ADVANCED TOPICS IN MICROECONOMETRICS: MATCHING MODELS AND THEIR APPLICATIONS

Alfred Galichon (NYU and ScPo)

Spring 2018 Lecture 6, March 5 2018 (b): Continuous multivariate matching

LEARNING OBJECTIVES: LECTURE 6

- Existence of potentials in the quadratic case
- ► Knott-Smith criterion and Brenier's and McCann's theorems
- ► Entropic regularization
- ► The iterated proportional fitting procedure

REFERENCES FOR LECTURE 6

- ► [OTME], Ch. 6
- ► [TOT] Villani (2003). *Topics in Optimal Transportation*. AMS. Ch. 1 and 2.

Section 1

THEORY

Introduction

As a consequence of the previous lecture, we have seen that if P is a continuous distribution over \mathbb{R}^d (distribution of the inhabitants' locations), and if $Q = \sum_{k=1}^M q_k \delta_{y_k}$ is a discrete distribution over \mathbb{R}^d (distribution of the fountains' locations), then there exists a mapping T such that T#P=Q, that is

$$Y = T(X)$$

where:

- X ~ P and Y ~ Q, and T (x) is the location of the fountain assigned to the inhabitant at x.
- ► $T(x) = \nabla u(x)$, where u is a convex function which is given by $u(x) = \max_k \{x^\mathsf{T} y_k v_k\}$.
- ► Note the connection with Becker's model: when the dimension *d* = 1, *T* is piecewise constant and nondecreasing (positive assortative matching).
- ▶ In this lecture, we shall generalize these results to the case when *Q* is a general distribution (not necessarily discrete). *P* will have a density, and the support of *P* and *Q* will be assumed to be convex.

Introduction (continued)

lacktriangle Assume that ${\mathcal X}$ and ${\mathcal Y}$ are convex subsets of ${\mathbb R}^d$, and that

$$\Phi\left(x,y\right)=x^{\mathsf{T}}y.$$

and P and Q are two probability distributions on \mathcal{X} and \mathcal{Y} .

► The Monge-Kantorovich theorem provides assumptions under which the value of the primal problem

$$W = \sup_{\pi \in \mathcal{M}(P,Q)} \mathbb{E}_{\pi} \left[X^{\mathsf{T}} Y \right] \tag{1}$$

coincides with the value of the dual

$$W = \inf_{u(x)+v(y) \ge x^{\mathsf{T}} y} \mathbb{E}_{P} \left[u(X) \right] + \mathbb{E}_{Q} \left[v(Y) \right]. \tag{2}$$

Note, however, that the M-K theorem requires Φ to be bounded by above, which is not the case of $\Phi\left(x,y\right)=x^{\mathsf{T}}y$ unless we assume P and Q have bounded support. We could alternatively work with $\Phi\left(x,y\right)=-\left|x-y\right|^{2}/2$, in which case we should assume that P and Q have finite second moment and replace $u\left(x\right)$ by $u\left(x\right)+\left|x\right|^{2}/2$, and v by a similar quantity. We shall assume away these concerns for now.

EXISTENCE OF POTENTIALS

The following result ensures that u and v exist as soon as P and Q have finite second moments.

THEOREM

If P and Q have finite second moments, then there exists a pair (u, v) solution to the dual Monge-Kantorovich problem

$$\inf_{u(x)+v(y)\geq x^{\intercal}y}\mathbb{E}_{P}\left[u\left(X\right)\right]+\mathbb{E}_{Q}\left[v\left(Y\right)\right].$$

See theorem 2.9 in [TOT].

CONVEXITY OF THE POTENTIALS

Assume that a dual minimizer (u, v) exists; if needed, redefine u and v so that they take value $+\infty$ outside of the support of P and Q, assumed to be convex. As argued, u and v are then related by

$$v(y) = \max_{x \in \mathbb{R}^d} \left\{ x^\mathsf{T} y - u(x) \right\} \tag{3}$$

$$u(x) = \max_{y \in \mathbb{R}^d} \left\{ x^{\mathsf{T}} y - v(y) \right\} \tag{4}$$

hence we see immediately that if (u, v) is a solution to the dual problem, then u and v are convex functions. Further, the expression of v as a function of u is the same as the expression of u as a function of v.

COMPLEMENTARY SLACKNESS

We want to relate the solutions to the primal and dual problems. Recall that in the finite-dimensional case, where the primal and the dual problems are related by a complementary slackness condition. In the present case, let $(X,Y)\sim\pi$ be a solution to the primal problem, and (u,u^*) be a solution to the dual problem. Then almost surely X and Y are willing to match, which, by the previous discussion, implies that

$$u(X) + u^*(Y) = X^{\mathsf{T}}Y, \tag{5}$$

that is, the support of π is included in the set $\{(x,y):u(x)+u^*(y)=x^{\mathsf{T}}y\}$. This condition appears as the correct generalization of the complementary slackness condition in the finite-dimensional case. Without surprise, taking the expectation with respect to π of equality (5) yields the equality between the value of the dual problem on the left-hand side, and the value of the primal problem on the right-hand side.

COMPLEMENTARY SLACKNESS (CTD)

The following statement provides a generalization of the complementary slackness condition in finite dimension.

THEOREM (KNOTT-SMITH)

Let $\pi \in \mathcal{M}(P,Q)$ and u be a convex function. Then π and (u,u^*) are respective solutions to the primal and the dual Monge-Kantorovich problems if and only if

$$u(x) + u^*(y) = x^{\mathsf{T}}y \text{ holds for } \pi\text{-almost all } (x, y).$$
 (6)

PROOF.

Assume that (6) holds. Then, note that (u,u^*) satisfies the constraints of the dual; further, taking expectation with respect to π yields $\mathbb{E}_P\left[u\left(X\right)\right]+\mathbb{E}_Q\left[v\left(Y\right)\right]=\mathbb{E}_\pi\left[X^\intercal Y\right]$, which implies that π is an optimal primal solution and (u,u^*) is an optimal dual solution. Conversely, assume that π is an optimal primal solution and (u,u^*) is an optimal dual solution. Then $\mathbb{E}_\pi\left[u\left(X\right)+u^*\left(Y\right)-X^\intercal Y\right]=0$; but $(x,y)\to u\left(x\right)+u^*\left(y\right)-x^\intercal y$ is nonnegative, thus (6) holds.

THEOREM (BRENIER)

Assume that P and Q have finite second moments, and P has a density. Then the solution $(X,Y) \sim \pi \in \mathcal{M}(P,Q)$ to the primal problem is represented by

$$Y = \nabla u(X)$$

where (u, u^*) is a solution to the dual problem. Such u is unique up to a constant.

Intuition of the proof: if u is differentiable, then y is matched with x that maximizes $\{x^{\mathsf{T}}y - u(x)\}$ over $x \in \mathbb{R}^d$. By first order conditions, such x satisfy $\nabla u(x) = y$. It turns out, however, that differentiability is not a serious concern (at least, almost never).

DIFFERENTIABILITY OF CONVEX FUNCTIONS

While we evoked the case when the Kantorovich potentials u and v are differentiable, there is no a-priori guarantee that they are so. However, an important result in Analysis called Rademacher's theorem implies that the set of non-differentiable points of a convex function is of zero Lebesgue measure, and hence can be ignored for practical purposes as soon as P is continuous. Thus the Monge map solution, T(x), can be defined as $T(x) = \nabla u(x)$ wherever the latter quantity exists, and T(x) can be defined arbitrarily elsewhere, without affecting the distributional properties of T(X).

McCann's theorem

The previous result allows to provide a representation of a large class of probability distributions Q over \mathbb{R}^d as the probability distribution of $\nabla u(X)$, for X with a fixed distribution P. There is however a limitation, in the sense that it requires that Q has finite second moments, which is needed to interpret u as entering the solution to the dual problem. Fortunately, McCann's theorem addresses this issue:

THEOREM (BRENIER)

Assume that P and Q are probability distributions such that P has a density. Then the solution $(X,Y) \sim \pi \in \mathcal{M}(P,Q)$ to the primal problem is represented by

$$Y = \nabla u(X)$$

for some convex function u which is unique up to a constant.

THE GAUSSIAN CASE

- ▶ When $P = \mathcal{N}(0, \Sigma_X)$ and $Q = \mathcal{N}(0, \Sigma_Y)$, one can get a solution in closed form.
 - ► Consider first the case when $\Sigma_X = I$. Then the optimal transport map $T(x) = \Sigma_Y^{1/2} x$ is a linear map.
 - For General case is done by wrting $X = \Sigma_X^{1/2} U$, where $U \sim \mathcal{N} (0, I)$. Then $\max \mathbb{E} \left[U \Sigma_X^{1/2} Y \right]$ is obtained when $\Sigma_X^{1/2} Y = \left(\Sigma_X^{1/2} \Sigma_Y \Sigma_X^{1/2} \right)^{1/2} U$, so the solution is

$$Y = \Sigma_X^{-1/2} \left(\Sigma_X^{1/2} \Sigma_Y \Sigma_X^{1/2} \right)^{1/2} \Sigma_X^{-1/2} X.$$

Actually, one has even a closed-form solution in the case when $\Phi\left(x,y\right)=x^{\mathsf{T}}Ay$. (This is left as an exercise).

ENTROPIC REGULARIZATION OF THE OPTIMAL TRANSPORT PROBLEM

► Consider the problem

$$\max_{\pi \in \mathcal{M}(P,Q)} \iint_{\mathcal{X} \times \mathcal{Y}} x^{\mathsf{T}} y \pi\left(x,y\right) \, dx dy - \sigma \iint_{\mathcal{X} \times \mathcal{Y}} \pi\left(x,y\right) \ln \pi\left(x,y\right) \, dx dy$$

where $\sigma>0$. The problem coincides with the optimal assignment problem when $\sigma=0$. When $\sigma\to+\infty$, the solution to this problem approaches the independent coupling, $\pi\left(x,y\right)=f_{P}\left(x\right)f_{Q}\left(y\right)$.

► The dual problem yields

$$\min_{u,v} \left\{ \begin{array}{l} \int_{\mathcal{X}} u\left(x\right) dP\left(x\right) + \int_{\mathcal{Y}} v\left(y\right) dQ\left(y\right) + \\ \sigma\left(\iint_{\mathcal{X} \times \mathcal{Y}} \exp\left(\frac{x^{\mathsf{T}}y - u(x) - v(y)}{\sigma}\right) dx dy - 1\right) \end{array} \right\},$$

and the classical optimal transport duality is recovered when $\sigma \to 0$.

OPTIMALITY CONDITIONS

► By optimality conditions,

$$\pi\left(x,y\right) = \exp\left(\frac{x^{\mathsf{T}}y - u\left(x\right) - v\left(y\right)}{\sigma}\right)$$

where u(x) and v(y) satisfy the Bernstein-Schrödinger equation

$$\left\{ \begin{array}{l} \int_{\mathcal{Y}} \exp\left(\frac{x^{\mathsf{T}}y - u(x) - v(y)}{\sigma}\right) \, dy = f_{P}\left(x\right) \\ \int_{\mathcal{X}} \exp\left(\frac{x^{\mathsf{T}}y - u(x) - v(y)}{\sigma}\right) \, dx = f_{Q}\left(y\right) \end{array} \right..$$

► Hence, letting $A(x) = \exp(-u(x)/\sigma)$ and $B(y) = \exp(-v(y)/\sigma)$ and $K(x, y) = \exp(x^T y/\sigma)$, one has $\pi(x, y) = A(x)B(y)K(x, y)$, and

$$\begin{cases} A(x) = f_P(x) / \int_{\mathcal{Y}} K(x, y) B(y) dy \text{ and} \\ B(y) = f_Q(y) / \int_{\mathcal{X}} K(x, y) A(x) dx. \end{cases}$$

Section 2

CODING

THE IPFP

► The iterated proportional fitting procedure (ipfp) consists of taking an initial guess $B^0(x)$, and do

$$\begin{cases} A^{1}(x) = f_{P}(x) / \int_{\mathcal{Y}} K(x, y) B^{0}(y) dy \\ B^{1}(y) = f_{Q}(y) / \int_{\mathcal{X}} K(x, y) A^{1}(x) dx \end{cases}$$

and iterate.

► This is implemented by IPFP1:

```
K=exp(Phi/sigma)
B=rep(1,nbY)
while (cont) {
A = p / (K %*% B)
KA = c(A %*% K)
if (max(abs(KA*B - q)) < tol ) {cont=FALSE}
B = q / KA }</pre>
```

THE LOG-SUM-EXP TRICK

▶ The previous program is extremely fast, partly due to the fact that it involves linear algebra operations. However, it breaks down when σ is small; this is best seen taking a log transform and returning to $u^k = -\sigma \log A^k$ and $v^k = -\sigma \log B^k$, that is

$$\left\{ \begin{array}{l} {u^k}\left(x \right) = \mu \left(x \right) + \sigma \log \int_{\mathcal{Y}} \exp \left(\frac{{{x^{\rm{T}}}y - {v^{k - 1}}\left(y \right)}}{\sigma} \right)dy\\ {v^k}\left(y \right) = \nu \left(y \right) + \sigma \log \int_{\mathcal{X}} \exp \left(\frac{{{x^{\rm{T}}}y - {u^k}\left(x \right)}}{\sigma} \right)dx \end{array} \right.$$

- where $\mu\left(x\right)=-\sigma\log f_{P}\left(x\right)$ and $\nu\left(y\right)=-\sigma\log f_{Q}\left(y\right)$.
- ▶ One sees what may go wrong: if $x^Ty v^{k-1}(y)$ is positive in the exponential in the first sum, then the exponential blows up due to the small σ at the denominator. However, a very simple trick, called the "log-sum-exp trick" in order to avoid this issue.

THE LOG-SUM-EXP TRICK (CTD)

Consider

$$\left\{ \begin{array}{l} \left(v^{k-1}\right)^*(x) = \max_y \left\{x^\mathsf{T} y - v^{k-1}\left(y\right)\right\} \\ \left(u^k\right)^*(y) = \max_x \left\{x^\mathsf{T} y - u^k\left(x\right)\right\} \end{array} \right.$$

(as we shall see next block, these will be interpreted as the Legendre-Fenchel transforms of v^{k-1} and u^k , respectively).

► One has

$$\left\{ \begin{array}{l} {{u^k}\left(x \right) = \mu \left(x \right) + {{{\left({{v^{k - 1}} \right)}^*}\left(x \right) + \sigma \log \int_{\mathcal{Y}} {\exp \left({\frac{{{x^{\rm{T}}y - {v^{k - 1}}\left(y \right) - {{\left({{v^{k - 1}}} \right)}^*}\left(x \right)}}{\sigma }} \right)dy} \\ {{v^k}\left(y \right) = \nu \left(y \right) + {{{\left({{u^k}} \right)}^*}\left(y \right) + \sigma \log \int_{\mathcal{X}} {\exp \left({\frac{{{x^{\rm{T}}y - {u^k}\left(x \right) - {{\left({{u^k}} \right)}^*}\left(y \right)}}}{\sigma }} \right)dx} \\ \end{array} \right. \right.$$

and now the arguments of the exponentials are always nonpositive, ensuring the exponentials don't blow up.

THE LOG-SUM-EXP TRICK (CTD)

► This is implemented as IPFP2:

```
vstar = apply(t(t(Phi) - v), 1, max)
u=mu + vstar + sigma * log(apply(exp( (Phi -
matrix(v,nbX,nbY,byrow=T) - vstar)/sigma) ,1,sum))
ustar = apply( Phi - u , 2, max)
v=nu + ustar + sigma * log(apply(exp( (Phi -
matrix(ustar,nbX,nbY,byrow=T) - u)/sigma) ,2,sum))
```

- ► When we run it on the example in '07-appli-ipfp', we see that IPFP1 is faster, but more fragile; indeed:
 - for $\sigma=10^{-2}$, both algorithms converge, the IPFP1 in 0.05s, and IPFP2 in 0.11s.
 - for $\sigma = 10^{-3}$, IPFP1 fails, and IPFP2 converges in 109s.