Definitions are bi-directional. (((=))
Properties are one-directional (=)

Facts about Poisson Process #darrivals: N(t) = 2 $\{N(t)\}_{t70}$ w/ rate λ . λ -) arrival rate/unit time $\frac{1}{0}$ to $\frac{1}{t_2}$ to $\frac{1}{t_2}$ to $\frac{1}{t_3}$

O Process has independent increments

N(tz)-N(t,) IL N(tz) - N(tz)

length doesn't matter on interval, they just need NOT overlap

2 #arrivals in interval $[t_i, t_i] = \mathcal{N}(t_i) - \mathcal{N}(t_i)$ where

N(tz)-N(ti) ~ Pois(x(tz-ti))

3) The interarrival times $\{T_i\}_{i=1}^{\infty}$ are iid where

Ti~ enp(x)

(4) Given $N(\tau) = k$, these k arrivals are iid $U[0,\tau)$ i.e t; ~U[0,k]

5
$$\mu_{N}(t) = \mathbb{E}[N(t)] = \lambda t$$
 i.e arrival rate* time

 $Var(N(t)) = \lambda t$ (Poisson property)

$$R_{N}(s,t) \triangleq \mathbb{E}[N(s)N(t)] \quad \text{assume set (if set)}$$

$$= \mathbb{E}[N(s)(N(s)+N(t)-N(s))]$$

$$= \mathbb{E}[N(s)^{2}] + \mathbb{E}[N(s)(N(t)-N(s))] \quad \text{independ.}$$

$$= \lambda s + (\lambda s)^{2} + \mathbb{E}[N(s)] \mathbb{E}[N(t)-N(s)] \quad \text{increments}$$

$$= \lambda s + (\lambda s)^{2} + \lambda s (\lambda(t-s)) \quad \text{TE}[N(t)] - \mathbb{E}[N(s)]$$

then

Example: Store opens at 8AM every day.

Customers arrivals: Poisson ($\chi = \frac{a_{min}}{b_{min}}$)

One day, owner opens up (atc- at 10AM.

What is the probability owner missed a customer?

Expected waiting time to see first customer?

1—Pr [V(z) = 0]

SAM | DAM | | 1—Pr [$T_1 > 2$]

don't know | 1-e⁻⁵⁽²⁾

;f customer arrived at 10

condition on ti= time last customer arrived before 10 Am

Hi, ti

 $Pr[W > w \mid N(2) = i$, the i^{th} arrival is at ti] $\Rightarrow Pr[T_{i+1} > 10 - ti + w \mid T_{i+1} > 10 - ti]$ $= Pr[T_{i+1} > w]$ $= e^{-\lambda w}$

Gaussian Random Processes

Definition:

X(t) is Gaussian if Yn, and Y (ti) =1

1.V.5

X (t),..., X(tn) are JUINTLY Gaussian

"Completely specified by first two moments

Properties

O completely specified by its mean function $\mu_{x}(t)$ and autocorrelation function $R_{x}(t)$ autocoverience function $C_{x}(t)$.

Example $f_{x(t_1),x(t_2)} \left(x_{1,1}x_{2} \right) \sim \mathcal{N} \left(\begin{bmatrix} \mu_{x}(t_1) \\ \mu_{x}(t_2) \end{bmatrix}, K = \begin{bmatrix} C_{x}(t_1) & C_{x}(t_1) \\ C_{x}(t_2) & C_{x}(t_2) \end{bmatrix} \right)$

2 WSS ⇒ S