Econ 6190 Problem Set 10

Fall 2024

- 1. Take the model $X \sim N(\mu, 4)$. A sample of n = 16 independent realizations of X was collected, and the sample mean $\bar{X} = 20.5$. A sample of n = 16 independent realizations of X was collected, and the sample mean $\bar{X} = 20.5$. Find a 98% confidence interval for μ .
- 2. [Hansen 14.4] You have the point estimate $\hat{\theta} = 0.45$ and standard errors $s(\hat{\theta}) = 0.28$. You are interested in $\beta = \exp(\theta)$.
 - (a) Find $\hat{\beta}$.
 - (b) Use the delta method to find a standard error $s(\hat{\beta})$.
 - (c) Use the above to calculate a 95% asymptotic confidence interval for $\hat{\beta}$.
 - (d) Calculate a 95% asymptotic confidence interval [L, U] for the original parameter θ . Calculate a 95% asymptotic confidence interval for β as $[\exp(L), \exp(U)]$. Can you explain why this is a valid choice? Compare this interval with your answer in (c).
- 3. [Hansen] Answer the following questions.
 - (a) A confidence interval for the mean of a variable X is [L, U]. You decided to rescale your data, so set $Y = \frac{X}{1000}$. Find the confidence interval for the mean of Y.
 - (b) In general, let C = [L, U] be a $1-\alpha$ confidence interval for θ . Consider $\beta = h(\theta)$ where $h(\theta)$ is mono tonically increasing. Set $C_{\beta} = [h(L), h(U)]$. Evaluate the converage probability of C_{β} for β . Is C_{β} a $1-\alpha$ confidence interval?
- 4. Let the random variable X be normally distributed with mean μ and variance 1. You are given a random sample of 16 observations.
 - (a) Construct a one sided 95% confidence interval for μ that has form $[\hat{L}, \infty)$ for some statistic \hat{L} .
 - (b) Construct a two sided 95% confidence interval for μ .
 - (c) Show that the rejection of the null \mathbb{H}_0 : $\mu = 0$ against \mathbb{H}_1 : $\mu \neq 0$ with size 5% based on t test corresponds to the rejection of \mathbb{H}_0 : $\mu = 0$ when zero does not lie in the 95% confidence interval for μ constructed in part (b).
 - (d) How would your answers be affected when you would not have known the variance of the random variable?

- (e) How would your answers be affected when you would not have known the variance of the random variable but the sample size is 100?
- 5. [Hansen] Answer the following questions.
 - (a) A confidence interval for the mean of a variable X is [L, U]. You decided to rescale your data, so set $Y = \frac{X}{1000}$. Find the confidence interval for the mean of Y.
 - (b) In general, let C = [L, U] be a $1-\alpha$ confidence interval for θ . Consider $\beta = h(\theta)$ where $h(\theta)$ is monotonically increasing. Set $C_{\beta} = [h(L), h(U)]$. Evaluate the converge probability of C_{β} for β . Is C_{β} a $1-\alpha$ confidence interval?
- 6. [Hansen 14.7] A friend suggests the following confidence interval for θ : they draw a random number $U \sim U[0,1]$ and set

$$C = \begin{cases} \mathbb{R} & \text{if } U \le 0.95 \\ \emptyset & \text{if } U > 0.95 \end{cases}.$$

- (a) What is the coverage probability of C?
- (b) Is C a good choice for a confidence interval? Explain.