

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$2 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 =$$

[A]: Moduling Eq. with abroadle value.

[A]
$$|3x-3|=7$$
 $|3x-3|=7$
 $|3x-3|=7$

Rules for Inequalities

If *a*, *b*, and *c* are real numbers, then:

- 1. $a < b \implies a + c < b + c$
- 2. $a < b \Rightarrow a c < b c$
- 3. a < b and $c > 0 \implies ac < bc$
- **4.** a < b and $c < 0 \Rightarrow bc < ac$ Special case: $a < b \Rightarrow -b < -a$
- **5.** $a > 0 \implies \frac{1}{a} > 0$
- **6.** If a and b are both positive or both negative, then $a < b \Rightarrow \frac{1}{b} < \frac{1}{a}$

	Notation	Set description $\{x a < x < b\}$	Туре	Picture	
Finite:	(a, b)		Open	ā	B
	[a, b]	$\{x \mid a \le x \le b\}$	Closed	a	ь
	[a, b)	$\{x \mid a \le x < b\}$	Half-open	<u> </u>	b
	(a, b]	$\{x \mid a < x \le b\}$	Half-open		b
Infinite:	(a,∞)	$\{x x \geq a\}$	Open	a a	
	[a, ∞)	$\{x \mid x \geq a\}$	Closed	ā	
	$(-\infty, b)$	$\{x x < b\}$	Open		Ď
	$(-\infty, b]$	$\{x x\leq b\}$	Closed		ь
	$(-\infty, \infty)$	R (set of all real numbers)	Both open and closed		