LP30 – Rayonnement dipolaire électrique

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Source de rayonnement et modèle du dipôle électrique oscillant

1. Sources de rayonnement – échelles caractéristiques

- a est la taille du domaine des sources
- *r* est la distance entre l'observateur et les sources
- λ est la longueur d'onde de l'onde électromagnétique rayonnée (en R.P.S.) :

$$\lambda = cT = \frac{c}{v} = \frac{2\pi c}{\omega}$$

I. Source de rayonnement et modèle du dipôle électrique oscillant

3. Modèle du dipôle électrique oscillant

II. Champs rayonnés par le dipôle électrique oscillant

1. Considérations sur l'expression générale

Les champs rayonnés par un dipôle électrique oscillant $\overrightarrow{p(t)}=p(t)\overrightarrow{u_z}$ sont, dans l'espace repéré par les coordonnées sphériques :

$$\vec{B}(\vec{r},t) = \frac{\mu_0}{4\pi} \sin(\theta) \left[\frac{\dot{p}}{r^2} + \frac{\ddot{p}}{rc} \right]_{\left(t - \frac{r}{c}\right)} \overrightarrow{u_{\varphi}}$$

$$\vec{E}(\vec{r},t) = \begin{cases} E_r = \frac{2\cos(\theta)}{4\pi\varepsilon_0} \left[\frac{p}{r^3} + \frac{\dot{p}}{r^2c}\right]_{\left(t - \frac{r}{c}\right)} \\ E_\theta = \frac{\sin(\theta)}{4\pi\varepsilon_0} \left[\frac{p}{r^3} + \frac{\dot{p}}{r^2c} + \frac{\ddot{p}}{rc^2}\right]_{\left(t - \frac{r}{c}\right)} \\ E_\varphi = 0 \end{cases}$$

III. Puissance rayonnée par le dipôle électrique oscillant

1. Anisotropie du rayonnement

