XIII. Signal to Noise (S/N) [v1.3.4]

A. Overview

- It is relatively easy to generate a good idea for an observational experiment in astronomy
 - ♦ Imaging an exoplanet
 - ♦ Detecting the black hole at our Galaxy's center
 - ♦ Observing the gas that fuels stars in distant galaxies
- It is much harder to generate a good idea that can be performed/tested with a telescope!
 - \diamond Finite collecting power (D^2)
 - \diamond Finite time (t)
 - \diamond Finite angular resolution (D^{-1})
 - \diamond Finite sky background (t^2)
 - \diamond Finite universe (age+size; t)
- Key: Is our source sufficiently bright to yield a signal that deviates significantly from a null detection?
 - ♦ Compare expected signal to the predicted/measured noise
 - \diamond For a confident detection, desire signal-to-noise S/N > 3
 - \diamond And, because this exercise is highly idealized, best to aim for S/N > 5 (or 10!)
- References
 - ♦ ??

B. Signal

- For many experiments, we are limited by the number of photons from the source that we can collect
 - ♦ Faint, nearby sources (planets)
 - ♦ Bright, but very distant sources (galaxies)
- Signal is directly proportional to the source flux
 - \diamond Bolometric flux F_B
 - ▲ Energy per second per area
 - ▲ No telescope observes photons at all energies
 - ▲ Generally only one to a few octaves in energy
 - ♦ Specific flux
 - \blacktriangle Energy per second per area per energy interval (recall, $\Delta E = h\Delta \nu$)
 - \bullet f_{ν} : erg/s/cm²/Hz

- $\blacktriangle f_{\lambda}$: erg/s/cm²/Å
- **▲** These are interchangeable: $f_{\lambda}d\lambda = f_{\nu}d\nu$
- Photons collected per unit time: ϕ
 - \diamond Consider a circular primary mirror with diameter D_p
 - ▲ In theory, its collecting area is $A = \pi (D_p/2)^2$
 - ▲ But, it is always obstructed by optics (e.g. the secondary) and/or instrumentation (prime focus camera)
 - \diamond Express its effective area as $A_{\rm eff} < A$
 - \diamond Photons collected per second per unit wavelength ϕ_{λ}

$$\phi_{\lambda} = A_{\text{eff}} \frac{f_{\lambda}}{h\nu} \tag{1}$$

- \blacktriangle Units of ϕ_{λ} : photons/s/Å
- ▲ Example
 - Betelgeuse has $V = 0.5 \,\mathrm{mag}$ or $f_{\lambda} = 2.7 \times 10^{-9} \,\mathrm{ergs/s/cm^2/Å}$
 - \circ Keck telescope has $D_p=10\,\mathrm{m}$ and $A_{\mathrm{eff}}=7.2\times10^5\,\mathrm{cm}^2$
 - $\phi_{\lambda} = 5 \times 10^8 \text{ photons/s/Å}$
 - Maybe Keck is overkill for this star!
- Signal: Photons detected (depends on η)
 - \diamond While ϕ_{λ} photons are being collected every second, not all will be recorded
 - \blacktriangle A small percentage are lost to imperfect mirror coatings ($\sim 1\%$ per bounce)
 - ▲ Camera optics don't have perfect transmission
 - \blacktriangle Detector has a QE less than 100%
 - \diamond Define η as the end-to-end efficiency of the system
 - \blacktriangle (Camera) x (detector) x (telescope) [ignoring the atmosphere]
 - **▲** Typically, $\eta \approx 10 30\%$
 - \blacktriangle i.e. 70 90% of the photons are lost!
 - And it is wavelength dependent,
 - \blacktriangle e.g. we will use η_{λ}
- \bullet The Signal is also proportional to the integration time t
 - \diamond Signal per unit wavelength: S_{λ}

$$S_{\lambda} = \phi_{\lambda} \, \eta_{\lambda} \, t \tag{2}$$

- ♦ This is counts per Angstrom!
 - \blacktriangle For imaging, you need to integrate (sum) over the filter
 - \blacktriangle A typical broad band filter (V) has
 - $\Delta \lambda \approx 1200 \text{Å}$
 - \blacktriangle Total signal: $S = S_{\lambda} \Delta \lambda$

- ♦ Measure the total signal in electrons
 - ▲ These are not the counts recorded in images!
 - ▲ Need to include the gain..
 - ▲ But these follow Poisson stats

C. Noise

- In the absence of noise, one could always achieve a detection
 - ♦ Provided you could wait long enough to detect the signal
 - \diamond This might require t approaching ∞ !
- In practice, there is uncertainty in our measurements from a wide range of sources
 - ♦ These limit the S/N that we can achieve
 - ♦ We ignore, for now, systematic uncertainties
- Detector noise
 - \diamond Read noise (RN)
 - ▲ An unavoidable, nearly Gaussian source of counts that we associate with the detector read-out electronics
 - ▲ It affects our measurements once per exposure, independent of exposure time
 - ▲ Typically, $RN \approx 3 10$ electrons
 - ▲ Variance: $\sigma_{RN}^2 = RN^2$
 - ♦ Dark current
 - ▲ Noise associated with thermal motions of electrons in the detector
 - Proportional to the exposure time
 - Poisson process
 - \blacktriangle Express the count rate as DC
 - Then, the variance is $\sigma_{\text{dark}}^2 = DC \cdot t$
 - Typical values are DC = 1 10 electrons per hour
 - Often ignored because it is such a small contribution
- Object "noise"
 - ♦ The detection of photons from our source is a Poisson process
 - \blacktriangle Expect an average signal of S photons
 - ▲ Variance in Poisson equals the mean:

$$\sigma_{\rm obj}^2 = S \tag{3}$$

- \diamond Noise from the source: $\sigma_{\rm obj} = \sqrt{S}$
- Background
 - ♦ Recall that the night sky is far from dark
 - ▲ Airglow, moon light

- ▲ Zodiacal light
- ▲ EBL
- ♦ At mid-IR wavelengths, the dome, air and telescope are all shining too
- ♦ Generally, the background is uniform on the sky
 - ▲ Not localized like a star or a distant galaxy
 - ▲ Every pixel in the image includes sky background
- \diamond Characterized as a surface brightness (μ_{λ})
 - ▲ Specific flux per unit area
 - ▲ Usually an angular area
 - \circ per square arcsec (\square'')
 - $\circ \mu \approx 19 24$ mag / \square'' for optical (wavelength, moon dependent)
- ♦ Calculating the noise from the sky background
 - ▲ Similar to our calculations for the Source
 - \blacktriangle But we need to integrate over an effective background area A_B
 - For imaging, this is usually the angular size of our source
 - For spectroscopy, the aperture (e.g. slit width) matters
 - ▲ Mean number of electrons recorded per wavelength

$$B_{\lambda} = \mu_{\lambda} A_B A_{\text{eff}} \eta_{\lambda} t \tag{4}$$

▲ Assume some wavelength interval

$$B = B_{\lambda} \, \Delta \lambda \tag{5}$$

- ▲ Again, expect Poisson statistics
 - Variance: $\sigma_{\rm sky}^2 = B$
 - \circ Noise $\sigma_{\rm skv} = \sqrt{B}$
- Total Noise (N)
 - ♦ Add it all up in quadrature

$$N = \sqrt{\sigma_{\text{obj}}^2 + \sigma_{\text{sky}}^2 + \sigma_{RN}^2 + \sigma_{DC}^2} \tag{6}$$

- \diamond Note: All but $\sigma_{\rm RN}$ are proportional to time
- \diamond For this reason, one usually integrates long enough so that $\sigma_{\rm RN}^2$ may be ignored

D. Read Noise limited S/N

- Extremely faint sources and background
 - ♦ Or a very poor detector
- Read noise dominated
 - $\diamond N \approx \sigma_{\rm RN}$

 \diamond S/N is proportional to t!

$$\frac{S}{N}\Big|_{RN} = \frac{(f_{\lambda}A_{\text{eff}}\Delta\lambda\eta_{\lambda}/h\nu)t}{\sigma_{\text{RN}}}$$
 (7)

- ♦ Integrate twice as long and achieve twice the signficance!
- ♦ This sounds good, but it is almost always a bad sign
- ♦ It is primarily the result of your very faint signal or inefficient telescope!
- Note: $S/N|_{RN}$ is also proportional to A_{eff} (i.e. D^2) which motivates the construction of ever larger telescopes

E. Source-dominated S/N

- Source count rate significantly exceeds that of all others
- Typical case for bright sources
 - $\diamond N \approx \sigma_{\rm obj}$
 - \diamond S/N is proportional to $(f_{\lambda}t)^{1/2}$

$$\frac{S}{N}\Big|_{obj} = \sqrt{\frac{f_{\lambda}A_{\text{eff}}\eta_{\lambda}t\Delta\lambda}{h\nu}} \tag{8}$$

• Consider the time to achieve a given S/N

$$t \propto \left(\left. \frac{S}{N} \right|_{obj} \right)^2 f_{\lambda}^{-1} \Delta \lambda^{-1} \tag{9}$$

- \diamond It is inversely proportional to f_{λ} and $\Delta\lambda$
- \diamond But the square of the desired S/N!
- \diamond Takes 4× longer exposure to double the statistical significance

F. Background dominated S/N

- Common for faint sources
 - ♦ Or very bright backgrounds
- $N \approx \sigma_{\rm skv}$
 - \diamond Once again, $S/N \propto t^{1/2}$

$$\frac{S}{N}\Big|_{sky} = \frac{f_{\lambda}A_{\text{eff}}\eta_{\lambda}t\Delta\lambda}{\sqrt{\mu_{\lambda}A_{B}A_{\text{eff}}\eta\Delta\lambda t}} \propto \frac{t^{1/2}f_{\lambda}\sqrt{A_{\text{eff}}\Delta\lambda}}{\sqrt{\mu_{\lambda}A_{B}}}$$
(10)

• Time to achieve a desired S/N

$$t \propto \frac{(S/N)^2 \mu_{\lambda} A_B}{f_{\lambda}^2 A_{\text{eff}} \Delta \lambda} \tag{11}$$

- \diamond t is proportional to μ_{λ}
 - ▲ Avoid the moon (at wavelengths where it matters)
 - ▲ Avoid bright sky lines
 - ▲ Reduce thermal background (if it matters)
- \diamond t is proportional to A_B
 - ▲ Reduce the size of the background region
 - ▲ Imaging of point sources (e.g. stars)
 - $\circ A_B \propto \theta^2 \propto (\lambda/D)^2$
 - $\circ A_B \propto (FWHM_{\text{seeing}})^2$
 - Big gains in improving seeing and/or the diffraction limit
 - ▲ Spectroscopy
 - $\circ A_B \propto (\text{Slit width} \times FWHM_{\text{seeing}})$
 - Narrow the slit width to reduce the background
- \diamond t is proportional to A_{eff}^{-1} , i.e. D^{-2}
- ♦ Increase telescope diameter
 - $\blacktriangle t \propto A_B/A_{\rm eff}$
 - ▲ In diffraction limit, $t \propto D^{-4}$!
 - ▲ Say hello to my friend TMT!!

G. Exposure Time Calculators

- Many observatories provide software to estimate the S/N of an observation
 - \diamond These are intended to capture all of the factors (e.g. $\eta_{\lambda}, A_{\text{eff}}$) for a given instrument+telescope
 - ♦ They generally include a range of tools for the source and background too
- Examples
 - ♦ HST
 - ▲ COS spectrograph
 - ▲ WFC3 imager
 - ♦ Keck
 - ▲ ESI (esi_s2ngui)
 - ▲ HIRES (hires_s2ngui)
 - ♦ These are useful, but...
 - ▲ Highly idealized
 - ▲ Simply sky background models
 - ▲ Occasionally erroneous!

H. S/N Considerations for Imaging

• The PSF is critical (for small objects)

• $\Delta \lambda$ matters too

I. S/N Considerations for Spectroscopy

- Resolution (R)
 - ♦ Definition
 - ▲ Width of an unresolved spectral line
 - ▲ e.g. the line-emission from an arc lamp (Ne)
 - \blacktriangle Often expressed as a FWHM
 - In km/s or Å
 - $\circ \text{ Recall } FWHM = 2\sigma\sqrt{2\ln 2}$
- Dispersion
 - ♦ Size (in km/s or Å) of a pixel
 - $\diamond \Delta \lambda$
 - \diamond Occasionally, and confusingly, one may report the "resolution" of the spectrograph as $\lambda/\Delta\lambda$
- Sampling
 - $\diamond FWHM/\Delta\lambda$
 - \diamond Nyquist limit: $(FWHM/\Delta\lambda = 2)$
- Equivalent Width (EW)
 - Absorption: Measure of the fracton of photons that were absorbed by a medium (gas, dust)
 - \diamond Let f_{λ}^{int} be the unabsorbed light
 - ♦ Definition
 - \blacktriangle EW or W_{λ}

$$W_{\lambda} = \int \frac{f_{\lambda}^{obs}}{f_{\lambda}^{int}} d\lambda \tag{12}$$

- ▲ Integral is evaluated over the feature or region of interest
- ▲ Calculating the variance

$$\sigma^2(W_\lambda) = \sum_{i=1}^n \Delta \lambda_i^2 \, \sigma_i^2(f^{obs}/f^{int}) \tag{13}$$

$$\approx n \; \Delta \lambda^2 \; \sigma^2(f^{obs}/f^{int}) \tag{14}$$

- ▲ Where the latter approximation assumes that $\Delta \lambda$ and the error σ_i vary little over the *n* pixels of integration
- ▲ Recognizing that $\sigma(f^{obs}/f^{int})$ is simply the inverse of the S/N, we finish with:

$$\sigma(W_{\lambda}) \approx \frac{\Delta \lambda \ n^{1/2}}{S/N} \tag{15}$$