Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 13

Exercise 1: Boosted Classifiers (70 P)

We consider the following three two-dimensional binary classification datasets composed of 16 samples each:

	\mathbf{x}_1	x ₂ ●	X ₃	X ₄	★ * ₁	l)	X ₂ ●	x ₃	X ₄		^	X ₁ ●	x ₂ ●	x ₃	х ₄ О
	X ₅ ●	x ₆ ●	X ₇	x ₈	X ₅	5	X ₆ ●	x ₇	x ₈			X ₅ ●	x ₆ ●	x ₇	х ₈
	X ₉ ●	x ₁₀ ●	x ₁₁ ●	x ₁₂ ●	X _Q)	X ₁₀ ●	x ₁₁ ●	x ₁₂			x ₉ ●	x ₁₀ ●	x ₁₁ ●	x ₁₂ ●
2	X ₁₃	X ₁₄ ●	x ₁₅ ●	x ₁₆ ●	x ₁	3	X ₁₄ ●	X ₁₅ ●	x ₁₆ ●			x ₁₃	X ₁₄ ●	x ₁₅ ●	x ₁₆ ●
(i)					(ii)						(iii)				

Black circles denote the first class $(y_i = -1)$ and white circles denote the second class $(y_i = 1)$. We decide to use a boosted classifier with a perceptron as weak learner. The boosted classifier is given by

$$f(x) = \operatorname{sign}\left(\alpha_0 + \sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

where $\alpha_0, \ldots, \alpha_T \in \mathbb{R}$, and where the function

$$h_t(x) = \operatorname{sign}(w_t^{\top} x_i + b_t)$$

is the tth weak classifier, a simple perceptron with parameters w_t, b_t . Each weak classifier is trained to minimize the objective

$$\min_{w_t, b_t} \sum_{i=1}^{16} p_{t,i} \cdot \left[y_i - (w_t^{\top} x_i + b_t) \right]^2,$$

where the parameters $p_{t,1}, \ldots, p_{t,16}$ have the role of weighting the data.

- (a) Build at hand and for each dataset a possible boosted classifier, i.e. draw for each dataset the decision boundary of the weak classifiers $h_t(x)$ and of the final boosted classifier f(x).
- (b) Write down for each boosted classifier you have drawn, the coefficients $\alpha_0, \ldots, \alpha_T$ and the weighting terms $p_{t,i}$ that have lead to each weak classifier.

Exercise 2: Boosted Regressors (30 P)

We consider the boosted regressor

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

where $\alpha_1, \ldots, \alpha_T \in \mathbb{R}$, and where

$$h_t(x) = w_t^\top x$$

is the real-valued prediction produced by the tth weak regressor and $x \in \mathbb{R}^d$ with parameter w_t . Assuming a labeled dataset $(x_1, y_1), \dots, (x_N, y_N)$, the overall error of the boosted classifier is defined as:

$$\mathcal{E} = \sum_{i=1}^{N} \left[y_i - f(x_i) \right]^2$$

Like in the previous exercise, weak classifiers are learned by means of objectives of type:

$$\min_{w_{t}, b_{t}} \sum_{i=1}^{N} p_{t,i} \cdot \left[y_{i} - w_{t}^{\top} x_{i} \right]^{2},$$

where the parameters $p_{t,1},\dots,p_{t,N}$ have the role of weighting the data.

(a) Show that with T=1 one can find a solution to this problem that cannot be improved by choosing T>1.