TURING MACHINE

Turing Machine

FIGURE 3.1
Schematic of a Turing machine

Differences between Pushdown Automaton and Turing Machine

- A Turing machine can both write on the tape and read from it.
- The read-write head can move both to the left and too the right.
- The tape is infinite.
- The special states for rejecting and accepting takes effect immediately.

Tape Francial 2/9/2011 2 42 2 74 204211 224,88 203041 Xx 4944 OV3 X091 X x y y 444 201091 X X & Y Yaccept 224291 2 xy 21

Turing Machine (Continuation...)

Turing Machine M₁

$$B = \{ w \# w | w \in \{0,1\}^* \}$$

Turing Machine (Continuation...)

• M₁ algorithm is as follows:

 M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

Turing Machine (Continuation...)

FIGURE 3.2

Snapshots of Turing machine to the computing on input 011000#011000

Formal Definition of a Turing Machine

DEFINITION 3.3

- A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and
 - 1. Q is the set of states,
 - 2. Σ is the input alphabet not containing the *blank symbol* \Box ,
 - **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
 - 5. $q_0 \in Q$ is the start state,
 - **6.** $q_{\text{accept}} \in Q$ is the accept state, and
 - 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Configuration of a Turing Machine

- As a Turing Machine computes, changes occur in
 - Current state
 - Current tape contents
 - Current head location
- A setting of these three items called a configuration of a Turing Machine
- For a state q and two strings u and v over the tape alphabet, we write uqv for the configuration where
 - the current state is q
 - the current tape contents is uv and
 - the current head location is the first symbol of v
- The tape contains only blanks following the last symbol of v

FIGURE 3.4

A Turing machine with configuration $1011q_701111$

• Configuration C_1 yields configuration C_2 if TM can legally go from C_1 to C_2 in a single step

Suppose that we have a, b, and c in Γ , as well as u and v in Γ^* and states q_i and q_j . In that case ua q_i bv and u q_j acv are two configurations. Say that

$$ua q_i bv$$
 yields $u q_j acv$

if in the transition function $\delta(q_i, b) = (q_j, c, L)$. That handles the case where the Turing machine moves leftward. For a rightward move, say that

$$ua q_i bv$$
 yields $uac q_j v$

if
$$\delta(q_i, b) = (q_i, c, R)$$
.

- Special cases occur when the head is at one of the ends of the configuration
- For the left-hand end, the configuration q_ibv yields q_jcv if the transition is left moving and it yields cq_jv for the right moving transition
- For the right-hand end , the configuration uaq_i is equivalent uaq_i □

- Start Configuration
- Accepting Configuration
- Rejecting Configuration
- Halting Configuration
- A TM M accepts input w if a sequence of configurations C_1 , C_2 , ..., C_k exists, where
 - 1. C_1 is the start configuration of M on input w,
 - **2.** each C_i yields C_{i+1} , and
 - 3. C_k is an accepting configuration.

Turing Recognizable and Turing Decidable Language

DEFINITION 3.5

Call a language *Turing-recognizable* if some Turing machine recognizes it.¹

DEFINITION 3.6

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.²

Examples of Turing Machine

EXAMPLE 3.7

Here we describe a Turing machine (TM) M_2 that decides $A = \{0^{2^n} | n \ge 0\}$, the language consisting of all strings of 0s whose length is a power of 2.

QUESTION:

- Difference Between TM and PDA.
- TM Recognizable and TM-Decidable Machine.

M_2 = "On input string w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, accept.
- **3.** If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.
- 4. Return the head to the left-hand end of the tape.
- **5.** Go to stage 1."

FIGURE 3.8
State diagram for Turing machine M₂
Lecturer Akib Zaman, Dept. of CSE, UIU

Now we give the formal description of $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{accept}}, q_{\text{reject}}\},$
- $\Sigma = \{0\}$, and
- $\Gamma = \{0, x, \sqcup\}.$
- We describe δ with a state diagram (see Figure 3.8).
- The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} .

• q₁:

- Blank the leftmost 0
- If starts with a blank, reject
- If starts with X, reject

• q₂:

- Move right so long as X's are encountered
- If blank encountered while moving to the right, accept (The only accepting condition)
- 0 replaced with X

• q₃:

- Skip the 0, this is the next 0 after the last replaced 0 in q₂
- Skip all the X's
- When a blank is found, we have reached the right end of the string, move left

• q₄:

- Skip all the X's
- 0 replaced with X, this 0 is after the last skipped 0 in q₃
- A blank here will mean an odd number of 0's, reject the string

• q₅:

- Skip to left all the X's and 0's
- When a blank is found, we have reached the left end of the string, move right

 q_1 0000

 $\sqcup q_2$ 000

 $\sqcup \mathbf{x}q_3$ 00

 $\sqcup \mathbf{x} \mathbf{0} q_4 \mathbf{0}$

 $\sqcup \mathbf{x} \mathbf{0} \mathbf{x} q_3 \sqcup$

ப \mathbf{x} 0 $q_5\mathbf{x}$ ப

ப $\mathbf{x}q_5$ 0 \mathbf{x} ப

 $\sqcup q_5 \mathbf{x} \mathbf{0} \mathbf{x} \sqcup$

 q_5 U \mathbf{x} 0 \mathbf{x} U

 $\sqcup q_2$ **x**0**x** \sqcup

 $\sqcup \mathbf{x} q_2 \mathbf{0} \mathbf{x} \sqcup$

 $\sqcup xxq_3x \sqcup$

 $\sqcup xxxq_3 \sqcup$

 $\sqcup \mathbf{x} \mathbf{x} q_5 \mathbf{x} \sqcup$

 $\sqcup \mathbf{x} q_5 \mathbf{x} \mathbf{x} \sqcup$

 $\sqcup q_5 \mathbf{X} \mathbf{X} \mathbf{X} \sqcup$

 $q_5 \cup xxx \cup$

 $\sqcup q_2 \mathbf{X} \mathbf{X} \mathbf{X} \sqcup$

 $\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$

 $\sqcup xxq_2x\sqcup$

 $\sqcup \mathbf{x} \mathbf{x} \mathbf{x} q_2 \sqcup$

 $\sqcup xxx \sqcup q_{accept}$

• Example 3.9: Turing Machine M₁

$$B = \{ w \# w | w \in \{0,1\}^* \}$$

Formal definition of TM M₁

$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$$

$$Q = \{q_1, \ldots, q_{14}, q_{\text{accept}}, q_{\text{reject}}\},\,$$

$$\Sigma = \{0,1,\#\}, \text{ and } \Gamma = \{0,1,\#,x,\sqcup\}.$$

We describe δ with a state diagram (see the following figure).

The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} .

FIGURE 3.10 State diagram for Turing machine M_1 Lecturer Akib Zaman, Dept. of CSE, UIU

• Example 3.11: Turing Machine M₃

$$C = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k | i \times j = k \text{ and } i, j, k \ge 1 \}$$

 M_3 = "On input string w:

- 1. Scan the input from left to right to determine whether it is a member of a+b+c+ and reject if it isn't.
- 2. Return the head to the left-hand end of the tape.
- 3. Cross off an a and scan to the right until a b occurs. Shuttle between the b's and the c's, crossing off one of each until all b's are gone. If all c's have been crossed off and some b's remain, reject.
- 4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's have been crossed off, determine whether all c's also have been crossed off. If yes, accept; otherwise, reject."

 Lecturer Akib Zaman, Dept. of CSE, UIU

- Modification of M₃ algorithm:

 - Use three different symbols for marking a, b and c on the tape
 - Use of * symbol for marking a
 - Use of X symbol for marking b
 - Use of # symbol for marking c

EXAMPLE 3.12

Here, a TM M_4 is solving what is called the *element distinctness problem*. It is given a list of strings over $\{0,1\}$ separated by #s and its job is to accept if all the strings are different. The language is

$$E = \{ \#x_1 \#x_2 \# \cdots \#x_l | \text{ each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}.$$

Machine M_4 works by comparing x_1 with x_2 through x_l , then by comparing x_2 with x_3 through x_l , and so on. An informal description of the TM M_4 deciding this language follows.

M_4 = "On input w:

- 1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that symbol was a #, continue with the next stage. Otherwise, reject.
- Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only x₁ was present, so accept.
- 3. By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, reject.
- 4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. This time, if no # is available for the rightmost mark, all the strings have been compared, so accept.
- 5. Go to Stage 3." Lecturer Akib Zaman, Dept. of CSE, UIU