

Comparando médias de 2 grupos Intervalos de Confiança da diferença entre as médias

Felipe Figueiredo

Comparando médias de 2 grupos Felipe

Figueiredo

t de Student

Sumário

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

- 🕦 A distribuição t de Student
 - A distribuição t de Student

- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não-pareados?

Sumário

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

- A distribuição t de Student
 - A distribuição t de Student
- 2 Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não-pareados?

Recapitulando

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

- Vimos que o IC é composto de 3 componentes
 - a média \bar{x} (tendência central)
 - o erro padrão da média (SEM)
 - um tal de t*, que depende de n
- Como N era grande, utilizamos $t^* \approx 2$
- Mas de onde vem esse t*? Qual seria o valor correto?

A distribuição T de Student

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student A distribuição t de Student

A distribuição T de Student

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student A distribuição t de Student

A distribuição t de Student

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

IC diferença 2

- Student (pseudônimo de W. S. Gossett [1876-1937], trabalhando para a cervejaria Guiness) criou uma distribuição que melhor se aproxima dos dados de amostras pequenas
- Tem um parâmetro graus de liberdade (df em inglês) vinculado ao tamanho da amostra n.

A distribuição t de Student

Figura: A distribuição t de Student

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

médias

Propriedades da distribuição t

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

- A distribuição tem forma de sino (simétrica, assim como a distribuição Normal)
- Reflete a maior variabilidade inerente às amostras pequenas
- O formato da curva depende do tamanho da amostra n
- Quanto mais graus de liberdade (df ≈ dados), mais a distribuição t se parece com a distribuição Normal

IC da média (aula passada)

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student A distribuição t de

C diferença 2

IC diferença 2 médias

Student

ICs dos exemplos

- IC do ex. 5.1 (PS de 100 alunos): [120.6, 126.2] mmHg
- IC do ex. 5.2 (PS de 5 alunos): [79.2, 118.8] mmHg

Pense...

Observe os tamanhos dos ICs.

Alguns valores de t, para diferentes graus de liberdade

• $N = 5 (df = 4) \Rightarrow t = 2.776$

• $N = 10 (df = 9) \Rightarrow t = 2.262$

• $N = 15 (df = 14) \Rightarrow t = 2.145$

• $N = 20 (df = 19) \Rightarrow t = 2.093$

• $N = 30 (df = 29) \Rightarrow t = 2.045$

Pense...

Qual é a relação entre N e o tamanho do IC?

$$[\bar{x} - t^*SEM, \ \bar{x} + t^*SEM]$$

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

Alguns valores de t, para diferentes graus de liberdade

• $N = 5 (df = 4) \Rightarrow t = 2.776$

• $N = 10 (df = 9) \Rightarrow t = 2.262$

• $N = 15 (df = 14) \Rightarrow t = 2.145$

• $N = 20 (df = 19) \Rightarrow t = 2.093$

• $N = 30 (df = 29) \Rightarrow t = 2.045$

Comparando médias de 2 grupos Felipe

Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

Observe que...

- df = N 1
- Para N grande, $t \rightarrow 1.960$

Por isso usamos o valor aproximado 2 no primeiro exemplo.

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis de soro (fator Y) foram medidos em 100 mulheres não-grávidas, e 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Não-grávidas: [90.0, 96.0]

Grávidas: [105.4, 114.6]

O fator Y médio é diferente em mulheres grávidas e não-grávidas?

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

Pense

• Não-grávidas: [90.0, 96.0]

Grávidas: [105.4, 114.6]

 o SEM informa quão bem você conhece a média de cada grupo

- Os ICs n\u00e3o tem sobreposi\u00e7\u00e3o ⇒ 2 popula\u00e7\u00f3es diferentes
- Como comparar estes dois grupos?

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

A distribuição t de
Student

Sumário

Comparando médias de 2 arupos

> Felipe Figueiredo

Interpretação

- - A distribuição t de Student

- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não-pareados?

Diferença entre 2 médias

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

IC diferença 2 médias

Interpretação

- Frequentemente precisamos dividir os dados em dois grupos e comparar as médias.
- Isto pode ser usado para se estudar o efeito de um tratamento em relação a um grupo controle
- ou mesmo para se comparar dois tratamentos diferentes.

Diferença entre 2 médias

• Para comparar duas médias $\bar{x_1}$ e $\bar{x_2}$, consideramos a diferença $\bar{x_1} - \bar{x_2}$

 Raciocínio: se as médias forem aproximadamente iguais, a diferença será aproximadamente zero

- Além disso, se $\bar{x_1}$ for maior que $\bar{x_2}$, a diferença será positiva
- Analogamente, se $\bar{x_1}$ for menor que $\bar{x_2}$, a diferença será negativa

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

C diterença 2 nédias

Interpretação
Participantes:

Erro padrão da diferença

- Lembre-se que para cada grupo: $SEM = \frac{DP}{\sqrt{N}}$
- Para a diferença entre 2 grupos, "somamos" os SEM
- Mas esta "soma" não é direta!
- É preciso levar em conta o uso do quadrado/raiz quadrada do DP (aula de variabilidade)

$$SE = \sqrt{SEM_1^2 + SEM_2^2}$$

Comparando médias de 2 grupos Felipe

Figueiredo

t de Student

IC diferença

Interpretação

Premissas

médias de 2 grupos Felipe Figueiredo

Comparando

de Student

IC diferença

Interpretação

- As amostras foram selecionadas aleatoriamente das respectivas populações
- As populações são Normais (Gaussianas)
- As duas populações possuem DP idênticos
- Todos os indivíduos de cada grupo vêm da mesma população
- Cada indivíduo é independente de todos os outros

Exercício 4 (cap 5)

Exercício 4 do cap 5

Os níveis de soro (fator Y) foram medidos em 100 mulheres não-grávidas, e 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

• Não-grávidas: [90.0, 96.0]

Grávidas: [105.4, 114.6]

O fator Y médio é diferente em mulheres grávidas e não-grávidas?

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Studer

IC diferença 2

Interpretação

Cálculo exercício 5.4/7.1

Diferenças: Exercício 5.4 (e 7.1)

- Média grávidas: $\bar{x_1} = 110$ unidades/ml
- Média não-grávidas: $\bar{x_2} = 93$ unidades/ml
- Diferença entre as médias: $\bar{x_d} = 17$ unidades/ml
- SEM da diferença: 2.75 unidades/ml
- $N_1 = 100, N_2 = 100 \Rightarrow df = (100-1)+1(00-1) = 198$
- $t^* = 1.97$

IC

[11.6, 22.4] unidades/ml

E o que significa isso?

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

C diferença 2 nédias

Interpretação
Participantes:

Solução

IC

[11.6, 22.4] unidades/ml

- Estamos 95% certos que a diferença real entre os grupos está entre 11.6 e 22.4
- Conclusão: o fator Y de uma mulher grávida entre 11.6 e 22.4 unidades/ml maior que em uma mulher não grávida

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

médias

Interpretação
Participantes:

Sumário

Comparando médias de 2 arupos

> Felipe Figueiredo

- - A distribuição t de Student

- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não-pareados?

Grupos não-pareados x pareados

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

o diferença nédias

nterpretação

Participantes: pareados ou não-pareados?

Aula que vem...

Grupos pareados

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

médias

Interpretação

- Até agora assumimos que os grupos e participantes são independentes
- Existe um caso importante em que pode-se considerar que eles são dependentes: quando são pareados
- Isto significa que cada participante de um grupo tem um correspondente no outro