Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x,y,z)=(z,x-y,-z).$$

- 1. Determine uma base do núcleo de T.
- 2. Determine a dimensão da imagem de *T*.
- 3. *T* é sobrejetora? Justifique.

Seja P_3 o cojunto dos polinômios de grau menor que ou igual a 3, e $T: P_3 \to P_3$ dada por T(f) = f'.

- 1. Mostre que P_3 é um espaço vetorial de dimensão 4.
- 2. Mostre que *T* é uma transformação linear.
- 3. Determine o núcleo e a imagem de *T* e encontre uma base para cada um desses subespaços.

Seja $D: P_3 \to P_3$ dada por D(f) = f''. Mostre que D é linear e deternine uma base para o núcleo de D.

Seja $A:V\to V$ uma aplicação linear. Para quaisquer $u\in {\sf Kern}(A)$, mostre que $Au\in {\sf Kern}(A)$.

Encontre números a, b, c e d de modo que a transformação $A: \mathbb{R}^2 \to \mathbb{R}^2$, dada por A(x,y) = (ax+by, cx+dy) tenha como núcleo a reta y=3x.

Prove que a transformação linear $C: \mathbb{R}^2 \to \mathbb{R}^2$, dada por C(x, y) = (x + y, x - y) é sobrejetora.

Seja $T:V\to V$ uma transformação linear. Mostre que $T^2=0$ (transformação linear nula) se, e somente se $Im(T)\subset Kern(T)$.

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma transformação linear. Sabendo que f(1,1)=3 e f(2,3)=1, calcule f(1,0) e f(0,1).

Se a transformação linear $A : \mathbb{R}^m \to \mathbb{R}^n$ é injetiva então dim Im(A) = m. Verdadeiro ou falso?

Se a transformação linear $A : \mathbb{R}^m \to \mathbb{R}^n$ é sobrejetora então dim Kern(A) = m - n. Verdadeiro ou falso?

Seja $A: E \to F$ uma transformação linear. Se os vetores $Av_1, \dots, Av_m \in F$ são L.I., prove que $v_1, \dots, v_m \in E$ também são L.I.

Dada a transformação linear $A : \mathbb{R}^2 \to \mathbb{R}^3$. Sabe-se que A(-1,1) = (1,2,3) e A(2,3) = (1,1,1) Determine a matriz de A relativa às bases canônicas do \mathbb{R}^2 e \mathbb{R}^3 .