Suites 1 : exercices

Exercice 1 Soit a un entier naturel. On définit la suite (u_n) par :

$$\begin{cases} u_0 = a \\ u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right) \end{cases}$$

- 1. Quelle est le mode de génération de cette suite?
- **2.** Écrire une fonction en Python qui calcule les termes de cette suite, n et a étant choisis par l'utilisateur.
- **3.** Que remarque-t-on quand on pour a = 2 et n = 10 puis a = 5 et n = 20? Conjectuer quant à la limite de cette suite pour a > 0.

Exercice 2 On appelle suite de Syracuse une suite (u_n) d'entiers naturels définie de la façon suivante :

 u_0 un entier naturel non nul que l'on choisit

$$\begin{cases} u_{n+1} = \frac{u_n}{2} & si \ u_n \ pair \\ u_{n+1} = 3u_n + 1 & si \ u_n \ impair \end{cases}$$

- 1. Quelle est le mode de génération de cette suite?
- **2.** Écrire une fonction en Python qui calcule les termes de cette suite, n et a étant choisis par l'utilisateur.
- **3.** Que remarque-t-on pour $u_0 = 1$, $u_0 = 10$ et $u_0 = 20$ pour n assez grand?

Exercice 3 1. Écrire une fonction en Python qui calcule les termes de la suite de Fibonacci.

2. A l'aide de la caculatrice, déterminer au bout de combien de mois u_n dépassera 1000.

Exercice 4 On considère la suite (u_n) définie, pour tout entier naturel n, par :

$$u_n = \frac{n+1}{n+2}$$

- 1. Quel est le mode de génération de la suite?
- 2. Calculer son terme initial.
- **3.** Calculer u_1 et u_2 .
- 4. Quelle est la monotonie de cette suite?
- 5. Conjecturer quant à la limite de cette suite.

Exercice 5 *Soient les suites* u_n *et* v_n *définies sur* \mathbb{N} *par :*

$$u_n = 3n^2 - n + 2$$

$$\begin{cases} v_0 = 1 \\ v_{n+1} = 2v_n - 3n \end{cases}$$

1. Exprimer en fonction de n:

$$un+1$$

$$u_n+1$$

$$u_{n-1}$$

$$u_{2n}$$

$$u_{3n-1}$$

1**G**

- **2.** Exprimer v_n en fonction de v_{n-1} et n.
- **3.** Exprimer v_{n+2} en fonction de v_{n+1} et n

Exercice 6 1. En étudiant les variations d'une fonction que l'on précisera, étudier le sens de variation des suites suivantes :

$$u_n = -n^2 + 10n + 1$$
 $v_n = \frac{2}{n} \quad (n \ge 1)$

Conjecturer quant à la limite de ces suites.

2. Peut-on exploiter cette méthode avec la suite suivante :

$$\begin{cases} z_0 = 4 \\ z_{n+1} = z_n + 9 - n^2 \end{cases}$$
?

Expliquer pourquoi et étudier les variations de cette suite.

Exercice 7 *On considère la suite u définie sur* \mathbb{N} *par* :

$$u_n = \frac{1.5^n}{n+1}$$

- **1.** A l'aide de la calculatrice, conjecturer le sens de variation ainsi que la limite de cette suite.
- **2.** A près avoir justifié que la suite u est strictement positive, montrer que, pour $n \in \mathbb{N}$:

$$\frac{u_{n+1}}{u_n} = \frac{3n+3}{2n+4}$$

3. Résoudre sur \mathbb{N} l'inéquation :

$$\frac{3n+3}{2n+4} \ge 1$$

Valider ou invalider alors la conjecture émise quant à la variation de la suite.

Exercice 8 Pour chacune des suites définies ci-dessous :

$$\begin{cases} u_0 = 1 \\ u_1 = \sqrt{2+1} \\ u_2 = \sqrt{2+\sqrt{2+1}} \\ u_n = \sqrt{2+\sqrt{2+...\sqrt{2+1}}} \end{cases} \qquad \begin{cases} u_0 = 1 \\ u_1 = \frac{1}{2+1} \\ u_2 = \frac{1}{2+\frac{1}{2+1}} \\ u_n = \frac{1}{2+\frac{1}{2+1}} \end{cases}$$

- **1.** Déterminer une fonction f telle que, pour tout entier $n \in \mathbb{N}$, on ait $u_{n+1} = f(u_n)$.
- 2. Conjecturer du comportement à l'infini de la suite.