

FIG. 1

ASSOCIATION STUDIES (FIRST SCREENING)

POPULATION SAMPLE SIZE	AFFECTED CASES = 112		NON AFFECTED CONTROLS = 76	
	POPULATION CHARACTERISTICS	35 SPORADIC CASES + 77 FAMILIAL CASES	> 65 YEARS	> SA < 4

FIG. 2

ASSOCIATION STUDIES (ZOOM)

CHARACTERISTICS OF POPULATIONS	AFFECTED CASES (185)	UNAFFECTED CONTROLS (104)
	47 SPORADIC CASES +138 FAMILIAL CASES	>65 YEARS PSA<4

FIG. 3

RELATIONS

HAPLOTYPE FREQUENCY ANALYSIS

CHARACTERISTICS OF POPULATIONS	AFFECTED		UNAFFECTED	
	CASES 2 (281)	CONTROLS 3 (130)	>65 YEARS	PSA < 4
+138 FAMILIAL CASES				

MARKERS	AFFECTED		UNAFFECTED		HAPLOTYPE FREQUENCIES	RELATIVE RISK	PVALUE
	CASES 2 (281)	CONTROLS 3 (130)	>65 YEARS	PSA < 4			
H0287B09	4 - 26	4 - 14	4 - 77	99 - 217	4 - 67	99 - 213	99 - 221
B0189108	*	*	*	*	*	*	*
CONTIGS	80463101	80723812					
GENES	11453						
P VALUE	2.00E-01	1.00E-01	1.00E-01	2.00E-02	2.00E-02	6.00E-04	9.00E-02
E BETWEEN MARKERS(kB)	<18KB>	<15KB>	<15KB>	<88KB>	<22KB>	<17KB>	<29KB>
O1TYPE 8 > 304KB <	C	A	C	G	I	T	C
O1TYPE 7 > 286KB <	A	C	C	G	I	T	G
O1TYPE 6 < 186KB >	A	C	C	G	I	T	A
O1TYPE 5 < 171KB >	C	C	G	I	T	G	A
O1TYPE 4 < 83KB >			G	I	T	G	
O1TYPE 3.1 < 54KB >				G	I	G	A
O1TYPE 3.2 < 54KB >					G	I	A
O1TYPE 2.2 < 39KB >					G	I	
O1TYPE 2 < 32KB >					I	T	G
O1TYPE 1.1 < 17KB >					I	T	
O1TYPE 1.2 < 15KB >					I	G	

FIG. 4

HAPLOTYPE SIMULATIONS (100 ITERATIONS)

MARKERS	4-144-7			99-217			4-67			99-213			99-221			HAPLOTYPE FREQUENCIES CASES CONTROLS	RELATIV RISK	PVALUE
	C	G	T	T	G	A	0,117	0,013	0,117	0,013	0,117	0,013	0,117	0,013	0,117	0,013		

FIG. 5A

HAPLOTYPE SIMULATIONS (100 ITERATIONS)

MARKERS	HAPLOTYPE FREQUENCIES			RELATIV RISK	PVALUE
	CASES	CONTROLS			
HAPLOTYPE	C	G	A	0,117	9,00E-07

PVALUE OF HAPLOTYPE CGTIGA FOR 100 SIMULATIONS

FIG. 5B

C	MARKER	SEQ ID N°	SEQ ID N°(MUT)	PU SEQUENCE	SEQ ID N°	RP SEQUENCE	SEQ ID N°	POLYMORPHISM POSITION*	BASE	MICROSEQ. OLIGOS POSITIONS*
18	99-123	21	30	AAAGCCAGGACTAAGG	39	TATTCAGAAAGGAGTGGG	48	24	C/T	1-23 25-47 COMPLEMENTARY
19	4-26	22	31	TACAGCCCCTAGAACAC	40	TGAGGCTCTAGGAAG	49	24	A/G	1-23 25-47 COMPLEMENTARY
189	4-14	23	32	TCTAACCTCTACCAAC	41	GACTGTACCTTGATGAC	50	24	C/T	1-23 25-47 COMPLEMENTARY
463	4-77	24	33	TGTTGATTACAGGGGGC	42	GGAAAGGAACTCATTAAG	51	24	G/C	1-23 25-47 COMPLEMENTARY
13	99-217	25	34	GGGGGAAATTACTATAAG	43	GTTATTTGIGGAGCTTG	52	24	C/T	1-23 25-47 COMPLEMENTARY
463	4-67	26	35	AAGTCACCTCTAACGC	44	TGAAAGAGTTATCTTGG	53	24	C/T	1-23 25-47 COMPLEMENTARY
13	99-213	27	36	ATACTGCCAGGCGIGTC	45	TTATGCCCAACAIGCTGAG	54	24	C/T	1-23 25-47 COMPLEMENTARY
13	99-221	28	37	CCCTTTCTCACIGTC	46	TCATTCGCTGGCTAGTC	55	24	A/C	1-23 25-47 COMPLEMENTARY
15	99-155	29	38	TGGAAGTTGTTATGCC	47	AAACACCCTCATGGC	56	24	A/G	1-23 25-47 COMPLEMENTARY

FIG. 6A

SITUATIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID N° 21-38 AND 57-62)

C	MARKER	SEQ ID N°	SEQ ID N°(MUT)	PU SEQUENCE	SEQ ID N°	RP SEQUENCE	SEQ ID N°	POLYMORPHISM POSITION*	BASE	MICROSEQ. OLIGOS POSITIONS*
463	99-1482	57	60	ATCAAATCAGTAAAGCTGAG	63	ACAAAATATAAGGCTGG	66	24	A/C	1-23 25-47 COMPLEMENTARY
13	4-73	58	61	AATGGCTGGACATCTGG	64	CCTCTGGTAACAGCAGTG	67	24	G/C	1-23 25-47 COMPLEMENTARY
13	4-65	59	62	GATTTAAGCTACGCTATAG	65	TGGCTCTGGCTTTC	68	24	C/T	1-23 25-47 COMPLEMENTARY

FIG. 6B

SITUATIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID N° 21-38 AND 57-62)

EXON Phase	START	END	5' SPsite	PHASE	3' SPsite
Ex1 +0	2001	2216			GTGAGC
Ex2 +1	18196	18265	TAG	+0	GTTTGT A
Ex3 +0	23717	23832	CAG	+2	GTA ACT
Ex4 +0	25571	25660	CAG	+0	GTA AGA
Ex5 +2	34669	34759	CAG	+0	GTA AGT
Ex6 +1	40688	40846	TAG	+1	GTA AGT
Ex7 +2	48070	48193	TAG	+2	GTGAGT
Ex8	50182	54523	TAG	+1	
ATG codon	2031	2033			
STOP codon	50405	50407			
POLY Ad site	54445	54450			

FIG. 7

FIG. 8

-IG. 8B

Prostate Gene 1

		box 1	box 2	box 3
PG1	Hs	NHQ 81-83	FPEGTR 160-165	LDAIYDVTV 211-219
AF003136 (Genbank)	Ce	NHQ 630-632	FPEGTR 712-717	LDAIYDVTV 762-770
Z72511 (Genbank)	Ce	48 NHR 50	FPEGTD 129-134	VEYIYDITI 204-212
P38226 (Swissport)	Sc	111 NHQ 113	FPEGTN 223-228	IESLYDITI 271-279
P33333 (Swissport)	Sc	81 NHQ 83	FPEGTR 154-159	-
Z49770 (Genbank)	Sc	116 NHQ 118	FPEGTN 215-220	LDAIYDVTI 265-273
P26647 (Swissport)	Ec	72 NHQ 74	FPEGTR 145-150	-
Z49860 (Genbank)	Bn	-	FVEGTR 90-95	VPAIYDMTV 138-146
U89336 (Genbank)	Hs	95 NHQ 97	FPEGTR 168-173	-
U56417 (Genbank)	Hs	103 NHQ 105	FPEGTR 176-181	-
AB005623 (Genbank)	Mm	100 NHQ 102	FPEGTR 173-178	
Z29518 (Genbank)	Zm	91 NHR 93	FVEGTR 170-175	VPAIYDTTV 218-226

Hs = Homo sapiens, Ce = Caenorabibitis elegans, Ec = Escherichia coli;
 Sc = Saccharomyces cerevisiae, Bn = Brassica napus, Zm = Zea maize,
 Mm = Mus Musculus

- = pattern absent from protein sequence

Note: Functional acyl glycerol transferases all contain boxes 1 and 2 and not box 3. Proteins most related to PG1 contain the 3 boxes with a high degree of conservation.

FIG. 10

FIG. 11

FIG. 2

PNT2 PG1 mut229

FIG. 13

FIG. 14A

Alternative splicing

FIG. 14

FIG. 14B

FIG. 14B

Combination of exons of PG' gene discovered
by PCR with primers specific for exon borders

Printer	Clones	prostate																									
		PN11A	PN11B	PN12	InCapFCG	InCapJMB	CohPV	Du145	PC3	ECP5	ECP6	ECP7	ECP8	ECP9	ECP10	ECP11	ECP12	ECP13	ECP14	ECP15	ECP16	ECP17	ECP18	ECP19	ECP20	ECP21	ECP22
PG1exon13	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
PG1exon14	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
PG1exon15	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon17	+	+	+	+	+	+	+	NT	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon18	+	-	+	-	-	-	-	NT	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon24	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
PG1exon25	+	+	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon26	-	+	+	-	+	+	+	NT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
PG1exon27	-	-	-	-	-	-	-	NT	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon28	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon35	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
PG1exon36	-	+++	+++	+++	+++	+++	+++	NT	+	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	
PG1exon37	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon38	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon46	-	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	
PG1exon47	+++	+++	+++	+++	+++	+++	+++	NT	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
PG1exon48	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon57	+++	+++	+++	+++	+++	+++	+++	NT	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	
PG1exon58	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon68	-	-	+	-	-	-	-	NT	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon1b1	-	+	+	+	+	+	+	NT	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon1b2	-	+	+	+	+	+	+	NT	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon1b3	-	+	-	+	+	+	+	NT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
PG1exon1b4	-	+	-	+	+	+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon1b5	-	-	+	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon1b6	-	+	-	+	+	+	+	NT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
PG1exon1b7	-	-	-	+	+	+	+	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon1b8	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PG1exon3b4	-	+++	+++	+++	+++	+++	+++	NT	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	
PG1exon3b5	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon3b6	-	+++	+++	+++	+++	+++	+++	NT	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
PG1exon3b7	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon3b8	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon5b6	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon5b7	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon5b8	-	-	-	-	-	-	-	NT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PG1exon56b	++	-	+	+	+	+	+	NT	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++
PG1exon46b	++	-	+	+	+	+	+	NT	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++
PG1exon36b	++	-	+	+	+	+	+	NT	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++
PG1exon26b	++	-	+	+	+	+	+	NT	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++
PG1exon16b	++	-	+	+	+	+	+	NT	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++

++ alternative splicing form with combination of exons 13478 instead of 1345678

7/17. 10

11.i.16

ASSOCIATION STUDIES HAPLOTYPE FREQUENCY ANALYSIS (chrom 8p23)

POPULATIONS	AFFECTED N= [275;491]	UNAFFECTED N=[130;313]
	ALL CASES	CONTROLS
characteristics of populations	[275,491] all cases & <28 unaffected (65 years or older) & <289 controls (65 years or older with PSA<4)	

ASSOCIATION STUDIES
PG1 (8p23)

AFFECTED N= [275;491]		UNAFFECTED N=[130;313]	
ALL CASES		FAMILIAL CASES	
SPORADIC CASES		CONTROLS	
<=491 all cases	<=294 sporadics cases	<=197 familial cases	<28 unaffected (65 years or older) & <=289 controls (65 years or older with PSA<4)

ASSOCIATION STUDIES

F11(1) 18A

PG1 (8p23)

AFFECTED N= [275;491]		UNAFFECTED N=[130;313]	
		ALL CASES	SPORADIC CASES
		FAMILIAL CASES	
CHARACTERISTICS	<=491 all cases	<=294 sporadic cases	<=197 familial cases
SUBPOPULATIONS			<28 unaffected (65 years or older) & <=289 controls (65 years or older with PSA<4)

FIG. 18B

# of others		PG1	Polym.	Freq(cas)	Freq(controls)	abs (fq(cases) - (fq(controls))	diff %	Odd Ratio	Pvalue	Freq(randoms)	Attributable Risk	
39	145	251	prom	0.32	0.24	7.4	1.44	2.53E-02	0.29	17.58		
39	51	95	In1	0.52	0.42	10.1	1.51	9.64E-03	ND§	ND		
39	61	141	In1	0.28	0.22	5.8	1.37	6.93E-02	ND	ND		
4	6	2	In1	0.43	0.38	5	1.23	1.57E-01	0.41	13.15		
4	7	1	In1	0.34	0.26	7.4	1.43	1.35E-02	0.31	18.16		
4	1	33	In1	0.34	0.26	8.3	1.49	1.43E-02	0.28	18.64		
4	2	7	In1	0.36	0.30	5.7	1.29	9.43E-02	0.31	13.25		
4	3	4	In1	0.52	0.42	9.7	1.48	7.29E-03	0.52	26.76		
99	61	250	In1	0.43	0.37	6.2	1.30	8.33E-02	ND	ND		
99	6	225	In1	0.37	0.30	7	1.36	4.83E-02	ND	ND		
4	83	in2	A/C	0.29	0.25	4.4	1.25	1.68E-01	0.28	9.32		
99	61	258	In2	0.33	0.25	7.4	1.44	2.69E-02	ND	ND		
99	1	492	In3	T/A	0.34	0.34	0.3	1.01	7.52E-01	ND	ND	
99	1	30	In4	G/A	0.35	0.25	9.2	1.55	7.29E-03	ND	ND	
99	277	In4	T/C	0.31	0.28	3.8	1.20	1.07E-01	0.28	8.46		
99	421	In6	G/C	0.27	0.17	9.2	1.72	3.18E-03	0.24	18.40		
4	69	3'UTR	G/A	0.01	0.00	0.3	1.76	0.527§	ND	ND		
4	45	3'UTR	C/T	0.25	0.19	6.2	1.43	4.68E-03	0.24	13.16		
4	1	3'UTR	T/C	0.25	0.20	4.9	1.33	2.39E-02	0.24	10.97		

§ Test Fisher-§ ND: Not done -* disease associated allele / not associated allele

FIG. 19A

HAPLOTYPE FREQUENCY ANALYSIS

POPULATIONS	AFFECTED	UNAFFECTED
sample sizes	CASES (n=491)	CONTROLS (n=317)
characteristics of populations	294 sporadic cases + 197 familial cases	28 unaffected (65 years or older) + 289 controls (65 years or older with PSA<4)

PG1 (8p23)		4-14/240	99-217/277	4-66/145	99-221/377
		in4	3'UTR		
<100kb>		<17kb>		<43kb>	
481vs 305	481vs 302	481vs 300	481vs 303		
65.7/62.1(C)	31.3/27.5(C)	25.1/19(C)	42.7/42.91 (A)		
3.6	3.8	6.2	0		
1.47E-01	1.07E-01	4.68E-03	7.52E-01		
5.84E-01	6.55E-01	2.54E-01	5.84E-01		
4.80E-01	2.21E-01	3.71E-01	2.54E-01		
Hardy Weinberg		cases		A	
Disequilibrium		controls		C	A
HAP 1 <43kb>		451 vs 297		T	C
HAP 2 <17kb>		451 vs 296		C	C
HAP 3 <117kb>		452 vs 299		T	C
HAP 4 <100kb>		479 vs 302		C	A
HAP 5 <60kb>		476 vs 300		T	A
HAP 6 <160kb>	PT2	476 vs 303		C	C
HAP 7 <160kb>		447 vs 297		C	A
HAP 8 <60kb>		446 vs 294		T	C
HAP 9 <117kb>		450 vs 296		C	C
HAP 10 <160kb>	PT3	474 vs 300		T	A
HAP 11 <160kb>	PT4	445 vs 294		C	A

haplotype frequencies		Odd ratio	Chi-S	Pvalue	
cases	controls				
0.116	0.067	1.83	9.85	(1.7e-03)	***
0.243	0.183	1.43	7.49	(6.2e-03)	**
0.182	0.130	1.49	7.18	(7.3e-03)	**
0.217	0.188	1.20	1.88	(1.7e-01)	*
0.155	0.132	1.20	1.54	(2.1e-01)	*
0.373	0.346	1.12	1.16	(2.7e-01)	*
0.095	0.042	2.39	14.62	(1.3e-04)	****
0.117	0.065	1.93	11.33	(7.3e-04)	***

0.095	0.032	3.18	21.59	(3.4e-06)	*****
-------	-------	------	-------	-----------	-------

I.G. 19B

HAPLOTYPE FREQUENCY ANALYSIS

PG1 (8p23)

markers of haplotype Max	4-14/240	99-217/277 in4	4-66/145 3'UTR	99-221/377
distance between mks	C	T	C	A
	<100kb>	<17kb>	<43kb>	

PG1	sample sizes	haplotype frequencies		odd ratio	chi-S	P value
		cases vs controls	cases			
s control	455 vs 294	0.095	0.032	3.18	21.59	3.40E-06 *****
(<=65 years) vs controls	171 vs 294	0.105	0.032	3.56	20.91	4.60E-06 *****
(>65 years) vs control	271 vs 294	0.079	0.032	2.60	12.13	4.80E-04 ***
c cases vs controls	266 vs 294	0.096	0.032	3.23	19.73	8.60E-06 *****
dic cases (<=65 years) vs controls	85 vs 294	0.095	0.032	3.20	12.04	5.00E-04 ***
dic cases (>65 years) vs controls	178 vs 294	0.085	0.032	2.82	12.75	3.50E-04 ***
native sporadic cases vs controls	67 vs 294	0.062	0.032	2.00	2.70	9.40E-02 **
cases vs controls	179 vs 294	0.098	0.032	3.32	18.33	1.80E-05 *****
al cases (<=65 years) vs controls	86 vs 294	0.112	0.032	3.83	17.98	2.20E-05 *****
al cases (>65 years) vs controls	93 vs 294	0.075	0.032	2.48	6.59	1.00E-02 **
all cases (>=3 cap) vs controls	79 vs 294	0.123	0.032	4.26	21.33	3.70E-06 *****

FIG. 20

HAPLOTYPE FREQUENCY ANALYSIS (PG1)

Markers in PG1		haplotype frequencies				haplotype frequencies			
GT	C/G	A/G	C/G	A/G	C/G	C/T	3'UTR	ln6	ln4
99-62295	4-77151	4-71233	4-73134	99-598130	99-5761421	4-56145			
336 vs 108	363 vs 173	336 vs 130	352 vs 129	347 vs 126	365 vs 128	456 vs 308			
52/42 (G)	34/26 (G)	34/26 (A)	52/42 (G)	35/25 (G)	27/17 (G)	25/19 (C)			
ND	31 (G)	28 (A)	52 (G)	ND	24 (G)	24 (C)			
10 1	7 4	8 3	9 7	9 2	9 2	6 2			
9.6E-03	1.35E-02	1.43E-02	7.29E-03	7.29E-03	3.16E-03	4.68E-03			
...			
1.51	1.43	1.49	1.48	1.55	1.72	1.43			
ND	18 16	18 64	26 76	ND	8 46	13 16			
7.5E-01	7.52E-01	5.84E-01	7.52E-01	7.52E-01	7.52E-01	3.43E-01			
4.35E-01	4.03E-01	1.21E-01	7.52E-01	6.52E-02	7.52E-01	1.29E-01			
Type 1	2 MKS	339 vs 167	3	3	3	3	3	0.263	0.152
Type 2	3 MKS	330 vs 122						0.259	0.147
Type 3	4 MKS	312 vs 124						0.259	0.147
Type 4	5 MKS	311 vs 121						0.26	0.148
Type 5	6 MKS	310 vs 121						0.258	0.149
Type 6	7 MKS	310 vs 99						0.255	0.146

ND Not Done

11.21

Comparison of Pvalue between nb of mks for haplotype
(19 mks of PG1)

GENE	# of markers	# of 2 mks combinations	# of 3 mks combinations	# of mks combinations
PG1	19	171	969	3876

FIG. 22

FIG. 10

FIG. 24

