Semestrální zkouška ISS, 2. opravný termín, 1.2.2017, skupina B

Login: Příjmení a jméno: Podpis: Podpis: (čitelně!)

Určete kruhovou frekvenci a hodnoty všech nenulových koeficientů Fourierovy řady pro signál Příklad 1 na obrázku.

Příklad 2 Provádíme konvoluci dvou signálů se spojitým časem: $x_1(t)$ je nenulový od -3 s do 3 s. $x_2(t)$ je nenulový od 0 s do 3 s. Napište, v jakém intervalu bude nenulová jejich konvoluce $y(t) = x_1(t) \star x_2(t)$.

Nakreslete průběh modulu i argumentu spektrální funkce $X(j\omega)$ stejnosměrného signálu x(t) = 2.

Příklad 4 Je dán obdélníkový signál se spojitým časem: $x(t) = \begin{cases} 5 & \text{pro} & -3 \le t \le 3 \\ 0 & \text{jinde} \end{cases}$. Na které kruhové frekvenci ω_a (v rad/s) bude jeho spektrální funkce poprvé nulová, postupujeme-li od

 $\omega = 0$ doprava?

Příklad 5 Vysvětlete vztah mezi Fourierovou transformací a Laplaceovou transformací téhož signálu se spojitým časem x(t).

 $n_{2.3} = \pm 2000j$, $p_{1.2} = -10 \pm 1000j$.

Nakreslete přibližně průběh modulové frekvenční charakteristiky $|H(j\omega)|$ pro kruhové frekvence $\omega \in [0, 5000]$ rad/s.

Příklad 7 Netopýr rezavý vysílá zvuk — periodický signál — na základní frekvenci $f_1 = 23$ kHz. Jedná se o složitý signál, je nutné zaznamenat nejen základní frekvenci, ale i další harmonické frekvence až do $4f_1$. Určete, jaká bude minimální vzorkovací frekvence pro navzorkování netopýřího zvuku.

 $F_{s_{min}} = \dots$

Příklad 8 Kvantizér má k disposici 6 bitů, do něj vstupuje harmonický signál (cosinusovka), který plně využívá jeho dynamického rozsahu. Určete poměr signálu ke kvantizačnímu šumu (SNR) v deciBellech (dB) takového kvantizéru.

 $SNR = \dots$

Příklad 9 Vypočtěte a do tabulky zapište běžnou lineární (ne kruhovou!) konvoluci dvou signálů s diskrétním časem.

n	0	1	2	3	4	5	6	7	8	9
$x_1[n]$	4	3	1	2	0	0	0	0	0	0
$x_2[n]$	-1	1	0	-1	0	0	0	0	0	0
$x_1[n] \star x_2[n]$		-		-	-	-		-	-	

Příklad 10 V tabulce je dán signál s diskrétním časem o délce N=4. Napište jeho předepsané kruhové posunutí.

n	0	1	2	3
x[n]	4	3	1	2
$R_4[n]x[\bmod_4(n-3)]$				

Příklad 11 Je dán diskrétní harmonický signál (diskrétní cosinusovka) s periodou N=16: $\tilde{x}[n]=5\cos(\frac{2\pi n}{16}-\frac{\pi}{4})$

Určete indexy a hodnoty všech jeho nenulových koeficientů diskrétní Fourierovy řady $\tilde{X}[k]$ v intervalu $k \in 0...N-1$. Stačí jejich zápis v exponenciálním tvaru, není nutné převádět na složkový.

Příklad 12 Diskrétní signál x[n] má délku N=8 vzorků. Jeho hodnoty jsou $x[0]=1, \quad x[1]=\sqrt{2}, \quad x[7]=-\sqrt{2}$, ostatní jsou nulové. Spočítejte zadaný koeficient diskrétní Fourierovy transformace (DFT).

$$X[3] = \dots$$

Příklad 13 Diskrétní signál x[n] o délce N=16 má pouze jeden nenulový koeficient diskrétní Fourierovy transformace (DFT): X[3]=5. Napište vztah pro tento signál. Vzhledem k tomu, že X[16-3]=X[13]=0, nemělo by Vás překvapit, pokud bude signál komplexní.

 $x[n] = \dots$

Příklad 14 Impulsní odezva číslicového filtru je zpožděný jednotkový impuls:

 $h[n] = \begin{cases} 1 & \text{pro } n = 4 \\ 0 & \text{jinde} \end{cases}$ Nakreslete průběh modulu jeho frekvenční charakteristiky $|H(e^{j\omega})|$ v obvyklém intervalu normovaných kruhových frekvencí $\omega \in 0 \dots \pi$ rad.

Příklad 15 Na obrázku je rozložení nulových bodů a pólů číslicového filtru. Nakreslete přibližně průběh modulu jeho frekvenční charakteristiky $|H(e^{j\omega})|$ v obvyklém intervalu normovaných kruhových frekvencí $\omega \in 0 \dots \pi$ rad.

Příklad 16 Dva číslicové filtry s impulsními odezvami (obě dány pro $n \in 0...3$):

$$h_1[n] = [1 \ 0.5 \ -0.5 \ 0.25]$$

$$h_2[n] = [1 -0.5 \ 0.5 \ 0.25]$$

jsou spojeny paralelně. Napište impulsní odezvu vzniklého systému.

 $h[n] = \dots$

Příklad 17 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

ω	1	2	3	4	5	6	7	8	9	10
$\xi_{\omega}[7$	8.7	7.6	15.3	15.9	3.7	9.7	8.9	12.9	14.1	15.0

Proveďte souborový odhad funkce hustoty rozdělení pravděpodobnosti p(x,7) a nakreslete ji.

Příklad 18 Náhodný signál s diskrétním časem má konstatní spektrální hustotu výkonu, je to tedy bílý šum. Nakreslete jeho korelační koeficienty R[k] pro $k \in -5 \dots 5$.

Příklad 19 Určete střední výkon P náhodného signálu x[n], jehož funkce hustoty rozdělení pravděpodobnosti p(g) má tvar obdélníka: $p(g) = \left\{ \begin{array}{ll} \frac{1}{12} & \text{pro } g \in -6 \dots 6 \\ 0 & \text{jinde} \end{array} \right.$

Pomůcka: pro náhodné signály se střední hodnotou nula platí, že střední výkon rovná se rozptylu: P = D.

 $P = \dots$

Příklad 20 Spektrální hustota výkonu náhodného signálu má na normované kruhové frekvenci $\omega = 0.2\pi$ rad hodnotu $G_x(e^{j0.2\pi}) = 5$. Signál prochází číslicovým filtrem, který má na této frekvenci hodnotu frekvenční charakteristiky $H(e^{j0.2\pi}) = \sqrt{5}e^{j\frac{5\pi}{8}}$.

Určete spektrální hustotu výkonu výstupního signálu na téže frekvenci.

 $G_y(e^{j0.2\pi}) = \dots$