TD 4: Analyse Numérique

Exercice 1:

Considérons la fonction suivante : $f(x) = x^3 + 2x - 1$

1/ Justifier que f(x)=0 a une unique solution α , montrer que $0 \le \alpha \le 1$

2/ Donner le principe de la méthode de dichotomie.

3/ Donner l'algorithme de la méthode de dichotomie.

4/ Donner une approximation de α par la méthode de dichotomie avec $\varepsilon = 10^{-3}$

Exercice 2:

Considérons la fonction suivante : $f(x) = -x^3 - \cos x$

1/ Donner le principe de la méthode de la sécante.

2/ Donner l'algorithme de la méthode de la sécante.

3/ Comparer la méthode de la sécante avec la méthode de dichotomie.

4/ Donner les 4 premières itérations par la méthode de la sécante avec $x^{(0)} = -1, x^{(1)} = 0$

Exercice 3:

Considérons la fonction suivante : $f(x) = e^x - x - 2$

1/ Donner le principe de la méthode de la fausse position.

2/ Donner l'algorithme de la méthode de la fausse position.

3/ Comparer la méthode de la fausse position avec la méthode de dichotomie.

4/Justifier que la racine de f, $-2.4 < \alpha < -1.6 \text{ donner l'approximation de la solution}$ pour $\varepsilon = 10^{-4}$

Exercice 4:

On se propose d'estimer numériquement une solution de l'équation :

$$\sin(x) = 0.2 x^2$$
 (1)

a- Montrer qu'il existe une solution unique α pour cette équation dans l'intervalle $J=[\frac{\pi}{2}; 2,5]$.

b- Montrer que la solution α de l'équation (1) est la solution de l'équation $g_1(x)=x$ avec $g_1(x)=\sin(x)-0.2x^2+x$.

c- Montrer que sur l'intervalle J, la suite $g_1(\alpha_{n-1})$ converge vers une solution unique α , quelque soit le premier terme de la suite dans J.

d- Calculer le cinq premiers termes $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ avec $\alpha_0 = 2.5$

- e-Donner la relation itérative $\alpha_{n+1} = g_{Newt}(\alpha_n)$ intervenant dans la méthode itérative de Newton pour la relation itérative de la racine α de l'équation (1).
- f- Montrer que dans l'intervalle $J=[\frac{\pi}{2}\ ;\ 2,5]$, la relation itérative de Newton converge.
- g-Calculer les cinq premiers estimées $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ avec $\alpha_0 = 2.5$