The Twelvefold Way: $|\{f: k \to n\}|$

How many ways to sort k balls into n boxes?

	Arbitrary	Injective	Surjective
	any sorting	max 1 ball per box	each box gets ball
Distinct Balls	n^k	n!	$n!\binom{k}{n}$
Distinct Boxes	H^{r}	$\frac{n!}{(n-k)!}$	$n!\{n\}$
Identical Balls	$\binom{n+k-1}{k}$	(n)	(k-1)
Distinct Boxes	$\binom{k}{k}$	$\binom{n}{k}$	$\binom{k-1}{n-1}$
Distinct Balls	$\sum_{k=1}^{n} {k}$	1 if $k \leq n$	(k)
Identical Boxes	$\sum_{j=0}^{n} {k \brace j}$	$1 \text{ if } \kappa \leq n$	${k \choose n}$
Identical Balls	$n \cdot (h)$	1 if $k < n$	n (h)
Identical Boxes	$p_{\leq n}(k)$	$1 \text{ if } \kappa \leq n$	$p_n(k)$

n! permutations of n

 $\binom{n}{k}$ choose binomial coefficient

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

 D_n derangements of n

$$D_n = !n = \text{round}\left(\frac{n!}{e}\right)$$

 $\binom{k}{n}$ Stirling numbers of the 2nd kind

$$\binom{k}{n} = \frac{1}{n!} \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (n-j)^{k} = n \binom{k-1}{n} + \binom{k-1}{n-1}$$

 B_n Bell numbers partitions of a set $B_n = \sum_{j=0}^n {n \brace j}$

 $p_{\leq n}(k)$ integer partitions of k into at most n parts

$$\sum_{k=0}^{\infty} p_{\leq n}(k) x^k = \prod_{j=1}^{n} \frac{1}{1 - x^j}$$

 $p_n(k)$ integer partitions of k into exactly n parts

$$\sum_{k=0}^{\infty} p_n(k) x^k = \prod_{j=1}^{n} \frac{x}{1 - x^j}$$

$$p_{\leq n}(k) = p_n(k+n)$$