B.1 U.S. Navy A-4D Attack Aircraft

The data given in Tables B.1a-B.1d are for the normal cruise configuration, clean airplane, where W=17,578 lb, mass m=546 slugs, S=260 ft², b=27.5 ft, $\bar{c}=10.8$ ft, and the c.g. is at $0.25\bar{c}$. Figure B.1 is a sketch of the aircraft.

Note that the absence of derivatives implies negligible values. The stability derivatives are relative to the stability axes. All angles are in radian measure.

Condition	1	2	3	4	5	6
h, ft	0(S/L)	15,000	15,000	15,000	35,000	35,000
M	0.4	0.4	0.6	0.9	0.6	0.9
V, ft/s	447	423	634	952	584	876
Q , lb/ft^2	237	134	301	677	126	283
I_x , slug-ft ²	8,020	8,200	8,010	8,060	8,190	8,010
I_y , slug-ft ²	25,900	25,900	25,900	25,900	25,900	25,900
I_z , slug-ft ²	29,270	29,090	29,280	29,230	29,100	29,280
I_{xz} , slug-ft ²	-441	-1,989	41	1,042	-1,952	227
α_{trim} , deg	4.7	8.9	3.4	0.7	8.8	2.9

Fig. B.1 Sketch of A-4D aircraft.

Table B.1c Lateral-directional dimensional derivatives condition

Condition	1	2	3	4	5	6
h, ft	0(S/L)	15,000	15,000	15,000	35,000	35,000
M	0.4	0.4	0.6	0.9	0.6	0.9
Y_{β} , ft/s ²	-110.94	-62.42	-144.6	-345.2	-60.38	-139.8
L_{β} , s ⁻²	-27.67	-14.01	-35.00	-87.19	-14.24	-40.32
L_p , s ⁻¹	-1.732	-0.988	-1.516	-2.492	-0.671	-1.134
L_r , s ⁻¹	0.933	0.607	0.874	1.346	0.464	0.672
N_{β} , s ⁻²	15.16	8.223	18.78	46.43	7.864	19.65
N_{p}, s^{-1}	0.040	0.000	0.040	0.125	-0.004	0.041
N_r , s ⁻¹	-0.639	-0.401	-0.566	-0.958	-0.291	-0.428
Y_{δ_r} , ft/s ²	19.65	10.83	25.09	52.24	10.46	21.78
L_{δ_r} , s ⁻²	7.305	2.802	9.961	24.05	2.739	8.568
N_{δ_r} , s ⁻²	-6.732	-3.651	-8.397	-17.41	-3.517	-7.241
Y_{δ_a} , ft/s ²	-2.599	-0.795	-2.409	-5.291	-0.478	-2.420
L_{δ_a} , s ⁻²	17.27	8.757	21.27	37.48	7.998	16.88
N_{δ_a} , s ⁻²	0.334	-0.246	0.479	1.462	-0.139	0.414
L'_{β} , s ⁻²	-28.53	-16.27	-34.90	-81.56	-16.38	-39.77
L_{p}^{\prime} , s ⁻¹	-1.736	-1.004	-1.516	-2.488	-0.681	-1.134
L_r', s^{-1}	0.968	0.717	0.872	1.227	0.542	0.660
N_{β}' , s ⁻²	15.59	9.336	18.73	43.53	8.963	19.35
N_{p}', s^{-1}	0.066	0.069	0.038	0.036	0.042	0.032
N_r', s^{-1}	-0.653	-0.450	-0.565	-0.914	-0.327	-0.423
L'_{δ_r} , s ⁻²	7.682	3.750	9.918	21.90	3.635	8.365
N_{δ_r}', s^{-2}	-6.848	-3.907	-8.383	-16.63	-3.760	-7.176
L_{δ_a}' , s ⁻²	17.26	8.965	21.27	37.84	8.162	16.90
N_{δ_a}'' , s ⁻²	0.073	-0.859	0.508	2.811	-0.686	0.545