

Enrico Lacchin

Algoritmi e Strutture dati

Appunti

Materia: Algoritmi e strutture dati

Docente: « Nome Docente »

Indice

1	Algoritmo	1		
2	Analisi			
3	Complessità 3.1 Classi di complessità	3		
4	Grafo	4		
5	Ricorrenza 5.1 Master Theorem (per gli algoritmi ricorsivi)	5		
6	Struttura dati			
7	Algoritmi di ordinamento 7.1 Bubble Sort	7 7 7 7 7		
8	Ordinamento per confronti 8.1 Bucket Sort	8 8 8		
9	Algoritmi di vista 9.1 Teorema (Handshake Theorem)	10		
10	Visita di un grafo 10.1 In ampiezza (BFS, Bread-First-Search)	11		
11	Altri algoritmi 11.1 Algoritmo di Dijkstra	13 13 13		
12	Distanza di edit	14		
13	Generazione di Bit pseudocasuali 13.1 Heapify	15 15 16		

Problemi famosi	17
4.1 Hamilton	17
4.2 Eulero	17
4.3 Sacco o Knapsack Problem	17
Altro	19
5.1 LCS	19
5.2 Problemi	10

1 Algoritmo

Un algoritmo è un procedimento di calcolo teoricamente meccanizzabile. Rappresenta la sequenza di passi computazionali che prende in ingresso un dato insieme di valori e produce un insieme di valori in uscita.

Un algoritmo viene usato come strumento per risolvere un ben definito problema computazionale.

Un algoritmo può essere:

- Corretto: termina con insieme corretto di valori in uscita per ogni istanza del problema
- Incorretto: termina o con un insieme non corretto di valori in uscita per alcune istanze del problema oppure non termina.

Ogni algoritmo ha una propria **efficienza** ossia il numero di operazioni richieste per produrre dati in uscita (considerando quelli in entrata) \rightarrow con dimensioni notevoli la differenza di efficienza è marcata.

Le **proprietà** di un'algoritmo sono:

- Non ambiguità
- Finitezza
- Terminazione
- Effettività
- Atomicità (operazioni minime)

Un **array** è una lista ad accesso diretto (non sequenziale) casuale (dove vogliamo). L'**istanza** di un problema è l'insieme dato di valori in ingresso.

La **struttura dati** è la modalità di memorizzazione e organizzazione di dati per garantire un miglior accesso e manipolazione. Una struttura dati è la *heap* la quale organizza array per verificare la proprietà detta priorità (alternativa: albero binario quasi completo).

2 Analisi

L'analisi va a stimare le risorse richieste in memoria, la banda e il tempo di calcolo. Il **modello del calcolatore** da usare è:

- Singolo processore (Single Core)
- Memoria ad accesso casuale
- No gerarchie di memoria

Le assunzioni sono istruzioni varie con periodo costante.

Il **tempo di esecuzione** è la somma dei tempi di esecuzione (costanti per ipotesi) di ciascuna linea dello pseudocodice moltiplicata per il numero di esecuzione della stessa \rightarrow espresso come dimensione dei valori in ingresso.

Tipologie di assunzioni:

- \bullet Ordinamento: lunghezza della sequenza da ordinare \to divide et impera come metodo di risoluzione efficiente
 - suddivisione del problema in sottoproblemi più semplici
 - risoluzione ricorsiva dei sottoproblemi
 - combinazione delle soluzioni per soluzione del problema
- Operazioni sui grafi: numero di vertici e archi presenti

3 Complessità

3.1 Classi di complessità

```
f(n) = O(g(n)) equivale a a \le b

f(n) = \Omega(g(n)) equivale a a \ge b

f(n) = \Theta(g(n)) equivale a a = b

f(n) = o(g(n)) equivale a a < b

f(n) = \omega(g(n)) equivale a a > b
```

Caso peggiore (worst case): Si svolgono tutte le iterazioni possibili all'interno dell'algoritmo

Caso medio (medium case): É a metà tra il caso migliore e il caso peggiore Caso migliore (better case): Si svolgono il minor numero di iterazioni possibili all'interno dell'algoritmo

Esempi:

Algoritmo	Tempo di esecuzione nel caso peggiore	Tempo di esecuzione atteso/nel caso medio
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$
Merge sort	$\Theta(n \cdot log(n))$	$\Theta(n \cdot log(n))$
Heapsort	$O(n \cdot log(n))$	_
Quicksort	$\Theta(n^2)$	$\Theta(n \cdot log(n))$ (atteso)
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (caso medio)

4 Grafo

Un grafo è una configurazione formata da un insieme di punti e linee con unione di coppie di nodi \rightarrow definita relazione qualsiasi tipo. Un grafo può essere:

- Semplice: coppie di vertici non ordinate (simmetria) e distinte
 - Nodi o Vertici (v): singoli punti \rightarrow senza figli: foglie
 - Archi/Edge (E): linee
 - Grado/Degree: numero di archi che partono dal vertice
 - Memoria: Theta di (v + E)
 - Complessità lista di adiacenza: $\Theta 2(|V| + |E|)$ matrice di adiacenza: $\Theta(|V|^2)$
- Multigrafo: stesso arco può comparire più volte
 - Molteplicità dell'arco: numero di volte che si ripete
 - Cappi o Loops: contribuisce due volte al grado
 - Complessità: $\Theta(|V|^2)$

5 Ricorrenza

La ricorrenza è un equazione o disequazione per descrivere la funzione in termini del suo valore sugli ingressi con dimensione inferiore.

Il tempo di esecuzione viene spesso espresso come ricorrenza Metodi di risoluzione:

- Sostituzione
 - fare una previsione della soluzione
 - verificare l'ipotesi tramite induzione
- Albero della ricorrenza: si crea un albero ricorsivo (generare buone soluzioni di tentativi)
- Esperto: basata sul teorema dell'esperto (algoritmi ricorsivi)

5.1 Master Theorem (per gli algoritmi ricorsivi)

Siano $a \ge 1$, b > 1, $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, $\varphi(n) = n^{\log_b(a) + \dots \epsilon > 0}$

i.

$$\lim_{n \to +\infty} \frac{f(n)}{\varphi(n)} = 0 \longrightarrow f(n) \in O(n^{\log_b(a) - \epsilon})$$

ii.

$$\lim_{n \to +\infty} \frac{f(n)}{\varphi(n)} = l \in \mathbb{R} \longrightarrow f(n) \in \Theta(n^{\log_b(a)})$$

iii.

$$\lim_{n \to +\infty} \frac{f(n)}{\varphi(n)} = +\infty \longrightarrow f(n) \in \Omega\left(n^{\log_b(a) + \epsilon}\right) \wedge af(\frac{n}{b}) < cf(n) \ per \ qualche \ c < 1$$

Allora

i.
$$T(n) \in \Theta(n^{lob_b(a)}) \to T(n) \in \Theta(\varphi(n))$$

ii.
$$T(n) \in \Theta\left(n^{lob_b(a)} \cdot log(n)\right) \to T(n) \in \Theta(\varphi(n) \cdot log(n))$$

iii.
$$T(n) \in \Theta(f(n)) \to T(n) \in \Theta(f(n))$$

6 Struttura dati

Array: struttura dati ad accesso libero \rightarrow staticità (bisogna sapere n a priori) **List/Lista concatenata**: ad accesso sequenziale. L'insert è sempre possibile mentre il delete solo se il contenuto $\geq 1 \rightarrow$ dinamicità.

L'inizio viene definito come head e la fine come tail.

Ci sono due tipologie:

- \bullet FIFO (First In First Out): elementi aggiunti da una parte e estratti dall'altra \to code (queue)
- LIFO (Last In First Out): elementi aggiunti e tolti dalla stessa parte \rightarrow pile (stack)

Un \mathbf{record} è la raccorta di dati o numeri \rightarrow key: valore da ordinare altri valori: dati satelliti

7 Algoritmi di ordinamento

7.1 Bubble Sort

Ogni coppia di elementi adiacenti comparata se, non in ordine, vengono invertiti. Complessità: $\Theta(n)$ nel caso migliore \rightarrow controlli inutili se gli elementi sono già in ordine.

7.2 Exhaustive Search

Va a verificare ogni soluzione teoricamente possibile fino a quella corretta. Risulta essere estremamente lento ma corretto e va sfruttato solo con pochissimi elementi.

Complessità: $\Theta(2^n)$

7.3 Heapsort

L'algoritmo va a ordinare dall'alto verso il basso.

L'altezza di un nodo è la lunghezza degli archi del percorso più semplice verso una foglia. L'altezza heap rappresenta l'altezza della radice.

La dimensione del problema varia a seconda del tipo di problema:

- \bullet Originario: n
- \bullet Sottoalbero con più elementi: m
- Altezza del nodo oggetto del problema originario: h

7.4 Mergesort

L'algoritmo va a suddividere n elementi in sottosequenze di $\frac{n}{2}$ elementi della stessa dimensione (approccio divide et impera).

Non fa ordinamento in loco, fa un ordinamento ricorsivo delle sottosequenze fino a una sottosequenza di lunghezza 1 (ordinata).

Utilizza le funzioni

- Merge: combinazione di due sottosequenze ordinate per produrre intera sequenza ordinata \to Complessità: $\Theta(n)$
- Mergesort: ordinamento di una sequenza suddividendola in due, ogni sottosequenza ordinata (con ricorsione) tramite merge

8 Ordinamento per confronti

Teorema : Qualsiasi algoritmo per confronti ha $\Omega(n \cdot log(n))$ nel caso peggiore

8.1 Bucket Sort

É un algoritmo molto frequente. Ipotesi di elementi distribuiti uniformemente $\rightarrow n$ elementi da ordinare.

Procedimento:

- \bullet intervallo [0,1) diviso in n intervalli/contenitori (bucket) di lunghezza uguale
- ciascun valore dell'array inserito nel bucket a cui appartiene
- valori all'interno del bucket ordinati
- concatenazione dei valori contenuti nei bucket con insertion sort

8.2 Insertion Sort

L'algoritmo va a considerare un valore alla volta e lo si mette nella posizione corretta tra i valori che lo precedono (approccio incrementale).

Fa un ordinamento in loco (sul posto). Valori ordinati dell'array con al più un numero costante di essi all'esterno.

É invariante cioè per ciascuna iterazione, gli elementi originali rimangono gli stessi, ma in ordine crescente

- Vero prima del ciclo
- Se vero per prima iterazione, vero per l'iterazione successiva
- Prova che algoritmo corretto quando il ciclo termina

Complessità: $\Theta(n)$ nel caso migliore (better sort)

8.3 Counting Sort (tre indici)

Non viene fatto un ordinamento in loco. I numeri da ordinare sono compresi tra 0 e k con $k \ll n$ (k molto minore di n).

Procedimento:

- \bullet Due array, con con n elementi(A)e uno vuoto $(B) \to A$ parte da 1(A=1,0,0,2,2,1)
- Altro array riempito tutto di zeri $(C) \rightarrow la$ prima casella parte da 0

- Si considerano gli elementi di $A \to \text{caselle di } C$ corrispondenti agli elementi di A con numeri in cui compaiono (C=2,2,2)
- $\bullet\,$ Si sommano le celle di C con quelle precedenti ($C=2,2,2\,\,\rightarrow\,\,C=2,4,6)$
- Array B di lunghezza n come $A \to \operatorname{la}$ prima casella parte da 1
- $\bullet\,$ Controllo di A dall'ultima alla prima casella
- \bullet Si confrontano i numeri anche tramite il numero della casella \to si scala C dopo aver messo il numero di B

Diventa disastroso con n^2 . É un algoritmo corretto e stabile (numeri con stesso valore nell'array nello stesso ordine sia in input che in output).

Complessità dei cicli for: $\Theta(k), (n), (k), (n) \to \text{totale: } \Theta(k+n)$

9 Algoritmi di vista

Algoritmi per cubo n-dimensionale

- \bullet Ogni vertice con n archi
- Anche con loops e molteplicità, complessità invariata

9.1 Teorema (Handshake Theorem)

$$\sum_{v \in V} deg(v) = 2|\xi| \Rightarrow$$
La somma dei gradi è sempre pari

Nota: vero anche perché i loops valgono 2

10 Visita di un grafo

La visita di un grafo significa esaminare una volta tutti i nodi del grafo. Le difficoltà possono essere due:

- Cicli (marcare nodi visitati)
- Nodi isolati: la visita termina dopo aver considerato tutte le componenti isolate di un grafo

10.1 In ampiezza (BFS, Bread-First-Search)

Conta la distanza (numero minimo di archi) dal vertice sorgente agli altri punti (se la distanza è infinita, non ci sono cammini disponibili).

Per capire se i vertici sono scoperti o meno si utilizza una classificazione per colori:

- Bianco (W): inizialmente tutti bianchi
- Grigio (G): incontrato per la prima volta
- Nero (B): tutti adiacenti di un nodo grigio visitati \rightarrow un nodo nero ha solo adiacenti grigi

Grafo dei predecessori: albero Complessità: O(V+E), se denso O(E)

10.2 In profondità (DFS, Depth-First-Search)

Procedimento:

- Si esplorano i nodi degli archi uscenti
- Backtrack: nodi degli archi uscenti esplorati, si torna indietro per esplorare quelli del predecessore
- $\bullet\,$ Tutti i vertici raggiunti da una sorgente iniziale \to se alcuni vertici sono inesplorati, uno viene scelto come nuova sorgente e riparte la ricerca

Grafo dei predecessori: foresta

10.3 Topological Sort (DAG, Direct Acyclic Graph)

Viene fatto un ordinamento lineare di tutti i vertici di un grafo orientato senza cicli \rightarrow i vertici si definiscono ordinati se ogni nodo viene prima dei nodi collegati ai suoi archi uscenti

Non vi è um ordinamento notale \rightarrow la soluzione non è necessariamente unica **Procedimento**:

• Si considera una situazione

- Si parte da un punto arbitrario
- Si segue la direzione degli archi uscenti
- Finisti gli archi uscenti, si torna al punto considerato
- Si ripete dal secondo punto, finché non rimangono più punti
- Metterli in fila, considerandoli al contrario rispetto a come sono stati ordinati (numero più grande)
- Ordine rispettato

11 Altri algoritmi

11.1 Algoritmo di Dijkstra

L'algoritmo presenza un costo per arco = grafi pesanti mediante numeri \rightarrow necessità di archi non negativi (altrimenti Bellman - Ford)

Percorso con costo minimo dal vertice sorgente agli altri. Non serve molteplicità degli archi \rightarrow viene eliminato quello dal costo maggiore.

Procedimento:

- Si prende in considerazione un grafo arbitrario
- Si considera un vertice come sorgente
- Si prendono singolarmente i costi delle distanze dal vertice sorgente agli altri \rightarrow si considerano anche i punti per cui si deve per forza passare (se dal vertice sorgente v_2 , bisogna passare per v_1 , si considera anche v_1)
- Si eliminano i percorsi più costosi, via via che si trovano
- L'unico che rimane è il percorso meno costoso

11.2 Algoritmo di Euclide

L'algoritmo trova il MCD tra due numeri, se ricorsivo richiama se stesso.

12 Distanza di edit

Si parte da una stringa e la si trasforma in un'altra \to trasformazioni di costo 1 (tranne gratis che non costa nulla)

 $\begin{array}{ccc} \mathbf{C} & \mathbf{Cancellazione} & \downarrow \\ \mathbf{I} & \mathbf{Inserimento} & \rightarrow \\ \mathbf{S} & \mathbf{Sostituzione} & \searrow \\ \mathbf{G} & \mathbf{Riporto} \ \mathbf{gratis} & \searrow \\ & I \leq C \leq S \\ \end{array}$

Procedimento:

- $\bullet\,$ Si crea una matrice \to in alto la parola a cui si vuole arrivare, a sinistra la parola da sui si parte
- Si tiene uno spazio vuoto da un puntino
- Si procede a costruire la matrice con numeri
- Si considera il percorso meno costoso
- Si fanno le varie trasformazioni e si considerano al contrario

Complessità: $\Theta(n^2)$

13 Generazione di Bit pseudocasuali

$$p(x) = 1 + x^3 + x^5$$

Registro a scorrimento (verso sinistra) \rightarrow considerati gli spazi dove c'è 1 **Seme**: Combinazione casuale di 0 e 1 \rightarrow proibito: 0...0 dato che la somma fa sempre 0 **Produzione ciclica di periodo massimo**: $2^n - 1$ n - ple binarie con accesso "casuale" (0 uscenti uguali e 1 entranti)

- n: lunghezza del registro
- 1: seme proibito \rightarrow funzione di autocorrelazione: bilanciamento del numero di n-ple che finiscono con 00, 01, 10, 11 [(n-2)-ple binarie per ciascuno]

Shift register circa potenziatore di casualità (data del seme) \rightarrow input determinato

13.1 Heapify

Il suo scopo è quello di riorganizzare heap per mantenere la proprietà della priorità. **Albero**: grafo non diretto, connesso e aciclico \rightarrow grafo di un nodo: numero di sottoalberi del nodo uguale al numero di figli del nodo

Altezza o profondità dell'albero: distanza radice - foglia Percorrenza: dalla radice verso le foglie (dall'alto verso il basso)

|E| = |V| - 1Complessità: $\Theta(n)$

13.2 Quicksort

i (wall): non è detto che si sposti

 \mathbf{j} (current element): si sposta di una posizione alla volta

Pivot: elemento considerato

Viene utilizzato l'approccio del divide et impera.

Partition (prima parte di quicksort)

- Si fissa il pivot
- Si inizializza il muro

Quicksort \to si mettono i valori come nell'immagine Randompartition \to il primo dei più grandi e pivot scambiati

14 Problemi famosi

14.1 Hamilton

Icosaedro: Qualsiasi poliedro a 20 facce

Nel solido platonico le facce sono separate da spigoli (edge).

Si può, in due dimensioni, toccare tutti i vertici una sola volta (closed path)? La risposta è NO, non esiste un algoritmo che risolva il problema $(P \neq NP)$

14.2 Eulero

Königsberg è una città collegata da 7 ponti.

Problema: Fare una passeggiata passando per ciascun ponte una sola volta

Soluzione: Non è possibile, dato che il numero dei gradi di ciascuna zona è dispari.

14.3 Sacco o Knapsack Problem

Il problema di Knapsack è un problema di ottimizzazione.

Il ladro che ruba deve prendere in considerazione:

• H: altezza del sacco/zaino

- ullet h: altezza dell'oggetto che vuole rubare
- ullet v: valore dell'oggetto che vuole rubare

Greedy: il ladro ruba fino a quando ha spazio, anche se potrebbe prendere oggetti senza valore

Complessità: $\Theta(n^2)$ nel caso peggiore

Greedy con preordinamento: Il ladro mette all'inizio gli oggetti più preziosi e quelli

vengono rubati.

Complessità: $\Theta(n^2)$ nel caso peggiore

15 Altro

15.1 LCS

$$X = \langle x_1, \dots, x_m \rangle$$
 e $Y = \langle y_1, \dots, y_n \rangle$

- 1. Caratterizzazione: 2^m sottosequenze di $X \to \text{tempo}$ esponenziale (inutilizzabile con lunghe sequenze)
- 2. Soluzione ricorsiva
- 3. Calcolo della lunghezza con il metodo bottom-up $\Theta(m \cdot n)$ sottoproblemi

15.2 Problemi

- $\bullet\,$ **P**: risolvibili in un tempo polinomiale \to nel caso peggiore $O(n^k)$ con k costante
- NP: non risolvibili in un tempo polinomiale (e.g. problema di Hamilton) → C / completo: particolarmente difficili da risolvere. Se si può risolvere un elemento di NPC in tempo polinomiale, lo si può fare con qualsiasi elemento (ancora non trovato)

Si ipotizza $P \neq NP$ oppure $P \subset NP$, ma non dimostrato