IVT	MVT	Rolle's Theorem
Used to show that $f(x)$ achieves a value of k	Used to show that $f'(x)$ achieves a given value (usually $\neq 0$)	Used to show that $f'(x) = 0$ (and only = 0)
Hypothesis	Hypothesis	Hypothesis
I. $f(x)$ is continuous on $[a,b]$	I. $f(x)$ is continuous on $[a,b]$	I. $f(x)$ is continuous on $[a,b]$
II. k is a value between $f(a)$ and	II. $f(x)$ is differentiable on (a,b)	II. $f(x)$ is differentiable on (a,b)
f(b)		III. $f(b) = f(a)$
Conclusion	Conclusion	Conclusion
By IVT, there exists a c in (a,b) such that $f(c) = k$.	By MVT, there exists a c in (a,b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$	By Rolle's Theorem, there exists a c in (a,b) such that $f'(c)=0$
$f(a)$ k $f(b)$ $a c_1 c_2 c_3 b$	Tangent line $(c, f(c))$ Secant line $slope = \frac{f(b) - f(a)}{b - a}$	f'(c) = 0 $f(a) = f(b)$ a

Existence Theorems Page 1 of 2

Existence Theorems Page 2 of 2