

Sistemas Embebidos

Lab. 1 - Finite State Automata

Trabalho realizado por:

Diogo Silva, nº190204007

Mussagy Abibo, n°190204013

Enunciado do problema

Considere o esquema da figura abaixo.

Um berlinde é lançado nas entradas A ou B, descendo e saindo nas saídas C ou D,

dependendo do estado das alavancas x1, x2 e x3.

Cada vez que um berlinde passa numa alavanca, a alavanca muda de direção.

Por exemplo, a alavanca x1 está virada para a direita, se um berlinde passar por ela, muda de estado, ou seja, vai para a esquerda

O autómato deve aceitar sequências de entradas de modo que a último berlinde saia em D.

As **entradas e saídas** (A-D) tornam-se o **alfabeto** do autômato, enquanto as **alavancas** indicam os **estados** possíveis.

Se definirmos o **estado inicial** de cada alavanca como **0**, então, se as alavancas mudarem de direção, elas estarão no estado **1**.

Vamos usar o formato x1, x2, x3 para indicar um **estado**. O estado inicial é 000. Se lançarmos um berlinde em B, o estado torna-se 011 e a bola sai em C.

Teoria do Autómato

Vamos caracterizar o nosso Sistema de acordo com os seguintes parâmetros:

S => Conjunto de estados possíveis para o autómato

A => Alfabeto de entrada

 $q0 \Rightarrow estado inicial$

o => função de transição do autómato

T => Conjunto de estados aceites pelo autómato

S=> Sabemos que os estados possíveis estão compreendidos entre 000 e 111

• S = { 000c; 000d; 001d; 010c; 010d; 011d; 100c; 100d; 101c; 101d; 110c; 110d; 111d}

A => Os estados dependem se os berlindes são inseridos nas entradas A ou B

 $A = \{A;B\}$

q0 => Inicialmente, as três alavancas estão com valor lógico 0, ou seja, voltadas para a esquerda

• q0 = 000 / 0;

o => Função de transição é dada pela junção de um estado com uma entrada

• S x (A+B)

T=> T = {000d; 001d; 010d; 011d; 100d; 101d; 110d; 111d}

Como temos três alavancas que podem assumir valores binários, temos 8 estados possíveis para as alavancas de 000 a 111 (2³=8) + 5 variantes repetidas destes mesmos estados.

Face à situação problemática da existência de "sub-estados"

Identificamos ainda os estados anexando um "D" para aceitação ou "C" para rejeição. Isso leva a um total de 13 estados possíveis. Tudo o que precisamos fazer é começar do estado inicial e desenhar os novos estados aos quais somos conduzidos à medida que obtemos entradas de A ou B.

Diagrama de Estados

O Diagrama que obtemos é o seguinte:

Após o Diagrama concluído, construímos uma tabela com base no Diagrama para facilitar a interpretação

S	Α	В
000d	100d	011d
000c	100d	011d
100d	010d	111d
100c	010d	111d
011d	111d	010c
111d	001c	110c
001c	101d	000c
101d	011d	100c
101c	001d	100c
010c	110d	001c
101d	110d	001c
110c	000c	101c
110c	000c	101c

Antes de começarmos a programação deparámo-nos com um problema – não é possível ler os três dígitos em simultâneo, pelo que seguimos a recomendação do professor e convertermos os estados da nossa tabela de binário para decimal, dando origem à seguinte tabela de valores:

S	Α	В	
0c	4c	3c	
0d	4c	3c	/*
4c	2c	7c	000 - 0
4d	2c	7c	001 - 1
3c	7c	2d	011 - 3
7c	1d	6d	010 - 2
1d	5c	0d	110 - 6
5c	3c	4d	100 - 4
5d	3c	4d	101 - 5
2d	6c	1d	111 - 7
2c	6c	1d	*/
6d	0d	5d	
6c	0d	5d	

Depois de arranjar solução para o problema, prosseguimos para a montagem do circuito eletrónico, que inclui:

- -2 Resistências, 1K e 270Ohm;
- -2 LED's, vermelho e verde;
- -Cabo USB;
- -Cabos de ligação;
- -ESP8266

A montagem foi feita de acordo com o esquema abaixo:

Conclusão

Tivemos dificuldades tanto na interpretação do problema, como na programação.

No entanto, conseguimos traduzir este autómato da teoria para uma implementação num ambiente de programação.

Dado isto, conseguimos aprender a implementação de casos onde os autómatos aceitadores universais podem ser aplicados na prática e ficámos satisfeitos com o resultado.