DataPrivacy-hw1

Terence Wang

2023/11/05

Contents

1	$\mathbf{Q}1$																				2
	1.1	a																			2
	1.2	b				•															2
2	$\mathbf{Q2}$																				4
	2.1	a																			4
	2.2	b				•								•			•	•			5
3	$\mathbf{Q3}$																				5
	3.1	a																			5
	3.2	b				•															5
4	$\mathbf{Q4}$																				6
	4.1	a																			6
	4.2	b				•															6
5	$\mathbf{Q5}$																				6
	5.1	a																			6
	5.2	b																			7
	5.3	c																			7

1 Q1

1.1 a

The quasi-identifier attributes: Zip Code Age Salary Nationality

1.2 b

After cell-level generalization:

Sequence	Zip Code	Age	Salary	Nationality	Condition
1	130**	[21,40]	[13k,22k]	*	Heart Disease
2	130**	[21,40]	[23k,25k]	*	Heart Disease
3	130**	[21,40]	[13k,22k]	Japanese	Viral Infection
4	130**	[21,40]	[13k,22k]	*	Viral Infection
5	1485*	[41,55]	[13k,22k]	*	Cancer
6	1485*	[41,55]	[13k,22k]	*	Heart Disease
7	1485*	[41,55]	[13k,22k]	*	Viral Infection
8	1485*	[41,55]	[13k,22k]	*	Viral Infection
9	130**	[21,40]	[13k,22k]	*	Cancer
10	130**	[21,40]	[23k,25k]	*	Cancer
11	130**	[21,40]	[13k,22k]	Japanese	Cancer
12	130**	[21,40]	[13k,22k]	*	Cancer

hot	10.
1146	1S:
	hat

Sequence	Zip Code	Age	Salary	Nationality	Condition
1	130**	[21,40]	[13k,22k]	*	Heart Disease
4	130**	[21,40]	[13k,22k]	*	Viral Infection
9	130**	[21,40]	[13k,22k]	*	Cancer
12	130**	[21,40]	[13k,22k]	*	Cancer
2					Heart Disease
10					
3	130**	[21,40]	[13k,22k]	Japanese	Viral Infection
11	130**	[21,40]	[13k,22k]	Japanese	Cancer
5	1485*	$[41,\!55]$	[13k,22k]	*	Cancer
6	1485*	[41,55]	[13k,22k]	*	Heart Disease
7	1485*	[41,55]	[13k,22k]	*	Viral Infection
8	1485*	$[41,\!55]$	[13k,22k]	*	Viral Infection

Generalization hierarchies are as follows: Figure 1 Figure 2

Figure 1: generalization hierarchies

Figure 2: generalization hierarchies

Calculation of the LM:

Zip Code:

$$T[13053] = \frac{2-1}{4-1} = \frac{1}{3}$$

$$T[13068] = \frac{2-1}{4-1} = \frac{1}{3}$$

$$T[14853] = \frac{2-1}{4-1} = \frac{1}{3}$$

$$T[14850] = \frac{2-1}{4-1} = \frac{1}{3}$$
Therefore, I.M.

Therefore, $LM_{ZipCode} = \frac{1}{3}$

Age:

$$T[21 - 40] = \frac{40 - 21}{55 - 21} = \frac{19}{34}$$
$$T[41 - 55] = \frac{55 - 41}{55 - 21} = \frac{14}{34}$$

Therefore, $LM_{Age} = (8 \times \frac{19}{34} + 4 \times \frac{14}{34}) \times \frac{1}{12} = \frac{26}{51}$

Salary:

$$T[13 - 22] = \frac{22 - 13}{25 - 13} = \frac{3}{4}$$

$$T[23 - 25] = \frac{25 - 23}{25 - 13} = \frac{1}{6}$$

Therefore, $LM_{Salary} = (10 \times \frac{3}{4} + 2 \times \frac{1}{6}) \times \frac{1}{12} = \frac{47}{72}$

Nationality:

$$LM_{Nationality} = \frac{3}{4} \times \frac{4}{5} = \frac{3}{5}$$

In conclusion, $LM = \frac{1}{3} + \frac{26}{51} + \frac{47}{72} + \frac{3}{5} = \frac{12827}{6120} \approx 2.1$

2 Q2

2.1 a

meet recursive (2,2)-diversity

Figure 3

We say that a q^* -block is (c,2)-diverse if $r_1 < c(r_2 + \cdots + r_m)$ for some user-specified constant c. For $\ell > 2$, we say that a q^* -block satisfies recursive (c,ℓ) -diversity if we can eliminate one possible sensitive value in the q^* -block and still have a $(c,\ell-1)$ -diverse block. This recursive definition can be succinctly stated as follows.

Figure 3: recursive (c,l)-diversity definition

For every QI-cluster, we have $r_1 = 2$, $r_2 = 1$, $r_3 = 1$. So $r_1 < 2 \times (r_2 + r_3)$ holds (i.e. $2 < 2 \times 2$)

2.2 b

Entropy is a concave (the definition of **concave** may be vague) function. Thus if QI-cluster q_1^{\star} , \cdots , q_d^{\star} from table T are merged to form the QI-cluster $q^{\star\star}$ of table T^{\star} , then we have $entropy(q^{\star\star}) \geq \min_i(entropy(q_i^{\star}))$ Since table T satisfies entropy l-diversity, we have $entropy(q^{\star\star}) \geq \min_i(entropy(q_i^{\star})) \geq \log(l)$. Therefore, we get T^{\star} satisfies entropy l-diversity.

3 Q3

3.1 a

To calculate EMD under ordered distance, we just need to consider flows that **transport distribution mass between adjacent elements**. This is because other circumstances can be decomposed into several transportations between adjacent elements.

So let us consider element 1 first. Let us assume that $p_1 - q_1 < 0$, so $q_1 - p_1$ should be transported from other elements to element 1.

We can transport this from element 2. So after transportation, element 2 has an extra amount of $(p_1 - q_1) + (p_2 - q_2)$. The operation is similar element 3

Therefore, we can get $D[\mathbf{P}, \mathbf{Q}] = \frac{1}{m-1}(|r_1| + |r_1 + r_2| + \dots + |r_1 + r_2 + \dots + r_{m-1}|)$

3.2 b

```
m = 9, \text{ ordered list} = \{3K, 4K, 5K, 6K, 7K, 8K, 9K, 10K, 11K\} Distribution of the whole table: \mathbf{Q} = \{\frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}\} Distribution of each cluster: \mathbf{P}_1 = \{0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, 0, 0, 0\} \mathbf{P}_2 = \{\frac{1}{3}, 0, 0, 0, 0, \frac{1}{3}, 0, 0, 0, \frac{1}{3}\} \mathbf{P}_3 = \{0, 0, 0, 0, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}, 0\} D[\mathbf{P}_1, \mathbf{Q}] = \frac{1}{8} \times \frac{1}{9}(1 + 1 + 3 + 5 + 4 + 3 + 2 + 1) = \frac{5}{18} D[\mathbf{P}_2, \mathbf{Q}] = \frac{1}{8} \times \frac{1}{9}(2 + 1 + 0 + 1 + 2 + 0 + 1 + 2) = \frac{1}{8} D[\mathbf{P}_3, \mathbf{Q}] = \frac{1}{8} \times \frac{1}{9}(1 + 2 + 3 + 4 + 2 + 3 + 1 + 1) = \frac{17}{72} t = \max\{D[\mathbf{P}_1, \mathbf{Q}], D[\mathbf{P}_2, \mathbf{Q}], D[\mathbf{P}_3, \mathbf{Q}]\} = \frac{5}{18} \approx 0.278
```

WANGYU PB21030814 5

4 Q4

4.1 a

question1:

$$\begin{split} &P_{prior}(x=0)=0.01\\ &P(R_1(x)=0)=0.3\times0.01+0.7\times\frac{1}{101}=0.00993\\ &P_{posterior}(x=0|R_1(x)=0)=\frac{0.01\times(0.3+0.7\times\frac{1}{101})}{0.00993}=0.3091\\ &\textbf{question2:}\\ &P_{prior}=0.01\\ &P(R_2(x)=0)=P(x+\xi=0)+P(x+\xi=101)=0.01\times\frac{1}{21}+10\times0.0099\times\frac{1}{21}+10\times0.0099\times\frac{1}{21}=0.00990\\ &P(R_3(x)=0)=0.5\times0.00990+0.5\times\frac{1}{101}=0.00990\\ &P(R_3(x)=0)=0.5\times0.00990+0.5\times\frac{1}{101}=0.00990\\ &P_{posterior}(x=0|R_3(x)=0)=\frac{0.01\times(0.5\times\frac{1}{21}+0.5\times\frac{1}{101})}{0.00990}=0.0291\\ &\textbf{question3:}\\ &P_{prior}(x\in[20,80])=61\times0.0099=0.6039\\ &P_{posterior}(x\in[20,80])|R_2(x)=0)=\frac{0}{0.00990}=0.\end{split}$$

4.2 b

 R_3 is more suitable. This is because $P_{posterior}$ should be close enough to P_{prior} , in this way we can protect the privacy. Apparently, R_3 is closest to *nothing* in both X=0 and $X \notin \{200, \cdots, 800\}$. Therefore, R_3 is more suitable.

5 Q5

5.1 a

Figure 4

Figure 4: 2-anonymous

5.2 \mathbf{b}

Figure 5

Figure 5: 3-anonymous

5.3 c

Figure 4:

$$L(G,G')=1-\frac{8}{9}=\frac{1}{9}$$

Figure 4.
$$L(G, G') = 1 - \frac{8}{9} = \frac{1}{9}$$
Figure 5:
$$L(G, G') = 1 - \frac{8}{12} = \frac{1}{3}$$