- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 Gennaio 2018

(Cognome)								_			(No	me)			-	ume	ı ma	trice	ola)						

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. La funzione $f:\ [-1,1]\to \mathbb{R}$ definita da $f(x)=x^{10!}$ è

A: invertibile B: concava C: surgettiva D: iniettiva E: N.A.

2. Sia y soluzione del problema di Cauchy $y''-5y'+6y=0,\ y(0)=1,\ y'(0)=0.$ Allora $y(\log(2))$ vale

A: $4 \log(2)$ B: N.A. C: -4 D: $3e^4 - 2e^8$ E: 1

3. L'integrale

$$\int_{2}^{\infty} x e^{-x} dx$$

vale

A: $3e^{-2}$ B: $+\infty$ C: N.E. D: 2e E: N.A.

4. La serie di potenze

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} x^n$$

converge per

A: $|x| < e^{-1}$ B: |x| < e C: $|x| \le e^{-1}$ D: N.A. E: -1 < x < 2

5. Il limite

$$\lim_{x \to 0} \frac{\log(1 + 3x^2)}{x(e^{2x} - 1)}$$

vale

A: 1 B: $+\infty$ C: N.A. D: -1 E: N.E.

6. Il coefficiente del termine di 4 grado per polinomio di Taylor di $f(x) = \cos(3x)$ relativo al punto $x_0 = 0$ vale

A: 0 B: $\frac{(-1)^3 3^4}{4!}$ C: $\frac{1}{4!}$ D: $\frac{27}{8}$ E: N.A.

7. Data $f(x) = \arctan(x^x)$. Allora f'(1) è uguale a

A: 1/2 B: 0 C: -1 D: $\pi/4$ E: N.A.

8. Quanti punti contiene $A \cap B \subset \mathbb{C}$ se

$$A:=\{z\in\mathbb{C}:\ z+\overline{z}=z\overline{z}\}\qquad B:=\{w\in\mathbb{C}:\ w=(1+i)z\ \mathrm{con}\ z\in A\}$$

A: N.A. B: Nessuno C: 2 D: 1 E: Infiniti

9. Inf, min, sup e max dell'insieme

$$A = \{\sin(|\log(|x|)|) : x \in \mathbb{R} \setminus \{0\}\},\$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{0, 0, 1, 1, \}$ C: $\{-1, -1, 1, 1\}$ D: $\{-1, N.E., 1, N.E.\}$ E: N.A.

10. L'integrale

$$\int_{1}^{e^{2}} \log(x) \, dx$$

vale

A: N.A. B: 1 C: $e^2 - e + 1$ D: -1 E: 0

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 Gennaio 2018

(Cognome)							_			(No	me)			-	ume	ro d	li ma	atrice	ola)						

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	0	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	0	\bigcirc	\bigcirc	
10		0	0	0	\bigcirc	

1. La serie di potenze

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^{n^2} x^n$$

converge per

A:
$$|x| \le e^{-1}$$
 B: $|x| < e^{-1}$ C: $-1 < x < 2$ D: $|x| < e$ E: N.A

2. Inf, min, sup e max dell'insieme

$$A = \{\sin(|\log(|x|)|) : x \in \mathbb{R} \setminus \{0\}\},\$$

valgono

$$\text{A: N.A.} \quad \text{B: } \{0,0,1,1,\} \quad \text{C: } \{-1,-1,1,1\} \quad \text{D: } \{-\infty,N.E.,+\infty,N.E.\} \quad \text{E: } \{-1,N.E.,1,N.E.\}$$

3. L'integrale

$$\int_{1}^{e^{2}} \log(x) \, dx$$

vale

A: 1 B:
$$-1$$
 C: $e^2 - e + 1$ D: 0 E: N.A.

4. Il limite

$$\lim_{x \to 0} \frac{\log(1 + 3x^2)}{x(e^{2x} - 1)}$$

vale

A: N.E. B:
$$-1$$
 C: 1 D: N.A. E: $+\infty$

5. L'integrale

$$\int_{2}^{\infty} x e^{-x} dx$$

vale

A: 2e B: N.E. C:
$$+\infty$$
 D: N.A. E: $3e^{-2}$

6. Data $f(x) = \arctan(x^x)$. Allora f'(1) è uguale a

A:
$$1/2$$
 B: $\pi/4$ C: N.A. D: -1 E: 0

7. La funzione $f:\ [-1,1]\to \mathbb{R}$ definita da $f(x)=x^{10!}$ è

A: N.A. B: invertibile C: surgettiva D: concava E: iniettiva

8. Sia y soluzione del problema di Cauchy y'' - 5y' + 6y = 0, y(0) = 1, y'(0) = 0. Allora $y(\log(2))$ vale

A: N.A. B:
$$-4$$
 C: $4\log(2)$ D: $3e^4 - 2e^8$ E: 1

9. Il coefficiente del termine di 4 grado per polinomio di Taylor di $f(x) = \cos(3x)$ relativo al punto $x_0 = 0$ vale

A: N.A. B:
$$\frac{(-1)^3 3^4}{4!}$$
 C: 0 D: $\frac{27}{8}$ E: $\frac{1}{4!}$

10. Quanti punti contiene $A \cap B \subset \mathbb{C}$ se

$$A := \{ z \in \mathbb{C} : z + \overline{z} = z\overline{z} \} \qquad B := \{ w \in \mathbb{C} : w = (1+i)z \text{ con } z \in A \}$$

A: 2 B: 1 C: Infiniti D: N.A. E: Nessuno

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 Gennaio 2018

 (Cognome)								_			(No	me)			-	(N	ume	ro d	i ma	trice	ola)					

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Il coefficiente del termine di 4 grado per polinomio di Taylor di $f(x) = \cos(3x)$ relativo al punto $x_0 = 0$ vale

A:
$$\frac{27}{8}$$
 B: 0 C: $\frac{(-1)^3 3^4}{4!}$ D: N.A. E: $\frac{1}{4!}$

2. Sia y soluzione del problema di Cauchy y'' - 5y' + 6y = 0, y(0) = 1, y'(0) = 0. Allora $y(\log(2))$ vale

A:
$$4 \log(2)$$
 B: 1 C: -4 D: $3e^4 - 2e^8$ E: N.A.

3. Il limite

$$\lim_{x \to 0} \frac{\log(1 + 3x^2)}{x(e^{2x} - 1)}$$

vale

A:
$$-1$$
 B: N.E. C: N.A. D: $+\infty$ E: 1

4. La funzione $f: [-1,1] \to \mathbb{R}$ definita da $f(x) = x^{10!}$ è

A: concava B: invertibile C: N.A. D: iniettiva E: surgettiva

5. Quanti punti contiene $A \cap B \subset \mathbb{C}$ se

$$A := \{ z \in \mathbb{C} : z + \overline{z} = z\overline{z} \} \qquad B := \{ w \in \mathbb{C} : w = (1+i)z \text{ con } z \in A \}$$

A: N.A. B: 2 C: Nessuno D: Infiniti E: 1

6. L'integrale

$$\int_{2}^{\infty} x e^{-x} dx$$

vale

A: 2e B:
$$+\infty$$
 C: N.E. D: $3e^{-2}$ E: N.A.

7. L'integrale

$$\int_{1}^{e^{2}} \log(x) \, dx$$

vale

A: 1 B:
$$-1$$
 C: 0 D: N.A. E: $e^2 - e + 1$

8. La serie di potenze

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^{n^2} x^n$$

converge per

A:
$$-1 < x < 2$$
 B: $|x| < e^{-1}$ C: N.A. D: $|x| < e$ E: $|x| \le e^{-1}$

9. Inf, min, sup e max dell'insieme

$$A = \{\sin(|\log(|x|)|): x \in \mathbb{R} \setminus \{0\}\},\$$

valgono

A:
$$\{0, 0, 1, 1, \}$$
 B: $\{-\infty, N.E., +\infty, N.E.\}$ C: N.A. D: $\{-1, N.E., 1, N.E.\}$ E: $\{-1, -1, 1, 1\}$

10. Data $f(x) = \arctan(x^x)$. Allora f'(1) è uguale a

A:
$$\pi/4$$
 B: 0 C: N.A. D: $1/2$ E: -1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 Gennaio 2018

(Cognome)								_			(No	me)			-	ume	ı ma	trice	ola)						

0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
			\bigcirc		
			000		

1. Data $f(x) = \arctan(x^x)$. Allora f'(1) è uguale a

A: $\pi/4$ B: 0 C: 1/2 D: N.A. E: -1

2. La funzione $f:\ [-1,1]\to \mathbb{R}$ definita da $f(x)=x^{10!}$ è

A: surgettiva B: concava C: invertibile D: iniettiva E: N.A

3. La serie di potenze

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^{n^2} x^n$$

converge per

A: $|x| < e^{-1}$ B: -1 < x < 2 C: N.A. D: $|x| \le e^{-1}$ E: $|x| < e^{-1}$

4. Il coefficiente del termine di 4 grado per polinomio di Taylor di $f(x) = \cos(3x)$ relativo al punto $x_0 = 0$ vale

A: N.A. B: 0 C: $\frac{(-1)^3 3^4}{4!}$ D: $\frac{27}{8}$ E: $\frac{1}{4!}$

5. L'integrale

$$\int_{2}^{\infty} x e^{-x} dx$$

vale

A: 2e B: $3e^{-2}$ C: N.A. D: $+\infty$ E: N.E.

6. Sia y soluzione del problema di Cauchy y'' - 5y' + 6y = 0, y(0) = 1, y'(0) = 0. Allora $y(\log(2))$ vale

A: $3e^4 - 2e^8$ B: 1 C: -4 D: $4\log(2)$ E: N.A.

7. Inf, min, sup e max dell'insieme

$$A = \{\sin(|\log(|x|)|) : x \in \mathbb{R} \setminus \{0\}\},\$$

valgono

 $\text{A:} \ \{0,0,1,1,\} \quad \text{B:} \ \{-1,-1,1,1\} \quad \text{C:} \ \text{N.A.} \quad \text{D:} \ \{-1,N.E.,1,N.E.\} \quad \text{E:} \ \{-\infty,N.E.,+\infty,N.E.\}$

8. L'integrale

$$\int_{1}^{e^{2}} \log(x) \, dx$$

vale

A: $e^2 - e + 1$ B: N.A. C: 1 D: 0 E: -1

9. Quanti punti contiene $A \cap B \subset \mathbb{C}$ se

$$A:=\{z\in\mathbb{C}:\ z+\overline{z}=z\overline{z}\}\qquad B:=\{w\in\mathbb{C}:\ w=(1+i)z\ \mathrm{con}\ z\in A\}$$

A: 2 B: 1 C: N.A. D: Nessuno E: Infiniti

10. Il limite

$$\lim_{x \to 0} \frac{\log(1 + 3x^2)}{x(e^{2x} - 1)}$$

vale

A: -1 B: N.A. C: N.E. D: 1 E: $+\infty$

30 Gennaio 2018

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	•	
2	0	\bigcirc	•	\bigcirc	\bigcirc	
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	•	\bigcirc	
7		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	•	\bigcirc	\bigcirc	
9	0	\bigcirc	•	\bigcirc	\bigcirc	
10	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

30 Gennaio 2018

(Cognome)										(No	me)				ume	i ma	trico	ola)						

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	•	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc		
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	•	
6	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	•	\bigcirc	0	\bigcirc	
9	0	\bigcirc	\bigcirc	•	\bigcirc	
10	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

30 Gennaio 2018

(Cognome)												(No	me)			_	ume		trice	ola)						

1	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	•	\bigcirc	\bigcirc	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	•	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	•	\bigcirc	
7	0	\bigcirc	\bigcirc	•	\bigcirc	
8	0		\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc		
10	0	\bigcirc	\bigcirc	•		

30 Gennaio 2018

(Cognome)										_			(No	me)			_	ume	li ma	atric	ola)					

1	0	\bigcirc		\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc		
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0		\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc		\bigcirc	\bigcirc	
7	0		\bigcirc	\bigcirc	\bigcirc	
8	0		\bigcirc	\bigcirc	\bigcirc	
9	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10	0		\bigcirc	\bigcirc	\bigcirc	_

30 Gennaio 2018

PARTE B

1. Si studi la funzione

$$f(x) = \frac{x^3 - x}{\sqrt{x^6 + 1}} \qquad x \in \mathbb{R}$$

e si dica se esiste $\int_{\mathbb{R}} f(x) dx$.

Soluzione. La funzione f(x) è definita su tutto \mathbb{R} , è strettamente positiva per -1 < x < 0 e x > 1 e si annulla in x = 0 ed $x = \pm 1$. Inoltre la funzione è dispari poichè si verifica facilmente che f(-x) = -f(x) Calcolando i limiti agli estremi del dominio troviamo

$$\lim_{x \to +\infty} f(x) = +1, \ \lim_{x \to -\infty} f(x) = -1.$$

La funzione é derivabile su tutto il suo dominio. Derivando la funzione una volta si ottiene

$$f'(x) = \frac{2x^6 + 3x^2 - 1}{(x^6 + 1)^{3/2}},$$

di conseguenza la derivata prima si annulla quando si annulla il polinomio di terzo grado $g(x) := 2x^6 + 3x^2 - 1$. Possiamo studiare il polinomio g tramite la sostituzione $t = x^2$ che fornisce $g(x) = G(t) = 2t^3 + 3t - 1$. Si nota facilmente che $G'(t) > 0 \ \forall t \in \mathbb{R}$, da cui deduciamo che esiste un solo $0 < \overline{t} < 1/2$ tale che $G(\overline{t}) = 0$ e quindi due punti $x_{1,2} = \mp \sqrt{\overline{t}}$ tali che $g(x_{1,2}) = 0$. Concludiamo che $x_{1,2}$ sono due zeri della derivata prima di f con $-1 < x_1 < 0$ e $0 < x_2 < 1$. Dallo studio del segno di f' (che coincide con il segno di g) possiamo concludere che la funzione f ammette un massimo relativo x_1 ed un minimo relativo x_2 .

L'integrale $\int_{\mathbb{R}} f(x) dx$ non esiste, poichè per definizione $\int_{\mathbb{R}} f(x) dx$ esiste se esistono finiti i due limiti seguenti

$$\lim_{a \to -\infty} \int_a^c f(x) \, dx, \quad \lim_{b \to +\infty} \int_c^b f(x) \, dx$$

per $c \in \mathbb{R}$. Ma nel caso di $f(x) = \frac{x^3 - x}{\sqrt{x^6 + 1}}$ è violata la condizione necessaria affinchè questi limiti possano convergere, infatti $\lim_{x \to \pm infty} f(x) \neq 0$.

2. a) Si risolva il problema di Cauchy

$$\begin{cases} y'(t) = \cos^2(y(t))\sin(t) \\ y(0) = 1 \end{cases}$$

b) La soluzione risulta periodica e di che periodo?

Figura 1: Grafico approssimativo di f(x)

c) Per quali valori $\alpha \in [-\pi/2,\pi/2]$ è risolubile il problema

$$\begin{cases} y'(t) = \cos^2(y(t))\sin(t) \\ y(0) = \alpha \end{cases}$$

Soluzione. a) L'equazione differenziale considerata è a variabili separabili. Separando le variabili ed integrando otteniamo

$$\int \frac{1}{\cos^2(y)} \, dy = \int \sin(t) \, dt$$

da cui

$$y(t) = \arctan(-\cos(t) + C).$$

Imponendo la condizione iniziale y(0)=1 troviamo la costante $C=1+\tan(1)$ da cui la soluzione

$$y(t) = \arctan(-\cos(t) + 1 + \tan(1)).$$

- b) La soluzione risulta periodica di periodo $T=2\pi$ per
chè tale è il coseno.
- c) Anche in questo caso, separando le variabili troviamo la soluzione

$$\tan y(t) = -\cos(t) + C.$$

e ci chiediamo per quali valori α si può trovare una soluzione tale che $y(0) = \alpha$. La condizione iniziale da imporre sarà $\tan(\alpha) = -1 + C$. I valori di α per i quali è risolubile il problema di Cayuchy sono dunque quelli per i quali posso invertire la relazione $\tan(\alpha) = -1 + C$, ovvero $\alpha \in (-\pi/2, \pi/2)$. Il caso $\alpha = \pm \pi/2$ non può essere trattato nello stesso modo, ma osserviamo che le funzioni

$$y_1(x) = \frac{\pi}{2}$$
 e $y_2(x) = -\frac{\pi}{2}$,

sono regolari e sono soluzioni del problema quando y(0) è rispettivamente $\pi/2$ o $-\pi/2$.

3. Studiare la convergenza, ed eventualmente calcolare l'integrale

$$\int_0^1 x(\log(x))^2 dx$$

Studiare, al variare di $\alpha \in \mathbb{R}$, la convergenza dell'integrale

$$\int_0^1 x^{\alpha} (\log(x))^2 dx$$

Soluzione. Se $\alpha > -1$, possiamo integrare per parti successivamente ed otteniamo,

$$\int_{0}^{1} x^{\alpha} (\log(x))^{2} dx =$$

$$= \left[\frac{x^{\alpha+1}}{\alpha+1} (\log(x))^{2} \right]_{0}^{1} - \int_{0}^{1} 2x^{\alpha} \log(x) dx$$

$$= -\frac{2}{\alpha+1} \int_{0}^{1} x^{\alpha} \log(x) dx$$

$$= \frac{2}{(\alpha+1)^{2}} \int_{0}^{1} x^{\alpha} dx$$

$$= \frac{2}{(\alpha+1)^{3}}.$$

Quindi l'integrale converge per $\alpha > -1$ e nel caso $\alpha = 1$ troviamo

$$\int_0^1 x(\log(x))^2 \, dx = \frac{1}{4}.$$

Se $\alpha = -1$ la primitiva di $\frac{(\log(x))^2}{x}$ è $(\log(x))^3/3$ perciò $\int_0^1 (\log(x))^2/x \, dx$ diverge. Per il criterio del confronto $\int_0^1 x^{\alpha} (\log(x))^2 \, dx$ diverge per ogni $\alpha < -1$.

4. Calcolare la somma

$$\sum_{n=0}^{+\infty} \frac{(n+1)^2}{\pi^n}$$

Sugg. Derivare e moltiplicare per x una opportuna serie di potenze

Soluzione. Ricordiamo che se |x| < 1 la somma della serie geometrica esiste e vale

$$\sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}.$$

Ora deriviamo questa serie, sotto l'ipotesi che essa converga, ed otteniamo

$$\sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}.$$

Moltiplichiamo la precedente uguaglianza per \boldsymbol{x} ed abbiamo

$$\sum_{k=1}^{+\infty} kx^k = \frac{x}{(1-x)^2}.$$

Deriviamo ancora una volta ed abbiamo

$$\sum_{k=1}^{+\infty} k^2 x^{k-1} = \frac{x+1}{(x-1)^3}.$$

Notiamo ora che la serie a sinistra è proprio la somma che vogliamo calcolare per la scelta $x=1/\pi$. Sostituendo quindi ad x $1/\pi$ concludiamo che

$$\sum_{n=0}^{+\infty} \frac{(n+1)^2}{\pi^n} = \frac{\pi^2 (1+\pi)}{(\pi-1)^3}$$