Nonlinear Finite Element Methods

Assignment for summer term 2020 (Examiner: Geralf Hutter)

1 Task

The problem of creep of a thick-walled pipe under internal pressure p is considered as sketched in Figure 1. The pressure rises linearly up to its final value p_{max} and is then hold until t_{f} as shown in Figure 2. Plain strain $\varepsilon_{zz} = 0$ conditions are assumed. Due to

Figure 1: Thick-walled pipe

Figure 2: Load sequence

axisymmetric conditions, the only non-vanishing equilibrium condition is

$$0 = \frac{\partial(r\sigma_{rr})}{\partial r} - \sigma_{\phi\phi} \,. \tag{1}$$

Therein, σ_{rr} and $\sigma_{\phi\phi}$ refer to the stress components with respect to a polar coordinate system. The weak form of Eq. (1) reads

$$0 = \delta W = \int_{a}^{b} \underline{\delta \varepsilon}^{\mathrm{T}} \cdot \underline{\sigma} \, r \, \mathrm{d}r - [r \sigma_{rr} \delta u_{r}]_{r=a}^{b}$$
 (2)

with stresses and strains written in Voigt notation as

$$\underline{\sigma} = \begin{bmatrix} \sigma_{rr} \\ \sigma_{\phi\phi} \end{bmatrix}, \quad \underline{\delta\varepsilon} = \begin{bmatrix} \delta\varepsilon_{rr} = \frac{\partial\delta u_r}{\partial r} \\ \delta\varepsilon_{\phi\phi} = \frac{\delta u_r}{r} \end{bmatrix}, \quad \text{and analogously } \underline{\varepsilon} = \begin{bmatrix} \varepsilon_{rr} = \frac{\partial u_r}{\partial r} \\ \varepsilon_{\phi\phi} = \frac{u_r}{r} \end{bmatrix}. \tag{3}$$

Therein, the only non-vanishing displacement component is $u_r(r)$ as the displacement in radial direction. The boundary conditions for the problem in Figure 1 are $\sigma_{rr}(r=a) = -p$ and $\sigma_{rr}(r=b) = 0$, respectively.

The linear visco-elastic behavior of the material is described by the equations

$$\underline{\sigma} = \underline{\mathbf{C}} \cdot \underline{\varepsilon} + \underline{\sigma}^{\text{ov}} \tag{4a}$$

$$\underline{\dot{\sigma}}^{\text{ov}} = Q \operatorname{dev}(\underline{\dot{\varepsilon}}) - \frac{1}{T} \underline{\sigma}^{\text{ov}}$$
(4b)

wherein $\underline{\mathbf{C}}$ is the isotropic (long-term) elastic stiffness matrix, expressed by Young's modulus \overline{E} and Poisson ration ν . The evolution of the overstress $\underline{\sigma}^{\text{ov}}$ (as internal state variable) is governed by the modulus Q and a characteristic time scale T.

Create a program (MatLab/Octave/Python) which solves this static FEM problem. The program has to be verified by comparisons with known analytical solutions and a convergence study shall be performed (see below).

Details

The following list gives a brief overview of the features which have to be implemented:

- quasi-static conditions: $\delta W = \delta \underline{\hat{\mathbf{u}}}^{\mathrm{T}} \cdot \left[\underline{\hat{\mathbf{F}}}_{\mathrm{int}} \underline{\hat{\mathbf{F}}}_{\mathrm{ext}}\right]$
- linear shape functions for $u_r(r)$:

$$[\mathbf{N}] = \left[\frac{1}{2}(1-\xi), \frac{1}{2}(1+\xi)\right]^{\mathrm{T}} \text{ in } \Omega_{\square} = \{\xi \in [-1, 1]\}$$
 (5)

- quadrature with 1 Gauss point per element
- local mesh refinement closer to the interior of the pipe: $h^e(r=a) = \frac{1}{2}h^e(r=b)$ (h^e : element size), see code sniplet in appendix
- time integration with Euler backward method (EB) or modified Euler method (EM)
- variable number of elements and time increment Δt Newton-Raphson method with convergence criteria $\left\|\hat{\mathbf{R}}\right\|_{\infty} < 0.005 \left\|\hat{\mathbf{F}}_{\mathrm{int}}\right\|_{\infty}, \left\|\mathbf{\Delta}\hat{\mathbf{u}}_{k}\right\|_{\infty} < 0.005 \left\|\hat{\mathbf{u}}\right\|_{\infty}$ (with $\left\|\hat{\underline{o}}\right\|_{\infty}$ denoting the infinity norm, i. e. the maximum component by amount of the column vector $\hat{\circ}$)

The particular material parameters (E, ν, Q, T) , loading parameters $(p_{\text{max}}, t_{\text{L}}, t_{\text{f}})$, time integration scheme (EM/EB) and geometric properties a and b to be implemented depend on your variant as given in Table 1. Each student has to work on the variant that corresponds to the last digit of her or his matriculation number.

3 Workflow

- 1. Theory
 - Discretize the weak form (2) in space (i. e. in r).

- Identify the $\underline{\underline{\mathbf{B}}}$ matrix to be defined as $\underline{\varepsilon} = \underline{\underline{\mathbf{B}}} \cdot \hat{\underline{\mathbf{u}}}^e$ for the shape functions in Eq. (5).
- Identify the vectors of internal and external nodal forces $\underline{\hat{\mathbf{F}}}_{\text{int}}^e$ and $\underline{\hat{\mathbf{F}}}_{\text{ext}}$, respectively.
- Discretize the constitutive equations (4) in time and compute the algorithmically consistent material tangent stiffness.
- 2. Implementation in MatLab/Octave/Python:
 - Implement $\underline{\underline{\mathbf{B}}}$ and $[\mathbf{N}]$ into an element routine to compute $\hat{\underline{\mathbf{F}}}_{\mathrm{int}}^e$ (*Hint:* The Jacobian of the element is identical to the FEM of rods considered in the exercises.)
 - Develop the main program which assembles total nodal forces for each time increment and performs the Newton-Raphson scheme.
 - Note that the material routine requires internal state variables (the overstresses $\underline{\sigma}^{\text{ov}}$) for which memory has to be allocated and which have to be passed through main program and element routine.

3. Verification:

a) According to classical theory of elasticity, the exact solution of the considered boundary value problem Eqs. (1)–(3) for *linear-elastic material* is

$$u_r^{\text{elast}} = (1+\nu)\frac{p}{E}\frac{a^2}{b^2 - a^2} \left[(1-2\nu)r + \frac{b^2}{r} \right],$$
 (6)

compare basic course Engineering Mechanics B. In a first step, use a material routine for the purely elastic case (corresponding formally to Q=0). Perform a convergence study with respect to the number of elements and verify that your FEM solution converges towards the exact solution (6). Verify that the Newton-Raphson method converges within a single iteration for the linear problem.

Table 1: Assignment of parameters

var		E [MPa]	ν	Q [MPa]	T [s]	a [mm]	b [mm]	$p_{\rm max} [{ m MPa}]$	$t_{\rm L}~[{ m s}]$	$t_{ m f}$ [s]
1	EM	200 000	0.20	100 000	1	50	100	140	2	10
2	EM	70 000	0.25	35000	2	40	80	50	4	20
3	EM	70 000	0.30	35000	3	60	120	50	6	30
4	EM	200 000	0.30	100 000	1	30	60	140	2	10
5	EM	100 000	0.30	50 000	2	40	80	70	4	20
6	EB	$200\ 000$	0.20	100 000	3	50	100	140	6	30
7	EB	70 000	0.25	35000	1	40	80	50	2	10
8	EB	70 000	0.30	35000	2	60	120	50	4	20
9	EB	200 000	0.30	100 000	3	30	60	140	6	30
0	EB	100 000	0.30	50 000	4	40	80	70	8	40

b) In the next step, perform a convergence study with respect to number of elements and time increments Δt for the visco-elastic model. Identify the necessary number of elements and the required Δt .

4. Results:

- Extract the distributions of $u_r(r)$, σ_{rr} and $\sigma_{\phi\phi}$ at final loading $t=t_{\rm f}$ from your FEM simulation.
- Extract the time history of the widening of the pipe $u_r(r=b,t)$ for $t \in [0,t_f]$. Verify, that the visco-elastic solution relaxes towards the elastic solution (6).

4 Documentation

In addition to the program code, a short *technical documentation* is to be created (in hard-copy form) containing:

- 1. a brief overview over the implemented theory
- 2. an overview over the structure of the program (routines, files, ...), in text form or graphically
- 3. a short user's manual answering the following questions:
 - How to start the program?
 - Where does the program get its input from?
 - What output does the program generate and where does it store it to?
- 4. verification: results requested in section 3.3 and 3.4

5 Remarks

- The successful completion of the task is a prerequisite to be admitted to the final examination.
- The deadline for the assignment is Friday, July 10, 2020 when the program has to be sent to Geralf.Huetter@imfd.tu-freiberg.de and the documentation has to be submitted in hard-copy form at secretary of the institute (room WEI-130). The program has to be presented *individually* before the examination. Details on the mode of presentation will be decided and published, depending on the circumstances of teaching at that time.

Appendix

Click here in AdobeReader to download code sniplet for generating a local mesh refinement.