Introduction to Phylogenetics Week 4

Phylogenetic Models

I. Models

- Genetic distance
 - Used to determine divergence between sequences
 - Two identical sequences will diverge based on standard evolutionary rates
 - Rate depends a lot on how you model evolution
 - The evolutionary model you use is critical to obtaining a robust phylogenetic structure

II. Observed and expected

Simplest approach – count differences

Proportion is observed distance or p-distance

II. Observed and expected

- Relatedness based on p-distance (Hamming distance) easy to imagine
- Only based on identity between sequences
- Cannot account for type of change/backmutations
- No account of evolutionary processes (i.e. transition vs. transversion)
- Observed distance (p) underestimates true genetic distance (d)

II. Observed and expected

 Overtime substitutions at each site accumulate and sequences are saturated

 Can use this to determine genetic distance for tree – not very robust.

III. Mutations and time

- Substitutions assumed to be random event
- Substitution model provides statistical description of stochastic process
- Number of mutations X(t) over time t.
- Use Poisson (P) distribution
 - Discrete probability distribution
 - Most basic model assumes mutation equally likely at each site
 - Occurs at rate μ
 - $P_n(t)$ probability n mutations in t

III. Mutations and time

$$P_n(t) = \left[(mt)^n \exp(-mt) \right] / n!$$

- Number of substitutions up to time t is distributed with factor μt with variance μt
- Nucleotide substitution rate therefore is tied to t

IV. Calculating Nucleotide Subs.

- Rates of substitution a Markov process
 - Stochastic model
 - Random system changes state according to transition rule
 - Can make predictions on future based on present state of system
- Basically you know what the nucleotide is now, you can determine likelihood of assuming future state

IV. Calculating Nucleotide Subs.

- Q matrix specifies rate of change for each nucleotide
- Way of describing all possible changes between states
- Probability departing from state i, arriving at state j
- Assumes state prior to i has no impact on probability of j
- Rate of change modeled differently by different evolutionary models

- μ is mean instantaneous substitution rate
- a, b, c... relative substitution rate (i.e. A to C)
- π_G , π_A , π_T ... nucleotide frequencies
- Diagonal values so each row = 0 (no change)
- How you parameterize matrix determines how you model evolution

V. Time Reversible Models

- Basic substitution models are probably not biologically relevant
- Do allow us to model stochastic events
- Time-reversible models assume rate of change
 i to j is the same as j to i (a = g, etc)
- Probability of nucleotide change at any site during evolutionary time (t)

$$P(t) = \exp(Qt)$$

V. Jukes Cantor Model (JC69)

- When the probabilities of change P(t) are known, can determine evolutionary distance between two sequences
- JC69 equilibrium frequency nucleotide = 25% $\pi_G = \pi_\Delta = \pi_T = \pi_C = 1/4$
- JC69 any nucleotide replaced by any other

$$a = b = c = d = e = f = g... = 1$$

- Probability of nucleotide not changing $P_{ii}(t)$
- Probability of nucleotide replacement $P_{ij}(t)$

V. Jukes Cantor Model (JC69)

Using JC69 Q matrix and given $P(t) = \exp(Qt)$

$$P_{ii}(t) = \frac{1}{4} + \frac{3}{4} \exp(-mt)$$
 and $P_{ij}(t) = \frac{1}{4} - \frac{1}{4} \exp(-mt)$

Comparing two sequences: $p = \frac{3}{4}[1 - \exp(-2mt)]$

Solving for μt :

$$mt = -\frac{1}{2}\log(1 - \frac{4}{3}p)$$

V. Jukes Cantor Model (JC69)

$$Q = \begin{pmatrix} * & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & * & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & * & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & * \end{pmatrix} P = \begin{pmatrix} \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \end{pmatrix}$$

$$d = -\frac{3}{4}\ln(1 - \frac{4}{3}p)$$

VI. Nucleotide substitution models

- If all parameters of Q matrix determined considered a general time reversible model (GTR)
- Parameterization reflects more of biological processes – rate heterogeneity between sites

VI. Nucleotide substitution models

- Consider distribution of nucleotide changes
- Standard probability distributions Gamma

