Labs

Optimization for Machine LearningSpring 2024

Saarland University

CISPA Helmholtz Center for Information Security **Sebastian Stich**

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 4, May 7, 2024 (CD and SGD)

Coordinate descent

Exercise 1. Efficient Implementation of Coordinate Descent Consider the least squares objective

$$f(\mathbf{x}) = \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|^2$$

for $A \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^d$.

- a) Derive $\nabla f(\mathbf{x})$. What is the time-complexity to compute the gradient vector $\nabla f(\mathbf{x})$?
- b) Given an index $i \in [d]$, derive $\nabla_i f(\mathbf{x})$. What is the time-complexity to compute $\nabla_i f(\mathbf{x})$?
- c) Consider the following implementation of coordinate descent, where y_t denotes a sequence of auxiliary variables, $y_0 = Ax_0$. At iteration t, pick index $i_t \in [d]$ uniformly at random and update:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma (\mathbf{e}_{i_t}^{\top} A^{\top}) \cdot (\mathbf{y}_t - \mathbf{b}) \cdot \mathbf{e}_{i_t}, \mathbf{y}_{t+1} = \mathbf{y}_t - \gamma (\mathbf{e}_{i_t}^{\top} A^{\top}) \cdot (\mathbf{y}_t - \mathbf{b}) \cdot (A\mathbf{e}_{i_t}),$$
(1)

where \mathbf{e}_i denotes the *i*-th unit vector. Show that this is equivalent to the coordinate descent update $\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \nabla_{i_t} f(\mathbf{x}_t)$. What is the time-complexity of updating both sequences in (1)?

SGD

Exercise 2 (Weak Growth Condition). Suppose $F(\cdot)$ is L-smooth and has a minima at x^* . We say the stochastic gradient satisfies the weak growth condition with constant c if

$$\mathbb{E}[\|\nabla f(\mathbf{x}, \boldsymbol{\xi})\|_2^2] \le 2cL[F(\mathbf{x}) - F(\mathbf{x}^*)].$$

Prove that

- 1. For convex function F, strong growth condition implies weak growth condition.
- 2. For μ -strongly convex function F, weak growth condition implies strong growth condition.

Practical Implementation of CD

Follow the Python notebook provided here:

colab.research.google.com/github/epfml/OptML_course/blob/master/labs/ex08/template/Lab_8.ipynb