IV - Fonctions

I - Fonctions particulières

I.1 - Polynômes

À Savoir

Soit a, b, c des réels tels que $a \neq 0$.

* Si $f: x \mapsto ax + b$, alors f est un **polynôme de degré** 1 et de coefficient dominant égal à a. Il s'annule en $-\frac{b}{a}$.

x	$-\infty$	-	-b/a		$+\infty$
signe de $f(x)$	_	signe de a	0	signe de a	

- * Si $f: x \mapsto ax^2 + bx + c$, alors f est un **polynôme de degré** 2 (appelé également **trinôme**) et de coefficient dominant égal à a. Le discriminant de f est égal à $\Delta = b^2 4ac$.
 - $\star~\mathrm{Si}~\Delta>0,$ la fonction f possède deux racines distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Alors, $x_1 + x_2 = -\frac{b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$.

x	$-\infty$		x_1		x_2	
signe de $f(x)$		signe de a	0	- signe de a	0	signe de a

 \star Si $\Delta=0,$ la fonction f possède une unique racine :

$$x_0 = \frac{-b}{2a}.$$

x	$-\infty$		x_0		$+\infty$
signe de $f(x)$		signe de a	0	signe de a	

 \star Si $\Delta<0,$ la fonction f ne possède pas de racine réelle.

x	$-\infty$		$+\infty$
signe de $f(x)$		signe de a	

Représentations graphiques

Il est important de savoir représenter graphiquement ces fonctions.

À Savoir

Si f est un polynôme et si a est une racine de f (c'est-à-dire f(a)=0), alors il existe un polynôme g(x) tel que

$$f(x) = (x - a)g(x).$$

Exemple 1

Posons $f(x) = x^3 - 6x^2 - x + 30$.

On remarque que

$$f(-2) = (-2)^3 - 6 \times (-2)^2 - (-2) + 30$$
$$= -2^3 - 6 \times 2^2 + 2 + 30$$
$$= -8 - 24 + 2 + 30 = 0.$$

Ainsi, il existe $a, b, c \in \mathbb{R}$ tels que pour tout x réel,

$$f(x) = (x+2)(ax^2 + bx + c)$$
$$x^3 - 6x^2 - x + 30 = ax^3 + bx^2 + cx + 2ax^2 + 2bx + 2c$$

En identifiant les coefficients de x^3 dans les deux membres :

$$1 = a$$

En identifiant les coefficients constants dans les deux membres :

$$30 = 2c$$
$$c = 15$$

En identifiant les coefficients de x dans les deux membres :

$$-1 = c + 2b$$

$$-1 = 15 + 2b$$

$$2b = -16$$

$$b = -8$$

Ainsi,

$$f(x) = (x+2)(x^2 - 8x + 15)$$

Le discriminant de $x^2 - 8x + 15$ est

$$\Delta = 8^2 - 4 \times 15 = 64 - 60 = 4.$$

Ainsi, les racines de $x^2 - 8x + 15$ sont

$$x_1 = \frac{8-2}{2} = 3$$
 et $x_2 = \frac{8+2}{2} = 5$.

Finalement,

$$x^2 - 8x + 15 = (x - 3)(x - 5)$$

et

$$f(x) = x^3 - 6x^2 - x + 30 = (x+2)(x-3)(x-5).$$

I.2 - Valeur absolue

À Savoir

Soit a un réel. La **valeur absolue** de a, notée |a|, est égale à

$$\begin{cases} a & \text{si } a \geqslant 0 \\ -a & \text{si } a < 0 \end{cases}$$

Les limites aux bornes de son ensemble de définition sont :

$$\lim_{x \to -\infty} |x| = +\infty,$$
$$\lim_{x \to +\infty} |x| = +\infty.$$

Graphe de la fonction valeur absolue

Exemple 2

D'après la définition,

$$|0| = 0$$

$$|2| = 2$$

$$|-3| = 3$$

$$\sqrt{a^2} = |a|$$

À Savoir

Soit a, b deux réels. La valeur |a-b| est la **distance** entre les réels a et b.

Valeur absolue et Distance à 0

I.3 - Logarithme

À Savoir

La fonction **logarithme népérien**, notée ln, définie sur \mathbb{R}_+^* , est la primitive de la fonction $x \mapsto \frac{1}{x}$ qui s'annule en 1 :

$$\forall x > 0, \ln(x) = \int_1^x \frac{1}{t} dt.$$

La fonction logarithme est croissante sur \mathbb{R}_+^* .

Les limites aux bornes de son ensemble de définition sont :

$$\lim_{x \to 0^+} \ln(x) = -\infty,$$

$$\lim_{x \to +\infty} \ln(x) = +\infty.$$

Ses valeurs remarquables sont :

$$ln(1) = 0,$$

$$ln(e) = 1.$$

Graphe de la fonction logarithme

À Savoir

La fonction logarithme est dérivable sur \mathbb{R}_+^* et

$$\forall x > 0, \ln'(x) = \frac{1}{x}.$$

Exemple 3

Soit $f(x) = x \ln(x) - x + 10$. En utilisant les règles de dérivation, la fonction f est dérivable sur \mathbb{R}_+^* et

$$f'(x) = 1 \times \ln(x) + x \times \ln'(x) - 1 + 0$$
$$= \ln(x) + x \times \frac{1}{x} - 1$$
$$= \ln(x).$$

À Savoir

Pour tous a, b > 0 et x réel,

$$\ln(ab) = \ln(a) + \ln(b),$$

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b),$$

$$\ln(a^x) = x \ln(a).$$

Exemple 4

$$\ln(e^4) = 4\ln(e) = 4,$$

 $\ln(8) = \ln(2^3) = 3\ln(2).$

I.4 - Exponentielle

À Savoir

La fonction **exponentielle**, notée exp, définie sur \mathbb{R} , est la fonction réciproque de la fonction logarithme. On note $e^x = \exp(x)$.

$$\forall x \in \mathbb{R}, \ln(e^x) = x,$$

 $\forall x > 0, e^{\ln(x)} = x.$

La fonction exponentielle est croissante sur \mathbb{R} . Les limites aux bornes de son ensemble de définition sont :

$$\lim_{x \to -\infty} e^x = 0,$$

$$\lim_{x \to +\infty} e^x = +\infty.$$

Ses valeurs remarquables sont:

$$e^0 = 1,$$

 $e^1 = e.$

Graphe de la fonction exponentielle

À Savoir

La fonction exponentielle est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \exp'(x) = \exp(x).$$

Exemple 5

Soit $f(x) = 4x e^x + x^2$. La fonction f est dérivable pour tout x réel et

$$f'(x) = 4 \times 1 \times e^x + 4x e^x + 2x = 4(1+x) e^x + 2x.$$

À Savoir

Pour tous $a, b \in \mathbb{R}$,

$$e^{a+b} = e^a \cdot e^b,$$
$$e^{-a} = \frac{1}{e^a}.$$

Exemple 6

$$e^3 \times e^2 = e^5$$
, $e^{\ln(8)} = 8$ et $e^{-2} = \frac{1}{e^2}$

II - Généralités

À Savoir

* Si f est **croissante** sur I et $x, y \in I$. Alors,

$$x \leqslant y$$

$$\Rightarrow f(x) \leqslant f(y)$$

* Si f est **décroissante** sur I et $x, y \in I$. Alors,

$$x \leqslant y$$

$$\Rightarrow f(y) \leqslant f(x)$$

Exemple 7

Comme la fonction exponentielle est croissante, et $2 \le 3$, alors $e^2 \le e^3$.

Comme la fonction $x\mapsto \frac{1}{x}$ est décroissante sur $[0,+\infty[$ et $2\leqslant 3,$ alors $\frac{1}{2}\geqslant \frac{1}{3}.$

À Savoir

- * La fonction f est paire si $\forall x \in I$, f(-x) = f(x). Sa courbe représentative présente alors une symétrie axiale dont l'axe est l'axe des ordonnées.
- * La fonction f est impaire si $\forall x \in I$, f(-x) = -f(x). Sa courbe représentative présente alors une symétrie centrale centrée en l'origine du repère.

Graphes et Parité

La fonction carré est paire :

La fonction cube est impaire:

II.1 - Limites

À Savoir

- * La **limite à droite** de f en a est la valeur que prend f(x) lorsque x tend vers a tout en restant supérieur à a. On la note $\lim_{x\to a^+} f(x)$.
- * La **limite à gauche** de f en a est la valeur que prend f(x)

lorsque x tend vers a tout en restant inférieur à a. On la note $\lim_{x\to a^-} f(x)$.

Exemple 8

$$\lim_{x \to 0^+} \ln(x) = -\infty \text{ et } \lim_{x \to 1^+} \frac{1}{x - 1} = +\infty.$$

À Savoir

- * La limite en $-\infty$ ou en $+\infty$ d'un polynôme est égale à la limite de son terme de plus haut degré.
- * La limite en $-\infty$ ou en $+\infty$ d'un quotient de polynômes est égale à la limite du quotient de leurs termes de plus haut degré.

Exemple 9

* Comme $\lim_{x\to +\infty} x^3 = +\infty$, alors

$$\lim_{x \to +\infty} x^3 - 100x^2 - 12 = +\infty.$$

* Comme $\lim_{x\to +\infty} -5x^4 = -\infty$, alors

$$\lim_{x \to +\infty} -5x^4 + 300x^3 - 12 = -\infty.$$

* Comme $\lim_{x \to -\infty} -5x^3 = +\infty$, alors

$$\lim_{x \to -\infty} -5x^3 - 300x^2 - 12 = +\infty.$$

* Comme $\frac{5x^4}{12x^6} = \frac{5}{12x^3}$ et $\lim_{x \to +\infty} \frac{5}{12x^3} = 0$, alors

$$\lim_{x \to +\infty} \frac{5x^4 + 2x^2 - x + 1}{12x^6 + 26x^5} = 0.$$

* Comme $\frac{4x^3}{3x^3} = \frac{4}{3}$ et $\lim_{x \to +\infty} \frac{4}{3} = \frac{4}{3}$, alors

$$\lim_{x\to +\infty} \frac{4x^3-12x^2+x+1}{3x^3-5x^2+12} = \frac{4}{3}.$$

À Savoir

Si la case indique??, la limite est indéterminée. Il faut transformer l'expression (factorisation, expression conjuguée, croissances comparées,...) pour pouvoir la déterminer.

* **Multiplication** par une constante.

$\lim f =$	ℓ	$-\infty$	$+\infty$	
$\lim kf =$	$k\ell$	$-\infty$	$+\infty$	$\sin k > 0$
	$k\ell$	$+\infty$	$-\infty$	$\sin k < 0$
	0	0	0	$\sin k = 0$

* Addition de limites. Dans le tableau est indiquée la valeur de $\lim(f+g)$.

$\lim g = \lim f$	ℓ_1	$-\infty$	$+\infty$
ℓ_2	$\ell_1 + \ell_2$	$-\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$??
$+\infty$	$+\infty$??	$+\infty$

* Multiplication de limites. Dans le tableau est indiquée la valeur de $\lim (f \times q)$.

$\lim g$ $\lim f$	$\ell_1 < 0$	$\ell_1 > 0$	0	$-\infty$	$+\infty$
$\ell_2 < 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$+\infty$	$-\infty$
$\ell_2 > 0$	$\ell_1\ell_2$	$\ell_1\ell_2$	0	$-\infty$	$+\infty$
0	0	0	0	??	??
$-\infty$	$+\infty$	$-\infty$??	$+\infty$	$-\infty$
$+\infty$	$-\infty$	$+\infty$??	$-\infty$	$+\infty$

* Quotient de limites. Dans le tableau est indiquée la valeur de $\lim_{q \to 0} \frac{f}{g}$.

$\lim_{g \to g} f$	$\ell_1 < 0$	$\ell_1 > 0$	0-	0+	$-\infty$	$+\infty$
$\ell_2 < 0$	$\frac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	0+	0-	$+\infty$	$-\infty$
$\ell_2 > 0$	$\frac{\ell_1}{\ell_2}$	$\frac{\ell_1}{\ell_2}$	0-	0+	$-\infty$	$+\infty$
0-	$+\infty$	$-\infty$??	??	$+\infty$	$-\infty$
$-\infty$	0+	0-	0+	0-	??	??
$+\infty$	0-	0+	0-	0+	??	??

À Savoir

Théorème des **croissances comparées**. Soit $\alpha > 0$ et $n \in \mathbb{N}^*$.

$$\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^\alpha} = +\infty,$$

$$\lim_{x \to +\infty} \frac{x^\alpha}{\mathrm{e}^x} = 0,$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^\alpha} = 0,$$

$$\lim_{x \to +\infty} \frac{x^\alpha}{\ln(x)} = +\infty,$$

$$\lim_{x \to +\infty} (x^\alpha \ln(x)) = 0,$$

$$\lim_{x \to -\infty} x^n \, \mathrm{e}^x = 0.$$

Exemple 10

- * $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0.$ * $\lim_{x \to -\infty} \frac{x}{e^{-x}} = \lim_{x \to -\infty} x e^x = 0.$
- * Soit $f(x) = x \ln(x) x$. D'après le théorème des croissances comparées, $\lim_{x\to 0} x \ln(x) = 0$. D'après les limites classiques,

 $\lim_{x\to 0} x = 0$. Ainsi,

$$\lim_{x \to 0} (x \ln(x) - x) = 0.$$

* Soit $f(x) = -\frac{1}{x} + \frac{e^x}{15x^{100}}$. D'après les propriétés classiques, $\lim_{x \to +\infty} \frac{1}{x} = 0$. D'après le théorème des croissances comparées, $\lim_{x \to +\infty} \frac{e^x}{x^{100}} = +\infty$. Ainsi,

$$\lim_{x \to +\infty} -\frac{1}{x} + \frac{e^x}{15x^{100}} = +\infty.$$

* Soit $f(x) = x \ln(x) - x = x \left(\frac{\ln(x)}{x} - 1\right)$. D'après le théorème des croissances comparées, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$. Ainsi, $\lim_{x \to +\infty} \frac{\ln(x)}{x} - 1 = -1$. Finalement,

$$\lim_{x \to +\infty} x \ln(x) - x = -\infty.$$

À Savoir

- * Si $\lim_{x \to +\infty} f(x) = \ell$, alors la droite d'équation $y = \ell$ est une **asymptote horizontale** à la courbe représentative de f.
- * Si $\lim_{x \to +\infty} [f(x) (ax + b)] = 0$, alors la droite d'équation y = ax + b est une **droite asymptote** à la courbe représentative de f.
- * Si $\lim_{x\to a^+} f(x) = \pm \infty$, alors la droite d'équation x = a est une asymptote verticale à la courbe représentative de f.

Exemple 11

* Soit $f(x) = \frac{4x^3 + 12x^2 - 4}{3x^3 - x + 1}$. Comme $\frac{4x^3}{3x^3} = \frac{4}{3}$ et $\lim_{x \to +\infty} \frac{4}{3} = \frac{4}{3}$, alors

$$\lim_{x \to +\infty} f(x) = \frac{4}{3}.$$

Ainsi, la courbe représentative de f possède une asymptote horizontale d'équation $y = \frac{4}{3}$.

* Soit $f(x) = 2x + 5 + 6e^{-x/3}$. Alors,

$$f(x) - (2x+5) = 6e^{-x/3}$$
.

Comme $\lim_{x\to +\infty} \mathrm{e}^{-x/3} = 0$, alors $\lim_{x\to +\infty} f(x) - (2x+5) = 0$. Ainsi, la courbe représentative de f possède une droite asymptote d'équation y=2x+5.

* Soit $f(x) = \ln|x-1|$. Comme $\lim_{x\to 1}(x-1) = 0$, alors $\lim_{x\to 1}\ln|x-1| = -\infty$. Ainsi, la courbe représentative de f possède une asymptote verticale d'équation x=1.

II.2 - Continuité

À Savoir

* La fonction f est **continue** au point a si

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a).$$

- * Si f, g sont continues en a et $k \in \mathbb{R}$, alors
 - $\star f + kg$ est continue en a,
 - $\star f \times g$ est continue en a,
 - $\star \frac{f}{g}$ est continue en a si $g(a) \neq 0$,
 - $\star x \mapsto f(g(x))$ est continue en a si elle est définie.

Exemple 12

Soit $k \neq 0$ et f la fonction définie sur \mathbb{R} par

$$f(t) = \begin{cases} k \frac{t}{1+t} & \text{si } t \in [0,1] \\ 0 & \text{sinon} \end{cases}$$

On pourra représenter les valeurs prises par f dans un tableau :

$$\begin{array}{c|cccc} t & 0 & 1 \\ \hline f(t) & 0 & k \frac{t}{1+t} & 0 \end{array}$$

D'après les propriétés des fonctions usuelles, f est continue sur $]-\infty,0[,[0,1]$ et $]1,+\infty[$. Il suffit donc d'étudier la continuité de f en 0 et en 1.

* Comme f est constante égale à 0 sur $]-\infty,0[$, alors

$$\lim_{t \to 0^{-}} f(t) = \lim_{t \to 0^{-}} 0 = 0.$$

* Comme f est continue sur [0,1], alors

$$\lim_{t \to 0^+} f(t) = f(0) = k \frac{0}{1+0} = 0.$$

Ainsi, $\lim_{t\to 0^-} f(t) = \lim_{t\to 0^+} f(t)$ et la fonction f est continue en 0.

* Comme f est constante égale à 0 sur $]1, +\infty[$, alors

$$\lim_{t \to 1^+} f(t) = \lim_{t \to 1^+} 0 = 0.$$

* Comme f est continue sur [0,1],

$$\lim_{t \to 1^{-}} f(t) = f(1) = \frac{k}{2}.$$

Comme $k \neq 0$, alors $\lim_{t \to 1^-} f(t) \neq \lim_{t \to 1^+} f(t)$ et la fonction f n'est pas continue en 1.

Lorsque k=2, la représentation graphique de f est la suivante :

À Savoir

Théorème des valeurs intermédiaires. Si f est continue sur [a,b] et $f(a) \leq y \leq f(b)$ ou $f(b) \leq y \leq f(a)$, alors il existe $x \in [a,b]$ tel que f(x) = y.

À Savoir

Théorème de la **bijection monotone**. Si f est continue et strictement monotone sur [a,b] et $f(a) \le y \le f(b)$ ou $f(b) \le y \le f(a)$, alors il **existe un unique** $x \in [a,b]$ tel que f(x) = y.

Exemple 13

Soit f la fonction definie sur $]0; +\infty[$ par :

$$f(x) = \frac{1}{g(x)} = \frac{1}{x - \ln(x)}.$$

On cherche à résoudre l'équation f(x) = x dans $]0; +\infty[$. D'après la définition de f,

$$f(x) = x \Leftrightarrow \frac{1}{x - \ln(x)} = x$$

$$\Leftrightarrow 1 = x(x - \ln(x)) \Leftrightarrow \frac{1}{x} = x - \ln(x)$$

$$\Leftrightarrow x - \ln(x) - \frac{1}{x} = 0.$$

On pose ainsi $h(x) = x - \ln(x) - \frac{1}{x}$.

Continuité. La fonction h est continue sur $]0, +\infty[$ car somme de fonctions continues sur cet intervalle.

Stricte monotonie. La fonction h est dérivable et, en utilisant la dérivée d'une somme de fonctions,

$$h'(x) = 1 - \frac{1}{x} + \frac{1}{x^2} = \frac{x^2 - x + 1}{x^2}.$$

Le discriminant du trinôme $x^2 - x + 1$ vaut 1 - 4 = -3. Ainsi, le trinôme ne s'annule jamais et est du signe de son coefficient dominant qui vaut 1. Ainsi, h' est à valeurs strictement positives et h est strictement croissante.

Intervalle image. Comme $h(x) = x - \frac{1}{x} (x \ln(x) + 1)$. D'après le théorème des croissances comparées et le produit des limités,

$$\lim_{x \to 0^+} h(x) = -\infty.$$

Comme $h(x) = x \left(1 - \frac{\ln(x)}{x} - \frac{1}{x^2}\right)$, d'après le théorème de croissances comparées ainsi que le produit des limites,

$$\lim_{x \to +\infty} h(x) = +\infty.$$

Le tableau de variations de h est donc le suivant :

x	0	$+\infty$
h'(x)		+
h(x)	$-\infty$	+∞

D'après le théorème de la bijection monotone, il existe un unique réel α tel que $h(\alpha) = 0$.

Ainsi, d'après la question 3.a), il existe un unique réel α tel que $f(\alpha) = \alpha$.

Enfin, f(1) = 1 donc 1 est l'unique solution de l'équation f(x) = x.

À Savoir

Si f est continue et strictement croissante sur [a,b], alors il existe une unique fonction h telle que

$$\forall y \in [f(a), f(b)], f(h(y)) = y$$
et
$$\forall x \in [a, b], h(f(x)) = x.$$

La fonction h est la **bijection réciproque** de f.

À Savoir

Algorithme de **dichotomie**. Soit f telle que $f(a)f(b) \leq 0$. Pour trouver une valeur approchée à ε près d'un réel c tel que f(c) = 0, on procède itérativement comme suit :

- * si $b a \leq \varepsilon$, on renvoie la valeur a.
- * sinon on pose $m = \frac{a+b}{2}$.
 - * Si $f(a)f(m) \leq \bar{0}$, on recommence en remplaçant b par m.

 \star Sinon on recommence en remplaçant a par m.

II.3 - Dérivabilité

À Savoir

Si f est une fonction dérivable en a et \mathscr{C}_f est sa courbe représentative dans un repère orthonormé, l'équation de la **tangente** à \mathscr{C}_f au point a est :

$$y = f'(a)(x - a) + f(a).$$

Exemple 14

Soit $f(x) = x^3 + 2e^x$. La fonction f est dérivable sur \mathbb{R} et $f'(x) = 3x^2 + 2e^x$. Ainsi, l'équation de la tangente à la courbe représentative de f au point d'abscisse 1 est :

$$y = f'(1)(x - 1) + f(1)$$

$$= (3 + 2e)(x - 1) + (1 + 2e)$$

$$= (3 + 2e)x - (3 + 2e) + (1 + 2e)$$

$$= (3 + 2e)x - 2.$$

À Savoir

Soit I un intervalle de f.

* Si
$$\forall x \in I$$
, $f'(x) \ge 0$, alors f est croissante sur I.

- * Si $\forall x \in I, f'(x) \leq 0$, alors f est décroissante sur I.
- * Si f'(x) > 0 pour tout $x \in I$ sauf éventuellement en un nombre fini de points, alors f est strictement croissante sur I.
- * Si f'(x) < 0 pour tout $x \in I$ sauf éventuellement en un nombre fini de points, alors f est strictement décroissante sur I.

Exemple 15

Soit g la fonction definie sur $]0; +\infty[$ par $: g(x) = x - \ln(x).$

D'après les propriétés du logarithme,

$$g(1) = 1 - \ln(1) = 1 - 0 = 1.$$

Comme $\lim_{x\to 0} x = 0$ et $\lim_{x\to 0} \ln(x) = -\infty$, d'après les propriétés d'addition des limites,

$$\lim_{x \to 0} g(x) = +\infty.$$

En factorisant par x, on obtient $g(x) = x \left(1 - \frac{\ln(x)}{x}\right)$.

D'une part, $\lim_{x\to +\infty} x = +\infty$.

D'autre part, d'après les croissances comparées, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$,

soit
$$\lim_{x \to +\infty} \left(1 - \frac{\ln(x)}{x} \right) = 1.$$

Ainsi, d'après les propriétés de multiplication des limites,

$$\lim_{x \to +\infty} g(x) = +\infty.$$

La fonction identité et la fonction logarithme népérien sont dérivables sur $]0, +\infty[$. De plus, en utilisant la dérivée d'une somme de fonctions, pour $x \in]0, +\infty[$, la fonction g est dérivable et

$$g'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}.$$

Comme x > 0, le réel g'(x) est du signe de x - 1. On obtient ainsi le tableau de variations suivant :

x	0		1		$+\infty$
g'(x)		_	0	+	
g(x)	$+\infty$		1		+∞

À Savoir

Si f admet un **maximum** ou un **minimum** en a, alors f'(a) = 0.

II.4 - Convexité

À Savoir

La fonction f est **convexe** si sa courbe représentative se situe au-dessous de chacune de ses cordes.

Si f est deux fois dérivable :

- * f est **convexe** si et seulement si $f'' \ge 0$.
- * f est **concave** si et seulement si $f'' \leq 0$.

Exemple 16

En posant $f(x) = e^x$, alors $f'(x) = e^x$ et $f''(x) = e^x$. Ainsi, $f'' \ge 0$ et la fonction exponentielle est convexe. Si on se déplace en vélo le long d'une route qui a une forme convexe, on va toujours pencher à gauche.

En posant $f(x) = \ln(x)$, alors $f'(x) = \frac{1}{x}$ et $f''(x) = -\frac{1}{x^2}$. Ainsi, $f'' \leq 0$ et la fonction logarithme est concave. Si on se déplace en vélo le long d'une route qui a une forme convexe, on va toujours pencher à droite.

À Savoir

La courbe représentative de f admet un **point d'inflexion** en a si f''(a) = 0 et si f'' change de signe en a.