Predictive Regressions: What's Stationarity Got to Do With It

The Dog that Did Not Bark

Robert Erbe Gregor Reich

Structural retreat, Bonn September 13, 2019

Are stock returns predictable: simply run forecasting regression

$$r_{t+1} = a_r + b_r x_t + \epsilon_{t+1}^r$$

$$\rightarrow E_t(r_{t+1}) = a_r + b_r x_t$$

The Dog that Did Not Bark

- Investment opportunity vs. efficient markets
- The right forecasting variable: most prominently price-dividend ratio, term-structure spreads, consumption-to-wealth ratio

Statistical features of usual forecasting variables x_t

Very persistent, slow-moving: often modeled as AR(1) process

$$x_{t+1} = a_x + \phi x_t + \epsilon_{t+1}^x$$

The Dog that Did Not Bark

- Good reasons to confine x_t to be stationary, i.e. $|\phi| < 1$ Lewellen (2004), Cochrane (2007)
- BUT ϕ subject to finite-sample bias that can inflate b_r

The model we look at: vector autoregression Stambaugh (1986, 1999), Mankiw and Shapiro (1986)

$$\begin{pmatrix} r_{t+1} \\ x_{t+1} \end{pmatrix} = \begin{pmatrix} a_r \\ a_x \end{pmatrix} + \begin{pmatrix} 0 & b_r \\ 0 & \phi \end{pmatrix} + \begin{pmatrix} \epsilon_{t+1}^r \\ \epsilon_{t+1}^x \end{pmatrix}$$

$$\rightarrow \mathbf{x}_{t+1} = \mathbf{a} + \mathbf{B}\mathbf{x}_t + \epsilon_{t+1}$$

Our Paper

Key take-away from literature: ϕ matters when asking about b_r

- "Full" likelihood assures stationarity of VAR, least squares not
- MLE and inference: constrained optimization
- Power gains from stationarity
- Informal argument on power loss due to finite-sample bias
- Relate to more-powerful test proposed by Cochrane (2007)
- Size comparison

Joint Distribution and Stationarity

The log-likelihood function of $\theta = (a, B, \Sigma \epsilon)$

$$L(\theta) = \log f_{\theta}(\mathbf{x}_1, ..., \mathbf{x}_t) \quad o \quad \hat{\theta} = \operatorname{argmax} L(\theta)$$

Suppose time series $x_1, ..., x_t$ follows first-order Markov chain

$$f_{\theta}(\mathbf{x}_{1},...,\mathbf{x}_{t}) = f_{\theta}(\mathbf{x}_{1}) \prod_{t=2}^{I} f_{\theta}(\mathbf{x}_{t}|\mathbf{x}_{t-1})$$

BUT in routine data analysis, $f_{\theta}(\mathbf{x}_1)$ is taken to be fixed

- Likelihood estimation yields least squares estimates
- Well-known that estimator allows for unit roots. Hamilton (1994), Engsted and Pedersen (2014), Wilson, Reale, and Haywood (2015)

Figure: How big is the difference

The Dog that Did Not Bark

Figure: Conditional and unconditional likelihood for the data as in Cochrane (2007)

Hypothesis Testing

Likelihood-based inference: likelihood ratio

$$2\left(L(\hat{\boldsymbol{\theta}}) - L(\boldsymbol{\theta}_0)\right) \sim \chi^2_{\dim(\boldsymbol{\theta}_0)}$$

In practice often composite hypothesis that fixes θ_0^S but leaves θ^N unspecified, where $\theta \equiv (\theta^S, \theta^N)$

How to deal with nuisance parameters θ^N ?

Profile Likelihood:
$$L_P(\theta_0^S) = \max_{\boldsymbol{\theta}^N} L(\theta_0^S, \boldsymbol{\theta}^N)$$

Estimated Likelihood:
$$L_E(\theta_0^S) = L(\theta_0^S, \hat{\theta}^N)$$

Profile likelihood to be treated like regular likelihood, thus

$$2\left(L(\hat{\boldsymbol{\theta}}) - L_P(\boldsymbol{\theta}_0^S)\right) \sim \chi^2_{\dim(\boldsymbol{\theta}_0^S)}$$

Maximum Likelihood Estimation

As is standard, suppose
$$x_t|x_{t-1} \sim N(a + Bx_{t-1}, \Sigma(\epsilon))$$
 and $x_1 \sim N(\mu_0(a, B), \Sigma_0(\Sigma(\epsilon), B))$

BUT normal density known to be unbounded, if $\Sigma \not\succ 0$ or $\Sigma_0 \not\succ 0$

Non-linear constrained optimization

$$egin{aligned} \max _{m{a},m{B},m{L}} L(m{ heta}) \ s.t. & \mathsf{diag}(m{L}) \geq 0 \ & |\lambda(m{B})| \leq 1 \end{aligned}$$

- Positive-semidefiniteness of Σ : diagonal elements of Cholesky decomposition $\Sigma = LL'$ to be diag $(L) \ge 0$
- Finiteness of Σ_0 : characteristic roots of **B** to be $|\lambda(\mathbf{B})| < 1$

Motivation

Estimation	b _r	φ	σ_r	σ_{ϕ}	$ ho_{r,\phi}$	p-value $(b_r = 0)$
Unconditional-	0.100	0.937	0.193	0.152	-0.698	4.38%
Likelihood	(0.051)	(0.038)				
Conditional-	0.096	0.941	0.194	0.152	-0.700	7.50%
Likelihood	(0.053)	(0.042)				

The Dog that Did Not Bark

Table: Sample estimates for data as in Cochrane (2007): annual data, aggregate US stock market, CRSP, 1927-2004. Standard errors in parentheses

Figure: How big is the power gain?

The Dog that Did Not Bark

Figure: Joint confidence sets of (un-)conditional likelihood

Motivation

Figure: Effect of finite sample bias with respect to "center" point of joint confidence set.

Returns, Dividend Growth, and Dividend Yields

Much noticed paper by Cochrane (2007)

"if returns are not predictable, dividend growth must be predictable"

- Notion of dividend-growth based test for return predictability Hjalmarsson and Kiss (2019), Leroy and Sinhania (2019)
- Present-value model: dividend growth other side of the coin
- Cochrane (2007) reports overall p-value of 1-2%

In a 3-variable VAR with returns r_{t+1} , dividend-growth Δd_{t+1} , and dividend yields dp_{t+1} , the regression coefficients are tied together

$$1 = \rho \phi + b_r - b_{d\sigma}$$
, with $\rho < 1$

Null Hypothesis

Given stationarity $|\phi| < 1$, b_r and b_{dg} cannot both be zero

$$1 - \rho \phi = b_r - b_{dg} \neq 0$$

The Dog that Did Not Bark

0000

Null hypothesis: $b_r = 0 \rightarrow b_{dg} = 1 - \rho \phi$

- What about the rest?
- Cochrane (2007) uses OLS and fixes ϕ to point estimate
- BUT recall argument on profile likelihood
- ullet Simulation based tests also call for coherent $oldsymbol{ heta}^N$ Dufour, Khalaf, et al. (1999), Dufour (2006)

Full Picture: Dividend-growth Based Test

Figure: Dividend growth based test with likelihood for $b_r=0$ and different values of ϕ , dashed line indicates $\hat{\phi}=0.941$ as used in Cochrane (2007)

Type I Error

How often do we falsely reject the null?

Controlled environment: simulation-based size assessment

- **1** Simulate, say 5,000 times, under $\hat{\theta}^N = \operatorname{argmax} L(b_r = 0, \theta^N)$
- **2** Estimate model parameters θ_i
- **3** Test for $b_r = 0$ and store p-values;
 - Likelihood ratio
 - Dividend growth based test
- lacktriangle Count rejections for different significance levels lpha

Test / α Levels	0.01	0.05	0.10
Likelihood ratio	0.033	0.106	0.177
Cochrane (2007)	0.109	0.281	0.404

Motivation

 Likelihood provides natural way to preserve stationarity (both for estimation and inference)

The Dog that Did Not Bark

- Computation is not prohibitive
- Our test has too much bite: bias correction might resolve this