§1.2 - Convergence

Definition #1 (Sequence) Let $x_n \in \mathbf{R}$ for each $n \in \mathbf{N}$.

 $(x_n) = (x_1, x_2, x_3, \dots)$

is a **sequence** in **R**.

Definition #2 (Convergence) Let (x_n) be a sequence in \mathbf{R} and $x \in \mathbf{R}$.

Given any $\epsilon > 0$ we have some $r \in \mathbf{R}$ such that

$$n > r$$
 implies $|x_n - x| < \epsilon$

then
$$(x_n)$$
 converges to x . We denote this by $\lim x_n = x \text{ or } x_n \to x$.

$$a_1 = \frac{1}{3}$$
 $a_2 = \frac{1}{9}$
 $a_3 = \frac{1}{27}$
 \vdots
 $a_n = \frac{1}{3^n}$

Given E > 0

$$\left|\frac{1}{3}n - O\right| = \frac{1}{3}n < \frac{1}{n}$$
since $n < 3^n$ and so if
$$\frac{1}{n} < \varepsilon$$

we are done.

Now

$$\frac{1}{n} < \varepsilon$$
 if and only if $\frac{1}{\varepsilon} < n$ and pick $r = \frac{1}{\varepsilon}$. Hence

 $r < n \text{ implies } \left| \frac{1}{3}n - 0 \right| < \varepsilon$

50

$$\lim_{n\to\infty}\frac{1}{3^n}=0.$$

Remark The book often uses x^* to denote the limit of (x_n) and $|x_n|$ to denote a sequence.

The phrase

"for all *n*-large"

means that we have some $r \in \mathbf{R}$ such that the given condition holds whenever n > r.

Example #1

for all $n \in \mathbb{N}$.

Consider the sequences defined by

 $x_n = \frac{1}{2^n}, \quad y_n = \frac{1}{n!}, \quad \text{and} \quad z_n = \frac{1}{n^{2^n}}$

Each sequence converges to 0 but some do #7 it faster:

$$\frac{X_{n+1}}{X_n} = \frac{\frac{1}{z^{n+1}}}{\frac{1}{z^n}} = \frac{1}{z}$$

$$\frac{y_{n+1}}{y_n} = \frac{\frac{1}{z^{n+1}}}{\frac{1}{z^n}} = \frac{1}{z}$$

$$\frac{y_{n+1}}{y_n} = \frac{y_n}{y_n} = \frac{y_n}$$

$$\frac{z_{n+1}}{z_n} = \frac{\frac{1}{(n+1)^{(2^{n+1})}}}{\frac{1}{n^{2^n}}} = \frac{n^{2^n}}{(n+1)^{(2^{n+1})}} = \left(\frac{n}{n+1}\right)^{2n} \frac{1}{(n+1)}$$

The ratio

$$\frac{1 \times_{n+1} - \times 1}{1 \times_{n} - \times 1}$$

informs how fast $x_n \rightarrow x$. The smaller the ratio, the faster the convergence.

Let (x_n) be a sequence in \mathbf{R} where $x_n \to x$. If we have $c \in (0,1)$ such that

 $|x_{n+1} - x| \le c|x_n - x|$ for all *n*-large.

Then the convergence of (x_n) to x is at least linear.

Definition #3 (Linear Convergence)

Let (x_n) be a sequence in \mathbf{R} where $x_n \to x$. Suppose we have (ϵ_n) where $\epsilon_n \to 0$ such that

Definition #4 (Superlinear Convergence)

 $|x_{n+1} - x| \le \epsilon_n |x_n - x|$

for all n-large.

Then the convergence of (x_n) to x is at least **superlinear**.

Let (x_n) be a sequence in \mathbf{R} where $x_n \to x$. If we have C > 0 such that

Definition #5 (Quadratic Convergence)

 $|x_{n+1} - x| < C|x_n - x|^2$

 $|x_{n+1} - x| \le C|x_n - x|^2$

for all n-large. Then the convergence of (x_n) to x is at least quadratic. **Definition** #6 (Convergence of order α) Let (x_n) be a sequence in \mathbf{R} where $x_n \to x$ and $\alpha > 0$.

If we have C > 0 such that

 $|x_{n+1} - x| \le C|x_n - x|^{\alpha}$ for all *n*-large.

Then the convergence of (x_n) to x is at least of **order** α .

Now
$$\frac{X_{n+1}}{X_n} = \frac{\frac{1}{z^{n+1}}}{\frac{1}{z^n}} = \frac{1}{z} \quad \text{yields } |X_{n+1} - X| = \frac{1}{z} |X_n - X|$$
but

 $\mathcal{E}_n = \frac{1}{2}$ does not converge to O: linear convergence

While
$$\frac{4n+1}{4n} = \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \frac{1}{(n+1)}$$
 yields $|4n+1-4| = \frac{1}{(n+1)}|4n-4|$

or at least super linear convergence.

Here
$$\frac{4_{n+1}}{4_n^2} = \frac{\frac{1}{(n+1)!}}{(\frac{1}{n!})^2} = \frac{n!}{(n+1)} \text{ yields } |y_{n+1} - y| = \frac{n!}{(n+1)} |y_n - y|^2$$

so (yn) lacks quadratic convergence: super linear convergence

Finally,
$$z_n^2 = \left(\frac{1}{n^{2n}}\right)^2 = \frac{1}{n^{2n}n^{2n}} = \frac{1}{n^{2\cdot 2n}} = \frac{1}{n^{(2^{n+1})}}$$

$$z_{n+1} = \frac{1}{(n+1)^{(2^{n+1})}}$$

$$\frac{z_{n+1}}{z_n^2} = \frac{\frac{1}{(n+1)^{(2^{n+1})}}}{\frac{n(2^{n+1})}{(n+1)^{(2^{n+1})}}} = \left(\frac{n}{n+1}\right)^{(2^{n+1})} < 1.$$

Thus

so (zn) has at least quadratic convergence.

Definition #7 (Big "Oh") Let (x_n) and (α_n) be distinct sequences in **R**. Suppose we have C > 0 such that

 $|x_n| \le C|\alpha_n|$

for all n-large.

Then

or (x_n) is "big oh" of (α_n) .

 $x_n = \mathcal{O}(\alpha_n)$

Example #2

 $x_n + y_n = \mathcal{O}(\alpha_n).$

Show that if $x_n = \mathcal{O}(\alpha_n)$ and $y_n = \mathcal{O}(\alpha_n)$ then

Let
$$\alpha_n = \frac{1}{n}$$
 and $x_n = \frac{n}{3n^2 + 1}$ then

$$0 < \frac{n}{3n^2+1} < \frac{n}{3n^2} = \frac{1}{3n} = \frac{1}{3} \alpha_n$$

for all n.

Thus

$$x_n = \mathcal{O}(\alpha_n)$$
.

Notice

$$\lim_{n\to\infty}\left|\frac{x_n}{\alpha_n}\right|\in(0,\infty).$$

If $x_n = O(\alpha_n)$ and $y_n = O(\alpha_n)$ then $|x_n| \le C_1 |\alpha_n|$ for $n > N_1$ if $|y_n| \le C_2 |\alpha_n|$ for $n > N_2$ so

 $|x_n+y_n| \leq |x_n|+|y_n|$

and for n > max (N, N2)

 $|x_n+y_n| \leq C_1|\alpha_n|+C_2|\alpha_n|=(C_1+C_2)|\alpha_n|$

Thus

$$x_n + y_n = \mathcal{O}(\alpha_n)$$
.

 $\lim_{n\to\infty}\frac{x_n}{\alpha_n}=0$ then for n-large

Remark

 $x_n \ll \alpha_n$

or x_n is "much smaller" than α_n .

However,

However, $\frac{x_n}{\alpha_n}$

is undefined if α_n is zero and we still want conditions to describe when x_n is "much smaller" than α_n .

Definition #8 (Little "Oh") Let (x_n) and (α_n) be distinct sequences in **R**. Suppose (ϵ_n) is a nonnegative sequence where $\epsilon_n \to 0$ and

 $|x_n| \le \epsilon_n |\alpha_n|$

for n-large.

Then

 $x_n = \mathcal{O}(\alpha_n)$

or (x_n) is "little oh" of (α_n) .

Lemma #1

Let (x_n) and (α_n) be distinct sequences in **R**.

If
$$(\alpha_n)$$
 is nonzero and then
$$x_n = \mathcal{O}(\alpha_n) \quad \text{if and only if} \quad \lim_{n \to \infty} \frac{x_n}{\alpha_n} = 0.$$

Pf) "=>" Let $x_n = O(\alpha_n)$ then we have some (\mathcal{E}_n) with $\mathcal{E}_n \to O$ and $N \in |N|$ where $|x_n| \le \mathcal{E}_n |\alpha_n|$

for n>N.

Since lan1 70,

$$\frac{|x_n|}{|\alpha_n|} \le \varepsilon_n$$

and by the Squeeze Theorem $\frac{|x_n|}{|\alpha_n|} \to 0$

because $\varepsilon_n \rightarrow 0$.

"(=" |f

$$\frac{|x_n|}{|\alpha_n|} \to 0$$

let

$$\varepsilon_n = \frac{|x_n|}{|\alpha_n|}$$

then

$$\varepsilon_n |\alpha_n| = |\alpha_n| \frac{|x_n|}{|\alpha_n|} = |x_n|$$

for all n. Naturally, $|x_n| \le \varepsilon_n |\alpha_n|$

and we are done.

Show

Hence

faster than

Example #3

$$\frac{1}{n\ln(n)} = \mathcal{O}\left(\frac{1}{n}\right).$$

$$\frac{1}{n\ln(n)} \to 0$$

$$\lim_{n\to\infty}\frac{\frac{1}{n\ln(n)}}{\frac{1}{n}}=0$$

since

$$\frac{\frac{1}{n\ln(n)}}{\frac{1}{n}} = \frac{1}{\ln(n)} \to 0$$

Remark If a property holds in some arbitrary open interval about c we will say the condition holds " \mathbf{near} " c.

The function given by $f(x) = \sin(x)$ is increasing "near" 0 but is not increasing on ${\bf R}$.

Definition #9 (Big "Oh" for Functions) Let $f, g : \mathbf{R} \to \mathbf{R}$ and $c \in \mathbf{R}$.

Suppose we have
$$M > 0$$
 such that

$$|f(x)| \le M|g(x)|$$

for all x "near" c and $x \neq c$.

 $f(x) = \mathcal{O}(g(x))$ as $x \to c$.

Example #4

Determine the best integer value of n in the equation

$$\arctan(x) = x + \mathcal{O}(x^n)$$

as $x \to 0$.

Notice

arctan(x) =
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$

$$arctan(x) = x + E_3(x)$$

 $E_3(x) = \frac{1}{3} f^{(3)}(\xi) x^3$

by Taylor's Remainder Theorem. With $|f^{(3)}|$ continuous/bounded near 0 we have $\arctan(x)-x=O(x^3)$ or $\arctan(x)=x+O(x^3)$ as $x\to 0$.

* Since
$$\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$

for x e(-1,1] and so

$$arctan(x) + C = \int \frac{1}{1+x^2} dx = \sum_{k=0}^{\infty} (-1)^k \int x^{2k} dx$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$$

Now

arctan(0) = 0 => $C = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} O^{2k+1} = 0$ implies

$$\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$$

Definition #10 (Little "Oh" for Functions) Let $f, g : \mathbf{R} \to \mathbf{R}$ and $c \in \mathbf{R}$.

Suppose we have a function
$$e$$
, which is nonnegative and
$$\lim_{x\to c} e(x) = 0,$$

where

$$|f(x)| \le e(x)|g(x)|$$

for all x "near" c and $x \neq c$.

for all
$$x$$
 "near" c and $x \neq c$.

Then

 $f(x) = \mathcal{O}(q(x))$ as $x \to c$.

Lemma #2

Let
$$f, g : \mathbf{R} \to \mathbf{R}$$
 and $c \in \mathbf{R}$.

Suppose
$$g(x)$$
 is nonzero for all x "near" c and $x \neq c$ then

$$f(x) = o(g(x))$$
 as $x \to c$ if and only if $\lim_{x \to c} \frac{f(x)}{g(x)} = 0$.

Remark
We can also define $f(x) = \phi(q(x)) \quad \text{as} \quad x \to \infty$

and $f(x) = \mathcal{O}(g(x)) \quad \text{as} \quad x \to \infty$ $f(x) = \mathcal{O}(g(x)) \quad \text{as} \quad x \to \infty$

by modifying our sequence definitions to "for x-large" instead of "for

n-large."

Problem

We want to evaluate

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n$$

 $p(x) = a_0 + a_1 x + \ldots + a_n x$ at x_0 by reducing the amount of computation.

Observe

Example #5

$f(x) = -7 + 3x - 4x^2 + 5x^3$

$$= -7 + 3$$

$$= -7 + 3x - 4x^{2} + 5x \cdot x^{2}$$
$$= -7 + x(3 + x(-4 + 5x))$$

Definition #11 (Nested Form) Let $p(x) = a_0 + a_1 x + \ldots + a_n x^n$

$$p(x) = a_0 + x(a_1 + x(a_2 + \dots$$
is the **nested form** of p .

$$p(x) = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + a_n x) \dots)$$

Lemma #3 To evaluate

```
n(x) - a + x(a + x(a + x(a + a x)))
```

 $p(x) = a_0 + x(a_1 + x(a_2 + \ldots + x(a_{n-1} + a_n x) \ldots)$ requires n additions and n multiplications.