L'uso della logica modale per fornire una semantica classica alla logica intuizionista

Gabriele Vanoni

Abstract

Dopo aver brevemente presentato le motivazioni filosofiche e matematiche per cui ha senso introdurre la logica intuizionista se ne discute brevemente l'interpretazione BHK e si fornisce la semantica di Kripke. Si passa poi a presentare la traduzione di Gödel-McKinsey-Tarski che permette l'interpretazione dell'intuizionismo attraverso i connettivi modali classici, e in particolare si dimostra l'equivalenza con il sistema S4.

Indice

1 La logica intuizionista
2 La traduzione di Gödel-McKinsey-Tarski
4

1 La logica intuizionista

Le motivazioni

Dalla seconda metà dell'800 le **dimostrazioni** hanno perso in generale contenuto **computazionale**.

Le dimostrazioni spesso non sono **costruttive**, provano l'esistenza di un oggetto ma non danno un **algoritmo** per costruirlo.

Brouwer capisce che questa mancanza è data dalla legge del **terzo** escluso:

$$\vdash p \lor \neg p$$

Esempio

Non possiamo asserire che $\forall n. f(n) = 0 \lor \exists n. f(n) \neq 0$.

La corrispondenza di Curry-Howard-Lambek (cenni)

- La logica intuizionista diventa fondamentale nel secondo dopoguerra nella teoria dei **linguaggi di programmazione**.
- Infatti viene stabilita una corrispondenza sintattica tra le dimostrazioni in deduzione naturale e i programmi del lambda-calcolo tipato semplice.
- La corrispondenza tra prove e programmi segna la nascita della moderna **teoria dei tipi** (Martin-Lof, Coquand), dei **linguaggi funzionali** (Lisp, Haskell) e dei **proof-assistant** (Coq, HOL).
- La corrispondenza viene poi estesa alla **teoria delle categorie** e in particolare alle Categorie Cartesiane Chiuse (CCC) aventi come oggetti i tipi (formule) e come morfismi i termini (dimostrazioni).

L'interpretazione BHK

- Una dimostrazione di $A \wedge B$ è data presentando una dimostrazione di A e una dimostrazione di B.
- Una dimostrazione di A ∨ B è data presentando una dimostrazione di A o una dimostrazione di B.
- Una dimostrazione di $A \to B$ è una costruzione che permette di trasformare qualsiasi dimostrazione di A in una dimostrazione di B.
- L'assurdo \perp non ha dimostrazione.
- Una dimostrazione di ¬A è una costruzione che trasforma ogni ipotetica dimostrazione di A in una dimostrazione di ⊥ (ovvero una dimostrazione di A → ⊥).

Ovviamente queste regole non forniscono una semantica formale, lasciando generici i concetti di dimostrazione e costruzione.

Un calcolo alla Hilbert per Int

Heyting e Kolmogorov proposero per **Int** un calcolo alla Hilbert con i seguenti schemi di assiomi:

1.
$$P \rightarrow (Q \rightarrow P)$$

2.
$$(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$$

3.
$$P \wedge Q \rightarrow P$$

$$4. P \wedge Q \rightarrow Q$$

- 5. $P \to (Q \to P \land Q)$
- 6. $P \rightarrow P \lor Q$
- 7. $Q \rightarrow P \lor Q$
- 8. $(P \to R) \to ((Q \to R) \to (P \lor Q \to R))$
- 9. $\perp \rightarrow P$

e la regola di inferenza Modus Ponens.

La logica Int risulta quindi essere un sottoinsieme proprio della logica L, avendo questa come unico assioma in più il principio del terzo escluso $P \lor (P \to \bot)$.

La semantica di Kripke per Int

- Dobbiamo immaginare che se una proposizione p non è vera in un istante x, non è detto che non lo diverrà in un futuro y. La conoscenza evolve cioè da uno stato all'altro. Tuttavia ciò che è vero, ovviamente nel futuro rimane vero.
- Possiamo quindi formalizzare il ragionamento costruendo un **frame** di Kripke $\mathfrak{F} = <\mathfrak{W}, \mathfrak{R} > \operatorname{con} \mathfrak{W}$ insieme non vuoto dei **mondi** e $\mathfrak{R} \subseteq \mathfrak{W} \times \mathfrak{W}$ **relazione di accessiblità** fra i mondi, su cui verranno costruiti i relativi **modelli** $\mathfrak{M} = <\mathfrak{F}, \mathfrak{V} > \operatorname{assegnando}$ una funzione di **valutazione** $\mathfrak{V} : Var\mathcal{L} \to \mathcal{P}(\mathfrak{W})$.
- Per dare il significato ad R di "tempo", richiediamo che \Re sia un **ordine** parziale, ovvero sia transitiva, riflessiva e antisimmetrica.
- Richiediamo inoltre che la funzione di valutazione \mathfrak{V} garantisca che la verità venga mantenuta "nel tempo", ovvero che se $x \in \mathfrak{V}(p)$ e $x\mathfrak{R}y$ allora $y \in \mathfrak{V}(p)$ per ogni $p \in Var\mathcal{L}$.

La valutazione delle formule su un mondo x di un modello $\mathfrak{M} = <\mathfrak{F}, \mathfrak{V}>$ costruito su un frame $\mathfrak{F} = <\mathfrak{W}, \mathfrak{R}>$ procede per induzione sulla costruzione della formula:

- $(\mathfrak{M}, x) \models p \text{ sse } x \in \mathfrak{V}(p)$
- $(\mathfrak{M}, x) \models P \land Q$ sse $(\mathfrak{M}, x) \models P$ e $(\mathfrak{M}, x) \models Q$
- $(\mathfrak{M}, x) \models P \lor Q$ sse $(\mathfrak{M}, x) \models P$ o $(\mathfrak{M}, x) \models Q$
- $(\mathfrak{M}, x) \models P \to Q$ sse per ogni y tale che $x\mathfrak{R}y$ se $(\mathfrak{M}, y) \models P$ allora $(\mathfrak{M}, y) \models Q$

• $(\mathfrak{M}, x) \not\models \bot$

segue quindi che $(\mathfrak{M}, x) \models \neg P$ sse per ogni y tale che $x\mathfrak{R}y$ $(\mathfrak{M}, y)\not\models P$.

Si verifica per induzione sulla complessità della formula che se P è vera in x e $x\Re y$ allora P è vera anche in y.

Esempio: il principio del terzo escluso

Ci basta trovare un modello in cui $p \vee \neg p \equiv p \vee (p \to \bot)$ non sia valida. Consideriamo un frame con soli due mondi x e y, $\mathfrak{R} = \{(x,x),(x,y),(y,y)\}$, un'unica lettera proposizionale p e $\mathfrak{V}(p) = \{y\}$. Rappresentiamo a sinistra del mondo ciò che è vero mentre a destra ciò che non lo è (non è detto che sia falso!).

2 La traduzione di Gödel-McKinsey-Tarski

L'idea

- Abbiamo fornito una semantica formale ad Int utilizzando un frame di Kripke con particolari proprietà, che intuitivamente rispecchiano il possibile aumento di conoscenza nel tempo.
- Vorremmo ora formalizzare l'**interpretazione BHK** che faceva invece riferimento alla **dimostrabilità**.
- L'idea è quella di utilizzare l'operatore **modale** □ con il significato di "è dimostrabile".
- Capiamo che per assegnare la corretta semantica all'operatore □, necessitiamo di una teoria più forte di K, in particolare avremo bisogno che la dimostrabilità di A implichi A e che la dimostrabilità di A implichi la dimostrabilità della sua dimostrabilità, ovvero devono valere gli assiomi:

$$- \mathbf{T} : \square A \to A$$
$$- \mathbf{4} : \square A \to \square \square A$$

• Faremo vedere dunque una traduzione di Int in S4, ovvero la logica determinata dai frame riflessivi e transitivi.

Una nota sul concetto di dimostrabilità

La semantica che diamo all'operatore \square è quella di "dimostrabilità" in un senso informale, non in un particolare sistema formale S come potrebbe essere PA. Infatti avremmo che in S:

$$\Box(0 \neq 0) \rightarrow 0 \neq 0$$
 (assioma **T** e sostituzione)

da cui deriviamo

$$\neg \Box (0 \neq 0)$$
 (essendo il conseguente falso),

che asserisce la **coerenza** di S, andando contro il **secondo teorema di** incompletezza.

Per considerare la dimostrabilità in un **sistema formale S** dobbiamo considerare non S4, ma la logica GL in cui l'operatore \square ha le stesse proprità del predicato "è dimostrabile in S" definito nella dimostrazione dei **teoremi** di incompletezza.

La traduzione

Diamo quindi una **traduzione** T: $For\mathcal{L} \to For\mathcal{ML}$ ottenuta dall'**interpretazione BHK** sostituendo alla parola "dimostrazione" o "costruzione" l'operatore \square .

Traduzione GMT

- $\mathsf{T}(p) = \Box p$
- $\mathsf{T}(P \wedge Q) = \mathsf{T}(P) \wedge \mathsf{T}(Q)$
- $\mathsf{T}(P \lor Q) = \mathsf{T}(P) \lor \mathsf{T}(Q)$
- $\mathsf{T}(P \to Q) = \Box(\mathsf{T}(P) \to \mathsf{T}(Q))$
- $\mathsf{T}(\bot) = \Box \bot$

Ciò che vogliamo dimostrare è che per ogni formula $P \in For \mathcal{L}$:

$$P \in \mathbf{Int}$$
 se e solo se $\mathsf{T}(P) \in \mathbf{S4}$.

Abbiamo bisogno di alcune definizioni e lemmi preliminari.

Lemma 1. Sia \mathfrak{M} un modello costruito su un frame $\mathfrak{F} = < \mathfrak{W}, \mathfrak{R} >$ transitivo. Allora per ogni mondo x in \mathfrak{W} se $(\mathfrak{M}, x) \models \Box P$ allora per ogni y tale che $x\mathfrak{R}y$ $(\mathfrak{M}, y) \models \Box P$.

Dimostrazione. Supponiamo per assurdo che in un mondo y tale che $x\Re y$ $(\mathfrak{M},y)\not\models \Box P$. Allora dovrebbe esistere un mondo z tale che $y\Re z$ in cui $(\mathfrak{M},z)\not\models P$. Per la transitività di \mathfrak{R} $x\Re z$ e dunque contraddirremmo l'ipotesi.

Frame skeleton

Definizione 2 (relazione di cluster). Dato un frame \mathfrak{F} transitivo $<\mathfrak{W},\mathfrak{R}>$ diciamo che per ogni $x,y\in\mathfrak{W}$ $x\approx y$ se e solo se o x=y o $x\mathfrak{R}y$ e $y\mathfrak{R}x$.

Definizione 3. Il frame quoziente di un frame transitivo $\mathfrak{F} = <\mathfrak{W}, \mathfrak{R} >$ rispetto alla relazione di cluster \approx , cioè $<\mathfrak{W}/\approx$, \mathfrak{R}/\approx > essendo:

- \mathfrak{W}/\approx l'insieme delle classi di equivalenza di \mathfrak{W} rispetto a \approx
- $C(x) \Re/\approx C(y)$ se e solo se $x\Re y$

è chiamato frame skeleton di \mathfrak{F} e indicato con $\rho\mathfrak{F}=<\rho\mathfrak{W},\rho\mathfrak{R}>$.

Risulta evidente che un frame skeleton è antisimmetrico, transitivo e mantiene l'eventuale riflessività di R.

Costruzione del modello skeleton

Torniamo alla logica **S4**. Consideriamo un suo **modello** $\mathfrak{M} = \langle \mathfrak{F}, \mathfrak{V} \rangle$. Sappiamo che è costruito su un **frame** $\mathfrak{F} = \langle \mathfrak{W}, \mathfrak{R} \rangle$ **transitivo e riflessivo** (**preordinato**).

Costruiamo il frame skeleton $\rho \mathfrak{F}$ (che è parzialmente ordinato, essendo transitivo, riflessivo e antisimmetrico) e assegnamogli la valutazione $\rho \mathfrak{V}$ così definita:

$$\rho \mathfrak{V}(p) = \{ C(x) : (\mathfrak{M}, x) \models \Box p \}.$$

Osserviamo che per il lemma precedente la valutazione è trasparente rispetto alla scelta del mondo all'interno del cluster e che inoltre rispetta la proprietà per cui se $C(x) \in \rho \mathfrak{V}(p)$ e $C(X) \mathfrak{R}/\approx C(y)$ allora $C(y) \in \rho \mathfrak{V}(p)$ per ogni $p \in Var \mathcal{L}$.

Chiamiamo skeleton di \mathfrak{M} il modello $\rho \mathfrak{M} = \langle \rho \mathfrak{F}, \rho \mathfrak{V} \rangle$. $\rho \mathfrak{M}$ è dunque un modello intuizionista.

Modello modale e lemma skeleton

Osserviamo che dato un modello intuizionista $\mathfrak{N}=<\rho\mathfrak{F},\mathfrak{U}>$ costruito come skeleton di un frame modale \mathfrak{F} possiamo costruire un modello modale \mathfrak{M} considerando la valutazione

$$\mathfrak{V}(p) = \{x : (\rho \mathfrak{N}, C(x)) \models p\}.$$

In particolare avremo $\rho \mathfrak{M}$ isomorfo a \mathfrak{N} . Inoltre se ogni **cluster** di \mathfrak{F} è singolo abbiamo che \mathfrak{F} è isomorfo a $\rho \mathfrak{F}$ e \mathfrak{M} è isomorfo ad \mathfrak{N} .

Lemma 4 (skeleton). Per ogni modello \mathfrak{M} modale costruito su un frame preordinato, per ogni mondo x di \mathfrak{M} e per ogni formula $P \in For\mathcal{L}$ $(\rho \mathfrak{M}, C(x)) \models P$ se e solo se $(\mathfrak{M}, x) \models \mathsf{T}(P)$.

Dimostrazione. La dimostrazione procede per induzione sulla complessità della formula.

Caso base (formula atomica): per la definizione di $\rho \mathfrak{V}$, $(\rho \mathfrak{M}, C(x)) \models p$ se e solo se $(\mathfrak{M}, x) \models \Box p$ e $\mathsf{T}(p) = \Box p$.

Supponiamo allora che per una formula con n connettivi Q valga $(\rho \mathfrak{M}, C(x)) \models Q$ se e solo se $(\mathfrak{M}, x) \models \mathsf{T}(Q)$.

Dimostriamo che la proprietà vale aggiungendo l'n+1esimo connettivo. Distinguiamo i seguenti casi.

Caso $P = Q \to R$: $(\rho \mathfrak{M}, C(x)) \not\models P$ se e solo se $(\rho \mathfrak{M}, C(y)) \models Q$ e $(\rho \mathfrak{M}, C(y)) \not\models R$ in un qualche C(y) tale che $C(X) \mathfrak{R}/\approx C(y)$. È possibile per ipotesi di induzione se e solo se $(\mathfrak{M}, y) \models \mathsf{T}(Q)$ e $(\mathfrak{M}, y) \not\models \mathsf{T}(R)$ con $y \in C(y)$ cioè se e solo se $(\mathfrak{M}, x) \not\models \mathsf{T}(Q) \to \mathsf{T}(R)$) cioè $(\mathfrak{M}, x) \not\models \mathsf{T}(P)$.

Gli altri **casi** con \land e \lor si provano allo stesso modo.

Tè una traduzione di Int in S4

Corollario 5. Per ogni frame \mathfrak{F} quasi ordinato e ogni $P \in For\mathcal{L}$ $\rho \mathfrak{F} \models P$ se e solo se $\mathfrak{F} \models \mathsf{T}(P)$.

Teorema 6. $P \in \mathbf{Int}$ se e solo se $\mathsf{T}(P) \in \mathbf{S4}$.

Dimostrazione. (\Longrightarrow) Supponiamo che $\mathsf{T}(P) \notin \mathbf{S4}$. Allora esiste un frame \mathfrak{F} transitivo e riflessivo per cui $\mathfrak{F}\not\models \mathsf{T}(P)$. Per il corollario sopra allora $\rho\mathfrak{F}\not\models P$. Dunque $P\notin \mathbf{Int}$.

 (\Leftarrow) Supponiamo che $P \notin \mathbf{Int}$. Allora esiste un frame intuizionista \mathfrak{F} per cui $\mathfrak{F}\not\models P$. Possiamo allora considerare \mathfrak{F} come un frame modale isomorfo al suo skeleton, per cui per il corollario sopra $\mathfrak{F}\not\models \mathsf{T}(P)$ e quindi $\mathsf{T}(P)\notin \mathbf{S4}$. \square

Riferimenti bibliografici

- [1] Alexander Chagrov and Michael Zakharyaschev. *Modal Logic*. Clarendon Press, 1997.
- [2] Gabriele Lolli. *Logica Intuizionista*. Note del corso di filosofia della matematica, 2013.
- [3] Giovanni Sambin. Molteplicità delle logiche e necessità delle traduzioni. Logica intuizionistica e logica classica a confronto. Note.
- [4] Thierry Coquand. *Constrictive Logic*. Note della MAP Summer School, Trieste, August 2008.