1.1 a.

The vertebral column data was first read from the ARFF file, then split into classes for processing.

```
library(foreign)
vert <- read.arff("column_2C_weka.arff")
vert_split <- split(vert, vert[,"class"])
sapply(vert_split$Abnormal[0:6], mean)
sapply(vert_split$Abnormal[0:6], median)
sapply(vert_split$Abnormal[0:6], sd)
sapply(vert_split$Normal[0:6], mean)
sapply(vert_split$Normal[0:6], median)
sapply(vert_split$Normal[0:6], sd)</pre>
```

1.1.1 Abnormal Data

mean			
	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle
	64.69256	19.79111	55.92537
	$sacral_slope$	pelvic_radius	$degree_spondylolisthesis$
	44.90145	115.07771	37.77771
stand	ard deviation		
	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle
	65.27489	18.79890	56.15000
	sacral_slope	pelvic_radius	degree_spondylolisthesis
	44.63960	115.65032	31.94652
media	an		
	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle
	17.66213	10.51587	19.66947
	sacral_slope	pelvic_radius	degree_spondylolisthesis
	14.51556	14.09060	40.69674

1.1.2 Normal Data

		mean
lumbar_lordosis_angle	$pelvic_tilt$	pelvic_incidence
0	0	0
$degree_spondylolisthesis$	pelvic_radius	sacral_slope
0	0	0
		standard deviation
$lumbar_lordosis_angle$	$pelvic_tilt$	$pelvic_incidence$
0	0	0
$degree_spondylolisthesis$	pelvic_radius	sacral_slope
0	0	0
		median
lumbar_lordosis_angle	pelvic_tilt	pelvic_incidence
0	0	0
$degree_spondylolisthesis$	pelvic_radius	sacral_slope
0	0	0

1.2 b.

```
library(foreign)
vert <- read.arff("column_2C_weka.arff")

ImageNameHere.png
```

Figure 1.1: Caption Here

1.3 c.

2.1 a.

Generating 100 3-dimensional vectors from a normal disribution with a mean vector as $[1\ 2\ 1]$ and a 3x3 covariance matrix as $[4\ 0.8\ -0.3;\ 0.8\ 2\ 0.6;\ -0.3\ 0.6\ 5]$

mean <-
$$c(1,2,1)$$

sigma <- matrix($c(4, 0.8, -0.3, 0.8, 2, 0.6, -0.3, 0.6, 5), 3,3)$

$$mean < -\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$sigma < - \begin{bmatrix} 4 & 0.8 & -0.3 \\ 0.8 & 2 & 0.6 \\ -0.3 & 0.6 & 5 \end{bmatrix}$$

2.2 b.

Figure 2.1: Caption Here

2.3 c.

 $Euclidean < - \left[0 \right]$

library(stats)
Mahalanobis<-mahalanobis(x,mean,cov)</pre>

$$x < \frac{1}{2}$$

$$mean < \frac{1}{2} [$$

$$cov < \frac{1}{2} [$$

$$Mahalanobis < \frac{1}{2}$$
 [

3.1 Eigenvalues & Eigenvectors

```
records <- read.table("five-dimensional-records.txt")
  mean <- colMeans(records)
cov <- cov(records)</pre>
```

 $mean < \frac{1}{2}$

 $cov < \frac{1}{2}$

 $Eigenvalues < \frac{1}{7} [$

 $Eigenvectors < \frac{1}{2}$

Figure 3.1: Caption Here

3.2 reduced representation

ImageNameHere.png

Figure 3.2: Caption Here

3.4 Reconstruct Data

Scatter Plot

3.3

```
[5700 12.8 2500 270 25000]
                 1000 10.9 600
                                          10
                                                 10000
                 3400 8.8
                                                 9000
                                 1000 10
                 3800 13.6 1700 140
                                                25000

    4000
    12.8
    1600
    140

    8200
    8.3
    2600
    60

    1200
    11.4
    400
    10

    9100
    11.5
    3300
    60

                                                25000
                                                12000
records < -
                                                16000
                                                14000
                 9900 12.5 3400 180
                                               18000
                 9600 13.7 3600 390
                                               25000
                 9600 9.6 3300 80 12000
                9400 11.4 4000 100 13000
```

 $reconstructed < \frac{1}{r} [$

 $sqareerr < \ \ | \ [$

 $Eigenvalues < {\crucletel{prop} \vdash} [$

 $Eigenvectors < \frac{1}{2} \, [$

Figure 4.1: PCA Vertebral Column Data Set

```
library('tsne') records <- read.table('five-dimensional-records.txt') tsne_10 <- tsne(records, perplexity=10) tsne_50 <- tsne(records, perplexity=50) tsne\_10 < \frac{1}{2} \left[ tsne\_50 < \frac{1}{2} \left[ tsne
```


Figure 5.1: tsne perplexity 10

Figure 5.2: tsne perplexity 50