Vectors, Matrices and beyond!

Week 3, Mathematics and Computational Methods for Complex Systems

Functions

Example 1

$$f(x) = x^2$$

$$f: \mathbb{R} \to \mathbb{R}^+$$

Domain: all real numbers

Range: all positive real numbers

Example 2

$$+(x,y) = x + y$$

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

Domain: all pairs of real numbers

Range: all real numbers

Terminology

Domain: set of possible inputs

Range: set of possible outputs

Examples express transformations/relationships between numbers

Recap

Functions

 $f_1: images \rightarrow strings (text)$

 f_2 : images \rightarrow images

Real life: transformations / relationships between more complicated objects

Functions

Real life: transformations / relationships between more complicated objects

Complicated objects often boil down to collections arrays of numbers

0.00.30.60.9

Lots of numbers!

Windspeed, Wind direction, Motor torque, Yaw angle

...

Arrays have a shape

Which we change as convenient!

Arrays have a shape

Which we change as convenient!

The number 4

A scalar: no shape

numpy.shape(4)

The array [4]

An array containing one element: the number 4

numpy.shape([4])

Not the same!!!

Shapes have a dimension

Vector (1d-array)

 $[0.0 \quad 0.3 \quad 0.6 \quad 0.9]$

Matrix (2d-array)

 0.0
 0.3

 0.6
 0.9

Rows and columns

3-Tensor (3d-array)

$$\begin{bmatrix}
0.0 & 0.3 \\
0.6 & 0.9
\end{bmatrix}
\begin{bmatrix}
0.0 & 0.3 \\
0.6 & 0.9
\end{bmatrix}
\begin{bmatrix}
0.0 & 0.3 \\
0.6 & 0.9
\end{bmatrix}$$

Rows, columns,....layers?

A[3,7,2] - accessing element in 3d array

numpy.reshape([4], (1,1,1,1,1))

- how many dimensions?

Shapes have a dimension

Vector (1d-array)

 $[0.0 \quad 0.3 \quad 0.6 \quad 0.9]$

A.shape = (4,)

Matrix (2d-array)

Rows and columns

A.shape = (2,2)

3-Tensor (3d-array)

$$\begin{bmatrix}
0.0 & 0.3 \\
0.6 & 0.9
\end{bmatrix}
\begin{bmatrix}
0.0 & 0.3 \\
0.6 & 0.9
\end{bmatrix}
\begin{bmatrix}
0.0 & 0.3 \\
0.6 & 0.9
\end{bmatrix}$$

Rows, columns,....layers?

A.shape = (2,2,3)

Dimension is:

len(A.shape)

Confusing terminology alert

Vector (1d-array)

 $[0.0 \quad 0.3 \quad 0.6 \quad 0.9]$

Python/Julia: - array dimension is 1

- length is 4

Mathematician: - It's a 4-dimensional vector.

- A vector is a 1d tensor (i.e. array)
 - Vector's length depends on its entries

Array indexing alert

Avoid incredible Python frustration!!!

Python: Column Column 0 1
Row 0
$$\begin{bmatrix} 0.0 & 0.3 \\ 0.6 & 0.9 \end{bmatrix}$$

$$A_{21} = 0.6$$

$$A[1,0] = 0.6$$

Ingredients to do maths on arrays?

Let's look back to how we do maths on numbers!

Addition/subtraction

is straightforward!

- Only makes sense on vectors with same shape

- Otherwise, just like for numbers!

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} + \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a+w \\ b+x \\ c+y \\ d+z \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} a - w & b - x \\ c - y & d - z \end{bmatrix}$$

Scaling

is straightforward!

- Multiply an array (of any shape) by a scalar (number)

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} x * a \\ x * b \\ x * c \\ x * d \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} = \begin{bmatrix} -3 \\ -12 \\ 6 \end{bmatrix}$$

The magnitude of numbers

i.e. their distance from zero

$$-7 < 2$$

$$|-7| = 7 > |2| = 2$$

$$[-7+6]=1$$
 - adding "big" numbers can result in a "small number"

Option 1: The L1 norm

$$v = [2 -3 7 1]$$

$$||\underline{v}||_1 = |2| + |-3| + |7| + |1|$$

$$= 13$$

Double lines for array magnitudes!

Option 1: The L1 norm

$$v = [2 -3 7 1]$$

$$||\underline{v}||_1 = |2| + |-3| + |7| + |1|$$

$$= 13$$

Double lines for array magnitudes!

Dimension length-2 vectors can be drawn in 2d

Option 2: The L2/Euclidean norm

$$v = [2 -3 7 1]$$

$$||\underline{v}||_2 = \sqrt{2^2 + (-3)^2 + 7^2 + 1^2}$$
$$= \sqrt{63} \approx 8$$

L1 and L2 are identical for scalars!

Option 2: The L2/Euclidean norm

$$v = [2 -3 7 1]$$

$$||\underline{v}||_2 = \sqrt{2^2 + (-3)^2 + 7^2 + 1^2}$$
$$= \sqrt{63} \approx 8$$

Length-2 vectors: their literal length

Option 3: Build your own!

- **Norm:** notion of distance from zero
 - any scalar function (i.e. with scalar output) encoding this notion
 - Inputs? Arrays of any shape

- || || : vectors → scalars
- e.g. $||v||_2 = 8$

Option 3: Build your own!

What makes a distance?

$$\|\underline{x}\| \ge 0$$

Distances can't be negative

$$||s\underline{x}|| = s||\underline{x}||$$

where s is scalar

Twice the vector means twice the distance

$$\underline{a} = [-2,4]$$

$$3\underline{a} = [-6,12]$$

$$||3\underline{a}|| = 3||\underline{a}||$$

Triangle inequality

$$||\underline{z} + \underline{y}|| \le ||\underline{x}|| + ||\underline{y}||$$
if $\underline{z} = \underline{x} + \underline{y}$

No shortcuts:

going straight to a destination $\underline{z} = \underline{x} + y$ is shorter than via \underline{x}

Understanding

- All the red points denote vectors with unit norm (i.e. norm = 1)
- Thus, called normalised vectors
- Trace the normalised vectors connecting the dots, in L1 and then L2

Distance between vectors

- $||\underline{v}|| = distance of \underline{v} from zero$

- Distance from \underline{w} ? $||\underline{v} \underline{w}||$
- Translating vectors equally doesn't change their distance

Distance between vectors

Euclidean distance

- For length-2 vectors: their literal distance

$$\|\underline{v} - \underline{w}\|_2 = \sqrt{(v_1 - w_1)^2 + (v_2 - w_2)^2}$$

New concept: correlation (similarity)

Maximally dissimilar (anti correlated) images

Pixel is (quite) white in 1 <=> Pixel is (quite) black in 2

New concept: correlation (similarity)

Uncorrelated images

Pixel is (quite) white in 1 <=> No information on 2