Notes for lecture 5

- 1. Date: May 12th.
- 2. Reading: the lecture material is based on Sections 2.6 of Chapter 2 of the main textbook (refer to Chapter 2.6.pdf file).
- 3. The lecture communicates the following issues
 - a. Polar coordinates.
 - i The position of a particle is now measured not with respect to a path along which the particle is traveling (see previous lecture), but with respect to a fixed coordinates systems (frame of reference). However, it is measured not by x and y coordinates, but by curvilinear coordinates r and θ .
 - ii Velocity and acceleration vectors are represented not with respect to some fixed coordinate system but with respect to some moving (changing) coordinate system (e_r, e_θ) . That is the most important point of the class.
- 4. Ch2D.swf file in the Resources (same as before) is provided
 - a. When playing the file please do not push Main Menu button; when returning please use Chapter Menu button.
 - b. The content of Ch2D.swf file relevant to this lecture (yellow button corresponding to Coordinate Systems-> Two-dimensional->Polar)
- 5. To learn more about polar coordinates, you can refer to Wikipedia
 https://en.wikipedia.org/wiki/Polar_coordinate_system#:~:text=In%20mathematics%2C
 https://en.wikipedia.org/wiki/Polar_coordinate_system#:~:text=In%20mathematics%2C
 <a href="https://en.wikipedia.org/wiki/Polar_coordinate_system#:~:text=In%20mathematics%2C
 <a href="https://en.wiki/Polar_coordinate_system#:~:text=In%20mathematics%2C
 <a href="https://en.wiki/Polar_coordinate_system#:~:text=In%20mathematics%2C
 <a href="https://en.wiki/Polar_coordinate_system#:~:text=In%20mathematics%2C
 <a href="https://en.wiki/Polar_coordinate_system#:~:text=In%20mathematics%2C
 <a href="https://en.wiki/Polar_coordinate_system#:~:text=In%20
- 6. In solving practical problems,
 - a. The basic knowledge differentiation and integration of functions of single variable (at the level of pre-calculus) is required. When computing integrals that may look difficult to you, you may use Wolfram Alpha, see https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/
 - b. When solving equations numerically, you can also use Wolfram Alpha, use https://www.wolframalpha.com/examples/mathematics/algebra/equation-solving/
 - c. When plotting graphs, you can also use Wolfram Alpha https://www.wolframalpha.com/examples/mathematics/plotting-and-graphics/
 - d. Also, for plotting in polar coordinates you can refer to https://www.desmos.com/calculator/ms3eghkkgz and https://www.geogebra.org/m/a2CUgqam and https://www.geogebra.org/m/jhKUc6Hm
- 7. The deadline for submitting assignment (see Assignment5.pdf) is May 19.