and $w = \lim_{N \to +\infty} g(x_n) = \lim_{N \to +\infty} g(x_n) = g(x^*)$ Therefore we have $x^* \in K : g(x^*) = w \le g(x) \ \forall x \in K \ and \ w > -\infty \ (limited), so <math>x^*$ is a solution of the given problem. 2) Let f be a neal continuous function on R" satisfying that 8(x) ->+00 when IIXII ->+ so. Show Hot the problem of optimization | Minimize &(x) has an optimal solution x*eK Proof We have that ling g(x) =+ x, g continuous, g: IR"-> IR. Gineu a point MEIR" such that IIMII is large enough, we have that

Y(x) < g(M) Vx: 11x11 < 11M11, since 8 is continuous (no rectical asymptotes) and lim g(x) = + ... Therefore we have a set K= | x & IR": ||x|| < ||M|| | which is compact and

Tucludes points for which g(x) = g(M) is satisfied, in which f in continuous. Ou this set K the extreme ralue theorem of Weierstrass can be applied, as previously shown, so the problem | Minimize g(x) has an optimal solution x* & K.

3) (OPTIONAL) Let S be a counex subset of IR", and let 2, and 2 be positive scalars. (a) Show that $(\lambda_1 + \lambda_2) S = \lambda_1 S + \lambda_2 S$

(b) Gine an example that shows that this does not need to be true when S is not coursex Proof

(a) By double inclusion, let pe(1,+1,2)S, Hen, FxES such that p=(1,+1,2)x and by the distribution property of IR", p= \lambda, x + \lambdazx, therefore pe \lambda_1S + \lambda_2S. To show the opposite inclusion, let pelas+las, then, Ix, yes such that p = Xx + Xzy. $\|\beta \lambda_4 + \lambda_2 = 0, \text{ as } \lambda_4, \lambda_2 \ge 0, \lambda_4 = \lambda_2 = 0 \text{ and } (\lambda_4 + \lambda_2) \le = \lambda_4 \le + \lambda_2 \le = \emptyset$

If $\lambda_1 + \lambda_2 \neq 0$, then $\rho = \lambda_1 \times + \lambda_2 y = (\lambda_1 + \lambda_2) \left(\frac{\lambda_{11}}{\lambda_1 + \lambda_2} \times + \frac{\lambda_2}{\lambda_{11} + \lambda_2} y \right)$ Since $\frac{\lambda_1}{\lambda_1 + \lambda_2} + \frac{\lambda_2}{\lambda_4 + \lambda_2} = 1$ and S is counex, $\frac{\lambda_1}{\lambda_4 + \lambda_2} \times + \frac{\lambda_2}{\lambda_4 + \lambda_2} \times \in S$, and $\rho \in (\lambda_1 + \lambda_2)S$ (b) Cousider the set S := \((x,y) \) ∈ |R2: x=y, x ≤ \(\frac{1}{2}\) \(\lambda(x,y) \) ∈ |R2: y=0, x ≤ 1\)

This set is a triangle of nextices in (0,0), (1,0) and (1/2,1/2), without the edge Joining (1,0) and (1/2,1/2). If we choose $\lambda_1 = 1$ and $\lambda_2 = 2$, we can see that S+25 ≠35. For example: (1,0)+2(1/2,1/2)=(2,1), €35

4) (OPTIONAL) Let 5 be a nonempty closed coursex set in IR", not containing the origin. Show that there exists a haperplane that strictly separates S and the origin. Since S is a closed set we have that its complement So is an open set. (depending on the definition coundered, it is either true by definition on it can be pronen) We have ox S'cIR" => 0 ES open set in IR". This allows us to identify a neighborhood of points XXS, XEBESO(0) CS To show this is true is enough to counder the projection P of the origin on the set S. peS, since S is closed, which means that a point (0+E) ESC, E>U can be surely sound on the projection ray, allowing You BESO (0) c S' to exist. Let N=[N1,...,No.] be the projection may Courider ouce again the point R=(0+e) eSc, this lies on w which, being a projection ray, is the shortest path from o to the groutier of Consider now the hyperplane Y passing through R = (0+E) and onthogonal to N. Y strictly repurates o from part of R" Suppose Y intersects S in y. Since S in counex, Yhe[0,1] hp+(1-h)yes. We can find z point of such coursex combination such that oz < op, which weaves that either P is not the projection of o ou S, on Y caused intersect S. Therefore Y is a hyperplace that strictly separates S and the origin. 5) (OPTIONAL) Show that a counex function 8: (a,b) -> IR in continuous g: (a,b) -> IR comex. Ginen x,y,z,te(a,b) such that xxyxzxt, the following inequality holds: $\frac{g(y) - g(x)}{y - x} \leq \frac{g(z) - g(y)}{z - y} \leq \frac{g(t) - g(z)}{t - z}$ which can be written as: $\S(y) + \frac{\S(y) - \S(x)}{y - x} (z - y) \le \S(z) \le \S(y) + \frac{\S(f) - \S(z)}{f - z} (z - y)$ and when z->y, g(z)-g(y). Therefore we have that lim g(z)=g(y) for

any point ze(a,b), which means f is continuous on (a,b)

6) Cousider a Junction g: (a,b) -, R of class C2. Show that g is coursex
is and only if g"(x)≥0 son all x∈(a,b)
$\frac{P_{nool}}{(1 - 1)^n}$
(} counex => 8 (x) ≥0)
We have already shown that:
$g = \frac{1}{2} g(x) + g'(x)(y-x) \forall x,y \in (a,b) (1)$
Since $g \in C^2$ we can write the Taylor approximation of order 2
$ x - x_0 = \frac{1}{2} \left(\frac{x}{x_0} \right) + \frac{1}{2} \left(\frac{x}{x_0} \right) + \frac{1}{2} \left(\frac{x}{x_0} \right) \left(\frac{x}{x_0} - \frac{x}{x_0} \right)^2 + o((\frac{x}{x_0} - \frac{x}{x_0})^2) + o($
Let $x=y$, $x_0=x$: $g(y)=g(x)+g'(x)(y-x)+\frac{1}{2}g''(x)(y-x)^2+o((y-x)^2)$ error over the Rearranging: $\frac{1}{2}g''(x)(y-x)^2=g(y)-g(x)-g'(x)(y-x)-o((y-x)^2)$ order of z, its sum will not change
$\frac{2}{50}$ $\frac{2}{50}$ $\frac{1}{50}$
Herefore we couclide that §"(x)≥0 ∀x∈(a,b)
$(\S''(x) \ge 0 =) \S counex)$
Similarly, from the previous equation, we have: (*) We have show the result
$g(y) - g(x) - g'(x)(y-x) = \frac{1}{2}g''(x)(y-x)^2 + O((y-x)^2) \ge 0$ $fon y \neq x, \text{ which generalizes}$ $follow for the following problem of the fo$
=> $g(y) - g(x) - g'(x)(y-x) \ge 0$
g(y) ≥ g(x)+g'(x)(y-x) (=> g is courex (as previously shown)
7) Let g be a real relied function on an open courex set SCR", of class C?
Show that & is courex on S if and only if its Herrian matrix,
$Q(x) = \left(\frac{\partial^2 g}{\partial x; \partial x;}(x)\right)$ is positive semi-definite for all $x \in S$.
Proof
We have already shown that $g(y) = g(x) + [\nabla g(x)]^T(y-x) \forall x, y \in dow(g)$
Similary to the premious proof, counder the Taylor approximation Ru
of order 2 of geC2 in XES:
$\{(y) = \{(x) + [\nabla Q(x)]^T(y = y) + (y = y)^T Q_1(x)(y = x) + Q((y = x)^2)\}$
$(y-x)^{T}Qg(y-x) = g(y)-g(x)-[\nabla g(x)]^{T}(y-x)-o((y-x)^{2})$ error over the order of 2; its sur will not change the right
Il, grow (1) we have $g(y) - g(x) = [\nabla g(x)]^T(y-x) \ge 0$
Must, Herefore, be 20; which means NTQgN 20 =
=> Qg is positine semi-definite txes
(This result holds in both directions, since it relies on (1) which
is a relation of necessary and sufficient conditions; the previous
courideration, (*), still applies)

8) Assume that SCIR" is a counex set and that g: S-IR. Show that the set g(x) = 0 is courex is g is courex. What about the opposite implication? Proof ScIR" counex: Yxes xx+(1-x)yes Yyes YXe[0,1] Let g: S-> IR counex: YxeS $g(\lambda x + (1-\lambda)y) \le \lambda g(x) + (1-\lambda)g(y)$

Counder the set C= |xeS:g(x) =0], C=ScIR"

-

-

Let x,yeC, meaning g(x) =0, g(y) =0. Since x,yeC, we have x,yeS. Therefore, $\forall \lambda \in [0,1]$ $g(\lambda x + (1-\lambda)y) \leq \lambda g(x) + (1-\lambda)g(x) \leq 0$

YXe[0,1] => C is course Courider now the opposite implication: suppose C={xeS:g(x) =0} comex $\lambda_{x+(1-\lambda)y} \in C$ Yyec. YXE[0,1] which in terms of g means: g(y)≥0

λe[0,1]

=> $g(\lambda x + (1-\lambda)y) \leq 0$

ueed $g(\lambda x + (1-\lambda)y) \le \lambda g(x) + (1-\lambda)g(y)$ This is not guaranteed by the cornexity of C. lu fact, consider the function g: C->R, g(x)=-(x12+...+x2), $\forall x=\begin{bmatrix} x_1\\x_n\end{bmatrix}\in Cc\mathbb{R}^n$ and nestrict, for example, C to

For g to be comex on C we would

the set in which IIxII = Va Let x=[1] & CcR", y=[1] & CcR", \ = 1/2, we have the following: $\lambda x + (\lambda - \lambda)y = \frac{1}{2}x + \frac{1}{2}y = 0 \in C \subset \mathbb{R}^{0}$, $g(\lambda x + (\lambda - \lambda)y) = g(0) = 0$

 $\lambda g(x) + (1 - \lambda)g(y) = \frac{1}{2}g(1) + \frac{1}{2}g(1) = -u$ => $g(\lambda x + (1-\lambda)y) \not\neq \lambda g(x) + (1-\lambda)g(y)$ => g is not comex on CcScR" => the opposite implication does not Rold trave