Lecture 5 3D Transformation

1. Basic 3D transformations

Translation Matrix

$$\begin{bmatrix} 1 & 0 & 0 & l \\ 0 & 1 & 0 & m \\ 0 & 0 & 1 & n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling Matrix

$$egin{bmatrix} s_x & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation Matrix

Rotation about x-axis

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about y-axis

$$\begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about z-axis

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection Matrix

Over xy plane

$$\mathrm{Ref}_{xy} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Over yz plane

$$\mathrm{Ref}_{yz} = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Over zx plane

$$\mathrm{Ref}_{zx} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

About axis-x

$$Ref_x = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

About axis-y

$$Ref_y = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

About axis-z

$$Ref_z = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. 3D affine transformations

3D Affine transformations can always be represented by

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & m \\ d & e & f & n \\ g & h & p & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Scaled with relative to a point (I, m, n)

$$\begin{bmatrix} 1 & 0 & 0 & l \\ 0 & 1 & 0 & m \\ 0 & 0 & 1 & n \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -l \\ 0 & 1 & 0 & -m \\ 0 & 0 & 1 & -n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaled/Rotate/Reflect with relative to a line

- 1. Find the direction of the line (vector)
- 2. Translate the direction of the line to let it pass through the origin
- 3. Align the line to the z axis
- 4. Perform scaling/rotation/reflection over the line
- 5. Reverse the previous steps 3, 2

Reflect with relative to a plane

- 1. Find the normal vector of the plane
- 2. Find any point on the plane
- 3. Translate the point to the origin
- 4. Align the normal vector to the z axis
- 5. Perform reflection over the plane
- 6. Reverse the steps 4, 3