NLP研究热点变迁

第一课

自然语言处理学科

Natural language processing: state of the art, current trends and challenges

重要的工具库

```
操作系统:
Linux command line
硬件:
CUDA
编程语言:
Python
Anaconda https://www.anaconda.com/
数据处理:
Numpy https://numpy.org/
Pandas https://pandas.pydata.org/
matplotlib
机器学习:
Scikit learn https://scikit-learn.org/stable/
深度学习:
Torch https://pytorch.org/
自然语言处理:
nltk https://www.nltk.org/
Hugginface Transformer https://github.com/huggingface/transformers
```

数学知识

- 线性代数
- 矩阵运算 (torch)
- 微积分
- 导数
- 偏导
- 概率与统计
- 条件概率
- 最大似然估计
- 贝叶斯公式(先验概率/后验概率)
- 联合概率的链式法则/马尔可夫链

信息论

- 熵
- 互信息
- KL散度

凸优化

- 梯度下降
- 线性规划
- 拉格朗日乘子法

时间线

Natural language processing: state of the art, current trends and challenges

Pre-transformer

- RNN
- LSTM
- GRU

Time

RECURRENT NEURAL NETWORK

A bidirectional recurrent neural network processes the input both forward and backward to improve the representations it produces.

AUTO-ENCODER

An autoencoder uses an encoder to compress an input into a representation and a decoder to reconstruct the input from the representation.

SEQ2SEQ MODEL FOR TRANSLATION

Given a sentence, a Recurrent Neural Network encodes the sentence and then iteratively generates a translation.

后transformer时代

• 自然语言处理发展进程(后transformer时代)范式转移与统一范

式

Transformers

• Self-attention

Attention is all you need

https://github.com/huggingface/transformers

TRANSFORMER

The encoder-decoder transformer used for translation. Encoder on the left, decoder on the right. Note that the decoder takes in its previously generated words during generation.

基于transformer的预训练模型

Model	Pre-Training Sources	Size of Pre-Training Corpus	# Model Parameters	
(1) English Monolingual Models				
BERT (Base/Large) [31]	Wiki, books	3.3B tokens (13 GB data)	110M/340M	
RoBERTA [112]	Wiki, books, web crawl	161 GB data	340M	
XLNET [203]	Wiki, books, web crawl	142 GB data	340M	
GPT [144]	Web crawl	800M tokens	117M	
GPT-2 [145]	Web crawl	8M documents (40 GB data)	1.5B	
GPT-3 [39]	Wiki, books, web crawl	300B tokens	175B	
GPT-J [186]	Wiki, books, papers, web crawl	~275B tokens (825 GB data)	6B	
GOPHER [38]	Books, news, code, web crawl	300B tokens	280B	
BART [96]	Wiki, books	3.3B tokens	~370M	
T5 [147]	Web crawl	200B tokens (750 GB data)	11B	
(2) Multilingual Models				
MBERT [31]	Wiki	21.9B tokens	172M	
XLM-R(BASE/LARGE) [22]	Web crawl	295B tokens	270M/550M	
MT5 (LARGE/XXL) [147]	Web crawl	6.3T tokens	1.2B/13B	

Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey

预训练模型分类

Autoregressive language model (e.g., GPT, GPT-2/3)

Model & illustration

Masked language model (e.g., BERT, RoBERTa, XLM-R)

Encoder-Decoder (e.g., BART, T5)

Training objective

Predicting what word comes next given previous words

Predicting masked words given other words in the sequence

Corrupting a sequence and then predicting the original sequence

Example

opened students [MASK] their books .

students opened their books.

their books . students opened

NLP研究范式

Paradigm	Engineering	Task Relation
a. Fully Supervised Learning (Non-Neural Network)	Feature (e.g. word identity, part-of-speech, sentence length)	CLS TAG LM GEN
b. Fully Supervised Learning (Neural Network)	Architecture (e.g. convolutional, recurrent, self-attentional)	CLS TAG LM GEN
c. Pre-train, Fine-tune	Objective (e.g. masked language modeling, next sentence prediction)	CLS TAG LM GÉN
d. Pre-train, Prompt, Predict	Prompt (e.g. cloze, prefix)	CLS TAG LM GEN

Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey

Transfer learning

- BERT masked language modeling (MLM), next sentence prediction (NSP)
- GPT predicting the next word
- BART denoising (masking, sentence permutation, token deletion, document rotation)

从分类到生成

• Label verbalize 标签描述

Solving classification as a generation task (T5)

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

NLP研究的范式转移

Paradigm Shift in Natural Language Processing

Prompt Engineering

Instruction based learning (priming)

Template based learning

Proxy-task based learning

```
emotion classification
premise: I am feeling grouchy.
hypotheses:
    It expresses love.
    It expresses anger.
    It expresses sadness.

event argument-extraction
C: China has purchased two nuclear submarines from Russia last month.

Q: Who bought something?
A: China
Q: What is bought?
A: Two nuclear submarines.
```

Prompting Method

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

Efficient Methods for Natural Language Processing: A Survey

Conference and journals

- AAAI
- IJCAI
- ICML
- NeurlPS
- ACL
- ICLR
- WWW
- SIGIR

- EMNLP
- TASLP
- COLING
- TAC
- NAACL
- KBS
- NLPCC
- NC
- CONLL
- NLE

Conference List

https://conferencelist.info/upcoming/

Deadline

https://ccfddl.github.io/

CoT

- Tree of Thoughts: Deliberate Problem Solving with Large Language Models
- https://arxiv.org/abs/2305.10601
- Automatic Chain of Thought Prompting in Large Language Models
- https://arxiv.org/abs/2210.03493
- Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
- https://arxiv.org/abs/2201.11903
- Self-Consistency Improves Chain of Thought Reasoning in Language Models
- https://arxiv.org/abs/2203.11171
- Large Language Models Are Human-Level Prompt Engineers
- https://arxiv.org/abs/2211.01910
- Distilling Reasoning Capabilities into Smaller Language Models
- https://arxiv.org/abs/2212.00193
- Analysing Mathematical Reasoning Abilities of Neural Models
- https://arxiv.org/abs/1904.01557
- Large Language Models are Zero-Shot Reasoners
- https://arxiv.org/abs/2205.11916
- Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
- https://arxiv.org/abs/2205.09712
- ART: Automatic multi-step reasoning and tool-use for large language models
- https://arxiv.org/abs/2303.09014

Baseline https://github.com/kyegomez/tree-of-thoughts