Lecture 14. Cell cycle I

Outline

- I. Overview of the cell cycle
- II. The cell cycle control system
- III. S phase

Reminder: cell theory

Cell comes from cell

I. Overview of cell cycle

- ♥ Phases of cell cycle
- Model systems for cell cycle studies
- ♥ Common methods to study cell cycle

1. Cell cycle

Figure 18-1 Essential Cell Biology 3/e (© Garland Science 2010)

What happens if this is dyregulated?

The major events in cell cycle

M phase can be further divided into: mitosis and cytokinesis

Different Cell cycle time (doubling time) for some eukaryotic cells

Fertilized xenopus oocytes

Yeast cell

Mammalian intestine epithelial cells

Mammalian fibroblasts

Human liver cell

30 min

1.5-3 hours

~12 hours

20 hours

~ 1 year

2. Model systems to study cell cycle

Cell cycle control mechanisms are conserved during evolution

♥ Yeast:

```
fission yeast (S.pombe) budding yeast (S.cerevisiae)
```

- ▼ Xenopus oocyte
- ♥ Mammalian cells

1) Yeast

START

Fission yeasts are rod, septum Divides into two daughter cells

Budding yeasts are oval, daughter cell buds from mother cell.

Conditional mutation in yeast cells for cell cycle studies

Start with haploid cells, perform genetic mutation

2). Xenopus oocytes

Xenopus oocytes have rich source of cell division proteins.

Xenopus oocytes are frequently used in cell-free system for *in vitro* studies

3). Cultured mammalian cells

- ♥ Normal primary cell culture
- ♥ Transformed immortal culture
- **♥** Cancer cell lines

____ 10 μm

3. Various methods to study cell cycle

- ♥ Visualization under microscope
- ♥ BrdU/EdU incorporation assay
- ♥ Cell cycle distribution assay

T analog incorporation analysis

treat cells with T analog BrdU (or EdU)
Stain by BrdU antibody (or with Click labeling)

Mitotic index: mitosis cell numbers/ Total cell numbers

Flow cytometry to detect cell cycle phase

Use fluorescence dye to bind to DNA quantitatively, followed by flow cytometry

II. The cell cycle control system

Three major control checkpoints:

- 1. G1/S transition
- 2. G2/M Transition
- 3. Metaphase-to-anaphase transition

Cyclins and Cyclin-dependent kinase (Cdk) are two major players in cell cycle control

♥ Cyclins:

--- different cyclins ocsillate in cell cycle and bind/control different cdk activity; it decides cdk substrates specificity and activates cdk.

♥ Cdk:

--- protein kinase, phosphorylates a subset of substrates to control cell cycle progression at specific checkpoint.

Cyclin/cdk complex

Figure 18-4 Essential Cell Biology 3/e (© Garland Science 2010)

The discovery of cyclins

- ♥ 1983, by Joan Ruderman and Tim Hunt
- ♥ Use oocytes from sea urchins and surf clams

Addition of sperm causes synchronized division for oocytes

- ♥Synchronized cells start from the same point in cell cycle
- ♥Unsynchronized cells start cell cycle differently

In oocytes: many mRNAs were not translated.

In fertilized eggs: many mRNA began to be translated.

The discovery of cyclins

Cyclin upheaval: gene transcription Cyclin down: protein degradation

Cyclin-cdk complexes of the cell-cycle control system

Major cyclins and cdks of vertebrates and budding yeast

Table 17–1 The Major Cyclins and Cdks of Vertebrates and Budding Yeast

CYCLIN-CDK	VERTEBRATES		BUDDING YEAST	
COMPLEX	CYCLIN	CDK PARTNER	CYCLIN	CDK PARTNER
G ₁ -Cdk	cyclin D*	Cdk4, Cdk6	Cln3	Cdk1**
G ₁ /S-Cdk	cyclin E	Cdk2	Cln1, 2	Cdk1
S-Cdk	cyclin A	Cdk2, Cdk1**	Clb5, 6	Cdk1
M-Cdk	cyclin B	Cdk1	Clb1, 2, 3, 4	Cdk1

^{*} There are three D cyclins in mammals (cyclins D1, D2, and D3).

A fourth class of cyclin, cyclin G1, helps to govern the activities of the G1/S cyclins.

^{**} The original name of Cdk1 was Cdc2 in both vertebrates and fission yeast, and Cdc28 in budding yeast.

Cyclin degradation through ubiquitination

Figure 18-11 Essential Cell Biology 3/e (© Garland Science 2010)

Activation of cdk is additionally controlled by phosphorylation

Figure 18-9 Essential Cell Biology 3/e (© Garland Science 2010)

Protein kinases and protein ph	osphatases that modify Cdks
Cdk-activating kinase (CAK)	phosphorylates an activating site in Cdks
Wee1 kinase	phosphorylates inhibitory sites in Cdks; primarily involved in suppressing Cdk1 activity before mitosis
Cdc25 phosphatase	removes inhibitory phosphates from Cdks; three family members (Cdc25A, B, C) in mammals; primarily involved in controlling Cdk1 activation at the onset of mitosis

CAK activates the activation loop of Cdk through phosphorylation

Cdk phosphorylation can be regulated by Wee1/Cdc25

Cdk inhibitor proteins (CKI) inhibits Cdk kinase activity

cak inhibitor proteins (cki	
Sic1 (budding yeast)	suppresses Cdk1 activity in G ₁ ; phosphorylation by Cdk1 at the end of G ₁ triggers its destruction
p27 (mammals)	suppresses G_1/S -Cdk and S-Cdk activities in G_1 ; helps cells withdraw from cell cycle when they terminally differentiate; phosphorylation by Cdk2 triggers its ubiquitylation by SCF
p21 (mammals)	suppresses G ₄ /S-Cdk and S-Cdk activities following DNA damage

p16 (mammals)

suppresses G₁-Cdk activity in G₁; frequently inactivated in cancer

Metaphase to anaphase transition in controlled by proteolysis

 One Key player: anaphase-promoting-complex, or cyclosome (APC/C), a ubiquitin ligase

Reminder: protein degradation mediated by uniquitination

APC/C functions as ubiquitination ligase

CKI can be degraded by SCF complex

The overview of the cell cycle control system

III. S phase

1. DNA replication once per cycle

- 2. Chromatin protein replication
- 3. Chromatin structure duplication (histone modification, heterochromain, euchromain packaging)
- 4. Cohesions hold sister chromatids.
- 5. Centrosome duplication : semiconservative manner, triggered by Cyclin E/cdk2.

Figure 18-12 Essential Cell Biology 3/e (© Garland Science 2010)

Chromosome duplication in cell cycle

Question 1. how to ensure DNA replication once per cycle?

Answer

- Pre-replication complex (pre-RC) "prime and licensing" activated by APC/C in late M and early G1 when APC/C activity is high.
- Pre-initiation complex DNA unwinding, replication
 activated by S-Cdk in late G1 when APC/C activity is low, pre-RC is partially dismantled.

S-Cdks and M-Cdks remain high until after late mitosis, when APC/C regains its activity, and start the next round of pre-RC formation.

Figure 18-14 Essential Cell Biology 3/e (© Garland Science 2010)

Question 2: how do Cdks and APC/C control DNA replication in a timed manner?

Stage 1: formation of pre-RC

MCM2-7 ring complex

Stage 2: formation of Pre-initiation complex

Firstly, S-Cdk Trigger inactivation
Of Cdc6 AND Cdt1, dismantles pre-RC

Secondly, APC/C triggers degradation of geminin, but when S-Cdk is high and APC/C is low in activity, geminin is stabilized.

Thirdly, S-Cdk phosphorylates ORC And load preinitiation complex onto ORC to initiate DNA replication.

Cohesins and DNA catenation help hold sister chromatids together

- ♥ Cohesins are deposited at many locations along the length of each sister chromatids
- Prevent drifting apart for sister chromatids after DNA replication.
- ♥ DNA catenation is interwining of sister DNA molecules which can be resolved by DNA topoisomerase II

Centriole replication happens during S phase,

