Si-PIN-Fotodiode mit Tageslichtsperrfilter; in SMT und als Reverse Gullwing Silicon PIN Photodiode with Daylight Filter; in SMT and as Reverse Gullwing

BPW 34 FA, BPW 34 FAS, BPW 34 FAS (R18R)

BPW 34 FAS BPW 34 FAS

BPW 34 FAS (R18R)

Wesentliche Merkmale

- Speziell geeignet für den Wellenlängenbereich von 830 nm bis 880 nm
- Kurze Schaltzeit (typ. 20 ns)
- DIL-Plastikbauform mit hoher Packungsdichte
- BPW 34 FAS/(R18R): geeignet für Vapor-Phase Löten und IR-Reflow Löten

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Gerätefernsteuerung
- Lichtschranken für Gleich- und Wechsellichtbetrieb

Typ Type	Bestellnummer Ordering Code
BPW 34 FA	Q62702-P1129
BPW 34 FAS	Q62702-P463
BPW 34 FAS (R18R)	Q62702-P1829

Features

- Especially suitable for the wavelength range of 830 nm to 880 nm
- Short switching time (typ. 20 ns)
- DIL plastic package with high packing density
- BPW 34 FAS/(R18R): Suitable for vapor-phase and IR-reflow soldering

Applications

- IR-remote control of hi-fi and TV sets, video tape recorders, remote controls of various equipment
- Photointerrupters

2004-03-10

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	$V_{\rm R}$ $V_{\rm R}$ $(t < 2 {\rm min})$	16 32	V
Verlustleistung, $T_{\rm A}$ = 25 °C Total power dissipation	P_{tot}	150	mW

Kennwerte (T_A = 25 °C, λ = 870 nm) **Characteristics**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Fotostrom Photocurrent $V_{\rm R}$ = 5 V, $E_{\rm e}$ = 1 mW/cm ²	I_{p}	50 (≥ 40)	μΑ
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	λ _{S max}	880	nm
Spektraler Bereich der Fotoempfindlichkeit $S=10\%$ von $S_{\rm max}$ Spectral range of sensitivity $S=10\%$ of $S_{\rm max}$	λ	730 1100	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	7.00	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	2.65 × 2.65	mm × mm
Halbwinkel Half angle	φ	± 60	Grad deg.
Dunkelstrom, $V_R = 10 \text{ V}$ Dark current	I_{R}	2 (≤ 30)	nA
Spektrale Fotoempfindlichkeit Spectral sensitivity	S_{λ}	0.65	A/W
Quantenausbeute Quantum yield	η	0.93	Electrons Photon
Leerlaufspannung, $E_{\rm e}$ = 0.5 mW/cm ² Open-circuit voltage	V_{O}	320 (≥ 250)	mV

2

2004-03-10

BPW 34 FA, BPW 34 FAS, BPW 34 FAS (R18R)

Kennwerte ($T_{\rm A}$ = 25 °C, λ = 870 nm) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Kurzschlußstrom, $E_{\rm e}$ = 0.5 mW/cm ² Short-circuit current	I_{SC}	23	μΑ
Anstiegs- und Abfallzeit des Fotostromes Rise and fall time of the photocurrent $R_{\rm L}$ = 50 Ω ; $V_{\rm R}$ = 5 V; λ = 850 nm; $I_{\rm p}$ = 800 μ A	$t_{\rm r},t_{\rm f}$	20	ns
Durchlaßspannung, $I_{\rm F}$ = 100 mA, E = 0 Forward voltage	V_{F}	1.3	V
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz, E = 0 Capacitance	C_0	72	pF
Temperaturkoeffizient von $V_{\rm O}$ Temperature coefficient of $V_{\rm O}$	TC_{V}	- 2.6	mV/K
Temperaturkoeffizient von $I_{\rm SC}$ Temperature coefficient of $I_{\rm SC}$	TC_1	0.03	%/K
Rauschäquivalente Strahlungsleistung Noise equivalent power $V_{\rm R}$ = 10 V	NEP	3.9 × 10 ⁻¹⁴	$\frac{W}{\sqrt{Hz}}$
Nachweisgrenze, $V_{\rm R}$ = 10 V, Detection limit	D*	6.8×10^{12}	$\frac{cm \times \sqrt{Hz}}{W}$

BPW 34 FA, BPW 34 FAS, BPW 34 FAS (R18R)

Relative Spectral Sensitivity $S_{\text{rel}} = f(\lambda)$

Photocurrent $I_{\rm P}$ = f ($E_{\rm e}$), $V_{\rm R}$ = 5 V Open-Circuit Voltage $V_{\rm O}$ = f ($E_{\rm e}$)

Total Power Dissipation

Dark Current

Capacitance

$$C = f(V_R), f = 1 \text{ MHz}, E = 0$$

Dark Current

Directional Characteristics

$$S_{\mathsf{rel}} = f(\varphi)$$

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

BPW 34 FA, BPW 34 FAS, BPW 34 FAS (R18R)

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Published by OSRAM Opto Semiconductors GmbH Wernerwerkstrasse 2, D-93049 Regensburg © All Rights Reserved.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain

dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. ² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

