ADVANCED DATABASE MANAGEMENT SYSTEMS LAB ASSIGNMENT FILE

SUBMITTED TO:

MS VIMMI KOCHHER
AMITY SCHOOL OF
ENGINEERING &
TECHNOLOGY

SUBMITTED BY:

HARSH - A501144824003 M.TECH(AI) M.TECH 2024-2026

INDEX

S.NO	TITLE	PAGE NO	SIGNATURE
1.	PRACTICAL 1	3	
2.	PRACTICAL 2	5	
3.	PRACTICAL 3	7	
4.	PRACTICAL 4	12	
5.	PRACTICAL 5	14	
6.	PRACTICAL 6	19	
7.	PRACTICAL 7	21	
8.	PRACTICAL 8	29	
9.	CASE STUDY ON	34	
	ORACLE EXPRESS		
	EDITION		

DDL Commands

Data Definition Language(DDL): It is a subset of SQL and a part of DBMS(Database Management System). DDL consist of Commands to commands like CREATE, ALTER, TRUNCATE and DROP. These commands are used to create or modify the tables in SQL.

DDL Commands:

1. Create

This command is used to create a new table in SQL. The user has to give information like table name, column names, and their datatypes.

```
Syntax –

CREATE TABLE table_name (
    column_1 datatype,
    column_2 datatype,
    column_3 datatype,
    ....
);
```

2. Alter

This command is used to add, delete or change columns in the existing table. The user needs to know the existing table name and can do add, delete or modify tasks easily.

```
Syntax –
```

Syntax to add a column to an existing table.

```
ALTER TABLE table_name ADD column name datatype;
```

3. Truncate

This command is used to remove all rows from the table, but the structure of the table still exists.

```
Syntax –
```

Syntax to remove an existing table.

TRUNCATE TABLE table name;

4. Drop

This command is used to remove an existing table along with its structure from the Database.

```
Syntax –
```

Syntax to drop an existing table.

DROP TABLE table name;

5. Rename

It is possible to change name of table with or without data in it using simple RENAME command.

We can rename any table object at any point of time.

Syntax -

RENAME TABLE < Table Name > To < New_Table_Name >;

CODE for DDL Commands

```
1) -- create employee table create table employee (
empid INT,
empname VARCHAR(50),
empdept VARCHAR(50),
empdesig VARCHAR(50),
empsal INT,
empdoj DATE
);
```

- 2) -- alter table to empid as PRIMARY alter table amity employee add primary key (empid);
- 3) --Truncate TRUNCATE employee;
- 4) --DROP Table DROP TABLE employee;
- 5) --Rename attribute alter table employee RENAME COLUMN empname TO nameemp;

Output ->

Q	* empid int	nameemp varchar(50) ♦	empdept varchar(50) ♦	empdesig varchar(50) ♦	empsal int ♦	empdoj date ♦
	Filter	Filter	Filter	Filter	Filter	Filter
>1	1	Harsh	HR	Manager	250000	2007-09-19
>2	2	Dipti	п	CEO	2500000	2020-09-19
>3	3	Shruti	ІТ	PE	30000	2020-09-20

DML Commands

Data Manipulation Language (DML): The SQL commands that deal with the manipulation of data present in the database belong to DML or Data Manipulation Language and this includes most of the SQL statements. It is the component of the SQL statement that controls access to data and to the database. Basically, DCL statements are grouped with DML statements.

DDL Commands:

1. Insert

Used to insert new data (rows) into a table.

• Syntax to insert data into all columns: INSERT INTO table_name (column1, column2, ...)

```
VALUES (value1, value2, ...);
```

2. Update

Used to modify existing records in a table.

• Syntax to update specific columns:

```
UPDATE table_name
SET column1 = value1, column2 = value2
WHERE condition;
```

3. Delete

Used to remove existing records from a table.

• Syntax to delete specific rows:

```
DELETE FROM table_name WHERE condition;
```

4. Select

Used to retrieve data from one or more tables.

• Syntax to select specific columns:

```
SELECT column1, column2
FROM table_name
WHERE condition;
```

CODE for DDL Commands

```
1) -- Input data in table INSERT INTO employee ( empid, empname, empdept, empdesig, empsal, empdoj ) VALUES ( 3,
```

'Shruti',
'IT',
'HR',
300000,
'2020-09-21'
);

2) -- Update Table

UPDATE employee set empdesig = "CEO" WHERE empsal = 300000;

	Q	empid int ♦	empname varchar(50)	empdept varchar(50)	empdesig varchar(50) ♦	empsal int	empdoj date ♦
		Filter	Filter	Filter	Filter	Filter	Filter
	>1	1	Harsh	ІТ	CEO	300000	2020-09-20

3) --Select from table;

SELECT * from employee;

Q	empid int ♦	empname varchar(50) ★	empdept varchar(50) ♦	empdesig varchar(50) ♦	empsal int ♦	empdoj date ♦
	Filter	Filter	Filter	Filter	Filter	Filter
>1	1	Harsh	ІТ	CEO	300000	2020-09-20
>2	2	Dipti	ІТ	CFO	30000000	2020-09-19
>3	3	Shruti	IT	HR	300000	2020-09-21

4) -- Delete from table

DELETE FROM employee WHERE empid = 1;

Q	empid int ♦	empname varchar(50) ◆	empdept varchar(50) ◆	empdesig varchar(50) ♦	empsal int	empdoj date ♦
	Filter	Filter	Filter	Filter	Filter	Filter
>1	2	Dipti	П	CFO	30000000	2020-09-19
>2	3	Shruti	П	HR	300000	2020-09-21

AIM - Using Relational, Logical Operators

Create Table Employeepr3

```
create table employeepr3 (
empNo INT,
empname VARCHAR(50),
empJob VARCHAR(50),
empManagerName VARCHAR(50),
emphiredate DATE,
empsal INT,
empcommission INT,
empdept VARCHAR(50)
```

Create Table Departmentpr3

```
create table Departmentpr3 (
deptNo INT,
deptName VARCHAR(50),
deptLoc VARCHAR(50)
)
```

Insert into Employeepr3

insert into employeepr3 (empNo, empname, empJob, empManagerName, emphiredate, empsal, empcommission, empdept) values

- (1, 'John', 'salesman', 'Bob', '2022-01-01', 4500, 10, 'sales'),
- (2, 'Mike', 'analyst', 'Sam', '2022-01-15', 4200, 20, 'analyst'),
- (3, 'Sam', 'manager', null, '2022-03-01', 4800, 30, 'manager'),
- (4, 'Bob', 'salesman', 'Sam', '2022-04-01', 4000, 40, 'sales'),
- (5, 'Sara', 'analyst', 'Bob', '2022-05-01', 4100, 50, 'analyst'),
- (6, 'David', 'salesman', 'Sara', '2022-06-01', 4300, 60, 'sales'),
- (7, 'Emily', 'analyst', 'David', '2022-07-01', 4400, 70, 'analyst'),
- (8, 'Kate', 'salesman', 'Emily', '2022-08-01', 4500, 80, 'sales'),
- (9, 'Olivia', 'analyst', 'Kate', '2022-09-01', 4600, 90, 'analyst'),
- (10, 'Sophia', 'salesman', 'Olivia', '2022-10-01', 4700, 10, 'sales')

Insert into Departmentpr3

(100, 'sales', 'New York')

```
insert into Departmentpr3 (deptNo, deptName, deptLoc) values (10, 'sales', 'New York'),
  (20, 'analyst', 'Chicago'),
  (30, 'manager', 'Los Angeles'),
  (40, 'sales', 'New York'),
  (50, 'analyst', 'Chicago'),
  (60, 'manager', 'Los Angeles'),
  (70, 'sales', 'New York'),
  (80, 'analyst', 'Chicago'),
  (90, 'manager', 'Los Angeles'),
```

a) List all the information about all employees from emp table.

select * from employeepr3

Q	empNo int ‡	empname varchar(50)	empJob varchar(50) ♦	empManagerName varchar(50)	emphiredate date	empsal int	empcommission int	empdept varchar(50) \$
>		John	salesman	Bob	2022-01-01	500		sales
>		Mike	analyst	Sam	2022-01-15	4200		analyst
>		Sam	manager		2022-03-01	2800		manager
>		Bob	salesman	Sam	2022-04-01	1000	40	sales
>		Sara	analyst	Bob	2022-05-01	4100	50	analyst
>		David	salesman	Sara	2022-06-01	300		sales
>		Emily	analyst	David	2022-07-01	2400		analyst
>		Kate	salesman	Emily	2022-08-01	3500	80	sales
>		Olivia	analyst	Kate	2022-09-01	1600	90	analyst
>	10	Sophia	salesman	Olivia	2022-10-01	1700	10	sales

b) List all the information about all departments from department table.

select * from Departmentpr3

c) List all employees names along with their salary from employee table.

select empname, empsal from employeepr3

d) List all department name, employee number, manager number from employee table

select empdept, empNo, empManagerName from employeepr3

Q	empdept varchar(50) ◆	empNo int ♦	empManagerName varchar(50)
			Filter
>	sales	1	Bob
>	analyst	2	Sam
>	manager	3	(NULL)
>	sales	4	Sam
>	analyst	5	Bob
>	sales	6	Sara
>	analyst	7	David
>	sales	8	Emily
>	analyst	9	Kate
>	sales	10	Olivia

e) List dept names and location from department table

select deptName, deptLoc from Departmentpr3

Q	deptName varchar(50) ◆	deptLoc varchar(50) ◆		
	Filter	Filter		
>	sales	New York		
>	analyst	Chicago		
>	manager	Los Angeles		
>	sales	New York		
>	analyst	Chicago		
>	manager	Los Angeles		
>	sales	New York		
>	analyst	Chicago		
>	manager	Los Angeles		
>	sales	New York		

f) List the employees belong to department number=50

select * from departmentpr3 where `deptNo` = '50'

g) List employee names and salary whose salary is greater than 1000

select empname, empsal from employeepr3 where empsal > 1000

h) List names of clerk working in department 30

select empname from employeepr3 where deptNo = '30'

i) List names of employees who are either analyst or salesman

select empname from employeepr3 where empJob = 'analyst' or empJob = 'salesman'

j) List employee names and emp no who are manager

select empname, empNo from employeepr3 where empJob = 'manager'

varchar(50) Filter Filter Sam 3

empname

k) List the details of employees who have joined before end of September'22

select * from employeepr3 where emphiredate < '2022-09-30'

empNo

1) List names of employees who are not managers.

select empname from employeepr3 where empManagerName is null

m) List the names of employees whose employee number is 20,40,60

select empname from employeepr3 where deptNo in (20, 40, 60)

n) List the names of employees not belonging to dept 20,30,40

select empname from employeepr3 where deptNo not in(20, 30, 40)

o) List the names and salary of employees whose salary is between 1000 and 2000

select empname, empsal from employeepr3 where empsal between 1000 and 2000

Q empname varchar(50) cmpsal int Filter Filter > Bob 1000 > Olivia 1600 > Sophia 1700

p) List the names of employees joined before 30 june'22 or after 31dec'22

select empname, emphiredate from employeepr3 where emphiredate < '2022-06-30' or emphiredate > '2022-12-31'

Q	empname varchar(50)	emphiredate date
	Filter	Filter
>	John	2022-01-01
>	Mike	2022-01-15
>	Sam	2022-03-01
>	Bob	2022-04-01
>	Sara	2022-05-01
>	David	2022-06-01

AIM - Using Relational, Logical Operators

1) Display all records select * from employee;

- 2) Count total number of employees in the table. SELECT COUNT(Eid) FROM employee;
- 3) List max salary of employee whose dept is 'Sales'.
 SELECT Max(salary) FROM employee WHERE dept = 'Sales';
- 4) List min salary and name of employee in all of the department.

SELECT Ename, salary
FROM employee
WHERE
salary = (
SELECT MIN(salary)
FROM employee
);

5) List avg sal and number of employee working in dept no - 101

select AVG(salary), Count(Eid) FROM employee WHERE Dept_No = '101';

- 6) Total salary of all employees select sum(salary) as Total FROM employee;
- 7) List ename, salary ,dept and deptno in ascending order of dept_no & descending order of salary

SELECT Ename, salary, Dept, Dept_No FROM employee ORDER BY Dept_No, salary DESC;

8) List the name of employees who are working in orgainzation for more than 2 months?

select Ename from employee where datediff(now(), HireDate) > 60

9) List ename & hire date in desc order of hire date

select Ename, HireDate from employee order by HireDate desc;

AIM – Based on null distinct, null, like, derived attribute, order by clause.

1) List the different jobs availabe in the emp table

select distinct empjob from employeepr5;

2) List the employees names that are not eligible for commission select emphage from employeepr5 when

select empname from employeepr5 where empcommission is null;

select empname, empJob from employeepr5 where empManagerName is null;

4) List the emp who are not assign to any department

select empname from employeepr5 where empdept is null;

5) List the emp name & their designation that is eligible for commission

select empname, empJob from employeepr5 where empcommission is not null;

6) List the details whose salary is greater than 2000 & commission is null

select *
from employeepr5
where
empsal > 2000
and empcommission is null

7) list the name of employees whose name is starting with S

select empname from employeepr5 where empname like 'S%';

8) list the name of employees whose name is ending with S

select empname from employeepr5 where empname like '%S';

9) list the name of employees whose name has 5 characters

select empname from employeepr5 where length(empname) = 5;

empNo int	empname varchar(50)	empJob varchar(50) ♦	empManagerName varchar(50)	emphiredate date	empsal int
Filter					Filter
6	David	salesman	Sara	2022-06-01	2100

empcommission int	empdept varchar(50) ♦	deptNo int \$	pf int ♦	hra int 🕏	da int ♦	gross int
Filter						Filter
(NULL)	sales	60	30	150	90	570

10) list the name of employees whose is having I as second CHARACTER

select empname from employeepr5 where empname like '_I%';

11) List the name of employees who have been with the company for 2 years

SELECT empname FROM employeepr5 WHERE YEAR(CURDATE()) -YEAR(emphiredate) = 2;

12) List the name of emp, salary, and pf amount of employees

SELECT empname, empsal, pf FROM employeepr5;

13) List the emp name, emp no, salary in ascending order of salary

SELECT empname, empno, empsal FROM employeepr5 ORDER BY empsal;

Q	empname varchar(50) ◆	empno int ♦	empsal int
	Filter	Filter	Filter
>	John	1	500
>	Bob	4	1000
>	Olivia	9	1600
>	Sophia	10	1700
>	David	6	2100
>	Emily	7	2400
>	Sams	3	2800
>	Kate	8	3500
>	Sara	5	4100
>	Mike	2	4200

14) List the name and hiredate in decsending order of hiredate

SELECT empname, emphiredate FROM employeepr5 ORDER BY emphiredate DESC;

Q	empname varchar(50) ◆	emphiredate 💠
	Filter	Filter
>	Sophia	2022-10-01
>	Olivia	2022-09-01
>	Kate	2022-08-01
>	Emily	2022-07-01
>	David	2022-06-01
>	Sara	2022-05-01
>	Bob	2022-04-01
>	Sams	2022-03-01
>	Mike	2022-01-15
>	John	2022-01-01

15) List the emp details in ascending order of salary

SELECT * FROM employeepr5 ORDER BY empsal;

Q	empNo int	empname varchar(50)	empJob varchar(50) ♦	empManagerName varchar(50)	emphiredate date ♦	empsal int
						Filter
>		John	salesman	Bob	2022-01-01	500
>	4	Bob	salesman	Sam	2022-04-01	1000
>	9	Olivia	analyst	Kate	2022-09-01	1600
>	10	Sophia	salesman	Olivia	2022-10-01	1700
>		David	salesman	Sara	2022-06-01	2100
>		Emily	analyst	David	2022-07-01	2400
>		Sams	manager	(NULL)	2022-03-01	2800
>	8	Kate	salesman	Emily	2022-08-01	3500
>		Sara	analyst	Bob	2022-05-01	4100
>	2	Mike	analyst	Sam	2022-01-15	4200

empcommission int	empdept varchar(50) ♦	deptNo int	pf int ♦	hra int 🗘	da int ‡	gross int
Filter						Filter
10	sales	10	50	250	150	950
40	sales	40	100	500	300	1900
90	(NULL)	(NULL)	160	800	480	3040
10	sales	100	170	850	510	3230
(NULL)	sales	60	30	150	90	570
70	analyst	70	240	1200	720	4560
30	manager	30	280	1400	840	5320
80	sales	80	350	1750	1050	6650
50	analyst	50	410	2050	1230	7790
20	analyst	20	420	2100	1260	7980

16) List the emp name, salary, pf, hra, da and gross order on the basis of gross

gross
SELECT
empname,
empsal,
pf,
hra,
da,
(empsal + hra + da) AS gross
FROM employeepr5
ORDER BY gross;

Q	empname varchar(50)	empsal int	pf int ♦	hra int ♦	da int ♦	gross int ♦
>	John	500	50	250	150	900
>	Bob	1000	100	500	300	1800
>	David	2100	30	150	90	2340
>	Olivia	1600	160	800	480	2880
>	Sophia	1700	170	850	510	3060
>	Emily	2400	240	1200	720	4320
>	Sams	2800	280	1400	840	5040
>	Kate	3500	350	1750	1050	6300
>	Sara	4100	410	2050	1230	7380
>	Mike	4200	420	2100	1260	7560

AIM – Based on null distinct, null, like, derived attribute, order by clause.

1) List the department number & no of employees in each department select empdept, deptno, count(empdept) from employeepr6

2) List the department number, total salary payable to each department

group by deptno, empdept

select empdept, deptno, sum(empsal) from employeepr6 group by deptno, empdept

3) List the jobs & no of emp in each job result must be in descending order of no of employees

select empjob, count(empjob) from employeepr6 group by empjob order by count(empjob) desc

4) List the sum of all salary, maximum salary & average salary of employees job wise

select empjob, sum(empsal), max(empsal), avg(empsal) from employeepr6 group by empjob order by empjob

5) List the average salary from each job excluding manager

select empjob, avg(empsal) from employeepr6 where empjob != 'Manager' group by empjob order by empjob

6) List the total salary max & min salary, avg sal of employees jobwise for department number 20

select max(empsal), min(empsal), avg(empsal) from employeepr6 where deptno = 20 order by empjob

Q	empdept varchar(50) ♦	deptno int ≑	sum(empsal) newdecimal
>	sales	10	8800
	analyst	20	10700
	manager	30	2800
>	(NULL)	(NULL)	1600

Q	empjob varchar ♦	count(empjob) \$\diangle\$ bigint
		Filter
>	salesman	5
>	analyst	4
>	manager	1

7) List the avgrage salary of all the departments employing more than 4 people

```
select avg(empsal)
from employeepr6
WHERE
deptno IN (
    SELECT deptno
    FROM employeepr6
    GROUP BY
    deptno
    HAVING
    count(deptno) > 4
)
```

8) List avgrage monthly salary for each job type within department number outer group by department number in a group by job

select avg(empsal) from employeepr6 group by deptno, empjob order by deptno, empjob

9) List job of employees where salary >=2500

select empjob from employeepr6 where empsal >= 2500 order by empjob

AIM –

1) Create table Branch and insert values into it.

```
i)
    create Table branchpr7 (
    branch_name varchar(20) primary key,
    branch_city varchar(20),
    assets int
  );
  ii)
  insert into
  branchpr7
values ('Mumbai', 'Mumbai', 1000000),
  ('Delhi', 'Delhi', 2000000),
     'Bangalore',
     'Bangalore',
     1500000
  ('Chennai', 'Chennai', 1200000),
  ('Kolkata', 'Kolkata', 1300000),
     'Hyderabad',
     'Hyderabad',
     1100000
  ('Pune', 'Pune', 900000),
```

```
'Ahmedabad',
'Ahmedabad',
800000
```

Q	* branch_name varchar(20)	branch_city varchar(20) ♦	assets int ♦
	Filter	Filter	Filter
>	Ahmedabad	Ahmedabad	800000
>	Bangalore	Bangalore	1500000
>	Chennai	Chennai	1200000
>	Delhi	Delhi	2000000
>	Hyderabad	Hyderabad	1100000
>	Kolkata	Kolkata	1300000
>	Mumbai	Mumbai	1000000
>	Pune	Pune	900000

2) Create table Customer and insert values into it.

```
i)
create Table customerpr7 (
  customer_name varchar(20) primary key,
  customer_street varchar(20),
  customer_city varchar(20),
  assets int
);
ii)
insert into
  customerpr7
values (
     'Amit',
     'MG Road',
     'Mumbai',
     500000
  ),(
     'Ravi',
     'Connaught Place',
     'Delhi',
     750000
  ), (
     'Priya',
     'Brigade Road',
     'Bangalore',
     600000
  ), (
     'Anjali',
     'Anna Salai',
     'Chennai',
```

```
550000
), (
  'Rahul',
  'Park Street',
  'Kolkata',
  650000
), (
  'Sneha',
  'Banjara Hills',
  'Hyderabad',
  700000
), (
  'Vikas',
  'FC Road',
  'Pune',
  450000
), (
  'Kiran',
  'CG Road',
  'Ahmedabad',
  400000
);
```

Q	* customer_name varchar(20)	customer_street varchar(20)	customer_city varchar(20) ◆	assets int ◆
	Filter	Filter	Filter	Filter
>	Amit	MG Road	Mumbai	500000
>	Anjali	Anna Salai	Chennai	550000
>	Kiran	CG Road	Ahmedabad	400000
>	Priya	Brigade Road	Bangalore	600000
>	Rahul	Park Street	Kolkata	650000
>	Ravi	Connaught Place	Delhi	750000
>	Sneha	Banjara Hills	Hyderabad	700000
>	Vikas	FC Road	Pune	450000

3) Create table Account and insert values into it.

```
i)
create Table accountpr7 (
  account_number int primary key,
  branch_name varchar(20),
  balance int
);
ii)
insert into
  accountpr7
values (101, 'Mumbai', 50000),
  (102, 'Delhi', 75000),
  (103, 'Bangalore', 60000),
  (104, 'Chennai', 55000),
  (105, 'Kolkata', 65000),
  (106, 'Hyderabad', 70000),
  (107, 'Pune', 45000),
  (108, 'Ahmedabad', 40000);
```

Q	* account_number	branch_name varchar(20) ◆	balance int
	Filter	Filter	Filter
>	101	Mumbai	50000
>	102	Delhi	75000
>	103	Bangalore	60000
>	104	Chennai	55000
>	105	Kolkata	65000
>	106	Hyderabad	70000
>	107	Pune	45000
>	108	Ahmedabad	40000

4) Create table Depositor and insert values into it.

```
i)
create Table Depositorpr7 (
  customer_name varchar(20),
  account_number int
);
ii)
insert into
  Depositorpr7
values ('Amit', 101),
  ('Ravi', 102),
  ('Priya', 103),
  ('Anjali', 104),
  ('Rahul', 105),
  ('Sneha', 106),
  ('Vikas', 107),
  ('Kiran', 108);
```

Q	customer_name varchar(20)	account_number int
	Filter	Filter
>	Amit	101
>	Ravi	102
>	Priya	103
>	Anjali	104
>	Rahul	105
>	Sneha	106
>	Vikas	107
>	Kiran	108

5) Create table Loan and insert values into it.

```
i)
create Table loanpr7 (
  loan_number int primary key,
  branch_name varchar(20),
  amount int
);
ii)
insert into
  loanpr7
values (201, 'Mumbai', 300000),
  (202, 'Delhi', 400000),
  (203, 'Bangalore', 350000),
  (204, 'Chennai', 320000),
  (205, 'Kolkata', 330000),
  (206, 'Hyderabad', 310000),
  (207, 'Pune', 290000),
  (208, 'Ahmedabad', 280000);
```

Q	* loan_number	branch_name varchar(20) ♦	amount int ♦
	Filter	Filter	Filter
>	201	Mumbai	300000
>	202	Delhi	400000
>	203	Bangalore	350000
>	204	Chennai	320000
>	205	Kolkata	330000
>	206	Hyderabad	310000
>	207	Pune	290000
>	208	Ahmedabad	280000

6) Create table Borrower and insert values into it.

```
i)
create Table borrowerpr7 (
  customer_name varchar(20),
  loan_number int
);
ii)
insert into
  borrowerpr7
values ('Amit', 201),
  ('Ravi', 202),
  ('Priya', 203),
  ('Anjali', 204),
  ('Rahul', 205),
  ('Sneha', 206),
  ('Vikas', 207),
  ('Kiran', 208);
```

Q	customer_name varchar(20)	loan_number int \$
	Filter	Filter
>	Amit	201
>	Ravi	202
>	Priya	203
>	Anjali	204
>	Rahul	205
>	Sneha	206
>	Vikas	207
>	Kiran	208

AIM -

1) Find the names of all branches in the loan relation

select branch name from loanpr7;

2) Find the names of all branches in the loan relation and remove duplicates

select distinct branch name from loanpr7;

3) Find the loan number for loans made by delhi branch with loan amount >320000

select loan number from loanpr7 where

branch name = 'Delhi' and amount > 320000;

4) List the emp who are not assign to any department select empname from employeepr5 where empdept is null;

Q empname varchar(50) \$

Filter

Olivia

5)

6) Find the name, loan number, loan amount of all customers & rename the columns name as loan_number as loan_id

select
customer_name,
loan_number as loan_id,
amount
from borrowerpr7
natural join loanpr7;

customer_name Pin varchar	loan_id int ◆	amount int
Filter	Filter	Filter
Amit	201	300000
Ravi	202	400000
Priya	203	350000
Anjali	204	320000
Rahul	205	330000
Sneha	206	310000
Vikas	207	290000
Kiran	208	280000

7) Find the customer names & their loan numbers for all the customers having loan at some branch

select customer_name,
loan_number
from borrowerpr7
 natural join loanpr7;

customer_name varchar	loan_number int
Filter	Filter
Amit	201
Ravi	202
Priya	203
Anjali	204
Rahul	205
Sneha	206
Vikas	207
Kiran	208

8) Find the names of all branches that have greater assests then some branch located in Jaipur

```
select branch_name
from loanpr7
where
amount > any (
select amount
from loanpr7
where
branch_name = 'Jaipur'
);
```

9) Find the names of all customes whose string incluedes the string "Main"

select customer_name
from borrowerpr7
where
 customer_name like
'%Main%';

10) List in aplhabetical order the names of all the customers having loan in delhi branch

select customer_name from borrowerpr7 natural join loanpr7 where branch_name = 'Delhi' order by customer_name;

11) Find the all customers who have loan & account or both

select customer_name from borrowerpr7 natural join accountpr7 natural join loanpr7;

12) Find the customers who have both loan & account

select customer_name from borrowerpr7 natural join accountpr7 natural join loanpr7;

13) Find the customers who have either loan or account or both

select customer_name from

borrowerpr7 natural full join accountpr7 natural full join loanpr7;

14) Find the average account balance at delhi branch

select avg(balance) from
accountpr7 where
branch_name = 'Delhi';

15) Find the number of tuples in the customer relation

select count(*) from
customerpr7;

16) Find the number of depositors on the bank

select count(distinct
customer_name) from
depositorpr7;

17) Find the number of depositors in each branch

select count(distinct
customer_name) from
depositorpr7;

18) Find the names of all branches where the average account balance is greater than 65000

select branch_name
from accountpr7
group by
branch_name
having
avg(balance) > 65000;

Oracle Express Edition

1. Introduction to Oracle Express Edition (XE)

- **Overview**: Describe Oracle XE as a free-to-use, entry-level version of Oracle's RDBMS. Mention its suitability for beginners, developers, and small applications.
- **Purpose and Target Audience**: Explain that Oracle XE is intended for students, developers, and small businesses needing database management without the cost.
- **Key Advantages**: Highlight the benefits of using XE, like a full-featured database experience, lower resource requirements, and easy setup.

2. Features of Oracle XE

- Free to Use: Emphasize that XE is a no-cost, fully functional version of Oracle's database.
- **Lightweight and Limited Resource Usage**: Suitable for smaller applications due to limitations (e.g., 2GB memory limit, up to 12GB data).
- Comprehensive Database Features: Includes SQL, PL/SQL, RESTful services, JSON, and support for Oracle Application Express (APEX).
- Platform Compatibility: Works on various platforms, including Windows and Linux.
- Community and Learning Support: Access to extensive Oracle documentation and community resources.

3. Limitations and Comparisons to Other Oracle Editions

- Usage Limits: Explain the storage (12GB), CPU (up to 2 CPU threads), and RAM (2GB) restrictions.
- **Feature Limitations**: Some advanced features (e.g., clustering, certain performance enhancements) are not available in XE.
- **Comparison with Other Editions**: Briefly compare with Standard, Enterprise, and Cloud Editions to contextualize where XE fits.

4. Technical Features and Capabilities

- Storage and Performance Management: Describe its capability for handling moderatesized datasets.
- Data Security: Explain features such as encryption, data masking, and user access control.
- **Data Access and APIs**: Support for RESTful services, allowing external applications to interact with data via web services.
- **Development Tools and Compatibility with APEX**: Oracle XE supports APEX, enabling web-based application development.
- Backup and Recovery Options: Describe the options for backup and recovery to protect data.

5. Installing Oracle XE

- **System Requirements**: Detail requirements such as OS compatibility, minimum storage, RAM, and CPU specifications.
- **Downloading Oracle XE**: Guide users to Oracle's official site for downloading.
- Installation Steps:
 - **o** Windows Installation:
 - 1. **Download the Installer**: Download the XE installer for Windows.
 - 2. **Run the Installer**: Walk through installation steps, including accepting license agreements.
 - 3. **Set up Default Passwords**: Briefly explain setting up default SYS and SYSTEM user passwords.
 - **o** Linux Installation:
 - 1. **Download and Unpack the RPM File**: Step-by-step guide for installing RPM packages on Linux.
 - 2. **Setup and Configuration**: Walkthrough of setup scripts and database start commands.
- **Testing the Installation**: Demonstrate logging into the XE database and running a sample query.

6. Basic Usage of Oracle XE

- Connecting to the Database: Instructions for logging in using SQL*Plus or Oracle SQL Developer.
- Creating and Managing Tables: Basic SQL commands for creating tables, inserting data, and querying.
- **Database Management**: Simple tasks such as creating users, assigning roles, and basic security settings.
- Using APEX for Application Development: Brief introduction to setting up APEX and creating a sample application.

7. Use Cases for Oracle XE

- Education and Learning: Ideal for students and educators learning SQL and database management.
- **Application Prototyping**: Useful for developers to test and prototype applications.
- Small Business Applications: Discuss use cases like inventory management, CRM, etc.
- **Personal Projects and Experiments**: Mention how hobbyists and individual developers benefit from XE.

8. Conclusion

- Summary of Key Points: Recap the benefits, features, and installation of Oracle XE.
- **Recommendation for Use**: Summarize who should use Oracle XE and its value for specific users and organizations.
- **Future Prospects**: Mention how users can upgrade to higher Oracle editions if needed.

Installing the Oracle SQL Developer Client

Step 1: Downloading Oracle SQL Developer

Introduction

With the database installed, you now need to download and use a client that is capable of connecting to the database. Modern clients are graphical and have many features to enhance productivity. If you already have a working copy of a SQL client you prefer, you do not need to complete this section. Simply setup a connection to your installed database and continue with the next section. Otherwise, it is recommended that you install the free Oracle SQL Developer client. This section contains step-by-step instructions for downloading and using Oracle SQL Developer.

Download Oracle SQL Developer On Oracle.com, click on the Downloads/SQL Developer link:

This will take you to a page of Oracle SQL Developer downloads for different platforms and different Java configurations.

Before downloading, you must first accept the license agreement. Then click on "Download" link for the "Windows 64-bit with JDK 8 included" option. This option includes Java and allows you to run the client by simply downloading and unzipping it, without a more complex installation process. However, if you have Windows 32-bit, you will need touse the alternative "Windows 32-bit/64-bit" option, and ensure that you also have Java 8 installed.

Since you have already logged into the OTN to download Oracle, clicking on the link here should immediately begin the file download. The file name will start with "sqldeveloper", and then be followed by the version that is being downloaded. Save the file into the C:\Oracle directory you used to download the database, or into another directory of yourchoice that is easy for you to remember.

Unzip SQL Developer

Use the zipping program of your choice to unzip the file. There are many such tools, but ifyou do not have one already, you can download 7-zip at http://www.7-zip.org/download.html. Once the file is unzipped, you will see a directory named "sqldeveloper". It will look something like this:

Step 2: Launching Oracle SQL Developer

Launch Oracle SQL Developer To launch Oracle SQL Developer, simply navigate into the newly created "sqldeveloper" directory, and execute "sqldeveloper". This standalone client does not require an installation before being used.

Simply double-click "sqldeveloper" to launch the program. You can return to this directoryeach time you wish to launch Oracle SQL Developer, or you can create a shortcut and place it on your desktop.

Step 3: Connecting to Your Database

Introduction

In any SQL client, we must first establish a connection to the database before typing our SQL commands. A connection opens a communication pathway between the client and the database. In Oracle SQL Developer, the term "connection" is overloaded to indicate both inactive and active communication pathways, as well as all of the configuration information necessary to connect again and again to the same database.

Connecting as the SystemUser

We first need to connect to the database as the "system" user, so that we can create our own user to complete the assignments. To start, right click on the Connections category, then select "New Connection..." from the context menu.

Oracle SQL Developer will launch the New Connection dialog, which requests configuration information about this new connection.

You will need to modify the following fields — Connection Name, Username, and Password. The Connection Name is just an identifier that you are giving your connection, so that you may identify it in the future. You can type anything you want that is memorable. We will use the name "system" because this connection is for the system user. The username is "system". The password is whatever you chose your password to be during the Oracle installation process.

Click the button to ensure that you are able to connect. If you are able to connect, it will state "Status: Success" in the lower left-hand part of the dialog. If there is an issue, it will display the issue in the place of the success status. You will need to fix any issue before proceeding to connect.

Now simply click the Connection button to establish the connection. When you do so, Oracle SQL Developer will open up a blank SQL worksheet.

In this SQL worksheet, you can type commands, execute them, and see the results.

Congratulations! You have now successfully launched Oracle SQL Developer andestablished a connection to your database.

Oracle Express Edition

1. Introduction to Oracle Express Edition (XE)

- **Overview**: Describe Oracle XE as a free-to-use, entry-level version of Oracle's RDBMS. Mention its suitability for beginners, developers, and small applications.
- **Purpose and Target Audience**: Explain that Oracle XE is intended for students, developers, and small businesses needing database management without the cost.
- **Key Advantages**: Highlight the benefits of using XE, like a full-featured database experience, lower resource requirements, and easy setup.

2. Features of Oracle XE

- Free to Use: Emphasize that XE is a no-cost, fully functional version of Oracle's database.
- **Lightweight and Limited Resource Usage**: Suitable for smaller applications due to limitations (e.g., 2GB memory limit, up to 12GB data).
- Comprehensive Database Features: Includes SQL, PL/SQL, RESTful services, JSON, and support for Oracle Application Express (APEX).
- Platform Compatibility: Works on various platforms, including Windows and Linux.
- Community and Learning Support: Access to extensive Oracle documentation and community resources.

3. Limitations and Comparisons to Other Oracle Editions

- Usage Limits: Explain the storage (12GB), CPU (up to 2 CPU threads), and RAM (2GB) restrictions.
- **Feature Limitations**: Some advanced features (e.g., clustering, certain performance enhancements) are not available in XE.
- **Comparison with Other Editions**: Briefly compare with Standard, Enterprise, and Cloud Editions to contextualize where XE fits.

4. Technical Features and Capabilities

- Storage and Performance Management: Describe its capability for handling moderatesized datasets.
- Data Security: Explain features such as encryption, data masking, and user access control.
- **Data Access and APIs**: Support for RESTful services, allowing external applications to interact with data via web services.
- **Development Tools and Compatibility with APEX**: Oracle XE supports APEX, enabling web-based application development.
- Backup and Recovery Options: Describe the options for backup and recovery to protect data.

5. Installing Oracle XE

- **System Requirements**: Detail requirements such as OS compatibility, minimum storage, RAM, and CPU specifications.
- **Downloading Oracle XE**: Guide users to Oracle's official site for downloading.
- Installation Steps:
 - **o** Windows Installation:
 - 1. **Download the Installer**: Download the XE installer for Windows.
 - 2. **Run the Installer**: Walk through installation steps, including accepting license agreements.
 - 3. **Set up Default Passwords**: Briefly explain setting up default SYS and SYSTEM user passwords.
 - **o** Linux Installation:
 - 1. **Download and Unpack the RPM File**: Step-by-step guide for installing RPM packages on Linux.
 - 2. **Setup and Configuration**: Walkthrough of setup scripts and database start commands.
- **Testing the Installation**: Demonstrate logging into the XE database and running a sample query.

6. Basic Usage of Oracle XE

- Connecting to the Database: Instructions for logging in using SQL*Plus or Oracle SQL Developer.
- Creating and Managing Tables: Basic SQL commands for creating tables, inserting data, and querying.
- **Database Management**: Simple tasks such as creating users, assigning roles, and basic security settings.
- Using APEX for Application Development: Brief introduction to setting up APEX and creating a sample application.

7. Use Cases for Oracle XE

- Education and Learning: Ideal for students and educators learning SQL and database management.
- **Application Prototyping**: Useful for developers to test and prototype applications.
- Small Business Applications: Discuss use cases like inventory management, CRM, etc.
- **Personal Projects and Experiments**: Mention how hobbyists and individual developers benefit from XE.

8. Conclusion

- Summary of Key Points: Recap the benefits, features, and installation of Oracle XE.
- **Recommendation for Use**: Summarize who should use Oracle XE and its value for specific users and organizations.
- **Future Prospects**: Mention how users can upgrade to higher Oracle editions if needed.

Installing the Oracle SQL Developer Client

Step 1: Downloading Oracle SQL Developer

Introduction

With the database installed, you now need to download and use a client that is capable of connecting to the database. Modern clients are graphical and have many features to enhance productivity. If you already have a working copy of a SQL client you prefer, you do not need to complete this section. Simply setup a connection to your installed database and continue with the next section. Otherwise, it is recommended that you install the free Oracle SQL Developer client. This section contains step-by-step instructions for downloading and using Oracle SQL Developer.

Download Oracle SQL Developer On Oracle.com, click on the Downloads/SQL Developer link:

This will take you to a page of Oracle SQL Developer downloads for different platforms and different Java configurations.

Before downloading, you must first accept the license agreement. Then click on "Download" link for the "Windows 64-bit with JDK 8 included" option. This option includes Java and allows you to run the client by simply downloading and unzipping it, without a more complex installation process. However, if you have Windows 32-bit, you will need touse the alternative "Windows 32-bit/64-bit" option, and ensure that you also have Java 8 installed.

Since you have already logged into the OTN to download Oracle, clicking on the link here should immediately begin the file download. The file name will start with "sqldeveloper", and then be followed by the version that is being downloaded. Save the file into the C:\Oracle directory you used to download the database, or into another directory of yourchoice that is easy for you to remember.

Unzip SQL Developer

Use the zipping program of your choice to unzip the file. There are many such tools, but ifyou do not have one already, you can download 7-zip at http://www.7-zip.org/download.html. Once the file is unzipped, you will see a directory named "sqldeveloper". It will look something like this:

Step 2: Launching Oracle SQL Developer

Launch Oracle SQL Developer To launch Oracle SQL Developer, simply navigate into the newly created "sqldeveloper" directory, and execute "sqldeveloper". This standalone client does not require an installation before being used.

Simply double-click "sqldeveloper" to launch the program. You can return to this directoryeach time you wish to launch Oracle SQL Developer, or you can create a shortcut and place it on your desktop.

Step 3: Connecting to Your Database

Introduction

In any SQL client, we must first establish a connection to the database before typing our SQL commands. A connection opens a communication pathway between the client and the database. In Oracle SQL Developer, the term "connection" is overloaded to indicate both inactive and active communication pathways, as well as all of the configuration information necessary to connect again and again to the same database.

Connecting as the SystemUser

We first need to connect to the database as the "system" user, so that we can create our own user to complete the assignments. To start, right click on the Connections category, then select "New Connection..." from the context menu.

Oracle SQL Developer will launch the New Connection dialog, which requests configuration information about this new connection.

You will need to modify the following fields — Connection Name, Username, and Password. The Connection Name is just an identifier that you are giving your connection, so that you may identify it in the future. You can type anything you want that is memorable. We will use the name "system" because this connection is for the system user. The username is "system". The password is whatever you chose your password to be during the Oracle installation process.

Click the button to ensure that you are able to connect. If you are able to connect, it will state "Status: Success" in the lower left-hand part of the dialog. If there is an issue, it will display the issue in the place of the success status. You will need to fix any issue before proceeding to connect.

Now simply click the Connection button to establish the connection. When you do so, Oracle SQL Developer will open up a blank SQL worksheet.

In this SQL worksheet, you can type commands, execute them, and see the results.

Congratulations! You have now successfully launched Oracle SQL Developer andestablished a connection to your database.