Some Techniques to Solve Diophantine Equations

- Parity (Even or Odd) Contradiction
- Factoring Equations
- Bounding (Using Inequalities)
- Modular Contradiction
- Infinite Descent (Minimality Contradiction)
- Vieta Jumping (Minimality Contradiction)

Divisibility Rules

Let x, y, z be integers.

- If z|x, y, then z|ax + by for any integers a, b (possibly negative).
- If x|y, then either y = 0, or $|x| \le |y|$.
- If x|y, and y|x, then $x = \pm y$, i.e., |x| = |y|.
- If x|yz and gcd(x,y) = 1, then x|z.
- If p is a prime and 0 < x < p, then $\binom{p}{x}$ is divisible by p.

Two Useful Factorization Formulae

If n is a positive integer, then

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$$

If n *is a positive odd number, then*

$$x^{n} + y^{n} = (x + y)(x^{n-1} - x^{n-2}y + \dots - xy^{n-2} + y^{n-1})$$

Division Algorithm

For every integer pair a, b, there exists distinct integer quotient and remainders, q and r, that satisfy

$$a = bq + r, 0 \le r < b$$

Euclidean Algorithm

For two natural numbers a, b, a > b, to find gcd(a, b), we use division algorithm repeatedly

$$a = bq_1 + r_1$$

 $b = r_1q_2 + r_2$
 $r_1 = r_2q_3 + r_3$
...
 $r_{n-2} = r_{n-1}q_n + r_n$
 $r_{n-1} = r_nq_{n+1}$

We have $gcd(a, b) = gcd(b, r_1) = gcd(r_1, r_2) = \dots = gcd(r_{n-1}, r_n) = r_n$

If
$$a(x) = b(x)q(x) + r(x)$$
 with $deg(r(x)) < deg(b(x))$, then
$$gcd(a(x),b(x)) = gcd(b(x),r(x))$$

Fundamental Theorem of Arithmetic

Every integer $n \ge 2$ has a unique prime factorization.

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$$

where $p_1, ..., p_k$ are distinct primes and $\alpha_1, ..., \alpha_k$ are positive integers.

Bezout's Identity

For natural numbers a, b, there exist $x, y \in \mathbb{Z}$ such that ax + by = gcd(a, b).

General Bezout's Identity

For integers $a_1, a_2, ..., a_n$, there exist $x_1, x_2, ..., x_n \in \mathbb{Z}$ such that

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = \sum_{i=1}^n a_ix_i = gcd(a_1, a_2, \dots, a_n)$$

GCD and LCM

For natural numbers, a, m, n,

- $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$
- gcd(a,b) lcm[a,b] = ab

Let the prime factorizations of two integers a, b be

$$a = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} = \prod_{i=1}^k p_i^{e_i} = \prod p_k^{e_k}$$
$$b = p_1^{f_1} p_2^{f_2} \dots p_k^{f_k} = \prod_{i=1}^k p_i^{f_i} = \prod p_k^{f_k}$$

The exponents above can be zero and the p_i 's are distinct. Then,

$$\begin{split} gcd(a,b) &= p_1^{min\,(e_1,f_1)} p_2^{min\,(e_2,f_2)} \dots p_k^{min(e_k,f_k)} \\ lcm[a,b] &= p_1^{max\,(e_1,f_1)} p_2^{\,max(e_2,f_2)} \dots p_k^{max\,(e_k,f_k)} \end{split}$$

Let x, y be integers, f or every prime p, we have

$$v_p(\gcd(x,y)) = \min\{v_p(x), v_p(y)\}\$$

$$v_p(\operatorname{lcm}[x,y]) = \max\{v_p[x], v_p[y]\}$$

Four Number Lemma

Let a, b, c and d be positive integers such that ad = bc. There exist positive integers p, q, u, v such that

$$a = pu, b = qu, c = pv, d = qv.$$

Hence, a + b + c + d is not a prime number.

Number and Sum of Divisors

Let $n \in \mathbb{N}$ such that its prime factorization is

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$

Then, the number of divisors of n,

$$d(n) = (1+\alpha_1)(1+\alpha_2)\dots(1+\alpha_k)$$

Note. The function d(n) is odd if and only if n is a square.

Then, the sum of divisors of n,

$$\sigma(n) = \left(\sum_{\beta_1=0}^{\alpha_1} p_1^{\beta_1}\right) ... \left(\sum_{\beta_k=0}^{\alpha_k} p_k^{\beta_k}\right) = \left(\frac{p_1^{\alpha_1+1}-1}{p_1-1}\right) ... \left(\frac{p_k^{\alpha_k+1}-1}{p_k-1}\right)$$

Properties of Modulus

Let a, b and m be integers, with $m \neq 0$. We say that a and b are congruent modulo m, denoted by $a \equiv b \pmod{m}$

if $m \mid a - b$.

- 1. Reflexivity: $a \equiv a \pmod{m}$
- 2. Transitivity: If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$
- 3. Symmetry: If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$
- 4. Addition: If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $a c \equiv b d \pmod{m}$.
- 5. If $a \equiv b \pmod{m}$, then for any integer k, $ka \equiv kb \pmod{m}$.
- 6. Multiplication: If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$ In general, if $a_i \equiv b_i \pmod{m}$, i = 1, ..., k then $a_1 ... a_k \equiv b_1 ... b_k \pmod{m}$ In particular, if $a \equiv b \pmod{m}$, then for any positive integer $k, a^k \equiv b^k \pmod{m}$.
- 7. We have $a \equiv b \pmod{m_i}$, i = 1, ..., k if and only if $a \equiv b \pmod{lcm(m_1, ..., m_k)}$ In particular, if $m_1, ..., m_k$ are pairwise relatively prime, then $a \equiv b \pmod{m_i}$, i = 1, ..., k if and only if $a \equiv b \pmod{m_1 ... m_k}$.
- 8. Division: If $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{\frac{m}{\gcd(m,c)}}$

In particular, if $ac \equiv bc \pmod{m}$, gcd(c, m) = 1, then $a \equiv b \pmod{m}$

- 9. If $a \equiv b \pmod{m}$, and $d \mid m$, then $a \equiv b \pmod{d}$.
- 10. If $a \equiv b \pmod{m}$ and $d \neq 0$, then $da \equiv db \pmod{dm}$.

Freshman's Dream

Let a, b be integers and p be a prime. Then

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Modular Contradictions

Let n be an integer. Then

- 1. $n^2 \equiv 0 \text{ or } 1 \pmod{3}$
- 2. $n^2 \equiv 0 \text{ or } 1 \pmod{4}$
- 3. $n^2 \equiv 0 \text{ or } \pm 1 \text{ (mod 5)}$
- 4. $n^2 \equiv 0 \text{ or } 1 \text{ or } 4 \pmod{8} \text{ or } odd^2 \equiv 1 \pmod{8}$
- 5. $n^3 \equiv 0 \text{ or } \pm 1 \text{ (mod 7)}$
- 6. $n^3 \equiv 0 \text{ or } \pm 1 \text{ (mod 9)}$
- 7. $n^4 \equiv 0 \text{ or } 1 \pmod{16}$

Fermat's Little Theorem

Let a be any number relatively prime to a prime p. Then

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Alternatively,

Let a be any number. Then

$$a^p \equiv a \pmod{p}$$

Euler's Totient Theorem

Let a be any number relatively prime to n. Then

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Euler's Totient Function

Let $n \in \mathbb{N}$ such that its prime factorization is

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$

Then, the number of positive integers less than n that are coprime to n are

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_k} \right)$$
$$= p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \dots p_k^{\alpha_k - 1} \cdot (p_1 - 1)(p_2 - 1) \dots (p_k - 1)$$

Gauss

For any positive integer n, we have

$$\sum_{d\mid n}\phi(d)=n.$$

For instance, if n = 10, then $\phi(1) + \phi(2) + \phi(5) + \phi(10) = 1 + 1 + 4 + 4 = 10$

General Inverses

Let $n \ge 2$ be any positive integer. Then every number with gcd(a, n) = 1 has an inverse, that is a number x such that

$$ax \equiv 1 \pmod{n}$$
.

Inverses add and multiply like fractions

Let $b, d \not\equiv 0 \pmod{p}$. Then for any a, c, we have

$$\frac{a}{b} + \frac{c}{d} \equiv a \cdot b^{-1} + c \cdot d^{-1} \equiv (ad + bc) \cdot (bd)^{-1} \equiv \frac{ad + bc}{bd} \pmod{p}$$
$$\frac{a}{b} \cdot \frac{c}{d} \equiv (a \cdot b^{-1}) \cdot (c \cdot d^{-1}) \equiv (ac) \cdot (bd)^{-1} \equiv \frac{ac}{bd} \pmod{p}$$

just like normal fractions.

Chinese Remainder Theorem

The system of linear congruences

$$x \equiv a_1 \pmod{b_1}$$

$$x \equiv a_2 \pmod{b_2}$$
...
$$x \equiv a_n \pmod{b_n},$$

where $b_1, b_2, ..., b_n$ are pairwise relatively prime (aka $gcd(b_i, b_j) = 1$ iff $i \neq j$) has one distinct solution for x modulo $b_1b_2...b_n$.

Properties of Floor and Ceiling Functions

For a real number x, there is a unique integer n such that $n \le x < n + 1$.

We say that n is the greatest integer less than or equal to x.

$$n = |x|$$

The difference $x - \lfloor x \rfloor$ is called the fractional part of x and is denoted by $\{x\}$.

$$\{x\} = x - |x|$$

The least integer greater than or equal to x is called the ceiling of x and is denoted by [x].

If x is an integer, then $\lfloor x \rfloor = \lceil x \rceil = x$, $\{x\} = 0$.

If x is not an integer, then [x] = |x| + 1

- 1. If a and b are integers with b > 0, and q is the quotient and r is the remainder when a is divided by b, then $q = \left\lfloor \frac{b}{a} \right\rfloor$ and $r = \left\{ \frac{a}{b} \right\} \cdot b$.
- 2. For any real number x and any integer n, [x + n] = [x] + n and [x] + n = [x] + n.
- 3. If x is an integer then $\lfloor x \rfloor + \lfloor -x \rfloor = 0$; if x is not an integer, then $\lfloor x \rfloor + \lfloor -x \rfloor = -1$. If x is an integer then $\lceil x \rceil + \lceil -x \rceil = 0$; if x is not an integer, then $\lceil x \rceil + \lceil -x \rceil = 1$. If x is an integer then $\{x\} + \{-x\} = 0$; if x is not an integer, then $\{x\} + \{-x\} = 1$.
- 4. The floor function is nondecreasing; that is for $x \le y$, $\lfloor x \rfloor \le \lfloor y \rfloor$.
- 5. $\left|x+\frac{1}{2}\right|$ rounds x to its nearest integer.
- 6. $|x| + |y| \le |x + y| \le |x| + |y| + 1$
- 7. $\lfloor x \rfloor \cdot \lfloor y \rfloor \leq \lfloor xy \rfloor$ for non-negative real numbers x and y.
- 8. For any positive real number x and any positive integer n the number of positive multiples of n not exceeding x is $\left|\frac{x}{n}\right|$.
- 9. For any real number x and any positive integer n,

$$\left\lfloor \frac{\lfloor x \rfloor}{n} \right\rfloor = \left\lfloor \frac{x}{n} \right\rfloor.$$

Hermite Identity

Let x be a real number, and let n be a positive integer. Then

$$\lfloor x \rfloor + \left\lfloor x + \frac{1}{n} \right\rfloor + \left\lfloor x + \frac{2}{n} \right\rfloor + \dots + \left\lfloor x + \frac{n-1}{n} \right\rfloor = \lfloor nx \rfloor$$

Wilson's Theorem

Let p be a prime. Then

$$(p-1)! \equiv -1 \pmod{p}$$

Alternatively, more generally,

For any integer n, we have

$$(n-1)! \equiv -1 \pmod{n}$$

if and only if n is a prime.

Fermat's Christmas Theorem

Let p be a prime. Then, there exists an x with $x^2 \equiv -1 \pmod{p}$ if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Order

Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then the order of a modulo p is defined to be the smallest positive integer n such that $a^n \equiv 1 \pmod{p}$.

Fundamental Theorem of Orders

For a prime p and any integer $a \neq 0 \pmod{p}$, we have

$$a^m \equiv 1 \pmod{p} \Leftrightarrow ord_p a \mid m.$$

For relatively prime positive integers a and m,

$$order_m a \mid \phi(m)$$

Primitive Roots

Let p be a prime. Then a residue $g \neq 1$ is called primitive root mod p if g has order (p-1) mod p.

$$g^{p-1} \equiv 1 \ (mod \ p)$$

Primitive Roots Generate all Non-zero Residues

Let g be a primitive root modulo p. Then

$$\{q^1, q^2, q^3, \dots, q^{p-1}\} \equiv \{1, 2, 3, \dots, p-1\} \pmod{p}$$

Primitive Roots Always Exists modulo p

Let p > 2 be a prime. Then there always exists a primitive root modulo p.

p-adic Valuation/ Largest Exponent

Let p be a prime and n be an integer. Then the p-adic valuation of n is defined to be the largest integer t such that $p^t \mid n$.

If we let $2 = p_1 < p_2 < p_3 < \cdots$ be all the primes, then we can write any integer n as

$$n = \prod_{i>0} p_i^{v_{p_i}(n)} = p_1^{v_{p_1}(n)} p_2^{v_{p_2}(n)} \dots$$

Note.

- By convention, $v_n(0) = +\infty$
- v_p can be positive, 0 or even negative. E.g., $v_7\left(\frac{49}{10}\right) = 2$, $v_5\left(\frac{20}{15}\right) = 0$, $v_2\left(\frac{3}{4}\right) = -2$

Arithmetic Properties in p-adic Valuation

Let x, y be integers, $n \in \mathbb{N}$, and p be a prime.

- 1. (Divisibility) $x \mid y \Leftrightarrow v_n(x) \leq v_n(y)$ for all primes p.
- 2. (Product) $v_n(xy) = v_n(x) + v_n(y).$
- 3. $(Exponentiation)v_p(x^n) = nv_p(x)$.
- 4. (Quotient) $v_p\left(\frac{x}{y}\right) = v_p(x) v_p(y)$
- 5. (Sum) $v_p(x+y) \ge \min\{v_p(x), v_p(y)\}$, equality holds if $v_p(x) \ne v_p(y)$. i.e., if $v_p(x) > v_p(y)$ then $v_p(x+y) = v_p(y)$

6. If
$$p^n < x < p^{n+1}$$
, then $v_p(x) = n = \lfloor \log_p x \rfloor$.

Legendre's Formula

For all positive integers n and positive primes p, we have

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots$$
$$v_p(n!) = \frac{n - s_p(n)}{p - 1}$$

Where, $s_p(n)$ denotes the sum of the digits of n in base p.

Lifting the exponent/ LTE

Let p > 2 be a prime and $a, b \in \mathbb{Z}$ be coprime to p such that $p \mid a - b$. Suppose n is a positive integer.

$$v_p(a^n - b^n) = v_p(a - b) + v_p(n).$$

Note. Three particular conditions must be satisfied.

- 1. p must be odd. i.e., $p \neq 2$.
- 2. gcd(p, a) = gcd(p, b) = 1. i.e., $p \dagger a, b$.
- 3. $p \mid a b$, i.e., $v_n(a b) \neq 0$

Alternatively,

Let p > 2 be a prime and $a, b \in \mathbb{Z}$ be coprime to p such that $p \mid a + b$. Suppose n is an odd positive integer.

$$v_p(a^n+b^n)=v_p(a+b)+v_p(n)$$

Sad case when p = 2/ LTE for p = 2

Let x, y be odd integers such that $2 \mid x - y$. Let n be an even integer. Then

$$v_2(x^n - y^n) = v_2(x^2 - y^2) + v_2(\frac{n}{2}) = v_2(x - y) + v_2(x + y) + v_2(n) - 1$$