

DALSA • 7075 Place Robert-Joncas, Suite 142 • St-Laurent, Quebec, H4M 2Z2 • Canada http://www.imaging.com

Sapera LTTM 6.0 Acquisition Parameters Reference Manual Revision 2

Part number OC-SAPM-APR00

NOTICE

© 2004-2006 DALSA Corp. All rights reserved.

This document may not be reproduced nor transmitted in any form or by any means, either electronic or mechanical, without the express written permission of DALSA Corp. Every effort is made to ensure the information in this manual is accurate and reliable. Use of the products described herein is understood to be at the user's risk. DALSA Corp. assumes no liability whatsoever for the use of the products detailed in this document and reserves the right to make changes in specifications at any time and without notice.

Microsoft® is a registered trademark; Windows® ,Windows NT®, Windows 2000®, and Windows® XP are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belong to their respective owners.

Printed on September 21, 2006

Document Number: OC-SAPM-APR00

Printed in Canada

Contents

INTRODUCTION	
OVERVIEW OF THE MANUAL	
ABOUT THE MANUAL	2
USING THE MANUAL	2
ACQUISITION PARAMETER DEFINITIONS	3
Introduction	
USING THE ACQUISITION PARAMETERS	3
ACQUISITION PARAMETERS	4
Acquisition Management Related Parameters	4
VIC Related Parameters	
Data Structures	67
Pin Connector Description	67
SIGNAL NAME DEFINITIONS	69
STRUCTURE DEFINITIONS	
CORACQ_CAM_IO_CONTROL	
CORACQ_DETECT_SYNC	
CAMERA CONTROL METHOD DEFINITIONS	71
Camera Reset Method	
Camera Trigger Methods	
Frame Integrate Methods	
Line Integrate Methods	
Line Trigger Methods	81
Time Integrate Methods	82
Strobe Methods	90
CAMERA VIDEO TIMING DEFINITIONS	94
Area Scan Analog Video Timings	94
Area Scan Digital Video Timings	94
Linescan Video Timings	95
CUSTOM CAMERA CONTROL I/O DESCRIPTION	95
SHAFT ENCODER DESCRIPTION	96
PLANAR INPUT SOURCES DESCRIPTION	97
ADVANCED ACQUISITION CONTROL	99
Introduction	99
CAMERA RELATED PARAMETERS	99

Camera Related Parameters By Groups	99
Camera Related Parameters By ID	
CONFIGURATION FILE FORMATS	139
Overview	139
CAMERA DEFINITION FILE DESCRIPTION (CCA)	139
VIC PARAMETER FILE DESCRIPTION (CVI)	144
DALSA CONTACT INFORMATION	149
SALES INFORMATION	149
International/Canada	149
USA	
TECHNICAL SUPPORT	150
GLOSSARY OF TERMS	151
INDEX	155

Introduction

Overview of the Manual

The Sapera++ LT Programmer's manual, the Sapera LT Basic Modules Reference manual and the Sapera LT Active X Programmer's manual are the reference documents for the C++, C, and Active X APIs, respectively. The Sapera LT Acquisition Parameters Reference manual complements these manuals by describing the parameters, capabilities, and concepts related to the acquisition process. The functions using acquisition parameters are described in the appropriate API reference manual mentioned above.

The Sapera LT Acquisition Parameters Reference online manual contains additional references to acquisition parameters and capabilities that typically do not need to be used by the user application.

The printed manual covers the following topics:

- Sapera LT Acquisition Parameters Definitions
 Description of the Sapera Acquisition parameters plus the related data structures and definitions.
- DALSA Contact Information
 Phone numbers, web site, and important email addresses.

The online manual additionally covers the following topics:

- Advanced Acquisition Controls
 Description of acquisition controls including camera parameters and capabilities.
- Appendix A: Acquisition Configuration File Formats

 Description of the Sapera camera configuration files (.CCA, .CVI, .CCF) fields.

About the Manual

This manual exists in printed, compiled HTML help, and Adobe Acrobat® (PDF) formats. The help and PDF formats make full use of hypertext cross-references and include links to the DALSA home page on the Internet located at http://www.imaging.com, accessed using any web browser.

Using the Manual

File names, directories, and Internet sites will be in bold text (for example, **setup.exe**, **c:\windows**, **http://www.imaging.com**). Function parameters will be in italics (for example, *hServer*).

Source code, code examples, text file listings, and text that must be entered using the keyboard will be in typewriter-style text (for example, [PixelClock]).

Menu and dialog actions will be indicated in bold text in the order of the instructions to be executed, with each instruction separated by bullets. For example, going to the File menu and choosing Save would be written as **File-Save**.

Acquisition Parameter Definitions

Introduction

This section describes the parameters and definitions required for control of the acquisition process.

Refer to the Advanced Acquisition Control section found in the online version of this manual to add advanced controls (such as detection of frame grabber capabilities) to the imaging application.

Using the Acquisition Parameters

A Sapera acquisition configuration is defined through the Acquisition Parameters. These parameters are divided in two categories:

- Camera parameters
- Video Input Conditioning (VIC) parameters

The Camera parameters describe the signal specifications of the video source (digital or analog). These parameters define the video source capabilities and modes of operation. Consult the section, Advanced Acquisition Control, in the online version of this manual for a description of the Camera related parameters.

The VIC related parameters define how the acquisition front end is configured in regards to the video source

The Camera and VIC parameters typically are stored in CAM & VIC files (files with the .CCA and .CVI extension, respectively) or combined in a unique camera configuration file (file with the .CCF extension) and reloaded at will. This provides a convenient and portable method to initialize the frame grabber with predefined configurations. Sapera LT ships with an extensive list of camera configuration files for supported cameras. In addition, .CVI/CCF files are provided with DALSA application notes to support the described camera modes or are generated by the Sapera CamExpert program as required by the imaging application.

CamExpert, the Sapera camera configuration utility, allows configuring the frame grabber (camera configuration file) using existing camera definition files included with the Sapera LT package. The user can also create or modify camera configuration files for new or custom cameras. Multiple .CCF files with different VIC parameters can be created from an existing .CCA file to support various camera operating modes.

It is strongly recommended to start interfacing a camera with your frame grabber using CamExpert instead of experimenting directly with one of the supplied demo programs. CamExpert is designed to guide you through the camera interfacing process with minimum effort.

When dynamic control is required, such as brightness and contrast, the Sapera API provides functions for direct access to any Camera or VIC parameter.

The possible values of an acquisition parameter and its availability are generally indicated by Sapera Acquisition capabilities (CORACQ_CAP_*).

Note: Sapera Acquisition capabilities are INT32 values, unless specified otherwise.

Acquisition Parameters

This section describes the Acquisition Management and VIC related parameters. Unlike the VIC parameters, the Acquisition Management parameters are not stored in any acquisition configuration files.

Acquisition Management Related Parameters

ID	Parameter
0x700	CORACQ_PRM_LABEL
0x701	CORACQ_PRM_EVENT_TYPE
0x702	CORACQ_PRM_EVENT_COUNT
0x703	CORACQ_PRM_EVENT_SERVER
0x704	CORACQ_PRM_EVENT_CALLBACK
0x705	CORACQ_PRM_EVENT_CONTEXT
0x706	CORACQ_PRM_HSYNC_TIMEOUT
0x707	CORACQ_PRM_VSYNC_TIMEOUT
0x708	CORACQ_PRM_SIGNAL_STATUS
0x809	CORACQ_PRM_DETECT_PIXEL_CLK
0x80a	CORACQ_PRM_DETECT_HACTIVE
0x80b	CORACQ_PRM_DETECT_VACTIVE
0x80c	CORACQ_PRM_FLAT_FIELD_SELECT
0x80d	CORACQ_PRM_FLAT_FIELD_ENABLE

CORACQ_PRM_DETECT_HACTIVE

Description Number of horizontal active pixels per line detected by the acquisition device.

Type UINT32

Note Only available if CORACQ_CAP_DETECT_HACTIVE is TRUE.

CORACO PRM DETECT PIXEL CLK

Description Pixel clock frequency (in Hz) detected by the acquisition device.

Type UINT32

Note Only available if CORACQ_CAP_DETECT_PIXEL_CLK is TRUE.

CORACQ_PRM_DETECT_VACTIVE

Description Number of vertical active lines per field detected by the acquisition device.

Type UINT32

Note Only available if CORACQ_CAP_DETECT_VACTIVE is TRUE.

CORACQ_PRM_EVENT_CALLBACK

Description Pointer to the Callback function registered using the function CorAcqRegisterCallback.

Type PCORCALLBACK

Note This parameter is read-only.

CORACQ_PRM_EVENT_CONTEXT

Description Context pointer registered using the function CorAcqRegisterCallback.

Type void *

Note This parameter is read-only.

CORACQ_PRM_EVENT_COUNT

Description Number of events that have occurred since a callback function was registered using the

CorAcqRegisterCallback function.

Type UINT32

Note This parameter is read-only.

CORACQ_PRM_EVENT_SERVER

Description Handle to a server to which an event notification is made via a callback function.

Type CORSERVER

Note This parameter is read-only.

CORACQ_PRM_EVENT_TYPE

Description Event to be signaled while a transfer is in progress, unless otherwise specified.

Type UINT32

Limits The CORACO CAP EVENT TYPE capability specifies the event type(s) supported by the

acquisition module. The capability returns the supported values ORed together.

Values The values may be ORed if more than one event is desired.

CORACQ_VAL_EVENT_VERTICAL_TIMEOUT (0x00000040). Call the callback function when a vertical timeout is detected. See CORACQ_PRM_VERTICAL_TIMEOUT_DELAY.

CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER2 (0x00000080)

Call the callback function upon receiving an external trigger event from external trigger 2 which will then acquire at least one image. Therefore, the maximum callback rate cannot be greater than the acquisition video frame rate. See also

CORACO PRM EXT TRIGGER ENABLE

CORACQ_VAL_EVENT_TYPE_START_OF_FIELD (0x00010000)Call the callback function at start of odd or even field.

CORACQ_VAL_EVENT_TYPE_START_OF_ODD (0x00020000)

Call the callback function at start of odd field.

CORACQ_VAL_EVENT_TYPE_START_OF_EVEN (0x00040000)

Call the callback function at start of even field.

CORACQ_VAL_EVENT_TYPE_START_OF_FRAME (0x00080000

Call the callback function at start of frame.

CORACQ_VAL_EVENT_TYPE_END_OF_FIELD (0x00100000)

Call the callback function at end of odd or even field.

CORACO VAL EVENT TYPE END OF ODD (0x00200000)

Call the callback function at end of odd field.

CORACQ_VAL_EVENT_TYPE_END_OF_EVEN (0x00400000)

Call the callback function at end of even field.

CORACQ_VAL_EVENT_TYPE_END_OF_FRAME (0x00800000)

Call the callback function at end of frame.

CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER (0x01000000)

Call the callback function upon receiving an external trigger which will then acquire at least one image. Therefore, the maximum callback rate cannot be greater than the acquisition video frame rate. See also CORACO PRM EXT TRIGGER ENABLE

CORACO VAL EVENT TYPE VERTICAL SYNC (0x02000000)

Call the callback function on every vertical sync, even if not acquiring.

CORACQ_VAL_EVENT_TYPE_VIRTUAL_FRAME (0x00000100)

Call the callback function upon the start of a frame in linescan. The frame length is controlled by the parameter CORACQ_PRM_CROP_HEIGHT.

CORACQ_VAL_EVENT_TYPE_END_OF_LINE (0x04000000)

Call the callback function at end of line n.

CORACQ_VAL_EVENT_TYPE_END_OF_NLINES (0x08000000)

Call the callback function at end of n lines.

CORACQ_VAL_EVENT_TYPE_NO_HSYNC (0x10000000)

Call the callback function if a timeout occurs due to a missing horizontal sync during live acquisition. The timeout value is specified by CORACQ_PRM_HSYNC_TIMEOUT. The event is only generated once, unless a new CorXferStart command is issued or a new horizontal sync is detected.

CORACQ_VAL_EVENT_TYPE_NO_VSYNC (0x20000000)

Call the callback function if a timeout occurs due to a missing vertical sync during live acquisition. The timeout value is specified by CORACQ_PRM_VSYNC_TIMEOUT. The event is only generated once, unless a new CorXferStart command is issued or a new vertical sync is detected.

CORACQ_VAL_EVENT_TYPE_NO_PIXEL_CLK (0x40000000)

Call the callback function if no pixel clock is detected. The event is only generated once, unless a new CorXferStart command is issued or the pixel clock is detected again and then lost.

CORACQ_VAL_EVENT_TYPE_PIXEL_CLK (0x80000000)

Call the callback function if a pixel clock is detected. The event is only generated once, unless a new CorXferStart command is issued or the pixel clock is lost again and then detected.

CORACO VAL EVENT TYPE FRAME LOST (0x00008000)

Call the callback function for each frames lost during live acquisition. This error can usually occur if there is not enough bandwidth to transfer images to host memory.

CORACQ_VAL_EVENT_TYPE_DATA_OVERFLOW (0x00004000)

Call the callback function when a data overflow occurs during live acquisition. This error can usually occur if the acquisition device cannot sustain the data rate of the incoming images.

CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_IGNORED (0x00002000) Call the callback function when an external trigger event is dropped. This occurs when the external trigger rate is faster then the acquisition frame rate. See also

CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACQ_VAL_EVENT_TYPE_USER_DEFINE (0x00000200)

Call the callback function when a "user defined" event occurs. Applicable when custom firmware which supports the user defined event, is loaded on to the acquisition board. This event does not have any other identification thus only the application can know the meaning of the user defined event.

$CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_TOO_SLOW~(0x00000400)$

Call the callback function if the detected external trigger rate is too slow for the hardware to process. This event can occur when using the shaft encoder multiplier.

CORACQ_VAL_EVENT_TYPE_HSYNC_LOCK (0x00000800)

Call the callback function if a horizontal sync unlock to lock condition is detected.

CORACQ_VAL_EVENT_TYPE_HSYNC_UNLOCK (0x00001000)

Call the callback function if an horizontal sync lock to unlock condition is detected.

CORACQ_PRM_FLAT_FIELD_ENABLE

Description Enable or disable the flat field resource.

Type UINT32

Availability Available only if CORACQ_CAP_FLAT_FIELD is TRUE

Values TRUE (0x00000001), Enable the flat field

FALSE (0x00000000), Disable the flat field

CVI entry None

Related The flat field correction algorithm can be further characterized by the following capabilities.

Capabilities Below are the relative minimum and maximum pixel gains:

CORACQ_CAP_FLAT_FIELD_GAIN_MIN and CORACQ_CAP_FLAT_FIELD_GAIN_MAX

Divide the relative pixel gain by CORACQ_CAP_FLAT_FIELD_GAIN_DIVISOR to get the

actual gain value.

Example:

for: CORACQ_CAP_FLAT_FIELD_GAIN_MIN = 0x01

CORACQ_CAP_FLAT_FIELD_GAIN_MAX = 0xFF CORACQ_CAP_FLAT_FIELD_GAIN_DISIVOR = 0x80

then: Minimum gain is 1 / 0x80 = 0.0078125

Maximum gain is 0xFF / 0x80 = 1.9921875

Below are the minimum and maximum gray level pixel offsets:

CORACQ_CAP_FLAT_FIELD_OFFSET_MIN and CORACQ_CAP_FLAT_FIELD_OFFSET_MAX

CORACO CAP FLAT FIELD PIXEL REPLACEMENT returns TRUE if pixel

replacement is supported. A gain of zero indicates a pixel replacement.

CORACO PRM FLAT FIELD SELECT

Description Selects the active flat field resource created using the function CorAcqNewFlatfield.

Type UINT32

Availability Available only if CORACQ_CAP_FLAT_FIELD is TRUE

Values 0 ... (n-1), where 'n' is the number of flat field resources created. The maximum number that

can be created is limited by the amount of memory available on the PC and/or on the device.

CVI entry None

CORACO PRM HSYNC TIMEOUT

Description Timeout value (in µsec) used to generate the event "horizontal loss of sync"

(CORACQ_VAL_EVENT_TYPE_NO_HSYNC). Also used by the function

CorAcqDetectSync to auto-detect video source sync timings. See the *Sapera LT Basic Modules Reference Manual* for information on the CorAcqDetectSync function.

Type UINT32

Availability Available only if CORACQ_CAP_DETECT_SYNC is TRUE.

CORACO PRM LABEL

Description Acquisition device ID: Zero-terminated array of characters with a fixed size of 128 bytes.

Type CHAR[128]

Note This parameter is read-only.

CORACQ_PRM_SIGNAL_STATUS

Description Status of input signals connected to the acquisition device.

The returned value is the ORed combination of all valid values.

Type UINT32

Limits The CORACQ_CAP_SIGNAL_STATUS capability returns the supported values ORed

together.

Values CORACQ_VAL_SIGNAL_HSYNC_PRESENT (0x00000001)

True if an horizontal sync signal (analog video source) or a line valid (digital video source)

has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_VSYNC_PRESENT (0x00000002)

True if a vertical sync signal (analog video source) or a frame valid (digital video source) has

been detected by the acquisition device.

CORACQ_VAL_SIGNAL_PIXEL_CLK_PRESENT (0x00000004)

True if a pixel clock signal has been detected by the acquisition device.

CORACQ_VAL_SIGNAL_CHROMA_PRESENT (0x00000008)

True if a color burst signal has been detected by the acquisition device. This is valid for NTSC

and PAL video signals.

CORACQ_VAL_SIGNAL_HSYNC_LOCK (0x00000010)

True if the acquisition device has been able to lock to an horizontal sync signal (analog video

source).

CORACQ_VAL_SIGNAL_VSYNC_LOCK (0x00000020)

True if the acquisition device has been able to lock to a vertical sync signal (analog video

source).

CORACQ_VAL_SIGNAL_POWER_PRESENT (0x00000040)

True if power is available for a camera. When true, this indicates only that power is available at the camera connector, where it might be supplied from the board PCI bus or from the board PC power connector (whether this power is used by the camera is unknown). When false, the

circuit fuse is blown and power cannot be supplied to any connected camera. (See board

manual for information on any fused power supply for cameras).

Note This parameter is read-only.

CORACQ_PRM_VSYNC_TIMEOUT

Description Timeout value (in μsec) used to generate the event "vertical loss of sync"

(CORACQ_VAL_EVENT_TYPE_NO_VSYNC). Also used by the function

CorAcqDetectSync to auto-detect video source sync timings. See CorAcqDetectSync in the

Sapera LT Basic Modules Reference Manual for further information.

Type UINT32

Available Available if the acquisition device supports auto-detection of synchronization timing signals.

The CORACQ_CAP_DETECT_SYNC capability returns TRUE when available. See CorAcqDetectSync in the *Sapera LT Basic Modules Reference Manual* for further

information.

VIC Related Parameters

The following table lists VIC parameters by functional groups. A table listing VIC parameters sorted by their ID is available in the section VIC Parameters by ID (see the Help version of this manual).

Typically the acquisition hardware is initialized with Camera and VIC parameters by loading a camera configuration file. These parameters (such as the ones controlling brightness and contrast) can then be modified individually at runtime by the user application.

VIC Parameters by Groups

General	
CORACQ_PRM_VIC_NAME	

Input	
CORACQ_PRM_BIT_ORDERING	CORACQ_PRM_CAMSEL
CORACQ_PRM_PLANAR_INPUT_SOURCES	

Signal Conditioning	
CORACQ_PRM_BRIGHTNESS	CORACQ_PRM_DC_REST_WIDTH
CORACQ_PRM_BRIGHTNESS_RED	CORACQ_PRM_FIX_FILTER_ENABLE
CORACQ_PRM_BRIGHTNESS_GREEN	CORACQ_PRM_FIX_FILTER_SELECTOR
CORACQ_PRM_BRIGHTNESS_BLUE	CORACQ_PRM_FIX_FILTER_SELECTOR_STR
CORACQ_PRM_CONTRAST	CORACQ_PRM_HUE
CORACQ_PRM_CONTRAST_RED	CORACQ_PRM_SCALE_VERT
CORACQ_PRM_CONTRAST_GREEN	CORACQ_PRM_PROG_FILTER_ENABLE
CORACQ_PRM_CONTRAST_BLUE	CORACQ_PRM_PROG_FILTER_FREQ
CORACQ_PRM_DC_REST_MODE	CORACQ_PRM_SATURATION
CORACQ_PRM_DC_REST_START	CORACQ_PRM_SHARPNESS

Stream Conditioning	
CORACQ_PRM_CROP_LEFT	CORACQ_PRM_LUT_FORMAT
CORACQ_PRM_CROP_TOP	CORACQ_PRM_LUT_MAX
CORACQ_PRM_CROP_HEIGHT	CORACQ_PRM_LUT_NENTRIES
CORACQ_PRM_CROP_WIDTH	CORACQ_PRM_LUT_NUMBER
CORACQ_PRM_DECIMATE_COUNT	CORACQ_PRM_PIXEL_MASK
CORACQ_PRM_DECIMATE_METHOD	CORACQ_PRM_SCALE_HORZ
CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT	CORACQ_PRM_SCALE_HORZ_METHOD
CORACQ_PRM_FRAME_LENGTH	CORACQ_PRM_SCALE_VERT
CORACQ_PRM_FLIP	CORACQ_PRM_SCALE_VERT_METHOD
CORACQ_PRM_HSYNC_REF	CORACQ_PRM_SNAP_COUNT
CORACQ_PRM_LUT_ENABLE	CORACQ_PRM_VSYNC_REF

Control Signals CORACQ_PRM_CAM_CONTROL_PULSE0_HD_A CORACQ_PRM_FRAME_INTEGRATE_ENABLE LIGN CORACQ_PRM_CAM_CONTROL_PULSE1_HD_A CORACO PRM_INT_FRAME_TRIGGER_ENABL LIGN CORACQ_PRM_CAM_RESET_DELAY CORACQ_PRM_INT_FRAME_TRIGGER_FREQ CORACQ_PRM_CAM_RESET_ENABLE CORACQ_PRM_INT_LINE_TRIGGER_ENABLE CORACQ_PRM_CAM_TRIGGER_DELAY CORACQ_PRM_INT_LINE_TRIGGER_FREQ CORACQ_PRM_CAM_TRIGGER_ENABLE CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MI CORACQ_PRM_CONTROL_SIGNAL_OUTPUT1 CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MA CORACQ_PRM_CONTROL_SIGNAL_OUTPUT2 CORACQ_PRM_LINE_INTEGRATE_DURATION CORACQ_PRM_EXT_FRAME_TRIGGER_DETEC CORACQ_PRM_LINE_INTEGRATE_ENABLE TION CORACQ_PRM_EXT_FRAME_TRIGGER_ENABL CORACQ_PRM_LINE_TRIGGER_ENABLE CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL CORACQ_PRM_LINESCAN_DIRECTION_OUTP UT CORACQ_PRM_EXT_FRAME_TRIGGER_SOURC CORACQ_PRM_MASTER_MODE CORACQ_PRM_EXT_LINE_TRIGGER_DETECTI CORACQ_PRM_MASTER_MODE_HSYNC_POLA ON **RITY** CORACO PRM_EXT_LINE_TRIGGER_ENABLE CORACQ_PRM_MASTER_MODE_VSYNC_POLA RITY CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL CORACQ_PRM_SHAFT_ENCODER_ENABLE

Control Signals

CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE
CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE_STR

CORACQ_PRM_EXT_TRIGGER_DELAY
CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE

CORACQ_PRM_EXT_TRIGGER_DETECTION
CORACQ_PRM_EXT_TRIGGER_DURATION
CORACQ_PRM_EXT_TRIGGER_ENABLE
CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY
Y

CORACQ_PRM_EXT_TRIGGER_LEVEL
CORACQ_PRM_EXT_TRIGGER_SOURCE
CORACQ_PRM_EXT_TRIGGER_SOURCE_STR
CORACQ_PRM_FIX_FILTER_SELECTOR_STR

CORACQ_PRM_SHAFT_ENCODER_LEVEL CORACQ_PRM_SHAFT_ENCODER_DROP

CORACQ_PRM_SHAFT_ENCODER_MULTIPLY CORACQ_PRM_STROBE_DELAY

CORACQ_PRM_STROBE_DELAY_2 CORACQ_PRM_STROBE_DURATION CORACQ_PRM_STROBE_ENABLE CORACQ_PRM_STROBE_LEVEL

CORACQ_PRM_STROBE_METHOD
CORACQ_PRM_STROBE_POLARITY
CORACQ_PRM_TIME_INTEGRATE_DELAY
CORACQ_PRM_TIME_INTEGRATE_DURATION
CORACQ_PRM_TIME_INTEGRATE_ENABLE
CORACO_PRM_VERTICAL_TIMEOUT_DELAY

Output

CORACQ_PRM_OUTPUT_ENABLE (obsolete) use CORACQ_PRM_EXT_TRIGGER_ENABLE

CORACQ_PRM_FRAME_INTEGRATE_COUNT

CORACQ_PRM_OUTPUT_FORMAT

Shared Control Signals

CORACQ_PRM_SHARED_CAM_RESET
CORACQ_PRM_SHARED_CAM_TRIGGER
CORACQ_PRM_SHARED_EXT_TRIGGER
CORACQ_PRM_SHARED_FRAME_INTEGRATE

CORACQ_PRM_SHARED_STROBE CORACQ_PRM_SHARED_TIME_INTEGRATE CORACQ_PRM_WEN_ENABLE

Bayer Signals

CORACQ_PRM_BAYER_DECODER_ENABLE

CORACQ_PRM_BAYER_DECODER_METHOD

CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR

CORACQ PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED

CORACQ_PRM_BAYER_DECODER_WB_GAIN_RED

CORACQ_PRM_BAYER_DECODER_WB_GAIN_GREEN

CORACQ_PRM_BAYER_DECODER_WB_GAIN_BLUE

 $CORACQ_PRM_BAYER_DECODER_WB_OFFSET_RED$

CORACQ_PRM_BAYER_DECODER_WB_OFFSET_GREEN

CORACQ_PRM_BAYER_DECODER_WB_OFFSET_BLUE

VIC Parameters by ID

- 0x800 CORACO PRM CAMSEL
- 0x801 CORACQ_PRM_PIXEL_MASK
- 0x802 CORACO PRM DC REST MODE
- 0x803 CORACQ_PRM_BRIGHTNESS
- 0x804 CORACQ_PRM_BRIGHTNESS_RED
- 0x805 CORACQ_PRM_BRIGHTNESS_GREEN
- 0x806 CORACQ_PRM_BRIGHTNESS_BLUE
- 0x807 CORACQ_PRM_CONTRAST
- 0x808 CORACO PRM CONTRAST RED
- 0x809 CORACQ_PRM_CONTRAST_GREEN
- 0x80a CORACQ_PRM_CONTRAST_BLUE
- 0x80b CORACQ_PRM_HUE
- 0x80c CORACQ_PRM_SATURATION
- 0x80d CORACQ_PRM_FIX_FILTER_ENABLE
- 0x80e CORACQ_PRM_FIX_FILTER_SELECTOR
- 0x80f CORACQ_PRM_PROG_FILTER_ENABLE
- 0x810 CORACQ_PRM_PROG_FILTER_FREQ
- 0x811 CORACQ_PRM_CROP_LEFT
- 0x812 CORACQ_PRM_CROP_TOP
- 0x813 CORACQ_PRM_CROP_WIDTH
- 0x814 CORACQ_PRM_CROP_HEIGHT
- 0x815 CORACO PRM SCALE HORZ
- 0x816 CORACQ_PRM_SCALE_VERT
- 0x817 CORACQ_PRM_SCALE_HORZ_METHOD
- 0x818 CORACQ_PRM_SCALE_VERT_METHOD
- 0x819 CORACQ_PRM_DECIMATE_METHOD
- 0x81a CORACQ_PRM_DECIMATE_COUNT
- 0x81b CORACO PRM LUT ENABLE
- 0x81c CORACQ_PRM_LUT_NUMBER
- 0x81d CORACQ_PRM_STROBE_ENABLE
- 0x81e CORACQ_PRM_STROBE_METHOD
- 0x81f CORACQ_PRM_STROBE_POLARITY
- 0x820 CORACQ_PRM_STROBE_DURATION
- 0x821 CORACQ_PRM_STROBE_DELAY
- 0x822 CORACQ_PRM_FRAME_INTEGRATE_ENABLE

0x823	CORACQ_PRM_FRAME_INTEGRATE_COUNT
0x824	CORACQ_PRM_TIME_INTEGRATE_ENABLE
0x825	CORACQ_PRM_TIME_INTEGRATE_DURATION
0x826	CORACQ_PRM_CAM_TRIGGER_ENABLE
0x827	CORACQ_PRM_CAM_RESET_ENABLE
0x828	CORACQ_PRM_OUTPUT_FORMAT
0x829- 0x82b	Reserved
0x82c	CORACQ_PRM_OUTPUT_ENABLE (obsolete) use CORACQ_PRM_EXT_TRIGGER_ENABLE
0x82d	CORACQ_PRM_VIC_NAME
0x82e	CORACQ_PRM_LUT_MAX
0x82f	CORACQ_PRM_EXT_TRIGGER_DETECTION
0x830	CORACQ_PRM_DC_REST_START
0x831	CORACQ_PRM_DC_REST_WIDTH
0x832	CORACQ_PRM_LUT_FORMAT
0x833	CORACQ_PRM_VSYNC_REF
0x834	CORACQ_PRM_HSYNC_REF
0x835	CORACQ_PRM_LINE_INTEGRATE_ENABLE
0x836	CORACQ_PRM_LINE_INTEGRATE_DURATION
0x837	CORACQ_PRM_LINE_TRIGGER_ENABLE
0x838	CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE
0x839	CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION
0x83a	CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE
0x83b	CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION
0x83c	CORACQ_PRM_SNAP_COUNT
0x83d	CORACQ_PRM_INT_LINE_TRIGGER_ENABLE
0x83e	CORACQ_PRM_INT_LINE_TRIGGER_FREQ
0x83f	CORACQ_PRM_LINESCAN_DIRECTION_OUTPUT
0x840	CORACQ_PRM_BIT_ORDERING
0x841	$CORACQ_PRM_EXT_TRIGGER_LEVELCORACQ_PRM_EXT_TRIGGER_LEVEL$
0x842	CORACQ_PRM_STROBE_LEVEL
0x843	CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL
0x844	CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL
0x845	CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN
0x846	CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX
0x847	CORACQ_PRM_MASTER_MODE

- 0x848 CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY
- 0x849 CORACQ_PRM_MASTER_MODE_VSYNC_POLARITY
- 0x84a CORACQ_PRM_SHAFT_ENCODER_DROP
- 0x84b CORACQ_PRM_SHAFT_ENCODER_ENABLE
- 0x84c CORACO PRM EXT TRIGGER FRAME COUNT
- 0x84d CORACO PRM INT FRAME TRIGGER ENABLE
- 0x84e CORACQ_PRM_INT_FRAME_TRIGGER_FREQ
- 0x84f CORACQ_PRM_SHARED_EXT_TRIGGER
- 0x850 CORACQ_PRM_SHARED_CAM_RESET
- 0x851 CORACQ_PRM_SHARED_CAM_TRIGGER
- 0x852 CORACQ_PRM_SHARED_TIME_INTEGRATE
- 0x853 CORACQ_PRM_SHARED_FRAME_INTEGRATE
- 0x854 CORACQ_PRM_SHARED_STROBE
- 0x855 CORACO PRM STROBE DELAY 2
- 0x856 CORACO PRM FRAME LENGTH
- 0x857 CORACQ_PRM_FLIP
- 0x858 CORACQ_PRM_SHARPNESS
- 0x859 CORACQ_PRM_EXT_TRIGGER_DURATION
- 0x85a CORACQ_PRM_TIME_INTEGRATE_DELAY
- 0x85b CORACQ_PRM_CAM_RESET_DELAYCORACQ_PRM_CAM_RESET_DELAY
- 0x85c CORACQ_PRM_CAM_TRIGGER_DELAY
- 0x85d CORACQ_PRM_SHAFT_ENCODER_LEVEL
- 0x85e CORACO PRM WEN ENABLE
- 0x85f CORACQ_PRM_LUT_NENTRIES
- 0x860 CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE
- 0x861 CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE
- 0x862 CORACQ_PRM_EXT_TRIGGER_SOURCE
- 0x863 CORACQ_PRM_SHAFT_ENCODER_MULTIPLY
- 0x864 CORACQ_PRM_PLANAR_INPUT_SOURCES
- 0x865 CORACO PRM EXT TRIGGER DELAY
- 0x866 CORACO PRM EXT TRIGGER DELAY TIME BASE
- 0x867 CORACQ_PRM_BAYER_DECODER_ENABLE
- 0x868 CORACO PRM BAYER DECODER METHOD
- 0x869 CORACO PRM BAYER DECODER WB GAIN RED
- 0x86a CORACQ_PRM_BAYER_DECODER_WB_GAIN_GREEN
- 0x86b CORACQ_PRM_BAYER_DECODER_WB_GAIN_BLUE
- 0x86c CORACQ_PRM_BAYER_DECODER_WB_OFFSET_RED

0x86d	CORACQ_PRM_BAYER_DECODER_WB_OFFSET_GREEN
0x86e	CORACQ_PRM_BAYER_DECODER_WB_OFFSET_BLUE
0x86f	CORACQ_PRM_CAM_CONTROL_PULSE0_HD_ALIGN
0x870	CORACQ_PRM_CAM_CONTROL_PULSE1_HD_ALIGN
0x871	CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY
0x872	CORACQ_PRM_CONTROL_SIGNAL_OUTPUT1
0x873	CORACQ_PRM_CONTROL_SIGNAL_OUTPUT2
0x874	CORACQ_PRM_FIX_FILTER_SELECTOR_STR
0x875	CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE_STR
0x876	CORACQ_PRM_EXT_TRIGGER_SOURCE_STR
0x877	CORACQ_PRM_VERTICAL_TIMEOUT_DELAY
0x878	CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR
0x879	CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED
0x87A	CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN
0x87B	CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE

CORACQ_PRM_BAYER_DECODER_ENABLE

Description Enables or disables the hardware Bayer Decoder of the acquisition device. When enabled, it

instructs the acquisition device to use the Bayer Decoder to convert the incoming Bayer video

data into the specified output format specified by CORACQ_PRM_OUTPUT_FORMAT.

Type UINT32

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_BAYER_DECODER

capability returns TRUE.

Values TRUE (0x00000001), Enable the Bayer Decoder

FALSE (0x00000000), Disable the Bayer Decoder

CVI Entry [Stream Conditioning]

Bayer Decoder Enable

Note This parameter is read-only.

CORACO PRM BAYER DECODER METHOD

Description Selects the Bayer Decoder method to apply to convert incoming Bayer images into the

specified output format.

Type UINT32

Limits The parameter value must match one of the supported methods of the acquisition device given

by CORACQ_CAP_BAYER_DECODER_METHOD. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_BAYER_DECODER_METHOD_1

Technique based on bilinear interpolation. Fast, but tends to smooth the edges of the image.

CORACO VAL BAYER DECODER METHOD 2

Advanced technique, better for preserving the edges of the image. However, it works well only when the image has a strong content in green. Otherwise, small amounts of noise may be

visible within objects.

CORACO VAL BAYER DECODER METHOD 3

Advanced technique, almost as good as Method 2 for preserving the edges, but independent of

the image content in green. Small colour artefacts of 1 pixel may be visible at the edges.

CVI Entry [Stream Conditioning]

Bayer Decoder Method

Note Validated only if CORACQ_PRM_BAYER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR

Description Adjusts the image saturation after bayer decoding.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_MIN to

CORACO CAP BAYER DECODER SATURATION FACTOR MAX

Vakues saturationFactor = CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR

WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

red = red +(red-mono)*saturationFactor;

green = green +(green-mono)*saturationFactor;

blue = blue +(blue-mono)*saturationFactor;

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_BAYER_DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation is supported if the

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_MIN is not equal to

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_MAX

CVI Entry [Stream Conditioning]

Bayer Decoder Saturation Factor

Note Validated only if CORACQ PRM BAYER DECODER ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE

Description Change the image saturation of the pixel blue component value after bayer decoding.

Type UINT32

Limits Range limits:

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MIN to CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MAX

Values saturationFactor = CORACO PRM BAYER DECODER SATURATION FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

 $WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR$

WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

blue = blue +(blue-mono)*saturationFactor;

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_BAYER_DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation Weigth Blue is supported if the

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MIN is not equal

to CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_MAX

CVI Entry [Stream Conditioning]

Bayer Decoder Weight Blue

Note Validated only if CORACQ PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN

Description Change the image saturation of the pixel green component value after bayer decoding.

Type UINT32

Limits Range limits:

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MIN to CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MAX

Availability Onboard hardware Bayer Decoder is supported if the CORACQ_CAP_BAYER_DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation Weigth Green is supported if the

 $CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MIN \ is \ not \ equal \ to \ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_MAX$

Values saturationFactor = CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

 $WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR$

WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/ CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

green = green +(green-mono)*saturationFactor;

CVI Entry [Stream Conditioning]

Bayer Decoder Weight Green

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED

Description Change the image saturation of the pixel red component value after bayer decoding.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MIN

to CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MAX

Availability Onboard hardware Bayer Decoder is supported if the CORACO CAP BAYER DECODER

capability returns TRUE.

Onboard hardware Bayer Decoder Saturation Weigth Red is supported if the

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MIN is not equal to

CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_MAX

Values saturationFactor = CORACQ_PRM_BAYER_DECODER_SATURATION_FACTOR /

CORACQ_CAP_BAYER_DECODER_SATURATION_FACTOR_DIVISOR

WeightRed = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_RED/CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_RED_DIVISOR

 $WeightGreen = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_GREEN/CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_GREEN_DIVISOR$

WeightBlue = CORACQ_PRM_BAYER_DECODER_SATURATION_WEIGHT_BLUE/CORACQ_CAP_BAYER_DECODER_SATURATION_WEIGHT_BLUE_DIVISOR

mono = red * WeightRed + blue * WeightBlue + green * WeightGreen

red = red +(red-mono)*saturationFactor;

CVI Entry [Stream Conditioning]

Bayer Decoder Weight Red

Note Validated only if CORACQ PRM BAYER DECODER ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_WB_GAIN_RED

Description Bayer Decoder White Balance Gain for the red channel.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_WB_GAIN_MIN ..

CORACO CAP BAYER DECODER WB GAIN MAX.

A gain of 1 = 100000

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Gain Red

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_WB_GAIN_GREEN

Description Bayer Decoder White Balance Gain for the green channel.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_WB_GAIN_MIN ..

CORACO CAP BAYER DECODER WB GAIN MAX

A gain of 1 = 100000

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Gain Green

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_WB_GAIN_BLUE

Description Bayer Decoder White Balance Gain for the blue channel.

Type UINT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_WB_GAIN_MIN ..

CORACQ_CAP_BAYER_DECODER_WB_GAIN_MAX

A gain of 1 = 100000

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Gain Blue

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_WB_OFFSET_RED

Description Bayer Decoder White Balance Offset for the red channel.

Type INT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_WB_OFFSET_MIN ..

CORACQ_CAP_BAYER_DECODER_WB_OFFSET_MAX

Offset in gray level units.

CVI Entry [Stream Conditioning]Bayer Decoder White Balance Offset Red

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_WB_OFFSET_GREEN

Description Bayer Decoder White Balance Offset for the green channel.

Type INT32

Limits Range limits: CORACO CAP BAYER DECODER WB OFFSET MIN ..

CORACQ_CAP_BAYER_DECODER_WB_OFFSET_MAX

Offset in gray level units.

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Offset Green

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BAYER_DECODER_WB_OFFSET_BLUE

Description Bayer Decoder White Balance Offset for the blue channel.

Type INT32

Limits Range limits: CORACQ_CAP_BAYER_DECODER_WB_OFFSET_MIN ..

CORACO CAP BAYER DECODER WB OFFSET MAX

Offset in gray level units.

CVI Entry [Stream Conditioning]

Bayer Decoder White Balance Offset Blue

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_BIT_ORDERING

Description The camera digital bit ordering.

Type UINT32

Limits Applies to digital video acquisition only. This value must match one of the supported

capabilities of the acquisition device given by CORACQ_CAP_BIT_ORDERING.

The capability returns the ORed combination of all supported values.

Values CORACQ_VAL_BIT_ORDERING_STD (0x00000001)

Standard digital bit ordering.

CORACO VAL BIT ORDERING 9 10 (0x00000002)

For some 10-bit digital cameras, video data bits 9 and 10 are swapped with bits 0 and 1,

as required by some 10-bit Kodak camera models.

CORACQ_VAL_BIT_ORDERING_MSB_10 (0x00000004)

For some 8-bit digital cameras, video data bits 0-7 connect to the acquisition device input

bits 2-9, as required by some Kodak camera models.

CORACO VAL BIT ORDERING MSB 12 (0x00000008)

For use with 12-bit digital cameras, video data bits 4-11 are directed to the input bits 0-7 of

the acquisition device.

CORACQ_VAL_BIT_ORDERING_INVERT (0x00000010)

For use with digital cameras, the video data bits are inverted (logical NOT) before going to

the acquisition device.

CVI Entry [Input]

Bit Ordering

CORACQ_PRM_BRIGHTNESS

Description Percentage of brightness to be applied to the composite video signal. Applies to analog video

signals only.

Type INT32

Availability Available only if CORACQ_CAP_BRIGHTNESS is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_MIN to

CORACQ_CAP_BRIGHTNESS_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_BRIGHTNESS_ STEP

percent (%) in order for a change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness

CORACQ_PRM_BRIGHTNESS_BLUE

Description Percentage of brightness to be applied to the blue video signal. Applies to analog video signals

only.

Type INT32

Availability Available only if CORACQ_CAP_BRIGHTNESS_BLUE is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_BLUE_MIN to

CORACQ_CAP_BRIGHTNESS_BLUE_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_BRIGHTNESS_BLUE_STEP

percent (%) in order for a change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness Blue

CORACQ_PRM_BRIGHTNESS_GREEN

Description Percentage of brightness to be applied to the green video signal. Applies to analog video

signals only.

Type INT32

Available Available only if CORACQ CAP BRIGHTNESS GREEN is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_GREEN_MIN to

CORACQ_CAP_BRIGHTNESS_GREEN_MAX.

Adjust the parameter by increments of at least

CORACO CAP BRIGHTNESS GREEN STEP percent (%) in order for a change to occur in

the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness Green

CORACQ_PRM_BRIGHTNESS_RED

Description Percentage of brightness to be applied to the red video signal. Applies to analog video signals

only.

Type INT32

Availability Available only if CORACQ_CAP_BRIGHTNESS_RED is set to TRUE.

Limits Range limits: CORACQ_CAP_BRIGHTNESS_RED_MIN to

CORACQ_CAP_BRIGHTNESS_RED_MAX.

Adjust the parameter by increments of at least

 $CORACQ_CAP_BRIGHTNESS_CONTRAST_RED_\ STEP\ percent\ (\%)\ in\ order\ for\ a$

change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Brightness Red

CORACO PRM CAM CONTROL PULSEO HD ALIGN

Description Specifies if the camera control pulse'0' will be aligned with the master HD.

Type UINT32

Values CORACQ_VAL_CAM_CONTROL_HD_ALIGN_AUTO Device Dependent.

(0x00000000)

CORACO VAL CAM CONTROL HD ALIGN ON Pulse 0 aligned with HD

(0x00000001)

(0x00000002)

Limits Supported only if CORACQ_CAP_CAM_CONTROL_PULSEO_HD_ALIGN is TRUE.

CVI Entry [Control Signals]

Camera Control Pulse 0 HD Align

CORACQ_PRM_CAM_CONTROL_PULSE1_HD_ALIGN

Description Specifies if the camera control pulse'1' will be aligned with the master HD.

Type UINT32

Values CORACQ_VAL_CAM_CONTROL_HD_ALIGN_AUTO Device Dependent.

(0x00000000)

CORACQ_VAL_CAM_CONTROL_HD_ALIGN_ON Pulse 1 aligned with HD

(0x00000001)

(0x00000002)

Limits Supported only if CORACQ_CAP_CAM_CONTROL_PULSE1_HD_ALIGN is TRUE.

CVI Entry [Control Signals]

Camera Control Pulse 1 HD Align

CORACQ_PRM_CAM_RESET_DELAY

Description Reset pulse delay (in μs). After receiving a trigger pulse (external, internal, or software), the

acquisition device will wait for this delay before generating the reset pulse.

Type UINT32

Limits Range limits: CORACQ_CAP_CAM_RESET_DELAY_MIN to

CORACQ_CAP_CAM_RESET_DELAY_MAX.

CVI Entry [Control Signals]

Camera Reset Delay

Note This value is only validated if CORACQ_PRM_CAM_RESET_ENABLE is TRUE.

CORACO PRM CAM RESET ENABLE

Description Enables or disables the reset pulse to the camera. Applies to area scan cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_CAM_RESET is TRUE.

Values TRUE (0x00000001) Enable

FALSE (0x00000000) Disable

CVI Entry [Control Signals]

Camera Reset Enable

Note This parameter is mutually exclusive with

CORACQ_PRM_FRAME_INTEGRATE_ENABLE, CORACQ_PRM_CAM_TRIGGER_ENABLE and CORACQ_PRM_TIME_INTEGRATE_ENABLE.

CORACQ_PRM_CAM_TRIGGER_DELAY

Description Trigger pulse delay (in µs). After receiving a trigger pulse (external, internal or software), the

acquisition device will wait this delay before generating the trigger pulse.

Type UINT32

Limits The value must be in the range CORACQ CAP CAM TRIGGER DELAY MIN ...

CORACQ_CAP_CAM_TRIGGER_DELAY_MAX.

CVI Entry [Control Signals]

Camera Trigger Delay

Note This value is only validated if CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_CAM_TRIGGER_ENABLE

Description Enables or disables the frame trigger pulse to the camera. Applies to area scan cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_CAM_TRIGGER is TRUE..

Values TRUE (0x00000001) Enable

FALSE (0x00000000) Disable

CVI Entry [Control Signals]

Camera Trigger Enable

Note This parameter is mutually exclusive with

CORACQ_PRM_FRAME_INTEGRATE_ENABLE, CORACQ_PRM_CAM_RESET_ENABLE and CORACQ_PRM_TIME_INTEGRATE_ENABLE.

CORACO PRM CAMSEL

Description Numerical value representing the camera selector to acquire from.

Type UINT32

Limits If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_MONO:

0 ... CORACQ_CAP_CAMSEL_MONO – 1. Applies to composite cameras.

If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_COLOR: 0 ...CORACQ_CAP_CAMSEL_COLOR - 1. Applies to composite cameras.

If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_YC:

 $0 \dots CORACQ_CAP_CAMSEL_YC-1.$ Applies to Y/C cameras.

If CORACQ_PRM_VIDEO is equal to CORACQ_VAL_VIDEO_RGB: 0 ... CORACQ_CAP_CAMSEL_RGB – 1. Applies to RGB cameras.

CVI Entry [Input]

Camera Selector

CORACQ_PRM_CONTRAST

Description Percentage of contrast to be applied to the composite video signal. Applies to analog video

signals only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST is set to TRUE.

Limits Range limits: CORACQ_CAP_CONTRAST_MIN to CORACQ_CAP_CONTRAST_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_CONTRAST_STEP percent

(%) in order for a change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Contrast

CORACQ_PRM_CONTRAST_BLUE

Description Percentage of contrast to be applied to the blue video signal. Applies to analog video signals

only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST_BLUE is set to TRUE.

Limits Range Limits: CORACQ_CAP_CONTRAST_BLUE_MIN to

CORACQ_CAP_CONTRAST_BLUE_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_CONTRAST_BLUE_STEP

percent (%) in order for a change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Contrast Blue

CORACO PRM CONTRAST GREEN

Description Percentage of contrast to be applied to the green video signal. Applies to analog video signals

only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST_GREEN is set to TRUE.

Limits Range Limits: CORACQ_CAP_CONTRAST_GREEN_MIN to

CORACQ_CAP_CONTRAST_GREEN_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_CONTRAST_GREEN_STEP

percent (%) in order for a change to occur in the video signal (10000 = 100%).

CVI Entry [Signal Conditioning]

Contrast Green

CORACQ_PRM_CONTRAST_RED

Description Percentage of contrast to be applied to the red video signal. Applies to analog video signals

only.

Type UINT32

Availability Available only if CORACQ_CAP_CONTRAST_RED is set to TRUE.

Limits Range limits: CORACQ_CAP_CONTRAST_RED_MIN to

CORACQ_CAP_CONTRAST_RED_MAX.

Adjust the parameter by increments of at least CORACO CAP CONTRAST RED STEP

percent (%) in order for a change to occur in the video signal.

CVI Entry [Signal Conditioning]

Contrast Red

CORACQ_PRM_CONTROL_SIGNAL_OUTPUT1

Description Specifies the control signal that must be output on control signal output 1. This parameter

permits the synchronization of two acquisition devices using a single input signal from the user on one acquisition device, and synching a second acquisition device to the control signal

output 1.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_CONTROL_SIGNAL_OUTPUT1. The capability returns the ORed

combination of all supported values.

Values See "Signal Name Definitions" on page 69 for CORACQ_VAL_SIGNAL_NAME_xxx

definitions

CVI Entry [Control Signals]

Control Signal Output 1

CORACO PRM CONTROL SIGNAL OUTPUT2

Description Specifies the control signal that must be output on control signal output 2. This parameter

permits the synchronization of two acquisition devices using a single input signal from the user on one acquisition device, and synching a second acquisition device to the control signal

output 2.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_CONTROL_SIGNAL_OUTPUT2. The capability returns the ORed

combination of all supported values.

Values See "Signal Name Definitions" on page 69 for CORACQ_VAL_SIGNAL_NAME_xxx

definitions

CVI Entry [Control Signals]

Control Signal Output 2

CORACQ_PRM_CROP_HEIGHT

Description Cropped height of the acquisition camera image (in lines per frame).

The acquisition device supports vertical cropping if the CORACQ_CAP_CROP_VERT capability returns TRUE.

Type UINT32

Limits The value must be in the range CORACQ_CAP_CROP_HEIGHT_MIN to

CORACQ_CAP_CROP_HEIGHT_MAX, and must be a multiple of

CORACQ_CAP_CROP_HEIGHT_MULT.

The value must also be in the range CORACQ_CAP_SYNC_CROP_HEIGHT_MIN to

CORACQ_CAP_SYNC_CROP_HEIGHT_MAX and must be a multiple of

CORACQ_CAP_SYNC_CROP_HEIGHT_MULT

The value (CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT) must be smaller or equal to CORACQ_PRM_VACTIVE.

Scale Down limit:

The value CORACQ_PRM_CROP_HEIGHT /

(CORACQ_CAP_SCALE_VERT_MIN_FACTOR / CORACQ_VAL_SCALE_FACTOR)

must be smaller or equal to CORACQ_PRM_SCALE_VERT.

CORACQ_CAP_SCALE_VERT_MIN_FACTOR specifies the factor used in calculating the minimum vertical downscaling ratio supported by the acquisition device. The minimum vertical downscaling ratio is equal to 1/(CORACQ_CAP_SCALE_VERT_MIN_FACTOR/CORACQ_VAL_SCALE_FACTOR).

Scale Up limit:

The value CORACQ_PRM_CROP_HEIGHT *

(CORACQ_CAP_SCALE_VERT_MAX_FACTOR / CORACQ_VAL_SCALE_FACTOR)

must be greater or equal to CORACQ_PRM_SCALE_VERT.

CORACQ_CAP_SCALE_VERT_MAX_FACTOR specifies the factor used in calculating the maximum vertical upscaling ratio supported by the acquisition device. The maximum vertical

upscaling ratio is equal to CORACQ_CAP_SCALE_VERT_MAX_FACTOR/

CORACQ_VAL_SCALE_FACTOR.

CVI Entry [Stream Conditioning]

Crop Height

Note You should not directly use the function CorAcqSetPrm to set the value of this parameter.

This may yield an error condition when it is validated together with the other cropping parameters (CORACO PRM CROP LEFT, CORACO PRM CROP TOP, and

CORACQ_PRM_CROP_WIDTH).

Instead, you should first retrieve the current VIC parameters using CorAcqGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new values as a

block using CorAcqSetPrms.

CORACQ_PRM_CROP_LEFT

Number of pixels to crop from the left side of the acquisition camera image. Description

> Includes the number of pixels in the horizontal blanking. The horizontal blanking includes the horizontal back porch and the horizontal back invalid parameters. If the horizontal sync reference is set to CORACQ_VAL_SYNC_REF_BEGIN, then the horizontal sync is also included.

The acquisition device supports horizontal cropping if the CORACO CAP CROP HORZ capability returns TRUE.

UINT32 Type

Limits The value must be in the range CORACQ_CAP_CROP_LEFT_MIN to

CORACQ_CAP_CROP_LEFT_MAX, and must be a multiple of

CORACO CAP CROP LEFT MULT.

The value (CORACQ PRM CROP LEFT + CORACQ PRM CROP WIDTH) must be smaller or equal to CORACQ_PRM_HACTIVE.

The value (CORACO PRM HBACK PORCH + CORACO PRM HBACK INVALID +

CORACQ_PRM_CROP_LEFT) must be in the range

CORACQ_CAP_SYNC_CROP_LEFT_MIN...CORACQ_CAP_SYNC_CROP_LEFT_MAX,

and must be a multiple of CORACO CAP SYNC CROP LEFT MULT.

The value (CORACQ PRM HBACK PORCH + CORACQ PRM HBACK INVALID + CORACO PRM CROP LEFT + CORACO PRM CROP WIDTH) must be in the range CORACQ_CAP_SYNC_CROP_WIDTH_MIN...CORACQ_CAP_SYNC_CROP_WIDTH_M

AX, and must be a multiple of CORACQ_CAP_SYNC_CROP_WIDTH_MULT.

[Stream Conditioning] **CVI Entry**

Crop Left

Note You should not directly use the function CorAcqSetPrm to set the value of this parameter.

This may yield an error condition when it is validated together with the other cropping parameters (CORACQ_PRM_CROP_HEIGHT, CORACQ_PRM_CROP_TOP, and

CORACQ_PRM_CROP_WIDTH).

Instead, you should first retrieve the current VIC parameters using CorAcqGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new values as a

block using CorAcqSetPrms.

CORACQ_PRM_CROP_TOP

Description Number of lines per acquisition frame to crop from the top of the camera image.

It includes the number of lines in the vertical blanking. The vertical blank includes the vertical back porch and the vertical back invalid parameters. If the vertical sync reference is set to CORACQ_VAL_SYNC_REF_BEGIN, then the vertical sync is also included.

The acquisition device supports vertical cropping if the CORACO CAP CROP VERT

Type UINT32

Limits The value must be in the range CORACQ_CAP_CROP_TOP_MIN to

CORACQ_CAP_CROP_TOP_MAX, and must be a multiple of

CORACQ_CAP_CROP_TOP_MULT.

capability returns TRUE.

The value (CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT) must be

smaller or equal to CORACQ_PRM_VACTIVE.

The value (CORACQ_PRM_VBACK_PORCH + CORACQ_PRM_VBACK_INVALID +

CORACQ_PRM_CROP_TOP) must be in the range

CORACQ_CAP_SYNC_CROP_TOP_MIN...CORACQ_CAP_SYNC_CROP_TOP_MAX,

and must be a multiple of CORACQ_CAP_SYNC_CROP_TOP_MULT.

The value (CORACQ_PRM_VBACK_PORCH + CORACQ_PRM_VBACK_INVALID + CORACQ_PRM_CROP_TOP + CORACQ_PRM_CROP_HEIGHT) must be in the range CORACQ_CAP_SYNC_CROP_HEIGHT_MIN...CORACQ_CAP_SYNC_CROP_HEIGHT_MAX, and must be a multiple of CORACQ_CAP_SYNC_CROP_HEIGHT_MULT. See

CORACO PRM CROP HEIGHT for capability information.

CVI Entry [Stream Conditioning]

Crop Top

Note You should not directly use the CorAcqSetPrm function to set the value of this parameter.

This may yield an error condition when it is validated together with the other cropping parameters (CORACQ_PRM_CROP_HEIGHT, CORACQ_PRM_CROP_LEFT, and

CORACQ_PRM_CROP_WIDTH).

Instead, you should first retrieve the current VIC parameters using CorAcqGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new values as a block using CorAcqSetPrms. See the *Sapera LT Basic Modules Reference Manual* for function

descriptions refered to in this table.

CORACQ_PRM_CROP_WIDTH

Description Cropped width of the acquisition camera image (in pixels).

The acquisition device supports horizontal cropping if the CORACQ_CAP_CROP_HORZ

capability returns TRUE.

Type UINT32

Limits The value must be in the range CORACQ_CAP_CROP_WIDTH_MIN to

CORACQ_CAP_CROP_WIDTH_MAX, and must be a multiple of

CORACQ_CAP_CROP_WIDTH_MULT.

The value must also be in the range CORACQ_CAP_SYNC_CROP_WIDTH_MIN to

CORACQ_CAP_SYNC_CROP_WIDTH_MAX and must be a multiple of

CORACQ_CAP_SYNC_CROP_WIDTH_MULT. See CORACQ_PRM_CROP_LEFT for

capability information.

The value (CORACQ_PRM_CROP_LEFT + CORACQ_PRM_CROP_WIDTH) must be smaller or equal to CORACQ_PRM_HACTIVE.

Scale Down limit:

The value CORACQ_PRM_CROP_WIDTH /

 $(CORACQ_CAP_SCALE_HORZ_MIN_FACTOR / CORACQ_VAL_SCALE_FACTOR)$

must be smaller or equal to CORACQ_PRM_SCALE_HORZ.

CORACQ_CAP_SCALE_HORZ_MIN_FACTOR specifies the factor used in calculating the minimum horizontal downscaling ratio supported by the acquisition device. The minimum horizontal downscaling ratio is equal to 1/(CORACQ_CAP_SCALE_HORZ_MIN_FACTOR/CORACQ_VAL_SCALE_FACTOR).

Scale Up limit:

The value CORACO PRM CROP WIDTH *

(CORACQ_CAP_SCALE_HORZ_MAX_FACTOR / CORACQ_VAL_SCALE_FACTOR)

must be greater or equal to CORACQ_PRM_SCALE_HORZ.

CORACQ_CAP_SCALE_HORZ_MAX_FACTOR specifies the factor used in calculating the maximum horizontal upscaling ratio supported by the acquisition device. The maximum horizontal upscaling ratio is equal to CORACQ_CAP_SCALE_HORZ_MAX_FACTOR/

CORACQ_VAL_SCALE_FACTOR.

CVI Entry

[Stream Conditioning]

Crop Width

Note

You should not directly use the function CorAcqSetPrm to set the value of this parameter. This may yield an error condition when it is validated together with the other cropping parameters (CORACQ_PRM_CROP_HEIGHT, CORACQ_PRM_CROP_LEFT, and CORACQ_PRM_CROP_TOP).

Instead, you should first retrieve the current VIC parameters using CorAcqGetPrms, then modify the cropping parameters using CorVicSetPrm, and finally apply the new values as a block using CorAcqSetPrms.

CORACQ_PRM_DC_REST_MODE

Description DC restoration mode control. Applies to analog video signals only.

The acquisition device supports DC restoration if the CORACQ_CAP_DC_REST capability

returns TRUE.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP DC REST MODE. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_DC_REST_MODE_AUTO (0x00000001)

The acquisition device automatically activates or deactivates DC restoration and selects the

proper values for the start and width of the sampling pulse.

The pulse starting location is set to CORACQ_PRM_HSYNC pixels (see online manual) and

the pulse width is set to $0.8 \mu s$ (expressed in pixels).

CORACQ_VAL_DC_REST_MODE_ON (0x00000002)

The acquisition device activates DC restoration using user-defined values.

CORACQ_VAL_DC_REST_MODE_OFF (0x00000004)

The acquisition device deactivates DC restoration.

CVI Entry [Signal Conditioning]

DC Restoration Mode

CORACO PRM DC REST START

Description DC restoration sampling pulse start location relative to the horizontal sync, in pixels. Applies

to analog video signals only.

The acquisition device supports DC restoration if the CORACO CAP DC REST capability

returns TRUE.

Type UINT32

Limits Range limits: CORACQ_CAP_DC_REST_START_MIN to

CORACQ_CAP_DC_REST_START_MAX.

CVI Entry [Signal Conditioning]

DC Restoration Start

Note Validated when CORACQ PRM DC REST MODE is equal to

CORACQ_VAL_DC_REST_MODE_ON.

CORACQ_PRM_DC_REST_WIDTH

Description DC restoration sampling pulse width, in pixels. Applies to analog video signals only.

The acquisition device supports DC restoration if the CORACO CAP DC REST capability

returns TRUE.

Type UINT32

Limits Range limits: CORACQ_CAP_DC_REST_WIDTH_MIN to

CORACQ_CAP_DC_REST_WIDTH_MAX.

CVI Entry [Signal Conditioning]

DC Restoration Width

Note Validated only if CORACQ_PRM_DC_REST_MODE is equal to

CORACQ_VAL_DC_REST_MODE_ON.

CORACQ_PRM_DECIMATE_COUNT

Description The number of fields or frames to decimate per second.

Type UINT32

Limits The value must be smaller than the number of acquisition fields or frames per second,

depending on the decimation method requested.

CVI Entry [Stream Conditioning]

Decimate Count

CORACQ_PRM_DECIMATE_METHOD

Description Field and frame decimation method.

The acquisition device supports field/frame decimation if the CORACQ_CAP_DECIMATE

capability returns TRUE.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_DECIMATE_METHOD. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_DECIMATE_DISABLE (0x00000001) No decimation

CORACQ_VAL_DECIMATE_FIELD (0x00000002) Decimate fields CORACQ_VAL_DECIMATE_FRAME (0x00000004) Decimate frames

CORACQ_VAL_DECIMATE_ODD (0x00000008) Decimate odd fields only CORACQ_VAL_DECIMATE_EVEN (0x00000010) Decimate even fields only

CVI Entry [Stream Conditioning]

Decimate Method

CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION

Description Defines the signal detected that generates an external frame trigger event to the acquisition

device. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP EXT FRAME TRIGGER DETECTION. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001), Active low signal. Acquisition starts on

falling edge of trigger 1 - ends on rising edge of trigger 1 or CORACO PRM_CROP_HEIGHT numbers of lines acquired.

CORACQ_VAL_ACTIVE_HIGH (0x00000002), Active high signal. Acquisition starts on

rising edge of trigger 1 - ends on falling edge of trigger 1 or CORACQ_PRM_CROP_HEIGHT numbers of lines acquired.

CORACQ_VAL_RISING_EDGE (0x000000004), Rising signal edge. Acquisition starts on rising signal edge and ends on when CORACQ_PRM_CROP_HEIGHT numbers of lines

acquired.

CORACQ_VAL_FALLING_EDGE (0x00000008), Falling signal edge. Acquisition starts on falling signal edge and ends on when CORACQ_PRM_CROP_HEIGHT numbers of lines

acquired.

CORACQ_VAL_BOTH_EDGE (0x00000010), Both signal edges.
CORACQ_VAL_DOUBLE _PULSE_RISING_EDGE (0x00000020),
Acquisition starts on rising edge of trigger 1 – ends on rising edge of trigger 2.
CORACQ_VAL_DOUBLE _PULSE_FALLING_EDGE (0x00000040),
Acquisition starts on falling edge of trigger 1 – ends on falling edge of trigger 2.

CVI Entry [Control Signals]

External Frame Trigger Detection

Note Validated only if CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE

Description Enable or disable external frame trigger on the acquisition device. Applies to linescan cameras

only.

This feature is used for trigger acquisitions of virtual frames from a linescan camera.

For area scan cameras. See CORACQ_PRM_EXT_TRIGGER_ENABLE.

The acquisition device may be able to simulate an external trigger. See

CORACO PRM EXT TRIGGER ENABLE for information concerning the

CORACQ_CAP_SOFTWARE_TRIGGER capability.

Type UINT32

Available Available only if CORACQ_CAP_EXT_FRAME_TRIGGER is TRUE. This feature is used to

trigger the acquisition of a virtual frame from a linescan camera. For area scan cameras. See

CORACQ_PRM_EXT_TRIGGER_ENABLE for information concerning the

CORACQ_CAP_EXT_TRIGGER capability.

Values TRUE (0x00000001) Enable

FALSE (0x00000000) Disable

CVI Entry [Control Signals]

External Frame Trigger Enable

CORACO PRM EXT FRAME TRIGGER LEVEL

Description Defines the external frame trigger level connected to the acquisition device. Applies to linescan

cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP EXT FRAME TRIGGER LEVEL. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal level.

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal level. CORACO_VAL_LEVEL_LVDS (0x00000004) LVDS signal level.

CVI Entry [Control Signals]

External Frame Trigger Level

Note Validated only if CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE

Description Specifies the physical input source the external frame trigger is connected to on the acquisition

device, in the case where the acquisition device has more than one input.

Type UINT32

Limits Range Limits: 0... CORACO CAP EXT FRAME TRIGGER SOURCE – 1 in the case

where CORACQ_CAP_EXT_FRAME_TRIGGER_SOURCE is not 0. This capability will have a non-zero value if there is more than one physical input in which to connect an external

frame trigger.

CVI Entry [Control Signals]

External Frame Trigger Source

Note Validated only if CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION

Description Defines the signal detected that generates an external line trigger event to the acquisition

device. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_EXT_LINE_TRIGGER_DETECTION. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_RISING_EDGE (0x00000004) Rising signal edge.

CORACQ_VAL_FALLING_EDGE (0x00000008) Falling signal edge.

CVI Entry [Control Signals]

External Line Trigger Detection

Note Validated only if CORACQ PRM EXT_LINE TRIGGER ENABLE is TRUE.

CORACO PRM EXT LINE TRIGGER ENABLE

Description Enable or disable external line trigger on the acquisition device. Applies to linescan cameras

only.

This controls the acquisition line rate of linescan cameras.

The acquisition device may be able to simulate an external trigger. See CORACQ_PRM_EXT_TRIGGER_ENABLE for information concerning the

CORACQ_CAP_SOFTWARE_TRIGGER capability.

Type UINT32

Availability Available only if CORACQ_CAP_EXT_LINE_TRIGGER is TRUE.

Values TRUE (0x00000001), Enable

FALSE (0x0000000), Disable

CVI Entry [Control Signals]

External Line Trigger Enable

Note This parameter is mutually exclusive with CORACQ PRM INT LINE TRIGGER ENABLE

and CORACQ_PRM_SHAFT_ENCODER_ENABLE.

CORACO PRM EXT LINE TRIGGER LEVEL

Description Defines the external line trigger signal level connected to the acquisition device. Applies to

linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_EXT_LINE_TRIGGER_LEVEL. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal level

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal level CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal level

CVI Entry [Control Signals]

External Line Trigger Level

Note Validated only if CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE

Description Specifies the physical input source the external line trigger is connected to on the acquisition

device, in the case where the acquisition device has more than one input.

Type UINT32

Limits Range Limits: 0... CORACQ_CAP_EXT_LINE_TRIGGER_SOURCE – 1 in the case where

CORACQ_CAP_EXT_LINE_TRIGGER_SOURCE is not 0. This capability will have a non-zero value if there is more than one physical input in which to connect an external line trigger.

CVI Entry [Control Signals]

External Line Trigger Source

Note Validated only if CORACO PRM EXT LINE TRIGGER ENABLE is TRUE.

CORACO PRM EXT LINE TRIGGER SOURCE STR

Description Returns a string representation of the currently selected

CORAQ_PRM_EXT_LINE_TRIGGER_SOURCE.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character).

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_EXT_TRIGGER_DELAY

Description External trigger delay in units specified by

CORACQ_PRM_EXT_TRIGGER_DELAY_TIME_BASE.

Type UINT32

Limits Range limits: CORACQ_CAP_EXT_TRIGGER_DELAY_MIN to

CORACQ_CAP_EXT_TRIGGER_DELAY_MAX.

CVI Entry [Control Signals]

External Trigger Delay

CORACO PRM EXT TRIGGER DELAY TIME BASE

Description External trigger delay time base

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP EXT TRIGGER DELAY TIME BASE. The capability returns the ORed

combination of all supported values.

Values

CORACQ_VAL_TIME_BASE_US: Time base is in microseconds. CORACQ_VAL_TIME_BASE_MS: Time base is in milliseconds.

CORACQ_VAL_TIME_LINE: Time base is in line counts.

CORACQ_VAL_TIME_LINE_TRIGGER: Time base is in external line trigger or shaft

encoder pulse counts (after drop or/and multiply factors).

CORACQ_VAL_TIME_FRAME: Time base is in video frame counts. CORACQ_VAL_TIME_BASE_US: Time base is in microseconds.

CVI Entry [Control Signals]

External Trigger Delay Time Base

CORACO PRM EXT TRIGGER DETECTION

Description Defines the signal detected that generates an external trigger event to the acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_EXT_TRIGGER_DETECTION. The capability returns the ORed

combination of all supported values.

Values CORACO VAL ACTIVE LOW (0x00000001) Active low signal

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Active high signal CORACQ_VAL_RISING_EDGE (0x00000004) Rising edge of signal CORACQ_VAL_FALLING_EDGE (0x00000008) Falling edge of signal

CVI Entry [Control Signals]

External Trigger Detection

Note Validated only if external trigger is enabled. See

CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACQ_PRM_EXT_TRIGGER_DURATION

Description Minimum external trigger pulse duration (in μs), needed for the pulse to be acknowledged by

the acquisition device. If the duration of the pulse is shorter, the pulse will be discarded. This feature is useful for trigger pulse debouncing. If the value is '0', no validation will be done.

Type UINT32

Limits This value must be in the range CORACQ_CAP_EXT_TRIGGER_DURATION_MIN ...

CORACQ_CAP_EXT_TRIGGER_DURATION_MAX. A value of 0 means that the device

cannot validate the pulse duration.

CVI Entry [Control Signals]

External Trigger Duration

CORACQ_PRM_EXT_TRIGGER_ENABLE

Description Replaces CORACQ_PRM_OUTPUT_ENABLE (obsolete). Enables or disables the external

 $trigger\ feature\ of\ the\ acquisition\ device.\ When\ enabled,\ the\ acquisition\ device\ acquires\ frames$

upon receiving an external trigger.

The CorAcqSoftwareTrigger function can be used to simulate a hardware trigger. The CORACQ_CAP_SOFTWARE_TRIGGER capability specifies the software trigger type(s) that can be simulated by the acquisition device. See the CorAcqSoftwareTrigger function in the

Sapera LT Basic Modules Reference Manual for further information.

The capability returns the ORed combination of all valid values as defined below:

 $CORACQ_VAL_SOFTWARE_TRIGGER_EXT~(0x00000001) Simulate~an~external$

trigger

CORACO VAL SOFTWARE TRIGGER EXT FRAME (0x00000002) Simulate an

external frame trigger

CORACQ_VAL_SOFTWARE_TRIGGER_EXT_LINE (0x00000004) Simulate an

external line trigger

Type UINT32

Availability Available only if CORACQ_CAP_EXT_TRIGGER is TRUE. Note that

CORACQ_CAP_OUTPUT_ENABLE is obsolete.

Values CORACQ_VAL_EXT_TRIGGER_OFF (0x000000001) External Trigger is turned off

CORACQ_VAL_EXT_TRIGGER_ON (0x00000008) The acquisition device will

acquire images whenever an

external trigger signal is detected.

CVI Entry [Control Signals]

External Trigger Enable

Note If the CVI entry does not exist or the value is 0, then Output Enable will be used as the default

for backward compatibility.

See also other parameters in the CORACQ_PRM_EXT_TRIGGER_xxx series.

CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT

Description Number of images to acquire upon receiving an external trigger.

The acquisition device can acquire more than one frame per trigger if the CORACQ CAP EXT_TRIGGER FRAME COUNT capability returns TRUE.

Type UINT32

Limits The value must be in the range: $1...(2^{**}32) - 1$.

CVI Entry [Stream Conditioning]

External Trigger Frame Count

Note Validated only if external trigger is enabled. See

CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY

Description Following a valid external trigger, this parameter specifies the time delay, in µsec, where if

another external trigger occurs, it will be ignored. The start of the delay (time '0') is the end of the next vertical sync for analog cameras, or the beginning of the next frame valid for digital

cameras, following the valid external trigger. If the parameter

CORACQ_PRM_CAM_CONTROL_DURING_READOUT is FALSE, time '0' will be the end of the last line acquired from a frame. All external triggers received between the valid external trigger and the Time '0' will also be ignored. Applies to area scan cameras only. For linescan cameras, the external trigger invalid region always extends to the end of the next

virtual frame valid following a valid external trigger.

Type UINT32

Values Numerical value representing the delay in µsec.

Limits Range Limits: CORACQ_CAP_EXT_TRIGGER_IGNORE_DELAY_MIN ...

CORACQ_CAP_EXT_TRIGGER_IGNORE_DELAY_MAX.

CVI Entry [Control Signals]

External Trigger Ignore Delay

Note Validated only if external trigger is enabled. See

CORACQ_PRM_EXT_TRIGGER_ENABLE

See also the related event CORACO PRM EVENT TYPE:

CORACQ_VAL_EVENT_TYPE_EXTERNAL_TRIGGER_IGNORED

For analog cameras, if the WEN signal is used, time '0' will be the start of this WEN signal. For analog cameras, if synching to blanking signals, time '0' will be the end of the blanking

signal.

CORACQ_PRM_EXT_TRIGGER_LEVEL

Description Defines the external trigger level connected to the acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP EXT TRIGGER LEVEL. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal level

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal level CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal level

CVI Entry [Control Signals]

External Trigger Level

Note Validated only if external trigger is enabled. See

CORACQ_PRM_EXT_TRIGGER_ENABLE.

CORACO PRM EXT TRIGGER SOURCE

Description Specifies the physical input source the external trigger is connected to on the acquisition

device, in the case where the acquisition device has more than one input.

Type UINT32

Limits Range Limits: 0... CORACQ_CAP_EXT_TRIGGER_SOURCE – 1 in the case where

CORACQ_CAP_EXT_TRIGGER_SOURCE is not 0. This capability will have a non-zero

value if more than one physical input to connect an external trigger is present.

CVI Entry [Control Signals]

External Trigger Source

Note Validated only if CORACQ_PRM_EXT_TRIGGER_ENABLE is TRUE.

CORACO PRM EXT TRIGGER SOURCE STR

Description Returns a string representation of the currently selected

CORAQ_PRM_EXT_TRIGGER_SOURCE for area scan cameras and

CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE for linescan cameras.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character).

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_FIX_FILTER_ENABLE

Description Enable or disable the fixed-frequency filter if available on the acquisition device. Applies to

analog video signals only.

Type UINT32

Available Available only if CORACO CAP FIX FILTER is TRUE.

Values TRUE (0x00000001), Enable the filter.

FALSE 0x00000000), Disable the filter

CVI Entry [Signal Conditioning]

Fix Filter Enable

CORACQ_PRM_FIX_FILTER_SELECTOR

Description Selects one of the available fixed-frequency filters. Applies to analog video signals only.

Type UINT32

Limits Range Limits: 0... CORACQ_CAP_FIX_FILTER_MAX – 1.

CVI Entry [Signal Conditioning]

Fix Filter Selector

Note Validated only if CORACQ_PRM_FIX_FILTER_ENABLE is TRUE.

CORACO PRM FIX FILTER SELECTOR STR

Description Returns a string representation of the currently selected

CORAQ_PRM_FIX_FILTER_SELECTOR.

Type CHAR[32]

Values Null terminated string (up to 32 characters including the Null character).

Note Read-only parameter. This parameter is device dependent.

CORACQ_PRM_FLIP

Description Flipping mode control.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_FLIP. The capability returns the ORed combination of all supported values.

Values CORACQ_VAL_FLIP_OFF (0x00000000) Incoming lines and frames are not flipped.

CORACQ VAL FLIP HORZ (0x00000001) The acquisition device will flip incoming

lines. The right most pixels become the left

most pixels

CORACQ_VAL_FLIP_VERT (0x000000002) The acquisition device will flip incoming

frames. The bottom lines become the top

lines.

CVI Entry [Stream Conditioning]

Flip

CORACO PRM FRAME INTEGRATE COUNT

Description Number of frames to integrate. Applies to area scan cameras only.

Type UINT32

Limits The value is limited to 1... CORACQ_CAP_FRAME_INTEGRATE_COUNT_MAX.

CVI Entry [Control Signals]

Frame Integrate Count

Note Validated only if CORACQ PRM FRAME INTEGRATE ENABLE is TRUE.

CORACO PRM FRAME INTEGRATE ENABLE

Description Enables or disables frame integration control. Applies to area scan cameras only.

Type UINT32

AvailabilityAvailable only if CORACQ_CAP_FRAME_INTEGRATE is TRUE.ValuesTRUE (0x00000001)Enable frame integration control.

FALSE (0x00000000)

CVI Entry [Control Signals]

Frame Integrate Enable

Note This parameter is mutually exclusive with CORACQ PRM CAM RESET ENABLE,

CORACQ_PRM_CAM_TRIGGER_ENABLE and CORACQ_PRM_TIME_INTEGRATE_ENABLE.

CORACQ_PRM_FRAME_LENGTH

Description Specifies if the images output by the acquisition device have a fixed or variable frame length.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP FRAME LENGTH. The capability returns the ORed combination of all

Disable frame integration control.

supported values.

Values CORACQ_VAL_FRAME_LENGTH_FIX (0x00000001) Fixed length images

CORACQ_VAL_FRAME_LENGTH_VARIABLE Variable length images

(0x00000002)

CVI Entry [Stream Conditioning]

Frame Length

CORACQ_PRM_HSYNC_REF

Description Defines the horizontal sync reference edge used for horizontal timing.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_HSYNC_REF. The horizontal sync reference is used as the starting point when counting the pixels in a line. Selecting the reference as the end of the sync is useful when dealing with a sync that might be variable. This is usually the case when time-integrating a video signal. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_SYNC_REF_BEGIN Beginning of horizontal sync.

(0x00000001)

CORACQ_VAL_SYNC_REF_END (0x00000002) End of horizontal sync.

CORACO VAL SYNC REF HV DEPENDENT

(0x00000004)

Horizontal and Vertical sync reference are dependent on if the acquisition device grabs analog or digital video.

CVI Entry [Stream Conditioning]

Horizontal Sync Reference

CORACO PRM HUE

Description Hue control: Phase change in degrees applied to the hue control. Applies only to NTSC analog

color video signals (composite or Y/C).

Type INT32

Limits Range: CORACQ_CAP_HUE_MIN to CORACQ_CAP_HUE_MAX.

Adjust the parameter by increments of at least CORACO CAP HUE STEP percent (%) in

order for a change to occur in the video signal.

Availability Available only if CORACQ_CAP_HUE is set to TRUE.

CVI Entry [Signal Conditioning]

Hue

CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE

Description Enable/disable the acquisition device's internal frame trigger feature. Applies to area scan

cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_INT_FRAME_TRIGGER is TRUE.

Values TRUE (0x00000001) Enable

FALSE (0x00000000) Disable

CVI Entry [Control Signals]

Internal Frame Trigger Enable

Note Controls the rate that video frames are triggered and acquired.

CORACQ_PRM_INT_FRAME_TRIGGER_FREQ

Description Internal frame trigger frequency in milli-Hz, output by the acquisition device. Applies to area

scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_INT_FRAME_TRIGGER_FREQ_MIN ...

CORACO CAP INT FRAME TRIGGER FREO MAX.

CVI Entry [Control Signals]

Internal Frame Trigger Freq

Note Validated only if CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_INT_LINE_TRIGGER_ENABLE

Description Enable/disable the acquisition device's internal line trigger feature. Applies to linescan

cameras only.

Type UINT32

Available Available only if CORACQ_CAP_INT_LINE_TRIGGER is TRUE. This feature is used when

the acquisition device itself triggers lines out of a camera.

Values TRUE (0x00000001) Enable

FALSE (0x00000000) Disable

CVI Entry [Control Signals]

Internal Line Trigger Enable

Note Controls the rate video lines are triggered and acquired.

This parameter is mutually exclusive with

CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE and CORACQ_PRM_SHAFT_ENCODER_ENABLE.

CORACQ_PRM_INT_LINE_TRIGGER_FREQ

Description Frequency (in Hz) of the internal line trigger signal output by the acquisition device. Applies

to linescan cameras only.

Type UINT32

Limits Acquisition device range limits: CORACQ PRM INT LINE TRIGGER FREQ MIN to

CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX.

Camera range limits: CORACO PRM CAM LINE TRIGGER FREO MIN to

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX.

CVI Entry [Control Signals]

Internal Line Trigger Freq

Note Validated only if CORACQ_PRM_INT_LINE_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MAX

Description Maximum frequency (in Hz) of the internal line trigger signal output by the acquisition device.

Applies to linescan cameras only.

Type UINT32
CVI Entry None

Note Read-only parameter. This parameter may be dependent on the pixel clock setting. Always

read the parameter after setting the required pixel clock.

CORACQ_PRM_INT_LINE_TRIGGER_FREQ_MIN

Description Minimum frequency (in Hz) of the internal line trigger signal output by the acquisition device.

Applies to linescan cameras only.

Type UINT32 CVI Entry None

Note Read-only parameter. This parameter may be dependent on the pixel clock setting. Always

read the parameter after setting the required pixel clock.

CORACQ_PRM_LINE_INTEGRATE_DURATION

Description Line integration pulse width in pixels. Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_INTEGRATE_DURATION_MIN...

CORACQ_CAP_LINE_INTEGRATE_DURATION_MAX.

CVI Entry [Control Signals]

Line Integrate Duration

Note Validated only if CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

CORACO PRM LINE INTEGRATE ENABLE

Description Enable or disable the line integration control signal to the camera. Applies to linescan cameras

only.

Type UINT32

Availability Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Values TRUE (0x00000001) Enable line integration pulse.

FALSE (0x00000000) Disable line integration pulse.

CVI Entry [Control Signals]

Line Integrate Enable

Note This parameter is mutually exclusive with CORACO PRM LINE TRIGGER ENABLE.

CORACQ_PRM_LINE_TRIGGER_ENABLE

Description Enable or disable the line trigger signal pulse to the camera. Applies to linescan cameras only.

Type UINT32

Availability Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Values TRUE (0x00000001) Enable

FALSE (0x00000000) Disable

CVI Entry [Control Signals]

Line Trigger Enable

Note This parameter is mutually exclusive with CORACQ_PRM_LINE_INTEGRATE_ENABLE.

CORACO PRM LINESCAN DIRECTION OUTPUT

Description Linescan direction control. Applies to linescan cameras only.

Type UINT32

Limits Value can only be set to CORACQ_VAL_LINESCAN_DIRECTION_REVERSE if

CORACQ_CAP_LINESCAN_DIRECTION is TRUE and

CORACQ_PRM_LINESCAN_DIRECTION is TRUE. For DALSA cameras, this control is

called the TDI scan direction.

Values CORACQ_VAL_LINESCAN_DIRECTION_FORWARD Forward direction.

(0x00000001)

CORACQ_VAL_LINESCAN_DIRECTION_REVERSE Reverse direction.

(0x00000002)

CVI Entry [Control Signals]

LineScan Direction Output

CORACQ_PRM_LUT_ENABLE

Description Enable or disable the input LUT.

Type UINT32

Availability At least one LUT is available if CORACQ_CAP_LUT is TRUE.

CORACQ_CAP_LUT_ENABLE will then return TRUE if it can be enabled/disabled.

Values TRUE (0x00000001) Enable the input LUT.

FALSE (0x00000000) Disable the input LUT.

CVI Entry [Stream Conditioning]

Lut Enable

Note The LUT cannot be disabled on some acquisition devices.

CORACQ_PRM_LUT_FORMAT

Description Input LUT format based on the current pixel depth and output format.

Type UINT32
CVI Entry None

Values Possible values are of the type CORLUT_VAL_FORMAT_ and must match the possible

values as defined by the CORACQ_CAP_PIXEL_DEPTH capability that specifies the number

of bits per pixel per tap supported by the acquisition device.

Note Read-only parameter. This parameter may depend on CORACQ_PRM_PIXEL_DEPTH and

CORACQ_PRM_OUTPUT_FORMAT.

CORACQ_PRM_LUT_MAX

Description Maximum number of LUTs available based on the current pixel depth and output format.

Type UINT32
CVI Entry None

Note Read-only parameter. This parameter may depend on CORACQ_PRM_PIXEL_DEPTH and

CORACQ_PRM_OUTPUT_FORMAT.

CORACQ_PRM_LUT_NENTRIES

Description The number of elements in the input lookup table.

Type UINT32

Values Usually ranges from 256 to 65536.

CVI Entry None

Note Read only parameter. This parameter may depend on CORACQ_PRM_PIXEL_DEPTH and

CORACQ_PRM_OUTPUT_FORMAT.

CORACQ_PRM_LUT_NUMBER

Description Selects which LUT to use.

Type UINT32

Limits The value must be in the range 0...CORACQ_PRM_LUT_MAX – 1.

CVI Entry [Stream Conditioning]

Lut Number

Note Validated only if CORACQ_PRM_LUT_ENABLE is TRUE.

CORACQ_PRM_MASTER_MODE

Description Specifies if the acquisition device drives the horizontal and/or the vertical sync of the camera.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP MASTER MODE.

Values CORACQ_VAL_MASTER_MODE_DISABLE (0x00000000), Master mode disabled.

CORACQ_VAL_MASTER_MODE_HSYNC_VSYNC (0x00000001), The acquisition device drives the horizontal and vertical sync of the camera.

CORACQ_VAL_MASTER_MODE_HSYNC (0x00000002), The acquisition device drives the horizontal sync of the camera. CORACQ_VAL_MASTER_MODE_VSYNC (0x00000004), The acquisition device drives the vertical sync of the camera.

CVI Entry [Control Signals]

Master Mode

CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY

Description Specifies the horizontal sync polarity that the acquisition device outputs in master mode.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_MASTER_MODE_HSYNC_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Horizontal sync is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Horizontal sync is active high.

CVI Entry [Control Signals]

Master Mode Horizontal Sync Polarity

Note Validated only if CORACQ_PRM_MASTER_MODE is not equal to

CORACQ_VAL_MASTER_MODE_DISABLE.

CORACO PRM MASTER MODE VSYNC POLARITY

Description Specifies the vertical sync polarity that the acquisition device outputs in master mode.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_MASTER_MODE_VSYNC_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Vertical sync is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Vertical sync is active high.

CVI Entry [Control Signals]

Master Mode Vertical Sync Polarity

Note Validated only if CORACQ_PRM_MASTER_MODE is not equal to

CORACQ_VAL_MASTER_MODE_DISABLE.

CORACQ_PRM_OUTPUT_ENABLE (obsolete)

Description Video data output mode. Obsolete, use CORACQ_PRM_EXT_TRIGGER_ENABLE.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP OUTPUT ENABLE. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_OUTPUT_ENABLE_AUTO (0x00000001),

The video data is output whenever a frame has been requested and there is a valid frame.

CORACQ_VAL_OUTPUT_ENABLE_ON (0x00000002), Video data output enabled always.

CORACQ_VAL_OUTPUT_ENABLE_OFF (0x00000004), Video data is not output.

CORACQ_VAL_OUTPUT_ENABLE_ON_EXTRIG(0x00000008),

The video data is output on the next valid frame when a frame has been requested and upon

receiving an external trigger signal.

CVI Entry [Output]

Output Enable

Note When using CORACQ_VAL_OUTPUT_ENABLE_ON_EXTRIG, see also

CORACQ_PRM_EXT_TRIGGER_DETECTION,

CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT and

CORACQ_PRM_EXT_TRIGGER_LEVEL.

CORACQ_PRM_OUTPUT_FORMAT

Description Data format output by the acquisition device.

Type UINT32 list

Limits CORACO CAP OUTPUT FORMAT specifies the different output formats supported by the

acquisition device. The list terminates upon reaching an output format with a value of 0.

Values CORACQ_VAL_OUTPUT_FORMAT_MONO1

CORACQ_VAL_OUTPUT_FORMAT_MONO8
CORACQ_VAL_OUTPUT_FORMAT_MONO16
CORACQ_VAL_OUTPUT_FORMAT_MONO32
CORACQ_VAL_OUTPUT_FORMAT_RGB5551
CORACQ_VAL_OUTPUT_FORMAT_RGB565
CORACQ_VAL_OUTPUT_FORMAT_RGB888
CORACQ_VAL_OUTPUT_FORMAT_RGB8888
CORACQ_VAL_OUTPUT_FORMAT_RGB101010
CORACQ_VAL_OUTPUT_FORMAT_RGB161616
CORACQ_VAL_OUTPUT_FORMAT_RGB16161616
CORACQ_VAL_OUTPUT_FORMAT_RGB16161616

CORACQ_VAL_OUTPUT_FORMAT_YUY2
CORACQ_VAL_OUTPUT_FORMAT_YVYU
CORACQ_VAL_OUTPUT_FORMAT_YUYV
CORACQ_VAL_OUTPUT_FORMAT_Y411
CORACQ_VAL_OUTPUT_FORMAT_Y211
CORACQ_VAL_OUTPUT_FORMAT_HSV
CORACQ_VAL_OUTPUT_FORMAT_HSI
CORACO_VAL_OUTPUT_FORMAT_HSI

CVI Entry [Output]

Output Format

CORACQ_PRM_PIXEL_MASK

Description Defines the pixel mask values. If any mask bits are set to 0, then the corresponding pixel bits

are also set to 0.

Type UINT32

Availability Available only if CORACQ_CAP_PIXEL_MASK is TRUE.

CVI Entry [Stream Conditioning]

Pixel Mask

CORACQ_PRM_PLANAR_INPUT_SOURCES

Description Specifies which video input sources will be acquired synchronously and transferred to a

vertical planar buffer.

Type UINT32

Availability Available only if CORACQ_CAP_PLANAR_INPUT_SOURCES is TRUE.

Values Bit field representing the video input sources that are to be enabled for synchronized

acquisition into a vertical planar buffer. The board video input is enabled if the corresponding

bit is 1.

CVI Entry [Input]

Planar Input Sources

Note The acquisition module might have limitations on which inputs can be acquired

synchronously. See the board's User's Manual for more details.

CORACO PRM PROG FILTER ENABLE

Description Enable or disable the programmable frequency filter. Applies to analog video signals only.

Type UINT32

Availability Available only if CORACQ_CAP_PROG_FILTER is TRUE.

Values TRUE (0x00000001) Enable the programmable filter.

FALSE (0x00000000) Disable the programmable filter.

CVI Entry [Signal Conditioning]

Programmable Filter Enable

CORACQ_PRM_PROG_FILTER_FREQ

Description Programmable filter frequency in Hz. Applies to analog video signals only.

Type UINT32

Limits The value must be in the range CORACQ_CAP_PROG_FILTER_FREQ_MIN ...

CORACQ_CAP_PROG_FILTER_FREQ_MAX.

CVI Entry [Signal Conditioning]

Programmable Filter Frequency

Note Validated only if CORACQ_PRM_PROG_FILTER_ENABLE is TRUE.

CORACQ_PRM_SATURATION

Description Color saturation percentage control applied to analog composite color video signals.

Type UINT32

Availability Available only if CORACQ_CAP_SATURATION is set to TRUE

Limits Range limits: CORACQ_CAP_SATURATION_MIN to

CORACQ_CAP_SATURATION_MAX.

Adjust the parameter by increments of at least CORACQ_CAP_SATURATION_STEP

percent (%) in order for a change to occur in the video signal.

CVI Entry [Signal Conditioning]

Saturation

CORACO PRM SCALE HORZ

Description Number of pixels per line output by the scaler.

Type UINT32

Limits The value must be in the range CORACO CAP SCALE HORZ MIN to

CORACQ_CAP_SCALE_HORZ_MAX, and must be a multiple of

CORACQ_CAP_SCALE_HORZ_MULT.

Scale Down limit: The value CORACQ_PRM_CROP_WIDTH /

(CORACQ_CAP_SCALE_HORZ_MIN_FACTOR / CORACQ_VAL_SCALE_FACTOR)

must be smaller or equal to CORACQ_PRM_SCALE_HORZ. Scale Up limit: The value CORACQ_PRM_CROP_WIDTH *

(CORACO CAP SCALE HORZ MAX FACTOR/CORACO VAL SCALE FACTOR)

must be greater or equal to CORACQ_PRM_SCALE_HORZ. See CORACQ_PRM_CROP_WIDTH for information on both CORACQ_CAP_SCALE_HORZ_MIN_FACTOR and

CORACQ_CAP_SCALE_HORZ_MIN_FACTOR and CORACQ_CAP_SCALE_HORZ_MAX_FACTOR.

CVI Entry [Stream Conditioning]

Scale Horizontal

Note Available only if CORACQ_PRM_SCALE_HORZ_METHOD is not equal to

CORACQ_VAL_SCALE_METHOD_DISABLE.

CORACQ_PRM_SCALE_HORZ_METHOD

Description Horizontal scaling method.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP SCALE HORZ METHOD. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_SCALE_METHOD_DISABLE (0x00000001),

Disable horizontal scaling.

CORACQ_VAL_SCALE_METHOD_SIMPLE (0x00000002),

Horizontal scaling drops pixels.

CORACQ_VAL_SCALE_METHOD_INTERPOLATION (0x00000004),

Horizontal scaling interpolates pixels.

CORACQ_VAL_SCALE_METHOD_POW2 (0x00000008),

Horizontal scaling must be a power of 2.

CVI Entry [Stream Conditioning]

Scale Horizontal Method

CORACO PRM SCALE VERT

Description Number of lines per frame output by the scaler.

Type UINT32

Limits The value must be in the range CORACQ_CAP_SCALE_VERT_MIN ...

CORACQ_CAP_SCALE_VERT_MAX, and must be a multiple of

CORACQ_CAP_SCALE_VERT_MULT.

Scale Down limit: The value CORACQ_PRM_CROP_HEIGHT /

(CORACO CAP SCALE VERT MIN FACTOR/CORACO VAL SCALE FACTOR)

must be smaller or equal to CORACQ_PRM_SCALE_VERT.

Scale Up limit: The value CORACQ_PRM_CROP_HEIGHT *

(CORACQ CAP SCALE VERT MAX FACTOR / CORACQ VAL SCALE FACTOR)

must be greater or equal to CORACQ_PRM_SCALE_VERT.

See CORACO PRM CROP HEIGHT for information on both

CORACQ_CAP_SCALE_VERT_MIN_FACTOR and CORACQ_CAP_SCALE_VERT_MAX_FACTOR.

CVI Entry [Stream Conditioning]

Scale Vertical

Note Available only if CORACO PRM SCALE VERT METHOD is not equal to

CORACQ_VAL_SCALE_METHOD_DISABLE.

CORACQ_PRM_SCALE_VERT_METHOD

Description Vertical scaling method.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP SCALE VERT METHOD. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_SCALE_METHOD_DISABLE (0x000000001), Disable vertical scaling.

CORACQ_VAL_SCALE_METHOD_SIMPLE (0x00000002), Vertical scaling drops lines.

CORACQ_VAL_SCALE_METHOD_INTERPOLATION (0x00000004),

Vertical scaling interpolates lines.

CORACQ_VAL_SCALE_METHOD_POW2 (0x00000008),

Vertical scaling must be a power of 2.

CVI Entry [Stream Conditioning]

Scale Vertical Method

CORACQ_PRM_SHAFT_ENCODER_DROP

Description Number of signal edges dropped when video acquisitions are controlled by a shaft encoder.

Applies to linescan cameras only.

Type UINT32

Limits Range limits CORACQ_CAP_SHAFT_ENCODER_DROP_MIN to

CORACQ_CAP_SHAFT_ENCODER_DROP_MAX.

CVI Entry [Control Signals]

Shaft Encoder Pulse Drop

Note Validated only if CORACO PRM SHAFT ENCODER ENABLE is TRUE.

For more details about the shaft encoder, see "Shaft Encoder Description" on page 96.

CORACQ_PRM_SHAFT_ENCODER_ENABLE

Description Enable or disable the shaft encoder support of the acquisition device.

Type UINT32

Availability Available only if CORACQ_CAP_SHAFT_ENCODER is TRUE.

Values TRUE (0x00000001) Enable

FALSE (0x00000000) Disable

CVI Entry [Control Signals]

Shaft Encoder Enable

Note This parameter is mutually exclusive with CORACQ PRM INT LINE TRIGGER ENABLE

and CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE.

For more details about the shaft encoder, see "Shaft Encoder Description" on page 96.

CORACQ_PRM_SHAFT_ENCODER_LEVEL

Description Shaft encoder level fed to the acquisition device. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP SHAFT ENCODER LEVEL. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal.

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal. CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal.

CVI Entry [Control Signals]

Shaft Encoder Level

Note Validated only if CORACQ_PRM_SHAFT_ENCODER_ENABLE is TRUE.

CORACO PRM SHAFT ENCODER MULTIPLY

Description Number of signal edges generated for each shaft encoder signal edge, when video acquisitions

are controlled by an external shaft encoder trigger. Applies to linescan cameras only.

Type UINT32

Limits Range limits CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_MIN to

CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_MAX by increments specified by

CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_STEP.

Adjust the parameter by minimum increments as specified by

CORACQ_CAP_SHAFT_ENCODER_MULTIPLY_STEP. This capability is a 32-bit bitfield containing the minimum step (bit0 to bit15) and the step t ype (linear or exponential, bit16 to

bit31).

Bits 31 - 16	Bits 15 - 0	
Step Type	Step Value	

The parameter varies as described below:

Step Type	CORACQ_PRM_SHAFT_ENCODER_MULTIPLY
CORSTEP_INCREMENT_LINEAR (0x10000000)	SHAFT_ENCODER_MULTIPLY_MIN + N * step
CORSTEP_INCREMENT_EXPONENTIAL (0x20000000)	SHAFT_ENCODER_MULTIPLY_MIN * step N
	Where $N \ge 0$.

For example, if the CORACQ_CAP_SHAFT_ENCORDER_STEP value is 0x20000002, the step type is CORSTEP_INCREMENT_EXPONENTIAL, with a *step* of 2 .If

CORACO CAP SHAFT ENCODER MULTIPLY MIN = 1,

CORACO PRM SHAFT ENCODER MULTIPLY would be 1, 2, 4, 8...

CVI Entry [Control Signals]

Shaft Encoder Pulse Multiply

Note Validated only if CORACQ PRM SHAFT ENCODER ENABLE is TRUE.

For more details about the shaft encoder, see "Shaft Encoder Description" on page 96.

See your board User's manual for any hardware limitations of this feature.

CORACQ_PRM_SHARED_CAM_RESET

Description Synchronize the reset output signal of the current acquisition module with another acquisition

module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_CAM_RESET is TRUE.

CORACQ_CAP_SHARED_CAM_RESET is required to synchronize resetting more than 1 camera simultaneously. The master acquisition device must be acquiring in order for the

slaved acquisition device to acquire.

Values The acquisition module's index (master device) that the reset output signal will synchronize

with, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Camera Reset

CORACQ_PRM_SHARED_CAM_TRIGGER

Description Synchronize the trigger output signal of the current acquisition module with another

acquisition module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_CAM_TRIGGER is TRUE.

CORACQ_CAP_SHARED_CAM_TRIGGER is required to synchronize triggering more than 1 camera simultaneously. The master acquisition device must be acquiring in order for the

slaved acquisition device to acquire.

Values The acquisition module's index (master device) that the trigger output signal will synchronize

with, or CORACO VAL SHARED CONTROL DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Camera Trigger

CORACQ_PRM_SHARED_EXT_TRIGGER

Description Share the external trigger signal from another acquisition module.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_EXT_TRIGGER is TRUE.

CORACQ_CAP_SHARED_EXT_TRIGGER is required to trigger more than 1 acquisition module simultaneously using a single external trigger input signal. The master acquisition device must be acquiring in order for the slaved acquisition device to acquire properly.

Values The acquisition module's index (master device) from which the external trigger signal will

originate, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

External Trigger

CORACO PRM SHARED FRAME INTEGRATE

Description Synchronize the frame integration output signal of the current acquisition module with another

acquisition module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_FRAME_INTEGRATE is TRUE.

CORACQ_CAP_SHARED_FRAME_INTEGRATE is required to synchronize frame integration using multiple cameras simultaneously. The master acquisition device must be

acquiring in order for the slaved device to acquire.

Values The acquisition module's index (master device) that the frame integration output signal will

synchronize with, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Frame Integrate

CORACQ_PRM_SHARED_STROBE

Description Share the strobe output signal from another acquisition module.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_STROBE

is TRUE.

CORACQ_CAP_SHARED_STROBE is required when using a single strobe while acquiring with more than one camera simultaneously. The master acquisition device must be acquiring

in order for the slaved acquisition device to acquire.

Values The acquisition module's index (master device) from which the strobe output signal will

originate, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Strobe

CORACO PRM SHARED TIME INTEGRATE

Description Synchronize the time integration output signal of the current acquisition module with another

acquisition module of the board.

Type UINT32

Limits This value can only be set to a value different than

CORACQ_VAL_SHARED_CONTROL_DISABLE if CORACQ_CAP_SHARED_TIME_INTEGRATE is TRUE.

CORACQ_CAP_SHARED_TIME_INTEGRATE is required when synchronizing time integration with multiple cameras simultaneously. The master acquisition device must be

acquiring in order for the slaved device to acquire.

Values The acquisition module's index (master device time integration output signal) which will be

synchronized with, or CORACQ_VAL_SHARED_CONTROL_DISABLE (= -1) if not used.

CVI Entry [Shared Control Signals]

Time Integrate

CORACQ_PRM_SHARPNESS

Description Analog composite video sharpness control applied to the video signal. Applies to analog

composite video signals only.

Type UINT32

Limits Range limits: CORACQ_CAP_SHARPNESS_MIN ... CORACQ_CAP_SHARPNESS_MAX.

CVI Entry [Signal Conditioning]

Sharpness

Note This parameter has no units. Sharpness values are dependent on the board hardware used.

CORACO PRM SNAP COUNT

Description Number of images to acquire per transfer count.

Type UINT32

Limits The value must be in the range: 1...(2**32) - 1.

Available Available only if CORACQ_CAP_SNAP_COUNT is TRUE.

CVI Entry [Stream Conditioning]

Snap Count

CORACQ_PRM_STROBE_DELAY

Description Strobe pulse delay #1 (in μ s).

Type UINT32

Limits Range limits: CORACQ_CAP_STROBE_DELAY_MIN to

CORACO CAP STROBE DELAY MAX.

CVI Entry [Control Signals]

Strobe Delay

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

See "Strobe Methods" on page 90 for details on using the pulse delay #1 parameter.

CORACQ_PRM_STROBE_DELAY_2

Description Strobe pulse delay #2 (in μ s).

Type UINT32

Limits Range limits: CORACQ_CAP_STROBE_DELAY_2_MIN to

CORACQ_CAP_STROBE_DELAY_2_MAX.

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

See "Strobe Methods" on page 90 for details on using the pulse delay #2 parameter.

CORACQ_PRM_STROBE_DURATION

Description Strobe pulse width (in μ s).

Type UINT32

Limits Range limits: CORACQ_CAP_STROBE_DURATION_MIN to

CORACQ_CAP_STROBE_DURATION_MAX.

CVI Entry [Control Signals]

Strobe Duration

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACQ_PRM_STROBE_ENABLE

Description Enable or disable the strobe pulse.

Type UINT32

Availability Available only if CORACO CAP STROBE is TRUE.

Values TRUE (0x00000001) Enable the strobe pulse.

FALSE (0x00000000) Disable the strobe pulse.

CVI Entry [Control Signals]

Strobe Enable

CORACQ_PRM_STROBE_LEVEL

Description Strobe signal level output by the acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_STROBE_LEVEL. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_LEVEL_TTL (0x00000001) TTL signal.

CORACQ_VAL_LEVEL_422 (0x00000002) RS-422 signal. CORACQ_VAL_LEVEL_LVDS (0x00000004) LVDS signal.

CVI Entry [Control Signals]

Strobe Level

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACQ_PRM_STROBE_METHOD

Description Select the strobe pulse output method.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP STROBE METHOD. The capability returns the ORed combination of all

supported values.

Values See "Strobe Methods" on page 90.

CVI Entry [Control Signals]

Strobe Method

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACQ_PRM_STROBE_POLARITY

Description Strobe pulse polarity.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP STROBE POLARITY. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Strobe pulse will be active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Strobe pulse will be active high.

CVI Entry [Control Signals]

Strobe Polarity

Note Validated only if CORACQ_PRM_STROBE_ENABLE is TRUE.

CORACQ_PRM_TIME_INTEGRATE_DELAY

Description Time integration delay (in μs). After receiving a trigger pulse (external, internal or software),

the acquisition device will wait this delay before generating the time integration pulse(s).

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_DELAY_MIN ...

CORACQ_CAP_TIME_INTEGRATE_DELAY_MAX.

CVI Entry [Control Signals]

Time Integrate Delay

Note Validated only if CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_TIME_INTEGRATE_DURATION

Description Time integration pulse width (in µs). Applies to area scan cameras only.

Type UINT32

Limits Acquisition device range limits: CORACQ_CAP_TIME_INTEGRATE_DURATION_MIN to

CORACO CAP TIME INTEGRATE DURATION MAX.

Camera range limits: CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN to

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX.

CVI Entry [Control Signals]

Time Integrate Duration

Note Validated only if CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_TIME_INTEGRATE_ENABLE

Description Enable or disable the time integration signal pulse to the camera. Applies to area scan cameras

only.

Type UINT32

Availability Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Values TRUE (0x00000001) Enable time integration pulse.

FALSE (0x00000000) Disable time integration pulse.

CVI Entry [Control Signals]

Time Integrate Enable

Note This parameter is mutually exclusive with CORACQ PRM CAM TRIGGER ENABLE and

CORACO PRM FRAME INTEGRATE ENABLE.

CORACO PRM VERTICAL TIMEOUT DELAY

Description Following a valid external/internal/software trigger, this parameter specifies the time delay

before which the end of a vertical sync (analog cameras) or beginning of a frame valid (digital cameras) must be detected. If none are detected after this delay, a vertical timeout delay event will be generated if the event is activated. Once a vertical timeout is detected, the acquisition device resets itself and waits for the next valid external/internal/software trigger. Applies to

area scan cameras only.

Type UINT32

Values Numerical value representing the delay in µsec.

Limits Range Limits: CORACQ_CAP_VERTICAL_TIMEOUT_DELAY_MIN ...

CORACQ_CAP_VERTICAL_TIMEOUT_DELAY_MAX.

CVI Entry [Control Signals]

Vertical Timeout Delay

Note See also the related event CORACQ_PRM_EVENT_TYPE:

CORACQ_VAL_EVENT_TYPE_VERTICAL_TIMEOUT

For analog cameras, if the WEN signal is used, the beginning of the WEN must be detected before the programmed delay expires.

For analog cameras, if synching to blanking signals, the end of the blanking signal must be

detected before the programming delay expires.

CORACQ_PRM_VIC_NAME

Description VIC parameter file description field (up to 63 characters long).

Type BYTE [64]
CVI Entry [General]

Vic Name

CORACQ_PRM_VSYNC_REF

Description Vertical sync reference.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_PRM_VSYNC_REF. The vertical sync reference is used as the starting point for counting video frame lines. Selecting the end of sync as the reference is useful when dealing with a variable width sync. This is often the case when time-integrating a video signal.

The capability returns the ORed combination of all supported values.

Values CORACQ_VAL_SYNC_REF_BEGIN (0x00000001), Beginning of vertical sync.

CORACQ_VAL_SYNC_REF_END (0x00000002), End of vertical sync.

CORACQ_VAL_SYNC_REF_HV_DEPENDENT (0x00000004),

Horizontal and Vertical sync reference are locked together.

CVI Entry [Stream Conditioning]

Vertical Sync Reference

CORACO PRM WEN ENABLE

Description Enable or disable use of the WEN (Write ENable) signal from the camera.

Type UINT32

Availability Available only if CORACQ_CAP_WEN is TRUE.

Values TRUE (0x00000001) Enable the use of the WEN signal.

FALSE (0x00000000) Disable the use of the WEN signal

CVI Entry [Control Signals]

WEN Enable

Data Structures

Defines Data Structures

Pin Connector Description

Certain frame grabbers provide connectors that are configurable; that is, it is possible to assign a control signal—such as pixel clock, HSync, or VSync—to specific pins on a given connector. Sapera LT provides a list of camera parameters to describe the pin assignment for a given camera (see the "Connector Description" parameters list within the Camera Related Parameters section in Advanced Acquisition Control found in the online manual). This allows the frame grabber to automatically configure its pins to meet the camera specifications. Refer to your frame grabber user's manual for a description of the board's capabilities.

DALSA's CamExpert allows for the creation of a camera file (CCA file) with the desired connector descriptions. The bit field description below is provided for users who want to interpret or edit the camera files manually. It represents the value assigned to each of the connector description parameters.

Bits	31-24	23-16	15-0
Description	Connector #	Connector Type	Pin#

Bit Field	Description
Pin #	Pin number on connector (1 n).
	Note : The macro CORACQ_VAL_CONNECTOR_PIN(<i>value</i>) is provided to extract the pin #, where the <i>value</i> is a valid pin connector description.
Connector Type	Type of connector: CORACQ_VAL_CONNECTOR_TYPE_HIROSE12 12-pin Hirose connector
	CORACQ_VAL_CONNECTOR_TYPE_CAMLINK Camera Link connector. The pin number represents the camera control line #:CC1, CC2, CC3 & CC4.
	CORACQ_VAL_CONNECTOR_TYPE_CAM_CONTROL
	Generic camera control connector. The pin numbers (up to 8) are device dependent.
	Note : The macro CORACQ_VAL_CONNECTOR_TYPE(value) is provided to extract the connector type, where the <i>value</i> is a valid connector type.
Connector #	Number of the connector (in the event the camera has more than 1 connector, $1 n$).
	Note : The macro CORACQ_VAL_CONNECTOR_NUMBER(value) is provided to extract the connector number, where the <i>value</i> is a valid connector number.

The following are the related capabilities that give the valid values that can be applied to the connector number, connector type, and pin number.

CORACQ_CAP_CONNECTOR_TYPE

Description Specifies the different connector types available on the device.

Type UINT32

Values CORACQ_VAL_CONNECTOR_TYPE_HIROSE12 Hirose-12 connector

(0x00000001)

(0x00000002)

CORACQ_VAL_CONNECTOR_TYPE_CAM_CO Generic camera control connector

NTROL (0x00000004)

CORACQ_CAP_CONNECTOR_CAMLINK

Description Specifies the different signals that the acquisition device can route to the Cam Link CC1, CC2,

CC3, and CC4 connector pins.

Type UINT32[4]

Values Each entry in the table represents a bit field representing the valid signals that can be routed to

the respective CameraLink pins. See "Signal Name Definitions" on page 69 for

CORACQ_VAL_SIGNAL_NAME_xxx definitions.

CORACQ_CAP_CONNECTOR_HIROSE12

Description Specifies the different signals that the acquisition device can route to the Hirose-12 connector

pins.

Type UINT32[12]

Values Each entry in the table represents a bit field representing the valid signals that can be routed to

the respective Hirose-12 pins. See "Signal Name Definitions" on page 69 for

CORACQ_VAL_SIGNAL_NAME_xxx definitions.

CORACQ_CAP_CONNECTOR_CAM_CONTROL

Description Specifies the different signals that the acquisition device can route to the generic camera

control connector pins.

Type UINT32[8]

Values Each entry in the table represents a bit field representing the valid signals that can be routed to

the respective generic camera control pins. See "Signal Name Definitions" on page 69 for

CORACQ_VAL_SIGNAL_NAME_xxx definitions.

Signal Name Definitions

Define	Value	Definition
CORACQ_VAL_SIGNAL_NAME_NO_CONNECT	0x00000001	No Connection
CORACQ_VAL_SIGNAL_NAME_HD	0x00000002	Horizontal Drive
CORACQ_VAL_SIGNAL_NAME_VD	0x00000004	Vertical Drive
CORACQ_VAL_SIGNAL_NAME_PULSE0	0x00000008	Camera Control Pulse 0
CORACQ_VAL_SIGNAL_NAME_PULSE1	0x00000010	Camera Control Pulse 1
CORACQ_VAL_SIGNAL_NAME_PIXEL_CLOCK_IN	0x00000020	Pixel Clock In
CORACQ_VAL_SIGNAL_NAME_PIXEL_CLOCK_OUT	0x00000040	Pixel Clock Out
CORACQ_VAL_SIGNAL_NAME_LINESCAN_DIRECTION	0x00000080	Linescan Direction
CORACQ_VAL_SIGNAL_NAME_WEN	0x00000100	WEN (Write ENable)
CORACQ_VAL_SIGNAL_NAME_EXT_TRIGGER	0x00000200	External Trigger
CORACQ_VAL_SIGNAL_NAME_EXT_LINE_TRIGGER	0x00000400	External Line Trigger
CORACQ_VAL_SIGNAL_NAME_INT_FRAME_TRIGGER	0x00000800	Internal Frame Trigger
CORACQ_VAL_SIGNAL_NAME_INT_LINE_TRIGGER	0x00001000	Internal Line Trigger
CORACQ_VAL_SIGNAL_NAME_SOFTWARE_TRIGGER	0x00002000	Software Trigger
CORACQ_VAL_SIGNAL_NAME_GND	0x00004000!	Ground
CORACQ_VAL_SIGNAL_NAME_POWER_12V	0x00008000	Power 12V
CORACQ_VAL_SIGNAL_NAME_VIDEO	0x00010000	Video
CORACQ_VAL_SIGNAL_NAME_VIDEO_GND	0x00020000	Video Ground

Structure Definitions

Defines CORACQ_CAM_IO_CONTROL and CORACQ_DETECT_SYNC

CORACQ_CAM_IO_CONTROL

```
typedef struct
          label[12];
                         //User defined descriptive label of the camera control
  char
                         //(for example, BIN, GAIN...)
  UINT32 connectorInput; // Pin Connector Description
  UINT32 nbBits;
                         //Number of bits needed for this control
  UINT32 level;
                         //CORACQ_VAL_LEVEL_TTL (0x0000001)
                         //CORACQ_VAL_LEVEL_422 (0x0000002)
                         //CORACQ_VAL_LEVEL_LVDS (0x00000004)
  UINT32 direction;
                         //CORACQ_VAL_DIR_INPUT (0x0000001)
                         //CORACQ_VAL_DIR_OUTPUT (0x0000002)
  UINT32 polarity;
                         //Used only for information purposes by an application.
                         //The driver does not make any use of this member.
                         //CORACQ_VAL_ACTIVE_LOW (0x0000001)
                         //CORACQ_VAL_ACTIVE_HIGH (0x0000002)
  UINT32 value;
                         //The control's default value when used as an output.
                         //If a bit is set to '1', the corresponding output
                         //will be set to on or high;
                         //otherwise, the output will be set to off or low.
CORACQ_CAM_IO_CONTROL, *PCORACQ_CAM_IO_CONTROL;
```

CORACQ_DETECT_SYNC

Camera Control Method Definitions

This section provides definitions and timing diagrams for the camera control methods supported by Sapera LT. Topics covered are:

- Camera Reset Method
- Camera Trigger Methods
- Frame Integrate Methods
- Line Integrate Methods
- Line Trigger Methods
- Time Integrate Methods
- Strobe Methods

Camera Reset Method

The following camera reset method is available:

CORACQ_VAL_CAM_RESET_METHOD_1

CORACQ_VAL_CAM_RESET_METHOD_1

Value 0x00000001 (Camera Reset Method #1)

Description Method selection is via the parameter CORACQ_PRM_CAM_RESET_METHOD.

This method generates an asynchronous reset pulse to a camera. The next generated frame then

acquired. The reset pulse is defined by the parameters CORACQ PRM CAM RESET DURATION and

CORACQ_PRM_CAM_RESET_POLARITY (see online manual).

Camera Trigger Methods

The following camera trigger methods are available:

- CORACQ_VAL_CAM_TRIGGER_METHOD_1
- CORACQ VAL CAM TRIGGER METHOD 2

$CORACQ_VAL_CAM_TRIGGER_METHOD_1$

Numerical Value 0x00000001 (Camera Trigger Method 1)

Description

Method selection is via the parameter CORACQ_PRM_CAM_TRIGGER_METHOD. This method generates an asynchronous trigger pulse to a camera. The next generated frame is then

acquired. The trigger pulse is defined by the parameters CORACQ_PRM_CAM_TRIGGER_DURATION and

CORACQ_PRM_CAM_TRIGGER_POLARITY (see online manual).

	Camera Trigger Met	hod #1
This method gener frame will be acqui	rates an asynchronous trigger pulse to a ired	camera. The next generated
<u>Example</u>		
Video Progressive		
Trigger Pulse ————	Π	
Frame Acquired —————		
·		

CORACQ_VAL_CAM_TRIGGER_METHOD_2

Numerical Value

0x00000002 (Camera Trigger Method #2)

Description

Method selection is via the parameter CORACQ PRM CAM TRIGGER METHOD. This method generates an asynchronous trigger pulse to a camera. The next generated frame is then acquired. This method's trigger pulse controls the number of lines output by the camera and is usually used to control the length of the frame output by the camera (partial scanning).

The trigger pulse is defined by the parameter

CORACO PRM CAM TRIGGER POLARITY. Its length is dependent on the number of

lines to acquire.

The parameter CORACQ_PRM_CAM_TRIGGER_DURATION represents (in this case) the minimum time between triggers to the camera. Required for cameras where the CCD has a minimum reset time before it can be triggered again (see online manual).

Frame Integrate Methods

The following frame integrate methods are available:

- CORACQ VAL FRAME INTEGRATE METHOD 1
- CORACQ_VAL_FRAME_INTEGRATE_METHOD_2

CORACQ_VAL_FRAME_INTEGRATE_METHOD_1

Numerical Value 0x00000001 (Frame Integration Method #1)

Description

The frame integration signal is sent prior to the first field to be integrated. The signal is then held until the last field to be integrated is reached. The next frame is then acquired. Method selection is via the parameter CORACQ_PRM_FRAME_INTEGRATE_METHOD.

The polarity of this signal is specified by the parameter CORACO PRM FRAME INTEGRATE POLARITY.

The number of frames to integrate is specified with the parameter

CORACQ_PRM_FRAME_INTEGRATE_COUNT (see online manual).

CORACO VAL FRAME INTEGRATE METHOD 2

Numerical

0x00000002 (Frame Integration Method #2)

Value Description

The frame integration signal is sent during the vertical sync of the first field to be integrated.

The signal is then held until the first field to be acquired is reached. The current frame is then

acquired. Method selection is via the parameter

CORACQ_PRM_FRAME_INTEGRATE_METHOD. The polarity of this signal is specified by the parameter CORACQ_PRM_FRAME_INTEGRATE_POLARITY.

The number of frames to integrate is specified with the parameter

CORACQ_PRM_FRAME_INTEGRATE_COUNT (see online manual).

Line Integrate Methods

The following line integrate methods are available:

- CORACQ_VAL_LINE_INTEGRATE_METHOD_1
- CORACQ_VAL_LINE_INTEGRATE_METHOD_2
- CORACQ_VAL_LINE_INTEGRATE_METHOD_3
- CORACQ_VAL_LINE_INTEGRATE_METHOD_4

CORACQ_VAL_LINE_INTEGRATE_METHOD_1

Numerical Value 0x00000001 (Line Integration Method #1)

Description

Method selection is via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. This method generates two pulses on two different outputs. The distance between the end of the first pulse and the start of the second pulse is the integration time (as specified by the parameter CORACQ_PRM_LINE_INTEGRATE_DURATION). The second pulse is also the Line Trigger input to the camera. For example, on a Dalsa camera, the first pulse is the 'PRIN' signal while the second pulse is the 'EXSYNC' signal. The first pulse is defined by the parameters CORACQ_PRM_LINE_INTEGRATE_PULSE0_DURATION and CORACQ_PRM_LINE_INTEGRATE_PULSE0_POLARITY. The second pulse is defined by the parameters CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION and CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY (see online manual).

Line Integration Method #1 This method generates 2 pulses. The distance between the end of the first pulse(#0) and the start of the second pulse (#1) is the integration time. The 2nd pulse is also the Line Trigger input to the camera. For example, on a Dalsa camera, the 1st pulse would be the 'Prin' signal while the 2nd pulse would be the 'Exesync' signal. Example Integration Pulse #0 pulse #0 width exposure time Integration Pulse #1 Line Valid

Numerical

0x00000002 (Line Integration Method #2)

Value

Method selection is via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. Description

This method generates two consecutive trigger pulses on the camera's Line Trigger input. The time interval between the end of the two trigger pulses represents the integration time (as specified by the parameter CORACO PRM LINE INTEGRATE DURATION). An optional signal with a fixed level might be present. For example, on a Dalsa camera, the Line Trigger input would be the 'EXSYNC' signal and the optional signal would be the 'PRIN' signal. Both

pulses are described by the parameters

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION and

CORACO PRM LINE INTEGRATE PULSE1 POLARITY. The optional signal with a fixed

level is described by the parameter

CORACO_PRM_LINE_INTEGRATE_PULSE0_POLARITY (see online manual).

Line Integration Method #2 This method generates two consecutive trigger pulses (#1) on the Line Trigger input of

exposure time

the camera. The time interval between the end of the two trigger pulses represents the integration time. An optional signal (#0) with a fixed level might be present. For example, on a Dalsa camera, the Line Trigger input would be the 'Exesync' signal and the optional signal would be the 'Prin' signal.

Example

Integration Pulse #0

Line Valid

width

Numerical Value

0x00000004 (Line Integration Method #3)

Description

Method selection via the parameter CORACQ PRM LINE INTEGRATE METHOD. This method generates an asynchronous line integration pulse to a camera. The width of this pulse

represents the integration time (as specified by the parameter

CORACQ_PRM_LINE_INTEGRATE_DURATION). An optional signal with a fixed level might be present. For example, on a Dalsa camera, the integration pulse would be the 'EXSYNC' signal and the optional signal would be the 'PRIN' signal. The integration pulse is described by the parameter CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY. The optional signal with a fixed level is described by the parameter

CORACQ_PRM_LINE_INTEGRATE_PULSEO_POLARITY (see online manual).

Line Integration Method #3	
This method generates an asynchronous line integration pulse(#1) to a camera. The width of this pulse represents the integration time. An optional signal (#0) with a fixed level might be present. For example, on a Dalsa camera, the integration pulse would be the 'Exesync' signal and the optional signal would be the 'Prin' signal.	
<u>Example</u>	
IntegrationPulse #0	_
Integration Pulse #1 exposure time p	
Line Valid	

Numerical

0x00000008 (Line Integration Method #4)

Value Description

Method selection is via the parameter CORACQ_PRM_LINE_INTEGRATE_METHOD. This method generates an integration pulse followed by a trigger pulse on the camera's line trigger. The width of the integration pulse represents the integration time (as specified by the parameter CORACQ_PRM_LINE_INTEGRATE_DURATION). The first pulse is described by the

parameter CORACQ_PRM_LINE_INTEGRATE_PULSE0_POLARITY. The second pulse is described by the parameters CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY,

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION and

CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY (see online manual).

Line Trigger Methods

The following line trigger method is available:

CORACQ_VAL_LINE_TRIGGER_METHOD_1

CORACQ_VAL_LINE_TRIGGER_METHOD_1

Numerical

0x00000001 (Line Trigger Method #1)

Value

Description Method selection is via the parameter CORACQ_PRM_LINE_TRIGGER_METHOD. This

method generates an asynchronous line trigger pulse to a camera.. The next generated frame

will be acquired. The trigger pulse is described by the parameters

CORACQ_PRM_LINE_TRIGGER_DURATION and

CORACQ_PRM_LINE_TRIGGER_POLARITY (see online manual).

<u>Li</u>	ne Trigger Method #1
This method generates an asynchroline will be acquired	ronous trigger pulse to a camera. The next generated
<u>Example</u>	
Trigger Pulse	Π
Line Valid	

Time Integrate Methods

The following time integrate methods are available:

CORACQ_VAL_TIME_INTEGRATE_METHOD_1

CORACQ_VAL_TIME_INTEGRATE_METHOD_2

CORACQ_VAL_TIME_INTEGRATE_METHOD_3

CORACQ_VAL_TIME_INTEGRATE_METHOD_4

CORACQ_VAL_TIME_INTEGRATE_METHOD_5

CORACQ_VAL_TIME_INTEGRATE_METHOD_6

CORACQ_VAL_TIME_INTEGRATE_METHOD_7

CORACQ_VAL_TIME_INTEGRATE_METHOD_8

CORACQ_VAL_TIME_INTEGRATE_METHOD_1

Numerical

Description

0x00000001 (Time Integration Method #1)

Value

Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates an asynchronous time integration pulse to a camera. The width of the pulse (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION),

represents the integration time (see online manual).

Numerical

0x00000002 (Time Integration Method #2)

Value

Description Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This

> method generates two consecutive trigger pulses on the VD (Vertical Drive) input of the camera. The time interval between the end of the two trigger pulses (as specified by the parameter CORACO PRM TIME INTEGRATE DURATION) represents the integration

time. The VD trigger pulses are described by the parameters

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and

CORACO PRM TIME INTEGRATE PULSE1 POLARITY (see online manual).

Numerical

0x00000004 (Time Integration Method #3)

Value

Description Also known as the E-Donpisha mode. Method selection is via the parameter

CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates an integration pulse on the camera trigger input, followed by a trigger pulse on the camera VD input. The width of the integration pulse (as specified by the parameter

CORACQ_PRM_TIME_INTEGRATE_DURATION) represents the integration time.

The polarity of the integration pulse is specified with the

CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY parameter. The VD trigger

pulse is described by the parameters

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY,

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY, where the delay is the interval between the end of the integration pulse and the start of the VD trigger pulse (see online

manual).

Numerical 0x00000008 (Time Integration Method #4)

Value

Acquired -

Description Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This

method generates two consecutive trigger pulses on the camera trigger input. The time interval

between the start of the two trigger pulses (as specified by the parameter

CORACQ_PRM_TIME_INTEGRATE_DURATION) represents the integration time.

The trigger pulses are described by the parameters

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION and

CORACQ_PRM_TIME_INTEGRATE_PULSEO_POLARITY (see online manual).

Time Integration Method #4 This method generates two consecutive trigger pulses (#0) on the trigger input of the camera. The time interval between the start of the two trigger pulses represents the integration time. Example Video Progressive Pulse #0 pulse width Exposure time Invalidity

Numerical

0x00000010 (Time Integration Method #5)

Value

Description Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This

method generates a trigger pulse (#0) on the camera trigger input, followed by a trigger pulse (#1) on the camera VD input. The interval between the start of the two pulses (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) represents the integration

time. The trigger pulse (#0) on the camera trigger input is defined by the parameters

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION and

 $CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY.\ The\ VD\ trigger\ pulse\ is\ defined$

by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY (see online manual).

Numerical Value 0x00000020 (Time Integration Method #6)

Description

Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This method generates a trigger pulse (#0) on the camera trigger input, followed by a trigger pulse (#1) on the camera VD input. The interval between the start of pulse #0 and end of pulse #1 (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) is the integration time. The trigger pulse (#0) on the camera trigger input is defined by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION and CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY. The VD trigger pulse is defined by the parameters CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and

Numerical 0x00000040 (Time Integration Method #7)

Value

Description Method selection is via the parameter CORACQ_PRM_TIME_INTEGRATE_METHOD. This

method generates two consecutive trigger pulses (#1) on the camera VD (Vertical Drive) input. The time interval between the end of the two trigger pulses (as specified by the parameter CORACQ_PRM_TIME_INTEGRATE_DURATION) is the integration time. This method differs from method #2, since a valid frame is available during the integration time. The VD

trigger pulses are described by the parameters

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION and

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY (see online manual).

Numerical 0x00000080 (Time Integration Method #8)

Value

Description Method selection is via the parameter CORACQ_PRM_TIME_INTERGRATE_METHOD.

This method generates an asynchronous time integration pulse to a camera. The width of the

pulse represents the integration time and is control by a external signal.

Time Integration Method #8

This method generates an asynchronous time integration pulse (#0) to the camera.

The width of this pulse represents the integration time.

Example

Strobe Methods

The following strobe methods are available:

- CORACQ_VAL_STROBE_METHOD_1
- CORACQ VAL STROBE METHOD 2
- CORACQ_VAL_STROBE_METHOD_3
- CORACQ VAL STROBE METHOD 4

CORACQ_VAL_STROBE_METHOD_1

Numerical

0x00000001 (Strobe Method #1)

Value

Description Me

Method selection is via the parameter CORACQ_PRM_STROBE_METHOD. This method generates a synchronous strobe pulse relative to a trigger signal (external, internal, software) depending on the mode of operation. The strobe pulse is described by the parameters CORACQ_PRM_STROBE_DELAY, CORACQ_PRM_STROBE_DURATION, and CORACQ_PRM_STROBE_POLARITY.

CORACQ_VAL_STROBE_METHOD_2

Numerical

0x00000002 (Strobe Method #2)

Value

Description

Method selection is via the parameter CORACQ_PRM_STROBE_METHOD. This method generates an asynchronous strobe pulse. The pulse is generated outside the region comprising the start of a vertical sync up to the specified strobe delay, but not later than the second strobe delay.

If interlaced video is acquired, then the strobe will be generated on the field previous to the acquired frame. This is true if the field ordering is odd-even (typical), even-odd. or next two fields. The strobe pulse is described by the parameters CORACO PRM STROBE DELAY, CORACQ_PRM_STROBE_DELAY_2, CORACQ_PRM_STROBE_DURATION, and CORACQ_PRM_STROBE_POLARITY.

Strobe Method #2

This method generates an asynchronous strobe pulse. The pulse will be generated outside the region comprising the start of a vertical sync up to the specified strobe delay, but not later than the 2nd strobe delay. If interlaced video is present, then the strobe will be generated on the field previous to the acquired frame: even if the field ordering is oddeven, odd if the field ordering is even-odd, any field if the field ordering is next 2 fields.

Example: Interlaced, Odd-Even acquisition

CORACQ_VAL_STROBE_METHOD_3

Numerical

0x00000004 (Strobe Method #3)

Value

Description Method selection is performed via the parameter CORACQ_PRM_STROBE_METHOD. This

method generates a synchronous strobe pulse relative to a line trigger signal (external, internal, software) depending on the mode of operation. The strobe pulse is described by the parameters

CORACQ_PRM_STROBE_DELAY, CORACQ_PRM_STROBE_DURATION and

CORACQ_PRM_STROBE_POLARITY.

CORACQ_VAL_STROBE_METHOD_4

 $\textbf{Numerical} \qquad 0x00000008 \text{ (Strobe Method #4)}$

Value

Description Method selection is via the parameter CORACQ_PRM_STROBE_METHOD. This method

generates a synchronous strobe pulse relative to a vertical sync signal.. The strobe pulse is

described by the parameters CORACQ_PRM_STROBE_DELAY,

CORACQ_PRM_STROBE_DURATION, and CORACQ_PRM_STROBE_POLARITY.

Camera Video Timing Definitions

Generic camera timing diagrams describe the terminology and relationships used in Sapera LT applications. Topics covered are:

- Area Scan Analog Video Timings
- Area Scan Digital Video Timings
- Linescan Video Timings

Area Scan Analog Video Timings

Area Scan Digital Video Timings

Linescan Video Timings

Custom Camera Control I/O Description

The acquisition module currently has specific parameters to control the following standard inputs/outputs: integration, camera trigger, camera reset, and strobe.

Custom camera I/Os are useful to control non-standard inputs/outputs from a camera, such as Gain and Binning. These custom controls are defined in the CCA file. The description of a custom I/O includes a label, the number of I/O bits used, the signal level of the I/Os (TTL/RS-422/LVDS), the direction of the I/Os (Inputs or Outputs), the polarity of the control for an active signal, and a default value in the case of an Output. The custom camera I/O information in the CCA file is passed to the acquisition module through the parameter CORACQ_PRM_CAM_IO_CONTROL (see online manual). This is a complex parameter that can accommodate up to 32 different controls. The size of the parameter is therefore 32 * sizeof(CORACQ_CAM_IO_CONTROL).

When applied, the driver scans the entries until a control specifies that 0 I/O bits is needed. It is therefore recommended to first initialize the CORACQ_CAM_IO_CONTROL to 0 before filling in control definitions. The driver assigns the necessary I/Os in an orderly fashion, following the order in which they are defined in the CCA/CCF file. At the function level, the I/O assignment can be setup by using the standard method of loading a CCA/CCF file (CorCamLoad + CorAcqSetPrms), or the CorAcqSetPrmEx function can be simply called with an CORACQ_PRM_CAM_IO_CONTROL (see online manual) parameter. To get/set the value of an I/O, use the Sapera functions (CorAcqDetectSync and CorAcqSetCamIOControl) where the label argument is the string representation of the I/O control as specified in the CCA/CCF file.

Shaft Encoder Description

The shaft encoder feature is used to control the rate at which an acquisition device acquires lines from a linescan camera. Two (2) square waves, usually out of phase by 90 degrees, are fed to the acquisition device. Every time an edge is detected, the acquisition device outputs the necessary signal(s) to trigger 1 line out from the linescan camera. The rate at which the lines are triggered can be controlled by dropping detected edges.

Planar Input Sources Description

The planar input sources parameter, **CORACQ_PRM_PLANAR_INPUT_SOURCES**, is used to acquire from multiple synchronized video sources. It enables selecting which input sources will be acquired into a vertical planar buffer. The parameter value is a bit field. Each bit represents an acquisition input. If the bit is 1, then the source connected to that input are acquired into a vertical planar buffer. All video sources must be synchronized together. The vertical planar buffer format is simply a buffer which has been created with a height that is 'n' times longer than the size of one video source vertical resolution, 'n' being the number of inputs that are to be acquired synchronously. The acquisition function will automatically divide the buffer into sub-buffers which are assigned to each input. Important: the parameter **CORACQ_PRM_CAMSEL** is used to select the sync signal source.

Example:

Advanced Acquisition Control

Introduction

The Acquisition Module controls the acquisition device and its functions. It is used in conjunction with the VIC and Camera modules.

Camera Related Parameters

The camera related parameters, as their name implies, modelize the video source irrelevant of the actual source itself (camera, etc.). These parameters define the video capabilities and modes of operation.

Camera Related Parameters By Groups

General	
CORACQ_PRM_CAM_NAME	CORACQ_PRM_CAM_COMPANY_NAME
CORACQ_PRM_CAM_MODEL_NAME	

Signal Description	
CORACQ_PRM_CHANNEL	CORACQ_PRM_CHANNELS_ORDER
CORACQ_PRM_COUPLING	CORACQ_PRM_FIELD_ORDER
CORACQ_PRM_FRAME	CORACQ_PRM_INTERFACE
CORACQ_PRM_PIXEL_DEPTH	CORACQ_PRM_SCAN
CORACQ_PRM_SIGNAL	CORACQ_PRM_TAP_OUTPUT
CORACQ_PRM_TAP_1_DIRECTION	CORACQ_PRM_TAP_2_DIRECTION
CORACQ_PRM_TAP_3_DIRECTION	CORACQ_PRM_TAP_4_DIRECTION
CORACQ_PRM_TAP_5_DIRECTION	CORACQ_PRM_TAP_6_DIRECTION
CORACQ_PRM_TAP_7_DIRECTION	CORACQ_PRM_TAP_8_DIRECTION
CORACQ_PRM_TAPS	CORACQ_PRM_VIDEO
CORACQ_PRM_VIDEO_LEVEL_MAX	CORACQ_PRM_VIDEO_LEVEL_MIN
CORACQ_PRM_VIDEO_STD	

Signal Timings

CORACQ_PRM_HACTIVE CORACQ_PRM_HBACK_INVALID CORACQ_PRM_HBACK_PORCH CORACQ_PRM_HFRONT_INVALID

CORACQ_PRM_HFRONT_PORCH CORACQ_PRM_HSYNC

CORACQ_PRM_VACTIVE CORACQ_PRM_VBACK_INVALID CORACQ_PRM_VBACK_PORCH CORACQ_PRM_VFRONT_INVALID

CORACQ_PRM_VFRONT_PORCH CORACQ_PRM_VSYNC

CORACQ_PRM_TIMESLOT

Pixel Clock

CORACQ_PRM_PIXEL_CLK_DETECTION CORACQ_PRM_PIXEL_CLK_EXT

CORACQ_PRM_PIXEL_CLK_INT CORACQ_PRM_PIXEL_CLK_11

CORACQ_PRM_PIXEL_CLK_SRC

Synchronization Signals

CORACQ_PRM_HSYNC_POLARITY CORACQ_PRM_SYNC

CORACO PRM VSYNC POLARITY

Control Signals

CORACQ_PRM_CAM_CONTROL_DURING_READOUT

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN

CORACQ_PRM_CAM_RESET_DURATION

CORACQ_PRM_CAM_RESET_POLARITY

CORACQ_PRM_CAM_RESET_METHOD

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN

CORACQ_PRM_CAM_TRIGGER_DURATION

CORACQ_PRM_CAM_TRIGGER_METHOD CORACQ_PRM_CAM_TRIGGER_POLARITY
CORACQ_PRM_DATA_VALID_ENABLE CORACQ_PRM_DATA_VALID_POLARITY

CORACQ_PRM_FRAME_INTEGRATE_METHOD

CORACQ_PRM_FRAME_INTEGRATE_POLARITY

CORACO PRM LINE INTEGRATE METHOD

CORACQ_PRM_LINE_INTEGRATE_PULSE0_DELAY

CORACQ_PRM_LINE_INTEGRATE_PULSE0_DURATION

CORACQ_PRM_LINE_INTEGRATE_PULSE0_POLARITY

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

CORACQ_PRM_LINE_TRIGGER_DELAY

CORACQ_PRM_LINE_TRIGGER_DURATION CORACQ_PRM_LINE_TRIGGER_METHOD

CORACQ_PRM_LINE_TRIGGER_POLARITY CORACQ_PRM_LINESCAN_DIRECTION

CORACQ_PRM_LINESCAN_DIRECTION_POLARITY

CORACQ_PRM_TIME_INTEGRATE_METHOD

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DELAY

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION

CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

CORACQ_PRM_WEN_POLARITY

Connector Description

CORACQ_PRM_CAMLINK_CONFIGURATION

CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT

CORACQ_PRM_CONNECTOR_HD_INPUT

CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT

CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT

CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT

CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT

CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT

CORACQ_PRM_CONNECTOR_VD_INPUT CORACQ_PRM_CONNECTOR_WEN_OUTPUT

Custom Camera I/O Control Signals

CORACQ_PRM_CAM_IO_CONTROL

Bayer

CORACQ_PRM_BAYER_ALIGNMENT

Camera Related Parameters By ID

ID	Parameter	
0x00	CORACO PRM CHANNEL	

- 0x01 CORACQ_PRM_FRAME
- 0x02 CORACQ_PRM_INTERFACE
- 0x03 CORACQ_PRM_SCAN
- 0x04 CORACQ_PRM_SIGNAL
- 0x05 CORACQ_PRM_VIDEO
- 0x06 CORACQ_PRM_PIXEL_DEPTH
- 0x07 CORACQ_PRM_VIDEO_STD
- 0x08 Reserved
- 0x09 CORACQ_PRM_FIELD_ORDER
- 0x0a CORACQ_PRM_HACTIVE
- 0x0b CORACQ_PRM_HSYNC
- 0x0c CORACQ_PRM_VACTIVE
- 0x0d CORACQ_PRM_VSYNC
- 0x0e CORACO PRM HFRONT PORCH
- 0x0f CORACQ_PRM_HBACK_PORCH
- 0x10 CORACQ_PRM_COUPLING
- 0x11 Reserved
- 0x12 CORACQ_PRM_VFRONT_PORCH
- 0x13 CORACQ_PRM_VBACK_PORCH
- 0x14 CORACQ_PRM_HFRONT_INVALID
- 0x15 CORACQ_PRM_HBACK_INVALID
- 0x16 CORACQ_PRM_VFRONT_INVALID
- 0x17 CORACQ_PRM_VBACK_INVALID
- 0x18 CORACQ_PRM_PIXEL_CLK_SRC
- 0x19 CORACQ_PRM_PIXEL_CLK_INT
- 0x1a CORACQ_PRM_PIXEL_CLK_11
- 0x1b CORACQ_PRM_PIXEL_CLK_EXT
- 0x1c CORACQ_PRM_SYNC
- 0x1d CORACQ_PRM_HSYNC_POLARITY
- 0x1e CORACO PRM VSYNC POLARITY
- 0x1f CORACO PRM FRAME INTEGRATE METHOD
- 0x20 CORACQ_PRM_FRAME_INTEGRATE_POLARITY
- 0x21 CORACQ_PRM_TIME_INTEGRATE_METHOD
- 0x22 CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY
- 0x23 CORACQ_PRM_CAM_TRIGGER_METHOD
- 0x24 CORACQ_PRM_CAM_TRIGGER_POLARITY
- 0x25 CORACQ_PRM_CAM_TRIGGER_DURATION

- 0x26 CORACQ_PRM_CAM_RESET_METHOD 0x27 CORACQ_PRM_CAM_RESET_POLARITY 0x28 CORACQ_PRM_CAM_RESET_DURATION 0x29 CORACQ_PRM_CAM_NAME 0x2a CORACO PRM LINE INTEGRATE METHOD 0x2bCORACO PRM LINE INTEGRATE PULSEO POLARITY 0x2cCORACQ_PRM_LINE_INTEGRATE_PULSE0_DELAY 0x2dCORACQ_PRM_LINE_TRIGGER_METHOD 0x2eCORACQ_PRM_LINE_TRIGGER_POLARITY 0x2fCORACQ_PRM_LINE_TRIGGER_DELAY 0x30 CORACQ_PRM_LINE_TRIGGER_DURATION 0x31 CORACQ_PRM_TAPS 0x32 CORACQ_PRM_TAP_OUTPUT 0x33 CORACO PRM TAP 1 DIRECTION 0x34 CORACQ_PRM_TAP_2_DIRECTION
 - 0x35 CORACQ_PRM_TAP_3_DIRECTION
 - 0x36 CORACQ_PRM_TAP_4_DIRECTION
 - 0x37 CORACQ_PRM_TAP_5_DIRECTION
 - 0x38 CORACQ_PRM_TAP_6_DIRECTION
 - 0x39 CORACQ_PRM_TAP_7_DIRECTION
 - 0x3a CORACQ_PRM_TAP_8_DIRECTION
 - 0x3b CORACQ_PRM_PIXEL_CLK_DETECTION
 - 0x3c CORACQ_PRM_CHANNELS_ORDER
 - 0x3d CORACQ_PRM_LINESCAN_DIRECTION
 - 0x3e CORACQ_PRM_LINESCAN_DIRECTION_POLARITY
 - 0x3f CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN
 - 0x40 CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX
 - 0x41 CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN 0x42 CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX
 - 0x43 CORACO PRM CONNECTOR HD INPUT
 - 0x44 CORACO PRM CONNECTOR VD INPUT
 - 0x45 CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT
 - 0x46 CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY
 - 0x47 CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY
 - 0x48 CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION
 - 0x49 CORACQ_PRM_CAM_IO_CONTROL
 - 0x4a CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT

0x4b	CORACQ_PRM_TIME_INTEGRATE_PULSE0_DELAY
0x4c	CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION
0x4d	CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY
0x4e	CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY
0x4f	CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION
0x50	CORACQ_PRM_LINE_INTEGRATE_PULSE0_DURATION
0x51	CORACQ_PRM_CAM_COMPANY_NAME
0x52	CORACQ_PRM_CAM_MODEL_NAME
0x53	CORACQ_PRM_VIDEO_LEVEL_MIN
0x54	CORACQ_PRM_VIDEO_LEVEL_MAX
0x55	CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT
0x56	CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT
0x57	CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT
0x58	CORACQ_PRM_CAMLINK_CONFIGURATION
0x59-	Reserved
0x5e	
0x5f	CORACQ_PRM_DATA_VALID_ENABLE
0x60	CORACQ_PRM_DATA_VALID_POLARITY
0x61	CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT
0x62	CORACQ_PRM_CONNECTOR_WEN_OUTPUT
0x63	CORACQ_PRM_WEN_POLARITY
0x64-	Reserved
0x6b	
0x6c	CORACQ_PRM_TIMESLOT
0x6d	CORACQ_PRM_BAYER_ALIGNMENT

 $CORACQ_PRM_CAM_CONTROL_DURING_READOUT$

0x6e

CORACQ_PRM_BAYER_ALIGNMENT

Description Specifies the Bayer alignment of the image output by the video source.

Type UINT32

Limits The parameter value must match one of the supported alignments of the acquisition device

given by CORACO_CAP_BAYER_ALIGNMENT. The capability returns the ORed

combination of all supported values as defined below.

Values CORACQ_VAL_BAYER_ALIGNMENT_GB_RG (0x00000001)

CORACQ_VAL_BAYER_ALIGNMENT_BG_GR (0x00000002)
CORACQ_VAL_BAYER_ALIGNMENT_RG_GB (0x00000004)
CORACQ_VAL_BAYER_ALIGNMENT_GR_BG (0x00000008)

CCA Entry [Signal Description]

Bayer Alignment

Note Validated only if CORACQ_PRM_BAYER_DECODER_ENABLE is TRUE.

CORACQ_PRM_CAM_COMPANY_NAME

Description The camera company name for which the camera file is intended for.

Type BYTE [32]

Values String up to 31 characters long.

CCA Entry [General]

Camera Name

CORACO PRM CAM CONTROL DURING READOUT

Description Specifies if the camera control signals can be sent during the readout of a frame.

Type UINT32

Values TRUE: Camera controls can be sent during the readout of a frame.

FALSE: Camera controls will not be sent during the readout of a frame.

Limits Supported only if CORACQ_CAP_CAM_CONTROL_DURING_READOUT is TRUE.

CCA Entry [Control Signals]

Camera Control During Readout

Note Valid only for Area Scan cameras.

CORACQ_PRM_CAM_IO_CONTROL

Description Description of the non-standard camera I/O controls.

Type CORACQ_CAM_IO_CONTROL[32]

Values List of the non-standard camera I/O controls.

CCA Entry [Custom Camera IO Control Signals]

Max Control

Control_x (x takes a value from 0 to 31)

Note See "Custom Camera I/O Control Description" for more information.

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX

Description Maximum line trigger frequency supported by the camera (in Hz).

Type UINT32

Limits This value must be greater or equal to CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN

CCA Entry [Control Signals]

Camera Line Trigger Frequency Maximum

Note Applies to linescan cameras only.

CORACO PRM CAM LINE TRIGGER FREQ MIN

Description Minimum line trigger frequency supported by the camera (in Hz).

Type UINT32

Limits This value must be smaller or equal to

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX

CCA Entry [Control Signals]

Camera Line Trigger Frequency Minimum

Note Applies to linescan cameras only.

CORACQ_PRM_CAM_MODEL_NAME

Description The camera model name for which the camera file is intended for.

Type BYTE [32]

Values String up to 31 characters long.

CCA Entry [General]

Model Name

CORACQ_PRM_CAM_NAME

Description The name or description of the camera related parameters.

Type BYTE [64]

Values String, up to 63 characters long.

CCA Entry [General]

Camera Name

CORACQ_PRM_CAM_RESET_DURATION

Description Reset pulse width (in μ s). Applies to area scan cameras only.

Type UINT32

Limits The value must be in the range CORACO CAP CAM RESET DURATION MIN ...

CORACQ_CAP_CAM_RESET_DURATION_MAX.

CCA Entry [Control Signals]

Camera Reset Duration

Note Validated only when CORACQ PRM_CAM_RESET_ENABLE is TRUE.

CORACO PRM CAM RESET METHOD

Description Method used to generate the reset pulse. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP_CAM RESET METHOD. The capability returns the ORed combination of

all supported values.

Values See Camera Reset Method

CCA Entry [Control Signals]

Camera Reset Method

Note Available only if CORACQ_CAP_CAM_RESET is TRUE.

Validated only when CORACQ_PRM_CAM_RESET_ENABLE is TRUE.

CORACQ_PRM_CAM_RESET_POLARITY

Description Reset pulse polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_CAM_RESET_POLARITY. The capability returns the ORed combination of

all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Reset pulse will be active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Reset pulse will be active high.

CCA Entry [Control Signals]

Camera Reset Polarity

Note Available only if CORACQ_CAP_CAM_RESET is TRUE.

Validated only when CORACQ_PRM_CAM_RESET_ENABLE is TRUE.

CORACO PRM CAM TIME INTEGRATE DURATION MAX

Description Maximum time integration supported by the camera (in µs). Applies to area scan cameras

only.

Type UINT32

Limits This value must be greater or equal to

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN.

CCA Entry [Control Signals]

Camera Time Integrate Duration Maximum

CORACO PRM CAM TIME INTEGRATE DURATION MIN

Description Minimum time integration supported by the camera (in μs). Applies to area scan cameras only.

Type UINT32

Limits This value must be smaller or equal to

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX.

CCA Entry [Control Signals]

Camera Time Integrate Duration Minimum

CORACO PRM CAM TRIGGER DURATION

Description Frame trigger pulse width (in µs). Applies to area scan cameras only.

Type UINT32

Limits The value must be in the range CORACQ_CAP_CAM_TRIGGER_DURATION_MIN ...

CORACQ CAP CAM TRIGGER DURATION MAX.

CCA Entry [Control Signals]

Camera Trigger Duration

Note Available only if CORACQ_CAP_CAM_TRIGGER is TRUE.

Validated only when CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_CAM_TRIGGER_METHOD

Description Frame trigger pulse output method. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP CAM TRIGGER METHOD. The capability returns the ORed combination

of all supported values.

Values See Camera Trigger Methods

CCA Entry [Control Signals]

Camera Trigger Method

Note Available only if CORACQ_CAP_CAM_TRIGGER is TRUE.

Validated only when CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_CAM_TRIGGER_POLARITY

Description Frame trigger pulse polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_CAM_TRIGGER_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Frame trigger pulse will be active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Frame trigger pulse will be active high.

CCA Entry [Control Signals]

Camera Trigger Polarity

Note Available only if CORACQ_CAP_CAM_TRIGGER is TRUE.

Validated only when CORACQ_PRM_CAM_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_CAMLINK_CONFIGURATION

Description Defines the CameraLink connector configuration

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_CAMLINK_CONFIGURATION. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_CAMLINK_CONFIGURATION_BASE (0x00000001)

Base configuration (1 connector)

CORACO VAL CAMLINK CONFIGURATION MEDIUM (0x00000002)

Medium configuration (2 connectors)

CORACQ_VAL_CAMLINK_CONFIGURATION_FULL (0x00000004)

Full configuration (2 connectors)

CORACQ_VAL_CAMLINK_CONFIGURATION_2BASE (0x00000008)

Dual base configuration (2 connectors)

CORACO VAL CAMLINK CONFIGURATION 10TAPS FORMAT1 (0x00000010)

10 Taps (2 connectors) for example, CMC-1000

CORACQ_VAL_CAMLINK_CONFIGURATION_16TAPS (0x000000020)

16 Taps (4 connectors)

CORACQ_VAL_CAMLINK_CONFIGURATION_10TAPS_FORMAT2 (0x00000040)

10 Taps (2 connectors) for example, Basler A504

CCA Entry [Connector Description]

Camlink Configuration

CORACQ_PRM_CHANNEL

Description Number of channels output by the video source. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP CHANNEL.

Values CORACO VAL CHANNEL SINGLE (0x00000001) One video channel is fed to the

acquisition device.

CORACQ_VAL_CHANNEL_DUAL (0x00000002) Two synchronous video channels are

fed to the acquisition device.

CCA Entry [Signal Description]

Channel

CORACQ_PRM_CHANNELS_ORDER

Description Order of the channels. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP CHANNELS ORDER. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_CHANNELS_ORDER_NORMAL (0x00000001)

The camera outputs the first line of the video on channel 1 (or A),

the second line on channel 2 (or B), ...

CORACQ_VAL_CHANNELS_ORDER_REVERSE (0x00000002) The camera outputs the first line of the video on channel 2 (or B),

the second line on channel 1 (or A), ...

CORACQ_VAL_CHANNELS_ORDER_DETECT (0x00000004)

Auto detects the channel order by means of an external signal usually called FI (field index). If the signal is high, then the channel order is considered normal; otherwise it is reversed.

CCA Entry [Signal Description]

Channels Order

CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT

Description Camera exposure input pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Exposure Input

CORACO PRM CONNECTOR HD INPUT

Description Camera horizontal drive input/output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

HD Input

CORACO PRM CONNECTOR LINE INTEGRATE INPUT

Description Camera line integrate pin description. Applies to linescan cameras only.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Line Integrate Input

Note Some cameras define this input as PRIN.

CORACO PRM CONNECTOR LINE TRIGGER INPUT

Description Camera line trigger/exposure pin description. Applies to linescan cameras only.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Line Trigger Input

Note Some cameras define this input as EXSYNC.

CORACO PRM CONNECTOR LINESCAN DIRECTION INPUT

Description Camera linescan direction pin description. Applies to linescan cameras only.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Linescan Direction Input

CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT

Description Camera pixel clock output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Pixel Clock Output

CORACO PRM CONNECTOR WEN OUTPUT

Description Camera WEN (Write ENable) output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

WEN Output

CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT

Description Camera Reset/Trigger input pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

Reset/Trigger Input

CORACQ_PRM_CONNECTOR_VD_INPUT

Description Camera vertical drive input/output pin description.

Type UINT32

Values See Pin Connector Description

CCA Entry [Connector Description]

VD Input

CORACO PRM COUPLING

Description Video source coupling type. Applies to analog video signals only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_COUPLING. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_COUPLING_AC (0x00000001) AC coupled.

CORACQ_VAL_COUPLING_DC (0x00000002) DC coupled.

CCA Entry [Signal Description]

Coupling

CORACQ_PRM_DATA_VALID_ENABLE

Description Specifies if the acquisition device uses the camera data valid signal.

Type UINT32

Limits This value must match the capability of the acquisition device given by

 $CORACQ_CAP_DATA_VALID_ENABLE = TRUE.$

Values FALSE (0x00000000) Data valid signal is ignored.

TRUE (0x00000001) Data valid signal is used.

CCA Entry [Control Signals]

Data Valid Enable

CORACQ_PRM_DATA_VALID_POLARITY

Description Specifies the camera data valid polarity received from the acquisition device.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_DATA_VALID_POLARITY. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Data valid signal active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Data valid signal active high.

CCA Entry [Control Signals]

Data Valid Polarity

Note Validated only if CORACQ_DATA_VALID_ENABLE is TRUE

CORACO PRM FIELD ORDER

Description Field order output by the video source. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_FIELD_ORDER. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_FIELD_ORDER_ODD_EVEN (0x00000001)

For an interlaced signal, the odd field is acquired first, followed by the even field.

For a non-interlaced signal, this value is invalid.

CORACQ_VAL_FIELD_ORDER_EVEN_ODD (0x00000002)

For an interlaced signal, the even field is acquired first, followed by the odd field.

For a non-interlaced signal, this value is invalid.

CORACQ_VAL_FIELD_ORDER_NEXT_FIELD (0x00000004)

For an interlaced signal, the next field is acquired whether it is odd or even.

This is the standard value for a non-interlaced signal.

CCA Entry [Signal Description]

Field Order

CORACQ_PRM_FRAME

Description Video source frame type. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_FRAME. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_FRAME_INTERLACED (0x00000001) Interlaced video.

CORACQ_VAL_FRAME_PROGRESSIVE (0x00000002) Progressive/non-interlaced

video.

CCA Entry [Signal Description]

Frame

CORACO PRM FRAME INTEGRATE METHOD

Description Method to be used to control the camera's frame integration. Applies to area scan cameras

only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_FRAME_INTEGRATE_METHOD. The capability returns the ORed

combination of all supported values.

Values See Frame Integrate Methods

CCA Entry [Control Signals]

Frame Integrate Method

Note Available only if CORACQ_CAP_FRAME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_FRAME_INTEGRATE_ENABLE is TRUE.

CORACO PRM FRAME INTEGRATE POLARITY

Description Frame integration pulse polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_FRAME_INTEGRATE_POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Frame integration pulse will be active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Frame integration pulse will be active

high.

CCA Entry [Control Signals]

Frame Integrate Polarity

Note Available only if CORACQ_CAP_FRAME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_FRAME_INTEGRATE_ENABLE is TRUE.

CORACO PRM HACTIVE

Description Horizontal active portion of the video (in pixels/tap).

Type UINT32

Limits Range limits: CORACQ_CAP_HACTIVE_MIN...CORACQ_CAP_HACTIVE_MAX, and

also must be a multiple of CORACQ_CAP_HACTIVE_MULT.

CCA Entry [Signal Timings]

Horizontal Active

CORACQ_PRM_HBACK_INVALID

Description Invalid horizontal portion of the video following the horizontal blanking (in pixels/tap).

Type UINT32

Limits Range limits: CORACQ_CAP_HBACK_INVALID_MIN ...

CORACQ_CAP_HBACK_INVALID_MAX, and also must be a multiple of

CORACQ_CAP_HBACK_INVALID_MULT.

CCA Entry [Signal Timings]

Horizontal Back Invalid

CORACQ_PRM_HBACK_PORCH

Description The video's horizontal back porch (in pixels/tap). Applies to analog video signals only.

Type UINT32

Limits Range limits: CORACQ_CAP_HBACK_PORCH_MIN ...

CORACQ_CAP_HBACK_PORCH_MAX, and must be a multiple of

CORACQ_CAP_HBACK_PORCH_MULT.

CCA Entry [Signal Timings]

Horizontal Back Porch

CORACO PRM HFRONT INVALID

Description Invalid horizontal portion of the video preceding the horizontal blanking (in pixels/tap).

Type UINT32

Limits This value must be in the range

CORACQ_CAP_HFRONT_INVALID_MIN...CORACQ_CAP_HFRONT_INVALID_MAX,

and must be a multiple of CORACQ_CAP_HFRONT_INVALID_MULT.

CCA Entry [Signal Timings]

Horizontal Front Invalid

CORACQ_PRM_HFRONT_PORCH

Description The video's horizontal front porch (in pixels/tap). Applies to analog video signals only.

Type UINT32

Limits This value must be in the range

CORACQ_CAP_HFRONT_PORCH_MIN...CORACQ_CAP_HFRONT_PORCH_MAX, and

must be a multiple of CORACQ_CAP_HFRONT_PORCH_MULT.

CCA Entry [Signal Timings]

Horizontal Front Porch

CORACQ_PRM_HSYNC

Description The video's horizontal sync (in pixels/tap).

Type UINT32

Limits Range limits: CORACQ_CAP_HSYNC_MIN...CORACQ_CAP_HSYNC_MAX, and also

must be a multiple of CORACQ_CAP_HSYNC_MULT.

CCA Entry [Signal Timings]

Horizontal Sync

CORACQ_PRM_HSYNC_POLARITY

Description Horizontal sync polarity of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_HSYNC_POLARITY. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Horizontal sync pulse is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Horizontal sync pulse is active high.

CCA Entry [Synchronization Signals]

Horizontal Sync Polarity

CORACQ_PRM_INTERFACE

Description Video source interface type.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_INTERFACE since only one interface type is supported per acquisition

device.

Values CORACQ_VAL_INTERFACE_ANALOG (0x00000001) Analog video source.

CORACQ_VAL_INTERFACE_DIGITAL (0x00000002) Digital video source.

CCA Entry [Signal Description]

Interface

CORACO PRM LINE INTEGRATE DELAY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_LINE_INTEGRATE_PULSE0_DELAY

CORACO PRM LINE INTEGRATE METHOD

Description Method to use for controlling the camera's line integration. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_LINE_INTEGRATE_METHOD. The capability returns the ORed

combination of all supported values.

Values See Line Integrate Methods

CCA Entry [Control Signals]

Line Integrate Method

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE.

CORACQ_PRM_LINE_INTEGRATE_POLARITY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_LINE_INTEGRATE_PULSE0_POLARITY

CORACQ_PRM_LINE_INTEGRATE_PULSE0_DELAY

Description Line integration pulse #0 delay (in pixels). Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACO CAP LINE INTEGRATE PULSEO DELAY MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSE0_DELAY_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 0 Delay

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE. See Line Integrate Methods for the different usages of the pulse #0 delay parameter.

CORACQ_PRM_LINE_INTEGRATE_PULSE0_DURATION

Description Line integration pulse #0 width (in pixels). Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_INTEGRATE_PULSE0_DURATION_MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSE0_DURATION_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 0 Duration

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE. See Line Integrate Methods for the different usages of the pulse #0 duration parameter.

CORACO PRM LINE INTEGRATE PULSEO POLARITY

Description Line integration pulse #0 polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_LINE_INTEGRATE_PULSE0_POLARITY. The capability returns the

ORed combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Time integration trigger pulse is active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Time integration trigger pulse is active

high.

CCA Entry [Control Signals]

Line Integrate Pulse 0 Polarity

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACO PRM LINE INTEGRATE ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #0.

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DELAY

Description Line integration pulse #1 delay (in pixels). Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_INTEGRATE_PULSE1_DELAY_MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSE1_DELAY_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 1 Delay

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE. See Line Integrate Methods for the different usages of the pulse #1 delay parameter.

CORACO PRM LINE INTEGRATE PULSE1 DURATION

Description Line integration pulse #1 width (in pixels). Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_INTEGRATE_PULSE1_DURATION_MIN ...

CORACQ_CAP_LINE_INTEGRATE_PULSE1_DURATION_MAX.

CCA Entry [Control Signals]

Line Integrate Pulse 1 Duration

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_LINE_INTEGRATE_ENABLE is TRUE. See Line Integrate Methods for the different usages of the pulse #1 duration parameter.

CORACQ_PRM_LINE_INTEGRATE_PULSE1_POLARITY

Description Line integration pulse #1 polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_LINE_INTEGRATE_PULSE1_POLARITY. The capability returns the

ORed combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Line integration trigger pulse is active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Line integration trigger pulse is active

high.

CCA Entry [Control Signals]

Line Integrate Pulse 1 Polarity

Note Available only if CORACQ_CAP_LINE_INTEGRATE is TRUE.

Validated only when CORACO PRM LINE INTEGRATE ENABLE is TRUE.

See Line Integrate Methods for the different usages of the pulse #1.

CORACQ_PRM_LINE_TRIGGER_DELAY

Description Line trigger pulse delay (in pixels). Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_TRIGGER_DELAY_MIN ...

CORACQ_CAP_LINE_TRIGGER_DELAY_MAX.

CCA Entry [Control Signals]

Line Trigger Delay

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACQ_PRM_LINE_TRIGGER_ENABLE is TRUE. See Line Trigger Methods for the different usages of the trigger delay parameter.

CORACQ_PRM_LINE_TRIGGER_DURATION

Description Line Trigger pulse width (in pixels). Applies to linescan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_LINE_TRIGGER_DURATION_MIN ...

CORACQ_CAP_LINE_TRIGGER_DURATION_MAX.

CCA Entry [Control Signals]

Line Trigger Duration

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACQ_PRM_LINE_TRIGGER_ENABLE is TRUE. See Line Trigger Methods for the different usages of the trigger duration parameter.

CORACO PRM LINE TRIGGER METHOD

Description Line trigger pulse output method. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP LINE TRIGGER METHOD. The capability returns the ORed combination

of all supported values.

Values See Line Trigger Methods

CCA Entry [Control Signals]

Line Trigger Method

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACQ_PRM_LINE_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_LINE_TRIGGER_POLARITY

Description Line trigger pulse polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP LINE TRIGGER POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Line trigger pulse is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Line trigger pulse is active high.

CCA Entry [Control Signals]

Line Trigger Polarity

Note Available only if CORACQ_CAP_LINE_TRIGGER is TRUE.

Validated only when CORACQ_PRM_LINE_TRIGGER_ENABLE is TRUE.

CORACQ_PRM_LINESCAN_DIRECTION

Description Specifies if the camera has a direction scan input control.

Type UINT32

Values TRUE (0x00000001), Camera has a direction scan input control.

FALSE (0x0000000), Camera does not have a direction scan input control.

CCA Entry [Control Signals]

LineScan Direction

Note Applies to linescan cameras only.

On DALSA cameras, this control is called the TDI scan direction.

CORACQ_PRM_LINESCAN_DIRECTION_POLARITY

Description Camera direction scan signal polarity. Applies to linescan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP LINESCAN DIRECTION POLARITY. The capability returns the ORed

combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Forward direction scan signal is active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Forward direction scan signal is active

high.

CCA Entry [Control Signals]

LineScan Direction Polarity

Note This value is only available if CORACQ_CAP_LINESCAN_DIRECTION is TRUE.

CORACQ_PRM_PIXEL_CLK_11

Description Pixel clock frequency (in Hz) so that the camera image has a 1:1 aspect ratio.

Type UINT32

Limits 1.. (2**32) – 1

CCA Entry [Pixel Clock]

Pixel Clock Frequency 1:1

Note This value is only given as information.

Useful to accurately calculate distances between objects from an acquired image.

CORACQ_PRM_PIXEL_CLK_DETECTION

Description Specifies the type of pixel clock detection of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP PIXEL CLK DETECTION. The capability returns the ORed combination

of all supported values.

Values CORACQ_VAL_RISING_EDGE (0x00000004) Sampling of a pixel is done on the rising

edge of the pixel clock.

CORACQ_VAL_FALLING_EDGE (0x00000008) Sampling of a pixel is done on the

falling edge of the pixel clock.

CCA Entry [Pixel Clock]

Pixel Clock Detection

CORACO PRM PIXEL CLK EXT

Description External pixel clock frequency (in Hz).

Type UINT32

Limits The value must be in the range

CORACQ_CAP_PIXEL_CLK_EXT_MIN...CORACQ_CAP_PIXEL_CLK_EXT_MAX.

CCA Entry [Pixel Clock]

Pixel Clock Frequency External

Note Validated only if CORACQ_PRM_PIXEL_CLK_SRC specifies that an external pixel clock is

needed.

CORACQ_PRM_PIXEL_CLK_INT

Description Internal pixel clock frequency (in Hz).

Type UINT32

Limits The value must be in the range

CORACQ_CAP_PIXEL_CLK_INT_MIN...CORACQ_CAP_PIXEL_CLK_INT_MAX.

CCA Entry [Pixel Clock]

Pixel Clock Frequency Internal

Note This value is validated only if CORACQ_PRM_PIXEL_CLK_SRC specifies that an internal

pixel clock is needed.

CORACQ_PRM_PIXEL_CLK_SRC

Description Specifies the source of the acquisition device pixel clock.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_PIXEL_CLK_SRC. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_PIXEL_CLK_SRC_INT (0x00000001) Internal pixel clock.

CORACQ_VAL_PIXEL_CLK_SRC_EXT (0x00000002) External pixel clock.

CORACQ_VAL_PIXEL_CLK_SRC_EXT_INT

(0x00000004)

The external pixel clock is used

while the acquisition device simultaneously outputs its own

internal pixel clock for other use.

CCA Entry [Pixel Clock]

Pixel Clock Source

CORACQ_PRM_PIXEL_DEPTH

Description Pixel depth of the digitized video.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_PIXEL_DEPTH.

This capability returns a structure of the following type:

typedef struct

{

UINT32 pixelDepth; UINT32 numberOfLuts;

UINT32 lutFormat;
} CAP_PIXEL_DEPTH;

CAP_PIXEL_DEPTH capPixelDepth[42];

A device can support up to 42 different combination. The end of the list is reached when the

pixel depth value is 0.

pixelDepth: pixel depth in bits.

numberOfLuts: number of LUTs available

lutFormat: LUT format.

CCA Entry [Signal Description]

Pixel Depth

Note For analog cameras, this parameter is read-only and represents the number of bits digitized by

the acquisition device's A/D.

CORACO PRM SCAN

Description Video source scan type.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP_SCAN. The capability returns the ORed combination of all supported values.

Values CORACQ_VAL_SCAN_AREA (0x00000001) Area scan video source.

CORACQ_VAL_SCAN_LINE (0x00000002) Linescan video source.

CCA Entry [Signal Description]

Scan

CORACQ_PRM_SIGNAL

Description Video source signal type.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_SIGNAL. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_SIGNAL_SINGLE_ENDED(0x000000001) Single ended signal.

CORACQ_VAL_SIGNAL_DIFFERENTIAL (0x00000002) Differential signal.

CCA Entry [Signal Description]

Signal

CORACQ_PRM_SYNC

Description Synchronization source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_SYNC. The capability returns the ORed combination of all supported values.

Values CORACQ_VAL_SYNC_COMP_VIDEO (0x00000001), Composite video source.

CORACQ_VAL_SYNC_COMP_SYNC (0x00000002), Composite sync source.

CORACQ_VAL_SYNC_SEP_SYNC (0x00000004),

Separate horizontal and vertical sync source.

CORACO VAL SYNC INT SYNC (0x00000008)

Internal horizontal and vertical syncs generated by the acquisition device.

See also CORACQ_PRM_MASTER_MODE. CORACQ_VAL_SYNC_RED (0x00000010), Composite video source from the red channel.

CORACQ_VAL_SYNC_GREEN (0x00000020), Composite video source from the green channel. CORACQ_VAL_SYNC_BLUE (0x00000040)

Composite video source from the blue channel.

CCA Entry [Synchronization Signals]

Synchronization Source

CORACQ_PRM_TAP_1_DIRECTION

Description Specifies the direction of tap #1 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_TAP_DIRECTION_LR (0x00000001)

Pixels from the tap have a left to right order.

CORACO VAL TAP DIRECTION RL (0x00000002)

Pixels from the tap have a right to left order.

CORACQ_VAL_TAP_DIRECTION_UD (0x00000004)
Lines from the tap have a top-bottom direction (up-down).

CORACQ_VAL_TAP_DIRECTION_DU (0x00000008)
Lines from the tap have a bottom-up direction (down-up).

CORACO VAL TAP DIRECTION FROM TOP (0x00000010)

Lines from the tap start at the top of the camera image.

CORACQ_VAL_TAP_DIRECTION_FROM_MID (0x00000020)

Lines from the tap start in the middle of the camera image.

CORACQ_VAL_TAP_DIRECTION_FROM_BOT (0x00000040)

Lines from the tap start at the bottom of the camera image.

CCA Entry [Signal Description]

Tap 1 Direction

CORACQ_PRM_TAP_2_DIRECTION

Description Specifies the direction of tap #2 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 2 Direction

CORACQ_PRM_TAP_3_DIRECTION

Description Specifies the direction of tap #3 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 3 Direction

CORACQ_PRM_TAP_4_DIRECTION

Description Specifies the direction of tap #4 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 4 Direction

CORACQ_PRM_TAP_5_DIRECTION

Description Specifies the direction of tap #5 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACO CAP TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 5 Direction

CORACQ_PRM_TAP_6_DIRECTION

Description Specifies the direction of tap #6 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 6 Direction

CORACO PRM TAP 7 DIRECTION

Description Specifies the direction of tap #7 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 7 Direction

CORACQ_PRM_TAP_8_DIRECTION

Description Specifies the direction of tap #8 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP_TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION.

CCA Entry [Signal Description]

Tap 8 Direction

CORACQ_PRM_TAP_9_DIRECTION

Description Specifies the direction of tap #9 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 9 Direction

CORACQ_PRM_TAP_10_DIRECTION

Description Specifies the direction of tap #10 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP_TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 10 Direction

CORACO PRM TAP 11 DIRECTION

Description Specifies the direction of tap #11 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP_TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 11 Direction

CORACQ_PRM_TAP_12_DIRECTION

Description Specifies the direction of tap #12 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 12 Direction

CORACO PRM TAP 13 DIRECTION

Description Specifies the direction of tap #13 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP_TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 13 Direction

CORACQ_PRM_TAP_14_DIRECTION

Description Specifies the direction of tap #14 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TAP_DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 14 Direction

CORACO PRM TAP 15 DIRECTION

Description Specifies the direction of tap #15 of the video source.

UINT32 Type

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP TAP DIRECTION. The capability returns the ORed combination of all

supported values.

Values See CORACQ_PRM_TAP_1_DIRECTION

CCA Entry [Signal Description]

Tap 15 Direction

CORACO PRM TAP 16 DIRECTION

Description Specifies the direction of tap #16 of the video source.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP_TAP DIRECTION. The capability returns the ORed combination of all

supported values.

See CORACQ_PRM_TAP_1_DIRECTION Values

CCA Entry [Signal Description]

Tap 16 Direction

CORACO PRM TAP OUTPUT

Description Specifies the tap output type of the video source.

UINT32 **Type**

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TAP_OUTPUT. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_TAP_OUTPUT_ALTERNATE (0x00000001)

> Construction of a line is done by concatenating the taps 2 by 2, with a pixel in turn from each tap. So the first two taps makes up the first segment of the line, the next two taps make up the

second segment... Must be an even number of tabs.

CORACQ_VAL_TAP_OUTPUT_SEGMENTED (0x00000002) Construction of a line is done by concatenating the output of each tap.

CORACO VAL TAP OUTPUT PARALLEL (0x00000004)

Construction of a line is done by concatenating a pixel in turn from each tap.

CCA Entry [Signal Description]

Tap Output

CORACQ_PRM_TAPS

Description Number of taps output by the video source.

Type UINT32

Limits This value must be in the range 1..CORACQ_CAP_TAPS.

CCA Entry [Signal Description]

Taps

CORACO PRM TIMESLOT

Description Number of pixel clocks needed to output 1 pixel on every tap

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device (seen below)

given by CORACQ_CAP_TIMESLOT

Values CORACQ_VAL_TIMESLOT_1 (0x01):

for each pixel clock, a pixel from each tap is output (default)

CORACO VAL TIMESLOT 2 (0x02):

2 pixel clock cycles are needed to output 1 pixel from each tap

CORACQ_VAL_TIMESLOT_3 (0x04):

3 pixel clock cycles are needed to output 1 pixel from each tap

CORACQ_VAL_TIMESLOT_4 (0x08):

4 pixel clock cycles are needed to output 1 pixel from each tap

CCA Entry [Signal Description]

Timeslot

CORACO PRM TIME INTEGRATE METHOD

Description Method to use to control a camera's time integration. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TIME_INTEGRATE_METHOD. The capability returns the ORed

combination of all supported values.

Values See Time Integrate Methods

CCA Entry [Control Signals]

Time Integrate Method

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

CORACO CAP TIME INTEGRATE is obsolete. Use the equivalent parameter

CORACQ_CAP_TIME_INTEGRATE_PULSE0_POLARITY.

CORACQ_CAP_TIME_INTEGRATE_PULSE0_POLARITY Values:

CORACO VAL ACTIVE LOW

Time integration trigger pulse can be active low.

CORACQ_VAL_ACTIVE_HIGH

Time integration trigger pulse can be active high.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

CORACO PRM TIME INTEGRATE POLARITY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY

CORACQ_PRM_TIME_INTEGRATE_PULSE_DELAY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY

CORACQ_PRM_TIME_INTEGRATE_PULSE_DURATION

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

CORACO PRM TIME INTEGRATE PULSE POLARITY

Description Obsolete. Use instead the equivalent parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DELAY

Description Time integration pulse #0 delay (in µs). Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_PULSEO_DELAY_MIN ...

CORACQ_CAP_TIME_INTEGRATE_PULSE0_DELAY_MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 0 Delay

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #0 delay parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION

Description Time integration pulse #0 width (in μs). Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_PULSE0_DURATION_MIN ...

CORACQ_CAP_TIME_INTEGRATE_PULSE0_DURATION_MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 0 Duration

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #0 duration parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY

Description Time integration pulse #0 polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_TIME_INTEGRATE_PULSE0_POLARITY. The capability returns the

ORed combination of all supported values. See

CORACQ_PRM_TIME_INTEGRATE_METHOD for further information on

CORACQ_CAP_TIME_INTEGRATE_PULSE0_POLARITY.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001), Time integration pulse is active low.

CORACO VAL ACTIVE HIGH (0x00000002), Time integration pulse is active high.

CCA Entry [Control Signals]

Time Integrate Pulse 0 Polarity

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACO PRM TIME INTEGRATE ENABLE is TRUE.

See Time Integrate Methods for the different usages of the pulse #0.

CORACQ_PRM_TIME_INTEGRATE_PULSE1 DELAY

Description Time integration pulse #1 delay (in µs). Applies to area scan cameras only.

Type UINT32

Limits Range limits CORACQ_CAP_TIME_INTEGRATE_PULSE1_DELAY_MIN ...

CORACO CAP TIME INTEGRATE PULSE1 DELAY MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 1 Delay

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #1 delay parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

Description Time integration pulse #1 width (in μs). Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_TIME_INTEGRATE_PULSE1_DURATION_MIN ...

CORACQ_CAP_TIME_INTEGRATE_PULSE1_DURATION_MAX.

CCA Entry [Control Signals]

Time Integrate Pulse 1 Duration

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE. See Time Integrate Methods for the different usages of the pulse #1 duration parameter.

CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

Description Time integration pulse #1 polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ CAP TIME INTEGRATE PULSE1 POLARITY. The capability returns the

ORed combination of all supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Time integration trigger pulse is active

low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Time integration trigger pulse is active

high.

CCA Entry [Control Signals]

Time Integrate Pulse 1 Polarity

Note Available only if CORACQ_CAP_TIME_INTEGRATE is TRUE.

Validated only when CORACQ_PRM_TIME_INTEGRATE_ENABLE is TRUE.

See Time Integrate Methods for the different usages of the pulse #1.

CORACQ_PRM_TRIGGER_EXP_SIGNAL

Description Obsolete. Use CORACQ_PRM_CONNECTOR_xxx_parameters to describe the pinout of the

camera.

CORACO PRM VACTIVE

Description Vertical active portion of the video (in lines per field). Applies to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_VACTIVE_MIN ... CORACQ_CAP_VACTIVE_MAX, and

also must be a multiple of CORACQ_CAP_VACTIVE_MULT.

CCA Entry [Signal Timings]

Vertical Active

CORACO PRM VBACK INVALID

Description Invalid vertical portion of the video following the vertical blanking (in lines per field). Applies

to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_VBACK_INVALID_MIN ...

CORACQ_CAP_VBACK_INVALID_MAX, and must be a multiple of

CORACQ_CAP_VBACK_INVALID_MULT.

CCA Entry [Signal Timings]

Vertical Back Invalid

CORACQ_PRM_VBACK_PORCH

Description Vertical back porch portion of the video (in lines per field). Applies to analog video signals

only.

Type UINT32

Limits Range limits: CORACQ_CAP_VBACK_PORCH_MIN ...

CORACQ_CAP_VBACK_PORCH_MAX, and must be a multiple of

CORACQ_CAP_VBACK_PORCH_MULT.

CCA Entry [Signal Timings]

Vertical Back Porch

CORACO PRM VFRONT INVALID

Description Invalid vertical portion of the video preceding the vertical blanking (in lines per field). Applies

to area scan cameras only.

Type UINT32

Limits Range limits: CORACQ_CAP_VFRONT_INVALID_MIN ...

CORACO CAP VFRONT INVALID MAX, and must be a multiple of

CORACQ_CAP_VFRONT_INVALID_MULT.

CCA Entry [Signal Timings]

Vertical Front Invalid

CORACO PRM VFRONT PORCH

Description The video's vertical front porch (in lines per field). Applies to analog video signals only.

Type UINT32

Limits Range limits: CORACQ_CAP_VFRONT_PORCH_MIN ...

CORACQ_CAP_VFRONT_PORCH_MAX, and must be a multiple of

CORACQ_CAP_VFRONT_PORCH_MULT.

CCA Entry [Signal Timings]

Vertical Front Porch

CORACQ_PRM_VIDEO

Description Video source video type.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_VIDEO.

Values CORACQ_VAL_VIDEO_MONO (0x00000001) Monochrome composite video source.

CORACQ_VAL_VIDEO_COLOR (0x00000002) Color composite video source.

CORACQ_VAL_VIDEO_YC (0x00000004) Y/C video source.

CORACQ_VAL_VIDEO_RGB (0x00000008) RGB video source.

CORACQ_VAL_VIDEO_BAYER (0x00000010) Bayer video source.

CCA Entry [Signal Description]

Video

CORACQ_PRM_VIDEO_LEVEL_MAX

Description Maximum value (in μ V) of the video signal. Applies to analog video signal only.

Type UINT32

Limits This value must be greater or equal to CORACQ PRM_VIDEO_LEVEL_MIN and must be in

the range: [-(2**31)...(2**31)-1].

CCA Entry [Signal Description]

Video Level Maximum

Note For NTSC/RS-170 video standard signal, this value is usually equal to 714000 μV.

For PAL/CCIR video standard signal, this value is usually equal to 700000 µV.

If CORACO PRM VIDEO LEVEL MIN and CORACO PRM VIDEO LEVEL MAX are

both set to 0, then the following default values will be used: if PAL/CCIR video standard is selected: min = 0, max = 700000

else min = 53550, max = 714000.

CORACQ_PRM_VIDEO_LEVEL_MIN

Description Minimum value (in μ V) of the video signal. Applies to analog video signals only.

Type INT32

Limits This value must be smaller or equal to CORACQ_PRM_VIDEO_LEVEL_MAX and must be

in the range: [-(2**31)...(2**31)-1].

CCA Entry [Signal Description]

Video Level Minimum

Note For NTSC/RS-170 video standard signal, this value is usually equal to 53550 μV.

For PAL/CCIR video standard signal, this value is usually equal to 0 μV.

If CORACQ_PRM_VIDEO_LEVEL_MIN and CORACQ_PRM_VIDEO_LEVEL_MAX are

both set to 0, then the following default values will be used: if PAL/CCIR video standard is selected: min = 0, max = 700000

else min = 53550, max = 714000.

CORACQ_PRM_VIDEO_STD

Description Video source video standard.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_VIDEO_STD. The capability returns the ORed combination of all supported

values.

Values CORACQ_VAL_VIDEO_STD_NON_STD Non-standard video source.

(0x00000001)

CORACQ_VAL_VIDEO_STD_RS170_NTSC RS-170 and/or NTSC video source.

(0x00000002)

(0x00000004)

CORACQ_VAL_VIDEO_STD_SECAM SECAM video source.

(0x00000008)

CCA Entry [Signal Description]

Video Standard

CORACQ_PRM_VSYNC

Description The video's vertical sync (in lines per field). Applies to area scan cameras only.

Type UINT32

Limits This value must be in the range

CORACQ_CAP_VSYNC_MIN...CORACQ_CAP_VSYNC_MAX, and must be a multiple of

CORACQ_CAP_VSYNC_MULT.

CCA Entry [Signal Timings]

Vertical Sync

CORACQ_PRM_VSYNC_POLARITY

Description Vertical sync polarity. Applies to area scan cameras only.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_VSYNC_POLARITY. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) Vertical sync pulse is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) Vertical sync pulse is active high.

CCA Entry [Synchronization Signals]

Vertical Sync Polarity

CORACQ_PRM_WEN_POLARITY

Description Specifies the WEN (Write ENable) signal polarity that the acquisition device will consider as

valid.

Type UINT32

Limits This value must match one of the supported capabilities of the acquisition device given by

CORACQ_CAP_WEN_POLARITY. The capability returns the ORed combination of all

supported values.

Values CORACQ_VAL_ACTIVE_LOW (0x00000001) WEN is active low.

CORACQ_VAL_ACTIVE_HIGH (0x00000002) WEN is active high.

CCA Entry [Control Signals]

WEN Polarity

Note Validated only if CORACQ_PRM_WEN_ENABLE is TRUE.

Configuration File Formats

Overview

This section covers the format descriptions for the information files describing camera definition parameters (.CCA) and acquisition parameters (.CVI). The camera configuration file (.CCF) is the combination of the .CCA and .CVI files into one file.

These parameters are stored in Sapera camera configuration files which an application loads to initialize the acquisition hardware. Note that all camera related parameters can be individually loaded by the application if a single acquisition source (hard-coded) program is desired.

Sapera LT supplies a number of camera definition files for popular cameras available on the market. The Sapera CamExpert tool simplifies making or modifying Sapera camera files and is described in the *Sapera LT User's* manual. Refer also to the CamExpert online help file and descriptive popup help for the various parameter fields.

Camera Definition File Description (CCA)

Sapera camera files (*.cca) contain the parameters of specific cameras. Most of the information found in these files is the default settings that should never change for a given camera. Values can be written in decimal (for example, 16) or in hexadecimal (for example, 0x10).

The following tables contain each key name used by camera files. Under normal circumstances each *.cca filecontains only the information required for a given camera. Note that the *.cca file contains all Sapera camera related parameters whether they are used or needed by the camera.

Key Name [General]	Related Parameter
Camera Name	CORACQ_PRM_CAM_NAME
Company Name	CORACQ_PRM_CAM_COMPANY_NAME
Model Name	CORACQ_PRM_CAM_MODEL_NAME
Version	Version of this file. This entry does not correspond to any parameter.
	100: Initial Version 200: Formats are now indexes into a fix table independent of the Sapera values 300: Parameter CORACQ_PRM_TIME_INTEGRATE_POLARITY is now called

Key Name [General]

Related Parameter

CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY

301: New parameters

CORACQ_PRM_LINE_INTEGRATE_PULSE_xxx, CORACQ_PRM_VIDEO_LEVEL_MIN/MAX

Key Name [Signal Description]

Related Parameter

Bayer Alignment CORACQ_PRM_BAYER_ALIGNMENT

Channel CORACQ_PRM_CHANNEL

Channels Order CORACQ_PRM_CHANNELS_ORDER

Coupling CORACQ_PRM_COUPLING

Field Order CORACQ_PRM_FIELD_ORDER

Frame CORACQ_PRM_FRAME

Interface CORACQ_PRM_INTERFACE
Pixel Depth CORACQ_PRM_PIXEL_DEPTH

Scan CORACQ_PRM_SCAN
Signal CORACQ_PRM_SIGNAL

Tap Output CORACQ_PRM_TAP_OUTPUT

Tap 1 Direction CORACQ_PRM_TAP_1_DIRECTION Tap 2 Direction CORACQ_PRM_TAP_2_DIRECTION Tap 3 Direction CORACQ_PRM_TAP_3_DIRECTION Tap 4 Direction CORACQ_PRM_TAP_4_DIRECTION Tap 5 Direction CORACQ_PRM_TAP_5_DIRECTION Tap 6 Direction CORACQ_PRM_TAP_6_DIRECTION Tap 7 Direction CORACQ_PRM_TAP_7_DIRECTION Tap 8 Direction CORACQ_PRM_TAP_8_DIRECTION

Taps CORACQ_PRM_TAPS Video CORACQ_PRM_VIDEO

Video Level Maximum CORACQ_PRM_VIDEO_LEVEL_MAX Video Level Minimum CORACQ_PRM_VIDEO_LEVEL_MIN

Video Standard CORACQ_PRM_VIDEO_STD

Key Name [Signal Timings]

Related Parameter

Horizontal Active CORACQ_PRM_HACTIVE

Horizontal Back Invalid CORACQ_PRM_HBACK_INVALID

Key Name	Related Parameter
[Signal Timings]	

Horizontal Back Porch CORACQ_PRM_HBACK_PORCH Horizontal Front Invalid CORACQ_PRM_HFRONT_INVALID Horizontal Front Porch CORACQ_PRM_HFRONT_PORCH

Horizontal Sync CORACQ_PRM_HSYNC Vertical Active CORACQ_PRM_VACTIVE

Vertical Back Invalid CORACQ_PRM_VBACK_INVALID Vertical Back Porch CORACQ_PRM_VBACK_PORCH Vertical Front Invalid CORACQ_PRM_VFRONT_INVALID Vertical Front Porch CORACQ_PRM_VFRONT_PORCH

Vertical Sync CORACQ_PRM_VSYNC

Key Name Related Parameter [Pixel Clock]

Pixel Clock Detection CORACQ_PRM_PIXEL_CLK_DETECTION

Pixel Clock Frequency External CORACQ_PRM_PIXEL_CLK_EXT Pixel Clock Frequency Internal CORACQ_PRM_PIXEL_CLK_INT Pixel Clock Frequency 1:1 CORACQ_PRM_PIXEL_CLK_11 CORACQ_PRM_PIXEL_CLK_SRC Pixel Clock Source

Key Name [Synchronization Signals]

Related Parameter

Horizontal Sync Polarity CORACQ_PRM_HSYNC_POLARITY

Synchronization Source CORACQ_PRM_SYNC

Vertical Sync Polarity CORACQ_PRM_VSYNC_POLARITY

Key Name Related Parameter [Control Signals]

Camera Line Trigger Frequency CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MAX Maximum

Camera Line Trigger Frequency

CORACQ_PRM_CAM_LINE_TRIGGER_FREQ_MIN Minimum

Camera Reset Duration CORACQ_PRM_CAM_RESET_DURATION Camera Reset Method CORACQ_PRM_CAM_RESET_METHOD Camera Reset Polarity CORACQ_PRM_CAM_RESET_POLARITY

CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MAX Camera Time Integrate

Key Name Related Parameter [Control Signals]

Duration Maximum

Camera Time Integrate CORACQ_PRM_CAM_TIME_INTEGRATE_DURATION_MIN

Duration Minimum

Camera Trigger Duration CORACQ_PRM_CAM_TRIGGER_DURATION

Camera Trigger Method CORACQ_PRM_CAM_TRIGGER_METHOD
Camera Trigger Polarity CORACQ_PRM_CAM_TRIGGER_POLARITY

Data Valid Enable CORACQ_PRM_DATA_VALID_ENABLE
Data Valid Polarity CORACQ_PRM_DATA_VALID_POLARITY

Frame Integrate Method CORACQ_PRM_FRAME_INTEGRATE_METHOD
Frame Integrate Polarity CORACQ_PRM_FRAME_INTEGRATE_POLARITY
Line Integrate Method CORACQ_PRM_LINE_INTEGRATE_METHOD

Line Integrate Pulse 0 Delay

Line Integrate Pulse 0 Duration

Line Integrate Pulse 0 Polarity

Line Integrate Pulse 1 Delay

Line Integrate Pulse 1 Duration

Line Integrate Pulse 1 Duration

Line Integrate Pulse 1 Duration

Line Integrate Pulse 1 Polarity

Line Integrate Pulse 1 Duration

Line Integrate Pulse 1 Polarity

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

CORACQ_PRM_LINE_INTEGRATE_PULSE1_DURATION

Line Trigger Delay

CORACQ_PRM_LINE_TRIGGER_DELAY

Line Trigger Duration

CORACQ_PRM_LINE_TRIGGER_DURATION

CORACQ_PRM_LINE_TRIGGER_METHOD

Line Trigger Polarity

CORACQ_PRM_LINE_TRIGGER_POLARITY

LineScan Direction

CORACQ_PRM_LINESCAN_DIRECTION

LineScan Direction Polarity CORACQ_PRM_LINESCAN_DIRECTION_POLARITY

Time Integrate Method CORACQ_PRM_TIME_INTEGRATE_METHOD

Time Integrate Pulse 0 Delay

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DELAY

CORACQ_PRM_TIME_INTEGRATE_PULSE0_DURATION

Time Integrate Pulse 0 Polarity

CORACQ_PRM_TIME_INTEGRATE_PULSE0_POLARITY

Time Integrate Pulse 1 Delay

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DELAY

Time Integrate Pulse 1 Duration

CORACQ_PRM_TIME_INTEGRATE_PULSE1_DURATION

Time Integrate Pulse 1 Polarity CORACQ_PRM_TIME_INTEGRATE_PULSE1_POLARITY

WEN Polarity CORACQ_PRM_WEN_POLARITY

Key Name Related Parameter [Connector Description]

Camera Link Configuration CORACQ_PRM_CAMLINK_CONFIGURATION

Key Name [Connector Description]

Related Parameter

Exposure Input CORACQ_PRM_CONNECTOR_EXPOSURE_INPUT

HD Input CORACQ_PRM_CONNECTOR_HD_INPUT

Line Integrate Input CORACQ_PRM_CONNECTOR_LINE_INTEGRATE_INPUT
Line Trigger Input CORACQ_PRM_CONNECTOR_LINE_TRIGGER_INPUT

Linescan Direction Input CORACQ_PRM_CONNECTOR_LINESCAN_DIRECTION_INPUT

Pixel Clock Output CORACQ_PRM_CONNECTOR_PIXEL_CLK_OUTPUT

Reset/Trigger Input CORACQ_PRM_CONNECTOR_RESET_TRIGGER_INPUT

VD Input CORACQ_PRM_CONNECTOR_VD_INPUT
WEN Output CORACQ_PRM_CONNECTOR_WEN_OUTPUT

Key Name [Custom Camera IO Control Signals]

Related Parameter

Max Control This entry does not correspond to any parameter.

The entry represents the number of custom I/O control defined in this

section of the CCA file. ex. Max Control = 4

Control_0 CORACQ_PRM_CAM_IO_CONTROL

This entry has the following format:

label, bits, level, input/output, polarity, default

label: user defined descriptive label of the camera control (for example,

BIN)

bits: number of bits used by this control

level: TTL/RS-422

input/output: direction of the control

polarity: active high/low default: default value

pin(optional): pin connector description

ex. Control_1=CC1, 1, 2, 2, 2, 1

Control_0=CC1, 1, 2, 2, 2, 1,0x01020001 Control_1=CC2, 1, 2, 2, 2, 1,0x01020002 Control_2=CC3, 1, 2, 2, 2, 1,0x01020003 Control_3=CC4, 1, 2, 2, 2, 1,0x01020004

see also CORACQ_CAM_IO_CONTROL

see also Pin Connector Description

Control 31 Control 31, 1, 2, 2, 2, 0 or Control 31, 1, 2, 2, 2, 0, 0x01020001

VIC Parameter File Description (CVI)

VIC parameter files (*.cvi) contain the VIC settings for a specific acquisition module. Values can be written in decimal (for example, 16) or in hexadecimal (for example, 0x10). The following tables contain the key names used by the VIC parameter files.

Key Name [General]

Related Parameter

Vic Name CORACQ_PRM_VIC_NAME

Version Version of this file. This entry does not correspond to any parameter.

100: Initial Version

200: Formats are now indexes into a fix table independent of the Sapera

values

300: New Parameters CORACQ_PRM_SHARED_xxx,

CORACQ_PRM_FRAME_LENGTH,

CORACQ_PRM_INT_FRAME_TRIGGER_xxx, CORACQ_PRM_EXT_TRIGGER_FRAME_COUNT

Key Name [Input]

Related Parameter

Bit Ordering CORACQ_PRM_BIT_ORDERING

Camera selector CORACQ_PRM_CAMSEL

Planar Input Sources CORACQ_PRM_PLANAR_INPUT_SOURCES

Key Name [Signal Conditioning]

Related Parameter

Brightness CORACQ_PRM_BRIGHTNESS

Brightness Red CORACQ_PRM_BRIGHTNESS_RED

Brightness Green CORACQ_PRM_BRIGHTNESS_GREEN

Brightness Blue CORACQ_PRM_BRIGHTNESS_BLUE

Contrast CORACQ_PRM_CONTRAST

Contrast Red CORACQ_PRM_CONTRAST_RED Contrast Green CORACQ_PRM_CONTRAST_GREEN Contrast Blue CORACQ_PRM_CONTRAST_BLUE DC Restoration Mode CORACQ_PRM_DC_REST_MODE DC Restoration Start CORACQ_PRM_DC_REST_START DC Restoration Width CORACQ_PRM_DC_REST_WIDTH Fix Filter Enable CORACQ_PRM_FIX_FILTER_ENABLE Fix Filter Selector CORACQ_PRM_FIX_FILTER_SELECTOR

Key Name Related Parameter [Signal Conditioning]

Hue CORACQ_PRM_HUE

Programmable Filter Enable CORACQ_PRM_PROG_FILTER_ENABLE
Programmable Filter Frequency CORACQ_PRM_PROG_FILTER_FREQ

Saturation CORACQ_PRM_SATURATION
Sharpness CORACQ_PRM_SHARPNESS

Key Name [Stream Conditioning]

Related Parameter

Bayer Decoder Enable CORACQ_PRM_BAYER_DECODER_ENABLE
Bayer Decoder Method CORACQ_PRM_BAYER_DECODER_METHOD

Bayer Decoder White Balance CORACQ_PRM_BAYER_DECODER_WB_GAIN_RED

Gain Red

Bayer Decoder White Balance CORACQ PRM BAYER DECODER WB GAIN GREEN

Gain Green

Bayer Decoder White Balance CORACQ PRM BAYER DECODER WB GAIN BLUE

Gain Blue

Bayer Decoder White Balance CORACQ_PRM_BAYER_DECODER_WB_OFFSET_RED

Offset Red

Bayer Decoder White Balance CORACQ_PRM_BAYER_DECODER_WB_OFFSET_GREEN

Offset Green

Bayer Decoder White Balance CORACQ_PRM_BAYER_DECODER_WB_OFFSET_BLUE

Offset Blue

Scale Horizontal

Crop Left CORACQ_PRM_CROP_LEFT
Crop Top CORACQ_PRM_CROP_TOP
Crop Height CORACQ_PRM_CROP_HEIGHT
Crop Width CORACQ_PRM_CROP_WIDTH

Decimate Count CORACQ_PRM_DECIMATE_COUNT
Decimate Method CORACQ_PRM_DECIMATE_METHOD

External Trigger Frame Count CORACQ PRM EXT_TRIGGER FRAME COUNT

CORACQ_PRM_SCALE_HORZ

Frame Length CORACQ_PRM_FRAME_LENGTH

Horizontal Sync Reference CORACQ_PRM_HSYNC_REF
Lut Enable CORACQ_PRM_LUT_ENABLE
Lut Number CORACQ_PRM_LUT_NUMBER
Pixel Mask CORACQ_PRM_PIXEL_MASK

Scale Horizontal Method CORACQ PRM SCALE HORZ METHOD

Key Name [Stream Conditioning]

Related Parameter

Scale Vertical CORACQ_PRM_SCALE_VERT

Scale Vertical Method CORACQ_PRM_SCALE_VERT_METHOD

Snap Count CORACQ_PRM_SNAP_COUNT Vertical Sync Reference CORACQ_PRM_VSYNC_REF

Kev Name [Control Signals]

Related Parameter

Camera Control Pulse 0 HD Align CORACQ_PRM_CAM_CONTROL_PULSE0_HD_ALIGN Camera Control Pulse 1 HD Align CORACQ_PRM_CAM_CONTROL_PULSE1_HD_ALIGN

Camera Reset Delay CORACQ_PRM_CAM_RESET_DELAY Camera Reset Enable CORACQ_PRM_CAM_RESET_ENABLE Camera Trigger Delay CORACQ_PRM_CAM_TRIGGER_DELAY Camera Trigger Enable CORACQ_PRM_CAM_TRIGGER_ENABLE

Control Signal Output 1 CORACQ_PRM_CONTROL_SIGNAL_OUTPUT1 Control Signal Output 2 CORACQ_PRM_CONTROL_SIGNAL_OUTPUT2

External Frame Trigger Detection CORACQ_PRM_EXT_FRAME_TRIGGER_DETECTION External Frame Trigger Enable CORACQ_PRM_EXT_FRAME_TRIGGER_ENABLE External Frame Trigger Level CORACQ_PRM_EXT_FRAME_TRIGGER_LEVEL External Frame Trigger Source CORACQ_PRM_EXT_FRAME_TRIGGER_SOURCE External Line Trigger Detection CORACQ_PRM_EXT_LINE_TRIGGER_DETECTION External Line Trigger Enable CORACQ_PRM_EXT_LINE_TRIGGER_ENABLE External Line Trigger Level CORACQ_PRM_EXT_LINE_TRIGGER_LEVEL External Line Trigger Source CORACQ_PRM_EXT_LINE_TRIGGER_SOURCE **External Trigger Detection** CORACQ_PRM_EXT_TRIGGER_DETECTION **External Trigger Duration** CORACQ_PRM_EXT_TRIGGER_DURATION External Trigger Enable CORACQ_PRM_EXT_TRIGGER_ENABLE

External Trigger Ignore Delay CORACQ_PRM_EXT_TRIGGER_IGNORE_DELAY

External Trigger Level CORACQ_PRM_EXT_TRIGGER_LEVEL External Trigger Source CORACQ_PRM_EXT_TRIGGER_SOURCE Frame Integrate Count CORACO PRM FRAME INTEGRATE COUNT Frame Integrate Enable CORACQ_PRM_FRAME_INTEGRATE_ENABLE Internal Frame Trigger Enable CORACQ_PRM_INT_FRAME_TRIGGER_ENABLE Internal Frame Trigger Freq CORACQ_PRM_INT_FRAME_TRIGGER_FREQ Internal Line Trigger Enable CORACQ_PRM_INT_LINE_TRIGGER_ENABLE Internal Line Trigger Freq CORACQ_PRM_INT_LINE_TRIGGER_FREQ

Key Name [Control Signals]

Related Parameter

Line Integrate Duration	CORACQ_PRM_LINE_INTEGRATE_DURATION
Line Integrate Enable	CORACQ_PRM_LINE_INTEGRATE_ENABLE
Line Trigger Enable	CORACQ_PRM_LINE_TRIGGER_ENABLE

LineScan Direction Output CORACQ_PRM_LINESCAN_DIRECTION_OUTPUT

Master Mode CORACQ_PRM_MASTER_MODE

Master Mode Horizontal Sync CORACQ_PRM_MASTER_MODE_HSYNC_POLARITY

Polarity

Master Mode Vertical Sync CORACQ_PRM_MASTER_MODE_VSYNC_POLARITY

Polarity

Shaft Encoder Enable CORACQ_PRM_SHAFT_ENCODER_ENABLE
Shaft Encoder Level CORACQ_PRM_SHAFT_ENCODER_LEVEL
Shaft Encoder Pulse Drop CORACQ_PRM_SHAFT_ENCODER_DROP

Strobe Delay

CORACQ_PRM_STROBE_DELAY

Strobe Delay 2

CORACQ_PRM_STROBE_DELAY_2

Strobe Duration

CORACQ_PRM_STROBE_DURATION

Strobe Enable

CORACQ_PRM_STROBE_ENABLE

Strobe Level

CORACQ_PRM_STROBE_LEVEL

Strobe Method

CORACQ_PRM_STROBE_METHOD

Strobe Polarity

CORACQ_PRM_STROBE_POLARITY

Time Integrate Delay CORACQ_PRM_TIME_INTEGRATE_DELAY
Time Integrate Duration CORACQ_PRM_TIME_INTEGRATE_DURATION
Time Integrate Enable CORACQ_PRM_TIME_INTEGRATE_ENABLE
Vertical Timeout Delay CORACQ_PRM_VERTICAL_TIMEOUT_DELAY

WEN Enable CORACQ_PRM_WEN_ENABLE

Key Name [Output]

Related Parameter

Output Enable	CORACQ_PRM_OUTP	CORACQ_PRM_OUTPUT_ENABLE	
Output Format	1: Mono 8 3: Mono 16	15: RGB161616 19: UYVY	
	7: Mono 32	20: YUY2	
	10: RGB5551	21: YVYU	
	11: RGB565	22: YUYV	
	12: RGB888	23: Y411	
	13: RGB8888	24: Y211	
	14 D CD 101010	00 D CD 1 (1 (1 (1	

14: RGB101010 38: RGB16161616
See also CORACQ_PRM_OUTPUT_FORMAT

Key Name Related Parameter [Shared Control Signals]

Camera ResetCORACQ_PRM_SHARED_CAM_RESETCamera TriggerCORACQ_PRM_SHARED_CAM_TRIGGERExternal TriggerCORACQ_PRM_SHARED_EXT_TRIGGER

Frame Integrate CORACQ_PRM_SHARED_FRAME_INTEGRATE

Strobe CORACQ_PRM_SHARED_STROBE

Time Integrate CORACQ_PRM_SHARED_TIME_INTEGRATE

DALSA Contact Information

Sales Information

Visit our web site:

http://www.imaging.com/ Email: mailto:info@dalsa-coreco.com

International/Canada

DALSA 7075 Place Robert-Joncas Suite 142 St. Laurent, Quebec, Canada H4M 2Z2

Tel: (514) 333-1301 Fax: (514) 333-1388

USA

DALSA Building 8, Floor 2 900 Middlesex Turnpike Billerica, Ma. 01821

Tel: (978) 670-2000 Fax: (978) 670-2010

Technical Support

Any support question or request can be submitted via our web site:

Technical support form via our web page: Support requests for imaging product installations, Support requests for imaging applications	http://www.imaging.com/support
Camera support information	http://www.imaging.com/camsearch
Product literature and driver updates	http://www.imaging.com/download

When encountering hardware or software problems, please have the following documents included in your support request:

- The DALSA Log Viewer .txt file
- The PCI Diagnostic PciDump.txt file
- The DALSA Device Manager BoardInfo.txt file

Note, all these tools are available from the Windows start menu shortcut **Start*Programs*DALSA** *Sapera LT*Tools.

Glossary of Terms

Channel

A channel is a data path from a camera that includes an entire video line.

Chroma

The color portion of the composite NTSC or PAL video signal. Luma is the black-and-white portion of the signal. Often used interchangeably with Chrominance, although this is technically incorrect.

CMYK

A color model in which all colors are composed of varying intensities of the primary subtractive colors: Cyan, Magenta, Yellow, and Black. This color model is often used in print processing.

Color Key

Color keying is a method used to decide the source of a display pixel on the screen. If the graphics pixel on the VGA screen has the pixel value of the color key, then the corresponding pixel in the designated buffer will be displayed; otherwise, the VGA screen's pixel will be displayed.

Complex Parameter

A parameter with a size greater than an UINT32.

Composite Video

A single signal that includes both color video and timing information. NTSC and PAL are composite video standards, while RGB is not.

Contiguous Memory

Memory allocated as a single memory block in physical memory which is not pageable and not moveable.

Decimation

A process whereby pixels are dropped from digitized video waveforms for quick-and-easy image scaling. If 100 pixels are produced by a waveform, but only 50 are stored or used, the video waveform has been decimated by a factor of 2:1.

DLL

Dynamic Link Library. The supplied DLLs form the software interface between a Windows application and the DALSA hardware device.

Element

A data unit within the buffer, which may or may not be a pixel.

Frame Buffer

A large unit of memory used to hold the image for display onscreen.

Grayscale

In image processing, the range of available brightness levels, displayed in shades of gray. In an 8-bit system, the gray scale contains values from 0 to 255.

Host Memory

The Windows system's random-access memory. Typically refers to a frame buffer allocated in the computer system's memory.

Interlaced

The standard television method of raster scanning, in which the image is the product of two fields, each of which is made up of the image's alternate lines (that is, one field is comprised of lines 1, 3, 5, etc., and the other is comprised of lines 2, 4, 6, etc.).

Keying Color

The Windows color which is used as a switch to the frame buffer video. Wherever the keying color is drawn, it is replaced with video from the buffer.

Lookup Table, LUT

In image processing, the segment of memory that stores values for point processes. Input pixel values are those of the original image, while output values are those altered by the chosen point process. An input lookup table destructively modifies the stored image data, whereas the output lookup table simply receives the stored data and modifies it for output only.

Luma

The black-and-white portion of the composite NTSC or PAL video signal. Chroma is the color portion of the signal. Often used interchangeably with Luminance, although this is technically incorrect.

LVDS

Low Voltage Differential Signaling: A transmission method for sending digital information by using a very low voltage swing differentially over two PCB traces or a balanced cable. LVDS is relatively immune to noise.

Monochrome

A video source with only one component, usually meant to refer to a black-and-white composite signal. A monochrome composite video source has no chroma information.

Noninterlaced

Video scanning method, in which all the lines in the frame are scanned out sequentially. Used in several different analog and digital video systems, including progressive scan analog cameras, digital video cameras and computer monitors.

NTSC

National Television Standards Committee. Color TV standard used in North America, Japan, and in several other jurisdictions. The interlaced video signal is composed of a total of 525 video lines at a frame rate of 30 Hz.

PAL

Phase Alteration by Line. Color TV standard used in most of Europe and in several other jurisdictions. The interlaced video signal is composed of a total of 625 video lines at a frame rate of 25 Hz.

PCI

Peripheral Component Interconnect. The PCI local bus is a 32-bit high performance expansion bus intended for interconnecting add-in boards, controllers, and processor/memory systems.

Pixel

A single picture element, the smallest individual digital video component. The number of pixels describes the number of digital samples taken of the analog video signal. The number of pixels per video line by the number of active video lines describes the acquisition image resolution. The binary size of each pixel (that is, 8 bits, 15 bits, 24 bits) defines the number of gray levels or colors possible for each pixel.

Raster

The pattern of lines traced by rectilinear scanning in display systems.

RGB

Red, Green, Blue. Commonly used to refer to a non-composite video standard which uses these three colors in combination to generate a color video image.

RS-170

The original United States standard for black and white television. Now commonly used to refer to monochrome analog video signals.

Scaling

The act of changing the effective resolution of an image.

SECAM

Sequentiel Couleur avec Mémoire, a TV standard similar to PAL, in which the chroma is FM modulated and the R'-Y and B'-Y signals are transmitted line sequentially. Used primarily in France and Russia as well as in several other French-speaking and former Warsaw Pact countries.

Simple Parameter

A parameter with a size less than or equal to an UINT32.

Stride

The memory distance between two pixels that are viewed as vertically adjacent in the image.

S-Video

Separate video, also known as Y/C video, which supports separate luma (Y) and chroma (C) video inputs and outputs. Often used interchangeably with S-VHS, which is technically incorrect.

Sync

The basic piece of information which tells a video display (TV or computer monitor) where to put the picture. Horizontal sync, or HSYNC, controls the left-right dimension and vertical sync, or VSYNC controls the top-to-bottom dimension.

Tap

A tap is a data path from a camera that includes a part of a video line. An entire video line from the camera must then be constructed by combining all the taps together.

Tearing

A display artifact caused by the fact that the video display will read frame buffer memory asynchronously to the incoming video stream. Tearing is non-data destructive.

Video Input Conditioning , VIC

The act of modifying an analog video signal via bandwidth filtering or gain amplification.

Y/C

See S-Video.

YUV

A common color space used in composite video color systems. Y is the luma component while U and V are the color difference components.

Index

Α

acquisition capabilities 4 acquisition device 96 API 1 application notes 3

В

Binning 95

C

camera control methods 71 camera I/O 95 Camera Link 67 camera reset 71, 95 camera timing diagrams 94 camera trigger 71, 95 CameraLink 109 CamExpert 3 CCA 3, 95 CCA file 139 complex parameter 95 CORACQ CAM IO CONTROL 70, 105 CORACQ_CAM_RESET_DELAY 27 CORACO CAP BAYER ALIGNMENT 105 CORACQ CAP BAYER DECODER 18, 19, CORACQ CAP BAYER DECODER MET HOD 18 CORACO CAP BAYER DECODER SATU

RATION_FACTOR_DIVISOR 19, 20, 21, 22 CORACQ_CAP_BAYER_DECODER_SATU RATION_FACTOR_MAX 19 CORACQ_CAP_BAYER_DECODER_SATU RATION_FACTOR_MIN 19

- CORACQ_CAP_BAYER_DECODER_SATU RATION_WEIGHT_BLUE_MAX 20
- CORACQ_CAP_BAYER_DECODER_SATU RATION_WEIGHT_BLUE_MIN 20
- CORACQ_CAP_BAYER_DECODER_SATU RATION_WEIGHT_GREEN_MAX 21
- CORACQ_CAP_BAYER_DECODER_SATU RATION WEIGHT GREEN MIN 21
- CORACQ_CAP_BAYER_DECODER_SATU RATION WEIGHT RED MAX 22
- CORACQ_CAP_BAYER_DECODER_SATU RATION_WEIGHT_RED_MIN 22
- CORACQ_CAP_BAYER_DECODER_WB_ GAIN_MAX 22, 23
- CORACQ_CAP_BAYER_DECODER_WB_ GAIN_MIN 22, 23
- CORACQ_CAP_BAYER_DECODER_WB_ OFFSET MAX 23, 24
- CORACQ_CAP_BAYER_DECODER_WB_ OFFSET_MIN 23, 24
- CORACQ_CAP_BIT_ORDERING 24
- CORACQ_CAP_BRIGHTNESS 25
- CORACQ_CAP_BRIGHTNESS_ STEP 25
- CORACQ_CAP_BRIGHTNESS_BLUE 25 CORACQ CAP BRIGHTNESS BLUE MA
- X 25
- CORACQ_CAP_BRIGHTNESS_BLUE_MIN 25
- CORACQ_CAP_BRIGHTNESS_BLUE_STE P 25
- CORACQ_CAP_BRIGHTNESS_CONTRAS T_RED_ STEP 26
- CORACQ_CAP_BRIGHTNESS_GREEN 25 CORACQ_CAP_BRIGHTNESS_GREEN_M AX 25
- CORACQ_CAP_BRIGHTNESS_GREEN_MI N 25
- CORACQ_CAP_BRIGHTNESS_GREEN_ST EP 25
- CORACQ_CAP_BRIGHTNESS_MAX 25
- CORACQ_CAP_BRIGHTNESS_MIN 25
- CORACQ_CAP_BRIGHTNESS_RED 26 CORACQ_CAP_BRIGHTNESS_RED_MAX
- CORACQ_CAP_BRIGHTNESS_RED_MIN 26

- CORACQ_CAP_CAM_CONTROL_DURIN G READOUT 105
- CORACQ_CAP_CAM_CONTROL_PULSE0 HD ALIGN 26
- CORACQ_CAP_CAM_CONTROL_PULSE1 _HD_ALIGN 27
- CORACQ_CAP_CAM_RESET 27, 107
- CORACQ_CAP_CAM_RESET_DELAY_M AX 27
- CORACQ_CAP_CAM_RESET_DELAY_MI N 27
- CORACQ_CAP_CAM_RESET_DURATION MAX 106
- CORACQ_CAP_CAM_RESET_DURATION MIN 106
- CORACQ_CAP_CAM_RESET_METHOD 107
- CORACQ_CAP_CAM_RESET_POLARITY
 107
- CORACQ_CAP_CAM_TRIGGER 28, 108
- CORACQ_CAP_CAM_TRIGGER_DELAY_ MAX 28
- CORACQ_CAP_CAM_TRIGGER_DELAY_ MIN 28
- CORACQ_CAP_CAM_TRIGGER_DURATI ON MAX 108
- CORACQ_CAP_CAM_TRIGGER_DURATI ON MIN 108
- CORACQ_CAP_CAM_TRIGGER_METHO D 108
- CORACQ_CAP_CAM_TRIGGER_POLARI TY 108
- CORACQ_CAP_CAMLINK_CONFIGURAT ION 109
- CORACQ CAP CAMSEL COLOR 28
- CORACQ CAP CAMSEL MONO 28
- CORACQ_CAP_CAMSEL_RGB 28
- CORACQ_CAP_CAMSEL_YC 28
- CORACO CAP CHANNEL 109
- CORACQ_CAP_CHANNELS_ORDER 110
- CORACQ_CAP_CONNECTOR_CAM_CON TROL 68
- CORACQ_CAP_CONNECTOR_CAMLINK 68
- CORACQ_CAP_CONNECTOR_HIROSE12
 68

- CORACQ_CAP_CONNECTOR_TYPE 68 CORACQ_CAP_CONTRAST 29 CORACQ_CAP_CONTRAST_BLUE 29 CORACQ_CAP_CONTRAST_BLUE_MAX 29
- CORACQ_CAP_CONTRAST_BLUE_MIN 29
- CORACQ_CAP_CONTRAST_BLUE_STEP 29
- CORACQ_CAP_CONTRAST_GREEN 29 CORACQ_CAP_CONTRAST_GREEN_MA X 29
- CORACQ_CAP_CONTRAST_GREEN_MIN 29
- CORACQ_CAP_CONTRAST_GREEN_STE P 29
- CORACQ_CAP_CONTRAST_MAX 29
- CORACQ_CAP_CONTRAST_MIN 29
- CORACQ_CAP_CONTRAST_RED 30
- CORACQ_CAP_CONTRAST_RED_MAX 30
- CORACQ_CAP_CONTRAST_RED_MIN 30 CORACQ_CAP_CONTRAST_RED_STEP 30
- CORACQ_CAP_CONTRAST_STEP 29 CORACQ_CAP_CONTROL_SIGNAL_OUT PUT1 30
- CORACQ_CAP_CONTROL_SIGNAL_OUT PUT2 30
- CORACQ_CAP_COUPLING 112
- CORACQ_CAP_CROP_HEIGHT_MAX 31 CORACQ_CAP_CROP_HEIGHT_MIN 31
- CORACO CAP CROP HEIGHT MULT 31
- CORACQ_CAP_CROP_HEIGHT_MULT 31 CORACQ_CAP_CROP_HORZ 32, 34
- CORACO CAP CROP LEFT MAX 32
- CORACQ_CAP_CROP_LEFT_MAX 32
- CORACQ_CAP_CROP_LEFT_MIN 32 CORACQ_CAP_CROP_LEFT_MULT 32
- CORACQ CAP CROP TOP MAX 33
- CORACO CAP CROP TOP MIN 33
- CORACQ_CAP_CROP_TOP_MULT 33
- CORACQ_CAP_CROP_VERT 31, 33
- CORACQ_CAP_CROP_WIDTH_MAX 34
- CORACQ_CAP_CROP_WIDTH_MIN 34 CORACQ CAP CROP WIDTH MULT 34
- CORACQ_CAP_DATA_VALID_ENABLE

- CORACQ_CAP_DATA_VALID_POLARIT Y 112
- CORACQ_CAP_DC_REST 35, 36
- CORACQ_CAP_DC_REST_MODE 35
- CORACQ_CAP_DC_REST_START_MAX 35
- CORACQ_CAP_DC_REST_START_MIN 35
- CORACQ_CAP_DC_REST_WIDTH_MAX 36
- CORACQ_CAP_DC_REST_WIDTH_MIN
 36
- CORACQ CAP DECIMATE 36
- CORACQ CAP DECIMATE METHOD 36
- CORACQ_CAP_DETECT_PIXEL_CLK 5
- CORACQ_CAP_DETECT_SYNC 8, 10
- CORACQ_CAP_DETECT_VACTIVE 5
- CORACQ_CAP_EXT_FRAME_TRIGGER
- CORACQ_CAP_EXT_FRAME_TRIGGER_ DETECTION 37
- CORACQ_CAP_EXT_FRAME_TRIGGER_ LEVEL 38
- CORACQ_CAP_EXT_FRAME_TRIGGER_ SOURCE 39
- CORACQ CAP EXT LINE TRIGGER 39
- CORACQ_CAP_EXT_LINE_TRIGGER_DE TECTION 39
- CORACQ_CAP_EXT_LINE_TRIGGER_LE VEL 40
- CORACQ CAP EXT TRIGGER 42
- CORACQ_CAP_EXT_TRIGGER_DELAY_ MAX 40
- CORACQ_CAP_EXT_TRIGGER_DELAY_ MIN 40
- CORACQ_CAP_EXT_TRIGGER_DURATI ON MAX 42
- CORACQ_CAP_EXT_TRIGGER_DURATI ON MIN 42
- CORACQ_CAP_EXT_TRIGGER_FRAME_ COUNT 43
- CORACQ_CAP_EXT_TRIGGER_IGNORE_ DELAY MAX 43
- CORACQ_CAP_EXT_TRIGGER_IGNORE_ DELAY_MIN 43
- CORACQ_CAP_EXT_TRIGGER_LEVEL 44

- CORACQ_CAP_EXT_TRIGGER_SOURCE
 44
- CORACQ_CAP_FIELD_ORDER 113
- CORACQ_CAP_FIX_FILTER 45
- CORACQ_CAP_FIX_FILTER_MAX 45
- CORACQ_CAP_FLAT_FIELD 8
- CORACQ_CAP_FLAT_FIELD_GAIN_DIVI SOR 8
- CORACQ_CAP_FLAT_FIELD_GAIN_MAX 8
- CORACQ_CAP_FLAT_FIELD_GAIN_MIN 8
- CORACQ_CAP_FLAT_FIELD_OFFSET_M AX 8
- CORACQ_CAP_FLAT_FIELD_OFFSET_MI N 8
- CORACQ_CAP_FLAT_FIELD_PIXEL_REP LACEMENT 8
- CORACQ_CAP_FLIP 45
- CORACQ_CAP_FRAME 113
- CORACQ_CAP_FRAME_INTEGRATE 46, 113, 114
- CORACQ_CAP_FRAME_INTEGRATE_CO UNT MAX 46
- CORACQ_CAP_FRAME_INTEGRATE_ME THOD 113
- CORACQ_CAP_FRAME_INTEGRATE_PO LARITY 114
- CORACQ_CAP_FRAME_LENGTH 46
- CORACQ_CAP_HACTIVE_MAX 114
- CORACQ CAP HACTIVE MIN 114
- CORACQ_CAP_HACTIVE_MULT 114
- CORACQ_CAP_HBACK_INVALID_MAX 114
- CORACQ_CAP_HBACK_INVALID_MIN 114
- CORACQ_CAP_HBACK_INVALID_MULT
 114
- CORACQ_CAP_HBACK_PORCH_MAX 114
- CORACQ_CAP_HBACK_PORCH_MIN 114 CORACQ_CAP_HBACK_PORCH_MULT 114
- CORACQ_CAP_HFRONT_INVALID_MAX 115

- CORACQ_CAP_HFRONT_INVALID_MIN 115
- CORACQ_CAP_HFRONT_INVALID_MUL T 115
- CORACQ_CAP_HFRONT_PORCH_MAX 115
- CORACQ_CAP_HFRONT_PORCH_MIN 115
- CORACQ_CAP_HFRONT_PORCH_MULT 115
- CORACQ_CAP_HSYNC_MAX 115
- CORACQ CAP HSYNC MIN 115
- CORACQ CAP HSYNC MULT 115
- CORACQ_CAP_HSYNC_POLARITY 115
- CORACQ CAP HSYNC REF 47
- CORACO CAP HUE 47
- CORACQ_CAP_HUE_MIN to CORACQ_CAP_HUE_MAX 47
- CORACQ_CAP_HUE_STEP 47
- CORACQ CAP INT FRAME TRIGGER 47
- CORACQ_CAP_INT_FRAME_TRIGGER_F REO MAX 48
- CORACQ_CAP_INT_FRAME_TRIGGER_F REO MIN 48
- CORACO CAP INT LINE TRIGGER 48
- CORACQ_CAP_INTERFACE 116
- CORACQ_CAP_LINE_INTEGRATE 49, 116. 117. 118
- CORACQ_CAP_LINE_INTEGRATE_DURA TION MAX 49
- CORACQ_CAP_LINE_INTEGRATE_DURA TION_MIN 49
- CORACQ_CAP_LINE_INTEGRATE_METH OD 116
- CORACQ_CAP_LINE_INTEGRATE_PULS E0 DELAY MAX 117
- CORACQ_CAP_LINE_INTEGRATE_PULS E0 DELAY MIN 117
- CORACQ_CAP_LINE_INTEGRATE_PULS E0 DURATION MAX 117
- CORACQ_CAP_LINE_INTEGRATE_PULS E0 DURATION MIN 117
- CORACQ_CAP_LINE_INTEGRATE_PULS E0_POLARITY 117
- CORACQ_CAP_LINE_INTEGRATE_PULS E1 DELAY MAX 118

- CORACQ_CAP_LINE_INTEGRATE_PULS E1 DELAY MIN 118
- CORACQ_CAP_LINE_INTEGRATE_PULS E1 DURATION MAX 118
- CORACQ_CAP_LINE_INTEGRATE_PULS E1 DURATION MIN 118
- CORACQ_CAP_LINE_INTEGRATE_PULS E1 POLARITY 118
- CORACQ_CAP_LINE_TRIGGER 50, 119, 120
- CORACQ_CAP_LINE_TRIGGER_DELAY_ MAX 119
- CORACQ_CAP_LINE_TRIGGER_DELAY_ MIN 119
- CORACQ_CAP_LINE_TRIGGER_DURATI ON_MAX 119
- CORACQ_CAP_LINE_TRIGGER_DURATI ON_MIN 119
- CORACQ_CAP_LINE_TRIGGER_METHO D 119
- CORACQ_CAP_LINE_TRIGGER_POLARI TY 120
- CORACQ_CAP_LINESCAN_DIRECTION 50, 120
- CORACQ_CAP_LINESCAN_DIRECTION_ POLARITY 120
- CORACQ_CAP_LUT 50
- CORACQ_CAP_LUT_ENABLE 50
- CORACQ_CAP_MASTER_MODE 52
- CORACQ_CAP_MASTER_MODE_HSYNC _POLARITY 52
- CORACQ_CAP_MASTER_MODE_VSYNC POLARITY 52
- CORACQ_CAP_OUTPUT_ENABLE 53
- CORACQ_CAP_OUTPUT_FORMAT 54
- CORACQ_CAP_PIXEL_CLK_DETECTION 121
- CORACQ_CAP_PIXEL_CLK_EXT_MAX 121
- CORACQ_CAP_PIXEL_CLK_EXT_MIN 121
- CORACQ_CAP_PIXEL_CLK_INT_MAX 122
- CORACQ_CAP_PIXEL_CLK_INT_MIN 122 CORACQ_CAP_PIXEL_CLK_SRC 122 CORACQ_CAP_PIXEL_DEPTH 51, 123

- CORACQ_CAP_PIXEL_MASK 54 CORACQ_CAP_PLANAR_INPUT_SOURC ES 55
- CORACQ_CAP_PROG_FILTER 55
- CORACQ_CAP_PROG_FILTER_FREQ_MA
 X 55
- CORACQ_CAP_PROG_FILTER_FREQ_MI N 55
- CORACQ_CAP_SATURATION 56
- CORACQ_CAP_SATURATION_MAX 56
- CORACQ_CAP_SATURATION_MIN 56
- CORACQ_CAP_SATURATION_STEP 56
- CORACQ_CAP_SCALE_HORZ_MAX 56
- CORACQ_CAP_SCALE_HORZ_MAX_FAC TOR 34, 56
- CORACQ_CAP_SCALE_HORZ_METHOD 57
- CORACQ_CAP_SCALE_HORZ_MIN 56 CORACQ_CAP_SCALE_HORZ_MIN_FAC
 - TOR 56
- CORACQ_CAP_SCALE_HORZ_MULT 56
- CORACQ_CAP_SCALE_VERT_MAX 57
- CORACQ_CAP_SCALE_VERT_MAX_FAC TOR 31, 57
- CORACQ_CAP_SCALE_VERT_METHOD
- CORACQ_CAP_SCALE_VERT_MIN 57
- CORACQ_CAP_SCALE_VERT_MIN_FAC TOR 31, 57
- CORACQ_CAP_SCALE_VERT_MULT 57
- CORACQ_CAP_SCAN 123
- CORACQ_CAP_SHAFT_ENCODER 58
- CORACQ_CAP_SHAFT_ENCODER_DROP MAX 58
- CORACQ_CAP_SHAFT_ENCODER_DROP MIN 58
- CORACQ_CAP_SHAFT_ENCODER_LEVE L 59
- CORACQ_CAP_SHAFT_ENCODER_MULT IPLY MAX 59
- CORACQ_CAP_SHAFT_ENCODER_MULT IPLY MIN 59
- CORACQ_CAP_SHAFT_ENCODER_MULT IPLY STEP 59
- CORACQ_CAP_SHARED_CAM_RESET 60

- CORACQ_CAP_SHARED_CAM_TRIGGER 60
- CORACQ_CAP_SHARED_EXT_TRIGGER 61
- CORACQ_CAP_SHARED_FRAME_INTEG RATE 61
- CORACQ_CAP_SHARED_STROBE 61
- CORACQ_CAP_SHARED_TIME_INTEGR ATE 62
- CORACQ_CAP_SHARPNESS_MAX 62
- CORACQ CAP SHARPNESS MIN 62
- CORACQ_CAP_SIGNAL 124
- CORACQ_CAP_SIGNAL_STATUS 9
- CORACQ_CAP_SNAP_COUNT 62
- CORACQ_CAP_SOFTWARE_TRIGGER 38, 39, 42
- CORACO CAP STROBE 63
- CORACQ_CAP_STROBE_DELAY_2_MAX
- CORACQ_CAP_STROBE_DELAY_2_MIN
- CORACQ_CAP_STROBE_DELAY_MAX 62.
- CORACQ_CAP_STROBE_DELAY_MIN 62 CORACQ_CAP_STROBE_DURATION_MA X 63
- CORACQ_CAP_STROBE_DURATION_MI N 63
- CORACQ_CAP_STROBE_LEVEL 63
- CORACQ_CAP_STROBE_METHOD 64
- CORACQ_CAP_STROBE POLARITY 64
- CORACQ_CAP_SYNC 124
- CORACQ_CAP_SYNC_CROP_HEIGHT_M AX 31
- CORACQ_CAP_SYNC_CROP_HEIGHT_MI N 31
- CORACQ_CAP_SYNC_CROP_HEIGHT_M ULT 31
- CORACQ_CAP_SYNC_CROP_LEFT_MAX 32
- CORACQ_CAP_SYNC_CROP_LEFT_MIN 32
- CORACQ_CAP_SYNC_CROP_LEFT_MUL T 32
- CORACQ_CAP_TAP_DIRECTION 125, 126, 127, 128, 129

- CORACQ_CAP_TAP_OUTPUT 129
- CORACQ CAP TAPS 130
- CORACQ_CAP_TIME_INTEGRATE 65, 130, 131, 132, 133
- CORACQ_CAP_TIME_INTEGRATE_DELA Y_MAX 64
- CORACQ_CAP_TIME_INTEGRATE_DELA
 Y MIN 64
- CORACQ_CAP_TIME_INTEGRATE_DUR
 ATION MAX 65
- CORACQ_CAP_TIME_INTEGRATE_DUR ATION MIN 65
- CORACQ_CAP_TIME_INTEGRATE_MET HOD 130
- CORACQ_CAP_TIME_INTEGRATE_PULS E0 DELAY MAX 131
- CORACQ_CAP_TIME_INTEGRATE_PULS E0 DELAY MIN 131
- CORACQ_CAP_TIME_INTEGRATE_PULS E0_DURATION_MAX 131
- CORACQ_CAP_TIME_INTEGRATE_PULS E0 DURATION MIN 131
- CORACQ_CAP_TIME_INTEGRATE_PULS E0 POLARITY 130, 132
- CORACQ_CAP_TIME_INTEGRATE_PULS E1_DELAY_MAX 132
- CORACQ_CAP_TIME_INTEGRATE_PULS E1 DELAY MIN 132
- CORACQ_CAP_TIME_INTEGRATE_PULS E1 DURATION MAX 132
- CORACQ_CAP_TIME_INTEGRATE_PULS E1 DURATION MIN 132
- CORACQ_CAP_TIME_INTEGRATE_PULS E1 POLARITY 133
- CORACQ CAP TIMESLOT 130
- CORACQ_CAP_VACTIVE_MAX 133
- CORACQ_CAP_VACTIVE_MIN 133
- CORACQ_CAP_VACTIVE_MULT 133
- CORACQ_CAP_VBACK_INVALID_MAX 133
- CORACQ_CAP_VBACK_INVALID_MIN
 133
- CORACQ_CAP_VBACK_INVALID_MULT 133
- CORACQ_CAP_VBACK_PORCH_MAX 134

- CORACQ_CAP_VBACK_PORCH_MIN 134 CORACQ_CAP_VBACK_PORCH_MULT 134
- CORACQ_CAP_VERTICAL_TIMEOUT_D ELAY MAX 65
- CORACQ_CAP_VERTICAL_TIMEOUT_D ELAY MIN 65
- CORACQ_CAP_VFRONT_INVALID_MAX
 134
- CORACQ_CAP_VFRONT_INVALID_MIN
 134
- CORACQ_CAP_VFRONT_INVALID_MUL T 134
- CORACQ_CAP_VFRONT_PORCH_MAX
- CORACQ_CAP_VFRONT_PORCH_MIN 134
- CORACQ_CAP_VFRONT_PORCH_MULT 134
- CORACQ_CAP_VIDEO 135
- CORACQ CAP VIDEO STD 136
- CORACQ_CAP_VSYNC_MAX 136
- CORACQ CAP VSYNC MIN 136
- CORACO CAP VSYNC MULT 136
- CORACQ_CAP_VSYNC_POLARITY 136
- CORACQ CAP WEN 66
- CORACQ_CAP_WEN_POLARITY 137
- CORACQ DATA VALID ENABLE 112
- CORACQ_DETECT_SYNC 71
- CORACQ_PRM_BAYER_ALIGNMENT 105
- CORACQ_PRM_BAYER_DECODER_ENA BLE 18, 19, 20, 21, 22, 23, 24, 105
- CORACQ_PRM_BAYER_DECODER_MET HOD 18
- CORACQ_PRM_BAYER_DECODER_SAT URATION_FACTOR 19, 20, 21, 22
- CORACQ_PRM_BAYER_DECODER_SAT URATION_WEIGHT_BLUE 19, 20, 21, 22
- CORACQ_PRM_BAYER_DECODER_SAT URATION_WEIGHT_GREEN 19, 20, 21, 22
- CORACQ_PRM_BAYER_DECODER_SAT URATION_WEIGHT_RED 19, 20, 21, 22

- CORACQ_PRM_BAYER_DECODER_WB_ GAIN BLUE 23
- CORACQ_PRM_BAYER_DECODER_WB_ GAIN GREEN 23
- CORACQ_PRM_BAYER_DECODER_WB_ GAIN_RED 22
- CORACQ_PRM_BAYER_DECODER_WB_ OFFSET BLUE 24
- CORACQ_PRM_BAYER_DECODER_WB_ OFFSET GREEN 23
- CORACQ_PRM_BAYER_DECODER_WB_ OFFSET RED 23
- CORACQ PRM BAYER ENABLE 18
- CORACQ_PRM_BIT_ORDERING 24
- CORACQ PRM BRIGHTNESS 25
- CORACQ_PRM_BRIGHTNESS_BLUE 25
- CORACQ_PRM_BRIGHTNESS_GREEN 25
- CORACQ_PRM_BRIGHTNESS_RED 26
- CORACQ_PRM_CAM_COMPANY_NAME 105
- CORACQ_PRM_CAM_CONTROL_DURIN G READOUT 43, 105
- CORACQ_PRM_CAM_CONTROL_PULSE0 HD_ALIGN 26
- CORACQ_PRM_CAM_CONTROL_PULSE1 _HD_ALIGN 27
- CORACQ_PRM_CAM_IO_CONTROL 105
- CORACQ_PRM_CAM_LINE_TRIGGER_F REQ_MAX 106
- CORACQ_PRM_CAM_LINE_TRIGGER_F REQ_MIN 106
- CORACQ_PRM_CAM_MODEL_NAME 106
- CORACQ_PRM_CAM_NAME 106
- CORACQ_PRM_CAM_RESET_DURATION 106
- CORACQ_PRM_CAM_RESET_ENABLE 27 CORACQ_PRM_CAM_RESET_METHOD 107
- CORACQ_PRM_CAM_RESET_POLARITY 107
- CORACQ_PRM_CAM_TIME_INTEGRATE
 _DURATION_MAX 107
- CORACQ_PRM_CAM_TIME_INTEGRATE
 _DURATION_MIN 107
- CORACQ_PRM_CAM_TRIGGER_DELAY 28

- CORACQ_PRM_CAM_TRIGGER_DURATI ON 108
- CORACQ_PRM_CAM_TRIGGER_ENABLE
- CORACQ_PRM_CAM_TRIGGER_METHO D 108
- CORACQ_PRM_CAM_TRIGGER_POLARI TY 108
- CORACQ_PRM_CAMLINK_CONFIGURA TION 109
- CORACQ_PRM_CAMSEL 28
- CORACO PRM CHANNEL 109
- CORACQ_PRM_CHANNELS_ORDER 110
- CORACQ_PRM_CONNECTOR_EXPOSUR E_INPUT 110
- CORACQ_PRM_CONNECTOR_HD_INPUT 110
- CORACQ_PRM_CONNECTOR_LINE_INT EGRATE INPUT 110
- CORACQ_PRM_CONNECTOR_LINE_TRI GGER_INPUT 111
- CORACQ_PRM_CONNECTOR_LINESCAN DIRECTION INPUT 111
- CORACQ_PRM_CONNECTOR_PIXEL_CL K OUTPUT 111
- CORACQ_PRM_CONNECTOR_RESET_TR IGGER_INPUT 111
- CORACQ_PRM_CONNECTOR_VD_INPUT 112
- CORACQ_PRM_CONNECTOR_WEN_OUT PUT 111
- CORACQ_PRM_CONTRAST 29
- CORACQ PRM CONTRAST BLUE 29
- CORACQ_PRM_CONTRAST_GREEN 29
- CORACQ_PRM_CONTRAST_RED 30
- CORACQ_PRM_CONTROL_SIGNAL_OUT PUT1 30
- CORACQ_PRM_CONTROL_SIGNAL_OUT PUT2 30
- CORACQ_PRM_COUPLING 112
- CORACQ_PRM_CROP_HEIGHT 6, 31, 32, 33, 37
- CORACQ_PRM_CROP_LEFT 32
- CORACQ PRM CROP TOP 33
- CORACQ_PRM_CROP_WIDTH 34

- CORACQ_PRM_DATA_VALID_POLARIT
 Y 112
- CORACQ_PRM_DC_REST_MODE 35
- CORACQ_PRM_DC_REST_START 35
- CORACQ_PRM_DC_REST_WIDTH 36
- CORACQ_PRM_DECIMATE_COUNT 36
- CORACQ_PRM_DECIMATE_METHOD 36
- CORACQ PRM DETECT HACTIVE 5
- CORACO PRM DETECT PIXEL CLK 5
- CORACQ PRM DETECT VACTIVE 5
- CORACQ_PRM_EVENT_CALLBACK 5
- CORACQ PRM EVENT CONTEXT 5
- CORACO PRM EVENT COUNT 5
- CORACQ_PRM_EVENT_SERVER 5
- CORACQ PRM EVENT TYPE 6
- CORACQ_PRM_EXT_FRAME_TRIGGER_ DETECTION 37
- CORACQ_PRM_EXT_FRAME_TRIGGER_ ENABLE 38
- CORACQ_PRM_EXT_FRAME_TRIGGER_ LEVEL 38
- CORACQ_PRM_EXT_FRAME_TRIGGER_ SOURC 44
- CORACQ_PRM_EXT_FRAME_TRIGGER_ SOURCE 39
- CORACQ_PRM_EXT_LINE_TRIGGER_DE TECTION 39
- CORACQ_PRM_EXT_LINE_TRIGGER_EN ABLE 39
- CORACQ_PRM_EXT_LINE_TRIGGER_LE VEL 40
- CORACQ_PRM_EXT_LINE_TRIGGER_SO URCE 40
- CORACQ_PRM_EXT_LINE_TRIGGER_SO URCE_STR 40
- CORACQ_PRM_EXT_TRIGGER_DELAY
 40
- CORACQ_PRM_EXT_TRIGGER_DELAY_ TIME BASE 41
- CORACQ_PRM_EXT_TRIGGER_DETECTI ON 41
- CORACQ_PRM_EXT_TRIGGER_DURATI ON 42
- CORACQ_PRM_EXT_TRIGGER_ENABLE 39, 42

- CORACQ_PRM_EXT_TRIGGER_FRAME_ COUNT 43
- CORACQ_PRM_EXT_TRIGGER_IGNORE_ DELAY 43
- CORACQ_PRM_EXT_TRIGGER_LEVEL 44
- CORACQ_PRM_EXT_TRIGGER_SOURCE
 44
- CORACQ_PRM_EXT_TRIGGER_SOURCE STR 44
- CORACQ PRM FIELD ORDER 113
- CORACQ_PRM_FIX_FILTER_ENABLE 45
- CORACQ_PRM_FIX_FILTER_SELECTOR 45
- CORACQ_PRM_FIX_FILTER_SELECTOR_ STR 45
- CORACQ_PRM_FLAT_FIELD_ENABLE 8
- CORACQ_PRM_FLAT_FIELD_SELECT 8 CORACO PRM FLIP 45
- CORACQ PRM FRAME 113
- CORACQ_I RW_FRAME IIS
- CORACQ_PRM_FRAME_INTEGRATE_CO UNT 46
- CORACQ_PRM_FRAME_INTEGRATE_EN ABLE 46
- CORACQ_PRM_FRAME_INTEGRATE_ME THOD 113
- CORACQ_PRM_FRAME_INTEGRATE_PO LARITY 114
- CORACQ_PRM_FRAME_LENGTH 46
- CORACO PRM HACTIVE 114
- CORACQ PRM HBACK INVALID 114
- CORACO PRM HBACK PORCH 114
- CORACQ PRM HFRONT INVALID 115
- CORACQ_PRM_HFRONT_PORCH 115
- CORACO PRM HSYNC 115
- CORACQ PRM HSYNC POLARITY 115
- CORACQ_PRM_HSYNC_REF 47
- CORACQ PRM HSYNC TIMEOUT 8
- CORACQ PRM HUE 47
- CORACQ_PRM_INT_FRAME_TRIGGER_E NABLE 47
- CORACQ_PRM_INT_FRAME_TRIGGER_F REO 48
- CORACQ_PRM_INT_LINE_TRIGGER_EN ABLE 48

- CORACQ_PRM_INT_LINE_TRIGGER_FR EQ 48
- CORACQ_PRM_INT_LINE_TRIGGER_FR EO MAX 49
- CORACQ_PRM_INT_LINE_TRIGGER_FR EQ_MIN 49
- CORACQ PRM INTERFACE 116
- CORACQ PRM LABEL 9
- CORACQ_PRM_LINE_INTEGRATE_DELA Y 116
- CORACQ_PRM_LINE_INTEGRATE_DUR ATION 49
- CORACQ_PRM_LINE_INTEGRATE_ENA BLE 49
- CORACQ_PRM_LINE_INTEGRATE_MET HOD 116
- CORACQ_PRM_LINE_INTEGRATE_POLA RITY 116
- CORACQ_PRM_LINE_INTEGRATE_PULS E0 DELAY 117
- CORACQ_PRM_LINE_INTEGRATE_PULS E0 DURATION 117
- CORACQ_PRM_LINE_INTEGRATE_PULS E0 POLARITY 117
- CORACQ_PRM_LINE_INTEGRATE_PULS E1_DELAY 118
- CORACQ_PRM_LINE_INTEGRATE_PULS E1 DURATION 118
- CORACQ_PRM_LINE_INTEGRATE_PULS E1_POLARITY 118
- CORACQ_PRM_LINE_TRIGGER_DELAY 119
- CORACQ_PRM_LINE_TRIGGER_DURATI ON 119
- CORACQ_PRM_LINE_TRIGGER_ENABLE 50
- CORACQ_PRM_LINE_TRIGGER_METHO D 119
- CORACQ_PRM_LINE_TRIGGER_POLARI TY 120
- CORACQ_PRM_LINESCAN_DIRECTION 120
- CORACQ_PRM_LINESCAN_DIRECTION_ OUTPUT 50
- CORACQ_PRM_LINESCAN_DIRECTION_ POLARITY 120

- CORACQ_PRM_LUT_ENABLE 50
- CORACQ_PRM_LUT_FORMAT 51
- CORACQ_PRM_LUT_MAX 51
- CORACQ_PRM_LUT_NENTRIES 51
- CORACQ_PRM_LUT_NUMBER 51
- CORACQ PRM MASTER MODE 52
- CORACQ_PRM_MASTER_MODE_HSYNC POLARITY 52
- CORACQ_PRM_MASTER_MODE_VSYNC POLARITY 52
- CORACQ_PRM_OUTPUT_ENABLE (obsolete) 53
- CORACQ_PRM_OUTPUT_FORMAT 18, 54
- CORACQ_PRM_PIXEL_CLK_11 121
- CORACQ_PRM_PIXEL_CLK_DETECTION 121
- CORACQ_PRM_PIXEL_CLK_EXT 121
- CORACQ_PRM_PIXEL_CLK_INT 122
- CORACQ_PRM_PIXEL_CLK_SRC 122
- CORACQ_PRM_PIXEL_DEPTH 123
- CORACQ_PRM_PIXEL_MASK 54
- CORACQ_PRM_PLANAR_INPUT_SOURC ES 55
- CORACQ_PRM_PROG_FILTER_ENABLE 55
- CORACQ_PRM_PROG_FILTER_FREQ 55
- CORACQ_PRM_SATURATION 56
- CORACQ_PRM_SCALE_HORZ 56
- CORACQ_PRM_SCALE_HORZ_METHOD 57
- CORACQ_PRM_SCALE_VERT 57
- CORACQ_PRM_SCALE_VERT_METHOD 58
- CORACQ_PRM_SCAN 123
- CORACQ_PRM_SHAFT_ENCODER_DROP 58
- CORACQ_PRM_SHAFT_ENCODER_ENA BLE 58
- CORACQ_PRM_SHAFT_ENCODER_LEVE
- CORACQ_PRM_SHAFT_ENCODER_MUL TIPLY 59
- CORACQ_PRM_SHARED_CAM_RESET 60
- CORACQ_PRM_SHARED_CAM_TRIGGE R 60

- CORACQ_PRM_SHARED_EXT_TRIGGER 61
- CORACQ_PRM_SHARED_FRAME_INTEG RATE 61
- CORACQ_PRM_SHARED_STROBE 61 CORACQ_PRM_SHARED_TIME_INTEGR ATE 62
- CORACQ PRM SHARPNESS 62
- CORACQ_PRM_SIGNAL 124
- CORACQ PRM SIGNAL STATUS 9
- CORACQ_PRM_SNAP_COUNT 62
- CORACQ PRM STROBE DELAY 62
- CORACQ_PRM_STROBE_DELAY_2 63
- CORACO PRM STROBE DURATION 63
- CORACQ PRM STROBE ENABLE 62, 63
- CORACO PRM STROBE LEVEL 63
- CORACQ_PRM_STROBE_METHOD 64
- CORACQ_PRM_STROBE_POLARITY 64
- CORACO PRM SYNC 124
- CORACQ_PRM_TAP_1_DIRECTION 125
- CORACQ_PRM_TAP_10_DIRECTION 127
- CORACQ_PRM_TAP_11_DIRECTION 128
- CORACO PRM TAP 12 DIRECTION 128
- CORACO PRM TAP 13 DIRECTION 128
- CORACO PRM TAP 14 DIRECTION 128
- CORACQ_PRM_TAP_15_DIRECTION 129
- CORACQ_PRM_TAP_16_DIRECTION 129
- CORACQ PRM TAP 2 DIRECTION 125
- CORACQ_PRM_TAP_3_DIRECTION 126
- CORACQ PRM TAP 4 DIRECTION 126
- CORACQ_PRM_TAP_5_DIRECTION 126
- CORACQ_PRM_TAP_6_DIRECTION 126
- CORACQ PRM TAP 7 DIRECTION 127
- CORACQ_FRM_FAL_/_DIRECTION 12/
- CORACQ_PRM_TAP_8_DIRECTION 127
- CORACQ PRM TAP 9 DIRECTION 127
- CORACO PRM TAP OUTPUT 129
- CORACO PRM TAPS 130
- CORACQ_PRM_TIME_INTEGRATE_DEL AY 64
- CORACQ_PRM_TIME_INTEGRATE_DUR ATION 65
- CORACQ_PRM_TIME_INTEGRATE_ENA BLE 65
- CORACQ_PRM_TIME_INTEGRATE_MET HOD 130

- CORACQ_PRM_TIME_INTEGRATE_POL ARITY 131
- CORACQ_PRM_TIME_INTEGRATE_PULS E DELAY 131
- CORACQ_PRM_TIME_INTEGRATE_PULS E DURATION 131
- CORACQ_PRM_TIME_INTEGRATE_PULS E POLARITY 131
- CORACQ_PRM_TIME_INTEGRATE_PULS E0 DELAY 131
- CORACQ_PRM_TIME_INTEGRATE_PULS E0 DURATION 131
- CORACQ_PRM_TIME_INTEGRATE_PULS E0_POLARITY 132
- CORACQ_PRM_TIME_INTEGRATE_PULS E1 DELAY 132
- CORACQ_PRM_TIME_INTEGRATE_PULS E1 DURATION 132
- CORACQ_PRM_TIME_INTEGRATE_PULS E1 POLARITY 133
- CORACQ PRM TIMESLOT 130
- CORACQ_PRM_TRIGGER_EXP_SIGNAL
- CORACO PRM VACTIVE 133
- CORACO PRM VBACK INVALID 133
- CORACQ PRM VBACK PORCH 134
- CORACQ_PRM_VERTICAL_TIMEOUT_D ELAY 65
- CORACQ_PRM_VFRONT_INVALID 134
- CORACO PRM VFRONT PORCH 134
- CORACQ_PRM_VIC_NAME 66
- CORACQ_PRM_VIDEO 135 CORACQ_PRM_VIDEO_LEVEL_MAX 135
- CORACQ_PRM_VIDEO_LEVEL_MIN 135
- CORACO PRM VIDEO STD 136
- CORACQ PRM VSYNC 136
- CORACQ_PRM_VSYNC_POLARITY 136
- CORACQ PRM VSYNC REF 66
- CORACO PRM VSYNC TIMEOUT 10
- CORACO PRM WEN ENABLE 66
- CORACQ PRM WEN POLARITY 137
- CORACQ_VAL_ACTIVE_HIGH 37, 41, 52, 64, 107, 108, 112, 114, 115, 117, 118,
 - 120, 130, 132, 133, 136, 137

- CORACQ_VAL_ACTIVE_LOW 37, 41, 52, 64, 107, 108, 112, 114, 115, 117, 118, 120, 130, 132, 133, 136, 137
- CORACQ_VAL_BAYER_ALIGNMENT_B G GR 105
- CORACQ_VAL_BAYER_ALIGNMENT_G B_RG 105
- CORACQ_VAL_BAYER_ALIGNMENT_G R BG 105
- CORACQ_VAL_BAYER_ALIGNMENT_R G GB 105
- CORACQ_VAL_BAYER_DECODER_MET HOD 1 18
- CORACQ_VAL_BAYER_DECODER_MET HOD 2 18
- CORACQ_VAL_BAYER_DECODER_MET HOD 3 18
- CORACQ_VAL_BIT_ORDERING_9_10 24 CORACQ_VAL_BIT_ORDERING_INVERT 24
- CORACQ_VAL_BIT_ORDERING_MSB_10
- CORACQ_VAL_BIT_ORDERING_MSB_12
 24
- CORACQ_VAL_BIT_ORDERING_STD 24 CORACQ_VAL_BOTH_EDGE 37
- CORACQ_VAL_CAM_CONTROL_HD_ALI GN_AUTO 26, 27
- CORACQ_VAL_CAM_CONTROL_HD_ALI GN OFF 26, 27
- CORACQ_VAL_CAM_CONTROL_HD_ALI GN_ON 26, 27
- CORACQ_VAL_CAM_RESET_METHOD_1
 72
- CORACQ_VAL_CAM_TRIGGER_METHO D 173
- CORACQ_VAL_CAM_TRIGGER_METHO D_2 74
- CORACQ_VAL_CAMLINK_CONFIGURAT ION_10TAPS_FORMAT1 109
- CORACQ_VAL_CAMLINK_CONFIGURAT ION_10TAPS_FORMAT2 109
- CORACQ_VAL_CAMLINK_CONFIGURAT ION_16TAPS 109
- CORACQ_VAL_CAMLINK_CONFIGURAT ION 2BASE 109

- CORACQ_VAL_CAMLINK_CONFIGURAT ION BASE 109
- CORACQ_VAL_CAMLINK_CONFIGURAT ION FULL 109
- CORACQ_VAL_CAMLINK_CONFIGURAT ION_MEDIUM 109
- CORACO VAL CHANNEL DUAL 109
- CORACQ_VAL_CHANNEL_SINGLE 109
- CORACQ_VAL_CHANNELS_ORDER_DE TECT 110
- CORACQ_VAL_CHANNELS_ORDER_NO RMAL 110
- CORACQ_VAL_CHANNELS_ORDER_RE VERSE 110
- CORACQ_VAL_CONNECTOR_TYPE_CA M_CONTROL 68
- CORACQ_VAL_CONNECTOR_TYPE_CA MLINK 68
- CORACQ_VAL_CONNECTOR_TYPE_HIR OSE12 68
- CORACQ_VAL_COUPLING_AC 112
- CORACQ_VAL_COUPLING_DC 112
- CORACQ_VAL_DC_REST_MODE_AUTO 35
- CORACQ_VAL_DC_REST_MODE_OFF 35 CORACQ_VAL_DC_REST_MODE_ON 35, 36
- CORACQ_VAL_DECIMATE_DISABLE 36
- CORACQ_VAL_DECIMATE_EVEN 36
- CORACQ_VAL_DECIMATE_FIELD 36
- CORACQ_VAL_DECIMATE_ODD 36
- CORACQ_VAL_DECIMATE_ODD 36 CORACQ_VAL_DOUBLE
- _PULSE_FALLING_EDGE 37
- CORACQ_VAL_DOUBLE
 - _PULSE_RISING_EDGE 37
- CORACQ_VAL_EVENT_TYPE_DATA_OV ERFLOW 7
- CORACQ_VAL_EVENT_TYPE_END_OF_ EVEN 6
- CORACQ_VAL_EVENT_TYPE_END_OF_ FIELD 6
- CORACQ_VAL_EVENT_TYPE_END_OF_ FRAME 6
- CORACQ_VAL_EVENT_TYPE_END_OF_ LINE 6

- CORACQ_VAL_EVENT_TYPE_END_OF_ NLINES 6
- CORACQ_VAL_EVENT_TYPE_END_OF_ ODD 6
- CORACQ_VAL_EVENT_TYPE_EXTERNA L_TRIGGER 6
- CORACQ_VAL_EVENT_TYPE_EXTERNA L TRIGGER IGNORED 7, 43
- CORACQ_VAL_EVENT_TYPE_EXTERNA L_TRIGGER_TOO_SLOW 7
- CORACQ_VAL_EVENT_TYPE_FRAME_L OST 7
- CORACQ_VAL_EVENT_TYPE_HSYNC_L OCK 7
- CORACQ_VAL_EVENT_TYPE_HSYNC_U NLOCK 7
- CORACQ_VAL_EVENT_TYPE_NO_HSYN C 7, 8
- CORACQ_VAL_EVENT_TYPE_NO_PIXEL CLK 7
- CORACQ_VAL_EVENT_TYPE_NO_VSYN C 7, 10
- CORACQ_VAL_EVENT_TYPE_PIXEL_CL K 7
- CORACQ_VAL_EVENT_TYPE_START_O F EVEN 6
- CORACQ_VAL_EVENT_TYPE_START_O F FIELD 6
- CORACQ_VAL_EVENT_TYPE_START_O F FRAME 6
- CORACQ_VAL_EVENT_TYPE_START_O F_ODD 6
- CORACQ_VAL_EVENT_TYPE_USER_DE FINE 7
- CORACQ_VAL_EVENT_TYPE_VERTICA L SYNC 6
- CORACQ_VAL_EVENT_TYPE_VERTICA L TIMEOUT 66
- CORACQ_VAL_EVENT_TYPE_VIRTUAL _FRAME 6
- CORACQ_VAL_EVENT_VERTICAL_TIM EOUT 6
- CORACQ_VAL_EXT_TRIGGER_OFF 42 CORACQ_VAL_EXT_TRIGGER_ON 42
- CORACQ_VAL_FALLING_EDGE 37, 39, 41, 121

- CORACQ_VAL_FIELD_ORDER_EVEN_O DD 113
- CORACQ_VAL_FIELD_ORDER_NEXT_FI ELD 113
- CORACQ_VAL_FIELD_ORDER_ODD_EV EN 113
- CORACQ_VAL_FLIP_HORZ 45
- CORACQ_VAL_FLIP_OFF 45
- CORACQ_VAL_FLIP_VERT 45
- CORACQ_VAL_FRAME_INTEGRATE_ME THOD_1 75
- CORACQ_VAL_FRAME_INTEGRATE_ME THOD_2 76
- CORACQ_VAL_FRAME_INTERLACED 113
- CORACQ_VAL_FRAME_LENGTH_FIX 46 CORACQ_VAL_FRAME_LENGTH_VARIA BLE 46
- CORACQ_VAL_FRAME_PROGRESSIVE 113
- CORACQ_VAL_INTERFACE_ANALOG
- CORACQ_VAL_INTERFACE_DIGITAL 116
- CORACQ_VAL_LEVEL_422 38, 40, 44, 59, 63
- CORACQ_VAL_LEVEL_LVDS 38, 40, 44, 59, 63
- CORACQ_VAL_LEVEL_TTL 38, 40, 44, 59, 63
- CORACQ_VAL_LINE_INTEGRATE_MET HOD 177
- CORACQ_VAL_LINE_INTEGRATE_MET HOD_2 78
- CORACQ_VAL_LINE_INTEGRATE_MET HOD_3 79
- CORACQ_VAL_LINE_INTEGRATE_MET HOD_4 80
- CORACQ_VAL_LINE_TRIGGER_METHO D_1 81
- CORACQ_VAL_LINESCAN_DIRECTION_ FORWARD 50
- CORACQ_VAL_LINESCAN_DIRECTION_ REVERSE 50
- CORACQ_VAL_MASTER_MODE_DISABL E 52

- CORACQ_VAL_MASTER_MODE_HSYNC 52
- CORACQ_VAL_MASTER_MODE_HSYNC VSYNC 52
- CORACQ_VAL_MASTER_MODE_VSYNC 52
- CORACQ_VAL_OUTPUT_ENABLE_AUT O 53
- CORACQ_VAL_OUTPUT_ENABLE_OFF 53
- CORACQ_VAL_OUTPUT_ENABLE_ON 53 CORACQ_VAL_OUTPUT_ENABLE_ON_E XTRIG 53
- CORACQ_VAL_OUTPUT_FORMAT_HSI 54
- CORACQ_VAL_OUTPUT_FORMAT_HSIP 8 54
- CORACQ_VAL_OUTPUT_FORMAT_HSV 54
- CORACQ_VAL_OUTPUT_FORMAT_MON O1 54
- CORACQ_VAL_OUTPUT_FORMAT_MON O16 54
- CORACQ_VAL_OUTPUT_FORMAT_MON O32 54
- CORACQ_VAL_OUTPUT_FORMAT_MON O8 54
- CORACQ_VAL_OUTPUT_FORMAT_RGB 101010 54
- CORACQ_VAL_OUTPUT_FORMAT_RGB 161616 54
- CORACQ_VAL_OUTPUT_FORMAT_RGB 16161616 54
- CORACQ_VAL_OUTPUT_FORMAT_RGB 5551 54
- CORACQ_VAL_OUTPUT_FORMAT_RGB 565 54
- CORACQ_VAL_OUTPUT_FORMAT_RGB 888 54
- CORACQ_VAL_OUTPUT_FORMAT_RGB 8888 54
- CORACQ_VAL_OUTPUT_FORMAT_UYV Y 54
- CORACQ_VAL_OUTPUT_FORMAT_Y211
 54

- CORACQ_VAL_OUTPUT_FORMAT_Y411
 54
- CORACQ_VAL_OUTPUT_FORMAT_YUY 2 54
- CORACQ_VAL_OUTPUT_FORMAT_YUY V 54
- CORACQ_VAL_OUTPUT_FORMAT_YVY U 54
- CORACQ_VAL_PIXEL_CLK_SRC_EXT 122
- CORACQ_VAL_PIXEL_CLK_SRC_EXT_I NT 122
- CORACQ_VAL_PIXEL_CLK_SRC_INT 122
- CORACQ_VAL_RISING_EDGE 37, 39, 41, 121
- CORACQ_VAL_SCALE_FACTOR 31, 34, 56, 57
- CORACQ_VAL_SCALE_METHOD_DISAB LE 56, 57, 58
- CORACQ_VAL_SCALE_METHOD_INTER POLATION 57, 58
- CORACQ_VAL_SCALE_METHOD_POW2 57, 58
- CORACQ_VAL_SCALE_METHOD_SIMPL E 57, 58
- CORACQ_VAL_SCAN_AREA 123
- CORACQ_VAL_SCAN_LINE 123
- CORACQ_VAL_SHARED_CONTROL_DIS ABLE 60, 61, 62
- CORACQ_VAL_SIGNAL_CHROMA_PRES ENT 9
- CORACQ_VAL_SIGNAL_DIFFERENTIAL 124
- CORACQ_VAL_SIGNAL_HSYNC_LOCK 9 CORACQ_VAL_SIGNAL_HSYNC_PRESE NT 9
- CORACQ_VAL_SIGNAL_NAME_EXT_LI NE TRIGGER 69
- CORACQ_VAL_SIGNAL_NAME_EXT_TR IGGER 69
- CORACQ_VAL_SIGNAL_NAME_GND 69 CORACQ_VAL_SIGNAL_NAME_HD 69
- CORACQ_VAL_SIGNAL_NAME_INT_FR AME_TRIGGER 69

- CORACQ_VAL_SIGNAL_NAME_INT_LIN E TRIGGER 69
- CORACQ_VAL_SIGNAL_NAME_LINESC AN DIRECTION 69
- CORACQ_VAL_SIGNAL_NAME_NO_CO NNECT 69
- CORACQ_VAL_SIGNAL_NAME_PIXEL_ CLOCK IN 69
- CORACQ_VAL_SIGNAL_NAME_PIXEL_ CLOCK_OUT 69
- CORACQ_VAL_SIGNAL_NAME_POWER 12V 69
- CORACQ_VAL_SIGNAL_NAME_PULSE0 69
- CORACQ_VAL_SIGNAL_NAME_PULSE1
 69
- CORACQ_VAL_SIGNAL_NAME_SOFTW ARE TRIGGER 69
- CORACQ_VAL_SIGNAL_NAME_VD 69
- CORACQ_VAL_SIGNAL_NAME_VIDEO 69
- CORACQ_VAL_SIGNAL_NAME_VIDEO_ GND 69
- CORACQ_VAL_SIGNAL_NAME_WEN 69 CORACQ_VAL_SIGNAL_NAME_xxx 30
- CORACQ_VAL_SIGNAL_PIXEL_CLK_PR ESENT 9
- CORACQ_VAL_SIGNAL_POWER_PRESE NT 9
- CORACQ_VAL_SIGNAL_SINGLE_ENDE D 124
- CORACQ_VAL_SIGNAL_VSYNC_LOCK 9 CORACQ_VAL_SIGNAL_VSYNC_PRESE
- CORACQ_VAL_SOFTWARE_TRIGGER_E XT 42
- CORACQ_VAL_SOFTWARE_TRIGGER_E XT FRAME 42
- CORACQ_VAL_SOFTWARE_TRIGGER_E XT_LINE 42
- CORACQ_VAL_STROBE_METHOD_1 90
- CORACQ_VAL_STROBE_METHOD_2 91
- CORACQ_VAL_STROBE_METHOD_3 92 CORACQ_VAL_STROBE_METHOD_4 93
- CORACQ VAL SYNC BLUE 124
- CORACQ VAL SYNC COMP SYNC 124

- CORACQ_VAL_SYNC_COMP_VIDEO 124 CORACQ_VAL_SYNC_GREEN 124 CORACQ_VAL_SYNC_INT_SYNC 124
- CORACQ_VAL_SYNC_INT_SYNC 124 CORACO VAL SYNC RED 124
- CORACQ_VAL_SYNC_REF_BEGIN 32, 33, 47, 66
- CORACQ_VAL_SYNC_REF_END 47, 66 CORACQ_VAL_SYNC_REF_HV_DEPEND ENT 47, 66
- CORACQ VAL SYNC SEP SYNC 124
- CORACQ_VAL_TAP_DIRECTION_DU 125
- CORACQ_VAL_TAP_DIRECTION_FROM_ BOT 125
- CORACQ_VAL_TAP_DIRECTION_FROM_ MID 125
- CORACQ_VAL_TAP_DIRECTION_FROM_ TOP 125
- CORACQ_VAL_TAP_DIRECTION_LR 125
- CORACQ_VAL_TAP_DIRECTION_RL 125 CORACQ_VAL_TAP_DIRECTION_UD 125
- CORACQ_VAL_TAP_OUTPUT_ALTERNA
- CORACQ_VAL_TAP_OUTPUT_PARALLE L 129
- CORACQ_VAL_TAP_OUTPUT_SEGMENT ED 129
- CORACQ_VAL_TIME_BASE_MS 41
- CORACQ VAL TIME BASE US 41
- CORACQ_VAL_TIME_FRAME 41

TE 129

- CORACQ_VAL_TIME_INTEGRATE_MET HOD 1 82
- CORACQ_VAL_TIME_INTEGRATE_MET HOD 2 83
- CORACQ_VAL_TIME_INTEGRATE_MET HOD_3 84
- CORACQ_VAL_TIME_INTEGRATE_MET HOD 4 85
- CORACQ_VAL_TIME_INTEGRATE_MET HOD 5 86
- CORACQ_VAL_TIME_INTEGRATE_MET HOD 6 87
- CORACQ_VAL_TIME_INTEGRATE_MET HOD_7 88
- CORACQ_VAL_TIME_INTEGRATE_MET HOD_8 89
- CORACQ_VAL_TIME_LINE 41

NT9

CORACO VAL TIME LINE TRIGGER 41 Line Integration Method 77 Time Integration Method 82 CORACQ VAL TIMESLOT 1 130 International/Canada Sales Office 149 CORACQ VAL TIMESLOT 2 130 CORACQ_VAL_TIMESLOT_3 130 Internet 2 CORACQ_VAL_TIMESLOT_4 130 CORACQ_VAL_VIDEO_BAYER 135 L CORACQ VAL VIDEO COLOR 28, 135 CORACQ_VAL_VIDEO_MONO 28, 135 linescan camera 96 LVDS 95 CORACQ_VAL_VIDEO_RGB 28, 135 CORACQ VAL VIDEO STD CCIR PAL Ρ CORACQ VAL VIDEO STD NON STD PDF 2 136 Pin Connector Description 67 CORACQ_VAL_VIDEO_STD_RS170_NTS CORACQ_VAL_VIDEO_STD_SECAM 136 R CORACQ VAL VIDEO YC 28, 135 RS-422 95 CORAQ PRM EXT LINE TRIGGER SOU RCE 40 CORAQ PRM EXT TRIGGER SOURCE S 44 square waves 96 CORAQ_PRM_FIX_FILTER_SELECTOR strobe 71, 90, 95 Strobe CORSTEP_INCREMENT_EXPONENTIAL 59 Strobe Method 90 CORSTEP_INCREMENT_LINEAR 59 Т D Trigger Data Structures 67 Line Trigger Method 81 DC restoration 35, 36 TTL 95 dynamic control 4 U G US Sales Office 149 Gain 95 V Н VIC parameters 3, 10 Hirose 67 video timings 94 HTML help 2 I Input LUT 50

Frame Integration Methods 75

Integration