Digital Signatures

Chanathip Namprempre

Department of Computer Science Reed College

Outline

Syntax of digital signature schemes

Security Definitions of digital signature schemes

RSA digital signatures

Hash-then-invert paradigm

Syntax of digital signature schemes

Syntax

A digital signature scheme DS = (KG, Sign, VF) is a triple of algorithms.

alg	input	output	notation	maybe randomized?	maybe stateful?
κ	-	key pk, sk	$(pk, sk) \stackrel{\$}{\leftarrow} KG$	yes	no
Sign	$(pk, sk) \in Keys(DS)$ $M \in \{0, 1\}^*$	signature $\sigma \in \{0,1\}^* \cup \{\bot\}$	$\sigma \stackrel{\$}{\leftarrow} Sign_{sk}(M)$	yes	yes
VF	$(pk, sk) \in Keys(DS)$ $M, \sigma \in \{0, 1\}^*$	message $b \in \{0,1\}$	$M \leftarrow VF_{pk}(M, \sigma)$	no	no

Correctness

For all $(pk, sk) \in Keys(DS), M \in \{0, 1\}^*$,

$$\Pr\left[\sigma = \bot \ \mathsf{OR} \ \mathsf{VF}_{pk}(M,\sigma) = 1 \ : \ \sigma \overset{\$}{\leftarrow} \mathsf{Sign}_{sk}(M) \ \right] = 1 \ .$$

Observations

- 1. Even the receiver cannnot forge.
- 2. The verifier does not need to have any secrets.
- 3. For this to work, the verifier VF must have authentic pk!
- 4. Usage of keys is the mirror image of that of asymmetric encryption.

Outline

Syntax of digital signature schemes

Security Definitions of digital signature schemes

RSA digital signatures

Hash-then-invert paradigm

Unforgeability against CMA

<u>Idea</u>: Same as *MAC* except we give the forger the public key.

Let DS = (KG, Sign, VF) be a DS scheme, and let A be an adversary.

Subroutine Initialize
$$b \stackrel{s}{\leftarrow} \{0,1\}; (pk,sk) \stackrel{s}{\leftarrow} \mathsf{KG}$$
 $S \leftarrow \emptyset$ Return pk
Subroutine $\mathsf{Sign}(M)$ $\sigma \stackrel{s}{\leftarrow} \mathsf{Sign}_{sk}(M)$ $S \leftarrow S \cup \{M\}$

Subroutine Finalize (M, σ) $d \leftarrow \mathsf{VF}(pk, M, \sigma)$ Return $(d = 1 \land M \notin S)$

Return σ

 $pk \stackrel{5}{\leftarrow} \text{Initialize}$ $(M, \sigma) \stackrel{5}{\leftarrow} A^{\text{Sign}}(pk)$ Return Finalize (M, σ)

Experiment $\mathbf{Exp}_{DS}^{\text{wuf-cma}}(A)$

wuf-cma advantage of A mounting a CMA against DS:

$$\mathbf{Adv}^{\mathsf{wuf\text{-}cma}}_{\mathsf{DS}}(\mathit{A}) = \mathsf{Pr}\left[\; \mathbf{Exp}^{\mathsf{wuf\text{-}cma}}_{\mathsf{DS}}(\mathit{A}) \Rightarrow \mathsf{true}\;\right] \; .$$

Digital Signatures: observations about security definition

observations

- 1. for MAC, we give A both $MAC_K(\cdot)$ and $VF_K(\cdot, \cdot)$
- 2. resources:
 - t = running time
 - $\mu=$ sum of lengths of oracle queries plus length of message in forgery
 - ightharpoonup q = number of queries to signing oracle.

Outline

Syntax of digital signature schemes

Security Definitions of digital signature schemes

RSA digital signatures

Hash-then-invert paradigm

RSA trapdoor signatures

```
Key generation : use K_{rsa} 	o (N,e), (N,p,q,d) such that ed \equiv 1 mod \phi(N) e,d \in \mathbf{Z}^*_{\phi(N)} N=p\cdot q
```

We know

- 1. $RSA_{N,e}(\cdot)$ is easy
- 2. $RSA_{N,d} = RSA_{N,e}^{-1}$
- 3. without d, $RSA_{N,e}^{-1}$ is hard

So to sign
$$M$$
: assume $M \in \mathbf{Z}_N^*$
 $\sigma \leftarrow RSA_{N,d}(M)$ [invert RSA on point M]

Scheme: textbook RSA signature

$$\begin{array}{c|c} Sign_{N,p,q,d}(M) & VF_{N,e}(M,x) \\ If \ M \notin \mathbf{Z}_N^* \ \text{then} \ \bot \\ x \leftarrow M^d \ \text{mod} \ N \\ Return \ x \end{array} \quad \begin{array}{c|c} If \ (M \notin \mathbf{Z}_N^* \ \text{or} \ x \notin \mathbf{Z}_N^*) \ \text{then return} \ 0 \\ If \ M = x^e \ \text{mod} \ N \ \text{then return} \ 1 \ \text{else return} \ 0 \end{array}$$

Above, notice

- 1. Sign is deterministic and stateless
- 2. $MsgSp(N, e) = \mathbf{Z}_N^*$
- 3. correctness condition : pass since $RSA_{N,e}^{-1} = RSA_{N,d}$ So $x = M^d$ and $x^e = M^{ed} = M$ ok

BUT Textbook RSA signature scheme is insecure!

Breaking textbook RSA signature scheme

Forger F1

```
idea: just outputs (1,1)

VF_pk(1,1): if 1=1^e \mod N then return 1 else return 0
```

Forger F2

idea: just pick x first, then compute the message M

$$F^{Sign_sk(\cdot)}(N,e)$$

 $x \stackrel{\$}{\leftarrow} \mathbf{Z}_N^e$
 $M \leftarrow x^e \mod N$
return (M,x)

The verification algorithm VF will check whether $M=x^e$. So VF returns 1.

Breaking textbook RSA signature scheme (cont.)

Forger F3

We can even forge any given message M!

```
F^{Sign_sk(\cdot)}(N,e):
M_1 \stackrel{\$}{\leftarrow} \mathbf{Z}_N^* - \{1,M\}
M_2 \leftarrow MM_1^{-1} \mod N
x_1 \leftarrow Sign_sk(M_1); x_2 \leftarrow Sign_sk(M_2)
x \leftarrow x_1x_2 \mod N
Return (M,x)
```

Bottom line

There's more to signatures than one-wayness of the underlying function!

Observations

- From attacks we have seen, RSA function is homomorphic, i.e. $M^d = M_1^d M_2^d$ when $M = M_1 M_2$
- ► Also, messages usually aren't group elements.
- ► To deal with these problems, we add a pre-processing step: Hash messages into \mathbf{Z}_N^* first.

Outline

Syntax of digital signature schemes

Security Definitions of digital signature schemes

RSA digital signatures

Hash-then-invert paradigm

Hash-then-invert paradigm

scheme

Let K_{rsa} be an RSA generator with security parameter k. Let Keys be the set of all moduli N that can be output by K_{rsa} . Let Hash be a family of functions whose key space is Keys and $\forall N \in Keys$, $Hash_N : \{0,1\}^* \to \mathbf{Z}_N^*$. Let $DS = (K_{rsa}, Sign, VF)$ be the digital signature scheme defined as

$$\begin{array}{c|cccc} Sign_{N,p,q,d}(M) & VF_{N,e}(M,x) \\ y \leftarrow Hash_N(M) & y \leftarrow Hash_N(M) \\ x \leftarrow y^d \bmod N & y' \leftarrow x^e \bmod N \\ Return x & If $y = y'$ then return 1 else return 0$$

How this scheme prevents attacks we have seen

Recall Forger F1

idea: just outputs (1,1)

 $VF_pk(1,1)$: if $1=1^e \mod N$ then return 1 else return 0

This works when $Hash_N(1) \equiv 1^e \pmod{N}$.

So we make sure that $Hash_N(1) \not\equiv 1 \pmod{N}$.

How this scheme prevents attacks we have seen (cont.)

Recall Forger F2

idea: just pick x first, then compute the message M

$$F^{Sign_sk(\cdot)}(N, e)$$

$$x \stackrel{\$}{\leftarrow} \mathbf{Z}_N^*$$

$$M \leftarrow x^e \mod N$$

$$\text{return } (M, x)$$

For this to work, need M such that $Hash_N(M) \equiv x^e \pmod{N}$

If Hash is "good," it is hard to find such M that works.

How this scheme prevents attacks we have seen (cont.)

Recall Forger F3

We can even forge any given message M!

$$\begin{split} F^{Sign_sk(\cdot)}(N,e): \\ M_1 &\stackrel{\$}{\leftarrow} \mathbf{Z}_N^* - \{1,M\} \\ M_2 &\leftarrow MM_1^{-1} \bmod N \\ x_1 &\leftarrow Sign_sk(M_1); x_2 \leftarrow Sign_sk(M_2) \\ x &\leftarrow x_1x_2 \bmod N \\ \text{Return } (M,x) \end{split}$$

For this to work, we need $Hash_N(M_1) \cdot Hash_N(M_2) = Hash_N(M)$.

With a "good" hash function, this is rare.

Bottom line

The hash function destroys the algebraic structure needed for the attacks to work.

BUT we also need collision-resistance!

Otherwise, we can attack.

Attack against hash-then-invert scheme if Hash is bad

Suppose M_1 , M_2 be messages such that $\exists N$,

$$Hash_N(M_1) \equiv Hash_N(M_2) \pmod{N}$$

Then, we can forge signing algorithm when modulus is N as follows:

Forger F

```
Forger F^{Sign_{N,p,q,d}(\cdot)}(N,e):

x_1 \leftarrow Sign_{N,p,q,d}(M_1)

Return (M_2,x_1)
```

Why does this work?

Properties we need from *Hash* for the hash-then-invert paradigm

Necessary properties of Hash are at least

- destroy algebraic properties of the messages
- ► CR2-KK
- > ???

We want sufficient conditions! So we need provable security. But first, let's consider some candidate hash functions.

PKCS # 1 signature scheme

PKCS- $Hash_N(M) = 0001 \ FFFF \cdots FF00 || h(M) \ [k \ bits]$

where $h: \{0,1\}^* \to \{0,1\}^I$ and $I \ge 128$ and h is assumed to be collision-resistant and k = |N|.

(In practice, h = SHA1(I = 160). Used to be h = MD5(I = 128).)

Notice:

- 1. First 4 bits are 0. So as an int, PKCS- $Hash_N(\cdot) \leq N$
- 2. Most #s between 1 and N are in \mathbf{Z}_N^* . (There are ((p-1)(q-1) of them to be exact.)
- 3. If *h* is collision-resistant, then so is *PKCS-Hash*.

Would hash-then-invert with PKCS-Hash work ??

PKCS-Hash

PKCS-Hash seems to destroy the algebraic properties of messages, i.e.

- ► hard to imagine PKCS-Hash $(M_1) \cdot PKCS$ -Hash (M_2)
- ► PKCS-Hash seems collision-resistant.
- ▶ BUT there's a cause of concern.
 - ▶ We assume $RSA_{N,e}$ is one-way.
 - ▶ Q: what do we invert $RSA_{N,e}$ on? $Sign_{N,p,q,d}(M)$ $y \leftarrow PKCS\text{-}Hash_N(M)$ $x \leftarrow y^d \mod N$ Return x

A: We invert $RSA_{N,e}$ on output points of PKCS-Hash.

Security of PKCS # 1

Let S_N be the set of these points, i.e.

$$S_N = \{PKCS\text{-}Hash_N(M) : M \in \{0,1\}^*\}$$
.

So we want $RSA_{N,e}$ to be hard to invert on points in $S_N!$

Let's compare the size of S_N to the size of \mathbf{Z}_N^* .

- $|S_N| \le 2^{160}$ [Front part is fixed and
 - $h: \{0,1\}^* \to \{0,1\}^I \text{ (for SHA1 : } I=160) \}$
 - Recommended size for modulus is 1024. So $|\mathbf{Z}_N^*| \simeq 2^{1023}$.
- ► So $\frac{|S_N|}{|\mathbf{Z}_N^*|} \le \frac{2^{160}}{2^{1023}} = \frac{1}{2^{863}}$

 S_N is much much smaller than \mathbf{Z}_N^* !

Bottom line: $RSA_{N,e}$ could be hard to invert in \mathbf{Z}_N^* but easy in S_N !

Full-Domain-Hash (FDH) [BR96]

To address this problem, the hash should map inputs into the entire domain, i.e.,

FDH

$$\begin{array}{c|c} H: \{0,1\}^* \to \mathbf{Z}_N^* \\ Sign_{N,p,q,d}^H(M) & VF_{N,e}^H(M,x) \\ x \leftarrow H(M)^d \bmod N & \text{If } H(M) = x^e \bmod N \text{ then return } 1 \\ \text{Return } x & \text{else return } 0 \end{array}$$

FDH has been proven secure in the random oracle model.