This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
 - TEXT CUT OFF AT TOP, BOTTOM OR SIDES
 - FADED TEXT
 - ILLEGIBLE TEXT
 - SKEWED/SLANTED IMAGES
 - COLORED PHOTOS
 - BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

METHOD OF PRODUCING SULFUR AND HYDROGEN FROM HYDROGEN SULFIDE	
Patent Number:	RU2131396
Publication date:	1999-06-10
Inventor(s):	BYSTROVA T V; CHIZHOV JU L
Applicant(s):	CHIZHOV JURIJ LEONIDOVICH;; BYSTROVA TAT JANA VLADIMIROVNA
Requested Patent:	RU2131396
Application Number:	RU19980101734 19980202
Priority Number(s):	RU19980101734 19980202
IPC Classification:	C01B17/04; C01B3/04
EC Classification:	
Equivalents:	
Abstract	
FIELD: plasma chemical processes. SUBSTANCE: hydrogen sulfide-containing gas is introduced into plasma reactor wherefrom reaction products are withdrawn. According to invention, plasma-forming gas is molecular hydrogen in thermally dissociated state and hydrogen sulfide-containing gas is mixed with plasma in fast-flow reactor beyond electric discharge under conditions of nonequilibrium plasma chemical process. EFFECT: reduced power consumption and enabled utilization of gases with low hydrogen sulfide content. 2 dwg	
Data supplied from the esp@cenet database -12	

RU⁽¹¹⁾ 2 131 396 ⁽¹³⁾ C1

C 01 B 17/04, 3/04

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 98101734/25, 02.02.1998
- (46) Дата публикации: 10.06.1999
- (56) Ссылки: FR 2620436 A1, 17.03.89. RU 2075431 C1, 20.03.97. US 4367211 A, 04.01.83. FR 2639630 A1, 01.06.90. DE 3526787 A1, 29.01.87.
- (98) Адрес для переписки: 117574, Москва, пр-д Одоевского, 3-3-373, Чижову Юрию Леонидовичу
- (71) Заявитель: Быстрова Татьяна Владимировна, Чижов Юрий Леонидович
- (72) Изобретатель: Быстрова Т.В., Чижов Ю П
- (73) Патентообладатель: Быстрова Татьяна Владимировна, Чижов Юрий Леонидович

(54) СПОСОБ ПОЛУЧЕНИЯ СЕРЫ И ВОДОРОДА ИЗ СЕРОВОДОРОДА

Изобретение относится к химической промышленности, в частности к способу получения серы и водорода сероводородсодержащих газов. Сущность изобретения заключается в введении сероводородсодержащего газа в плазму и последующем выводе продуктов реакции из реактора, при этом плазмообразующего газа используют молекулярный водород в термически диссоциированном состоянии, сероводородсодержащий газ смешивают с плазмой в быстропроточном реакторе вне пределов электрического разряда в условиях

неравновесного плазмохимического процесса. Согласно изобретению снижаются энергозатраты на осуществление способа и обеспечивается возможность получения целевых продуктов из газов с низким содержанием сероводорода. 2 ил.

Duz.1

(19) RU (11) 2 131 396 (13) C1

(51) Int. Cl. 6 C 01 B 17/04, 3/04

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

- (21), (22) Application: 98101734/25, 02.02.1998
- (46) Date of publication: 10.06.1999
- (98) Mail address: 117574, Moskva, pr-d Odoevskogo, 3-3-373, Chizhovu Juriju Leonidovichu
- (71) Applicant: Bystrova Tat'jana Vladimirovna, Chizhov Jurij Leonidovich
- (72) Inventor: Bystrova T.V., Chizhov Ju.L.
- (73) Proprietor:Bystrova Tat'jana Vladimirovna,Chizhov Jurij Leonidovich

(54) METHOD OF PRODUCING SULFUR AND HYDROGEN FROM HYDROGEN SULFIDE

(57) Abstract:

FIELD: plasma chemical processes. SUBSTANCE: hydrogen sulfide-containing gas is introduced into plasma reactor wherefrom reaction products are withdrawn. According to invention, plasma-forming gas is molecular hydrogen in thermally dissociated state and hydrogen sulfide-containing gas is mixed with plasma in fast-flow reactor beyond electric discharge under conditions of nonequilibrium plasma chemical process.

EFFECT: reduced power consumption and enabled utilization of gases with low hydrogen sulfide content. 2 dwg

9

ď

بر ح

-2-

Изобретение относится к химической промышленности и в частности к технологии получения серы из сероводородсодержащих газов.

Известен способ получения серы S_2 и водорода H₂ из сероводорода методом термического разложения (см. описание к патенту США N 4302434, НКИ 423-573, 1981 /1/). Способ заключается в том, что газ, содержащий сероводород пропускают через зону разложения при температуре 850-1600 °C, а выведенный из нее охлаждают до 110-150°C, в результате чего высаждается элементарная сера. Газ отделяют от серы, нагревают до 100-400°C и пропускают над катализатором гидрирования. Затем из газового потока выделяют сероводород. промывкой который возвращают в зону разложения, а остаточный газ, с высоким содержанием водорода, выпускают в атмосферу.

Недостатком известного способа являются сложность осуществления, высокая энергоемкость, неполнота извлечения сероводорода из исходного газа, попадание сероводорода в атмосферу.

Известен способ получения серы и водорода методом электроконверсии (см. заявку Франции N 2639630, C 01 B 17/04, 1990 /2/). Способ характеризуется тем, что подлежащий конверсии сероводород является рабочим газом плазмы Сероводород разлагается на серу, которая поступает в соответствующий приемник, и который пропускают водород, абсорбционную башню для извлечения неконверсированного сероводорода, и затем используют в промышленных целях.

Недостатком известного способа является наличие примеси сероводорода в получаемом водороде, быстрое разрушение электродов плазмотрона под действием серосодержащих соединений, низкий КПД конверсии и невозможность эффективной переработки газов с низким содержанием сероводорода для получения элементарной серы.

Наиболее близким к заявляемому по своей технической сущности и достигаемому результату является способ получения серы и водорода из сероводорода, известный из описания к заявке Франции N 2620436, С 01 В 17/027, С 01 В 3/04, 1989 /3/. Способ заключается в том, что создают с помощью плазменной горелки плазму и смешивают с сероводородсодержащим газом в разрядном промежутке плазмотрона. Образующиеся продукты реакции выводят из зоны реакции и разделяют.

Недостатком известного способа является невозможность эффективного использования в качестве сырья газов с низким содержанием сероводорода ввиду чрезмерного повышения удельных энергозатрат на конверсию сероводорода в таких смесях.

Заявляемый в качестве изобретения способ получения серы и водорода из сероводорода направлен на обеспечение возможности получения целевых продуктов из газов с низким содержанием сероводорода и снижение энергозатрат на его осуществление.

Указанный результат достигается тем, что в способе получения серы и водорода из сероводорода, включающем введение сероводородсодержащего газа в плазму и

вывод продуктов реакции из реактора, в качестве газа плазмы используют молекулярный водород в термически диссоциированном состоянии, а сероводородсодержащий газ смешивают с плазмой вне пределов электрического разряда в быстропроточном реакторе в условиях неравновесного плазмохимического процесса.

Отличительными признаками заявляемого способа являются использование молекулярного водорода в термически диссоциированном состоянии в качестве исходного газа плазмы; смешивание сероводородсодержащего газа с плазмой в быстропроточном реакторе за пределами разрядного промежутка; смешивание сероводородсодержащего газа с плазмой в условиях неравновесного плазмохимического процесса.

Использование водорода в термически диссоциированном состоянии в качестве газа для создания плазмы позволяет снизить энергозатраты на проведение процесса и обеспечить полную конверсию сероводорода в газовых смесях с низким его содержанием в серу и водород в условиях неравновесной химической кинетики. сероводородсодержащего газа с плазмой водорода, состоящей при 3600-4600 К на 50-95% из атомов Н (см. Сурис А.Л. Термодинамика высокотемпературных процессов //Справочник. -М.: Металлургия, 1985 /4/), в быстропроточном реакторе в условиях неравновесного плазмохимического процесса позволяет обеспечить полную конверсию сероводорода в серу и водород по описываемой следующими химическими реакциями (см. Реализация базы данных "Процесс" системы АВОГАДРО на вычислительных средствах РС/АТ // Отчет N 4120 НИИ Механики МГУ, 1991 /5/):

H₂S + H ---> HS + H₂, $k_1 = 10^{12.9} exp(-850/T) cm^3/(monbec); (1)$ HS + H ---> H2+S, $k_2 = 10^{14,65} exp(-1000/T) cm³/(моль•с); (2)$ HS + S ---> H + S2, $k_3 = 10^{13,5} \text{ cm}^3/(\text{моль} \cdot \text{c}); (3)$ HS + HS ---> H2+S2, $k_4 = 10^{10.5} \text{ cm}^3/(\text{МОЛЬ•С}); (4)$ HS + HS ---> H2S + S, $k_5 = 10^{13} \text{ cm}^3/(\text{моль}_{\bullet}\text{c}); (5)$ S + H2 ---> HS + H, 10^{14,3}T^{0,68}exp(-10000/T) см $^3/(моль_•c)$; (6) H2S + M ---> HS+H+M, $k_7 = 10^{16,1} \exp(-46000/T) \text{ cm}^3/(\text{моль} \cdot \text{c}); (7)$ H+H+M ---> H2+M, $k_8 = 10^{15,7} \text{ cm}^6/(\text{моль}^2 \cdot \text{c}); (8)$ S+S+M ---> S2+M, $k_9 = 10^{15} \text{ cm}^6/(\text{моль}^2 \cdot \text{c}); (9)$ HS+H+M ---> H2S+M, $k_{10} = 10^{14.1} \text{ cm}^6/(\text{моль}^2 \cdot \text{c}). (10)$

Здесь Т - температура смеси газов в реакторе, К. Исходными компонентами являются Н ₂S, H₂, Н; конечными продуктами (в случае полной конверсии) - H₂ и S₂; промежуточные вещества реакции - радикалы S и HS. Приведенные реакции условно можно разделить на три группы: (1) - (4) - реакции

-3-

образования конечных продуктов H_2 и S_2 ; (5) - (6)- промежуточные реакции; (6) - (10) - реакции гибели активных частиц.

Условия осуществления неравновесного плазмохимического процесса в быстропроточном реакторе подбираются таким образом, чтобы обеспечить смешение плазмы водорода с сероводородсодержащим газом, сопровождаемое реакциями (1) - (4), аз времена значительно более короткие, чем времена рекомбинации активных частиц H, S, HS в группе реакций (8)-(10). В этом случае взаимодействие H₂S и H условно может быть описано брутто-формулой

 $H_2S+H ---> 1,5H_2 + 0,5S_2, (11)$

а энергетические затраты на электрохимическую конверсию сероводорода в заявляемом способе будут обусловлены затратами на получение термически диссоциированного водорода в плазмотроне, расходуемого в реакторе согласно (11) в соотношении

 $H/H_2S \ge 1 (12)$

Известно осуществление различных промышленных технологий в условиях неравновесных плазмохимических процессов (см. Химическая энциклопедия, 1992, т. 3, с. 1098 - 1102, статья "Плазмохимическая технология" /6/). Неравновесные плазмохимические процессы осуществляют при пониженных давлениях (менее 50 кПа) и в реакторах периодического действия. Однако, если осуществлять конверсию сероводорода плазме водорода 8 реакторе периодического действия, т.е. при малых скоростях потока, то полезные реакции идут с малой скоростью из-за преобладания процесса рекомбинации над процессом образования требуемых компонентов, в результате возрастают удельные энергетические затраты на конверсию H₂S и снижается производительность процесса.

Поэтому смешение сероводородсодержащего газа с плазмой предлагается осуществлять в условиях неравновесного плазмохимического процесса (при пониженных давлениях), но в быстропроточном реакторе, как это обычно осуществляют при реализации квазиравновесных плазмохимических процессов (см. /6/), т.е. при скоростях течения потока в реакторе от 100 до 1000 м/с.

Сущность заявляемого способа поясняется примером реализации и графическими изображениями. На фиг. 1 представлен схематично продольный разрез установки для осуществления способа; на фиг.2 представлен график зависимости химического состава смеси от времени.

Пример. Установка для реализации способа содержит электродуговой плаэмотрон 1 с источником питания, сопловой блок 2 реактора, быстропроточный реактор 3 с рабочей длиной L, диффузор 4.

В общем случае способ реализуется следующим образом. С помощью известного плазмотрона (см. с. 1099 в /6/) с использованием водорода в качестве плазмообразующего газа создается поток плазмы с температурой 3500-4500 К. Поток плазмы, состоящий преимущественно из атомов Н, и перерабатываемый сероводородсодержащий газ, например смесь H₂S/CO₂, вводят в плазмохимический реактор

и перемешивают в условиях повышенной турбулентности при давлении в реакторе Р = 5-50 кПа и скоростях потока 100-1000 м/с. Скорость определяют расчетным путем в зависимости от других параметров процесса плазмообразующего газа. температуры плазмы, содержания сероводорода в перерабатываемом газе, состава перерабатываемого газа и т.п. Для обеспечения пониженного давления в зоне смешения и вывода продуктов реакции без использования принудительных средств (насосов и т.п.) в реакторе может быть организован сверхзвуковой режим течения смеси, а на выходе реактора устанавливают диффузор, восстанавливающий давление истекающей струи до атмосферного.

Соотношение объемов плазмообразующего газа (водорода) и сероводородсодержащего газа выбирается в соответствии с соотношением (H/H₂S)_{вход} ≥ 1 (см. (12)) и зависит от содержания сероводорода в перерабатываемом газе, т.е. отношения H₂S к химически инертному газу СО₂ и температуры плазмы. При содержании сероводорода в перерабатываемом газе, равном 10%, и температуре плазмы 4500 К мольное отношение расхода водорода к расходу сероводородсодержащего газа будет находиться в пределах H₂/(H₂S+CO₂) = 0,05-0,06.

В результате перемешивания плазмы и сероводородсодержащего газа начинается протекание цепной химической реакции с участием трех радикалов: H, S, HS. Реакция проходит в две стадии (фиг. 2). На ранней стадии в результате быстрых химических реакций происходит почти полное химическое разложение H₂S и образование конечного продукта Н2. Далее следует медленная стадия образования конечного продукта S 2. а на временах порядка 10⁻³ с происходит полное разложение исходного продукта H₂S в H₂ и S₂. В результате образуется струя газовой смеси с температурой 770 К, содержащая в качестве полезных продуктов молекулярный водород Н 2 и молекулярную серу S₂ и не содержащая сероводорода H₂S. При скорости движения газовой смеси вдоль реактора, равной 500 м/с, длина реактора L Энергозатраты 0,5 M. электрохимическую конверсию моля Н ₂S составляют 350 кДж/моль и практически не зависят от концентрации H₂S в сероводородсодержащем газе. На выходе из реактора продукты реакции подвергают охлаждению одним из известных методов затапливанием потока реагирующей смеси струями холодной жидкости (например воды) или в трубчатых теплообменниках (см. с. 1100 в /6/). Из газовой смеси известным способом (см. /1/) извлекают элементарную серу и молекулярный водород, используемые в промышленных целях. Последний частично возвращается в плазмотрон для повторного использования в процессе.

Преимущества заявляемого способа. 1. Степень конверсии H_2S составляет 99,9%.

2. Удельные энергозатраты на электрохимическую конверсию составляют 350 - 450 кДж на 1 моль $\rm H_2S$ и практически не зависят от концентрации $\rm H$ $_2S$ в

-4

- 3. Скорость потока смеси в реакторе лежит в пределах 100-1000 м/с, а необходимая дпина реактора не превышает 1 м, что позволяет создавать компактные и высокоэффективные промышленные установки.
- 4. Способ может быть использован для очистки метана и других углеводородов от примеси сероводорода, поскольку скорость взаимодействия атомарного водорода с сероводородом существенно выше скорости взаимодействия с метаном и другими углеводородами (см. Кондратьев В.Н. Константы скоростей газофазных реакций // Справочник. -М.: Наука, 1971 /7/).
- 5. При работе плазмотрона на чистом водороде по сравнению с другими химически активными частицами достигается наибольшая продолжительность работы электродов (200 и более часов) благодаря использованию вольфрамовых термокатодов (см. Гордеев В.Ф., Пустогаров А.В. Термоэмиссионные дуговые катоды. -М.: Энергоатомиздат, 1988 /8/).

Литература

- 1. Патент США N 4302434, 423-573, 1981.
- 2. Заявка Франции N 2639630, C 01 B 17/04, 1990.

- 3. Заявка Франции, N 2620436, C 01 В 17/27, 1989.
- 4. Сурис А.Л. Термодинамика высокотемпературных процессов. Справочник. М.: Металлургия, 1985.
- 5. Реализация базы данных "Процесс" системы АВОГАДРО на вычислительных средствах РС/АТ. Отчет N 4120 НИИ Механики МГУ, 1991.
- Плазмохимическая технология.
 Химическая энциклопедия. М.: Большая российская энциклопедия, т. 3, с. 1098-1102, 1992.
 - 7. Кондратьев В.Н. Константы скоростей газофазных реакций. Справочник. М.: Наука, 1971.
- 8. Гордеев В.Ф., Пустогаров А.В. Термоэмиссионные дуговые катоды. М.: Энергоатомиздат, 1988.

Формула изобретения:

Способ получения серы и водорода из сероводорода, включающий введение сероводородсодержащего газа в плазму и последующий вывод продуктов реакции из реактора, отличающийся тем, что в качестве плазмообразующего газа используют молекулярный водород в термически диссоциированном состоянии, сероводородсодержащий газ смешивают с плазмой в быстропроточном реакторе вне пределов электрического разряда в условиях неравновесного плазмохимического процесса.

ဖ

30

35

40

45

50

55

60

Фиг.2

R □

C 1