행렬의 이질성을 고려한 결측치 처리 방법

최기준 황진수 유동현 이우주

인하대학교 통계학과

서론

추천 시스템(Recommender System)에서 사용되는 협업 필터링을 위한 행렬 완성 (matrix completion)은 최근 많은 주목을 받았던 문제이다. 그 중, 저차원 행렬에 대한 특이값 분해 방법을 사용하는 SoftImpute (Mazumder et al, 2010)가 행렬 완성 문제에서 우수한 성능을 보여주었다.

추천 시스템은 실제 여러 그룹의 사람으로 구성되어 있으므로, 행렬 내 이질성을 쉽게 관측할 수 있다. 그러나 SoftImpute는 이러한 이질성을 적극적으로 반영하는 방법은 아니다. 따라서 본 연구에서는 행렬 내 이질성이 있을 경우, SoftImpute의 성능을 개선할 수 있는 반복 클러스터링-SoftImpute 방법을 제안해보고자 한다.

연구 동기

협업 필터링

협업 필터링은 사용자들의 선호도에 따라 사용자들의 관심사를 예측하는 방법이다. 근본적으로 사용자들의 과거의 선호도가 미래에도 그대로 유지된다는 가정을 전제로 한다. 이때, 각 상품에 대한 사용자의 선호도를 바탕으로 사용자-상품 행렬을 만들어 아직 접하지 않은 상품에 대한 선호도를 예측한다. 사용자-상품 행렬에 대한 형태는 아래와 같다.

	ltem1	Item2	Item3	Item4	ltem5	•••
User1	2	2			5	• • •
User2					5	•••
User3	1	5	5	4		•••
User4		5	4	3	4	•••
User5			1	4	4	•••
:	•	•	•	•	•	٠.

- 사용자가 접하지 않은 부분은 결측값으로 이뤄진 행렬
- 사용자의 선호도가 없는 상품에 대한 부분은 행렬 완성을 통해 예측
- 본 연구에서는 사용자 들 간 이질성이 있는 경우에 대한 처리 방법으로 반복 클러스터링-SoftImpute 방법 제안

기존 분석 방법 소개

SoftImpute – Mazumder et al. (2010)

SoftImpute는 행렬 내 결측이 존재할 때, nuclear-norm 벌칙함수를 고려한 저차원 행렬에 대한 특이값 분해 방법으로 모형의 형태는 아래와 같다.

$$\min \|P_{\Omega}(X - M)\|_{F}^{2} + \lambda \|M\|_{*}$$

 $X: _{m \times n} Matrix$

 $\|\cdot\|_{F}$: Frobenius norm

 $||M||_*$: nuclear norm of M

 $P_{\Omega}(X)$: 행렬 X에서 결측이 아닌 부분

- 위 모형은 아래의 (1)과 (2), 두 단계를 반복적을 수행하며 최적화한다.
- (1) 행렬 X 내 결측인 부분을 현재 추정치 M으로 대체:

$$X \leftarrow P_{\Omega}(X) + P_{\Omega}^{\perp}(\widehat{M})$$

 $P_{\Omega}^{\perp}(X)$: 행렬 X에서 결측인 부분

(2) 행렬 X에 대한 soft-thresholded SVD를 통해 \widehat{M} 수정:

$$\widehat{X} = UDV^T$$

 $\widehat{\mathbf{M}} \leftarrow \mathbf{U}\mathbf{S}_{\lambda}(\mathbf{D})\mathbf{V}^{\mathrm{T}}$

 $S_{\lambda}(D)$: 대각행렬 D의 대각 성분들인 d_{ii} 를 $(d_{ii}-\lambda)_{+}$ 로 바꾸는 연산자로, 여기서 $(x)_{+}=\max(x,0)$.

SoftImpute-ALS – Hastie et al. (2014)

 $M = AB^{T}$ 의 형태를 활용하여 SoftImpute의 수렴 속도를 개선했다.

$$\min_{A,B} \|P_{\Omega}(X - AB^{T})\|_{F}^{2} + \lambda(\|A\|_{F}^{2} + \|B\|_{F}^{2})$$

X: $_{m\times n}$ Matrix

 $A_{m \times r}$, $B_{n \times r}$: Rank $r \le min(m, r)$

제안 방법

반복 클러스터링-SoftImpute

사용자 간 이질성을 고려한 행렬 완성 방법으로 클러스터링과 SoftImpute의 반복을 제안한다. 자세한 방법은 아래 (1)-(4)의 순서와 같이 진행된다.

- (1) 초기 시행 시 행렬 $X_{m \times n}$ 의 결측은 0으로 채운 후, 행 기준으로 계층 클러스터링
- (2) 최적의 클러스터 개수 K 결정:

$$K = \operatorname{argmax}_{i}(s_{i}) = \operatorname{max}_{i} \frac{b_{i} - a_{i}}{\operatorname{max}(a_{i}, b_{i})}$$

 a_i : i번째 행과 같은 군집 내 다른 관측치와의 평균거리 b_i : i번째 행과 다른 군집 간 최소거리

(3) 각 클러스터 별로 SoftImpute-ALS:

 $\min_{A,B} \|P_{\Omega}(X_{(i)} - A_{(i)}B_{(i)}^T)\|_F^2 + \lambda(\|A_{(i)}\|_F^2 + \|B_{(i)}\|_F^2)$

 $X_{(i)}$: i번째 클러스터에 포함되는 행들로 구성된 행렬 (i = 1, ..., K)

(4) 500번 혹은 행렬의 변화가 극히 적을 때까지 (1)-(3) 과정 반복

Simulation Study

제안된 방법의 성능 향상을 확인하기 위해 다양한 이질적인 상황 하에서 SoftImpute 와 제안된 방법의 결측치 예측력에 대한 수치 연구를 실시하였고, 기존의 방법과 제안한 방법을 적용하여 예측값의 RMSE를 비교하였다.

Scenario 1) Homogeneity (n = 400, p = 50, group = 1)

Simulation Data: $X_{400\times50} = U_{400\times2} \Lambda_{2\times2} V_{2\times50}^T$

	Missing Proportion						
Method	20%	40%	60%	80%	90%	95%	
SoftImpute	0.217	0.699	2.275	2.174	9.95	29.708	
클러스터링 - SoftImpute	0.283	0.723	2.198	2.151	7.226	28.376	

Scenario 2) Heterogeneity (n = 400, p = 50, group = 4)

Simulation Data: $X_{400\times50} = (X_1, X_2, X_3, X_4)$,

$$X_i = U_{100\times2} \Lambda_{2\times2} V_{2\times50}^T$$
, $(i = 1, 2, 3, 4)$

	Missing Proportion					
Method	10%	30%	50%	80%	90%	95%
SoftImpute	0.778	2.028	2.84	12.213	198.081	1180.311
클러스터링 - SoftImpute	0.112	0.331	1.067	5.095	131.392	602.076

Scenario 3) Heterogeneity (n = 2000, p = 50, group = 4)

Simulation Data: $X_{2000\times50} = (X_1, X_2, X_3, X_4)$,

 $X_i = U_{500\times2} \Lambda_{2\times2} V_{2\times50}^T$ (i = 1, 2, 3, 4)

		Missing Proportion						
Method	10%	30%	50%	80%	90%	95%		
SoftImpute	0.852	1.601	31.997	75.552	140.602	139.047		
클러스터링 - SoftIm	npute 0.119	0.44	7.761	55.116	115.798	71.695		

실제 데이터) Movielen 100K data

	Missing Proportion							
		84%	87%	86%	84%	94%		
Method	Size	(300, 200)	(800, 600)	(900, 500)	(900, 1200)	(943, 1682)		
SoftImpute		0.331	0.281	0.285	0.336	0.320		
클러스터링 - SoftImpute		0.285	0.280	0.272	0.321	0.285		

Conclusion

본 연구에서는 사용자 간 이질성을 고려한 방법으로 반복 클러스터링-SoftImpute 방법을 제안하였다. 모의실험 결과를 통해서 행렬 내 이질성이 존재할 경우에는 기존 방법보다 우수한 성능을 보이는 것을 확인하였다. 동시에 이질성이 없는 경우에도 제안한 방법이 기존 방법에 비해 큰 차이가 없었다. 추가적으로 실제 데이터 Movielen을 통해서 제안한 방법의 우수함을 알 수 있었다.

Reference

- [1] R Mazumder, T Hastie, R Tibshirani, Spectral Regularization Algorithms for Learning Large Incomplete Matrices, Journal of Machine Learning Research, 11:2287–2322, 2010
- [2] T Hastie, R Mazumder, J Lee, R Zadeh, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares, Journal of Machine Learning Research, 16:3367-3402, 2015