Lógica para Computação Aula 11 - Lógica Proposicional¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a estudar a Lógica Proposicional.
 Introduziremos, nesta aula, dedução natural.
- Este material foi construído com base nos slides do prof. Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica Proposicional: Dedução Natural

2 Próxima Aula

Lógica Proposicional - Relembrando ...

- Sintaxe
 - Formalização: variáveis e conectivos
 - Fórmulas bem formadas
 - FNC e FND
- Semântica
 - Propriedades Semánticas: tautologias, contigências, contradições, equivalência, fórmulas satisfatíveis e insatísfativeis
 - Métodos: Tabela-Verdade e Árvores Semânticas
 - Tablôs Semânticos

Lógica Proposicional - Relembrando ...

Argumento lógico Relação entre um conjunto de proposições (premissas) e uma proposição (conclusão).

A1	A2	
p: Todo gato é mamífero.	s: Todo gato é mamífero.	
q: Miau é um gato.	t: Lulu é um mamífero.	
r :Miau é um mamífero.	u : Lulu é um gato.	
$p \land q \rightarrow r$	$s \wedge t o u$	

 Semelhança dos argumentos: a forma (daí o nome Lógica Formal).

Lógica Proposicional - Relembrando ...

 Argumento lógico válido: Um argumento é válido se em qualquer circunstância que suas premissas são verdadeiras, sua conclusão também é verdadeira.

$$\varphi_1, \varphi_2, ..., \varphi_n \models \psi$$

• Apenas o argumento **A1** é válido: $p, q \models r$.

Lógica Proposicional - Cálculo da Dedução Natural

- Quando afirmamos a validade de um argumento examinando os possíveis modelos das premissas e conclusões, estabelecemos uma nova relação:
 - $\phi_1, \phi_2, ..., \phi_n \models \psi$ (Consequência) cuja definição é de natureza semântica
- enquanto que o sequente:
 - $\phi_1, \phi_2, ..., \phi_n \vdash \psi$ (Sequente) é uma relação verificada através de um cálculo, ou seja, sintaticamente:

Lógica Proposicional - Cálculo da Dedução Natural

- Para provar os sequentes é necessário algo que nos permita raciocinar sobre proposições, tal como
 - Cálculo de Dedução Natural .
 - Uma coleção de regras de prova;
 - Essas regras nos permitem inferir fórmulas a partir de outras fórmulas.
 - Aplicando uma série dessas regras, podemos inferir uma conclusão ψ a partir das premissas φ₁, φ₂,..., φ_n

Lógica Proposicional - Cálculo da Dedução Natural

 Claramente, as regras não podem permitir que se infira coisas erradas, por exemplo

$$p, q \vdash p, \neg q$$

- Além disso, o cálculo deve ser capaz de provar tudo que pode ser provado.
- Estas s\u00e3o propriedades importantes de um c\u00e1lculo e as estudaremos mais adiante.

Lógica Proposicional - Regras da Dedução Natural

- Nessa e nas próximas aulas estudaremos, uma a uma, as regras do cálculo de dedução natural;
- Uma regra é formada por premissas que aparecem sobre uma linha vertical e uma conclusão abaixo dela;
- O nome da regra aparece á direita da linha;
- Para cada conectivo da lógica proposicional, veremos pelo menos 2 regras, uma de introdução do conectivo, e outra de eliminação.

Lógica Proposicional - Introdução da Conjunção

 Introdução da conjunção (∧i): Permite a conclusão de uma conjunção se cada um dos conjuntos já foi concluído.

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \ (\land i)$$

Lógica Proposicional - Eliminação da Conjunção

• Eliminação da conjunção ($\land e_1 \in \land e_2$): permitem a conclusão de um dos conjuntos, se a conjunção já foi concluída.

$$\frac{\varphi \wedge \psi}{\varphi} \ (\wedge e_1) \qquad \frac{\varphi \wedge \psi}{\psi} \ (\wedge e_2)$$

- Exemplo 1:
 - Dado o argumento lógico: $p \land q, r \vdash q \land r$, onde $p \land q$ e r são as premissas $q \land r$ é a conclusão.
 - Queremos provar que o seu sequente é válido, usando a dedução natural.
 - Para isso, teremos que a partir de
 - p ∧ q
 - r
 - Chegar em
 - q ∧ r

 Exemplo 1 - Prove que o sequente de p ∧ q, r ⊢ q ∧ r é válido, usando dedução natural:

- 1. $p \land q$ premissa
- 2. r premissa
- 3. $q \wedge e_1 1$
- 4. $q \wedge r \wedge i 3,2$

• Exemplo 2 - Prove que o sequente de $p \land q, r, (s \land t) \vdash q \land s$ é válido, usando dedução natural:

- 1. $p \land q$ premissa
- 2. r premissa
- 3. $s \wedge t$ premissa
- 4. $q \wedge e_1 1$
- 5. $s \wedge e_2 3$
- 6. $q \wedge s \wedge i = 4,5$

Lógica Proposicional - Exercícios

- Atividade I: Prove que os sequentes dos argumentos abaixo são válidos usando dedução natural:
 - $((p \wedge q) \wedge r), (t \wedge v) \vdash (v \wedge (p \wedge q))$
 - $(p \wedge q), (r \wedge (s \wedge t)) \vdash (q \wedge r)$

Lógica Proposicional - Eliminação da Dupla Negação

 Eliminação da dupla negação (¬¬e): A dupla negação não muda o valor verdade, mas pode ser eliminada de qualquer fórmula já concluída

$$\frac{\neg \varphi}{-}$$

Lógica Proposicional - Eliminação da Implicação

 Eliminação da implicação (→ e): Modus Ponens - De um condicional e seu antecedente pode-se concluir o conseqüente também.

$$\frac{\varphi \to \psi \qquad \varphi}{\psi} (\to e)$$

• Exemplo 3 - Prove que o sequente de $(p \wedge \neg \neg q), (q \wedge p) \to (s \wedge t) \vdash (s \wedge t)$ é válido usando dedução natural:

1.	$(p \wedge \urcorner \urcorner q)$	premissa
2.	$(q \wedge p) \rightarrow (s \wedge t)$	premissa
3.	$^{\lnot \lnot}q$	$\wedge e_2$ 1
4.	q	$^{\neg \neg}e$ 3
5.	p	$\wedge e_1$ 1
6.	$q \wedge p$	<i>∧i</i> 4,5
7.	$(s \wedge t)$	\rightarrow e 2.6

 Exemplo 4 - Prove que o sequente (p → (q → r)), q, p ⊢ r é válido usando dedução natural:

1.
$$(p \rightarrow (q \rightarrow r))$$
 premissa
2. q premissa
3. p premissa
4. $(q \rightarrow r)$ $\rightarrow e 1,3$

 $r \rightarrow e 4.2$

Lógica Proposicional - Exercícios

- Atividade II: Prove que os sequentes dos argumentos abaixo são válidos usando dedução natural.
 - $(p \rightarrow r) \land (q \rightarrow r), \neg \neg p \vdash r$
 - $2 r, p \rightarrow (r \rightarrow q), p \vdash (q \land r)$

Leitura

• Souza, J. N. Lógica para Computação. Capítulo 6.