群的自由积

戚天成 ⋈

复旦大学 数学科学学院

2023年11月2日

任给一族群 $\{G_i|i\in I\},I\neq\varnothing$ 是指标集, 如果群 P 以及群同态族 $\{j_i:G_i\to P|i\in I\}$ 满足对任给群同态族 $\{f_i:G_i\to G|i\in I\}$ 存在唯一的群同态 $\hat{f}:P\to G$ 使得 $\hat{f}j_i=f_i, \forall i\in I$, 即下图交换:

则称 $(P, \{j_i : G_i \to P | i \in I\})$ 是群族 $\{G_i | i \in I\}$ 的**自由积**. 用范畴的语言来说, 群族的自由积即为这族群的余积. 群范畴中任何群族的余积构造并不像积那样容易, 这份笔记的目的是记录群范畴中余积的具体构造.

Theorem. 任给群族 $\{A_i|i\in I\}, I\neq\emptyset$, 该群族的自由积 $(P,\{j_i:A_i\to P|i\in I\})$ 存在且在同构意义下唯一.

Proof. 如果自由积存在, 我们说明每个 j_i 是单态: 任给 $k \in I$, 当 $i \neq k$ 时, 定义 f_i 为平凡同态, 对 f_k , 定义为 A_k 上恒等态 $f_k=1_{A_k}$, 由自由积的定义存在群同态 $\hat{f}:P\to G$ 使得 $\hat{f}j_i=f_i, \forall i\in I$, 特别地, 由 $1_{A_k} = \hat{f} j_k$ 知 j_k 是单射. 如果自由积存在,不难证明其同构唯一性,下面仅证明存在性. 对每个 $i \in I$, 命 $A_i^{\#} = \{(x,i)|x \in A_i - \{1_{A_i}\}\}, \ \forall a = (x,i), b = (y,i) \in A_i^{\#}, \ \text{un} \ \exists xy \neq 1_{A_i}, \ \exists ab = (xy,i) \ \ \exists \ a^{-1} = (x^{-1},i);$ 如果 $xy=1_{A_i},$ 称 $ab=1_{A_i},$ 那么 $\{A_i^\#|i\in I\}$ 是不相交的集合族. 取集合 $\bigcup_i A_i^\#$ 外一个元素, 记为 1. 现在我们 考虑集合 $S = (\bigcup_{i=1}^n A_i^\#) \bigcup \{1\}$ 上的序列全体 $\{f: \mathbb{Z}_{>0} \to S\}$, 如果 f 满足 $f(n) = s_n$, 记 f 为 $(s_1, s_2, ..., s_n, ...)$. 如果序列 $(s_1, s_2, ...)$ 满足: (1) 对相邻的 s_i, s_{i+1} , 如果都不为 1, 那么它们在不同的 $A_i^{\#}$ 中; (2) 如果正整数 i 满足 $s_i = 1$, 那么 $s_n = 1, \forall n \geq i$, 则称序列 $(s_1, s_2, ...)$ 是 S 上一个既约字. 记 P 为所有既约字构成的 集合, 称 (1,1,1,...) 为空字, 记作 1_P , 对非空的既约字 $(a_1,a_2,...,a_m,1,...)$ 这里 $a_m \neq 1$, 记为 $a_1a_2\cdots a_m$. 根据上述记号, 易见对非空的既约字 $a_1a_2\cdots a_n$ 与 $b_1b_2\cdots b_m$, $a_1a_2\cdots a_n=b_1b_2\cdots b_m$ 当且仅当 n=m 且 $a_k = b_k, \forall 1 \leq k \leq n$. 现在在 P 上定义二元运算: 对任给 $x \in P$, 定义 $1_P x = x 1_P = x$. 对非空的既约字 $a_1a_2\cdots a_n, b_1b_2\cdots b_m\in P$, 当 $n\leq m$ 时, 如果 a_n 与 b_1 在不同的 $A_k^\#$ 中, 那么 $a_1a_2\cdots a_nb_1b_2\cdots b_m$ 是既约 字, 此时定义 $(a_1a_2\cdots a_n)(b_1b_2\cdots b_m)=a_1a_2\cdots a_nb_1b_2\cdots b_m;$ 如果 a_1 与 b_n 在同一个 $A_k^\#$ 中且 $a_nb_1\neq 1_{A_k},$ 则 $a_1a_2\cdots(a_nb_1)b_2\cdots b_m$ 是既约字, 定义 $(a_1a_2\cdots a_n)(b_1b_2\cdots b_m)=a_1a_2\cdots(a_nb_1)b_2\cdots b_m$. 如果 a_1,b_n 在同 一个 $A_k^\#$ 中且 $a_n b_1 = 1_{A_k}$,如下定义一个正整数 l: 当存在 $1 \le k \le n$ 使得 a_{n+1-k} 与 b_k 不在同一个 $A_i^\#$ 中或 $a_{n+1-k}b_k$ 在同一个 $A_i^{\#}$ 且它们乘积不是单位元时, 定义 l 为满足上述性质的最小正整数, 否则定义 l=n+1. 当 $l \leq n$ 时,如果 a_{n+1-l}, b_l 不在同一个 $A_k^\#$ 中,定义 $(a_1a_2\cdots a_n)(b_1b_2\cdots b_m)=a_1a_2\cdots a_{n+1-l}b_lb_{l+1}\cdots b_m$, 否则定义为 $(a_1a_2\cdots a_n)(b_1b_2\cdots b_m)=a_1a_2\cdots (a_{n+1-l}b_l)b_{l+1}\cdots b_m$,当 l=n+1 时,如果 n=m,定义 $(a_1a_2\cdots a_n)(b_1b_2\cdots b_m)=1_p$,否则定义 $(a_1a_2\cdots a_n)(b_1b_2\cdots b_m)=b_{n+1}\cdots b_m$,类似可定义 n< m 的情形.易见上述运算作为二元运算定义合理且有单位元 1_P ,任意非空字 $a_1a_2\cdots a_n$,有逆元 $a_n^{-1}a_{n-1}^{-1}\cdots a_1^{-1}$,故要说明 P 关于上述二元运算构成群只需证明结合律成立.对每个 $s\in S=(\bigcup_{i\in I}A_i^\#)$ 时, σ_s 满足 $\sigma_s(1_P)=s,\sigma_s(a_1\cdots a_n)=(s)(a_1\cdots a_n)$,等式右边是既约字的乘法.记 A(P) 是集合 $\{\sigma_s|s\in S\}$ 在 P 上对称群 S(P) 中生成的子群,则有保持单位元与乘法的双射 $\varphi:P\to A(P)$ 满足 $\varphi(a_1a_2\cdots a_n)=\sigma_{a_1}\sigma_{a_2}\cdots\sigma_{a_n}$,于是 A(P) 中的结合律保证了 P 中结合律,故 P 关于既约字乘法构成群.对每个 $i\in I$,定义 $j_i:A_i\to P$ 满足 $j_i(1_{A_i})=1_P$,当 $x\neq 1_{A_i}$ 时 $j_i(x)$ 为 $a=(x,i)\in A_i^\#$ 在 P 中对应的既约字 a_i 易见 a_i 是单群同态.最后验证 a_i 以及单态族 a_i a_i

那么对任一非空既约字 $a_1 \cdots a_n \in P, a_t \in A_{k_t}^{\#}, 1 \leq t \leq n$, 有

$$\hat{g}(a_1 \cdots a_n) = \hat{g}(a_1)\hat{g}(a_2) \cdots \hat{g}(a_n) = f_{k_1}(a_1) \cdots f_{k_n}(a_n) = \hat{f}(a_1 \cdots a_n),$$

由此得到唯一性. 故 $(P, \{j_i : A_i \to P | i \in I\})$ 是群族 $\{A_i | i \in I\}$ 的自由积.