PROCESS IMPROVEMENT QUALITY MANAGEMENT_3 METHODS 27/04/2023

MELINDA KÖNYVES

DEPARTMENT OF MANAGEMENT AND BUSINESS ECONOMICS

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS KONYVES.MELINDA@GTK.BME.HU

Goal

Principles

Customer focus

Process improvement

Total involvement

Supporting elements

Leadership

Supportive structure

Communication

Education and training

Reward and recognitions

Measurement

Documentation requirements

Level 1: defines how the QMS operates

Level 2: defines who, what, when

Level 3: answers how

Level 4: shows that the system is operating

Everyone should be able to work from valid documents, all the time

MANUAL

Quality PROCEDURES

Job INSTRUCTIONS

Quality records, reports, forms

Injection moulding

- https://www.youtube.com/watch?v=b1U 9W4iNDiQ
- https://www.youtube.com/watch?v=8U_ ELHOzfUk

Quality tools

- Classification:
 - According to streight (mathematical background)
 - According to application field
 - Process modelling
 - Idea collection
 - Problem solving
 - SPC
 - Other

Flowchart (process modelling)

Flowchart - example

Flowchart

a tool to describe processes

A flowchart enables

- the identification of the participants in the process
- providing all participants in the process with a shared understanding both of all steps in the process and of their roles
- identification of inefficient, wasteful and redundant steps
- offering a framework for defining process measurements

Flowchart – basic symbols

Oval: the beginning of the process or the result of the process

Rectangle: process steps or activities

Diamond: the decision point of the process, yes / no answer or a decision is needed, or branching of the process

Arrow: the flow direction of the process

How to use a flowchart?

- Define the boundaries of the process
- Define the steps of the process
- Draw the figure
- Check the completeness of it
 - Correct?
 - Are logical lines closed?
 - Do the stakeholders justify it?
 - Evaluation (development opportunity, process discipline, ideal flow)

Type 1: high-level flowchart

- Suitable for a general overview of the process
- It is made up of sub-processes, which consist of more activities and decision points

Type 2: detailed flowchart

- Can be made in different detail levels
- It contains all activities and decision points

2. Idea collection

- TEAMWORK
- Creativity, ideas
- Support for other techniques

Brainstorming, Affinity chart

Brainstorming

Rules:

- 15-20min
- Team + moderator
- All ideas will collected
- No individual idea
- No comment, or feedback
- Nothing can be wrong
- Quantity instead of quality

Affinity diagram

- Ideas and cause-effect connection
- Idea collection and categorization
- Ranking
- Team and individual work also
- More time than Brainstorming

Affinity chart

3. Problem solving

- One of the most important area
- Usage:
 - Process improvement
 - Failure analysis
 - Example: Ishikawa, 5Why, Pareto.

Cause&effect/Ishikawa diagram

- Identifies, explores and graphically represents all the possible causes related to a problem to discover its root causes.
- Helps the team to focus on the causes in increasing detail, not on the symptoms.
- Reveals the key relationships

Ishikawa diagram

Main causes:

- 4M-5M-9M
 - ✓ Machine
 - ✓ Material
 - ✓ Method
 - ✓ Man
 - ✓ Measurement
 - ✓ Maintenance
 - ✓ Money
 - ✓ Millieu
 - ✓ Motivation

Why Happened? (Occur Path)

Why Undetected? (Escape Path)

why?

Why Happened? (Occur Path)

5Why

- Reaching the rootcause
- 5 times why?

5Why?

Pareto/ABC diagram

- Basis: Vilfredo Pareto's 80/20 rule
- Formal statistical technique

Powerful and useful tool in continuous

improvement

• 80/20 rule (rule of thumb)

vital few vs trivial many

ABC for error types

Pareto/ABC diagram

- Bar graph: The lengths of the bars represent frequency or cost (time or money) with the longest bars on the left and the shortest to the right
- Used for a selection of a limited number of task that reduce the significant overall effect
- Helps to identify the top portion of causes that need to be addressed to resolve the majority of the problems
- Displays the relative importance of problems in a simple, visual format

Example – train delay

Cause of the delay	Number of occurrences	Cumulative count percentage
temporary speed limits	440	0,44
waiting for coming trains	360	0,8
signal breakdown	65	0,865
waiting for connections	60	0,925
track maintenance	20	0,945
weather	15	0,96
waiting for train staff	15	0,975
failure of the locomotive	10	0,985
delay from abroad	10	0,995
accidents	5	1
SUM	1000	

Thank you for your attention

Melinda Könyves Konyves.melinda@gtk.bme.hu

