The general recurrence form for devide 4 conquer methods

time for solving

Arivial problem $\gamma \leq 0$ #subpriblens xT (factor reduction ->> b

t divide time

t conquer lime

(see

Master Method (Appendix)

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:

 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$ 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Master Method (Appendix)

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

Intuition: Iterative substitution for current stage

$$= (b^{\ell})^{k} = n^{k}$$

$$= n^{\log_{b} \alpha}$$

Iterative "Proof" of the Master Theorem

Using iterative substitution, let us see if we can find a pattern:

$$T(n) = aT(n/b) + f(n)$$

$$= a(aT(n/b^{2})) + f(n/b)) + bn$$

$$= a^{2}T(n/b^{2}) + af(n/b) + f(n)$$

$$= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$$

$$= ...$$

$$= a^{\log_{b}n}T(1) + \sum_{i=0}^{(\log_{b}n)-1} a^{i}f(n/b^{i})$$

$$= n^{\log_{b}a}T(1) + \sum_{i=0}^{(\log_{b}n)-1} a^{i}f(n/b^{i})$$

- We then distinguish the three cases as
 - The first term is dominant
 - Each part of the summation is equally dominant
 - The summation is a geometric series → (i · e

second term dominates)

© 2004 Goodrich, Tamassia

- - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - T(n) = 4T(n/2) + n3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 4T(n/2) + n$$

Solution: $log_b a = 2$, so case 1 says T(n) is $O(n^2)$.

© 2004 Goodrich, Tamassia

$$\left(n^{2}\right)$$

$$(n^2 \log^k)$$

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 2T(n/2) + n\log n$$

Solution: $log_b a = 1$, so case 2 says T(n) is O(n $log^2 n$).

11

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = T(n/3) + n \log n$$

Solution: $log_b a = 0$, so case 3 says T(n) is O(n log n).

3) 15 $nlogn = \Omega$ (n^E) for some E > 0?

Ans: Yes E = 1

© 2004 Goodrich, Tamassia

H/W

Master Method, Example 4

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 8T(n/2) + n^2$$

Solution: $log_b a=3$, so case 1 says T(n) is $O(n^3)$.

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 9T(n/3) + n^3$$

Solution: $log_b a = 2$, so case 3 says T(n) is $O(n^3)$.

- The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
 - The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = T(n/2) + 1$$
 (binary search)

Solution: $log_b a = 0$, so case 2 says T(n) is O(log n).

- The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
- The Master Theorem:
- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a}) \leftarrow \langle \cdot \rangle = \langle \cdot \rangle$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 2T(n/2) + \log n$$
 (heap construction)
Solution: $\log_b a = 1$, so case 1 says T(n) is O(n).

Integer Multiplication

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits

$$I = I_h 2^{n/2} + I_l$$
$$J = J_h 2^{n/2} + J_l$$

■ We can then define I*J by multiplying the parts and adding:

$$I * J = (I_h 2^{n/2} + I_l) * (J_h 2^{n/2} + J_l)$$
$$= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l$$

- So, T(n) = 4T(n/2) + n, which implies T(n) is $O(n^2)$.
- But that is no better than the algorithm we learned in grade school.

© 2004 Goodrich, Tamassia

Divide-and-Conquer

$$\begin{array}{c|c}
109 & a = 109 & 4 = 2 \\
 & = 1 \Rightarrow 109 & 15
\end{array}$$

$$\begin{array}{c|c}
18 \\
 & = 1 \Rightarrow 109 & 15
\end{array}$$

$$\begin{array}{c|c}
18 \\
 & = 1 \Rightarrow 109 & 15
\end{array}$$

An Improved Integer Multiplication Algorithm

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits $I = I_h 2^{n/2} + I_I$

$$J = J_h 2^{n/2} + J_l$$

Observe that there is a different way to multiply parts:

$$I * J = \underbrace{I_h J_h}_{2^n} 2^n + [(I_h - I_l)(J_l - J_h) + \underbrace{I_h J_h}_{1} + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + [(I_h J_l - I_l J_l - I_h J_h + I_l J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + (I_h J_l + I_l J_h) 2^{n/2} + I_l J_l$$

- So, T(n) = 3T(n/2) + n, which implies T(n) is $O(n^{\log_2 3})$, by the Master Theorem.
- Thus, T(n) is O(n^{1.585}).

© 2004 Goodrich, Tamassia

Divide-and-Conquer

$$\begin{cases}
\log_{b} \alpha = \log_{2} 3 & \text{def}(n) = n = 0 \\
0 & \text{def}(n) = 0
\end{cases}$$

$$\begin{cases}
\log_{b} \alpha = \log_{2} 3 & \text{def}(n) = n = 0 \\
0 & \text{def}(n) = 0
\end{cases}$$

$$\begin{cases}
\log_{b} \alpha = \log_{2} 3 & \text{def}(n) = n = 0 \\
0 & \text{def}(n) = 0
\end{cases}$$

$$\begin{cases}
\log_{b} \alpha = \log_{b} 3 & \text{def}(n) = n = 0 \\
0 & \text{def}(n) = 0
\end{cases}$$