课程名称: 代数学

# 第二次作业



姓名: 樊昊

学号: 242131001

# 环论

题目 8. 证明  $\mathbb{Z}[x]$  的任一个主理想非极大。

解答.¹ 我们假设  $\mathbb{Z}[x]$  中的主理想  $\langle f(x) \rangle$  是极大的,则这是极大主理想,即 f(x) 是不可约元.而不可约元只有两种:  $f(x) = p \in \mathbb{Z}$  是素数; f(x) 是  $\mathbb{Q}[x]$  中不可约多项式

# 模论

## 第五章

**题目 4.**设  $\mathbb Q$  为有理数域,M 和 M' 是两个左  $\mathbb Q$  模. 证明:若  $\eta: M \to M'$  是一个加法群同构,则  $\eta$  也是一个  $\mathbb Q$  模同构. (\* 如果用实数域  $\mathbb R$  替代  $\mathbb Q$ ,问这个命题是否成立?)

**解答.**<sup>2</sup> 对  $x, y \in M, p_1/q_1, p_2/q_2 \in \mathbb{Q}$  有  $x/q_1, y/q_2 \in M$  且

$$\eta(rx + sy) = \eta \left( \sum_{i=1}^{p_1} \frac{x}{q_1} + \sum_{i=1}^{p_2} \frac{y}{q_2} \right) = \sum_{i=1}^{p_1} \eta \left( \frac{x}{q_1} \right) + \sum_{i=1}^{p_2} \eta \left( \frac{y}{q_2} \right);$$

另一方面,

$$\eta(x) = \eta\left(\sum_{i=1}^{q_1} \frac{x}{q_1}\right) = \sum_{i=1}^{q_1} \eta\left(\frac{x}{q_1}\right) = q\eta\left(\frac{x}{q_1}\right) \implies \eta\left(\frac{x}{q_1}\right) = \frac{1}{q_1}\eta\left(\frac{x}{q_1}\right),$$

综上所述,

$$\eta(rx + sy) = \frac{p_1}{q_1}\eta(x) + \frac{p_2}{q_2}\eta(y).$$

此时, η成 ℚ 模同构.

对  $\mathbb{R}$  模, 命题不成立: 视  $\mathbb{R}$  为  $\mathbb{Q}$  模, 依 Zorn 引理可取一组基  $\{e_i\}_{i\in I}$ . 定义  $\eta$ :  $\mathbb{R} \to \mathbb{R}$ ,  $\sum_{\mathsf{f} \mathbb{R}} r_i e_i \mapsto \sum_{\mathsf{f} \mathbb{R}} r_i \lambda_i e_i$ . 则  $\eta$  的矩阵形式为对角矩阵  $\mathrm{diag}(\lambda_i)_i$ ; 命这个对角矩阵可逆且  $\lambda_i$  不全相同, 则  $\eta$  是加法群同构, 但不是  $\mathbb{R}$  模同构.

题目 19.将  $\mathbb{Z}/(n)$  看作  $\mathbb{Z}$  模,问下列模是否可写成两个非零子模的直和:

- (i)  $\mathbb{Z}/(p^e)$ , p 为素数,  $e \geq 1$ ;
- (ii)  $\mathbb{Z}/(n)$ ,  $n = p_1^{e_1} \cdots p_r^{e_r}$ ,  $p_1, \ldots, p_r$  为不同的素数, $e_i \geq 1$ ,  $i = 1, \ldots, r$ .

解答.3 作为  $\mathbb{Z}$  模的直和分解, 即分解为 Abel 群的直和.

若有分解,分析子群的阶数,可知分解必然形如

$$\mathbb{Z}/(p^e) = \mathbb{Z}/(p^r) \oplus \mathbb{Z}/(p^s),$$

其中 r+s=e. 此时, 左边有  $p^e$  阶元, 而右边元素阶数最大为  $\max\{p^r,p^s\}$ ; 应当相等, 故 r=e 或者 s=e, 于是  $\mathbb{Z}/(p^e)$  的分解一定是平凡的.

根据中国剩余定理,有分解

$$\mathbb{Z}/(n) = \mathbb{Z}/(p_1^{e_1}) \oplus \mathbb{Z}/(p_2^{e_2} \cdots p_r^{e_r}),$$

这里两个子模均非零.

题目 20. 证明:  $\mathbb{O}$  作为  $\mathbb{Z}$  模,它的任一有限生成的子模是循环模. 由此证明, $\mathbb{O}$  不是一个自由  $\mathbb{Z}$  模.

**解答.**<sup>4</sup> 设  $M = \langle p_1/q_1, \cdots, p_n/q_n \rangle \subseteq \mathbb{Q}$  是有限生成子模, 其中  $p_i, q_i$  互素. 令  $q := \operatorname{lcm}(q_1, \cdots, q_n)$ , 则

$$M = \left\langle \frac{p_1 r_1}{q}, \cdots, \frac{p_n r_n}{q} \right\rangle, \quad r_i \coloneqq \frac{q}{q_i}.$$

可见  $M = \left\langle \frac{\gcd(p_1 r_1, \dots, p_n r_n)}{q} \right\rangle$ , 是循环模.

假设  $\mathbb{Q}$  是自由  $\mathbb{Z}$  模, 而前述性质表明, 它没有秩 > 1 的有限生成子模, 故只能是秩为 1 的自由模, 这不可能: 若是秩为 1 的自由  $\mathbb{Z}$  模, 则正的部分应有最小元.

## 第六章

## 补充

题目 3.设 R 是交换环,I 为 R 的理想. M 是有限生成的 R 模, $\varphi \in \operatorname{End}_R(M)$ .

(1) 如果  $M \subseteq IM$ , 证明: 存在  $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n(a_1, \ldots, a_n \in I)$ , 使得

$$f(\varphi)(=\varphi^n+\varphi^{n-1}a_1+\cdots+\operatorname{id}|_Ma_n)=0\in\operatorname{End}_R(M)$$

(2) Nakayama 引理 (重要): R 的所有极大理想的交称为 R 的 Jacobson 根,记为 J(R). 如果 MJ(R) = M, 证明 M = (0).

## 解答.5 ...

我们证明  $\mathrm{id}|_{M}^{M}=0$ , 从而 M=(0); 简记  $\mathrm{id}=\mathrm{id}|_{M}^{M}$ . 由 (1), 有  $f(x)=x^{n}+a_{1}x^{n-1}+\cdots+a_{n}$ ,  $(a_{i}\in I)$  使得

$$f(id) = (1 + \sum_{i=1}^{n} a_i)id = 0.$$

记  $a = \sum_{i=1}^{n} a_i \in I$ ,下证明 1 + a 是 R 中可逆元: 如果不然,则主理想  $\langle 1 + a \rangle$  是非平凡的,于是有某极大理想  $I_0 \supseteq \langle 1 + a \rangle$ ,但是  $a \in J(R) \implies a \in I_0$ ,所以  $1 = (1 + a) - a \in I_0$ ,矛盾: 极大理想不是平凡理想,不应该有 1. 综上所述,1 + a 是可逆的,故 id = 0.

题目 6. 设  $\varphi: M \to M$  是 R 的模同态,且  $\varphi \varphi = \varphi$ .证明:

$$M = \ker \varphi \oplus \operatorname{im} \varphi.$$

解答.6 对  $x \in M$ ,

$$x = \underbrace{x - \varphi x}_{\in \ker \varphi} + \underbrace{\varphi x}_{\in \operatorname{im} \varphi}.$$

另一方面,  $x \in \ker \varphi \cap \operatorname{im} \varphi \implies x = 0$ ; 因为  $x = \varphi y \implies 0 = \varphi x = \varphi y \implies 0 = x$ . 综上所述, 分解  $M = \ker \varphi + \operatorname{im} \varphi$  是直和分解, 即  $M = \ker \varphi \oplus \operatorname{im} \varphi$ .

#### 题目 10. Determine $\operatorname{End}(\mathbb{Q}, +, 0)$ .

解答.<sup>7</sup> It is isomorphic to the ring Q:

$$\operatorname{End}(\mathbb{Q}, +, 0) \to \mathbb{Q}, \ f \mapsto f(1).$$
 (1)

It suffices to show the morphism is injective. Suppose f(1) = g(1), then  $\forall m \in \mathbb{Z}, \forall n \geq 1$ ,

$$f(1) = n \cdot f\left(\frac{1}{n}\right) = n \cdot g\left(\frac{1}{n}\right) = g(1);$$
  
$$f\left(\frac{m}{n}\right) = mf\left(\frac{1}{n}\right) = mg\left(\frac{1}{n}\right) = g\left(\frac{m}{n}\right).$$

Thus f = g, (1) is injective. It keeps addition, and also multiplication:

$$f\left(\frac{m}{n}\right) = \frac{m}{n}f(1) \implies (f \circ g)(1) = f(g(1)) = f(1)g(1).$$

# 域论

## 第七章

题目 2. 设 K/F 为一有限扩张,  $\alpha \in K$  是 F 上一个 n 次元素, 证明  $n \mid [K:F]$ .

解答.8 有中间域  $F(\alpha)$ , 于是

$$[K:F] = [K:F(\alpha)][F(\alpha):F] = [K:F(\alpha)] \times n$$

因为 
$$[F(\alpha):F]=\deg \alpha=n.$$

**题目 4.**设 K 为 F 上域扩张. 证明: 如果  $u \in K$  是 F 上代数元且次数为奇数,则  $u^2$  也是 F 上奇次数代数元且  $F(u) = F(u^2)$ .

解答.9 设 u 在 F 上的极小多项式为  $p_u(x) = x^{2n+1} + \sum_{j=0}^{2n} \lambda_j x^j$ . 则

$$p(u) = 0, \quad p(x) := \left( (u^2)^n + \sum_{j=1}^n \lambda_{2j-1} u^{2j-2} \right) x + \sum_{j=0}^n \lambda_{2j} (u^2)^j \in F(u^2)[x].$$

所以, u 在  $F(u^2)$  上的极小多项式的次数不超过 1(也就只能是 1), 故  $[F(u):F(u^2)]=1$ , 这就是  $F(u)=F(u^2)$ . 由

$$[F(u):F] = [F(u):F(u^2)][F(u^2):F]$$

可知  $u^2$  在 F 上次数也是奇数次.

题目 6. 求下列扩域的一基:

- (i)  $K = \mathbf{Q}(\sqrt{2}, \sqrt{3});$
- (ii)  $K = \mathbf{Q}(\sqrt{3}, \sqrt{-1}, \omega), \ \mbox{$\sharp$} \ \mbox{$\psi$} \ \ \omega = \frac{1}{2}(-1 + \sqrt{-3}).$

解答.<sup>10</sup> 有  $K = \operatorname{span}_{\mathbb{Q}}(1, \sqrt{2}, \sqrt{3}, \sqrt{6}),$  一组基是  $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}.$  有  $K = \operatorname{span}_{\mathbb{Q}}(1, \sqrt{3}, \sqrt{-1}, \sqrt{-3}),$  一组基是  $\{1, \sqrt{3}, \sqrt{-1}, \sqrt{-3}\}.$ 

题目 10. 确定下列多项式在有理数域上的分裂域:

- (i)  $f(x) = x^4 2$ ;
- (ii)  $f(x) = x^3 2x 2$ ;
- (iii)  $f(x) = x^3 3x 1$ .

解答.11

第八章

**题目 2**. 证明域 F 的每个非零自同态都保持 F 内素域的元素不动. 设 P 为含于 F 内的素域,于是  $\operatorname{Aut} F = \operatorname{Gal}(F/P)$ .

解答.<sup>12</sup> 设  $\sigma$ :  $F \to F$  是非零的自同态, 则  $\sigma$  是 F 的自同构, 所以  $\sigma$ (1) 是单位元即  $\sigma$ (1) = 1. 于是,  $\sigma$  保持素域内的元素不动, 因为素域由 1 生成. 现在 Aut  $F = \operatorname{Gal}(F/P)$  按照定义直接成立.

题目 4. 确定  $Gal(K/\mathbb{Q})$ , 其中  $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ .

解答.13 记所求为 G. 观察中间域  $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$  得到两个子群  $\langle \sigma \rangle, \langle \tau \rangle$ :

$$\sigma \colon K \to K, \ r + s\sqrt{2} + t\sqrt{3} \mapsto r - s\sqrt{2} + t\sqrt{3};$$
  
$$\tau \colon K \to K, \ r + s\sqrt{2} + t\sqrt{3} \mapsto r + s\sqrt{2} - t\sqrt{3}.$$

这两个子群都是正规的 (因为对应的扩张是正规扩张), 而且交为平凡的 (因为子群的交对应中间域的合成), 所以  $\langle \sigma, \tau \rangle \cong (\mathbb{Z}/\langle 2 \rangle)^2$ . 计数可得  $G = \langle \sigma, \tau \rangle \cong (\mathbb{Z}/\langle 2 \rangle)^2$ .

**题目 6**. 设 F 为多项式环  $\mathbb{F}_p[t]$  的商域,即  $F = \mathbb{F}_p(t)$ . 令 K 为多项式  $f(x) = x^p - t$  在 F 上的分裂域. 证明  $Gal(K/F) = \{1\}$ .

**题目 7**. 设  $F = \mathbb{F}_p(t)$  如习题 6. 令 K 为  $f(x) = x^{2p} + tx^p + t$  在 F 上的分裂域. 试决定 Gal(K/F),并定出 Gal(K/F) 的不动域和 F 在 K 内的可分闭包.

题目 14. 设  $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}), \theta = (2 - \sqrt{2})(3 + \sqrt{3}), E = K(\sqrt{\theta}).$  证明  $E/\mathbb{Q}$  正规, 并决定  $Gal(E/\mathbb{Q})$ .

## 更多习题

题目 26. Determine the Galois group  $Gal(\mathbb{Q}(\sqrt[p]{2},\zeta_p)/\mathbb{Q})$ .

解答. $^{17}$  Let G denote the Galois group. By the Galois main theorem, we have diagrams:



Let  $\mathbb{Z}/\langle p \rangle = \langle \tau \rangle$  and  $(\mathbb{Z}/\langle p \rangle)^* = \langle \sigma \rangle$ , where

$$\tau \colon \begin{cases} \zeta_p \mapsto \zeta_p \\ \sqrt[p]{2} \zeta_p^i \mapsto \sqrt[p]{2} \zeta_p^{i+1} & i \in [p] \end{cases}, \quad \sigma \colon \begin{cases} \zeta_p \mapsto \zeta_p^a \\ \sqrt[p]{2} \mapsto \sqrt[p]{2} & \end{cases}$$

where  $a \in (\mathbb{Z}/\langle p \rangle)^*$ . Thus we find two subgroups  $\mathbb{Z}/\langle p \rangle$ ,  $(\mathbb{Z}/\langle p \rangle)^*$  of G, where  $(\mathbb{Z}/\langle p \rangle)^*$  is normal (because it is the Galois group of a Galois extension). For the structure of the group:

- They have trivial intersection: because  $\mathbb{Q}(\sqrt[p]{2}) \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$ ;
- They generate the group G because  $\operatorname{Inv}\langle \tau, \sigma \rangle = \mathbb{Q}$ .
- They satisfy:  $\sigma \tau \sigma^{-1} = \tau^a$ .

Above all, we have  $G \cong \mathbb{Z}/\langle p \rangle \rtimes (\mathbb{Z}/\langle p \rangle)^*$ , which is isomorphic to the matrix group:

$$\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/\langle p \rangle)^*, b \in \mathbb{Z}/\langle p \rangle \right\} \subseteq \operatorname{GL}(2, \mathbb{Z}/\langle p \rangle)$$

题目 27. Please state the Galois main theorem clearly.