ECE 250: Stochastic Processes: Week #8

Instructor: Behrouz Touri

Outline:

- Some Estimation Theory, MSE, and MMSE
- Geometry of Random Variables, Conditional Expectation, and Mean Square Estimation
- Orthogonality Principle and Applications to LMSE and MMSE

Estimation Theory

- Main Question: Given an observation Y of a random variable X, how to estimate X?
- ullet In other words, what is the best function g such that $\hat{X}=g(Y)$ is the best estimator?
- More generally: given a sequence of observation of X_1, \ldots, X_k , how to estimate X?
- Example: Radar detection: Suppose that X is the radial distance of an aircraft from a radar station and Y = X + Z is the radar's observed location where Z is independent of X and $Z \sim \mathcal{N}(0, \sigma^2)$. What is the best estimator $\hat{X} = g(Y)$ of the location X?
- What if $X_k = X + Z_k$ where Z_k are i.i.d. with $Z_k \sim \mathcal{N}(0, \sigma^2)$? Then what function $g(\cdot)$ of the observations is the best estimator?
- The best is always subjective until we set a criteria. One popular criteria is Mean Square Error (MSE).
- For measurements X_1, \ldots, X_k of a random variable X, we define the MSE of (a measurable) an estimator (function) $g: \mathbb{R}^k \to \mathbb{R}$ to be $\mathbb{E}[|g(X_1, \ldots, X_k) X|^2]$. In this setting, we view $\mathbb{E}[|U X|^2]$ as the squared *distance* of random variables U and X.
- Once we fix the MSE criteria for the best estimator, then the problem of finding the best MSE estimator for X based on the measurements X_1, \ldots, X_k is:

$$\arg\min_{g:\mathbb{R}^k\to\mathbb{R}}\mathbb{E}[|g(X_1,\ldots,X_k)-X|^2].$$

- ullet Any g that minimizes the above criteria is called a Minimum Mean Square Error (MMSE) estimator.
- ullet When solving for MMSE, we always assume that X has finite mean and variance.

MMSE

- In practice finding the MMSE might be hard.
- \bullet We can restrict our attention to special classes of functions g.
- Let k=0, and suppose that we want to find the best *constant* c that estimates X. Note that in this case, we view c as a constant random variable.

objective: finding
$$c \in \operatorname{argmin}_c \mathbb{E}[|X - c|^2]$$
. (1)

In this case,

$$\mathbb{E}[|X - c|^2] = \mathbb{E}[|X - \bar{X} + \bar{X} - c|^2]$$

$$= \mathbb{E}[|X - \bar{X}|^2 + 2(\bar{X} - c)\mathbb{E}[(X - \bar{X})] + (\bar{X} - c)^2]$$

$$= \mathbb{E}[(X - \bar{X})^2] + \mathbb{E}[(\bar{X} - c)^2].$$

• Estimation theory interpretation of mean and variance: The best constant MMSE estimator of X is $\mathbb{E}[X]$ and the corresponding MMSE value is Var(X).

Probability, Linear Algebra, Orthogonality Principle: Geometric View

- In the case of constant estimator, we note that:
 - The space V of constant (r.v.s) is a linear subspace.
 - We have: $\mathbb{E}[(X \bar{X})c] = \mathbb{E}[c(X \bar{X})] = 0.$
 - This can be viewed as the orthogonality principle.
- Generally: Let $(\Omega, \mathcal{F}_o, \Pr(\cdot))$ be the underlying probability space.
- The set V of random variables on this space is a vector space (over reals) with + being the regular summation of two functions (r.v.s) and the scalar product as a regular product of a number and a function:
 - Summation of random variables satisfies Abelian group property:
 - (i) Existence of identity: $\mathbf{1}_{\emptyset} = 0_{\Omega}$ is a random variable with $X + = 0_{\Omega} = X$.
 - (ii) Commutative: X + Y = Y + X for all $X, Y \in V$
 - (iii) Existence of inverse: $X + (-X) = 0_{\Omega}$ for all X.
 - (iv) Associativity: X + (Y + Z) = (X + Y) + Z.
 - Scalar product satisfies:
 - (i) 1X = X.
 - (ii) (ab)X = a(bX) for all $a, b \in \mathbb{R}$ and $X \in V$.
 - Summation + and scalar product are connected through distributive properties:
 - (i) $(\alpha + \beta)X = \alpha X + \beta X$ for all $\alpha, \beta \in \mathbb{R}$ and $X \in V$.
 - (ii) $\alpha(X+Y) = \alpha X + \alpha Y$ for all $\alpha \in \mathbb{R}$ and $X,Y \in V$.

Geometry of Random Variables: $L_2(\Omega, \mathcal{F}_o, \Pr(\cdot))$ is an inner-product space

- Define $L_2(\Omega, \mathcal{F}_o, \Pr(\cdot))$ (or simply L_2) to be the set of random variables with finite variance (or second moment), i.e., $L_2 = \{X \mid \mathbb{E}[X^2] < \infty\}$.
- Properties of L_2 :
 - $-L_2$ is a linear subspace of random variables:
 - (i) $aX\in L_2$ for all $X\in L_2$ and $a\in\mathbb{R}$ as $\mathbb{E}[(aX)^2]=a^2\mathbb{E}[X^2]<\infty$, and
 - (ii) $X + Y \in L_2$ for all $X, Y \in L_2$ as:

$$\mathbb{E}[(X+Y)^2] = \mathbb{E}[X^2] + \mathbb{E}[Y^2] + \mathbb{E}[2XY] \le 2(\mathbb{E}[X^2] + \mathbb{E}[Y^2]) < \infty.$$

- The most important property: L_2 is an inner-product space¹. For any two random variables $X, Y \in L_2$, let us define their inner product

$$X \cdot Y := \mathbb{E}[XY].$$

- Then this operation satisfies the axioms of an inner product:
 - (i) $X \cdot X = \mathbb{E}[X^2] \ge 0$ with the equality iff X = 0 almost surely.
 - (ii) linearity: $(\alpha X + Y) \cdot Z = X \cdot Z + \alpha Y \cdot Z$.
- ullet Therefore, L_2 is a normed vector space, with the norm $\|\cdot\|$ defined by

$$||X|| := \sqrt{X \cdot X} = \sqrt{\mathbb{E}[X^2]}.$$

¹More importantly it is a Hilbert space.

$L_2(\Omega, \mathcal{F}_o, \Pr(\cdot))$ is an inner-product space: implications

- ullet L_2 is a normed space with the norm $\|X-Y\|^2:=(X-Y)\cdot (X-Y)=E[(X-Y)^2].$
- Cauchy-Schwartz inequality: for any $X, Y \in L_2$

$$\mathbb{E}^2[XY] \le \mathbb{E}[X^2]\mathbb{E}[Y^2].$$

Important: The equality holds if and only if X=cY for some constant c. Implication: For $X,Y\in L^2$, we define $Cov(X,Y):=\mathbb{E}[(X-\bar{X})(Y-\bar{Y})]$. By Cauchy-Schwartz inequality

$$Cov^{2}(X,Y) = \mathbb{E}^{2}[(X-\bar{X})(Y-\bar{Y})] \le \mathbb{E}[(X-\bar{X})^{2}]\mathbb{E}[(Y-\bar{Y})^{2}].$$

In other words, if we define the correlation coefficient $\rho_{X,Y}$ by

$$\rho_{X,Y} := \frac{Cov(X,Y)}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}},$$

then $\rho_{X,Y} \in [-1,1]$.

• In fact, $\rho_{X,Y}=1$ iff $(Y-\bar{Y})=c(X-\bar{X})$ for a c>0 and $\rho_{X,Y}=-1$ iff $(Y-\bar{Y})=c(X-\bar{X})$ for a c<0.

L_2 -norm and L_2 convergence

ullet Since L_2 is a normed space, we can define a new limit of random variables:

Definition 1. We say that a sequence $\{X_k\}$ converges in L_2 (or in MSE sense) to X if $\lim_{k\to\infty} ||X-X_k|| = 0$.

- Note that $\lim_{k\to\infty} \|X-X_k\| = 0$ iff $\lim_{k\to\infty} \mathbb{E}[|X-X_k|^2] = 0$.
- ullet Definition: We say that $H\subseteq L_2$ is a linear subspace if
 - (i) for any $X, Y \in H$, we have $X + Y \in H$, and
 - (ii) for any $X \in H$ and $a \in \mathbb{R}$, $aX \in H$.
- ullet Definition: We say that $H\subseteq L_2$ is closed if for any process $\{X_k\}$ with

$$\lim_{m,n\to\infty} ||X_m - X_n||^2 = \lim_{m,n\to\infty} \mathbb{E}[|X_m - X_n|^2] = 0,$$

we have $\lim_{k\to\infty} X_k \overset{L_2}{\to} X$ for some random variable $X\in L_2$.

• Showing linear subspace is easy, but closedness might be hard.

Orthogonality Principle

- Important Cases:
 - 1. For random variables $X_1, \ldots, X_k \in L_2$, the set $H = \{\alpha_1 X_1 + \ldots + \alpha_k X_k \mid \alpha_i \in \mathbb{R}\}$ is a closed linear subspace.
 - 2. For any random variables $X_1, \ldots, X_k \in L_2$, the set $H = \{\alpha_0 + \alpha_1 X_1 + \ldots + \alpha_k X_k \mid \alpha_i \in \mathbb{R}\}$ is a closed linear subspace.
 - 3. For any sub σ -algebra \mathcal{F} of \mathcal{F}_o , the set $L_2(\mathcal{F})$ of measurable random variables with respect to \mathcal{F} that are in L_2 , is a linear closed subspace of L_2 .

Theorem 1. Let H be a closed linear subspace of L_2 and let $X \in L_2$. Then,

a. There exists a unique (up to almost sure equivalence) random variable $Y \in H$ such that

$$||Y - X||^2 \le ||Z - X||^2$$

for all $Z \in H$.

b. Furthermore, $Y \in H$ is the unique random variable with

$$(Y-X)\perp Z$$

for all $Z \in H$.

Orthogonality Principle: Implications 1: LMMSE

- Let X_1, \ldots, X_k be measurements of X.
- LMMSE estimator of X is defined to be the linear estimator $\hat{X} = \alpha_0 + \alpha_1 X_1 + \ldots + \alpha_k X_k$ that minimizes $\mathbb{E}[|X \hat{X}|^2] = \|X \hat{X}\|^2$.
- We derive the LMMSE for the case of k=1. The case $k \geq 2$ can be obtained similarly.
- ullet Let Y be a measurement of X and we want to find optimal $a^*,b^*\in\mathbb{R}$ such that

$$||X - (a^*Y + b^*)|| \le ||X - (aY + b)||,$$

for any $a, b \in \mathbb{R}$.

• Using orthogonality principle, for all b, we need to have

$$(X - (a^*Y + b^*)) \perp b \Leftrightarrow \mathbb{E}[(X - (a^*Y + b^*))b] = 0.$$

This holds iff

$$b^* = \bar{X} - a^* \bar{Y}.$$

ullet Replacing this, we are seeking optimal value for a^* such that

$$[(X - \bar{X}) - a^*(Y - \bar{Y})] \perp aY - b,$$

for all $a, b \in \mathbb{R}$. Let a = 1 and $b = \bar{Y}$. Then, this holds if

$$\mathbb{E}[((X - \bar{X}) - a^*(Y - \bar{Y}))(Y - \bar{Y})] = 0.$$

This holds iff $a^* = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(Y)}.$

• Therefore, by choosing $a^* = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}(Y)}$ and $b^* = \bar{X} - a^*\bar{Y}$, we have $(X - \hat{X}) \perp 1_\Omega$ and $(X - \hat{X}) \perp Y - \bar{Y}$ and hence, $(X - \hat{X}) \perp \alpha Y + \beta$ for all $\alpha, \beta \in \mathbb{R}$ (why?).

Orthogonality Principle: Implications 2: MMSE

Theorem 2. (MMSE Estimator is the Conditional Expectation) Consider $L_2(\mathcal{F})$ for a sub σ -algebra and $X \in L_2$ and let $\hat{X} = \mathbb{E}[X \mid \mathcal{F}]$. Then,

$$\mathbb{E}[|X - \hat{X}|^2] \le \mathbb{E}[|X - Y|^2],\tag{2}$$

for all Y that is measurable with respect to \mathcal{F} .

Proof: We show that for any such $Y \in L_2(\mathcal{F})$, we have $Y \perp (X - \hat{X})$. This follows from

$$\begin{split} \mathbb{E}[Y(X-\hat{X})] &= \mathbb{E}[Y(X-\mathbb{E}[X\mid\mathcal{F}])] \\ \text{(by linearity)} &= \mathbb{E}[YX] - \mathbb{E}[Y\mathbb{E}[X\mid\mathcal{F}]] \\ \text{(by product rule)} &= \mathbb{E}[YX] - \mathbb{E}[\mathbb{E}[YX\mid\mathcal{F}]] \\ \text{(by tower rule)} &= \mathbb{E}[YX] - \mathbb{E}[YX] = 0. \end{split}$$

Therefore, by the orthogonality principle, the statement holds.

• Implication: For any measurements X_1, \ldots, X_k of a random variable X, the MMSE estimator for X is $\hat{X} = \mathbb{E}[X \mid X_1, \ldots, X_k]$.

Example: A Gaussian Channel-LMSE Estimator

- Let Z=X+Y be a measurement of X where $X,Y\sim \mathcal{N}(0,1)$ are independent random variables.
- \bullet The LMSE estimator for X given Z is

$$\hat{X} = \frac{\mathsf{Cov}(Z, X)}{\mathsf{Var}(Z)} Z = \frac{1}{2} Z.$$

Example: A Gaussian Channel-MMSE Estimator

- ullet What is MMSE of X given Z?
- ullet We need to find out $\tilde{X}=\mathbb{E}[X\mid Z].$ To do so, we proceed the undergrad way:
 - Note that we have:

$$F_{Z|X}(z \mid x) = \Pr(Z \le z \mid X = x)$$

= $\Pr(X + Y \le z \mid X = x)$
= $\Pr(Y \le z - x \mid X = x)$
= $F_Y(z - x)$.

- Therefore,

$$f_{Z|X}(z \mid x) = \frac{d}{dz} F_Y(z - x)$$

= $\frac{1}{\sqrt{2\pi}} e^{-\frac{(z-x)^2}{2}}$.

- Therefore,

$$f_{X|Z}(x,z) = \frac{f_{Z|X}(z,x)f_{X}(x)}{f_{Z}(z)}$$

$$= \frac{\frac{1}{\sqrt{2\pi}}e^{-\frac{(z-x)^{2}}{2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}}{\frac{1}{\sqrt{4\pi}}e^{-\frac{z^{2}}{4}}}$$

$$= \frac{\sqrt{2}}{\sqrt{2\pi}}e^{-(\frac{z^{2}}{4}-zx+x^{2})}$$

$$= \frac{\sqrt{2}}{\sqrt{2\pi}}e^{-(x-\frac{z}{2})^{2}}.$$

- Therefore, $X \mid Z=z$ is a Gaussian random variable with mean $\frac{z}{2}$ and variance $\frac{1}{2}$.
- Finally, $\tilde{X}=\mathbb{E}[X\mid Z=z]=\frac{z}{2}.$ Therefore, in this case LMMSE=MMSE.