Lecture 19: Introduction to RDS

Nisha Chandramoorthy

April 3, 2024

- Limit theorems review
- Goal: basic idea behind diffusion models
- Begin with Random walks
- Obtaining diffusion in the limit of random walks
- Ergodic theory basics
- Not much stochastic analysis
- References: [Arnold Random Dynamical Systems], [Song et al 2020], [Kidger 2022 PhD thesis]

So far...

- Linear hyperbolic systems: where the matrix has no eigenvalues equal to 1 in magnitude.
- More general hyperbolic systems: no zero Lyapunov exponent
- Statistical properties of dynamical systems: ergodic theory
- Oseledets theorem: applies to Random Dynamical System (RDS), the cocycle considered is a linear RDS
- \triangleright $x_{t+1} = \varphi(x_t), \varphi: M \to M$
- ▶ OMET deals with $d\varphi(x_t)$ as a dynamics on tangent vectors
- ► Linear RDS: $d\phi(v_1 + v_2) = d\phi v_1 + d\phi v_2$; $v_1, v_2 \in TM$

Limit theorems review

- ► X_1, X_2, \cdots , where X_i is independent and identically distributed (iid) with mean μ and std $\sigma < \infty$. Let $S_n = \sum_{i=1}^n X_i$.
- ▶ Weak Law of Large Numbers: $\lim_{n\to\infty} \mathbb{P}(|S_n/n \mu| > \epsilon) = 0$ for every $\epsilon > 0$. That is, $S_n/n \stackrel{P}{\to} \mu$ as $n \to \infty$. Convergence in probability. (Proof: Chebyshev's inequality when $\sigma < \infty$, but LLNs do not require finite variance in general)
- Strong LLN: $\mathbb{P}(\lim_{n\to\infty} S_n/n = \mu) = 1$. Also written as $S_n/n \stackrel{\text{a.s.}}{\to} \mu$. Almost sure convergence. (requires boundedness of expected value)
- ► Central limit theorem: $\lim_{n\to\infty} \mathrm{CDF}((S_n-n\mu)/(\sqrt{n}\sigma))(t) = \mathrm{CDF}(Z)(t)$, where Z is a standard Gaussian. That is, $((S_n-n\mu)/(\sqrt{n}\sigma))\overset{\mathrm{d}}{\to} \mathcal{N}(0,1)$. Convergence in distribution. (Requires finite variance)

- ▶ We will see limit theorems when $X_i = f \circ \phi^i(x_0)$, where ϕ is a random or deterministic DS. x_0 is a random variable sampled from any distribution.
- In deterministic dynamics, randomness comes from initial condition
- $ightharpoonup \phi(x) = Ax$, linear hyperbolic
- $ightharpoonup X_0 \sim \rho_0$, then, $X_t \sim \rho_t$.
- ► $X_t \sim \rho$ and $X_{t+1} \sim \rho$, then, ρ is an invariant density.
- For Cat map, ρ is uniform on unit square
- $ightharpoons
 ho_{t+1} = \varphi_{\sharp} \rho_t$
- Markov process: $\mathbb{P}(X_t|X_1,\cdots,X_{t-1}) = \mathbb{P}(X_t|X_{t-1})$
- ► Transition kernel of a Markov process: $\mathcal{K}(x, A) = \mathbb{P}(X_{t+1} \in A | X_t = x)$
- $\triangleright \rho_{t+1}(A) = \int_{X} \mathcal{K}(X, A) \rho_{t}(dX).$

- ► Transition operator: $\mathfrak{T}\rho(A) = \int \mathfrak{K}(x,A)\rho(dx)$ (Function on the space of measures)
- $\Im(\rho_1 + \rho_2) = \Im\rho_1 + \Im\rho_2$ (linear operator)
- Alternatively: ρ is an invariant measure if it is an eigenfunction of 𝒯 with eigenvalue 1.
- Limit theorems also valid for some "weakly" dependent RVs
- If $X_1, \dots, X_n \dots$, is generated by a hyperbolic dynamical system, CLT is valid.
- ▶ $|(1/T)\sum_{t\leqslant T} f(X_t) E_{x\sim \rho} f(x)|$ behaves like a normal RV for an idealized class of chaotic systems

Random walk

- ▶ Start on a 1D lattice at 0. With probability 1/2, go left or right.
- ▶ $\mathbb{P}(X_t = k) = {t \choose (t+k)/2} \frac{1}{2^t}$. Let a and b be the number of times you go right and left respectively. Clearly, a + b = t. Also, a b = k.
- Stirling's approximations of these probabilities for large t. $\log n! \approx n \log n n$
- $\mathbf{K}(x, \{x+1\}) = 1/2$
- Diffusion processes.