

링크 계층 1, 2, 3

Link layer

Introduction. Link layer

Adaptors communicating

Multiple access links, protocols

MAC protocols: taxonomy

1. Channel partitioning MAC protocols : TDMA

1. Channel partitioning MAC protocols : FDMA

Random access protocols

CSMA (carrier sense multiple access)

CSMA collisions

CSMA/CD (collision detection)

"Taking turns" MAC protocols

polling

token passing

LANs

Ethernet

Ethernet frame structure

Ethernet uses CSMA/CD

MAC addresses and ARP

Addressing:routing to another LAN

Ethernet: physical topology

Switch: multiple simultaneous transmissions

Self-learning multi-switch example

Data center networks

Link layer

Introduction. Link layer

패킷은 gateway router한테 보냄.

패킷을 보내면 physical layer에서 전파신호로 변환되어 갈 수 있는 곳으로 전파됨.

충돌이 발생하지 않아야, 발생해도 해결해야 함 → link later에서 하는 일

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

link layer는 어디에 존재하는가?

→ 어댑터 (aka network interface card NIC) or on a chip

Adaptors communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.
- receiving side
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to upper layer at receiving side

Multiple access links, protocols

brodcast medium (shared wire on medium).

같은 매체를 사용하면서 발생하는 충돌을 최소화 하기 위한 기술 → "Multiple Access Control (MAC)"

MAC protocols: taxonomy

- 1. channel partitioning
- 2. random access
- 3. taking turns

1. Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

주어진 시간에만 전송할 수 있음 → 낭비됨

1. Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

정해진 주파수만 사용해서 전송 가능

Random access protocols

충돌이 일어 날 수 있음.

충돌을 어떻게 개선할 수 있는가가 핵심.

ex.

- slotted ALOHA
- ALOHA

• CSMA, CSMA/CD, CSMA/CA

CSMA (carrier sense multiple access)

CSMA: listen before transmit

if channel sensed idle: transmit entire frame

if channel sensed busy, defer transmission

CSMA collisions

충돌이 발생하면 packet전송시간 낭비하게 됨

propagation delay가 발생하므로 충돌이 발생하게 됨

CSMA/CD (collision detection)

충돌을 감지하면 전송을 멈춤

Ethernet CSMA/CD algorithm

- NIC receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission.
 If NIC senses channel busy, waits until channel idle, then transmits.
- If NIC transmits entire frame without detecting another transmission, NIC is done with frame!
- If NIC detects another transmission while transmitting, aborts and sends jam signal
- After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2,..., 2^m-1}.
 NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

충돌을 감지하고 전송을 멈춘 후에는 binary(exponential) backoff방식을 사용해 기다림.

→ 충돌이 처음 일어났을 때는 조금 기다리지만 여러번 발생하면 오래 기다림 ⇒ backoff이 여러번 발생해서 사용자가 체감하는 대기시간이 길어짐.

서로 다른 숫자만큼 기다려야 충돌을 피할 수 있으니까.

"Taking turns" MAC protocols

polling

master controller가 전송 순서를 정해줌 master가 작동을 멈추면 다같이 멈춤

token passing

token을 가지고 있는 host만 전송할 수 있음 token을 잃어버리면 큰 문제 발생..

LANs

: router를 거치지 않고 연결할 수 있는 네트워크 집합

Ethernet

Metcalfe's Ethernet sketch

현재는 switch를 사용해 star방식을 사용함

Ethernet frame structure

CRC - error checking data - 어떤 type의 protocol인지

Ethernet uses CSMA/CD

이더넷은 MAC protocol로 CSMA/CD 방식을 사용

- No slots
- adapter doesn't transmit if it senses that some other adapter is transmitting, that is, carrier sense
- transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection
- Before attempting a retransmission, adapter waits a random time, that is, random access

collision이 발생하면 재전송, 아니면 재전송을 하지 않음 collision detection \rightarrow 못해서 충돌이 발생한 것을 모른다면 \rightarrow 문제 발생..!

이더넷에서 충돌이 발생했는데, collision detecte를 하지 못한다면?

저 멀리서 일어난 collision detection 을 찾기 위해서 최소한의 비트길이 64bit가 정해짐

MAC addresses and ARP

MAC address: 48bit MAC address. IP Address와 다름

이름 - host 이름

주소 - IP Address (변경 가능)

주민번호 - MAC address (변경 불가능)

LAN에 존재하는 각각의 adaptor는 고유의 LAN addresses를 가짐

frame에 Gateway의 MAC address를 써야하는데 모름.

→ IP Address는 알고 있으니까 그걸로 찾아내야함

ARP table

: IP 주소와 MAC 주소를 mapping 시켜둠

⇒ 캐시 테이블, 2시간 뒤면 사라짐

사라지면 ARP request를 통해 주소 받음

하나의 gateway여도 interface가 다르니까. 다른 MAC address를 가짐

Addressing:routing to another LAN

walkthrough: send datagram from A to B via R

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

busd : 충돌이 많이 발생함

star : switch가 domain을 분리 시켜 충돌을 줄여줌

Switch: multiple simultaneous transmissions

switch with six interfaces (1,2,3,4,5,6)

switch는 어떤 interface가 어떤 node와 연결되는지 어떻게 아는가? → switch table switching table은 self-learning을 통해 만들어감 (다 전송하고.. 그걸로 기록해 나가는..)

Self-learning multi-switch example

처음에 위치 찾을 때만 잉크 퍼져나가듯이 모두 탐색하고, 한번 탐색한 후에 전송할때는 table을 사용해서 바로바로 전송함

Data center networks

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)

challenges:

- multiple applications, each serving massive numbers of clients
- managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

사용자가 많아질수록 계층화를 시키고, 그 계층화의 이음새 역할은 switch가 함

