Problem Set 7 Abstract Algebra II

Bennett Rennier barennier@gmail.com

January 15, 2018

Section 12.1

Ex 1 Let M be a module over the integral domain R.

- a) Suppose x is a nonzero torsion element in M. Show that x and 0 are "linearly dependent." Conclude that the rank of Tor(M) is 0, so that in particular any torsion R-module has rank 0.
- b) Show that the rank of M is the same as the rank of the (torsion free) quotient $M/\operatorname{Tor} M$.
- *Proof.* a) Since x is a nonzero torsion element of M, this means that r.x = 0 for some nonzero r. Thus, we have that r.x + r.0 = 0 + 0 = 0, which proves that x and 0 are linearly dependent (as we can represent zero using nonzero coefficients).
 - Now suppose that $A \subseteq \text{Tor}(M)$ is a nonempty set of linearly independent elements. Then, for each nonzero element $x \in A$, there's a r such that r.x = 0. If we use these r's as the coefficients of these elements, then we've found a way to represent 0 using not-all-zero coefficients. [Note: If $0 \in A$, then we can give it any coefficient we want, so that doesn't matter.] This a contradiction, which proves that no such A exists. It follows then that the rank of Tor(M) is zero.
- b) Let the rank of M be m and let $x_1, \ldots, x_m \in M$ be a maximal linearly independent set. We see that $r.x_i \neq 0$ for all $r \in R$, as otherwise, $\{x_i\}$ wouldn't be linearly independent. This proves that $x_i \notin \text{Tor } M$. We then see that

$$\lambda_1(x_1 + \operatorname{Tor} M) + \dots + \lambda_m(x_m + \operatorname{Tor} M) = \lambda_1 x_1 + \dots + \lambda_m x_m + \operatorname{Tor} M = 0 + \operatorname{Tor} M$$

which means that

$$\lambda_1 x_1 + \dots + \lambda_m x_m \in \text{Tor } M$$

which proves there is some $0 \neq r \in R$ such that

$$r(\lambda_1 x_1 + \dots + \lambda_m x_m) = 0$$

Since x_1, \ldots, x_m are linearly independent, this proves that $r\lambda_i = 0$. Since R is an integral domain and $r \neq 0$, this proves that $\lambda_i = 0$. Thus, $x_1 + \text{Tor } M, \ldots, x_m + \text{Tor } M$ is linearly independent in M/Tor M. Thus, $m \leq \text{rank}(M/\text{Tor } M)$.

Now, conversely, let $y_1 + \text{Tor } M, \dots, y_n + \text{Tor } M$ be a maximal linearly independent set in M/Tor M. We then see that

$$\lambda_1 y_1 + \dots + \lambda_n y_n = 0$$

$$\Longrightarrow \lambda_1 y_1 + \dots + \lambda_n y_n + \text{Tor } M = 0 + \text{Tor } M$$

$$\Longrightarrow \lambda_1 (y_1 + \text{Tor } M) + \dots + \lambda_n (y_n + \text{Tor } M) = \text{Tor } M$$

$$\Longrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

which proves y_1, \ldots, y_n is then a linearly independent set of M. Thus, $\operatorname{rank}(M/\operatorname{Tor} M) \leq m$. This proves that $\operatorname{rank}(M/\operatorname{Tor} M) = \operatorname{rank}(M)$.

Ex 2 Let M be a module over the integral domain R.

- a) Suppose that M has rank n and that x_1, x_2, \ldots, x_n is any maximal set of linearly independent elements of M. Let $N = Rx_1 + \cdots + Rx_n$ be the submodule generated by x_1, x_2, \ldots, x_n . Prove that N is isomorphic to R^n and that the quotient M/N is a torsion R-module (equivalently, the elements x_1, \ldots, x_n are linearly independent and for any $y \in M$ there is a nonzero element $r \in R$ such that ry can be written as a linear combination $r_1x_1 + \cdots + r_nx_n$ of the x_i).
- b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., $N \simeq R^n$) such that the quotient M/N is a trosion R-module, then M has rank n. [Let $y_1, y_2, \ldots, y_{n+1}$ be any n+1 elements of M. Use the fact that M/N is torsion to write $r_i y_i$ as a linear combination of a basis for N for some nonzero elements r_1, \ldots, r_{n+1} of R. Use an argument as in the proof of Proposition 3 to see that the $r_i y_i$, and hence also the y_i , are linearly dependent.]
- *Proof.* a) First, we prove that $N \simeq R^n$. Let $\varphi : R^n \to N$ where $\varphi(r_1, \ldots, r_n) = r_1 x_1 + \cdots + r_n x_n$. This map is clearly surjective. I claim that it's also surjective. To prove this, suppose $(r_1, \ldots, r_n) \in \ker \varphi$. Then this means that $\varphi(r_1, \ldots, r_n) = r_1 x_1 + \cdots + r_n x_n = 0$. Since x_1, \ldots, x_n are linearly independent, this must mean that $r_1 = r_2 = \cdots = r_n = 0$. Thus, $\ker \varphi = \{(0, \ldots, 0)\}$, which proves injective. We see that this map is a R-module homomorphism as

$$\varphi((r_1, \dots, r_n) - \lambda(s_1, \dots, s_n)) = \varphi(r_1 - \lambda s_1, \dots, r_n - \lambda s_n)$$

$$= (r_1 - \lambda s_1)x_1 + \dots + (r_n - \lambda s_n)x_n = (r_1x_1 + \dots + r_nx_n) - \lambda(s_1x_1 + \dots + s_nx_n)$$

$$= \varphi(r_1, \dots, r_n) - \lambda\varphi(s_1, \dots, s_n)$$

which finally proves that $N \simeq \mathbb{R}^n$. Now to prove that M/N is torsion. Let $x + N \in M/N$. If $x \in N$, then 1.(x + N) = N, which would mean that x is torsion. Now suppose that

 $x \notin N$. This means that $x \neq x_i$ (as otherwise that would mean that $x \in N$). This means that x_1, \ldots, x_n, x can't be linearly independent in M, as the rank of M is only n. Thus, $r_0x = r_1x_1 + \cdots + r_nx_n$ for some $r_i \in R$, which means that $r_0x \in N$. This proves that $r_0(x+N) = r_0x + N = N$, which shows that M/N is a torsion R-module.

Ex 3 Let R be an integral domain and let A and B be R-modules of ranks m and n respectively. Prove that the rank of $A \oplus B$ is m + n. [Use the previous exercise.]

Proof. By the previous exercise, we know that there exists free submodules $A' \subseteq A$ and $B' \subseteq B$ with free ranks m and n respectively, such that A/A' and B/B' are torsion. We see then that $A' \oplus B' \subseteq A \oplus B$ is then free. We also see that $(A \oplus B)/(A' \oplus B') \simeq_R (A/A') \oplus (B/B')$. Since R is an integral domain, then the direct sum of torsion modules is torsion. This proves that $(A \oplus B)/(A' \oplus B')$ is torsion. Since $A' \oplus B'$ is free and has rank n+m, then $A \oplus B$ has rank n+m.

Ex 5 Let $R = \mathbb{Z}[x]$ and let M = (2, x) be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. [Find a nontrivial R-linear dependence between these two elements.] Show that the rank of M is 1 but that M is not free of rank 1.

Proof. We see that 2.x + (-x).2 = 2x - 2x = 0, which proves that 2 and x are not R-linearly independent. Thus, $\{2, x\}$ is not a basis of M.

Suppose that $a, b \in M$ are nonzero. Since $M \subseteq R$, we have that b.a+(-a).b = ab+ab = 0. This proves that the rank of M is at most 1. Since $\mathbb{Z}[x]$ is an integral domain, any singleton is linearly independent. Thus, M has exactly rank 1.

Suppose that M was free of rank 1. This means that M = Ra for some a. This would mean that 2 = ra for some $r \in R$, which proves that $a = \{\pm 1, \pm 2\}$ as $R = \mathbb{Z}[x]$. If $a = \pm 1$, this would mean that Ra = a. This is a contradiction, as we know that $(2, x) \neq \mathbb{Z}[x]$. Suppose then that a = 2. That would mean that $M = 2\mathbb{Z}[x]$. However, this is a contradiction as $x \notin 2\mathbb{Z}[x]$. Similarly, we have a contradiction if a = -2. This proves that M is not free of rank 1 as a $\mathbb{Z}[x]$ -module.

Additional Exercises

Ex A As in class, a graded ring is a ring R where $R = \bigoplus_{d \in D} R_d$ as abelian groups under the + operation and $R_{d_1}R_{d_2} \subseteq R_{d_1+d_2}$ for all $d_1, d_2 \in D$. An element $r \in R$ is called homogeneous of degree d if $r \in R_d$ for some d. Show that the following are equivalent for an ideal I of a graded ring R.

- 1) If we define $I_d = I \cap R_d$, then $I = \bigoplus_{d \in D} I_d$.
- 2) The ideal I has a set of generators which are homogeneous.
- 3) If we define $(R/I)_d = R_d/I_d$, then $R/I = \bigoplus_{d \in D} (R/I)_d$ is a graded ring.

An ideal which satisfies these equivalent conditions is called a *graded ideal* or *homogeneous ideal*.

Proof. $1 \Longrightarrow 2$) Suppose that $I = \bigoplus_{d \in D} I_d$. Let $G = \bigcup_{d \in D} I_d$. Since $I_d \subseteq R_d$, that means that every element of I_d is homogeneous, which means that G is a set of homogeneous elements. If $x \in I = \bigoplus_{d \in D} I_d$, then that means that $x = \sum_{d \in D} h_d$, where $h_d \in I_d$ and $h_d = 0$ for all but finitely many d. This proves that $x \in \langle G \rangle$, and thus that G a set of generators which are homogeneous.

 $2 \implies 1$) Suppose that I has a set of generators which are homogeneous and let $H = \{h_j\}_{j \in J}$ be this set. Let $x \in I$. Then we see that $x = \sum_{j \in J} \lambda_j h_j$. Let h'_d be the collection of the terms that have degree d. This means that $x = \sum_{d \in D} h'_d$. Since $h'_d \in I_d$, we have that $x \in \bigoplus_{d \in D} I_d$. We also trivally have that $\bigoplus_{d \in D} I_d \subseteq I$, which proves that $I = \bigoplus_{d \in D} I_d$.

Ex B A homomorphism of graded rings $\varphi: R \to S$ is a ring homomorphism which satisfies $\varphi(R_d) \subseteq S_d$ for all $d \in D$. Show that the kernel of such a homomorphism is a graded ideal.

Proof. Let $x_{k_1} + \cdots + x_{k_n} \in \ker \varphi$, where $x_{k_i} \in R_{k_i}$ and the k_i 's are distinct. Since φ is a ring homomorphism, this means that $\varphi(x_{k_1} + \cdots + x_{k_n}) = \varphi(x_{k_1}) + \cdots + \varphi(x_{k_n}) = \varphi(0) = 0$. Since φ preserves degree, this means that $\varphi(x_{k_i}) \in S_{k_i}$. Since $S = \bigoplus_d S_d$, there's only one way to represent zero using elements of differing degrees, that is, they must each be zero themselves. This proves that $\varphi(x_{k_i}) = 0$, which proves that $x_{k_i} \in \ker \varphi$. Thus, $\ker \varphi$ is a graded ideal.

Ex C If R is a graded ring and M is an R-module, then we say M is a graded module if $M = \bigoplus_{d \in D} M_d$ as abelian groups under the + operation and $R_{d_1}.M_{d_2} \subseteq M_{d_1+d_2}$ for all $d_1, d_2 \in D$.

- C1) Show that the annihilator of M is a graded ideal of R.
- C2) Decide on the correct definition of a homomorphism of graded *R*-modules and show that the kernel and image of such a map is again a graded module.
- C3) Show that the collection of graded R-modules and graded R-module homomorphisms defines a category.

Proof. C1) Let $x_{k_1} + \cdots + x_{k_n} \in \text{Ann}(M)$, where $x_{k_i} \in R_{k_i}$ and the k_i 's are distinct. Fix j and let $m_j \in M_j \subseteq M$. This means that

$$(x_{k_1} + \dots + x_{k_n}).m_j = x_{k_1}.m_j + \dots + x_{k_n}.m_j = 0$$

Since $m_j \in J$ and $x_{k_i} \in R_{k_i}$, that means that $x_{k_i}.m_j \in M_{j+k_i}$. Since j was fixed, that means that the $j + k_i$'s are distinct. Since we have homogeneous elements of distinct degrees adding to zero, then they must all be zero themselves. Thus, $x_{k_i}.m_j = 0$. If we vary j, we see that x_{k_i} annihilates any homogeneous element of M. Since M is the direct sum of sets of homogeneous elements, that means that x_{k_i} annihilates all of M. Thus, $x_{k_i} \in \text{Ann}(M)$, which proves that Ann(M) is a graded ideal.