Lecture 24: Partial correlation, multiple regression, and correlation

Ernesto F. L. Amaral

November 21, 2017
Advanced Methods of Social Research (SOCI 420)

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 15 (pp. 405–441).

Chapter learning objectives

- Compute and interpret partial correlation coefficients
- Find and interpret the least-squares multiple regression equation with partial slopes
- Find and interpret standardized partial slopes or beta-weights (b*)
- Calculate and interpret the coefficient of multiple determination (R²)
- Explain the limitations of partial and regression analysis

Multiple regression

- Discuss ordinary least squares (OLS) multiple regressions
 - OLS: linear regression
 - Multiple: at least two independent variables
- Disentangle and examine the separate effects of the independent variables
- Use all of the independent variables to predict Y
- Assess the combined effects of the independent variables on Y

Partial correlation

 Partial correlation measures the correlation between X and Y, controlling for Z

- Comparing the bivariate (zero-order) correlation to the partial (first-order) correlation
 - Allows us to determine if the relationship between X and Y is direct, spurious, or intervening
 - Interaction cannot be determined with partial correlations

Formula for partial correlation

 Formula for partial correlation coefficient for X and Y, controlling for Z

$$r_{yx.z} = \frac{r_{yx} - (r_{yz})(r_{xz})}{\sqrt{1 - r_{yz}^2} \sqrt{1 - r_{xz}^2}}$$

 We must first calculate the zero-order coefficients between all possible pairs of variables (Y and X, Y and Z, X and Z) before solving this formula

Example

- Husbands' hours of housework per week (Y)
- Number of children (X)
- Husbands' years of education (Z)

Scores on Three Variables for 12 Dual-Wage-Earner Families

Family	Husband's Housework (Y)	Number of Children (X)	Husband's Years of Education (<i>Z</i>)
А	1	1	12
В	2	1	14
С	3	1	16
D	5	ne knowsepq0	16
E	3	2	18
F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	16
G	5	3	12
Н	0	3	12
1	6	4	10
J	3	4	12
K	7	5	10
Languag	4	5	16

Correlation matrix

- The bivariate (zero-order) correlation between husbands' housework and number of children is +0.50
 - This indicates a positive relationship

Zero-Order Correlations

\	Husband's Housework (Y)	Number of Children (X)	Husband's Years of Education (<i>Z</i>)
Husband's Housework (Y)	1.00	0.50	-0.30
Number of Children (X)		1.00	-0.47
Husband's Years of Education (<i>Z</i>)			1.00

First-order correlation

 Calculate the partial (first-order) correlation between husbands' housework (Y) and number of children (X), controlling for husbands' years of education (Z)

ducation (Z)
$$r_{yx.z} = \frac{r_{yx} - (r_{yz})(r_{xz})}{\sqrt{1 - r_{yz}^2} \sqrt{1 - r_{xz}^2}}$$

$$r_{yx.z} = \frac{(0.50) - (-0.30)(-0.47)}{\sqrt{1 - (-0.30)^2} \sqrt{1 - (-0.47)^2}}$$

$$r_{yx.z} = 0.43$$

Interpretation

 Comparing the bivariate correlation (+0.50) to the partial correlation (+0.43) finds little change

 The relationship between number of children and husbands' housework has not changed, controlling for husbands' education

 Therefore, we have evidence of a direct relationship

Bivariate & multiple regressions

Bivariate regression equation

$$Y = a + bX = \beta_0 + \beta_1 X$$

- $-a = \beta_0 = Y$ intercept
- $-b = \beta_1 = \text{slope}$
- Multivariate regression equation

$$Y = a + b_1 X_1 + b_2 X_2 = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

- $-b_1 = \beta_1$ = partial slope of the linear relationship between the first independent variable and Y
- $-b_2 = \beta_1$ = partial slope of the linear relationship between the second independent variable and Y

Multiple regression

$$Y = a + b_1 X_1 + b_2 X_2 = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

- $a = \beta_0$ = the Y intercept, where the regression line crosses the Y axis
- $b_1 = \beta_1 = \text{partial slope for } X_1 \text{ on } Y$
 - $-\beta_1$ indicates the change in Y for one unit change in X_1 , controlling for X_2
- $b_2 = \beta_2 = \text{partial slope for } X_2 \text{ on } Y$
 - $-\beta_2$ indicates the change in Y for one unit change in X_2 , controlling for X_1

Partial slopes

 The partial slopes indicate the effect of each independent variable on Y

While controlling for the effect of the other independent variables

- This control is called ceteris paribus
 - Other things equal
 - Other things held constant
 - All other things being equal

 $Income = \beta_0 + \beta_1 education + \beta_2 experience + u$

 $Income = \beta_0 + \beta_1 education + \beta_2 experience + u$

 $Income = \beta_0 + \beta_1 education + \beta_2 experience + u$

These two effects will result on

 $Income = \beta_0 + \beta_1 education + \beta_2 experience + u$

These two effects will result on

 β_2

Interpretation of partial slopes

 The partial slopes show the effects of the X's in their original units

These values can be used to predict scores on Y

• Partial slopes must be computed before computing the Y intercept (β_0)

Formulas of partial slopes

$$b_1 = \beta_1 = \left(\frac{s_y}{s_1}\right) \left(\frac{r_{y1} - r_{y2}r_{12}}{1 - r_{12}^2}\right)$$

$$b_2 = \beta_2 = \left(\frac{s_y}{s_2}\right) \left(\frac{r_{y2} - r_{y1}r_{12}}{1 - r_{12}^2}\right)$$

 $b_1 = \beta_1 = \text{partial slope of } X_1 \text{ on } Y$

 $b_2 = \beta_2 = \text{partial slope of } X_2 \text{ on } Y$

 s_v = standard deviation of Y

 s_1 = standard deviation of the first independent variable (X_1)

 s_2 = standard deviation of the second independent variable (X_2)

 r_{y1} = bivariate correlation between Y and X_1

 r_{y2} = bivariate correlation between Y and X_2

 r_{12} = bivariate correlation between X_1 and X_2

Formula of constant

• Once $b_1(\beta_1)$ and $b_2(\beta_2)$ have been calculated, use those values to calculate the Y intercept

$$a = \bar{Y} - b_1 \bar{X}_1 - b_2 \bar{X}_2$$

$$\beta_0 = \overline{Y} - \beta_1 \overline{X}_1 - \beta_2 \overline{X}_2$$

Example

Using information below, calculate the slopes

Husband's Housework	Number of Children	Husband's Education
$\overline{Y} = 3.3$	$\overline{X}_1 = 2.7$	$\overline{X}_2 = 13.7$
$s_y = 2.1$	$s_1 = 1.5$	$\overline{X}_2 = 13.7$ $s_2 = 2.6$
	Zero-Order Correlation	ons
	$r_{y1} = 0.50$ $r_{y2} = -0.30$ $r_{12} = -0.47$	
	$r_{y2} = -0.30$ $r_{t0} = -0.47$	

Result and interpretation of b_1

$$b_1 = \beta_1 = \left(\frac{s_y}{s_1}\right) \left(\frac{r_{y1} - r_{y2}r_{12}}{1 - r_{12}^2}\right)$$

$$b_1 = \beta_1 = \left(\frac{2.1}{1.5}\right) \left(\frac{0.50 - (-0.30)(-0.47)}{1 - (-0.47)^2}\right) = 0.65$$

 As the number of children in a dual-career household increases by one, the husband's hours of housework per week increases on average by 0.65 hours (about 39 minutes), controlling for husband's education

Result and interpretation of b_2

$$b_2 = \beta_2 = \left(\frac{s_y}{s_2}\right) \left(\frac{r_{y2} - r_{y1}r_{12}}{1 - r_{12}^2}\right)$$

$$b_2 = \beta_2 = \left(\frac{2.1}{2.6}\right) \left(\frac{-0.30 - (0.50)(-0.47)}{1 - (-0.47)^2}\right) = -0.07$$

 As the husband's years of education increases by one year, the number of hours of housework per week decreases on average by 0.07 (about 4 minutes), controlling for the number of children

Result and interpretation of a

$$a = \overline{Y} - b_1 \overline{X}_1 - b_2 \overline{X}_2$$

$$\beta_0 = \overline{Y} - \beta_1 \overline{X}_1 - \beta_2 \overline{X}_2$$

$$a = \beta_0 = 3.3 - (0.65)(2.7) - (-0.07)13.7$$

$$a = \beta_0 = 2.5$$

 With zero children in the family and a husband with zero years of education, that husband is predicted to complete 2.5 hours of housework per week on average

Final regression equation

In this example, this is the final regression equation

$$Y = a + b_1 X_1 + b_2 X_2$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$Y = 2.5 + (0.65)X_1 + (-0.07)X_2$$

$$Y = 2.5 + 0.65X_1 - 0.07X_2$$

Prediction

 Use the regression equation to predict a husband's hours of housework per week when he has 11 years of schooling and the family has 4 children

$$Y' = 2.5 + 0.65X_1 - 0.07X_2$$

 $Y' = 2.5 + (0.65)(4) + (-0.07)(11)$
 $Y' = 4.3$

 Under these conditions, we would predict 4.3 hours of housework per week

Standardized coefficients (b*)

- Partial slopes $(b_1=\beta_1; b_2=\beta_2)$ are in the original units of the independent variables
 - This makes assessing relative effects of independent variables difficult when they have different units
 - It is easier to compare if we standardize to a common unit by converting to Z scores
- Compute beta-weights (b*) to compare relative effects of the independent variables
 - Amount of change in the standardized scores of Y for a one-unit change in the standardized scores of each independent variable
 - While controlling for the effects of all other independent variables
 - They show the amount of change in standard deviations in Y for a change of one standard deviation in each X

Formulas

Formulas for standardized coefficients

$$b_1^* = b_1 \left(\frac{S_1}{S_y}\right) = \beta_1^* = \beta_1 \left(\frac{S_1}{S_y}\right)$$

$$b_2^* = b_2 \left(\frac{S_2}{S_y}\right) = \beta_2^* = \beta_2 \left(\frac{S_2}{S_y}\right)$$

Example

• Which independent variable, number of children (X_1) or husband's education (X_2) , has the stronger effect on husband's housework in dual-career families?

$$b_1^* = b_1 \left(\frac{s_1}{s_y}\right) = (0.65) \left(\frac{1.5}{2.1}\right) = 0.46$$

$$b_2^* = b_2 \left(\frac{s_2}{s_y}\right) = (-0.07) \left(\frac{2.6}{2.1}\right) = -0.09$$

- The standardized coefficient for number of children (0.46) is greater in absolute value than the standardized coefficient for husband's education (–0.09)
- Therefore, number of children has a stronger effect on husband's housework

Standardized coefficients

Standardized regression equation

$$Z_y = a_z + b_1^* Z_1 + b_2^* Z_2$$

- where Z indicates that all scores have been standardized to the normal curve
- The Y intercept will always equal zero once the equation is standardized

$$Z_y = b_1^* Z_1 + b_2^* Z_2$$

For the previous example

$$Z_y = (0.46)Z_1 + (-0.09)Z_2$$

Multiple correlation

- The coefficient of multiple determination (R²) measures how much of Y is explained by all of the X's combined
- R² measures the percentage of the variation in Y that is explained by all of the independent variables combined
- The coefficient of multiple determination is an indicator of the strength of the entire regression equation

$$R^2 = r_{y1}^2 + r_{y2.1}^2 (1 - r_{y1}^2)$$

- $-R^2$ = coefficient of multiple determination
- $-r_{y1}^2$ = zero-order correlation between Y and X_1
- $r_{y2.1}^2$ = partial correlation of Y and X_2 , while controlling for X_1

Partial correlation of Y and X₂

• Before estimating R^2 , we Before estimating r_{-} , we need to estimate the partial $r_{y2.1} = \frac{r_{y2} - (r_{y1})(r_{12})}{\sqrt{1 - r_{y1}^2} \sqrt{1 - r_{12}^2}}$ correlation of Y and X_2 ($r_{y2.1}$)

$$r_{y2.1} = \frac{r_{y2} - (r_{y1})(r_{12})}{\sqrt{1 - r_{y1}^2} \sqrt{1 - r_{12}^2}}$$

- We need three correlations
 - Between X₁ and Y: 0.50
 - Between X_2 and Y: -0.30
 - Between X_1 and X_2 : -0.47

$$r_{y2.1} = \frac{(-0.30) - (0.50)(-0.47)}{\sqrt{1 - (0.50)^2}\sqrt{1 - (-0.47)^2}}$$

$$r_{v2.1} = -0.08$$

Result and interpretation

• For this example, R^2 will tell us how much of husband's housework is explained by the combined effects of the number of children (X_1) and husband's education (X_2)

$$R^{2} = r_{y1}^{2} + r_{y2.1}^{2} (1 - r_{y1}^{2})$$

$$R^{2} = (0.50)^{2} + (-0.08)^{2} (1 - 0.50^{2})$$

$$R^{2} = 0.255$$

 Number of children and husband's education explain 25.5% of the variation in husband's housework

