

Linear Regression Introduction

Brenda Gunderson

Cartwheel Study

25 team members/colleagues

 (all adults) asked to perform
 a cartwheel

Many Variables recorded:
 Primary outcome of interest = Cartwheel Distance (inches)

Cartwheel Study Data

	ID	Age	Gender	GenderGroup	Glasses	GlassesGroup	Height	Wingspar	CWDistance	Complete	CompleteGroup	Score
0	1	56	F	1	Υ	1	62.0	61.0	79	Y	1	7
1	2	26	F	1	Y	1	62.0	60.0	70	Y	1	8
2	3	33	F	1	Y	1	66.0	64.0	85	Y	1	7
3	4	39	F	1	N	0	64.0	63.0	87	Y	1	10
4	5	27	M	2	N	0	73.0	75.0	72	N	0	4

Possible Research Goals/Questions

Develop a model to predict the (mean) cartwheel distance for the population of all such adults...

- Is a person's height a useful predictor for cartwheel distance?
- Does knowing if they actually completed the cartwheel make a difference in terms of cartwheel distance?

Cartwheel Distance Summary

di.describe() ["CWDistance"]	f.describe()["CWDistan	ce"]
------------------------------	------------------------	------

count	25.000000
mean	82.480000
std	15.058552
min	63.000000
25%	70.000000
50%	81.000000
75%	92.000000
max	115.000000

Name: CWDistance, dtype: float64

Is there a Relationship?

- Is HEIGHT a useful predictor for cartwheel distance?
- Do taller people generally have larger cartwheel distances?
- Is there a significant (positive) relationship between the height and cartwheel distance?

Dependent Variable (DV)

= CWDistance

Independent Variable (IV)

= Height

Dependent Variable (DV)

= CWDistance

Independent Variable (IV)

- = Height
 - Form:
 - Direction:
 - Strength: _____
 - Outliers: _____

PAUSE HERE to provide time for IVQ

Dependent Variable (DV)

= CWDistance

Independent Variable (IV)

- = Height
- Form: approximately linear
- **Direction**: positive
- Strength: weak to moderate
- Outliers: none apparent

• Strength:

$$r = 0.33$$

• Strength:

$$r = 0.33$$

$$\begin{array}{c}
r^2 \neq 0.107 \\
R^2 \leq \text{squared}
\end{array}$$

Only about 11% of the variation in CW Distance is explained by the linear relationship with height

General Line:

$$y = mx + b$$

General Line:

$$y = mx + b$$

• Estimate Regression Line:

$$\hat{y} = b_0 + b_1 x$$

General Line:

$$y = mx + b$$

• Estimate Regression Line:

$$\hat{y} = b_0 + b_1 x$$

y-intercept:
estimated y when x = 0(not always
meaningful)

General Line:

$$y = mx + b$$

• Estimate Regression Line:

$$\hat{y} = b_0 + b_1 x$$

y-intercept:

estimated y when

$$x = 0$$

(not always meaningful)

slope:

estimated change in y for one unit increase in x

Estimate Regression Line:

$$\hat{y} = b_0 + b_1 x$$

Estimate Regression Line:

$$\hat{y} = b_0 + b_1 x$$

Estimate Regression Line:

$$\hat{y} = b_0 + b_1 x$$

Goal:

Find line that minimizes total squared (observed) error

Least Squares Regression

Predicted CWDist = 7.5518 + 1.1076(height)

Dep. Variabl	e:	CWDistanc	e R-squa	R-squared:			
Model:		OL	S Adj. H	F-statistic: Prob (F-statistic):			
Method:		Least Square	s F-stat				
Date:	Mo	n, 26 Nov 201	8 Prob				
Time:		05:06:5	5 Log-Li				
No. Observat	2	5 AIC:	AIC:				
Df Residuals	:	2	3 BIC:	BIC:			
Df Model:			1				
Covariance T	ype:	nonrobus	t				
	coef	std err	t	P> t	[0.025	0.975]	
const	7.5518	45.412	0.166	0.869	-86.391	101.494	
Height	1.1076	0.670	1.653	0.112	-0.278	2.493	

Predicted CWDist = 7.5518 + 1.1076(height)

Dep. Variabl	e:	CWDistanc	e R-squa	R-squared: Adj. R-squared:		
Model:		OI	S Adj. R			
Method:		Least Squares Mon, 26 Nov 2018		F-statistic: Prob (F-statistic):		
Date:	Mo					
Time:		05:06:5	5 Log-Li	Log-Likelihood:		
No. Observations:			25 AIC:	AIC:		
Df Residuals	2	BIC:			209.2	
Df Model:			1			
Covariance T	ype:	nonrobus	st			
	coef	std err	t	P> t	[0.025	0.975]
const	7.5518	45.412	0.166	0.869	-86.391	101.494
Height	1.1076	0.670	1.653	0.112	-0.278	2.493

slope: estimated change in y for one unit increase in x □
We would estimate that an adult who is one inch taller than another adult would have a CW distance that is 1.1 inch longer, on average.

Making Predictions

What would you predict the cartwheel distance to be for an adult who is 64 inches tall?

Predicted CWDist = 7.5518 + 1.1076(height)

PAUSE HERE to provide time for IVQ

Making Predictions

What would you predict the cartwheel distance to be for an adult who is 64 inches tall?

```
Predicted CWDist = 7.5518 + 1.1076(height)
= 7.5518 + 1.1076(64)
= 78.4382 ~ 78.4 inches
```


Making Predictions

What would you predict the cartwheel distance to be for an adult who is 64 inches tall?

```
Predicted CWDist = 7.5518 + 1.1076(height)
= 7.5518 + 1.1076(64)
= 78.4382 ~ 78.4 inches
```

We would also estimate the mean cartwheel distance for all adults who are 64 inches tall to be 78.4 inches

Observed Errors (Residuals)

64 inch tall adult had cartwheel distance of 87 inches

What is the observed error (residual) for this adult?

PAUSE HERE to provide time for IVQ

Observed Errors (Residuals)

64 inch tall adult had cartwheel distance of 87 inches

What is the **observed error** (residual) for this adult?

Residual = observed CWDist – predicted CWDist = 87 inches – 78.4 inches = 8.6 inches

What's Next?

Now that we have worked with the **descriptive** side of regression, we turn to **drawing inferences** from regression:

- Assessing significance of the relationship
- Checking underlying assumptions
- Extending regression model to include more predictors