

Escuela de Ingeniería Electrónica Semestre II-2019

Elementos Activos El Transistor de Unión Bipolar (BJT)

Instituto Tecnológico de Costa Rica Elementos Activos Dr.-Ing. Juan José Montero Rodríguez Semestre II-2019

Tabla de Contenidos

Tema 4. El Transistor de Unión Bipolar BJT	
Clase 13: Construcción, símbolo y funcionamiento	3-25
Clase 14: Modelo de gran señal y efecto Early	26-41
Clase 15: Polarización I	42-46
Clase 16: Polarización II	47-49
Clase 17: Modelo de pequeña señal	50-71
Clase 18: Modelo de Ebers-Moll	72-85

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Escuela de Ingeniería Electrónica Semestre II-2019

Clase 13 El Transistor BJT

Instituto Tecnológico de Costa Rica
Elementos Activos
Dr.-Ing. Juan José Montero Rodríguez
Semestre II-2019

Introducción

- Primer BJT inventado en 1947
 - Bell Laboratories
 - John Bardeen, Walter Brattain y William Schockley
 - Premio Nobel de Física en 1956
 - Transistor de Germanio de tres puntos

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Fuente de Corriente Dependiente con la Tensión

- Una fuente de corriente dependiente puede actuar como amplificador.
- Si KR_i es mayor que 1, la señal es amplificada.

$$V_1$$
 V_1
 V_1

(b)

$$A_V = \frac{V_{out}}{V_{in}} = -KR_L$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

5

Fuente Dependiente con Resistencia de Entrada

 Sin importar la resistencia de entrada, la magnitud de amplificación permanece sin cambios.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

6

Fuente de Corriente con Dependencia Exponencial de V

- Una fuente de corriente exponencialmente dependiente de la tensión V1 se muestra a continuación.
- Los transistores bipolares ideales se pueden modelar con este circuito.

Estructura y Símbolo del Transistor Bipolar

- El transistor bipolar consiste en la unión de tres regiones de silicio dopadas.
 - Las regiones a los lados están dopadas con el mismo tipo de dopante.
 - La región del centro está dopado con el tipo opuesto de dopante.

Estructura y Símbolo del Transistor Bipolar

Do transistors behave like two diodes connected back to back?

 Juntas PN de base-emisor y basecolector no tienen las mismas dimensiones ni concentraciones de dopado

⇒Colector y emisor no son intercambiables

⇒No opera como dos diodos en serie

- Dopado de emisor es alto, dopado de base es bajo, dopado de colector menor que el del emisor
- Base es muy angosta, permite difusión de portadores mayoritarios del emisor a través de la base hacia el colector
- Dopado de base es bajo para disminuir recombinación de portadores en la base

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Inyección de Portadores: Acción del Colector

- Una junta PN en reversa crea un campo eléctrico alto que atrae cualquier portador minoritario que sea inyectado en la región de agotamiento.
- Esta habilidad es esencial para el funcionamiento del transistor BJT.

Dr.-Ing. Juan José Montero Rodríguez

9

11

ITCR - Elementos Activos

10

Región Activa Directa

- En la región activa directa: VBE > 0, VBC < 0.
 - El diodo B-E está en polarización directa.
 - El diodo B-C está en polarización reversa.

- La siguiente figura muestra una forma incorrecta de modelar el transistor.
 - El diodo D2 está en reversa pero aun así conduce una corriente.

Funcionamiento del Transistor Bipolar

 El colector transporta corriente debido a la inyección de carga desde la base.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Transporte de Portadores en la Base

Corriente de Colector

- Aplicando la ley de difusión, se puede determinar el flujo de carga a través de la región de la base hacia el colector.
- La ecuación muestra que el transistor es en efecto un elemento controlado por tensión, y un buen candidato como amplificador.

$$I_C = \frac{A_E q D_n n_i^2}{N_E W_B} \left(\exp \frac{V_{BE}}{V_T} - 1 \right)$$

$$I_C = I_S \exp \frac{V_{BE}}{V_T}$$

$$I_S = \frac{A_E q D_n n_i^2}{N_E W_B}$$

Dr.-Ing. Juan José Montero Rodríguez

13

15

ITCR - Elementos Activos

14

Combinación de Transistores en Paralelo

Dr.-Ing. Juan José Montero Rodríguez

Cuando dos transistores se conectan en paralelo y experimentan el mismo potencial a través de las tres terminales, se pueden representar por un único transistor con el doble de área.

ITCR - Elementos Activos

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Configuración Simple del Transistor

Aunque el transistor convierte una tensión en una corriente, se puede obtener una tensión de salida insertando una resistencia de carga en la salida, permitiendo que la corriente controlada pase a través de ella.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Fuente de Corriente Constante

- Idealmente, la corriente de colector no depende de la tensión VCE (tensión colector-emisor).
- Esta propiedad le permite al transistor funcionar como una fuente de corriente constante cuando la tensión VBE (base-emisor) es fija.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

17

Corriente de Base

- La corriente de base tiene dos componentes:
 - Inyección de huecos al emisor.
 - Recombinación de huecos con electrones que vienen del emisor.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

18

Corriente de Emisor

 Aplicando la ley de corriente de Kirchoff al transistor, se puede encontrar la corriente de emisor.

$$I_{C} = I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{E} = I_{C} + I_{B}$$

$$I_{B} = \frac{1}{\beta} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{E} = \frac{\beta + 1}{\beta} I_{S} \exp \frac{V_{E}}{V_{T}}$$

$$I_{E} = \frac{\beta + 1}{\beta} I_{S} \exp \frac{V_{E}}{V_{T}}$$

$$\frac{\beta}{\beta + 1} = \alpha$$

Ejemplo: Máxima Resistencia de Carga R_L

- A medida que R_L aumenta, V_x disminuye y eventualmente polariza la unión base-colector en directa. Esto ocasiona que el transistor se salga de la región activa directa.
- Por este motivo, existe una máxima resistencia de colector.

Curva Características del Transistor Bipolar Curva de Transferencia Curva de Salida V_{BE} V_{CE}

Curvas Características

Escuela de Ingeniería Electrónica Semestre II-2019

Clase 14 Modelo de Gran Señal BJT

Instituto Tecnológico de Costa Rica **Elementos Activos** Dr.-Ing. Juan José Montero Rodríguez Semestre II-2019

Modelo de Gran Señal del Transistor Bipolar

- Se coloca un diodo entre la base y el emisor.
- Se coloca una fuente de corriente dependiente entre el colector y emisor.

Efecto Early

- Decir que la corriente de colector no depende de V_{CE} es un error.
- A medida que V_{CE} aumenta, el ancho de la región de agotamiento entre la base y el colector aumenta. Por lo tanto, el ancho efectivo de la base disminuye, lo que ocasiona un aumento en la corriente de colector.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

27

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Ilustración del Efecto Early

• Con efecto Early, la corriente de colector se vuelve más grande de lo usual y se convierte en una función de $\rm V_{CE}$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

29

Representación del Efecto Early

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

30

Modelo de Gran Señal con Efecto Early

- El efecto Early se puede incluir en el modelo de gran señal mediante la inclusión de un factor de corrección en la ecuación de corriente de colector.
- De esta forma, la corriente de base no cambia.

Transistor Bipolar en Saturación

 Cuando la tensión del colector cae por debajo de la tensión de base, la unión base-colector se polariza en directa. Esto aumenta la corriente de base y disminuye la ganancia de corriente β.

Dr.-Ing. Juan José Montero Rodríguez ITCR - Elem

ITCR - Elementos Activos

31

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Modelo de Gran Señal para la Región de Saturación

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

5

Curva Característica Completa

La velocidad del BJT también disminuye en saturación.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

34

Ejemplo: Región de V_{CC} Aceptable

- Con el propósito de mantener el BJT al menos en la región de saturación débil, la tensión del colector no debe caer por debajo de la tensión de base por más de 400 mV.
- Una relación lineal se puede derivar a partir de V_{CC} y R_C de manera que se pueda ubicar el punto de operación en un rango aceptable.

Saturación Fuerte

 En la región de saturación fuerte, el transistor pierde su capacidad de ser una fuente de corriente controlada, y la tensión V_{CF} se vuelve constante.

Dr.-Ing. Juan José Montero Rodríguez ITCR - Elem

ITCR - Elementos Activos

35

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Transistor PNP

- Si se invierten los dopados del emisor, colector y base, se forma un transistor PNP.
- Todos los principios que se aplican al NPN también se aplican al PNP, con la excepción de que el emisor está a un potencial más alto que la base, y la base a un potencial más alto que el colector.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Comparación entre Transistores NPN y PNP

 La figura a continuación describe la dirección del flujo de corriente y las regiones de operación para transistores NPN y PNP.

Active Mode Edge of Saturation

+ 0 - (a)

Edge of

Saturation Mode

Active Mode

Saturation + 0

Saturation Mode

- K

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

38

Ecuaciones del Transistor PNP

Modelo de Gran Señal para PNP

Dr.-Ing. Juan José Montero Rodríguez ITCR - Elementos Activos

39

37

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Polarización del PNP en Activa Directa

- Observe que el emisor está a un potencial más alto que la base y que el colector (VE>VB, VE>VC)
- La unión colector-base debe quedar en reversa, por lo que la tensión del colector debe ser menor que la tensión de base (VB>VC).

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

41

TEC | Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Semestre II-2019

Clase 15 Polarización I

Instituto Tecnológico de Costa Rica Elementos Activos Dr.-Ing. Juan José Montero Rodríguez Semestre II-2019

Polarización

- Técnicas para establecer las tensiones y corrientes de DC del circuito.
- Se debe especificar la tensión en cada nodo (VC,VB,VE) y la corriente en cada una de las terminales del transistor (IC,IB,IE).
- Se distinguen las siguientes topologías:

Resistencia de Base Divisor de Tensión

Degeneración Emisor

Autopolarización

Polarización por Resistencia de Base

Para resolver se utiliza el método iterativo:

1. Asumir VBE = 0.7 V

2. Calcular la corriente haciendo una malla por la base

$$I_B = \frac{V_{CC} - V_{BE}}{R_R} \qquad I_C = \beta I_B = \beta \frac{V_{CC} - V_{BE}}{R_R}$$

3. Recalcular la tensión VBE con la ecuación de Shockley

$$V_{BE} = V_t \ln \frac{I_C}{I_S}$$

4. Iterar hasta obtener un error aceptable

Si no se desean resultados exactos, se puede asumir desde el inicio que la tensión VBE es aproximadamente 0.7 V y se resuelve IC, sin iterar.

Polarización por Divisor de Tensión

- Si la corriente I_B es despreciable con respecto a la corriente que fluye por las resistencias, se puede calcular la tensión en la base simplemente tomando el divisor de tensión.
- Para que I_B se considere despreciable, se debe cumplir:

$$I_B < I_{R1}/10$$

En ese caso se puede resolver sin iterar:

$$V_B = V_{BE} = \frac{V_{CC} \cdot R_2}{R_1 + R_2}$$

$$I_C = I_S e^{V_{BE}/V_t}$$

 Finalmente se debe verificar que el transistor opera en la región activa directa y que la corriente l_B en efecto es despreciable comparada con l_{R1}.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

45

Polarización por Divisor de Tensión

• Si la corriente l_B no es despreciable, se debe sustituir el divisor de tensión por un equivalente de Thévenin.

 El circuito una vez convertido se resuelve igual que la polarización por resistencia de base (método iterativo).

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

46

Escuela de Ingeniería Electrónica Semestre II-2019

Clase 16 Polarización II

Instituto Tecnológico de Costa Rica
Elementos Activos
Dr.-Ing. Juan José Montero Rodríguez
Semestre II-2019

Polarización con Degeneración de Emisor

- Este caso es similar a los dos anteriores, con la diferencia de que la resistencia de emisor queda en la ecuación de la malla por la base
- Tomando el equivalente de Thévenin:

$$V_{TH} = \frac{V_{CC} \cdot R_2}{R_1 + R_2}$$

$$V_{TH} = V_{RTH} + V_{BE} + V_{RE}$$

$$V_{TH} = I_B R_{TH} + V_{BE} + I_E R_E$$

$$V_{TH} = I_B R_{TH} + V_{BE} + (\beta + 1) I_B R_E$$

$$I_B = \frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1) R_E} \Rightarrow I_C = \beta \frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1) R_E}$$

• A partir de aquí se debe iterar con el mismo procedimiento.

Autopolarización

• Este circuito siempre opera en la región activa directa

$$V_C > V_B$$

• Para resolverlo se toma la malla desde VCC por RB

$$V_{CC} = (I_C + I_B)R_C + I_BR_B + V_{BE}$$

$$V_{CC} = (\beta I_B + I_B)R_C + I_B R_B + V_{BE}$$

$$V_{CC} = (\beta + 1)I_BR_C + I_BR_B + V_{BE}$$

$$I_B = \frac{V_{CC} - V_{BE}}{(\beta + 1)R_C + R_B} \Rightarrow I_C = \beta I_B = \beta \frac{V_{CC} - V_{BE}}{(\beta + 1)R_C + R_B}$$

• A partir de aquí se resuelve por el método iterativo.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

49

Escuela de Ingeniería Electrónica Semestre II-2019

Clase 17 **Modelo de Pequeña Señal**

Instituto Tecnológico de Costa Rica Elementos Activos Dr.-Ing. Juan José Montero Rodríguez Semestre II-2019

Transconductance

- Transconductance, g_m shows a measure of how well the transistor converts voltage to current.
- It will later be shown that $g_{\rm m}$ is one of the most important parameters in circuit design.

$$g_{m} = \frac{d}{dV_{BE}} \left(I_{S} \exp \frac{V_{BE}}{V_{T}} \right)$$

$$g_{m} = \frac{1}{V_{T}} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$g_{m} = \frac{I_{C}}{V_{T}}$$

Visualization of Transconductance

- g_m can be visualized as the slope of I_C versus V_{BE} .
- A large I_C has a large slope and therefore a large g_m

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

51

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Transconductance and Area

When the area of a transistor is increased by n, I_S increases by n. For a
 <u>constant</u> V_{BE}, I_C and hence g_m increases by a factor of n.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

53

Transconductance and I_c

• The figure above shows that for a given V_{BE} swing, the current excursion around I_{C2} is larger than it would be around I_{C1} . This is because g_m is larger I_{C2} .

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

54

Small-Signal Model: Derivation

Small signal model is derived by perturbing voltage difference every two
terminals while fixing the third terminal and analyzing the change in current
of all three terminals. We then represent these changes with controlled
sources or resistors.

Small-Signal Model: V_{BF} Change

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

55

Dr.-Ing. Juan José Montero Rodríguez ITCR - Elementos Activos

Small-Signal Model: V_{CE} Change

- Ideally, V_{CE} has no effect on the collector current. Thus, it will not contribute to the small signal model.
- It can be shown that V_{CB} has no effect on the small signal model, either.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

57

59

Small Signal Example I

 Here, small signal parameters are calculated from DC operating point and are used to calculate the change in collector current due to a change in V_{BE}.

$$r_{\pi} = \frac{\beta}{g_m} = 375\Omega$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

58

Small Signal Example II

 In this example, a resistor is placed between the power supply and collector, therefore, providing an output voltage.

• **AC Ground:** Since the power supply voltage does not vary with time, it is regarded as a ground in small-signal analysis.

Early Effect and Small-Signal Model

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Resistencia de Salida ro

Resistencia de salida r_o : modulación de ancho de base causa resistencia de salida ≠ ∞

La conductancia de salida se calcula como

$$\frac{1}{r_o} = g_o = f\left(\frac{I_{out}}{V_{out}}\right) = \frac{\partial i_C}{\partial v_{CE}}\Big|_Q$$

Extrapolar hasta intersección con lc = 0 Intersección se da en V_{CE} = -V_A

V_A: voltaje de Early

$$r_o = \frac{V_A}{I_C}$$

IC' es IC sin tomar en cuenta la modulación de ancho de base

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

61

Small Signal Analysis

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

62

Small-Signal Model for PNP Transistor

 The small signal model for PNP transistor is exactly IDENTICAL to that of NPN. This is not a mistake because the current direction is taken care of by the polarity of V_{BF}

Saturation

region

Small Signal Model Example I

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

Small Signal Model Example II

Small-signal model is identical to the previous ones.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

65

Small Signal Model Example III

 Since during small-signal analysis, a constant voltage supply is considered to be AC ground, the final small-signal model is identical to the previous two

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

66

Small Signal Model Example IV

High-Frequency Bipolar Model

• At high frequency, capacitive effects come into play. C_b represents the base charge, whereas C_u and C_{ie} are the junction capacitances.

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

High-Frequency Model of Integrated Bipolar Transistor

• Since an integrated bipolar circuit is fabricated on top of a substrate, another junction capacitance exists between the collector and substrate, namely C_{CS} .

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

69

Example: Capacitance Identification

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

70

Frecuencia de Tránsito

$$2\pi f_T = \frac{g_m}{C_{GS}}$$

La frecuencia de tránsito, f_T , se define como la frecuencia donde la ganancia de corriente desde la salida a la entrada se vuelve 1.

Escuela de Ingeniería Electrónica Semestre II-2019

Clase 18 Modelo de Ebers-Moll

Instituto Tecnológico de Costa Rica Elementos Activos Dr.-Ing. Juan José Montero Rodríguez Semestre II-2019

Modelo de Ebers-Moll

Modelo describe la operación de ambos diodos: DBE y DBC

Permite encontrar el punto de operación en cualquiera de las regiones:

- Corte
- Activa directa
- Activa reversa

Saturación debil
$$I_E = \alpha_B I_{CS} (e^{V_{BC}/V_T} - 1) - I_{ES} (e^{V_{BE}/V_T} - 1)$$

La dirección de las corrientes es muy importante, signo positivo siempre que la corriente entra al transistor.

 $I_F = I_{ES}(e^{V_{BE}/V_T} - 1)$ $I_R = I_{CS}(e^{V_{BC}/V_T} - 1)$

 $I_C = \alpha_F I_{FS} (e^{V_{BE}/V_T} - 1) - I_{CS} (e^{V_{BC}/V_T} - 1)$

$$I_B + I_C + I_E = 0$$

$$I_B = -I_C - I_E$$

$$\alpha_F I_{ES} = \alpha_R I_{CS}$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

73

75

Modelo de Ebers-Moll Simplificado (Activa Directa)

También llamado Modelo T

- En activa directa, el modelo se simplifica al igualar IR = 0.
- La fuente de corriente dependiente α_RI_R también se apaga.
- Las ecuaciones se reducen como se observa a la derecha.

$$I_C = \alpha_F I_{ES} (e^{V_{BE}/V_T} - 1)$$

 $I_E = -I_{ES} (e^{V_{BE}/V_T} - 1)$

$$I_F = I_{ES} (e^{V_{BE}/V_T} - 1)$$
$$I_R \approx 0$$

$$I_B + I_C + I_E = 0$$

$$I_B = -I_C - I_E$$

$$\alpha_F I_{ES} = \alpha_R I_{CS}$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

74

Problema 1 – Ebers-Moll para saturación débil

Un transistor NPN polarizado por resistencia de base (mostrado en la figura) presenta los siguientes parámetros: $\alpha F=0.99$, $\alpha R=0.495$, IES=1 $\times 10^{-17}$ A, ICS=2×10⁻¹⁷ A. La fuente de alimentación es de 5 V.

Se requiere dimensionar las resistencias para obtener una corriente IC=1mA con el transistor en la región de saturación débil, considerando VC=VB-200mV.

Dibuje el circuito equivalente utilizando el modelo de Ebers-Moll completo, y determine:

- El valor de βF v de βR
- El valor de VBE, VBC y VCE
- El valor de IF e IR
- El vaolr de IE e IB
- El valor de la resistencia RB
- El valor de RC

Problema 1 - Solución (1)

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F} = \frac{0.99}{1 - 0.99} = 99$$

$$\beta_R = \frac{\alpha_R}{1 - \alpha_R} = \frac{0.495}{1 - 0.495} = 0.9802$$

Las ecuaciones del modelo de Ebers-Moll son:

$$I_C = \alpha_F I_F - I_R = \alpha_F I_{ES} (e^{V_{BE}/V_T} - 1) - I_{CS} (e^{V_{BC}/V_T} - 1) = 1 \, mA$$

$$I_E = \alpha_R I_R - I_F = \alpha_R I_{CS} (e^{V_{BC}/V_T} - 1) - I_{ES} (e^{V_{BE}/V_T} - 1)$$

Donde la corriente de directa y reversa son:

$$I_F = I_{ES}(e^{V_{BE}/V_T} - 1)$$

$$I_{R} = I_{CS}(e^{V_{BC}/V_{T}} - 1)$$

Problema 1 – Solución (2)

Este sistema de ecuaciones tiene tres incógnitas (V_{BE} , V_{BC} , I_E) de modo que se necesita una ecuación adicional para resolverlo. La ecuación adicional se obtiene de la condición de saturación débil:

$$V_C = V_B - 200 \, mV$$

$$V_{CE} = V_{BE} - V_{BC}$$

$$V_{BC} = 200 \ mV$$

Esto reduce el sistema a dos ecuaciones, dos variables (V_{BE} , I_{E}):

$$I_R = I_{CS} (e^{V_{BC}/V_T} - 1) = (2 \times 10^{-17} A) (e^{200 mV/26 mV} - 1) = 4.38 \times 10^{-14} A$$

$$I_C = \alpha_F I_F - I_R = 1 mA$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

77

Problema 1 – Solución (3)

$$I_F = \frac{I_C + I_R}{\alpha_F} = \frac{1mA + 4.38 \times 10^{-14}A}{0.99} = 1.0101 \, mA$$

De donde podemos calcular la tensión V_{RE} como:

$$I_F = I_{ES}(e^{V_{BE}/V_T} - 1) = 1.0101 \, mA$$

$$V_{BE} = V_T \ln(I_F / I_{ES}) = 26 \ mV \cdot \ln\left(\frac{1.0101 mA}{10^{-17} A}\right) = 838.40 \ mV$$

La tensión colector-emisor es entonces

$$V_{CE} = V_{BE} - V_{BC} = 838.40 mV - 200 mV = 638.40 mV$$

La corriente de emisor es:

$$I_E = \alpha_R I_R - I_F = (0.495)(4.38 \times 10^{-14} A) - 1.0101 \, \text{mA} \approx -1.0101 \, \text{mA}$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

78

Problema 1 - Solución (4)

La corriente de base se calcula como:

$$I_B = -I_E - I_C = -(-1.0101mA) - (1mA) = 10.10 \,\mu A$$

De la malla de la base:

$$V_{CC} - I_B R_B = V_{BE}$$

$$R_B = \frac{V_{CC} - V_{BE}}{I_B} = \frac{5V - 838.40 \ mV}{10.10 \ \mu A} = 412.03 \ k\Omega$$

Finalmente la resistencia de colector que produce la operación en modo de saturación débil se calcula con la malla del colector:

$$V_{CC} - I_C R_C = V_{CE}$$

$$R_C = \frac{V_{CC} - V_{CE}}{I_C} = \frac{5V - 638.40mV}{1mA} = 4.362 \text{ } k\Omega$$

Problema 2 – Ebers-Moll para saturación fuerte

Repetir el problema si ahora el transistor opera en la región de saturación, con una tensión V_{BC} de al menos 750 mV que polariza el diodo B-C en directa. En esta región asuma que la corriente de colector disminuyó a 300 μ A debido a la contribución de la corriente de reversa.

Utilizando el modelo de Ebers-Moll completo, determine:

- El valor de V_{BE} , V_{BC} y V_{CE}
- El valor de I_F e I_R
- El valor de la resistencia R_B
- El valor de R_C

Problema 2 - Solución (1)

La condición de saturación fuerte ahora es:

$$V_C = V_B - 750mV$$

$$V_{CE} = V_{BE} - V_{BC}$$

$$V_{BC} = 750mV$$

Resolviendo el sistema de ecuaciones de Ebers-Moll obtenemos:

$$I_R = I_{CS}(e^{V_{BC}/V_T} - 1) = (2 \times 10^{-17} A)(e^{750mV/26mV} - 1) = 67.41 \mu A$$

$$I_C = \alpha_F I_F - I_R = 300 \mu A$$

$$I_F = \frac{I_C + I_R}{\alpha_F} = \frac{300\mu A + 67.41\mu A}{0.99} = 371.12\mu A$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

81

Problema 2 – Solución (2)

De donde podemos calcular la tensión V_{BE} como:

$$I_F = I_{ES}(e^{V_{BE}/V_T} - 1) = 371.12\mu A$$

$$V_{BE} = V_T \ln(I_F/I_{ES}) = 26mV \ln(\frac{371.12\mu A}{10^{-17}A}) = 812.37mV$$

La tensión colector-emisor es entonces

$$V_{CE} = V_{BE} - V_{BC} = 812.37mV - 750mV = 62.37mV$$

La corriente de emisor es:

$$I_F = \alpha_R I_R - I_F = (0.495)(67.41\mu A) - 371.12\mu A = -337.52\mu A$$

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

82

Problema 2 - Solución (3)

La corriente de base se calcula como:

$$I_B = -I_E - I_C = -(-337.52\mu A) - (300\mu A) = 37.52\mu A$$

De la malla de la base:

$$V_{CC} - I_B R_B = V_{BE}$$

$$R_B = \frac{V_{CC} - V_{BE}}{I_B} = \frac{5V - 812.37mV}{37.52\mu A} = 111.61 \text{ k}\Omega$$

Finalmente la resistencia de colector que produce la operación en modo de saturación fuerte se calcula con la malla del colector:

$$V_{CC} - I_C R_C = V_{CE}$$

$$R_C = \frac{V_{CC} - V_{CE}}{I_C} = \frac{5V - 62.37mV}{300\mu A} = 16.46 \text{ k}\Omega$$

Medición Experimental de los Parámetros de Ebers-Moll

 A un transistor bipolar NPN modelo 2N2222 se le aplican las siguientes pruebas, de las cuales se obtienen los resultados mostrados.

Prueba 1		Prueba 2	
VBE	0.72 V	VBE	0.66 V
IC	10.6864 mA	IC	1.3792 mA
IB	55.3370 µA	IB	Sin datos
IE	10.7418 mA	IE	Sin datos

Con base en la información de las tablas, determine los siguientes parámetros del modelo de Ebers-Moll: α_F , β_F IES, ICS, α_R , β_R , y calcule los valores de IB e IE que se deberían obtener en la prueba 2.

La clave está en observar que, en cada medición, uno de los dos diodos está en cortocircuito y las ecuaciones de Ebers-Moll se pueden simplificar.

Modelo de SPICE del Transistor BJT

Name	Description	Units	Default
ls	Transport saturation current	Α	1e-16
Ibc	Base-collector saturation current	Α	ls
Ibe	Base-emitter saturation current	Α	ls
Vaf	Forward Early voltage	V	Infin.
Var	Reverse Early voltage	V	Infin.
Bf	Ideal maximum forward beta	-	100
Br	Ideal maximum reverse beta	-	1.

Ejemplo:

.model TRAN1 NPN (Is=2e-16 Vaf=5 Bf=200)

Dr.-Ing. Juan José Montero Rodríguez

ITCR - Elementos Activos

