Where It Comes From (The Math)

This comes from the Taylor Series expansion used in numerical methods:

1. Expand T_{i+1} and T_{i-1} about T_i :

$$T_{i+1} = T_i + \Delta t \cdot rac{dT}{dt} + rac{(\Delta t)^2}{2} \cdot rac{d^2T}{dt^2} + \ldots$$

$$T_{i-1} = T_i - \Delta t \cdot rac{dT}{dt} + rac{(\Delta t)^2}{2} \cdot rac{d^2T}{dt^2} + \ldots$$

2. Add both expansions:

$$T_{i+1}+T_{i-1}=2T_i+(\Delta t)^2\cdotrac{d^2T}{dt^2}+\ldots$$

3. Rearranged:

$$rac{T_{i+1}-2T_i+T_{i-1}}{(\Delta t)^2}pproxrac{d^2T}{dt^2}$$

This is the basis for your second derivative approximation.

What It Tells You

Δ²T Value	Meaning
≈ 0	Smooth change
Positive & large	Spike or rapid rise
Negative & large	Drop or power-down
Alternating +/-	Jittery/unstable signal or sensor fault

③ What Are ΔUpper and ΔLower?

From your rolling window:

- $\bar{T}(t)$ = Rolling mean
- $T_{\rm max}, T_{\rm min}$ = Max and min in the same window

We define:

$$\Delta_{ ext{Upper}} = T_{ ext{max}} - ar{T}$$

$$\Delta_{ ext{Lower}} = ar{T} - T_{ ext{min}}$$

They measure how far temperatures deviate above and below the average.

The Goal

We want the system to automatically decide what's "too much" fluctuation above or below average — based on recent system behavior.

Μ Adaptive Thresholds for ΔUpper and ΔLower

You maintain a history of N windows (say 6 hours, so 6 entries), and calculate:

```
python

□ Copy ▷ Edit

adaptive_delta_upper_thresh = mean(delta_upper) + 2 * std(delta_upper)
adaptive_delta_lower_thresh = mean(delta_lower) + 2 * std(delta_lower)

That means:

If the current ΔUpper or ΔLower exceeds this threshold → system is no longer stable
```

adaptive_delta_upper_thresh = mean(delta_upper) + 2 * std(delta_upper)
adaptive_delta_lower_thresh = mean(delta_lower) + 2 * std(delta_lower)

```
How to Use This in Your Algorithm
    Step-by-step Decision:

    Copy

      python
                                                                                            if T is NaN or 0:
          SystemState = "Invalid"
      elif AUpper > adaptive_delta_upper_thresh:
          SystemState = "Upper Spike (Overheat Risk)"
      elif ALower > adaptive_delta_lower_thresh:
          SystemState = "Lower Spike (Sensor Dip or Shutdown)"
      elif \DeltaUpper in [1.5, 3] or \DeltaLower in [1.5, 3]:
          SystemState = "Warning Zone"
          SystemState = "Normal"
    This becomes your core alarm logic — clean, adaptive, and reactive only when needed.
if T is NaN or 0:
  SystemState = "Invalid"
  SystemState = "Upper Spike (Overheat Risk)"
```

```
SystemState = "Invalid"

elif ΔUpper > adaptive_delta_upper_thresh:
    SystemState = "Upper Spike (Overheat Risk)"

elif ΔLower > adaptive_delta_lower_thresh:
    SystemState = "Lower Spike (Sensor Dip or Shutdown)"

elif ΔUpper in [1.5, 3] or ΔLower in [1.5, 3]:
    SystemState = "Warning Zone"

else:
    SystemState = "Normal"
```

Here is the updated flowchart with only the **Adaptive Thresholds** box added — exactly as you requested:

Download Flowchart with Adaptive Threshold Added (PNG)

🧠 Full Explanation of Each Step and Value:

1. Rolling Mean / Max / Min

- Takes last 12 readings (1 hour) and calculates:
 - Mean = average temp = base state (like Reynolds base flow)
 - Max & Min = detect fluctuation limits
- ∆Upper = Max − Mean
- ΔLower = Mean − Min

Why?

This tells us how much the temperature is **spiking above or dipping below** the norm.

2. Adaptive Thresholds

- Calculated as:
 - \circ \triangle Upper_Thresh = mean(\triangle Upper) + 2 × std_dev(\triangle Upper)
 - \circ ΔLower Thresh = mean(ΔLower) + 2 × std dev(ΔLower)

Why?

This adapts the system to **normal variations**, so it doesn't trigger false alarms unless there's a real deviation.

• 3. ΔT (1st Derivative)

• Formula: $\Delta T = T[i] - T[i-1]$

• Tells how fast the temperature is rising or falling.

Why?

Detects gradual heating trends — could indicate impending danger.

• 4. Δ²T (2nd Derivative)

- Formula: $\Delta^2T = T[i+1] 2\times T[i] + T[i-1]$
- Tells how suddenly the rate of temperature is changing i.e., spikes.

Why?

Perfect for catching sudden faults, noise, or system glitches.

• 5. Conditions Checked

Condition	Meaning
NaN or 0	Sensor error or disconnected
$\Delta^2 T > 0.75$ and $\Delta T > 0.5$	Very sudden and large spike = "Spike Alert"
ΔT > 0.5 and ΔUpper > 3	Fast heating and climbing beyond normal \rightarrow "Critical"
ΔUpper or ΔLower in [1.5, 3]	Slight instability → "Warning"
Else	Everything normal → "Normal"

Would you also like this explanation as a **1-page PDF summary** with the image?

