KAN – Kolmogorov-Arnold Networks

Nasy

Jun 07, 2024

Table of Contents

- 1. Introduction
- 2. Application
- 3. Theory
- 4. When to Use It?

Introduction

Motivation

• Design for interpretable AI for Science, Physics

Kolmogorov-Arnold Representation Theorem (KART)

[From wikipedia]

If f is a multivariate continuous function, then f can be written as a finite composition of continuous functions of a single variable and the binary operation of addition.

$$f(X) = f(x_1, ..., x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \varphi_{q, p(x_p)} \right)$$
 (1)

where $\varphi_q, p:[0,1] \to \mathbb{R}$ and $\Phi_q: \mathbb{R} \to \mathbb{R}$

Intuitive Picture of KART

KART to KAN

An example of KAN

Fit function

$$\exp(\sin(x_1^2 + x_2^2) + \sin(x_3^2 + x_4^2))$$
 (2)

Which may need three layers of KAN

MLP vs KAN

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	fixed activation functions on nodes learnable weights on edges	learnable activation functions on edges sum operation on nodes
Formula (Deep)	$\mathrm{MLP}(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$
Model (Deep)	(c)	(d) Φ_3 \bullet

```
MLP = einsum("ij,j->i", w1, sigma(input)) KAN = einsum("ijk,jk->i", w2, phi(input)) input = (d,); w1 = (out, d); w2 = (out, d, 1 + m); phi(input) = (d, 1 + m)
```

Functions Represented by KAN

Application

KAN for scientific discoveries

Theory

- Proof and algorithm detail please see the section 2.2 in the paper
- φ is Basic Spline

When to Use It?

Conclusion

- Kolmogorov-Arnold Representation Theorem (KART)
- KART to KAN
- MLP vs KAN
- Examples