Pharmacokinetics of Drug Z

Study ID: STUDY-002

Sponsor: Pumas-AI

Roshan Kondapalli 1

¹Formula-Y

October 28, 2023

Contents

	ist of rigures	2
Li	ist of Tables	4
1	Summary Observations vs. Time	5
2	NCA Summary	7
3	NCA parameters	9
4	Parameter Distribution	16
5	Parameters vs Group	62
A	Subject Fits	108
	System Information B.1 NCA Version	
	1 Summary of Observations vs Time 2 Parameter (tmax) Distribution 3 Parameter (comax) Distribution 4 Parameter (c0) Distribution 5 Parameter (tlast) Distribution 6 Parameter (clast) Distribution 7 Parameter (clast) Distribution 8 Parameter (auclast) Distribution 9 Parameter (kel) Distribution 10 Parameter (half_life) Distribution 11 Parameter (aucinf_obs) Distribution 12 Parameter (aucinf_pred) Distribution 13 Parameter (tmin) Distribution 14 Parameter (cmin) Distribution 15 Parameter (cmin) Distribution 16 Parameter (vz_obs) Distribution 17 Parameter (vz_pob) Distribution 18 Parameter (vz_pred) Distribution 19 Parameter (vz_pred) Distribution 20 Parameter (vs_obs) Distribution 21 Parameter (vs_obs) Distribution 22 Parameter (vs_obs) Distribution 23 Parameter (n_samples) Distribution 24 Parameter (aucinf_dn_obs) Distribution 25 Parameter (aucinf_dn_obs) Distribution	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

26	Parameter	(auc extrap obs) Distribution	41
27		(auc back extrap obs) Distribution	
28		(aucinf dn pred) Distribution	
29		(auc extrap pred) Distribution	
30	Parameter	(auc back extrap pred) Distribution	45
31	Parameter	(aumclast) Distribution	46
32	Parameter	(aumcinf obs) Distribution	47
33		(aumc extrap obs) Distribution	
34		(aumcinf pred) Distribution	
35	Parameter	(aumc extrap pred) Distribution	50
36	Parameter		51
37	Parameter	(mrtinf obs) Distribution	52
38		(mrtinf pred) Distribution	
39	Parameter	(n samples kel) Distribution	54
40	Parameter	(rsq kel) Distribution	55
41		(rsq adj kel) Distribution	
42	Parameter	(corr kel) Distribution	57
43	Parameter	(intercept kel) Distribution	58
44	Parameter	(kel t low) Distribution	59
45	Parameter	(kel t high) Distribution	60
46	Parameter	(span) Distribution	61
47	Parameter	(tmax) vs Group	63
48	Parameter	(cmax) vs Group	64
49	Parameter	(c0) vs Group	65
50		(tlast) vs Group	66
51	Parameter	(clast) vs Group	67
52	Parameter	(clast pred) vs Group	68
53	Parameter	(auclast) vs Group	69
54	Parameter	(kel) vs Group	70
55	Parameter	(half_life) vs Group	71
56	Parameter	(aucinf_obs) vs Group	72
57	Parameter	(aucinf_pred) vs Group	73
58	Parameter	(tmin) vs Group	74
59		(cmin) vs Group	75
60	Parameter	(cminss) vs Group	76
61		(vz_obs) vs Group	77
62	Parameter	(cl_obs) vs Group	78
63		(vz_pred) vs Group	79
64		(cl_pred) vs Group	80
65		(vss_obs) vs Group	81
66		(vss_pred) vs Group	82
67		(n_samples) vs Group $\dots \dots \dots \dots \dots$	83
68		$(cmax_dn)$ vs $Group$	84
69		$(auclast_dn) \ vs \ Group $	85
70		$(aucinf_dn_obs) \ vs \ Group \dots \dots \dots \dots \dots$	86
71		(auc_extrap_obs) vs Group	87
72		(auc_back_extrap_obs) vs Group	88
73	Parameter	(aucinf dn pred) vs Group	89

74	Parameter (auc extrap pred) vs Group
75	Parameter (auc_back_extrap_pred) vs Group 91
76	Parameter (aumclast) vs Group
77	Parameter (aumcinf_obs) vs Group
78	Parameter (aumc_extrap_obs) vs Group
79	Parameter (aumcinf_pred) vs Group
80	Parameter (aumc_extrap_pred) vs Group
81	Parameter (mrtlast) vs Group
82	Parameter (mrtinf_obs) vs Group
83	Parameter (mrtinf_pred) vs Group
84	Parameter (n_samples_kel) vs Group
85	Parameter (rsq_kel) vs Group
86	Parameter (rsq_adj_kel) vs Group
87	Parameter (corr_kel) vs Group
88	Parameter (intercept_kel) vs Group
89	Parameter (kel_t_low) vs Group
90	Parameter (kel_t_high) vs Group
91	Parameter (span) vs Group
92	Subject Fits (1 of 4)
93	Subject Fits (2 of 4)
94	Subject Fits (3 of 4)
95	Subject Fits (4 of 4)
List	of Tables
1	NCA Summary
2	NCA parameters (dose to aucinf_pred)
3	NCA parameters (tmin to cmax_dn)
4	NCA parameters (auclast_dn to auc_extrap_pred)
5	NCA parameters (auc_back_extrap_pred to aumc_extrap_pred)
6	NCA parameters (mrtlast to intercept_kel)
7	NCA parameters (kel_t_low to route)

1 Summary Observations vs. Time

Figure 1: Summary of Observations vs Time

2 NCA Summary

Table 1: NCA Summary.

parameters	numsamples	minimum	maximum	mean	std	geomean	geostd	geomeanCV
tmax	30	0	1	0.258	0.282	0	NaN	NaN
cmax	30	24	140	67.4	31.3	60.3	1.64	52.5
c0	30	17.3	116	58.5	28.8	51	1.74	60.2
tlast	30	24	24	24	0	24	1	4.52e-14
clast	30	0.06	7.51	1.07	1.34	0.709	2.58	120
clast_pred	30	0.0669	6.73	1.02	1.21	0.687	2.52	116
auclast	30	146	605	329	143	299	1.58	47.9
kel	30	0.0924	0.269	0.185	0.0411	0.18	1.28	24.7
half_life	30	2.58	7.5	3.98	1.09	3.86	1.28	24.7
aucinf_obs	30	147	687	337	150	306	1.58	48.2
aucinf_pred	30	147	678	337	149	305	1.58	48.2
tmin	30	24	24	24	0	24	1	4.52e-14
cmin	30	0.06	7.51	1.07	1.34	0.709	2.58	120
cminss	30	0.06	7.51	1.07	1.34	0.709	2.58	120
vz_obs	30	5.7	13.1	8.47	1.94	8.27	1.24	22.1
$\operatorname{cl}_{\operatorname{\mathbf{obs}}}$	30	1.09	1.97	1.5	0.209	1.49	1.15	14
vz_pred	30	5.7	13.1	8.49	1.96	8.29	1.25	22.3
cl_pred	30	1.11	1.97	1.5	0.207	1.49	1.15	13.8
vss_obs	30	5.66	13	8.53	1.9	8.34	1.24	21.8
vss_pred	30	5.66	13	8.55	1.92	8.35	1.24	21.9
n_samples	30	16	16	16	0	16	1	0
cmax_dn	30	0.0938	0.186	0.135	0.0236	0.133	1.2	18
auclast_dn	30	0.504	0.807	0.664	0.084	0.658	1.14	12.9
aucinf_dn_obs	30	0.509	0.915	0.679	0.0952	0.673	1.15	14
auc_extrap_obs	30	0.137	11.8	2.09	2.52	1.29	2.7	130
<pre>auc_back_extrap_obs</pre>	30	0	0	0	0	0	NaN	NaN
aucinf_dn_pred	30	0.508	0.904	0.678	0.0939	0.672	1.15	13.9
auc_extrap_pred	30	0.153	10.7	1.98	2.29	1.25	2.63	125
auc_back_extrap_pred	30	0	0	0	0	0	NaN	NaN
aumclast	30	542	4590	1750	899	1550	1.66	54.2
aumcinf_obs	30	551	7420	2000	1300	1720	1.73	59.2
aumc_extrap_obs	30	1.03	38.1	9.31	8.26	6.84	2.24	95.9
aumcinf_pred	30	551	7120	1980	1260	1710	1.72	58.8
aumc_extrap_pred	30	1.15	35.6	8.94	7.74	6.65	2.19	92.2
mrtlast	30	3.65	7.58	5.26	0.955	5.17	1.2	18.2
mrtinf_obs	30	3.69	10.8	5.79	1.56	5.61	1.28	24.9
mrtinf_pred	30	3.69	10.8	5.79	1.56	5.61	1.28	24.9
n_samples_kel	30	3	16	7.73	4.43	6.57	1.8	64.3
rsq_kel	30	0.965	1	0.99	0.01	0.99	1.01	1.02
rca odi kol	30	0.062	1	0.000	0 010Q	0.000	1.01	1 1

3 NCA parameters

Table 2: NCA parameters (dose to aucinf_pred)

id	dose	tmax	cmax	c0	tlast	clast	clast_pred	auclast	kel	half_life	aucinf_obs	aucinf_pred
							_					
1	250	0.5	25.6	17.3	24	1.84	1.65	183	0.107	6.48	200	199
2	250	0	43	43	24	0.06	0.0669	163	0.269	2.58	163	163
3	250	0.25	43.9	32.6	24	0.56	0.533	179	0.177	3.92	183	182
4	250	0.5	34.2	29.8	24	0.89	0.78	195	0.155	4.48	201	200
5	250	0.25	31.8	30.3	24	0.64	0.62	193	0.161	4.32	197	197
6	250	0	24	24	24	0.92	0.881	146	0.131	5.29	153	152
7	250	0.25	39.4	30.8	24	0.08	0.0805	147	0.248	2.79	147	147
8	250	0.25	33.6	23	24	0.69	0.693	160	0.141	4.9	164	164
9	250	0.5	30.3	20.1	24	0.38	0.385	186	0.194	3.58	188	188
10	250	0.5	38.5	28.4	24	0.15	0.159	179	0.237	2.93	180	180
11	500	0	75	75	24	0.66	0.607	305	0.2	3.46	308	308
12	500	0	61	61	24	1.23	1.17	325	0.16	4.34	333	333
13	500	0.25	75.1	69.7	24	0.31	0.283	350	0.236	2.94	352	352
14	500	0.25	49.2	28.3	24	0.7	0.564	284	0.186	3.73	288	287
15	500	0.25	71.6	49.3	24	1.1	1.03	374	0.184	3.78	380	380
16	500	0.75	65.8	49.5	24	1.02	0.84	357	0.182	3.81	362	361
17	500	0	66.6	66.6	24	0.85	0.843	343	0.197	3.52	348	348
18	500	0	60.2	60.2	24	0.42	0.373	252	0.186	3.73	254	254
19	500	0	70.4	70.4	24	0.52	0.598	305	0.186	3.73	308	308
20	500	0.75	46.9	36.6	24	1.72	1.73	286	0.128	5.42	299	299
21	750	0.25	140	90.9	24	1.09	1.06	581	0.195	3.55	586	586
22	750	0.25	106	73.4	24	0.78	0.792	401	0.221	3.14	405	405
23	750	0	98.6	98.6	24	2.7	2.65	560	0.143	4.85	579	579
24	750	0	104	104	24	0.52	0.508	427	0.202	3.43	430	430
25	750	0	80	80	24	7.51	6.73	605	0.0924	7.5	687	678
26	750	0	116	116	24	0.72	0.668	505	0.214	3.23	508	508
27	750	0.75	99.7	92.4	24	0.5	0.508	433	0.217	3.19	435	435
28	750	0.25	120	85.8	24	1.63	1.77	558	0.165	4.2	568	569
29	750	0	91.6	91.6	24	1.08	1.13	430	0.203	3.42	435	435
30	750	1	80.7	75.4	24	0.89	0.896	469	0.219	3.17	473	473

Table 3: NCA parameters ($tmin\ to\ cmax_dn$)

id	tmin	cmin	cminss	vz_obs	cl_obs	vz_pred	cl_pred	vss_obs	vss_pred	n_samples	cmax_dn
1	24	1.84	1.84	11.7	1.25	11.8	1.26	11.8	11.9	16	0.102
2	24	0.06	0.06	5.7	1.53	5.7	1.53	5.66	5.66	16	0.172
3	24	0.56	0.56	7.75	1.37	7.75	1.37	7.85	7.85	16	0.176
4	24	0.89	0.89	8.05	1.25	8.08	1.25	8.05	8.08	16	0.137
5	24	0.64	0.64	7.89	1.27	7.9	1.27	7.82	7.82	16	0.127
6	24	0.92	0.92	12.5	1.64	12.5	1.64	13	13	16	0.096
7	24	0.08	0.08	6.84	1.7	6.84	1.7	6.36	6.36	16	0.158
8	24	0.69	0.69	10.7	1.52	10.7	1.52	9.68	9.68	16	0.134
9	24	0.38	0.38	6.87	1.33	6.87	1.33	6.97	6.97	16	0.121
10	24	0.15	0.15	5.87	1.39	5.87	1.39	6.19	6.18	16	0.154
11	24	0.66	0.66	8.11	1.62	8.12	1.62	8.87	8.87	16	0.15
12	24	1.23	1.23	9.39	1.5	9.4	1.5	9.12	9.13	16	0.122
13	24	0.31	0.31	6.02	1.42	6.03	1.42	5.96	5.96	16	0.15
14	24	0.7	0.7	9.34	1.73	9.36	1.74	9.49	9.51	16	0.0983
15	24	1.1	1.1	7.17	1.32	7.18	1.32	8.15	8.16	16	0.143
16	24	1.02	1.02	7.6	1.38	7.62	1.38	7.43	7.45	16	0.132
17	24	0.85	0.85	7.31	1.44	7.32	1.44	8.28	8.28	16	0.133
18	24	0.42	0.42	10.6	1.97	10.6	1.97	8.56	8.57	16	0.12
19	24	0.52	0.52	8.73	1.63	8.72	1.62	8.09	8.08	16	0.141
20	24	1.72	1.72	13.1	1.67	13.1	1.67	12.6	12.6	16	0.0938
21	24	1.09	1.09	6.55	1.28	6.55	1.28	6.19	6.19	16	0.186
22	24	0.78	0.78	8.38	1.85	8.38	1.85	9.35	9.35	16	0.142
23	24	2.7	2.7	9.06	1.29	9.07	1.3	8.99	8.99	16	0.131
24	24	0.52	0.52	8.64	1.75	8.64	1.75	7.66	7.66	16	0.139
25	24	7.51	7.51	11.8	1.09	12	1.11	11.8	12	16	0.107
26	24	0.72	0.72	6.88	1.48	6.89	1.48	7.39	7.39	16	0.155
27	24	0.5	0.5	7.93	1.72	7.93	1.72	7.72	7.72	16	0.133
28	24	1.63	1.63	8	1.32	7.99	1.32	7.74	7.73	16	0.16
29	24	1.08	1.08	8.5	1.72	8.5	1.72	10.6	10.6	16	0.122
30	24	0.89	0.89	7.24	1.58	7.24	1.58	8.62	8.62	16	0.108

Table 4: NCA parameters (auclast_dn to auc_extrap_pred)

id	auclast_dn	aucinf_dn_obs	auc_extrap_obs	auc_back_extrap_obs	aucinf_dn_pred	auc_extrap_pred
1	0.733	0.802	8.58	0	0.795	7.75
2	0.651	0.652	0.137	0	0.652	0.153
3	0.718	0.731	1.74	0	0.73	1.65
4	0.779	0.802	2.87	0	0.799	2.52
5	0.773	0.789	2.02	0	0.789	1.96
6	0.582	0.61	4.6	0	0.609	4.41
7	0.587	0.589	0.219	0	0.589	0.22
8	0.638	0.658	2.97	0	0.658	2.98
9	0.743	0.751	1.04	0	0.751	1.06
10	0.716	0.719	0.352	0	0.719	0.374
11	0.609	0.616	1.07	0	0.615	0.986
12	0.651	0.666	2.31	0	0.665	2.21
13	0.701	0.703	0.374	0	0.703	0.341
14	0.569	0.576	1.31	0	0.575	1.06
15	0.748	0.76	1.58	0	0.759	1.47
16	0.713	0.724	1.55	0	0.722	1.28
17	0.686	0.695	1.24	0	0.695	1.23
18	0.504	0.509	0.889	0	0.508	0.79
19	0.61	0.615	0.908	0	0.616	1.04
20	0.571	0.598	4.5	0	0.598	4.52
21	0.774	0.782	0.952	0	0.781	0.928
22	0.535	0.54	0.872	0	0.54	0.886
23	0.747	0.772	3.26	0	0.772	3.2
24	0.569	0.573	0.599	0	0.573	0.585
25	0.807	0.915	11.8	0	0.904	10.7
26	0.673	0.678	0.661	0	0.678	0.614
27	0.577	0.58	0.528	0	0.58	0.536
28	0.744	0.757	1.74	0	0.758	1.89
29	0.573	0.58	1.22	0	0.58	1.28
30	0.626	0.631	0.859	0	0.631	0.865

Table 5: NCA parameters (auc_back_extrap_pred to aumc_extrap_pred)

id	auc_back_extrap_pred	aumclast	aumcinf obs	aumc extrap obs	aumcinf pred	aumc_extrap_pred
1	0	1320	1900	30.3	1830	28
2	0	595	601	1.03	601	1.15
3	0	953	1050	8.98	1040	8.58
4	0	1120	1300	13.5	1270	12
5	0	1100	1220	9.9	1210	9.62
6	0	986	1210	18.4	1200	17.7
7	0	542	551	1.64	551	1.65
8	0	895	1050	14.5	1050	14.5
9	0	926	983	5.82	984	5.89
10	0	781	799	2.24	800	2.37
11	0	1590	1680	5.68	1670	5.25
12	0	1790	2020	11.5	2010	11
13	0	1440	1480	2.52	1470	2.3
14	0	1470	1580	7.02	1550	5.74
15	0	2180	2350	7.49	2340	7.03
16	0	1780	1950	8.49	1920	7.1
17	0	1870	2000	6.28	2000	6.23
18	0	1040	1110	6	1100	5.36
19	0	1450	1530	5.36	1540	6.12
20	0	1830	2260	19	2260	19
21	0	2670	2840	5.73	2830	5.59
22	0	1940	2040	4.93	2040	5
23	0	3440	4020	14.6	4010	14.3
24	0	1810	1880	3.95	1880	3.87
25	0	4590	7420	38.1	7120	35.6
26	0	2450	2550	3.78	2540	3.52
27	0	1880	1950	3.38	1950	3.43
28	0	3030	3330	8.92	3350	9.63
29	0	2530	2680	5.75	2690	6.01
30	0	2460	2570	4.51	2570	4.54

Table 6: NCA parameters (mrtlast to intercept_kel)

id	mrtlast	mrtinf_obs	mrtinf_pred	n_samples_kel	rsq_kel	rsq_adj_kel	corr_kel	intercept_kel
1	7.21	9.45	9.45	13	0.983	0.981	0.991	3.06
2	3.65	3.69	3.69	7	0.997	0.997	0.999	3.75
3	5.31	5.73	5.73	4	0.996	0.995	0.998	3.61
4	5.75	6.46	6.46	14	0.967	0.964	0.983	3.47
5	5.67	6.17	6.17	4	0.996	0.994	0.998	3.37
6	6.77	7.91	7.91	9	0.986	0.984	0.993	3.02
7	3.69	3.75	3.75	8	0.997	0.997	0.999	3.44
8	5.61	6.36	6.36	3	1	1	1	3.03
9	4.98	5.24	5.24	3	0.999	0.998	1	3.7
10	4.36	4.45	4.45	5	0.998	0.997	0.999	3.85
11	5.21	5.46	5.46	6	0.988	0.985	0.994	4.31
12	5.5	6.07	6.07	16	0.987	0.986	0.994	4
13	4.1	4.19	4.19	15	0.992	0.991	0.996	4.4
14	5.15	5.47	5.47	15	0.965	0.962	0.982	3.89
15	5.82	6.2	6.2	6	0.994	0.993	0.997	4.43
16	5	5.38	5.38	13	0.98	0.978	0.99	4.19
17	5.46	5.76	5.76	3	1	0.999	1	4.55
18	4.13	4.36	4.36	5	0.991	0.988	0.995	3.47
19	4.76	4.98	4.98	7	0.993	0.991	0.996	3.95
20	6.41	7.55	7.55	6	0.997	0.996	0.998	3.62
21	4.61	4.84	4.84	4	0.999	0.998	0.999	4.75
22	4.84	5.05	5.05	3	0.999	0.998	1	5.07
23	6.13	6.94	6.94	15	0.981	0.98	0.991	4.4
24	4.24	4.39	4.39	3	0.998	0.995	0.999	4.17
25	7.58	10.8	10.8	11	0.968	0.964	0.984	4.12
26	4.85	5.01	5.01	10	0.985	0.983	0.992	4.74
27	4.35	4.48	4.48	6	0.998	0.998	0.999	4.54
28	5.43	5.86	5.86	11	0.988	0.987	0.994	4.54
29	5.88	6.16	6.16	4	0.992	0.989	0.996	4.99
30	5.24	5.44	5.44	3	1	1	1	5.15

Table 7: NCA parameters (kel_tlow to route)

id	kel_t_low	kel_t_high	span	route
1	0.75	24	3.59	IVBolus
2	4	24	7.76	IVBolus
3	12	24	3.06	IVBolus
4	0.5	24	5.25	IVBolus
5	12	24	2.78	IVBolus
6	2.5	24	4.07	IVBolus
7	3	24	7.53	IVBolus
8	16	24	1.63	IVBolus
9	16	24	2.24	IVBolus
10	8	24	5.47	IVBolus
11	6	24	5.2	IVBolus
12	0	24	5.54	IVBolus
13	0.25	24	8.08	IVBolus
14	0.25	24	6.37	IVBolus
15	6	24	4.77	IVBolus
16	0.75	24	6.1	IVBolus
17	16	24	2.27	IVBolus
18	8	24	4.29	IVBolus
19	4	24	5.37	IVBolus
20	6	24	3.32	IVBolus
21	12	24	3.38	IVBolus
22	16	24	2.55	IVBolus
23	0.25	24	4.89	IVBolus
24	16	24	2.33	IVBolus
25	1.5	24	3	IVBolus
26	2	24	6.8	IVBolus
27	6	24	5.65	IVBolus
28	1.5	24	5.36	IVBolus
29	12	24	3.51	IVBolus
30	16	24	2.53	IVBolus

4 Parameter Distribution

Figure 2: Parameter (tmax) Distribution

Figure 3: Parameter (cmax) Distribution

Figure 4: Parameter (c0) Distribution

Figure 5: Parameter (tlast) Distribution

Figure 6: Parameter (clast) Distribution

Figure 7: Parameter (clast_pred) Distribution

Figure 8: Parameter (auclast) Distribution

Figure 9: Parameter (kel) Distribution

Figure 10: Parameter (half_life) Distribution

Figure 11: Parameter (aucinf_obs) Distribution

Figure 12: Parameter (aucinf_pred) Distribution

Figure 13: Parameter (tmin) Distribution

Figure 14: Parameter (cmin) Distribution

Figure 15: Parameter (cminss) Distribution

Figure 16: Parameter (vz_obs) Distribution

Figure 17: Parameter (cl_obs) Distribution

Figure 18: Parameter (vz_pred) Distribution

Figure 19: Parameter (cl_pred) Distribution

Figure 20: Parameter (vss_obs) Distribution

Figure 21: Parameter (vss_pred) Distribution

Figure 22: Parameter (n_samples) Distribution

Figure 23: Parameter (cmax_dn) Distribution

Figure 24: Parameter (auclast_dn) Distribution

Figure 25: Parameter (aucinf_dn_obs) Distribution

Figure 26: Parameter (auc_extrap_obs) Distribution

Figure 27: Parameter (auc_back_extrap_obs) Distribution

Figure 28: Parameter (aucinf_dn_pred) Distribution

Figure 29: Parameter (auc_extrap_pred) Distribution

Figure 30: Parameter (auc_back_extrap_pred) Distribution

Figure 31: Parameter (aumclast) Distribution

Figure 32: Parameter (aumcinf_obs) Distribution

Figure 33: Parameter (aumc_extrap_obs) Distribution

Figure 34: Parameter (aumcinf_pred) Distribution

Figure 35: Parameter (aumc_extrap_pred) Distribution

Figure 36: Parameter (mrtlast) Distribution

Figure 37: Parameter (mrtinf_obs) Distribution

Figure 38: Parameter (mrtinf_pred) Distribution

Figure 39: Parameter (n_samples_kel) Distribution

Figure 40: Parameter (rsq_kel) Distribution

Figure 41: Parameter (rsq_adj_kel) Distribution

Figure 42: Parameter ($corr_kel$) Distribution

Figure 43: Parameter (intercept_kel) Distribution

Figure 44: Parameter (kel_t_low) Distribution

Figure 45: Parameter (kel_t_high) Distribution

Figure 46: Parameter (span) Distribution

5 Parameters vs Group

Figure 47: Parameter (tmax) vs Group

Figure 48: Parameter (cmax) vs Group

Figure 49: Parameter (c0) vs Group

Figure 50: Parameter (tlast) vs Group

Figure 51: Parameter (clast) vs Group

Figure 52: Parameter (clast_pred) vs Group

Figure 53: Parameter (auclast) vs Group

Figure 54: Parameter (kel) vs Group

Figure 55: Parameter (half_life) vs Group

Figure 56: Parameter (aucinf_obs) vs Group

Figure 57: Parameter (aucinf_pred) vs Group

Figure 58: Parameter (tmin) vs Group

Figure 59: Parameter (cmin) vs Group

Figure 60: Parameter (cminss) vs Group

Figure 61: Parameter (vz_obs) vs Group

Figure 62: Parameter (cl_obs) vs Group

Figure 63: Parameter (vz_pred) vs Group

Figure 64: Parameter (cl_pred) vs Group

Figure 65: Parameter (vss_obs) vs Group

Figure 66: Parameter (vss_pred) vs Group

Figure 67: Parameter (n_samples) vs Group

Figure 68: Parameter (cmax_dn) vs Group

Figure 69: Parameter (auclast_dn) vs Group

Figure 70: Parameter (aucinf_dn_obs) vs Group

Figure 71: Parameter (auc_extrap_obs) vs Group

Figure 72: Parameter (auc_back_extrap_obs) vs Group

Figure 73: Parameter (aucinf_dn_pred) vs Group

Figure 74: Parameter (auc_extrap_pred) vs Group

Figure 75: Parameter (auc_back_extrap_pred) vs Group

Figure 76: Parameter (aumclast) vs Group

Figure 77: Parameter (aumcinf_obs) vs Group

Figure 78: Parameter (aumc_extrap_obs) vs Group

Figure 79: Parameter (aumcinf_pred) vs Group

Figure 80: Parameter (aumc_extrap_pred) vs Group

Figure 81: Parameter (mrtlast) vs Group

Figure 82: Parameter (mrtinf_obs) vs Group

Figure 83: Parameter (mrtinf_pred) vs Group

Figure 84: Parameter (n_samples_kel) vs Group

Figure 85: Parameter (rsq_kel) vs Group

Figure 86: Parameter (rsq_adj_kel) vs Group

Figure 87: Parameter (corr_kel) vs Group

Figure 88: Parameter (intercept_kel) vs Group

Figure 89: Parameter (kel_t_low) vs Group

Figure 90: Parameter (kel_t_high) vs Group

Figure 91: Parameter (span) vs Group

A Subject Fits

Figure 92: Subject Fits (1 of 4).

Figure 93: Subject Fits (2 of 4).

Figure 94: Subject Fits (3 of 4).

Figure 95: Subject Fits (4 of 4).

B System Information

```
Julia Version 1.9.2
Commit e4ee485e90 (2023-07-05 09:39 UTC)
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
      Microsoft Windows [Version 10.0.20348.1726]
  CPU: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz:
                                                                   idle
              speed
                            user
                                         nice
                                                       SVS
                                                                                 irq
       #1
           2500 MHz
                        122671
                                                  286625
                                                              1181390
                                                                            233875 ticks
                                          0
       #2
           2500 MHz
                        134609
                                          0
                                                   45390
                                                              1410687
                                                                              4359
                                                                                    ticks
       #3
          2500 MHz
                        211234
                                          0
                                                   77125
                                                              1302328
                                                                              2640
                                                                                    ticks
       #4
          2500 MHz
                        127734
                                          0
                                                   42062
                                                              1420656
                                                                              1171
                                                                                    ticks
          2500 MHz
       #5
                        189125
                                          0
                                                   78218
                                                              1323109
                                                                              5359
                                                                                    ticks
       #6
          2500 MHz
                        157359
                                                   34718
                                                              1398375
                                                                              2687
                                                                                    ticks
       #7
           2500 MHz
                        202781
                                          0
                                                   67234
                                                              1320437
                                                                              2156
                                                                                    ticks
          2500 MHz
       #8
                                                                               828 ticks
                        125125
                                          0
                                                   37421
                                                              1427906
  Memory: 31.630901336669922 GB (26532.44921875 MB free)
  Uptime: 1590.687 sec
  Load Avg: 0.0 0.0 0.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-14.0.6 (ORCJIT, skylake-avx512)
  Threads: 2 on 8 virtual cores
Environment:
  JULIA_DEPOT_PATH = D:\Users\RoshKon1\.julia;D:\Users\RoshKon1\AppData\Local\Pumas-v2.4.1\
      → Julia-1.9.2\local\share\julia;D:\Users\RoshKon1\AppData\Local\Pumas-v2.4.1\Julia

→ -1.9.2\share\julia

  JULIA_LOAD_PATH = D:\Users\RoshKon1\.julia\environments\Pumas_v2.4.1;@;@v#.#;@stdlib
  JULIA_NUM_THREADS = 2
  JULIA_PKG_SERVER = pkg.julialang.org
  JULIA\_EDITOR = code
  FONTCONFIG_PATH = D:\Users\RoshKon1\.julia\artifacts\
      → be75bce183282b09d5afa393777e1c4d09e36f6c\etc\fonts
  HOMEDRIVE = D:
  HOMEPATH = \Users\RoshKon1
  PATH = C:\Windows\system32;C:\Windows\System32\Wbem;C:\Windows\System32\

→ WindowsPowerShell\v1.0\;C:\Windows\System32\OpenSSH\;C:\Program Files\Amazon\cfn-
      → bootstrap\;C:\Program Files\Microsoft VS Code\bin;C:\Program Files\Git\cmd;D:\
      → Users\RoshKon1\AppData\Local\Microsoft\WindowsApps;D:\Users\RoshKon1\AppData\Local
      → \Pumas-v2.4.1\Julia-1.9.2\bin;D:\Users\RoshKon1\AppData\Local\Programs\Julia
      → -1.9.3\bin
  PATHEXT = .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC
  PSMODULEPATH = C:\Program Files\WindowsPowerShell\Modules;C:\Windows\system32\
      → WindowsPowerShell\v1.0\Modules;C:\Program Files (x86)\AWS Tools\PowerShell\
```

B.1 NCA Version

```
Status `C:\a\PumasSystemImages\PumasSystemImages\sysimage_env\Manifest.toml`^
[29142fd5] NCA v2.5.5^
[b07d0016] NCAUtilities v0.9.5
Info Packages marked with ^ have new versions available and may be upgradable.
```

B.2 Project Manifest

```
Status 'D:\Users\RoshKon1\.julia\environments\v1.9\Manifest.toml'
  [d1d4a3ce] BitFlags v0.1.7⊼
 [944b1d66] CodecZlib v0.7.17
[f0e56b4a] ConcurrentUtilities v2.2.07
 [5218b696] Configurations v0.17.4
  [9a962f9c] DataAPI v1.15.0
  [e2d170a0] DataValueInterfaces v1.0.0⊼
 [55351af7] ExproniconLite v0.7.11
 [fb4132e2] FuzzyCompletions v0.5.1
[d7ba0133] Git v1.3.0⊼
[cd3eb016] HTTP v1.9.6
  [ac1192a8] HypertextLiteral v0.9.4
  [82899510] IteratorInterfaceExtensions v1.0.0⊼
 [692b3bcd] JLLWrappers v1.4.1
  [Oe77f7df] LazilyInitializedFields v1.2.1⊼
 [e6f89c97] LoggingExtras v0.4.9
  [6c6e2e6c] MIMEs v0.1.4
  [739be429] MbedTLS v1.1.7
  [99f44e22] MsgPack v1.2.0
  [4d8831e6] OpenSSL v1.4.1~
 [bac558e1] OrderedCollections v1.6.0⊼
 [c3e4b0f8] Pluto v0.19.26
  [91cefc8d] PrecompileSignatures v3.0.3~
 [aea7be01] PrecompileTools v1.1.2~
 [21216c6a] Preferences v1.4.0
  [2792f1a3] RegistryInstances v0.1.0⊼
 [05181044] RelocatableFolders v1.0.0
  [6c6a2e73] Scratch v1.2.0
  [777ac1f9] SimpleBufferStream v1.1.0
[3783bdb8] TableTraits v1.0.1~
 [bd369af6] Tables v1.10.1⊼
 [3bb67fe8] TranscodingStreams v0.9.13
[410a4b4d] Tricks v0.1.7
 [5c2747f8] URIs v1.4.2~
 [2e619515] Expat_jll v2.4.8+0
  [f8c6e375] Git_jll v2.36.1+2~
 [94ce4f54] Libiconv_jll v1.16.1+2~
 [458c3c95] OpenSSL_jll v1.1.21+0
  [0dad84c5] ArgTools v1.1.1
[56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [b77e0a4c] InteractiveUtils
  [b27032c2] LibCURL v0.6.3
[76f85450] LibGit2
  [8f399da3] Libdl
[37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [ca575930] NetworkOptions v1.2.0
[44cfe95a] Pkg v1.9.2
  [de0858da] Printf
  [3fa0cd96] REPL
[9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
```