Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №5 з дисципліни «Ігрова фізика»

«Вивчення інтерференції світла (біпризма Франеля)»

Варіант 10

Виконав студент ІП-13, Замковий Дмитро Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірив Скирта Юрій Борисович

(прізвище, ім'я, по батькові)

Лабораторна робота 5 Вивчення інтерференції світла (біпризма Франеля)

Мета заняття: вивчити двопроменеву інтерференцію світла за допомогою біпризми Френеля; визначити характеристики світлофільтра - довжину хвилі у максимумі пропускання та смугу пропускання.

Теорія:

Інтерференцією називається таке накладання хвиль, за якого результуюча інтенсивність не дорівнює сумі інтенсивностей хвиль, що приходять до точки накладання. Інтерференція обумовлена принципом суперпозиції, відповідно до якого, у точці накладання двох світлових хвиль додаються світлові вектори 1Е г і 2Е г (напруженості полів), а не енергії, тому за накладання хвиль з інтенсивностями І1, і І2 результуюча інтенсивність:

$$I = I_1 + I_2 + 2\sqrt[2]{I_1 I_2} \langle \cos \delta \rangle$$

Ширина смуги пропускання для фільтра оцінюється за формулою

$$\Delta\lambda = \frac{2\lambda}{N},$$

де N – кількість смуг

 λ – довжина хвилі, що обчислюється за формулою

$$\lambda = \frac{Xh'(d-F)^2}{n\,d^2F},$$

Де X – відстань між нульовою і n-ною темною смугою

h' – відстань між джерелами

d – відстань між площинами щілини

n – цілина для якої проводиться вимірювання

F – фокусна відстань лінзи

Розрахунки:

Світлофільтр	Червоний	Зелений	Синій
N	18	12	13
n	10	10	10
xi, mm	2,52	2,13	1,73
	2,43	2,11	1,74
	2,46	1,97	1,73
x= <xi>, MM</xi>	2,47	2,07	1,73
hi', мм	0,62	0,68	0,64
	0,67	0,62	0,63
	0,64	0,65	0,67
h'= <hi'>, MM</hi'>	0,64	0,65	0,65
F, мм	145	145	145
d, мм	642,96	642,96	642,96
λ, нм	653,93	556,59	465,17
Δλ, нм	72,66	92,77	71,56

Також розрахую довірчий інтеграл для hi' і хі для кожного світлофільтра

Для червоного

$$a = 0.9$$

$$<$$
xi $>$ = 2,47

$$S_{\langle xi \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta x_i^2} = 0.0265$$

$$xi$$
 = $<$ xi > \pm $xi_{a,\,n}$ * $S_{<$ xi> = 2,47 \pm 2,92 * 0,0265 = 2,47 \pm 0,07738 (MM)

$$<$$
hi $>$ = 0,64

$$S_{\langle hi \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta h_i^2} = 0.0147$$

$$hi = <\!\!hi\!\!> \pm hi_{a,\,n} * S_{<\!\!hi\!\!>} = 0.64 \pm 2.92 * 0.0147 = 0.64 \pm 0.04292 \; (\text{mm})$$

Для зеленого

$$a = 0.9$$

$$\langle xi \rangle = 2.07$$

$$S_{< xi>} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta x_i^2} = 0.0503$$

$$xi = \langle xi \rangle \pm xi_{a, n} * S_{\langle xi \rangle} = 2,07 \pm 2,92 * 0,0503 = 2,07 \pm 0,14688 \text{ (MM)}$$

$$<$$
hi $>$ = 0.65

$$S_{\langle hi \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta h_i^2} = 0.0173$$

$$hi = \langle hi \rangle \pm hi_{a, n} * S_{\langle hi \rangle} = 0.65 \pm 2.92 * 0.0173 = 0.65 \pm 0.05052 \text{ (MM)}$$

Для синього

$$a = 0.9$$

$$\langle xi \rangle = 1,73$$

$$S_{\langle xi \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta x_i^2} = 0,0041$$

$$xi = <\!\!xi\!\!> \pm xi_{a,\,n} * S_{<\!\!xi\!\!>} = 1,73 \pm 2,92 * 0,0041 = 1,73 \pm 0,012$$
 (MM)

$$<$$
hi $>$ = 0,65

$$S_{\langle hi \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta h_i^2} = 0.0122$$

$$hi = <\!\!hi\!\!> \pm hi_{a,\,n} * S_{<\!\!hi\!\!>} = 0.65 \pm 2.92 * 0.0122 = 0.65 \pm 0.0356 \,(\text{mm})$$

Висновок:

В ході даної лабораторної роботи я дослідив двопроменеву інтерференцію світла за допомогою біпризми Френеля, а саме: провів експеримент в імітаторі, заповнив таблицю для подальшого її аналізу, для кожного світлофільтра визначив довжину хвилі та оцінив ширину смуги пропускання.

Відповіді на контрольні запитання:

1. Що називають інтерференцією світла? Вивести формули (1.1) і (1.2)

Інтерференцією називають таке явище, коли дві чи більше когерентні хвилі накладаються зі здвигом фаз

$$I = I_1 + I_2 + 2\sqrt[2]{I_1 I_2} \langle \cos \delta \rangle$$

Нехай ϵ дві хвилі:

$$E_1 = E_{01} \cos \left(\omega t - 2\pi \frac{r1}{\lambda} + a1\right) \operatorname{Ta} E_2 = E_{02} \cos \left(\omega t - 2\pi \frac{r2}{\lambda} + a2\right)$$

3 цих формул результуюче коливання матиме вигляд

$$E = E_0 \cos(\omega t + \varphi)$$

$$E_0^2 = E_{01}^2 + E_{02}^2 + 2E_{01}E_{02}\cos[2\pi\frac{r_1 - r_2}{\lambda} + (a_2 - a_1)]$$

$$\tan \varphi = \frac{E_{01}\sin\varphi + E_{02}\sin\varphi}{E_{01}\cos\varphi + E_{02}\cos\varphi}$$

Звідки

$$\varphi_1 = -\frac{2\pi}{\lambda}r_1 + a_1; \varphi_2 = -\frac{2\pi}{\lambda}r_2 + a_2;$$

 $\Delta = r_1 - r_2$ — різниця коливань ходу променів

Якщо початкові фази a_1 та a_2 не залежать від часу, то їхня різниця буде сталою і повна різниця фаз також не залежитиме від часу.

$$\Delta \varphi = 2\pi \frac{r1 - r2}{\lambda} + (a2 - a1)$$

3 урахуванням формули вище отримуємо:

$$E_0^2 = E_{01}^2 + E_{02}^2 + 2E_{01}E_{02}\cos\Delta\varphi$$

Проаналізуємо це рівняння. Виділимо два граничні випадки Коли різниця фаз $\Delta \varphi$ не зберігається в часі. Тоді [$\cos \Delta \varphi$] за час значно більший від періоду світлових коливань дорівнює нулю і ${E_0}^2 = {E_{01}}^2 + {E_{02}}^2$. Оскільки інтенсивність пропорційна квадрату амплітуди тобто $I \sim {E_0}^2$, то $I = I_1 + I_2$.

1.1. Коли різниця фаз зберігається в часі і електричні вектори в обох хвилях мають однакову орієнтацію, то $\cos \Delta \varphi \neq 0$ і $I \neq I_1 + I_2$. Тоді

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi$$

Таким чином явище інтерференції можна інтерпретувати також як явище накладання хвиль, при якому амплітуда результуючих коливань різних ділянок з часом не змінюється і в загальному випадку не дорівнює сумі амплітуд складових коливань.

2. Які хвилі називаються когерентними? Чому світлові хвилі, що випромінюються незалежними джерелами, некогерентні?

Когерентні хвилі — це хвилі, які мають однакову частоту та постійний зсув фаз. Лише при додаванні когерентних хвиль утворюється постійне в часі розподіл амплітуд результуючого коливання, яке ще називають інтерференційною картиною.

Світлові хвилі, що випромінюються незалежними джерелами ϵ некогерентними бо експериментально відомо, що з незалежних джерел не вдається не вдається спостерігати явище інтерференції

3. Поясніть принцип отримання когерентних світлових хвиль та наведіть конкретні приклади (окрім біпризми Френеля).

Отримати когерентні світлові хвилі і спостерігати інтерференцію можна, якщо поділити випромінювання від одного джерела на два промені і потім звести їх у просторі.

Окрім біпризми Френеля когерентні промені можна отримати наприклад через метод Юнга. У схемі, запропонованій Юнгом джерелом світла служить яскраво освітлена щілина , Від якої світлова хвиля падає на дві вузькі рівновіддалені щілини. Таким чином, щілини грають роль когерентних джерел .Інтерференціональна картина у вигляді чергуються світлих і темних смуг спостерігається на екрані, Розташованому на деякій відстані паралельно щілинам.

4. Чи обов'язково буде спостерігатись інтерференція під час накладання когерентних хвиль у випадку: а) звукових хвиль; б) світлових хвиль? Інтерференція хвиль - явище накладання двох або більше когерентних хвиль, в результаті чого в одних місцях спостерігається підсилення кінцевої хвилі (інтерференційний максимум), а в інших місцях послаблення (інтерференційний мінімум). Інтерференція спостерігається у когерентних хвиль довільної природи - поверхневих (на воді), поперечних та поздовжніх звукових, електромагнітних (світло, радіохвилі) та хвиль де Бройля.

5. Що називається оптичною та геометричною різницею ходу променів (хвиль)?

Оптичною різницею ходу називають різницю відстаней між оптичними довжинами шляху

Геометричною різницею ходу променів називають різницю відстаней від джерел до точки