Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра прикладной математики

ОТЧЕТ

Тема: Интервальные оценки характеристик распределения

Направление: 01.03.02 Прикладная математика и информатика

Выполнил студент гр. 33631/4

Камалетдинова Ю.

Преподаватель Баженов А.

Санкт-Петербург 2019

Содержание

Постановка задачи	2
Описание алгоритма	2
Реализация	4
Результат	5
Вывод	5

Постановка задачи

Рассматриваются методы интервальных оценок характеристик распределения. Требуется сгенерировать выборки объемами $n=20,\ 100$ элементов для нормального распределения N(x;0,1), затем для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия. Также необходимо оценить параметры распределения на основе статистик χ^2 и Стьюдента. В качестве параметра надежности взять $\gamma=0.95$.

Описание алгоритма

Оценка на основе статистик Стьюдента и хи-квадрат

Пусть x_1, \ldots, x_n — заданная выборка из нормального распределения $N(x; \mu, \sigma)$, по которой требуется оценить параметры μ , σ , генерального распределения. Построим на ее основе выборочные среднее \overline{x} и среднее квадратическое отклонение s. Параметры распределения μ , σ не известны. В источнике [1] показано, что статистика Стьюдента

$$T = \sqrt{n-1} \, \frac{\overline{x} - \mu}{s} \tag{1}$$

распределена по закону Стьюдента с n-1 степенями свободы. Пусть $f_T(x)$ — плотность вероятности данного распределения. Тогда

$$P(-x < \sqrt{n-1} \frac{\overline{x} - \mu}{s} < x) = P(-x < \sqrt{n-1} \frac{\mu - \overline{x}}{s} < x) =$$

$$= \int_{-x}^{x} f_T(t)dt = 2F_T(x) - 1,$$
(2)

где $F_T(t)$ — функция распределения Стьюдента с n-1 степенями свободы. Положим $2F_T(x)-1=1-\alpha$, где α — выбранный уровень значимости. Тогда $F_T(x)=1-\alpha/2$. Положим $t_{1-\alpha/2}(n-1)$ — квантиль распределения Стьюдента с n-1 степенями свободы

и уровнем значимости $1 - \alpha/2$. Из (1), (2) получаем

$$P\left(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < \mu < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha , \qquad (3)$$

что дает доверительный интервал для μ с вероятностью $\gamma=1-\alpha$

Для поиска оценки параметра σ воспользуемся источником [1], где показано, что случайная величина ns^2/σ^2 распределена по закону χ^2 с n-1 степенями свободы. Найдем квантили $\chi^2_{\alpha/2}(n-1)$, $\chi^2_{1-\alpha/2}(n-1)$ и приведем выражение для доверительного интервала для σ с доверительной вероятностью $\gamma=1-\alpha$

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = 1 - \alpha \tag{4}$$

Асимптотический подход при построении оценок

Данный метод оценивания параметров применяется в случае неизвестности закона распределения, или когда он не является нормальным. Асимптотический метод построения доверительных интервалов основан на центральный предельной теореме.

Пусть \overline{x} — выборочное среднее из выборки большого объема n независимых одинаково распределенных случайных величин. Тогда в силу центральной предельной теоремы случайная величина $(\overline{x}-M\overline{x})/\sqrt{D\overline{x}}=\sqrt{n}(\overline{x}-\mu)/\sigma$ распределена приблизительно нормально с параметрами 0, 1. Из данных рассуждений получим выражение для доверительного интервала для μ с доверительной вероятностью $\gamma=1-\alpha$

$$P\left(\overline{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < \mu < \overline{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma , \qquad (5)$$

где $u_{1-\alpha/2}$ — квантиль распределения N(0,1) порядка $1-\alpha/2$

Приведем выражение для доверительного интервала для σ с доверительной вероятностью $\gamma=1-\alpha$

$$s(1 - 0.5U) < \sigma < s(1 + 0.5U)$$
, (6)

где $U=u_{1-\alpha/2}\sqrt{(e+2)/n};\ e$ — выборочный эксцесс; m_4 — четвертый выборочный центральный момент.

Формулы (1) — (6) и определения взяты из источника [1]

Реализация

Для выполнения поставленной задачи будем пользоваться библиотеками для языка Python: numpy, scipy — расчеты, законы распределения вероятностей; matplotlib, seaborn — визуализация результатов. Ход работы:

- Генерируем выборки из распределения N(0,1) объемами $n=20,\ 100$
- Вычисляем выборочные среднее, дисперсию, четвертый центральный момент, эксцесс по приведенным ниже формулам

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{7}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
(8)

$$m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4 \tag{9}$$

$$e = \frac{m_4}{s^4} - 3 \tag{10}$$

• Вычисляем границы доверительных интервалов по формулам (3), (4), (5), (6)

Результат

Представим табулированные значения квантилей распределений необходимых порядков, $\alpha = 0.05$

- $t_{0.95}(19) = 1.72$, $t_{0.95}(99) = 1.66$ квантили распределения Стьюдента
- $\chi^2_{0.025}(19) = 8.91$, $\chi^2_{0.975}(19) = 32.85$, $\chi^2_{0.025}(99) = 73.12$, $\chi^2_{0.975}(99) = 128.4$ квантили распределения хи-квадрат
- $u_{0.975} = 1.96$ квантиль стандартного нормального распределения

n	Интервал для μ	Интервал для σ
20	(-0.239; 0.686)	(0.891; 1.711)
100	(-0.067; 0.266)	(0.876; 1.160)

Таблица 1: Таблица оценок на основе статистик Стьюдента и хи-квадрат

n	Интервал для μ	Интервал для σ
20	(-0.290; 0.737)	(0.873; 1.471)
100	(-0.096; 0.295)	(0.868; 1.126)

Таблица 2: Таблица оценок на основе на основе асимптотического подхода

Вывод

По полученным результатам можно судить о том, что асимптотический подход не имеет преимущества по обоим параметрам сразу в случае малой выборки (n=20) при условиях, что закон распределения известен и является нормальным. При объеме выборки n=100 можно заметить сокращение длин доверительных интервалов (0.333 < 0.391)

для μ , 0.258 < 0.284 для σ), что является преимуществом асимптотического подхода в оценке параметров распределения.

Недостатком интервальных оценок на основе статистик Стьюдента и хи-квадрат может выступать сложность получения точечных оценок параметра распределения, если оно не является нормальным, что в с свою очередь усложнит вычисления.

Список литературы

[1] Амосова Н.Н., Куклин Б.А., Макарова С.Б., Максимов Ю.Д., Митрофанова Н.М., Полищук В.И., Шевляков Г.Л. Вероятностные разделы математики. Учебник для бакалавров технических направлений. — СПб.: Иван Федоров, 2001. — 592 с.: илл. — ISBN 5-81940-050-X.