4771-001

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1978

DATA ON THE COMPRESSIVE STRENGTH OF
75S-T6 ALUMINUM-ALLOY FLAT PANELS HAVING SMALL,
THIN, WIDELY SPACED, LONGITUDINAL EXTRUDED

Z-SECTION STIFFENERS

By William A. Hickman and Norris F. Dow

Langley Aeronautical Laboratory Langley Air Force Base, Va.

ENGINEERING DEPT. LIBRARY shington
CHANCE-VOUGHT AIRCRANOPEMber 1949
DALLAS, TEXAS

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1978

DATA ON THE COMPRESSIVE STRENGTH OF

75S-T6 ALUMINUM-ALLOY FLAT PANELS HAVING SMALL,

THIN, WIDELY SPACED, LONGITUDINAL EXTRUDED

Z-SECTION STIFFENERS

By William A. Hickman and Norris F. Dow

SUMMARY

The experimental results are presented for the second part of an investigation of the compressive strength of 75S-T6 aluminum—alloy flat panels with longitudinal extruded Z—section stiffeners. This part of the investigation is particularly concerned with panels in which the ratio of the thickness of the stiffener material to the skin material is small and the ratio of stiffener spacing to skin thickness is large.

INTRODUCTION

As part of an extensive study of structural elements suitable for the compression surface of wings, the National Advisory Committee for Aeronautics has made comprehensive investigations of the compressive strength of flat, longitudinally stiffened compression panels (references 1 to 9). Because of the high structural efficiency and because of the advantages (apart from structural efficiency) inherent in a simple shape like a Z-section, the investigation of stiffened panels has been extended to cover most thoroughly the strength of flat compression panels of 75S-T6 aluminum alloy with extruded Z-section stiffeners. Some of the experimental data obtained are presented. This paper is particularly concerned with stiffened panels having proportions best suited to thick-skin construction, for which most of the material must be in the skin, and relatively little stiffening material may be used. Because the use of even less stiffening - that is, smaller values of the ratio of stiffener thickness to skin thickness or the use of smaller stiffeners - would require ridiculously short panel lengths to avoid column bending failure at low stress, the proportions covered approach what now appear to be the practical limits of proportions for stiffened panels used as columns. The data in this paper are presented without analysis in order to make the experimental results available.

ENGINE RING DEPT AIRCRAPE ENGINE ROUGHT AIRS ENGINE VOUGHT AIRS CHANCE VOUGHT AIRS

SYMBOLS

Symbols for panel dimensions are identified in figure 1. Other symbols used are defined as follows:

Pi	compressive load per inch of panel width, kips per inch
L	length of panel, inches
c	coefficient of end fixity in Euler column formula
o _{cy}	compressive yield stress, ksi
$\sigma_{ m cr}$	stress for local buckling of the sheet, ksi
σ _f	average stress at failing load, ksi
₹	shortening per unit length at failing load
p	rivet pitch, inches
đ	rivet diameter, inches
ρ	radius of gyration, inches

TEST SPECIMENS AND PROCEDURE

Proportions of test specimens.— The range of proportions covered in the part of the investigation presented herein is supplementary to that covered in reference 10 and covers wider stiffener spacings (values of b_S/t_S of 50, 60, and 75 in addition to the previous values of 15, 20, 25, 30, and 40) and a smaller ratio of stiffener thickness to skin thickness $\left(\frac{t_W}{t_S} = 0.26\right)$ in addition to the previous values of 0.40, 0.63, and 1.00. The same four stiffener proportions, corresponding to values of b_W/t_W of 12, 20, 30, and 40, were used as in reference 10, and a total of 128 different cross sections have thus been included in the entire investigation. For each cross section the length of specimen was varied to give five values of slenderness ratio $\frac{L}{\rho} = 20$, 35, 55, 85, and 125.

In order to accommodate the high values of $b_{\rm S}/t_{\rm S}$ investigated within the width of the testing space in the testing machine, the specimens were scaled down from those investigated in reference 10 by reducing the stiffener thickness from 0.102 inch to 0.064 inch and reducing all other dimensions accordingly. Even with the reduced scale of the specimens, however, at the widest stiffener spacings some of the specimens had to be limited to five stiffeners and four bays, or even to four stiffeners and three bays, instead of to the six-stiffener width of the typical specimen (see fig. 1) used throughout the rest of the investigation. The specimens having less than six stiffeners are so designated by means of footnotes in the tables (tables 1 to 4) in which the dimensions of the specimens are given.

Although the values of slenderness ratio selected gave reasonable proportions for most of the specimens, they also resulted in a number of panels for which the bay width $b_{\mathbf{S}}$ was greater than the length L when the stiffeners were small and the stiffener spacing was large. In tables 1 to 4 the values of the stress for local buckling of the sheet $\sigma_{\mathbf{cr}}$ and of the average stress at failing load $\overline{\sigma}_{\mathbf{f}}$ for these panels are enclosed in brackets to distinguish them from the values for panels of more normal proportions.

In order to investigate the possibility that relatively different results might be obtained from the present and previous investigations due to the different scales of the specimens ($t_{\rm W}=0.064$ and 0.102, respectively) a few specimens were built to study the scale effect. These specimens had the same proportions but two different stiffener thicknesses, so that their absolute sizes were in the ratio of $\frac{0.102}{0.064}$. The characteristics of these specimens are given in table 5.

Material properties of test specimens.— The with—grain compressive yield stress $\sigma_{\rm cy}$ for the skin material (bare 75S-T6 aluminum—alloy sheet) ranged between 69.7 ksi and 78.9 ksi with an average of 74.1 ksi and that of the stiffener material (extruded 75S-T6 aluminum alloy), between 71.4 ksi and 86.6 ksi with an average of 78.8 ksi. These values correspond very closely to those reported for the first part of the investigation (see reference 10).

Riveting of test specimens.— The stiffeners were riveted to the sheets with large-diameter, closely spaced Al7S-T4 aluminum-alloy flathead rivets (AN442AD) on all panels. The rivet diameters and pitches used are given in tables 1 to 5.

Testing methods and procedure.— The panels were tested flat—ended, without side support, in the 1,200,000—pound—capacity testing machine at the Langley structures research laboratory. Within the range of loads used, the indicated load on the testing machine was within one—half of 1 percent of the applied load. The ends of the panels were ground accurately flat and parallel in a special grinder, and the method of alinement in the testing machine was such as to insure uniform bearing on the ends of the specimens. Figure 2 shows a panel prepared for testing.

The local-buckling load was determined by the strain-reversal method (reference 11) as the load at which a plot of the strains near the crest of a buckle first shows a decreasing strain with increasing load. The local-buckling load was divided by the cross-sectional area to give the stress for local buckling $\sigma_{\rm cr}$.

The shortening per unit length $\overline{\epsilon}_{\mathbf{f}}$ was measured as the average of the strains indicated by four $6\frac{1}{2}$ —inch resistance—type wire strain gages mounted on the quarter points along the length of the second and fifth stiffeners. On panels that were too short for the $6\frac{1}{2}$ —inch gages, l—inch resistance—type wire strain gages were used.

Adjustment of data.—Since an end-fixity coefficient c of 3.75 has been indicated for similar panel tests in this machine and because the results of an end-fixity test of the type described in reference 12 on one of the panels of reference 10 checked this value of c, a value of c = 3.75 was used in reducing the test data.

In order to take into account the fact that the specimens had an unequal number of stiffeners and bays, the test data were adjusted in the manner described in reference 1. This adjustment consisted essentially of subtracting the load carried by one stiffener from the testing-machine load. This adjusted load was then divided by the cross-sectional area of the panel minus the area of one stiffener to obtain the average stress, or by the panel width to obtain the load per inch of width.

RESULTS AND DISCUSSION

The results of the investigation, adjusted as previously described for an unequal number of stiffeners and bays, are given in tables 1 to 4 and figures 3 to 6. The tables give values of the ratio of rivet diameter to sheet thickness $d/t_{\rm S}$, the ratio of rivet pitch to sheet

thickness p/t_S , the unit shortening at failing load $\overline{\epsilon}_f$, the stress for local buckling of the sheet σ_{cr} , and the average stress at failing load $\overline{\sigma}_f$ for corresponding values of the structural index $\frac{P_1}{L/\sqrt{c}}$. (See references 13 and 14.) The figures give plots of $\overline{\sigma}_f$ against $\frac{P_1}{L/\sqrt{c}}$ for the various dimension ratios used.

Although the primary purpose of this paper is to present the experimental data without analysis because the analysis may be prolonged, the following general discussion is included to aid in interpreting the trends indicated by the data obtained.

Perhaps the most striking result is that the relatively thin stiffeners having a ratio of stiffener thickness to skin thickness t_W/t_S of only 0.26 were still adequate in most cases to stabilize the sheet. At the longer lengths, however, particularly in the case of the smallest stiffeners, the decreased stress $\overline{\sigma}_{f}$ carried relative to the more adequately stiffened panels indicates that the small stiffeners did not provide sufficient restraint to the sheet to permit the panel as a whole to develop strength comparable to that of an Euler column before local distortions precipitated failure.

Similarly, as might be expected, the stiffeners having high width-to-thickness ratios $\left(\frac{b_W}{t_W}=40\right)$ in many cases provided inadequate restraint to the sheet because of their lack of local stability.

At the extreme proportions studied in the present investigation (values of b_S/t_S as low as 15 and as high as 75 and values of b_W/t_W as low as 12), some abnormally high values of $\frac{P_1}{L/\sqrt{c}}$, $\overline{\sigma}_f$, and σ_{cr} were obtained. The high values of $\frac{P_1}{L/\sqrt{c}}$ were due both to the high load-carrying ability associated with the close stiffener spacings and to the short lengths associated with the small stiffeners. The short lengths were also undoubtedly responsible for the abnormally high stresses $\overline{\sigma}_f$ and σ_{cr} that were obtained at the wider stiffener spacings. If a short panel, for which the ratio of length to bay width L/b_S approaches 1.0 or less, is tested flat-ended, the test values of $\overline{\sigma}_f$ and σ_{cr} may be

expected to be higher than for a panel of the same cross-sectional proportions but having greater length or less end restraint. The end restraints may cause interferences with the formation of local buckles which are different from the interferences with bending of the panel as a column so that division by \sqrt{c} does not correct the test length to a pin-ended effective length. Until an analysis has been made to evaluate end effects on abnormally short specimens where the local buckling predominates, the high stress values obtained from these short specimens should be recognized to be out of line with those obtained for more normally proportioned panels.

The results of the tests of panels of like proportions but of different scale are given in table 5. With the exception of the first pair of panels listed therein, there was found to be little difference between the values of $\overline{\sigma}_{f}$ for the panels with 0.102-inch-thick stiffeners and the corresponding panels with 0.064-inch-thick stiffeners. The maximum difference in $\overline{\sigma}_{f}$ was that found for the proportions $\frac{t_{W}}{t_{c}}=0.40$,

 $\frac{b_S}{t_S}$ = 40, and $\frac{b_W}{t_W}$ = 12. This difference amounted to 7.5 ksi, or 13 percent of the value of 57.2 ksi obtained for the panel with 0.102-inch-thick stiffeners. The next greatest difference was less than 6 percent of the smaller of the two values of $\overline{\sigma}_f$ obtained. The differences for values of σ_{cr} and $\overline{\epsilon}_f$ were somewhat greater but in no case was any consistent trend shown which might be ascribed to scale effect.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., September 8, 1949

REFERENCES

- Rossman, Carl A., Bartone, Leonard M., and Dobrowski, Charles V.: Compressive Strength of Flat Panels with Z-Section Stiffeners. NACA ARR 4B03, 1944.
- 2. Lundquist, Eugene E., Kotanchik, Joseph N., and Zender, George W.:
 A Study of the Compressive Strength of Stiffened Plywood Panels.
 NACA RB, Aug. 1942.
- 3. Weinberger, Robert A., Sperry, William C., and Dobrowski, Charles V.: Compressive Strength of Corrugated-Sheet-Stiffened Panels for the Consolidated XB-36 Airplane. NACA MR, Jan. 28, 1944.
- 4. Kotanchik, Joseph N., Weinberger, Robert A., Zender, George W., and Neff, John, Jr.: Compressive Strength of Flat Panels with Z- and Hat-Section Stiffeners. NACA ARR L4F01, 1944.
- 5. Dow, Norris F., Hickman, William A., and McCracken, Howard L.:
 Compressive-Strength Comparisons of Panels Having Aluminum-Alloy
 Sheet and Stiffeners with Panels Having Magnesium-Alloy Sheet and
 Aluminum-Alloy Stiffeners. NACA TN 1274, 1947.
- 6. Hickman, William A., and Dow, Norris F.: Compressive Strength of 24S-T Aluminum-Alloy Flat Panels with Longitudinal Formed Hat-Section Stiffeners Having Four Ratios of Stiffener Thickness to Skin Thickness. NACA TN 1553, 1948.
- 7. Schuette, Evan H., Barab, Saul, and McCracken, Howard L.: Compressive Strength of 24S-T Aluminum-Alloy Flat Panels with Longitudinal Formed Hat-Section Stiffeners. NACA TN 1157, 1946.
 - 8. Hickman, William A., and Dow, Norris F.: Compressive Strength of 24S-T Aluminum-Alloy Flat Panels with Longitudinal Formed Hat-Section Stiffeners Having a Ratio of Stiffener Thickness to Skin Thickness Equal to 1.00. NACA TN 1439, 1947.
 - Dow, Norris F., and Hickman, William A.: Design Charts for Flat Compression Panels Having Longitudinal Extruded Y-Section Stiffeners and Comparison with Panels Having Formed Z-Section Stiffeners. NACA TN 1389, 1947.
- 10. Hickman, William A., and Dow, Norris F.: Data on the Compressive Strength of 75S-T6 Aluminum-Alloy Flat Panels with Longitudinal Extruded Z-Section Stiffeners. NACA TN 1829, 1949.

- 11. Hu, Pai C., Lundquist, Eugene E., and Batdorf, S. B.: Effect of Small Deviations from Flatness on Effective Width and Buckling of Plates in Compression. NACA TN 1124, 1946.
- 12. Schuette, Evan H., and Roy, J. Albert: The Determination of Effective Column Length from Strain Measurements. NACA ARR L4F24, 1944.
- 13. Zahorski, Adam: Effects of Material Distribution on Strength of Panels. Jour. Aero. Sci., vol. 11, no. 3, July 1944, pp. 247-253.
- 14. Schuette, Evan H.: Charts for the Minimum-Weight Design of 24S-T Aluminum-Alloy Flat Compression Panels with Longitudinal Z-Section Stiffeners. NACA Rep. 827, 1945.

$$\left[\frac{r}{t_W} = 1.00; \frac{d}{t_S} = 1.75; \frac{p}{t_S} = 5.00\right]$$

	Pr	oportion	s of tes			Төв	t data			
tw (in.)	tw ts	න් න	b₩ t₩	$rac{\mathtt{b_F}}{\mathtt{t_W}}$	b _A t₩	<u>L</u>	σ _{cr} (ksi) (c)	σ _f (ks1) (c)	P ₁ L/Vc (ks1)	- €f
(0.064) 0.0621 .0624 .0625 .0647 .0639	(0.26) 0.249 .250 .251 .265 .252	(15) 15.0 15.1 15.2 15.4 14.8	(12) 12.6 12.5 12.5 11.9 12.1	(4.8) 4.99 4.94 4.98 4.76 4.71	(20.3) 21.00 20.88 20.93 20.60 20.40	4.6 8.3 13.0 20.5 29.9	[68.8]	[75.0] 68.0 59.8 39.3 25.5	11.70 5.94 3.30 1.39 .63	780 × 10 ⁻⁵ 670 572 33 ¹ 4 258
.0638 .0644 .0649 .0637	.256 .256 .263 .251 .252	15.1 14.9 15.2 14.8 14.9	(20) 20.1 19.6 19.6 19.9 20.1	(8.0) 8.04 7.85 8.27 8.42 7.89	20.35 20.14 19.85 20.19 20.37	5.2 9.2 14.2 22.2 32.2	64.7 62:5	68.8 63.2 55.3 43.7 23.1	6.11 3.23 1.78 .93	706 677 510 385 213
.0653 .0639 .0649 .0638 .0654	.257 .257 .260 .253 .259	14.7 15.0 15.0 14.9 14.8	(30) 29.6 30.0 29.4 30.1 29.7	(12.0) 11.75 12.01 11.82 11.87	19.55 20.22 20.06 20.25 19.82	5.5 10.0 15.8 24.1 35.2	57.8	62.5 58.2 49.6 44.3 25.0	3.60 1.88 1.03 .60	633 538 478 419 224
.0652 .0667 .0646 .0666	.266 .264 .259 .263 .254	15.3 14.9 15.0 14.8 14.5	(40) 39.2 38.6 39.6 38.3 38.9	(16.0) 15.61 15.25 15.75 15.24 15.44	19.98 19.75 20.23 19.47 19.84	6.1 10.7 16.9 26.1 38.3	52.7	56.7 48.2 40.6 31.4 19.3	2.32 1.15 .61 .31	560 454 418 303 188
.0618 .0621 .0623 .0620	.249 .250 .251 .245 .251	(20) 20.2 20.1 20.2 19.9	(12) 12.7 12.5 12.6 12.6	(4.8) 5.15 4.96 4.94 4.97 4.84	21.26 20.99 21.00 20.94 20.62	4.2 7.6 11.7 18.4 26.7	[58.8] 	[74.9] 66.6 55.7 36.5 18.2	12.31 6.13 3.25 1.41 .48	856 599 463 365 175
.0637 .0639 .0645 .0643 .0640	.252 .255 .258 .256 .254	19.8 20.0 20.0 19.9 19.9	(20) 20.2 20.1 19.8 19.8 19.9	(8.0) 7.97 8.11 8.00 7.90 7.93	20.38 20.23 20.12 20.11 20.19	4.6 8.2 12.8 19.9 29.2	61.2	67.6 59.4 52.7 41.0 21.6	6.45 3.20 1.83 .91 .33	646 579 45 0 373 251
.0666 .0663 .0666 .0651	.269 .260 .264 .259	20.2 19.7 19.9 19.8	(30) 28.6 29.0 29.2 29.3 29.2	(12.0) 11.53 11.51 11.58 11.64 11.76	19.57 19.58 19.57 19.94 20.04	5.2 9.0 13.9 22.1 32.5	56.2	61.4 51.1 44.9 44.4 22.6	3.60 1.74 .98 .63	585 560 428 431 212
.0635 .0645 .0642 .0623 .0619	.255 .257 .258 .248 .245	20.2 19.9 20.1 20.0 19.8	(40) 40.6 39.4 40.1 41.1 41.6	(16.0) 15.88 15.78 15.85 16.19 16.50	20.53 20.19 20.36 20.85 21.23	5.6 9.8 15.3 23.7 34.8	52.0 	54.4 50.4 42.7 30.3 21.6	2.30 1.23 .66 .30	593 468 414 294 196

^aNominal proportions are given in parentheses.

NACA,

 $^{^{}b}$ Lengths are for actual test specimens for which c \approx 3.75.

CBracketed values are for panels having bay width bg greater than length L.

TABLE 1.- Continued

TEST DATA AND PROPORTIONS OF SPECIMENS HAVING $\frac{t_W}{t_S} = 0.26 - \dot{C}$ ontinued

	Pro	portions	of test	specimens	a			Test	data	
t _w (in.)	t _s	<u> </u>	b₩ t₩	b <u>r</u> t₩	b _A t₩	ы Б Б	6 _{Cr} (ks1) (c)	σ _f (ksi) (c)	$\frac{P_1}{L/\sqrt{c}}$ (ks1)	€ f
(0.064) 0.0620 .0620 .0623 .0638 .0639	(0.26) 0.253 .253 .256 .258	(25) 25.5 25.6 25.7 25.3 24.4	(12) 12.5 12.6 12.5 12.3 12.2	(4.8) 5.05 4.97 4.99 4.79 5.06	(20.3) 21.02 20.94 20.92 20.36 20.40	3.9 7.0 11.0 17.0 24.9	[61.4] [54.6]	[75•7] [63•7] 50.8 35•7 22•5	13.09 6.12 3.08 1.41	888 × 10 ⁻⁵ 580 458 324 194
.0629 .0632 .0637 .0637 .0635	.245 .248 :251 .251 .250	24.4 24.6 24.8 24.7 24.7	(20) 20.4 20.1 20.0 20.0 20.1	(8.0) 8.20 8.12 8.17 8.02 8.00	20.71 20.55 20.53 20.38 20.28	4.2 7.6 11.8 17.8 26.5	[56.5] 55.4 	[63.5] 58.8 49.0 35.3 15.6	6.59 3.38 1.81 .87	569 526 400 314 149
.0671 .0661 .0666 .0653	.263 .261 .262 .257 .257	24.6 24.8 24.8 24.6 24.6	(30) 28.7 29.2 28.6 29.6 29.4	(12.0) 11.30 11.61 11.35 11.73 11.72	19.34 19.78 19.71 19.88 19.80	4.7 8.3 13.2 20.1 29.6	51.1 49.9	55.7 50.9 43.6 35.1 23.0	3.56 1.82 1.00 .52	541 472 402 308 211
.0645 .0641 .0641 .0659 .0636	.253 .255 .250 .260 .245	24.6 24.9 24.4 24.7 24.1	(40) 40.0 40.2 40.1 39.0 41.4	(16.0) 15.73 15.89 15.82 15.29 15.84	20.19 20.27 20.42 19.76 20.56	5.2 9.0 14.2 21.8 32.3	49.0 47.3 	53.4 48.4 41.2 28.4 19.6	2.38 1.23 .67 .30	512 466 402 271 176
.0624 .0619 .0622 .0653 .0620	.241 .241 .255 .266 .250	(30) 29.0 29.2 30.8 30.6 30.3	(12) 12.6 12.7 12.5 11.9 12.6	(4.8). 4.99 5.14 4.95 4.69 4.89	20.98 21.15 20.94 20.18 21.02	3.7 6.6 10.3 16.0 23.5	[60.4] [49.8] 45.7	[76.7] [59.3] 49.4 .30.8 21.2	14.24 6.21 3.17 1.29 .61	856 724 460 354 192
.0629 .0641 .0645 .0636	.256 .252 .263 .262 .259	30.6 29.5 30.6 31.0 30.5	(20) 20.4 20.1 19.8 20.2 20.0	(8.0) 8.12 7.93 8.03 7.99 7.99	20.55 20.25 19.90 20.27 20.26	3.9 7.0 9.8 16.8 25.1	[55.6] 46.6 35.2	[63.6] 51.9 47.6 30.0 17.4	6.67 3.16 2. 0 1 .7 ⁴	621 460 465 268 168
.0666 .0655 .0663 .0665	.252 .267 .271 .273 .261	28.4 30.7 30.7 30.9 29.9	(30) 29.1 29.5 29.0 29.1 29.5	(12.0) 11.44 11.50 11.67 11.55 11.65	19.50 19.82 19.74 19.52	4.4 7.7 12.2 18.7 27.5	48.8 36.8 38.9	54.5 47.0 39.6 32.9 22.8	3.63 1.73 .92 .49	672 370 367 314 202
.0648 .0674 .0648 .0651 .0642	.256 .275 .261 .268 .263	29.7 30.7 30.3 30.8 30.8	(40) 39·3 38·1 39·6 39·7 41.0	(16.0) 15.70 15.07 15.71 15.70 15.75	19.79 19.41 20.27 20.11 20.30	4.9 8.4 13.3 20.4 30.1	42.5 38.1 37.0	50.1 42.8 38.4 31.5 18.4	2.31 1.11 .64 .33	560 415 362 280 166

^{*}Mominal proportions are given in parentheses.

NACA -

 $^{^{}b}$ Lengths are for actual test specimens for which $\ c$ \approx 3.75.

 $^{^{\}text{C}}\textsc{Bracketed}$ values are for panels having bay width $\ \textsc{b}_{\text{S}}\ \ \textsc{greater}$ than length L.

TABLE 1.- Continued

TEST DATA AND PROPORTIONS OF SPECIMENS HAVING $\frac{t_W}{t_B} = 0.26 - Continued$

	Pro	portions	of test	specimens ⁸	1		'8 	Test	data	·
tw (in.)	tw ts	'g 'a	b₩ t₩	b _F	b _A	<u>L</u> bw (b)	σ _{cr} (ksi) (c)	σ _f (ksi) (c)	P ₁ L/√c (ksi)	€f
(0.064) 0.0623 .0623 .0623 .0620	(0.26) 0.260 .251 .251 .247 .263	(40) 41.7 40.3 40.3 39.9 41.0	(12) 12.6 12.5 12.6 12.5 12.0	(4.8) 5.11 4.96 4.91 4.93 5.05	(20.3) 21.00 20.97 20.84 21.09 20.44	3.5 6.0 9.4 14.7 21.7	[60.5] [61.6] [37.5] 23.2	[71.6] [65.8] [47.8] 30.4 18.2	13.16 7.31 3.35 1.41	620 × 10 ⁻⁵ 570 365 4 00 178
.0631 .0630 .0636 .0625	.254 .252 .254 .260	40.2 40.1 40.0 41.7 41.6	(20) 20.3 20.4 20.2 20.5 19.8	(8.0) 8.05 8.23 7.99 8.10 8.04	20.56 20.62 20.34 20.70 20.23	3.5 6.2 9.8 15.1 22.2	[58.9] [35.3] 20.8	[65.5] [45.9] 33.7 25.9 14.5	7.59 3.03 1.43 .68	679 440 355 192 134
.0664 .0672 .0665 .0673	.267 .271 .276 .273	40.2 40.4 41.6 40.6 41.5	(30) 29.1 28.6 29.1 28.5 31.0	(12.0) 11.57 11.36 11.55 11.38 12.13	19.55 19.32 19.67 19.29 20.85	4.0 6.9 10.9 16.8 24.4	[34.8] 20.5 20.8 21.5	[46.4] 43.5 32.1 24.4 19.2	3.26 1.77 .79 .40	625 471 400 203 180
.0610 .0644 .0622 .0656 .0637	.244 .268 .258 .270 .251	40.1 41.7 41.4 41.2 41.0	(40) 42.1 40.0 41.3 39.0 40.2	(16.0) 16.69 15.65 16.21 15.45 15.91	21.69 20.31 20.87 19.79 20.38	4.3 7.5 11.9 18.3 27.1	27.4 22.3 22.7 22.5	37.2 36.1 31.2 27.3 17.8	1.86 .99 .54 .31	358 358 292 266 166
.0622 .0619 .0618 .0620 .0646	.255 .246 .246 .246	(50) 51.3 49.7 49.7 49.6 53.7	(12) 12.7 12.6 12.6 12.5 11.9	(4.8) 5.11 5.03 4.87 4.97 4.92	21.20 21.15 21.07 21.02 20.25	4.0 5.7 8.9 13.6 20.3	[68.8] [55.0] [41.6] [26.9] 13.9	d[71.5] d[61.3] d[49.6] d[30.0] d16.8	14.29 7.17 3.71 1.47	674 524 3 08 4 00 135
.0637 .0631 .0632 .0650 .0643	.272 .251 .272 .280 .278	53.5 49.7 53.7 54.0 54.2	(20) 20.0 20.3 20.2 19.6 19.9	(8.0) 7.97 8.14 8.03 7.94 8.06	20.37 20.59 20.53 19.97 20.36	3.3 5.8 9.0 13.8 20.4	61.0 [34.9] [18.6] 12.8	d[66.7] d[44.4] d[27.8] d26.3 d10.9	7.78 3.15 1.17 .72 .20	659 420 330 303 144
.0651 .0656 .0655 .0655 .0641	.259 .281 .269 .284	49.7 53.7 51.2 54.1 53.9	(30) 29.8 29.2 29.2 29.5 30.1	(12.0) 11.78 11.55 11.69 11.73 11.91	19.95 20.01 19.81 19.98 20.19	3.5 6.3 9.9 15.2 22.4	[40.7] [16.1] 14.7 14.0	d[47.4] d[37.1] d28.3 d24.1 d18.8	4.57 1.52 .77 .40	445 520 300 333 157
.0639 .0651 .0653 .0643	.254 .280 .282 .277 .264	49.7 53.9 54.1 53.9 51.1	(40) 40.1 39.7 39.3 39.9 39.8	(16.0) 15.85 15.53 15.87 15.89 15.81	20.39 19.94 20.11 20.51 20.23	3.9 6.9 11.0 16.7 24.6	23.2 14.3 13.6 13.7 14.2	d[38.6] d29.8 d26.2 d22.3 d15.3	2.07 .84 .47 .26	645 678 360 314 135

[.] anominal proportions are given in parentheses.

^bLengths are for actual test specimens for which $\,$ c \thickapprox 3.75.

 $^{^{\}mathrm{c}}$ Bracketed values are for panels having bay width $~^{\mathrm{b}}_{\mathrm{S}}~$ greater than length L.

dPanel having only five stiffeners.

TABLE 1.- Concluded TEST DATA AND PROPORTIONS OF SPECIMENS HAVING $\frac{t_W}{t_S} = 0.26 - \text{Concluded}$

	Pro	portions	of test	specimens	8.			Tes	t data	
tw (in.)	t _s	න් නි	b₩ t₩	b _F t₩	b _A	<u>L</u> bw (b)	σ _{cr} (ksi) (c)	(ksi) (c)	P ₁ L/√c (ksi)	€ _f
(0.064) 0.0618 .0625 .0628 .0621 .0625	(0.26) 0.251 .247 .248 .246	(60) 61.0 59.3 59.2 59.3 59.3	(12) 12.6 12.4 12.4 12.5 13.4	(4.8) 5.15 4.93 4.90 4.96	(20.3) 21.18 20.93 20.67 20.90 20.85	3.0 5.4 8.4 13.1 19.0	[56.3] [45.9] [22.0] [13.0]	e 72.4 e 64.5 e 52.5 e 28.8 e 20.6	15.31 7.95 4.13 1.46	719 × 10 ⁻⁵ 483 346 319 281
.0631 .0632 .0631 .0641	.250 .250 .250 .262 .263	59.3 59.3 59.3 61.3 61.6	(20) 20.2 20.3 20.3 20.2 19.9	(8.0) 8.10 8.17 8.05 8.00 8.09	20.41 20.48 20.48 20.08 20.11	3.0 5.3 8.3 12.7 18.9	[66.3] [41.6] [19.0] 13.5 11.5	• 70.4 • 47.3 • 28.5 • 28.8 • 12.0	9•53 3•64 1•39 •88 •25	641 427 365 398 170
.0650 .0655 .0657 .0648 .0658	.266 .258 .270 .261	61.5 59.2 61.6 60.4 61.0	(30) 29.9 29.2 29.3 29.8 29.6	(12.0) 11.82 11.66 11.84 11.82 11.68	20.13 19.83 19.98 20.04 19.81	3.2 5.7 8.9 13.8 20.1	[45,8] [19.0] 9.9 12.6 9.9	e[49.1] e[30.1] e27.9 e22.4 e15.8	3.99 1.45 .83 .44	424 398 355 289 166
.0639 .0647 .0644 .0625 .0647	.253 .253 .264 .256 .263	59.4 58.7 61.4 61.4 61.1	(40) 40.0 39.6 39.9 40.0 39.8	(16.0) 15.77 15.75 15.65 16.37 15.70	20.47 20.08 20.16 20.93 20.14	3.7 6.4 10.0 15.9 22.7	[24.7] 12.2 11.8 9.8 10.8	9 32.5 929.8 924.9 920.9 916.1	1.86 .98 .50 .27	383 428 325 310 195
.0641 .0622 .0622 .0623 .0637	.265 .240 .241 .242 .263	(75) 77.7 72.4 72.7 72.8 77.5	(12) 12.0 12.6 12.6 12.5 12.2	(4.8) 4.80 4.95 4.92 4.95 4.76	20.32 20.95 21.05 20.93 20.38	2.9 5.0 7.8 12.1 17.8	[51.6] [46.4] [23.3] [5.8]	0.66 0.59.75 0.75 0.75 0.75 0.75 0.75 0.75	15.37 7.98 4.28 1.70	1102 473 510 288 171
.0632 .0632 .0632 .0638	.244 .246 .261 .264	72.4 72.9 77.4 77.6 77.6	(20) 20.4 20.4 20.3 20.1 19.8	(8.0) 8.24 8.00 8.04 8.12 8.12	20.69 20.45 20.48 20.34 20.34	2.6 4.8 7.6 11.8 17.4	[59.5] [47.3] [24.9] [10.1] 6.3	68.60 6.50.01 6.21.31 6.25.01 6.19.0	9.77 4.17 1.21 .81	920 478 303 516 135
.0651 .0653 .0655 .0656	.252 .270 .270 .270 .272	72.6 77.6 77.4 77.6 77.6	(30) 30.0 29.3 29.0 29.4 29.5	(12.0) 11.72 11.77 11.70 11.63 11.24	20.02 20.05 19.98 20.00 19.94	3.0 5.3 8.3 12.7 18.8	[48.3] [14.3] [6.6] 7.4 5.8	⁶ [51.1] ⁶ [25.6] ⁶ [19.6] ⁶ 16.1 ⁶ 15.2	4.66 1.26 .62 .33	548 637 282 203 270
.0659 .0611 .0678 .0611 .0645	.272 .253 .277 .252 .266	77•4 77•5 76•8 77•7 77•3	(40) 38.9 41.8 38.0 42.0 39.7	(16.0) 15.45 16.66 15.02 16.51 15.78	19.85 21.23 19.22 21.26 20.26	3.2 5.7 9.0 14.1 20.7	[22.0] [11.5] 7.9 6.4 5.6	9[32.1] 9[26.6] 919.7 917.9 915.5	1.98 .91 .43 .25	367 478 315 303 226

^aNominal proportions are given in parentheses.

^bLengths are for actual test specimens for which c ≈ 3.75 .

 $^{^{\}text{C}}\textsc{Bracketed}$ values are for panels having bay width $\ \textsc{b}_{\ensuremath{\boldsymbol{S}}}$ greater than length $\ensuremath{\boldsymbol{L}}.$

^ePanel having only four stiffeners.

TABLE 2

They data and proportions of specimens having $\frac{t_W}{t_S} \approx 0.40$

ts=.15°

 $\left[\frac{r}{t_{y}} = 1.00; \ \frac{d}{t_{g}} = 1.60; \ \frac{p}{t_{g}} = 4.81\right]$

				[8]	<u>чв</u>		Test data					
		Proport1on	s of test	pecimensa		<u>_</u>			T			
tų (in.)	t _S	<u>ba</u> ts	by ty	<u>ър</u> t _W	b <u>A</u>	(р) _р й Т	σ _{cr} (ks1) (c)	(ks1) (c)	P ₁ L/Vc (ks1)	<u> </u>		
(0.064) 0.0624 .0622 .0623 .0632 .0625	(0.40) 0.403 .409 .406 .404	(50) 50.5 51.2 50.9 49.9 51.6	(12) 12.6 12.5 12.6 12.3 12.4	(4.8) 5.02 5.00 4.94 4.87 5.09	(12.8) 13.27 13.14 13.21 13.25 12.93	3.9 6.8 10.7 16.7 24.5	[51.3] [18.5] 16.4 15.7 11.4	[60.4] [40.7] 40.1 23.5 13.2	6.50 2.49 1.57 .61 :23	608 × 10 ⁻⁵ ,704 596 323 168		
.0643 .0644 .0627 .0629 .0638	.416 .412 .399 .402 .423	50.5 50.0 49.8 49.8 51.6	(20) 19.8 19.9 20.3 20.3 20.1	(8.0) 8.06 7.93 8.18 8.36 7.96	12.80 13.86 13.37 13.32 12.98	4.5 7.7 12.4 19.1 28.0	[23.2] 16.1 15.9 15.9 14.5	43.5 42.9 36.1 29.8 21.9	2.59 1.49 .78 .42 .20	578 516 475 385 253		
.0649 .0653 .0662 .0654	.418 .416 .423 .419 .422	50.4 49.8 50.0 50.0 50.1	(30) 29.6 29.2 28.9 29.7 29.2	(12.0) 11.83 11.77 11.61 11.71 11.70	12.75 12.54 12.21 12.66 12.77	5.1 9.0 14.0 21.3 31.9	16.0 16.7 15.7 15.8 17.3	40.4 37.0 32.7 30.3 21.7	1.49 .78 .44 .26	483 575 463 442 245		
.0658 .0601 .0624 .0636	.419 .385 .415 .422 .416	49.7 50.0 52.0 51.8 51.5	(40) 39.1 42.7 41.5 40.5 40.7	(16.0) 15.38 16.78 16.24 16.14 16.24	12.29 13.62 13.03 12.71 12.98	5.5 9.7 15.2 23.6 34.9	15.3 13.1 14.7 15.1 15.5	35.4 29.6 27.0 26.4 22.0	.94 .44 .25 .16 .09	565 349 365 322 261		
.0624 .0622 .0641 .0622 .0623	.407 .408 .419 .408 .408	(60) 61.1 61.4 61.3 61.5 61.2	(12) 12.5 12.5 11.9 12.7 12.5	(4.8) 5.02 5.04 4.93 4.95 5.10	13.27 13.24 12.76 13.31 13.13	3.6 6.3 10.3 15.3 22.8	[62.7] [32.4] [11.7] 11.8 9.4	[66.8] [39.9] [29.1] 30.6 17.3	7.77 2.63 1.19 .82	648 368 615 340 180		
.0642 .0645 .0641 .0643	.421 .424 .410 .419 .410	61.4 61.6 61.2 60.9 60.8	(20) 20.0 20.0 19.8 19.8 20.3	(8.0) 8.04 8.11 8.08 8.06 8.06	12.82 13.00 13.07 13.04 13.14	4.2 7.2 11.6 17.9 26.2	[23.2] [13.2] 9.6 9.9 9.8	[38.1] [28.8] 32.3 26.5 19.0	2.36 1.40 .73 .39	370 794 552 488 243		
.0655 .0658 .0661 .0655	.429 .431 .429 .427 .430	61.5 61.3 60.7 61.0 61.0	(30) 29.6 29.0 29.0 29.1 29.2	(12. 0) 11.73 11.57 11.62 11.61 11.56	12.65 12.51 12.53 12.18 12.24	4.7 8.1 13.2 20.4 29.6	[13.8] 9.7 9.9 11.0 10.4	[38.6] 32.4 29.8 26.5 20.8	1.46 .72 .41 .24	590 614 490 383 290		
.0658 .0641 .0628 .0629 .0628	.433 .394 .408 .408	61.6 57.5 60.7 60.8 60.7	(40) 38.8 40.0 40.7 40.6 40.8	(16.0) 15.55 16.12 16.26 16.18 16.21	12.36 12.61 12.95 13.08 12.94	5.2 7.7 14.4 22.3 32.6	10.6 12.0 10.5 10.9 11.3	31.5 31.3 26.2 24.6 18.9	.84 .60 .25 .16 .08	489 431 389 342 265		
.0623 .0623 .0630 .062b .0625	.386 .384 .407 .360 .364	(75) 72.6 72.1 75.3 67.7 68.1	(12) 12.5 12.5 12.2 12.6 12.4	(4.8) 5.10 4.95 4.89 5.15 4.93	13.29 13.13 12.90 13.36 13.09	3.3 5.7 9.4 14.0 21.0	[50.5] [31.6] [14.9] [10.0] 8.8	[56.5] [37.8] ^d [27.2] [20.2] 14.1	7.28 2.86 1.23 .66	590 337 532 334 290		
.0646 .0643 .0633 .0636 .0634	.398 .373 .424 .439 .369	72.2 67.8 78.5 80.7 68.1	(20) 19.8 19.9 20.3 19.8 19.8	(8.0) 7.87 7.98 8.00 8.14 8.17	12.83 12.88 13.17 12.86 13.06	3.8 6.6 10.4 16.5 24.2	[29.4] [14.1] 7.0 5.5 8.3	[37.1] [26.7] 22.0 21.8 17.4	2.61 1.16 .52 .33	339 404 428 358 218		
.0653 .0658 .0650 .0653 .0659	.405 .382 .378 .450 .456	72.3 67.9 67.8 80.4 80.9	(30) 29.5 29.0 29.7 29.2 29.1	(12.0) 11.76 11.79 11.82 12.07 11.66	12.67 12.59 12.58 12.53 12.42	4.3 7.7 11.8 18.4 27.2	[10.1] 9.1 10.9 6.0 5.5	[29.7] 28.8 29.7 22.5 17.9	1.26 .74 .45 .21	508 508 426 362 324		
.0619 .0649 .0614 .0664	.359 .401 .426 .446 .435	67.3 71.8 80.5 78.0 78.2	(40) 41.4 39.2 41.7 38.5 39.9	(16.0) 16.26 15.84 16.42 15.47 15.78	13.14 12.60 13.16 12.24 12.60	4.8 8.5 13.3 20.5 29.9	9.7 8.0 5.9 6.5 6.2	32.5 27.0 21.5 21.9 15.6	1.02 .45 .21 .14 .07	536 380 392 376 254		

^eNominal proportions are given in parentheses.

bLengths are for actual test specimens for which $c \approx 3.75$.

CBracketed values are for panels having bay width bg greater than length L.

dAverage of two tests.

TABLE 3

They data and proportions of specimens having $\frac{t_W}{t_B} = 0.63$

$$\[\frac{\mathbf{r}}{\mathsf{t}_{W}} = 1.00; \ \frac{\mathsf{d}}{\mathsf{t}_{B}} = 1.84; \ \frac{\mathsf{p}}{\mathsf{t}_{B}} = 6.13 \]$$

		Proportion	s of test sp	ecimens ^a				Te	st data	
tų (in.)	o [‡] ≰ [‡]	pal ta	by ty	р.	<u> </u>	(P) <u>p^A</u> T	σ _{cer} (ksi) (c)	σ _f (ksi) (c)	P _i L/√c (ks1)	ē,
(0.064) 0.0617 .0646 .0633 .0631	(0.63) 0.602 .627 .616 .618 .612	(50) 49.8 49.6 49.9 50.0 49.6	(12) 12.5 11.9 12.1 12.5 12.5	(4.8) 4.99 4.61 4.78 5.04 5.01	(9.7) 10.18 9.41 9.60 9.79 9.56	5.1 9.1 14.3 21.7 31.9	[24.4] 17.5 16.2 16.7 16.1	19.2 38.3 33.4 19.2	2.67 1.49 .84 .47	646 × 10 ⁻⁵ 49 0 549 412 161
.0630 .0644 .0633 .0634 .0641	.615 .629 .618 .618 .622	49.9 49.9 49.8 49.7 49.6	(20) 20.6 19.8 20.3 20.3	(8.0) 8.06 8.04 8.18 8.33 7.93	9.81 9.60 9.76 9.75 9.57	6.0 10.5 16.3 25.2 37.8	15.2 17.3 17.4 16.5. 17.4	42.0 40.6 37.8 35.4 21.8	1.40 .79 .46 .28	697 558 487 461 223
.0657 .0655 .0658 .0652 .0647	.642 .637 .641 .637 .630	50.0 49.7 49.7 49.7 49.6	(30) 29.6 29.5 29.2 29.4 29.7	(12.0) 11.74 12.18 11.67 11.70 11.84	9.57 9.43 9.70 9.47 9.55	6.5 11.5 18.2 28.2 41.5	15.7 17.4 18.6 17.5 17.4	38.3 35.1 34.8 33.8 22.9	.85 .45 .28 .18	600 538 433 400 230
.0658 .0644 .0645 .0628 .0638	.645 .630 .633 .613 .627	50.1 49.8 50.1 50.0 50.2	(40) 39.2 39.7 39.8 40.8 40.2	(16.0) 15.53 15.62 15.58 16.13 16.00	9.48 9.67 9.65 9.76 9.84	7.1 12.4 19.4 30.1 44.2	16.6 17.4 17.2 18.3 18.4	33.9 31.8 29.2 26.3 20.2	.56 .30 .18 .10	550 500 410 327 188
.0616 .0620 .0638 .0632 .0634	.599 .603 .620 .591 .609	(60) 59.6 59.7 59.6 57.3 58.8	(12) 12.6 12.6 12.2 12.3 12.2	(4.8) 5.00 4.86 4.99 4.96 4.86	10.20 10.06 9.69 9.79 9.59	4.8 8.1 13.3 20.6 30.2	[22.6] 13.3 10.8 11.8 11.2	[38.5] 38.6 35.0 29.6 20.2	2.42 1.43 .80 .45	556 682 635 450 227
.0634 .0646 .0639 .0618 .0642	.613 .631 .623 .388 .619	59.3 59.7 59.7 58.2 59.1	(20) 20.1 19.6 20.1 20.5 20.0	(8.0) 8.01 7.98 8.26 8.22 8.07	9.59 9.49 9.83 9.83 9.63	5.7 10.0 15.3 24.0 35.0	10.3 12.0 11.8 12.7 12.6	39.6 35.0 33.7 31.2 21.2	1.37 .69 .42 .26 .12	560 624 550 440 260
.0660 .0660 .0650 .0644 .0653	.643 .640 .625 .618 .634	59.7 59.5 59.1 58.8 59.4	(30) 29.0 29.3 29.6 29.7 29.3	(12.0) 11.94 11.95 11.82 11.85 11.80	9.4 9.5 9.5 9.6 9.8	6.3 10.9 17.3 26.9 39.5	12.2 11.6 11.9 12.2 12.6	36.6 32.8 31.2 29.1 23.0	.82 .42 .26 .15	595 520 490 370 288
.0640 .0661 .0638 .0608 .0639	.610 .637 .619 .580 .609	58.4 59.2 59.3 58.3 58.3	(40) 39.7 39.0 40.3 42.1 40.0	(16.0) 15.95 15.48 15.93 16.74 15.90	9.42 9.35 9.69 10.08 9.95	6.8 11.8 18.6 28.8 42.5	11.0 12.4 11.3 13.3 13.0	31.9 29.6 26.9 23.4 18.2	•53 .28 •16 •09	505 463 364 258 198
.0617 .0618 .0614 .0635 .0625	.602 .609 .591 .609 .612	(75) 74.6 75.5 73.7 73.3 74.9	(12) 12.6 12.8 12.6 12.4 12.3	(4.8) 5.07 4.99 4.93 4.85 4.93	10.17 10.08 10.07 9.74 9.97	4.5 7.7 12.3 18.6 28.0	[17.4] [14.6] 7.4 7.4 6.5	36.1 32.1 30.2 25.0 19.0	2.33 1.21 .73 .39	345 493 703 368 265
.0638 .0645 .0637 .0646 .0628	.616 .631 .616 .629 .616	73.9 74.9 74.1 74.6 75.2	(20) 19.9 19.7 20.0 19.7 20.3	(8.0) 7.96 7.96 7.97 7.87 8.09	8.61 9.59 9.70 9.42 9.92	5.2 9.2 14.3 22.3 32.6	[10.0] 7.6 7.0 7.8 7.8	[36.2] 32.2 30.6 26.4 19.6	1.34 .66 .40 .18 .11	635 678 527 453 280
.0654 .0645 .0655 .0654	.633 .635 .637 .637 .618	74.1 75.5 74.4 74.5 73.5	(30) 29.4 29.7 29.2 29.7 29.8	(12.0) 11.67 11.92 11.73 11.75 11.97	9.53 9.43 9.51 9.46 9.40	5.8 10.3 16.2 24.7 37.0	7.4 7.5 7.4 7.8 8.6	31.6 29.7 27.3 26.2 20.7	.72 .38 .23 .14 .08	640 485 478 406 293
.0652 .0638 .0644 .0631 .0630	.632 .619 .624 .622 .623	74.2 74.0 74.2 75.7 75.8	(40) 39.4 39.0 39.9 40.4 40.6	(16.0) 15.62 15.92 15.81 16.14 16.16	9.40 9.21 9.68 9.80 9.98	6.4 11.4 17.5 27.3 39.9	7.0 7.6 7.9 8.1 8.5	30.1 25.8 23.7 19.9 17.4	.50 .24 .14 .08 .04	527 508 358 315 202

a Naminal proportions are given in parentheses.

blengths are for actual test specimens for which c \$3.75.

 $^{^{\}text{C}}\textsc{Bracketed}$ values are for panels having bay width $\ \textsc{b}_{\textsc{S}}\ \ \textsc{greater}$ than length L.

Table 4 $\frac{t_W}{t_S} = 1.00$ That and proportions of specimens having $\frac{t_W}{t_S} = 1.00$

 $\left[\frac{\mathbf{r}}{\mathbf{t}_W} = 1.00; \frac{\mathbf{d}}{\mathbf{t}_S} = 1.95; \frac{\mathbf{p}}{\mathbf{t}_S} = 5.86\right]$

	F	roportions	of test spe	cimensa				Tes	t data	
t _W (in.)	o5 ±⁴	ج8 م	다. 한국	bp t₩	<u>}</u> ₩	<u>т</u> р й (р)	or (ksi)	σ _f (ksi)	P ₁ L/Vc (ks1)	₹ _f
(0.064) 0.0626 .0605 .0605 .0617 .0622	(1.00) 1.000 .968 .970 .977	(50) 51.1 51.2 51.3 50.5 51.8	(12) 12.4 12.9 12.9 12.6 12.6	(4.8) 5.00 4.93 5.09 5.04 5.05	(6.7) 7.07 7.24 7.41 7.02 6.99	6.8 11.8 18.5 28.6 41.9	16.4 19.5 18.3 20.3 20.5	45.8 43.4 41.7 38.5 21.5	1.59 .87 .53 .32 .12	920 × 10 ⁻⁵ 820 540 460 220
.0629 .0638 .0637 .0635 .0635	.994 1.022 1.025 1.018 1.007	50.5 51.5 51.5 51.5 51.0	(20) 20.3 20.0 20.0 19.9 20.3	(8.0) 8.08 7.96 7.97 8.16 8.13	7.05 6.70 7.03 6.90 6.90	7.5 13.3 20.7 32.2 46.7	18.9 18.5 18.6 21.0 21.4	46.9 44.0 42.5 35.8 23.2	1.03 .54 .34 .18	690 605 557 420 226
.0667 .0656 .0658 .0654 .0661	1.043 1.028 1.045 1.044 1.037	50.0 50.6 51.0 51.1 50.3	(30) 27.7 29.2 29.1 29.1 29.0	(12.0) 11.56 11.71 11.67 11.75 11.62	6.64 6.60 6.50 6.47 6.32	7.9 13.8 21.9 34.0 49.8	18.8 21.8 21.4 20.2 21.2	40.1 36.9 35.7 31.9 22.1	.66 .35 .21 .12 .06	486 601 409 350 202
.0627 .0644 .0643 .0631 .0658	.989 1.014 1.007 1.002 1.035	50.8 50.6 50.0 50.8 50.3	(40) 41.1 39.6 39.9 40.9 38.9	(16.0) 16.41 15.80 16.17 16.15 15.61	6.67 6.49 7.11 6.63 6.50	8.1 14.3 22.3 34.3 50.7	17.5 19.3 20.3 19.7 19.2	33.8 34.8 28.7 24.7 19.6	.46 .27 .14 .08 .04	540, 298 360 268 186
.0623 .0632 .0619 .0620 .0642	.950 .963 .945 .943 .969	(60) 58.5 58.7 58.4 58.2	(12) 12.4 12.3 12.7 12.4 12.1	(4.8) 5.02 4.92 4.95 4.94 4.95	6.55 6.62 6.92 6.82 6.51	6.5 11.2 17.4 27.6 40.3	13.4 13.5 13.6 15.3 15.8	42.2 40.4 38.0 32.4 20.7	1.50 .84 .50 .27	896 890 605 414 214
.0633 .0636 .0633 .0635 .0640	.904 .925 .963 .926	55.1 56.1 58.7 56.2 57.9	(20) 20.2 20.2 20.3 19.9 19.9	(8.0) 8.03 8.15 8.35 8.00 7.86	6.45 6.50 6.52 6.58 6.45	7.2 12.5 19.9 31.2 45.4	16.1 16.0 15.5 16.0 16.3	43.8 42.1 38.9 35.3 20.1	.99 .54 .30 .18	662 626 533 439 197
.0651 .0659 .0650 .0640 .0625	.987 1.002 .982 1.001	58.4 58.6 57.9 59.9 56.0	(30) 29.4 29.2 29.4 29.9 30.5	(12.0) 11.88 11.66 11.71 12.00 12.29	6.58 6.50 6.51 6.61 6.85	7.7 13.5 21.5 33.0 48.8	15.8 15.7 16.1 15.6 17.0	37.2 35.2 33.9 29.0	.59 .32 .19 .10	542 488 463 336 204
.0646 .0660 .0653• .0631 .0648	.980 .997 1.027 .918 .939	58.4 58.2 60.7 56.0 56.6	(40) 39.6 39.0 39.5 40.5 39.6	(16.0) 15.76 15.57 15.56 16.13 15.70	6.63 6.41 6.55 6.78 6.60	8.0 13.9 21.8 34.0 49.9	14.3 14.3 14.6 12.6 15.9	32.3 30.4 26.8 24.2 19.4	.41 .22 .12 .07 .04	536 502 396 287 174
.0627 .0623 .0616 .0619 .0624	.975 .918 .902 .900 .896	(75) 74.6 70.9 70.5 69.8 69.0	(12) 12.4 12.5 12.6 12.6 12.2	(4.8) 4.42 4.92 5.00 5.02 4.90	6.91 6.88 6.87 6.91 6.70	5.9 10.6 16.6 25.5 38.5	[8.3] 9.8 7.2 10.3 10.0	[40.2] 35.6 33.1 29.4 20.9	1.45 .75 .44 .26	598 890 636 4 0 6 267
.0642 .0641 .0640 .0648 .0636	.943 .932 .940 .949 .929	70.9 70.1 70.6 70.1 70.1	(20) 20.2 20.9 20.0 19.7 20.2	(8.0) 7.97 8.09 8.15 7.84 8.07	6.67 6.53 6.69 6.53 6.65	6.8 11.9 19.0 29.4 42.9	12.0 10.3 10.7 10.4 10.5	38.3 37.0 34.3 31.7 20.6	.83 .47 .25 .16 .07	712 586 590 446` 245
.0673 .0657 .0657 .0656 .0660	1.062 1.016 .995 1.014 1.055	76.1 74.3 72.9 74.3 76.8	(30) 28.4 29.2 29.2 29.2 29.2	(12.0) 11.41 11.68 11.70 11.60 11.65	6.36 6.51 6.52 6.46 6.82	7.5 13.0 20.6 31.8 47.1	8.2 10.5 10.0 10.6 9.4	33.5 32.0 30.3 28.0 19.6	.48 .27 .16 .10	498 504 466 403 228
.0638 .0636 .0633 .0638 .0602	.932 1.010 1.011 1.022 .868	70.2 76.2 76.7 76.7 69.1	(40) 40.4 41.4 40.5 40.4 42.6	(16.0) 15.97 16.33 16.17 16.05 17.02	6.56 6.81 6.61 6.56 6.95	7.8 13.5 21.4 42.3 47.3	9.8 8.3 9.2 8.8 10.3	29.4 31.8 25.3 23.3 17.8	.35 .21 .10 .06	543 592 382 239 183

 $^{^{\}mathbf{a}}\mathbf{Nominal}$ proportions are given in parentheses.

bLengths are for actual test specimens for which c ≈ 3.75.

 $^{^{\}mathrm{c}}$ Bracketed values are for panels having bay width $^{\mathrm{b}}$ S greater than length L.

TABLE 5

TEST DATA AND PROPORTIONS OF SPECIMENS FOR INVESTIGATING THE EFFECT OF REDUCING THE STIFFENER THICKNESS FROM 0.102 INCH TO 0.064 INCH

				Propor	tions of tes	t specimen	в					Test da		
	եր (in.)	tw tg	bs ts	£ £	^b F t₩	ρ <mark>Ψ</mark>	<u>L</u> b _w	tw	d ts	P.	g _{cr} (ksi) (b)	σ _f (ksi) (b)	L/Vc (ksi)	₹
.350	0.1028	0.413	40.9	12.0	4.84	12.81	4.1	0.92	1.76	5.02	[41.1]	[57.2]	6.27	500 × 10 ⁻⁵
	0620	.400	40.3	12.6	4.97	13.35	4.3	1.00	1.61	4.84	[56.0]	[64.7]	6.48	578
-1565	.1003	.404	40.3	40.9	16.25	13.03	5.9	.94	1.76	5.03	23.4	38.6	.99	560
	.0642	.415	40.5	40.1	15.98	13.06	6.0	1.00	1.62	4.85	24.0	40.0	1.01	464
	.0993	.391	49.3	12.4	4.89	12.95	3.8	.94	1.73	4.95	[57.8]	[62.3]	7.23	620
	.0624	.403	50.5	12.6	5 .0 2	13.27	3.9	1.02	1.61	4.84	[51.3]	[60.4]	6.50	608
	.1059	.417	49.3	39.0	15.33	12.14	5•5	.89	1.73	4.94	18.8	37 .0	1.00	400 ·
	.0658	.419	49.7	39.1	15.38	12.29	5•5	•97	1.59	4.78	15.3	35.4	.94	565
	.0992	.649	40.7	12.4	4.89	9.94	5.6	.95	2.04	6.52	29.6	51.6	2.88	750
	.0613	•597	39.8	12.8	5 .0 6	9.91	5.6	1. 0 4	1.83	6.09	28.6	50.1	2.97	719
	.1025	.673	41.2	40.1	15.90	9.60	7.5	.92	2.05	6.56	24.2	35•9	.60	474
	.0677	.659	39.8	37.8	15.11	9.20	7.4	.95	1.82	6. 0 7	24.9	37•6	.65	538
	.1001	.636	49.7	12.3	4.76	9.76	6.2	.94	1.99	6.36	[23·3]	[43.8]	2.60	670
	.0617	.602	49.8	12.5	4.99	10.18	5.1	1.04	1.83	6.10	[24·4]	[43.6]	2.67	646 '
	.1045	.663	49.4	39.2	15.42	9.44	7.2	.90	1.98	6.34	17.9	34.4	•57	530
	.0658	.645	50.1	39.2	15.53	9.48	7.1	.97	1.84	6.14	16.6	33.9	•56	550
	.0980	.963	39.6	12.5	4.83	6.70	6.8	.96	1.83	6.10	33·3	52.3	2.00	856
	.0620	.886	41.5	12.5	4.97	6.84	6.9	1. 0 3	1.78	5.36	34·6	52.7	2.07	885
1	.1050	1.020	39.8	39.2	15.46	6.52	8.2	89	1.82	6.08	25.8	35.6	•55	520
	.0640	.965	38.8	39.8	15.95	6.40	8.3	1.00	1.88	5.69	24.7	37.6	•58	515
	.0984 .0626	.966 1. 00 0	50.0 51.1	12.5 12.4	4.83 5 .0 0	6.66 7 .0 7	6.8 6. 8	.95 1.04	1.84	6.13 5.99	20.0 16.4	48.1 45.8	1.70 1.59	886 920
	.1044 .0627	1.026 .989	49.8 50.8	39.3 41.1	15.47 16.41	6.48 6.67	8.1 8.1	.90 1.01	1.84	6.14 5.92	18.2 17.5	32.9 33.8	.45 .46	536 540

 $^{^{\}rm a}{\rm Lengths}$ are for actual test specimens for which $~{\rm c}$ \approx 3.75.

DBracketed values are for panels having bay width bg greater than length L.

Figure 1.—Cross section of test specimens.

Page intentionally left blank

NACA TN 1978

Figure 2.- Panel prepared for testing.

Figure 3.—Compressive strength of 75S-T6 aluminum-alloy flat panels with extruded Z-section stiffeners. $\frac{t_W}{t_S}$ = 0.26.

Figure 4—Compressive strength of 75S-T6 aluminum-alloy flat panels with extruded Z-section stiffeners. $\frac{t_w}{t_s}$ = 0.40.

Figure 5.—Compressive strength of 75S-T6 aluminum-alloy flat panels with extruded Z-section stiffeners. $\frac{t_W}{t_S}$ = 0.63.

Figure 6.—Compressive strength of 75S-T6 aluminum-alloy flat panels with extruded Z-section stiffeners. $\frac{t_W}{t_S}$ = 1.00.

Abstract

The experimental results are presented for the second part of an investigation of the compressive strength of 75S-T6 aluminum-alloy flat panels with longitudinal extruded Z-section stiffeners. This part of the investigation is particularly concerned with panels in which the ratio of the thickness of the stiffener material to the skin material is small and the ratio of stiffener spacing to skin thickness is large.