

# S-Walk: Accurate and Scalable Session-based Recommendation with Random Walks

Minjin Choi<sup>1</sup>, Jinhong Kim<sup>1</sup>, Joonseok Lee<sup>2,3</sup>, Hyunjung Shim<sup>4</sup>, Jongwuk Lee<sup>1</sup>

Sungkyunkwan University (SKKU)<sup>1</sup>, Google Research<sup>2</sup> Seoul National University<sup>3</sup>, Yonsei University<sup>4</sup>

### Motivation

# Session-based Recommendation (SR)

#### > Predicting the next item(s) based on only the current session

 Challenge: (1) The user ID cannot be used, (2) session histories are extremely short.



# Limitation of Existing SR Models

#### >DNN models show good performance but suffer scalability issues.

- RNNs and GNNs are mostly used for session-based recommendations.
- When the dataset is too large, the scalability issue arises.



# Limitation of Existing SR Models

> Most SR models pay less attention to inter-session relationships.



### Research Question

# How to build the accurate and scalable session-based recommender model?



# Our Key Contributions

> We utilize random walks to exploit session relationships.

For the proposed model, we adopt <u>random walk with restarts</u> instead of

k-step method.



session data item graph

k-step random walk

# Our Key Contributions

- > To build graphs for random walks, we devise linear item models.
  - Each model can capture different characteristics of sessions.



# **Proposed Model**

# Overview of the Proposed Model



- > We design two linear models and constitute a final item graph.
  - The final graph is used for personalized recommendation.



#### Linear Item Models



- > We learn the linear models using two session representations.
  - Each captures the sequential dependency and item similarities.



#### Random Walk with Restarts



- > We adopt the 'random walk with restarts' using the two graphs.
  - A random walker jumps ( $\alpha$ ) or restarts (1- $\alpha$ ) on a node using two graphs; she could land on various nodes with certain probabilities.



### Detail: Training and Inference



#### Model Training

We utilize the power method to compute the stationary distribution.

$$x_{\infty} = \alpha^{\infty} x_{(0)} R^{\infty} + \sum_{k=0}^{\infty} \alpha^k (1-\alpha) x_{(0)} T R^k$$

$$\approx x_{(0)} \sum_{k=0}^{\infty} \alpha^k (1-\alpha) T R^k = x_{(0)} M$$
session vector Trained final matrix

#### >Model inference

• For a new session, we compute the score using  $x_{new}$  and M.



# Experiments

# **Experimental Setup: Dataset**



- > We evaluate the proposed model over public datasets.
  - For a fair comparison, we evaluate both on 1-split and 5-split datasets.

| Split   | Dataset                   | # of actions | # of sessions | # of items |
|---------|---------------------------|--------------|---------------|------------|
| 11:4    | YooChoose 1/4<br>(YC-1/4) | 7,909,307    | 1,939,891     | 30,638     |
| 1-split | DIGINETICA<br>(DIGI1)     | 916,370      | 188,807       | 43,105     |
| 5-split | YooChoose<br>(YC5)        | 5,426,961    | 1,375,128     | 28,582     |
|         | DIGINETICA<br>(DIGI5)     | 203,488      | 41,755        | 32,137     |
|         | RetailRocket<br>(RR)      | 212,182      | 59,962        | 31,968     |

#### **Evaluation Protocol and Metrics**



#### >Evaluation protocol: iterative revealing scheme

We iteratively expose the item of a session to the model.



#### > Evaluation metrics

- HR@20 and MRR@20
  - To predict only the next item in a session
- R@20 and MAP@20
  - To consider all subsequent items for a session

### Competitive Models

#### > Two Non-Neural models

- STAN: an improved version of SKNN by considering sequence and time.
- SLIST: a linear model designed for a session-based recommendation.

#### > Five Neural models

- NARM: an improved version of GRU4REC+ using an attention mechanism.
- STAMP: an attention-based model for capturing user's interests.
- SR-GNN: a GNN-based model to capture complex dependency.
- NISER+: an improved version of SR-GNN using normalized embeddings.
- GCE-GNN: a GNN-based model considering inter-session relationships.

Diksha Garg et. al., "Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN", SIGIR 2019
Minjin Choi et. al., "Session-aware Linear Item-Item Models for Session-based Recommendation", WWW 2021
Jing Li et. al., "Neural Attentive Session-based Recommendation" CIKM 2017.
Qiao Liu et. al., "STAMP: ShortTerm Attention/Memory Priority Model for Session-based Recommendation" KDD 2018.
Shu Wu et. al., "Session-Based Recommendation with Graph Neural Networks", AAAI 2019.
Priyanka Gupta et. al., "NISER: Normalized Item and Session Representations with Graph Neural Networks", ArXiv 2019.
Ziyang Wang et. al, "Global Context Enhanced Graph Neural Networks for Session-based Recommendation", SIGIR 2020.

# Accuracy: Ours vs. Competing Models

#### > S-Walk shows competitive or state-of-the-art performances.

It is challenging to achieve outstanding accuracy on all the datasets.

| Non-Neural Models | Neural Models | Ours |
|-------------------|---------------|------|
| Non-Neural Models | Neural Models | Our  |

| Dataset                                                              | Metric | STAN   | SLIST  | NARM   | STAMP  | SR-GNN | NISER+ | GCE-GNN | S-Walk <sub>(1)</sub> | S-Walk | Gain(%) |
|----------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|---------|-----------------------|--------|---------|
| DIGI5                                                                | R@20   | 0.3720 | 0.3803 | 0.3254 | 0.3040 | 0.3232 | 0.3727 | 0.3927  | 0.3761                | 0.3995 | 1.73    |
|                                                                      | HR@20  | 0.4800 | 0.4915 | 0.4188 | 0.3917 | 0.4158 | 0.4785 | 0.5086  | 0.4873                | 0.5115 | 0.57    |
| RR                                                                   | R@20   | 0.4748 | 0.4724 | 0.4526 | 0.3917 | 0.4438 | 0.4630 | 0.4841  | 0.4810                | 0.4994 | 3.16    |
|                                                                      | HR@20  | 0.5938 | 0.5877 | 0.5549 | 0.4620 | 0.5433 | 0.5651 | 0.6007  | 0.6019                | 0.6226 | 3.65    |
| YC5                                                                  | R@20   | 0.4986 | 0.5122 | 0.5109 | 0.4979 | 0.5060 | 0.5146 | 0.4972  | 0.5096                | 0.5189 | 0.85    |
|                                                                      | HR@20  | 0.6656 | 0.6867 | 0.6751 | 0.6654 | 0.6713 | 0.6858 | 0.6650  | 0.6834                | 0.6906 | 0.57    |
| NOWP                                                                 | R@20   | 0.1696 | 0.1840 | 0.1274 | 0.1253 | 0.1400 | 0.1493 | 0.1504  | 0.1837                | 0.1915 | 4.08    |
|                                                                      | HR@20  | 0.2414 | 0.2689 | 0.1849 | 0.1915 | 0.2113 | 0.2196 | 0.2122  | 0.2678                | 0.2693 | 0.15    |
| YC-1/4                                                               | R@20   | 0.4952 | 0.5130 | 0.5097 | 0.5008 | 0.5095 | 0.5164 | 0.5030  | 0.5103                | 0.5213 | 0.95    |
|                                                                      | HR@20  | 0.6846 | 0.7175 | 0.7079 | 0.7021 | 0.7118 | 0.7182 | 0.7036  | 0.7145                | 0.7204 | 0.31    |
| C Walls is a consisted of C Walls busined only on to the first stars |        |        |        |        |        |        |        |         |                       |        |         |

S-Walk<sub>(1)</sub> is a variant of S-Walk trained only up to the first step.

# Scalability: Ours vs. Competing Models

- > S-Walk shows faster inference time thanks to its simpler structure.
  - This property is highly desirable for deploying S-Walk to real-world applications.

| Models                       | YC-1/4  |         | DIC     | G15     | RR      |         |  |
|------------------------------|---------|---------|---------|---------|---------|---------|--|
| iviodeis                     | GFLOPs  | Time(s) | GFLOPs  | Time(s) | GFLOPs  | Time(s) |  |
| SR-GNN (in GPU)              | 1282.8  | 70.8    | 765.4   | 49.2    | 247.2   | 12.7    |  |
| NISER+ (in GPU)              | 2605.8  | 87.1    | 1551.0  | 59.7    | 501.8   | 15.7    |  |
| GCE-GNN (in GPU)             | 51094.8 | 108.8   | 10445.9 | 47.0    | 9446.0  | 19.8    |  |
| S-Walk (in CPU)              | 11.0    | 20.5    | 4.9     | 8.3     | 2.3     | 5.2     |  |
| Gain<br>(S-Walk vs. GCE-GNN) | 4632.3x | 5.3x    | 2131.3x | 8.9x    | 4133.2x | 3.8x    |  |

### Ablation Study: Component of Random Walks

The complete S-Walk shows the best performance compared to using other models as the transition or teleportation models.

| Transition | Teleportation | YC-1/4 |        | DIGI5  |        | RR     |        |
|------------|---------------|--------|--------|--------|--------|--------|--------|
| model      | model         | R@20   | MAP@20 | R@20   | MAP@20 | R@20   | MAP@20 |
|            | I             | 0.5109 | 0.0394 | 0.3809 | 0.0260 | 0.4812 | 0.0291 |
| SR         | AR            | 0.4952 | 0.0378 | 0.3879 | 0.0266 | 0.4817 | 0.0291 |
|            | Ours          | 0.5171 | 0.0400 | 0.3930 | 0.0270 | 0.4950 | 0.0301 |
|            | I             | 0.5175 | 0.0399 | 0.3808 | 0.0259 | 0.4826 | 0.0292 |
| Ours       | AR            | 0.5009 | 0.0383 | 0.3899 | 0.0268 | 0.4856 | 0.0293 |
|            | Ours          | 0.5205 | 0.0403 | 0.3936 | 0.0271 | 0.4979 | 0.0303 |

### Conclusion

### Conclusion



- We propose S-Walk, a session-based recommendation using random walks.
  - It can fully capture intra-session and inter-session correlations in sessions.
- > S-Walk achieves competitive or state-of-the-art accuracy.
  - It is challenging to achieve outstanding performance over various datasets consistently.
- > S-Walk shows high scalability and fast inference speed.
  - The inference of S-Walk using CPU is up to 8.9x faster than DNN models using GPU.
  - S-Walk can be compressed highly robustly, without sacrificing its accuracy.

### Q&A





Email: zxcvxd@skku.edu

Code: https://github.com/jin530/\$Walk