PHYS 2311. Physics I (Mechanics)

Assorted Equations on Energy, Momentum and Rotation

$W = F\Delta x \cos \theta$	$W = \vec{F} \cdot \Delta \vec{x}$	$F_s = -kx$
$W = \int_{r}^{r_f} \vec{F} \cdot d\vec{r}$	$W_{net} = \Delta K$	$U_g = mgy$
$U_s = \frac{1}{2}kx^2$	$W_{int} = -\Delta U$	$F_x = -\frac{dU}{dx}, F_y = -\frac{dU}{dy}$
$\Delta E_{mech} = \Delta K + \Delta U$	$\Delta E_{sys} = \sum T$	$\Delta K + \Delta U + \Delta E_{int} = W + Q + \sum T$
$\Delta E_{mech} = \sum W_{otherforces} - f_k d$	$P = \frac{dE}{dt}$ $\vec{F} = \frac{d\vec{p}}{dt}$	$P = \vec{F} \cdot \vec{v}$
$\vec{p} = m\vec{v}$	$ec{F} = rac{dec{p}}{dt}$	$\sum ec{p_i} = \sum ec{p_f}$
$x_{com} = \frac{\sum m_i x_i}{M_{tot}}$	$\vec{r}_{com} = \frac{1}{M} \int \vec{r} dm$	$\vec{p}_{tot} = M_{tot} \vec{v}_{CM}$
$\theta = s/r$	$\omega = d\theta/dt$	$\alpha = d\omega/dt$
$v = r\omega$	$a_t = r\alpha$	$a_c = r\omega^2$
$\omega_f = \omega_i + \alpha t$	$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$	$\omega_f^2 = \omega_i^2 + 2\alpha(\theta_f - \theta_i)$
$\theta_f = \theta_i + \frac{1}{2}(\omega_i + \omega_f)t$	$K_{rot} = \frac{1}{2}I\omega^2$	$\vec{K}_{tot} = K_{trans} + K_{rot}$
$I = \sum m_i \tilde{r_i^2}$	$I = \int r^2 dm$	$I = I_{CM} + MD^2$
$I_{hoop} = MR^2$	$I_{disk} = \frac{1}{2}MR^2$	$I_{sphere} = \frac{2}{5}MR^2$
$ au_{net} = I \alpha$	$ec{ au} = ec{r} imes ec{F}$	$\sum \vec{ au} = d\vec{L}/dt$
$L = I\omega$	$ec{L} = I ec{\omega}$	$\frac{d\vec{L}}{dt} = 0$