RUNTUNAN DAN PEMILIHAN

Runtunan adalah...

Rangkaian instruksi yang diproses secara sequential (berurutan), satu persatu mulai dari instruksi pertama sampai terakhir

Algoritma dan Runtunan

Algoritma merupakan runtunan satu atau lebih instriksi yang berarti bahwa :

- tiap instruksi dikerjakan satu persatu
- tiap instruksi hanya dijalankan satu kali tidak ada perulangan
- rrutan instruksi yang dilaksanakan pemroses sesuai dengan algoritmanya
- ❖ akhir instruksi = akhir algoritma

Contoh Runtunan: Mencetak "Hello, World"

```
PROGRAM Hello_world
{Program untuk mencetak "Hello, World"}

DEKLARASI
{tidak ada}

ALGORITMA:
write('Hello, world')
```

Menggunakan Variabel

Menggunakan Konstanta

```
PROGRAM Hello_world
{Program untuk mencetak "Hello, world"}

DEKLARASI
  const pesan = 'Hello, world'

ALGORITMA:
  write(pesan)
```

Membaca Input

```
PROGRAM Halo_Nama
{Mencetak string 'Halo ' dan diikuti dengan
nama orang. Nama orang dibaca dari keyboard}

DEKLARASI
nama : string

ALGORITMA
   read(nama)
   write('Hallo: ', nama)
```

Algoritma Pertukaran

Buatlah sebuah program yang dapat membaca nilai 2 peubah (*variable*) dan menukarkannya.

Misalkan:

a = 8 dan b = 5

Setelah proses a= 5 dan b= 8

Penyelesaian

```
PROGRAM Pertukaran
{Mempertukarkan nilai A dan B. Nilai A dan B dibaca terlebih dahulu.}
DEKLARASI
 A, B, C : integer
ALGORITMA:
   {asumsikan A dan B sudah terdefinisi dengan nilai, misalnya melalui
  pengisian langsung atau dibaca nilainya dari keyboard}
 C ← A {simpan nulai A di tempat penampungan sementara, C}
 A ← B {sekarang A dapat diisi dengan nilai B}
 B ← C {isi B dengan nilai A semula yang tadi disimpan di C}
  {Tulis nilai A dan B setelah pertukaran, jika diperlukan}
```

Menuliskan ke dalam Bahasa Pemrograman: PASCAL

```
program Pertukaran
{Mempertukarkan nilai A dan B. Nilai A dan B dibaca terlebih
dahulu.}
{ *DEKLARASI * }
var
 A, B, C = integer;
{ *ALGORITMA : * }
begin
      {baca nilai A dan B}
  write('A=?'); readln(A);
  write('B=?'); readln(B);
      {pertukarkan nilai A dan B}
  C := A;
  A := B;
  B := C;
      {tulis nilai A dan B setelah dipertukarkan}
 writeln('A= ', A);
 writeln('B= ', B);
end.
```

Menuliskan ke dalam Bahasa Pemrograman : C

```
/* PROGRAM Pertukaran */
/* Mempertukarkan nilai A dan B. Nilai A dan B dibaca terlebih
  dahulu. */
#include <stdio.h>
main()
/* DEKLARASI */
  int A, B, C;
/* ALGORITMA : */
       /* baca nilai A dan B */
  printf("A=?"); scanf("%d", $A);
  printf("B=?"); scanf("%d", $B);
       /* pertukarkan nilai A dan B */
  C = A;
  A = B;
  B = C;
       /* tulis nilai A dan B setelah dipertukarkan */
  printf("A= %d\n", A);
  printf("B= %d\n", B);
```

Contoh Algoritma Runtunan

Apa yang dilakukan oleh potongan algoritma dibawah ini?

ALGORITMA:

A ← A + B

B ← A - B

A ← A - B

. . .

Pertukaran Tanpa Peubah Bantu

write(A,B)

```
PROGRAM Tukar
{Mempertukarkan nilai A dan B yang bertipe bilangan bulat tanpa
peubah bantu. Nilai A dan B dibaca terlebih dahulu.}
DEKLARASI
 A : integer { nilai pertama }
     B : integer { nilai kedua }
ALGORITMA:
  read(A,B) {baca nilai A dan B}
  write(A,B) {tulis nilai A dan B sebelum pertukaran}
  {proses pertukaran}
  A \leftarrow A + B
  B ← A - B
  A \leftarrow A - B
```

{tulis nilai A dan B setelah pertukaran}

Menghitung Komisi yang Diterima Salesman

```
PROGRAM Komisi Salesman
{menghitung komisi yang diterima salesman. Besar komisi adalah 5%
 dari nilai penjualan yang dicapainya. Data masukan adalah nama
 salesman dan nilai penjualannya. Keluaran algoritma adalah nama
 salesman dan besar komisi yang diterima salesman tersebut.}
DEKLARASI
  NamaSalesman : string
  NilaiPenjualan : real {nilai penjualan yang dicapai}
  komisi : real {besar komisi}
ALGORTTMA
  read (NamaSalesman, NilaiPenjualan)
  komisi ← 0.05 * NilaiPenjualan
  write (NamaSalesman, komisi)
```

Wartel

PROGRAM Wartel

{Menghitung biaya percakapan di warung telekomunikasi. Masukan adalah waktu awal dan waktu selesai percakapan (hh:mm:ss). Keluaran adalah lama dan biaya percakapan. Satu pulsa = 5 detik dan ongkos per pulsa adalah Rp. 150}

```
DEKLARASI
   const BiayaPerPulsa = 150 {biaya per pulsa}
   const LamaPulsa = 5 {1 pulsa = 5 detik}
   type Jam : record <hh:integer, {0..23}
                     mm:integer, \{0...59\}
                     ss:integer {0..59}
                     >
            : Jam {jam awal percakapan}
   J1
   J2
            : Jam {jam akhir percakapan}
   J3
            : Jam {lama percakapan}
   TotalDetik1, TotalDetik2: integer {peubah bantu untuk menampung sisa
                                      pembagian}
   sisa
                  : integer
   durasi
            : integer
   pulsa
                  : real
   biaya
                  : real
```

Wartel (lanjutan)

```
ALGORITMA:
  read(J1.hh, J1.mm, J1.ss) {jam awal percakapan}
  read(J2.hh, J2.mm, J2.ss) {jam selesai percakapan}
  {konversi masing-masing jam ke total detik}
  TotalDetik1 \leftarrow (J1.hh*3600) + (J1.mm*60) + J1.ss
  TotalDetik2 \leftarrow (J2.hh*3600) + (J2.mm*60) + J2.ss
  {hitung lama percakapan}
  durasi ← TotalDetik2 - TotalDetik1
  {hitung jumlah pulsa dan biaya untuk seluruh pulsa}
  Pulsa ← durasi/LamaPulsa
  Biasa ← Pulsa * BiayaPerPulsa
  {konversi durasi ke dalam jam-menit-detik}
  J3.hh ← durasi div 3600 {mendapatkan jam}
  sisa ← durasi mod 3600
  J3.mm ← sisa div 60 {mendapatkan menit}
  J3.ss \leftarrow sisa \mod 60 {mendapatkan detik}
  write(J3.hh, J3.mm, J3.ss, biaya)
```

Pembacaan tergantung pada format penyimpanan data di dalam arsip.

Data masukkan disimpan dalam program pengolah kata yang

Membaca/Menulis ke Arsip

Contoh Program Penyimpanan Dalam Bentuk Arsip (PASCAL)

```
Program
                                             {buka arsip masukan}
luas empat persegi panjang;
                                             assign(Fin, NamaArsip1);
(*menghitung luas empat
                                             reset(Fin)
persegipanjang, kemudian mencetak
nilai luas tersebut ke dalam
                                             {buka arsip keluaran}
arsip "hasil.txt"*)
                                             assign (Fout, NamaArsip2);
                                             rewrite (Fout);
{Deklarasi}
var
                                             {baca panjang dan lebar dari arsip Fin}
   panjang, lebar, luas : real;
                                             read(Fin, panjang, lebar);
                                             Luas := panjang * lebar;
   Fin, Fout : text;
                                             writeln (Fout, 'Luas segi empat
   NamaArsip1, NamaArsip2:
   string[12];
                                             = ', luas);
{Algoritma}
                                             {tutup arsip}
begin
                                             close (Fin);
   write('Nama arsip masukan: ');
   readln(NamaArsip1);
                                             close(Fout);
                                         end.
   write('Nama arsip keluaran');
   readln(NamaArsip2);
```


Pemilihan

Pemilihan

Struktur pemilihan memungkinkan kita melakukan aksi jika suatu syarat dipenuhi

Analisis Kasus

Satu Kasus

$$\frac{\text{if } x > 100 \text{ then}}{x \leftarrow x + 1}$$
endif

$$\frac{\text{if } (a \neq 0) \text{ or } (p=1) \text{ then}}{q \leftarrow a*p}$$

$$\underline{\text{write}}(q)$$

$$\underline{\text{endif}}$$

Contoh Masalah dengan Satu Kasus

```
PROGRAM genap
{Mencetak pesan bilangan genap}

DEKLARASI
    x : integer

ALGORITMA:
    read(x)
    if (x mod 2 = 0) then
        write('genap')
endif
```

DUA KASUS

Conto 2 Kasus

```
PROGRAM genapGanjil
{Mencetak pesan bilangan genap ganjil}

DEKLARASI
x : integer

ALGORITMA
read(x)
if (x mod 2 = 0) then
    write('genap')
else
    write('ganjil)
```

Tiga Kasus atau Lebih

Contoh Algoritma 3 Kasus

```
PROGRAM BilanganBulat
{Menuliskan 'positif' bila nilai x > 0, 'negatif' bila nilai x < 0
dan 'nol' bila x=0}
DEKLARASI
     x : integer
ALGORITMA:
read(x)
if x > 0 then
    write('positif')
else
    if x < 0 then
        write('negatif')
    else
        if x = 0 then
            write (nol)
        endif
     endif
endif
```

Struktur CASE

Struktur **CASE** dapat menyederhanakan 'if-then-else' yang bertingkat-tingkat

Contoh Algoritma

```
PROGRAM genapganjil
{menentukan apakah suatu bilangan termasuk bilangan
 genap atau ganjil}
DEKLARASI
    x : integer
ALGORITMA
read(x)
CASE (x \mod 2)
    0 : write('genap')
    1 : write('ganjil')
endcase
```