Let's assume that we have a series system with m=3 components, each of which has an exponentially distributed time-to-failure,

$$T_{ij} \sim \text{exponential}(\lambda_i)$$

for j = 1, ..., m and i = 1, ..., n where $\theta = (\lambda_1, \lambda_2, \lambda_3)$ is unknown.

We replicate the masked data in Table 2 from the Guo paper:

```
md <- read.csv("./data.csv")
md$X1 <- ifelse(md$X1 == 0,F,T)
md$X2 <- ifelse(md$X2 == 0,F,T)
md$X3 <- ifelse(md$X3 == 0,F,T)
md</pre>
```

##		System ID	Failure.Time	X1	Х2	ХЗ
##	1	1	21	FALSE	TRUE	FALSE
##	2	2	38	TRUE	TRUE	FALSE
##	3	3			FALSE	TRUE
##	4	4		FALSE		TRUE
##	5	5	76	TRUE		FALSE
##	6	6	78	FALSE	TRUE	TRUE
##	7	7	123	FALSE	FALSE	TRUE
##	8	8	130	TRUE	FALSE	TRUE
##	9	9	152	TRUE	TRUE	TRUE
##	10	10	159	TRUE	FALSE	FALSE
##	11	11	199	FALSE	FALSE	TRUE
##	12	12	201	TRUE	FALSE	FALSE
##	13	13	204	TRUE	FALSE	FALSE
##	14	14	215	${\tt FALSE}$	TRUE	TRUE
##	15	15	218	TRUE	TRUE	FALSE
##	16	16	281	TRUE	FALSE	FALSE
##	17	17	295	FALSE	TRUE	FALSE
##	18	18	310	FALSE	FALSE	TRUE
##	19	19	338	FALSE	FALSE	TRUE
##	20	20	341	FALSE	TRUE	FALSE
##	21	21	354	TRUE	FALSE	FALSE
##	22	22	358	FALSE	TRUE	FALSE
##	23	23	431	TRUE	TRUE	TRUE
##	24	24	457	FALSE	FALSE	TRUE
##	25	25	545	TRUE	TRUE	TRUE
##	26	26	569	FALSE	TRUE	FALSE
##	27	27	677		FALSE	TRUE
##	28	28		FALSE		FALSE
##	29	29	946	FALSE	TRUE	TRUE
##	30	30	1486	TRUE	FALSE	FALSE

We are using the likelihood function given by

$$L(\lambda_1, \lambda_2, \lambda_3) = \prod_{i=1}^n \sum_{j \in C_i} f_j(t_i; \theta_j) \prod_{\substack{p=1 \\ p \neq j}} R_p(t_i; \theta_p)$$
$$= \prod_{i=1}^n \left[\left\{ \prod_{j=1}^m R_j(t_i; \theta_j) \right\} \left\{ \sum_{k \in C_i} h_k(t_i; \theta_k) \right\} \right]$$

and the log-likelihood function given by

$$l(\lambda_1, \lambda_2, \lambda_3) = \sum_{i=1}^{n} \sum_{j=1}^{m} \log R_j(t_i; \theta_j) + \sum_{i=1}^{n} \log \left\{ \sum_{k \in C_i} h_k(t_i; \theta_k) \right\}.$$

The component times-to-failure are exponentially distributed, and thus the hazard and survival functions are respectively given by $h_j(t; \lambda_j) = \lambda_j$ and $R_j(t; \lambda_j) = \exp(-\lambda_j t)$. Making this substitution into the likelihood function obtains the result

$$L(\lambda_1, \lambda_2, \lambda_3) = \prod_{i=1}^n \left(\sum_{j \in C_i} \lambda_j\right) e^{-\left(\sum_{j=1}^m \lambda_j\right) t_i}.$$
 (1)

and into the log-likelihood function obtains the result

$$\ell(\lambda_1, \lambda_2, \lambda_3) = \sum_{i=1}^n \log \left(\sum_{j \in C_i} \lambda_j \right) - \left(\sum_{j=1}^m \lambda_j \right) \left(\sum_{i=1}^n t_i \right). \tag{2}$$

We model the log-likelihood function in R with:

```
# generator for log-likelihood function
loglike <- function(ttf,cand)</pre>
    n <- length(ttf)
    function(theta)
        res <- 0
        for (i in 1:n)
             \#cat("i=",i,"ttf=",ttf[i],"C=",(1:m)[cand[i,]],"sum=",sum(theta[cand[i,]]),"\setminus n")
             res <- res + log(sum(theta[cand[i,]]))
        return(res - sum(theta) * sum(ttf))
    }
}
mle.grad <- function(1,theta0,eps=1e-3,r=.5)</pre>
{
    repeat
    {
         # we use backtracking for an approximate line search
        alpha <- 1
        theta1 <- NULL
        g <- numDeriv::grad(1,theta0)</pre>
        repeat {
             theta1 <- theta0 + alpha * g
             if (all(theta1 > 0) && l(theta1) > l(theta0))
                 break
             alpha <- r*alpha
        }
        # infinity norm
        if (abs(sum(theta1-theta0)) < eps)</pre>
             return(theta1)
        theta0 <- theta1
    }
}
```

So, let's set up the log-likelihood function:

```
ttf <- md$Failure.Time
cand <- as.matrix(md[3:5])
1 <- loglike(ttf,cand)</pre>
```

Now, we try to solve the MLE using gradient ascent to solve for the zeros of the gradient of the log-likelihood function. We repeat the method many times, using random initial points, and choose the best one found:

```
trials <- 1
theta.hat <- NULL
1.theta.hat <- -Inf</pre>
repeat
{
  theta0 <- runif(3,1.5,6.5)
  theta.b <- NULL
  tryCatch(
    {
      theta.b <- mle.grad(1,theta0,1e-6)
      1.theta.b <- 1(theta.b)</pre>
      if (1.theta.b > 1.theta.hat)
        1.theta.hat <- 1.theta.b</pre>
        theta.hat <- theta.b
      }
      trials <- trials + 1L
    warning = function(w) {},
    error = function(e) {})
  if (trials == 5000L)
    break
}
print(theta.hat)
## [1] 0.0008579827 0.0009880395 0.0011126141
```

So, we see that $\hat{\theta} = (0.0008579827, 0.0009880395, 0.0011126141)$.