Literature survey

Date	04 November 2022
Team ID	PNT2022TMID13569
Project Name	Estimate the crop yield using Data
	Analytics

S.NO	AUTHOR	TOPIC	METHODOLOGY	PROBLEM
	NAME			STATEMENT
1.	Farah Khan,	Knowledge	Association rule	Crop productivity
	Dr.	Discovery on	mining	enhancement
	Divakar	Agricultural		
	Singh, 2014	Dataset Using		
		Association		
		Rule Mining		
2.	Utkarsha P.	A Study of	Clustering	Presented a survey
	Narkhede,	Clustering		on Crop prediction
	K. P.	Techniques for		
	Adhiya,	Crop		
	2014	Prediction –A		
		Survey		
3.	Dhivya B H,	Survey on Crop	Data mining	Presented a survey
	Manjula R,	Yield		on the different
	Siva	Prediction		algorithms applied
	Bharathi S,	based on		in the
	Madhumathi	Agricultural		assessment and
	R/ 2017	Data		prediction of crop
				yield
				Discussed about the
				mechanism of
				knowledge the
				discovery in
				Agricultural data
				mining
4.	F K Van	Big Data for	Big Data Analytics	Outlined Big Data
	Evert, S	weed control		analytics models
	Fountas,			with numerical

	D Jakovetic,	and crop		algorithms applied
	V Crnojevic,	protection		Represent the
	I Travlos &			importance of
	C			reforming the
	Kempenaar/			mined data in the
	2017			form of
				understandable
				information to the
				farmers.
5.	RSujatha,	A Study on	Classification	Discuss the
	Dr.P.Isakki	Crop Yield	techniques	importance of
	Devi/ 2016	Forecasting	_	comparing previous
		Using		agricultural data
		Classification		with
		Techniques		present to identify
		_		optimum condition
				favor enhanced
				crop yield.