Topological Optimization of Fault-Tolerant Networks meeting Reliability Constraints

Sebastián Laborde

Tutor de Tesis

Dr. Ing. Franco Robledo Director Académico

Prof. Ing. Omar Viera

Tesis de Maestría - Programa de Posgrado PEDECIBA Informática Instituto de Computación - Facultad de Ingeniería Universidad de la República

18 de enero de 2021

Motivación

- Los servicios de fibra al hogar (Fiber-To-The-Home -FTTH) tienen una gran penetración mundial brindando a los clientes finales transferencias de datos a altas velocidades.
- La cantidad de aplicaciones y servicios sobre internet ha crecido exponencialmente.
- Es mandatorio escalar de forma inteligente la infraestructura de red.
- Dado que el desplique de la fibra optica es una importante inversión económica, el diseño topologico de las redes FTTH debe continuar considerandose.

Objetivos 1

- Problema de optimización combinatoria motivado por el diseño topolóogico de redes de comunicaciones de sistemas, con restricciones de confiabilidad.
- El objetivo es interconectar nodos distinguidos, llamados terminales, utilizando un nivel adecuado de redundancia y de forma simultanea, satisfacer las restricciones de confiabilidad.
- En el análisis de confiabilidad nos enfrentamos a fallas aleatorias en los componentes del sistema. Es precisamente la probabilidad del correcto funcionamiento del sistema completo, sujeto a fallas aleatorias. Aquí se considera el modelo realista hostil, donde tanto nodos como aristas pueden fallar.

Objetivos 2

- Find a minimum-cost solution, meeting a reliability threshold, where both nodes and links may fail with given probabilities.
- Entender el trade-off entre costo-confiabilidad, y como la confiabilidad aumenta naturalmente agregando niveles de redundancia entre los nodos terminales.
- Pertenece a la clase de problemas NP-Hard.
- Como consecuencia, desarrolle una solución que resuelve de forma apróximada con una metodología GRASP/VNS la parte de optimización y para el análisis de la confiabilidad el método RVR.

Definición

Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability (GSPNCHR)

Definition (GSPNCHR)

Consider a simple undirected graph G = (V, E), terminal-set $T \subseteq V$, link-costs $\{c_{i,j}\}_{(i,j) \in E}$ and connectivity requirements $R = \{r_{i,j}\}_{i,j \in T}$. Further, we assume that both links and non-terminal (Steiner) nodes fail with respective probabilities $P_E = \{p_e\}_{e \in E}$ and $P_{V-T} = \{p_V\}_{V \in V-T}$. Given a reliability threshold p_{min} , the goal is to build a minimum-cost topology $G_S \subseteq G$ meeting both the connectivity requirements R and the reliability threshold: $R_K(G_S) \ge p_{min}$, being K = T the terminal-set.

Publicaciones Externas

Publicaciones

Publicaciones

- Martins, P.(2012). Cliques with maximum/minimum edge neighborhood and neighborhood density. Computers And Operations Research, 39(3):594-608.
- Martins, P., Ladrón, A. and Ramalhinho, H. (2014). Maximun cut-clique problem: ILS heuristics and a data analysis application. International Transactions in Operational Research, 22(5):775-809.
- Gouveia, L. and Martins, P.(2015). Solving the maximum edge-weigth clique problem in sparse graphs with compact formulation. Journal on Computational Optimization, 3(1):1-30.

Problema

Publicaciones

Publicaciones Locales

- Bourel, M., Canale, E., Robledo, F., Romero, P., and Stábile, L. (2018a). Complexity and Heuristics for the Max Cut-Clique Problem. In International Conference on Variable Neighborhood Search. ICVNS 2018. Lecture Notes in Computer Science, vol. 11328. Springer, pages 28-40.
- Bourel, M., Canale, E., Robledo, F., Romero, P., and Stábile, L. (2018b). A GRASP/VND Heuristic for the Max Cut-Clique problem. In International Conference on Machine Learning, Optimization, and Data Science. Lecture Notes in Computer Science, vol. 11331. Springer, pages 357-367.
- Sourel, M., Canale, E., Robledo, F., Romero, P., and Stábile, L. (2019). Complexity and Heuristics for the Weighted Max Cut-Clique Problem. International Transactions in Operational Research. Under revision to be published.

Complejidad

Proposition

El problema MCC pertenece al conjunto de problemas \mathcal{NP} -Completos.

Demostración.

Reducción desde MAX -CLIQUE.

Algoritmo Genético

Por la complejidad inherente al problema, se presenta una solución basada en Algoritmos Genéticos.

Algoritmos Genéticos

- 1 Initialize(P_0);
- 2 generation = 0;
- 3 While (notstopCriteria);
- 4 evaluate(P(generation));
- 5 $parents \leftarrow selection(P(generation));$
- 6 offspring ← evolutiveOperators(parents);
- 7 newpop ← replacement(offspring, P(generation));
- 8 generation + +;
- 9 $P(generation) \leftarrow newpop;$

Return BestSolutionEverFound;

Diseño de la solución

- Implementado en C++, biblioteca MALVA.
- Énfasis en la performance del algoritmo.

Representación de la solución

Las soluciones factibles del problema, son todos los cliques que se encuentren en $\mathcal{G} = (V, E)$.

Para representar un clique se define una tupla binaria de largo n = |V|, como:

$$X_i = egin{cases} 1 & ext{si nodo } i \in \mathcal{C} \ 0 & ext{en otro caso} \end{cases}, orall i \in V$$

(1,1,0,1,1,0,0,0)

(0,0,0,1,1,1,0,0)

(1,1,1,1,0,0,0,0)

Función de Adecuación

- Coincide con la función objetivo
- \bullet Busca maximizar la cantidad de aristas en el corte generado por el clique $\mathcal C$

Función de Fitness

$$|\delta(\mathcal{C})| = \sum_{v \in \mathcal{C}} deg(v) - |\mathcal{C}| \times |\mathcal{C} - 1|$$

Operadores Evolutivos

Cruzamiento

Cruzamiento de 2 puntos

Operadores Evolutivos

Mutación

Mutación Simple

Soluciones no factibles

Tratamiento

Se utiliza algoritmo de corrección basado en la etapa de construcción del GRASP/VND, luego de las siguiente etapas.

- inicialización la población
- aplicación del operador de Cruzamiento
- aplicación del operador de Mutación

Ajuste de Parámetros

- Algoritmos genéticos son NO deterministas
- Test estadísticos para reportar: calidad y eficiencia computacional.

Instancias utilizadas

Instancia	V	<i>E</i>	Densidad	<i>E</i> (<i>C</i>)
p_hat300-1	300	10933	0.244	789
MANN_a9	45	918	0.9273	412
keller4	171	9435	0.649	1140

Resultado de la calibración

Parámetro	Valor
tamaño población	200
prob. cruzamiento	0.8
prob. mutación	0.1

Resultados I

Instancias de prueba

Caracterización instancias

Instancias	Características de las instancias				
	<i>V</i>	E Densidad		E(C)	
c-fat200-1	200	1534	0.071	81	
c-fat200-2	200	3235	0.163	306	
c-fat200-5	200	8473	0.426	1892	
c-fat500-1	500	4459	0.036	110	
c-fat500-2	500	9139	0.073	380	
c-fat500-5	500	23191	0.186	2304	
c-fat500-10	500	46627	0.374	8930	
p_hat300-2	300	21928	0.489	4637	
p_hat300-3	300	33390	0.744	7740	
keller5	776	225990	0.752	15184	
MANN_a27	378	70551	0.990	31284	
c125_9	125	69632	0.899	236406	

Resultados II

Resultados obtenidos

-	GRASE	P/VND	Algoritmo Genético		GAP
Instancias	E(C) prom.	T(s) prom.	E(C) prom.	T(s) prom.	(%)
c-fat200-1	81	0.37	81	6.4	0.0
c-fat200-2	306	0.81	306	7.5	0.0
c-fat200-5	1892	4.94	1892	12.5	0.0
c-fat500-1	110	2.46	110	16.15	0.0
c-fat500-2	380	5.83	380	14.3	0.0
c-fat500-5	2304	10.85	2304	20.36	0.0
c-fat500-10	8930	65.74	8930	32.59	0.0
p_hat300-2	4636.2	3659.39	4633.40	171.9	≈0.0
p_hat300-3	7726.8	3992.42	7387.27	279.8	0.04
c125_9	2766	253.25	2737.2	5.0	0.01
keller5	15183.24	1167.64	12382	50.57	0.18
MANN_a27	31244.10	548.54	30405	46.49	0.03

Conclusiones

Conclusiones

- Aplicaciones diversas en diferentes áreas.
- Se demuestra la NP-Completitud.
- Solución competitiva con las existentes y con tiempos de ejecución muy buenos.

Trabajo Futuro

Trabajo Futuro

Trabajo Futuro

- Aplicaciones reales en grandes superficies.
- Explorar la versión con pesos en las aristas, (WMCC).

Gracias

Fin

Gracias por su atención.