

程序代写代做 CS编程辅导

Functional Landencies – Part 3

WeChat: cstutorcs Finding Keys Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

程序代写代做 CS编程辅导 A Bunch of Keys

- We will need keys for the property of the propert
 - A subset of the property of a relation schema R is a superkey if it uniquely determine the property of the p
 - A superkey K is called a candidate key if no proper subset of K is a superkey.
 - WeChat: cstutorcs
 That is, if you take any of the attributes out of K, then there is not enough to uniquely identify tuples Exam Help
 - Candidate keys are also called keys, and the primary key is chosen from them. Email: tutorcs@163.com

程序代写代做 CS编程辅导 Finding Keys

• Given a set Σ of FDs on a relation $R_{\rm H}$ the guestion is:

How can we find all the (candidate) keys of R?
Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

相外 在 CS编程辅导 Implied Functional Dependencies

- To design a good da need to consider all possible FDs.
- If each student works one supervisor, does each student have one project supervisor?

 Assignment Project Exam Help

```
 \begin{array}{l} \{\{\text{StudentID}\} \rightarrow \{\text{ProjectNo}\}, \\ \{\text{ProjectNo}\} \rightarrow \{\text{Supervisor}\} \end{array} \\ \text{ProjectNo}\} \rightarrow \{\text{Supervisor}\} \\ \end{array}
```

- We use the notation $\Sigma = X \to Y$ to denote that $X \to Y$ is **implied** by the set Σ of FDs. https://tutorcs.com
- We write Σ^* for all possible FDs **implied** by Σ .

程序代写代做 CS编程辅导 Equivalence of Functional Dependencies

• Σ_1 and Σ_2 are **equiv**

 Σ_1 We that: cstutorcs Σ_2 Σ_2^* Assignment Project Exam Help

Example: Let $\Sigma_1 = \{X \to Y, Y \to Z\}$ and $\Sigma_2 = \{X \to Y, Y \to Z\}$. We have $\Sigma_1 \neq \Sigma_2$ but $\Sigma_2 = \Sigma_3$ by $\Sigma_3 = \Sigma_4$ by $\Sigma_4 = \Sigma_4$ by $\Sigma_$

https://tutorcs.com

- Questions:
 - Is it possible that $\Sigma_1^* = \Sigma_2^*$ but $\Sigma_1 \neq \Sigma_2$? **Yes**
 - 2 Is it possible that $\Sigma_1^* \neq \Sigma_2^*$ but $\Sigma_1 = \Sigma_2$? **No**

程序代写代做 CS编程辅导 Implied Functional Dependencies

- Let Σ be a set of FD. The ther or not $\Sigma \models X \to W$ holds? We need to
 - Ompute the seributes that are dependent on X, which is called the closure of X under Σ and is denoted by X^+ .
 - $\Sigma \models X \to W \text{ holds (ffluxt scxtutores)}$
- Algorithm¹

Assignment Project Exam Help

- $X^+ := X$;
- Email: tutorcs@163.com
 repeat until no more change on X+
 - for each $QZZ^4Z^3W^4Z^7C_2X^+$, add all the attributes in Z to X^+ , i.e., replace $X^{\text{attps}}X^4$ tutercs.com

See Algorithm 15.1 on Page 538 in [Elmasri & Navathe, 7th edition] or Algorithm 1 on Page 555 in [Elmasri & Navathe, 6th edition]

程序代写代做 CS编程辅导 Implied Functional Dependencies – Example

- Consider a relation so $\Sigma = \{A, B, C, D, E, F\}$, a set of FDs $\Sigma = \{AC \rightarrow B, B \rightarrow \bigcup_{n=1}^{L} \{A, B, C, D, E, F\}$ on $AB \rightarrow \bigcup_{n=1}^{L} \{A, B, C, D, E, E\}$ on $AB \rightarrow \bigcup_{n=1}^{L} \{A, B, C, D, E, E\}$
- Decide whether or not Σ ⊨ AC → ED holds .
 WeChat: cstutores
 - We first build the slastification of the first build the fi
 - 2 Then we check that ED then $\Sigma \models AC \rightarrow ED$.
- Can you quickly tell whether or not $\Sigma \models AC \rightarrow EF$ holds?

程序代写代做 CS编程辅导 Finding Keys

Fact: A key K of R a lacksquarees a FD K o R.

• Algorithm²:

Input: a set Σ of FD \triangle hat: cstutorcs

Output: the set of all keys of *R*.

Assignment Project Exam Help

of the relation *R*, compute its closure *X*⁺

- if $X^+ = R$, then Exprise it stopeways @ 163.com
- if no proper subset Y of X with $Y^+ = R$, then X is a key.
- A prime attribute is an attribute ορος μιτίης in a key, and a non-prime attribute is an attribute that is not a prime attribute.

² It extends Algorithm 15.2(a) in [Elmasri & Navathe, 7th edition, pp. 542], or Algorithm 2(a) or in Algorithm 2(a) in [Elmasri & Navathe, 6th edition pp. 558] to finding all keys of R

程序代写代做 CS编程辅导 Exercise – Finding Keys

- $\{A, B, C, D\}$ and a set of functional Consider a relation s dependencies $\Sigma = \{ \vec{r} \}$
 - List all the keys \square keys of R.
 - Find all the prime attributes of R.

WeChat: cstutorcs Solution:

- We compute the closures for all possible combinations of the attributes in R: Assignment Project Exam Help in R:

 - $(A)^+ = A$, $(B)^+ = B$, $(C)^+ = C$, $(D)^+ = D$; $(AB)^+ = ABCD$, $(AC)^+ = ACD$, $(AD)^+ = AD$, $(BC)^+ = BC$,
 - $(BD)^{+} = BD_{1}(CD)^{+} = CD_{2}(ABC)^{+} = ABCD_{2}(ABD)^{+} = ABCD_{2}(ABD)^{+}$ $(BCD)^+ = BCD / https://tutorcs.com$
- Hence, we have
 - AB is the only key of R.
 - AB, ABC, ABD and ABCD are the superkeys of R.
 - A and B are the prime attributes of R.

程序代写代做 CS编程辅导 Exercise – Finding Keys 回数隔回

Example: Still consider a relation schema $R = \{A, B, C, D\}$ and $\Sigma = \{AB \rightarrow C, AC \rightarrow C$ with the theorem of R.

• Some tricks: Assignment Project Exam Help

- If an attribute new part of each key.
- If an attribute new :appears in the dependent of any FD, this attribute must not be part of each key.
- If a proper subset of X is a key, then X must not be a key.

程序代写代做 CS编程辅导 Finding Keys - Example

- Consider ENROLMEN ollowing FDs:
 - {StudentID} →ៅ្ដី!
 - {StudentID, Collination
 StudentID, Coll
 - {ConfirmedBy} → {Office}.

WeChat: cstutorcs

ENROLMENT					
Name	Student NS	siggenreen Pr	ro§ece₽£xa	n Ƕ¶ir p edBy	Office
Tom	123456	COMP2400	2010 S2	Jane	R301
Mike	12345 <mark>₹</mark> m	appwredees	@21068 Seor	n Linda	R203
Mike	123458	COMP2600	2008 S2	Linda	R203

- QQ: 749389476
 What are the keys, superkeys and prime attributes of ENROLMENT?
 - {StudentID, Confidence of StudentID, Confide
 - Every set that has {StudentID, CourseNo, Semester} as its subset is a superkey.
 - StudentID, CourseNo and Semester are the prime attributes.