第14节 命题逻辑推理 (二) —— 间接推理

推理方法: 直接推理

> 间接推理 条件论证 反证法

一、条件论证

如果要证明的结论是 $R \rightarrow S$ 的形式,则可以把结论中 $R \rightarrow S$ 的前件 R 作为附加前提,与给定的前提一起推出后件 S 即可。

```
定理 如果 H_1 \wedge H_2 \wedge ... \wedge H_n \wedge R \Rightarrow S,
               则 H_1 \wedge H_2 \wedge ... \wedge H_n \Rightarrow R \rightarrow S
证明: 因为 H_1 \wedge H_2 \wedge ... \wedge H_n \wedge R \Rightarrow S, 则
              (H_1 \land H_2 \land ... \land H_n \land R) \rightarrow S 是永真式。 而
          (H_1 \land H_2 \land ... \land H_n \land R) \rightarrow S
    \Leftrightarrow \neg (H_1 \land H_2 \land ... \land H_n \land R) \lor S
    \Leftrightarrow \neg (H_1 \land H_2 \land ... \land H_n) \lor (\neg R \lor S)
    \Leftrightarrow (H_1 \land H_2 \land ... \land H_n) \rightarrow (R \rightarrow S)
   所以 (H_1 \land H_2 \land ... \land H_n) \rightarrow (R \rightarrow S) 是永真式。
   即 H_1 \wedge H_2 \wedge ... \wedge H_n \Rightarrow R \rightarrow S, 定理得证。
```

我们把上述定理写成如下规则:

CP规则 (Conditional Proof):

如果
$$H_1 \land H_2 \land \land H_n \land R \Rightarrow S$$
,则
$$H_1 \land H_2 \land \land H_n \Rightarrow R \rightarrow S$$

例6 用命题逻辑的推理方法证明下面推理的有效性:

如果小张和小王去看电影,则小李也去看电影;小赵不去 看电影或小张去看电影;小王去看电影;所以,当小赵去看 电影时,小李也去。

解: 设 P: 小张去看电影。 Q: 小王去看电影。

R: 小李去看电影。 S: 小赵去看电影。

前提: (P∧Q)→R, ¬S∨P, Q

结论: S→R

要研究反证法,首先要知道什么是不相容的。

相容定义: 设 H₁,H₂,...,H_n 是命题公式, P₁,P₂,...,P_m 是公式中的命题变元。如果对 P₁,P₂,...,P_m, 至少有 一组赋值使得 $H_1 \wedge H_2 \wedge ... \wedge H_n$ 的真值为 T,则称公 式集合{H₁,H₂,...,H_n} 是相容的(也称是一致的); 不相容定义: 如果对 $P_1, P_2, ..., P_m$ 的每一组赋值, 都使得 $H_1 \wedge H_2 \wedge ... \wedge H_n$ 的真值为 F,则称公式集合 $\{H_1, H_2, ..., H_n\}$ 是不相容的 (也称是不一致的)。

二、反证法

若要证明 $H_1, H_2, ..., H_n \Rightarrow C$,只要证明 $\{ H_1, H_2, ..., H_n, \neg C \}$ 是不相容的即可。

即 若要证明 $H_1,H_2,...,H_n \Rightarrow C$,只要证明 $H_1 \land H_2 \land ... \land H_n \land \neg C$ 是个矛盾式即可。

定理 若 $H_1 \wedge H_2 \wedge ... \wedge H_n \wedge \neg C$ 是个矛盾式,则 $H_1,H_2,...,H_n \Rightarrow C$ 成立。 证明:设 $H_1 \wedge H_2 \wedge ... \wedge H_n \wedge \neg C$ 是矛盾式,则 $\neg(H_1 \land H_2 \land ... \land H_n \land \neg C)$ 是个永真式。而 $\neg (H_1 \land H_2 \land ... \land H_n \land \neg C)$ $\Leftrightarrow \neg (H_1 \land H_2 \land ... \land H_n) \lor C$ $\Leftrightarrow (H_1 \land H_2 \land ... \land H_n) \rightarrow C$ 于是 $(H_1 \land H_2 \land ... \land H_n) \rightarrow C$ 是一个永真式, 所以 $H_1 \wedge H_2 \wedge ... \wedge H_n \rightarrow C$ 。 证毕

例:请根据下面事实,找出凶手:

- 1. 清洁工或者秘书谋害了经理。
- 2. 如果清洁工谋害了经理,则谋害不会发生在午夜前。
- 3. 如果秘书的证词是正确的,则谋害发生在午夜前。
- 4. 如果秘书的证词不正确,则午夜时屋里灯光未灭。
- 5. 如果清洁工富裕,则他不会谋害经理。
- 6. 经理有钱且清洁工不富裕。
- 7. 午夜时屋里灯灭了。

C: 谋害发生在午夜前。 D: 秘书的证词是正确的。

E: 午夜时屋里灯光灭了。H: 清洁工富裕。

G: 经理有钱。

1. 清洁工或者秘书谋害了经理。 A V B

 $A \lor B$,

C: 谋害发生在午夜前。 D: 秘书的证词是正确的。

E: 午夜时屋里灯光灭了。H: 清洁工富裕。

G: 经理有钱。

2. 如果清洁工谋害了经理,则谋害不会发生在午夜前。 $A \rightarrow \neg C$

 $A \lor B, A \rightarrow \neg C,$

C: 谋害发生在午夜前。 D: 秘书的证词是正确的。

E: 午夜时屋里灯光灭了。H: 清洁工富裕。

G: 经理有钱。

3. 如果秘书的证词是正确的,则谋害发生在午夜前。 $D\rightarrow C$

 $A \lor B$, $A \rightarrow \neg C$, $D \rightarrow C$,

C: 谋害发生在午夜前。 D: 秘书的证词是正确的。

E: 午夜时屋里灯光灭了。H: 清洁工富裕。

G: 经理有钱。

4. 如果秘书的证词不正确,则午夜时屋里灯光未灭。 $\neg D \rightarrow \neg E$

 $A \lor B, A \rightarrow \neg C, D \rightarrow C, \neg D \rightarrow \neg E,$

C: 谋害发生在午夜前。 D: 秘书的证词是正确的。

E: 午夜时屋里灯光灭了。H: 清洁工富裕。

G: 经理有钱。

5. 如果清洁工富裕,则他不会谋害经理。 $H \rightarrow \neg A$

 $A \lor B$, $A \rightarrow \neg C$, $D \rightarrow C$, $\neg D \rightarrow \neg E$, $H \rightarrow \neg A$,

C: 谋害发生在午夜前。 D: 秘书的证词是正确的。

E: 午夜时屋里灯光灭了。H: 清洁工富裕。

G: 经理有钱。

6. 经理有钱且清洁工不富裕。 G△¬H

 $A \lor B$, $A \rightarrow \neg C$, $D \rightarrow C$, $\neg D \rightarrow \neg E$, $H \rightarrow \neg A$, $G \land \neg H$,

C: 谋害发生在午夜前。 D: 秘书的证词是正确的。

E: 午夜时屋里灯光灭了。H: 清洁工富裕。

G: 经理有钱。

7.午夜时屋里灯灭了。E

$$A \lor B$$
, $A \to \neg C$, $D \to C$, $\neg D \to \neg E$, $H \to \neg A$, $G \land \neg H$, $E \Rightarrow ?$