

Department of Computer and Information Science

การวิเคราะห์ประสิทธิภาพของอัลกอริทึม (1)

อ. ลือพล พิพานเมฆาภรณ์

ขั้นตอนวิธี (Algorithm)

• เป็นขั้นตอนสำหรับการแก้ปัญหาทางคณิตศาสตร์หรือตรรกะโดยมีลำดับที่ชัดเจน

รหัสเทียม (Pseudo Code)

• วิธีการในการอธิบายขั้นตอนการแก้ปัญหาที่ไม่ขึ้นกับภาษาใดภาษาหนึ่ง

เริ่มต้นทำงาน

- 1. ให้ i มีค่าเป็น 1 และ Sum มีค่าเป็น 0
- 2. ถ้า i มากกว่า n ไปขั้นตอน 7
- 3 ถ้า ai เป็นเลขคี่ ไปขั้นตอน 6
- 5. น้ำ ai ไปบวกกับ Sum
- 6. เพิ่มค่า i ขึ้นไป 1 กลับไปยังขั้นตอน 2
- 7. แสดงผลลัพธ์ Sum

จบการทำงาน

```
1. Sum = 0, i = 1;
```

- 2. **if** i <= n **then**:
- 3. **if** a[i] is even **then**:
- 5. Sum = Sum + a[i];
- 6. end if;
- 7. i = i + 1;
- 8. **go to step 2**;
- 9. **end if**;
- 10. Display Sum

ทำไมต้องวิเคราะห์ขั้นตอนวิธี

- อัลกอริทึมที่ดีไม่ใช่แค่ทำงานถูกต้อง แต่ต้องประมวลผลไม่<u>ซับซ้อน</u> (complexity) เกินไป
- การประเมินความซับซ้อนของขั้นตอนวิธี สามารถทำได้ 2 วิธี
 - 1. การประเมินเวลาโดยตรง (Empirical analysis)
 - 2. การประเมินเวลาโดยนับรอบทำงาน (Counting analysis)
- การวิเคราะห์เวลาโดยตรง อาจไม่ใช่วิธีที่เหมาะสมเพราะขึ้นอยู่กับหลายปัจจัย
 - ความเร็วของเครื่องคอมพิวเตอร์ (Speed)
 - ภาษาคอมพิวเตอร์ที่ใช้
 - คุณภาพของตัวแปลภาษา

การประเมินเวลาโดยนับรอบของบรรทัดคำสั่ง

- แก้ปัญหาการประเมินเวลาที่ขึ้นอยู่กับปัจจัยภายนอก จึงเปลี่ยนมาใช้วิธีการประเมินเวลาโดยการนับรอบ ของบรรทัดคำสั่ง (counting operations) ขึ้นอยู่กับขนาดอินพุตแทน และเขียนในรูปของฟังก์ชั่นทาง คณิตศาสตร์ T(n)
- เนื่องจากอัลกอริทึมทั่วไปจะใช้เวลาในการประมวลผลมากขึ้น เมื่อ<u>ขนาดอินพุต</u>มากขึ้น
 - O Sorting ข้อมูล 10 จำนวน เทียบกับเวลาที่ใช้เรียงข้อมูล 1,000 จำนวน
 - O Searching ข้อมูล 10 จำนวน เทียบกับข้อมูล 1,000 จำนวน
- ขณะที่บางปัญหาขนาดอินพุตก็ไม่ได้ขึ้นอยู่กับจำนวนข้อมูลแต่อาจเป็นค่าข้อมูล (value) เช่น การคำนวณ ค่าแฟคทรอเรียล (n!) หรือการคำนวณเลขยกกำลัง xⁿ

การประเมินเวลาโดยนับรอบของบรรทัดคำสั่ง

```
    ALGORITHM power (x, n)
    product <- 1</li>
    for i <- 1 to n do</li>
    product <- product*x</li>
    endfor
    return product
    END ALGORITHM
```

Operation	Time	Repetitions
1	t1	1
2	t2	1
3	t3	n+1
4	t4	n
5	t5	n
6	t6	1

$$T(n) = t1+t2+t3(n+1)+t4n+t5n+t6$$

$$T(n) = (t3+t4+t5)n + t1+t2+t3+t6$$

$$2. S = 0$$

3. for
$$i = 1$$
 to n do

4. for
$$j = 1$$
 to n do

5.
$$S = S + 1$$

$$T(n) = t1 + t2 + t3(n+1)+t4(n^2+n)+t5n^2+t6n^2+t7n$$

$$T(n) = (t4+t5+t6)n^2 + (t3+t4+t7)n + t1+t2$$

Operation	Time	Repetitions
1	t1	1
2	t2	1
3	t3	n+1
4	t4	n(n+1)
5	t5	n*n
6	t6	n*n
7	t7	n

การประเมินเวลาโดยการนับรอบของโอเปอเรชันพื้นฐาน (basic operation counting)

• โอเปอเรชั่นพื้นฐาน (Basic operation) คือบรรทัดคำสั่งที่ถูกประมวลผลมากที่สุดในอัลกอริทึม ซึ่งใช้เป็นตัวแทนของเวลาประมวลผลในอัลกอริทึม (มักเป็นบรรทัดที่อยู่ในลูปในสุด)

```
    ALGORITHM power (x, n)
    product <- 1</li>
    for i <- 1 to n do</li>
    product <- product*x</li>
    endfor
    return product
```

END ALGORITHM

 $T(n) \cong t4*n$

การประเมินเวลาโดยการนับรอบของโอเปอเรชันพื้นฐาน

กำหนดให้บรรทัดคำสั่ง ti มีเวลาคงที่เท่ากับ 1

การนับรอบทำงานของโอเปอเรชันพื้นฐาน (basic operation counting)

```
ALGORITHM mystery (x, n)
2. S = 0
      for i = 1 to n do
          for j=1 to n do
5.
             S = S + 1
         endfor
       endfor
   END ALGORITHM
```

$$T(n) = t5*n^2$$

- 1. sum(n)
- 2. S = 0
- 3. i = 1
- 4. while $i \le n$ do
- 5. S = S + 1
- 6. i = i + 1
- 7. endwhile
- 8. Return S

Basic operation สามารถเป็นบรรทัดที่ 5 หรือ 6 ก็ได้ เนื่องจากมีรอบทำงานไม่แตกต่างกัน

$$T(n) = ??$$

```
1. result = 1, j=0;
                                    T(n) =
2. for(i = 2; i \le n-1; i++)
3. { result = result * n;
4. j = j + 1;
6. print result;
```

```
1. result = 1;
2. for(i=1; i \le n; i++)
3. { for(j=2; j <= i; j++)
4. { result = result * n;
7. print result;
```

สูตรช่วยนับรอบ for

$$\sum_{i=l}^{u} 1 = 1 + 1 + \dots + 1 = u - l + 1$$

$$T(n) = \sum_{i=1}^{n} 1 = n - 1 + 1 = n$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = n * (n+1)/2$$

```
1. k = 0;
2. for(i=1; i \le n; i++)
3. \{ k = k + i; \}
5. for(j = n; j > 0; j--)
6. \{ k = k + j;
7. }
8. print k;
```

```
1. result = 1, j = n;
2. while (j > 1)
                               T(n) =
3. \{ result = j + n; \}
4. j = j / 2;
5. }
6. print result;
```

1. result = 1, j = n;

2. while (j > 1)

3. { result = j + n;

4. j = j / 2;

5. }

6. print result;

หาความสัมพันธ์ระหว่างรอบทำงาน และขนาดของอินพุตที่เปลี่ยนแปลง

รอบที่ 1 $n = n/2 = n/2^1$

รอบที่ 2 $n = n/4 = n/2^2$

รอบที่ 3 $n = n/8 = n/2^3$

••••

เมื่อได้ความสัมพันธ์แล้วจะหารอบสุดท้าย โดยสมมติ n = 2^k

แก้สมการหาค่า k ในรูปของ n

ดังนั้น $k = \log_2 n$

 $T(n) = \log_2 n$

การวิเคราะห์เวลากรณี best-case / worst-case / average-case

การวิเคราะห์เวลากรณี best-case / worst-case / average-case

- นอกจากขนาดอินพุต n แล้ว ในบางอัลกอริทึมเวลาในการทำงานจะขึ้นอยู่ลักษณะของ
 ข้อมูลด้วย
- เพื่อให้ง่ายในการวิเคราะห์เวลา เราแบ่งการวิเคราะห์ออกเป็น 3 กรณี ได้แก่
 - กรณีเลวร้ายสุด (Worst Case) W(n) คือเวลาการทำงานที่มากที่สุดที่
 เป็นไปได้ สำหรับข้อมูลอินพุต n
 - <u>กรณีดีที่สุด (Best Case)</u> B(n) คือเวลาการทำงานที่น้อยที่สุดที่เป็นไปได้ สำหรับข้อมูลอินพุต n
 - <u>กรณีเฉลี่ย (Average Case)</u> A(n) คือเวลาการทำงานเฉลี่ย สำหรับข้อมูล อินพุต n

การวิเคราะห์เวลากรณี best-case / worst-case / average-case (Sequential Search)

- Problem: กำหนดให้มีชุดข้อมูลใน array จำนวน n ชุด ให้หาชุดข้อมูลที่มี ค่าเท่ากับ K
- Algorithm: ทำการตรวจสอบข้อมูลที่ละตัวไปเรื่อยๆ ว่ามีตัวใดมีค่าเท่ากับ K จนกว่าจะพบ (successful search) หรือจะหมดข้อมูลที่จะทำการค้นหา (unsuccessful search)
- Worst case : $t_{w}(n) = n$
- Best case: $t_h(n) = 1$
- Average case : $t_a(n) = ?$

การวิเคราะห์เวลากรณี best-case / worst-case / average-case (Sequential Search)

- การวิเคราะห์เวลากรณีเฉลี่ยของอัลกอริทึม Sequential Search จะต้องหาเวลาของอินพุตที่ เป็นไปได้ทุกกรณีแล้วนำมาเฉลี่ยรวมกัน
- ถึงแม้ว่าจะมีความเป็นไปได้ของอินพุตจำนวนมาก แต่เราสามารถจำแนกรูปแบบของอินพุต ได้ ดังนี้
 - รูปแบบ 1 ค่าเป้าหมายที่ตำแหน่งแรกของอาร์เรย์ ใช้เวลาเท่ากับ 1
 - รูปแบบ 2 ค่าเป้าหมายที่ตำแหน่งสองของอาร์เรย์ ใช้เวลาเท่ากับ 2

.....

• รูปแบบ n ค่าเป้าหมายที่ตำแหน่งสุดท้ายหรือไม่เจอ ใช้เวลาเท่ากับ n ดังนั้น Tavg(n) = (1 + 2 + 3+ ... + n) / n =

ลำดับเติบโต (Order of Growth)

- ในการเปรียบเทียบเวลาทำงานของขั้นตอนวิธีมักไม่สามารถทำได้โดยตรง เนื่องจากแต่ละขั้นตอน วิธีมีรายละเอียดที่แตกต่างกัน
 - สมมติว่าอัลกอริทึม A และ B สัมพันธ์กับฟังก์ชันเวลาคือ f(n) = 400n + 23
 และ g(n) = 2n²-1 ตามลำดับ อัลกอริทึมใดทำงานดีกว่า ?

n	f(n) = 400n + 23	$g(n) = 2n^2 - 1$	
50	20,023	4,999	
100	40,023	19,999	
150	60,023	44.000	000
200	80,023	10.000	000
250	100,023	1')/I uuu	000
300	120,023	470 000	000
		60,	0,000 0,000 0,000
			,000
			50 100 150 200 250 300

การเปรียบเทียบขั้นตอนวิธี

• วิธีการที่สะดวกและรวดเร็วกว่าในการเปรียบเทียบลำดับการเติบโตของฟังก์ชันเวลาคือใช้ ทฤษฏี ลิมิตของโลปิตา (L' Hopital Rule)

• กำหนดให้ f(n) และ g(n) เป็นฟังก์ชั่นเวลาของอัลกอริทึมที่วิเคราะห์ได้

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & f(n) \prec g(n) \\ c & f(n) \equiv g(n) \\ \infty & f(n) \succ g(n) \end{cases}$$

การหาอนุพันธ์ของฟังก์ชั่น

สมมติว่า
$$\lim_{n \to \infty} f(n) = \infty$$
 และ $\lim_{n \to \infty} g(n) = \infty$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

by f'(n) and g'(n) are derivative of f(n) and g(n)

Example
$$T1(n) = 100n$$
, $T2(n) = 0.01n^2$

$$\lim_{n \to \infty} \frac{100n}{0.01n^2} = 10,000 \lim_{n \to \infty} \frac{n}{n^2} = 10,000 \lim_{n \to \infty} \frac{1}{n} = 10,000 \lim_{n \to \infty} \frac{1}{\infty} = 10,000 \lim_{n \to \infty} 0 = 0$$

Therefore $T1(n) \prec T2(n)$

Example $T1(n) = 1,000 \log n$, T2(n) = n

$$\lim_{n\to\infty} \frac{1000 \cdot \log n}{n} = 1,000 \lim_{n\to\infty} \frac{\log n}{n} = 1,000 \lim_{n\to\infty} \frac{\log \infty}{\infty} = 1,000 \lim_{n\to\infty} \frac{\infty}{\infty} = \frac{\infty}{\infty}$$

$$=1,000\lim_{n\to\infty}\frac{\log_{10}e^{\frac{1}{n}}}{1}=1,000\lim_{n\to\infty}\frac{1}{n}=1,000\lim_{n\to\infty}\frac{1}{\infty}=1,000\lim_{n\to\infty}0=0$$

Therefore $T1(n) \prec T2(n)$

Example T1(n) =
$$1/2*n*(n-1)$$
, T2(n) = n^2

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

Therefore
$$T1(n) \equiv T2(n)$$

สัญกรเชิงเส้นกำกับ (Asymptotic notation)

• เพื่อให้การเปรียบเทียบเวลาทำงานของอัลกอริทึมทำได้ง่ายขึ้นจึงต้องมีการปรับฟังก์ชั่นเวลาให้เข้าสู่ ฟังก์ชั่นเวลาอ้างอิง (reference function) เดียวกันก่อน โดยจะใช้สัญกรเชิงเส้นกำกับ (asymptotic notation) อธิบายฟังก์ชั่นเวลาของอัลกอริทึมด้วยฟังก์ชั่นอ้างอิงที่ใกล้เคียงที่สุด

- สัญกรเชิงเส้นกำกับ สามารถแบ่งออกเป็น 3 ประเภทหลักๆ ได้แก่
 - O(g(n)) อ่านว่า บิ๊กโอ (Big-oh) ใช้อธิบาย T(n) ว่าเติบโตไม่เร็วไปกว่า g(n)
 - Ω (g(n)) อ่านว่า บิ๊กโอเมก้า (Big-omega) ใช้อธิบาย T(n) ว่าเติบโตไม่ช้าไปกว่า g(n)
 - $\Theta(g(n))$ อ่านว่า บิ๊กเทต้า (Big-theta) ใช้อธิบาย T(n) ว่าเติบโตเทียบเท่า g(n)

ฟังก์ชั่นอ้างอิง

1	constant
log n	logarithmic
n	linear
n log n	n log n
n^2	quadratic
n^3	cubic
2 ⁿ	exponential
n!	factorial

สัญกรเชิงเส้นกำกับ (Asymptotic notation)

• เพื่อให้การเปรียบเทียบเวลาทำงานของอัลกอริทึมทำได้ง่ายขึ้นจึงต้องมีการปรับฟังก์ชั่นเวลาให้เข้าสู่ ฟังก์ชั่นเวลาอ้างอิง (reference function) เดียวกันก่อน โดยจะใช้สัญกรเชิงเส้นกำกับ (asymptotic notation) อธิบายฟังก์ชั่นเวลาของอัลกอริทึมด้วยฟังก์ชั่นอ้างอิงที่ใกล้เคียงที่สุด

- สัญกรเชิงเส้นกำกับ สามารถแบ่งออกเป็น 3 ประเภทหลักๆ ได้แก่
 - O(g(n)) อ่านว่า บิ๊กโอ (Big-oh) ใช้อธิบาย T(n) ว่าเติบโตไม่เร็วไปกว่า g(n)
 - Ω (g(n)) อ่านว่า บิ๊กโอเมก้า (Big-omega) ใช้อธิบาย T(n) ว่าเติบโตไม่ช้าไปกว่า g(n)
 - $\Theta(g(n))$ อ่านว่า บิ๊กเทต้า (Big-theta) ใช้อธิบาย T(n) ว่าเติบโตเทียบเท่า g(n)

บิ๊กโอ / บิ๊กโอเมก้า / บิ๊กเทต้า

• T(n) \in O(g(n)) ก็ต่อเมื่อมีค่าคงที่ c คูณกับ g(n) แล้วรับประกันว่า T(n) <= c*g(n) เมื่อ n มีค่ามากๆ

• T(n) $\in \Omega(g(n))$ ก็ต่อเมื่อมีค่าคงที่ c คูณกับ g(n) แล้วรับประกันว่า T(n) >= c*g(n) เมื่อ n มีค่ามากๆ

• T(n) $\in \Theta(g(n))$ ก็ต่อเมื่อมีค่าคงที่ c1 และ c2 คูณกับ g(n) แล้วรับประกันว่า c1*g(n) <= T(n) <= c2*g(n) เมื่อ n มีค่ามากๆ

บิ๊กโอ / บิ๊กโอเมก้า / บิ๊กเทต้า

$$1,000n \in O(n^2)$$

$$\sqrt{n} \in O(n)$$

$$\frac{n}{2}.\log(\frac{n}{2}) \in \Omega(n.\log n)$$

$$2n^2 + 500n + 1,000 \log n \in \Theta(n^2)$$