

Юр. Адрес: 423816, РТ, г. Набережные Челны, б/р Т. Кереселидзе, д.2/99, кв.167, ОГРН 1131650009655 ИНН/КПП 1650264901/165001001, Р/с 40702810262030005920, в Отделении «Банк Татарстан» № 8610 г. Казань, К/с 301018106000000000603, БИК 049205603, Тел/факс (8552) 203-410

РАСЧЕТ ПО УСТРОЙСТВУ ЛЕГКОСБРАСЫВАЕМЫХ КОНСТРУКЦИЙ НА ОБЪЕКТЕ «ПАО «Татнефть» «Установка ЭЛОУ- АВТ-6 (секция 1102)»

Объект защиты: «Установка ЭЛОУ- АВТ-6 (секция 1102)»							
Адрес: Россия, Республика Татарстан, Нижнекамский м промышленная зона (территория АО «ТАНЕКО»)	иуниципальный район, г. Нижнекамск,						
Разработаны:							
Директор							
ООО «ПожСтандарт»	Разуваева С.В.						
м.п.							
2019							
Директор ООО «ПожСтандарт» м.п.	Разуваева С.В.						

«Установка ЭЛОУ- АВТ-6 (секция 1102)»

Изм. Лист

Разраб.

№ докум.

Подп.

Дат а

Определение площади вскрыт ия ЛСК

Лист

Лист ов 15

Содержание

Расчет	. 3
Расчет требуемых открытых проёмов для помещения ВВК.	. 6
Расчет количества фактических открытых проёмов длиной 6 м, шириной 1 м и толщиной 120 мм в исполнении сэндвич панели для помещения ВВК.	. 8
Расчет требуемых открытых проёмов для помещения реагентной насосной.	10
Расчет количества фактических открытых проёмов длиной 6 м, шириной 1 м и толщиной 120 мм в исполнении сэндвич панели для помещения реагентной насосной.	12
Вывод	14
Нормативные ссылки и справочные данные	14
Приложение №1. Паспорт качества стеновой панели	15

Расчет

Расчет ЛСК проводится для двух помещений здания: реагентной насосной и помещения ВВК. Согласно технологии, в данных помещениях обращается сырая нефть, которая в процессе переработки раскладывается на легкие и тяжелые фракции. В качестве наихудшего сценария был рассмотрен случай аварии и взрыва в защищаемых помещениях взрывоопасная горючая смесь толуола с воздухом.

ЭЛОУ-АВТ-6 — электрообессоливающая установка, атмосферно-вакуумная трубчатка, цифра в конце обозначает производительность по переработке данной установки 6 млн. тонн в год.

Поскольку вариантов схем этих установок, находящихся в эксплуатации на данный момент, на отечественных НПЗ, большое количество, мы рассмотрим наиболее распространенную и эффективную установку ЭЛОУ-АВТ-6, входящую в типовые блоки ЛК-6У большого количества заводов.

Нефть подается в насосную и поступает в виде смеси вместе с промывочной водой в специальные устройства — электродегидраторы (как правило, 4 пары для ЭЛОУ-АВТ-6), где происходит обессоливание и обезвоживание под действием электрического тока.

Прямогонные бензины с верха колон первичной перегонки K-1 и K-2 не могут быть использованы в качестве топлива напрямую. Данные фракции содержат растворенные газы C_1 — C_4 и их необходимо удалить для повышения детонационной стойкости при помощи процесса стабилизации. При прохождении бензина через колонну стабилизации поток разделяется на 2 промежуточные фракции: н.к. — 105 °C 105 — 180 °C далее, полученные фракции подвергают процессу вторичной перегонки с разделением на более узкие фракции. н.к. — 62 °C 62 — 105 °C 105 — 140 °C 140 — 180 °C.

В вакуумном блоке мазут разделяется до гудрона с получением или широкой дистиллятной фракции (350-500)°С, являющейся сырьем установок каталитического крекинга, гидрокрекинга, реже термокрекинга (топливный вариант работы), или с получением узких масляных фракций (веретенное, трансформаторное, машинное, цилиндровое) и остаточных масел (авиационное, дизельное) при работе по масляному варианту.

Рассмотрим случай расчета ЛСК при наиболее худшем сценарии взрыва - образование в производственном помещении взрывоопасной горючей смеси толуола с воздухом.

Рис. 1 Фасад объекта защиты

					Определение площади вскрыт ия ЛСК. «Уст ановка
					Определение площади вскрыт ин леп. «Уст ановка
					200V ART 6 (2000 42 1102)
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

План на отметке 0,000 +2,100 1(2) 3100 400, См. TT п. 6 M) 120 200 S 600-2 1500 3000 ПВК Узел 3300 управления 120 ПΤ Ж 150d 000 150 6000 200 2002 3 0 120 11360 120 **Д**Скла∂ 3000 6000 50 140,22 78,27 40,59 Ε 1500 220 0 3000 ₂₄₀₀₀ δ 150 1550 Реагентная насосная 42000 9009 Вертикальная связь 200 285,41 T 250 뗈 0 500 5550 6000 Водяная 3400 насосная 5000 139,67 2500200 B Узел захолаживания оборотной воды 0009 150 24000 150 Б) 11550 3000 284,00 9000 50 10 Α 1500 3000 1500 6000 6000 6000 6000 24000 3 Рис.2 План объекта на отм. 0,000

					Определение площади вскрыт ия ЛСК. «Уст ановка	Лист
					• • • •	
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»	4

Длина $a_{\rm II}$ и ширина $b_{\rm II}$ помещения составляют соответственно 42,0 м и 24,0 м. Согласно рис.1 расчетная высота помещения $h_{\rm II}$ = 7,7 м.

В качестве ЛСК для снижения избыточного давления взрыва в помещениях рассматривается смещаемые сэндвич панели размером ширина 1 м, длина 6 м, толщина 120 мм.

Puc.3 Рекомендуемое 1 место размещения ЛСК в помещении реагентной насосной

На рис.3 представлено рекомендуемое место размещения ЛСК в осях Γ -E, на отметке не более +6,000 м и не менее отметки +0,850 м. При условии обвода трубопроводом мест предполагаемого расположения ЛСК.

Фасад 5-1

Puc.4 Рекомендуемое место размещения ЛСК в помещении ВВК

На рис.4 представлено примерное рекомендуемое¹ место размещения ЛСК в осях 5-4, на отметке не более +5,000 м и не менее отметки +2,000 м.

					Определение площади вскрыт ия ЛСК. «Уст ановка
					• • • •
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Расчет требуемых открытых проёмов для помещения ВВК.

$$h_{\pi} := 6.75$$
 Высота помещения, м

Геометрический объем помещения Vп равен:

Согласно примечанию 2 и 4 к табл. 1 принимается, что строительные конструкции и оборудование занимают 20% геометрического объема помещения, причем 60% занимают крупногабаритные строительные конструкции и оборудование, а 40% - малогабаритные Свободный объём помещения Vcв рассчитывается по формуле:

$$V_{CB} := V_{\Pi} \cdot (1 - 0.01 \cdot 20) = 194.352$$
 Свободный объем помещения, м^3

В помещении в аварийной ситуации может образовываться взрывоопасная горючая смесь толуола с воздухом. Давление и температура в помещении до воспламенения горючей смеси принимаются равными

Коэффициент степени заполнения объема помещения горючей смесью и участия ее во взрыве

$$\mu_v := 1$$

Характеристики горючей смеси принимаются по данными таблици прил. 2:

$$\varepsilon_{pmax} := 8.3$$
 $U_{hmax} := 0.39$ M/c $\rho_{HKTIP} := 1.21$ KT/M^3

$$\varepsilon_{
m phknp} \coloneqq 5.1 \qquad \rho_{
m max} \coloneqq 1.24 \; \mbox{ кг/м^3}$$

 $arepsilon_{ ext{CHKITP}} := 6.1$ степень сжатия продуктов горения при взрыве в замкнутом объеме с концентрацией горючего, соответсвующей НКПР

 $arepsilon_{
m cmax} := 10$ степень сжатия продуктов горения при взрыве в замкнутом объеме с концентрацией горючего, соответсвующей Uнmax

Расчетные характеристики ГС вычисляются по соотвествующим формулам.

Расчетная нормальная скорость распростанения пламени определяется по формуле:

$$U_{Hp} := U_{Hmax} \cdot 0.55 = 0.215 \text{ M/c}$$

Расчетная плотность газа в помещении перед воспламенением смеси определяется по формуле:

$$\rho_0 := \frac{0.5367 \cdot \mu_V \cdot \left(\rho_{HK\Pi P} + \rho_{max}\right) + \left(1 - \mu_V\right) \cdot 1.294}{1 + 0.00367 \cdot T_0} = 1.229\text{T/M}^3$$

					Определение площади вскрыт ия ЛСК. «Уст ановка
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Расчетная степень сжатия продуктов горения при взрыве в замкнутом объеме определяется по формуле:

$$\varepsilon_{c} := 0.5 \cdot (\varepsilon_{cmax} + \varepsilon_{chklip}) = 8.05$$

Исходя из условий (10)-(12) опредеяем, что

$$V_{\Pi\Pi}:=0.5\cdot\mu_{V}\cdot V_{\Pi}\cdot\left(\varepsilon_{pHK\Pi p}+\varepsilon_{pmax}\right)=1.628\times10^{3}$$
 объем пламени, м^3

Так как Vпл > Vп, значит V=Vп

Показатель интенсификации взрывного горения α определяется линейной интерполяцией по табл. 1 в зависимости от степени загроможденности помещения строительными конструкциями и оборудованием Θз и объема V, в котором происходить горение взрывоопасной смеси.

Для малогабаритных строительных конструкций и оборудования при Өз=20%

$$\alpha_{\rm M} := 6 + \frac{(10 - 6) \cdot (242.94 - 100)}{1000 - 100} = 6.635$$

Для крупногабаритных строительных конструкций и оборудования при Өз=20%

$$\alpha_{K} := 4 + \frac{(6-4) \cdot (242.94 - 100)}{1000 - 100} = 4.318$$

Для 60% крупногабаритных и 40% малогабаритных строительных конструкций и оборудования:

$$\alpha := 0.6 \cdot \alpha_{\mathbf{K}} + 0.4 \cdot \alpha_{\mathbf{M}} = 5.245$$

Допустимое избыточное давление в помещении принимается равным

$$\Delta P_{ποπ} := 5$$
 κΠα

В соответсвии с формулами (14)-(16) коэффициент $\beta_{II} := 1$

Коэффициет Кф, учитывающий влияние формы помещения и эффект истечения продуктов горения взрывоопасной смеси определяется по формуле (16):

$$K_{\Phi} := \frac{0.5 \cdot \left(b_{\pi}^{2} + h_{\pi}^{2}\right)}{\sqrt[3]{V_{\pi}^{2}}} = 1.047$$

Требуемая площадь открытых проемов в наружном ограждении взрывоопасного помещения, при которой избыточное давление в нем при взрывном горении ГС не превысит ΔРдоп, определяется по формуле (2):

$$S_{\text{OTKP.TP}} := \frac{0.105 \cdot U_{\text{HP}} \cdot \alpha \cdot \left(\epsilon_{\text{c}} - 1\right) \cdot \beta_{\mu} \cdot K_{\Phi} \cdot \sqrt{\rho_{0}} \sqrt[3]{V_{\text{CB}}}^{2}}{\sqrt{\Delta P_{\text{ДОП}}}} = 14.486 \quad \text{M}^{2}$$

					Определение площади вскрыт ия ЛСК. «Уст ановка
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Расчет количества фактических открытых проёмов длиной 6 м, шириной 1 м и толщиной 120 мм в исполнении сэндвич панели для помещения ВВК.

В качестве ЛСК для снижения избыточного давления взрыва в помещении рассматриваются смещаемые сэндвич панели.

Расчетные размеры сэндвич панелей:

$$a_{\text{пан}} := 6$$
 , M

$$b_{\text{пан}} := 1 , M$$

$$S_{\Pi CKi} := a_{\Pi a H} \cdot b_{\Pi a H} = 6$$
 ,м^2 - площадь сэндвич панели

Избыточное давление в помещении, при котором начинается вскрытие ЛСК, определяется из выражения 30 рекомендации.

Согласно СП 20.13330.2011 расчетная ветровая нагрузка для региона (IV) в котором проводится расчет равна:

$$p_{D,B} := 0.48 к Па$$

Согласно каталогу сэндвич панель преставлена толщиной 120мм, длиной 6м, шириной 1м. При такой конфигурации вес данной панели составляет 21 кг/м^2. Таким образом нагрузка от собственной массы вычисляется по формуле:

$$p_{c.m} := 21.9.81 \cdot 10^{-3} = 0.206 \text{ к}$$
Па

При установке сэндвич панелей в боковые ограждающие конструкции расчётная снеговая нагрузка на них равна нулю. Таким образом:

$$p_{ch} := 0 к П а$$

$$\mathbf{p}_{\mathbf{Д.H.расч.}} := 2.5 \cdot \mathbf{p}_{\mathbf{p.B}} - \mathbf{p}_{\mathbf{c.M}} = 0.994$$
 кПа

Согласно формуле 32 рекомендации принимаем с запасом $p_{\pi,H} := 1.2$ кПа

Таким образом избыточное давление при котором начинается вскрытие ЛСК определяется как большее из следующих условий:

$$\Delta p_{\text{вскр1}} := 2$$
 кПа

$$\Delta p_{\text{вскр}} := 3.5 \cdot p_{\text{р.в}} + p_{\text{д.н}} = 2.88$$
 кПа

Таким образом давление начала вскрытия сэндвич панели равно 2.88 кПа

Видно, что конструкция ЛСК обеспечивает значение Дрвскр не более 0.77ДРдоп

По формуле (35) рассчитывается значение коэффициента К∆:

$$\mathrm{K}_{\Delta} := \frac{\Delta \mathrm{P}_{\mathtt{ДО\Pi}}}{\Delta \mathrm{p}_{\mathtt{BCKD}}} = 1.736$$

Значение коэффициента формирования взрывной нагрузки на конструкции Кл.в определяется методом линейной интерполяции по табл.6

$$K_{\Pi,B} := 1.06$$

					Определение площади вскрыт ия ЛСК. «Уст ановка
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Рассчитывается критерий Y для расчета коэффициента Кс.м, учитывающего влияние собственной массы ЛСК согласно п.2.16:

М_{ЛСК} := 126 ,кт - масса сэндвич панели

$$Y := \frac{\Delta p_{BCKp} \cdot 10^3 \cdot S_{JICKi}}{M_{JICK} \cdot 9.81} = 13.98$$

При Y >= 0.3 коэффициент Кс.м принимается равным 1

$$K_{C.M} := 1$$

Согласно п.2.17 Кз.п для смещаемых ЛСК принимается равным 1

$$K_{3.\Pi} := 1$$

$$K_{\text{BCKP}} := \frac{S_{\text{OTKP.TP}} \cdot \left(a_{\text{\Pi}\text{AH}} + b_{\text{\Pi}\text{AH}}\right) \cdot \Delta p_{\text{BCKP}} \cdot K_{\text{C.M}} \cdot K_{3.\Pi.}}{K_{\text{\Pi.B}} \cdot \alpha^3 \cdot U_{\text{HP}}^{-3} \cdot \sqrt{\rho_0} \cdot M_{\text{JICK}}} = 1.388$$

Окончательно принимается Квскр=1

Квскр := 1

Площадь ЛСК в наружном ограждении помещения при использовании смещаемых сэндвич панелей принятого типа будет равна:

$$S_{\text{ЛСКфакт.}} := \frac{S_{\text{откр.тр}}}{K_{\text{вскр}}} = 14.486$$

Фактическа я площадь ЛСК в ограждающих конструкциях должна превышать значение ^SЛСКфакт.

					Определение площади вскрыт ия ЛСК. «Уст ановка
					,
					200V ART C /2000 4 2 1102 10
Изл	1. Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Расчет требуемых открытых проёмов для помещения реагентной насосной.

 $a_{\pi} := 24$ Длина помещения, м $b_{\pi} := 11.75$ Ширина помещения, м

 $h_{\pi} := 7.7$ Высота помещения, м

Геометрический объем помещения Vп равен:

$$V_{\pi} := 2170.6$$
 Объем помещения, м^3

Согласно примечанию 2 и 4 к табл. 1 принимается, что строительные конструкции и оборудование занимают 20% геометрического объема помещения, причем 60% занимают крупногабаритные строительные конструкции и оборудование, а 40% - малогабаритные Свободный объём помещения Vcв рассчитывается по формуле:

$$V_{\text{CB}} := V_{\pi} \cdot (1 - 0.01 \cdot 20) = 1.736 \times 10^3$$
Свободный объем помещения, м^3

В помещении в аварийной ситуации может образовываться взрывоопасная горючая смесь толуола с воздухом. Давление и температура в помещении до воспламенения горючей смеси принимаются равными

р₀ := 101.3 Начальное давление, кПа

Т₀ := 20 Начальная температура, С

Коэффициент степени заполнения объема помещения горючей смесью и участия ее во взрыве

$$\mu_v := 1$$

Характеристики горючей смеси принимаются по данными таблици прил. 2:

$$\varepsilon_{pmax} := 8.3$$
 $U_{mmax} := 0.39$ M/c $\rho_{HKTIP} := 1.21$ KT/M^3

$$\varepsilon_{\mbox{\scriptsize phknp}} \coloneqq 5.1 \qquad \ \, \rho_{\mbox{\scriptsize max}} \coloneqq 1.24 \mbox{\scriptsize KT/M}^{\mbox{\scriptsize Λ}} 3$$

 $\varepsilon_{
m CHKTIP} := 6.1$ степень сжатия продуктов горения при взрыве в замкнутом объеме с концентрацией горючего, соответсвующей НКПР

 $ε_{cmax} := 10$ степень сжатия продуктов горения при взрыве в замкнутом объеме с концентрацией горючего, соответсвующей Uнmax

Расчетные характеристики ГС вычисляются по соотвествующим формулам.

Расчетная нормальная скорость распростанения пламени определяется по формуле:

$$U_{Hp} := U_{Hmax} \cdot 0.55 = 0.215 \text{ M/c}$$

Расчетная плотность газа в помещении перед воспламенением смеси определяется по формуле:

$$\rho_0 := \frac{0.5367 \cdot \mu_V \cdot \left(\rho_{HK\Pi P} + \rho_{max}\right) + \left(1 - \mu_V\right) \cdot 1.294}{1 + 0.00367 \cdot T_0} = 1.229 \text{T/M}^3$$

					OUDOUGOUMO UUOMA BUMA BUMANTA MA TICK WAST ALIONYS
					Определение площади вскрыт ия ЛСК. «Уст анов
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Расчетная степень сжатия продуктов горения при взрыве в замкнутом объеме определяется по формуле:

$$\varepsilon_{\rm C} := 0.5 \cdot (\varepsilon_{\rm CMAX} + \varepsilon_{\rm CHKIID}) = 8.05$$

Исходя из условий (10)-(12) опредеяем, что

$$V_{\Pi\Pi} := 0.5 \cdot \mu_V \cdot V_\Pi \cdot \left(\varepsilon_{phk\Pi p} + \varepsilon_{pmax} \right) = 1.454 \times 10^4$$
 объем пламени, м^3

Так как Vпл > Vn, значит V=Vn

Показатель интенсификации взрывного горения α определяется линейной интерполяцией по табл. 1 в зависимости от степени загроможденности помещения строительными конструкциями и оборудованием Θз и объема V, в котором происходить горение взрывоопасной смеси.

Для малогабаритных строительных конструкций и оборудования при Өз=20%

$$\alpha_{\mathbf{M}} := 10 + \frac{(18 - 10) \cdot (2170.6 - 1000)}{10000 - 1000} = 11.041$$

Для крупногабаритных строительных конструкций и оборудования при Өз=20%

$$\alpha_{\mathbf{K}} := 6 + \frac{(10 - 6) \cdot (2170.6 - 1000)}{10000 - 1000} = 6.52$$

Для 60% крупногабаритных и 40% малогабаритных строительных конструкций и оборудования:

$$\alpha := 0.6 \cdot \alpha_{\mathbf{K}} + 0.4 \cdot \alpha_{\mathbf{M}} = 8.328$$

Допустимое избыточное давление в помещении принимается равным

$$\Delta P_{ποπ} := 5 κΠα$$

В соответсвии с формулами (14)-(16) коэффициент $\beta_{\mu} := 1$

Коэффициет Кф, учитывающий влияние формы помещения и эффект истечения продуктов горения взрывоопасной смеси определяется по формуле (16):

$$K_{\Phi} := \frac{0.5 \cdot \left(b_{\pi}^{2} + h_{\pi}^{2}\right)}{\sqrt[3]{V_{\pi}^{2}}} = 0.589$$

Требуемая площадь открытых проемов в наружном ограждении взрывоопасного помещения, при которой избыточное давление в нем при взрывном горении ГС не превысит ΔРдоп, определяется по формуле (2):

$$S_{\text{OTKP.TP}} := \frac{0.105 \cdot U_{\text{HP}} \cdot \alpha \cdot \left(\epsilon_{\text{C}} - 1\right) \cdot \beta_{\mu} \cdot K_{\Phi} \cdot \sqrt{\rho_{0}} \sqrt[3]{V_{\text{CB}}^{2}}}{\sqrt{\Delta P_{\text{ДОП}}}} = 55.661 \quad \text{m}^{2}$$

					Определение площади вскрыт ия ЛСК. «Уст ановка
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Лист

11

Расчет количества фактических открытых проёмов длиной 6 м, шириной 1 м и толщиной 120 мм в исполнении сэндвич панели для помещения реагентной насосной.

В качестве ЛСК для снижения избыточного давления взрыва в помещении рассматривается смещаемые сэндвич панели.

Расчетные размеры сэндвич панелей:

$$a_{\text{пан}} := 6$$
 , M

$$b_{\text{пан}} := 1 , M$$

$$S_{\Pi CKi} := a_{\Pi a H} \cdot b_{\Pi a H} = 6$$
 ,м^2 - площадь сэндвич панели

Избыточное давление в помещении, при котором начинается вскрытие ЛСК, определяется из выражения 30 рекомендации.

Согласно СП 20.13330.2011 расчетная ветровая нагрузка для региона (IV) в котором проводится расчет равна:

Согласно каталогу сэндвич панель преставлена толщиной 120мм, длиной 6м, шириной 1м. При такой конфигурации вес данной панели составляет 21 кг/м^2. Таким образом нагрузка от собственной массы вычисляется по формуле:

$$p_{CM} := 21.9.81 \cdot 10^{-3} = 0.206 кПа$$

При установке сэндвич панелей в боковые ограждающие конструкции расчётная снеговая нагрузка на них равна нулю. Таким образом:

$$p_{cH} := 0 к П а$$

$$p_{\text{д.н.расч.}} := 2.5 \cdot p_{\text{р.в}} - p_{\text{с.м}} = 0.994$$
 кПа

Согласно формуле 32 рекомендации принимаем с запасом $p_{\pi \, \text{\tiny H}} := 1.2 \,$ кПа

Таким образом избыточное давление при котором начинается вскрытие ЛСК определяется как большее из следующих условий:

$$\Delta p_{BCKp1} := 2$$
 кПа

$$\Delta p_{\text{вскр}} := 3.5 \cdot p_{\text{р.в}} + p_{\text{д.н}} = 2.88$$
 кПа

Давление начала вскрытия сэндвич панели равно 2.88 кПа

Видно, что конструкция ЛСК обеспечивает значение Дрвскр не более 0.77ДРдоп

По формуле (35) рассчитывается значение коэффициента КД:

$$K_{\Delta} := \frac{\Delta P_{\text{ДОП}}}{\Delta p_{\text{BCKP}}} = 1.736$$

Значение коэффициента формирования взрывной нагрузки на конструкции Кл.в определяется методом линейной интерполяции по табл.6

$$K_{\pi B} := 1.06$$

					Определение площади вскрыт ия ЛСК. «Уст ановка
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Рассчитывается критерий Y для расчета коэффициента Кс.м, учитывающего влияние собственной массы ЛСК согласно п.2.16:

М_{ПСК} := 126 ,кг-масса сэндвич панели

$$Y := \frac{\Delta p_{BCKP} \cdot 10^3 \cdot S_{JICKi}}{M_{JICK} \cdot 9.81} = 13.98$$

При Y >= 0.3 коэффициент Кс.м принимается равным 1

$$K_{C.M} := 1$$

Согласно п.2.17 Кз.п для смещаемых ЛСК принимается равным 1

$$K_{3.\Pi} := 1$$

$$K_{\text{BCKP}} := \frac{S_{\text{OTKP.TP}} \cdot \left(a_{\text{\Pi}\text{AH}} + b_{\text{\Pi}\text{AH}}\right) \cdot \Delta p_{\text{BCKP}} \cdot K_{\text{C.M}} \cdot K_{3.\Pi.}}{K_{\text{II.B}} \cdot \alpha^3 \cdot U_{\text{Hp}}^3 \cdot \sqrt{\rho_0} \cdot M_{\text{JICK}}} = 1.331$$

Так как Квскр больше единицы, в конечном итоге Квскр принимается равным 1

$$KBCKp := 1$$

Площадь ЛСК в наружном ограждении помещения при использовании смещаемых сэндвич панелей принятого типа будет равна:

$$S_{\text{ЛСКфакт.}} := \frac{S_{\text{откр.тр}}}{K_{\text{ВСКр}}} = 55.661$$

Фактическая площадь ЛСК в ограждающих конструкциях должна превышать значение ${
m S}_{
m ЛСК}$ факт.

					Определение площади вскрыт ия ЛСК. «Уст ановка
					• • • •
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»

Вывод

Помещение ВВК. Чтобы обеспечить взрывопожарную безопасность данного здания, в наружных ограждениях помещения ВВК суммарная площадь легкосбрасываемых конструкций в исполнении из сэндвич панелей длиной 6м, шириной 1 м и толщиной 120 мм, фактическая площадь легкосбрасываемых конструкций должна быть более **14,486 м**².

Помещение реагентной насосной. Чтобы обеспечить взрывопожарную безопасность данного здания, в наружных ограждениях помещения реагентной насосной суммарная площадь легкосбрасываемых конструкций в исполнении из сэндвич панелей длиной 6м, шириной 1 м и толщиной 120 мм, фактическая площадь легкосбрасываемых конструкций должна быть более **55,661 м**².

Примечание: Расчет справедлив только в том случае, когда все легкосбрасываемые конструкции выполнены в одном типоразмере согласно расчету, все элементы ЛСК закреплены согласно технологии предоставленной заводом изготовителей.

(1) Рекомендуемое место размещение сэндвич панелей было выбрано исходя из уже существующих конструктивных решений построенного здания и технологического процесса. Данная рекомендация является субъективным мнением эксперта и не несёт обязывающий характер. Более точные и обоснованные рекомендации можно посмотреть в [4].

Нормативные ссылки и справочные данные

- [1] Федеральный закон от 22.07.2008 № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» (ред. от 13.07.2015).
- [2] СП 12.13130.2009. Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности (с изм., утв. приказом МЧС России от 9 декабря 2010 г. N 643).
- [3] Расчет параметров легкосбрасываемых конструкций для взрывопожароопасных помещений промышленных объектов: рекомендации. М.: ВНИИПО, 2015. 48 с.
- [4] Обеспечение взрывоустойчивости зданий с помощью предохранительных конструкций. Пилюгин Л. П., 2000.

					Определение площади вскрыт ия ЛСК. «Уст анов	
					• • • •	
Изм	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»	

Приложение №1. Паспорт качества стеновой панели

ПАСПОРТ КАЧЕСТВА № 000036237 "TEPLANT - UNIVERSAL"

Панели стеновые и кровельные

с базальтовым утеплителем и профилированными листами из тонколистовой оцинкованной стали с полимерным покрытием. ТУ 5284-013-01395087-2001, ТТ 07.2-08-2016.							
Марка:	Марка: ПСБ-120/1000 (0,5/0,5) Teplant-Universal Количество, м2: 2						
Ширина, мм	1 000		Толщина, мм	120			
Заказчик ООО ГСИ Волгоградская фирма "Нефтезаводмонтаж"							
Объект: ПАО «Татнефть». Блок 10. Компрессорная, адрес: РТ,							
Заказ/Партия №	00000005248 Дата			готовления:	28.07.2018		
 Утеплитель - плиты из минеральной тонковолокнистой ваты на основе базальтового волокна на синтетическом связующем с гидрофобизирующими добавками с вертикальной ориентацией волокон, плотность не менее 105 кг/м3, ТУ 5762-007-01395087-2011 Профилированные листы - из тонколистовой оцинкованной стали с полимерным покрытием. ГОСТ Р 52146-2003. 							
3. Вид покрытия металлических листов:							
- наружного Полиэстр 1015 - внутреннего Полиэстр 1015							
4. Характеристики панелей. а) стеновых (при толщине листа 0,5/0,5 мм)							
	Толщина, Приведенное	Macca	Разрушаю	Предел			

Толщина, мм	Приведенное сопротивление теплопередаче Ro м2хоС/Вт	Масса кг/ м2	Разрушаю щая нагрузка, кг ГОСТ 21562-76	Предел огнестойкости ГОСТ 30247.0-94
80	2,158	17,0	540	EI 90
100	2,658	19,0	600	EI 90
120	3,158	21,0	670	EI 150
150	3,908	24,0	710	EI 150
200	5,158	29,0	740	EI 150

					Определение площади вскрыт ия ЛСК. «Уст ан
					2.00V ART C /22 11021
Изм.	Лист	№ докум.	Подп.	Дат а	ЭЛОУ- АВТ-6 (секция 1102)»