

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2557

วิชา ENE 301 Introduction to Probability and Random Processes for Engineers ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 3 สอบ วันพุธ ที่ 26 พฤศจิกายน 2557

เวลา 9:00-12:00 น.

คำเตือน

- 1. นักเรียนสามารถนำกระคาษจค A-4 หน้าหลังสองแผ่นเข้าห้องสอบได้เท่านั้น
- 2. จัดสอบมี 10 หน้า รวมในปะหน้า
- 3. นักเรียนสามารถนำเครื่องคิดเลขใดๆเข้าห้องสอบได้
- 4. จ้อสอบมี 7 จ้อ ทั้งหมด 155 คะแนน
- 5. จ้อสอบมีเวลาทำ 3 ชั่วโมง
- 6. ห้ามทุงริศโดยเค็ดขาด ถ้าทุงริศจะได้ F

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักสึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พันสภาพการเป็นนักศึกษา					
ชื่อ-สกุล	รหัสประจำตัว				
อาจารย์วุฒิพงษ์ คำวิลัยศักดิ์					
ผู้ออกข้อสอบ ~					
โทร. 0-2470-9067					

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(ผส.ดร.สุวัฒน์ ภัทรมาลัย)

รักษาการหัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

طه مه	and a land of	المراجعة الم
ชอ-สกุล	รหัสประจำตัว	เลขที่นั่งสอบ

1. (Function of one random variable) ถ้าให้ $Y=e^X$ จงหา pdf ของ Y เมื่อ X เป็น ตัวแปรสุ่มแบบ Gaussian ที่มีค่าเฉลี่ย μ และ ค่าความแปรปรวนเป็น σ^2 (20 คะแนน)

2. (Vector mapping) ถ้าเราให้

$$Z = X + Y$$

$$W = \frac{Y}{X}$$

โดยให้
$$f_{xy}(x,y)=egin{cases} 2e^{-(x+y)}, 0 < x < y < \infty \\ 0, otherwise \end{cases}$$
 จงหา joint pdf ของ Z และ W และจงแสดงว่า Z และ W เป็นอิสระต่อกัน (30 คะแนน)

3. (Joint pdf) Joint pdf ของตัวแปรสุ่ม x และ y ซึ่งสามารถเขียนใต้ดังนี้

$$f_{\chi\gamma}(x,y) = \begin{cases} x + y, 0 \le x \le 1, 0 \le y \le 1\\ 0, otherwise \end{cases}$$

a) ตัวแปรสุ่ม x และ y เป็นอิสระต่อกันหรือไม่ จงแสดงวิธีทำ (10 คะแนน)

b) and $P(y \ge \frac{1}{2}, x \le \frac{1}{2})$ (10 Azulu)

4. (Moment generation function) ถ้าให้ x เป็นตัวแปรสุมที่มี

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}, x = 0,1,2,....$$

a) จงหา moment generating function ของ x (10 คะแนน)

b) ใช้ moment theorem ในการหา mean และ variance ของ x (10 คะแนน)

ชื่อ-สกุล...... เลขที่นั่งสอบรหัสประจำตัว

5. (Conditional Probability Density Function) ก้าให้ $f_{xy}(x,y) = \begin{cases} 2.0 < y \le x < 1 \\ 0, otherwise \end{cases}$

$$f_x(x) = 2x \qquad 0 < x < 1$$

$$f_y(y) = 2(1-y)$$
 $0 < y < 1$

จงหา
$$f_{y|x}(y\,|\,x)$$
 และ $f_{x|y}(x\,|\,y)$ (20 คะแนน)

al .	a	لم ام
ชื่อ-สกุล	รหัสประจำตัว	เลขที่นั่งสอบ

- 6. (Mean&Variance) ในโรงงานทำตัวต้านทานขนาด 100 โอห์ม เนื่องมาจากว่าการผลิตที่ไม่สมบูรณ์ ตัวต้านทานที่ ได้มีค่าที่ไม่ได้ 100 โอห์มอย่างถูกต้อง ถ้าเราให้ค่าของความต้านทานเป็น x และมองเป็นตัวแปรสุ่ม ถ้า pdf ของ x เป็นแบบ Gaussian ที่มีค่า เฉลี่ย เป็น 100 และ ค่าความแปรปรวนเป็น 4
 - a. จงหาความน่าจะเป็นที่ x จะมีค่าน้อยกว่าหรือเท่ากับ 105 โอห์ม (10 คะแนน)

ถ้าโรงงานที่สองก็เป็นโรงงานที่ผลิตตัวต้านทานขนาด โอห์ม เนื่องมาจากว่าการผลิดที่ไม่สมบูรณ์ ตัว ต้านทานที่ได้มีค่าที่ไม่ได้ 100 โอห์มอย่างถูกต้อง ถ้าเราให้ค่าของความต้านทานเป็น y และมองเป็นตัว แปรสุ่ม ถ้า pdf ของ y เป็นแบบ uniform ระหว่าง 97 ถึง 103 โอห์ม ถ้าเรามีตัวต้านทาน อย่างล่ะหนึ่งจากแต่ละโรงงาน ให้ Z เป็นค่าเฉลี่ยของตัวต้านทานของตัวนี้ จงหาค่าเฉลี่ยและค่าความ แปรปรวนของ Z (20 คะแนน)

ชื่อ-สกุล.....รหัสประจำตัว.....เลขที่นั่งสอบ

- 7. จงตอบคำถามข้อย่อยต่อไปนี้ (15 คะแนน)
- (a) ถ้าเราทราบว่าตัวแปรสุ่ม x(u) มีค่า moment ดังนี้ $E\{x(u)\}=m_1,\ E\{x^2(u)\}=m_2$,และ $E\{x^3(u)\}=m_3$ แล้วจงเขียน $E\{[x(u)-m_1]^3\}$ ให้อยู่ในรูป m_1,m_2,m_3 (5 คะแนน)

(b) ถ้าตัวแปรสุม x(u) เป็น Gaussian ที่มีค่าเฉลี่ยเป็น m และ variance เป็น σ^2 จงหาค่าเฉลี่ยของ $e^{x(u)}$ (5 คะแนน)

(c) ถ้า $y(u)=\mid x(u)\mid$ จงเขียน $F_{y(u)}(y\mid x(u)>0)$ และ $f_{y(u)}(y\mid x(u)>0)$ ให้อยู่ในรูป $F_{x(u)}(x)$ และ $f_{x(u)}(x)$ (5 คะแนน)

Table A.3 Areas under the Normal Curve

Tab	le A.3 Ai	eas under	the Norr	nal Curve				0 Z		
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	8000.0	8000.0	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1 -0.0	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table A.3 (continued) Areas under the Normal Curve

) 117 000 a.	Telet offe 1	vormai Ct	11 46			_	
\boldsymbol{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.5
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.72
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.80
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.88
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.94
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.0
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.97
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.97
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.98
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.98
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.99
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.99
2.7	0.9965 .	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.99
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.99
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9