Digital System Design Lab Report, Lab3

Author: Ying Yiwen Number: 12210159

Contents

1	Assi	Assignment1	
	1.1	Introduction	2
	1.2	VHDL Code	6
	1.3	Testbench Code	6
	1.4	Simulation Result	4
	1.5	Analysis	ļ
	1.6	Conclusion	ļ

1 Assignment1

1.1 Introduction

Full adder is a combinational circuit that performs addition of two binary numbers. It is a basic building block of digital logic circuits. It is used in many applications, such as arithmetic, logic, and cryptography. In this experiment, we will design a full adder using VHDL. At the same time, we write testbench to verify the correctness of the design. Then we can use simulation to know the working principle of full adder.

1.2 VHDL Code

```
-- import library
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- entity declaration
entity full_adder is
  Port ( A : in STD_LOGIC;
      B : in STD_LOGIC;
      Cin : in STD_LOGIC;
      Sum : out STD_LOGIC;
      Cout : out STD_LOGIC);
end full_adder;
-- architecture declaration
architecture Behavioral of full_adder is
-- signal and constant declaration
signal s1, s2, s3 : std_logic;
constant gate_delay : time := 10 ns;
-- logic function
begin
  s1 <= (A xor B) after gate_delay;</pre>
  s2 <= (Cin and s1) after gate_delay;</pre>
  s3 <= (A and B) after gate_delay;</pre>
  sum <= (s1 xor Cin) after gate_delay;</pre>
  cout <= (s2 or s3) after gate_delay;</pre>
end Behavioral;
```

1.3 Testbench Code

```
-- import library
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- entity declaration
entity testbench is
-- Port ();
end testbench;
-- architecture declaration
architecture to of testbench is
```

```
-- component declaration
component full_adder is
 Port ( A : in STD_LOGIC;
      B : in STD_LOGIC;
      Cin : in STD_LOGIC;
      Sum : out STD_LOGIC;
      Cout : out STD_LOGIC);
end component;
-- signal and constant declaration
signal a, b, ci, s, co : std_logic;
constant period : time := 10ns;
-- logic function
begin
 -- instantiation
 uut: full_adder port
   map(A \Rightarrow a,
        B \Rightarrow b,
        Cin => ci,
        Sum => s,
        Cout => co);
 -- test case
 a <= '1' after period * 0, '0' after period * 1, '1' after period * 2, '0'
     after period * 3, '1' after period * 4, '0' after period * 5, '1' after
     period * 6, '0' after period * 7;
 b <= '0' after period * 0, '0' after period * 1, '1' after period * 2, '1'
     after period * 3, '0' after period * 4, '0' after period * 5, '1' after
     period * 6, '1' after period * 7;
  ci <= '0' after period * 0, '1' after period * 1, '0' after period * 2, '0'
     after period * 3, '0' after period * 4, '1' after period * 5, '0' after
     period * 6, '0' after period * 7;
end tb;
```

1.4 Simulation Result

Figure 1: Behavior Simulation Result

Figure 2: Schematic Simulation Result

Figure 3: Post Synthesis Timing Simulation Result

Figure 4: Post Implementation Timing Simulation Result

1.5 Analysis

1.6 Conclusion