单项选择题

- 1. 以下关于联合熵的命题 恒为真
 - A. $H(X_1, ..., X_n) = H(X_1) + H(X_1, ..., X_{n-1}|X_1)$
 - B. $H(X_1, ..., X_n) < H(X_1) + H(X_1, ..., X_{n-1}|X_1)$
 - C. $H(X_1, ..., X_n) > H(X_1) + H(X_1, ..., X_{n-1}|X_1)$
 - D. $H(X_1, ..., X_n) \neq H(X_1) + H(X_1, ..., X_{n-1}|X_1)$
- 2. F是一个多对一的函数,则以下为真的是
 - A. H(F(X)) = H(X)
 - B. H(F(X)) > H(X)
 - C. H(F(X)) < H(X)
 - D. 都有可能
- 3. 随机变量X和Y独立,有相同的概率分布,H(X)的对数底数为 α ,则以下为真的是
 - A. $P(X = Y) = \alpha^{-H(X)}$
 - B. $P(X = Y) \le \alpha^{-H(X)}$
 - C. $P(X = Y) \ge \alpha^{-H(X)}$
 - D. 都有可能
- 4. 对不同的i, (X_i,Y_i) 之间是概率独立的离散型联合随机变量,概率分布为P(X,Y),P(X)和P(Y)分别为各个 X_i 和 Y_i 的概率分布, $i=1,2,\ldots,n$.根据大数定律,当n趋于无穷大时,随机变量 $\frac{1}{n}\log\frac{P(X_1,\ldots,X_n)P(Y_1,\ldots,Y_n)}{P(X_1,Y_1,\ldots X_n,Y_n)}$ 的极限是
 - A. H(X|Y) H(Y|X)
 - B. H(X|Y) + H(Y|X)
 - C. I(X;Y)
 - D. -I(X;Y)
- 5. 一个二元对称无记忆离散信道的容量为0.8比特,信道编码采用二进制形式,每个原始数据分组为12位,要使译码的差错概率能够任意地接近于0,信道码字的长度最短不能低于
 - A. 8位
 - B. 10位.
 - C. 16位
 - D. 20位

分析题

- 1. X,Y是随机变量,互信息量I(X;Y)在条件概率 $P_{y|x}$ 固定的情况下,X的概率分布 P_x 是凸函数还是凹函数?
- 2. 互信息量I(X;Y)总是非负的吗?

- 3. 假设一个卫星转发系统的模型表达为一个Markov链 $X\to Y\to Z$ (其中 $X\to Y$ 和 $Y\to Z$ 分别为所谓的上行链路和下行链路),你可以得出 $I(X;Z),\,I(X;Y)$ 和I(Y;Z)的值之间有怎样的关系?陈述并予以证明.
- 4. 有人说,通过大幅度提升上行链路 $X \to Y$ 的容量便有可能显著提升以上卫星信道的容量,该论断正确吗?

证明题

1. 随机变量 X_1, X_2, \ldots, X_n 彼此概率独立具有相同的概率分布P(X), Y_1, Y_2, \ldots, Y_n 彼此概率独立具有相同的概率P(Y), H表达熵, 对任何正整数n和正数 ε 定义集合

$$A_{\varepsilon}^{(n)} = \{(x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n) : \left| -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) - H[X] \right| < \varepsilon,$$

$$\left| -\frac{1}{n} \log p(x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n) - H[X, Y] \right| < \varepsilon \}$$

和集合

$$B_{\varepsilon}^{(n)} = \left\{ (x_1, x_2, \dots, x_n) : \left| \frac{1}{n} (x_1 + x_2 + \dots + x_n) \right| < \varepsilon \right\}$$

证明: n趋近于无穷大时有极限

$$P\left[(x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n) \in A_{\varepsilon}^{(n)}\right] \to 1$$

- 2. 请估计集合 $A_{\epsilon}^{(n)}$ 的大小的上界,并给出你的证明(除大数定律外,其他环节要求给出推导)
- 3. 随机变量 U_1,U_2,\ldots,U_n 彼此概率独立且每一个与X有相同的概率分布 $P(X),V_1,V_2,\ldots,V_n$ 彼此概率 独立且每一个与Y有相同的概率分布P(Y),此外每个 u_i 和 v_i 也概率独立. $(x_1,x_2,\ldots,x_n;y_1,y_2,\ldots,y_n)$ 的 集合 $A_{\varepsilon}^{(n)}$ 如上,请确定

$$P\left[(u_1, u_2, \dots, u_n; v_1, v_2, \dots, v_n) \in A_{\varepsilon}^{(n)}\right]$$

的上界并给出证明.

计算题

1. 设二元对称离散无记忆信息的传输差错概率为p,记为BSC(p),请计算其容量C

- 2. 将 $N \cap BSC(p)$ 信道串联,结果得到一个等效的BSC信道.计算其信道容量 $C(\mathbb{H}N\pi p$ 表示)
- 3. 将 $N \cap BSC(p)$ 信道串联且这N个信道相互独立(无串扰),结果得到一个输入和输出为N维的二进制向量的矢量信道,并请计算其容量 $C(\mathbb{H}N\mathbb{h}p$ 表示)
- 4. 将两个容量分别为 C_1 和 C_2 的BSC信道依概率组合.即码字X的以概率 α 在信道1传输,或以概率 $1-\alpha$ 在信道2传输,但两种传输不同时发生。请计算这种组合的最大容量C(用 C_1 和 C_2 表示)