Math 131AH: Homework #1

Due on January 18, 2022

Professor Marek Biskup

Nakul Khambhati

Problem 1

We will construct the truth tables by evaluating intermediate expressions. For conciseness, we will abbreviate TRUE as 1 and FALSE as 0.

1.
$$(P \lor Q) \land \neg (P \land Q)$$

P	Q	$\neg (P \land Q)$	$P \lor Q$	$(P \lor Q) \land \neg (P \land Q)$
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

2.
$$P \Rightarrow (Q \Rightarrow \neg P)$$

P	Q	$Q \Rightarrow \neg P$	$P \Rightarrow (Q \Rightarrow \neg P)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

We can verify this by checking the truth table of $(P \land \neg Q) \lor (P \land Q)$

P	Q	$P \wedge \neg Q$	$P \wedge Q$	$(P \land \neg Q) \lor (P \land Q)$
0	0	0	0	0
0	1	0	0	0
1	0	1	0	1
1	1	0	1	1

Since P and $(P \land \neg Q) \lor (P \land Q)$ have the same truth values, we conclude that $P \iff (P \land \neg Q) \lor (P \land Q)$ and the expression is a TAUTOLOGY.

Problem 2

First, we define the proposition m|n as $\exists k \in \mathbb{Z} : n = km$. We now transcribe the english sentences to propositional logic:

- 1. $\forall n \in \mathbb{N} : 3|n \implies (7|n \implies 2|n)$
- 2. $(\exists n \in \mathbb{N} : 6 | n \land 4 | n) \land (\exists m \in \mathbb{N} : 6 | m \land \neg(4 | m))$
- 3. $(\forall n \in \mathbb{N} : (6|n \implies 5|n) \implies 20|n) \land (\exists m \in \mathbb{N} : 6|m \land \neg(5|m))$
- 4. $\exists n \in \mathbb{N} : 3|n \wedge 7|n \wedge \neg(2|n)$
- 5. $(\forall n \in \mathbb{N} : \neg(6|n) \lor \neg(4|n)) \lor (\forall m \in \mathbb{N} \neg(6|m) \lor (4|m))$
- 6. $(\exists n \in \mathbb{N} : (6|n \implies 5|n) \land \neg(20|n)) \lor (\forall m \in \mathbb{N} : \neg(6|m) \lor 5|m)$

Problem 3

We are working within the universal set \mathbb{R} of real numbers.

- 1. $\forall A \subset \mathbb{R}(\exists x \in A : (\forall y \in A : y = x \iff y^2 = 1))$
- 2. $\forall A \subset \mathbb{R}(\exists x \in A : (\forall y \in A : (y \neq x \Rightarrow y < x)))$
- 3. $\forall x \in \mathbb{R} \ \exists A \subset \mathbb{R} : A \neq \emptyset \land x \notin A$

Problem 4

We are asked to consider the relation $A \subset B := (\forall x \in A : x \in B)$

(reflexive) It is clear that $\forall x \in A : x \in A \text{ so } A \subset A$.

- (antisymmetric) Let $A \subset B$ and $B \subset A$. Then $\forall x \in A : x \in B$ and $\forall y \in B : y \in A$ so $\forall x \in C : x \in A \iff x \in B$, therefore A = B.
 - (transitive) Let $A \subset B$ and $B \subset D$. Let $x \in A$. Therefore, $x \in B$, so $x \in D$. Since x was arbitrarily chosen, we have $\forall x \in A : x \in D$ so $A \subset D$.

This proves that the relation is a partial order.

Problem 5

(a) We are asked to show that $\bigcup_{\alpha \in I} A_{\alpha}^{c} = (\bigcap_{\alpha \in I} A_{\alpha})^{c}$.

Proof. $x \in \bigcup_{\alpha \in I} A_{\alpha}^{c} \iff \exists i \in I : x \in Y \setminus A_{i} \iff \exists i \in I : (x \in Y \land x \notin A_{i}) \iff x \in Y \land x \notin \bigcap_{\alpha \in I} A_{\alpha} \iff x \in (\bigcap_{\alpha \in I} A_{\alpha})^{c} \text{ i.e. } x \in Y \setminus \bigcap_{\alpha \in I} A_{\alpha}. \text{ Since } x \in \text{LHS} \iff x \in \text{RHS, we say that LHS} = \text{RHS.}$

Alternatively, we can describe both sets using propositional logic:

$$\begin{aligned} & \text{LHS} = \{x \in Y : (\exists \alpha \in I : x \notin A_\alpha)\} \\ & \text{RHS} = \{x \in Y : \neg (\forall \alpha \in I : x \in A_\alpha)\} = \{x \in Y : (\exists \alpha \in I : x \notin A_\alpha)\} \\ & \text{Clearly, LHS} = \text{RHS}. \end{aligned}$$

(b) We are asked to show that $\bigcap_{\alpha \in I} A_{\alpha}^{c} = (\bigcup_{\alpha \in I} A_{\alpha})^{c}$.

$$\begin{array}{ll} \textit{Proof.} \ x \ \in \bigcap\limits_{\alpha \in I} A^c_{\alpha} \iff \forall i \in I : x \in Y \setminus A_i \iff \forall i \in I : x \in Y \wedge x \not \in A_i \\ \iff x \in Y \wedge x \not \in \bigcup\limits_{\alpha \in I} A_{\alpha} \iff x \in (\bigcup\limits_{\alpha \in I} A_{\alpha})^c. \ \text{Since} \ x \in \texttt{LHS} \iff x \in \texttt{RHS}, \ \text{we say that LHS} = \texttt{RHS}. \end{array}$$

Again, we can also describe both sets using propositional logic:

$$\begin{split} \text{LHS} &= \{x \in Y : (\forall \alpha \in I : x \notin A_\alpha)\} \\ \text{RHS} &= \{x \in Y : \neg (\exists \alpha \in I : x \in A_\alpha)\} = \{x \in Y : (\forall \alpha \in I : x \notin A_\alpha)\} \end{split}$$

Therefore, LHS = RHS.

Problem 6

We define $[x] := \{y \in A : x \sim y\}$ and we have to prove that $\forall x, y \in A : [x] = [y] \lor [x] \cap [y] = \emptyset$.

Proof. Assume that $[x] \cap [y] \neq \emptyset$ i.e. $\exists z \in A : z \in [x] \land z \in [y]$. Then, by definition, $x \sim z$ and $y \sim z$. By symmetry, $z \sim y$ and by transitivity, $x \sim y$. Then $x \in [y]$. Let $w \in [x]$ i.e. $x \sim w$. Again, by symmetry and transitivity, we can show $y \sim w$ so $w \in [y]$. This implies that $[x] \subset [y]$. Similarly, we can argue that $[y] \subset [x]$ so [x] = [y]. We have shown that if [x] and [y] are not disjoint then [x] = [y]. So, we have proved the claim that $[x] = [y] \lor [x] \cap [y] = \emptyset$. Since $x, y \in A$ were arbitrarily chosen, this holds $\forall x, y \in A$.

Problem 7

Proof. It is clear that $x = x' \land y = y' \implies \{x, \{x, y\}\} = \{x', \{x', y'\}\} \iff (x, y) = (x', y')$. Now assume that $(x, y) = (x', y') \iff \{x, \{x, y\}\} = \{x', \{x', y'\}\}$. Then, by size considerations, $x = x' \land \{x, y\} = \{x', y'\}$ so y = y'.

Problem 8

1.
$$f^{-1}(\bigcup_{\alpha \in I} Y_{\alpha}) = \left\{ x \in X : f(x) \in \bigcup_{\alpha \in I} Y_{\alpha} \right\} = \left\{ x \in X : (\exists \alpha \in I : f(x) \in Y_{\alpha}) \right\}$$
$$\bigcup_{\alpha \in I} f^{-1}(Y_{\alpha}) = \left\{ x \in X : (\exists \alpha \in I : f(x) \in Y_{\alpha}) \right\}$$

Since the two have identical expressions, $f^{-1}(\bigcup_{\alpha \in I} Y_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(Y_{\alpha})$

2.
$$f^{-1}(\bigcap_{\alpha \in I} Y_{\alpha}) = \left\{ x \in X : f(x) \in \bigcap_{\alpha \in I} Y_{\alpha} \right\} = \left\{ x \in X : (\forall \alpha \in I : f(x) \in Y_{\alpha}) \right\}$$
$$\bigcap_{\alpha \in I} f^{-1}(Y_{\alpha}) = \left\{ x \in X : (\forall \alpha \in I : f(x) \in Y_{\alpha}) \right\}$$

Since the two have identical expressions, $f^{-1}(\bigcap_{\alpha \in I} Y_{\alpha}) = \bigcap_{\alpha \in I} f^{-1}(Y_{\alpha})$