高等数学 1 习题课 07

等价无穷小,函数的连续性

上海科技大学

2025.10.30

习题课 06 反馈

Figure: 课程质量 Figure: 课堂氛围

Reminder

- 在完全了解定理背后的原理之前,不要轻易使用这些定理 (非常容易出错)
- HW3, HW4 大量出现洛必达, 导数...
- 初等分析方法的练习对于日后进行复杂问题的分析是非常有必要的 (有利于建立数学直观)
- 你可以:
 - 先使用高阶方法,得到问题的答案
 - 再根据高阶方法的求解过程,思考如何使用初等方法解决问题

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

目录

① 函数极限

2 无穷小

③ 函数的连续性

目录

● 函数极限

2 无穷小

③ 函数的连续性

23 Fall, ch.2 Quiz (Revisited)

用 $\varepsilon - \delta$ 语言证明:

$$\lim_{x \to 2} x^2 = 4$$

思路

- 目标: 找到 δ ,使得对于所有 $0<|x-a|<\delta$,都有 |f(x)-A|<arepsilon
- 不可避免地,需要凑出 |x-a| 以将 |f(x)-A|<arepsilon 变为 $g(x)\delta<arepsilon$
- 善用放缩,避免硬解

两个重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

怎么用?

用法

- lim _{x→0} sin x / x = 1: 用于三角函数向线性函数的拟合
 (今日内容: 泰勒展开的几何理解)
- $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$: 用于 $(1+0)^\infty$ 形极限,且 0 项与 ∞ 项互为倒数

典型错误

求

$$\lim_{x \to \infty} \frac{(1 + \frac{1}{x})^{x^2}}{e^x}$$

投票

注意事项

对某个表达式取极限时,该表达式内被取极限的变量的趋近于同一个值

目录

① 函数极限

2 无穷小

③ 函数的连续性

定义

若 $x \to a$ 时, $f(x) \to 0, g(x) \to 0$,考虑 $\lim_{x \to a} \frac{f(x)}{g(x)} = l \in \mathbb{R}$:

- $l = 0 \Leftrightarrow$ $x \to a$ 时,f(x) 是比 g(x) 高阶的无穷小,记作 f(x) = o(g(x))
- $l \neq 0 \Leftrightarrow$ $x \rightarrow a$ 时,f(x) 是与 g(x) 同阶的无穷小,记作 f(x) = O(g(x)). 若 l = 1 则称 $x \rightarrow a$ 时,f(x) 与 g(x) 是等价无穷小, $f(x) \sim g(x)$.

我们将在第四章更详细地讲解等价无穷小的概念。

上海科技大学

高等数学 | 习题课 07

2025.10.30

几何理解

$$y = x, x^2, x^3, x^4$$
 在 $x = 0$ 附近的图像:

无穷小之间的大小亦有差别

习题课 07

定义

若 $\lim_{x\to a} f(x) = 0$, 且存在常数 $c \neq 0, k > 0$, 使得

$$\lim_{x \to a} \frac{f(x)}{(x-a)^k} = c,$$

则称 $x \to a$ 时,f(x) 是**标准无穷小** x - a 的 k 阶无穷小,简称 f(x) 是 k 阶无穷小, $c(x - a)^k$ 是 f(x) 的主部

上海科技大学 高等数学 | 习题课 07 2025.10.30 16 / 34

泰勒定理 1

教材定理 4.9

设函数 f(x) 在点 x_0 的邻域内有定义,且在 x_0 处有 n 阶导数,那么

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

$\cos(x)$ 在 0 处的多项式估计

- 尝试使用 $g(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$ 拟合函数 $\cos(x)$
- 基本想法: 0 处的函数值至少要相等 $\Rightarrow g(0) = 1 \Rightarrow c_0 = 1$
- 切线斜率相等 $\Rightarrow g'(x)|_{x=0} = \cos'(x)|_{x=0} \Rightarrow c_1 = 0$
- 继续?

18 / 34

上海科技大学 高等数学 I 习题课 07 2025.10.30

$\cos(x)$ 在 0 处的多项式估计

- 尝试使用 $g(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$ 拟合函数 $\cos(x)$
- $c_0 = 1, c_1 = 0$
- 对 $\cos(x)$ 的切线斜率在 x = 0 附近的微小变动进行拟合 $\Rightarrow \cos''(x)|_{x=0} = g''(x)|_{x=0} \Rightarrow c_2 = -\frac{1}{2}$

常用无穷小

$$\sin x \sim x$$
 $\tan x \sim x$ $1 - \cos x \sim \frac{1}{2}x^2$ $\ln(1+x) \sim x$ $e^x - 1 \sim x$ $(1+x)^{\alpha} - 1 \sim \alpha x$ $\arcsin x \sim x$

使用方法

• 乘除: 等价无穷小可以替换

• 加减: 等价无穷小**有条件地**替换

简例

$$f(x)=x+2x^2, g(x)=x-3x^2$$
,计算
$$\lim_{x\to 0} \frac{f(x)-g(x)}{x^2}$$

注意事项

- 乘除运算不会导致无穷小的主部消失;
- 加减运算可能会导致无穷小主部恰好抵消,则此时剩余的更高阶无穷小不可忽略。

例 (24Fall Midterm 7.)

设
$$\lim_{x\to 0} \frac{\cos x - 1 + f(x)}{x^3} = 1$$
, 求 $\lim_{x\to 0} \frac{f(x)}{\sin^2 x}$

目录

① 函数极限

2 无穷小

③ 函数的连续性

思考

如果一个函数连续,那么它应该满足什么性质?

- 当自变量的值变动很小的时候?
- 函数值也应当只变动了一点

数学语言

- 自变量的值变动很小: 原本为 x_0 ,变为 $x_0 + \delta(\delta > 0)$ ⇒ 对所有在区间 $(x_0, x_0 + \delta)$ 的值,都应有...
- 函数值只变动很小一点:

$$\forall \varepsilon > 0, |f(x_0 + \delta) - f(x_0)| < \varepsilon \quad \Rightarrow \quad \lim_{x \to x_0^+} f(x) = f(x_0)$$

• 若将 δ 的取值范围限制为 \mathbb{R} , 则得到 $\lim_{x \to x_0} f(x) = f(x_0)$

定义

设函数 f 在点 x_0 的某邻域内有定义,若

$$\lim_{x \to x_0} f(x) = f(x_0),$$

则称函数 f(x) 在 x_0 处**连续**,称 x_0 是 f(x) 的**连续点**;否则称 f(x) 在 x_0 处间断,称 x_0 是 f(x) 的间断点

- 类似地,将 $x\to x_0$ 修改为 x_0^+ 或 x_0^- 时,我们分别得到右连续、左连续的定义。

(ロト (日) ト (日) 日

例(课本习题 2 补充题 5)

设函数 f(x) 在 $(0,+\infty)$ 上满足 f(2x)=f(x),且 $\lim_{x\to +\infty}f(x)=A$ (有限值),证明:

$$f(x) \equiv A$$
.

例(课本习题 2 补充题 6)

设在 \mathbb{R} 上定义的函数 f(x) 满足:

$$f(x+y) = f(x) + f(y) \qquad (x, y \in \mathbb{R}),$$

且在 x=0 处连续. 证明: $f(x) \in C(\mathbb{R})$

间断点

- 第一类间断点: 左、右极限都存在
 - 左右极限相等:可去间断点,表现为从完整的函数图像上挖去了一个点
 - 左右极限不相等:跳跃间断点,表现为函数图像上出现了不连续的函数值变化(且变化前后都为有限值)
- 第二类间断点: 左、右极限不都存在
 - 其中之一为无穷: 无穷间断点
 - 极限都不为无穷,但极限也不存在:振荡间断点(典例: $\sin \frac{1}{x}$)

学会求间断点的值、判断间断点的类型

投票

函数 $g(x) = x \sin \frac{1}{x}$ 在 x = 0 处的间断点类型为? 可去间断点

连续函数的运算

给定两个在 x_0 处连续的函数 f(x), g(x), c 是常数,则:

- $f(x) + g(x), f(x) g(x), cf(x), f(x) \cdot g(x)$ 在 x_0 处连续
- 当 g(x) 在 x_0 处不为 0, $\frac{f(x)}{g(x)}$ 在 x_0 处连续

复合函数的连续性

与复合函数的极限类似,设函数 $\varphi(x)$ 在点 x_0 处连续,而函数 f(x) 在点 $u_0 = \varphi(x_0)$ 处连续,则复合函数 $f \circ \varphi = f(\varphi(x))$ 在点 x_0 连续.

