Midterm 2 Part 1

April 12, 2019 Subhadip Chowdhury

Instructions:

- Please show ALL your work! Answers without supporting justification will not be given credit.
- Answer the questions in the white space provided.
- Write legibly and clearly mark the answer.
- Please note that use of any books or notes is not allowed. You are allowed to use the one page of handwritten letter-sized note that you brought. Use of calculators are not allowed.
- If you write down the correct formula/procedure to find an answer, you will get some partial credit regardless of whether you evaluated the exact values or not.
- Unless otherwise specified, you may use any valid method to solve a problem.

Question	Points	Score
1	15	
2	15	
Total:	30	

This exam has 2 questions, for a total of 30 points.

The maximum possible point for each problem is given on the right side of the problem.

3

3

3

- 1. For each of the following statements, find out whether it is 'always true', 'sometimes true', or 'always false'. Give a brief explanation for your answer. If you think an answer is 'sometimes true', give an example or criterion when it's false.
 - (a) The map $T: \mathbb{P}_2 \to \mathbb{R}$ defined by $T(f(t)) = \int_0^a f(t) \, dt$ is an isomorphism, where a is some positive real number.

(b) If $Nul(A) = \{\vec{0}\}\$ for a 5×4 matrix A, if AB = AC for two 4×5 matrices B and C, then B is equal to C.

(c) If T is a linear transformation from a vector space V to V, then

$$\{\vec{\mathbf{v}} \in V \mid T(\vec{\mathbf{v}}) = \vec{\mathbf{v}}\}\$$

is a subspace of V.

3

3

(d) If *V* is a subspace of \mathbb{R}^n , we can find a 3×3 matrix *A* such that V = Col(A).

(e) Let A be an 6×4 matrix. Then the dimension of the row space and column space of A are same.

- 2. Is it possible or impossible to find examples of each of the following? If possible, please provide an example. If impossible, please explain why.
 - (a) A linear transformation whose kernel is the line spanned by $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ in \mathbb{R}^3 .

3

3

3

(b) A 5×5 matrix A such that Nul(A) = Col(A).

(c) A 4×3 matrix B with nonzero entries such that Col(B) is 2-dimensional.

(d) A nonhomogeneous system of seven equations in six unknowns that has a unique solution for every choice of constant on the right-hand side.

(e) A linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 that transforms the unit square with vertices at (0,0), (0,1), (1,0), and (1,1) into a triangle with vertices at (0,0), (1,0) and (1,1).

3