Math 311W Worksheet for Wednesday, March18

Jacob Harkins jah6863@psu.edu

May 20, 2024

Exercise 1) Let $A = \{1,3,5,7,9\}$, $B = \{1,2,3,4,5\}$, $C = \{5,6,7,8,9\}$ and $U = \{1,2,3,4,5,6,7,8,9,10\}$

(a) $A \cup (B \cup C)$

$$A \cup (B \cup C) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

(b) $A \cup (B \cap C)$

$$A \cup (B \cap C) = A$$

(c) $(A \cup B) \cap (A \cup C)$

$$(A \cup B) \cap (A \cup C) = A \cup (B \cap C) = A$$

(d) $A \cap (B \cup C)$

$$A \cap (B \cup C) = A$$

(e) A'

$$A' = \{2, 4, 6, 8, 10\}$$

(f) B'

$$B' = \{6, 7, 8, 9, 10\}$$

(g) $A' \cup B'$

$$A' \cup B' = \{6, 8, 10\}$$

(h) $(A \cap B)'$

$$(A \cap B)' = \{2, 4, 6, 7, 8, 9, 10\}$$

Exercise 2) Prove the commutative property of intersection (that is $A \cap B = B \cap A$), using the double inclusion method.

Let
$$x \in A \cap B$$

 $\implies x \in A \text{ and } x \in B$
 $\implies x \in B \cap A$
Therefore, $A \cap B \subseteq B \cap A$
Let $n \in B \cap A$
 $\implies n \in B \text{ and } n \in A$
 $\implies n \in A \cap B$
Therefore, $B \cap A \subseteq A \cap B$

Exercise 3) Prove the distributive property of union over intersection $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ First we'll show $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$:

Let
$$x \in A \cup (B \cap C)$$

 $\implies x \in A \lor x \in B \cap C$

If $x \in A$

$$x \in (A \cup B) \land x \in (A \cup C)$$
$$\implies x \in (A \cup B) \cap (A \cup C)$$

If $x \in B \cap C$

$$x \in B \land x \in C$$

$$\implies x \in (A \cup B) \land x \in (A \cup C)$$

$$\implies x \in (A \cup B) \cap (A \cup C).$$

So, $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ Now we'll show $A \cup (B \cap C) \supseteq (A \cup B) \cap (A \cup C)$:

Let
$$x \in (A \cup B) \cap (A \cup C)$$

 $\implies x \in (A \cup B) \land x \in (A \cup C)$
 $\implies x \in A \lor (x \in B \land x \in C).$

If $x \in A$

$$x \in A \cup (B \cap C)$$

If $x \in B \land x \in C$

$$x \in (B \cap C)$$
$$\Longrightarrow x \in A \cup (B \cap C).$$

So
$$A \cup (B \cap C) \supseteq (A \cup B) \cap (A \cup C)$$

Therefore, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$