Investigating generative neural-network models for building pest insect detectors in sticky trap images for the Peruvian horticulture

Pest insects in Peruvian horticulture

/isual inspection of pest insects (Source: Agraria.pe)

The inspection of pest insects is done manually in the field, which implies costs, time and staff exhaustion.

Chemical control (Source: Agraria.pe)

The most used pest control strategy is indiscriminate chemical control, which implies possible damage to the environment and people.

Effect of pest insects on tomatic crops (Source: Agraria.pe)

Low productivity due to late detection of pests

Synthesized images and original images

We adjusted three generative models (DCGAN, WGAN and VAE) to acquire the capacity to synthesize pest insect images to be used as data augmentation procedures for subsequent classifier induction.

Synthesized images by the models DCGAN, WGAN, and VAE. (Source: Own elaboration)

Two-dimensional t-SNE representations of the original and synthesized images

Two-dimensional t-SNE representations of 3500 pest insects images each one. a)Real images, the rest are from generated images as follow: b)DCGAN, c)WGAN and d)VAE. Colors identify the insect species (Blue: Bemisia tabaci, Orange: Macrolophus pygmaeus, Green: Nesidiocoris tenuis, Red: Brevicoryne brassicae, Purple: Liriomyza huidobrensis, Brown: Prodiplosis longifila and Pink: Trips tabaci).

Divergence between real images and generated images per model and species.

Universal divergence (Q. Wang, 2009) between generated and real images (Source: Own elaboration)

	Generative Models					
Species	DCGAN	WGAN	VAE			
Bemisia tabaci	7,207	7,431	7,058			
Macrolophus pygmaeus	6,953	7,227	7,264			
Nesidiocoris tenuis	7,247	6,604	6,878			
brevicoryne brassicae	6,759	6,022	6,070			
liriomyza huidobrensis	5,721	5,880	5,742			
prodiplosis longifila	7,707	6,278	5,997			
trips tabaci	7,475	6,507	6,494			
Avorago	7.010	6 564	6 500			

Sticky trap image recreated with synthesized pest insects images

Images of a sticky trap recreated with images of interesting pest insects (Source: Own elaboration)

Detection with YOLOv5

To further assess the utility of the synthetic data, we induced YOLOv5m models with such data and evaluated their performance in identifying and classifying insect species in test sticky trap images. To evaluate the detection performance of the YOLOv5m models we use the area under the curve precision-recall (AUC) in testing data.

		AUC Precision-Recall						
		Use of generated images						
Species	# Imgs.	0%	20%	40%	60%	80%	100%	Max. Diff
Bemisia tabaci	5807	0,91	0,91	0,92	0,87	0,93	0,90	2,10%
Macrolophus pygmaeus	1619	0,70	0,68	0,72	0,72	0,75	0,81	10,60%
Nesidiocoris tenuis	688	0,61	0,52	0,65	0,36	0,44	0,49	4,00%
Brevicoryne brassicae	58	0,47	0,51	0,37	0,26	0,40	0,47	4,50%
Liriomyza huidobrensis	112	0,81	0,81	0,87	0,86	0,89	0,95	14,60%
Prodiplosis longifila	35	0,77	0,75	0,61	0,44	0,44	0,51	0,00%
Trips tabaci	53	0,52	0,49	0,45	0,44	0,42	0,42	0,00%

References

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Y. Bengio. Generative adversarial networks. Advances in Neural Information Processing Systems, 3, 06 2014

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deepconvolutional generative adversarial networks.CoRR, abs/1511.06434, 2016

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conferenceon Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 214–223. PMLR, 2017

Qing Wang, Sanjeev R. Kulkarni, and Sergio Verdu. Divergence estimation for multidimensionaldensities viak-nearest-neighbor distances.IEEE Transactions on Information Theory, 55(5):2392–2405, 2009.