Marstrand Projection Theorem Via Marstrand Projection Theorem

Jacob Denson*

April 4, 2022

Abstract

TODO

Recall the classic Marstrand Projection Theorem.

Theorem 0.1. Suppose $E \subset \mathbb{R}^n$ has Hausdorff dimension s. If s < m, then for almost every $\pi \in G(n,m)$, $\dim_{\mathbb{H}}(E) = s$, and if $s \ge m$, $\dim_{\mathbb{H}}(E) = m$.

The goal of this paper is to discuss the connection between Marstrand's projection theorem, and the following result from metric geometry.

Theorem 0.2. Fix $0 < \delta < 1$, let X be a set of N points in \mathbb{R}^n , and suppose $m > 8 \ln(N)/\delta^2$. Then with probability greater than or equal to $1 - 2 \exp(-c\delta^2 m)$, a random projection $\pi \in G(n,m)$ will satisfy

$$(1-\delta)(m/n)^{1/2}|x-y| \le |\pi(x)-\pi(y)| \le (1+\delta)(m/n)^{1/2}|x-y|,$$

i.e. $(n/m)^{1/2}\pi$, restricted as a map from X to \mathbb{R}^m , will be an approximate isometry.

Let us recall some notation, introduced by Katz and Tao, and modified by Hera, Schmerkin, and Yavicoli. Fix some small quantity $\varepsilon_0 \ll 1$:

- A hyper-dyadic number will be a number of the form $2^{-\lfloor (1+\varepsilon_0)^k \rfloor}$ for some $k \geq 0$. A hyper-dyadic cube is a cube with hyper-dyadic sidelengths. We note that for any N, there are $O_{\varepsilon_0}(\log N)$ hyper-dyadic numbers between δ and δ^N for any N > 0, which is much less than the $O_{\varepsilon_0}(N\log(1/\delta))$ many dyadic numbers between δ and δ^N , which depends on δ .
- A family of sets $\{X_{\alpha}\}$ strongly covers a set X if each point in X is contained in infinitely many of the sets $\{X_{\alpha}\}$.
- A set E is δ discretized if it is the union of δ balls.

^{*}University of Madison Wisconsin, Madison, WI, jcdenson@wisc.edu

• A set $E \subset \mathbb{R}^n$ is a (δ, s) set if E is a δ discretized subset of B(0, 2), and for all $\delta \leqslant r \leqslant 2$,

$$|E \cap B(x,r)| \lesssim \delta^{n-\varepsilon} (r/\delta)^s$$
.

• $|E| \gtrsim \delta^{n-s}$.

A result of Katz and Tao gives the following.

Theorem 0.3. Suppose 0 < s < n, and let E be a compact subset of \mathbb{R}^n . If $\dim_{\mathbb{H}}(E) \leq s$, we can find a (δ, s) set X_{δ} for each hyperdyadic number δ such that $\{X_{\delta}\}$ strongly covers E. Conversely, if C > 0 is sufficiently large, we can find a family $\{X_{\delta}\}$, where X_{δ} is a (δ, s) set for each δ , with implicit constants bounded uniformly in δ , then $\dim_{\mathbb{H}}(E) \leq s$.

Proof. Suppose the latter constraint. Since X_{δ} is a (δ, s) set, it is δ discretized. It is therefore the union of a family of radius δ balls $\{B_i\}$. Applying the Vitali covering lemma, we may find a disjoint subfamily of balls $S = \{B_{i_i}\}$ such that $X_{\delta} \subset \bigcup 5B_{i_i}$. Thus

$$\#(S)\delta^n \lesssim |X_\delta| = |X_\delta \cap B(0,2)| \lesssim \delta^{n-s},$$

so $\#(S) \lesssim \delta^{-s}$. But this means that X_{δ} is covered by $O(\delta^{-s})$ balls of radius δ , so

$$H_{5\delta}^{s+\varepsilon}(X_{\delta}) \lesssim \delta^{-s}(5\delta)^{s+\varepsilon} \lesssim \delta^{\varepsilon}.$$

Since E is compact, and strongly covered by the sets $\{X_{\delta}\}$, for any hyperdyadic $\delta_1 > 0$, there exists δ_2 such that

$$E \subset \bigcup_{\delta_2 \leqslant \delta \leqslant \delta_1} X_{\delta}.$$

But this means that

$$H_{5\delta_1}^{s+\varepsilon}(E) \leqslant \sum_{\delta_2 \leqslant \delta \leqslant \delta_1} H_{5\delta_1}^{s+\varepsilon}(X_\delta) \lesssim \sum_{\delta_2 \leqslant \delta \leqslant \delta_1}$$

in particular, δ discretized, so is the union of a family of balls $\{B_i\}$, where B_i has radius $r_i \approx \delta$. Applying Vitali's covering lemma, we may find a disjoint subset $\{B_{i_j}\}$ such that X_{δ} is covered by the family of balls $\{5B_{i_j}\}$. If we let X'_{δ} denote the union of balls $\{5B_{i_j}\}$, then X'_{δ} is still a $(\delta, s - C\varepsilon_0)$ set, since it is certainly δ discretized, and

$$|X'_{\delta} \cap B(x,r)|$$

Thus

$$|X_{\delta}| \gtrsim_d \sum r_{i_j}^d$$

Suppose the latter constraint. Since X_{δ} is a $(\delta, s - C\varepsilon_0)$ set, for any $x \in \mathbb{R}^d$,

$$|E \cap B(x,1)| \lesssim_{x,\varepsilon_0} \delta^{n-s+(C-C_1)\varepsilon_0}$$
.

Since E is covered by $O_d(C_0^d)$ balls of radius one independently, it follows that

$$|E| \lesssim_{C_0,\varepsilon_0,d} \delta^{n-s+(C-C_1)\varepsilon_0}$$

it satisfies the bound $|X_{\delta}| \lesssim \delta^{n-s+C\varepsilon}$

it is a union of balls $\{B(x_i, r_i), \text{ where } r_i \approx \delta. \text{ But then } N(X_\delta, \varepsilon/2)$

Thus
$$r_i \lesssim_{\varepsilon} \delta^{-O(\varepsilon)} \delta$$