G3 de Álgebra Linear I -2011.1 Gabarito

1) Seja $A:\mathbb{R}^3\to\mathbb{R}^3$ uma transformação linear cuja matriz na base canônica é

$$[A] = \begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{pmatrix}.$$

- (a) Determine todos os autovalores de A.
- (b) Determine, se possível, uma forma diagonal de A.
- (c) Determine, se possível, uma base δ (escrita na base canônica) tal que a matriz $[A]_{\delta}$ de A na base δ seja

$$[A]_{\delta} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- (d) Determine, se possível, uma base γ de \mathbb{R}^3 formada por autovetores de A que **não** seja ortogonal.
- (e) Determine se [A] é semelhante a alguma (ou algumas, ou nenhuma, ou todas) das matrizes B, C, E a seguir

$$B = \begin{pmatrix} 6 & 1 & 0 \\ 0 & 6 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} 6 & 1 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Resposta:

(a) Para calcular os autovalores determinamos o polinômio característico de [A],

$$\begin{vmatrix} 4 - \lambda & -2 & -2 \\ -2 & 4 - \lambda & -2 \\ -2 & -2 & 4 - \lambda \end{vmatrix} = (4 - \lambda) \left((4 - \lambda)(4 - \lambda) - 4 \right)$$

$$+ 2 \left(-8 + 2\lambda - 4 \right) - 2 \left(4 + 8 - 2\lambda \right) =$$

$$= (4 - \lambda) \left(16 - 8\lambda + \lambda^2 - 4 \right) + 8\lambda - 48 =$$

$$= (4 - \lambda) \left(12 - 8\lambda + \lambda^2 \right) + 8\lambda - 48 =$$

$$= 48 - 32\lambda + 4\lambda^2 - 12\lambda + 8\lambda^2 - \lambda^3 + 8\lambda - 48 =$$

$$= -\lambda^3 + 12\lambda^2 - 36\lambda = -\lambda \left(\lambda^2 - 12\lambda + 36 \right) =$$

$$= -\lambda \left(\lambda - 6 \right)^2.$$

Portanto temos $\lambda = 0$ e $\lambda = 6$ (duplo).

(b) Estudaremos se A é diagonalizável. Para isso veremos os autovetores associados aos autovalores de A. Os autovetores associados a 6 são obtidos resolvendo o sistema

$$\begin{pmatrix} 4-6 & -2 & -2 \\ -2 & 4-6 & -2 \\ -2 & -2 & 4-6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

isto é

$$-2x - 2y - 2z = 0$$
, $x + y + z = 0$.

Portanto, os autovetores associados a 6 são os vetores não nulos do plano x + y + z = 0. Temos assim dois autovetores linearmente independentes. Acrescentando um autovetor associado a 0 obteremos uma base formada por autovetores de A. Portanto, A é diagonalizável.

As formas diagonais são

$$\begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

(c) Seja $\delta = \{v_1, v_2, v_3\}$. Temos que

$$A(v_1) = 6v_1, \quad A(v_2) = v_2 + v_3, \quad A(v_3) = \bar{0}.$$

Portanto, v_1 e v_3 são autovetores de A associados a 6 e 0, respectivamente. Escolhemos $v_1 = (1, -1, 0)$ (veja o item anterior) e determinamos um autovetor associado a 0,

$$\begin{pmatrix} 4-0 & -2 & -2 \\ -2 & 4-0 & -2 \\ -2 & -2 & 4-0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

isto é

$$4x - 2y - 2z = 0$$
, $-2x + 4y - 2z = 0$,

note que a terceira equação é combinação linear destas duas equações. Considerando a primeira equação menos a segunda temos 6x - 6y = 0, y = x. Também temos x = z. Assim podemos escolher $v_3 = (1, 1, 1)$.

Escrevemos $v_2 = (x, y, z)$ e temos

$$\begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 6 \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Multiplicando obtemos

$$-2x - 2y - 2z = 1.$$

Uma solução é $v_2=(-1/2,0,0)$. Portanto, uma possível base (existem infinitas) é

$$\delta = \{(1, -1, 0), (-1/2, 0, 0), (1, 1, 1)\}$$

(d) É suficiente considerar o vetor (1,1,1) (autovetor associado a 0) e dois vetores não nulos do plano x+y+z=0 não ortogonais entre si. Por exemplo,

$$\gamma = \{(1,-1,0), (1,0,-1), (1,1,1)\}.$$

(e) Observe que matrizes semelhantes têm o mesmo traço e que o traço de [A] é 12. Como o traço de E é 11, temos [A] não é semelhante a E.

Observe que matrizes semelhantes têm os mesmos autovalores e que os autovalores de [A] são 6,6,0. Como os autovalores de C são 6,5,1, temos que [A] não é semelhante a C.

As matrizes [A] e B têm os mesmos autovalores com as mesmas multiplicidades. Como [A] é diagonalizável, se B for semelhante a [A] também deverá

ser diagonalizável. Vejamos se B é diagonalizável. Para isso calculamos os autovetores de B associados a 6,

$$\begin{pmatrix} 6-6 & 1 & 0 \\ 0 & 6-6 & 0 \\ 0 & 1 & 0-6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Obtemos y=0 e z=0. Portanto, somente é possível achar um autovetor associado a 6 e a matriz B não é diagonalizável. Portanto, [A] e B não são semelhantes.

2) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear. Sabendo que

$$T(1,-1,1) = (0,0,0)$$

e que T(v) = 2v caso v pertença ao plano x + y + z = 0.

(a) Seja $[T]_{\mathcal{E}}$ a matriz de T na base canônica. Determine **explicitamente** matrizes P e D, onde D é diagonal, tais que

$$[T]_{\mathcal{E}} = P D P^{-1}.$$

- **(b)** Calcule o traço de $[T^3]_{\mathcal{E}}$.
- (c) Suponha que as matrizes A e B são diagonalizáveis e que possuem a mesma base de autovetores. Decida se AB = BA.

Resposta:

a) Observe que (1, -1, 1) é um autovetor associado a 0 e que os vetores (não nulos) do plano x + y + z = 0 são autovetores associados ao autovalor 2. Portanto podemos escolher (1, -1, 0) e (1, 0, -1). Assim obtemos

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$

b) Para calcular o traço de $[T]^3$ observamos que

$$[T]^{3} = P D^{3} P^{-1} = P \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{3} P^{-1} = P \begin{pmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}.$$

Observe que $[T]^3$ e D^3 tem o mesmo traço (são semelhantes). Portanto, o traço de $[T]^3=16$.

c) Seja P uma matriz cujas colunas formam uma base de autovetores comuns de A e B. Sejam D_A e D_B formas diagonais de A e B. Observe que matrizes diagonas verificam

$$D_A D_B = D_B D_A = D.$$

Observe que, por definição de P, D_A e D_B , temos que

$$A = P D_A P^{-1}$$
 e $B = P D_B P^{-1}$

Temos

$$AB = P D_A P^{-1} P D_B P^{-1} = P D_A D_B P^{-1} = P D P^{-1}.$$

Também se verifica,

$$BA = PD_BP^{-1}PD_AP^{-1} = PD_BD_AP^{-1} = PDP^{-1}.$$

Logo AB = BA.

- 3) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear não nula (isto é, existe algum vetor \bar{v} tal que $T(\bar{v}) \neq \bar{0}$). Sabendo que
 - a matriz [T] de T na base canônica possui traço e determinante iguais a zero,
 - $T^3 = T$ e
 - \bullet $[T]=Q\,D\,Q^{-1},$ onde D é uma matriz diagonal e Q é uma matriz ortogonal da forma

$$Q = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & x \\ 0 & 1/\sqrt{3} & y \\ 1/\sqrt{2} & 1/\sqrt{3} & z \end{pmatrix}$$

cujo determinante é igual a 1.

Responda:

- a) Determine todos os possíveis valores (x, y, z).
- b) Determine uma matriz 3×3 diagonal E que não é nula, possui traço e determinante iguais a zero e verifica $E^3 = E$.
- c) Determine os autovalores da matriz [T].
- d) Determine **explicitamente** uma matriz $[T]^2$ que verifique as condições do enunciado.
- e) Calcule a primeira coluna da matriz $[T]^{500}$.

Resposta:

a) Como a matriz é ortogonal temos que (x, y, z) é perpendicular aos vetores $(1/\sqrt{2}, 0, 1/\sqrt{2})$ e $(-1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$. Portanto é paralelo ao vetor

$$(1/\sqrt{2}, 0, 1/\sqrt{2}) \times (-1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) = \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} =$$

$$= \left(\frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right).$$

Observe que este vetor é unitário por construção. Logo temos duas possibilidades:

$$(x, y, z) = \pm \left(\frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right).$$

Se escolhemos o sinal + temos que o determinante da matriz Q é

$$\det(Q) = \begin{vmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 1 & -1 & -1 \\ 0 & 1 & -2 \\ 1 & 1 & 1 \end{vmatrix} =$$

$$= \frac{1}{6} ((1+1) + 2(1+1)) = 1.$$

$$(x, y, z) = \left(\frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right).$$

De fato, v. não necessita calcular o determinante. Escreva v_1 , v_2 e v_3 os vetores coluna. Pela definição de v_3 , $v_1 \times v_2 = v_3$. Também temos que o determinante da matriz anterior é

$$v_1 \cdot (v_2 \times v_3) = -v_3 \cdot (v_2 \times v_1) = v_3 \cdot (v_1 \times v_2) = v_3 \cdot v_3 = |v_3|^2 = 1.$$

b) Como o determinante é o produto dos autovalores (contados com multiplicidade) um autovalor de E é necessariamente zero. Sejam λ_1 e λ_2 os outros autovalores. Como o traço é a soma dos autovalores (contados com multiplicidade) temos

$$0 + \lambda_1 + \lambda_2 = 0, \qquad \lambda_1 = -\lambda_2.$$

Portanto temos

$$E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda \end{pmatrix},$$

onde $\lambda > 0$.

Por hipótese temos

$$E^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda \end{pmatrix}^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda^{3} & 0 \\ 0 & 0 & (-\lambda)^{3} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda \end{pmatrix}.$$

Portanto, $\lambda^3 = 1$ e assim $\lambda = 1$. Logo

$$E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

ou igual a uma matriz com a diagonal permutada.

c) Como D é semelhante a matriz T ela verifica as condições do item (b). Podemos também pode repetir os argumentos. Como o determinante é o produto dos autovalores (contados com multiplicidade) um autovalor é necessariamente zero. Sejam λ_1 e λ_2 os outros autovalores. Como o traço é a soma dos autovalores (contados com multiplicidade) temos

$$0 + \lambda_1 + \lambda_2 = 0, \qquad \lambda_1 = -\lambda_2.$$

Observe que esta última igualdade implica que λ_1 e λ_2 são reais. Observe que como T não é a transformação linear nula estes autovalores são não nulos.

Para determinar λ_1 consideramos um autovetor v_1 de λ_1 . Como $T^3 = T$ temos que

$$T^{3}(v_{1}) = \lambda_{1} T^{2}(v_{1}) = \lambda_{1}^{2} T(v_{1}) = \lambda_{1}^{3} v_{1} = T(v_{1}) = \lambda_{1} v_{1}.$$

Portanto, (como $\lambda_1 \neq 0$) temos $\lambda_1^2 = 1$, $\lambda_1 = \pm 1$. Assim os autovalores de T são 0, 1, -1.

d) A matriz D é uma matriz diagonal semelhante a T. Portanto, possui os mesmos autovalores de T. Portanto, há seis possibilidades para D. Escrevemos abaixo as seis possíveis matrizes D:

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & +1 \end{pmatrix}, \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & +1 \end{pmatrix}, \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & +1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Portanto, temos três possibilidades para D^2 .

$$D^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Temos

$$T^2 = Q D Q^{-1} Q D Q^{-1} = Q D D Q^{-1} = Q D^2 Q^{-1}.$$

Portanto,

$$T^{2} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$

$$= \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix} = \begin{pmatrix} 1/3 + 1/6 & -1/3 + 2/6 & -1/3 - 1/6 \\ -1/3 + 2/6 & 1/3 + 4/6 & 1/3 - 2/6 \\ -1/3 - 1/6 & 1/3 - 2/6 & 1/3 + 1/6 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix}.$$

Observe que este resultado é compatível com o fato de T^2 ter traço $0+(-1)^2+(1)^2=2$ e determinante nulo.

As outras possibilidades para $[T]^2$ são

$$T^{2} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$
$$= \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 0 & 0 \\ -1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$
$$= \begin{pmatrix} 1/2 + 1/6 & 2/6 & 1/2 - 1/6 \\ 2/6 & 4/6 & -2/6 \\ 1/2 - 1/6 & -2/6 & 1/2 + 1/6 \end{pmatrix} = \begin{pmatrix} 2/3 & 1/3 & 1/3 \\ 1/3 & 2/3 & -1/3 \\ 1/3 & -1/3 & 2/3 \end{pmatrix}$$

$$T^{2} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$

$$= \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 + 1/3 & -1/3 & 1/2 - 1/3 \\ -1/3 & 1/3 & 1/3 \\ 1/2 - 1/3 & 1/3 & 1/2 + 1/3 \end{pmatrix} = \begin{pmatrix} 5/6 & -1/3 & 1/6 \\ -1/3 & 1/3 & 1/3 \\ 1/6 & 1/3 & 5/6 \end{pmatrix}$$

e) É suficiente observar que se verifica

$$T^{500} = Q D Q^{-1} Q D Q^{-1} \cdots Q D Q^{-1} = Q D^{500} Q^{-1}$$

e que $D^2 = D^{500}$. De fato $D^{2n+1} = D$ e $D^{2n} = D^2$. Portanto, $T^{500} = T^2$.