u^b

1-sample t-test

Louisa / Salomé

u^b Understanding the 1-sample t-test

Definition: A statistical test used to determine if the mean of a single sample is significantly different from a known or hypothesized population mean.

Unknown Population Variance: The standard deviation of the population is not known.

State the Hypotheses:

- Null Hypothesis (H₀): The sample mean equals the population mean.
- Alternative Hypothesis (H₁): The sample mean is different from the population mean

Calculate t-statistic

- \bar{x} : sample mean
- μ₀: population mean
- s: sample standard deviation
- n: sample size

$$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$$

If the t value > critical t value: reject the null hypothesis If the t value < critical t value: fail to reject the null hypothesis

$u^{\scriptscriptstyle b}$ Example

Example

A group of 150 students has a mean math score of 5.0 with a std of 0.5, while the population average is 4.75. We want to test, whether the class has a significantly different score compared to the population.

Null Hypothesis (H_0): The class mean equals the population mean.

Alternative Hypothesis (H₁): The class mean is different from the population mean

Define alpha and degrees of freedom

- α: 0.05
- df = n-1 = 149
- Critical t-value: 1.9760

Calculate t-value

 $(5.0 - 4.75) / (0.5 / \sqrt{150}) = 6.13$

As the t-value is bigger than the critical t-value, the null-hypothesis can be rejected.

One Tail	0.05	0.025
Two Tails	0.1	0.05
df		
1	6.3138	12.7065
2	2.9200	4.3026
3	2.3534	3.1824
4	2.1319	2.7764
5	2.0150	2.5706
6	1.9432	2.4469
7	1.8946	2.3646
8	1.8595	2.3060
9	1.8331	2.2621
10	1.8124	2.2282
144	1.6555	1.9766
145	1.6554	1.9765
146	1.6554	1.9764
147	1.6553	1.9762
148	1.6552	1.9761
149	1.6551	1.9760
150	1.6551	1.9759
151	1.6550	1.9758
152	1.6549	1.9757
153	1.6549	1.9756
154	1.6548	1.9755
155	1.6547	1.9754

$oldsymbol{u}^{\scriptscriptstyle b}$ Application in python - generate dataset

```
import pandas as pd
                                                    # Import libraries
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from scipy.stats import ttest 1samp
                                                    # Set the random seed for reproducibility
np.random.seed(1729)
                                                    # Number of students
num students = 150
                                                    # Generate math scores with mean 5.0, standard
                                                    deviation 0.5
math scores = np.random.normal(loc=5.0,
                                                    # Ensure values stay within the range [1, 6] by
scale=0.5, size=num students)
                                                    clipping the values - if below or above - set
math scores = np.clip(math scores, 1, 6)
                                                    to limits
df = pd.DataFrame({
                                                    # Create a DataFrame with student names and
  'Student': [f'Student {i+1}' for i in
                                                    math scores
range(num students)],
  'Math Score': math scores})
print(df)
                                                    # Display the DataFrame
```

u^b Check for Normality

```
# Plot qq Plot
fig=sm.qqplot(df['Math Score'], line='s')
plt.show()
We assume normality is given.
```


u^b Perform T Test

```
population mean = 4.75
t statistic, p value = ttest 1samp(df[ 'Math Score'], popmean=population mean)
# Display the results
print("\nOne-Sample t-Test Results:")
print (f"t-statistic: {t statistic:.4f}")
print (f"p-value: {p value:.4f}")
# Interpret the result
alpha = 0.05 # Significance level
if p value < alpha:</pre>
print ("Reject the null hypothesis: The sample mean is significantly different from the population
mean.")
else:
  print("Fail to reject the null hypothesis: There is no significant difference between the sample
mean and the population mean.")
                         One-Sample t-Test Results:
                         t-statistic: 4.7660
                         p-value: 0.0000
                         Reject the null hypothesis: The sample mean is significantly different from the population mean.
```