Thomas Harrop

I am a post-doctoral researcher with a background in bioinformatics, genetics and molecular biology and interests in data science and research relating to agriculture. I have advanced programming skills in R, Python and shell scripting. I am experienced working in molecular, plant, animal and medical laboratories and installing, maintaining and using computers running Unix, Linux and MacOS.

Personal information

Nationalities Australian and British

Languages English (native), German (TELC Level B2) and French (TELC Level B1)

Research My research interests include plant and insect research related to

agronomy, tools and techniques in bioinformatics and evolutionary

and comparative biology.

Technical The personal workstations and servers that I build and use run

 ${\it MacOS}, Ubuntu\ and\ Free BSD.\ I\ have\ experience\ with\ cluster$

environments based on Debian and CentOS.

Aside from daily use of R, Python and bash scripts, I also use Markdown regularly and have experience with TeX, html and css.

I use git and GitHub for version control and strive to follow the principles of reproducible research when coding.

I have used several different workload managers for high-performance computing including SGE and and LSF and maintain an installation of SLURM on my workstation.

I have experience in molecular biology techniques such as quantitative real-time PCR, cloning, nucleic acid extraction and cDNA library preparation, as well as classical genetic approaches with live organisms, such as transformation, crosses, microdissection and bioassays.

About me Outside work I enjoy building and riding bicycles, social football and

basketball, cooking, programming and technology.

Education

2006–2012 Doctor of Philosophy, Department of Genetics, the University of

Melbourne, Parkville, Australia.

Thesis: The functions of cytochrome P450s in Drosophila.

During my Ph.D. I used classical genetics and modern molecular

biology, including transgenic manipulation of gene expression and comparative studies of gene function, to investigate the functions of cytochrome P450 genes in the Drosophila genus.

2002–2005 Bachelor of Science with Honours (first class), the University of

Melbourne, Parkville, Australia.

Awards 2006–2009, Australian Postgraduate Award

Experience

2014-Present Post-doctoral researcher, UMR DIADE, Institut de Recherche pour le Développement (IRD), Montpellier, France.

My current project uses bioinformatic techniques including transcriptomics, machine learning, data mining and statistical approaches to study the development of inflorescence architecture in rice, which is related to crop yield. We used laser microdissection and RNA sequencing to characterise molecular events that occur in the developing inflorescence. We are now applying these results to study the effects of selection on gene expression during the parallel domestications of African and Asian rice.

2013–2014 Post-doctoral researcher, Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

At the Max Planck Insitute I worked on a bioinformatic and molecular biology project to compare the transcriptional response of several different land plants to UV-B exposure, which acts as an environmental signal.

Professional positions

2004–2007 Medical scientist, Network Pathology, the Austin Hospital, Heidelberg, Australia.

2001–2004 Laboratory assistant, Network Pathology, the Austin Hospital, Heidelberg, Australia.

Teaching

2007–2011 3rd Year Genetics, Department of Genetics, The University of Melbourne, Parkville, Australia.

2006–2009 High School Biology, Department of Genetics, The University of Melbourne, Parkville, Australia.

2006–2008 High School Biology, Gene Technology Access Centre, The University High School, Parkville, Australia.

2005–2008 1st Year Genetics, The University of Melbourne, Parkville, Australia.

Students co-supervised

Swarit Jaisal Master of Science, Life Science Informatics, Universität Bonn,

Germany.

Axel Verdier Master of Science, Sciences et Technologies de l'Information et de la

Communication pour la Santé, Université de Montpellier, France.

Publications

Peer-reviewed journals

- Harrop, T.W.R. S, Ud Din, I. S, Gregis, V., Osnato, M., Jouannic, S., Adam, H. and Kater, M. (2016). Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection. The Plant Journal 86, 75–88. doi:10.1111/tpj.13147.
- Harrop, T.W.R.[§], Pearce, S.L.[§], Daborn, P.J. and Batterham, P. (2014). Whole-genome expression analysis in the third instar larval midgut of *Drosophila melanogaster*. G3 (Bethesda) 4, 2197–2205. doi:10.1534/g3.114.013870.
- Harrop, T.W.R., Sztal, T., Lumb, C., Good, R.T., Daborn, P.J., Batterham, P. and Chung, H. (2014). Evolutionary changes in gene expression, coding sequence and copy-number at the *Cyp6g1* locus contribute to resistance to multiple insecticides in Drosophila. Plos One 9, e84879. doi:10.1371/journal.pone.0084879.
- Daborn, P.J., Lumb, C., **Harrop, T.W.R.**, Blasetti, A., Pasricha, S., Morin, S., Mitchell, S.N., Donnelly, M.J., Müller, P. and Batterham, P., (2012). Using *Drosophila melanogaster* to validate metabolism-based insecticide resistance from insect pests. Insect Biochemistry and Molecular Biology 42, 918–924. doi:10.1016/j.ibmb.2012.09.003.

Selected scientific presentations

- **Harrop, T.W.R.** Gene expression during *O. sativa* panicle development. Invited seminar, 19 November 2015, LMI RICE, Hanoi, Vietnam.
- Harrop, T.W.R., Gregis, V., Ud Din, I., Kater, M., Jouannic, S. and Adam, H. *Molecular mechanisms* underlying the phenotypic convergence of inflorescence architecture in domesticated rice species. Society for Molecular Biology and Evolution annual meeting, 2015, Vienna, Austria
- **Harrop, T.W.R.**, Ud Din, I., Gregis, V., Osnato, M., Jouannic, S., Adam, H. and Kater, M. *Transcriptomic analysis of early developmental stages of the rice panicle*. Workshop in Molecular Mechanisms Controlling Flowering, 2015, Aiguablava, Spain.
- Harrop, T.W.R., Batterham, P. and Daborn, P.J. RNA interference of the Cytochrome P450 redox partners Cpr and dare uncovers novel P450 functions in Drosophila melanogaster. The 50th Annual Drosophila Research Conference, 2009, Chicago, USA.

[§] Equal contribution