3D Human Pose Estimation

Farhanur Rahim Ansari, Vidhey Oza, Minji Lee

Perform 3D human pose estimation on monocular RGB images and videos, and make an interactive tool that helps in using this technology with convenience.

Where is this useful?

Robotics

Motion Capture

Surveillance

CGI

Challenges - Self-Occlusion + Depth Ambiguity

Cricket batsman practicing different shots

Self-occlusion- one of the arm and leg are hidden behind the batsman's body

Depth Ambiguity-How far the different body parts are from the camera is difficult to access

Challenges - Jitter

Man doing jumping jacks and stem engines

Jitter- Because of the lesser number of frames to cover this complicated exercise the final output is a bit jittery or shaky

Approach

• Two-step method first predict 2D keypoints from RGB images and then lift them to 3D poses.

Two-step Method:

2D Keypoint Prediction

3D Pose Reconstruction

Why two-step methods?

- Compatible with existing 2D pose estimation methods
- Avoids influence of background and human surface features
- 2D pose acts as auxiliary output for better convergence
- Has better generalization in the wild

3D-HPE Pipeline

Dataset

HR-Net

- 1. COCO
 - o 42.7 GB
 - o 330K images
 - o 250K people
- 2. MPII Dataset
 - o 12.9 GB
 - o 25K images
 - 40K people

GAST-Net

- 1. Human3.6M
 - o 3.6m 3D human poses
 - 17 activities
 - o 11 actors
- 2. HumanEva-l
 - o 13.6 GB
 - 6 activities
 - 4 actors

HRNet

Fig: Architecture of HRNet Framework

GAST-Net

Fig: Schematic overview of GAST-Net Framework

Evaluation Metrics-

- *mAP*: Mean Average Precision
- MPJPE: Mean Per Joint Positioning Error

mAP	сосо	MPII
HRNet	91.5	92.3
CPN	74.9	77.0
Integral Pose	67.8	_
SimpleEnsemble	-	91.5

MPJPE	Human3.6M	HumanEva-I
GAST-Net	23.11	21.2
Pavllo	34.5	35.2

Observation: HRNet and GAST-Net both outperform the benchmarks (or are very close), but their real novelty is being able to achieve similar performance on random unseen data

Issues Fixed - Occlusion

Self-occlusion occurring due to side profile view overcomed

Issues Fixed - Jitter

Due to proper formatting in pipeline, jitter is reduced

How can I use this?

Building Web Applications

- Python-based free and open-source web framework
- Version 3.1.4
- Pre-built sqlite database
- Made index.html, after_index.html

- Ubuntu 18.04.4
- 15.3GB memory
- CPU

Demo Time!!

3D-HPE

3D Human Pose Estimation

Caption:		
/ideo: Choose File No file chosen		
Upload		

Home Page

Conclusion

- Did a thorough research of the field
- Tried working on multiple datasets and models
- Set up pipelines for project (HR-Net, GAST-Net)
- Fixed issues (Jittery, Occlusion, and depth ambiguity)
- Set up web application with Django and AWS

Thank you!