Ecuaciones diferenciales II

25 de octubre de 2022

Índice general

1.	Teoremas de existencia y unicidad global	2
2.	Teoremas de existencia y unicidad local	Ę
3.	Resultados de unicidad	7
4.	Teoremas de existencia	10
5.	Prolongaciones de soluciones v soluciones maximales	12

Teoremas de existencia y unicidad global

Teorema 1.1. Consideramos el problema de Cauchy:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$ es continua en $D \subset \mathbb{R} \times \mathbb{R}^n$, $n \geq 1$ y $(t_0, x^0) \in D$. Sea I un intervalo en \mathbb{R} tal que $t_0 \in I$ y $x: I \to \mathbb{R}^{\ltimes}$ una función cuya gráfica está contenida en D:

Entonces, las siguientes afirmaciones son equivalentes:

- $x: I \to \mathbb{R}^n$ es solución de (P).
- x es una función continua en I que verifica:

$$x(t) = x^0 + \int_{t_0}^t f(s, x(s))ds, \quad \forall t \in I$$

Definición 1.1. Sea $D \subset \mathbb{R}^2$. Una función $f: D \to \mathbb{R}$, $(t, x) \mapsto f(t, x)$, se dice que es lipschitziana en D respecto de la segunda variable x cuando existe una constante L > 0 tal que:

$$|f(t,x) - f(t,y)| \le L|x-y|, \quad (t,x), (t,y) \in D$$

En tal caso se escribe $f \in Lip(x, D)$ y se dice que L es una constante de Lipschitz para f en D respecto a la segunda variable.

Definición 1.2. Sean n > 1, $\|.\|$ una norma en \mathbb{R}^n y $D \subset \mathbb{R} \times \mathbb{R}^n$.

■ Una función $f: D \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, se dice que es lipschitziana en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una constante L > 0 tal que:

$$||f(t,x) - f(t,y)|| \le L||x - y||, \quad (t,x), (t,y) \in D$$

■ Una función $f: D \to \mathbb{R}$, $(t,x) \mapsto f(t,x)$, se dice que es lipschitziana en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una constante L > 0 tal que:

$$|f(t,x) - f(t,y)| \le L||x - y||, \quad (t,x), (t,y) \in D$$

Proposición 1.2. Sean n > 1, $D \subset \mathbb{R} \times \mathbb{R}^n$ $y \ f : D \to \mathbb{R}^n$ con $f = (f_1, \dots, f_n)$. Se verifica:

$$f \in Lip(x, D) \Leftrightarrow f_k \in Lip(x, D), \quad \forall k \in \{1, \dots, n\}$$

Proposición 1.3 (Caracterización de la condición de Lipschitz). Si D es un conjunto convexo en \mathbb{R}^2 y $f: D \to \mathbb{R}$ es una función tal que existe $\frac{\partial f}{\partial x}: D \to \mathbb{R}$, entonces:

$$f \in Lip(x, D) \Leftrightarrow \frac{\partial f}{\partial x}$$
 es acotada en D

Observación. Si K es un conjunto convexo y compacto en \mathbb{R}^2 y existe $\frac{\partial f}{\partial x}$ y es continua sobre K, entonces $f \in Lip(x,K)$.

Definición 1.3. Sea I cualquier intervalo en \mathbb{R} . Se dice que una función $f:D=I\times\mathbb{R}\to\mathbb{R},\ (t,x)\mapsto f(t,x)$, satisface una condición de Lipschitz generalizada en D respecto de la segunda variable x cuando existe una función $L:I\to\mathbb{R}$ continua en I y no negativa tal que:

$$|f(t,x) - f(t,y)| < L(t)|x-y|, \quad \forall (t,x), (t,y) \in D$$

En tal caso se escribe $f \in LipG(x, D)$.

Definición 1.4. Sean n > 1, $\|.\|$ una norma en \mathbb{R}^n , I un intervalo en \mathbb{R} y $D = I \times \mathbb{R}^n$.

■ Se dice que la función vectorial $f: D \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, satisface una condición de Lipschitz generalizada en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una función $L: I \to \mathbb{R}^+$ continua en I tal que:

$$||f(t,x) - f(t,y)|| \le L(t)||x - y||, \quad (t,x), (t,y) \in D$$

■ Se dice que la función vectorial $f: D \to \mathbb{R}$, $(t, x) \mapsto f(t, x)$, satisface una condición de Lipschitz generalizada en D respecto de la variable vectorial $x \in \mathbb{R}^n$ cuando existe una función $L: I \to \mathbb{R}^+$ continua en I tal que:

$$|f(t,x) - f(t,y)| \le L(t)||x - y||, \quad (t,x), (t,y) \in D$$

Proposición 1.4. Sean n > 1, I un intervalo en \mathbb{R} y $f: D = I \times \mathbb{R}^n \to \mathbb{R}^n$ con $f = (f_1, \ldots, f_n)$. Se verifica:

$$f \in LipG(x, D) \Leftrightarrow f_k \in LipG(x, D), \quad \forall k \in \{1, \dots, n\}$$

Proposición 1.5 (Caracterización de la condición de Lipschitz generalizada). Sean I un intervalo de \mathbb{R} y $f: D = I \times \mathbb{R} \to \mathbb{R}$, tal que existe la función derivada parcial $\frac{\partial f}{\partial x}: D \to \mathbb{R}$. Las dos siguientes condiciones son equivalentes:

- $f \in LipG(x, D)$.
- Existe una función $L: I \to \mathbb{R}^+$ continua en I tal que:

$$\left|\frac{\partial f}{\partial x}(t,x)\right| \le L(t), \quad \forall (t,x) \in D$$

Teorema 1.6 (Teorema de existencia y unicidad global). Sea $n \ge 1$ y supongamos las tres siguientes condiciones:

- 1. $D = I \times \mathbb{R}^n$ donde I es un intervalo no degenerado en \mathbb{R} .
- 2. La función $f: D \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, es continua en D.
- 3. $f \in LipG(x, D)$.

En tal situación, para cada $(t_0, x^0) \in D$ el problema de Cauchy:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

tiene una única solución definida en el intervalo I.

Teoremas de existencia y unicidad local

Teorema 2.1 (Teorema de existencia y unicidad local). Sean $n \ge 1$ y ||.|| una norma en \mathbb{R}^n . Sea el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, $D \subset \mathbb{R} \times \mathbb{R}^n$ $y(t_0, x^0) \in D$.

Supongamos que existen a > 0 y b > 0 tales que:

$$Q = [t_0 - a, t_0 + a] \times \bar{B}(x^0; b) \subset D$$

y la función f verifica las dos siguientes condiciones:

- 1. f es continua en Q.
- 2. $f \in Lip(x,Q)$.

Entonces, existen intervalos $I = [t_0 - h, t_0 + h]$, siendo $0 < h \le a$, tales que (P) posee una única solución $x : I \to \mathbb{R}^n$. Esto sucede si:

$$0 < h \leq \min\{a, \frac{b}{M}\}, \quad siendo \ M \geq \max_{(t, x) \in Q} \|f(t, x)\|$$

Observación. Existen versiones laterales del teorema local:

- Tomando $Q = [t_0, t_0 + a] \times \bar{B}(x^0; b)$, para obtener una única solución $x : [t_0, t_0 + h] \to \mathbb{R}^n$ del problema (P) (solución lateral a la derecha).
- Tomando $Q = [t_0 a, t_0] \times \bar{B}(x^0; b)$, para obtener una única solución $x : [t_0 h, t_0] \to \mathbb{R}^n$ del problema (P) (solución lateral a la izquierda).

Corolario 2.2. Supongamos que se verifican las siguientes condiciones:

- D es un subconjunto de \mathbb{R}^2 con interior \dot{D} no vacío.
- La función $f: D \to \mathbb{R}$, $(t, x) \mapsto f(t, x)$, es continua en D.
- Existe la función derivada parcial $\frac{\partial f}{\partial x}: D \to \mathbb{R}$ y es continua en D.

En tal situación, para cualquier punto $(t_0, x^0) \in \dot{D}$ existen intervalos $I = [t_0 - h, t_0 + h]$, siendo h > 0, tales que el problema de Cauchy:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

tiene una única solución $x: I \to \mathbb{R}$.

Observación. Si D es un abierto de \mathbb{R}^2 y $f \in \mathcal{C}^1(D, \mathbb{R})$, entonces f satisface las condiciones del teorema de existencia y unicidad local.

Resultados de unicidad

Definición 3.1 (Propiedad de unicidad global). Sean $n \geq 1$, $y \in I$: $\Omega \to \mathbb{R}^n$, donde $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Se dice que la ecuación diferencial x'(t) = f(t, x(t)) tiene la propiedad de unicidad global en una región $D \subset \Omega$ cuando, dadas dos soluciones $x : I \to \mathbb{R}^n$, $y : J \to \mathbb{R}^n$ con gráficas contenidas en D, sucede que si existe $t_0 \in I \cap J$ tal que $x(t_0) = y(t_0)$ entonces x(t) = y(t) para cada $t \in I \cap J$.

Definición 3.2. Sean $n \ge 1$ y $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Una función $f: \Omega \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, se dice que es localmente lipschitziana en la región $D \subset \Omega$ respecto de la variable x cuando para cada punto $(t_0, x^0) \in D$ existe un entorno U de (t_0, x^0) tal que $f \in Lip(x, U \cap D)$. Cuando esto sucede escribiremos $f \in Lip_{Loc}(x, D)$.

Definición 3.3. Sean n > 1 y $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Una función $f : \Omega \to \mathbb{R}$, $(t, x) \mapsto f(t, x)$, se dice que es localmente lipschitziana en la región $D \subset \Omega$ respecto de la variable x cuando para cada punto $(t_0, x^0) \in D$ existe un entorno U de (t_0, x^0) tal que $f \in Lip(x, U \cap D)$.

Proposición 3.1. Sean n > 1, $\Omega \subset \mathbb{R} \times \mathbb{R}^n$ y $f : \Omega \to \mathbb{R}^n$ con $f = (f_1, \dots, f_n)$. Sea $D \subset \Omega$. Se verifica:

$$f \in Lip_{Loc}(x, D) \Leftrightarrow f_i \in Lip_{Loc}(x, D), \quad \forall i = 1, \dots, n$$

Proposición 3.2 (Condición suficiente para la condición de Lipschitz local). *Supongamos:*

- $n \geq 1$ y A un abierto en $\mathbb{R} \times \mathbb{R}^n$.
- $f: A \to \mathbb{R}$, $(t, x) = (t, x_1, \dots, x_n) \mapsto f(t, x_1, \dots, x_n)$, una función tal que, para cada $k \in \{1, \dots, n\}$, existe la función derivada parcial $\frac{\partial f}{\partial x_k}: A \to \mathbb{R}$ y es continua en A.

Entonces $f \in Lip_{Loc}(x, A)$, siendo $x = (x_1, \dots, x_n)$.

Teorema 3.3 (Caracterización de la condición de Lipschitz local). Sean $n \ge 1$, D un abierto en $\mathbb{R} \times \mathbb{R}^n$ y $f: D \to \mathbb{R}^n$ continua en D. Entonces:

$$f \in Lip_{Loc}(x, D) \Leftrightarrow f \in Lip(x, K), \quad \forall K \subset D \ compacto$$

Proposición 3.4 (Lema de Gronwall). Sean k una constante no negativa, $u, v : I \to \mathbb{R}^+$ dos funciones continuas en el intervalo I y $t_0 \in I$ tales que:

$$u(t) \le k + \left| \int_{t_0}^t v(s)u(s)ds \right|, \quad \forall t \in I$$

Entonces, se verifica:

$$u(t) \le k \exp \left| \int_{t_0}^t v(s) ds \right|, \quad \forall t \in I$$

Teorema 3.5 (Estimación de la diferencia entre dos soluciones). Sean $n \geq 1$, $\|.\|$ una norma en \mathbb{R}^n , $x: I \to \mathbb{R}^n$ e $y: I \to \mathbb{R}^n$ dos soluciones de la ecuación diferencial x'(t) = f(t, x(t)) con gráficas contenidas en una región $D \subset \mathbb{R} \times \mathbb{R}^n$ y sea $t_0 \in I$.

1. Si $f \in \mathcal{C}(D,\mathbb{R}^n) \cap Lip(x,D)$ con constante de Lipschitz L, se tiene la siguiente estimación:

$$||x(t) - y(t)|| \le ||x(t_0) - y(t_0)||e^{L|t - t_0|}, \quad \forall t \in I$$

2. Si $D = J \times \mathbb{R}^n$, donde J es un intervalo en \mathbb{R} , $y \ f \in \mathcal{C}(D, \mathbb{R}^n) \cap LipG(x, D)$ con función de Lipschitz $L : J \to \mathbb{R}$, $t \mapsto L(t)$, entonces:

$$||x(t) - y(t)|| \le ||x(t_0) - y(t_0)|| \exp \left| \int_{t_0}^t L(s)ds \right|, \quad \forall t \in I$$

Teorema 3.6 (Teorema de unicidad global). Sean $n \geq 1$ y $f : \Omega \to \mathbb{R}^n$, $(t,x) \mapsto f(t,x)$, donde $\Omega \subset \mathbb{R} \times \mathbb{R}^n$. Supongamos que existe $D \subset \Omega$ tal que:

$$f \in \mathcal{C}(D,\mathbb{R}^n) \cap Lip_{Loc}(x,D)$$

Entonces, la ecuación diferencial x'(t) = f(t, x(t)) tiene la propiedad de unicidad global en D.

Observación. Si D es abierto y $f \in \mathcal{C}^1(D,\mathbb{R}^n)$, entonces f satisface las condiciones del teorema de unicidad global. Recordamos que satisface además las condiciones del teorema de existencia y unicidad local.

Proposición 3.7 (Criterio de unicidad de Peano). Sean J y K intervalos en \mathbb{R} y consideramos el problema de valor inicial:

(P)
$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D = J \times K \to \mathbb{R} \ y \ (t_0, x^0) \in D$.

Por otra parte, sea I un intervalo tal que $t_0 \in I \subset J$ y consideramos:

$$I^- = \{t \in I : t \le t_0\}, \quad I^+ = \{t \in I : t \ge t_0\}$$

suponiendo que los intervalos I^- e I^+ no sean degenerados.

- 1. Unicidad a la izquierda. Si para cada $t \in I^-$ la función $f_t : K \to \mathbb{R}$, $x \mapsto f_t(x) = f(t,x)$ es creciente, entonces (P) tiene a lo sumo una solución definida en I^- .
- 2. Unicidad a la derecha. Si para cada $t \in I^+$ la función $f_t : K \to \mathbb{R}$, $x \mapsto f_t(x) = f(t,x)$ es decreciente, entonces (P) tiene a lo sumo una solución definida en I^+ .

Teorema 3.8 (Teorema de dependencia continua). Sean I un intervalo acotado en \mathbb{R} , $n \geq 1$ y $\|.\|$ una norma en \mathbb{R}^n . Consideramos el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D = I \times \mathbb{R}^n \to \mathbb{R}^n$, $(t_0, x^0) \in D$ y $f \in \mathcal{C}(D, \mathbb{R}^n) \cap Lip(x, D)$.

Sea $x: I \to \mathbb{R}^n$ la solución de (P) y para cada $v \in \mathbb{R}^n$ sea:

$$(P_v) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = v \end{cases}$$

Se verifica lo siguiente:

1. Dado cualquier $\varepsilon > 0$ existe $\delta = \delta(\varepsilon) > 0$ tal que, si $y^0 \in \mathbb{R}^n$ verifica que $\|x^0 - y^0\| < \delta$, entonces la solución $y: I \to \mathbb{R}^n$ del problema (P_{y^0}) verifica que:

$$||x(t) - y(t)|| < \varepsilon, \quad \forall t \in I$$

2. Si (v_m) es una sucesión en \mathbb{R}^n tal que $v_m \to x^0$ en \mathbb{R}^n y $\phi_m : I \to \mathbb{R}^n$, $m = 1, 2, \ldots$, es la solución del problema (P_{v_m}) , entonces la sucesión (ϕ_m) converge uniformemente hacia la solución del problema (P) en el intervalo I.

Teoremas de existencia

Teorema 4.1 (Versión lateral a la derecha del teorema de existencia local de Peano). Sean $n \ge 1$ y $\|.\|$ una norma en \mathbb{R}^n . Sea el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R} \times \mathbb{R}^n$ $y(t_0, x^0) \in D$.

Supongamos que existen a > 0 y b > 0 tales que $Q = [t_0, t_0 + a] \times \bar{B}(x^0; b) \subset D$ y f es continua en Q.

Entonces, (P) tiene al menos una solución definida en el intervalo $I = [t_0, t_0 + h]$, donde:

$$h = \min\{a, \frac{b}{M}\}, \quad M \geq \max_{(t, x) \in Q} \|f(t, x)\|$$

Observación. La versión lateral a la izquierda del teorema de existencia local de Peano consiste en tomar

$$Q = [t_0 - a, t_0] \times \bar{B}(x^0; b) \subset D$$

De esta forma, el problema (P) tiene al menos una solución definida en el intervalo $I = [t_0 - h, t_0]$.

Corolario 4.2 (Versión centrada del teorema de existencia local de Peano). Sean $n \ge 1$ y $\|.\|$ una norma en \mathbb{R}^n . Sea el problema de valor inicial:

(P)
$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R} \times \mathbb{R}^n$ y $(t_0, x^0) \in D$. Supongamos que existen a > 0 y b > 0 tales que $Q = [t_0 - a, t_0 + a] \times \bar{B}(x^0; b) \subset D$ y f es continua en Q.

Entonces, (P) tiene al menos una solución definida en el intervalo $I = [t_0 - h, t_0 + h]$, donde:

$$h = \min\{a, \frac{b}{M}\}, \quad M \geq \max_{(t,x) \in Q} \|f(t,x)\|$$

Teorema 4.3 (Teorema de existencia global de Peano). Sean I un intervalo compacto en \mathbb{R} , $n \geq 1$ y $f: D = I \times \mathbb{R}^n \to \mathbb{R}^n$ una función continua y acotada en D. Entonces, para cada $(t_0, x^0) \in D$, el problema

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

tiene al menos una solución definida en I.

Prolongaciones de soluciones y soluciones maximales

Definición 5.1 (Soluciones estrictamente prolongables y soluciones maximales). Una solución $x:I\to\mathbb{R}^n$ de una ecuación diferencial o de un problema de Cauchy se dice que es estrictamente prolongable cuando existe otra solución $y:J\to\mathbb{R}^n$ tal que:

$$I \subsetneq J, \quad y_{|_{I}} = x$$

Cuando esto sucede, se dice que $y:J\to\mathbb{R}^n$ es una prolongación estricta de $x:I\to\mathbb{R}^n$. Una solución que no admite prolongación estricta se dice que es no prolongable o que es maximal.

Teorema 5.1 (Existencia y unicidad de soluciones no prolongables). $Si\ f\ es$ continua en $D\ se\ verifica$:

- 1. Si (t_0, x^0) es un punto interior a D, entonces (P) tiene al menos una solución que no es prolongable definida en un intervalo que contiene al punto t_0 en el interior. Si además $f \in Lip_{Loc}(x, D)$, esta solución maximal es única.
- 2. Si existen a > 0 y b > 0 tales que $Q = [t_0, t_0 + a] \times \bar{B}(x^0; b) \subset D$, entonces (P) posee al menos una solución lateral a la derecha que no es prolongable a la derecha.
- 3. Si existen a > 0 y b > 0 tales que $Q = [t_0 a, t_0] \times \bar{B}(x^0; b) \subset D$, entonces (P) posee al menos una solución lateral a la izquierda que no es prolongable a la izquierda.

Observación. Si D es abierto y f es de clase C^1 en D, entonces (P) tiene una única solución maximal, que está definida en un intervalo que contiene a t_0 en su interior.

Teorema 5.2 (Soluciones maximales con gráficas contenidas en conjuntos compactos). Sea el problema de valor inicial:

$$(P) \begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x^0 \end{cases}$$

donde $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R} \times \mathbb{R}^n$, $n \geq 1$ y $(t_0, x^0) \in D$. Sea $x: I \to \mathbb{R}^n$ una solución maximal de (P) y sea Γ su gráfica.

Supongamos que existe un conjunto K compacto en $\mathbb{R} \times \mathbb{R}^n$ tal que $\Gamma \subset K \subset D$ y f es continua en K. Entonces:

- 1. I es un intervalo compacto, es decir, I = [a, b].
- 2. Los puntos (a, x(a)) y (b, x(b)) están en la frontera de K.

Definición 5.2 (Puntos límite). Sean $n \ge 1$ y $x : [t_0, t_1) \to \mathbb{R}^n$ una función tal que $t_1 < \infty$. Sea $x^1 \in \mathbb{R}^n$. Se dice que (t_1, x^1) es un punto límite de la gráfica de x para $t \to t_1$ cuando existe una sucesión (s_m) en el intervalo $[t_0, t_1)$ tal que $(s_m, x(s_m)) \to (t_1, x^1)$ en $\mathbb{R} \times \mathbb{R}^n$.

Proposición 5.3. Sean $n \geq 1$, $t_1 < \infty$, $x : [t_0, t_1) \to \mathbb{R}^n$ una función, Γ su gráfica $y \parallel . \parallel$ una norma en \mathbb{R}^n . Se verifica una y solamente una de las dos siguientes situaciones:

- $\blacksquare \lim_{t \to t_1} ||x(t)|| = \infty$
- Γ tiene al menos un punto límite para $t \to t_1$.

Teorema 5.4 (Lema de Wintner). Sea $x:[t_0,t_1)\to\mathbb{R}^n$, siendo $t_1<\infty$, una solución de la ecuación diferencial x'(t)=f(t,x(t)), con gráfica Γ contenida en $D\subset\mathbb{R}\times\mathbb{R}^n$ y sea $f:D\to\mathbb{R}^n$ una función continua en D. Sea (t_1,x^1) un punto límite de Γ para $t\to t_1$ y supongamos que se verifica la siguiente condición:

Existe un entorno U de (t_1, x^1) tal que f es acotada de $U \cap D$.

Entonces $\lim_{t \to t_1} x(t) = x^1$.

Teorema 5.5 (Soluciones maximales con gráficas contenidas en conjuntos abiertos). Sean A un abierto en $\mathbb{R} \times \mathbb{R}^n$, $n \ge 1$, $f: A \to \mathbb{R}^n$ una función continua en A y $\|.\|$ una norma en \mathbb{R}^n . Si $x: I \to \mathbb{R}^n$ es una solución no prolongable de la ecuación diferencial x'(t) = f(t, x(t)) con gráfica Γ contenida en A, se verifica:

- 1. El intervalo I es abierto.
- 2. Si I tiene un extremo finito α , entonces $\lim_{t\to\alpha} \|x(t)\| = \infty$ o bien cualquier punto límite de Γ para $t\to \alpha$ está en la frontera de A.

Teorema 5.6 (Teorema fundamental de las ecuaciones autónomas). Supongamos que $g \in C^1(\mathbb{R}, \mathbb{R})$. Sea $x : I \to \mathbb{R}$ una solución no prolongable de la ecuación X' = g(x) y sea $t_0 \in \dot{I}$. Se verifica lo siguiente:

- 1. El intervalo I es abierto.
- 2. Si x es acotada en $I^+ = [t_0, \infty)$, existe $\lim_{t \to \infty} x(t) = a$, siendo $a \in \mathbb{R}$, y la función constante dada por $y(t) \equiv a$ es solución de la ecuación x' = g(x).
- 3. Si x es acotada en $I^- = (-\infty, t_0]$, existe $\lim_{t \to -\infty} x(t) = b$, siendo $b \in \mathbb{R}$, y la función constante dada por $y(t) \equiv b$ es solución de la ecuación x' = g(x).