金工实习

数控车实验课程讲解

井平安

清华大学 基础工业训练中心

数控车床能做什么?

主要加工"回转体"表面

数控车床实验讲义大纲

- 1 实验目的
- 2 数控车床基础知识
- 3 数控车加工工艺顺序思路
- 4 数控车床编程指令简介
- 5 实验课程用零件加工工艺过程
- 6 编程举例

- 1 实验目的
- 2 数控车床基础知识
- 3 数控车加工工艺顺序思路
- 4 数控车床编程指令简介
- (5) 实验课程用零件加工工艺过程
- 6 编程举例

一、实验目的

- ① 了解数控车床的组成、原理、特点、应用和操作方法
- ② 了解零件加工程序的编制方法
- ③ 了解数控车床加工零件的工艺过程和对刀方法
- ④ 了解数控车床和普通车床加工的异同点

- 1 实验目的
- 2 数控车床基础知识
- 3 数控车加工工艺顺序思路
- 4 数控车床编程指令简介
- 5 实验课程用零件加工工艺过程
- 6 编程举例

2.1 什么是数控机床?

数控机床(CNC)是(Computer Numerical Control Machine Tools)的简称,是用数字指令方式控制机床各运动单元,实现零件的加工。

N10 T0101

N20 \$600

N30 M03

N40 G01 X100 Z100 F500

.

2.2 数控车床组成/原理

指令

CNC

二进制代码

伺服

机床

2.3 数控车床加工范围

- ① 数控车床能够加工各种轴类和盘、套类零件
- ② 数控车床能够加工各种复杂回转体曲面
- ③ 数控车床能够加工各种定螺距甚至变螺距螺纹

2.3 数控车床加工范围

2022-8-30

2.4 数控车床加工范围(案例图片)

轴类零件

盘、套类零件

回转曲面

螺纹表面

2.5 数控车床加工特点

- 1、加工精度高,尺寸的稳定性好
- 2、加工生产效率高
- 3、自动化程度高,劳动强度低
- 4、特别适合批量加工以及形状复杂的轮廓表面
- 5、价格较贵,维护成本较高
- 6、对加工对象的适应性强

- 1 实验目的
- 2 数控车床基础知识
- 3 数控车加工工艺顺序思路
- 4 数控车床编程指令简介
- 5 实验课程用零件加工工艺过程
- 6 编程举例

2022-8-30

三、数控车加工工艺顺序思路

- ① 分析加工图纸
- ② 建立工件坐标系(试切法对刀)
- ③ 选择刀具、确定切削用量、制定加工工艺
- ④ 编制加工程序
- ⑤ 调试加工程序
- ⑥ 完成零件加工
- ⑦完成零件精度检测(首件必检原则)

三、数控车加工工艺顺序思路

3.1 工件坐标系

习惯性放在零件右端面回转

中心处(坐标系位置不唯一);

坐标系确定原则:

- 1、方便计算尺寸数据进行编程
- 2、方便测量

- 1 实验目的
- 2 数控车床基础知识
- 3 数控车加工工艺顺序思路
- 4 数控车床编程指令简介
- (5) 实验课程用零件加工工艺过程
- 6 编程举例

2022-8-30

4.1 准备功能: G指令

4.2 辅助功能: M指令

4.3 进给速度: F指令

4.4 主轴转速: S指令

4.5 换刀功能: T指令

- 4.1 准备功能: G指令
 - ① 直线插补指令G01
 - ② 圆弧插补指令G02/G03
 - ③ 内、外圆循环加工指令G80
 - ④ 螺纹循环加工指令G82

4.1.1 GO1直线插补指令

格式: N---- G01 X(U)----Z(W)----F----

说明: X、Z: 为在工件坐标系下的终点坐标;

U、W: 为加工终点相对于加工起点的位移量(注意正负方向);

F : 进给速度 mm/min (默认)、mm/r

沒意 / 切削时用F=50; 不切削时 F=500。

2022-8-30

4.1.2 G02/G03圆弧插补指令

G02 — 指定为逆时针圆弧插补(<u>凹圆弧</u>)。

G03 — 指定为顺时针圆弧插补(<u>凸圆弧</u>)。

指令格式: N-- G02 X (U) -- Z (W) -- R-- F--

N-- G03 X (U) -- Z (W) -- R-- F--

X、Z: 绝对坐标编程时,圆弧终点在工件坐标系中的

坐标;

U、W: 利用增量坐标编程时,圆弧终点相对于圆弧起点

的位移量;

R : 圆弧半径;

F: 进给量,单位为mm/min,F为模态指令;

注意:

本机床编程应按 照<u>煮置刀架</u>编程方法 去编制数控加工程序

4.1.2 G02/G03圆弧插补指令

例6 N30 G03 X20 Z-15 R10 F50

表示加工顺时针圆弧,刀具以F50切削速度运动到X20,Z-15位置,如图圆弧1所示。

例7 N30 G02 X30 Z12 R12 F50

表示加工逆时针圆弧,刀具以F50速度运动到X30,Z12位置,如图圆弧2所示。

2022-8-30

4.1.3 G80内、外径切削循环指令

指令格式:

 $N--G80 \ X(U)---Z(W)---F---$

说明: $X \times Z$: 绝对编程时,切削终点C在工件坐标系中的坐标。

U、W增量编程时,切削终点相对循环起点位移量 **该指令执行走刀轨迹为:**

4.1.4 G82螺纹切削循环指令

加工中,G82执行A \rightarrow B \rightarrow C \rightarrow D \rightarrow A轨迹运动。

见上图所示指令格式: N-- G82 X-- Z-- F-- (螺纹螺距)

2022-8-30

4. 1. 4 G82螺纹切削循环指令

螺纹加工指令格式: N-- G82 X-- Z-- F-- (螺纹螺距)

螺纹齿高h=0.54x螺距 螺纹加工要分多次加工完成 所以要执行多次G82指令

4.1.4 G82螺纹切削循环指令

加工如下图所示工件,用 G82 指令编程,毛坯外形已加工完成。

N1 T0404換螺纹刀N2 M03 S600主轴以 600r/min 正转N3 G01X30 Z3 F500到循环点N4 G82 X29.2 Z-82 F1.5第一次循环切螺纹,切深 0.8mmN5 G82 X28.8 Z-82 F1.5第二次循环切螺纹,切深 0.4mmN6 G82 X28.6 Z-82 F1.5第三次循环切螺纹,切深 0.2mmN6 G82 X28.4 Z-82 F1.5第四次循环切螺纹,切深 0.2mmN7 G01 X30 Z3 F500回到循环点N8 M30主轴停、主程序结束并复位

- 4.2 辅助功能: M指令
 - 1.主轴正转指令M03

2.主轴反转指令M04

3.主轴停止指令M05

4.程序结束指令M30

4.3 进给速度: F指令

进给量指令用F及后面的数值表示,F后面的数值取决于G94(每分钟进给

的毫米数: mm/min)或G95(主轴每转一转刀具进给的毫米数: mm/r); 使用

下式可以实现每转进给量与每分钟进给量的转化: $Fm=Fr\times S$

Fm: 每分钟进给量 (mm/min); ——系统默认

Fr : 每转进给量 (mm/r) ;

沒意 / 切削时: F=50; 快进时: F=500

4.4 主轴功能: S指令

主轴功能S指令控制主轴转速,属于模态功能指令,其后的数值表示主轴速度。单位为:转/分钟(r/min)。

指令格式:

N20 S450 代表主轴转速为450转/分钟。

(模态指令为:一经程序段中指定,便一直有效,直到出现同组另一指令或被其他指令取消时才失效,与上一段相同的模态指令可省略不写。非模态代码即只有在程序段中有效的代码,即只有效一次。)

4.5 换刀功能: T指令

本系统的换刀指令用"T"及后面的4位数字表示(Txx xx)。4位数字中,前两位表示刀具号(01~04),后两位数字表示<u>刀具位置偏置补偿</u>号(01~99)。如 T0202表示换第2号刀,按第2号刀具位置偏置补偿号中的数据进行刀具几何位置补偿。

፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟ . 当执行换刀指令时,必须检查刀具与其他位置是否干涉!

数控车床刀具示意图

- 1 实验目的
- 2 数控车床基础知识
- 3 数控车加工工艺顺序思路
- 4 数控车床编程指令简介
- 5 实验课程用零件加工工艺过程
- 6 编程举例

零件 加 艺 顺

Q1: 01点坐标?

01 (X100 Z100)

Q2: A点坐标?

A (X34 Z4)

槽宽等于刀宽。 **1X45**°

短轴加工工艺顺序:

O1(T0101) \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow A \rightarrow E \rightarrow F \rightarrow G \rightarrow A \rightarrow E; 循环分刀加工 Φ 16外圆(用G80循环指令); 自动返回E \rightarrow I \rightarrow J \rightarrow K \rightarrow L \rightarrow E \rightarrow O \rightarrow T \rightarrow O1(T0202) \rightarrow R \rightarrow S \rightarrow R \rightarrow G \rightarrow Q \rightarrow G \rightarrow O1(T0303) \rightarrow U \rightarrow W:循环分刀加工螺纹(用G82螺纹指令),自动返回U \rightarrow O1(T0101)。

工序一 车Ø28×51.5外圆

(T0101, 1号刀)A→B→C→D将 028×51.5 台阶加工出来(用G01指令加工)

工序二 车Ø24×47.5外圆

(T0101, 1号刀 $)A\rightarrow E\rightarrow F\rightarrow G将 024\times 47.5$ 台阶加工出来(用G80指令加工)

工序三 循环分刀加工Ø16外圆

(T0101, 1号刀)循环分刀加工Ø16外圆(用G80指令加工)

工序四 车锥面、倒角

(T0101, 1号刀 $)E\rightarrow I\rightarrow J\rightarrow K\rightarrow L\rightarrow E(用G01指令加工)$

工序五 车R8圆弧

(T0101, 1号刀 $)E\rightarrow O\rightarrow T\rightarrow O1(用G03指令加工)$

工序六 切槽

(T0202, 2号刀) R \rightarrow S \rightarrow R \rightarrow G \rightarrow Q \rightarrow G \rightarrow O1(用G01指令加工)

工序七 车螺纹

(T0303, 3号刀)U→W:循环分刀加工螺纹(用G82指令加工),U→O1(T0101)

- 1 实验目的
- 2 数控车床基础知识
- 3 数控车加工工艺顺序思路
- 4 数控车床编程指令简介
- 5 实验课程用零件加工工艺过程
- 6 编程举例

六、编程举例

以加工外圆、端

面、倒角为例,编制

本系统(HNC-818)

加工程序,1号刀加工

外圆,2号刀加工端面

六、编程举例

10 ct cn 0	业人小玩	277	70
程序段号	指令代码		明
%5678		;程序	名
N10	T0101	; 换第	1号刀
N20	\$600	; 设定	主轴转速为600转/分钟
N30	M03	; 主轴	启动
N40	G01 X100 Z100 F500	; 设置	程序安全起始点
N50	G01 X29 Z0 F500	; 快速	移动到A点
N60	G01 X20 Z0 F50	;以F5	i0速度移动到B点
N70	G01 X20 Z-17 F50	;以F5	ί0速度加工φ20外圆
N80	G01 X29 Z-17 F500	;移动	ı到D点
N90	G01 X100 Z100 F500	;移动	到01点,准备换刀
N100	T0202	,换第	2号刀
N110	G01 X29 Z-2 F500	;移动]到E点
N120	G01 X-1 F50	;以F5	i0速度加工端面到F点
N130	G01 X0 Z0 F50	;移动	到0点
N140	G01 X14 F500	,	ı到G点
N150	G01 X24 Z-5 F50	,加工	l倒角,到H点
N160	G01 X100 Z100 F500	;回程	序起始点
N170	T0101	;换回	第1号刀
N180	M05	<u>; 主轴</u>	停止
N190	M30	; 程序	结束并返回程序第一行

物物大家!

G71复合循环指令

G71复合循环指令

G71 U(\triangle d) R(r) P(ns) Q(nf) X(\triangle x) Z(\triangle z) F(f) S(s) T(t)

参数	含义
U	切削深度(每次切削量),指定时不加符号,方向由矢量 AA′决定
R	每次退刀量
P	精加工路径第一程序段(即下图中的AA')的顺序号
Q	精加工路径最后程序段(即下图中的B'B)的顺序号
Χ	X方向精加工余量
Z	Z方向精加工余量
FST	粗加工时G71中编程的F、S、T有效,而精加工时处于ns到nf程序段之间的F、S、T有效

G71复合循环指令

编程举例

N10 T0404

N20 M03 S800

N30 G01 X55 Z2 F500

N40 G71 U1 R0.2 P50 Q120 X0.5 Z0 F50

N50 G01 X0 Z2 S900 F30

N60 G01 X0 Z0 F30

N70 G03 X32 Z-44.61 R25 F30

N80 G02 X30 Z-72 R18 F30

N90 G01 X30 Z-80 F30

N100 G01 X45 Z-80 F30

N110 G01 X45 Z-88 F30

N120 G01 X55 Z-88 F30

N130 G01 X100 Z100 F500

N140 M05

N150 M30

