5.2 - CIRCUITOS ARITMÉTICOS

Uma das funções essenciais da maioria dos computadores e sistemas digitais são as operações aritméticas tais como, adição, subtração, multiplicação e divisão. Estas operações são realizadas na

Unidade lógica e aritmética (ULA) destes sistemas digitais, onde uma série de portas lógicas são combinadas para adicionar, subtrair, multiplicar ou dividir números binários. No caso das operações de multiplicação e divisão, além das portas lógicas há a necessidade de circuitos seqüenciais (Flip-Flop's) e, portanto não serão objeto de estudo nesta disciplina.

Os circuitos aritméticos são implementados a partir de blocos que sejam capazes de adicionar 2 bits, chamado de meio somador, ou 3 bits chamados de somador completo. Para o entendimento das funções destes circuitos, será considerado o procedimento matemático utilizado para a operação de adição de números binários. Seja a soma dos números A₃A₂A₁A₀ e B₃B₂B₁B₀, mostrada abaixo:

Também conhecido por Carry.

5.2.1 - Circuito Meio Somador (Half-Adder)

Este arranjo lógico é capaz de realizar a soma de apenas dois bits, Ax e Bx, produzindo como resultado um bit de soma Sx e um de transporte ou carry Tx. Inicialmente deve-se analisar todas as possibilidades para a adição de 2 bits, como mostrado abaixo.

Transportando as possibilidades das somas acima, para a tabela verdade, tem-se:

A_0	\mathbf{B}_0	S_0	T_0
A ₀	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Analisando a tabela verdade acima, podem ser obtidas as expressões que definem as saídas So e T₀, como mostrado abaixo.

$$\begin{split} S_0 &= \overline{A_0}.B_0 + A_0.\overline{B_0} = A_0 \oplus B_0 \\ T_0 &= A_0.B_0 \end{split}$$

A solução da tabela verdade, pode ser agora expressa através de um circuito lógico, como mostrado a seguir.

5.2.2 - Somador Completo (Full Adder)

O circuito somador completo, é obtido da mesma forma que no caso do meio somador, com a diferença de que agora existe a possibilidade de ter havido um transporte da coluna anterior. Como as somas dos dígitos são iguais, será mostrada apenas a soma para o grupo A_1 , B_1 e T_0 . Seja a tabela verdade mostrada abaixo.

A_1	\mathbf{B}_1	T ₀	S_1	T_1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Transpondo agora os valores da tabela da verdade para o diagrama de Karnaugh pode-se obter o circuito mínimo capaz de executar a função do somador completo, como mostrado a seguir.

		$\overline{B}_{I}\overline{T}_{0}$	$\overline{B}_{I}T_{0}$	B_IT_{θ}	$B_{I}\overline{T}_{0}$
$S_2 \Rightarrow$	\overline{A}_{I}	0		0	(1)
	A_{I}	(1)	0	(1)	0

Pelos mapas mostrados, conclui-se que a saída " S_2 " não permite simplificação e pode ser expressa como uma função OU-EXLUSIVO de 3 entradas (A_I , B_I e T_{θ}). Já para a saída a simplificação obtida através do Mapa de Karnaugh é mostrada abaixo.

$$S_I = A_\theta \oplus B_\theta \oplus T_\theta \qquad e \qquad T_I = A_\theta T_\theta + A_\theta B_\theta + B_\theta T_\theta$$

O circuito somador completo é mostrado abaixo:

Uma vez que já temos conhecimento da estrutura interna de um circuito meio somador e de um circuito somador completo, será utilizada a seguir apenas a representação por blocos.

5.2.3 -Somador Completo de 4 Bits

Como visto, cada circuito somador completo será responsável pela soma dos bits de uma mesma coluna, efetuando sempre a soma de três bits, um bit de cada número $(A_x e B_x)$ mais o bit de transporte da coluna antecessora (T_{x-1}) . O processo de adição tem início com a soma dos dígitos menos significativos de cada uma das parcelas envolvidas, gerando um bit de soma e o bit de transporte. Este bit de transporte deverá ser adicionado aos bits da próxima coluna e assim sucessivamente. Desta forma para somarmos dois números de 4 bits cada, por exemplo, precisaremos de 4 circuitos somadores completos ou de 3 circuitos somadores completos e um circuito meio somador para a coluna dos bits menos significativos, onde não há transporte a ser adicionado. A seguir são mostradas as representações por blocos destas duas possibilidades.

O circuito acima, composto apenas de somadores completos é o circuito integrado 7483, representado abaixo, o qual possui internamente 4 somadores completos. Nos casos onde a soma envolver

números com mais de 4 bits, utiliza-se mais de um CI 7483, onde o transporte de saída do primeiro CI 7483 é conectado ao transporte de entrada do CI7483 seguinte, e assim sucessivamente.

5.2.4 - Circuito Somador/Subtrator de 4 Bits

Conforme já visto no capítulo 1, a subtração binária é feita através do método de complemento de "2", onde é necessário obter o complemento de "1" do subtraendo (número "B") e adicionar "1" a subtraendo já complementado. Entretanto o circuito a ser projetado deve realizar tanto a soma de dois números binários de 4 bits, como a subtração. Para tanto, existe a necessidade de um circuito inversor controlado, isto é, que somente execute o complemento de "1" do subtraendo, nos casos de subtração. Este circuito pode ser obtido através de portas OU-EXCLUSIVO, como mostrado a seguir.

Para se obter um circuito somador/subtrador de 4 bits deve-se associar o circuito somador de 4 bits já mostrado com o circuito inversor controlado mostrado acima, como mostrado a seguir.

Exercícios

- 1 Montar no LOGISIM um contador de 4 bits.
- 2 Dado os valores abaixo, converta para binário e faça as operações.
 - a) $(21)_{10} + (14)_{10} =$
 - b) $(21)_{10} (14)_{10} =$
 - c) $(31)_{10} (17)_{10} =$
 - d) $(22)_{10} (14)_{10} =$
 - e) $(11)_{10} + (11)_{10} =$
 - f) $(31)_{10} (33)_{10} =$
 - g) $(8)_{10} (5)_{10} =$