Extra practice with second-order derivatives (Section 7)

- 1. Write the limit definition of $f_{xy}(a,b)$ as $(f_x)_y$.
- 2. Sketch a contour diagram of a function for which $f_x > 0$ and $f_{xx} < 0$ at all points in the plane.

3. Find the indicated partial derivatives for $f(x,y) = \frac{xy}{x^2 + 1}$; f_{xx} , f_{yx} , f_{yy}

- $\bf 4.$ Using the values of the function given in Table 7.5 on page V1-85, estimate each partial derivative.
- (a) $f_x(4,1)$ and $f_{xx}(4,1)$

(b) $f_y(4,1)$ and $f_{yy}(4,1)$

5. Find the degree-2 Taylor polynomial of the given function at the given point.

(a)
$$f(x,y) = e^{-x^2 - y^2}$$
; $(0,0)$

(b) $f(x,y) = 1 - x^3 - y^2$; (1,1)

6. Compute the linear and the quadratic approximations of $f(x,y) = (xy)^{-1}$ at (1,1). Compare the values of the two approximations at (1.1,0.9) with the value f(1.1,0.9).

7. Use the degree-2 Taylor polynomial to approximate 3.99 $\arctan 0.1$.