# Prediction and analysis of COVID-19 outbreak in India State-level forecast

Gaurav

B.Tech. Cluster Innovation Centre Delhi University

May 24, 2020



DELHI UNIVERSITY

#### Introduction

- Major states above 3000 infected cases were taken for prediction.
- Data is collected from *covid19india.org* website along with the data of the whole country.
- Susceptible infected recovered (SIR) model is used for the prediction of cases, which gives the final epidemic size of Infected cases in each state.
- MATLAB open source code is used to graphically plot the cases and predictions of India and its states.
- The geographical map shows the distribution of confirmed cases in INDIA among different state with colour as quantitative scale.
- The bar graph show the selected states which are above 2000 of infected cases named as highly infected states.

### Total Cases



Figure: Distribution of confirmed cases in INDIA

Figure: Infected cases of states above 3000 cases

#### Predictions

- COVID-19 prediction is shown in form of graphs using MATLAB software of India and its highly infected states (above 3000 cases).
- State included in the prediction are Maharashtra, Gujarat, Delhi, Tamil Nadu, Rajasthan, Madhya Pradesh, Uttar Pradesh, Andhra Pradesh, West Bengal.
- First graphs shows the total number of infected cases (here infected cases are shown on scale as multiple of 1000th of y axis on cumulative data) per day.
- Second graph shows the three phases on the plotted no. of infected cases per day.
- Third graphs shows the Growth rate in percentage for upcoming days.

#### Predictions

- The prediction have 3 bounds, upper bound, lower bound and prediction with red, magenta and black lines, respectively.
- The three phases acceleration phase, steady growth and ending phase are shown with red yellow and green colours respectively.



Figure: Prediction of COVID-19 India



Figure: Prediction of COVID-19 (State: Maharashtra)



Figure: Prediction of COVID-19 (State: Tamil Nadu)



Figure: Prediction of COVID-19 (State: Gujarat)



Figure: Prediction of COVID-19 (State: Delhi)



Figure: Prediction of COVID-19 (State: Rajasthan)



Figure: Prediction of COVID-19 (State: Madhya Pradesh)



Figure: Prediction of COVID-19 (State: Uttar Pradesh)



Figure: Prediction of COVID-19 (State: West Bengal)



Figure: Prediction of COVID-19 (State: Andhra Pradesh)



\*Figure: Prediction of COVID-19 (State: Punjab)

## Statistical parameters for the model

| State       | Data                             | Confirmed Infected<br>Cases | Predicted Infected<br>Cases | Relative Error (%)   | Predicted Infected<br>Cases on 30/5/2020 | R <sub>0</sub><br>(Basic Reproduction No.) |
|-------------|----------------------------------|-----------------------------|-----------------------------|----------------------|------------------------------------------|--------------------------------------------|
| Maharashtra | 21st May<br>22nd May<br>23rd May | 41642<br>44582<br>47190     | 41450<br>43905<br>46950     | 0.46<br>1.52<br>0.51 | 63100                                    | 1.3020                                     |
| Gujrat      | 21st May<br>22nd May<br>23rd May | 12910<br>13273<br>13669     | 13020<br>13130<br>13360     | 0.84<br>1.08<br>2.26 | 17600                                    | 1.6156                                     |
| Delhi       | 21st May<br>22nd May<br>23rd May | 11659<br>12319<br>12910     | 12530<br>12600<br>12800     | 6.95<br>2.23<br>0.85 | 16600                                    | 1.2664                                     |
| Tamil Nadu  | 21st May<br>22nd May<br>23rd May | 13967<br>14753<br>15512     | 13560<br>14500<br>15700     | 2.91<br>1.71<br>1.20 | 19800                                    | 1.7801                                     |
| Rajasthan   | 21st May<br>22nd May<br>23rd May | 6223<br>6490<br>6738        | 6190<br>6500<br>6950        | 0.53<br>0.15<br>3.05 | 9200                                     | 1.2320                                     |
| India       | 21st May<br>22nd May<br>23rd May | 118223<br>124759<br>131422  | 119530<br>125990<br>130420  | 1.09<br>0.98<br>0.76 | 172000                                   | 1.2471                                     |

## Statistical parameters for the model

| State          | Data                             | Confirmed Infected<br>Cases | Predicted Infected<br>Cases | Relative Error (%)   | Predicted Infected<br>Cases on 30/5/2020 | R <sub>0</sub><br>(Basic Reproduction No.) |
|----------------|----------------------------------|-----------------------------|-----------------------------|----------------------|------------------------------------------|--------------------------------------------|
| Madhya Pradesh | 21st May<br>22nd May<br>23rd May | 5981<br>6170<br>6371        | 5900<br>6050<br>6200        | 1.35<br>1.94<br>2.68 | 8200                                     | 1.2616                                     |
| Uttar Pradesh  | 21st May<br>22nd May<br>23rd May | 5515<br>5735<br>6017        | 5420<br>5650<br>5890        | 1.72<br>1.48<br>2.11 | 7400                                     | 1.1166                                     |
| Andhra Pradesh | 21st May<br>22nd May<br>23rd May | 2605<br>2667<br>2714        | 2540<br>2670<br>2760        | 2.50<br>0.11<br>1.67 | 3500                                     | 1.9408                                     |
| Punjab         | 21st May<br>22nd May<br>23rd May | 2028<br>2029<br>2045        | 2015<br>2035<br>2040        | 0.64<br>0.29<br>0.24 | 2060                                     | 18.9254                                    |
| West Bengal    | 21st May<br>22nd May<br>23rd May | 3197<br>3332<br>3459        | 3050<br>3390<br>3610        | 4.60<br>1.71<br>4.18 | 4690                                     | 1.8628                                     |

#### Discussion & Conclusion

- After lockdown COVID-19 curves for different states are very dissimilar. India and its state maharashtra prediction graph curve is have a slow exponential growth leading to higher uncertainty in long-term predictions due to lockdown 4.0
- The spread of COVID-19 will continue for at least the next three to four weeks as shown in the prediction
- Most state lies in acceleration phase, thus still showing the growth in cases, Growth rate tends to decrease as the cases enters the steady phase.
- Most of the states will tend to to show high growth in infected cases as lockdown 4.0 is implemented with removal of some restriction.
- States which had reached their ending phase, might show the growth in cases again.

#### Discussion & Conclusion

- Major states with high population like Maharashtra will show high growth rate during lockdown 4.0.
- In (\*Figure) Punjab the cases have reached its ending phase but due to lockdown 4.0 the cases will grow in number.
- Cases must be updated regularly with right numbers for forecast/prediction to be more accurate and precise.
- Necessary action should be taken according to the forecast provided for different states infected with COVID-19.
- India will reach its inflection point on 29th May.
- Table shows the Relative error between the Confirmed and the predicted infected cases.
- $\bullet$  R<sub>o</sub> here above represents the basic reproduction number of infected cases