## Отчет о выполнении работы №1.4.1 Изучение экспериментальных погрешностей на примере физического маятника

Воейко Андрей Александрович, Б01-109 Долгопрудный, 2021

#### 1 Аннотация.

В работе проверяется справедливость формулы для периода колебаний физического маятника, теоремы Гюйгенса, определяется ускорение свободного падения.

### 2 Теоретические сведения.

На рисунке 1 изображен стрежень без груза. Момент инерции относительно точки подвеса вычисляется по формуле 1.

$$I_0 = \frac{m_0 l^2}{12} + m_0 a^2,\tag{1}$$

где I — момент инерции, l — длина стержня,  $m_0$  — масса стержня с призмой, a — расстояние от точки подвеса до центра масс.

Возвращающрий момент силы тяжести равен:

$$M = -m_0 g a \sin \phi \approx -m_0 g a \phi. \tag{2}$$

Таким образом,

$$\frac{d^2\phi}{dt^2} \sim -\phi.$$

Период цолебаний можно найти по формуле 3.

$$T = 2\pi \sqrt{\frac{I}{m_0 g a}} = 2\pi \sqrt{\frac{l^2}{12} + a^2}$$
 (3)

Приведенная длина физического маятника  $l_{\rm np}$  (взята из  $T=2\pi\sqrt{\frac{l}{g}}$ ):



$$l_{\rm np} = a + \frac{l^2}{12a}.$$
 (4)

Рестояние дто груза до центра масс  $x_{\rm n}$ :

$$x_{\rm II} = \frac{m_0 a + m_{\rm r} y}{m_0 + m_{\rm r}},\tag{5}$$

где  $m_0$  — масса стержня с призмой, a — расстояние от центра масс без груза до призмы,  $m_{\scriptscriptstyle \Gamma}$  — масса груза, y — расстояние от призмы до ц. м. груза.

Поскольку груз имеет сложную форму, следует один раз вычислить  $x_{\rm u}$ 



для первого измерения, а потом находить ее изменение по изменению y из формулы 5. Тогд апериод колебаний составит:

$$T = 2\pi \sqrt{\frac{I_0 + m_{\rm r} y^2}{(m_0 + m_{\rm r})gx_{\rm II}}} \,. \tag{6}$$

Отсюда вывводим g:

$$g = \frac{I_0 + m_{\rm r} y^2}{(m_0 + m_{\rm r}) x_{\rm II}} \cdot \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T^2} \cdot \frac{m_0(\frac{l^2}{12} + a^2) + m_{\rm r} y^2}{m_0 a + m_{\rm r} y}.$$
 (7)

## 3 Оборудование и экспериментальная установка.

# 3.1 Используемое оборудывние и погрешности его использования.

В работе используются:

- Штангенциркуль. Погрешность  $-\pm 0,01$  см.
- Линейка. Погрешность  $-\pm 0, 1$  см.
- Счетчик. Погрешность  $\pm 0,01$  с.
- $\bullet$  Весы. Погрешность  $\pm 0, 1$  с.
- Металлический стержень.
- Дополнительный груз.
- Подставка с отсрой гранью для определения центра масс стержня.

#### 3.2 Вес и длина объектов.

Измерим массу стержня, призмы и груза. Также измерим длины этих объектов и расстояние от верхнего конца стрежня до центра масс с призмой и без, а также расстояние от цетнра масс до точки подвеса (до нижнего края призмы). Результаты занесем в таблицу 1.

## 4 Результаты измерений и обработка данных.

#### 4.1 Результаты измерений.

#### 4.1.1 Предварительные измерения периода колебаний.

Проведем предварительные измерения периода колебаний. Для этого измерим время 20 колебаний, а затем поделим полученное значение на 20.

| Величина                              | Значение          |  |  |
|---------------------------------------|-------------------|--|--|
| Масса стержня $m_{\rm cr}$ , г        | $869, 8 \pm 0, 1$ |  |  |
| $Macca призмы m_{\pi}, г$             | $74,9 \pm 0,1$    |  |  |
| Масса стержня                         | $944, 7 \pm 0, 2$ |  |  |
| с призмой $m_0$ , г                   |                   |  |  |
| $Macca$ груза $m_{\Gamma}$ , $\Gamma$ | $376, 2 \pm 0, 1$ |  |  |
| Длина стрежня $l$ , см                | $100, 1 \pm 0, 1$ |  |  |
| Расстояние от центра                  |                   |  |  |
| масс до верхнего                      | $50,0\pm0,1$      |  |  |
| конца без призмы, см                  |                   |  |  |
| Расстояние от центра                  |                   |  |  |
| масс до верхнего                      | $47,6\pm0,1$      |  |  |
| конца с призмой, см                   |                   |  |  |
| Расстояние от                         |                   |  |  |
| центра масс                           | $25,7 \pm 0,1$    |  |  |
| до призмы $a$ , см                    |                   |  |  |

Таблица 1: Массы и длины исследуемых объектов.

 $t_{\rm предв}=29, 2\pm0, 6$  с. Повторные измерения дали идентичный результат.  $T_{\rm предв}=1, 46\pm0, 03$  с

y = 46, 6 cm

По формуле 7 найдем g:

$$g = \frac{4 \cdot 3, 14^2}{1,46^2} \cdot \frac{944, 7 \cdot (\frac{1,001^2}{12} + 0, 257^2) + 376, 2 \cdot 0, 466^2}{944, 7 \cdot 0, 257 + 376, 2 \cdot 0, 466} = 9,84 \pm 0,01 \ \frac{\text{M}}{\text{c}^2}.$$

#### 4.1.2 Измерение периода колебаний.

Проведем еще 9 измерений. Результаты всех измерений, включая и предварительные, занесем в таблицу 2.

Среднее значение ускорение свободного падения составило  $\bar{g}=9,809~\frac{\text{M}}{\text{c}^2}$ . Стандартная ошибка среднего  $-\sigma_{\overline{q}}=0,004~\frac{\text{M}}{\text{c}^2}$ .

Таким образом, ускорение свободного падения равняется  $g=9,809\pm0,004~\frac{\rm M}{c^2}.$ 

#### 4.2 Обработка данных.

#### 4.2.1 Зависимость периода колебаний от положения груза.

Построим график зависимости периода колебаний T от положения груза y. График представлен на рисунке 2.

| No | y, cm            | $x_{\rm ц}$ , см | n  | t, c             | <i>T</i> , c | $g, \frac{M}{C^2}$ |
|----|------------------|------------------|----|------------------|--------------|--------------------|
| 1  | $46, 4 \pm 0, 1$ | $31,7 \pm 0,1$   | 20 | $29,2 \pm 0,6$   | 1,462        | $9,84 \pm 0,06$    |
| 2  | $50,9 \pm 0,1$   | $32,9 \pm 0,1$   | 20 | $29,7 \pm 0,6$   | 1,488        | $9,802 \pm 0,06$   |
| 3  | $55,9 \pm 0,1$   | $34, 3 \pm 0, 1$ | 20 | $30, 3 \pm 0, 6$ | 1,517        | $9,80 \pm 0,06$    |
| 4  | $58,9 \pm 0,1$   | $35, 1 \pm 0, 1$ | 20 | $30,7 \pm 0,6$   | 1,534        | $9,814 \pm 0,06$   |
| 5  | $60,9 \pm 0,1$   | $35,7 \pm 0,1$   | 20 | $30,9 \pm 0,6$   | 1,547        | $9,811 \pm 0,06$   |
| 6  | $57, 3 \pm 0, 1$ | $34,7 \pm 0,1$   | 20 | $30,5 \pm 0,6$   | 1,525        | $9,808 \pm 0,06$   |
| 7  | $54, 3 \pm 0, 1$ | $33,9 \pm 0,1$   | 20 | $30,1\pm 0,6$    | 1,507        | $9,807 \pm 0,06$   |
| 8  | $51, 3 \pm 0, 1$ | $33,0 \pm 0,1$   | 20 | $29,8 \pm 0,6$   | 1,490        | $9,799 \pm 0,06$   |
| 9  | $48, 3 \pm 0, 1$ | $32, 1 \pm 0, 1$ | 20 | $29,4 \pm 0,6$   | 1,473        | $9,811 \pm 0,06$   |
| 10 | $46, 3 \pm 0, 1$ | $31,6 \pm 0,1$   | 20 | $29,3 \pm 0,6$   | 1,462        | $9,803 \pm 0,06$   |

Таблица 2: Массы и длины исследуемых объектов.



Рис. 2: График зависимоти периода колебаний T от положения груза y.

#### 4.2.2 Зависимость периода колебаний от положения груза.

Построим график зависимости величины  $T^2x_{\mathbf{q}}$  от величины  $y^2$ . График представлен на рисунке 3. Аппроксимируем прямую к прямой  $(T^2x_{\mathbf{q}})=a+b(y^2)$ . Заметим, согласно формуле 6  $a=\frac{4\pi^2I_0}{(m_0+m_{\mathbf{r}})g}$ , а  $b=\frac{4\pi^2m_{\mathbf{r}}}{(m_0+m_{\mathbf{r}})g}$ . Итак,  $b=\frac{\langle xy\rangle-\langle x\rangle\langle y\rangle}{\langle x^2\rangle-\langle x\rangle^2}=\frac{0.2175-0.2143}{0.08326-0.08043}=\frac{32}{28,3}=1,1307$ .  $\sigma_b\approx\frac{1}{\sqrt{n}}\sqrt{\frac{\langle y^2\rangle-\langle y\rangle^2}{\langle x^2\rangle-\langle x\rangle^2}-b^2}=0,025.$  Отсюда  $g=9,95\pm0,23$   $\frac{\mathrm{M}}{\mathrm{C}^2}$ .

$$a = \langle y \rangle - b \langle x \rangle = 0,7556 - 0,3207 = 0,435.$$
  
$$\sigma_a = \sigma_b \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = 0,001.$$



Рис. 3: График зависимоти величины  $T^2x_{\mathbf{q}}$  от величины  $y^2$ .

## 5 Выводы.

В ходе работы было вычилено значение g двумя различными спопобами – методом подсчета для каждого измерения с вычислением среденего и методом аппроксимации к прямой графика  $T^2x_{\rm q}$  от  $y^2$  с нахождением коэффицентов. Первый способ, как и ожидалось, показал большую точность, но для обоих способов реальное табличное значение g лежит в пределах погрешности.