

AOT430

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AOT430 uses advanced trench technology and design to provide excellent $R_{\rm DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. Standard Product AOT430 is Pb-free (meets ROHS & Sony 259 specifications).

Features

$$\begin{split} &V_{DS} \; (V) = 75 V \\ &I_{D} = 80 \; A & (V_{GS} = 10 V) \\ &R_{DS(ON)} < 11.5 m \Omega \quad (V_{GS} = 10 V) \end{split}$$

UIS TESTED!

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	75	V				
Gate-Source Voltage		V_{GS}	±25	V				
Continuous Drain	T _C =25°C ^G		80					
Current	T _C =100°C	I_D	78	Α				
Pulsed Drain Current C		I _{DM}	200					
Avalanche Current ^C		I_{AR}	45	Α				
Repetitive avalanche energy L=0.3mH ^C		E _{AR}	300	mJ				
	T _C =25°C	P_{D}	268	W				
Power Dissipation ^B	T _C =100°C	L D	134	VV				
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 175	°C				

Thermal Characteristics							
Parameter	Symbol	Typ Max		Units			
Maximum Junction-to-Ambient ^A	Steady-State	$R_{\theta JA}$	45	60	°C/W		
Maximum Junction-to-Case B	Steady-State	$R_{\theta JC}$	0.45	0.56	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V		75			V	
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =60V, V_{GS} =0V				1	μА	
			T _J =55°C			5	μΑ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±25V				1	uA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		2	2.7	4	V	
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		200			Α	
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =30A			9.8	11.5	m()	
			T _J =125°C		16.0	19.0	mΩ	
g _{FS}	Transconductance	$V_{DS}=5V$, $I_{D}=80A$			90		S	
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.7	1	V		
I _S	Maximum Body-Diode Continuous Current ^G					80	Α	
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =30V, f=1MHz			4700		pF	
Coss	Output Capacitance				400		pF	
C_{rss}	Reverse Transfer Capacitance				180		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			3		Ω	
SWITCHI	NG PARAMETERS							
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =30A			114		nC	
Q_{gs}	Gate Source Charge				33		nC	
Q_{gd}	Gate Drain Charge				18		nC	
t _{D(on)}	Turn-On DelayTime				21		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =1 Ω , R_{GEN} =3 Ω			39		ns	
t _{D(off)}	Turn-Off DelayTime				70		ns	
t _f	Turn-Off Fall Time				24		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =30A, dI/dt=100A/μs			53		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =30A, dI/dt=100A/μs			143		nC	

A: The value of R $_{0,JA}$ is measured with the device in a still air environment with T $_A$ =25°C.

Rev2: Feb 2007

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C.

D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C.

G. The maximum current rating is limited by bond-wires.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 13: Power De-rating (Note B)