

Agenda

- Introduction
- System Pipeline
- Data Preprocessing & Analysis
- Feature Engineering
- Model Tuning & Evaluation
- Kaggle Results
- Conclusion
- Key Takeaways

Introduction

- Aim: Classify malware into predefined families (0...9) or outlier (10).
- Problem Type: Multi-class Classification
- Samples
 - Training Set: 2056 (1627 after Removal of Missing Training Data)
 - ► Test Set: 1676
- Number of Features: PE Info(Static Analysis) and VT Info(Antivirus Signatures)
- Classification
 - There are 11 decision classes: 0 to 10.

System Pipeline

- Data Visualization
 - Tabulate & analyse the structure of the data.
- Feature Selection
 - Encoding selected parts of the data as features.
- Evaluation of Models
 - Classification accuracy using K Fold Stratified Cross Validation.

Data Preprocessing

- Removal of Missing Training Samples
 - No Static Analysis and Anti Virus Signatures for 429 samples of the training set
 - Removed the training samples from the training phase

Data Analysis

- PE Info
 - Multiple pe_section, pe_resources, pe_import, pe_timestamp, rich_header sections per sample.
 - Sample File
 - Analysis of Sections
 - Analysis
- VT Info
 - Single Signature for some of the 75 Anti Viruses per sample.
 - Sample File
 - Frequency Analysis for Anti Virus Signatures.
 - Analysis

Feature Engineering

- VT Info
 - ✓ Selecting sub set of Anti Viruses with high variance.
 - ✓ Selecting all Anti Viruses.
 - Reduction of Null Feature Vectors.
- Variance of Anti Virus
 - ✓ Variance = Total No. of Samples / No. of Unique Signatures

Feature Engineering(2)

- Encoding of Features
 - One Hot Encoding
 - Blow up of features.
 - 75 anti viruses * 203 Signatures on average
 - ✓ Binary Encoding
 - Presence/Absence of Anti virus signature for the sample
 - Frequency Encoding
 - Variance of Anti virus/ Total Occurences for the Signature

Feature Engineering(3)

Feature Engineering(4)

▶ PE Info

- Most of the sections are repeated per sample.
- Mean, Median & Mode could be tried on Numerical Features.
- Entropy Mean & Median gave best results.
- ✓ Increasing number of features did not necessarily give better results compared to pure VT Info Encoding.
- ✓ Selected just Entropy.

Model

- We tried different types of Multi Class Classification Models to fit our data
 - Random Forests
 - Multi Class SVM with Linear Kernel
 - K Nearest Neighbors with 3 Neighbors

Tuning Model Parameters

K Nearest Neighbors (kNN)

Neighbors in k-Nearest Neighbor (kNN) Classifier

Tuning Model Parameters(2)

Multi Class Support Vector Machines (SVM)

Tuning Model Parameters(3)

Random Forests (RF)

Random Forest Classifier

Evaluation of the Models

Criteria

Classification Accuracy on Stratified K-Fold Cross Validation with a split of 4:1.

Random Forest Classifier
Multiclass Linear SVM Classifier
KNN Classifier

Kaggle Results

Conclusion

- ► The best results were observed for Random Forest (100 trees with Gini as a criterion) on Frequency Encoded all Anti Viruses' VT Info data.
- ► The addition of Entropy Mean/Median from PE Info gives almost the same result as pure Frequency based VT Info encoding on all Anti Viruses.
- KNN & Multi Class SVM worked better on Binary Encoding of VT Info.

Key Takeaways

- Visualization for analysis of data set for feature engineering.
- Inherent structure of our data consisted of mainly categorical features. Random Forest Classifier works well on categorical features.
- Adding more features could result in overfitting.

Questions?

Thank You!