(자연과학)

주체106(2017)년 제63권 제4호

(NATURAL SCIENCE)

Vol. 63 No. 4 JUCHE106(2017).

품질조종에서 실례에 기초한 추론을 리용한 공정정수결정의 한가지 방법

윤금일, 최은철

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《오늘 세계는 경제의 지식화에로 전환되고있으며 우리앞에는 나라의 경제를 지식의 힘으로 장성하는 경제로 일신시켜야 할 시대적과업이 나서고있습니다.》

선행연구[2]에서는 유전알고리듬을 리용하여 공정정수들을 결정하는 방법을 취급하였으나 이 방법은 품질평가에 따라 공정정수들을 계산할 때마다 계산량과 계산시간이 많은 결함이 있다.

론문에서는 품질보장을 위한 조종문제에서 계산량과 계산시간을 줄이는 한가지 방도로서 실례에 기초한 추론에 의한 공정정수결정방법을 제안한다.

1. 실례에 기초한 추론모형작성

실례에 기초한 추론은 지식획득이 쉽고 탐색시간이 빠르며 실례에 의한 풀이의 믿음성 등의 우점으로 하여 널리 리용되며 특히 통합생산체계에서 결심채택문제에 실제적으로 쉽게 적용하여 효과를 볼수 있다.[1]

실례에 기초한 추론을 진행하자면 리력자료들에 기초하여 실례자료기지를 구축하여야 하며 문제가 주어지면 문제에 해당한 류사한 실례들을 실례자료 기지로부터 탐색할수 있게 알고리듬이 구성되여있어 야 한다. 이러한 조건을 고려하여 실례에 기초한 추 론을 위한 일반적인 모형을 작성하면 그림과 같다.

품질관리를 위한 조종문제에서는 목표품질과 실지 측정된 품질과의 편차를 리용하여 제품의 품질에 영향을 미치는 원료 및 공정정수들을 변화시키는 방법으로 생산과정의 품질관리를 진행한다. 이때 원료조건은 변하지 않는 량이라고 가정한다.

그림. 실례에 기초한 추론을 위한 일반적인 모형

2. 실레기지에서 실례의 검색

n개의 실례들로 이루어진 실례기지에서 매개의 실례가 k개의 속성을 가진다고 하면 다음과 같이 표시할수 있다.

$$CB = \{C_1(k), C_2(k), \dots, C_n(k), \dots, C_n(k)\}\$$
 (1)

여기서 i번째 실례의 속성값을 다음과 같이 표시한다.

$$C_{i}(k) = \{CV_{i1}, CV_{i2}, \cdots, CV_{ii}, \cdots, CV_{ik}\}$$
 (2)

한편 어떤 문제 P가 주어졌을때 문제 P의 k개 속성값을 다음과 같이 표시한다.

$$P = \{PV_1, PV_2, \cdots, PV_i, \cdots, PV_k\}$$
(3)

이때 실례검색은 다음의 검색조건에 기초하여 진행된다.

$$|CV_{ii} - PV_i| \le \varepsilon, \quad i = \overline{1, k}, \quad j = \overline{1, n}$$
 (4)

여기서 ε 은 실례검색때 몇개의 류사실례를 검색하였는가를 규정짓는 턱값으로서 사용자에 의해 결정되는데 보통 [0, 1]구간의 값으로 정한다.

만일 실례검색때 검색조건식을 만족시키는 실례를 찾지 못한(실패) 경우에는 현재 실례기지안에 문제풀이에 적합한 과거실례가 없는것으로 보고 새로운 문제의 풀이를 구하고 이것을 새로운 실례기지에 등록한다.

3. 실례와 문제의 류사도판정

실례의 평가단계에서는 검색된 실례들에 대하여 설정된 평가기준에 따라 평가를 진행하여 최적인 실례를 선택한다.

k개의 속성과 속성값을 가지는 j번째 실례 $C_j(k)$ 와 문제 P와의 류사도를 SD_j 로 표시하고 다음과 같이 계산한다.

$$SD_{j} = \sum_{i=1}^{k} \omega_{i} \cdot \alpha_{i} (1 + \omega_{i}' \beta_{i})$$
 (5)

여기서 α_i 는 속성 i가 성립되는가를 표시하는 값, β_i 는 속성 i가 성립되는 경우 속성값이 같은가를 표시하는 값, ω_i 는 속성 i의 α 값에 해당한 무게 $(\omega_i = [0, 1])$, ω_i' 는 속성 i의 β 값에 해당한 무게 $(\omega_i' = [0, 1])$ 로서 ω_i 와 ω_i' 는 다음과 같이 계산할수 있다.

우선 ω_i 는 다음과 같이 계산한다.

$$\omega_{i} = \begin{cases} (a_{2} - a^{*})/(a_{2} - a_{1}), & a^{*} \in [a_{1}, a_{2}] \\ 1, & a^{*} = a_{2} \\ 0, & a^{*} = a_{1} \end{cases}$$
(6)

여기서 상태 a^* 은 현재문제 P의 속성값이며 상태 a_1 과 a_2 는 선택된 실례속성값 $CV_{ii}(j=\overline{1,\ n})$ 의 변화구간이다.

한편 ω_i' 는 속성 i 가 성립되는 경우에 속성값이 어느 정도 같은가를 표시하는 값으로서 실례의 속성값 CV_{ii} 와 문제의 속성값 PV_i 의 비로 표시할수 있다. 즉

$$\omega_{i}' = \begin{cases} CV_{ji} / PV_{i}, & CV_{ji} \leq PV_{i} \\ PV_{i} / CV_{ji}, & CV_{ji} \leq PV_{i} \end{cases}$$
 (7)

이렇게 선택된 실례들의 매개 속성에 따르는 무게연산을 진행하여 문제 P와 실례의 류사도를 결정하고 류사도가 제일 큰 실례를 선정한다.

4. 실례의 수정

류사도가 제일 큰 실례를 선정한 다음 실례의 수정을 실례수정의 기준정보와 실례수 정정보에 기초하여 진행한다.

선택된 최적실례 $C^*(k)$ 의 속성값 CV_i^* 을 실례기준정보로 하고 최적실례 $C^*(k)$ 와 문 제 P 와의 류사도 SD_i^* 을 미지의 속성값확정을 위한 실례수정정보로 리용한다.

다음 문제 P의 미지의 속성값 PV_i 를 기준정보 CV_i^* 와 실례수정정보 SD_i^* 의 함수로 서 정의한다. 즉

$$PV_i = CV_i^* \cdot SD_i^*$$
.

얻어진 문제 P의 풀이 PV_i 를 가지고 공정정수에 대한 수정을 가하여 적용한 후 품 질이 개선(성공)이면 이 문제를 문제해결의 실례로서 실례기지안에 등록하고 품질이 개선 되지 않는 경우 다시 실례에 기초한 추론을 진행한다.

이때 품질의 개선여부정도는 적용전후의 평가함수값을 비교하는것으로 결정한다.

5. 모의결과 및 분석

모의실험을 과자생산공정의 현장운영자료를 가지고 진행하였다.

실례기지로는 자료기지의 전압표와 원료분석표, 제품분석표, 공정정수표로부터 제품 의 품질이 기준값에 도달하는 리력묶음을 선택하였다.(표 1-4)

표 1. 전압표

표 2. 원료분석표

번호	전압	밀가트	무분석지.	표	사탕가루	기름	意모	향료	물엿
민포	/V	농마함량/%	수분/%	회분/%	평가점수	평가점수	평가점수	평가점수	평가점수
1	330	81.78	4.2	0.12	95	93	95	97	91
2	330	82.00	3.9	0.13	96	93	95	97	91
3	330	81.80	3.5	0.12	96	93	95	97	90

표 3. 제품분석표

수분/%	회분/%	부스리짐률/%	색	맛	냄새	세균수/개
3.5	0.18	0.21	98	95	99	11
4.1	0.20	0.19	96	99	98	11
4.6	0.16	0.11	99	100	99	5

표 4. 공정정수표

로 1상단	로 1하단	로 2상단	로 2하단	구이로 흐름	기름분사기 흐름	랭각흐름
온도/℃	온도/℃	온도/℃	온도/℃	속도/(m·min ⁻¹)	속도/(m·min ⁻¹)	속도/(m·min ⁻¹)
250	230	230	188	16	7.7	10.5
240	245	220	170	17.5	7.6	10.8
265	235	200	185	17	7.3	10.7

여기에 기초하여 현재 전압이 330V이고 생산원료조건이 표 5와 같이 주어졌을 때 실 례기지에서 류사한 전압, 원료조건을 가지는 자료쌍을 찾는다.

ᅲ	5	혀재	생산원료조건
	J.	- i / i / i	

밀가투	무분석지.	丑	사탕가루	기름	효모	향료	물엿
농마함량/%	수분/%	회분/%	평가점수	평가점수	평가점수	평가점수	평가점수
81.68	3.9	0.12	96	93	95	97	91

이때 매 경우의 제품품질평가값을 계산하여 평가함수가 최대인 공정정수를 선정한 결과는 표 6과 같다.

표 6. 실례에 기초한 추론을 리용한 최량공정정수

로 1상단	로 1하단	로 2상단	로 2하단	구이로 흐름	기름분사기 흐름	랭각흐름
온도/℃	온도/℃	온도/℃	온도/℃	속도/(m·min ⁻¹)	속도/(m·min ⁻¹)	속도/(m·min ⁻¹)
265	235	200	185	17	7.3	10.7

한편 현재의 조건에서 품질모형을 리용하여 최량공정정수를 계산한 결과는 표 7과 같다.[2]

표 7. 품질모형을 리용한 최량공정정수

로 1상단	로 1하단	로 2상단	로 2하단	구이로 흐름	기름분사기 흐름	랭각흐름
온도/℃	온도/℃	온도/℃	온도/℃	속도/(m·min ⁻¹)	속도/(m·min ⁻¹)	속도/(m·min ⁻¹)
270	238	199	185	17.2	7.5	11

두 방법의 계산결과는 거의 류사하지만 계산시간은 제안한 방법에서는 2.3s, 신경망품질모형과 유전알고리듬을 리용한 방법에서는 7.8s였다.

우의 실험을 반복하여도 우와 거의 같은 결과가 나온다.

맺 는 말

품질보장을 위한 조종문제에서 계산량과 계산시간을 줄이는 한가지 방도로서 실례에 기초한 추론을 리용하여 공정정수를 결정하기 위한 한가지 방법을 제기하고 모의실험을 통하여 그 효과성을 검증하였다.

참 고 문 헌

- [1] S. L. Kendal et al.; An Introduction to Knowledge Engineering, Springer-Verlag, 55~66, 2007.
- [2] Leo Carro Calvo; Journal of Network and Computer Applications, 33, 375, 2010.

주체105(2016)년 12월 5일 원고접수

A Study on the Process Parameter Decision Method using Case-based Reasoning in Quality Control

Yun Kum Il, Choe Un Chol

We propose the process parameter decision method using case-based reasoning as a method which has reduced the calculation quantity and times in quality control and inspected the effectiveness through the field operation data.

Key words: case-based reasoning, quality control, case-base