2023000218

ICP NOTES

LEETCODE PROBLEMS

Rajarshi Ghosh 9-25-2025

Counting Bits / 338

```
for i in range(1, n+1):
    if offset * 2 == i:
        offset = i  # Update offset to new power of 2
    dp[i] = 1 + dp[i - offset]  # Add 1 to the bit count of i - offset
```

return dp

Why It Works

• Every number can be expressed as:

$$i = offset + x$$

- Where offset is the **largest power of 2 \leq i**, and x < offset.
- Since offset has only one 1-bit, dp[i] = 1 + dp[i offset].
- Dry Run for n = 5:

i	offset	dp[i]	Explanation
1	1	1	1 + dp[0] = 1
2	2	1	offset updates to 2, $dp[2] = 1 + dp[0]$
3	2	2	dp[3] = 1 + dp[1] = 2
4	4	1	offset updates to 4
5	4	2	dp[5] = 1 + dp[1] = 2

Output: [0, 1, 1, 2, 1, 2]

Time and Space Complexity

• **Time:** O(n)

• Space: O(n)

Missing Number / 268

class Solution:

```
def missingNumber(self, nums: List[int]) -> int:
    n = len(nums)
    expected_sum = n * (n + 1) // 2
    actual_sum = sum(nums)
```

return expected_sum - actual_sum

Why It Works

- The numbers are from 0 to n, but one number is missing.
- The **sum of first n natural numbers** (0 to n) can be computed with the formula:

Expected_Sum =
$$[n * (n + 1)] / 2$$

- actual_sum is just the sum of the numbers present in the array.
- The difference between the expected sum and actual sum gives the missing number:

missing=expected sum-actual sum

Dry Run (Example)

Input: nums = [3, 0, 1]

Step	n	expected_sum	actual_sum	missing (return value)	Explanation
1	3	3*4//2=63 * 4 // 2	3+0+1=43+0+1=	6-4=26 - 4	2 is the missing
		=63*4//2=6	43+0+1=4	= 26-4=2	number

Output: 2

Time and Space Complexity

- Time Complexity:
 - o Calculating expected sum \rightarrow O(1)
 - Calculating actual_sum (using sum()) → O(n)
 Total: O(n)

• Space Complexity:

o Only a few variables are used \rightarrow O(1) (constant space)

Number of 1 Bits / 191

class Solution:

```
def hammingWeight(self, n: int) -> int:
    res = 0
    while n:
    # res += n % 2
    n &= n - 1
    # n = n >> 1
    res += 1
    return res
```

Why It Works

- Goal: Count how many 1 bits are present in the binary representation of n.
- The trick: n & (n-1) removes the rightmost set bit from n.
 - Example: $n = 10110 \rightarrow n-1 = 10101 \rightarrow n \& (n-1) = 10100$ (rightmost 1 removed)
- Each loop iteration removes one 1 bit and increments res.
- Loop continues until n becomes 0, meaning all 1 bits have been counted.

This approach is more efficient than checking every bit individually because it only loops once per set bit.

Dry Run (Example)

Input: n = 11 (binary = 1011)

Iteration	n (binary)	n-1 (binary)	n & (n-1)	res	Explanation
Start	1011	1010	1010	1	Rightmost 1 removed
2	1010	1001	1000	2	Rightmost 1 removed
3	1000	0111	0000	3	Rightmost 1 removed, $n = 0 \rightarrow \text{stop}$

Output: 3 (because 11 has three 1's in its binary form)

- Time Complexity:
 - Runs once for every set bit in $n \rightarrow O(k)$, where k = number of 1-bits.
 - Worst case: O(log n) (when all bits are 1).
- Space Complexity: Only uses constant variables → O(1)

Reverse Bits / 190

```
class Solution:
```

```
def reverseBits(self, n: int) -> int:
    res = 0
    for i in range(32):
        bit = (n >> i) & 1
        res = res | (bit << (31 - i))
    return res</pre>
```

Why It Works

- Goal: Reverse the bits of a 32-bit unsigned integer.
- Step-by-step logic:
 - 1. (n >> i) & 1 extracts the i-th bit from the right.
 - 2. (bit << (31 i)) places that bit into its **reversed position** (mirrored around center).
 - 3. res | ... sets that bit in res without affecting previously set bits.
- After looping through all 32 bits, res contains the bit-reversed number.

Dry Run (Example)

i	Extracted Bit (n >> i) & 1	Shift (bit << (31-i))	res (after setting)
0	1	Bit goes to position 31	100000000000000000000000000000000000000
1	0	Nothing added	100000000000000000000000000000000000000
2	1	Bit goes to position 29	101000000000000000000000000000000000000
3	1	Bit goes to position 28	101100000000000000000000000000000000000
•••	Remaining bits are 0	No changes	Final Result

- Time Complexity:
 - Loop runs exactly 32 times \rightarrow O(32) \rightarrow O(1) (constant time)
- Space Complexity:
 - Only uses a few integer variables \rightarrow O(1) (constant space)

Middle of the Linked List / 876

Definition for singly-linked list.

class ListNode:

```
# def __init__(self, val=0, next=None):
```

self.val = val

self.next = next

class Solution:

def middleNode(self, head: Optional[ListNode]) -> Optional[ListNode]:

slow, fast = head, head

while fast and fast.next:

slow = slow.next

fast = fast.next.next

return slow # slow now points to the middle node

Why It Works

- Uses two pointers:
 - slow moves one step at a time.
 - o fast moves two steps at a time.
- When fast reaches the end of the list:
 - o slow will be at the middle.
- This works because slow progresses at **half the speed** of fast, so when fast has traveled the full length, slow has traveled half.

•

Dry Run (Example)

Input: head = [1, 2, 3, 4, 5]

Step	slow (value)	fast (value)	Explanation
Start	1	1	Both at head
1st Iteration	2	3	slow moves 1 step, fast moves 2 steps
2nd Iteration	3	5	slow moves 1 step, fast moves 2 steps
3rd Iteration	-	-	fast.next is None → stop

Output: slow points to 3 (the middle node).

Time and Space Complexity

- Time Complexity:
 - o Both pointers traverse the list at most once $\rightarrow O(n)$
- Space Complexity:
 - o Only uses two pointers \rightarrow O(1)

Linked List Cycle / 141

```
# Definition for singly-linked list.
# class ListNode:
#    def __init__(self, x):
#    self.val = x
#    self.next = None
class Solution:
    def hasCycle(self, head: Optional[ListNode]) -> bool:
        slow, fast = head, head
        while fast and fast.next:
        slow = slow.next
        fast = fast.next.next
        if slow is fast: # Cycle detected
        return True
    return False # No cycle
```

Why It Works

- Uses Floyd's Cycle Detection Algorithm (Tortoise and Hare method).
- slow moves one step, fast moves two steps.
- Two possible outcomes:
 - 1. If there is **no cycle**, fast will reach None (end of list) \rightarrow return False.
 - 2. If there is a cycle, eventually fast will "lap" slow, and they will meet → return True.

This works because in a circular path, a faster pointer will always catch up to a slower pointer.

Dry Run (Example)

Input: head = [3, 2, 0, -4] with cycle connecting $-4 \rightarrow 2$

Step	slow	fast	Explanation
	(value)	(value)	

Start	3	3	Both at head
1st Iteration	2	0	slow moves 1 step, fast moves 2 steps
2nd Iteration	0	2	slow moves 1 step, fast moves 2 steps
3rd Iteration	-4	-4	slow moves 1 step, fast moves 2 steps → they meet → cycle found

Output: True

Time and Space Complexity

- Time Complexity:
 - Worst case: O(n) (both pointers traverse nodes until they meet or fast reaches the end)
- Space Complexity:
 - No extra data structures used \rightarrow O(1)

Linked List Cycle II / 142

```
# Definition for singly-linked list.
# class ListNode:
   def __init__(self, x):
      self.val = x
#
      self.next = None
class Solution:
  def detectCycle(self, head: Optional[ListNode]) -> Optional[ListNode]:
    if not head:
      return None
    slow, fast = head, head
    # Phase 1: Detect cycle (Floyd's Tortoise & Hare)
    while fast and fast.next:
      slow = slow.next
      fast = fast.next.next
      if slow == fast:
         break
    else:
      # No cycle detected (while loop exited normally)
```

return None

Phase 2: Find the cycle start

fast = head

while fast != slow:

fast = fast.next

slow = slow.next

return fast

Why It Works

This uses Floyd's Cycle Detection Algorithm with an additional step to find the start node of the cycle.

1. Phase 1 – Detect the Cycle:

- o slow moves 1 step at a time, fast moves 2 steps.
- o If slow and fast meet, a cycle exists.
- \circ If fast reaches None, there is no cycle → return None.

2. Phase 2 – Locate the Start of Cycle:

- Reset fast to head.
- o Move both slow and fast one step at a time.
- The node where they meet is the **entry point of the cycle**.

Why Phase 2 Works:

- When slow and fast first meet, slow has traveled k steps into the cycle.
- Distance from head to cycle start = a, distance from cycle start to meeting point = k.
- Resetting one pointer to head ensures they both meet at cycle_start after a steps.

Dry Run (Example)

Input: head = [3, 2, 0, -4] with cycle connecting $-4 \rightarrow 2$

Step	slow (value)	fast (value)	Explanation
Start	3	3	Both at head
Iter 1	2	0	slow +1, fast +2
Iter 2	0	2	slow +1, fast +2
Iter 3	-4	-4	slow +1, fast +2 \rightarrow meet \rightarrow cycle detected
Phase 2 Start	slow = -4, fast reset = 3	-	Reset fast to head
Phase 2 Iter 1	slow = 2, fast = 2	-	They meet at 2, cycle start found

Output: Node with value 2 (start of cycle)

- Time Complexity:
 - o Phase 1 takes O(n) in worst case (detecting cycle).
 - Phase 2 takes at most O(n) more steps to find start.
 Total: O(n)
- Space Complexity:
 - Only uses two pointers \rightarrow O(1)

Reverse Linked List / 206

```
class Solution:
```

```
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
    # Recursive approach: Time = O(n), Space = O(n) (due to recursion stack)
    if not head:
        return None # Base case: empty list
    newHead = head
    if head.next:
        # Recursively reverse the rest of the list
        newHead = self.reverseList(head.next)
        # Reverse the current link
        head.next.next = head
        head.next = None
    return newHead
```

Why It Works

- Recursion unwinds from the last node back to the first node.
- Each call reverses one link:
 - 1. newHead = self.reverseList(head.next) reverses the sublist after head.
 - 2. head.next.next = head points the next node back to head.
 - 3. head.next = None breaks the old forward link.
- When recursion fully unwinds, newHead points to the new head of the reversed list.

Dry Run (Example)

Input: head = [1, 2, 3]

Recursion Level	head	newHead after recursion	Operation Performed
Call 1	1	returned from reversing [2,3]	2.next \rightarrow 1, 1.next = None
Call 2	2	returned from reversing [3]	3.next \rightarrow 2, 2.next = None
Call 3	3	head.next is None → return 3	Base case reached

Output: newHead = $3 \rightarrow 2 \rightarrow 1 \rightarrow$ None

Time and Space Complexity

- Time Complexity:
 - \circ Each node is visited once \rightarrow O(n)
- Space Complexity:
 - \circ Recursion stack holds up to n frames in worst case \rightarrow O(n)

Remove Nth Node from End of List / 19

class Solution:

```
def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]:
    dummy = ListNode(0)  # Dummy node simplifies edge cases
    dummy.next = head
    ahead = behind = dummy
    # Move ahead pointer n+1 steps ahead
    for _ in range(n + 1):
        ahead = ahead.next
    # Move both pointers until ahead reaches the end
    while ahead:
        ahead = ahead.next
        behind = behind.next
    # behind is just before the node we want to remove
    behind.next = behind.next.next
    return dummy.next  # Return new head
```

Why It Works

- **Dummy Node:** Handles edge cases cleanly (e.g., removing the head itself).
- Two-pointer approach:
 - 1. Move ahead pointer n+1 steps forward.
 - 2. Move ahead and behind together until ahead reaches the end.
 - 3. At this point, behind points to the node **just before** the node to remove.
 - 4. Skip the target node by behind.next = behind.next.next.

This guarantees exactly one pass through the list, maintaining O(n) time complexity.

Dry Run (Example)

Input: head = [1, 2, 3, 4, 5], n = 2

Step	ahead (val)	behind (val)	Action
Init	dummy	dummy	Setup
Move ahead 3 steps (n+1)	ahead points to node 3	behind still dummy	Create gap of n between pointers
Iter 1	ahead → 4	behind \rightarrow 1	Both move one step
Iter 2	ahead → 5	behind → 2	Both move one step
Iter 3	ahead → None	behind → 3	Stop loop
Remove	behind.next = behind.next.next → 4 skips 4	New list: $1 \rightarrow 2 \rightarrow$ $3 \rightarrow 5$	

Output: head = [1, 2, 3, 5]

- Time Complexity:
 - Single traversal of the list \rightarrow O(n)
- Space Complexity:
 - \circ Constant extra space (dummy + pointers) \rightarrow O(1)

Valid Parentheses / 20

```
class Solution:
```

```
def isValid(self, s: str) -> bool:
  hashmap = {')': '(', '}': '{', ']': '['}
  stk = []
  for c in s:
    if c not in hashmap:
      stk.append(c) # Opening bracket
    else:
      if not stk or stk.pop() != hashmap[c]:
        return False
  return not stk # True if stack is empty (all matched)
```

Why It Works

- Stack-based approach:
 - 1. Push every opening bracket ((, {, [) onto the stack.
 - 2. When encountering a closing bracket, check:
 - If stack is empty → invalid (no opening match).
 - If top of stack is not the matching opening bracket → invalid.
 - Otherwise pop the opening bracket from the stack (pair matched).
 - 3. At the end, if the stack is empty → all brackets matched → return True. Otherwise → there are unmatched opening brackets → return False.

Dry Run (Example)

Input: $s = "({[]})"$

Step	С	Stack Before	Action	Stack After
1	([]	Push	[(]
2	{	[(]	Push	[(, {]
3	[[(, {]	Push	[(, {, []
4]	[(, {, []	Pop (match [)	[(, {]
5	}	[(, {]	Pop (match {)	[(]
6)	[(]	Pop (match ()	[]

Output: True (all brackets matched, stack empty)

Time and Space Complexity

- Time Complexity:
 - o Each character is processed once \rightarrow O(n)
- Space Complexity:
 - Stack holds at most n characters in worst case \rightarrow O(n)

Find Median from Data Stream / 295

```
import heapq
class MedianFinder:
  def __init__(self):
    # small = max heap (store as negative numbers)
    # large = min heap
    self.small, self.large = [], []
  def addNum(self, num: int) -> None:
    # Step 1: Push into max-heap (small)
    heapq.heappush(self.small, -num)
    # Step 2: Ensure order property: max(small) <= min(large)
    if self.small and self.large and (-self.small[0] > self.large[0]):
      val = -heapq.heappop(self.small)
      heapq.heappush(self.large, val)
    # Step 3: Balance sizes (difference can't exceed 1)
    if len(self.small) > len(self.large) + 1:
      val = -heapq.heappop(self.small)
      heapq.heappush(self.large, val)
    elif len(self.large) > len(self.small) + 1:
      val = heapq.heappop(self.large)
      heapq.heappush(self.small, -val)
  def findMedian(self) -> float:
    if len(self.small) > len(self.large):
      return -self.small[0]
    elif len(self.large) > len(self.small):
      return self.large[0]
```

else:

return (-self.small[0] + self.large[0]) / 2

Why It Works

• Maintain two heaps:

- small (max-heap) stores the smaller half of numbers.
- large (min-heap) stores the larger half of numbers.

Insertion logic:

- 1. Push number into small (max-heap using negative values).
- 2. Ensure **order property:** largest in small \leq smallest in large.
- 3. Balance sizes so the difference in length ≤ 1 .

Median calculation:

- If one heap is larger \rightarrow median is the top of that heap.
- o If heaps are equal → median = average of tops.

This allows O(log n) insertion and O(1) median retrieval.

Dry Run (Example)

Input: [1, 2, 3]

Step	small (max-heap)	large (min-heap)	Median
Add 1	[-1]	[]	1
Add 2	[-1]	[2]	(1+2)/2 = 1.5
Add 3	[-2,-1]	[3]	2

- addNum(): O(log n) → heap insertion and balancing
- findMedian(): O(1) → just access heap tops
- Space Complexity: O(n) → all numbers stored in heaps

Spiral Matrix / 54

```
from typing import List
class Solution:
  def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
    res = []
    if not matrix:
       return res
    left, right = 0, len(matrix[0])
    top, bottom = 0, len(matrix)
    while left < right and top < bottom:
       # Traverse top row
       for i in range(left, right):
         res.append(matrix[top][i])
       top += 1
       # Traverse right column
       for i in range(top, bottom):
         res.append(matrix[i][right - 1])
       right -= 1
       if not (left < right and top < bottom):
         break
       # Traverse bottom row (right to left)
       for i in range(right - 1, left - 1, -1):
         res.append(matrix[bottom - 1][i])
       bottom -= 1
       # Traverse left column (bottom to top)
       for i in range(bottom - 1, top - 1, -1):
         res.append(matrix[i][left])
       left += 1
    return res
```

Why It Works

- Maintain boundaries: top, bottom, left, right define the current rectangle to traverse.
- Traversal order (spiral):
 - 1. Top row \rightarrow left to right
 - 2. Right column \rightarrow top to bottom
 - 3. Bottom row \rightarrow right to left
 - 4. Left column → bottom to top
- After each traversal, **shrink boundaries** to move inward.
- Repeat until left >= right or top >= bottom, meaning the entire matrix is traversed.

Dry Run (Example)

Input:

```
matrix = [
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9]
```

]	T		
Step	Operation	Added to res	Boundaries (top,bottom,left,right)
1	Top row	1,2,3	top=1, bottom=3, left=0, right=3
2	Right column	6,9	top=1, bottom=3, left=0, right=2
3	Bottom row	8,7	top=1, bottom=2, left=0, right=2
4	Left column	4	top=2, bottom=2, left=1, right=2
5	Top row	5	top=3, bottom=2, left=1, right=2 → exit loop

Output: [1,2,3,6,9,8,7,4,5]

- Time Complexity:
 - Each element visited once \rightarrow O(m × n) for an m×n matrix
- Space Complexity:
 - Result array stores all elements → O(m × n)

Set Matrix Zeroes / 73

```
from typing import List
class Solution:
  def setZeroes(self, matrix: List[List[int]]) -> None:
    ROWS, COLS = len(matrix), len(matrix[0])
    rowZero = False # Whether the first row needs to be zeroed
    # Step 1: Use first row/col as markers
    for r in range(ROWS):
      for c in range(COLS):
         if matrix[r][c] == 0:
           matrix[0][c] = 0
           if r > 0:
             matrix[r][0] = 0
           else:
             rowZero = True
    # Step 2: Set zeroes based on markers (skip first row/col)
    for r in range(1, ROWS):
      for c in range(1, COLS):
         if matrix[0][c] == 0 or matrix[r][0] == 0:
           matrix[r][c] = 0
    # Step 3: Zero first column if needed
    if matrix[0][0] == 0:
      for r in range(ROWS):
         matrix[r][0] = 0
    # Step 4: Zero first row if needed
    if rowZero:
      for c in range(COLS):
         matrix[0][c] = 0
```

Why It Works

- **Goal:** Set entire row and column to 0 if a cell is 0, **in-place**.
- Strategy: Use first row and first column as markers to avoid extra space.
 - 1. Loop through matrix; if matrix[r][c] == 0, mark matrix[0][c] = 0 and matrix[r][0] = 0.
 - Special handling for first row using rowZero boolean.
 - 2. Loop through matrix (excluding first row/col); if row or column marker is 0, set the cell to 0.
 - 3. Zero first column if matrix[0][0] == 0.
 - 4. Zero first row if rowZero is True.

This avoids using extra O(m+n) space for marker arrays.

```
Dry Run (Example)
matrix = [
```

[1,1,1],

[1,0,1],

[1,1,1]

1

Step	Operation	Matrix State
Step 1	Mark zeros	$[1,0,1],[0,0,1],[1,1,1] \rightarrow \text{first row/col markers set}$
Step 2	Set zeros based on markers	[1,0,1],[0,0,0],[1,0,1]
Step 3	First column check	$matrix[0][0] != 0 \rightarrow no change$
Step 4	First row check	rowZero=False → no change

- Time Complexity:
 - Two nested loops over matrix \rightarrow O(m × n)
- Space Complexity:
 - Only uses variables for markers \rightarrow O(1) (in-place)

Two Sum

```
from typing import List
```

```
class Solution:
```

```
def twoSum(self, nums: List[int], target: int) -> List[int]:
    prevMap = {} # value -> index
    for i, n in enumerate(nums):
        diff = target - n
        if diff in prevMap:
        return [prevMap[diff], i]
        prevMap[n] = i
```

Why It Works

- Goal: Find indices of two numbers whose sum equals target.
- Hash map approach:
 - 1. Iterate through array, for each number n:
 - Compute diff = target n.
 - Check if diff exists in prevMap.
 - If yes → return [prevMap[diff], i].
 - Otherwise, store n in prevMap with its index.
- Ensures **one-pass solution** with O(1) lookup for complements.

Dry Run (Example)

Input: nums =
$$[2, 7, 11, 15]$$
, target = 9

i	n	diff = target - n	prevMap	Action
0	2	7	{}	Store 2 \rightarrow prevMap = {2:0}
1	7	2	{2:0}	2 found → return [0,1]

Output: [0,1]

- Time Complexity:
 - o Single pass through array \rightarrow O(n)
- Space Complexity:
 - Hash map stores up to n elements $\rightarrow O(n)$

Contains Duplicate

from typing import List

class Solution:

```
def containsDuplicate(self, nums: List[int]) -> bool:
    seen = set()
    for n in nums:
        if n in seen:
        return True
```

return False

seen.add(n)

Why It Works

- Goal: Check if the array contains any duplicates.
- Approach:
 - 1. Initialize an empty set seen.
 - 2. Iterate through each number n:
 - If n is already in seen, a duplicate exists → return True.
 - Otherwise, add n to seen.
 - 3. If the loop completes without returning, no duplicates exist \rightarrow return False.
- Rationale: Sets allow O(1) average lookup and insertion, making detection efficient.

Dry Run (Example)

Input: nums = [1, 2, 3, 1]

Step	n	seen before	Action	Duplicate Found?
1	1	{}	Add $1 \rightarrow \text{seen} = \{1\}$	No
2	2	{1}	Add 2 \rightarrow seen = $\{1,2\}$	No
3	3	{1,2}	Add 3 \rightarrow seen = {1,2,3}	No
4	1	{1,2,3}	1 in seen → return True	Yes

Output: True

- Time Complexity: $O(n) \rightarrow \text{each number checked once}$
- Space Complexity: $O(n) \rightarrow \text{set stores up to n elements}$

Valid Anagram

class Solution:

```
def isAnagram(self, s: str, t: str) -> bool:
  return sorted(s) == sorted(t)
```

Why It Works

- **Goal:** Determine if t is an anagram of s (same letters, same frequency).
- Approach:
 - 1. Sorting both strings puts the same characters in the same order.
 - 2. If sorted versions are equal \rightarrow all letters match in frequency \rightarrow anagram.
 - 3. Otherwise \rightarrow not an anagram.

Dry Run (Example)

Input: s = "listen", t = "silent"

Step	Operation	Result
1	sorted(s)	['e','i','l','n','s','t']
2	sorted(t)	['e','i','l','n','s','t']
3	Compare	Equal → return True

Output: True

Time and Space Complexity

- Time Complexity: $O(n \log n) \rightarrow \text{sorting each string of length } n$
- Space Complexity: $O(n) \rightarrow$ storing sorted lists

Group Anagrams / 49

from typing import List

from collections import defaultdict

class Solution:

```
def groupAnagrams(self, strs: List[str]) -> List[List[str]]:
    res = defaultdict(list) # mapping: char count -> list of anagrams
    for s in strs:
        count = [0] * 26 # 26 letters for 'a' to 'z'
        for c in s:
```

```
count[ord(c) - ord("a")] += 1
```

res[tuple(count)].append(s)

return list(res.values())

Why It Works

- Goal: Group words that are anagrams together.
- Approach:
 - 1. Use a **character count array** of size 26 to represent each word.
 - count[i] = number of occurrences of letter chr(i + ord('a')).
 - 2. Convert the count array to a **tuple** (hashable) and use it as a key in a dictionary.
 - 3. Words with the same character counts are grouped together in the same list.
- Efficient because it avoids sorting each string, which would take O(k log k) per word (k = length of word).

Dry Run (Example)

Input: strs = ["eat", "tea", "tan", "ate", "nat", "bat"]

Word	Character Count Key	Added to Dictionary
"eat"	(1,0,0,,1,1,0)	{"eat"}
"tea"	(1,0,0,,1,1,0)	{"eat","tea"}
"tan"	(1,0,0,,1,0,1)	{"tan"}
"ate"	(1,0,0,,1,1,0)	{"eat","tea","ate"}
"nat"	(1,0,0,,1,0,1)	{"tan","nat"}
"bat"	(1,1,0,,1,0,0)	{"bat"}

- Time Complexity: $O(n \times k)$
 - o n = number of words, k = max length of a word
 - o Counting characters is O(k) per word, appending to dictionary is O(1)
- Space Complexity: $O(n \times k)$
 - Storage for dictionary and result lists

Top K Frequent Elements / 347

```
from typing import List
class Solution:
  def topKFrequent(self, nums: List[int], k: int) -> List[int]:
    count = {}
    freq = [[] for _ in range(len(nums) + 1)]
    # Count frequency of each number
    for n in nums:
      count[n] = 1 + count.get(n, 0)
    # Bucket sort: place numbers into their frequency index
    for n, c in count.items():
      freq[c].append(n)
    res = []
    # Traverse buckets from highest freq to lowest
    for i in range(len(freq) - 1, 0, -1):
      for n in freq[i]:
         res.append(n)
         if len(res) == k:
           return res
```

Why It Works

- **Goal:** Find k elements that appear most frequently in the array.
- Approach:
 - 1. Count the frequency of each element using a dictionary (count).
 - 2. Use bucket sort:
 - Create a list of lists freq where freq[i] contains elements that appear exactly i times.
 - 3. Traverse freq from highest frequency to lowest:
 - Collect elements until we have k elements.
- Efficient because we avoid full sorting by frequency and exploit the limited range (max frequency ≤ n).

Dry Run (Example)

```
Input: nums = [1,1,1,2,2,3], k = 2
```

```
1. Count frequencies \rightarrow count = {1:3, 2:2, 3:1}
```

- 2. Bucket sort \rightarrow freq = [[], [3], [2], [1], [], []] (indices = frequencies)
- 3. Traverse freq from high \rightarrow
 - o i=3 \rightarrow add 1 \rightarrow res = [1]
 - i=2 \rightarrow add 2 \rightarrow res = [1,2] \rightarrow k=2 reached \rightarrow return [1,2]

Output: [1,2] (order can vary among same-frequency elements)

Time and Space Complexity

- Time Complexity: O(n)
 - \circ Counting frequencies \rightarrow O(n)
 - \circ Bucket sort insertion \rightarrow O(n)
 - o Collect top k → O(n) in worst case
- Space Complexity: O(n)
 - Dictionary + bucket array + result list

Is Subsequence / 392

class Solution:

```
def isSubsequence(self, s: str, t: str) -> bool:
```

$$i, j = 0, 0$$

while i < len(s) and j < len(t):

i += 1

j += 1 # always move j forward

return i == len(s)

Why It Works

- Goal: Determine if s is a subsequence of t.
- **Approach:** Two-pointer technique:
 - 1. i tracks position in s, j tracks position in t.
 - 2. Iterate through t (j moves forward always):
 - If t[j] == s[i], move i forward (match found).
 - If not, just move j forward.

- 3. After traversal, if i == len(s), all characters of s were found in order \rightarrow True. Otherwise \rightarrow False.
- Rationale: Only order matters; characters in between are ignored.

Dry Run (Example)

Input: s = "abc", t = "ahbgdc"

i	j	s[i]	t[j]	Action
0	0	а	a	match \rightarrow i=1, j=1
1	1	b	h no match \rightarrow j=2	
1	2	b	b	match \rightarrow i=2, j=3
2	3	С	g	no match → j=4
2	4	С	d	no match → j=5
2	5	С	С	match \rightarrow i=3, j=6

Output: $i = len(s) = 3 \rightarrow True$

Time and Space Complexity

return res

- Time Complexity: O(len(t)) → single pass through t
- Space Complexity: O(1) → only pointers i and j used

Product of Array Except Self / 238

```
from typing import List

class Solution:

def productExceptSelf(self, nums: List[int]) -> List[int]:

res = [1] * len(nums)

prefix = 1

for i in range(len(nums)):

res[i] = prefix

prefix *= nums[i]

postfix = 1

for i in range(len(nums) - 1, -1, -1):

res[i] *= postfix

postfix *= nums[i]
```

Why It Works

- **Goal:** Compute res[i] = product of all nums[j] except nums[i] **without division**.
- Approach: Use prefix and postfix products:
 - 1. **Prefix pass:** res[i] = product of all elements before i.
 - Keep a running prefix product.
 - 2. **Postfix pass:** Multiply res[i] by product of all elements after i.
 - Keep a running postfix product from the end.
- This ensures each res[i] = product of all elements except itself.

Dry Run (Example)

Input: nums = [1, 2, 3, 4]

i	prefix	res[i]	prefix after
0	1	1	1*1=1
1	1	1	1*2=2
2	2	2	2*3=6
3	6	6	6*4=24

res after prefix: [1,1,2,6]

Postfix pass:

i	postfix	res[i]	postfix after
3	1	6*1=6	1*4=4
2	4	2*4=8	4*3=12
1	12	1*12=12	12*2=24
0	24	1*24=24	24*1=24

Output: [24,12,8,6]

- Time Complexity: O(n) → two passes through the array
- Space Complexity: O(1) extra (res array does not count as extra)

Sum of Two Integers / 371

class Solution:

```
def getSum(self, a: int, b: int) -> int:
  while b != 0:
    c = a & b  # carry: bits where both a and b are 1
    a = a ^ b  # sum without carry (XOR)
    b = c << 1  # shift carry left to add in next iteration
    return a</pre>
```

Why It Works

- Goal: Compute a + b without using + or -.
- Approach: Simulate bitwise addition.
 - 1. a ^ b gives sum of bits without considering carry (like binary addition ignoring carry).
 - 2. a & b gives positions where carry will be generated (both bits are 1).
 - 3. Left shift the carry (c << 1) to add it in the next higher bit position.
 - 4. Repeat until carry (b) becomes zero \rightarrow no more carry to add.
- This is exactly how hardware performs binary addition.

Dry Run (Example)

Input: a = 5 (0101), b = 3 (0011)

Step	a (bin)	b (bin)	c = a&b	a = a^b	b = c<<1
Init	0101	0011	-	-	-
1	0101	0011	0001	0110	0010
2	0110	0010	0010	0100	0100
3	0100	0100	0100	0000	1000
4	0000	1000	0000	1000	0000

Output: a = 1000 (8)

- Time Complexity: O(1) (bounded by number of bits \rightarrow 32 iterations max for 32-bit integers)
- Space Complexity: O(1) (uses only variables a, b, c)

