¿Cuándo converge el método de Jacobi?

Posiblemente el criterio de convergencia más sencillo para el método de Jacobi sobre un sistema $A\mathbf{x} = \mathbf{b}$ es ver si la matriz A es **estrictamente diagonal-dominante (en adelante, EDD)**: si cada elemento en su diagonal (a_{ii}) tiene magnitud mayor a la suma de las magnitudes de los elementos del resto de su misma fila (a_{ik}) .

$$A \text{ es EDD} \iff |a_{ii}| > \sum_{k=1, k \neq i}^{n} |a_{ik}|, \quad \forall i \in \{1, 2, ..., n\}$$

El criterio es el siguiente (se demostrará al final de este documento):

$$A$$
 es EDD \implies Jacobi converge

Varios ejercicios en esta asignatura, cuando solicitan un algoritmo convergente para resolver $A\mathbf{x} = \mathbf{b}$, entregan una pista de que la matriz A es EDD. La intención con esa pista es deducir que podemos aplicar el método de Jacobi.

Sin embargo, un error común es pensar que, si A no es EDD, entonces Jacobi no converge. Existen matrices A no EDD donde Jacobi sí converge. Recordemos que, si sabemos que $p \Rightarrow q$, es una falacia concluir que $\neg p \Rightarrow \neg q$.

Hay dos conceptos aún más fundamentales para determinar la convergencia del método de Jacobi: las **normas matriciales** y los **valores propios**. Estos últimos permiten deducir que, si A es EDD, entonces Jacobi converge. Sin embargo, incluso cuando A no es EDD, estos conceptos siguen entregando un marco de trabajo más general para poder determinar la convergencia de Jacobi.

1. Preparación

Recordemos que el método de Jacobi busca descomponer A = L + D + U, donde D es la diagonal de A, L es todo lo que está por debajo de la diagonal y U es todo lo que está por encima. Luego, el método reordena y despeja términos para formar una IPF de esta manera:

$$A\mathbf{x} = \mathbf{b}$$

$$(L+D+U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} + (L+U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = \mathbf{b} - (L+U)\mathbf{x}$$

$$\mathbf{x} = D^{-1}(\mathbf{b} - (L+U)\mathbf{x})$$

La IPF en cuestión es $\mathbf{x}_{i+1} = D^{-1} (\mathbf{b} - (L+U)\mathbf{x}_i)$. Como D es una matriz diagonal, es invertible en tiempo O(n) en vez de $O(n^3)$: D^{-1} simplemente se compone de los recíprocos de los elementos de D.

Es posible reescribir la IPF anterior de una forma que nos resultará más cómoda y útil para analizar la convergencia del método:

$$\mathbf{x}_{i+1} = D^{-1} \left(\mathbf{b} - (L+U)\mathbf{x}_i \right)$$
$$= D^{-1}\mathbf{b} - D^{-1}(L+U)\mathbf{x}_i$$
$$= \mathbf{r} + M\mathbf{x}_i$$

La matriz $M = -D^{-1}(L+U)$ en la IPF reescrita $\mathbf{x}_{i+1} = \mathbf{r} + M\mathbf{x}_i$ se llama "matriz de convergencia" y, en las próximas secciones, entenderemos por qué.

2. La explicación del apunte

Para analizar la convergencia de Jacobi, hay que definir una medida ε_i del error en cada iteración. Definimos $\varepsilon_i = \|\mathbf{x}_{i+1} - \mathbf{x}_i\|$, donde $\|\cdot\|$ puede ser cualquier norma vectorial (norma-1, norma-2, norma- ∞ , etc.). Sugiero revisar el capítulo 1 del apunte donde habla sobre normas vectoriales y matriciales.

Sabiendo que $\mathbf{x}_{i+1} = \mathbf{r} + M\mathbf{x}_i$:

$$\mathbf{x}_{i+1} - \mathbf{x}_i = (\mathbf{r} + M\mathbf{x}_i) - (\mathbf{r} + M\mathbf{x}_{i-1})$$
$$= M\mathbf{x}_i - M\mathbf{x}_{i-1}$$
$$= M(\mathbf{x}_i - \mathbf{x}_{i-1})$$

Sacando la norma de ambos lados y sabiendo que, por definición de norma matricial, $||A\mathbf{v}|| \le ||A|| ||\mathbf{v}||$:

$$\|\mathbf{x}_{i+1} - \mathbf{x}_i\| = \|M(\mathbf{x}_i - \mathbf{x}_{i-1})\| \le \|M\|\|\mathbf{x}_i - \mathbf{x}_{i-1}\|,$$

es decir, $\varepsilon_i \leq \|M\|\varepsilon_{i-1}$ o, en otras palabras, $\frac{\varepsilon_i}{\varepsilon_{i-1}} \leq \|M\|$. Si $\|M\| < 1$, entonces se asegura la convergencia de Jacobi. No importa qué norma matricial se use (norma-1, norma-2, norma- ∞ , etc.). Por tanto, basta con demostrar que al menos una norma matricial es menor a 1.

Ahora bien, los valores y vectores propios juegan un rol importante. En MAT022, se vio que los vectores propios de una matriz A son aquellos que, al ser transformados por A, simplemente son escalados sin cambiar dirección, es decir, aquellos \mathbf{v} tales que $A\mathbf{v} = \lambda \mathbf{v}$, donde λ es un escalar llamado "valor propio" asociado a \mathbf{v} . La norma de este producto es $||A\mathbf{v}|| = |\lambda| ||\mathbf{v}||$, lo cual, por definición de norma matricial, es menor o igual a $||A|| ||\mathbf{v}||$. Entonces, para todo $\mathbf{v} \neq \mathbf{0}$, se obtiene:

$$|\lambda| \|\mathbf{v}\| \le \|A\| \|\mathbf{v}\|$$
$$|\lambda| \le \|A\|,$$

es decir, toda norma matricial de A es mayor o igual a las magnitudes de sus valores propios. Esto tiene sentido: si un valor propio es 2, esto indica que hay vectores que se duplican. Si una norma matricial de A indica el máximo factor por el cual los vectores podrían escalarse al ser transformados por A, entonces, en el ejemplo anterior, debe ser 2 o más.

Esto nos ayuda a analizar la convergencia del método de Jacobi: podemos analizar los valores propios λ_i de la matriz de convergencia M. Si algún λ_i tiene magnitud mayor o igual a 1, entonces todas las normas matriciales de M van a ser mayores o iguales a 1 y no se puede asegurar la convergencia del método.

Sin embargo, si todos los λ_i tienen magnitud menor a 1, ¿se puede asegurar la convergencia del método de Jacobi? La siguiente sección busca dar una explicación intuitiva de por qué debe ser ese el caso.

3. Una explicación alternativa

Esta sección está simplemente para complementar la información del apunte. No es obligatorio leerla: puedes saltarla y pasar a la sección 4.

Dado un initial guess \mathbf{x}_0 , la idea es realizar n iteraciones del método de Jacobi hasta obtener un vector \mathbf{x}_n que aproxima la solución a $A\mathbf{x} = \mathbf{b}$. Si la IPF $\mathbf{x}_{i+1} = \mathbf{r} + M\mathbf{x}_i$ básicamente expresa el término actual \mathbf{x}_{i+1} en términos del término anterior \mathbf{x}_i , entonces es posible expresar \mathbf{x}_n en términos de \mathbf{x}_{n-1} , este último en términos de \mathbf{x}_{n-2} , este último en términos de \mathbf{x}_{n-3} y así recursivamente hasta llegar al initial guess \mathbf{x}_0 .

$$\mathbf{x}_{n} = \mathbf{r} + M\mathbf{x}_{n-1}$$

$$= \mathbf{r} + M(\mathbf{r} + M\mathbf{x}_{n-2})$$

$$= \mathbf{r} + M\mathbf{r} + M^{2}\mathbf{x}_{n-2}$$

$$= \mathbf{r} + M\mathbf{r} + M^{2}(\mathbf{r} + M\mathbf{x}_{n-3})$$

$$= \mathbf{r} + M\mathbf{r} + M^{2}\mathbf{r} + M^{3}\mathbf{x}_{n-3}$$

$$= \cdots$$

$$= \mathbf{r} + M\mathbf{r} + M^{2}\mathbf{r} + \cdots + M^{n-1}\mathbf{r} + M^{n}\mathbf{x}_{0}$$

En el último paso, se puede factorizar \mathbf{r} de todos los términos excepto el último:

$$\mathbf{x}_n = \left(I + M + M^2 + \dots + M^{n-1}\right)\mathbf{r} + M^n\mathbf{x}_0$$

La idea es analizar cómo se comporta la expresión cuando $n \to \infty$ para ver si converge a un valor. Intuitivamente, tanto M^n como la serie $I + M + M^2 + \cdots$ deberían converger para que el método de Jacobi converja.

La serie $I+M+M^2+\cdots$ es una serie geométrica, pero de matrices. Para entender bajo qué condiciones converge, es mejor analizar el caso más sencillo $1+x+x^2+\cdots$, donde x es un escalar.

En MAT021, se estudiaron las sumas y series geométricas. Para saber cuánto da la suma $S_n = 1 + x + x^2 + \dots + x^{n-1} + x^n$, se puede multiplicar por x para obtener $xS_n = x + x^2 + x^3 + \dots + x^n + x^{n+1}$, que corresponde a casi las mismas potencias,

exceptuando x^0 e incluyendo x^{n+1} . Entonces, la resta $S_n - xS_n$ equivale a $1 - x^{n+1}$ y permite despejar S para todo $x \neq 1$:

$$S_n - xS_n = 1 - x^{n+1}$$
$$(1 - x)S_n = 1 - x^{n+1}$$
$$S_n = \frac{1 - x^{n+1}}{1 - x}$$

En el caso en que $n \to \infty$, se obtiene la serie $S_{\infty} = 1 + x + x^2 + \dots$ Esta serie diverge si $|x| \ge 1$. En cambio, si |x| < 1, se obtiene $x^{n+1} \to 0$ y

$$S_{\infty} = \frac{1}{1 - x}$$

Si bien la serie geométrica $I + M + M^2 + \cdots$ es más difícil de analizar cuando se trata de matrices, hay una idea similar. En vez de usar magnitudes de escalares, podemos usar **normas matriciales**. En particular, dos propiedades útiles son que $||A + B|| \le ||A|| + ||B|| y ||AB|| \le ||A|| ||B||$, lo cual implica que $||M^k|| \le ||M||^k$. Con ellas, sabemos que, si ||M|| < 1, entonces la norma de la serie converge:

$$\begin{split} \|I+M+M^2+\cdots\| &\leq \|I\|+\|M\|+\|M^2\|+\cdots\\ &\leq 1+\|M\|+\|M\|^2+\cdots\\ &= \frac{1}{1-\|M\|}, \end{split}$$

causando que la serie de matrices en sí converja: $S_{\infty} = I + M + M^2 + \cdots = (I - M)^{-1}$, bajo un argumento similar al de la serie de escalares. Además, $||M^n|| \to 0$ y, por ende, $M^n \to [0]$. Esto causaría que la expresión $\mathbf{x}_n = (I + M + M^2 + \cdots + M^{n-1}) \mathbf{r} + M^n \mathbf{x}_0$ converja a $\mathbf{x}_{\infty} = (I - M)^{-1} \mathbf{r}$, que se puede demostrar que equivale a $\mathbf{x} = A^{-1} \mathbf{b}$.

Más importante aún, analizar la serie geométrica $S_{\infty} = I + M + M^2 + \cdots = (I - M)^{-1}$ permite entender **por qué, si las** magnitudes de los valores propios de M son mayores o iguales a 1, entonces el método de Jacobi no converge en general.

En el caso más sencillo, si M es diagonalizable, entonces se puede expresar como $M=V\Lambda V^{-1}$, donde Λ es una matriz diagonal cuyos coeficientes son los valores propios λ_i de M. Esta expresión permite calcular fácilmente las potencias de M. Por ejemplo, $M^2=(V\Lambda V^{-1})(V\Lambda V^{-1})=V\Lambda^2 V^{-1}$. En general, $M^k=V\Lambda^k V^{-1}$. Reemplazando en la serie geométrica, se puede obtener una factorización por V a la izquierda y V^{-1} a la derecha:

$$I + M + M^{2} + \dots = VIV^{-1} + V\Lambda V^{-1} + V\Lambda^{2}V^{-1} + \dots$$

= $V (I + \Lambda + \Lambda^{2} + \dots) V^{-1}$

La serie $I+\Lambda+\Lambda^2+\cdots$ es una suma de potencias de la matriz diagonal Λ . Si los coeficientes en la diagonal de Λ son los valores propios λ_i , entonces los coeficientes de Λ^2 son λ_i^2 y, en general, los de Λ^k son λ_i^k . Entonces, los coeficientes de $I+\Lambda+\Lambda^2+\cdots$ son $1+\lambda_i+\lambda_i^2+\cdots=\frac{1}{1-\lambda_i}$, siempre y cuando $|\lambda_i|<1$. Si algún λ_i tiene magnitud mayor o igual a 1, entonces la serie $I+\Lambda+\Lambda^2+\cdots$ no converge y el método de Jacobi tampoco lo hace en general. Para matrices no diagonalizables, si bien este argumento no aplica, se puede hacer algo similar.

4. Teorema de los discos de Gershgorin y lo que implica para matrices EDD

Calcular los valores propios de M suele ser muy costoso. En su lugar, se puede usar el teorema de los discos de Gershgorin, el cual simplemente acota estos valores propios. Basta con poder acotar sus magnitudes a valores menores a 1 para poder asegurar la convergencia de Jacobi. Veremos que, si A es EDD, entonces el teorema de Gershgorin nos asegura esto.

A cada una de las n filas de una matriz A de tamaño $n \times n$ le corresponde un **disco de Gershgorin**: un círculo en el plano complejo cuyo centro es el elemento diagonal a_{ii} y cuyo radio es la suma de las magnitudes de los demás elementos:

$$r_i = \sum_{k=1, k \neq i}^n |a_{ik}|$$
. Cada disco D_i es, entonces, el conjunto de todos los complejos z tales que $|z - a_{ii}| \leq \sum_{k=1, k \neq i}^n |a_{ik}|$.

Por ejemplo, para la matriz:

$$A = \begin{pmatrix} 2 & 2 & -4 \\ 4 & 1 & 3 \\ 3 & -6 & 3 \end{pmatrix}$$

los discos de Gershgorin son:

$$D_1 = \{ z \in \mathbb{C} : |z - 2| \le 6 \}$$

$$D_2 = \{ z \in \mathbb{C} : |z - 1| \le 7 \}$$

$$D_3 = \{ z \in \mathbb{C} : |z - 3| \le 9 \}$$

El teorema establece que todos los valores propios de A están en al menos un disco de Gershgorin. Por ejemplo, para la matriz anterior, los valores propios λ_i deben cumplir que $|\lambda_i - 2| \le 6$, $|\lambda_i - 1| \le 7$ o $|\lambda_i - 3| \le 9$. La demostración es corta y sencilla y se puede encontrar aquí: https://es.wikipedia.org/wiki/Teorema_de_Gerschgorin

Esto tiene consecuencias importantes para el método de Jacobi. Para una matriz $A = [a_{ij}]$, su matriz de convergencia asociada $M = -D^{-1}(L+U)$ tiene solo ceros en su diagonal $(m_{ii} = 0)$ y sus demás elementos tienen la forma $m_{ij} = \frac{-a_{ij}}{a_{ii}}$. Entonces, cada disco D_i de M es el conjunto de los complejos z tales que

$$|z - m_{ii}| \le \sum_{k=1, k \ne i}^{n} |m_{ik}|$$

$$|z| \le \sum_{k=1, k \ne i}^{n} \left| \frac{-a_{ik}}{a_{ii}} \right|$$

$$|z| \le \frac{1}{|a_{ii}|} \sum_{k=1}^{n} |a_{ik}|$$

Por ejemplo, para la matriz A anterior, la matriz $M = -D^{-1}(L+U)$ asociada es:

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 & -4 \\ 4 & 0 & 3 \\ 3 & -6 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0/2 & 2/2 & -4/2 \\ 4/1 & 0/1 & 3/1 \\ 3/3 & -6/3 & 0/3 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & -2 \\ 4 & 0 & 3 \\ 1 & -2 & 0 \end{pmatrix}$$

y sus valores propios λ_i deben cumplir que $|\lambda_i| \le 3$, $|\lambda_i| \le 7$ o $|\lambda_i| \le 3$. Todos los discos están centrados en el origen y directamente ponen restricciones sobre la magnitud de los valores propios, lo cual es beneficioso para estudiar la convergencia. La unión de todas las restricciones es, en este caso, igual a la más relajada de todas: $|\lambda_i| \le 7$, que todos los valores propios deben seguir.

Si todos los discos de Gershgorin de las filas de M tuvieran radio menor a 1, entonces todos los $|\lambda_i|$ tendrían magnitud menor a 1, causando que el método de Jacobi converja.

Dado que el radio de cada disco D_i asociado a cada fila de la matriz M es $\frac{1}{|a_{ii}|} \sum_{k=1}^{n} |a_{ik}|$, buscamos que

$$1 > \frac{1}{|a_{ii}|} \sum_{k=1, k \neq i}^{n} |a_{ik}|$$
$$|a_{ii}| > \sum_{k=1, k \neq i}^{n} |a_{ik}|$$

La última expresión significa que $A = [a_{ij}]$ es EDD. Por lo tanto, si A es EDD, entonces el teorema de Gershgorin aplicado sobre M asegura que las magnitudes de todos los valores propios son menores a 1, asegurando la convergencia del método de Jacobi.

Sin embargo, como se mencionó al inicio, si A no es EDD, no necesariamente Jacobi no converge. Ser EDD es un atajo para evitar calcular explícitamente normas matriciales y valores propios. Si A no es EDD, se tendrá que hacer un análisis más profundo y calcular estos valores propios.