

# **ITGM**



### Теория формальных языков — это не только написание парсеров

#### Семён Григорьев

JetBrains Research, лаборатория языковых инструментов Санкт-Петербургский государственный университет

17.03.2018

### Поиск путей в графах

- Анализ графов
  - Запросы к графовым базам данных
  - Анализ сетей (социальных, интернет и т.д.)
- Статический анализ программ
  - Анализ алиасов
  - ► Taint analysis
  - Анализ типов
  - Статический анализ динамически формируемого кода
- •

### Теория формальных языков

- Алфавит множество символов  $(\Sigma, N, ...)$
- Язык множество "слов"
- ullet Язык L над алфавитом  $\Sigma$ :  $L(\Sigma) = \{w | w \in \Sigma^*\}$
- Классы языков
  - ▶ Регулярные: регулярные выражения ("академические"), конечные автоматы
  - Контекстно-свободные
- У разных классов разная выразительная сила
  - ▶ Язык "правильных" скобочных последовательностей является контекстно-свободным, но не является регулврным

## Регулярные языки

#### Регулярные языки

- ⇔ регулярные выражения
- ⇔ конечные автоматы

Конечный автомат  $M = (\Sigma, Q, P, S, F)$ 

- Σ алфавит
- Q множество состояний
- ullet  $P\subseteq Q imes \Sigma imes Q$  правила перехода из одного состояния в другое
- ullet  $S\subseteq Q$  стартовые состояния
- ullet  $F\subseteq Q$  финальные состояния

#### Конечные автоматы



- ullet  $p=v_0 \stackrel{l_0}{\longrightarrow} v_1 \stackrel{l_1}{\longrightarrow} \cdots v_{n-1} \stackrel{l_{n-1}}{\longrightarrow} v_n$  путь из стартового состояния в конечное
- $w(p) = w(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $L(M) = \{w(p)|p$  путь из стартового состояния M в конечное $\}$
- $L(M) = \{aaa; bb; aaabb; aaabbaaabbbb, ...\}$

### Контекстно-свободные языки

Контекстно-свободная грамматика  $\mathbb{G}=(\Sigma,N,P,S)$ 

- **Σ** терминальный алфавит
- N нетерминальный алфавит
- Р правила вывода
- ullet  $S\in \mathcal{N}$  стартовый нетерминал

Контекстно свободная граммтика для языка  $L = \{a^nb^n \mid n \geq 1\}$  с явным выделением "середины"

$$\begin{array}{ll} 0: & S \rightarrow a \ S \ b \\ 1: & S \rightarrow \textit{Middle} \end{array}$$

2:  $Middle \rightarrow a b$ 

Грамматика как правила переписывания:

- $S \xrightarrow{1} Middle \xrightarrow{2} ab$
- $S \xrightarrow{0} a S b \xrightarrow{0} aa S bb \xrightarrow{1} aa Middle bb \xrightarrow{2} aaabbb$

## Поиск путей с контекстно-свободными ограничениями

- ullet  $\mathbb{G}=(\Sigma, N, P)$  контекстно-свободная грамматика
- ullet G=(V,E,L) ориентированный граф,  $E\subseteq V imes L imes V$ ,  $L\subseteq \Sigma$
- ullet  $p=v_0 \stackrel{l_0}{ o} v_1 \stackrel{l_1}{ o} \cdots v_{n-1} \stackrel{l_{n-1}}{ o} v_n$  путь в графе G
- $w(p) = w(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R = \{p \mid \exists N_i \in N(w(p) \in L(\mathbb{G}, N_i))\}$ 
  - Стартовый нетерминал можно зафиксировать заранее
  - ▶ Проблема: множество R может быть бесконечным
- Задачу можно сформулировать иначе:

$$Q = \{(v_0, N_i, v_n) \mid \exists N_i \in N, \ \exists p = v_0 \xrightarrow{l_0} \cdots \xrightarrow{l_{n-1}} v_n \ (w(p) \in L(\mathbb{G}, N_i))\}$$

### Пример

Входной граф



Запрос — грамматика G для языка  $L=\{a^nb^n\mid n\geq 1\}$  с явным выделением середины пути

$$0: S \rightarrow a S b$$

1: 
$$S \rightarrow Middle$$

2: 
$$Middle \rightarrow a b$$

Ответ — бесконечное множество путей

• 
$$p_1 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$$

• 
$$p_2 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0$$

### Структурное представление результата запроса



Входной граф



Результат (SPPF)

Дерево вывода пути  $p_1$ **CFPQ** 

Дерево вывода пути *р*<sub>2</sub>

Семён Григорьев (СПбГУ)

17.03.2018

9 / 25

### Пример: извлечение путей





### Почему это работает

Замкнутость КС языков относительно пересечения с регуляными

### Почему это работает

Замкнутость КС языков относительно пересечения с регуляными



- $0: S \rightarrow a S b$
- $1: \ \ S \rightarrow \textit{Middle}$
- $2: Middle \rightarrow a b$

## Почему это работает

#### Замкнутость КС языков относительно пересечения с регуляными



 $0: S \rightarrow a S b \ 1: S \rightarrow \textit{Middle} \ 2: \textit{Middle} \rightarrow a b \ (0, S, 3) \rightarrow (0, a, 1) \ (1, S, 0) \ (0, b, 3) \ (1, S, 0) \rightarrow (1, a, 2) \ (2, S, 3) \ (3, b, 0) \ (2, S, 3) \rightarrow (2, a, 0) \ (0, S, 0) \ (0, b, 3) \ (2, S, 3) \rightarrow (2, \textit{Middle}, 3) \ (0, S, 0) \rightarrow (0, a, 1) \ (1, S, 3) \ (3, b, 0) \ (1, S, 3) \rightarrow (1, a, 2) \ (2, S, 0) \ (0, b, 3) \ (2, S, 0) \ (3, S, 0) \ ($ 

 $(2, S, 0) \rightarrow (2, a, 0) (0, S, 3) (3, b, 0)$ 

 $(0, Middle, 3) \rightarrow (2, a, 0) (0, b, 3)$ 

### Примеры применения

- Графовые базы данных и семантические сети
  - Same-generation query (и модификации), similarity query (и модификации)
  - ► Sevon P., Eronen L. "Subgraph queries by context-free grammars." 2008
  - ► Zhang X. et al. "Context-free path queries on RDF graphs." 2016
  - Hellings J. "Conjunctive context-free path queries." 2014
- Статический анализ кода
  - ▶ Thomas Reps et al. "Precise interprocedural dataflow analysis via graph reachability." 1995
  - Qirun Zhang et al. "Efficient subcubic alias analysis for C." 2014
  - ▶ Dacong Yan et al. "Demand-driven context-sensitive alias analysis for Java." 2011
  - ▶ Jakob Rehof and Manuel Fahndrich. "Type-base flow analysis: from polymorphic subtyping to CFL-reachability." 2001

### Примеры применения: практика

- Попытки расширить OpenCypher: https://goo.gl/5h5a8P
  - ▶ Иногда даже похоже на контекстно-свободные запросы: https://goo.gl/VEpsH5
- PGQL (Property Graph Query Language) поддерживает регулярные ограничения, но не поддерживает контекстно-свободные

### Примеры применения: практика

- Kai Wang et. al. Graspan: A Single-machine Disk-based Graph System for Interprocedural Static Analyses of Large-scale Systems Code. 2017
  - "We have identified a total of 1127 unnecessary NULL tests in Linux, 149 in PostgreSQL, 32 in httpd."
  - "Our analyses reported 108 new NULL pointer dereference bugs in Linux, among which 23 are false positives"
  - "For PostgreSQL and httpd, we detected 33 and 14 new NULL pointer bugs; our manual validation did not find any false positives among them."

#### Факты

- В данной области существуют открытые проблемы
  - lacktriangle Например, существует ли алгоритм со сложностью  $O(|V|^{3-arepsilon}), arepsilon>0$
- В данной области применимы решения из "классического" синтаксического анализа
  - Алгоритмы: CYK, (Generalized) LL, (Generalized) LR, Эрли, ...
  - Техники: комбинаторы, генераторы парсеров, ...
  - ► Оптимизации: использование GPGPU, специальные структуры данных (сжатое представление леса разбора, структурированный в виде графа стек), ...
- Из-за существенно бОльших объёмов данных требуются специальные оптимизации (распределённые вычисления, параллельные вычисления, ...)

## Обобщённый LL для выполнения КС запросов к графам

- Основа обобщённый LL (Generalized GLL, GLL)
  - Scott E., Johnstone A. "GLL parsing"
- Поддерживает произвольные контекстно-свободные граммтики (неоднозначные, леворекурсивные)
- Строит сжатое представление леса разбора (Sharep Packed Parse Forest, SPPF) конечное представление бесконечного ответа
- Semyon Grigorev and Anastasiya Ragozina. "Context-free path querying with structural representation of result." 2017
- Реализован на F#: https://github.com/YaccConstructor/YaccConstructor

### Свойства алгоритма

Пусть на входе граф M = (V, E, L), тогда

- ullet Пространственная сложность предложенного алгоритма  $O(|V|^3+|E|)$
- ullet Временная сложность предложенного алгоритма  $O\left(|V|^3*\max_{v\in V}\left( extit{deg}^+\left(v
  ight)
  ight)
  ight)$
- Результирующий SPPF имеет размер  $O(|V'|^3 + |E'|)$ , где M' = (V', E', L') подграф M, содержащий только искомые пути

### Экспериментальное исследование: запросы

- $0: \mathbf{S} \to subClassOf^{-1} \mathbf{S} subClassOf$
- 1:  $\mathbf{S} \rightarrow type^{-1} \mathbf{S} type$
- $2: \mathbf{S} \rightarrow \mathit{subClassOf}^{-1} \mathit{subClassOf}$
- $3: \mathbf{S} \to type^{-1} type$

Грамматика для запроса Query 1

- $0: \mathbf{S} \to \mathbf{B} \ subClassOf$
- $1: \ \mathbf{S} o subClassOf$
- 2:  $\mathbf{B} \to subClassOf^{-1} \mathbf{B} subClassOf$
- $3: \mathbf{B} \to subClassOf^{-1} subClassOf$

Грамматика для запроса Query 2

## Экспериментальное исследование: результаты

| Ontology                         | #V  | #E   | Query 1               |          |         | Query 2  |         |
|----------------------------------|-----|------|-----------------------|----------|---------|----------|---------|
|                                  |     |      | CYK <sup>1</sup> (ms) | GLL (ms) | #result | GLL (ms) | #result |
| skos                             | 144 | 323  | 1044                  | 10       | 810     | 1        | 1       |
| generations                      | 129 | 351  | 6091                  | 19       | 2164    | 1        | 0       |
| travel                           | 131 | 397  | 13971                 | 24       | 2499    | 1        | 63      |
| univ-bench                       | 179 | 413  | 20981                 | 25       | 2540    | 11       | 81      |
| people-pets                      | 337 | 834  | 82081                 | 89       | 9472    | 3        | 37      |
| atom-primitive                   | 291 | 685  | 515285                | 255      | 15454   | 66       | 122     |
| biomedical-<br>measure-primitive | 341 | 711  | 420604                | 261      | 15156   | 45       | 2871    |
| pizza                            | 671 | 2604 | 3233587               | 697      | 56195   | 29       | 1262    |
| wine                             | 733 | 2450 | 4075319               | 819      | 66572   | 8        | 133     |

<sup>&</sup>lt;sup>1</sup>Zhang, et al. "Context-free path queries on RDF graphs."

## Использование GPGPU для выполнения КС запросов к графам

- Отправная точка синтаксический анализ линейного входа через перемножение матриц
  - ▶ Valiant L. "General context-free recognition in less than cubic time." 1974
- Основан на матричных опреациях позволяет использовать GPGPU
  - Можно использовать разреженное представление и готовые библиотеки для работы с ним
- Применим для других классов грамматик (например, конъюнктивных)
- Rustam Azimov, Semyon Grigorev. "Context-Free Path Querying by Matrix Multiplication." 2017
- Реализован на F#: https://github.com/YaccConstructor/YaccConstructor

### Особенности реализации

- Использует GPGPU
  - ► .NET(F#) + GPGPU (Managed.CUDA, Alea.CuBase, Brahma.FSharp)
- Основан на стандартных библиотеках (cuSparse)
  - ▶ Интеграция через Managed.CUDA
  - ▶ Вот зачем на провайдер типов для OpenCL
- Нужны булевы матрицы, а не float/double

### Свойства алгоритма

Пусть на входе граф M=(V,E,L) и грамматика  $\mathbb{G}=(N,\Sigma,P)$ , тогда

- ullet Пространственная сложность предложенного алгоритма  $O(|N||V|^2)$
- ullet Временная сложность предложенного алгоритма  $O(|V|^2|N|^3(BMM(|V|)+BMU(|V|)))$ 
  - ightharpoonup BMM(n) время, необходимое для умножения сложения булевых матриц n imes n
  - ightharpoonup BMU(n) время, необходимое для поэлементного сложения булевых матриц n imes n

## Экспериментальное исследование: результаты

| Ontology                         | #V   | #E    | Query 1  |            | Query 2  |            |
|----------------------------------|------|-------|----------|------------|----------|------------|
|                                  |      |       | GLL (ms) | GPGPU (ms) | GLL (ms) | GPGPU (ms) |
| skos                             | 144  | 323   | 10       | 12         | 1        | 1          |
| generations                      | 129  | 351   | 19       | 13         | 1        | 0          |
| travel                           | 131  | 397   | 24       | 30         | 1        | 10         |
| univ-bench                       | 179  | 413   | 25       | 15         | 11       | 9          |
| people-pets                      | 337  | 834   | 89       | 32         | 3        | 6          |
| atom-primitive                   | 291  | 685   | 255      | 22         | 66       | 2          |
| biomedical-<br>measure-primitive | 341  | 711   | 261      | 20         | 45       | 24         |
| pizza                            | 671  | 2604  | 697      | 24         | 29       | 23         |
| wine                             | 733  | 2450  | 819      | 54         | 8        | 6          |
| $g_1$                            | 6224 | 11840 | 1926     | 82         | 167      | 38         |
| <b>g</b> 2                       | 5864 | 19600 | 6246     | 185        | 46       | 21         |
| <b>g</b> 3                       | 5368 | 20832 | 7014     | 127        | 393      | 40         |

#### Направления

- Разработка эффективных "практичных" алгоритмов и реализация библиотек
  - ▶ Интеграция с существующими языками запросов к графам и графовым БД
  - ▶ Интеграция с существующими интефейсами к граф-структурированным данным
- Формулировка прикладных задач в терминах КС запросов к графам
  - ▶ Сравнение с "классическими" решениями

#### Контакты

- Почта: semen.grigorev@jetbrains.com
- GitHub-сообщество YaccConstructor: https://github.com/YaccConstructor