复旦大学大数据学院 魏忠钰

Bayes' Nets: Representation

May 23rd, 2018

Bayes' Net

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: prediction (causal reasoning)
 - Example: value of information

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - Bayes' nets describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values
 - CPT: conditional probability table
 - Description of a noisy "causal" process

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

 $P(X|A_1\ldots A_n)$

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

P(+cavity, +catch, -toothache)

Example: Coin Flips

0.5

$$P(h, h, t, h) =$$

0.5

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

Why are we guaranteed that setting? results in a proper joint distribution?

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

Assume conditional independences:

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

→ Consequence:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Construct Bayes' Net

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

Variables:

R: It rains

■ T: There is traffic

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic II

- Let us build a causal graphical model!
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

Variables

■ B: Burglary

■ A: Alarm

M: Mary calls

■ J: John calls

■ E: Earthquake!

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 - 2^N
- How big is an N-node net if nodes have up to k parents?
 - $-O(N * 2^{k+1})$
- Both give you the power to calculate joint distribution
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (next lectures)

Quiz: Alarm Network

$$P(+b, -e, +a, +j, +m) = ?$$

John

calls

В	P(B)
+b	0.001
-b	0.999

Е	P(E)
+e	0.002
-е	0.998

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-i	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Mary

calls

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$