

Nonlinear Programming

Chapter Topics

- Nonlinear Profit Analysis
- **■** Constrained Optimization
- Solving Nonlinear Programming Problems Excel
- Nonlinear Programming Model with Multiple
 Constraints
- Nonlinear Model Examples

STEVENS Institute of Technology

Overview

- Problems that fit the general linear programming format but contain nonlinear functions are termed nonlinear programming (NLP) problems
- Solution methods are more complex than linear programming methods
- Determining an optimal solution is often difficult, if not impossible
- Solution techniques generally involve searching a solution surface for high or low points requiring the use of advanced mathematics
- (But we're engineers, the idea of advanced math doesn't scare us!)

STEVENS Optimal Value: Single Nonlinear Function

Institute of Technology Basic Model - Blue Jeans and Prices

Profit function, Z, with volume independent of price:

$$Z = vp - c_f - vc_v$$
where $v = sales$ volume
$$p = price of jeans$$

$$c_f = unit fixed cost$$

$$c_v = unit variable cost/jean$$

But this isn't very realistic, is it?

There usually is a relationship between volume and price

Let's add a volume/price relationship:

$$v = 1,500 - 24.6p$$

(this is a linear relationship)

Linear Relationship of Volume to Price

STEVENS Optimal Value: Single Nonlinear Function

Institute of Technology

With v = 1,500 - 24.6pand fixed cost (c_f) = \$10,000 and variable cost $(c_v) = 8 $Z = vp - c_f - vc_v$ becomes

And THIS is a nonlinear equation!!

STEVENS Optimal Value: Single Nonlinear Function Institute of Technology Maximum Point on a Curve

- Reach back into your undergraduate calculus memories....
 - The slope of a curve at any point is equal to the derivative of the curve's function
 - The slope of a curve at its highest (or lowest) = 0

Maximum profit for the profit function

STEVENS Optimal Value: Single Nonlinear Function Solution Using Calculus

Z = \$7,259.45

В	С	D	Е	F	G	Н		J	K	L	1
Wester	n Clothing Co	ompany									
				OBJECTIV	E FUNCTIO	N					
	Profit =	7259.45		Maximize	Z = (v*p)	- fixed cos	sts - (v*va	riable cost	ts)		
	Demand =	651.60		v = 1,500) - 24.6*pr	ice					
	Price =	34.49									
	Fixed Cost	10000.00									
	Variable Cost	8.00			Final Volur	ne Sold @	\$34.49	=	651.6	pairs of je	ans

What have we done?

- 1. We've EXTENDED the break-even model
- 2. We've converted it into an optimization model by maximizing the objective function (profit) and determining the optimal value of the variable (price)
- 3. By using calculus to find the optimal values of variables, we've used classic optimization techniques

Did you notice anything else?? (wait for it...)
We had NO constraints in this model

We simply optimized the profit function

Constrained Optimization in Nonlinear Problems - Definition

- A nonlinear problem containing one or more constraints becomes a constrained optimization model or a nonlinear programming
 (NLP) model
- A *nonlinear* programming model has *the same general form* as the *linear* programming model except that the objective function *and/or* the constraint(s) are nonlinear
- Solution procedures are *much more complex* and no guaranteed procedure exists for all NLP models

STEVENS Constrained Optimization in Nonlinear Institute of Technology Problems - Graphical Interpretation

Effect of adding constraints to nonlinear problem:

Here's our nonlinear profit curve for the Blue Jeans Profit Analysis Model

STEVENS Constrained Optimization in Nonlinear Institute of Technology Problems - Graphical Interpretation

Because of market conditions, say we want to limit our price ceiling to \$20

STEVENS Constrained Optimization in Nonlinear Institute of Technology Problems - Graphical Interpretation

Alternatively, say the market conditions will allow us to raise our price ceiling to \$40

- Unlike linear programming, *solution is often not on the boundary* of the feasible solution space
- We can't simply look at points on the solution space boundary but *must consider other points on the surface* of the objective function
- This greatly complicates solution approaches, and solution techniques can be very complex

Remember the Beaver Creek Pottery Company?

Maximize
$$Z = $4x_1 + 5x_2$$

where:

 x_1 = number of bowls produced

 x_2 = number of mugs produced

subject to only one constraint this time:

$$x_1 + 2x_2 = 40$$

Labor constraint

Let's insert a variable cost for each product into the problem statement: the profit is reduced from \$4.00, by \$0.1, relative to the number of bowls made the profit is reduced from \$5.00, by \$0.2, relative to the number of mugs made

What does that do to our objective function?

The coefficients will change!

$$(\$4 - 0.1x_1) = profit (\$) per bowl$$

$$(\$5 - 0.2x_2) = profit (\$) per mug$$

Remember the

Beaver Creek Pottery Company?

NEW OBJECTIVE FUNCTION Maximize $Z = (4 - 0.1x_1)x_1 + (5 - 0.2x_2)x_2$

where:

 x_1 = number of bowls produced

 x_2 = number of mugs produced

subject to only one constraint this time:

$$x_1 + 2x_2 = 40$$

Labor constraint

Let's insert a variable cost for each product into the problem statement: the profit is reduced from \$4.00, by \$0.1, relative to the number of bowls mad the profit is reduced from \$5.00, by \$0.2, relative to the number of mugs made.

What does that do to our objective function?

The coefficients will change!

$$(\$4 - 0.1x_1) = profit (\$) per bowl$$

$$(\$5 - 0.2x_2) = profit (\$) per mug$$

Solver Parameters	X
Set Target Cell:	<u>S</u> olve
Equal To: Max Min Value of: 0 By Changing Cells:	Close
\$C\$5:\$C\$6 <u>S.</u> <u>G</u> uess	
Subject to the Constraints:	Options
\$C\$9 = \$D\$9	
⊆hange	Reset All
<u>D</u> elete	<u>H</u> elp

В	С	D	Е	F	G	Н	I	J	K	L	М
Beav	er Creek Pottery	Company									
		Production	Profit Per Unit						DECISION	VARIABLES	S
	Bowls (x1)	18.33	2.17		Profit per	bowl = 4 -	0.1*x1		x1 = # of b	owls prod	uced
	Mugs (x2)	10.83	2.83		Profit per	mug = 5 - (0.2*x2		x2 = # of r	nugs produ	ıced
		Used	Available		CONSTRA	INT					
	Hours of labor	40.00	40.00		x1 + 2*x2	= 40 hrs of	labor				
	Total Profit	70.42			OBJECTIV	E FUNCTIO	N				
					Maximize	Z = (4 - 0.	1*x1)*x1 +	(5 - 0.2*)	x2)*x2		

		Final	Reduced
Cell	Name	Value	Gradient
\$C\$5	Bowls = Producttion	18.3	0.0
TO TO	Marina - Desilvantian	40.0	0.0
\$C\$6	Mugs = Producrtion	10.8	0.0
ু কু ১৯৮ onstrai			
			Lagrange Multiplier

The Lagrange multiplier is analogous to the dual value in a linear programming problem – it reflects the approximate change in the objective function resulting from a unit change in the quantity (RHS) of a constraint equation

Lagrange multiplier for labor

В	С	D	Е	
Beav	er Creek Pottery	Company		
		Production	Profit Per Unit	
	Bowls (x1)	0.00	4.00	
	Mugs (x2)	0.00	5.00	
		Used	Available	~
	Hours of labor	0.00	41.00	_
	Total Profit	0.00		

In this example, if the quantity of labor hours is increased from 40 to 41, the value of Z can increase from \$70.42 to \$70.75...but let's see this in action (Excel file hijinks!)

Jeans Problem Revisited Multiple Constraint Problem

Say the Jeans Company now produces two kinds of styles, designer and straight-legged jeans.

Production is subject to constraints for

- yards of available cloth
- time available for cutting
- time available for sewing

In addition, sales demand is dependent on the price at which the company sells the jeans, and each jean style has an individual demand function.

 $x_1 = 1,500 - 24.6p_1$ = # designer jeans sold $x_2 = 2,700 - 63.8p_2$ = # straight-legged jeans sold p_1 = price of designer jeans p_2 = price of straight jeans

The cost of producing the designer jeans is \$12/pair, and the cost of producing the straight-legged jeans is \$9/pair

What are the decision variables in this problem????? $p_1 = price$ of designer jeans $p_2 = price$ of straight jeans

Maximize $Z = (p_1 - 12)x_1 + (p_2 - 9)x_2$

subject to:

 $2x_1 + 2.7x_2 \le 6,000$ yards of cloth available $3.6x_1 + 2.9x_2 \le 8,500$ time available for cutting $7.2x_1 + 8.5x_2 \le 15,000$ time available for sewing

e	stern Clothing Company	 Extended 	l Problem					
						DECISION	VARIABLES	
						p1 = \$ of d	esigner jeans produc	ed
		Demand	Price	Profit		p2 = \$ of st	traight-legged jeans	produced
	Designer Jeans (x1)	1500.00	0.00	-12.00	x1 = 1,500 - 24.6*p1			
	Straight-legged Jeans (x2)	2700.00	0.00	-9.00	x2 = 2,700 - 63.8*p2			
	Constraints for Resources	Used	Available		CONSTRAINTS			
	Cloth (yds)	10290.00	6000.00		$2*x1 + 2.7*x2 \le 6,000$	yards of clo	oth available	
	Cutting (mins)	13230.00	8500.00		$3.6*x1 + 2.9 * x2 \le 8,500$	time availa	ble for cutting	
	Sewing (mins)	33750.00	15000.00		$7.2*x1 + 8.5*x2 \le 15,000$	time availa	ble for sewing	
			Total Profit	-\$42,300.00	OBJECTIVE FUNCTION			
					Maximize $Z = (p1 - 12)*x1$	+ (p2 - 9)*x2		
					But x1 and x2 are stated in	terms of p1 and	d p2, therefore	
					my decision variables are ac	ctually the price	es, not the amount m	ade!

					DECISION VARIABLES
					p1 = \$ of designer jeans produced
	Demand	Price	Profit		p2 = \$ of straight-legged jeans produced
Designer Jeans (x1)	602.40	36.49	24.49	x1 = 1,500 - 24.6*p1	
Straight-legged Jeans (x2)	1062.90	25.66	16.66	x2 = 2,700 - 63.8*p2	
Constraints for Resources	Used	Available		CONSTRAINTS	
Cloth (yds)	4074.63	6000.00		$2*x1 + 2.7*x2 \le 6,000$	yards of cloth available
Cutting (mins)	5251.05	8500.00		$3.6*x1 + 2.9 * x2 \le 8,500$	time available for cutting
Sewing (mins)	13371.93	15000.00		$7.2*x1 + 8.5*x2 \le 15,000$	time available for sewing
		Total Profit	\$32,459.23	OBJECTIVE FUNCTION	
				Maximize Z = (p1 - 12)*x1	L + (p2 - 9)*x2
				But x1 and x2 are stated in	terms of p1 and p2, therefore
				my decision variables are a	actually the prices, not the amount made!

Facility Location Example Problem Problem Definition and Data

Notice that this is the formula for a

straight-line distance between two

points on a set of x,y coordinates –

which is also the hypotenuse of a right

Centrally locate a facility that serves several customers or other facilities in order to minimize distance or miles traveled

(d) between facility and customers

$$d_i = [(x_i - x)^2 + (y_i - y)^2]^{1/2}$$

Where:

triangle (x,y) = coordinates of proposed facility (x_i, y_i) = coordinates of customer or location facility i

Facility location problems often want to minimize costs, so:

Minimize total miles $d = \sum d_i t_i$

Where:

 d_i = distance to town i t_i =annual trips to town i

Facility Location Example Problem Problem Definition and Data

Hicktown County Rescue Squad and Ambulance Service (in Pennsylvania) wants to construct a centralized facility to serve five rural towns, in order to minimize total annual travel mileage to the towns. The locations of the towns in terms of their graphical x, y coordinates, measured in miles relative to the point x = 0, y = 0, and the expected number of annual trips the squad will have to make to each town are shown below:

When in doubt, sketch it out!

	Coord		
Town	X	У	Annual Trips
Abbeville	20	20	75
Benton	10	35	105
Clayton	25	9	135
Dunnig	32	15	60
Eden	10	8	90

Facility Location Example Problem Solution Map

Rescue Squad Facility Location

Facility Location Example Problem Solution Using Excel

$$\sqrt{((Xe - Xx)^2 + (Ye - Yx)^2)}$$

Investment Portfolio Selection Problem Definition and Model Formulation

Objective of the portfolio selection model is to:

- minimize some measure of portfolio risk (variance in the return on investment), usually while...
- achieving some specified minimum return on the total portfolio investment

Risk is reflected by the variability in the value of the investment – *variance* in the return on investment is the measure of risk

We also consider *covariance* in this model – it's another measure of risk.

You've all had statistics....what is covariance?

In this case, covariance reflects the idea that individual investment returns within a portfolio may exhibit positive or negative correlation; as when two stocks of the same general type go up or down together

To adjust for this possible correlation, investors usually try to diversify their portfolios

Investment Portfolio Selection Problem Definition and Model Formulation

Minimize
$$S = x_1^2 s_1^2 + x_2^2 s_2^2 + ... + x_n^2 s_n^2 + \sum_{\substack{i \neq j \\ i \neq j}} x_i x_j r_{ij} s_i s_j$$
 where:

S = variance of annual return of the portfolio

 x_i , x_j = the proportion of money invested in investments i or j

 s_i^2 = the variance for investment i

 r_{ij} = the correlation between returns on investments i and j

 s_i , s_j = the std. dev. of returns for investments i and j

subject to:

$$\mathbf{r}_1 \mathbf{x}_1 + \mathbf{r}_2 \mathbf{x}_2 + \dots + \mathbf{r}_n \mathbf{x}_n \ge \mathbf{r}_m$$
 minimum expected annual return $\mathbf{x}_1 + \mathbf{x}_2 + \dots \mathbf{x}_n = 1.0$ all the money is invested

where:

 r_i = expected annual return on investment i r_m = the minimum desired annual return from the portfolio

Four stocks, desired annual return of at least 0.11

Stock (x _i)	Annual Return (r _i)	Variance (s _i) ²
Altacam	.08	.009
Bestco	.09	.015
Com.com	.16	.040
Delphi	.12	.023

Stock combination (i,j)	Correlation (r _{ij})
A,B	.4
A,C	.3
A,D	.6
B,C	.2
B,D	.7
C,D	.4

Minimize

$$Z = S = x_1^2(.009) + x_2^2(.015) + x_3^2(.040) + x_4^2(.023) + x_1x_2(.4)(.009)^{1/2}(.015)^{1/2} + x_1x_3(.3)(.009)^{1/2}(.040)^{1/2} + x_1x_4(.6)(.009)^{1/2}(.023)^{1/2} + x_2x_3(.2)(.015)^{1/2}(.040)^{1/2} + x_2x_4(.7)(.015)^{1/2}(.023)^{1/2} + x_3x_4(.4)(.040)^{1/2}(.023)^{1/2} + x_2x_1(.4)(.015)^{1/2}(.009)^{1/2} + x_3x_1(.3)(.040)^{1/2}(.009)^{1/2} + x_4x_1(.6)(.023)^{1/2}(.009)^{1/2} + x_3x_2(.2)(.040)^{1/2}(.015)^{1/2} + x_4x_2(.7)(.023)^{1/2}(.015)^{1/2} + x_4x_3(.4)(.023)^{1/2}(.040)^{1/2}$$

subject to:

$$.08x_1 + .09x_2 + .16x_3 + .12x_4 \ge 0.11$$

$$x_1 + x_2 + x_3 + x_4 = 1.00$$

$$x_i \ge 0$$

nalysis							
				Proportion of			
Stocks	Return	Variance	Std. Dev.	Amount Invested		proportion of mor	ney^2 * variand
Altaxam	0.08	0.009	0.09486833	0.000	x1		0
Bestco	0.09	0.015	0.122474487	0.000	x2		0
Com.com	0.16	0.04	0.2	0.000	х3		0
Delphi	0.12	0.023	0.151657509	0.000	х4		0
Covariance Set	Covariance		Covariance Sums				
1,2	0.4		0			proportion of m	oney * return
1,3	0.3		0				0
1,4	0.6		0				0
2,3	0.2		0				0
2,4	0.7		0				0
3,4	0.4		0				
			0				
FUNCTION	0						
NTS							
0.00	=	1.0		All money must be	invested		
0	2	0.11		Minimum return ac	cepted		
	Altaxam Bestco Com.com Delphi Covariance Set 1,2 1,3 1,4 2,3 2,4 3,4 FUNCTION NTS 0.00	Stocks Return Altaxam 0.08 Bestco 0.09 Com.com 0.16 Delphi 0.12 Covariance Set Covariance 1,2 0.4 1,3 0.3 1,4 0.6 2,3 0.2 2,4 0.7 3,4 0.4 IFUNCTION 0 NTS 0.00	Stocks Return Variance Altaxam 0.08 0.009 Bestco 0.09 0.015 Com.com 0.16 0.04 Delphi 0.12 0.023 Covariance Set Covariance 1,2 0.4 1,3 0.3 1,4 0.6 2,3 0.2 2,4 0.7 3,4 0.4 FUNCTION NTS 0.00	Stocks Return Variance Std. Dev. Altaxam 0.08 0.009 0.09486833 Bestco 0.09 0.015 0.122474487 Com.com 0.16 0.04 0.2 Delphi 0.12 0.023 0.151657509 Covariance Set Covariance Covariance Sums 1,2 0.4 0 1,3 0.3 0 1,4 0.6 0 2,3 0.2 0 2,4 0.7 0 3,4 0.4 0 FUNCTION 0 0 NTS 1.0 1.0	Stocks Return Variance Std. Dev. Amount Invested Altaxam 0.08 0.009 0.09486833 0.000 Bestco 0.09 0.015 0.122474487 0.000 Com.com 0.16 0.04 0.2 0.000 Delphi 0.12 0.023 0.151657509 0.000 Covariance Set Covariance Covariance Sums 1,2 0.4 0 1,3 0.3 0 1,4 0.6 0 2,3 0.2 0 2,4 0.7 0 3,4 0.4 0 FUNCTION NTS All money must be	Stocks Return Variance Std. Dev. Amount Invested Altaxam 0.08 0.009 0.09486833 0.000 x1 Bestco 0.09 0.015 0.122474487 0.000 x2 Com.com 0.16 0.04 0.2 0.000 x3 Delphi 0.12 0.023 0.151657509 0.000 x4 Covariance Set Covariance Covariance Sums Covariance Sums	Stocks Return Variance Std. Dev. Amount Invested proportion of more

ock Portfolio	Analysis							
	1201.04	<u> </u>		1231/20/	Proportion of		Set Objective: \$E\$17	
	Stocks	Return	Variance	Std. Dev.	Amount Invested			
1	Altaxam	0.08	0.009	0.09486833	0.000	x1	To: Max Min Value Of:	0
2	. Bestco	0.09	0.015	0.122474487	0.000	x2	10.100 - 0.000 10	
3	Com.com	0.16	0.04	0.2	0.000	х3	By Changing Variable Cells:	
4	Delphi	0.12	0.023	0.151657509	0.000	х4	\$H\$4:\$H\$7	
							Subject to the Constraints:	
	Covariance Set	Covariance		Covariance Sums			\$D\$20 = 1	<u>A</u> dd
	1,2	0.4		0			\$D\$21 >= 0.11	
	1,3	0.3		0				<u>C</u> hange
	1,4	0.6		0				Delete
	2,3	0.2		0				<u>D</u> Cicto
	2,4	0.7		0				Reset All
	3,4	0.4		0				<u>K</u> eset rui
	7/1	15.00		0				
OBJECTIV	E FUNCTION	0				-	Make Unconstrained Variables Non-Negative	3)
00,20111	21011011011						Select a Solving Method: GRG Nonlinear	▼ Ogtions
CONSTRA	INTS						did formited	Oguons
	0.00	=	1.0		All money must be	investe	Solving Method	
	0	>	0.11		Minimum return ac		Select the GRG Nonlinear engine for Solver Problems that are smooth no	
		_	-				for linear Solver Problems, and select the Evolutionary engine for Solver	problems that are non-smooth.
						1	<u>H</u> elp	Solve Close

ock Portfolio A	Analysis							
					Proportion of			
	Stocks	Return	Variance	Std. Dev.	Amount Invested		proportion of money^2 * variance	
1	Altaxam	0.08	0.009	0.09486833	0.360	x1	0.00116866	
2	Bestco	0.09	0.015	0.122474487	0.272	x2	0.001112203	
3	Com.com	0.16	0.04	0.2	0.315	х3	0.003958246	
4	Delphi	0.12	0.023	0.151657509	0.053	x4	6.407E-05	
	Covariance Set	Covariance		Covariance Sums				
	1,2	0.4		0.000456033			proportion of money * return	
	1,3	0.3		0.000645233			0.028827882	
	1,4	0.6		0.000164181			0.024506933	
	2,3	0.2		0.000419637			0.050331673	
	2,4	0.7		0.00018686			0.006333512	
	3,4	0.4		0.000201437				
				0.004146761				
OBJECTIVE	FUNCTION	0.01044994						
CONSTRAIL	NTS							
	1.00	=	1.0		All money must be	invested		
	0.11	≥	0.11		Minimum return ac	cepted		