Workshop 4: 292

Pranav Tikkawar

February 12, 2024

1. -

- Since we need to use squeeze theorum to show what the limit of v(x) by bounding it by 2 other functions and show the limit of those function approach the same thing at zero
 - \bullet We can notice that $|v(x)| = |xsin(\frac{1}{x})| = |x||sin(\frac{1}{x})|$
 - The values of $|sin(\frac{1}{x})|$ are $0 \le |sin(\frac{1}{x})| \le 1$ and |x| are $0 \le |x| \le |x|$ so $0 \le |xsin(\frac{1}{x})| \le |x|$
 - We can notice than $\lim_{x\to 0} 0 = 0$ and $\lim_{x\to 0} |x| = 0$ so then $\lim_{x\to 0} |x\sin(\frac{1}{x})| = 0$
- The most obvious EQ sol of the DE is x = 0 as v(0) = 0
 - If $x \neq 0$ then $v(x) = x \sin(\frac{1}{x})$
 - If we want v(x) = 0 then we need $sin(\frac{1}{x}) = 0$
 - Since sin(y) = 0 if $y = n\pi$ where $n \in \mathbb{Z}$
 - So $x = \frac{1}{n\pi}$

- There are many maximum intervals but it is important to recognize that as they approach 0 the intervals become more and more dense
 - Let $n \in \mathbb{Z}$ the max intervals for n > 0 is $(\frac{1}{(n+1)\pi}, \frac{1}{n\pi})$. It represents all the max intervals for x > 0. Also we need to consider the interval $(\frac{1}{\pi}, \infty)$
 - The max intervals for n < 0 is $(\frac{1}{(n)\pi}, \frac{1}{(n+1)\pi})$ this represents the max intervals for x < 0. Also we need to consider the interval $(-\infty, \frac{-1}{\pi})$
- Since we know xsin(1/x) is periodic we know that one we find the sign of the v(x) of one interval then we can deduce the rest.
 - * look at image*
- $\frac{|v(y_n)-v(x_n)|}{|y_n-x_n|}$ will provide an L to test if v is Lipschitz continuous on R, but using the given x_n and y_n we get the ratio = 4n
 - As $\lim_{n\to\infty} 4n = \infty$ which means that v(x) is not Lipschitz on the interval as for every L we can choose to be the bounding ratio, we choose and n that beats it
- To find the maximum interval we need to show that |v'(x)| is bounded by L
 - $|v'(x)|=|sin(\frac{1}{x})-\frac{1}{x}cos(\frac{1}{x})|\leq |sin(\frac{1}{x})|+|\frac{1}{x}||cos(\frac{1}{x})|$ due to the triangle inequality
 - Since $0 \le |sin(\frac{1}{x})| \le 1$ and $0 \le |cos(\frac{1}{x})| \le 1$ and we can suppose an a s.t. |x| > a > 0 we get $|v'(x)| \le 1 + \frac{1}{a}$
 - Which gives $L = 1 + \frac{1}{a}$ which indicates that since $Lneq\infty$ then the function v(x) is continuous on that interval
- If we suppose an $\epsilon \in \mathbb{R}$ where $(0, \epsilon)$ is the maximum interval, we can find a number smaller than epsilon such that it is a equilibrium point as in the formula for equilibrium points shown above, as n increase the equilibrum points become more dense around 0. Thus making this a contradiction
 - Since it is a contradiction and we know that going from one maximum interval to the other in the function, it must change direction, we can see that x(t) = 0 is the unique solution to $x(t_0) = 0$
- i ∞ for $x_0 > \frac{1}{x}$
 - 0 for $x_0 = 0$

 - $\frac{1}{n\pi} = \frac{1}{n\pi}$ $\frac{1}{(2n)\pi}$ for $\frac{1}{(2n+1)\pi} < x_0 < \frac{1}{(2n-1)\pi}$
 - ∞ for $x_0 < \frac{-1}{\pi}$