Integration of the Walrasian Paradigm into the Statistical Paradigm

Alexis Akira Toda

Department of Economics, Yale University

June 23, 2010

Contribution

 Propose a general equilibrium theory (called statistical equilibrium theory) that incorporates agents' ex post heterogeneity.

Contribution

- Propose a general equilibrium theory (called statistical equilibrium theory) that incorporates agents' ex post heterogeneity.
- 2. Prove existence of equilibrium.

Contribution

- Propose a general equilibrium theory (called statistical equilibrium theory) that incorporates agents' ex post heterogeneity.
- 2. Prove existence of equilibrium.
- 3. Prove that Walrasian equilibrium is a special case of statistical equilibrium. Hence

Walrasian equilibrium theory ⊊ statistical equilibrium theory, statistical equilibrium = "general general equilibrium".

Axioms

Walrasian Equilibrium

- 1. well-functioning market,
- 2. agent optimization,
- 3. market clearing,
- 4. rational expectations (informational consistency).

Axioms

Walrasian Equilibrium

- 1. well-functioning market,
- 2. agent optimization,
- 3. market clearing,
- rational expectations (informational consistency).

Statistical Equilibrium

- 1. agent satisfaction,
- 2. entropy maximization,
- 3. market clearing,
- rational expectations (informational consistency).

Households' offer set

No minimum wage:

Minimum wage w:

Firms' offer set

Firms have technology $y \le al + b$; produce iff nonnegative profit.

Equilibrium income distribution

- $i \in \mathcal{I} = \{1, 2, \dots, I\}$: agent types.
- $w_i > 0$, $w_1 + w_2 + \cdots + w_l = 1$: each type's proportion. Continuum of agents in each type.

- $i \in \mathcal{I} = \{1, 2, \dots, I\}$: agent types.
- $w_i > 0$, $w_1 + w_2 + \cdots + w_l = 1$: each type's proportion. Continuum of agents in each type.
- $c \in \{1, 2, \dots, C\}$: commodities.

General Theory

- $i \in \mathcal{I} = \{1, 2, \dots, I\}$: agent types.
- $w_i > 0$, $w_1 + w_2 + \cdots + w_l = 1$: each type's proportion. Continuum of agents in each type.
- $c \in \{1, 2, \ldots, C\}$: commodities.
- $p \in \mathbb{R}_+^C$, $p_1 + p_2 + \cdots + p_C = 1$: relative scarcity. (Also denoted $p \in \Delta^{C-1}$.)

- $i \in \mathcal{I} = \{1, 2, ..., I\}$: agent types.
- $w_i > 0$, $w_1 + w_2 + \cdots + w_l = 1$: each type's proportion. Continuum of agents in each type.
- $c \in \{1, 2, \dots, C\}$: commodities.
- $p \in \mathbb{R}_+^C$, $p_1 + p_2 + \cdots + p_C = 1$: relative scarcity. (Also denoted $p \in \Delta^{C-1}$.)
- $\mu_{i,p}$: regular Borel measure on \mathbb{R}^C .
 - Represents type i's prior on transactions given p.
 - Generalization of excess demand.

- $i \in \mathcal{I} = \{1, 2, ..., I\}$: agent types.
- $w_i > 0$, $w_1 + w_2 + \cdots + w_l = 1$: each type's proportion. Continuum of agents in each type.
- $c \in \{1, 2, \dots, C\}$: commodities.
- $p \in \mathbb{R}_+^C$, $p_1 + p_2 + \cdots + p_C = 1$: relative scarcity. (Also denoted $p \in \Delta^{C-1}$.)
- $\mu_{i,p}$: regular Borel measure on \mathbb{R}^{C} .
 - Represents type i's prior on transactions given p.
 - Generalization of excess demand.
- $X_{i,p} = \text{supp } \mu_{i,p}$: type i's offer set at p.
- $x \in X_{i,p}$: transaction. $x_c > 0$: demand; $x_c < 0$: supply.

- $i \in \mathcal{I} = \{1, 2, \dots, I\}$: agent types.
- $w_i > 0$, $w_1 + w_2 + \cdots + w_l = 1$: each type's proportion. Continuum of agents in each type.
- $c \in \{1, 2, \dots, C\}$: commodities.
- $p \in \mathbb{R}_+^C$, $p_1 + p_2 + \cdots + p_C = 1$: relative scarcity. (Also denoted $p \in \Delta^{C-1}$.)
- $\mu_{i,p}$: regular Borel measure on \mathbb{R}^{C} .
 - Represents type i's prior on transactions given p.
 - Generalization of excess demand.
- $X_{i,p} = \text{supp } \mu_{i,p}$: type i's offer set at p.
- $x \in X_{i,p}$: transaction. $x_c > 0$: demand; $x_c < 0$: supply.
- $(X_{i,p}, \mu_{i,p})$: type i's offer space.

Statistical Economy

Definition (Statistical Economy)

A statistical economy is the object

$$\mathcal{E} = \left\{ \mathcal{I}, \left\{ w_i \right\}_{i \in \mathcal{I}}, \left\{ \mu_{i,p} \right\}_{i \in \mathcal{I}, p \in \Delta^{C-1}} \right\}.$$

Entropy, average transaction

Let f_i be a density on $X_{i,p}$, and $f = (f_1, \ldots, f_l)$. The entropy of f is

$$H_p(f) := -\sum_{i=1}^l w_i \int f_i \log f_i d\mu_{i,p}.$$

Entropy, average transaction

000

Let f_i be a density on $X_{i,p}$, and $f = (f_1, \ldots, f_l)$. The entropy of f is

$$H_p(f) := -\sum_{i=1}^I w_i \int f_i \log f_i d\mu_{i,p}.$$

The average transaction of f is

$$\bar{x}_p(f) := \sum_{i=1}^I w_i \int x f_i(x) \mu_{i,p}(dx).$$

Equilibrium

Two cases to consider: genuine & degenerate.

Definition (Genuine Statistical Equilibrium)

Densities $f = (f_i)$, scarcity parameter $p \in \Delta^{C-1}$, and vector $\pi \in \mathbb{R}_+^C$ are called a genuine statistical equilibrium if

1. $f = (f_i)$ maximizes entropy subject to the feasibility constraint: f solves

$$\max H_p(f)$$
 subject to $\bar{x}_p(f) \leq 0$,

- 2. π is the Lagrange multiplier of above,
- 3. π and p are collinear.

 π (Lagrange multiplier, shadow price) is called *entropy price* (Foley 1994, Toda 2009).

Equilibrium

Definition (Degenerate Statistical Equilibrium)

A scarcity parameter $p \in \Delta^{C-1}$ and points $x_i \in \operatorname{co} X_{i,p}$ are called a degenerate statistical equilibrium if

- 1. $\sum_{i=1}^{l} w_i x_i \leq 0$,
- 2. For all $i, p'x \geq 0$ for all $x \in X_{i,p}$.
- Need to consider the degenerate case to allow distributions to concentrate on some points (density like Dirac delta function).
- In this case all transactions must have nonnegative "value", otherwise can increase entropy by spreading density.

Equilibrium

Definition (Statistical Equilibrium)

A genuine or a degenerate statistical equilibrium is simply called a statistical equilibrium.

- Foley (1994) first defined when offer sets $X_{i,p}$ are independent of p.
- Toda (2009) defined (genuine) statistical equilibrium when offer sets $X_{i,p}$ depend on p.
- Generalize to incorporate the degenerate case (point mass).

Existence

Theorem

Under some reasonable assumptions equilibrium exists.

Corollary

A Walrasian equilibrium is a statistical equilibrium.

Walrasian eq ⊊ statistical eq

The corollary implies:

- Walrasian equilibrium is a special case of statistical equilibrium.
- Statistical economics can explain whatever Walrasian economics can, but not vice versa (e.g., income distribution).

Gamma density $f(x) = Cx^{\alpha}e^{-\pi x}$ maximizes entropy for the improper prior $\mu(dx) = x^{\alpha}dx$.

Conclusion

- Build a general equilibrium theory (called statistical equilibrium theory) that incorporates agents' ex post heterogeneity.
- Prove existence of equilibrium.
- Prove that Walrasian equilibrium is a special case of statistical equilibrium.
- Statistical equilibrium theory can explain "stylized facts".
- Micro-foundation of macroeconomics?

Reference

Duncan K. Foley.
A statistical equilibrium theory of markets.

Journal of Economic Theory, 62:321-345, 1994.

Alexis Akira Toda.

Existence of a statistical equilibrium for an economy with endogenous offer sets.

Economic Theory, forthcoming.

J. M. Borwein and A. S. Lewis.

Duality relationships for entropy-like minimization problems.

SIAM Journal of Control and Optimization, 29:325–338, 1991.

Typical Set

 X_1, \ldots, X_n : discrete, i.i.d., with probability p(x). By LLN,

$$-\frac{1}{n}\log p(X_1,\ldots,X_n) = -\frac{1}{n}\sum_{i=1}^n\log p(X_i) \to -\operatorname{E}[\log p(X)]$$
$$= -\sum_{i=1}^n p(x)\log p(x) = H(\mathbf{p}).$$

Hence define

$$A_{\epsilon}^{(n)} := \left\{ (x_1, \ldots, x_n) : \left| H(\mathbf{p}) + \frac{1}{n} \log p(x_1, \ldots, x_n) \right| < \epsilon \right\}$$

to be the typical set. Then $\#A_{\epsilon}^{(n)} \approx e^{nH}$.

Example

Jaynes 1982

Tossed an unfair die many times and average number was 4.5. What is the probability of each face?

Answer: Maximize $H(\mathbf{p}) = -\sum_{k=1}^{6} p_k \log p_k$ subject to

$$\sum_{k=1}^{6} p_k = 1,$$

$$\sum_{k=1}^{6} k p_k = 4.5.$$

A statistical equilibrium exists under reasonable assumptions.

A₁

For all agent types i and scarcity parameter p, the measure $\mu_{i,p}$ is finite.

- Note that $\mu_{i,p}$ is a prior, so $\mu_{i,p}(\mathbb{R}^C) = 1$.
- Later allow improper priors, so $\mu_{i,p}$ can be infinite measures (e.g., Lebesgue).

A2 (boundedness from below)

 $X_{i,p}$ is uniformly bounded below, i.e., there exists a vector a such that for all i, p and $x \in X_{i,p}$, we have $x \ge a$.

- Free disposal, but only up to the amount a.
- Not unrealistic since there is only a finite amount of everything in the world.

A3 (realistic agents)

For all agent types i and scarcity parameter p, we have

$$\inf \left\{ p'x : x \in X_{i,p} \right\} \leq 0.$$

- Offer set $X_{i,p} = \operatorname{supp} \mu_{i,p}$ are those transactions that type i agents expect to engage with positive probability.
- $p'x \le 0$ for some transactions implies that agents are realistic: agents put some probability on trades within their "budget" (evaluated at scarcity parameter p).

A4 (continuity of measure)

The mapping $p\mapsto \mu_{i,p}$ is weakly continuous, *i.e.*, for every sequence $\{p_n\}$ such that $p_n\to p$ and bounded measurable function f, we have

$$\lim_{n\to\infty}\int fd\mu_{i,p_n}=\int fd\mu_{i,p}.$$

A5 (continuity of offer set)

The correspondence $p\mapsto \prod_{i\in\mathcal{I}}\operatorname{cl}\operatorname{co}X_{i,p}$ is closed at those points such that $\sum_{i=1}^{l}w_{i}\inf\left\{p'x:x\in X_{i,p}\right\}=0,\ i.e.,\ p_{n}\to p,$ $x_{i}^{n}\in X_{i,p_{n}},\ \operatorname{and}\ x_{i}^{n}\to x_{i}^{\infty}\ \operatorname{implies}\ x_{i}^{\infty}\in X_{i,p}\ \operatorname{for}\ \operatorname{all}\ i\in\mathcal{I}\ \operatorname{whenever}\ \sum_{i=1}^{l}w_{i}\inf\left\{p'x:x\in X_{i,p}\right\}=0.$

• Define the log-partition function

$$Q_p(\xi) = \sum_{i=1}^{I} w_i \log \left(\int e^{-\xi' x} d\mu_{i,p} \right).$$

• Define the log-partition function

$$Q_{p}(\xi) = \sum_{i=1}^{I} w_{i} \log \left(\int e^{-\xi' x} d\mu_{i,p} \right).$$

• Define the log-partition function

$$Q_{p}(\xi) = \sum_{i=1}^{I} w_{i} \log \left(\int e^{-\xi' x} d\mu_{i,p} \right).$$

- Box argument. Define

$$\Pi_b(p) = \mathop{\arg\min}_{\xi} \left\{ Q_p(\xi) : \xi \ge 0, \|\xi\| \le b \right\}.$$

• Define the log-partition function

$$Q_{p}(\xi) = \sum_{i=1}^{I} w_{i} \log \left(\int e^{-\xi' x} d\mu_{i,p} \right).$$

- Box argument. Define

$$\Pi_b(p) = \mathop{\arg\min}_{\xi} \left\{ Q_p(\xi) : \xi \ge 0, \|\xi\| \le b \right\}.$$

• Normalize $\Phi_b(p) = \{\xi/\|\xi\| : \xi \in \Pi_b(p)\}$. Can apply Kakutani to $p \mapsto \Phi_b(p)$. Get "b-quasi equilibrium".

• Define the log-partition function

$$Q_{p}(\xi) = \sum_{i=1}^{I} w_{i} \log \left(\int e^{-\xi' x} d\mu_{i,p} \right).$$

- Box argument. Define

$$\Pi_b(p) = \operatorname*{arg\,min}_{\xi} \left\{ Q_p(\xi) : \xi \geq 0, \|\xi\| \leq b \right\}.$$

- Normalize $\Phi_b(p) = \{\xi/\|\xi\| : \xi \in \Pi_b(p)\}$. Can apply Kakutani to $p \mapsto \Phi_b(p)$. Get "b-quasi equilibrium".
- Let $b \to \infty$ and get full (genuine or degenerate) equilibrium.

Walrasian eq ⊊ statistical eq

Corollary

Let $\mathcal{E} = \left\{\mathcal{I}, \left\{u_i\right\}, \left\{e_i\right\}\right\}$ be an endowment economy such that

- $u_i: \mathbb{R}_+^C \to \mathbb{R}$ is a continuous, locally non-satiated utility function of type i agents (with population $w_i > 0$),
- the endowments satisfy $e_i \gg 0$ for all i.

Then,

- 1. there exists a statistical economy \mathcal{E}' such that all Walrasian equilibria of \mathcal{E} are statistical equilibria of \mathcal{E}' ,
- 2. the existence of Walrasian equilibria can be shown by using statistical equilibrium theory.

• Take b > 0 large enough $(\sum_i e_i \ll b\mathbf{1})$. Let the constrained indirect utility be

$$v_i^b(p) := \max \left\{ u_i(x) : p'x \leq p'e_i, x \in [0, b]^C \right\}.$$

• Take b > 0 large enough $(\sum_i e_i \ll b\mathbf{1})$. Let the constrained indirect utility be

$$v_i^b(p) := \max \{ u_i(x) : p'x \le p'e_i, x \in [0, b]^C \}.$$

• Define the offer space $(X_{i,p}, \mu_{i,p})$ by

$$X_{i,p} := \left\{ x \in [0,b]^C : u_i(x) \ge v_i^b(p) \right\} - e_i$$

and $\mu_{i,p} = \text{Lebesgue measure on } X_{i,p}$.

• Take b > 0 large enough $(\sum_i e_i \ll b\mathbf{1})$. Let the constrained indirect utility be

$$v_i^b(p) := \max \left\{ u_i(x) : p'x \le p'e_i, x \in [0, b]^C \right\}.$$

• Define the offer space $(X_{i,p}, \mu_{i,p})$ by

$$X_{i,p} := \left\{ x \in [0,b]^C : u_i(x) \ge v_i^b(p) \right\} - e_i$$

and $\mu_{i,p} = \text{Lebesgue measure on } X_{i,p}$.

- All assumptions of existence theorem satisfied.
 Can show all statistical equilibria are degenerate.
- By construction statistical equilibria are also Walrasian.

Computation of Equilibria

In general, similar to Newton-Raphson method.

- Take initial p_0, π_0 .
- Iterate over

$$\pi_{k+1} = \pi_k - [D_{\xi}^2 Q_{p_k}(\pi_k)]^{-1} D_{\xi} Q_{p_k}(\pi_k),$$

$$p_{k+1} = \pi_{k+1} / \|\pi_{k+1}\|_1,$$

where

$$Q_p(\xi) = \sum_{i=1}^{l} w_i \log \left(\int e^{-\xi' x} \mu_{i,p}(dx) \right).$$

Computation of Equilibria

If offer sets are of the form $X_{i,p} = x_{i,p} + \mathbb{R}_+^C$, then reduces to solving

$$\forall c, T = -p_c \sum_{i=1}^{l} w_i x_{ic,p},$$
$$\sum_{c=1}^{C} p_c = 1.$$

These are C+1 equations in C+1 (p_1,\ldots,p_C,T) unknowns. T: economic temperature; $\pi=\frac{1}{T}p$: entropy price.

Solving MEP

Duality Theorem (Borwein & Lewis 1991, 1992)

Let (X,μ) be a measure space, $a:X\to\mathbb{R}^n$ continuous, and $f\in L^1(X,\mu)$ a density. The dual problem of the MEP

$$(P): \max_{f} \left[-\int f \log f \right] \text{ s.t. } \int af \leq 0$$

is

$$(D)$$
: $\min_{\xi \geq 0} \log \left(\int e^{-\xi' a} d\mu \right)$

and the MEP has a unique solution (under mild conditions)

$$f(x) = e^{-\xi' a(x)} / \int e^{-\xi' a} d\mu.$$