Теплопроводность и детерминированное горение

Групповой проект

Тагиев Б.А. Чекалова Л.Р. Сергеев Т.С. Саттарова В.В. Прокошев Н.Е. Тарусов А.С. 2023

Российский университет дружбы народов

Введение

Актуальность

- Повсеместное использование процессов горения
- Необходимость разработки правил противопожарной безопасности
- Необходимость минимизации ущерба, наносимого горением окружающей среде

Объект и предмет исследования

- Горение как сложный процесс
- Режимы горения
- Факторы, определяющие режим горения

Допустим, что скорость химической реакции будет расти при увеличении температуры. В такой системе допускается переход тепла из разогретой области в новые слои, тем самым ускоряя в них реакцию. Некоторые условия позволяют процессу распространяться неограниченно далеко.

В первом приближении для моделирования волны горения ограничимся системой с постоянными коеффициентами теплоемкости и теплопроводности. Будем моделировать химическую реакцию простейшим способом: вещество вида A переходит в B экзотермически. Воспользуемся законом Аррениуса для реакции первого пордка для скорости химической реакции:

$$\frac{\partial N}{\partial t} = -\frac{N}{\tau} e^{-E/RT}$$

В одномерном случае надо добавить еще уравнение теплопроводности с дополнительным членом, отвечающим за энерговыделение:

$$\rho c \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} - \rho Q \frac{\partial N}{\partial t}$$

В этой системе уравнений возможен режим в виде самостоятельно распространяющейся волны горения. На рисунке показан пример волны, распространяющейся вдоль X со скоростью $U\left(T_{0}$ - температура перед волной горения).

Рис. 1: Профили температуры и исходного компонента в стационарной волне горения

Система уравнений для безразмерных величин

Система уравнений для безразмерных величин

- Безразмерная температура $\tilde{T}=\frac{cT}{Q}$ Безразмерная энергия активации $\tilde{E}=\frac{cE}{RQ}$
- Уравнение теплопроводности $c \rho \frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} Q \rho \frac{\partial N}{\partial t}$
- Система уравнений для описания процесса: $\begin{cases} \frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} \frac{\partial N}{\partial t} \\ \frac{\partial N}{\partial x} = -\frac{N}{T}e^{-\frac{E}{T}} \end{cases}$
- $\chi = \frac{\kappa}{co}$ коэффициент температуропроводности

Примечание: знак \sim для безразмерных величин \tilde{T} и \tilde{E} в системе уравнений опущен

Различные режимы горения

Одномерный случай

Рис. 2: Режимы горения в одномерном случае

Одномерный случай

- $E < E_*$ стационарное горение
- $E < E_{*}$ пульсирующее горение

Теоретически можно показать, что при $T_0\ll 1$ критическое значение $E_*=6,56.$ При увеличении начальной температуры T_0 критическое значение E_* возрастает.

Двумерный случай

Для моделирования волны горения в двумерном случае в первое уравнение системы нужно добавить перенос тепла по второй координате $-\chi \frac{\partial^2 T}{\partial u^2}$.

$$\begin{cases} \frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} - \frac{\partial N}{\partial t} \\ \frac{\partial N}{\partial t} = -\frac{N}{\tau} e^{-\frac{E}{T}} \end{cases} \Rightarrow \begin{cases} \frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} + \chi \frac{\partial^2 T}{\partial y^2} - \frac{\partial N}{\partial t} \\ \frac{\partial N}{\partial t} = -\frac{N}{\tau} e^{-\frac{E}{T}} \end{cases}$$

Двумерный случай

Рис. 3: Режимы горения в двумерном случае

Двумерный случай

Область существования спинового режима – $E>E^{**}$

$$T_0 \ll 1 \Rightarrow E_{**} = 6,3$$

Видно, что $E^* > E^{**}$

Литература

- Медведев Д. А., Куперштох А. Л., Прууэл Э. Р., Сатонкина Н. П., Карпов Д. И. Моделирование физических процессов и явлений на ПК: Учеб. пособие / Новосибирск: Новосиб. гос. ун-т., 2010. / ISBN 978-5-94356-933-3
- Борисова О. А., Лидский Б. В. Устойчивость горения безгазовых систем по отношению к двумерным возмущениям // Химическая физика. 1986. Т. 5, № 6. С. 822–830.
- Максимов Ю. М., Мержанов А. Г. Режимы неустойчивого горения безгазовых систем // Физика горения и взрыва. 1979. Т. 5, № 6. С. 51–58.