2025-03-24 STEP Practice . Problem 59 (1998.03.04)

Consider the curve $r = \cos\theta$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

 $\sqrt{x^2+y^2} = \cos\left[\arctan\left(\frac{y}{x}\right]\right] = \frac{x}{\sqrt{x^2+y^2}} = x \sim \left[x-\frac{1}{2}\right]^2 + y^2 = \frac{1}{4}$

. The equation represents a rircle of radius $\frac{1}{2}$ and rentre $(\frac{1}{2},0)$.

Consider the curve Y = ces(20) for $0 \le 0 \le 27T$. $Y \ge 0$ for $0 \in [0, \frac{\pi}{4}] \cup [\frac{\pi}{4}, \frac{5\pi}{4}] \cup [\frac{\pi}{4}, 27T]$. For $0 \in [0, \frac{\pi}{4}]$, Y goes from Y to Y. For $0 \in [\frac{\pi}{4}, \frac{5\pi}{4}]$, Y goes from Y to Y.

The curve $r = cas(2n\theta)$ has 2n lobes evenly-spaced around the origin. Each lobe is 1 long and $\frac{\pi}{2n}$ wide. One lobe is rentered on the x-exis.

The area of one lobe is given by: \(\frac{4n}{2} \delta \text{0}.

The total onea enclosed by the curve: $A = 2n \times \int_{-\frac{\pi}{4}n}^{\frac{\pi}{4}n} \frac{\cos^2(2n\theta)}{2} d\theta = n \int_{-\frac{\pi}{4}n}^{\frac{\pi}{4}n} \left[\frac{\cos(4n\theta) + 1}{2} \right] d\theta = n \left[\frac{\sin(4n\theta)}{8n} + \frac{\theta}{2} \right]_{-\frac{\pi}{4}n}^{\frac{\pi}{4}n}$ $= n \left[\frac{\sin(n\pi)}{8n} + \frac{\pi}{8n} \right] - n \left[\frac{\sin(-n\pi)}{8n} - \frac{\pi}{8n} \right] = 0 + \frac{\pi}{8} - 0 + \frac{\pi}{8} = \frac{\pi}{4}$

. . A is independent of n.

Consider the cone $V = \cos(3\theta)$ for $0 \le \theta \le 2\pi$. $V \ge 0$ for $\theta \in [0, \frac{\pi}{6}] \cup [\frac{\pi}{2}, \frac{5\pi}{6}] \cup [\frac{1\pi}{6}, \frac{3\pi}{6}] \cup [\frac{11\pi}{6}, 2\pi]$. 30 90 150 210 270 370 360 For $\theta \in [0, \frac{\pi}{8}]$, r you from $|t_0|$. For $\theta \in [\frac{\pi}{8}, \frac{3\pi}{2}]$, r you from 0 to $|t_0|$. For $\theta \in [\frac{4\pi}{8}, \frac{3\pi}{2}]$, r you from 0 to $|t_0|$. For $\theta \in [\frac{1\pi}{8}, 2\pi]$, r you from 0 to $|t_0|$.

