Binomial Distribution Notes

1. Introduction & Intuition

- **Definition:** Counts the number of successes in n independent Bernoulli trials, each with success-probability p.
- Notation: $X \sim \text{Binomial}(n, p)$.
- Typical scenarios:
 - Flip a coin n times \rightarrow number of heads.
 - n website visits \rightarrow number of ad clicks.
 - Inspect n items \rightarrow number of defectives.

2. Probability Mass Function (PMF)

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, \dots, n.$$

Why this formula? — Three building blocks

- 1. Independence: a specific sequence with k successes and n-k failures has probability $p^{k}\left(1-p\right)^{n-k}$.
- 2. Ordering: there are $\binom{n}{k}$ ways to place those k successes among the n trials.
- 3. Multiply the two parts \Rightarrow full PMF.

3. Expectation and Variance

Expectation

$$\mathbb{E}[X] = np$$
 .
$$\sup_{\substack{\text{sum of independent} \\ \text{Bernoulli means}}}$$

Variance

$$\operatorname{Var}(X) = \underbrace{np(1-p)}_{\text{independent variances}} = npq, \quad q = 1-p.$$

Figure 1: Binomial Distribution

4. Shape, Symmetry & Skewness

- Symmetric when p = 0.5. Then P(X = k) = P(X = n k).
- Left-skewed when p > 0.5 (tail on the left). Right-skewed when p < 0.5 (tail on the right).

5. Mode (Most likely value)

$$k_{\text{mode}} = \lfloor (n+1)p \rfloor.$$

Two adjacent modes appear if (n+1)p is an integer; they are k and k-1.

6. Worked Examples

- 1. Fair coin, n = 10. $P(X = 0) = P(X = 10) = \binom{10}{0} 0.5^{10} = \binom{10}{10} 0.5^{10}$.
- 2. Ad clicks. $n = 100, \ p = 0.2. \ \mathbb{E}[X] = 100 \times 0.2 = 20, \ \operatorname{Var}(X) = 100 \times 0.2 \times 0.8 = 16.$

7. Quick Facts Table

Measure	Formula	Interpretation
Mean	$\mu = np$	Expected number of successes
Mode	$\lfloor (n+1)p \rfloor$	Most probable count
Variance	$\sigma^2 = np(1-p)$	Spread around the mean

8. Where is it used?

- Neural-network dropout: each neuron kept (success) with prob. p.
- \bullet Binary classification accuracy counts.
- A/B testing: number of conversions in n trials.

9. Summary

- Built from n independent Bernoulli(p) trials.
- PMF: $\binom{n}{k} p^k (1-p)^{n-k}$.
- Mean np, variance np(1-p), mode $\lfloor (n+1)p \rfloor$.
- Shape flips from right-skewed \rightarrow symmetric \rightarrow left-skewed as p moves from 0 to 1.