Basics

Fundamental Assumption

Data is iid for unknown $P: (x_i, y_i) \sim$ P(X,Y)

True risk and estimated error

True risk: $R(w) = \int P(x, y)(y - y)$ $(w^T x)^2 \partial x \partial y = \mathbb{E}_{x,y}[(y - w^T x)^2]$ Est. error: $\hat{R}_D(w) = \frac{1}{|D|} \sum_{(x,y) \in D} (y - y)$

Standardization

Centered data with unit variance: $\tilde{x}_i =$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Parametric vs. Nonparametric

Parametric: have finite set of parameters. e.g. linear regression, linear perceptron Nonparametric: grow in complexity with the size of the data, more expressive. e.g. k-NN

Gradient Descent

- 1. Pick arbitrary $w_0 \in \mathbb{R}^d$
- 2. $w_{t+1} = w_t \eta_t \nabla R(w_t)$

Stochastic Gradient Descent (SGD)

- 1. Pick arbitrary $w_0 \in \mathbb{R}^d$
- 2. $w_{t+1} = w_t \eta_t \nabla_w l(w_t; x', y')$, with u.a.r. data point $(x',y') \in D$

Regression

Solve $w^* = \operatorname{argmin} \hat{R}(w) + \lambda C(w)$

Linear Regression

$$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 = ||Xw - y||_2^2$$

$$\nabla_w \hat{R}(w) = -2\sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i$$

$$w^* = (X^T X)^{-1} X^T y$$

Ridge regression

$$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

$$\nabla_w \hat{R}(w) = -2 \sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i + 2\lambda w$$

$$w^* = (X^T X + \lambda I)^{-1} X^T y$$

L1-regularized regression (Lasso)

$$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_1$$

Classification

Solve $w^* = \operatorname{argmin} l(w; x_i, y_i), l \dots loss$

function

0/1 loss $l_{0/1}(w;y_i,x_i) = 1 \text{ if } y_i \neq \text{sign}(w^T x_i) \text{ else } 0$

Perceptron algorithm

Use $l_P(w; y_i, x_i) = \max(0, -y_i w^T x_i)$ and SGD

$$\nabla_w l_P(w; y_i, x_i) = \begin{cases} 0 & \text{if } y_i w^T x_i \ge 0 \\ -y_i x_i & \text{otherwise} \end{cases}$$

Data lin. separable \Rightarrow obtains a lin. separator

Support Vector Machine (SVM)

Hinge loss: $l_H(w; x_i, y_i) = \max(0, 1$ $y_i w^T x_i$

$$\nabla_w l_H(w; y, x) = \begin{cases} 0 & \text{if } i w^T x_i \ge 1 \\ -y_i x_i & \text{otherwise} \end{cases}$$

$$w^* = \underset{w}{\operatorname{argmin}} \lambda ||w||_2^2 + l_H(w; x_i, y_i)$$

For L1-SVM (feature selection) use $||w||_1$

Kernels

Properties of kernel

 $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, k \text{ must be some}$ inner product (symmetric, positivedefinite, linear) for some space \mathcal{V} . i.e. $k(\mathbf{x}, \mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathcal{V}}$ $\Rightarrow k$ is symmetric and p.s.d.

Kernel matrix

$$K = \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix}$$

Positive semi-definite matrices \Leftrightarrow kernels k

Important kernels

Linear: $k(x,y) = x^T y$

Polynomial: $k(x,y) = (x^Ty+1)^d$

Gaussian: $k(x,y) = exp(-||x-y||_2^2/(2h^2))$ Laplacian: $k(x,y) = exp(-||x-y||_1/h)$

Composition rules

Valid kernels k_1, k_2 , also valid kernels: $k_1(x, y) + k_2(x, y); k_1(x, y) \cdot k_2(x, y);$ $c \cdot k_1(x,y), c > 0;$

Reformulating the perceptron

Ansatz: $w^* \in \operatorname{span}(X) \Rightarrow w =$ $\sum_{j=1}^{n} \alpha_j y_j x_j$ $\alpha^* = \min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \max(0, -\sum_{j=1}^n \alpha_j y_i, y_j x_i^T x_j)$

Kernelized perceptron and SVM

Use $\alpha^T k_i$ instead of $w^T x_i$, use $\alpha^T D_y K D_y \alpha$ instead of $||w||_2^2$ $k_i = [y_1k(x_i, x_1), ..., y_nk(x_i, x_n)], D_u =$ $\operatorname{diag}(y)$

Prediction: $f(\hat{x}) = \text{sign}(\sum_{i=1}^{n} \alpha_i y_i k(x_i, \hat{x}))$

Kernelized linear regression (KLR) Ansatz: $w^* = \sum_{i=1}^n \alpha_i x$ $\alpha^* = \operatorname{argmin} \frac{1}{n} ||\alpha^T K - y||_2^2 + \lambda \alpha^T K \alpha$ $=(K+\lambda I)^{-1}y$

Prediction:
$$f(\hat{x}) = \sum_{i=1}^{n} \alpha_i k(x_i, \hat{x})$$

Imbalance

Cost Sensitive Classification

Replace loss by: $l_{CS}(w;x,y) = c_y l(w;x,y)$

Metrics

 $n = n_{+} + n_{-}, n_{+} = TP + FN,$ $n_- = TN + FP$ Accuracy: $\frac{TP+TN}{n}$, Precision: $\frac{TP}{TP+FP}$

Recall/TPR: $\frac{TP}{n_{\perp}}$, FPR: $\frac{FP}{n_{\perp}}$

F1 score: $\frac{2TP}{2TP+FP+FN}$

ROC Curve: y = TPR, x = FPR

Multi-class

Hinge loss

 $l_{MC-H}(w^{(1)},...,w^{(c)};x,y) = \max_{j \in \{1,...,y-1,y+1,...,c\}} w^{(j)T}x$ $w^{(y)T}x$

Neural network

Parameterize feature map: $\phi(x,\theta)$ instead of $\phi(x)$, usually: $\phi(x,\theta) = \varphi(\theta^T x) = \varphi(z)$ $\Rightarrow w^* = \underset{w,\theta}{\operatorname{argmin}} \sum_{i=1}^n l(y_i; \sum_{j=1}^m w_j \phi(x_i, \theta_j))$

Activation functions

Sigmoid: $\frac{1}{1+exp(-z)}, \varphi'(z) = (1-\varphi(z))\cdot\varphi(z)$ Tanh: $\varphi(z) = tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$

ReLu: $\varphi(z) = max(z,0)$

Predict: forward propagation

$$\begin{array}{l} v^{(0)} = x; \ \text{for} \ l = 1, \dots, L-1: \\ v^{(l)} = \varphi(z^{(l)}), \ z^{(l)} = W^{(l)} v^{(l-1)} \\ f = W^{(L)} v^{(L-1)} \end{array}$$

Predict f for regression, sign(f) for class.

Compute gradient: backpropagation

Output layer: $\delta_j = l'_j(f_j), \frac{\partial}{\partial w_{i,i}} = \delta_j v_i$ Hidden layer $l = L - 1, \dots, 1$: $\delta_j = \varphi'(z_j) \cdot \sum_{i \in Layer_{l+1}} w_{i,j} \delta_i, \frac{\partial}{\partial w_{i,i}} = \delta_j v_i$

Learning with momentum

 $a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W \leftarrow W - a$

Clustering

k-mean

$$\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \dots k\}} ||x_i - \mu_j||_2^2$$

 $\hat{\mu} = \operatorname{argmin} \hat{R}(\mu) \dots \operatorname{non-convex}, NP-hard$

Algorithm (Lloyd's heuristic): Choose starting centers, assign points to closest center, update centers to mean of each cluster, repeat

Dimension reduction

 $D = x_1, ..., x_n \in \mathbb{R}^d, \ \Sigma = \frac{1}{n} \sum_{i=1}^n x_i x_i^T, \ \mu = 0$ $(W, z_1, ..., z_n) = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^n ||W z_i - x_i||_2^2,$ $W = (v_1 | ... | v_k) \in \mathbb{R}^{d \times k}, \text{ orthogonal;}$ $z_i = W^T x_i$ v_i are the eigen vectors of Σ

Kernel PCA

Kernel PC: $\alpha^{(1)},...,\alpha^{(k)} \in \mathbb{R}^n$, $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}}v_i$, $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T, \lambda_1 \geq \dots \geq \lambda_d \geq 0$ New point: $\hat{z} = f(\hat{x}) = \sum_{i=1}^{n} \alpha_i^{(i)} k(\hat{x}, x_i)$

Autoencoders

Find identity function: $x \approx f(x;\theta)$ $f(x;\theta) = f_{decode}(f_{encode}(x;\theta_{encode});\theta_{decode})$

Probability modeling

Find $h: X \to Y$ that min. pred. er- - Cost function $C: Y \times \mathcal{A} \to \mathbb{R}$ ror: $R(h) = \int P(x,y)l(y;h(x))\partial yx\partial y = a^* = \operatorname{argmin} \mathbb{E}[C(y,a)|x]$ $\mathbb{E}_{x,y}[l(y;h(x))]$

For least squares regression

Best $h: h^*(x) = \mathbb{E}[Y|X=x]$ Pred.: $\hat{y} = \hat{\mathbb{E}}[Y|X = \hat{x}] = \int \hat{P}(y|X = \hat{x})y\partial y$

Maximum Likelihood Estimation (MLE)

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \hat{P}(y_1, ..., y_n | x_1, ..., x_n, \theta)$$

E.g. lin. + Gauss:
$$y_i = w^T x_i + \varepsilon_i, \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

i.e.
$$y_i \sim \mathcal{N}(w^T x_i, \sigma^2)$$
, With MLE (use argmin $-\log$): $w^* = \underset{w}{\operatorname{argmin}} \sum (y_i - w^T x_i)^2$

Bias/Variance/Noise

Prediction error = $Bias^2 + Variance +$ Noise

Maximum a posteriori estimate (MAP)

Assume bias on parameters, e.g. $w_i \in$ $\mathcal{N}(0,\beta^2)$

Bay:
$$P(w|x, y) = \frac{P(w|x)P(y|x,w)}{P(y|x)}$$

 $\frac{P(w)P(y|x,w)}{P(y|x)}$

Logistic regression

Link func.: $\sigma(w^T x) = \frac{1}{1 + exp(-w^T x)}$ (Sig-

$$P(y|x,w) = Ber(y;\sigma(w^Tx)) = \frac{1}{1 + exp(-yw^Tx)}$$

Classification: Use P(y|x,w), predict most likely class label.

MLE:
$$\operatorname{argmax} P(y_{1:n}|w,x_{1:n})$$

$$\Rightarrow w^* = \underset{w}{\operatorname{argmin}} \sum_{i=1}^n log(1 + exp(-v_i w^T x_i))$$

SGD update:
$$w = w + \eta_t yx \hat{P}(Y = -y|w,x)$$

$$\hat{P}(Y = -y|w,x) = \frac{1}{1 + exp(yw^Tx)}$$

MAP: Gauss. prior
$$\Rightarrow ||w||_2^2$$
, Lap. p.

$$\Rightarrow ||w||_1$$
SGD: $w = w(1 - 2\lambda\eta_t) + \eta_t yx \hat{P}(Y = -y|w,x)$

Bayesian decision theory

P(y|x)

- Set of actions \mathcal{A}

Calculate \mathbb{E} via sum/integral.

Classification: $C(y,a) = [y \neq a]$; asymmet-

$$C(y,a) = \begin{cases} c_{FP} , & \text{if } y = -1, a = +1 \\ c_{FN} , & \text{if } y = +1, a = -1 \\ 0 , & \text{otherwise} \end{cases}$$

Regression: $C(y,a) = (y-a)^2$; asymmetric: $C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$ E.g. $y \in \{-1, +1\}$, predict + if $c_+ < c_-$, $c_{+} = \mathbb{E}(C(y,+1)|x) = P(y=1|x) \cdot 0 + P(y=1|x) \cdot 0$ $-1|x) \cdot c_{FP}$, c_{-} likewise

Discriminative / generative modeling

Discr. estimate P(y|x), generative P(y,x)Approach (generative): P(x,y) = P(x|y). P(y) - Estimate prior on labels P(y)

- Estimate cond. distr. P(x|y) for each class y

- Pred. using Bayes:
$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

 $P(x) = \sum_{y} P(x,y)$

Examples

MLE for $P(y) = p = \frac{n_+}{n}$ MLE for $P(x_i|y) = \mathcal{N}(x_i; \mu_{i,y}, \sigma_{i,y}^2)$:

$$\hat{\mu}_{i,y} = \frac{1}{n_y} \sum_{x \in D_{x_i|y}} x$$

$$\hat{\sigma}_{i,y}^2 = \frac{1}{n_y} \sum_{x \in D_{x_i|y}} (x - \hat{\mu}_{i,y})^2$$

MLE for Poi.:
$$\lambda = \operatorname{avg}(x_i)$$

$$\mathbb{R}^d$$
: $P(X = x | Y = y) = \prod_{i=1}^d Pois(\lambda_y^{(i)}, x^{(i)})$

Deriving decision rule

$$P(y|x) = \frac{1}{Z}P(y)P(x|y), Z$$

$$\sum_{y}P(y)P(x|y)$$

$$y^{*} = \max P(y|x)$$

$$\max_{y} P(y) \prod_{i=1}^{d} P(x_i|y)$$

Gaussian Bayes Classifier

$$\begin{array}{c} -y|w,x) \\ & \hat{P}(x|y) = \mathcal{N}(x;\hat{\mu}_y,\hat{\Sigma}_y) \\ & \hat{\mu}_y = \frac{1}{n_y} \sum_{i:y_i=y} x_i \in \mathbb{R}^d \\ & \hat{\Sigma}_y = \frac{1}{n_y} \sum_{i:y_i=y} (x_i - \hat{\mu}_y) (x_i - \hat{\mu}_y)^T \in \mathbb{R}^{d\times d} \end{array}$$

Fisher's lin. discrim. analysis (LDA, c=2)

Assume: p=0.5; $\hat{\Sigma}_{-}=\hat{\Sigma}_{+}=\hat{\Sigma}$ discriminant function: $f(x) = \log \frac{p}{1-p} +$ $\frac{1}{2} \left[\log \frac{|\Sigma_{-}|}{|\hat{\Sigma}_{+}|} + ((x - \hat{\mu}_{-})^{T} \hat{\Sigma}_{-}^{-1} (x - \hat{\mu}_{-})) - \right]$ $((x-\hat{\mu}_+)^T\hat{\Sigma}_+^{-1}(x-\hat{\mu}_+))$ Predict: $y = \text{sign}(f(x)) = \text{sign}(w^T x + w_0)$ $w = \hat{\Sigma}^{-1}(\hat{\mu}_{+} - \hat{\mu}_{-});$ $w_0 = \frac{1}{2} (\hat{\mu}_-^T \hat{\Sigma}^{-1} \hat{\mu}_- - \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$

Outlier Detection $P(x) < \tau$

Categorical Naive Bayes Classifier

MLE for feature distr.: $\hat{P}(X_i = c | Y = y) =$ $\theta_{c|y}^{(i)} = \frac{Count(X_i = c, Y = y)}{Count(Y = y)}$

Prediction: $y^* = argmax P(y|x)$

Missing data

Mixture modeling Model each c. as probability distr. $P(x|\theta_i)$

$$P(D|\theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_j P(x_i|\theta_j)$$

$$L(w,\theta) = -\sum_{i=1}^{n} \log \sum_{j=1}^{k} w_j P(x_i|\theta_j)$$

Gaussian-Mixture Baves classifiers

Estimate prior P(y); Est. for each class: P(x|y)distr. $\sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$

Hard-EM algorithm

Initialize parameters $\theta^{(0)}$

E-step: Predict most likely class for each point: $z_i^{(t)} = \operatorname{argmax} P(z|x_i, \theta^{(t-1)})$

$$= \underset{\sim}{\operatorname{argmax}} P(z|\tilde{\theta^{(t-1)}}) P(x_i|z, \theta^{(t-1)});$$

M-step: Compute the MLE: $\theta^{(t)} =$ $\operatorname{argmax} P(D^{(t)}|\theta)$, i.e. $\mu_j^{(t)} = \frac{1}{n_i} \sum_{i:z_i=jx_j} e^{-it} \sum_{j:z_i=jx_j} e^{-it}$

Soft-EM algorithm

points:

E-step: Calc p for each point and cls.: $\gamma_j^{(t)}(x_i)$ Fit clusters to weighted data M-step:

 $w_j^{(t)} = \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \ \mu_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)x_i}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$ $\sigma_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)(x_i - \mu_j^{(t)})^T (x_i - \mu_j^{(t)})}{\sum_{i=1}^n \gamma_i^{(t)}(x_i)}$

Soft-EM for semi-supervised learning

labeled
$$y_i$$
: $\gamma_j^{(t)}(x_i) = [j = y_i]$, unlabeled: $\gamma_j^{(t)}(x_i) = P(Z = j | x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$

Useful math

Probabilities

$$\mathbb{E}_{x}[X] = \begin{cases} \int x \cdot p(x) \partial x & \text{if continuous} \\ \sum_{x} x \cdot p(x) & \text{otherwise} \end{cases}$$

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mu_{X})^{2}] = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}; \ p(Z|X,\theta) = \frac{p(X,Z|\theta)}{p(X|\theta)}$$

$$P(x,y) = P(x \cap y) = P(y|x) \cdot P(x) = P(x|y) \cdot P(y)$$

Bayes Rule

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

P-Norm

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, 1 \le p < \infty$$

$$\begin{aligned} & \text{Some gradients} \\ & \nabla_x ||x||_2^2 = 2x \\ & f(x) = x^T A x; \, \nabla_x f(x) = (A + A^T) x \\ & \text{E.g. } \nabla_w \log(1 + \exp(-y \mathbf{w}^T \mathbf{x})) = \\ & \frac{1}{1 + \exp(-y \mathbf{w}^T x)} \cdot \exp(-y \mathbf{w}^T x) \cdot (-y x) = \\ & \frac{1}{1 + \exp(y \mathbf{w}^T x)} \cdot (-y x) \end{aligned}$$

Convex / Jensen's inequality

g(x) convex $\Leftrightarrow g''(x) > 0 \Leftrightarrow x_1, x_2 \in$ $\mathbb{R}, \lambda \in [0, 1] : g(\lambda x_1 + (1 - \lambda)x_2) \leq$ $\lambda g(x_1) + (1 - \lambda)g(x_2)$

Gaussian / Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Multivariate Gaussian

 $\Sigma = \text{covariance matrix}, \ \mu = \text{mean}$ $f(x) = \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$

Empirical: $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$ (needs centered data points)

Positive semi-definite matrices

 $M \in \mathbb{R}^{n \times n}$ is psd \Leftrightarrow $\forall x \in \mathbb{R}^n : x^T M x > 0 \Leftrightarrow$

