Basics of information theory

Michael Franke

Surprisal, entropy, Kullback-Leibler divergence, mutual information.

Figure 1: Logarithm and surprisal (to base 2).

1 Information content (surprisal)

Let *X* be a random variable with support χ . For event $x \in \chi$, the *information content* $I_X(x)$ of x (a.k.a. *surprisal* of x) under random variable X is defined as:

$$I_X(x) = -\log_2 P(X = x)$$

Intuitively speaking, the information content $I_X(x)$ is a measure of how surprised an agent with beliefs X is (alternatively: how much the agent learns) when they observe x.

Entropy 2

The *entropy* $\mathcal{H}(X)$ of a random variable is the expected information content under the assumption that the true distribution is X:¹

$$\mathcal{H}(X) = \sum_{x \in \chi} P(X = x) I_X(x)$$
$$= -\sum_{x \in \chi} P(X = x) \log P(X = x)$$

Intuitively speaking, the entropy $\mathcal{H}(X)$ measures the expected (or average) surprisal of an agent whose beliefs are X when the true distribution is X.

- example
- joint and conditional entropy

Cross entropy 3

The cross entropy $\mathcal{H}(X,Y)$ of random variables X and Y measures the expectation of information content given Y from the point of view of (assumed true) distribution X:

$$\mathcal{H}(X, Y) = \sum_{x \in \chi} P(X = x) I_Y(x)$$
$$= -\sum_{x \in \chi} P(X = x) \log P(Y = x)$$

Intuitively speaking, the cross entropy $\mathcal{H}(X,Y)$ measures the expected (or average) surprisal of an agent whose beliefs are Y when the true distribution is X.

Kullback-Leibler divergence (relative entropy)

The Kullback-Leibler (KL) divergence (also known as relative entropy) measures the expected (or average) difference in information content between the distribution Y and the true distribution X:

$$D_{KL}(X||Y) = \sum_{x \in \chi} P(X = x) \ (I_Y(x) - I_X(x))$$
$$= \sum_{x \in \chi} P(X = x) \ \log \frac{P(X = x)}{P(Y = x)}$$

Intuitively speaking, the KL-divergence $D_{KL}(X||Y)$ measures how much more surprised an agent is, on average, when they hold beliefs described by Y instead of the true distribution X.

KL-divergence $D_{KL}(X||Y)$ can be equivalently written in terms of the entropy $\mathcal{H}(X)$ of X and the cross entropy $\mathcal{H}(X,Y)$ of X and Y:

$$D_{KL}(X||Y) = \mathcal{H}(X,Y) - \mathcal{H}(X)$$

¹Here and below, writing "true distribution" or similar formulations does not necessarily entail a strong commitment to actual truth. It is shorthand for more careful but cumbersome language like "the distribution used as a reference or baseline which we assume to be true or treat as-if true."

- examples
- not a metric
- 5 Mutual information