Układy cyfrowe i systemy wbudowane - laboratorium

Karol Kulawiec 241281 Bartosz Rudnikowicz 241382

14.10.2019

1 Wstęp

Podczas zajęć mieliśmy za zadanie zaprojektować układ kombinacyjny przyjmujący 3-bitową liczbę X na wejściu i zwracający na wyjściu wynik funkcji

$$Y = (X+5) mod 8$$

Następnie przeprowadzić symulację układu oraz odczytać czas propagacji.

2 Przebieg zajęć

2.1 Minimalizacja funkcji

Na początek rozpisaliśmy tabelę prawdy i na jej podstawie, za pomocą siatek Karnaugha przeprowadziliśmy minimalizację funkcji dla każdego bitu wyjściowego. Po skończeniu otrzymaliśmy następujące funkcje:

$$y_2=\overline{\mathbf{x_0}}\ \overline{\mathbf{x_2}}+\overline{\mathbf{x_1}}\ \overline{\mathbf{x_2}}+x_0x_1x_2=\overline{\mathbf{x_0}+\mathbf{x_2}}+\overline{\mathbf{x_1}+\mathbf{x_2}}+x_0x_1x_2$$
 (Tabela 1)
 $y_1=x_1\overline{\mathbf{x_0}}+\overline{\mathbf{x_1}}x_0$ (Tabela 2)
 $y_0=\overline{\mathbf{x_0}}$ (Tabela 3)

x_2x_1 x_0	0	1
00	1	1
01	1	
11		1
10		

Tabela 1: y_2

x_2x_1 x_0	0	1
00		1/
01		
11	1	
10		1

Tabela 2: y_1

x_2x_1 x_0	0	1
00	$\sqrt{1}$	
01	1	
11	1	
10	1	

Tabela 3: y_0

2.2 Schemat układu i symulacja

Na podstawie otrzymanych funkcji, korzystając z programu ISE stworzyliśmy schemat układu widoczny na rysunku (Rys. 1).

Rysunek 1: Schemat wykonanego układu

Przygotowany układ zasymulowaliśmy w trybie symulacji czasowej post-fit, podając jako sygnał wejściowy kolejne 3-bitowe liczny binarne od "000" do "111". Poniżej znajduje się fragment kodu, który został przez nas zmodyfikowany.

Na wyjściu, zgodnie z przewidywaniami, pojawiły się poprawne dane wyjściowe dla każdego wejścia (Rys. 2).

Name	Value	0 ns	100 ns	200 ns	300 ns	400 ns	500 ns	600 ns	700 ns	800 ns	1900 ns	1,000 ns
▶ 😽 data	111	000	001	010	011	100	101	110		111		
▶ ¥[2:0]	100	101	X 110	X 111	X 000	X 001	X 010	X 011	X	100		

Rysunek 2: Wynik symulacji. W górnym rzędzie dane wejściowe, w dolnym wyjściowe.

Odczytaliśmy również czas propagacji układu, który wynosił 10ns (Rys. 3).

Rysunek 3: Wycinek z symulatora wraz z osią czasu.

3 Podsumowanie

Podczas zajęć zaprojektowaliśmy i zasymulowaliśmy prosty układ kombinacyjny. Niestety przez skrócony czas zajęć nie zdążyliśmy uruchomić układu na zestawie laboratoryjnym ZL-9572.