STA2 - Lucky Solutions

Sm!le42

10 mars 2021

Table des matières

L	Cha	pitre 1 – Introduction au calcul des probabilités
	1.1	Exercice 3
		1.1.1 Solution (⁵ / ₈)
	1.2	Exercice 4
		1.2.1 Solution $(4/7; 2/7; 1/7)$
	1.3	Exercice 5
		1.3.1 Solution $(1/26; 1/4; 4/13; 1/2)$
	1.4	Exercice 9
		1.4.1 Solution $(^{17}/^{27})$
	1.5	Exercice 10
		1.5.1 Solution (35%)
	1.6	À VENIR

1 Chapitre 1 – Introduction au calcul des probabilités

1.1 Exercice 3

Un dé est truqué de sorte qu'en le lançant, la probabilité d'obtenir 6 vaut le triple de celle d'obtenir toute autre valeur. Avec ce dé, quelle est la probabilité d'obtenir un point pair?

1.1.1 Solution (5/8)

$$P(1) = \frac{1}{8}$$
 $P(2) = \frac{1}{8}$ $P(3) = \frac{1}{8}$ $P(4) = \frac{1}{8}$ $P(5) = \frac{1}{8}$ $P(6) = \frac{3}{8}$ $P(Pair) = P(2) + P(4) + P(6)$ $= \frac{1}{8} + \frac{1}{8} + \frac{3}{8}$ $= \frac{5}{8}$

1.2 Exercice 4

Trois chevaux sont en course. Le premier à 2 fois plus de chances de gagner que le deuxième, celui-ci a aussi 2 fois plus de chances de gagner que le troisième. Quelles sont les probabilités de gagner de chacun des trois chevaux ?

1.2.1 Solution (4/7; 2/7; 1/7)

Cheval	1	2	3				
Proba	4*x	2*x	X				
$x = \frac{1}{4+2+1} = 1/7$							
Cheval	1	2	3				
Proba	4/7	2/7	1/7				

1.3 Exercice 5

Soit un jeu de 52 cartes dont on tire une carte au hasard. On définit les évènements aléatoires suivants :

- A: obtenir un as
- B : obtenir une carte rouge
- C : obtenir un cœur.

Définissez les évènements suivants et calculez-en la probabilité :

- 1. $A \cap B$
- 2. $B \cap C$
- 3. $A \cup C$
- 4. $B \cup C$

1.3.1 Solution (1/26; 1/4; 4/13; 1/2)

—
$$P(A) = \frac{4}{52} = \frac{1}{13}$$

—
$$P(B) = \frac{26}{52} = \frac{1}{2}$$

—
$$P(C) = \frac{13}{52} = \frac{1}{4}$$

1.
$$\mathbf{A} \cap \mathbf{B} \rightarrow As \ et \ Rouge$$

=
$$P(A \text{ et } B) = 1/13*1/2 = 1/26$$

2.
$$\mathbf{B} \cap \mathbf{C} \rightarrow Rouge$$
 et Coeur

=
$$P(B \text{ et } C) = P(C) = \frac{1}{4} -> Car \text{ un coeur est toujours rouge}$$

3.
$$\mathbf{A} \cup \mathbf{C} \rightarrow As \ ou \ Coeur$$

$$= P(A \text{ ou } C) = P(A) + P(C) - P(A \text{ et } C) -> On \text{ retire les As Rouges comptés en double}$$

$$= \frac{4}{52} + \frac{13}{52} - \frac{4}{52} \times \frac{1}{4}$$

$$= 4/13$$

4. $\mathbf{B} \cup \mathbf{C} \rightarrow$ Rouge ou Coeur

$$= P(B \text{ ou } C) = P(B) \rightarrow Car \text{ un coeur est toujours rouge}$$

$$= 1/2$$

1.4 Exercice 9

Soit un groupe composé de 12 hommes dont la moitié a des lunettes et de 15 femmes dont le tiers a des lunettes. Si on choisit une personne au hasard dans ce groupe, quelle est la probabilité que cette personne soit un homme ou porte des lunettes?

1.4.1 Solution (17/27)

	Lunettes	!Lunettes	Total
Hommes	6	6	12
Femmes	5	10	15
Total	11	16	27

- -> P(Hommes **ou** Lunettes)
- = P(Homme) + P(Lunettes) P(Homme et Lunettes)

$$= \frac{12}{27} + \frac{11}{27} - \frac{6}{27}$$

$$= 17/27$$

Même résultat avec la Loi complémentaire de Morgan :

P(Homme ou Lunettes) = 1 - P(Femmes et !Lunettes)

$$=1-\frac{10}{27}=\frac{17}{27}$$

1.5 Exercice 10

Lors de vacances scolaires, deux activités sportives sont proposées : natation et vélo. On sait que 40% des participants se sont inscrits à la natation, 50% aux randonnées vélo et 25% se sont inscrits au deux. Quelle est la probabilité qu'un participant choisi au hasard ne fasse pas de sport?

1.5.1 Solution (35%)

	Vélo	!Vélo	Total
Natation	25%	15%	40%
!Natation	25%	35%	60%
Total	50%	50%	100%

 $P(!Sport) = P(!V\'{e}lo\ et\ !Natation) = \frac{35}{100}$

Alternative :

P(!Sport) = 1 - P(Natation ou Vélo)= 1 - P(Natation) + P(Vélo) - P(Natation et Vélo) = 100%-40%+50%-25% = $\frac{35}{100}$

1.6 À VENIR ...