Docente: Manuel G. Scotto

Departamento de Matemática IST, ULisboa

Variável aleatória

Uma variável aleatória é uma aplicação de Ω em \mathbb{R} .

$$X: \Omega \to \mathbb{R}$$

 $\omega \to X(\omega) = x$

Variável aleatória

Uma variável aleatória é uma aplicação de Ω em \mathbb{R} .

$$X: \Omega \to \mathbb{R}$$

 $\omega \to X(\omega) = x$

Importante

Uma variável aleatória **associa um número real** a cada resultado possível, de tal forma que a probabilidade de um intervalo real é igual à probabilidade dos acontecimentos que lhe deram origem.

Variáveis aleatórias discretas

São variáveis aleatórias que só assumem um **número finito ou nu-merável** de possibilidades.

Variáveis aleatórias discretas

São variáveis aleatórias que só assumem um **número finito ou numerável** de possibilidades.

Exemplo

- Experiência aleatória: Observação do estado do tempo num dado fim de semana.
- $C = \{Chuva\}, S = \{Sol\}, P(C) = 1/4, P(S) = 3/4.$
- Espaço de resultados:

$$\Omega = \{(S, S), (S, C), (C, S), (C, C)\}.$$

• Seja X = "número de dias com sol durante o fim de semana".

Função massa de probabilidade (fmp)

• fmp: $f: D \rightarrow (0,1]$

$$x \to f_X(x) := \left\{ egin{array}{ll} P(X=x), & x \in D \\ 0, & x \notin D \end{array}
ight.$$

• $P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\}); \sum_{x_i} f_X(x_i) = 1.$

$$P(X=0) = P(C \cap C) \stackrel{ind}{=} P(C)P(C) = \frac{1}{4} \cdot \frac{1}{4}$$

$$P(X = 0) = P(C \cap C) \stackrel{ind}{=} P(C)P(C) = \frac{1}{4} \cdot \frac{1}{4}$$

$$P(X = 1) = P[(S \cap C) \cup (C \cap S)]$$

$$\stackrel{mut.exc.}{=} P(S \cap C) + P(C \cap S)$$

$$\stackrel{ind}{=} P(S)P(C) + P(C)P(S) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4}$$

$$P(X = 0) = P(C \cap C) \stackrel{ind}{=} P(C)P(C) = \frac{1}{4} \cdot \frac{1}{4}$$

$$P(X = 1) = P[(S \cap C) \cup (C \cap S)]$$

$$\stackrel{mut.exc.}{=} P(S \cap C) + P(C \cap S)$$

$$\stackrel{ind}{=} P(S)P(C) + P(C)P(S) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4}$$

$$P(X = 2) = P(S \cap S) \stackrel{ind}{=} P(S)P(S) = \frac{3}{4} \cdot \frac{3}{4}$$

$$P(X = 0) = P(C \cap C) \stackrel{ind}{=} P(C)P(C) = \frac{1}{4} \cdot \frac{1}{4}$$

$$P(X = 1) = P[(S \cap C) \cup (C \cap S)]$$

$$\stackrel{mut.exc.}{=} P(S \cap C) + P(C \cap S)$$

$$\stackrel{ind}{=} P(S)P(C) + P(C)P(S) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4}$$

$$P(X = 2) = P(S \cap S) \stackrel{ind}{=} P(S)P(S) = \frac{3}{4} \cdot \frac{3}{4}$$

$$P(X = x) = 0, x \neq \{0, 1, 2\}.$$

$$P(X = x) = \begin{cases} \frac{1}{16}, & x = 0\\ \frac{6}{16}, & x = 1\\ \frac{9}{16}, & x = 2\\ 0, & \text{outros casos} \end{cases}$$

Função distribuição

$$F: \mathbb{R} \to [0,1]$$
$$x \to F(x) = P(X \le x)$$

- $0 \le F(x) \le 1$;
- Se x < y então $F(x) \le F(y)$;
- $\lim_{x\to-\infty} F(x) = 0$; e $\lim_{x\to\infty} F(x) = 1$;
- F(x) é contínua à direita;
- $F(x) = \sum_{x_i \le x} f(x_i) \Leftrightarrow f(x_i) = F(x_i) F(x_{i-1})$.

Exemplo: função distribuição (cont)

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ \frac{1}{16}, & 0 \le x < 1 \\ \frac{1}{16} + \frac{6}{16}, & 1 \le x < 2 \\ \frac{1}{16} + \frac{6}{16} + \frac{9}{16} = 1, & x \ge 2 \end{cases}$$

Valor esperado de uma variável aleatória discreta

Se X é uma v.a. discreta com função massa de probabilidade $f_X(x)$, então a expressão

$$E(X) = \sum_{x \in D} x \cdot f_X(x),$$

quando

$$E(X) = \sum_{x \in D} |x| \cdot f_X(x) < \infty,$$

define o valor esperado, média ou esperança matemática de X.

Exemplo: função massa de probabilidade (cont)

$$P(X = x) = \begin{cases} \frac{1}{16}, & x = 0\\ \frac{6}{16}, & x = 1\\ \frac{9}{16}, & x = 2\\ 0, & \text{outros casos} \end{cases}$$

Valor esperado: $E(X) = 0 \cdot \frac{1}{16} + 1 \cdot \frac{6}{16} + 2 \cdot \frac{9}{16} = 1.5$

Propriedades do valor esperado

 Sejam a e b duas constantes reais e X e Y duas variáveis aleatórias.

$$E(a \cdot X + b) = a \cdot E(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

$$E\left(\sum_{i} X_{i}\right) = \sum_{i} E(X_{i})$$

• Seja X uma v.a. inteira não negativa, i.e., $D=\mathbb{N}_0$. Então

$$E(X) = \sum_{x=0}^{\infty} P(X > x) = \sum_{x=0}^{\infty} [1 - F_X(x)].$$

Propriedades do valor esperado (cont)

• Importante: Seja $\psi(X)$ uma função mensurável de X. Então

$$E[\psi(X)] = \sum_{x \in D} \psi(x) \cdot f_X(x).$$

Propriedades do valor esperado (cont)

• Importante: Seja $\psi(X)$ uma função mensurável de X. Então

$$E[\psi(X)] = \sum_{x \in D} \psi(x) \cdot f_X(x).$$

• De um modo geral $E[\psi(X)] \neq \psi(E(X))!!!!!$

Exemplo

Seja X uma v.a. com função massa de probabilidade dada por

$$f_X(x) = \begin{cases} \frac{1}{3}, & x = -1, 1, 2\\ 0, & \text{outros casos} \end{cases}$$

Considere-se a função $\psi(X)=X^2$. Então

$$E[\psi(X)] = (-1)^2 \cdot \frac{1}{3} + 1^2 \cdot \frac{1}{3} + 2^2 \cdot \frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{4}{3} = 2.$$

Moda de uma variável aleatória discreta

A moda de uma variável aleatória discreta X, designada por mo, corresponde ao ponto de máximo da função massa de probabilidade de X

$$mo = \max_{x} P(X = x).$$

A moda de uma variável aleatória discreta nem sempre é única.

Variância e desvio padrão

• A variância de uma variável aleatória é

$$V(X) = \sigma^2 = E[(X - \mu)^2] = \sum_{x \in D} (x - \mu)^2 \cdot f_X(x),$$

sendo
$$\mu = E(X)$$
.

• Desvio padrão: $\sigma = +\sqrt{V(X)}$.

Propriedades da variância

$$V(X) \geq 0,$$
 $V(b) = 0, \ \forall b \in \mathbb{R},$
 $V(aX) = a^2V(X), \ \forall a \in \mathbb{R},$
 $V(aX + b) = a^2V(X), \ \forall a, b \in \mathbb{R},$
 $V\left(\sum_i X_i\right) = \sum_i V(X_i), \ X_1, X_2, \dots, \ \text{independentes},$
 $V(X) = E(X^2) - [E(X)]^2.$

Exemplo

Seja X uma v.a. com função massa de probabilidade dada por

$$f_X(x) = \left\{ egin{array}{ll} e^{-2} \cdot rac{2^x}{x!}, & x \in \mathbb{N}_0 \\ 0, & ext{outros casos} \end{array}
ight..$$

Exemplo (cont)

$$E(X) = \sum_{x=0}^{\infty} xe^{-2} \cdot \frac{2^{x}}{x!}$$

$$= 2e^{-2} \sum_{x=1}^{\infty} \frac{2^{x-1}}{(x-1)!}$$

$$\stackrel{(j=x-1)}{=} 2e^{-2} \sum_{j=0}^{\infty} \frac{2^{j}}{j!}$$

$$= 2e^{-2}e^{2}$$

Exemplo (cont)

$$E(X^{2}) = \sum_{x=0}^{\infty} x^{2} e^{-2} \cdot \frac{2^{x}}{x!}$$

$$= 2e^{-2} \sum_{x=1}^{\infty} x \frac{2^{x-1}}{(x-1)!}$$

$$= 2e^{-2} \sum_{x=1}^{\infty} (x+1-1) \frac{2^{x-1}}{(x-1)!}$$

$$= 2e^{-2} \left(\sum_{x=1}^{\infty} (x-1) \frac{2^{x-1}}{(x-1)!} + \sum_{x=1}^{\infty} \frac{2^{x-1}}{(x-1)!} \right)$$

Exemplo (cont)

$$E(X^{2}) = 2e^{-2} \left(2 \sum_{x=2}^{\infty} \frac{2^{x-2}}{(x-2)!} + \sum_{x=1}^{\infty} \frac{2^{x-1}}{(x-1)!} \right)$$

$$= 2e^{-2} \left(2 \sum_{i=0}^{\infty} \frac{2^{i}}{i!} + \sum_{j=0}^{\infty} \frac{2^{j}}{j!} \right) = 2e^{-2} (2e^{2} + e^{2})$$

$$= 2^{2} + 2.$$

Assim,
$$V(X) = 2^2 + 2 - 2^2 = 2$$
.

Distribuição Binomial

Seja X a v.a. que representa o número de filhas num casal com 4 filhos. Considere-se que a probabilidade de nascer menina é 2/3 e a de nascer menino 1/3, e que cada nascimento é independente dos restantes. Obter a função massa de probabilidade da v.a. X.

Distribuição Binomial

Seja X a v.a. que representa o número de filhas num casal com 4 filhos. Considere-se que a probabilidade de nascer menina é 2/3 e a de nascer menino 1/3, e que cada nascimento é independente dos restantes. Obter a função massa de probabilidade da v.a. X.

$$P(X = x) = \begin{cases} \left(\frac{1}{3}\right)^4, & x = 0\\ 4 \cdot \frac{2}{3} \cdot \left(\frac{1}{3}\right)^3, & x = 1\\ 6 \cdot \left(\frac{2}{3}\right)^2 \cdot \left(\frac{1}{3}\right)^2, & x = 2\\ 4 \cdot \left(\frac{2}{3}\right)^3 \cdot \frac{1}{3}, & x = 3\\ \left(\frac{2}{3}\right)^4, & x = 4\\ 0, & \text{outros casos.} \end{cases}$$

Distribuição Binomial (cont)

• Distribuição Binomial: $X \sim Bi(n, p), p \in (0, 1)$.

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x = 0, \dots, n \\ 0, & \text{outros casos.} \end{cases}$$

• P(X = x) = dbinom(x,size=n, prob=p)

Cálculo das Probabilidades com Recurso ao R

$$P(X = x) = \begin{cases} \text{dbinom(0,size=4, prob=2/3)}, & x = 0 \\ \text{dbinom(1,size=4, prob=2/3)}, & x = 1 \\ \text{dbinom(2,size=4, prob=2/3)}, & x = 2 \\ \text{dbinom(3,size=4, prob=2/3)}, & x = 3 \\ \text{dbinom(4,size=4, prob=2/3)}, & x = 4 \\ 0, & \text{outros casos.} \end{cases}$$

Exemplo

Você está desejoso de manter uma boa forma física mas sem grande fadiga. Para isso, todos os dias (exceto aos fins de semana) usa a metodologia seguinte: lança um dado equilibrado e se o resultado for inferior ou igual a 4, vai a pé para a Universidade; caso contrário volta para a cama. Seja \boldsymbol{X} o número de dias da semana em que ganhou direito a repouso. Determine:

- A função massa de probabilidade de X.
- Calcule a P(X > 1), P(X = 4), $P(1 \le X \le 3)$.

Exemplo

• A fmp de X. Neste caso $X \sim Bi(n = 5, p = 1/3)$.

$$f_X(x) = \begin{cases} \binom{5}{x} \cdot (1/3)^x \cdot (2/3)^{5-x}, & x = 0, \dots, 5 \\ 0, & \text{outros casos.} \end{cases}$$

$$P(X = x) = dbinom(x,size=5, prob=1/3)$$

Calcular:

$$P(X > 1) = 1 - P(X \le 1) = 1 - [P(X = 0) + P(X = 1)]$$

= 1 - dbinom(0, size=5, prob=1/3) -
- dbinom(1, size=5, prob=1/3) = 0.5390.

Exemplo

Calcular:

$$P(X = 4) = {5 \choose 4} \cdot (1/3)^4 \cdot (2/3)$$

= dbinom(4,size=5, prob=1/3)
= 0.041.

Calcular:

$$P(1 \le X \le 3)$$
 = $P(X = 1) + P(X = 2) + P(X = 3)$
 = dbinom(1,size=5, prob=1/3) +
 + dbinom(2,size=5, prob=1/3) +
 + dbinom(3,size=5, prob=1/3)
 = 0.8230.

Distribuição Geométrica

Num estudo sobre o vírus da SIDA são analisadas amostras de sangue de indivíduos infetados. Suponha que cada amostra contém pelo menos 1 vírus com probabilidade 0.8. Se X representar o número de amostras que é necessário analisar até surgir a primeira amostra contaminada, determine

- A função massa de probabilidade de X.
- Calcule a P(X > 5).

Resolução

Pede-se para calcular P(X = x) para x = 1, 2, 3, ...

Resolução

Pede-se para calcular P(X = x) para x = 1, 2, 3, ...

• Se x = 1, então P(X = 1) = 0.8

Resolução

Pede-se para calcular P(X = x) para x = 1, 2, 3, ...

- Se x = 1, então P(X = 1) = 0.8
- Se x = 2, então $P(X = 2) = (1 0.8) \cdot 0.8$

Resolução

Pede-se para calcular P(X = x) para x = 1, 2, 3, ...

- Se x = 1, então P(X = 1) = 0.8
- Se x = 2, então $P(X = 2) = (1 0.8) \cdot 0.8$
- Se x = 3, então $P(X = 3) = (1 0.8)^2 \cdot 0.8$ pelo que

$$P(X = x) = (1 - p)^{x-1} \cdot p, \ x = 1, 2, 3, \dots$$

Resolução

Pede-se para calcular P(X = x) para x = 1, 2, 3, ...

- Se x = 1, então P(X = 1) = 0.8
- Se x = 2, então $P(X = 2) = (1 0.8) \cdot 0.8$
- Se x = 3, então $P(X = 3) = (1 0.8)^2 \cdot 0.8$ pelo que

$$P(X = x) = (1 - p)^{x-1} \cdot p, \ x = 1, 2, 3, \dots$$

• P(X = x) = dgeom(x-1, prob=p)

Distribuição Geométrica (cont)

• Função massa de probabilidade:

$$f_X(x) = P(X = x) = \begin{cases} (1-p)^{x-1}p, & x = 1, 2, 3, \dots \\ 0, & \text{outros casos} \end{cases}$$

• Função de distribuição:

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 1 \\ 1 - (1 - p)^{[x]}, & x \ge 1 \end{cases}.$$

- Valor esperado: E(X) = 1/p.
- Variância: $V(X) = (1 p)/p^2$.

Distribuição de Poisson

Seja X a variável aleatória que representa a contagem do número de acontecimentos num intervalo unitário (uma hora, um mês, um ano, etc). $X \sim Po(\lambda)$

Função massa de probabilidade:

$$f_X(x) = P(X = x) = \begin{cases} e^{-\lambda} \cdot \frac{\lambda^x}{x!}, & x = 0, 1, 2, \dots, (\lambda > 0) \\ 0, & \text{outros casos} \end{cases}$$

$$P(X = x) = dpois(x, lambda)$$

Distribuição de Poisson (cont)

• Função de distribuição:

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ \sum_{i=0}^{[x]} e^{-\lambda} \cdot \frac{\lambda^i}{i!}, & x \ge 0 \end{cases}.$$

- Propriedade importante: E(X) = V(X);
- Sejam X_1 e X_2 duas variáveis aleatórias independentes. Se $X_1 \sim Po(\lambda_1)$ e $X_2 \sim Po(\lambda_2)$ então

$$Y = X_1 + X_2 \sim Po(\lambda_1 + \lambda_2).$$

Variáveis Aleatórias Discretas

Exercícios: distribuição Poisson (cont)

- Uma companhia de seguros recebe em média, 5 participações de acidentes, por dia. Qual a probabilidade de haver no mínimo 3 participações num dia?
- O número de partículas emitidas por uma fonte radioativa numa dada unidade de tempo é uma variável aleatória de Poisson. Sabendo que a probabilidade de não ser emitida qualquer partícula numa unidade de tempo é 1/4, determine a probabilidade do contador registar 2 partículas nessa mesma unidade de tempo.

Resolução

Seja X a variável aleatória que representa o número de participações por dia. Assim $X \sim Po(\lambda = 5)$.

Resolução

Seja X a variável aleatória que representa o número de participações por dia. Assim $X \sim Po(\lambda = 5)$.

 Qual a probabilidade de haver no mínimo 3 participações num dia?

Resolução

Seja X a variável aleatória que representa o número de participações por dia. Assim $X \sim Po(\lambda = 5)$.

 Qual a probabilidade de haver no mínimo 3 participações num dia?

$$P(X \ge 3) = 1 - P(X \le 2)$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - \left[e^{-5} + e^{-5} \cdot 5 + e^{-5} \cdot \frac{5^2}{2!}\right]$$

$$= 1 - \text{ppois}(2, \text{lambda=5})$$

$$= 0.875.$$

Resolução

Seja X a variável aleatória que representa o número de partículas emitidas por uma fonte radioativa numa dada unidade de tempo. Assim $X \sim Po(\lambda)$.

• Sabe-se que P(X = 0) = 1/4, pelo que

$$e^{-\lambda} = 1/4 \Leftrightarrow \lambda = -\log(1/4) = 1.386.$$

Resolução

Seja X a variável aleatória que representa o número de partículas emitidas por uma fonte radioativa numa dada unidade de tempo. Assim $X \sim Po(\lambda)$.

• Sabe-se que P(X = 0) = 1/4, pelo que

$$e^{-\lambda} = 1/4 \Leftrightarrow \lambda = -\log(1/4) = 1.386.$$

Assim,

$$P(X = 2) = e^{-1.386} \times \frac{1.386^2}{2!}$$

 $\equiv \text{dpois}(2,\text{lambda=1.386})$
 $= 0.240.$

Variável Aleatória Contínua

Variáveis aleatórias que assumem valores em IR ou em intervalos de IR.

Variável Aleatória Contínua

Variáveis aleatórias que assumem valores em IR ou em intervalos de IR.

Função densidade de probabilidade e função de distribuição

Sendo X uma variável contínua, existe uma função real de variável real, $f_X(x)$, não negativa (função de densidade de probabilidade) tal que a função de distribuição é

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt.$$

Propriedades

- $f_X(x) \ge 0$, $\forall x \in \mathbb{R}$;
- $\bullet \int_{-\infty}^{\infty} f_X(x) dx = 1;$
- $P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f_X(x) dx = F_X(x_2) F_X(x_1), \ \forall x_1 < x_2.$

Exercício

O tempo em horas que um sistema informático funciona até que ocorre uma falha é uma variável aleatória X com função de densidade

$$f_X(x) = \begin{cases} \frac{2k}{\theta} \cdot e^{-x\theta}, & x > 0, \ (\theta > 0) \\ 0, & \text{outros casos} \end{cases}.$$

Calcular o valor da constante k.

Distribuições Contínuas

Resolução

Cálculo da constante k.

$$\int_0^\infty \frac{2k}{\theta} \cdot e^{-x\theta} dx = 1$$

Resolução:

$$\int_0^\infty \frac{2k}{\theta} \cdot e^{-x\theta} dx = \frac{2k}{\theta} \int_0^\infty e^{-x\theta} dx = \frac{2k}{\theta} \int_0^\infty \frac{-\theta}{-\theta} e^{-x\theta} dx$$
$$= -\frac{2k}{\theta^2} \int_0^\infty (-\theta) e^{-x\theta} dx = -\frac{2k}{\theta^2} [e^{-x\theta}]_0^\infty$$
$$= -\frac{2k}{\theta^2} (0-1) = \frac{2k}{\theta^2}.$$

• Assim, $k = \theta^2/2$.

Propriedades da função de distribuição

- F_X e uma função contínua, logo contínua quer à direita quer à esquerda;
- Função monótona não decrescente de x;
- $0 \le F_X(x) \le 1$;
- $\lim_{x\to-\infty} F_X(x) = 0$, $\lim_{x\to+\infty} F_X(x) = 1$;
- Importante: $f_X(x) = F'_X(x)$.

Exercício

O tempo de vida de um componente eletrónico pode ser representado por uma variável aleatória X com fdp

$$f_X(x) = \left\{ egin{array}{ll} rac{1}{1000} \cdot e^{-x/1000}, & x > 0, \\ 0, & ext{outros casos.} \end{array}
ight.$$

Determine a função de distribuição e calcule a P(X > 2000).

Exercício

Seja X uma variável aleatória com função de distribuição

$$F_X(x) = \left\{ \begin{array}{ll} 0, & x < 0 \\ 1 - e^{-(x/3)^2}, & x \ge 0 \end{array} \right.$$

Determine a função de densidade de probabilidade de X.

Distribuições Contínuas

Resolução

Sabendo que $f_X(x) = F'_X(x)$, tem-se

$$F_X'(x) = \frac{2x}{9}e^{-(x/3)^2},$$

pelo que

$$f_X(x) = \begin{cases} \frac{2x}{9}e^{-(x/3)^2}, & x > 0, \\ 0, & \text{outros casos.} \end{cases}$$

Valor esperado de uma variável aleatória contínua

Se X é uma v.a. contínua com função de densidade de probabilidade $f_X(x)$, então a expressão

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx,$$

quando

$$E(X) = \int_{-\infty}^{+\infty} |x| \cdot f_X(x) dx < \infty,$$

define o valor esperado, média ou esperança matemática de X.

Propriedades do valor esperado

 Sejam a e b duas constantes reais e X e Y duas variáveis aleatórias.

$$E(a \cdot X + b) = a \cdot E(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

$$E\left(\sum_{i} X_{i}\right) = \sum_{i} E(X_{i})$$

Propriedades do valor esperado (cont)

• Seja X uma v.a. contínua não negativa (ou positiva). Então

$$E(X) = \int_0^\infty P(X > x) dx = \int_0^\infty [1 - F_X(x)] dx.$$

• Importante: Seja $\psi(X)$ uma função mensurável de X. Então

$$E(\psi(X)) = \int_{-\infty}^{+\infty} \psi(x) f_X(x) dx.$$

Exercício

Considere-se a variável aleatória X com função de densidade

$$f_X(x) = \begin{cases} \frac{15}{16}(1-x^2)^2, & -1 < x < 1\\ 0, & \text{outros casos} \end{cases}$$

Determine E(X).

Exercício

Considere-se a variável aleatória X com função de densidade

$$f_X(x) = \begin{cases} \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}}, & x > \theta > 0, \ \alpha > 1 \\ 0, & \text{outros casos} \end{cases}.$$

Determine E(X).

Distribuições Contínuas

Resolução

Cálculo do valor esperado:

$$E(X) = \int_{\theta}^{\infty} x \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}} dx = \alpha \theta^{\alpha} \int_{\theta}^{\infty} x^{-\alpha} dx$$
$$= \alpha \theta^{\alpha} \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_{\theta}^{\infty} = \alpha \theta^{\alpha} \left(\frac{\theta^{-\alpha+1}}{\alpha-1} \right)$$
$$= \frac{\alpha \theta}{\alpha-1}.$$

Moda de uma variável aleatória contínua

A moda de uma variável aleatória contínua X, designada por mo, corresponde ao ponto de máximo da função de densidade de probabilidade de X,

$$mo = \max_{x} f_{X}(x).$$

$$mo : \begin{cases} \frac{df_{X}(x)}{dx}|_{x=mo} = 0\\ \frac{d^{2}f_{X}(x)}{dx^{2}}|_{x=mo} < 0 \end{cases}.$$

Variância e desvio padrão de uma variável aleatória contínua

• A variância de uma variável aleatória contínua é

$$V(X) = \sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{+\infty} (x - \mu)^2 \cdot f_X(x) dx,$$

sendo
$$\mu := E(X)$$
.

• Desvio padrão: $\sigma = +\sqrt{V(X)}$.

Propriedades da variância

$$V(X) \ge 0,$$

 $V(b) = 0, \ \forall b \in \mathbb{R},$
 $V(aX) = a^2V(X), \ \forall a \in \mathbb{R},$
 $V(aX + b) = a^2V(X), \ \forall a, b \in \mathbb{R},$
 $V\left(\sum_i X_i\right) = \sum_i V(X_i), \ X_1, X_2, \dots, \text{ independentes},$
 $V(X) = E(X^2) - [E(X)]^2.$

Quantil de ordem p

Seja X uma variável aleatória contínua, e $p \in (0,1)$. O quantil de ordem p, (χ_p) é um valor de X que satisfaz a condição

$$\int_{-\infty}^{\chi_p} f_X(x) dx = p \Longleftrightarrow F_X(\chi_p) = p.$$

- Primeiro quartil: p = 0.25;
- Mediana: p = 0.5;
- Terceiro quartil: p = 0.75.

Exercício

Considere-se a variável aleatória X com função de densidade

$$f_X(x) = \left\{ egin{array}{ll} rac{lpha heta^{lpha}}{x^{lpha+1}}, & x > heta > 0, \; lpha > 1 \\ 0, & ext{outros casos} \end{array}
ight.$$

TPC: Calcular o primeiro quartil e o terceiro quartil.

Distribuição uniforme contínua

A v.a. X tem distribuição uniforme contínua no intervalo [a, b] se

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{outros casos} \end{cases}$$

Exemplo: a = 5 e b = 15. Neste caso

Distribuição uniforme contínua (cont)

- Valor esperado: E(X) = (a+b)/2;
- Variância: $V(X) = (b a)^2/12$;
- Função de distribuição:

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & x \in [a, b] \\ 1, & x > b \end{cases}.$$

Exercício

O verdadeiro peso de sacos de um quilo de café de uma certa marca é aleatório e apresenta uma densidade de probabilidade uniformemente distribuída entre 0.8 e 1.2 quilos. Qual a probabilidade de um saco de café pesar entre 0.95 e 1.12 quilos?

Distribuições Contínuas

Resolução

• Seja $X \sim U(0.80, 1.20)$. Qual a probabilidade de um saco de café pesar entre 0.95 e 1.12 quilos?

$$P(0.95 \le X \le 1.12) = F_X(1.12) - F_X(0.95)$$

$$= \frac{1.12 - 0.80}{1.20 - 0.80} - \frac{0.95 - 0.80}{1.20 - 0.80}$$

$$= 0.425.$$

$$P(0.95 \le X \le 1.12)$$
 = punif(1.12, 0.80, 1.20) - punif(0.95, 0.80, 1.20) = 0.425

Distribuição exponencial

Esta distribuição surge na prática no contexto da modelação dos tempos entre ocorrências consecutivas de eventos do mesmo tipo, e.g. chegadas de clientes a um sistema, falhas mecânicas, colisões, etc.

A v.a. X tem distribuição exponencial $X \sim \textit{Exp}(\lambda)$ se

$$f_X(x) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{outros casos} \end{array} \right.$$

Distribuição exponencial (cont)

- Valor esperado: $E(X) = 1/\lambda$;
- Variância: $V(X) = 1/\lambda^2$;
- Função de distribuição:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x > 0 \end{cases}.$$

Exercício

Suponha que o tempo em horas de trabalho sem falha de um dispositivo segue uma lei exponencial com $\lambda = 0.03$.

- Determine a probabilidade de o dispositivo n\u00e3o falhar durante as primeiras 100 horas de funcionamento.
- Sabendo que o dispositivo n\u00e3o falhou nas primeiras 100 horas, qual a probabilidade de n\u00e3o falhar nas 200 horas seguintes?

Distribuições Contínuas

Resolução

• Seja $X \sim Exp(0.03)$. Determine a probabilidade de o dispositivo não falhar durante as primeiras 100 horas de funcionamento.

$$P(X \ge 100) = 1 - P(X \le 100) = 1 - F_X(100)$$

$$= 1 - (1 - e^{-0.03 \times 100})$$

$$= e^{-3}$$

$$= 0.049.$$

$$P(X \ge 100) = 1 - \text{pexp}(100, 0.03)$$

$$= 0.049.$$

Distribuições Contínuas

Resolução

 Sabendo que o dispositivo n\u00e3o falhou nas primeiras 100 horas, qual a probabilidade de n\u00e3o falhar nas 200 horas seguintes?

$$P(X \ge 300 | X \ge 100) = \frac{P(X \ge 300, X \ge 100)}{P(X \ge 100)}$$

$$= \frac{P(X \ge 300)}{P(X \ge 100)} = \frac{1 - F_X(300)}{1 - F_X(100)}$$

$$= \frac{e^{-9}}{e^{-3}} = e^{-6}$$

$$= P(X \ge 200).$$

Distribuição Normal

Diz-se que uma variável aleatória X tem distribuição Normal com parâmetros μ e σ^2 , $X \sim N(\mu, \sigma^2)$, quando a função densidade é da forma

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R} (\mu \in \mathbb{R}, \sigma^2 > 0).$$

$$P(\mu - \sigma < X \le \mu + \sigma) = 0.68$$

 $P(\mu - 2\sigma < X \le \mu + 2\sigma) = 0.955$

$$P(\mu - \sigma < X \le \mu + \sigma) = 0.68$$

 $P(\mu - 2\sigma < X \le \mu + 2\sigma) = 0.955$
 $P(\mu - 3\sigma < X \le \mu + 3\sigma) = 0.997$

DISTRIBUIÇÃO NORMAL DO QUOCIENTE DE INTELIGÊNCIA NA POPULAÇÃO

A partir do índice 130 considera-se um QI muito superior e abaixo do 70 muito inferior

Distribuição Normal (cont)

• Seja $X \sim N(\mu, \sigma^2)$, então

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1).$$

Esta lei denomina-se *Lei Normal Standard ou lei Normal centrada e reduzida*.

• Se $X \sim N(\mu, \sigma^2)$ e Y = aX + b, então

$$Y \sim N(a\mu + b, a^2\sigma^2).$$

Distribuição Normal (cont)

• Se $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, ..., n, é um conjunto de variáveis aleatórias **independentes**, então

$$\sum_{i=1}^{n} X_i \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right).$$

Em particular, se $\mu_i = \mu$ e $\sigma_i^2 = \sigma^2$, para i = 1, ..., n, então

$$\sum_{i=1}^{n} X_{i} \sim N\left(n\mu, n\sigma^{2}\right), \ \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \sigma^{2}/n\right).$$

Exercício

O volume de cerveja das garrafas vendidas no bar onde o Rocha trabalha pode ser considerado $N(0.33,10^{-5})$. Só são aceites para distribuição garrafas com um volume entre 0.32 e 0.34. Qual a probabilidade de uma garrafa ser rejeitada?

Exercício

O volume de cerveja das garrafas vendidas no bar onde o Rocha trabalha pode ser considerado $N(0.33,10^{-5})$. Só são aceites para distribuição garrafas com um volume entre 0.32 e 0.34. Qual a probabilidade de uma garrafa ser rejeitada?

$$P(\text{garrafa ser rejeitada}) = 1 - P(\text{garrafa ser aceite})$$

= $1 - P(0.32 \le X \le 0.34)$.

Não esquecer que E(X) = 0.33 e $V(X) = 10^{-5}$.

Distribuições Contínuas

Resolução (cont)

$$P(0.32 \le X \le 0.34) = P\left(\frac{0.32 - 0.33}{\sqrt{10^{-5}}} \le Z \le \frac{0.34 - 0.33}{\sqrt{10^{-5}}}\right)$$

$$= F_Z(3.16) - F_Z(-3.16)$$

$$= F_Z(3.16) - [1 - F_Z(3.16)] =$$

$$= 2F_Z(3.16) - 1$$

$$\stackrel{\text{(tabela 3)}}{=} 2 * 0.999211 - 1, (F_Z(3.16) = 0.999211)$$

$$= 0.998,$$

pelo que P(garrafa ser rejeitada) = 1 - 0.998 = 0.002.

Distribuições Contínuas

Resolução (cont)

```
P(\text{garrafa ser rejeitada}) = 1 - P(\text{garrafa ser aceite})
= 1 - P(0.32 \le X \le 0.34)
= 1 - [P(X \le 0.34) - P(X \le 0.32)]
= 1 - \text{pnorm}(0.34, 0.33, 0.0031) +
+ \text{pnorm}(0.32, 0.33, 0.0031)
= 0.0012.
```


Exercício

Seja X a variável aleatória que representa o tempo (em minutos) necessário para um aluno/a de PE fazer o trabalho de casa. Se a variável aleatória $X \sim N(\mu=70,\sigma^2=12^2)$, determine a probabilidade de o trabalho demorar mais do que 90 minutos.

$$P(X > 90) = 1 - P(X \le 90)$$

$$= 1 - \left[P\left(Z \le \frac{90 - 70}{12}\right)\right]$$

$$= 1 - P(Z \le 1.666)$$

$$\stackrel{(tabela 3)}{=} 1 - 0.9515 = 0.0485.$$

Importante

- Ao realizar-se uma experiência aleatória é habitual estarmos interessados em estudar mais do que uma variável aleatória.
- Por outro lado, é também frequente estarmos interessados em analisar a relação que existe entre pares de variáveis aleatórias, em particular de que modo o conhecimento de uma variável aleatória pode influenciar o comportamento probabilístico da outra variável aleatória.

Variável aleatória bidimensional (ou par aleatório)

Uma variável aleatória bidimensional (X, Y) é uma função com domínio Ω e com contradomínio em \mathbb{R}^2 .

$$(X,Y): \quad \Omega \to \mathbb{R}^2 \\ \omega \to (X(\omega),Y(\omega))$$

Função de distribuição conjunta

Seja (X, Y) uma variável aleatória bidimensional. A função $F_{X,Y}(x,y)$, com domínio \mathbb{R}^2 , definida por

$$F_{X,Y}(x,y) = P(X \le x, Y \le y),$$

é a função de distribuição de (X, Y), ou função de distribuição conjunta das variáveis X e Y.

Propriedades importantes

- $0 \le F_{X,Y}(x,y) \le 1$;
- F é não decrescente, separadamente, em relação a x e em relação a y;

$$\begin{array}{rcl} P(x_1 < X \leq x_2, y_1 < Y \leq y_2) & = & F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) \\ & - & F_{X,Y}(x_2, y_1) + F_{X,Y}(x_1, y_1). \end{array}$$

Variáveis bidimensionais DISCRETAS

Seja (X, Y) uma variável aleatória bidimensional **discreta**. A função $f_{X,Y}(x,y)$ definida por

$$f_{X,Y}(x,y) = P(X = x, Y = y),$$

é a função massa de probabilidade (X, Y), ou função massa de probabilidade conjunta das variáveis $X \in Y$.

X	Y				
	y_1		y_j		y_m
x_1	p_{11}		p_{1j}		p_{1m}
÷	÷	÷		÷	÷
x_i	÷		p_{ij}		÷
÷	:	:		:	÷
x_n	p_{n1}		p_{nj}		p_{nm}

Exemplo

Numa garagem há 10 automóveis do mesmo modelo e do mesmo ano, e sabe-se que 5 estão em perfeitas condições, 2 com a transmissão deficiente e 3 com a direção desafinada. Dois carros são escolhidos ao acaso, designando por X o número de carros na amostra com transmissão deficiente, e Y, o número de carros na amostra com direção desafinada. Determine a função de probabilidade conjunta de X e Y.

Exemplo

Numa garagem há 10 automóveis do mesmo modelo e do mesmo ano, e sabe-se que 5 estão em perfeitas condições, 2 com a transmissão deficiente e 3 com a direção desafinada. Dois carros são escolhidos ao acaso, designando por X o número de carros na amostra com transmissão deficiente, e Y, o número de carros na amostra com direção desafinada. Determine a função de probabilidade conjunta de X e Y.

$$\Omega = \{(0,0), (0,1), (0,2), (1,0), (1,1), (2,0)\}$$

Exemplo (cont)

$$P(X = 0, Y = 0) = \frac{\binom{5}{2}}{\binom{10}{2}} = \frac{10}{45}$$

$$P(X = 1, Y = 0) = \frac{\binom{2}{1}\binom{5}{1}}{\binom{10}{2}} = \frac{10}{45}$$

$$P(X = 2, Y = 0) = \frac{\binom{2}{2}}{\binom{10}{2}} = \frac{1}{45}$$

Exemplo (cont)

$$P(X = 0, Y = 1) = \frac{\binom{3}{1}\binom{5}{1}}{\binom{10}{2}} = \frac{15}{45}$$

$$P(X = 1, Y = 1) = \frac{\binom{2}{1}\binom{3}{1}}{\binom{10}{2}} = \frac{6}{45}$$

$$P(X = 0, Y = 2) = \frac{\binom{3}{2}}{\binom{10}{2}} = \frac{3}{45}$$

Função de probabilidade marginal de X e Y

A função de probabilidade marginal de X é definida da seguinte maneira:

$$P(X = x) = \sum_{y} P(X = x, Y = y).$$

Do mesmo modo se define a função de probabilidade marginal de Y

$$P(Y = y) = \sum_{x} P(X = x, Y = y).$$

Função de distribuição marginal de X e Y

A função de distribuição marginal de X é definida da seguinte maneira:

$$F_X(x) = P(X \le x) = \sum_{x_i \le x} P(X = x_i)$$
$$= \sum_{x_i \le x} \sum_{y} P(X = x_i, Y = y).$$

Do mesmo modo se define a função de distribuição marginal de Y

$$F_Y(y) = P(Y \le y) = \sum_{y_i \le y} P(Y = y_i)$$
$$= \sum_{y_i \le y} \sum_{x} P(X = x, Y = y_i).$$

AMENTO EMÁTICA .ISBOA

Função de probabilidade condicionada

A função probabilidade de X condicionada pela realização do acontecimento $\{Y = y\}$, com P(Y = y) > 0, é dada por

$$f_{X|Y=y} = P(X=x|Y=y) = \frac{P(X=x,Y=y)}{P(Y=y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

De modo análogo, a função probabilidade de Y condicionada pela realização de $\{X=x\}$, com P(X=x)>0, é dada por

$$f_{Y|X=x} = P(Y=y|X=x) = \frac{P(X=x,Y=y)}{P(X=x)} = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

Função de distribuição de X condicional a Y = y

$$F_{X|Y=y}(x) = P(X \le x|Y=y)$$

$$= \sum_{x_i \le x} P(X = x_i|Y=y)$$

$$= \sum_{x_i \le x} \frac{P(X = x_i, Y=y)}{P(Y=y)}.$$

Função de distribuição de Y condicional a X = x

$$F_{Y|X=x}(y) = P(Y \le y|X = x)$$

$$= \sum_{y_i \le y} P(Y = y_i|X = x)$$

$$= \sum_{y_i \le y} \frac{P(X = x, Y = y_i)}{P(X = x)}.$$

Valores esperados condicionais

• Valor esperado de X condicional a Y = y:

$$E(X|Y=y) = \sum_{x} x \cdot P(X=x|Y=y).$$

• Valor esperado de Y condicional a X = x:

$$E(Y|X=x) = \sum_{y} y \cdot P(Y=y|X=x).$$

Variâncias condicionais

• Variância de X condicional a Y = y:

$$V(X|Y = y) = E(X^{2}|Y = y) - [E(X|Y = y)]^{2}$$

= $\sum_{x} x^{2} \cdot P(X = x|Y = y) - [E(X|Y = y)]^{2}$

• Variância de Y condicional a X = x:

$$V(Y|X = x) = E(Y^{2}|X = x) - [E(Y|X = x)]^{2}$$

= $\sum_{y} y^{2} \cdot P(Y = y|X = x) - [E(Y|X = x)]^{2}$

Independência

As variáveis aleatórias X e Y dizem-se independentes se e só se

$$P(X = x, Y = y) = P(X = x)P(Y = y), \ \forall (x, y) \in \mathbb{R}^{2}.$$

Esta condição é equivalente a

$$F_{X,Y}(x,y) = F_X(x)F_Y(y), \ \forall (x,y) \in \mathbb{R}^2.$$

Variáveis bidimensionais CONTÍNUAS

O par aleatório (X,Y), com função de distribuição $F_{X,Y}(x,y)$, é uma variável aleatória bidimensional contínua se e só se existe uma função real de duas variáveis reais, não negativa, $f_{X,Y}(x,y)$, tal que

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) dv du, \ \forall (x,y) \in \mathbb{R}^{2}.$$

A função $f_{X,Y}(x,y)$ chama-se **função densidade** de (X,Y) ou função densidade conjunta de X e Y.

Variáveis bidimensionais CONTÍNUAS (cont)

- Para $\forall (x,y) \in \mathbb{R}^2, \ f_{X,Y}(x,y) \geq 0;$
- Para $x = +\infty$ and $y = +\infty$, tem-se

$$F_{X,Y}(+\infty,+\infty)=1;$$

• Se a função densidade $f_{X,Y}(x,y)$ for contínua no ponto (x,y), então

$$f_{X,Y}(x,y) = \frac{\partial F_{X,Y}(x,y)}{\partial x \partial y}.$$

Exercício

Considere-se a função densidade da variável bidimensional (X, Y) dada por

$$f_{X,Y}(x,y) = \begin{cases} (12/7) \cdot (x^2 + xy), & 0 < x < 1, \ 0 < y < 1 \\ 0, & \text{outros casos} \end{cases}$$

Calcular

$$P(X > 0.5, Y > 0.80) = \int_{0.5}^{\infty} \int_{0.8}^{\infty} f_{X,Y}(x, y) dy dx$$
$$= \int_{0.5}^{1} \int_{0.8}^{1} f_{X,Y}(x, y) dy dx$$
$$= 0.125$$

Exercício

Importante:

$$P(X > 0.5, Y > 0.80) \neq 1 - P(X \le 0.5, Y \le 0.80).$$

Exemplo

Considere-se a função densidade da variável bidimensional (X, Y) dada por

$$f_{X,Y}(x,y) = \begin{cases} 2, & 0 < x < y < 1 \\ 0, & \text{outros casos} \end{cases}.$$

Calcular $P(X \le 0.5, Y \le 0.75)$.

Exemplo (cont)

$$P(X \le 0.5, Y \le 0.75) = F_{X,Y}(0.5, 0.75)$$

$$= \int_{-\infty}^{0.5} \int_{-\infty}^{0.75} f_{X,Y}(u, v) dv du$$

$$= \int_{0}^{0.5} \int_{u}^{0.75} 2 dv du$$

$$= 0.5.$$

Exemplo (cont)

Verificar que

$$F_{X,Y}(x,y) = \begin{cases} 0, & x < 0 \land y < 0 \\ 2x \left(y - \frac{x}{2}\right), & 0 < x < y < 1 \\ 2x \left(1 - \frac{x}{2}\right), & 0 < x < 1, y > 1 \\ y^{2}, & 0 < y < x < 1 \land y < 1 < x \\ 1, & x > 1, y > 1 \end{cases}.$$

Função de densidade marginal de X e Y

A função de densidade marginal de X é definida da seguinte maneira:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy.$$

A função de densidade marginal de Y é definida da seguinte maneira:

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx.$$

Função de distribuição marginal de X

A função de distribuição marginal de X é definida da seguinte maneira:

$$F_X(x) = \int_{-\infty}^x f_X(u) du = \int_{-\infty}^x \left(\int_{-\infty}^{+\infty} f_{X,Y}(u,y) dy \right) du$$
$$= F_{X,Y}(x,+\infty).$$

Função de densidade marginal de Y

A função de distribuição marginal de Y é definida da seguinte maneira:

$$F_{Y}(y) = \int_{-\infty}^{y} f_{Y}(v) dv = \int_{-\infty}^{y} \left(\int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx \right) dv$$
$$= F_{X,Y}(+\infty,y).$$

Exercício

Considere-se a função densidade da variável bidimensional (X, Y) dada por

$$f_{X,Y}(x,y) = \begin{cases} 2, & 0 < x < y < 1 \\ 0, & \text{outros casos} \end{cases}.$$

Calcular $f_X(x)$ e $f_Y(y)$.

Função de densidade condicionada

X condicional a Y = y

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}, \ f_{Y}(y) > 0.$$

Y condicional a X = x

$$f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)}, \ f_X(x) > 0.$$

Função de distribuição condicionada

X condicional a Y = y

$$F_{X|Y=y}(x) = P(X \le x|Y=y) = \int_{-\infty}^{x} f_{X|Y=y}(u) du.$$

Y condicional a X = x

$$F_{Y|X=x}(y) = P(Y \le y|X=x) = \int_{-\infty}^{y} f_{Y|X=x}(v) dv.$$

Valor esperado

• Valor esperado de X condicional a Y = y

$$E(X|Y=y) = \int_{-\infty}^{+\infty} x \cdot f_{X|Y=y}(x) dx.$$

• Valor esperado de Y condicional a X = x

$$E(Y|X=x) = \int_{-\infty}^{+\infty} y \cdot f_{Y|X=x}(y) dy.$$

Variância

• Variância de X condicional a Y = y

$$V(X|Y = y) = E(X^{2}|Y = y) - [E(X|Y = y)]^{2}$$

=
$$\int_{-\infty}^{\infty} x^{2} \cdot f_{X|Y=y}(x) dx - [E(X|Y = y)]^{2}.$$

• Variância de Y condicional a X = x

$$V(Y|X = x) = E(Y^{2}|X = x) - [E(Y|X = x)]^{2}$$

=
$$\int_{-\infty}^{\infty} y^{2} \cdot f_{Y|X=x}(y) dy - [E(Y|X = x)]^{2}.$$

Independência

As variáveis aleatórias X e Y dizem-se independentes se e só se

$$f_{X,Y}(x,y) = f_X(x)f_Y(y), \ \forall (x,y) \in \mathbb{R}^2.$$

Esta condição é equivalente a

$$F_{X,Y}(x,y) = F_X(x)F_Y(y), \ \forall (x,y) \in \mathbb{R}^2.$$

