Étude et implémentation du cryptosystème GSW

Lucas Roux & Eric Sageloli 18 février 2019 Définition de GSW

Bootstrapping

Un oeil sur le monde réel

Un bref historique

Définition informelle : un FHE (Fully homomorphic encryption) est un cryptosystème dont les chiffrés sont sur définis sur un anneau R et ayant des opérations sur les chiffrés qui « commutent » avec les opérations d'addition, de multiplication et de multiplication par un scalaire. **Définition alternative** : l'ensemble des messages est $\{0,1\}$ et le

cryptosystème commute avec l'opération NAND.

Un bref historique

Définition informelle: un FHE (Fully homomorphic encryption) est un cryptosystème dont les chiffrés sont sur définis sur un anneau R et ayant des opérations sur les chiffrés qui « commutent » avec les opérations d'addition, de multiplication et de multiplication par un scalaire.

Définition alternative : l'ensemble des messages est $\{0,1\}$ et le cryptosystème commute avec l'opération NAND.

- 2009 : un premier plan par C. Gentry dans sa thèse :
 - idée du bootstrapping;
- 2011 : premiers FHE de seconde génération : Z. Brakerski,
 - V. Vaikuntanathan, J. Fan, F. Vercauteren:
 - basés sur LWE et ses variantes (comme RLWE);
 - une somme simple à définir;
 - un produit en 2 étapes;
- 2013 : premiers FHE de troisième génération : GSW par C. Gentry,
 B. Waters and A. Sahai, en 2013 :
 - basés sur LWE et ses variantes;
 - produit et somme de même nature;

Définition de GSW

GSW, premier essai:

Clé secrète : un vecteur $ec{sk} \in \mathbb{Z}_q^n$

Clé publique : pk

Chiffrement: Encrypt(pk, μ) = $C \in \mathbb{Z}_q^{n \times n}$ telle que

$$C \vec{sk} = \mu \vec{sk}$$

Déchiffrement : évident : recherche de valeur propre

Opérations homomorphes :

Pour $C_i = \mathsf{Encrypt}(\mu_i)$ $(1 \leqslant i \leqslant 2)$ et $\lambda \in \mathbb{Z}_q$,

• Somme : $C_1 + C_2$

$$(C_1 + C_2) \vec{sk} = (\mu_1 + \mu_2) \vec{sk}$$

• **Produit** : $C_1 \times C_2$

$$(C_1 \times C_2) \ \vec{sk} = C_1 \left(\mu_2 \ \vec{sk}\right) = (\mu_1 \mu_2) \ \vec{sk}$$

• Produit par scalaire : λC_1

• NAND : $C_1 \times C_2 - Id$

GSW, seconde tentative

 $\mathsf{Cl\acute{e}}$ secrète : un vecteur $ec{sk} \in \mathbb{Z}_q^n$

Clé publique : pk

 ${f Chiffrement}: {f Encrypt}(\mu) = C \in \mathbb{Z}_q^{n imes n} \ \ {f telle} \ {f que}$

 $C\vec{sk} = \vec{sk} + \vec{e}$ avec \vec{e} petit

Déchiffrement : on prend un i tel que \vec{sk}_i est grand

$$\mathsf{Decrypt}(\vec{sk}, C) = \left\lfloor \frac{\langle C_i, \vec{sk} \rangle}{\vec{sk}_i} \right\rceil = \left\lfloor \frac{\mu \vec{sk}_i + \vec{e_i}}{\vec{sk}_i} \right\rceil$$
$$= \left\lfloor \mu + \frac{\vec{e_i}}{\vec{sk}_i} \right\rceil$$
$$= \mu$$

5

GSW, seconde tentative

Retour sur les opérations homomorphes :

• Somme : $C_1 + C_2$

$$(C_1 + C_2) \vec{sk} = (\mu_1 + \mu_2) \vec{sk} + \vec{e_1} + \vec{e_2}$$

• NAND : $C_1 \times C_2 - Id$

$$(C_1 \times C_2 - \text{Id}) \vec{sk} = C_1 \left(\mu_2 \vec{sk} + \vec{e_2} - \vec{sk} \right)$$
$$= (\mu_1 \mu_2 - 1) \vec{sk} + \mu_2 \vec{e_1} + C_1 \vec{e_2}$$

analysons $\mu_2 \vec{e_1} + C_1 \vec{e_2}$:

- $\mu_2 \vec{e}_1$ ne rajoute pas beaucoup d'erreur;
- $C_1\vec{e_2}$ est plus problématique.

GSW, troisième tentative

On utilise une fonction Flatten qui a notamment les propriétés suivantes :

$$C \in \mathbb{Z}_q^{n \times n} \implies \mathsf{Flatten}(C) \in \{0,1\}^{n \times n}$$

$$\mathsf{Flatten}(C) \cdot \vec{sk} = C \cdot \vec{sk} \quad \mathsf{pour un secret } \vec{sk} \; \mathsf{bien \; choisi}$$

Clé secrète : un vecteur $ec{sk} \in \mathbb{Z}_q^n$ bien choisi

Clé publique : pk

Chiffrement : Encrypt(pk, μ) = Flatten(C) $\in \mathbb{Z}_q^{n \times n}$ pour C telle que

$$C \vec{sk} = \vec{sk} + \vec{e}$$
 avec \vec{e} petit

Déchiffrement: on prend un i tel que $\vec{sk_i}$ est grand et :

$$\mathsf{Decrypt}(\vec{sk},C) = \left\lfloor \frac{\langle C_i, \vec{sk} \rangle}{\vec{sk}_i} \right
ceil$$

Opérations homomorphes : on applique Flatten aux précédentes opérations homomorphes.

Le problème Decisional Learning With Error (DLWE)

Paramètres: le paramètre de sécurité λ , la dimension $n=n(\lambda)\in\mathbb{N}$, le module $q=q(\lambda)\in\mathbb{N}$, une distribution $\chi=\chi(\lambda)$ à valeur dans \mathbb{Z}_q , un paramètre de nombre d'échantillons $m=m(\lambda)\in\mathbb{N}$.

Problème DLWE (n, q, χ, m) : distinguer si $A \in \mathbb{Z}_q^{m \times n + 1}$

- a été échantillonnée uniformément ;
- $A = (\vec{b}^{\mathsf{T}}||B)$ où $B \in \mathbb{Z}_q^{m \times n}$ est échantillonnée uniformément et

$$\vec{b} = \vec{e} + B\vec{t}$$

pour \vec{e} échantillonné par χ et \vec{t} uniformément.

En notant $\vec{sk} = (1 - \vec{t})$, on a

$$A \vec{sk} = \vec{e}$$

Hypothèse DLWE: il existe une famille de paramètres telle qu'aucun algorithme polynomial ${\mathcal A}$ n'ait un avantage non négligeable pour distinguer les deux cas.

Clé publique et sécurité IND-CPA

Idée: prendre pk = A, et χ qui échantillonne de petites valeurs.

Pour chiffrer $\mu \in \mathbb{Z}_q$:

$$C := \mu \operatorname{Id} + RA$$
 $R \in \{0,1\}^{m \times n}$ tirée uniformément.

Ainsi :
$$C \vec{sk} = C\mu + R\vec{e} = C\mu + \vec{e'}$$
 avec $\vec{e'}$ petit

Sécurité : pour des paramètres t.q l'hypothèse DLWE est vérifié :

- A est indistinguable d'une matrice choisie uniformément.
- ullet # \mathcal{A} algorithme polynomial probabiliste distinguant :
 - (A, RA)
 - un couple de matrices choisies uniformément.

C est indistinguable d'un one-time pad.

Bootstrapping

Evaluation d'un circuit booléen, profondeur de NAND

Soit $a, b, c \in \{0, 1\}$ et C_a, C_b, C_c leurs chiffrés pour des clés (\vec{sk}, pk)

Si le circuit Π a une profondeur de NAND assez faible :

FHE avec bootstrapping

FHE avec bootstrapping

$$C = D + \text{erreur}$$

$$C = D + \text{erreur} \xrightarrow{\text{Decrypt}(\vec{sk}, C)} \xrightarrow{\text{Encrypt}(pk, \mu)} C_{\text{new}} = D + \text{erreur}$$
Soit Π le circuit booléen tel que
$$\Pi(\overrightarrow{binsk}) = \text{Decrypt}\left(\vec{sk}, C\right)$$

FHE avec bootstrapping

Soit ∏ le circuit booléen tel que

$$\Pi(\overrightarrow{binsk}) = \mathsf{Decrypt}\left(\overrightarrow{sk}, C\right)$$

Alors:

• Si Π contient assez peu de NAND, on peut créer un FHE.

Déchiffrement homomorphe : description de Π

L'algorithme de déchiffrement est le suivant :

- 1. trouver i tel que \vec{sk}_i est grand et une puissance de 2;
- 2. calculer $a = \langle C_i, \vec{sk} \rangle$
- 3. retourner $\left|\frac{a}{\vec{sk_i}}\right|$

Déchiffrement homomorphe : description de ∏

L'algorithme de déchiffrement est le suivant :

- 1. trouver i tel que \vec{sk}_i est grand et une puissance de 2;
- 2. calculer $a = \langle C_i, \vec{sk} \rangle$
- 3. retourner $\left|\frac{a}{\vec{sk_i}}\right|$
 - La division est simplement un shift sur l'écriture binaire;
 - Calculer la valeur absolue implique essentiellement de faire un complément à 2.

Déchiffrement homomorphe : description de ∏

L'algorithme de déchiffrement est le suivant :

- 1. trouver i tel que \vec{sk}_i est grand et une puissance de 2;
- 2. calculer $a = \langle C_i, \vec{sk} \rangle$
- 3. retourner $\left|\frac{a}{\vec{sk}_i}\right|$
 - La division est simplement un shift sur l'écriture binaire;
 - Calculer la valeur absolue implique essentiellement de faire un complément à 2.
 - On peut ramener le calcul du produit scalaire à une somme de nombres binaire;

Voyons comment sommer deux nombres binaires.

Sommer deux listes:

Somme classique de deux nombres binaires :

- a_1 et b_1 présents dans la formule booléenne de r_s
- ullet profondeur de NAND en $\mathcal{O}(s)$

a b	a_1 b_1	a ₂ b ₂	а ₃ b ₃	а ₄ Ь ₄
G1, P1				
G2, P2				
G4, P4				

• G pour génération

• P pour propagation

• G pour génération

• P pour propagation

$$(G1)_i = a_i \wedge b_i \quad (P1)_i = a_i \vee b_i$$

• G pour génération

• P pour propagation

$$(G1)_i = a_i \wedge b_i \quad (P1)_i = a_i \vee b_i$$

$$G2^i, P2^i \qquad \frac{1}{} \qquad \frac{2}{}$$

$$G2^{i+1}, P2^{i+1} \qquad \frac{1}{}$$

$$(G2^{i+1})_1 = (G2^i)_2 \lor ((G2^i)_1 \land (P2^i)_2)$$
$$(P2^{i+1})_1 = (P2^i)_1 \land (P2^i)_2$$

a 0 0 1 1 1 1 1 0 0 1
$$C_{1}$$
 C_{2} C_{3} C_{4} C_{6} C_{7} C_{7}

Effectuer un bootstrapping

Carry lookahead adder de deux nombres de taille s

• profondeur de NAND en $\mathcal{O}(\log(s))$

Circuit booléen de déchiffrement □:

• Profondeur de NAND en $\mathcal{O}(\log(\log(q)) + \log(n))$

Théorème : il existe une famille de paramètres permettant d'effectuer un bootstrapping et garantissant la sécurité IND-CPA.

Effectuer un bootstrapping

Carry lookahead adder de deux nombres de taille s

• profondeur de NAND en $\mathcal{O}(\log(s))$

Circuit booléen de déchiffrement □ :

ullet Profondeur de NAND en $\mathcal{O}(\log(\log(q)) + \log(n))$

Théorème: il existe une famille de paramètres permettant d'effectuer un bootstrapping et garantissant la sécurité IND-CPA.

Taille des données :

paramètre de sécurité	taille de sk	taille de pk	taille d'un chiffré
$\lambda = 8$	3 Ko	113 Mo	135 Go
$\lambda = 16$	12 Ko	2 Go	6 To
$\lambda = 32$	45 Ko	32 Go	176 To

Un oeil sur le monde réel

The Gate Bootstrapping API

- librairie open source pour du C/C++
- s'appuie sur des travaux de l. Chillotti, N. Gama, M. Georgieve et M. Izabachène
- utilise une version modifiée du cryptosysteme GSW, avec une variante de LWE nommée TFHE.

Performances: pour un ordinateur 64-bit simple coeur (i7-4930MX) cadencé à 3.00GHz

• le bootstrapping se fait en un temps moyen de 52ms

The Gate Bootstrapping API

- Alice génère des clés, chiffre deux nombres de 16 bits et les inscrits dans un fichier;
- le cloud récupère les données, applique homomorphiquement la fonction minimum aux deux nombres et inscrit le résultat dans un fichier;
- Alice récupère et déchiffre le résultat.

Performances : pour un paramètre de sécurité $\lambda=110$ et sur un ordinateur 64-bit quadri-coeur (i5-7200U CPU) cadencé à 2.50GHz

temps de 2.10s.

Données	Taille
Clé secrète	79 Mo
Clé publique et clé de bootstrapping	79 Mo
Chiffrement d'un bit	2 Ko
Chiffrement des deux nombres	64 Ko

Ce dont nous n'avons pas parlé

Concernant la définition de GSW :

- Flatten, dont nous avons caché la définition sous le tapis ;
- deux autres algorithmes de déchiffrement.

Concernant les choix de paramètres et la sécurité :

- hypothèses de sécurité sur DLWE, définitions équivalentes, lien LWE/DLWE;
- les gaussiennes discrètes;
- la librairie sagemath lwe_estimator pour estimer la sécurité de paramètres LWE;
- notion de leveled FHE et choix de paramètres sous une hypothèse de sécurité DLWE précise;

Concernant le bootstrapping :

- optimisations supplémentaires pour sommer plusieurs nombres binaires;
- choix de paramètres sous une hypothèse de sécurité DLWE précise;