

STUDENT ID NO						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

ETM2126 – INFORMATION THEORY AND ERROR CONTROL CODING

(TE)

8 MARCH 2019 3.00 P.M. – 5.00 P.M. (2 Hours)

INSTRUCTION TO STUDENT

- 1. This Question paper consists of 4 pages (including this cover page) with 4 Questions only.
- 2. Attempt all **FOUR** questions. All questions carry equal marks and the distribution of the marks for each question is given. The total marks are 100.
- 3. Please write all your answers in the Answer Booklet provided.

Question 1

(a) Consider the three codes listed in **Table Q1** below:

Table Q1

Symbol	Code I	Code II	Code III
s_0	0	0	00
Sı	10	01	01
s_2	110	001	10
<i>S</i> 3	1110	0010	110
S4	1111	0011	111

(i) Identify whether each code is a prefix code or not and explain why.

[3 marks]

(ii) Construct the decision trees for each prefix code based on your answer in (a)(i).

[4 marks]

(b) A discrete memoryless source has an alphabet of three symbols with their probabilities for its output, as given in **Table Q2**:

Table Q2

241027 &2						
Symbol	s ₀	Sl	S ₂			
Probability	0.45	0.35	0.2			

- (i) Generate the Huffman code for this source and find the coding efficiency.

 [6 marks]
- (ii) Let the source be extended to order two. Apply Huffman algorithm to the resulting extended source, and find the average codeword length of the new code and the coding efficiency.

[12 marks]

Continued...

Question 2

(a) A binary channel matrix is given by:

Inputs
$$x_{1} \begin{bmatrix} y_{1} & y_{2} \\ \frac{2}{3} & \frac{1}{3} \\ \frac{1}{10} & \frac{9}{10} \end{bmatrix}$$

If the probability of transmitting x_2 is twice the probability of transmitting x_1 ,

(i) Sketch the channel diagram and then find the output probabilities $P(y_1)$ and $P(y_2)$.

[7 marks]

(ii) Find H(X), H(X|Y) and I(X;Y)

[13 marks]

(b) A Gaussian channel has a bandwidth of 8 kHz and two-sided noise power spectral density $(N_0/2)$ of 1×10^{-14} Watt/Hz. If it has been observed that the time required to transmit 10 kbytes is 2 seconds, find the minimum transmitted power for a reliable transmission over the channel. (Hint: 1 byte = 8 bits)

[5 marks]

Question 3

For a (7,4) systematic linear block code, the three parity check bits are formed from the following equations:

$$b_0 = m_1 + m_2 + m_3$$

 $b_1 = m_0 + m_1 + m_2$
 $b_2 = m_0 + m_2 + m_3$

(a) Find the generator matrix and the parity-check matrix for this code

[6 marks]

(b) Construct all possible codewords and determine the Hamming weight for each codeword.

[16 marks]

(c) Find the minimum distance of the code and determine how many errors can the code correct.

[3 marks]

Continued...

Question 4

Consider a Trellis coded modulation (TCM) system that uses a rate-½ convolutional encoder to encode one information bit while the second information bit is left uncoded. The generator polynomials for the convolutional encoder are given as follows:

$$g^{(1)}(D) = 1 + D^2$$

 $g^{(2)}(D) = D$

(a) Draw the block diagram of the TCM system which consists of the convolutional encoder and the signal mapper.

[10 marks]

(b) Construct the state transition table.

[8 marks]

(c) Draw the state transition diagram.

[7 marks]

End of Paper