What is the physical interpretation of $\oint \mathbf{A} \cdot d\mathbf{l}$?

- A. The current density ${f J}$
- B. The magnetic field ${f B}$
- C. The magnetic flux Φ_B
- D. It's none of the above, but is something simple and concrete
- E. It has no particular physical interpretation at all

Consider a square loop enclosing some amount of magnetic field lines with height H and length L. If $\Phi_B \to 0$ as $H \to 0$ (or $L \to 0$), what does that say about the continuity of \mathbf{A} ?

$$\Phi_B = \oint \mathbf{A} \cdot d\mathbf{l}$$

- A. A is continuous at boundaries
- B. A is discontinuous at boundaries
- C. ???

Consider a square loop enclosing some amount of magnetic field lines with height H and length L. We intend to compute $\Phi_B = \oint \mathbf{A} \cdot d\mathbf{l}$? What happens to Φ_B as H becomes vanishingly small?

A. Φ_B stays constant

B. Φ_B gets smaller but doesn't vanish

 $\mathsf{C}.\,\Phi_B\to 0$

The leading term in the vector potential multipole expansion involves:

What is the magnitude of this integral?

A. *R*

B. $2\pi R$

C. 0

D. Something entirely different/it depends!

Two magnetic dipoles m_1 and m_2 (equal in magnitude) are oriented in three different ways.

Which ways produce a dipole field at large distances?

A. None of these

B. All three

C. 1 only

D. 1 and 2 only

E. 1 and 3 only

B. +x

C. +y

D. +z

E. None of these

The force on a segment of wire L is $\mathbf{F} = I\mathbf{L} \times \mathbf{B}$

A current-carrying wire loop is in a constant magnetic field ${\bf B}=B\hat{z}$ as shown. What is the direction of the torque on the loop?

The torque on a magnetic dipole in a B field is:

$$\tau = \mathbf{m} \times \mathbf{B}$$

How will a small current loop line up if the B field points uniformly up the page?

