1 7, 1 72 + 1 7, 72 + 4, 82 !x, (!x2 + x2) 12 + 1 x1 ! x2 ! x, 1 x, x2 x2 1(x, 1x2) ×1 ~ ×2 「か(ノイグ) ! x 1 4 x 2 ! x ! x24! x 1 x2+ V, x2 17, 4 Y, x2 121 482 Min teem 7, 12 ×3 000 mo = x, x2 x3 m, = x, 1/2 x3 0 1 0 m 2 = x1 x2 x3 3 m 3= x, k2 x3 M4 = ×1 ×2 ×3 MT = ×1 x2 xg

7 (| M₂ = x₁ x₂ x₃

!x, !x2 1! x1x2 1 x,x2

- a) Canonical sum of products
 (regular solution)
- 6) Minimal evst realizations (most efficient solution) (ost = Hgules + Hinputs

= Canonial SOP expression sum-of-product, m - mintern $0 = \bar{x}$ $1 = \bar{x}$ (all z = 1)

M - Murkern $0 = \bar{x}$ $1 = \bar{x}$ (all z = 0)

Produd-08-sums (POS) - inverse of sop (Y-14) (!X-14)

5 - sum

TT - product

f (x,xe,xx)=TT (Mo, H2, M3, H3)= = TM(0,2,3,7)

in $V \neq \pi M(E) = \sum_{m} (not C)$

TO NAND

TO NOR

Invert ontputs of AMD Invert inputs of OR Use 15th because OR 6 VAUD Use NAMD for inversions

> 4	02	and	nund	nol
yy	b	0	ı)
01	1	٥	1	6
10		6	1	6
	((6	0

1 [x14x2) = x1 x2

invert outputs of OR
invert in puts of AND
use 15th to convert AND to NOW
Use NOR Sor inversions