Assignment #1 Math 584A

John Cohen

Due September 10th at 1 am (via Gradescope)

For uploading to Gradescope, it will be easiest to put each solution on a different page. The code for this is commented out in the tex file.

Problem 1. Fix any two points $x, y \in \mathbb{R}^n$. Show that

$$\lim_{p \to \infty} d_p(x, y) = d_{\infty}(x, y).$$

Solution. Let $i \leq n$ be defined such that $|x_i - y_i| \geq |x_m - y_m|$ for all $m \leq n$. By definition, $|x_i - y_i| = d_{\infty}(x, y)$. Notice that

$$|x_i - y_i| \le |x_1 - y_1| + \ldots + |x_i - y_i| + \ldots + |x_n - y_n| \le n|x_i - y_i|.$$

Thus,

$$|x_i - y_i|^p < |x_1 - y_1|^p + \dots + |x_i - y_i|^p + \dots + |x_n - y_n|^p < n|x_i - y_i|^p$$

By taking each expression in the inequality to the 1/p power, we get

$$(|x_i - y_i|^p)^{\frac{1}{p}} < (|x_1 - y_1|^p + \ldots + |x_i - y_i|^p + \ldots + |x_n - y_n|^p)^{\frac{1}{p}} < (n|x_i - y_i|^p)^{\frac{1}{p}},$$

and

$$|x_i - y_i| \le d_p(x, y) \le n^{\frac{1}{p}} |x_i - y_i|.$$
 (1)

Taking the limit as p approaches infinity gives

$$\lim_{p \to \infty} |x_i - y_i| \le \lim_{p \to \infty} d_p(x, y) \le \lim_{p \to \infty} n^{\frac{1}{p}} |x_i - y_i|.$$

Thus,

$$d_{\infty}(x,y) \le \lim_{p \to \infty} d_p(x,y) \le d_{\infty}(x,y).$$

Therefore, by the trichotomy,

$$\lim_{p \to \infty} d_p(x, y) = d_{\infty}(x, y).$$

Problem 2. Fix $p_1, p_2 \in [1, \infty]$ such that $p_1 < p_2$ (we allow the case $p_2 = \infty$). Find constants $C, \overline{C} > 0$ such that

$$\underline{C}d_{p_1}(\bar{x},\bar{y}) \le d_{p_2}(\bar{x},\bar{y}) \le \overline{C}d_{p_1}(\bar{x},\bar{y}),$$

for all $x, y \in \mathbb{R}^N$. Hint: you may find it helpful to do the case $p_1 = 1$ and $p_2 = \infty$ first.

Solution. The corresponding $d_{p_1}(\bar{x}, \bar{y})$ for p_1 . Let $d_{\infty}(\bar{x}, \bar{y}) = |x_i - y_i|$ for some $i \leq N$. By (1), we see that

$$n^{-\frac{1}{p_1}} d_{p_1}(x, y) \le |x_i - y_i|.$$

By setting $\underline{C} = n^{-\frac{1}{p_1}}$, we get $\underline{C}d_{p_1}(\bar{x},\bar{y}) \leq d_{\infty}(\bar{x},\bar{y})$. Since the choice of $p_1 \geq 1$ was arbitrary, this is valid for any $d_p(\bar{x},\bar{y})$.

For the same $d_{\infty}(\bar{x}, \bar{y})$, factoring out $|x_i - y_i|^{p_1}$ from the expression for $d_{p_1}(\bar{x}, \bar{y})$ gives

$$d_{p_1}(\bar{x}, \bar{y}) = \left[|x_i - y_i|^{p_1} \left(\frac{|x_1 - y_1|^{p_1}}{|x_i - y_i|^{p_1}} + \dots + \frac{|x_i - y_i|^{p_1}}{|x_i - y_i|^{p_1}} + \dots + \frac{|x_N - y_N|^{p_1}}{|x_i - y_i|^{p_1}} \right) \right]^{1/p_1}$$

$$= |x_i - y_i| \left[\left(\frac{|x_1 - y_1|}{|x_i - y_i|} \right)^{p_1} + \dots + 1 + \dots \left(\frac{|x_N - y_N|}{|x_i - y_i|} \right)^{p_1} \right]^{1/p_1}.$$

Let $a_m = \frac{|x_m - y_m|}{|x_i - y_i|}$ for each $m \leq N$. Since $|x_i - y_i| \geq |x_m - y_m|$, $a_m < 1$ for all $m \leq N$. Thus,

$$d_{p_1}(\bar{x}, \bar{y}) = |x_i - y_i|(a_1^{p_1} + \dots + 1 + \dots + a_N^{p_1})^{1/p_1}.$$
 (2)

Since we set $d_{\infty}(\bar{x}, \bar{y}) = |x_i - y_i|$,

$$d_{p_1}(\bar{x}, \bar{y}) = d_{\infty}(\bar{x}, \bar{y})(a_1^{p_1} + \ldots + 1 + \ldots + a_N^{p_1})^{1/p_1}.$$

Because $a_1^{p_1} + \ldots + 1 + \ldots + a_N^{p_1} > 1$, $(a_1^{p_1} + \ldots + 1 + \ldots + a_N^{p_1})^{1/p_1} > 1$. Therefore,

$$d_{\infty}(\bar{x},\bar{y}) \leq d_{p_1}(\bar{x},\bar{y}).$$

Thus,

$$\underline{C}d_{p_1}(\bar{x},\bar{y}) \le d_{\infty}(\bar{x},\bar{y}) \le \overline{C}d_{p_1}(\bar{x},\bar{y}) \tag{3}$$

where $\underline{C} = n^{-\frac{1}{p_1}}$ and $\overline{C} = 1$.

Consider the p_2 metric on the same vectors \bar{x} and \bar{y} . Equation (2) for p_2 gives

$$d_{p_2}(\bar{x}, \bar{y}) = |x_i - y_i|(a_1^{p_2} + \ldots + 1 + \ldots + a_N^{p_2})^{1/p_2}.$$

Since $p_2 > p_1$ and $a_m < 1$, $a_m^{p_2} \le a_m^{p_1}$ and

$$(a_1^{p_2} + \ldots + 1 + \ldots + a_N^{p_2})^{1/p_2} \le a_1^{p_1} + \ldots + 1 + \ldots + a_N^{p_1})^{1/p_1}.$$

Therefore,

$$d_{p_2}(\bar{x},\bar{y}) \le d_{p_1}(\bar{x},\bar{y}).$$

Combining this with (3) gives

$$n^{-\frac{1}{p_1}} d_{p_1}(\bar{x}, \bar{y}) \le d_{\infty}(\bar{x}, \bar{y}) \le d_{p_2}(\bar{x}, \bar{y}) \le d_{p_1}(\bar{x}, \bar{y}).$$

Thus,

$$\underline{C}d_{p_1}(\bar{x},\bar{y}) \le d_{p_2}(\bar{x},\bar{y}) \le \overline{C}d_{p_1}(\bar{x},\bar{y})$$

where $C = n^{-\frac{1}{p_1}}$ and $\overline{C} = 1$.

Problem 3. Consider the metric space (X, d_{disc}) , where X is a nonempty set. Suppose that $(x_n)_n$ is a sequence in X. Show that

$$\lim_{n \to \infty} x_n = x$$

if and only if there exists N such that $x_n = x$ for all $n \ge N$.

Solution. Fix any ϵ such that $0 < \epsilon < 1$. Since $\lim_{n \to \infty} x_n = x$, there must exist $N \in \mathbb{N}$ such that $d_{disc}(x_n, x) < \epsilon$ whenever $n \ge N$. Since we are in the discrete metric, $d_{disc}(x_n, x) < 1$ only when $x_n = x$. Therefore, $x_n = x$ for all $n \ge N$.

Assume there exists some $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n = n$. Thus, for all $n \geq N$, $d_{disc}(x,x) = 0$. Therefore, $d_{disc}(x,x) < \epsilon$ for any $\epsilon > 0$. Thus, $\lim_{n \to \infty} x_n = x$.

Problem 4. Prove Young's inequality: for any p, q > 1 such that

$$1 = \frac{1}{p} + \frac{1}{q}$$

for any $x, y \in \mathbb{R}$,

$$xy \le \frac{|x|^p}{p} + \frac{|y|^q}{q}.$$

Hint: for any fixed $y \geq 0$, consider the function $f:[0,\infty) \to \mathbb{R}$, defined by

$$f(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy,$$

and show that the minimum of f is zero.

Solution. Consider first the function $f:[0,\infty)\to\mathbb{R}$ defined by

$$f(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy.$$

For a fixed $y \ge 0$, we will show that the minimum of this function is zero, and thus

$$\frac{x^p}{p} + \frac{y^q}{q} > xy.$$

Checking first the bounds at x = 0 and the limit as $x \to \infty$ gives

$$f(0) = \frac{y^q}{q}$$
 and $\lim_{x \to \infty} f(x) = \infty$.

Since $y \ge 0$, $f(0) \ge 0$.

Taking the derivative and second derivative of f(x) with respect to x gives

$$f'(x) = x^{p-1} - y$$
 and $f'' = (p-1)x^{p-2}$.

Solving for f'(x) = 0 gives a critical point at $x = y^{\frac{q}{p}}$. Since p > 1 and $x \ge 0$, $f'' \ge 0$ for all $x \in [0, \infty)$. This critical point is therefore, a local minimum. Evaluating f at this value of x gives

$$f(x = y^{\frac{q}{p}}) = \frac{(y^{\frac{q}{p}})^p}{p} + \frac{y}{q} - y^{\frac{q}{p}}y$$

$$= \frac{y^q}{p} + \frac{y^q}{q} - y^{\frac{q+p}{p}}$$

$$= y^q \left(\frac{1}{p} + \frac{1}{q}\right) - y^{\frac{q+p}{p}}$$

$$= y^q - y^{\frac{q+p}{p}}$$

To continue, we need a rearrangement of Young's Inequality.

$$1 = \frac{1}{p} + \frac{1}{q}$$
$$= \frac{q}{pq} + \frac{p}{pq}$$
$$= \frac{p+q}{pq}$$

Thus,

$$f(x = y^{\frac{q}{p}}) = y^q - y^{q(\frac{q+p}{pq})}$$

= $y^q - y^{q(1)}$
= 0.

Therefore, zero is the absolute minimum of this function. Since an identical argument can be made for y, $f(x) \ge 0$ for all $x, y \ge 0$. In this case, x = |x| and y = |y|, and

$$|x||y| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}.$$

Finally, by Cauchy-Schwarz inequality,

$$xy \le \frac{|x|^p}{p} + \frac{|y|^q}{q}.$$

for any $x, y \in \mathbb{R}$.

Problem 5. Fix $N \ge 1$ and p > 1. Let q be as in problem 4. Show the following:

(i) Show that, for any $\bar{x}, \bar{y} \in \mathbb{R}^N$, we have

$$x \cdot y \le \frac{|x|_p^p}{p} + \frac{|y|_q^q}{q}.$$

Recall that

$$|x|_p = (|x_1|^p + \dots + |x_N|^p)^{1/p}$$

and similarly for $|\cdot|_q$.

(ii) Show that d_p is a metric on \mathbb{R}^N . You may find it helpful to write, for any $i = 1, \ldots, N$,

$$|x_i - y_i|^p = (x_i - y_i)z_i$$

for a well-chosen z_i .

Solution. [Part (i)] The dot product of the vectors \bar{x} and \bar{y} is

$$\bar{x} \cdot \bar{y} = x_1 y_1 + \ldots + x_N y_N.$$

Since p and q satisfy Young's Inequality,

$$x_n y_n \le \frac{|x_n|^p}{p} + \frac{|y_n|^q}{q}.$$

for $n \leq N$. Thus,

$$\bar{x} \cdot \bar{y} \le \left(\frac{|x_1|^p}{p} + \frac{|y_1|^q}{q}\right) + \ldots + \left(\frac{|x_N|^p}{p} + \frac{|y_N|^q}{q}\right).$$

Combining the terms containing x and the terms containing y gives

$$\bar{x} \cdot \bar{y} \le \left(\frac{|x_1|^p + \ldots + |x_N|^p}{p}\right) + \left(\frac{|y_1|^q + \ldots + |y_N|^q}{q}\right)$$
$$\le \frac{|\bar{x}|_p^p}{p} + \frac{|\bar{y}|_q^q}{q}.$$

Solution. [Part (ii)] To show that d_p is a metric on \mathbb{R}^N , recall the definition of d_p for any p > 1:

$$d_p(\bar{x}, \bar{y}) = (|x_1 - y_1|^p + \dots + |x_N - y_n|^p)^{1/p}.$$

Fix any $n \leq N$. Since, $|x_n - y_n| = 0$ only when $x_n = y_n$, $|x_n - y_n|^p = 0$ only when $x_n = y_n$. Since the choice of n was arbitrary $|x_1 - y_1|^p + \cdots + |x_N - y_n|^p = 0$ only if $x_n = y_n$ for all $n \leq N$. The same can also be said about that sum raised to the 1/p power, thus satisfying positive definiteness.

Consider

$$d_p(\bar{y},\bar{x}) = (|y_1 - x_1|^p + \dots + |y_N - x_n|^p)^{1/p}.$$

Since |a-b|=|b-a| for all $a,b\in\mathbb{R},$ $d_p(\bar{y},\bar{x})=d_p(\bar{x},\bar{y}).$ Therefore, $d_p(\bar{y},\bar{x})$ satisfies the symmetry property of metric spaces.

To prove the Triangle inequality, we first prove the Cauchy-Schwarz inequality for this system. Fix $\epsilon \geq 0$ to be chosen and consider the product $\epsilon \bar{x} \cdot \bar{y}/\epsilon$. By part (i) of this problem we have

$$\epsilon \bar{x} \cdot \frac{\bar{y}}{\epsilon} \le \frac{\epsilon^p |\bar{x}|_p^p}{p} + \frac{|\bar{y}|_q^q}{\epsilon^q q}.$$

We wish to find the value of epsilon for which this upper bound is minimized. Taking the derivative with respect to epsilon and setting that value equal to zero gives

$$0 = \frac{p\epsilon^{p-1}|\bar{x}|_{p}^{p}}{p} + \frac{-q|\bar{y}|_{q}^{q}}{\epsilon^{q+1}q}$$
$$= \epsilon^{p-1}|\bar{x}|_{p}^{p} - |\bar{y}|_{q}^{q}\epsilon^{-q-1}.$$

Rearranging and solving for epsilon gives

$$\begin{split} |\bar{y}|_q^q \epsilon^{-q-1} &= \epsilon^{p-1} |\bar{x}|_p^p, \\ \frac{|\bar{y}|_q^q}{|\bar{x}|_p^p} &= \epsilon^{p-1} \epsilon^{q+1}, \\ \left(\frac{|\bar{y}|_q^q}{|\bar{x}|_p^p}\right)^{\frac{1}{p+q}} &= \epsilon. \end{split}$$

Using eq 3, this becomes

$$\left(\frac{|\bar{y}|_q^q}{|\bar{x}|_p^p}\right)^{\frac{1}{pq}} = \epsilon.$$

Using this value for epsilon in our original inequality gives and simplifying gives

$$\begin{split} \epsilon \bar{x} \cdot \frac{\bar{y}}{\epsilon} &\leq \left[\left(\frac{|\bar{y}|_q^q}{|\bar{x}|_p^p} \right)^{\frac{1}{pq}} \right]^p \frac{|\bar{x}|_p^p}{p} + \left[\left(\frac{|\bar{y}|_q^q}{|\bar{x}|_p^p} \right)^{\frac{1}{pq}} \right]^{-q} \frac{|\bar{y}|_q^q}{q} \\ &= \left(\frac{|\bar{y}|_q^q}{|\bar{x}|_p^p} \right)^{\frac{1}{q}} \frac{|\bar{x}|_p^p}{p} + \left(\frac{|\bar{y}|_q^q}{|\bar{x}|_p^p} \right)^{\frac{-1}{p}} \frac{|\bar{y}|_q^q}{q} \\ &= \left(\frac{|\bar{y}|_q^{q/q}}{|\bar{x}|_p^{p/q}} \right) \frac{|\bar{x}|_p^p}{p} + \left(\frac{|\bar{y}|_q^{-q/p}}{|\bar{x}|_p^{-p/p}} \right) \frac{|\bar{y}|_q^q}{q} \\ &= \frac{|\bar{y}|_q |\bar{x}|_p^{p-p/q}}{p} + \frac{|\bar{x}|_p |\bar{y}|_q^{q-q/p}}{q} \end{split}$$

To simplify further consider a rearrangement of Young's Inequality:

$$1 = \frac{1}{p} + \frac{1}{q}$$

$$1 - \frac{1}{p} = \frac{1}{q}$$

$$q - \frac{q}{p} = 1.$$

By similar steps, the same inequality holds if the positions of p and q are swapped. Continuing with the simplification gives

$$\epsilon \bar{x} \cdot \frac{\bar{y}}{\epsilon} \le \frac{|\bar{y}|_q |\bar{x}|_p^1}{p} + \frac{|\bar{x}|_p |\bar{y}|_q^1}{q}$$
$$= |\bar{y}|_q |\bar{x}|_p \left(\frac{1}{p} + \frac{1}{q}\right)$$
$$= |\bar{y}|_q |\bar{x}|_p.$$

To prove the triangle inequality for d_p , we start by proving $|\bar{x} + \bar{y}|_p \leq |\bar{x}_p| + |\bar{y}_p|$ for any $\bar{x}, \bar{y} \in \mathbb{R}^N$. Let $|x_i + y_i|^p = (x_i + y_i)z_i$. For this to hold $z_i = |x_i + y_i|^{p-1}sign(x_i + y_i)$ where

$$sign(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x > 0\\ -1 & \text{if } x < 0. \end{cases}$$

Thus,

$$|\bar{x} + \bar{y}|_{p}^{p} = |x_{1} + y_{1}|^{p} + \dots + |x_{1} + y_{1}|^{p}$$

$$= (x_{1} + y_{1})z_{1} + \dots + (x_{1} + y_{1})z_{N}$$

$$= (x_{1}z_{1} + \dots + x_{N}z_{N}) + (y_{1}z_{1} + \dots + y_{N}z_{N})$$

$$= \bar{x} \cdot \bar{z} + \bar{y} \cdot \bar{z}$$

$$\leq |\bar{x}|_{p}|\bar{z}|_{q} + |\bar{y}|_{p}|\bar{z}|_{q}$$

$$= (|\bar{x}|_{p}| + |\bar{y}|_{p})|\bar{z}|_{q}.$$

We now compute $|\bar{z}|_q$.

$$|\bar{z}|_{q} = \left(\sum_{i=1}^{N} \left[|x_{i} + y_{i}|^{p-1} sign(x_{i} + y_{i})\right]^{q}\right)^{1/q}$$
$$= \left(\sum_{i=1}^{N} |x_{i} + y_{i}|^{q(p-1)}\right)^{1/q}.$$

The $sign(x_i + y_i)$ terms can be removed within the absolute value as |-1| = |1| and if $sign(x_i + y_i) = 0$, $|x_i + y_i|^{p-1} = 0$ as well. Thus, the values are unchanged. By eq 3,

$$qp - q = (p+q) - q$$
$$= p.$$

Thus,

$$|\bar{z}|_{q} = \left(\sum_{i=1}^{N} |x_{i} + y_{i}|^{p}\right)^{1/q}$$
$$= |\bar{x} + \bar{y}|_{p}^{p/q}$$

Returning to our expression for $|\bar{x} + \bar{y}|_p^p$,

$$\begin{split} |\bar{x} + \bar{y}|_p^p &\leq (|\bar{x}|_p| + |\bar{y}|_p)|\bar{z}|_q \\ &= (|\bar{x}|_p| + |\bar{y}|_p)|\bar{x} + \bar{y}|_p^{p/q}. \end{split}$$

Thus,

$$|\bar{x}|_p| + |\bar{y}|_p \ge \frac{|\bar{x} + \bar{y}|_p^p}{|\bar{x} + \bar{y}|_p^{p/q}}$$

$$= |\bar{x} + \bar{y}|_p^{p-p/q}$$

$$= |\bar{x} + \bar{y}|_p.$$

Since p - p/q = 1 as shown in eq 3,

$$|\bar{x}|_p| + |\bar{y}|_p \ge |\bar{x} + \bar{y}|_p.$$

Consider again d_p .

$$d_p(\bar{x}, \bar{z}) = |\bar{x} - \bar{z}|_p$$

= $|(\bar{x} - \bar{y}) + (\bar{y} - \bar{z})|_p$.

By the above inequality,

$$d_p(\bar{x}, \bar{z}) \le |\bar{x} - \bar{y}|_p + |\bar{y} - \bar{z}|_p$$

$$\le d_p(\bar{x}, \bar{y}) + d_p(\bar{y}, \bar{z}).$$

Thus, d_p satisfies the triangle inequality, and is therefore a metric.

Problem 6. Suppose that (X,d) is a metric space and $x,y,z \in X$. Show that

$$d(x,z) \ge |d(x,y) - d(y,z)|.$$

Problem 7. Show that the following functions are continuous:

- (i) $\psi : \mathbb{R} \to \mathbb{R}$ defined by $\psi(x) = 2x^3 + 1$.
- (ii) $E: C(\mathbb{R}) \to \mathbb{R}$ defined by E(f) = f(0)
- (iii) $S: C(\mathbb{R}) \to C(\mathbb{R})$ defined by $S(f) = f^2$

You may find it helpful to note that $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$. Also, for (iii), please show that S is well-defined; that is, show that $f^2 \in C(\mathbb{R})$.

Problem 8. Suppose that d_1, d_2 are equivalent metrics on a set X. Suppose that (Y, d_Y) is a metric space and $f: (X, d_1) \to (Y, d_Y)$ is continuous. Show that $\tilde{f}: (X, d_2) \to (Y, d_Y)$, defined by $\tilde{f}(x) = f(x)$ for all $x \in X$, is continuous.