Выборка или не выборка?

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Математическая Статистика (/Subjects/Details?id=5)

Тема

Основные понятия математической статистики (/Topics/Details?id=26)

Раздел

Определение выборки и её основные характеристики (/SubTopics/Details?id=94)

Дата публикации

26.01.2019

Дата последней правки

17.01.2020

Последний вносивший правки

sobody

Рейтинг

**

Условие

Определите, какие из следующих случайных векторов можно считать выборкой, после чего укажите объем данной выборки и из какого она распределения:

1.
$$X=(X_1,X_2,X_3)$$
, где $X_1\sim U(0,1)$, $X_2\sim U(0,1)$ и $X_3\sim U(0,1)$ независимы.

- 2. $X=(X_1,X_2,X_3,X_4,X_5)$, где X_1,\dots,X_5 распределены так же, как случайная величина $\eta\sim exp(3)$, при этом являясь независимыми.
- 3. $X=(X_1,X_2,X_3,X_4,X_5)$, где X_1,\ldots,X_5 распределены так же, как случайная величина $\eta\sim Pois(5)$.
- 4. $X=(X_1,X_2,X_2,X_3,X_4)$, где X_1,\dots,X_4 распределены так же, как случайная величина $\eta\sim exp(2)$. При этом X_1,X_2,X_3 и X_4 независимы.

5.
$$X=(X_1,X_2)$$
, где $\left[egin{array}{c} X_1 \ X_2 \end{array}
ight] \sim \mathcal{N}\left(\left[egin{array}{c} 2 \ 3 \end{array}
ight], \left[egin{array}{c} 1 & 0 \ 0 & 1 \end{array}
ight]
ight)$

6.
$$X=(X_1,X_2)$$
, где $\left[egin{array}{c} X_1 \ X_2 \end{array}
ight]\sim \mathcal{N}\left(\left[egin{array}{c} 5 \ 5 \end{array}
ight], \left[egin{array}{c} 1 & 0.5 \ 0.5 & 1 \end{array}
ight]
ight)$

7.
$$X=(X_1,X_2)$$
, где $\left[egin{array}{c} X_1 \ X_2 \end{array}
ight] \sim \mathcal{N}\left(\left[egin{array}{c} 2 \ 2 \end{array}
ight], \left[egin{array}{c} 3 & 0 \ 0 & 8 \end{array}
ight]
ight)$

8.
$$X=(X_1,X_2)$$
, где $egin{bmatrix} X_1 \ X_2 \end{bmatrix} \sim \mathcal{N}\left(egin{bmatrix} 2 \ 2 \end{bmatrix}, egin{bmatrix} 3 & 0 \ 0 & 3 \end{bmatrix}
ight)$

9.
$$X=(X_1,X_2,X_3)$$
, где $egin{bmatrix} X_1 \ X_2 \ X_3 \end{bmatrix} \sim \mathcal{N}\left(egin{bmatrix} 2 \ 2 \ eta \end{bmatrix}, egin{bmatrix} 3 & 0 & lpha \ 0 & \gamma & lpha^2 \ lpha & lpha^2 & 3 \end{bmatrix}
ight)$. Найдите параметры $lpha,eta$ и γ , при

которых X будет являться выборкой.

10.
$$X=(X_1,X_2)$$
 и $X_1\sim \mathcal{N}(8,5)$, $X_2\sim \mathcal{N}(8,5)$. При этом $Corr(X_1,X_2)=0$.

Решение

- 1. X является выборкой из распределения ξ , где $\xi \sim U(0,1)$. Потому что X_1,X_2 и X_3 независимы и одинаково распределены (так же, как и ξ). Объем выборки n=3.
- 2. X является выборкой из распределения η . Объем выборки n=5.
- 3. X не обязательно является выборкой, поскольку не сказано, что компоненты X являются независимыми.
- 4. X не является выборкой, поскольку его вторая и третья компоненты включают одну и ту же случайную величину X_2 , что нарушает допущение о независимости.
- 5. X не является выборкой, так как её компоненты имеют различные математические ожидания: $E(X_1)$ =2 и $E(X_2)$ =3, из чего следует нарушение требования о различии в распределении.
- 6. X не является выборкой, так как $Corr(X_1, X_2) = 0.5$, что нарушает допущение о независимости.
- 7. X не является выборкой, так как $Var(X_1) \neq Var(X_2)$, что нарушает допущение об одинаковом распределении.
- 8. X является выборкой из распределения ξ , где $\xi \sim N(2,3)$. Объем выборки составляет n=2.
- 9. Необходимо, чтобы компоненты X были одинаково распределены и независимы. Следовательно, они должны иметь одинаковое математическое ожидание и дисперсию, а также быть независимыми, для чего, в случае с многомерным нормальным распределением, равносильно отсутствию корреляций. Поэтому получаем $\alpha=0,\,\beta=2$ и $\gamma=3$. Объем выборки составляет n=3.
- 10. X не обязательно является выборкой из распределения ξ , где $\xi \sim N(8,5)$. Это связано с тем, что хоть случайные величины X_1 и X_2 не коррелированы и имеют нормальное распределение, их совместное распределение не обязательно будет многомерным нормальным, вследствие чего из нулевой корреляции не следует соблюдение допущения о независимости.

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.