EE24BTECH11050 - Pothuri Rahul

16) If the line segment joining the points (5,2) and (2,a) subtends an angle $\frac{\pi}{4}$ at the origin, then the absolute value of the product of all possible values of a is :

c) 6

d) 8

b) 2

a) 4

17) If the shortest distance between the lines $\frac{x-\lambda}{2} = \frac{y-4}{3} = \frac{z-3}{4}$ and $\frac{x-2}{4} = \frac{y-4}{6} = \frac{z-7}{8}$ is $\frac{13}{\sqrt{29}}$, then the value of λ is:								
a) -1	b) 1	c) $\frac{13}{25}$	d) $-\frac{13}{25}$					
			om the alphabets of the t necessarily distinct, is					
a) 175	b) 179	c) 181	d) 177					
19) if $\alpha \neq a, \beta \neq b$	$p, \gamma \neq c$ and $\begin{vmatrix} \alpha & b \\ a & \beta \\ a & b \end{vmatrix}$	$\begin{vmatrix} c \\ c \\ \gamma \end{vmatrix} = 0$, then $\frac{a}{\alpha - a} + \frac{a}{\alpha - a}$	$-\frac{b}{\beta-b} + \frac{\gamma}{\gamma-c}$ is equal to:					
a) 2	b) 3	c) 0	d) 1					
20) For $a, b > 0$, In then $\frac{b}{a}$ is equal to $\frac{b}{a}$.	et $f(x) = \begin{cases} \frac{\tan((a+1)x) + i}{x} \\ 3 \\ \frac{\sqrt{ax+b^2x^2} - \sqrt{b}\sqrt{ax}\sqrt{x}}{b\sqrt{ax}\sqrt{x}} \end{cases}$ and to :	$ \frac{b \tan x}{x} , x < 0; $ $ x = 0; \text{ be a} $ $ \frac{\sqrt{ax}}{x} , x > 0; $	a continuous function at	x = 0.				
a) 5	b) 4	c) 6	d) 8					
 21) Let a ray of light passing through the point (3, 10) reflects on the line 2x + y = 6 and then reflected ray passes through the point (7, 2). If the equation of the incident ray is ax + by + 1 = 0, then a² + b² + 3ab is equal to 22) Let α x = y e^{xy-β}, α,β ∈ N be the solution of the differential equation xdy - ydx + xy (xdy + ydx) = 0, y(1) = 2. Then α + β is equal to 23) Let a,b,c∈ N and a < b < c. Let the mean, the mean deviation about the mean and the variance of the 5 observations 9,25, a, b, c be 18, 4 and 136/5, respectively. Then 2a + b - c is equal to 24) Let S be the focus of the hyperbola x³/3 - y²/5 = 1, on the positive x-axis. Let C be the circle its centre at A (√6, √5) and passing through the points S. If O is the origin 								

and SAB is a diameter of C, then the square of the area of the triangle OSB is equal to .

25) Let \overline{A} be the region enclosed by the parabola $y^2 = 2x$ and the line x = 24. Then the maximum area of the rectangle inscribed in the region A is:

26) An arithmetic progression is written in the following way

5 8

20		23		26		29
	11		14		17	
		5		8		

The sum of all the terms in 10th row is _____.

- 27) The number of distinct real roots of the equation |x + 1| |x + 3| 4 |x + 2| + 5 = 0 is
- 28) If $\alpha = \lim_{x \to 0^+} \left(\frac{e^{\sqrt{\tan x}} e^{\sqrt{x}}}{\sqrt{\tan x} \sqrt{x}} \right)$ and $\beta = \lim_{x \to 0} (1 + \sin x)^{\frac{1}{2} \cot x}$ are the roots of the quadratic equation $ax^2 + bx \sqrt{e} = 0$, then $12 \log_e(a+b)$ is equal to _____.
- 29) If $\int \frac{1}{\sqrt[5]{(x-1)^4(x+3)^6}} dx = A \left(\frac{\alpha x-1}{\beta x+3}\right)^B + C$, where C is constant of integration, then the value of $\alpha + \beta + 20AB$ is _____.
- 30) let $\mathbf{P}(\alpha, \beta, \gamma)$ be the image of the point $\mathbf{Q}(1, 6, 4)$ in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Then $2\alpha + \beta + \gamma$ is equal to _____.