Predictive Modeling

Chapter 1: Introduction to Predictive Modeling

STA 6543

The University of Texas at San Antonio

Textbook information

- Applied Predictive Modeling http://appliedpredictivemodeling.com/
- The <u>AppliedPredictiveModeling</u> R package contains many of the data sets used here and R scripts to reproduce the analyses in each chapter of the book.

Overview of statistical data analytics

Overview of statistical data analytics

What is predictive modeling?

- What Is predictive modeling?
 - Definition of predictive modeling
 - The trade-off between prediction accuracy and model interpretability
 - Supervised vs. unsupervised learning
 - Regression vs. classification problems
- Introduction to R (Lab 1)

What is predictive modeling?

Chapter 1

What is predictive modeling?

• Predictive modeling: the process of developing a mathematical tool or model that generates an accurate prediction.

Examples

- How many copies will this book sell? (regression)
- How much will my house sell for in the current market? ()
- Will this customer move their business to a different company?
- Does a patient have a specific disease?
- Should I sell this stock?
- Is an e-mail spam?
- Will this patient respond to this therapy?

Some tradeoffs

- Prediction accuracy versus interpretability.
 - Linear models are easy to interpret; non-parametric models are not.
- Good fit versus over-fit or under-fit.
 - How do we know when the fit is just right?
- Parsimony versus black-box.
 - We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.

Tradeoff between flexibility and interpretability

Terminology

- straining data • The term sample often refers to a subset of data points, such as the training set sample.
- The training set consists of the data used to develop models while the test or validation sets are used solely for evaluating the performance of a final set of candidate models.
- The predictors (X), independent variables, attributes, or descriptors are the data used as input for the prediction equation.
- Outcome, dependent variable, target, class, or response (Y) refer to the outcome event or quantity that is being predicted.

Terminology

- Continuous data have natural, numeric scales.
- Categorical data, otherwise known as nominal, attribute, or discrete data, take on specific values that have no scale
- Model building, model training, and parameter estimation all refer to the process of using data to determine values of model equations.

1. Prediction

Consider

$$Y = f(X) + \epsilon,$$

• If we can produce a good estimate for f (and the variance of ε is not too large) we can make accurate predictions for the response, Y, based on a new value of X.

We may consider a complex relationship for f

Example: direct mailing prediction

- Interested in predicting how much money an individual will donate based on observations from 90,000 people on which we have recorded over 400 different characteristics.
- Don't care too much about each individual characteristic.
- Just want to know: For a given individual should I send out a mailing?

2. Inference

- Alternatively, we may also be interested in the type of relationship between Y and the X's.
- For example,
 - Which particular predictors actually affect the response?
 - Is the relationship positive or negative?
 - Is the relationship a simple linear one or is it more complicated etc.?

Example: housing inference

- Wish to predict median house price based on 14 variables.
- Probably want to understand which factors have the biggest effect on the response and how big the effect is.
- For example how much impact does a river view have on the house value etc.

The objectives of this course

- Foundational principles for building predictive models
- Intuitive explanations of many commonly used predictive modeling methods for both classification and regression problems
- Principles and steps for validating a predictive model
- Computer code to perform the necessary foundational work to build and validate predictive models

Example: music genre

• The objective was to use the predictors to *classify* music samples into the appropriate music genre.

Example: permeability

 The objective was to use the predictors to model compounds' permeability

Example: hepatic injury

• The objective was to build a *predictive model* for hepatic injury so that other compounds can be screened for the likelihood of causing hepatic injury.

injury.

Table 1.1: A	A comparison	of several cha	racteristics	s of the exan	aple data sets	d	
			Data set		B	=(X,X)_(x'y
Data	Music	Grant	Hepatic	Fraud	1	Chemical	1 -
characteristic	$_{ m genre}$	applications	$_{ m injury}$	\det	Permeability	${f manufacturing}$	4 N < P
Dimensions	N > V				N< P		· · · · · ·
# Samples	12,495	8,707	281	204	$1\overline{65}$	177	XX is
# Predictors	191	249	376	20	1,107	57	X X 203
						1	· · · · · · · · · · · · · · · · · · ·
Response					V		unt were
characteristics					U	-asso	7000
Categorical or continuous	Categorica	l Categorical	Categorical	l Categorical	Continuous	Continuous	
Balanced/symmetric		×		×		×	
Unbalanced/skewed	×		×	×			
Independent			×		×		
Predictor	L						
Characteristics	V				1/		
Continuous	×	×	×	×	•	×	
Count	×	×	×			×	
Categorical		×	×	×	×	×	
Correlated/associated	×	×	×	×	×	×	
Different scales	×	×	×	×		×	
Missing values		×				×	
Sparse					×		

Supervised vs. unsupervised learning

- We can divide all learning problems into Supervised and Unsupervised situations
- Supervised learning:
 - Supervised Learning is where both the predictors X and the response Y are observed.
 - We wish to accurately predict unseen test cases, understand which inputs affect the outcome and how, and assess the quality of our prediction and inferences.
 - Most of this course deal with supervised learning.
- Unsupervised learning:
 - Only the predictors X are observed.
 - Use the predictors to groups of samples that behave similarly.
 - Difficult to know how well you are doing, but can be useful as a pre-processing step for supervised learning.

Regression vs. classification

- Supervised learning problems can be further divided into regression and classification problems.
- Regression covers situations where Y is continuous/numerical. e.g.
 - Predicting the value of the Dow in 6 months.
 - Predicting the value of a given house based on various inputs.
- Classification covers situations where Y is categorical e.g.
 - Will the Dow be up (U) or down (D) in 6 months?
 - Is this email a SPAM or not?

Philosophy

- It is important to understand the ideas behind the various techniques, in order to know how and when to use them.
- One has to understand the simpler methods first, in order to grasp the more sophisticated ones.
- It is important to accurately assess the performance of a method, to know how well or how badly it is working [simpler methods often perform as well as fancier ones!]
- This is an exciting research area, having important applications in science, industry and finance.
- Statistical learning is a fundamental ingredient in the training of a modern data scientist.

Data scientist core skills

25

Some resources

- 11 Clever Methods of Overfitting and how to avoid them
- Big Idea To Avoid Overfitting: Reusable Holdout to Preserve Validity in Adaptive Data Analysis
- 21 Must-Know Data Science Interview Questions and Answers
- 21 Must-Know Data Science Interview Questions and Answers, part 2