. 2 Chall-volidation
Suppose data $(Y_i, x_i)_{i=1}^n$ and now obs $(Y^*, x^*) \in \mathbb{R} \times \mathbb{R}^p$ are all i.i.d. We'd blue to pick λ to minimage
$\mathbb{E}\left\{ (Y^* - x^{*T} \hat{\rho} \chi(x, y))^2 \mid x, y \right\}$
An earing quantity to minimate of the expected perdiction were
te [t] (Y" - x* \beta \chi (X, Y') X', Y') X', Y') X', Y') Adapt of much
CV extracts they uplitting the data into ve folds
$(\chi^{(i)}, \gamma^{(i)}) \dots (\chi^{(v)}, \gamma^{(v)})$
Let (X ⁽⁻⁶⁾ , Y ⁽⁻⁶⁾) be all data except that in the beth fold. White K(i) K(b) for the fold to which the i'th also a declarge: Refine
the for the fold to which the ith also abelongs: Refue
$CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \{ Y_i - x_i^T \hat{\beta}_{\lambda}^R (X^{(-K(i))}, Y^{(-K(i))}) \}^2$
after choose v as 5 or 10.
Notifier theore of as 5 or 10. Northing her as the normalist parties of hy $\hat{\mathcal{B}}_{\lambda ev}(X,Y)$. Suppose we have computed $\hat{\mathcal{B}}_{\lambda}^{R}$ on a good of λ values λ , λ_{2} , λ_{2} , λ_{L} . Another ampered we be write; where
Suppose we have compilled By an agrid of A values λ , > λ_z > > λ_L . Another
office of the contract of the
In $\sum_{i=1}^{n} \{Y_i - \sum_{k=1}^{n} w_k x_i^{\dagger} \beta_{k}^{R}(x^{(-\kappa(i))}, y^{(-\kappa(i))})\}^2$ own $w \in \mathbb{R}^{L}$, subject to $w_l \ge 0$. This is known as stacking (Breimen, 1996 and often works better than CV .
own well, subject to we 20. This is known as stacking (Breiner, 1996
and often works butter flow CV.
.3 The hund trich
Althorntum expression for fetted vall of midge $(X^{T} \times + \lambda I) \times^{T} = \times^{T} (\times \times^{T} + \lambda I)$
$\times \times^{+} (\times \times^{T} + \lambda I)^{-1} = \times (\times^{T} \times + \lambda I)^{-1} \times^{T} = \times 6^{R}$

```
2. Key point: Fithed ball only dipend on inner products between obs
             K = X \times^T, K_{ij} = x_i^T x_{ij}
      Suppose we want to fit a model with purchastic effects

Yi = xiB + Z Xile Xil Dul + Ei

Lil
    Com abill me udge provided we expand on ret of predictors
             Xil, ..., xip, xil xil, Xil xiz, ..., xil xip
                                                               Xip Xi1, xip xi2,..., xip xip
   (lateractions xile xile le # l appear turce)
 Grand (p^2), approach may be computationally inflamble for p>> u (O(p^2u^2)) to compute XX^T), new expanded X
 Idea: comparte K directly. Consider
(1 + x_i^T x_j^T)^2 = (1 + \sum_k x_i^L x_j^L)^2
                                                = 1 + 2 \( \frac{1}{4} \times 
  Equal to an unau product between metors of the form
                 V2 xi, , √2 xi2,..., √2 xiρ,
                x:1 x:1 , x:1 x:12, ... , x:1 x:1,
                                                                                                                                                       (★)
                Kip Xil, Xip XiZ | ... | Xip Xip )
    If we set hij = (1+xi+xj)2 and compute fitted vall
  it is exactly equivalent to fitted vall from midge fit to expanded net of predictord
```

Computation of K is $O(n^2p)$.

Value home messages.

1. Can apply this trick to any method that was only inner products between about.

2. Instead of father, expanding one features war, some peature page $p(x_i) = p(x_i)$ and fathing a model directly to $p(x_i)$ can directly compute $p(x_i) = p(x_i) = p(x_i)$. $p(x_i) = p(x_i)$.

.