2022-2023 MP2I

DM 13, corrigé

PROBLÈME Étude de séries

Partie I. Critère de convergence

1) Soit $n \in \mathbb{N}^*$. On a, en utilisant un changement d'indice :

$$\begin{split} \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n &= \sum_{k=0}^{n-1} a_k B_k - \sum_{k=1}^n a_k B_{k-1} + a_n B_n \\ &= a_0 B_0 + \sum_{k=1}^n a_k (B_k - B_{k-1}) - a_n B_n + a_n B_n \\ &= a_0 B_0 + \sum_{k=1}^n a_k b_k. \end{split}$$

Puisque $B_0 = b_0$, on a donc $\sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n = \sum_{k=0}^n a_k b_k = S_n$.

2)

- a) Pour $N \in \mathbb{N}$, on a par somme télescopique, $\sum_{n=0}^{N} (a_n a_{n+1}) = a_0 a_{n+1}$. Puisque la suite $(a_n)_{n \in \mathbb{N}}$ converge, on en déduit que $\sum (a_n a_{n+1})$ converge également.
- b) On sait que la suite $(B_n)_{n\in\mathbb{N}}$ est bornée. Notons $K\in\mathbb{R}_+$ tel que $\forall n\in\mathbb{N}, |B_n|\leq K$. On a alors pour $n\in\mathbb{N}$:

$$|(a_n - a_{n+1})B_n| \le K \times |a_n - a_{n+1}|.$$

Puisque la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante, on a $a_n\geq a_{n+1}$. On en déduit que :

$$|(a_n - a_{n+1})B_n| \le K(a_n - a_{n+1}).$$

Puisque $\sum (a_n - a_{n+1})$ converge, on en déduit par comparaison de séries à termes positifs que $\sum |(a_n - a_{n+1})B_n|$ converge et donc que la série $\sum_{n \in \mathbb{N}} (a_n - a_{n+1})B_n$ converge absolument.

- c) On a $\lim_{n\to+\infty} a_n B_n = 0$ puisque la suite $(B_n)_{n\in\mathbb{N}}$ est bornée et que la suite $(a_n)_{n\in\mathbb{N}}$ tend vers 0 (on peut le détailler avec le théorème des gendarmes en écrivant que $|a_n B_n| \leq |a_n| \times K$). D'après la question 2.b, la série $\sum_{n\in\mathbb{N}} (a_n a_{n+1}) B_n$ converge absolument donc elle converge. D'après la
- question 1, on en déduit par somme de suites convergentes que $(S_n)_{n\in\mathbb{N}^*}$ converge et donc que la série $\sum_{n\in\mathbb{N}} a_n b_n$ converge.
- 3) On a déjà la suite $(a_n)_{n\in\mathbb{N}}$ qui est décroissante et qui converge vers 0. Il reste à montrer pour pouvoir utiliser la question 2 que la suite $B_n = \sum_{k=0}^n (-1)^k$ est bornée. Or, on a une série géométrique de raison $-1 \neq 1$. On a donc pour $n \in \mathbb{N}$:

$$B_n = \frac{1 - (-1)^{n+1}}{1 - (-1)} = \frac{1 + (-1)^n}{2}.$$

On a donc pour $n \in \mathbb{N}$, $|B_n| \leq \frac{2}{2} \leq 1$. D'après la question 2, on a donc $\sum_{n \in \mathbb{N}} (-1)^n u_n$ qui converge.

4)

a) Si
$$x \equiv 0 \ [2\pi]$$
, on a $\cos(kx) = 1$ et donc $\sum_{k=0}^{n} \cos(kx) = \sum_{k=0}^{n} 1 = n + 1$.

Si $x \neq 0$ $[2\pi]$, on a alors $\sum_{k=0}^{n} \cos(kx) = \sum_{k=0}^{n} \operatorname{Re}(e^{ikx}) = \operatorname{Re}\left(\sum_{k=0}^{n} (e^{ix})^{k}\right)$. Puisque $e^{ix} \neq 1$, on a alors par somme géométrique, et en utilisant l'arc moitié :

$$\sum_{k=0}^{n} \cos(kx) = \operatorname{Re}\left(\frac{1 - e^{(n+1)ix}}{1 - e^{ix}}\right)$$

$$= \operatorname{Re}\left(\frac{e^{i(n+1)x/2} - 2i\sin\left(\frac{(n+1)x}{2}\right)}{e^{ix/2} - 2i\sin\left(\frac{x}{2}\right)}\right)$$

$$= \frac{\cos\left(\frac{nx}{2}\right)\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}.$$

b) Si $x \equiv 0$ $[2\pi]$, on a alors $\frac{\cos(nx)}{(n+1)^{\alpha}} = \frac{1}{(n+1)^{\alpha}} \sim_{n \to +\infty} \frac{1}{n^{\alpha}}$. Par comparaison de séries à termes positifs avec une série de Riemann, on en déduit que la série converge si et seulement si $\alpha > 1$.

Si $x \not\equiv 0$ [2π], alors si on pose $a_n = \frac{1}{(n+1)^{\alpha}}$ et $b_n = \cos(nx)$, on a bien $(a_n)_{n \in \mathbb{N}}$ décroissante et qui tend vers 0 (puisque $\alpha > 0$) et la suite $B_n = \sum_{k=0}^n b_k$ bornée d'après la question précédente (puisque le terme au numérateur est bornée et que le dénominateur est constant). D'après la question 2, on en déduit que la série $\sum_{n \in \mathbb{N}} \frac{\cos(nx)}{(n+1)^{\alpha}}$ est convergente.

Exercice. Séries de Bertrand.

- 1) Si $\alpha < 0$, alors $\frac{1}{n^{\alpha} \ln^{\beta}(n)} = \frac{n^{-\alpha}}{\ln^{\beta}(n)} \to +\infty$ par croissances comparées (ici $-\alpha > 0$). La série diverge donc grossièrement.
- 2) Soit $\alpha \in [0,1[$. On a alors $\frac{n^{\alpha} \ln^{\beta}(n)}{n} = \frac{\ln^{\beta}(n)}{n^{1-\alpha}} \to 0$ par croissances comparées (car $1-\alpha > 0$). On a donc bien $\frac{1}{n} = o\left(\frac{1}{n^{\alpha} \ln^{\beta}(n)}\right)$. Or, la série $\sum \frac{1}{n}$ diverge. Par comparaison de séries à termes positifs (tout est clairement positif), on en déduit que $\sum_{n\geq 2} \frac{1}{n^{\alpha} \ln^{\beta}(n)}$ est divergente.
- 3) Soit $\alpha \in]1, +\infty[$. Il existe donc $\alpha_0 > 1$ tel que $\alpha_0 < \alpha$. On montre alors de la même manière que dans la question précédente que :

$$\frac{1}{n^{\alpha} \ln^{\beta}(n)} = o\left(\frac{1}{n^{\alpha_0}}\right).$$

En effet, en effecutant le quotient, on obtient $\frac{1}{n^{\alpha-\alpha_0} \ln^{\beta}(n)} \to 0$ quand n tend vers l'infini par croissances comparées (car $\alpha - \alpha_0 > 0$). Or, la série $\sum \frac{1}{n^{\alpha_0}}$ est une série de Riemann convergente (car $\alpha_0 > 1$) donc par comparaison de séries à termes positifs, la série $\sum_{n>2} \frac{1}{n^{\alpha} \ln^{\beta}(n)}$ est convergente.

- 4) On se place dans le cas $\alpha = 1$.
 - a) Si $\beta=0$, le terme général de la série est $\frac{1}{n}$ qui est le terme général d'une série de Riemann divergente. Si $\beta<0$, on a $\frac{1}{n}=o\left(\frac{1}{n\ln^{\beta}(n)}\right)$. Puisque $\sum\frac{1}{n}$ diverge et par comparaison de séries à termes positives, on en déduit que $\sum_{n\geq 2}\frac{1}{n\ln^{\beta}(n)}$ diverge.
 - b) La fonction f_{β} est dérivable sur $[2, +\infty[$ (comme quotient de fonctions dérivables) et pour tout $x \in [2, +\infty[$, on a :

$$f_{\beta}'(x) = \frac{-(\ln(x))^{\beta} - \beta(\ln(x))^{\beta-1}}{(x(\ln(x))^{\beta})^2} = \frac{(\ln(x))^{\beta-1}}{(x(\ln(x))^{\beta})^2} \cdot (-\ln(x) - \beta) < 0.$$

Ceci entraine que f_{β} est décroissante sur son intervalle de définition.

- c) f_{β} est continue sur [2,n] donc on peut calculer l'intégrale. On a alors :
- Si $\beta = 1$:

$$\int_{2}^{n} \frac{1}{x \ln(x)} = [\ln(\ln(x))]_{2}^{n}$$
$$= \ln(\ln(n)) - \ln(\ln(2)).$$

• Si $\beta \neq 1$:

$$\int_{2}^{n} \frac{1}{x \ln^{\beta}(x)} = \left[\frac{1}{(1-\beta) \ln^{\beta-1}(x)} \right]_{2}^{n}$$
$$= \frac{1}{(1-\beta) \ln^{\beta-1}(n)} - \frac{1}{(1-\beta) \ln^{\beta-1}(2)}.$$

d) On effectue une comparaison série intégrale. La fonction f_{β} étant décroissante sur $[2, +\infty[$, on a que pour $k \geq 2$ et pour $t \in [k, k+1]$, $f_{\beta}(k+1) \leq f_{\beta}(t) \leq f_{\beta}(k)$. En intégrant entre k et k+1, on trouve alors :

$$f_{\beta}(k+1) \le \int_{k}^{k+1} f_{\beta}(t)dt \le f_{\beta}(k).$$

En sommant de 2 à n-1, on en déduit que

$$\sum_{k=2}^{n-1} f_{\beta}(k+1) \le \int_{2}^{n} f_{\beta}(t)dt \le \sum_{k=2}^{n-1} f_{\beta}(k).$$

On en déduit que :

• Si $\beta < 1$, alors d'après le calcul du c), $\lim_{n \to +\infty} \int_2^n f_{\beta}(t) dt = +\infty$ (puisque $\beta - 1 < 0$). Ceci entraine d'après la comparaison série/intégrale (en utilisant l'inégalité de droite) que $\sum_{n \geq 2} \frac{1}{n \ln^{\beta}(n)}$ diverge.

- Si $\alpha=1$, alors $\lim_{n\to+\infty}\int_2^n\frac{1}{t\ln(t)}dt=+\infty$. Ceci entraine par comparaison série/intégrale que la série diverge.
- Si $\beta > 1$, alors $\lim_{n \to +\infty} \int_2^n f_\beta(t) dt$ existe et est finie. Ceci entraine que la suite $n \mapsto \int_2^n f_\beta(t) dt$ est bornée et donc en particulier majorée. En prenant l'inégalité de gauche de la comparaison série/intégrale, on en déduit que la suite $\left(\sum_{k=3}^n f_\beta(n)\right)_{n \geq 3}$ est majorée. Puisque la série est à termes positifs, on déduit la suite précédente est croissante majorée et donc que la série converge (et rajouter le terme d'indice 2 ne change pas la nature de la série).