Lecture 9:Unsupervised Learning: Clustering

Outline

- Unsupervised learning
- Clustering
 - K Nearest Neighbor Algorithm and Clustering
 - Understanding Clustering
 - The k-means clustering algorithm
 - Elbow Method
 - Classification with Clustering

Data Mining Tasks

Data Mining Tasks

- Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output.
 - $Y=f(X); X \xrightarrow{predict} Y$
 - The supervision does not refer to human involvement, but rather to the fact that the target values provide a way for the learner to know how well it has learned the desired task.
 - A **predictive model** is used for tasks that involve, as the name implies, the prediction of one value using other values in the dataset.

Data Mining Tasks

- Unsupervised learning is where you only have input data (X) and no corresponding output variables.
 - A descriptive model is used for tasks that would benefit from the insight gained from summarizing data in new and interesting ways.
 - There is no target to learn, the process of training a descriptive model is called unsupervised learning.

K Nearest Neighbor Algorithm and Clustering

Similar types of food tend to be grouped closely together

K Nearest Neighbor Algorithm and Clustering

- Suppose you are given a tomato: protein, fruit or vegetable?
- •We can use the nearest neighbor approach to determine which class is a better fit.

•We learn the food type of tomato based on other ingredients (that we already their types).

K Nearest Neighbor Algorithm and Clustering

- •What if we have no food type information (no labels) about all the ingredients?
 - No training and testing data
 - No prediction task
- We can group ingredients based on crunchiness and sweetness

- **Clustering** is an unsupervised machine learning task that automatically divides the data into **clusters**, or groups of similar items.
 - Without knowing how the groups should look
 - •Knowledge discovery rather than prediction
 - •Guided by the principle that items inside a cluster should be very similar to each other, but very different from those outside

•The goal of clustering: group the data so that the related instances are placed together.

- Applications of clustering
 - Segmenting customers into groups with similar demographics or buying patterns for targeted marketing campaigns
 - Detecting anomalous behavior, such as unauthorized network intrusions, by identifying patterns of use falling outside the known clusters

For each ingredient we know the crunchiness and sweetness.

- Rather than defining the group boundaries subjectively, it would be nice to use machine learning to define them objectively.
 - The k-means clustering algorithm

- The k-means algorithm
 - *k is the number of clusters
 - Assigns each of the n examples to one of the k clusters (clusters are not overlapped)
 - •The goal is to minimize the differences within each cluster and maximize the differences between the clusters

Using distance to assign and update clusters

As with k-NN, k-means treats feature values as coordinates in a multidimensional feature space.

 Represent the feature space as a two-dimensional scatterplot

 Step 1: choosing k points in the feature space to serve as the cluster centers.

k = *3*: 3 data points are randomly selected

- Step 2: Assigning the remaining examples to the cluster center that is nearest according to the distance.
 - Euclidean distance between example x and example y

$$dist(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

•Using this distance function, we find the distance between each example and each cluster center. The example is then assigned to the nearest cluster center.

Keep in mind that as we are using distance calculations, all the features need to be numeric, and the values should be normalized to a standard range ahead of time.

Step 3: shifting the initial centers to a new location, known as the **centroid**, which is calculated as the average position of the points currently assigned to that cluster.

Step 4: Updating the cluster boundaries, and reassigning points into new clusters.

Update clusters

Step 5: Repeat step 3 and step 4 until the centroids stop

shifting.

how sweet the food tastes

- Step 1: choosing k points in the feature space to serve as the cluster centers.
- Step 2: Assigning the remaining examples to the cluster center that is nearest according to the distance.
- Step 3: shifting the initial centers to a new location, known as the centroid, which is calculated as the average position of the examples currently assigned to that cluster.
- Step 4: Updating the cluster boundaries, and reassigning examples into new clusters.
- Step 5: Repeat step 3 and step 4 until the centroids stop shifting.

- Clustering results
 - •The cluster assignments of each example (size of cluster)
 - •Cluster centroids (cluster center)

 There is no training and testing process for unsupervised learning.

Cluster 0

- Instances: lettuce, celery, carrot, cucumber, green bean
- Centroid: crunchiness-high, sweetness-low

Cluster 1

- Instances: apple, pear, grape, orange, banana
- Centroid: crunchiness-medium, sweetness-high

Cluster 2

- Instances: nuts, bacon, shrimp, fish, cheese
- Centroid: crunchiness-low, sweetness-low

The k-means Clustering Algorithm (Disadvantage)

- k-means algorithm is highly sensitive to the starting position of the cluster centers.
 - Random chance may have a substantial impact on the final set of clusters.
 - k-means++ proposes an alternative method for selecting the initial cluster centers.

You have been given a data file by the San Francisco Bay Area Rapid Transit (BART), which identifies a set of demographics for residents in a local area. We will use this file to determine residents segmentations so that we can use it to develop marketing plans accordingly.

> summary(BartRider)

Age	DistToWork	DualInc Educ	ation	Gender	Income	Language	NbrInHouseHold
Min. :1.000	Min. : 3.00	N:4153 Min.	:1.000	F:2958	Min. :1.000	English:5025	Min. :1.000
1st Qu.:2.000	1st Qu.:10.00	Y:1340 1st Qu	.:3.000	M:2535	1st Qu.:2.000	Other : 164	1st Qu.:2.000
Median :3.000	Median :11.00	Median	:4.000		Median :6.000	Spanish: 304	Median :3.000
Mean :3.484	Mean :11.48	Mean	:3.872		Mean :5.161		Mean :2.905
3rd Qu.:5.000	3rd Qu.:13.00	3rd Qu	.:5.000		3rd Qu.:8.000		3rd Qu.:4.000
Max. :7.000	Max. :20.00	Max.	:6.000		Max. :9.000		Max. :9.000
NbrInHouseholdl	Jnder18 OwnRent	YrsInArea	Rid	er			
Min. :0.0000	0wn :239	91 Min. :1.0	00 No	:3139			
1st Qu.:0.0000	Parent:140	3 1st Qu.:4.0	00 Yes	:2354			
Median :0.0000	Rent :169	99 Median :5.0	00				
Mean :0.7073		Mean :4.2	92				
3rd Qu.:1.0000		3rd Qu.:5.0	00				
Max. :9.0000		Max. :5.0	00				

Create dummy variables

> summary(BartRider)

```
DualInc
                  DistToWork
                                                    Education
                                                                       Gender
                                                                                        Income
                                                                                                    NbrInHouseHold
     Age
       :1.000
                                                         :1.000
                                                                          :0.0000
                                                                                           :1.000
                                                                                                            :1.000
Min.
                Min.
                      : 3.00
                                Min.
                                        :0.0000
                                                  Min.
                                                                  Min.
                                                                                    Min.
                                                                                                    Min.
1st Qu.:2.000
                1st Qu.:10.00
                                1st Qu.:0.0000
                                                  1st Qu.:3.000
                                                                  1st Qu.:0.0000
                                                                                    1st Qu.:2.000
                                                                                                    1st Qu.:2.000
Median :3.000
                Median :11.00
                                Median :0.0000
                                                  Median :4.000
                                                                  Median :1.0000
                                                                                    Median :6.000
                                                                                                    Median :3.000
       :3.484
Mean
                Mean
                       :11.48
                                Mean
                                        :0.2439
                                                  Mean
                                                         :3.872
                                                                   Mean
                                                                          :0.5385
                                                                                    Mean
                                                                                           :5.161
                                                                                                    Mean
                                                                                                            :2.905
                                                  3rd Qu.:5.000
3rd Qu.:5.000
                3rd Qu.:13.00
                                3rd Qu.:0.0000
                                                                   3rd Qu.:1.0000
                                                                                    3rd Qu.:8.000
                                                                                                    3rd Qu.:4.000
Max.
       :7.000
                Max.
                        :20.00
                                Max.
                                        :1.0000
                                                  Max.
                                                         :6.000
                                                                  Max.
                                                                          :1.0000
                                                                                    Max.
                                                                                           :9.000
                                                                                                    Max.
                                                                                                            :9.000
NbrInHouseholdUnder18
                        YrsInArea
                                           Rider
                                                        Language_English Language_Spanish
                                                                                             OwnRent_own
                                                                                                              OwnRent_Parent
Min.
       :0.0000
                      Min.
                              :1.000
                                       Min.
                                              :0.0000
                                                        Min.
                                                               :0.0000
                                                                          Min.
                                                                                 :0.00000
                                                                                            Min.
                                                                                                    :0.0000
                                                                                                              Min.
                                                                                                                     :0.0000
                      1st Ou.:4.000
                                                        1st Qu.:1.0000
                                                                          1st Qu.:0.00000
                                                                                            1st Qu.:0.0000
                                                                                                              1st Qu.:0.0000
1st Qu.:0.0000
                                       1st Qu.:0.0000
Median :0.0000
                      Median :5.000
                                       Median :0.0000
                                                        Median :1.0000
                                                                          Median :0.00000
                                                                                            Median :0.0000
                                                                                                              Median :0.0000
                                                                                                                     :0.2554
       :0.7073
                              :4.292
                                              :0.4285
                                                               :0.9148
                                                                                 :0.05534
                                                                                                   :0.4353
Mean
                      Mean
                                       Mean
                                                        Mean
                                                                          Mean
                                                                                            Mean
                                                                                                              Mean
3rd Qu.:1.0000
                      3rd Qu.:5.000
                                       3rd Qu.:1.0000
                                                        3rd Qu.:1.0000
                                                                          3rd Qu.:0.00000
                                                                                            3rd Qu.:1.0000
                                                                                                              3rd Qu.:1.0000
       :9.0000
                              :5.000
                                       Max.
                                              :1.0000
                                                               :1.0000
                                                                                 :1.00000
                                                                                                   :1.0000
                                                                                                                     :1.0000
Max.
                      Max.
                                                        Max.
                                                                          Max.
                                                                                            Max.
                                                                                                              Max.
```

BartRider_clustering <- SimpleKMeans(BartRider, Weka_control(N=2))</pre>

```
Number of iterations: 12
Within cluster sum of squared errors: 6618.976450318834

Initial starting points (random):

Cluster 0: 6,9,0,6,0,9,4,0,5,0,1,0,1,0

Cluster 1: 3,16,0,3,1,5,2,1,5,0,1,0,0,0
```

Within-cluster sum of squared errors: the squared errors from the mean (centroid) of the cluster of all the observations belonging to that cluster. The Within-cluster sum of squared errors $W(C_k)$ of a cluster C_k is defined as $\sum_{x_i \in C_k} (x_i - \overline{x_k})^2$, where $\overline{x_k}$ is the mean (centroid) of cluster C_k .

■ k=2

Final cluster centroids:

		Cluster#		→ Cluster size
Attribute	Full Data	0	1	Cluster size
	(5493.0)	(2678. 0)	(2815.0)	
Age	3.4837	4.5732	2.4472	
DistToWork	11.4828	11.5362	11.432	
DualInc	0.2439	0.4671	0.0316	
Education	3.8724	4.4145	3.3567	
Gender	0.5385	0.6247	0.4565	Centroids
Income	5.1606	6.9712	3.438	
NbrInHouseHold	2.9053	2.7054	3.0956	
NbrInHouseholdUnder18	0.7073	0.5963	0.8128	
YrsInArea	4.2922	4.5063	4.0885	
Rider	0.4285	0.1617	0.6824	
Language_English	0.9148	0.9563	0.8753	
Language_Spanish	0.0553	0.0295	0.0799	
OwnRent_own	0.4353	0.8794	0.0128	
OwnRent_Parent	0.2554	0	0.4984	

k=3

Final cluster centroids:

		Cluster#		
Attribute	Full Data	0	1	2
	(5493.0)	(2368.0)	(1210.0)	(1915.0)
Age	3.4837	4.6917	3.2603	2.1311
DistToWork	11.4828	11.5051	11.5231	11.4298
DualInc	0.2439	0.4472	0.1694	0.0397
Education	3.8724	4.4054	4.1347	3.0475
Gender	0.5385	0.5904	0.4893	0.5055
Income	5.1606	6.9949	5.6868	2.5598
NbrInHouseHold	2.9053	2.7758	2.2653	3.47
NbrInHouseholdUnder18	0.7073	0.6326	0.3702	1.0125
YrsInArea	4.2922	4.5743	3.9256	4.1749
Rider	0.4285	0.1858	0.0149	0.9901
Language_English	0.9148	0.951	0.9612	0.8407
Language_Spanish	0.0553	0.0329	0.0256	0.1018
OwnRent_own	0.4353	0.9996	0	0.0125
OwnRent_Parent	0.2554	0	0.1157	0.6595

Based on the cluster size and centroids, which k (k=2 or k=3) you will use, and why?

If we segment residents into 3 clusters, what marketing plans you can use to target each cluster?

- Choosing the appropriate number of clusters
 - *k-means is sensitive to the number of clusters
 - *What if k=1*
 - What if k=n, where n is the number of examples (instances)
 - Ideally, you will have a priori knowledge (a prior belief) about the true groupings and you can apply this information to choosing the number of clusters.
 - Sometimes the number of clusters is dictated by business requirements or the motivation for the analysis.

- Choosing the appropriate number of clusters: elbow method
 - **Elbow method** attempts to gauge how the homogeneity or heterogeneity within the clusters changes for various values of *k*.
 - The homogeneity within clusters is expected to increase as additional clusters are added; heterogeneity will continue to decrease with more

- Choosing the appropriate number of clusters: elbow method
 - •You could continue to see improvements until each example is in its own cluster, the goal is not to maximize homogeneity or minimize heterogeneity, but rather to find k so that there are diminishing returns beyond that point. This value of k is known as the **elbow point** because it looks like an elbow .

- Choosing the appropriate number of clusters: elbow method
 - Measure homogeneity or heterogeneity within the clusters
 - Within-cluster sum of squared errors: the squared errors from the mean (centroid) of the cluster of all the observations belonging to that cluster. The Within-cluster sum of squared errors $W(C_k)$ of a cluster C_k is defined as $\sum_{x_i \in C_k} (x_i \overline{x_k})^2$, where $\overline{x_k}$ is the mean (centroid) of cluster C_k .

Strengths	Weaknesses				
Uses simple principles that can be explained in non-statistical terms	Not as sophisticated as more modern clustering algorithms				
Highly flexible, and can be adapted with simple adjustments to address nearly all of its shortcomings	 Because it uses an element of random chance, it is not guaranteed to find the optimal set of clusters 				
Performs well enough under many real-world use cases	 Requires a reasonable guess as to how many clusters naturally exist in the data 				
	 Not ideal for non-spherical clusters or clusters of widely varying density 				

- Classification with Clustering
 - Step 1: clustering
 - Step 2: build a classification model for each cluster

Testing performance with cross validation

```
> df <- BartRider
> target <- 10
> nFolds <- 10
> seedVal <- 1
> prediction_method <- C5.0</pre>
> metrics_list <- c("ACC","PRECISION","TPR","F1")</pre>
> cv_function_test(df, target, nFolds, seedVal, prediction_method, metrics_list)
           ACC| PRECISION1| PRECISION2| TPR1| TPR2|
                                                        F111
                                                               F121
1:----:|----:|----:|----:|----:|----:|----:|----:|----:|
|Fold01 | 89.44|
                     88.791
                                 90.41 | 93.31 | 84.26 | 90.99 | 87.22 |
90.971
                                 83.27| 86.62| 88.56| 88.74| 85.83|
| IFold03 | 90.53|
                     93.381
                                 87.04 | 89.81 | 91.49 | 91.56 | 89.21
86.091
                                 89.15| 92.68| 80.08| 89.26| 84.38|
                     92.481
| | Fold05 | 90.16
                                 87.24 | 90.13 | 90.21 | 91.29 | 88.70
90.881
                                 85.54| 88.85| 88.09| 89.86| 86.79|
IFold07 I
         88.341
                     90.321
                                 85.77 | 89.17 | 87.23 | 89.74 | 86.50
89.781
                                 89.82| 92.65| 86.02| 91.19| 87.88|
||Fold09 | 88.16|
                     88.071
                                 88.29| 91.72| 83.40| 89.86| 85.78|
||Fold10 | 92.36|
                     95.331
                                 88.80 | 91.08 | 94.07 | 93.16 | 91.36
                     90.61
                                 87.53 | 90.60 | 87.34 | 90.57 | 87.36
lMean
        1 89.201
        1.57
                      2.681
                                  2.21 | 2.08 | 4.11 | 1.31 | 2.01 |
ISd
```

No clustering: use the whole dataset to perform 10-fold cross validation

Perform clustering without target variable

Final cluster centroids:

		Cluster#		
Attribute	Full Data	0	1	2
	(5493.0)	(2389.0)	(1404.0)	(1700.0)
Age	3.4837	4.6735	1.7521	3.2418
DistToWork	11.4828	11.5036	11.4309	11.4965
DualInc	0.2439	0.4429	0.0064	0.1606
Education	3.8724	4.3951	2.76	4.0565
Gender	0.5385	0.5873	0.5726	0.4418
Income	5.1606	6.9481	2.9915	4.44
NbrInHouseHold	2.9053	2.7848	3.9972	2.1729
NbrInHouseholdUnder18	0.7073	0.6342	1.2778	0.3388
YrsInArea	4.2922	4.5701	4.4295	3.7882
Language_English	0.9148	0.9473	0.8504	0.9224
Language_Spanish	0.0553	0.036	0.0933	0.0512
OwnRent_own	0.4353	1	0	0.0012
OwnRent_Parent	0.2554	0	0.9993	0

Create three clusters based on the clustering results

```
BartRider$class_ids = BartRider_clustering3$class_ids
BartRider1 = BartRider[which(BartRider$class_ids==0),]
BartRider2 = BartRider[which(BartRider$class_ids==1),]
BartRider3 = BartRider[which(BartRider$class_ids==2),]
```

```
'data.frame': 2389 obs. of 15 variables:
$ Age 'data.frame': 1404 obs. of 15 variables:
$ DistTo $ Age 'data.frame': 1700 obs. of 15 variables:
$ DualIn $ Dist $ Age
                  : int 7323246373...
$ Educat $ Dual $ DistToWork : int 14 9 10 12 13 11 13 10 10 9 ...
$ Gender $ Educ $ DualInc
                      : num 000001001...
$ Income $ Gend $ Education : int 3 3 4 4 3 3 1 5 4 4 ...
$ NbrInH $ Inco $ Gender
                    : num 1001011111...
: int 3134332416...
$ NbrInH $ NbrI $ Income
$ YrsInA $ NbrI $ NbrInHouseHold : int 1144114212...
$ Rider
       $ YrsI $ NbrInHouseholdUnder18: int 0021001000...
$ Langua
       $ Ride $ YrsInArea
                      : int 5522543351... 2...
$ Langua
       $ Lang $ Rider
                     : Factor w/ 2 levels "0","1": 2 2 2 2 2
$ OwnRen
       $ Lang $ Language_English : num 1 1 1 1 1 1 0 1 1 1 ...
$ OwnRen
       $ OwnR $ Language_Spanish : num 0000001000...
$ class_
       $ OwnR $ OwnRent_own : num 0000000000...
       $ clas $ OwnRent_Parent : num 0 0 0 0 0 0 0 0 0 0 ...
             $ class_ids
                       : int 222222222...
```

Performance on cluster 0

I	I	ACCI	PRECISION1	PRECISION21	TPR1	TPR21	F11 I	F121
1:	- -	: -	: -	: I ·	: -	: I ·	: -	:
Fold01	Ι	92.471	94.871	81.821	95.851	78.261	95.361	80.001
Fold02	I	93.31	92.751	96.881	99.481	67.391	96.001	79.491
Fold03	Ι	94.561	95.451	90.241	97.931	80.431	96.681	85.061
Fold04	Ι	91.211	93.431	80.491	95.851	71.74	94.631	75.861
Fold05	Ι	92.471	93.531	86.841	97.41	71.74	95.431	78.571
Fold06	Ι	92.021	95.771	77.551	94.271	82.61	95.01	80.001
Fold07	Ι	91.671	92.61	86.491	97.41	68.091	94.951	76.191
Fold08	Ι	94.541	96.861	85.11	96.351	86.961	96.61	86.021
Fold09	Ι	92.051	93.501	84.621	96.891	71.74	95.171	77.651
Fold10	Ι	91.211	93.881	79.071	95.341	73.91	94.601	76.401
lMean	Ι	92.551	94.271	84.91	96.681	75.291	95.441	79.521
ISd	I	1.221	1.40	5.731	1.481	6.491	0.751	3.531

Use the cluster 0 to perform 10-fold cross validation

Performance on cluster 1

I I ACC	PRECISION1	PRECISION21	TPR11	TPR21	F11	F12
1::	:	: I ·	: -	: -	: -	:
Fold01 90.00	75.001	90.441	18.75	99.191	30.001	94.621
Fold02 89.29	60.001	90.371	18.75	98.391	28.571	94.211
Fold03 89.29	66.671	89.781	12.50	99.191	21.05	94.251
Fold04 89.36	55.561	91.671	31.251	96.801	40.001	94.161
Fold05 92.20	100.001	91.91	31.251	100.00	47.621	95.791
Fold06 90.78	66.671	92.421	37.501	97.601	48.001	94.941
Fold07 92.20	100.001	91.91	31.251	100.00	47.621	95.791
Fold08 90.00	66.671	91.041	25.001	98.391	36.361	94.571
Fold09 92.86	100.001	92.541	37.501	100.00	54.551	96.121
Fold10 92.86	100.001	92.541	37.501	100.001	54.551	96.121
Mean 90.88	79.061	91.461	28.121	98.961	40.831	95.061
ISd 1.50	18.701	1.00	8.961	1.14	11.54	0.81

Use the cluster 1 to perform 10-fold cross validation

Performance on cluster 2

1		ACCI	PRECISION1	PRECISION21	TPR1	TPR21	F11	F12
1:	٠ ٠	:I	: I	: I	:I	: -	: -	:
Fold01	I	81.761	82.461	80.361	89.521	69.231	85.841	74.381
Fold02	1	87.571	88.891	85.251	91.431	81.25	90.14	83.201
Fold03	1	83.531	86.671	78.461	86.671	78.461	86.671	78.461
Fold04	1	85.291	90.821	77.781	84.761	86.15	87.681	81.751
Fold05	1	84.121	86.11	80.651	88.571	76.921	87.321	78.741
Fold06	1	80.001	84.471	73.131	82.861	75.381	83.651	74.241
Fold07	1	82.941	88.001	75.71	83.81	81.541	85.851	78.521
Fold08	Ι	81.761	83.641	78.331	87.621	72.31	85.581	75.201
Fold09	1	77.781	84.001	69.01	79.251	75.381	81.55	72.061
Fold10	I	82.941	82.201	84.621	92.381	67.691	87.001	75.211
lMean	1	82.771	85.721	78.331	86.691	76.431	86.131	77.181
ISd	I	2.721	2.871	4.921	4.071	5.731	2.321	3.551

Use the cluster 2 to perform 10-fold cross validation