Елементи от теория на числата част 1

доц. Евгения Великова

Февруари 2021

Аксиоми на Пеано

"Бог е създал целите числа, всичко останало е дело на човека" Леополд Кронекер

аксиоми на Пеано

 $\mathbb{N} \neq \emptyset$ и $\sigma : \mathbb{N} \Rightarrow \mathbb{N}$

- $1 \neq \sigma(x), \forall x \in \mathbb{N}$
- $oldsymbol{0}$ метод на математическата индукция- ако за $M\subseteq \mathbb{N},$ е изпълнено
 - 1 ∈ M
 - ullet ако $a\in M,$ следователно $\sigma(a)\in M$

тогава $M=\mathbb{N}$

$$a+1=\sigma(a), \quad a+\sigma(b)=\sigma(a+b)$$
 $a.1=a, \quad a.(b+1)=a.b+a$ $a.b=\underbrace{\sigma(\ldots(\sigma(a)))}_{b}$

Цели числа

Числото нула (0) - неутрално относно събирането

$$a + 0 = a$$
, за произволно число a , $a \cdot 0 = 0$

Отрицателните цели числа - за всяко естествено число има отрицателно цяло число, чиято сума е равна на нула.

$$\mathbb{N}^-=\{-a|a\in\mathbb{N}\},$$
 където $-a+a=a+(-a)=0\Rightarrow -(-a)=a.$

Множеството на целите числа се състои от естествените числа, заедно с нулата както и заедно с отрицателните цели числа

$$\mathbb{Z}=\mathbb{N}\cup\{0\}\cup\mathbb{N}^-$$

Действията събиране и умножение се продължават до действия в множеството на целите числа.

основни свойства на събирането и умножението

Свойства на "+"и на "."

- $oldsymbol{0}$ $a+b=b+a, \ \ \forall a,b\in\mathbb{Z}$ комутативност на събирането;
- ② $a+(b+c)=(a+b)+c, \ \ \forall a,b,c\in\mathbb{Z}$ асоциативност на събирането;
- $oldsymbol{0}$ $a+0=a, \ \forall a\in\mathbb{Z}$ неутрален елемент относно събирането;
- ullet $a.b=b.a, \ \ \forall a,b\in\mathbb{Z}$ комутативност на умножението;
- $oldsymbol{o}$ $a.(b.c)=(a.b).c, \quad orall a,b,c\in\mathbb{Z}$ асоциативност на умножението;
- $m{0}$ $a.(b+c)=a.c+b.c, \ \ orall a,b,c\in \mathbb{Z}$ дистрибутивност;
- $oldsymbol{3}$ $1.a=a, orall a \in \mathbb{Z}$ единицата е неутрален елемент относно умножението.

Изваждането е обратно действие на събирането a-b е това число x, което изпълнява уравнението b+x=a.

">"и "<"при целите числа

\mathbb{Z} е наредено множество

Свойства

- lacktriangle Ако е изпълнено a < b и b < c, следователно a < c ;
- **2** Ако a < b, следователно a + c < b + c;
- f a Ако $a_1 < b_1$ и $a_2 < b_2$, следователно $a_1 + a_2 < b_1 + b_2$;
- ullet Ако a < b и c > 0, следователно a.c < b.c;
- **5** Ako a < b u $c < 0 \Rightarrow a.c > b.c$;
- $oldsymbol{0}$ ако $a \geq 1, \ b \geq 1$, следователно $a \leq ab$ и $b \leq ab$

 $|a|=\left\{egin{array}{ll} a, & ext{KOFATO} & a\geq 0 \ -a, & ext{KOFATO} & a<0 \end{array}
ight.$

минимален (максимален) елемент при подмн-ва на $\mathbb Z$

Ограничени отгоре множества

За подмножествата $M\subset \mathbb{Z}$ от цели числа, които са ограничени отгоре е изпълнено, че съдържат максимален елемент, т.е.

Ограничени отдолу множества

Ограничените отдолу множества имат минимален елемент

$$T\subset\mathbb{Z},\;\;$$
 такова че $\exists\;u:u< x, \forall x\in T\;\;$ $\Rightarrow\;\;\exists\;b\in T,$ за което $b\leq x, \forall x\in T\;\;$ $(T-\;\;$ ограничено отдолу) $(b-\;\;$ минимален елемент)

Теорема за делене с частно и остатък

Теорема

Нека $a,b\in\mathbb{Z}$ и b
eq 0. Съществуват единствени $q,r\in\mathbb{Z}$, за които

$$a=b.q+r$$
, където $0\leq r<|b|$.

q - частно, а r - остнатък при разделяне a на b.

Доказателство:

 $oxed{\exists}$ Разглеждаме следното множество $M=\{a+b.t\mid t\in\mathbb{Z}\}$ и подмножеството му $M^{(\geq 0)}=\{c=a+bt\in M\mid t\in\mathbb{Z}\$ и $c\geq 0\}$ $M^{(\geq 0)}$ е ограничено отдолу

минимален елемент на $M^{(\geq 0)}$ е $r \in M^{(\geq 0)}$ и нека $r = a + bt_0 \geq 0$.

Допускаме че $r \geq |b|$. От него вадим |b| и получаваме $r_1 < r$, $r_1 \in M$

$$|r_1 = r - |b| = a + bt_0 \pm b \in M$$
, wr $|r_1| \ge 0 \implies |r_1| \in M^{(\ge 0)}$

Получихме противоречие с избора на r, следователно $0 \leq r < |b|$.

$$r = a + bt_0 \implies a = b(-t_0) + r, \quad 0 \le r < |b|.$$

продължение на доказателството

! Нека да са изпълнени две равенства:

$$egin{array}{ll} a = bq_1 + r_1, & \text{if } 0 \leq r_1 < |b| \ a = bq_2 + r_2, & \text{if } 0 \leq r_2 < |b| \ \end{array}
ight\} \ \Rightarrow |r_1 - r_2| < |b|$$

Изваждаме и получаваме

$$0 = b(q_1 - q_2) + (r_1 - r_2) \Rightarrow |r_1 - r_2| = |b| \cdot |q_1 - q_2|$$

Допускаме, че $|q_1-q_2|
eq 0$,

$$|r_1-r_2|=|b|.|(q_1-q_2)|\geq |b|$$

от една страна $|r_1-r_2|<|b|$, а от друга $|r_1-r_2|\geq |b|\Rightarrow$ противоречие Получихме $q_1-q_2=0$ и $r_1-r_2=0$, следователно $q_1=q_2$ и $r_1=r_2$ Частното и остатъка при разделяне a на b са единствени.

представяне на числата в позиционна бройна система

Следствие

Нека $a,b\in\mathbb{N}$ и b>1. Съществуват единствени a_0,\ldots,a_k , за които $a = a_0 + a_1 b + \ldots + a_k b^k$, където $0 \le a_i < b, \forall i$ и $a_k \ne 0$ $a=\overline{a_k a_{k-1} \dots a_0}$ (b) - е в позиционна бройна система с основа b

Доказателство: Получаваме търсеното представяне постъпково:

Начална стъпка: $a = b.q_0 + a_0$

- Ако $q_0 = 0 \Rightarrow$ получили сме представянето $a = \overline{a_0}_{(b)}$.
- Ако $q_0 > 0$ имаме $a = b.q_0 + a_0 \to$ стъпка 1.

Стъпка
$$s$$
: Имаме $a = b^s q_{s-1} + b^{s-1} a_{s-1} + \ldots + b^0 a_0$

Пресмятаме $q_{s-1} = b.q_s + a_s$ и получаваме a_s , където $0 \le a_s < b$, $a=b^{s}(b,q_{s}+a_{s})+b^{s-1}a_{s-1}+\ldots+b^{0}a_{0}=b^{s+1}q_{s}+b^{s}a_{s}+b^{s-1}a_{s-1}+\ldots+b^{0}a_{0}$

• Ако
$$q_s = 0 \Rightarrow a_s \neq 0$$
 и сме получили $a = \overline{a_s a_{s-1} \dots a_0}$ (b).

- Ако $q_s > 0 \to$ стъпка с номер s + 1.

Винаги е изпълнено $0 \le q_s < q_{s-1}$ и има краен брой стъпки $a = b^k a_k + b^{k-1} a_{k-a} + \ldots + b a_1 + a_0 = \overline{a_k a_{k-1} \ldots a_0}_{a_k a_{k-1} a_{k-1}$

Пример

Да се представи 2657 в бройни системи с основи 8 и 7.

- 2657 = 332.8 + 1, получаваме че $a_0 = 1$;
- 332 = 41.8 + 4, получаваме че $a_1 = 4$;
- 41 = 5.8 + 1, получаваме че $a_2 = 1$;
- \bullet 5 = 0.8 + 5, получаваме че $a_3 = 5$

$$2657 = 5.8^3 + 1.8^2 + 4.8 + 1 = \overline{5141}_{(8)}$$

- $2657 = 379.7 + 4 \Rightarrow r_0 = 4$;
- $379 = 54.7 + 1 \Rightarrow r_1 = 1$;
- $54 = 7.7 + 5 \Rightarrow r_2 = 5$;
- $7 = 1.7 + 0 \Rightarrow r_3 = 0$;
- $1 = 0.7 + 1 \Rightarrow r_4 = 1$;

$$2657 = \overline{10514}_{(7)} = 1.7^4 + 5.7^2 + 1.7 + 4.$$

Делимост при целите числа

Определение

Нека a,b са цели числа и $b\neq 0$. Казваме, че b дели a, когато съществува цяло число $q\in \mathbb{Z}$, такова че a=bq. Когато b дели a записваме $b\mid a$.

b дели a точно когато се получава остатък нула при разделяне a на b с частно и остатък.

- Забележка: Друг начин за отбелязване на b дели a, e a:b и се изговаря като "a се дели на b".
- Забележка: Ако числото b не дели числото a, това ще го отбелязваме по следния начин b∤ a

Свойства на делимостта

- \bullet $\pm 1 \mid a, \forall a \in \mathbb{Z};$
- $b \mid 0, \ \forall b \in \mathbb{Z};$
- 3 ako $b \mid a \Rightarrow -b \mid a$;
- lacktriangle ако $b \mid a \bowtie a \mid c \Rightarrow b \mid c$;
- **5** ako $b \mid a \bowtie a \mid b \Rightarrow a = \pm b$;
- $m{0}$ ако $b \mid a \Rightarrow b \mid ka$, където $k \in \mathbb{Z}$;
- ullet ако $b \mid a_1$ и $b \mid a_2 \Rightarrow b \mid (k_1a_1 + k_2a_2)$, където $k_1, k_2 \in \mathbb{Z}$;
- **9** aко $b \mid a$ и $a \neq 0 \Rightarrow |b| \leq |a|$;

св-во 5: Ако $b\mid a\to a=bq$ и от $a\mid b\to b=a.u.$ Получаваме, че $b=a.u=bqu\Rightarrow qu=1, \Rightarrow q=\pm 1$ и $a=\pm b.$

св-во 8: Ако $b \mid a_1$ и $b \mid a_2 \Rightarrow$

$$\left. egin{align*} a_1 &= q_1 b \ a_2 &= q_2 b \end{array} \right\} \Rightarrow k_1 a_1 + k_2 a_2 = (q_1 a_1 + q_2 a_2) b \ \Rightarrow \ b \mid (k_1 a_1 + k_2 a_2).$$

Пример

признак за делене на седем

"Числото n се дели на 7 тогава и само тогава, когато числото t се дели на 7, като t се получава по следния начин - от числото n премахнем последната цифра и от полученото извадим премахнатата последна цифра умножена по 2."

$$7|(10x+y) \Leftrightarrow 7|(x-2y)$$

Ако
$$7|(10x+y)$$
 \Rightarrow $7|(3x+y)$ \Rightarrow $7|5(3x+y)$ т.е. $7|(x+14x+7y-2y)$ \Rightarrow $7|(x-2y)$

Аналогично може да се получи:

Ако
$$7|(x-2y)$$
 \Rightarrow $7|3(x-2y)$ \Rightarrow $7|(3x-6y+7(x+y))$ \Rightarrow $7|(10x+y)$