\frac{1}{2}$, second equals $-\frac{1}{2}$; no

- Exercise Set 14.2 (Page 1015) 1. $\frac{1}{40}$ 3. 9 5. $\frac{\pi}{2}$ 7. $\frac{1}{12}$
- **9.** (a) $\int_{0}^{2} \int_{0}^{x^{2}} f(x, y) dy dx$ (b) $\int_{0}^{4} \int_{-\infty}^{2} f(x, y) dx dy$
- 11. (a) $\int_{1}^{2} \int_{-2x+5}^{3} f(x,y) \, dy \, dx + \int_{2}^{4} \int_{1}^{3} f(x,y) \, dy \, dx +$ $\int_{4}^{5} \int_{2x-7}^{3} f(x, y) \, dy \, dx \quad \textbf{(b)} \int_{1}^{3} \int_{(5-y)/2}^{(y+7)/2} f(x, y) \, dx \, dy$
- **13.** (a) $\frac{16}{3}$ (b) 38 **15.** 576 **17.** 0 **19.** $\frac{\sqrt{17}-1}{2}$ **21.** $\frac{50}{3}$
- **23.** $-\frac{7}{60}$ **25.** $\frac{1-\cos 8}{2}$
- **27.** (a) **(b)** (-1.8414, 0.1586), (1.1462, 3.1462) (d) -0.4044
- **29.** $\sqrt{2}-1$ **31.** 32

Responses to True-False questions may be abridged to save space.

- 33. False; $\int_0^1 \int_{x^2}^{2x} f(x, y) \, dy \, dx$ integrates f(x, y) over the region between the graphs of $y = x^2$ and y = 2x for $0 \le x \le 1$ and results in a number, but $\int_{2}^{2x} \int_{0}^{1} f(x, y) dx dy$ produces an expression
- 35. False; although R is symmetric across the x-axis, the integrand may
- 37. 12 39. 27π 41. 170 43. $\frac{27\pi}{2}$ 45. $\frac{\pi}{2}$
- 47. $\int_{0}^{\sqrt{2}} \int_{x^2}^{2} f(x, y) dx dy$ 49. $\int_{0}^{x^2} \int_{0}^{2} f(x, y) dy dx$
- **51.** $\int_{0}^{\pi/2} \int_{0}^{\sin x} f(x, y) \, dy \, dx$ **53.** $\frac{1 e^{-16}}{8}$ **55.** $\frac{e^8 1}{3}$
- **57.** (a) 0 (b) $\tan 1$ **59.** 0 **61.** $\frac{\pi}{2} \ln 2$ **63.** $\frac{2}{3}$ °C **65.** 0.676089

- Exercise Set 14.3 (Page 1024)

 1. $\frac{1}{6}$ 3. $\frac{2}{9}a^3$ 5. 0 7. $\frac{3\pi}{2}$ 9. $\frac{\pi}{16}$ 11. $\int_{\pi/6}^{5\pi/6} \int_{2}^{4\sin\theta} f(r,\theta)r \, dr \, d\theta$
- **13.** $8 \int_{0}^{\pi/2} \int_{1}^{3} r \sqrt{9 r^2} dr d\theta$ **15.** $2 \int_{0}^{\pi/2} \int_{0}^{\cos \theta} (1 r^2) r dr d\theta$
- 17. $\frac{64\sqrt{2}}{3}\pi$ 19. $\frac{5\pi}{32}$ 21. $\frac{27\pi}{16}$ 23. $(1-\cos 9)\pi$ 25. $\frac{\pi}{8}\ln 5$ 27. $\frac{\pi}{8}$ 29. $\frac{16}{9}$ 31. $\frac{\pi}{2}\left(1-\frac{1}{\sqrt{1+a^2}}\right)$ 33. $\frac{\pi}{4}(\sqrt{5}-1)$

Responses to True-False questions may be abridged to save space.

- **35.** True; the disk is given in polar coordinates by $0 \le r \le 2$, $0 \le \theta \le 2\pi$.
- **37.** False; the integrand is missing a factor of r:

$$\iint\limits_R f(r,\theta) dA = \int_0^{\pi/2} \int_1^2 f(r,\theta) r dr d\theta.$$

- 39. $\pi a^2 h$ 41. $\frac{1}{5} + \frac{\pi}{2}$
- **43.** (a) $\frac{4}{3}\pi a^2 c$ (b) $\approx 1.0831682 \times 10^{21} \text{ m}^3$ **45.** $2a^2$

Exercise Set 14.4 (Page 1036)

1. 6π 3. $\frac{\sqrt{5}}{6}$ 5. $\sqrt{2}\pi$ 7. $\frac{(10\sqrt{10}-1)\pi}{18}$ 9. 8π

- (b) 11. (a) (c)
- **13.** (a) $x = u, y = v, z = \frac{5}{2} + \frac{3}{2}u 2v$ (b) $x = u, y = v, z = u^2$
- **15.** (a) $x = \sqrt{5}\cos u$, $y = \sqrt{5}\sin u$, z = v; $0 \le u \le 2\pi$, $0 \le v \le 1$ **(b)** $x = 2\cos u, y = v, z = 2\sin u; 0 \le u \le 2\pi, 1 \le v \le 3$
- 17. x = u, $y = \sin u \cos v$, $z = \sin u \sin v$
- **19.** $x = r \cos \theta, y = r \sin \theta, z = \frac{1}{1 + r^2}$
- **21.** $x = r \cos \theta$, $y = r \sin \theta$, $z = 2r^2 \cos \theta \sin \theta$ **23.** $x = r \cos \theta$, $y = r \sin \theta$, $z = \sqrt{9 r^2}$; $r \le \sqrt{5}$
- **25.** $x = \frac{1}{2}\rho\cos\theta$, $y = \frac{1}{2}\rho\sin\theta$, $z = \frac{\sqrt{3}}{2}\rho$ **27.** z = x 2y; a plane
- **29.** $(x/3)^2 + (y/2)^2 = 1$; $2 \le z \le 4$; part of an elliptic cylinder
- 31. $(x/3)^2 + (y/4)^2 = z^2$; $0 \le z \le 1$; part of an elliptic cone
- **33.** (a) $x = r \cos \theta$, $y = r \sin \theta$, z = r, $0 \le r \le 2$; $x = u, v = v, z = \sqrt{u^2 + v^2}, 0 < u^2 + v^2 < 4$
- **35.** (a) $0 \le u \le 3, 0 \le v \le \pi$ (b) $0 \le u \le 4, -\pi/2 \le v \le \pi/2$
- **37.** (a) $0 \le \phi \le \pi/2$, $0 \le \theta \le 2\pi$ (b) $0 \le \phi \le \pi$, $0 \le \theta \le \pi$
- **39.** 2x + 4y z = 5 **41.** z = 0 **43.** $x y + \frac{\sqrt{2}}{2}z = \frac{\pi\sqrt{2}}{8}$ 45. $\frac{(17\sqrt{17}-5\sqrt{5})\pi}{6}$ Responses to True–False questions may be abridged to save space.

- **47.** False; the surface area is $S = \iint \sqrt{[f_x(x, y)]^2 + [f_y(x, y)]^2 + 1} dA$.
- 49. True; see the discussion preceding Definition 14.4.1.
- **51.** $4\pi a^2$ **55.** $4\pi^2 ab$ **57.** 9.099
- 59. $(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$; ellipsoid 61. $(x/a)^2 + (y/b)^2 (z/c)^2 = -1$; hyperboloid of two sheets

- Exercise Set 14.5 (Page 1045)

 1. 8 3. $\frac{47}{3}$ 5. $\frac{81}{5}$ 7. $\frac{128}{15}$ 9. $\pi(\pi-3)/2$ 11. $\frac{1}{6}$ 13. 9.425

 15. 4 17. $\frac{226}{15}$
- 19. (a) $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{1\sqrt{1-x^2}} \int_{4x^2+y^2}^{4-3y^2} f(x, y, z) dz dy dx$
 - **(b)** $\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \int_{4x^2+y^2}^{4-3y^2} f(x, y, z) \, dz \, dx \, dy$
- **21.** $4 \int_0^1 \int_0^{\sqrt{1-x^2}} \int_{4x^2+y^2}^{4-3y^2} dz \, dy \, dx$
- **23.** $2\int_{0}^{3}\int_{0}^{\frac{1}{3}\sqrt{9-x^2}}\int_{0}^{x+3}dz\,dy\,dx$

Answers to Odd-Numbered Exercises A94

Responses to True-False questions may be abridged to save space.

- 27. True; apply Fubini's Theorem (Theorem 14.5.1).

$$\iiint\limits_G f(x,y,z)\,dV = \int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} f(x,y,z)\,dz\,dy\,dx.$$

- 33. $\frac{G}{4}$ 35. 3.291 37. (a) $\int_{0}^{a} \int_{0}^{b(1-x/a)} \int_{0}^{c(1-x/a-y/b)} dz \, dy \, dx$ is one example.
- 39. (a) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{0}^{5} f(x, y, z) dz dy dx$ (b) $\int_{0}^{9} \int_{0}^{3-\sqrt{x}} \int_{y}^{3-\sqrt{x}} f(x, y, z) dz dy dx$ (c) $\int_{0}^{2} \int_{0}^{4-x^2} \int_{0}^{8-y} f(x, y, z) dz dy dx$

Exercise Set 14.6 (Page 1056) 1. $\frac{\pi}{4}$ 3. $\frac{\pi}{16}$

- 5. The region is bounded by the xy-plane and the upper half of a sphere of radius 1 centered at the origin; $f(r, \theta, z) = z$.
- 7. The region is the portion of the first octant inside a sphere of radius 1 centered at the origin; $f(\rho, \theta, \phi) = \rho \cos \phi$.
- 9. $\frac{81\pi}{2}$ 11. $\frac{152}{3}\pi$ 13. $\frac{64\pi}{3}$ 15. $\frac{11\pi a^3}{3}$ 17. $\frac{\pi a^6}{48}$
- $32(2\sqrt{2}-1)\pi$ 19.

Responses to True–False questions may be abridged to save space.

21. False; the factor r^2 should be r [Formula (6)]:

$$\iiint\limits_{G} f(x, y, z) dV = \iiint\limits_{\text{appropriate limits}} f(r\cos\theta, r\sin\theta, z) r dz dr d\theta.$$

23. True; G is the spherical wedge bounded by the spheres $\rho = 1$ and $\rho = 3$, the half-planes $\theta = 0$ and $\theta = 2\pi$, and above the cone

 $(\text{volume of } G) = \iiint \, dV = \int_0^{\pi/4} \int_0^{2\pi} \int_1^3 \, \rho^2 \sin\phi \, d\rho \, d\theta \, d\phi.$

- **25.** (a) $\frac{5}{2}(-8+3\ln 3)\ln(\sqrt{5}-2)$ (b) $f(x, y, z) = \frac{y^3}{x^3\sqrt{1+z^2}}$; G is the cylindrical wedge $1 \le r \le 4$, $\frac{\pi}{6} \le \theta \le \frac{\pi}{3}$, $-2 \le z \le 2$
- **27.** $\frac{4\pi a^3}{2}$ **29.** $\frac{2(\sqrt{3}-1)\pi}{2}$

Exercise Set 14.7 (Page 1068)

1. -17 3.
$$\cos(u - v)$$
 5. $x = \frac{2}{9}u + \frac{5}{9}v$, $y = -\frac{1}{9}u + \frac{2}{9}v$; $\frac{1}{9}$ 7. $x = \frac{\sqrt{u + v}}{\sqrt{2}}$, $y = \frac{\sqrt{v - u}}{\sqrt{2}}$; $\frac{1}{4\sqrt{v^2 - u^2}}$ 9. 5 11. $\frac{1}{v}$

Responses to True-False questions may be abridged to save space.

- 13. False; $|\partial(x, y)/\partial(u, v)| = ||\partial \mathbf{r}/\partial u \times \partial \mathbf{r}/\partial v||$; evaluating this at (u_0, v_0) gives the area of the indicated parallelogram.
- **15.** False; $\partial(x, y)/\partial(r, \theta) = r$.

17. (0, 2) $-\frac{1}{3}$ (0,0)

- **21.** $\frac{3}{2} \ln 3$ **23.** $1 \frac{1}{2} \sin 2$ **25.** 96π **27.** $\frac{\pi}{24} (1 \cos 1)$ **29.** $\frac{192}{5} \pi$
- 31. $u = \begin{cases} \cot^{-1}(x/y), & y \neq 0 \\ 0, & y = 0 \text{ and } x > 0 \\ \pi, & y = 0 \text{ and } x < 0 \end{cases}$

 $v = \sqrt{x^2 + y^2}$; other answers possible

- 33. u = (3/7)x (2/7)y, v = (-1/7)x + (3/7)y; other answers possible
- 37. $\frac{1}{2} \left[\ln(\sqrt{2} + 1) \frac{\pi}{4} \right]$ 39. $\frac{35}{256}$ 41. $2 \ln 3$

Exercise Set 14.8 (Page 1077)

- 1. $M = \frac{13}{20}$, center of gravity $(\frac{190}{273}, \frac{6}{13})$ 3. $M = a^4/8$, center of gravity (8a/15, 8a/15)
- 5. $\left(\frac{1}{2}, \frac{1}{2}\right)$ 7. $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$

Responses to True-False questions may be abridged to save space.

- 9. True; recall this from Section 6.7.
- 11. False; the center of gravity of the lamina is $(\bar{x}, \bar{y}) = (M_y/M, M_x/M)$, where M_y and M_x are the lamina's first moments about the y- and xaxes, respectively, and M is the mass of the lamina.
- $\left(\frac{128}{105\pi}, \frac{128}{105\pi}\right)$ 17. $\left(\frac{4a}{3\pi}, 0\right)$ 19. $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ 21. $\left(\frac{1}{2}, 0, \frac{3}{5}\right)$
- **23.** (3*a*/8, 3*a*/8, 3*a*/8)
- **25.** $M = a^4/2$, center of gravity (a/3, a/2, a/2)
- **27.** $M = \frac{1}{6}$, center of gravity $\left(0, \frac{16}{35}, \frac{1}{2}\right)$ **29.** (a) $\left(\frac{5}{8}, \frac{5}{8}\right)$ (b) $\left(\frac{2}{3}, \frac{1}{2}\right)$
- 31. (1.177406, 0.353554, 0.231557)33. $\frac{27\pi}{4}$ 35. πka^4 37. $\left(0, 0, \frac{7}{16\sqrt{2}-14}\right)$ 39. $\left(\frac{4}{3}, 0, \frac{10}{9}\right)$
- 41. (3a/8, 3a/8, 3a/8) 43. $(2 \sqrt{2})\pi/4$ 45. (0, 0, 8/15)
- **47.** (0, 195/152, 0) **51.** $\frac{1}{2}\delta\pi a^4 h$ **53.** $\frac{1}{2}\delta\pi h(a_2^4 a_1^4)$ **57.** $2\pi^2 abk$
- **59.** (a/3, b/3)

► Chapter 14 Review Exercises (Page 1081)

- 3. (a) $\iint\limits_{P} dA$ (b) $\iiint\limits_{C} dV$ (c) $\iint\limits_{C} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$

- 5. (a) $\int_{R}^{1} \int_{1-\sqrt{1-y^2}}^{1+\sqrt{1-y^2}} f(x, y) dx dy$ 7. (a) a = 2, b = 1, c = 1, d = 2 or a = 1, b = 2, c = 2, d = 1 (b) 39. $-\frac{1}{\sqrt{2}\pi}$ 13. y 15. $\frac{1}{3}(1 \cos 64)$ 11. $\int_{0}^{1} \int_{2y}^{2} e^{x} e^{y} dx dy$ 17. a^{2} 19. $\frac{3}{2}$ 21. 32π
- **23.** (a) $\int_0^{2\pi} \int_0^{\pi/3} \int_0^a \rho^4 \sin^3 \phi \, d\rho \, d\phi \, d\theta$ **(b)** $\int_{0}^{2\pi} \int_{0}^{\sqrt{3}a/2} \int_{r/\sqrt{3}}^{\sqrt{a^2-r^2}} r^3 dz dr d\theta$

(c)
$$\int_{-\sqrt{3}a/2}^{\sqrt{3}a/2} \int_{-\sqrt{(3a^2/4)-x^2}}^{\sqrt{(3a^2/4)-x^2}} \int_{\sqrt{x^2+y^2}/\sqrt{3}}^{\sqrt{a^2-x^2-y^2}} (x^2+y^2) \, dz \, dy \, dx$$
4.
$$\frac{\pi a^3}{9} \quad \frac{27}{24} (26^{3/2} - 10^{3/2}) \approx 4.20632 \quad 29. \quad 2x + 4y - z = 5$$

25.
$$\frac{\pi a^3}{9}$$
 27. $\frac{1}{24}(26^{3/2}-10^{3/2})\approx 4.20632$ 29. $2x+4y-z=5$

33. (a)
$$\frac{1}{2(u+w)}$$
 (b) $\frac{1}{2}(7 \ln 7 - 5 \ln 5 - 3 \ln 3)$ 35. $\left(\frac{8}{5}, 0\right)$

37.
$$(0,0,h/4)$$

► Chapter 14 Making Connections (Page 1082)

Where correct answers to a Making Connections exercise may vary, no answer is listed. Sample answers for these questions are available on the Book Companion Site.

1. (b)
$$\frac{\pi}{4}$$
 3. (a) 1.173108605 **(b)** 1.173108605

4. (a) the sphere
$$0 \le x^2 + y^2 + z^2 \le 1$$
 (b) 4.934802202 (c) $\pi^2/2$ **5.** (b) 4.4506 **6.** $\frac{4}{35}\pi a^3$

5. (b) 4.4506 **6.**
$$\frac{4}{35}\pi a^3$$

Exercise Set 15.1 (Page 1092)

Responses to True-False questions may be abridged to save space.

- 11. False; the vector field has a nonzero k-component.
- 13. True; this is the curl of **F**.
- **15.** (a) all x, y (b) all x, y **17.** div $\mathbf{F} = 2x + y$, curl $\mathbf{F} = z\mathbf{i}$
- **19.** div $\mathbf{F} = 0$, curl $\mathbf{F} = (40x^2z^4 12xy^3)\mathbf{i} + (14y^3z + 3y^4)\mathbf{j} 12xy^3$

$$(16xz^{5} + 21y^{2}z^{2})\mathbf{k}$$
21. div $\mathbf{F} = \frac{2}{\sqrt{x^{2} + y^{2} + z^{2}}}$, curl $\mathbf{F} = 0$ 23. 4x 25. 0

27.
$$(1+y)\mathbf{i} + x$$

39.
$$\nabla \cdot (k\mathbf{F}) = k\nabla \cdot \mathbf{F}, \nabla \cdot (\mathbf{F} + \mathbf{G}) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G}, \nabla \cdot (\phi \mathbf{F}) = \phi \nabla \cdot \mathbf{F} + \nabla \phi \cdot \mathbf{F}, \nabla \cdot (\nabla \times \mathbf{F}) = 0$$
 47. (b) $x^2 + y^2 = K$
49. $\frac{dy}{dx} = \frac{1}{x}, y = \ln x + K$

49.
$$\frac{dy}{dx} = \frac{1}{x}, y = \ln x + K$$

Exercise Set 15.2 (Page 1108)

11. (a)
$$\frac{4\sqrt{2}-2}{3}$$
 (b) 1 (c) $\frac{2}{3}$

Responses to True-False questions may be abridged to save space.

19. 2 21.
$$\frac{13}{20}$$
 23. $1-\pi$ 25. 3 27. $-1-(\pi/4)$ 29. $1-e^3$

31. (a)
$$\frac{63\sqrt{17}}{64} + \frac{1}{4}\ln(4+\sqrt{17}) - \frac{1}{8}\ln\frac{\sqrt{17}+1}{\sqrt{17}-1} - \frac{1}{4}\ln(\sqrt{2}+1) + \frac{1}{8}\ln\frac{\sqrt{2}+1}{\sqrt{2}-1}$$
 (b) $\frac{\pi^3}{24} + \frac{e^{\pi/2}}{5} + \frac{\pi}{4} + \frac{6}{5}$
33. (a) -1 (b) -2 35. $\frac{5}{2}$ 37. 0 39. $1 - e^{-1}$ 41. $6\sqrt{3}$

33. (a)
$$-1$$
 (b) -2 **35.** $\frac{5}{2}$ **37.** 0 **39.** $1 - e^{-1}$ **41.** $6\sqrt{3}$

43.
$$5k \tan^{-1} 3$$
 45. $\frac{3}{5}$ **47.** $\frac{27}{28}$ **49.** $\frac{3}{4}$ **51.** $\frac{17\sqrt{17}-1}{4}$

53. (b)
$$S = \int_C z(t) dt$$
 (c) 4π **55.** $\lambda = -12$

Exercise Set 15.3 (Page 1120)

1. conservative,
$$\phi = \frac{x^2}{2} + \frac{y^2}{2} + K$$
 3. not conservative
5. conservative, $\phi = x \cos y + y \sin x + K$

5. conservative,
$$\phi = x \cos y + y \sin x + K$$

9. -6 **11.**
$$9e^2$$
 13. 32 **15.** $W = -\frac{1}{2}$ **17.** $W = 1 - e^{-1}$

Responses to True-False questions may be abridged to save space.

21. True; if
$$\nabla \phi$$
 is constant, then ϕ must be a linear function.

23.
$$\ln 2 - 1$$
 25. ≈ -0.307 27. $\ln 33$. $h(x) = Ce^3$

23.
$$\ln 2 - 1$$
 25. ≈ -0.307 27. $\ln 33$ $\ln (x) = Ce^x$ 35. (a) $W = -\frac{1}{\sqrt{14}} + \frac{1}{\sqrt{6}}$ (b) $W = -\frac{1}{\sqrt{14}} + \frac{1}{\sqrt{6}}$ (c) $W = 0$

Exercise Set 15.4 (Page 1127)

1. 0 **3.** 0 **5.** 0 **7.**
$$8\pi$$
 9. -4 **11.** -1 **13.** 0

Responses to True-False questions may be abridged to save space.

17. True; the integral is the area of the region bounded by
$$C$$
.

19. (a)
$$\approx -3.550999378$$
 (b) ≈ -0.269616482 **21.** $\frac{3}{8}a^2\pi$ **23.** $\frac{1}{2}abt_0$

19. (a)
$$\approx -3.550999378$$
 (b) ≈ -0.269616482 **21.** $\frac{3}{8}a^2\pi$ **23.** $\frac{1}{2}abt_0$ **27.** Formula (1) of Section 6.1 **29.** $\frac{250}{3}$ **31.** $-3\pi a^2$ **33.** $(\frac{8}{15}, \frac{8}{21})$

35.
$$\left(0, \frac{4a}{3\pi}\right)$$
 37. the circle $x^2 + y^2 = 1$ 39. 69

Exercise Set 15.5 (Page 1136)

1.
$$\frac{15}{2}\pi\sqrt{2}$$
 3. $\frac{\pi}{4}$ 5. $-\frac{\sqrt{2}}{2}$ 7. 9
Responses to True–False questions may be abridged to save space.

9. True: this follows from the definition.

11. False; the integral is the total mass of the lamina.

13. (b)
$$2\pi \left[1 - \sqrt{1 - r^2} + \frac{r^2}{2}\right] \rightarrow 3\pi \text{ as } r \rightarrow 1^-$$

(c) $\mathbf{r}(\phi, \theta) = \sin \phi \cos \theta \mathbf{i} + \sin \phi \sin \theta \mathbf{j} + \cos \phi \mathbf{k},$
 $0 \le \theta \le 2\pi, 0 \le \phi \le \pi/2;$

$$\iint_{0} (1+z) dS = \int_{0}^{2\pi} \int_{0}^{\pi/2} (1+\cos\phi) \sin\phi \, d\phi \, d\theta = 3\pi$$

17. (c)
$$4\pi/3$$

19. (a) $\frac{\sqrt{29}}{16} \int_0^6 \int_0^{(12-2x)/3} xy(12-2x-3y) \, dy \, dx$
(b) $\frac{\sqrt{29}}{4} \int_0^3 \int_0^{(12-4z)/3} yz(12-3y-4z) \, dy \, dz$

(b)
$$\frac{\sqrt{29}}{4} \int_0^3 \int_0^{(12-4z)/3} yz(12-3y-4z) \, dy \, dz$$

(c) $\frac{\sqrt{29}}{9} \int_0^3 \int_0^{6-2z} xz(12-2x-4z) \, dx \, dz$
21. $\frac{18\sqrt{29}}{5}$

21.
$$\frac{18\sqrt{29}}{5}$$

23.
$$\int_{0}^{4} \int_{1}^{2} y^{3}z\sqrt{4y^{2}+1} \, dy \, dz; \, \frac{1}{2} \int_{0}^{4} \int_{1}^{4} xz\sqrt{1+4x} \, dx \, dz$$

25.
$$\frac{391\sqrt{17}}{15} - \frac{5\sqrt{5}}{3}$$
 27. $\frac{4}{3}\pi\delta_0$ 29. $\frac{1}{4}(37\sqrt{37} - 1)$ 31. $M = \delta_0 S$ 33. $(0, 0, 149/65)$ 35. $\frac{93}{\sqrt{10}}$ 37. $\frac{\pi}{4}$ 39. 57.895751

33.
$$(0, 0, 149/65)$$
 35. $\frac{93}{\sqrt{10}}$ 37. $\frac{\pi}{4}$ 39. 57.895751

Exercise Set 15.6 (Page 1146)

3.
$$-80$$
 5. 30 7. 200π 9. 4 11. 2π 13. $\frac{14\pi}{3}$ 15. 0

Answers to Odd-Numbered Exercises

17. 18π **19.** $\frac{4}{9}$ **21.** (a) 8 (b) 24 (c) 0

Responses to True-False questions may be abridged to save space.

- 23. False; the Möbius strip has no orientation.
- 25. False; the net volume can be zero because as much fluid passes through the surface in the negative direction as in the positive direction.
- **27.** -3π **29.** (a) $0 \text{ m}^3/\text{s}$ (b) 0 kg/s **31.** (b) 32/3
- **33.** (a) $4\pi a^{k+3}$ (b) k = -3 **35.** a = 2, 3

Exercise Set 15.7 (Page 1157)

1. 3 3. $\frac{4\pi}{2}$

Responses to True–False questions may be abridged to save space.

- 5. False; it equates a surface integral and a triple integral.
- 7. True; see subsection entitled Sources and Sinks.
- 9. 12 11. $3\pi a^2$ 13. 180π 15. $\frac{192\pi}{5}$ 17. $\frac{\pi}{2}$ 19. $\frac{4608}{35}$ 21. 135π 23. (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ (b) $\mathbf{F} = -x\mathbf{i} y\mathbf{j} z\mathbf{k}$
- 33. no sources or sinks
- 35. sources at all points except the origin, no sinks 37. $\frac{7\pi}{4}$

Exercise Set 15.8 (Page 1164)

1. $\frac{3}{2}$ **3.** 0 **5.** 2π **7.** 16π **9.** 0 **11.** πa^2

Responses to True-False questions may be abridged to save space.

- 13. True; see Theorem 15.8.1. 15. False; the circulation is $\int_C \mathbf{F} \cdot \mathbf{T} ds$.
- 17. (a) $\frac{3}{2}$ (b) -1 (c) $-\frac{1}{\sqrt{2}}\mathbf{j} \frac{1}{\sqrt{2}}\mathbf{k}$ 23. $-\frac{5\pi}{4}$

- Chapter 15 Review Exercises (Page 1166)

 1 x $\frac{1-x}{\sqrt{(1-x)^2+(2-y)^2}}$ **i** + $\frac{2-y}{\sqrt{(1-x)^2+(2-y)^2}}$ **j** 5. **i** + **j** + **k**7. (a) $\int_a^b \left[f(x(t), y(t)) \frac{dx}{dt} + g(x(t), y(t)) \frac{dy}{dt} \right] dt$
- - **(b)** $\int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} dt$
- 11. 0 13. -7/2 17. (a) $h(x) = Cx^{-3/2}$ (b) $g(y) = C/y^3$ 21. $A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$

-5

- **23.** $\iint f(x(u, v), y(u, v), z(u, v)) \| r_u \times r_v \| du dv$ **25.** yes **27.** 2π
- 31. -8π 35. (a) conservative (b) not conservative

Chapter 15 Making Connections (Page 1168)

Answers are provided in the Student Solutions Manual.

► Appendix A (Page A11)

- **1.** (e) **3.** (b), (c) **5.** $[-3, 3] \times [0, 5]$
- 9. $[-0.1, 0.1] \times [-3, 3]$ 7. $[-5, 14] \times [-60, 40]$
 - -0.1
- **11.** $[-400, 1050] \times [-1500000, 10000]$ **13.** $[-2, 2] \times [-20, 20]$

- **17.** (a) $f(x) = \sqrt{16 x^2}$ (b) $f(x) = -\sqrt{16 x^2}$ (e) no
- 19. (a) -2
- (b)

The graph is stretched in the vertical direction, and reflected across the *x*-axis if c < 0.

The graph is translated so its vertex is on the parabola

The graph is translated vertically.

35. (a)
$$x = 4\cos t$$
, $y = 3\sin t$ (b) $x = -1 + 4\cos t$, $y = 2 + 3\sin t$

33.

► Appendix B (Page A23)

- 1. (a) $\frac{5}{12}\pi$ (b) $\frac{13}{6}\pi$ (c) $\frac{1}{9}\pi$ (d) $\frac{23}{30}\pi$
- 3. (a) 12° (b) $(270/\pi)^{\circ}$ (c) 288° (d) 540°

5.		$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
	(a)	$\sqrt{21}/5$	2/5	$\sqrt{21}/2$	$5/\sqrt{21}$	5/2	$2/\sqrt{21}$
	(b)	3/4	$\sqrt{7}/4$	3/√7	4/3	$4/\sqrt{7}$	$\sqrt{7}/3$
	(c)	3/√10	$1/\sqrt{10}$	3	$\sqrt{10}/3$	$\sqrt{10}$	1/3

- 7. $\sin \theta = 3/\sqrt{10}$, $\cos \theta = 1/\sqrt{10}$ 9. $\tan \theta = \sqrt{21}/2$, $\csc \theta = 5/\sqrt{21}$
- **11.** 1.8

13.		θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
	(a)	225°	$-1/\sqrt{2}$	$-1/\sqrt{2}$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
	(b)	-210°	1/2	$-\sqrt{3}/2$	$-1/\sqrt{3}$	2	$-2/\sqrt{3}$	$-\sqrt{3}$
	(c)	$5\pi/3$	$-\sqrt{3}/2$	1/2	$-\sqrt{3}$	$-2/\sqrt{3}$	2	$-1/\sqrt{3}$
	(d)	$-3\pi/2$	1	0	_	1	_	0

	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
(a)	4/5	3/5	4/3	5/4	5/3	3/4
(b)	-4/5	3/5	-4/3	-5/4	5/3	-3/4
(c)	1/2	$-\sqrt{3}/2$	$-1/\sqrt{3}$	2	$-2/\sqrt{3}$	$-\sqrt{3}$
(d)	-1/2	$\sqrt{3}/2$	$-1/\sqrt{3}$	-2	$2/\sqrt{3}$	$-\sqrt{3}$
(e)	$1/\sqrt{2}$	$1/\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
(f)	$1/\sqrt{2}$	$-1/\sqrt{2}$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1

- **17.** (a) 1.2679 (b) 3.5753
- 19.

	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
(a)	a/3	$\sqrt{9-a^2}/3$	$a/\sqrt{9-a^2}$	3/a	$3/\sqrt{9-a^2}$	$\sqrt{9-a^2}/a$
(b)	$a/\sqrt{a^2+25}$	$5/\sqrt{a^2+25}$	a/5	$\sqrt{a^2+25}/a$	$\sqrt{a^2+25}/5$	5/a
(c)	$\sqrt{a^2-1}/a$	1/a	$\sqrt{a^2-1}$	$a/\sqrt{a^2-1}$	а	$1/\sqrt{a^2-1}$

- **21.** (a) $3\pi/4 \pm n\pi$, n = 0, 1, 2, ...
 - **(b)** $\pi/3 \pm 2n\pi$ and $5\pi/3 \pm 2n\pi$, n = 0, 1, 2, ...
- **23.** (a) $\pi/6 \pm n\pi$, n = 0, 1, 2, ...
 - **(b)** $4\pi/3 \pm 2n\pi$ and $5\pi/3 \pm 2n\pi$, n = 0, 1, 2, ...
- **25.** (a) $3\pi/4 \pm n\pi$, n = 0, 1, 2, ...
 - **(b)** $\pi/6 \pm n\pi$, n = 0, 1, 2, ...
- **27.** (a) $\pi/3 \pm 2n\pi$ and $2\pi/3 \pm 2n\pi$, n = 0, 1, 2, ...(b) $\pi/6 \pm 2n\pi$ and $11\pi/6 \pm 2n\pi$, n = 0, 1, 2, ...
- **29.** $\sin \theta = 2/5$, $\cos \theta = -\sqrt{21}/5$, $\tan \theta = -2/\sqrt{21}$, $\csc \theta = 5/2$, $\sec \theta = -5/\sqrt{21}$, $\cot \theta = -\sqrt{21}/2$
- 31. (a) $\theta = \pm n\pi, n = 0, 1, 2, \dots$ (b) $\theta = \pi/2 \pm n\pi, n = 0, 1, 2, \dots$ (c) $\theta = \pm n\pi, n = 0, 1, 2, \dots$ (d) $\theta = \pm n\pi, n = 0, 1, 2, \dots$
 - (e) $\theta = \pm n\pi, n = 0, 1, 2, ...$ (d) $\theta = \pm n\pi, n = 0, 1, 2, ...$ (e) $\theta = \pi/2 \pm n\pi, n = 0, 1, 2, ...$ (f) $\theta = \pm n\pi, n = 0, 1, 2, ...$
- **33.** (a) $2\pi/3$ cm (b) $10\pi/3$ cm **35.** $\frac{2}{5}$
- 37. (a) $\frac{2\pi \theta}{2\pi} R$ (b) $\frac{\sqrt{4\pi\theta \theta^2}}{2\pi} R$ 39. $\frac{21}{4}\sqrt{3}$ 41. 9.2 ft
- **43.** $h = d(\tan \beta \tan \alpha)$ **45.** (a) $4\sqrt{5}/9$ (b) $-\frac{1}{9}$
- 47. $\sin 3\theta = 3 \sin \theta \cos^2 \theta \sin^3 \theta$, $\cos 3\theta = \cos^3 \theta 3 \sin^2 \theta \cos \theta$
- **61.** (a) $\cos \theta$ (b) $-\sin \theta$ (c) $-\cos \theta$ (d) $\sin \theta$
- **69.** (a) 153° (b) 45° (c) 117° (d) 89° **71.** (a) 60° (b) 117°

► Appendix C (Page A32)

- 1. (a) $q(x) = x^2 + 4x + 2$, r(x) = -11x + 6
 - **(b)** $q(x) = 2x^2 + 4$, r(x) = 9
 - (c) $q(x) = x^3 x^2 + 2x 2$, r(x) = 2x + 1
- 3. (a) $q(x) = 3x^2 + 6x + 8$, r(x) = 15
 - **(b)** $q(x) = x^3 5x^2 + 20x 100, r(x) = 504$
 - (c) $q(x) = x^4 + x^3 + x^2 + x + 1, r(x) = 0$

5.	x	0	1	-3	7
	p(x)	-4	-3	101	5001

- 7. (a) $q(x) = x^2 + 6x + 13$, r = 20 (b) $q(x) = x^2 + 3x 2$, r = -4
- 9. (a) ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24
- **(b)** ± 1 , ± 2 , ± 5 , ± 10 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{5}{3}$, $\pm \frac{10}{3}$ **(c)** ± 1 , ± 17
- **11.** (x+1)(x-1)(x-2) **13.** $(x+3)^3(x+1)$
- **15.** $(x+3)(x+2)(x+1)^2(x-3)$ **17.** -3 **19.** $-2, -\frac{2}{3}, -1 \pm \sqrt{3}$
- **21.** -2, 2, 3 **23.** 2, 5 **25.** 7 cm

INDEX

Abel, Niels Henrik, 297	Alexeev, Vasili, 450
abscissa, Web-G1	algebraic functions, 32
absolute convergence, 641, 642	integration formulas, 489
ratio test for, 643, 644	algebraic manipulation, of integrand, 488
absolute error, 116	alternating current, 395
Euler's Method, 583	alternating harmonic series, 639
absolute extrema	alternating series, 638–641
Extreme-Value Theorem, 267	alternating series test, 638, 645, 671
finding on closed and bounded sets, 982–985	amplitude
finding on finite closed intervals, 268	alternating current, 395
finding on infinite intervals, 269, 270	simple harmonic motion, 180, Web-L5
functions with one relative extrema, 270, 271	$\sin x$ and $\cos x$, 33
on open intervals, 270	analytic geometry, 275, Web-E3
absolute extremum, 266, 977	Anderson, Paul, 450
absolute extremum, 266, 977	angle(s), A13-A15
absolute minimum, 266, 977	finding from trigonometric functions, A22
absolute minimum, 200, 977 absolute minimum values, 977	of inclination, A23
absolute minimum values, 977 absolute value function, 5	between planes, 816
	polar, 706
continuity, 114	rectangular coordinate system, A16–A18
derivative of, 147	standard position, A16
properties, 5	between vectors, 786–787
absolute values, Web-F1–Web-F5	angular coordinate, 706
and square roots, Web-F1, Web-F2	angular frequency, simple harmonic motion, 180
absolute zero, 988	annuity, 301
acceleration, 290	antiderivative(s), 322, 323
centripetal, 903	of vector-valued functions, 854
constant, 378–380, Web-G11	antidifferentiation, 320, 323
due to gravity, 127, 380	aphelion, 760, 900
instantaneous, 290	apogee, 759, 900
motion along curves, 882	artificial Earth satellite, 210, 900
normal and tangential components, 885–888	approximation(s)
rectilinear motion, 290	area under a curve, 319
sign of, 291	left, right, and midpoint, 533
tangential scalar/vector component, 886	local linear, 943
vector, 883	local linearity, 212–213
acceleration function, 290	local quadratic, 648
addition	Maclaurin and Taylor polynomial, 649, 651, 652, 655
formulas for sine and cosine, A20	656
of functions, 15, 16	midpoint, 534, 536, 537
Agnesi, Maria, 841, 847	Riemann sum, 354
air resistance, 590	of roots using Intermediate-Value Theorem, 116-117

I-2 Index

of roots using Newton's Method, 297–300	autonomous
of roots by zooming, 117	differential equation, 585
Simpson's rule, 537, 538, 540	auxiliary equation, Web-L2
trapezoidal, 534	average rate of change, 138
arc functions, 44	average value, 385, 386, 1008, 1017
arc length, 438, 440, 441, A14, A15	and average velocity, 387
finding by numerical methods, 441	average velocity, 135, 385, 387
and improper integrals, 553	geometric interpretation, 136
as a line integral, 1095	axis (axes)
parametric curves, 443, 697	coordinate, Web-G1
polar curve, 721, 722	of an ellipse, 732
from vector viewpoint, 859	of a hyperbola, 732
arc length parametrization, 860	of a parabola, 732
finding, 862–864	polar, 705
properties, 864, 865	of revolution, 425
Archimedean spiral, 714, 718	rotation of, 749, 750
Archimedes, 316, 318	Dodal Hampstrad 494
palimpsest, 318	Badel, Hannskarl, 484 ball
area	
antiderivative method, 320, 321	closed, 920
calculated as double integral, 1014	open, 920
computing exact value of, 346	base <i>b</i> exponential function, 401
definition, 343, 344	Bell, Alexander Graham, 59
finding with Green's Theorem, 1124–1125	Bernoulli equation, 595
function of two variables, 906	Bernoulli, Daniel, 700
left endpoint approximation, 347	Bernoulli, Jakob, 767
as a line integral, 1095, 1099, 1124–1125	Bernoulli, Jakob I, 698–700
midpoint approximation, 347	Bernoulli, Johann (John), 3, 221, 767
net signed, 347, 350, 355, 377	Bernoulli, Johann (John) I, 698–700
polar coordinates, 724, 725	Bernoulli, Nikolaus, 700
with polar double integrals, 1022	Bessel, Friedrich Wilhelm, 666
rectangle method, 317, 321	Bessel equation of order one, 689
right endpoint approximation, 347	Bessel equation of order zero, 689
surface of revolution, 444, 446	Bessel functions, 666
total, 366, 378	derivative of, 679
	Beverton–Holt model, 613–614
between two curves, 414, 416–418	bifolium, 728
under a curve, 344	binomial coefficient, 677
area problem, 317	binomial series, 674, 675
argument, 3	binormal vectors, 871
arithmetic mean (or average), 385, 757	formula summary, 878
aspect ratio distortion, A6	bipartite cubics, A12
Astronomia Nova, 759	Bolzano, Bernhard, 149
astronomy, planetary motions, 759, 896, 897, 899, 900	Bopp, Thomas, 762
asymptote(s), 99, 254	boundary, 920
a curve as an, 99	boundary point, 920
curvilinear, 258	bounded functions, 359
horizontal, 32, 89	bounded sets, 978
oblique, 258	finding absolute extrema, 982
slant, 258	Bowditch, Nathaniel, 705
vertical, 32, 76	Bowditch curves, 705
asymptotes of a hyperbola, 732	Boyle's law, 30, 36
finding, 738	brachistochrone problem, 699
asymptotic curves, 99	Brahe, Tycho, 759

branches, of hyperbola, 731	single integral, 1058
breakpoints, 6	triple integrals, 1065–1067
butterfly curve, 717	chaos
	and Newton's Method, 300
carbon dating, 574	circle(s), 730, Web-H2-Web-H4
cardioid, 711	of curvature, 877
area, 724	degenerate cases, Web-H4, Web-H5
families of, 713	and discriminant, Web-K1
intersection with circle, 725	families, 712, 713
carrying capacity, 100, 563	involute, 704
Cartesian coordinate system, 767, Web-G1	osculating, 130
Cassini, Giovanni Domenico, 719	circular cone, 824–825
Cassini ovals, 719	circular helix, 842
catenary, 475	circular paraboloid, 824–825
Cauchy, Augustin, 649, 651	circulation, 1163
Cauchy–Riemann equations, 939	circulation density, 1164
polar form, 959	closed ball, 920
Cavalieri, Bonaventura, 431	
Cavalieri's principle, 431	closed disk, 919
center	closed form, sigma notation, 343
circles, Web-H3	closed interval(s), Web-E4
ellipse, 731	absolute extrema on finite, 267
hyperbola, 732	continuity on, 112
center of curvature, 877	closed parametric curves, 1113
center of force, 896	closed sets, 919
center of gravity, 458, 1072	finding absolute extrema, 982–985
lamina, 458–462, 1072, 1074	closed surfaces, 1148
solids, 1075, 1076	clothoid, 766
centimeter-gram-second (CGS), 450	Cobb–Douglas production model, 999
central angle, cylindrical wedges, 1048	coefficient of friction, 154, 180
central force field, 896	coefficient of linear expansion, 219
central forces, 896	coefficient of volume expansion, 219
centripetal acceleration, 903	coefficients, A27
centripetal force, 903	correlation, Web-J2
centroid(s), 464	leading, A27
geometric property, 462	polynomials, 31
lamina, 1074	cofunction, 181
of a region, 462–464	Commentaries on the Motions of Mars, 759
of the region R , 1074	common logarithms, 55
solids, 1075, 1076	comparison test, 631, 632, 645
chain rule, 174	complete elliptic integral of the first kind, 560, 685
alternative version, 175	complete linear factorization, A28
derivatives, 949–952, 954	Complete nacta factorization, 725
functions of <i>n</i> variables, 953	completing the square, 20, Web-H4
generalized derivative formulas, 176	complex numbers, Web-E1, Web-E2
implicit differentiation, 955	•
implicit partial differentiation, 955–956	compliance, Web-G12
Leibniz notation, 213	component functions, 843
partial derivatives, 952–953	components of $r(t)$, 843
proof, A36	components, of vectors, 775
two-variable, A43	composition of functions, 17
change of parameter, 861, 862	continuity, 114, 115
change of variables	derivatives, 174
double integrals, 1063–1065	<i>u</i> -substitutions for, 332, 334–336

I-4 Index

compounding interest	integration formulas, 489
annually, 301, 577	second-order linear homogeneous equations, Web-L2
continuously, 129, 577	constrained absolute maximum (minimum), 991-993
n times each year, 129	constrained relative maximum (minimum), 991–993
quarterly, 577	constrained-extremum principle
semiannually, 577	three variables and one constraint, 993–994
compressible fluids, 1140	two variables and one constraint, 991–993
computer algebra system(s) (CAS), 530, A1	continuity, 110–117
differentiation using, 178	applications, 111
integration using, 338, 488, 528, 529	compositions, 114–115
linear systems, 519	and differentiability, 148, 943
Maple, A1, A2	exponential function, 122, 400
Mathematica, A1, A2	functions of three variables, 925
polynomial roots, A31	functions of two variables, 922–923, 924
concave down, 235	Intermediate-Value Theorem, 115–117
concave up, 235	on an interval, 112
concavity, 235, 254	inverse functions, 121
conchoid of Nicomedes, 764	from the left/right, 112
concurrent forces, 781	logarithm function, 398, 403
conditionally convergent, 643	logarithmic function, 122
cone, 824, 830, 836	polynomials and rational functions, 113
conic sections, 730–732	proof of basic property, A35–A36
applications, 743	trigonometric functions, 121
degenerate, 730, Web-K2	vector-valued functions, 848
focus-direction characterization, 754	of vector-valued functions, 849
polar equation, 755, 756	continuity equation, for incompressible fluids, 1154
quadratics, 748–752, Web-K2	continuous compounding, 129, 577
reflection properties, 742, 743	continuous functions
sketching in polar coordinates, 756–758	average value, 385–387
translated, 740–742	properties, 113
conjugate axis, 732	contour maps, 909–911
connected domain, 1114	contour plot, 909
conservation of energy principle, 1119, 1168	using technology, 911
conservative fields, 1087–1088	convergence, 600, 610, 611, 614–616
conservative vector fields, 1087–1088, 1112–1113	absolute, 641, 642
path independence and, 1113–1114	and algebraic properties of series, 624, 625
test for, 1115–1118	conditional, 643
Constant Difference Theorem, 306, 307	and eventual behavior of sequences, 610
constant function, 27, 80, 155, 233	improper integral, 549–551
constant of integration, 323	infinite series, 616
constant of proportionality, 29, 36, Web-G11	monotone sequences, 610, 611
inverse proportionality, 29, 36	radius/interval of, 662, 664
constant polynomial, A27	sequences, 600
constant surfaces, 832–833	convergence set, 662
constant term, polynomials, A27	convergence tests
constant <i>u</i> -curves, 1028, 1032, 1060	alternating series, 638–641
constant <i>v</i> -curves, 1028, 1032, 1060	comparison test, 631, 632
constant(s)	integral test, 626, 628
derivative, 155	limit comparison test, 633, 634
factor, in a derivative, 157	p-series, 627
factor, in a limit, 82	ratio test, 634, 635
and graph reflections, 22	root test, 635
and graph translations, 20	summarized, 645

coordinate axes, Web-G1	curve(s)
coordinate line, Web-E3	as asymptote, 99
coordinate planes, 768	integral, 327, 562
coordinates, Web-E3, Web-G1, Web-G2	length of, 438–440, 697, 859, 860
Cartesian, 767, Web-G1	level, 909–911
converting between, 833–834	limits along, 917
cylindrical, 832	orthogonal, 191
polar, 705, 706	parametric, 694, Web-I2
spherical, 832, 836	piecewise smooth, 1107
Copernicus, 759	polar, 707
corner points, 147	position versus time, 288
Cornu, Marie Alfred, 766	smooth, 438
Cornu spiral, 766, 904	velocity versus time, 377
correlation, Web-J1	curve fitting, 987
correlation coefficient, Web-J2	curve sketching, 254
cosecant, A15	curved lamina, 1130
continuity, 121	curvilinear asymptotes, 475
derivative, 170	cusp, 259
hyperbolic, 474	cycle, 395
cosine, A15	cycloid, 698
	apple of discord, 699
continuity, 121	cycloids
derivative of, 169, 173	prolate, 703
family, 32, 34	role in mathematics history, 700
formulas, A20, A22	cylinder, 421, 422
hyperbolic, 474	cylindrical coordinates, 832
integrating powers of, 500, 501, 505	converting, 833
integrating products with sine, 501, 503	equations of surfaces in, 835–836
rational functions of, 527	cylindrical elements of volume, 1048
trigonometric identities, A18–A20	cylindrical shells, 432–435
cost function, 281	cylindrical surfaces, 770–771
cotangent, A15	cylindrical wedges, 1048, 1049
continuity, 121	de Dice I conordo (Fibonacci) 607
derivative, 170	da Pisa, Leonardo (Fibonacci), 607
hyperbolic, 474	damping constant, Web-L8 decay constant, 571
Coulomb's law, 36, 1087	interpreting, 572
CRC Standard Mathematical Tables and Formulae, 488,	decibels, 59
523	decimal representations, Web-E2
Crelle, Leopold, 297	decreases without bound, 75
critical point, 245, 979	decreasing functions, 233
cross product, 796	invertibility, 42
algebraic properties, 797–798	decreasing sequence, 607
coordinate independent, 801	definite integrals
derivatives, 852	defined, 354
geometric properties, 798–799	and Fundamental Theorem of Calculus, 363, 365, 366.
cross-product term, 750, 751	369, 370
cross section, 417, 421	integration by parts, 496
cubic polynomial, 31, A27	properties of, 356–358
curl, 1088–1090	substitution, 390–392
viewed as circulation, 1163	degenerate conic sections, 730, Web-K2
curl field, 1165	degree, polynomials, 31, A27
curvature, 873, 875, 877	degree measure, A13
2-space interpretation, 877	del ∇ operator, 1090
1 /	±

I-6 Index

density	differentiable
circulation, 1164	on (a, b) , 146
flux, 1154	everywhere, 146, 943
lamina, 458, 1130	on an interval, 150
of lamina, 1071	on R, 943
mass, 469	at x_0 , 146
weight, 469	differential equation(s), 561–562
density function, 1071	autonomous, 585
dependent variable, 3	Bernoulli, 595
derivative function, 143–145	homogeneous, 595
defined, 143	initial-value problems, 328
domain, 143	and integration, 328
"prime" notation, 143	order of, 561
slope producing, 144	and rates of change, 561
derivative(s)	separable, 568–571
compositions, 174	slope/direction field for, 329, 580
constant function, 155	solutions, 561
constant multiple rule, 157	differentials, 213–214, 944, 945
defined, 143, 150, 151	error propagation, 215–216
difference quotient, 143	formulas, 216–217
of dot and cross products, 852	differentiation, 150
equation of the tangent line, 144	computer algebra systems, 178
exponential functions, 198	implicit, 187–190, 952, 955
inverse trigonometric functions, 200	as inverse property of integration, 371
left-hand, 150	logarithmic, 194–195, 199
of a linear function, 145	of power series, 678, 679
logarithmic functions, 193	and related rates, 204–208
notation, 143, 150, 151	rules, 167
nth order, 160	techniques of, 155, 156, 158–160, 163–167, 174
one-sided, 150	Diophantine analysis, 303
of position function, 146	Diophantus, 275
power rule, 156, 195	direct proportionality, Web-G11, Web-G12
of a product, 163, 164	direction angles, 787–788
of a quotient, 165	direction cosines, 787–788
of a reciprocal, 167	direction field, 329, 580
right-hand, 150	direction of increasing parameter, 694, Web-I2
trigonometric functions, 169–172	in 3-space, 841
of vector-valued functions, 849, 850	directional derivatives, 960–963
velocity as, 146	directrix, 731, 754
Descartes, René, 187, 275, 468, 698, Web-E3	discontinuities, 29, 110-111, Web-G4
determinants, 795	infinite, 110
deterministic phenomena, Web-J1	and integrability, 358
difference quotient, 143	jump, 110
differentiability, 146, 148, 150, 151	limits at, 119, 923
and continuity, 943	physical significance, 111
and continuity, 148	removable, 111, 119
continuity of first-order partial derivatives, 943	at $x = c$, 110
functions defined implicitly, 190	discriminant, 752, Web-K1, Web-K2
functions of two or three variables, 940-942	disease, first-order differential equations modeling spread
geometric interpretation, 147	of, 564
lack of, 147	disk
vector-valued functions, 849	closed, 919
of vector-valued functions, 850	open, 919

displacement, 135	dummy variables, 367, 368
finding by integration, 372, 376	dx, 213
motion along curves, 884	dy, 213
from velocity versus time curve, 378	dy/dx, 150, 213
displacement vector, 773, 791	dyne-centimeters (erg), 450
distance, 3-space, 768	dynes, 450
distance formula, 768, Web-H1	
distance traveled	e, 193, 400, 402
finding by integration, 376	Earth
motion along curves, 884	Mercator projections, 506
rectilinear motion, 377	spherical coordinates, 836
from velocity versus time curve, 378	Earth-observing satellite, 173
divergence, 1088–1090, 1149	earthquake intensity, 59, 63
absolute, 641	eccentricity, 754
as flux density, 1154	as measure of flatness, 755
improper integral, 549–551	ecliptic, 896
of infinite series, 616	economics, optimization problems, 281, 282
of sequences, 600	electric intensity vector, 970
divergence test, 623, 624, 645	electrostatic field, 1086–1087, 1138
Divergence Theorem, 1149–1151	elementary functions, 403
finding flux, 1151–1153	elements, of sets, Web-E4
	ellipses, 730, 731
inverse-square fields, 1155 division	area, 746, 1125
	and discriminant, Web-K1
of functions, 15, 16	eccentricity as measure of flatness, 755
by zero, Web-E2	focus-directrix property, 755
domain, 7	polar equation, 756
effect of algebraic operations on, 8	reflection properties, 743
functions of two or more variables, 907	sketching, 736, 737
inverse functions, 40, 44	sketching in polar coordinates, 756–758
natural, 7	standard equations, 734, 735
physical considerations in applications, 9, 10	translated, 740
restricted, 44	ellipsoids, 823, 824
restricting to make functions invertible, 44	identifying, 829
vector-valued functions, 843	elliptic cones, 823–825
dot products, 785	identifying, 829
algebraic properties, 785	elliptic paraboloids, 823, 824, 826
coordinate independent, 801	identifying, 829
derivatives, 852	elliptical orbits, 760, 895, 899
sign of, 787	empty set, Web-E4
double integrals, 1002	end behavior, 89
area calculated as, 1014	and limits, 91, 94
change of variables, 1063, 1065	Endpaper Integral Table, 523–528
converting from rectangular to polar coordinates, 1023	energy, 449
evaluating, 1002–1005	conservation of, 1119
limits of integration, 1011–1013, 1021	kinetic, 449, 455
over nonrectangular regions, 1009–1011	potential, 1119
in polar coordinates, 1019, 1020	relationship to work, 454–455
properties of, 1006	equal vectors, 774
in rectangular coordinates, 1020	equiangular spirals, 729
reversing order of integration, 1013	equilateral hyperbola, 29, 740
double-angle formulas, A21	equilibrium, 460
doubling time, 572–573	equipotential curves, 917
drag force, 590	erg, 450

I-8 Index

error	of limaçons, 713, 714
absolute, 116, 583	of rose curves, 713
in local linear approximations, 213	of spirals, 714
measurement, 215	families of functions
percentage, 216, 583	cosine, 32, 34
propagated, 215	exponential, 53
relative, 216	sine, 32, 34
error function $[erf(x)]$, 404, 530	Fermat's last theorem, 275
error propagation, 215	Fermat's principle, 287
escape speed, 899	Fermat, Pierre de, 274, 698
Euler, Leonhard, 3, 622, 990	
Euler's equidimensional equation, Web-L7	Fibonacci sequence, 607
Euler's Method, 581–583	finite intervals, Web-E4
even function, 23	finite solid, 1039
eventually holding properties, 610	first-degree equation
evolute, 880	x and y , Web-G10
existence theorem, 267	first derivative test, 246, 247
exp, 54	first moment, of lamina, 1074
exponential decay, 571–573	first octant, 768
exponential functions, 53	first-order differential equations, 561, 562, 570, 586–591
analyzing growth with L'Hôpital's rule, 223	functions of two variables, 579–580
approximating with power series, 672	linear, 586
with base b , 53	mixing problems, 589–590
continuity, 122	modeling with, 571–574, 589–591
derivatives, 198–199, 230	separable, 569–570
end behavior, 95	slope fields, 580
equation solving, 57, 58	first-order initial-value problem, 562
graph, 53	first-order model, pendulum period, 686
integration formulas, 489	first-order partial derivatives, 933
natural, 54	flow fields, 1138
radioactive decay, 230	flow line, 1093
exponential growth, 60, 571–573	fluid, 467
extrema, 977	dynamics, 467
Extreme-Value Theorem, 267, 274, 978	force, vertical surface, 470–471
extremum (extrema), 244, 267, 268	homogeneous, 469
absolute, 266	pressure, 469
relative, 244, 254	statics, 467
extremum problem	fluid flow, 1084
applied, 274–278, 280–282	steady state, 1140
one-variable, 267	flux, 1140, 1142
three-variable with one constraint, 989, 993–995	density, 1154
two variable with one constraint, 989, 991–993	of F across σ , 1142
extrusion, 770	finding with Divergence Theorem, 1151–1153
	integrals, 1142
Factor Theorem, A30	outward, 1151–1153
factorial (n!), 603, 650	fluxion, 1084
factors, polynomials, A30	focal axis, 732
false gaps, graphing utilities, A8	
false line segments, graphing utilities, A8	focus, 731, 754
families	ellipse, 731
of cardioids, 713, 714	hyperbola, 731
of circles, 712, 713	parabola, 731
of curves, 27	focus–directrix property, of conics, 754
of functions, 30–34	Folium of Descartes, 186, 189, 728

Folsom maints 576	inarranging and decreasing 222, 224
Folsom points, 576	increasing and decreasing, 232–234
force(s)	interpolating, Web-J1 inverse, 38–40
force(s)	
constant, 449–451	inversing, 42
fluid, 471	invertible, 41
line of action, 805	logarithmic, 55
pressure, 468–469	natural domain, 7
resultant of two concurrent forces, 780–781	odd, 23, 28, 29
variable, 451–453	one-to-one, 41
force field	partial derivatives, 928
work performed by, 1105	piecewise-defined, 6
force vector, 774	properties, 4–10
four-cusped hypocycloid, 26, 190	range, 7
four-petal rose, 709, 713	relative maxima and minima, 244
fractals, and Newton's Method, 300	restriction, 44
free-fall model, 380	smooth, 438, 858
integration, 380, 382	of three variables, 907
with resistance, 590–591	of two variables, 579–580, 907
free motion, Web-L8	vertical line test, 4
Frenet, Jean Frédéric, 871	ways of describing, 2
Frenet frame, 871	functions of n real variables, 907
Frenet–Serret formulas, 881	functions of three variables
frequency	continuity, 924
alternating current, 395	gradient, 963
simple harmonic motion, 180, Web-L6	level surfaces, 911–912
$\sin x$ and $\cos x$, 33	multiple integrals, 1000, 1039-1042
	partial derivatives, 932
Fresnel, Augustin, 404	functions of two variables
Fresnel cosine function, 404	continuity, 922–923, 924
Freshel sine function, 404	contour maps, 909–911
Fubini, Guido, 1005	gradient, 963
function(s), 1, 6	graphing utilities, 912, 914
adding, 15	graphs, 908–909
approximating with power series, 670–675	maxima and minima, 977, 979–982, 984–985
arithmetic operations on, 15	multiple integrals, 1000–1003, 1005, 1006, 1009–101
bounded, 359	partial derivatives, 927, 930–932
compositions, 17, 18	Fundamental Theorem of Calculus, 362–364, 369, 370
constant, 27	dummy variables, 367, 368
decreasing, 42	and integrating rates of change, 371
defined by integrals, 403, 404	relationship between definite and indefinite integrals,
defined by power series, 665, 666	365, 366
defined explicitly and implicitly, 185–186	vector-form, 854
described by tables, 908	Fundamental Theorem of Work Integrals, 1112–1113
differentiable, 146	Tandamental Theorem of Work Integrals, 1112 1113
domain, 7	g, acceleration due to gravity, 127
elementary, 403	Gabriel's horn, 555, 1030
even, 23, 28, 29	Galileo, 698
expressing as composition, 18, 19	Galileo, 763
graphical information analysis, 1	Galois, Evariste, A31
graphing utilities, A1	Gamma function, 559
graphs of, 4	gases, 467
homogeneous of degree n , 999	Gateway Arch, 484
increase without bound, 60	Gauss, Carl Friedrich, 354, 1084, 1150
increasing, 42	Gaussian curve, 1150
<i>C</i> ,	,

I-10 Index

Gauss's law	symmetry, 23
for electric fields, 1156	in 3-space, 769
for inverse-square fields, 1155	translations, 20
Gauss's Theorem, 1149–1151	vector-valued function of two variables, 1031
general equation	vector-valued functions, 844, 845
circle, Web-H5	vertical tangents and cusps, 259
lines, Web-G10	x-intercepts, 4
general form, equation of plane, 814	zeros, 4
general logarithms, 402, 403	gravitational field, 1084
general solution, 562	great circle, 840
general term, 597, 623	great circle distance, 840
geometric curves, Web-G2	Great Pyramid at Giza, 230
geometric mean, 757, 758	greatest integer function, 27
geometric series, 617, 619	greatest lower bound, 612
geosynchronous orbit, 900	Green, George, 1123
gradient fields, 1087	Green's Theorem, 1122–1123
gradients, 963–965	finding area using, 1124–1125
to find tangent lines to intersections of surfaces, 974	finding work using, 1124
graphing using calculus and technology together, 262	multiply connected regions, 1125–1126
graphing utilities	and Stokes' Theorem, 1162
aspect ratio distortion, A6	Gregory, James, 673
contour plots, 911	Gregory of St. Vincent, 397
errors of omission, A8	grid lines, A2
false gaps and line segments, A8	growth constant, 571
functions of two variables, 912, 914	interpreting, 572
inverse function graphing, A9, Web-I4	growth rate, population, 182
nonelementary functions, 407	
parametric curve generation, 842, A9, Web-I3	Hale, Alan, 762
polar curves, 715	Hale–Bopp comet, 762
rational functions, 261	half-angle formulas, A22
resolution, A7	half-closed intervals, Web-E4
root approximation by zooming, 117	half-life, 572–573
sampling error, A7	half-open intervals, Web-E4
and true shape of graph, A9	Halley's comet, 760
	hanging cables, 475, 765
graphs, Web-G2	harmonic motion, simple, 180, 567
conic sections in polar coordinates, 756–758	harmonic series, 620
exponential functions, 54	heat equation, 939
functions, 4	height
functions of two variables, 908–909	cylindrical wedges, 1048
hyperbolic functions, 475	right cylinder, 422
inverse functions, 43	helicoid, 1038
logarithmic functions, 56	Hippasus of Metapontum, Web-E1
parametric curves in 3-space, 842	homogeneous differential equation, 595
polar coordinates, 707, 709	homogeneous functions, 999
power functions, 29	homogeneous lamina, 458, 1071
properties of interest, 254	Hooke, Robert, 452, Web-G12
quadratic equation, Web-H5–Web-H7	Hooke's law, 452, Web-G12
quadric surfaces, 824–826	horizontal asymptotes, 32, 89
rational functions, 255, 261	polar curves, 719
reflections, 21	horizontal line test, 42
roots, 4	horizontal range, 894
sequence, 599	Hubble, Edwin P., Web-J8
stretches and compressions, 22	Hubble's constant, Web-J8

Hubble's law, Web-J8	increasing functions, 233
Humason, Milton L., Web-J8	invertibility, 42
hyperbolas, 730, 731	increasing sequence, 607
and discriminant, Web-K1	increment, 150, 941
equilateral, 29, 740	Euler's method, 582
polar equation, 756	indefinite integrals, 323, 324
reflection properties, 743	and Fundamental Theorem of Calculus, 365, 366
sketching, 739, 740	properties, 325–327
sketching in polar coordinates, 756, 757, 759	independence of path, 1113
standard equation, 737, 738	independent variable, 3
translated, 740	indeterminate form, 85, 219, 222–225
hyperbolic cosecant, 474	of type ∞/∞ , 222
hyperbolic cosine, 474	of type $\infty - \infty$, 225
hyperbolic cotangent, 474	of type 0/0, 219
hyperbolic functions, 474	of type 0^0 , ∞^0 , 1^{∞} , 225
applications arising in, 475	of type $0 \cdot \infty$, 224
derivative formulas, 477	index
graphs, 475	for sequence, 598
integration formulas, 477–478, 489	of summation, 341
inverse, 478–480	inequalities
and unit hyperbola, 476–477	with absolute values, Web-F3, Web-F4
hyperbolic identities, 476	algebraic properties, Web-E5, Web-E6
hyperbolic navigation systems, 743	solving, Web-E6–Web-E8
hyperbolic paraboloids, 823, 824, 826	triangle, Web-F5
identifying, 829	infinite discontinuities, 110
hyperbolic secant, 474	integrands with, 551
hyperbolic sine, 474	infinite intervals, Web-E4
hyperbolic spiral, 714, 719	
hyperbolic substitution, 514	absolute extrema on, 269, 270
hyperbolic tangent, 474	integrals over, 548–550
hyperboloid, 836	infinite limits, 74, 105
hyperboloid of one sheet, 823, 824	informal view, 75
identifying, 829	infinite sequence, 596 infinite series, 596, 614–617, 619, 620
hyperboloid of two sheets, 823, 825	absolute convergence, 641, 642
identifying, 829	<u> </u>
hyperharmonic series, 627	algebraic properties of, 624–626
	alternating harmonic series, 639
ideal gas law, 927, 988	alternating series, 638–641 binomial series, 674, 675
ill posed problems, 280	
image of S under T , 1059	comparison test for, 631–633, 645
image of x under f , 3	conditional convergence of, 643
implicit differentiation, 187–189, 955	convergence/divergence of, 616
chain rule, 955	convergence tests for, 623–628, 631–635, 638,
implicit functions, 185–186	640–643, 645
implicit partial differentiation, 931, 932	divergence test for, 624, 645
chain rule, 955–956	general term of, 623
improper integrals, 547, 549–551, 553	geometric series, 617–619
arc length and surface area, 553	harmonic series, 620
integrands with infinite discontinuities, 551	hyperharmonic series, 627
over infinite intervals, 548–550	integral test for, 626, 628
improper rational functions, integrating, 520, 521	limit comparison test for, 633, 634, 645, A40
incompressible fluids, 1140	Maclaurin series, 660–663, 669–675, 681, 683, 684
continuity equation, 1154 increases without bound, 75	686 nth partial sum. 616
THE LEAST WITHOUT DUNING, 1.2	nui paruai MIII. VIV

I-12 Index

power series, 661–666	surface, 1130
p-series, 627	tables, 489, 490, 523–528
ratio test for, 634, 635	triple, 1039
root test for, 635	of vector-valued functions, 853, 855
roundoff error with, 672	integral test, 626, 628, 645
sums of, 614–617	integrand, 323
Taylor series, 659–663, 669, 670, 681, 683–685	integrating factor, 587
terms of, 614	integration, 323
truncation error with, 672	constant of, 323
infinite slope, 696, Web-G5	and differential equations, 328
infinity, limits at, 89–96	and direction fields, 329
inflection point at x_0 , 236	hyperbolic substitution, 514
inflection points, 236, 238, 254	as inverse property of differentiation, 371
applications, 238, 239	iterated (or repeated), 1003, 1009, 1010
inhibited population growth, 563–564	limits of, 354
initial conditions, 328, 562, Web-L4	notation for, 323, 324
initial point, vectors, 774	partial, 1003
initial side, of angles, A13	of power series, 679, 680
initial-value problems, 328	of rates of change, 371
Euler's Method for, 581–583	reversing the order of, 1013
first-order differential equations, 562	and slope fields, 329
second-order linear homogeneous differential	<i>u</i> -substitution, 332, 333, 335, 336
equations, Web-L4	integration by parts, 491–493
instantaneous acceleration, 290	definite integrals, 496
motion along curves, 882	LIATE, 493, 494
instantaneous rate of change, 67, 138	reduction formulas, 497
instantaneous speed	repeated, 493
motion along curves, 882	tabular, 495
instantaneous velocity, 136	integration formulas, 324, 489, 490
definition, 136	inverse trigonometric functions, 337, 490
	vector-value functions, 854
geometric interpretation, 136	integration methods, 488, 490
as a limit of average velocities, 136	intensity, of sound, 59
motion along curves, 882	intercepts, Web-G4
rectilinear motion, 136, 146	interior, 920
instantaneous velocity function, 146	interior point, 920
integer powers, 52	Intermediate-Value Theorem, 115
integers, Web-E1	International Space Station, 452
integrability and discontinuities, 358	International System of Units (SI), 450
integrable functions, 354	interpolating function, Web-J1
integrable on $[a, b]$, 354	intersection, intervals, Web-E5
integral(s)	interval of convergence, 662
complete elliptic, of the first kind, 560, 685	finding, 662, 663
curves, 327, 562	power series in $x - x_0$, 663, 664
double, 1002, 1006	intervals, Web-E4, Web-E5
functions defined by, 403, 404	intrinsic error, 540
iterated, 1003, 1009, 1010	inverse cosine function, 45
Mean-Value Theorem for, 368, 369, 386	inverse function(s), 38, 39, 55
notation, 323	cancellation equations, 39
partial definite, with respect to x and y , 1003	continuity, 121
relationship between definite and indefinite, 365, 366	domain, 40
Riemann, 354	domain and range, 40
$sign(\int), 323, 324$	existence, 41
single, 1006	finding, 40

graphing utilities, A9, Web-I4	Lagrange, Joseph Louis, 906, 990
graphs, 43	Lagrange multiplier, 991
horizontal line test, 42	Lagrange multipliers method, 990–993
notation, 39	three variables and one constraint, 993–995
parametric equations, 695	Lagrange's identity, 804
range, 40	Lamé's special quartic, 190
inverse hyperbolic functions, 478–480	lamina, 458
derivatives and integrals, 481–482	center of gravity of a, 458-462, 1074
logarithmic forms, 480	centroid of, 462–464, 1074, 1076
inverse proportionality, 29	curved, 1130
inverse secant function, 45	density of, 458, 1071, 1130
inverse sine function, 45	first moment of <i>a</i> , 461, 1074
inverse tangent function, 45	homogeneous/inhomogeneous, 458, 1071
inverse transformation, 1059	mass, 458, 1071, 1072, 1130–1131, 1135
inverse trigonometric functions, 38, 44, 200	moment(s) of, 460–462, 1074
derivatives, 200	Laplace, Pierre-Simon de, 274, 1000, 1091
evaluating, 46	Laplace transform, 556
identities, 47	Laplace's equation, 939, 1091
inverse-square fields, 1086–1087	polar form, 958
Gauss's law, 1155	Laplacian ∇^2 operator, 1090
invertible functions, 41	latitude, 1030
involute of a circle, 704	Law of Areas, 759, 895, 899
inward orientation, 1148	Law of Cosines, 50, A20–A22
inward unit normal, 870	for a tetrahedron, 840
irrational exponents, 52, 401	Law of Orbits, 759, 895, 899
derivatives, 195	Law of Periods, 759, 895, 899, 900
irrational, 52	Law of Sines, A25
irrational numbers, Web-E1	Law of Universal Gravitation, 2, 37, 896, 1084, 1086
irreducible quadratic factors, A27	leading coefficient (term), A27
irrotational vector field, 1164	least squares line of best fit, 987, Web-J2
isobar, 916	least squares principle, 287
isothermal curves, 917	least upper bound, 612
iterated integrals, 1003, 1009, 1010	left-endpoint approximation, 533
with nonconstant limits of integration, 1009	left-hand derivatives, 150
reversing order of integration, 1013	left-handed coordinate systems, 767
reversing order of integration, 1015	Leibniz, Gottfried Wilhelm, xix, 67, 221, 319, 698, 699
Jacobi, Carl Gustav Jacob, 1059	derivative notation, 213
Jacobian, 1058	integral notation, 213, 323
three-variable, 1066	lemniscate, 190, 712
in two variables, 1061, 1062	length
joule, 450	arc, 438, 440, A14
jump discontinuity, 110	of a vector, 778
Jump discontinuity, 110	level curves, 909–911
Kepler, Johannes, 759	gradients normal to, 965–966
Kepler's equation, 313	level surfaces, 911–912
Kepler's laws, 313, 759, 895	normal, 972
first law, 759, 895, 899	normal line to, 972
second law, 759, 895, 899	tangent plane, 971–972
third law, 759, 895, 899, 900	lever arm, 460
kinetic energy, 449, 455	LIATE stategy for integration by parts, 493
Kramer, Gerhard (Mercator), 506	Libby, W. F., 573
,	limaçons, 713, 714
L'Hôpital, Guillaume Francois Antoine De, 221, 698, 699	limit comparison test, 633, 634, 645
L'Hôpital's rule, 220–226	proof, A39

I-14 Index

limit(s), 67–76, 78, 80–86, 89–96, 98–105, 848, 919–921, 925	geometric interpretation, 1104 Green's Theorem, 1122
area defined as, 343, 344	independence of path, 1113
computing, 80, 85, 91, 94	mass of a wire, 1094–1095, 1098
along curves, 917–918	orientation of <i>C</i> , 1097, 1101
•	along piecewise smooth curves, 1107
decimals and, 69 at discontinuities, 119, 923	with respect to arc length, 1094–1095
	with respect to the length, $1004 - 1005$ with respect to x , y , and z , 1100 , 1102
does not exist, 73, 74	around simple closed curves, 1124
end behavior, 91, 94	in 3-space, 1098
epsilon-delta definition, 101	work as, 1105, 1107
fail to exist, 72–74, 95, 124	line of action, 805
functions of three variables, 924	line segments, 808
functions of two variables, 920–921	vector form, 845
horizontal asymptotes, 89	linear algebra, 519, 795
indeterminate forms, 219–223, 225	linear combination, 784
indeterminate forms of type 0/0, 85	linear depreciation schedule, 35
infinite, 74, 105	linear differential equation, 586, Web-L1–Web-L4,
at infinity, 89–90	Web-L6
informal view of, 71	linear equation, Web-G10
intuitive approach, 67, 73, 74	linear factor rule, 516
nth root, 81	linear factors, 516, 517
one-sided, 72, 101	linear functions, 31
piecewise-defined functions, 86	mathematical models, Web-J3, Web-J4
polynomials as $x \to \pm \infty$, 91, 92	practical problems, Web-G11
polynomials as $x \rightarrow a$, 82, 84	linear interpolation, 908
product, 81	linear polynomial, 31, A27
proof of basic theorems, A34–A35	linearly dependent functions, Web-L1
quotient, 81	linearly independent functions, Web-L1
radicals, 85	lines, Web-G5, Web-G7–Web-G11
rational functions as $x \to \pm \infty$, 92	angle of inclination, A23
rational functions as $x \rightarrow a$, 82, 84	degenerate conics, 730, Web-K2
of Riemann sums, 354, 1002, 1040	determined by point and slope, Web-G8
rigorous discussion, 100–102, 105	determined by point and vector, 805–807
sampling pitfalls, 71	determined by slope and y-intercept, Web-G9, Web-G10
sequences, 599, 600, 602	families of, 712
simple functions, 80, 81, 91	parallel to the coordinate axes, Web-G8
Squeezing Theorem, 122	vector equations of, 808–809
sum, 81	liquids, 467
of summations, 346	Lissajous curve, 703
trigonometric functions, 121	Lissajous, Jules Antoine, 703
two-sided, 72–73, 100–101	Lituus spiral, 714
of vector-valued functions, 848	local linear approximation(s), 212, 649, 946
x^n as $x \to \pm \infty$, 91	local linearity, 212, 944, 946
$x \to \pm \infty$, 103, 105	differentials, 213-214, 215-216
limits of integration, 354	local quadratic approximations, 648
line integrals, 1094, 1096, 1097, 1105, 1107	locally linear, 212
area as, 1095, 1099, 1124	logarithmic differentiation, 194, 199
along closed paths, 1113	logarithmic function(s), 55, 57
evaluating, 1096–1097, 1099–1100, 1102–1103, 1113	base <i>b</i> , 55
of $\vec{\mathbf{F}}$ along C , 1103–1104	continuity, 122
Fundamental Theorem of, 1112	derivatives 192–193

end behavior, 95	mass
equation solving, 57, 58	of curved lamina, 1130–1131
integral, 493	of a lamina, 458, 1071, 1072
properties, 57	mass density, 469
properties of exponential functions compared, 57	mass density function, 1071
logarithmic growth, 60	mass of a wire, 1094–1095
logarithmic scales, 59	as a line integral, 1098
logarithmic spiral, 714, 729	Mathematica, A1, A2
logarithms, 55	mathematical models, 987, Web-J1
approximating with power series, 673	linear functions as, Web-J3, Web-J4
change of base formula, 59	
properties, 57	quadratic and trigonometric functions as,
logistic	Web-J4–Web-J6
curve, 239, 577	maximum
	absolute, 266, 977
differential equation, 564	relative, 244, 977
growth, 239, 240, 243, 564	mean value, 386, 1008, 1017
longitude, 1030	Mean-Value Theorem, 304–306
lower bound	consequences, 306
greatest, 612	proof, 304
monotone sequence, 611	velocity interpretation, 305
sets, 612	Mean-Value Theorem for Integrals, 368, 386
lower limit of integration, 354	measurement error, 215
lower limit of summation, 341	mechanic's rule, 301
1 CP W1 C5	members, of sets, Web-E4
m, slope of line, Web-G5	Mercator (Gerhard Kramer), 506
Machin's formula, 677	Mercator projection, 506
Maclaurin, Colin, 649	mesh lines, 821
Maclaurin polynomials, 649–651	mesh size, of partition, 353
sigma notation, 652, 654, 655	method
Maclaurin series, 660–663, 669, 670, 672–675, 681,	
683–685	of cylindrical shells, 432–435
binomial series, 674, 675	of disks, 425
differentiation, 678	Newton's, 297, 299
exponential functions, 672	of washers, 426
integrating, 680	method of integrating factors, 587–589
logarithm approximation, 673	method of least squares, 987
practical ways to find, 683, 684	midpoint approximation, 533, 540, 543
trigonometric function approximation, 670, 672	error estimate, 540–542
various functions, 675	errors, 535
Magellan spacecraft, Web-J3, Web-J4	midpoint formula, Web-H2
magnitude, 5, Web-F1	Miller, Norman, 286
of vector, 778	millibars, 916
major axis, 731	minimax point, 826
Mantle, Mickey, 765	minimum
manufacturing cost, 281	absolute, 266, 977
Maple, A1, A2	relative, 244, 977
mapping, transformations, 1059	minor axis, 731
marginal analysis, 283	minutes (angle), A13
marginal cost, 283	mixed second-order partial derivatives, 933
marginal productivity of capital, 999	equality, 934
marginal productivity of labor, 999	mixing problems, first-order differential equations
marginal productivity of fabol, 999	589–590
marginal revenue, 283	Möbius, August, 1138
Mars, 763	Möbius strip, 1138

I-16 Index

modeling with differential equations, 561, 563–566,	negative orientation
571–574, 589–591	nonparametric surfaces, 1144
differential equations, 561	parametric surface, 1140
doubling time, 572, 573	net signed area, 347, 350
exponential growth/decay, 571–573	net signed volume, 1002
half-life, 572–573	Newton, Isaac, xviii, 3, 67, 319, 698, 699, 759, 1084
Newton's Law of Cooling, 565	derivative notation, 213
pharmacology, 564	Maclaurin disciple of, 649
population growth, 563–564	solution of the brachistochrone problem in his own
spread of disease, 564–565	handwriting, 700
vibration of springs, 565–566	Newton's Law of Cooling, 154, 387, 565
moment	Newton's Law of Universal Gravitation, 2, 37, 896, 1084
lamina, 460–462	1086
about a line, 460	Newton's Method, 298, 299
about a point, 459	difficulties with, 299
moment of inertia, 1079	Newton's Second Law of Motion, 454
moment, of lamina, 1074	Newtonian kinetic energy, 691
monkey saddle, 821	newton-meters, 450
monotone sequences, 607	newton, 450
<u>-</u>	nonnegative number, Web-E5
convergence, 610, 611	nonorientable surfaces, 1139
monotonicity testing, 608, 610	nonparametric surfaces, orientation of, 1144–1145
properties that hold eventually, 610	norm, of vector, 778
Moon	normal
orbit eccentricity, 902	to level surface, 972
motion	
along a curve, 882, 883, 885–890	normal line
constant acceleration, 378	to level surface, 972
free-fall, 380–382, 590, 591	normal plane, 871
rectilinear, 288, 290–292, 376, 378–380	normal scalar component of acceleration, 886
rotational in 3-space, 802	normal vector, 972
simple harmonic, 180, 567	normal vector component of acceleration, 886
$m_{\rm tan}, 132$	normalizing vectors, 779
multiplication, of functions, 15, 16	nth Maclaurin polynomial, 650, 656, 659
multiplicity, 249, A28	nth order derivative, 160
geometric implications of, 249	nth partial sum, 616
multiply connected domain, 1115	nth remainder, 655, 668
	estimating, 669, 670
natural domain, 7	nth Taylor polynomial, 653, 655, 659
functions of two or more variables, 907	null set, Web-E4
vector-valued function, 843	numbers
natural exponential function, 54	complex, Web-E1, Web-E2
formal definition, 400	integers, Web-E1
natural logarithm, 56	natural, Web-E1
approximating with Maclaurin series, 673	rational, Web-E1
derivative, 397	real, Web-E1
integral, 493	numerical analysis, 540, 672
properties, 398	numerical integration, 533–543
natural numbers, Web-E1	absolute error, 535, 538
<i>n</i> -dimensional, 907	error, 535, 538, 540
negative, of a vector, 775	midpoint approximation, 534
negative angles, A13	Riemann sum approximation, 533
negative changes of parameter, 862	Simpson's rule, 537–540
negative direction, 1140, 1158, Web-E3	tangent line approximation, 536
arc length parametrization, 860	trapezoidal approximation, 534

oblate spheroid, 831	orthogonal
oblique asymptote, 258	curves, 191
octants, 768	trajectories, 191
odd function, 23	vectors, 787
Ohm's law, 109	orthogonal components, 788–789
On a Method for the Evaluation of Maxima and Minima,	orthogonal projections, 790–791
274	orthogonal surfaces, 976
one-sided derivatives, 150	osculating circle, 130, 877
one-sided limits, 72, 101	osculating plane, 871
one-third rule, 540	outer boundary, simple polar regions, 1019
one-to-one functions, 41, 197–198	output, of function, 2, 3
	outside function, 18
one-dimensional wave equation, 935	outward flux, 1151–1153
1-space, 767	outward flux density, 1154
one-to-one transformations, 1059	outward orientation, 1148
open ball, 920	overhead, 281
open disk, 919	Pappus, Theorem of, 464–465
open form, sigma notation, 343	Pappus of Alexandria, 465
open interval, Web-E4	parabolas, 730, Web-H5
open sets, 919	defined, 731
optimization problems, 232	and discriminant, Web-K1
absolute maxima and minima, 268-270	focus-directrix property, 755
applied maximum and minimum problems, 274–281,	Kepler's method for constructing, 766
283	polar equation, 756
categories, 274	reflection properties, 742, 743
economics applied, 281, 282	semicubical, 697
five-step procedure for solving, 276	sketching, 733, 734
ill posed, 280	sketching in polar coordinates, 756
involving finite closed intervals, 274–279	standard equations, 732, 733
involving intervals not both finite and closed,	translated, 740
279–281	parabolic antenna, 743
Lagrange multipliers, 990–995	parabolic mirror, 743
maxima and minima of functions of two variables,	parabolic spiral, 714, 718
	paraboloid, 823, 824, 826, 836
977–983, 985	parallel lines, Web-G7
order	parallel vectors, 775
of the derivative, 160	parameters(s), 27, 692, Web-I1
differential equations, 561–562	arc length as, 860
ordinate, Web-G1	change of, 861, 862
Oresme, Nicole, 622	parametric curves, 694, 841, Web-I2
orientation, 1139	arc length, 443, 698
of a curve, 841	change of parameter, 861
nonparametric surfaces, 1144–1145	closed, 1113
piecewise smooth closed surfaces, 1148	generating with graphing utilities, A9, Web-I3
positive/negative, 1125, 1140	limits along, 918–919 line integrals along, 1096–1097
relative, 1158	orientation, 694, 841, Web-I2
smooth parametric surface, 1140	piecewise-defined, 702, Web-I7
in 3-space, 841	scaling, A10, Web-I5
orientation, of a curve, 694, Web-I2	simple, 1115
oriented surfaces, 1138–1139, 1144–1145	tangent lines, 695–697
origin, 705, 767, Web-E3, Web-G1	3-space, 841, 842
symmetry about, 710	translation, A10, Web-I4, Web-I5
- J J	

I-18 Index

parametric equations, 692, 693, Web-II expressing ordinary functions parametrically, 694, A9,	perihelion, 760, 900 period, 219
Web-I3	alternating current, 395
graphing utilities, 715, 842	first-order model of pendulum, 686
intersections of surfaces, 842	pendulum, 219
of lines, 806–809	simple harmonic motion, 180
orientation, 694, 842, Web-I2	simple pendulum, 560
projectile motion, 889	$\sin x$ and $\cos x$, 33
of a tangent line, 851	periodicity, 254
parametric surfaces, 1028	permittivity constant, 1087
orientation, 1140	perpendicular lines, Web-G7
of revolution, 1030	pH scale, 59, 62
surface area, 1028, 1034, 1035	phenomena
tangent planes, 1032–1034	deterministic, Web-J1
partial definite integrals, 1003	probabilistic, Web-J1
partial derivative sign, 928	physical laws, Taylor series modeling, 685
partial derivatives	π
chain rule, 952–953	approximating, 317, 318, 673, 674
and continuity, 932	famous approximations, Web-E9
estimating from tabular data, 930–931	Piazzi, Giuseppi, 1150
functions, 928	piecewise-defined functions, 6
functions, 728 functions of two variables, 927, 930–932	limits, 86
functions with more than two variables, 932	piecewise smooth closed surfaces, 1148
higher-order, 933–934	piecewise smooth functions, line integrals along, 1107
mixed, 933	pixels, A7
notation, 928, 932	planes
	angle between, 816
as rates of change and slopes, 929–930, 932	determined by a point and a normal vector, 813-814
of vector-valued functions, 1031, 1032	distance between two points in, Web-H1, Web-H2
partial differential equation, 935	distance problem, 816–817
partial differentiation, implicit, 931–932	parallel to the coordinate planes, 813
partial fraction decomposition, 515	perpendicular, 787
partial fractions, 514, 515	transformation, 1059, 1060
improper rational functions, 520, 521	planetary orbits, 313, 705, 759, 895–900
linear factors, 516, 517	plot, Web-G2
quadratic factors, 518–520	Pluto, 762
partial integration, 1003	point-normal form
partial sums, 616	of a line, 820
partition 252	of a plane, 813
of the interval $[a, b]$, 353	points
regular, 355	distance between two in plane, Web-H1, Web-H2
Pascal, Blaise, 468	point-slope form, Web-G9
pascal (Pa), 468	polar angle, 706
Pascal's Principle, 473	polar axis, 705
path independence, of work integral, 1111–1113	polar coordinates, 705, 706
path of integration, 1111	area in, 719, 724, 725
path of steepest ascent, 969	graphs, 707
peak voltage, 395	relationship to rectangular, 706
pendulum, Taylor series modeling, 685	sketching conic sections, 756, 758, 759
percentage error, 216	symmetry tests, 710–712
Euler's Method, 583	polar curves
perigee, 759, 900	arc length, 721
artificial Earth satellite, 210	area bounded by, 719, 724, 725

conic sections, 755, 756	positive orientation
generating with graphing utilities, 715	multiply connected regions, 1125
intersections, 726	nonparametric surfaces, 1144–1145
tangent lines, 719–721	parametric surface, 1140
tangent lines at origin, 721	potential energy, 1119
polar double integrals, 1019, 1020	potential function, 1087
evaluating, 1020–1022	pounds, 450
finding areas using, 1022	power functions, 28
polar form	fractional and irrational exponents, 52, 401
of Cauchy–Riemann equations, 959	noninteger exponents, 30
of Laplace's equations, 958	power rule, 156, 195
polar rectangle, 1019	power series, 661, 664
polar Riemann sums, 1020	convergence of, 662, 664
pole, 705	differentiation, 678, 679
Polonium-210, 576	exponential function approximation, 672
polygonal path, 439	functions defined by, 665, 666, 675
polynomial in x, 31	integrating, 679, 680
polynomial of degree <i>n</i> , A27	interval of convergence, 662, 663
polynomials, A27–A28	logarithm approximation, 673
coefficients, A27	π approximation, 673, 674
continuity, 113	and Taylor series, 681
degree, A27	trigonometric function approximation, 670–672
Factor Theorem, A30	pressure, 468–469
geometric implication of multiplicity of a root, 249	principal unit normal vector, 869, 1033
graphing, 249–251	probabilistic phenomena, Web-J1
limits as $x \to \pm \infty$, 91	product, of functions, 15, 16
limits as $x \to a$, 82, 84	product rule, 164, 491, 493
Maclaurin, 649–651	production model, 999
method for finding roots, A31–A32	product-to-sum formulas, A22
properties, 250, 254	profit function, 281
quick review, 31	projectile motion
Remainder Theorem, A29	parametric equations of, 889, 891
roots, 297	vector model, 888, 889
Taylor, 653, 654	projective geometry, 468
population growth, 563–564	prolate cycloid, 703
carrying capacity, 100, 563	propagated error, 215
first-order differential equations, 563	proper rational function, 515
inhibited, 563–564	p-series, 627
rate, 182	pseudosphere, 1038
the logistic model, 564	1
	quadrants, Web-G2
uninhibited, 563	quadratic approximations, local, 648
position	quadratic equation(s)
finding by integration, 376	discriminant, Web-K1
position function, 135, 288, 882	eliminating cross-product terms, 750, 751
derivative of, 146	in x , Web-H5
position vector, 844	in x and y, 741 , 748
position versus time curve, 135, 288	in y, Web-H7
analyzing, 291	quadratic factor rule, 518
positive angles, A13	quadratic factors, 518–520
positive changes of parameter, 862	quadratic formula, Web-E2
positive direction, 1140, 1158, Web-E3	quadratic mathematical model, Web-J4, Web-J5
arc length parametrization, 860	quadratic polynomial, 31, A27
positive number, Web-E5	quadratic regression, Web-J4

I-20 Index

quadratrix of Hippias, 228	Completeness Axiom, 611
quadric surfaces, 822	decimal representation, Web-E2
graphing, 824–826	real-valued function of a real variable, 3
identifying, 829	rectangle method for area, 318
reflections in 3-space, 828	rectangular coordinate systems, 767, 768, Web-G1
translations, 827	angles, A16–A18
quartic polynomials, 31, A27	left-handed, 767
quintic polynomials, 31, A27	right-handed, 767
quotient rule, 165	rectangular coordinates, 767–832
n malan accordinate 706 700	converting cylindrical and spherical, 833
r, polar coordinate, 706, 708	relationship to polar, 706
radial coordinate, 706 radial unit vector, 905	rectifying plane, 871
	rectilinear motion, 134–136, 288–292, 376–381
radian measure, A13	acceleration, 290
radians, A13	average velocity, 135
radicals, limits involving, 85	constant acceleration, 378–380
radioactive decay, 230, 573	distance traveled, 377
radius, A14	free-fall, 381, 382
circles, Web-H3	instantaneous speed, 289
radius of convergence, 662, 664	instantaneous velocity, 136, 146
radius of curvature, 877	position function, 135
radius vector, 844, 1031 Radon-222, 576	position versus time, 135
	speed, 289
Ramanujan, Srinivasa, 677	velocity, 146, 289
Ramanujan's formula, 677	recursion formulas, 604
range, 7 horizontal, 894	recursively defined sequences, 604
inverse functions, 40	reduction formulas, 497
physical considerations in applications, 9, 10	integral tables, matches requiring, 525, 526
rate(s) of change, 137–139	integrating powers and products of trigonometric
applications, 140	functions, 500, 501
average, 138	reference point, arc length parametrization, 860
differential equations, 561	reflections, 21
instantaneous, 138	of surfaces in 3-space, 828
integrating, 371	region, 464
partial derivatives, 929–930, 932	regression
related rate, 204–208	line, Web-J2
ratio, geometric series, 617	quadratic, Web-J4
ratio test, 634, 635, 645	regression line, 987
for absolute convergence, 643, 645	regular partition, 353
proof, A40	related rates, 204–208
rational functions, 31, 32	strategy for solving, 205
continuity, 113	relative decay rate, 572
graphing, 255, 261	relative error, 216
integrating by partial functions, 514, 516–521	relative extrema, 244, 254, 977
limits as $x \to \pm \infty$, 92	and critical points, 245
limits as $x \rightarrow a$, 82, 84	finding, 979–981
proper, 515	first derivative test, 246
properties of interest, 254	second derivative test, 247
of $\sin x$ and $\cos x$, 527	second partials test, 980–981
rational numbers, Web-E1	relative growth rate, 572
rays, 712	relative maxima, 977–978
real number line, Web-E3	relative maximum, 244
real numbers, 611, Web-E1	relative minima, 977–978
	•

relative minimum, 244	rose curves, 713
relativistic kinetic energy, 691	rotation equations, 749, 750
relativity, theory of, 79, 98	rotational motion, 3-space, 802
Remainder Estimation Theorem, 655, 656, 669, 671	roundoff error, 540
proof, A41, A42	in power series approximation, 672
Remainder Theorem, A28–A29	Rule of 70, 576
removable discontinuity, 111, 119	run, Web-G5
repeated integration, 1003	Ryan, Nolan, 381
repeated integration by parts, 493	•
repeating decimals, Web-E2	Saarinan, Eero, 484
represented by power series, 665	saddle point, 826, 979
residuals, 987, Web-J1	sampling error, A7
resistance thermometer, Web-G15	scalar components, 789
resistivity, Web-J7	scalar moment, 802–803
resolution, in graphing utilities, A7	scalar multiple, 774
restriction of a function, 44	scalar triple product, 800
resultant, 781	algebraic properties, 801
revenue function, 281	geometric properties, 800–801
revolution	scale and unit issues, graphs, 10
solids of, 424	scale factors, A2
surfaces of, 444, 835	scale marks, A2
Rhind Papyrus, Web-E9	scale variables, A2
Richter scale, 59, 63	scaling, parametric curves, A10, Web-I5
Riemann, Bernhard, 354	secant, A15
Riemann integral, 354	continuity, 121
Riemann sum approximations, 533	derivative, 170
	hyperbolic, 474
Riemann sums, 354, 413, 533	integrating powers of, 503, 504
double integral, 1002	integrating products with tangent, 504, 505
triple integral, 1040	second derivative, 159
Riemann zeta function, 668	second derivative test, 247
right cylinder, 422	second partials test, for relative extrema, 980–981
height, 422	second-degree equation, 748, 823
volume, 422	second-order initial-value problem, Web-L4
width, 422	second-order linear differential equation, Web-L1
right endpoint approximation, 533	second-order linear homogeneous differential equations,
right-hand derivatives, 150	Web-L1
right-hand rule, 799	complex roots, Web-L3
right-handed coordinate systems, 767	distinct real roots, Web-L2
right triangle, trigonometric functions, A15–A16	equal real roots, Web-L3
rise, Web-G5	initial-value problems, Web-L4
RL series electrical circuit, 593	second-order model, pendulum period, 686
Rolle, Michel, 302	second-order partial derivatives, 933–934
Rolle's Theorem, 302	seconds (angle), A13
root test, 635, 645	sector, A15
root-mean-square, 395	segment, 301
roots, A28	semiaxes, A10, Web-I5
approximating by zooming, 117	semiconjugate axis, 737
approximating using Intermediate-Value Theorem,	semicubical parabola, 697
116–117	semifocal axis, 737
approximating using Newton's Method, 297, 299	semimajor axis, 734
of functions, 4	semiminor axis, 734
multiplicity of, 249	separable differential equations, 568–571
simple, 249	separation of variables, 568–569

I-22 Index

sequence of partial sums, 616	singular points, 696
sequences, 596, 597, 599, 600, 602, 604	sinks, 1154
convergence, 600	skew lines, 808
defined recursively, 604	slope, Web-G5
general term, 597	partial derivatives, 929–930, 932
graphs, 599	slope field, 329, 580
increasing/decreasing, 607	slope of a line, A23
limit, 599, 600, 602	slope of a surface, 930, 960
lower bound, 611	slope-producing function, 144
monotone, 607, 609–612	slope-intercept form, Web-G9
of partial sums, 616	slowing down, 290
properties that hold eventually, 610	small vibrations model, 686
Squeezing Theorem, 602, 603	smooth change of parameter, 862
strictly increasing/decreasing, 607	smooth curve, 438
types of, 607	smooth function, 438, 858
upper bound, 611	smooth parametrizations, 858
sets, Web-E4	smooth transition, 880
bounded, 978	Snell, Willebrord van Roijen, 288
closed, 920	Snell's law, 287, 288
open, 920	solids of revolution, 424
unbounded, 978	solution, Web-G2
shells, cylindrical, 432–435	of differential equation, 561–562
Shroud of Turin, 574	inequalities, Web-E6
sigma notation (\sum) , 340, 341	solution set, Web-E6, Web-G2
changing limits of, 341	sound intensity (level), 59
properties, 342	sources, 1154
Taylor and Maclaurin polynomials, 652, 654, 655	speed, 134, 289
simple harmonic model, 180	instantaneous, 289, 882
•	motion along curves, 882
simple harmonic motion, 567	terminal, 591
simple parametric curve, 1115	speeding up, 290
simple pendulum, 559	spheres, 769, 836
simple polar regions, 1018	spherical cap, 430
simple root, 249, A28	spherical coordinates, 832, 836
simple <i>xy</i> -solid, 1041	converting, 833
simple <i>xz</i> -solid, 1044, 1045	equations of surfaces in, 835-836
simple yz-solid, 1044, 1045	spherical element of volume, 1051
simply connected domain, 1115	spherical wedge, 1051
Simpson, Thomas, 539	spirals, 714
Simpson's rule, 537–540	equiangular, 729
error estimate, 541, 542	families of, 714
error in, 538	spring constant, 452
sine, A15	spring stiffness, 452
continuity, 121	springs, 565, Web-L5, Web-L6
derivative of, 169, 173	free motion, Web-L8
family, 32, 34	Sprinz, Joe, 384
formulas, A20, A22	square roots, and absolute values, 5, 6, Web-F1, Web-F2
hyperbolic, 474	squaring the circle/crescent, 728
integrating powers of, 500, 501, 505	Squeezing Theorem, 123
integrating products with cosine, 501, 503	Squeezing Theorem for Sequences, 603
rational functions of, 527	standard equations
trigonometric identities, A18–A20	circle, Web-H3
single integrals, 1006	ellipse, 735

hyperbola, 737, 738	surface integrals, 1130
parabola, 732, 733	evaluating, 1131–1132, 1134–1135
sphere, 769	mass of curved lamina, 1130–1131, 1135
standard positions	surface area as, 1131
angles, A16	surfaces
ellipse, 735	oriented, 1138–1139
hyperbola, 737	relative orientation, 1158
parabola, 732, 733	traces of, 821, 822
static equilibrium, 784	surfaces of revolution, 444, 835–836
stationary point, 245	parametric representation, 1030
steady-state flow, 1140	symmetric equations, 812
step size, Euler's method, 582	symmetry, 23, 254
•	area in polar coordinates, 724, 725
Stokes, George Gabriel, 1160	about the origin, 23
Stokes' Theorem, 1159–1160	about the x -axis, 23
calculating work with, 1160–1162	about the y-axis, 23
circulation of fluids, 1163	symmetry tests, 23 polar coordinates, 710–712
and Green's Theorem, 1162	potal coordinates, 710–712
strictly decreasing sequence, 607	tabular integration by parts, 495
strictly increasing sequence, 607	tangent, A15
strictly monotone sequence, 607	continuity, 121
string vibration, 935	derivative, 170
substitution(s)	double-angle formulas, A21
definite integrals, 390–392	hyperbolic, 474
hyperbolic, 514	integrating powers of, 503–505
integral tables, 524, 526–528	integrating products with secant, 504, 505
trigonometric, 508–512	trigonometric identities, A18–A222
<i>u</i> -substitution, 332–337	tangent line(s), 131, 133, 134
substitution principle, 98	definition, 132
subtraction, of functions, 15, 16	equation, 132, 144
sum	graph of vector-valued functions, 851
absolute value, Web-F4	intersection of surfaces, 974
open/closed form, 343	as a limit of secant lines, 131
partial sums, 616	parametric curves, 695–697
telescoping, 352, A39	parametric equations of, 851
of vectors, 774	polar curves, 719–721
	polar curves at origin, 721
summation	slope, 132
formulas, 342, A38, A39	vertical, 259, 696
index of, 341	tangent line approximation, 536
notation, 340	tangent planes, 972 graph of the local linear approximation, 973
sums of infinite series, 614–617	to level surfaces, 971–972
and convergence, 616	to surface $z = F(x, y)$, 972–973
sum-to-product formulas, A22	to surface $z = F(x, y)$, $972-973$ to parametric surfaces, $1032-1034$
Sun, planetary orbits, 759	total differentials, 973
superconductors, 109	tangent vector, 851
surface area	tangential scalar component of acceleration, 886
and improper integrals, 553	tangential vector component of acceleration, 886
parametric surfaces, 1028, 1034, 1035	tautochrone problem, 699
as surface integral, 1131	Taylor, Brook, 653
surface of revolution, 444–446	Taylor polynomials, 653
surfaces of the form $z = f(x, y)$, 1026–1028	sigma notation, 652, 654, 655

I-24 Index

Taylor series, 660, 661, 670	transformations, 488, 1065
convergence, 668, 669	plane, 1059, 1060
finding by multiplication and division, 684	translated conics, 740–742
modeling physical laws with, 685	translation, 20
power series representations as, 681, 682	parametric curves, A10, Web-I4, Web-I5
practical ways to find, 682, 684	quadric surfaces, 827–828
Taylor's formula with remainder, 655, 656	transverse unit vector, 905
telescoping sum, 619–620, A39	trapezoidal approximation, 534, 540, 543
temperature scales, Web-G14	error estimate, 540–542
terminal point, vectors, 774	error in, 535
terminal side, of angles, A13	tree diagram, 950
terminal speed, 591	triangle inequality, 5, Web-F4, Web-F5
terminal velocity, 65, 591	for vectors, 784
terminating decimals, 622, Web-E2	trigonometric functions
terms	approximating with Taylor series, 670–672
	continuity, 121
infinite sequences, 596	derivatives, 170
infinite series, 615	finding angles from, A22
test(s)	hyperbolic, 474–478, 480–482
alternating series, 638–641, 645	integration formulas, 489
comparison, 631–633, 645	inverse, 44, 46, 47, 337
conservative vector field, 1087, 1115–1118	limits, 121
divergence, 623, 645	mathematical model, Web-J4–Web-J6
integral, 626, 628, 645	right triangles, A15
limit comparison, 633, 634, 645, A39	trigonometric identities, A18–A20
ratio, 634, 635, 645, A40	trigonometric integrals, 500, 501, 503–506
root, 635, 645	trigonometric substitutions, 508–512
symmetry, 23, 708, 710–712	integrals involving $ax^2 + bx + c$, 512
test values, Web-E7	triple integrals, 1039
Theorem of Pappus, 464–465	change of variables, 1065–1067
Theorem of Pythagoras	converting from rectangular to cylindrical coordinates,
for a tetrahedron, 840	1050
theory of relativity, 79, 98	converting from rectangular to spherical coordinates,
θ , polar coordinate, 706	1055
thickness, cylindrical wedges, 1048	cylindrical coordinates, 1048, 1049
thin lens equation, 211	evaluating, 1040–1042
third derivative, 160	
3×3 determinant, 795	limits of integration, 1042, 1044, 1050
3-space, 767	order of integration, 1040, 1044, 1050 spherical coordinates, 1051, 1052
tick marks, A2	•
TNB-frame, 871	volume calculated, 1042–1044
topographic maps, 909	trisectrix, 190 truncation error, 540, 557
torque, 802	
torque vector, 802	power series approximation, 672
Torricelli's law, 578	tube plots, 842
torsion, 881	twisted cubic, 843
torus, 1038	2×2 determinant, 795
torus knot, 842	two-point vector form of a line, 845
total differentials, 944, 973	two-sided limits, 72–73
trace of a surface, 821–822	2-space, 767
tractrix, 484	type I/type II region, 1009
Traité de Mécanique Céleste, 1091	unbounded sets, 978
trajectory, 692, 882, Web-II	undefined slope, Web-G5
transform, 556	uniform circular motion, 903
umiororiii, 550	annorm encurar monon, 703

uninhibited growth model, 564	orthogonal projections, 790–791
uninhibited population growth, 563	position, 844
union, intervals, Web-E5	principal unit normal, 869, 1033
unit circle, Web-H3	radius, 844, 1031
unit hyperbola, 477	tangent, 851
unit normal vectors, 868, 878	triple products, 805
for arc length parametrized curves, 870	unit, 778
inward 2-space, 870	velocity, 774
unit tangent vectors, 868, 878	zero, 774
for arc length parametrized curves, 870	vector components, 789
unit vectors, 778–779	vector fields, 1084–1085
units, graphs, 10	circulation of, 1168
universal gravitational constant, 896	conservative, 1087–1088
Universal Law of Gravitation, 37	divergence and curl, 1088–1090
universe, age of, Web-J8	flow fields, 1138
upper bound	flow lines, 1093
least, 612	gradient fields, 1087
monotone sequence, 611	graphical representation, 1085
sets, 612	integrating along a curve, 1103–1104
upper limit of integration, 354	inverse-square, 1086–1087
upper limit of summation, 341	vector moment, 802
<i>u</i> -substitution, 332–337, 390–392, 488	vector friohent, 802 vector triple products, 805
guidelines, 334	vector triple products, 803 vector-valued functions, 843
	antiderivatives of, 854
value of f at x , 3	
Vanguard 1, 763, 902	calculus of, 848–852, 854
variables	continuity of, 849
change of in double integrals, 1063	differentiability of, 850
change of in single integrals, 1058	domain, 843
change of in triple integrals, 1065, 1067	graphs, 844, 845
dependent and independent, 3	integrals of, 853
dummy, 367, 368	integration formulas, 854
separation of, 569	limits of, 848
vector(s), 773–774	natural domain, 843
angle between, 786–787	tangent lines for graphs, 851, 852
arithmetic, 776–777	vector-valued functions of two variables, 1031
components, 775	partial derivatives, 1031, 1032
in coordinate systems, 775	velocity, 134, 289, 882
decomposing into orthogonal components, 788–789	average, 385, 387, 388
determined by length and a vector in the same direction,	finding by integration, 376
780	function, 146, 289
determined by length and angle, 779–780	instantaneous, 146, 289, 882
direction angles, 787–788	motion along curves, 882
displacement, 773, 791	rectilinear motion, 146, 377
equal, 774	terminal, 65, 591
equation of a line, 809	versus time curve, 377
force, 774	velocity field, 1084
geometric view of, 774–775	vertex (vertices)
initial point not at origin, 776–777	angles, A13
magnitude, 778	ellipse, 731
norm of, 778	hyperbola, 732
normal, 787	parabola, 731, Web-H5
normalizing, 779	Vertical asymptotes
orthogonal, 787	polar curves, 719

I-26 Index

vertical asymptotes, 32, 76	witch of Agnesi, 847
vertical line test, 4	work, 449, 451–455
vertical surface, fluid force on, 470-471	calculating with Green's Theorem, 1124
vertical tangency, points of, 147	calculating with Stokes' Theorem, 1160–1162
vertical tangent line, 259, 696	done by constant force, 449–450
vibrations of springs, 565–566	done by variable force, 451
vibratory motion, springs, 565, Web-L5, Web-L6	as line integral, 1105–1107
viewing rectangle, A2	performed by force field, 1105
viewing window, 912, A2	vector formulation, 791
choosing, A3, A5	work integrals, 1111
graph compression, A5	Fundamental Theorem of, 1112–1113
zooming, A5	path of integration, 1111–1112
viewpoint, 912	work–energy relationship, 449, 454–455
$v_{\rm inst}$, 136	World Geodetic System of 1984, 831
volume	world population, 572
by cylindrical shells method, 432–435	doubling time, 573
by disks and washers, 424–426	Wren, Sir Christopher, 699
by function of three variables, 906	, , ,
net signed, 1002	<i>x</i> -axis, 767, Web-G1
slicing, 421–423	<i>x</i> -coordinate, 768, Web-G1
solids of revolution, 424–426	<i>x</i> -intercepts, 254, Web-G4
under a surface, 1002	of functions, 4
triple integral, 1042, 1044	x-interval, for viewing window, A2
volume problem, 1001	xy-plane, 768, Web-G1
polar coordinates, 1019	xz-plane, 768
Wallis cosine formulas, 508	y-axis, 767, Web-G1
Wallis sine formulas, 508	y-coordinate, 768, Web-G1
washers, method of, 426	y-intercepts, 254, Web-G4
wave equation, 935	y-interval, for viewing window, A2
wedges	yz-plane, 768
area in polar coordinates, 723	
cylindrical, 1048	z-axis, 767
Weierstrass, Karl, 101, 102, 527	z-coordinate, 768
weight, 452	zero vector, 774
weight density, 469	zeros, A28
wet-bulb depression, 914	of functions, 4
Whitney's umbrella, 1033	zone, of sphere, 448
width, right cylinder, 422	zoom factors, A5
Wiles, Andrew, 275	zooming, A5
wind chill index (WCT), 6, 15, 908, 929–930	root approximating, 117

60.
$$\int \frac{u \, du}{a + bu} = \frac{1}{b^2} [bu - a \ln|a + bu|] + C$$

64.
$$\int \frac{u \, du}{(a+bu)^3} = \frac{1}{b^2} \left[\frac{a}{2(a+bu)^2} - \frac{1}{a+bu} \right] + C$$

61.
$$\int \frac{u^2 du}{a + bu} = \frac{1}{b^3} \left[\frac{1}{2} (a + bu)^2 - 2a(a + bu) + a^2 \ln|a + bu| \right] + C$$

$$65. \int \frac{du}{u(a+bu)} = \frac{1}{a} \ln \left| \frac{u}{a+bu} \right| + C$$

62.
$$\int \frac{u \, du}{(a+bu)^2} = \frac{1}{b^2} \left[\frac{a}{a+bu} + \ln|a+bu| \right] + C$$

66.
$$\int \frac{du}{u^2(a+bu)} = -\frac{1}{au} + \frac{b}{a^2} \ln \left| \frac{a+bu}{u} \right| + C$$

63.
$$\int \frac{u^2 du}{(a+bu)^2} = \frac{1}{b^3} \left[bu - \frac{a^2}{a+bu} - 2a \ln|a+bu| \right] + C$$

67.
$$\int \frac{du}{u(a+bu)^2} = \frac{1}{a(a+bu)} + \frac{1}{a^2} \ln \left| \frac{u}{a+bu} \right| + C$$

RATIONAL FUNCTIONS CONTAINING $a^2 \pm u^2$ IN THE DENOMINATOR (a>0)

68.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

70.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C$$

69.
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + C$$

71.
$$\int \frac{bu+c}{a^2+u^2} du = \frac{b}{2} \ln(a^2+u^2) + \frac{c}{a} \tan^{-1} \frac{u}{a} + C$$

INTEGRALS OF $\sqrt{a^2 + u^2}$, $\sqrt{a^2 - u^2}$, $\sqrt{u^2 - a^2}$ AND THEIR RECIPROCALS (a > 0)

72.
$$\int \sqrt{u^2 + a^2} \, du = \frac{u}{2} \sqrt{u^2 + a^2} + \frac{a^2}{2} \ln(u + \sqrt{u^2 + a^2}) + C$$

75.
$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln(u + \sqrt{u^2 + a^2}) + C$$

73.
$$\int \sqrt{u^2 - a^2} \, du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln|u + \sqrt{u^2 - a^2}| + C$$

76.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln|u + \sqrt{u^2 - a^2}| + C$$

74.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a} + C$$

77.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + C$$

POWERS OF u MULTIPLYING OR DIVIDING $\sqrt{a^2 - u^2}$ OR ITS RECIPROCAL

78.
$$\int u^2 \sqrt{a^2 - u^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{a^2 - u^2} + \frac{a^4}{8} \sin^{-1} \frac{u}{a} + C$$

81.
$$\int \frac{u^2 du}{\sqrt{a^2 - u^2}} = -\frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a} + C$$

79.
$$\int \frac{\sqrt{a^2 - u^2} \, du}{u} = \sqrt{a^2 - u^2} - a \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

82.
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

80.
$$\int \frac{\sqrt{a^2 - u^2} \, du}{u^2} = -\frac{\sqrt{a^2 - u^2}}{u} - \sin^{-1} \frac{u}{a} + C$$

83.
$$\int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2 - u^2}}{a^2 u} + C$$

POWERS OF u MULTIPLYING OR DIVIDING $\sqrt{u^2 \pm a^2}$ OR THEIR RECIPROCALS

84.
$$\int u\sqrt{u^2 + a^2} \, du = \frac{1}{3}(u^2 + a^2)^{3/2} + C$$

90.
$$\int \frac{du}{u^2 \sqrt{u^2 + a^2}} = \mp \frac{\sqrt{u^2 \pm a^2}}{a^2 u} + C$$

85.
$$\int u\sqrt{u^2 - a^2} \, du = \frac{1}{3}(u^2 - a^2)^{3/2} + C$$

91.
$$\int u^2 \sqrt{u^2 + a^2} \, du = \frac{u}{8} (2u^2 + a^2) \sqrt{u^2 + a^2} - \frac{a^4}{8} \ln(u + \sqrt{u^2 + a^2}) + C$$

86.
$$\int \frac{du}{u\sqrt{u^2 + a^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{u^2 + a^2}}{u} \right| + C$$

92.
$$\int u^2 \sqrt{u^2 - a^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{u^2 - a^2} - \frac{a^4}{8} \ln|u + \sqrt{u^2 - a^2}| + C$$

87.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$

93.
$$\int \frac{\sqrt{u^2 + a^2}}{u^2} du = -\frac{\sqrt{u^2 + a^2}}{u} + \ln(u + \sqrt{u^2 + a^2}) + C$$

88.
$$\int \frac{\sqrt{u^2 - a^2} \, du}{u} = \sqrt{u^2 - a^2} - a \sec^{-1} \left| \frac{u}{a} \right| + C$$

94.
$$\int \frac{\sqrt{u^2 - a^2}}{u^2} du = -\frac{\sqrt{u^2 - a^2}}{u} + \ln|u + \sqrt{u^2 - a^2}| + C$$
95.
$$\int \frac{u^2}{\sqrt{u^2 + a^2}} du = \frac{u}{2} \sqrt{u^2 + a^2} - \frac{a^2}{2} \ln(u + \sqrt{u^2 + a^2}) + C$$

89.
$$\int \frac{\sqrt{u^2 + a^2} \, du}{u} = \sqrt{u^2 + a^2} - a \ln \left| \frac{a + \sqrt{u^2 + a^2}}{u} \right| + C$$

89.
$$\int \frac{\sqrt{u^2 + a^2} \, du}{u} = \sqrt{u^2 + a^2} - a \ln \left| \frac{a + \sqrt{u^2 + a^2}}{u} \right| + C$$
96.
$$\int \frac{u^2}{\sqrt{u^2 - a^2}} \, du = \frac{u}{2} \sqrt{u^2 - a^2} + \frac{a^2}{2} \ln |u + \sqrt{u^2 - a^2}| + C$$

INTEGRALS CONTAINING $(a^2 + u^2)^{3/2}$, $(a^2 - u^2)^{3/2}$, $(u^2 - a^2)^{3/2}$ (a > 0)

97.
$$\int \frac{du}{(a^2 - u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 - u^2}} + C$$

100.
$$\int (u^2 + a^2)^{3/2} du = \frac{u}{8} (2u^2 + 5a^2) \sqrt{u^2 + a^2} + \frac{3a^4}{8} \ln(u + \sqrt{u^2 + a^2}) + C$$

98.
$$\int \frac{du}{(u^2 \pm a^2)^{3/2}} = \pm \frac{u}{a^2 \sqrt{u^2 \pm a^2}} + C$$

101.
$$\int (u^2 - a^2)^{3/2} du = \frac{u}{8} (2u^2 - 5a^2) \sqrt{u^2 - a^2} + \frac{3a^4}{8} \ln|u + \sqrt{u^2 - a^2}| + C$$

99.
$$\int (a^2 - u^2)^{3/2} du = -\frac{u}{8} (2u^2 - 5a^2) \sqrt{a^2 - u^2} + \frac{3a^4}{8} \sin^{-1} \frac{u}{a} + C$$

POWERS OF u MULTIPLYING OR DIVIDING $\sqrt{a + bu}$ OR ITS RECIPROCAL

POWERS OF u MULTIPLYING OR DIVIDING $\sqrt{2au - u^2}$ OR ITS RECIPROCAL

INTEGRALS CONTAINING $(2au - u^2)^{3/2}$

$$120. \int \frac{du}{(2au - u^2)^{3/2}} = \frac{u - a}{a^2 \sqrt{2au - u^2}} + C$$

$$121. \int \frac{u \, du}{(2au - u^2)^{3/2}} = \frac{u}{a\sqrt{2au - u^2}} + C$$

THE WALLIS FORMULA

122.
$$\int_0^{\pi/2} \sin^n u \, du = \int_0^{\pi/2} \cos^n u \, du = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot n} \cdot \frac{\pi}{2} \begin{pmatrix} n \text{ an even} \\ \text{integer and} \\ n \ge 2 \end{pmatrix} \quad \text{or} \quad \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (n-1)}{3 \cdot 5 \cdot 7 \cdot \dots \cdot n} \begin{pmatrix} n \text{ an odd} \\ \text{integer and} \\ n \ge 3 \end{pmatrix}$$

PYTHAGOREAN IDENTITIES

SUPPLEMENT IDENTITIES

 $\sin^2 \theta + \cos^2 \theta = 1 \qquad \tan^2 \theta + 1 = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$

SIGN IDENTITIES

$$\sin(-\theta) = -\sin\theta$$
 $\cos(-\theta) = \cos\theta$ $\tan(-\theta) = -\tan\theta$
 $\csc(-\theta) = -\csc\theta$ $\sec(-\theta) = \sec\theta$ $\cot(-\theta) = -\cot\theta$

COMPLEMENT IDENTITIES

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \qquad \tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \qquad \sin(\pi - \theta) = \sin\theta \qquad \cos(\pi - \theta) = -\cos\theta \qquad \tan(\pi - \theta) = -\tan\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad \sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta \qquad \qquad \sin(\pi + \theta) = -\sin\theta \qquad \cos(\pi + \theta) = -\cos\theta \qquad \tan(\pi + \theta) = -\cot\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad \sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta \qquad \qquad \cos(\pi + \theta) = -\cos\theta \qquad \tan(\pi + \theta) = \tan\theta$$

$$\csc(\pi + \theta) = -\cos\theta \qquad \sec(\pi + \theta) = -\cos\theta \qquad \cot(\pi + \theta) = \cot\theta$$

ADDITION FORMULAS

$$\frac{\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta}{\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta} \quad \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \quad \frac{\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta}{\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta} \quad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

DOUBLE-ANGLE FORMULAS

HALF-ANGLE FORMULAS

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha \qquad \cos 2\alpha = 2 \cos^2 \alpha - 1
\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \qquad \cos^2 \alpha = 1 - 2 \sin^2 \alpha \qquad \sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2} \qquad \cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$