ICE 3251 DIGITAL SIGNAL PROCESSING

0 111	00	
One sided z-Transform	$Z^{+}\{x(n)\} = X^{+}(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$	
	$Z^{+}\{x(n-k)\} = z^{-k} \left[X^{+}(z) + \sum_{n=1}^{k} x[-n]z^{n} \right]$	k > 0
	$Z^{+}\{x(n+k)\} = z^{k} \left[X^{+}(z) - \sum_{n=0}^{k-1} x[n]z^{-n} \right]$	
Linear	N M	Discrete LTI system
constant-	$\sum_{k=0}^{\infty} a_k y[n-k] = \sum_{k=0}^{\infty} b_k x[n-k] ; a_0 \neq 0$	x[n]: input
coefficient	k=0 $k=0$	y[n]: output
difference		, , ,
equation		
DFT pair	$x(n) = \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi}{N}kn}, n = 0, 1, 2 \dots N-1$	x(n) : Signal of length L
	$x(n) = \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi}{N}kn}, n = 0, 1, 2 \dots N - 1$ $X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}, k = 0, 1, 2 \dots N - 1$	X(k): N-point DFT of $x(n)N \ge L$
N-point	N-1	$x_1(n), x_2(n)$: signals of length N or less
Circular convolution	$x_3(n) = x_1(n) \circledast x_2(n) = \sum_{m=0}^{\infty} x_1(m) x_2(n-m)$	
Pole-zero IIR system	$y(n) = \sum_{k=0}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$	
	$y(n) = \sum_{k=1}^{M} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$ $H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$	

All pole IIR	N	
system	$y(n) = \sum a_k y(n-k) + b_0 x(n)$	
	k=1	
	$y(n) = \sum_{k=1}^{\infty} a_k y(n-k) + b_0 x(n)$ $H(z) = \frac{Y(z)}{X(z)} = \frac{b_0}{1 - \sum_{k=1}^{N} a_k z^{-k}}$	
4.11 EVD	$X(z) 1 - \sum_{k=1}^{N} a_k z^{-k}$	x(n): input $y(n)$: output
All zero FIR	$y(n) = \sum_{k=1}^{M} h x(n-k)$	X(z): z-transform of $x(n)$
system	$y(n) = \sum_{k=0}^{\infty} b_k x(n-k)$	Y(z): z-transform of $y(n)$
	V(z) M	H(z): System function
	$H(z) = \frac{Y(z)}{X(z)} = \sum_{k=0}^{M} b_k z^{-k}$	K: Integer part of $(N+1)/2$
C 1	<i>κ</i> =0	$N \geq M$
Cascade realization for	$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}} = \prod_{k=1}^{K} H_k(z)$	$C = \frac{b_N}{a_N}$
IIR filters	$\prod_{k=1}^{n(z)} \frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}} - \prod_{k=1}^{n_k(z)}$	
	$b_{k0} + b_{k1}z^{-1} + b_{k2}z^{-2}$	
	$H_k(z) = \frac{b_{k0} + b_{k1}z^{-1} + b_{k2}z^{-2}}{1 + a_{k1}z^{-1} + a_{k2}z^{-2}}$	
Parallel	$\sum_{k=0}^{M} b_k z^{-k} \qquad \sum_{k=0}^{K}$	
realization for	$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}} = C + \sum_{k=0}^{K} H_k(z)$	
IIR filters	$-\kappa^{-1}$ κ $k=1$	
	$H_k(z) = \frac{b_{k0} + b_{k1}z^{-1}}{1 + a_{k1}z^{-1} + a_{k2}z^{-2}}$ $H(z) = \frac{1}{M}(1 - z^{-M})H_p(z)$	
Frequency	$\frac{1}{1}$	$H(\omega)$: Frequency response
sampling	$H(z) = \frac{1}{M}(1 - z^{-M})H_p(z)$	$H(k)$: $H(\omega)$ at $\omega = \omega_k = \frac{2\pi k}{M}$
realization for	$H(0) \sum_{k=0}^{(M-1)/2} A(k) + B(k)z^{-1}$	M: Length of the FIR filter
FIR filters	$H_p(z) = \frac{H(0)}{1 - z^{-1}} + \sum_{k=1}^{(M-1)/2} \frac{A(k) + B(k)z^{-1}}{1 - 2\cos\left(\frac{2\pi k}{M}\right)z^{-1} + z^{-2}} M \text{ odd}$	
	$\kappa=1$ $1-2\cos\left(\frac{M}{M}\right)z^{-1}+z^{-1}$	
	$M \sim \frac{M}{2} - 1$	
	$H(z) = \frac{H(0)}{1 + H(\frac{M}{2})} + \sum_{k=0}^{\infty} A(k) + B(k)z^{-1}$	
	$H_p(z) = \frac{H(0)}{1 - z^{-1}} + \frac{H\left(\frac{M}{2}\right)}{1 + z^{-1}} + \sum_{k=1}^{\frac{M}{2} - 1} \frac{A(k) + B(k)z^{-1}}{1 - 2\cos\left(\frac{2\pi k}{M}\right)z^{-1} + z^{-2}} M \text{ even}$	
	A(k) = H(k) + H(M - k)	
<u> </u>		

	2-1-	T
	$B(k) = H(k)e^{-j\frac{2\pi k}{M}} + H(M-k)e^{j\frac{2\pi k}{M}}$ $z = e^{sT}$	
Impulse	$z = e^{sT}$	N: Order of the analog filter
Invariant	$\sum_{i=1}^{N} A_{i}$, $\sum_{i=1}^{N} A_{i}$	s_k : Poles of $H(s)$
Transformation	$H(s) = \sum_{z=0}^{\infty} \frac{1}{s-s} = H(z) = \sum_{z=0}^{\infty} \frac{1}{1-s} \frac{1}{s} $	z_k : Zeroes of $H(s)$
7.11	k=1 $k=1$ $k=1$	T: Sampling interval
Bilinear	$\frac{1}{c} = \frac{2(1-z^{-1})}{1-z^{-1}}$	Ω: Analog filter frequency variable
Transformation	$z = e^{sT}$ $H(s) = \sum_{k=1}^{N} \frac{A_k}{s - s_k} \equiv H(z) = \sum_{k=1}^{N} \frac{A_k}{1 - e^{s_k T} z^{-1}}$ $s = \frac{2}{T} \frac{(1 - z^{-1})}{(1 + z^{-1})}$	ω: Digital filter frequency variable
	$\Omega = \frac{1}{T} tan(\frac{1}{2})$	
Matched	$\prod_{k=1}^{M} (s - z_k)$ $\prod_{k=1}^{M} 1 - e^{z_k T} z^{-1}$	
z-transform	$H(s) = \frac{\prod_{k=1}^{M} (s - z_k)}{\prod_{k=1}^{N} (s - s_k)} \equiv H(z) = \frac{\prod_{k=1}^{M} 1 - e^{z_k T} z^{-1}}{\prod_{k=1}^{N} 1 - e^{s_k T} z^{-1}}$ $ H(\Omega) ^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}} = \frac{1}{1 + \epsilon^2 \left(\frac{\Omega}{\Omega_n}\right)^{2N}}$	
Butterworth	1 1	N: order of the filter
analog low	$ H(\Omega) ^{-} \equiv \frac{1}{1 + (\Omega)^{2N}} \equiv \frac{1}{1 + (\Omega)^{2N}}$	$ H(\Omega) ^2$: Squared magnitude response
pass filter	$1+\left(\overline{\Omega_c}\right) \qquad 1+\epsilon^2\left(\overline{\Omega_n}\right)$	Ω_p : Pass band edge frequency
response	, (1 ,)	Ω_p : Stop band edge frequency
	$N = \frac{\log\left(\frac{1}{{\delta_2}^2} - 1\right)}{2\log\left(\frac{\Omega_s}{\Omega_s}\right)}$	Ω_c : 3-dB cut-off frequency
	$N = \frac{\langle \mathcal{O}_2 \rangle}{\langle \mathcal{O}_2 \rangle}$	$\frac{1}{1+c^2}$: Pass band edge value of
	$2log\left(\frac{-s}{\Omega_c}\right)$	$ H(\Omega) ^2$
	$s_k = \Omega_c e^{j\phi_k}$	δ_2^2 : Stop band edge value of
Chebyshev	$ s_k = \Omega_c e^{j\phi_k} $ $ H(\Omega) ^2 = \frac{1}{1 + \epsilon^2 T_N^2 \left(\frac{\Omega}{\Omega_p}\right)}$	$ H(\Omega) ^2$
analog low	$\frac{ II(\Omega I) }{1 + \epsilon^2 T_0^2 (\Omega)}$	s_k : Poles of H(s)
pass filter		$\emptyset_k = pole \ angle$
response	$T_N(x) = \begin{cases} \cos(N\cos^{-1}x), & x \le 1\\ \cosh(N\cosh^{-1}x), & x > 1 \end{cases}$	$=\frac{\pi}{2}+\frac{(2k+1)\pi}{2N},$
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cosh(N\cosh^{-1}x), x > 1$	
		$k=0, 1, 2, \dots N-1$

	$log \left[\frac{\sqrt{1 - {\delta_2}^2} + \sqrt{1 - {\delta_2}^2 (1 + \epsilon^2)}}{\varepsilon \delta_2} \right]$ $N = \frac{log \left[\left(\frac{\Omega_s}{\Omega_p} \right) + \sqrt{\left(\frac{\Omega_s}{\Omega_p} \right)^2 - 1} \right]}{log \left[\left(\frac{\Omega_s}{\Omega_p} \right) + \sqrt{\left(\frac{\Omega_s}{\Omega_p} \right)^2 - 1} \right]}$ $s_k = r_2 cos(\emptyset_k) + j r_1 sin(\emptyset_k)$ $r_1 = \Omega_p \frac{\beta^2 + 1}{2\beta}; r_2 = \Omega_p \frac{\beta^2 - 1}{2\beta}; \beta = \left[\frac{\sqrt{1 + \epsilon^2} + 1}{\varepsilon} \right]^{1/N}$					
Frequency	Prototype Low pass filt			T		_
Transformation for analog	Type of Transform	ation	Transformation	Band	l edge frequency of new filter	
filters	Low pass		Ω_p	Ω_{pn}		1
	_		$S \longrightarrow \frac{1}{\Omega_{pn}} S$		F	
	High pass		$s \longrightarrow \frac{\Omega_p \Omega_{pn}}{s}$		Ω_{pn}	
	Band pass		$s \longrightarrow \frac{s}{s}$ $s \longrightarrow \Omega_p \frac{s^2 + \Omega_l \Omega_u}{s(\Omega_u - \Omega_l)}$ $s \longrightarrow \Omega_p \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_{ln} \Omega_u}$		Ω_l , Ω_u	
	Band stop		$s \longrightarrow \Omega_p \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_{lp}\Omega_u}$		Ω_l , Ω_u	
Frequency	Prototype Low pass filter has band edge frequency ω_p					
Transformation	Type of		Transformation		Parameters	
for digital	Transformation			_		
filters	Low pass		$z^{-1} \longrightarrow \frac{z^{-1} - a}{1 - az^{-1}}$		and edge frequency of	
			$1 - az^{-1}$		ew filter	
				$a = \frac{\sin[}{\sin[}$	$\frac{(\omega_p - \omega_{pn})/2]}{(\omega_p + \omega_{pn})/2]}$	

	High pass	$z^{-1} \to \frac{z^{-1} + a}{1 + az^{-1}}$	$\omega_{pn} = band\ edge\ frequency\ of$ $new\ filter$ $a = \frac{cos[(\omega_p - \omega_{pn})/2]}{cos[(\omega_p + \omega_{pn})/2]}$
	Band pass	$z^{-1} \longrightarrow -\frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$	$\begin{aligned} \omega_l &= lower\ band\ edge\ frequency\\ \omega_u &= upper\ band\ edge\ frequency\\ a_1 &= \frac{-2\alpha K}{(K+1)}\\ a_2 &= \frac{(K-1)}{(K+1)}\\ \alpha &= \frac{cos[(\omega_u + \omega_l)/2]}{cos[(\omega_u - \omega_l)/2]}\\ K &= cot\left(\frac{\omega_u - \omega_l}{2}\right)tan\left(\frac{\omega_p}{2}\right) \end{aligned}$
	Band stop	$z^{-1} \longrightarrow \frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$	$\begin{aligned} \omega_l &= lower\ band\ edge\ frequency\\ \omega_u &= upper\ band\ edge\ frequency\\ a_1 &= \frac{-2\alpha}{(K+1)}\\ a_2 &= \frac{(1-K)}{(1+K)}\\ \alpha &= \frac{cos[(\omega_u+\omega_l)/2]}{cos[(\omega_u-\omega_l)/2]}\\ K &= tan\left(\frac{\omega_u-\omega_l}{2}\right)tan\left(\frac{\omega_p}{2}\right) \end{aligned}$
Linear phase FIR filter frequency response	i) Symmetric impulse r	esponse, odd length	M: length of the filter $H(\omega)$: Frequency response

$$H(\omega) = e^{-j\omega\left(\frac{M-1}{2}\right)} \left[2\sum_{n=0}^{\frac{M-3}{2}} h(n)\cos\left\{\omega\left(\frac{M-1}{2}-n\right)\right\} \right]$$

ii) Symmetric impulse response, even length

$$H(\omega) = e^{-j\omega\left(\frac{M-1}{2}\right)} \left[2\sum_{n=0}^{\frac{M}{2}-1} h(n)\cos\left\{\omega\left(\frac{M-1}{2}-n\right)\right\} \right]$$

iii) Anti-symmetric impulse response, odd length

$$H(\omega) = je^{-j\omega\left(\frac{M-1}{2}\right)} \left[2\sum_{n=0}^{\frac{M-3}{2}} h(n) sin\left\{\omega\left(\frac{M-1}{2}-n\right)\right\} \right]$$

iv) Anti-symmetric impulse response, even length

$$H(\omega) = je^{-j\omega\left(\frac{M-1}{2}\right)} \left[2\sum_{n=0}^{\frac{M}{2}-1} h(n) sin\left\{\omega\left(\frac{M-1}{2}-n\right)\right\} \right]$$

Linear phase
FIR filter
design using
window
functions

Window functions for FIR filter design

window junct	ions for TIK finer design				
Name of	Window function 0≤n≤M-1	Main	Peak side	Normalized	Stop band
the window		lobe	lobe (dB)	transition	attenuation
		width		width#	(dB)
Rectangular	1	$4\pi/M$	-13	0.9/(M-1)	21
Hanning	$0.5 - 0.5 cos\left(\frac{2\pi n}{M-1}\right)$	8π/M	-32	3.1/(M-1)	44
Hamming	$0.54 - 0.46cos\left(\frac{2\pi n}{M-1}\right)$	8π/M	-43	3.3/(M-1)	53

	Blackman 0.	$.42 - 0.5\cos\left(\frac{2\pi n}{M-1}\right)$		π/M	-58	5.5/(M-1)	75
	Keiser*	+0.08cos	$\frac{\left(\frac{4\pi n}{M-1}\right)}{\left(M-1\right)^{2}}$				> 70
		$+0.08cos$ $I_0 \left[\beta \sqrt{\left(\frac{M-1}{2}\right)^2 - \left(n - \frac{1}{2}\right)}\right]$	2)]				
	*Keiser window parameters can be controlled by β . $I_0[.]$ is modified Bessel function. #Transition width is normalized to 2π or equivalently to sampling frequency F_s						
Frequency sampling design of FIR filter	$h(n) = \frac{1}{M} \begin{cases} G(0) \end{cases}$	$H_{d}(\omega) = H_{r}(\omega)e^{-j\omega(M-1)/2}$ $h(n) = \frac{1}{M} \left\{ G(0) + 2 \sum_{k=1}^{\frac{(M-1)}{2}} G(k)cos\frac{2\pi k}{M} \left(n + \frac{1}{2}\right) \right\}, M \text{ odd}$ $h(n) = \frac{1}{M} \left\{ G(0) + 2 \sum_{k=1}^{\frac{M}{2}-1} G(k)cos\frac{2\pi k}{M} \left(n + \frac{1}{2}\right) \right\}, M \text{ even}$					er quency response $\frac{2\pi k}{M}$
Non-	Quality factor						
parametric power	Estimate	Quality factor	Computation requirement			$Q = \frac{\{E[estimate]\}}{var[estimate]}$	² 1
spectrum estimators	Bartlett $Q_B = 1.1N\Delta f$ $\frac{N}{2}\log_2\frac{0.9}{\Delta f}$ Welch 5.12					Δf : Frequency resolution	
	Welch (50% overlap)	$Q_W = 1.39N\Delta f$	$N \log_2 \frac{5.12}{\Delta f}$	_		N: Data frame lengt	rh
	Blackman- Tukey	$Q_{BT} = 2.34N\Delta f$		$B_2 \frac{1.28}{\Delta f}$			