CORRIGÉ DU DS°1

EXERCICE 1: (E3A PSI 2011)

1. Si *a* est racine de P alors P(a) = 0. Avec (*), on a alors

$$P((a+1)^2-1) = P(a)P(a+2) = 0$$
 et $P((a-1)^2-1) = P(a-2)P(a) = 0$

donc $(a+1)^2-1$ et $(a-1)^2-1$ sont racines de P.

- **2.** a) On a $a_{n+1} = (a_n + 1)^2 1$ et si a_n est racine de P, la question précédente montre qu'il en est de même pour a_{n+1} . Comme on suppose que c'est le cas pour a_0 , une récurrence immédiate implique que tous les a_n sont racines de P.
 - **b)** On a a_{n+1} qui est > 0 quand a_n l'est. Quand $a_0 > 0$, une récurrence immédiate donne alors que tous les a_n sont > 0. On a alors $a_{n+1} a_n = a_n^2 + a_n > 0$, et la suite (a_n) croît strictement.
 - c) Si P admet une racine $a_0 > 0$ alors, d'après le résultat précédent, les a_n forment une infinité de racines distinctes pour P, ce qui contredit la non nullité du polynôme P (un polynôme non nul n'admet qu'un nombre fini de racines).
 - d) Si -1 est racine de P alors $(-1-1)^2-1=3$ l'est aussi ce qui est impossible d'après la question précédente. On a donc $P(-1) \neq 0$.
 - e) On prouve le résultat par récurrence sur n. Il est vrai pour n=0 (car il s'écrit $a_0+1=a_0+1$!). Si on le suppose vérifié àun rang $n \in \mathbb{N}$, on a alors

$$1 + a_{n+1} = (1 + a_n)^2 = ((1 + a_0)^{2^n})^2 = (1 + a_0)^{2^{n+1}}$$

ce qui montre le résultat au rang n+1 et achève la récurrence.

3. Première solution:

Soit a une racine complexe de P. On a alors $(a+1)^{2^n}-1$ qui est, pour tout n, racine de P.

Si, par l'absurde, |a+1| < 1, la suite de terme général $(a+1)^{2^n}$ est de limite nulle, donc la suite (a_n) a pour limite -1, et, P étant continue, on a alors $P(-1) = \lim_{n \to +\infty} P(a_n) = 0$ ce qui est faux. Ainsi, $|a+1| \ge 1$.

Si, par l'absurde, |a+1| > 1 alors $|1 + (a+1)^{2^n}| \ge |a+1|^{2^n} - 1 \to +\infty$ et on a donc une suite de racines de P de module de plus en plus grand et donc une infinité de racines ce qui contredit $P \ne 0$. On a donc aussi $|a+1| \le 1$.

Deuxième solution:

Puisque P n'admet qu'un nombre fini de racines, la suite des nombres $a_n = (a+1)^{2^n} - 1$ ne prend qu'un nombre fini de valeurs. Il existe donc n,m entiers distincts tels que $(a+1)^{2^n} = (a+1)^{2^m}$. Si l'on suppose n > m par exemple, puisque $a+1 \neq 0$ d'après **2.d**, on en déduit $(a+1)^{2^n-2^m} = 1$ donc a+1 est une racine de l'unité, et, en particulier, |a+1| = 1.

N.B: La relation |a-1|=1 se démontre de la même manière, en considérant cette fois-ci la suite (b_n) définie par $b_0=a$ et par la relation $b_{n+1}=b_n^2-2b_n$.

4. On suppose P non constant. Il admet alors au moins une racine complexe, a. Son image dans le plan complexe doit être sur le cercle de centre (-1,0) de rayon 1 (car |a+1|=1) et sur le cercle de centre (1,0) de rayon 1 (car |a-1|=1).

On a donc nécessairement a = 0.

5. – Si P est constant et vérifie (*), alors $P = \lambda \in \mathbb{C}$ et $\lambda^2 = \lambda$, d'où P = 0 (exclu) ou P = 1.

- Sinon, P est scindé sur \mathbb{C} . D'après la question précédente, les seules solution envisageables sont les polynômes du type $P = \lambda X^d$ avec $d \in \mathbb{N}^*$ et $\lambda \neq 0$.
 - Réciproquement, pour $P = \lambda X^d$ avec $\lambda \neq 0$ et $d \in \mathbb{N}^*$, $P(X^2 1) = P(X 1)P(X + 1)$ s'écrit $\lambda (X^2 1)^d = \lambda^2 (X^2 1)^d$. Ceci n'a lieu (quand $\lambda \neq 0$) que pour $\lambda = 1$.
- En conclusion, les solutions sont donc les monômes X^d , avec $d \in \mathbb{N}$.

EXERCICE 2 : (TPE MP 1985, épreuve pratique)

1. Posons $a = \alpha + i\beta$ et cherchons z réel racine de P. Il vient, en considérant les parties réelle et imaginaire de l'équation P(z) = 0:

$$\begin{cases} z^3 + \alpha z^2 - \alpha z - 1 = 0 \\ \beta(z^2 + z) = 0 \end{cases}.$$

- Si $\beta \neq 0$, puisque z=0 ne peut être solution, on a nécessairement z=-1, et la première relation impose $\alpha=1$, soit $a=1+\mathrm{i}\beta$. L'équation P(z)=0 s'écrit alors

$$z^3 + (1+i\beta)z^2 - (1-i\beta)z - 1 = 0$$
 soit $(z+1)(z^2 + i\beta z - 1) = 0$.

L'équation $z^2 + i\beta z - 1 = 0$ ne peut avoir de solution réelle puisque $\beta \neq 0$.

Ainsi, lorsque $a = 1 + i\beta$ avec $\beta \neq 0$, l'équation possède une et une seule racine réelle.

– Si $\beta=0$ c'est-à-dire si $a=\alpha$ est réel, on trouve $(z-1)(z^2+(1+a)z+1)=0$, soit la racine réelle z=1 éventuellement accompagnée d'une ou deux racines réelles selon le signe du discriminant $(1+a)^2-4=(a-1)(a+3)$. Plus précisément :

$$\begin{cases} \text{ si } a \in]-3,1[\text{ alors } z=1 \text{ est la seule racine réelle} \\ \text{ si } a=-3, \text{ alors } z=1 \text{ est racine triple} \\ \text{ si } a=1, \text{ alors } z=1 \text{ est racine double et } z=-1 \text{ racine simple} \\ \text{ si } a \notin [-3,1], \ z=1, \ z=-\frac{a+1\pm\sqrt{a^2+2a-3}}{2} \text{ sont les racines réelles de P} \end{cases}$$

- Conclusion : L'équation admet (au moins) une racine réelle si et seulement si le point A appartient à la droite d'équation x=1 ou à l'axe réel. Le nombre de ces racines réelles est précisé ci-dessus.
- 2. Première méthode :

Si a est réel, on a vu que z=1 est racine de P, donc P possède bien une racine de module 1. Sinon, posons $a=\rho e^{i\phi}$ avec $\rho>0$ et $\phi\notin\pi\mathbb{Z}$, et cherchons $z=e^{i\theta}$ racine de P. En utilisant la formule $e^{i\alpha}-e^{i\beta}=e^{\frac{i(\alpha+\beta)}{2}}.2i\sin\frac{\alpha-\beta}{2}$, la relation P(z)=0 s'écrit :

$$0 = 2ie^{\frac{3i\theta}{2}} \left[\sin \frac{3\theta}{2} + \rho \sin \left(\phi + \frac{\theta}{2} \right) \right].$$

Introduisons alors la fonction $f(\theta) = \sin\frac{3\theta}{2} + \rho\sin\left(\phi + \frac{\theta}{2}\right)$. Nous avons $f(0) = \rho\sin\phi$ et $f(2\pi) = -\rho\sin\phi$. Puisque $\rho\sin\phi \neq 0$, f s'annule pour $\theta \in]0,2\pi[$ en raison du théorème des valeurs intermédiaires et P admet $e^{i\theta}$ comme racine de module 1.

Seconde méthode:

Notons que

$$P\left(\frac{1}{\overline{z}}\right) = \frac{1}{\overline{z}^3} \left[1 + a\,\overline{z} - \overline{a}\,\overline{z}^2 - \overline{z}^3\right] = \frac{-1}{\overline{z}^3}\,\overline{P(z)}.$$

Si P n'a pas de racine de module 1, il a une racine z_1 et aussi la racine $z_2 = \frac{1}{\overline{z_1}} \neq z_1$, avec le même ordre de multiplicité (donc simple); l'une des deux (par exemple z_1) est de module strictement supérieur à 1 et l'autre de module strictement inférieur à 1. La dernière racine z_3 doit être de module 1 car sinon elle serait accompagnée d'une autre.

3. Pour a = 0 le polynôme a pour racines $1, j, j^2$ de module 1.

Autrement, supposons que z soit racine de P de module supérieur ou égal à 1+|a|. On a donc $z(z^2+az-\overline{a})=1$, donc $1\geqslant (1+|a|)\left|z^2+az-\overline{a}\right|$. En utilisant l'inégalité triangulaire $|x+y|\geqslant |x|-|y|$ on obtient :

$$1 \ge (1+|a|)\big(|z|(|z|-|a|)-|a|\big) \ge (1+|a|)(1+|a|-|a|) = 1+|a|$$

ce qui est impossible vu que a n'est pas nul.

- **4.** a) Nous calculons $a^2 = \frac{1-7+2i\sqrt{7}}{4} = \frac{-3+i\sqrt{7}}{2} = a-2$. Il vient ensuite $a^3 = a(a-2) = a-2-2a = -a-2$, puis $a^4 = (a-2)^2 = a-2-4a+4=2-3a$. D'autre part, $\overline{a} = 1-a$ conduit à $\overline{a}^2 = -1-a$, $\overline{a}^3 = a-3$, $\overline{a}^4 = 3a-1$.
 - b) Les calculs qui précèdent permettent de poser explicitement la division euclidienne de $P(X^2)$ par P.

On a donc la relation:

$$P(X^2) = -P(X)P(-X).$$

c) En conséquence, si λ est racine de P, λ^2 puis λ^4 le sont aussi.

On ne peut pas avoir $\lambda=\lambda^2$, car cela donnerait $\lambda=0$ ou $\lambda=1$, qui ne sont pas racines de P. On n'aura pas davantage $\lambda^2=\lambda^4$, pour la même raison. Enfin, $\lambda=\lambda^4$ amènerait $\lambda=0$ (exclu) ou $\lambda^3=1$ qui obligerait à avoir $a\lambda^2-\overline{a}\lambda=a\overline{\lambda}-\overline{a}\lambda=0$, soit $\overline{a}\lambda\in\mathbb{R}$. Mais alors $\overline{a}^3=(\overline{a}\lambda)^3=a-3$ serait réel, ce qui n'est pas.

Ainsi, les trois racines <u>distinctes</u> de P sont bien λ , $\mu = \lambda^2$ et $\nu = \lambda^4$. Leur produit est l'opposé du coefficient constant de P, soit $\lambda^7 = 1$.

Posons alors $\omega = e^{\frac{2i\pi}{7}}$. Nous avons essentiellement deux choix possibles pour les racines de $P: \omega, \omega^2, \omega^4$ et $\omega^3, \omega^5, \omega^6$.

Or, la somme des racines de P vaut $-a = -\frac{1 + i\sqrt{7}}{2}$, de partie imaginaire négative, et :

$$\mathcal{I}m(\omega+\omega^2+\omega^4)=\sin\frac{2\pi}{7}+\sin\frac{4\pi}{7}+\sin\frac{8\pi}{7}=\sin\frac{2\pi}{7}+\sin\frac{4\pi}{7}-\sin\frac{\pi}{7}>0\quad \text{car}\quad \sin\frac{2\pi}{7}>\sin\frac{\pi}{7}>0$$

ce qui ne nous convient pas. Donc, λ vaut $\omega^3 = e^{\frac{6i\pi}{7}}$, et les racines de P sont $\omega^3, \omega^5, \omega^6$.

5. Soit un polynôme Q du troisième degré à coefficients complexes, unitaire, tel que $Q(X^2)$ soit divisible par Q(X).

Si λ est racine de Q, il en est donc de λ^2 , puis de λ^4 etc... Puisqu'il n'y a que trois racines, on doit alors avoir soit $\lambda = \lambda^2$ soit $\lambda = \lambda^4$ soit $\lambda = \lambda^8$, ce qui donne comme possibilités $\lambda \in \{0,1,j,j^2,\omega,\omega^2,\omega^3,\omega^4,\omega^5,\omega^6\}$.

Avec les racines septièmes on obtient les polynômes P et \overline{P} (les racines de P étant ω^3, ω^5 et ω^6 et celles de \overline{P} en étant les conjuguées, c'est-à-dire ω, ω^2 et ω^4).

Autrement, avec la racine j vient toujours j^2 et vice-versa. On a alors les polynômes $(X-1)(X^2+X+1)=X^3-1$ (convient car $X^6-1=(X^3-1)(X^3+1)$) et $X(X^2+X+1)$ (convient : $P(X^2)=X^2(X^4+2X^2+1-X^2)=X^2(X^2-X+1)(X^2+1)$ ainsi que les polynômes comme $(X-j)^2(X-j^2)$: il ne convient pas car $(X^2-j)^2(X^2-j^2)=(X^2-j^4)^2(X^2-j^2)=(X-j^4)^2(X^2-j^2)$ ainsi que les polynômes comme $(X-j)^2(X-j^2)$: il ne convient pas car $(X^2-j)^2(X^2-j^2)=(X^2-j^4)^2(X^2-j^2)=(X-j^4)^2(X^2-j^4)^2$

Il reste ensuite les polynômes n'ayant que 0 ou/et 1 comme racines : $X(X-1)^2$, $X^2(X-1)$, X^3 et $(X-1)^3$, qui conviennent bien comme on le vérifie facilement.

En conclusion:

Les polynômes Q de degré 3, unitaires, tels que Q divise
$$Q(X^2)$$
 sont : X^3 , $(X-1)^3$, X^3-1 , X^3+X^2+X , $X(X-1)^2$, $X^2(X-1)$, P et \overline{P} .

PROBLÈME : Localisation des racines d'un polynôme

Question préliminaire :

- Il est facile de vérifier que, si $z_i = \lambda_i z_n$ avec λ_i réel positif pour tout i, alors on a bien la relation $\left|\sum_{i=1}^n z_i\right| = \sum_{i=1}^n |z_i|.$
- Démontrons la réciproque par récurrence sur n.
 - * pour n = 2, il s'agit d'un résultat classique de Sup. Redémontrons-le :

Supposons donc $|z_1 + z_2| = |z_1| + |z_2|$ avec $z_2 \neq 0$. Alors : $|z_1 + z_2|^2 = \left\lceil |z_1| + |z_2| \right\rceil^2$ d'où :

$$(z_1 + z_2)\overline{(z_1 + z_2)} = |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$

$$|z_1|^2 + z_1\overline{z_2} + \overline{z_1}z_2 + |z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$

$$\mathscr{R}e(z_1\overline{z_2}) = |z_1||z_2| = |z_1\overline{z_2}|$$

ce qui équivaut à : $z_1\overline{z_2} \in \mathbb{R}_+$. Il existe donc λ réel positif tel que $z_1\overline{z_2} = \lambda$, soit $z_1 = \frac{\lambda}{\overline{z_2}} = \frac{\lambda}{|z_2|^2}z_2 = \mu z_2$ avec μ réel positif, ce qui établit le résultat.

- * Supposons donc le résultat démontré à l'ordre n, et soient $z_1, \ldots, z_n, z_{n+1}$ tels que $z_{n+1} \neq 0$ et $|z_1 + \cdots + z_{n+1}| = |z_1| + \cdots + |z_{n+1}|$. Alors :
 - $\Rightarrow |z_1 + \dots + z_n| = |z_1| + \dots + |z_n|;$

en effet, on a $|z_1+\cdots+z_n| \leq |z_1|+\cdots|z_n|$ par l'inégalité triangulaire, et si on avait l'inégalité stricte $|z_1+\cdots+z_n|<|z_1|+\cdots|z_n|$, on aurait alors $|z_1+\cdots+z_{n+1}|\leq |z_1+\cdots+z_n|+|z_{n+1}|<|z_1|+\cdots+|z_{n+1}|$, ce qui est contraire à l'hypothèse. Donc :

- Si $z_1,...,z_n$ sont tous nuls, le résultat est acquis!
- Sinon, il existe au moins un des z_i $(1 \le i \le n)$ qui est non nul. Supposons, quitte à changer l'ordre des termes, qu'il s'agisse de z_n . Alors, d'après l'hypothèse de récurrence, il existe des réels positifs λ_i $(1 \le i \le n-1)$ tels que $z_i = \lambda_i z_n$ pour $i \in [1, n-1]$.

- \diamond On a aussi: $|z_1 + \dots + z_{n+1}| = |z_1 + \dots + z_n| + |z_{n+1}|$;
 - en effet, on a déjà l'inégalité large $|z_1+\cdots+z_{n+1}| \leq |z_1+\cdots+z_n| + |z_{n+1}|$ par l'inégalité triangulaire, et si on avait l'inégalité stricte, on aurait $|z_1+\cdots+z_{n+1}| < |z_1+\cdots+z_n| + |z_{n+1}| = |z_1| + \cdots + |z_n| + |z_{n+1}|$, ce qui est faux.

D'après le résultat obtenu à l'ordre 2, il existe un réel $\mu \ge 0$ tel que $z_1 + \cdots + z_n = \mu z_{n+1}$.

On a alors :
$$\left(1+\sum_{i=1}^{n-1}\lambda_i\right)z_n = \mu z_{n+1}$$
 d'où $z_n = \underbrace{\frac{\mu}{1+\sum_{i=1}^{n-1}\lambda_i}}_{\text{réel}>0}z_{n+1}$ et, pour $i \in \llbracket 1,n-1 \rrbracket$,

$$z_i = \underbrace{\frac{\lambda_i \mu}{1 + \sum_{i=1}^{n-1} \lambda_i}}_{\text{r\'eel } \geqslant 0} z_{n+1}$$
. Cela établit le résultat à l'ordre $n+1$, et achève la récurrence.

Problème :

Partie A.

1. Exemple numérique

1.1 x est une racine réelle de P si et seulement si $x^3 + (-2+3i)x^2 + (-3-5i)x + (6-2i) = 0$. En séparant les parties réelle et imaginaire de l'équation on obtient :

$$\begin{cases} x^3 - 2x^2 - 3x + 6 = 0\\ 3x^2 - 5x - 2 = 0 \end{cases}$$

La deuxième équation admet comme racines 2 et $-\frac{1}{3}$, mais seul 2 est aussi racine de la première.

La seule racine réelle de P est donc 2.

- **1.2** Cette équation du second degré a pour discriminant $\Delta = 3 4i = (2 i)^2$; on en déduit que ses deux racines sont $z_1 = -1 i$ et $z_2 = 1 2i$.
- **1.3** La factorisation de P s'écrit : $P = (X-2)(x^2+3iX-3+i)$. Les trois racines de P sont donc 2, -1-i et 1-2i, de modules respectifs 2, $\sqrt{2}$ et $\sqrt{5}$. Ces trois valeurs sont bien toutes inférieures à $A = \max\{|a_0|, 1+|a_1|, 1+|a_2|\} = \max\{2\sqrt{10}, 1+\sqrt{34}, 1+\sqrt{13}\} = 1+\sqrt{34}$.

2. Étude du cas général

2.1 Soit f l'application définie sur \mathbb{R}_+^* par :

$$f(x) = \frac{R(x)}{x^n} = 1 - \frac{|a_{n-1}|}{x} - \frac{|a_{n-2}|}{x^2} - \dots - \frac{|a_1|}{x^{n-1}} - \frac{|a_0|}{x^n}.$$

Alors f est de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} et

$$\forall x > 0$$
, $f'(x) = \frac{|a_{n-1}|}{x^2} + \dots + \frac{(n-1)|a_1|}{x^n} + \frac{n|a_0|}{x^{n+1}}$ donc $f'(x) > 0$.

f est donc strictement croissante sur \mathbb{R}_+^* . De plus, $f(x) \underset{x \to 0^+}{\sim} - \frac{|a_0|}{x^n}$ donc $\lim_{x \to 0^+} f(x) = -\infty$, et $\lim_{x \to +\infty} f(x) = 1$. On a donc le tableau de variations suivant :

x	0	r	+∞
f(x)	-∞	<i>></i> 0/	<i>></i> 1

Le théorème de bijection assure alors l'existence et l'unicité d'une racine r de f sur \mathbb{R}_+^* , qui est aussi celle de \mathbb{R} .

De plus, puisque f et R sont de mêmes signes, on obtient aussi le signe de R :

$$\begin{cases} R(x) < 0 & \text{si } x \in]0, r[\\ R(x) > 0 & \text{si } x > r \end{cases}.$$

2.2 Par définition de A, on a $|a_0| \le A$ et $|a_i| \le A - 1$ pour $i \in [1, n-1]$. On en déduit :

$$\forall x \ge 0$$
, $R(x) \ge x^n - (A-1)x^{n-1} - \dots - (A-1)x - A$

et en particulier : $R(A) \ge A^n - (A-1)[A^{n-1} + \cdots + A] - A$.

Si A = 1, on trouve bien $R(A) \ge 0$ et sinon :

 $R(A) \geqslant A^n - (A-1)A\frac{A^{n-1}-1}{A-1} - A = 0 \quad \text{(somme des termes d'une suite géométrique de raison } A > 1)$

Ainsi $R(A) \ge 0$, d'où $r \le A$ d'après l'étude de signes précédente.

2.3 • $|S(z)| = |z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0| \ge |z^n| - |a_{n-1}z^{n-1} + \dots + a_1z + a_0|$ (d'après l'inégalité triangulaire $|x+y| \ge |x| - |y|$).

Puisque $|a_{n-1}z^{n-1}+\cdots+a_1z+a_0| \le |a_{n-1}||z|^{n-1}+\cdots+|a_1||z|+|a_0|$, on en déduit

$$|S(z)| \ge |z^n| - |a_{n-1}||z|^{n-1} - \dots - |a_1||z| - |a_0|$$

c'est-à-dire : $|S(z)| \ge R(|z|)$.

- Si z est racine de S, on a alors S(z) = 0 d'où $R(|z|) \le 0$. L'étude du signe de R permet alors d'en déduire : $|z| \le r$.
- Cela permet d'en déduire, puisque $r \leq A$, que les racines de S sont toutes situées dans le disque de centre O et de rayon A.
- **2.4** Soit z une racine de S telle que |z|=r (s'il en existe). On a alors S(z)=R(|z|)=0 donc les inégalités écrites ci-dessus sont en fait des égalités. On a donc en particulier :

$$|a_{n-1}z^{n-1} + \dots + a_1z + a_0| = |a_{n-1}||z|^{n-1} + \dots + |a_1||z| + |a_0|.$$

Puisque $a_{n-1} \neq 0$ et $z \neq 0$ (0 n'est pas racine de S puisque $a_0 \neq 0$ par hypothèse), on déduit du résultat de la question préliminaire qu'il existe des réels λ_i positifs tels que $a_i z^i = \lambda_i a_{n-1} z^{n-1}$ pour $1 \leq i \leq n-2$.

Comme d'autre part $z^n = -a_{n-1}z^{n-1} - \cdots - a_1z - a_0$ (puisque S(z) = 0), on a :

$$z^{n} = -\left(1 + \sum_{i=0}^{n-2} \lambda_{i}\right) a_{n-1} z^{n-1} = -\mu a_{n-1} z^{n-1} \quad \text{(en posant } \mu = 1 + \sum_{i=0}^{n-2} \lambda_{i}\text{)}$$

d'où $z=-\mu a_{n-1}$; et puisque |z|=r et $\mu>0$, on a nécessairement $\mu=\frac{r}{|a_{n-1}|}$ d'où nécessairement : $z=-r\frac{a_{n-1}}{|a_{n-1}|}$, et z est donc unique.

• Ce résultat peut tomber en défaut si l'on ne suppose plus $a_{n-1} \neq 0$: considérer par exemple $S(z) = z^n - 1 \dots$

Partie B

1. On calcule:

$$S = \frac{1}{\alpha_n} (X - 1) P = X^{n+1} - \frac{\alpha_n - \alpha_{n-1}}{\alpha_n} X^{n-1} - \dots - \frac{\alpha_1 - \alpha_0}{\alpha_n} X - \frac{\alpha_0}{\alpha_n}$$
$$= X^{n+1} - a_n X^n - \dots - a_1 X - a_0$$

où les a_i sont tous ≥ 0 et $a_0 \neq 0$.

En reprenant les notations précédentes (avec n+1 à la place de n), on a ici R=S, et puisque 1 est racine évidente de S, on a r=1 (car S admet une unique racine positive). Toute racine complexe de P, étant racine de S, est donc de module inférieur ou égal à 1 d'après le résultat obtenu à la question A.2.3.

De plus, si $\alpha_{n-1} < \alpha_n$, on aura $a_n \ne 0$, et d'après résultat obtenu à la question **A.2.4**, le polynôme S possède au plus une racine complexe de module égal à 1 ; mais cette racine, c'est 1 ! Donc les autres racines complexes de S, c'est-à-dire celles de P puisque $P(1) \ne 0$, ont un module strictement inférieur à 1.

- 2. $Q(\gamma X) = \alpha_n X^n + \alpha_{n-1} X^{n-1} + \ldots + \alpha_1 X + \alpha_0$, avec $\alpha_i = \gamma^i a_i$ pour $i \in [\![0,n]\!]$. Les α_i sont bien des réels strictement positifs; de plus, pour $i \in [\![1,n]\!]$, l'inégalité $\frac{a_{i-1}}{a_i} \leqslant \gamma$ (qui découle de la simple définition de γ), implique $\gamma^{i-1}a_{i-1} \leqslant \gamma^i a_i$, soit $\alpha_{i-1} \leqslant \alpha_i$. On peut donc appliquer au polynôme $Q(\gamma X)$ les résultats de la question précédente : si z' est une racine de ce polynôme, c'est-à-dire si $Q(\gamma z') = 0$, on aura $|z'| \leqslant 1$. Donc, si z est une racine de Q, en prenant $z' = \frac{z}{\gamma}$, on en déduit $\left|\frac{z}{\gamma}\right| \leqslant 1$, soit : $|z| \leqslant \gamma$.
 - $X^nQ\left(\frac{\beta}{X}\right)=\alpha_nX^n+\alpha_{n-1}X^{n-1}+\ldots+\alpha_1X+\alpha_0$, avec ici $\alpha_i=a_{n-i}\beta^{n-i}$ pour $i\in [\![0,n]\!]$. Les α_i sont bien des réels strictement positifs; de plus, pour $i\in [\![1,n]\!]$, l'inégalité $\beta\leqslant \frac{a_{n-i}}{a_{n-i+1}}$, qui résulte de la définition de β , implique $\beta^{n-i+1}a_{n-i+1}\leqslant\beta^{n-i}a_{n-i}$ soit $\alpha_{i-1}\leqslant\alpha_i$. On peut donc appliquer au polynôme $X^nQ\left(\frac{\beta}{X}\right)$ les résultats de la question précédente : si z' est une racine de ce polynôme, c'est-à-dire si $Q\left(\frac{\beta}{z'}\right)=0$ (z' ne peut être nul), on aura $|z'|\leqslant 1$. Donc, si z est une racine de Q, en prenant $z'=\frac{\beta}{z}$ (z ne peut être nul), on en déduit $\left|\frac{\beta}{z}\right|\leqslant 1$, soit : $|z|\geqslant \beta$.

Partie C

- 1. Il suffit d'appliquer directement le résultat de la question A.2.1 au polynôme $S = \frac{1}{a_n} P$.
- 2. De même, on applique ici le résultat de la question A.2.3.
- 3. 3.1 On a:

$$P = a_n(X - \zeta_1)(X - \zeta_2)...(X - \zeta_n) = a_n(X^n - \sigma_1 X^{n-1} + \sigma_2 X^{n-2} - \dots + (-1)^n \sigma_n)$$

où les σ_k sont les fonctions symétriques élémentaires des racines :

$$\sigma_1 = \sum_{i=1}^n \zeta_i \quad , \quad \sigma_2 = \sum_{1 \leq i < j \leq n} \zeta_i \zeta_j \quad , \quad \sigma_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} \zeta_{i_1} \zeta_{i_2} \dots \zeta_{i_k} \quad , \quad \sigma_n = \zeta_1 \zeta_2 \dots \zeta_n .$$

Dans la somme définissant σ_k , il y a $\binom{n}{k}$ termes de la forme $\zeta_{i_1}\zeta_{i_2}...\zeta_{i_k}$, et l'on a $\left|\zeta_{i_1}\zeta_{i_2}...\zeta_{i_k}\right| \leqslant |\zeta_n|^k$, donc $|\sigma_k| \leqslant \binom{n}{k}|\zeta_n|^k$.

Et puisque $a_k = (-1)^{n-k} a_n \sigma_{n-k}$, on en déduit :

$$\left|\frac{a_k}{a_n}\right| = |\sigma_{n-k}| \le \binom{n}{n-k} |\zeta_n|^{n-k} = \binom{n}{k} |\zeta_n|^{n-k}.$$

3.2 Par définition, $\rho(P)$ est solution de l'équation $\sum_{k=0}^{n-1} |a_k| x^k = |a_n| x^n$, donc :

$$\rho(P)^n = \sum_{k=0}^{n-1} \frac{|a_k|}{|a_n|} \rho(P)^k \leqslant \sum_{k=0}^{n-1} \binom{n}{k} |\zeta_n|^{n-k} \rho(P)^k.$$

3.3 La formule du binôme donne alors directement :

$$\rho(P)^n \le \left[\rho(P) + \zeta_n\right]^n - \rho(P)^n$$

ďoù

$$2\rho(P)^n \le \left[\rho(P) + \zeta_n\right]^n - \rho(P)^n$$
 puis $\sqrt[n]{2}\rho(P) \le \rho(P) + \zeta_n$

soit enfin : $|\zeta_n| \ge (\sqrt[n]{2} - 1)\rho(P)$.

3.4 On vérifie facilement que $P(X) = X^n Q\left(\frac{1}{X}\right)$. Les racines de Q sont donc les $\frac{1}{\zeta_k}$. Puisque 0 n'est pas racine de P, le coefficient dominant de Q est $a_0 \neq 0$, donc on peut appliquer à Q le résultat de la question précédente. Le plus grand des modules des racines de Q étant $\frac{1}{|\zeta_1|}$, on aura :

$$\left(\sqrt[n]{2}-1\right)\rho(Q) \leqslant \frac{1}{|\zeta_1|} \leqslant \rho(Q)$$

ce qui donne directement le résultat demandé.

4. Dans le cas du polynôme $P=X^3+(-2+3i)X^2+(-3-5i)X+(6-2i)$, $\rho(P)$ est l'unique solution positive de l'équation : $x^3-\sqrt{13}x^2-\sqrt{34}x-2\sqrt{10}=0$. MAPLE® donne $\rho(P)\approx 5,019$, et le plus grand module des trois racines vaut $\sqrt{5}\approx 2,236$: cela illustre le résultat de la question **C.2**.

On a aussi $(\sqrt[3]{2}-1)\rho(P)\approx 1{,}304$, ce qui illustre la question **C.3.3**.

Partie D

1. Par définition, $\rho(P)$ est l'unique racine positive de la fonction $f: x \mapsto |a_n| x^n - \sum_{k=0}^{n-1} |a_k| x^k$, et nous avons vu que f est négative sur $[0, \rho(P)]$ et positive sur $[\rho(P), +\infty[$.

Or $\rho(P_1)$ est solution de l'équation $|a_n|x^n = \sum_{k=0}^{n-2} |a_k|x^k$, donc $f(\rho(P_1)) = -|a_{n-1}|\rho(P_1)^{n-1}$ est négatif : cela prouve que $\rho(P_1) \leq \rho(P)$.

2. Si ζ est racine de P, on a:

$$a_n \zeta^n + a_{n-1} \zeta^{n-1} = -\sum_{k=0}^{n-2} a_k \zeta^k$$
,

donc:

$$\left| a_n \zeta^n + a_{n-1} \zeta^{n-1} \right| \le \sum_{k=0}^{n-2} |a_k| |\zeta|^k$$

puis

$$|a_n\zeta + a_{n-1}| \le \sum_{k=0}^{n-2} |a_k| \frac{1}{|\zeta|^{n-1-k}}.$$

Donc, si ζ n'appartient pas à \mathcal{D}_0 , on a $|\zeta| > \rho(P_1)$, d'où

$$|a_n\zeta + a_{n-1}| \leqslant \sum_{k=0}^{n-2} |a_k| \frac{1}{\rho(P_1)^{n-1-k}} = \frac{1}{\rho(P_1)^{n-1}} \sum_{k=0}^{n-2} |a_k| \rho(P_1)^k = |a_n| \rho(P_1).$$

- 3. On en déduit que, si ζ est une racine de P qui n'appartient pas à \mathcal{D}_0 , on a $\left|\zeta + \frac{a_{n-1}}{a_n}\right| \leqslant \rho(P_1)$, c'est-à-dire que ζ appartient alors à \mathcal{D}_1 .
- 4. Dans le cas du polynôme $P=X^3+(-2+3i)X^2+(-3-5i)X+(6-2i)$, on a $P_1=X^3+(-3-5i)X+(6-2i)$ et $\rho(P_1)$ est l'unique racine positive de l'équation $x^3-\sqrt{34}x-2\sqrt{10}=0$. Maple® donne : $\rho(P_1)\approx 2,83881$. On a ici : $\frac{a_{n-1}}{a_n}=-2+3i$, donc \mathcal{D}_0 est le disque de ventre O et de rayon $\rho(P_1)$ et \mathcal{D}_1 celui de centre le point de coordonnées (2,-3) et de même rayon.

Sur la figure ci-dessous, nous avons représenté ces deux disques, ainsi que celui de centre O et de rayon $\rho(P) = \approx 5,019$ (en pointillés) donné par la question **C.2.** Nous avons également fait figurer les images des racines z_1, z_2 et z_3 .

