Future Generation Computing Systems

1 유효 온도

지구에서의 태양 상수:

Solution: $S_{\rm E}=\frac{L_{\odot}}{4\pi r_{\scriptscriptstyle \rm E}^2}$

- * 지구에 받는 태양 복사 에너지 : $\pi R_{\rm E}^2 S_{\rm E}$ * 행성에서의 태양 상수 : $S_{\rm P} = S_{\rm E} \left(\frac{r_{\rm E}}{r_{\rm P}} \right)^2$
- st 행성이 받는 태양복사에너지 : $\pi R_{
 m P}^2 S_{
 m E} \left(rac{r_{
 m E}}{r_{
 m P}}
 ight)^2$
- * 알베도(A)를 고려한 행성의 행성이 받는 일사량 : $I_{
 m P}^{\downarrow}=(1-A)\pi R_{
 m P}^2S_{
 m E}\left(rac{r_{
 m E}}{r_{
 m P}}
 ight)^2$
- * Stefan-Boltzmann 법칙 : $I_{
 m P}^{\uparrow}=4\pi R_{
 m P}^2 \sigma T^4$
- * 유효 오도 (effective temperature) : $T_e = \sqrt[4]{\frac{(1-A)S_E}{4\sigma}}\sqrt{\frac{r_E}{r_P}}$

유효 온도는 행성과 태양과의 거리, 알베도에 의해 결정되며 대기의 구성 성분이나 밀도 등의 물리적 성질과는 무관하다.

그러나 실제로 대기를 투과한 태양광이 대기의 구성 성분이나 지면에 흡수되고, 또 재방출 되는 복잡한 과정을 통하여 온도가 결정되므로 이러한 온도를 복사 온도(radiative temperature)라 한다. 실제 표면 온도는 행성의 유효온도에 대기의 온실효과 등이 더해져서 결정되어진 온도이다.