MODÉLISATION D'UN FOUR À CARBONISATION POUR LA PRODUCTION DU CHARBON À PARTIR DES DÉCHETS VÉGÉTAUX ET MÉNAGERS

Numéro d'inscription SCEI:30283

Plan de Travail

- Introduction
- Energie et développement durable
- Production du charbon
- Modélisation d'un four cornue (carbonisateur)
- Méthode de résolution du système dynamique (SLIT)
- Résultats et discussions
- Conclusion

Introduction

■ A jeune âge ,on suscitait ma curiosité en regardant des films classiques ou des dessins animés où l'utilisation progressive du charbon pour faire fonctionner de différents systèmes techniques. Grande fut ma surprise, lorsque je viens de découvrir qu'il aie été un élément fondamental de la première révolution industrielle. Je me suis intéressé, alors, dans mon TIPE à contempler la carbonisation d'un point de vue de l'ingénierie.

Energie et Développement durable

Energie et développement durable

	Municipal waste	Industrial waste	Primary solid biofuels	Biogases	Liquid biofuels	Geothermal	Solar thermal	Hydro	Solar PV	Tide, wave, ocean	Wind
	OWh	OWN	GWh	GWh-	Own	CWh	Owh	OWN	CWh	GWh	GWh
Gross elec. generation	76 472	42 301	421131	88 986	8349	88 956	11 321	4 325 111	554382	1005	1273 409
	13	10	TI	TI	13	TJ	11				
Gross heat production	296165	181501	589111	46 514	5683	44 411	2270				
	TJ-net	13-net	Theet	ti-net	St	TJ	11				
Production	1418578	1133398	47460107	1364612	126 005	3857558	1518178				
Imports	36206	3102	484830		19 281						
Exports	3224		-293244		20738						
Stock changes	123	-1773	-13485	58	-1196						
Domestic supply	1451437	1134 726	47638209	1364670	123 353	3857558	1518178				
Statistical differences and transfers	-288	1262	43 913	-291	303	4770					
Transformation	1292313	671722	11189598	862 046	2288	3207645	142554				
Electricity plants	634 564	397577	4132759	466356	1577	3039933	140 273				
CHP plants	580 220	152892	1593399	361637	623	120 800					
Heat plants	77529	116 741	316985	5950	88	46 911	2281				
Other transformation		4 512	5146 455	28103							
Energy industry own use	1486	6974	604753	27551	152	13	112				
Losses	10	3	45	4082	- 5	481					
Final consumption	157340	457289	35.887.725	470 701	120 605	647649	1375 512				
Industry	89 69 6	406059	7789839	57869	1671	25696	17087				
Transport			Б	7281	116500						
Residential			26586783	328568	756	355111	1109151		D'ap	rès AIE	5
Commercial and public	erress	27517	1040,688	20,050	752	162 801	199123) 3

Production du charbon

Production du charbon

TABLE 4
Properties of MSW compost and charcoal

Parameter	Decomposed MSW Compost	Charcoal
Moisture content (%)	18.43	0.18
Volatile matter (%)	39.93	10.54
Ash (%)	38.38	89.04
Fixed carbon (%)	3	0.24
pH	7,63	9.93
Temperature ⁰ C	22.9	19.5
Electrical Conductivity(µs)	6.95	7.33
Salinity %	3.73	3.86
Bulk density (kg/m³)	422.02	928.28

Modélisation d'un four cornu(Carbonisateur)

D'après Doc3

Modélisation d'un four cornue(Carbonisateur)

Mise en équation le système dynamique par l'application du premier principe de la thermodynamique

Première équation :

$$\delta m \frac{dUmetal}{dt}$$
 = Pth - Prayonné - Pdéchets - Pair ambiant - Pdiffusé

Deuxième équation :

$$\frac{dU_{car}}{dt} = \alpha P_{th} - P_{rayonn\'ee} - P_{cc}$$
 intérieur - P déchets

Troisième équation :

$$M(t) \frac{dV d\acute{e}chet}{dt} = P d\acute{e}chet - P ray, dech - P cc dech, air - $\delta m P gaz$$$

Quatrième équation :

$$\frac{dv_{air}}{dt}$$
 = Pray, déchet + Pccdéchet + Pccmétal - Dm Δ Hgaz

Modélisation d'un four cornue

Interprétation des transferts thermique dans le carbonisateur

Puissance thermique	Résistance thermique associée	Expression correspondante
Pth	Rth	
P _{Rc,int}	R _{Rc,i}	
P _{Rc,ext}	R _{Rc,e}	
Pcc,int	Rcc,i	
Pcc,ext	Rcc,e	

Un nouveau outil puissant dans l'ingénierie: Le Bond graph

R.Rosenberg H. Payuter D. Kamopp D. Margolis
International Conference on Bond Graph Modelling
Phoenix, Arizona, Janvier 2001

Modeling: Bond Graph Basic Elements

- Power Bonds Connect at Junctions.
- There are two types of junctions, 0 and 1.

Le langage du bond graph:

Définitions de la puissance

La notion de puissance (exprimée en Watt) est commune à tous les domaines de la physique.

Domaine	Puissance "Effort"		"Flux"		
Translation	$F \times V$	Force	N	Vitesse	$m \times s^{-1}$
Rotation	$\Gamma \times \omega$	Couple	$N \times m$	Vitesse angulaire	$rad \times s^{-1}$
Électricité	$U \times I$	Tension	V	Intensité	A $(C \times s^{-1})$
Hydraulique	$p \times Q$	Pression	Pa	Débit	$m^3 \times s^{-1}$
Thermique	$T \times j$	Température	K	Courant thermique	$J \times s^{-1}$

Table 1: Puissance dans les différents domaines de la physique.

P = effort * flux

D'après Doc5

Résultats et commentaires

Numéro du graphe	Cc	Cd	Cair
1	1	4	2
2	0,5	2	1
3	0,4	1,6	0,8
4	0,3	1,2	0,6
5	0,2	0,8	0,4

Numéro du graphe	Rc	Rd	Rair	Rext(1et2)
1	1	6	4	0,3
2	1,3	7,8	6,2	0,43
3	1,7	10,2	6,8	0,56
4	1,8	10,8	7,2	0,6
5	1,9	11,1	7,6	0,63

Résultats et commentaires

Résultats et commentaires

Numéro du graphe	Cc	Cd	Cair
1	1	4	2
2	0,5	2	1
3	0,4	1,6	0,8
4	0,3	1,2	0,6
5	0,2	0,8	0,4

Numéro du graphe	Rc	Rd	Rair	Rext(1et2)
1	1,9	11,1	7,6	0.63
2	1,8	10,8	7,2	0,6
3	1,7	10,2	6,8	0,56
4	1,3	7,8	6,2	0,43
5	1	6	4	0,3

Résultats et discussions

Commentaires et discussions

- I. En faisant varier dans le sens contraire les deux paramètres (Rd et Cd).La durée du régime transitoire augmente avec l'écart.
- II. En faisant varier dans le même sens les deux paramètres (Rd et Cd). le régime transitoire est atteint plus rapidement.

Conclusion

- La carbonisation peut être une solution alternative au énergies renouvelables car elle n'est pas couteuse et facile à mettre en œuvre.
- La maitrise d'un procédé de carbonisation en vue de l'obtention d'une qualité meilleure du charbon et d'une productivité optimale nécessite une bonne modélisation des processus d'échange thermique entre les différents éléments du four cornue ce qui exige un niveau de connaissance avancé en ingénierie des systèmes dynamiques.

