Group — Audio Source Separation (Vocals ↔ Accompaniment)

Run 3 – 4 tightly-scoped experiments in one free-tier-Colab week (\approx 8 GPU-h) that show what actually improves separation quality on MUSDB18-HQ. Getting perfect karaoke tracks is not required; understanding the trade-offs is.

O First-evening fixes & sanity checks

Why it matters	Quick remedy
Time-domain baseline hides	Move to STFT masking ASAP: feed magnitude, predict <i>soft mask</i> ∈ [0, 1], reuse mixture phase for iSTFT. You already discovered
phase issues	phase is hard.
Tiny batch, high variance	In Colab T4 you can fit batch = 8 clips × 6 s × 44.1 kHz with 1.3 GB VRAM if you keep tensors in float16.
**Segment imbalance (65 % vocal-free) **	Use class-balanced sampler : draw 50 % clips that contain vocals, 50 % without, or weight the loss by target RMS.
Evaluation placeholders	Install musdb==0.4.0, museval==0.4.1, torchmetrics [audio]. Verify that the pre-trained <i>Open-Unmix (umxhq)</i> gets ≈ 5.2 dB SDR on the MUSDB test vocals \rightarrow proves the metric pipeline is correct.

1 Solid baseline to lock in (\leq 1 GPU-h)

Item	Setting
Model	Open-Unmix-small (3 bidirectional GRU layers, 384 hidden, 3 M params).
Input	STFT 1024 hop 256, segment 6 s (4096 frames).
Loss	L1 on magnitude × weighting factor $\alpha(f) = \sqrt{f}$ (gives low-freq more weight).
Optimize	r AdamW, lr 3×10^{-4} , cosine decay 20 epochs, early-stop patience = 3.
Hardware	Mixed precision, batch 8 → 35 min per 20-epoch run on T4.

Log SDR, SI-SDR, SAR on the 50 validation tracks; these become the numbers every later run must beat.

2 Experiment menu — pick any three

ID	Hypothesis	Change vs. baseline	Expected gain	GPU h
	Demucs-tiny (time-domain conv-	<pre>facebookresearch/demucs "dnb"</pre>	↑ SI-SDR on	
A	transposedconv) captures transients better than spectrogram masking.	config, 3 layers, 64 ch; train 15 epochs.	drums/bass (+1 dB)	2

ID	Hypothesis	Change vs. baseline	Expected gain	GPU h
В	Multi-task mask prediction (vocals and accompaniment) stabilises training.	Single net, 2-head output; loss = L1(vocal)+0.5 L1(accomp.).	↑ SDR vocals 0.5 dB	1
С	Phase-aware loss reduces "hollow" artefacts.	Add L_phase = 1 - $\cos \Delta \phi$ on 50 % randomly-selected bins; total loss = L_mag + 0.1 L_phase.	↑ SAR (fewer artefacts)	0.3
D	Data augmentation improves generalisation.	On-the-fly pitch-shift (±2 semitones) <i>or</i> time-stretch (0.9–1.1×) on mixture <i>and</i> stems before STFT.	↑ SDR 0.3 dB, cheap	0.2
E	Curriculum on clip length helps convergence.	Start with 3-s crops for 5 epochs → 6-s crops.	Faster convergence, same SDR	0
F	Fine-tune Open-Unmix pre-trained instead of training from scratch.	Load umxhq weights, unfreeze last GRU layer only, $lr = 1 \times 10^{-5}$, 10 epochs.	↑ SDR 0.8 dB in 30 min	0.5

All runs: mixed precision, early stopping, save best-val ckpt.

3 Evaluation protocol (use for *every* run)

Level Metric & tool

Track SDR, SI-SDR, SAR with torchmetrics.audio (mirrors BSS-Eval v4).

Album (fold) Report **median** over 50 val tracks; show iqr bars.

Stat. test Wilcoxon signed-rank (paired) vs. baseline; $p < 0.01 \Rightarrow$ significant.

Qualitative Waveform + mel-spectrogram side-by-side for 1 easy and 1 hard song.

4 One-week Colab schedule (≈ 8 GPU-h)

Day What to do

- 1 Pipeline fixes; run baseline Open-Unmix-small 20 epochs.
- **2** Fine-tune full **umxhq** weights (Exp F).
- 3 Implement data aug & phase loss (Exp C + D); quick 15-epoch run.
- 4 Train **Demucs-tiny** (Exp A).
- 5 Multi-task mask head (Exp B) if time; else rerun best config with 3-fold CV.
- 6 Compute metrics, Wilcoxon p-values; render spectrogram figures.
- 7 Write Milestone 2: scoreboard, qualitative figs, compute budget, lessons.

(If Colab throttles GPU time, prioritise $Exp\ F + Exp\ C + Exp\ D$ — all three finish in < 2 GPU-h.)

5 Colab survival tips

- Cache MUSDB18-HQ WAVs to Drive; down-mix to 32 kHz to halve I/O if quality OK.
- Use **chunked HDF5** for STFT magnitude tensors; skip re-computing each epoch.
- TORCH_HOME=/content/drive/MyDrive/.cache/torch keeps pre-trained weights across sessions.
- For Demucs time-domain models, cap segment length 6 s to avoid 12 h timeout.

6 Scoreboard template for the report

Exp	Backbone	Domain	Extras	SDR voc ↑	SI-SDR ↑	GPU min	Sig.?
Base	Open-Unmix-small	STFT	_	4.8	5.1	35	_
F	umxhq fine-tune	STFT	pre-trained	5.6	6.0	45	\checkmark
C+D	Open-Unmix-small	STFT	phase + aug	5.4	5.8	40	\checkmark
Α	Demucs-tiny	time	_	5.1	6.2	80	\checkmark

Shade best column values; \checkmark when Wilcoxon p < 0.01 vs. base.

Quick-wins checklist

- Switch baseline to **STFT mask** (phase via mixture).
- Fine-tune pre-trained Open-Unmix (fastest gain).
- Add phase-aware term + pitch/time aug almost free.
- Evaluate with **torchmetrics SDR / SI-SDR**, Wilcoxon stats.
- Log compute time & VRAM so choices are easy to justify.

Follow this compact plan to get a clear story about what moves the needle for vocal separation on limited compute. Good luck!