Darstellung Gleitkommazahlen

by

Dr. Günter Kolousek

Zahlen

- ganze Zahlen
 - vorzeichenlos
 - vorzeichenbehaftet
 - mit designierten VZ-Bit
 - ► Einerkomplement
 - Zweierkomplement
- ► Kommazahlen
 - ► Festkommazahlen
 - ▶ Gleitkommazahlen

Festkommazahlen

- Position des Komma ist fixiert
- ▶ Beispiele
 - ▶ 9.87654321 ... große Genauigkeit
 - ▶ 98765432.1 ... großer Wertebereich
 - ▶ 9876.54321 ... Kompromiss
- Problem: Welche Position soll gewählt werden?
- Genauigkeit im gesamten Bereich gesichert
 - dezimale Festkommazahlen zur Rechnung mit Geldbeträgen!
 - z.B. decimal in C#

Überblick Gleitkommazahlen

- Gleitkommazahlen
 - vs. rationale/reelle Zahlen
 - alternative Namen
 - ► Gleitpunktzahlen, Fließkommazahlen, Fließpunktzahlen
 - floating point numbers
- ► IEEE 754
 - binäre Formate: 16 Bits, 32 Bits, 64 Bits, 128 Bits
 - nicht standardisiert: 80 Bits (z.B. IA-32 Prozessoren)
 - dezimale Formate: 32 Bits, 64 Bits, 128 Bits

Gleitkommazahlen

- Komma "gleitet"
- Gleitkommadarstellung
 - \triangleright s · m · b^e
 - s ... Vorzeichen
 - ▶ m ... Mantisse
 - ▶ b ... Basis
 - ▶ e ... Exponent
 - ► Beispiel: $123.456 = +1 \cdot 0.123456 \cdot 10^3$
 - ► z.B. in C++: 0.123456e3
 - ▶ Beispiel: $123.456 = +1 \cdot 1234.56 \cdot 10^{-1}$
 - Welche Darstellung soll zur Abspeicherung verwendet werden?

Gleitkommazahlen

- Komma "gleitet"
- Gleitkommadarstellung
 - \triangleright $s \cdot m \cdot b^e$
 - ▶ s... Vorzeichen
 - ▶ m ... Mantisse
 - ▶ b ... Basis
 - ▶ e ... Exponent
 - ▶ Beispiel: $123.456 = +1 \cdot 0.123456 \cdot 10^3$
 - ► z.B. in C++: 0.123456e3
 - ▶ Beispiel: $123.456 = +1 \cdot 1234.56 \cdot 10^{-1}$
 - ► Welche Darstellung soll zur Abspeicherung verwendet werden?
 - ► → Normalisierung!
 - Wie wird Exponent abgespeichert?
 - ▶ → Charakteristik!

Gleitkommazahlen – 2

- binäre Exponentialdarstellung
 - $ightharpoonup 11.1_2 = 11.1_2 \cdot 2^0$
 - $ightharpoonup 11.1_2 = 1.11_2 \cdot 2^1$
 - $ightharpoonup 11.1_2 = 0.111_2 \cdot 2^2$
 - $11.1_2 = 0.0111_2 \cdot 2^3$
- ▶ Normalisierung
 - Vorkommastelle ist 1
 - ightharpoonup da immer 1 \rightarrow muss nicht mitgespeichert werden!
 - ▶ $11.1_2 = 1.11_2 \cdot 2^1 \rightarrow \text{Speicherdarstellung für Mantisse: } 11$

IEEE Zahlenformat

IEEE Zahl besteht aus 3 Teilen:

- 1. Getrenntes Vorzeichenbit S
 - ▶ $S = 0 \rightarrow positiv, S = 1 \rightarrow negativ$
 - d.h.: $s = (-1)^{S}$
- 2. Exponent E (auch Charakteristik genannt)
 - \triangleright E = e + B, B ... Biaswert
 - ightharpoonup d.h. e = E B
- 3. Mantisse M
 - in normalisierter Darstellung
 - ohne Abspeicherung der führenden 1

IEEE Zahlenformat - 2

- Exponent
 - \triangleright E=0
 - $ightharpoonup M = 0 \rightarrow Gleitkommazahl 0$
 - $M > 0 \rightarrow$ denormalisierte Zahlen (*m* nicht mehr normalisiert)
 - Elauter 1er
 - $M = 0 \rightarrow \inf$
 - $M > 0 \rightarrow \text{nan}$
- ► Spezielle Werte
 - ▶ 0
- vorzeichenbehaftet, d.h. +0 und -0
- ▶ 1/(-0) liefert -inf!
- ▶ +infund-inf
- ▶ nan, z.B. 0.0 / 0.0

IEEE Zahlenformat – 3

- ► half, single, double, extended
- ▶ single
 - Exponent: 8 Bits (B = 127), Mantisse: 23 Bits
 - ca. 7.2 Dezimalstellen
- ▶ double
 - Exponent: 52 Bits (B = 1023), Mantisse: 52 Bits
 - ca. 15.9 Dezimalstellen

Gleitkommadarstellung?

- 1. Vorkommazahl ermitteln
- 2. Nachkommazahl ermitteln
- 3. Normalisieren
- 4. Exponent ermitteln
- 5. Vorzeichen bestimmen
- 6. Gleitkommazahl bilden

Gleitkommadarstellung?

- 1. Vorkommazahl ermitteln
- 2. Nachkommazahl ermitteln
- 3. Normalisieren
- 4. Exponent ermitteln
- 5. Vorzeichen bestimmen
- 6. Gleitkommazahl bilden

19.2 in binärer Darstellung?

Umrechnen - 1

- 1. Vorkommazahl ermitteln
 - ▶ $19 \div 2 = 9R1$
 - ▶ $9 \div 2 = 4R1$
 - $4 \div 2 = 2R0$
 - $2 \div 2 = 1R0$
 - $1 \div 2 = 0R1$

$$19_{10} = 10011_2$$

- 2. Nachkommazahl ermitteln
 - $0.2 \cdot 2 = 0.4 \rightarrow 0$
 - $0.4 \cdot 2 = 0.8 \rightarrow 0$
 - $ightharpoonup 0.8 \cdot 2 = 1.6 \to 1$
 - $0.6 \cdot 2 = 1.2 \rightarrow 1$
 - $0.0 \cdot 2 = 0.4 \rightarrow 0$
 - $0.2 \cdot 2 = 0.4 \rightarrow 0$ $0.4 \cdot 2 = 0.8 \rightarrow 0$
 - $0.4 \cdot 2 = 0.0 \rightarrow 0$

 - **...**

$$0.2 = 0.00\overline{1100}$$

Umrechnen – 2

- 3. Normalisieren $19.2_{10}=1.001100\overline{1100}\cdot 2^4=1.00\overline{1100}\cdot 2^4$
- 4. Exponent ermitteln: 4 + B

vs. Festkommadarstellung?

- Nachteile gegenüber Festkomma
 - Rechenaufwand prinzipiell höher
 - Genauigkeit nicht im gesamten Wertebereich gesichert
- Vorteile gegenüber Festkomma
 - Adaption des Wertebereiches und der Genauigkeit
 - Berechnung in FPU (Gleitkommaeinheit)