

Concours d'entrée 2011 - 2012 La distribution des notes est sur 25

Mathématiques

Durée: 3 heures 02 juillet 2011

I- (3 points) Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

On pose $z = re^{i\alpha}$ où r est un réel positif tel que $r \neq 1$.

On considère les points A, B, C et D d'affixes respectives $z_A = z$, $z_B = \frac{1}{z}$, $z_C = \frac{\overline{z}}{z^2}$ et $z_D = -\overline{z}$.

- 1- Déterminer la forme exponentielle de $\frac{z_A}{z_C}$. En déduire l'ensemble des valeurs de α telles que O appartient au segment |AC|.
- 2- On Suppose dans cette partie que $\alpha = \frac{\pi}{4}$.
 - a) Montrer que $z_C z_D = \overline{z_A z_B}$
 - b) Calculer $z_A z_D$ et $z_B z_C$ en fonction de r et montrer que ces nombres sont deux réels distincts.
 - c) Montrer que ABCD est un trapèze isocèle dont les diagonales se coupent en O.
- **II-** (2.5 points) On considère la suite (U_n) de premier terme U_0 telle que, pour tout n, $3U_{n+1} 6 = (U_n 2)(U_n + 1)$.
 - 1- Si la suite (U_n) converge, quelle est la valeur de sa limite ℓ ?
 - 2- Montrer que si $U_0 \in \{-1, 2\}$ alors, pour tout $n \ge 1$, $U_n = 2$.
 - 3- Calculer $3U_{n+1}-3U_n$ en fonction de U_n et montrer que, si $U_0 \notin \{-1; 2\}$, alors (U_n) est croissante.
 - 4- Montrer que si $U_0 \in]-1$; 2[alors, pour tout entier naturel n, $U_n \in]-1$; 2[et (U_n) est convergente.
 - 5- Montrer que si $U_0 > 2$ alors, pour tout entier naturel n, $U_n > 2$ et (U_n) est divergente.
- III- (4 points) Le plan est muni d'un repère orthonormé direct (O; u, v).

Soit T la transformation d'expression complexe $Z = (3+4i)\bar{z} - 8 - 4i$.

- 1- Montrer que T admet un point invariant dont les coordonnées sont à déterminer.
- 2- Déterminer l'expression complexe de l'homothétie h de centre $\omega(2;1)$ et de rapport 5.
- 3- On pose $S = T \circ h^{-1}$
 - a) Montrer que $z' = (\frac{3}{5} + \frac{4}{5}i)\bar{z}$ est l'expression complexe de S.
 - b) Déterminer l'ensemble (d) des points invariants par S et vérifier que ω et O appartiennent à (d).
- 4- Soit M(z) un point quelconque du plan et M'(z') son image par S.

Montrer que |z'| = |z| et $|z'-z_{\omega}| = |z-z_{\omega}|$. En déduire que S est la réflexion (symétrie) d'axe (d).

- 5- a) Montrer que $T = S \circ h$.
 - b) Un point M n'appartenant pas à (d) étant donné. Décrire la construction du point M' = T(M).

- IV- (2.5 points) Une étude statistique concernant une certaine maladie a été faite dans des familles ayant deux enfants : une fille et un garçon. On a trouvé les résultats suivants :
 - 50% des garçons et 20% des filles sont atteints par cette maladie.
 - dans les familles dont le garçon est malade, la fille l'est aussi dans 25% des cas .

On choisit au hasard l'une des familles concernées.

Calculer la probabilité de chacun des événements suivants :

- A: "les deux enfants sont atteints par la maladie";
- B: "l'un des deux enfants seulement est atteint ";
- C: "aucun des deux enfants n'est atteint ";
- D: "le garçon est atteint sachant que la fille l'est aussi"
- E: " la fille est atteinte sachant que le garçon ne l'est pas ".
- V- (7 points) Le plan est muni d'un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.
- A- On considère l'équation différentielle (E) : $y'-y=e^x-1$; $x \in IR$.

Soit z une fonction dérivable telle que $y = ze^x + 1$.

- 1- Déterminer l'équation différentielle (1) dont la solution générale est la fonction z.
- 2- Résoudre l'équation (1) et déduire la solution générale de (E).
- **B-** On considère la fonction p définie dans IR par $p(x) = (x+a)e^x + 1$ où a est un paramètre réel. Soit (γ) la courbe représentative de p.
 - 1- Montrer que, pour tout réel a, (γ) admet une asymptote fixe à déterminer.
- 2- a) Montrer que les solutions des équations p''(x) = 0; p'(x) = 0; p(x) = 1 sont 3 termes consécutives d'une suite arithmétique croissante dont on déterminera la raison.
 - b) Déterminer a tel que le quatrième terme de cette suite soit la solution de l'équation p(x) = e + 1.
 - 3- a) Dresser le tableau de variations de p et montrer que, pour tout réel a, p admet un minimum.
 - b) Déterminer, quand a varie, l'ensemble du point S de (γ) correspondant au minimum de p.
 - c) Déterminer l'ensemble des valeurs de a telles que, pour tout réel x, $p(x) \ge 0$.
 - d) Déduire le signe des fonctions f et g définies dans IR par $f(x) = xe^x + 1$ et $g(x) = (x-1)e^x + 1$.
- C- On considère la fonction h telle que $h(x) = \frac{xe^x}{xe^x + 1}$. Soit (L) la courbe représentative de h.
- 1- a) Justifier que h est définie dans IR.
 - b) Dresser le tableau de variations de h.
- 2- a) Vérifier que (L) passe par O et écrire une équation de la tangente (d) à (L) en ce point.
 - b) Vérifier que, pour tout réel x, $h(x) x = -\left[\frac{g(x)}{f(x)}\right]x$.
 - c) Déterminer la position relative de (L) et (d). Que représente le point O pour (L)? Tracer (L) et (d).

- 3- a) Montrer que la restriction de h sur l'intervalle $[-1; +\infty[$ admet une fonction réciproque h^{-1} .
 - b) Montrer que la courbe représentative (L') de h^{-1} est tangente à (L) en O. Tracer (L').

VI- (6 points) Le plan est muni d'un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

A- On considère les droites (δ) et (Δ) d'équations respectives x = -4 et x - 2y + 2 = 0.

Soit M un point quelconque situé entre (δ) et l'axe des ordonnées y'y. On désigne par H, H' et K les projetés orthogonaux de M sur y'y, (δ) et (Δ) respectivement. Montrer que l'ensemble des points M tels que $5MK^2 = 3MH \times MH'$ est la courbe (C) d'équation $(x-2y+2)^2 = -3x(x+4)$.

- 1- Déterminer une équation de la courbe (C_2) , le symétrique de (C_1) par rapport au point I(-2;0).
- 2- Montrer que $(C) = (C_1) \cup (C_2)$.
- 3- La courbe (C_1) est tracée dans la figure ci-contre . Tracer (C) . (Unité: 2cm)
- C- Soit r la rotation de centre O et d'angle $-\frac{\pi}{4}$.

- b) En déduire que (C) est une ellipse de centre I et calculer son aire. Déduire $\int_{-4}^{0} \sqrt{-3x^2 12x} \ dx$.
- c) Déterminer l'axe focal de (C) ainsi que les coordonnées de l'un de ses foyers.

Concours d'entrée 2011 - 2012 La distribution des notes est sur 25

Mathématiques

Durée: 3 heures 02 juillet 2011

Exercise 1

$$1 - \frac{z_A}{z_C} = \frac{z^3}{\bar{z}} = \frac{r^3 e^{3i\alpha}}{r e^{-i\alpha}} = r^2 e^{4i\alpha}.$$

•
$$(\overrightarrow{OC}; \overrightarrow{OA}) = \arg\left(\frac{z_A}{z_C}\right) = 4\alpha (2\pi).$$

O, A et C telles que $O \in [AC]$ si, et seulement si $(\overrightarrow{OC}; \overrightarrow{OA}) = \pi + 2k\pi$; Alors

$$4\alpha = \pi + 2k\pi$$
 et $\alpha = \frac{\pi}{4} + k\frac{\pi}{2}$ ou $k \in \mathbb{Z}$.

2- On Suppose que $\alpha = \frac{\pi}{4}$.

a) •
$$z_C - z_D = \frac{1}{r}e^{-i\frac{3\pi}{4}} + re^{-i\frac{\pi}{4}} = re^{-i\frac{\pi}{4}} - \frac{1}{r}e^{i\frac{\pi}{4}} = \overline{z_A - z_B}$$
.

b) •
$$z_A - z_D = z + \bar{z} = 2 \operatorname{Re}(z) = 2r \cos \frac{\pi}{4} = r \sqrt{2}$$
.

$$z_B - z_C = \frac{1}{r}e^{-i\frac{\pi}{4}} - \frac{1}{r}e^{-i\frac{3\pi}{4}} = \frac{1}{r}e^{-i\frac{\pi}{4}} + \frac{1}{r}e^{-i\frac{\pi}{4}} + \frac{1}{r}e^{-i\frac{\pi}{4}} = \frac{1}{r}(e^{-i\frac{\pi}{4}} + e^{-i\frac{\pi}{4}}) = \frac{1}{r}(2\cos\frac{\pi}{4}) = \frac{\sqrt{2}}{r} .$$

- Pour tous valeur de r dans $]0; +\infty[-\{1\}]$, les deux nombres $z_A z_D$ et $z_B z_C$ sont des nombres réels.
- Pour $r \neq 1$ et $r \neq \frac{1}{r}$ alors $z_A z_D \neq z_B z_C$.
- c) $z_A z_D$ et $z_C z_D$ sont des nombres réels les deux droites (AD) and (BC) sont parallèle à l'axe d'abscisse x'x, alors (AD) et (BC) sont parallèles.
 - $AD \neq BC$ alors $z_A z_D \neq z_B z_C$.
 - $z_C z_D = \overline{z_A z_B}$ et $\left| z_A z_B \right| = \left| z_C z_D \right|$ alors AB = CD

Ce qui montre que ABDC est un trapèze isocèle.

•
$$\frac{z_A}{z_C} = r^2 e^{i\pi} = -r^2 \text{ et } \frac{z_B}{z_C} = -\frac{1}{r^2}.$$

 $\frac{z_A}{z_C}$ et $\frac{z_B}{z_C}$ sont des nombres négatives, $O \in [AC]$, $O \in [BD]$ et les diagonales

[AD], [BC] sont intersectés à O.

Exercise 2

La suite (U_n) est définie par le premier terme U_0 et par la relation $3U_{n+1}-6=(U_n-2)(U_n+1)$.

1- Si la suite (U_n) converge, la valeur de sa limite ℓ est : $3\ell - 6 = \ell^2 - \ell - 2$;

$$\ell^2 - 4\ell + 4 = 0$$
; $(\ell - 2)^2 = 0$; alors $\ell = 2$.

- 2-• $3U_1 6 = (U_0 2)(U_0 + 1)$; si $U_0 = 2$ ou $U_0 = -1$ alors $U_1 = 2$.
 - si, pour tout $n \ge 1$, $U_n = 2$ alors, $3U_{n+1} 6 = (U_n 2)(U_n + 1) = 0$; et $U_{n+1} = 2$. Donc, pour tout $n \ge 1$, $U_n = 2$.
- 3- $3U_{n+1} 3U_n = U_n^2 4U_n + 4 = (U_n 2)^2$.
 - Pour tout *n* dans IN $U_{n+1} U_n \ge 0$ alors, (U_n) est croissante.
- 4- U_0 ∈]-1; 2[
 - Si pour une certaine valeur de n, $U_n \in]-1$; 2[puis, $U_n + 1 > 0$ et $U_n 2 < 0$; donc $3U_{n+1} 6 < 0$ et $U_{n+1} < 2$. alors, pour tout entier naturel n dans IN, $U_n < 2$.

La suite (U_n) est croissante, et, pour tout entier naturel n dans IN, $U_n \ge U_0 > -1$.

Finalement, pour tout entier nature n dans IN, $U_n \in]-1$; 2 [.

La suite (U_n) est strictement croissante est majorée par 2; donc il est convergent Et sa limite, selon la partie 1, est égale a 2.

- 5- $U_0 > 2$.
 - Si pour une certaine valeur de n dans IN, $U_n > 2$, $U_n + 1 > 0$ et $U_n 2 > 0$; donc $4U_{n+1} 8 > 0$ et $U_{n+1} > 2$. Alors pour tout valeur de n dans IN, $U_n > 2$. La suite (U_n) ne peut converger par la limite éventuelle de 2; alors il est divergente.

Exercise 3

- 1- Les coordonnées de l'invariant (x; y) de T est la solution de l'équation z = (3+4i)z 8-4i qui est équivalente à x+iy=(3+4i)(x-iy)-8-4i ; 2(x+2y-4)+4(x-y-1)i=0 ; x+2y-4=0 et x-y-1=0 ; x=2 et y=1 . Le point invariant de T est $\omega(2;1)$
- 2- La relation complexe de l'homothétie $h = h(\omega; 5)$ est $z' = 5z + (1-5)z_{\omega}$; z' = 5z 8 4i.

- 3- L'expression complexe de l'homothétie h^{-1} est de centre $\omega(2;1)$ et de rapport $\frac{1}{5}$; alors la relation complexe est $z' = \frac{1}{5}z + \frac{8}{5} + \frac{4}{5}i$.
 - a) Soit M un point d'affixe z.

$$z_{1} = \frac{1}{5}z + \frac{8}{5} + \frac{4}{5}i \quad \text{et} \quad z' = (3+4i)\overline{z_{1}} - 8 - 4i$$

$$z' = (3+4i)\left(\frac{1}{5}\overline{z} + \frac{8}{5} - \frac{4}{5}i\right) - 8 - 4i = \left(\frac{3}{5} + \frac{4}{5}i\right)\overline{z} + 8 + 4i - 8 - 4i \; ; \quad z' = \left(\frac{3}{5} + \frac{4}{5}i\right)\overline{z} \; .$$

b) L'ensemble des points invariants par S est l'ensemble (d) de point M(x; y) tel que :

$$z = \left(\frac{3}{5} + \frac{4}{5}i\right)\overline{z}$$

$$x+iy = (\frac{3}{5} + \frac{4}{5}i)(x-iy)$$
; $2(x-2y) - 4(x-2y)i = 0$; alors $x-2y = 0$.

Donc (d) est la droite de l'équation x-2y=0 passe par ω et O.

4- M(z) est un point quelconque de (P) et M'(z') son image par S alors $z' = (\frac{3}{5} + \frac{4}{5}i)\frac{1}{z}$.

$$\begin{aligned} |z'| &= \left| (\frac{3}{5} + \frac{4}{5}i)z \right| = \left| \frac{3}{5} + \frac{4}{5}i \right| \times |\overline{z}| = |\overline{z}| = |z|. \\ |z' - z_{\omega}| &= \left| (\frac{3}{5} + \frac{4}{5}i)z - (\frac{3}{5} + \frac{4}{5}i)z_{\omega} \right| = \left| \frac{3}{5} + \frac{4}{5}i \right| \times |z - z_{\omega}| = |z - z_{\omega}|. \end{aligned}$$

|z'| = |z| est équivalente à OM = OM' et $|z' - z_{\omega}| = |z - z_{\omega}|$ est équivalente à $\omega M = \omega M'$ alors la droite $(O\omega)$, (d), est la médiatrice de [MM']. Donc S est la réflexion d'axe (d).

- 5- a) $S = T \circ h^{-1}$ est équivalente à $S \circ h = (T \circ h^{-1}) \circ h = T \circ (h^{-1} \circ h) = T$.
 - b) M est un point n'appartenant pas à (d); $M' = T(M) = (S \circ h)(M) = S(h(M)) = S(N)$ où N = h(M). Donc M' est la symétrique par rapport à (d) d'image M sous h.

Exercise 4

Considérons les évènements :

M: "Les garçons des familles sont atteints par cette maladies"

F: "Les filles des familles sont atteints par cette maladies".

• 50% des garçons sont atteints par cette maladies, $p(M) = \frac{1}{2}$

• 20% des filles sont atteints par cette maladies $p(F) = \frac{1}{5}$

• Dans les familles dont le garçon est malade, la fille l'est aussi dans 25% des cas, $p(F/M) = \frac{1}{4}$

A: "les deux enfants sont atteints par la maladie"; $A = M \cap F$.

$$p(A) = p(M \cap F) = p(M) \times p(F/M) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

B: "I'un des deux enfants seulement est atteint "; $B = M \cup F - M \cap F$.

$$p(B) = p(M) + p(F) - 2p(M \cap F) = p(M) + p(F) - 2p(A) = \frac{1}{2} + \frac{1}{5} - \frac{1}{4} = \frac{9}{20}.$$

C: " aucun des deux enfants n'est atteint "; $C = \overline{M} \cap \overline{F} = \overline{M \cup F}$.

$$p(C) = p(\overline{M \cup F}) = 1 - p(M \cup F) = 1 - p(M) - p(F) + p(A) = 1 - \frac{1}{2} - \frac{1}{5} + \frac{1}{8} = \frac{17}{40}$$

D: "le garçon est atteint sachant que la fille l'est aussi"; D = M/F.

$$p(D) = p(M/F) = \frac{p(M \cap F)}{p(F)} = \frac{p(A)}{p(F)} = \frac{1}{8} \times 5 = \frac{5}{8}$$
.

E: " la fille est atteinte sachant que le garçon ne l'est pas " . $E = F/\overline{M}$.

$$p(E) = p(F/\overline{M}) = \frac{p(\overline{M} \cap F)}{p(\overline{M})} = \frac{p(F) - p(M \cap F)}{1 - p(M)} = \frac{p(F) - p(A)}{1 - p(M)} = \left(\frac{1}{5} - \frac{1}{8}\right) \div \left(1 - \frac{1}{2}\right) = \frac{3}{20}.$$

Exercise 5

- **A-** (E): $y'-y=e^x-1$; $x \in IR$.
 - 1- Si $y = ze^x + 1$ alors $y' = z'e^x + ze^x$.

Par substitution dans l'équation (E) on trouve que $(z'e^x + ze^x) - (ze^x + 1) = e^x - 1$;

 $z'e^{x}-1=e^{x}-1$; $z'e^{x}=e^{x}$; z'=1; alors (1): z'=1.

- 2- La solution générale de l'équation (1) est z = x + a où $a \in \mathbb{R}$; donc la solution générale de l'équation (E) est $p(x) = (x + a)e^x + 1$.
- **B-** La fonction p est définie dans IR par $p(x) = (x+a)e^x + 1$ où a est un paramètre réel.
 - 1- $\lim_{x \to -\infty} x e^x = 0$; pour tout réel $\lim_{x \to -\infty} x$

quand a varie, (γ) admet une asymptote fixe de l'équation y = 1.

- 2- $p(x) = (x+a)e^{x} + 1$; $p'(x) = (x+a+1)e^{x}$; $p''(x) = (x+a+2)e^{x}$
 - a) l'équation p''(x) = 0 est équivalente à $(x+a+2)e^x = 0$; x+a+2=0; x=-a-2.
 - l'equation p'(x) = 0 est équivalente à $(x+a+1)e^x = 0$; x+a+1=0; x=-a-1.
 - l'equation p(x) = 1 est équivalente à $(x+a)e^x = 0$; x+a=0; x=-a.

Les solutions sont, par ordre -a-2; -a-1; -a, 3 termes consécutives d'une suite arithmétique croissante d'une différence commune 1.

- b) le quatrième terme de cette suite est -a+1; cette nombre est la solution de l'équation f(x) = e+1si, est seulement si, f(-a+1) = e+1; $e^{-a+1} + 1 = e+1$; $e^{-a+1} = e$; -a+1=1; a=0.
- 3- a) $\lim_{x \to -\infty} p(x) = 1$ et $\lim_{x \to +\infty} p(x) = +\infty$

$$p'(x) = (x+a+1)e^x.$$

Le tableau de variations de p

Le tableau de variations de p montre que

Pour tout réel a dans IR, p admet un minimum à -a-1.

- b) L'ensemble du point S de (γ) correspondant au minimum de p sont : x=-a-1 et $y=1-e^{-a-1}$ tel que, quand a varie, la relation $y=1-e^x$. Donc, quand a varie, L'ensemble de S est la courbe de l'équation $y=1-e^x$.
- c) Le tableau de variations de p montre que p a une minimum absolue est égale à $1-e^{-a-1}$. Donc $p(x) \ge 0$ pour tout réel x dans IR, si, et seulement si, $1-e^{-a-1} \ge 0$. $1-e^{-a-1} \ge 0$ est équivalente à $e^{-a-1} \le 1$; $-a-1 \le 0$; $a \ge -1$.
- d) Les fonctions f et g définies dans IR par $f(x) = xe^x + 1$ et $g(x) = (x-1)e^x + 1$ correspondant à a = 0 and a = -1, alors, pour tout réel x dans IR, $f(x) \ge 0$ et $g(x) \ge 0$.
- C- Le fonction h est : $h(x) = \frac{xe^x}{xe^x + 1} = \frac{xe^x}{f(x)}$.
 - 1- a) Dans le partie **B**-1) that, pour tout réel x dans IR, f(x) > 0; donc $f(x) \neq 0$ et h est définie dans IR.
 - b) Pour tout réel x dans IR, $h(x) = \frac{xe^x + 1 1}{f(x)} = \frac{f(x) 1}{f(x)} = 1 \frac{1}{f(x)}$.
 - $\lim_{x \to -\infty} f(x) = 1 \text{ ; donc} \qquad \lim_{x \to -\infty} h(x) = 1 1 = 0 .$
 - $\lim_{x \to +\infty} f(x) = +\infty ; \operatorname{donc} \lim_{x \to +\infty} h(x) = 1 0 = 1 .$
 - $h(x) = 1 \frac{1}{f(x)}$; alors $h'(x) = \frac{f'(x)}{(f(x))^2}$.

h'(x) et f'(x) ont les mêmes signes dans IR.

Le tableau de variations de h

2- a) h(0) = 0; donc (L) passe par l'origine.

Une équation de la tangente (d) à (L) en ce point est y = h'(0)x; (d): y = x.

- b) Pour tout réel x dans IR, $h(x) x = \frac{xe^x}{f(x)} x = \frac{xe^x xf(x)}{f(x)} = -\frac{\left(f(x) e^x\right)x}{f(x)} = -\left[\frac{g(x)}{f(x)}\right]x$.
- c) La position relative de (L) et (d) dépend au signe de h(x)-x.

Le signe de h(x) - x est opposé à x alors, pour tout réel x dans IR, g(x) > 0 et f(x) > 0.

- Si $x \in]-\infty$; 0[, h(x)-x>0 et (L) situe au-dessus (d).
- If $x \in [0; +\infty[$, h(x) x < 0 and (L) situe au-dessous (d).

La position relative de (L) et (d) changent à l'origine; alors cette point est une point d'inflexion de (L).

 $\lim_{x \to -\infty} h(x) = 0$ et $\lim_{x \to +\infty} h(x) = 1$; le droite de l'équations y = 0 et y = 1 sont asymptotes à (L).

- 3- a) La restriction de h sur l'intervalle $[-1; +\infty[$ est continue et strictement croissante donc, il admit une fonction inverse h^{-1} définie par $h([-1; +\infty[) = [\frac{1}{1-e}; +\infty[$.
 - b) La courbe (L') de h^{-1} est la symétrique de (L) par rapport au droite (d) de l'équation y = x. (L) passe par l'origine O et tangente à (d) en ce point; Donc (L') passe par le symétrique de O et tangente à (d). donc (L) and (L') sont tangent à O. Trace (L') symétrie par rapport à (d).

Exercise 6

A- (δ) et (Δ) sont des droites d'équations respectives x = -4 et x - 2y + 2 = 0. Un point M(x; y) situé entre (δ) et l'axe y'y si et seulement si $x \in [-4; 0]$.

$$MK = d(M; (\Delta)) = \frac{|x - 2y + 2|}{\sqrt{5}}$$
; $MH = d(M; y'y) = |x|$; $MH' = d(M; (\delta)) = |x + 4|$.

 $M \in (C)$ si et seulement si M entre (δ) et y'y et $5MK^2 = 3MH \times MH'$;

$$x \in [-4; 0]$$
 et $(x-2y+2)^2 = 3|x(x+4)|$; $(x-2y+2)^2 = -3x(x+4)$.

(C) est l'équation de la courbe $(x-2y+2)^2 = -3x(x+4)$

B- (C₁) est l'équation de la courbe
$$y = \frac{1}{2} \left(x + 2 + \sqrt{-3x^2 - 12x} \right)$$
.

1- Une équation de (C_2) , le symétrique de (C_1) par rapport à ce point I(-2;0) est $y = -\frac{1}{2} \left(-4 - x + 2 + \sqrt{-3(-4 - x)^2 - 12(-4 - x)} \right) = \frac{1}{2} \left(x + 2 - \sqrt{-3x^2 - 12x} \right)$.

2- Une équation de
$$(C_1) \cup (C_2)$$
 est $y = \frac{1}{2} \left(x + 2 + \sqrt{-3x^2 - 12x} \right)$ ou $y = \frac{1}{2} \left(x + 2 + \sqrt{-3x^2 - 12x} \right)$; $2y = x + 2 \pm \sqrt{-3x^2 - 12x}$; $2y - x - 2 = \pm \sqrt{-3x^2 - 12x}$; $(2y - x - 2)^2 = -3x^2 - 12x$; $(x - 2y + 2)^2 = -3x(x + 4)$ est une équation de (C) . Donc $(C) = (C_1) \cup (C_2)$.

3- Trace (*C*)

C- 1- La relation complexe de r est $z'=e^{-i\frac{\pi}{4}}z$ qui est équivalente à $z=e^{i\frac{\pi}{4}}z'$;

$$x + i y = \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}\right)(x' + i y')$$
; donc $x = \frac{\sqrt{2}}{2}(x' - y')$ et $y = \frac{\sqrt{2}}{2}(x' + y')$.

L'équation de (C) : $x^2 - xy + y^2 + 4x - 2y + 1 = 0$.

En substituant x et y, l'équation $x^2 - xy + y^2 + 4x - 2y + 1 = 0$ devient

$$\frac{1}{2}(x'-y')^2 - \frac{1}{2}(x'^2-y'^2) + \frac{1}{2}(x'+y')^2 + 2\sqrt{2}(x'-y') - \sqrt{2}(x'+y') + 1 = 0 ;$$

$$\frac{1}{2}x'^2 + \frac{3}{2}y'^2 + \sqrt{2}x' - 3\sqrt{2}y' + 1 = 0 \quad ; \quad x'^2 + 3y'^2 + 2\sqrt{2}x' - 6\sqrt{2}y' + 2 = 0 .$$

Donc, l'équation de (E) est $x^2 + 3y^2 + 2\sqrt{2}x - 6\sqrt{2}y + 2 = 0$.

2- a) l'équation $x^2 + 3y^2 + 2\sqrt{2}x - 6\sqrt{2}y + 2 = 0$

$$(x+\sqrt{2})^2 - 2 + 3(y-\sqrt{2})^2 - 6 + 2 = 0 \quad ; \quad (x+\sqrt{2})^2 + 3(y-\sqrt{2})^2 = 6 \; ; \quad \frac{(x+\sqrt{2})^2}{6} + \frac{(y-\sqrt{2})^2}{2} = 1 \; .$$

Donc (E) est une ellipse de $a = \sqrt{6}$ et $b = \sqrt{2}$; l'aire de (E) est $S = \pi ab$.

$$S = \pi \sqrt{6} \times \sqrt{2} = 2\sqrt{3} \pi$$
; $S = 8\sqrt{3} \pi$ cm².

b) La rotation préserve la nature d'une conique et (E) est une ellipse alors (C) est aussi une ellipse.

Le point I est le centre de (C) alors (C) est formé de deux parties (C_1) and (C_2) symétriques par rapport à I.

L'aire de la rotation préserve (C) est égale à $8\sqrt{3}\pi$ cm².

L'aire de (C) est l'aire du domaine par (C_1) et (C_2) ; alors (C_1) est au-dessus (C_2)

$$S = \int_{-4}^{0} \frac{1}{2} \left(x + 2 + \sqrt{-3x^2 - 12x} - x - 2 + \sqrt{-3x^2 - 12x} \right) dx = \int_{-4}^{0} \sqrt{-3x^2 - 12x} \ dx .$$

Par consequence $\int_{-4}^{0} \sqrt{-3x^2 - 12x} \ dx = 2\sqrt{3} \pi .$

c) L'axe focal de (E) est la droite de (δ) de l'équation $y = \sqrt{2}$; (C) est la droite (d) de l'image de rotation r est (δ) .

La relation complexe de r est $z' = e^{-i\frac{\pi}{4}}z$; $x' + iy' = \left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)(x + iy)$ alors $y' = \frac{\sqrt{2}}{2}(y - x)$

Donc l'équation de (d): $\frac{\sqrt{2}}{2}(y-x) = \sqrt{2}$, tel que y=x+2.

Pour l'ellipse (E), $c = \sqrt{a^2 - b^2} = \sqrt{6 - 2} = 2$ alors $F'(x' = 2 - \sqrt{2}; y' = \sqrt{2})$.

Le point F tel que r(F) = F' est un focal de (C).

Les coordonnées de $F: x = \frac{\sqrt{2}}{2}(x'-y') = \sqrt{2}-2$ et $y = \frac{\sqrt{2}}{2}(x'+y') = \sqrt{2}$.

Ou La rotation préserve la distance, IF = c = 2.

Donc le foyer de (C) sont les points dans (d) tel que IF = 2;

$$F(x; x+2)$$
 et $IF^2 = (x+2)^2 + (x+2)^2 = 4$;

$$(x+2)^2 = 2$$
; $x+2 = \sqrt{2}$ or $x+2 = -\sqrt{2}$.

le foyer de (C) sont les points $(-2+\sqrt{2}; \sqrt{2})$ et $(-2-\sqrt{2}; -\sqrt{2})$