Экономическая часть

Выполнил: Выборнов А.И.

Группа: ИУ9-121 Проверила:

Организация и планирование процесса разработки программного продукта

Разработка программного обеспечения - достаточно трудоемкий и длительный процесс, требующий выполнения большого числа разнообразных операций.

Организация и планирование процесса разработки программного продукта или программного комплекса при традиционном методе планирования предусматривает выполнение следующих работ:

- формирование состава выполняемых работ и группировка их по стадиям разработки;
- расчет трудоемкости выполнения работ;
- установление профессионального состава и расчет количества исполнителей;
- определение продолжительности выполнения отдельных этапов разработки;
- построение календарного графика выполнения разработки;
- контроль выполнения календарного графика.

Далее приведен перечень и состав работ при разработке программного средства для автоматического установления связей между сообщениями твиттера и новостными статьями. Отметим, что процесс разработки программного продукта характеризуется совместной работой разработчиков постановки задач и разработчиков программного обеспечения.

Таблица 1. Укрупненный состав работ по стадиям разработки программного продукта

Стадия	Состав выполняемых работ
разработки	
программного	
продукта	
1	2
Техническое	Постановка задач, выбор критериев эффективности. Разработка
	технико-экономического обоснования разработки. Определение
задание	состава пакета прикладных программ, состава и структуры
	информационной базы. Выбор языков программирования.
	Предварительный выбор методов выполнения работы. Разработка
	календарного плана выполнения работ.
Эскизный	Предварительная разработка структуры входных и выходных
проект	данных. Разработка общего описания алгоритмов реализации
Inpocini	решения задач. Разработка пояснительной записки. Консультации
	разработчиков постановки задач. Согласование и утверждение
	эскизного проекта.
Технический	Разработка алгоритмов решения задач. Разработка пояснительной
проект	записки. Согласование и утверждение технического проекта.
	Разработка структуры программы. Разработка программной
	документации и передача ее для включения в технический проект.
	Уточнение структуры, анализ и определение формы представления
	входных и выходных данных. Выбор конфигурации технических
	средств.
Рабочий проект	Комплексная отладка задач и сдача в опытную эксплуатацию.
	Разработка проектной документации. Программирование и отладка
	программ. Описание контрольного примера. Разработка
	программной документации. Разработка, согласование программы и
	методики испытаний. Предварительное проведение всех видов
Виодрогии	ИСПЫТАНИЙ.
Внедрение	Подготовка и передача программной документации для
	сопровождения с оформлением соответствующего Акта. Передача программной продукции в фонд алгоритмов и программ. Проверка
	алгоритмов и программ решения задач, корректировка документации после опытной эксплуатации программного продукта.
	документации после опытнои эксплуатации программного продукта.

Трудоемкость разработки программной продукции зависит от ряда факторов, основными из которых являются следующие: степень новизны разрабатываемого программного комплекса, сложность алгоритма его функционирования, объем используемой информации, вид ее представления и способ обработки, а также уровень

используемого алгоритмического языка программирования. Чем выше уровень языка, тем трудоемкость меньше.

По **степени новизны** разрабатываемый проект относится к **группе новизны А** – разработка программных комплексов, требующих использования принципиально новых методов их создания, проведения НИР и т.п.

По **степени сложности алгоритма функционирования** проект относится к 2 **группе сложности** - программная продукция, реализующая учетно-статистические алгоритмы.

По виду представления исходной информации и способа ее контроля программный продукт относится к группе 12 - исходная информация представлена в форме документов, имеющих различный формат и структуру и группе 22 - требуется печать документов одинаковой формы и содержания, вывод массивов данных на машинные носители.

1 Трудоемкость разработки программной продукции

 au_{PP} может быть определена как сумма величин трудоемкости выполнения отдельных стадий разработки программного продукта из выражения:

$$au_{PP} = au_{TZ} + au_{EP} + au_{TP} + au_{RP} + au_{V}$$
 , где

 au_{TZ} - трудоемкость разработки технического задания на создание программного продукта;

 $au_{{}_{FP}}$ - трудоемкость разработки эскизного проекта программного продукта;

 au_{TP} - трудоемкость разработки технического проекта программного продукта;

 au_{RP} - трудоемкость разработки рабочего проекта программного продукта;

1.1 Трудоемкость разработки технического задания

$$\tau_{TZ} = T_{RZ}^{Z} + T_{RP}^{Z}$$

 T_{RZ}^{Z} – затраты времени разработчика постановки задачи на разработку Т3, [чел.-дни];

 $T_{RP}{}^{Z}$ — затраты времени разработчика программного обеспечения на разработку Т3, [чел.-дни].

Их значения рассчитываются по формулам:

$$T_{RZ}^{Z} = t_Z \cdot K_{RZ}^{Z}$$

$$T_{RP}^{Z} = t_Z \cdot K_{RP}^{Z}$$

 t_Z - норма времени на разработку Т3 на программный продукт (зависит от функционального назначения и степени новизны разрабатываемого программного продукта). В нашем случае по таблице получаем значение (группа новизны — A, функциональное назначение — технико-экономическое планирование):

$$t_Z$$
= 79 [чел.-дни]

 K_{RZ}^{Z} — коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком постановки задачи на стадии Т3. Принимаем:

$$K_{RZ}^{Z} = 0,65$$
 (совместная разработка с разработчиком ПО).

 K_{RP}^{Z} - коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком программного обеспечения на стадии Т3. Принимаем:

 $K_{RP}^{\ \ Z} = 0,35$ (совместная разработка с разработчиком постановки задач).

Тогда:

$$\tau_{TZ} = 79 \cdot (0,35 + 0,65) = 79 [чел.-дни]$$

1.2 Трудоемкость разработки эскизного проекта

 τ_{FP} рассчитывается по формуле:

$$\tau_{FP} = T_{RZ}^E + T_{RP}^E$$

 T_{RZ}^E — затраты времени разработчика постановки задачи на разработку эскизного проекта (ЭП), [чел.-дни];

 T_{RP}^{E} — затраты времени разработчика программного обеспечения на разработку ЭП, [чел.-дни].

Их значения рассчитываются по формулам:

$$T_{RZ}^{E} = t_E \cdot K_{RZ}^{E}$$

$$T_{RP}^{E} = t_F \cdot K_{RP}^{E}$$
.

 t_E - норма времени на разработку ЭП на программный продукт (зависит от функционального назначения и степени новизны разрабатываемого программного продукта). В нашем случае по таблице принимаем (группа новизны – A, функциональное назначение – технико-экономическое планирование):

$$t_E$$
= 175 [чел.-дни].

 K_{RZ}^{E} — коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком постановки задачи на стадии ЭП. Принимаем:

$$K_{RZ}^{E} = 0.7$$
 (совместная разработка с разработчиком ΠO).

 K_{RP}^{E} - коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком программного обеспечения на стадии ЭП. Принимаем:

 $K_{RP}^{E} = 0,3$ (совместная разработка с разработчиком постановки задач).

Тогда:

$$\tau_{EP} = 175 \cdot (0,3 + 0,7) = 175$$
 [чел.-дни]

1.3 Трудоемкость разработки технического проекта

 au_{TP} зависит от функционального назначения программного продукта, количества разновидностей форм входной и выходной информации и определяется по формуле:

$$\tau_{TP} = (t_{RZ}^T + t_{RP}^T) \cdot K_V \cdot K_R$$

 t_{RZ}^{T} - норма времени, затрачиваемого на разработку технического проекта (ТП) разработчиком постановки задач;

 $t_{\scriptscriptstyle RP}^{\scriptscriptstyle T}$ - норма времени, затрачиваемого на разработку ТП разработчиком ПО.

По таблице принимаем (функциональное назначение — технико-экономическое планирование, количество разновидностей форм входной информации — 2 (твиты, новости), количество разновидностей форм выходной информации — 2 (набор связей твитновости, оценка работы рекомендательной системы)):

$$t_{RZ}^{T} = 52$$
 [чел.-дни]

$$t_{RP}^{T} = 14 [$$
чел.-дни $]$

 K_R - коэффициент учета режима обработки информации. По таблице принимаем значение (группа новизны – A, режим обработки информации – реальный масштаб времени):

$$K_R = 1,67$$

 $K_{\scriptscriptstyle V}\,$ - коэффициент учета вида используемой информации, определяется по формуле:

$$K_V = \frac{K_P \cdot n_P + K_{NS} \cdot n_{NS} + K_B \cdot n_B}{n_P + n_{NS} + n_B}$$
, где

 K_P – коэффициент учета вида используемой информации для переменной информации;

 K_{NS} - коэффициент учета вида используемой информации для нормативно-справочной информации;

 $K_{\rm B}$ - коэффициент учета вида используемой информации для баз данных.

По таблице принимаем (группа новизны - А):

$$K_P = 1,70$$

$$K_{NS} = 1,45$$

$$K_{\rm B} = 4.37$$

 n_P – количество наборов данных переменной информации;

 n_{NS} - количество наборов данных нормативно-справочной информации;

 n_B - количество баз данных.

В нашем случае:

$$n_P = 3$$

$$n_{NS}=0$$

$$n_B = 1$$

Находим значение K_{V} :

$$K_V = \frac{1,70.3+1,45.0+4,37.1}{3+0+1} = 2,3675$$

Тогда:

$$\tau_{TP} = (52 + 14) \cdot 2,3675 \cdot 1,67 = 261$$
 [чел.-дни]

1.4 Трудоемкость разработки рабочего проекта

 au_{RP} зависит от функционального назначения программного продукта, количества разновидностей форм входной и выходной информации, сложности алгоритма функционирования, сложности контроля информации, степени использования готовых программных модулей, уровня алгоритмического языка программирования и определяется по формуле:

$$\tau_{RP} = K_K \cdot K_R \cdot K_Y \cdot K_Z \cdot K_{IA} \cdot (t_{RZ}^R + t_{RP}^R)$$

 K_K - коэффициент учета сложности контроля информации. По таблице принимаем (степень сложности контроля входной информации – 12, степень сложности контроля выходной информации - 22):

$$K_K = 1,00.$$

 K_R - коэффициент учета режима обработки информации. По таблице принимаем значение (группа новизны — A, режим обработки информации — реальный масштаб времени):

$$K_{\rm p} = 1.75$$
.

 K_{Y} - коэффициент учета уровня используемого алгоритмического языка программирования. По таблице принимаем значение (интерпретаторы, языковые описатели):

$$K_{v} = 0.8.$$

 K_Z - коэффициент учета степени использования готовых программных модулей. По таблице принимаем (использование готовых программных модулей составляет около 30%):

$$K_z = 0.7.$$

 $K_{I\!A}$ - коэффициент учета вида используемой информации и сложности алгоритма программного продукта, его значение определяется по формуле:

$$K_{IA} = \frac{K_{P}' \cdot n_{P} + K_{NS}' \cdot n_{NS} + K_{B}' \cdot n_{B}}{n_{P} + n_{NS} + n_{B}}$$

 K_P ' – коэффициент учета сложности алгоритма ПП и вида используемой информации для переменной информации;

 K_{NS} ' - коэффициент учета сложности алгоритма ПП и вида используемой информации для нормативно-справочной информации;

 $K_{\rm B}$ ' - коэффициент учета сложности алгоритма ПП и вида используемой информации для баз данных.

По таблице принимаем (сложность алгоритма $\Pi\Pi - 2$, группа новизны - A):

$$K_{P}$$
' = 2,02
 K_{NS} ' = 1,21
 K_{B} ' = 1,05
 n_{P} = 3
 n_{NS} = 0
 n_{B} = 1
 K_{IA} = $\frac{2,02 \cdot 3 + 1,21 \cdot 0 + 1,05 \cdot 1}{3 + 0 + 1}$ = 1,7775

 t_{RZ}^R - норма времени, затраченного на разработку рабочего проекта на алгоритмическом языке высокого уровня разработчиком постановки задач. По таблице выбираем (функциональное назначение — технико-экономическое планирование, количество

разновидностей форм входной информации -2, количество разновидностей форм выходной информации -2):

$$t_{RZ}^{\,R}$$
 = 15 [чел.-дни]

 t_{RP}^R - норма времени, затраченного на разработку рабочего проекта на алгоритмическом языке высокого уровня разработчиком ПО. По таблице выбираем (функциональное назначение — технико-экономическое планирование, количество разновидностей форм входной информации — 2, количество разновидностей форм выходной информации — 2):

$$t_{RP}^R=91\ [\text{чел.-дни}]$$

$$\tau_{RP}=1{,}00{\cdot}1{,}75{\cdot}0{,}8{\cdot}0{,}7{\cdot}1{,}\ 7775{\cdot}(15{+}91)=185\ [\text{чел.-дни}]$$

1.5 Трудоемкость выполнения стадии "Внедрение"

Рассчитывается по формуле:

 t_{RZ}^{V} - норма времени, затрачиваемого разработчиком постановки задач на выполнение процедур внедрения программного продукта.

 t_{RP}^{V} - норма времени, затрачиваемого разработчиком программного обеспечения на выполнение процедур внедрения программного продукта.

По таблице выбираем значения (функциональное назначение — технико-экономическое планирование, количество разновидностей форм входной информации — 2, количество разновидностей форм выходной информации — 2):

$$t_{RZ}^{V}$$
 = 17 [чел.-дни]

$$t_{RP}^{V}$$
 = 19 [чел.-дни]

Коэффициенты K_K , K_Z были найдены выше:

$$K_{K} = 1,00$$

$$K_Z = 0.7$$

 K_R - коэффициент учета режима обработки информации. По таблице принимаем значение (группа новизны — A, режим обработки информации — реальный масштаб времени):

$$K_R = 1,60$$

$$au_{V}$$
 = (17 + 19) ·1,00 · 1,60 · 0,7 = 40 [чел.-дни]

Общая трудоемкость разработки ПП:

$$\tau_{pp} = 79 + 175 + 261 + 185 + 40 = 740$$
 [чел.-дни]

Посчитанную трудоёмкость обобщим в таблице 2.

Таблица 2. Укрупненный состав работ по стадиям разработки программного продукта.

Стадия	Название стадии разработки программного	Трудоёмкость [чел-дн.]
	продукта	
1	2	3

1	Техническое задание	79
2	Эскизный проект	175
3	Технический проект	261
4	Рабочий проект	185
5	Внедрение	40
Всего		740

2 Расчет количества исполнителей

Средняя численность исполнителей при реализации проекта разработки и внедрения ПО

определяется соотношением: $N=rac{Q_{_{p}}}{F}$, где:

 Q_p - затраты труда на выполнение проекта (разработка и внедрение ΠO),

F - фонд рабочего времени.

Величина фонда рабочего времени определяется соотношением:

$$F = T \cdot F_m$$
, где

Т - время выполнения проекта в месяцах. Т = 4 мес.;

 $F_{\rm M}$ - фонд времени в текущем месяце, который рассчитывается из учета общества числа дней в году, числа выходных и праздничных дней:

$$F_{_M} = \frac{t_{_p} \cdot \left(D_K - D_B - D_\Pi\right)}{12}$$
 , где

t_p - продолжительность рабочего дня;

 D_{K} - общее число дней в году;

D_в - число выходных дней в году;

 D_{Π} - число праздничных дней в году.

$$F_{M} = \frac{t_{p} \cdot \left(D_{K} - D_{B} - D_{\Pi}\right)}{12} = \frac{8 \cdot (365 - 103 - 13)}{12} = 166$$

$$F = T * Fm = 4 * 166 = 664 Qp = 8 * 740 = 5920$$

 $N = \frac{Q_p}{F} = \frac{5920}{664} = 9$ - число исполнителей проекта.

3 Ленточный график выполнения работ

Планирование и контроль хода выполнения разработки проводится по ленточному графику выполнения работ. По данным в таблице 1 в ленточный график (таблицу 3), в ячейки столбца "продолжительности рабочих дней" заносятся времена, которые требуются на выполнение соответствующего этапа.

Для реализации проекта потребуются 3 **старших инженера и 6 простых инженеров**. Для упрощения расчётов и видов графиков предполагаем, что 3 старших инженера, как и 6

инженеров всегда работаю одновременно, поэтому мы можем рассматривать эти группы специалистов вместе.

Ленточный график выполнения работ представлен в таблице 3.

Таблица 3. Ленточный график выполнения работ.

		·					_			- T			_		Juou 1.
Этапы	Трудозатраты	Исполнители (количество)													
1	79	Старший инженер (3)	30	30	19										
		Инженер (6)													
2	175	Старший инженер (3)			11	30	30	20							
		Инженер (6)			10	26	26	22							
3	261	Старший инженер (3)						8	15	15	15				
		Инженер (6)						28	60	60	60				
4	185	Старший инженер (3)										13	13	6	
		Инженер (6)										60	60	33	
5	40	Старший инженер (3)												5	3
		Инженер (6)												27	5
Время			10	20	30	40	20	09	70	80	06	100	110	120	130
(Дни)															

Из ленточного графика получаем, что срок разработки составит 121 рабочий день. Если исходить из того, что в месяце 22 рабочих дня, то разработка займёт 5,5 месяцев.

4 Определение цены программной продукции

Затраты на выполнение проекта состоят из затрат на заработную плату исполнителям, затрат на закупку или аренду оборудования, затрат на организацию рабочих мест, и затрат на накладные расходы.

В таблице 4 приведены затраты на заработную плату и отчисления на социальное страхование в пенсионный фонд, фонд занятости и фонд обязательного медицинского страхования (30 %). Для старшего инженера предполагается оклад в размере 120000 рублей в месяц (5454 рубля в день), для инженера предполагается оклад в размере 100000 рублей в месяц (4545 рублей в день).

Затраты на зарплату и отчисления на социальное страхование.

Должность	Всего рабочих дней	Суммарная зарплата	ECH
Старший инженер	263	1434402	430320.6
Инженер	477	2167965	650389.5
Итого	740	3602367+1080710.1=	4683077.1

Расходы на материалы, необходимые для разработки программной продукции, указаны в таблице.

Таблица 5. Затраты на материалы.

No	Наименование	Единица	Кол-во	Цена за	Сумма, руб.		
	материала	измерения		единицу, руб.			
1	Бумага А4	Пачка 400 л.	2	200	400		
2	Картридж для принтера	Шт.	3	450	1350		
	HP P10025						
Bcei	Всего						

В работе над проектом используется специальное оборудование – персональные электронно-вычислительные машины (ПЭВМ) в количестве 9 шт. Стоимость одной ПЭВМ составляет 90000 рублей. Месячная норма амортизации K = 2,7%.

$$K_a = \frac{1}{n} * 100\% = \frac{1}{36} * 100\%$$

Тогда за 5.5 месяцев работы расходы на амортизацию составят 8100 рублей.

R = 90000 * 9 * 0.027 * 5.5 = 120285.0 рублей.

Общие затраты на разработку программного продукта (ПП) составят

5 Расчет стоимости программного продукта

С - затраты на разработку программной продукции

 $\Pi_{\rm p}$ - желаемая прибыль

$$\Pi_{p} = \frac{(C - C_{_{M}})p_{_{H}}}{100\%}$$
, где

 $C_{_{\rm M}}$ - материальные затраты, руб./изд

 $\mathbf{p}_{\scriptscriptstyle\mathrm{M}}$ - норматив рентабельности, принимаемый разработчиком

Получаем стоимость программного продукта:

$$LI = 4805112.1 + (4805112.1 - 120285 - 1750) * 0.25 = 5975881.375 py6.$$

6 Заключение

В рамках организационно-экономической части был спланирован график проведения работ по созданию подсистемы поддержки проведения диагностики промышленных, а

также были проведены расчеты по трудозатратам. Были исследованы и рассчитаны следующие статьи затрат: материальные затраты; основная заработная плата исполнителей; отчисления на социальное страхование; амортизационные отчисления; накладные расходы.

В результате расчетов было получено общее время выполнения проекта, которое составило 121 день, получены данные по суммарным затратам на создание проекта, которые составили 5975881.375 руб.

Литература

- 1. Арсеньев В.В., Сажин Ю.Б. Методические указания к выполнению организационноэкономической части дипломных проектов по созданию программной продукции. М.: изд. МГТУ им. Баумана, 1994. 52 с.
- 2. Под ред. Смирнова С.В. Организационно-экономическая часть дипломных проектов исследовательского профиля. М.: изд. МГТУ им. Баумана, 1995. 100 с.
- 3. ГОСТ 34.601 "АС. Стадии создания".