

COMP3055 Machine Learning

Bayesian Learning Exercise Solution

Ying Weng 2024 Autumn

Exercise

Car theft

- Question: A Red Domestic SUV will be stolen or not?
- Note there is no example of a Red Domestic SUV in our data set.

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Prompts

Car theft

Attributes are Color, Type, Origin, and the subject, stolen can be either yes or no.

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Car theft

- We want to classify a Red Domestic SUV.
- Note there is no example of a Red Domestic SUV in our data set.

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

We need to estimate

$$P(x_i \mid d_j) = \frac{N_C + mP}{N + m}$$

N = the number of training examples for which $d = d_j$ Nc = number of examples for which $d = d_j$ and $x = x_i$ P = a priori estimate for $P(x_i/d_j)$ m = the equivalent sample size

• To classify a Red, Domestic, SUV, we need to estimate

$$Y = \arg \max_{d_i \in \{yes, no\}} P(d_i)P(x_1 = RED \mid d_i)P(x_2 = SUV \mid d_i)P(x_3 = Domestic \mid d_i)$$

Yes:	No:	Example No.	Color	Туре	Origin	Stolen?
		1	Red	Sports	Domestic	Yes
Red:	Red:	2	Red	Sports	Domestic	No
N = 5	N = 5	3	Red	Sports	Domestic	Yes
Nc=3	Nc = 2	4	Yellow	Sports	Domestic	No
P = .5	P = .5	5	Yellow	Sports	Imported	Yes
m = 3	m=3	6	Yellow	ŜUV	Imported	No
		7	Yellow	SUV	Imported	Yes
SUV:	SUV:	8	Yellow	SUV	Domestic	No
N = 5	N = 5	9	Red	SUV	Imported	No
Nc = 1	Nc = 3	10	Red	Sports	Imported	Yes
P = .5	P = .5		I	•	•	I
m = 3	m = 3					

Domestic:

N = 5Nc = 2

P=.5

m = 3

Domestic:

N = 5

Nc = 3

P = .5

m = 3

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

$$P(Red|Yes) = \frac{3+3*.5}{5+3} = .56$$

$$P(Red|No) = \frac{2+3*.5}{5+3} = .43$$

$$P(SUV|Yes) = \frac{1+3*.5}{5+3} = .31$$

$$P(SUV|No) = \frac{3+3*.5}{5+3} = .56$$

$$P(Domestic|Yes) = \frac{2+3*.5}{5+3} = .43$$

$$P(Domestic|No) = \frac{3+3*.5}{5+3} = .56$$

To classify a Red, Domestic, SUV, we need to estimate

$$Y = \arg \max_{d_i \in \{yes, no\}} P(d_i)P(x_1 = RED \mid d_i)P(x_2 = SUV \mid d_i)P(x_3 = Domestic \mid d_i)$$

$$P(yes)P(x_1 = RED \mid yes)P(x_2 = SUV \mid yes)P(x_3 = Domestic \mid yes)$$

= 0.5*0.56*0.31*0.43 = 0.037

$$P(no)P(x_1 = RED \mid no)P(x_2 = SUV \mid no)P(x_3 = Domestic \mid no)$$

= 0.5*0.43*0.56*0.56 = 0.069

$$Y = no$$