CONSTRAINT SATISFACTION PROBLEMS

Chapter 5

Outline

- \Diamond CSP examples
- ♦ Backtracking search for CSPs
- Problem structure and problem decomposition
- ♦ Local search for CSPs

Constraint satisfaction problems (CSPs)

```
Standard search problem:
```

state is a "black box"—any old data structure that supports goal test, eval, successor

CSP:

state is defined by variables X_i with values from domain D_i

goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful **general-purpose** algorithms with more power than standard search algorithms

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains $D_i = \{red, green, blue\}$

Constraints: adjacent regions must have different colors e.g., $WA \neq NT$ (if the language allows this), or $(WA, NT) \in \{(red, green), (red, blue), (green, red), (green, blue), \ldots\}$

Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,

 $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Varieties of CSPs

Discrete variables

finite domains; size $d \Rightarrow O(d^n)$ complete assignments

- ♦ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete) infinite domains (integers, strings, etc.)
 - ♦ e.g., job scheduling, variables are start/end days for each job
 - \diamondsuit need a constraint language, e.g., $StartJob_1 + 5 \leq StartJob_3$
 - ♦ linear constraints solvable, nonlinear undecidable

Continuous variables

- ♦ e.g., start/end times for Hubble Telescope observations
- ♦ linear constraints solvable in poly time by LP methods

Varieties of constraints

Unary constraints involve a single variable,

e.g.,
$$SA \neq green$$

Binary constraints involve pairs of variables,

e.g.,
$$SA \neq WA$$

Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green often representable by a cost for each variable assignment

→ constrained optimization problems

Example: Cryptarithmetic

Variables: $F T U W R O X_1 X_2 X_3$

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints

alldiff
$$(F, T, U, W, R, O)$$

 $O + O = R + 10 \cdot X_1$, etc.

Real-world CSPs

Assignment problems

e.g., who teaches what class

Timetabling problems

e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

- ♦ Initial state: the empty assignment, { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
 - ⇒ fail if no legal assignments (not fixable!)
- \diamondsuit Goal test: the current assignment is complete
- 1) This is the same for all CSPs!
- 2) Every solution appears at depth n with n variables
 - \Rightarrow use depth-first search
- 3) Path is irrelevant, so can also use complete-state formulation
- 4) $b = (n \ell)d$ at depth ℓ , hence $n!d^n$ leaves!!!!

Backtracking search

Variable assignments are commutative, i.e.,

$$[WA = red \text{ then } NT = green]$$
 same as $[NT = green \text{ then } WA = red]$

Only need to consider assignments to a single variable at each node

$$\Rightarrow$$
 $b=d$ and there are d^n leaves

Depth-first search for CSPs with single-variable assignments is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for $n \approx 25$

Backtracking search

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow Select-Unassigned-Variable(Variables[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow Recursive-Backtracking(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```


Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

- 1. Which variable should be assigned next?
- 2. In what order should its values be tried?
- 3. Can we detect inevitable failure early?
- 4. Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values (MRV): choose the variable with the fewest legal values

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:

choose the variable with the most constraints on remaining variables

Least constraining value

Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

If X loses a value, neighbors of X need to be rechecked

Simplest form of propagation makes each arc consistent

 $X \to Y$ is consistent iff for **every** value x of X there is **some** allowed y

If X loses a value, neighbors of X need to be rechecked Arc consistency detects failure earlier than forward checking Can be run as a preprocessor or after each assignment

Arc consistency algorithm

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

 $O(n^2d^3)$, can be reduced to $O(n^2d^2)$ (but detecting all is NP-hard)

Problem structure

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Problem structure contd.

Suppose each subproblem has c variables out of n total

Worst-case solution cost is $n/c \cdot d^c$, linear in n

```
E.g., n=80, d=2, c=20
2^{80}=4 billion years at 10 million nodes/sec 4\cdot 2^{20}=0.4 seconds at 10 million nodes/sec
```

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n\,d^2)$ time

Compare to general CSPs, where worst-case time is $O(d^n)$

This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- 2. For j from n down to 2, apply RemoveInconsistent($Parent(X_j), X_j$)
- 3. For j from 1 to n, assign X_j consistently with $Parent(X_j)$

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow \text{runtime } O(d^c \cdot (n-c)d^2)$, very fast for small c

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

To apply to CSPs:

allow states with unsatisfied constraints operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:

choose value that violates the fewest constraints i.e., hillclimb with $h(n)={\sf total}$ number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns ($4^4 = 256$ states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n=10,000,000)

The same appears to be true for any randomly-generated CSP **except** in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary

CSPs are a special kind of problem:

states defined by values of a fixed set of variables goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

GAME PLAYING

CHAPTER 6

Outline

- \Diamond Games
- \Diamond Perfect play
 - minimax decisions
 - α – β pruning
- ♦ Resource limits and approximate evaluation
- \Diamond Games of chance
- ♦ Games of imperfect information

Games vs. search problems

"Unpredictable" opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search (McCarthy, 1956)

Types of games

perfect information

imperfect information

deterministic	chance
chess, checkers,	backgammon
go, othello	monopoly
battleships,	bridge, poker, scrabble
blind tictactoe	nuclear war

Game tree (2-player, deterministic, turns)

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

Minimax algorithm

```
function MINIMAX-DECISION(state) returns an action
   inputs: state, current state in game
   return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(a, state))
function Max-Value(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(s))
   return v
function MIN-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow \infty
   for a, s in Successors(state) do v \leftarrow \text{Min}(v, \text{Max-Value}(s))
   return v
```

Complete??

Complete?? Only if tree is finite (chess has specific rules for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? O(bm) (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games \Rightarrow exact solution completely infeasible

But do we need to explore every path?

Why is it called $\alpha - \beta$?

 α is the best value (to MAX) found so far off the current path If V is worse than α , MAX will avoid it \Rightarrow prune that branch Define β similarly for MIN

The α - β algorithm

```
function ALPHA-BETA-DECISION(state) returns an action
   return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(a, state))
function Max-Value (state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
             \alpha, the value of the best alternative for MAX along the path to state
             \beta, the value of the best alternative for MIN along the path to state
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do
      v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))
      if v \geq \beta then return v
      \alpha \leftarrow \text{Max}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   same as MAX-VALUE but with roles of \alpha, \beta reversed
```

Properties of α - β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = $O(b^{m/2})$ \Rightarrow doubles solvable depth

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!

Resource limits

Standard approach:

- Use CUTOFF-TEST instead of TERMINAL-TEST e.g., depth limit (perhaps add quiescence search)
- Use EVAL instead of UTILITY i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second

- $\Rightarrow 10^6$ nodes per move $\approx 35^{8/2}$
- $\Rightarrow \alpha \beta$ reaches depth 8 \Rightarrow pretty good chess program

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Digression: Exact values don't matter

Behaviour is preserved under any ${\color{red}\mathbf{monotonic}}$ transformation of ${\color{gray}\mathrm{EVAL}}$

Only the order matters:

payoff in deterministic games acts as an ordinal utility function

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, b>300, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games: backgammon

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if state is a MAX node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

Chapter 6

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

depth
$$4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished

 α – β pruning is much less effective

 $\begin{aligned} TDGAMMON \text{ uses depth-2 search} &+ \text{ very good } Eval\\ &\approx \text{world-champion level} \end{aligned}$

Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game*

Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*

GIB, current best bridge program, approximates this idea by

- 1) generating 100 deals consistent with bidding information
- 2) picking the action that wins most tricks on average

Example

Four-card bridge/whist/hearts hand, MAX to play first

Example

Four-card bridge/whist/hearts hand, Max to play first

Example

Four-card bridge/whist/hearts hand, Max to play first

Commonsense example

Road A leads to a small heap of gold pieces Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll be run over by a bus; take the right fork and you'll find a mound of jewels.

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll be run over by a bus; take the right fork and you'll find a mound of jewels.

Road A leads to a small heap of gold pieces

Road B leads to a fork:

guess correctly and you'll find a mound of jewels; guess incorrectly and you'll be run over by a bus.

Proper analysis

* Intuition that the value of an action is the average of its values in all actual states is **WRONG**

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

- ♦ Acting to obtain information
- ♦ Signalling to one's partner
- ♦ Acting randomly to minimize information disclosure

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

- \Diamond perfection is unattainable \Rightarrow must approximate
- ♦ good idea to think about what to think about
- \diamondsuit uncertainty constrains the assignment of values to states
- ♦ optimal decisions depend on information state, not real state

Games are to Al as grand prix racing is to automobile design

LOGICAL AGENTS

CHAPTER 7

Outline

- \Diamond Knowledge-based agents
- ♦ Wumpus world
- ♦ Logic in general—models and entailment
- ♦ Propositional (Boolean) logic
- ♦ Equivalence, validity, satisfiability
- \Diamond Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Knowledge bases

Inference engine domain-independent algorithms

Knowledge base domain-specific content

Knowledge base = set of sentences in a **formal** language

Declarative approach to building an agent (or other system):

TELL it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

The agent must be able to:

Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions

Wumpus World PEAS description

Performance measure gold +1000, death -1000

-1 per step, -10 for using the arrow Environment

Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square

Actuators Left turn, Right turn, Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Observable??

Observable?? No—only local perception

Deterministic??

Observable?? No—only local perception

<u>Deterministic??</u> Yes—outcomes exactly specified

Episodic??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature

Other tight spots

Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31

Smell in (1,1) \Rightarrow cannot move

Can use a strategy of coercion: shoot straight ahead wumpus was there \Rightarrow dead \Rightarrow safe wumpus wasn't there \Rightarrow safe

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world

E.g., the language of arithmetic

 $x + 2 \ge y$ is a sentence; x2 + y > is not a sentence

 $x+2 \ge y$ is true iff the number x+2 is no less than the number y

 $x+2 \ge y$ is true in a world where x=7, y=1

 $x + 2 \ge y$ is false in a world where x = 0, y = 6

Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"

E.g.,
$$x + y = 4$$
 entails $4 = x + y$

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Note: brains process syntax (of some sort)

Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

E.g. KB= Giants won and Reds won $\alpha=$ Giants won

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for ?s assuming only pits

3 Boolean choices \Rightarrow 8 possible models

 $KB = {\sf wumpus\text{-}world} \ {\sf rules} + {\sf observations}$

KB = wumpus-world rules + observations

 $\alpha_1=$ "[1,2] is safe", $KB\models\alpha_1$, proved by model checking

 $KB = {\sf wumpus\text{-}world} \ {\sf rules} + {\sf observations}$

KB = wumpus-world rules + observations

$$\alpha_2=$$
 "[2,2] is safe", $KB\not\models\alpha_2$

Inference

 $KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$

Consequences of KB are a haystack; α is a needle. Entailment = needle in haystack; inference = finding it

Soundness: i is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true \ true \ false$

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

```
\neg S
 is true iff S is false S_1 \wedge S_2 is true iff S_1 is true S_1 \vee S_2 is true iff S_1 is true S_1 \vee S_2 is true iff S_1 is false S_2 is true S_1 \Rightarrow S_2 is true iff S_1 is false S_2 is true iff S_1 is false S_2 is false S_1 \Leftrightarrow S_2 is true iff S_1 \Rightarrow S_2 is true S_2 \Rightarrow S_1 is true S_1 \Leftrightarrow S_2 \Rightarrow S_2 is true iff S_1 \Rightarrow S_2 \Rightarrow S_1 is true
```

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i,j]. Let $B_{i,j}$ be true if there is a breeze in [i,j].

$$\neg P_{1,1}$$

$$\neg B_{1,1}$$

$$B_{2,1}$$

"Pits cause breezes in adjacent squares"

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i,j]. Let $B_{i,j}$ be true if there is a breeze in [i,j].

$$\neg P_{1,1}$$

$$\neg B_{1,1}$$

$$B_{2,1}$$

"Pits cause breezes in adjacent squares"

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

"A square is breezy if and only if there is an adjacent pit"

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	i	i	:	:	:	÷	:	i	:	:	:	÷
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	false	false	true	false	false	true	true	false
:	÷	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Enumerate rows (different assignments to symbols), if KB is true in row, check that α is too

Inference by enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS? (KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, \alpha, symbols, [])
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
   if EMPTY?(symbols) then
       if PL-True?(KB, model) then return PL-True?(\alpha, model)
       else return true
   else do
        P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
       return TT-CHECK-ALL(KB, \alpha, rest, Extend(P, true, model)) and
                  TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, false, model))
```

 $O(2^n)$ for n symbols; problem is **co-NP-complete**

Logical equivalence

Two sentences are logically equivalent iff true in same models:

$$\alpha \equiv \beta$$
 if and only if $\alpha \models \beta$ and $\beta \models \alpha$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Validity and satisfiability

A sentence is valid if it is true in all models,

e.g.,
$$True$$
, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:

$$KB \models \alpha$$
 if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model

e.g.,
$$A \vee B$$
, C

A sentence is unsatisfiable if it is true in **no** models

e.g.,
$$A \wedge \neg A$$

Satisfiability is connected to inference via the following:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is unsatisfiable

i.e., prove α by reductio ad absurdum

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications
 Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form

Model checking

```
truth table enumeration (always exponential in n) improved backtracking, e.g., Davis-Putnam-Logemann-Loveland heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms
```

Forward and backward chaining

Horn Form (restricted) $\mathsf{KB} = \mathbf{conjunction} \text{ of } \mathbf{Horn \ clauses}$ Horn clause = $\diamondsuit \text{ proposition symbol; or } \diamondsuit \text{ (conjunction of symbols)} \Rightarrow \text{ symbol } \mathsf{E.g., } C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$

Modus Ponens (for Horn Form): complete for Horn KBs

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

Can be used with forward chaining or backward chaining. These algorithms are very natural and run in **linear** time

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Forward chaining algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false
   inputs: KB, the knowledge base, a set of propositional Horn clauses
            q, the query, a proposition symbol
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                      aqenda, a list of symbols, initially the symbols known in KB
   while agenda is not empty do
       p \leftarrow \text{Pop}(agenda)
       unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                 decrement count[c]
                 if count[c] = 0 then do
                     if HEAD[c] = q then return true
                     Push(Head[c], agenda)
   return false
```


Proof of completeness

FC derives every atomic sentence that is entailed by KB

- 1. FC reaches a fixed point where no new atomic sentences are derived
- 2. Consider the final state as a model m, assigning true/false to symbols
- 3. Every clause in the original KB is true in m **Proof**: Suppose a clause $a_1 \wedge \ldots \wedge a_k \Rightarrow b$ is false in m Then $a_1 \wedge \ldots \wedge a_k$ is true in m and b is false in m Therefore the algorithm has not reached a fixed point!
- 4. Hence m is a model of KB
- 5. If $KB \models q$, q is true in **every** model of KB, including m

General idea: construct any model of KB by sound inference, check α

Backward chaining

```
Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q
```

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

- 1) has already been proved true, or
- 2) has already failed

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB

Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals
clauses

E.g.,
$$(A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$$

Resolution inference rule (for CNF): complete for propositional logic

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n}$$

where ℓ_i and m_j are complementary literals. E.g.,

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

Resolution is sound and complete for propositional logic

Conversion to CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Resolution algorithm

Proof by contradiction, i.e., show $KB \wedge \neg \alpha$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
\alpha, the query, a sentence in propositional logic

clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha

new \leftarrow \{\}
loop do

for each C_i, C_j in clauses do

resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)

if resolvents contains the empty clause then return true

new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new
```

Resolution example

$$KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \ \alpha = \neg P_{1,2}$$

Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions

Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power

FIRST-ORDER LOGIC

CHAPTER 8

Outline

- \diamondsuit Why FOL?
- \diamondsuit Syntax and semantics of FOL
- ♦ Fun with sentences
- ♦ Wumpus world in FOL

Pros and cons of propositional logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- \bigcirc Propositional logic is **compositional**: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
- Functions: father of, best friend, third inning of, one more than, end of ...

Logics in general

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	$facts + degree \ of \ truth$	known interval value

Syntax of FOL: Basic elements

```
\begin{array}{llll} \text{Constants} & KingJohn, \ 2, \ UCB, \dots \\ & Brother, \ >, \dots \\ & Functions & Sqrt, \ LeftLegOf, \dots \\ & Variables & x, \ y, \ a, \ b, \dots \\ & Connectives & \wedge \ \lor \ \neg \ \Rightarrow & \Leftrightarrow \\ & Equality & = \\ & Quantifiers & \forall \ \exists \end{array}
```

Atomic sentences

```
Atomic sentence = predicate(term_1, \dots, term_n)

or term_1 = term_2

Term = function(term_1, \dots, term_n)

or constant or variable
```

 $\begin{aligned} \mathsf{E.g.,} \ \ Brother(KingJohn, RichardTheLionheart) \\ > & (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) \end{aligned}$

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g.
$$Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1,2) \lor \leq (1,2) > (1,2) \land \neg > (1,2)$$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for

```
constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations
```

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate

Models for FOL: Example

Truth example

Consider the interpretation in which

 $Richard \rightarrow Richard$ the Lionheart

 $John \rightarrow$ the evil King John

 $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary

For each possible k-ary relation on n objects

For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!

Universal quantification

 $\forall \langle variables \rangle \langle sentence \rangle$

Everyone at Berkeley is smart:

```
\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
```

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
(At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn))
 \land (At(Richard, Berkeley) \Rightarrow Smart(Richard))
 \land (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley))
 \land \dots
```

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \land as the main connective with \forall :

$$\forall x \ At(x, Berkeley) \land Smart(x)$$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

 $\exists \langle variables \rangle \langle sentence \rangle$

Someone at Stanford is smart:

 $\exists x \ At(x, Stanford) \land Smart(x)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

```
(At(KingJohn, Stanford) \land Smart(KingJohn)) \lor (At(Richard, Stanford) \land Smart(Richard)) \lor (At(Stanford, Stanford) \land Smart(Stanford)) \lor \dots
```

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

```
\forall x \ \forall y is the same as \forall y \ \forall x \ (why??)
```

$$\exists x \exists y$$
 is the same as $\exists y \exists x \pmod{\frac{\text{why}??}{}}$

$$\exists x \ \forall y$$
 is **not** the same as $\forall y \ \exists x$

$$\exists x \ \forall y \ Loves(x,y)$$

"There is a person who loves everyone in the world"

$$\forall y \; \exists x \; Loves(x,y)$$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$$

$$\exists x \ Likes(x, Broccoli) \qquad \neg \forall x \ \neg Likes(x, Broccoli)$$

Brothers are siblings

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$.

One's mother is one's female parent

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

$$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$$
.

One's mother is one's female parent

$$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$.

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x,y \; FirstCousin(x,y) \; \Leftrightarrow \; \exists \, p,ps \; Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y)$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$1=2$$
 and $\forall\,x\;\;\times(Sqrt(x),Sqrt(x))=x$ are satisfiable $2=2$ is valid

E.g., definition of (full) Sibling in terms of Parent:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow \left[\neg (x = y) \land \exists m, f \; \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y) \right]$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

```
Tell(KB, Percept([Smell, Breeze, None], 5)) \\ Ask(KB, \exists \, a \; Action(a, 5))
```

I.e., does KB entail any particular actions at t=5?

```
Answer: Yes, \{a/Shoot\} \leftarrow substitution (binding list)
```

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x,y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

```
"Perception" \forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t) \forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)
```

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already?

 $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

Holding(Gold,t) cannot be observed

⇒ keeping track of change is essential

Deducing hidden properties

Properties of locations:

$$\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)$$

 $\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect

$$\forall y \ Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x,y)$$

Causal rule—infer effect from cause

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$$

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a,s) is the situation that results from doing a in s

Describing actions I

"Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe **non-changes** due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, . . .

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a **predicate** (not an action per se):

```
P true afterwards \Leftrightarrow [an action made P true \lor P true already and no action made P false]
```

For holding the gold:

```
 \forall \, a, s \; \, Holding(Gold, Result(a, s)) \Leftrightarrow \\ [(a = Grab \land AtGold(s)) \\ \lor (Holding(Gold, s) \land a \neq Release)]
```

Making plans

Initial condition in KB:

$$At(Agent, [1, 1], S_0)$$

 $At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \ Holding(Gold, s))$

i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$ i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \dots, a_n]$

PlanResult(p, s) is the result of executing p in s

Then the query $Ask(KB, \exists \ p \ Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$

Definition of *PlanResult* in terms of *Result*:

```
 \forall s \ PlanResult([], s) = s \\ \forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))
```

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

INFERENCE IN FIRST-ORDER LOGIC

Chapter 9

Outline

- ♦ Reducing first-order inference to propositional inference
- ♦ Unification
- ♦ Generalized Modus Ponens
- ♦ Forward and backward chaining
- \Diamond Logic programming
- ♦ Resolution

A brief history of reasoning

450B.C.	Stoics	propositional logic, inference (maybe)
322B.C.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	Cardano	probability theory (propositional logic + uncertainty)
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	\exists complete algorithm for FOL
1930	Herbrand	complete algorithm for FOL (reduce to propositional)
1931	Gödel	$ eg\exists$ complete algorithm for arithmetic
1960	Davis/Putnam	"practical" algorithm for propositional logic
1965	Robinson	"practical" algorithm for FOL—resolution

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

$$\frac{\forall v \ \alpha}{\text{SUBST}(\{v/g\}, \alpha)}$$

for any variable v and ground term g

```
E.g., \forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x) \; \text{yields} King(John) \land Greedy(John) \Rightarrow Evil(John) \\ King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) \\ King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John)) \\ \vdots
```

Existential instantiation (EI)

For any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$\frac{\exists \, v \ \alpha}{\text{Subst}(\{v/k\}, \alpha)}$$

E.g., $\exists x \ Crown(x) \land OnHead(x, John)$ yields

$$Crown(C_1) \wedge OnHead(C_1, John)$$

provided C_1 is a new constant symbol, called a Skolem constant

Another example: from $\exists x \ d(x^y)/dy = x^y$ we obtain

$$d(e^y)/dy = e^y$$

provided e is a new constant symbol

Existential instantiation contd.

Ul can be applied several times to **add** new sentences; the new KB is logically equivalent to the old

El can be applied once to **replace** the existential sentence; the new KB is **not** equivalent to the old, but is satisfiable iff the old KB was satisfiable

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)

King(John)

Greedy(John)

Brother(Richard, John)
```

Instantiating the universal sentence in all possible ways, we have

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)

King(John)

Greedy(John)

Brother(Richard, John)
```

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction contd.

Claim: a ground sentence* is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms, e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a **finite** subset of the propositional KB

Idea: For n=0 to ∞ do create a propositional KB by instantiating with depth-n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences. E.g., from

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)

King(John)

\forall y \ Greedy(y)

Brother(Richard, John)
```

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are $p \cdot n^k$ instantiations

With function symbols, it gets nuch much worse!

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

p	q	$\mid heta$
$\overline{Knows(John,x)}$	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	ig Knows(y,Mother(y))ig	
Knows(John, x)	Knows(x, OJ)	

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	[Knows(John, Jane)]	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John,x)	Knows(x, OJ)	

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha \theta = \beta \theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	[Knows(John, Jane)]	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, OJ)	

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
Knows(John, x)	Knows(x, OJ)	

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
Knows(John,x)	Knows(x, OJ)	fail

Standardizing apart eliminates overlap of variables, e.g., $Knows(z_{17},OJ)$

Generalized Modus Ponens (GMP)

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{q\theta} \quad \text{where } p_i'\theta = p_i\theta \text{ for all } i$$

```
p_1' is King(John) p_1 is King(x) p_2' is Greedy(y) p_2 is Greedy(x) \theta is \{x/John, y/John\} q is Evil(x) q\theta is Evil(John)
```

GMP used with KB of definite clauses (exactly one positive literal) All variables assumed universally quantified

Soundness of GMP

Need to show that

$$p_1', \ldots, p_n', (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models q\theta$$

provided that $p_i'\theta = p_i\theta$ for all i

Lemma: For any definite clause p, we have $p \models p\theta$ by UI

1.
$$(p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models (p_1 \wedge \ldots \wedge p_n \Rightarrow q)\theta = (p_1 \theta \wedge \ldots \wedge p_n \theta \Rightarrow q\theta)$$

2.
$$p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \models p_1' \theta \land \ldots \land p_n' \theta$$

3. From 1 and 2, $q\theta$ follows by ordinary Modus Ponens

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

... it is a crime for an American to sell weapons to hostile nations:

... it is a crime for an American to sell weapons to hostile nations:

 $American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$

Nono . . . has some missiles

... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$ Nono ... has some missiles, i.e., $\exists \ x \ Owns(Nono,x) \land Missile(x)$: $Owns(Nono,M_1) \text{ and } Missile(M_1)$... all of its missiles were sold to it by Colonel West

... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$ Nono ... has some missiles, i.e., $\exists \ x \ Owns(Nono,x) \land Missile(x)$: $Owns(Nono,M_1) \text{ and } Missile(M_1)$... all of its missiles were sold to it by Colonel West $\forall \ x \ Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono)$ Missiles are weapons:

... it is a crime for an American to sell weapons to hostile nations:

 $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$

Nono . . . has some missiles, i.e., $\exists x \ Owns(Nono, x) \land Missile(x)$:

 $Owns(Nono, M_1)$ and $Missile(M_1)$

... all of its missiles were sold to it by Colonel West

 $\forall x \; Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$

Missiles are weapons:

 $Missile(x) \Rightarrow Weapon(x)$

An enemy of America counts as "hostile":

```
... it is a crime for an American to sell weapons to hostile nations:
   American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)
Nono . . . has some missiles, i.e., \exists x \ Owns(Nono, x) \land Missile(x):
   Owns(Nono, M_1) and Missile(M_1)
... all of its missiles were sold to it by Colonel West
   \forall x \; Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons:
   Missile(x) \Rightarrow Weapon(x)
An enemy of America counts as "hostile":
   Enemy(x, America) \Rightarrow Hostile(x)
West, who is American . . .
   American(West)
The country Nono, an enemy of America . . .
   Enemy(Nono, America)
```

Forward chaining algorithm

```
function FOL-FC-Ask(KB, \alpha) returns a substitution or false
   repeat until new is empty
         new \leftarrow \{ \}
         for each sentence r in KB do
               (p_1 \land \ldots \land p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-APART}(r)
               for each \theta such that (p_1 \land \ldots \land p_n)\theta = (p'_1 \land \ldots \land p'_n)\theta
                                for some p'_1, \ldots, p'_n in KB
                     q' \leftarrow \text{SUBST}(\theta, q)
                   if q' is not a renaming of a sentence already in KB or new then do
                           add q' to new
                          \phi \leftarrow \text{UNIFY}(q', \alpha)
                          if \phi is not fail then return \phi
         add new to KB
   return false
```

Forward chaining proof

American(West)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America)

Forward chaining proof

Forward chaining proof

Properties of forward chaining

Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB) FC terminates for Datalog in poly iterations: at most $p \cdot n^k$ literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k if a premise wasn't added on iteration k-1

⇒ match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts e.g., query Missile(x) retrieves $Missile(M_1)$

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

Hard matching example


```
Diff(wa, nt) \wedge Diff(wa, sa) \wedge \\ Diff(nt, q)Diff(nt, sa) \wedge \\ Diff(q, nsw) \wedge Diff(q, sa) \wedge \\ Diff(nsw, v) \wedge Diff(nsw, sa) \wedge \\ Diff(v, sa) \Rightarrow Colorable() \\ Diff(Red, Blue) \quad Diff(Red, Green) \\ Diff(Green, Red) \quad Diff(Green, Blue) \\ Diff(Blue, Red) \quad Diff(Blue, Green)
```

Colorable() is inferred iff the CSP has a solution CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

```
function FOL-BC-Ask(KB, goals, \theta) returns a set of substitutions inputs: KB, a knowledge base goals, a list of conjuncts forming a query (\theta already applied) \theta, the current substitution, initially the empty substitution \{\} local variables: answers, a set of substitutions, initially empty if goals is empty then return \{\theta\} q' \leftarrow \text{SUBST}(\theta, \text{FIRST}(goals)) for each sentence r in KB where STANDARDIZE-APART(r) = (p_1 \land \ldots \land p_n \Rightarrow q) and \theta' \leftarrow \text{UNIFY}(q, q') succeeds new\_goals \leftarrow [p_1, \ldots, p_n| \text{REST}(goals)] answers \leftarrow \text{FOL-BC-Ask}(KB, new\_goals, \text{Compose}(\theta', \theta)) \cup answers return answers
```

Criminal(West)

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops

⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)

⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming

1. Identify problem Identify problem

2. Assemble information Assemble information

3. Tea break Figure out solution

4. Encode information in KB Program solution

5. Encode problem instance as facts Encode problem instance as data

6. Ask queries Apply program to data

7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewYork, US) than x := x + 2!

Prolog systems

```
Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques \Rightarrow approaching a billion LIPS
Program = set of clauses = head :- literal<sub>1</sub>, ... literal<sub>n</sub>.
   criminal(X) := american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption ("negation as failure")
   e.g., given alive(X) :- not dead(X).
   alive(joe) succeeds if dead(joe) fails
```

Prolog examples

Depth-first search from a start state X:

dfs(X) := goal(X).

Resolution: brief summary

Full first-order version:

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{(\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n)\theta}$$
 where $\operatorname{Unify}(\ell_i, \neg m_i) = \theta$.

For example,

$$\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Ken)}$$
$$\frac{Unhappy(Ken)}{}$$

with
$$\theta = \{x/Ken\}$$

Apply resolution steps to $CNF(KB \land \neg \alpha)$; complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

1. Eliminate biconditionals and implications

$$\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \neg \exists x, p \equiv \forall x \neg p$:

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

5. Drop universal quantifiers:

$$[Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

6. Distribute ∧ over ∨:

$$[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$$

Resolution proof: definite clauses

