# Approximations- und Online-Algorithmen

thgoebel@ethz.ch

ETH Zürich, FS 2022

This documents is a **short** summary for the course *Approximations- und Online-Algorithmen* at ETH Zurich. It is intended as a document for quick lookup, e.g. during revision, and as such does not replace attending the lecture, reading the slides or reading a proper book.

We do not guarantee correctness or completeness, nor is this document endorsed by the lecturers. Feel free to point out any errata, either by mail or on Github.

## Contents

| I.  | Approximations-Algorithmen        | 3 |
|-----|-----------------------------------|---|
| 1.  | Approximations-Algorithmen        | 3 |
| II. | Online-Algorithmen                | 4 |
| 2.  | Einführung und das Paging-Problem | 4 |
|     | 9.1 Das Paging-Problem            | 5 |

# Part I. **Approximations-Algorithmen**

## 1. Approximations-Algorithmen

TODO. Siehe das Skript von letzem Jahr.

## Part II.

# **Online-Algorithmen**

## 2. Einführung und das Paging-Problem

#### Konzepte

- Online-Problem, Online-Algorithmus, kompetitiver Faktor
- Skirental-Problem
- Paging-Problem

**Motivation** Probleme lösen und Entscheidungen fällen ohne alle für eine optimale Lösung relevanten Informationen zu haben. Stattdessen werden die Informationen stückweise zur Laufzeit bekannt.

**Beispiel: Skirental-Problem** Unendlich langer Urlaub, nur an schönen Tagen Ski fahren. Skier mieten für 1 CHF pro Tag, oder kaufen für k CHF. Erst am Tag selbst wird bekannt ob ein Tag schön ist.

Optimale Lösung: Sei s die Anzahl schöner Tag. Miete bei s < k, kaufe bei s > k, bei s = k egal.

Problem: s nicht bekannt, erst am Tag selber wird bekannt ob ein Tag schön ist.

| Szenario                           | Worst Case                       | Approximationsgüte                 |
|------------------------------------|----------------------------------|------------------------------------|
| An Tag 1 kaufen                    | Ab Tag 2 schlechtes Wetter       | $\frac{k}{1}$                      |
| Immer mieten                       | An $x >> k$ Tagen schönes Wetter |                                    |
| An $k-1$ Tagen mieten, dann kaufen | Ab Tag $k + 1$ schlechtes Wetter | $\frac{2k-1}{k} = 2 - \frac{1}{k}$ |



Figure 1: Skirental Szenarios

**Online-Problem** Ein Online-Minimierungsproblem ist  $\Pi = (I, O, cost, min)$ . Eine Eingabe  $I = (x_1, ..., x_n) \in \mathcal{I}$  ist eine Folge von Anfragen, jeweils für Zeitschritt i. Eine akzeptierte Lösung  $O = (y_1, ..., y_n)$  ist eine Folge von Antworten.

Beim analogen Maximierungsproblem spricht man statt von cost(I, O) oft vom  $Gewinn\ gain(I, O)$ .

**Online-Algorithmus** Sei  $\Pi$  ein Online-Optimierungsproblem. Ein *Online-Algorithmus*  $\mathcal{A}$  berechnet die Ausgabe  $\mathcal{A}(I)=(y_1,...,y_n)$  wobei  $y_i$  nur von  $(x_1,...,x_i)$  abhängt.  $\mathcal{A}(I)$  ist eine zulässig Lösung für I.

Kompetitive Faktor (aka. competitive ratio, Wettbewerbsgüte, kompetitive Güte) Ein Online-Algorithmus  $\mathcal{A}$  ist c-kompetitiv falls gilt:

$$\exists \alpha \geq 0 \quad \forall I : \quad cost(\mathcal{A}(I)) \leq c \cdot cost(Opt(I)) + \alpha$$
 
$$\frac{cost(\mathcal{A}(I))}{cost(Opt(I))} + \alpha' \leq c$$

für ein Minimierungsproblem und  $\alpha$  konstant. Opt ist ein optimaler Offline-Algorithmus, d.h. mit vollständiger Information.

Das kleinste c für das dies gilt heisst kompetitiver Faktor.

A heisst strikt c-kompetitiv falls  $\alpha = 0$ .

 $\mathcal{A}$  heisst optimal falls er strikt 1-kompetitiv ist ( $\alpha = 0, c = 1$ ).

Wir sprechen hierbei von kompetitiver Analyse. Der kompetitiver Faktor ist vergleichbar mit der Approximationsgüte von Approximationsalgorithmen.

Ein Online-Algorithmus heisst kompetitiv wenn sein kompetitiver Faktor nicht von der Länge der Eingabe abhängt (d.h. es keine Startkosten gibt die amortisiert werden müssen). Die Konstante  $\alpha$  ist wichtig da sie erlaubt auf kurze Eingaben schlecht zu sein (und erst auf lange besser zu werden). <sup>1</sup>

**Untere Schranken beweisen** Für einen strikt kompetititven Algorithmus: Finde eine Instanz I mit  $\frac{\mathcal{A}(I)}{Opt(I)} > c \implies \underline{\text{nicht}}$  strikt-kompetitiv.

Für einen nicht-strikt kompetititven Algorithmus: Finde eine unendliche Folge  $I_1, I_2, ...$  von Instanzen so dass  $\frac{A(I_i)}{Opt(I_i)} > c$  und  $Opt(I_i) \stackrel{i \to \infty}{\longrightarrow} \infty$ .



Figure 2: Opt in schwarz. A in orange, 1-kompetitiv und strikt-10-kompetitiv.

#### 2.1. Das Paging-Problem

### **Paging**

- Eingabe:  $I = (x_1, ..., x_n)$  mit Speicher-Indizes  $x_i \in \mathbb{N}$
- Hauptspeicher mit m Seiten:  $(s_1, ..., s_m)$
- Cache-Speicher mit k Seiten:  $B = (s_{j_1}, ..., s_{j_k})$ , initialisiert mit  $(s_1, ..., s_k)^2$
- Zeitschritt i:
  - Index  $x_i$  wird angefragt
  - Falls  $x_i$  im Cache (d.h.  $s_{x_i} \in B$ ): return  $y_i = 0$

<sup>&</sup>lt;sup>1</sup>Warum brauchen wir bei der Approximationsgüte keine vergleichbare Konstante?

 $<sup>^2 \</sup>mathrm{Der}$  Vorsprung eines selbstgewählten Startinhalts kann in  $\alpha$  versteckt werden.

- Andernfalls: return  $y_i = j$ , und setze  $B = B \setminus \{s_j\} \cup \{s_{x_i}\}$ , d.h. lösche Seite  $s_j$  aus dem Cache. <sup>3</sup>
- $cost(A(I)) := |\{i \mid y_i > 0\}|$
- goal := min

Strategien bei Seitenfehlern (page faults) zum Verdrängen von Seiten: First-in-First-Out (FIFO, wie eine Queue), Last-in-First-Out (LIFO, wie ein Stack), Least-Recently-Used (LRU), Longest-Forward-Distance (LFD, offline-only!).

Satz Ein Online-Algorithmus für Paging der FIFO nutzt ist strikt-k-kompetitiv.

Beweis: Gruppiere Zeitschritte in *Phasen*. Phase 1 endet nach dem ersten Seitenfehler. Phase  $P \ge 2$  endet nach 1 + (P-1)k Seitenfehlern, d.h. alle k Fehler endet eine Phase und beginnt eine neue.

In Phase 1 machen Opt und Fifo je genau einen Fehler (warum?).

Sei s die Seite die den letzten Seitenfehler von Phase P-1 verursacht (d.h. sie kommt neu in den Cache, und wird dank FIFO als letztes in Phase P verdrängt werden).

- $\implies$  Zu Beginn von Phase P ist s im Cache von Opt und von Fifo.
- $\implies$  Es gibt  $\leq k-1$  Seiten die im Cache von Opt sind, aber nicht in dem von Fifo.

Während Phase P macht Fifo genau k Fehler.

- $\implies$  Während P muss Opt mindestens einen Seitenfehler machen.
- $\implies Fifo \text{ ist k-kompetitiv.}$

LRU ist in der Theorie ebenfalls k-kompetitiv, in der Praxis allerdings tendenziell besser als FIFO.

 $<sup>^3{\</sup>rm Zus\"{a}tz}$ liches, proaktives Entfernen bringt keinen Vorteil.