数字电路逻辑设计(A卷)

一、填空题(本大题共 22分)

- 1、(本小题 3 分)十进制数 126,对应 8421BCD 码_____,二进制数 _____,十六进制数 数
- 2、(本小题 2分)二进制负整数 -1011011,补码表示为 _____;反码表示为 _____。
- 3、(本小题 4 分)逻辑函数 F = (A + D)(A + B)AD + BD 的反演式为 ______; 对偶式 为 。
- 4、(本小题 2分)三输入端 TTL 与非门如图所示,图中 A 点的电位为 _____F点的电位为 _____

5、(本小题 3分)八选一数据选择器电路如图,该电路实现的逻辑函数是 F=_______

6、(本小题 3分)由集成异步计数器 74LS290构成图示电路,该电路实现的是 _____进制计数器。

- 7、(本小题 3分)逻辑函数 F = AB + BC + AC , 它的与非表达式为 F=_____; 与或非表达式为 F=_____; 与或非表达式为 F=_____。
- 8、(本小题 2分)用 555 设计的多谐振荡器,要求振荡周期 T=1~10s,电容 C=100 LF。则电阻 R 的范围是 _____。
- 二、(本题 10 分)图示电路中 , $A \setminus B$ 是输入数据变量 , $C_3 \setminus C_2 \setminus C_1 \setminus C_0$ 是控制变量。写出输出 Y 的逻辑

表达式,并说明该电路 C_3 、 C_2 、 C_1 、 C_0 为不同控制状态时是何种功能电路?

三、(本题 8分)写出图示 ROM 阵列输出函数的逻辑表达式,列出真值表,说明逻辑功能。

四、(本题 8分)用 3线—8线译码器和必要的门电路实现逻辑函数。

$$F(A,B,C) = ABC + BC + \overline{AC}$$

五、(本题 10分)已知 JK 信号如图所示,请分别画出主从 JK 触发器和负边沿 JK 触发器的输出波形。设触发器初始状态为 0。

六、(本题 15 分)图示为序列信号发生器电路,它由一个计数器和一个四选一数据选择器构成。分析计数器的工作原理,确定其模值和状态转换关系;确定在计数器输出控制下,数据选择器的输出序列。设触发器初始状态为 000。

七、(本题 12分)画出用 74161的异步清零功能构成的 80进制计数器的连线图。

八、(本题 15 分) 用 D 触发器设计一个按自然态序进行计数的同步加法计数器。要求当控制信号 M=0 时 为 5 进制 ,M=1 时为 7 进制(要求有设计过程) 。

《数字电路逻辑设计 》 A 卷

标准答案及评分标准

一、填空题(本大题共22分)

1、(本小题 3 分)

8421BCD 码 <u>000(00/0 01/0</u> 二进制数 **0**1111110 , 十六进制数 7 E

- 2、(本小题 2 分) 补码表示为 10100101; 反码表示为 10100100。
- 3、(本小题 4分) $\overline{F} = (\overline{AD} + \overline{AB} + \overline{A} + \overline{D})(\overline{B} + \overline{D})$ $F' = (\overline{AD} + \overline{AB} + \overline{A} + \overline{D})(B + \overline{D})$
- 4、(本小题 2 分) A 点的电位为 0.3 V F 点的电位为 3.6 V
- 5、(本小题 3 分) F= A ① B

二、(本题 10 分)

	_						
1	= Ĉ	3BA	+ /	AC2 B	Œ	BC,	+BG+A (3分)
	Cz	C_2	c_{l}	Co		Y	
	0	0	0	0	:	A	
	0	O	0	1		A+B	
	0	0	1	0		A+B	
	0	0	1	1		0	
	0	1	0	0		AB	E# 1 24
	0	1	0	1		B	街1~25
	U	i	1	U	- 1	AOB	扣场
	0	ì	ı	1	- 1	AB"	801/3
	ı	Ü	U	0	ı	AB	
	i	0	0	1	ľ	ABB	
	· i	O	1	0		B	
	i	O	1	1	-	AB	
	;	1	U	0	-	0	
	í	ı	0	ı	1	Ąβ	
		ı	ı	0	1	ĀΒ	
	,	i	1	1	1	Α	
		0		,			

三、(本题8分)

逻辑功能:全减器(2分)

 $F_0 = \overline{A_2} \overline{A_1} A_0 + \overline{A_2} A_1 \overline{A_0} + A_2 A_1 A_0 + A_2 A_1 A_0 = A_2 E A_1 E A_0$ $F_1 = \overline{A_2} \overline{A_1} A_0 + \overline{A_2} A_1 \overline{A_0} + \overline{A_2} A_1 A_0 + A_2 A_1 A_0$ $= \overline{A_2} A_1 + \overline{A_2} \overline{A_1} \overline{A_1} A_0$ (五子式 3 2分)

1 14 1 1			
A2 A, A0	F. F.		
0 0 0	UU		
001	1 (
010	1 1	(2万)	
011	0 1	,	
100	1 0		
101	O O		1
110	0 0		
111	1 1		

1)分析因多计数器工业状态 J=K,=1 Q1"=Q" $J_{2} = Q_{1}^{n} \overline{Q_{3}^{n}}$ $Q_{2}^{n+1} = Q_{1}^{n} \overline{Q_{3}^{n}} \overline{Q_{5}^{n}} + \overline{Q_{1}^{n}} Q_{5}^{n}$ $K_{2} = Q_{1}^{n}$ $Q_{2}^{n+1} = Q_{1}^{n} \overline{Q_{3}^{n}} \overline{Q_{5}^{n}} + \overline{Q_{1}^{n}} Q_{5}^{n}$ $J_{3} = Q_{1}^{n}Q_{2}^{n} \qquad Q_{3}^{n+1} = Q_{1}^{n}Q_{2}^{n}Q_{3}^{n} + \overline{Q_{1}^{n}} Q_{3}^{n}$ $K_{3} = Q_{1}^{n}$ 以上面ケ武を又分 状刻图: 及见的 (4分)

其中 A,= B2 Ao= B1 Do= D2= B3 D= D3= B3 (4分)

B3 B2 B1 | Y

OO O O O

OO O

O

新婚的的(10110 (1分)

七、(本题 12 分)

曲节语图化同:

$$D_{2} = Q_{2}^{n+1} = (Q_{1}^{n}Q_{0}^{n} + Q_{2}^{n}\overline{Q}_{1}^{n}M)$$

$$D_{1} = Q_{1}^{n+1} = \overline{Q_{1}^{n}}Q_{0}^{n} + \overline{Q_{2}^{n}}Q_{1}^{n}Q_{0}^{n}$$

$$D_{0} = Q_{0}^{n+1} = \overline{Q_{2}^{n}}\overline{Q_{0}^{n}} + \overline{Q_{1}^{n}}\overline{Q_{0}^{n}}M$$

的式。(包括卡诺因) (2分)

国略 (4分)

《数字电路逻辑设计 》期末考试 A 卷

注意事项: 1、答案写在每个题目下面的空白处,如地方不够可写在上页背面对应位置;

- 2、本卷共 5 页考卷纸 , 7 道大题 ;
- 3、最后两页为草稿纸。

题目:

- 一、求解下列各题: (本题共 20 分,每小题 4 分)
- 1、用公式法化简逻辑函数

$$F = XZ + \overline{Y}Z + Y\overline{Q} + Z\overline{Q}C + Z\overline{Q}\overline{C} + X(Y + \overline{Z}) + \overline{X}YZ\overline{Q} + X\overline{Y}QC$$

2、用卡诺图化简逻辑函数

 $F(A,B,C,D) = \sum_{i=1}^{4} m^4(0,3,5,6,8,13)$ 无关最小项为 $\sum_{i=1}^{4} d(1,4,10)$;

3、图 (a)所示为 TTL 电路,输入信号 A、B、C的波形如 (b)所示,对应画出输出信号的波形。

- 4、图示电路为发光二极管驱动电路,其中 OC 门的输出低电平 $V_{OL}=0.3V$,输出低电平时的最大负载电流 $I_{OL}=12mA$,发光二极管的导通电压 $V_{D}=1.5V$,发光时其电流 10mA I_{D} 15mA 。试问:
 - (1)如图所示两电路中,发光二极管各在什么情况下发光?
 - (2) 电阻 R₁、R₂的取值范围。

- 5、由 555 构成的单稳态触发器中,已知 V cc=9V , R=27K , C=0.05 μ F。估算输出脉冲的宽度 t w
 - 二、试用八选一数据选择器及适当门电路实现下面逻辑关系(本题 12分)。 F(A,B,C,D)=AB+ABCD+ACD+ACD+ABCD

三、由四位加法器 74LS283、四位比较器 74LS85 构成的逻辑电路如图所示 , $A=A_3A_2A_1A_0$, $B=B_3B_2B_1B_0$, A、B 为四位二进制数 , 试分析该电路的逻辑功能。 (本题 12 分)

- 四、逻辑电路和各输入信号波形如图所示,画出各触发器 (本题 12分)
- Q端的波形。各触发器的初始状态为(
- 0.

五、由移位寄存器 74LS194 和 3—8 译码器组成的时序电路如图所示,分析该电路。 (1)画出 74LS194 的 状态转换图;(2)说出 Z的输出序列。(本题 13分)

74194(双向移位寄存器)的功能表

CP	C_{r}	S_1	S_0	S_{R}	S_{L}	Q_{A}	$Q_{\rm B}$	$Q_{\rm C}$	Q_{D}
φ	0	φ	ф	ф	ø	0	0	0	0
ф	1	0	0	ф	ø		保	持	
†	1	0	1	X	ø	X	Q_{A}	$Q_{\rm B}$	Q_{C}
†	1	1	0	ф	X	Q_{B}	$Q_{\rm C}$	Q_{D}	X
†	1	1	1	ø	ф	Α	В	С	D

六、已知某同步时序电路的状态转换图如图所示。 (1)作出该电路的状态转换表; (2)若用 D 触发器实现该电路时写出该电路的激励方程; (3)写出输出方程。 (本题 15分)

七、电路由 74LS161 和 PROM 组成。(1)分析 74LS161 的计数长度;(2)写出 W、X、Y、Z的函数表达式;(3)在 CP作用下。分析 W、X、Y、Z端顺序输出的 8421BCD 码的状态(W 为最高位, Z 为最低位),说明电路的功能。(本题 16分)

《数字电路逻辑设计 》期末考试 A 卷

标准答案及评分标准

1、解
$$F = (Z\overline{Q}C + Z\overline{Q}\overline{C}) + \overline{X}YZ\overline{Q} + XZ + \overline{Y}Z + Y\overline{Q} + X(Y + \overline{Z}) + X\overline{Y}QC$$

$$= (Z\overline{Q} + \overline{X}YZ\overline{Q}) + XZ + \overline{Y}Z + Y\overline{Q} + X(Y + \overline{Z}) + X\overline{Y}QC$$

$$= Z\overline{Q} + XZ + \overline{Y}Z + Y\overline{Q} + X(\overline{Y} + \overline{Z}) + X\overline{Y}QC$$

$$= Z\overline{Q} + XZ + (\overline{Y}Z) + Y\overline{Q} + X(\overline{Y}Z) + X\overline{Y}QC$$

$$= Z\overline{Q} + XZ + (\overline{Y}Z) + Y\overline{Q} + X + X\overline{Y}QC$$

$$= Z\overline{Q} + XZ + (\overline{Y}Z) + Y\overline{Q} + X + X\overline{Y}QC$$

$$= Z\overline{Q} + XZ + (\overline{Y}Z) + Y\overline{Q} + X + X\overline{Y}QC$$

$$= (Z\overline{Q} + \overline{Y}Z + Y\overline{Q}) + X$$

$$= (Z\overline{Q} + \overline{Y}Z + \overline{Y}Z + Y\overline{Q}) + X$$

$$= (Z\overline{Q} + \overline{Y}Z + \overline{Y$$

评分标准:分步酌情给分。

解

 $F = \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B}D + \overline{A}B\overline{D} + \overline{B}\overline{C}D$

 $\sum d(1,4,10) = 0$

评分标准:卡诺图画对得 2分,化简后的式子得 2分,约束方程 1分

3′

按照波形酌情给分。

4、(1) a图在 OC 门输出高电平时发亮; b图在 OC 门输出低电平时发亮。 2分

(2)
$$\frac{5-1.5}{15} \le R_1 \le \frac{5-1.5}{10}$$
 即: 230 R 350

$$\frac{5-1.5-0.3}{12} \le R_2 \le \frac{5-1.5-0.3}{10}$$
 即: 270 只 320 求出 R_1 、 R_2 得 2分

$$t_{W} = 1.1RC = 1.485 \times 10^{-3}s$$
 4分

二、有式子改写成标准式或写出真值表或画出卡诺图得 6分,用八选一数据选择器画出电路图得 6分。

6分

四、

每个图 6分

五、

74LS194 状态图为: Q₁Q₂Q₃

画出 194 状态图得 10分。

Z 输出的序列为: 010011, 010011 得 3 分

六、(1)状态转换表

Q ₂ ⁿ	Q ₁ ⁿ	X	Q ₂ ⁿ	Q ₁ ⁿ +	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	0	1	1

写出转换表得 4分

1 1

(2) 求激励方程

$$D_2 = Q_2^{n+1} = Q_2 \overline{Q}_1 + \overline{Q}_2 \overline{Q}_1 X$$

求出 D2得4分

$$D_1 = \overline{Q}_2 \overline{Q}_1 X + \overline{Q$$

$$Z = Q_2X + Q_1X$$

求出 Z 得 3 分

七、

【解】 (1)74161 是同步 16 进制计数器, Q_D, Q_C, Q_B, Q_A 状态由 0000,0001 一直计到 1111, 再重复。 (2) ₩, X, Y, Z 的函数表达式为:

$$W = \overline{D}C \, \overline{B}A + D \, \overline{C}BA + DC \, \overline{B} \, \overline{A} + DCB \, \overline{A}$$

$$X = \overline{D} \ \overline{C}B \ \overline{A} + \overline{D}C \ \overline{B} \ \overline{A} + \overline{D}CBA + D \ \overline{C} \ \overline{B}A + D \ \overline{C}B \ \overline{A} + DC \ \overline{B}A$$

$$Y = \overline{D} \ \overline{C} \ \overline{B} \ \overline{A} + \overline{D}CB \ \overline{A} + \overline{D}CB \ \overline{A} + D \ \overline{C} \ \overline{B}A + DC \ \overline{B}A + DCBA$$

$$Z = \overline{D} \ \overline{C} \ \overline{B} \ \overline{A} + \overline{D} \ \overline{C} \ \overline{B} \ \overline{A} + \overline{D} \ \overline{C} B A + \overline{D} \ \overline{C} B A + \overline{D} C \overline{B} \overline{A} + \overline{D} C \overline{B$$

$$+ DC \overline{B} \overline{A} + DC \overline{B} A + DCB \overline{A} + DCBA$$

- (3) WXYZ 端顺序输出 3141592653589793 的 8421BCD 码。因此该电路是一个能产生 16 位的 π 函数发生器
- (1) 说出 161 的计数长度得 6分。
- (2) 写出 W、X、Y、Z函数表达式得 6分。
- (3) 写出输出序列得 4分。

《数字电路逻辑设计 》补考试卷

注意事项: 1、答案写在每个题目下面的空白处,如地方不够可写在上页背面对应位置;

2、最后两页为草稿纸。

题目:

- 一、求解下列问题: (25分)
- 1. 求函数 $F = \overline{ABCBDAB}$ 的对偶函数。(4分)
- 2.将具有约束项的逻辑函数 $F = \sum m^4 (0,2,3,5,7,8,10,11) + \sum d(14,15)$ 化简为最简与或式。(4分)
- 3.图 1 中电路为 TTL 门电路,若用高内阻电压表各图 M 点的电压,估算一下量测出 M 点的电压为多少伏,并说明理由。 (5分)
- 4.由 555 定时器构成的施密特触发器如图 2(a)所示,试求: 1、在图(b)中画出该电路的电压传输特性曲线;
 - 2、如果输入 U₁为图(c)的波形,画出对应输出 U₀的波形。(8分)

- 5.有一个逐次逼近型 8位 A/D 转换器,若时钟频率为 250kHz,完成一次转换需要多长时间? (4分)
- 二、分析由双四选一数据选择器构成的组合电路所实现的逻辑功能,并用 74LS138译码器重新实现之。要求:(1)列出真值表;(2)说明电路功能;(3)在图(b)上直接画出。(15分)

三、按图 4 所示 JK 触发器的输入波形,试画出主从触发器及负边沿 JK 触发器的输出波形。(8分)

四、图 5 是由两片同步十六进制计数器 74LS161 组成的计数器,试分析两片串联起来是多少进制?(12分)

五、图 6是由集成异步计数器 74LS290构成的电路,试分别说明它是多少进制的计数器,并列出状态转换表。(10分)

六、用 J-K 触发器设计一个同步五进制加法计数器。要求写出全部设计过程,并验证自启动。(15分)

七、图 7 所示为一可变进制计数器。 其中 74LS138 为 3 线/8 线译码器,当 $S_{1=1}$ 且 $S_{2} = S_{3} = 0$ 时,它进行译码操作,即当 $A_{2}A_{1}A_{0}$ 从 000 到 111 变化时 $\overline{Y}_{1} \sim \overline{Y}_{7}$ 依次被选中而输出低电平。 T1153 为四选一数据选择器。 试问当 MN 为 10 时计数器是几进制?列出状态转换表。 (15 分)

图 7

《数字电路逻辑设计 》补考试卷

标准答案及评分标准

- 一、求解下列问题: (25分)
- 1. 求函数 $F = \overline{ABCBDAB}$ 的对偶函数。(4分)

2. 将具有约束项的逻辑函数 $F = \sum m^4(0,2,3,5,7,8,10,11) + \sum d(14,15)$ 化简为最简与或式。(4分)

3. 图 1 中电路为 TTL 门电路, 若用高内阻电压表各图 M 点的电压, 估算一下量测出 M 点的电压为多少伏, 并说明理由。(5 分)

- 4. 由 555 定时器构成的施密特触发器如图 2 (a) 所示, 试求:
 - 1、在图(b)中画出该电路的电压传输特性曲线;
 - 2、如果输入 U_i 为图 (c) 的波形, 画出对应输出 U_o 的波形。(8分)

5. 有一个逐次逼近型 8 位 A/D 转换器, 若时钟频率为 250kHz, 完成一次转换需要多长时间? (4分)

T=(8+2)top=10x200=40MS (答10年1848. 答8年伦洛.)

二、分析由双四选一数据选择器构成的组合电路所实现的逻辑功能,并用 74LS138 译码器重新实现之。要求: (1)列出真值表; (2)说明电路功能; (3)在图(b)上直接画出。(15分)

图 3

0图位表	(a)
AB	S C
00	Co 0
01	To Co
10	€ C.
11	Co I

S= BABG + ABG+ ABG+ ADC.

② 电路视频电影熔频型 SH全加高分钟 CHS进住.

(答对其他表现表达大 绘12分 没们的现在地格3分)

三、按图 4 所示 JK 触发器的输入波形,试画出主从触发器及负边沿 JK 触发器的输出波形。(8分)

(国对一种给约,一个激动一部分传冷。)

四、图 5 是由两片同步十六进制计数器 74LS161 组成的计数器, 试分析两片串联起来是多少进制? (12 分)

N=16×5+11=91进制 (答:390进制论10名.)

五、图 6 是由集成异步计数器 74LS290 构成的电路,试分别说明它是多少进制的计数器,并列出状态转换表。(10 分)

六、用 J-K 触发器设计一个同步五进制加法计数器。要求写出全部设计过程,并验证自启动。(15分)

时,它进行译码操作,即当 $A_2A_1A_0$ 从 000 到 111 变化时 $\overline{Y_1} \sim \overline{Y_7}$ 依次被选中而输出低电平。

(0到\$客(酸给吗)

型SI=1 MV为10时,及额 对放升都震为4进制。

《数字电路逻辑设计》期末考试卷

注意事项: 1、答案写在每个题目下面的空白处,如地方不够可写在上页背面对应位置;

2、最后两页为草稿纸。

题目:

一、求解下列问题:

- 1. 求函数 $f_1 = A(B + C) + CD$ 的反函数和对偶函数。 (4分)
- 2.用卡诺图将具有约束项的逻辑函数 $F(A,B,C,D) = \sum m(256710121314) + \sum d(013,8,911)$ 化简为最简与或式。(6分)
- 3.图 1 中, G_1 为 TTL 三态门, G_2 为 TTL 与非门。当 C=0 和 C=1 时,试分别说明在下列情况下,万用表的读数?输出电压 u_o 各为多少伏?(5 分)
 - (1)波段开关 S接到 端。
 - (2)段开关 S 接到 端。

	C=0		C=1		
	万用表的读数 /V	u _o / V	万用表的读数 /V	uo/ V	
1. 波段开关					
S 接到 端					
2. 波 段 开 关					
S 接到 端					

- 4.(1) 写出图 2(a)所示 F₁和F₂ 的表达式,说明该电路能完成什么逻辑功能。 (7分)
- (2)用集成 4位二进制计数器 74LS161采用置数法(同步置数)实现十二进制计数器,直接在图 2(b)上画。(8分)

- 5.某一控制系统中,要求所用 D/A 转换器的精度小于 0.25%,试问应选用多少位的 D/A 转换器?(5分)
- 二、设计一个四变量的多数表决电路,当输入变量 A、B、C、D有3个或3个以上输出为1,输入为其他状态是输出为0。要求:(1)列出真值表;(2)写出表达式;(3)用八选一数据选择器实现;(4)用两片74LS138译码器和适当门电路实现。(八选一数据选择器和74LS138译码器如图3所示,在图上连线即可。)(15分)

三、按图 4 所示 JK 触发器的输入波形,试画出主从触发器及负边沿 JK 触发器的输出波形。 (7分)

四、单稳态电路如图 5 所示,计算电路的单稳态时间 t_w 。根据计算的 t_w 值确定哪一个输入触发信号是合理的。(8 分)

五、图 6是由两片同步十进制计数器 74LS160组成的计数器,试分析两片分别是几进制?两片串联起来是多少进制?(10分)

图 6

六、用 D 触发器设计一个灯光控制逻辑电路。要求当输入 X=1 时,红、绿、黄三种颜色的灯在时钟信号作用下,按下表规定的顺序转换状态;当输入 X=0 时,上述顺序正好相反。上述两种情况均在红、绿、黄等都亮时输出 Y=1,其余状态 Y=0。(表中的 1表示灯亮, 0表示灯灭,电路图可略。)(15 分)

СР	红 (Q ₂)	绿 (Q1)	黄
	(Q ₂)	(Q ₁)	(Q ₀)
0	0	0	0
1	1	0	0
2	0	1	0
3	0	0	1
4	1	1	1
			<u> </u>

七、图 7 所示为一个可变进制计数器。 其中 74LS138 为 3 线/8 线译码器,当 $S_1=1$ 且 $\bar{S}_2=\bar{S}_3=0$ 时,它进行译码操作,即当 $A_2A_1A_0$ 从 000 到 111 变化时, $\bar{\gamma}_1\sim\bar{\gamma}_7$ 依次被选中而输出低电平。 T1153 为四选一数据选择器。(1)试问当 MN 为 00 时,由集成 74LS290 构成计数器是几进制? 此时显示数码管 BS201A 显示的最大数字是什么?(2) 当 MN 为 10 时,由集成 74LS290 构成计数器是几进制? (10 分)

图 7

《数字电路逻辑设计 》期末考试卷 标准答案及评分标准

一、填空:

1.
$$\overline{f_1} = \overline{A} + \overline{BC}(\overline{C} + \overline{D})$$
 $f_1 = A + BC(C + D)$

(求反与或互换、原反互换后得 2分,求对偶与或互换得 2分,不必化简。) 2. F = AC + AD + CD (填对卡诺图得 4分,圈对得 2分)

3

 答案	C=0		C=1		
	万用表的读数 /\	u _o / V	万用表的读数 /V	u _{o/} V	
1.波段开关 S 接到 端	0.3	3.6	1.4	0.3	
2.波段开关 S 接到 端	1.4	0.3	1.4	0.3	

(第一问答出的逻辑高低即得 3分,第二问答出逻辑高低给 2分) 4.

(第一问写出表达式即给 7分,第二问能实现十二进制的 8分,使能端接错扣 1-2分)

5 分辨率 =
$$\frac{1}{2^{n}-1}$$
,而转换精度 = $\frac{1}{2}$ ×分辨率 ,0.5%≥ $\frac{1}{2^{n}-1}$, n 8 位。

Α	В	С	D	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Y = ABCD + ABCD + ABCD + ABCD + ABCD

(写出真值表、表达式给 7分,数据选择器实现得 4分,译码器实现得 4分)

(画对一个负边沿波形得 3分,画对一个主从波形得 4分,

四、此电路是 555 定时器构成的单稳态触发器。根据图示参数

tw $\approx 1.1 RC = 1.1 \times 330 \times 0.1 \times 10^{-6} = 36.3 \, \text{Hs}$

当达到 70 Lis 时刻,触发输入变为高电平,输出才变为低电平。输出相当触发输入的反相。对第二个触发输入,为单稳态工作状态,输出脉冲宽度 36.3 Lis,合理。

(计算单稳态时间得 6分,第二个合理的 2分)

五、(1) 片时 10 进制,(2) 片是 3 进制,串联起来是 30 进制。 (答对 1 片时 10 进制的 4 分,2 片是 3 进制的 4 分,都对得 10 分)

六、状态转换表

Q^{n+1} $Q_2 Q_1 Q_0$	0	1
0 0 0	1 1 1/0	1 0 0/0
1 0 0	0 0 0/0	0 1 0/0
0 1 0	1 0 0/0	0 0 1/0
0 0 1	0 1 0/0	1 1 1/0
1 1 1	0 0 1/1	0 0 0/1

卡诺图

$$Q_2^{n+1} = \overline{X Q_2 Q_0}$$

$$Q_1^{n+1} = Q_1Q_0 + \overline{X} \overline{Q_2} \overline{Q_1} + XQ_2 \overline{Q_1}$$

$$Q_0^{n+1} = X \overline{Q_2} Q_0 + X Q_1 \overline{Q_0} + \overline{X} Q_2 Q_1 + \overline{X} \overline{Q_2} \overline{Q_1} Q_0$$

 $Y = Q_2Q_1$

(状态转换、设计过程和步骤对得 10分,化简有误扣 3-5分)

七、 MN=00 时,是 5进制,显示最大数字为 4; MN=01 时,是 6进制。

(答对 5 进制得 7 分,显示数字的 3 分;后面的问题答对加分,答错不扣分)

一. 分析如下所示时序系统(本题 15分)

- 1. 74161 芯片的作用;
- 2. 74195 芯片的逻辑状态图 (74195 的初始状态为0000);
- 3. 七段显示器循环显示的内容;

