Concavity and Inflection

Question 1

Suppose that f is differentiable and that $f''(x) = (x - 1)^2 (x - 2)^3$. Which x-values have f''(x) = 0? What are the first coordinates of any inflection points of f?

Question 2

Suppose that g is differentiable. A graph of the *derivative* of g, that is, y = g'(x), is displayed below. Use that graph to answer these questions: which x-values have g''(x) = 0, and what are the first coordinates of any inflection points of g(x)?

Graph of y = g'(x), the derivative of g(x)(This graph has a horizontal tangent at x = -2.)

Finding Inflection Points

Answer the questions in the scenarios below, then compare your answer with those of your group members and discuss any differences.

Scenario 1: Suppose that $f(x) = x^4 + x^3 - 3x^2$.

a. Find the first and second derivatives of f(x).

b. Does f(x) have any inflection points? If it does, find their coordinates and explain why they are inflection points.

Scenario 2: Suppose that $g(x) = \frac{x^3 + 2}{x^2 + x + 1}$. Then the first derivative, g'(x), is $\frac{x^4 + 2x^3 + 3x^2 - 4x - 2}{(x^2 + x + 1)^2}$, and the second derivative, g''(x), is $\frac{18x(x+1)}{(x^2 + x + 1)^3}$. Does g(x) have any inflection points? If it does, find their coordinates and explain why they are inflection points.

Scenario 3: This is a graph of the *derivative* of h(x), which is a function defined and continuously differentiable on the interval [A,G]. Use this graph of y=h'(x) to answer the following questions.

The graph of y = h'(x)

a. What are the x-coordinates of the inflection points of h(x)?

b. Justify why those *x*-values are inflection points.

.

Justifying Inflection Points

Some values of a twice differentiable function, f(x), and its first and second derivatives, f'(x) and f''(x) respectively, are given in the table below. For example, f'(3) = -2. Use the table to answer the questions that follow.

х	1	2	3	4
f'(x)	4	5	1	2
f"(x)	0	0	-2	0
f(x)	2	0	0	-3

1. Does $A(x) = (f(x))^2$ have a critical point at x = 4? If A(x) does have a critical point, can you determine whether it is a local maximum, local minimum, or neither? Explain your answer.

2. Does $B(x) = f(x^2)$ have a critical point at x = 2? If B(x) does have a critical point, can you determine whether it is a local maximum, local minimum, or neither? Explain your answer.

3. Does C(x) = f(f(x)) have a critical point at x = 3? If C(x) does have a critical point, can you determine whether it is a local maximum, local minimum, or neither? Explain your answer.

4. Does D(x) = f(4x-2) have a critical point at x = 1? If D(x) does have a critical point, can you determine whether it is a local maximum, local minimum, or neither? Explain your answer.

5. Does E(x) = f(x+3) have a critical point at x = 0? If E(x) does have a critical point, can you determine whether it is a local maximum, local minimum, or neither? Explain your answer.

AP CALCULUS STUDENT HANDOUT

Check your understanding			
	Suppose you are given an <u>analytical</u> representation (a formula) for a function $f(x)$. What steps could you use to identify the inflection points of the function?		
	Suppose you are given a graphical representation for $f'(x)$, the derivative of a function $f(x)$. How could you identify the inflection points of the function?		