In animated pictures ...

Frédéric Peschanski

Sorbonne University - LIP6

Copyright © 2021 Frederic Peschanski (CC-BY-SA 4.0)







# Objects



# Objects

a b

# Objects

a b c



# Objects

- a b c
- Morphisms (arrows)



### Objects

a b c ...

# Morphisms (arrows)



 $f::a\longrightarrow b$ 



# Objects

a b c ...

# Morphisms (arrows)



$$f::\; a \longrightarrow b$$



### Objects

a b c ...

# Morphisms (arrows)





### Objects

a b c ...

# Morphisms (arrows)



 $f::a\longrightarrow b$ 



### Objects

a b c ...

# Morphisms (arrows)



Identities

• a



### Objects

a b c ...

# Morphisms (arrows)

$$\begin{array}{ccc}
a & f & b \\
\bullet & & \bullet \\
f :: a \longrightarrow b
\end{array}$$

$$id_a :: a \longrightarrow a$$



### Objects

a b c ...

# Morphisms (arrows)



$$\bullet \sim id_a \quad id_a :: a \longrightarrow a$$



### Objects

a b c ...

# Morphisms (arrows)





# Objects

a b c ...

# Morphisms (arrows)





### Objects

a b c ...

# Morphisms (arrows)



#### Identities

 $\bullet \bowtie id_a :: a \longrightarrow a$ 

Compositions



### Objects

a b c

# Morphisms (arrows)

$$\begin{array}{ccc}
a & f & b \\
\bullet & & \bullet \\
f :: a \longrightarrow b
\end{array}$$

#### Identities

$$\bullet \approx id_a \quad id_a :: a \longrightarrow a$$



### Compositions

if  $f :: a \longrightarrow b$ 

### Objects

a b c

# Morphisms (arrows)



#### Identities

$$\bullet \approx id_a \quad id_a :: a \longrightarrow a$$



### Compositions

if 
$$f :: a \longrightarrow b$$
 and  $g :: b \longrightarrow c$ 

### Objects

a b c

# Morphisms (arrows)

$$\begin{array}{ccc}
a & f & b \\
\bullet & & \bullet \\
f :: a \longrightarrow b
\end{array}$$

#### Identities

$$\bullet \bowtie id_a \quad id_a :: a \longrightarrow a$$



### Compositions

if  $f :: a \longrightarrow b$  and  $g :: b \longrightarrow c$ then  $g \circ f :: a \longrightarrow c$ 

### Objects

a b c

# Morphisms (arrows)

$$\begin{array}{ccc}
a & f & b \\
\bullet & & \bullet \\
f :: a \longrightarrow b
\end{array}$$

#### Identities

$$\bullet \approx id_a \quad id_a :: a \longrightarrow a$$



### Compositions

if  $f :: a \longrightarrow b$  and  $g :: b \longrightarrow c$ then  $g \circ f :: a \longrightarrow c$ 



Laws of identity :



### Laws of identity:



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,



### Laws of identity:

- $f \circ Id_a = f$
- $Id_b \circ f = f$



### Laws of identity:

- $f \circ Id_a = f$
- $Id_b \circ f = f$



### Laws of identity:

- $f \circ Id_a = f$
- $Id_b \circ f = f$



### Laws of identity:

- $f \circ Id_a = f$
- $Id_b \circ f = f$



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

### Law of associativity:



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

#### Law of associativity:



#### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

#### Law of associativity:

For any  $f :: a \longrightarrow b$ ,  $g :: b \longrightarrow c$ , and



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

### Law of associativity:

For any  $f :: a \longrightarrow b$ ,  $g :: b \longrightarrow c$ , and

 $h:: c \longrightarrow d$ ,



#### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

### Law of associativity:

For any  $f :: a \longrightarrow b$ ,

 $g::b\longrightarrow c$ , and

 $h:: c \longrightarrow d$ 



#### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

### Law of associativity:

For any  $f :: a \longrightarrow b$ ,

 $g::b\longrightarrow c$ , and

 $h:: c \longrightarrow d$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

### Law of associativity:

For any  $f :: a \longrightarrow b$ ,

 $g::b\longrightarrow c$ , and

 $h :: c \longrightarrow d$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

#### Law of associativity:

For any  $f :: a \longrightarrow b$ ,

 $g::b\longrightarrow c$ , and

 $h :: c \longrightarrow d$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

### Law of associativity:

For any  $f :: a \longrightarrow b$ ,

 $g::b\longrightarrow c$ , and

 $h:: c \longrightarrow d$ ,



### Laws of identity:

For any  $f :: a \longrightarrow b$ ,

- $f \circ Id_a = f$
- $Id_b \circ f = f$

### Law of associativity:

For any  $f :: a \longrightarrow b$ ,

 $g::b\longrightarrow c$ , and

 $h:: c \longrightarrow d$ ,

•  $h \circ (g \circ f) = (h \circ g) \circ f = h \circ g \circ f$ 

