Module 10 - MOLP

Exploratory Data Analysis

In this section, you should perform some data analysis on the data provided to you. Please format your findings in a visually pleasing way and please be sure to include these cuts:

- Choose a visualization method (expect 7 nodes and ~24 arcs):
 - Make a visual graph of your data on a map (coordinates should be within US borders)
 - https://mymaps.google.com/
 - Find a map with latitude/longitude and place them approximately
 - Any alternative that gives the same effect
 - o Make a visual graph of your data like what we saw for the sample problem
 - https://excalidraw.com
 - https://mermaid.live
 - https://dreampuf.github.io/GraphvizOnline
 - PowerPoint

Model Formulation

 $X_1,...X24 = Int$

Write the formulation of the model here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints. For this problem, I am only asking that you perform the model formulation for the MOLP model. MIN: Q

$$\begin{split} & W_1 \left(\frac{((X1*C1) + (X2*C2) + ..(X24*C24)) - 221,011}{221,011} \right) \leq Q \\ & W_2 \left(\frac{((X1*D1) + (X2*D2) + ..(X24*D24)) - 184,002.38}{184,002.38} \right) \leq Q \\ & W_3 \left(\frac{((X1*E1) + (X2*E2) + ..(X24*E24)) - 5547}{5547} \right) \leq Q \\ & W_4 \left(\frac{((X1*CN1) + (X2*CN2) + ..(X24*CN24)) - 16954}{16954} \right) \leq Q \\ & + X_{31} + X_{51} - X_{13} - X_{14} - X_{17} \geq -9806 \right) \text{ Node } 1 \\ & + X_{32} + X_{42} + X_{52} + X_{72} - X_{24} - X_{26} \geq 1379 \right) \text{ Node } 2 \\ & + X_{13} + X_{53} + X_{63} + X_{73} - X_{31} - X_{32} - X_{34} - X_{35} - X_{37} \geq 1751 \right) \text{ Node } 3 \\ & + X_{14} + X_{24} + X_{34} + X_{54} + X_{64} + X_{74} - X_{42} - X_{72} \geq 1350 \right) \text{ Node } 4 \\ & + X_{35} + X_{75} - X_{51} - X_{52} - X_{53} - X_{54} - X_{57} \geq 1823 \right) \text{ Node } 5 \\ & + X_{26} - X_{63} - X_{64} - X_{67} \geq 1973 \right) \text{ Node } 6 \\ & + X_{17} + X_{37} + X_{47} + X_{57} + X_{67} - X_{72} - X_{73} - X_{74} - X_{75} \geq 1530 \right) \text{ Node } 7 \\ & X_{1,...} \times 24 \geq 0 \end{split}$$

Model Optimized for Equally Weighted Objectives

Implement your formulation into Excel and be sure to make it neat. This section should include:

- A screenshot of your optimized final model (formatted nicely, of course)

- A text explanation of what your model is recommending
- Update your graph from the EDA section to indicate which arcs are used

Units Shipped	from	Lat				cost_per_unit_shipped	Euclidian Distance	transportation_method	Binary	congestion_leve	Binary	Nodes	Inflow	Outflow	Netflow	Supply/Demand			
2407	1	37.5	-102.5	3 31.85	-93.48	11	10.64	Diesel Trucks	1	92	1	1	0	9806	-9806	-9806			
1350	1	37.5	-102.5	4 36.55	-113.64	20	11.18	Diesel Trucks	1	86	1	2	3352	1973	1379	1379			
6049	1	37.5	-102.5	7 39.78	-94.98	22	7.86	Electric/Hybrid Trucks	0	87	1	3	2407	656	1751	1751			
0	2	30.08	-99.31	4 36.55	-113.64	16	15.72	Electric/Hybrid Trucks	0	70	1	4	1350	0	1350	1350			
1973	2	30.08	-99.31	6 43.87	-114.64	24	20.62	Cargo Ships (Heavy Fuel Oil)	1	90	1	5	1823	0	1823	1823			
0	3	31.85	-93.48	1 37.5	-102.5	22	10.64	Slow Steaming Cargo Ships	0	72	1	6	1973	0	1973	1973			
42	3	31.85	-93.48	2 30.08	-99.31	5	6.09	Diesel Trucks	1	87	1	7	6049	4519	1530	1530			
0	3	31.85		4 36.55		11	20.70	Wind-powered Ships	0	88	1								Weighted
614	3	31.85	-93.48	5 35.18	-109.14	11	16.01	Air Freight	1	80	1	Totals	Ta	rget Values		Deviation	% Deviation	Weight	Deviation %
0	3	31.85	-93.48		-94.98	18	8.07	Cargo Ships (Heavy Fuel Oil)	1	88	1	\$302,611.00	\$	221,011.00		\$81,600.00	36.92%	1.00	36.92%
0	4	36.55	-113.64		-99.31	21	15.72	Diesel Trucks	1	106	1	192175.29		184002.38		8172.91	4.44%	1.00	4.44%
0	4	36.55		7 39.78	-94.98	19	18.94	Wind-powered Ships	0	78	1	7595		5547		2048.00	36.92%	1.00	36.92%
0	5	35.18	-109.14	1 37.5	-102.5	23	7.03	Diesel Rail	1	89	1	16954		16954		0.00	0.00%	1.00	0.00%
0	5	35.18		2 30.08	-99.31	14	11.07	Cargo Ships (Heavy Fuel Oil)	1	94	1								
0	5	35.18		3 31.85	-93.48	7	16.01	Diesel Trucks	1	35	0	Minimax Variable	36.92%						
0	5	35.18		4 36.55		12	4.70	Electrified Rail	0	97	1								
0	5	35.18	-109.14		-94.98	16	14.89	Air Freight	1	78	1								
0	6	43.87	-114.64			14	24.34	Cargo Ships (Heavy Fuel Oil)	1	102	1								
0	6	43.87	-114.64	4 36.55	-113.64	19	7.39	Air Freight	1	92	1								
0	6	43.87	-114.64	7 39.78	-94.98	19	20.08	Diesel Rail	1	89	1								
3310	7	39.78	-94.98	2 30.08	-99.31	15		Electrified Rail	0	88	1								
0	7	39.78	-94.98	3 31.85	-93.48	14		Cargo Ships (Heavy Fuel Oil)	1	96	1								
0	7	39.78	-94.98	4 36.55	-113.64	24		Air Freight	1	77	1								
1209	7	39.78	-94.98	5 35.18	-109.14	10	14.89	Diesel Trucks	1	100	1								

The Model recommends that we prioritize the minimization of congestion levels because, that is the solution that keeps the other goals closest to their target values. It keeps them below 37% deviation from the original value.

Model with Stipulation

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution.

Alter the weights of each objective to add weight to match what matters most to you. Perhaps run a few different scenarios to see how the routes change depending on the weights. When you find a weight mix and solution that satisfies you, please write a justification on why you chose the final model/weights and about how a configured model like yours can be used for scenario planning.

		1	-			U								
Units Shipped	from	Lat	Lon	to	Latitude	Longitude	cost_per_unit_shipped	Euclidian Distance	transportation_method	Binary	congestion_level	Binary	Nodes	
4016	1	37.5	-102.5	3	31.85	-93.48	11	10.64	Diesel Trucks	1	92	1	1	
1350	1	37.5	-102.5	4	36.55	-113.64	20	11.18	Diesel Trucks	1	86	1	2	
4440	1	37.5	-102.5	7	39.78	-94.98	22	7.86	Electric/Hybrid Trucks	0	87	1	3	
0	2	30.08	-99.31	4		-113.64	16	15.72	Electric/Hybrid Trucks	0	70	1	4	
1973	2	30.08	-99.31	6		-114.64	24	20.62	Cargo Ships (Heavy Fuel Oil)	1	90	1	5	
0	3	31.85	-93.48	1	37.5	-102.5	22	10.64	Slow Steaming Cargo Ships	0	72	1	6	
461	3	31.85	-93.48	2	30.08	-99.31	5	6.09	Diesel Trucks	1	87	1	7	
0	3	31.85	-93.48	4	36.55	-113.64	11	20.70	Wind-powered Ships	0	88	1		
1804	3	31.85	-93.48	5	35.18	-109.14	11	16.01	Air Freight	1	80	1	Totals	
0	3	31.85	-93.48	7	39.78	-94.98	18	8.07	Cargo Ships (Heavy Fuel Oil)	1	88	1	\$281,912.00	
0	4	36.55	-113.64	2	30.08	-99.31	21	15.72	Diesel Trucks	1	106	1	196093.84	П
0	4	36.55	-113.64	7	39.78	-94.98	19	18.94	Wind-powered Ships	0	78	1	9623	П
0	5	35.18	-109.14	1	37.5	-102.5	23	7.03	Diesel Rail	1	89	1	16954	Т
0	5	35.18	-109.14	2	30.08	-99.31	14	11.07	Cargo Ships (Heavy Fuel Oil)	1	94	1		Т
0	5	35.18	-109.14	3	31.85	-93.48	7	16.01	Diesel Trucks	1	35	0	Minimax Variable	П
0	5	35.18	-109.14	4	36.55	-113.64	12	4.70	Electrified Rail	0	97	1		Т
0	5	35.18	-109.14	7	39.78	-94.98	16	14.89	Air Freight	1	78	1		
0	6	43.87	-114.64	3	31.85	-93.48	14	24.34	Cargo Ships (Heavy Fuel Oil)	1	102	1		
0	6	43.87	-114.64	4	36.55	-113.64	19	7.39	Air Freight	1	92	1		
0	6	43.87	-114.64	7	39.78	-94.98	19	20.08	Diesel Rail	1	89	1		
2891	7	39.78	-94.98	2	30.08	-99.31	15	10.62	Electrified Rail	0	88	1		
0	7	39.78	-94.98	3	31.85	-93.48	14	8.07	Cargo Ships (Heavy Fuel Oil)	1	96	1		
0	7	39.78	-94.98	4	36.55	-113.64	24	18.94	Air Freight	1	77	1		
19	7	39.78	-94.98	5	35.18	-109.14	10	14.89	Diesel Trucks	1	100	1		

I chose these weights because I believe they are closer to where modern companies want to be, prioritizing Cost and Travel Distance (time) above all. But also, presenting and ecoforward initiative by weighing eco-friendliness and congestion levels are relatively high.

Units Shipped	from	Lat	Lon	to	Latitude	Longitude	cost_per_unit_shipped	Euclidian Distance	transportation_method	Binary	congestion_leve	Binary	Nodes	Inflow	Outflow	Netflow	Supply/Demand			
6926	1	37.5	-102.5	3	31.85	-93.48	11	10.64	Diesel Trucks	1	92	1	1	0	9806	-9806	-9806			
1350	1	37.5	-102.5	4	36.55	-113.64	20	11.18	Diesel Trucks	1	86	1	2	3352	1973	1379	1379			
1530	1	37.5	-102.5	7	39.78	-94.98	22	7.86	Electric/Hybrid Trucks	0	87	1	3	6926	5175	1751	1751			
0		30.08	-99.31	4	36.55	-113.64	16	15.72	Electric/Hybrid Trucks	0	70	1	4	1350	0	1350	1350			
1973	2	30.08	-99.31	6	43.87	-114.64	24	20.62	Cargo Ships (Heavy Fuel Oil)	1	90	1	5	1823	0	1823	1823			
0		31.85			37.5	-102.5	22	10.64	Slow Steaming Cargo Ships	0	72	1	6	1973	0	1973	1973			
3352	3	31.85	-93.48	2	30.08	-99.31	5	6.09	Diesel Trucks	1	87	1	7	1530	0	1530	1530			
0	3	31.85	-93.48	4	36.55	-113.64	11	20.70	Wind-powered Ships	0	88	1								Weighted
1823	3	31.85	-93.48	5	35.18	-109.14	11	16.01	Air Freight	1	80	1	Totals	Т	arget Values		Deviation	% Deviation	Weight	Deviation %
0	3	31.85	-93.48	7	39.78	-94.98	18	8.07	Cargo Ships (Heavy Fuel Oil)	1	88	1	\$221,011.00	*	221,011.00		\$0.00	0.00%	0.60	0.00%
0	4	36.55	-113.64	2	30.08	-99.31	21	15.72	Diesel Trucks	1	106	1	191125.03		184002.38		7122.65	3.87%	0.35	1.35%
0	4	36.55	-113.64	7	39.78	-94.98	19	18.94	Wind-powered Ships	0	78	1	15424		5547		9877.00	178.06%	0.02	3.56%
0	5	35.18	-109.14	1	37.5	-102.5	23	7.03	Diesel Rail	1	89	1	16954		16954		0.00	0.00%	0.03	0.00%
0	5	35.18	-109.14	2	30.08	-99.31	14	11.07	Cargo Ships (Heavy Fuel Oil)	1	94	1								
0	5	35.18	-109.14	3	31.85	-93.48	7	16.01	Diesel Trucks	1	35	0	Minimax Variable	3.56%						
0	5	35.18	-109.14	4	36.55	-113.64	12	4.70	Electrified Rail	0	97	1								
0	5	35.18	-109.14	7	39.78	-94.98	16	14.89	Air Freight	1	78	1								
0	6	43.87	-114.64	3	31.85	-93.48	14	24.34	Cargo Ships (Heavy Fuel Oil)	1	102	1								
0	6	43.87	-114.64	4	36.55	-113.64	19	7.39	Air Freight	1	92	1						l		
0		43.87				-94.98	19	20.08	Diesel Rail	1	89	1								
0	7	39.78	-94.98	2	30.08	-99.31	15	10.62	Electrified Rail	0	88	1								
0	7	39.78	-94.98			-93.48	14	8.07	Cargo Ships (Heavy Fuel Oil)	1	96	1								
0	7	39.78				-113.64	24	18.94	Air Freight	1	77	1								
0	7	39.78	-94.98	5	35.18	-109.14	10	14.89	Diesel Trucks	1	100	1								

this image was another of the scenarios I ran I believe this model reflects companies in the 20^{th} century putting all their focus on minimizing the money and not caring about the impact.