3. TRANSVERSE OSCILLATIONS OF CORONAL LOOPS

– Part 4: Seismology –

Roberto Soler

Solar Magnetohydrodynamics: Applications 2020–2021

Transverse oscillations of coronal loops

- First observed with *TRACE* in 1999 Nakariakov et al. (1999); Aschwanden et al. (1999)
- After an energetic disturbance (flare), the whole loop displays a damped transverse oscillation $\sim \cos{(2\pi t/P + \phi)} \exp{(-t/\tau)}$

Image credit: E. Verwichte

Nakariakov et al. (1999)

- Physical interpretation: Global kink MHD mode see, e.g., Edwin & Roberts (1983)
- Rapid attenuation consistent with damping by resonant absorption see, e.g., Ruderman & Roberts (2002); Goossens et al. (2002)

Transverse oscillations of coronal loops

- First observed with *TRACE* in 1999 Nakariakov et al. (1999); Aschwanden et al. (1999)
- After an energetic disturbance (flare), the whole loop displays a damped transverse oscillation $\sim \cos{(2\pi t/P + \phi)} \exp{(-t/\tau)}$

Image credit: E. Verwichte

Nakariakov et al. (1999)

- Physical interpretation: Global kink MHD mode see, e.g., Edwin & Roberts (1983)
- Rapid attenuation consistent with damping by resonant absorption see, e.g., Ruderman & Roberts (2002); Goossens et al. (2002)

Theoretical model

- lacksquare I=0 o Abrupt density jump
- \blacksquare $I = 2R \rightarrow \text{Fully nonuniform tube}$

Kink mode: TTTB approximation

■ We assume $L/R \gg 1$ and $I/R \ll 1$

$$\begin{split} P &= \frac{2L}{v_{\mathrm{A,i}}} \sqrt{\frac{\zeta+1}{2\zeta}} \\ \frac{\tau_{\mathrm{D}}}{P} &= F \frac{R}{I} \frac{\zeta+1}{\zeta-1} \\ \zeta &= \frac{\rho_{\mathrm{i}}}{\rho_{\mathrm{e}}} \end{split}$$

- Linear: $F = 4/\pi^2 \approx 0.405$
- Sinusoidal: $F = 2/\pi \approx 0.637$
- Parabolic: $F = 4\sqrt{2}/\pi^2 \approx 0.573$

Observables and unknowns

Observables

- P
- \blacksquare $\tau_{\rm D}$
- *L* (and sometimes *R*)

Unknowns: seismic variables

- V_{A,i}
- I/R (or I if R is known)
- **υ** ζ

Seismic problem

- 3 observables and 3 unknowns, but only 2 equations
- The seismological inversion has infinite possible solutions!
- 1D inversion curve in the 3D space formed by $v_{A,i}-I/R-\zeta$
- Any point on the inversion curve is equally compatible with the observations

Valid interval of $v_{\rm A,i}$

$$v_{\mathrm{A,i}} = \frac{L}{P} \sqrt{\frac{2(\zeta+1)}{\zeta}}$$

 \blacksquare We use the density contrast, $\zeta,$ as a parameter: $1<\zeta<\infty$

$$\begin{split} &\lim_{\zeta=1} v_{\mathrm{A},i} &= &\lim_{\zeta=1} \frac{L}{P} \sqrt{\frac{2\left(1+\zeta\right)}{\zeta}} = \frac{2L}{P}, \\ &\lim_{\zeta\to\infty} v_{\mathrm{A},i} &= &\lim_{\zeta\to\infty} \frac{L}{P} \sqrt{\frac{2\left(1+\zeta\right)}{\zeta}} = \sqrt{2}\frac{L}{P}. \end{split}$$

• $v_{A,i}$ is constrained in a relatively narrow range:

$$v_{A,i} \in \left] \sqrt{2} \frac{L}{P}, \frac{2L}{P} \right]$$

Valid interval of I/R

$$\frac{I}{R} = F \frac{P}{\tau_{\rm D}} \frac{\zeta + 1}{\zeta - 1}$$

$$\lim_{\zeta \to 1} \frac{I}{R} = \lim_{\zeta \to 1} F \frac{P}{\tau_{\rm D}} \frac{\zeta + 1}{\zeta - 1} = \infty \qquad \text{(not useful)}$$

$$\lim_{\zeta \to \infty} \frac{I}{R} = \lim_{\zeta \to \infty} F \frac{P}{\tau_{\rm D}} \frac{\zeta + 1}{\zeta - 1} = F \frac{P}{\tau_{\rm D}}$$

■ Due to the geometry of the tube, I/R has a maximum value:

$$\frac{l}{R} \le 2$$

$$\frac{l}{R} \in \left[F \frac{P}{\tau_{D}}, 2 \right]$$

Valid interval of ζ

lacktriangle We rewrite the expression of I/R as an equation for ζ

$$\zeta = \frac{(I/R) C + 1}{(I/R) C - 1}, \qquad C = \frac{1}{F} \frac{\tau_{\mathrm{D}}}{P}$$

• ζ attains its absolute minimum for I/R=2:

$$\zeta \geq \frac{2C+1}{2C-1} \neq 1$$

- lacksquare ζ attains its maximal value of infinity in the limit $I/R \to 1/C$.
- With this information, we can see that ζ is constrained in the interval

$$\zeta \in \left[\frac{2C+1}{2C-1}, \infty\right[$$

or using the definition of C

$$\zeta \in \left[\frac{2\left(\tau_{\mathrm{D}}/P\right)/F + 1}{2\left(\tau_{\mathrm{D}}/P\right)/F - 1}, \infty\right[$$

Valid interval of $v_{A,i}$ (again)

■ We can use the information about the minimum value of ζ to obtain a more accurate interval for $v_{A,i}$

$$\lim_{\zeta \to \frac{2C+1}{2C-1}} v_{A,i} = \lim_{\zeta \to \frac{2C+1}{2C-1}} \frac{L}{P} \sqrt{\frac{2\left(1+\zeta\right)}{\zeta}} = \frac{2L}{P} \sqrt{\frac{2C}{2C+1}}.$$

■ We find that $v_{A,i}$ is more accurately constrained in the interval

$$v_{\mathrm{A},i} \in \left] \sqrt{2} \frac{L}{P}, \frac{2L}{P} \sqrt{\frac{2C}{2C+1}} \right]$$

or using the definition of C

$$v_{\mathrm{A},i} \in \left] \sqrt{2} \frac{L}{P}, \frac{2L}{P} \sqrt{\frac{2(\tau_{\mathrm{D}}/P)/F}{2(\tau_{\mathrm{D}}/P)/F + 1}} \right]$$

Summary of valid intervals

$$v_{\mathrm{A},i} \in \left[\sqrt{2} \frac{L}{P}, \frac{2L}{P} \sqrt{\frac{2 \left(\tau_{\mathrm{D}}/P \right)/F}{2 \left(\tau_{\mathrm{D}}/P/F \right) + 1}} \right]$$

$$\frac{I}{R} \in \left[\frac{2}{\pi} \frac{P}{\tau_{\mathrm{D}}}, 2 \right]$$

$$\zeta \in \left\lfloor rac{2\left(au_{
m D}/P
ight)/F+1}{2\left(au_{
m D}/P
ight)/F-1}, \infty
ight
floor$$

Example

Ofman & Aschwanden (2002), The Astrophysical Journal 576, L153

The Parameters of the Oscillating Coronal Loops Observed by $TRACE^a$

		C44 TE:	т		n	17	
Loop	Date	Start Time (UT)	<i>L</i> (m)	w (m)	<i>P</i> (s)	$V_{\rm A}$ (m s ⁻¹)	t_{decay} (s)
1	1998 Jul 14	12:59:57	1.68E8	7.2E6	261	9.10E5	870
2	1998 Jul 14	12:57:38	7.20E7	6.7E6	265	3.84E5	300
3	1998 Jul 14	12:57:38	1.74E8	8.3E6	316	7.79E5	500
4	1998 Jul 14	12:56:32	2.04E8	7.9E6	277	1.04E6	400
5	1998 Jul 14	13:02:26	1.62E8	7.3E6	272	8.42E5	849
6	1998 Nov 23	06:35:57	3.90E8	16.8E6	522	1.06E6	1200
7	1999 Jul 04	08:33:17	2.58E8	7.0E6	435	8.39E5	600
8	1999 Oct 25	06:28:56	1.66E8	6.3E6	143	1.64E6	200
9	2001 Mar 21	02:32:44	4.06E8	9.2E6	423	1.36E6	800
10	2001 May 15	02:57:00	1.92E8	6.9E6	185	1.47E6	200
11	2001 Jun 15	06:32:29	1.46E8	15.8E6	396	5.21E5	400

^a Values were obtained by Aschwanden et al. 2002 and Nakariakov et al. 1999.

Example

Observables

- Event #5
 - P = 272 s
 - ${f T}_{
 m D}=849~{
 m s}$
 - $L = 162 \times 10^3 \text{ km}$
- We assume a sinusoidal density profile: $F = 2/\pi$

Seismic Intervals

- 842.29 km/s $< v_{A,i} \le 1134.72$ km/s
- 0.2 < I/R ≤ 2
- $1.23 \le \zeta < \infty$

Example: inversion curve for $v_{A,i}$

$$v_{\mathrm{A,i}} = \frac{L}{P} \sqrt{\frac{2(\zeta+1)}{\zeta}}$$

■ 842.29 km/s $< v_{A,i} \le 1134.72$ km/s

Example: inversion curve for I/R

$$\frac{\textit{I}}{\textit{R}} = \frac{2}{\pi} \frac{\textit{P}}{\tau_{\rm D}} \frac{\zeta + 1}{\zeta - 1}$$

■ $0.2 < I/R \le 2$

Example: full inversion curve

Seismic inversion with numerical results

- The error associated with the TTTB approximation affects the inversion of physical parameters in coronal loops
- Alternatively, we can also perform the numerical inversion using the full results of the Frobenius series
- \blacksquare The radius of the loop, R, is also needed in the numerical inversion

Table 2. Intervals of the seismic variables $v_{\rm A,i}, l/R$, and $\rho_{\rm i}/\rho_{\rm e}$ for events #5 and #10 of Ofman & Aschwanden (2002) obtained from the analytic inversion (TTTB) and the numerical inversion.

Event	Inversion	$v_{ m A,i}$	l/R	$ ho_{ m i}/ ho_{ m e}$
#5	TTTB	842-1191	0.20-2	$1.23-\infty$
#5	Numerical	868 - 1075	0.22 – 1.07	1.43 – 20
#10	TTTB	1468-2076	0.59-2	1.84−∞
#10	Numerical	1520 – 1646	0.58 – 1.49	2.41 – 20

Note. — $v_{A,i}$ is given in km s⁻¹. The upper bound of the numerical ρ_i/ρ_e is taken to be the maximum value used in the numerical inversions.

Seismic inversion with numerical results

■ Event #5: weakly damped oscillation Good agreement! (a) 1200 1150 1100 (s) 1050 1000 2 950 950 900 85B 20 15 0.0

Seismic inversion with numerical results

■ Event #10: strongly damped oscillation Not so good agreement!

