

MASE/NEEP 423 Nuclear Materials Engineering Fuel rod properties Nuclear Fuel Performance Code

Calculate the 2D temperature profile for a fuel rod using the following data:

Input	Value	Units
Fuel	UO ₂	
Fuel Enrichment q	3.00	
Fuel Density $ ho_{_{ m F}}^{tn}$	10.412	g/cm³
Percent Theoretical Density	95	%
Burnable Poison	None	
Linear Heat rate LHR	200	W/cm
Cladding	Zircaloy-4	
Cladding Density $ ho_{ m c}$	6.55	g/cm³
Coolant	H ₂ O	
Fill gas	Helium	
Fuel Pellet radius $R_{ m F}$	4.66E-3	m
Clad Inner Radius	4.69E-3	m
Clad Outer Radius	5.36E-3	m
Clad Thickness δ_c	6.73E-4	m
Gap thickness δ_{gap}	3.0E-5	m
Fuel thermal conductivity $k_{ m f}$	3	W/m/K
Cladding thermal conductivity $k_{ m f}$	17	W/m/K
Gap thermal conductivity $k_{ m gap}$	$AT^{0.79} \times 10^{-4}$	W/m/k
He parameter \emph{A} for $\emph{k}_{ extsf{gap}}$	16	
Convective heat transfer	25000	W/m²/k
coefficient from clad to coolant $h_{ m cool}$		
Coolant mass flow rate	0.25	kg/s/rod
Rod height	400	cm
Coolant specific heat	4200	J/kg/K
Inlet coolant temperature	570	K