

Food recognition

Rezső Oberfrank, DiabTrend

- Blood glucose level prediction
- Diabetes diary
 - Glucose level, insulin intake
 - Sleeping time, physical activity
 - Food intake
 - Illness, etc...

Overview

- Who are we?
- **/**
- Our problem
- Image classification
 - Data & augmentation
 - CNN architectures
- example.ipynb

The problem

- Users time is precious
 - Bluetooth: Blood glucose meters & Insulin pens
 - Apple Health/Google Fit: Activity, Sleep and Pulse
- Food input is text based -> SLOW
- Solution: Image classification
- Challenge: Mobile hardware

Data & Augmentation

Real Data: images collected 1000+ foods in app

Example data: Cats and Dogs (open-source)

Augmentation types

- Transform: flip, crop, translate, rotate,...
- Colour: brightness, contrast, hue,...
- Obfuscate: noise, blur, partial cover,...

CNN architectures

- AlexNet (2012)
- VGGNet (2014)
- Inception (2014)
- ResNet (2015)
- InceptionV4 (2016)
- MobileNet (2017)

AlexNet (2012)

VGGNet (2014)

Inception (2014)

Parallel operations, wider architecture

ResNet (2015)

Solves disappearing gradient, deeper architecture

MobileNet (2017)

Figures from http://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/

Computationally cheaper, but worse performance

Takeaways

- Collect lots of images
- Experiment with augmentation
- Try different networks

Thank you for your attention!

rezso.dev