Oppgaver for kapittel 0

0.1.1

Trekantene er formlike. Bestem vinkel $\angle ACB$.

0.1.2

Trekantene er formlike. Finn de tre parene med samsvarende sider.

0.1.3

Trekantene er formlike. Finn lengden til EF og lengden til DF.

0.1.4

Trekantene er formlike. Finn lengden til AC og lengden til DF.

0.1.5

 $\triangle ABC$ og $\triangle DEF$ er formlike.

- a) Hva er forholdet mellom arealet til $\triangle DEF$ og arealet til $\triangle ABC$ hvis $h_1 = 2$ og $h_2 = 6$?
- b) Gitt et tall a. Hva er forholdet mellom arealet til $\triangle DEF$ og arealet til $\triangle ABC$ hvis $h_2 = ah_1$?

0.1.6

En kjegle har radius 10 og høgde 4.

- a) Finn grunnflaten til kjeglen.
- b) Finn volumet til kjeglen.

0.1.7

- a) En kule har radius 2 og en annen kule har radius 6. Hva er forholdet mellom volumet til den største kula og volumet til den minste kula?
- b) En kule har radius r og en annen kule har radius ar, hvor a > 1. Hva er forholdet mellom volumet til den største kula og volumet til den minste kula?

Gitt en likebeint trekant $\triangle ABC$ hvor AC = BC. Vis at halveringslinja¹ til $\angle ACB$ er midtnormalen til AB.

Gruble 2

Gitt en likesidet trekant $\triangle ABC$ med sidelengde s. Vis at høgda i trekanten er $\frac{\sqrt{3}}{2}s$.

Gruble 3

Gitt $\triangle ABC$ hvor $\angle BAC = 90^{\circ}$, $\angle ACB = 60^{\circ}$ og $\angle CBA = 30^{\circ}$. Vis at BC = 2AC.

Gruble 4

Vis at det doble arealet til $\triangle ABC$ er gitt som

$$AE \cdot BD + CE \cdot AD$$

¹Definisjonen av halveringslinja til en vinkel og midtnormalen til ei linje finner du i TM1.

En **median** i en trekant er et linjestykke som går fra et hjørne til midten av den motstående siden.

Gitt en vilkårlig trekant $\triangle ABC$ med medianer $AE,\,BF$ og CD.

- a) Vis at AE, BF og CD skjærer hverandre i samme punkt (G på figuren).
- b) Vis at

$$\frac{GC}{DG} = \frac{GB}{FG} = \frac{GA}{EG} = 2$$

Merk: Oppgave b) er nok lettere enn oppgave a).

Gruble 6

De tre sirklene har radius r, og A, B og C ligger på linje. Finn arealet til det røde området uttrykt ved r.

Hint: Her kan du nok få bruk for at arealet til en sektor med vinkel v utgjør $\frac{a}{360^{\circ}}$ av arealet til sirkelen med samme radius.

(GV21D1)

Figuren under viser en regulær 1 sekskant. Bestem hvor mange grader ver.

Gruble 8

De fargede områdene utgjør et kvadrat, og F, G, H og I er de respektive midpunktene på sidene til dette kvadratet.

Vi at arealet til det blåfargede området er det samme som arealet til det grønnfargede området.

¹I regulære mangekanter har alle sidene lik lengde.

a) Vis at $\frac{a}{b} = \sqrt{2} + \sqrt{6}$.

Obs! For å løse denne oppgaven er det mulig (men ikke nødvendigvis) du vil få bruk for abc-formelen, som du finner i TM1.

b) AD = BC. Bestem verdien til $\angle A$.

