## Chemistry 129.02 Fall 2010

# **General Chemistry**

#### Examination #1:

Equations, constants and periodic table are provided.

You may use a calculator.

## Show all your work!

| page 1: | /1/ |
|---------|-----|
| page 2: | /16 |
| page 3: | /14 |
| page 4: | /27 |
| page 5: | /14 |
| page 6: | /12 |
| Bonus:  | /2  |
|         |     |
|         |     |

Total: \_\_\_\_\_/100

| 1. |     | (17 pts.) Metal hydrides react with water to form hydrogen gas and the metal hydroxide. Consider the reaction of $5.63$ g SrH <sub>2</sub> with $4.80$ g H <sub>2</sub> O. |                                                            |  |  |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|
|    | a)  | Balance the chemical equation for this react                                                                                                                               | ion. (2 pts.)                                              |  |  |
|    |     | $_{_{(1)}}$ SrH <sub>2 (s)</sub> + $_{_{(3)}}$ H <sub>2</sub> O (1)                                                                                                        | $\rightarrow$ Sr(OH) <sub>2 (s)</sub> + H <sub>2 (g)</sub> |  |  |
|    | b)  | How many <b>grams</b> of H <sub>2</sub> will be produced? theoretical yield? (12 pts.)                                                                                     | Which is the limiting reactant? What is the                |  |  |
|    |     |                                                                                                                                                                            |                                                            |  |  |
|    |     |                                                                                                                                                                            |                                                            |  |  |
|    |     |                                                                                                                                                                            |                                                            |  |  |
|    |     |                                                                                                                                                                            |                                                            |  |  |
|    |     |                                                                                                                                                                            |                                                            |  |  |
|    | Lin | niting Reactant:                                                                                                                                                           |                                                            |  |  |
|    |     | eoretical Yield:                                                                                                                                                           |                                                            |  |  |

c) If the actual yield is 0.129~g, what is the percent yield? (3 pts.)

| 2. | (6 pts.) When an evacuated 63.8 mL glass bulb is filled with a gas at 22°C and 760 torr, the bulb gains 0.103g in mass. Is the gas $N_2$ , Ne, or Ar? |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. | (10 pts) Cortisol, one of the major steroid hormones, has the following percent composition has a                                                     |
| 3. | molar mass of 362.47 g/mol: C, 69.6%; H, 8.34%; O, 22.1%. Find its empirical and molecular formulas.                                                  |
|    |                                                                                                                                                       |
|    |                                                                                                                                                       |
|    |                                                                                                                                                       |
|    | Empirical Formula:                                                                                                                                    |
|    | Molecular Formula:                                                                                                                                    |

| 4. | (4 pts.) | In the Rutherford nuclear-atom model, |  |
|----|----------|---------------------------------------|--|
|----|----------|---------------------------------------|--|

- (a) neutrons and electrons reside in the nucleus
- (b) the heavy subatomic particles, protons and neutrons, reside outside the nucleus
- (c) the nucleus is positively charged and most of the mass resides in it
- (d) protons, neutrons, and electrons have essentially the same mass
- (e) mass is spread uniformly throughout the atom
- 5. (4 pts.) Which of these electron transitions corresponds to absorption of energy and which to emission?

(a) 
$$n = 2$$
 to  $n = 4$ 

(b) 
$$n = 3$$
 to  $n = 1$ 

(c) 
$$n = 5$$
 to  $n = 2$ 

(d) 
$$n = 3$$
 to  $n = 4$ 

6. (6 pts) The C–O bond in an organic compound absorbs radiation of wavelength 9600 nm. (a) What frequency(in s<sup>-1</sup>) corresponds to that of wavelength? (b)What type of electromagnetic radiation is this?

7. (11 pts.) Fill in the gaps in the following table. Each column may represent a neutral atom or an ion.

| Symbol      | $^{79}_{35}Br^{1-}$ |    |    |
|-------------|---------------------|----|----|
| Protons     |                     | 40 | 37 |
| Neutrons    |                     | 50 |    |
| Electrons   |                     |    | 36 |
| Mass Number |                     |    | 85 |
| Charge      |                     | 0  |    |

- 8. (4 pts.) The elements in groups 1A and 7A are all quite reactive. What is a major difference between them?
  - (a) Group 1A elements gain electrons in chemical reactions while group 7A elements lose electrons.
  - (b) Group 7A elements are nonmetals and group 1A elements are metalloids.
  - (c) Group 1A elements lose electrons in chemical reactions while group 7A elements gain electrons.
  - (d) Group 7A elements form 1+ cations and group 1A elements form 1- anions.
- 9. (12 pts.) Fill in the gaps in the following table.

| Name               | Formula          | Ionic or Covalent? |
|--------------------|------------------|--------------------|
|                    | SCl <sub>4</sub> |                    |
| ammonium bromide   |                  |                    |
|                    | PbO <sub>2</sub> |                    |
| NaHCO <sub>3</sub> |                  |                    |
|                    | silver nitrate   |                    |
| nitrogen trioxide  |                  |                    |

| 10. |      | pts) Using the periodic table as a reference, determine whether a bond between each of the lowing pairs of atoms is polar, nonpolar or ionic? Which is the most electronegative atom in eacr? | :h |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | (a)  | F and F                                                                                                                                                                                       |    |
|     | (b)  | K and Cl                                                                                                                                                                                      |    |
|     | (c)  | P and O                                                                                                                                                                                       |    |
| 11. | (8 1 | pts) The thiocyanate ion ( NCS ) has three possible Lewis structures.                                                                                                                         |    |
|     | (a)  | Draw these three Lewis structures, and assign formal charges to the atoms in each structure                                                                                                   | ž. |
|     |      |                                                                                                                                                                                               |    |
|     |      |                                                                                                                                                                                               |    |
|     |      |                                                                                                                                                                                               |    |
|     | (b)  | Which Lewis structure is the preferred one? Why?                                                                                                                                              |    |

| 12. (12 pts.) Consider the following molecules: <b>N</b> <sub>2</sub> <b>O</b> , <b>XeF</b> <sub>4</sub> , <b>SCl</b> <sub>4</sub> . (i) Draw their Lewis structure, Determine the electron and molecular geometries, (iii) Is the molecule polar or nonpolar? |     |                  | eture, (ii)                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--------------------------------------------|--|
|                                                                                                                                                                                                                                                                | (a) | $N_2O$           |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  | Electron Domain Geometry:                  |  |
|                                                                                                                                                                                                                                                                |     |                  | Molecular Geometry:<br>Polar or Nonpolar?: |  |
|                                                                                                                                                                                                                                                                |     |                  | I of at of two ipolars.                    |  |
|                                                                                                                                                                                                                                                                | (b) | $XeF_4$          |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  | Electron Domain Geometry:                  |  |
|                                                                                                                                                                                                                                                                |     |                  | Molecular Geometry:                        |  |
|                                                                                                                                                                                                                                                                |     |                  | Polar or Nonpolar?:                        |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                | (c) | SCl <sub>4</sub> |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  |                                            |  |
|                                                                                                                                                                                                                                                                |     |                  | Electron Domain Geometry:                  |  |
|                                                                                                                                                                                                                                                                |     |                  | Molecular Geometry:                        |  |
|                                                                                                                                                                                                                                                                |     |                  | Polar or Nonpolar?:                        |  |

Bonus:

(2 pts) Give an example of one greenhouse gases and its source.

#### Equations, constants and conversion factors

| $E_{photon} = h v = \frac{h c}{\lambda}$           | $1 \text{ nm} = 10^{-9} \text{ m}$      |
|----------------------------------------------------|-----------------------------------------|
| $\mathcal{L}_{photon} = \mathcal{N}_{V} = \lambda$ | $1 \text{ mL} = 10^{-3} \text{ L}$      |
| $V = \frac{c}{\lambda}$                            | 1  atm = 760  torr                      |
| PV = nRT                                           | $h = 6.626 \times 10^{-34} \text{ J.s}$ |
| $MM = \frac{mRT}{PV}$                              | $c = 3.00 \times 10^8 \text{m/s}$       |
| $\overline{PV}$                                    | R = 0.0821  L.atm/(mol.K)               |
| $K - {}^{\circ}C + 273.15$                         |                                         |

