MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

1912 írásbeli vizsga 3 / 20 2019. május 7.

I.

1. a)		
(A paralelogramma területét megkapjuk, ha az $ABCD$ négyzet területéből levonjuk a négy derékszögű háromszög területét.) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1 pont	
$T(x) = 16 - 2 \cdot \frac{x(4-2x)}{2} - 2 \cdot \frac{2x(4-x)}{2}$	1 pont	
$T(x) = 16 - 4x + 2x^2 - 8x + 2x^2$	1 pont	
Összevonás után: $T(x) = 4x^2 - 12x + 16$, ami a bizonyítandó állítás volt.	1 pont	
Összesen:	4 pont	

1. b) első megoldás		
$T(x) = 4(x^2 - 3x + 4) = 4(x - 1, 5)^2 + 7$	2 pont	
A másodfokú tag együtthatója pozitív, ezért a T -nek minimuma van az $x = 1,5$ helyen (ami a $0 < x < 2$ feltételnek megfelel).	2 pont	
Összesen:	4 pont	

Megjegyzés: Teljes pontszámot kapjon a vizsgázó, ha megállapítja, hogy a $4x^2 - 12x + 16$ kifejezésnek minimuma van (mert a főegyüttható pozitív), és akkor minimális, ha $x = -\frac{b}{2a} = \frac{12}{8} = 1,5$ (ami a 0 < x < 2 feltételnek megfelel).

1. b) második megoldás		
T-nek ott lehet minimuma, ahol az első deriváltja 0.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
T'(x) = 8x - 12 = 0	1 pont	
x = 1.5 (ami a $0 < x < 2$ feltételnek megfelel).	1 pont	
T''(1,5) = 8 > 0 miatt itt valóban minimuma van T -nek.	1 pont	A T' negatívból pozitívba megy át $x = 1,5$ -nél, ezért T-nek itt minimuma van.
Összesen:	4 pont	

1. c) első megoldás		
Az ábra jelöléseit használjuk. (Mivel $x = 1,25$, ezért) $HA = 1,25$ és $AE = 4 - 2 \cdot 1,25 = 1,5$, BE = 2,5 és $BF = 4 - 1,25 = 2,75$.	1 pont	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
A HAE derékszögű háromszögben $tg \alpha = \frac{1,25}{1,5} = \frac{5}{6} (\approx 0,833).$	1 pont	
Az <i>FBE</i> derékszögű háromszögben: $tg\beta = \frac{2,75}{2,5} = 1,1$.	1 pont	
$\alpha \approx 39.8^{\circ}$ és $\beta \approx 47.7^{\circ}$.	1 pont	Addiciós képlet szerint: $tg(\alpha + \beta) = \frac{\frac{5}{6} + \frac{11}{10}}{1 - \frac{5}{6} \cdot \frac{11}{10}} =$ = 23,2.
$\alpha + \beta \approx 87.5^{\circ}$, ezért $\epsilon \approx 92.5^{\circ}$.	1 pont	
(A paralelogramma szemközti szögei egyenlők, szomszédos szögei pedig kiegészítő szögek, ezért) a paralelogramma szögei: 87,5°, 92,5°, 87,5°, 92,5°.	1 pont	
Osszesen:	6 pont	

1. c) második megoldás		
Az a) feladat szerint a paralelogramma területe	1 ,	
(m ² -ben) $T(1,25) = 4 \cdot 1,25^2 - 12 \cdot 1,25 + 16 = 7,25$.	1 pont	
Az ábra jelöléseit használva:		
$HA = 1,25 \text{ és } AE = 4 - 2 \cdot 1,25 = 1,5,$	1 pont	
BE = 2.5 és BF = 4 - 1.25 = 2.75.		
$HE = \sqrt{1,25^2 + 1,5^2} \ (\approx 1,953)$	1 pont	$HE = \frac{\sqrt{61}}{4}$, $EF = \frac{\sqrt{221}}{4}$
$EF = \sqrt{2,75^2 + 2,5^2} \ (\approx 3,717)$	1 pont	$IIE = \frac{1}{4}$, $EF = \frac{1}{4}$
A paralelogramma egyik szögét jelölje φ.		
A paralelogramma területe: $T = \frac{\sqrt{61}}{4} \cdot \frac{\sqrt{221}}{4} \cdot \sin \varphi$,	1 pont	
amiből $\sin \varphi = \frac{7,25 \cdot 16}{\sqrt{61 \cdot 221}} \ (\approx 0,9991).$		
Ebből $\varphi \approx 87.5^{\circ}$ vagy $\varphi \approx 180^{\circ} - 87.5^{\circ} = 92.5^{\circ}$.	1 pont	
A paralelogramma szögei: 87,5°, 92,5°, 87,5°, 92,5°.	1 pont	
Összesen:	6 pont	

2. a)		
Jelölje a mértani sorozat hányadosát q.		
$q^{5} \left(= \frac{384}{12} \right) = 32,$	1 pont	
innen pedig $q = 2$.	1 pont	
A sorozat első hat tagja tehát $\frac{3}{2}$, 3, 6, 12, 24 és 48,	1 pont	
ezek átlaga 15,75.	1 pont	
Az ettől mért átlagos abszolút eltérés: $\frac{ 1,5-15,75 + 3-15,75 ++ 48-15,75 }{6} =$	1 pont	
= 13,5.	1 pont	
Összesen:	6 pont	

2. b)		
A 12 háromféleképpen állítható elő 1-nél nagyobb számjegyek szorzataként: $12 = 6 \cdot 2 = 4 \cdot 3 = 3 \cdot 2 \cdot 2$.	1 pont	
A számjegyek összege akkor lesz 12, ha ezen számjegyek mellett még megfelelő számú 1-es számjegyet tartalmaz a szám. (Tetszőleges számú 1-es hozzávételével a számjegyek szorzata továbbra is 12 marad.)	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Olyan szám, amely 1 db 6-ost, 1 db 2-est, valamint $(12-6-2=)$ 4 db 1-est tartalmaz, $6 \cdot 5$ (= 30) db van. (A 6-ost hat helyre tehetjük, a 2-est a fennmaradó öt hely bármelyikére.)	1 pont	$\frac{6!}{4!}$ (= 30)
Olyan szám, amely 1 db 4-est, 1 db 3-ast, valamint $(12-4-3) = 10$ 5 db 1-est tartalmaz, $(12-4) = 10$ db van;	1 pont	$\frac{7!}{5!}$ (= 42)
olyan pedig, amely 2 db 2-est, 1 db 3-ast, valamint $(12-2\cdot 2-3=)$ 5 db 1-est tartalmaz, $\binom{8}{2}\cdot 6$ (= 168) db van.	2 pont	$\frac{8!}{2! \cdot 5!}$ (= 168)
Összesen tehát $30 + 42 + 168 = 240$ olyan szám van, amely a feltételeknek megfelel.	1 pont	
Összesen:	7 pont	

3. a)		
$\frac{1}{3} \cdot \left(\frac{1}{3}\right)^{2x} + \frac{1}{9} \cdot \left(\frac{1}{9}\right)^{x} = 324$	1 pont	
$\left(\frac{1}{3}\right)^{2x} = \left(\frac{1}{9}\right)^x, \text{ igy } \left(\frac{1}{3} + \frac{1}{9}\right) \left(\frac{1}{9}\right)^x = 324,$ $\text{azaz } \frac{4}{9} \cdot \left(\frac{1}{9}\right)^x = 324.$	2 pont	
$\left(\frac{1}{9}\right)^x = 729$	1 pont	
$(729 = 9^3$ és az exponenciális függvény kölcsönös egyértelműsége miatt) $x = -3$.	1 pont	$x = \log_{\frac{1}{9}} 729 = -3$
Ellenőrzés behelyettesítéssel vagy ekvivalenciára hivatkozással.	1 pont	
Összesen:	6 pont	

3. b) első megoldás		
(Négyzetre emelve:)	1 pont	
$6x - 24 = 2x - 7 + 1 - 2\sqrt{2x - 7}$	1 point	
$2\sqrt{2x-7} = 18-4x$	1 pont	
(Kettővel osztva, négyzetre emelve és rendezve:)		
$2x - 7 = 81 - 36x + 4x^2,$	1 pont	
$azaz 4x^2 - 38x + 88 = 0.$		
A másodfokú egyenlet egyik gyöke $x = 4$, és ez kielé-	2 pont	
gíti az eredeti egyenletet (mindkét oldal értéke 0).	1	
A másik gyök $x = 5,5$. Behelyettesítéssel látható,		
hogy ez nem megoldása az eredeti egyenletnek	2 pont	
(a bal oldal értéke 3, a jobb oldal értéke 1).		
Összesen:	7 pont	

3. b) második megoldás		
Értelmezési tartomány: $x \ge 4$.		
Ezen a halmazon mindkét oldal nemnegatív,	1 pont	
így a négyzetre emelés ekvivalens átalakítás.		
$6x - 24 = 2x - 7 + 1 - 2\sqrt{2x - 7}$	1 pont	
$2\sqrt{2x-7} = 18-4x$	1 pont	
A bal oldal nemnegatív, ezért szükséges, hogy a jobb		
oldal is nemnegatív legyen, tehát $x \le 4.5$.		
A kapott egyenlet mindkét oldala nemnegatív a	1 pont	
[4; 4,5] halmazon, ezért itt (2-vel osztás után)		
a négyzetre emelés ekvivalens átalakítás.		
$2x - 7 = 81 - 36x + 4x^2,$	1 nont	
$azaz 4x^2 - 38x + 88 = 0.$	1 pont	
A másodfokú egyenlet gyökei $x = 4$ és $x = 5,5$.	1 pont	
Az 5,5 nem eleme a [4; 4,5] halmaznak, a 4 viszont		
igen, és mivel ezen a halmazon ekvivalens átalakítá-	1 mont	
sokat végeztünk, ez egyben az egyenlet egyetlen	1 pont	
megoldása.		
Összesen:	7 pont	

3. b) harmadik megoldás		
Értelmezési tartomány: $x \ge 4$.	1 pont	
$\sqrt{6x - 24} + 1 = \sqrt{2x - 7}$ Négyzetre emelve: $6x - 24 + 2\sqrt{6x - 24} + 1 = 2x - 7$.	1 pont	
$\sqrt{6x - 24} = 8 - 2x$	1 pont	$\sqrt{6(x-4)} = 2(4-x)$
(Behelyettesítéssel látható, hogy) $x = 4$ megoldása az egyenletnek és az eredeti egyenletnek is.	1 pont*	
(Az értelmezési tartományon) a $\sqrt{6x-24} = 8-2x$ egyenlet bal oldala szigorúan monoton növekedő, a jobb oldala pedig szigorúan monoton csökkenő,	2 pont*	Ha x > 4, akkor az egyen- let bal oldala pozitív, jobb oldala pedig negatív,
ezért más megoldása nincs az egyenletnek.	1 pont*	ezért 4-nél nagyobb szám nem lehet gyöke az egyen- letnek.
Összesen:	7 pont	

Megjegyzés: A *-gal jelzett pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Az egyenlet bal oldalán nemnegatív szám áll, ezért a jobb oldalon is ennek kell teljesülnie:	1 pont	
$8-2x \ge 0$, vagyis $x \le 4$.	1 pont	
Ezt az értelmezési tartománnyal összevetve adódik, hogy csak $x = 4$ lehet megoldása az egyenletnek.	1 pont	
Behelyettesítéssel látható, hogy a 4 valóban megoldása az eredeti egyenletnek.	1 pont	

4. a)		
Az ábra jelöléseit használjuk. A gúla ABC alaplapjának középpontja (súlypontja) S . DS merőleges az alaplapra, a feltétel szerint pedig $SBD \angle = 30^{\circ}$.	1 pont	
BS az ABC szabályos háromszög magasságának (súlyvonalának) kétharmada: $BS = \frac{2}{3} \cdot \frac{\sqrt{3}}{2} \cdot 6 = 2\sqrt{3} \ (\approx 3,46) \ (cm).$	2 pont	
A gúla testmagassága $DS = BS \cdot tg30^{\circ} = 2$ (cm).	1 pont	
Az ABC háromszög területe: $T = \frac{AB^2 \cdot \sqrt{3}}{4} = \frac{6^2 \cdot \sqrt{3}}{4} = 9\sqrt{3} \ (\approx 15,59) \ (\text{cm}^2).$	1 pont	
A gúla térfogata: $V = \frac{T \cdot DS}{3} = 6\sqrt{3} \ (\approx 10,4) \text{ cm}^3.$	1 pont	
Összesen:	6 pont	

4. b)		
Ha az 1-es, a 2-es és a 3-as dobás valószínűsége p , akkor a 4-es dobás valószínűsége $5p$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$p + p + p + 5p = 8p = 1$, ezért $p = \frac{1}{8}$.	1 pont	
(A dobott számok összege akkor lehet 6, ha az egyik tetraéderrel 2-t, a másikkal pedig 4-et, vagy ha mindkettővel 3-at dob a bűvész.) Annak a valószínűsége, hogy az egyik tetraéderrel 2-t, a másikkal pedig 4-et dob a bűvész, $2 \cdot p \cdot 5 p = 10 p^2 = \frac{10}{64},$	1 pont	
annak a valószínűsége pedig, hogy mindkét tetraéderrel 3-at dob, $p \cdot p = p^2 = \frac{1}{64}$.	1 pont	
A kérdezett valószínűség ezek összege: $\frac{11}{64}$ ($\approx 0,172$).	1 pont	
Összesen:	5 pont	

II.

5. a)		
(A szakaszok hosszát cm-ben mérve) 2a + c = 18 miatt $c = 18 - 2.7 = 4$.	1 pont	
$a + 2b + c = 33$ miatt $b = \frac{33 - 7 - 4}{2} = 11$.	1 pont	
A téglatest térfogata: $abc = 7 \cdot 11 \cdot 4 = 308 \text{ cm}^3$.	1 pont	
Összesen:	3 pont	

5. b) első megoldás		
(A térfogatot az egyik él hosszának segítségével fejezzük ki.) $2a+c=18$ A $a+2b+c=33$ egyenletrendszer első egyenletéből: $c=18-2a$.	1 pont	
A második egyenletbe helyettesítve: 2b = 33 - a - c = 33 - a - (18 - 2a) = a + 15, ezért $b = \frac{a}{2} + 7,5$.	1 pont	
$V = abc = a\left(\frac{a}{2} + 7.5\right)(18 - 2a) (0 < a < 9)$	1 pont	
A $V(a) = a\left(\frac{a}{2} + 7.5\right)(18 - 2a)$; $0 < a < 9$ függvénynek ott lehet maximuma, ahol $V'(a) = 0$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$V(a) = -a^3 - 6a^2 + 135a$	1 pont	
$V'(a) = -3a^2 - 12a + 135 = -3(a^2 + 4a - 45)$	1 pont	
$a^2 + 4a - 45 = 0$ gyökei 5 és -9 (a -9 nem lehetséges, az 5 pedig megfelel).	1 pont	
V''(a) = -6a - 12 és így $V''(5) < 0$, tehát V -nek (abszolút) maximuma van $a = 5$ -nél.	1 pont	Az $a = 5$ helyen a V' függ- vény pozitívból negatívba megy át, ezért itt V -nek maximuma van.
A téglatest térfogata maximális (400 cm ³), ha éleinek hossza $a = 5$ cm, $b = 10$ cm és $c = 8$ cm.	1 pont	
Összesen:	9 pont	

5. b) második megoldás		
(A térfogatot az egyik él hosszának segítségével fejezzük ki.) A $2a+c=18$ egyenletrendszer két egyenletének különbségéből: $a-2b=-15$, vagyis $a=2b-15$.	1 pont	
Ezt az első egyenletbe helyettesítve kapjuk, hogy $c = 18 - 2(2b - 15) = 48 - 4b$.	1 pont	
A téglatest térfogata $V = abc = (2b - 15)b(48 - 4b)$ (ahol 7,5 < b < 12).	1 pont	
A $V(b) = 4b(2b-15)(12-b)$; 7,5 < b < 12 függvénynek ott lehet maximuma, ahol $V'(b) = 0$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$V(b) = -8b^3 + 156b^2 - 720b$	1 pont	
$V'(b) = -24b^2 + 312b - 720 = 24(-b^2 + 13b - 30)$	1 pont	
$-b^2 + 13b - 30 = 0$ gyökei a 10 és a 3 (a 3 nincs a <i>V</i> értelmezési tartományában, a 10 pedig megfelel).	1 pont	
A $b = 10$ helyen a V' függvény pozitívból negatívba megy át, ezért itt V -nek (abszolút) maximuma van.	1 pont	V''(b) = 24(-2b+13) és V''(10) = -168 < 0, ezért V-nek itt maximuma van.
A téglatest térfogata maximális (400 cm ³), ha éleinek hossza $b = 10$ cm, $a = 5$ cm és $c = 8$ cm.	1 pont	
Összesen:	9 pont	

Megjegyzések:

1. Ha a vizsgázó válaszait mértékegység nélkül adja meg, akkor ezért a feladatban összesen 1 pontot veszítsen.

2.
$$V(c) = \frac{1}{8}(c^3 - 66c^2 + 864c)$$
, ahol $0 < c < 18$;
 $V'(c) = \frac{3}{8}(c^2 - 44c + 288)$;
A $c^2 - 44c + 288 = 0$ egyenlet gyökei 8 és 36
(a 36 nincs a V értelmezési tartományában, a 8 pedig megfelel);
 $V''(c) = \frac{3}{4}(c - 22)$ és $V''(8) = -10,5 < 0$.

5. c) első megoldás		
A téglatest 8 csúcsa összesen $\binom{8}{3}$ = 56 háromszöget	1 pont	
határoz meg.		
Ezek közül le kell vonni azokat, melyeknek síkja egybeesik a téglatest valamelyik lapjának síkjával. Mind a hat lapon négy ilyen háromszög van, összesen tehát 24.	2 pont	
A megfelelő háromszögek száma (56 – 24 =) 32.	1 pont	
Összesen:	4 pont	

5. c) második megoldás		
(A feladat szerint nem választható olyan háromszög, amelynek két oldala a téglatest két élével azonos.) Ha a háromszög egyik oldala a téglatest egy éle, akkor ennek két végpontjához kétféleképpen választhatjuk a háromszög harmadik csúcsát (mert a kiválasztott élben csatlakozó két lap egyik csúcsa sem választható a háromszög harmadik csúcsaként).	1 pont	
(A téglatestnek 12 éle van, ezért) ilyen háromszögből összesen 12 · 2 = 24 darab van.	1 pont	
Ha a háromszögnek nincs olyan oldala, amelyik a téglatest valamelyik élével azonos, akkor mindhárom oldala a téglatest egy-egy lapjának átlója. A téglatest egy adott csúcsából kiinduló három él nem közös végpontjai egy megfelelő háromszöget határoznak meg. (A téglatestnek 8 csúcsa van, ezért) ilyen háromszögből 8 darab van.	1 pont	
A megfelelő háromszögek száma 24 + 8 = 32.	1 pont	
Összesen:	4 pont	

5. c) harmadik megoldás		
A téglatest "alsó" lapjáról két szomszédos csúcsot 4-féleképpen választhatunk, ezekhez a feltételnek megfelelően a "felső" lapjáról 2-féleképpen választ- hatjuk a harmadik csúcsot.	1 pont	
Az alsó lapról két átellenes csúcsot 2-féleképpen választhatunk, ezekhez a felső lapról 4-féleképpen választhatjuk a harmadik csúcsot.	1 pont	

Tehát $(4 \cdot 2 + 2 \cdot 4 =)$ 16 megfelelő háromszög van, melynek az alsó lapon van két csúcsa, és ugyanígy 16 megfelelő háromszög van, melynek a felső lapon van két csúcsa.	1 pont	
Összesen tehát 32 megfelelő háromszög van.	1 pont	
Összesen:	4 pont	

5. c) negyedik megoldás		
A téglatest egy kiválasztott testátlójának két végpont- jához a téglatest maradék 6 csúcsának bármelyike vá- lasztható a háromszög harmadik csúcsának.	1 pont	
(A téglatestnek 4 testátlója van, ezért) ilyen háromszögből összesen $6 \cdot 4 = 24$ darab van.	1 pont	
Ha a háromszögnek nincs olyan oldala, amelyik a téglatest valamelyik testátlója, akkor (nincs olyan ol- dala sem, amelyik a téglatest valamelyik éle, ezért) mindhárom oldala lapátló. Ilyen háromszögből 8 darab van.	1 pont	
A megfelelő háromszögek száma 24 + 8 = 32.	1 pont	
Összesen:	4 pont	

6. a)		
A háromszög kerülete 30 egység.	1 pont	
Jelölje az oldalak hosszát x , x és $30 - 2x$.	1 point	
A szórás miatt:		
$\sqrt{\frac{(10-x)^2+(10-x)^2+(2x-20)^2}{3}}=3\sqrt{2}.$	1 pont	
$200 - 40x + 2x^2 = 18$		$\sqrt{2(10-x)^2} = 3\sqrt{2}$ $\sqrt{(10-x)^2} = 3$
$2x^2 - 40x + 182 = 0$	1 pont	$\sqrt{(10-x)^2} = 3$
$x^2 - 20x + 91 = 0$		10 - x = 3
x = 7 vagy x = 13	1 pont	
A háromszög oldalai az első esetben 7, 7, 16 egység, a második esetben 13, 13, 4 egység.	1 pont	
Ellenőrzés: Az első eset nem lehetséges, mert nem teljesül a háromszög-egyenlőtlenség. A második eset lehetséges, mert teljesül a háromszög-egyenlőtlenség (és a szórás $\sqrt{\frac{3^2+3^2+6^2}{3}} = \sqrt{18} = 3\sqrt{2}$ valóban).	1 pont	
Összesen:	6 pont	

6. b)		
Az e egyenes az x tengelyt a $D(-4; 0)$ pontban (az y tengelyt pedig a $(0; 3)$ pontban) metszi.	1 pont	C
(Keressük <i>BC</i> és az <i>e</i> egyenes <i>M</i> metszéspontját.) A <i>BC</i> egyenes egy normálvektora (4; 3),	1 pont	M
egyenlete $4x + 3y = 24$.	1 pont	A D B X
A BC és az e egyenes M metszéspontját a $4x+3y=24$ a egyenletrendszer megoldása adja. Az első egyenlet 4-szeresének és a második egyenlet 3-szorosának összegét véve: $25x = 60$.	1 pont	Az első egyenletből $x = 6 - 0.75y$, amit a másodikba helyettesítve: $18 - 6.25y = -12$. $6.25y = 30$
x = 2,4 és $y = 4,8$, tehát $M(2,4;4,8)$.	1 pont	
A <i>DBM</i> háromszög területe: $\frac{10 \cdot 4,8}{2} = 24$. Mivel az <i>ABC</i> háromszög területe: $\frac{12 \cdot 8}{2} = 48$,	1 pont	
Mivel az ABC háromszög területe: $\frac{12 \cdot 8}{2} = 48$, az e valóban felezi az ABC háromszög területét.	1 pont	
(A Pitagorasz-tételből) $AC = \sqrt{6^2 + 8^2} = 10$, az ABC háromszög kerülete ezért $2 \cdot 10 + 12 = 32$.	1 pont	
$BM = \sqrt{3,6^2 + 4,8^2} = 6$, $DB + BM = 10 + 6 = 16$,	1 pont	
tehát az <i>e</i> egyenes valóban felezi az <i>ABC</i> háromszög kerületét is.	1 pont	
Összesen:	10 pont	

7. a)		
Az I. állítás hamis.	1 pont	
Az öt számjegy között biztosan lesz három azonos paritású, így az ezeknek megfelelő csúcsok egy hárompontú kört alkotnak a gráfban, ezért az nem lehet fagráf.	1 pont	
A II. állítás igaz.	1 pont	
Egy megfelelő példa. (Ha például egy páros és négy páratlan számjegyet írunk le, akkor a páros számnak megfelelő csúcs a gráfban izolált pont lesz, ezért ez a gráf nem összefüggő.)	1 pont	
Összesen:	4 pont	

7. b)		
Legyen a célállomások száma a két évvel ezelőtti időpontban n , jelenleg pedig 1,5 n (n így páros). A járatok száma korábban $\binom{n}{2}$ volt, jelenleg $\binom{1,5n}{2}$.	1 pont	Jelenleg m, két éve $\frac{2}{3}$ m célállomás esetén:
A feltétel szerint $\binom{n}{2} + 60 = \binom{1,5n}{2}$.	1 pont	$\left(\frac{2}{3}m\atop2\right)+60=\binom{m}{2}.$
$\frac{n(n-1)}{2} + 60 = \frac{1,5n(1,5n-1)}{2}$	1 pont	$\frac{2}{3}m\left(\frac{2}{3}m-1\right)}{2}+60=\frac{m(m-1)}{2}$
Nullára rendezve: $0 = 1,25n^2 - 0,5n - 120$.	1 pont	$0 = \frac{5}{9}m^2 - \frac{1}{3}m - 120$
Ennek egyik gyöke –9,6, ami nem megoldása a feladatnak, a másik gyöke pedig 10.	1 pont	A –14,4 nem megoldás, a másik gyök pedig 15.
Jelenleg (10 · 1,5 =) 15 célállomásra közlekednek.	1 pont	
Ellenőrzés: két éve 45, jelenleg 105 járatot közlekedtetnek, és 105 = 45 + 60 valóban igaz.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó az $\binom{n}{2}$ értékeinek felsorolása (1, 3, 6, 10, 15, 21, 28, 36, 45, 55,

66, 78, 91, 105, ...) alapján megállapítja, hogy 10 korábbi és 15 jelenlegi célállomás megfelel a feladat feltételeinek ($10 \cdot 1,5 = 15$, illetve 105 - 45 = 60), akkor erre a gondolatmenetére 3 pontot kapjon.

További 4 pontot kapjon, ha bizonyítja, hogy nincs más megoldása a feladatnak. Például: Az n (a feladat szövege alapján) páros, ezért n = 2k és 1,5n = 3k ($k \in \mathbb{N}^+$).

$$\binom{3k}{2} - \binom{2k}{2} = 2,5k(k-0,2)$$
 (2 pont),

ami $k \ge 1$ esetén szigorúan monoton növekszik (1 pont), tehát más megoldás nincs (1 pont).

7. c)		
A modell szerint 0,968 annak a valószínűsége, hogy valaki megjelenik az indulásnál.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak a valószínűsége, hogy 169 utas jelenik meg: $P(169) = {170 \choose 169} \cdot 0,968^{169} \cdot 0,032 \approx 0,022.$	1 pont	
Annak a valószínűsége, hogy 170 utas jelenik meg: $P(170) = 0.968^{170} \approx 0.004.$	1 pont	
Annak a valószínűsége tehát, hogy legfeljebb 168 utas jelenik meg: $1 - P(169) - P(170) \approx 0,974$.	1 pont	
A légitársaság által fizetendő kártérítés várható értéke: $P(169) \cdot 600 + P(170) \cdot 1200 \approx 18$ euró.	1 pont	
Összesen:	5 pont	

8. a)		
Megoldandó az $\frac{n^2 - 5n + 10}{2} = 26$ egyenlet. Nullára rendezve $n^2 - 5n - 42 = 0$.	1 pont	
Ennek a gyökei (kb. 9,45 és –4,45) nem egészek,	1 pont	
így nincs olyan szó, amelyért 26 pontot kap a játékos.	1 pont	
Összesen:	3 pont	

Megjegyzés: Teljes pontszámot kapjon a vizsgázó, ha megállapítja, hogy a kilencbetűs szóért 23, a tízbetűsért 30 pont jár (1 pont), majd a b) feladat állítására hivatkozva (1 pont) bizonyítottnak tekinti, hogy 26 pont nem kapható (1 pont).

8. b)		
Hárombetűs szóért (a képlet alapján) 2 pont jár,	1 pont	
és ez több, mint a kétbetűs szóért járó 1 pont.	1 point	
Legyen $f(n) = \frac{n^2 - 5n + 10}{2}$ (ahol $n \ge 3$ és $n \in \mathbb{N}$). Igazolni kell, hogy $f(n+1) > f(n)$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$f(n+1) = \frac{(n+1)^2 - 5(n+1) + 10}{2} = \frac{n^2 - 3n + 6}{2},$	1 pont*	
az $\frac{n^2 - 3n + 6}{2} > \frac{n^2 - 5n + 10}{2}$ egyenlőtlenséget (ekvivalens lépésekkel) átrendezve $n > 2$ adódik. Ez $(n \ge 3 \text{ miatt})$ teljesül, ami éppen azt jelenti, hogy hosszabb szóért több pont jár.	1 pont*	
Mivel $n^2 - 5n = n(n-5)$ két ellentétes paritású tényező szorzata, ezért páros, tehát $f(n)$ egész szám.	2 pont	
Összesen:	6 pont	

Megjegyzés: A *-gal jelölt 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

1/10SJeSJ20S: 11 Sai Jeioti 2 pontot az atassi Sonastatino	110511ap11at1ja a 11285a26.	
Teljes négyzetté alakítással kapjuk, hogy $f(n) = 0.5(n-2.5)^2 + 1.875$.	1 pont	
Az $x \mapsto 0.5(x-2.5)^2 + 1.875$ másodfokú függvény szigorúan monoton növekedő, ha $x \ge 2.5$. Ebből következik, hogy $f(n+1) > f(n)$ is teljesül, ha $n \ge 3$ és $n \in \mathbb{N}$.	1 pont	

8. c) első megoldás		
Megmutatjuk, hogy az $\frac{n^2 - 5n + 10}{2} = 2 + \frac{m(m+1)}{2}$ egyenletnek minden $m \in \mathbb{N}$ paraméter esetén van megoldása az $n \ge 3$ egészek körében.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Nullára rendezve: $n^2 - 5n + (6 - m - m^2) = 0$.	1 pont	$n^2 - 5n + 10 = 4 + m(m+1)$
A megoldóképletet felírva: $n_{1,2} = \frac{5 \pm \sqrt{25 - 4(6 - m - m^2)}}{2} = \frac{5 \pm \sqrt{1 + 4m + 4m^2}}{2}.$	1 pont	$n^2 - 5n + 6 = m(m+1)$
A négyzetgyök alatti kifejezés (a diszkrimináns) teljes négyzet, így $n_{1,2} = \frac{5 \pm (1 + 2m)}{2}$.	1 pont	(n-3)(n-2) = m(m+1)
Az egyenlet gyökei tehát $3 + m$ és $2 - m$.	1 pont	Mivel $n \ge 3$, ezért a jobb oldalon és a bal oldalon is két szomszédos természetes szám szorzata áll.
A $3 + m$ mindig 2-nél nagyobb egész szám (a $2 - m$ pedig soha),	1 pont	Az egyenlőség teljesül, ha n-3=m, azaz $n=m+3$,
ezért igaz, hogy tetszőleges m természetes szám esetén a játékos kaphat $2 + \frac{m(m+1)}{2}$ pontot.	1 pont	
Összesen:	7 pont	

8. c) második megoldás						
Megmutatjuk, hogy az $\frac{n^2 - 5n + 10}{2} = 2 + \frac{m(m+1)}{2}$ egyenletnek minden $m \in \mathbb{N}$ paraméter esetén van megoldása az $n \ge 3$ egészek körében.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.				
Rendezve: $n^2 - 5n + 10 = m^2 + m + 4$.	1 pont					
Mindkét oldalt 4-gyel szorozva: $4n^2 - 20n + 40 = 4m^2 + 4m + 16$, amiből $4n^2 - 20n + 25 = 4m^2 + 4m + 1$.	1 pont					
$(2n-5)^2 = (2m+1)^2$	1 pont					
2n-5=2m+1 vagy 2n-5=-2m-1	1 pont					
n = m + 3, amely mindig legalább 3, ezért megfelel (vagy $n = 2 - m$, de ez mindig legfeljebb 2, ezért nem felel meg).	1 pont					
Tehát igaz, hogy tetszőleges m természetes szám esetén a játékos kaphat $2 + \frac{m(m+1)}{2}$ pontot.	1 pont					
Összesen:	7 pont					

8. c) harmadik	meg	oldá	is							
(Megkeressük m-ł			_							
Az első néhány es	et tá	bláz	atok	ba f	ogla	lva:				
m	0	1	2	3	4	5	6			
$2 + \frac{m(m+1)}{2}$	2	3	5	8	12	17	23		1 pont	
n (a szó hossza)	0	1	2	3	4	5	6	7	1	
$\frac{n^2 - 5n + 10}{2} =$	_	_	_	2	3	5	8	12		
A két táblázat alapján az sejthető, hogy az m -hez tartozó pontszámot az $n = m + 3$ hosszúságú szóra kapjuk meg ($m = 0$ esetén $n = 3$, $m = 1$ esetén $n = 4$, $m = 2$ esetén $n = 5$ megfelelő, és így tovább).						2 pont				
$\frac{(m+3)^2 - 5(m+3) + 10}{2} = \frac{m^2 + 6m + 9 - 5m - 15 + 10}{2} = \frac{m^2 + 6m + 9 - 5m - 15 + 10}{2}$						1 pont				
$=\frac{m^2+m+4}{2}=\frac{4+m(m+1)}{2}=2+\frac{m(m+1)}{2},$					2 pont					
így az $n = m + 3$ v választás.	így az $n = m + 3$ valóban minden m esetén megfelelő választás.					1 pont				
							Össz	esen:	7 pont	

9. a) első megoldás		
42 = 2 · 3 · 7, így azokat az 1000-nél kisebb pozitív egész számokat keressük, melyek nem oszthatók sem 2-vel, sem 3-mal, sem 7-tel.	1 pont	
1-től 999-ig 2-vel osztható szám 499 darab, 3-mal osztható 333 darab, 7-tel osztható 142 darab van;	1 pont	A 500 darab páratlan szám között 167 darab
2-vel és 3-mal (azaz 6-tal) osztható szám 166 darab, 2-vel és 7-tel (azaz 14-gyel) osztható szám 71 darab, 3-mal és 7-tel (azaz 21-gyel) osztható szám 47 darab;	1 pont	3-mal osztható és 71 da- rab 7-tel osztható van,
végül 2-vel, 3-mal és 7-tel (azaz 42-vel) osztható szám 23 darab van.	1 pont	a 3-mal és 7-tel is osztha- tók száma pedig 24.
A keresett számok száma (logikai szita formulával) 999 – (499 + 333 + 142) + (166 + 71 + 47) – 23 =	1 pont*	500 - 167 - 71 + 24 =
= 286.	1 pont*	
Összesen:	6 pont	

Megjegyzés: A *-gal jelölt pontok akkor is járnak, ha a vizsgázó a megfelelő halmazábra részhalmazai elemszámának összeadásával jut helyes eredményre:

$$999 - (285 + 143 + 47 + 143 + 24 + 48 + 23) = 286.$$

9. a) második megoldás		
1-től 42-ig a 42-höz relatív prímek: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, ez 12 darab.	1 pont*	
(Ha <i>k</i> relatív prím a 42-höz, akkor <i>k</i> + 42 is, ezért) bármelyik 42 egymást követő egész szám között 12 megfelelő szám van.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$999 = 23 \cdot 42 + 33$	1 pont	
Így 1-től (23 · 42 =) 966-ig 23 · 12 = 276 megfelelő szám van,	1 pont	
967-től 999-ig pedig annyi, amennyi 1-től 33-ig, azaz 10 darab.	1 pont	
A keresett számok száma (276 + 10 =) 286.	1 pont	
Összesen:	6 pont	

Megjegyzés: A *-gal jelölt pont akkor is jár, ha a vizsgázó az adott számhoz a nála kisebb relatív prímek számát megadó $\varphi(n)$ függvényre hivatkozik:

$$\varphi(42) = 42 \cdot \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{7}\right) = 12.$$

9. b)		
Az n -edik L alakú sávban a számok összege $n+2n+3n++(n-1)n+n\cdot n+$ $+n(n-1)+n(n-2)++n\cdot 2+n=$	1 pont	$2 \cdot (n+2n+3n+\ldots+ + (n-1) n+n \cdot n) - n \cdot n$
$n \cdot ((1+2++n-1)\cdot 2+n) =$	1 pont	$2n(1+2+3++n)-n^2 =$
$= n \cdot (n(n-1) + n) =$	1 pont	$=2n\cdot\frac{n(n+1)}{2}-n^2=$
$= n^3$.	1 pont	
Összesen:	4 pont	

9. c) első megoldás		
Teljes indukciót alkalmazunk.		
$n = 1$ -re az állítás igaz: $K_1 = 1^3 = \left(\frac{1 \cdot (1+1)}{2}\right)^2$.	1 pont	
Tegyük fel, hogy az állítás igaz valamely <i>m</i> pozitív		
egészre, azaz $K_m = 1^3 + 2^3 + + m^3 = \left(\frac{m(m+1)}{2}\right)^2$. Be		
kell látni, hogy az állítás $(m + 1)$ -re is teljesül, azaz		
$K_{m+1} = 1^3 + 2^3 + + m^3 + (m+1)^3 = \left(\frac{(m+1)(m+2)}{2}\right)^2$.	2 pont	
Az indukciós feltevést felhasználva tehát igazolandó,		
hogy: $\left(\frac{m(m+1)}{2}\right)^2 + (m+1)^3 = \left(\frac{(m+1)(m+2)}{2}\right)^2$.		

Osztunk $(m+1)^2$ -nel, majd szorzunk 4-gyel:		
$\left(\frac{m}{2}\right)^2 + (m+1) = \left(\frac{m+2}{2}\right)^2 \iff$	2 pont	
$m^2 + 4(m+1) = (m+2)^2 \iff$		
$m^2 + 4m + 4 = m^2 + 4m + 4.$		
A két oldal egyenlő, és ekvivalens átalakításokat vé-		Ez a pont nem jár, ha a
geztünk, tehát az eredeti állítás minden pozitív egész	1 pont	vizsgázó nem hivatkozik
n-re igaz.		az ekvivalenciára.
Összesen:	6 pont	

9. c) második megoldás		
Teljes indukcióval bizonyítunk.	1 pont	
n = 1-re igaz az állítás $(1 = 1)$.		
Ha az állítás valamely $m \in \mathbb{N}^+$ -re igaz:		
$K_m = 1^3 + 2^3 + 3^3 + + m^3 = \left(\frac{m(m+1)}{2}\right)^2$	1 pont	
akkor igaz az is, hogy		
$K_{m+1} = 1^3 + 2^3 + 3^3 + \dots + m^3 + (m+1)^3 =$	1 pont	
$= \left(\frac{m(m+1)}{2}\right)^2 + (m+1)^3 =$		
$= (m+1)^{2} \left(\frac{m^{2}}{4} + m + 1\right) = (m+1)^{2} \cdot \frac{m^{2} + 4m + 4}{4} =$	1 pont	
$= (m+1)^2 \cdot \frac{(m+2)^2}{4} = \left(\frac{(m+1)(m+2)}{2}\right)^2.$	1 pont	
Az állítás igaz $m + 1$ -re is, tehát az eredeti állítás minden pozitív egész n -re igaz.	1 pont	
Összesen:	6 pont	

9. c) harmadik megoldás		
A b) feladat megoldása alapján az első n pozitív		
köbszám összege az első <i>n</i> darab L alakú sávban		
lévő számok összege, $L_1 + L_2 + + L_n$,	2 pont	
ami megegyezik a táblázat bal felső $n \times n$ -es részében		
lévő számok összegével.		
$(1+2+3++n)+2\cdot(1+2+3++n)+$	1 nont	
$+3 \cdot (1+2+3++n) ++n \cdot (1+2+3++n) =$	1 pont	
$= (1 + 2 + 3 + + n) \cdot (1 + 2 + 3 + + n) =$	1 pont	
$=\left(\frac{n(n+1)}{2}\right)^2.$	1 pont	
Ezzel az állítást igazoltuk.	1 pont	
Összesen:	6 pont	