Workshop 2: GPU computing frameworks

Jeremy Jacobson Lecturer

Department of Quantitative Theory and Methods

Overview

Main points

- (10 minutes) PhD student Juan Estrada Sosa
 - Postgres install and use via
 Docker on the QTM server
- (5 minutes) Workshop 1 review
- (30 minutes) Python vrs Numpy vrs
 Pytorch
 - We will revisit the matrix multiply speed improvements suggested in workshop 1 using these frameworks.

Workshop 1 review in three plots

loore's Law lowdown in tel Processors

transistor slowing down faster, fab costs.

Deep learning is causing a machine learning revolution

From "A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution." Dean, J., Patterson, D., & Young, C. (2018). IEEE Micro, 38(2), 21-29.

What Opportunities Left?

- SW-centric
- Modern scripting languages are interpreted, dynamically-typed and encourage reuse
 - Efficient for programmers but not for execution
- HW-centric
 - Only path left is Domain Specific Architectures
 - Just do a few tasks, but extremely well
- Combination
 - Domain Specific Languages & Architectures

A6000 (our GPU) exterior

What's the Opportunity?

Matrix Multiply: relative speedup to a Python version (18 core Intel)

from: "There's Plenty of Room at the Top," Leiserson, et. al., to appear.

Matrix multiply on a GPU

- Pure Python
- Numpy
- PyTorch

We continue by working through the workshop notebook

Each Tensor Core provides a 4x4x4 matrix processing array which performs the operation **D** = **A** * **B** + **C**

Graphics Card	NVIDIA RTX A6000	NVIDIA A40
GPU Codename	GA102	GA102
GPU Architecture	NVIDIA Ampere	NVIDIA Ampere
GPCs	7	7
TPCs	42	42
SMs	84	84
CUDA Cores / SM	128	128
CUDA Cores / GPU	10752	10752
Tensor Cores / SM	4 (3rd Gen)	4 (3rd Gen)
Tensor Cores / GPU	336 (3rd Gen)	336 (3rd Gen)
RT Cores	84 (2nd Gen)	84 (2nd Gen)
GPU Boost Clock (MHz)	1800	1740
Peak FP32 TFLOPS (non-Tensor) ¹	38.7	37.4
Peak FP16 TFLOPS (non-Tensor) ¹	38.7	37.4
Peak BF16 TFLOPS (non-Tensor) ¹	38.7	37.4
Peak INT32 TOPS (non-Tensor)1.3	19.4	18.7
Peak FP16 Tensor TFLOPS	154.8/309.6 ²	149.7/299.42
with FP16 Accumulate ¹		
Peak FP16 Tensor TFLOPS	154.8/309.6 ²	149.7/299.4 ²
with FP32 Accumulate ¹		
Peak BF16 Tensor TFLOPS	154.8/309.6 ²	149.7/299.42
with FP32 Accumulate ¹		
Peak TF32 Tensor TFLOPS ¹	77.4/154.8 ²	74.8/149.6 ²

Matrix multiply on a GPU

We continue by working through the workshop notebook

References

- Slides from David Patterson's talk at Google Cloud Faculty Institute which was not recorded. He gave a talk on similar topics to the ACM and a recording is available here.
- NVIDIA Ampere architecture whitepaper
- <u>CUDA programming guide</u>