Data Preprocessing - Exploratory Data Analysis

```
In [69]:
```

```
1 import pandas as pd
2 import os
```

Load CSV Files with Pandas

In [70]:

```
los.chdir('/Users/tomisin/Dropbox/My Mac (Tomisins-MacBook-Pro.local)/Documents/Data
```

In [71]:

```
1 # Load CSV using Pandas
2 df = pd.read_csv("diabetes.csv")
```

In [72]:

```
1 df.head()
```

Out[72]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288

In [73]:

```
def myincom(x):
 2
       y = x* 45
 3
        return y
 4
 5
 6
 7
   def dorsiResp():
 8
        pass
 9
10
11
12
13
14
15
16
   a = 5
17
18
```

```
In [74]:
```

```
j = myincom(a)
print(j)
```

225

In [75]:

```
1 df1 = pd.read_csv("Housing_w_headers.csv")
```

#Step1: Peek at your data. Call for the top and bottom 'n' rows

In [103]:

```
1 df1.head(20)
```

Out[103]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwater
0	13300000	7420	4	2	3	yes	no	no	
1	12250000	8960	4	4	4	yes	no	no	
2	12250000	9960	3	2	2	yes	no	yes	
3	12215000	7500	4	2	2	yes	no	yes	
4	11410000	7420	4	1	2	yes	yes	yes	
5	10850000	7500	3	3	1	yes	no	yes	
6	10150000	8580	4	3	4	yes	no	no	
7	10150000	16200	5	3	2	yes	no	no	
8	9870000	8100	4	1	2	yes	yes	yes	
9	9800000	5750	3	2	4	yes	yes	no	
10	9800000	13200	3	1	2	yes	no	yes	
11	9681000	6000	4	3	2	yes	yes	yes	
12	9310000	6550	4	2	2	yes	no	no	
13	9240000	3500	4	2	2	yes	no	no	
14	9240000	7800	3	2	2	yes	no	no	
15	9100000	6000	4	1	2	yes	no	yes	
16	9100000	6600	4	2	2	yes	yes	yes	
17	8960000	8500	3	2	4	yes	no	no	
18	8890000	4600	3	2	2	yes	yes	no	
19	8855000	6420	3	2	2	yes	no	no	

```
In [104]:
```

```
1 df1.tail(20)
```

Out[104]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterh
525	2345000	3640	2	1	1	yes	no	no	
526	2310000	3180	2	1	1	yes	no	no	
527	2275000	1836	2	1	1	no	no	yes	
528	2275000	3970	1	1	1	no	no	no	
529	2275000	3970	3	1	2	yes	no	yes	
530	2240000	1950	3	1	1	no	no	no	
531	2233000	5300	3	1	1	no	no	no	
532	2135000	3000	2	1	1	no	no	no	
533	2100000	2400	3	1	2	yes	no	no	
534	2100000	3000	4	1	2	yes	no	no	
535	2100000	3360	2	1	1	yes	no	no	
536	1960000	3420	5	1	2	no	no	no	
537	1890000	1700	3	1	2	yes	no	no	
538	1890000	3649	2	1	1	yes	no	no	
539	1855000	2990	2	1	1	no	no	no	
540	1820000	3000	2	1	1	yes	no	yes	
541	1767150	2400	3	1	1	no	no	no	
542	1750000	3620	2	1	1	yes	no	no	
543	1750000	2910	3	1	1	no	no	no	
544	1750000	3850	3	1	2	yes	no	no	

In [77]:

1 df1.columns

Out[77]:

In [79]:

dfl.info() # helps identify the structure of our data and see if any features is

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
# Column Non-Null Count
```

#	Column	Non-Null Count	Dtype
0	price	545 non-null	int64
1	area	545 non-null	int64
2	bedrooms	545 non-null	int64
3	bathrooms	545 non-null	int64
4	stories	545 non-null	int64
5	mainroad	545 non-null	object
6	guestroom	545 non-null	object
7	basement	545 non-null	object
8	hotwaterheating	545 non-null	object
9	airconditioning	545 non-null	object
10	parking	545 non-null	int64
11	prefarea	545 non-null	object
12	furnishingstatus	545 non-null	object
٠.	1 1 6 4 6 5 1 1		

dtypes: int64(6), object(7)
memory usage: 55.5+ KB

In [80]:

```
# Conclusion from .info()

2
3 '''
4 summary of the size of the data,
5 the number of features and samples and the data type.
6 Also tells us if there any missing values
7
8 '''
```

Out[80]:

'\nsummary of the size of the data, \nthe number of features and sampl es and the data type. \nAlso tells us if there any missing valuues \n \n'

In [81]:

df.describe() #look out for data distribution and skewness

Out[81]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabete
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [82]:

```
import matplotlib.pyplot as plt
plt.hist(df1['parking'].values)
```

Out[82]:

```
(array([299., 0., 0., 126., 0., 0., 108., 0., 0., 12.]),
array([0., 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.]),
<BarContainer object of 10 artists>)
```


In [83]:

```
plt.plot(df1['bedrooms'].values)
```

Out[83]:

[<matplotlib.lines.Line2D at 0x7f83daefdd60>]

In [84]:

```
data = pd.read_csv("diamond.csv")
```

In [85]:

```
1 data.head()
```

Out[85]:

	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	Ideal	Е	SI2	61.5	55.0	NaN	3.95	NaN	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326.0	3.89	3.84	2.31
2	0.23	Good	NaN	VS1	56.9	65.0	327.0	4.05	4.07	2.31
3	0.29	Premium	I	NaN	62.4	58.0	334.0	4.20	NaN	2.63
4	0.31	Good	J	NaN	63.3	58.0	335.0	4.34	4.35	2.75

```
In [86]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53968 entries, 0 to 53967
Data columns (total 10 columns):
     Column Non-Null Count Dtype
#
     ____
              -----
 0
    carat
              53968 non-null float64
 1
    cut
              53968 non-null object
    color 48571 non-null object
 2
   clarity 48568 non-null object
 3
   depth 48573 non-null float64
table 48569 non-null float64
price 48571 non-null float64
 4
 5
 6
 7
              48573 non-null float64
    х
 8
   У
              48571 non-null float64
 9
             48569 non-null float64
     Z
dtypes: float64(7), object(3)
memory usage: 4.1+ MB
In [87]:
 1 data.isna().sum() #shows number of missing values in each column
Out[87]:
carat
              0
              0
cut
           5397
color
clarity
           5400
depth
           5395
table
           5399
price
           5397
х
           5395
           5397
У
           5399
dtype: int64
In [88]:
    #TODO: MISSING VALUES: treat missing values for the following featurees
 2
    1.1.1
 3
               5397
 4
   color
 5 clarity
               5400
 6 depth
               5395
 7
   table
               5399
 8 price
               5397
 9 x
               5395
10 y
               5397
11 z
               5399
12
Out[88]:
'\ncolor
             5397\nclarity
                              5400\ndepth
                                                5395\ntable
                                                                   5399
\nprice
             5397\nx
                               5395\ny
                                                5397\nz
                                                                  5399
n'
```

Renaming Columns

```
In [89]:
    df.columns
Out[89]:
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'In
sulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
      dtype='object')
In [94]:
    from pandas import read csv
 2 filename = "diabetes.csv"
 3 names = ['preg', 'Glu', 'BP', 'skinThickness', 'Insulin', 'BMI', 'pedi', 'age',
 4 dfx = read csv(filename, names=names)
In [95]:
 1 dfx.columns
Out[95]:
Index(['preg', 'Glu', 'BP', 'skinThickness', 'Insulin', 'BMI', 'pedi',
'age',
       'class'],
      dtype='object')
Checking dataTypes
```

```
In [100]:
```

```
1 types = df.dtypes
2 print(types)
```

```
Pregnancies
                                int64
Glucose
                                int64
BloodPressure
                                int64
SkinThickness
                                int64
Insulin
                               int64
BMI
                             float64
DiabetesPedigreeFunction
                             float64
                               int64
Outcome
                                int64
dtype: object
```

```
In [101]:
```

```
types = df1.dtypes
print(types)
```

price int64 area int64 bedrooms int64 bathrooms int64 stories int64 mainroad object object guestroom basement object hotwaterheating object airconditioning object int64 parking prefarea object furnishingstatus object dtype: object

Missing Data Treatment

```
import pandas as pd
data5 = data
for col in data5.columns:
    data5.loc[data5.sample(frac=0.1).index, col] = pd.np.nan
```

In []:

```
# MISSING DATA TREATMENT

df.fillna(0)
df.fillna(method ='pad') #Filling null values with the previous ones
df.fillna(method ='bfill') #Filling null value with the next ones
data.replace(to_replace = np.nan, value = -99999999)
df.interpolate(method ='linear', limit_direction ='forward') #Using interpolate(
df.dropna() #Dropping rows with at least 1 null value
df.dropna(how = 'all') #Dropping rows if all values in that row are missing
```

```
In [112]:
```

```
for val in data['color'].isna().values:
    if val ==True:
        print('Yes')
```

Yes Yes

In [106]:

1 **df**

Out[106]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.3
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.3

768 rows × 9 columns

In [107]:

```
1 df.isna()
```

Out[107]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFuncti
0	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	Fa
2	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	Fa
4	False	False	False	False	False	False	Fa
763	False	False	False	False	False	False	Fa
764	False	False	False	False	False	False	Fa
765	False	False	False	False	False	False	Fa
766	False	False	False	False	False	False	Fa
767	False	False	False	False	False	False	Fa

768 rows × 9 columns

In [109]:

```
1 print(df.isna().sum())
Pregnancies
                             0
                             0
Glucose
BloodPressure
                             0
SkinThickness
                             0
Insulin
BMI
DiabetesPedigreeFunction
                             0
Age
                             0
Outcome
                             0
dtype: int64
```

In [111]:

```
1 x = data['color'].isna().values.tolist()
```

```
In [35]:
   x
Out[35]:
[False,
 False,
 False,
 False,
 False,
 False,
 False,
 False,
 False,
 False,
 True,
 False,
 False,
 False,
 False,
 False,
 False,
 False.
In [23]:
    #data.isnull().sum(axis = 0).sum()
    print(data.isna().sum())
Out[23]:
```

Creating a dataFrame

30

```
In [114]:
    temp = [37, 37.2, 36.9, None, 37.8, 39]
 2
    mtime = [1, 2, None, 4, None, 6]
 3
   df x = pd.DataFrame()
   df x['temp'] = temp
   df_x['mtime'] = mtime
   df_x
Out[114]:
   temp mtime
   37.0
          1.0
0
   37.2
          2.0
2
   36.9
         NaN
  NaN
          4.0
3
   37.8
         NaN
   39.0
          6.0
5
In [115]:
    #df_x = df_x.interpolate(method ='linear', limit_direction ='forward')
Manipulating missing values
In [116]:
    #Back fill method
   df_x = df_x.fillna(method ='bfill')
In [117]:
   df_x
Out[117]:
```

```
        temp
        mtime

        0
        37.0
        1.0

        1
        37.2
        2.0

        2
        36.9
        4.0

        3
        37.8
        4.0

        4
        37.8
        6.0

        5
        39.0
        6.0
```

```
data.isna().sum()
Out[119]:
                 0
carat
cut
                 0
color
             5397
clarity
             5400
depth
             5395
table
             5399
price
             5397
             5395
х
             5397
У
z
             5399
dtype: int64
In [121]:
     newData = data.fillna(method ='bfill')
  2
    newData
        0.23
                  Ideal
                           Ε
                                SI2
                                      61.5 55.0
     0
                                                   326.0 3.95 3.84 2.43
     1
        0.21
               Premium
                           Ε
                                SI1
                                      59.8
                                            61.0
                                                   326.0 3.89 3.84 2.31
        0.23
                 Good
                           Τ
                                VS1
                                      56.9
                                            65.0
                                                   327.0 4.05 4.07 2.31
     2
        0.29
                               VVS2
                                      62.4
                                            58.0
     3
               Premium
                           Τ
                                                   334.0 4.20 4.35 2.63
        0.31
                               VVS2
                                      63.3
                                            58.0
                                                   335.0 4.34 4.35 2.75
                 Good
                           J
     4
         ...
                                        ...
                                              ...
                                                     ...
                                                               ...
                    ...
                          ...
                                 ...
                                                          ...
 53963
        0.72
                  Ideal
                           D
                                SI1
                                      60.8
                                            57.0 2757.0 5.75 5.76 3.50
        0.72
                 Good
                                SI1
                                      63.1
 53964
                           D
                                            55.0 2757.0 5.69 5.75 3.61
                           Н
                                SI1
                                      62.8
                                            60.0 2757.0 5.66 5.68
 53965
        0.70 Very Good
                                                                   3.56
                                SI2
                                      61.0 58.0 2757.0 6.15 6.12 3.74
        0.86
               Premium
                           Η
 53966
                           D
                                SI2
                                      62.2 55.0 2757.0 5.83 5.87 3.64
 53967
        0.75
                  Ideal
53968 rows × 10 columns
In [122]:
    newData.isna().sum()
Out[122]:
             0
carat
             0
cut
color
             0
clarity
             0
depth
             0
             0
table
price
             0
             0
Х
             0
У
\mathbf{z}
             0
dtype: int64
```

In [119]:

In [124]:

```
babyHgt = [2,4,7,9 ,11]
babyWt = [23,25,24.5,25,27]
babyDf = pd.DataFrame()

babyDf['wt'] = babyWt
babyDf['ht'] = babyHgt

babyDf
```

Out[124]:

	wt	ht
0	23.0	2
1	25.0	4
2	24.5	7
3	25.0	9
4	27.0	11

In [125]:

```
plt.plot(babyDf["wt"])
```

Out[125]:

[<matplotlib.lines.Line2D at 0x7f83d86ca850>]


```
In [49]:
    babyHgt = [2,4,None,9,11]
    babyWt = [23, 25, None, None, 27]
 3
    babyDf = pd.DataFrame()
 5 babyDf['wt'] = babyWt
    babyDf['ht'] = babyHgt
 6
 7
 8 babyDf
Out[49]:
    wt
         ht
0 23.0
        2.0
1 25.0
        4.0
2 NaN NaN
3 NaN
        9.0
4 27.0 11.0
In [126]:
   #Interpolate method
   newBabyDf = babyDf.interpolate(method ='linear')
In [127]:
 1 newBabyDf
Out[127]:
    wt ht
0 23.0
        2
1 25.0
2 24.5
       7
3 25.0
4 27.0 11
In [131]:
```

1 df_x = df.fillna(method ='pad')

In [132]:

```
cleanData = df_x.dropna()
cleanData
```

Out[132]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.3
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.3

768 rows × 9 columns

In [133]:

1 cleanData.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 60.0 KB

```
In [134]:
    cleanData.isna().sum()
Out[134]:
Pregnancies
                             0
Glucose
                             0
BloodPressure
                             0
SkinThickness
                             0
Insulin
                             0
BMI
DiabetesPedigreeFunction
Age
                             0
Outcome
dtype: int64
    x = data5.dropna()
   print(x.isnull().sum())
```

Understand the Dimensions of Your Data

```
In [15]:

1  # Use the shape() function
2  shape = data.shape
3  print(shape)

(768, 9)
```

Data Type For Each Attribute

```
In [11]:
```

```
# Data Types for Each Attribute
'''from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)'''

types = data.dtypes
print(types)
```

```
int64
preg
plas
          int64
          int64
pres
skin
          int64
         int64
test
       float64
mass
pedi
       float64
          int64
age
class
          int64
dtype: object
```

Descriptive Statistics

```
In [ ]:
```

```
1
   Descriptive statistics can give you great insight into the shape of each attribu
2
3
4
   The describe() function on the Pandas
   DataFrame lists 8 statistical properties of each attribute. They are:
6
   • Count.
7
   • Mean.
   • Standard Deviation.
8
9
   • Minimum Value.
10 • 25th Percentile.
11
   • 50th Percentile (Median).
   • 75th Percentile.
   • Maximum Value.
13
```

In []:

```
pandas.set option() changes the precision of the numbers and the preferred width

This display helps to quickly review data patterns like the presence of NA values for missing data or surprising distributions for attributes
```

In [135]:

```
# Statistical Summary
from pandas import read_csv
from pandas import set_option
#filename = "c:/dataset/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
df = read_csv(filename, names=names)
set_option('display.width', 100)
set_option('precision', 3)

description = df.describe()
print(description)
```

```
preg plas pres skin test mass
                                         pedi
                                               age class
                                                     769
            769
                 769
                       769
                             769
                                  769
                                          769
                                               769
count
        769
unique
         18
             137
                    48
                         52
                             187
                                  249
                                          518
                                                53
                                                        3
                    70
                                        0.254
                                                        0
top
         1
             100
                         0
                              0
                                   32
                                                22
        135
             17
                    57
                        227
                             374
                                   13
                                            6
                                                72
                                                     500
freq
```

Data Imbalance

Classification problems require you know how balanced the class values are. Highly imbalanced problems need to be addressed before modeling.

In classification problems you need to inspect the Target Class for balance

```
In [85]:
```

```
# Class Distribution
'''from pandas import read_csv
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)'''

# diabetes.csv
class_counts = data.groupby('Outcome').size()
print(class_counts)
```

Outcome

0.0 500 1.0 267 dtype: int64

In []:

#You can see that there are more than double the number of observations with class #(no onset of diabetes) than there are with class 1 (onset of diabetes).

Correlations Between Attributes

```
In [24]:
```

```
# Pairwise Pearson correlations
from pandas import read_csv
from pandas import set_option
#filename = 'c:/dataset/master/pima-indians-diabetes.data.csv'
#names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'
data = read_csv(filename)
set_option('display.width', 1000)
set_option('precision', 2)

correlations = data.corr(method='pearson')
print(correlations)
```

			Pregnancies	Glucose	BloodP	ressure	SkinThi
ckness	Insuli	n BMI	DiabetesPedigre	eFunction	n Age	Outcome	
Pregnanc	cies		1.00	0.13		0.14	
-0.08	-0.07	0.02		-0.03	0.54	0.22	
Glucose			0.13	1.00		0.15	
0.06	0.33	0.22		0.14	0.26	0.47	
BloodPre	essure		0.14	0.15		1.00	
0.21	0.09	0.28		0.04	0.24	0.07	
SkinThio	ckness		-0.08	0.06		0.21	
1.00	0.44	0.39		0.18 -	-0.11	0.07	
Insulin			-0.07	0.33		0.09	
0.44	1.00	0.20		0.19 -	-0.04	0.13	
BMI			0.02	0.22		0.28	
0.39	0.20	1.00		0.14	0.04	0.29	
Diabetes	sPedigre	eeFuncti	on -0.03	0.14		0.04	
0.18	0.19	0.14		1.00	0.03	0.17	
Age			0.54	0.26		0.24	
-0.11	-0.04	0.04		0.03	1.00	0.24	
Outcome			0.22	0.47		0.07	
0.07	0.13	0.29		0.17	0.24	1.00	

Seaborn Package Can be Used

In [37]:

```
1
2
   import seaborn as sb
3
   import numpy as np
4
   import pandas as pd
   import matplotlib.pyplot as plt
 6
   from pandas import set_option
7
8
   #filename = 'c:/dataset/master/pima-indians-diabetes.data.csv'
9
10
   #names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class
   #data.columns = names
11
12
   data = data #read csv(filename)
13
   set_option('display.width', 100)
14
15
   plt.figure(figsize=(16,5))
16
   #sns.heatmap(data.corr())
17
18
   sb.heatmap(data.corr(), annot = True)
```

Out[37]:

<AxesSubplot:>

In [35]:

```
1 data.corr()
```

Out[35]:

	ID	No_Pation	AGE	Urea	Cr	HbA1c	Chol	TG
ID	1.000000	0.064920	-0.065980	-0.094434	-0.102457	-0.007571	0.044390	-0.055908
No_Pation	0.064920	1.000000	-0.088006	-0.019160	0.000692	-0.032057	-0.030171	-0.039885
AGE	-0.065980	-0.088006	1.000000	0.105092	0.054941	0.379136	0.036649	0.148204
Urea	-0.094434	-0.019160	0.105092	1.000000	0.624134	-0.023603	0.001852	0.040980
Cr	-0.102457	0.000692	0.054941	0.624134	1.000000	-0.037412	-0.007097	0.056579
HbA1c	-0.007571	-0.032057	0.379136	-0.023603	-0.037412	1.000000	0.177489	0.218556
Chol	0.044390	-0.030171	0.036649	0.001852	-0.007097	0.177489	1.000000	0.321789
TG	-0.055908	-0.039885	0.148204	0.040980	0.056579	0.218556	0.321789	1.000000
HDL	0.026231	-0.013357	-0.020038	-0.036994	-0.023804	0.028933	0.103814	-0.083001
LDL	-0.064305	-0.003171	0.016105	-0.007301	0.039479	0.011057	0.416665	0.015378
VLDL	0.146142	0.113754	-0.087903	-0.011191	0.009615	0.073462	0.076294	0.144570
вмі	0.049409	0.017719	0.375956	0.045618	0.054746	0.413350	0.013678	0.110757

the Seaborn heatmap function can take in 18 arguments. This is what the function looks like with all the arguments:

sns.heatmap(data, vmin=None, vmax=None, cmap=None,center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels='auto', yticklabels='auto', mask=None, ax=None, **kwargs)

In []:

```
Sometimes your correlation coefficients mayhave too many floating digits.

Reduce the decimal places to improve readability using the argument fmt = '.3g'or fmt = '.1g' because by default the function displays two digits af decimal (greater than zero) i.e fmt='.2g'

MULTI-COLINEARITY
```

In [8]:

```
plt.figure(figsize=(16,5))
sns.heatmap(data.corr(), annot = True, fmt='.lg')
```

Out[8]:

<AxesSubplot:>

In [9]:

```
plt.figure(figsize=(16,5))
sns.heatmap(data.corr(), annot = True, vmin=-1, vmax=1, center= 0)
```

Out[9]:

<AxesSubplot:>

In []:

```
To change the shape use the NumPy methods; .triu() and .tril()
and then specify the Seaborn heatmap argument called mask=

.triu() is a method in NumPy that returns the lower triangle of any matrix giver
while .tril() returns the upper triangle of any matrix given to it.
```

In [10]:

```
matrix = np.triu(data.corr())
plt.figure(figsize=(16,5))
sns.heatmap(data.corr(), annot=True, mask=matrix)
```

Out[10]:

<AxesSubplot:>

In [11]:

```
mask = np.tril(data.corr())
plt.figure(figsize=(16,5))
sns.heatmap(data.corr(), annot=True, mask=mask)
```

Out[11]:

<AxesSubplot:>

Skew of Univariate Distributions

```
1
    Skew refers to a distribution that is assumed Gaussian (normal or bell curve) the
 2
 3
    squashed in one direction or another.
    Many machine learning algorithms assume a Gaussian distribution.
    Knowing that an attribute has a skew may allow you to perform data preparation t
 7
    the skew and improve the accuracy of your models.
   You can calculate the skew of each attribute using the skew() function on the Pa
In [ ]:
   Skew can be positive (right) or negative (left) skew.
   Values closer to zero show less skew.
In [88]:
    # Skew for each attribute
    '''from pandas import read csv
   filename = "pima-indians-diabetes.data.csv"
   names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
   data = read csv(filename)'''
 5
 7
   skew = data.skew()
   print(skew)
         0.901674
preg
         0.170290
plas
        -1.837988
pres
         0.100862
skin
test
        2.273627
       -0.428455
mass
         1.927745
pedi
         1.129597
age
         0.638949
class
dtype: float64
```

Understand Your Data With Visualization

Univariate Plots

```
In [ ]:
```

In []:

In []:

```
three techniques that you can use to understand each attribute of your dataset i

Histograms.
Density Plots.

Box and Whisker Plots.
```

In []:

A fast way to get an idea of the distribution of each attribute is to look at hi group data into bins and provide you a count of the number of observations in ea

From the shape of the bins you can quickly get a feeling **for** whether an attribut or even has an exponential distribution. It can also help you see possible outli

In [15]:

```
#Univariate Histograms
 2
   from matplotlib import pyplot
    1.1.1
 3
 4
   from pandas import read_csv
   filename = 'pima-indians-diabetes.data.csv'
   names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename)'''
 7
 8
 9
   data.hist()
10
11
   plt.gcf().set size inches(20,20)
   pyplot.show()
```


In []:

- 1 the attributes age, pedi and test may have an exponential distribution.
- 2 mass and pres and plas attributes may have a Gaussian or nearly Gaussian distrib

3

many machine learning techniques assume a Gaussian univariate distribution on the

Density Plots

In []:

- Density plots are another way of getting a quick idea of the distribution of each
 - The plots look like an abstracted histogram with a smooth curve drawn through the

In [16]:

```
# Univariate Density Plots
 2
     from matplotlib import pyplot
 3
     from pandas import read csv
     '''filename = 'pima-indians-diabetes.data.csv'
     names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
     data = read_csv(filename)'''
 7
 8
     data.plot(kind='density', subplots=True, layout=(3,3), sharex=False)
 9
10
     plt.gcf().set size inches(20,20)
     pyplot.show()
11
 0.14
                                                                         0.025
 0.12
                                     0.010
                                                                        0.020
                                     0.008
₹ 0.08
                                                                       Ajis 0.015
 0.06
                                                                         0.010
                                     0.002
 0.02
 0.00
                                     0.000
                                                                         0.000
                                                  50 100 150 200 250 300
                                    0.007
                        SkinThickness
 0.025
                                     0.005
 0.020
                                     0.004
                                                                        £ 0.03
0.015
eusify
                                                                         0.02
 0.010
                                     0.002
                                                                         0.01
 0.005
                                     0.001
 0.000
                                     0.000
                                                                         0.00
                         100 125 150
                                               ó
               25
                                                               1000
                  — DiabetesPedigreeFunction
                                                                                                  Outcome
                                     0.05
 1.75
 1.50
                                                                          1.5
<u>₽</u> 100
                                                                        10
년
0.75
                                     0.02
 0.50
                                                                          0.5
                                     0.01
 0.25
                                                                          0.0
                                                                            -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
```

Box and Whisker Plots

In []:

```
Boxplots summarize the distribution of each attribute,
drawing a line for the median (middle value) and a box around the 25th and 75th
percentiles (the middle 50% of the data).

The whiskers give an idea of the spread of the data
and dots outside of the whiskers show candidate outlier values
(values that are 1.5 times greater than the size of spread of the middle 50% of
```

In [17]:

```
# Box and Whisker Plots
from matplotlib import pyplot
from pandas import read_csv
'''filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename)'''

data.plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False)
plt.gcf().set_size_inches(20,20)
pyplot.show()
```



```
In [ ]:
```

Multivariate Plots

In []:

- 1 Here we look at two plots that show the interactions between multiple variables
- 2 . Correlation Matrix Plot.
- 3 . Scatter Plot Matrix.

In []:

Correlation gives an indication of how related the changes are between two variations of two variables change in the same direction they are positively correlated.

If they change in opposite directions together (one goes up, one goes down), then they are negatively correlated.

7 You can calculate the correlation between each pair of attributes using a correl

9 This is useful to know, because some machine learning algorithms like linear

and logistic regression can have poor performance if there are highly correlated in your data.

In [54]:

1 data.columns

Out[54]:

Index(['Temperature', 'Humidity', 'Light', 'CO2', 'HumidityRatio', 'Oc
cupancy'], dtype='object')

```
In [18]:
```

```
# Correction Matrix Plot
   from matplotlib import pyplot
2
3 from pandas import read csv
4
   import numpy
   '''filename = 'pima-indians-diabetes.data.csv'
6 names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
   data = read csv(filename)'''
8
   #names = list(data.columns)
9
10 correlations = data.corr()
   # plot correlation matrix
11
12 fig = pyplot.figure()
13 | ax = fig.add_subplot(111)
14 cax = ax.matshow(correlations, vmin=-1, vmax=1)
15 fig.colorbar(cax)
16 | ticks = numpy.arange(0,9,1)
17 ax.set_xticks(ticks)
18 ax.set yticks(ticks)
19 ax.set_xticklabels(names)
20 ax.set yticklabels(names)
21 pyplot.show()
```

NameError

Traceback (most recent call

NameError: name 'names' is not defined

In [35]:

```
2
   # Correction Matrix Plot (generic)
3
   from matplotlib import pyplot
   from pandas import read csv
   import numpy
   '''filename = 'pima-indians-diabetes.data.csv'
6
   names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
   data = read_csv(filename)'''
8
9
10 correlations = data.corr()
11 # plot correlation matrix
12 fig = pyplot.figure()
13 ax = fig.add_subplot(111)
14 cax = ax.matshow(correlations, vmin=-1, vmax=1)
15 fig.colorbar(cax)
16 pyplot.show()
```


In []:

1 | Scatter Plot Matrix

In []:

A scatter plot shows the relationship between two variables as dots in two dimer axis for each attribute.

You can create a scatter plot for each pair of attributes in your data.
Drawing all these scatter plots together is called a scatter plot matrix.

Scatter plots are useful for spotting structured relationships between variables, like whether you could summarize the relationship between two variables with a line.

Attributes with structured relationships may also be correlated and good candidates for removal from your dataset.

In []:

- the scatter plot matrix **is** symmetrical.

 This **is** useful to look at the pairwise relationships **from**different perspectives.
- 4 the diagonal shows histograms of each attribute.

In [19]:

```
# Scatterplot Matrix
2
   from matplotlib import pyplot
3
   from pandas import read csv
   from pandas.plotting import scatter matrix
   '''filename = "pima-indians-diabetes.data.csv"
   names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
6
7
   data = read_csv(filename)'''
8
   scatter matrix(data)
9
10
   plt.gcf().set size inches(20,20)
11
   pyplot.show()
```



```
In [68]:
```

```
1 cleanData =0
```

In [69]:

```
1 cleanData
```

Out[69]: