ОГЛАВЛЕНИЕ

	Стр.
ОРГАНИЗАТОРЫ И СПОНСОРЫ	vi
МЕЖДУНАРОДНЫЙ ОРГКОМИТЕТ КОНФЕРЕНЦИИ	vii
ПРОГРАММНЫЙ КОМИТЕТ	viii
ПРИВЕТСТВИЯ КОНФЕРЕНЦИИ	ix
К 80-ЛЕТИЮ ПРОФЕССОРА Б. БАРАНОВСКОГО	XX
ГЕНИИ XX ВЕКА (К 120-ЛЕТИЮ ЭРВИНА ШРЁДИНГЕРА)	xxvi
К 150-ТИ ЛЕТИЮ Г. Р. ГЕРЦА	xxviii
ПАМЯТИ МАРИИ СКЛОДОВСКОЙ-КЮРИ	xxxi
К 100-ЛЕТИЮ ВЕРЫ ИВАНОВНЫ МИХЕЕВОЙ	xxxvi
ФУЛЛЕРЕН С ₆₀	xxxviii
СЕКЦИЯ 1 ГИДРИДЫ МЕТАЛЛОВ	
СЕКЦИЯ 1.1 ПОЛУЧЕНИЕ ГИДРИДОВ МЕТАЛЛОВ	
СЕКЦИЯ 1.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГИДРИДОВ МЕТАЛЛОВ	1
Фазовые переходы в наноразмерных структурах. Соменков В.А.	4
Характер фазовых превращений 1 рода в гидридных системах	8
Водород в переходных и непереходных металлах. Квантовая теория	12
Катализ в реакциях с водородом. Квантовая теория и спиновая химия	15
Физико-химические основы синтеза гидридов металлов	18
Водородная проницаемость металлов при наличии внутренних напряжений	22
Взаимодействие интерметаллида TiAl с аммиаком	26
Влияние механической активации на термическую стабильность AlH_3 в системе $Al-C-H$	32
Влияние механического помола и добавок гидридов и амидов металлов на термическую стабильность AlH ₃	36
Дуля М.С., Булычев Б.М., Тарасов Б.П.	
Свойства некоторых сплавов системы Ti-Al	40
T-P диаграмма системы Al-H: эксперимент подтверждает расчет	44

Цепочки водорода в α -фазе гидридов тяжелых РЗ-металлов. <i>Наморадзе Н.З., Ратишвили И.Г.</i>	50
Взаимодействие водорода с LaNi $_3$ Co $_2$ при 308 и 353 К. Бердоносова Е.А. Яковлева Н.А.	54
Электрохимические и водородсорбционные свойства AB_5 - типа сплавов, где $A-La$, $Ce; B-Ni$, Co, Mn , $Fe, Cu, Cr, Al.$	57
Зотов Т.А., Романов И.А., Митрохин С.В., Вербецкий В.Н., Петрий О.А.	
Металлографические исследования и особенности гидрирования сплава Mg-La-Ni. <i>Фурсиков П.В., Борисов Д.Н., Яртысь В.А., Тарасов Б.П.</i>	60
Влияние природы металла-заместителя и технологии получения на электрохимические и сорбционные характеристики сплавов на основе $LaNi_5$	64
щероикови Л.1., Солонин Ю.М., Северянини Е.П.	
Фазовые диаграммы и инверсия изотопного эффекта в системе LaNi ₅ – $H_2(D_2)$	68
Структурные и электрохимические свойства водородсорбционных сплавов систем R-T-M (R - редкоземельные и M - переходные металлы)	72
Павлюк В., Солоха П., Тарасюк И., Дмытрив Г., Завалий И., Поль-Бонкур В.	
Кинетика ориентационного дальнего упорядочения атомов Н в ГПУ-Lu–H. <i>Радченко Т.М., Татаренко В.А.</i>	78
«Гистерезис» при взаимодействии ультрадисперсного магния с водородом	86
Взаимодействие с водородом псевдосплавов Mg-P3M-Ni и композитов на их основе	90
Электрохимическое насыщение водородом аморфного сплава $Mg_{50}Ni_{30}Y_{20}$	94
О получении порошков сплавов типа Mg-Ni быстрой закалкой	98
Моделирование относительно стабильных алюмогидридов щелочных и щелочноземельных металлов <i>Бояркина О.В., Белянин А.В.</i>	102
Механизмы образования гидридов металлов в присутствии борсодержащих соединений	108
Определение бора в сплавах на основе системы Nd-Fe-B. <i>Иванов А.В.</i>	112
Магнитные свойства гидридов $Gd_2Fe_{14}BH_x$. Бездушный Р., Дамянова Р., Никитин С.А., Терешина Е.А., Терешина И.С., Бурханов Г.С., Чистяков О.Д	115
Растворимость водорода в борогидридах и гидридах металлов	118
Термодинамика термолиза борогидридов щелочных металлов	122
Рентгеноструктурные исследования гидридов, полученных из металлов различного исходного состояния. Рогозинская А.А., Астратов Н.С., Гомеля Н.Д., Тимофеева И.И., Клочков Л.А., Рогозинский А.А., Золотаренко Ан.Д., Ткачук В.И., Шелест Е.Н., Шевченко Д.Т., Руденко Ю.М.	126

Особенности формирования структур сплавов в системе Ti-Zr-Hf-H 13 Шехтман В.Ш., Долуханян С.К., Алексанян А.Г., Тер-Галстян О.П., Маилян Д.Г., Сахаров М. К., Хасанов С.С.	30
Создание гидридоциркониевых изделий с мелкозернистой структурой путем низкотемпературного гидрирования	33
Федик И.И., Гаврилин С.С., Стафеева Н.В., Сясин В.А.	
Влияние TiB_2 на термическую стабильность гидридной фазы механического сплава на основе Mg	36
Наночастицы, имеющие структуру ядро-оболочка, их синтез и возможности применения для хранения водорода	40
Чурилов Г.Н., Фёдоров А.С., Новиков П.В., Внукова Н.Г.	
Получение компактных образцов карбидов и карбогидридов на основе титана и ванадия	14
Новый метод получения сплавов на основе переходных металлов	48
Формирование беспористых компактных изделий из гидридов тугоплавких металлов	52
Термическая стабильность и водородсорбционные свойства $Mg_3MnNi_2H_x$, полученного механическим сплавлением порошков Mg , Mn , Ni в атмосфере водорода под давлением 1,2 $M\Pia$. 15 Добровольский B . \mathcal{A} ., E ршова O . Γ ., C олонин W . W . 3авалий W . W .	58
Поиск и разработка новых материалов для хранения водорода в связанном состоянии	52
Взаимодействие водорода с примесями внедрения в титановых порошках	56
Калориметрическое исследование взаимодействия водорода с $Ti_{0.9}Zr_{0.1}Mn_{1.5}V_{0.8}$.	59
Алгоритмы оценки параметров моделей водородопроницаемости	72
Исследование подвижности водорода в наноструктурированных соединениях TaV_2H_{1+x}	76
Моделирование диффузионного пика ТДС-спектра дегидрирования с учетом сжатия и теплопоглощения <i>Заика Ю.В., Родченкова Н.И.</i>	80
Влияние водорода на сплавы с эффектом памяти формы. 18 Скрябина Н.Е. , Фрушар Д., Кагнон Л., Шеляков А.В.	34
Исследование гидридов металлов методом ИК-спектроскопии. 18 Падурец Л.Н., Гоева Л.В., Кузнецов Н.Т., Шилов А.Л.	37
О кисталлической структуре гидрида золота	90
Водородсорбционные характеристики сплавов на основе ИМС ZrFe ₂ и ZrCo ₂	94

Магнитные свойства соединений Y_2 (Fe,Mn) ₁₇ и их гидридов	198
Исследование абсорбции водорода в магниевых наночастицах с поверхностным слоем переходных металлов-катализаторов диссоциации водорода	202
Влияние давления на термодинамические свойства гидридов лёгких элементов	206
Электронная структура гранецентрированной кубической фазы $MoO_{1,9}$, полученной в результате восстановления водородной бронзы $H_{1,63}MoO_3$	210
Структурное состояние и электронная структура гидрированных сплавов Ti-Zr-Ni с квазикристаллической аппроксимантной составляющей	214
Влияние углерода на процессы образования нитрида титана из механически активированного гидрида титана при его нагревании в азотсодержащей среде	218
Влияние взаимодействия металлического покрытия с поверхностью магния на его водородосорбционные свойства. Чупров С.С., Хомко Т.В., Добровольский В.Д., Ершова О.Г., Чеховский А.А.	222
Состав TiH_x в изотермических условиях ступенчатого нагрева в воздухе. <i>Гарбуз В.В., Морозов И.А., Кузьменко Л.Н., Петрова В.А., Яковлев А.В.</i>	226
Особенности взаимодействия интерметаллических соединений AB_2 с водородом	229
Влияние нестехиометрии на динамические, магнитные и электронные свойства γ -фазы дейтеридов титана TiD_{x} по данным ЯМР	232
Уровни накопления ионно-имплантированного дейтерия в Zr и двухслойной системе Zr-Pd	236
Гидриды интерметаллических соединений на основе YNi ₃	240
Влияние кислорода на процессы ТДС и ГДДР гидридов $Zr_3FeO_xH_y$. <i>Ковальчук И. В., Денис Р. В., Завалий И.Ю.</i>	244
Структурные исследования соединений $(Sc_{1-x}Ti_x)_2Ni$ и их гидридов. <i>Мякуш О.Р., Ковальчук И.В., Березовец В.В., Котур Б.Я.</i>	247
Исследование "из первых принципов" электронной структуры и фононных спектров TiH_2 и ZrH_2 Иващенко В.И., Иващенко Л.А., Скрынский П.Л., Гришнова Л.А., Стегний А.И.	250
Моделирование "из первых принципов" жидких и аморфных фаз SiC и SiCN	254
Кинетика восстановления хлористого бензила алюмогидридом лития	258
Нейтронографическое исследование гексагональной и кубической фаз системы Ті -С-Н	262

Влияние вакуумной термообработки на структуру твердых растворов TiC_xH_y	266
Определение расположения изотопов водорода в твердом растворе $TiN_{0.40}H_{0.19}D_{0.19}$ методом дифракции	250
нейтронов	270
Исследование формирования сплавов в системе Zr-Hf из бинарных гидридов	274
Получение интерметаллических соединений из гидридов титана и циркония с никелем и кобальтом Алексанян А.Г., Акопян АГ., Долуханян С.К., МнацаканянН.Л., Абрамян К.А.	280
Оценка коррозионной стойкости микрокристаллического Zn-Pb сплава по выделению водорода	284
Динамика решетки разбавленных растворов водорода в сплавах Pd-Au	302
Колебательный спектр α -гидрида марганца в режиме туннелирования водорода	306
Влияние механического диспергирования на аморфизацию, структурные переходы и водородсорбционные свойства сплавов на основе TiCr ₂	309
Сорбционные свойства механохимически приготовленных композитов магния с некоторыми солевыми добавкам	312
Влияние переходных элементов Ti, Mn, Fe, Ni на температуру разложения гидридной фазы механического сплава на основе Mg	316
К проблеме компенсационного изоморфизма примесей при механоактивации синтеза порошковых наноматериалов в твердом состоянии	320
Гидрирование палладия при комнатной температуре	323
Механизмы образования гидридов металлов в присутствии борсодержащих соединений	326
Образование промежуточных фаз в процессе синтеза нанопорошков кубического твердого раствора ${\rm Ti}_{(1-x)}{\rm Al}_x{\rm N}$ в системах ${\rm Ti-Al-NH}_3$ и ${\rm TiH}_2{\rm -Al-NH}_3$	330
Новые сплавы Mg-M-Ni (M=Mn, Ti, Al) как эффективные водородсодержащие материалы	334
СЕКЦИЯ 1.3 ИСПОЛЬЗОВАНИЕ ГИДРИДОВ МЕТАЛЛОВ	340
Использование гидридного теплового насоса для дополнительного отопления коттеджа	344
Анализ ограничений, препятствующих внедрению гидридных тепловых насосов	348
A ккумулирование водорода фотоэлектрохимической системой на основе арсенида галлия и сплава $LaNi_{2.5}Co_{2.4}Al_{0.1}$	352
Cοπομία ΙΟ Μ. Κοπόαςοε Γ. Я. Шербакова Л. Γ. Русенкий И. 4. Сποбоданок И. 4. Ланько Л. Б.	

нитрида и борида титана	356
Водородсорбционные свойства композитов на основе Mg и субоксидов Ti/Zr, полученных механохимическим помолом.	360
Денис Р.В., Завалий И.Ю., Березовец В.В., Поль-Бонкур В.	
Восстановление кубановых производных с различными функциональными группами простыми и комплексными гидридами легких металлов	364
Теплопроводность слоев гидридных порошков при взаимодействии с водородом	368
Влияние послеэлектролизных изменений на гидриды металлов в электрохимических системах	372
Энергетика образования гидридов металлов в электрохимических системах	376
Электрические свойства наноструктурной кубической фазы $Ti_{(1-x)}Al_xN$, полученной с использованием	
водородсодержащих компонентов Людвинская Т.А., Андреева М.Г., Уварова И.В., Нищенко М.М	380
Роль водородсодержащих кластеров и d-металлов в сокристаллизации фазовых составляющих	
эвтектических плазменно-напыленных покрытий	384
Некоторые аспекты получения и применения соединений бора	388
СЕКЦИЯ 2 УГЛЕРОДНЫЕ НАНОСТРУКТУРНЫЕ МАТЕРИАЛЫ	391
СЕКЦИЯ 2.1 ПОЛУЧЕНИЕ ФУЛЛЕРЕНОВ И УГЛЕРОДНЫХ НАНОСТРУКТУР	
Наноалмазы как новая углеродная структура для нанотехнологий	393
Низкотемпературный метод синтеза углеродных наноматериалов	396
Влияние звукового поля на выход фуллеренов	400
Образование наноструктур углерода при лазерном испарении каменноугольного материала	404
Трифторметильные производные фуллерена C_{70} : синтез и фотофизические свойства	408
Исследование изменений фазового состава продуктов пиролизного синтеза в зависимости от положения в реакторе	412
Корнеева Ю.В., Новакова А.А., Федоров И.А., Объедков А.М., Зайцев А.А., Домрачеев Г.А.	.12
Оптимизация методов синтеза углеродных одностенных нанотрубокс применением	
3d переходных металлов	416
Оборудование и технология производства наноструктурных углеродных материалов	420

Ферромагнитные наночастицы, ооразующиеся при электродуговом испарении	10
Fe-Ni-графитовых электродов.	424
Мураоян В.Е., Leonowicz М., Кнерельман Е.И., Шульга Ю.М.	
Диэлектрические свойства эпоксиаминных композитов, дифицированных углеродными нановолокнами в СВЧ-диапазоне	428
Мурадян В.Е., Соколов Е.А., Бабенко С.Д., Моравский А.П., Николаева Г.А.	\
Особенности роста углеродных наноструктур на частицах Co, нанесенных на SiO_2 и Al_2O_3	432
Синтез углеродных наноматериалов электровзрывными методами	436
Получение и свойства нанопористого углерода из скорлупы кокоса	440
Образование углеродных наноструктур в процессе ИК-пиролиза полиакрилонитрила в присутствии Fe и Co	444
Земцов Л.М., Багдасарова К.А., Карпачева Г.П., Дзидзигури Э.Л., Сидорова Е.Н.	
Исследование морфологии, элементного состава и структуры продуктов распыления дугового разряда в аргоне	448
Подгорный В.И., Белашев Б.З., Киселев В.П., Терновой А.Н., Яковлев А.Н.	
Синтез алмазов из графита, модифицированного фуллеренами, природными микроалмазами и наноалмазами при высоких давлениях и температурах	451
Кидалов С.В., Шахов Ф.М., Давиденко В.М., Яшин В.А., Богомазов И.Е., Вуль А.Я.	
Свойства, структура молекул в нанофрагментах углеродных материалов и дизайн углеродных молекулярных сит	454
Бервено В.П., Щукин Л.И., Корниевич М.В., Наймушина М.В., Лырщиков С.Ю.	
Критерии качества фуллерита C_{60} и фуллереновой продукции	458
Особенности пиролиза паров этанола на катализаторах группы железа	462
Формирование наноструктурного sp ³ связанного углерода в гидротермальных условиях при высоком давлении	466
Кораблев С.Ф., Ямасаки Н., Копань А.Р., Кораблева И.Р., Кавасаки А., Кораблев Д.С.	
Роль наноструктурных оксидных пленок в механизме изнашивания конструкционных материалов на основе титана и его сплавов	470
Электронная структура продуктов карбонизации поливинилиденфторида и толуилендиизоцианата в матрице диоксида кремния	473
Наноструктурные и ультрадисперсные состояния высокоуглеродистых сплавов железа	476
Синтез и строение гидрированных металлофуллеренов	480
Углеродные наноструктуры на оксидированной поверхности титана и тантала	484

Получение углеродных наноструктурных материалов исходя из фталоцианиновых комплексов Fe и Ni <i>Огенко В.М., Третьякова И.Н., Томачинская Л.А., Черний В.Я.</i>	488
Сравнительный анализ методов синтеза фуллеренов и углеродных наноструктур	492
Структурные исследования углеродметаллических нанокомпозиций на основе LaMnNi	502
Электрохимический синтез углеродных наноструктур из солевых расплавов с прекурсором диоксидом углерода и их характеристика	506
СЕКЦИЯ 2.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА УГЛЕРОДНЫХ НАНОСТРУКТУРНЫХ МАТЕРИАЛОВ	509
Переход полупроводник-металл в нанотрубках и фуллеренах.Квантовая теория	512
Теоретическое исследование реакционной способности молекулы C_{60} в основном и в возбужденном триплетном состояниях. Шестаков $A.\Phi$.	516
Классификация наноструктур по размерности и концепция инженерии формы наноархитектур в материаловедении	520
Физико-химические основы организации и развития биосистем	524
Углерод-углеродные пористые композиты	528
Функционализация фуллеренов – эффективный способ регулирования их сродства к электрону	532
Интеркаляция фуллеритов в процессе их высаливания	536
Реакционная способность эндоэдральных металлофуллеренов $M@C_{82}$ ($M = Y, Ce, La, Gd$) в реакции трифторметилирования. <i>Бубнов В.П., Кареев И.Е, Федутин Д.Н., Болталина О.В., Ягубский Э.Б.</i>	540
Новые подходы к синтезу водорастворимых эндометаллофуллеренов с гадолинием	544
Исследование поведения нанокарбона C_{60} в растворах. Туйчиев Ш., Табаров С., Гинзбург Б.М., Осава Е., Саломов Дж.	548
Возможные пути образования π-сопряженных подсистем в одностеночных углеродных нанотрубках и их электронные свойства	552
Структура гидрированного фуллерита	556
Электропроводность фуллеритов C ₆₀ и C ₇₀ при ударном сжатии. <i>Шахрай Д.В., Авдонин В.В., Гольшев А.А., Ким В.В., Молодец А.М., Сидоров Н.С., Осипьян Ю.А., Фортов В.Е.</i>	560

Физико-химические свойства и превращения ударно-сжатого фуллерита C_{60}	564
Равновесная конфигурация и электронная структура изомеров молекулы $C_{32}H_8$	568
Полиаморфный переход в аморфных фуллеренах	571
«Упругие» моды межпримесного взаимодействия, управляющие релаксацией раствора внедрения примесей в ГЦК-фуллерите	574
Новые композиты полиацетилена с углеродными нанотрубками. Электрохимические свойства	578
Получение, исследование структуры и определение механических характеристик монокристаллического фуллерита C_{60}	582
Влияние облучения на свойства фуллеренового C_{60} покрытия на сплаве титана	586
Электронные переходы, обуславливающие фотопроводимость комплексов фуллерена C_{60} с металлоорганическими донорами состава (диалкилдитиокарбамат металла (II)) $_{2}$ (азотосодержащий лиганд)	590
Устойчивость углеродных нанотрубок при давлениях ударного сжатия до $\approx 100~\Gamma\Pi a$	594
Влияние примесей и дефектов на электронную структуру углеродных нанотрубок	597
Влияние высокотемпературной обработки на свойства нановолокнистых углеродных материалов, синтезированных каталитическим разложением углеводородов	600
Влияние кривизны поверхности углеродных нанотрубок на межатомные расстояния	604
Зависимость особенностей электронной структуры углеродных нанотрубок от диаметра и наличия дефектов	608
Позитронная спектроскопия композитов полипропилен-углеродные нанотрубки	612
Термодинамические свойства углеродных нанотрубок в области 0-300 К	616
Биосовместимость многостенных УНТ и их полимерных нанокомпозитов	620
Электронные свойства нанотрубок и их композитов	624
Позитронная аннигиляция в высокомолекулярных соединениях с нанотрубками, фуллеренами или нанокластерами	628
Лихторович С.П., Галстян И.Е., Нишенко М.М., Приходько Г.П.	

теплопроводность нанокомпозитов на основе наноалмазов и микрокристаллических алмазов	(21
спеченных при высоких давлениях и температурах	631
Кидалов С.В., Шахов Ф.М., Вуль А.Я., Яговкина М.А.	
Реакционная способность углеродных наноматериалов при низких температурах в процессах	
прямого и инициированного галогенирования.	634
Пахомова В.А., Кузина С.И., Михайлов А.И.	
Спектральные проявления межмолекулярного взаимодействия в системе ПАУ/дисперсный оксид	638
Димеры ПАУ	642
Янкович В.Н., Загинайченко С.Ю., Помыткин А.П., Шур Д.В.	
Межмолекулярные взаимодействия в системе фуллерен-ПАУ	646
Янкович В.Н., Помыткин А.П., Щур Д.В., Загинайченко С.Ю.	010
M	656
Моделирование «из первых принципов» жидких и аморфных фаз SiC и SiCN	. 650
Иващенко В.И., Иващенко Л.А., Скрынский П.Л., Гришнова Л.А.	
Активация и фиксация молекулярного азота на поверхности углеродных наноматериалов.	
Теоретический анализ методом функционала плотности	654
Шестаков А.Ф., Пичугина Д.С., Емельянова Н.С.	
Влияние площади поверхности на термодинамические свойства наноструктурных форм углерода	
при низких температурах.	658
Муратов В.Б., Куликов Л.М., Прилуцкий Э.В., Захаров В.В., Дуда Т.И.	
Изаталаранна атпистиру и физиказину арайатр начауарбанаа даруанну далимарар	662
Исследование структуры и физических свойств нанокарбонсодержащих полимеров	002
1 ишиооо д., 1110иноо 3., Силоноо дяс., 1 инзоурс Б.т., 1 уччисо 111., Осиои Е., 1 иоироо С.	
Исследования окисления гидрированных фуллеренов на воздухе	666
Головко Э.И., Акользина М.А., Помыткин А.П., Астратов Н.С., Тесленко Л.О.	
Закономерность растворения фуллерена С ₆₀ в метилпроизводных бензола	672
Загинайченко С.Ю., Аникина Н.С., Золотаренко А.Д., Кривущенко О.Я., Щур Д.В.	072
Эисиний ченко с.10., лийкини 11.с., эвлотирско л.д., крибущенко б.л., щур д.в.	
О донорно-акцепторном механизме растворения фуллерена C_{60} в ароматических углеводородах	678
Аникина Н.С., Щур Д.В., Загинайченко С.Ю., Золотаренко А.Д., Швачко Н.А., Кривущенко О.Я.	
Роль химических и физических свойств молекул фуллерена С ₆₀ и производных бензола	
в процессах растворения С ₆₀	682
Аникина Н.С., Щур Д.В., Загинайченко С.Ю., Золотаренко А.Д., Швачко Н.А., Кривущенко О.Я.	
СЕКЦИЯ 2.3 ХРАНЕНИЕ ВОДОРОДА В НАНОСТРУКТУРНОМ УГЛЕРОДЕ	685
Гидрирование графита под высоким давлением.	688
Башкин И.О., Антонов В.Е., Баженов А.В., Фурсова Т.Н., Лукашев Р.В., Сахаров М.К.,	
Шульга Ю.М., Заварицкая В.А.	
Теория хемосорбции одиночного атома водорода на графене	693
Маргулис Вл.А., Мурюмин Е.Е.	
A DETAIL HELD MOTERNATE IN THE BOTTOOL IN THE HUTTON COURT IN THE PROPERTY OF A VIDEO NAME OF A VIDEO OF THE PROPERTY OF THE P	
Актуальные «открытые вопросы» по интеркаляции водорода в углеродные наноструктуры и спилловер-эффекту в связи с проблемой хранения водорода на борту автомобиля	696
Нечаев Ю.С., Алексеева О.К., Илиас С.З., Везироглу Т.Н.	090
Моделирование поликонденсации водорода однослойными углеродными нанотрубками	702

Модификация ультратонких а-С:Н плёнок воздействием короткими импульсами в СТМ	706
Влияние водорода на магнетизм поли (орто-анисидина) (POAS) и нанокомпозита POAS /SWNT	710
Гидрирование фуллерита (экспериментальные результаты). Шур Д.В., Савенко А.Ф., Матысина З.А., Загинайченко С.Ю., Золотаренко А.Д., Золотаренко Ал.Д., Золотаренко Ан.Д.	714
Особенности строения молекулы C_{60} . <i>Щур Д.В.</i> , Загинайченко С.Ю., Лысенко Е.А., Головченко Т.Н., Власенко А.Ю.	719
Гидрирование пятиатомной молекулы в каркасе C_{60} . <i>Щур Д.В.</i> , Загинайченко С.Ю., Пишук В.К., Ткачук В.И., Старчик Н.И., Боголепов В.А., Золотаренко Ал.Д.	725
Геометрические особенности формирования С-Н связей на поверхности фуллеренового каркаса C_{60}	730
СЕКЦИЯ 2.4 ДРУГИЕ ПРИМЕНЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ	733
Новые направления технологии получения мембран, предназначенных для выделения и	726
концентрирования водорода в водородной энергетике	736
Проблема использования углеродных нанотрубок в литий-ионных аккумуляторах	740
Кремний-углеродные наноструктурированные композиты для отрицательного электрода литий-ионного аккумулятора	744
Модификация углеродного материала супеконденсаторов соединениями редкоземельных элементов Будзуляк И.М., Мандзюк В.И., Лисовский Р.П.	748
Действие углеродных наночастиц на клеточную мембрану	752
Разработка технологии получения и исследование свойств объемного биоморфного карбида кремния, как материала перспективного для медицины	756
Углеродные нанотрубки из графенов в порах неорганических мембран	760
Влияние степени совершенства фуллеритовых пленок на их оптические свойства. Бажин А.И., Беседа Е.А., Глазунова В.А., Ступак В.А., Троцан А.Н., Чертопалов С.В.	764
Структура и термомеханические свойства пленок диацетата целлюлозы, модифицированных фуллереном C_{60}	768
Структура фуллеренсодержащих электроосажденных пленок	772
Влияние добавок на структуру электроосажденных фуллеренсодержащих пленок и их химический состав Хотыненко Н.Г., Загинайченко С.Ю., Щур Д.В., Коваль А.Ю., Мильто О.В., Каменецкая Е.А.	776

Влияние обработки рабочей поверхности углеродной фольги на ее автоэмиссионные характеристики Лейченко А.С., Стариков П.А., Шешин Е.П.	780
Структура и оптические свойства углеродных пленочных наноструктур CN_x : Н	784
Трансформерная эволюция графеновых и никелевых наночастиц. Безносюк С.А., Важенин С.В., Жуковский М.С., Жуковская Т.М., Маслова О.А.	788
Металлополимерные нанокомпозиты со структурой «ядро-оболочка», получаемые контролируемым термолизом металлосодержащих мономеров	792
Кнерельман Е.И., Leonowicz M., Sowka E.	
Углерод-углеродные нанокомпозиты – носители для гетерогенных катализаторов дегидрирования углеводородов	796
Ефимов М.Н., Земцов Л.М., Карпачева Г.П., Ермилова М.М., Орехова Н.В., Кулакова И.И., Дзидзигури Э.Л., Сидорова Е.Н., Ефимов О.Н.	
Влияние нанокарбона C_{60} на электропроводность природных волокон. Акобирова А., Мисриён С., Туйчиев Ш., Осава Е., Аловиддинов А.	800
Некоторые особенности свойств эластомерных композиций, содержащих углеродный наноматериал <i>Шашок Ж.С., Прокопчук Н.Р., Касперович А.В., Крауклис А.В.</i>	804
Жирно-ароматический олигоэфир с полимеризационно-способными фрагментами для получения фуллеренсодержащего полиэфируретанового покрытия	808
Получение никельуглеродных волокон с повышенным содержанием высокодисперсного металла и наноразмерного структурно-упорядоченного углерода	812
Способ защиты от окисления наночастиц железа, полученных электрическим взрывом	816
Новые фторированные наноматериалы для кардиоэлектроники	819
Компьютерные модели наночастиц, включая гибридные	822
Сверхпроводимость, электронный парамагнитный резонанс и комбинационное рассеяние света в гетерофуллеридах с цезием	826
Кульбачинский В.А., Булычев Б.М., Кречетов А.В., Кытин В.Г., Лунин Р.А., Константинова Е.А.	
Расчёт из первых принципов электронной структуры и оптических спектров кристаллообразующих кластеров $X_n Y_n$ из полупроводников IV, III-V, IV-VI группы	830
Водородоаккумулирующие материалы на основе Mg-C нанокомпозитов	834
Синтез, структура, физико-химические свойства и применение многостенных углеродных нанотрубок <i>Семенцов Ю.И., Мележик А.В., Приходько Г.П., Гаврилюк Н.А., Пятковский М.Л., Янченко В.В.</i>	838
Исследование углерода различных модификаций методом автоматического индентирования	842

энергии материалов вследствие их диспергирования до наноразмеров с помощью ультрамягкой рентгеновской эмиссионной спектроскопии	45
Зауличный Я.В.	
Изучение кинетики электрохимического окисления водорода на нанодисперсных алмазах	48
Взаимодействие водорода с поверхностью нитрида углерода C_3N_4	52
Тушение люминесценции полимера в композиционном материале MEH-PPV/La@C ₈₂	56
Эволюция устройств для получения углеродных наноструктурных материалов в солнечной печи	60
Особенности фазовых состояний наночастиц, полученных плазмохимическим синтезом	64
Синтез и использование углеродноникелевых наноструктур в протонных насосах	68
Моделирование кристаллической структуры молекулярного комплекса LCV·C ₆₀	72
Влияние углеродных нановолокон на процессы циклизации и карбонизации ПАН	76
Автоэмиттеры из наноструктурного углерода	80
СЕКЦИЯ З МАТЕРИАЛЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ	83
	86
Неклюдов И.М., Борц Б.В., Гугля А.Г., Марченко И.Г.	
Протонпроводящие мембраны на основе сополимерных композитов	94
Нанокластеры платины на углеродных наноматериалах как катализаторы гидрирования	98
Селективная адсорбция кислорода фуллереновой чернью	02
Деформация мембраны, индуцированная транспортом водорода	06
Электроды для топливных элементов на основе углеродных нанотрубок и катализаторов	10
Направленный синтез углеродных нанотрубок пиролизом метана и приготовление на их основе Рt/С электрокатализаторов	14

элементов от их структурных параметров	. 918
Водородные композиционные электроды на основе виологенсодержащего полианилина	922
и фермента - гидрогеназы	922
Pt/C и Pt-Ni/C электрокатализаторы для топливных элементов	926
Изучение предельных состояний водородосодержащих материалов в конденсированном состоянии с помощью методов акустомикроскопической дефектоскопии	932
К вопросу о физико-химических свойствах водородных интеркалатов слоистых кристаллов GaSe	936
Электрофизические и рентгеноспектральные исследования нового катодного материала на основе хромита меди для SOFC	940
Композиты проводящих полимеров и диоксида марганца как электрокатализаторы восстановления кислорода для металл-воздушных элементов	. 944
Водород в алюминии	. 948
Явления переноса в приповерхностных слоях диоксида циркония	952
Синтез, кристаллическая структура, высокотемпературная проводимость и КТР нового сложного оксида Sr2.25Y0.75Co1.25Ni0.75O6.84 <i>Напольский Ф.С., Истомин С.Я., Антипов Е.В.</i>	956
Начальная стадия формирования упорядоченных нанокристаллических структур пленок твердого электролита на основе диоксида циркония	. 960
СЕКЦИЯ 4 ПОЖАРОВЗРЫВОБЕЗОПАСНОСТЬ ВОДОРОДОСОДЕРЖАЩИХ МАТЕРИАЛОВ	963
Комплексная противопожарная защита производств и участков работы с металлорганическими катализаторами полимеризации	966
Пожаровзрывоопасность металлорганических катализаторов полимеризации	970
СЕКЦИЯ 5 ВОДОРОДНАЯ ЭНЕРГЕТИКА И ПРОБЛЕМЫ ОКРУЖАЮЩЕЙ СРЕДЫ	973
Взгляд на будущее науки и техники	976
Экологические и технические аспекты водородной энергетики	978
Современная энергетика и экология. Проблемы и перспективы водородной энергетики	982

Эффективные методы понижения перенапряжения водорода при электролизе водных растворов	986
Предпосылки и принципиальная схема гелиоустановки для получения водорода "железо-паровым" методом с использованием отходов металлургического производства	990
К определению термических сопротивлений тепловых труб для устройств водородной энергетики <i>Шаповал А.А., Шаповал И.В.</i>	994
Создание новых композитных материалов для задач водородной энергетики	998
Микротопливный элемент на основе кремния	1006
Мезопористый фотокатализатор TiO_2/Cu для получения водорода из водно-спиртовых смесей	1010
Новые монолитные водородопроницаемые мембраны с малым содержанием палладия	1014
Фазовые превращения и фазовые равновесия в системе вода-водород	1024
О возможностях использования высокопористого тонколистового алюминия в топливных элементах $\boldsymbol{\Pi}$ <i>етрунина Н.А.</i>	1028
Моделирование влияния азота на проникновение водорода в металлы	1032
Влияние водорода на замедленное разрушение высокопрочных сплавов в зависимости от параметров термопластической обработки	1036
Сорбция водорода в слоистых кристаллах GaSe с наноразмерными поверхностными дефектами	1040
Повышение долговечности, экологической безопасности конструкционных материалов наномасштабным металлохелатированием	1044
Плакирование железного порошка с целью получения магнитно-мягких материалов с улучшенными свойствами	1048
Водородно-плазменная обработка светоизлучающих материалов на основе имплантированной двуокиси кремния, содержащей нановключения	1052
Нейтронные исследования нанокластерных примесных гелей тяжелой воды и дейтерия в сверхтекучем He-II. Межов-Деглин Л.П., Ефимов В.Б., Левченко А.А., Колмаков Г.В., Лохов А.В., Лебедева Е.В., Абдурахимов Л.В., Несвижевский В.В., Меу R., Стрелков А.В., Личагин Е.В., Музычко А.	1056
Исследование гранулометрического состава и структуры порошков нитридов алюминия и кремния после водородно-термической обработки	1060

Композитные сорбенты водорода на основе углеволокна «Бусофит»	1064
Терморегулируемая система хранения водорода с использованием углеродных материалов	1068
Стабильность хранения концентрированных растворов борогидридов щелочных металлов как источника водорода	1072
Адсорбция 90Sr на наноразмерных частицах ГАП	1075
Влияние примесей внедрения на температурные интервалы удержания дейтерия в стале X18H10T Неклюдов И.М., Морозов А.Н., Кулиш В.Г., Журба В.И., Галицкий А.Г.	1078
Наноразмерный оксид железа как потенциальный агент для радиолиза воды	1081
Предложение по созданию демонстрационного образца автономной ветроводородной станции в Украине <i>Глазков В.А., Соловей В.В., Боголепов В.А., Усатюк Л.М., Попов В.А.</i>	1082
Кинетика накопления радиогенного гелия-3 в твердой фазе тритидов гадолиния, тербия, диспрозия, гольмия, эрбия (РЗМ)	1088
Применение нанодисперсного пористого углерода и гидридообразующих металлов при детритировании конструкционных материалов. Стеньгач А.В., Голубева В.Н., Тарасова А.И., Масленникова О.Б., Пурьева А.П.	1092
Гидридообразующие материалы на основе ванадиевых и магниевых сплавов для систем металлогидридной тепловой защиты элементов конструкции плазменных энергоустановок	1096
Перспективы применения технологии газового распыления расплава многокомпонентных РЗМ содержащих сплавов абсорбентов водорода и магнитных материалов	1100
АВТОРСКИЙ УКАЗАТЕЛЬ.	1111
ОГЛАВЛЕНИЕ	1135