

=====

Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Mon May 07 11:05:48 EDT 2007

=====

Reviewer Comments:

<210> 6

<211> 25

<212> DNA

<213> PCR Primer

The <213> response is invalid, per 1.823 of Sequence Rules. The only valid <213> responses are "Artificial Sequence," "Unknown," or the Genus/species. Same error in sequences 7-11.

Application No: 10580901 Version No: 1.0

Input Set:

Output Set:

Started: 2007-05-04 18:38:36.512
Finished: 2007-05-04 18:38:36.602
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 90 ms
Total Warnings: 0
Total Errors: 0
No. of SeqIDs Defined: 11
Actual SeqID Count: 11

ErrCode	Error Description
----------------	--------------------------

SEQUENCE LISTING

<110> Mridula, Sharma
Berry, Carole
Thomas, Mark
Kambadur, Ravi
Bower, Robert Syndecombe

<120> Novel Muscle Growth Regulator

<130> AJPARK39.001APC

<140> 10580901
<141> 2007-05-04

<150> US 10/580,901
<151> 2006-05-26

<150> PCT/NZ2004/000308
<151> 2004-11-26

<150> NZ529860
<151> 2003-11-28

<160> 11

<170> PatentIn version 3.1

<210> 1
<211> 576
<212> DNA
<213> Ovine

<400> 1
atggcgtgcg gggcgacact gaagcggccc atggagttcg aggccggcgct gctgagccct 60
ggctctccga agcggcgccg ctgcgcacct ctgtccggcc ccactccggg cctcaggccc 120
ccggacgccc aaccggccgc gctgcttcag acgcagaccc caccgcccac tctgcagcag 180
cccgccccgc ccggcagcga gccccgcctt ccaactccgg agcaaatttt tcagaacata 240
aaacaagaat atagtcgtta tcagaggtgg agacattttag aagtttgtct taatcagagt 300
gaagcttgta cttcgaaaag tcagcctcac tcctcagcac tcacagcacc tagttctcca 360
ggttcctcct ggatgaaaaa ggaccagccc accttaccc tccgacaagt tggaataata 420
tgtgagcgtc tctaaaaga ctatgaagat aaaattcggg aggaatatga gcaaattcctc 480
aataactaaac tagcagaaca atatgaatct tttgtgaaat tcacacatga tcagattatg 540
cgacgatatg ggacaaggcc aacaagctat gtatcc 576

<210> 2
<211> 192
<212> PRT
<213> Ovine

<400> 2

Met Ala Cys Gly Ala Thr Leu Lys Arg Pro Met Glu Phe Glu Ala Ala
1 5 10 15

Leu Leu Ser Pro Gly Ser Pro Lys Arg Arg Arg Cys Ala Pro Leu Ser
20 25 30

Gly Pro Thr Pro Gly Leu Arg Pro Pro Asp Ala Glu Pro Pro Pro Leu
35 40 45

Leu Gln Thr Gln Thr Pro Pro Pro Thr Leu Gln Gln Pro Ala Pro Pro
50 55 60

Gly Ser Glu Arg Arg Leu Pro Thr Pro Glu Gln Ile Phe Gln Asn Ile
65 70 75 80

Lys Gln Glu Tyr Ser Arg Tyr Gln Arg Trp Arg His Leu Glu Val Val
85 90 95

Leu Asn Gln Ser Glu Ala Cys Thr Ser Glu Ser Gln Pro His Ser Ser
100 105 110

Ala Leu Thr Ala Pro Ser Ser Pro Gly Ser Ser Trp Met Lys Lys Asp
115 120 125

Gln Pro Thr Phe Thr Leu Arg Gln Val Gly Ile Ile Cys Glu Arg Leu
130 135 140

Leu Lys Asp Tyr Glu Asp Lys Ile Arg Glu Glu Tyr Glu Gln Ile Leu
145 150 155 160

Asn Thr Lys Leu Ala Glu Gln Tyr Glu Ser Phe Val Lys Phe Thr His
165 170 175

Asp Gln Ile Met Arg Arg Tyr Gly Thr Arg Pro Thr Ser Tyr Val Ser
180 185 190

<210> 3
<211> 576
<212> DNA
<213> Bovine

<400> 3

atggcgtgcg gggcgacact gaagcgcccc atggagttcg aggccgcgt gctgagccct 60

ggctctccga agcgacggcg ctgcgcacct ctgtccggcc ccactccggg cctcaggccc 120

ccggacgccc aaccgccacc gctgcttcag acgcagatcc caccgcccac tctgcagcag 180

cccgccccgc ccggcagcga ccggcgccctt ccaactccgg agcaaatttt tcagaacata 240

aaacaagaat atagtcgtta tcagaggtagg agacatttag aagtgttct taatcagagt	300
gaagcttgta ctgcgaaag tcagcctcac tcctcaaac acacagcacc tagttctcca	360
ggttccctcct ggatgaaaaa ggaccagccc accttacgc tccgacaagt tggataata	420
tgtgagcgtc tctaaaaga ctagaagat aaaattcggg aggaatatga gcaaattcctc	480
aataactaaac tagcagaaca atatgaatct tttgtgaaat tcacacatga tcagattatg	540
cgacgatatg ggacaaggcc aacaagctat gtatcc	576

<210> 4
<211> 192
<212> PRT
<213> Bovine

<400> 4

Met Ala Cys Gly Ala Thr Leu Lys Arg Pro Met Glu Phe Glu Ala Ala			
1	5	10	15

Leu Leu Ser Pro Gly Ser Pro Lys Arg Arg Arg Cys Ala Pro Leu Ser			
20	25	30	

Gly Pro Thr Pro Gly Leu Arg Pro Pro Asp Ala Glu Pro Pro Pro Leu			
35	40	45	

Leu Gln Thr Gln Ile Pro Pro Pro Thr Leu Gln Gln Pro Ala Pro Pro			
50	55	60	

Gly Ser Asp Arg Arg Leu Pro Thr Pro Glu Gln Ile Phe Gln Asn Ile			
65	70	75	80

Lys Gln Glu Tyr Ser Arg Tyr Gln Arg Trp Arg His Leu Glu Val Val			
85	90	95	

Leu Asn Gln Ser Glu Ala Cys Thr Ser Glu Ser Gln Pro His Ser Ser			
100	105	110	

Thr Leu Thr Ala Pro Ser Ser Pro Gly Ser Ser Trp Met Lys Lys Asp			
115	120	125	

Gln Pro Thr Phe Thr Leu Arg Gln Val Gly Ile Ile Cys Glu Arg Leu			
130	135	140	

Leu Lys Asp Tyr Glu Asp Lys Ile Arg Glu Glu Tyr Glu Gln Ile Leu			
145	150	155	160

Asn Thr Lys Leu Ala Glu Gln Tyr Glu Ser Phe Val Lys Phe Thr His			
165	170	175	

Asp Gln Ile Met Arg Arg Tyr Gly Thr Arg Pro Thr Ser Tyr Val Ser			
180	185	190	

ggccgggtca tctatccccaaataacattc attttaaca cacctcccttccaatttg 1560
cccatgatttgcacagggttc gtggattaaa taaagtctat ccttagataa cccggttatg 1620
tttgtgaaga ttccctgggactcaagacaa aatccttga taaccctta gaatcacctc 1680
tttatcggt cacgccccca agggAACCCG ggtctcccag ggtctctccc atcccccc 1740
cccgaggccc ctgccgcga ggtgcgaaag acctccagg ccactccggc agagagcgtg 1800
aaggggggggg ccctgggagg ggccggggcg ggggtgttgc taggcacca cgctctccgc 1860
ccagaccggc ctacttcttc cgcagggggc gccatgggc gagcccaaggc tcgcgggcct 1920
cccgatcgccctttccg acttcttccc ctctgcggg cggtggcgca cgcccggtgac 1980
gtcacaggag gcggggccag cgcggctgccc gggtgccgga ggcgccattg gagccggctt 2040
ggcttgggag ccgttagctga agagttggat c 2071

<210> 6
<211> 25
<212> DNA
<213> PCR Primer

<400> 6
caccatggcg tgccgggcga cactg 25

<210> 7
<211> 21
<212> DNA
<213> PCR Primer

<400> 7
ggatacatag cttgttggcc t 21

<210> 8
<211> 20
<212> DNA
<213> PCR Primer

<400> 8
tgaaggcgcc catggagttc 20

<210> 9
<211> 22
<212> DNA
<213> PCR Primer

<400> 9
ggtgtggctgg tccttcttca tc 22

<210> 10

<211> 25

<212> DNA

<213> PCR Primer

<400> 10

agatctgatc caactcttca gctac

25

<210> 11

<211> 24

<212> DNA

<213> PCR Primer

<400> 11

gctagcccac attcactgtg caag

24