Problem 2.1

An operator \hat{H} is represented in a particular orthonormal basis as the matrix

$$\hat{H} \simeq egin{pmatrix} 1 & rac{i}{2} & 0 \ -rac{i}{2} & 1 & 0 \ 0 & 0 & rac{1}{2} \end{pmatrix}$$

- a) Show that \hat{H} is hermitian.
- b) Check that the kets $|1\rangle \simeq \frac{1}{\sqrt{2}} {i \choose 1}, |2\rangle \simeq {0 \choose 1}$ and $|3\rangle \simeq \frac{1}{\sqrt{3}} {-i \choose 1}$ are eigenkets of \hat{H} . Find their eigenvalues.
- c) Compute the 9 matrix elements of \hat{H} in the eigenket basis used in b), that is compute $H_{ij} = \langle i|\hat{H}|j\rangle$ where $|j\rangle(j=1,2,3)$ correspond to the kets in b). Is this matrix (H_{ij}) diagonal?
- d) Construct an *orthonormal* set of eigenkets $|i'\rangle$ for \hat{H} and compute the matrix elements $H_{i'j'} = \langle i' | \hat{H} | j' \rangle$. Is this matrix $(H_{i'j'})$ diagonal?

Problem 2.2

- a) Find the hermitian conjugate of each of the following operators i, x^2 and $\frac{d}{dx}$.
- b) Find the hermitian conjugate of the (composite) operator $\hat{H} = \hat{K}\hat{L}$.
- c) Let $|\lambda\rangle$ be an eigenket of the hermitian operator \hat{K} with eigenvalue λ , i.e. $\hat{K}|\lambda\rangle = \lambda|\lambda\rangle$. Use the definition of hermitian conjugate operator and the result in b) to show that

$$\langle \lambda | \hat{K} \hat{L} | g \rangle = \langle \lambda | \hat{L} | g \rangle \lambda$$

where $|g\rangle$ is an arbitrary state and \hat{L} is an arbitrary operator.

Problem 2.3 (optional)

Look back at problem 1.3 (week 1 exercise) and find the eigenvalues and eigenstates of the Hamiltonian operator H. Assume that the states $|\psi\rangle$ and $|\phi\rangle$ satisfy the conditions, found in problem 1.3, such that the Hamiltonian is hermitian.