

III. MULTIPLEXAGEM

 Quando um canal possui uma capacidade muito superior ao débito de uma fonte, pode utilizar-se o canal para transportar os sinais de várias fontes, ou seja multiplexar o canal

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

- Quando um canal possui uma capacidade muito superior ao débito de uma fonte, pode utilizar-se o canal para transportar os sinais de várias fontes, ou seja multiplexar o canal
- Como? Várias técnicas, neste capítulo são referidas duas das principais:
 - multiplexagem por divisão de tempo (TDM)
 - multiplexagem por divisão de frequência (FDM)
 - soluções híbridas (e.g. TDM + FDM)
 - muitas variantes de TDM e FDM
 - ... e outras técnicas

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

- Técnica em que cada fonte ocupa uma fracção da largura de banda disponível durante todo o tempo
- Método mais antigo
- Método que surgiu inicialmente associado à transmissão analógica
- Exemplo:
 - transmissão e sintonização de estações de rádio;
 espaço livre constitui o meio comum de transmissão que é multiplexado em frequência

3

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM (Multiplexagem por Divisão de Tempo)

- Cada fonte ocupa toda a largura de banda disponível durante parte do tempo
- Ganhou relevância com a crescente digitalização das comunicações (porquê?)
- Mais apropriado para transmissões digitais
- Diferentes tipos de TDM
 - com diferentes características e aplicações
 - a ver mais tarde....

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM - Exemplo de Multiplexagem por Divisão de Tempo

5

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

 Se neste exemplo todas as fontes produzirem sinais com a mesma largura de banda (B) comutador deverá rodar a ao ritmo f_a ≥ 2B

- Neste exemplo uma trama será um conjunto, ordenado no tempo,
 com uma amostra de cada entrada
- Ritmo de pulsos PAM no canal será de r_c= N*Fa ≥ N*2*B
- [se fosse considerado o processo digitalização completo] no canal estariam os bits representativos de cada uma das amostras

III. MULTIPLEXAGEM

TDM

- Noção de sincronização
 - No exemplo anterior, corresponde à necessidade de cada amostra ser entregue ao destino correcto no instante devido
 - Necessidade da existência de marcas entre cada grupo de amostras ou tramas
 - No contexto do exemplo anterior:

7

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM

- Noção de Canal Virtual (ou lógico)
 - O canal de transmissão é visto como a agregação de vários canais virtuais
 - cada canal virtual é um par emissor-receptor
 - No contexto do exemplo anterior:

III. MULTIPLEXAGEM

TDM

Exemplo antes apresentado: os símbolos são contíguos no tempo; ocorrem sem interrupção; se fonte deixa de transmitir os intervalos de tempo que lhe estão atribuídos tem de decorrer porque

1. TDM Sincrono

Assume a ordenação temporal e continuidade dos canais (i.e. cada canal tem um "espaço" próprio reservado para transmitir os seus dados)

_

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM

2. TDM Assincrono

- Quando não se exige ordenação nem continuidade
- Em muitos cenários melhor desempenho devido ao aproveitamento do tempo desperdiçado por alguns canais
- Multiplexadores estatísticos seguem esta filosofia
- Processo também designado por Multiplexagem
 Estatística

III. MULTIPLEXAGEM

Alguns Fundamentos TDM SÍNCRONO

- Como se estruturam as tramas?
 - [a) organização das tramas]
- Como se deteta o inicio de uma trama?
 - [b) alinhamento de tramas]
- Como se integra informação de controlo nas tramas?
 - [c) sinalização]
- Exemplos concretos?
 - [e.g. d) hierarquias de multiplexagem PDH e SONET]

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Alguns Fundamentos TDM SÍNCRONO

- Organização das tramas que multiplexam diversos canais binários após digitalização das fontes
- Trama multiplexa N canais básicos de K bits
- trama organizada em: canais entrelaçados ou dígitos entrelaçados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Alguns Fundamentos TDM SÍNCRONO ALINHAMENTO DAS TRAMAS

- Necessidade de detecção do início da trama alinhamento da trama
- Utilização de um determinado padrão de vários bits transportados pela trama
- Quando o receptor perde o alinhamento de trama:
 - procura esse padrão de bits de modo a realinhar num curto intervalo de tempo
 - diz-se que o receptor está em modo caça

13

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Alguns Fundamentos TDM SÍNCRONO ALINHAMENTO DAS TRAMAS

PADRÃO AGRUPADO

Os bits de alinhamento formam um conjunto consecutivo no início da trama

PADRÃO DISTRIBUÍDO

Os bits de alinhamento são espalhados pela trama e ao longo de várias tramas

14

III. MULTIPLEXAGEM

Alguns Fundamentos TDM SÍNCRONO

SINALIZAÇÃO

- Consiste na transmissão de informação auxiliar entre os equipamentos de multiplexagem para efeitos de controlo ou informação auxiliar dos próprios canais
- Informação de sinalização possui semântica própria (comandos, confirmações etc.)
 (ao contrário da informação transportada entre as fontes e destinos que é transferida de forma transparente)

15

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Alguns Fundamentos TDM SÍNCRONO SINALIZAÇÃO - exemplos

IN-BAND

Dentro do Octeto – bit menos significativo do octeto é usado (a cada X octetos) para sinalização; utilização problemática para a transmissão de dados no canal

OUT-BAND

Fora do Octeto – a cada canal de informação estão atribuídos um ou mais dígitos de sinalização, num canal separado, mediante regras de atribuição pré-establecidas

CANAL COMUM

Reservado um canal por trama para sinalização o qual é atribuído ocasionalmente de acordo com as necessidades a um ou outro canal (uso de etiquetas para identificação do canal a que dizem respeito).

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM SÍNCRONO

primeiros sistemas de multiplexagem... consequência da digitalização!

Sistemas de Multiplexagem PCM

Primeira forma de TDM apareceu com a **digitalização** PCM do sistema telefónico com a preocupação de transmissão de voz

 Outras estruturas de Multiplexagem SDH, SONET

Sistemas de multiplexagem melhor adaptados à transmissão de sinais de informação multimédia modernos, contemplar tecnologia óptica, visam obtenção de débitos mais elevados, permitir melhor operação e manutenção dos sistemas de multiplexagem

17

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Sistemas de Multiplexagem PCM

- Necessidade de uniformizar os diversos parâmetros (ritmo, canais, sinalização, etc...) levou à normalização da multiplexagem PCM
- Normas Americanas e Europeias especificadas em recomendações da ITU (International Telecommunications Union)
 - » Trama PCM primária de 2 Mbps (sistema Europeu)
 - » Trama PCM primária de 1.5 Mbps (sistema Americano)
 - » Hierarquias de Multiplexagem

III. MULTIPLEXAGEM

Exemplo - Trama PCM Primária de 2 Mbps

Figura 6.6: Estrutura da trama de multiplexagem PCM de 2 Mbps

19

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Exemplo - Trama PCM Primária de 1.5 Mbps

Figura 6.9: Estrutura da trama de multiplexagem PCM de 1.5 Mbps

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Hierarquia de Multiplexagem PDH

- Para multiplexar um maior número de canais básicos do que aquele que o sistema primário admite recorre-se à hierarquização de multiplexadores (cascata de multiplexadores)
- As saídas dos multiplexadores de primeira ordem são multiplexadas em multiplexadores de segunda ordem, e assim sucessivamente
- Estes procedimentos de hierarquias de multiplexagem são normalizados, e.g. hierarquia
 PDH

21

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Tabela 6.1: Hierarquias de Multiplexagem PDH

Sixtema Europeu Sistema Americano ordem dos ITU-T G.732ITU-T G.733Ordem Entradas Ritmo de saída Entradas Ritmo de saída multiplexadores (Kbps) (Kbps) 1 544 E1 30 2 048 2 6 312 T2 4 8 448 E2 4 3 34 368 E3 44 736 T3 4 4 139 264 E4 6 274 176 T4 564 992 E5

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Outras Hierarquias de Multiplexagem - SDH, SONET

- Motivadas pela necessidade de repensar e melhorar as normalizações TDM anteriores
- Motivadas pela evolução e crescente disponibilidade da tecnologia óptica
- Objectivo da continuação da hierarquia até e para além do *gigabit* por segundo (Gbps)
- Necessidade de enriquecer a estrutura de sinalização para melhorar serviços de administração

23

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

SDH, SONET

 Sistema SDH/SONET constituído por multiplexadores, repetidores/regeneradores, comutadores...

e.g. Fibra óptica ininterrupta que interliga quaisquer dos dispositivos designada por secção; trajecto entre dois mux. (com ou sem repetidores) designado por linha; trajecto entre equipamentos terminais designado por caminho/path

III. MULTIPLEXAGEM

Exemplo de Trama Básica SONET

- Tramas constituídas por blocos de 810 bytes
- Duração 125 microseg. (coincide com o período de amostragem PCM)...
- 8000 tramas por segundo
- Tramas podem vistas como uma matriz de bytes (90 colunas, 9 linhas)
- 90 * 9 = 810 bytes * 8000 = 51.84 Mbps ritmo do canal básico SONET cuja trama é designada por STS-1
- Todos os restantes ritmos SONET são múltiplos do STS-1

25

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Exemplo de Trama Básica SONET (STS-1)

III. MULTIPLEXAGEM

Hierarquias de Multiplexagem SDH/SONET

 SONET: Sinal STS-i transmitido sob forma óptica designado por OC-i; SDH: Só aplicado ao contexto de sinais ópticos

Tabela 6.2: Hierarquias de Multiplexagem SDH e SONET

SON	ET	SDH	Ritmo binário (Mbps)				
Eléctrico	Óptico	Óptico	Bruto	SPE	Útil		
STS-1	OC-1		51.84	50.112	49.536		
STS-3	OC-3	STM-1	155.52	150.336	148.608		
STS-9	OC-9	STM-3	466.56	451.008	445.824		
STS-12	OC-12	STM-4	622.08	601.344	594.432		
STS-18	OC-18	STM-6	933.12	902.016	891.648		
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864		
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296		
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728		

etc..... etc

Nota:

- só alguns dos níveis identificados na tabela é que são mais frequentemente usados
- existem mais níveis,
 exemplo: OC-768 com débito
 de aprox. 40 Gbps

27

& ()

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Exemplo de um cenário de multiplexagem SDH

Figura 6.17: Multiplexagem hierárquica SDH

III. MULTIPLEXAGEM

TDM ESTATÍSTICO

- Multiplexagem síncrona mais apropriada para transmissão digitalizada de fontes que produzem informação a um ritmo constante, sem interrupções
- Existem cenários em que tal não é usual
- Tráfego produzido pelas aplicações computacionais é muitas vezes de natureza aleatória (tráfego Internet?)
- Outros tipos de multiplexagem mais apropriadas?

29

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO

Exemplo de tráfego de natureza aleatória

o valor médio de λ_i é o número médio de DUs produzidas por segundo

 Será pois mais vantajoso, nestes casos, a alocação dinâmica de ranhuras temporais dependendo se as fontes tem ou não tráfego para enviar

III. MULTIPLEXAGEM

TDM ESTATÍSTICO vs TDM Síncrono

 TDM estatístico - nem todos os equipamentos estão a transmitir ao mesmo tempo -> ritmo de saída pode ser inferior à soma dos rimos das entradas

31

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO

- Situações de pico de tráfego?
 - tráfego de entrada excede capacidade de saída logo necessidade de buffers (filas de espera)
 - <u>filas grandes</u> = <u>atrasos</u> grandes e <u>filas pequenas</u> = <u>perdas</u> (consequências para diferentes tipos de tráfego?)
 - ritmo de saída importante para o desempenho do sistema
 - necessidade de estudar comportamento do TDM estatístico com modelos matemáticos
 - modelos de filas de espera

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Considerando um determinado tamanho (K) para a fila de espera é usual a usar sintaxe A/B/m/K, pode ser ainda referida a população e a disciplina da fila (por defeito FIFO)

MODELAÇÃO DE TRÁFEGO

- Modelo de Filas de Espera é identificado pela notação (simplificada) A/B/m
 - A distribuição dos tempos entre chegadas
 - B distribuição dos tempos de serviço
 - m número de servidores
- Vamos usar o exemplo modelo M/D/1 para estudar os multiplexadores estatísticos
 - intervalos entre chegadas seguem uma exponencial negativa ...
 - tempos de serviço determinísticos (fixos) ...
 - 1 servidor ...
 - ... algum problema em assumir este modelo?

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

MODELAÇÃO DE TRÁFEGO EM MULTIPLEXADORES ESTATÍSTICOS

exemplo de cenários de redes de comunicações onde este tipo de modelação poderá ser útil?

33

Modelação por Filas de Espera

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - MODELO M/D/1

- Ritmo Médio de Chegadas, λ
 Numero médio de mensagens/tramas/pacotes que chegam ao multiplexador por segundo
- Um multiplexador com N linhas de entrada; cada uma com um ritmo binário de entrada r_{be}; tamanho das mensagens (ou DUs) K; factor de utilização das linhas (i.e. ocupação média entre 0 (0%) e 1 (100%)) α então:

$$\lambda = N\alpha \frac{r_{be}}{k}$$

• Se linhas de entrada com ritmos e α diferentes:

$$\lambda = [\alpha_1 rbe1 + \alpha_2 rbe2 + ... + \alpha_N rbeN] / K$$

35

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - MODELO M/D/1

• Tempo médio de Serviço, S

Tamanho das mensagens (ou DUs - Data units), K bits
Ritmo de Saída em bps, Rbs

k e rbs expressos em unidades coerentes, ex: bits e bps ou outras

$$\overline{S} = rac{k}{r_{bs}}$$
 seg por DU

Utilização do Servidor, p

$$\rho = \lambda \overline{S}$$

se ρ < 1 então sistema em equilíbrio

e caso contrário?

Se PSI entro não consegue se despactor a a fila = 00, perda de parectes permomente

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - MODELO M/D/1

Tempo médio de atraso de uma DU no multiplexador

Número médio de DUs no multiplexador

37

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

MODELO M/D/1 - Exemplo de Resultados

III. MULTIPLEXAGEM

MODELO M/D/1 - Exemplo de Resultados

39

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

- Com as formulas apresentadas anteriormente é possível obter valores médios para a ocupação dos buffers
- No entanto durante a operação do multiplexador os valores de ocupação podem exceder bastante a média
- Como obter valores para as probabilidades de sobrelotação para um determinado tamanho de buffer?

[exemplos/aplicações práticas disto]

III. MULTIPLEXAGEM

MODELO M/D/1 - Probabilidade de Sobrelotação

41

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

- A base teórica dos modelos de filas de espera é importante para o estudo/implementação de diversos equipamentos de rede
- e.g. Routers equipamento de interligação de redes
 - os mecanismos de gestão de filas de espera e estratégias escalonamento de pacotes são essenciais para o tratamento dos pacotes
 - ... afectam a forma/qualidade como o tráfego é transmitido na rede

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Exemplo (conceptual) de uma arquitetura de um router

neste caso várias filas por interface de saída

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

- Estratégias de escalonamento e gestão de filas afectam as diferentes classes de tráfego (se existirem)
 - débitos obtidos, perdas, atrasos, ...
 - Relação com a Qualidade de Serviço (QoS) obtida pelas aplicações Internet
 - Existem inúmeras alternativas de estratégias de escalonamento de tráfego e gestão de filas de espera

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Exemplo do comportamento de uma determinada classe de tráfego

45

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Para conseguir algum tipo de diferenciação de tráfego pode ser necessária a utilização:

- estratégias de gestão de filas espera
- mecanismos de escalonamento

Exemplos/gestão das filas de espera (buffers)

- todos os pacotes partilham uma única fila de espera
- pacotes de diferentes classes s\u00e3o armazenados em diferentes filas de espera

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - Questões Relacionadas

Gestão de filas: fila única versus várias filas de espera (vantagens/desvantagens?)

47

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - Questões Relacionadas

Gestão de filas: como lidar com insuficiência de recursos (i.e. perdas)?

- drop tail: fila cheia → pacotes são perdidos
- push-out: possibilidade de retirar pacotes que estão em fila → para entrarem outros
- •
- outras abordagens ... RED (Random Early Detection) possibilidade de eliminação de pacotes mesmo com fila não cheia

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - Questões Relacionadas

Estratégias de escalonamento de pacotes

Classificação:

- work conserving: escalonador só não transmite pacotes no caso das filas estarem vazias
- non-work-conserving: em alguns casos o escalonador pode não transmitir mesmo tendo pacotes em fila

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Estratégias de escalonamento de pacotes

3 exemplo de mecanismos:

- strict priority: filas/classes com prioridades mais altas tem sempre prioridade sobre os outros pacotes (consequência?)
- round robin: e.g. em cada ciclo transmitir um pacote de cada fila/classe
- weight fair queuing, weighted round robin, ...: definição de "pesos" para cada uma das classes/filas → filas/classes são servidas de acordo com esses valores → forma de alocar diferentes débitos de saída a cada uma das classes/filas

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Estratégias de escalonamento

[objectivos/consequências/problemas para o tráfego e rede?]

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Estratégias de escalonamento

Alguns exemplo de utilização

Exemplo #1

e.g. garantir atraso mínimo a uma determinada classe de tráfego [tráfego de voz, tempo de tempo real, etc.]

Exemplo #2

e.g. garantir a uma determinada classe/fila uma % de débito no link de saída

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Estratégias de escalonamento

Exemplo de cenários #1 e.g. garantir atraso mínimo a uma determinada classe (tráfego de voz, tempo real, etc.)...

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Estratégias de escalonamento

Exemplo de cenários #2 e.g. garantir uma determinada % de débito no link de saída a uma classe/fila

Relação entre X,Y e débito obtido...

Tamanho pacote variável.... um problema?

III. MULTIPLEXAGEM

Estratégias de escalonamento combinadas/híbridas

Possibilidade de combinar diferentes estratégias

e.g. WRR trabalha com duas classes de tráfego e garante uma determinada distribuição do débito; uma das classes é composta por 2 subclasses [em que uma tem prioridade absoluta sobre a outra]

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Outras Estratégias de escalonamento de pacotes

Diferenciação Relativa/Proporcional de tráfego

- não são dadas "garantias" a nenhuma classe/fila....
- ... mas garante-se que as filas mais prioritárias vão ter melhor qualidade que as filas menos prioritárias
- e.g. atrasos/perdas das classes mais prioritárias vão ser "n" vezes melhores que as sentidas pelas classes menos prioritárias...

III. MULTIPLEXAGEM

- Exemplo ilustrativo de diferenciação relativa de tráfego:
 - Gestão de n filas dinâmicas + Escalonamento pacotes aplicando modelos de proporcionalidade ...
 - Cada classe de tráfego tem associados 2 parâmetros:
 - parâmetro U_i > vai influenciar a forma como os pacotes da classe/fila são selecionados para transmissão (atrasos)
 - parâmetro L_i > vai influenciar as perdas de pacotes que afetam a classe/fila
 - classes mais prioritárias → valores U_i, L_i mais elevados

57

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Gestão de filas de espera

Escalonamento

 Escalonamento: pacote da classe com maior P_i é selecionada para transmissão

• Gestão filas: em caso de buffer *overflow* é eliminado um pacote da classe com menor P_i

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - Questões Relacionadas

• Exemplos ilustrativos de diferenciação relativa de tráfego (3 classes de tráfego):

Proportional loss and proportional delay differentiation models for $(L_A, L_B, L_C) = (16, 4, 1)$ and $(U_A, U_B, U_C) = (16, 4, 1)$.

59

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

• Exemplos ilustrativos de diferenciação relativa de tráfego (3 classes de tráfego):

Proportional loss and proportional delay differentiation models for $(L_A, L_B, L_C) = (16, 4, 1)$ and $(U_A, U_B, U_C) = (8, 1, 1)$.

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

 Técnica em que cada fonte ocupa uma fracção da largura de banda disponível durante todo o tempo

Contrariamente ao TDM em que cada fonte ocupa toda a largura de banda disponível durante parte do tempo

- Método mais antigo...
- Método que surgiu inicialmente associado à transmissão analógica (২০. ১৯০)

61

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

- No mesmo suporte físico coexistem simultaneamente vários canais FDM
- Sinais de cada canal são modulados em portadoras de diferentes frequências
- Na recepção o sinal composto é apresentado a um conjunto de N filtros passa banda que permitem isolar cada uma das suas componentes (canais)
- Em cada canal efectua-se uma desmodulação permitindo a recuperação do sinal original desse canal

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

... na transmissão:

63

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

... na recepção:

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

- Tal como no caso do TDM, existem especificações de hierarquias de multiplexagem FDM, exemplo:
 - as que assumem como canal básico de referência o canal de voz (com B=4KHz) ... definindo-se depois vários níveis de hierarquias

Nível 1 – multiplexa 12 canais de 4KHz em sub-portadoras 64, 68, 72,, 108 KHz, resultando num sinal composto com largura de banda = 48KHz

Nível 2 – multiplexa 5 entradas do nível anterior.....

Nível 3

....

65

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Esquemas combinados FDM/TDM

 Possibilidade da utilização esquemas híbridos envolvendo TDM e FDM

Exemplo – comunicação entre uma estação base e diversos dispositivos (utilizadores)

- estação base divide a banda de transmissão disponível do canal em várias sub-bandas ...
- temporalmente define também "espaços" temporais (time slots) que no seu conjunto formam uma trama
- A cada dispositivo é atribuída uma frequência e um time slot

III. MULTIPLEXAGEM

Exemplo - Esquemas combinados FDM + TDM

Esquema resultante da divisão da banda de transmissão em

4 sub-bandas e da divisão temporal em 10 slots por trama

lack								
Sub-banda 4	User 31	User 32	 User 40	User 31	User 32		User 40	
Sub-banda 3	User 21	User 22	 User 30	User 21	User 22		User 30	
Sub-banda 2	User 11	User 12	 User 20	User 11	User 12	:	User 20	
Sub-banda 1	User 1	User 2	 User 10	User 1	User 2		User 10	
								→ tempo

67

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Exemplos de outras Técnicas ... (breve referência)

- Alguns métodos de acesso ao canal são baseados noutros paradigmas que não FDM ou TDM ...
- e.g. uma das versões do método de acesso ao canal denominado por CDMA (Code division multiple access)
 - possibilidade do canal ser usado por diversos intervenientes ao mesmo tempo e na mesma gama de frequências... interferência entre as comunicações!! ... mas de uma forma controlada
 - cada dispositivo interveniente na comunicação possui um "código" que permite codificar (descodificar – na recepção) os dados por si enviados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

FDM TDM ... utilização de CDMA

- Analogia imaginar uma sala com vários pares/grupos de pessoas a conversarem....
 - TDM por turnos...fala um par de cada vez ...
 - FDM cada par fala em frequências diferentes ...
 - CDMA cada par fala em linguagens diferentes (mesmo que ao mesmo tempo e nas mesmas frequências)
 - só intervenientes que falam a mesma linguagem podem comunicar entre si... não conseguem ententer os outros intervenientes

69

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Outras Técnicas de Multiplexagem

Wavelength-division multiplexing (WDM)

(breve referência)

- Utilizado em sistemas de comunicação com fibras ópticas
- Permite a transmissão vários sinais ópticos sobre a mesma fibra
- Cada sinal (luz) é transmitido utilizando diferentes comprimentos de onda (daí que por vezes se refira → diferentes cores)
- WDM semelhante ao FDM (frequência e comprimento de onda estão relacionados) mas é um termo mais usado em contextos de transmissão óptica

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Outras Técnicas de Multiplexagem Wavelength-division multiplexing (WDM)

- Sistemas WDM são comuns nas companhias de telecomunicações pois permitem aumentar a capacidade da rede sem necessidade de acrescentar mais fibra
- ... capacidade dos links pode ser aumentada simplesmente atualizando os multiplexadores (de)multiplexadores nas terminações da fibra

 wavelength-division multiplexing (WDM)

