3º Trabalho Prático

1. Considere a equação de condução de calor:

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0,\tag{1}$$

em que θ é a temperatura. Considerando um domínio quadrado de lados unitários, resolva o problema bidimensional de condução (1), com condições de contorno de Dirichlet contendo descontinuidades na temperatura prescrita, sem e com condição de Neumann prescrita em uma das bordas.

a) No primeiro caso, simule a equação (1) no estado estacionário com condição de contorno tipo Dirichlet, como mostrado na Figura 1.

Figura 1: Geometria do problema de condução bidimensional com condição de Dirichlet.

Inicialmente, discretize o domínio em uma malha computacional de 5×5 pontos, gerando 25 nós igualmente espaçados ($\delta x = \delta y = 0, 25$). Depois, refine a malha e observe a convergência do método. Utilize os métodos de Jacobi, Gauss-Seidel e SOR na resolução do sistema de equações e compare-os analisando os erros.

b) No segundo caso, considere agora, o problema anterior com condição de contorno tipo Neumann, como mostrado na Figura 2, cuja borda direita está isolada termicamente. Expressa-se esse isolamento através da seguinte equação

Figura 2: Geometria do problema de condução bidimensional com condição de Neumann.

Observação: Para simples comparação, a Tabela 1 mostra os resultados numéricos da distribuição final de temperatura com condição de contorno tipo Dirichlet conforme obtidos por Fortuna e a Tabela 2 mostra os resultados numéricos da distribuição final de temperatura com condição de contorno tipo Neumann conforme obtidos por Fortuna.

Tabela 1: Distribuição final de temperatura com condição de contorno de Dirichlet (Figura 1) conforme obtidos por Fortuna.

	0,00	0,00	0,00	
75,00	42,85	37,72	51,78	100,00
75,00	58,70	56,24	69,41	100,00
75,00	60,71	59,15	69,64	100,00
	50,00	50,00	50,00	

Tabela 2: Distribuição final de temperatura com condição de contorno de Neumann (Figura 2) conforme obtidos por Fortuna.

	0,00	0,00	0,00	0,00
75,00	37,63	23,69	18,33	16,92
75,00	51,83	38,78	32,74	31,01
75,00	55,93	46,88	42,82	41,66
	50,00	50,00	50,00	50,00