# REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

0)

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. AGENCY USE ONLY (Leave blank                  | 2. REPORT DATE                                  | 3. REPORT TYPE AND DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATES COVERED                               |
|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                  | 09/00/93                                        | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |
| 4. TITLE AND SUBTITLE                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FUNDING NUMBERS                            |
| TRIAL BURN SUMMARY REPORT, FOR                   |                                                 | BASIN F SUBMERGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| QUENCH INCINERATION PROJECT, D                   | KATI FINAL                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · v                                        |
| 6. AUTHOR(S)                                     | 700                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                  |                                                 | ECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |
|                                                  | V233.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERFORMING ORGANIZATION                    |
| 7. PERFORMING ORGANIZATION NA                    | ME(S) AND ADDRESSIES JA                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REPORT NUMBER                              |
| DOV 5 UEGTON INC                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| ROY F. WESTON, INC. WEST CHESTER, PA             | •                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                          |
|                                                  | a.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93256R01                                   |
|                                                  | <u> </u>                                        | general and a superior of the second |                                            |
| 9. SPONSORING/MONITORING AGE                     | NCY NAME(S) AND ADDRESS(ES)                     | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPONSORING/MONITORING AGENCY REPORT NUMBER |
| Ì                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| ROCKY MOUNTAIN ARSENAL (CO.).                    | PMRMA                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| COMMERCE CITY, CO                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 11. SUPPLEMENTARY NOTES                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                  | ¥                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 12a. DISTRIBUTION / AVAILABILITY S               | TATEMENT                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b. DISTRIBUTION CODE                       |
| 12a. DISTRIBUTION / AVAILABLETT 5                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| APPROVED FOR PUBLIC REI                          | LEASE; DISTRIBUTION IS                          | UNLIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
|                                                  | •                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 13. ABSTRACT (Maximum 200 words                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 13. ABSTRACT (Maximum 200 Words)                 | ,                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| THIS REPORT CONTAINS IN                          | NFORMATION RECOMMENDED                          | IN THE DOCUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENTITLED "GUIDANCE                         |
| ON SETTING PERMIT COND                           | ITIONS AND REPORTING T                          | RIAL BURN RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE POLICHING NINE                         |
| (EPA/612/6-89/019), JAI<br>SECTIONS: (1) SUMMARY | NUARY 1989, AND HAS BE<br>. (2) PROCESS OPERATI | EN ORGANIZED INTO<br>ON. (3) SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AND MONITORING                             |
| PROCEDURES. (4) ANALY                            | FICAL PROCEDURES. (5)                           | TEST RESULTS. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6) QUALITY                                 |
| ASSURANCE SUMMARY. (7                            | ) VISITS AND AUDIT SUM                          | MARY. (8) CLOSUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. (9)                                     |
| CONCLUSIONS.                                     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 1                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 400                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 1 100                                            | 16011/106                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 1 00                                             | 160117 105                                      | 'Doro or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S.V. E. Parameter                          |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jality inspected 1                         |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 14. SUBJECT TERMS                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15. NUMBER OF PAGES                        |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| QA/QC, SAMPLING METHODS, ANALY                   | TICAL METHODS, EQUIPMENT, IRA                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16. PRICE CODE                             |
|                                                  | o creunity en accirication I                    | O CECUDITY CLASSIFICAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ION 20. LIMITATION OF ABSTRACT             |
| 17. SECURITY CLASSIFICATION 1 OF REPORT          | 8. SECURITY CLASSIFICATION 11 OF THIS PAGE      | <ol><li>SECURITY CLASSIFICAT<br/>OF ABSTRACT</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20. Elivitation of Abstract                |
|                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |



INTERIM RESPONSE ACTION

BASIN F LIQUID INCINERATION PROJECT

# DRAFT FINAL TRIAL BURN REPORT

**VOLUME I** 

SEPTEMBER 1993



# DISCLAIMER NOTICE



THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

# TRIAL BURN SUMMARY REPORT FOR THE INTERIM RESPONSE ACTION BASIN F SUBMERGED QUENCH INCINERATION PROJECT

# **VOLUME I**

**DRAFT FINAL** 

Prepared by: ROY F. WESTON, INC. 1 Weston Way West Chester, PA 19380

September 1993

Work Order No. 05189-008-001-7020

# **CERTIFICATION**

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. (Written in accordance with 40 CFR 270.11).

ROY F. WESTON, IN

James H. Dougherty

President, Treatment Systems Department

| Aces   | ice For            |   |
|--------|--------------------|---|
| NTIS   | gene i             | 团 |
| DTIC T | AB                 |   |
| Unanno | uneed              |   |
| Justif | isation            |   |
| Avail  | bution/<br>ability |   |
| Dist   | Avail am<br>Specis |   |

# TABLE OF CONTENTS

| <u>Section</u> |     | <u>Title</u>                                   | Page |
|----------------|-----|------------------------------------------------|------|
|                | EX  | ECUTIVE SUMMARY                                | ES-1 |
| 1              | SUI | MMARY                                          | 1-1  |
|                | 1.1 | Introduction                                   | 1-1  |
|                | 1.2 | 8                                              | 1-1  |
|                | 1.3 | Objectives of the Trial Burn                   | 1-5  |
|                | 1.4 | Document Organization                          | 1-6  |
| 2              | PRO | OCESS OPERATION                                | 2-1  |
|                | 2.1 | General Overview of the Process                | 2-1  |
|                |     | 2.1.1 Waste Feed System                        | 2-1  |
|                |     | 2.1.2 Submerged Quench Incinerator             | 2-1  |
|                |     | 2.1.3 Flue Gas Treatment and Emissions Control | 2-4  |
|                | 2.2 | Process Operation Data                         | 2-5  |
|                |     | 2.2.1 Process Measurement Methods              | 2-5  |
|                | 2.3 | Deviations from Trial Burn Plan                | 2-8  |
|                |     | 2.3.1 Process Sample Volumes                   | 2-8  |
|                |     | 2.3.2 Sample Preservation                      | 2-10 |
|                |     | 2.3.3 Liquid Waste Audit Requirements          | 2-10 |
|                |     | 2.3.4 Performance Evaluation Samples           | 2-10 |
|                |     | 2.3.5 Pesticide Surrogates                     |      |
| 3              | SAN | MPLING AND MONITORING PROCEDURES               | 3-1  |
|                | 3.1 | Sampling Plan                                  | 3-1  |
|                | 3.2 | Sample Identification                          | 3-1  |
|                | 3.3 | Sampling Procedures                            | 3-2  |
| 4              | ANA | LYTICAL PROCEDURES                             | 4-1  |
|                | 4.1 | Analytical Methods                             | 4-1  |
|                | 4.2 | Analytes                                       | 4-1  |

# September 1993

# TABLE OF CONTENTS (Continued)

| <b>Section</b> |           | <u>Title</u>                                           | <b>Page</b> |
|----------------|-----------|--------------------------------------------------------|-------------|
| 5              | TES       | ST RESULTS                                             | 5-1         |
|                | 5.1       | Treatment of Non-Detects, Values Outside of the        |             |
|                |           | Calibration Range and Blanks                           | 5-2         |
|                |           | 5.1.1 Non-Detects                                      | 5-2         |
|                |           | 5.1.2 Values Outside the Calibration Range             | 5-3         |
|                |           | 5.1.3 Blank Values                                     | 5-3         |
|                | 5.2       | Stack Emissions                                        | 5-4         |
|                |           | 5.2.1 Particulate/HCl                                  | 5-4         |
|                |           | 5.2.2 Volatile Organic Compounds                       | 5-5         |
|                |           | 5.2.3 Semivolatile Organic Compounds and Pesticides    | 5-6         |
|                |           | 5.2.4 Dioxin/Furans                                    | 5-7         |
|                |           | 5.2.5 Metals                                           | 5-7         |
|                |           | 5.2.6 Hexavalent Chromium                              | 5-8         |
|                |           | 5.2.7 Continuous Emissions Monitoring                  | 5-8         |
|                | 5.3       | System Influent and Effluent Streams                   |             |
|                |           | 5.3.1 System Influent Streams - Waste Feed,            |             |
|                |           | POHC, Makeup Water and Caustic                         | 5-8         |
|                |           | 5.3.2 System Effluent Streams - Brine                  | 5-10        |
| 6              | <b>QU</b> | ALITY ASSURANCE SUMMARY                                | 6-1         |
|                | 6.1       | Summary                                                | 6-1         |
|                |           | 6.1.1 Document Authority for Criteria                  | 6-2         |
|                | 6.2       | Methods, Analyte Lists, Preservation and Holding Times | 6-3         |
|                | •         | 6.2.1 Analytical Methods                               | 6-4         |
|                |           | 6.2.2 Analyte Lists                                    | 6-4         |
|                |           | 6.2.3 Sample Preservation                              | 6-4         |
|                |           | 6.2.4 Holding Times                                    | 6-4         |
|                | 6.3       | Precision and Accuracy DQOs                            | 6-6         |
|                |           | 6.3.1 Variance from TBP-Specific Criteria              | 6-6         |
|                |           | 6.3.2 Stack Gas Analyses                               | 6-9         |
|                |           | 6.3.3 Liquid Feed Samples and Brines                   | 6-10        |
|                |           | 6.3.4 Blank Analysis                                   | 6-11        |
|                | 6.4       | Completeness                                           | 6-11        |

# TABLE OF CONTENTS (Continued)

| <b>Section</b> |       |        | <u>Title</u>                                  | Page        |
|----------------|-------|--------|-----------------------------------------------|-------------|
| 7              | VIS   | ITS AN | D AUDIT SUMMARY                               | 7-1         |
|                | 7.1   | Visito | rs List                                       | 7-1         |
|                | 7.2   | Audit  | Summary                                       | 7-2         |
| 8              | CLC   | SURE   | ·                                             | 8-1         |
|                | 8.1   | Mater  | ial Resources                                 | 8-1         |
|                | 8.2   | Mater  | ial Processed                                 | 8-1         |
|                | 8.3   | Proces | sed Material Disposal                         | 8-1         |
| 9              | CO    | NCLUS  | IONS                                          | 9-1         |
|                | 9.1   | Recon  | nmended Operating Limits                      | 9-1         |
|                |       | 9.1.1  | Maximum Liquid Feedrate                       | 9-3         |
|                |       | 9.1.2  | Minimum Residence Time                        | 9-3         |
|                |       | 9.1.3  | Minimum Combustion Temperature                | 9-4         |
|                |       | 9.1.4  | Minimum Stack Oxygen                          | 9-5         |
|                |       | 9.1.5  | Minimum Quench pH                             | 9-5         |
|                |       | 9.1.6  | Minimum Scrubber pH                           | 9-5         |
|                |       | 9.1.7  | Minimum Venturi Differential Pressure         | 9-6         |
|                |       | 9.1.8  | Minimum Packed Tower Flow                     | 9-6         |
|                |       | 9.1.9  | Maximum CO Hourly Rolling Average             | 9-6         |
| ,              |       | 9.1.10 | Minimum Venturi Flowrate                      | 9-6         |
|                |       | 9.1.11 | Minimum Feed Nozzle Pressure                  | 9-7         |
|                |       | 9.1.12 | Minimum Compressure Outlet Pressure           | 9-7         |
| APPE           | ENDI  | X A    | TRIAL BURN OPERATION REPORTS AND CERTIFICATES | CALIBRATION |
| APPE           | NDE   | ХВ     | PROCESS AND STACK SAMPLING DATA               |             |
| APPE           | 'NDI' | X C    | LARORATORY ANALYSIS                           |             |

v

# LIST OF TABLES

| Table N | o. <u>Title</u>                                                       | Page |
|---------|-----------------------------------------------------------------------|------|
| ES-1    | Summary of Operating Parameters and Results during the SQI Trial Burn | ES-2 |
| 2-1     | Continuous Emissions Monitoring Equipment                             | 2-6  |
| 2-2     | Summary of Operating Parameters During the SQI Trial<br>Burn          | 2-7  |
| 3-1     | Sampling and Monitoring Plan for Liquid Waste                         | 3-5  |
| 3-2     | Sampling and Monitoring Plan for POHC Solution (Carbon Tetrachloride) | 3-6  |
| 3-3     | Sampling and Monitoring Plan for POHC Solution (Chlorobenzene)        | 3-7  |
| 3-4     | Sampling and Monitoring Plan for Makeup Water                         | 3-8  |
| 3-5     | Sampling and Monitoring Plan for Caustic Solution                     | 3-9  |
| 3-6     | Sampling and Monitoring Plan for Brine                                | 3-10 |
| 3-7     | Sampling and Monitoring Plan for Stack Gases                          | 3-11 |
| 3-8     | Sampling Equipment                                                    | 3-12 |
| 3-9     | SQI Stack Sample Identification                                       | 3-13 |
| 3-10    | Sampling Procedures                                                   | 3-16 |
| 4-1     | Summary of Extraction and Analytical Methods                          | 4-2  |
| 4-2     | Comparison of EPA Reference Methods to WESTON SOPs                    | 4-5  |
| 4-3     | Volatile Organic Compounds (Method 8240)                              | 4-6  |
| 4-4     | Semivolatile Organic Compounds (Method 8270)                          | 4-7  |
| 4-5     | Pesticides/PCBs                                                       | 4-8  |

# LIST OF TABLES (Continued)

| Ta | <u>ble</u> | <u>Title</u>                                                                                            | Page |
|----|------------|---------------------------------------------------------------------------------------------------------|------|
|    | 4-6        | Dioxins/Furans                                                                                          | 4-9  |
|    | 4-7        | Metals                                                                                                  | 4-10 |
|    | 4-8        | Total Halides                                                                                           | 4-10 |
|    | 5-1        | Summary of Particulate/HCl Test Data and Test Results                                                   | 5-12 |
|    | 5-2        | Summary of Volatile Organics Test Data and Test Results                                                 | 5-13 |
|    | 5-3        | Summary of Semivolatile Organic Compounds and Pesticides<br>Test Data and Test Results                  | 5-28 |
|    | 5-4        | Summary of Dioxins/Furan Test Data and Test Results                                                     | 5-39 |
|    | 5-5        | Summary of Metals Test Data and Test Results                                                            | 5-45 |
|    | 5-6        | Summary of Hexavalent Chromium Test Data and Test Results                                               | 5-48 |
|    | 5-7        | CO, CO <sub>2</sub> , O <sub>2</sub> , SO <sub>2</sub> , NO <sub>x</sub> , THC and HCl Emission Results | 5-49 |
|    | 5-8        | Summary of Analytical Results for Basin F Waste Feed (LF)                                               | 5-50 |
|    | 5-9        | Summary of Analytical Results for POHC Analysis                                                         | 5-52 |
|    | 5-10       | Summary of Analytical Results for Makeup Water (MW)                                                     | 5-53 |
|    | 5-11       | Summary of Analytical Results for Caustic Solution (CS)                                                 | 5-54 |
|    | 5-12       | Summary of Analytical Results for Brine (BR)                                                            | 5-55 |
|    | 6-1        | Water Surrogate Recovery Limits (VOA)                                                                   | 6-13 |
|    | 6-2        | Water Matrix Spike Recovery Limits (VOA)                                                                | 6-13 |
|    | 6-3        | Water Surrogate Recovery Limits (BNA/acids)                                                             | 6-14 |
|    | 6-4        | Water Matrix Spike Recovery Limits (BNA/acids)                                                          | 6-15 |

# LIST OF TABLES (Continued)

| <u>Table</u> | <u>Title</u>                                                          | <b>Page</b> |
|--------------|-----------------------------------------------------------------------|-------------|
| 6-5          | Water Surrogate Recovery Limits (Pesticides)                          | 6-16        |
| 6-6          | Water Matrix Spike Recovery Limits (Pesticides)                       | 6-17        |
| 6-7          | Water Surrogate Recovery Limits (Dioxins/Furans)                      | 6-17        |
| 6-8          | Water Matrix Spike Recovery Limits (Dioxins/Furans)                   | 6-18        |
| 6-9          | Water Matrix Spike Recovery Limits (Inorganics)                       | 6-17        |
| 7-1          | Summary of Audit Results for Liquid Waste Feed (LF)                   | 7-3         |
| 7-2          | Summary of Audit Results for Brine                                    | 7-5         |
| 7-3          | Summary of EPA Audit for Volatile Organics Test Data and Test Results | 7-7         |
| 7-4          | U.S. EPA Quality Assurance Division Dioxin/Furan Audit Data           | 7-9         |
| 7-5          | Metals Audit Sample Lab Results                                       | 7-12        |
| 9-1          | Waste Feed Cutoff Requirements                                        | 9-2         |

# LIST OF FIGURES

| Figure No. | <u>Title</u>                                                            | <b>Page</b> |
|------------|-------------------------------------------------------------------------|-------------|
| Figure 1-1 | Site Location Map - Rocky Mountain Arsenal                              | 1-2         |
| Figure 1-2 | Former Basin F Location - Rocky Mountain Arsenal                        | 1-4         |
| Figure 2-1 | Process Flow Schematic Diagram                                          | 2-2         |
| Figure 2-2 | POHC Injection System                                                   | 2-9         |
| Figure 3-1 | Sampling Locations and Parameters to be Determined During<br>Trial Burn | 3-4         |

## LIST OF ACRONYMS

acfs SQI chamber volume/gas flow rate

BNA semivolatiles

BR Brine

CDAP Chemical Data Acquisition Plan CDH Colorado Department of Health

CDM Camp Dresser & McKee

CEM continuous emissions monitoring

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CLP Contract Laboratory Program

CO carbon monoxide CO<sub>2</sub> carbon dioxide

CRO control room operator

CS caustic solution

DQOs data quality objectives

DRE destruction and removal efficiency
EPA Environmental Protection Agency
FIT-04A Micro-Motion flow transmitter
gr/dscf grains per dry standard cubic foot

HCl hydrochloric acid

IDL instrument detection limit IRA Interim Response Action

ITO Independent Technical Oversite representative

LW liquid waste
MG million gallons
MW makeup water
NO<sub>x</sub> nitrogen oxides

 $O_2$  oxygen

OCP chlorinated pesticides/PCBs

OP Pest organo-phosphorous pesticide compounds

OPPs organophosphorus pesticides PCDDs polychlorinated dibenzo-p-dioxins

PE Performance Evaluation

PeCDD 1,2,3,7,8-Pentachlorodibenzo-p-dioxin PeCDF 2,3,4,7,8-Pentachlorodibenzofuran

Pest/PCB pesticide/PCB compounds

PICs products of incomplete combustion PIT-31 Rosemount pressure transmitter

PMCS Process Monitoring and Control System
POHCs principal organic hazardous constituents
QA/QC quality assurance and quality control

RMA Rocky Mountain Arsenal

Shell Shell Oil Company

# LIST OF ACRONYMS (Continued)

SO<sub>2</sub> Sulfur Dioxide

SOPs standard operation procedures

SOW Statement of Work

SQI Submerged Quench Incinerator

TBP Trial Burn Plan

TCDD Tetrachlorodibenzo-p-dioxin TCDF 2,3,7,8-Tetrachlordibenzofuran

TCL target compound list
TDF total dioxins/furans
TDS total dissolved solids
TEF toxic equivalency factor
THC Total Hydrocarbons

VOA volatiles

VOST Volatile Organic Sampling Train

wc water column

WESTON<sub>®</sub> Roy F. Weston, Inc.

#### **EXECUTIVE SUMMARY**

A Trial Burn test program consisting of three runs performed under identical test conditions was conducted on the Submerged Quench Incinerator (SQI) located at the Rocky Mountain Arsenal (RMA) in Adams County, Colorado from 10-12 June 1993. This test program followed the approved Trial Burn Plan (submitted September 1992) and subsequent revisions. The oversite groups witnessing the test runs consisted of the U.S. Environmental Protection Agency (EPA), Region VIII; Colorado Department of Health (CDH); Entropy; Camp Dresser & McKee (CDM); and the Independent Technical Oversite (ITO) representative, Fluor-Daniel.

A summary of the operating parameters and results from the three tests conducted during the Trial Burn is provided in Table ES-1. The SQI was in compliance with federal and state guidelines for destruction and removal efficiency (DRE), particulate, hydrogen chloride (HCl), and carbon monoxide (CO) emissions while processing a maximum rate of 179.9 lb/min (18 gpm) of 100% Basin F liquid at an average incinerator temperature of 1835°F.

In order to determine the destruction and removal efficiency of the SQI, the Basin F liquid was spiked with two principal organic hazardous constituents (POHCs). A DRE >99.9990% was demonstrated for monochlorobenzene and >99.9988% was demonstrated for carbon tetrachloride. Both results are better than the minimum regulatory requirement of a DRE >99.99%.

Particulate emissions averaged 0.0214 gr/dscf (corrected to 7%  $O_2$ ) and 0.0320 gr/dscf (corrected to 12%  $CO_2$ ). Both values are below the regulatory limits of less than 0.08 gr/dscf (corrected to 7%  $O_2$ ) and less than 0.10 gr/dscf (corrected to 12%  $CO_2$ ). HCl emissions averaged 0.229 lb/hr (>97.9% removal), well below the 4 lb/hr regulatory limit. The CO hourly rolling average was 51.5 ppm, less than the regulatory limit 100 ppm.

Table ES-1

# Summary of Operating Parameters and Results from the SQI Trial Burn

| Parameter                                                           | Day #1<br>10 June                | Day #2<br>11 June                          | Day #3<br>12 June                | Average                          | Interim<br>Conditions          |
|---------------------------------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------|----------------------------------|--------------------------------|
| Waste Feedrate                                                      | 171.1 lb/min                     | 176.9 lb/min                               | 179.9 lb/min                     | 176 lb/min                       | <166 lb/min                    |
| SQI Chamber Temperature                                             | 1842°F                           | 1831°F                                     | 1835°F                           | 1836°F                           | >1825°F                        |
| Residence Time                                                      | 2.81 sec                         | 2.67 sec                                   | 2.68 sec                         | 2.72 sec                         | >2.7 sec                       |
| Excess Oxygen                                                       | 3,37%                            | 3.74%                                      | 3.40%                            | 3.50%                            | >3%                            |
| CO Hourly Rolling Average                                           | 49.5 ppm                         | 47.4 ppm                                   | 57.6 ppm                         | 51.5 ppm                         | <100 ppm                       |
| Onench pH                                                           | Field = 5.0                      | Field = 5.25                               | Field = 5.19                     | Field = 5.15                     | >4 pH                          |
| Scrubber pH                                                         | Field = 5.7                      | Field = 6.07                               | Field = 5.48                     | Field = 5.75                     | >5.25 pH                       |
| Venturi Recycle Flowrate                                            | 128.9 gpm                        | 125.4 gpm                                  | 125.9 gpm                        | 126.7 gpm                        | > 100 gpm                      |
| Venturi Differential Pressure                                       | 90" w.c.                         | 90" w.c.                                   | 90" w.c.                         | 90" w.c.                         | >80" w.c.                      |
| L/G Ratio                                                           | 11.6 gal/kcf                     | 10.8 gal/kcf                               | 10.8 gal/kcf                     | 11.1 gal/kcf                     | >9.3 gal/kcf                   |
| Scrubber Recycle Flowrate                                           | 295.6 gpm                        | 280.7 gpm                                  | 280.9 gpm                        | 285.7 gpm                        | >270 gpm                       |
| DRE - Carbon Tetrachloride<br>DRE - Chlorobenzene                   | %9866.66<br>60.9986%             | %0666666<br>606666666666666666666666666666 | %0666.66<br>60.9990%             | %7666'66                         | >99.99%                        |
| Particulate - @7% O <sub>2</sub> Particulate - @12% CO <sub>2</sub> | 0.0194 gr/dscf<br>0.0290 gr/dscf | 0.0238 gr/dscf<br>0.0360 gr/dscf           | 0.0209 gr/dscf<br>0.0311 gr/dscf | 0.0214 gr/dscf<br>0.0320 gr/dscf | <0.08 gr/dscf<br><0.10 gr/dscf |
| HCL Emissions                                                       | 0.1273 lb/hr                     | 0.3103 lb/hr                               | 0.2497 lb/hr                     | 0.2291 lb/hr                     | <4 lb/hr                       |

Stack sampling for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, and hexavalent chromium was performed. Process sampling for the waste feed, POHCs, makeup water, caustic, and brine was also performed. All data presented have passed the rigorous quality assurance and quality control (QA/QC) defined in the Trial Burn Plan.

The SQI is currently operating under interim conditions, defined in Table ES-1, that were formally approved by EPA Region VIII in their letter to the Army (Ref: 8HWM-FF). The interim conditions were based upon the demonstrated results of the second mini-burn test, conducted 20-25 May 1993. These are conservative values that will remain in effect until the proposed operating conditions contained in Table 9-1 of this Trial Burn Report have been approved.

# SECTION 1 SUMMARY

# 1.1 INTRODUCTION

A Trial Burn program was conducted on the Submerged Quench Incinerator (SQI) located at the Rocky Mountain Arsenal (RMA or the Arsenal) from 10-12 June 1993. The SQI is designed to thermally destroy the organic components found in Basin F liquid. The SQI employs a single-stage combustion process for incineration of liquid wastes. The combustion chamber has a downfired 30 million Btu/hr natural gas burner. Combustion gases are pushed through a brine solution at the bottom of the combustion chamber, which quenches the gas temperature to approximately 200°F. Flue gas is treated by a pollution control system that removes particulate and neutralizes acid gases.

Trial burn activities were performed by the SQI Operations Team. WESTON was contracted to provide technical direction to the Operations Team and to provide sampling and laboratory analysis for the Trial Burn. A summary of the test runs is given below:

- Test Run 1: 10 June 1993 from 0745 1552.
- Test Run 2: 11 June 1993 from 0710 1341.
- Test Run 3: 12 June 1993 from 0756 1440.

# 1.2 BACKGROUND

The SQI technology was selected by the Department of the Army (Army) for remediation of Basin F liquids at RMA. RMA is located approximately 10 miles northeast of downtown Denver and immediately north of Stapleton Airport in Adams County, Colorado. Figure 1-1 shows the RMA site location and the surrounding Denver area.



FIGURE 1-1 SITE LOCATION MAP - ROCKY MOUNTAIN ARSENAL

RMA was established in 1942 to manufacture chemical weapons and conventional munitions for World War II. After the war, a portion of the manufacturing facility was leased to private industry for the production of herbicides and insecticides. From 1947 until 1982, industrial chemicals were manufactured at RMA. In addition, between 1953 and 1957, RMA was used for the production of GB nerve agent. Munitions continued to be filled with GB at the Arsenal until approximately 1969. In the 1970s, the primary mission of RMA was the disposal of chemical warfare material, mustard agent, explosive components, and the destruction of the GB agent by caustic neutralization and incineration. The current mission of RMA is contamination cleanup; there is no operational military mission. Over the years, wastes from the military and industrial operations have been disposed of in accordance with standard engineering practices in existence at the time. These disposal practices have resulted in the contamination of soil and groundwater.

In 1956, Basin F, a lined evaporative pond, was constructed in the northern part of RMA (Figure 1-2). Basin F had a surface area of 92.7 acres and a capacity of approximately 243 million gallons (MG). The basin was created by the construction of a dike around a natural depression and was lined with a 3/8-inch asphalt membrane. An earthen blanket approximately 1 foot thick was placed on top of the membrane. Wastes were conveyed to the basin from the manufacturing facilities through an underground industrial sewer constructed of vitrified clay pipe. It was subsequently discovered that the liquids in Basin F contained hazardous organic and inorganic constituents.

In 1986, the Army, Shell Oil Company (Shell), and the U.S. Environmental Protection Agency (EPA) Region VIII agreed to undertake an accelerated remediation to contain the liquid and contaminated soils in and under Basin F pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This remediation has been addressed in two parts. The first part of the Basin F Interim Response Action (IRA), which has been completed, included the removal of Basin F liquid to storage tanks and a double-lined surface impoundment (Pond A) and the removal and stockpiling of soil and sludge to a double-lined waste pile, which was subsequently capped.





FIGURE 1-2 FORMER BASIN F LOCATION - ROCKY MOUNTAIN ARSENAL

The second part of the IRA calls for treatment of the Basin F liquid contained in the three storage tanks and Pond A. The Army selected a Submerged Quench Incinerator (SQI) as the preferred treatment method.

In May 1990, the Army issued the Final Decision Document for Basin F Liquid Treatment. The recommended treatment concept included a SQI with a venturi/packed tower scrubber for Basin F liquid. The SQI is manufactured and marketed by T-Thermal, Inc. of Conshohocken, Pennsylvania.

Construction of the SQI facility was completed in December of 1992. Following two months of rigorous systems checks, refractory dry-out began in early March 1993. Surrogate testing, using various concentrations of water, sodium chloride, sodium sulfate, ammonium chloride and methanol, was completed in late April 1993. Hazardous waste operations with varying concentrations of Basin F waste and water solutions followed, with two mini-burn tests using 50% and 100% Basin F waste conducted in May 1993. Both mini-burn tests demonstrated a DRE greater than 99.99%, and confirmed the effectiveness and safety of the incinerator in treating Basin F liquid. Mini-burn test summaries are contained in Appendix A.3.

# 1.3 OBJECTIVES OF THE TRIAL BURN

Trial Burn objectives listed below were defined in order to establish criteria for the acceptance of the SQI and determine conditions to be maintained during routine operations.

- Demonstrate a contaminant destruction and removal efficiency (DRE) of at least 99.99% for each of the principal organic hazardous constituents (POHCs), monochlorobenzene and carbon tetrachloride.
- Demonstrate a minimum hydrochloric acid (HCl) removal of 99% with the selected air pollution control devices, or less than 4 pounds per hour of HCl emissions.

• Demonstrate a maximum particulate emission of less than 0.08 grains per dry standard cubic foot (gr/dscf) corrected to 7% oxygen, and less than 0.10 gr/dscf corrected to 12% CO<sub>2</sub>.

# 1.4 **DOCUMENT ORGANIZATION**

This report contains the information recommended in the document entitled *Guidance on Setting Permit Conditions and Reporting Trial Burn Results* (EPA/612/6-89/019), January 1989, and has been organized into the following nine sections:

| <u>Section</u> | <u>Title</u>                       |
|----------------|------------------------------------|
| 1              | Summary                            |
| 2              | Process Operation                  |
| 3              | Sampling and Monitoring Procedures |
| 4              | Analytical Procedures              |
| 5              | Test Results                       |
| 6              | Quality Assurance Summary          |
| 7              | Visits and Audit Summary           |
| 8              | Closure                            |
| 9              | Conclusions                        |

# SECTION 2 PROCESS OPERATION

# 2.1 GENERAL OVERVIEW OF THE PROCESS

The SQI is composed of three main processing areas:

- Waste Feed System
- Submerged Quench Incinerator
- Flue Gas Treatment and Emissions Control

A block diagram of the process flow is provided in Figure 2-1. A discussion of the process is provided in the following subsections.

# 2.1.1 Waste Feed System

The function of the waste feed system is to transfer Basin F liquid and any wastewater (residual process water from decontamination, outdoor/indoor sumps, purge water, etc.) to the SQI combustion chamber. There are approximately 10.5 million gallons (MG) of Basin F liquid stored in Pond A and storage tanks TK-101, TK-102 and TK-103. During the Trial Burn, 100% Basin F liquid was transferred from storage tank TK-102 into two 14,000-gallon capacity day tanks (TK-105 and TK-106) located adjacent to the SQI building. Wastewater was not blended into the Basin F liquid for Trial Burn testing. From the day tanks, Basin F liquid was pumped to injection nozzles and fed directly into the SQI.

# 2.1.2 Submerged Quench Incinerator

The function of the SQI is to thermally oxidize and destroy the organic components contained in Basin F liquid. The SQI is designed to operate continually utilizing a fully automated control system operated from the main control room. Waste feed and burner interlocks maintain the incinerator within design parameters and operating conditions.



FIGURE 2-1 PROCESS FLOW SCHEMATIC DIAGRAM

Supplementary fuel (natural gas) is fed to a LV-24 burner to heat the SQI chamber. The LV-24 burner has a 30 million btu/hr capacity. Combustion air to the burner and incinerator is supplied by a 600-horsepower combustion air blower. A 250-horsepower compressor supplies the atomizing air necessary for the waste feed injector nozzles. The incinerator combustion chamber is lined with refractory brick and is designed to operate at approximately 1,900°F with a 2-second retention time. The entire system is operated under positive pressure. Basin F liquid, atomizing air and secondary air are injected into the flame zone just below the down-fired burner.

The Basin F liquid contains a high concentration of salts and inorganics. Molten salts are formed in the incineration process because of the high operating temperatures. Molten salts flow down the walls of the combustion chamber and into the quench tank located below the combustion chamber. Combustion gases pass through a downcomer into the quench tank. The cooled gases exit through the quench separator.

Makeup water and caustic are added to the SQI quench tank to control tank level, pH and temperature. Softened makeup water from process water storage tank TK-203 is supplied by domestic water pumps. A dilute caustic solution is stored in tank TK-205 to provide pH control of both the quench tank and scrubber systems. The blowdown rate is controlled by the total dissolved solids (TDS) content of the quench liquid. The blowdown rate is based upon a specific gravity setpoint in the Process Monitoring and Control System (PMCS), which is input from the control room operator (CRO).

The blowdown brine solution, consisting of approximately 20% (by weight) dissolved salts and some residual heavy metals, is transported off-site where the metals are removed and recycled to a smelter. The residual solution is discharged in compliance with a NPDES permit. At the SQI, a brine-handling system was installed to provide on-site storage and transfer facilities for the brine liquid. Two 42,000-gallon storage tanks are designed to store two days of brine production using a blowdown rate of 27 gpm. The storage tanks operate in parallel on a batch basis. One tank is used to fill tank trucks in the brine loading area

while the other tank is receiving brine from the incinerator process. The tank trucks transfer brine to railcars, which transport the brine to a permitted off-site metals recycle facility.

# 2.1.3 Flue Gas Treatment and Emissions Control

The function of the venturi is to remove particulate from the incinerator exit gases. The function of the packed tower scrubber is to neutralize the acid vapor component of the combustion gas with a caustic solution.

Differential pressure and recycle flowrate across the venturi throat are monitored and controlled to maintain proper particulate removal. The liquid flow into the throat of the venturi is provided by redundant recycle pumps (P-203A/B).

The packed tower scrubber is a vertical, cylindrical tower which uses a caustic solution (sodium hydroxide, NaOH) as the neutralizing agent. The scrubber system consists of pumps P-203A/B, an absorber section, a mist eliminator to remove water droplets from the flue gases and an exhaust stack. Makeup water to the scrubber is required to maintain level due to evaporation and liquid blowdown to the quench/separator system.

A continuous emissions monitoring (CEM) system is provided to monitor the gaseous emissions leaving the stack and to transmit signals from the CEM analyzers back to the PMCS in the main control room. The oxygen analyzer's signal is used to control combustion air flow into the SQI chamber. The carbon monoxide analyzer's signal is averaged by the PMCS to update a rolling hourly average. The CEM is an extractive type system designed to measure the following seven constituents of the stack emissions:

- Oxygen (O<sub>2</sub>)
- Carbon Dioxide (CO<sub>2</sub>)
- Carbon Monoxide (CO)
- Hydrochloric Acid (HCl)

- Nitrogen Oxides (NO<sub>x</sub>)
- Sulfur Dioxide (SO<sub>2</sub>)
- Total Hydrocarbons (THC)

Table 2-1 presents a summary of the CEM equipment. The PMCS uses the signals from the  $O_2$  and CO analyzers to compare with approved ranges for waste feed shutoff values.

# 2.2 PROCESS OPERATION DATA

The process data represent the average values for the parameters measured during the designated test periods. A summary of the pertinent operational data collected during the Trial Burn test program is presented in Table 2-2. The data were extracted from the PMCS Daily Reports and control room operator logs. The raw data collected during the Trial Burn tests are presented in Appendix A (Subsections A.1.1 through A.1.5).

#### 2.2.1 Process Measurement Methods

The process data from the Trial Burn program were collected using the following field instruments:

- Waste Feedrate The Basin F feedrate was monitored using a Micro-Motion flow transmitter (FIT-04A). The 4-20mA output signal was converted into an equivalent 0-300 lb/min signal, transmitted to the PMCS and averaged on a hourly basis. Calibration data sheets are provided in Appendix A.2.3.
- Process Gas Temperatures Gas temperatures were measured using "R" and "J"-type thermocouples located throughout the gas stream. The SQI chamber temperature is the numerical average of three thermocouples (TE-34A/B/C). The average chamber temperature is transmitted to the PMCS and averaged on a hourly basis. Calibration data sheets are provided in Appendix A.2.3.
- <u>Process Gas Pressures</u> SQI chamber pressure was determined using a Rosemount pressure transmitter (PIT-31). The 4-20mA output signal was converted into an equivalent 0-10 psig signal, transmitted to the PMCS and averaged on a hourly basis.

Table 2-1

# Continuous Emissions Monitoring Equipment

| Parameter          | Manufacturer             | Model<br>Number | Analytical<br>Principle      | Operating Range                            |
|--------------------|--------------------------|-----------------|------------------------------|--------------------------------------------|
| Carbon monoxide    | Rosemount                | 880-14          | Nondispersive infrared       | 0-200 ppm CO                               |
| Carbon dioxide     | Rosemount                | 870             | Nondispersive infrared       | 0-20% CO <sub>2</sub>                      |
| Oxygen             | Rosemount                | 755             | Paramagnetic                 | 0-25% O <sub>2</sub>                       |
| Nitrogen oxides    | Rosemount                | 951A            | Chemiluminescence            | 0-1,000 ppm NO                             |
| Sulfur dioxide     | Rosemount                | 880-16          | Nondispersive infrared       | 0-500 ppm SO <sub>2</sub>                  |
| Hydrochloric acid  | Thermo-<br>Environmental | 15              | Gas filter correlation       | 0-100 ppm HCl (0-5 ppm with 20:1 dilution) |
| Total hydrocarbons | JUM Engineering          | VE-7            | Flame ionization<br>detector | 0-10 ppm THC                               |

08/26/93

Table 2-2
Summary of Operating Parameters During the SQI Trial Burn

| Parameter                     | Day #1<br>10 June         | Day #2<br>11 June           | Day #3<br>12 June           |
|-------------------------------|---------------------------|-----------------------------|-----------------------------|
| Waste Feedrate                | 171.1 lb/min              | 176.9 lb/min                | 179.9 lb/min                |
| SQI Chamber Temperature       | 1842°F                    | 1831°F                      | 1835°F                      |
| Residence Time                | 2.81 sec                  | 2.67 sec                    | 2.68 sec                    |
| Oxygen                        | 3.37%                     | 3.74%                       | 3.40%                       |
| CO Hourly Rolling Average     | 49.5 ppm                  | 47.4 ppm                    | 57.6 ppm                    |
| Quench pH                     | Field = 5.0<br>PMCS = 5.6 | Field = 5.25<br>PMCS = 6.00 | Field = 5.19<br>PMCS = 6.20 |
| Scrubber pH                   | Field = 5.7<br>PMCS = 6.0 | Field = 6.07<br>PMCS = 6.07 | Field = 5.48<br>PMCS = 5.37 |
| Venturi Recycle Flowrate      | 128.9 gpm                 | 125.4 gpm                   | 125.9 gpm                   |
| Venturi Differential Pressure | 90" w.c.                  | 90" w.c.                    | 90" w.c.                    |
| L/G Ratio                     | 11.6 gal/kcf              | 10.8 gal/kcf                | 10.8 gal/kcf                |
| Scrubber Recycle Flowrate     | 295.6 gpm                 | 280.7 gpm                   | 280.9 gpm                   |
| Natural Gas                   | 433 scfm                  | 445 scfm                    | 435 scfm                    |
| Total Combustion Air          | 6,582 scfm                | 7,163 scfm                  | 7,107 scfm                  |
| SQI Chamber Pressure          | 3.97 psig                 | 3.94 psig                   | 4.00 psig                   |
| Quench Density                | 1.19 sgu                  | 1.19 sgu                    | 1.19 sgu                    |
| Carbon Dioxide                | 10.14%                    | 9.74%                       | 10.29%                      |
| Total Hydrocarbon             | 5.53 ppm                  | 9.61 ppm                    | 5.06 ppm                    |
| Nitrogen Oxides               | 119.2 ppm                 | 142.0 ppm                   | 130.7 ppm                   |
| Sulfur Dioxide                | 20.7 ppm                  | 1.13 ppm                    | 145 ppm                     |
| Hydrogen Chloride             | 1.74 ppm                  | 2.07 ppm                    | 3.70 ppm                    |
| Carbon Tetrachloride Feedrate | 6.90 lb/hr                | 8.66 lb/hr                  | 8.79 lb/hr                  |
| Monochlorobenzene Feedrate    | 8.66 lb/hr                | 8.98 lb/hr                  | 8.79 lb/hr                  |

- <u>Liquid Flowrates</u> Venturi and scrubber recycle flowrates are determined using Rosemount differential pressure transmitters (FIT-60 and FIT-65 respectively). Pressure drop across an orifice plate is converted into a flow signal (gpm), which is transmitted to the PMCS and averaged on a hourly basis. Calibration sheets are provided in Appendix A.2.3.
- POHC Injection Rates The two POHCs used during testing, monochlorobenzene and carbon tetrachloride, were purchased in pure form and injected into the waste feed stream through metering pumps. The injection rates were determined by differential weight loss over time using certified weigh scales. The weight and time of each POHC drum was manually recorded every 15 minutes during Trial Burn testing. Raw data sheets and the injection rate calculations are attached in Appendix A.1.4. A schematic of the POHC injection system is shown in Figure 2-2.
- Stack Emissions The stack emissions were measured using an extractive-type CEM system. The CEM system components are fully described in Section 7 of the Trial Burn Plan. A formal Performance Specification Test program was conducted according to 40 CFR 60, Appendix B, for the oxygen and carbon monoxide analyzers prior to the Trial Burn (between April 6-22, 1993). A strip chart recording for O<sub>2</sub>, CO<sub>2</sub> and CO during each test run is provided in Appendix A.1.10 and is used as a comparison to the hourly averages calculated by the PMCS and reported in the Daily Reports.

# 2.3 <u>DEVIATIONS FROM TRIAL BURN PLAN</u>

A summary of the deviations from the Trial Burn Plan is presented in the following subsections.

# 2.3.1 Process Sample Volumes

In order to have an adequate volume of liquid waste and brine samples, the sample volumes defined in Tables 5-1 and 5-6 of the Trial Burn Plan were increased from 100 ml to 1,000 ml. The sample volumes defined in Tables 5-4 and 5-5 of the Trial burn Plan for makeup water and caustic were increased from 100 ml to 500 ml. All grab samples were composited at the end of each test run.





FIGURE 2-2 POHC INJECTION SYSTEM

# 2.3.2 Sample Preservation

To preserve the integrity of the sample matrices, preservatives were not added to either the liquid waste or caustic samples. Additionally, the cyanide and sulfide samples for the brine were not pH adjusted due to the large amount of caustic required to make the adjustment.

# 2.3.3 Liquid Waste Audit Requirements

Per request by the EPA during the Trial Burn, the sample type stated in Table 6-7(a) of the Trial Burn Plan was changed from grab to composite for the following parameters: semi-volatiles, pesticides, dioxin/furans, metals, sulfur and total halides.

# 2.3.4 Performance Evaluation Samples

The EPA provided two Performance Evaluation (PE) samples as an audit of the analytical methods used by the laboratory. One PE sample was characteristic of the liquid waste feed and the other sample was characteristic of the brine. The EPA did not provide samples which were spiked for dioxin/furan, heating value, ash content, pH, TSS or TDS. Therefore, these parameters are not reported in the summary tables in Section 7.

# 2.3.5 Pesticide Surrogates

Several substitutions were made to the pesticide surrogates defined in Tables 11-5 and 11-6 of the Trial Burn Plan. Inadvertently, the analytical laboratory used routine in-house spiking solutions containing matrix spike compounds different from those defined in the original plan. With respect to the Trial Burn objective to determine the absence or presence of organophosphorous pesticides in Basin F liquids, no adverse effect to useability is presented by the use of the alternate list of spiking compounds for surrogate and matrix spike analysis. Revisions to Tables 11-5 and 11-6 of the Trial Burn Plan are presented in Tables 6-5 and 6-6. Further discussion of the pesticide surrogate substitutions is provided by the Quality Assurance Summary in Section 6.

# **SECTION 3**

## SAMPLING AND MONITORING PROCEDURES

# 3.1 SAMPLING PLAN

This section of the report presents the sampling and monitoring procedures used for the Trial Burn test program. The process and stack sampling was performed by Roy F. Weston, Inc. (WESTON®). Figure 3-1 shows the sampling locations. Tables 3-1 through 3-7 define the sampling and analytical plan for each sample location. Each table summarizes the following elements:

- A description of the system or process being sampled or monitored (i.e. liquid waste, makeup water, caustic, brine, or stack gases).
- Number of test runs.
- Test objectives (i.e. to demonstrate performance of the system).
- Sampling objective (i.e. to collect a representative sample).
- Parameters tested (i.e. volatile organics, metals, density, pH).
- Sampling or monitoring method.
- Extraction/analysis method.
- Sampling or monitoring design (i.e. total no. of samples, no. of blanks).

# 3.2 SAMPLE IDENTIFICATION

The process samples were collected using the sampling equipment identified in Table 3-8 and labeled using a six letter code (XXYY-ZZ-lab) incorporating:

• Sample description (i.e. XX - liquid feed, brine, makeup water, caustic solution).

- Type of sample (YY grab, composite, blank).
- Test designation (ZZ i.e. run 1,2,3).
- Lab abbreviation (used to describe samples which were analyzed for QA/QC purposes).

A detailed listing of the sample description, test designations and laboratory abbreviations for the liquid samples follows:

| Sample Description (XX)    |                                                       | Sample Type (YY)           |                                                  | Lab Abbreviations            |                                                                                                  |
|----------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|
| LF<br>BR<br>MW<br>CS<br>AU | Liquid Feed Brine Makeup Water Caustic Solution Audit | CP<br>GB<br>SB<br>BT<br>TB | Composite Grab Site Blank Blank Train Trip Blank | MS<br>MSD<br>BS<br>BSD<br>DL | Matrix Spike<br>Matrix Spike Duplicate<br>Blank Spike<br>Blank Spike Duplicate<br>Dilution Limit |
| Test 1                     | Designation (ZZ)                                      |                            | 7                                                | DF<br>SP                     | Dilution Factor Spiked Compound                                                                  |
| RN1<br>RN2<br>RN3          | Run 1<br>Run 2<br>Run 3                               |                            |                                                  |                              | ·                                                                                                |

For example, LFCP-RN1 corresponds to the Basin F liquid feed composite sample for test run #1.

Table 3-9 contains a complete listing of the stack gas sample identifiers used on the chain-of-custody sheets provided to the analytical laboratory. The sample method (for example, multi-metals is abbreviated MMTL) is shown in the sample description.

# 3.3 SAMPLING PROCEDURES

Sampling procedures are summarized in Table 3-10. Included in this table is the following information:

- Description of sample stream. EPA reference method.
- Measurement technique.
- Duration of sampling.

FIGURE 3-1 SAMPLING LOCATIONS AND PARAMETERS TO BE DETERMINED DURING TRIAL BURN 3-4

| Parameters   Par | Sampling Point No.:                         |                                              |                                       |                                                                              |                                       |                                                                                       |                   | -                |                  |                        |                 |                 |                  |                 |                 |                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|-------------------|------------------|------------------|------------------------|-----------------|-----------------|------------------|-----------------|-----------------|----------------------------------------------|
| State   Stat | Description:                                |                                              |                                       |                                                                              |                                       |                                                                                       |                   | Liquid V         | Vaste            |                        |                 |                 |                  |                 |                 |                                              |
| Collect a Representative Sample   Content   Partial Sufficient   Partial Sufficient   Content   Partial Sufficient   Partial Sufficient   Partial Sufficient   Content   Partial Sufficient   Partial S | No. of Test Runs:                           |                                              |                                       |                                                                              |                                       |                                                                                       |                   | 3                |                  |                        |                 |                 |                  | :               |                 |                                              |
| Collect a Representative Sample   Sam | Test Objective:                             |                                              |                                       |                                                                              |                                       |                                                                                       | De                | stermine the D   | RE of the SQ     |                        |                 |                 |                  |                 |                 |                                              |
| Tracial Solution   Posticides   Purans   Furans   Metals   Solution   Total   Total  | Sampling Objective:                         |                                              | i.                                    |                                                                              |                                       |                                                                                       | Coll              | ect a Represe    | entative Samp    | 9                      |                 |                 |                  |                 |                 |                                              |
| Two (2)   Author (2)   Author (3)   Author (4)   Author (4)   Author (4)   Author (4)   Author (4)   Author (5)   Author | Parameters to be<br>Determined:             | Volatile<br>Organics                         | Semivolatile<br>Organics              | 1                                                                            | Dioxins/<br>Furans                    | Metals <sup>1</sup>                                                                   | Sulfur<br>Content | Total<br>Halides | Density          | Heating<br>Value       | Ash<br>Content  | Hd              | Water<br>Content | TSS2            | TDS3            | Volumetric<br>Flow Rate                      |
| Method   Dilution   Dilution   Dilution   Dilution   Dilution   Dilution   Dilution   Method   Metho | Sampling or Monitoring<br>Method:           | Two (2) random grab samples (40 mL) per test | ,                                     | o sample (1,000                                                              | ) mL) collecter                       | d every 15 min                                                                        | rutes. At the e   | ind of each tes  | t run, grab sarr | ples will be co        | emposited and   | placed into a   | opropriate conf  | tainers for ana | ılysis.         | Flow Rate<br>measured<br>every<br>15 minutes |
| 9 Sesign: 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sampling Extraction/<br>Analysis Method(s): | Method<br>5030/<br>Method<br>8240            | Dilution<br>Method/<br>Method<br>8270 | Dilution<br>Method/<br>Methods<br>8080 <sup>4</sup><br>and 8140 <sup>4</sup> | Dilution<br>Method/<br>Method<br>8290 | Digestion<br>Method<br>3010/<br>Methods<br>6010 <sup>5</sup> and<br>7470 <sup>5</sup> | Method<br>300     | Method<br>300    | Gravi-<br>metric | ASTM<br>Method<br>D240 | Method<br>160.3 | Method<br>150.1 | Method<br>160    | Method<br>160.2 | Method<br>160.1 | by a<br>Flow Meter                           |
| 6         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling or Monitoring L                    | Jesign:                                      |                                       |                                                                              |                                       |                                                                                       |                   |                  |                  |                        |                 |                 |                  |                 |                 |                                              |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Total no. of samples                      | 9                                            | 3                                     | 3                                                                            | ဇ                                     | 3                                                                                     | က                 | 9                | 8                | က                      | က               | က               | ဧ                | ဧ               | က               | A N                                          |
| 1 Datch         1 Datch <t< td=""><td>- Site blanks</td><td>+</td><td>-</td><td>1</td><td>1</td><td>-</td><td>-</td><td>-</td><td>0</td><td>0</td><td>-</td><td>-</td><td>1</td><td>-</td><td>-</td><td>NA</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Site blanks                               | +                                            | -                                     | 1                                                                            | 1                                     | -                                                                                     | -                 | -                | 0                | 0                      | -               | -               | 1                | -               | -               | NA                                           |
| 1/batch         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Trip blanks                               | 1                                            | 0                                     | 0                                                                            | 0                                     | 0                                                                                     | 0                 | 0                | 0                | 0                      | 0               | 0               | 0                | 0               | 0               | Ą                                            |
| 1/batch         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Lab blanks                                | 1/batch <sup>6</sup>                         | 1/batch                               | 1/batch                                                                      | 1/batch                               | 1/batch                                                                               | 1/batch           | 1/batch          | 0                | 0                      | -               | -               | -                | -               | -               | A N                                          |
| 1/batch         1/batch <t< td=""><td>- Blank spikes<sup>7</sup></td><td>1/batch</td><td>1/batch</td><td>1/batch</td><td>1/batch</td><td>1/batch</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ΑĀ</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Blank spikes <sup>7</sup>                 | 1/batch                                      | 1/batch                               | 1/batch                                                                      | 1/batch                               | 1/batch                                                                               | 0                 | 0                | 0                | 0                      | 0               | 0               | 0                | 0               | 0               | ΑĀ                                           |
| 1/batch         1/batch         1/batch         1/batch         1/batch         1/batch         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Replicates <sup>8</sup>                   | 1/batch                                      | 1/batch                               | 1/batch                                                                      | 1/batch                               | 1/batch                                                                               | 1/batch           | 1/batch          | 0                | 0                      | -               | -               | -                | -               | 1               | NA                                           |
| 12         8         8         8         8         6         6         3         3         6         6         6         6         6         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Matrix spikes                             | 1/batch                                      | 1/batch                               | 1/batch                                                                      | 1/batch                               | 1/batch                                                                               | 0                 | 0                | 0                | 0                      | 0               | 0               | 0                | 0               | 0               | NA                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Total no. of samples<br>analyzed          | 12                                           | 8                                     | 80                                                                           | 80                                    | 80                                                                                    | 9                 | 9                | ဗ                | ဗ                      | 9               | ဖ               | 9                | 9               | 9               | NA                                           |

 Metals include antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, and zinc. NOTES:

Total suspended solids.

Total dissolved solids.
 Organochlorine pesticides - Method 8080; organophosphorus pesticides - Method 8140.
 Arsenic, barium, antimony, beryllium, cadmium, chromium, copper, lead, nickei, selenium, silver, thallium, vanadium, and zinc - Method 6010; mercury - Method 7470.

1541-3589 7/9/93

6. A batch consists of a maximum of 20 samples.

A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared
and analyzed with the associated sample batch.
 A replicate sample is obtained by spiriting a field sample into two separate analyses and performing two separate analyses on the
aliquois. Replicate sample analysis minitors prevision.

TABLE 3-1 SAMPLING AND MONITORING PLAN FOR LIQUID WASTE

### TABLE 3-2 SAMPLING AND MONITORING PLAN FOR POHC SOLUTION (CARBON TETRACHLORIDE)

| Sampling Point No.                          | 2                                                | A                                 |
|---------------------------------------------|--------------------------------------------------|-----------------------------------|
| Description:                                | POHC Solution (Ca                                | urbon Tetrachloride)              |
| No. of Test Runs:                           | 3                                                | 3                                 |
| Test Objective:                             | Determine the I                                  | DRE of the SQI                    |
| Sampling Objective:                         | Collect Represe                                  | entative Sample                   |
| Parameters to be Determined:                | Volatile<br>Organics                             | Mass<br>Rate                      |
| Sampling or Monitoring Method:              | 2 random grab<br>samples (40 mL)<br>per test run | Mass Rate<br>measured<br>every 15 |
| Sampling Extraction/<br>Analysis Method(s): | GC-FID                                           | minutes by a<br>Weigh Scale       |
| Sampling or Monitoring Design:              |                                                  |                                   |
| Total No. of Samples                        | 6                                                | NA <sup>1</sup>                   |
| - Site Blanks                               | 1                                                | NA                                |
| - Trip Blanks                               | 1                                                | NA                                |
| - Lab Blanks                                | 1/Batch <sup>2</sup>                             | NA                                |
| - Blank Spikes <sup>3</sup>                 | 1/Batch                                          | NA                                |
| - Replicates <sup>4</sup>                   | 1/Batch                                          | NA                                |
| - Matrix Spikes                             | 1/Batch                                          | NA                                |
| - Total No. of Samples Analyzed             | 12                                               | NA                                |

### Notes:

- 1. Not applicable.
- 2. A batch consists of a maximum of 20 samples.
- 3. A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch.
- 4. A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquits. Replicate sample analysis monitors precision.

# TABLE 3-3 SAMPLING AND MONITORING PLAN FOR POHC SOLUTION (CHLOROBENZENE)

| Sampling Point No.                          | 2                                                | 2B                                |
|---------------------------------------------|--------------------------------------------------|-----------------------------------|
| Description:                                | POHC Solution                                    | (Chlorobenzene)                   |
| No. of Test Runs:                           |                                                  | 3                                 |
| Test Objective:                             | Determine the                                    | DRE of the SQI                    |
| Sampling Objective:                         | Collect Represe                                  | entative Sample                   |
| Parameters to be Determined:                | Volatile<br>Organics                             | Mass Flow<br>Rate                 |
| Sampling or Monitoring Method:              | 2 Random Grab<br>Samples (40 mL)<br>per Test Run | Mass Rate<br>Measured<br>Every 15 |
| Sampling Extraction/<br>Analysis Method(s): | GC-FID                                           | Minutes By<br>a Weigh Scale       |
| Sampling or Monitoring Design:              |                                                  |                                   |
| Total No. of Samples                        | 6                                                | NA <sup>1</sup>                   |
| - Site Blanks                               | 1                                                | NA                                |
| - Trip Blanks                               | 1                                                | NA                                |
| - Lab Blanks                                | 1/Batch <sup>2</sup>                             | NA                                |
| - Blank Spikes <sup>3</sup>                 | 1/Batch                                          | NA                                |
| - Replicates <sup>4</sup>                   | 1/Batch                                          | NA                                |
| - Matrix Spikes                             | 1/Batch                                          | NA                                |
| - Total No. of Samples Analyzed             | 12                                               | NA                                |

### Notes:

- 1. Not applicable.
- 2. A batch consists of a maximum of 20 samples.
- 3. A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch.
- 4. A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquits. Replicate sample analysis monitors precision.

| Sampling Point No.                          |                                               |                                       |                                                                      | က                                                                  |                                                                                                                                                                                                                                                |                                      |                                   |
|---------------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|
| Description:                                |                                               |                                       | ,                                                                    | Makeup Water                                                       | 16                                                                                                                                                                                                                                             |                                      |                                   |
| No. of Test Runs:                           |                                               |                                       |                                                                      | က                                                                  |                                                                                                                                                                                                                                                |                                      |                                   |
| Test Objective:                             |                                               | De                                    | termine Chemical C                                                   | haracteristics and                                                 | Determine Chemical Characteristics and Flow Rate of Makeup Water                                                                                                                                                                               | p Water                              |                                   |
| Sampling Objective:                         |                                               |                                       | CO                                                                   | Collect Representative Sample                                      | e Sample                                                                                                                                                                                                                                       |                                      |                                   |
| Parameters to be Determined:                | Volatile<br>Organics                          | Semivolatile<br>Organics              | Pesticides                                                           | Dioxins/<br>Furans                                                 | Metals <sup>1</sup>                                                                                                                                                                                                                            | Total<br>Halides                     | Volumetric<br>Flow Rate           |
| Sampling or Monitoring Method:              | Random Grab<br>Sample (40 mL)<br>Per Test Run | Grab Samp<br>Sample<br>Three Test Con | ole (500 mL) Collecte<br>s Will Be Composite<br>nposites Will be Com | d Every 15 Minutes<br>d into Appropriate C<br>posited Again into ( | Grab Sample (500 mL) Collected Every 15 Minutes. At the End of Each Test Run, Samples Will Be Composited into Appropriate Containers for Analysis. The Three Test Composites Will be Composited Again into One Trial Burn Sample for Analysis. | est Run,<br>. The<br>e for Analysis. | Flow Rate<br>Measured<br>Every 15 |
| Sampling Extraction/<br>Analysis Method(s): | Method 5030/<br>Method 8240                   | Method 3520/<br>Method 8270           | Method 3520/<br>Methods 8080 <sup>2</sup><br>and 8140 <sup>2</sup>   | Method 3520/<br>Methods 8290                                       | Method 3010/<br>Methods 6010 <sup>3</sup><br>and Method 7470 <sup>3</sup>                                                                                                                                                                      | Method 300                           | Minutes By a<br>Flow Meter        |
| Sampling or Monitoring Design:              |                                               |                                       |                                                                      |                                                                    |                                                                                                                                                                                                                                                |                                      |                                   |
|                                             |                                               |                                       |                                                                      |                                                                    |                                                                                                                                                                                                                                                |                                      |                                   |
| Total No. of Samples                        | က                                             |                                       |                                                                      |                                                                    | 14                                                                                                                                                                                                                                             |                                      | NA <sup>5</sup>                   |
| - Site Blanks                               | -                                             | 1                                     | 1                                                                    | -                                                                  | -                                                                                                                                                                                                                                              | -                                    | NA                                |
| - Trip Blanks                               | -                                             | 0                                     | 0                                                                    | 0                                                                  | 0                                                                                                                                                                                                                                              | 0                                    | N<br>A                            |
| - Lab Blanks                                | 1/Batch <sup>6</sup>                          | 1/Batch                               | 1/Batch                                                              | 1/Batch                                                            | 1/Batch                                                                                                                                                                                                                                        | 1/Batch                              | NA                                |
| - Blank Spikes <sup>7</sup>                 | 1/Batch                                       | 1/Batch                               | 1/Batch                                                              | 1/Batch                                                            | 1/Batch                                                                                                                                                                                                                                        | 0                                    | AN                                |
| - Replicates <sup>8</sup>                   | 1/Batch                                       | 1/Batch                               | 1/Batch                                                              | 1/Batch                                                            | 1/Batch                                                                                                                                                                                                                                        | 1/Batch                              | NA                                |
| - Matrix Spikes                             | 1/Batch                                       | 1/Batch                               | 1/Batch                                                              | 1/Batch                                                            | 1/Batch                                                                                                                                                                                                                                        | 0                                    | AN                                |
| - Total No. of Samples Analyzed             | 6                                             |                                       |                                                                      |                                                                    |                                                                                                                                                                                                                                                |                                      | NA                                |
|                                             |                                               |                                       |                                                                      |                                                                    |                                                                                                                                                                                                                                                |                                      |                                   |

NOTES:

 Metals include antimony, arsenic barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, and zinc.
 Organochlorine pesticides - Method 8080; organophosphorus pesticides - Method 8140.
 Antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, selenium, silver, thallium, vanadium, and zinc- Method 6010; Mercury -Method 7470.

Three samples will be collected (one from each test). These samples will be composited into one sample for analysis. The three Individual Test Samples Will Be Archived for future use if necessary. 4.

Not Applicable.

A batch consists of a maximum of 20 samples. A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch. 7.65

A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquots. replicate sample analysis monitors precision. œ

# TABLE 3-4 SAMPLING AND MONITORING PLAN FOR MAKEUP WATER

| Description: 8   1.00 of Total Runs:   Samulostilia   Pesticides   Dioxins   Dioxins   Samulostilia   Pesticides   Dioxins   Dioxins   Samulostilia   Pesticides   Dioxins   Dioxins   Dioxins   Pesticides   Dioxins   Diox | Sampling Point No.                          |                                               |                             |                                                                    | 4                                                            |                                                                           |                                                  |                     |                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|---------------------|-----------------------------------|
| Collect Representative Sample   Countries   Collect Representative Sample   Collect Representative Sample   Collect Representative Sample   Corganics   Collect Representative Sample   Corganics    | Description:                                |                                               |                             |                                                                    | Caustic Solution                                             | uc uc                                                                     |                                                  |                     |                                   |
| Collect Representative Sample   Countries Chemical Characteristics and Flow Rate of Causit Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. of Test Runs:                           |                                               |                             |                                                                    | က                                                            |                                                                           |                                                  |                     |                                   |
| Volatile   Semivolatile   Pesticides   Dioxins/ Organics   Dioxins/ Organics   Dioxins/ Organics   Dioxins/ Organics   Dioxins/ Organics   Dioxins/ Sample (40 mL)   Again into One Trial Burn Sample (500 mL) (2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test Objective:                             |                                               | Det                         | ermine Chemical Ch                                                 | naracteristics and                                           | Flow Rate of Caustic                                                      | Solution                                         |                     |                                   |
| Volatile Organics         Semivolatile Organics         Pesticides Purans         Dioxins/ Furans         Metals Families         Total Halidas         Density           Random Grab Sample (40 mL) Sample (40 mL) Random Grab Sample (40 mL) Sample (40 mL)         Grab Sample (500 mL) Collected Every 15 Minutes. At the End of Each Test Run, Grab Samples Mill Be Composited into Appropriate Containers. The Three Test Composites Will be Composited Method 3520/ Method 3620/ Method                                                                                                               | Sampling Objective:                         |                                               |                             | Col                                                                | lect Representativ                                           | e Sample                                                                  |                                                  |                     |                                   |
| Ramdom Grab Sample (500 mL) Collected Every 15 Minutes. At the End of Each Test Run, Grab Samples Sample (40 mL) Will Be Composited into Appropriate Containers. The Three Test Composites Will be Composited Sample for Analysis.         Again into One Trial Burn Sample for Analysis.         Method S200 Method 3520/ Method 3520/ Method 32010/ Method 8240         Method 8270 Method 3200/ Method 3200         Method 3200/ Method 3200/ Method 3010/ Method 7470 <sup>3</sup> Method 3010/ Method 3010/ Method 3010/ Method 3010/ Method 7470 <sup>3</sup> Method 3020/ Method 3200/ Method 3020/ Method 3010/ Method 3                                                                        | Parameters to be Determined:                | Volatile<br>Organics                          | Semivolatile<br>Organics    | Pesticides                                                         | Dioxins/<br>Furans                                           | Metals <sup>1</sup>                                                       | Total<br>Halides                                 | Density             | Volumetric<br>Flow Rate           |
| Method 8220/<br>Method 8220/<br>Method 8270         Method 3520/<br>and 8140 <sup>2</sup> Method 300/<br>and 8140 <sup>2</sup> Method 300/<br>and 8140 <sup>2</sup> Method 300/<br>and 8140 <sup>2</sup> Gravimetric           3         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sampling or Monitoring Method:              | Random Grab<br>Sample (40 mL)<br>Per Test Run | Grab Samp<br>Will Be Cor    | ole (500 mL) Collect<br>nposited into Appro<br>Agair               | ed Every 15 Minut<br>priate Containers.<br>Into One Trial Bu | es. At the End of Ea<br>The Three Test Con<br>rn Sample for Analys        | ch Test Run, Grab<br>nposites Will be Co<br>sis. | Samples<br>mposited | Flow Rate<br>Measured<br>Every 15 |
| 3       14       14       1       1       1       1       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampling Extraction/<br>Analysis Method(s): | Method 5030/<br>Method 8240                   | Method 3520/<br>Method 8270 | Method 3520/<br>Methods 8080 <sup>2</sup><br>and 8140 <sup>2</sup> | Method 3520/<br>Methods 8290                                 | Method 3010/<br>Methods 6010 <sup>3</sup><br>and Method 7470 <sup>3</sup> | Method 300                                       | Gravimetric         | Minutes By a<br>Flow Meter        |
| 3         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling or Monitoring Design:              |                                               |                             |                                                                    |                                                              |                                                                           |                                                  |                     |                                   |
| 1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total No. of Samples                        | 3                                             |                             |                                                                    |                                                              | 14                                                                        |                                                  |                     | NA <sup>5</sup>                   |
| 1/Batch         0         0           9         9         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>- Site Blanks</td><td>-</td><td>-</td><td>-</td><td>-</td><td><b>,</b></td><td>1</td><td>0</td><td>NA</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Site Blanks                               | -                                             | -                           | -                                                                  | -                                                            | <b>,</b>                                                                  | 1                                                | 0                   | NA                                |
| 1/Batch         0         0           9         9         1/Batch         1/Batch         1/Batch         1/Batch         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Trip Blanks                               | -                                             | 0                           | 0                                                                  | 0                                                            | 0                                                                         | 0                                                | 0                   | NA                                |
| 1/Batch         0         0           9         9         1         1         1         1         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Lab Blanks                                | 1/Batch <sup>6</sup>                          | 1/Batch                     | 1/Batch                                                            | 1/Batch                                                      | 1/Batch                                                                   | 1/Batch                                          | 0                   | NA                                |
| 1/Batch         1/Batch         1/Batch         1/Batch         1/Batch         1/Batch         0         0           9         9         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Blank Spikes <sup>7</sup>                 | 1/Batch                                       | 1/Batch                     | 1/Batch                                                            | 1/Batch                                                      | 1/Batch                                                                   | 0                                                | 0                   | NA                                |
| 1/Batch 1/Batch 1/Batch 1/Batch 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Replicates <sup>8</sup>                   | 1/Batch                                       | 1/Batch                     | 1/Batch                                                            | 1/Batch                                                      | 1/Batch                                                                   | 1/Batch                                          | 0                   | NA                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Matrix Spikes                             | 1/Batch                                       | 1/Batch                     | 1/Batch                                                            | 1/Batch                                                      | 1/Batch                                                                   | 0                                                | 0                   | NA                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Total No. of Samples Analyzed             | 6                                             |                             |                                                                    |                                                              |                                                                           |                                                  |                     | NA                                |

Metals include antimony, arsenic barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, and zinc. ÷ 0, 6, 4, NOTES:

Organochlorine pestisides - Method 8080; organophosphorus pesticides - Method 8140.
Antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, selenium, silver, thallium, vanadium, and zinc- Method 6010; mercury - Method 7470.
Three samples will be collected (one from each test). These samples will be composited into one sample for analysis. The three individual test samples will be archived for future use if necessary.

Not applicable.

A batch consists of a maximum of 20 samples. v; 0; √,

A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch.

A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquots. Replicate sample anlaysis monitors precision.

TABLE 3-5 SAMPLING AND MONITORING PLAN FOR CAUSTIC SOLUTION

| Volatile   Semi   Organics   Organics   Organics   Organics   Organics   Organics   Semi   Organics   Organics  |                                                                                                                                                                      |                                                           | ,                               |                  |                              |                              |                 |                  |                 |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|------------------|------------------------------|------------------------------|-----------------|------------------|-----------------|----------------------------------|
| Volatite   Semi   Organics   Or  |                                                                                                                                                                      |                                                           | Brine                           |                  |                              |                              |                 |                  |                 |                                  |
| 1/batch  2   1/b  |                                                                                                                                                                      |                                                           | 3                               |                  |                              |                              |                 |                  |                 |                                  |
| Volatile   Semi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Detern                                                                                                                                                               | Determine chemical characteristics and flow rate of brine | aracteristics an                | d flow rate of b | rine                         |                              |                 |                  |                 |                                  |
| Volatite   Semi Organics   Organics   Organics   Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      | Collect a Re                                              | Collect a Representative Sample | Sample           |                              |                              |                 |                  |                 |                                  |
| Random grab sample   (40 mL)   (40  | Dioxins/ Metals <sup>1</sup><br>Furans                                                                                                                               | Total<br>Halides                                          | Density                         | 됩                | Total<br>Suspended<br>Solids | Total<br>Dissolved<br>Solids | Cyanide         | Fluoride         | Sulfide         | Volumetric<br>Flow Rate          |
| Method Method S520/ 3520/ Method Method 8240 8270 8270 8270 9250: 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ 9250/ | Grab sample (1,000 mL) collected every 15 minutes. At the end of each test run, grab samples will be composited and placed into appropriate containers for analysis. | At the end of eacl                                        | h test run, grab                | samples will be  | composited a                 | nd placed into               | appropriate co  | ntainers for ana | lysis.          | Flow Rate<br>measured<br>every   |
| 19 Design: 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method Digestion<br>3520/ Method<br>Method 3010/<br>8280 Methods<br>6010 <sup>3</sup> and<br>7470 <sup>3</sup>                                                       | Method<br>300                                             | Gravimetric                     | Method<br>150.1  | Method<br>160.2              | Method<br>160.1              | Method<br>335.2 | Method<br>340.2  | Method<br>376.2 | 15 minutes<br>by a<br>Flow Meter |
| 3 3<br>1 1 1<br>1 0<br>1/batch 1/batch 1/batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                           |                                 |                  |                              |                              |                 |                  |                 |                                  |
| 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e<br>e                                                                                                                                                               | 8                                                         | 8                               | 8                | 6                            | 8                            | 60              | 3                | 3               | NA <sup>4</sup>                  |
| 1 0<br>1/batch <sup>5</sup> 1/batch<br>s <sup>6</sup> 1/batch 1/batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                    | F                                                         | 0                               | -                | -                            | -                            | -               | -                | -               | NA<br>A                          |
| 1/batch <sup>5</sup> 1/batch 1/batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                                                                                                                                  | 0                                                         | 0                               | 0                | 0                            | 0                            | 0               | 0                | 0               | Ą                                |
| 1/batch 1/batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/batch 1/batch                                                                                                                                                      | 1/batch                                                   | 0                               | -                | -                            | -                            | 1/batch         | 1/batch          | 1/batch         | Ą                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/batch 1/batch                                                                                                                                                      | 0                                                         | 0                               | 0                | 0                            | 0                            | 1/batch         | 1/batch          | 1/batch         | NA                               |
| - Replicates <sup>7</sup> 1/batch 1/batch 1/batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/batch 1/batch                                                                                                                                                      | 1/batch                                                   | 0                               | 0                | -                            | -                            | 1/batch         | 1/batch          | 1/batch         | ΑĀ                               |
| Matrix spikes 1/batch 1/batch 1/batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/batch 1/batch                                                                                                                                                      | 0                                                         | 0                               | 0                | 0                            | 0                            | 1/batch         | 1/batch          | 1/batch         | NA                               |
| - Total no. of samples 9 8 8 8 analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ω ω                                                                                                                                                                  | 9                                                         | ဗ                               | ις               | 9                            | g                            | 80              | ω                | 80              | NA<br>A                          |

NOTES: 1. Metals include antimony, arsenic, barium, beryillum, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, vanadium, zinc.

2. Organochlorine pesticides - Method 8080; Organophosphorus, pesticides - Method 8140.

3. Arsenic, antimony, barum, beryllium, cadmium, chromium, copper, lead, nickel, selenium, silver and thallium, vanadium, zinc - Method 6010; mercury - Method 7470.

4. Not applicable.

5. A batch consists of a maximum of 20 samples.

6. A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch.

7. A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquots. Replicate sample analysis monitors precision.

| Sampling Point No.:                                    |                              |                                                                                                                                         |                    |                   |                        |                    | 9                                        |                                                             |                                |                                 |                                 |                                         |                                        |                                      |                           |
|--------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------------|--------------------|------------------------------------------|-------------------------------------------------------------|--------------------------------|---------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------|---------------------------|
| Description:                                           |                              |                                                                                                                                         |                    |                   |                        |                    | Stack Gas                                | Gas                                                         |                                |                                 |                                 |                                         |                                        |                                      |                           |
| No. of Test Runs:                                      |                              |                                                                                                                                         |                    |                   |                        |                    | 8                                        |                                                             |                                |                                 |                                 |                                         |                                        |                                      |                           |
| Test Objective:                                        |                              |                                                                                                                                         |                    |                   |                        | ă                  | etermine the [                           | Determine the DRE of the SQI                                |                                |                                 |                                 |                                         |                                        |                                      |                           |
| Sampling Objective:                                    |                              |                                                                                                                                         |                    |                   |                        | S                  | lect a Repres                            | Collect a Representative Sample                             | ele                            |                                 |                                 |                                         |                                        |                                      |                           |
| Parameters to be<br>Determined:                        | Volatile<br>Organics         | Semivolatile<br>Organics/<br>Pesticides                                                                                                 | Dioxins/<br>Furans | Metals¹           | Hexavalent<br>Chromium | Particulate        | Carbon <sup>2</sup><br>Dioxide           | Oxygen <sup>2</sup>                                         | Sulfur <sup>2</sup><br>Dioxide | Nitrogen <sup>2</sup><br>Oxides | Carbon <sup>2</sup><br>Monoxide | Total <sup>2</sup><br>Hydro-<br>carbons | Hydro-<br>chloric<br>acid <sup>2</sup> | Water                                | Volumetric<br>Flow Rate   |
| Sampling or Monitoring<br>Method:                      | Method<br>0030               | Method<br>0010                                                                                                                          | Method<br>23       | Multi-            | Hexavalent             | Method<br>0050     | Meth                                     | Method 3                                                    | Method<br>6C                   | Method<br>7E                    | Method<br>10                    | Method<br>25A                           | Method<br>0050                         | Methods 1 and 2, in conjunction with | and 2,<br>ion with        |
| Sampling Extraction/<br>Analysis Method(s):            | Method<br>5040/8240          | Method<br>8270/8080/<br>81403                                                                                                           | Method<br>23       | metals            | Method                 | Method<br>5        | Meth                                     | Method 3                                                    | Method<br>6C                   | Method<br>7E                    | Method<br>10                    | Method<br>25A                           | Method<br>9057                         | Multi-Metals, 0050, and Hexavalent   | 10, 23, ls, 0050, avalent |
| Sampling or Monitoring Design:                         | Jesign:                      |                                                                                                                                         |                    |                   |                        |                    |                                          |                                                             |                                |                                 |                                 |                                         |                                        | 5                                    |                           |
| - Sample size                                          | Approx.<br>120 liters        | >106 dscf                                                                                                                               | >106 dscf          | >50 dscf          | >50 dscf               | ≥30 dscf           | 60-80 L Multipoint<br>Integrated Gas Smp | 60-80 L Multipoint<br>ntegrated Gas Smp                     |                                | Continuous                      | snoni                           |                                         | ≥50 dscf                               | NA4                                  | A N                       |
| - Total no. of samples                                 | 6 collected/<br>6 analyzed 5 | ဗ                                                                                                                                       | ю                  | е                 | ε                      | е                  | е                                        | ю                                                           | A N                            | N<br>A                          | A N                             | Ą                                       | б                                      | NA<br>A                              | V V                       |
| - Site and trip blanks <sup>6</sup> (solvents, resins) | 1 set                        | 1 set 7                                                                                                                                 | 1 set 7            | -                 | -                      | -                  | 0                                        | 0                                                           | ¥ Z                            | ΑN                              | ΑN                              | A N                                     | -                                      | AN                                   | 4 X                       |
| - Site blanks (train blanks)                           | -                            | 1                                                                                                                                       | -                  | 0                 | 0                      | 0                  | 0                                        | 0                                                           | Ą                              | ΑN                              | ΑN                              | Ϋ́                                      | 0                                      | Ā                                    | ¥.                        |
| - Lab blanks                                           | -                            | -                                                                                                                                       | 1                  | -                 | -                      | 0                  | 0                                        | 0                                                           | Ā                              | Ą                               | Ą                               | Ϋ́                                      | 0                                      | Ą                                    | ¥                         |
| - Blank spikes                                         | -                            | 1                                                                                                                                       | +                  | -                 | -                      | 0                  | 0                                        | 0                                                           | Ā                              | ΝΑ                              | Ą                               | ΑŽ                                      | -                                      | AN                                   | A N                       |
| - Blank spike duplicates 8                             | -                            | -                                                                                                                                       | 1                  | -                 | -                      | 0                  | 0                                        | 0                                                           | ΑN                             | AN                              | ΑN                              | Ą                                       | -                                      | Ą                                    | AN                        |
| - Replicates 9                                         | 0                            | 0                                                                                                                                       | 0                  | 0                 | 0                      | 0                  | g                                        | 9                                                           | AA                             | N<br>A                          | AN                              | ¥                                       | 2                                      | AN                                   | Ą                         |
| - Matrix spikes                                        | all 10                       | all 11                                                                                                                                  | all 12             | 1                 | -                      | 0                  | 0                                        | 0                                                           | ΑN                             | Ą                               | AN                              | AN.                                     | 0                                      | Ą                                    | ΑĀ                        |
| - Total no. of samples<br>analyzed                     | 23                           | ω.                                                                                                                                      | 60                 | 80                | ω                      | 4                  | 6                                        | 6                                                           | NA                             | ΑN                              | ¥.                              | AN.                                     | 80                                     | A                                    | A A                       |
| NOTES: 1. Antimony, a                                  | rsenic, barium, be           | <ol> <li>Antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium.</li> </ol> | , chromium, copp   | ber. lead, mercun | v. nickel, seleniun    | 1. silver thallium | 7.                                       | Set includes solvents, filter, XAD-2 resin, and HPI C water | ants. filter. XAD-2            | resin and HPI                   | woter                           |                                         |                                        |                                      |                           |

 Animuory, aisenin, beryillum, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium vanadium, and zinc.

 Carbon dioxide, oxygen, sulfur dioxide, nitrogen oxides, carbon monoxide, total hydrocarbons, and hydrochloric acid were monitored by CEM system. In addition, carbon dioxide, oxygen and hydrochloric acid were also monitored by integrated sampling.

 Semivolatile organics - Method 8270; organochlorine pesticides - Method 8080; organophosphorous pesticides - Method 8140.

Not applicable.

Each sample includes a Tenax and Tenax charcoal tube pair. Each tube was analyzed individually as a means of determining compound breakthrough.

6. EPA Method 0010 and 23 site and trip blanks run only if contamination problems were found.

1541-3594 7/29/93

Set includes solvents, filter, XAD-2 resin, and HPLC water.

A blank spike, or method spike is a sample of laboratory reagent-grade water spiked with the analytes of interest that is prepared and analyzed with the associated sample batch.

A replicate sample is obtained by splitting a field sample into two separate analyses and performing two separate analyses on the aliquots. Replicate sample analysis monitors precision.

All samples spiked with Contractor Laboratory Program (CLP) Volatile Organic Analysis (VOA) surrogates.

11. All samples spiked with CLP Pesticide and Base/Neutral/Acid (BNA) surrogates.

12. All samples spiked with 37 CL-TCDD, 13CL<sub>2</sub>-PeCDF 234, 13 CL<sub>2</sub>-HxCDF 478, 13 CL<sub>2</sub>-HxCDD 478 and 13 CL<sub>2</sub>-HpCDF 789.

Table 3-8
Sampling Equipment

| Sample<br>Point No. | Stream                 | Sampling Equipment                                                                                                                                                                                                                                |
|---------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Liquid Waste (Basin F) | VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*                                                                                                                                                 |
| 2                   | POHC Spike Solution    | VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*                                                                                                                                                 |
| 3                   | Makeup Water           | VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*                                                                                                                                                 |
| 4                   | Caustic Solution       | VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*                                                                                                                                                 |
| 5                   | Brine                  | VOA samples: 40 ml glass vial. All other samples: wide-mouth glass bottle with Teflon-lined lid.*                                                                                                                                                 |
| 6                   | Stack Gases            | Integrated sampling: EPA Method 0030 sampling train (VOST) EPA Method 0010 sampling train EPA Method 23 sampling train Multi-metals sampling train Hexavalent chromiunm sampling train EPA Method 0050 sampling train EPA Method 3 sampling train |

<sup>\*</sup> With the exception of VOA samples, all samples were collected every 15 minutes. At the end of each test run, samples were composited and placed into appropriate containers for analysis. At least one random grab sample was collected during each test for VOA analysis.

Table 3-9
SQI Stack Sample Identification

| Sample ID Code                                        | Sample Description                                       |
|-------------------------------------------------------|----------------------------------------------------------|
| Particulate — EPA Method 0050                         |                                                          |
| RMA-TBURN-M5-RN 1-3-FHA                               | Front half acetone                                       |
| RMA-TBURN-M5-RN 1-3-FILT                              | Filter                                                   |
| RMA-TBURN-M5-SB-ACETONE                               | Acetone                                                  |
| RMA-TBURN-M5-SB-FILT                                  | Filter                                                   |
| HCL - EPA Method 0050                                 |                                                          |
| RMA-TBURN-M0050-RN 1-3-H <sub>2</sub> SO <sub>4</sub> | Impingers containing 0.1 N sulfuric acid                 |
| RMA-TBURN-M0050-SB-H <sub>2</sub> SO <sub>4</sub>     | 0.1 N sulfuric acid solution                             |
| RMA-TBURN-M0050-SB-H <sub>2</sub> O                   | H <sub>2</sub> O                                         |
| Metals - EPA Multi-Metals                             |                                                          |
| RMA-TBURN-MMTL-RN 1-3-FHN                             | Front half 0.1 N nitric acid                             |
| RMA-TBURN-MMTL-RN 1-3-FILT                            | Filter                                                   |
| RMA-TBURN-MMTL-RN 1-3-BHN                             | Back half 5% nitric acid/10% hydrogen peroxide solution  |
| RMA-TBURN-MMTL-RN 1-3-IMP4                            | Impinger 4 condensate catch                              |
| RMA-TBURN-MMTL-RN 1-3-KMNO <sub>4</sub>               | Potasium permanganate/sulfuric acid solution             |
| RMA-TBURN-MMTL-RN 1-3-HCl/H <sub>2</sub> O            | Hydrochloric acid/distilled water                        |
| RMA-TBURN-MMTL-SB-NITRIC                              | 0.1 N nitric acid solution                               |
| RMA-TBURN-MMTL-SB-FILTER                              | Filter                                                   |
| RMA-TBURN-MMTL-SB-NITRIC/ $H_2O_2$                    | 5% nitric acid/10% peroxide solution                     |
| RMA-TBURN-MMTL-SB-KMNO <sub>4</sub>                   | 4% potasium permanganate/10% sulfuric acid solution      |
| RMA-TBURN-MMTL-SB-HCl/H <sub>2</sub> O                | 8 N hydrochloric acid                                    |
| RMA-TBURN-MMTL-AUDIT-L341                             | Metals audit sample                                      |
| RMA-TBURN-MMTL-AUDIT-H341                             | Metals audit sample                                      |
| Semivolatiles - EPA Method 0010                       |                                                          |
| RMA-TBURN-M0010-RN 1-3-FHS                            | Front half solvent (50% methanol/50% methylene chloride) |
| RMA-TBURN-M0010-RN 1-3-XAD                            | XAD resin trap                                           |
| RMA-TBURN-M0010-RN 1-3-FILT                           | Filter                                                   |
| RMA-TBURN-M0010-RN 1-3-COND                           | Condensate and distilled water rinse                     |
| RMA-TBURN-M0010-RN 1-3-BHS                            | Back half solvent (50% methanol/50% methylene chloride)  |
| RMA-TBURN-M0010-BT-SOL                                | Front-half solvent (50% methanol/50% methylene chloride) |
| RMA-TBURN-M0010-BT-FILT                               | Filter                                                   |
| RMA-TBURN-M0010-BT-XAD                                | XAD resin trap                                           |

Table 3-9
SQI Stack Sample Identification
(Continued)

| Sample ID Code              | Sample Description                                      |
|-----------------------------|---------------------------------------------------------|
| RMA-TBURN-M0010-BT-COND     | Condensate and distilled water rinse                    |
| RMA-TBURN-M0010-BT-BHS      | Back half solvent (50% methanol/50% methylene chloride) |
| RMA-TBURN-M0010-SB-SOL      | Solvent (50% methanol/50% methylene chloride)           |
| RMA-TBURN-M0010-SB-FILT     | Filter                                                  |
| RMA-TBURN-M0010-SB-XAD      | XAD resin trap                                          |
| RMA-TBURN-M0010-SB-WATER    | HPLC grade distilled water                              |
| PCDD/PCDF - EPA Method 23   |                                                         |
| RMA-TBURN-M23-RN 1-3-FHS    | Front half solvent (50% acetone/50% methylene chloride) |
| RMA-TBURN-M23-RN 1-3-FILT   | Filter                                                  |
| RMA-TBURN-M23-RN 1-3-XAD    | XAD resin trap                                          |
| RMA-TBURN-M23-RN 1-3-COND   | Condensate and distilled water rinse                    |
| RMA-TBURN-M23-RN 1-3-BHS    | Back half solvent (50% acetone/50% methylene chloride)  |
| RMA-TBURN-M23-RN 1-3-TOL    | Toluene (QA/QC rinse)                                   |
| RMA-TBURN-M23-BT-SOL        | Front half solvent (50% acetone/50% methylene chloride) |
| RMA-TBURN-M23-BT-FILT       | Filter                                                  |
| RMA-TBURN-M23-BT-XAD        | XAD resin trap                                          |
| RMA-TBURN-M23-BT-COND       | Condensate and distilled water rinse                    |
| RMA-TBURN-M23-BT-BHS        | Back half solvent (50% acetone/50% methylene chloride)  |
| RMA-TBURN-M23-BT-TOL        | Toluene (QA/QC rinse)                                   |
| RMA-TBURN-M23-SB-SOL        | Solvent (50% acetone/50% methylene chloride)            |
| RMA-TBURN-M23-SB-XAD        | XAD resin trap                                          |
| RMA-TBURN-M23-SB-WATER      | HPLC distilled water                                    |
| RMA-TBURN-M23-SB-FILT       | Filter                                                  |
| RMA-TBURN-M23-SB-TOL        | Toluene                                                 |
| RMA-TBURN-M23-AUDIT-1156    | PCDD/PCDF audit                                         |
| RMA-TBURN-M23-AUDIT-8863    | PCDD/PCDF audit                                         |
| RMA-TBURN-M23-AUDIT-NO. 3   | PCDD/PCDF audit                                         |
| Volatiles - EPA Method 0030 |                                                         |
| RMA-TBURN-M0030-RN 1-3-TP1  | Tube Pair 1                                             |
| RMA-TBURN-M0030-RN 1-3-TP2  | Tube Pair 2                                             |
| RMA-TBURN-M0030-RN 1-3-TP3  | Tube Pair 3                                             |

SQI Stack Sample Identification (Continued)

Table 3-9

| Sample ID Code                        | Sample Description          |
|---------------------------------------|-----------------------------|
| RMA-TBURN-M0030-RN 1-3-TP4            | Tube Pair 4                 |
| RMA-TBURN-M0030-RN 1-3-TP5            | Tube Pair 5                 |
| RMA-TBURN-M0030-RN 1-3-TP6            | Tube Pair 6                 |
| RMA-TBURN-M0030-RN 1-3-COND1          | Condensate 1                |
| RMA-TBURN-M0030-RN 1-3-COND2          | Condensate 2                |
| RMA-TBURN-M0030-RN 1-3-COND3          | Condensate 3                |
| RMA-TBURN-M0030-RN 1-3-COND4          | Condensate 4                |
| RMA-TBURN-M0030-SB-TP1                | Tube Pair 1                 |
| RMA-TBURN-M0030-SB-COND1              | Condensate 1                |
| RMA-TBURN-M0030-BT-TP1                | Tube Pair 1                 |
| RMA-TBURN-M0030-BT-COND1              | Condensate 1                |
| RMA-TBURN-M0030-AUDIT 1-TP1           | VOST audit (cylinder 567)   |
| RMA-TBURN-M0030-AUDIT 1-TP2           | VOST audit (cylinder 567)   |
| RMA-TBURN-M0030-AUDIT 1-TP3           | VOST audit (cylinder 567)   |
| RMA-TBURN-M0030-AUDIT 1-TP4           | VOST audit (cylinder 567)   |
| RMA-TBURN-M0030-AUDIT 2-TP1           | VOST audit (cylinger 568)   |
| RMA-TBURN-M0030-AUDIT 2-TP2           | VOST audit (cylinger 568)   |
| RMA-TBURN-M0030-AUDIT 2-TP3           | VOST audit (cylinger 568)   |
| RMA-TBURN-M0030-AUDIT 2-TP4           | VOST audit (cylinger 568)   |
| Hexavalent Chromium - EPA Cr+6 Method |                             |
| RMA-TBURN-Cr+6-RN 1-3-KOH             | Potasium hydroxide solution |
| RMA-TBURN-Cr+6-SB-KOH                 | Potasium hydroxide solution |
| RMA-TBURN-Cr+6-SB-H₂O                 | Distilled water             |

SB = Site/reagent blank samples BT = Blank train samples

RN = Test run number

Table 3-10
Sampling Procedures

| Sample Stream                                     | EPA<br>Reference<br>Method(s) <sup>a</sup> | Measurement<br>Technique                                                    | Sampling<br>Frequency or<br>Duration |
|---------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|
| Liquid Waste (Basin F)                            | S004                                       | NA <sup>b</sup>                                                             | 15 min                               |
| POHC Spike Solution                               | S004                                       | NA                                                                          | 15 min                               |
| Makeup Water                                      | S004                                       | NA                                                                          | 15 min                               |
| Caustic Solution                                  | S004                                       | NA                                                                          | 15 min                               |
| Brine                                             | S004                                       | NA                                                                          | 15 min                               |
| Stack Gas Integrated Sampling Volatile Organics   | Method 0030°<br>(VOST)                     | Single-point, integrated constant rate                                      | 2 hrs                                |
| Semivolatile Organics,<br>Pesticides, Water Vapor | Method 0010                                | Multipoint, integrated isokinetic, ± 10%                                    | 4 hrs                                |
| Dioxins/Furans, Water<br>Vapor                    | Method 23                                  | Multipoint, integrated isokinetic, ± 10%                                    | 4 hrs                                |
| Metals, Water Vapor                               | Multi-metals <sup>d</sup>                  | Multipoint, integrated isokinetic, + 10%                                    | 2 hrs                                |
| Hexavalent Chromium                               | Hexavalent<br>chromium                     | Multipoint, integrated isokinetic, ± 10%                                    | 2 hrs                                |
| HCl/Particulate                                   | Method 0050                                | Multipoint, integrated isokinetic, ± 10%                                    | 2 hrs                                |
| CO <sub>2</sub> and O <sub>2</sub>                | Method 3                                   | Multipoint, integrated isokinetic, ± 10%                                    | 2 and 4 hrs                          |
| Water Content,<br>Volumetric Flowrate             | with Meth<br>multi-me                      | and 2 (in conjunction ods 0050, 0010, 23, tals and hexavalent nium methods) | 2 and 4 hrs                          |

**Table 3-10** 

# **Sampling Procedures** (Continued)

| Sample Stream                      | EPA<br>Reference<br>Method(s) <sup>a</sup> | Measurement<br>Technique | Sampling<br>Frequency or<br>Duration |
|------------------------------------|--------------------------------------------|--------------------------|--------------------------------------|
| Continuous Emissions<br>Monitoring |                                            |                          |                                      |
| Sulfur Dioxide                     | Method 6C                                  | CEM System               | Continuous                           |
| CO <sub>2</sub> and O <sub>2</sub> | Method 3A                                  | CEM System               | Continuous                           |
| Carbon Monoxide                    | Method 10                                  | CEM System               | Continuous                           |
| Nitrogen Oxides                    | Method 7E                                  | CEM System               | Continuous                           |
| Total Hydrocarbons                 | Method 25A                                 | CEM System               | Continuous                           |
| Hydrochloric Acid                  | NRM <sup>e</sup>                           | CEM System               | Continuous                           |

<sup>&</sup>lt;sup>a</sup>EPA test procedures as specified in 40 CFR 60, Appendix A - Reference Method 5.

<sup>&</sup>lt;sup>b</sup>NA - Not applicable.

<sup>&</sup>lt;sup>c</sup>Sampling and Analytical Methodologies for Addition to Test Methods for Evaluating Solid Waste - Physical/Chemical Methods, EPA SW-846, 3rd Edition, 1984, will be used to quantify the principal organic hazardous constituent (POHC) and volatile products of incomplete combustion (PICs).

<sup>&</sup>lt;sup>d</sup>Multi-metals - Methodology for the Determination of Metals Émissions in Exhaust Gases from Hazardous Waste Incineration and Similar Combustion Processes, EPA/530-SW-91-010.

NRM: No reference method.

# SECTION 4 ANALYTICAL PROCEDURES

Except for the dioxin/furan and hexavalent chromium analyses of the stack gas and liquid feed samples, all analyses were conducted by the WESTON Analytics Division laboratories located in Lionville, PA. WESTON's Lionville laboratory has participated in the EPA Contract Laboratory Program (CLP) to provide organic and inorganic target compound list (TCL) analyses. WESTON routinely analyzes samples and prepares litigation-quality data packages in accordance with EPA protocols for volatile and semivolatile organics, organochlorine pesticides/PCBs, metals, and cyanide in soil and water matrices.

Dioxin/furan analysis of the SQI stack samples and liquid feed samples by EPA Method 23 procedures was performed by Triangle Laboratories, located in Durham, NC. The hexavalent chromium analysis of the stack samples was performed by Research Triangle Institute, located in Research Triangle Park, NC.

### 4.1 ANALYTICAL METHODS

A summary of the extraction and analytical methods employed during the Trial Burn test is provided in Table 4-1. A comparison of WESTON standard operation procedures (SOPs) and EPA references is provided in Table 4-2.

### 4.2 ANALYTES

The list of analytes within the following analytical groups are presented in Tables 4-3 through 4-8:

- Volatile Organic Compounds (Table 4-3).
- Semivolatile Organic Compounds (Table 4-4).
- Pesticides/PCBs (Table 4-5).
- Dioxins/Furans (Table 4-6).
- Metals (Table 4-7).
- Total Halides (Table 4-8).

Table 4-1
Summary of Extraction and Analytical Methods

| Sample Stream                                     | EPA Reference<br>Extraction Method | EPA Reference<br>Analytical Method                                                                                                                                                                                                    |
|---------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIQUID WASTE (LW)/BRINE (I                        | BR)                                |                                                                                                                                                                                                                                       |
| Volatile Organics                                 | 5030                               | 8240                                                                                                                                                                                                                                  |
| Semivolatile Organics                             | 3510/3520                          | 8270                                                                                                                                                                                                                                  |
| Pesticides    Organochlorine    Organophosphorous | 3510/3520<br>3510/3520             | 8080<br>8140                                                                                                                                                                                                                          |
| Dioxins/Furans                                    | LW - 8290<br>Brine - 8280          | LW - 8290<br>Brine - 8280                                                                                                                                                                                                             |
| Metals                                            | Digestion Methods 3010/3020        | Antimony - 6010 Arsenic - 6010(7060) Barium - 6010 Beryllium - 6010 Cadmium - 6010 Copper - 6010 Lead - 6010(7421) Mercury - 7470 Nickel - 6010 Selenium - 6010(7740) Silver - 6010 Thallium - 6010(7841) Vanadium - 6010 Zinc - 6010 |
| Sulfur Content (LW Only)                          | ASTM D129                          | Method 300.0                                                                                                                                                                                                                          |
| Total Halides                                     | ASTM D808-81                       | Method 300.0                                                                                                                                                                                                                          |
| Density                                           | Not Applicable                     | ASTM D1429-76                                                                                                                                                                                                                         |
| Heating Value (LW Only)                           | Not Applicable                     | ASTM D240                                                                                                                                                                                                                             |
| Ash Content (LW Only)                             | Not Applicable                     | Method 160.3                                                                                                                                                                                                                          |
| pН                                                | Not Applicable                     | Method 150.1                                                                                                                                                                                                                          |
| Water Content (LW Only)                           | Not Applicable                     | Method 160                                                                                                                                                                                                                            |
| Total Suspended Solids                            | Not Applicable                     | Method 160.2                                                                                                                                                                                                                          |
| Total Dissolved Solids                            | Not Applicable                     | Method 160.1                                                                                                                                                                                                                          |
| Cyanide (Brine Only)                              | Not Applicable                     | Method 335.2                                                                                                                                                                                                                          |
| Fluoride (Brine Only)                             | Not Applicable                     | Method 340.2                                                                                                                                                                                                                          |
| Sulfide (Brine Only)                              | Not Applicable                     | Method 376.2                                                                                                                                                                                                                          |

Table 4-1
Summary of Extraction and Analytical Methods
(Continued)

| Sample Stream                                     | EPA Reference<br>Extraction Method | EPA Reference<br>Analytical Method                                                                                                                                                                                                    |
|---------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POHC SOLUTIONS                                    |                                    |                                                                                                                                                                                                                                       |
| Volatile Organics                                 | Not Applicable                     | 8100                                                                                                                                                                                                                                  |
| MAKEUP WATER (MW)/CAUST                           | TIC SOLUTION (CS)                  |                                                                                                                                                                                                                                       |
| Volatile Organics                                 | 5030                               | 8240                                                                                                                                                                                                                                  |
| Semivolatile Organics                             | 3510/3520                          | 8270                                                                                                                                                                                                                                  |
| Pesticides    Organochlorine    Organophosphorous | 3510/3520<br>3510/3520             | 8080<br>8140                                                                                                                                                                                                                          |
| Dioxin/Furan                                      | 8290                               | 8290                                                                                                                                                                                                                                  |
| Metals                                            | Digestion Methods<br>3010/3020     | Antimony - 6010 Arsenic - 6010(7060) Barium - 6010 Beryllium - 6010 Cadmium - 6010 Copper - 6010 Lead - 6010(7421) Mercury - 7470 Nickel - 6010 Selenium - 6010(7740) Silver - 6010 Thallium - 6010(7841) Vanadium - 6010 Zinc - 6010 |
| Total Halides                                     | ASTM D808-81                       | Method 300                                                                                                                                                                                                                            |
| Density                                           | Not Applicable                     | ASTM D1429-76                                                                                                                                                                                                                         |
| STACK GAS                                         |                                    |                                                                                                                                                                                                                                       |
| Volatile Organics                                 | 5040                               | 8240                                                                                                                                                                                                                                  |
| Semivolatile Organics                             | 3540/3550                          | 8270                                                                                                                                                                                                                                  |
| Pesticides  Organochlorine Organophosphorous      | 3540/3550<br>3540/3550             | 8080<br>8140                                                                                                                                                                                                                          |
| Dioxins/Furans                                    | Method 23                          | 8290                                                                                                                                                                                                                                  |

08/24/93

Table 4-1
Summary of Extraction and Analytical Methods
(Continued)

| Sample Stream         | EPA Reference<br>Extraction Method | EPA Reference<br>Analytical Method                                                                                                                                                                                                    |
|-----------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metals                | Digestion Methods<br>3010/3020     | Antimony - 6010 Arsenic - 6010(7060) Barium - 6010 Beryllium - 6010 Cadmium - 6010 Copper - 6010 Lead - 6010(7421) Mercury - 7470 Nickel - 6010 Selenium - 6010(7740) Silver - 6010 Thallium - 6010(7841) Vanadium - 6010 Zinc - 6010 |
| Hexavalent Chromium   | Not Applicable                     | 7196                                                                                                                                                                                                                                  |
| Particulate           | Not Applicable                     | Method 5                                                                                                                                                                                                                              |
| Carbon Dioxide/Oxygen | Not Applicable                     | Method 3 & 3A                                                                                                                                                                                                                         |
| Sulfur Dioxide        | Not Applicable                     | Method 6C                                                                                                                                                                                                                             |
| Nitrogen Oxides       | Not Applicable                     | Method 7E                                                                                                                                                                                                                             |
| Carbon Monoxide       | Not Applicable                     | Method 10                                                                                                                                                                                                                             |
| Total Hydrocarbons    | Not Applicable                     | Method 25A                                                                                                                                                                                                                            |
| Hydrochloric Acid     | Not Applicable                     | 9057                                                                                                                                                                                                                                  |

Table 4-2

Comparison of EPA Reference Methods to WESTON SOPs

| Analysis Method               | EPA Reference      | WESTON SOP            |
|-------------------------------|--------------------|-----------------------|
| Metals Digestion              | SW 846 3010/3020   | OP21-15-3020.1        |
| Metals by ICP                 | SW 846 6010        | OP21-15-0200.7        |
| Metals by GFAA or ICP         | SW 846 7000 Series | OP21-15-0200.2        |
| Heat of Combustion            | ASTM D240          | OP21-15-0051          |
| Sulfur Content                | ASTM D129          | NA                    |
| Percent Ash                   | 209F               | OP21-15-0160.6        |
| Percent Moisture              | 209F               | OP21-15-0160.6        |
| Multi-metals                  | SW 846 7000 Series | SW 846 7000 Series    |
| Volatile Organics (stack gas) | 5040               | OP21-16-5040.1        |
| Volatile Organics (liquids)   | 8240               | OP21-16-8240.3        |
| Semivolatile Organics         | 8270               | OP21-16-8270.1        |
| Dioxin/Furan                  | 8280               | OP21-16-8280.1        |
| PCBs (stack gas)              | 8080               | OP21-16-8080.1        |
| PCBs (liquids)                | 8080               | OP21-16-8080.1        |
| Pesticides                    | 8080/8140          | OP21-16-8080.1/8140.1 |
| Total Halides                 | 300.0              | OP21-15-0300.0        |
| Total Suspended Solids        | 160.2              | OP21-15-0160.2        |
| Total Dissolved Solids        | 160.1              | OP21-15-0160.1        |

SOP Standard Operating Procedure

NA Not Available (EPA reference method used for analysis)

ICP Inductively Coupled Plasma

GFAA Graphite Furnace Atomic Absorption

Table 4-3

### Volatile Organic Compounds (Method 8240)

| Chloromethane                  |
|--------------------------------|
| Bromomethane                   |
| Vinyl Chloride                 |
| Chloroethane                   |
| Methylene Chloride             |
| Acetone (not included in VOST) |
| Carbon Disulfide               |
| Carbon Disumue                 |
| 1,1-Dichloroethene             |
|                                |

Chloroform 1,2-Dichloroethane

2-Butanone (not included in VOST)

1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate (not inc

Vinyl Acetate (not included in VOST) Bromodichloromethane

1,2-Dichloropropane cis-1,3-Dichloropropene

Trichloroethene

Dibromochloromethane 1,1,2-Trichloroethane

Benzene

Trans-1,3-Dichloropropene

Bromoform

Trans-1,3-Dichloropropene

Bromoform

4-Methyl-2-pentanone

2-Hexanone (not included in VOST)

Tetrachloroethene

1,1,2,2-Tetrachloroethane

Toluene

Chlorobenzene Ethylbenzene Styrene

Xylene (total)

Dimethyldisulfide (TIC only\*)

<sup>\*</sup>TIC: Tentatively Identified Compound.

Table 4-4

# Semivolatile Organic Compounds (Method 8270)

| Phenol                      | 3-Nitroaniline                   |
|-----------------------------|----------------------------------|
| bis(2-Chloroethyl)ether     | Acenaphthene                     |
| 2-Chlorophenol              | 2,4-Dinitrophenol                |
| 1,3-Dichlorobenzene         | 4-Nitrophenol                    |
| 1,4-Dichlorobenzene         | Dibenzofuran                     |
| Benzyl alcohol              | 2,4-Dinitrotoluene               |
| 1,2-Dichlorobenzene         | Diethylphthalate                 |
| 2-Methylphenol              | 4-Chlorophenyl-phenylether       |
| bis(2-Chloroisopropyl)ether | Fluorene                         |
| 4-Methylphenol              | 4-Nitroaniline                   |
| N-Nitroso-Di-n-propylamine  | 4,6-Dinitro-2-methylphenol       |
| Hexachloroethane            | N-Nitrosodiphenylamine (1)       |
| Nitrobenzene                | 4-Bromophenyl-phenylether        |
| Isophorone                  | Hexachlorobenzene                |
| 2-Nitrophenol               | Pentachlorophenol                |
| 2,4-Dimethylphenol          | Phenanthrene                     |
| Benzoic acid                | Anthracene                       |
| bis(2-Chloroethoxy)methane  | Di-n-Butylphthalate              |
| 2,4-Dichlorophenol          | Fluoranthene                     |
| 1,2,4-Trichlorobenzene      | Pyrene                           |
| Naphthalene                 | Butylbenzylphthalate             |
| 4-Chloroaniline             | 3,3'-Dichlorobenzidine           |
| Hexachlorobutadiene         | Benzo(a)anthracene               |
| 4-Chloro-3-methylphenol     | Chrysene                         |
| 2-Methylnaphthalene         | bis(2-Ethylhexyl)phthalate       |
| Hexachlorocyclopentadiene   | Di-n-Octyl phthalate             |
| 2,4,6-Trichlorophenol       | Benzo(b)fluoranthene             |
| 2,4,5-Trichlorophenol       | Benzo(k)fluoranthene             |
| 2-Chloronaphthalene         | Benzo(a)pyrene                   |
| 2-Nitroaniline              | Indeno(1,2,3-cd)pyrene           |
| Dimentylphthalate           | Dibenzo(a,h)anthracene           |
| Acenaphthylene              | Benzo(g,h,i)perylene             |
| 2,6-Dinitrotoluene          | 4,4-Dichlorobiphenyl (TIC only*) |
| Quinoline (TIC only*)       | Pentachlorobenzene (TIC only*)   |
| Carbazole (TIC only*)       |                                  |

<sup>\*</sup>Tentatively identified compound.

Table 4-5
Pesticides/PCBs

| Organochlorine Pesticides/PCBs<br>(Method 8080) | Organophosphorous Pesticides (Method 8140) |
|-------------------------------------------------|--------------------------------------------|
| Alpha-BHC                                       | Azinphos methyl                            |
| Beta-BHC                                        | Bolstar                                    |
| Delta-BHC                                       | Chlorpyrifos                               |
| Gamma-BHC (Lindane)                             | Coumaphos                                  |
| Heptachlor                                      | Demeton-O                                  |
| Aldrin                                          | Demeton-S                                  |
| Heptachlor epoxide                              | Diazinon                                   |
| Endosulfan I                                    | Dichlorvos                                 |
| Dieldrin                                        | Disulfoton                                 |
| 4,4'-DDE                                        | Ethoprop                                   |
| Endrin                                          | Fensulfothion                              |
| Isodrin                                         | Fenthion                                   |
| Endosulfan II                                   | Malathion                                  |
| 4,4'-DDD                                        | Merphos                                    |
| Endosulfan sulfate                              | Mevinphos                                  |
| 4,4'-DDT                                        | Naled                                      |
| Methoxychlor                                    | Parathion ethyl                            |
| Endrin ketone                                   | Parathion methyl                           |
| Alpha-chlordane                                 | Phorate                                    |
| Gamma-chlordane                                 | Ronnel                                     |
| Toxaphene                                       | Stirophos                                  |
| Arochlor-1016                                   | Supona                                     |
| Arochlor-1221                                   | Tokuthion                                  |
| Arochlor-1232                                   | Trichloronate                              |
| Arochlor-1242                                   |                                            |
| Arochlor-1248                                   |                                            |
| Arochlor-1254                                   |                                            |
| Arochlor-1260                                   |                                            |
| -                                               |                                            |

### Table 4-6

### Dioxins/Furans

- 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
- 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)
- 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)
- 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)
- 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)
- 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)
- 2,3,7,8-Tetrachlordibenzofuran (TCDF)
- 1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)
- 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)
- 1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)
- 1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)
- 1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)
- 2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)
- 1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)
- 1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)

### Table 4-7

### Metals

Antimony
Arsenic
Barium
Beryllium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc

**Table 4-8** 

Total Halides (Method 300)

Fluoride Chloride Bromide Iodide

# SECTION 5 TEST RESULTS

This section contains a summary of test results for the stack emissions and process influent and effluent streams sampled during the Trial Burn program. The raw sampling data, calculations, and emission tables prepared by WESTON are provided in Appendix B of this report. The analytical data and results tables prepared by WESTON Lionville Analytical Laboratories are provided in Appendix C of this report. Pertinent data from the associated tables in Appendices B and C of this report have been summarized and are provided in the following summary tables:

- Table 5-1: Particulate/HCl Emission Results
- Table 5-2: Volatile Organic Compounds Emission Results
- Table 5-3: Semivolatile Organic Compounds and Pesticides Emission Results
- Table 5-4: Dioxins/Furans Emission Results
- Table 5-5: Metals Emission Results
- Table 5-6: Hexavalent Chromium Emission Results
- Table 5-7: CO, CO<sub>2</sub>, O<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, THC 2nd HCl Emission Results
- Table 5-8: Summary of Analytical Results for Basin F Waste Feed
- Table 5-9: Summary of Analytical Results for POHCs
- Table 5-10: Summary of Analytical Results for Makeup Water
- Table 5-11: Summary of Analytical Results for Caustic Solution
- Table 5-12: Summary of Analytical Results for Brine

For convenience of the reader, Tables 5-1 through 5-12 are provided at the end of Section 5.

# 5.1 TREATMENT OF NON-DETECTS, VALUES OUTSIDE OF THE CALIBRATION RANGE AND BLANKS

Treatment of non-detects (analytical results for which the concentration of the species of interest is below the detection limit of the method) and blank values is of critical importance to this program because detection levels and blank concentrations are often on the same order of magnitude as sample values. This section describes how blank and non-detect values are presented in the Trial Burn Report.

### 5.1.1 Non-Detects

The following discussion explains how averages and reported emission values were calculated for all species given various combinations of detected and non-detected concentrations.

- <u>All concentrations detected.</u> The arithmetic average of the individual values is taken. No special techniques are required.
- All concentrations below the detection limit. For individual test runs or species, the analytical results will be reported as "ND". For species where all three test runs of the Trial Burn are below the detection limit, the average is reported in the Trial Burn data as "ND".
- Some concentrations are detected and some are non-detects. As an approximation, half of the detection limit for nondetect values and the actual value for detects will be used to determine averages. As an example, an average for three test runs with results 10, 8 and ND<(6) would be 7. The only exception to this rule occurs when the average is less than the highest detection limit of the non-detected values. In this case, the average is reported as ND<(highest detection limit). For example, 5, ND<(4) and ND<(3) would be reported as ND<(4).

This approach was also used to obtain test train totals which required analyses of separate fractions for each individual run. Specifically, the volatiles, semivolatiles (including

pesticides) and metals test train totals for each run were obtained by addition of test train fractions which were analyzed separately.

Fractions from the volatile test train included separate analyses of the tenax and tenax/charcoal tubes for each sample period. A total of six tube pairs was collected for each of the three tests. Separate analyses was conducted on the filterable and gaseous test train components for both the semivolatiles and metals test trains.

### 5.1.2 <u>Values Outside of the Calibration Range</u>

It is possible that the reported lab data will be outside the calibration range of the instrument. Data reported below the lower detection limit will be flagged with the qualifier "J". Data with the "J" flag will have been tentatively identified and tentatively quantified. Data reported above the upper detection limit will be flagged with the qualifier "E". Data with the "E" flag will have been positively identified and tentatively quantified. Data with either qualifier will be estimated. WESTON considered "J" and "E" values to be quantitatively representative when calculating averages. Neither flag causes a value to be weighted more or less important.

When a "J" or "E" qualifier was assigned to a test train fraction and added to either a detection limit or a detected value, the test train total was also assigned the "J" or "E" qualifier.

### 5.1.3 Blank Values

When a method does not specify how a sample will be blank corrected, WESTON subtracts appropriate blank train values. Laboratory and site/reagent blanks were analyzed and the results evaluated for identification of contamination. In no case were the blank corrected values reported below the method detection limit. If a sample compound was corrected by the blank train, the data was flagged by a qualifier "B". If the value is blank train corrected

to the detection limit, it will be reported as ND<(highest detection limit) B. In cases where a blank value exceeds the level found in a sample, the sample value will be corrected to the detection limit ND<(highest detection limit)BC. The "BC" qualifier signifies that the compound was detected in higher concentrations in the blank than in the sample.

Blank trains were setup, recovered and analyzed for the volatiles, semivolatiles (including pesticides) and dioxins/furans. The quantified blank train values were used to blank correct the measured test values. Site/reagent blanks were collected and analyzed for the purpose of blank correcting the measured values obtained for the particulates, hydrochloric acid and metals test trains. The metals blank adjustments adhered to the criteria outlined in the multi-metals test procedure.

### 5.2 STACK EMISSIONS

Summary tables of the analytical results for stack emissions are presented in this subsection. For convenience, Tables 5-1 through 5-7 are provided at the end of Section 5. The raw analytical data are provided in Appendix B of this report.

### 5.2.1 Particulate/HCl

During the Trial Burn test program, stack emissions were sampled using EPA Method 0050. The filterable particulate analysis was performed using EPA Method 5; the HCl determination was conducted using Method 9057 (ion chromatography) procedures. Analytical results are presented in Table 5-1. The regulatory criteria for particulate and HCl emissions are as follows:

- Particulate emissions shall be less than 0.08 gr/dscf corrected to 7% O<sub>2</sub> and less than 0.10 gr/dscf corrected to 12% CO<sub>2</sub>, whichever is more stringent.
- Hydrogen chloride emissions shall be less than 4 lb/hr or greater than 99% removal efficiency.

As shown in Table 5-1, particulate emissions for test runs 1, 2, and 3 were 0.0194, 0.0238 and 0.0209 gr/dscf (corrected to 7%  $O_2$ ) and 0.0290, 0.0360 and 0.0311 gr/dscf (corrected to 12%  $CO_2$ ), respectively. HCl emissions for test runs 1, 2 and 3 were 0.1273, 0.3103 and 0.2497 lb/hr, respectively. All of the reported values are well below the regulatory criteria defined above.

### 5.2.2 Volatile Organic Compounds

The results of the Method 0030 sampling train for the POHC compounds are provided below.

| Test Data                                    |                             |                       |                             |  |
|----------------------------------------------|-----------------------------|-----------------------|-----------------------------|--|
| Test Run No.                                 | One                         | Two                   | Three                       |  |
| Test Date                                    | 6/10/93                     | 6/11/93               | 6/12/93                     |  |
| Test Time                                    | 0808-1109                   | 0738-1047             | 0830-1124                   |  |
| Average stack gas volumetric flow (dscf/min) | 7775                        | 7900                  | 7875                        |  |
|                                              | Emission Resu               | lts                   |                             |  |
| Carbon Tetrachloride (lb/hr)                 | ND<(8.26x10 <sup>-5</sup> ) | 8.98x10 <sup>-5</sup> | ND<(8.92x10 <sup>-5</sup> ) |  |
| Chlorobenzene (lb/hr)                        | 3.20x10 <sup>-5</sup>       | $ND < (8.58x10^{-5})$ | ND<(8.71x10 <sup>-5</sup> ) |  |
| DRE Test Results                             |                             |                       |                             |  |
| Carbon Tetrachloride                         |                             |                       |                             |  |
| Feed rate (lb/hr)                            | 6.90                        | 8.66                  | 8.79                        |  |
| DRE (%)                                      | >99.9988                    | 99.9990               | >99.9990                    |  |
| Chlorobenzene                                |                             |                       |                             |  |
| Feed rate (lb/hr)                            | 8.66                        | 8.98                  | 8.79                        |  |
| DRE (%)                                      | 99.9996                     | >99.9990              | >99.9990                    |  |

The laboratory analysis for the POHC compounds indicate a destruction and removal efficiency (DRE) greater than the regulatory limit of 99.99%. The DRE is calculated as follows:

$$DRE = \frac{W_{in} - W_{out}}{W_{in}} \times 100$$

where:

W<sub>in</sub> = POHC mass rate in W<sub>out</sub> = POHC mass rate out (emissions)

A DRE >99.9990% was demonstrated for monochlorobenzene, and >99.9988% was demonstrated for carbon tetrachloride.

A summary of the volatile organic emissions in the stack gas is provided in Table 5-2. Products of incomplete combustion (PICs) were identified in the stack gas. Only 9 compounds have averages greater than the detection limit value, and the total PIC emission concentration averaged less than 59 ppb/v. These compounds are identical to those found in the previous mini-burn emission results, summarized in Appendix A.3.1 and A.3.2.

### 5.2.3 Semivolatile Organic Compounds and Pesticides

The results of the Method 0010 sampling train for semivolatile organic compounds and pesticides are provided in Table 5-3. Of the 69 semivolatile organic compounds listed, only 4 compounds have values greater than the detection limit value: diethylphthalate, di-nbutylphthalate, butylbenzylpthalate and bis(2-ethylhexyl)phthalate. These compounds were also found in the previous mini-burn emission results. Two of these compounds appear to be the result of sample contamination since they were detected in the blank trains.

Twenty-eight organochlorine pesticide/PCB compounds (Pest/PCB) and 25 organophosphorous pesticide compounds (OP Pest) were also analyzed and reported in Table 5-3. Only 1 Pest/PCB compound was detected in the stack gas of run #1 - heptachlor epoxide. The emission value averaged 9.92E-07 lb/hr.

### 5.2.4 Dioxin/Furans

Stack sampling using a Method 23 sampling train was performed in order to determine emission levels of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The summary results of the dioxin/furan analysis are provided in Table 5-4. There was no detectable concentration of 2,3,7,8-TCDD in the stack gas. Detected isomers of total PCDD averaged 1 ppq/v and isomers of total PCDF averaged 7 ppq/v. Total PCDD and PCDF for each test averaged less than 0.018 ng/dscm and 0.091 ng/dscm, respectively. The dioxin/furan toxic equivalency factor (TEF) was equal to 1.74E-11 lb/hr.

### **5.2.5** Metals

Stack sampling using the multi-metals sampling train was performed to determine the emission level of 15 critical metals defined in the Trial Burn Plan. The summary results of the multi-metals analysis are provided in Table 5-5. The mass rate emissions are comparable to those reported for the second mini-burn (reference Appendix A.3.2).

### 5.2.6 Hexavalent Chromium

Stack sampling for hexavalent chromium was performed; results are provided in Table 5-6. The mass rate emission averaged 6.37E-06 lb/hr (or 0.226 ug/dscm).

### 5.2.7 Continuous Emissions Monitoring

An extractive-type continuous emissions monitoring system was used to record the stack emissions for carbon monoxide (CO) and oxygen (O<sub>2</sub>). The average readings for each test run are presented in Table 5-7. The CO hourly rolling average over the three test runs averaged 51.5 ppm, while excess oxygen averaged 3.50%.

### 5.3 SYSTEM INFLUENT AND EFFLUENT STREAMS

Summary tables of the analytical results for system influent and effluent streams (excluding stack samples) are presented in this subsection. Only detectable concentrations are presented in the summary tables. None of the reported concentrations are blank corrected. For convenience, Tables 5-8 through 5-12 are provided at the end of Section 5. The raw analytical data are contained in Appendix C of this report, which provides the detection limits for parameters not present in measurable quantities.

# 5.3.1 System Influent Streams — Waste Feed, POHC, Makeup Water and Caustic 5.3.1.1 Waste Feed

Basin F waste feed was sampled and analyzed for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, sulfur, halides, density, heating value, ash content, pH, water content, total dissolved solids and total suspended solids per the monitoring plan defined in Table 3-1. Individual 1,000-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from 100-mL to 1,000-mL to ensure a sufficient sample volume was collected for analyses and splits.

A summary of the analytical results for the waste feed is provided in Table 5-8. Analytes that are not listed in the summary table were reported as non-detects. The complete list

of analytes within each analytical group is presented in Tables 4-3 through 4-8. It should be noted that Method D240 for heating value analysis does not provide for the addition of an additive, and since the samples did not ignite, a btu value is not reported. The average heating value of the Basin F waste was determined to be 1,356 btu/lb using Method D2015 during the second mini-burn test.

### 5.3.1.2 POHCs

The two principal organic hazardous constituents (POHCs) which were injected into the Basin F feed for the Trial Burn were carbon tetrachloride and monochlorobenzene. The POHCs were selected in accordance with the EPA document <u>Guidance on Setting Permit Conditions and Reporting Trial Burn Results</u>, Volume II, Hazardous Waste Incineration Guidance Series, January, 1989. The selection of these POHCs was made to cover aromatic and aliphatic types of compounds.

Since both of these compounds were purchased pure, in 55-gallon drums, the laboratory analysis was limited to volatile organics. Purity certificates for each POHC compound are attached in Appendix A.2.4. Two random grab samples were taken in 40-mL vials at the beginning and end of each test run. The analytical results for the POHCs is provided in Table 5-9. DRE calculations are based upon the assumption that the POHCs were 100% pure, and are not based upon the analytical recovery results.

A significant concentration of chlorobenzene was detected in the carbon tetrachloride analysis for grab sample 2 in run #2. This contamination has unknown origin, and may possibly be due to improper sampling techniques. In a worst case calculation for DRE, assuming an average POHC purity of only 93% (based upon the recoveries in Table 5-9), a DRE > 99.9987 was still demonstrated (reference calculations in Appendix B — Volume III).

### 5.3.1.3 Makeup Water

The makeup water was sampled and analyzed for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, and halides per the monitoring plan defined in Table 3-4. Individual 500-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from 100-mL to 500-mL to ensure a sufficient sample volume was collected for analysis and splits. A summary of the analytical results for the makeup water is provided in Table 5-10.

### 5.3.1.4 Caustic Solution

The caustic solution was sampled and analyzed for volatile organics, semivolatile organics, pesticides, dioxins/furans, metals, halides and density per the monitoring plan defined in Table 3-5. Individual 500-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from 100-mL to 500-mL to ensure a sufficient sample volume was collected for analysis and splits. A summary of the analytical results for the caustic solution is provided in Table 5-11.

### 5.3.2 System Effluent Streams — Brine

Brine was sampled and analyzed for volatile organics, semivolatile organics, pesticides, PCBs, dioxins/furans, metals, halides, density, pH, total suspended solids, total dissolved solids, cyanide, fluoride and sulfide per the monitoring plan defined in Table 3-6. Individual 1,000-mL samples were collected every 15 minutes during the test runs, and composited at the end of the day. Additionally, two 40-mL random grab samples were collected per run for volatile organic analysis. As stated in Section 2.3.1, the grab volume was increased from

100-mL to 1,000-mL to ensure a sufficient sample volume was collected for analysis and splits. A summary of the analytical results for the brine is provided in Table 5-12. There were no reported values for volatile organics, semivolatile organics, pesticides or dioxins/furans above the detection limit.

### RMA-SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM

## TABLE 5-1

### SUMMARY OF PARTICULATE AND HCL TEST DATA AND TEST RESULTS

| TEST DATA                                           |                       |                   |                  |
|-----------------------------------------------------|-----------------------|-------------------|------------------|
| Test run number                                     | 1                     | 2                 | 3                |
| Test location                                       | -                     | INCINERATOR STACK | 3                |
| Test date                                           | 06 <del>-1</del> 0-93 | 06-11-93          | 06-12-93         |
| Test time period                                    | 0745-1041             | 0843-1341         | 0756-1047        |
| SAMPLING DATA                                       |                       |                   |                  |
| Sampling duration, min.                             | 120.0                 | 120.0             | 100.0            |
| Nozzle diameter, in.                                |                       | 120.0             | 120.0            |
| Cross sectional nozzle area, sq.ft.                 | 0.363<br>0.000719     | 0.363             | 0.363            |
| Barometric pressure, in. Hg                         | 24.79                 | 0.000719          | 0.000719         |
| Avg. orifice press. diff., in H <sub>2</sub> O      | 1.60                  | 24.57             | 24.62            |
| Avg. dry gas meter temp., deg F                     | 81                    | 1.66              | 1.56             |
| Avg. abs. dry gas meter temp., deg. R               | 541                   | 93                | 86               |
| Total liquid collected by train, ml                 | 2566.0                | 553               | 546              |
| Std. vol. of H2O vapor coll., cu.ft.                |                       | 2543.0            | 2473.0           |
| Dry gas meter calibration factor                    | 120.8                 | 119.7             | 116.4            |
| Sample vol. at meter cond., dcf                     | 0.9923                | 0.9923            | 0.9923           |
| Sample vol. at std. cond., dscf (1)                 | 87.391                | 89.933            | 87.209           |
| Percent of isokinetic sampling                      | 70.385                | 70.285            | 69.169           |
| Terests of Bokinetic Sampling                       | 100.3                 | 99.4              | 99.2             |
| GAS STREAM COMPOSITION DATA                         |                       |                   |                  |
| ∞2, % by volume, dry basis                          | 10.1                  | 9.9               | 10.1             |
| O <sub>2</sub> , % by volume, dry basis             | 3.4                   | 3.5               | 3.6              |
| CO, % by volume, dry basis                          | 0.0                   | 0.0               | 0.0              |
| N <sub>2</sub> , % by volume, dry basis             | 86.5                  | 86.6              | 86.4             |
| Molecular wt. of dry gas, lb/lb mole                | 29.75                 | 29.73             | 29.75            |
| H <sub>2</sub> O vapor in gas stream, prop. by vol. | 0.632                 | 0.630             | 0.627            |
| Mole fraction of dry gas                            | 0.368                 | 0.370             | 0.373            |
| Molecular wt. of wet gas, lb/lb mole                | 22.3                  | 22.3              | 22.4             |
| GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA        |                       |                   |                  |
| Static pressure, in. H <sub>2</sub> O               | -0.18                 | -0.19             | -0.17            |
| Static pressure, in. Hg                             | -0.013                | -0.014            | -0.013           |
| Absolute pressure, in. Hg                           | 24.78                 | 24.56             | 24.61            |
| Avg. temperature, deg. F                            | 183                   | 183               | 183              |
| Avg. absolute temperature, deg.R                    | 643                   | 643               | 643              |
| Pitot tube coefficient                              | 0.84                  | 0.84              | 0.84             |
| Total number of traverse points                     | 12                    | 12                | 12               |
| Avg. gas stream velocity, ft./sec.                  | 54.2                  | 54.8              | 53.6             |
| Stack/duct cross sectional area, sq.ft.             | 9.62                  | 9.62              | 9.62             |
| Avg. gas stream volumetric flow, wacf/min.          | 31300                 | 31700             | 30900            |
| Avg. gas stream volumetric flow, dscf/min.          | 7800                  | 7900              | 7800             |
| LABORATORY REPORT                                   |                       |                   |                  |
| Particulate                                         |                       |                   |                  |
| Front half acetone rinse, g                         | 0.0184                | 0.0220            | 0.0229           |
| Filter, g                                           | 0.0931                | 0.1137            | 0.0939           |
| Total catch, g                                      | 0.1115                | 0.1357            | 0.1168           |
| HCI                                                 |                       |                   |                  |
| Total mg HCl                                        | 8.65                  | 20.91             | 16.79            |
| PARTICULATE EMISSIONS                               |                       |                   |                  |
| Concentration, gr/dscf                              | 0.0244                | 0.0298            | 0.0261           |
| Concentration, gr/dscf @7% O2                       | 0.0194                | 0.0238            | 0.0209           |
| Concentration, gr/dscf@12% CO2                      | 0.0290                | 0.0360            | 0.0311           |
| Mass rate, lbs/hr                                   | 1.6408                | 2.0140            | 1.7374           |
| HCI EMISSIONS                                       |                       |                   |                  |
| Concentration, lbs/dscf                             | 2.71E-07              | 6 56E-07          | 5 255.07         |
| Concentration, ppm/v                                | 2.8650                | 6.56E-07          | 5.35E-07         |
| Mass rate, lbs/hr                                   | 0.1273                | 6.9336            | 5.6571           |
| POHC Chloride Feed Rate, lb/hr (as HCL)(2)          | 9.35                  | 0.3103<br>11.13   | 0.2497           |
| HCL Removal Efficiency, %                           | > 98.64               |                   | 11.11<br>> 97.75 |
| ,, ,,                                               | - 90.04               | > 97.21           | > 97.75          |

<sup>(1)</sup> Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg)
(2) Inlet chloride feed rate based on carbon tetrachloride and chlorobenzene (POHC) injection rates. This does not account for other chlorides present Basin F liquid, therefore greater than values are reported for HCl removal efficiency.

RMA-SQI

# DENVER, COLORADO TABLE 5-2 TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

| TEST DATA:                                        |          |           |                   |           |           |           |
|---------------------------------------------------|----------|-----------|-------------------|-----------|-----------|-----------|
| Test nin nimber                                   |          | -         |                   | •         |           |           |
| Test location                                     | STACE    | erActv    | I Company         | I .       | 1         | -         |
| Test date                                         | 1000     | NOCTOR OF | 91ACN<br>06-10.03 | SIACK     | SIACK     | STACK     |
| Test time                                         | 6604.080 | 0840 0000 | 5001000           | 56-01-00  | CG-10-33  | 06-10-93  |
| Test tale rair                                    | 1        | 0000000   | 0914-0934         | 0940-1006 | 1019-1039 | 1049-1109 |
|                                                   | 4        | 4         | n                 | 4         | 'n        | 9         |
| SAMPLING DATA:                                    |          |           |                   |           |           |           |
| Duration, minutes                                 | 20.00    | 20.00     | 20.00             | 20.00     | 20.00     | 0000      |
| Average dry gas meter press, in. H <sub>2</sub> O | 1,450    | 1.475     | 1.500             | 1.475     | 1 500     | 1 500     |
| Average dry gas meter temp. deg. C                | 27.75    | 29.25     | 30.50             | 3150      | 3300      | 00C-1     |
| Average dry pas meter temp. deg. F                | 81.95    | 84.65     | 86.00             | 07.10     | 32.00     | 33.23     |
| Average absolute meter temp deg 12                | 541.05   | 54465     | 646.00            | 00.70     | 69.60     | 91.85     |
| Actual cample whime liters                        | 22.363   | 22.450    | 34050             | 348.70    | 249.60    | 551.85    |
| Motor box militaries V                            | 205:27   | 0.64.77   | 22,433            | 22.430    | 22.360    | 22.230    |
| Demonstration in Tra                              | 25.15    | 0.550     | 0.5963            | 0.9963    | 0.9963    | 0.9963    |
| Datomenic pressure, in. ng                        | 24.19    | 24.79     | 24.79             | 24.79     | 24.79     | 24.79     |
| sample volume, asci                               | 0.6376   | 0.6370    | 0.6340            | 0.6323    | 0.6288    | 0.6226    |
| volumente now rate, dsct/min (2)                  | SILI     | 7775      | 7775              | 7775      | 2777      | 27.TT     |
| LABORATORY DATA, ng                               |          |           |                   |           |           |           |
| Chloromethane (Methyl Chloride)                   | 935      | 285       | 144               | 145       | 929       |           |
| Bromomethane (Methyl Bromide)                     | 47 1     | 3.5 I     | 1 16              | 11 001    | 179       | 571       |
| Vinyl Chloride                                    | 11 001   | 11 001    | 1001              | 2001      | 46        | D 001     |
| Chlomethane (Phyl Chloride)                       | 11 001   | 11001     | 1000              | 0 000     | 1000      | D 001     |
| Methylene chloride (1)                            | 1750 18  | 3089 18   | 0 000             | 0.001     | 100 0     | 100 T     |
| Carton Taniffedo                                  |          | E0 11     | 5007              | 843 60c   | 499 EB    | 1489 B    |
| 1 1 Nothernsteam                                  | f 77     | 0 00      | 0.00              | 19 J      | 20 J      | 20 D      |
| 1,1-Dichicochene                                  | 20.00    | 20 00     | 20 O              | 50 U      | 50 U      | 20 D      |
| 1,1-Dangoethane                                   | 20.00    | 2000      | 20 02             | 20 C      | SO U      | 20 T      |
| 1, Lacing connection (total)                      | 20.00    | 20 0      | 20 0              | 50 U      | 20 U      | 20 D      |
| Chlorodom                                         | 613      | 713 J     | 299               | 816 J     | 850       | 814       |
| 1, Anchigoenane (EDC)                             | 20.00    | 30 C      | 20 02             | 20 T      | 50 U      | 20 U      |
| Carpon Tetrachicaide                              | 0 00     | 0.00      | 0 00              | 20 02     | 50 U      | 20 T      |
| Remodichlopmethans                                | 16 9     | 16 3      | 14 J              | 20 0      | Z 12      | 20 U      |
| 1.2-Dichloromore                                  | 11 02    | 11 05     | 50 11             | 103       | 153       | 173       |
| cis-1,3-Dichloropropene                           | 50 U     | 500       | 20 11             | 200       | 0.00      | 2 8       |
| Trichloroethere (TCE)                             | 50 U     | 50 U      | 30 C              | 20 S      | )         | 20.00     |
| Dibromochloromethane                              | 26 J     | 27 J      | 29 J              | 31 1      | 27 1      | 2 20      |
| 1,1,2-Trichlorcethane                             | S0 U     | 50 U      | 50 U              | 50 U      | 20 n      | 11 05     |
| Berzene                                           | 113      | 50 U      | 50 U              | 77        | 66        | 11 05     |
| trans-1,3-Dichloropropene                         | 50 U     | 50 U      | 50 U              | 50 U      | 50 U      | 11 05     |
| Bromoform                                         | 20 U     | 50 U      | 50 U              | 50 U      | 50 U      | 11 05     |
| Tetrachioroethene (PCE)                           | 50 U     | 50 U      | 50 U              | 50 U      | 50 11     | 11 05     |
| 1,1,2,2-Tetrachloroethane                         | 50 U     | 50 U      | 50 U              | 50 U      | 50 11     | 20 05     |
| Toluene                                           | 153 J    | 113       | 111               | 123       | 113       | 113       |
| Chlorobenzene                                     | 22 J     | 21 J      | 19 J              | 20 J      | 19 J      | 1 02      |
| Ethylberzene                                      | 20 U     | 50 U      | 50 U              | 31 J      | 50 U      | 20 11     |
| Styrene                                           | 543      | 513       | 513               | 553       | 493       | 493       |
| Xylenes(total)                                    | 25 J     | 19 J      | 19 J              | 28 J      | 23 J      | 19 J      |
| Dimethyldisulfide                                 | 20 U     | 20 T      | 50 U              | 50 U      | 50 U      | 20 U      |
|                                                   |          |           |                   |           |           |           |

J = Quantified below the detection limit.

B = Detected in blank train; reported values have been blank corrected
U = Compound not detected in the faction limit shown. Detected limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie, 50 or 100 ng)
E = Compound detected above the instrument calibration range.

(1) Commonly used laboratory solvents detected in samples and blanks; the reported values may not be representative.

(2) Volumetric flow rates based on data gathered during isokinetic test runs.

# SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS TRIAL BURN TEST PROGRAM DENVIER, COLORADO TABLE 5-2 (cont)

| 1<br>STACK<br>AVERAGE (2)                                            | ND< 1.77E-40<br>6.86E-41                                             | 1.06E-09<br>ND < 3.54E-10                                                                     | <u> </u>                                        | 6.37E-09                                   | ,                  | 9 9                                            | 2.60E-09   | Q.                                                      | 5.61E-40             |                     | Q. !                  | ND 9,65R-41          | QN<br>QN              | 2.11B-10     | 9                                      | 2 5                     | 2                         | 4.20E-10 | ND < 1.77E-10           | 7.56E-11       | Q                 |
|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------|------------------------------------------------|------------|---------------------------------------------------------|----------------------|---------------------|-----------------------|----------------------|-----------------------|--------------|----------------------------------------|-------------------------|---------------------------|----------|-------------------------|----------------|-------------------|
| ∢                                                                    |                                                                      |                                                                                               |                                                 |                                            |                    |                                                |            |                                                         |                      |                     |                       |                      |                       |              |                                        |                         |                           |          |                         |                |                   |
| 1<br>STACK<br>06-10-93<br>1049-1109<br>6                             | ND< 1.77E+10<br>6.91E+11                                             | 4.43E-10<br>3.54E-10                                                                          |                                                 | 5.27E-09                                   |                    |                                                | 2.88E-09   |                                                         | 6.11E-10             |                     |                       | 1.018-40             |                       | 1.77E-10     |                                        |                         |                           | 3.98E-10 | 1.77E-10                | 6.55E-11       |                   |
|                                                                      | ND                                                                   | Š.                                                                                            | 22                                              | ND.                                        | B                  | 2 2                                            | )          | 2 2                                                     |                      | S                   | 2 8                   | Ş                    | Ð                     | ND.          | 2 2                                    | 2 2                     | Q.                        |          | NO.                     |                | S                 |
| 1<br>STACK<br>06-10-93<br>1019-1039<br>5                             | 7.19E41<br>6.49E41                                                   | 6.28B+10<br>1.68B+10                                                                          |                                                 | 1.75E-09<br>6.84E-11                       |                    |                                                | 2.98E-09   |                                                         | 5.35B-10             |                     |                       | 9.29E-11             |                       | 3.45E-10     |                                        |                         |                           | 4E-10    | 1.75E-10<br>1.73E-09    | 98-11          |                   |
| S 001                                                                | 7.1                                                                  | 6.7                                                                                           | 22                                              | 1.7                                        |                    | 2 2                                            | •          | 2 2                                                     |                      | Q                   | 2 5                   | •                    | R                     |              | 2 5                                    | 2                       | S.                        | 3.9      | ND < 1.7                |                | Ð                 |
| 9                                                                    | 0                                                                    | 0.5                                                                                           |                                                 | •                                          |                    |                                                | _          |                                                         | _                    |                     |                       |                      |                       | _            |                                        |                         |                           |          |                         |                |                   |
| 1<br>STACK<br>06-10-93<br>0946-1006<br>4                             | < 1.74E±10<br>6.80E±11                                               | 5.06BH0<br>< 3.49BH0                                                                          |                                                 | 1.773-09<br>6.45E-41                       |                    |                                                | 2.85E-09   |                                                         | 6.36B-10             |                     |                       | 1.06B+10             |                       | 2.67E-10     |                                        |                         |                           | 4.27E-10 | 1.06E-10<br>1.93E-09    |                |                   |
|                                                                      | VQN<br>VQN                                                           | £                                                                                             | 22                                              |                                            | Q                  | 22                                             |            | 2 2                                                     |                      | Q.                  | 2 5                   |                      | 2                     |              | <b>E E</b>                             | 2                       | Ð                         |          |                         |                | S                 |
| 1<br>STACK<br>06-10-93<br>0914-0934<br>3                             | 4.87E+11<br>6.43E+11                                                 | 5.39E-10<br>1.08E-10                                                                          |                                                 | 6.99E-09<br>1.74E-10                       |                    |                                                | 2.32E-09   |                                                         | S.65B-40             |                     |                       | 9.91EH1              |                       | 1.74E-10     |                                        |                         |                           | 84E-10   | 1.74E-10<br>1.78E-09    | 43E+11         |                   |
| S 0 00                                                               | 4.0                                                                  |                                                                                               | 2 2                                             |                                            |                    | 2 2                                            | • •        | 22                                                      |                      | 2                   | 2 2                   |                      |                       |              | 2 2                                    | 2                       |                           |          | 5<br>5<br>5<br>1. 1.    |                | Q                 |
| 83 K<br>00                                                           | ==                                                                   | 0 0                                                                                           |                                                 | 8 9                                        |                    |                                                | 60         |                                                         | 01                   |                     |                       |                      |                       | 0            |                                        |                         |                           | 0.       | <u> </u>                |                |                   |
| 1<br>STACK<br>06-40-93<br>08-40-0900<br>2                            | 6.06E-11<br>7.09E-11                                                 | 9.86E40<br>1.11E40                                                                            |                                                 | 7.13E-09<br>1                              | _                  |                                                | 2.4715-09  |                                                         | 5.28E+10             |                     |                       | 9.1764               |                       | ND< 1.73E-10 |                                        | _                       |                           |          | 1.73E-10<br>1.77E-09    |                |                   |
|                                                                      |                                                                      |                                                                                               | 99                                              | Q.                                         | 2                  | 2 2                                            |            | <b>2</b> 2                                              |                      | 2 !                 | 2 2                   |                      | 2                     |              | 2 2                                    | QN.                     | Z                         |          | 2                       |                | 2                 |
| 1<br>STACK<br>06-10-93<br>0808-0828<br>1                             | 6.05E+11<br>7.43E+11                                                 | 3.23E-09<br>1.63E-10                                                                          |                                                 | 6.08E-09<br>7.43E-11                       |                    |                                                | 2.12B-09   |                                                         | 4.93EH0              |                     |                       | 8.82E-11             |                       | 3.8915-10    |                                        |                         |                           | 5.29E-10 | 1.73E-10<br>1.88E-09    | 8.47E-11       |                   |
| Ü                                                                    |                                                                      |                                                                                               | 22                                              |                                            | 2 5                | 2 2                                            |            | <u> </u>                                                |                      | 2                   | 2 2                   |                      | Q.                    |              | 2 2                                    | R                       | Q                         |          | V C                     | -              | £                 |
|                                                                      |                                                                      |                                                                                               |                                                 |                                            |                    |                                                |            |                                                         |                      |                     |                       |                      |                       |              |                                        |                         |                           |          |                         |                |                   |
|                                                                      | m/dscf):                                                             | xs/dscf):<br>yl Chloride)<br>yl Bromide)                                                      | (hloride)                                       | _                                          |                    | otal)                                          |            | (F)                                                     |                      |                     | e c                   | . 2                  |                       |              | bene                                   | (E)                     | ane                       |          |                         |                |                   |
| ST DATA: Test run number Test location Test date Test time Test time | POINC EMISSIONS (Ibs/decf):<br>Carbon Tetrachloride<br>Chlorobenzene | VOST EMESIONS (lbs/dscf):<br>Chloromethane (Methyl Chloride)<br>Bromomethane (Methyl Bromide) | Vinyl Chloride<br>Chloroethane (Ethyl Chloride) | Methylene chloride (1)<br>Carbon Disulfide | 1,1-Dichloroethene | <ol> <li>1.1-Dichloroethene (total)</li> </ol> | ш          | 1,2-Dichloroethane (EDC)<br>1,1,1-Trichloroethane (TCA) | Bromod chloromethane | 1,2-Dichloropropane | Trichloroethene (TCE) | Dibromochloromethane | 1,1,2-Trichloroethane | 17.71        | каля-1,5-1.4 споторлореле<br>Вготобогт | Tetrachloroethene (PCE) | 1,1,2,2-Tetrachloroethane |          | zene                    | (pag)          | Dimethyldisulfide |
| TEST DATA: Test run numt Test location Test date Test time Test time | POHC EMISSION<br>Carbon Tetrachl<br>Chlorobenzene                    | VOST EM<br>Chloron<br>Bromon                                                                  | Vinyl Chloride<br>Chloroethane (I               | Methyle<br>Carbon 1                        | 1,1-Dich           | 1,1-De<br>1,2-Dich                             | Chloroform | 1,2-Dich<br>1,1,1-Tri                                   | Bromod               | 1,2-Dich            | Trichlor, T           | Dibrome              | 1,1,2-Tn              | Benzene      | Bromoform                              | Tetrachk                | 1,1,2,3-1                 | Toluene  | Ethylbenzene<br>Styrene | Xylenes(total) | Dimethy           |

ND = Compound not detected in sample and quantified in another tube pair.

ND <= Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and thanks, reported values have been blank conrected using a blank train value. The reported values may not be representative. That average for methylene chloride is based upon tube pairs 1,2,3, and 6. One of the two tubes from each of test runs 4 and 5 was above the pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair in on-detect value is averaged with a tube pair is less than the highest full detection limit of any single tube pair non-detected value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the transformant of the tenax and tenax/charroral then the tube the tube pair. tube fractions (ie. 50 or 100 ng).

TRIAL BURN TEST PROGRAM DENVER, COLORADO TABLE 5-2 (cont) RMA-SOI

# SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

| ##de (c)  ##de ( | TEST DATA:<br>Test run number<br>Test location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 1<br>8740K                   | J     | 1<br>27 A C K                | ě     | 1 1 2 2 4                 |     | 1 24.74                        |     | 1                              |     |                               | H                |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------|-------|------------------------------|-------|---------------------------|-----|--------------------------------|-----|--------------------------------|-----|-------------------------------|------------------|-----------|
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test date Test time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 51ACK<br>0640-93<br>808-0828 | , 0 8 | 14CK<br>16-10-93<br>340-0900 | » 5 g | IACK<br>540-93<br>14-0934 |     | STACK<br>06-10-93<br>0946-1006 |     | STACK<br>06-10-93<br>1019-1039 |     | STACK<br>06-10-93<br>049-1109 | STACE<br>AVERAGE | K<br>E(2) |
| 14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOHO EMISSIONS (pph/v):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | -                            |       | 7                            |       | n                         |     | 4                              |     | 'n                             |     | 9                             |                  |           |
| Marie   Mari   | etrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0.15                         |       | 0.15                         |       | 0.12                      | NDA | 0.44                           |     | 0.18                           | ND  | 0.44                          | ND               | 0.44      |
| Marie   Mari   | anzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 0.23                         |       | 0.24                         |       | 0.22                      |     | 0.23                           |     | 0.22                           |     | 0.24                          |                  | 0.23      |
| ND         2467         753         411         ND         436         479         479         479         479         479         479         479         479         479         ND         444         ND         441         ND         441         ND         441         ND         442         ND         443         ND         144         ND         442         ND         144         ND         442         ND         443         ND         443         ND         144         ND         144         ND         443         ND         444         ND         444         ND         ND         444         ND         444         ND         ND         444         ND         444         ND         ND         ND         ND         444         ND         ND         ND         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISSIONS (ppb/v):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                              |       |                              |       |                           |     |                                |     |                                |     |                               |                  |           |
| March   Marc   | ethane (Methyl Chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 24.67                        |       | 7.53                         |       | 4.11                      |     | 3.86                           |     | 4.79                           |     | 3.38                          |                  | 8.06      |
| March   Marc   | Monide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ę        | 000                          | Ę     | 0.43                         | Ę     | 0.44                      | 2 5 | 1.42                           | ğ   | 0.68                           | ě   | 1.44                          | YQ.              | 1.44      |
| No.    | hane (Ethyl Chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £        |                              | 2     |                              | 2     |                           | 2 5 |                                | 2 5 |                                | 2 9 |                               | 2 9              |           |
| March   Marc   | Methylene chloride (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 27.60                        |       | 32.33                        |       | 31.70                     | 1   | 8.05                           |     | 7.94                           |     | 23 92                         | ON               | 28 80     |
| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Asulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.38                         | ND <  | 0.88                         | NDA   | 0.88                      |     | 0.33                           |     | 0.35                           | NDA | 0.90                          | ND.              | 0.00      |
| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2        |                              | Q.    |                              | £     |                           | Q   |                                | S   |                                | S   |                               | E                |           |
| March   Marc   | loroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        |                              | Q     |                              | Ę     |                           | £   |                                | Q.  |                                | Q   |                               | Ę                |           |
| XC)         ND         Constraints         ADD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | loroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ž        | 70,                          | 2     |                              | Ę     | ţ                         | £   |                                | Ð   |                                | Q.  |                               | QN<br>QN         |           |
| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The second secon | ş        | 90.0                         | Ē     | 16:1                         | ļ     | 7.49                      | ļ   | 9.18                           | ļ   | 3.62                           |     | 9.31                          |                  | 8.40      |
| 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orocurane (FLA.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u> |                              | 2 2   |                              | 2 2   |                           | 2 2 |                                | 2 5 |                                | 2 5 |                               | 2 9              |           |
| ND   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1.16                         |       | 1.24                         |       | 1.33                      | 1   | 1.50                           | 9   | 1.26                           | Đ.  | 1 44                          | ND               | •         |
| National Color   Nati   | nopropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ę        |                              | Q     |                              | Q     |                           | S   |                                | R   | 77.7                           | CZ. | 1.44                          | Ę                | 1.32      |
| March   Marc   | chloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ę        |                              | B     |                              | CZ.   |                           | S   |                                | S   |                                | S   |                               | £                |           |
| NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ethene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S        | ,                            | Ø     |                              | Q.    |                           | S   |                                | 2   |                                | S   |                               | Q.               |           |
| NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chorometrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9        | 0.10                         | Ę     | 0.17                         | ģ     | 0.18                      | •   | 0.20                           | •   | 0.17                           |     | 0.19                          |                  | 0.18      |
| Excitotopropene         ND         1.52         ND         1.52         ND         ND <td>dioloculate</td> <td>2</td> <td>5</td> <td>e de</td> <td></td> <td>S E</td> <td>ò</td> <td>Q.</td> <td>;</td> <td>Q</td> <td></td> <td>2</td> <td></td> <td>R</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dioloculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2        | 5                            | e de  |                              | S E   | ò                         | Q.  | ;                              | Q   |                                | 2   |                               | R                |           |
| NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dichlomorphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ę        | 76:1                         | 2 5   | 0.00                         | 2 5   | 0.00                      | ş   | 1.32                           | ğ   | 1.70                           | Š   | 0.87                          | !                | 1.04      |
| ND   ND   ND   ND   ND   ND   ND   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        |                              | 5     |                              | 2 5   |                           | 9   |                                | 5 5 |                                | Q ! |                               | Q                |           |
| National (ACL)   Nati   | mothern (BCT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9        |                              | 9     |                              | 9 5   |                           | 9   |                                | 2   |                                | Q.  |                               | 2                |           |
| 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | etrachlomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2      |                              | £     |                              | 2 5   |                           | 5 5 |                                | 2 5 |                                | 2 9 |                               | 2                |           |
| ND<br>ND<br>0.63<br>ND<br>0.54<br>0.55<br>ND<br>0.55<br>0.55<br>ND<br>0.53<br>ND<br>0.53<br>ND<br>0.53<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 2.21                         | )     | 1.63                         | 2     | 1.61                      | į   | 1 70                           | Ş   | 1 66                           | Q.  | 177                           | Q                |           |
| 694 6.56 6.59 7.1.3 6.39 6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | zene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO.      | 0.63                         | ND.   | 0.63                         | ND    | 0.63                      |     | 0.39                           | NO. | 0.64                           | VQV | 0.64                          | Š                | 0.70      |
| 0.21 0.23 0.25 0.29 0.24 ND 0.21 ND 0.24 ND 0.35 ND 0.29 ND ND 0.24 ND ND 0.29 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 6.94                         |       | 6.56                         |       | 6.59                      |     | 7.13                           |     | 6.39                           |     | 6.45                          | 9                | 6.68      |
| GN GN GN GN GN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ        | 0.31                         | ļ     | 0.23                         |       | 0.23                      |     | 0.35                           |     | 0.29                           |     | 0.24                          |                  | 0.27      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dsulfide<br>dsulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ž        |                              | £     |                              | Q.    |                           | 2   |                                | Ñ   |                                | Q   |                               | QN               |           |

ND = Compound not detected in any of the tube pairs.

ND <= Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and thanks, reported values have been blank corrected using a blank train value. The reported values may not be representative. The average for methylene editoride reported pairs 1,2,3, and 6. One of the two tubes from each of test runs 4 and 5 was above the calibration range of the instrument, therefore the measured values to methylene editoride reported for the pairs and 5 are estimates.

(2) If a tube pair non-detected value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair the pair the pairs is necessally as a part of the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng).

TABLE 5-2 (cont)
TRIAL BURN TEST PROGRAM DENVER, COLORADO RMA-SQI

# SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

|            | -               |           | AVEKAGE (Z) |                |                             | < 8.26E-05  | 3.20E-05     |                             | 4 9712-04                       |                               | 1:007.01       |                               | 20712-03               | R 26E-05         |                   |                   |                           | 1.2112-03  |                          |                             | 2.62F-04             |                     |                         |                       | 4.50E-05               |              | 9.82E-05  |                          |           |                         |                           | 1.96E-04 |              |                           | 3.52E-05          |             |
|------------|-----------------|-----------|-------------|----------------|-----------------------------|-------------|--------------|-----------------------------|---------------------------------|-------------------------------|----------------|-------------------------------|------------------------|------------------|-------------------|-------------------|---------------------------|------------|--------------------------|-----------------------------|----------------------|---------------------|-------------------------|-----------------------|------------------------|--------------|-----------|--------------------------|-----------|-------------------------|---------------------------|----------|--------------|---------------------------|-------------------|-------------|
|            |                 | ST        | AVEK        |                |                             | Ř           |              |                             |                                 | Ž                             | 2              | 5                             | į                      | NO.              | 9                 | 9                 | Ę                         |            | Ş                        | 2                           |                      | æ                   | 2                       | 2                     |                        | Ð            |           | Ð                        | Ð         | Q                       | QN                        |          | ND           |                           |                   | Ð           |
|            | 1               | STACK     | 1040-1100   | 6              |                             | 8.26E-05    | 3.22E-05     |                             | 2.068-04                        | 1.65F-04                      |                |                               | 2.468-03               | 8.26F-05         |                   |                   |                           | 1.34E-03   |                          |                             | 2.85E-04             |                     |                         |                       | 4.71E-05               |              | 8.26B-05  |                          |           |                         |                           | 1.86E-04 |              | 8.14E-04                  | 3.06E-05          |             |
|            |                 |           |             |                |                             | Ý           |              |                             |                                 | VON                           | 2              | QN                            |                        | >GN              | 2                 | E                 | 2                         | )          | QN.                      | 2                           |                      | Q                   | Ð                       | QX                    |                        | R            | ND.       | Ð                        | Q.        | Z                       | S                         |          | ND.          |                           |                   | E           |
|            | -               | STACK     | 10194039    | 5              |                             | 3.35E-05    | 3.03E-05     |                             | 2.93E-04                        | 7.85E-05                      |                |                               | 8.16E-04               | 3,19E-05         |                   |                   |                           | 1.39E-03   |                          |                             | 2.49E-04             |                     |                         |                       | 4.33E-05               |              | 1.61E-04  |                          |           |                         |                           | 1.84E-04 | 8.18E-05     | 8.06E-04                  | 3.68E-05          |             |
|            |                 |           |             |                |                             |             |              |                             |                                 |                               | Ð              | Q                             |                        |                  | Ð                 | ON C              | S                         |            | QZ.                      | Q                           |                      | Q                   | £                       | Q                     |                        | 2            |           | Ð                        | Ð         | Ð                       | Ð                         |          | NO.          |                           | !                 | 2           |
|            | 1               | STACK     | 0946-1006   | 4              |                             | 8.1315-05   | 3.17E-05     |                             | 2.36E-04                        | 1.63E-04                      |                |                               |                        | 3,01E-05         |                   |                   |                           | 1.33E-03   |                          |                             | 2.97E-04             |                     |                         |                       | 4.96B-05               |              | 1.24E-04  |                          |           |                         |                           | 1.99E-04 | 4.96E-05     | 8.99E-04                  | 4.4/15-03         |             |
|            |                 |           |             |                |                             | ND V        |              |                             |                                 | ND                            | Ð              | Q                             |                        |                  | S                 | Ð                 | Ð                         |            | Ð                        | Ą                           |                      | 2                   | Q                       | Ø                     | 1                      | Q            |           | 2                        | Ð         | Ð                       | Ę                         |          |              |                           |                   | Q.          |
|            | 1               | STACK     | 0914-0934   | 8              |                             | 2.2/15-05   | 3.0015-05    |                             | 2.51E-04                        | 5.03E-05                      |                |                               | 3.26E-03               | 8.11E-05         |                   |                   |                           | 1.08E-03   |                          |                             | 2.64E-04             |                     |                         |                       | 4.62E-05               |              | 8.11E-05  |                          |           |                         |                           | 1.79E-04 | 8.11E-05     | 8.31E-04                  | 3,002-03          |             |
|            |                 |           |             |                |                             |             |              |                             |                                 |                               | R              | B                             |                        | ND               | Q                 | S                 | S                         |            | Q                        | QZ<br>QZ                    |                      | Ð                   | S                       | S S                   |                        | 2            | Ž,        | Q                        | Q         | S                       | 2                         |          | Y CR         |                           | į                 | 2           |
|            | 1               | 0640-63   | 0840-0900   | 7              |                             | 2.635-03    | 3.3115-05    |                             | 4.60E-04                        | 5.178-05                      |                |                               | 3.32E-03               | 8.07E-05         |                   |                   |                           | 1.15B-03   |                          |                             | 2.46E-04             |                     |                         |                       | 4.28E-05               | 1            | 8.07E-05  |                          |           |                         |                           | 1.82E-04 | 8.07E-05     | 8.27E-04                  | 2,3945-03         |             |
|            |                 |           |             |                |                             |             |              |                             |                                 |                               | Ę              | Z                             |                        | NDA              | Q                 | S                 | Q.                        |            | Q                        | Q                           |                      | 2                   | S                       | Q                     | į                      | 2 !          | Ž į       | 2                        | S I       | £                       | Ş                         |          | Y<br>C<br>R  |                           | CIA.              | 2           |
|            | 1<br>erve       | 0640-93   | 0808-0828   | 1              | 20 000 0                    | 2,477       | 5.4/15-05    |                             | 1.51B-03                        | 7.58B-05                      |                |                               | 2.84E-03               | 3.47E-05         |                   |                   |                           | 9.88E-04   |                          |                             | 2.30E-04             |                     |                         |                       | 4.11E-05               |              | 1.8115-04 |                          |           |                         |                           | 2.47B-04 | 8.06E-05     | 8.75E-04                  | 0.3000            |             |
|            | ,               |           |             |                |                             |             |              |                             |                                 |                               | Q.             | 2                             |                        |                  | B                 | æ                 | g                         |            | Q                        | Q.                          |                      | 2                   | S                       | S                     | ě                      | ND.          | ģ         | 2                        | Q.        | 2                       | Q.                        |          | Š            |                           | Ę                 | 3           |
|            |                 |           |             |                | (3)                         |             |              | (3)                         | loride)                         | omide)                        |                | <b>(e)</b>                    |                        |                  |                   |                   |                           |            |                          | ~                           |                      |                     |                         |                       |                        |              |           |                          |           |                         |                           |          |              |                           |                   |             |
| لا         | umber           | 1101      |             | pair           | PORC PMISSIONS (16/hr); (3) | and and and | Zene         | VOST EMESTONS (Ib/lsr): (3) | Chloromethane (Methyl Chloride) | Bromomethane (Methyl Bromide) | nide           | Chloroethane (Ethyl Chloride) | Methylene chloride (1) | sulfide          | roethene          | roethane          | ,2-Dichloroethene (total) | p          | 1,2-Dichloroethane (EDC) | 1,1,1-Trichlorcethane (TCA) | Bromodichloromethane | 1,2-Dichloropropane | cis-1,3-Dichloropropene | Trichloroethene (TCE) | Lybromochloromethane   | notocativato | 441       | rans-1,3-1Achloropropene |           | Letrachloroethene (PCE) | 1,1,2,2-Tetrachloroethane |          | ne and       | (18)                      | anlfida           | anime.      |
| TEST DATA: | Test run number | Test date | Test time   | Test tube pair | PORC EMIS                   | Chlomban    | Chichochiche | VOST EMES                   | Chloromet.                      | Bromomet                      | Vinyl Chloride | Chloroetha                    | Methylene              | Carbon Disulfide | 1,1-Dichlomethene | 1,1-Dichlomethane | 1,2-Dichlo                | Chloroform | 1,2-Dichlo               | 1,1,1-Trick                 | Bromodich            | 1,2-Dichlo          | gH, H                   | Trichloroe            | Libromock<br>117 Trick | 1,1,6-1110   | Benzene   | T, Tale                  | Bromotorm | Tetrachlor              | 1,1,2,2-Tet               | Toluene  | Ethylbenzene | Styrene<br>Xvlenes(total) | Dimethylogenifide | Milledinyin |

ND = Compound not detected in any of the tube pairs.

ND <= Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvens detected in sample and thanks, reported values have been blank corrected using a blank train value. The reported values from used laboratory solvens detected in sample and thanks, reported values to one of the two tubes from each of test runs 4 and 5 was above values its may not be representative. The average for methylene edhoride is based upon tube pairs 4 and 5 are estimates.

(2) If a tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected value. It has averaged for the six tube pairs is less than the highest full detection limit of any single tube pair the tenax and tenax/charcoal tube fractions (e. 50 or 100 ng).

(3) Volumetric flow rates used to calculate mass emissions are brased on data gathered during isokinetic test runs.

DENVER, COLORADO TABLE 5-2 (cont) RMA-SQI

# SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS TRIAL BURN TEST PROGRAM

| TEST DATA:                      |           |    |          |          |           |     |           |     |           |     |          |        |        |
|---------------------------------|-----------|----|----------|----------|-----------|-----|-----------|-----|-----------|-----|----------|--------|--------|
| Test run number                 | 1         |    | 1        |          | -         |     | 1         |     | _         |     | -        | •      |        |
| Test location                   | STACK     | ×  | STACK    |          | STACK     |     | STACK     |     | STACK     |     | STACK    | CTACK  | Þ      |
| Test date                       | 06-10-93  | 93 | 06-10-90 | _        | 06-10-93  |     | 06-10-93  |     | 06-10-93  |     | 06-10-03 | AVERAC | 3      |
| Test time                       | 0808-0828 | 28 | 0840-090 | 0        | 0914-0934 |     | 0946-1006 |     | 1019-1030 | •   | 0001100  |        | (a)    |
| Test tube pair                  | #         |    | 2        |          | 3         |     | 4         |     | 2         | •   | 6        |        |        |
| POHC EMISSIONS $(ug/m^3)$ :     |           |    |          |          |           |     |           |     |           |     |          |        |        |
| Carbon Tetrachloride            | 0.97      | 77 | 76.0     |          | 0.78      | NDA | 2.79      |     | 1.15      | NDV | 2.84     | Š      | 284    |
| Chlorobenzene                   | 1.19      | 61 | 1.14     |          | 1.03      |     | 1.09      |     | 1.04      | ļ   | 1.11     | ,      | 1.10   |
| VOST EMESSIONS (ug/m²);         |           |    |          |          |           |     |           |     |           |     |          |        |        |
| Chloromethane (Methyl Chloride) | 51.78     | 82 | 15.80    |          | 8,63      |     | 8.10      |     | 10.05     |     | 7.09     |        | 16.91  |
| Bromomethane (Methyl Bromide)   | 2.60      |    |          |          | 1.73      | NDA | 5.58      |     | 2.70      | VQV | 5.67     | ND.    | 2.67   |
| Vinyl Chloride                  | 2         | z  | Q.       | Q.       |           | N   |           | QN  |           | S   |          | 2      |        |
| Chloroethane (Ethyl Chloride)   | 2         |    |          |          |           | S   |           | QX  |           | S   |          | É      |        |
| Methylene chloride (1)          | 97.41     |    | 114.14   |          | 111.89    |     | 28.43     |     | 28.02     |     | 84.45    |        | 101.07 |
| Carbon Disulfide                | 1.19      |    |          |          | 2.78      |     | 1.03      |     | 1.10      | VON | 2.84     | Ž      | 2 84   |
| 1,1-Dichloroethene              | R         | Z  | Ð        | Ð        |           | R   |           | Q   |           | S   |          | 2 5    | 1      |
| 1,1-Dichloroethane              | Q         | Z  | Ð        | S        |           | QN. |           | QN  |           | 2   |          | 2 2    |        |
| 1,2-Dichloroethene (total)      |           |    |          |          |           | QN  |           | 2   |           | É   |          | 9      |        |
| Chloroform                      | 33.92     | 2  | 39.52    |          | 37.15     |     | 45.57     |     | 47.73     |     | 46.17    | Đ.     | 41.68  |
| 1,2-Dichloroethane (EDC)        | Q         | z  | Ð        | Q        |           | R   |           | CZ. |           | Ę   |          | ğ      | 41.00  |
| 1,1,1-Trichloroethane (TCA)     |           |    | QN<br>QN | QN       |           | Ę   |           | 2   |           | 2 2 |          | 2 2    |        |
| Bromodichloromethane            | 7.89      | 6  | 8.45     |          | 9.05      |     | 10.19     |     | 8.56      | )   | 97.0     | 2      | 9      |
| 1,2-tXchloropropane             | S S       | Z  |          |          |           | æ   |           | S   |           | 5   | 2.0      | Ę      | 6,75   |
| cis-1,3-Dichloropropene         | QN<br>QN  | Z  | ND       | QN.      |           | Q.  |           | 2   |           | 2 5 |          | 2 5    |        |
| Trichloroethene (TCE)           | NO<br>ON  | Z  | ND       | QN.      |           | Q.  |           | 2   |           | É   |          | 9 5    |        |
| Dibromochloromethane            | 1.41      |    | 1.47     |          | 1.59      |     | 1.70      |     | 1.49      |     | 163      | 2      | 1 55   |
| 1,1,2-Trichloroethane           | £         |    |          | QN<br>N  |           | Q.  |           | Ð   |           | Q.  |          | S      | 2      |
| Benzene                         | 6.23      |    | ND< 2.77 | ND<br>ND | 2.78      |     | 4.27      |     | 5.53      | NDA | 2.84     | )      | 3 37   |
| trans-1,3-Dichloropropene       | 2         | z  | S S      | 2        |           | Ş   |           | 2   |           | £   |          | Ę      |        |
| Вготобогт                       | S         | z  | S S      | 2        |           | S   |           | QN  |           | £   |          | 2 2    |        |
| Tetrachloroethene (PCE)         | Ę         | Z  | NO CE    | Q        |           | £   |           | QN  |           | Ę   |          | 2 5    |        |
| 1,1,2,2-Tetrachloroethane       | S C C     | z  | Ð        |          |           | £   |           | E   |           | 5   |          | 2 5    |        |
| Toluene                         | 8.47      | 7  | 6.24     |          | 6.15      |     | 6.84      |     | 6.32      | )   | 6 38     | 2      | 673    |
| Ethylbenzene                    | ND< 2.77  |    | ND< 2.77 |          | 2.78      |     | 1.70      | NO. | 2.81      | Š   | 2.84     | Š      | 2.0    |
| Styrene                         | 30.04     | 4  | 28.41    |          | 28.54     |     | 30.85     |     | 27.66     | )   | 27.93    | 1      | 28.91  |
| Xylenes(total)                  | 1.36      |    |          |          | 1.03      |     | 1.54      |     | 1.26      |     | 1.05     |        | 1.21   |
| Dimethyldisulfide               | Q.        | z  | S S      | 2        |           | GN. |           | ND  |           | 2   |          | Q.     |        |
|                                 |           |    |          |          |           |     |           |     |           |     |          |        |        |

ND = Compound not detected in any of the tube pairs.

ND = (Compound not detected in sample and quantified in another tube pair.

(1) Commonly used horomory solvents detected in samples and thanks, reported values have been blank corrected using a blank train value. The reported (1) Commonly used horomory solvents detected in samples and thanks, reported values in sample and thanks, reported values in the representative. The average for methylene obloride is based upon tube pairs 1,2,3, and 6. One of the two tubes from each of test runs 4 and 5 was above the calibration range of the instrument, therefore the measured values for methylene chloride reported for tube pairs 4 and 5 are estimates.

(2) If a tube pair non-detect value is averaged with a tube pair detected value the highest full detection limit is used for the tube pair mon-detection thanks and it is a tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng).

# RMA-SQI

# DENVER, COLORADO TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | THE WIND TOTAL | STANCE IS          |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------------|--------------------|-----------|
| THE PERSON NAMED IN COLUMN NAM |           |           |           |                |                    |           |
| LEST DATA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |           |                |                    |           |
| Test run number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         | 2         | 2         | 67             | 2                  | ,         |
| Test location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STACK     | STACK     | STACK     | STACK          | STACE.             | 7 1.00    |
| Test date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97.790    | 041103    | 641.69    | 201100         | NOUS OF THE PERSON | SIACK     |
| 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0300 0000 | 66.11.00  | COLLON    | 001100         | Sel Leo            | 061163    |
| Test dille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/20-0/20 | 0610-0630 | 0848-0908 | 0920-0940      | 0954-1014          | 1027-1047 |
| Test ince jant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         | 7         | m         | 4              | 'n                 | 9         |
| SAMPLING DATA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |           |           |                |                    |           |
| Duration, minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.00     | 20.00     | 0000      | 50 65          |                    |           |
| Average dry gas meter mess, in, HaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 500     | 1.450     | 1 500     | 20.00          | 20.00              | 20.00     |
| Average dry one meter temp den                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.00     | 32.50     | 2000      | 1,4/3          | 1.425              | 1.475     |
| Arrest de moter temps de c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.10     | 32.30     | 33./3     | 35.00          | 35.50              | 36.25     |
| Average dry gas meter temp, deg. r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87.80     | 90.50     | 92.75     | 95.00          | 95.90              | 97.25     |
| Average absolute meter temp, deg, R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 547.80    | 550.50    | 552.75    | 555.00         | 555.90             | 557.25    |
| Actual sample volume, liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.196    | 21.688    | 21.975    | 22.047         | 21.565             | 21 046    |
| Meter box calibration, Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9963    | 0.9963    | 0.9963    | 0.9963         | 19660              | 0.0063    |
| Barometric pressure, in. Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.57     | 24.57     | 24.57     | 24.57          | 2457               | 23.67     |
| Sample volume, dscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6207    | 0.6034    | 0.6090    | 0.6085         | 0.5941             | 0.6030    |
| Volumetric flow rate, dscf/min (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7900      | 7900      | 7900      | 7900           | 7900               | 2500.5    |
| LABORATORY DATA. ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |           |                |                    |           |
| Chlomothan Mathul Chlomba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 212       | ***       | 3 (       |                |                    |           |
| Democratical (Methy) Choline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CIC       | 155       | 195       | 165            | 155                | 255       |
| Signification (Methyl Bromue)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55,       | 0.001     | 100 0     | 100 U          | 100 U              | 31 J      |
| Vinyi Chionde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.001     | 100 U     | 100 U     | 100 U          | 100 U              | 100 U     |
| Chloroethane (Ethyl Chlonoe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 U     | 100 U     | 100 U     | 100 U          | 100 U              | 100 U     |
| Methylene chloride (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1388 B    | 1108 B    | 1508 B    | 1658 B         | 1678 B             | 1768 B    |
| Carbon Disulide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 J      | 20 U      | 50 U      | 50 U           | 19 J               | 20 I      |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 U      | 20 C      | 50 U      | 50 U           | 20 U               | 50 11     |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 U      | 20 T      | 50 U      | 50 U           | 50 U               | 11 05     |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 U      | 20 U      | 50 U      | 50 U           | 50 U               | 50 U      |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 897 J     | 842 J     | 821 J     | 916 J          | 939 J              | 764 1     |
| 1,2-Drenloroethane (EDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 U      | SO U      | 50 U      | 50 U           | 50 U               | 50 U      |
| Codes Translinds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 J      | 20 U      | 50 U      | 50 U           | 50 U               | 50 U      |
| Remodiahommethere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 J     | J 18      | 20 0      | 50 U           | S0 U               | 20 U      |
| 1.2Dichloromorans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.05     | 1903      | 103       | 193            | 193                | 163       |
| cist. Wichlommen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 22     |           | 0 00      | 2000           | 20 U               | 20 O      |
| Trichloroethene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 U      | 20.00     | 200       | 0 00           | 20 C               | 20 C      |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 J      | 32 I      | 78.1      | 2000           | 30 0               | 20 0      |
| 1,1,2-Thichlorcethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 U      | 50 17     | 11.05     | 11.05          | 50 1               | Z9 J      |
| Berzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 U      | 50 17     | 50 11     | 2 5            | 0 50               | 0 00      |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 U      | 50 11     | 105       | 1100           | 0.00               | 200       |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 U      | 50 11     | 50 11     | 2000           | 0.00               | 20 0      |
| Tetrachlomethene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 11     | 11 05     | 20 20     | 200            | 0 1                | 20 0      |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 U      | 200       | 20 22     | 0.00           | 0.00               | 20 0      |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111 J     | 113       | 102       | 200            | 133                | 0 00      |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 J      | 18 1      | 1005      | 1 01           | 133                | 102       |
| Ethylberzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50 U      | 30 U      | 20 11     | 11 05          | 11.05              | 18 5      |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 343       | 443       | 393       | 503            | 513                | 30.0      |
| Xylenes(total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16 J      | 19 J      | 30 U      | 19 J           | 27 J               | 1 66      |
| Dimethyldisulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 U      | 20 U      | 20 U      | 20 U           | , n 05             | 20 OS     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           |                |                    |           |

I = Quantified below the detection limit.

B = Detected in blank train; reported velues have been blank corrected

B = Detected in blank train; reported velues have been blank corrected

U = Compound not detected; detection limit shown. Detection limits are based on the sum of the tenax and tenax/deroxal tube fractions (i.e. 50 or 100 ng)

(1) Commonly used laboratory solvents detected in samples and blanks, reported values have been blank corrected. The reported values may not be representative.

(2) Volumeni'c flow rates based on data gathered during isokiratic test runs.

# DENVER, COLORADO RMA-SQI

# TABLE 5-2 (cont) TRIAL BURN HEST PROGRAM SUMMARY OF VOLATILE ORGANICS HEST DATA AND TEST RESULTS

| DEST DATA:                      |     |           |              |          |           |              |     |             |                      |              |
|---------------------------------|-----|-----------|--------------|----------|-----------|--------------|-----|-------------|----------------------|--------------|
| Test run number                 |     | 2         | 2            |          | 7         | 2            |     | 2           | •                    | c            |
| Test location                   |     | STACK     | STACK        |          | DACK      | STAC         | ¥.  | STACK       |                      | 2 CT-4-CT-2  |
| Test date                       |     | 06-11-93  | 06-11-93     |          | -11-93    | 16-17        | 03  | 06.11.03    |                      | SIMCK        |
| Test time                       |     | 0738-0758 | 0810-0830    |          | 0848-0908 | 0020-0040    | 040 | 0054 1014   | 56-11-00<br>270-1-00 | AVERAGE(2)   |
| Test tube pair                  |     | _         | 2            |          |           |              | 2   | 101         |                      |              |
|                                 |     | •         | •            |          | ,         | *            |     | n           | ø                    |              |
| POHC EMISSIONS (Ibs/dscf):      |     |           |              |          |           |              |     |             |                      |              |
| Carbon Tetrachloride            |     | 6.61E-10  | 1.11B-40     | ND.      | 118-10    | TIST YOU     |     | 2000 1 700  | , A.                 |              |
| Chlorobenzene                   |     | 1.07E-10  | 6.39E-11     | ND.      | 1.81E-10  | 6.708-11     |     | 6.86E-11    | ND< 1.83E-10         | 1.908-10     |
|                                 |     |           |              |          |           |              |     |             | 11-20-0              | UP-TIOI > TN |
| VOST EMISSIONS (Ibs/dscf):      |     |           |              |          |           |              |     |             |                      |              |
| Chloromethane (Methyl Chloride) |     | 1.83E-09  | 5.66B-10     | •        | 7.06B-10  | 5.98F        | 10  | \$ 7512-10  | 032010               | 0            |
| Bromomethane (Methyl Bromide)   |     | 1.24E-10  | ND< 3.65B-10 | ND.      | 3.62E-10  | ND< 3.62R-10 |     | ND< 371E-10 | 01-222.6             | 0.000        |
| Vinyl Chloride                  | Q   |           |              |          |           | 2            |     | ,           | OF-SELLI             | ,            |
| Chloroethane (Ethyl Chloride)   | R   |           | QN<br>QN     | QN.      |           | £            | 2   | 2 2         | 2                    | 2 1          |
| Methylene chloride (1)          |     | 4.93E-09  | 4.05E-09     |          | 6E-09     |              |     |             |                      | OU EES S     |
| Carbon Disulfide                |     | 6.57E-11  | v            |          | 1.81E-10  | ND< 1.81R-10 | 10  | 6.868-11    | 7 12517              |              |
| 1,1-Dichloroethene              | QX  |           | SP<br>QN     | Q.       |           |              | GN. |             |                      | ND< 1.63E-10 |
| 1,1-D'chloroethane              | Ş   |           | ND<br>QN     | R        |           | Q.           | E   |             | 9 5                  | 9 8          |
| 1,2-D'chloroethere (total)      | QN  |           | Q            | QN       |           | QX           | E   |             | 2 5                  | 2 9          |
| Chloroform                      |     | 3.19E-09  | 3.08E-09     |          | 2.97E-09  | 3.32E-09     |     | 3.4815-00   | 2 707 00             | ON STATE OF  |
| 1,2-Dichloroethane (EDC)        | QN  |           | R            | Ð        |           | Q            | E   |             | CIN CIN              | 3.145-09     |
| 1,1,1-Trichloroethane (TCA)     |     | 6.93E-11  | ND< 1.83E-10 | ND<      | 1E-10     | v            |     | v           |                      | MD 1 969 10  |
| Bromodichloromethane            |     | 6.13E-10  | 6.67E-10     |          | 5.88E-10  | 6.9713-10    |     | 7.14R-10    | \$ 94B-10            |              |
| 1,2-Dichloropropane             | Q   |           | S S          | QN<br>QN |           | Q            | S   |             | 5                    |              |
| cis-1,3-D/chloropropene         | Q   |           | QN           | QN.      |           | Q            | 2   |             | 9 9                  | 2 4          |
| Trickloroethene (TCE)           | Ş   |           | ND<br>Q      | QN<br>QN |           | ND           | Q   |             | 9 5                  | 2 5          |
| Dibromochloromethane            |     | 1.01E-10  | 1.15E-10     |          | 9.96E-11  | 1.21B-10     |     | 1.28E-10    | 1.048-10             | 1 124-10     |
| 1,1,2-Trichloroethane           | NO. |           | NO<br>ON     | R        |           | ND<br>ON     | Z   |             | GN CN                | CN           |
| Benzene                         | S   |           | Ð            | Ð        |           | NO<br>NO     | Z   | 0           |                      | 9            |
| trans-1,3-Lichloropropene       | Q   |           | Q.           | Q.       |           | NO CN        | Z   | 0           | 9 5                  | 9 5          |
| Вготобогт                       | g   |           | Q            | Ø        |           | QX           | R   |             | 2                    | 9 9          |
| Tetrachloroethene (PCE)         | Q   |           | NO<br>ON     | Q.       |           | ND           | Z   | 0           | 9                    | 2 5          |
| 1,1,2,2-Tetrachloroethane       | Q   |           |              | QN.      |           | QQ.          | 2   | 0           | ? 5                  | 9 5          |
| Toluene                         |     | 3.94E-10  | 4.11B-10     | 9.6      | 3.67E-10  | 4.44B-10     |     | 4.92E-10    | 3.718-10             | 4135.10      |
| Ethyl benzene                   | æ   |           | SP<br>CP     | Q        |           | ND<br>ON     | QN. |             | CN CN                | Oregen;      |
| Styrene                         |     | 1.22E-09  | 1.62B-09     |          | 1.42E-09  | 1.82E-09     | 60  | 1.90E-09    | 1.40E-09             | 1.568-09     |
| Xylenes(total)                  | 9   | 5.68E-11  |              | NO.      | 1.81E-10  | 6.70E-       | 11  | 9.83E-11    | 1.198-10             |              |
| Umethyldisulfide                | £   |           | S S          | Q.       |           | NO<br>CN     | QN. |             | ND                   | C S          |
|                                 |     |           |              |          |           |              |     |             |                      | !            |

ND = Compound not detected in any of the tube pairs.

ND < = Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected values. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 30 or 100 ng).

DENVER, COLORADO TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM RMA-SQI

# SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

| TEST DATA: Test run number Test location Test date | ST/<br>100- | 2<br>STACK<br>06-11-93 | 8 8 8      | 2<br>STACK<br>06-11-93 | 8 8 8    | 2<br>STACK<br>06-11-93 |        | 2<br>STACK<br>06-11-93 |          | 2<br>STACK<br>06-11-93 | . * 6    | 2<br>STACK<br>06-11-93 | 2<br>STACK<br>AVERAGE(2) | <u>6</u> |
|----------------------------------------------------|-------------|------------------------|------------|------------------------|----------|------------------------|--------|------------------------|----------|------------------------|----------|------------------------|--------------------------|----------|
| Test tube pair                                     | 9670        | 1                      | S .        | 2                      | Š        | 48-0908<br>3           | 6      | 20-0940<br>4           | 0        | 954-1014<br>5          | 10       | 027-1047<br>6          |                          |          |
| FOHC EMISSIONS (ppb/v):<br>Carbon Tetrachloride    |             | 1.66                   |            | 0.28                   | ND.      | 0.45                   | ND.    | 0.45                   | ND.      | 0.46                   | ND       | 0.46                   |                          | 0.47     |
| СЫото Беп хене                                     |             | 0.36                   |            | 0.22                   | ND.      | 0.62                   |        | 0.23                   |          | 0.24                   |          | 0.22                   | ND<                      | 0.62     |
| VOST EMISSIONS (ppb/v):                            |             |                        |            | ;                      |          |                        |        |                        |          |                        |          |                        |                          |          |
| Chloromethane (Methyl Chlonde)                     |             | 13.96                  | 4          | 4.32                   |          | 5.39                   | ļ      | 4.56                   | ļ        | 4.39                   |          | 7.11                   |                          | 6.62     |
| Vinyl Chloride                                     |             | 020                    | Z E        | 1.40                   | Š        | 1.4/                   | Ž<br>Ž | 1.47                   | Š        | 1.51                   | į        | 0.46                   | ÝQ.                      | 1.51     |
| Chloroethane (Ethyl Chloride)                      | S           |                        | 2          |                        | 2        |                        | 2 2    |                        | 2 5      |                        | 2 5      |                        | 2 2                      |          |
| Methylene chloride (1)                             |             | 22.37                  |            | 18.37                  |          | 24.77                  |        | 27.26                  |          | 28.25                  |          | 29.32                  | Q.                       | 25.06    |
| Carbon Disulfide                                   | ļ           | 0.33                   | ND         | 0.92                   | ND       | 0.92                   | ND     | 0.92                   |          | 0.35                   |          | 0.36                   | Š                        | 0.92     |
| 1,1-D'chloroethene                                 | S           |                        | S S        |                        | Q        |                        | Q      |                        | Ð        |                        | S        |                        | S                        |          |
| 1,1-Dichloroethane                                 | £.          |                        | Q.         |                        | æ        |                        | ND     |                        | QN       |                        | QX       |                        | 2                        |          |
| 1,2-Dichloroethene (total)                         |             |                        | S          | ;                      | Q.       |                        | R      |                        | N<br>N   |                        | S        |                        | ND                       |          |
| Chlorotorm                                         |             | 10.29                  |            | 9.93                   | ļ        | 9.59                   |        | 10.71                  |          | 11.25                  |          | 9.01                   |                          | 10.13    |
| 1,2-Achloroethane (ELC)                            | Q           | 070                    | <b>8</b> § | 63.0                   | 2 5      |                        | 2      | 1                      | 2        |                        | Q.       |                        | Q.                       |          |
| Bromodichloromethane                               |             | 1.44                   | NDV        | 1.57                   | NDV      | 1.38                   | NO.    | 0.52                   | Š        | 0.54                   | Ř        | 0.53                   | Š                        | 0.54     |
| 1,2-Dichloropropane                                | QN.         |                        | Q.         |                        | Q        |                        | R      | 101                    | S        | 1,00                   | Š        | 1.40                   | EX.                      | 1.52     |
| cis-1,3-Dichloropropene                            | Š           |                        | S<br>S     |                        | æ        |                        | QN     |                        | E        |                        | g        |                        | E C                      |          |
| Trichloroethene (TCE)                              | Ę           |                        | g          |                        | Ð.       |                        | Q      |                        | Q.       |                        | Ø        |                        | £                        |          |
| 112 Tacklomethan                                   | Ę           | 0.19                   | Ş          | 0.21                   | Ę        | 0.18                   |        | 0.22                   | !        | 0.24                   |          | 0.19                   |                          | 0.21     |
| Benzene                                            | Ê           |                        | 9 9        |                        | <u> </u> |                        | 2 5    |                        | <u> </u> |                        | 8 9      |                        | Q!                       |          |
| trans-1,3-1Xchloropropene                          | £           |                        | 2          |                        | £        |                        | 2 2    |                        | 2 2      |                        | 2 2      |                        | 2 5                      |          |
| Вготоботи                                          | QN<br>Q     |                        | Q.         |                        | Q.       |                        | £      |                        | 2        |                        | Ê        |                        | 2 5                      |          |
| Tetrachloroethene (PCE)                            | S.          |                        | R          |                        | QN<br>Q  |                        | ND     |                        | QN       |                        | Ş        |                        | 2                        |          |
| 1,1,2,2-Tetrachloroethane                          | Q.          | !                      | Ę          |                        | Š        |                        | Q.     |                        | S        |                        | QN<br>QN |                        | N ON                     |          |
| Toluene                                            | į           | 1.65                   |            | 1.72                   | !        | 1.54                   |        | 1.86                   |          | 2.06                   |          | 1.55                   |                          | 1.73     |
| Emyl Denzene                                       | ND          | 9                      | QN         |                        | Q<br>N   |                        | £      |                        | Ę        |                        | Q.       |                        | QN                       |          |
| Xylenes(total)                                     |             | 0.21                   |            | 0.25                   | ND.      | 0.66                   |        | 6.74                   |          | 7.04                   |          | 5.17                   | Ě                        | 5.78     |
| Dimethyldisulfide                                  | Ð           |                        | N<br>Q     |                        | Q.       |                        | Ą      |                        | NO.      |                        | Q        | }                      | É                        | 000      |
|                                                    |             |                        |            |                        |          |                        |        |                        |          |                        |          |                        |                          |          |

ND = Compound not detected in sample and quantified in another tube pair.

ND < = Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detect value is averaged with a tube pair detected value then helf the detection limit is used for the tube pair non-detected value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng).

# DENVER, COLORADO TABLE 5-2 (cont)

# TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

| TEST DATA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | •         |     |            |         |          |     |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----|------------|---------|----------|-----|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|--------------|
| Test imitimines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7         |     | 7          |         | 2        |     |           |          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2             |     | ,            |
| Test location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | STACK     |     | STACK      |         | STACK    |     | STACK     | b        | FACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STACE         |     | CTACK        |
| Test date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 06-11-93  |     | 06-11-93   | _       | 06-11-93 |     | 06-11-93  | 92       | 1193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,1,00        |     | AMERICA      |
| Test time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 0738-0758 |     | 0810-0830  | Ö       | 848-0908 |     | 0920-0940 | ě        | 24-1014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400           |     | ENACE (2)    |
| Test tube pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | -         |     | 2          |         | 9        |     | 4         | Ś        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102/-104/     | *   |              |
| AND A SECULAR PROPERTY OF SECURITY |        |           |     |            |         |          |     |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •             |     |              |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 1135.04   |     | \$ 2812.05 | , di    | 20 200   | ļ   |           | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |              |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 5.05B-05  |     | 3.03F-05   | Ž       | 8.58E-05 | ND. | 8.59E-05  | ND < 8.7 | 8.79E-05 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND < 8.66E-05 |     | 8.98E-05     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |            | ,       | 0.700    |     | 3,1015-03 | 7.6      | 20 <del>-1</del> 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.03E-0       |     | ND< 8.58E-05 |
| VOST EMISSIONS (Ib/hr); (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |           |     |            |         |          |     |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |              |
| Chloromethane (Methyl Chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8.67E-04  |     | 2.68E-04   | 60      | 3.35E-04 |     | 2.83E-04  | 2.7      | 73B-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.42F-0       | 4   | A 1112.04    |
| Bromomethane (Methyl Bromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 5.89E-05  | v   | 1.7315-04  | ND<br>1 | .72E-04  | ND. | 1.72E-04  | ND< 1.7  | 1.76B-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.37E-05      |     | D< 1.76E-04  |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q !    |           | Q.  |            | Q       |          | Q   |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     | , ,          |
| Chloroethane (Ethyl Chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £      |           | Ş   |            | £       |          | Ą   |           | S        | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2             | . ~ | 2 5          |
| Methylene chloride (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 2.34E-03  |     | 1.92E-03   |         | 2.59E-03 |     | 2.85E-03  |          | 2,95E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |     | 2 4212-03    |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 3.11E-05  | v   | 8.66E-05   |         | 58E-05   |     | 8.59E-05  | 3.2      | SR-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 38E-05      |     | D. 8 660 06  |
| 1,1-D'chloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S      |           |     |            | S S     |          | S   |           |          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |     | MD< 0.00E-U3 |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £      |           | S   |            | S       |          | S   |           | 5        | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 4 4 | 2 6          |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ę      |           | ğ   |            | æ       |          | Q   |           | 2        | 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 4 4 | 2 6          |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1.51E-03  |     | 1.46E-03   |         | 1.41E-03 |     | 1.57E-03  | _        | - KSTE-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 325 03      |     | ,            |
| 1,2-Dichloroethane (EDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R      |           | Ş   |            | £       |          | R   |           | C Z      | NA CENTRAL PROPERTY OF THE PRO | •             |     | 1.4915-03    |
| 1,1,1-Trichloroethane (TCA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 3.28E-05  | ND. | 8.66E-05   | v       | .58E-05  | v   | 8.59E-05  | v        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠.            |     | ND 8 700 of  |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 2.90B-04  |     | 3.16E-04   |         | 2.79E-04 |     | 3,31E-04  |          | 3 10504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2005-02       |     | 0 400 V      |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g      |           | Ę   |            | Ð       |          | S   |           | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |              |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z      |           | g   |            | S       |          | £   |           | Ę        | \$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 4 2 | 9 6          |
| Trichloroethene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q      |           | Ø   |            | æ       |          | 2   |           | 2        | 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 4 2 | 2            |
| Deromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 4.80E-05  |     | 5.46E-05   | 4       | 4.72E-05 |     | 5.75B-05  | _        | 5077505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 0 4 0 6     |     | 2000         |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R      |           | S   |            |         |          | Q   |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     | •            |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S      |           | Ş   |            | ND      |          | 2   |           | É        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 4 2 |              |
| trans-1,3-1Xchloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g      |           | Ž   |            | Ð       |          | Q   |           | E        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 4 2 | 2 6          |
| Вготобот                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S      |           | Ę   |            | £       |          | £   |           | 5        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 4 2 | 2            |
| Tetrachloroethene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S      |           | Z   |            | R       |          | £   |           | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 4 7 | ם מ          |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R      |           | S   |            | R       |          | R   |           | 2        | 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ١.            | 4 7 | Q A          |
| Tol uene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 1.87E-04  |     | 1.95E-04   |         | 1.74E-04 |     | 2,105-04  |          | 2.33F-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1768-04       |     | •            |
| Ethyl benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £      |           | Q   |            | S       |          | Ð   |           | CZ.      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |     | 1.905-04     |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 5.77E-04  |     | 7.66E-04   |         | 6.73E-04 |     | 8.63E-04  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     | 74112-04     |
| Xylenes(total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 2.69E-05  |     | 3,20E-05   | ND 8    | .58E-05  |     | 3.18E-05  | 4.6      | 4.66E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.63E-05      |     | _            |
| Limeinyidisumde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N<br>N |           | Ê   |            | Ę       |          | S   |           | æ        | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |     | N CN         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |            |         |          |     |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |              |

ND = Compound not detected in any of the tube pairs.

ND <= Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the naverage for the six tube pair is less than the highest full detection limit save based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng).

# TRIAL BURN TEST PRÓGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS RMA -- SOI DENVER, COLORADO TABLE 5-2 (cont)

| The state of the s |     |           |        |          |     |          |        |          |          |          |    |                   |          |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|--------|----------|-----|----------|--------|----------|----------|----------|----|-------------------|----------|-------|
| Test run number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 2         |        | 2        |     | 2        |        | ·        |          | ,        |    | ,                 | •        |       |
| Test location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | STACK     |        | STACK    |     | STACK    | •      | STACK    |          | STACK    |    | 7                 | 2        |       |
| Test date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 06-11-93  |        | 06-11-93 | 0   | 16-11-93 | . 0    | 6-11-93  |          | 06-11-93 |    | 31.04<br>16-11-03 | AVEDACE  | . 5   |
| Test time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 0738-0758 | 0      | 810-0830 | õ   | 848-0908 | õ      | 920-0940 |          | 954-1014 | -  | 027-1047          | TOWN THE | 3     |
| Test tube pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | -         |        | 2        |     | 3        |        | 4        |          | 'n       | •  | 9                 |          |       |
| POHC EMISSIONS (ug/m³):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |           |        |          |     |          |        |          |          |          |    |                   |          |       |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 10.58     |        | 1.78     | ND  | 2.90     | ND<    | 2.90     | ND       | 2.97     | ND | 2.93              | •        | 3.04  |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 1.71      |        | 1.02     | Ř   | 2.90     |        | 1.07     |          | 1.10     |    | 1.02              | ND       | 2.90  |
| VOST EMISSIONS (ug/m <sup>3</sup> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |           |        |          |     |          |        |          |          |          |    |                   |          |       |
| Chloromethane (Methyl Chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 29.30     |        | 70'6     |     | 11.31    |        | 9.58     |          | 9.21     |    | 14.93             |          | 13.00 |
| Bromomethane (Methyl Bromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 1.99      | NO.    | 5.85     | ND. | 5.80     | ND     | 5.80     | ND       | 5.94     |    | 1.81              | Š        | 5 04  |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QN  |           | S      |          | Š   |          | ND     |          | QN       |          | Q  |                   | Ę        |       |
| Chloroethane (Ethyl Chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £   |           | Q<br>Q |          | Ę   |          | Q      |          | QX       |          | S  |                   | 2        |       |
| Methylene chloride (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 78.96     |        | 64.84    |     | 87.44    |        | 96.22    |          | 99.73    |    | 103,49            | !        | 88.45 |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 1.05      | Š      | 2.93     | ND  | 2.90     | ND.    | 2.90     |          | 1.10     |    | 1.14              | NDA      | 2.93  |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S   |           | Ω      |          | 2   |          | S S    |          | Q        |          | Q. |                   | Ę        | i     |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £   |           | R      |          | CZ  |          | ND     |          | ND       |          | S  |                   | £        |       |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S   |           | Š      |          | QN  |          | Ę      |          | QN.      |          | S  |                   | Q        |       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 51.03     |        | 49.27    |     | 47.60    |        | 53.16    |          | 55.81    |    | 44.72             | )        | 50.27 |
| 1,2-Dichloroethane (EDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CZ. |           | S<br>S |          | S   |          | Q.     |          | Q.       |          | Q  |                   | Q        |       |
| 1,1,1-Trichloroethane (TCA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 1.11      | ND.    | 2.93     | ND  | 2.90     | ND.    | 2.90     | ND       | 2.97     | ND | 2.93              | NDV      | 2.97  |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 9.81      |        | 10.68    |     | 9.42     |        | 11.17    |          | 11.44    |    | 9.51              |          | 10.34 |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £   |           | ğ      |          | S   |          | Š      |          | QN.      |          | Ş  |                   | QX       |       |
| a9-1,3-Dachloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2   |           | 2      |          | Q.  |          | Q      |          | QN<br>ON |          | Z  |                   | S        |       |
| Inchronethene (ICE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QN  | ,         | Q      |          | Q   |          | Š      |          | Q.       |          | Q. |                   | S        |       |
| 1 1 2 Tri-Alamatera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ģ   | 70.1      | į      | 1.84     |     | 1.59     | !      | 1.94     | į        | 2.05     |    | 1.67              |          | 1.79  |
| Donzana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E S |           | 9      |          | S E |          | 2 !    |          | Q        |          | Ş  |                   | N<br>Q   |       |
| Annual of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ē   |           | 9 9    |          | 2   |          | Q.     |          | Q.       |          | Ž  |                   | £        |       |
| Demogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 4 |           | 2      |          | 2   |          | Q !    |          | Q.       |          | ð  |                   | Œ        |       |
| Diomoini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INF |           | Q.     |          | N.  |          | ND     |          | ON       |          | 2  |                   | æ        |       |
| Letrachloroethene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g g |           | 2      |          | 2   |          | Q !    |          | Ę        |          | S  |                   | QN<br>Q  |       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QN. | 6.31      | Q.     | 0,00     | Q.  | 9        | Q<br>Z | ;        | £        |          | Ę  |                   | ND       |       |
| Filtyl benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ğ   | 0.31      | Ę      | 0:00     | Ę   | 0,00     | ļ      | 7.11     | į        | 7.88     |    | 5.94              |          | 6.62  |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ž.  | 10.40     | Q.     | 08.50    | ND  | 27.00    | Q.     | ,,       | Q        |          | Q. |                   | S        |       |
| Xylenes(total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 0.91      |        | 1.08     | Š   | 2.70     |        | 1 07     |          | 30.46    |    | 22.39             | ļ        | 25.02 |
| Dimethyldisulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CE  | •         | Ę,     | 7007     | 2   | 4.70     | 2      | 1.07     | 5        | 1.30     | Ę  | 1.90              | ND.      | 2.90  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |           | :      |          | 1   |          | 3      |          | N.       |          | Q. |                   | NO<br>O  |       |

ND=Compound not detected in any of the tube pairs.

ND <= Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detect value is averaged with a tube pair they pair another value is average for the six tube pairs is loss than the highest full detection limit of any single tube pair then the average for the six tube pairs is loss than the highest full detection limit of any single tube pair then the average for the six tube pair is loss than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoral tube Iracinos (to. 50 or 100 ng).

# RMA-SQI

# DENVER, COLORADO TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

|                                     |           | SUMMAN OF | CHARLES OF VOLATILE ORGANICS LEST DATA AND TEST RESULTS | IEST DATA AND TE | ST RESULTS |           |
|-------------------------------------|-----------|-----------|---------------------------------------------------------|------------------|------------|-----------|
| TEST DATA:                          |           |           |                                                         |                  |            |           |
| Testrum number                      | e         | er)       | e                                                       | e                | •          | •         |
| Test location                       | STACK     | STACK     | STACK                                                   | STACK            | STACES     | 3         |
| Test date                           | 06-12-93  | 0,643,03  | 100 mg                                                  | 0K 12 02         | SIACK      | SIACK     |
| Test time                           | 0830-0850 | 0859-0919 | 0928-0948                                               | 100-103          | 1034-1054  | 26-21-93  |
| Test tube pair                      | 1         | 7         | 3                                                       | 4                | 5          | 1104-1124 |
|                                     |           |           |                                                         |                  |            |           |
| SAME ING DATA:                      |           |           |                                                         |                  |            |           |
| Duration, minutes                   | 20.00     | 20.00     | 20.00                                                   | 20.00            | 20.00      | 20.00     |
| Average dry gas meter press. in H2O | 1.500     | 1.450     | 1.450                                                   | 1.500            | 1.450      | 1.500     |
| Average dry gas meter temp, deg, C  | 35.50     | 37.00     | 38.00                                                   | 39.00            | 39.00      | 39.75     |
| Average dry gas meter temp, deg. F  | 95.90     | 98.60     | 100.40                                                  | 102.20           | 102.20     | 103.55    |
| Average absolute meter temp, deg, R | 555.90    | 558.60    | 560.40                                                  | 562.20           | 562.20     | 563.55    |
| Actual sample volume, liters        | 22,338    | 21.590    | 21.313                                                  | 21.898           | 21,590     | 22.097    |
| Meter box calibration, Y            | 0.9963    | 0.9963    | 0.9963                                                  | 0.9963           | 0.9963     | 0.9963    |
| Barometric pressure, in Hg          | 24.62     | 24.62     | 24.62                                                   | 24.62            | 24.62      | 24.62     |
| Volumetric flow mis deaffmin (2)    | 0.6168    | 0.5932    | 0.5837                                                  | 0.5979           | 0.5894     | 0.6019    |
| Commence now tone, usequinit (2)    | 6/0/      | 6/8/      | (8/2                                                    | 7875             | 7875       | 7875      |
| LABORATORY DATA, ng.                |           |           |                                                         |                  |            |           |
| Chloromethane (Methyl Chloride)     | 1020      | 785       | 625                                                     | 365              | 155        | 300       |
| Bromomethane (Methyl Bromide)       | 34 J      | 40 J      | 32 J                                                    | 100 U            | D 001      | 1001      |
| Vinyl Chloride                      | 100 U     | 100 U     | 100 U                                                   | 100 U            | 100 U      | 100 U     |
| Choroetrane (Ethyl Chlonde)         | 100 0     | 100 U     | 100 U                                                   | 100 U            | 100 U      | 100 U     |
| Cadon Distilled                     | 1032 B    | 1662 B    | 1742 B                                                  | 1632 B           | 1942 B     | 2412 B    |
| 1.1-Dichlomethere                   | 2 2       | 181       | 28.00                                                   | 200              | 1 9 J      | 20 U      |
| 1.1-Dichlorochane                   | 1108      | 2 5       | 2 2                                                     | 0.00             | 30 C       | 20 T      |
| 1,2-Dichloroethene (total)          | 30 U      | 20 CS     | 2000                                                    | 2 5              | 20 C       | 200       |
| Chloroform                          | 1013 J    | 1000      | 1008                                                    | 888              | 1 08       | O 85      |
| 1,2-Dichloroethane (EDC)            | 50 U      | 20 U      | SO U                                                    | 20 U             | 20 11      | 11 US     |
| 1,1,1-Trichloroethane (TCA)         | 30 U      | 20 U      | SO U                                                    | 50 U             | 50 U       | 20 CO     |
| Parachionde                         | 59 J      | 20 C      | 30 U                                                    | 50 U             | 50 U       | 20 U      |
| 1 24 Chloromanana                   | 213       | ZZ0 J     | 213                                                     | 183              | 203        | 143       |
| de-1.3-Dichloropropene              | 2 5       | 2 5       | 0 8                                                     | 0.00             | 30 th      | 20 C      |
| Trichloroethene (TCE)               | 50 U      | 30 C      | 20.05                                                   | 2 2              | ) II       | 20.00     |
| Dibromochloromethane                | 41        | 42        | 39                                                      | ) E              | 1 22       | 30 0      |
| 1,1,2-Trichloroethane               | 20 U      | 30 U      | 50 U                                                    | 50 U             | , D &      | T 11 S    |
| Berzene                             | 20 U      | 20 U      | 20 U                                                    | 20 U             | 19         | 50 11     |
| trans-1,3-Dichloropropene           | , so c    | 30 U      | 20 T                                                    | 20 U             | 50 U       | SO U      |
| Tetradional Tetradional             | ្តែ       | 22 J      | 30 C                                                    | 50 U             | 20 C       | 20 U      |
| 1122Tetrachlomethane                | 0 8       | 0 00      | 2000                                                    | 20 U             | 20 U       | 20 U      |
| Toluene                             | 1 901     | 20.00     | 133 0                                                   | 0 %<br>0         | 30 C       | 20 0      |
| Chlorobenzene                       | 1 91      | 1 61      | 101                                                     | 201              | 123        | 132       |
| Ethylbenzene                        | S0 U      | ) D 08    | 0.08                                                    | ) F              |            | 200       |
| Styrene                             | 383       | 518 J     | 463                                                     | £ 55             | S 88       | 0 64      |
| Xylenes(total)                      | 31 J      | 22 J      | 21 J                                                    | 19 J             | 25 1       | 73        |
| Dimethyldisulfide                   | 20 U      | 20 U      | 50 U                                                    | 20 U             | 30 U       | . D 08    |
|                                     |           |           |                                                         |                  |            | ,         |

J=Quantified below the detection limit.

B=Detected in blank ranin reported values have been blank corrected

B=Detected in blank ranin reported values have been blank corrected

U=Correctional not detected; detection limit shown. Detection limits are based on the sum of the terax and terax/clauxcal tube fractions (ie. 50 or 100 ng)

(1) Correctionly used laboratory advents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) Volumetric flow rates based on data gathered during isokinetic test rans.

# TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS DENVER, COLORADO

ND = Compound not detected in any of the tube pairs.

ND <= Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng).

DENVER, COLORADO RMA-SQI

# SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM

| TISST DATA:  Test run number Test location Test date Test time Test time                                                          | <b>3</b> 0 80 | 3<br>STACK<br>06-12-93<br>0830-0850<br>1 | 80 0         | 3<br>STACK<br>06-12-93<br>0859-0919<br>2 | R 95 95 | 3<br>STACK<br>06-12-93<br>0928-0948<br>3 | \$<br>00<br>10 | 3<br>STACK<br>06-12-93<br>003-1023<br>4 |       | 3<br>STACK<br>06-12-93<br>1034-1054<br>5 | 8<br>0<br>111                           | 3<br>STACK<br>06-12-93<br>1104-1124<br>6 | 3<br>STACK<br>AVERAGE (2) | <u>6</u> |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|--------------|------------------------------------------|---------|------------------------------------------|----------------|-----------------------------------------|-------|------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------|----------|
| FOIE: EMISSIONS (ppb/v):<br>Carbon Tetrachloride<br>Chlorobenzene                                                                 |               | 0.53                                     | ND<          | 0.47                                     | NO.     | 0.24                                     | N<br>N<br>N    | 0.46                                    | ND.   | 0.47                                     | N V V V V V V V V V V V V V V V V V V V | 0.46                                     | ND.                       | 0.47     |
| VOST EMISSIONS (ppdv): Chloromethane (Methyl Chloride) Bromomethane (Methyl Bromide) Vinyl Chloride Chloroethane (Thlyl Chloride) | 8 8           | 27.83<br>0.49                            | 2 9          | 22.27<br>0.60                            |         | 18.02<br>0.49                            | ŠS             | 10.27<br>1.50                           | Š S S | 4.43                                     | S S                                     | 25.86<br>1.49                            | Š S                       | 18.11    |
| Methylene choride (1) Carbon Disulfide                                                                                            | g g           | 16.74<br>0.90                            | ĝ            | 28.03<br>0.33                            |         | 29.85<br>0.96                            | g ě            | 27.30<br>0.93                           | Š     | 32.96<br>0.35                            | g ģ                                     | 40.09                                    | e ě                       | 29.16    |
| 1,1–D'chloroethene<br>1,1–D'chloroethane<br>1,2–D'chloroethene (total)                                                            | <u> </u>      |                                          | <u> </u>     |                                          |         |                                          | <u> </u>       |                                         | 222   |                                          | 888                                     |                                          | 222                       |          |
| Chloroform 1,2-Edolrocethane (EDC) 1,1,1-Thielhorocethane (TCA) Bromodialhoromethane                                              | 8 B           | 11.69                                    | 55           | 12.00                                    |         | 12.29                                    | <b>8</b> 8     | 10.33                                   | N CN  | 10.02                                    | S S                                     | 7.54                                     | 22                        | 10.65    |
| 1,3-D'achloropropane dis-1,3-D'achloropropene Trichloroethene (UCE) D'aromoceloromethane                                          | 888           | 0.27                                     | 888          | 0.29                                     |         | 0.27                                     | 888            | 022                                     | 555   | 200                                      | 555                                     | 67.1                                     | 888                       | 0,1      |
| 1,1,2-Trichloroethaue<br>Benzene<br>trans-1,2-Trohloropropene<br>Bromoform                                                        | 888           | 0.88                                     | ON ON ON     | 0.92                                     |         | 0.93                                     | 2 0 0 0        | 0.91                                    | 8 8 8 | 1.23                                     | <b>8 8 8 8</b>                          | 0.50<br>0.90<br>8,00                     | 8 8 8 8                   | 0.93     |
| Tetrachloroethene (PCE) 1,1,2,2-Tetrachloroethane Toluane Eilylbenzene                                                            | 88 B          | 1.58                                     | 8 8 8<br>8 8 | 1.97                                     | 222     | 1.93                                     |                | 1.57                                    |       | 1.92                                     |                                         | 2.02                                     | , 68 B                    | 1.83     |
| Styrene<br>Xylenes(tokal)<br>Dmethyldisulfide                                                                                     | æ             | 5.06<br>0.40                             | Q.           | 7.12<br>0.29                             |         | 6.46<br>0.28                             | Š              | 5.49<br>0.25                            | Ø     | 7.37<br>0.33                             | N<br>O                                  | 5.73<br>0.29                             | 8<br>Q                    | 6.20     |

ND = Compound not detected in sunple and quantified in another tube pair.

ND < = Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detect value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the average is reported as ND < (nighest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoral tube fractions (ie. 50 or 100 ng).

# DENVER, COLORADO RMA-SOI

# TABLE 5-2 (cont) TRIAL BURN TEST PROGRAM SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

| Test manufact                   |     | •         |     | e         | •             |     | •            |          |          | ,           |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------|-----|-----------|-----|-----------|---------------|-----|--------------|----------|----------|-------------|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test in number                  |     |           |     |           | 2             |     |              |          |          | n           | en            |     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Test location                   |     | STACK     |     | STACK     | STACE         | ~   | STA          | CK<br>CK | S        | CACK        | STAC          |     | STACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Test date                       |     | 06-12-93  |     | 06-12-93  | 06125         | 3   | 6 <u>F</u>   | 2-93     | 8        | 12-93       | 190           | •   | AVERAGE (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Test time                       | _   | 0830-0850 | _   | 0859-0919 | 0928-09       | 48  | 1003         | 1023     | 103      | 4-1054      | 1104-1        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Test tube pair                  |     | -         |     | 2         | 3             |     | 4            | 4        |          | מ           | 9             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| POHC EMISSIONS (IMM): (3)       |     |           |     |           |               |     |              |          |          |             |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Carbon Tetrachloride            |     | 9.96E-05  | NO. | 8.78E-05  | ND< 8.92E-05  |     | ND< 8.71B-05 |          | ND< 8.8  |             | ND< 8.65E-    |     | O< 8.92E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Chlorobenzene                   |     | 2.70E-05  |     | 3.25E-05  | 3.30E-0       |     | ND< 8.71E    | 3-05     | 3.2      | 3.27E-05 N  | ND < 8.65B-05 |     | ND< 8.71E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| VOST EMISSIONS (1b/hr): (3)     |     |           |     |           |               |     |              |          |          |             |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Chloromethane (Methyl Chloride) |     | 1.72E-03  |     | 1.38E-03  | 1.12E-0       | 3   | 6.36E        | 3-04     | 2.7      | 413-04      | 1.60F         | 13  | 1 125.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Bromomethane (Methyl Bromide)   |     | 5.74E-05  |     | 7.02E-05  | 5.71E-05      |     | 0< 1.74E-04  |          | ND< 1.7  | 1.77E-04    | ND< 1.73E-04  |     | 1775.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Vinyl Chloride                  | S   |           | Z   |           |               |     | ND<br>ON     |          |          |             |               |     | 100 CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Chloroethane (Ethyl Chloride)   | R   |           | Ę   |           | N<br>Q        | N   | _            |          | Q        | 2           | 2             | . 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Methylene chloride (1)          |     | 1.74E-03  |     | 2.92E-03  |               |     | 2.84E-03     |          |          |             |               |     | 3.0412-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Carbon Disulfide                | ND. | 8.44E-05  |     | 3.07E-05  | ND< 8.92E-05  |     |              | 3-05     | 3.2      | 3.27E-05    | ND< 8.65F-05  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1,1-Dichloroethene              | Ð   |           | S   |           | S S           |     | QN<br>QN     |          |          |             |               |     | Control of the contro |  |
| 1,1-Dichloroethane              | Š   |           | S   |           | Q.            | K   | ^            |          | S        | Z           | CZ.           | 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1,2-Dichloroethene (total)      | Ę   |           |     |           | Q.            | K   | ^            |          | - QZ     | Z           | ۵             | . 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Chloroform                      |     | 1.71E-03  |     | 1.76E-03  | 1.80E-03      |     | 1.51E-03     |          | -        | 1.47E-03    | 1.108-03      |     | 1.568-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1,2-Dichloroethane (EDC)        | Š   |           | S   |           | Ę             | K   | ^            |          | £        |             | CZ            | Ę   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1,1,1-Trichloroethane (TCA)     | Ð   |           |     |           | S S           | CN  |              |          | CZ       | Z           | 2             | 2 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Bromodichloromethane            |     | 3.59E-04  |     | 3.86E-04  | 3.79E-04      | 4   | 3.18E-04     |          |          | 3.58E-04    | 2.47F-04      |     | 3.4115-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1,2-Dichloropropane             | ğ   |           | S   |           | Ę.            | K   |              |          | Q.       |             | QZ.           | Ę   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| cis-1,3-Dichloropropene         | £   |           | Ð   |           | QN            | QN. | _            |          | PA<br>PA | Z           | ۵             | E C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Trichloroethene (ICE)           | Q.  |           |     |           |               |     | •            |          | N<br>O   | Z           | S S           | 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Dibromochloromethane            | !   | 6.84E-05  |     | 7.29B-05  | 6.87E-05      |     | 5.66E-05     |          | _        | 5.45E-05    | 4.93E-05      |     | 6.34E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1,1,2-Inchloroethane            |     |           |     |           |               |     |              |          | £        | Z           | ۵             | S   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Benzene                         | v   | 8.44E-05  | Š   | 8.78E-05  | ND < 8.92E-05 |     | ND< 8.71B-05 | 702      | 1:1      | 1.18E-04 N  | D< 8.65E-05   |     | >< 8.92E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| trans-1,3-Exchloropropene       | R   |           |     |           |               |     |              |          | ē        | Z           |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Bromoform                       |     | 3.80E-05  |     | 3.78E-05  | ND< 8.92E-05  |     | ND< 8.71E-05 |          |          | 8.84E-05 NJ | ND < 8.65E-05 |     | 0< 8.92E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Tetrachloroethene (PCE)         | Q   |           | £   |           | NO<br>ON      | K   | ^            |          | NO<br>OX | Z           |               |     | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1,1,2,2-Tetrachloroethane       | Q.  |           | £   |           |               | S   | _            |          | ð        | Z           | ٥             | Z   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Toluene                         |     | 1.79E-04  |     | 2.23E-04  | 2.19E-04      | 4   | 1.77E-04     | 504      | 2.1      | 2.17B-04    | 2.28E-04      |     | 2.07F-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Ethyl benzene                   | Q.  |           | S   |           | S S           | QN  |              |          | S S      | QN.         |               | QN  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Styrene                         |     | 6.46B-04  |     | 9.10E-04  | 8.25E-04      | 4   | 7.01E-04     | 504      | 9.6      | 9.41E-04    | 7.31E-04      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Xylenes(total)                  |     | 5.24E-05  |     | 3.78E-05  |               |     |              |          |          |             |               | 35  | 3.99E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Dimethyldisulide                | QN  |           | Q   |           | Q.            | 8   | _            |          | Ę        | CN          |               | QN  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                 |     |           |     |           |               |     |              |          |          |             |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

ND=Compound not detected in any of the tube pairs.

ND <= Compound not detected in sample and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detected value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-detected value. It has verage for the six tube pairs is less than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng).

TRIAL BURN TEST PROGRAM DENVER, COLORADO RMA-SQI

# SUMMARY OF VOLATILE ORGANICS TEST DATA AND TEST RESULTS

| TEST DATA:                      |         | ,         |     | •        |        | ,       |          |          |          |         |   |        |              |        |
|---------------------------------|---------|-----------|-----|----------|--------|---------|----------|----------|----------|---------|---|--------|--------------|--------|
| rest tun number                 |         | ,         |     | 2        |        |         |          | <b>6</b> |          | 3       |   | 3      | €.           |        |
| Test location                   |         | STACK     |     | STACK    | 90     | TACK    | S        | TACK     | S        | TACK    | b | FACK   | STACK        |        |
| Test date                       |         | 06-12-93  | _   | 06-12-93 | 0      | 5-12-93 | ŏ        | 12-03    | ă        | -12-03  | č | 1203   | A VIEW A CET | 5      |
| Test time                       |         | 0830-0850 | 0   | 859-0919 | 80     | 28-0948 | 101      | 03-1023  | 101      | 34-1054 | - | 77177  | TOWN         | (2)    |
| Test tube pair                  |         | 1         |     | 2        |        | 8       |          | 4        |          | \$      | 1 | 9      |              |        |
| POPE PARISSIONS (no/m3):        |         |           |     |          |        |         |          |          |          |         |   |        |              |        |
| Carbon Tetrachloride            |         | 3.38      | ND. | 2.98     | ND.    | 3.02    | NO.      | 2.05     | Š        | 300     |   | 203    | ě            | 6      |
| Chlorobenzene                   |         | 0.92      |     | 1.10     |        | 1.12    | NDA      | 2.95     |          | 1.11    | Š | 2.93   | NO.          | 2.95   |
| VOST EMISSIONS (ue/m³):         |         |           |     |          |        |         |          |          |          |         |   |        |              |        |
| Chloromethane (Methyl Chloride) |         | 58.39     |     | 46.73    |        | 37.81   |          | 21.56    |          | 0.20    |   | 24 27  |              | 30.03  |
| Bromomethane (Methyl Bromide)   |         | 1.95      |     | 2.38     |        | 1.94    | ND       | 5.91     | NO.      | 5.99    |   | 5.87   | Š            | 20,02  |
| Vinyl Chloride                  | £       |           | S   |          | æ      |         | Z        |          | Q        |         |   |        | , E          | 6.5    |
| Chloroethane (Ethyl Chloride)   | Q       |           | Ş   |          | æ      |         | QZ       |          | Q.       |         |   |        | Ę            |        |
| Methylene chloride (1)          |         | 59.08     |     | 98.94    |        | 105.39  |          | 96.39    |          | 116.35  |   | 141.51 | )            | 102.94 |
| Carbon Disulfide                | ND      | 2.86      |     | 1.04     | Š      | 3.02    | ND.      | 2.95     |          | 1.11    |   | 2.93   | NO.          | 3.03   |
| 1,1-Dichloroethene              | QZ<br>Q |           | Q   |          | S.     |         | N<br>ON  |          | S        |         |   |        | , E          | 3      |
| 1,1-Dichloroethane              | Q       |           | S   |          | Q.     |         | QN       |          | ę        |         |   |        | 2            |        |
| 1,2-Dichloroethene (total)      | Q.      |           | QN. |          | S      |         | ND<br>QN |          | £        |         |   |        | 9 5          |        |
| Chloroform                      |         | 57.99     |     | 59.53    |        | 86.09   |          | 51.27    |          | 49.73   |   | 37.43  | 2            | 52.83  |
| 1,2-Dichloroethane (EDC)        | Q       |           | Q.  |          | S S    |         | Š        |          | N ON     |         |   |        | Ę            | 70.70  |
| 1,1,1-Trichloroethane (TCA)     | Q       |           | Š   |          | R      |         | Q        |          | N ON     |         |   |        | £            |        |
| Bromodichloromethane            |         | 12.17     |     | 13.10    |        | 12.86   |          | 10.78    |          | 12.13   |   | 8.36   | )            | 11.56  |
| 1,2-Dichloropropane             | g       |           | Ş   |          | Š      |         | Q.       |          | Q        |         |   |        | Q            |        |
| a's-1,3-Dichloropropene         | S       |           | Q.  |          | Š      |         | Ę        |          | S S      |         |   |        | E            |        |
| Trichloroethene (TCE)           | S       |           | Q.  |          | S      |         | S.       |          | Q.       |         |   |        | 2            |        |
| Dibromochloromethane            |         | 2,32      |     | 2.47     |        | 2.33    |          | 1.92     |          | 2.19    |   | 1.67   | !            | 2.15   |
| 1,1,2-Trichloroethane           | £       |           | Ž   |          | Ę      |         | CZ       |          | E C      |         |   |        | R            |        |
| Benzene                         | ND.     | 2.86      | ND. | 2.98     | ND     | 3.02    | ND       | 2.95     |          | 3.98    |   | 2,93   | Ý            | 3.02   |
| trans-1,3-Echloropropene        | £       |           | æ   |          | g      |         | NO.      |          | QN<br>QN |         |   |        | Q.           |        |
| Вготоботп                       |         | 1.29      |     | 1.28     | NDA    | 3.02    | ND.      | 2.95     | ND       | 3.00    |   | 2.93   | NO.          | 3.02   |
| Tetrachloroethene (PCE)         | Q.      |           | Q.  |          | S.     |         | S S      |          | S S      |         |   |        | 2            | 2      |
| 1,1,2,2-Tetrachioroethane       | g       |           | £   |          | S<br>S |         | QN<br>QN |          | æ        |         |   |        | Ę            |        |
| Toluene                         |         | 6.07      |     | 7.56     |        | 7.41    |          | 5.99     |          | 7.34    |   | 7.74   | )            | 7.02   |
| Ethyl benzene                   | Q.      |           | Ę   |          | Q<br>Z |         | Q.       |          | B        |         |   |        | QN.          |        |
| Styrene                         |         | 21.90     |     | 30.84    |        | 27.98   |          | 23.77    |          | 31.90   |   | 24.79  | !            | 26.86  |
| Aylenes(total)                  | Ę       | 1.77      | į   | 1.28     | •      | 1.24    | į        | 1.09     |          | 1.47    |   | 1.26   |              | 1.35   |
| Lameunytaisunde                 | ND      |           | Q.  |          | N<br>N |         | Q.       |          | Ð        |         | Q |        | Ą            |        |
|                                 |         |           |     |          |        |         |          |          |          |         |   |        |              |        |

ND=Compound not detected in any of the tube pairs.

ND <= Compound not detected in sumple and quantified in another tube pair.

(1) Commonly used laboratory solvents detected in samples and blanks; reported values have been blank corrected. The reported values may not be representative.

(2) If a tube pair non-detected value is averaged with a tube pair detected value then half the detection limit is used for the tube pair non-noted value. If the average for the six tube pairs is less than the highest full detection limit of any single tube pair then the average is reported as ND < (highest detection limit for a tube pair). Detection limits are based on the sum of the tenax and tenax/charcoal tube fractions (ie. 50 or 100 ng).

| Test Data                                      |           |                   |           |
|------------------------------------------------|-----------|-------------------|-----------|
| Run number                                     | 1 .       | 2                 | 3         |
| Location                                       |           | INCINERATOR STACK |           |
| Date                                           | 06-10-93  | 06-11-93          | 06-12-93  |
| Time period                                    | 0745-1501 | 0710-1258         | 0756-1416 |
| Sampling Data                                  |           |                   |           |
| Sampling duration, min.                        | 240.0     | 240.0             | 240.0     |
| Nozzle diameter, in.                           | 0.355     | 0.355             | 0.355     |
| Cross sectional nozzle area, sq.ft.            | 0.000687  | 0.000687          | 0.000687  |
| Barometric pressure, in. Hg                    | 24.79     | 24.57             | 24.62     |
| Avg. orifice press. diff., in H <sub>2</sub> O | 1.35      | 1.45              | 1.44      |
| Avg, dry gas meter temp, deg F                 | 76        | 80                | 81        |
| Avg. abs. dry gas meter temp., deg. R          | 536       | 540               | 541       |
| Total liquid collected by train, ml            | 4703.0    | 4823.0            | 4830.0    |
| Std. vol. of H.O vapor coll., cu.ft.           | 221.4     | 227.0             | 227.4     |
| Dry gas meter calibration factor               | 0.995     | 0.995             | 0.995     |
| Sample vol. at meter cond., def                | 160.728   | 167.415           | 167.077   |
| Sample vol. at std. cond., dscf (1)            | 131.135   | 134.248           | 134.118   |
| Percent of isokinetic sampling                 | 99.7      | 99.0              | 101.3     |
| GAS STREAM COMPOSITION DATA                    |           |                   |           |
| CO2, % by volume, dry basis                    | 10.1      | 9.9               | 10.2      |
| O2 % by volume, dry basis                      | 3.4       | 3.5               | 3.6       |
| CO, % by volume dry basis                      | 0.0       | 0.0               | 0.0       |
| N <sub>2</sub> % by volume, dry basis          | 86.5      | 86.6              | 86.3      |
| Molecular wt. of dry gas, lb/lb mole           | 29.75     | 29.73             | 29.77     |
| H2O vapor in gas stream, prop. by vol.         | 0.628     | 0.628             | 0.629     |
| Mole fraction of dry gas                       | 0.372     | 0.372             | 0.371     |
| Molecular wt. of wet gas, lb/lb mole           | 22.4      | 22.4              | 22.4      |
| GAS STREAM VELOCITY AND VOLUMETRIC FL          | OW DATA   |                   | •         |
| Static pressure, in. H <sub>2</sub> O          | -0.13     | -0.15             | -0.13     |
| Static pressure, in. Hg                        | -0.010    | -0.011            | -0.010    |
| Absolute pressure, in. Hg                      | 24.78     | 24.56             | 24.61     |
| Avg. temperature, deg. F                       | 184       | 184               | 183       |
| Avg. absolute temperature, deg.R               | 644       | 644               | 643       |
| Pitot tube coefficient                         | 0.84      | 0.84              | 0.84      |
| Total number of traverse points                | 12        | 12                | 12        |
| Avg. gas stream velocity, ft./sec.             | 52.7      | 54.8              | 53.4      |
| Stack/duct cross sectional area, sq.ft.        | 9.62      | 9.62              | 9.62      |
| Avg. gas stream volumetric flow, wacf/min.     | 30400     | 31600             | 30800     |
| Avg. gas stream volumetric flow, dscf/min.     | 7700      | 7900              | 7700      |

<sup>(1)</sup> Standard conditions = 68 degrees F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

| Run number                                      | 1                     |       | 2 '                   |        | 3         |        | AVERAC | Æ  |
|-------------------------------------------------|-----------------------|-------|-----------------------|--------|-----------|--------|--------|----|
| Location<br>Date                                |                       |       | INCINERATO            | RSTACK |           |        |        |    |
| Time period                                     | 06-10-93<br>0745-1501 |       | 06-11-93<br>0710-1258 |        | 06-12-93  |        |        |    |
| •                                               |                       |       | 0/10-1236             |        | 0756-1416 |        |        |    |
| Semivolatile Organic Compounds Labora<br>Phenol |                       |       |                       |        |           |        | *•     |    |
|                                                 | ND                    |       | ND                    |        | ND        |        | ND.    |    |
| Bis (2-chloroethyl) ether                       | . ND                  |       | ND                    |        | ND        |        | ND     |    |
| 2-Chlorophenol 1,3-Dichlorobenzene              | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 1.4-Dichlorobenzene                             | ND                    |       | ND                    |        | ND        |        | ND .   |    |
|                                                 | ND                    |       | ND                    |        | ND        |        | ND .   |    |
| Benzyi alchohol                                 | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 1,2-Dichlorobenzene                             | ND                    |       | ND                    | •      | ND        |        | ND     |    |
| 2-Methylphenol                                  | ND                    |       | ND                    |        | ND        |        | ND     |    |
| bis-(2-Chloroisopropyl)ether                    | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 4-Methylphenol                                  | ND                    |       | ND                    |        | ND        |        | ND     |    |
| N-Nitroso-Di-n-propylamine Herachioroethane     | ND                    |       | ND                    | •      | ND        |        | ND     |    |
| Nitrobenzene                                    | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Isophorone                                      | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 2-Nitrophenol                                   | ND                    | В     | ND                    | BC     | ND        | В      | ND     |    |
| 2.4-Dimethylphenol                              | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Benzoic acid                                    | ND                    |       | ND                    |        | ND        |        | ND     |    |
| bis(2-Chloroethoxy)methane                      | ND<                   | 50 B  | ND<                   | 50 B   |           | 53.5 B | ND<    | 50 |
| 2,4-Dichlorophenol                              | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 1.2.4-Trichlorobenzene                          | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Naphthalene                                     | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 4-Chlorosmiline                                 | ND                    | В     | ND                    | BC     | ND        | BC     | ND     |    |
| Hexachlorobutadiene                             | ND                    |       | ND                    |        | ND        |        | ND     |    |
|                                                 | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 4-Chloro-3-methylphenol                         | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 2-Mehtyhapthalene                               | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Hetachlorocyclopentadiene                       | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 2.4.6-Trichlorophenol                           | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 2.4.5-Trichlorophenol 2-Chloromothalene         | ND                    |       | ND                    |        | ND        |        | ND     |    |
|                                                 | ND                    |       | ND                    |        | ND .      |        | ND     |    |
| 2-Nitromaline                                   | ND                    |       | ND                    |        | ND.       |        | ND     |    |
| Dimethylpthalate                                |                       | 5     | ND<                   | 10     | ND<       | 10     | ND<    | 10 |
| Acensphthylene                                  | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 2,6-Dinitrotoluene                              | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 3-Nitroanaline                                  | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Accompliance                                    | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 2,4-Dinitrophenol                               | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 4-Nitrophenol                                   | ND                    |       | ND.                   |        | ND        |        | ND     |    |
| Dibenzofuran                                    | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 2.4-Dinitrotohuene                              | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Diethylphthalate                                |                       | 9     |                       | 7      |           | 27     |        | 14 |
| 4-Chlorophenyl-phenylether                      | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Fluorene                                        | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 4-Nitroanaline                                  | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 4.6-Dinitro-2-methylphenol                      | ND                    |       | ND                    |        | ND        |        | ND     |    |
| n-Nitrosodiphenylamine(1)                       | ND                    |       | ND                    |        | ND ·      |        | ND     |    |
| 4-Bromophenyl-phenylether                       | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Hetachlorobenzene                               | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Pentachlorophenol                               | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Phenanthrene                                    | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Anthracene                                      | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Carbazole                                       | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Di-n-butylphthalate                             |                       | 30 B  |                       | 23 B   | 2.2       | 26 B   | 112    | 26 |
| Fluoramhene                                     | ND                    |       | ND                    |        | ND        |        | ND     | 20 |
| Рукте                                           | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Butylbenzylpthalate                             |                       | 14    | -1-                   | 14     | ND<       | 10     | 112    | 11 |
| 3,3'-Dichlorobenzidine                          | ND                    |       | ND                    |        | ND        | 10     | ND     | 11 |
| Benzo(a)anthracene                              | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Chrysene                                        | ND                    |       | ND                    |        | ND        |        | ND     |    |
| bis(2-Ethylhexyl)phthalate                      |                       | 20 BC |                       | 12 BC  | 112       | 14 BC  | ND     | 15 |
| Di-n-Octylpthalate                              | ND                    |       | ND                    |        | ND        | 14 20  | ND     | 13 |
| Benzo(b)fluoranthene                            | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Benzo(k)fluoranthene                            | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Benzo(a)pyrene                                  | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Indeno(1,2,3-cd)pyrene                          | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Dibenzo(a.h)anthracene                          | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Benzo(g,h,i)perylene                            | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Quinoline                                       | ND                    |       | ND                    |        | ND        |        | ND     |    |
| 4.4-Dichlorobiphenyl                            | ND                    |       | ND                    |        | ND        |        | ND     |    |
| Pentachlorobenzene                              | ND                    |       | 1.0                   |        | MAL       |        | AD     |    |

 $B\!=\!Detected$  in blank train; reported values have been blank corrected. BC = Detected in blank train; test run values were less than blank train values.

| est Data                          |                           |             |             |        |                       |     |           |     |
|-----------------------------------|---------------------------|-------------|-------------|--------|-----------------------|-----|-----------|-----|
| Run number                        | 1                         |             | 2 .         |        | 3                     |     | 4 4 10000 |     |
| Location                          | •                         |             | INCINERATOR | STACE. | 3                     |     | AVER      | AGE |
| Date                              | 06-10-93                  |             | 06-11-93    | SINCE  | 06 12 2               |     |           |     |
| Time period                       | 0745-1501                 |             | 0710-1258   |        | 05-12-93<br>0756-1416 |     |           |     |
| rganocklorine Pesticides/PCB Labo |                           |             |             |        |                       |     |           |     |
| Alpha-EHC                         |                           |             |             |        |                       |     |           |     |
| Beta-BHC                          | ND                        |             | ND          |        | ND                    |     | ND '      |     |
| Delta-BEC                         | ND                        |             | ND          |        | ND                    |     | ND        |     |
|                                   | ND                        |             | ND          |        | ND                    |     | ND        |     |
| gamma BHC                         | ND                        | В           | ND          | В      | ND                    | В   | ND        |     |
| Heptachlor                        | ND                        |             | ND          |        | ND                    |     | ND        | ٠   |
| Aldrin                            | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Heptachlor epoxide                |                           | 0.285       | ND<         | 0.1    | ND<                   | 0.1 |           |     |
| Endosulfan I                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Diekkrin                          | ND                        |             | ND          |        | ND                    |     | ND        |     |
| 4,4'-DDE                          | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Endrin                            | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Isodrin                           | ND                        |             | ND          |        | ND                    |     |           |     |
| Endosulfan II                     | ND                        |             | ND          |        | ND                    |     | ND        |     |
| 4,4'-DDD                          | ND                        |             | ND          |        |                       |     | ND        |     |
| Endosulfan sulfate                | ND                        |             |             |        | ND                    |     | ND        |     |
| 4.4'-DDT                          | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Methoxychlor                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Endrin ketone                     | ND<br>ND                  |             | ND          |        | ND                    |     | ND        |     |
| alpha-Chlordane                   |                           |             | ND          |        | ND                    |     | ND        |     |
| gamma-Chlordane                   | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Foraphene                         | ND                        |             | ND          |        | ND                    |     | ND        |     |
|                                   | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Aroclor-1016                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Aroclor-1221                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Aroclor 1232                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Aroclor-1242                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Aroclor-1248                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Aroclor-1254                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Aroclor-1260                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| emophosphorous Pesticides/PCB O   | ompounds Laboratory Renor | rt Data, us |             |        |                       |     |           |     |
| Attazine                          | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Dichlorvos                        | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Mevimphos                         | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Ethoprop                          | ND                        |             | ND          |        | ND                    | •   | ND        |     |
| Valed                             | ND                        |             | ND          |        | ND                    |     | ND        |     |
| horate                            | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Demeton, O                        | ND                        |             | ND          |        | ND                    |     |           |     |
| Demeton, S                        | ND                        |             | ND          |        |                       |     | ND        |     |
| Diazinon                          | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Disulfoton                        | ND                        |             | _           |        | ND                    |     | ND        |     |
| Methyl Parathion                  | ND                        |             | ND          |        | ND                    |     | ND        |     |
| tonnel                            |                           |             | ND          |        | ND                    |     | ND        |     |
| Malathion                         | ND                        |             | ND          |        | ND                    |     | ND        |     |
| enthion                           | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Chyl Prathion                     | ND                        |             | ND          |        | ND                    |     | ND        |     |
|                                   | ND                        |             | ND          |        | ND ·                  |     | ND        |     |
| hlorpyrifos<br>ensulfothion       | ND                        |             | ND          |        | ND                    |     | ND        |     |
|                                   | ND                        |             | ND          |        | ND                    |     | ND        |     |
| richloronate                      | ND                        |             | ND          |        | ND                    |     | ND        |     |
| (erphos                           | ND                        |             | ND          |        | ND                    |     | ND        |     |
| tirophos                          | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Solstar                           | ND                        |             | ND          |        | ND                    |     | ND        |     |
| zinphos-methyl                    | ND                        |             | ND          |        | ND                    |     | ND        |     |
| coumaphos                         | ND                        |             | ND          |        | ND                    |     | ND        |     |
| Supona                            | ND                        |             |             |        |                       |     |           |     |
| okuthion                          |                           |             | ND          |        | ND                    |     | ND        |     |

 $B = \mbox{Detected in blank train; reported values have been blank corrected.} \\ BC = \mbox{Detected in blank train; test run values were less than blank train values.} \\$ 

# RMA—SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5-3 (cont) SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS TEST DATA AND TEST RESULTS

| Run number                            | 1                 |             | 2         |             | 3         |             | AVE | RAGE  |
|---------------------------------------|-------------------|-------------|-----------|-------------|-----------|-------------|-----|-------|
| Location                              |                   |             | INCINERAT | OR STACK    |           |             |     |       |
| Date                                  | 06-10-93          |             | 06-11-93  |             | 06-12-93  |             |     |       |
| Time period                           | 0745-1501         | l           | 0710-1258 |             | 0756-1416 |             |     |       |
| mivolatile Organic Compounds Emission | Concentration Dat | a, Ib/dscf  |           |             |           |             |     | ٠.    |
| Phenol                                | ND                |             | ND        |             | ND        |             | ND  |       |
| Bis (2-chloroethyl) ether             | ND                |             | ND        |             | ND        |             | ND  |       |
| 2-Chlorophenol                        | ND                |             | ND        |             | ND        |             | ND  |       |
| 1.3-Dichlorobenzene                   | ND                |             | ND        |             | ND        |             | ND  |       |
| 1,4-Dichlorobenzene                   | ND                |             | ND        |             | ND        |             | ND  | . 14. |
| Benzyl alchohol                       | ND                |             | ND        |             | ND        |             | ND  | . ~   |
| 1,2-Dichlorobenzene                   | ND                |             | ND        |             | ND        |             | ND  |       |
| 2-Methylphenol                        | ND                |             | ND        |             | ND        |             | ND  |       |
| bis-(2-Chloroisopropyl)ether          | ND                |             | ND        |             | ND        |             | ND  |       |
| 4-Methylphenol                        | ND                |             | ND        |             | ND        |             | ND  |       |
| N-Nitroso-Di-n-propylamine            | ND                |             | ND        |             | ND        |             | ND  |       |
| Hexachioroethane .                    | ND                |             | ND        |             | ND        |             | ND  |       |
| Nitrobenzene                          | ND                |             | ND        |             | ND        |             | ND  |       |
| Isophorone                            | ND                | В           | ND        | BC          | ND        | В           | ND  |       |
| 2-Nitrophenol                         | ND                |             | ND        |             | ND        |             | ND  |       |
| 2.4-Dimethylphenol                    | ND                |             | ND        |             | ND        |             | ND  |       |
| Benzoic acid                          |                   | 8.41E-10 B  |           | 8.21E-10 B  | ND        | 8.79E-10 B  |     | 8.41  |
| ois(2-Chloroethory)methane            | ND                | 31711 TO D  | ND        | 0.215-10 B  | ND        | 0./3E-70 B  | ND< | 0.41  |
| 2,4-Dichlorophenol                    | ND                |             | ND        |             | ND        |             | ND  |       |
| 2.4-Trichlorobenzene                  | ND                |             | ND<br>ND  |             | ND        |             | ND  |       |
| Vaphthalene                           | ND                | В           | ND        | ВС          | ND        | BC          | ND  |       |
| -Chloroaniline                        | ND                | ь           | ND        | ьс          | ND        | BC          |     |       |
| Hexachlorobutadiene                   | ND                |             |           |             |           |             | ND  |       |
| -chloro-3-methylphenol                | ND<br>ND          |             | ND        |             | ND        |             | ND  |       |
| -Mehtylnapthalene                     |                   |             | ND        |             | ND        | •           | ND  |       |
|                                       | ND                |             | ND        |             | ND        |             | ND  |       |
| Ierachlorocyclopenadiene              | ND                |             | ND        |             | ND        |             | ND  |       |
| 4.6-Trichlorophenol                   | ND                |             | ND        |             | ND        |             | ND  |       |
| 4,5-Trichlorophenol                   | ND                |             | ND        |             | ND        |             | ND  |       |
| -Chloronapthalene                     | ND                |             | ND        |             | ND .      |             | ND  |       |
| Nitroanaline                          | ND                |             | ND        |             | ND -      |             | ND  |       |
| Dimethylpthalate                      |                   | 8.41E-11    |           | 1.64E-10    | ND<       | 1.64E-10    | ND< | 1.64  |
| Acenaphthylene                        | ND                |             | ND        |             | ND        |             | ND  |       |
| .6-Dinitrotoluene                     | ND                |             | ND        |             | ND        |             | ND  |       |
| -Nitroanaline                         | ND                |             | ND        |             | ND        |             | ND  |       |
| Acenapthene                           | ND                |             | ND        |             | ND        |             | ND  |       |
| 4-Dinitrophenol                       | ND                |             | ND        |             | ND        |             | ND  |       |
| -Nitrophenol                          | ND                |             | ND ·      |             | ND        |             | ND  |       |
| Dibenzofuran                          | ND                |             | ND        |             | ND        |             | ND  |       |
| ,4-Dinitrotoluene                     | ND                |             | ND        |             | ND        |             | ND  |       |
| Diethyliphthalate                     |                   | 1.51E-10    |           | 1.15E-10    |           | 4.44E-10    |     | 2.37  |
| -Chlorophenyl-phenylether             | ND                |             | ND        |             | ND        |             | ND  |       |
| luorene                               | ND                |             | ND        |             | ND        |             | ND  |       |
| -Nitroanaline                         | ND                |             | ND        |             | ND        |             | ND  |       |
| .6-Dinitro-2-methylphenol             | ND                |             | ND        |             | ND        |             | ND  |       |
| -Nitrosodiphenylamine(1)              | ND                |             | ND        |             | ND ND     |             | ND  |       |
| Bromophenyl-phenylether               | ND                |             | ND        |             | ND        |             |     |       |
| iexachlorobenzene                     | ND                |             | ND        |             |           |             | ND  |       |
| entachlorophenol                      | ND                |             | ND        |             | ND        |             | ND  |       |
| henanthrene                           |                   |             |           |             | ND        |             | ND  |       |
| nemanuarene<br>unthracene             | ND                |             | ND        |             | ND        |             | ND  |       |
|                                       | ND                |             | ND        |             | ND        |             | ND  |       |
| arbazole                              | ND                |             | ND        |             | ND        |             | ND  |       |
| n-butylphthalate                      |                   | 5.04E-10 B  |           | 3.78E-10 B  |           | 4.27E-10 B  |     | 4.36  |
| horanthene                            | ND                |             | ND        |             | ND        |             | ND  |       |
| yrene                                 | ND                |             | ND        |             | ND        |             | ND  |       |
| utylbenzylpthalate                    |                   | 2.35E-10    |           | 2.30E-10    | ND<       | 1.64E-10    |     | 1.82  |
| 3'-Dichlorobenzidine                  | ND                |             | ND        |             | ND        |             | ND  |       |
| enzo(a)ambracene                      | ND                |             | ND        |             | ND        |             | ND  |       |
| hrysene                               | ND                |             | ND        |             | ND        |             | ND  |       |
| s(2-Ethylhexyl)phthalate              |                   | 3.36E-10 BC |           | 1.97E-10 BC |           | 2.30E-10 BC |     | 2.54  |
| i-n-Octylphalate                      | ND                |             | ND        |             | ND        |             | ND  | _     |
| enzo(b)fluoranthene                   | ND                |             | ND        |             | ND        |             | ND  |       |
| enzo(k)fluoranthene                   | ND                |             | ND        |             | ND        |             | ND  |       |
| euzo(a)pyrene                         | ND                |             | ND        |             | ND        |             | ND  |       |
| ndeno(1,2,3-cd)pyrene                 | ND                |             | ND        |             |           |             |     |       |
| ibenzo(a,h)anthracene                 |                   |             |           |             | ND        |             | ND  |       |
|                                       | ND                |             | ND        |             | ND        |             | ND  |       |
| enzo(g.h.i)perylene                   | ND                |             | ND        |             | ND        |             | ND  |       |
| uinoline                              | ND                |             | ND        |             | ND        |             | ND  |       |
| 4-Dichlorobiphenyl                    | ND                |             | ND        |             | ND        |             | ND  |       |

 $B = \mbox{Detected in blank train; reported values have been blank corrected.} \\ BC = \mbox{Detected in blank train; test run values were less than blank train values.} \\$ 

# RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5-3 (cont) SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS TEST DATA AND TEST RESULTS

| Test Data                         |                                    |                   |              |             |
|-----------------------------------|------------------------------------|-------------------|--------------|-------------|
| Run number                        | 1                                  | 2 .               | 3            | AVERAGE     |
| Location                          | •                                  | INCINERATOR STACK | 3            | AVERAGE     |
| Date                              | 06-10-93                           | 06-11-93          | 06-12-93     |             |
| Time period                       | 0745-1501                          | 0710-1258         | 0756-1416    |             |
| Organochlorine Pesticides/PCB Emi | ission Concentration Data, Ib/dscf |                   |              |             |
| Alpha BHC                         | ND                                 | ND                | ND           | ND .        |
| Beta-BHC                          | ND                                 | ND                | ND           | ND          |
| Delta-RHC                         | ND                                 | ND                | ND           | ND          |
| gamma-BHC                         | ND B                               | ND B              | ND B         | ND .        |
| Heptachlor                        | ND                                 | ND                | ND B         | ND          |
| Aldrin                            | ND                                 | ND                | ND           | ND ND       |
| Heptachlor epoxide                | 4.79E-12                           | ND< 1.64E-12      | ND< 1.64E-12 | 2.14E-12    |
| Endosulfan I                      | ND                                 | ND                | ND 1.0-12    | ND 2.145-12 |
| Diekhrin                          | ND                                 | ND                | ND           | ND          |
| 4,4'-DDE                          | · ND                               | ND                | ND           | ND          |
| Endrin                            | ND                                 | ND '              | ND           | ND          |
| Isodrin                           | ND                                 | ND                | ND           | ND          |
| Endosulfan II                     | ND                                 | ND                | ND           | ND .        |
| 4,4'-DDD                          | ND                                 | ND                | ND           | ND          |
| Endosulfan sulfate                | ND                                 | ND                | ND           | ND          |
| 4,4'-DDT                          | ND                                 | ND                | ND           | ND          |
| Methoxychlor                      | ND                                 | ND                | ND           | ND          |
| Endrin ketone                     | ND                                 | ND                | ND           | ND          |
| alpha-Chlordane                   | ND                                 | ND                | ND           | ND          |
| gamma-Chlordane                   | ND                                 | ND                | ND           | ND          |
| Toxaphene                         | ND                                 | ND                | ND           | ND          |
| Aroclor-1016                      | ND                                 | ND                | ND           | ND          |
| Aroclor-1221                      | ND                                 | NID               | ND           | ND          |
| Aroclor-1232                      | ND                                 | ND                | ND           | ND          |
| Aroclor-1242                      | ND                                 | ND                | ND           | ND          |
| Aroclor-1248                      | ND                                 | ND                | ND           | ND          |
| Aroclor-1254                      | ND                                 | ND                | ND           | ND          |
| Arocior-1260                      | ND                                 | ND                | ND           | ND          |
| Organophosphorous Pesticides/PCB  |                                    |                   |              |             |
| Atrazine                          | ND                                 | ND                | ND           | ND          |
| Dichlorvos                        | ND                                 | ND                | ND           | ND          |
| Mevimphos                         | ND                                 | ND                | ND           | ND          |
| Ethoprop<br>Naled                 | ND                                 | ND                | ND           | ND          |
|                                   | ND                                 | ND                | ND           | ND          |
| Phorate Demeton, O                | ND                                 | ND                | ND           | ND          |
| Demeton, S                        | ND                                 | ND '              | ND           | ND          |
| Diazinon                          | ND                                 | ND                | ND           | ND          |
| Disulform                         | ND                                 | ND                | ND           | ND          |
| Methyl Parathion                  | ND<br>ND                           | ND                | ND           | ND          |
| Ronnel                            | ND<br>ND                           | ND                | ND           | ND          |
| Malathion                         | ND<br>ND                           | ND                | ND           | ND          |
| Feathion                          | ND                                 | ND                | ND.          | ND          |
| Ethyl Prathion                    | ND<br>ND                           | ND                | ND           | ND          |
| Chlorpyrifos                      | ND                                 | ND<br>ND          | ND .         | ND          |
| Fensulfothion                     | ND<br>ND                           | ND<br>ND          | ND           | ND          |
| Trichloromate                     | ND                                 | ND<br>ND          | ND<br>ND     | ND          |
| Merphos                           | ND                                 | ND                |              | ND          |
| Stirophos                         | ND ND                              | ND<br>ND          | ND           | ND          |
| Bolstar                           | ND                                 | ND<br>ND          | ND           | ND          |
| Azimphos-methyl                   | ND                                 | ND                | ND<br>ND     | ND          |
| Courraphos                        | ND                                 | ND<br>ND          | ND<br>ND     | ND          |
| Supona                            | ND                                 | ND<br>ND          | ND<br>ND     | ND<br>ND    |
| Tokuthion                         | ND                                 | ND                | ND           | ND<br>ND    |
|                                   | ****                               | ND.               | ND           | ND          |

 $B = \mbox{Detected in blank train; reported values have been blank corrected.} \\ BC = \mbox{Detected in blank train; test run values were less than blank train values,} \\$ 

| Run number                           | 1                      |         | 2 .        |         | 3         |         | AVERA | \GE |
|--------------------------------------|------------------------|---------|------------|---------|-----------|---------|-------|-----|
| Location                             |                        |         | INCINERATO | R STACK |           |         |       |     |
| Date                                 | 06-10-93               |         | 06-11-93   |         | 06-12-93  |         |       |     |
| Time period                          | 0745-1501              |         | 0710-1258  |         | 0756-1416 |         |       |     |
| mivolatile Organic Compounds Emissis | on Concentration Data, | bbp/a   |            |         |           |         | ٠.    |     |
| Phenol                               | ND                     |         | ND         |         | ND        |         | ND '  |     |
| Bis (2-chloroethyl) ether            | ND                     |         | ND         |         | ND        |         | ND    |     |
| 2-Chlorophenol                       | ND                     |         | ND         |         | ND        |         | ND    |     |
| 1.3-Dichlorobenzene                  | ND                     |         | ND         |         | ND        |         | ND    |     |
| 1,4-Dichlorobenzene                  | ND                     |         | ND         |         | ND        |         |       |     |
| Benzyl alchohol                      | ND                     |         |            |         |           |         | ND    | "   |
| 1,2-Dichlorobenzene                  |                        |         | ND         |         | ND        |         | ND    |     |
|                                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| 2-Methylphenol                       | ND                     |         | ND         |         | ND        |         | ND    |     |
| bis-(2-Chloroisopropyl)ether         | ND                     |         | ND         |         | ND        |         | ND    |     |
| -Methylphenol                        | ND                     |         | ND         |         | ND        |         | ND    |     |
| V-Nitroso-Di-n-propylamine           | ND                     |         | ND         |         | ND        |         | ND    |     |
| Texachloroethane                     | ND                     |         | ND         |         | ND        |         |       |     |
| Vitrobenzene                         | ND                     |         |            |         |           |         | ND    |     |
| sophorope                            |                        | _       | ND         |         | ND        |         | ND    |     |
|                                      | ND                     | В       | ND         | BC      | ND        | В       | ND    |     |
| -Nitrophenol                         | ND                     |         | ND         |         | ND        |         | ND    |     |
| .4-Dimethylphenol                    | ND                     |         | ND         |         | ND        |         | ND    |     |
| lenzoic acid                         | ND<                    | 2.65 B  | ND<        | 2.59 B  |           | 2.78 B  | ND<   |     |
| is(2-Chloroethoxy)methane            | ND                     |         | ND         |         | ND        | J D     | ND    |     |
| 4-Dichlorophenol                     | ND                     |         | ND         |         |           |         |       |     |
| 2.4-Trichlorobenzene                 | ND                     |         |            |         | ND        |         | ND    |     |
| aphthalene                           |                        | _       | ND         |         | ND        |         | ND    |     |
|                                      | ND                     | В       | ND         | BC      | ND        | BC      | ND    |     |
| Chloroaniline                        | ND                     |         | ND         |         | ND        |         | ND    |     |
| exachlorobutadiene                   | ND                     |         | ND         |         | ND        |         | ND    |     |
| -Chloro-3-methylphenol               | ND                     |         | ND         |         | ND        |         | ND    |     |
| -Mehtylnapthalene                    | ND                     |         | ND         |         | ND        |         | ND    |     |
| exachlorocyclopentadiene             | ND                     |         | ND         |         |           |         |       |     |
| 4,6-Trichlorophenol                  | ND                     |         |            |         | ND        |         | ND    |     |
| 4.5-Trichlorophenol                  |                        |         | ND         |         | ND        |         | ND    |     |
|                                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| -Chloronapthalene                    | ND                     |         | ND         |         | ND        |         | ND    |     |
| -Nitrosmaline                        | ND                     |         | ND         |         | ND .      |         | ND    |     |
| imethylpthalate                      |                        | 0.17    | ND<        | 0.33    | ND<       | 0.33    | ND<   |     |
| cenaphthylene                        | ND                     |         | ND         | 0.23    | ND        | 020     | ND    |     |
| 6-Dinitrosoluene                     | ND                     |         |            |         |           |         |       |     |
| Nitroanaline                         |                        |         | ND         |         | ND        |         | ND    |     |
|                                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| cerapthene                           | ND                     |         | ND         |         | ND        |         | ND    |     |
| 4-Dinitrophenol                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| Nitrophenol                          | ND                     |         | ND .       |         | ND        |         | ND    |     |
| ibenzofuran                          | ND                     |         | ND         |         | ND        |         | ND    |     |
| 4-Dinitrotoluene                     | ND                     |         | ND         |         | ND        |         |       |     |
| iethylphthalate                      |                        | 0.26    | ND         | 0.70    | ND        |         | ND    |     |
| Chlorophenyl-phenylether             | AVES.                  | 0.26    |            | 0.20    |           | 0.77    |       |     |
| uorene                               | ND                     |         | ND         |         | ND        |         | ND    |     |
|                                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| Nitrognaline                         | ND                     |         | ND         |         | ND        |         | ND    |     |
| i-Dinitro 2 methylphenol             | ND                     |         | ND         |         | ND        |         | ND    |     |
| Nitrosodiphenylamine(1)              | ND                     |         | ND         |         | · ND      |         | ND    |     |
| Bromophenyl-phenylether              | ND                     |         | ND         |         | ND        |         | ND    |     |
| rachlerobenzene                      | ND                     |         | ND         |         |           |         |       |     |
| ntachlorophenol                      | ND                     |         |            |         | ND        |         | ND    |     |
| enanthrene                           |                        |         | ND         |         | ND        |         | ND    |     |
| thracene                             | ND                     |         | ND         |         | ND        |         | ND    |     |
|                                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| rbazole                              | ND                     |         | ND         |         | ND        |         | ND    |     |
| n-butylphthalate                     |                        | 0.70 B  |            | 0.52 B  |           | 0.59 B  |       |     |
| Ioranthene                           | ND                     |         | ND         |         | ND        | D       | ND    |     |
| rene                                 | ND                     |         | ND         |         | ND        |         |       |     |
| tylbenzylpthalate                    |                        | 0.29    | .10        | 0.20    |           | 0.00    | ND    |     |
| '-Dichlorobenzidine                  | NT.                    | U-43    |            | 0.28    | ND<       | 0.20    |       |     |
|                                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| nzo(a)anthracene                     | ND                     |         | ND         |         | ND        |         | ND    |     |
| rysene                               | ND                     |         | ND         |         | ND        |         | ND    |     |
| (2-Ethylhexyl)phthalate              |                        | 0.33 BC |            | 0.19 BC | _         | 0.23 BC |       |     |
| n-Octylpthalate                      | ND                     |         | ND         |         | ND        |         | ND    |     |
| nzo(b)fluoranthene                   | ND                     |         | ND         |         |           |         |       |     |
| nzo(k)fluoranthene                   | ND                     |         |            |         | ND        |         | ND    |     |
| . ,                                  |                        |         | ND         |         | ND        |         | ND    |     |
| nzo(a)pyrene                         | ND                     |         | ND         |         | ND        |         | ND    |     |
| eno(1,2,3-cd)pyrene                  | ND                     |         | ND         |         | ND        |         | ND    |     |
| benzo(a,h)anthracene                 | ND                     |         | ND         |         | ND        |         | ND    |     |
| nzo(g,h,i)perylene                   | ND                     |         | ND         |         | ND        |         | ND    |     |
| inoline                              | ND                     |         | ND         |         |           |         |       |     |
|                                      |                        |         | 1417       |         | ND        |         | ND    |     |
| -Dichlorobiphenyl                    | ND                     |         | ND         |         | ND        |         | ND    |     |

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

| Run number                       | 1                                | 2 .        |          | 3                     |        | AVERAGE  |
|----------------------------------|----------------------------------|------------|----------|-----------------------|--------|----------|
| Location                         |                                  | INCINERATO | OR STACK |                       |        |          |
| Date                             | 06-10 <del>-9</del> 3            | 06-11-93   |          | 06 <del>-12-9</del> 3 |        |          |
| Time period                      | 0745-1501                        | 0710-1258  |          | 0756-1416             |        |          |
| rgmochlorine Pesticides/PCB Emis | sion Concentration Data make     | •          |          |                       |        |          |
| Aloba-BHC                        | ND ND                            | ND         |          | <b>\TD</b>            |        |          |
| Beta-BHC                         | ND                               | ND         |          | ND<br>ND              |        | ND ·     |
| Delta-BHC                        | ND                               | ND         |          | ND                    |        | ND       |
| garuma-BHC                       | ND                               | B ND       | В        | ND                    | -      | ND       |
| Heptachlor                       | ND                               | ND         | ь        | ND                    | В      | ND       |
| Aldrin                           | ND                               | ND         |          |                       |        | ND       |
| Heptachlor epoxide               | 0.004                            |            | 0.0017   | ND                    | 0.004  | ND       |
| Endosulfan I                     | ND                               | ND ND      | 0.0017   | ND<                   | 0.0017 | 0.       |
| Diekkrin                         | ND                               |            |          | ND                    |        | ND       |
| 4.4'-DDE                         | ND                               | ND         |          | ND                    |        | ND       |
| Endrin                           |                                  | ND         |          | ND                    |        | ND       |
| Isodrin                          | ND<br>ND                         | ND         |          | ND                    |        | ND       |
| Endosulfan II                    |                                  | ND         |          | ND                    |        | ND       |
| 4.4'-DDD                         | ND<br>ND                         | ND         |          | ND                    |        | ND       |
| Endosulfan sulfate               | <del></del>                      | ND         |          | ND                    |        | ND       |
| 4,4'-DDT                         | ND<br>ND                         | ND         |          | ND                    |        | ND       |
|                                  |                                  | ND         |          | ND                    |        | ND       |
| Methoxychlor<br>Endrin ketone    | ND                               | ND         |          | ND                    |        | ND       |
|                                  | ND                               | ND         |          | ND                    |        | ND       |
| alpha-Chlordane                  | ND                               | ND         |          | ND                    |        | ND       |
| gamma-Chlordane                  | ND                               | ND         |          | ND                    |        | ND       |
| Toxaphene                        | ND                               | ND         |          | ND                    |        | ND       |
| Aroclor-1016                     | ND                               | ND         |          | ND                    |        | ND       |
| Aroclor-1221                     | ND                               | ND         |          | ND                    |        | ND       |
| Arocior-1232                     | ND                               | ND         |          | ND                    |        | ND       |
| Aroclor-1242                     | ND                               | ND         |          | ND                    |        | ND       |
| Aroclor-1248                     | ND                               | ND         |          | ND                    |        | ND       |
| Aroclor-1254                     | ND                               | ND         |          | ND                    |        | ND       |
| Aroclor-1260                     | ND                               | ND         |          | ND                    |        | ND       |
| ganophosphorous Pesticides/PCB E | mission Concentration Data, web/ | •          |          |                       |        |          |
| Atrazine                         | ND                               | ND         |          | ND.                   |        | ND       |
| Dichlorvos                       | ND                               | ND         |          | ND                    |        | ND       |
| Mevinphos                        | ND                               | ND         |          | ND                    |        | ND       |
| Ethoprop                         | ND                               | ND         |          | ND                    | 1.     | ND       |
| Naled                            | ND                               | ND         |          | ND                    |        | ND       |
| Phorate                          | ND                               | ND         |          | ND                    |        | ND       |
| Demeton, O                       | ND                               | ND         |          | ND                    |        | ND       |
| Demeton, S                       | ND                               | ND         |          | ND                    |        | ND       |
| Diazinon                         | ND                               | ND         |          | ND                    |        | ND       |
| Disulfoton                       | ND                               | ND         |          | ND                    |        | ND       |
| Methyl Parathion                 | ND                               | ND         |          | ND                    |        | ND       |
| Ronnel                           | ND                               | ND         |          | ND                    |        | ND       |
| Malathion                        | ND                               | ND         |          | ND                    |        | ND       |
| Feathion                         | ND                               | ND         |          | ND                    |        | ND       |
| Ethyl Prathion                   | ND                               | ND         |          | ND                    |        | ND       |
| Chlorpyrifos                     | ND                               | ND         |          | ND                    |        | ND       |
| Fensulfothion                    | ND                               | ND         |          | ND                    |        | ND       |
| Trichloronate                    | ND                               | ND         |          | ND                    |        | ND       |
| Merphos                          | ND                               | ND         |          | ND                    |        | ND       |
| Stirophos                        | ND                               | ND         |          | ND                    |        | ND       |
| Bolstar                          | ND                               | ND         |          | ND                    |        | ND<br>ND |
| Azinphos-methyl                  | ND                               | ND         |          |                       |        |          |
| Courraphos                       | ND                               | ND         |          | ND<br>ND              |        | ND       |
| Supona                           | ND                               | ND         |          |                       |        | ND       |
| - <del></del>                    | 1110                             | ND         |          | ND                    |        | ND       |

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

| Run number                            | 1                    |           | 2 .        |           | 3          |         | AVER      | 4GE   |
|---------------------------------------|----------------------|-----------|------------|-----------|------------|---------|-----------|-------|
| Location                              |                      |           | INCINERATO | RSTACK    |            |         |           |       |
| Date                                  | 06-10-93             |           | 06-11-93   |           | 06-12-93   |         |           |       |
| Time period                           | 0745-1501            |           | 0710-1258  |           | 0756-1416. |         |           |       |
| emivolatile Organic Compounds Emissio | n Concentration Data | , ug/dscm |            |           |            |         | ٠.        |       |
| Phenol                                | ND                   |           | ND         |           | ND         |         | ND ·      |       |
| Bis (2-chloroethyl) ether             | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2-Chlorophenol                        | ND                   |           | ND         |           | ND         |         | ND        |       |
| 1,3-Dichlorobenzene                   | ND                   |           | ND         |           | ND         |         | ND        |       |
| 1,4-Dichlorobenzene                   | ND                   |           | ND         |           | ND         |         | ND        |       |
| Benzyl alchohol                       | ND                   |           | ND         |           | ND         |         | ND        | . • • |
| 1,2-Dichlorobenzene                   | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2-Methylphenol                        | ND                   |           | ND         |           | ND         |         | ND        |       |
| bis-(2-Chloroisopropyl)ether          | ND                   |           | ND         |           | ND         |         | ND        |       |
| 4-Methylphenol                        | ND                   |           | ND         |           | ND         |         | ND        |       |
| N-Nitroso-Di-n-propylamine            | ND                   |           | ND         |           | ND         |         | ND        |       |
| Hexachloroethane                      | ND                   |           | ND         |           | ND         |         | ND        |       |
| Nitrobenzene                          | ND                   |           | ND         |           | ND         |         | ND        |       |
| Isophorone                            | ND                   | В         | ND         | BC        | ND         | В       | ND        |       |
| 2-Nitrophenol                         | ND                   |           | ND         |           | ND         | _       | ND        |       |
| 2.4-Dimethylphenol                    | ND                   |           | ND         |           | ND         |         | ND        |       |
| Benzoic acid                          | ND<                  | 13.46 B   | ND<        | 13.15 B   |            | 14.09 B | ND<       | 13.   |
| bis(2-Chloroethoxy)methane            | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2.4-Dichlorophenol                    | ND                   |           | ND         |           | ND         |         | ND        |       |
| 1.2.4-Trichlorobenzene                | ND                   |           | ND         |           | ND         |         | ND        |       |
| Naphthalene                           | ND                   | В         | ND         | BC        | ND         | BC      | ND        |       |
| 4-Chloroaniline                       | ND                   |           | ND         |           | ND         |         | ND        |       |
| Hexachlorobutadiene                   | ND                   |           | ND         |           | ND         |         | ND        |       |
| 4-Chloro-3-methylphenol               | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2-Mehtylnapthalene                    | ND                   |           | ND         |           | ND         |         | ND        |       |
| Hexachlorocyclopentacliene            | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2,4,6-Trichlorophenol                 | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2,4,5-Trichlorophenol                 | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2-Chloronapthalene                    | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2-Nitronnaline                        | ND                   |           | ND         |           | ND '       |         | ND        |       |
| Directhylpthalate                     |                      | 1.35      | ND<        | 2.63      | ND<        | 2.63    | ND<       | 2.    |
| Acenaphthylene                        | ND                   |           | ND         |           | ND         | 2.00    | ND        | -     |
| 2,6-Dinitrotoluene                    | ND                   |           | ND         |           | ND         |         | ND        |       |
| 3-Nitroanaline                        | ND                   |           | ND         |           | ND         |         | ND        |       |
| Acenapthene                           | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2,4-Dinitrophenol                     | ND                   |           | ND         |           | ND         |         | ND        |       |
| 4-Nitrophenol                         | ND                   |           | ND .       |           | ND         |         | ND        |       |
| Dibenzofuran                          | ND                   |           | ND         |           | ND         |         | ND        |       |
| 2.4-Dinitrotoluene                    | ND                   |           | ND         |           | ND         |         | ND        |       |
| Diethylphthalate                      | 112                  | 2.42      | ND         | 1.84      | ND         | 7.11    | ND        | 3.    |
| 4-Chlorophenyl-phenylether            | ND                   | 4.72      | ND         | 1.04      | ND         | 7.11    | <b>NT</b> | э.    |
| Fhiorene                              | ND                   |           | ND         |           | ND         |         | ND<br>ND  |       |
| 4-Nitroanaline                        | ND                   |           | ND         |           | ND         |         |           |       |
| 4,6-Dinitro-2-methylphenol            | ND                   |           | ND         |           | ND         |         | ND        |       |
| n-Nitrosodiphenylamine(1)             | ND                   |           | ND         |           | ND ND      |         | ND        |       |
| Bromophenyl-phenylether               | ND                   |           | ND         |           | ND         |         | ND<br>ND  |       |
| Hexachlorobenzene                     | ND                   |           | ND         |           | ND         |         | ND        |       |
| Pentachlorophenol                     | ND                   |           | ND         |           | ND         |         | ND        |       |
| benanthrene                           | ND                   |           | ND         |           | ND         |         | ND        |       |
| Anthracene                            | ND                   |           | ND         |           | ND         |         | ND        |       |
| Carbazole                             | ND                   |           | ND         |           | ND         |         | ND        |       |
| Di-n-butylphthalate                   | 1.2                  | 8.08 B    | 112        | 6.05 B    | ND         | 6 85 D  | ND        |       |
| Fluoranthene                          | ND                   | 0.00      | ND         | 0.03 B    | ND         | 6.85 B  | NTO       | 6.9   |
| Pyrene                                | ND                   |           | ND         |           | ND         |         | ND        |       |
| Butylbenzylpthalate                   | 110                  | 3.77      | ND         | 3.68      | ND<        | 2.62    | ND        | 2.0   |
| 3.3 Dichlorobenzidine                 | ND                   | 3.11      | ND         | 3.00      |            | 2.63    |           | 2.9   |
| Benzo(a)anthracene                    | ND                   |           | ND         |           | ND         |         | ND        |       |
| Chrysene                              | ND                   |           | ND         |           | ND         |         | ND        |       |
| pis(2-Ethylhexyl)phthalate            | 110                  | 5.39 BC   | AD         | 3.16 BC   |            | 2 40 PC | ND        |       |
| Oi n-Octylpthalate                    | ND                   | 323 BC    | ND         | 3.10 BC . |            | 3.69 BC | NTC       | 4.0   |
| Senzo(b)fluoranthene                  | ND                   |           | ND         |           | ND<br>ND   |         | ND        |       |
| Benzo(k)fluoranthene                  | ND                   |           | ND         |           |            |         | ND        |       |
| Senzo(a)pyrene                        | ND                   |           |            |           | ND         |         | ND        |       |
| ndeno(1,2,3-cd)pyrene                 |                      |           | ND         |           | ND         |         | ND        |       |
| Dibenzo(a,h)anthracene                | ND                   |           | ND         |           | ND         |         | ND        |       |
| Senzo(g.h.i)perylene                  | ND<br>ND             |           | ND         |           | ND         |         | ND        |       |
| Duinoline                             |                      |           | ND         |           | ND         |         | ND        |       |
| 4.4-Dichlorobiphezyl                  | ND                   |           | ND         |           | ND         |         | ND        |       |
| Pentachlorobenzene                    | ND                   |           | ND         |           | ND         |         | ND        |       |

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

| Test Data Rum number               |                               |         | _                                           |         |                                     |      |          |
|------------------------------------|-------------------------------|---------|---------------------------------------------|---------|-------------------------------------|------|----------|
| Location                           | 1                             |         | 2                                           |         | 3                                   |      | AVERAGE  |
| Date                               | 24.42.42                      |         | INCINERATO                                  | R STACK |                                     |      |          |
| Time period                        | 06-10-93<br>0745-1501         |         | 06 <del>-11-9</del> 3<br>0710 <b>-125</b> 8 |         | 06 <del>-12-9</del> 3<br>0756-1416. |      |          |
| Organochiorine Pesticides/PCB Emi  | ission Concentration Data, ne | /dscm   |                                             |         |                                     |      | •.       |
| Alpha-BHC                          | ND                            |         | ND                                          |         | ND                                  |      | ND ·     |
| Beta-BHC                           | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Delta-BHC                          | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| gamma-EHC                          | ND                            | В       | ND                                          | В       | ND                                  | В    | ND       |
| Heptachlor                         | ND                            |         | ND                                          | _       | ND                                  | ~    | ND       |
| Aldrin                             | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Heptachlor epoxide                 |                               | 0.08    | ND<                                         | 0.03    | ND<                                 | 0.03 | 0.03     |
| Endosulfan I                       | ND                            |         | ND                                          |         | ND                                  | 0.00 | ND       |
| Diekhrin                           | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| 4.4'-DDE                           | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Endrin                             | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Isodrin                            | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Endosulfan II                      | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| 4.4'-DDD                           | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Endosulfan sulfate                 | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| 4,4'-DDT                           | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Methoxychlor                       | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Endrin ketone<br>alpha-Chlordane   | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| gamma-Chlordane                    | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Toxaphene                          | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Aroclor-1016                       | ND<br>ND                      |         | ND                                          |         | ND                                  |      | ND       |
| Arocior-1221                       | ND<br>ND                      |         | ND                                          |         | ND                                  |      | ND       |
| Aroclor-1232                       | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Aroclor 1242                       | ND<br>ND                      |         | ND<br>ND                                    |         | ND                                  |      | ND       |
| Aroclor-1248                       | ND                            |         | ND<br>ND                                    |         | ND                                  |      | ND       |
| Aroclor-1254                       | ND                            |         | ND                                          |         | ND<br>ND                            |      | ND       |
| Aroclor-1260                       | ND                            |         | ND                                          |         | ND                                  |      | ND<br>ND |
| Organophosphorous Pesticides/PCB 1 | Emission Concentration Data   | ng/dscm |                                             |         |                                     |      |          |
| Atrazine                           | ND                            | -0      | ND                                          |         | ND ?                                |      | ND       |
| Dichlorvos                         | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Mevinphos                          | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Ethoprop                           | ND                            |         | ND                                          |         | ND                                  | ΄.   | ND       |
| Naled                              | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Phorate                            | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Demeton, O                         | ND                            |         | ND ,                                        |         | ND                                  |      | ND       |
| Demeton, S                         | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Diazinon                           | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Disulfoton                         | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Methyl Parathion<br>Ronnel         | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Malathion                          | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Fenthion                           | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Ethyl Prathion                     | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Chloroviios                        | ND                            |         | ND                                          |         | ND .                                |      | ND       |
| Fensulfothion                      | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Trichloronate                      | ND<br>ND                      |         | ND                                          |         | ND                                  |      | ND       |
| Merphos                            | ND<br>ND                      |         | ND                                          |         | ND                                  |      | ND.      |
| Stirophos                          | ND<br>ND                      |         | ND                                          |         | ND                                  |      | ND       |
| Bolstar                            | ND                            |         | ND                                          |         | ND                                  |      | ND       |
| Azinphos-methyl                    | ND                            |         | ND<br>ND                                    |         | ND                                  |      | ND       |
| Coumanhos                          | ND                            |         | ND<br>ND                                    |         | ND                                  |      | ND       |
| Supona                             | ND                            |         | ND                                          |         | ND<br>ND                            |      | ND       |
| Tokuthion                          | ND                            |         | ND                                          |         | ND<br>ND                            |      | ND       |
|                                    | ND                            |         | ND                                          |         | ND                                  |      | ND       |

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

| Rum number<br>Location                  | 1                     |                   | 2                                 |             | 3                     |             | AVE      | RAGE  |
|-----------------------------------------|-----------------------|-------------------|-----------------------------------|-------------|-----------------------|-------------|----------|-------|
| ocation                                 | 24.12.22              |                   | INCINERAT                         | OR STACK    |                       |             |          |       |
| Time period                             | 06-10-93<br>0745-1501 |                   | 06 <del>-11-93</del><br>0710-1258 |             | 06-12-93<br>0756-1416 |             |          |       |
| nivolatile Organic Compounds Mass Emiss | sion Data. Infer      |                   |                                   |             |                       | ,           | ٠.       |       |
| Phenoi                                  | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| Bis (2-chloroethyl) ether               | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 2-Chlorophenol                          | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 1,3-Dichlorobenzene                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 1,4-Dichlorobenzene                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| Benzyl alchohol                         | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 1,2-Dichlorobenzene                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| -Methylphenol                           | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| ois-(2-Chloroisopropyl)ether            | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| -Methylphenol                           | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| V-Nitroso-Di-n-propylamine              | ND                    |                   | ·ND                               |             | ND                    |             | ND       |       |
| Texachloroethane                        | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| Vitrobenzene                            | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| sophorone                               | ND                    | В                 | ND                                | BC          | ND                    | В           | ND       |       |
| Nitrophenol                             | ND                    | -                 | ND                                | - 20        | ND                    |             | ND       |       |
| 4-Dimethylphenol                        | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| Senzoic acid                            |                       | 3.87E-04 B        |                                   | 3.90E-04 B  | 1110                  | 4.08E-04 B  |          | 3.90  |
| is(2-Chloroethoxy)methane               | ND                    | D                 | ND                                | J.702-04 D  | ND                    | out-04 p    | ND       | J.9U  |
| 4-Dichlorophenol                        | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| .2.4-Trichlorobenzene                   | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| aphthalene                              | ND                    | В                 | ND                                | вс          | ND                    | BC          | ND       |       |
| -Chloroaniline                          | ND                    |                   | ND                                | ъ.          | ND                    | BC.         | ND       |       |
| [exachlorobutadiene                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| Chloro-3-methylphenol                   | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| -Mehtyinapthalene                       | ND                    |                   | ND                                |             | ND                    | •           | ND       |       |
| (exachlorocyclopentadiene               | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 4.6-Trichlorophenol                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 4.5-Trichlorophenol                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| -Chloronapthalene                       | ND                    |                   | ND                                |             | ND                    |             |          |       |
| -Nitroanaline                           | ND                    |                   | ND                                |             | ND                    |             | ND<br>ND |       |
| Dimethylpthalate                        | ND                    | 4.875.05          |                                   | 7.70F 05    |                       | 7 (OF OF    |          |       |
| Acenaphthylene                          | ND                    | 3.87E-05          |                                   | 7.79E-05    |                       | 7.62E-05    | ND<      | 7.79. |
| .6-Dinitrotohiene                       |                       |                   | ND                                |             | ND                    |             | ND       |       |
| -Nitrosnaline                           | ND                    |                   | ND                                |             | ND .                  |             | ND       |       |
| conapthene                              | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| -                                       | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| ,4-Dinitrophenol<br>-Nitrophenol        | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| hibenzofuran                            | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| .4-Dinitrotoluene                       | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
|                                         | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| iethylphthalate                         |                       | 6.97E-05          |                                   | 5.45E-05    |                       | 2.06E-04    |          | 1.10  |
| -Chlorophenyl-phenylether               | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| hiorene                                 | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| -Nitronaline                            | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 6-Dinitro 2-methylphenol                | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| -Nitrosodiphenylamine(1)                | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| Bromophenyl-phenylether                 | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| exachlorobenzene                        | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| entachlorophenol                        | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| peranthrene                             | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| nthracene                               | ND                    |                   | , ND                              |             | ND                    |             | ND       |       |
| arbazole                                | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| i-a-butylphthalate                      |                       | 2.32E-04 B        |                                   | 1.79E-04 B  |                       | 1.98E-04 B  |          | 2.03  |
| uorantiene                              | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| rene                                    | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| utylbenzylpthalate                      |                       | 1.08 <b>E-0</b> 4 |                                   | 1.09E-04    |                       | 7.62E-05    |          | 8.52  |
| 3'-Dichlorobenzidine                    | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| enzo(a)authracene                       | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| irysene                                 | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| s(2-Ethylhexyl)phthalate                |                       | 1.55E-04 BC       |                                   | 9.35E-05 BC |                       | 1.07E-04 BC |          | 1.18  |
| i-n-Octylpthalate                       | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| enzo(b)fluoranthene                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| enzo(k)fluoranthene                     | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| евдо(а)ругеве                           | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| deno(1,2,3-cd)pyrene                    | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| ibenzo(a,h)anthracene                   | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| mzo(g.h.i)perylene                      | ND                    |                   | ND                                |             | ND                    | •           | ND       |       |
| uinoline                                | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
| 4-Dichlorobiphenyl                      | ND                    |                   | ND                                |             | ND                    |             | ND       |       |
|                                         |                       |                   |                                   |             |                       |             |          |       |

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

# RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5-3 (cont)

| SUMMARY OF | F SEMIVOLATILE ORGANIC | COMPOUNDS TEST | DATA AND TEST RESULTS |
|------------|------------------------|----------------|-----------------------|
|            |                        |                |                       |

| Tost Data                                                |           |          |            |          |           |          |     |          |
|----------------------------------------------------------|-----------|----------|------------|----------|-----------|----------|-----|----------|
| Run number                                               | 1         |          | . 2        |          | 3         |          | AVE | RAGE     |
| Location                                                 |           |          | INCINERATO | ORSTACK  |           |          |     |          |
| Date                                                     | 06-10-93  |          | 06-11-93   |          | 06-12-93  |          |     |          |
| Time period                                              | 0745-1501 |          | 0710-1258  |          | 0756-1416 |          |     |          |
| Organochlorine Pesticides/PCB Mass Emission Data, lb/hr  |           | •        |            |          |           |          | ٠.  |          |
| Alpha-BHC                                                | ND        |          | ND         |          | ND        |          | ND  |          |
| Beta-BHC                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| Delta-BHC                                                | ND        |          | ND         |          | ND        |          | ND  |          |
| gamma-BHC                                                | ND        | В        | ND         | В        | ND        | В        | ND  |          |
| Heptachlor                                               | ND        |          | ND         |          | ND        |          | ND  |          |
| Aldrin                                                   | ND        |          | ND         |          | ND        |          | ND  |          |
| Heptachlor epoxide                                       |           | 2.21E-06 | ND<        | 7.79E-07 | ND<       | 7.62E-07 |     | 9.92E-07 |
| Endosulfan I                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Diektrin                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| 4,4'-DDE                                                 | ND        |          | . ND       |          | ND        |          | ND  |          |
| Endrin                                                   | ND        |          | ND         |          | ND        |          | ND  |          |
| Isodrin                                                  | ND        |          | ND         |          | ND        |          | ND  |          |
| Endosulfan II                                            | ND        |          | ND         |          | ND        |          | ND  |          |
| 4,4'-DDD                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| Endosulfan sulfate                                       | ND        |          | ND         |          | ND        |          | ND  |          |
| 4,4'-DDT                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| Methoxychlor                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Endrin ketone                                            | ND        |          | ND         |          | ND        |          | ND  |          |
| alpha-Chlordane                                          | ND        |          | ND         |          | ND        |          | ND  |          |
| gamma-Chlordane                                          | ND        |          | ND         |          | ND        |          | ND  |          |
| Toxaphene                                                | ND        |          | ND         |          | ND        |          | ND  |          |
| Aroclor-1016                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Aroclor-1221                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Arodor-1232                                              | ND        |          | ND         |          | ND        |          | ND  |          |
| Arocior-1242                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Arocior-1248                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Aroclor-1254                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Aroclor-1260                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Organophosphorous Pesticides/PCB Mass Emission Data, It/ | her       |          |            |          | 7         |          |     |          |
| Atrazine                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| Dichlorvos                                               | ND        |          | ND         |          | ND        |          | ND  |          |
| Mevimphos                                                | ND        |          | ND         |          | ND        |          | ND  |          |
| Ethoprop                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| Naled                                                    | ND        |          | ND         |          | ND        |          | ND  |          |
| Phorate                                                  | ND        |          | ND         |          | ND        |          | ND  |          |
| Demeton, O                                               | ND        |          | ND         |          | ND        |          | ND  |          |
| Demeton, S                                               | ND        |          | ND         |          | ND        |          | ND  |          |
| Diazinon                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| Disulfoton                                               | ND        |          | ND         |          | ND        |          | ND  |          |
| Methyl Parathion                                         | ND        |          | ND         |          | ND        |          | ND  |          |
| Romel                                                    | ND        |          | ND         |          | ND        |          | ND  |          |
| Malathion                                                | ND        |          | ND         |          | ND        |          | ND  |          |
| Fenthion                                                 | ND        |          | ND         |          | ND        |          | ND  |          |
| Ethyl Prathion                                           | ND        |          | ND         |          | ND        |          | ND  |          |
| Chlorpyrifos                                             | ND        |          | ND         |          | ND        |          | ND  |          |
| Fensulfothion                                            | ND        |          | ND         |          | ND        |          | ND  |          |
| Trichloromate                                            | ND        |          | ND         |          | ND        |          | ND  |          |
| Merphos                                                  | ND        |          | ND         |          | ND        |          | ND  |          |
| Stirophos                                                | ND        |          | ND         |          | ND        |          | ND  |          |
| Bolstar                                                  | ND        |          | ND         |          | ND        |          | ND  |          |
| Azinphos-methyl                                          | ND        |          | ND         |          | ND        |          | ND  |          |
| Coursophos                                               | ND        |          | ND         |          | ND        |          | ND  |          |
| Supona                                                   | ND        |          | ND         |          | ND        |          | ND  |          |
| Tokuthion                                                | ND        |          | ND         |          | ND        |          | ND  |          |
|                                                          |           |          | 112        |          | 112       |          | 111 |          |

B = Detected in blank train; reported values have been blank corrected.

BC = Detected in blank train; test run values were less than blank train values.

### TABLE 5-4

### SUMMARY OF DIOXIN AND FURAN TEST DATA AND TEST RESULTS

| TEST DATA                                           | •         |                   |           |
|-----------------------------------------------------|-----------|-------------------|-----------|
| Test run number                                     | 1         | 2                 | 3         |
| Test location                                       |           | INCINERATOR STACK |           |
| Test date                                           | .06-10-93 | 06-11-93          | 06-12-93  |
| Test time period                                    | 0745-1501 | 0710-1258         | 0756-1416 |
| SAMPLING DATA                                       |           |                   | •         |
| Sampling duration, min.                             | 240.0     | 240.0             | 240.0     |
| Nozzle diameter, in.                                | 0.355     | 0.355             | 0.355     |
| Cross sectional nozzle area, sq.ft.                 | 0.000687  | 0.000687          | 0.090687  |
| Barometric pressure, in. Hg                         | 24.79     | 24.57             | 24.62     |
| Avg. orifice press. diff., in H <sub>2</sub> O      | 1.42      | 1.51              | 1.44      |
| Avg. dry gas meter temp., deg F                     | 78        | 80                | 81        |
| Avg. abs. dry gas meter temp., deg. R.              | 538       | 540               | 541       |
| Total liquid collected by train, ml                 | 4892.0    | 4914.0            | 4952.0    |
| Std. vol. of H <sub>2</sub> O vapor coll., cu.ft.   | 230.3     | 231.3             | 233.1     |
| Dry gas meter calibration factor                    | 1.010     | 1.010             | 1.010     |
| Sample vol. at meter cond., dcf                     | 168.721   | 173.104           | 170.963   |
| Sample vol. at std. cond., dscf (1)                 | 139.101   | 140.945           | 139.109   |
| Percent of isokinetic sampling                      | 104.7     | 103.3             | 105.4     |
| GAS STREAM COMPOSITION DATA                         |           |                   |           |
| € % by volume, dry basis                            | 10.1      | 9.8               | 10.2      |
| O2, % by volume, dry basis                          | 3.4       | 3.7               | 3.4       |
| CO, % by volume dry basis                           | 0.0       | 0.0               | 0.0       |
| N <sub>2</sub> , % by volume, dry basis             | 86.5      | 86.6              | 86.4      |
| Molecular wt. of dry gas, lb/lb mole                | 29.75     | 29.71             | 29.76     |
| H <sub>2</sub> O vapor in gas stream, prop. by vol. | 0.623     | 0.621             | 0.626     |
| Mole fraction of dry gas                            | 0.377     | 0.379             | 0.374     |
| Molecular wt. of wet gas, lb/lb mole                | 22.4      | 22.4              | 22.4      |
| GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA        |           | <i>y</i> .        | •         |
| Static pressure, in. H <sub>2</sub> O               | -0.13     | -0.13             | -0.14     |
| Static pressure, in. Hg                             | -0.010    | -0.010            | -0.010    |
| Absolute pressure, in. Hg                           | 24.78     | 24.56             | 24.61     |
| Avg. temperature, deg. F                            | 184       | 183               | 184       |
| Avg. absolute temperature, deg.R                    | 644       | 643               | 644       |
| Pitot tube coefficient                              | 0.84      | 0.84              | 0.84      |
| Total number of traverse points                     | 12        | 12                | 12        |
| Avg. gas stream velocity, ft./sec.                  | 52.5      | 54.1              | 52.9      |
| Stack/duct cross sectional area, sq.ft.             | 9.62      | 9.62              | 9.62      |
| Avg. gas stream volumetric flow, wacf/min.          | 30300     | 31200             | 30500     |
| Avg. gas stream volumetric flow, dscf/min.          | 7800      | 8000              | 7700      |

<sup>(1)</sup> Standard conditions = 68 degrees F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

| TEST DATA:                        |       |           |     |                   |      |           |
|-----------------------------------|-------|-----------|-----|-------------------|------|-----------|
| Test run number                   |       | 1         |     | 2                 |      | 3         |
| Test location                     |       | 1         | DV  | CINERATOR STACK   |      | 3         |
| Test date                         |       | 06-10-93  | TIM | 06-11-93          |      | 06-12-93  |
| Test time period                  |       | 0745-1501 |     | 0710-1258         |      | 0756-1416 |
| restant period                    |       | 0743-1301 |     | 0/10-1236         |      | 0/30-1416 |
| DIOXIN LABORATORY REPORT DATA, ng |       |           |     |                   |      |           |
| 2,3,7,8-TCDD                      | ND    |           | ND  | •                 | ND   |           |
| 1,2,3,7,8-PeCDD                   | ND    |           | ND  |                   | ND   |           |
| 1,2,3,4,7,8 <del>-Hi</del> CDD    | ND    |           | ND  |                   | ND   |           |
| 1.2.3.6.7.8-HxCDD                 | ND    |           | ND  |                   | ND   |           |
| 1,2,3,7,8,9 HxCDD                 | ND    |           | ND  |                   | ND   |           |
| 1.2.3.4.6,7,8-H <sub>C</sub> CDD  |       | 0.020     | ND< | 0.020             | 140  | 0.020     |
| OCDD                              |       | 0.040     |     | 0.030             |      | 0.070     |
|                                   |       | 0.040     |     | 0.050             |      | 0.070     |
| Total TCDD                        | ND<   |           |     | 0.010             |      | 0.006     |
| Total PeCDD                       |       | 0.020     | ND< | 0.010             | ND<  | 0.010     |
| Total HxCDD                       | ND    |           | ND  |                   | ND   |           |
| Total HpCDD                       |       | 0.020     | ND< | 0.030             |      | 0.020     |
| Total PCDD                        |       | 0.080     |     | 0.040             |      | 0.096     |
| DIOXIN CONCENTRATION, ppt/v       |       |           |     |                   |      |           |
| 2.3.7,8-TCDD                      | ND    |           | ND  |                   | ND   |           |
| 1,2,3,7,8-PeCDD                   | ND    |           | ND  |                   | ND   |           |
| 1,2,3,4,7,8-HxCDD                 | ND    |           | ND  |                   | ND   |           |
| 1.2.3.6.7.8 HxCDD                 | ' ND  |           | ND  |                   | ND   |           |
| 1.2.3.7.8.9 HxCDD                 | ND    |           | ND  |                   | ND   |           |
| 1,2,3,4,6.7,8 HpCDD               |       | 2.87E-04  |     | 2.83E-04          |      | 2.87E-04  |
| OCDD                              |       | 5.31E-04  |     | 3.93E-04          |      | 9.30E-04  |
|                                   |       |           |     | 5.5. <u>5</u> 6 4 |      | 7.500.01  |
| Total TCDD                        | ND<   | 3.79E-04  |     | 1.87E-04          |      | 1.14E-04  |
| Total PeCDD                       |       | 3.43E-04  | ND< | 1.69E-04          | ND<  | 1.71E-04  |
| Total HxCDD                       | ND    |           | ND  |                   | ND   |           |
| Total HpCDD                       |       | 2.87E-04  | ND< | 4.25E-04          |      | 2.87E-04  |
| Total PCDD                        |       | 1.16E-03  |     | 5.81E-04          |      | 1.33E-03  |
| DIOXIN EMISSIONS, Ib/dscf         |       |           |     |                   |      |           |
| 2,3,7,8-TCDD                      | ND    |           | ND  |                   | ND   |           |
| 1,2,3,7,8-PeCDD                   | ND    |           | ND  |                   | ND   |           |
| 1,2,3,4,7,8 HxCDD                 | ND    |           | ND  |                   | ND   |           |
| 1,2,3,6,7,8 HxCDD                 | ND    |           | ND  |                   | ND   |           |
| 1.2.3.7.8.9 HxCDD                 | ND    |           | ND. |                   | ND   |           |
| 1.2.3,4.6,7,8-HpCDD               | a 14. | 3.17E-16  |     | 3.13E-16          |      | 3.17E-16  |
| OCDD                              |       | 6.34E-16  |     | 4.69E-16          |      | 1.11E-15  |
| Total TCDD                        | ND -  | 3.17E-16  |     | 1.56E-16          |      | 9.51E-17  |
| Total PeCDD                       | TUC   | 3.17E-16  | MD- | 1.56E-16          | NTO- | 1.58E-16  |
| Total HxCDD                       | ND    | J.1/E-10  | ND  | 100-10            | ND   | 1-205-10  |
| Total HpCDD                       | ND    | 3.17E-16  |     | 4.69E-16          | ND.  | 3.17E-16  |
| Total PCDD                        |       |           | ND< |                   |      |           |
| IVALICADO                         |       | 1.27E-15  |     | 6.26E-16          |      | 1.52E-15  |

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

### RMA-SQI

### DENVER, COLORADO TRIAL BURN TEST PROGRAM

| TEST DATA:                     |     |           |     |             |     |           |
|--------------------------------|-----|-----------|-----|-------------|-----|-----------|
| Test run number                |     | 1         |     | 2           |     | 3         |
| Test location                  |     |           | INC | INERATOR ST | ACK |           |
| Test date                      |     | 06-10-93  |     | 06-11-93    |     | 06-12-93  |
| Test time period               |     | 0745-1501 |     | 0710-1258   |     | 0756-1416 |
| DIOXIN CONCENTRATION, ug/dscm  |     |           |     |             |     |           |
| 2,3,7,8-TCDD                   | ND  |           | ND  |             | ND  |           |
| 1,2,3,7,8-PeCDD                | ND  |           | ND  |             | ND  |           |
| 1,2,3,4,7,8 <del>11k</del> CDD | ND  |           | ND  |             | ND  |           |
| 1,2,3,6,7,8 HkCDD              | ND  |           | ND  |             | ND  |           |
| 1,2,3,7,8,9 Th:CDD             | ND  |           | ND  |             | ND  |           |
| 1,2,3,4,6,7,8 HpCDD            |     | 5.08E-06  | ND< | 5.01E-06    |     | 5.08E-06  |
| 1,2,3,4,6,7,8,9-OCDD           |     | 1.02E-05  |     | 7.52E-06    |     | 1.78E-05  |
| TotalTCDD                      | ND< | 5.08E-06  |     | 2.51E-06    |     | 1.52E-06  |
| Total PeCDD                    |     | 5.08E-06  | ND< | 2.51E-06    | ND< | 2.54E-06  |
| Total HxCDD                    | ND  |           | ND  |             | ND  |           |
| Total HpCDD                    |     | 5.08E-06  | ND< | 7.52E-06    |     | 5.08E-06  |
| Total PCDD                     |     | 2.03E-05  |     | 1.00E-05    |     | 2.44E-05  |
| DIOXIN EMISSIONS, Ib/hr        |     |           |     |             |     |           |
| 2,3,7.8-TCDD                   | ND  |           | ND  |             | ND  |           |
| 1.2.3,7,8-PeCDD                | ND  |           | ND  |             | ND  |           |
| 1.2.3.4.7.8-H-CDD              | ND  |           | ND  |             | ND  |           |
| 1,2,3,6,7,8- <del>Th</del> CDD | ND  |           | ND  |             | ND  |           |
| 1,2,3,7,8,9-HxCDD              | ND  |           | ND  |             | ND  |           |
| 1,2,3,4.6,7,8 HpCDD            |     | 1.47E-10  | ND< | 1.49E-10    |     | 1.46E-10  |
| 1,2,3,4,6,7,8,9-OCDD           |     | 2.95E-10  |     | 2.24E-10    |     | 5.12E-10  |
| TotalTCDD                      | ND< | 1.47E-10  |     | 7.47E-11    |     | 4.39E-11  |
| Total PeCDD                    |     | 1.47E-10  | ND< | 7.47E-11    | ND< | 7.32E-11  |
| Total HxCDD                    | ND  |           | ND  | 1           | ND  |           |
| Total HpCDD                    |     | 1.47E-10  | ND< | 2.24E-10    |     | 1.46E-10  |
| Total PCDD                     |     | 5.90E-10  |     | 2.99E-10    |     | 7.03E-10  |

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

## TABLE 5-4 (cont) SUMMARY OF DIOXIN AND FURAN TEST DATA AND TEST RESULTS

|                                  | •                     |                   |                         |
|----------------------------------|-----------------------|-------------------|-------------------------|
| TEST DATA:                       |                       |                   |                         |
| Test run number                  | 1                     | 2                 | 3                       |
| Test location                    |                       | INCINERATOR STACK | ,                       |
| Test date                        | 06-10-93              | 06-11-93          | 06-12-93                |
| Test time period                 | 0745-1501             | 0710-1258         | 0756-1416               |
| FURAN LABORATORY REPORT DATA, 25 |                       |                   |                         |
| 2.3.7.8-TCDF                     | 0.020                 | 0000              |                         |
| 1,2,3,7,8 PeCDF                  | ND 0.020              | 0.020 NI          |                         |
| 2,3,4,7,8-PeCDF                  |                       | ND NI             |                         |
| 1.2.3.4.7.8 HxCDF                | ND                    | ND NI             |                         |
| 1,2,3,6,7,8+H;CDF                | 0.020                 | ND< 0.010 NI      |                         |
| 1,23,7,8,9-HxCDF                 | ND                    | ND NE             |                         |
| 23.4.6.7,8-HxCDF                 | ND .                  | ND NE             |                         |
| 1.2.3.4,6,7,8-HpCDF              | ND< 0.020             | 0.002 NE          |                         |
|                                  | 0.020                 | 0.010 NE          |                         |
| 1,2,3,4,7,8,9 HpCDF              | ND                    | ND NE             |                         |
| OCDF                             | ND                    | ND ND             | •                       |
| Total TCDF                       | 0.210                 | 0.310             | 0.470                   |
| Total PeCDF                      | 0.030                 | ND < 0.080 ND     | < 0.060                 |
| Total HxCDF                      | 0.032                 | 0.002 ND          | < 0.010                 |
| Total HpCDF                      | 0.020                 | 0.010 ND          | < 0.010                 |
| Total PCDF                       | 0.292                 | 0.322             | 0.470                   |
| FURAN CONCENTRATION, ppt/v       |                       |                   |                         |
| 2,3,7,8-TCDF                     | 3.99E-04              | 3.94E-04 ND       | < 2.00 <del>E-</del> 04 |
| 1.2.3,7,8 <del>-PeCDF</del>      | ND                    | ND ND             |                         |
| 2.3.4,7,8-PeCDF                  | ND                    | ND ND             |                         |
| 1.23,4,7,8 HxCDF                 | 3.26E-04              |                   | < 1.30E-04              |
| 1.2.3.6.7.8-H:CDF                | ND                    | ND ND             |                         |
| 1.2.3.7,8.9 HxCDF                | ND                    | ND ND             |                         |
| 2,3,4,6,7,8 <del>11x</del> CDF   | ND < 3.26E-04         |                   | < 1.63E-04              |
| 1.2.3.4,6.7,8-HpCDF              | 2.98E-04              |                   | < 1.49E-04              |
| 1,2.3,4,7.8,9-HpCDF              | ND                    | ND ND             | 1111201                 |
| OCDF                             | ND                    | ND ND             |                         |
| Total TCDF                       | 4.19E-03              | 6.11E-03          | 9,38E-03                |
| Total PeCDF                      | 5-38E-04              |                   | < 1.08E-03              |
| Total HxCDF                      | 5.21E-04              |                   | < 1.63E-04              |
| Total HpCDF                      | 2.98E-04              |                   | < 1.49E-04              |
| Total PCDF                       | 5.55E-03              | 6.29E-03          | 9.38E-03                |
| FURAN EMISSIONS, Ib/dacf         |                       |                   |                         |
| 2.3.7.8-TCDF                     | 3.17 <del>E-</del> 16 | 3.13E-16 ND       | < 1.58E-16              |
| 1.2.3.7.8 PeCDF                  | ND SIZE IS            | ND ND             | - 1-06-10               |
| 2,3,4,7,8-PeCDF                  | ND                    | ND ND             |                         |
| 1.2.3.4.7.8-HxCDF                | 3.17E-16              |                   | < 1.27E-16              |
| 1.2.3,6,7,8-HxCDF                | ND                    | ND ND             | - 12.2 IV               |
| 1.2.3.7.8.9-HxCDF                | ND                    | ND ND             |                         |
| 2.3.4.6.7,8-HxCDF                | ND < 3.17E-16         |                   | < 1.58E-16              |
| 1.2.3.4,6.7,8 HpCDF              | 3.17E-16              |                   | < 1.58E-16              |
| 1.2.3.4.7.8.9-HpCDF              | ND                    | ND ND             | - 1206-10               |
| OCDF                             | ND                    | ND ND             |                         |
| TotalTCDF                        | 3.33E-15              | 4.85E-15          | 7.45E-15                |
| Total PeCDF                      | 4.75E-16              |                   | < 9.51E-16              |
| Total HxCDF                      | 5.07 <del>E-</del> 16 |                   | < 1.58E-16              |
| Total HpCDF                      | 3.17E-16              |                   | < 1.58E-16              |
| Total PCDF                       | 4.63E-15              | 5.048-15          | 7.45E-15                |
|                                  |                       |                   |                         |

ND = Not detected in sample train.

ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

### RMA-SQI DENVER, COLORADO

### TRIAL BURN TEST PROGRAM

| TEST DATA:                       |      |           |     |            |       |           |
|----------------------------------|------|-----------|-----|------------|-------|-----------|
| Test run number                  |      | 1         | ,   | 2          |       | 3         |
| Test location                    |      |           | I   | NCINERATOR | STACK | •         |
| Test date                        |      | 06-10-93  |     | 06-11-93   |       | 06-12-93  |
| Test time period                 |      | 0745-1501 |     | 0710-1258  |       | 0756-1416 |
| FURAN CONCENTRATIONS, ug/dscm    |      |           |     |            |       |           |
| 2.3.7.8-TCDF                     |      | 5.08E-06  |     | 5.01E-06   | ND<   | 2.54E-06  |
| 1,2,3,7, <del>8 Pe</del> CDF     | ND   |           | ND  |            | ND    |           |
| 2,3.4.7.8-PeCDF                  | ND   |           | ND  |            | ND    |           |
| 1,2,3,4,7,8 HxCDF                |      | 5.08E-06  | ND< | 2.51E-06   |       | 2.03E-06  |
| 1,2,3,6,7,8 HxCDF                | ND   |           | ND  |            | ND    |           |
| 1,2,3,7,8,9 <del>-Hx</del> CDF   | ND   |           | ND  |            | ND    |           |
| 2,3,4,6,7,8-HxCDF                | ND < | 5.08E-06  |     | 5.01E-07   |       | 2.54E-06  |
| 1,2,3,4,6,7,8 <del>-Hp</del> CDF |      | 5.08E-06  |     | 2.51E-06   |       | 2.54E-06  |
| 1.2.3.4.7.8.9-HpCDF              | ND   |           | ND  |            | ND    |           |
| OCDF                             | ND   |           | ND  |            | ND    |           |
| TotalTCDF                        |      | 5.33E-05  |     | 7.77E-05   |       | 1.19E-04  |
| Total PeCDF                      |      | 7.62E-06  | ND< | 2.00E-05   | ND<   | 1.52E-05  |
| Total HxCDF                      |      | 8.12E-06  |     | 5.01E-07   |       | 2.54E-06  |
| Total HpCDF                      |      | 5.08E-06  |     | 2.51E-06   |       | 2.54E-06  |
| Total PCDF                       |      | 7.41E-05  |     | 8.07E-05   |       | 1.19E-04  |
| FURAN EMISSIONS, Ib/br           |      |           |     |            |       |           |
| 2.3,7,8-TCDF                     |      | 1.47E-10  |     | 1.49E-10   | ND<   | 7.32E-11  |
| 1.2.3.7.8-PeCDF                  | ND   |           | ND  |            | ND    |           |
| 2,3,4,7,8 <del>-Pe</del> CDF     | ND   |           | ND  |            | ND .  |           |
| 1,2,3,4,7,8-HxCDF                |      | 1.47E-10  | ND< | 7.47E-11   | ND<   | 5.85E-11  |
| 1,23,6,7,8 HkCDF                 | ND   |           | ND  | :          | ND    |           |
| 1.23,7,8,9-HaCDF                 | ND   |           | ND  |            | ND    |           |
| 2.3.4,6.7,8-HxCDF                | ND<  | 1.47E-10  |     | 1.49E-11   | ND<   | 7.32E-11  |
| 1,2,3,4,6,7,8 HpCDF              |      | 1.47E-10  |     | 7.47E-11   |       | 7.32E-11  |
| 1.2,3,4,7,8,9 HpCDF              | ND   |           | ND  |            | ND    |           |
| OCDF                             | ND   |           | ND  |            | ND    |           |
| TotalTCDF                        |      | 1.55E-09  |     | 2.32E-09   |       | 3.44E-09  |
| Total PeCDF                      |      | 2.21E-10  | ND< | 5.98E-10   | ND<   | 4.39E-10  |
| Total HxCDF                      |      | 2.36E-10  |     | 1.49E-11   |       | 7.32E-11  |
| Total HpCDF                      |      | 1.47E-10  |     | 7.47E-11   |       | 7.32E-11  |
| Total PCDF                       |      | 2.15E-09  |     | 2.41E-09   |       | 3.44E-09  |

ND = Not detected in sample train.
ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

### RMA-SQI DENVER, COLORADO

### TRIAL BURN TEST PROGRAM

| TEST DATA                                        |     |            |     |            |       |           |
|--------------------------------------------------|-----|------------|-----|------------|-------|-----------|
| Test run number                                  |     | 1          |     | 2          |       | 3         |
| Test location                                    |     |            | INC | INERATOR S | STACK | -         |
| Test date                                        |     | 06-10-93   |     | 06-11-93   |       | 06-12-93  |
| Test time period                                 |     | 0745-1501  |     | 0710-1258  |       | 0756-1416 |
| TOXICITY EQUIVALENCY EMISSIONS (FTEFs/89), Ib/hr |     |            |     |            |       |           |
| 2.3.7.8-TCDD                                     | ND  |            | ND  |            | ND    |           |
| 1.2.3.7.8-PeCDD                                  | ND  |            | ND  |            | ND    | . "       |
| 1.2.3,4.7,8-HxCDD                                | ND  |            | ND  |            | ND    |           |
| 1.2.3.6.7.8-HxCDD                                | ND  |            | ND  |            | ND    |           |
| 1,2,3,7,8,9-HxCDD                                | ND  |            | ND  |            | ND    |           |
| 1,2,3,4,6,7,8 <del>-Hp</del> CDD                 |     | 1.47E-12   |     | 1.49E-12   | 140   | 1.46E-12  |
| OCDD                                             |     | 2.95E-13   |     | 2.24E-13   |       | 5.12E-13  |
| TotalTCDD                                        |     |            |     |            |       |           |
| Total PeCDD                                      |     | 0.0        |     | 0.0        |       | 0.0       |
| Total HxCDD                                      |     | 0.0        |     | 0.0        |       | 0.0       |
|                                                  |     | 0.0        |     | 0.0        |       | 0.0       |
| Total HpCDD                                      |     | 0.0        |     | 0.0        |       | 0.0       |
| 2.3,7,8-TCDF                                     |     | 1.47E-11   |     | 1.49E-11   | ND-   | 7.32E-12  |
| 1.2,3,7,8-PeCDF                                  | ND  |            | ND  | 1.472 11   | ND ND | 1345-12   |
| 2.3.4.7.8 <del>-Pe</del> CDF                     | ND  |            | ND  |            | ND    |           |
| 1,2,3,4,7,8-HxCDF                                |     | 1.47E-11   |     | 7.47E-12   |       | 5.85E-12  |
| 1,2,3,6,7,8 HkCDF                                | ND  |            | ND  |            | ND ND | J.6JE-12  |
| 1.2.3.7.8.9 HxCDF                                | ND  |            | ND  |            | ND    |           |
| 23,4,6.7,8 <del>11x</del> CDF                    | ND< | 1.47E-11   |     | 1.49E-12   |       | 7.32E-12  |
| 1,2,3,4,6,7,8 HpCDF                              |     | 1.47E-12   |     | 7.47E-13   |       | 7.32E-13  |
| 1,2,3,4,7,8,9 <del>-Hp</del> CDF                 | ND  |            | ND  |            | ND    | ,022 13   |
| 1,2,3,4,6,7,8,9-OCDF                             | ND  |            | ND  |            | ND    |           |
| Total TCDF                                       |     | 0.0        |     |            |       |           |
| Total PeCDF                                      |     | 0.0        |     | 0.0        |       | 0.0       |
| Total HxCDF                                      |     | 0.0        |     | 0.0        |       | 0.0       |
| Total HpCDF                                      |     | 0.0<br>0.0 |     | 0.0        |       | 0.0       |
|                                                  |     | 0.0        |     | 0.0        |       | 0.0       |
| TOTAL 2,3,7,8-TCDD EQUIVALENTS, Ib/lat           |     | 3.27E-11   |     | 1.74E-11   |       | 1.98E-12  |
|                                                  |     |            |     |            |       |           |

ND = Not detected in sample train.
ND <= Either not detected in sample train and quantified in another test run or test run values were less than blank train values and the detection limit is reported.

| TEST DATA                              |               |           |    |           |         |                       |
|----------------------------------------|---------------|-----------|----|-----------|---------|-----------------------|
| Test run number                        |               | 1         |    | 2         |         | 3                     |
| Test location                          |               | _         | т  | NCINERATO | D STACK | 3                     |
| Test date                              |               | 06-10-93  | •  | 06-11-93  | KOIACA  | 06 <del>-12-9</del> 3 |
| Test time period                       |               | 0745-1501 |    | 0710-1258 |         | 0756-1416             |
| TOXICITY EQUIVALENCY EMISSIONS (I-TERS | /89), ug/dscm |           |    |           |         |                       |
| 2.3,7,8-TCDD                           | ND            |           | ND |           | ND      |                       |
| 1.2.3.7,8-PeCDD                        | ND            |           | ND |           | ND      | . *                   |
| 1,2,3,4,7,8-HxCDD                      | ND            |           | ND |           | ND      |                       |
| 1.2.3.6.7.8-HxCDD                      | ND            |           | ND |           | ND      |                       |
| 1.2.3,7,8,9-HxCDD                      | ND            |           | ND |           | ND      |                       |
| 1.2.3.4.6,7,8-HpCDD                    |               | 5.08E-08  |    | 5.01E-08  | NU      | 5.08E-08              |
| 1.23,4.6,7,8,9-OCDD                    |               | 1.02E-08  |    | 7.52E-09  |         | 1.78E-08              |
| Total TCDD                             |               | 0.0       |    | 0.0       |         |                       |
| Total PeCDD                            |               | 0.0       |    | 0.0       |         | 0.0                   |
| Total HxCDD                            |               | 0.0       |    | 0.0       |         | 0.0                   |
| Total HpCDD                            |               | 0.0       |    | 0.0       |         | 0.0                   |
|                                        |               | 0.0       |    | 0.0       |         | 0.0                   |
| 2.3,7,8-TCDF                           |               | 5.08E-07  |    | 5.01E-07  | ND <    | 2.54E-07              |
| 1,2.3,7,8-PeCDF                        | ND            |           | ND | 2.022 07  | ND      | 2242-07               |
| 2,3,4,7,8-PeCDF                        | ND            |           | ND |           | ND      |                       |
| 1.2.3.4.7.8-HxCDF                      |               | 5.08E-07  |    | 2.51E-07  |         | 2.03E-07              |
| 1,2,3,6,7,8-HxCDF                      | ND            |           | ND |           | ND      | 2.002-07              |
| 1.2.3,7.8,9-HxCDF                      | ND            |           | ND |           | ND      |                       |
| 2.3.4.6.7.8 HxCDF                      | ND<           | 5.08E-07  |    | 5.01E-08  |         | 2.54E-07              |
| 1.2.3.4.6.7.8 HpCDF                    |               | 5.08E-08  |    | 2.51E-08  |         | 2.54E-08              |
| 1.2.3,4,7.8,9-HpCDF                    | ND            |           | ND |           | ND      |                       |
| 1.2.3,4,6,7,8,9-OCDF                   | ND            |           | ND |           | ND      |                       |
| Total TCDF                             |               | 0.0       |    | 0.0       |         | 0.0                   |
| Total PeCDF                            |               | 0.0       |    | 0.0       |         | 0.0                   |
| Total HxCDF                            |               | 0.0       |    | 0.0       |         | 0.0                   |
| Total HpCDF                            |               | 0.0       |    | 0.0       |         | 0.0                   |
| TOTAL 23,7,8-TCDD EQUIVALENTS, ng/dscm |               | 1.13E-06  |    | 5.84E-07  |         | 6.85E-08              |

ND = Not detected in sample train.
ND <= Either not detected in sample train and quantified in another test run, or test run values were less than blank train values and the detection limit is reported.

### SUMMARY OF METALS TEST DATA AND TEST RESULTS

| TEST DATA                                           |               |                       |                       |
|-----------------------------------------------------|---------------|-----------------------|-----------------------|
| Test run number                                     | 1             | 2                     | 3                     |
| Test location                                       |               | INCINERATOR STACK     |                       |
| Test date                                           | 06-10-93      | 06 <del>-11-9</del> 3 | 06 <del>-12-9</del> 3 |
| Test time period                                    | 0745-1032     | 0710-0953             | 0756-1101             |
| SAMPLING DATA                                       | •             |                       |                       |
| Sampling duration, min.                             | 120.0         | 120.0                 | 120.0                 |
| Nozzle diameter, in.                                | 0.375         | 0.375                 | 0.375                 |
| Barometric pressure, in. Hg                         | 24.79         | 24.57                 | 24.62                 |
| Avg. orifice press. diff., in H <sub>2</sub> O      | 1.75          | 1.70                  | -1.77                 |
| Avg. dry gas meter temp., deg F                     | 78.50         | 81.63                 | 80.69                 |
| Avg. abs. dry gas meter temp., deg. R               | 539           | 542                   | 541                   |
| Total liquid collected by train, ml                 | 2735.0        | 2636.0                | 2526.0                |
| Std. vol. of H <sub>2</sub> O vapor coll., cu.ft.   | 128.7         | 124.1                 | 118.9                 |
| Dry gas meter calibration factor                    | 1.001         | 1.001                 | 1.001                 |
| Sample vol. at meter cond., dcf                     | 91.757        | 91.638                | 92.469                |
| Sample vol. at std. cond., dscf (1)                 | 74.974        | 73.777                | 74.742                |
| Percent of isokinetic sampling                      | 100.2         | 98.6                  | 94.7                  |
| GAS STREAM COMPOSITION DATA                         |               |                       |                       |
| CO <sub>2</sub> , % by volume, dry basis            | 10.1          | 9.9                   | 10.1                  |
| O2, % by volume, dry basis                          | 3.4           | 3.5                   | 3.6                   |
| CO, % by volume, dry basis                          | 0.0           | 0.0                   | 0.0                   |
| N <sub>2</sub> , % by volume, dry basis             | 86.5          | 86.6                  | 86.4                  |
| Molecular wt. of dry gas, lb/lb mole                | 29.8          | 29.7                  | 29.8                  |
| H <sub>2</sub> O vapor in gas stream, prop. by vol. | 0.632         | 0.627                 | 0.614                 |
| Mole fraction of dry gas                            | 0.368         | 0.373                 | 0.386                 |
| Molecular wt. of wet gas, ib/lb mole                | 22.3          | 22.4                  | 22.5                  |
| GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA        |               |                       |                       |
| Cross sectional nozzle area, sq.ft.                 | 0.000767      | 0.000767              | . 0.000767            |
| Static pressure, in. H <sub>2</sub> O               | -0.13         | -0.15                 | -0.17                 |
| Static pressure, in. Hg                             | -0.010        | -0:011                | -0.013                |
| Absolute pressure, in. Hg                           | 24.78         | 24.56                 | 24.61                 |
| Avg. temperature, deg. F                            | 185           | 184                   | 183                   |
| Avg. absolute temperature, deg.R                    | 645           | 644                   | 643                   |
| Pitot tube coefficient                              | 0.84          | 0.84                  | 0.84                  |
| Total number of traverse points                     | 30            | 30                    | 30                    |
| Avg. gas stream velocity, ft./sec.                  | <b>54.3</b> / | 54.0                  | 54.9                  |
| Stack/duct cross sectional area, sq.ft.             | 9.62          | 9.62                  | 9.62                  |
| Avg. gas stream volumetric flow, wacf/min.          | 31300         | 31200                 | 31700                 |
| Avg. gas stream volumetric flow, dscf/min. (1)      | 7800          | 78 <b>00</b>          | 8300                  |

 $<sup>^{(1)}</sup>$  Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

### RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 5–5 (cont)

## TABLE 5-5 (cont) SUMMARY OF METALS TEST DATA AND TEST RESULTS

| TEST DATA                                    |               |                                                |             | 2                        |      | •                    |
|----------------------------------------------|---------------|------------------------------------------------|-------------|--------------------------|------|----------------------|
| Test run number Test location                |               | 1                                              | TATOTA      | 2<br>TCD ATYOD STACE     |      | 3                    |
| Test date                                    |               | 06-10-93                                       | INCIN       | ERATOR STACK<br>06-11-93 |      | 06-12-93             |
| Test time period                             |               | 0745-1032                                      |             | 0710-0953                |      | 0756-1101            |
| rest and period                              |               | 0743 1032                                      | •           | 0710 0755                |      | 0750 1101            |
| METALS LABORATORY REPORT DATA, ug            |               |                                                |             |                          |      |                      |
| Antimony (Sb)                                |               | 10.40                                          |             | 11.25                    |      | 11.20                |
| Arsenic (As)                                 | ND <          |                                                |             | 11.40                    | ND < |                      |
| Barium(Ba)                                   | ND<           |                                                | <b></b>     | 38.50                    | ND < |                      |
| Beryllium(Be)<br>Cadmium (Cd)                | ND<           | 2.06<br>1.65                                   | ND <        |                          | ND < |                      |
| Chromium (Cr)                                | ND<           |                                                | TID <       | 2.83                     | ND<  |                      |
| Copper(Cu)                                   | 10            | 3808.80                                        |             | 4319.20                  |      | 3666.00              |
| Lead (Pb)                                    |               | 56.25                                          |             | 62.30                    |      | 55.05                |
| Mercury (Hg)                                 |               | 124.57                                         |             | 109.22                   |      | 143.88               |
| Nickel (Ni)                                  | ND <          | 16.10                                          |             | 7.20                     | ND < | 16.10                |
| Selenium(Se)                                 | ND <          |                                                | ND<         |                          | ND < | 40.30                |
| Silver(Ag)                                   | <b>N</b> TD - | 3.25                                           | ND<         |                          | ND<  | 4.00                 |
| Thallium(TI)                                 | ND <          |                                                | ND <        | 33.50<br>2.35            | ND < | 40.30<br>20.10       |
| Vanadium(V) Zino(Zn)                         | ND            | 522.20                                         |             | 981.65                   | NDC  | 1038.35              |
|                                              |               | 022.20                                         |             | 501.00                   |      | 100000               |
| METALS CONCENTRATIONS, ug/m <sup>3</sup> (1) |               |                                                |             |                          |      |                      |
| Antimony (Sb)                                |               | 4.90                                           |             | 5.38                     |      | 5.29                 |
| Arsenic (As)                                 | ND <          | 18.98                                          |             | 5.46                     | ND < | 19.04                |
| Barium(Ba)                                   | ND <          | 37.96                                          | NTO «       | 18.43                    | ND<  | 38.03                |
| Beryllium(Be)                                | ND<           | 0.97<br>0.78                                   | ND <        | 0.19<br>0.94             | ND < | 0.97<br>0.97         |
| Cadmium (Cd) Chromium (Cr)                   | ND<           | 1.88                                           | NDC         | 1.35                     | ND<  | 1.89                 |
| Copper(Cu)                                   |               | 1793.85                                        |             | 2067.22                  |      | 1731.95              |
| Lead (Pb)                                    |               | 26.49                                          |             | 29.82                    |      | 26.01                |
| Mercury (Hg)                                 |               | 58.67                                          |             | 52.27                    |      | 67.97                |
| Nickel (Ni)                                  | ND<           | 7.58                                           |             | 3.45                     | ND < | 7.61                 |
| Selenium(Se)                                 | ND <          | 18.98                                          | ND <        | 10.63                    | ND < | 19.04                |
| Silver(Ag)                                   | .m.           | 1.53                                           | ND<         | 1.72                     | ND<  | 1.89                 |
| Thallium(T1)  Vanadium(V)                    | ND <          | 18.98<br>9.47                                  | ND<         | 16.03<br>1.12            | ND < | 19.04<br>9.50        |
| Zinc(Zn)                                     | THE C         | 245.94                                         |             | 469.83                   | MD < | 490.55               |
|                                              |               |                                                |             |                          |      |                      |
| METALS CONCENTRATIONS, Ib/dscf (1)           |               |                                                |             |                          |      |                      |
| Antimony (Sb)                                |               | 3.06E-10                                       |             | 3.36E-10                 |      | 3.30E-10             |
| Arsenic (As)                                 |               | 1.19E-09                                       |             | 3.41E-10                 |      | 1.19E-09             |
| Barium(Ba)<br>Beryllium(Be)                  |               | 2.37E-09<br>6.06E-11                           | ND-         | 1.15E-09<br>1.20E-11     |      | 2.37E-09             |
| Cadmium (Cd)                                 | ND.           | 4.85E-11                                       |             | 5.86E-11                 |      | 6.08E-11<br>6.08E-11 |
| Chromium (Cr)                                | ND<           | 1.18E-10                                       |             | 8.46E-11                 |      | 1.18E-10             |
| Copper(Cu)                                   |               | 1.12E-07                                       |             | 1.29E-07                 |      | 1.08E-07             |
| Lead (Pb)                                    |               | 1.65E-09                                       |             | 1.86E-09                 |      | 1.62E-09             |
| Mercury (Hg)                                 |               | 3.66E-09                                       |             | 3.26E-09                 |      | 4.24E-09             |
| Nickel (Ni)                                  |               | 4.73E-10                                       | <b>ND</b> 4 | 2.15E-10                 |      | 4.75E-10             |
| Selenium(Se)                                 | ND<           | 1.19 <del>E-</del> 09<br>9.56 <del>E-</del> 11 |             | 6.63E-10<br>1.08E-10     |      | 1.19E-09<br>1.18E-10 |
| Silver(Ag)<br>Thallium(TI)                   | ND<           | 1.19E-09                                       |             | 1.00E-09                 |      | 1.19E-09             |
| Vanadium(V)                                  |               | 5.91E-10                                       |             | 7.02E-11                 |      | 5.93E-10             |
| Zinc(Zn)                                     |               | 1.54E-08                                       |             | 2.93E-08                 |      | 3.06E-08             |
| 43                                           |               |                                                |             |                          |      |                      |
| METALS CONCENTRATIONS, Ib/hr (1)             |               |                                                |             |                          |      |                      |
| Antimony (Sb)                                | <b>N</b> TO - | 1.44E-04                                       |             | 1.58E-04                 |      | 1.64E-04             |
| Arsenic (As)<br>Barium(Ba)                   |               | 5.56E-04<br>1.11E-03                           |             | 1.60E-04<br>5.40E-04     |      | 5.89E-04<br>1.18E-03 |
| Beryllium(Be)                                |               | 2.84E-05                                       | ND <        | 5.61E-06                 |      | 3.01E-05             |
| Cadmium (Cd)                                 |               | 2.28E-05                                       |             | 2.75E-05                 |      | 3.01E-05             |
| Chromium (Cr)                                | ND<           | 5.52E-05                                       |             | 3.97E-05                 |      | 5.84E-05             |
| Copper(Cu)                                   |               | 5.26E-02                                       |             | 6.06E-02                 |      | 5.35E-02             |
| Lead (Pb)                                    |               | 7.76E-04                                       |             | 8.74E-04                 |      | 8.04E-04             |
| Mercury (Hg)                                 |               | 1.72E-03                                       |             | 1.53E-03                 |      | 2.10E-03             |
| Nickel (Ni)                                  |               | 2.22E-04                                       | ATT:        | 1.01E-04                 |      | 2.35E-04             |
| Selenium(Se)<br>Silver(Ag)                   | ND<           | 5.56E-04<br>4.49E-05                           |             | 3.11E-04<br>5.05E-05     |      | 5.89E-04<br>5.84E-05 |
| Thallium(Tl)                                 | ND<           | 5.56E-04                                       |             | 4.70E-04                 |      | 5.89E-04             |
| Vanadium(V)                                  |               | 2.77E-04                                       |             | 3.30E-05                 |      | 2.94E-04             |
| Zinc(Zn)                                     |               | 7.21E-03                                       |             | 1.38E-02                 |      | 1.52E-02             |
|                                              |               |                                                |             |                          |      |                      |

 $<sup>^{(1)}</sup>$  Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

### SUMMARY OF HEXAVALENT CHROMIUM TEST DATA AND TEST RESULTS

| TEST DATA:                                          |           |                   |                                                 |
|-----------------------------------------------------|-----------|-------------------|-------------------------------------------------|
| Test run number                                     | 1         | 2                 | •                                               |
| Test location                                       | •         | INCINERATOR STACK | 3                                               |
| Test date                                           | 06-10-93  | 06-11-93          | 06.40.00                                        |
| Test time period                                    | 1130-1552 | 1034-1341         | 06 <del>-12-9</del> 3<br>1137 <del>-</del> 1440 |
|                                                     |           | 1054 1541         | 1137-1440                                       |
| SAMPLING DATA:                                      |           |                   |                                                 |
| Sampling duration, min.                             | 120.0     | 120.0             | 120.0                                           |
| Nozzle diameter, in.                                | 0.354     | 0.354             | 0.354                                           |
| Cross sectional nozzle area, sq.ft.                 | 0.000683  | 0.000683          | 0.000683                                        |
| Barometric pressure, in. Hg                         | 24.79     | 24.57             | 24.62                                           |
| Avg. crifice press. diff., in H <sub>2</sub> O      | 1.27      | 1.32              | 1.33                                            |
| Avg. dry gas meter temp., deg F                     | . 88      | 86                | 88                                              |
| Avg. abs. dry gas meter temp., deg. R               | 548       | 546               | 548                                             |
| Total liquid collected by train, ml                 | 2313.0    | 2347.0            | 2297.0                                          |
| Std. vol. of H <sub>2</sub> O vapor coll., cu.ft.   | 108.9     | 110.5             | 108.1                                           |
| Dry gas meter calibration factor                    | 0.9923    | 1.0010            | 0.9923                                          |
| Sample vol. at meter cond., dcf                     | 79.721    | 80.888            | 82,397                                          |
| Sample vol. at std. cond., dscf (1)                 | 63.388    | 64.492            | 65.008                                          |
| Percent of isokinetic sampling                      | 102.4     | 98.4              | 100.0                                           |
| GAS STREAM COMPOSITION DATA:                        |           |                   | 100.0                                           |
|                                                     |           |                   |                                                 |
| $\infty_2$ , % by volume, dry basis                 | 10.1      | 9.9               | 10.2                                            |
| O <sub>2</sub> , % by volume, dry basis             | 3.4       | . 3.5             | 3.4                                             |
| CO, % by volume, dry basis                          | 0.0       | 0.0               | 0.0                                             |
| N <sub>2</sub> , % by volume, dry basis             | 86.5      | 86.6              | 86.4                                            |
| Molecular wt. of dry gas, lb/lb mole                | 29.75     | 29.73             | 29.76                                           |
| H <sub>2</sub> O vapor in gas stream, prop. by vol. | 0.632     | 0.631             | 0.625                                           |
| Mole fraction of dry gas                            | 0.368     | 0.369             | 0.375                                           |
| Molecular wt. of wet gas, ib/lb mole                | 22.3      | 22.3              | 22.4                                            |
| GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:       |           | :                 |                                                 |
| Static pressure, in. H <sub>2</sub> O               | -0.24     | -0.20             | -0.18                                           |
| Static pressure, in. Hg                             | -0.018    | -0.015            | -0.013                                          |
| Absolute pressure, in. Hg                           | 24.77     | 24.56             | 24.61                                           |
| Avg. temperature, deg. F                            | 183       | 182               | 182                                             |
| Avg. absolute temperature, deg.R                    | 643       | 642               | 642                                             |
| Pitot tube coefficient                              | 0.84      | 0.84              | 0.84                                            |
| Total number of traverse points                     | 12        | 12                | 12                                              |
| Avg. gas stream velocity, ft./sec.                  | 50.3      | 53.6              | 52.0                                            |
| Stack/duct cross sectional area, sq.ft.             | 9.62      | 9.62              | 9.62                                            |
| Avg. gas stream volumetric flow, wacf/min.          | 29000.    | 30900             | 30000                                           |
| Avg. gas stream volumetric flow, dsc5/min.          | 7300      | 7700              | 7600                                            |
| LABORATORY REPORT:                                  |           |                   |                                                 |
| Total Cr <sup>+6</sup> catch, ug                    | 0.37 B    | 0.07 B            |                                                 |
|                                                     | U.5/ B    | 0.07 B            | < 0.80 BC                                       |
| HEXAVALENT CHROMIUM EMISSIONS:                      |           |                   |                                                 |
| Concentration, ug/dscm                              | 0.206     | 0.038             | < 0.435                                         |
| Mass rate, lbs/hr                                   | 5.61E-06  | 1.10E-06          | < 1.24E-05                                      |
|                                                     |           |                   |                                                 |

<sup>(1)</sup> Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg)

<sup>&</sup>lt; = Not detected in sample train.

B = Detected in site blank: reported values have been blank corrected.

BC = Detected in site blank; test run values were less than site blank values; detection limit is reported.

Table 5-7
CO, CO<sub>2</sub>, O<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, THC and HCl Emission Results

| Parameter                              | Run #1    | Run #2    | Run #3    | Average   |
|----------------------------------------|-----------|-----------|-----------|-----------|
| Carbon Monoxide<br>(1-hr rolling avg.) | 49.5 ppm  | 47.4 ppm  | 57.6 ppm  | 51.5 ppm  |
| Carbon Dioxide                         | 10.14%    | 9.74%     | 10.29%    | 10.06%    |
| Oxygen                                 | 3.37%     | 3.74%     | 3.40%     | 3.50%     |
| Sulfur Dioxide                         | 20.7 ppm  | 1.13 ppm  | 145 ppm   | 55.6 ppm  |
| Nitrogen Oxides                        | 119.2 ррт | 142.0 ppm | 130.7 ppm | 130.6 ppm |
| Hydrogen Chloride                      | 1.74 ppm  | 2.07 ppm  | 3.70 ppm  | 2.50 ppm  |
| Total Hydrocarbons                     | 5.53 ppm  | 9.61 ppm  | 5.06 ppm  | 6.73 ppm  |

Table 5-8

Summary of Analytical Results for Basin F Waste Feed (LF)

| Parameter <sup>a</sup>                 | Run #1              | Run #2                 | Run #3              |
|----------------------------------------|---------------------|------------------------|---------------------|
|                                        |                     | 1 3,46 // 2            | 2.33116.7782        |
| Volatile Organics <sup>b</sup>         | 4550                |                        |                     |
| • Chloromethane (ug/L)                 | 1750                | 1,350                  | 1,550               |
| Methylene Chloride (ug/L)              | 410 B°              | 41 B                   | 82.5 B              |
| • Acetone (ug/L)                       | 3100 B <sup>c</sup> | 2,700 B                | 4,000 B             |
| • 2-Butanone (ug/L)                    | <250 <sup>d</sup>   | 165                    | 130 J               |
| • Toluene (ug/L)                       | ND                  | <50 <sup>d</sup>       | <50 <sup>d</sup>    |
| Dimethyldisulfide (ug/L)               | <120 <sup>d</sup>   | 18.5 J                 | 32 J                |
| Semivolatile Organics                  | ND                  | ND                     | ND                  |
| <u>Pesticides</u>                      |                     |                        |                     |
| • Mevinphos (ug/L)                     | ND                  | 170                    | 150                 |
| • Diazinon (ug/L)                      | ND                  | 6.9                    | 6.3                 |
| • Methyl Parathion (ug/L)              | 4.7                 | 22                     | 19                  |
| • Ronnel (ug/L)                        | 4.6                 | 4.3                    | 3.6 J               |
| • Fenthion (ug/L)                      | 23                  | 18                     | 12                  |
| • Ethyl Parathion (ug/L)               | ND                  | 14                     | 11                  |
| • Merphos (ug/L)                       | ND                  | 3.8 J                  | 37                  |
| • Azinphos Methyl (ug/L)               | 2.5 J               | ND                     | ND                  |
| • Tokuthion (ug/L)                     | 2.6                 | 4.7                    | 5.5                 |
| • Aldrin (ug/L)                        | 55                  | 52                     |                     |
| • Dieldrin (ug/L)                      | 51                  | 45                     | 89                  |
| • Endrin (ug/L)                        | 48                  | 43                     | 86                  |
| • Endrin (ug/L) • Endrin ketone (ug/L) | 2.0                 | ND                     | 72                  |
|                                        | 2.0                 | ND                     | 2.9                 |
| Halides                                |                     |                        |                     |
| • Bromide (mg/L)                       | 999                 | 1,010                  | 1,060               |
| • Chloride (mg/L)                      | 153,000             | 162,000                | 167,000             |
| • Fluoride (mg/L)                      | 2,220               | 2,500                  | 2;450               |
| Sulfate (mg/L)                         | 18,000              | 18,500                 | 19,300              |
| Density (g/mL)                         | 1.20                | 1.20                   | 1.20                |
| Heating Value                          | S                   | Sample did not ignite. |                     |
| Dioxins/Furans                         |                     |                        |                     |
| • 1234678-HpCDD (ppq)                  | ND                  | 292                    | 204                 |
| • OCDD (ppq)                           | ND                  | 2,320                  | 1,580               |
| • 123478-HxCDF (ppq)                   | ND ND               | 2,520<br>ND            | 58.2                |
| • 123678-HxCDF (ppq)                   | ND<br>ND            | ND<br>ND               | 26.8                |
| • 234678-HxCDF (ppq)                   | ND ND               | 90.3                   |                     |
| • 1234678-HpCDF (ppq)                  | ND<br>ND            |                        | (76.4) <sup>e</sup> |
| • OCDF (ppq)                           | ND<br>ND            | (120)°                 | 213                 |
| CCDI (ppq)                             | עויו                | 326                    | 766                 |
|                                        |                     |                        |                     |

Table 5-8

Summary of Analytical Results for Basin F Waste Feed (LF) (Continued)

| Parameter*                          | Run #1  | Run #2  | Run #3  |
|-------------------------------------|---------|---------|---------|
| Dioxins/Furans (continued)          |         |         |         |
| • TOTAL TCDD (ppq)                  | ND      | (80.6)° | ND      |
| • TOTAL HpCDD (ppq)                 | ND      | 292     | 440     |
| • TOTAL TCDF (ppq)                  | ND      | (70.6)° | 76.4    |
| • TOTAL PeCDF (ppq)                 | 519     | 273     | 112     |
| • TOTAL HxCDF (ppq)                 | ND      | 88.1    | 143     |
| • TOTAL HpCDF (ppq)                 | ND      | (153)e  | 367     |
| Metals                              |         |         |         |
| • Antimony (mg/L)                   | ND      | ND      | ND      |
| • Arsenic (mg/L)                    | 3.1     | 2.5     | 2.6     |
| Barium (mg/L)                       | ND      | ND      | ND      |
| Beryllium (mg/L)                    | ND      | ND      | ND      |
| • Cadmium (mg/L)                    | ND      | ND      | ND      |
| • Chromium (mg/L)                   | 1.5     | 1.7     | ND      |
| • Copper (mg/L)                     | 3,420   | 3,550   | 64.9    |
| <ul><li>Lead (mg/L)</li></ul>       | 0.48    | 1.84    | 0.65    |
| <ul> <li>Mercury (mg/L)</li> </ul>  | 0.14    | 0.13    | 0.13    |
| • Nickel (mg/L)                     | 32.0    | 33.2    | 33.9    |
| • Lead (mg/L)                       | 0.36    | ND      | 19.0    |
| • Selenium (mg/L)                   | 19.4    | 19.4    | ND      |
| • Silver (mg/L)                     | ND      | ND      | ND      |
| <ul><li>◆ Thallium (mg/L)</li></ul> | ND      | ND      | ND      |
| <ul><li>Vanadium (mg/L)</li></ul>   | 1.2     | ND      | ND      |
| • Zinc (mg/L)                       | 26.6    | 22.6    | 21.9    |
| Ash Content (%)                     | 46.5    | 46.4    | 45.3    |
| pH                                  | 6.2     | 6.0     | 6.1     |
| Water Content (%)                   | 65.4    | 64.8    | 63.5    |
| Total Suspended Solids (mg/L)       | 25      | 144     | 95      |
| Total Dissolved Solids (mg/L)       | 270,000 | 210,000 | 271,000 |

<sup>&</sup>lt;sup>a</sup>Analytes not listed were reported as non-detects.

<sup>&</sup>lt;sup>b</sup>Average reported value of two grab samples taken at beginning and end of each test run.

<sup>&</sup>quot;The "B" flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

<sup>&</sup>lt;sup>d</sup>The average value for the two grab samples was less than the highest detection limit value.

<sup>()</sup> indicates the estimated maximum possible concentration.

Table 5-9
Summary of Analytical Results for POHC Analysis

| Parameter                                                     | Run #1 | Run #2 | Run #3 |
|---------------------------------------------------------------|--------|--------|--------|
| POHC - Chlorobenzene • Grab Sample 1 • Grab Sample 2          | 92%    | 94%    | 92%    |
|                                                               | 94%    | 93%    | 92%    |
| POHC - Carbon Tetrachloride  • Grab Sample 1  • Grab Sample 2 | 95%    | 93%    | 91%    |
|                                                               | 95%    | 73%*   | 93%    |

<sup>\*</sup>A significant concentration of chlorobenzene was found in this analysis; sampling technique error suspected.

Table 5-10
Summary of Analytical Results for Makeup Water (MW)

| Parameter <sup>a</sup>                                                                                                                                                                                                                                          |                                                               | Runs #1, 2, 3                                                                          |                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|
| Volatile Organics  Methylene Chloride (ug/L)  Acetone (ug/L)  Chloroform (ug/L)  Bromodichloromethane (ug/L)  Dibromochloromethane (ug/L)  Bromoform (ug/L)                                                                                                     | Run 1<br>13 B <sup>c</sup><br>ND<br>30<br>6<br>0.7 J<br>0.7 J | Run 2<br>3 J<br>ND<br>41<br>8<br>ND<br>ND                                              | Run 3<br>10 B<br>3 J<br>32<br>7<br>2 J<br>ND |
| Semivolatile Organics <sup>b</sup> • Di-n-Butylphthalate (ug/L)  • bis(2-Ethylhexyl)phthalate (ug/L)                                                                                                                                                            |                                                               | 1 JB<br>1 JB                                                                           |                                              |
| Pesticides <sup>b</sup>                                                                                                                                                                                                                                         |                                                               | ND                                                                                     |                                              |
| Dioxins/Furans <sup>b</sup> OCDD (ppq) 123478-HxCDF (ppq) 123678-HxCDF (ppq) 234678-HxCDF (ppq) 1234678-HpCDF (ppq) CCDF (ppq) TOTAL TCDD (ppq) TOTAL HxCDF (ppq) TOTAL HyCDF (ppq)                                                                             |                                                               | (32.0) <sup>d</sup> (3.6) <sup>d</sup> 2.6 8.7 10.5 68.9 (13.0) <sup>d</sup> 11.8 13.4 |                                              |
| Metals <sup>b</sup> Antimony (ug/L)  Arsenic (ug/L)  Barium (ug/L)  Beryllium (ug/L)  Cadmium (ug/L)  Chromium (ug/L)  Copper (ug/L)  Lead (ug/L)  Mercury (ug/L)  Nickel (ug/L)  Selenium (ug/L)  Silver (ug/L)  Thallium (ug/L)  Vanadium (ug/L)  Zinc (ug/L) |                                                               | ND 3.0 ND 1.9 ND ND 19.3 ND                        |                                              |
| Total Halides <sup>b</sup> • Chloride (mg/L)                                                                                                                                                                                                                    |                                                               | 30.4                                                                                   |                                              |

<sup>&</sup>lt;sup>a</sup>Analytes not listed were reported as non-detects.

bThe three test runs were composited into one sample for analysis.

<sup>&</sup>quot;The "B" flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

d() indicates the estimated maximum possible concentration.

Table 5-11
Summary of Analytical Results for Caustic Solution (CS)

| Parameter <sup>a</sup> Runs #1,2,3 <sup>b</sup>                                                                                                                                                                                                                                                                      |                           |                                                                                                                                                                                                             |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Volatile Organics  • Methylene Chloride (ug/L)  • Acetone (ug/L)                                                                                                                                                                                                                                                     | Run 1<br>160 B°<br>110 B° | Run 2<br>160 B<br>91 J                                                                                                                                                                                      | Run 3<br>160 B<br>63 J |
| Semivolatile Organics                                                                                                                                                                                                                                                                                                |                           | ND                                                                                                                                                                                                          |                        |
| Pesticides                                                                                                                                                                                                                                                                                                           |                           | ND                                                                                                                                                                                                          |                        |
| Dioxins/Furans <sup>d</sup> 123478-HxCDD (ppq)  123678-HxCDD (ppq)  123789-HxCDD (ppq)  OCDD (ppq)  23478-PeCDF (ppq)  123478-HxCDF (ppq)  123678-HxCDF (ppq)  234678-HxCDF (ppq)  TOTAL TCDD (ppq)  TOTAL TCDD (ppq)  TOTAL PeCDF (ppq)  TOTAL HxCDF (ppq)  TOTAL HxCDF (ppq)  TOTAL HxCDF (ppq)  TOTAL HxCDF (ppq) |                           | (33.3) <sup>d</sup> (29.7) <sup>d</sup> (41.0) <sup>d</sup> (94.4) <sup>d</sup> (29.3) <sup>d</sup> 29.9 (24.0) <sup>d</sup> 70.4 28.6 (75.8) <sup>d</sup> (103) <sup>d</sup> (29.6) <sup>d</sup> 95.6 36.7 |                        |
| • Antimony (ug/L) • Arsenic (ug/L) • Barium (ug/L) • Beryllium (ug/L) • Cadmium (ug/L) • Chromium (ug/L) • Copper (ug/L) • Lead (ug/L) • Mercury (ug/L) • Nickel (ug/L) • Selenium (ug/L) • Silver (ug/L) • Thallium (ug/L) • Vanadium (ug/L) • Zinc (ug/L)                                                          |                           | 69.9<br>645<br>14.3<br>3.8<br>ND<br>66.8<br>10.6<br>12.5<br>ND<br>70.1<br>ND<br>ND<br>ND<br>ND<br>208<br>823                                                                                                |                        |
| Total Halides  Chloride (mg/L)  Fluoride (mg/L)  Density (g/mL)                                                                                                                                                                                                                                                      |                           | 1,900<br>240<br>1.10                                                                                                                                                                                        |                        |

<sup>&</sup>lt;sup>a</sup>Analytes not listed were reported as non-detects.

bThe three test runs were composited into one sample for analysis.

The "B" flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

<sup>&</sup>lt;sup>d</sup>() indicates the estimated maximum possible concentration.

Table 5-12
Summary of Analytical Results for Brine (BR)

| Parameter <sup>a</sup>                       | Run #1 <sup>b</sup> | Run #2 <sup>b</sup> | Run #3 <sup>b</sup> |
|----------------------------------------------|---------------------|---------------------|---------------------|
| Volatile Organics                            |                     |                     |                     |
| Methylene Chloride (ug/L)                    | 11 B <sup>c</sup>   | 120 B <sup>c</sup>  | 17 J                |
| Semivolatile Organics                        |                     |                     |                     |
| • Phenol (ug/L)                              | 7 Ј                 | ND                  | ND                  |
| Benzoic Acid (ug/L)                          | 36 J                | 42 J                | 40 J                |
| • Diethylphthalate (ug/L)                    | ND                  | 1 J                 | 3 J                 |
| <ul> <li>Pentachlorophenol (ug/L)</li> </ul> | ND                  | 2 J                 | ND                  |
| • Di-n-Butylphthalate (ug/L)                 | 3 JB                | 3 JB                | 3 JB                |
| • bis(2-Ethylhexyl)phthalate (ug/L)          | ND                  | ND ·                | 2 J                 |
| <u>Pesticides</u>                            | ND                  | ND                  | ND                  |
| Dioxins/Furans                               | ND                  | ND                  | ND                  |
| Metals                                       |                     |                     |                     |
| Antimony (mg/L)                              | ND                  | ND                  | ND                  |
| • Arsenic (mg/L)                             | 3.1                 | 2.7                 | 2.9                 |
| Barium (mg/L)                                | ND                  | ND                  | ND                  |
| • Beryllium (mg/L)                           | 0.10                | ND                  | ND                  |
| • Cadmium (mg/L)                             | ND                  | ND                  | ND                  |
| • Chromium (mg/L)                            | 1.8                 | 2.0                 | 2.1                 |
| • Copper (mg/L)                              | 2,550               | 2,650               | 2,730               |
| • Lead (mg/L)                                | 0.67                | 1.12                | ND                  |
| • Mercury (mg/L)                             | 0.01                | 0.01                | ND                  |
| • Nickel (mg/L)                              | 24.8                | 25.6                | 26.7                |
| • Selenium (mg/L)                            | 0.22                | ND                  | ND                  |
| • Silver (mg/L)                              | ND                  | ND                  | ND                  |
| • Thallium (mg/L)                            | ND                  | ND                  | ND                  |
| • Vanadium (mg/L)                            | 1.1                 | ND                  | ND                  |
| • Zinc (mg/L)                                | 25.1                | 17.7                | 17.8                |

**Table 5-12** Summary of Analytical Results for Brine (BR) (Continued)

| Parameter*                                                      | Run #1 <sup>b</sup>      | Run #2b                | Run #3 <sup>b</sup>    |
|-----------------------------------------------------------------|--------------------------|------------------------|------------------------|
| Total Halides  Bromide (mg/L)  Chloride (mg/L)  Fluoride (mg/L) | 1,040<br>131,000<br>37.4 | 970<br>131,000<br>35.2 | 983<br>140,000<br>33.1 |
| Density (g/mL)                                                  | 1.20                     | 1.20                   | 1.20                   |
| pН                                                              | 5.3                      | 5.1                    | 4.9                    |
| Total Suspended Solids (mg/L)                                   | 6,600                    | 5,160                  | 4,730                  |
| Total Dissolved Solids (mg/L)                                   | 269,000                  | 287,000                | 199,000                |
| Cyanide (ug/L)                                                  | ND                       | ND                     | ND                     |
| Sulfide (mg/L)                                                  | ND                       | ND                     | ND                     |

<sup>&</sup>lt;sup>a</sup>Analytes not listed were reported as non-detects.

<sup>&</sup>lt;sup>b</sup>Average reported value of two grab samples taken at beginning and end of each test run.

<sup>&</sup>quot;The "B" flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

dThe average value for the two grab samples was less than the highest detection limit value.

eND: None Detected.

## **SECTION 6**

# **QUALITY ASSURANCE SUMMARY**

# 6.1 **SUMMARY**

Test data reviewed for this report represent Trial Burn samples collected 9-12 June 1993, and analyzed by Roy F. Weston Analytics Division, and Triangle Laboratories of RTP, Inc. (for dioxins/furans by method 8290). Analyses were logged and tracked by WESTON RFW batch assignment for the following analyses: Volatile Organic Sampling Train (VOST), volatiles (VOA), semivolatiles (BNA), chlorinated pesticides/PCBs (OCP), organophosphorus pesticides (OPP), total dioxins/furans (TDF), metals, and inorganics. Inorganics may include anions (bromide, chloride, fluoride, iodide, sulfate, sulfide), ammonia, cyanide, pH, BTU, density, HCl, and various solids analyses (particulates, %ash, %moisture, total dissolved solids, total and suspended solids). In summary:

| RFW #    | Sample Type         | Analysis                                    |
|----------|---------------------|---------------------------------------------|
| 9306L822 | Stack Gas Audit     | VOST                                        |
| 9306L857 | Stack Gas           | VOST                                        |
| 9306L858 | Stack Gas           | BNA, OCP, OPP                               |
| 9306L859 | Stack Gas, & Audit  | Metals                                      |
| 9306L860 | Liquid Waste        | VOA, BNA, OCP, OPP, Inorganics, Metals      |
| 9306L861 | Makeup Water, Brine | VOA, BNA, OCP, OPP, TDF, Inorganics, Metals |
| 9306L862 | Stack Gas           | BNA, OCP, OPP                               |
| 9306L863 | Stack Gas           | Metals                                      |
| 9306L864 | Stack Gas           | HCl, Particulates                           |
| 9306L865 | Caustic Solution    | VOA                                         |
| 9306L866 | Stack Gas           | VOST                                        |
| 9306L885 | Stack Gas           | VOST                                        |
| 9306L901 | Liquid Waste        | VOA, BNA, OCP, OPP, Inorganics, Metals      |
| 9306L902 | Brine               | VOA, BNA, OCP, OPP, TDF, Inorganics, Metals |

| RFW #                                           | Sample Type                                     | Analysis                               |
|-------------------------------------------------|-------------------------------------------------|----------------------------------------|
| 9306L903                                        | Makeup Water                                    | VOA, BNA, OCP, OPP, Inorganics, Metals |
| 9306L904                                        | Caustic Solution                                | VOA, BNA, OCP, OPP, Inorganics, Metals |
| 9306L905                                        | Stack Gas                                       | BNA, OCP, OPP                          |
| 9306L906                                        | Stack Gas                                       | HCl, Particulates                      |
| 9306L907                                        | Stack Gas                                       | Metals                                 |
| 9306L909                                        | Brine PE                                        | VOA, BNA, OCP, OPP, Inorganics, Metals |
| 9306L910                                        | Liquid Waste PE                                 | VOA, BNA, OCP, OPP, Inorganics, Metals |
| 9306L926                                        | Stack Gas                                       | РОНС                                   |
| none <sup>1, 2</sup> .<br>subbed to<br>Triangle | Caustic Solution, Liquid<br>Waste, Makeup Water | TDF by Method 8290                     |

<sup>&</sup>lt;sup>1</sup>Corresponds to liquid feed samples received at WESTON from the following RFW Batches: 9306L860, 9306L861, 9306L901, 9306L903, 9306L904.

# **6.1.1 Document Authority for Criteria**

Test data in support of the RMA-SQI Trial Burn were reviewed for conformance to project analytical requirements and data quality objectives (DQOs). Required methods, analyte lists, preservation and holding times are presented in Sections 1.4, 5, 6.4-6.13, 8, 11 of the project Trial Burn Plan, Volume I, September 1992. A memo dated 10 June 1993 regarding analysis of the brine samples for dioxins/furans analysis by method 8280 outlines four items of method clarification. These items with respect to analyte list, number of replicates to be used for the multi-point calibration curve, reporting limit, and surrogate list were approved prior to sample analysis of the brines, and were considered as amended to the Trial Burn Plan for the purpose of this QA summary evaluation.

<sup>&</sup>lt;sup>2</sup>TDF analysis of the stack gases by Method 23 was subbed under separate contract to Triangle Laboratories. These results are not evaluated in this QA Summary.

DQOs for precision, accuracy, and completeness are presented in Section 11 of the project Trial Burn Plan and Section 2.4 of the project Chemical Data Acquisition Plan (CDAP), October 1992.

- For convenience, precision and accuracy DQOs are provided in Tables 6-1 through 6-9 of this report.
- The project QA objective for laboratory completeness is to have 95% of the method control data within control criteria. The laboratory completeness goal was met for both the stack gases as a stand alone entity, and the project overall. For this Trial Burn, 95% of the control QC sample results associated with the stack gas samples were within the accuracy and precision goals stated in Tables 6-1 through 6-9; and 98% of the control QC sample results associated with the entire project met QC criteria. QC goals by parameter group are addressed in subsequent sections of this report. The ability to meet or exceed completeness objectives is dependent on the nature of samples submitted for analysis. For example, the analytical methods proposed for use (particularly for organics analyses) are intended for analysis of environmental samples of low and medium concentrations. applicability of these methods to the RMA-SQI non-routine matrices such as stack gases, Basin F liquids, makeup water, brines and caustic solution may result in poor method performance and therefore adversely impact achievement of the data completeness goal.

Project specific completeness goals account for all aspects of sample handling, from collection through data reporting. The level of completeness can be affected by loss or breakage of samples during transport, as well as external problems which prohibit collection of the sample. The project QA objective for overall completeness is to have no less than 80% of the data usable without qualification. The project completeness goals was met for both the stack gases as a stand alone entity, and the project overall. A total of 97% of the method and matrix QC precision and accuracy data associated with the stack gases is within QC control limits. A total of 93% of the method and matrix QC precision and accuracy data associated with the entire project is within QC control limits.

# 6.2 METHODS, ANALYTE LISTS, PRESERVATION AND HOLDING TIMES

# 6.2.1 Analytical Methods

A summary of the analytical methods employed during the Trial Burn is provided in Table 4-1. The methods used are in 100% conformance to the objectives stated in the Trial Burn Plan.

# 6.2.2 Analyte Lists

A summary of the analytical parameters specified in the Trial Burn Plan is provided in Tables 4-3 through A-8, which provides a listing of the analytes in the following requested parameter groups: volatile organic compounds, semivolatile organic compounds, pesticides/PCBs (both organochlorine pesticides and organophosphate pesticides), dioxins/furans, metals, and total halides. Chlorobenzene is listed in the Trial Burn Plan (TBP) as a target analyte for both VOA and BNA. EPA methods recommend this compound be analyzed as a purgeable (VOA) and list it as a target analyte for VOA. Data are reported for this compound as a VOA. A total of 100% of the requested analytes was reported.

# 6.2.3 Sample Preservation

Sample preservation is discussed in Section 2.3.2 of this Trial Burn Report.

# 6.2.4 Holding Times

Holding times were evaluated from time of collection to time of preparation, and from time of preparation to time of analysis. In some instances (e.g., VOA or halide analysis), the preparation date is the same as the analysis date. TBP holding times were met for the initial analysis of 100% of the samples for all parameters except dioxins/furans analyzed by method 8290.

EPA method holding times were met for all dioxins/furans extractions, analyses and re-analyses; and are useable without qualification according to the EPA published methods. For SW-846, both method 8280 and 8290 indicate a holding time of 30 days to extraction and 45 days to complete analysis. However, the TBP holding time from collection to extraction for analyses by method 8290 all exceeded the TBP-specified 7 days to extraction by 9-11 days.

A summary of holding time criteria checks follow:

| Analysis: | Holding Time Criteria Evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOST      | all matrices analyzed within 14 days of collection                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VOA       | all matrices within 7 days of collection when not acid-preserved, and within 14 days of collection when acid-preserved with HCl                                                                                                                                                                                                                                                                                                                                                         |
| BNA       | all matrices extracted/analyzed within TBP specification (7 days to extraction, 40 days for analysis of extract)                                                                                                                                                                                                                                                                                                                                                                        |
| ОСР       | all matrices extracted/analyzed within TBP specification (7 days to extraction, 40 days for analysis of extract)                                                                                                                                                                                                                                                                                                                                                                        |
| OPP       | initial analysis for all matrices extracted/analyzed within TBP specification (7 days to extraction, 40 days for analysis of extract)  Brines:  2 of 3 brines required re-extraction due to low surrogate recoveries. This re-extraction was one day past hold, and should not prevent use of the data.  Makeup Water:  1 makeup water sample required re-extraction due to low surrogate recoveries. This re-extraction was one day past hold, and should not prevent use of the data. |

| Analysis:  | Holding Time Criteria Evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TDF        | Stack Gases: not evaluated Brines: all 4 samples were initially extracted/analyzed within TBP specification for method 8280 analyses (7 days to extraction, 40 days for analysis of extract). 1 sample required re-extraction due to low internal standard recovery. This re-extraction was 5 days past hold <sup>1</sup> .  Liquid Feed Samples: (caustic solution, liquid waste, makeup water) all 6 samples exceeded the TBP extraction holding time for method 8290 (7 days to extraction, 40 days for analysis of extract) <sup>1</sup> <sup>1</sup> Note: all evaluated samples and re-extractions were extracted and analyzed within the EPA SW-846 method recommendation of 30 days from collection for extraction and 45 days from collection to complete analysis. |
| Inorganics | all matrices prepped/analyzed within TBP specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Metals     | all matrices digested/analyzed within TBP specification (28 days to preparation for Hg, 180 days for other metals)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 6.3 PRECISION AND ACCURACY DOOS

# 6.3.1 Variance from TBP-Specified Criteria

# 6.3.1.1 **VOST**

DQOs for VOST analysis are not specified in the TBP. For this review, a 50-150% recovery window was used to evaluate surrogate performance. 100% of all analyses met this criteria.

# 6.3.1.2 OPP Surrogate/Matrix Spike Components

For OPP, the TBP-specified list of surrogate and target spiking compounds was changed. With respect to the Trial Burn objective to determine absence/presence of organophosphorus pesticides (OPPs) in Basin F Liquids, no adverse affect to useability is

# presented by use of the alternate list of spiking compounds for surrogate and matrix spike

analysis. The target compound list for this project, with the compounds presented in order of elution on the primary analysis column, is shown in Table A. Historical data for the Basin F liquid shows no previous history of OPPs (Trial Burn Plan, Table 1-1). With no

site-specific compounds of interest, selection of the spiking solution components for presentation in the TBP was based on operating practices in the Analytics Division at the time the TBP was initially drafted. Since that time the components of the spiking solution have been changed, providing:

|   | Table A |       |                            |  |
|---|---------|-------|----------------------------|--|
|   | RT      | RT    | RMA Trial Burn             |  |
|   | TBP     | Lab   | Surrogate and Target       |  |
|   | List    | List  | OPP Compound List:         |  |
| • |         | 2.01  | Dichlorvos                 |  |
|   | 4.28    |       | Mevinphos                  |  |
|   | 8.40    | į     | Ethoprop                   |  |
|   |         |       | Naled                      |  |
|   |         | İ     | Phorate                    |  |
|   |         |       | Demeton,O                  |  |
|   |         | 10.48 | Demeton,S                  |  |
|   |         | 11.02 | Atrazine                   |  |
|   | 12.38   |       | Diazinon                   |  |
|   |         |       | Disulfoton                 |  |
|   | 14.25   | 14.25 | Methyl Parathion           |  |
|   |         |       | Ronnel                     |  |
|   |         |       | Malathion                  |  |
|   |         | 16.45 | Fenthion                   |  |
|   | ,       |       | Chlorpyrifos               |  |
|   |         |       | Ethyl Parathion            |  |
|   |         |       | Trichloronate              |  |
|   |         |       | Merphos                    |  |
|   |         |       | Supona                     |  |
|   |         | 20.42 | Stirophos                  |  |
|   |         | 20.42 | Tokuthion                  |  |
|   |         | 22.32 | Fensulfothion              |  |
|   | į       | 22.88 | Ethion (surrogate) Bolstar |  |
|   | 28.13   | 28.13 | Azinphos methyl            |  |
|   | 20.13   | 20.10 | Coumaphos                  |  |
|   | i       |       | Country                    |  |

• A greater number of compounds (8 versus 5) as indicators of QC performance.

- A QC check at approximately five minute intervals over the chromatographic run for more frequent indication of performance throughout the run.
- Good separation to allow for positive identification, i.e., minimized co-elution and interferences.

(If all OPP target compounds were

present in a single sample, they would overlap, and inhibit or prevent correct compound identification. For calibration, three separate mixes are required in order to adequately separate all target compounds for identification and quantification).

September 1993

08/26/93

The retention times of the compounds specified for spiking in the Trial Burn Plan, as well as those actually used for spiking, are provided in <u>Table A</u>, to show the greater coverage provided by the spiking mix used over the full run time of approximately 35 minutes.

### 6.3.1.3 OPP Control Limits

Control limits used to evaluate the surrogate ethion were the same as those listed for the TBP-specified surrogate triphenylphosphate: 40-140% recovery. Control limits for the target compounds methyl parathion and methyl azinphos were obtained from the TBP. For other spiked target compounds not addressed in the TBP, a 50-150% recovery window and 30% RPD were used to evaluate target compound performance. These criteria are equivalent to, or in most instances are more stringent than, the limits provided for the compounds specified in the TBP. Tables 6-5 and 6-6 show these spiking compounds and criteria.

# 6.3.1.4 Stack Gas Extractables: Sample Prep

In order to maintain the desired project detection limits, a single limited-volume extract was obtained for all organic extractables (BNA, OCP, and OPP). This precluded addition of OPP surrogates and spikes due to co-elution with OCP surrogates and target analytes, therefore, 12 of the 48 analyses have no recovery data available for OPP. The corresponding OCP recoveries for the composites provide information on general extraction efficiency and recovery for these batches. The respective RFW numbers are:

| 9306L858-009 | TBURN-SB-WATER |
|--------------|----------------|
| 9306L858-010 | COMP FH RN1    |
| 9306L858-011 | COMP BH RN1    |
| 9306L858-012 | COMP FH SB     |

# 6.3.2 Stack Gas Analyses

Stack gas samples were collected for VOST, BNA, OCP, OPP, metals, HCl, and particulates in three separate test burns over three consecutive days, 10, 11, and 12 June 1993. On 9 June, a VOST audit sample was collected, and on 10 June a multi-metals audit sample was collected. Evaluation of QC indicators analyzed concurrent to these audit samples is included in this QC Summary. Results of audit samples are discussed in Section 7.2.

| Test         | Number of Samples                                                                                                                                                               | Method QC: % of total meeting QC criteria                                                                                                                                    | Sample QC: % of total meeting QC criteria                                                                                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOST         | A total of 67 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for VOST.                             | 100% of 91 results met<br>QC precision and<br>accuracy criteria                                                                                                              | 99% of 156 recoveries<br>met QC precision and<br>accuracy criteria                                                                                                                                |
| BNA          | A total of 8 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for BNA.                               | 93% of 102 results met<br>QC precision and<br>accuracy criteria                                                                                                              | 100% of 66 results met<br>QC precision and<br>accuracy criteria                                                                                                                                   |
| ОСР          | A total of 8 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for OCP.                               | 89% of 45 results met<br>QC precision and<br>accuracy criteria                                                                                                               | 100% of 20 results met<br>QC precision and<br>accuracy criteria                                                                                                                                   |
| OPP          | A total of 8 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for OPP.                               | Due to the nature of the sample preparation, OPP QC indicators could not be analyzed. Samples were extracted concurrently with OCP, refer to OCP results for QC performance. |                                                                                                                                                                                                   |
| metals       | A total of 11 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for metals.                           | 96% of 48 results met<br>QC precision and<br>accuracy criteria                                                                                                               | Only mercury was spiked. 100% of the 5 obtainable results met QC precision and accuracy criteria (4 MS recoveries were unusable due to the high concentration of mercury in the unspiked samples) |
| HCl,<br>part | A total of 13 investigative samples<br>(including blank train and site blank<br>samples), plus associated quality control<br>checks, were analyzed for HCl and<br>particulates. | 100% of 4 results met<br>QC precision and<br>accuracy criteria                                                                                                               | 100% of 7 results met<br>QC precision and<br>accuracy criteria                                                                                                                                    |

# 6.3.3 Liquid Feed Samples and Brines

For purpose of this report, liquid feed samples include caustic solution, liquid waste, and makeup water. Liquid feed and brine samples were collected for VOA, BNA, OCP, OPP, TDF, metals, and inorganics on three separate test burns over three consecutive days, 10, 11, and 12 June 1993. On 11 June, PE samples characteristic of the liquid waste feed and of the brine were collected concurrently with the Trial Burn samples. Evaluation of QC indicators analyzed concurrent to these audit samples is included in this QC Summary. Results of audit samples are discussed in Section 7.2. In the following summary table, results of laboratory control samples analyzed concurrently with the stack gas samples are not repeated in the totals formatted QC.

| Test       | Number of Samples                                                                                                                                                 | Method QC: % of total meeting QC criteria                        | Sample QC: % of total meeting QC criteria                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|
| VOA        | A total of 20 investigative samples<br>(including blank train and site blank<br>samples), plus associated quality control<br>checks, were analyzed for VOA.       | 100% of 36 results met<br>QC precision and<br>accuracy criteria  | 96% of 196 results met<br>QC precision and<br>accuracy criteria               |
| BNA        | A total of 8 investigative samples (including<br>blank train and site blank samples), plus<br>associated quality control checks, were<br>analyzed for BNA.        | 95% of 74 results met<br>QC precision and<br>accuracy criteria   | 77% of 174 obtainable results met QC precision and accuracy criteria          |
| ОСР        | A total of 11 investigative samples (including blank train and site blank samples), plus associated quality control checks, were analyzed for OCP.                | 95% of 44 results met<br>QC precision and<br>accuracy criteria   | 84% of 70 obtainable<br>results met QC<br>precision and accuracy<br>criteria  |
| OPP        | A total of 11 investigative samples<br>(including blank train and site blank<br>samples), plus associated quality control<br>checks, were analyzed for OPP.       | 96% of 74 results met<br>QC precision and<br>accuracy criteria   | 63% of 85 obtainable results met QC precision and accuracy criteria           |
| metal<br>s | A total of 11 investigative samples<br>(including blank train and site blank<br>samples), plus associated quality control<br>checks, were analyzed for metals.    | 100% of 359 results met<br>QC precision and<br>accuracy criteria | 90% of 469 obtainable<br>results met QC<br>precision and accuracy<br>criteria |
| Inorg      | A total of 78 investigative samples<br>(including blank train and site blank<br>samples), plus associated quality control<br>checks, were analyzed for inorganics | 100% of 73 results met<br>QC precision and<br>accuracy criteria  | 93% of 100 results met<br>QC precision and<br>accuracy criteria               |

# 6.3.4 Blank Analysis

Methylene chloride was reported above the laboratory reporting limit in some VOST/VOA method blanks and trip blanks; however, contamination levels are all less than three times the reporting limit for this common laboratory solvent.

Laboratory blanks for BNA, OCP, OPP and TDF showed no contamination at or above the reporting limit.

For metals analyses, the method blank for silicon associated with the stack gas samples showed elevated levels of analyte (>9,000 ug) above the laboratory reporting limit. Most hits in the samples were of significant enough levels that this blank contamination had no impact; however, results for samples 9306L859-003 (MMTL-RN1-BHN @ 1,850 ug) and 9306L863-003 (MMTL-RN2-BHN @ 89,500 ug) should be examined as potential for false positives. All other method blanks were reported at levels less than the reporting level, although quantities between the instrument detection limit (IDL) and reporting limit were reported in some blanks for arsenic, boron, calcium, lead, selenium, silicon, thallium, vanadium and zinc.

All method blanks for inorganics showed no contamination at or above the reporting limit.

# 6.4 COMPLETENESS

Review of reported analytes against requirements of the TBP showed the following:

| Analysis:  | Analysis of Requested Analytes Criteria Evaluation:                                                                                                                                                                                                                                    |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| VOST/VOA   | all specified analytes reported                                                                                                                                                                                                                                                        |  |  |
| BNA        | <ul> <li>chlorobenzene was not reported with BNA; however, was reported<br/>with the VOST and VOA results</li> </ul>                                                                                                                                                                   |  |  |
| ОСР        | all specified analytes reported                                                                                                                                                                                                                                                        |  |  |
| OPP        | <ul> <li>all specified analytes reported</li> <li>surrogate and target compounds for spiking were not as specified in the TBP, however, the substituted compounds provide a larger number of compounds for evaluation than originally specified (refer to Sections 6.3.1.2)</li> </ul> |  |  |
| TDF        | <ul> <li>all specified isomers reported in method 8290</li> <li>totals are reported for each congener group in method 8280</li> </ul>                                                                                                                                                  |  |  |
| Inorganics | • analytes with TBP specified DQOs were not applicable to this Trial Burn data set; however, all analytes specified on the chain of custody were reported                                                                                                                              |  |  |
| Metals     | all specified analytes reported                                                                                                                                                                                                                                                        |  |  |

The laboratory completeness goal of 95% and project completeness goal of 80% with respect to precision and accuracy DQOs were met. For the stack gases the laboratory completeness (based on control QC sample results) and project completeness (based on control QC and matrix QC results) were 95% and 97%, respectively. For the overall project (stack gas samples and other matrix samples), laboratory and project completeness assessment were 98% and 93%, respectively.

Table 6-1
Water Surrogate Recovery Limits - VOA

| Fraction | Surrogate Compound                | % Recovery Limits |
|----------|-----------------------------------|-------------------|
| VOA      | Toluene-d <sub>8</sub>            | 81-117            |
| VOA      | 4-Bromofluorobenzene              | 74-121            |
| VOA      | 1,2-Dichloroethane-d <sub>4</sub> | 70-121            |

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-2
Water Matrix Spike Recovery Limits - VOA

| Fraction | Matrix Spike Compound | % Recovery Limits | Relative %<br>Difference |
|----------|-----------------------|-------------------|--------------------------|
| VOA      | 1,1-Dichloroethene    | 61-145            | 14                       |
| VOA      | Trichloroethene       | 71-120            | 14                       |
| VOA      | Chlorobenzene         | 75-130            | 13                       |
| VOA      | Toluene               | 76-125            | 13                       |
| VOA      | Benzene               | 76-127            | 11                       |

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-3
Water Surrogate Recovery Limits - BNA/Acids

| Fraction | Surrogate Compound          | % Recovery Limits |
|----------|-----------------------------|-------------------|
| BNA      | Nitrobenzene-d <sub>5</sub> | 35-114            |
| BNA      | 2-Fluorobiphenyl            | 43-116            |
| BNA      | p-Terphenyl-d <sub>14</sub> | 33-141            |
| BNA      | Phenol-d <sub>5</sub>       | 10-94             |
| BNA      | 2-Fluorophenol              | 21-100            |
| BNA      | 2,4,6-Tribromophenol        | 10-123            |

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-4
Water Matrix Spike Recovery Limits - BNA/Acids

| Fraction | Matrix Spike Compound          | % Recovery Limits | Relative % Difference |
|----------|--------------------------------|-------------------|-----------------------|
| BN       | 1,2,4-Trichlorobenzene         | 39-98             | 28                    |
| BN       | Acenaphthene                   | 46-118            | 31                    |
| BN       | 2,4-Dinitrotoluene             | 24-96             | 38                    |
| BN       | Pyrene                         | 26-127            | 31                    |
| BN       | N-Nitroso-Di-n-<br>Propylamine | 41-116            | 38                    |
| BN       | 1,4-Dichlorobenzene            | 36-97             | 28                    |
| Acid     | Pentachlorophenol              | 9-103             | 50                    |
| Acid     | Phenol                         | 12-110            | 42                    |
| Acid     | 2-Chlorophenol                 | 27-123            | 40                    |
| Acid     | 4-Chloro-3-Methylphenol        | 23-97             | 42                    |
| Acid     | 4-Nitrophenol                  | 10-80             | 50                    |

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/ or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-5
Water Surrogate Recovery Limits - Pesticides

| Fraction                      | Surrogate Compound | % Recovery Limits |
|-------------------------------|--------------------|-------------------|
| Pesticide (organochlorine)    | Dibutylchlorendate | 24-154            |
| Pesticide (organophosphorous) | Ethion             | 40-140            |

Note: This table shows the selected compound used for QA/QC accuracy and precision control. Selected compound is consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-6
Water Matrix Spike Recovery Limits - Pesticides

| Fraction                      | Matrix Spike<br>Compound | % Recovery Limits | Relative %<br>Difference |
|-------------------------------|--------------------------|-------------------|--------------------------|
| Pesticide (organochlorine)    | Lindane                  | 56-123            | 15                       |
| Pesticide (organochlorine)    | Heptachlor               | 40-131            | 20                       |
| Pesticide (organochlorine)    | Aldrin                   | 40-120            | 22                       |
| Pesticide (organochlorine)    | Dieldrin                 | 52-126            | 18                       |
| Pesticide (organochlorine)    | Endrin                   | 56-121            | 21                       |
| Pesticide (organochlorine)    | 4,4-DDT                  | 38-127            | 27                       |
| Pesticide (organophosphorous) | Dichlorous               | 50-150            | 30                       |
| Pesticide (organophosphorous) | Demeton-s                | 50-150            | 30                       |
| Pesticide (organophosphorous) | Methyl<br>parathion      | 52-172            | 30                       |
| Pesticide (organophosphorous) | Atrazine                 | 50-150            | 30                       |
| Pesticide (organophosphorous) | Fenthion                 | 50-150            | 30                       |
| Pesticide (organophosphorous) | Tokuthion                | 50-150            | 30                       |
| Pesticide (organophosphorous) | Fensulfothion            | 50-150            | 30                       |
| Pesticide (organophosphorous) | Methyl<br>azinphos       | 54-138            | 25                       |

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance based and have been adopted from the referenced SOW.

Table 6-7
Water Surrogate Recovery Limits - Dioxins/Furans

| Fraction | Surrogate Compound                     | % Recovery<br>Limits |
|----------|----------------------------------------|----------------------|
| Dioxin   | 2,3,7,8- TCDD - C <sub>13</sub>        | 40-120               |
| Dioxin   | 1,2,3,6,7,8-HCDD - C <sub>13</sub>     | 40-120               |
| Dioxin   | 1,2,3,6,7,8-OCDD - C <sub>13</sub>     | 40-120               |
| Dioxin   | 1,2,3,4,7,8- HxCDD - C <sub>13</sub>   | 40-120               |
| Furan    | 2,3,1,7,8- PeCDF - C <sub>13</sub>     | 40-120               |
| Furan    | 1,2,3,4,7,8- HxCDF - C <sub>13</sub>   | 40-120               |
| Furan    | 1,2,3,4,7,8,9- HpCDF - C <sub>13</sub> | 40-120               |

Note: These analyses will be performed by a subcontractor.

Table 6-8
Water Matrix Spike Recovery Limits - Dioxins/Furans

| Fraction | Matrix Spike<br>Compound | % Recovery<br>Limits |
|----------|--------------------------|----------------------|
| Dioxin   | 2,3,7,8-TCDD             | 60-140               |
| Dioxin   | 1,2,3,6,7,8-HCDD         | 60-140               |
| Dioxin   | 1,2,3,6,7,8-OCDD         | 60-140               |
| Furan    | 2,3,7,8-TCDF             | 60-140               |
| Furan    | 1,2,3,6,7,8-HCDF         | 60-140               |
| Furan    | 1,2,3,6,7,8-OCDF         | 60-140               |

Note: These analyses will be performed by a subcontractor.

Table 6-9
Water Matrix Spike Recovery Limits - Inorganics

| Matri      | ix Spike Compound                                                                   | % Recovery Limits | Relative %<br>Difference |
|------------|-------------------------------------------------------------------------------------|-------------------|--------------------------|
| Metals -   | Arsenic, barium,<br>beryllium, cadmium,<br>chromium, lead,<br>thallium, and mercury | 75-125            | 20                       |
|            | Antimony                                                                            | 40-160            | 20                       |
|            | Silver                                                                              | 60-140            | 35                       |
| Sulfur     |                                                                                     | 70-130            | 30                       |
| Ammonia    |                                                                                     | 70-130            | 30                       |
| Total hali | des                                                                                 | 70-130            | 30                       |

Note: This list includes selected compounds used for QA/QC accuracy and precision control in the groups (fractions) of analytes shown. Selected compounds are consistent with guidance presented in the U.S. EPA SW-846, 3rd edition, and/or the U.S. Contract Laboratory Program (CLP) Statement of Work (SOW 2/88). Stated control limits are performance-based and have been adopted from the referenced SOW.

# SECTION 7 VISITS AND AUDIT SUMMARY

# 7.1 <u>VISITORS LIST</u>

This section includes a list of personnel from the various oversight and state agencies and their designated subcontractors who were present at RMA to observe and monitor the Trial Burn test program. The individuals listed were present during part or all of the Trial Burn test days 10-12 June 1993.

EPA:

Carl Daly, Larry Diede, Brent Truskowski

Entropy:

David Brintle

CDH:

Celia Van Derloop, Lynn Olson

CDM:

Tim McCandless, Kelly Velasquez

ITO:

George Hritz

# 7.2 <u>AUDIT SUMMARY</u>

EPA, in conjunction with their oversight responsibilities for cleanup efforts performed by the Army and their subcontractors at the RMA, observed all activities associated with the Trial Burn program, including an audit of the analytical methods used by the WESTON laboratory. Two Performance Evaluation (PE) samples were prepared and submitted to the Lionville laboratory for analysis. One PE sample was characteristic of the liquid waste feed and the other sample was characteristic of the brine. A summary of the analytical results for the liquid waste feed and brine is located in Tables 7-1 and 7-2, respectively.

Stack audit samples for the volatile organic sampling train (VOST), dioxins/furans and multi-metals were also received from EPA and analyzed. The dioxin/furan analysis of the SQI stack samples by EPA Method 23 procedures was performed by Triangle Laboratories, located in Durham, North Carolina. Summaries of the test results for VOST, dioxins/furans and multi-metals are located in Tables 7-3, 7-4, and 7-5, respectively.

Procedural checklists used by the Stack Team while sampling are provided in Appendix B.1.2, and calibration data sheets for sampling equipment are provided in Appendix B.1.3.

Table 7-1
Summary of Audit Results for Liquid Waste Feed (LF)

| Parameter                                    | Results |
|----------------------------------------------|---------|
| Volatile Organics                            |         |
| • Chloromethane (ug/L)                       | 8,900   |
| Methylene Chloride (ug/L)                    | 350 B   |
| • 1,1-Dichloroethene (ug/L)                  | 310     |
| • 1,2-Dichloroethene (ug/L)                  | 260     |
| • Chloroform (ug/L)                          | 150     |
| • 1,2-Dichloroethane (ug/L)                  | 230     |
| • 1,1,1-Trichloroethane (ug/L)               | 260     |
| Carbon Tetrachloride (ug/L)                  | 80 J    |
| Bromodichloromethane (ug/L)                  | 160     |
| • Trichloroethene (ug/L)                     | 200     |
| • Dibromochloromethane (ug/L)                | 190     |
| • Benzene (ug/L)                             | 190     |
| • Bromoform (ug/L)                           | 110 J   |
| <ul> <li>Tetrachloroethene (ug/L)</li> </ul> | 130     |
| • Toluene (ug/L)                             | 61 J    |
| <ul> <li>Chlorobenzene (ug/L)</li> </ul>     | 59 Ј    |
| • Ethylbenzene (ug/L)                        | 250     |
| • Xylene (ug/L)                              | 160     |
| Semivolatile Organics                        |         |
| • Phenol (ug/L)                              | 78      |
| • 2-Chlorophenol (ug/L)                      | 22      |
| • 2-Methylphenol (ug/L)                      | 31      |
| • 2,4-Dimethylphenol (ug/L)                  | 43      |
| • 2,4,6-Trichlorophenol (ug/L)               | 100     |
| • Pentachlorophenol (ug/L)                   | 67      |
| • Di-n-Butylphthalate (ug/L)                 | 1 JB    |

### Notes:

- "J" Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level (e.g., if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- "B" —This flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

Table 7-1
Summary of Audit Results for Liquid Waste Feed (LF)
(Continued)

| Parameter                    | Results |
|------------------------------|---------|
| Pesticides                   |         |
| Beta-BHC (ug/L)              | 1.3     |
| • gamma-BHC (Lindane) (ug/L) | 12      |
| Heptachlor (ug/L)            | 2.0     |
| • Aldrin (ug/L)              | 6.8     |
| • Dieldrin (ug/L)            | 5.6     |
| • 4,4-DDE (ug/L)             | 2.7     |
| • Endrin (ug/L)              | 3.8     |
| • 4,4-DDD (ug/L)             | 5.8     |
| • 4,4-DDT (ug/L)             | 7.2     |
| • alpha-Chlordane (ug/L)     | 8.8     |
| Metals                       |         |
| • Silver (mg/L)              | 5.6     |
| • Boron (mg/L)               | 1.8     |
| • Calcium (mg/L)             | 5.0     |
| • Copper (mg/L)              | 281     |
| • Mercury (mg/L)             | 0.0001  |
| • Nickel (mg/L)              | 20.9    |
| • Silicon (mg/L)             | 3.4     |
| • Zinc (mg/L)                | 3.1     |
| Halides                      |         |
| • Bromide (mg/L)             | l ND I  |
| • Chloride (mg/L)            | 135,000 |
| • Fluoride (mg/L)            | 214     |
| • Iodide (mg/L)              | ND      |

Table 7-2
Summary of Audit Results for Brine

| Parameter                      | Results |
|--------------------------------|---------|
| Volatile Organics              |         |
| • Vinyl Chloride (ug/L)        | 33      |
| • Methylene Chloride (ug/L)    | 36 B    |
| • Acetone (ug/L)               | 9 ЈВ    |
| • 1,1-Dichloroethene (ug/L)    | 110     |
| • 1,2-Dichloroethene (ug/L)    | 69      |
| • 1,2-Dichloroethane (ug/L)    | 86      |
| • 1,1,1-Trichloroethane (ug/L) | 130     |
| • Carbon Tetrachloride (ug/L)  | 51      |
| • 1,2-Dichloropropane (ug/L)   | 73      |
| • Trichloroethene (ug/L)       | 22      |
| • 1,1,2-Trichloroethane (ug/L) | 42      |
| • Benzene (ug/L)               | 25      |
| • Tetrachloroethene (ug/L)     | 21      |
| • Toluene (ug/L)               | 48      |
| • Chlorobenzene (ug/L)         | 72      |
| • Ethylbenzene (ug/L)          | 31      |
| • Styrene (ug/L)               | 54      |
| • Xylene (ug/L)                | 160     |
| Semivolatile Organics          |         |
| • 2-Methylphenol (ug/L)        | 28      |
| • 2-Nitrophenol (ug/L)         | 92      |
| • 2,4,6-Trichlorophenol (ug/L) | 56      |
| • 2,4,5-Trichlorophenol (ug/L) | 62      |
| • Pentachlorophenol (ug/L)     | 150     |
| Total Halides                  |         |
| • Bromide (mg/L)               | 321     |
| • Chloride (mg/L)              | ND      |
| • Fluoride (mg/L)              | ND      |
| • Iodide (mg/L)                | ND      |
| Pesticides                     |         |
| • Alpha-BHC (ug/L)             | 2.0     |
| • Beta-BHC (ug/L)              | 1.6     |
| • Heptachlor (ug/L)            | 0.3     |
| • Aldrin (ug/L)                | 1.2     |
| • Heptachlor Epoxide (ug/L)    | 3.2     |
| • Dieldrin (ug/L)              | 0.33    |
| • 4,4-DDE (ug/L)               | 2.4     |
| • Endrin (ug/L)                | 3.6     |
| • 4,4-DDD (ug/L)               | 2.1     |
| gamma-Chlordane (ug/L)         | 2.2     |

Table 7-2
Summary of Audit Results for Brine (Continued)

| Parameter                            | Results |
|--------------------------------------|---------|
| <u>Metals</u>                        |         |
| Aluminum (mg/L)                      | 6.6     |
| • Arsenic (mg/L)                     | 0.23    |
| • Boron (mg/L)                       | 4.9     |
| • Calcium (mg/L)                     | 16.7    |
| • Copper (mg/L)                      | 1.2     |
| <ul> <li>Manganese (mg/L)</li> </ul> | 0.61    |
| • Silicon (mg/L)                     | 6.4     |
| • Zinc (mg/L)                        | 0.95    |
| Ammonia (mg/L)                       | 29.4    |
| Cyanide (ug/L)                       | 417     |
| Sulfide (mg/L)                       | ND      |

## Notes:

- "J" Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level (e.g., if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- "B" This flag is used when the analyte is found in the associated blank and in the sample. It indicates possible/probable laboratory blank contamination.

# RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 7-3 SUMMARY OF EPA AUDIT FOR VOLATILE ORGANICS TEST DATA AND POSITIVE TEST RESULTS

| TEST DATA:<br>Cylinder number                     | 267       | 267       | 267       | 267       | 267     |
|---------------------------------------------------|-----------|-----------|-----------|-----------|---------|
| Test date                                         | 06-09-93  | 06-09-93  | 06-09-93  | 06-09-93  | AVERAGE |
| Test time                                         | 1143-1153 | 1212-1222 | 1235-1245 | 1302-1312 |         |
| Test tube pair                                    | 1         | 2         | 3         | 4         |         |
| SAMPLING DATA:                                    |           |           |           |           |         |
| Duration, minutes                                 | 10.00     | 10.00     | 10.00     | 10.00     |         |
| Average dry gas meter press. in. H <sub>2</sub> O | 1.35      | 1.30      | 1.30      | 1.30      |         |
| Average meter temp. deg. C                        | 22.25     | 26.25     | 28.00     | 29.25     |         |
| Average absolute meter temp. deg. R               | 532.05    | 539.25    | 542.40    | 544.65    |         |
| Actual sample volume, liters                      | 089'6     | 9.312     | 9.454     | 9.230     |         |
| Meter box calibration, Y                          | 966'0     | 0.996     | 0.996     | 0.996     |         |
| Barometric pressure, in. Hg                       | 24.74     | 24.74     | 24.74     | 24.74     |         |
| Sample volume, dscf                               | 0.2805    | 0.2662    | 0.2687    | 0.2612    |         |
| VOST EMISSIONS (ppb/v):                           |           |           |           |           |         |
|                                                   | 5.2       | 17.1      | 5.6       | 0.0       | 7.0     |
| Bromomethane                                      | 0.0       | 0.2       | 0.0       | 0.3       | 0,1     |
| Vinyl Chloride                                    | 25.7      | 26.8      | 20.7      | 33.7      | 26.7    |
| Chloroform                                        | 33.0      | 32.5      | 32.7      | 33.5      | 32.9    |
| Carbon Tetrachloride                              | 11.1      | 10.5      | 10.4      | 10.8      | 10.7    |
| Benzene                                           | 32.2      | 30.2      | 31.2      | 32.1      | 31.4    |
| Tetrachloroethane                                 | 6.6       | 9.6       | 6.6       | 10.6      | 10.0    |
| Toluene                                           | 6.7       | 2.0       | 9.0       | 0.5       | 2.4     |

NOTE: Complete volatile analyte listing can be found in Table 4-3.

# RMA – SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM

# SUMMARY OF EPA AUDIT FOR VOLATILE ORGANICS TEST DATA AND POSITIVE TEST RESULTS

|            |                 | 06-09-93 AVERAGE | _         | 4              |                | 10.00             | 1.30                                              | 29.00                      | 544.20                              | 9.225                        | 0.996                    | 24.74                       | 0.2613              |                         |               |                |                  |                    |         | 11.0          |
|------------|-----------------|------------------|-----------|----------------|----------------|-------------------|---------------------------------------------------|----------------------------|-------------------------------------|------------------------------|--------------------------|-----------------------------|---------------------|-------------------------|---------------|----------------|------------------|--------------------|---------|---------------|
|            | 568             | 06-09-93         | 1446-1456 | 3              |                | 10.00             | 1.30                                              | 29.00                      | 544.20                              | 9.455                        | 0.996                    | 24.74                       | 0.2678              |                         | 9.4           | 0.0            | 6.3              | 10.6               | 10.7    | 11.0          |
| ;          | 268             | 66-60-90         | 1354-1404 | 2              |                | 10.00             | 1.30                                              | 31.00                      | 547.80                              | 9.570                        | 0.996                    | 24.74                       | 0.2693              |                         | 11.9          | 0.0            | 14.9             | 10.4               | 11.0    | 10.9          |
| į          | 268             | 06-09-93         | 1332-1342 | 1              |                | 10.00             | 1.30                                              | 30.25                      | 546.45                              | 9.267                        | 0.996                    | 24.74                       | 0.2614              |                         | 13.5          | 1.0            | 0.7              | 10.4               | 10.9    | 10.4          |
| TEST DATA: | Cylinder number | Test date        | Test time | Test tube pair | SAMPLING DATA: | Duration, minutes | Average dry gas meter press. in. H <sub>2</sub> O | Average meter temp. deg. C | Average absolute meter temp. deg. R | Actual sample volume, liters | Meter box calibration, Y | Barometric pressure, in. Hg | Sample volume, dscf | VOST EMISSIONS (ppb/v): | Chloromethane | Vinyl Chloride | Carbon Disulfide | 1,1-Dichloroethene | Toluene | Chlorobenzene |

NOTE: Complete volatile analyte listing can be found in Table 4-3.

**TABLE 7-4** 

# U.S. EPA QUALITY ASSURANCE DIVISION DIOXIN/FURAN AUDIT DATA

| AUDITEE COMPANYTriangle Laboratories of RTP  |   |
|----------------------------------------------|---|
| ADDRESS 801 Capitola Inc.                    |   |
| Durham, NC 27713                             |   |
| AUDIT SAMPLE NO1156                          |   |
| DATA AUDIT SAMPLE RECEIVED 6/12/93           |   |
| DATE ANALYZED6/27/93                         |   |
| CONFIRMATION ANALYSIS USED: YES 2378-TCDF NO | 0 |
| AUDITEE'S NAME Don_Harvan                    |   |

| COMPOUND      | AUDITEE<br>RESULTS<br>(ng sample) | COMPOUND      | AUDITEE<br>RESULT<br>(ng/sample) |
|---------------|-----------------------------------|---------------|----------------------------------|
| 2378-TCDD     | 0.95                              | *2378-TCDF    | 0.75                             |
| OTHER TCDD    | 1.75                              | *OTHER TCDF   | 0.85                             |
| 12378-PCDD    | 0.97                              | 12378-PCDF    | 1.1                              |
| OTHER PCDD    | 2.5                               | 23478-PCDF    | 1.1                              |
| 123478-HxCDD  | 1.4                               | OTHER PCDF    | 1.5                              |
| 123678-HxCDD  | 1.0                               | 123478-HxCDF  | 1.4                              |
| 123789-HxCDD  | 2.9                               | 123678-HxCDF  | 1.1                              |
| OTHER-HxCDD   | 1.2                               | 123789-HxCDF  | 1.1                              |
| 1234678-HpCDD | 2.2                               | 234678-HxCDF  | 1.3                              |
| OTHER HpCDD   | 1.4                               | OTHER HxCDF   | 2.6                              |
| OCDD          | 2.3                               | 1234678-HpCDF | 2.0                              |
|               |                                   | 1234789-HpCDF | 2.6                              |
| _             |                                   | OTHER HpCDF   | ND (0.01)                        |
|               |                                   | OCDF          | 2.4                              |

<sup>\*</sup> From DB-225 GC column

# TABLE 7-4 (continued) U.S. EPA QUALITY ASSURANCE DIVISION DIOXIN/FURAN AUDIT DATA

| AUDITEE COMPANY Triangle Laboratories of RTP |  |
|----------------------------------------------|--|
| ADDRESS 801 Capitola Inc.                    |  |
| Durham, NC 27713                             |  |
| AUDIT SAMPLE NO. 8863                        |  |
| DATA AUDIT SAMPLE RECEIVED 6/12/93           |  |
| DATE ANALYZED 6/27/93                        |  |
| CONFIRMATION ANALYSIS USED: YES 2378-TCDF NO |  |
| AUDITEE'S NAME Don Harvan                    |  |

| COMPOUND      | AUDITEE<br>RESULTS<br>(ng sample) | COMPOUND      | AUDITEE<br>RESULT<br>(ng/sample) |
|---------------|-----------------------------------|---------------|----------------------------------|
| 2378-TCDD     | 0.47                              | *2378-TCDF    | 0.62                             |
| OTHER TCDD    | 0.83                              | *OTHER TCDF   | 0.58                             |
| 12378-PCDD    | 0.48                              | 12378-PCDF    | 0.57                             |
| OTHER PCDD    | 1.22                              | 23478-PCDF    | 0.56                             |
| 123478-HxCDD  | 0.64                              | OTHER PCDF    | 0.87                             |
| 123678-HxCDD  | 0.51                              | 123478-HxCDF  | 0.71                             |
| 123789-HxCDD  | 1.3                               | 123678-HxCDF  | 0.55                             |
| OTHER-HxCDD   | 0.65                              | 123789-HxCDF  | 0.55                             |
| 1234678-HpCDD | 1.1                               | 234678-HxCDF  | 0.70                             |
| OTHER HPCDD   | 0.7                               | OTHER HxCDF   | 1.29                             |
| OCDD          | 1.2                               | 1234678-HpCDF | 0.94                             |
| _             |                                   | 1234789-HpCDF | 1.2                              |
| _             |                                   | OTHER HpCDF   | ND (0.01)                        |
|               |                                   | OCDF          | 1.1                              |

<sup>\*</sup> From DB-225 GC column

# TABLE 7-4 (continued) U.S. EPA QUALITY ASSURANCE DIVISION DIOXIN/FURAN AUDIT DATA

| AUDITEE COMPANY Triangle Laboratories of RTP |
|----------------------------------------------|
| ADDRESS 801 Capitola Inc.                    |
| Durham, NC 27713                             |
| AUDIT SAMPLE NO. 2782                        |
| DATA AUDIT SAMPLE RECEIVED6/12/93            |
| DATE ANALYZED 6/27/93                        |
| CONFIRMATION ANALYSIS USED: YES 2378-TCDF NO |
| AUDITEE'S NAME Don Harvan                    |

| COMPOUND      | AUDITEE<br>RESULTS<br>(ng sample) | COMPOUND      | AUDITEE<br>RESULT<br>(ng/sample) |
|---------------|-----------------------------------|---------------|----------------------------------|
| 2378-TCDD     | 0.17                              | *2378-TCDF    | 0.22                             |
| OTHER TCDD    | 0.31                              | *OTHER TCDF   | 0.23                             |
| 12378-PCDD    | 0.17                              | 12378-PCDF    | 0.19                             |
| OTHER PCDD    | 0.18                              | 23478-PCDF    | 0.20                             |
| 123478-HxCDD  | 0.23                              | OTHER PCDF    | 0.27                             |
| 123678-HxCDD  | 0.19                              | 123478-HxCDF  | 0.24                             |
| 123789-HxCDD  | 0.48                              | 123678-HxCDF  | 0.20                             |
| OTHER-HxCDD   | 0.2                               | 123789-HxCDF  | 0.19                             |
| 1234678-HpCDD | 0.40                              | 234678-HxCDF  | 0.24                             |
| OTHER HPCDD   | 0.24                              | OTHER HxCDF   | 0.43                             |
| OCDD          | 0.41                              | 1234678-HpCDF | 0.34                             |
|               |                                   | 1234789-HpCDF | 0.44                             |
| _             |                                   | OTHER HpCDF   | ND (0.01)                        |
|               |                                   | OCDF          | 0.39                             |

<sup>\*</sup> From DB-225 GC column

# RMA - SQI DENVER, COLORADO TRIAL BURN TEST PROGRAM TABLE 7-5

# METALS AUDIT SAMPLE LAB RESULTS

|                 | Multi Metals Filters Low Level | Multi Metals Filters<br>High Level |
|-----------------|--------------------------------|------------------------------------|
|                 | 2011 2010                      | night Level                        |
| <b>Elements</b> | Reported Values (ug)           | Reported Values (ug)               |
| Beryllium (Be)  | 3.6                            | 46.3                               |
| Cadmium (Cd)    | 6.8                            | 58.7                               |
| Chromium (Cr)   | 8.8                            | 63.3                               |
| Copper (Cu)     | 9.6                            | 60.6                               |
| Phosphorus (P)  | *                              | *                                  |
| Lead (Pb)       | 43.4                           | 302                                |
| Manganese (Mn)  | 9.3                            | 60.3                               |
| Nickel (Ni)     | 19.8                           | 274                                |
| Silver (Ag)     | 2.9                            | 7.2                                |
| Zinc (Zn)       | 89                             | 172                                |
| Arsenic (As)    | 6.8                            | 15.0                               |
| Antimony (Sb)   | 4.0                            | 6.5                                |
| Selenium (Se)   | 3.7                            | 9.6                                |
| Thallium (Tl)   | 5.8                            | 9.0                                |
| Mercury (Hg)    | < 0.05                         | 0.07                               |

<sup>\*</sup> Phosphorus not analyzed. No value reported.

# SECTION 8 CLOSURE

# 8.1 MATERIAL RESOURCES

All of the Basin F liquid processed during the Trial Burn was obtained from storage tank TK-102. The excess drums of carbon tetrachloride and monochlorobenzene are currently being stored until the results of the Trial Burn have been approved. All remaining POHC liquids will then be burned in the SQI.

# 8.2 MATERIAL PROCESSED

From the beginning of Shakedown Testing on 28 April 1993 using 25% Basin F liquid through the end of Trial Burn Testing on 12 June 1993 using 100% Basin F liquid, 293,563 gallons of hazardous wastes have been processed in the SQI. All of the Basin F liquids burned to date have been from one of the three 1.3-million-gallon storage tanks (TK-101, -102, -103). During the Trial Burn an average feedrate of 176 lb/min was demonstrated. A minimum feedrate of 142 lb/min (Run #1) and a maximum feedrate of 188 lb/min (Run #3) was experienced during testing. A complete summary of the feedrate calculations is provided by the daily analysis reports in Appendices A.1.1 - A.1.3.

# 8.3 PROCESSED MATERIAL DISPOSITION

The material processed through the SQI was sampled and analyzed as stated in Section 5. The by-product of Basin F incineration is a brine solution, which is sampled and analyzed daily during routine operations by the on-site analytical laboratory. This liquid is transported by tank trucks to railroad cars located at RMA, which transport the brine offsite to a metals recycle facility. Transportation and disposal records for the brine solution are available from the Army.

# SECTION 9 CONCLUSIONS

The primary objective of the Trial Burn test program was to maximize the Basin F liquid feedrate while simultaneously demonstrating the capability of the SQI to safely destroy organic contaminants in the incinerator discharge gases. The SQI successfully demonstrated a destruction and removal efficiency (DRE) greater than 99.999% for monochlorobenzene and greater than 99.9988% for carbon tetrachloride, both values well above the minimum regulatory limit of 99.99%.

During the three days of testing, the SQI operated smoothly and consistently with minimal upsets. During the first day of testing, stack sampling was temporarily stopped for approximately 100 minutes to clean waste feed nozzles. Days 2 and 3 proceeded without interruptions. The on-line availability of the SQI during Trial Burn testing was 92%.

Analytical results from stack testing indicate that the SQI effectively treated volatile and semivolatile organic contaminants in the Basin F liquid. Additionally, the air pollution control equipment controlled emissions of particulate and HCl to within regulatory limits.

# 9.1 RECOMMENDED OPERATING LIMITS

The SQI is currently operating under interim conditions, which were formally approved by EPA Region VIII in their letter to the Army (Ref: 8HWM-FF). The interim conditions were based upon the demonstrated results of the second mini-burn test, conducted 20 - 25 May 1993 using 100% Basin F waste. The post-Trial Burn cutoff values for interim operating conditions are provided in Table ES-1.

Table 9-1 represents the proposed waste feed cutoff values based upon previous testing and Trial Burn results. A brief description of each interlock value is provided.

Table 9-1
Waste Feed Cutoff Requirements

| Parameter                                                       | Routine Operations                     |
|-----------------------------------------------------------------|----------------------------------------|
| Liquid Feedrate (lb/min)                                        | ≥188 lb/min for 30 sec.                |
| Residence Time (seconds)                                        | ≤2 sec. for 3 min.                     |
| Combustion Temperature (°F)                                     | <1800°F for 0.5 sec.                   |
| Stack Oxygen                                                    | ≤3% for 3 min.<br>≤1% for 5 sec.       |
| Quench pH                                                       | ≤4 instantaneous                       |
| Scrubber pH                                                     | ≤5.25 for 30 sec.                      |
| Venturi Differential Press. (in. w.c.)                          | ≤80 for 1 min.                         |
| Packed Tower Flowrate (gpm)                                     | ≤270 for 30 sec.                       |
| CO Hourly Rolling Average (ppm corrected to 7% O <sub>2</sub> ) | ≤100 instantaneous                     |
| Venturi L/G Ratio (gallons/kcf)                                 | ≤9.3 instantaneous                     |
| Venturi Flowrate (gpm)                                          | ≤100 for 1 min.                        |
| Feed Nozzle Pressure (psig)                                     | ≤50 at >60 lb/min feedrate for 30 sec. |
| Compressor Outlet Pressure (psig)                               | ≤85 instantaneous                      |

# 9.1.1 Maximum Liquid Feedrate

During Trial Burn testing, the daily average feedrate for Basin F liquid varied between 171.1 - 179.9 lb/min. Each test day, POHCs were injected to determine DRE. All three test days had a DRE greater than the regulatory requirement of 99.99%. Therefore, it is proposed that the waste feed cutoff value be based upon the maximum instantaneous feedrate demonstrated during Trial Burn testing, which is 188 lb/min.

The average feedrate for the test runs was determined from the daily analysis report generated each test day (Appendix A.1.1 - A.1.3). The daily report generates minimum and maximum readings and calculates hourly averages for critical parameters, which were again averaged over the Trial Burn test period. For example, the 179.9 lb/min feedrate reported for run #3 is based upon a low reading of 172 lb/min and a high reading of 188 lb/min. The maximum instantaneous reading for run #1 was 185 lb/min and for run #2 was 184 lb/min. It is proposed that the waste feed cutoff value be based upon the maximum demonstrated instantaneous feedrate value of 188 lb/min, with a 30-second time delay to eliminate random waste feed trips caused by the introduction of liquid feed into the nozzle headers.

### 9.1.2 Minimum Residence Time

During Trial Burn testing, the residence time calculation varied between 2.67 - 2.81 seconds. This calculation is based upon the following formula:

```
Residence Time (sec) = SQI chamber volume/gas flow rate (acfs)

ACFS = SCFS \cdot {(460 + TY-34)/530} \cdot {(12.2/(12.2 + PIT-31))}

SCFS = {(FIT-16 + FIT-09 + FIT-30) + \SigmaFIT-15A/E + (FIT-04A \cdot 21.5)}/60
```

### where:

TY-34: SQI chamber temperature

PIT-31: SQI chamber pressure

FIT-16: Primary combustion air flow to the burner

FIT-30: Secondary combustion air flow to the chamber

FIT-09: Natural gas flowrate

FIT-15A/E: Atomizing air flow to the waste feed nozzles

FIT-04A: Aqueous waste flowrate

This calculation is based upon parameters that are constantly changing as incinerator process conditions vary. To limit the waste feed cutoff value to the minimum demonstrated residence time would be overly restrictive, especially since the SQI is already, regulated on many parameters used in the residence time calculation (e.g., waste feedrate, SQI chamber temperature, SQI chamber pressure, combustion air flowrate, etc.). It is proposed that the waste feed shutoff value remain ≤2 seconds for longer than 3 minutes, which is below the average demonstrated value but provides flexibility for the variable process conditions.

# 9.1.3 Minimum Combustion Temperature

During Trial Burn testing, the daily average SQI combustion chamber temperature varied from 1831 – 1842°F. A minimum temperature of 1804°F (run #1) and a maximum temperature of 1856°F (run #1 & 2) was experienced during testing. Chamber temperature is a critical parameter in determining DRE. As stated in Section 9.1.1, all three test days had a DRE greater than the regulatory requirement. In fact, throughout all of the previous mini-burn tests, the SQI has successfully passed DRE. During the first mini-burn test program, the incinerator passed DRE at a chamber temperature of 1760°F. Since the average value generated in the daily reports is based upon minimum and maximum readings, it is proposed that the minimum temperature shutoff value be 1800°F. This is well above

the demonstrated temperature from the first mini-burn test, and would allow a reasonable temperature span for SQI operations.

# 9.1.4 Minimum Stack Oxygen

During Trial Burn testing, the stack oxygen varied from 3.37% – 3.74%. The secondary air control valve (AIC-30) is able to maintain excess air within a close tolerance. It is requested that the current waste feed shutoff value of <3% for longer than 3 minutes remain unchanged. In addition, the low level oxygen shutoff of <1% for longer than 5 seconds would remain unchanged.

# 9.1.5 Minimum Quench pH

During Trial Burn testing, the quench pH probes (AE-64A/B) were not operating properly. Periodic field pH readings indicated that the quench liquid pH was significantly lower than recorded by the PMCS. The field readings were used during testing to control acid gas emissions. The quench pH field readings varied from 5.0 – 5.25. It is requested that the current waste feed shutoff value of <4 pH remain unchanged. This pH value was recommended by the equipment manufacturer for proper process operation and has remained unchanged throughout surrogate and Shakedown Testing.

# 9.1.6 Minimum Scrubber pH

During Trial Burn testing, the scrubber pH probes (AE-56A/B) were not operating consistently. Periodic field pH readings indicated that the scrubber pH was sometimes lower than recorded by the PMCS. The field readings were used during testing to control acid gas emissions. The scrubber pH field readings varied from 5.48 – 6.07. It is requested that the current waste feed shutoff value of <5.25 pH for longer than 30 seconds, which was demonstrated during the second mini-burn (Appendix A.3.2), remain unchanged.

# 9.1.7 Minimum Venturi Differential Pressure

During Trial Burn testing, the venturi differential pressure was maintained at 90" water column (wc). This pressure drop, coupled with the venturi recycle flowrate, resulted in acceptable particulate emissions. In order to provide margin between the 90" wc venturi differential pressure operating setpoint, it is requested that the current waste feed shutoff value of <80" wc for longer than 1 minute remain unchanged.

# 9.1.8 Minimum Packed Tower Flow

During Trial Burn testing, the scrubber packed tower recycle flowrate varied between 280 – 296 gpm. This recycle rate, coupled with the scrubber and quench tanks pH, is responsible for the HCl removal. Due to the very low emissions level, it is requested that the current waste feed shutoff value of <270 gpm for longer than 30 seconds remain unchanged.

# 9.1.9 Maximum CO Hourly Rolling Average

During Trial Burn testing, the carbon monoxide hourly rolling average varied between 47 – 58 ppm. It is requested that the current waste feed shutoff value of >100 ppm (corrected to 7%  $O_2$ ) remain unchanged.

# 9.1.10 Minimum Venturi Flowrate

During Trial Burn testing, the venturi recycle flowrate varied between 125 – 128 gpm. This recycle flowrate, coupled with the pressure drop across the vanes, resulted in acceptable particulate emissions. During mini-burn #2 testing, this recycle flowrate was decreased to 100 gpm, which still resulted in acceptable particulate emissions. It is requested that the current waste feed shutoff value of <100 gpm for longer than 1 minute remain unchanged.

# 9.1.11 Minimum Feed Nozzle Pressure

The waste feed nozzle pressure is monitored by pressure transmitters PIT-27A/E. These values are displayed, but not recorded, by the PMCS. It is requested that the current waste feed shutoff value of <50 psig at flow rates >60 lb/min through a nozzle for longer than 30 seconds remain unchanged.

The feed nozzle shutoff value was established during Shakedown Testing when it was noted that backpressure recorded by pressure indicating transmitters PIT-27A through E rarely reached 50 psig. The pressure monitored at the nozzles fluctuated between 35 – 55 psig during waste feed operations. Subsequent discussions with the equipment vendor confirmed that the multi-port teat nozzles were designed for maximum turndown, so proper waste feed atomization is achieved by supplying sufficient atomizing air flow rather than a minimum liquid feedrate. By tying the interlock definition to the maximum design flow through a nozzle (60 lb/min) for longer than 30 seconds, the PMCS is capable of detecting a catastrophic nozzle failure.

# 9.1.12 Minimum Compressor Outlet Pressure

The waste feed atomizing air pressure is monitored by pressure transmitters PIT-18A/E. These values are displayed, but not recorded, by the PMCS. The header pressure is interlocked to the waste feed through pressure switch PSLL-13. It is requested that the current waste feed shutoff value of <85 psig remain unchanged to ensure proper atomization of the waste feed.