LED Driver IC PT6959

DESCRIPTION

PT6959 is an LED Controller driven on a 1/4 to 1/7 duty factor. Fourteen to eleven segment output lines, 4 to 7 grid output lines, one display memory, control circuit are all incorporated into a single chip to build a highly reliable peripheral device for a single chip microcomputer. Serial data is fed to PT6959 via a three-line serial interface. Housed in a 28-pin SOP, PT6959's pin assignments and application circuit are optimized for easy PCB Layout and cost saving advantages.

FEATURES

- CMOS technology
- Low power consumption
- 8-step dimming circuitry
- Serial interface for clock, data input, strobe pins
- Available in 28-pin, SOP

APPLICATION

Microcomputer peripheral devices

PT6959 V1.5 - 1 - June, 2005

Tel: 886-2-66296288 Fax: 886-2-29174598

PT6959

URL: http://www.princeton.com.tw

BLOCK DIAGRAM

LED Driver IC

LED Driver IC PT6959

INPUT/OUTPUT CONFIGURATIONS

The schematic diagrams of the input and output circuits of the logic section are shown below.

Input Pins: CLK, STB & SIN

Output Pins, SG14/GR5 to SG12/GR7

Output Pins: GR1 to GR4

Output Pins: SG1 to SG11

LED Driver IC PT6959

PIN CONFIGURATION

OSC 1 DIN 2 CLK 3 STB 4 VDD 5 SG1 6 SG2 7 SG3 8 SG4 9 SG5 10 SG6 11 SG7 12 SG8 13 SG9 14	PT6959	28 NC 27 NC 26 GND 25 GR1 24 GR2 23 GR3 22 GR4 21 GND 20 VDD 19 SG14/GR5 18 SG13/GR6 17 SG12/GR7 16 SG11
--	--------	--

LED Driver IC PT6959

PIN DESCRIPTION

Pin Name	I/O	Description	Pin No.
OSC	I	Oscillator input pin A resistor is connected to this pin to determine the oscillation frequency.	1
DIN	I	Data input pin This pin inputs serial data at the rising edge of the shift clock (starting from the lower bit).	2
CLK	I	Clock input pin This pin reads serial data at the rising edge.	3
STB	1	Serial interface strobe pin The data input after the STB has fallen is processed as a command. When this pin is "HIGH", CLK is ignored.	4
VDD	-	Power supply	5, 20
SG1 ~ SG11	0	Segment output pins (p-channel, open drain)	6 ~ 16
SG12/GR7 ~ SG14/GR5	0	Segment output pin/Grid output pin (CMOS output)	17 ~ 19
GND	_	Ground pin	21, 26
GR4 ~ GR1	0	Grid output pins (n-channel, open drain)	22 ~ 25
NC	-	No connection	27, 28

LED Driver IC PT6959

FUNCTION DESCRIPTION

COMMANDS

A command is the first byte (b0 to b7) inputted to PT6959 via the DIN Pin after STB Pin has changed from "HIGH" to "LOW" State. If for some reason the STB Pin is set to "HIGH" while data or commands are being transmitted, the serial communication is initialized, and the data/commands being transmitted are considered invalid.

COMMAND 1: DISPLAY MODE SETTING COMMANDS

PT6959 provides 4 display mode settings as shown in the diagram below: As stated earlier a command is the first one byte (b0 to b7) transmitted to PT6959 via the DIN Pin when STB is "LOW". However, for these commands, Bit No. 3 to Bit No.6 (b2 to b5) are ignored, Bit No. 7 & Bit No. 8 (b6 to b7) are given a value of "0".

The Display Mode Setting Commands determine the number of segments and grids to be used (1/4 to 1/7 duty, 14 to 11 segments). When these commands are executed, the display is forcibly turned off. A display command "ON" must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.

When Power is turned "ON", the 7-Grid, 11-Segment Mode is selected.

LED Driver IC PT6959

COMMAND 2: DATA SETTING COMMANDS

The Data Setting Commands executes the Data Write Mode for PT6959. The Data Setting Command, the bits 5 and 6 (b4, b5) are ignored, bit 7 (b6) is given the value of "1" while bit 8 (b7) is given the value of "0". Please refer to the diagram below.

When power is turned ON, bit 4 to bit 1 (b3 to b0) are given the value of "0".

LED Driver IC PT6959

COMMAND 3: ADDRESS SETTING COMMANDS

Address Setting Commands are used to set the address of the display memory. The address is considered valid if it has a value of "00H" to 0DH". If the address is set to 0EH or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at "00H".

Please refer to the diagram below.

SG4 SG5

Display Mode and RAM Address

SG1

Data transmitted from an external device to PT6959 via the serial interface are stored in the Display RAM and are assigned addresses. The RAM Addresses of PT6959 are given below in 8 bits unit.

SG12 SG13

SG14

		000 00.12	0010 0011	
00HL	00HU	01HL	01HU	DIG1
02HL	02HU	03HL	03HU	DIG2
04HL	04HU	05HL	05HU	DIG3
06HL	06HU	07HL	07HU	DIG4
08HL	08HU	09HL	09HU	DIG5
0AHL	0AHU	0BHL	0BHU	DIG6
0CHL	0CHU	0DHL	0DHU	DIG7

SG8 SG9

PT6959 V1.5 - 8 - June, 2005

LED Driver IC PT6959

COMMAND 4: DISPLAY CONTROL COMMANDS

The Display Control Commands are used to turn ON or OFF a display. It also used to set the pulse width. Please refer to the diagram below. When the power is turned ON, a 1/16 pulse width is selected and the displayed is turned OFF.

LED Driver IC PT6959

DISPLAY TIMING WAVRFORM

TDISPLAY=500μS

SERIAL COMMUNICATION FORMAT

The following diagram shows the PT6959 serial communication format.

Reception (Data/Command Write)

LED Driver IC PT6959

SWITCHING CHARACTERISTIC WAVEFORM

PT6959 Switching Characteristic Waveform s given below.

where:

PW_{CLK} (Clock Pulse Width) ≥ 400ns t_{setup} (Data Setup Time) ≥ 100ns $t_{CLK-STB}$ (Clock - Strobe Time) ≥ 1 μ s t_{TZH} (Rise Time) ≤ 1 μ s t_{TZL} < 1 μ s

 PW_{STB} (Strobe Pulse Width) $\geq 1 \mu s$ t_{hold} (Data Hold Time) $\geq 100 ns$ t_{THZ} (Fall Time) $\leq 10 \mu s$ fosc=Oscillation Frequency $t_{TLZ} < 10 \mu s$

PT6959

APPLICATIONS

LED Driver IC

Display memory is updated by incrementing addresses. Please refer to the following diagram.

where: Command 1: Display Mode Setting Command

Command 2: Data Setting Command Command 3: Address Setting Command

Data 1 to n: Transfer Display Data (14 Bytes max.)

Command 4: Display Control Command

The following diagram shows the waveforms when updating specific addresses.

where: Command 2: Data Setting Command Command 3: Address Setting Command

Data: Display Data

LED Driver IC PT6959

RECOMMENDED SOFTWARE PROGRAMMING FLOWCHART

Notes:

- 1. Command 1: Display Mode Setting Commands
- 2. Command 2: Data Setting Commands
- 3. Command 3: Address Setting Commands
- 4. Command 4: Display Control Commands
- 5. When IC power is applied for the first time, the contents of the Display RAM are not defined; thus, it is strongly suggested that the contents of the Display RAM must be cleared during the initial setting.

LED Driver IC PT6959

SOP 28 (300MIL) THERMAL PERFORMANCE IN STILL AIR AT TJ=100

LED Driver IC PT6959

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise stated, Ta=25 , GND=0V)

Parameter	Symbol	Rating	Units
Supply Voltage	VDD	-0.5 to +7.0	V
Logic Input Voltage	VI	-0.5 to VDD+0.5	V
Driver Output Current/Pin	IOLGR	+250	mA
Driver Output Gurrentin in	IOHSG	-50	mA
Maximum Driver Output Current/Total	ITOTAL	400	mA
Operating Temperature	Topr	-40 ~ +85	
Storage Temperature	Tstg	-65 ~ +150	

RECOMMANDED OPERATING RANGE

(Unless otherwise stated, Ta=25 , GND=0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Logic Supply Voltage	VDD	4.5	5	5.5	V
Dynamic Current (see note)	IDDdyn	-	-	5	mA
High-Level Input Voltage	VIH	0.8VDD	-	VDD	V
Low-Level Input Voltage	VIL	0	-	0.3VDD	V

Note: Test Condition: Set Display Control Commands = 80H (Display Turn Off State)

LED Driver IC

Tel: 886-2-66296288 Fax: 886-2-29174598 URL: http://www.princeton.com.tw

PT6959

ELECTRICAL CHARACTERISTICS

(Unless otherwise stated, VDD=5V, GND=0V, Ta=25)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
High-Level Output Current	IOHSG(1)	VO=VDD-1V, SG1 to SG11, SG12/GR7 to SG14/GR5	-10	-14	-30	mA
Trigit-Level Output Guirent	IOHSG(2)	VO=VDD-2V, SG1 to SG11, SG12/GR7 to SG14/GR5	-20	-25	-50	mA
Low-Level Output Current	Output Current IOLGR GR1 to GR4, SG12/GR7 to SG14/GR5		100	140	1	mA
Segment High-Level Output Current Tolerance		VO=VDD-1V, SG1 to SG11, SG12/GR7 to SG14/GR5	-	ı	±5	%
High-Level Input Voltage	VIH	-	0.8VDD	1	-	V
Low-Level Input Voltage	VIL	-	-	-	0.3VDD	V
Oscillation Frequency	fosc	R=51KΩ	350	500	650	KHz

Tel: 886-2-66296288 Fax: 886-2-29174598

URL: http://www.princeton.com.tw

LED Driver IC PT6959

APPLICATION CIRCUIT

Notes:

- 1. The capacitor $(0.1\mu F)$ connected between the GND and VDD Pins must be located as near as possible to the PT6959 chip.
- 2. The PT6959 power supply is separate from the application system power supply.

LED Driver IC PT6959

ORDER INFORMATION

Valid Part Number	Package Type	Top Code
PT6959	28 Pins, SOP, 300mil	PT6959

LED Driver IC PT6959

PACKAGE INFORMATION 28 PINS, SOP, 300MIL

Symbol	Min.	Nom.	Max.
Α	2.35		2.65
A1	0.10		0.30
В	0.33		0.51
С	0.23		0.32
D	17.70		18.10
E	7.40		7.60
е		1.27 BSC.	
Н	10.00		10.65
h	0.25		0.75
L	0.40		1.27
α	0°		8°

LED Driver IC PT6959

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5-1982.
- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold Flash, protrusion or gate burrs shall not exceed 0.15mm (0.006 in) per side.
- 3. Dimension "E" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm (0.010 in) per side.
- 4. The chamfer on the body is optional. It is not present, a visual index feature must be located within the crosshatched area.
- 5. "L" is the length of the terminal for soldering to a substrate.
- 6. "N" is the number of terminal positions. (N=28)
- 7. The lead width "B" as measured 0.36 mm (0.014 in) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.24 in).
- 8. Controlling dimension: MILLIMETER.
- 9. Refer to JEDEC MS-013 Variation AE

JEDEC is the trademark of JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

PT6959 V1.5 - 20 - June, 2005