AA203 Optimal and Learning-based Control

Calculus of variations

Roadmap

Calculus of variations

Goal: develop alternative approach to solve general optimal control problems

- provides new insights on constrained solutions
- (sometimes) provides more direct path to a solution

Calculus of variations

Recall OCP: find an admissible control **u*** which causes the system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$

to follow an admissible trajectory **x*** that minimizes the functional

$$J = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

- For a function, we set gradient to zero to find stationary points, and then investigate higher order derivatives to determine minimum / maximum
- We'll do something very similar for functionals

Calculus of variations (CoV)

• Calculus of variations: generalization of calculus that allows one to find maxima and minima of functionals (i.e., a "function of function"), by using *variations*

Agenda:

- 1. Introduce new concepts for functionals by appealing to some familiar results from the theory of functions
- 2. Apply such concepts to derive the fundamental theorem of CoV
- 3. Apply the CoV to optimal control

Preliminaries

- A functional J is a rule of correspondence that assigns to each function ${\bf x}$ in a certain class Ω (the "domain") a unique real number
 - Example: $J(x) = \int_{t_0}^{t_f} x(t) dt$
- *J* is a linear functional of **x** if and only if

$$J(\alpha_1 \mathbf{x}^{(1)} + \alpha_2 \mathbf{x}^{(2)}) = \alpha_1 J(\mathbf{x}^{(1)}) + \alpha_2 J(\mathbf{x}^{(2)})$$

for all $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, and $\alpha_1 \mathbf{x}^{(1)} + \alpha_2 \mathbf{x}^{(2)}$ in Ω

• Example: previous functional is linear

Preliminaries

To define the notion of maxima and minima, we need a notion of "closeness"

- The norm of a function is a rule of correspondence that assigns to each function $\mathbf{x} \in \Omega$, defined over $t \in [t_0, t_f]$, a real number. The norm of \mathbf{x} , denoted by $\|\mathbf{x}\|$, satisfies the following properties:
 - 1. $\|\mathbf{x}\| \ge 0$, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x}(t) = 0$ for all $t \in [t_0, t_f]$
 - 2. $\|\alpha \mathbf{x}\| = \|\alpha\| \|\mathbf{x}\|$ for all real numbers α
 - 3. $\|\mathbf{x}^{(1)} + \mathbf{x}^{(2)}\| \le \|\mathbf{x}^{(1)}\| + \|\mathbf{x}^{(2)}\|$
- To compare the closeness of two functions \mathbf{y} and \mathbf{z} , we let $\mathbf{x}(t) = \mathbf{y}(t) \mathbf{z}(t)$
 - Example, considering scalar functions $x \in C^0 : ||x|| = \max_{t_0 \le t \le t_f} \{|x(t)|\}$

Extrema for functionals

• A functional J with domain Ω has a local minimum at $\mathbf{x}^*(t) \in \Omega$ if there exists an $\epsilon > 0$ such that

$$J(\mathbf{x}(t)) \ge J(\mathbf{x}^*(t))$$

for all $\mathbf{x}(t) \in \Omega$ such that

$$\|\mathbf{x}(t) - \mathbf{x}^*(t)\| < \epsilon$$

- Maxima are defined similarly
- To find a minimum we define something similar to the differential of a function

Increments and variations

The increment of a functional is defined as

$$\Delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) := J(\mathbf{x}(t) + \delta \mathbf{x}(t)) - J(\mathbf{x}(t))$$

Variation of x

The increment of a functional can be written as

$$\Delta J(\mathbf{x}, \delta \mathbf{x}) \coloneqq \delta J(\mathbf{x}, \delta \mathbf{x}) + g(\mathbf{x}, \delta \mathbf{x}) \cdot \|\delta \mathbf{x}\|$$

where δJ is *linear* in $\delta \mathbf{x}$. If

$$\lim_{\|\delta\mathbf{x}\|\to 0} \{g(\mathbf{x}, \delta\mathbf{x})\} = 0$$

then J is said to be differentiable on \mathbf{x} and δJ is the variation of J at \mathbf{x}

The fundamental theorem of CoV

• Let $\mathbf{x}(t)$ be a vector function of t in the class Ω , and $J(\mathbf{x})$ be a differentiable functional of \mathbf{x} . Assume that the functions in Ω are not constrained by any boundaries. If \mathbf{x}^* is an extremal, the variation of J must vanish at \mathbf{x}^* , that is

 $\delta J(\mathbf{x}^*, \delta \mathbf{x}) = 0$ for all admissible $\delta \mathbf{x}$ (i.e., such that $\mathbf{x} + \delta \mathbf{x} \in \Omega$)

• Proof: by contradiction (See Kirk, Section 4.1).

• Let x be a scalar function in the class of functions with continuous first derivatives. It is desired to find the function x^* for which the functional

$$J(x) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt$$

has a relative extremum

• Assumptions: $g \in C^2$, t_0 , t_f are fixed, and x_0 , x_f are fixed

• Let x be any curve in Ω , and determine the variation δJ from the increment

$$\Delta J(x, \delta x) = J(x + \delta x) - J(x)$$

$$= \int_{t_0}^{t_f} g(x + \delta x, \dot{x} + \delta \dot{x}, t) dt - \int_{t_0}^{t_f} g(x, \dot{x}, t) dt$$

$$= \int_{t_0}^{t_f} g(x + \delta x, \dot{x} + \delta \dot{x}, t) - g(x, \dot{x}, t) dt$$

• Note that $\dot{x} = d x(t)/dt$ and $\delta \dot{x} = d \delta x(t)/dt$

Expanding the integrand in a Taylor series, one obtains

$$\Delta J(x,\delta x) = \int_{t_0}^{t_f} g(x,\dot{x},t) + \frac{\partial g}{\partial x}(x,\dot{x},t)\delta x + \frac{\partial g}{\partial \dot{x}}(x,\dot{x},t)\delta \dot{x} + o(\delta x,\delta \dot{x}) - g(x,\dot{x},t) dt$$

$$g_x \qquad g_{\dot{x}}$$

From this it is clear that the variation is

$$\delta J = \int_{t_0}^{t_f} g_x(x, \dot{x}, t) \delta x + g_{\dot{x}}(x, \dot{x}, t) \delta \dot{x} dt$$

Integrating by parts one obtains

$$\delta J = \int_{t_0}^{t_f} \left[g_x(x, \dot{x}, t) - \frac{d}{dt} g_{\dot{x}}(x, \dot{x}, t) \right] \delta x \, dt + \left[g_{\dot{x}}(x, \dot{x}, t) \delta x(t) \right]_{t_0}^{t_f}$$

- Since $x(t_0)$ and $xig(t_fig)$ are given, $\delta x(t_0)=0$ and $\delta xig(t_fig)=0$
- If we now consider an extremal curve, applying the CoV theorem yields

$$\delta J = \int_{t_0}^{t_f} \left[g_{\chi}(x^*, \dot{x}^*, t) - \frac{d}{dt} g_{\dot{\chi}}(x^*, \dot{x}^*, t) \right] \delta x \, dt = 0$$

For all δx !

Fundamental lemma of CoV: If a function h is continuous and

$$\int_{t_0}^{t_f} h(t)\delta x(t)dt = 0$$

for every function δx that is continuous in the interval $[t_0, t_f]$, then h must be zero everywhere in the interval $[t_0, t_f]$

 Applying the fundamental lemma, we find that a necessary condition for x* to be an extremal is

$$g_{x}(x^{*},\dot{x}^{*},t) - \frac{d}{dt}g_{\dot{x}}(x^{*},\dot{x}^{*},t) = 0$$

Euler equation

for all $t \in [t_0, t_f]$

• Non-linear, ordinary, time-varying, second-order differential equation with split boundary conditions (at $x(t_0)$ and $x(t_f)$)

Example

- Find shortest path between two given points
 - Solution: straight line!

Summary

• A necessary condition for x^* to be an extremal, in the case of *fixed* final time and *fixed* end point, is

$$g_{x}(x^{*},\dot{x}^{*},t) - \frac{d}{dt}g_{\dot{x}}(x^{*},\dot{x}^{*},t) = 0$$

 More generally, for functionals involving several independent function, a necessary condition for x* to be an extremal, in the case of fixed final time and fixed end points, is

$$g_{\mathbf{x}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^*, \dot{\mathbf{x}}^*, t) = 0$$

Next time

- More general boundary conditions
- Constrained extrema
- Application to optimal control