SEQUENCE LISTING <110> Reed, John C. Okada, Kazuya <120> Survivin-Binding Proteins, Encoding Nucleic Acids, and Methods of Use <130> P-LJ 5144 <150> US 09/770,219 <151> 2001-01-25 <160> 14 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 645 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (145)...(642) <400> 1 ttgggtaccg ggcccccct cgaggtcgac ggtatcgata agcttgatat cgaattcggc 60 acgagccgcg cgccatcttg gctccggatc gtgcgtgagg aggcttcgtg ggcagcgaga 120 gtcacagaca agacagcaag cagg atg gag cac tac cgg aaa gct ggc tct 1 5 10 15 20

171 Met Glu His Tyr Arg Lys Ala Gly Ser gta gag ctc cca gcg cct tcc cca atg ccc cag cta cct cct gat acc Val Glu Leu Pro Ala Pro Ser Pro Met Pro Gln Leu Pro Pro Asp Thr 25 ctt gag atg cgg gtc cga gat ggc agc aaa att cgc aac ctg ctg ggg 267 Leu Glu Met Arg Val Arg Asp Gly Ser Lys Ile Arg Asn Leu Leu Gly 30 40 ttg gct ctg ggt cgg ttg gag ggc ggc agt gct cgg cat gta gtg ttc 315 Leu Ala Leu Gly Arg Leu Glu Gly Gly Ser Ala Arg His Val Val Phe 45 50 55 tca ggt tct ggc agg gct gca gga aag gct gtc agc tgc gct gag att 363 Ser Gly Ser Gly Arg Ala Ala Gly Lys Ala Val Ser Cys Ala Glu Ile 60 65 70 gtc aag cgg cgg gtc cca ggc ctg cac cag ctc acc aag cta cgt ttc 411 Val Lys Arg Arg Val Pro Gly Leu His Gln Leu Thr Lys Leu Arg Phe

Leu					Ser					tca Ser						459
90					95					100					105	
															ctc	507
ASP	FIO	neu	TIII	110	Arg	Arg	HIS	vaı	115	Ala	val	Trp	val	120	Leu	
										ggt Gly					gga	555
			125					130					135		_	
										tcc Ser						603
		140		200	G _L y		145	110	DCI	DEL	per	150	Gry	PIO	Arg	
										gaa Glu			tga			645
	155	J	5			160		· · · · ·	*****	or a	165	ncu				
<212	L> 16 2> PF		sapie	ens												
<400		Hie	ጥኒፖ	Ara	Tare	70.7 -2	Clar	Sor	ĭ/o ĭ	Cl.,	Ton	Dage	71 T	D	G a sa	
Met 1	Glu			5					10	Glu				15		
Met 1 Pro	Glu Met	Pro	Gln 20	5 Leu	Pro	Pro	Asp	Thr 25	10 Leu	Glu	Met	Arg	Val 30	15 Arg	Asp	
Met 1 Pro	Glu Met	Pro	Gln 20	5 Leu	Pro	Pro	Asp	Thr 25	10 Leu		Met	Arg Gly	Val 30	15 Arg	Asp	
Met 1 Pro Gly	Glu Met Ser	Pro Lys 35	Gln 20 Ile	5 Leu Arg	Pro Asn	Pro Leu	Asp Leu 40	Thr 25 Gly	10 Leu Leu	Glu	Met Leu	Arg Gly 45	Val 30 Arg	15 Arg Leu	Asp Glu	
Met 1 Pro Gly Gly	Glu Met Ser Gly 50	Pro Lys 35 Ser	Gln 20 Ile Ala	5 Leu Arg Arg	Pro Asn His Cys	Pro Leu Val 55	Asp Leu 40 Val	Thr 25 Gly Phe	10 Leu Leu Ser	Glu Ala Gly Lys	Met Leu Ser 60	Arg Gly 45 Gly	Val 30 Arg Arg	15 Arg Leu Ala	Asp Glu Ala Gly	
Met 1 Pro Gly Gly 65	Glu Met Ser Gly 50 Lys	Pro Lys 35 Ser Ala	Gln 20 Ile Ala Val	5 Leu Arg Arg Ser	Pro Asn His Cys 70	Pro Leu Val 55 Ala	Asp Leu 40 Val Glu	Thr 25 Gly Phe Ile	10 Leu Leu Ser Val	Glu Ala Gly	Met Leu Ser 60 Arg	Arg Gly 45 Gly Arg	Val 30 Arg Arg Val	15 Arg Leu Ala Pro Ser	Asp Glu Ala Gly 80	
Met 1 Pro Gly Gly 65 Leu	Glu Met Ser Gly 50 Lys His	Pro Lys 35 Ser Ala Gln	Gln 20 Ile Ala Val Leu	5 Leu Arg Arg Ser Thr 85	Pro Asn His Cys 70 Lys	Pro Leu Val 55 Ala Leu	Asp Leu 40 Val Glu Arg	Thr 25 Gly Phe Ile Phe	10 Leu Leu Ser Val Leu 90	Glu Ala Gly Lys 75	Met Leu Ser 60 Arg	Arg Gly 45 Gly Arg	Val 30 Arg Arg Val Val	15 Arg Leu Ala Pro Ser 95	Asp Glu Ala Gly 80 Trp	
Met 1 Pro Gly Gly 65 Leu Val	Glu Met Ser Gly 50 Lys His	Pro Lys 35 Ser Ala Gln Ala	Gln 20 Ile Ala Val Leu Ser 100	5 Leu Arg Arg Ser Thr 85 Pro	Pro Asn His Cys 70 Lys Asp	Pro Leu Val 55 Ala Leu Thr	Asp Leu 40 Val Glu Arg Gly	Thr 25 Gly Phe Ile Phe Leu 105	10 Leu Leu Ser Val Leu 90 Asp	Glu Ala Gly Lys 75 Gln	Met Leu Ser 60 Arg Thr	Arg Gly 45 Gly Arg Glu Thr	Val 30 Arg Arg Val Asp Val 110	15 Arg Leu Ala Pro Ser 95 Arg	Asp Glu Ala Gly 80 Trp Arg	
Met 1 Pro Gly Gly 65 Leu Val	Glu Met Ser Gly 50 Lys His Pro Val	Pro Lys 35 Ser Ala Gln Ala Pro 115	Gln 20 Ile Ala Val Leu Ser 100 Ala	5 Leu Arg Arg Ser Thr 85 Pro	Pro Asn His Cys 70 Lys Asp Trp	Pro Leu Val 55 Ala Leu Thr	Asp Leu 40 Val Glu Arg Gly Leu 120	Thr 25 Gly Phe Ile Phe Leu 105 Leu	10 Leu Ser Val Leu 90 Asp	Glu Ala Gly Lys 75 Gln Pro	Met Leu Ser 60 Arg Thr Leu	Arg Gly 45 Gly Arg Glu Thr Pro 125	Val 30 Arg Arg Val 4sp Val 110 Leu	15 Arg Leu Ala Pro Ser 95 Arg	Asp Glu Ala Gly 80 Trp Arg	
Met 1 Pro Gly Gly 65 Leu Val His Asn	Glu Met Ser Gly 50 Lys His Pro Val Glu 130	Pro Lys 35 Ser Ala Gln Ala Pro 115 Cys	Gln 20 Ile Ala Val Leu Ser 100 Ala Gly	5 Leu Arg Arg Ser Thr 85 Pro Val	Pro Asn His Cys 70 Lys Asp Trp Gln Cys	Pro Leu Val 55 Ala Leu Thr Val Pro 135	Asp Leu 40 Val Glu Arg Gly Leu 120 Pro	Thr 25 Gly Phe Ile Phe Leu 105 Leu	10 Leu Ser Val Leu 90 Asp Ser Ala	Glu Ala Gly Lys 75 Gln Pro Arg Pro	Met Leu Ser 60 Arg Thr Leu Asp Pro 140	Arg Gly 45 Gly Arg Glu Thr Pro 125 Gly	Val 30 Arg Val Val 110 Leu Leu	15 Arg Leu Ala Pro Ser 95 Arg Asp	Asp Glu Ala Gly 80 Trp Arg Pro Ser Thr	
Met 1 Pro Gly Gly 65 Leu Val His Asn Met 145	Glu Met Ser Gly 50 Lys His Pro Val Glu 130 Pro	Pro Lys 35 Ser Ala Gln Ala Pro 115 Cys	Gln 20 Ile Ala Val Leu Ser 100 Ala Gly Ser	5 Leu Arg Arg Ser Thr 85 Pro Val Tyr	Pro Asn His Cys 70 Lys Asp Trp Gln Cys 150	Pro Leu Val 55 Ala Leu Thr Val Pro 135	Asp Leu 40 Val Glu Arg Gly Leu 120 Pro	Thr 25 Gly Phe Ile Phe Leu 105 Leu	10 Leu Ser Val Leu 90 Asp Ser Ala	Glu Ala Gly Lys 75 Gln Pro Arg	Met Leu Ser 60 Arg Thr Leu Asp Pro 140	Arg Gly 45 Gly Arg Glu Thr Pro 125 Gly	Val 30 Arg Val Val 110 Leu Leu	15 Arg Leu Ala Pro Ser 95 Arg Asp	Asp Glu Ala Gly 80 Trp Arg Pro	

The state of the s

```
<210> 3
 <211> 41
 <212> PRT
 <213> Homo sapiens
 <400> 3
Val Pro Lys Thr His Leu Met Ser Glu Ser Glu Trp Arg Asn Leu Gly
  1
                  5
                                      10
Val Gln Gln Ser Gln Gly Trp Val His Tyr Met Ile His Glu Pro Glu
             20
                                  25
Pro His Ile Leu Leu Phe Arg Arg Pro
         35
                             40
 <210> 4
 <211> 41
<212> PRT
<213> Homo sapiens
<400> 4
Val Pro Lys Thr His Leu Met Ser Glu Glu Glu Trp Arg Arg Leu Gly
                  5
                                     10
                                                          15
Val Gln Gln Ser Leu Gly Trp Val His Tyr Met Ile His Glu Pro Glu
             20
                                 25
                                                      30
Pro His Ile Leu Leu Phe Arg Arg Pro
         35
<210> 5
<211> 41
<212> PRT
<213> Drosophila melanogaster
<400> 5
Val Pro Lys Thr His Leu Met Thr Glu Ala Glu Trp Arg Ser Ile Gly
                                                          15
Val Gln Gln Ser Arg Gly Trp Ile His Tyr Met Ile His Lys Pro Glu
                                 25
                                                      30
Pro His Ile Leu Leu Phe Arg Arg Pro
        35
<210> 6
<211> 41
<212> PRT
<213> Saccharomyces cerevisiae
<400> 6
Val Gly Thr Leu Arg Ile Leu Thr Glu Asp Glu Trp Arg Gly Leu Gly
                                                          15
Ile Thr Gln Ser Leu Gly Trp Glu His Tyr Glu Cys His Ala Pro Glu
            20
                                 25
                                                      30
Pro His Ile Leu Leu Phe Lys Arg Pro
```

```
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 7
cgaattcatg ggtgccccga cgttg
                                                                     25
<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 8
atccgctccg gttcgcagg
                                                                     19
<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 9
cctgcgaacc ggagcggat
                                                                     19
<210> 10
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 10
gagctcgagt taatccatgg cagccagctg ctc
                                                                     33
<210> 11
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
```

<223> primer										
<400> 11 agaattcatg gagcactacc ggaaagc										
<210> 12 <211> 36 <212> DNA <213> Artificial Sequence										
<220> <223> primer										
<400> 12 cagctcgagt tacaagtctt cacgatcggg tgtttc										
<210> 13 <211> 492 <212> DNA <213> Homo sapiens										
<220> <221> CDS <222> (1)(489)										
<pre><400> 13 atg gag cac tac cgg aaa gct ggc tct gta gag ctc cca gcg cct tcc Met Glu His Tyr Arg Lys Ala Gly Ser Val Glu Leu Pro Ala Pro Ser 1 5 10 15</pre>	48									
cca atg ccc cag cta cct cct gat acc ctt gag atg cgg gtc cga gat Pro Met Pro Gln Leu Pro Pro Asp Thr Leu Glu Met Arg Val Arg Asp 20 25 30	96									
ggc agc aaa att cgc aac ctg ctg ggg ttg gct ctg ggt cgg ttg gag Gly Ser Lys Ile Arg Asn Leu Leu Gly Leu Ala Leu Gly Arg Leu Glu 35 40 45	144									
ggc ggc agt gct cgg cat gta gtg ttc tca ggt tct ggc agg gct gca Gly Gly Ser Ala Arg His Val Val Phe Ser Gly Ser Gly Arg Ala Ala 50 55 60	192									
gga aag gct gtc agc tgc gct gag att gtc aag cgg cgg gtc cca ggc Gly Lys Ala Val Ser Cys Ala Glu Ile Val Lys Arg Arg Val Pro Gly 65 70 75 80	240									
ctg cac cag ctc acc aag cta cgt ttc ctt cag act gag gac agc tgg Leu His Gln Leu Thr Lys Leu Arg Phe Leu Gln Thr Glu Asp Ser Trp 85 90 95	288									
gtc cca gcc tca cct gac aca ggg cta gac ccc ctc aca gtg cgc cgc Val Pro Ala Ser Pro Asp Thr Gly Leu Asp Pro Leu Thr Val Arg Arg 100 105 110	336									

cat gtg cct gca His Val Pro Ala 115			Ser Arg Asp	
aat gag tgt ggt Asn Glu Cys Gly 130		o Pro Gly A		
atg ccc agc tcc Met Pro Ser Ser 145				
acc cga tcg tga Thr Arg Ser	à			492
<210> 14 <211> 163 <212> PRT <213> Homo sap	iens			

<400> 14 Met Glu His Tyr Arg Lys Ala Gly Ser Val Glu Leu Pro Ala Pro Ser Pro Met Pro Gln Leu Pro Pro Asp Thr Leu Glu Met Arg Val Arg Asp Gly Ser Lys Ile Arg Asn Leu Leu Gly Leu Ala Leu Gly Arg Leu Glu Gly Gly Ser Ala Arg His Val Val Phe Ser Gly Ser Gly Arg Ala Ala Gly Lys Ala Val Ser Cys Ala Glu Ile Val Lys Arg Arg Val Pro Gly Leu His Gln Leu Thr Lys Leu Arg Phe Leu Gln Thr Glu Asp Ser Trp Val Pro Ala Ser Pro Asp Thr Gly Leu Asp Pro Leu Thr Val Arg Arg His Val Pro Ala Val Trp Val Leu Leu Ser Arg Asp Pro Leu Asp Pro Asn Glu Cys Gly Tyr Gln Pro Pro Gly Ala Pro Pro Gly Leu Gly Ser Met Pro Ser Ser Cys Gly Pro Arg Ser Arg Arg Arg Ala Arg Asp Thr Arg Ser