In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 import statsmodels.api as sm
 import statsmodels.formula.api as smf
 from sklearn.metrics import roc_curve,auc
 %matplotlib inline

In [2]: iris = pd.read_csv('./data/iris.csv')
 iris.head()

Out[2]:

	SepalLength	SepalWidth	PetalLength	PetalWidth	Flower
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Iris Versicolor

Iris Setosa

Iris Virginica

Data Preprocessing

Categorical Data

```
In [13]: flower = pd.get_dummies(iris['Flower'])
  data = pd.concat((flower,iris),axis=1)
In [16]: data.head()
```

Out[16]:

	Iris- setosa	lris- versicolor	Iris- virginica	SepalLength	SepalWidth	PetalLength	PetalWidth	Flower
0	1	0	0	5.1	3.5	1.4	0.2	Iris- setosa
1	1	0	0	4.9	3.0	1.4	0.2	Iris- setosa
2	1	0	0	4.7	3.2	1.3	0.2	Iris- setosa
3	1	0	0	4.6	3.1	1.5	0.2	Iris- setosa
4	1	0	0	5.0	3.6	1.4	0.2	Iris- setosa

Considering two attributes

- PetalLength
- Petal Width

```
In [172]: df = data[['PetalLength','PetalWidth','Flower']]
    df.head()
```

Out[172]:

	PetalLength	PetalWidth	Flower
0	1.4	0.2	Iris-setosa
1	1.4	0.2	Iris-setosa
2	1.3	0.2	Iris-setosa
3	1.5	0.2	Iris-setosa
4	1.4	0.2	Iris-setosa

visualizing data

```
In [174]: sns.relplot(x='PetalLength',y='PetalWidth',data=df,hue='Flower')
```

Out[174]: <seaborn.axisgrid.FacetGrid at 0x1da3a6ad518>

Split data

- · independent
- · dependent

```
In [175]: X= df.iloc[:,:-1] # independent
y = df.iloc[:,-1] # dependent
```

Logistic Regression for multiclass

• Number of lines the seperate n classes = n - 1

Method-1

```
In [176]:
       model = sm.MNLogit(y,X).fit()
       print(model.summary())
       Optimization terminated successfully.
             Current function value: 0.502085
             Iterations 10
                         MNLogit Regression Results
       ______
       Dep. Variable:
                            Flower
                                  No. Observations:
                                                          150
                           MNLogit Df Residuals:
       Model:
                                                           146
       Method:
                              MLE Df Model:
                                                            2
       Date:
                     Sat, 06 Apr 2019 Pseudo R-squ.:
                                                        0.5430
       Time:
                           23:19:54
                                  Log-Likelihood:
                                                        -75.313
                             True LL-Null:
       converged:
                                                        -164.79
                                  LLR p-value:
                                                      1.380e-39
       Flower=Iris-versicolor coef std err
                                                        [0.025
                                            Z
                                                 P>|z|
       0.975]
       ______
       PetalLength
                        -5.5132 1.207 -4.568 0.000
                                                       -7.879
       -3.148
       PetalWidth
                         21.7362 4.703 4.621
                                                 0.000
                                                        12.518
       30.955
       Flower=Iris-virginica coef std err z P>|z| [0.025]
       0.975]
       PetalLength
                        -7.6121 1.269 -6.000 0.000
                                                       -10.099
       -5.126
       PetalWidth
                        28.1132 4.848
                                        5.799
                                                0.000
                                                        18.611
       37.615
       ______
```

Method-2

In [177]:

model_formula = sm.MNLogit.from_formula('Flower~PetalLength+PetalWidth-1',data=iprint(model_formula.summary())

Optimization terminated successfully.

Current function value: 0.502085

Iterations 10

MNLogit Regression Results

Time: converged:	y MNLogit MLE 06 Apr 2019 23:19:56 True			150 146 2 0.5430 -75.313 -164.79 1.380e-39			
=========	coef		z	P> z	[0.0		
PetalLength 79 -3.148 PetalWidth 18 30.955	-5.5132 21.7362	1.207 4.703	-4.568 4.621	0.000 0.000	-7.8 12.5		
y=Flower[Iris-virginica] 5 0.975]	coef	std err	z	P> z	[0.02		
PetalLength 9 -5.126 PetalWidth 1 37.615	-7.6121 28.1132	1.269 4.848	-6.000 5.799	0.000 0.000	-10.09 18.61		
=======================================							

Two models

1. Iris versicolor

Eq: ln(s) = -5.5132 * PetalLength + 21.7362 * PetalWidth

2. Iris Vignica

Eq: ln(s) = -7.6121 * PetalLength + 28.1132 * PetalWidth

model.predict(data[['PetalLength','PetalWidth']])

```
In [180]: | def drawline(i,p=0.5,colour = 'b'):
               inte = 0#model.params[i].Intercept
               pL =model.params[i].PetalLength
               pW = model.params[i].PetalWidth
               #np.log(p/(1-p)) = inte + pL*data['PetalLength'] + pW*data['PetalWidth']
               petallength = (-inte - pW*data['PetalWidth'] + np.log(p/(1-p)))/pL
               plt.plot(petallength,data['PetalWidth'])
In [181]: def modelpredict(i,x1,x2):
               a = 0#model.params[i].Intercept
               b1 =model.params[i].PetalLength
               b2 = model.params[i].PetalWidth
               log or = a + b1*x1 + b2*x2
               _or = np.exp(log_or)
               probability = or/(1+ or)
               return probability
In [182]: | def threshold(probability,thresh=0.5):
               if probability <= thresh:</pre>
                   return 1
               else:
                   return 0
In [183]: data['Flower'].unique()
Out[183]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

For Iris-Versicolor

```
In [185]: fpr,tpr,threshold = roc_curve(y_set_versi,y_prob)

plt.figure(figsize=(10,6))
plt.plot(fpr,tpr,color='red',lw=1.5)
plt.plot([0, 1], [0, 1], color='navy',lw = 2, linestyle='--')

for i,value in enumerate(fpr*10):
    try:
        if (round(fpr[i+1]*10) - round(fpr[i]*10)) == 1:
            plt.text(fpr[i],tpr[i],'%0.2f'%(threshold[i]))
    except IndexError:
        print(' ')

plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(['ROC curve (area = %0.2f)' % auc(fpr,tpr)])
plt.show()
```


From ROC:

• threshold *p-value* = 0.78

For Versicolor

```
In [189]: fpr,tpr,threshold = roc_curve(y_set_veri,y_prob)

plt.figure(figsize=(10,6))
plt.plot(fpr,tpr,color='red',lw=1.5)
plt.plot([0, 1], [0, 1], color='navy',lw = 2, linestyle='--')

for i,value in enumerate(fpr*10):
    try:
        if (round(fpr[i+1]*10) - round(fpr[i]*10)) == 1:
            plt.text(fpr[i],tpr[i],'%0.4f'%(threshold[i]))
    except IndexError:
        print(' ')

plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(['ROC curve (area = %0.3f)' % auc(fpr,tpr)])
plt.show()
```


From ROC:

• threshold p-value = 0.9984

```
In [190]: sns.relplot(x='PetalLength',y='PetalWidth',data=iris,hue='Flower')
    drawline(0,0.86)
    drawline(1,0.9984)
```


In []: