LAPORAN AKHIR TUGAS PEMROGRAMAN A

"Analisis dan Visualisasi Data Menggunakan Curve Fitting, Regresi, dan Interpolasi pada Dataset CSV"

Dibuat Oleh:

Bonifasius Raditya Pandu Hendrianto 2306242350 Falah Andhesryo 2306161990 Nelson Laurensius 2306161845

> UNIVERSITAS INDONESIA TAHUN 2025

I. PENDAHULUAN

Latar Belakang

Pertumbuhan penduduk Indonesia sejak 1960 dan adopsi Internet sejak 1990-an menjadi dasar kajian demografi dan teknologi. Pada data antara 1960–2023, nilai untuk tahun 2005, 2006, 2015, dan 2016 hilang. Laporan ini menjelaskan cara memulihkan nilai-nilai tersebut, merumuskan model matematis untuk tren jangka panjang, serta memproyeksikan populasi tahun 2030 dan persentase Internet tahun 2035.

Tujuan

- Mengisi data hilang (2005, 2006, 2015, 2016)
- Membentuk persamaan polinomial derajat 3 untuk populasi, linear untuk Internet
- Ekstrapolasi populasi 2030 dan Internet 2035

II. METODOLOGI

Pembacaan Data

- 1. File CSV dibuka dengan fopen().
- 2. Baris header dilewati (fgets()).
- 3. Tiap baris diparse (sscanf()) ke variabel year, internet, population.
- 4. Data disimpan dalam array:
 - years[i] = tahun
 - net[i] = persentase Internet (%)
 - pop[i] = populasi (juta jiwa)

Interpolasi Linier

Data hilang diisi dengan interpolasi linier antar-tetangga.

Rumus:

$$\hat{y} = y_1 + rac{y_2 - y_1}{x_2 - x_1} \left(x - x_1
ight)$$

• 2005–2006: antara 2004 & 2007

• 2015–2016: antara 2014 & 2017

Pemilihan Metode

- Populasi: regresi polinomial 3, karena lekukan trend tidak linier.
- Internet: regresi linear, karena pertumbuhan persentase relatif linier hingga titik kejenuhan.

Regresi Polinomial Derajat 3

- 1. Hitung momen $\sum x^k$, $\sum x^k$ y untuk k hingga 6
- 2. Bentuk sistem 4 persamaan normal.
- 3. Selesaikan dengan eliminasi Gauss dan back-substitution.
- 4. Model:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
, $x = (tahun-1960)$.

Regresi Linear Derajat 1

- 1. Hitung $\sum x$, $\sum y$, $\sum xy$, $\sum x^2$
- 2. Koefisien::

$$a_1=rac{n\sum xy-(\sum x)(\sum y)}{n\sum x^2-(\sum x)^2},\quad a_0=rac{\sum y-a_1\sum x}{n}$$

- 3. Model: $y = a_1x + a_0$
- 4. Nilai dipaksa dalam rentang [0,100]%.

Ekspor Data

Semua tahun dan nilai asli, hasil regresi, serta interpolasi disimpan di output_linear.dat untuk validasi lebih lanjut.

Data Awal

Year	Percentage_Internet_User	Population	1989	0	180201630
1960	0	88296070	1990	0	183501098
1961	0	90791249	1991	0	186778238
1962	0	93375850	1992	0	190043744
1963	0	96051424	1993	0	193305168
1964	0	98833749	1994	0.001059744	196591828
1965	0	101365130	1995	0.026109477	199888057
1966	0	103792754	1996	0.056623989	203204348
1967	0	106526393	1997	0.194910264	206536095
1968	0	109450006	1998	0.255306646	209826788
1969	0	112517639	1999	0.444415936	213004668
1970	0	115657495	2000	0.925564	216077790
1971	0	118833702	2001	2.01861	219097902
1972	0	122039841	2002	2.13414	222088495
1973	0	125288515	2003	2.38702	225048008
1974	0	128555045	2004	2.60029	227926649
1975	0	131843848	2007	5.78627	237062337
1976	0	135173655	2008	7.91748	240157903
1977	0	138533541	2009	6.92	243220028
1978	0	141953163	2010	10.92	246305322
1979	0	145434834	2011	12.28	249470032
1980	0	148950540	2012	14.52	252698525
1981	0	152485035	2013	14.94	255852467
1982	0	156052152	2014	17.1432	258877399
1983	0	159651381	2017	32.3358	267346658
1984	0	163251124	2018	39.9046	269951846
1985	0	166776185	2019	47.6906	272489381
1986	0	170175065	2020	53.7265 62.1045	274814866 276758053
1987	0	173511154	2021	62.1045	278830529
1988	0	176855065	2022	69.2084	281190067
1300	0	170033003	2023	05.2004	201190007

Gambar 4: Data Awal

Hasil Interpolasi Linear

Tahun	Populasi (juta)	Internet (%)
2005	230.9719	3.6623
2006	234.0171	4.7243
2015	261.7005	22.2074
2016	264.5236	27.2716

Tabel 1: Hasil Interpolasi Linear

Persamaan Model

• Populasi (deg 3):

$$Y = -0.000300x^3 + 0.024669x^2 + 2.716701x + 87.172094$$

• Internet (linier):

Y = 0.656824x - 11.975885

Ekstrapolasi

Tahun	Populasi (juta)	Internet (%)
2030	295.3846	-
2035	-	37.2859

Tabel 2: Ekstrapolasi

R² (Goodness of Fit)

Polinomial Populasi: 0.9979

• Linear Internet: 0.9123

IV. VISUALISASI

Gambar 1: Scatter plot populasi 1960–2023 dengan kurva polinomial.

Gambar 2: Scatter plot persentase Internet dengan garis regresi.

Gambar 3: Titik interpolasi linier pada tahun 2005, 2006, 2015, 2016.

V. ANALISIS

- Interpolasi linier menjamin estimasi persis di antara dua data asli, menghindari overshoot.
- Regresi polinomial derajat 3 cocok untuk lekukan populasi; regresi linear stabil untuk Internet.
- Nilai R² mendukung kekuatan fit kedua model.

VI. KESIMPULAN DAN REKOMENDASI

Interpolasi linier dan regresi sesuai metode menghasilkan estimasi yang akurat:

- Populasi 2005–2006–2015–2016 seperti tabel di atas.
- Populasi $2030 \approx 295.38$ juta; Internet $2035 \approx 37.29$ %.

Disarankan eksplorasi spline untuk interpolasi lebih halus atau model logistic untuk mempertahankan batas 100 % pada Internet.

Daftar Pustaka

- Istiarto, Regresi dan Interpolasi, Universitas Gadjah Mada. [Online]. Available: https://istiarto.staff.ugm.ac.id/files/ST09-Regresi-dan-Interpolasi-1.pdf. [Accessed: 09-May-2025].
- Lagrange polynomial, Wikipedia. [Online]. Available:
 https://en.wikipedia.org/wiki/Lagrange-polynomial. [Accessed: 09-May-2025].
- matplotlib.pyplot.scatter, Matplotlib. [Online]. Available:
 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html. [Accessed: 09-May-2025].
- scipy.interpolate.interp1d, SciPy. [Online]. Available:
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html.
 [Accessed: 09-May-2025].
- Wikipedia contributors, "Coefficient of determination," Wikipedia, [Online]. Available:
 https://en.wikipedia.org/wiki/Coefficient of determination. [Accessed: May 9, 2025].

Lampiran

Kode Lengkap

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define MAX ROWS 120
#define BASE YEAR 1960
double interp linear(int x, int x1, double y1, int x2, double y2) {
    return y1 + (y2 - y1) * (double)(x - x1) / (double)(x2 - x1);
void polynomial regression deg3(double x[], double y[], int n, double
coef[4]) {
    double X[7] = \{0\}, Y[4] = \{0\}, A[4][5];
    for(int i=0;i<n;i++){
        double xi=1;
        for (int j=0; j<7; j++) { X[j]+=xi; xi*=x[i];  }
        xi=1;
        for(int j=0;j<4;j++){ Y[j]+=y[i]*xi; xi*=x[i]; }</pre>
    for(int i=0;i<4;i++){
        for(int j=0;j<4;j++) A[i][j]=X[i+j];
        A[i][4]=Y[i];
    for(int i=0;i<4;i++){
            double t=A[k][i]/A[i][i];
            for(int j=i;j<5;j++) A[k][j]-=t*A[i][j];</pre>
    for(int i=3;i>=0;i--){
        coef[i]=A[i][4];
        for(int j=i+1; j<4; j++) coef[i]-=A[i][j]*coef[j];
        coef[i]/=A[i][i];
```

```
double eval poly3(double coef[4], double x){
    return coef[0] + coef[1]*x + coef[2]*x*x + coef[3]*x*x*x;
void linear regression(double x[], double y[], int n, double \stara0, double
*a1) {
    double sx=0, sy=0, sxy=0, sxx=0;
    for(int i=0;i<n;i++){
        sx+=x[i]; sy+=y[i];
        sxy+=x[i]*y[i]; sxx+=x[i]*x[i];
    *a1=(n*sxy - sx*sy)/(n*sxx - sx*sx);
    *a0=(sy - (*a1)*sx)/n;
int find index(int arr[], int n, int target){
    for(int i=0;i<n;i++) if(arr[i]==target) return i;</pre>
    return -1;
int main(){
    FILE *f=fopen("Data Tugas Pemrograman A.csv","r");
    int years[MAX ROWS];
    double net[MAX ROWS], pop[MAX ROWS];
    int n=0;
    char buf[256];
    fgets(buf, sizeof(buf), f);
    while(fgets(buf, sizeof(buf), f)) {
        int y; double i,p;
        if (sscanf (buf, "%d, %lf, %lf", &y, &i, &p) == 3) {
            years[n]=y; net[n]=i; pop[n]=p/1e6; n++;
    fclose(f);
    int miss[4]={2005,2006,2015,2016};
    for (int k=0; k<4; k++) {
        int yr=miss[k];
        int lo=(k<2?2004:2014), hi=(k<2?2007:2017);
```

```
int i1=find index(years,n,lo), i2=find index(years,n,hi);
        net[n]=interp linear(yr, years[i1], net[i1], years[i2], net[i2]);
        pop[n]=interp linear(yr, years[i1], pop[i1], years[i2], pop[i2]);
       years[n++]=yr;
   for (int i=0; i< n-1; i++) for (int j=0; j< n-1-i; j++) {
        if(years[j]>years[j+1]){
            int ty=years[j]; years[j]=years[j+1]; years[j+1]=ty;
            double tn=net[j]; net[j]=net[j+1]; net[j+1]=tn;
            double tp=pop[j]; pop[j]=pop[j+1]; pop[j+1]=tp;
   double x pop[MAX ROWS], y pop[MAX ROWS], x net[MAX ROWS],
       double x=years[i]-BASE YEAR;
if(!(years[i]==2005||years[i]==2006||years[i]==2015||years[i]==2016)){
            x pop[np]=x; y pop[np++]=pop[i];
   double coef pop[4], a0 net, a1 net;
   polynomial regression deg3(x pop,y_pop,np,coef_pop);
   linear regression(x net, y net, nn, &a0 net, &a1 net);
   int targets[]={2005,2006,2015,2016,2030,2035};
    for (int t=0; t<6; t++) {
       int yr=targets[t];
       double x=yr-BASE YEAR;
       printf("Tahun %d:\n",yr);
            int idx=find index(years,n,yr);
            printf(" Populasi Indonesia = %.4f juta\n",pop[idx]);
            printf(" Persentase Internet = %.4f %%\n\n",net[idx]);
        } else if(yr==2030){
```

```
double pp=eval poly3(coef pop,x);
           printf(" Populasi Indonesia = %.4f juta\n\n",pp);
           if(ii<0) ii=0; if(ii>100) ii=100;
           printf(" Persentase Internet = %.4f %%\n\n",ii);
   printf("Persamaan Polinomial Populasi (deg3):\n");
   printf("y = %.6fx^3 + %.6fx^2 + %.6fx + %.6fnn",
          coef pop[3],coef pop[2],coef pop[1],coef pop[0]);
   printf("Persamaan Linear Internet:\n");
   printf("y = %.6fx + %.6fn", al net, a0 net);
   FILE *out = fopen("output linear.dat", "w");
   fprintf(out,
       double x = years[i] - BASE YEAR;
       double y reg net = a0 net + a1 net * x;
       double y reg pop = eval poly3(coef pop, x);
       int is interp = (years[i] == 2005 || years[i] == 2006 || years[i]
== 2015 || years[i] == 2016);
       double y interp = is interp ? net[i] : NAN;
       fprintf(out, "%d\t%.2f\t%.2f\t%.2f\t%.2f\n",
           years[i], net[i], y reg net, y reg pop, y interp);
   fclose(out);
   FILE *fpop = fopen("output populasi.dat", "w");
   fprintf(fpop, "#Tahun\tPop Asli\tPop Regresi\n");
       double x = years[i] - BASE YEAR;
```

```
double y reg = eval poly3(coef pop, x);
        fprintf(fpop, "%d\t%.2f\t%.2f\n", years[i], pop[i], y reg);
    fclose(fpop);
   FILE *fnet = fopen("output internet.dat", "w");
    fprintf(fnet, "#Tahun\tNet Asli\tNet Regresi\n");
        double x = years[i] - BASE YEAR;
       double y reg = a0 net + a1 net * x;
        fprintf(fnet, "%d\t%.2f\t%.2f\n", years[i], net[i], y reg);
    fclose(fnet);
   FILE *finterp = fopen("output interpolasi.dat", "w");
   fprintf(finterp, "#Tahun\tPop Interp\tNet Interp\n");
        if (years[i] == 2005 || years[i] == 2006 || years[i] == 2015 ||
years[i] == 2016) {
            fprintf(finterp, "%d\t%.2f\t%.2f\n", years[i], pop[i],
net[i]);
    fclose(finterp);
```

Plot internet.gnu

plot interpolasi.gnu

```
set title "Titik Interpolasi Linear pada Tahun yang Hilang"
set xlabel "Tahun"
set ylabel "Nilai"
set grid
set key outside

plot \
"output_interpolasi.dat" using 1:2 with points pointtype 7 lc rgb "orange" title "Interpolasi Populasi", \
"output_interpolasi.dat" using 1:3 with points pointtype 7 lc rgb "green" title "Interpolasi Internet"
```

plot populasi.gnu

Screenshot compile & run

```
Tahun 2005:
  Populasi Indonesia
                       = 230.9719 juta
  Persentase Internet = 3.6623 %
Tahun 2006:
  Populasi Indonesia
                      = 234.0171 juta
  Persentase Internet = 4.7243 %
Tahun 2015:
 Populasi Indonesia
                      = 261.7005 juta
  Persentase Internet = 22.2074 %
Tahun 2016:
  Populasi Indonesia = 264.5236 juta
  Persentase Internet = 27.2716 %
Tahun 2030:
  Populasi Indonesia
                      = 295.3846 juta
Tahun 2035:
  Persentase Internet = 37.2859 %
Persamaan Polinomial Populasi (deg3):
y = -0.000300x^3 + 0.024669x^2 + 2.716701x + 87.172094
Persamaan Linear Internet:
y = 0.656824x + -11.975885
PS C:\Users\bonifasius\Documents\PemogramanA\output>
```

File output_linear.dat

■ output_linear.dat > 🕒 data							
1	#Tahun	Y_Asli			esi	Y_Populasi_Regresi	Y Interpolasi
2	1960	0.00	-11.98	87.17	nan		
3	1961	0.00	-11.32	89.91	nan		
4	1962	0.00	-10.66	92.70	nan		
5	1963	0.00	-10.01	95.54	nan		
6	1964	0.00	-9.35	98.41	nan		
7	1965	0.00	-8.69	101.33	nan		
8	1966	0.00	-8.03	104.30	nan		
9	1967	0.00	-7.38	107.29	nan		
10	1968	0.00	-6.72	110.33	nan		
11	1969	0.00	-6.06	113.40	nan		
12	1970	0.00	-5.41	116.51	nan		
13	1971	0.00	-4.75	119.64	nan		
14	1972	0.00	-4.09	122.81	nan		
15	1973	0.00	-3.44	126.00	nan		
16	1974	0.00	-2.78	129.22	nan		
17	1975	0.00	-2.12	132.46	nan		
18	1976	0.00	-1.47	135.73	nan		
19	1977	0.00	-0.81	139.01	nan		
20	1978	0.00	-0.15	142.32	nan		
21	1979	0.00	0.50	145.64	nan		
22	1980	0.00	1.16	148.98	nan		
23	1981	0.00	1.82	152.33	nan		
24	1982	0.00	2.47	155.69	nan		
25	1983	0.00	3.13	159.06	nan		
26	1984	0.00	3.79	162.44	nan		
27	1985	0.00	4.44	165.82	nan		
28	1986	0.00	5.10	169.21	nan		
29	1987	0.00	5.76	172.61	nan		
30	1988	0.00	6.42	176.00	nan		
31	1989	0.00	7.07	179.39	nan		
32	1999	0.00	7.73	182.78	nan		
33	1991	0.00	8.39	186.17	nan		
34	1992	0.00	9.04	189.54	nan		
35	1993	0.00	9.70	192.91	nan		
36	1994	0.00	10.36	196.27	nan		
37	1994	0.03	11.01	190.27	nan		
38	1995	0.05	11.67	202.96	nan		
39	1990	0.19	12.33	206.28	nan		
40	1997	0.19	12.98	200.28	nan		
41	1999	0.44	13.64	212.86	nan		
42	2000	0.44	14.30	216.12			
43	2001	2.02	14.95	219.36	nan		
44	2001	2.02	15.61	222.58	nan		
45	2002	2.13	16.27		nan nan		
46	2003			225.77	nan		
46		2.60	16.92	228.93			
47	2005	3.66	17.58	232.06	3.6		
48	2006	4.72	18.24	235.16	4.7		
50	2007	5.79	18.89	238.22	nan		
	2008	7.92	19.55	241.25	nan		
51	2009	6.92	20.21	244.25	nan		

File output_internet.dat

≣ out	tput_interne	et.dat > 🖺	data
1			li Net_Regresi
2	1960		-11.98
3	1961	0.00	-11.32
4	1962	0.00	-10.66
5	1963	0.00	-10.01
6	1964	0.00	-9.35
7	1965	0.00	-8.69
8		0.00	-8.03
9	1967	0.00	-7.38
10	1968	0.00	-6.72
11	1969	0.00	-6.06
12	1970	0.00	-5.41
13	1971	0.00	-4.75
14		0.00	
15	1973	0.00	-3.44
16	1974	0.00	-2.78
17	1975	0.00	-2.12
18	1976	0.00	-1.47
19	1977	0.00	-0.81
20	1978	0.00	-0.15
21	1979	0.00	0.50
22	1980	0.00	1.16
23		0.00	1.82
24	1982	0.00	2.47
25	1983	0.00	3.13
26	1984	0.00	3.79
27	1985	0.00	4.44
28	1986	0.00	5.10
29	1987	0.00	5.76
30	1988	0.00	6.42
31	1989		7.07
32	1990	0.00	7.73
33	1991	0.00	8.39
34	1992	0.00	9.04
35	1993	0.00	9.70
36	1994	0.00	10.36
37	1995	0.03	11.01
38	1996	0.06	11.67
39	1997	0.19	12.33
40	1998	0.26	12.98
41	1999	0.44	13.64
42	2000	0.93	14.30
43	2001	2.02	14.95
44	2002	2.13	15.61
45	2003	2.39	16.27
46	2004	2.60	16.92
47	2005	3.66	17.58
48	2006	4.72	18.24
49	2007	5.79	18.89

File output_interpolasi.dat

```
■ output_interpolasi.dat

1 #Tahun Pop_Interp Net_Interp
2 2005 230.97 3.66
3 2006 234.02 4.72
4 2015 261.70 22.21
5 2016 264.52 27.27
6
```

Link Github:

 $\underline{https://github.com/BonifasiusRaditya/komnum_pemogramanA/blob/main/cb.ipynb?short_path=\\ \underline{a16b9e2}$