

Error Detection & Correction Error Correction Error Correction Hamming distance Error Detection Parity bits Block Sum Check Correction Correction Detection

Data Link Layer, Topic 5.1,2, Error Detection and Correction

Errors

Introduction

Correction Detection

- Occurrence of errors
 - Rare on <u>Digital Transmission</u>
 - More frequent on <u>analogue portions and wireless</u> networks.
- Type of errors
 - Errors generally occur as <u>isolated bits</u> or <u>alternatively</u> as bursts.
 - Burst errors mean that <u>frames are likely to get through</u> but <u>burst errors can be harder to detect and correct.</u>
- Redundant Info is needed to
 - Just detect the error,
 - Correct the error. Used on wireless links where channel is unreliable.

Data Link Layer, Topic 5.1,2, Error Detection and Correction

Basics

Introduction

Correction Detection

- Frame consists of n = m + r bits
 - m a frame consists of a number of message bits,
 - r together with a number of redundant bits
 - There are only m valid codewords.
- e.g. Parity bit: <u>Is a single bit added to a piece of data</u>
 - Even parity: <u>Causes the number of 1 bits to be even</u>,
 - Odd parity: Causes the number of 1 bits to be odd,
 - $-1001010 \rightarrow \underline{\mathbf{1}}$ (even) or $\underline{\mathbf{0}}$ (odd)
 - There are only $2^7 = m(128)$ valid codewords
 - We can detect only an odd number of bits errors,
 - No way to correct them.

Data Link Layer, Topic5.1,2, Error Detection and Correction

Forward Error Correction

Introduction Correction
Detection

- Hamming Distance is the number of bits different between two bit patterns of equal size,
 - Determine by <u>applying an XOR</u>
 For example, <u>distance is 2 and 5</u>

 10010100

 00000111

 11001100
- Hamming distance of a code, (i.e., the complete set of codewords) is the minimum distance between any two codes
 - E.g. <u>Hamming distance is 3 in example</u>
- To detect an error of d bits... 00111
 - <u>Hamming distance must be >= **d+1** 01100</u>
- To correct an error of d bits...
 - Hamming distance must be 2d+1
 - where <u>correction means changing the received</u> data to the closest codeword.

Data Link Layer, Topic 5.1,2, Error Detection and Correction

Single bit correction

Introduction
Correction
Detection

11001

- To correct single bit errors...
 - Given 2^m messages, for each message there <u>are **n+1** bit</u> <u>patterns dedicated to it (Corrupt each bit of the message)</u>
 - (n+1).2^m ≤ 2ⁿ Since the total number of bit patterns is 2^n
 - $(m+r+1) \le 2^r$ With **n=m+r**, we reformulate
- Hamming codes achieves this lower limit

Data Link Layer, Topic 5.1,2, Error Detection and Correction

Block Sum Check

Introduction Correction **Detection**

- Using a single parity bit the probability of an error not being detected is 50% in burst mode.
- To increase this we can use a Block Sum Check
 - Compute parity for each row AND for column of data,
 - Probability of an error not being detected is
 2^{-n*2-k}

Where **n** is the length of the row. However, a number of bit errors still causes problems.

		$\rho_{\rm R}$)	36	В,	$\mathbf{B}_{\mathbf{d}}$	\mathbf{B}_3	B_2	${\rm B}_1$	${\rm B}_{\rm o}$	
		٥		ů.	0	0	0	0	ı	0	= STX
		ι		0	1	0	ι	0	0	0	
		٥		ı	1	0	0	0	1	0	
		0		0	1	0	0	0	0	0	Frante
		ı		0	1	0	ι	1	0	1	contents
		0		1	0	0	0	0	0	0	
		ı		1	0	0	0	1	1	1	
		ı		0	0	0	0	0	1	1	= ETX
		ı		1	0	0	0	0	0	1	= BCC
											;

Data Link Layer, Topic 5.1,2, Error Detection and Correction

Cyclic Redundancy Check

Introduction Correction **Detection**

- Treats the bits in the frame as <u>coefficients of a polynomial</u>,
 - e.g. $110001 = 1 \times x^5 + 1 \times x^4 + 0 \times x^3 + 0 \times x^2 + 0 \times x^1 + 1 \times x^0$
- Determine a Checksum which is
 - Data / Generator Polynomial
 - Checksum is usually <u>16/32 bits long</u>,
 - Generator Polynomial is 1 bit longer,
 - Checksum is referred to as the FCS (<u>Frame Check</u>
 <u>Sequence</u>) or the CRC (<u>Cyclic Redundancy Check</u>)
 - Checksum appended to the end of the data frame.

Data Link Layer, Topic 5.1,2, Error Detection and Correction

CRC Performance

Introduction Correction **Detection**

- \blacksquare E(x): We consider an error modeled as E(x)
- $E(x) = x^i$ is a single bit error. This is not divisible by G(x) as long as G(x) has 2 terms or more.
- $E(x) = x^i + x^j = x^j (x^{i-j} + 1)$ represents 2 single bit errors. Detectable as long G(x) is not divisible by X^k+1 . Well known low order polynomials give this protection.
 - E.g. $x^{15}+x^{14}+1$
- To catch all Odd errors we make x+1 a factor of G(x).
- Burst errors
 - Catch all errors of length less than or equal to the number of check bits except for a burst error length equal to r+1, the only error which would get through is the generator itself.
 - Probability (Long errors are unnoticed) = $(1/2)^r$

Data Link Layer, Topic 5.1,2, Error Detection and Correction

Exercise

Introduction Correction **Detection**

- Given a message 100110111010 and a generator polynomial $(x^4 + x^3 + x^1 + 1)$ compute the CRC.
- Also, what errors can this CRC detect?
 - It can detect all single bit errors it has more than 1 term,
 - It can detect all odd number error it has (x+1) as a factor,
 - It can detect all burst errors of 4 bits or less,
 - However, it cannot detect all double bit errors.