MATH 250B - Linear Algebra & Differential Equations

Additional Practice Problems – Summer 2023

1. (a) Solve the following initial value problems:

$$a)y' + y = 1 + t^2$$
 $y(2) = 3$ $b)$ $y' + y \cos t = 0$, $c)$ $y' + y \sin t = 0$, $c)$ $y' + \frac{2t}{1 + t^2}y = \frac{1}{1 + t^2}$.

(b) Find a continuous solution of the IVP

$$y' + y = g(t), \quad y(0) = 0$$

where
$$g(t) = \begin{cases} 2 & \text{if } 0 \le t \le 1 \\ 0 & \text{if } t > 1 \end{cases}$$

 $y' + y = g(t), y(0) = 0,$

$$g(t) = \begin{cases} 2, & \text{if } 0 \le t \le 1, \\ 0, & \text{if } t > 1. \end{cases}$$

The integrating factor is $\mu(t) = e^{\int dt} = e^t \implies \frac{d}{dt}(e^t y) = e^t g(t) \implies [e^t y]_0^t = \int_0^t e^t f(t) dt \implies e^t y - y(0) = \int_0^t e^t g(t) dt \implies e^t y - 0 = \int_0^t e^t g(t) dt \implies y(t) = e^{-t} \int_0^t e^t g(t) dt.$ If $0 \le t \le 1$, $\int_0^t e^t g(t) dt = 2 \int_0^t e^t dt = 2(e^t - 1) \implies y(t) = 2e^{-t}(e^t - 1).$ If t > 1, $\int_0^t e^t g(t) dt = \int_0^1 e^t g(t) dt + \int_1^t e^t g(t) dt = \int_0^1 e^t dt = e - 1 \implies y(t) = e^{-t}(e - 1).$

- 2. Let $A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$.
 - (a) Find the eigenvalues of the matrix A.
 - (b) Find all of vectors $v \neq 0$ such that $Av = \lambda v$ where λ is an eigenvalue of A. Such vector is called an eigenvector of A corresponding to the eigenvalue λ .
- 3. Find all values of k for which the matrix $\begin{pmatrix} 2 & k-3 & k^2 \\ 2 & 1 & 4 \\ 1 & k & 0 \end{pmatrix}$ is invertible.
- 4. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} a & b \\ c + ka & d + kb \end{pmatrix}$. Find $\det(B)$ in terms of $\det(A)$.
- 5. Let $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ and $B = \begin{pmatrix} a-5d & b-5e & c-5f \\ 3g & 3h & 3i \\ -d+3g & -e+3h & -f+3i \end{pmatrix}$. Find det(B) in terms of det(A).

To obtain the given matrix from A, we add 5 times the middle row to the top row, we multiply the last row by 3, we multiply the middle row by -1, we add a multiple of the last row to the middle row, and we perform a row permutation. The combined effect of these operations is to multiply the determinant of A by $(1) \cdot (3) \cdot (-1) \cdot (-1) = 3$. Hence, the given matrix has determinant $3 \det(A)$.

6. Let $A = \begin{pmatrix} 2 & -3 & 0 \\ 0 & 1 & 5 \\ 0 & -1 & 2 \end{pmatrix}$. Show that A is invertible and find its inverse, using the method of cofactors.

7. Consider the following system

$$\begin{cases} x_1 + 2x_2 - x_3 = 5, \\ 3x_1 + x_2 - 2x_3 = 9, \\ -x_1 + 4x_2 + 2x_3 = 0. \end{cases} (\star).$$

- (a) Show that solving (\star) is equivalent to solving $A\mathbf{x} = \mathbf{b}$, where A, \mathbf{x} and \mathbf{b} are to be determined.
- (b) Find the augmented matrix A^{\sharp} associated with (\star) .
- (c) Perform the Gaussian elimination on the augmented matrix A^{\sharp} .
- (d) Find the solution of the linear system (\star) .
- (a) Determine the values of r for which the given differential equation has solutions of the form $y = e^{rt}$.
 - i) y' + 2y = 0.
 - ii) y'' + y' 6y = 0.
 - (b) Determine the values of r for which the given differential equation has solutions of the form $y=t^r$ for t > 0.
 - i) $t^2y'' + 4ty' + 2y = 0$.
 - ii) $t^2y'' 4ty' + 4y = 0$.
- 9. Verify that the given vector function x defines a solution to x' = Ax + b for the given A and b.

 - 1) $x = \begin{pmatrix} e^{4t} \\ -2e^{4t} \end{pmatrix}$, $A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. 2) $x = \begin{pmatrix} 2te^t + e^t \\ 2te^t e^t \end{pmatrix}$, $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 4e^t \end{pmatrix}$.
- 10. Write the vector formulation for the given system of differential equations:
 - 1) $x'_1 = -4x_1 + 3x_2 + 4t$, $x'_2 = 6x_1 4x_2 + t^2$. 2) $x'_1 = e^{2t}x_2$, $x'_2 + \sin tx_1 = 1$. 3) $x'_1 = t^2x_1 tx_2$, $x'_2 = -\sin tx_1 + x_2$.
- 11. Verify that for all values of s and t, (s, s-2t, 2s+3t, t) is a solution to the linear system:

$$\begin{cases} x_1 + x_2 - x_3 + 5x_4 = 0, \\ 2x_2 - x_3 + 7x_4 = 0, \\ 4x_1 + 2x_2 - 3x_3 + 13x_4 = 0 \end{cases}$$

- 12. Find A^2 , A^3 and A^4 if $A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ and $A = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 4 & -1 & 0 \end{pmatrix}$.
- 13. If $A = \begin{pmatrix} 2 & -5 \\ 6 & -6 \end{pmatrix}$, calculate A^2 and verify that $A^2 4A + 18I_2 = 0_2$.
- 14. Find numbers x, y, and z such that the matrix $A = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$ satisfies

$$A^2 + \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} = I_3.$$

- 15. Use the properties of the transpose to prove that
 - (a) AA^T is a symmetric matrix.
 - (b) $(ABC)^T = C^T B^T A^T$.
- 16. Verify that for all values of t, (1-t, 2+3t, 3-2t) is a solution of the linear system

$$\begin{cases} x_1 + x_2 + x_3 = 6, \\ x_1 - x_2 - 2x_3 = -7, \\ 5x_1 + x_2 - x_3 = 4. \end{cases}$$

17. Determine all values of the constants a and b for which the following system has (a) no solution, (b) an infinite number of solutions, and (c) a unique solution.

$$\begin{cases} x_1 - ax_2 = 3, \\ 2x_1 + x_2 = 6, \\ -3x_1 + (a+b)x_2 = 1 \end{cases}$$

18. Execute Gaussian elimination on $A\mathbf{x} = \mathbf{b}$ where $A = \begin{pmatrix} 2 & -6\alpha \\ 2\alpha & -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 3 \\ \beta \end{pmatrix}$.

Converting the given system of equations to an augmented matrix and using Gaussian elimination we obtain the following equivalent matrices:

$$\begin{pmatrix} 2 & -6\alpha & 3 \\ 2\alpha & -1 & \beta \end{pmatrix} \stackrel{1}{\sim} \begin{pmatrix} 1 & -3\alpha & 3/2 \\ 2\alpha & -1 & \beta \end{pmatrix} \stackrel{2}{\sim} \begin{pmatrix} 1 & -3\alpha & 3/2 \\ 0 & -1 + 6\alpha & \beta - 3\alpha \end{pmatrix}.$$

$$\boxed{ \mathbf{1.} \ M_1(1/2) \ \mathbf{2.} \ A_{12}(-2\alpha) }$$

- If $\alpha \neq \frac{1}{6}$, the system has a unique solution, obtained by back substitution. We obtain $x_2 = \frac{3\alpha \beta}{6\alpha 1}$ and $x_1 = 3\left(\frac{1}{2} + \alpha \frac{3\alpha \beta}{6\alpha 1}\right)$.
- If $\alpha = \frac{1}{6}$ and $\beta \neq \frac{1}{2}$, there is an inconsistency. The system has no solution.
- If $\alpha = \frac{1}{6}$ and $\beta = \frac{1}{2}$, the last row leads to 0 = 0. And the system has infinitely many solutions. Indeed, any couple (x_1, x_2) such that $x_1 = \frac{3}{2} + 3\alpha x_2$ is a solution of our system. The set of solution is therefore:

$$\mathcal{S} = \left\{ \left(\frac{3}{2} + 3\alpha t, t \right) : t \in \mathbb{R} \right\}.$$

- 19. Let $A = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & 0 \\ 4 & -1 & 3 \end{pmatrix}$. Show that $A\mathbf{x} = \mathbf{b}$ is not always solvable for all $\mathbf{b} \in \mathbb{R}^3$, and describe the set of $\mathbf{b} \in \mathbb{R}^3$ (as a plane or a line) such that the system is solvable.
- 20. Find all the values of h such that the following vector equation has solution(s).

$$x_1 \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 7 \end{pmatrix} = \begin{pmatrix} h \\ -3 \\ -5 \end{pmatrix}.$$

21. Let $A = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 2 & 0 \\ 4 & -1 & 3 \end{pmatrix}$. Show that $A\mathbf{x} = \mathbf{b}$ is not always solvable for all $\mathbf{b} \in \mathbb{R}^3$, and describe the set of $\mathbf{b} \in \mathbb{R}^3$ (as a plane or a line) such that the system is solvable.

22. Solve the linear system with augmented matrix

$$\left(\begin{array}{ccc|c} 2 & 0 & -6 & -8 \\ 0 & 1 & 2 & 3 \\ 3 & 6 & -2 & -4 \end{array}\right).$$

After a row-reduction and using back substitution, we obtain $x_3 = 2$, $x_2 = -1$, $x_1 = 2$.

23. Find all the values h so that the linear system with the following augmented matrix is consistent: Applying row reduction to:

$$\begin{pmatrix} 1 & h & -5 \\ 2 & -8 & 6 \end{pmatrix}$$

Using Gaussian elimination we obtain the following equivalent matrices:

$$\begin{pmatrix} 1 & h & -5 \\ 2 & -8 & 6 \end{pmatrix} \stackrel{1}{\sim} \begin{pmatrix} 1 & h & -5 \\ 0 & -8 - 2h & 16 \end{pmatrix}.$$

$$\boxed{\mathbf{1.} \ A_{12}(-2)}$$

So, the system is inconsistent when h = -4; it has a unique solution if $h \neq -4$. The solution is (x_1, x_2) , with $x_1 = -\frac{32}{h+4}$ and $x_2 = -\frac{8}{h+4}$.

24. Row reduce the following augmented matrix. Determine the leading ones and pivot columns.

$$\left(\begin{array}{ccc|c} 1 & 2 & 4 & 5 \\ 2 & 4 & 5 & 4 \\ 4 & 5 & 4 & 3 \end{array}\right).$$

Using Gaussian elimination we obtain the following equivalent matrices:

$$\begin{pmatrix} 1 & 2 & 4 & 5 \\ 2 & 4 & 5 & 4 \\ 4 & 5 & 4 & 3 \end{pmatrix} \stackrel{1}{\sim} \begin{pmatrix} 1 & 2 & 4 & 5 \\ 0 & 0 & -3 & -6 \\ 0 & -3 & -12 & -17 \end{pmatrix} \stackrel{2}{\sim} \begin{pmatrix} 1 & 2 & 4 & 5 \\ 0 & -3 & -12 & -17 \\ 0 & 0 & -3 & -6 \end{pmatrix} \stackrel{2}{\sim} \begin{pmatrix} 1 & 2 & 4 & 5 \\ 0 & 1 & 4 & \frac{17}{3} \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

1.
$$A_{12}(-2)$$
 and $A_{13}(-4)$ **2.** $P_{23}(-2)$ **3.** $M_2(-\frac{1}{3})$ and $M_3(-\frac{1}{3})$

So, Columns 1, 2, 3 are pivot columns, and (1,1), (2,2), (3,3) entries are pivot positions. Using a backward substitution, we obtain $x_3 = 2$, $x_2 = \frac{17}{3} - 4x_3 = -\frac{7}{3}$ and $x_1 = 5 - 2x_2 - 4x_3 = \frac{5}{3}$.

25. Find the solutions of the system with augmented matrix:

$$\left(\begin{array}{ccc|c} 1 & -2 & -1 & 4 \\ -2 & 4 & -5 & 6 \end{array}\right).$$

Using Gaussian elimination we obtain the following equivalent matrices:

$$\begin{pmatrix} 1 & -2 & -1 & | & 4 \\ -2 & 4 & -5 & | & 6 \end{pmatrix} \stackrel{1}{\sim} \begin{pmatrix} 1 & -2 & -1 & | & 4 \\ 0 & 0 & -7 & | & 14 \end{pmatrix} \stackrel{2}{\sim} \begin{pmatrix} 1 & -2 & -1 & | & 4 \\ 0 & 0 & 1 & | & -2 \end{pmatrix}.$$

$$1. A_{12}(2) 2. M_2(-\frac{1}{7})$$

So, using the corresponding system, we obtain $x_3 = -2$ and $x_1 - 2x_2 = 4 + x_3 = 2$. Thus, $x_1 = 2x_2 + 2$. Hence there are indefinitely many solutions, given by the set

$$S = \{(2t+2, t, -2) : t \in \mathbb{R}\}.$$

26. Find the solutions of the system with augmented matrix:

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & -9 & 0 & 4 \\
0 & 1 & 3 & 0 & -1 \\
0 & 0 & 0 & 1 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right).$$

The augmented matrix is already row-echelon. Using back substitution, we obtain $x_4 = -7$, $x_3 = t$, $x_2 = 1 - 3t$, $x_1 = 2 + 2t$ for all $t \in \mathbb{R}$.

27. Determine the conditions on (h, k) so that the following system has no solution, one solution, and infinitely many solutions.

$$x_1 - 3x_2 = 1$$
, $2x_1 + hx_2 = k$.

Converting the given system of equations to an augmented matrix and using Gaussian elimination we obtain the following equivalent matrices:

$$\left(\begin{array}{cc|c} 1 & -3 & 1 \\ 2 & h & k \end{array}\right) \stackrel{1}{\sim} \left(\begin{array}{cc|c} 1 & -3 & 1 \\ 0 & h+6 & k-2 \end{array}\right).$$

1.
$$A_{12}(-2)$$

So, the system is inconsistent when h=-6 and $k\neq 2$; it has infinitely many solution if h=-6 and k=2; it has a unique solution if $h\neq -6$.

28. Find the rank of

$$\left(\begin{array}{cccccc}
1 & 2 & 1 & 1 & 5 \\
2 & 4 & 0 & 0 & 5 \\
1 & 2 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 2 & -1 & 4
\end{array}\right).$$

29. Find the reduced row-echelon and the rank of

$$\left(\begin{array}{ccccc}
3 & 0 & 1 & 2 \\
6 & -2 & 1 & 0 \\
3 & 6 & 0 & -6
\end{array}\right).$$

30. Solve the systems

$$\begin{cases} 3x_1 - x_2 - x_3 = 0, \\ x_1 + x_2 + x_3 = 0, \\ 2x_1 + x_3 = 0 \end{cases} \text{ and } \begin{cases} 2x_2 + x_3 = 1, \\ 4x_1 - 5x_2 - 7x_3 = 2, \\ x_1 - x_2 + 2x_3 = 3, \\ x_1 + x_3 = 1. \end{cases}$$