Exact POMDP Solutions: α -vectors

• POMDP

• POMDP

- POMDP
- Belief Updates

- POMDP
- Belief Updates

$$b_t(s) = P(s_t = s \mid h_t)$$

- POMDP
- Belief Updates

$$b_t(s) = P(s_t = s \mid h_t)$$

$$b'= au(b,a,o)$$

- POMDP
- Belief Updates

$$b_t(s) = P(s_t = s \mid h_t)$$

$$b'= au(b,a,o)$$

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$

True State

$$S = \{ \overset{\downarrow}{h}, \overset{\downarrow}{\lnot}h \} \ A = \{ f, \lnot f \}$$

 $O = \{c, \neg c\}$

$$egin{aligned} S &= \{h, \lnot h\} \ A &= \{f, \lnot f\} \ O &= \{c, \lnot c\} \end{aligned}$$
 $R(s,a) = R(s) + R(a)$

$$S=\{h,
eg h\}$$
 $A=\{f,
eg f\}$
 $O=\{c,
eg c\}$
 $R(s,a)=R(s)+R(a)$
 $R(s)=egin{cases} -10 ext{ if } s=h \ 0 ext{ otherwise} \end{cases}$

$$S = \{h, \neg h\}$$
 $A = \{f, \neg f\}$
 $O = \{c, \neg c\}$
 $R(s, a) = R(s) + R(a)$
 $R(s) = \begin{cases} -10 \text{ if } s = h \\ 0 \text{ otherwise} \end{cases}$
 $R(a) = \begin{cases} -5 \text{ if } a = f \\ 0 \text{ otherwise} \end{cases}$

$$S=\{h,
eg h\}$$
 $T(h\mid h,
eg f)=1.0$ $A=\{f,
eg f\}$ $T(h\mid h,
eg f)=0.1$ $O=\{c,
eg c\}$ $T(\neg h\mid \cdot, f)=1.0$ $R(s,a)=R(s)+R(a)$

$$R(s) = \begin{cases} -10 \text{ if } s = h \\ 0 \text{ otherwise} \end{cases}$$

$$R(a) = egin{cases} -5 ext{ if } a = f \ 0 ext{ otherwise} \end{cases}$$

$$egin{aligned} S &= \{h, \lnot h\} & T(h \mid h, \lnot f) = 1.0 \ A &= \{f, \lnot f\} & T(h \mid \lnot h, \lnot f) = 0.1 \ O &= \{c, \lnot c\} & T(\lnot h \mid \cdot, f) = 1.0 \end{aligned}$$

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$

$$R(s,a) = R(s) + R(a)$$
 $R(s) = egin{cases} -10 ext{ if } s = h \ 0 ext{ otherwise} \end{cases}$
 $R(a) = egin{cases} -5 ext{ if } a = f \ 0 ext{ otherwise} \end{cases}$
 $Z(c \mid \cdot, h) = 0.8)$
 $Z(c \mid \cdot, \neg h) = 0.1$

$$S = \{h, \neg h\}$$
 $T(h \mid h, \neg f) = 1.0$
 $A = \{f, \neg f\}$ $T(h \mid \neg h, \neg f) = 0.1$
 $O = \{c, \neg c\}$ $T(\neg h \mid \cdot, f) = 1.0$
 $R(s, a) = R(s) + R(a)$
 $R(s) = \begin{cases} -10 \text{ if } s = h \\ 0 \text{ otherwise} \end{cases}$
 $R(a) = \begin{cases} -5 \text{ if } a = f \\ 0 \text{ otherwise} \end{cases}$
 $Z(c \mid \cdot, h) = 0.8$
 $Z(c \mid \cdot, \neg h) = 0.1$
 $\gamma = 0.9$

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$

$$S = \{h, \neg h\}$$
 $T(h \mid h, \neg f) = 1.0$
 $A = \{f, \neg f\}$ $T(h \mid \neg h, \neg f) = 0.1$
 $O = \{c, \neg c\}$ $T(\neg h \mid \cdot, f) = 1.0$
 $R(s, a) = R(s) + R(a)$
 $R(s) = \begin{cases} -10 \text{ if } s = h \\ 0 \text{ otherwise} \end{cases}$
 $R(a) = \begin{cases} -5 \text{ if } a = f \\ 0 \text{ otherwise} \end{cases}$
 $Z(c \mid \cdot, h) = 0.8$
 $Z(c \mid \cdot, \neg h) = 0.1$
 $\gamma = 0.9$

$$b'(\underline{s'}) \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$
 Starting at a $b(h) = 0$, calculate

Starting at a b(h) = 0, calculate $b' \text{ with } a = \neg f \text{ and } o = c.$ s' = h $\left(b'(h) \propto Z(c \mid \neg f, h) \left(T(h \mid h, \neg f) b(h) + T(h \mid \neg h, \neg f) b(\neg h)\right)$ $0.8 (1.0 \cdot 0 + 0.1 \cdot 1.0)$ b'(h) oc 0.08 $(b'(7h) \times Z(c|7f,7h) (T(7h|h,7f)b(h) + T(h|7h,7f)b(7h))$ b'(7h) & 009 $b'(h) = \frac{0.08}{0.08 + 0.09} = 47\%$ b'(7h) = 53%

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) b(s)$$

$$b'(s') \propto Z(o \mid a, s') \sum_{s} T(s' \mid s, a) b(s)$$

$$b'(s') \propto Z(o \mid a, s') \sum_{s} T(s' \mid s, a) b(s)$$

POMDP Sense-Plan-Act Loop

Guiding Quesiton

How do we calculate the optimal action in a POMDP?

Reward -1 Listen
-100 open tiger door

O do nothing

One-step utility

$$R(TR,L) = -1$$

$$R(TL,L) = -1$$

$$a = 0L$$

$$R(TL,0L) = -100$$

$$a = 0R$$

$$R(TL,0R) = -100$$

$$R(TL,0R) = +10$$

$$R(TL,$$

$$R(b,a) = Ra \cdot b$$

$$R(s,a) = R$$

One-step utility

Reward: +10 empty door -1 Listen -100 Tiger

Exercise 2: Crying Baby 1-Step Utility

$$S=\{h,
eg h\} \qquad T(h\mid h,
eg f)=1.0$$
 $A=\{f,
eg f\} \qquad T(h\mid h,
eg f)=0.1$ $O=\{c,
eg c\} \qquad T(
eg h)=0.1$

Draw the 1-step utility
$$\alpha$$
-vectors for the Crying Baby problem.

$$egin{aligned} R(s,a) &= R(s) + R(a) \ R(s) &= egin{cases} -10 ext{ if } s &= h \ 0 ext{ otherwise} \ \end{cases} \ R(a) &= egin{cases} -5 ext{ if } a &= f \ 0 ext{ otherwise} \ \end{cases} \ Z(c \mid \cdot, h) &= 0.8) \ Z(c \mid \cdot,
egin{cases} \gamma &= 0.9 \end{cases} \end{aligned}$$

Conditional Plans: fixed-depth history-based policies

1 Step:

Conditional Plans: fixed-depth history-based policies

1 Step:

Conditional Plans: fixed-depth history-based policies

1 Step:

2 Step:

Conditional Plans: fixed-depth history-based policies

1 Step: (L) (OL) (OR)
2 Step: (TR)

$$|A|^{rac{(|O|^h-1)}{(|O|-1)}}$$

Conditional Plans: fixed-depth history-based policies

1 Step: (L) (OL) (OR)

2 Step: (L) TR TL (OL) TR

OR (OL) TR(TR) (OR) (L) (L) (L)

$$|A|^{rac{(|O|^h-1)}{(|O|-1)}}$$

27 two step plans!

Conditional Plans: fixed-depth history-based policies

1 Step: (L) (OL) (OR)

2 Step: TL/TR TL/TR TL/TR

OR (OL) 7(TR) (OR) (L) (L)

 $|A|^{rac{(|O|^h-1)}{(|O|-1)}}$

27 two step plans!

For 1-step: $U^{\pi}(s) = R(s, \pi())$

POMDP Value Functions

POMDP Value Functions

$$V^*(b) = \max_{lpha \in \Gamma} lpha^ op b$$

Exercise: 2-Step Crying Baby α Vectors

$$egin{align} S = \{h, \lnot h\} & T(h \mid h, \lnot f) = 1.0 \ A = \{f, \lnot f\} & T(h \mid \lnot h, \lnot f) = 0.1 \ O = \{c, \lnot c\} & T(\lnot h \mid \cdot, f) = 1.0 \ \end{pmatrix}$$

$$R(s,a) = R(s) + R(a)$$
 $R(s) = egin{cases} -10 ext{ if } s = h \ 0 ext{ otherwise} \end{cases}$
 $R(a) = egin{cases} -5 ext{ if } a = f \ 0 ext{ otherwise} \end{cases}$
 $Z(c \mid \cdot, h) = 0.8)$
 $Z(c \mid \cdot, \neg h) = 0.1$
 $\gamma = 0.9$

$$U^{\pi}(s) = R(s, \pi()) + \gamma \left[\sum_{s'} T(s' \mid s, \pi()) \sum_{o} O(o \mid \pi(), s') U^{\pi(o)}(s') \right]$$

α -Vector Pruning

maximize S Subject to $b \ge 0$ } enforce

1 b = 1 } that bis a probability $\alpha Tb > \alpha Tb + \delta + \delta + \delta$ A distribution - It there is a positive of solution the x is not dominated - b is sometimes called

Alpha Vector Expansion

POMDP Value Iteration (horizon d)

```
\Gamma^0 \leftarrow \emptyset for n \in 1 \dots d Construct \Gamma^n by expanding with \Gamma^{n-1} Prune \Gamma^n
```

Finite Horizon POMDP Value Iteration

Finite Horizon POMDP Value Iteration

P(2 failed components)

A POMDP is an MDP on the _____

• A POMDP is an MDP on the <u>belief space</u>

- A POMDP is an MDP on the <u>belief space</u>
- The value function of a discrete POMDP can be represented by a set of _____

- A POMDP is an MDP on the <u>belief space</u>
- The value function of a discrete POMDP can be represented by a set of α -vectors

- A POMDP is an MDP on the <u>belief space</u>
- The value function of a discrete POMDP can be represented by a set of α -vectors
- Each α vector corresponds to a _____

- A POMDP is an MDP on the <u>belief space</u>
- The value function of a discrete POMDP can be represented by a set of α -vectors
- Each α vector corresponds to a conditional plan