实验 5-3 报告

2016K8009909006 刘杰

一、实验任务(10%)

使用已实现的类 sram 接口到 AXI 接口的转接桥,为 myCPU 添加 AXI 接口,并运行功能测试通过,上板时要求"随意切换拨码开关按复位",CPU 均通过 94 个功能点的测试。

二、实验设计(30%)

已实现的 CPU 访存接口是 SRAM 接口,如果想要复用 AXI 接口转接桥,首先要将 SRAM 接口改为类 SRAM 接口。以数据端为例,

将 CPU 接口修改后,就可以访问 AXI 接口的存储设备。由于 AXI 接口的存储设备接受访问地址,返回访问数据的延迟不定。所以在取指请求发出后,需要阻塞取指级直到 inst_data_ok 拉高,同理在读数据和写数据请求发出后,需要阻塞取指级到访存级的流水线直到 data_data_ok 拉高。此外,在取指请求发出后,在 AXI 接口接受请求前需保持请求不变,只有当 inst addr ok 或者 data addr ok 拉高时,AXI 才成功接受请求。

由于上次 AXI 转接桥设计时,同一时间只能处理一个事务,也就是不能同时使用读写通道。所以 CPU 的效率明显偏低。正在考虑通过把状态机分拆成 2 个,分别表示读写通道的状态来实现同时处理读写事务。

三、实验过程(60%)

(一) 实验流水账

2018.12.10 15:00-16:25 阅读讲义完成代码编写

2018.12.10 16:40-17:30 仿真测试,读指令出错,debug中

2018 12.10 18:00-18:30 找出并修改前一个 bug 后仿真, lb 指令出错,继续 debug

2018.12.10 18:50-19:30 修改 bug,继续仿真,例外出错,debug

2018.12.10 19:30-20:25 修改 bug,继续仿真,仿真测试通过,上板出错,单色灯开始就全亮

2018.12.10 20:30-22:00 debug, 查找 vivado log, 改 warning, 多次测试失败

2018.12.10 22:10-23:00 阅读 piaaza 的提问,得到提示,找出问题后解决,上板通过

(二) 错误记录

1、错误1

(1) 错误现象

取指时取回的指令有误。

(2) 分析定位过程

对比 ref,发现相同 PC 时写回寄存器值以及写回目标寄存器不正确,根据经验,推测为取指错误,找到此时指令寄存器的值,与 test.s 进行比对,发现不匹配。

(3) 错误原因

因为使用 wire 型信号作为取指地址,发起指令请求后,在请求尚未被 AXI 通道接受前,取指的地址就发生改变,导致正确的地址没有接受到。

(4) 修正效果

在发起请求时,同时用一个寄存器存储请求的地址,以改寄存器作为请求地址输出给 AXI 接口。

(5) 归纳总结(可选)

在一个请求置起后,如果这个请求未被响应,就不能修改请求。

2、错误2

(1) 错误现象

LB指令存入的数据有误。

(2) 分析定位过程

根据控制台错误信息找出错误指令为LB,对比ref,仅写入寄存器的数据发生错误,而且仅一字节的数据不相同,推测控制写入字节的信号有问题,查看相应信号,发现正确的写选通信号要慢一拍。

(3) 错误原因

由于阻塞,读取数据返回时,相应的指令仍然在访存级,而不是之前实验中实现的写回级,但是此时控制信号却使用写回级信号,导致错误。

(4) 修正效果

把控制信号从写回级改为访存级,或者将读取的数据传入写回级。

3、错误3

(1) 错误现象

例外处理时,mfc0指令查看epc寄存器的值有误。

(2) 分析定位过程

根据控制台错误信息找出错误指令为 mfc0, 对比 ref, 发现写会寄存器的值比正确值大 0x4, 且此时读目标寄存器为 epc, 推测为例外指令在延迟槽, 但未成功标记。

(3) 错误原因

由于取指级可能发生阻塞,所以当延迟槽中指令返回时,译码级已经不是跳转指令,而我判断是否在例外是否在延迟槽是根据译码级是否为分支指令,所以发生错误。

(4) 修正效果

当指令到达译码级时,根据是否为分支指令,把取指级指令在延迟槽的信号寄存器拉高,然后随流水线传递下去即可。

4、错误4

(1) 错误现象

仿真测试通过, 但是上板复位后单色灯就全亮。

(2) 分析定位过程

根据 log 查找综合中的 warning,把能修改的更正后仿真通过,再次上板依旧失败。翻阅 piaaza 的提问,发现由同学提到上板和仿真时 AXI 返回数据的行为不一样,上板时只有 data ok 拉高时数据才有效,其他时候都为 0。

(3) 错误原因

由于 IR 寄存器更新不是在 $inst_data_ok$ 拉高后的第一个时钟上升沿,所以在上板时当 IR 更新时, $inst_rdata$ 已 经为 0。

(4) 修正效果

当 inst_data_ok 拉高时,用寄存器先暂存指令,IR 每次更新都把这个暂存指令的寄存器作为来源。重新测试,上板通过。

四、实验总结(可选)

这次总线实验结束,体系结构实验课也基本接近尾声,虽然做实验调 bug 有时候耗时间,很累,但是坚持下来发现这个学期的实验对个人能力的提升非常显著。在这里感谢老师的帮助和付出。