GENERALIZED INCLUSION-EXCLUSION

Mike Ghesquiere

August 28, 2015

University of Western Ontario

MOTIVATION

Let f and g be two piecewise functions each of two pieces:

$$f(x) = \begin{cases} f_1 & x \in [0, a] \\ f_2 & x \in (a, 1] \end{cases}$$

$$g(x) = \begin{cases} g_1 & x \in [0, b] \\ g_2 & x \in (b, 1] \end{cases}$$

Their sum (f+g)(x), is a piecewise function of up to four pieces:

$$(f+g)(x) = \begin{cases} f_1 + g_1 & x \in [0,a] \cap [0,b] \\ f_1 + g_2 & x \in [0,a] \cap (b,1] \\ f_2 + g_1 & x \in (a,1] \cap [0,b] \\ f_2 + g_2 & x \in (a,1] \cap (b,1] \end{cases}$$

(some pieces may be degenerate)

MOTIVATION

More generally, when f and g have n and m pieces respectively, (f+g) is a piecewise function of $n \cdot m$ pieces.

Piecewise functions are very useful theoretical constructions but pairwise intersection is not a feasible method for constructing common refinements. [1]

OUTLINE

- 1. Hybrid Sets and Functions
- 2. Symbolic Block Matrix Algebra
- 3. Integration over Hybrid Domains
- 4. Convolution of Piecewise Interval Functions

HYBRID SETS

FORMAL DEFINITION

Definition

Let U be a universe, then any function $U \to \mathbb{Z}$ is called a hybrid set. We denote the collection of all hybrid sets over a universe by \mathbb{Z}^U .

MEMBERSHIP

Definition

For a hybrid set H, the value $H(x) \in \mathbb{Z}$ is said to be the multiplicity of the element x.

$$x \in^{n} H \iff H(x) = n$$

$$x \notin H \iff H(x) = 0 \iff x \in^{0} H$$

$$x \in H \iff H(x) \neq 0 \iff x \in^{n} H \text{ for } n \neq 0$$

We will use the notation

$$H = \{ | x_1^{m_1}, x_2^{m_2}, \dots | \}$$

to denote the hybrid set given by $H(x) = \sum_{x_i=x} m_i$. This representation is *not* unique:

$$\{ | a^1, a^1, b^{-2}, a^3, b^1 | \} = \{ | a^5, b^{-1} | \}$$

We say that H is in normalized form if all x_i are unique.

NOT UNCOMMON TO DO SO FOR MULTI-SETS, BUT ...

For multi-sets A and B, (i.e.
$$A, B : U \to \mathbb{N}$$
):
$$(A \cup B)(x) = \max(A(x), B(x))$$

$$(A \cap B)(x) = \min(A(x), B(x))$$

[3]

...THEY MAKE MORE SENSE WITH BOOLEAN PRIMITIVES.

For Boolean sets A and B, (i.e.
$$A, B: U \to \{0, 1\}$$
):
$$(A \cup B)(x) = A(x) \vee B(x)$$

$$(A \cap B)(x) = A(x) \wedge B(x)$$

$$(A \setminus B)(x) = A(x) \wedge \neg B(x)$$

WHEN IN ROME...

Definition

For hybrid sets A and B, (i.e. $A, B: U \to \mathbb{Z}$):

$$(A \oplus B)(x) = A(x) + B(x)$$

$$(A\ominus B)(x)=A(x)-B(x)$$

$$(A \otimes B)(x) = A(x) \cdot B(x)$$

$$(cA)(x) = c \cdot A(x)$$

THE EMPTY (HYBRID) SET

 $\emptyset \in \mathbb{Z}^U$ is the zero function (i.e. maps all of U to 0).

$$\ominus A = \emptyset \ominus A$$

If $A \otimes B = \emptyset$ then A and B are said to be disjoint.

FOR BOOLEAN SET PARTITIONS...

A family of non-empty sets P, is a partition of a set X if and only if:

$$\cdot \bigcup_{A \in P} A = X$$

·
$$A, B \in P$$
 then $A = B$ or $A \cap B = \emptyset$

SETS IN A PARTITION SUM TOGETHER TO FORM A
LARGER SET WITH DISJOINTNESS REQUIRED TO NOT
"DOUBLE COUNT" ANY POINTS. WHY NOT SUBTRACT
THOSE INTERSECTIONS INSTEAD?

PARTITIONS AND DISJOINTNESS

Definition

A generalized partition of X is a family of non-empty hybrid sets P such that

$$\bigoplus_{A \subset B} A = X$$

(If the elements of P are disjoint, then P is a strict partition of X)

HYBRID FUNCTIONS

HYBRID RELATIONS/FUNCTIONS

Definition

For sets S and T, a hybrid set over the Cartesian product $S \times T$ is called a hybrid relation between S and T.

If $(x,y) \in H$ and $(x,z) \in H$ implies that y=z then H is a hybrid function from S to T. Given a function f and a hybrid set H, let f^H denote the following hybrid function:

$$f^{H} = \bigoplus_{x \in S} H(x) \left\{ \left| (x, f(x))^{1} \right| \right\}$$

$$\widetilde{f}^{H} = \bigoplus_{x \in S} H(x) \{ | (x, f)^{1} | \}$$

Definition

For a hybrid set H, the support of H is the (non-hybrid) set supp $H = \{x \mid x \in H\}$.

If $H = 1_{supp(H)}$ then we say H is a reducible hybrid set.

If A is reducible then f^A is a reducible hybrid function. In this case we define:

$$\mathcal{R}(f^A)(x) = f|_{\text{supp}(A)}(x)$$

Definition

For a group $(G, *, e_*)$ with $x, y, z \in G$, define iterated $* *^n$, as:

$$x *^{n} y = (((x * y) * y) * \dots * y)$$

$$*^{n} x = e_{*} *^{n} x$$

$$x *^{-n} y = x *^{n} z$$

$$(e_{*} \text{ is the identity})$$

$$(z * y = e_{*})$$

Definition

For any hybrid relation $f_1^{A_1} \oplus f_2^{A_2} \oplus ...$, the *-reduction \mathcal{R}_* , is defined:

$$\mathcal{R}_*(f_1^{A_1} \oplus f_2^{A_2} \oplus \ldots)(x) = \left. \left(*^{A_1(x)} f_1(x) *^{A_2(x)} f_2(x) * \ldots \right) \right|_{\text{supp } \bigoplus A_i}$$

EXAMPLE: PIECEWISE FUNCTIONS USING

GENERALIZED PARTITIONS

PIECEWISE FUNCTION EXAMPLE

Let A_1 , A_2 , B_1 , and B_2 be the intervals:

$$A_1 = [0, a)$$
 $A_2 = [0, 1] \setminus A_1$
 $B_1 = [0, b)$ $B_2 = [0, 1] \setminus B_1$

and f and g piecewise functions given by:

$$f(x) = f_1^{A_1} \oplus f_2^{A_2} = \begin{cases} f_1(x) & x \in A_1 \\ f_2(x) & x \in A_2 \end{cases}$$

$$g(x) = g_1^{B_1} \oplus g_2^{B_2} = \begin{cases} g_1(x) & x \in B_1 \\ g_2(x) & x \in B_2 \end{cases}$$

$$(f+g)(x)$$

Using Strict Partitions:

$$(f+g)(x) = (f_1+g_1)|_{A_1\cap B_1} \oplus (f_1+g_2)|_{A_1\cap B_2} \oplus (f_2+g_1)|_{A_2\cap B_1} \oplus (f_2+g_2)|_{A_2\cap B_2}$$

Using Generalized Partitions:

$$(f+g) = \mathcal{R}_+ ((f_1+g_1)^{A_1} \oplus (f_2+g_1)^{B_1 \oplus A_1} \oplus (f_2+g_2)^{B_2})$$

Suppose $x \in A_1 \cap B_2$:

$$(f+g)(x) = \mathcal{R}_{+} ((f_{1}+g_{1})^{A_{1}} \oplus (f_{2}+g_{1})^{B_{1} \oplus A_{1}} \oplus (f_{2}+g_{2})^{B_{2}}) (x)$$

$$= \mathcal{R}_{+} ((f_{1}+g_{1})^{A_{1}(x)} \oplus (f_{2}+g_{1})^{(B_{1} \oplus A_{1})(x)} \oplus (f_{2}+g_{2})^{B_{2}(x)}) (x)$$

$$= \mathcal{R}_{+} ((f_{1}+g_{1})^{1} \oplus (f_{2}+g_{1})^{-1} \oplus (f_{2}+g_{2})^{1}) (x)$$

$$= (+^{1}(f_{1}+g_{1}) +^{-1}(f_{2}+g_{1}) +^{1}(f_{2}+g_{2})) (x)$$

$$= ((f_{1}+g_{1}) - (f_{2}+g_{1}) + (f_{2}+g_{2})) (x)$$

$$= (f_{1}+g_{2})(x)$$

Strict Partitions:

$$f * g = \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m} (f_i * g_j)|_{A_i \cap B_j}$$
 O(nm)

Generalized Partitions:

$$f * g = \mathcal{R}_* \left(\bigoplus_{i=1}^{n-1} (f_i * g_m)^{A_i} \oplus \bigoplus_{i=1}^{m-1} (f_n * g_i)^{B_i} \right) O(n + m - 1)$$

$$\oplus (f_n * g_m)^{U \ominus (A_1 \oplus \dots \oplus A_{n-1} \oplus B_1 \oplus \dots \oplus B_{m-1})}$$

SYMBOLIC BLOCK MATRICES

BLOCK MATRICES

$$M = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} A_{1,1} & \dots & A_{1,m} & B_{1,1} & \dots & B_{1,q} \\ \vdots & & \vdots & & \vdots & & \vdots \\ A_{n,1} & \dots & A_{n,m} & B_{n,1} & \dots & B_{n,q} \\ \hline C_{1,1} & \dots & C_{1,m} & D_{1,1} & \dots & D_{1,q} \\ \vdots & & \vdots & \vdots & & \vdots \\ C_{r,1} & \dots & C_{r,m} & D_{r,1} & \dots & D_{r,q} \end{bmatrix}$$

TRADITIONAL INTERVALS

Definition

Given a totally ordered set (X, \leq) and $a, b \in X$ the intervals between a and b are the following sets:

$$[a,b]_X = \{x \in X \mid a \le x \le b\}$$

$$[a,b)_X = \{x \in X \mid a \le x < b\}$$

$$(a,b]_X = \{x \in X \mid a < x \le b\}$$

$$(a,b)_X = \{x \in X \mid a < x < b\}$$

Omitting subscripts when the choice of *X* is either obvious or unimportant.

INTERVALS DON'T ALWAYS BEHAVE NICELY

For a < b:

$$[b,a]=\emptyset$$

For any a, b, c:

$$[a,b) \oplus [b,c) = \begin{cases} [a,c) & a \le b \le c \\ [a,b) & a \le c \le b \\ [b,c) & b \le a \le c \end{cases}$$

$$\emptyset \quad \text{otherwise}$$

ORIENTED INTERVALS

Definition

With (X, \leq) , a and b as before, the <u>oriented intervals between</u> a and b are:

$$[a,b)_X = [a,b)_X \ominus [b,a)_X$$

 $((a,b)_X = (a,b)_X \ominus (b,a)_X$
 $[a,b]_X = [a,b]_X \ominus (b,a)_X$
 $((a,b))_X = (a,b)_X \ominus [b,a]_X$

IMMEDIATE RESULTS

$$\begin{bmatrix} a, b \end{bmatrix} = \bigoplus \begin{bmatrix} b, a \end{bmatrix}
 ((a, b)] = \bigoplus ((b, a)]
 [a, b]] = \bigoplus ((a, b))
 ((a, b)) = \bigoplus [a, b]]$$

$$\begin{bmatrix} a, b \end{bmatrix} \oplus \begin{bmatrix} b, c \end{bmatrix} = \begin{bmatrix} a, c \end{bmatrix}$$

Using oriented intervals, the vectors *U* and *V* can be written as hybrid functions:

$$U = [u_{1}, u_{2}, \dots, u_{k}, u'_{1}, u'_{2}, \dots, u_{n-k}]$$

$$= (i \mapsto u_{i})^{[1,k]} \oplus (i \mapsto u'_{i-k})^{(k,n]}$$

$$= (u_{i})^{[1,k]} \oplus (u'_{i-k})^{(k,n]}$$

$$V = [v_{1}, v_{2}, \dots, v_{\ell}, v'_{1}, v'_{2}, \dots, v_{n-\ell}]$$

$$= (i \mapsto v_{i})^{[1,\ell]} \oplus (i \mapsto v'_{i-\ell})^{(\ell,n]}$$

$$= (v_{i})^{[1,\ell]} \oplus (v'_{i-\ell})^{(\ell,n]}$$

$$(U+V)=\mathcal{R}_+\left((u_i+v_i)^{\llbracket 1,\ell\rrbracket}\oplus (u_i+v_{i-\ell}')^{(\!(\ell,k\rrbracket)}\oplus (u_{i-k}'+v_{i-\ell}')^{(\!(k,n\rrbracket)}\right)$$

INTERVALS TO RECTANGLES...

Definition

The Cartesian product of hybrid sets $X \in \mathbb{Z}^S$ and $Y \in \mathbb{Z}^T$, is a hybrid set over $S \times T$ and denoted with \times operator:

$$X \times Y = \{ \mid (x, y)^{m \cdot n} \mid x \in^m X, y \in^n Y \mid \}$$

...TO n-RECTANGLES

$$X \times Y \times Z = \left\{ \left| ((x, y), z)^{(m \cdot n) \cdot p} | x \in^m X, y \in^n Y, z \in^p Z \right| \right\}$$
$$= \left\{ \left| (x, (y, z))^{m \cdot (n \cdot p)} | x \in^m X, y \in^n Y, z \in^p Z \right| \right\}$$

$$[\![a,b]\!] = [\![(a_1,a_2,\ldots,a_n),(b_1,b_2,\ldots,b_n)]\!] = [\![a_1,b_1]\!] \times [\![a_2,b_2]\!] \times \ldots \times [\![a_n,b_n]\!]$$

MATRIX ADDITION IS THE SAME, JUST WITH MORE TERMS

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\mathcal{U} = [0, n)_{\mathbb{N}_{0}} \times [0, m)_{\mathbb{N}_{0}}
\mathcal{A}_{11} = [0, q) \times [0, r)
\mathcal{A}_{12} = [0, q) \times [r, m)
\mathcal{A}_{21} = [q, n) \times [0, r)
\mathcal{A}_{22} = [q, n) \times [r, m)
\mathcal{B}_{21} = [s, n) \times [0, t)
\mathcal{B}_{22} = [s, n) \times [t, m)$$

$$A = A_{11}^{\mathcal{A}_{11}} \oplus A_{12}^{\mathcal{A}_{12}} \oplus A_{21}^{\mathcal{A}_{21}} \oplus A_{22}^{\mathcal{A}_{22}} \qquad B = B_{11}^{\mathcal{B}_{11}} \oplus B_{12}^{\mathcal{B}_{12}} \oplus B_{21}^{\mathcal{B}_{21}} \oplus B_{22}^{\mathcal{B}_{22}}$$

MATRIX ADDITION IS THE SAME, JUST WITH MORE TERMS

Let
$$\mathcal{P} = \mathcal{U} \ominus (\mathcal{A}_{11} \oplus \mathcal{A}_{12} \oplus \mathcal{A}_{21} \oplus \mathcal{B}_{11} \oplus \mathcal{B}_{12} \oplus \mathcal{B}_{21})$$

$$(A + B) = \mathcal{R}_{+} ((A_{11} + B_{22})^{A_{11}} \oplus (A_{12} + B_{22})^{A_{12}} \oplus (A_{21} + B_{22})^{A_{21}} \oplus (A_{22} + B_{11})^{\mathcal{B}_{11}} \oplus (A_{22} + B_{12})^{\mathcal{B}_{12}} \oplus (A_{22} + B_{21})^{\mathcal{B}_{21}} \oplus (A_{22} + B_{22})^{\mathcal{P}})$$

MATRIX MULTIPLICATION

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \in \mathbb{R}^{n \times m} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \in \mathbb{R}^{m \times p}$$

$$A_{11} \in \mathbb{R}^{q \times r} \qquad A_{12} \in \mathbb{R}^{q \times (m-r)}$$

$$A_{21} \in \mathbb{R}^{(n-q) \times r} \qquad A_{22} \in \mathbb{R}^{(n-q) \times (m-r)}$$

$$B_{11} \in \mathbb{R}^{s \times t} \qquad B_{12} \in \mathbb{R}^{s \times (p-t)}$$

$$B_{21} \in \mathbb{R}^{(m-s) \times t} \qquad B_{22} \in \mathbb{R}^{(m-s) \times (p-t)}$$

MATRIX MULTIPLICATION

The product will always be a 2×2 block matrix:

$$AB = \begin{bmatrix} ? & ? \\ \hline ? & ? \end{bmatrix}$$

But the contents of those blocks depend on r and s. If r = s:

$$AB = \left[\begin{array}{c|c} (A_{11}B_{11} + A_{12}B_{21}) & (A_{11}B_{12} + A_{12}B_{22}) \\ \hline (A_{21}B_{11} + A_{22}B_{21}) & (A_{21}B_{12} + A_{22}B_{22}) \end{array} \right]$$

If r > s:

$$A = \begin{bmatrix} A_{11}^{(1)} & A_{11}^{(2)} & A_{12} \\ A_{21}^{(1)} & A_{21}^{(2)} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21}^{(1)} & B_{22}^{(1)} \\ B_{21}^{(2)} & B_{22}^{(2)} \end{bmatrix}$$

$$AB = \left[\begin{array}{c|c} \left(A_{11}^{(1)} B_{11} + A_{11}^{(2)} B_{21}^{(1)} + A_{12} B_{21}^{(2)} \right) & \left(A_{11}^{(1)} B_{12} + A_{11}^{(2)} B_{22}^{(1)} + A_{12} B_{22}^{(2)} \right) \\ \hline \left(A_{21}^{(1)} B_{11} + A_{21}^{(2)} B_{21}^{(1)} + A_{22} B_{21}^{(2)} \right) & \left(A_{21}^{(1)} B_{12} + A_{21}^{(2)} B_{22}^{(1)} + A_{22} B_{22}^{(2)} \right) \end{array} \right]$$

If r < s:

$$A = \begin{bmatrix} A_{11} & A_{12}^{(1)} & A_{12}^{(2)} \\ A_{21} & A_{21}^{(1)} & A_{22}^{(2)} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11}^{(1)} & B_{12}^{(1)} \\ B_{11}^{(2)} & B_{12}^{(2)} \\ B_{21} & B_{22} \end{bmatrix}$$

$$AB = \left[\begin{array}{c|c} \left(A_{11}B_{11}^{(1)} + A_{12}^{(1)}B_{11}^{(2)} + A_{12}^{(2)}B_{21} \right) & \left(A_{11}B_{12}^{(1)} + A_{12}^{(1)}B_{12}^{(2)} + A_{12}^{(2)}B_{22} \right) \\ \hline \left(A_{21}B_{11}^{(1)} + A_{22}^{(1)}B_{11}^{(2)} + A_{22}^{(2)}B_{21} \right) & \left(A_{21}B_{12}^{(1)} + A_{22}^{(1)}B_{12}^{(2)} + A_{22}^{(2)}B_{22} \right) \end{array} \right]$$

SETTING UP REGIONS OF a, b, c

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$\begin{aligned} N_1 &= [\![0,q) \!]_{\mathbb{N}_0} & N_2 &= [\![q,n) \!]_{\mathbb{N}_0} \\ M_1 &= [\![0,r) \!]_{\mathbb{N}_0} & M_2 &= [\![r,s) \!]_{\mathbb{N}_0} & M_3 &= [\![s,m) \!]_{\mathbb{N}_0} \\ P_1 &= [\![0,t) \!]_{\mathbb{N}_0} & P_2 &= [\![t,p) \!]_{\mathbb{N}_0} \end{aligned}$$

$$\begin{split} A &= A_{11}^{N_1 \times M_1} \oplus A_{12}^{N_1 \times (M_2 \oplus M_3)} \oplus A_{21}^{N_2 \times M_1} \oplus A_{22}^{N_2 \times (M_2 \oplus M_3)} \\ B &= B_{11}^{(M_1 \oplus M_2) \times P_1} \oplus B_{12}^{(M_1 \oplus M_2) \times P_2} \oplus B_{21}^{M_3 \times P_1} \oplus B_{12}^{M_3 \times P_2} \\ C &= C_{11}^{N_1 \times P_1} \oplus C_{12}^{N_1 \times P_2} \oplus C_{21}^{N_2 \times P_1} \oplus C_{22}^{N_2 \times P_2} \end{split}$$

EQUATION FOR C

$$C_{i,j}^{N_i \times P_j}(x,y) = \sum_{M} \mathcal{R}_{\times} \left(A_{i,1}^{N_1 \times M_1} \Big|_{X=x} \oplus B_{1,j}^{M_1 \times P_1} \Big|_{Y=y} \right.$$

$$\left. \oplus A_{i,2}^{N_1 \times M_2} \Big|_{X=x} \oplus B_{1,j}^{M_2 \times P_1} \Big|_{Y=y} \right.$$

$$\left. \oplus A_{i,2}^{N_1 \times M_3} \Big|_{X=x} \oplus B_{2,j}^{M_3 \times P_1} \Big|_{Y=y} \right.$$

UNPACKING EQUATION: FUNCTION RESTRICTION

$$M = \begin{bmatrix} M[0,0] & \dots & M[0,n] \\ \vdots & & \vdots \\ M[m,0] & \dots & M[m,n] \end{bmatrix}$$

$$M|_{X=i} = \begin{bmatrix} M[i,0] & \dots & M[i,n] \end{bmatrix}$$
 $M|_{Y=j} = \begin{bmatrix} M[0,j] \\ \vdots \\ M[m,j] \end{bmatrix}$

This transforms $M: (X \times Y) \rightarrow Z$ into:

$$M|_{X=x}:Y\to {\textstyle (X\to Z)} \qquad \qquad M|_{Y=y}:X\to {\textstyle (Y\to Z)}$$

UNPACKING EQUATION: REDUCE AND SUM

 \mathcal{R}_{\times} will group elements by m:

$$m \mapsto (x \mapsto A[x][m])$$
 $m \mapsto (y \mapsto B[m][y])$

And then flatten with iterated x:

$$(x \mapsto A[x][m]) \times (y \mapsto B[m][y]) = (x, y) \mapsto A[x][m] \cdot B[m][y]$$

Resulting in terms of the form:

$$m \mapsto ((x,y) \mapsto A[x][m] \cdot B[m][y])$$

Finally sum for $m \in M$:

$$(x,y) \mapsto \sum_{m \in M} A[x][m] \cdot B[m][y]$$

EQUATION FOR C

$$C_{i,j}^{N_i \times P_j}(x,y) = \sum_{M} \mathcal{R}_{\times} \left(A_{i,1}^{N_1 \times M_1} \Big|_{X=x} \oplus B_{1,j}^{M_1 \times P_1} \Big|_{Y=y} \right.$$

$$\left. \oplus A_{i,2}^{N_1 \times M_2} \Big|_{X=x} \oplus B_{1,j}^{M_2 \times P_1} \Big|_{Y=y} \right.$$

$$\left. \oplus A_{i,2}^{N_1 \times M_3} \Big|_{X=x} \oplus B_{2,j}^{M_3 \times P_1} \Big|_{Y=y} \right.$$

EXAMPLE: MATRIX MULTIPLICATION

$$Q = \begin{bmatrix} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_2 \\ \hline c_1 & c_2 & d_1 \\ c_3 & c_4 & d_2 \end{bmatrix} \qquad R = \begin{bmatrix} e_1 & f_1 & f_2 & f_3 & f_4 \\ \hline g_1 & h_1 & h_2 & h_3 & h_4 \\ g_2 & h_5 & h_6 & h_7 & h_8 \end{bmatrix}$$

$$N_1 = \llbracket 0, 1 \rrbracket = \{ \mid 0^1, 1^1 \mid \} \qquad N_2 = \llbracket 2, 3 \rrbracket = \{ \mid 2^1, 3^1 \mid \}$$

$$M_1 = \llbracket 0, 1 \rrbracket = \{ \mid 0^1, 1^1 \mid \} \qquad M_2 = \{ \mid (1, 1) \} = \{ \mid 1^{-1} \mid \} \qquad M_3 = \llbracket 1, 2 \rrbracket = \{ \mid 1^1, 2^1 \mid \}$$

$$Q = A^{N_1 \times M_1} \oplus B^{N_1 \times (M_2 \oplus M_3)} \oplus C^{N_2 \times M_1} \oplus D^{N_2 \times (M_2 \oplus M_3)}$$

$$R = E^{(M_1 \oplus M_2) \times P_1} \oplus F^{(M_1 \oplus M_2) \times P_2} \oplus G^{M_3 \times P_1} \oplus H^{M_3 \times P_2}$$

$$Q \cdot R = S = S_1^{N_1 \times P_1} \oplus S_2^{N_1 \times P_2} \oplus S_3^{N_2 \times P_1} \oplus S_4^{N_2 \times P_2}$$

 $P_1 = [0, 0] = \{ 0^1 | P_2 = [1, 4] = \{ 1^1, 2^1, 3^1, 4^1 | \}$

$$S_{1}^{N_{1}\times P_{1}}(i,j) = \sum_{M_{1}\oplus M_{2}\oplus M_{3}} \mathcal{R}_{\times} \left(A^{N_{1}\times M_{1}} \big|_{X=i} \oplus E^{M_{1}\times P_{1}} \big|_{Y=j} \oplus \right.$$

$$\left. B^{N_{1}\times M_{2}} \big|_{X=i} \oplus E^{M_{2}\times P_{1}} \big|_{Y=j} \oplus \right.$$

$$\left. B^{N_{1}\times M_{3}} \big|_{X=i} \oplus G^{M_{3}\times P_{1}} \big|_{Y=j} \right)$$

$$= \sum_{\{\mid 0^{1},1^{1},2^{1}\mid\}} \mathcal{R}_{\times} \left(\left\{ \left| \left(0 \mapsto \begin{bmatrix} a_{1} \\ a_{3} \end{bmatrix}\right)^{+1}, \left(1 \mapsto \begin{bmatrix} a_{2} \\ a_{4} \end{bmatrix}\right)^{+1} \right| \right\} \qquad (A^{N_{1} \times M_{1}}|_{X=i})$$

$$\oplus \left\{ \left| \left(0 \mapsto [e_{1}]\right)^{+1}, \left(1 \mapsto [e_{\perp}]\right)^{+1} \right| \right\} \qquad (E^{M_{2} \times P_{1}}|_{Y=j})$$

$$\oplus \left\{ \left| \left(1 \mapsto \begin{bmatrix} b_{\perp} \\ b_{\perp} \end{bmatrix}\right)^{-1} \right| \right\} \qquad (E^{N_{1} \times M_{2}}|_{X=i})$$

$$\oplus \left\{ \left| \left(1 \mapsto [e_{\perp}]\right)^{-1} \right| \right\} \qquad (E^{M_{2} \times P_{1}}|_{Y=j})$$

$$\oplus \left\{ \left| \left(1 \mapsto \begin{bmatrix} b_{\perp} \\ b_{\perp} \end{bmatrix}\right)^{+1}, \left(2 \mapsto \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}\right)^{+1} \right| \right\} \qquad (G^{M_{3} \times P_{1}}|_{Y=j})$$

$$\oplus \left\{ \left| \left(1 \mapsto [g_{1}]\right)^{+1}, \left(2 \mapsto [g_{2}]\right)^{+1} \right| \right\} \qquad (G^{M_{3} \times P_{1}}|_{Y=j})$$

$$\begin{split} &= \sum_{\left\{\mid \ 0^{1},1^{1},2^{1} \ \mid\right\}} \left\{\mid \left(0 \mapsto \begin{bmatrix} a_{1} \\ a_{3} \end{bmatrix} \times^{+1} [e_{1}]\right), \\ & \left(1 \mapsto \begin{bmatrix} a_{2} \\ a_{4} \end{bmatrix} \times^{+1} [e_{\perp}] \times^{-1} \begin{bmatrix} b_{\perp} \\ b_{\perp} \end{bmatrix} \times^{-1} [e_{\perp}] \times^{+1} \begin{bmatrix} b_{\perp} \\ b_{\perp} \end{bmatrix} \times^{+1} [g_{1}]\right), \\ & \left(2 \mapsto \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix} \times^{+1} [g_{2}]\right) \mid\right\} \end{split}$$

$$&= \sum_{\left\{\mid \ 0^{1},1^{1},2^{1} \ \mid\right\}} \left\{\mid \left(0 \mapsto \begin{bmatrix} a_{1} \\ a_{3} \end{bmatrix} [e_{1}]\right), \quad \left(1 \mapsto \begin{bmatrix} a_{2} \\ a_{4} \end{bmatrix} [g_{1}]\right), \quad \left(2 \mapsto \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix} [g_{2}]\right) \mid\right\} \end{split}$$

$$S_1^{N_1 \times P_1} = \begin{bmatrix} a_1 \\ a_3 \end{bmatrix} [e_1] + \begin{bmatrix} a_2 \\ a_4 \end{bmatrix} [g_1] + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} [g_2]$$
$$= \begin{bmatrix} a_1 e_1 + a_2 g_1 + b_2 g_2 \\ a_3 e_1 + a_4 b_1 + b_2 g_2 \end{bmatrix}$$

$$S = \begin{bmatrix} a_1e_1 + a_2g_1 + b_2g_2 & S_2 \\ a_3e_1 + a_4b_1 + b_2g_2 & S_4 \end{bmatrix}$$

INTEGRATION OVER HYBRID DOMAINS

$$\int_a^b f(x) \, \mathrm{d}x \neq \int_{[a,b)} f(x) \, \mathrm{d}x$$

$$\int_a^b f(x) \, \mathrm{d}x = \int_{[a,b]} f(x) \, \mathrm{d}x$$

LEBESGUE FOR SIMPLE FUNCTIONS

For a measure space (X, Σ, μ) the integral of an indicator function 1_S of a measurable set $S \in \Sigma$ is just the measure of S:

$$\int 1_{S} d\mu = \mu(S)$$

A simple function s is a function such that for a family of measurable sets $\{A_k\}_{k=0}^n$ and matching coefficients $\{a_k\}_{k=0}^n$.

$$s = \sum_{k=0}^{n} a_k 1_{A_k}$$

The integral of a simple function is:

$$\int s \, \mathrm{d}\mu = \sum_{k=0}^n a_k \cdot \mu(A_k)$$

INTEGRATING HYBRID DOMAINS

 μ extends easily from $\mu: \Sigma \to \mathbb{R}$ to the signed measure $\mu: \mathbb{Z}^{\Sigma} \to \mathbb{R}$:

$$\mu(H) = \sum_{x \in {}^m H} m \cdot \mu(x)$$

Which allows us to integrate simple functions over hybrid set domains:

$$\int_{H} s d\mu = \sum_{k=0}^{n} a_k \cdot \mu(H \otimes A_k)$$

For non-negative function *f*:

$$\int_{H}\!f\mathrm{d}\mu = \sup\left\{\int_{H}\!\mathrm{s}\,\mathrm{d}\mu\;\middle|\;\mathrm{s}\;\mathrm{simple,\;and}\;0\leq\mathrm{s}\leq\mathrm{f}\right\}$$

If f takes negative values then we can split it into two functions:

$$f^+(x) = \max(0, f(x))$$

 $f^-(x) = \max(0, -f(x))$

...and integrate each as non-negative functions:

$$\int_{H}f\mathrm{d}\mu=\int_{H}f^{+}\,\mathrm{d}\mu-\int_{H}f^{-}\,\mathrm{d}\mu$$

INTEGRATING IRRATIONALS...BACKWARDS

$$\int_1^0 1_{\mathbb{R}\setminus\mathbb{Q}} \,\mathrm{d}\mu = \int_{\llbracket 1,0\rrbracket} 1_{\mathbb{R}\setminus\mathbb{Q}} \,\mathrm{d}\mu = \mu(\llbracket 1,0\rrbracket \otimes \mathbb{R}\setminus\mathbb{Q}) = -1$$

ORIENTED INTERVALS CAN ALSO BE USED TO CLEANLY EXPRESS CHAINS.

Definition

For a k-rectangle in \mathbb{R}^n $[\![a,b]\!]_{\mathbb{R}^n} = [\![a_1,b_1]\!]_{\mathbb{R}} \times \dots [\![a_n,b_n]\!]_{\mathbb{R}}$, Define ∂ , the boundary of $[\![a,b]\!]$ as:

$$\partial (\llbracket a, b \rrbracket) = \bigoplus_{j=1}^{k} (-1)^{j} \left(\left[\left[\left(a^{\llbracket 1, n \rrbracket_{\mathbb{N}}} \right), \left(b^{\llbracket 1, i_{j} \right) \right]_{\mathbb{N}} \oplus a^{\left\{ \mid i_{j} \mid \right\}} \oplus b^{\left((i_{j}, n \rrbracket_{\mathbb{N}}) \right)} \right] \right]_{\mathbb{R}^{n}}$$

$$\ominus \left[\left[\left(a^{\llbracket 1, i_{j} \right) \right]_{\mathbb{N}} \oplus b^{\left\{ \mid i_{j} \mid \right\}} \oplus a^{\left((i_{j}, n \rrbracket_{\mathbb{N}}) \right)}, \left(b^{\llbracket 1, n \rrbracket_{\mathbb{N}} \right)} \right] \right]_{\mathbb{R}^{n}}$$

Where the sequence i_1, \ldots, i_k is the unique non-decreasing sequence of indices such that $a_{i_i} \neq b_{i_i}$.

BOUNDARY OPERATOR

Definition

A k-chain C, is a linear combination of k-rectangles $\{c_i\}$, with integer coefficients $\{\lambda_i\}$:

$$C = \bigoplus_{i} \lambda_{i} c_{i}$$

$$\int_{\partial C} \omega = \int_{C} d\omega$$

(Stokes' Theorem)

CONVOLUTION

Definition

The convolution *, of two functions F and G is defined as:

$$(F * G)(t) = \int_{-\infty}^{\infty} F(\tau) G(t - \tau) d\tau$$

INTERVAL FUNCTION

Definition

An *n*-piece interval function is a function *f* of the form:

$$f = \sum_{i=1}^{n} f_i^{P_i}$$

where $\{P_i\}_{i=1}^n$ are disjoint intervals and

$$f_i^{P_i}(x) = \begin{cases} f_i(x) & x \in P_i \\ 0 & \text{otherwise} \end{cases}$$

CONVOLUTION OF INTERVAL FUNCTIONS

$$\left(\left(\sum_{i} f_{i}^{p_{i}}\right) * \left(\sum_{j} g_{j}^{Q_{j}}\right)\right)(t) = \int_{-\infty}^{\infty} \left(\sum_{i} f_{i}^{p_{i}}\right)(\tau) \cdot \left(\sum_{j} g_{j}^{Q_{j}}\right)(t - \tau) d\tau$$

$$= \sum_{i} \sum_{j} \int_{-\infty}^{\infty} f_{i}^{p_{i}}(\tau) \cdot g_{j}^{Q_{j}}(t - \tau) d\tau$$

$$= \sum_{i} \sum_{j} \left(f_{i}^{p_{i}} * g_{j}^{p_{j}}\right)$$

TRADITIONAL FORMULATION

$$(F * G)(t) = \int_{-\infty}^{\infty} F(\tau)G(t - \tau) d\tau$$

$$= \int_{-\infty}^{-\infty} F(t - \tau')G(\tau') (-1) d\tau' \qquad (\tau' = t - \tau)$$

$$= \int_{-\infty}^{\infty} G(\tau')F(t - \tau') d\tau'$$

$$= (G * F)(t)$$

Commute F and G so that $b_f - a_f \le b_q - a_q$, then use either:

$$(F*G)(t) = \begin{cases} \int_{a_f}^{t-a_g} f(\tau) \ g(t-\tau) \ d\tau & (a_f+a_g) \le t < (b_f+a_g) \\ \int_{a_f}^{b_f} f(\tau) \ g(t-\tau) \ d\tau & (b_f+a_g) \le t < (a_f+b_g) \\ \int_{t-b_g}^{b_f} f(\tau) \ g(t-\tau) \ d\tau & (a_f+b_g) \le t < (b_f+b_g) \\ 0 & \text{otherwise} \end{cases}$$

[4, 5]

$$(F*G)(t) = \begin{cases} \int_{\max(a_f, t - b_g)}^{\min(b_f, t - a_g)} f(\tau) \cdot g(t - \tau) \, \mathrm{d}\tau & (a_f + a_g) \le t < (b_f + b_g) \\ 0 & \text{otherwise} \end{cases}$$

[6, 7]

HYBRID CONVOLUTION

$$(f^{[a_f,b_f)} * g^{[a_g,b_g)})(t) = \mathcal{R}_+ \left(\left(\int_{\llbracket a_f, t-a_g \rrbracket} f(\tau) g(t-\tau) d\tau \right)^{\llbracket a_f+a_g, b_f+a_g \rrbracket} \right)$$

$$\oplus \left(\int_{\llbracket a_f, b_f \rrbracket} f(\tau) g(t-\tau) d\tau \right)^{\llbracket b_f+a_g, a_f+b_g \rrbracket}$$

$$\oplus \left(\int_{\llbracket t-b_g, b_f \rrbracket} f(\tau) g(t-\tau) d\tau \right)^{\llbracket a_f+b_g, b_f+b_g \rrbracket} \right) (t)$$

Suppose $(a_f + b_g) \le t < (b_f + a_g)$:

$$(f^{[a_{f},b_{f})} * g^{[a_{g},b_{g})})(t) = \mathcal{R}_{+} \left(\left(\int_{[a_{f}, t-a_{g})} f(\tau) g(t-\tau) d\tau \right)^{[a_{f}+a_{g}, b_{f}+a_{g})} \right)$$

$$\oplus \left(\int_{[a_{f}, b_{f})} f(\tau) g(t-\tau) d\tau \right)^{[b_{f}+a_{g}, a_{f}+b_{g})}$$

$$\oplus \left(\int_{[t-b_{g}, b_{f})} f(\tau) g(t-\tau) d\tau \right)^{[a_{f}+b_{g}, b_{f}+b_{g})} \right) (t)$$

EXAMPLE: CONVOLUTION

$$(f^{[a_f,b_f)} * g^{[a_g,b_g)})(t) = \mathcal{R}_+ \left(\left(\int_{\llbracket a_f, t-a_g \rrbracket} f(\tau) g(t-\tau) d\tau \right)^{+1} \right)$$

$$\oplus \left(\int_{\llbracket a_f, b_f \rrbracket} f(\tau) g(t-\tau) d\tau \right)^{-1}$$

$$\oplus \left(\int_{\llbracket t-b_g, b_f \rrbracket} f(\tau) g(t-\tau) d\tau \right)^{+1} \right) (t)$$

EXAMPLE: CONVOLUTION

$$(f^{[a_f,b_f)} * g^{[a_g,b_g)})(t) = \left(\int_{[a_f, t-a_g)} f(\tau) g(t-\tau) d\tau - \int_{[a_f, b_f)} f(\tau) g(t-\tau) d\tau + \int_{[t-b_g, b_f)} f(\tau) g(t-\tau) d\tau \right) (t)$$

$$= \left(\int_{[a_f, t-a_g)} f(\tau) g(t-\tau) d\tau \right) (t)$$

$$= \left(\int_{[t-b_g, t-a_g)} f(\tau) g(t-\tau) d\tau \right) (t)$$

EXAMPLE: CONVOLUTION

 $a_f < b_f$ and $a_g < b_g$ by construction.

$$(a_f + b_g) \le t < (b_f + a_g) \implies a_f \le (t - b_g)$$
 and $(t - a_g) < b_f$.

$$(f^{[a_f,b_f)} * g^{[a_g,b_g)})(t) = \left(\int_{[t-b_g, t-a_g)} f(\tau) g(t-\tau) d\tau\right)(t)$$

If we allow
$$a_f = -\infty$$
 and $b_g = \infty$
Then $(a_f + b_g)$ is undefined.

NORMALLY, THIS WOULD BE A PROBLEM. [5]

Suppose $a_f = -\infty$ and $b_g = \infty$.

$$(f^{[a_f,b_f)} * g^{[a_g,b_g)})(t) = \mathcal{R}_+ \left(\left(\int_{[a_f, t-a_g]} f(\tau) g(t-\tau) d\tau \right)^{[a_f+a_g, b_f+a_g]} \right)$$

$$\oplus \left(\int_{[a_f, b_f]} f(\tau) g(t-\tau) d\tau \right)^{[b_f+a_g, a_f+b_g]}$$

$$\oplus \left(\int_{[t-b_g, b_f]} f(\tau) g(t-\tau) d\tau \right)^{[a_f+b_g, b_f+b_g]} \right) (t)$$

EXAMPLE: INFINITE ENDPOINTS

...and assume t, a_q , b_q are all finite.

$$(f^{[-\infty,b_f)} * g^{[a_g,\infty)})(t) = \mathcal{R}_+ \left(\left(\int_{[-\infty, t-a_g])} f(\tau) g(t-\tau) d\tau \right)^{[-\infty, b_f+a_g])} \oplus \left(\int_{[-\infty, b_f])} f(\tau) g(t-\tau) d\tau \right)^{[b_f+a_g, a_f+b_g])} \oplus \left(\int_{[-\infty, b_f])} f(\tau) g(t-\tau) d\tau \right)^{[a_f+b_g, \infty])} \right) (t)$$

The first and second terms collapse by $f^A \oplus f^B = f^{A \oplus B}$.

Now we have two oriented intervals with endpoints that cancel:

$$\llbracket b_f + a_g, \ a_f + b_g \rrbracket \oplus \llbracket a_f + b_g, \ \infty \rrbracket = \llbracket b_f + a_g, \ \infty \rrbracket$$

$$(f^{[-\infty,b_f)} * g^{[a_g,\infty)})(t) = \mathcal{R}_+ \left(\left(\int_{[-\infty, t-a_g])} f(\tau) g(t-\tau) d\tau \right)^{[-\infty, b_f+a_g])} \right.$$

$$\left. \oplus \left(\int_{[-\infty, b_f])} f(\tau) g(t-\tau) d\tau \right)^{[b_f+a_g, \infty])} \right) (t)$$

EXAMPLE: INFINITE ENDPOINTS

$$t \in \llbracket -\infty, b_f + a_g \rrbracket$$
: $\int_{-\infty}^{t-a_g} f(\tau) g(t-\tau) d\tau$

$$t - b_g \leftarrow t - a_g \quad b_f$$

$$t \in \llbracket b_f + a_g, \infty
brace$$
):
$$\int_{-\infty}^{b_f} f(\tau) \ g(t-\tau) \ d\tau$$

$$t - b_g \leftarrow$$

$$b_f \quad t - a$$

HYBRID SETS AND FUNCTIONS

Defined and introduced notation for hybrid sets and functions.

Introduced \mathcal{R}_* in place of \oplus^* .

Showed how this can be applied towards piecewise functions.

SYMBOLIC BLOCK MATRIX ALGEBRA

Introduced oriented intervals.

Used hybrid functions to better compute block matrix addition.

Used hybrid functions for block matrix multiplication.

INTEGRATION OF HYBRID DOMAINS

Hybrid sets over a measure space allow for signed Lebesgue integrals.

Oriented intervals can be used to represent chains.

SYMBOLIC CONVOLUTION

Convolution of symbolic piecewise interval functions can be performed by decomposing into "one-piece" functions.

Using hybrid functions, represent convolution with minimal cases without needing to commute operands.

This method handles symbolic and infinite endpoints.

- [1] Jacques Carette, Alan P. Sexton, Volker Sorge, and Stephen M. Watt. <u>Symbolic Domain Decomposition</u>. In *Intelligent Computer Mathematics*, pages 172–188. Springer, 2010.
- [2] Alan P. Sexton, Volker Sorge, and Stephen M. Watt.

 Abstract Matrix Arithmetic. In Symbolic and Numeric

 Algorithms for Scientific Computing, 2008. SYNASC'08.

 10th International Symposium on, pages 61–68. IEEE,

 2008.
- [3] Wayne D. Blizard. Multiset Theory. Notre Dame Journal of Formal Logic, 30(1):36–66. 1989.

BIBLIOGRAPHY: CONVOLUTION

- [4] Kevin A. West, and James H. McClellan. Symbolic Convolution. Education, IEEE Transactions on, 36(4):386–393. 1993.
- [5] Brian L. Evans, and James H. McClellan. Algorithms for Symbolic Linear Convolution. In Asilomar Conference on Signals, Systems, and Computers, pages 948–948. Computer Society Press, 1994.
- [6] Thomas J. Cavicchi. Simplified Method for Analytical Evaluation of Convolution Integrals. Education, IEEE Transactions on, 45(2):142–144. 2002.
- [7] Mircea I. Cîrnu. Calculation of Convolution Products of Piecewise Defined Functions and Some Applications.

 Journal of Information Systems and Operations

 Management, 6:41–52. 2012.