The Mean of Parametric Distributions

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Parametric distributions

Distribution	Parameter	Maximum-likelihood estimator
Bernoulli	θ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$
Geometric	α	$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{-1}$
Poisson	λ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$
Exponential	λ	$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{-1}$
Gaussian	μ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$

Discrete random variable

The mean of a discrete random variable \tilde{a} with range A is

$$\mathrm{E}\left[\widetilde{a}\right]:=\sum_{a\in A}a\,p_{\widetilde{a}}\left(a\right)$$

if the sum converges

Bernoulli

$$\begin{aligned} \mathrm{E}\left[\tilde{\mathbf{a}}\right] &= 0 \cdot p_{\tilde{\mathbf{a}}}\left(0\right) + 1 \cdot p_{\tilde{\mathbf{a}}}\left(1\right) \\ &= \theta \end{aligned}$$

Geometric

$$\sum_{k=0}^{\infty} \alpha^k = \frac{1}{1-\alpha}$$

$$\sum_{k=0}^{\infty} k\alpha^{k-1} = \frac{1}{(1-\alpha)^2}$$

$$E[\tilde{a}] = \sum_{k=1}^{\infty} k \, p_{\tilde{a}}(k)$$

$$= \sum_{k=1}^{\infty} k \, \theta \, (1 - \theta)^{k-1}$$

$$= \frac{1}{\theta}$$

Geometric, $\theta := 0.2$

Poisson

$$e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

$$E[\tilde{a}] = \sum_{k=1}^{\infty} k \, p_{\tilde{a}}(k)$$

$$= \sum_{k=1}^{\infty} \frac{k \lambda^{k} e^{-\lambda}}{k!}$$

$$= \sum_{k=1}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{(k-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$

$$= \lambda$$

Poisson, $\lambda := 25$

Continuous random variable

The mean of a continuous random variable \tilde{a} is

$$\mathrm{E}\left[\widetilde{a}\right] := \int_{a=-\infty}^{\infty} a f_{\widetilde{a}}\left(a\right) \, \mathrm{d}a$$

if the integral converges

Exponential

$$E[\tilde{a}] = \int_{a=-\infty}^{\infty} af_{\tilde{a}}(a) da$$

$$= \int_{a=0}^{\infty} a\lambda e^{-\lambda a} da$$

$$= ae^{-\lambda a}]_{0}^{\infty} + \frac{1}{\lambda} \int_{0}^{\infty} \lambda e^{-\lambda a} da$$

$$= \frac{1}{\lambda}$$

Exponential, $\lambda:=1$

Gaussian

Change of variables $t = (a - \mu)/\sigma$

$$\begin{split} \mathrm{E}\left[\tilde{a}\right] &= \int_{a=-\infty}^{\infty} a f_{\tilde{a}}\left(a\right) \, \mathrm{d}a \\ &= \int_{a=-\infty}^{\infty} \frac{a}{\sqrt{2\pi}\sigma} e^{-\frac{(a-\mu)^2}{2\sigma^2}} \, \mathrm{d}a \\ &= \frac{\sigma}{\sqrt{2\pi}} \int_{t=-\infty}^{\infty} t e^{-\frac{t^2}{2}} \mathrm{d}t + \frac{\mu}{\sqrt{2\pi}} \int_{t=-\infty}^{\infty} e^{-\frac{t^2}{2}} \, \mathrm{d}t \\ &= \mu \end{split}$$

$\text{Gaussian, } \mu := \mathbf{0}$

Sample mean

The sample mean of a dataset $X := \{x_1, x_2, \dots, x_n\}$ is

$$m(X) := \frac{\sum_{i=1}^{n} x_i}{n}$$

Method of moments

Distribution	Parameter	Maximum-likelihood estimator	Mean
Bernoulli	θ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}=m(X)$	θ
Geometric	α	$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{-1}=m(X)^{-1}$	α^{-1}
Poisson	λ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}=m(X)$	λ
Exponential	λ	$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{-1}=m(X)^{-1}$	λ^{-1}
Gaussian	μ	$\frac{1}{n}\sum_{i=1}^{n}x_{i}=m(X)$	μ

What have we learned?

Mean of parametric distributions

Method of moments