3. The Trapezoidal Rule for Numerical Integration

Theorem (Trapezoidal Rule) Consider y = f(x) over $[x_0, x_1]$, where $x_1 = x_0 + h$. The trapezoidal rule is

TR (f, h) =
$$\frac{h}{2}$$
 (f (x₀) + f (x₁)).

This is an numerical approximation to the integral of f(x) over $[x_0, x_1]$ and we have the expression

$$\int_{x_0}^{x_1} f(x) dlx \approx TR(f, h).$$

The remainder term for the trapezoidal rule is $R_{TR}(f, h) = -\frac{1}{12} f''(c) h^3$, where c lies somewhere between x_0 and x_1 , and have the equality

$$\int_{x_0}^{x_1} f(x) dx = \frac{h}{2} (f(x_0) + f(x_1)) - \frac{1}{12} f''(c) h^2.$$

Composite Trapezoidal Rule

An intuitive method of finding the area under a curve y = f(x) is by approximating that area with a series of trapezoids that lie above the intervals $\{[x_{k-1}, x_k]\}_{k=1}^m$. When several trapezoids are used, we call it the composite trapezoidal rule.

Theorem (Composite Trapezoidal Rule) Consider y = f(x) over [a, b]. Suppose that the interval [a, b] is subdivided into m subintervals $\{[x_{k-1}, x_k]\}_{k=1}^m$ of equal width $h = \frac{b-a}{m}$ by using the equally spaced nodes $x_k = x_0 + kh$ for k = 1, 2, ..., m. The composite trapezoidal rule for m subintervals is

$$T(f, h) = \frac{h}{2}(f(a) + f(b)) + h \sum_{k=1}^{m} f(x_k)$$

is an numerical approximation to the integral, and

$$\int_{a}^{b} f(x) dx = T(f, h) + E_{T}(f, h).$$

Furthermore, if $f(x) \in C^2[a, b]$, then there exists a value c with a < c < b so that the error term $E_T(f, h)$ has the form

$$E_T(f, h) = -\frac{(b - a) f^2(c)}{12} h^2$$
.

This is expressed using the "big o" notation $E_T(f, h) = o(h^2)$.

Remark. When the step size is reduced by a factor of $\frac{1}{2}$ the error term $E_T(f, h)$ should be reduced by approximately $\left(\frac{1}{2}\right)^2 = 0.25$.

Example 1. Let
$$f[x]$$
 be $\int_0^x (2 + \cos[2\sqrt{x}]) dx$.

- 1 (a) Numerically approximate the integral by using the trapezoidal rule with m = 1, 2, 4, 8, and 16 subintervals.
- 1 (b) Find the analytic value of the integral (i.e. find the "true value").
- 1 (c) Find the error for the trapezoidal rule approximations Solution 1.

Recursive Integration Rules

Theorem (Successive Trapezoidal Rules) Suppose that $j \ge 1$ and the points $\{x_k = a + k h\}$ subdivide [a, b] into $2^j = 2m$ subintervals equal width $h = \frac{b - a}{2^j}$. The trapezoidal rules T(f, h) and T(f, 2h) obey the relationship

$$T(f, h) = \frac{T(f, 2h)}{2} + h \sum_{k=1}^{m} f(x_{2k-1}).$$

Definition (Sequence of Trapezoidal Rules) Define $T(0) = \frac{h}{2}(f(a) + f(b))$, which is the trapezoidal rule with step size h = b - a. Then for each $j \ge 1$ define T(0) = T(f, h), where T(f, h) is the trapezoidal rule with step size $h = \frac{b - a}{2^{j}}$.

Corollary (Recursive Trapezoidal Rule) Start with $T(0) = \frac{h}{2} (f(a) + f(b))$. Then a sequence of trapezoidal rules $\{T(j)\}$ is generated by the recursive formula

$$T(j) = \frac{T(j-1)}{2} + h \sum_{k=1}^{m} f(x_{i_{k-1}}) \text{ for } j = 1, 2, \dots$$

where
$$h = \frac{b - a}{2i}$$
 and $\{x_k = a + kh\}$.

The recursive trapezoidal rule is used for the Romberg integration algorithm.

Example 1. Let
$$f[x]$$
 be $\int_0^2 (2 + \cos[2\sqrt{x}]) dx$.

- 1 (a) Numerically approximate the integral by using the trapezoidal rule with m = 1, 2, 4, 8, and 16 subintervals.
- **1** (b) Find the analytic value of the integral (i.e. find the "true value").
- 1 (c) Find the error for the trapezoidal rule approximations Solution 1 (a).

We will use simulated hand computations for the solution.

$$f[x_] = 2 + \cos[2\sqrt{x}];$$

$$t1 = \frac{\frac{2-0}{1}}{2} (f[0] + f[2])$$

N[t1]

$$5 + \cos \left[2\sqrt{2}\right]$$

4.04864

$$t2 = \frac{\frac{2-0}{2}}{2} (f[0] + 2 f[1] + f[2])$$

$$\frac{1}{2} \left(5 + 2 \left(2 + \cos[2] \right) + \cos[2 \sqrt{2}] \right)$$

3.60817

$$t4 = \frac{\frac{2-0}{4}}{2} \left[f[0] + 2 f\left[\frac{1}{2}\right] + 2 f[1] + 2 f\left[\frac{3}{2}\right] + f[2] \right]$$

$$\frac{1}{4} \left(5 + 2 \left(2 + \cos[2] \right) + 2 \left(2 + \cos\left[\sqrt{2}\right] \right) + \cos\left[2\sqrt{2}\right] + 2 \left(2 + \cos\left[\sqrt{6}\right] \right) \right)$$

3.4971

$$t8 = \frac{\frac{2-0}{8}}{2} \left[f[0] + 2 f\left[\frac{1}{4}\right] + 2 f\left[\frac{1}{2}\right] + 2 f\left[\frac{3}{4}\right] + 2 f[1] + 2 f\left[\frac{5}{4}\right] + 2 f\left[\frac{3}{2}\right] + 2 f\left[\frac{7}{4}\right] + f[2] \right]$$

N[t8]

 $\frac{1}{8} \left(5 + 2 \left(2 + \cos[1]\right) + 2 \left(2 + \cos[2]\right) + 2 \left(2 + \cos[\sqrt{2}]\right) + \cos[2\sqrt{2}] + 2 \left(2 + \cos[\sqrt{3}]\right) + 2 \left(2 + \cos[\sqrt{5}]\right) + 2 \left(2 + \cos[\sqrt{6}]\right) + 2 \left(2 + \cos[\sqrt{7}]\right)\right)$ 3. 46928

$$\begin{aligned} &\mathbf{t} \mathbf{16} = \frac{\frac{2-0}{16}}{2} \left(\mathbf{f} [\mathbf{0}] + 2\, \mathbf{f} \big[\frac{1}{8} \big] + 2\, \mathbf{f} \big[\frac{1}{4} \big] + 2\, \mathbf{f} \big[\frac{1}{2} \big] + 2\, \mathbf{f} \big[\frac{5}{8} \big] + 2\, \mathbf{f} \big[\frac{3}{4} \big] + 2\, \mathbf{f} \big[\frac{7}{8} \big] + 2\, \mathbf{f} \big[\frac{1}{8} \big] + 2$$

3.46232

Solution 1 (b).

$$val = \int_{0}^{2} (2 + \cos[2\sqrt{x}]) dx$$
$$\frac{7}{2} + \frac{1}{2} \cos[2\sqrt{2}] + \sqrt{2} \sin[2\sqrt{2}]$$

N[val]

3.46

NumberForm[N[val] , 12]

3.45999767217

Solution 1 (c).

val - t16
-0.00232232783