## Assignment 0

# Sepehr Farahmand and Rahil Chadha 2018-02-16

This document is designed to provide a solid introduction to the R language. We will be exploring vectors, matrices, lists and other common data types. We will also be assigning values to variables and creating graphs. Lastly, We will also be exploring ways to script using R such as for loops and if statements.

#### ToDo 1 - Percentage of life spent at Seneca

```
(2016-2014)/(2014-1991)*100
```

## [1] 8.695652

#### ToDo 2 - Percentage of life spent at Seneca with variables

```
a=2014
b=2016
c=1991
(b-a)/(a-c)*100
```

## [1] 8.695652

#### ToDo 3 - Sum of vector

```
b=c(4, 5, 8, 11)
sum(b)
```

## [1] 28

#### ToDo 4 - Plotting random numbers

```
x = rnorm(100)
plot(x)
```



To Do 5 - Find the help of sqrt

help(sqrt)

## starting httpd help server ... done

#### ToDo 6 - Running an external script

source("firstscript.r")







#### ToDo 7 - Data Structures

```
P = seq(from=31, to=60, by=1)
Q= matrix(P,ncol = 5, nrow = 6)
Р
   [1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
## [24] 54 55 56 57 58 59 60
Q
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
          31
                37
                     43
                          49
                                55
## [2,]
          32
                38
                     44
                          50
                                56
## [3,]
          33
                39
                     45
                          51
                                57
## [4,]
          34
                40
                     46
                          52
                                58
## [5,]
          35
                41
                     47
                          53
                                59
                42
## [6,]
          36
                     48
                          54
                                60
```

#### ToDo 8 - Data Frames

```
x1 = rnorm(100)
x2 = rnorm(100)
x3 = rnorm(100)
t = data.frame(a = c(x1), b = c(x1+x2), c = c(x1+x2+x3))
plot(t)
```



```
sapply(t, sd)
```

## a b c ## 1.011183 1.384854 1.689019

### ToDo 9 - Rgb Graphs

```
x1 = rnorm(100)
x2 = rnorm(100)
x3 = rnorm(100)
t = data.frame(a = c(x1), b = c(x1+x2), c = c(x1+x2+x3))
plot(t)
```



```
sapply(t, sd)

## a b c
## 1.082245 1.585939 1.804828

plot(t$a, type="l", ylim=range(t),lwd=3, col=rgb(1,0,0,0.3))
lines(t$b, type="s", lwd=2,col=rgb(0.3,0.4,0.3,0.9))
points(t$c, pch=20, cex=4,col=rgb(0,0,1,0.3))
```



rgb means red blue green. The rgb value determines the color of the graph. The final value for rgb is the alpha which is the opaqueness of the colors. Lwd is the line width. Cex is a numerical value giving the amount by which the plotted text should be magnified. Pch specifies a symbol or character to be used as the default plotting point.

#### To Do 10 - Writing to text file

```
d2 = read.table(file="tst1.txt", header=TRUE)
d2$g * 5 -> d2$g
write.table(d2, file="tst2.txt", row.names=FALSE)
d2

## a g x
## 1 1 10 3
## 2 2 20 6
## 3 4 40 12
## 4 16 160 48
## 5 32 320 96
```

#### ToDo 11 - Using sqrt and mean

```
x = runif(100, min=1, max=100)
sqrt(x) -> y
mean(y)
```

## [1] 6.387533

It is not possible to use rnorm to generate your list because you will end up with invalid numbers when you try and square root a negative number. Interestingly enough, the mean is always between 6.3 and 7.2.

#### ToDo 12 - Time/date vectors and graphs



ToDo 13 - Using if statements and for loops

```
h=seq(from=1, to=100, by=1)
s=c()
for(i in 1:100)
{
    if(h[i] < 5)
    {
        s[i] = h[i] * 5;
    }
    else if(h[i] > 90)
    {
        s[i] = h[i] * 10;
    }
    else
    {
        s[i] = h[i] * 0.1;
    }
}
```

```
}
}
s
     [1]
             5.0
                    10.0
                            15.0
                                    20.0
                                             0.5
                                                    0.6
                                                            0.7
                                                                    0.8
                                                                            0.9
                                                                                    1.0
##
##
    [11]
             1.1
                     1.2
                             1.3
                                     1.4
                                             1.5
                                                     1.6
                                                            1.7
                                                                    1.8
                                                                            1.9
                                                                                    2.0
##
    [21]
             2.1
                     2.2
                             2.3
                                     2.4
                                             2.5
                                                     2.6
                                                            2.7
                                                                    2.8
                                                                            2.9
                                                                                    3.0
    [31]
             3.1
                     3.2
                             3.3
                                             3.5
                                                            3.7
                                                                            3.9
                                                                                    4.0
##
                                     3.4
                                                    3.6
                                                                    3.8
##
    [41]
             4.1
                     4.2
                             4.3
                                     4.4
                                             4.5
                                                     4.6
                                                            4.7
                                                                    4.8
                                                                            4.9
                                                                                    5.0
    [51]
             5.1
                     5.2
                             5.3
                                     5.4
                                             5.5
                                                            5.7
                                                                    5.8
                                                                            5.9
                                                                                    6.0
##
                                                    5.6
##
    [61]
             6.1
                     6.2
                             6.3
                                     6.4
                                             6.5
                                                    6.6
                                                            6.7
                                                                    6.8
                                                                            6.9
                                                                                    7.0
                                                                            7.9
##
    [71]
                             7.3
             7.1
                     7.2
                                     7.4
                                             7.5
                                                    7.6
                                                            7.7
                                                                    7.8
                                                                                    8.0
##
    [81]
             8.1
                     8.2
                             8.3
                                     8.4
                                             8.5
                                                     8.6
                                                            8.7
                                                                    8.8
                                                                            8.9
                                                                                    9.0
##
    [91]
           910.0 920.0
                          930.0
                                  940.0
                                          950.0 960.0 970.0 980.0 990.0 1000.0
```

#### ToDo 14 - Using functions and arguments

```
k=1:100
fun = function(arg)
{
  1 = length(arg)
  for(i in 1:1)
    if (arg[i] < 5 | arg[i] > 90)
      arg[i] = arg[i] * 10
    } else
      arg[i] = arg[i] * 0.1
    }
  }
  return (arg)
fun(arg=k)
                   20.0
                                   40.0
     [1]
           10.0
                           30.0
                                           0.5
                                                   0.6
                                                           0.7
                                                                   0.8
                                                                          0.9
                                                                                  1.0
##
##
    [11]
             1.1
                    1.2
                            1.3
                                    1.4
                                            1.5
                                                   1.6
                                                           1.7
                                                                   1.8
                                                                          1.9
                                                                                  2.0
##
    [21]
             2.1
                    2.2
                            2.3
                                    2.4
                                            2.5
                                                   2.6
                                                           2.7
                                                                   2.8
                                                                          2.9
                                                                                  3.0
    [31]
             3.1
                            3.3
                                            3.5
                                                           3.7
                                                                          3.9
##
                    3.2
                                    3.4
                                                   3.6
                                                                   3.8
                                                                                  4.0
   [41]
             4.1
                    4.2
                            4.3
                                    4.4
                                            4.5
                                                   4.6
                                                           4.7
                                                                   4.8
                                                                          4.9
                                                                                  5.0
##
   [51]
##
             5.1
                    5.2
                            5.3
                                    5.4
                                            5.5
                                                   5.6
                                                           5.7
                                                                   5.8
                                                                          5.9
                                                                                  6.0
##
   [61]
             6.1
                    6.2
                            6.3
                                    6.4
                                            6.5
                                                   6.6
                                                           6.7
                                                                   6.8
                                                                          6.9
                                                                                  7.0
##
    [71]
             7.1
                    7.2
                            7.3
                                    7.4
                                            7.5
                                                   7.6
                                                           7.7
                                                                   7.8
                                                                          7.9
                                                                                  8.0
    [81]
             8.1
                    8.2
                            8.3
                                    8.4
                                            8.5
                                                           8.7
                                                                          8.9
##
                                                   8.6
                                                                   8.8
                                                                                  9.0
    [91]
          910.0 920.0
                          930.0
                                 940.0
                                         950.0 960.0 970.0 980.0
                                                                        990.0 1000.0
```

#### ToDo 15 - Avoiding for loops via vector computation

```
w=seq(from=1, to=100, by=1)
w<-ifelse(w<5 | w>90,w*10,w*0.1)
w
## [1] 10.0 20.0 30.0 40.0 0.5 0.6 0.7 0.8 0.9 1.0
```

| ## | [11] | 1.1   | 1.2   | 1.3   | 1.4   | 1.5   | 1.6   | 1.7   | 1.8   | 1.9   | 2.0    |
|----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| ## | [21] | 2.1   | 2.2   | 2.3   | 2.4   | 2.5   | 2.6   | 2.7   | 2.8   | 2.9   | 3.0    |
| ## | [31] | 3.1   | 3.2   | 3.3   | 3.4   | 3.5   | 3.6   | 3.7   | 3.8   | 3.9   | 4.0    |
| ## | [41] | 4.1   | 4.2   | 4.3   | 4.4   | 4.5   | 4.6   | 4.7   | 4.8   | 4.9   | 5.0    |
| ## | [51] | 5.1   | 5.2   | 5.3   | 5.4   | 5.5   | 5.6   | 5.7   | 5.8   | 5.9   | 6.0    |
| ## | [61] | 6.1   | 6.2   | 6.3   | 6.4   | 6.5   | 6.6   | 6.7   | 6.8   | 6.9   | 7.0    |
| ## | [71] | 7.1   | 7.2   | 7.3   | 7.4   | 7.5   | 7.6   | 7.7   | 7.8   | 7.9   | 8.0    |
| ## | [81] | 8.1   | 8.2   | 8.3   | 8.4   | 8.5   | 8.6   | 8.7   | 8.8   | 8.9   | 9.0    |
| ## | [91] | 910.0 | 920.0 | 930.0 | 940.0 | 950.0 | 960.0 | 970.0 | 980.0 | 990.0 | 1000.0 |

#### ${\bf Acknowledgements}$

. R Markdown - Dynamic Documents for R (large resource) . Writing reproducible reports in R with markdown, knitr and pandoc . Markdown . knitr with R Markdown . R markdown cheatsheet A (very) short introduction to R #### The end