Lecture 07: Sub-Sequences

August 19, 2019

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Theorem 7.1 (Ratio test for sequences) Let (a_n) be a sequence of real numbers such that $a_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$. Then

- 1. if $\lambda < 1$ then $\lim_{n \to \infty} a_n = 0$
- 2. if $\lambda > 1$ then $\lim_{n \to \infty} a_n = \infty$
- 3. if $\lambda = 1$ then test fails, i.e., we can not say anything about convergence or divergence of the sequence (a_n) .

Remark 7.2 Using the fact that $|a_n| \to 0 \implies a_n \to 0$, the first part of the above theorem can be extended as follows:

Suppose $(a_n)_{n\geq 1}$ is a real sequence such that $a_n \neq 0$ for all n and $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lambda$. If $\lambda < 1$, then $a_n \to 0$.

Example 7.3 1. Let $x_n = \frac{n}{2^n}$. Then

$$\frac{x_{n+1}}{x_n} = \frac{n+1}{2^{n+1}} \times \frac{2^n}{n} = \frac{n+1}{2n} = \frac{1}{2}(1+\frac{1}{n}) \implies \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \frac{1}{2} < 1 \implies x_n \to 0$$

2. Let $x_n = (-1)^n n y^{n-1}$ for some $y \in (0,1)$. Then

$$\frac{x_{n+1}}{x_n} = -\frac{(n+1)y^n}{ny^{n-1}} = -\frac{(n+1)y}{n} = -y(1+\frac{1}{n}) \implies \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = y < 1 \implies x_n \to 0$$

3. Let $x_n = \frac{y^n}{n^2}$ for some y > 1. Then

$$\frac{x_{n+1}}{x_n} = \frac{y^{n+1}}{(n+1)^2} \times \frac{n^2}{y^n} = \frac{n^2y}{(n+1)^2} = \frac{y}{(1+\frac{1}{n})^2} \implies \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = y > 1 \implies x_n \to \infty$$

4. (a) Let $x_n = n$. Then

$$\frac{x_{n+1}}{x_n} = \frac{n+1}{n} = 1 + \frac{1}{n} \implies \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1$$

Test fails but we know that $x_n \to \infty$.

(b) Let $x_n = \frac{1}{n}$. Then

$$\frac{x_{n+1}}{x_n} = \frac{n}{n+1} = 1 + \frac{1}{n} \implies \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1$$

Test fails but we know that $x_n \to 0$.

Subsequences

Let (a_n) be a sequence. If n_1, n_2, \cdots are positive integers such that $n_k < n_{k+1}$ for each $k \in \mathbb{N}$, then the sequence (a_{n_k}) , whose terms are

$$a_{n_1}, a_{n_2}, \cdots,$$

is called a subsequence of (a_n) . Let us observe that $n_k \geq k$ for all $k \in \mathbb{N}$, which implies that $n_k \to \infty$ as $k \to \infty$.

Example 7.4 1. Let $a_n = \frac{1}{n}$ and $n_k = 2k$ then the sequence (a_{2n}) is a subsequence of (a_n) . Other subsequences are $(a_{2n-1}), (a_{n!})$.

2. Let $a_n = \frac{1}{n}$, then the following sequence

$$\left(\frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{5}, \cdots\right)$$

is not a subsequence of (a_n) because $n_1 = 2, n_2 = 1, n_3 = 4, n_4 = 3$ (order is very important about sequences). Similarly the sequence

$$\left(\frac{1}{1}, 0, \frac{1}{3}, 0, \frac{1}{5}, 0, \cdots\right)$$

is not a subsequence of (a_n) because there is a zero term which is not there in (a_n) .

3. Every sequence is a subsequence of itself (take $n_k = k$ for $k \in \mathbb{N}$)

Let (a_n) be a sequence and (a_{n_k}) be a subsequence. What does it mean to say that the subsequence (a_{n_k}) converges to a? Let us define a new sequence (x_k) where $x_k := a_{n_k}$. Then we say $a_{n_k} \to a$ if $x_k \to a$.

Definition 7.5 Let (a_n) be a sequence and (a_{n_k}) be a subsequence. We say that the subsequence (a_{n_k}) converges to a if for every $\epsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that for $k \geq k_0$, we have $|a_{n_k} - a| < \epsilon$.

Theorem 7.6 If a sequence (a_n) converges to a then show that every subsequence of (a_n) converges to a.

Proof: Let $\epsilon > 0$ be given. Since $a_n \to a$ hence there is a $n_0 \in \mathbb{N}$ such that for all $k \geq n_0 \Longrightarrow |a_k - a| < \epsilon$. Note that if $k \geq n_0$ then $n_k \geq k \geq n_0$. Hence, for $k \geq n_0$, we have $|a_{n_k} - a| < \epsilon$.

Remark 7.7 The Theorem 7.6 can be used to conclude divergence of a sequence. If (a_n) has two convergent subsequences (a_{n_k}) and (a_{m_k}) whose limits are not equal then sequence (a_n) diverges.

Example 7.8 1. Let $a_n = (-1)^n$. Then the subsequence (a_{2n}) is constant sequence 1 and the subsequence (a_{2n-1}) is constant sequence -1. Hence sequence (a_n) diverges.

2. Let $(a_n) = (1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \cdots)$. Then $a_{2n} = \frac{1}{2n}$ which converges to 0 and $a_{2n-1} = 2n-1$ which tends to ∞ . Hence (a_n) diverges.

Theorem 7.9 (Bolzano-Weierstrass Theorem for sequences) Every bounded sequence in \mathbb{R} has a convergent subsequence.

For example the sequence $(\sin n)$ is bounded and hence has convergent subsequence. Though it is difficult to give explicitly that subsequence.

Remark 7.10 Converse of Theorem 7.9 is not true as in Example 7.8 (2), sequence has a convergent subsequence (a_{2n}) but the sequence (a_n) is unbounded.