1. Set up an integral to compute the flux of $\underline{F}=2y\underline{i}+2x\underline{j}+-xy\underline{k}$ through S where S is oriented upward and is the part of the surface z=3xy above the square surface in the xy-plane with $2\leq x\leq 5$, $1\leq y\leq 6$.

Do not integrate.

2. Find the flux of $\underline{F} = (\cos(yz) + x)\underline{i} + (e^{x^2+z^2} - y)\underline{j} + (\tan 2xy)\underline{k}$ out of the solid box $0 \le x \le 2, 0 \le y \le 3, 0 \le z \le 4$.

3. Consider a solid region W between a paraboloid that opens upwards from the origin, S_1 , and the plane z=5. Let S_2 be the piece of the plane that forms the upper boundary of the solid. Let S_1 and S_2 both be oriented upward.

Provide an equation that relates $\int_{S_1} \underline{F} \cdot d\underline{S}, \int_{S_2} \underline{F} \cdot d\underline{S}, \int_W \nabla \cdot \underline{F} \ dV$.