EduElevators with Standard Bank

Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2019

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

1.1.1	$x^2 - 5x - 6 = 0$		
	(x-6)(x+1) = 0		
	x = 6 or $x = -1$	✓ factors	
		✓ both answers	
			(2)
	OR/OF	OR/OF	
	2 5 6 0		
	$x^2 - 5x - 6 = 0$	✓ correct subst into correct	
	$r = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(-6)}}{1 + (-5)^2 - 4(1)(-6)}$	formula	
	$x = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(-6)}}{2(1)}$		
	$5 + \sqrt{49}$		
	$x = \frac{5 \pm \sqrt{49}}{2}$		
	_		
	x = 6 or x = -1	✓ both answers	(2)
1 1 2			(2)
1.1.2	(3x-1)(x-4)=16	✓ standard form	
	$3x^2 - 13x - 12 = 0$	V Standard form	
	$x = \frac{13 \pm \sqrt{(-13)^2 - 4(3)(-12)}}{2(3)}$	✓ correct subst into correct	
	$x = {2(3)}$	formula	
	` ´		
	$x = \frac{13 \pm \sqrt{313}}{6}$		
	x = 5.12 or $x = -0.78$		
		✓ ✓ answers	(4)
	ODIOE	OR/OF	(4)
	OR/OF	OR/OF	
	$3x^2 - 13x - 12 = 0$	✓ standard form	
	$x^2 - \frac{13}{3}x = 4$		
	$\frac{3}{12}$ $(12)^2$ $(12)^2$	$(13)^2$	
	$x^{2} - \frac{13}{3}x + \left(-\frac{13}{6}\right)^{2} = 4 + \left(-\frac{13}{6}\right)^{2}$	\checkmark adding $\left(-\frac{13}{6}\right)^2$ both	
		sides	
	$(13)^2 = 313$	Sides	
	$\left(x - \frac{13}{6}\right)^2 = \frac{313}{36}$		
	$x = \frac{13 \pm \sqrt{313}}{6}$		
	x = 5.12 or $x = -0.78$		
	λ – 3,12 01 λ – –0,70	✓ ✓ answers	(4)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

1.1.3	$x(4-x) \ge 0$	✓ factorisation
1.1.5	$x(4-x) \ge 0$ - $x(x-4) \ge 0$ or $-x(x-4) \ge 0$	* Tactorisation
	$-x(x-4) \ge 0$ or $-x(x-4) \ge 0$ $x(x-4) \le 0$	
	$(\lambda(\lambda - 4) \ge 0)$	
	$\frac{}{}$ 0 4	
	$0 \le x \le 4$ or $x \in [0; 4]$	$\checkmark \checkmark 0 \le x \le 4$
1 1 1		(3)
1.1.4	$\frac{5^{2x} - 1}{5^x + 1} = 4$	
		✓ factors in numerator
	$\frac{(5^x+1)(5^x-1)}{5^x+1}=4$	
	$5^x - 1 = 4$	$\checkmark 5^x - 1 = 4$
	$5^x = 5$	
	x = 1	✓ answer (3)
	OR/OF	OR/OF
	5 ² x 1	
	$\frac{5^{2x} - 1}{5^x + 1} = 4$	
	$5^{2x} - 1 = 4.5^x + 4$	
	$5^{2x} - 4.5^x - 5 = 0$	✓ standard form
	$(5^x - 5)(5^x + 1) = 0$	/ C /
	$5^x = 5 \text{or} 5^x \neq -1$	✓ factors
	x = 1	✓ answer
1.2	$x = 2 - 3y \dots (1)$	$\checkmark x = 2 - 3y $ (3)
1.4	x = 2 - 3y(1) $x^2 + 4xy - 5 = 0$ (2)	$\lambda = 2$ y
	Substitute (1) in (2):	
	$(2-3y)^2 + 4y(2-3y) - 5 = 0$	✓ correct subst into correct
	$4 - 12y + 9y^2 + 8y - 12y^2 - 5 = 0$	formula
	$-3y^2 - 4y - 1 = 0$	
	$3y^2 + 4y + 1 = 0$	✓ either standard form
	(3y+1)(y+1) = 0	
	$y = -\frac{1}{3}$ or $y = -1$	$\checkmark y$ – values
	x = 3 or x = 5	✓ y – values ✓ x – values
		(5)
	OR/OF	
		OR/OF

Mathematics P1/Wiskunde V1

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

	$y = \frac{2}{3} - \frac{x}{3} \dots (1)$	$\checkmark y = \frac{2}{3} - \frac{x}{3}$
	$x^2 + 4xy - 5 = 0 (2)$	
	Substitute (1) in (2):	
	$x^2 + 4x\left(\frac{2}{3} - \frac{x}{3}\right) - 5 = 0$	✓ correct subst into correct formula
	$3x^2 + 8x - 4x^2 - 15 = 0$	
	$-x^2 + 8x - 15 = 0$	
	$x^2 - 8x + 15 = 0$	✓ either standard form
	(x-5)(x-3) = 0	
	x = 3 or $x = 5$	$\checkmark x$ – values
	1 ,	
	$y = -\frac{1}{3}$ or $y = -1$	$\checkmark y$ – values (5)
1.3	$ab = 2\sqrt{10}$	
	$bc = 3\sqrt{2}$	
	$ac = 6\sqrt{5}$	\checkmark volume = abc
		$\checkmark \text{ ab.bc.ac} = 2\sqrt{10.6\sqrt{5}.3\sqrt{2}}$
	$ab.bc.ac = 2\sqrt{10.6}\sqrt{5.3}\sqrt{2}$	
	$(abc)^2 = 36\sqrt{100}$	$\checkmark (abc)^2 = 36\sqrt{100}$
	$abc = \sqrt{360} = 6\sqrt{10}$	✓ answer
	OR/OF	\mathbf{OR}/\mathbf{OF} (5)
	$ac = 6\sqrt{5} \therefore a = \frac{6\sqrt{5}}{c}$ $bc = 3\sqrt{2} \therefore b = \frac{3\sqrt{2}}{c}$	$\checkmark a = \frac{6\sqrt{5}}{c}$ $\checkmark b = \frac{3\sqrt{2}}{c}$
	$ab = 2\sqrt{10}$	
	$\left(\frac{6\sqrt{5}}{c}\right)\left(\frac{3\sqrt{2}}{c}\right) = 2\sqrt{10}$	
	$18\sqrt{10} = 2\sqrt{10}.c^2$	
	$c^2 = 9$	
	c=3	\checkmark value of c
		✓ Volume = abc ✓ answer (5)
	Volume = $abc = 2\sqrt{10}.3 = \sqrt{360} = 6\sqrt{10}$	[22]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2019

2.1.1	59	✓ answer (1)
2.1.2	15 29 41 51	(1)
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	-2 -2	
	2a = -2 $a = -1$	✓ second difference of -2 ✓ a
	3(-1) + b = 14	V <i>u</i>
	b = 17 $(-1) + (17) + c = 15$	✓ b
	c = -1	✓ c
	$T_n = -n^2 + 17n - 1$	(4)
2.1.3	$T_{27} = -(27)^2 + 17(27) - 1$	✓ substitution ✓ answer
2.2.1	=-271 -18 1	(2)
	$r = \frac{-18}{36} = -\frac{1}{2}$	✓ answer (1)
2.2.2	$T_n = 36\left(-\frac{1}{2}\right)^{n-1}$	$\checkmark T_n = 36\left(-\frac{1}{2}\right)^{n-1}$
	$\frac{9}{4096} = 36 \left(-\frac{1}{2}\right)^{n-1}$	
	$\frac{1}{16384} = \left(-\frac{1}{2}\right)^{n-1}$	$\checkmark \frac{1}{16384} = \left(-\frac{1}{2}\right)^{n-1}$
	$\left(-\frac{1}{2} \right)^{14} = \left(-\frac{1}{2} \right)^{n-1}$	
	$ \begin{array}{l} 14 = n - 1 \\ n = 15 \end{array} $	✓ answer
	OR/OF	(3) OR/ <i>OF</i>
	$36; -18; 9; \frac{-9}{2}; \frac{9}{4}; \frac{-9}{8}; \dots; \frac{9}{4096}$	
	If you look only at the denominator: 2;4;8;;4096	
	$2^{k} = 4096$ $2^{k} = 2^{12}$	$\checkmark 2^k = 4096$
	$2^{k} = 2^{12}$ $k = 12$	✓ k = 12
	$\therefore n = 15 \text{ terms}$	✓ answer (3)
	I	(3)

Mathematics P1/Wiskunde V1

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

		T
2.2.3	$S_{\infty} = \frac{a}{1 - r}$ $= \frac{36}{1 - \left(-\frac{1}{2}\right)}$	✓ correct subst into correct formula with $-1 < r < 1$
	= 24	\checkmark answer if $-1 < r < 1$ (2)
2.2.4	$S_{250 \text{ even}} = \frac{-18\left(\left(\frac{1}{4}\right)^{250} - 1\right)}{\frac{1}{4} - 1}$	$\checkmark r = \frac{1}{4} \text{ and } n = 250$
	$S_{250 \text{ odd}} = \frac{36\left(\frac{1}{4}\right)^{250} - 1}{\frac{1}{4} - 1}$	$\checkmark S_{250 \text{even}} = -24$
	$\frac{1}{4} - 1$ $= 48$ $\frac{S_{odd}}{S_{even}} = \frac{48}{-24}$	$\checkmark S_{250 \text{ odd}} = 48$
	=-2	✓ answer
	OR/OF	OR/ <i>OF</i> (4)
	$ \frac{T_1 + T_3 + T_5 + T_7 + \dots + T_{499}}{T_2 + T_4 + T_6 + T_8 + \dots + T_{500}} $	
	$= \frac{a + ar^2 + ar^4 + \dots + ar^{498}}{ar + ar^3 + ar^5 + \dots + ar^{499}}$	$\checkmark a + ar^2 + ar^4 + + ar^{498}$ $\checkmark ar + ar^3 + ar^5 + + ar^{499}$
	$= \frac{a + ar^{2} + ar^{4} + \dots + ar^{498}}{r(a + ar^{2} + ar^{4} + \dots + ar^{498})}$	$r(a + ar^2 + ar^4 + + ar^{498})$
	$=\frac{1}{r}$	
	=-2	✓ answer (4)
		[17]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2019

3.1.1	p+6-(2p+3) = p-2-(p+6) $-p+3 = -8$	✓ equating i.t.o <i>p</i> ✓ simplifying	
	p=11	Simping	(2)
3.1.2	$T_n = 25 + (n-1)(-8) = 33 - 8n$	\checkmark subst into T_n formula	,
	33-8n < -55		
	$ \begin{array}{c c} -8n < -88 \\ n > 11 \end{array} $	✓ n >11	
	∴ Term 12 will be the first term smaller than -55	$\checkmark n > 11$ $\checkmark n = 12$	
	Term 12 sal die eerste term kleiner as – 55 wees.		(3)
3.2	$S_6 = \frac{n}{2}[a+l] = \frac{6}{2}[(x-3)+(x-18)]$		
		$\checkmark 6x - 63$	
	$= 6x - 63$ $S_9 = \frac{n}{2}[a+l] = \frac{9}{2}[(x-3) + (x-27)]$		
	=9x-135	$\checkmark 9x-135$	
	6x - 63 = 9x - 135 $3x = 72$		
	x = 24	✓ 24	
	$\therefore S_{15} = \frac{n}{2}[a+l] = \frac{15}{2}[(x-3)+(x-45)]$	$\checkmark \frac{15}{2}[(x-3)+(x-45)]$	
	$=\frac{15}{2}[2x-48]$		
	$=\frac{15}{2}[2(24)-48]=0=RHS$	✓ substitution of x	(5)
	OR/OF	OR/OF	
	$\sum_{k=7}^{9} (x-3k) = 0$		
	$ \begin{vmatrix} x = 7 \\ (x - 21) + (x - 24) + (x - 27) = 0 \end{vmatrix} $	✓ expansion	
	$\therefore 3x - 72 = 0$	$\checkmark 3x - 72 = 0$	
	3x = 72 $x = 24$	√ 24	
	$\sum_{k=1}^{15} (24 - 3k)$		
	=21+18+15++-21.	✓ substitution of x	
	$S_n = \frac{n}{2} [a+l)$		
	$=\frac{15}{2}[21-21]$	✓ sum of 15 terms	(5)
	=0=RHS		
	OR/OF	OR/OF	

o SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne DBE/2019

(x-3)+(x-6)+(x-9)+(x-12)+(x-15)+(x-18)	✓ expansion
= (x-3) + (x-6) + (x-9) + (x-12) + (x-15) + (x-18)	
= (x-3)+(x-0)+(x-9)+(x-12)+(x-13)+(x-16)	
+(x-21)+(x-24)+(x-27)	
$\therefore 3x - 72 = 0$	$\checkmark 3x - 72 = 0$
3x = 72	√ 24
x = 24	▼ 24
15	
$\sum_{k=0}^{15} (24-3k)$	
k=1	
=21+18+15++-21.	(1); (; C
- 21+10+13++-21.	✓ substitution of x
$\begin{bmatrix} n \end{bmatrix}$	
$S_n = \frac{n}{2} [a+l]$	
$=\frac{15}{2}[21-21]$	
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	\checkmark sum of 15 terms (5)
=0=RHS	[10]
- V- KH5	[**]

4.1	<i>y</i> > 0	✓answer	(1)
	OD/OF	OR/OF	(1)
	$ \begin{array}{l} \mathbf{OR}/\mathbf{OF} \\ y \in (0; \infty) \end{array} $	✓ answer	
	$y \in (0, \infty)$	uns wei	(1)
4.2	$g: y = \left(\frac{1}{2}\right)^x$		
	$g^{-1}: x = \left(\frac{1}{2}\right)^y$	$\checkmark x = \left(\frac{1}{2}\right)^y$	
	$y = \log_{\frac{1}{2}} x$ or $y = -\log_2 x$ or $y = \log_2 \frac{1}{x}$	✓ equation	(2)
4.3	Yes. The vertical line test cuts g^{-1} once Ja. Die vertikale lyn toets sny g^{-1} slegs eenkeer.	✓ yes ✓ valid reason	(2)
	OR/OF	OR/OF	
	Yes. For every x-value there is a unique y-value	✓ yes	
	Ja. Vir elke x-waarde is daar 'n unieke y-waarde	✓ valid reason	
			(2)
	OR/OF	OR/OF	
	Yes. g is a one-to-one function / Ja . g is 'n een-tot-een funksie	✓ yes	
		✓ valid reason	(2)
	OR/OF	OR/OF	(2)
	Yes. The horizontal line cuts g only once	✓ yes	
	Ja. Die horisontale lyn sny g slegs een keer	✓ valid reason	
	9 9 8 8		(2)

Mathematics P1/Wiskunde V1

9 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne DBE/2019

4.4.1	$y = -\log_2 x$ $2 = -\log_2 a$ $(1)^2 1$	✓ correct subst into correct formula (a; 2)
	$a = 2^{-2} = \frac{1}{4}$ or $a = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$	✓answer (2)
4.4.2	$M'(2;\frac{1}{4})$ or $M'(2;a)$	✓ answer (1)
4.5	$M''\left(-1;\frac{9}{4}\right)$	$\checkmark -1$ $\checkmark \checkmark \frac{9}{4}$
		(3)
		[11]

5.1.1	x = -2 $y = 3$	✓ answer ✓ answer
5.1.2	$\left(0;\frac{7}{2}\right)$	(2) ✓ answer (1)
5.1.3	$\frac{1}{x+2} + 3 = 0$ $1 + 3(x+2) = 0$ $3x = -7$ $x = -\frac{7}{3}$ $x\text{-intercept} \left(-\frac{7}{3}; 0\right)$	\checkmark y = 0 ✓ answer (2)
5.1.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ asymptotes at $y = 3$ and $x = -2$ ✓ intercepts at $y = 3.5$ and $x = -2.3$ ✓ shape (reasonable representation in correct quadrants) (3)

5.2.1	-2x+4=0	$\checkmark y = 0$
	2x = 4	$\checkmark x = 2$
	x=2	$\mathbf{v} \mathbf{x} = 2$
	$\therefore S(2;0)$	(2)
5.2.2	Equation of k:	
	$y = a(x+1)^2 + 18$	$\checkmark y = a(x+1)^2 + 18$
	$0 = a(2+1)^2 + 18$ or $0 = a(-4+1)^2 + 18$	✓ substitute (2; 0) or
	0 = a(2+1) + 18 $01 0 = a(-4+1) + 189a = -18$	(-4;0)
	9a = -18 $a = -2$	
		✓ a
5.2.2	$y = -2(x+1)^2 + 18$	(3)
5.2.3	$-2x^2 - 4x + 16 = -2x + 4$	✓ equating
	$-2x^2 - 2x + 12 = 0$	✓ standard form
	$x^2 + x - 6 = 0$	✓ factors
	(x+3)(x-2)=0	1400015
	x = -3 or x = 2	✓ choosing $x = -3$
	y = -2(-3) + 4 = 10	✓ answer
5.2.4	T(-3; 10)	(5)
5.2.4	x < -3 or $x > 2$	√√ answer
	OD/OE	OR/OF
	$ \mathbf{OR}/\mathbf{OF} \\ (-\infty; -3) \cup (2; \infty) $	✓✓ answer
	$(-\infty, -3) \cup (2, \infty)$	(2)
5.2.5(a)	x < -1	✓✓ answer
		(2)
	OR/OF	OR/OF
	$(-\infty;-1)$	✓✓ answer
5.2.5(b)		(2)
3.2.3(0)	$\uparrow y$	✓ shape of cubic with
		local min tp moving to
		local max tp
	↑	✓ turning points at $x = 2$
		and $x = -4$
	$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	✓ point of inflection at
	-1 0 2	x = -1
	\ / -	(3)
		FA 53
	l l	[25]
•		

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2019

(11			
6.1.1	$A = P(1-i)^n$		
	$79866,96 = 180000(1-0.15)^n$	✓ substitution	
	$(1-0.15)^n = \frac{79866.96}{180000}$		
	$n = \frac{\log\left(\frac{79866,96}{180000}\right)}{\log(1-0,15)}$	✓ use of logs	
	· · · · · · · · · · · · · · · · · · ·		
	$n = 4,999$ years $n \approx 5$ years	✓ answer	
6.1.2	, ¬(,)n		(3)
0.1.2	$A = P(1+i)^n$ $= 49 \ 000 \left(1 + \frac{0.1}{4}\right)^{20}$	✓ values of <i>i</i> and <i>n</i> ✓ substitution	
	= R80292,21		
	The money will be enough to buy the car.	✓ conclusion	
	Die geld sal genoeg wees om die motor te koop.	(consistent with answer)	(3)
6.2.1	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$		
	$P = \frac{7853,15 \left[1 - \left(1 + \frac{0,1025}{12} \right)^{-234} \right]}{0,1025}$	✓ $n = 234$ ✓ $i = \frac{0,1025}{12}$ ✓ substitution in present value formula	
	P = R793749,25	✓ answer	(4)
	OR/OF	OR/OF	(4)
	Balance Outstanding / Uitstaande balans		
	$7853,15 \left[\left(1 + \frac{0,1025}{12} \right)^6 - 1 \right]$	$\checkmark n = 6 \text{ in both}$ $\checkmark i = \frac{0,1025}{12}$	
	$= 800\ 000 \left(1 + \frac{0,1025}{12}\right) - \frac{0,1025}{12}$	$\checkmark A - F$	
	= 841 885,56 - 48 136,62		
	= R793 748,94	✓ R793 748,94	(4)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2019

6.2.2
$$A = P(1+i)^{n}$$

$$= 793749,25 \left(1 + \frac{0,1025}{12}\right)^{3}$$

$$= R814 263,3052$$
New instalment/*Nuwe paaiement*:
$$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$$

$$814263,3052 = \frac{x \left[1 - \left(1 + \frac{0,1025}{12}\right)^{-231}\right]}{\frac{0,1025}{12}}$$

$$x = R8 089,20$$

7.1	$f(x) = x^2 + 2$		
,			
	$f(x+h) = (x+h)^2 + 2$		
	$= x^2 + 2xh + h^2 + 2$		
	$f(x+h) - f(x) = x^2 + 2xh + h^2 + 2 - (x^2 + 2)$	$\checkmark x^2 + 2xh + h^2 + 2$	
	$=2xh+h^2$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$=\lim_{h\to 0}\frac{2xh+h^2}{h}$	$\checkmark \lim_{h\to 0} \frac{2xh + h^2}{h}$	
	$=\lim_{h\to 0}\frac{h(2x+h)}{h}$	$\checkmark \lim_{h\to 0} \frac{h(2x+h)}{h}$	
	$=\lim_{h\to 0}(2x+h)$,,,	
	= 2x	✓ answer	
	-2x		(4)
	OR/OF	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 2 - (x^2 + 2)}{h}$	$\checkmark x^2 + 2xh + h^2 + 2$	
	$=\lim_{h\to 0}\frac{2xh+h^2}{h}$	$\checkmark \lim_{h\to 0} \frac{2xh + h^2}{h}$	
	$=\lim_{h\to 0}\frac{h(2x+h)}{h}$	$\checkmark \lim_{h\to 0} \frac{h(2x+h)}{h}$	
	$=\lim_{h\to 0}(2x+h)$	11	
	=2x	✓ answer	(4)

13 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

7.2.1	$y = 4x^3 + 2x^{-1}$	$\checkmark +2x^{-1}$
	$y = 4x^{2} + 2x$ $\frac{dy}{dx} = 12x^{2} - 2x^{-2}$	$\begin{array}{c} \checkmark 12x^2 \\ \checkmark -2x^{-2} \end{array} \tag{3}$
7.2.2	$y = 4\sqrt[3]{x} + (3x^3)^2$ $= 4x^{\frac{1}{3}} + 9x^6$	$\checkmark 4x^{\frac{1}{3}} \checkmark 9x^{6}$
	$\frac{dy}{dx} = \frac{4}{3}x^{-\frac{2}{3}} + 54x^5$	$\checkmark \frac{4}{3} x^{-\frac{2}{3}} \checkmark 54 x^{5} \tag{4}$
7.3	Point of contact: (1;5) m = 2 $y - y_1 = m(x - x_1)$ or $y = 2x + c$ y - 5 = 2(x - 1) $5 = 2 + c$	✓ $m = 2$ ✓ substitution of (1; 5)
	y = 2x + 3 $c = 3$ $y = 2x + 3$	✓ answer (3) [14]

QUESTION/VRAAG 8

8.1	$h(x) = -2(x + \frac{3}{2})(x - 1)(x + 3)$	$\sqrt{x-2(x+\frac{3}{2})(x-1)(x+3)}$
	$h(x) = -(2x+3)(x^2+2x-3)$	✓ correct simplification
	$h(x) = -2x^3 - 7x^2 + 9$	(3)
		OR/OF
	OR/OF	
	h(x) = -(2x+3)(x-1)(x+3)	$\sqrt{(2x+3)(x-1)(x+3)}$
	$h(x) = -(2x+3)(x^2+2x-3)$	✓ correct simplification (3)
	$h(x) = -2x^3 - 7x^2 + 9$	
8.2	$h'(x) = -6x^2 - 14x$	
	$-6x^2 - 14x = 0$	✓ first derivative $\checkmark = 0$
	-2x(3x+7)=0	
	$x = 0 \text{ or } x = -\frac{7}{3}$	✓ both answers
		(3)
8.3	$x < -\frac{7}{3}$ or $x > 0$	✓✓ answer
] 3	(2)
	OR/OF	OR/OF
	$x \in \left(-\infty; -\frac{7}{3}\right) \cup \left(0; \infty\right)$	✓ ✓ answer
	3 /	(2)

Mathematics P1/Wiskunde V1

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2019

8.4	y = 4x + 7	$\checkmark y = 4x + 7$
	$y = 4x + 7$ $-6x^2 - 14x = 4$	$\checkmark y = 4x + 7$ $\checkmark h'(x) = 4$
	$0 = 6x^2 + 14x + 4$	
	$0 = 3x^2 + 7x + 2$	✓ standard form
	$0 = 3x^{2} + 7x + 2$ 0 = (3x+1)(x+2)	
	$x = -\frac{1}{3}$ or $x = -2$	✓ both answers
	3 3 3 3	(4)
		[12]

9.1	Volume of Sphere	
	$=\frac{4}{3}\pi(8)^3$ or $=\frac{2048\pi}{3}$ or $=2144,66$	✓ answer (1)
9.2	$r^2 + x^2 = 8^2 (Pythagoras)$ $r^2 = 64 - x^2$	✓ substitution or reason Pythagoras (1)
9.3	$V_{cone} = \frac{1}{3}\pi r^{2}h$ $= \frac{1}{3}\pi (64 - x^{2})(8 + x)$ $= \frac{\pi}{3} (512 + 64x - 8x^{2} - x^{3})$ $\frac{dV}{dx} = \frac{64\pi}{3} - \frac{16\pi}{3}x - \frac{3\pi}{3}x^{2}$ $0 = 64 - 16x - 3x^{2}$ $0 = (8 - 3x)(x + 8)$ $x = \frac{8}{3} \qquad x \neq -8$ $\frac{V_{cone}}{V_{sphere}} = \frac{\frac{1}{3}\pi (\frac{512}{9})(\frac{32}{3})}{\frac{2048\pi}{3}}$ $= \frac{8}{27} = 0,3$	$4 = 8 + x$ $4 = 8 + x$ $4 = \frac{1}{3}\pi (64 - x^2)(8 + x)$ $4 = \frac{64\pi}{3} - \frac{16\pi}{3}x - \frac{3\pi}{3}x^2$ $4 = \frac{8}{3}$ $4 = \frac{8}{3}$ $4 = \frac{8}{3}$ $4 = \frac{8}{3}$ $5 = \frac{8}{3}$ $5 = \frac{8}{3}$ $6 = \frac{16\pi}{3}x - \frac{3\pi}{3}x^2$ $1 = \frac{8}{3}$ $2 = \frac{8}{3}$ $3 = \frac{8}{3}$ $4 = \frac{8}{3}$ $4 = \frac{8}{3}$ $5 = \frac{8}{3}$ $6 = \frac{1}{3}$ $7 = \frac{8}{3}$ $8 = \frac{1}{3}$ $1 = \frac{1}{3}$ $1 = \frac{1}{3}$ $2 = \frac{1}{3}$ $3 = \frac{1}{3}$ $4 = \frac{1}{$
		[9]

15 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2019

QUESTION/VRAAG 10

10.1		
10.1	$ \begin{array}{c c} \frac{3}{12} & R \\ \hline \frac{3}{12} & R \\ \hline \frac{2}{11} & B \\ \hline \frac{2}{11} & R \\ \hline \frac{3}{11} & R \\ \hline \frac{1}{11} & B \\ \hline \end{array} $	
	P(One Red and One Blue) = P(Red, Blue) + P(Blue, Red) = $\left(\frac{3}{12}\right) \times \left(\frac{2}{11}\right) + \left(\frac{2}{12}\right) \times \left(\frac{3}{11}\right)$ = $\frac{1}{11}$	$\checkmark \left(\frac{3}{12}\right) \times \left(\frac{2}{11}\right)$ $\checkmark \left(\frac{2}{12}\right) \times \left(\frac{3}{11}\right)$ $\checkmark \text{ addition of products}$ $\checkmark \text{ answer}$ (4)
10.2.1	$a = 0.48 \times 250$ $a = 120$	✓ answer (1)
10.2.2	$b = 150$ $P(S) \times P(F)$ $= \frac{200}{250} \times \frac{150}{250}$ $= 0.48$ $= P(S \text{ and } F)$ These events are independent / Hierdie gebeurtenisse is onafhanklik	✓ b ✓ $P(S) \times P(F)$ ✓ $\frac{200}{250}$ and $\frac{150}{250}$ ✓ conclusion (with realistic probabilities) (4)
		[9]

QUESTION/VRAAG 11

QUESTION INTERIOR		
11.1	10 × 9	✓✓ 10 × 9
	= 90	(2)
11.2.1	10!	✓ 10!
	=3 628 800	(1)
11.2.2	$2! \times 2! \times 2! \times 2! \times 2! \times 4!$	\checkmark 2! × 2! × 2! × 2! × 2!
	= 768	√ 4!
		\checkmark 2! × 2! × 2! × 2! × 2!×4!
		or 768
		(3)
		[6]

TOTAL/TOTAAL: 150