

Robotic Merit Badge Session #4

- Merit Badge Counselor: Maurice Ling
- **¬** August 17, 2015
- http://github.com/mcli/RoboticsMB

Agenda

- Programming Accelerometer inputs
- Review Competition Rules
- ▼ Testing Checklist

Force Vector

 \blacksquare Force is a vector with components in the x, y, and z directions

Accelerometer Principles

- The accelerometer measures acceleration along the x, y, and z axes of the microMagician board.
- When at rest, the accelerometer measures gravitational force.
- What is the relationship between force and acceleration?

Newton's 2nd Law

$$F = ma$$

Force = Mass * Acceleration

¬ On Earth, $a = g \sim 9.8 \text{ m /sec}^2$

Accelerometer Measurements

- Measurements from the accelerometer are taken from analog pins 0, 1, and 2 and stored in microM.xaxis, microM.yaxis, and microM.zaxis.
- Raw measurements are from 0 through 1024
- When at rest, these measurements correspond to the gravitational force exerted on the board.
- We can convert these measurements into numbers that we can understand and easily process.

Normalizing the Accelerometer Measurements

- ▼ Find the "zero" value of the x, y and z axes by aligning the axes of interest perpendicular to gravity. This is your zero offset.
- ▼ Find the measurement value from the zero value corresponding to the gravitational force. This is your scale factor.
- Your normalized measurements will be in units of gravitational force

gForce(i) = (measurement(i) -offset(i))/scaleFactor;

What about direction?

■ How do you represent the direction of the your robot?

Computing the Orientation

Use trigonometric approximation to get pitch and roll angles.

```
// apply trigonometry to get the pitch and roll:
float pitch = atan(xAxis/sqrt(pow(yAxis,2) +
pow(zAxis,2)));
float roll = atan(yAxis/sqrt(pow(xAxis,2) +
pow(zAxis,2)));
//convert radians into degrees
float pitchInDegrees = pitch * (180.0/PI);
float rollInDegrees = roll * (180.0/PI);
```

■ Run the Accelerometer program. Do the output numbers match what you expect?

Robotic Competition Rules

- 5 minute time limit
- 4 Components
 - ▼ Design in Engineering Notebook
 - ▼ Programming Logic
 - Mechanical design
 - Circuit diagram
 - ▼ Testing Checklist & results
 - Loading manual control
 - Transport Course automatic navigation
 - Unloading manual control
- Complete rules on GitHub

Competition Scoring

- +20 Points scored for each segment completed
- +25 Points for Design
- Bonus points:
 - ▼ Time completed within 3 minutes
 - Innovative/elegant design (Up to +20)
- Penalty points for:
 - Handling payload
 - Manual intervention
 - Contact with barriers/objects
- Robot must not be moved, turned, or otherwise transported physically by a human.
- Judge panel consisting of industry professionals.

Creating a Test Checklist

- A Test Checklist will help you assess your robot and identify areas you need to change or improve.
- What scenarios can you think of for the competition?

Example Test Checklist

Scenario	Expected Behavior	
Manual Naviation	 Left turn Right turn Forward Reverse In-place turn 	
Loading	Manually navigate to payload holderLoad payload onto Robot	
Unloading	Manually navigate to targetUnload payload onto receptacle	
Auto/Manual transition	Automatic to Manual control.Manual to Automatic control	
Auto navigation	U turnLeft turnRight turnGo around Island object	

Testing Your Robot

- Test your robot on the different test stations
- Record your results in your engineering notebook
- Write down any improvements and adjustments you need to make.

Homework

- Continue testing and programming your robot for the competition.
- Come up with a name for your robot.
- Create a sign with your name and your robot's name for the quarantine table.

