EEA-25, Primeira prova, 2020, Orientações

Esta primeira prova deve ser realizada no estilo de um estudo dirigido, onde o aluno vai estudando e buscando nos materiais de referência as soluções para as questões da prova. Não se prendam a detalhes e ao tempo para realização da prova. O laboratório desta disciplina é realizado normalmente em dupla, sendo assim, se for necessário, a dupla pode discutir as questões, mas cada aluno deve entregar a sua prova. A disciplina de EEA-27 que será ministrada no próximo semestre é uma continuação desta disciplina, o que possibilitará um entendimento mais completo e prático pelo aluno quando voltarem as aulas presenciais no laboratório. Se necessário, avance pelos capítulos do livro do Muhamad para buscar outras explicações e exemplos resolvidos.

Orientações para solução da questão 1

Consulte o livro do Muhamad na seção 0.3 - Memórias semicondutoras (páginas 29 a 41. Esta numeração de páginas se refere a numeração do arquivo pdf, que neste caso não bate com a numeração de páginas do livro). Nesta seção, concentre-se nas informações sobre memória ROM (páginas 32 a 36) e nas informações sobre memórias RAM (páginas 36 a 41). Extraia as informações relevantes sobre volatilidade, formas de construção de cada célula de memória, formas de gravação e apagamento, dentre outras informações.

Para memórias ROM (PROM, OTP, EPROM, EEPROM, FLASH e MASK ROM) comente sobre as formas de gravação e apagamento. Comente sobre as diferenças entre as memórias EEPROM e FLASH, o número de ciclos de programação/apagamento.

Para memórias RAM (SRAM e DRAM), comente sobre as diferenças entre a quantidade de transistores que são utilizados para implementar cada célula (bit) e seu o impacto na velocidade. Comente também sobre o processo de "refresh".

Não precisa escrever um tratado sobre memórias, não se prenda a detalhes, o mais importante é entender as principais características e diferenças entre as memórias. As informações disponibilizadas no livro são suficientes para este propósito. Tente responder tudo em uma única página ou até montar uma tabela.

Orientações para solução da questão 2

Consulte a seção "Decodificação de endereços de memória" (páginas 41 a 44). Na prova foram utilizadas memórias com capacidades de 32KBytes cada (linhas de endereço de A0 até A12). Note também que as entradas de controle do decodificador (E1, E2 e E3, que também podem ser chamadas de G1, G2A e G2B respectivamente) já estão todas habilitadas. Monte a tabela com os endereços iniciais e finais de cada memória, juntamente com os controles do decodificador. Apresente as faixas de endereço em hexadecimal.

Orientações para solução da questão 3

Arquiteturas Harvard e Von Neumann (páginas 48 e 49). Faça um breve comentário sobre as principais diferenças entre as arquiteturas ressaltando as vantagens e desvantagens de cada uma.

Orientações para solução da questão 4

Oriente-se pelo "Projeto ContPulsos" e também pelo material "Microcontroladores - Introdução.pdf", disponibilizados dentro da pasta "Aulas 4 a 6" no Drive. Observe que no projeto ContPulsos, 4 leds foram ligados no PORTD (PD0, PD1, PD2 e PD3) juntamente com a chave PULSO em PD7. Analisando o arquivo ContPulsos.asm (edite esse arquivo com qualquer editor de texto caso não tenha instalado o AVR Studio) e observe que inicialmente foi inicializado o PORTD da seguinte forma:

LDI R16,0b00001111 OUT DDRD,R16

Ou seja, os bits 7, 6, 5 e 4 como entradas e os bits 3, 2, 1 e 0 como saídas. Consulte o datasheet "Atmel -7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf" nas páginas 59 e 60, ou no livro do Muhamad, capítulo4, página 153, como são configurados os registradores de entrada e saída. Para acionar os 8 leds conectados na PORTD, o registrador DDRD deve ser configurado para saída em todos os bits. Em assembly, o registrador DDRD não pode ser configurado diretamente, necessitando assim de um outro registrador para configurá-lo, neste caso o R16.

Já a chave PULSO foi conectada no PB0, ou seja, no bit 0 do PORTB. Sendo assim, deve-se configurar o registrador DDRB com o bit 0 como entrada. Para fazer leitura da porta PB0, lembre-se que existem os registradores PORTB e PINB, utilizados para escrita e leitura respectivamente. Lembre-se também que o processo de leitura captura simultaneamente, ou de forma paralela, todos os 8 bits da porta, e cabe ao programador analisar o bit desejado. Para isso utiliza-se uma máscara implementada com uma instrução ANDI, onde o resultado da operação zera todos os bits do registrador exceto o bit desejado, possibilitando assim que as instruções BREQ e BRNE desviem o fluxo do programa caso o resultado da operação AND for zero ou for diferente de zero. Os bits de um registrador são no formato b7,b6,b5,b4,b3,b2,b1,b0 . A máscara realiza uma operação AND bit a bit entre o registrador R16 e constante de 8 bits expressa em binário. Sendo assim, para isolarmos somente o bit0 no registrador R16, devemos utilizar a máscara 0b00000001.

Cada um dos PORTs é visto em 3 endereços:

PORTB – visto nos endereços DDRB, PINB e PORTB

DDRB – para configuração, bit em 1 configura o respectivo terminal como saída, bit 0 configura como entrada;

PINB – para leitura dos níveis lógicos aplicados aos terminais;

PORTB – para emissão de níveis através dos terminais;

PORTD – visto nos endereços DDRD, PIND e PORTD

DDRD – para configuração, bit em 1 configura o respectivo terminal como saída, bit 0 configura como entrada;

PIND – para leitura dos níveis lógicos aplicados aos terminais;

PORTD – para emissão de níveis através dos terminais;