Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2, semipresencial

Solución de Primer prueba - 4 de setiembre de 2017.

Ejercicio 1.

- a. 1820 = 2(819) + 182, 819 = 4(182) + 91 y 182 = 2(91) + 0Por lo tanto $\boxed{\text{mcd}(1820, 819) = 91}$.
- b. La descomposición factorial de 91 es $91 = 7 \times 13$ y $1820/91 = 20 = 2^25$ y $819/91 = 9 = 3^2$ por lo que tenemos las siguientes descomposiciones factoriales:

$$1820 = 2^2 \times 5 \times 7 \times 13$$
 y $819 = 3^2 \times 7 \times 13$

c. Tenemos que $4550 = 91 \times 50$ y por el Algoritmo de Euclides tenemos que

$$91 = 819 - 4(182) = 819 - 4(1820 - 2(819)) = 819(9) + 1820(-4).$$

Multiplicando ambos lados por 50 obtenemos:

$$4550 = 819(450) + 1820(-200);$$

por lo tanto una solución es (x,y) = (450, -200)

d. Llamemos z a la cantidad de saltos que dió con su bebé; por lo tanto tenemos que $0 \le z < 30$ y que la distancia recorrida desde la reunión hasta el árbol fue de $0,819 \cdot z$ metros. Llamando w a la cantidad de saltos que dió sin su bebé, tenemos que $0 \le w$ y que la distancia recorrida en su retorno desde el árbol en dirección a la reunión fue de $1,82 \cdot w$ metros. Por lo tanto, al sentarse a comer, se encuentra a $4,55 = 0,819 \cdot z - 1,82 \cdot w$ metros de la reunión. Y multiplicando ambos lados por 1000 obtenemos que z y w son solución de la ecuación

$$4550 = 819z - 1820w$$
.

Por la parte anterior tenemos que $(z_0, w_0) = (450, 200)$ es una solución de esta ecuación, y por el Teorema de Ecuaciones Diofánticas tenemos que todas las soluciones de la ecuación son

$$z = 450 - \frac{1820}{91}k = 450 - 20k, \quad w = 200 - \frac{819}{91}k = 200 - 9k, \quad k \in \mathbb{Z}.$$

Además $0 \le z < 30 \Rightarrow 0 \le 450 - 20k < 30 \Rightarrow 420 < 20k \le 450 \Rightarrow \frac{420}{20} < k \le \frac{450}{20} \Rightarrow 21 < k \le 22, 5$; por lo tanto el único valor entero posible para k es k = 22. Veamos que para este valor de k tambíen se verifica que $0 \le w$: $w = 200 - 9(22) = 200 - 198 = 2 \ge 0$.

Para k = 22 nos queda z = 450 - 20(22) = 450 - 440 = 10, por lo tanto dio $\boxed{z = 10}$ saltos con su bebé y $\boxed{w = 2}$ saltos sin él.

Ejercicio 2.

- a. Sea d = mcd(a, b); entonces $a = a^*d$, $b = b^*d$ con $\text{mcd}(a^*, b^*) = 1$ y tenemos que $\text{mcm}(a, b) = a^*b^*d$. Sustituyendo en la ecuación tenemos que $a^*b^*d 4d = 4 \Rightarrow d(a^*b^* 4) = 4$. Por lo tanto $d \mid 4$ y las posibilidades para d son 1, 2, y 4.
 - Si $d = 1 \Rightarrow a^*b^* 4 = 4 \Rightarrow a^*b^* = 8 = 2^3$.
 - Si $d = 2 \Rightarrow a^*b^* 4 = 2 \Rightarrow a^*b^* = 6 = 2 \times 3$.
 - Si $d = 4 \Rightarrow a^*b^* 4 = 1 \Rightarrow a^*b^* = 5$.

Al ser $mcd(a^*, b^*) = 1$, si $a^*, b^* \neq 1$ las descomposiciones factoriales de a^* y b^* no pueden tener ningún primo en común. Como además $a^* > b^*$ tenemos que

- Si $d = 1 \Rightarrow (a, b) = (a^*, b^*) = (8, 1)$
- Si $d = 2 \Rightarrow (a^*, b^*) = (6, 1)$ o $(a^*, b^*) = (3, 2) \Rightarrow$ (multiplicando por d = 2) tenemos que (a, b) = (12, 2) o (a, b) = (6, 4).

b. Mostramos tres posibles soluciones, que utilizan distintos argumentos, algunos más directos que otros... pero además puede haber otras formas de resolverlo.

Primer Solución: Como mcd(a, b) = 54, $a = (54)a^*$ y $b = (54)b^*$ con $mcd(a^*, b^*) = 1$. Sustituyendo en $3a^2 = 2b^3$ obtenemos que

$$3(54)^2(a^*)^2 = 2(54)^3(b^*)^3 \quad \Rightarrow \quad 3(a^*)^2 = 2(54)(b^*)^3 \quad \Rightarrow (a^*)^2 = 2(18)(b^*)^3.$$

Si existiera un primo p que divida a b^* , entonces (por la última igualdad) p dividiría a $(a^*)^2$ y al ser p primo, tendríamos que $p \mid (a^*)$, lo cual no es posible ya que $\operatorname{mcd}(a^*, b^*) = 1$. Por lo tanto $b^* = 1$ y $a^* = 1$ y $a^* = 1$. Entonces, $a^* = 1$ y a^*

Segunda Solución: Escribimos las descomposiciones factoriales de a y b como

$$a = \prod_{p \text{ primo}} p^{a_p}$$
 y $b = \prod_{p \text{ primo}} p^{b_p}$

con $a_p, b_p \in \mathbb{N}$ y sólo una cantidad finita de ellos no nulos. Entonces

$$2 \times 3^3 = 54 = \text{mcd}(a, b) = \prod_{p \text{ primo}} p^{\min(a_p, b_p)},$$

y por la unicidad de la descomposición factorial, tenemos que

- $\min(a_2, b_2) = 1$ (por lo tanto $1 = a_2 \le b_2$ o $1 = b_2 \le a_2$).
- $-\min(a_3, b_3) = 3$ (por lo tanto $3 = a_3 \le b_3$ o $3 = b_3 \le a_3$).
- $\forall p \neq 2, 3$; $\min(a_p, b_p) = 0$, y por lo tanto $a_p = 0$ o $b_p = 0$.

Por otro lado, sustituyendo las descomposiciones factoriales en $3a^2=2b^3$ tenemos que

$$\begin{split} 3\Big(\prod_{\substack{p \text{ primo} \\ p \text{ primo}}} p^{a_p}\Big)^2 &=& 2\Big(\prod_{\substack{p \text{ primo} \\ p \text{ primo}}} p^{b_p}\Big)^3 \quad \Rightarrow \\ 2\prod_{\substack{p \text{ primo} \\ p \neq 2,3}} p^{2a_p} &=& 3\prod_{\substack{p \text{ primo} \\ p \neq 2,3}} p^{3b_p} \quad \Rightarrow \\ 2^{2a_2}3^{2a_3+1}\prod_{\substack{p \text{ primo} \\ p \neq 2,3}} p^{2a_p} &=& 2^{3b_2+1}3^{3b_3}\prod_{\substack{p \text{ primo} \\ p \neq 2,3}} p^{3b_p}, \end{split}$$

y por la unicidad de la descomposición factorial tenemos que

$$2a_2 = 3b_2 + 1$$
, $2a_3 + 1 = 3b_3$ $y \forall p \neq 2, 3, 2a_p = 3b_p$.

Juntando las dos listas de condiciones tenemos que:

- Si $a_2 = 1$, no existe $b_2 \in \mathbb{N}$ tal que $3b_2 + 1 = 2a_2 = 2$. Por lo tanto $\boxed{b_2 = 1}$ y $2a_2 = 3(1) + 1 = 4$ y entonces $\boxed{a_2 = 2}$.
- Si $a_3 = 3$, no existe $b_3 \in \mathbb{N}$ tal que $2a_3 + 1 = 7 = 3b_3$ y entonces $b_3 = 3$ y $2a_3 + 1 = 3b_3 = 9$ y por lo tanto $a_3 = 4$.
- $\forall p \neq 2, 3 \text{ como } a_p = 0 \text{ o } b_p = 0 \text{ y } 2a_p = 3b_p, \text{ tenemos que } \boxed{a_p = b_p = 0}$

Por lo tanto $a = 2^2 3^4 = 324$ y $b = 2^1 3^3 = 54$

Tercer Solución: Recordar que si $x, y \in \mathbb{Z}$, y p es primo, la propiedad fundamental de los primos nos dice que si $p \mid xy$ entonces $p \mid x$ o $p \mid y$. En particular si $p \mid x^2$ (tomando y = x) entonces $p \mid x$. Si $p \mid x^3$, (tomando $y = x^2$) entonces $p \mid x$ o $p \mid x^2$ y entonces (por el caso anterior) $p \mid x$.

Sea n primo tal que $n \mid a$ Entonces $n \mid 3a^2$ y por lo tanto $n \mid 2b^3$. Por la propiedad fundamental

(al ser pprimo) p = 2 o p = 3. Concluímos entonces que los únicos primos que divide a a son 2 y 3 y entonces la descomposición factorial de a es de la forma $a = 2^m 3^n$.

De forma análoga, si un primo q divide a b, entonces divide a $2b^3=3a^2$ y entonces q=3 o $q\mid a$. Por lo tanto q=3 o $q\mid \operatorname{mcd}(a,b)=54$ y por lo tanto q=2 o q=3. Entonces la descomposición factorial de b es de la forma $b=2^r3^s$.

Sustituyendo estas descomposiciones en $3a^2 = 2b^3$ tenemos $3(2^m3^n)^2 = 2(2^r3^s)^3$. Por lo tanto $2^{2m}3^{2n+1} = 2^{3r+1}3^{3s}$ y por la unicidad de las descomposición factorial, tenemos que 2m = 3r + 1 y 2n + 1 = 3s. De aquí se puede concluir de la misma forma que en la resolución anterior, o se puede hacer el siguiente argumento:

 $2m = 3r + 1 = 2r + r + 1 \ge 2r$, entoces $m \ge r$. Y como 2n + 1 = 3s, debe ser $s \ge 1$ y entonces $2n + 1 = 3s = 2s + s \ge 2s + 1$ por lo que $n \ge s$. Y entonces $2^1 3^3 = 54 = \text{mcd}(a, b) = 2^r 3^s = b$ y entonces (como r = 1 y s = 3), m = 2 y n = 4 por lo que $a = 2^2 3^4 = 324$.