A collaborative LaTeX document

Class of ID2090, Third Trimester of 2021 batch $\label{eq:June 14} \text{June 14, 2022}$

Contents

1	Introduction	3
2	AE21B003	4
3	AE21B028	5
4	AE21B045	6
5	AE21B056	7
6	AE21B062	8
7	AE21B107	9
8	BE21B016	10
9	BE21B040	11
10	CE19B020	12
11	CE21B021	13
12	CE21B088	14
13	CE21B097	15
14	CE21B112	16
15	CE21B115	17
16	CH21B067	18
17	CH21B079	19
18	CH21B101	20
19	ME21B050	21
20	ME21B060	22
21	ME21B065	23

22 ME21B079	24
23 ME21B088	25
24 ME21B091	26
25 ME21B186	27
26 ME21B190	28
27 ME21B196	29
28 ME21B204	30
29 ME21B217	31
30 MM21B012	32
31 MM21B024 31.1 Lagrangian Operator	. 33
32 Explanation of equation	33
33 MM21B032	35
34 MM21B044	36
35 MM21B046	37
36 MM21B059	38
37 MM21B063	39
38 NA21B002	40
39 NA21B005	41
40 NA21B006	42
41 NA21B007	43
42 NA21B020	44
43 NA21B048	45
44 NA21B052	46
45 Conclusions	47
46 References	47

List of Figures

List of Tables

1 Introduction

This file includes tex files from the folders of each student. The students are expected to update the file named after their roll number and place any images in the same folder. Students do not have to edit this master document. Once the student has sent a pull request which is accepted and processed successfully, his/her assignment submission is deemed to be complete.

You are also welcome to add references and cite them. Examples on how to do that are on the course repository [1].

8 BE21B016

9 BE21B040

10 CE19B020

16 CH21B067

17 CH21B079

18 CH21B101

31.1 Lagrangian Operator

$$\mathcal{L} = \sum_{i=1}^{n} \frac{1}{2} m \dot{q}_{i}^{2} - U(q_{1}, q_{2}, q_{3}, q_{4}....q_{n})$$

31.2 Euler Lagrangian Equation

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial q_i}$$

31.3 Symbols Involved

SYMBOL	DEFINITION
q_i	generalised coordinate
\dot{q}_i	generalised coordinate's velocity $\frac{dq_i}{dt}$
\mathcal{L}	Lagrangian
$\frac{d}{dt}$	derivative with respect to time
$rac{\partial \mathcal{L}}{\partial q_i}$	partial derivative of Lagrangian with respect to q_i
$rac{\partial \mathcal{L}}{\partial \dot{q_i}}$	partial derivative of Lagrangian with respect to \dot{q}_i
m	mass of object
$U(q_1, q_2, q_3q_n)$	Potential energy of the object

Allows for a dynamic optimization process between the two energies

Figure 1: The Lagrangian Operator

32 Explanation of equation

This is a mechanical model developed by Lagrange to analyse complex systems which are very difficult to analyse by Newtonian Mechanics. The process follows the calculus of variations and

defines a procedure to analyse a system by the Euler Lagrangian equation which is a result of Hamilton's principle of least action. The mechanical state of the object i.e its potential and kinetic energies are determined in terms of generalised coordinates. The number of generalised coordinates of a body is same as the number of degrees of freedom it has. The generalised coordinates have their own velocities defined as their derivatives with respect to time. The Lagrangian is now expressed in terms of the generalised coordinates and their velocities. By principle of least action and calculus we arrive at the Euler Lagrangian equation. On proceeding to do the math we get a second order partial differential equation in the generalised coordinate. On solving all the partial differential equations simultaneously we can calculate the exact state of the system at a given time. This setup is generally used to analyse oscillators.

45 Conclusions

If this master tex file could be compiled successfully, it means that the class has learnt the concepts of Git as well as LaTeX properly.

46 References

References

[1] Repository for id2090 course. https://github.com/gphanikumar/mm2090. Accessed: 2022-06-13.