CLIPPEDIMAGE= JP406069286A

PAT-NO: JP406069286A

DOCUMENT-IDENTIFIER: JP 06069286 A

TITLE: BONDING APPARATUS

PUBN-DATE: March 11, 1994

INVENTOR-INFORMATION:

NAME SUZUKI, TOMOHIRO HANEDA, MAKOTO CHIBA, KATSUAKI ONO, YUICHI

ASSIGNEE-INFORMATION:

NAME COUNTRY HITACHI LTD N/A

HITACHI COMMUN SYST INC N/A

APPL-NO: JP04219997

APPL-DATE: August 19, 1992

INT-CL (IPC): H01L021/60;H01L021/52;H01L021/68

US-CL-CURRENT: 228/179.1

ABSTRACT:

PURPOSE: To improve an aligning accuracy, to prevent irregular contact of a semiconductor component, etc., and to improve reliability by removing an oxide film on a surface of solder.

CONSTITUTION: Wirings are formed on a surface of a sapphire substrate 14, and a

pattern of a connecting part of connecting a photodiode 15 is provided. The substrate 14 is fixed to a heating base 4, and the photodiode element 15 is sucked by a vacuum collet 1. It is roughly aligned by a microscope 2 mounted at the collet side. The collet 1 is moved down, and the element 15 is moved to

the substrate 14. The substrate 14 is aligned with a connecting part of the element 15 by a camera 10 disposed on a rear surface side of the substrate 14 by using a finely moving stage 5, a Z-axis stage 8 and a flapping stage 9. The substrate 14 is made transparent, a function of sucking and moving it by the collet 1 having a heating mechanism is provided, thereby mounting many semiconductor devices by flip chip bonding.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特計庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-69286

(43)公開日 平成6年(1994)3月11日

(51)Int.Cl. ⁵		識別記号	号	庁内整理番号	FI	技術表示箇所
HOIL	21/60	3 1 1	T	6918-4M		
	21/52		F	7376-4M		
	21/68		P	8418-4M		
			В	8418-4M		

審査請求 未請求 請求項の数4(全 3 頁)

(21)出願番号	特願平4-219997	(71)出顧人 000005108	
		株式会社日立製作所	
(22)出願日	平成4年(1992)8月19日	東京都千代田区神田駿河台	四丁目 6番地
		(71)出顧人 000233479	
		日立通信システム株式会社	
	• •	神奈川県横浜市戸塚区戸塚	町180番地
		(72)発明者 鈴木 智浩	
		神奈川県横浜市戸塚区戸塚	町180番地 日
		立通信システム株式会社内	
		(72) 発明者 羽田 誠	
		東京都国分寺市東恋ケ窪1	丁目280番地
		株式会社日立製作所中央研	究所内
		(74)代理人 弁理士 小川 勝男	
			最終頁に続

(54) 【発明の名称 】 ポンディング装置

(57)【要約】

【目的】位置合わせ精度の向上と、半導体部品等の片当 たりの防止、及び、半田表面の酸化膜除去による、信頼 性の向上。

【構成】サファイア基板14の表面に配線を形成し、フ ォトダイオード15を接合するための接合部のパターン を設ける。サファイア基板14を加熱台4上に固定し、 フォトダイオード素子15を真空コレット1で吸着す る。コレット側に取り付けられた顕微鏡2で大まかな位 置合わせを行う。真空コレット1を下げ、フォトダイオ ード素子15とサファイア基板14を近接させる。サフ ァイア基板14の裏面側に配置されたカメラ10より、 サファイア基板14とフォトダイオード素子15の接合 部の位置合わせを微動ステージ5、Z軸ステージ8、及 び煽りステージ9を用いて行う。

【効果】基板を透明化し、加熱機構を有するコレットで 吸着し可動式とする機能を設けることにより、多数の半 導体デバイスをフリップチップボンディングで実装する ことができる。

【特許請求の範囲】

【請求項1】可視光もしくは特定の波長で透過率の高い 基板を用いて、基板裏面よりデバイスの接合面を観察す ることにより、高精度位置合わせ及びボンディング部材 面の平行度検査を可能としたボンディング装置。

【請求項2】顕微鏡もしくはテレビカメラ等の位置合わ せ観察部と、チップ固定及びスクラブ等のボンディング 機構部が、デバイス及び基板の実装部を挟んで両側に配 置されていることを特徴としたボンディング装置。

【請求項3】基板裏面よりデバイスと基板の接合部が観 10 察できるように、加熱台に穴を開けたことを特徴とす る、もしくは穴を開けた部分に、可視光もしくは特定の 波長で透過率が高く、熱伝導率の高い材質をかぶせたこ とを特徴とするボンディング装置。

【請求項4】請求項1、2又は3の装置において、チッ プ固定部又は基板部に加熱機構、及びスクラブ、超音波 等、接着半田層の表面酸化膜除去機能が取付けられてい ることを特徴としたボンディング装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体部品、及び電子部 品の実装方法に係る。

[0002]

【従来の技術】従来のフリップチップボンディング装置 の例を図1に示す。

【0003】上下動する真空コレット1で吸着された半 導体部品6は、半導体部品6の電極部と、実装基板7の 電極部をハーフミラー3を通して顕微鏡2で位置合わせ を行い、加熱台4で加熱しボンディングしている。この 3を介しているため、実装基板7とある程度の間隔を必 要とし、間隔を取った状態でしか位置合わせが出来ない 為、位置合わせ精度が±20μm程度となる。これらの 技術は「混成集積回路」 菅口、厚留編、工業調査会(1 968年10月) に詳しく述べられている。

[0004]

【発明が解決しようとする課題】従来の方法では、ハー フミラーを使用してフリップチップにて位置合わせを行 っていた為、下記の問題が有った。

- よる容量増加や、微細電極どうしが接触する問題が生じ
- 2. 半田の濡れ性がチェック出来ず、加熱し過ぎや、荷 重の掛け過ぎによる半導体部品の破損など、組立てによ る接続不良が生じた。
- 3. 平行度調整が検出出来ず、半導体部品の位置ずれや 片当たり等が生じた。
- 4. 半導体部品の加熱、位置合せ中に半田層表面に酸化 膜が生じ、接着力低下等の要因となり、信頼度が低下す る問題が生じた。

5. 透明サブマウントを用いた裏面直視合わせ方式で は、チップを固定、加熱しサブマウント側で合わせを行 なう為、多数チップのフリップチップボンディングが出 来ないという問題があった。

2

【0005】本発明の目的は上記の問題点を解決するこ とに有る。

[0006]

【課題を解決するための手段】上記目的は次に示す手段 により解決される。

- 1. 可視光もしくは特定の波長で透過率の高い基板を用 いて、基板裏面より実装デバイスの接合面を顕微鏡もし くはテレビカメラ等で観察しながら、反対側より加熱、 加圧を行いボンディングする。
 - 2. ボンディング部材面の平行度調整部をステージ側に 設ける。
 - 3. 半導体デバイス側、もしくは基板側のどちらからで もスクラブもしくは超音波が掛けられる機能を設ける。
 - 4. 基板を透明化し、半導体デバイスを加熱機構を有す るコレットで吸着し可動式とする機能を設ける。

[0007] 20

【作用】1. 基板裏面より実装デバイスの接合面を観察 出来る為、位置合わせ精度±2μm以下が達成出来、か つ、半田の濡れ性をチェックすることが出来る。

- 2. 並行度調整が検知できる為、半導体部品等の片当た りを防ぐことが出来る。
- 3. スクラブもしくは超音波が掛けられる機能を有する 為、半田表面の酸化膜を除去する事が出来る。
- 4. 基板を透明化し、加熱機構を有するコレットで吸着 し可動式とする機能を設けることにより、多数の半導体 場合、半導体部品6の電極を見るために、ハーフミラー 30 デバイスをフリップチップボンディングで実装すること が出来る。

[8000]

【実施例】以下本発明の実施例を図面を用いて説明す

【0009】実施例は図2に示すように、フロントエン ドモジュールの実装において、透明基板としてサファイ ア (10mm角×0.2mm厚) を用いた。 サファイア 基板14の表面には、薄膜Ti/Pt/Au(0.1/ 0. 2/0. 9mm厚) を用いて配線を形成した。ま

- 1. 位置合わせ精度が±20μmと大きく、位置ずれに 40 た、フォトダイオード15を接合するための接合部のバ ターンは、素子の電極パターンよりも2μm小さくし て、その上にPb/Sn (95/5)の半田を約3μm 厚設けた。まず、サファイア基板14を加熱台4上に固 定し、フォトダイオード素子15を真空コレット1で吸 着する。コレット側に取り付けられた顕微鏡2で大まか な位置合わせを行う。真空コレット1を下げ、フォトダ イオード素子15とサファイア基板14を近接させる。 サファイア基板14の裏面側に配置されたカメラ10よ り、サファイア基板14とフォトダイオード素子15の
 - 50 接合部の位置合わせを微動ステージ5、2軸ステージ

3

8、及び煽りステージ9を用いて行う。正確な位置合わせが完了した後、340℃で半田溶融しながら真空コレット1にスクラブ機構11でスクラブをかけ、半田表面の酸化膜を取り除き、真性半田による接合を完了する。【0010】

【発明の効果】1. 基板裏面より実装デバイスの接合面を観察出来る為、位置合わせ精度±2μm以下が達成出

- 2. 並行度調整が検知できる為、半導体部品等の片当たりを防ぐことが出来た。
- 3. スクラブもしくは超音波が掛けられる機能を有する 為、半田表面の酸化膜を除去する事が出来、かつ半田の 濡れ性をチェックすることが出来た。
- 4. 基板を透明化し、加熱機構を有するコレットで吸着 し可動式とする機能を設けることにより、多数の半導体

デバイスをフリップチップボンディングで実装すること が出来た。

【図面の簡単な説明】

【図1】従来用いていたフリップチップボンディング装置。

【図2】本発明によるボンディング装置を用いた実装図。

【符号の説明】

1 … 真空コレット、2 … 顕微鏡、3 … ハーフミラ
10 一、4 … 加熱台、5 … 微動ステージ、6 … 半導体部
品、7 … 基板、8 … Z軸ステージ、9 … 煽り用ステ
ージ、10 … テレビカメラ、11 … スクラブ機構、1
2 … 加熱ヒータ、13 … 基板裏面用直視ホール、14
… サファイア基板、15 … フォトダイオード。

【図1】

図1

【図2】

図 2

フロントページの続き

(72)発明者 千葉 勝昭

東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内

(72)発明者 小野 佑一

東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内