In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

df=pd.read_csv(r"C:\Users\MSI\Downloads\USA_Housing.csv")
df

Out[2]:

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Apt. 674\nLaurabury, NE 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views Suite 079\nLake Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabeth Stravenue\nDanieltown, WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO AP 44820	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3

In [3]:

df.head()

Out[3]:

Aı	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fe 674\nLaurabı	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnsor Suite 079 Kathleer	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eli Stravenue∖nDani WI 0	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nF	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymonc AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
•							4

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [5]:

df.describe()

Out[5]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [7]:

df.columns

Out[7]:

In [8]:

sns.pairplot(df)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x24de843f210>

In [10]:

sns.displot(df['Price'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x24ded344ad0>

In [12]:

sns.displot(df['Area Population'])

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x24dec204d50>


```
In [19]:
```

```
Housedf=df[['Avg.Area Income','Avg.Area House Age','Avg.Area Number Of Rooms','Avg.Area
sns.heatmap(Housedf.corr())
KeyError
                                          Traceback (most recent call las
t)
Cell In[19], line 1
----> 1 Housedf=df[['Avg.Area Income','Avg.Area House Age','Avg.Area Numbe
r Of Rooms', 'Avg.Area Of Number Of Bedrooms', 'Area Population', 'Price']]
      2 sns.heatmap(Housedf.corr())
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\co
re\frame.py:3767, in DataFrame.__getitem__(self, key)
   3765
            if is iterator(key):
   3766
                key = list(key)
-> 3767
            indexer = self.columns._get_indexer_strict(key, "columns")[1]
   3769 # take() does not accept boolean indexers
   3770 if getattr(indexer, "dtype", None) == bool:
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\co
re\indexes\base.py:5876, in Index. get indexer strict(self, key, axis nam
e)
   5873 else:
   5874
            keyarr, indexer, new_indexer = self._reindex_non_unique(keyar
r)
-> 5876 self. raise if missing(keyarr, indexer, axis name)
   5878 keyarr = self.take(indexer)
   5879 if isinstance(key, Index):
   5880
            # GH 42790 - Preserve name from an Index
File ~\AppData\Local\Programs\Python\Python311\Lib\site-packages\pandas\co
re\indexes\base.py:5938, in Index. raise if missing(self, key, indexer, ax
is name)
            raise KeyError(f"None of [{key}] are in the [{axis_name}]")
   5937 not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].uniq
ue())
-> 5938 raise KeyError(f"{not_found} not in index")
KeyError: "['Avg.Area Income', 'Avg.Area House Age', 'Avg.Area Number Of R
ooms', 'Avg.Area Of Number Of Bedrooms'] not in index"
In [22]:
Housedf=df[['Avg. Area Income','Avg. Area House Age','Avg. Area Number of Rooms',
       'Avg. Area Number of Bedrooms', 'Area Population', 'Price']]
```

In [23]:

```
sns.heatmap(Housedf.corr())
```

Out[23]:

<Axes: >

In [24]:

In [25]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)
```

In [27]:

```
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
lm.fit(x_train,y_train)
```

Out[27]:

```
LinearRegression
LinearRegression()
```

In [28]:

```
print(lm.intercept_)
```

-2641372.6673014304

In [29]:

```
coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficient'])
coeff_df
```

Out[29]:

coefficient

Avg. Area Income	21.617635
Avg. Area House Age	165221.119872
Avg. Area Number of Rooms	121405.376596
Avg. Area Number of Bedrooms	1318.718783
Area Population	15.225196

In [31]:

predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)

Out[31]:

<matplotlib.collections.PathCollection at 0x24df022b0d0>

In [33]:

```
sns.displot((y_test,predictions),bins=50);
```


In [34]:

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MAE:',metrics.mean_squared_error(y_test,predictions))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 81257.55795855941 MAE: 10169125565.897606 RMSE: 100842.08231635048

In []:

Ρ