Examen final de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 19 de desembre de 2024

Grup, cognoms i nom: 1,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/9)$.

- Suposeu que estem aplicant l'algorisme Perceptró, amb factor d'aprenentatge $\alpha=1$ i marge b=0.1, a un conjunt de 3 mostres bidimensionals d'aprenentatge per a un problema de 2 classes. Se sap que, després de processar les primeres 2 mostres, s'han obtés els vectors de pesos $\mathbf{w}_1=(0,0,-2)^t$, $\mathbf{w}_2=(0,0,2)^t$. Així mateix, se sap que, després de processar l'última mostra, (\mathbf{x}_3,c_3) , s'obtenen els mateixos vectors de pesos. Quina de les següents mostres és eixa última mostra?
 - A) $((5,5)^t,1)$
 - B) $((2,4)^t,1)$
 - C) $((2,5)^t,2)$
 - D) $((4,1)^t,1)$
- 2 Donada la següent taula de probabilitats condicionals de les 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
$^{\mathrm{C}}$	0	1	0	1	0	1	0	1
$P(A, B \mid C)$	0.449	0.173	0.051	0.327	0.343	0.027	0.157	0.473

Si P(C = 0) = 0.81, quin és el valor de $P(A = 1 \mid B = 0, C = 1)$?

- A) $P(A=1 \mid B=0, C=1) \le 0.25$
- B) $0.25 < P(A=1 \mid B=0, C=1) \le 0.50$
- C) $0.50 < P(A=1 \mid B=0, C=1) \le 0.75$
- D) $0.75 < P(A=1 \mid B=0, C=1) \le 1.00$
- 3 Siga un problema de classificació en dos classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula. Indica en quin interval es troba la probabilitat de error ε del classificador $c(\mathbf{x})$ basat en la funció discriminant $g(\mathbf{x}) = 0.5 + x_1 + x_2$ definit com

$$c(\mathbf{x}) = \begin{cases} 1 & \text{si } g(\mathbf{x}) < 0 \\ 2 & \text{en cas contrari} \end{cases}$$

ε <	< 0	.25.
	Ξ.	$\varepsilon < 0$

B)
$$0.25 \le \varepsilon < 0.50$$
.

- C) $0.50 \le \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	$P(c \mid \mathbf{x})$	
0 1 0.5 0.5 0.1	$x_1 x_2$	$c = 1 \ c = 2$	$P(\mathbf{x})$
0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0.4 0.6	0
1 0 0 0 0 0 0 0 1	0 1	0.5 - 0.5	0.1
1 0 0.5 0.5 0.4	1 0	0.5 - 0.5	0.4
1 1 0.8 0.2 0.5	1 1	0.8 0.2	0.5

4 La figura següent mostra una partició de 5 punts bidimensionals en dos clústers, ullet i \circ :

Si transferim de clúster el punt $(9,2)^t$, es produeix una variació de la suma d'errors quadràtics (SEQ), $\Delta J = J - J'$ (SEQ després de l'intercanvi menys SEQ abans de l'intercanvi), tal que:

- A) $\Delta J < -7$.
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.
- 5 La figura següent mostra una partició de 4 punts bidimensionals en dos clústers, \bullet i \circ :

Indica quin dels següents punts es transfereix de clúster quan apliquem l'algorisme K-mitjanes de Duda i Hart, però no quan apliquem la versió convencional de l'algorisme K-mitjanes:

- A) $(2,0)^t$
- B) $(2,2)^t$
- C) $(3,2)^t$
- D) $(1,2)^t$
- 6 Donat el classificador en dues classes definit per la seua frontera i regions de decisió de la figura de la dreta, ¿quin dels següents vectors de pesos (en notació homogènia) defineix un classificador equivalent al donat?

- B) $\mathbf{w}_1 = (1,0,0)^t$ i $\mathbf{w}_2 = (0,0,2)^t$.
- C) $\mathbf{w}_1 = (0,0,2)^t$ i $\mathbf{w}_2 = (1,0,0)^t$.
- D) Tots els vectors de pesos anteriors defineixen classificadors equivalents.

Suposeu que tenim una caixa amb 10 taronges que conté 8 taronges Washington (W) i 2 Cadenera (C) de la que hem tret dues taronges, una darrere d'una altra sense reposició. Donades les variables aleatòries: • T1: varietat de la primera taronja treta. • T2: varietat de la segona taronja treta. Quina de les següents condicions no es certa? A) P(T1 = W, T2 = C) = P(T1 = C, T2 = W)B) $P(T2 = W) < P(T2 = W \mid T1 = C)$ C) $P(T1 = C) = P(T1 = C \mid T2 = W)$ D) $P(T2 = W) > P(T2 = W \mid T1 = W)$ Siga \mathbf{x} un objecte a classificar en una classe de C possibles. Indica quin dels següents classificadors no és (de risc) d'error mínim (o escull l'última opció si cap dels tres és d'error mínim): A) $c(\mathbf{x}) = \arg\min \ e^{p(c|\mathbf{x})} + e^{p(\mathbf{x})}$ c=1,...,CB) $c(\mathbf{x}) = \arg\min \ e^{p(\mathbf{x},c)}$ C) $c(\mathbf{x}) = \arg \max - \log p(\mathbf{x}, c)$ D) Cap dels tres classificadors anteriors és d'error mínim. Siga $g(\mathbf{x})$ un classificador. Indica quin de les següents funcions no definix un classificador equivalent (o escull l'última opció si totes definixen un classificador equivalent): A) $f(g(\mathbf{x})) = ag(\mathbf{x}) + b$ a > 0B) $f(g(\mathbf{x})) = \log g(\mathbf{x})$

C) $f(g(\mathbf{x})) = \exp g(\mathbf{x})$

D) Les tres funcions anteriors definixen un classificador equivalent.

Examen final de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 19 de desembre de 2024

Grup, cognoms i nom: 1,

Problema sobre regressió logística

La següent taula presenta per fila una mostra d'entrenament de 2 dimensions procedent de una classe:

Addicionalment, la següent taula representa una matriu de pesos inicials amb els pesos de cadascuna de les classes per columnes::

\mathbf{w}_1	\mathbf{w}_2
0.5	-0.5
0.5	-0.5
0.5	-0.5

Es demana:

- 1. (0.25 punts) Calcula el vector de logits associat a la mostra d'entrenament.
- 2. (0.25 punts) Aplica la funció softmax al vector de logits de la mostra d'entrenament.
- $3.~(0.25~\mathrm{punts})$ Calcula la neg-log-versemblança del conjunt d'entrenament respecte a la matriu de pesos inicials.
- 4. (0.25 punts) Classifica la mostra d'entrenament. En cas d'empat, tria qualsevol classe.
- 5. (0.5 punts) Calcula el gradient de la funció NLL en el punt de la matriu de pesos inicials.
- 6. (0.5 punts) Actualitza la matriu de pesos inicials aplicant descens per gradient amb factor d'aprenentatge $\eta=1.0$.