COMP1917: Computing 1

6. Binary and Hexadecimal

Reading: Moffat, Section 13.2

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2 6. Binary and Hexadecimal

Number Systems

- Most cultures have developed number systems based on 5 or 10, but there are some exceptions (often based on counting the spaces between the fingers as well as the fingers):
 - Base 8 (Yuki of northern California)
 - Base 9 (Nenet language of Russia)
 - Base 12 (hours of the day)
 - Base 20 (Maya of Central America)
 - Base 60 (Sumerians)
- For digital computers, it is convenient to use Base 2 (Binary), Base 8 (Octal) or Base 16 (Hexadecimal).

COMP1917 14s2 6. Binary and Hexadecimal

Outline

- Number Systems
- Binary Computation
- Converting between Binary and Decimal
- Octal and Hexadecimal
- Fractional Component

COMP1917 (©) Alan Blair, UNSW, 2006-2014

COMP1917 14s2

2

6. Binary and Hexadecimal

3

Decimal Representation

■ Can interpret decimal number 4705 as:

$$4 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 5 \times 10^0$$

- The base or radix is 10 Digits 0 9
- Place values:

$$\cdots$$
 1000 100 10 1 \cdots 10³ 10² 10¹ 10

- Write number as 4705_{10}
 - ▶ Note use of subscript to denote base

7

Binary Computation

■ In a similar way, can interpret binary number 1011 as:

$$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

- The base or radix is 2 Digits 0 and 1
- Place values:

$$\cdots$$
 8 4 2 1 \cdots 2³ 2² 2¹ 2⁰

■ Write number as 1011₂ $(=11_{10})$

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

Binary Representation

Addition of 1-bit binary numbers can be achieved by half-adder circuit.

■ General addition requires combination of half-adder circuits

Binary Computation

- Binary representation is convenient because
 - easily represented using two voltage levels: low and high
 - ▶ simple arithmetic tables that can be implemented using logic gates

+	0	1
0	00	01
1	01	10

×	0	1
0	0	0
1	0	1

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

Converting from base x to Decimal

- Consider 4-digit number in arbitrary base x: abcd_x
- Rewrite in polynomial form:

$$ax^3 + bx^2 + cx + d$$

Or nested form:

$$((ax+b)x+c)x+d$$

Perform necessary computations to achieve decimal conversion

11

Examples

- Convert 1101₂ to base 10 (Decimal):
 - $1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13_{10}$
 - $ightharpoonup 1101_2 = ((1 \times 2 + 1) \times 2 + 0) \times 2 + 1 = 13_{10}$
- Convert 110010112 to base 10:
 - **11001011**₂ $= 1.2^7 + 1.2^6 + 0.2^5 + 0.2^4 + 1.2^3 + 0.2^2 + 1.2^4 + 1.2^0 = 20310$

6. Binary and Hexadecimal

11001011₂ $=(((((((1.2+1).2+0).2+0).2+1).2+0).2+1).2+1=203_{10}$

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

Examples

$$25_{10} \div 2 = 12 \text{ r } 1 \uparrow$$
 $12_{10} \div 2 = 6 \text{ r } 0 \uparrow$
 $6_{10} \div 2 = 3 \text{ r } 0 \uparrow$
 $3_{10} \div 2 = 1 \text{ r } 1 \uparrow$
 $1_{10} \div 2 = 0 \text{ r } 1 \uparrow$

- Write remainders from left to right reading from bottom to top.
- $25_{10} = 11001_2$
- ALWAYS check your answer: $11001_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 25_{10}$

Converting to base x

a base x number in the form ((ax+b)x+c)x+d can be written:

$$abcd_x = Cx+d$$

$$C = Bx+c$$

$$B = ax+b$$

$$a = 0x+a$$

- Numbers a,b,c,d are all less than base x
- Equations above imply that d,c,b,a are remainders when the number $abcd_x$ is repeatedly divided by x
- \blacksquare To convert an integer to base x
 - repeatedly divide quotient by x until quotient is 0
 - write the remainders in reverse

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

10

6. Binary and Hexadecimal

Examples

Convert 11972₁₀ to base 8 (Octal)

$$11972_{10} \div 8 = 1496 \quad r \quad 4$$

$$1496 \div 8 = 187 \quad r \quad 0$$

$$187 \div 8 = 23 \quad r \quad 3$$

$$23 \div 8 = 2 \quad r \quad 7$$

$$2 \div 8 = 0 \quad r \quad 2$$

- \blacksquare 11972₁₀ = 27304₈
- $27304_8 = 2 \times 8^4 + 7 \times 8^3 + 3 \times 8^2 + 0 \times 8^1 + 4 \times 8^0 = 11972_{10}$

Decimal to Binary — With Division

- Repeated division of quotient by 2 as in previous example
- repeat until quotient is 0
- output remainders in the reverse of the order in which they were generated

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

© Alan Blair, UNSW, 2006-2014

14

Decimal to Binary — Without Division

- find largest power of 2 smaller than current number; subtract this from the number and repeat on the difference
- usually not practical for larger numbers
- powers of 2 are: 128, 64, 32, 16, 8, 4, 2, 1

Decimal to Binary — With Division

 $573_{10} \div 2 =$ 286 r 1 $286 \div 2 =$ 143 71 r 1 $71 \div 2 =$ 35 r 1 $35 \div 2 =$ $17 \div 2 =$ $8 \div 2 =$ $4 \div 2 =$ $2 \div 2 =$ 1 r 0 $1 \div 2 =$ 0 r 1

- $573_{10} = 1000111101_2$
- Check: $1.2^9 + 0.2^8 + 0.2^7 + 0.2^6 + 1.2^5 + 1.2^4 + 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0 = 573_{10}$

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

15

13

Decimal to Binary — Without Division

Convert 174₁₀ to binary:

 $= 10101110_2$

$$174 - 128 = 46 \longrightarrow 1 \text{ in } 2^7 \text{ place}$$

$$64 > 46 \longrightarrow 0 \text{ in } 2^6 \text{ place}$$

$$46 - 32 = 14 \longrightarrow 1 \text{ in } 2^5 \text{ place}$$

$$16 > 14 \longrightarrow 0 \text{ in } 2^4 \text{ place}$$

$$14 - 8 = 6 \longrightarrow 1 \text{ in } 2^3 \text{ place}$$

$$6 - 4 = 2 \longrightarrow 1 \text{ in } 2^2 \text{ place}$$

$$2 - 2 = 0 \longrightarrow 1 \text{ in } 2^1 \text{ place}$$

$$1 > 0 \longrightarrow 0 \text{ in } 2^0 \text{ place}$$

COMP1917

© Alan Blair, UNSW, 2006-2014

Exercises

- Convert the following to binary:
 - **▶** 5₁₀
 - ▶ 10₁₀
 - **▶** 12₁₀
 - **23**₁₀

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

6. Binary and Hexadecimal

18

16

18

Binary to Octal

0	1	2	3	4	5	6	7
000	001	010	011	100	101	110	111

- Idea: Collect bits into groups of three starting from right to left
- "pad" out left-hand side with 0's if necessary
- Convert each group of three bits into its equivalent octal representation (given in table above)
- **Example:** Convert 10111111000101001₂ to Octal:

001	011	111	000	101	0012
1	3	7	0	5	18

Octal Representation

■ Can interpret octal number 7053₈ as:

$$7 \times 8^3 + 0 \times 8^2 + 5 \times 8^1 + 3 \times 8^0$$

- The base or radix is 8
 Digits 0,1,2,3,4,5,6,7
- Place values:

$$\cdots$$
 512 64 8 1 \cdots 8³ 8² 8¹ 8⁰

Write number as 7053_8 (= 3627_{10})

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

19

Octal to Binary

- Reverse the previous process
- Convert each octal digit into equivalent 3-bit binary representation
- Example: Convert 27015₈ to Binary:

2	7	0	1	58
010	111	000	001	1012

Hexadecimal Representation

Can interpret hexadecimal number 3AF1 as:

$$3 \times 16^3 + 10 \times 16^2 + 15 \times 16^1 + 1 \times 16^0$$

6. Binary and Hexadecimal

- The base or radix is 16 Digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Place values:

$$\cdots$$
 4096 256 16 1 \cdots 16³ 16² 16¹ 16¹

■ Write number as 3AF1₁₆ $(=15089_{10})$

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

COMP1917 14s2

22

20

6. Binary and Hexadecimal

Binary to Hexadecimal

Example: Convert 10111111000101001₂ to Hex:

1011	1110	0010	10012
В	E	2	9 ₁₆

Example: Convert 10111101011100₂ to Hex:

0010	1111	0101	1100
2	F	5	C ₁₆

Binary to Hexadecimal

0	1	2	3	4	5	6	7
0000	0001	0010	0011	0100	0101	0110	0111
8	9	A	В	С	D	E	F

- Idea: Collect bits into groups of four starting from right to left
- "pad" out left-hand side with 0's if necessary
- Convert each group of four bits into its equivalent hexadecimal representation (given in table above)

COMP1917

23

© Alan Blair, UNSW, 2006-2014

Hexadecimal to Binary

- Reverse the previous process
- Convert each hex digit into equivalent 4-bit binary representation
- Example: Convert AD5₁₆ to Binary:

A	D	5
1010	1101	01012

Exercises

- Convert to binary
 - **53**₁₀
 - ▶ 5F3A₁₆
 - ▶ 12D₁₆
 - ▶ 3701₈
 - ▶ 4232₈
- Convert to octal
 - **10101111011**₂
 - ▶ 5F3A₁₆
- Convert to hexadecimal
 - **10101111011**₂
 - ▶ 3701₈

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

6. Binary and Hexadecimal

6. Binary and Hexadecimal

26

24

COMP1917 14s2

6. Binary and Hexadecimal

27

© Alan Blair, UNSW, 2006-2014

Converting Fractions to Base *x*

- Convert integer component as usual
- To convert fractional component use "separate and multiply" technique
- Consider fractional component of abcd.pgrs,
 - $px^{-1} + qx^{-2} + rx^{-3} + sx^{-4}$
 - Multiplying by x gives: $p + qx^{-1} + rx^{-2} + sx^{-3}$
 - ► Multiplying remaining fractional component by *x* gives: $a + rx^{-1} + sx^{-2}$
- Repeat until fractional part exhausted or you have sufficient digits (Note: process is not guaranteed to terminate)

Fractions

- In the same way that we use a decimal point (.) to represent fractional quantities for decimal numbers, we use the radix point to represent fractional quantities in any base
- For example, abcd.pgrs, (note: base x) represents

$$ax^{3} + bx^{2} + cx^{1} + dx^{0} + px^{-1} + qx^{-2} + rx^{-3} + sx^{-4}$$

- Numbers to the left of radix point represent integer component
- Numbers to the right of radix point represent fractional component
- Polynomial above can be evaluated to determine equivalent decimal representation.

COMP1917

- **Example**
- Convert 23.3125₁₀ to base 8
- Integer component

$$23_{10} \div 8 \quad = \quad 2 \quad r \quad 7$$

$$2 \div 8 = 0 \quad r \quad 2$$

Fractional component

$$.3125_{10} \times 8 = 2.5$$

$$.5_{10} \times 8 = 4.0$$

Therefore: $23.3125_{10} = 27.24_8$

28

Example

- Convert 23.3125₁₀ to base 2
- Integer component

$$23_{10} \div 2 = 11 \text{ r } 1$$
 $11 \div 2 = 5 \text{ r } 1$
 $5 \div 2 = 2 \text{ r } 1$
 $2 \div 2 = 1 \text{ r } 0$
 $1 \div 2 = 0 \text{ r } 1$

6. Binary and Hexadecimal

Example continued

Fractional component

$$.3125_{10} \times 2 = 0.625$$

 $.625 \times 2 = 1.25$

$$.25 \times 2$$
 = 0.5
 $.5 \times 2$ = 1.0

Therefore,
$$23.3125_{10} = 10111.0101_2$$