题目	甲、乙两人各向目标射击一发子弹,令事件 $A = { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
A	甲没命中,乙命中
В	甲没命中或者乙命中
С	甲没命中
D	甲与乙都命中

题目	对任意事件 A 和 B ,若 $P(B) > 0$,则一定有()
A	$P(A \mid B) + P(\overline{A} \mid B) = 1$
В	$P(A \mid B) + P(A \mid \overline{B}) = 1$
С	$P(A \mid B) + P(\overline{A} \mid \overline{B}) = 1$
D	以上结论都不一定成立。

题目	设随机变量 X 与 Y 的联合概率密度为 $f(x,y) = \begin{cases} Ax^2y, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & \text{其他} \end{cases}$ 则系数 A 为()
A	2
В	3
С	6
D	4

题目	设 $0 < P(A) < 1, 0 < P(B) < 1, P(A B) + P(A B) = 1$,则()
A	事件 A 与 B 互不相容
В	事件 A 与 B 互为对立事件
С	事件 A 与 B 不相互独立
D	事件 A 与 B 相互独立.

题目	设 $X \sim N(2, \sigma^2)$,且 $P(0 < X < 4) = 0.5$,则 $P(X > 0)$ 的值为()
A	0.65

В	0.45
С	0.75
D	0.25

题目	设 A,B 是两个相互独立的事件,且发生的概率都大于 0 。则等于
	<i>P</i> (<i>A</i> ∪ <i>B</i>) 的为 ()
A	P(A) + P(B)
В	$1-P(\overline{A})P(\overline{B})$
С	$P(\overline{A})P(\overline{B})$
D	$1-P(\overline{AB})$

题目	设 $X \sim \pi(\lambda)$ (泊松分布),则 $P\{X \ge 1\}$ 的值为()
A	$1-e^{-\lambda}$
В	$e^{-\lambda}$
С	$e^{-2\lambda}$
D	$1-e^{-2\lambda}$

题目	随机变量 X 的概率密度和分布函数分别为 $f(x)$ 和 $F(x)$,则一定有()。
A	$0 \le f(x) \le 1$
В	$0 \le F(x) \le 1$
С	P(X=x)=f(x)
D	P(X=x) = F(x)

9.

题目	设 $F(x,y)$ 分别为随机向量(X,Y)的分布函数,则 $P\{x>a,y>b\}$ 为 ()。
A	1-F(a,b)
В	$F(a,+\infty)+F(+\infty,b)$
С	$1 - F(a, +\infty) - F(+\infty, b) + F(a, b)$
D	$F(a,+\infty)+F(+\infty,b)-F(a,b)$

题目	袋中有 n 张卡片,记为号码 $1,2$,…, n 。现从中有放回的抽出 k 张卡片,随机变量 X 表示号码之和,则 $E(X)=($)
A	k
В	n+1
С	$\frac{k(n+1)}{2}$
D	不能确定

题目	设随机变量 X 的分布律为				
	X	-2	0	2	
	p_i	0.4	0.3	0.3	
	则 $E(X^2) = ()$				
A	2.8				
В	0				
С	4				
D	1				

12	
题目	设(X,Y)的概率密度为
	$f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1 \\ 0, & \sharp \vdots \end{cases},$
	则 E (XY) = ()
A	0.5
В	1

С	0
D	0.25

题目	设 $X \square N(1,2)$,Y服从参数为3的泊松分布,
	且 X 与 Y 独立,则 D(XY)=()
A	3
В	6
С	12
D	27

题目	设 X 服从参数为 2 的泊松分布, Y=3X-2, 则
	cov (X,Y) = ()
A	6
В	3
С	2
D	1

题目	一颗骰子连续掷 4 次,点数总和记为 X,则由切比雪夫不等式可得 P{10 <x<18}=()< th=""></x<18}=()<>
A	≥ 0.271
В	0.5
С	0
D	0.2

题目	已知总体 X 服从 $[0,\lambda]$ 上的均匀分布(λ 未
	知), X_1, X_2, \dots, X_n 为 X 的样本, 则()
A	$ \frac{1}{n} \sum_{i=1}^{n} X_{i} - \frac{\lambda}{2} $ 是一个统计量
В	$\frac{1}{n}\sum_{i=1}^{n}X_{i}-E(X)$ 是一个统计量
С	$X_1 + X_2$ 是一个统计量

D	$\frac{1}{n}\sum_{i=1}^{n}X_{i}-D(X)$ 是一个统计量
---	--

17	
题目	设总体 $X \square N(0,1)$, X_1, X_2, X_3, X_4 为简单
	随机样本,则统计量 $\frac{X_1 - X_2}{\sqrt{X_3^2 + X_4^2}}$ 服从 ()
	分布。
A	t(2)
В	t(3)
С	t(4)
D	不能确定

题目	设总体 X 服从均匀分布 U(a,b),设
	X_1, X_2, \cdots, X_n 是它的一个样本,
	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i , \text{MD}(\overline{X}) = ()$
A	$\frac{a+b}{2}$
В	$\frac{(b-a)^2}{12n}$
С	$\frac{b-a}{2}$
D	$\frac{(b-a)^2}{2}$

1)	
题目	对于一个参数分布的参数进行矩法估计,下
	列说法正确的是()
A	矩法估计适用于所有分布
В	矩法估计是相合估计
С	矩法估计一定是无偏的
D	以上都对

题目	设 $X \sim U(-\theta, \theta)$,这里($\theta > 0$)。则 θ 的常用矩法估计是()
	14日11年()
A	$\hat{\theta} = X_{(n)}$
В	$\hat{\theta} = \overline{X}$
С	$\hat{\theta} = \sqrt{3A_2}$,这里 A_2 是样本二阶原点矩
D	$\hat{\theta} = \sqrt{3B_2}$,这里 B_2 是样本二阶中心矩

21	
题目	设 $X \sim N(\mu, \sigma^2)$, 其中 μ 未知。若 $X_1,, X_n$
	为简单样本,则 σ² 的最大似然估计为 ()
A	$\overline{\mathbf{X}}^2$
В	S ²
С	$\mathbf{B_2}$,这里 $\mathbf{B_2}$ 是样本二阶中心矩
D	不存在

22	
题目	关于假设检验问题 H_0 vs. H_1 ,下述哪一项是第一类错误的概率:()
A	P(接受H ₀ H ₀)
В	P(拒绝H ₀ H ₀)
С	P(接受H ₀ H ₁)
D	P(拒绝H ₀ H ₁)

题目	一药厂生产一种新止痛片。厂方期望新药服

	用后生效时间 μ_2 较老药生效时间 μ_1 要短,即
	检验H:μ ₂ ≤μ ₁ vs. K:μ ₂ >μ ₁ 。设老药
	$X \sim N(\mu_1, \sigma_1^2)$ 与新药 $Y \sim N(\mu_2, \sigma_2^2)$ 相互独立,
	其中σα 以及σα 已知。从老药抽取样本
	$X_1,,X_m$,新药抽取样本 $Y_1,,Y_n$,则显著性
	水平α = 0.05下,检验问题的拒绝域是()。
A	$\overline{Y} - \overline{X} \in \left(\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} u_{0.05}, \infty\right)$
В	$\overline{Y} - \overline{X} \in \left(S_w \sqrt{\frac{1}{m} + \frac{1}{n}} u_{0.05}, \infty\right), \ \ \sharp \oplus$
	$S_w^2 = \frac{m\sigma_1^2 + n\sigma_2^2}{m+n}$
С	$\overline{Y} - \overline{X} \in \left(\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}} t_{0.05}(m+n), \infty\right)$
D	$\overline{Y} - \overline{X} \in \left(S_w \sqrt{\frac{1}{m} + \frac{1}{n}} t_{0.05}(m + n - 2), \infty\right)$
	这里 $S_W^2 = \frac{(m-1)S_{X}^2 + (n-1)S_{Y}^2}{m+n-2}$

题目	设 $X \sim N(\mu, 10^2)$, 抽取一个样本容量为 25 的
	简单样本,可得 $\overline{X}=10$ 。则 μ 的 0.95 双侧置
	信区间为()
A	$(10 - 2u_{0.05}, 10 + 2u_{0.05})$
В	$(10 - 2u_{0.025}, 10 + 2u_{0.025})$
С	$(10-2t_{0.05}(24),10+2t_{0.05}(24))$

D	$(10 - 2t_{0.025}(24), 10 + 2t_{0.025}(24))$

题目	处理假设检验问题 H_0 vs. H_1 的基本原则是
A	确保检验犯第一类错误概率很小
В	确保检验犯第二类错误概率很小