Parameter estimation and distribution selection by ExtDist

Haizhen Wu, A. Jonathan R. Godfrey and Sarah Pirikahu 2015-05-30

Introduction

Parameter estimation and distribution selections are common tasks in statistical analysis. In the context of variables acceptance sampling (see Wu and Govindaraju 2014 etc.), when the underlying distribution model of the quality characteristic is determined, the estimated quality of a product batch measured by the proportion nonconforming, is computed through the estimated parameter(s) of the underlying distribution based on a sample. Conversely, if a collection of candidate distributions are considered to be eligible, then selection of a distribution that best describes the data becomes necessary.

The ExtDist package is devoted to provide a consistent and unified framework for these tasks.

```
library(ExtDist)
```

Parameter Estimation

Suppose we have a set of data, which has been randomly generated from a Weibull distributed population,

```
set.seed(1234)
head(X <- rWeibull(50, shape = 2, scale = 3))</pre>
```

```
[1] 0.1286348 0.6365761 0.6574366 0.2462515 0.7279375 0.2928906
```

It is possible to write code to obtain parameters via a maximum likelihood estimation procedure for the data. However, it is more convenient to use a single function to achieve this task.

```
est.par <- eWeibull(X)</pre>
```

The e- prefix we introduced in **ExtDist** is a logical extension to the d-, p-, q-, r- prefixes of the distribution-related functions in R base package. Moreover, the output of e- functions is defined as a S3 class object.

```
class(est.par)
```

```
[1] "eDist"
```

The estimated parameters stored in the "eDist" object can be easily plugged into other d-, p-, q-, r- functions in **ExtDist** to get the density, percentile, quantile and random variates for a distribution with estimated parameters.

```
dWeibull(seq(0,2,0.4), params = est.par)
pWeibull(seq(0,2,0.4), params = est.par)
qWeibull(seq(0,1,0.2), params = est.par)
rWeibull(10, params = est.par)
```

To remain compatible with current convention, these functions also accept the parameters as individual arguments, so the following code variations are also permissible.

```
dWeibull(seq(0,2,0.4), shape = est.par$shape, scale = est.par$scale)
pWeibull(seq(0,2,0.4), shape = est.par$shape, scale = est.par$scale)
qWeibull(seq(0,1,0.2), shape = est.par$shape, scale = est.par$scale)
rWeibull(10, shape = est.par$shape, scale = est.par$scale)
```

Distribution selection

As a S3 class object, several S3 methods have been developed in **ExtDist** to extract the distribution selection criteria and other relevant information.

```
logLik(est.par) # log likelihood

[1] -21.69997

AIC(est.par) # Akaike information criterion
AICc(est.par) # corrected Akaike information criterion

[1] 47.65526

BIC(est.par) # Bayes' Information Criterion.

[1] 51.22399

MDL(est.par) # minimum description length

[1] 24.0096

vcov(est.par) # variance-covariance matrix of the parameters of the fitted distribution

shape scale
shape 0.1059903 0.1719569
scale 0.1719569 0.3720078
```

Based on these criteria, for any sample, the best fitting distribution can be obtained from a list of candidate distributions. For example:

```
Ozone <- airquality$Ozone
Ozone <- Ozone[!is.na(Ozone)] # Removing the NA's from Ozone data
summary(Ozone)</pre>
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 18.00 31.50 42.13 63.25 168.00
```

```
best <- bestDist(Ozone, candDist=c("Gamma", "Weibull", "Normal", "Exp"), criterion = "logLik");best

[1] "Weibull"
attr(,"best.dist.par")

Parameters for the Weibull distribution.
(found using the numerical.MLE method.)

Parameter Type Estimate S.E.
    shape shape 1.69927261 0.204973539
    scale scale 0.04033476 0.005650233

attr(,"criterion.value")
    Gamma Weibull Normal Exp
-541.5947 -541.5376 -569.6492 -549.9263</pre>
```

When more than one set of results are of interest for a list of candidate distribution fits, a summary table can be output by using the function DistSelCriteria.

```
Gamma Weibull Normal Exp
logLik -541.5947 -541.5376 -569.6492 -549.9263
AIC 1087.189 1087.075 1143.298 1101.853
AICc 1087.296 1087.181 1143.404 1101.888
BIC 1092.697 1092.582 1148.805 1104.606
```

Multiple distributions can also be compared visually using the compareDist function.

```
compareDist(Ozone, attributes(best)$best.dist.par, eNormal(Ozone))
```


If the best fit distribution has been determined plot.eDist can provide the corresponding histogram with fitted density curve, Q-Q and P-P plot for this distribution.

plot(attributes(best)\$best.dist.par)

Histogram of data

Parameters for the Weibull distribution. (found using the numerical.MLE method.)

Parameter Type Estimate S.E. shape shape 1.69927261 0.204973539 scale scale 0.04033476 0.005650233

Weighted sample

Another notable feature of the $\operatorname{ExtDist}$ package is that it can deal with weighted samples. Weighted samples appear in many contexts, e.g.: in non-parametric and semi-parametric deconvolution (see e.g. Hazelton and Turlach 2010 etc.) the deconvoluted distribution can be represented as a pair (Y, w) where w is a vector of weights with same length as Y. In size-biased (unequal probability) sampling, the true population is more appropriately described by the weighted (with reciprocal of the inclusion probability as weights) observations rather than the observations themselves. In Bayesian inference, the posterior distribution can be regarded as a weighted version of the prior distribution. Weighted distributions can also play an interesting role in stochastic population dynamics.

In ExtDist, the parameter estimation was conducted by maximum weighted likelihood estimation, with the estimate $\hat{\theta}$ of θ being defined by

$$\hat{\boldsymbol{\theta}}^{w} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} w_{i} \ln f(Y_{i}; \boldsymbol{\theta}), \tag{1}$$

where f is the density function of the ditstribution to be fitted.

For example, for a weighted sample with

```
Y <- c(0.1703, 0.4307, 0.6085, 0.0503, 0.4625, 0.479, 0.2695, 0.2744, 0.2713, 0.2177, 0.2865, 0.2009, 0.2359, 0.3877, 0.5799, 0.3537, 0.2805, 0.2144, 0.2261, 0.4016)
w <- c(0.85, 1.11, 0.88, 1.34, 1.01, 0.96, 0.86, 1.34, 0.87, 1.34, 0.84, 0.84, 0.83, 1.09, 0.95, 0.77, 0.96, 1.24, 0.78, 1.12)
```

the parameter estimation and distribution selection for weighted samples can be achieved by including the extra argument w:

```
eBeta(Y,w)
Parameters for the Beta distribution.
(found using the MOM method.)
Parameter Type Estimate
    shape1 shape 3.016450
    shape2 shape 6.561803
bestDist(Y, w, candDist = c("Beta_ab", "Laplace", "Normal"), criterion = "AIC")
Warning in if (method == "analytic.MLE") {: the condition has length > 1
and only the first element will be used
[1] "Normal"
attr(,"best.dist.par")
Parameters for the Normal distribution.
(found using the unbiased.MLE method.)
Parameter
               Type Estimate
     mean location 0.3149269 0.03157766
              scale 0.1412196 0.02290885
attr(, "criterion.value")
 Beta_ab
           Laplace
                       Normal
-14.76974 -17.67491 -18.10897
DistSelCriteria(Y, w, candDist = c("Beta_ab", "Laplace", "Normal"),
                         criteria = c("logLik", "AIC", "AICc", "BIC"))
Warning in if (method == "analytic.MLE") {: the condition has length > 1
and only the first element will be used
       Beta_ab
                 Laplace
                           Normal
logLik 11.38487 10.83745 11.05448
AIC
       -14.76974 -17.67491 -18.10897
      -12.10308 -16.96903 -17.40309
AICc
BIC
       -10.78682 -15.68344 -16.11751
```

References

Hazelton, Martin L., and Berwin A. Turlach. 2010. "Semiparametric Density Deconvolution." Scandinavian Journal of Statistics 37 (1): 91-108.

Wu, Haizhen, and Kondaswamy Govindaraju. 2014. "Computer-aided variables sampling inspection plans for compositional proportions and measurement error adjustment." Computers & Industrial Engineering 72 (June): 239–46.