

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

5299140989

CO-ORDINATED SCIENCES

0654/42

Paper 4 Theory (Extended)

May/June 2022

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) A student monitors his pulse rate at rest and during exercise.

Table 1.1 shows the results.

Table 1.1

activity	pulse rate/beats per minute
at rest	64
during exercise	122

(i)	Calculate the difference between his pulse rate at rest and during exercise.
	beats per minute [1]
(ii)	Complete the sentences to explain the results in Table 1.1.
	During exercise, the pulse rate increases because the heart is pumping
	blood
	The pumping action is caused by contraction of the wall
	of the heart.
	To provide the body with more energy, the process of
	increases.
	This process requires increased blood flow to the cells to deliver more
Ger	netic predisposition and sex are both risk factors for coronary heart disease.
(i)	Describe two dietary recommendations to follow to reduce the risk of developing coronary heart disease.
	1
	2[2]
(ii)	Males are more likely to develop coronary heart disease than females.
	State the sex chromosomes in males.
	[1]

© UCLES 2022 0654/42/M/J/22

(b)

(c)	Male gametes are produced by meiosis.
	Describe two ways in which the cells produced by meiosis are different from the cells produced by mitosis.
	1
	2
	[2]
	[Total: 10]

Cle	an ai	r contains nitrogen gas and oxygen gas.
(a)	Sta	te the percentage of nitrogen gas and oxygen gas in clean air.
		nitrogen gas =%
		oxygen gas =% [2]
(b)	In a	car engine, nitrogen gas and oxygen gas react together.
	Nitr	ogen monoxide, NO, is made.
	(i)	Construct the balanced symbol equation for this reaction.
		[2]
	(ii)	The rate of this reaction increases as the temperature inside the car engine increases.
		Explain why. Use ideas about collisions between particles.
		[2]
	(iii)	The rate of this reaction increases as the concentration of the oxygen gas increases.
		Explain why. Use ideas about collisions between particles.
		[2]

(c)	A catalytic converter removes nitrogen monoxide from the exhaust emissions of a car.
	Nitrogen monoxide reacts with carbon monoxide.
	Nitrogen and carbon dioxide are made.

Look at the equation for this reaction. It shows all the atoms and all the bonds.

$$2N = 0 + 2C \equiv 0 \rightarrow N \equiv N + 20 = C = 0$$

- (i) Draw a circle around each set of bonds which are broken when the reaction takes place. [1]
- (ii) When nitrogen monoxide reacts with carbon monoxide, the reaction is **exothermic**.

Explain why. Use ideas about bond breaking and bond making.	
	[3]

[Total: 12]

3 Fig. 3.1 shows a 35 kg child sliding down a long wire called a zipline.

Fig. 3.1

(a) The child moves from point X to point Y.

Point **X** is 18 m vertically above point **Y**.

(i) Show that as the child moves from point **X** to point **Y**, the change in gravitational potential energy is 6300 J.

The gravitational field strength, g, is 10 N/kg.

[1]

(ii) As the child moves from point **X** to point **Y**, she gains kinetic energy before being slowed by a braking system.

The speed of the child at point \mathbf{Y} is $14 \,\mathrm{m/s}$.

Calculate the kinetic energy of the child at point Y.

kinetic energy = J [2]

(b)	The zipline	uses a	thick cable	made o	of steel.
-----	-------------	--------	-------------	--------	-----------

The zipline's steel cable heats up as the child slides from point X to point Y.

(i)	State the	name of the	force which	causes the	steel cab	le to heat up
-----	-----------	-------------	-------------	------------	-----------	---------------

T 4	٦
-11	. 1
г.	J

(ii) State the name of the process that transfers thermal energy in steel.

_		_
	11	1

(iii) Describe, in terms of particles, how energy is transferred by the process named in (b)(ii).

				191

(c) Fig. 3.2 shows a section of the zipline's steel cable.

Fig. 3.2

The section of steel cable has a mass of 4.2 kg and a volume of 5.0×10^{-4} m³.

Calculate the density of the steel cable.

(d) Fig. 3.3 shows an extension-load graph for the steel cable.

Fig. 3.3

(i) On Fig. 3.3, label the *limit of proportionality* with a **P**. [1]

(ii) Use Fig. 3.3 to calculate the spring constant of the steel cable in N/m.

[Total: 12]

4 (a) Fig. 4.1 is a diagram of the carbon cycle.

(i)	Identify	process	E in F	ig. 4.1.
-----	----------	---------	---------------	----------

		[1]
(ii)	Draw one arrow on Fig. 4.1 to represent the process of feeding.	[1]
(iii)	State the balanced chemical equation for the process occurring at A in Fig. 4.1.	
		[2]
(iv)	Name process D in Fig. 4.1 and describe its effect on the atmosphere.	

(b) The element carbon is found in proteins.

(i)	Name one disease caused by protein-energy malnutrition.

[1]

effect on atmosphere

(ii) Name the smaller molecules that proteins are made from.

[1]

[2]

5 (a) Table 5.1 shows some information about particles found in atoms.

Complete Table 5.1.

Table 5.1

particle	relative mass	charge
electron		
proton		+1
neutron	1	

[2]

(b) Fig. 5.1 shows a sodium atom.

Fig. 5.1

(i)	A sodium atom, Na, can form a sodium ion, Na ⁺ .	
	Describe how a sodium atom forms a sodium ion.	
		[1]
(ii)	Write a balanced ionic half equation to show how a sodium atom forms a sodium ion.	

......[1]

© UCLES 2022 0654/42/M/J/22

Use e⁻ to represent an electron.

(c) Table 5.2 gives some information about three halogens.

Complete Table 5.2.

Table 5.2

halogen	atomic number	electronic structure
fluorine	9	
chlorine	17	2.8.7
bromine		2.8.18.7

[2]

(d)	Sodium,	Na,	reacts	with	chlorine,	Cl_2 , to	make	sodium	chloride,	NaC1.
\ · /	,	- ,			,	- ' / ,			,	

(i) Construct the balanced symbol equation for this reaction.

	FO.
	1.7
 	14

(ii) Sodium chloride, NaCl, is an ionic compound.

Draw a dot-and-cross diagram to show the bonding in sodium chloride.

Include the charges on the ions.

[2]

[Total: 10]

6 Fig. 6.1 shows a baby elephant born in a wildlife sanctuary.

The elephant is undergoing a routine health check.

Fig. 6.1

(a)	Explain what is wrong with the statement "the weight of the elephant is 480 kg".
	[1]
(b)	The top speed for a fully grown elephant is 11 m/s.
	Calculate the maximum distance that can be covered by an elephant in 120 seconds.
	distance =m [2]

Fig. 6.2 shows an enclosure surrounded by four lamps.

(c) The wildlife sanctuary uses enclosures to keep the elephants safe.

Fig. 6.2

The lamps are connected in parallel .				
A s	witch controls the a.c. power supply to the lamps.			
(i)	Complete the circuit diagram to show the lamps connected in parallel.			
	Include the switch in your diagram.			

The a.c. power supply has been drawn for you.

a.c. power supply -0 \sim 0-

(ii)	The current through the a.c. power supply is 16A.						
	Draw a circle around the correct current through each lamp.						
		2A	4A	16A	32A	64A	[1]

(iii) The potential difference across each lamp is 240 V.

Calculate the power output of each lamp.

power = W [2]

[Total: 8]

[2]

- 7 (a) A student investigates the effect of **temperature** on the rate of transpiration.
 - (i) Complete Fig. 7.1 by:
 - labelling the x-axis
 - drawing a line to predict the expected results.

Fig. 7.1

		[2]
(ii)	The investigation is repeated at a greater humidity.	
	Explain the effect of increasing humidity on the rate of transpiration.	

(b)	Trai	nspiration is the loss of water var	oour from the leaves.
	(i)	Explain why transpiration cause	es a column of water to move upwards in the xylem.
	(ii)		[2] ow water molecules are held together.
	(,		[1]
(c)	Nar	me two cells in leaves that are ac	dapted for gas exchange.
	1		
	2		[2]
(d)	The	e process of translocation is also	
		w three lines from the word tran tences.	slocation to the boxes on the right to make three correct
			occurs in the phloem.
			involves the movement of amino acids.
		-	only involves movement of substances from root to shoot.
		Translocation	transports substances to the source in a plant.
			transports glucose.
			transports substances to regions of storage in a plant.
			[3]

[Total: 13]

Plants need three essential elements: nitrogen, phosphorus and potassium.

8

The	ese elements are found in fertilisers.
(a)	Describe why it is important that farmers use fertilisers containing nitrogen, phosphorus and potassium.
	[2]
(b)	Potassium sulfate, K ₂ SO ₄ , is a fertiliser that contains potassium.
	A student makes some potassium sulfate.
	He reacts potassium carbonate, K ₂ CO ₃ , with sulfuric acid.
	Look at the equation for this reaction.
	$\mathrm{K_2CO_3}$ + $\mathrm{H_2SO_4} \rightarrow \mathrm{K_2SO_4}$ + $\mathrm{CO_2}$ + $\mathrm{H_2O}$
	The student uses 2.76g of potassium carbonate.
	Calculate the mass of potassium sulfate the student makes.
	Show your working.
	[A _r : C, 12; H, 1; K, 39; O, 16; S, 32]
	mass =g [2]
(c)	
	She uses a flame test.
	Describe how she will know if the fertiliser contains potassium.
	[1]

(a)	Am	monia is used to make some tertilisers.
	Am	monia is made from nitrogen and hydrogen.
		$N_2 + 3H_2 \rightleftharpoons 2NH_3$
	(i)	The use of a catalyst reduces the cost of making ammonia.
		Explain how.
		[
	(ii)	The reaction between nitrogen and hydrogen is reversible.
		Explain what is meant by a reversible reaction.

(e) Fig. 8.1 shows the percentage of ammonia made at different temperatures and pressures.

Fig. 8.1

Look at Fig. 8.1.

(i)	Describe how the percentage of ammonia made changes as the temperature increases.
	[1]
(ii)	State a temperature and pressure which would make 40% of ammonia.
	temperature =°C
	pressure = atmospheres

[Total: 9]

BLANK PAGE

9 A student investigates the motion of pollen grains in water seen through a microscope.

The student observes that the pollen grains constantly move short distances in random directions.

(a) Fig. 9.1 shows the pollen grains suspended in water.

Fig. 9.1

(i)	State the name given to the motion of these pollen grains.
	[1]
(ii)	Explain why the pollen grains constantly move short distances in random directions.
	[2]

(b) The microscope uses a thin converging lens to produce an image.

Fig. 9.2 shows a thin converging lens.

(i) Draw a ray diagram on Fig. 9.2 to show the formation of a real image.

Label the image with the word image.

[3]

(ii) The image formed is a real image.

Describe **one** difference between a *real image* and a *virtual image*.

......[1]

- (c) The visible light that passes through the lens is part of the electromagnetic spectrum.
 - (i) State the speed of visible light in a vacuum.

.....[1]

(ii) γ -rays and radio waves are also part of the electromagnetic spectrum.

Place ticks (\checkmark) in the boxes in Table 9.1 to show which statements are true for γ -rays and radio waves.

Table 9.1

	γ-rays	radio waves
is used in communication		
is used in medicine		
can cause cancer		
is higher frequency than visible light		
has a longer wavelength than visible light		

[3]

10 The percentage of the population of males and females in different age groups with chronic obstructive pulmonary disease (COPD) in one country is recorded.

Fig. 10.1 shows a graph of the results.

Fig. 10.1

(a)	Use evidence from Fig. 10.1 to suggest two risk factors associated with COPD in this country.
	1
	2[2]
	• •
(b)	The percentage of the population of males and females in different age groups with COPD in one other country is recorded.
	The country has a higher percentage of tobacco smokers across all age groups.
	Describe and explain the difference you would expect to see in the results.
	[0]

(c) Table 10.1 shows some components of tobacco smoke and their effects.

Complete Table 10.1.

Table 10.1

component of tobacco smoke	effect		
	causes addiction		
carbon monoxide			
	causes cancer		

[3]

(d) Smoking also causes an increased concentration of carbon dioxide in the blood.	
State the effect of an increased concentration of carbon dioxide in the blood on the cexchange system.	jas
	[1]
(e) State the name of the specialised cells that protect the gas exchange system by remov mucus.	ing
	[1]
[Total	: 9]

11	Fractional	distillation	of	petroleum	makes	useful	fractions.
----	------------	--------------	----	-----------	-------	--------	------------

Three of these fractions are gasoline, gas oil and refinery gas.

(a) Refinery gas contains butane, C₄H₁₀.

Draw a diagram to show the structure of butane.

[2]

(b) Fractional distillation makes too much gas oil and not enough gasoline.

Cracking breaks large hydrocarbon molecules into smaller molecules.

State two conditions needed for cracking.

1

2[2]

(c) Cracking involves the breaking of covalent bonds within molecules.

Fig. 11.1 shows the structure of dodecane.

Fig. 11.1

The cracking of dodecane makes a mixture of products.

Explain why.

	25
(d)	Dodecane has the formula C ₁₂ H ₂₆ .
	During cracking, dodecane can make octane, $\mathrm{C_8H_{18}}$, and ethene, $\mathrm{C_2H_4}$.
	Ethene is an alkene. Alkenes have the general formula C_nH_{2n} .
	Dodecane and octane are alkanes.
	State the general formula of the alkanes .
	general formula = [1]
(e)	In an experiment, 114 g of octane react with oxygen.
	The mass of carbon dioxide gas made is 352 g.
	Calculate the volume occupied by 352g of carbon dioxide gas.
	Show your working.
	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).
	[A _r : C, 12; O, 16]
	volume = dm ³ [3]
	[Total: 9]

12 (a) Fig. 12.1 shows a transformer.

Fig. 12.1

- (i) On Fig. 12.1, label the soft-iron core with an **X**. [1]
- (ii) The transformer has 17 turns on the primary coil and 8 turns on the secondary coil.
 Calculate the output voltage when the a.c. power supply has an e.m.f. of 34 000 V.
 Assume the transformer has an efficiency of 100%.

(b) Fig. 12.2 shows a current-carrying solenoid.

Fig. 12.2

On Fig. 12.2, draw the magnetic field pattern, including direction, around the solenoid. [2]

- (c) The radioactive isotope uranium-238 decays into an isotope of thorium by emitting an $\alpha\text{-particle}.$
 - (i) Use the correct nuclide notation to complete the decay equation for uranium-238.

$$^{238}_{92}U \rightarrow ^{100}_{100}Th + ^{100}_{100}\alpha$$

Suggest why an $\alpha\text{-particle}$ is deflected when moving through a magnetic field.
[2]

[Total: 9]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 0654/42/M/J/22

(ii)

The Periodic Table of Elements

₹	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
\equiv				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Ι	iodine 127	85	¥	astatine -			
5				80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъо	polonium —	116	_	livermorium -
>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
≥				9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ъ	lead 207	114	ŀΙ	flerovium -
=				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	84	l1	thallium 204			
										30	Zu	zinc 65	48	8	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
										28	Z	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium -
										27	ဝိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
	_	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	mic sym	name ative atomic ma				23	>	vanadium 51	41	qN	niobium 93	73	Б	tantalum 181	105	Ор	dubnium -
					ato	rela				22	j=	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	Ŗ	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ва	barium 137	88	Ra	radium
_				8	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ᇁ	francium -
				III IV V VII	Key III IV V VII atomic number 5 6 7 8 9	II	Key 11 IV V VII VIII H Hydrogen 1 1 <t< td=""><td>Key III IV V VII VIII H H Hydrogen atomic number hydrogen atomic mase relative atomic mass 1 5 6 7 8 9 P Be atomic symbol name relative atomic mass name atomic mass boron carbon atomic mass 11 12 14 16 17 12 13 14 15 16 17</td><td> II</td><td> III</td><td> III</td><td> III</td><td> III</td><td> II</td><td> II</td><td> II</td><td> II</td><td> III</td><td> III IV V V V V V V V </td><td> III IV V VI VIII VIII V V</td><td> Handbrook Hand</td></t<>	Key III IV V VII VIII H H Hydrogen atomic number hydrogen atomic mase relative atomic mass 1 5 6 7 8 9 P Be atomic symbol name relative atomic mass name atomic mass boron carbon atomic mass 11 12 14 16 17 12 13 14 15 16 17	II	III	III	III	III	II	II	II	II	III	III IV V V V V V V V	III IV V VI VIII VIII V V	Handbrook Hand

71 Lu	lutetium 175	103	۲	lawrencium -
o2 Yb	ytterbium 173	102	Š	nobelium –
e9 Tm	thulium 169	101	Md	mendelevium -
₈₈ П	erbium 167	100	Fm	fermium -
67 Ho	holmium 165	66	Es	einsteinium –
。 Dy	dysprosium 163	86	ర్	californium —
65 Tb	terbium 159	97	Æ	berkelium -
Gd Gd	gadolinium 157	96	Cm	curium
e3 Eu	europium 152	92	Am	americium -
ss Sm	samarium 150	94	Pn	plutonium
Pm	promethium -	93	dΝ	neptunium -
° PN	neodymium 144	92	\supset	uranium 238
59 Pr	praseodymium 141	91	Ра	protactinium 231
Se Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	88	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).