

Exame Normal de Introdução aos Sistemas Eletromagnéticos - Parte I Eng. Biomédica 2°Ano/1°Semestre

21/01/2014 Duração: 1h

Nome	Nº Alu	no
------	--------	----

A parte I do exame é constituída por 3 questões de escolha múltipla e por 3 questões de desenvolvimento.

Das questões indicadas, responda no máximo a 4 e indique neste rectângulo as respostas efectivamente respondidas.

Escolha múltipla

- Para cada questão há uma única hipótese correta.
- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 2; Resposta errada = -0,66
- 1. Três cargas pontuais, Q_1 , Q_2 e Q_3 , estão dispostas nos vértices de um quadrado como indica a figura. Sabendo que $Q_1 = Q_3 = 1,0 \ \mu C$, indique o valor da carga Q_2 de modo que o campo elétrico seja nulo no ponto P.

A: $Q_2 = -2.83 \mu C$	B: $Q_2 = -3.39 \ \mu C$
C: $Q_2 = -3.96 \mu\text{C}$	D: $Q_2 = -4,53 \mu C$

2. Dois fios rectilíneos muito compridos, perpendiculares entre si, são percorridos por correntes de igual intensidade, com os sentidos representados na figura. Em que quadrante o campo de indução magnética tem direção e sentido para fora da folha?

	<u>, </u>		
A· I	B· II	C· III	D· IV

3. Considere os dois circuitos, (1) e (2), representados na figura imersos num campo de indução magnética uniforme, \vec{B} , perpendicular à folha. Sobre os fios em forma de U deslocam-se barras condutoras com a mesma velocidade, \vec{v} . A corrente induzida no circuito (1) circula no sentido anti-horário.

Das seguintes afirmações, selecione as que

I – O sentido de \vec{B} é para dentro da folha.

verdadeiras.

II – A corrente induzida no circuito (2) circula no sentido anti-horário.

III – A força eletromotriz induzida no circuito (1) é igual à força eletromotriz induzida no circuito (2).

	D Y YYY	O 77 777	D Y YY
A: I. II e III	B: I e III	C: II e III	l D: Le II

Desenvolvimento

- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cada alínea tem a cotação de 2 valores.
- **4.** Considere o condensador representado na figura, constituído por dois elétrodos condutores planos e paralelos de área $A = 150 \text{ cm}^2$, contendo as cargas Q = 10 nC e Q nas suas superfícies interiores, separados de uma distância d = 1,0 mm (muito menor que as dimensões dos planos).

Caracterize o movimento de um eletrão $\left(q_e=-1,6\times10^{-19}~C;~m_e=9,1\times10^{-31}~kg\right)_{\mbox{que}}$ é abandonado na origem do sistema de eixos e determine a sua velocidade máxima.

5. Uma espira quadrada com 5 cm de lado é percorrida por uma corrente i=2,0 A e está totalmente imersa num campo de indução magnética uniforme de intensidade B=0,3 T, tal como está representado na figura. Caracterize a força resultante e o torque (momento) resultante sobre a espira, justificando todos os cálculos.

6. Uma corrente i = 2 mA circula num solenoide com N=1000 espiras enroladas em torno de um núcleo de material com uma permeabilidade magnética relativa de 3000. O raio do solenoide é a=2 mm e o seu comprimento é de c=5 cm. Como c>>a, o solenoide pode ser considerado infinito.

Calcule a intensidade do campo de indução magnética no interior do solenoide e represente as suas linhas de campo. Calcule o fluxo magnético abraçado por uma espira, o fluxo

total abraçado pelo solenoide e o coeficiente de auto-indução do solenoide.

Soluções:

- 1 A
- **2** B
- **3** D
- **4.** Movimento retilíneo uniformemente acelerado segundo o eixo dos ZZ. $\overrightarrow{v_{\text{max}}} = 5,15 \times 10^6 \ \hat{z} \ m/s$
- **5.** $\overrightarrow{F_R} = \overrightarrow{0}$ N; $\overrightarrow{\tau_R} = 1.5 \times 10^{-3} \ \hat{y}$ N.m, tendo \hat{y} a direção e sentido do eixo OP.
- **6.** B = 0,15 T; $\phi_{\text{1 espira}} = 1,89 \times 10^{-6} \text{ Wb}$; $\phi_{\text{total}} = 1,89 \times 10^{-3} \text{ Wb}$; L = 0,95 H