

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustech.edu.cn

Binary Relations

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), \dots, (a_1, b_n), \dots, (a_m, b_n)\}$

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Binary Relations

Let $A = \{a_1, a_2, ..., a_m\}$ and $B = \{b_1, b_2, ..., b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), ..., (a_1, b_n), ..., (a_m, b_n)\}$

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Definition: A relation on the set A is a relation from A to itself.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$.

Transitive Relation: A relation R on a set A is called *transitive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

Composite of Relations

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Powers of R

■ **Definition** Let R be a relation on A. The *powers* R^n , for n = 1, 2, 3, ..., is defined inductively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Powers of R

■ **Definition** Let R be a relation on A. The *powers* R^n , for n = 1, 2, 3, ..., is defined inductively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

- Some ways to represent *n*-ary relations:
 - with an explicit list or table of its tuples
 - with a *function* from the domain to $\{T, F\}$

- Some ways to represent *n*-ary relations:
 - with an explicit list or table of its tuples
 - with a *function* from the domain to $\{T, F\}$
- Some special ways to represent binary relations:
 - with a zero-one matrix
 - with a directed graph

- Some ways to represent n-ary relations:
 - with an explicit list or table of its tuples
 - with a *function* from the domain to $\{T, F\}$
- Some special ways to represent binary relations:
 - with a zero-one matrix
 - with a directed graph

- Some ways to represent n-ary relations:
 - with an explicit list or table of its tuples
 - with a *function* from the domain to $\{T, F\}$
- Some special ways to represent binary relations:
 - with a zero-one matrix
 - with a directed graph

reflexive

irreflexive

symmetric

antisymmetric

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Is this relation *R* reflexive?

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Is this relation *R* reflexive?

No. Why?

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Is this relation *R* reflexive?

No. Why? (2,2) and (3,3) is not in R.

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Is this relation R reflexive?

No. Why? (2,2) and (3,3) is not in R.

The question is what is the minimal relation $S \supseteq R$ that is reflexive?

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Is this relation R reflexive?

No. Why? (2,2) and (3,3) is not in R.

The question is what is the minimal relation $S \supseteq R$ that is reflexive?

How to make R reflexive by minimum number of additions?

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Is this relation R reflexive?

No. Why? (2,2) and (3,3) is not in R.

The question is what is the minimal relation $S \supseteq R$ that is reflexive?

How to make R reflexive by minimum number of additions?

Add (2,2) and (3,3)

Then
$$S = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\} \supseteq R$$

Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on $A = \{1,2,3\}$.

Is this relation R reflexive?

No. Why? (2,2) and (3,3) is not in R.

The question is what is the minimal relation $S \supseteq R$ that is reflexive?

How to make R reflexive by minimum number of additions?

Add (2,2) and (3,3)

Then
$$S = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\} \supseteq R$$

The minimal set $S \supseteq R$ is called *the reflexive closure* of R.

Reflexive Closure

■ The set *S* is called *the reflexive closure of R* if it:

Reflexive Closure

- The set *S* is called *the reflexive closure of R* if it:
 - ♦ contains R
 - ♦ is reflexive
 - \diamond is minimal (is contained in every reflexive relation Q that contains R ($R \subseteq Q$), i.e., $S \subseteq Q$)

- Relations can have different properties:
 - reflexive
 - symmetric
 - transitive

- Relations can have different properties:
 - reflexive
 - symmetric
 - transitive

We define:

- reflexive closures
- symmetric closures
- transitive closures

■ **Definition** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

■ **Definition** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

S is the **minimal set** containing R satisfying the property P.

■ **Definition** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

S is the **minimal set** containing R satisfying the property P.

Example: (symmetric closure)

$$R = \{(1,2), (1,3), (2,2)\}$$
 on $A = \{1,2,3\}$

What is the symmetric closure *S* of *R*?

■ **Definition** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

S is the **minimal set** containing R satisfying the property P.

Example: (symmetric closure)

$$R = \{(1,2), (1,3), (2,2)\}$$
 on $A = \{1,2,3\}$

What is the symmetric closure *S* of *R*?

$$R = \{(1,2), (1,3), (2,2)\} \cup \{(2,1), (3,1)\}$$

■ **Definition** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

S is the **minimal set** containing R satisfying the property P.

Example: (transitive closure)

$$R = \{(1,2), (2,2), (2,3)\}$$
 on $A = \{1,2,3\}$

Is R transitive?

■ **Definition** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

S is the **minimal set** containing R satisfying the property P.

Example: (transitive closure)

$$R = \{(1,2), (2,2), (2,3)\}$$
 on $A = \{1,2,3\}$

Is R transitive?

How to make it transitive?

■ **Definition** Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is subset of every relation Q ($S \subseteq Q$) with property P that contains R ($R \subseteq Q$).

S is the **minimal set** containing R satisfying the property P.

Example: (transitive closure)

$$R = \{(1,2), (2,2), (2,3)\}$$
 on $A = \{1,2,3\}$

Is R transitive? No

How to make it transitive?

$$S = \{(1,2),(2,2),(2,3)\} \cup \{(1,3)\}$$

Transitive Closure

We can represent the relation on the graph.

Transitive Closure

We can represent the relation on the graph.

Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path

We can represent the relation on the graph.

Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path

$$R = \{(1,2), (2,2), (2,3)\}$$
 on $A = \{1,2,3\}$
Transitive closure: $S = \{(1,2), (2,2), (2,3), (1,3)\}$

We can represent the relation on the graph.

Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path

Example:

$$R = \{(1,2), (2,2), (2,3)\}$$
 on $A = \{1,2,3\}$

Transitive closure: $S = \{(1,2), (2,2), (2,3), (1,3)\}$

We can represent the relation on the graph.

Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path

Example:

$$R = \{(1,2), (2,2), (2,3)\}$$
 on $A = \{1,2,3\}$

Transitive closure: $S = \{(1,2), (2,2), (2,3), (1,3)\}$

We can represent the relation on the graph.

Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path

Example:

$$R = \{(1,2), (2,2), (2,3)\}$$
 on $A = \{1,2,3\}$

Transitive closure: $S = \{(1,2), (2,2), (2,3), (1,3)\}$

Paths in Directed Graphs

■ **Definition** A *path* from *a* to *b* in the directed graph *G* is a sequence of edges $(x_0, x_1), (x_1, x_2), \ldots, (x_{n-1}, x_n)$ in *G*, where *n* is nonnegative and $x_0 = a$ and $x_n = b$. A path of length $n \ge 1$ that begins and ends at the same vertex is called a *circuit* or *cycle*.

Paths in Directed Graphs

■ **Definition** A *path* from *a* to *b* in the directed graph *G* is a sequence of edges $(x_0, x_1), (x_1, x_2), \ldots, (x_{n-1}, x_n)$ in *G*, where *n* is nonnegative and $x_0 = a$ and $x_n = b$. A path of length $n \ge 1$ that begins and ends at the same vertex is called a *circuit* or *cycle*.

Theorem Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.

Path Length

■ **Theorem** Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.

Proof (by induction)

Path Length

■ **Theorem** Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.

Proof (by induction)

Path of length 1

Path Length

■ **Theorem** Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.

Proof (by induction)

Path of length 1

Definition Let R be a relation on a set A. The *connectivity* relation R^* consists of all pairs (a, b) s.t. there is a path (of any length) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

Definition Let R be a relation on a set A. The *connectivity* relation R^* consists of all pairs (a, b) s.t. there is a path (of any length) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

$$A = \{1, 2, 3, 4\}$$

 $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$

Definition Let R be a relation on a set A. The *connectivity* relation R^* consists of all pairs (a, b) s.t. there is a path (of any length) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

$$A = \{1, 2, 3, 4\}$$

 $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$
 $R^2 = \{(1, 3), (2, 4)\}$

Definition Let R be a relation on a set A. The *connectivity* relation R^* consists of all pairs (a, b) s.t. there is a path (of any length) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

$$A = \{1, 2, 3, 4\}$$
 $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$
 $R^2 = \{(1, 3), (2, 4)\}$
 $R^3 = \{(1, 4)\}$

Definition Let R be a relation on a set A. The *connectivity* relation R^* consists of all pairs (a, b) s.t. there is a path (of any length) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

$$A = \{1, 2, 3, 4\}$$
 $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$
 $R^2 = \{(1, 3), (2, 4)\}$
 $R^3 = \{(1, 4)\}$
 $R^4 = \emptyset$

Definition Let R be a relation on a set A. The *connectivity* relation R^* consists of all pairs (a, b) s.t. there is a path (of any length) between a and b in R.

$$R^* = \bigcup_{k=1}^{\infty} R^k$$

 $R^* = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$

$$A = \{1, 2, 3, 4\}$$
 $R = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$
 $R^2 = \{(1, 3), (2, 4)\}$
 $R^3 = \{(1, 4)\}$
 $R^4 = \emptyset$

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n - 1$.

Proof (by intuition)

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n-1$.

Proof (by intuition)

⋄ There are at most n different elements we can visit on a path if the path does not have loops

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n - 1$.

Proof (by intuition)

♦ There are at most n different elements we can visit on a path if the path does not have loops

$$x0=a$$
 $x1$ $x2$ $xm=b$

♦ Loops may increase the length but the same node is visited more than once

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n - 1$.

Proof (by intuition)

⋄ There are at most n different elements we can visit on a path if the path does not have loops

$$x0=a$$
 $x1$ $x2$ $xm=b$

♦ Loops may increase the length but the same node is visited more than once

$$R^* = \bigcup_{k=1}^n R^k$$

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n-1$.

$$R^* = \bigcup_{k=1}^n R^k$$

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n - 1$.

$$R^* = \bigcup_{k=1}^n R^k$$

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

Recall Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path

■ **Theorem**: The transitive closure of a relation R equals the connectivity relation R^* .

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

- 1. R^* is transitive
- 2. $R^* \subseteq S$ whenever S is a transitive relation containing R

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

- 1. R^* is transitive
- 2. $R^* \subseteq S$ whenever S is a transitive relation containing R
- 1. If $(a, b) \in R^*$ and $(b, c) \in R^*$, then there are paths from a to b and from b to c in R. Thus, there is a path from a to c in R. This means that $(a, c) \in R^*$.

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

- 1. R^* is transitive
- 2. $R^* \subseteq S$ whenever S is a transitive relation containing R
- 2. Suppose that S is a transitive relation containing R.

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

Proof

- 1. R^* is transitive
- 2. $R^* \subseteq S$ whenever S is a transitive relation containing R
- 2. Suppose that S is a transitive relation containing R.

Then S^n is also transitive and $S^n \subseteq S$. Why?

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

Proof

- 1. R^* is transitive
- 2. $R^* \subseteq S$ whenever S is a transitive relation containing R
- 2. Suppose that S is a transitive relation containing R.

Then S^n is also transitive and $S^n \subseteq S$. Why?

We have $S^* \subseteq S$. Thus, $R^* \subseteq S^* \subseteq S$

Find Transitive Closure

Find Transitive Closure

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

Find Transitive Closure

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \mathbf{M}_R^{[n]}$$

$$\mathbf{M}_R = \left[egin{array}{cccc} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 0 \end{array}
ight]$$

$$M_{R^*} = ?$$

Simple Transitive Closure Algorithm

```
procedure transClosure (\mathbf{M}_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

A := B := \mathbf{M}_R;

for i := 2 to n

A := A \odot \mathbf{M}_R

B := B \vee A

return B

// B is the zero-one matrix for R^*
```


Simple Transitive Closure Algorithm

```
procedure transClosure (M_R: zero-one n \times n matrix)
// computes R^* with zero-one matrices
A := B := \mathbf{M}_{R};
for i := 2 to n
 A := A \odot \mathbf{M}_R
 B := B \vee A
return B
//B is the zero-one matrix for R^*
This algorithm takes \Theta(n^4) time.
```


Simple Transitive Closure Algorithm

```
procedure transClosure (M_R: zero-one n \times n matrix)
// computes R^* with zero-one matrices
A := B := \mathbf{M}_{R};
for i := 2 to n
 A := A \odot \mathbf{M}_R
 B := B \vee A
return B
//B is the zero-one matrix for R^*
This algorithm takes \Theta(n^4) time.
                                           Why?
```


Roy-Warshall Algorithm

```
procedure Warshall (M_R: zero-one n \times n matrix)

// computes R^* with zero-one matrices

W := M_R;

for k := 1 to n

for i := 1 to n

for j := 1 to n

w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj})

return W

// W is the zero-one matrix for R^*
```


Roy-Warshall Algorithm

```
procedure Warshall (M_R: zero-one n \times n matrix)
// computes R^* with zero-one matrices
W:=\mathbf{M}_R;
for k := 1 to n
 for i := 1 to n
   for j := 1 to n
       w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj})
return W
//W is the zero-one matrix for R^*
w_{ii} = 1 means there is a path from i to j going only through
nodes \leq k.
                  W_{ii}^{[k]} = W_{ii}^{[k-1]} \vee \left( W_{ik}^{[k-1]} \wedge W_{ki}^{[k-1]} \right)
```

Roy-Warshall Algorithm

This algorithm takes $\Theta(n^3)$ time.

```
procedure Warshall (M_R: zero-one n \times n matrix)
// computes R^* with zero-one matrices
W:=\mathbf{M}_R;
for k := 1 to n
 for i := 1 to n
   for j := 1 to n
       w_{ij} := w_{ij} \vee (w_{ik} \wedge w_{kj})
return W
//W is the zero-one matrix for R^*
w_{ij} = 1 means there is a path from i to j going only through
nodes \leq k.
                  W_{ij}^{[k]} = W_{ij}^{[k-1]} \vee \left( W_{ik}^{[k-1]} \wedge W_{kj}^{[k-1]} \right)
```

Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 . The matrix W_4 is the transitive closure of R.

Let $v_1 = a$, $v_2 = b$, $v_3 = c$, $v_4 = d$.

Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 . The matrix W_4 is the transitive closure of R.

Let
$$v_1 = a$$
, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 . The matrix W_4 is the transitive closure of R.

Let
$$v_1 = a$$
, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{ccccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

$$W_2 = W_1 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 . The matrix W_4 is the transitive closure of R.

Let
$$v_1 = a$$
, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{ccccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

$$W_2 = W_1 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

$$W_3 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \end{array}
ight]$$

Find the matrices W_0, W_1, W_2, W_3 , and W_4 . The matrix W_4 is the transitive closure of R.

Let
$$v_1 = a$$
, $v_2 = b$, $v_3 = c$, $v_4 = d$.

$$W_0 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

$$W_2 = W_1 = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

$$W_3 = \left[egin{array}{cccccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ \end{array}
ight] \qquad W_4 = \left[egin{array}{ccccc} 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ \end{array}
ight]$$

■ **Definition** A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

■ **Definition** A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Example:

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

 $R = \{(a, b) : a \equiv b \mod 3\}$

Definition A relation R on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Example:

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

 $R = \{(a, b) : a \equiv b \mod 3\}$

R has the following pairs:

- \bullet (0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)
- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

- \bullet (0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)
- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

- \bullet (0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)
- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive?

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

$$\bullet$$
(0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)

- \bullet (1,1),(1,4),(4,1),(4,4)
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive?

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

$$\bullet$$
(0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)

- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive? Yes

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

$$\bullet$$
(0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)

- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive? Yes

Is R symmetric?

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

$$\bullet$$
(0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)

- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive? Yes

Is R symmetric? Yes

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

$$\bullet$$
(0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)

- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive? Yes

Is R symmetric? Yes

Is R transitive?

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

$$\bullet$$
(0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)

- \bullet (1,1),(1,4),(4,1),(4,4)
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive? Yes

Is R symmetric? Yes

Is R transitive? Yes

• Relation R on $A = \{0, 1, 2, 3, 4, 5, 6\}$ has the pairs:

$$\bullet$$
(0,0),(0,3),(3,0),(0,6),(6,0),(3,3),(3,6),(6,3),(6,6)

- $\bullet(1,1),(1,4),(4,1),(4,4)$
- \bullet (2,2),(2,5),(5,2),(5,5)

Is R reflexive? Yes

Is R symmetric? Yes

Is R transitive? Yes

R is an equivalence relation

Examples of Equivalence Relations

Examples

"Strings a and b have the same length."

"Integers a and b have the same absolute value."

"Real numbers a and b have the same fractional part (i.e., $a-b \in \mathbf{Z}$)."

Examples of Equivalence Relations

Examples

"Strings a and b have the same length."

"Integers a and b have the same absolute value."

"Real numbers a and b have the same fractional part (i.e., $a - b \in \mathbf{Z}$)."

"The relation \geq between real numbers."

"has a common factor greater than 1 between natural numbers."

$$[a]_R = \{b : (a, b) \in R\}$$

$$[a]_R = \{b : (a, b) \in R\}$$

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

 $R = \{(a, b) : a \equiv b \mod 3\}$

$$[a]_R = \{b : (a, b) \in R\}$$

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

 $R = \{(a, b) : a \equiv b \mod 3\}$
 $[0] = [3] = [6] = \{0, 3, 6\}$
 $[1] = [4] = \{1, 4\}$
 $[2] = [5] = \{2, 5\}$

Examples of Equivalence Classes

Examples

"Strings a and b have the same length."

"Integers a and b have the same absolute value."

"Real numbers a and b have the same fractional part (i.e., $a-b \in \mathbf{Z}$)."

Examples of Equivalence Classes

Examples

"Strings a and b have the same length."

[a] = the set of all strings of the same length as a

"Integers a and b have the same absolute value."

$$[a]$$
 = the set $\{a, -a\}$

"Real numbers a and b have the same fractional part (i.e., $a-b \in \mathbf{Z}$)."

$$[a]$$
 = the set $\{\ldots, a-2, a-1, a, a+1, a+2, \ldots\}$

■ **Theorem** Let *R* be an equivalence relation on a set *A*. The following statements are equivalent:

(i)
$$a R b$$

(ii) $[a] = [b]$
(iii) $[a] \cap [b] \neq \emptyset$

■ **Theorem** Let R be an equivalence relation on a set A. The following statements are equivalent:

(i)
$$a R b$$

(ii) $[a] = [b]$
(iii) $[a] \cap [b] \neq \emptyset$

$$(i) \rightarrow (ii)$$
:

■ **Theorem** Let R be an equivalence relation on a set A. The following statements are equivalent:

(i)
$$a R b$$

(ii) $[a] = [b]$
(iii) $[a] \cap [b] \neq \emptyset$

$$(i) \rightarrow (ii)$$
: prove $[a] \subseteq [b]$ and $[b] \subseteq [a]$

■ **Theorem** Let R be an equivalence relation on a set A. The following statements are equivalent:

(i)
$$a R b$$

(ii) $[a] = [b]$
(iii) $[a] \cap [b] \neq \emptyset$

$$(i) \rightarrow (ii)$$
: prove $[a] \subseteq [b]$ and $[b] \subseteq [a]$
 $(ii) \rightarrow (iii)$:

■ **Theorem** Let R be an equivalence relation on a set A. The following statements are equivalent:

(i)
$$a R b$$

(ii) $[a] = [b]$
(iii) $[a] \cap [b] \neq \emptyset$

```
(i) \rightarrow (ii): prove [a] \subseteq [b] and [b] \subseteq [a]
(ii) \rightarrow (iii): [a] is not empty (R \text{ reflexive})
```


■ **Theorem** Let R be an equivalence relation on a set A. The following statements are equivalent:

(i)
$$a R b$$

(ii) $[a] = [b]$
(iii) $[a] \cap [b] \neq \emptyset$

```
(i) \rightarrow (ii): prove [a] \subseteq [b] and [b] \subseteq [a]

(ii) \rightarrow (iii): [a] is not empty (R \text{ reflexive})

(iii) \rightarrow (i):
```


■ **Theorem** Let R be an equivalence relation on a set A. The following statements are equivalent:

(i)
$$a R b$$

(ii) $[a] = [b]$
(iii) $[a] \cap [b] \neq \emptyset$

```
(i) \rightarrow (ii): prove [a] \subseteq [b] and [b] \subseteq [a]

(ii) \rightarrow (iii): [a] is not empty (R \text{ reflexive})

(iii) \rightarrow (i): there exists a c s.t. c \in [a] and c \in [b]
```


Definition Let S be a set. A collection of nonempty subsets of S A_1, A_2, \ldots, A_k is called a partition of S if:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

Definition Let S be a set. A collection of nonempty subsets of S A_1, A_2, \ldots, A_k is called a partition of S if:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

Definition Let S be a set. A collection of nonempty subsets of S A_1, A_2, \ldots, A_k is called a partition of S if:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

Example:

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

 $A_1 = \{0, 3, 6\}, A_2 = \{1, 4\}, A_3 = \{2, 5\}$

Definition Let S be a set. A collection of nonempty subsets of S A_1, A_2, \ldots, A_k is called a partition of S if:

$$A_i \cap A_j = \emptyset, \ i \neq j \text{ and } S = \bigcup_{i=1}^k A_i$$

Example:

$$A = \{0, 1, 2, 3, 4, 5, 6\}$$

 $A_1 = \{0, 3, 6\}, A_2 = \{1, 4\}, A_3 = \{2, 5\}$

Is A_1, A_2, A_3 a partition of S?

Equivalence Classes and Partitions

■ **Theorem** Let *R* be an equivalence relation on a set *A*. Then union of all the equivalence classes of *R* is *A*:

$$A = \bigcup_{a \in A} [a]_R$$

Equivalence Classes and Partitions

■ **Theorem** Let *R* be an equivalence relation on a set *A*. Then union of all the equivalence classes of *R* is *A*:

$$A = \bigcup_{a \in A} [a]_R$$

Theorem The equivalence classes form a partition of A.

Equivalence Classes and Partitions

■ **Theorem** Let *R* be an equivalence relation on a set *A*. Then union of all the equivalence classes of *R* is *A*:

$$A = \bigcup_{a \in A} [a]_R$$

Theorem The equivalence classes form a partition of A.

Theorem Let $\{A_1, A_2, \ldots, A_i, \ldots\}$ be a partition of S. Then there is an equivalence relation R on S, that has the sets A_i as its equivalence classes.

Next Lecture

relation, graph ...

