

Inteligência Computacional Sistemas Fuzzy 03 - Operações e Relações

Operações

- Operações Padrão
 - Complemento
 - Intercessão
 - União
- Operações Generalizadas
 - T-normas e Intercessão Generalizada
 - T-cononormas e União Generalizada
 - Dualidade e Leis de De Morgan

Operações de Zadeh (Padrão)

Complemento

$$\bar{A} = X - A \iff \mu_{\bar{A}}(x) = 1 - \mu_{A}(x)$$

União

$$A \cup B \iff \mu_{A \cup B}(x) = max(\mu_A(x), \mu_B(x))$$

Intercessão

$$A \cap B \iff \mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

Operações Generalizadas

- São as operações entre conjuntos (complemento, interseção e união) que assumem formas diferentes das operações padrão.
- Esses operadores pertencem a categorias denominadas genericamente por normas triangulares, as quais garantem que propriedades de operações entre conjuntos serão satisfeitas.
- Normas triangulares (t-normas): interseção
- Co-normas triangulares (s-normas): união

Complemento Fuzzy

Função $N:[0,1] \rightarrow [0,1]$ que calcula o complemento de uma função de pertinência:

$$\mu_{\bar{A}}(x) = N(\mu_A(x))$$

$$\mu_{\bar{A}}(x) = 1 - \mu_{A}(x) \quad \forall x \in X$$

Complemento Fuzzy

- Axioma 1: N(0) = 1 e N(1) = 0
- Axioma 2: $N(a) \ge N(b)$ se $a \le b$
- Axioma 3: N(a) é contínua (opcional)
- Axioma 4: N(N(a)) = a (opcional)

Operadores de Complemento Fuzzy

● Zadeh: N(a) = 1 - a

• Sugeno: $N(a) = \frac{1-a}{1+sa}$, $s \in (-1, \infty)$

• Yager: $N(a) = (1 - a^w)^{1/w}, w \in (0, \infty)$

Intercessão Fuzzy

Função $T:[0,1]x[0,1] \rightarrow [0,1]$ que agrega duas funções de pertinência:

$$\mu_{A\cap B}(x) = T(\mu_A(x), \mu_B(x))$$

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x)) = \mu_A(x) \land \mu_B(x) \ \forall x \in X$$

Intercessão Fuzzy

- Axioma 1: T(0,0) = 0, T(a,1) = T(1,a) = a Condições limite
- Axioma 2: $T(a, b) \le T(a, d)$ se $b \le d$ Monotonicidade
- Axioma 3: T(a, b) = T(b, a) Associatividade
- Axioma 4: T(a, T(b, c)) = T(T(a, b), c) Comutatividade
- Axioma 5: T(a) é contínua (opcional)
- Axioma 6: T(a, a) = a (opcional)

Exemplo de t-normas

- Mínimo (1-6): T(a, b) = min(a, b)
- Produto Algébrico (1-5): T(a, b) = ab
- Oiferença Limitada (1-5): T(a,b) = max(0,a+b-1)
- Produto Drástico (1-4):

$$T(a,b) = \begin{cases} a, & \text{se } b = 1, \\ b, & \text{se } a = 1, \\ 0, & \text{caso contrário.} \end{cases}$$

Exemplo de t-normas

União Fuzzy

Função $S:[0,1]x[0,1] \rightarrow [0,1]$ que agrega duas funções de pertinência:

$$\mu_{A \cup B}(x) = S(\mu_A(x), \mu_B(x))$$

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)) = \mu_A(x) \lor \mu_B(x) \quad \forall x \in X$$

União Fuzzy

- Axioma 1: S(0,0) = 0, S(a,0) = S(0,a) = a
- Axioma 2: $S(a, b) \leq S(a, d)$ se $b \leq d$
- Axioma 3: S(a, b) = S(b, a)
- Axioma 4: S(a, S(b, c)) = S(S(a, b), c)
- Axioma 5: S(a) é contínua (opcional)
- Axioma 6: S(a, a) = a (opcional)

Exemplo de s-normas

- Máximo (1-6): S(a, b) = max(a, b)
- Soma Probabilística (1-5): S(a, b) = a + b ab
- Soma Limitada (1-5): S(a, b) = min(1, a + b)
- Soma Drástica (1-4):

$$S(a,b) = \begin{cases} a, & \text{se } b = 0, \\ b, & \text{se } a = 0, \\ 1, & \text{caso contrário.} \end{cases}$$

Exemplo de s-normas

Características das Operações Padrão

- Interseção Padrão (operador min): produz o maior conjunto fuzzy entre todos os produzidos por todas as possíveis interseções (t-normas)
- União Padrão (operador max): produz o menor conjunto fuzzy entre todos os produzidos por todas as possíveis uniões (s-normas)
- São operações idempotentes (xTx = x e xSx = x): são as únicas operações idempotentes entre as t-normas e s-normas)

Leis de De-Morgan

Uma t-norma T e uma s-norma S são duais (complementares) em relação ao complemento fuzzy N se e somente se $\,$

$$T(a,b) = N(S(N(a),N(b)))$$

Normas Duais

Nome	Norma
Min Zadeh	min(a, b)
Max Zadeh	max(a, b)
Produto Algébrico	a.b
Soma Probabilística	a+b-a.b
Lukasiewicz $p \ge -1$	max[0,(1+p)(a+b-1)-p.a.b]
Lukasiewicz $p \ge 0$	min[1, (a+b+p.a.b)]
Hamacher $\gamma > 0$	$(a.b)/(\gamma + (1-\gamma)(a+b-a.b))$
Hamacher $\gamma > 0$	$(a+b-a.b-(1-\gamma)a.b)/(1-(1-\gamma)a.b)$
Diferença Limitada	max(a+b-1,0)
Soma Limitada	min(a+b,1)
Weber Prod. Drástico	a se b = 1; b se a = 1; 0 caso contrário
Weber Soma Drástica	a se b = 0; $b se a = 0$; 1 caso contrário

Relação

- Funções e relações são mapeamentos
- Funções: mapeiam vários para um
- Relações: podem mapear vários para vários
- Toda função é uma relação
- Uma relação é um subconjunto do Produto Cartesiano
- O Produto Cartesiano pode ser considerado uma relação sem restrições

Relação Binária

Produto Cartesiano:

$$U \ x \ V = \{(x, y) | x \in U \ e \ y \in V\}$$

Relação Binária R(U, V):

$$\mu_R(x,y) = 1 \iff (x,y) \in R(x,y)$$
 ou 0 caso contrário

$$R \subseteq U \times V$$

Relação Binária - Exemplo

Determine as pessoas que são ao mesmo tempo Altas e de Meia-Idade

Nome	Idade	Altura
Abel	36	1.70
Marcelo	58	1.75
Carlos	64	1.65
João	32	1.78
Pedro	40	1.77
Tiago	22	1.60
Felipe	47	1.73
André	25	1.75

Relação Binária

Pessoas Altas e de Meia-Idade: pessoas entre 35 e 45 anos e com altura superior a 1.75 m.

Nome	Idade	$\mu_{MI}(x)$	Altura	$\mu_{Alto}(x)$	Crisp
Abel	36	1	1.70	0	0
Marcelo	58	0	1.75	1	0
Carlos	64	0	1.65	0	0
João	32	0	1.78	1	0
Pedro	40	1	1.77	1	1
Tiago	22	0	1.60	0	0
Felipe	47	0	1.73	0	0
André	25	0	1.75	1	0

Resultado = subconjunto do espaço cartesiano dos conjuntos idade e altura.

Relação Binária - Exemplo

 \bullet R(U, V): x é divisível por y

$$U = \{10, 15, 20\}$$

$$V = \{2, 3, 5\}$$

- R(U, V): {(10,2), (10,5), (15,3), (15,5), (20,2), (20,5)}
- Um elemento pertence ou n\u00e3o a rela\u00e7\u00e3o.

$$(10,2\in \textit{R})$$

$$(10, 3 \notin R)$$

Relação Fuzzy

- Representa o grau de presença ou ausência de associação, interação entre os elementos de dois ou mais conjuntos fuzzy.
- Relação fuzzy R é conjunto fuzzy definido no espaço cartesiano U x V

$$R(U, V) = \{(x, y), \mu_R(x, y) | (x, y) \in U \times V\}$$

- Conjuntos ordinários: $\mu_R(x, y) \in \{0, 1\}$
- Conjuntos fuzzy: $\mu_R(x, y) \in [0, 1]$
- Exemplos:
 - x é bem maior que y
 - y é muito próximo de x
 - Se x é alto Então y é baixo

Relação Fuzzy - Exemplo

$$U = V = \{10, 40, 80, 100, 300\}$$

• $R(x, y) : x \in \text{muito maior que } y$

x/y	10	40	80	100	300
10	0	0	0	0	0
40	0.4	0	0	0	0
80	8.0	0.2	1.65	0	0
100	1.0	0.6	0.2	0	0
300	1.0	8.0	0.4	0.2	0

Relação Fuzzy

- Operações de união, intercessão e complemento também pode ser utilizadas em relações fuzzy.
- Sejam R₁ e R₂ relaçõe em X e Y, então:

•
$$\mu_{R_1 \cap R_2}(x, y) = \mu_{R_1}(x, y) \wedge \mu_{R_2}(x, y)$$

$$\Phi_{R_1 \cup R_2}(x,y) = \mu_{R_1}(x,y) \vee \mu_{R_2}(x,y)$$

•
$$\mu_{\overline{R}_1}(x,y) = 1 - \mu_{R_1}(x,y)$$

∧= t-norma

∨ = s-norma

Relação Fuzzy - Exemplo

•
$$U = \{2, 12\} \text{ e } V = \{1, 7, 13\}$$

Relações:

• $\mu_p(u, v) - u$ é próximo de v

$$\mu_p(u,v) = \left\{ \begin{array}{ccc} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{array} \right\}$$

• $\mu_m(u, v) - u$ é muito menor que v

$$\mu_m(u,v) = \left\{ \begin{array}{ccc} 0 & 0.6 & 1 \\ 0 & 0 & 0.3 \end{array} \right\}$$

Relação Fuzzy - Exemplo

- u é próximo de v e u é muito menor que v

$$\mu_{p}(u, v) = \left\{ \begin{array}{ccc} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{array} \right\}$$

$$\mu_m(u,v) = \left\{ \begin{array}{ccc} 0 & 0.6 & 1 \\ 0 & 0 & 0.3 \end{array} \right\}$$

$$\mu_{p \cap m}(u, v) = \left\{ \begin{array}{ccc} 0 & 0.4 & 0.1 \\ 0 & 0 & 0.3 \end{array} \right\}$$

Relação Fuzzy - Exemplo

- u é próximo de v ou u é muito menor que v

$$\mu_{p}(u, v) = \left\{ \begin{array}{ccc} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{array} \right\}$$

$$\mu_m(u,v) = \left\{ \begin{array}{ccc} 0 & 0.6 & 1 \\ 0 & 0 & 0.3 \end{array} \right\}$$

$$\mu_{p \cup m}(u, v) = \left\{ \begin{array}{ccc} 0.9 & 0.6 & 1 \\ 0.1 & 0.4 & 0.9 \end{array} \right\}$$

Relação Binária vs Relação Fuzzy

Definição Clássica de Alto e Meia-Idade

Definição Fuzzy de Alto e Meia-Idade

Relação Fuzzy

Pessoas Altas e de Meia-Idade

Nome	Idade	$\mu_{MI}(x)$	Altura	$\mu_{MI}(x)$	Fuzzy
Abel	36	0.92	1.70	0.84	0.84
Marcelo	58	0	1.75	0.92	0
Carlos	64	0	1.65	0.68	0
João	32	0.47	1.78	0.96	0.47
Pedro	40	1	1.77	0.94	0.94
Tiago	22	0	1.60	0.39	0
Felipe	47	0.74	1.73	0.90	0.74
André	25	0.10	1.75	0.92	0.10

Relação Binária vs Relação Fuzzy

Pessoas Altas e de Meia-Idade

Nome	Idade	$\mu_{MI}(x)$	Altura	$\mu_{MI}(x)$	Fuzzy	Crisp
Abel	36	0.92	1.70	0.84	0.84	0
Marcelo	58	0	1.75	0.92	0	0
Carlos	64	0	1.65	0.68	0	0
João	32	0.47	1.78	0.96	0.47	0
Pedro	40	1	1.77	0.94	0.94	1
Tiago	22	0	1.60	0.39	0	0
Felipe	47	0.74	1.73	0.90	0.74	0
André	25	0.10	1.75	0.92	0.10	0

Composição de Relações Fuzzy

- Dadas duas relações fuzzy R(U, V) e S(V, W), uma composição é denotada por R ∘ S.
- A relação composta de R e S ou, simplemesmente, composição de R e S, satisfaz as propriedades:
 - Inversiva: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$
 - Associativa: $(R \circ S) \circ T = R \circ (S \circ T)$
- A propriedade comutativa não é satisfeita.
- Similar a uma multiplicação de matrizes. Porém tratar multiplicação como mínimo (t-norma) e adição como máximo (s-norma).
- Exemplo: $\mu_{p \circ m}(1,1) = max(min(0.9,0), min(0.4,0.6), min(0.1,1)) = 0.4$

Composição de Relações Fuzzy

- A proposição: *u* é próximo de *v* e *v* é muito maior que *w*, onde
 - u é próximo de v definido em $U \times V U = \{2, 12\}$ e $V = \{1, 7, 13\}$

$$\mu_{\mathcal{P}}(u,v) = \left\{ \begin{array}{ccc} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{array} \right\}$$

• v é muito maior que w definido em VxW - $W = \{4,8\}$

$$\mu_m(\mathbf{v}, \mathbf{w}) = \left\{ \begin{array}{cc} 0 & 0 \\ 0.6 & 0 \\ 1 & 0.7 \end{array} \right\}$$

• Composição de duas relações fuzzy: $R(U, W) = P(U, V) \circ M(V, W)$

Composição de Relações Fuzzy

Composição de Relações Fuzzy

- Composição Max-Min $\mu_{P \circ M}(u, w) = \{ max_y [min(\mu_p(u, v), \mu_m(v, w))] \}$
- $U = \{2, 12\}, V = \{1, 7, 13\} \text{ e } W = \{4, 8\}$
- u é próximo de v e v é muito maior que w

$$\mu_p(u,v) = \left\{ \begin{array}{ccc} 0.9 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.9 \end{array} \right\}$$

$$\mu_{m}(v,w) = \left\{ \begin{array}{ccc} 0 & 0 \\ 0.6 & 0 \\ 1 & 0.7 \end{array} \right\}$$

Resultado

$$\mu_{p \circ m} = \left\{ \begin{array}{cc} 0.4 & 0.1 \\ 0.9 & 0.7 \end{array} \right\}$$

Composição de Relações Fuzzy

Composição Max-Min -

$$\mu_{P \circ M}(u, w) = \{ max_y [min(\mu_P(u, v), \mu_m(v, w))] \}$$

Composição Max-Produto:

$$\mu_{P \circ M}(u, w) = \vee [\mu_P(u, v)\mu_M(v, w)]$$

Composição Max-Estrela (*=t-norma):

$$\mu_{P \circ M}(u, w) = \vee [\mu_P(u, v) \star \mu_M(v, w)]$$

Composição de Relações Fuzzy

- Seja $R: X \times Y \to [0,1]; G: X \times Z \to [0,1]; W: Z \times Y \to [0,1];$
- Composição sup-t: $R(x, y) = \sup_{z \in Z} [G(x, z) \land W(z, Y)]$

$$\begin{bmatrix} 0.7 & 0.5 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.4 & 0.3 \end{bmatrix} \circ \begin{bmatrix} 0.6 & 0.8 \\ 0 & 1 \\ 0 & 0.9 \end{bmatrix} = \begin{bmatrix} 0.6 & 0.7 \\ 0.6 & 0.8 \\ 0 & 1 \\ 0 & 0.4 \end{bmatrix}$$

$$G \circ W = R$$

$$(e.g. max-min)$$

Composição de Relações Fuzzy

- Seja $R: X \times Y \to [0,1]; G: X \times Z \to [0,1]; W: Z \times Y \to [0,1];$
- Composição inf-s: $R(x,y) = inf_{z \in Z}[G(x,z) \lor W(z,Y)]$

$$\begin{bmatrix} 0.7 & 0.5 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.4 & 0.3 \end{bmatrix} \bullet \begin{bmatrix} 0.6 & 0.8 \\ 0 & 1 \\ 0 & 0.9 \end{bmatrix} = \begin{bmatrix} 0 & 0.8 \\ 0 & 0.9 \\ 0 & 0.8 \\ 0.3 & 0.8 \end{bmatrix}$$

$$G \bullet W = R$$

(e.g. min-max)