

Uncertainty quantification of depletion calculations for specific isotopes using ORIGEN2

Paul Mendoza

December 6, 2016 Presented for NUEN647

NUCLEAR SECURITY
SCIENCE & POLICY INSTITUTE

Outline

Background

Introduction

Current Problem

Objectives

ORIGEN2 Model

Cross Section Variations

Variance for cross-sections

Sampling Space and Plotting Program

Results

Conclusions

Paul Mendoza December 6, 2016 Depletion Calculation UQ

Introduction

- Determing composition of irradiated fuel importance
 - Flux calculations
 - Reprocessing
 - > Irradiation history verification
- Usually determined with a type of Bateman solver
- Uncertainties rarely reported
 - Flux Shape
 - > Fission yield
 - Cross Sections
 - Half-lives

Paul Mendoza December 6, 2016 Depletion Calculation UQ

Current Problem

- Use of depletion code ORIGEN2
 - Solves with exponential method
 - Requires libraries
 - Decay information
 - Fission yield data
 - Single group cross sections
- PWR system with 3 wt% enriched uranium
- Varied σ_{γ} and σ_{f} for: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Pu
 - ightharpoonup Originally, σ_{γ} and γ for the FP were considered

Quantities of Interest

¹³³ Cs	¹³⁶ Ba	¹⁵³ Eu
¹³⁴ Cs	¹³⁸ Ba	¹⁵⁴ Eu
¹³⁵ Cs	¹⁴⁹ Sm	²³⁹ Pu
¹³⁷ Cs	¹⁵⁰ Sm	²⁴² Pu
¹⁴⁸ Nd	¹⁰⁶ Rh	¹²⁵ Sb

Objectives

- Build ORIGEN2 model for thermal system, calculating concentrations of QOIs
- Determine how to vary cross section inputs for calculation
- Determine variance of cross-sections
- Create a sampling space for all possible variations of calculations
- Write program to plot results

ORIGEN2 Model

- Model irradiates 1 metric ton of US PWR fuel for a single cycle (15,000 MWd/Mt)
- Constant power assumption (37.5 W/g)
- Does not include oxygen
- Verified with ¹³⁷Cs content

Paul Mendoza

ORIGEN2 Model

```
RDA Irradiation of 1 MT of PWR fuel
     RDA Fuel enrichment is 3.0 \text{ w/o U}-235
     RDA
     LPU 922350 922380 942390 942400 942410 -1
     LIB
             1 2 3 601 -602 603 9 8 0 1 38
5
     PHO
             101 102 103
                         10
     INP 1 1 -1 -1 1 1
     BUP
     IRP 100.0 37.5 1 2 4 2 BURNUP=3,750 MMD/MT
     IRP 200.0 37.5 2 3 4 0 BURNUP=7,500 MMD/MT
10
     IRP 300.0 37.5 3 4 4 0 BURNUP=11,250 MWD/MT
     IRP 400.0 37.5 4 5 4 0 BURNUP=15,000 MMD/MT
     DEC 500.0
                   5 6 4 0 DECAY FOR 100.0 DAYS
     DEC 4150.0 6 7 4 0 DECAY FOR 10 YEARS
     DEC 73500.0 7 8 4 0 DECAY FOR 200.0 YEARS
15
     BUP
     OPTI 24*8
     OPTA 4*8 5 19*8
     OPTF 4*8 5 19*8
     OUT
         8 1 -1
20
     END
   2 922340 270. 922350 30000. 922380 969730. 0 0.0
```

Paul Mendoza December 6, 2016 Depletion Calculation UQ

Objectives

- ✓ Build ORIGEN2 model for thermal system, calculating concentrations of QOIs
- Determine how to vary cross section inputs for calculation
- Determine variance of cross-sections
- Create a sampling space for all possible variations of calculations
- Write program to plot results

How the manual says it is*...

- TAPE9.inp (8th input on LIB card)
- TAPE8.inp (9th input on LIB card)
 - Sorry for the confusion
- LPU card
 - Short for Lost Plutonium*
- Programed both, neither worked
 - ➤ The first lied to my face
 - The second complained about: "An endfile record was detected in a READ statement (unit= 8)"
 - Didn't find out about the lying until last night

```
LIB NUCLID (n,\gamma) (n,2n) (n,3n) (n,f) (n,\gamma^*) (n,2n^*) YYN
```

★ Its not Really

Objectives

- ✓ Build ORIGEN2 model for thermal system, calculating concentrations of QOIs
- ▼ Determine how to vary cross section inputs for calculation
- Determine variance of cross-sections
- Create a sampling space for all possible variations of calculations
- Write program to plot results

Cross-section calculations

$$\sigma = \frac{\int \sigma(E)\phi(E)dE}{\int \phi(E)dE}$$

$$\begin{split} \phi(E) = & C_1 \cdot \frac{E}{E_0^2} \cdot \exp\left(-\frac{E}{E_0}\right) & E < E_{max,th} \\ = & \frac{C_2}{E} & E_{max,th} < E < E_{max,epi} \\ = & C_3 \cdot \frac{\sqrt{\frac{E}{E_f}}}{E_f} \cdot \exp\left(-\frac{E}{E_f}\right) & E > E_{max,epi} \\ & c_1 = \frac{E_0^2}{E_{max,th}^2} e^{E_{max,th}/E_0} \end{split}$$

$$E_{max,th}^{2}$$

$$C_{2} = 1$$

$$C_{3} = \frac{E_{f}}{E_{max,epi}} \cdot e^{\frac{E_{max,epi}}{E_{f}}} \frac{1}{\sqrt{\frac{E_{max,epi}}{E_{f}}}}$$

 $E_{max,th} = 0.50 \text{ eV}, E_{max,epj} = 1E5 \text{ eV}, \theta_{th} = 0.09 \text{ eV} (764 \text{ K}), \theta_{fis} = 1.35E6 \text{ eV}$

Paul Mendoza December 6, 2016 Depletion Calculation UQ

Difference Minimization

Flux Distribution

Paul Mendoza December 6, 2016 Depletion Calculation UQ

One Group Cross Section Comparison

Isotope ^{R×n}	ENDF VII	ORIGEN2	Ratio
239 Pu $^{\gamma}$	6.544e+01	6.909E+01	1.06
240 Pu $^{\gamma}$	1.521e + 02	2.228E+02	1.46
241 Pu $^{\gamma}$	4.518e + 01	4.202E+01	0.93
235 U $^{\gamma}$	9.387e + 00	1.068E + 01	1.14
$^{238}U^\gamma$	4.098e + 00	8.872E-01	0.22
²³⁹ Pu ^f	1.179e + 02	1.211E+02	1.03
²⁴⁰ Pu ^f	9.609e-01	5.787E-01	0.60
²⁴¹ Pu ^f	1.253e + 02	1.259E+02	1.01
²³⁵ U ^f	4.621e+01	4.752E+01	1.03
²³⁸ U ^f	2.091e-01	9.281E-02	0.44

18 / 50

19 / 50

Paul Mendoza December 6, 2016 Depletion Calculation UQ

Paul Mendoza December 6, 2016

Paul Mendoza December 6, 2016 Depletion

Single Group Cross Sections with Errors

σ with 1STD Error
69.09±8.15
222.8 ± 50.9
42.02 ± 10.92
10.68 ± 3.23
0.887 ± 0.175
121.1±1.2
0.579 ± 0.003
125.9 ± 2.3
47.52 ± 0.71
0.093±8.2e-7

Objectives

- ✓ Build ORIGEN2 model for thermal system, calculating concentrations of QOIs
- ▼ Determine how to vary cross section inputs for calculation
- ✓ Determine variance of cross-sections
- Create a sampling space for all possible variations of calculations
- Write program to plot results

Sampling space and Plotting

$$\pi(\theta) = \frac{\theta^{\alpha - 1} e^{-\theta/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, \qquad \theta, \alpha, \beta > 0.$$

$$\alpha = \frac{\mathsf{Mean}^2}{\mathsf{Error}^2}$$

$$\beta = \frac{\mathsf{Error}^2}{\mathsf{Mean}}$$

Objectives

- ✓ Build ORIGEN2 model for thermal system, calculating concentrations of QOIs
- ▼ Determine how to vary cross section inputs for calculation
- ✓ Determine variance of cross-sections
- Create a sampling space for all possible variations of calculations
- ✓ Write program to plot results

Results

Conclusions

- Surprised at size of error
- Sad it didn't work fully

Paul Mendoza December 6, 2016 Depletion Calculation UQ 50 / 50