Data Science

6. Teil - State of the Art Maschinelle Lernverfahren

Vorlesung an der DHBW Stuttgart, Prof. Dr. Monika Kochanowski

Inhalte der heutigen Vorlesung

- Wiederholung
- Lernverfahren
 - Bäume
 - SVMs
- Ensemble Learning
 - Bagging
 - Boosting

Data Science Vorlesung | DHBW Stuttgart | 3

Entscheidungsbäume Grundlage vieler aktueller Algorithmen

Diskussion

Entscheidungsbäume

Messung der Unreinheit für die Erstellung von Entscheidungsbäumen

Entropie

- Aus der Informationstheorie
- $\Phi_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$
- Zweiklassenproblem: $\Phi(p, 1-p) = -p \log_2 p (1-p) \log_2 (1-p)$
- Beispielberechnung anhand des Titanic-Beispiels für Klasse und Geschlecht
- Information Gain: Differenz aus Entropie des übergeordneten Knoten und gewichteten Entropie der untergeordneten Knoten
- Alternative: Gini-Index

$$\Phi(p, 1-p) = 2p(1-p)$$

Alternative: Fehlklassifikationsfehler

$$\Phi(p, 1-p) = 1 - \max(p, 1-p)$$

»Die Forschung hat gezeigt, dass es keine signifikanten Unterschiede [...] gibt.« [Alpaydin 2008]

Titanic: mehrere Datensätze verfügbar, z. B. Kaggle, hier noch

Infos: http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.xls

https://bigml.com/user/czuriaga/gallery/model/52c0cf160c0b 5e6fcb000345/tree

Data Science Vorlesung | DHBW Stuttgart | 5

Vorwegnahme: Klassifikationsbewertung Wahrheitsmatrix (binäre Klassifikation)

Macht Beispiele einfacher..

		Wirklichkeit	Wirklichkeit
	Alle	lst wirklich erkrankt	Ist wirklich gesund
Vorhersage	Test sagt erkrankt	Richtig-positiv	Falsch-positiv
Vorhersage	Test sagt gesund	Falsch-negativ	Richtig-negativ

Entscheidungsbäume mit ID3-Algorithmus

Wichtig für gute Algorithmen wie Random Forest oder GBT

```
GeneriereBaum(X)
    If KnotenEntropie(X) < Schwellwert
        Erstelle Blatt mit Label der häufigsten Klasse in X
        Return
    i = Aufspaltungsattribut (X)
    Für jede Verzweigung von x_i
        Finde X_i, das in Verzweigung liegt
        GeneriereBaum(X_i)

AufspaltungsAttribut(X)
    MinimaleEntfernung = MAX
    Für alle Attribute i = 1, .., d
        Teile X in X_1, X_2
        e = AufspaltungsEntropie (X_1, X_2)
        If e < MinimaleEntfernung; MinimaleEntfernung = e; bestf = i
    Return best</pre>
```

Quelle des Algorithmus: [Alpaydin 2008]**; Hinweise zum Code: [Alpaydin 2008], [James et al. 2013], Lösung: [Grues 2016], vereinfacht

Data Science Vorlesung | DHBW Stuttgart | 7

Interpretation der Visualisierung

Entscheidungsbäume

Konfigurationsmöglichkeiten und Einsatzmöglichkeiten

- Generell sind Entscheidungsbäume auch für Regression verwendbar
 - Oder für Klassifikation unter Berücksichtigung numerischer Attribute
 - Gut beschrieben in der bereits genannten Literatur
- ID3 Algorithmus mit greedy-Ansatz hat wesentliche Nachteile
 - Welche?
- Pruning
 - Dt. Beschneiden / Stutzen
 - Prepruning (in der Konstruktion)
 - Postpruning (nach der Konstruktion)
- <u>http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html</u>

Bootstrap und Ensemble Learning: Bagging und Boosting

Bootstrap

- Bootstrap: Um eine unbekannte Varianz abzuschätzen, werden aus Testsets neue Testsets generiert
- Methode: Ziehen mit Zurücklegen aus den Testdaten
- Nebeneffekt: Damit kann man Modelle variieren
- Bagging: steht für "Bootstrap Aggregation"
 - Aggregierung über unter Hilfe von Bootstrap erzeugte Modelle
- Boosting: Residuen nutzen
 - Trainiere nicht auf den Wert, sondern auf den "Rest", der nicht gut funktioniert hat
 - Verbessere kontinuierlich
 - Gewichtung von Teilmengen beim Lernen möglich

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

Random Forests

Mehrere unkorrelierte Entscheidungsbäume

- Exkurs: Bootstrap und Bootstrap Aggregation (Bagging)
 - Bootstrap: Um eine unbekannte Varianz abzuschätzen, werden aus Testsets neue Testsets generiert
 - Methode: Ziehen mit Zurücklegen aus den Testdaten
 - Für Entscheidungsbäume: Erstellung einer Zahl B von Bäumen
 - Abstimmung mehrerer Bäume mit Durchschnitt / Mehrheitsvotum (Ensemble Learning)
- Random Forest baut unkorrelierte Entscheidungsbäume
 - Auswahl von $m \approx \sqrt{p}$ Attributen für einen Knoten im Entscheidungsbaum (z. B. 4 aus 13)
 - Zufällig nur aus diesen Attributen wird gewählt
 - Baue viele Bäume (in dem Beispiel mit den 4 Attributen: 400)
 - Dann: Durchschnitt / Mehrheitsvotum

Data Science Vorlesung | DHBW Stuttgart | 13

Exkurs: Gradientenabstieg

- "Minimierungsverfahren für eine reellwertige, differenzierbare Funktion"
- Abstiegsrichtung, steilster Abstieg
- Schrittweite, exakt/inexakt
- Welche Anwendungen fallen Ihnen für Gradientenabstieg ein?

Bildquelle: Wikipedia, Bild ist public domain

Gradient Tree Boosting Ein State of the Art Algorithmus

- Warum ist der Tree 2 das NICHT ist? (WICHTIG!)
- Was ist die Kernidee in 3 Schritten in Draft 1? Haben wir bisher was ähnliches gemacht?
- Was wird in Draft 2 zu Draft 1 angepasst? Warum?
- Was bedeutet Boosting (im Gegensatz zu Bagging) generell?
- Wozu wird Gradientenabstieg (Gradient Descent) in diesem Zusammenhang genutzt?
- Warum wird noch Sampling eingeführt?
- " Übungsaufgabe (freiweillig) mit https://www.gormanalysis.com/blog/gradient-boosting-explained/
- https://towardsdatascience.com/machine-learning-part-18-boosting-algorithms-gradient-boosting-in-python-ef5ae6965be4

Data Science Vorlesung | DHBW Stuttgart | 15

GBT – Zusammenfassung

Funktioniert für eine ganze Reihe von Anwendungen extrem gut / am Besten

Sehr flexibel

Kann mit NULL-Werten und kategorischen Werten umgehen

Overfitting-anfälliger als z.

B. Random Forest

Rechenaufwändig im Vergleich zu vielen anderen (sequentiell)

Hyperparameter-Tuning ist aufwendig

- Wichtige Hyperparameter
 - Angaben zur Höhe des Baumes
 - Anzahl / Teilmenge in Blättern
 - Anzahl der Features (analog Random Forests)
 - Einige weitere, die meistens recht gut voreingestellt sind
 - Quelle: https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/

Support Vector Machine (SVM)

 Sehr gute Klassifikationsleistung f
 ür viele Anwendungsbereiche, aber oft nur schwer interpretierbar und damit mitunter nicht so einfach nachvollziehbar

Bildquelle: https://mc.ai/support-vector-machine-svm-algorithm-in-a-fun-easy-way/

SVM Grundlagen

Sub-optimal boundary

Optimal boundary

- Prinzipiell klassifiziert die SVM nur zwischen zwei verschiedenen Klassen
- Die SVM sucht eine optimal separierende Hyperebene im ndimensionalen Raum der Prädikatoren, die die Ausprägungen der beiden Klassen trennt
- Die Frage ist, welche der möglichen Hyperebenen ist die beste?
- Die mit dem größten Abstand zu beiden Gruppen!
 - Die Hyperebene die am besten generalisiert und bei unbekannten Daten möglichst auch noch funktioniert

Machine Learning with R, ..., Hefin I. Rhys, Manning, 2020

Data Science Vorlesung | DHBW Stuttgart | 19

SVM – was ist ein Support Vector?

- Support Vector: Definieren die Lage der Hyperebene mit dem größten Margin – Support-Vektoren, das sie der "Support" für Lage der gewählten Hyperebene sind
- Am Ende sind eigentlich nur sie relevant die relevanten Fälle der Trainingsmenge und man kann problemlos alle anderen Punkte aus den Trainingsdaten entfernen
- Die Mathematik hinter der Berechnung ist ein komplexes Optimierungsproblem.
- Hard Margin: separierbar
- Soft Margin: nicht komplett separierbar, penalty für Punkte auf der "falschen" Seite

SVM - was ist ein Kernel?

Machine Learning with R, ..., Hefin I. Rhys, Manning, 2020

Die Wahl des Kernel der SVM ist ein eigener Hyperparameter, z.B.:

- Linearer Kernel (kein Kernel)
- Polynomialer Kernel
- Gauß'sche Radiale Basisfunktionen (RBF)
- Sigmoider Kernel

Data Science Vorlesung | DHBW Stuttgart | 21

Wichtige Hyperparameter der SVM

- kernel für die Art des verwendeten Kernels
- degree für den Grad des polynomiellen Kernel, der damit die "Welligkeit" der Entscheidungsgrenze bestimmt → Kompromiss zwischen Over- und Underfit
- cost oder C für die Kontrolle wie "soft" oder "hard" der Margin sein soll
- **Gamma** kontrolliert den Einfluss einzelner Datenpunkte auf die Lage der Entscheidungsgrenze (mehr Einfluß → komplexere Grenzen)

Machine Learning with R, ..., Hefin I. Rhys, Manning, 2020

SVMs

Kann sehr gut sehr komplexe nichtlineare

Entscheidungsebenen lernen

Funktioniert für eine ganze Reihe von Anwendungen sehr gut

Setzt keinerlei Verteilung bezüglich der Prädiktoren voraus

Kann auch Regression (scikit: SVR, support vector Regression)

Rechenaufwändig (nicht im Vergleich zu DL;)

Hyperparameter-Tuning ist (wirklich) aufwendig

Nur kontinuierliche Parameter

Data Science Vorlesung | DHBW Stuttgart | 29

Übung

- Sagen Sie für den Pokémon-Datensatz den Angriffswert vorher.
- Nutzen Sie SVMs und GBTs.
- Verwenden Sie Encoder, wo notwendig.

DHBW
Duale Hochschule
Baden-Württemberg

Stand der Vorlesung SAS Cheat Sheet Sicht

Bildquelle: https://whatsthebigdata.com/2017/05/02/types-of-machine-learning-algorithms-and-when-to-use-them/, am 10.02.2018

Data Science Vorlesung | DHBW Stuttgart | 34

Literaturliste

- [James et al. 2013] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani: An introduction to statistical learning
 - Favorit: Sehr gut gemachte Einführung, jedoch Beispiele in R, verständlich mit Mathematik, als pdf frei erhältlich
- [Hastie et al. 2008] Trevor Hastie, Robert Tibshirani, Jerome Friedman: The elements of statistical learning
 - DIE Referenz, für Mathematiker geschrieben, als pdf frei erhältlich
- [O'Neil and Schutt 2013] Cathy O'Neil and Rachel Schutt: Doing Data Science
 - Spannend zu lesen, teilweise Erfahrungsberichte (durch Drittautoren)
- [Mueller and Guido 2017] Andreas C. Müller & Sasha Guido: An Introduction to Machine Learning with Python
 - Interessant da Python 3 tatsächlich genutzt wird für die Einführung inklusive der üblichen Bibliotheken
- [Grues 2016] Joel Grues (übersetzt von Kristian Rother): Einführung in Data Science
 - Auf deutsch gut übersetzt, nutzt Python für grundlegendes Verständnis ohne die üblichen Bibliotheken, extrem leicht lesbar
- [Alpaydin 2008]: Ethem Alpaydin (übersetzt von Simone linke): Maschinelles Lernen
 - Auf deutsch gut übersetzt, relativ viel Mathematik, in Deutschland scheint das weit verbreitet zu sein
- [Bruce et al. 2020]: Peter Bruce, Andrew Bruce, Peter Gedeck: Practical Statistics for Data Scientists
 - Das einzig wahre Statistikbuch was keines ist
- [Reinhart 2016]: Alex Reinhart (übersetzt von Knut Lorenzen): Statistics done wrong
 - Bevor man wirklich Konfidenzintervalle oder p-Werte angibt und über "Signifikanz" spricht, sollte man das gelesen haben

Literaturliste contd.

- Online-Ressource zu Visualisierung
 - https://www.visualisingdata.com/
- Storytelling with Data [Buch]: Klassiker für Überzeugungsarbeit in Präsentationen von Ergebnissen
 - http://www.bdbanalytics.ir/media/1123/storytelling-with-data-cole-nussbaumer-knaflic.pdf
- Show Me the Numbers [Buch]: Ganz konkrete Tipps für die Praxis
 - https://courses.washington.edu/info424/2007/readings/Show Me the Numbers v2.pdf
- Now you see it [Buch]: Ebenfalls ganz konkrete Inhalte

