

Figure 37.8: The topological space (E, \mathcal{O}) is \mathbb{R}^2 with topology induced by the Euclidean metric. The subset A is the section $B_0(1)$ in the first and fourth quadrants bound by the lines y = x and y = -x. The interior of A is obtained by the covering A with small open balls.

Figure 37.9: The topological space (E, \mathcal{O}) is \mathbb{R}^2 with topology induced by the Euclidean metric. The subset A is the section $B_0(1)$ in the first and fourth quadrants bound by the lines y = x and y = -x. The boundary of A is $\overline{A} - \overset{\circ}{A}$.

Remark: The notation \overline{A} for the closure of a subset A of E is somewhat unfortunate, since \overline{A} is often used to denote the set complement of A in E. Still, we prefer it to more cumbersome notations such as clo(A), and we denote the complement of A in E by E - A (or sometimes, A^c).

By definition, it is clear that a subset A of E is closed iff $A = \overline{A}$. The set \mathbb{Q} of rationals is dense in \mathbb{R} . It is easily shown that $\overline{A} = \overset{\circ}{A} \cup \partial A$ and $\overset{\circ}{A} \cap \partial A = \emptyset$. Another useful characterization of \overline{A} is given by the following proposition.