Supplementary Material A: Tree-Based Models

Alexander M. Carnall

2023-04-23

PART 1: Data Import, Qualitative & Quantitative Description

```
library(tidyverse); library(flextable)
wineData = read.csv(paste0('https://archive.ics.uci.edu/ml/machine-learning-databases/',
                         'wine-quality/winequality-red.csv'), sep = ';') %>%
 mutate(category = case_when(quality < 6 ~ 'Low', quality >= 6 ~ 'High')) %>%
 mutate(quality = as.factor(quality)) %% mutate(category = as.factor(category))
varDesc = data.frame(matrix(ncol = 4, nrow = ncol(wineData))) %>%
 setNames(., c('Attribute', 'Type', 'Purpose', 'Description')) %>%
 mutate(Attribute = names(wineData)) %>%
 mutate(Type = c(rep('numeric', 11), 'factor', 'factor')) %>%
 mutate(Purpose = c(rep('Predictor', 11), 'Response', 'Response')) %>%
 'Residual sugar (g/dm³)', 'Sodium chloride (g/dm³)',
                        'Free sulfur dioxide (g/dm³)', 'Total sulfur dioxide (g/dm³)',
                        'Density (g/dm<sup>3</sup>)', 'pH (negative log of H+ concentration)',
                        'Potassium sulphate (g/dm³)', '% Alcohol by volume',
                        'Median score from at least 3 expert ratings',
                        'Binary, Low (quality < 6), or High (quality >= 6)')) %>%
 flextable() %>% width(j = 1, width = 1.5) %>% width(j = 2:3, width = 1) %>%
 width(j = 4, width = 3) %>% bold(bold = TRUE, part = 'header') %>%
 fontsize(size = 8, part = 'all') %>% bold(j = 1, bold = TRUE, part = 'body') %>%
 align(j = 2:3, align = 'center', part = 'all') %>%
 add_header_row(values = 'Table 1: Description of Attributes in Data', colwidths = 4) %>%
 padding(padding.top = 0, padding.bottom = 0, part = 'body')
varDesc
```

Table 1: Description of Attributes in Data

Attribute	Туре	Purpose	Description
fixed.acidity	numeric	Predictor	Tartaric acid (g/dm^3)
volatile.acidity	numeric	Predictor	Acetic acid (g/dm ³)
citric.acid	numeric	Predictor	Citric acid (g/dm³)
residual.sugar	numeric	Predictor	Residual sugar (g/dm³)

Table 1: Description of Attributes in Data

Attribute	Type	Purpose	Description				
chlorides	numeric	Predictor	Sodium chloride (g/dm³)				
free.sulfur.dioxide	numeric	Predictor	Free sulfur dioxide (g/dm 3)				
${\bf total. sulfur. dioxide}$	numeric	Predictor	Total sulfur dioxide (g/dm^3)				
density	numeric	Predictor	Density (g/dm^3)				
pH	numeric	Predictor	pH (negative log of H+ concentration)				
sulphates	numeric	Predictor	Potassium sulphate (g/dm³)				
alcohol	numeric	Predictor	% Alcohol by volume				
quality	factor	Response	Median score from at least 3 expert ratings				
category	factor	Response	Binary, Low (quality $<$ 6), or High (quality $>$ = 6)				

Table 2: Summary Statistics for Attributes in Data

value	fixed.acidity	volatile.acidity	citric.acid	residual.sugar	chlorides	free.sulfur.dioxide	total.sulfur.dioxide	density	Hd	sulphates	alcohol	Quality (3:8)	Category (count)
Min.	4.60	0.12	0.00	0.90	0.01	1.00	6.00	0.99	2.74	0.33	8.40	10	744
1st Qu.	7.10	0.39	0.09	1.90	0.07	7.00	22.00	1.00	3.21	0.55	9.50	53	
Median	7.90	0.52	0.26	2.20	0.08	14.00	38.00	1.00	3.31	0.62	10.20	681	
Mean	8.32	0.53	0.27	2.54	0.09	15.87	46.47	1.00	3.31	0.66	10.42	638	
3rd Qu.	9.20	0.64	0.42	2.60	0.09	21.00	62.00	1.00	3.40	0.73	11.10	199	
Max.	15.90	1.58	1.00	15.50	0.61	72.00	289.00	1.00	4.01	2.00	14.90	18	855

PART 2: Visual Description of Response and Predictor Variables

```
library(cowplot)
qualHist = ggplot(wineData, aes(x = quality)) + coord_cartesian(ylim = c(0, 800)) +
    geom_histogram(bins = length(unique(wineData$quality)), stat = 'count',
                   binwidth = 1, boundary = -0.5, color = "black", fill = "white") +
  geom_text(stat = "count", aes(label = paste0('Count: ', ...count..),
                                fontface = 'bold'), size = 2.5, vjust = -2.1) +
  geom_text(stat = "count", aes(
   label = paste0('(', round((..count.. / sum(..count..)) * 100, 2), '%)'),
                                fontface = 'bold'), size = 2.5, vjust = -0.7) +
  labs(title = 'Figure 1: Quality Response Variable', x = 'Quality Score',
      y = 'Raw & Relative Frequencies') +
  theme(plot.title = element_text(size = 10), axis.title.x = element_text(size = 9),
       axis.title.y = element text(size = 9), axis.text.y = element text(size = 6),
        legend.position = 'none')
catHist = wineData %>% count(category) %>% mutate(pct = round(n / sum(n), 2)) %>% ggplot() +
  geom_bar(mapping = aes(x = factor(category, levels = c('Low', 'High')), y = n),
           fill = 'white', color = 'black', stat = 'identity') +
  geom_text(aes(label = paste0('Count: ', n), x = category, y = n),
            fontface = 'bold', vjust = -2.1, size = 2.5) +
  geom\_text(aes(label = pasteO('(', pct * 100, '%)'), x = category, y = n),
           fontface = 'bold', vjust = -0.7, size = 2.5) +
  labs(title = 'Figure 2: Category Response Variable', x = 'Category') + ylim(0, 1000) +
  theme(plot.title = element_text(size = 10),axis.title.x = element_text(size = 9),
       axis.title.y = element blank(), axis.text.y = element text(size = 6),
       legend.position = 'none')
resHist = plot_grid(qualHist, catHist, nrow = 1)
resHist
```


Figure 2: Category Response Variable

Figure 3: Predictors x Wine Quality

Figure 4: Predictors x Wine Category

boxPlots = plot_grid(boxQuality, boxCategory, nrow = 1)

PART 3: Implementation for Tree-Based Methods

```
# Generating 'out of the box' trees for each response variable

library(tree)

q.Tree.Train = tree(quality ~ . -category, data = wineData)
c.Tree.Train = tree(category ~ . -quality, data = wineData)

q.Tree.Train

## node), split, n, deviance, yval, (yprob)

## * denotes terminal node

##

## 1) root 1599 3788.00 5 ( 0.006254 0.033146 0.425891 0.398999 0.124453 0.011257 )

## 2) alcohol < 10.525 983 1902.00 5 ( 0.007121 0.034588 0.584944 0.333672 0.037640 0.002035 )
```

```
4) sulphates < 0.555 320 495.50 5 ( 0.009375 0.059375 0.734375 0.193750 0.003125 0.000000 ) *
##
##
       5) sulphates > 0.555 663 1328.00 5 ( 0.006033 0.022624 0.512821 0.401207 0.054299 0.003017 )
        10) total.sulfur.dioxide < 81.5 544 1133.00 6 ( 0.007353 0.023897 0.448529 0.452206 0.064338 0
##
         20) volatile.acidity < 0.405 136 271.70 6 ( 0.000000 0.000000 0.286765 0.573529 0.125000 0.
##
##
         ##
     3) alcohol > 10.525 616 1513.00 6 ( 0.004870 0.030844 0.172078 0.503247 0.262987 0.025974 )
##
       6) sulphates < 0.645 272 662.80 6 ( 0.011029 0.066176 0.257353 0.518382 0.143382 0.003676 )
##
##
        12) volatile.acidity < 1.015 262 599.20 6 ( 0.000000 0.053435 0.255725 0.538168 0.148855 0.00
                                      21.78 4 ( 0.300000 0.400000 0.300000 0.000000 0.000000 0.000
##
        13) volatile.acidity > 1.015 10
##
       7) sulphates > 0.645 344 761.40 6 ( 0.000000 0.002907 0.104651 0.491279 0.357558 0.043605 )
        14) alcohol < 11.55 206 439.50 6 ( 0.000000 0.004854 0.160194 0.563107 0.252427 0.019417 ) *
##
        15) alcohol > 11.55 138 274.40 7 ( 0.000000 0.000000 0.021739 0.384058 0.514493 0.079710 ) *
##
summary(q.Tree.Train)
##
## Classification tree:
## tree(formula = quality ~ . - category, data = wineData)
## Variables actually used in tree construction:
## [1] "alcohol"
                           "sulphates"
                                               "total.sulfur.dioxide"
## [4] "volatile.acidity"
## Number of terminal nodes: 8
## Residual mean deviance: 1.923 = 3060 / 1591
## Misclassification error rate: 0.4084 = 653 / 1599
plot(q.Tree.Train, type = 'uniform')
text(q.Tree.Train, pretty = 1, cex = 0.9, col = 'red')
title('Figure 5: Predicting Wine Quality')
```

Figure 5: Predicting Wine Quality

c.Tree.Train

##

node), split, n, deviance, yval, (yprob)

* denotes terminal node

```
##
##
   1) root 1599 2209.00 High ( 0.53471 0.46529 )
##
     2) alcohol < 10.525 983 1299.00 Low ( 0.37335 0.62665 )
##
       4) sulphates < 0.535 230 196.20 Low ( 0.15217 0.84783 ) *
       5) sulphates > 0.535 753 1033.00 Low ( 0.44090 0.55910 )
##
##
        10) total.sulfur.dioxide < 81.5 610 845.60 High ( 0.50328 0.49672 )
##
          20) volatile.acidity < 0.5475 324 432.10 High ( 0.61420 0.38580 )
            40) sulphates < 0.665 178 246.70 Low ( 0.48876 0.51124 ) *
##
            41) sulphates > 0.665 146 158.50 High ( 0.76712 0.23288 )
##
             82) chlorides < 0.105 114 88.78 High ( 0.86842 0.13158 ) *
##
##
             ##
          21) volatile.acidity > 0.5475 286 379.20 Low ( 0.37762 0.62238 ) *
        11) total.sulfur.dioxide > 81.5 143 132.50 Low ( 0.17483 0.82517 ) *
##
##
     3) alcohol > 10.525 616 629.60 High ( 0.79221 0.20779 )
       6) sulphates < 0.585 166 225.40 High ( 0.58434 0.41566 )
##
##
        ##
        13) volatile.acidity > 0.365 129 178.60 Low ( 0.48062 0.51938 ) *
       7) sulphates > 0.585 450 349.60 High ( 0.86889 0.13111 )
##
        14) alcohol < 11.35 230 232.90 High ( 0.79565 0.20435 ) *
##
##
                               93.14 High ( 0.94545 0.05455 ) *
        15) alcohol > 11.35 220
summary(c.Tree.Train)
##
## Classification tree:
## tree(formula = category ~ . - quality, data = wineData)
## Variables actually used in tree construction:
## [1] "alcohol"
                                                 "total.sulfur.dioxide"
                            "sulphates"
## [4] "volatile.acidity"
                            "chlorides"
## Number of terminal nodes: 10
## Residual mean deviance: 1.011 = 1607 / 1589
## Misclassification error rate: 0.2539 = 406 / 1599
plot(c.Tree.Train, type = 'uniform')
text(c.Tree.Train, pretty = 0, cex = 0.75, col = 'red')
title('Figure 6: Predicting Wine Category')
```

Figure 6: Predicting Wine Category


```
#Estimating training error for each 'out of the box' tree
q.Tree.Pred.Base = predict(q.Tree.Train, wineData, type = 'class')
q.Tree.Base.Table = table(q.Tree.Pred.Base, wineData$quality)
q.Tree.Base.Table
##
## q.Tree.Pred.Base
                               5
                                   6
                                           8
                      0
##
                      3
                               3
                                   0
                                           0
                  5
                      7
##
                         34 536 250
                                     20
                                           0
##
                  6
                      0
                         15 139 335 108
##
                  7
                      0
                          0
                               3
                                 53
                                     71
                                          11
##
                  8
                           0
                               0
                                   0
                                       0
q.Tree.Base =
  1 - sum(diag(table(q.Tree.Pred.Base, wineData$quality))) /
  sum(table(q.Tree.Pred.Base, wineData$quality))
q.Tree.Base
## [1] 0.4083802
q.Tree.Base.Table %>% data.frame() %>%
  setNames(., c('Predicted', 'Actual', 'Frequency')) %>%
  ggplot(aes(x = Actual, y = fct_rev(Predicted), fill = Frequency)) + geom_tile() +
  geom_text(aes(label = ifelse(Frequency > 0, Frequency, '-')), color = 'white',
            size = 8, fontface = 'bold') +
```

Figure 7: Confusion Matrix (Quality), Training Error Rate = 40.84%


```
c.Tree.Pred.Base = predict(c.Tree.Train, wineData, type = 'class')
c.Tree.Base.Table = table(c.Tree.Pred.Base, wineData$category)
c.Tree.Base.Table

##
## c.Tree.Pred.Base High Low
## High 525 76
## Low 330 668

c.Tree.Base =
1 - sum(diag(table(c.Tree.Pred.Base, wineData$category))) /
sum(table(c.Tree.Pred.Base, wineData$category))
c.Tree.Base
```

[1] 0.2539087

Figure 8: Confusion Matrix (Category), Training Error Rate = 25.39%


```
#Generating Estimates of Test Error for 'out-of-the-box' models
set.seed(422)

trainIndx = sample(1:nrow(wineData), 0.75 * nrow(wineData))

q.Tree.Test = tree(quality ~ . -category, data = wineData[trainIndx, ])
q.Tree.Pred = predict(q.Tree.Test, wineData[-trainIndx, ], type = 'class')
q.Tree.Error = 1 - sum(diag(table(q.Tree.Pred, wineData[-trainIndx, 'quality']))) /
sum(table(q.Tree.Pred, wineData[-trainIndx, 'quality']))

c.Tree.Test = tree(category ~ . -quality, data = wineData[trainIndx, ])
c.Tree.Pred = predict(c.Tree.Test, wineData[-trainIndx, ], type = 'class')
c.Tree.Error = 1 - sum(diag(table(c.Tree.Pred, wineData[-trainIndx, 'category']))) /
sum(table(c.Tree.Pred, wineData[-trainIndx, 'category'])))
```

Figure 9: Confusion Matrix (Quality), Test Error Rate = 42.5%

Figure 8: Maximal Complexity Tree (Pred. Category)


```
set.seed(422)
q.Tree.CV = cv.tree(q.Tree.0, FUN = prune.misclass)
c.Tree.CV = cv.tree(c.Tree.0, FUN = prune.misclass)
q.CV.Tree.Params = data.frame(q.Tree.CV$size, q.Tree.CV$dev, q.Tree.CV$k) %>%
  setNames(., c('size', 'misclass', 'alpha')) %>%
  mutate(error = misclass / length(trainIndx)) %>%
  mutate(target = 'Quality')
c.CV.Tree.Params = data.frame(c.Tree.CV$size, c.Tree.CV$dev, c.Tree.CV$k) %>%
  setNames(., c('size', 'misclass', 'alpha')) %>%
  mutate(error = misclass / length(trainIndx)) %>%
  mutate(target = 'Category')
q.min.error = q.CV.Tree.Params %>% filter(error == min(error)) %>%
  filter(size == min(size))
c.min.error = c.CV.Tree.Params %>% filter(error == min(error)) %>%
  filter(size == min(size))
rbind(q.CV.Tree.Params, c.CV.Tree.Params) %>% ggplot() +
  geom_point(aes(x = size, y = error, color = target)) +
  geom\_line(aes(x = size, y = error, color = target)) +
  geom_point(aes(x = q.min.error\$size, y = q.min.error\$error), shape = 4, size = 4) +
  geom_text(aes(label = paste0('Size: ', q.min.error$size, ', Error: ',
                               round(q.min.error\u00e4error * 100, 2), '\u00c3, Alpha = ',
```

Figure 11: Cross–Validated Misclassification Error Based on Cost–Complexity Pruning


```
# Estimate test error for pruned trees based on optimal parameters
q.Tree.Prune = prune.misclass(q.Tree.0, best = as.numeric(q.min.error$size))
q.Prune.Pred = predict(q.Tree.Prune, wineData[-trainIndx, ], type = 'class')
table(q.Prune.Pred, wineData[-trainIndx, 'quality'])
```

```
##
## q.Prune.Pred
                  3
                           5
                               6
                  0
                           0
##
                       0
                               0
                                   0
                                        0
##
                  0
##
                       6 113
                             65
```

```
##
                 0
                    4 43 90 34
##
                         2 18 10
             7
                 0
                     1
##
q.Prune.Test.Error =
  1 - sum(diag(table(q.Prune.Pred, wineData[-trainIndx, 'quality']))) /
  sum(table(q.Prune.Pred, wineData[-trainIndx, 'quality']))
q.Prune.Test.Error
## [1] 0.4675
c.Tree.Prune = prune.misclass(c.Tree.0, best = as.numeric(c.min.error$size))
c.Prune.Pred = predict(c.Tree.Prune, wineData[-trainIndx, ], type = 'class')
table(c.Prune.Pred, wineData[-trainIndx, 'category'])
##
## c.Prune.Pred High Low
##
          High 166 43
                 60 131
          Low
c.Prune.Test.Error =
  1 - sum(diag(table(c.Prune.Pred, wineData[-trainIndx, 'category']))) /
  sum(table(c.Prune.Pred, wineData[-trainIndx, 'category']))
c.Prune.Test.Error
## [1] 0.2575
q.Tree.Prune.Table = table(q.Prune.Pred, wineData[-trainIndx, 'quality'])
q.Prune.Test.Rate = 1 - sum(diag(table(q.Prune.Pred, wineData[-trainIndx, 'quality']))) /
  sum(table(q.Prune.Pred, wineData[-trainIndx, 'quality']))
c.Tree.Prune.Table = table(c.Prune.Pred, wineData[-trainIndx, 'category'])
c.Prune.Test.Rate = 1 - sum(diag(table(c.Prune.Pred, wineData[-trainIndx, 'category']))) /
  sum(table(c.Prune.Pred, wineData[-trainIndx, 'category']))
q.Tree.Prune.Table %>% data.frame() %>%
  setNames(., c('Predicted', 'Actual', 'Frequency')) %>%
  ggplot(aes(x = Actual, y = fct_rev(Predicted), fill = Frequency)) + geom_tile() +
  geom_text(aes(label = ifelse(Frequency > 0, Frequency, '-')),
            color = 'white', size = 8, fontface = 'bold') +
  labs(title = paste0('Figure 12: Confusion Matrix (Quality), Pruned Test Error Rate = ',
                     round(q.Prune.Test.Rate * 100, 2), '%'),
      y = 'Predicted') + theme(legend.position = 'none')
```



```
# Plot Pruned Trees - Omitted from Project Report

plot(q.Tree.Prune, type = 'uniform')
text(q.Tree.Prune, pretty = 1, cex = 0.9, col = 'blue')
title('Figure 14: Pruned Tree (Pred. Quality)')
```



```
plot(c.Tree.Prune, type = 'uniform')
text(c.Tree.Prune, pretty = 1, cex = 0.9, col = 'blue')
title('Figure 15: Pruned Tree (Pred. Category)')
```

Figure 15: Pruned Tree (Pred. Category)


```
# Construction of Bagged Models Using OOB Error estimate as a function of B
library(randomForest)
set.seed(888)
q.Bag.Model = randomForest(quality ~ . -category, wineData[trainIndx, ],
                           mtry = 11, importance = TRUE, ntrees = 500)
c.Bag.Model = randomForest(category ~ . -quality, wineData[trainIndx, ],
                           mtry = 11, importance = TRUE, ntrees = 500)
bag.Error.Data = q.Bag.Model$err.rate %>% data.frame() %>% select(00B) %>%
  mutate(Target = 'Quality') %>% mutate(Trees = 1:500) %>%
  rbind(c.Bag.Model$err.rate %>% data.frame() %>% select(OOB) %>%
         mutate(Target = 'Category') %>% mutate(Trees = 1:500))
q.bag.min.error = bag.Error.Data %>% filter(Target == 'Quality') %%
  filter(OOB == min(OOB)) %>% filter(Trees == min(Trees))
c.bag.min.error = bag.Error.Data %>% filter(Target == 'Category') %>%
  filter(00B == min(00B)) %>% filter(Trees == min(Trees))
bag.Error.Data %>% ggplot() +
 geom_point(aes(x = Trees, y = 00B, color = Target), size = 0.25) +
```

```
geom\_line(aes(x = Trees, y = OOB, color = Target)) +
geom_point(aes(x = q.bag.min.error$Trees, y = q.bag.min.error$00B),
           shape = 4, size = 4) +
geom_text(aes(label = paste0('Target: ', q.bag.min.error$Target,
                              ', OOB Error: ', round(q.bag.min.error$00B * 100, 2),
'%, Num Trees: ', q.bag.min.error$Trees)),
          x = q.bag.min.error$Trees, y = q.bag.min.error$00B,
          vjust = 1.75, hjust = 'inward', size = 3) +
geom_point(aes(x = c.bag.min.error$Trees, y = c.bag.min.error$00B),
           shape = 4, size = 4) +
geom_text(aes(label = paste0('Target: ', c.bag.min.error$Target,
                               ', 00B Error: ', round(c.bag.min.error$00B * 100, 2),
                              '%, Num Trees: ', c.bag.min.error$Trees)),
          x = c.bag.min.error$Trees, y = c.bag.min.error$00B,
          vjust = -3.25, size = 3) +
scale_y_continuous(labels = scales::percent) +
labs(x = 'Number of Trees in Bagged Model', y = 'Out of Bag Error Estimate',
     title = 'Figure 14: Out of Bag Error by Number of Trees in Bagged Model',
     subtitle = 'Minimum Error Rates Indicated by Black Crosses')
```

Figure 14: Out of Bag Error by Number of Trees in Bagged Model Minimum Error Rates Indicated by Black Crosses


```
# Generating Test Error Rate using Optimal Parameter for each target.
set.seed(345)
q.Bag.Test.Model = randomForest(quality ~ . -category, wineData[trainIndx, ],
```

```
mtry = 11, ntrees = as.numeric(q.bag.min.error$Trees))
c.Bag.Test.Model = randomForest(category ~ . -quality, wineData[trainIndx, ],
                               mtry = 11, ntrees = as.numeric(c.bag.min.error$Trees))
q.Bag.Test.Preds = predict(q.Bag.Test.Model, wineData[-trainIndx, ])
c.Bag.Test.Preds = predict(c.Bag.Test.Model, wineData[-trainIndx, ])
table(q.Bag.Test.Preds, wineData[-trainIndx, 'quality'])
##
## q.Bag.Test.Preds
                     3
                          4
                              5
                                  6
                                      7
##
                     0
                          0
                              0
                                 0
                                      0
##
                 4
                     0
                         0
                            0
                                 0
                 5 5
##
                         6 126 43
##
                 6 0
                         4 32 114 25
                                         0
##
                  7
                     0
                              0 15
                                    21
                                          2
##
                                 1
q.Bag.Test.Error =
 1 - sum(diag(table(q.Bag.Test.Preds, wineData[-trainIndx, 'quality']))) /
  sum(table(q.Bag.Test.Preds, wineData[-trainIndx, 'quality']))
q.Bag.Test.Error
## [1] 0.345
table(c.Bag.Test.Preds, wineData[-trainIndx, 'category'])
##
## c.Bag.Test.Preds High Low
              High 179 35
##
              Low
                     47 139
c.Bag.Test.Error =
  1 - sum(diag(table(c.Bag.Test.Preds, wineData[-trainIndx, 'category']))) /
  sum(table(c.Bag.Test.Preds, wineData[-trainIndx, 'category']))
c.Bag.Test.Error
## [1] 0.205
q.Bag.Test.Table = table(q.Bag.Test.Preds, wineData[-trainIndx, 'quality'])
c.Bag.Test.Table = table(c.Bag.Test.Preds, wineData[-trainIndx, 'category'])
q.Bag.Test.Table %>% data.frame() %>%
  setNames(., c('Predicted', 'Actual', 'Frequency')) %>%
  ggplot(aes(x = Actual, y = fct_rev(Predicted), fill = Frequency)) + geom_tile() +
  geom_text(aes(label = ifelse(Frequency > 0, Frequency, '-')),
```

Figure 15: Confusion Matrix (Quality), Bagged Test Error Rate = 34.5%


```
# Generate variable importance plots for the bagged models.
qualImp = importance(q.Bag.Test.Model) %>% data.frame() %>%
 rownames_to_column() %>%
  mutate_if(is.numeric, round, 2) %>%
  ggplot(aes(x = MeanDecreaseGini, y = reorder(rowname, MeanDecreaseGini))) +
  geom_bar(stat = 'identity', fill = 'cyan', color = 'black') +
  geom text(aes(label = MeanDecreaseGini, fontface = 'bold'),
            position = position_stack(vjust = 0.75)) +
  labs(title = 'Target: Wine Quality',
      x = 'Mean Decrease in Gini Index') +
  theme(axis.text.y = element text(size = 8, face = 'bold'),
       axis.title.y = element_blank())
catImp = importance(c.Bag.Test.Model) %>% data.frame() %>%
  rownames_to_column() %>%
  mutate_if(is.numeric, round, 2) %>%
  ggplot(aes(x = MeanDecreaseGini, y = reorder(rowname, MeanDecreaseGini))) +
  geom_bar(stat = 'identity', fill = 'coral', color = 'black') +
  geom_text(aes(label = MeanDecreaseGini, fontface = 'bold'),
            position = position_stack(vjust = 0.75)) +
  labs(title = 'Target: Wine Category',
      x = 'Mean Decrease in Gini Index') +
  theme(axis.text.y = element_text(size = 8, face = 'bold'),
        axis.title.y = element_blank())
```

```
grdTitl = ggdraw() + draw_label('Figure 17: Predictor Importance x Target (Bagged Models)')
impGrid = plot_grid(qualImp, catImp, nrow = 1)
plot_grid(grdTitl, impGrid, ncol = 1, rel_heights=c(0.1, 1))
```

Figure 17: Predictor Importance x Target (Bagged Models)


```
filter(00B == min(00B)) %>% filter(Trees == min(Trees))
all.Error.Data = bag.Error.Data %>%
  mutate(Model = ifelse(Target == 'Quality', 'Bagging: Quality',
                        'Bagging: Category')) %>%
  rbind(rf.Error.Data) %>% ggplot() +
  geom_point(aes(x = Trees, y = OOB, color = Model), size = 0.25) +
  geom_line(aes(x = Trees, y = OOB, color = Model)) +
  geom_point(aes(x = q.RF.min.error$Trees, y = q.RF.min.error$00B),
             shape = 4, size = 4) +
  geom_text(aes(label = paste0('Target: ', q.RF.min.error$Target,
                               ', 00B Error: ', round(q.RF.min.error$00B * 100, 2),
                               '%, Num Trees: ', q.RF.min.error$Trees)),
            x = q.RF.min.error$Trees, y = q.RF.min.error$00B,
            vjust = 1.75, hjust = 'inward', size = 3, nudge_x = -0.5) +
  geom_point(aes(x = c.RF.min.error$Trees, y = c.RF.min.error$00B),
             shape = 4, size = 4) +
  geom_text(aes(label = paste0('Target: ', c.RF.min.error$Target,
                               ', 00B Error: ', round(c.RF.min.error$00B * 100, 2),
                               '%, Num Trees: ', c.RF.min.error$Trees)),
            x = c.RF.min.error$Trees, y = c.RF.min.error$00B,
            vjust = -3.25, size = 3, nudge_x = -3) +
  scale_y_continuous(labels = scales::percent) +
  labs(x = 'Number of Trees in Model', y = 'Out of Bag Error Estimate',
      title = 'Figure 18: 00B Error Estimate by Number of Trees',
       subtitle = 'Bagged vs. Random Forest Models (Crosses for RF Minimums)',
       color = 'Model Type & Target')
all.Error.Data
```


q.RF.Test.Preds

##

##

##

##

##

7 127

```
q.RF.Test.Error =
  1 - sum(diag(table(q.RF.Test.Preds, wineData[-trainIndx, 'quality']))) /
  sum(table(q.RF.Test.Preds, wineData[-trainIndx, 'quality']))
q.RF.Test.Error
## [1] 0.34
table(c.RF.Test.Preds, wineData[-trainIndx, 'category'])
##
## c.RF.Test.Preds High Low
              High 182 38
##
              Low
                    44 136
c.RF.Test.Error =
  1 - sum(diag(table(c.RF.Test.Preds, wineData[-trainIndx, 'category']))) /
  sum(table(c.RF.Test.Preds, wineData[-trainIndx, 'category']))
c.RF.Test.Error
## [1] 0.205
q.Tree.RF.Table = table(q.RF.Test.Preds, wineData[-trainIndx, 'quality'])
c.Tree.RF.Table = table(c.RF.Test.Preds, wineData[-trainIndx, 'category'])
q.Tree.RF.Table %>% data.frame() %>%
  setNames(., c('Predicted', 'Actual', 'Frequency')) %>%
  ggplot(aes(x = Actual, y = fct_rev(Predicted), fill = Frequency)) + geom_tile() +
  geom_text(aes(label = ifelse(Frequency > 0, Frequency, '-')),
            color = 'white', size = 8, fontface = 'bold') +
  labs(title = paste0('Figure 19: Confusion Matrix (Quality), RF Test Error Rate = ',
                      round(q.RF.Test.Error * 100, 2), '%'),
       y = 'Predicted') + theme(legend.position = 'none')
```


Figure 20: Confusion Matrix (Category), RF Test Error Rate = 20.5%

And assess the variable importance.

```
# Variable Importance Plots for Random Forest Models.
qualImpRF = importance(q.RF.Test.Model) %>% data.frame() %>%
  rownames_to_column() %>%
  mutate_if(is.numeric, round, 2) %>%
  ggplot(aes(x = MeanDecreaseGini,
             y = reorder(rowname, MeanDecreaseGini))) +
  geom_bar(stat = 'identity', fill = 'blueviolet', color = 'black') +
  geom text(aes(label = MeanDecreaseGini, fontface = 'bold'),
            position = position_stack(vjust = 0.75)) +
  labs(title = 'Target: Wine Quality',
      x = 'Mean Decrease in Gini Index') +
  theme(axis.text.y = element_text(size = 8, face = 'bold'),
       axis.title.y = element_blank())
catImpRF = importance(c.RF.Test.Model) %>% data.frame() %>%
  rownames_to_column() %>%
  mutate_if(is.numeric, round, 2) %>%
  ggplot(aes(x = MeanDecreaseGini,
             y = reorder(rowname, MeanDecreaseGini))) +
  geom_bar(stat = 'identity', fill = 'cyan', color = 'black') +
  geom_text(aes(label = MeanDecreaseGini, fontface = 'bold'),
            position = position_stack(vjust = 0.75)) +
  labs(title = 'Target: Wine Category',
```

Figure 21: Predictor Importance x Target (RF Models)


```
select(-category)
for (depth in seq(1, 5, 1)) {
  for (shrink in seq(0.001, 0.30, 0.01)) {
   q.Boost.Model = gbm(quality ~ . -binCategory, boostWine[trainIndx, ],
                      distribution = 'multinomial', n.trees = 1000,
                      interaction.depth = depth, shrinkage = shrink,
                      cv.folds = 5)
    c.Boost.Model = gbm(binCategory ~ . -quality, boostWine[trainIndx, ],
                      distribution = 'bernoulli', n.trees = 1000,
                      interaction.depth = depth, shrinkage = shrink,
                      cv.folds = 5)
    idpth = paste0('d = ', depth)
    shrnk = shrink
    q.Err = data.frame(q.Boost.Model$train.error, q.Boost.Model$cv.error) %>%
      setNames(., c('Train.Error', 'CV.Error')) %>% mutate(interaction = idpth) %>%
      mutate(numTrees = 1:1000) %>% mutate(Target = 'Quality') %>%
     mutate(lambda = shrink) %>%
     pivot_longer(cols = c('Train.Error', 'CV.Error'),
                   names_to = 'Error', values_to = 'Value')
    c.Err = data.frame(c.Boost.Model$train.error, c.Boost.Model$cv.error) %>%
      setNames(., c('Train.Error', 'CV.Error')) %>% mutate(interaction = idpth) %>%
     mutate(numTrees = 1:1000) %>% mutate(Target = 'Category') %>%
     mutate(lambda = shrink) %>%
     pivot_longer(cols = c('Train.Error', 'CV.Error'),
                   names_to = 'Error', values_to = 'Value')
    boostError = rbind(q.Err, c.Err) %>% data.frame() %>%
      mutate(group = paste(Target, Error)) %>%
      mutate(tune = paste(interaction, ', ', lambda))
   boostOutput = rbind(boostOutput, boostError)
 }
}
print(Sys.time() - start)
## Time difference of 1.145736 hours
# Generate table for presentation of grid-search results for parameter values
q.Tune = boostOutput %>% filter(Target == 'Quality' & Error == 'CV.Error') %>%
  filter(Value == min(Value, na.rm = TRUE)) %>%
  select(Target, numTrees, interaction, lambda, Value) %>%
  setNames(., c('Target', 'Trees', 'Interaction', 'Lambda', 'CV.Deviance'))
```

Table 3: Optimal Parameters for Boosted Model (Based on CV)

Target	Trees	Interaction	Lambda	CV.Deviance
Quality	97	d = 5	0.041	0.9117986
Category	445	d = 5	0.041	0.9236878

```
# Generate plots of training vs. cross-validated residual mean deviance
# with optimal hyperparameter values identified
tuneOpt2 = tuneOpt %>% mutate(combo = paste(Target, Interaction, Lambda))
q.Params = tuneOpt %>% filter(Target == 'Quality')
c.Params = tuneOpt %>% filter(Target == 'Category')
paramPlots = boostOutput %>% mutate(combo = paste(Target, interaction, lambda)) %>%
 filter(combo %in% tuneOpt2$combo)
q.ParamPlot = paramPlots %>% filter(Target == 'Quality') %>% ggplot() +
  geom\_line(aes(x = numTrees, y = Value, color = group)) +
  labs(y = 'Residual Mean Deviance',
      title = 'Figure 22: Optimal Boosting Tuning Parameters (Top: Quality, Bottom: Category)',
       subtitle = pasteO('Predict Quality: Trees = ', q.Params$Trees,
       ', Interaction Depth = ', q.Params$iDepth,
       ', Lambda = ', q.Params$Lambda),
       color = 'Legend') +
  geom_vline(xintercept = q.Params$Trees, linetype = 'dashed', linewidth = 0.5) +
  theme(axis.title.x = element_blank(), axis.text.x = element_blank(),
        axis.title.y = element_text(size = 6))
c.ParamPlot = paramPlots %% filter(Target == 'Category') %>% ggplot() +
  geom_line(aes(x = numTrees, y = Value, color = group)) +
  labs(y = 'Residual Mean Deviance', x = 'Number of Trees',
       subtitle = paste0('Predict Category: Trees = ', c.Params$Trees,
```

```
', Interaction Depth = ', c.Params$iDepth,
    ', Lambda = ', c.Params$Lambda),
    color = 'Legend') +
geom_vline(xintercept = c.Params$Trees, linetype = 'dashed', linewidth = 0.5) +
theme(axis.title.y = element_text(size = 6))
paramGrid = plot_grid(q.ParamPlot, c.ParamPlot, nrow = 2)
paramGrid
```

Figure 22: Optimal Boosting Tuning Parameters (Top: Quality, Bottom: Categ Predict Quality: Trees = 97, Interaction Depth = 5, Lambda = 0.041

Predict Category: Trees = 445, Interaction Depth = 5, Lambda = 0.041


```
distribution = 'bernoulli',
                  n.trees = as.numeric(cParams$Trees),
                  interaction.depth = as.numeric(cParams$iDepth),
                  shrinkage = as.numeric(cParams$Lambda))
q.Boost.Pred = predict(q.Boost.Test, boostWine[-trainIndx, ], type = 'response')
q.Boost.Clas = factor(colnames(q.Boost.Pred)[apply(q.Boost.Pred,1,which.max)], levels = c(3:8))
c.Boost.Pred = predict(c.Boost.Test, boostWine[-trainIndx, ], type = 'response')
c.Boost.Clas = ifelse(c.Boost.Pred > 0.5, 1, 0)
table(q.Boost.Clas, boostWine[-trainIndx, 'quality'])
##
## q.Boost.Clas
                 3 4
                         5
                             6
                                     8
##
                0 0
             4 0 1 1
##
                            0
                               0
             5 4 8 121 53
##
             6 1 1 35 101 27 1
##
             7
##
                    1
                         1 19 15
##
q.Boost.Errs =
 1 - sum(diag(table(q.Boost.Clas, boostWine[-trainIndx, 'quality']))) /
  sum(table(q.Boost.Clas, boostWine[-trainIndx, 'quality']))
q.Boost.Errs
## [1] 0.405
table(c.Boost.Clas, boostWine[-trainIndx, 'binCategory'])
##
## c.Boost.Clas 0
           0 139 57
##
             1 35 169
##
c.Boost.Errs =
 1 - sum(diag(table(c.Boost.Clas, boostWine[-trainIndx, 'binCategory']))) /
  sum(table(c.Boost.Clas, boostWine[-trainIndx, 'binCategory']))
c.Boost.Errs
## [1] 0.23
q.Boost.Table = table(q.Boost.Clas, boostWine[-trainIndx, 'quality'])
c.Boost.Table = table(c.Boost.Clas, boostWine[-trainIndx, 'binCategory'])
q.Boost.Table %>% data.frame() %>%
  setNames(., c('Predicted', 'Actual', 'Frequency')) %>%
  ggplot(aes(x = Actual, y = fct_rev(Predicted), fill = Frequency)) + geom_tile() +
```

Figure 23: Confusion Matrix (Quality), Boosting Test Error Rate = 40.5%


```
# Generate table ranking predictor variable importance across
# all ensemble methods
q.Bag.Inf = importance(q.Bag.Test.Model) %>% data.frame() %>%
  rownames_to_column() %>% setNames(., c('Predictor', 'Gini')) %>%
  arrange(-Gini) %>% mutate(Rank = 1:11) %>% select(Predictor, Rank)
c.Bag.Inf = importance(c.Bag.Test.Model) %>% data.frame() %>%
  rownames_to_column() %% setNames(., c('Predictor', 'Gini')) %>%
  arrange(-Gini) %>% mutate(Rank = 1:11) %>% select(Predictor, Rank)
q.RF.Inf = importance(q.RF.Test.Model) %>% data.frame() %>%
  rownames_to_column() %>% setNames(., c('Predictor', 'Gini')) %>%
  arrange(-Gini) %>% mutate(Rank = 1:11) %>% select(Predictor, Rank)
c.RF.Inf = importance(c.RF.Test.Model) %>% data.frame() %>%
  rownames_to_column() %>% setNames(., c('Predictor', 'Gini')) %>%
  arrange(-Gini) %>% mutate(Rank = 1:11) %>% select(Predictor, Rank)
q.Boost.Inf = relative.influence(q.Boost.Test, n.trees = qParams$Trees) %%
  data.frame() %>% rownames_to_column() %>%
  setNames(., c('Predictor', 'q.Boost.Influence')) %>%
  arrange(-q.Boost.Influence) %>% mutate(Rank = 1:11) %>%
  select(Predictor, Rank)
c.Boost.Inf = relative.influence(c.Boost.Test, n.trees = cParams$Trees) %>%
```

```
data.frame() %>% rownames_to_column() %>%
  setNames(., c('Predictor', 'c.Boost.Influence')) %>%
  arrange(-c.Boost.Influence) %>% mutate(Rank = 1:11) %>%
  select(Predictor, Rank)
allPredictrs = q.Bag.Inf %>% merge(c.Bag.Inf, by = 'Predictor') %>%
  merge(q.RF.Inf, by = 'Predictor') %>% merge(c.RF.Inf, by = 'Predictor') %>%
  merge(q.Boost.Inf, by = 'Predictor') %>% merge(c.Boost.Inf, by = 'Predictor') %>%
  setNames(., c('Predictor', 'Bag (Q)', 'Bag (C)', 'RF (Q)', 'RF (C)',
                'Boost (Q)', 'Boost (C)')) %>%
  mutate(`Mean Rank` = rowMeans(.[,2:7])) %>% mutate_if(is.numeric, round, 2) %>%
  arrange(`Mean Rank`) %>% flextable() %>% width(width = 1) %>%
  align(j = 2:8, align = 'center', part = 'all') %>%
  bold(bold = TRUE, part = 'header') %>%
  padding(padding.top = 0, padding.bottom = 0, part = 'all') %>%
  add_header_row(values = 'Table 4: Rank of Predictor Impact Across Models',
              colwidths = 8)
# Generate dataframe with all test error values to report in graph form
library(ggrepel)
allTestErrors = data.frame(
 Model = c('Baseline: Training', 'Baseline: Training',
            'Baseline: Testing', 'Baseline: Testing',
            'Pruned', 'Pruned', 'Bagged', 'Bagged',
            'RF', 'RF', 'Boosted', 'Boosted'),
 Target = c(rep(c('Quality', 'Category'), 6)),
  Rates = c(q.Tree.Base, c.Tree.Base, q.Tree.Test.Rate,
            c.Tree.Test.Rate, q.Prune.Test.Error, c.Prune.Test.Error,
            q.Bag.Test.Error, c.Bag.Test.Error, q.RF.Test.Error,
            c.RF.Test.Error, q.Boost.Errs, c.Boost.Errs)
)
ggplot(data = allTestErrors, aes(x = Target, y = Rates)) +
 geom point(aes(shape = Model, color = Model), size = 3) +
  geom_text_repel(aes(label = paste0(Model, ', ',
                                     round(Rates * 100, 2), '%')),
                 nudge_x = 0.25) +
  labs(x = 'Prediction Target', y = 'Misclassification Error Rate',
       title = 'Figure 25: Model Performance Summary',
       subtitle = 'Includes all tree-based models tested in project') +
  scale_y_continuous(labels = scales::percent) +
  geom_hline(yintercept = 0.4259, linetype = 'dotted', col = 'red') +
  annotate('text', x = 0.80, y = 0.4259,
          label = 'Quality Null Rate (Class 5: 42.59%)', color = 'red',
          vjust=-0.5, size=3) +
```

label = 'Category Null Rate (Class High: 53%)', color = 'blue',

vjust= -0.5, size = 3) + theme(legend.position = 'none')

geom_hline(yintercept = 0.53, linetype = 'dotted', col = 'blue') +

annotate('text', x = 0.80, y = 0.53,

Figure 25: Model Performance Summary Includes all tree-based models tested in project


```
# Fit Final Model to all data and generate confusion matrices and
# misclassification error rates
q.RF.Final.Model = randomForest(
  quality ~ . -category, wineData, mtry = sqrt(11),
 ntrees = as.numeric(q.RF.min.error$Trees))
q.RF.Final.Table = table(q.RF.Final.Model$predicted,
                         wineData$quality)
q.RF.Final.Error = 1 - sum(diag(q.RF.Final.Table)) /
  sum(q.RF.Final.Table)
c.RF.Final.Model = randomForest(
  category ~ . -quality, wineData, mtry = sqrt(11),
  ntrees = as.numeric(c.RF.min.error$Trees))
c.RF.Final.Table = table(c.RF.Final.Model$predicted,
                         wineData$category)
c.RF.Final.Error = 1 - sum(diag(c.RF.Final.Table)) /
  sum(c.RF.Final.Table)
q.RF.Final.Table %>% data.frame() %>%
  setNames(., c('Predicted', 'Actual', 'Frequency')) %>%
```

Figure 26: Confusion Matrix (Quality), RF Error Rate = 20.5


```
# Generate plots of variable importance from final model
q.Final.Imp = importance(q.RF.Final.Model) %>% data.frame() %>%
  rownames_to_column() %>%
  mutate_if(is.numeric, round, 2) %>%
  ggplot(aes(x = MeanDecreaseGini,
             y = reorder(rowname, MeanDecreaseGini))) +
  geom_bar(stat = 'identity', fill = 'aquamarine', color = 'black') +
  geom text(aes(label = MeanDecreaseGini, fontface = 'bold'),
            position = position_stack(vjust = 0.75)) +
  labs(title = 'Target: Wine Quality',
      x = 'Mean Decrease in Gini Index') +
  theme(axis.text.y = element_text(size = 8, face = 'bold'),
       axis.title.y = element_blank())
c.Final.Imp = importance(c.RF.Final.Model) %>% data.frame() %>%
  rownames_to_column() %>%
  mutate_if(is.numeric, round, 2) %>%
  ggplot(aes(x = MeanDecreaseGini,
             y = reorder(rowname, MeanDecreaseGini))) +
  geom_bar(stat = 'identity', fill = 'deeppink', color = 'black') +
  geom_text(aes(label = MeanDecreaseGini, fontface = 'bold'),
           position = position_stack(vjust = 0.75)) +
  labs(title = 'Target: Wine Category',
      x = 'Mean Decrease in Gini Index') +
  theme(axis.text.y = element_text(size = 8, face = 'bold'),
```

```
axis.title.y = element_blank())

grdTitl3 = ggdraw() +
  draw_label('Figure 28: Predictor Importance x Target (Final RF)')
impGrid3 = plot_grid(q.Final.Imp, c.Final.Imp, nrow = 1)

plot_grid(grdTitl3, impGrid3, ncol = 1, rel_heights=c(0.1, 1))
```

Figure 28: Predictor Importance x Target (Final RF)

