

- Introduction to AML
- What is AML?
 - AML refers to regulations and techniques used to prevent financial crimes.
- Why is it Important?
 - Protects financial institutions from illicit activities.
 - Identifies suspicious transaction patterns.
- Project Goal:
 - Develop an end-to-end AML detection system using MySQL.

Database Schema

- Tables in MySQL:
 - Customers_final: Stores customer details.
 - Transactions: Contains all financial transactions.
 - Risk_Parameters: Defines thresholds for suspicious activities.
- Indexes for Performance Optimization:
 - CustomerID, SenderID, ReceiverID,
 Date indexed for efficient queries

- Risk Parameters & Thresholds
- Risk Rules Implemented:
 - Suspicious Transaction:
 Amount between 9000 9999.
 - High-Risk Customers:
 Transactions exceed 100,000.
 - Smurfing Pattern: More than 3 transactions, total >150,000 in 30 days

Suspicious Transactions View • Query Logic:

- Extract transactions where amount is in suspicious range.
- Uses Risk_Parameters table for dynamic thresholding.

·Use Case:

 Identify transactions just below regulatory reporting limits.

```
/* Suspicious Transactions View*/
• CREATE VIEW Suspicious_Transactions AS
SELECT TransactionID, SenderID, ReceiverID, Amount, Date, Mode, Location
FROM Transactions
WHERE Amount BETWEEN

    (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Suspicious_Threshold_Min')
    AND
    (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Suspicious_Threshold_Max');
```

	TransactionID	SenderID	ReceiverID	Amount	Date	Mode	Location
•	6192	146	20	9997.12	2024-05-28 09:38:15	Crypto Transfer	Dubai
	5821	755	828	9995.90	2024-03-09 16:21:17	Crypto Transfer	Hong Kong
	12240	875	894	9984.28	2024-04-07 11:46:25	Online Banking	Berlin
	40302	318	91	9978.86	2025-02-04 07:47:24	Cash Deposit	Singapore
	22905	922	787	9978.78	2025-01-20 18:25:18	Cheque	New York
	4642	339	877	9977.27	2024-09-11 15:53:21	Wire Transfer	Berlin
	39662	252	748	9973.88	2024-04-09 23:08:21	Wire Transfer	Zurich

High-Risk Customers Analysis • Query Logic:

- Aggregates transaction amounts per customer.
- Flags customers exceeding 100,000 in transactions.

·Use Case:

 Identifies individuals engaging in high-risk financial activity.

```
/*High-Risk Customers View*/

CREATE VIEW High_Risk_Customers AS

SELECT c.CustomerID, c.Name, c.Location AS RegisteredLoc, COUNT(t.TransactionID) AS Total_Transactions,

SUM(t.Amount) AS Total_Amount

FROM Customers_final c

JOIN Transactions t ON c.CustomerID = t.SenderID

GROUP BY c.CustomerID, c.Name, c.Location

HAVING Total_Amount > (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'High_Risk_Transaction_Limit')

ORDER BY Total_Amount DESC;

select * from High_Risk_Customers;
```


Smurfing Pattern Detection •Query Logic:

- Detects frequent small transactions adding up to large sums.
- Rolling 30-day window to ensure real-time tracking.

·Use Case:

 Identifies potential structuring to avoid detection

```
/*Smurfing Pattern Detection (Rolling 30-Day Window)*/
CREATE VIEW Smurfing_Detection AS
SELECT t.SenderID, c.Name, COUNT(t.TransactionID) AS Txn_Count, SUM(t.Amount) AS Total_Amount
FROM Transactions t

JOIN Customers_final c ON t.SenderID = c.CustomerID
WHERE t.Date >= NOW() - INTERVAL 30 DAY
GROUP BY t.SenderID, c.Name
HAVING Txn_Count > (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Smurfing_Min_Transactions')
AND Total_Amount > (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Smurfing_Min_Amount')
ORDER BY Total_Amount DESC;
SELECT * FROM Smurfing_Detection;
```

Re	sult Grid	Filter Rows:	Export:			
	SenderID	Name	Txn_Count	Total_Amount		
-	445	Johnny Curry	11	590736.89		
	245	Richard Gonzales	11	553329.77		
	526	Eddie Aguirre	7	525910.01		
	988	Seth Mills	7	489993.14		
	95	Nicholas Harris	7	488739.47		
	994	Kelly Hall	10	484243.70		
	481	Gloria Boyd	7	473105.08		

Cross-Location Transaction Analysis • Query Logic:

- Flags transactions where sending & receiving locations differ.
- Filters for high-value transactions (>80,000).

·Use Case:

 Identifies possible cross-border money laundering activities

	TransactionID	SenderID	ReceiverID	Amount	Date	Mode	Txn_Location	Registered_Location
•	40807	348	20	99999.40	2024-08-06 08:41:34	Cash Deposit	Zurich	Saudi Arabia
	20467	519	578	99997.87	2024-09-17 03:45:21	Wire Transfer	New York	Afghanistan
	23252	688	479	99996.95	2024-08-25 00:23:39	Wire Transfer	New York	Lebanon
	38511	128	446	99996.64	2024-11-04 05:21:12	Cheque	New York	Guadeloupe
	2045	394	496	99995.44	2024-10-08 00:35:20	Crypto Transfer	Hong Kong	Saint Vincent and the Grenadines
	46352	704	40	99994.95	2024-03-03 10:03:19	Wire Transfer	Singapore	Macedonia
	15891	370	265	99988.87	2024-07-29 22:27:54	Wire Transfer	Singapore	Bolivia

Multi-Hop Transaction Analysis •Recursive CTE for Multi-Hop Transactions

- Tracks money flow across multiple transactions.
- Detects loops where money returns to the original sender within ±20% of the initial amount.

·Use Case:

 Identifies layering techniques used to obscure money trails

	TransactionID	OriginalSender	FinalReceiver	Path	Depth	InitialAmount	CurrentAmount	IsLoop
•	29734	31	31	31 -> 464 -> 31	3	68077.65	64515.01	1
	31398	55	55	55 -> 575 -> 55	3	81722.29	67562.05	1
	11739	67	67	67 -> 31 -> 67	3	80424.09	68077.65	1
	21611	124	124	124 -> 205 -> 124	3	93350.77	87699.75	1
	19422	233	233	233 -> 72 -> 233	3	39378.62	34579.27	1

```
WITH RECURSIVE MultiHop_Loop_Detection AS
          t.TransactionID, t.SenderID, t.ReceiverID, t.Amount, t.Date, t.Mode,
         t.Location,t.SenderID AS StartNode, t.ReceiverID AS CurrentNode,
         CAST(t.SenderID AS CHAR(100)) AS Path,
         1 AS Depth, t.Amount AS InitialAmount, t.Amount AS CurrentAmount,
         FALSE AS ISLOOP
      FROM Transactions t
     WHERE t.Date >= NOW() - INTERVAL 45 DAY
      AND t.Amount >= 9000
     UNION ALL
     SELECT t.TransactionID, t.SenderID, t.ReceiverID, t.Amount, t.Date,
          t.Mode, t.Location, mt.StartNode, t.ReceiverID AS CurrentNode,
         CONCAT(mt.Path, ' -> ', t.ReceiverID) AS Path, mt.Depth + 1,
         mt.InitialAmount, t.Amount AS CurrentAmount,
          CASE WHEN t.ReceiverID = mt.StartNode AND t.Amount BETWEEN mt.InitialAmount * 0.8 AND mt.InitialAmount * 1.2
              THEN TRUE ELSE FALSE
         END AS ISLOOP
      FROM MultiHop Loop Detection mt
      JOIN Transactions t ON mt.CurrentNode = t.SenderID
      WHERE LOCATE(CONCAT(',', t.ReceiverID, ','), CONCAT(',', mt.Path, ',')) = 0
       AND mt.Depth < 3 -- Limit depth to prevent excessive recursion
       AND t.Date >= NOW() - INTERVAL 45 DAY
       SELECT DISTINCT
           mt.TransactionID,
           mt.StartNode AS OriginalSender,
           mt.CurrentNode AS FinalReceiver,
           mt.Path,
           mt.Depth,
           mt.InitialAmount,
           mt.CurrentAmount.
           mt.IsLoop
       FROM MultiHop_Loop_Detection mt
       WHERE mt.IsLoop = TRUE
       ORDER BY mt.StartNode, mt.Depth;
```

Key Insights from Analysis

- •Identified patterns of structuring (Smurfing).
- •Detected high-risk customers engaging in large transactions.
- •Mapped complex money movement networks via Multi-Hop Analysis.
- ·Highlighted unusual geographic transaction flows.

Conclusion

- •AML analysis is essential for fraud detection.
- •MySQL enables structured and efficient risk monitoring.
- •By leveraging advanced SQL techniques, financial institutions can proactively identify and mitigate money laundering risks.
- •Continuous improvement in AML frameworks ensures better regulatory compliance and security.

Analyst Role Description

•Role: AML Data Analyst

Key Responsibilities:

- Data Processing & Analysis: Extract, clean, and analyze transaction data for AML insights.
- Risk Assessment: Identify suspicious patterns, high-risk customers, and crossborder transactions.
- SQL Querying: Develop optimized queries and views for AML rule implementation.
- Report Generation: Provide actionable insights and reports for financial risk teams.
- Regulatory Compliance Support: Ensure data aligns with AML laws and guidelines.

•Skills Required:

- Strong SQL and MySQL knowledge
- Experience in financial data analysis
- Understanding of AML regulations
- Proficiency in data visualization tools (optional)

THANK YOU