BLG 354E – HOMEWORK 5

Table 1: Fourier Transforms of some fundamental functions.

_		Time domain	Frequency domain	
CT signals		$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} dt$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	Comments
(-)	Constant Impulse function	$\frac{1}{\delta(t)}$	$2\pi\delta(\omega)$ 1	
(3)	Unit step function	u(t)	$\pi \delta(\omega) + \frac{1}{i\omega}$	
(4)	Causal decaying exponential function	$e^{-at}u(t)$	$\frac{1}{a+\mathrm{j}\omega}$	<i>a</i> > 0
(5)	Two-sided decaying exponential function	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	<i>a</i> > 0
(6)	First-order time-rising causal decaying exponential function	$te^{-at}u(t)$	$\frac{1}{(a+\mathrm{j}\omega)^2}$	<i>a</i> > 0
(7)	Nth-order time-rising causal decaying exponential function	$t^n e^{-at} u(t)$	$\frac{n!}{(a+\mathrm{j}\omega)^{n+1}}$	<i>a</i> > 0
(8)	Sign function	$sgn(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$	$\frac{2}{j\omega}$	
(9)	Complex exponential	$e^{j\omega_0 t}$	$2\pi \delta(\omega - \omega_0)$	
(10)	Periodic cosine function	$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right]$	
(11)	Periodic sine function	$\sin(\omega_0 t)$	$\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$	
(12)	Causal cosine function	$\cos(\omega_0 t)u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{\mathrm{j}\omega}{\omega_0^2-\omega^2}$	
(13)	Causal sine function	$\sin(\omega_0 t)u(t)$	$\frac{\pi}{2j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] + \frac{\omega_0}{\omega_0^2 - \omega^2}$	
(14)	Causal decaying exponential cosine function	$\mathrm{e}^{-at}\cos(\omega_0 t)u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
(15)	Causal decaying exponential sine function	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(a+\mathrm{j}\omega)^2+\omega_0^2}$	<i>a</i> > 0
(16)	Rectangular function	$\operatorname{rect}\left(\frac{t}{\tau}\right) = \begin{cases} 1 & t \le \tau/2\\ 0 & t > \tau/2 \end{cases}$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2\pi}\right)$	$\tau \neq 0$
(17)	Sinc function	<i>x</i> (<i>x</i>)	$\operatorname{rect}\left(\frac{\omega}{2W}\right) = \begin{cases} 1 & \omega \le W \\ 0 & \omega > W \end{cases}$	
(18)	Triangular function	$\Delta\left(\frac{t}{\tau}\right) = \begin{cases} 1 - \frac{ t }{\tau} & t \le \tau \\ 0 & \text{otherwise} \end{cases}$	$\tau \operatorname{sinc}^2\left(\frac{\omega \tau}{2\pi}\right)$	$\tau > 0$
(19)	Impulse train	$\sum_{k=-\infty}^{\infty} \delta(t - kT_0)$	$\omega_0 \sum_{m=-\infty}^{\infty} \delta(\omega - m\omega_0)$	angular frequency
(20)	Gaussian function	$e^{-t^2/2\sigma^2}$	$\sigma \sqrt{2\pi} e^{-\sigma^2 \omega^2/2}$	$\omega_0 = 2\pi/T_0$

1-)(20 pts) Prove the 4th , 10th , 11th and 16th transformations given in the table. You can benefit from the table for other equalities. Use limit of the function where necessary. For the 16th transformation:

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

2-)(15 pts) Find the discrete-time Fourier transform of the following signals:

a)
$$x[n] = Y^n u[-(n+1)]$$
, where $|Y| > 1$
b) $x[n] = \begin{cases} 1, & 5 \ge n \ge -5 \\ 0, & otherwise \end{cases}$
c) $x[n] = \cos(\frac{7\pi n}{16})$

b)
$$x[n] = \begin{cases} 1, & 5 \ge n \ge -5 \\ 0, & otherwise \end{cases}$$

c)
$$x[n] = \cos(\frac{7\pi n}{16})$$

3-)(15 pts) Find the continuous-time Fourier transform of the following signals:

a)

b)

c)

4-)(30 pts) Calculate the inverse Fourier transform of the following functions:

a)
$$X(\omega) = \frac{5j\omega + 30}{(j\omega)^3 + 17(j\omega)^2 + 80j\omega + 100}$$

b) $X(\omega) = \frac{2j\omega + 24}{(j\omega)^2 + 4j\omega + 29}$

b)
$$X(\omega) = \frac{2j\omega + 24}{(i\omega)^2 + 4i\omega + 29}$$

c)
$$X(\omega) = \frac{1}{(j\omega)^2 + 25000j\omega + 10^8}$$

5-)(20 pts) A LTI system has an impulse response $h(t)=e^{-2t}u(t)$

- a) What will be the system's output for $x(t) = e^{-t}u(t)$
- b) Show that, using convolution property of Fourier transform we can obtain the same output.

BONUS) (15 pts) Prove the 5th and 8th transformations. (Hint: What is the similarity between u(t) and sgn(t)?)

Notes:

- Please write your answers briefly and add explanations at necessary points to make your calculations more understandable.
- If you have any questions, feel free to contact Res. Asst. Yusuf Hüseyin Şahin (sahinyu@itu.edu.tr).