

The Berkeley Out-of-Order Machine (**BOOM!**):
Computer Architecture Research Using an
Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor

Christopher Celio, Krste Asanovic,
David Patterson
RE 2015 June

celio@eecs.berkeley.edu

What is BOOM?

- superscalar, out-of-order processor written in Berkeley's Chisel RTL
- It is synthesizable
- It is parameterizable
- We hope to use it as a platform for architecture research

BOOM is a work-in-progress. Results shown in the talk are preliminary and subject to change!

Other Berkeley RISC-V Processors

- Sodor Collection
 - RV32I tiny, educational, not-synthesizable
- Z-scale
 - RV32IM micro-controller
- Rocket
 - RV64G in-order, single-issue application core
- BOOM
 - RV64G out-of-order, superscalar application core

Why OoO?

• Great for …

- tolerating variable latencies
- finding ILP in code (instruction-level parallelism)
- complex method for fine-grain data prefetching
- plays nicely with poor compilers and lazily written code

Performance!

OoO widely used in industry

- Intel Xeon/i-series (10-100W)
- ARM Cortex mobile chips (1W)
- Intel Atom
- Sun/Oracle Niagara UltraSPARC
- Play Station

Low-Power Leadership from ARM

Apple iPhone Time Line And Evolution

Academic OoO Research

- general lack of effort in academia to build, evaluate
 OoO designs
- most research uses software simulators
 - cannot produce area, power numbers
 - hard to trust, verify results
 - McPAT is calibrated against 90nm Niagara, 65nm Niagara 2, 65nm
 Xeon, and 180nm Alpha 21364
 - very slow
- Other Academic OoO RTL efforts...
 - Illinois Verilog Model, Princeton Sharing Architecture, NCSU FabScalar (Alpha, PISA)
 - other ISAs can be very challenging to implement fully
 - rely on SW simulators for performance numbers
 - hopefully RISC-V can make everybody's lives easier!

Design-space exploration

Very preliminary

- Parameters
 - fetch width
 - issue width
 - ROB size
 - IW size
 - LSU size
 - Regfile size
 - # of branch tags
- 3x range in area
- 2x range in performance

data collected by Orianna DeMasi

Research Methodology

- Which benchmarks?
- How many cycles do we need to run?
- State of the art
 - "SimPoints"
 - run 4-10 snapshots per SPEC2000/2006 benchmark
 - each snapshot runs for ~10M instructions
- What other people do (ISCA 2014 results)
 - ~50M instructions / workload
 - ~200B instructions / paper
- What we can do
 - map design to an FPGA
 - run 50 MHz (~1T cycles/6hrs)
 - run full reference benchmark (~2 Trillion instructions avg)
 - run on FPGA cluster (~1-2 weeks simulation in one day, or ~30-60T instructions/day)

Berkeley Architecture Research Infrastructure

- RISC-V ISA
- Chisel HCL (hardware construction language)
- Rocket-chip SoC generator

The RISC-V ISA is easy to implement!

- relaxed memory model
- accrued FP exception flags
- no integer side-effects (e.g., condition codes)
- no cmov or predication
- no implicit register specifiers
 - JAL requires explicit rd
- rs1, rs2, rs3, rd always in same space
 - allows decode, rename to proceed in parallel

The RISC-V ISA

- BOOM supports "M" (mul/div/rem)
 - imul can be either pipelined or unpipelined
- BOOM supports "A"
 - AMOs+LR/SC
- BOOM supports "FD"
 - single, double-precision floating point
 - IEEE 754-2008 compliant FPU
 - SP, DP FMA with hw support for subnormals
- RV64G

Rocket-Chip SoC Generator

- open-source
- taped out 10 times by Berkeley
- runs at 1.6 GHz in IBM 45nm
- makes for a great library of processor components!

ASPIRE Supports Privileged ISA ("S"), Virtual Memory

- boots Linux!
- just released Privileged ISA v1.7
- instant to update

 Privileged ISA nearly entirely isolated to Control/Status Register (CSR) File, TLBs

updated git submodule pointers

 changed "tohost" to "mtohost" in one line

Chisel

- Hardware Construction Language embedded in Scala
- <u>not</u> a high-level synthesis language
- hardware module is a data structure in Scala
- Full power of Scala for writing generators
 - object-oriented programming
 - factory objects, traits, overloading
 - functional programming
 - high-order funs, anonymous funcs, currying
- generated C++ simulator is 1:1 copy of Verilog designs

Chisel Hardware Construction Language

- object-oriented, functional programming
- powerful for writing hw generators
- 12 days (+1092 loc) to add SP,DP floating point
- 9 days (+900 loc) to go from no VM to booting Linux

BOOM

BOOM

- explicit renaming
- holds speculative and committed data
- holds both x-regs, f-regs
- Unified Issue Window
 - holds all instructions
- split ROB/issue window design

Parameterized Superscalar

Full Branch Speculation Support

- next-line predictor (NLP)
 - BTB, BHT, RAS
 - combinational
- backing predictor (BPD)
 - global history predictor
 - SRAM (1 r/w port)

Load/Store Unit

- load/store queue with store ordering
 - loads execute fully out-of-order wrt stores, other loads
 - store-data forwarded to loads as required
- non-blocking data cache

Synthesizable

- Runs on FPGA
 - (Zynq zedboard and Zynq zc706)
- 2GHz (30 FO4) in TSMC 45nm
 - speed of logic (SRAM is slower)

1.7mm² @ 45nm

2-wide BOOM layout.

Benefits of using Chisel

- ~9,000 loc in BOOM github repo
- additional ~11,500 loc instantiated from other libraries
 - ~5,000 loc from Rocket core repository
 - functional units, caches, PTWs, etc.
 - ~4,500 loc from uncore
 - coherence hubs, L2 caches, networks, host/target interfaces
 - ~2000 loc from hardfloat
 - floating point hard units

Feature Summary

Feature	BOOM
ISA	RISC-V (RV64G)
Synthesizable	$\sqrt{}$
FPGA	$\sqrt{}$
Parameterized	$\sqrt{}$
floating point	$\sqrt{}$
AMOs+LR/SC	$\sqrt{}$
caches	$\sqrt{}$
VM	$\sqrt{}$
Boots Linux	$\sqrt{}$
Multi-core	$\sqrt{}$
lines of code	9k + 11k

That's BOOM!

Comparison against ARM

Category	ARM Cortex-A9	RISC-V BOOM-2w	
ISA	32-bit ARM v7	64-bit RISC-V v2 (RV64G)	
Architecture	2 wide, 3+1 issue Out-of- Order 8-stage	2 wide, 3 issue Out-of- Order 6-stage	
Performance	3.59 CoreMarks/MHz	3.91 CoreMarks/MHz	
Process	TSMC 40GPLUS	TSMC 40GPLUS	
Area with 32K caches	~2.5 mm ²	~1.00 mm ²	
Area efficiency	1.4 CoreMarks/MHz/mm ²	3.9 CoreMarks/MHz/mm ²	
Frequency	1.4 GHz	1.5 GHz	

preliminary results

note: not to scale

Industry Comparisons

Industry Comparisons

nr Berkeiek				
Processor	Core Area	CoreMark/ MHz	Freq (MHz)	IPC
Intel Xeon E5 2668 (Ivy)	~12 mm ² @22nm	5.60	3,300	1.96
ARM Cortex-A15	2.8 mm ² @28nm	4.72	2,116	1.50
BOOM-4wide	1.1 mm ² @45nm	4.70	1,000	1.50
BOOM-2wide	0.8 mm ² @45nm	3.91	1,500	1.26
ARM Cortex-A9	2.5 mm ² @40nm	3.59	1,400	1.27
MIPS 74K	2.5 mm ² @65nm	2.50	1,600	-
Rocket (RV64G)	0.5 mm ² @45nm	2.32	1,500	0.76
ARM Cortex-A5	0.5 mm ² @46nm	2.13	-	-

Ivy Bridge Tile Comparison

Ivy Bridge-EP Tile

BOOM-2w Chip (32kB/32kB + 256kB caches)
(32kb/32kB + 256kB caches) ~12nm @ 22nm
1.7mm² @ 45nm

BOOM-2w Chip scaled to **0.4mm² @ 22nm** preliminary results

Synthesis Results

preliminary results

Synthesis Results

Lessons

- RISC-V is a great ISA
 - it gets out of your way
 - the instruction count difference is greater between gcc versions than between ISAs
- code-reuse is great
 - leveraging existing Rocket-chip infrastructure
- Way too much of my time is wasted on corralling benchmarks
 - we should share our efforts
 - https://github.com/ccelio/Speckle/
 - make generating portable SPEC CPU2006 easy
- Debugging is hard
 - good verification tests are more valuable than good RTL
 - use asserts EVERYWHERE
 - use an ISA simulator in parallel with RTL simulation

"Speckle" - a wrapper for SPEC CPU2006

- SPEC is designed to be run natively
 - a pain for cross-compiling, running on a simulator or FPGA
- If you have a copy of CPU2006...
 - modify the provided cfg file
 - Speckle will compile and generate a portable directory of binaries, input files, and input arguments, and a run script
- https://github.com/ccelio/Speckle/

Conclusion

- BOOM supports full RV64G + privileged ISA (VM support)
- Able to boot Linux and run CoreMark, SPECINT, and Dhrystone benchmarks
- BOOM is 9,000 loc and 3 person-years of work
- Future Work
 - bring-up more interesting applications
 - add ROCC interface
 - explore new μarch designs
 - tape-out this fall
 - open-source by winter workshop

Questions?

Funding Acknowledgements

- Research partially funded by DARPA Award Number HR0011-12-2-0016, the Center for Future
 Architecture Research, a member of STARnet, a Semiconductor Research Corporation program
 sponsored by MARCO and DARPA, and ASPIRE Lab industrial sponsors and affiliates Intel,
 Google, Huawei, Nokia, NVIDIA, Oracle, and Samsung.
- Approved for public release; distribution is unlimited. The content of this presentation does not necessarily reflect the position or the policy of the US government and no official endorsement should be inferred.
- Any opinions, findings, conclusions, or recommendations in this paper are solely those of the authors and does not necessarily reflect the position or the policy of the sponsors.