preTP2: Grafos en neuro

Sebastián Romano, Juan E Kamienkowski, Hernán Varela, Álvaro López Malizia Data Mining en Ciencia y Tecnología

24 de octubre de 2023

1. Introducción

El análisis de la topología de grafos (es decir, redes) es un área de investigación que atañe a diferentes campos de estudio. Para ejemplificar el uso de grafos nos enfocaremos en el los datos obtenidos en el trabajo de Tagliazucchi y colaboradores (2013) que busca relacionar cambios en la modularidad de las redes construidas a partir de la señal de resonancia magnética funcional (fMRI) con los distintos estadíos del sueño [1].

2. Objetivos

Familiarizarse con la generación de grafos que representen un conjunto de datos. Visualizar, manipular y comparar distintos grafos. Calcular parámetros básicos de un grafo, y compararlos con modelos de redes random, small world y scale-free.

3. Estructura de los datos:

En la carpeta DataSujetos se encuentran los archivos separados por cada sujeto y estadio del sueño bajo la siguiente notación $[Estadio\ del\ sueño]_[Número\ de\ sujeto].csv.$

Para cada sujeto y estadío de sueño encontraremos una matriz de correlaciones de tamaño 116x116 con las correlaciones entre las señales BOLD de 116 regiones cerebrales.

Además se incluyen los nombres y coordenadas de las 116 regiones en un archivo aparte: $aal_extended_withCoords.csv$. Estas regiones están definidas a partir del atlas Automatic Anatomical Labeling (AAL) [2].

Ejemplos de los procedimiento para comenzar el análisis pueden encontrarse en https://colab.research.google.com/drive/1xU8p_YSeSxPAODgiyJwJAVuuDC-jrTwP#scrollTo=VG4joS9_OZCA%23offline%3Dtrue&sandboxMode=true

4. Preprocesamiento de los datos

 Cargar el dataset con los datos para cada sujeto y los nombres y coordenadas de las regiones cerebrales a las que se les registró la actividad. Reportar cuántos sujetos y cuántos estados de sueño se observan en el conjunto de datos.

5. Manipulación de datos

- Graficar la matriz de correlaciones entre regiones (es decir, la "matriz de adyacencia pesada") para el sujeto 2 de la condición despierto ("Wake")
- Transformar dicha matriz de adyacencia pesada a una matriz de adyancia binaria $A_{i,j}$ que represente una una densidad de enlaces $\delta=0.08$. ¿Cuál es el valor de umbral de correlación entre pares de regiones que tuvo que utilizar?
- Utilizando $A_{i,j}$, obtener el grafo resultante G
- ¿Es G un grafo conectado? ¿Se puede calcular la distancia media entre pares de nodos d del grafo G? ¿Si no se puede, qué medida equivalente calcularías?
- Calcular d para cada componente conectado de G. Calcular la eficiencia global eff del grafo G.
- ullet Obtener la lista de enlaces del grafo G.
- Calcular el grado promedio $\langle k \rangle$, el nodo con grado máximo k_{max} , el coeficiente de clustering promedio $C = \langle C_i \rangle$
- Visualizar el grafo, ubicando los nodos en sus coordenadas cerebrales y coloreando cada nodo de acuerdo a su coeficiente de clustering C_i
- Graficar la distribución de grado del grafo, elijiendo un número de bins apropriado
- Vamos a comparar el grafo G con prototipos de redes poissonianas (random), small-World y scale-free, usando los algoritmos de Erdos-Renyi, Watts-Strogatz y Barabasi-Albert, respectivamente. Para ello, elegir (y reportar) los parámetros utilizados para cada algoritmo, buscando siempre que los grafos simulados de dichos prototipos sean comparables al grafo de datos G (en términos de número de nodos y números de enlaces). Visualizar un ejemplo de grafo para cada uno de estos prototipos de redes. Discutir diferencias.
- Generar 1000 instancias de grafos para cada uno de dichos prototipos (poissonianas, small-World y scale-free). Para el conjunto de 1000 instancias de cada prototipo, calcular el histograma de coeficientes de $\langle k \rangle$, k_{max} , C, y eff. Comparar con los valores de coeficientes que obtuvimos para el grafo de datos G.

Referencias

- [1] Enzo Tagliazucchi, Frederic Von Wegner, Astrid Morzelewski, Verena Brodbeck, Sergey Borisov, Kolja Jahnke, and Helmut Laufs. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. *Neuroimage*, 70:327–339, 2013.
- [2] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Crivello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. *Neuroimage*, 15(1):273–289, 2002.