report5

Jaiveer Kiran S. K ee22b042

$\mathrm{July}\ 2025$

Target Specifications:

- Output Voltage = $0.5V \pm 1\%$
- • Supply Voltage = 1.8V \pm 10%
- Power Consumption < 1 mW
- \bullet Temperature Range: $-40\,^{\circ}\mathrm{C}$ to $125\,^{\circ}\mathrm{C}$

Characteristics:

Mosfets:

 \bullet Model: TSMC 65nm GP nch, pch.

Figure 1: NMOS characteristics

Figure 2: PMOS characteristics

Diodes:

• Model: TSMC 65nm ndio_25

• Non-ideality factor (η) : 0.84.

 \bullet CTAT slope: -1.72mv/C.

Figure 3: Diode characteristics

Bias Currents:

$$(I_{\rm total})_{\rm max} = \frac{1000 \,\mu{\rm W}}{1.8 \,{\rm V}} = 566.6 \,\mu{\rm A}$$

Current Division

 Opamp used in regulated cascode: $25 \,\mu\text{A} + 5 \,\mu\text{A} = 30 \,\mu\text{A}$

• Regular Opamp: $45 \,\mu\text{A} + 5 \,\mu\text{A} = 50 \,\mu\text{A}$

• Bias stage: $5 \,\mu\text{A}$

 Branch current in core bandgap: $100\,\mu\text{A} + 100\,\mu\text{A} + 100\,\mu\text{A} = 300\,\mu\text{A}$

Design Equations

•

$$\frac{\frac{k}{q}\ln(n)\eta}{R_1} = \frac{0.00174}{R_2}$$

$$\Rightarrow \frac{R_2}{R_1} \approx 11.58$$
(1)

•

$$100\mu = \frac{\frac{k}{q}(300)\ln(n)\eta}{R_1} + \frac{0.709}{R_2}$$
 (2)

Solving:

$$R_1 = 1063.76 \ \Omega, \quad R_2 \approx 12,310 \ \Omega$$

$$R_3 = \frac{0.5}{100\mu A}$$
$$= 5k \ \Omega$$

Bandgap Reference:

Figure 4: Output voltage

Figure 5: ZTAT current

Figure 6: total current

Figure 7: CTAT and PTAT current

Figure 8: bandgap circuit

Observations:

- Reference voltage at 27C: 0.510mV.
- Maximum current used: 572.5 uA.