

Journal of Difference Equations and Applications

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gdea20

A bivariate generating function for zeta values and related supercongruences

Roberto Tauraso

To cite this article: Roberto Tauraso (2020) A bivariate generating function for zeta values and related supercongruences, Journal of Difference Equations and Applications, 26:11-12, 1526-1537, DOI: <u>10.1080/10236198.2020.1856827</u>

To link to this article: https://doi.org/10.1080/10236198.2020.1856827

A bivariate generating function for zeta values and related supercongruences

Roberto Tauraso

Dipartimento di Matematica, Università di Roma 'Tor Vergata', Roma, Italy

ABSTRACT

By using the Wilf–Zeilberger method, we prove a novel finite combinatorial identity related to a bivariate generating function for $\zeta(2+r+2s)$. Such identity, which is an extension of a Bailey–Borwein–Bradley Apéry-like formula for even zeta values, is then applied to show several supercongruences.

ARTICLE HISTORY

Received 8 February 2020 Accepted 27 October 2020

KEYWORDS

Congruences; central binomial coefficients; harmonic numbers; Wilf–Zeilberger method; zeta values; Apéry-like series

2010 MATHEMATICS SUBJECT CLASSIFICATIONS 11A07; 05A19; 11B65; 11M06

1. Introduction

The bivariate formula

$$\sum_{k=1}^{\infty} \frac{k}{k^4 - a^2 k^2 - b^4} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (5k^2 - a^2)}{k \binom{2k}{k}} \cdot \frac{\prod_{j=1}^{k-1} ((j^2 - a^2)^2 + 4b^4)}{\prod_{j=1}^{k} (j^4 - a^2 j^2 - b^4)}$$
(1)

has been first conjectured by H. Cohen and then proved independently by Rivoal [11, Theorem 1.1] and Bradley [3, Theorem 1] by reducing it to the finite combinatorial identity

$$\sum_{k=1}^{n} {2k \choose k} \frac{(5k^2 - a^2) \prod_{j=1}^{k-1} ((n^2 - j^2)(n^2 + j^2 - a^2))}{\prod_{j=1}^{k} (n^2 + (n-j)^2 - a^2)(n^2 + (n+j)^2 - a^2)} = \frac{2}{n^2 - a^2},$$
 (2)

and by Kh. Hessami Pilehrood and T. Hessami Pilehrood [6, Theorem 1] by applying the Wilf-Zeilberger theory. Since the left-hand side of (1) can be written as the generating function of $\zeta(3 + 2r + 4s)$,

$$\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} {r+s \choose r} \zeta(3+2r+4s)a^{2r}b^{4s},$$

it follows that, by extracting the coefficients for (r, s) = (0, 0) and (r, s) = (1, 0), we obtain the Apéry-like identities

$$\zeta(3) = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^3 \binom{2k}{k}} \quad \text{and} \quad \zeta(5) = \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\binom{2k}{k}} \left(\frac{4}{k^5} - \frac{5H_{k-1}(2)}{k^3}\right), \quad (3)$$

where $H_n(s) = \sum_{j=1}^n \frac{1}{i^2}$ is the harmonic sum of weight s. For more details about Apéry-like series, see also [1, 4-6].

Here, we consider a similar bivariate formula

$$\sum_{k=1}^{\infty} \frac{1}{k^2 - ak - b^2} = \sum_{k=1}^{\infty} \frac{(3k - a)}{k \binom{2k}{k}} \cdot \frac{\prod_{j=1}^{k-1} (j^2 - a^2 - 4b^2)}{\prod_{j=1}^{k} (j^2 - aj - b^2)},\tag{4}$$

where the left-hand side is the generating function of $\zeta(2+r+2s)$,

$$\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} {r+s \choose r} \zeta(2+r+2s)a^r b^{2s}.$$

For a = 0, (4) yields a formula due to Bailey *et al.*

$$\sum_{s=0}^{\infty} \zeta(2+2s)b^{2s} = \sum_{k=1}^{\infty} \frac{1}{k^2 - b^2} = 3\sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}} \cdot \frac{\prod_{j=1}^{k-1} (j^2 - 4b^2)}{\prod_{j=1}^{k} (j^2 - b^2)},$$

which appeared in [2, Theorem 1.1]. Moreover, for (r, s) = (1, 0) and (r, s) = (0, 1), we get the Apéry-like identities

$$\zeta(3) = \sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}} \left(\frac{2}{k^3} + \frac{3H_{k-1}(1)}{k^2} \right) \quad \text{and} \quad \zeta(4) = 3 \sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}} \left(\frac{1}{k^4} - \frac{3H_{k-1}(2)}{k^2} \right). \tag{5}$$

Replacing a by 2a and then letting $x^2 = a^2 + b^2$ in (4), we find the equivalent identity

$$\sum_{k=1}^{\infty} \frac{1}{(k-a)^2 - x^2} = \sum_{k=1}^{\infty} \frac{(3k-2a)}{k \binom{2k}{k}} \cdot \frac{\prod_{j=1}^{k-1} (j^2 - 4x^2)}{\prod_{j=1}^{k} ((j-a) - x^2)}$$

which has been proved by Kh. Hessami Pilehrood and T. Hessami Pilehrood [7, (24)].

Again, in the same spirit of what has been done for (1), our proof of (4) is reduced to show the following novel finite identity:

$$\sum_{k=1}^{n} {2k \choose k} \frac{3k - 2n + a}{k^2 - a^2} \cdot \prod_{j=1}^{k-1} \frac{(j-n)(j-n+a)}{j^2 - a^2} = \frac{2}{n-a}.$$
 (6)

In [15, Theorem 4.2], the author established that for any prime p > 5, the next two congruences hold:

$$\sum_{k=1}^{p-1} \frac{1}{k} \binom{2k}{k} \equiv -\frac{8H_{p-1}(1)}{3} \pmod{p^4},$$

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k^2} \binom{2k}{k} \equiv \frac{4}{5} \left(\frac{H_{p-1}(1)}{p} + 2pH_{p-1}(3) \right) \pmod{p^4}.$$

Thanks to the finite identities (2) and (6), in Section 5, we improve the first one as follows:

$$\sum_{k=1}^{p-1} \frac{1}{k} \binom{2k}{k} \equiv -\frac{8H_{p-1}(1)}{3} - \frac{5p^2 H_{p-1}(3)}{3} \pmod{p^5},$$

and we show that for any prime p > 5,

$$\sum_{k=1}^{p-1} \frac{1}{k^3} \binom{2k}{k} \equiv -\frac{2H_{p-1}(1)}{p^2} \pmod{p^2},$$

$$\sum_{k=1}^{p-1} {2k \choose k} \frac{H_k(2)}{k} \equiv \frac{2H_{p-1}(1)}{3p^2} \pmod{p^2}.$$

Notice that the last two congruences are known modulo p (see [8, Theorem 2] and [10, (38)]) and they confirm modulo p^2 the two conjectures by Z.-W. Sun: for each prime p > 7,

$$\sum_{k=1}^{p-1} \frac{1}{k^3} \binom{2k}{k} \equiv -\frac{2H_{p-1}(1)}{p^2} - \frac{13H_{p-1}(3)}{27} \pmod{p^4},$$

$$\sum_{k=1}^{p-1} \binom{2k}{k} \frac{H_k(2)}{k} \equiv \frac{2H_{p-1}(1)}{3p^2} - \frac{38H_{p-1}(3)}{81} \pmod{p^3}.$$

The first one appeared in [13, Conjecture 1.1] and the second one in [14, Conjecture 5.1]. In the last section, two more congruences related to the Apéry-like identities (3) and (5) are provided.

2. Preliminaries concerning multiple harmonic sums

We define the multiple harmonic sums as

$$H_n(s_1,\ldots,s_r) = \sum_{1 \le k_1 < k_2 < \cdots < k_r \le n} \frac{1}{k_1^{s_1} k_2^{s_2} \cdots k_r^{s_r}},$$

where $n \ge r > 0$ and each s_i is a positive integer. The sum $s_1 + s_2 + \cdots + s_r$ is the weight of the multiple sum. Furthermore, by $\{s_1, s_2, \dots, s_j\}^m$ we denote the sequence of length mj with m repetitions of (s_1, s_2, \dots, s_j) .

By [12, Theorem 5.1]), for any prime p > s + 2 we have

$$H_{p-1}(s) \equiv \begin{cases} -\frac{s(s+1)}{2(s+2)} p^2 B_{p-s-2} \pmod{p^3} & \text{if } s \text{ is odd,} \\ \frac{s}{s+1} p B_{p-s-1} \pmod{p^2} & \text{if } s \text{ is even,} \end{cases}$$

where B_n be the *n*th Bernoulli number.

Let p > 5 be a prime, then by [15, Theorem 2.1],

$$H_{p-1}(2) \equiv -\frac{2H_{p-1}(1)}{p} - \frac{pH_{p-1}(3)}{3} \pmod{p^4}. \tag{7}$$

Moreover, by [8, Lemma 3],

$$H_{p-1}(1,2) \equiv -\frac{3H_{p-1}(1)}{p^2} - \frac{5H_{p-1}(3)}{12} \pmod{p^3}$$

and by [16, Proposition 3.7] and [9, Theorem 4.5],

$$H_{p-1}(1,1,2) \equiv -\frac{11H_{p-1}(3)}{12p} \pmod{p^2}, \quad H_{p-1}(1,1,1,2) \equiv -\frac{5H_{p-1}(3)}{6p^2} \pmod{p}.$$

Finally, by [16, Theorem 3.2],

$$H_{p-1}(2,2) \equiv \frac{H_{p-1}(3)}{3p}, \quad H_{p-1}(1,3) \equiv \frac{3H_{p-1}(3)}{4p} \pmod{p^2},$$

and by [16, Theorem 3.5],

$$H_{p-1}(2,1,2) \equiv 0$$
, $H_{p-1}(1,2,2) \equiv \frac{5H_{p-1}(3)}{4p^2}$, $H_{p-1}(1,1,3) \equiv -\frac{5H_{p-1}(3)}{12p^2} \pmod{p}$.

3. Proofs of the generating function (4) and the related combinatorial identity (6)

By partial fraction decomposition with respect to b^2 , we get

$$\frac{\prod_{j=1}^{k-1}(j^2-a^2-4b^2)}{\prod_{j=1}^{k}(j^2-aj-b^2)}=\sum_{n=1}^{k}\frac{C_{n,k}(a)}{n^2-an-b^2},$$

where

$$C_{n,k}(a) = \frac{\prod_{j=1}^{k-1} (j^2 - (a-2n)^2)}{\prod_{j=1, j \neq n}^k (j-n)(j+n-a)}.$$

Hence, by inverting the summations order, the identity (4) can be written as

$$\sum_{n=1}^{\infty} \frac{1}{n^2 - an - b^2} = \sum_{k=1}^{\infty} \frac{(3k - a)}{k {2k \choose k}} \sum_{n=1}^{k} \frac{C_{n,k}(a)}{n^2 - an - b^2}$$
$$= \sum_{n=1}^{\infty} \frac{1}{n^2 - an - b^2} \sum_{k=n}^{\infty} \frac{(3k - a)C_{n,k}(a)}{k {2k \choose k}}.$$

It follows that (4) holds as soon as

$$1 = \sum_{k=n}^{\infty} \frac{(3k-a)C_{n,k}(a)}{k\binom{2k}{k}} = \sum_{k=n}^{\infty} \frac{(3k-a)}{k\binom{2k}{k}} \cdot \frac{\prod_{j=1}^{k-1} (j^2 - (a-2n)^2)}{\prod_{j=1, j \neq n}^k (j-n)(j+n-a)}.$$
 (8)

Taking the same approach given in [11] for the proof of (1), the above formula is equivalent to this finite combinatorial identity

$$\sum_{k=1}^{n} {2k \choose k} (3k-a) \frac{\prod_{j=1}^{k-1} (j-n)(j+n-a)}{\prod_{j=1}^{k} (j^2 - (a-2n)^2)} = \frac{2}{a-n}.$$
 (9)

Both identities (8) and (9) are consequences of the next theorem after setting z = 2n-a.

Theorem 3.1: For any positive integer n,

$$\sum_{k=1}^{n} {2k \choose k} (3k - 2n + z) \frac{\prod_{j=1}^{k-1} (j-n)(j-n+z)}{\prod_{j=1}^{k} (j^2 - z^2)} = \frac{2}{n-z}$$
 (10)

and

$$\sum_{k=n}^{\infty} \frac{(3k-2n+z)}{k\binom{2k}{k}} \cdot \frac{\prod_{j=1}^{k-1} (j^2-z^2)}{\prod_{j=1, j\neq n}^{k} (j-n)(j-n+z)} = 1.$$
 (11)

Proof: Let

$$F(n,k) = {2k \choose k} (3k - 2n + z) \frac{\prod_{j=0}^{k-1} (j-n)(j-n+z)}{\prod_{j=1}^{k} (j^2 - z^2)}$$

and

$$G(n,k) = \frac{k(k^2 - z^2)F(n,k)}{(2n - 3k - z)(n + 1 - k)(n + 1 - k - z)}.$$

Then (F, G) is a Wilf–Zeilberger pair, or WZ pair, which means that its components satisfy the relation

$$F(n+1,k) - F(n,k) = G(n,k+1) - G(n,k)$$

In order to prove (10), it suffices to verify that $S_n := \sum_{k=1}^n F(n,k) = 2n$.

Now $S_1 = F(1, 1) = 2$. Moreover,

$$S_{n+1} - S_n = \sum_{k=1}^{n+1} F(n+1,k) - \sum_{k=1}^{n+1} F(n,k) = \sum_{k=1}^{n+1} (G(n,k+1) - G(n,k))$$
$$= G(n,n+2) - G(n,1) = 2$$

because F(n, n + 1) = G(n, n + 2) = 0 and G(n, 1) = -2.

In a similar way, we show (11) by considering the WZ pair given by

$$F(n,k) = \frac{(3k-2n+z)}{k\binom{2k}{k}} \cdot \frac{\prod_{j=1}^{k-1} (j^2-z^2)}{\prod_{j=1, j \neq n}^k (j-n)(j-n+z)}$$

and

$$G(n,k) = \frac{2(2k-1)(k-n)F(n,k)}{n(2n-3k-z)(n-z)}.$$

We have to prove that $S_n := \sum_{k=n}^{\infty} F(n, k) = 1$. It holds for n = 1, and for $n \ge 1$,

$$S_{n+1} - S_n = \sum_{k=n+1}^{\infty} F(n+1,k) - \sum_{k=n}^{\infty} F(n,k)$$

$$= -F(n,n) + \sum_{k=n+1}^{\infty} (G(n,k+1) - G(n,k))$$

$$= -F(n,n) - G(n,n+1) = 0.$$

4. More binomial identities

Here, we collect a few identities, apparently new, involving the binomial coefficients $\binom{2k}{k}$ and $\binom{n+k}{k}$ which will play a crucial role in the next sections.

Theorem 4.1: For any positive integer n,

$$\frac{3}{2} \sum_{k=1}^{n} \frac{1}{k} {2k \choose k} = \sum_{k=1}^{n} \frac{1}{k} {n+k \choose k} + H_n(1), \tag{12}$$

$$\sum_{k=1}^{n} {2k \choose k} \left(\frac{3H_k(1)}{2k} - \frac{1}{k^2} \right) = \sum_{k=1}^{n} {n+k \choose k} \frac{H_k(1)}{k} - H_n(2), \tag{13}$$

$$\sum_{k=1}^{n} {2k \choose k} \left(\frac{3H_k(2)}{k} - \frac{1}{2k^3} \right) = \sum_{k=1}^{n} {n+k \choose k} \frac{H_k(2) + H_n(2)}{k} + H_n(2)H_n(1) - H_n(1,2).$$
(14)

Proof: Let us consider the WZ pair

$$F(n,k) = \frac{1}{k} \binom{n+k}{k} \quad \text{and} \quad G(n,k) = \frac{k}{(n+1)^2} \binom{n+k}{k}$$

then

$$S_{n+1} - S_n = F(n+1, n+1) + \sum_{k=1}^n (G(n, k+1) - G(n, k))$$

$$= F(n+1, n+1) + G(n, n+1) - G(n, 1)$$

$$= \frac{3/2}{n+1} {2(n+1) \choose n+1} - \frac{1}{n+1},$$

where $S_n := \sum_{k=1}^n F(n, k)$. Thus

$$S_n = \frac{3}{2} \sum_{k=1}^{n} \frac{1}{k} \binom{2k}{k} - H_n(1)$$

and we may conclude that (12) holds.

Now, let $S_n^{(1)} := \sum_{k=1}^n F(n, k) H_k(1)$. Then

$$S_{n+1}^{(1)} - S_n^{(1)} = F(n+1,n+1)H_{n+1}(1)$$

$$+ \sum_{k=1}^n \left(G(n,k+1)H_k(1) - G(n,k) \left(H_{k-1}(1) + \frac{1}{k} \right) \right)$$

$$= F(n+1,n+1)H_{n+1}(1) + G(n,n+1)H_n(1) - \sum_{k=1}^n \frac{G(n,k)}{k}$$

$$= \binom{2(n+1)}{n+1} \left(\frac{3H_{n+1}(1)}{2(n+1)} - \frac{1}{(n+1)^2} \right) + \frac{1}{(n+1)^2},$$

where we used $\sum_{k=1}^{n} \binom{n+k}{k} = \frac{1}{2} \binom{2(n+1)}{n+1} - 1$. Hence we find that

$$S_n^{(1)} = \sum_{k=1}^n {2k \choose k} \left(\frac{3H_k(1)}{2k} - \frac{1}{k^2} \right) + H_n(2)$$

which implies (13).

Let
$$S_n^{(2)} := \sum_{k=1}^n F(n,k) H_k(2)$$
 then

$$\begin{split} S_{n+1}^{(2)} - S_n^{(2)} &= F(n+1,n+1)H_{n+1}(2) \\ &+ \sum_{k=1}^n \left(G(n,k+1)H_k(2) - G(n,k) \left(H_{k-1}(2) + \frac{1}{k^2} \right) \right) \\ &= F(n+1,n+1)H_{n+1}(2) + G(n,n+1)H_n(2) - \sum_{k=1}^n \frac{G(n,k)}{k^2} \\ &= \binom{2(n+1)}{n+1} \left(\frac{3H_{n+1}(2)}{2(n+1)} - \frac{1}{2(n+1)^3} \right) - \frac{S_n}{(n+1)^2}, \end{split}$$

where we applied

$$\sum_{k=1}^{n} \frac{G(n,k)}{k^2} = \frac{1}{(n+1)^2} \sum_{k=1}^{n} F(n,k) = \frac{S_n}{(n+1)^2}.$$

Therefore,

$$S_n^{(2)} = \sum_{k=1}^n {2k \choose k} \left(\frac{3H_k(2)}{2k} - \frac{1}{2k^3} \right) - \sum_{k=1}^n \frac{S_{k-1}}{k^2}$$

$$= \sum_{k=1}^n {2k \choose k} \left(\frac{3H_k(2)}{2k} - \frac{1}{2k^3} \right) - \frac{3}{2} \sum_{k=1}^n \frac{1}{k^2} \sum_{j=1}^{k-1} \frac{1}{j} {2j \choose j} + H_n(1,2)$$

$$= \sum_{k=1}^n {2k \choose k} \left(\frac{3H_k(2)}{2k} - \frac{1}{2k^3} \right) - \frac{3}{2} \sum_{j=1}^n \frac{1}{j} {2j \choose j} (H_n(2) - H_j(2)) + H_n(1,2)$$

$$= \sum_{k=1}^n {2k \choose k} \left(\frac{3H_k(2)}{k} - \frac{1}{2k^3} \right) - \frac{3H_n(2)}{2} \sum_{k=1}^n \frac{1}{k} {2k \choose k} + H_n(1,2)$$

and (14) is established.

5. Proofs of the main results

Theorem 5.1: For any prime p > 3,

$$\sum_{k=1}^{p-1} \frac{1}{k} \binom{2k}{k} \equiv -\frac{8H_{p-1}(1)}{3} - \frac{5p^2H_{p-1}(3)}{3} \pmod{p^5}.$$
 (15)

Moreover, for any prime p > 5,

$$\sum_{k=1}^{p-1} \frac{1}{k^3} \binom{2k}{k} \equiv -\frac{2H_{p-1}(1)}{p^2} \pmod{p^2},\tag{16}$$

$$\sum_{k=1}^{p-1} {2k \choose k} \frac{H_k(2)}{k} \equiv \frac{2H_{p-1}(1)}{3p^2} \pmod{p^2}.$$
 (17)

Proof: We first note that

$$\binom{p-1+k}{k} = \frac{p}{k} \binom{p+k-1}{k-1} = \frac{p}{k} \prod_{i=1}^{k-1} \left(1 + \frac{p}{j}\right) = \frac{1}{k} \sum_{i=0}^{k-1} p^{j+1} H_{k-1}(\{1\}^j). \tag{18}$$

Therefore, by (12) with n = p-1, we obtain the desired congruence (15),

$$\sum_{k=1}^{p-1} \frac{1}{k} \binom{2k}{k} = \frac{2}{3} \left(H_{p-1}(1) + \sum_{j=0}^{p-2} p^{j+1} H_{p-1}(\{1\}^j, 2) \right)$$

$$\equiv \frac{2}{3} \left(H_{p-1}(1) + p H_{p-1}(2) + p^2 H_{p-1}(1, 2) + p^3 H_{p-1}(1, 1, 2) + p^4 H_{p-1}(1, 1, 1, 2) \right)$$

$$\equiv -\frac{8H_{p-1}(1)}{3} - \frac{5p^2 H_{p-1}(3)}{3} \pmod{p^5}.$$

By letting z = 2n in (10), we have

$$\sum_{k=1}^{n} {2k \choose k} \frac{k}{k^2 - 4n^2} \prod_{j=1}^{k-1} \frac{j^2 - n^2}{j^2 - 4n^2} = -\frac{2}{3n}.$$

Let n = p > 5 be a prime and move the pth term of the sum to the right-hand side

$$\sum_{k=1}^{p-1} \frac{1}{k} \binom{2k}{k} \frac{1}{1 - \frac{4p^2}{k^2}} \prod_{j=1}^{k-1} \frac{1 - \frac{p^2}{j^2}}{1 - \frac{4p^2}{j^2}} = \frac{2}{3p} \left(\frac{1}{2} \binom{2p}{p} \prod_{j=1}^{p-1} \frac{1 - \frac{p^2}{j^2}}{1 - \frac{4p^2}{j^2}} - 1 \right).$$

The left-hand side modulo p^4 is congruent to

$$\sum_{k=1}^{p-1} \frac{1}{k} \binom{2k}{k} \left(1 + \frac{4p^2}{k^2} \right) \prod_{j=1}^{k-1} \left(1 + \frac{3p^2}{j^2} \right) \equiv \sum_{k=1}^{p-1} \frac{1}{k} \binom{2k}{k} + p^2 \sum_{k=1}^{p-1} \binom{2k}{k} \left(\frac{1}{k^3} + \frac{3H_k(2)}{k} \right).$$

On the other hand, by [15, Theorem 2.4],

$$\frac{1}{2} \binom{2p}{p} \equiv 1 + 2pH_{p-1}(1) + \frac{2p^3H_{p-1}(3)}{3} \equiv 1 - p^2H_{p-1}(2) - \frac{p^4H_{p-1}(4)}{2} \pmod{p^6},\tag{19}$$

and the right-hand side is

$$\frac{1}{2} \binom{2p}{p} \prod_{j=1}^{p-1} \frac{1 - \frac{p^2}{j^2}}{1 - \frac{4p^2}{j^2}} \equiv \frac{1}{2} \binom{2p}{p} \prod_{j=1}^{p-1} \left(1 + \frac{3p^2}{j^2} + \frac{12p^4}{j^4} \right)$$

$$\equiv \left(1 - p^2 H_{p-1}(2) - \frac{p^4 H_{p-1}(4)}{2} \right)$$

$$\cdot \left(1 + 3p^2 H_{p-1}(2) + 12p^4 H_{p-1}(4) + 9p^4 H_{p-1}(2, 2) \right)$$

$$\equiv 1 + 2p^2 H_{p-1}(2) + p^4 \left(\frac{17H_{p-1}(4)}{2} + 3H_{p-1}(2, 2) \right)$$

$$\equiv 1 + 2p^2 H_{p-1}(2) \pmod{p^5},$$

where $2H_{p-1}(2,2) = (H_{p-1}(2))^2 - H_{p-1}(4) \equiv 0 \pmod{p}$. Finally, by (15),

$$\sum_{k=1}^{p-1} {2k \choose k} \left(\frac{1}{k^3} + \frac{3H_k(2)}{k} \right) \equiv \frac{8H_{p-1}(1)}{3p^2} + \frac{5H_{p-1}(3)}{3} + \frac{4pH_{p-1}(2)}{3} \equiv 0 \pmod{p^2}, \tag{20}$$

where we used (7).

By (14), with n = p-1, we have that

$$\sum_{k=1}^{p-1} {2k \choose k} \left(\frac{3H_k(2)}{k} - \frac{1}{2k^3} \right) = p \sum_{k=1}^{p-1} \prod_{j=1}^{k-1} \left(1 + \frac{p}{j} \right) \frac{H_k(2) + H_{p-1}(2)}{k^2} + H_{p-1}(2)H_{p-1}(1) - H_{p-1}(1, 2)$$

$$\equiv p \sum_{k=1}^{p-1} \frac{H_k(2)}{k^2} - H_{p-1}(1, 2)$$

$$= pH_{p-1}(2, 2) + pH_{p-1}(4) - H_{p-1}(1, 2)$$

$$\equiv -H_{p-1}(1, 2) = \frac{3H_{p-1}(1)}{p^2} \pmod{p^2}. \tag{21}$$

The proofs of (16) and (17) are complete as soon as we properly combine congruences (20) and (21).

6. Finale: two Appery-like congruences

We conclude with two more congruences which are related, respectively, to the first series in (5), and to the second series in (3).

Theorem 6.1: For any prime p > 3,

$$\sum_{k=1}^{p-1} {2k \choose k} \left(\frac{2}{k^2} - \frac{3H_k(1)}{k}\right) \equiv \frac{2H_{p-1}(1)}{p} + 3pH_{p-1}(3) \pmod{p^4},\tag{22}$$

$$\sum_{k=1}^{p-1} (-1)^k \binom{2k}{k} \left(\frac{4}{k^4} + \frac{5H_k(2)}{k^2}\right) \equiv -H_{p-1}(4) \pmod{p^2}.$$
 (23)

Proof: As regards (22), by (13) with n = p-1, and (18), we have that

$$\sum_{k=1}^{p-1} {2k \choose k} \left(\frac{3H_k(1)}{2k} - \frac{1}{k^2} \right)$$

$$= \sum_{k=1}^{p-1} \frac{H_k(1)}{k^2} \sum_{j=0}^{k-1} p^{j+1} H_{k-1}(\{1\}^j) - H_{p-1}(2)$$

$$\equiv p \sum_{k=1}^{p-1} \frac{H_{k-1}(1) + \frac{1}{k}}{k^2} \left(1 + pH_{k-1}(1) + p^2 H_{k-1}(1,1) \right) - H_{p-1}(2)$$

$$\begin{split} &\equiv -H_{p-1}(2) + pH_{p-1}(1,2) + pH_{p-1}(3) \\ &+ 2p^2H_{p-1}(1,1,2) + p^2H_{p-1}(2,2) + p^2H_{p-1}(1,3) \\ &+ 3p^3H_{p-1}(1,1,1,2) + p^3H_{p-1}(2,1,2) + p^3H_{p-1}(1,2,2) + p^3H_{p-1}(1,1,3) \\ &\equiv -\frac{H_{p-1}(1)}{p} - \frac{3pH_{p-1}(3)}{2} \pmod{p^4}, \end{split}$$

where at the last step we applied the results mentioned in the preliminaries.

By comparing the coefficient of a^2 in the expansion of both sides of (2) at a = 0, we have

$$\sum_{k=1}^{n} {2k \choose k} \frac{5k^2}{4n^4 + k^4} \prod_{j=1}^{k-1} \frac{n^4 - j^4}{4n^4 + j^4} \left(\frac{1}{5k^2} + \sum_{j=1}^{k-1} \frac{1}{n^2 + j^2} - 2\sum_{j=1}^{k} \frac{2n^2 + j^2}{4n^4 + j^4} \right) = -\frac{2}{n^4}.$$

Let n = p > 3 be a prime. Then we move to the right-hand side the pth term of the sum on the left. It follows that the left-hand side is congruent modulo p^2 to the left-hand side of the (23)

$$\sum_{k=1}^{p-1} (-1)^{k-1} \binom{2k}{k} \frac{5}{k^2} \left(\frac{1}{5k^2} + H_{k-1}(2) - 2H_k(2) \right) = \sum_{k=1}^{p-1} (-1)^k \binom{2k}{k} \left(\frac{4}{k^4} + \frac{5H_k(2)}{k^2} \right).$$

The right-hand side multiplied by p^4 is

$$-2 - {2p \choose p} \prod_{j=1}^{p-1} \frac{p^4 - j^4}{4p^4 + j^4} \left(\frac{1}{5} + p^2 \sum_{j=1}^{p-1} \frac{1}{p^2 + j^2} - 2p^2 \sum_{j=1}^{p} \frac{2p^2 + j^2}{4p^4 + j^4} \right), \qquad (24)$$

and therefore it remains to verify that it is congruent to $-p^4H_{p-1}(4)$ modulo p^6 . We note that

$$\prod_{j=1}^{p-1} \frac{p^4 - j^4}{4p^4 + j^4} \equiv 1 - 5p^4 H_{p-1}(4) \pmod{p^6},$$

$$p^2 \sum_{j=1}^{p-1} \frac{1}{p^2 + j^2} \equiv p^2 H_{p-1}(2) - p^4 H_{p-1}(4) \pmod{p^6},$$

$$2p^2 \sum_{j=1}^{p} \frac{2p^2 + j^2}{4p^4 + j^4} \equiv \frac{6}{5} + 2p^2 H_{p-1}(2) + 4p^4 H_{p-1}(4) \pmod{p^6}.$$

Hence, by (19), (24) simplifies to

$$-2 + 2\left(1 - p^2 H_{p-1}(2) - \frac{p^4 H_{p-1}(4)}{2}\right) \left(1 + p^2 H_{p-1}(2)\right) \equiv -p^4 H_{p-1}(4) \pmod{p^6}$$

and the proof is finished.

Acknowledgements

The author acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome 'Tor Vergata', CUP E83C18000100006.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Roberto Tauraso http://orcid.org/0000-0002-5619-3513

References

- [1] G. Almkvist and A. Granville, Borwein and Bradley's Apéry-like formulae for $\zeta(4n+3)$, Experiment. Math.8 (1999), pp. 197–203.
- [2] D.H. Bailey, J.M. Borwein, and D.M. Bradley, Experimental determination of Apéry-like identities for $\zeta(2n+2)$, Experiment. Math. 15 (2006), pp. 281–289.
- [3] D.M. Bradley, Hypergeometric functions related to series acceleration formulas, Contemporary Math.457 (2008), pp. 113-125.
- [4] J.M. Borwein and D.M. Bradley, Empirically determined Apéry-like formulae for $\zeta(4n+3)$, Experiment. Math. 6 (1997), pp. 181-194.
- [5] W. Chu, Hypergeometric approach to Apéry-like series, Integr. Trans. Spec. Funct. 28 (2017), pp. 505-518.
- [6] Kh. Hessami Pilehrood and T. Hessami Pilehrood, Simultaneous generation for zeta values by the Markov-WZ method, Discrete Math. Theor. Comput. Sci. 10 (2008), pp. 115-123.
- [7] Kh. Hessami Pilehrood and T. Hessami Pilehrood, Bivariate identities for values of the Hurwitz zeta function and supercongruences, Electron. J. Comb. 18 (2012), pp. P35. 30 p.
- [8] Kh. Hessami Pilehrood and T. Hessami Pilehrood, Congruences arising from Apéry-type series for zeta values, Adv. Appl. Math. 49 (2012), pp. 218–238.
- [9] Kh. Hessami Pilehrood, T. Hessami Pilehrood, and R. Tauraso, New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner's series, Trans. Am. Math. Soc. 366 (2014), pp. 3131-3159.
- [10] S. Mattarei and R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory 133 (2013), pp. 131–157.
- [11] T. Rivoal, Simultaneous generation of Koecher and Almkvist-Granville's Apéry-like formulae, Exp. Math. 13 (2004), pp. 503-508.
- [12] Z.-H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000), pp. 193–223.
- [13] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), pp. 2509–2535.
- [14] Z.-W. Sun, A new series for π^3 and related congruences, Internat. J. Math. 26 (2015), pp. 1550055. (23 pages).
- [15] R. Tauraso, More congruences for central binomial coefficients, J. Number Theory 130 (2010), pp. 2639-2649.
- [16] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory 4 (2008), pp. 73-106.