So former automont HONORIS UNIVERSITIES	Examen Semestre: 1 2 X Session: Principale X Rattrapage
Module: Analyse Numérique	
Enseignant(s): Equipe AN	
Classe(s): 3A 1 & 3 A $28 \rightarrow 49$	
Documents autorisés: OUI NON	X Nombre de pages: ??
Calculatrice autorisée: OUI X NON	Internet autorisée: OUI NON X
Date: 26 Mai 2022	Heure: 14h30 Durée : 1h30 min

Exercice 1 (4 points)

On considère le problème de Cauchy (PC) suivant :

$$(PC) \left\{ \begin{array}{ll} x'(t) & = \frac{(1-t^2)}{2}x(t), \quad \forall t \ge 1 \\ \\ x(1) & = -2 \end{array} \right.$$

1) (1 point) Vérifier que la solution analytique du problème de Cauchy (PC) est donnée par :

$$x(t) = -2 \exp\left(-\frac{1}{3} + \frac{t}{2} - \frac{t^3}{6}\right), \quad \forall \quad t \ge 1.$$

- 2) (1 point) Donner le schéma d'Euler implicite pour la résolution de (PC) avec un pas de discrétisation constant h > 0.
- 3) (1 point) Pour $h=\frac{1}{3}$, montrer que la solution numérique x_{n+1} (approximation de la solution exacte x(t) au point de discrétisation t_{n+1} , $n\geq 0$) du problème (PC), donnée par la question précédente, satisfait la relation suivante :

$$x_{n+1} = \frac{54}{(4+n)^2 + 45} x_n, \quad \forall n \ge 0.$$

4) (1 point) Calculer l'erreur commise par la méthode d'Euler implicite au point $t = \frac{5}{3}$.

Exercice 2 (7,5 points)

On considère le système d'équations linéaires (S): AX = b, avec

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 4 & -1 \\ -1 & 1 & 3 \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \text{ et } b = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}$$

- 1) a) (0.5 point) Montrer que (S) admet dans \mathbb{R}^3 une unique solution.
 - b) (1 point) Résoudre (S) en utilisant la méthode du pivot de Gauss.
- 2) a) (2 points) Ecrire les schémas itératifs des méthodes de Jacobi et de Gauss-Seidel pour la résolution du système (S).
 - b) (0.5 point) Justifier la convergence de la méthode de Jacobi et de la méthode de Gauss-Seidel pour la résolution du système (S).

26 Mai 2022

c) (2 points) Pour le vecteur initial $X^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, donner les résultats des deux premières itérations en utilisant

- i. la méthode de Jacobi.
- ii. la méthode de Gauss-Seidel.
- d) (1 point) En considérant l'erreur $E = ||X X^{(k)}||_2$, avec X la solution exacte, $X^{(k)}$ $(k \in \{1, 2\})$ une solution approchée par l'une des deux méthodes et $|| \cdot ||_2$ la norme euclidienne définie par

$$||X||_2 = \sqrt{x_1^2 + x_2^2 + x_3^2}, \quad \forall X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3,$$

calculer les erreurs commises par les méthodes de Jacobi et de Gauss-Seidel pour les deux premières itérations.

e) (0.5 point) Comparer alors les méthodes de Jacobi et de Gauss-Seidel en terme de précision pour les deux premières itérations pour la résolution du système (S).

Exercice 3 (8.5 points)

Soit f la fonction définie par :

$$f(x) = \frac{x}{\sqrt{x^2 + 1}}, \quad x \in \mathbb{R}.$$

- (1) a) (0.5 point) Justifier l'existence d'un unique polynôme $P_2 \in \mathbb{R}_2[X]$ qui interpole f en $x_0 = -1$, $x_1 = 0$ et $x_2 = 1$.
 - b) (1.5 points) Déterminer l'expression du polynôme P_2 par la méhode d'interpolation de Lagrange.
 - c) (1 point) Donner la valeur approximative de f(1/2), puis déduire l'erreur d'interpolation en ce point.

Dans la suite on s'intéresse à approcher l'intégrale suivante :

$$I(f) = \int_0^1 f(x)dx$$

- (2) a) (0.5 point) Calculer la valeur exacte de I(f).
 - b) (1 point) Calculer $I_p = \int_0^1 P_2(x) dx$, où P_2 est le polynôme trouvé dans la première question, puis déduire l'erreur d'intégration E_p pour cette méhode.
- (3) Soient g une fonction continue sur [0,1] et Q(g) la formule de quadrature suivante approchant l'intégrale I(g):

$$Q(g) = \alpha g(0) + (1 - \alpha)g(1)$$

- a) (0.5 point) Quelle méhode d'intégration numérique retrouve-t-on lorsque $\alpha = 1$ puis lorsque $\alpha = 0$.
- b) (1 point) Sachant que la formule Q(g) est exacte pour tous les polynômes de degré inférieur ou égal à 1, trouver la valeur de α .
- (4) (1 point) Pour $\alpha = \frac{1}{2}$, donner la valeur de Q(f) et déduire l'erreur d'intégration E_q pour cette méhode.
- (5) (1 point) Approcher l'intégrale I(f) par la méhode composite des trapèzes I_T en considérant un pas de discrétisation $h = \frac{1}{2}$, puis déduire l'erreur d'intégration E_T pour cette méthode.
- (6) (0.5 point) Comparer les trois méthodes Q(f), I_p et I_T en terme de précision. Justifier votre réponse.