Worksheet 12

Spring 2016

MATH 222, Week 12: Series! (and vectors maybe...)

Name:

You aren't necessarily expected to finish the entire worksheet in discussion. There are a lot of problems to supplement your homework and general problem bank for studying.

Problem 1. Let $a_n = \frac{1}{n^2 - n}$ and $S_N = \sum_{n=2}^N a_n$.

- (a) Use one of your convergence tests to conclude that this series converges.
- (b) Now we'll find what it converges to. Use partial fractions to rewrite a_n
- (c) Use part(a) to write out S_2, S_3, S_4 explicitly and notice how terms cancel. Generalize this to find a formula for S_N .
- (d) Compute $\sum_{n=2}^{\infty} a_n$ i.e. $\lim_{N\to\infty} S_N$.

Solution 1.

(a) We can use the limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Consider the limit

$$\lim_{n \to \infty} \frac{n^2}{n^2 - n} = 1 > 0$$

Using the limit comparison test we know that because $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges that $\lim_{n\to\infty} \frac{n^2}{n^2-n}$ converges.

- (b) We see $a_n = \frac{1}{n(n-1)} = \frac{-1}{n} + \frac{1}{n-1}$.
- (c) $S_2 = 1 \frac{1}{2}$, $S_3 = 1 \frac{1}{2} + \frac{1}{2} \frac{1}{3}$ and

$$S_4 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = 1 - \frac{1}{4}$$

We see that this is a telescoping series and in general $S_N = 1 - \frac{1}{N}$.

(d) So $\sum_{n=2}^{\infty} a_n = \lim_{N \to \infty} 1 - \frac{1}{N} = 1$, so the series equals 1.

Problem 2. If x > 2, use the geometric series formula to find $\sum_{n=0}^{\infty} \frac{2^{n+1}}{x^n}$

Solution 2.

 $\sum_{n=0}^{\infty} \frac{2^{n+1}}{x^n} = 2\sum_{n=0}^{\infty} \left(\frac{2}{x}\right)^n$. When x > 2 we have |2/x| < 1 and so the series converges and it is a geometric series so

$$2\sum_{n=0}^{\infty} \left(\frac{2}{x}\right)^n = \frac{2}{1 - 2/x}$$

Problem 3. Using convergence tests determine the convergence or divergence of the following series:

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(b) $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{n^4+1}$
(c) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{1}{2+3^n}$
(e) $\sum_{n=1}^{\infty} \sin(n)$
(f) $\sum_{n=1}^{\infty} \frac{5^k}{3^k+4^k}$

(c)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

(e)
$$\sum_{n=1}^{\infty} \sin(n)$$

(f)
$$\sum_{n=1}^{\infty} \frac{5^k}{3^k + 4^k}$$

Solution 3.

(a) We can use the integral test.

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{a \to \infty} -e^{-x^{2}} / 2 \bigg|_{1}^{a} = 0 + \frac{1}{2e}$$

As this converges we conclude the series converges.

(b) If we use the alternating series test we conclude this series converges.

(c) If we use the ratio test

$$\lim_{n \to \infty} \left| \frac{2^{n+1} n!}{2^n (n+1)!} \right| = 0 < 1$$

By the ratio test this converges.

(d) We can use the direct comparison test, comparing to $a_n = \frac{1}{3^n}$ because

$$\frac{1}{2+3^n}<\frac{1}{3^n}$$

 $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is a geometric series and converges, so our series converges.

(e) By the divergence test this diverges because $\lim_{n\to\infty} \sin(n)$ does not exist and so this series cannot converge. We could also use the integral test.

(f) This diverges by the divergence test. To see a more explicit solution this was a quiz problem, check those solutions!

Problem 4. Let $\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. Compute

(a)
$$||\vec{a}|| = \sqrt{1+4+4} = 3$$

(b)
$$2\vec{a} = \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix}$$

(c)
$$||2\vec{a}||^2 = (4 + 16 + 16) = 36$$

(d)
$$\vec{a} + \vec{b} = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}$$