

Acrónimos

ETSIT Escuela Técnica Superior de Ingeniería de Telecomunicación

UMA Universidad de Málaga

PFC Proyecto Fin de Carrera

TFG Trabajo Fin de grado

TFM Trabajo Fin de Máster

Índice

A	cróni	mos	III
Re	esum	ien	1
1	1.1	roduccion Motivacion	3 4 6
2		ntexto	7
	2.1	2.1.1 Fases de la AD 2.1.2 Síntomas	8 10
	2.2	2.1.3 HistopatologíaBase de datos ADNI2.2.1 Imágenes médicas	
	2.3 2.4	Estado del Arte	16 17
3	El a	auto-encoder variacional	19
Co	onclu	asiones y líneas futuras	21
\mathbf{A}		éndice Primera sección	23 23
Ín	dico	alfahática	28

Índice de figuras

1.1	Esquema cláisco de auto-encoder	5
2.1	Evolución del número de paciente en millones desde 2010 hasta 2050	
	$[26] \dots \dots$	7
2.2	Ovillos neurofirilares y placas seniles delos pacientes con AD respecto	
	a los normales. Figura obtenda de [33]	11
2.3	Ovillos neurofirilares y placas seniles delos pacientes con AD respecto	
	a los normales. Figura obtenda de [33]	11

Índice de Tablas

Resumen

Aquí debe escribirse el prólogo del proyecto fin de carrera.

La calidad en la presentación de los textos y las flexibilidad de L^AT_EX me llevaron a aprenderlo, a pesar de su difícil curva de aprendizaje.

Espero que esta plantilla ayude notablemente a suavizar este inconveniente.

Quiero agradecer a las personas que han colaborado en la realización de esta plantilla LATEX. Es un sistema muy rápido y cómodo en la generación de este tipo de documentos técnicos y su lectura es francamente agradable.

Animo a todo el mundo a utilizarlo.

Desde la página de la escuela hay disponible también un manual de estilo para ayudar en la redacción y el acabado del proyecto. Puede consultarse en [?] ¹.

También sería interesante hacer dos manuales más:

- Uno de LATEX, que explique con más detalle cómo utilizar este sistema. Aunque en Internet hay muchos disponibles, un manual rápido y directo suavizaría aún más la curva de aprendizaje.
 - Quizá, lo más importante es que integre todos los elementos que un usuario necesita, ya que normalmente es necesario acudir a varias fuentes y eso suele requerir demasiado tiempo.
 - El capítulo ?? contiene información orientada a un iniciado en este sistema.
- Y otro, que explique herramientas y métodos útiles que un proyectando puede necesitar en la elaboración del proyecto, tal como llevar un control de versiones de la documentación o el código fuente desarrollado utilizando AssemblaTM. Este último manual es interesante también para muchos jóvenes profesionales, especialmente en el área de desarrollo de sistemas.

Me reservo el derecho de hacerlo, dado el escaso tiempo del que dispongo.

Muchas gracias.

¹ http://www.uma.es/media/files/Manual_de_Estilo_TFG_ETSIT.pdf

Capítulo 1

Introduccion

La demencia engloba un amplio grupo de enfermedades mentales que provocan el deterioro progresivo de las facultades mentales de la persona que la padece tales como la memoria, el aprendizaje, el lenguaje o la orientación.

La enfermedad del Alzheimer (AD) es la forma de demencia mas cómun en personas de la tercera edad. La AD es un desorden neurodegenerativeo que afecta a la memoria en primer lugar, y progresivamente al resto de funciones cognitivas, provocando desajustes en el comportamiento de la persona que la padece. [1].

Actualmente esta enfermedad afecta a 30 millones de personas y se prevée que esta cifra alcance los 100 millones afectados en los próximos 50 años, por lo que además de ser un problema global de salud supone un reto socioecónico para los países desarrollados y especialmente para aquellos países en vías de desarrollo.

La AD aún no tiene cura por ello es que la mayoría de las líneas de investigación relativas a esta enfermedad se centran en el diagnóstico temprano, con objeto de aplicar tratamientos que refuercen el mantenimiento de la reserva cognitiva cerebral para la prevencion de su avance. Esta reserva cognitiva es la resistencia de nuestro cerebro frente a esta enfermedad [2].

Las imagenes por resonancia magnética (MRI) son ampliamente empleadas como herramienta de soporte para el diagnóstico de problemas cerebrales, formando parte de la rutina habitual para el diagnóstico del Alzheimer. No obstante los cambios estructurales no pueden ser detectados hasta una etapa avanazada de la AD, por ello es que se han desarrollado técnicas de representación estrucural más avanzadas como las imágenes volumétricas. Por otro lado, las imágenes funcionales del cerebro tales como la tomografía de emisión de positrones (PET) permiten identificar cambios más sútiles en el metabolismo del cerebro en una etapa más temprana de la enfermedad en comparación con las imágenes MRI [3].

Se conoce como Diagnóstico Ayudado por Computer (CAD, del inglés Computer Aided Diagnosis) al conjunto de técnicas que usan imágenes médicas cerebrales con objeto de detectar la AD en una etapa temprana de la enfermedad. Existen multitud

4 1.1. Motivacion

de aproximaciones, tanto empleando las clásicas imagenes MRI [4] o imágenes PET [5], o incluso ambos tipos de imágenes de forma combinada [6] [7] conocidas como modelos Multimodal.

Las técnicas CAD emplean diferentes procedimientos estadísticos capaces de estraer características relevantes de las imágenes y en última instancia determinar si la imagen pertenece a una persona que padece AD en función de dichas características relevantes [9] [10].

Uno de los principales problemas asociados al análisis estadístico de imágenes médicas es la maldición de la dimensionalidad (CoD, del ingés Curse of dimensionality). Este término fué ya expuesto en 1961 por Richard Bellman debido a los problemas encontrados en procesos de optimización [11]. La maldición de la dimensionalidad hace referencia a la aparente intratabilidad de sistematicamente obtener una función determinista sobre un espacion muestral de alta dimensionalidad, esto es, la inherente dificultad de integrar alta dimensionalidad en una única función [12]. Este problema ve acrecenteda su repercusión debido a la escasez muestras, esto es lo que lo combierte en un ámbito de interés en el estudio de las imagenes cerebrales dado el número limitado de ejemplares.

Historicamente en el anáisis estadístico de imágenes médicas cerebrales se han empleado técnicas de reducción de características capaces reducir la dimensionalidad del espacio muestral tales como Analisis de Componentes Principales (PCA), Analis de Componentes Independientes (ICA) o *Sparse Filtering* [13].

En la actualidad un amplio colectivo científico involucrado en el diagnóstico temprano del AD ha desarrollado diferentes métodos de detección basados en Deep Learning [14] [15]. Se identifica por *Deep Learning* a una rama del aprendizaje automático que emplea redes neuronales de una o mas capas ocultas inspiradas con el propio cerebro humano. Esta técnica permite la modelación y abstracción de características complejas del espacio muestral sobre el que se aplica.

En la aproximación que se desarrollará en este trabajo se pretende aplicar técnicas de *Deep Learning* generativas tales como el Autoencoder Variacional [16]. Este método nos permite generar imágenes cerebrales no predefinidas, lo cual sería de utilidad a la hora de ampliar el espacio muestral tan limitado.

Motivacion

En este trabajo se empleará un auto-encoder, especificamente el autoencoder variacional, con objeto de generar sintéticamente imagenes médicas.

Se conoce como auto-encoder a una modelo estadístico que pretende de generar muestras de salida lo más parecidas posibles a las muestras de entrada dadas, esto es, con la menos distorsión posible, por lo que es necesario extraer las relaciones inherentes en el espacio muestral.

Aunque conceptualmente simples, han tomado un rol muy importante en el aprendizaje automático, afrotando el paradigma clásico de los sistemas de aprendizajes auto-organizables [17], capaces de adaptar su estructura en función de los datos de manera no supervisada.

Figura 1.1: Esquema cláisco de auto-encoder

Un auto-encoder esta basado en el paradigma codificador-decodificador 1.1, donde el codificador se encarga de transformar la entrada en, tipicamente, en una repesentación de baja dimensiaonalidad, mientras que el decodificador trata de usar esa salida de baja dimensionalidad para reconstruir la entrada original [18]. Esta capa intermedia recibe habitualemente el nombre de espacio latente.

La versión clásica de este modelo estadístico solo contenía una capa oculpa, la cual era una representación de baja dimensionalidad de los datos de entrada. En la última década, el auge de las redes neuronales profundas, ámbito más conocido por *Deep Learning*, ha provocado el uso de arquitecturas más complejas en los autoencoders, con varias capas ocultas tanto en el codificador como en el decodificador. En comparación con los modelos cásicos de auto-encoders se han mejorado ampliamente los resultados, aún cuando el número de parámetros a caracterizar es el mismo en ambos sistemas.

Un auto-encoder basado en aprendizaje profundo es capaz de extraer características de manera jerarquica gracias a sus distintas capas ocultas. Existen diferentes aproximaciones entre las que cabe destacar el auto-encoder de filtrado (*Denoising auto-encoder*)[19], el auto-encoder variacional (*Variational auto-encoder*)[16] o las

redes generativas adversarias (del inglés Generative Adversarial Networks).

Los auto-encoders variacionales constituyen una execelente herramienta para la extracción de las características principales o de patrones de un espacio muestral, pero tambien pueden ser considerados un modelo generativo[21], esto es, son capaces de generar datos sintéticos. Este modelo es capaz de asociar una distribución gausiana a cada uno de los parámetros fundamentales extraídos por el propio sistema, esto es, es capaz de caracterizar estadísticamente a lo que anteriormente denominamos como espacio latente[16]. Esta capacidad es fundamental en cualquier sistema generativo.

Los modelos generativos tienen un amplio rango de aplicacions como son la compresión, el filtrado, el aprendizaje no supervisado de características o la síntesis de datos.

Objetivos

- Elaborar un auto-encoder variacional basado en redes neuronales densas.
- Elaborar un auto-encoder variacional convolucional en 3d basado en redes neuronales convolucionales.
- Obtener características discriminantes por region capaces de clasificar imágenes médicas a partir de los auto-encoder elaborados.

- -

Capítulo 2

Contexto

La enfermedad del Alzheimer

En 1906 Alois Alzheimer, describió las lesiones cerebrales características delvtrastorno que recibió su nombre: placas seniles y ovillos neurofibrilares. La AD es ahora, 100 años después, la forma más común de demencia en el mundo, estando caracterizada por un espectro de características clínicas y fallos neuropatólogicos [22].

Se han desarrollado numerosos estudios de inverstigación relativos a la naturaleza del AD, no obstante la motivación central ha sido señalar la AD como una categoría diferente de la demencia senil [23], así como determinar si la AD es la casua principal principal de la demencia en la tercera edad. Hay teorías que defienden que la AD es una consecuencia natural del envejecimiento, mientras que hay otras que defined lo contrario.

Figura 2.1: Evolución del número de paciente en millones desde 2010 hasta 2050 [26]

En la actualidad se postula desde la perspectiva de la mitocondria, orgánulo encargado de la respiración celular [24] y que toma un papel primordial en el desarrollo de la AD y del propio envejecimiento cerebral. La hipótesis en casacada de la mitocondria [25] postula que hay mecanismos comunes que conducen al envejecimiento cerebral y a la AD, así como que la producción de placas, ovillos neurofibrilares y la degeneración sináptica son consecuencias de la funcionalidad perturbada de la mitocondria.

La AD es uno de los desórdenos neurodegenerativos más serveros y frecuentes en la población de la tercera edad teniendo severas repercusiones tanto para la salud como socioeconómicas. El impacto esperado de esta enfermedad se ve incrmentado debido al aumento de la esperanza de vida, se estima que durante los próximos 20 años se duplcará el número de pacientes de dicha enfermedad principalmente en los países más desarrollados. La figura 2.1 muestra la evolución del número de pacientes de AD hasta el 2050, en función de los continentes.

Fases de la AD

Sintomas imperceptibles

La primera de las señales tiene que ver con el descenso de los niveles de la proteína beta amiloide en el líquido cefalorraquideo (LCR). Este proceso se puede detectar hasta 25 años antes del inicio de la pérdida de la memoria mediante una resognancia magnética. Esta proteína es la causante de la formación de las placas seniles. Durante esta fase previa a la pérdida de la memoriase hacen perceptibles las alteraciones en las etructuras tanto en las estructuras cerebrales como en el hipocampo. Es por ello que los síntomas se producen varios años de que puedan ser percibido por la propia persona o por sus familiares

Predemencia

Esta fase es usualmente identificada como deterioro cognitivo o conductoal leve. Los primeros sintomas perceptibles son a menudo confundidos con la propia vejezz de la persona. Una evaluación neuropsicológica detallada es capaz de determinar evidencias de AD hasta 8 años de que se cumplan los crierios de diagnóstico[27].

La deficiencia más relevante es la pérdida de memoria, ya sea como la incapacidad de adquirir nueva información o la imposibilidad de recordad hechos recientes. No obstante pueden aparecer dificultades leves en funciones ejecutivas como la atención o el razonamiento, así como trastornos en la memoria semántica [28].

Demencia Inicial

El principal síntoma asociado a esta fase inicial es la pérdida de memoria puntual o incluso una pérdida de la memoria conocida a corto plazo, la cual supone dificultades para el paciente en la iteracción con familiares o amigos. Una pequeña porción de los pacientes sufre de dificultades con el lenguaje, con el reconocimiento de las percepciones o con la ejecución de movimientos. [30]

La capacidad de aprender nuevos conceptos ya sean abstractos o recuerdos reales, esto es, la memoria a corto plazo, es la que se ve más afectada durante esta fase frente a otras capacidades que se ven afectadas en menor medida como es la memoria a largo plazo, la memoria semántica o la memoria implícita, la cual hace referencia al conocimiento de como realizar acciones con el propio cuerpo. [29]

Demencia morerada

El síntoma diferencial de esta fase con respecto a la anterior son los cambios de conducta inesperada, incluso arranques violentos en personas que nunca han experimentado este comportamiento. Las manifestaciones neuropsiquiátricas más comunes son las distracciones, el desvarío y los episodios de confusión al final del día, así como la irritabilidad y la labilidad emocional, que incluyen llantos o risas inapropiadas. [31]

Los síntomas de fases anteriores anteriores se ven acrecentados provocando que el paciente sea incapaz de realizar tareas de cierta complejidad. Los problemas del lenguaje se hacen cada vez más evidentes, provocando parafasia. Las capacidades para leer y escribir también empeoran progresivamente. La memoria implícitia y la memoria a largo que hasta entonces habían estado intactas también empiezan a verse afectadas. [30]

Demencia avanzada

Esta fase última de la enfermeda trae el deterioro de la masa muscular del paciente, perdiendose la movilidad, la capacidad de autoalimentarse y en última instancia el encamamiento del paciente.

El lenguaje se vuelve totalmente desorganizado, incluso llegandose a perder completamente [30]. No obstante se conserva la capacidad de detectar y expresas señales emocionales.

La AD en sí no produe la muerte del paciente, si no que el fallo de otros sistemas que se ven afectados son los que la provocan. Los pacientes de Alzheimer pueden presentar dificultad para tragar y pueden inhalar los alimentos, lo cual puede originar neumonía por aspiración. La neumonía es la causa de la muerte en dos tercios de todas las muertes de pacientes de demencia, según la Sociedad de Alzheimer.

Síntomas

Los síntomas asociados en la AD varía en función de las caracteristicas de cada individuo, por lo que es posible que se presente en diferente grado o incluso orden en función del paciente. Estos síntomas se agrupan en tres ámbitos.

Síntomas Cognitivos

Se ven afectadas la memoria a corto plazo en fases tempranas de la AD y seguidamente la memoria a largo plazo. La orientación espacial y temporal y la capacidad de ejecución también se ven afectadas. El síntoma principal es la incapacidad gradual de recordad a corto plazo debido a la lesiones que se producen en el hipocampo [32].

Síntomas Psicopatológicos

Se empiezan a presentar cambios conductuales como depresión, ansiedad, agresividad o trastorno del sueño. Estos cambios en el paciente estan originados por los daños del lóbulo frontal.

Síntomas funcionales

La interrelación entre los síntomas cognitivos, psicológicos y conductuales provocan la incapacitación del paciente para realizar las tareas cotidianas habituales así como la limitación para emprender otras nuevas.

En esta lista se indican algunos síntomas cotidianos asociados al AD:

- Cambios de memoria que dificultan la vida cotidiana.
- Dificultad para planificarse y resolver problemas.
- Dificultad para resolver tareas en la casa, en el trabajo o en el tiempo libre.
- Desorientación de tiempo o lugar.
- Dificulta para comprender imágenes visuales y cómo los objetos se relacionan uno al otro en el ambiente.
- Colocación de objetos fuera de lugar.
- Disminución o falta de buen juicio.
- Perdida de iniciativa en el trabajo o en actividades sociales.
- Cambio en el humor o la personalidad.

Histopatología

Figura 2.2: Ovillos neurofirilares y placas seniles delos pacientes con AD respecto a los normales. Figura obtenda de [33]

Las lesiones neuropatológicas comienzan a desarrollarse años antes de la completa expresión de la demencia clínica. Actualmente se desconoce cual es el origen de este proceso de degeneración o porque los procesos normales asociados al envejecimiento se vuelven mucho más extremos en pacientes de esta enfermedad.

Desde una perspectiva patológica, los dos elementos característicos de la AD que son las placas neuríticas, la cual contiene la proteína beta amiloide $(A\beta)$ y los ovillos neurofibrilares sirven como línea divisoria entre la AD y otras demencias, veáse la Fig. 2.3.

En la AD los ovillos neurofibrilares tienden a ser mas numerosos en las estruc-

Figura 2.3: Ovillos neurofirilares y placas seniles delos pacientes con AD respecto a los normales. Figura obtenda de [33]

turas del lóbulo temporal, incluyendo el hicopocampo. Dentro del hipocampo los ovillos nuerofibrilares tienede a ocupar gran parte del espacio dejado por las neuronas piramidales muertas.

Debido al depósito y acumulación de placas seniles y ovillos neurofibrialres se genera estrés resultante de la inflamación y oxidación que se añaden a la cadena patológica de las consecuencias

A medida que aumenta la enfermedad se ve reducido el número de ce?ulas nerviosas y de conexiones entre ellas provocando un deterioro notable del cerebro como se aprecia en la imagen.

Base de datos ADNI

Las imágenes empleadas en este proyecto pertenecen a la iniciativa de neuroimagen de la enfermedad de Alzheimer (ADNI, del inglés Alzheimer Disease Neuroimaging Initiative). Esta iniciativa fue fundada en 2004 [34] por un conjunto de instituciones de la salud norteaméricas en colaboración con diferentes compañias farmaceúticas. Una de las instituciones fundadores más reconocidas es Instituto Nacional de la Salud (NIH, del inglés National Institute of Health creado en 1887, siendo actualmente referente en el ámbito de la salud en Estados Unidos.

Esta iniciativa reúne a las principales instituciones médicas tanto en Estados Unidos como en Canada, siendo la organización que lidera las investigaciones dirigidas al entendimiento de los biomarcadores del cerebro asociados con el funcionamiento cognitivo del mismo. El investigador principal de esta iniciativa es Michael Weiner, profesor de la Universidad de California.

Hasta la fecha se han registrado hasta 1500 personas de entre 50 y 90 años en conjunto de los diferentes protocolos de la iniciativa. Se trata de una base de datos longitudinal de sujetos de la tercera edad, o cercanos a ella, que padecen AD o MCI. Los principales objetivos de la inicitiva ADNI son los siguientes [34]:

- El desarrollo de métodos óptimos para la estandarización de la adquisición de biomarcadores, especialmente neuroimágenes, tanto MRI como PET, de una manera longitudinal sobre individuos que padecen AD o MCI.
- Uso de esto métodos óptimizados de adquisición de imágentes longitudinales, tanto estructurales como metábolicas sobre un amplio conjunto de inviduos sanos, de sujetos MCI o AD, acompañando dichas imágenes de una validación clínica del estado real de esos pacientes.
- Estudio de aquellos biomarcadores, medidas cognitivas o imágenes neurológicas que generan el mayor poder de diagnóstico sobre pacientes MCI y AD.
- Creación de un respositorio de datos, tanto imágenes como informes clínicos, con información longitudinal de cambios cerebrales, de metabolismo, de funcionamiento o de biomarcadores en los individuoes estudiados.

Imágenes médicas

Las imágenes neurológicas constituyen una herramienta esencial para el estudio y el diagnóstico de las trastornos psiquiátricos de desarrollo neurológico. Estas imágenes permiten elestudio longitudinal de aquellos pacientes que sufren un deterioro congnitivo o funcional, además de permitir realizar una comparación con respecto a lo que se conoce como un desarrollo neurológico normal.

En el trabajo aquí realizado nos hemos centrado en las imágenes de resonancia magéntica y las imágenes tomográficas por emisión de positrones.

Imágenes MRI

Las imágenes de resonancia magnética (MRI, del inglés Magnetic Resonance Image) son imágenes estructurales obtenidas en base a la aplicación de campos magnéticos sobre un cuerpo.

La técnica MRI esta basada en la resonancia magnética nuclear (NMR, del inglés Nuclear Magnetic Resonance). Ciertos núcleos atómicos son capaces de emitir energía a una determinada frecuencia al entrar en contacto con un campo magnético externo [37]. Generalmente, son átomos de hidrógeno los utilizados para la extracción de estas imágenes dado que este tipo de átomos existen de manera natural en las personas. Por esta razon, los escáneres evalúan la localización de la señal en el espacio, generando una imágen en función de la intensidad de la señal generada. Es posible variar el tipo de señal generada cambiando el tipo de campo magnético empleado.

Esta técnica fué inventada por Paul C. Lauterbur en Septiembre de 1971 [38], siendo aplicada por primera vez en el estudio del cerebro por Ian Robert Young y Hugh Clow en 1986 [39]. Desde entonces es considerada una técnica esencial tanto para el estudio del cuerpo humano como parea la investigación biomédica, covirtiendose en una herramienta esencial de diagnóstico.

Una de las principales limitaciones de las imágenes MRI es el ruido. El bajo nivel SNR es provocado pr diversos factores, como es la alta emperatura de ruido generada por el escáner o el movimiento del cuerpo explorado. Es por ello que el procesado de filtrado de ruido es uno de los principales ámbitos de investigación en torno as las imágenes MRI [40]. La tecnología de los escanéres empleados ha evolucionado en aspectos como la resolución espacial o la disminución del tiempo de adquisición muestral.

Imágenes PET

La tomografía por emisión de positrones (PET, del inglés *Positron emission to-mography*) es uan técnica de estracción de imágenes funcionales que permite observar los procesos metabólicos del cuerpo.

Esta modalidad de imágenes neurológicas esta basada en la detection de la radioactividad emitida por una pequeño vial inyectado en el paciente. Este vial esta compuesto por radionúclidos, isótopos radioactivos emisores de positrones. Los más utilizados en las exploraciones PET son Carbono-11, Nitró-geno-13, Oxígeno-15, Fluor-18, Cobre-62, Galio-68, Rubidio-82.

Estos isótopos son elegidos principalmente por su corto periodo de vida [13]. Los radionúclidos son incorporados en algún compuesto para expandirlo por el organismo, en el caso del Alzheimer lo más común es la glucosa, a estos compuestos se los conoce como radiofármacos. En la actualidad el radiofármaco más utilizado es el fluorodesoxiglucosa (FDG) donde el flúor de la molécula se convierte en F18. Este radiofármaco es el más utilizado debido a sus características metabólicas ya que algunos de sus compuestos están presentes en el cuerpo humano y también por su rápida expulsión del organismo sin provocar ningúnefecto secundario. FDG es incorporado principalmente en las células con elevadas tasas de glucosa, como por ejemplo el cerebro, donde la fosforilación de la misma impide que sea liberada al metabolismo.

En el caso de Alzheimer, debido a su alta tasa de glucosa en la células cerebrales, la imagen PET muestra una disminución de glucosa en sus fases iniciales lo que nos permite identificar rápidamente la enfermedad. También se podrá conocer la efectivida de los tratamientos, en cuyo caso se observará un aumentos del metabolismo cerebral en relación con la situación inicial.

16 2.3. Estado del Arte

Estado del Arte

Mirar la wikipedia Diagnosis of AD and the prediction of future AD[edit] AD-NI data has been used to test many diagnostic and prognostic machine learning algorithms. [9] The most successful to date have used deep learning approaches that combine longitudinal data chronicling changes in biomarkers over time from more than one imaging, genetic, or biological modality.

Diagnosis

One example [9] of a combination of biomarkers that can accurately diagnose AD is:

Changes in brain atrophy patterns over time (measured by MRI) Levels of ?-amyloid and tau (measured in CSF) A second approach to diagnosis is to extract the most pertinent information from MRI scans alone.[9] Deep learning algorithms can diagnose AD with greater than 95

As imaging scans are expensive and sometimes unavailable, and the analysis of CSF requires an invasive lumbar puncture procedure, ADNI blood samples are being used to develop diagnostic blood tests for clinical use. These are currently not as accurate as other methods.[37][38]

Prediction

Deep learning algorithms which extract the most pertinent information from MRI scans can also predict the progression of MCI patients to AD several years in advance with accuracies of greater than 90

Entorno de desarrollo

Capítulo 3

El auto-encoder variacional

Conclusiones y líneas futuras

Después de todo el desarrollo del proyecto, es pertinente hacer una valoración final del mismo, respecto a los resultados obtenidos, las expectativas o el resultado de la experiencia acumulada.

En esta sección se exponen todos esos conceptos y enuncian unas conclusiones finales.

Además, considerando también el estado de la técnica, se pueden deducir líneas futuras de trabajo, proponer otros puntos de vista o cualquier otra sugerencia como postámbulo del presente trabajo, para ser considerada por el lector o el tribunal evaluador.

Nombre del autor 8 de septiembre de 2017

Apéndice A

Apéndice

Contenido											
A.1 J	Primera sección	 	• •	 •			 •	•		23	

Primera sección

Bibliografía

- [1] Henley, David B., Sundell, Karen L., Sethuraman, Gopalan, Siemers, Eric R., 2011, Safety profile of Alzheimer's disease populations in Alzheimer's Disease Neuroimaging Initiative and other 18-month studies, 407-416
- [2] Rodríguez Álvarez M., Sánchez J. L., 2004, Reserva cognitiva y demencia, 2004, vol. 20, nº 2 (diciembre), 175-186
- [3] Petrella J.R, Coleman R.E., Doraiswamy P.M., Neuroimaging and Early Diagnosis of Alzheimer Disease: A Look to the Future. Radiology 2003; 226:315?336.
- [4] Rémi Cuingnet et al, Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database, Neuroimage, vol. 56, no. 2, pp. 766-781, 2011.
- [5] W. Cai, D. Feng, R. Fulton, Content-based retrieval of dynamic PET functional images IEEE Trans. Inf. Technol. Biomed., vol. 4, no. 2, pp. 152-158, 2000.
- [6] Ortiz, A.; Fajardo, D.; Górriz, J.M.; Ramírez, J.; Martínez-Murcia, F.J., Multimodal image data fusion for Alzheimer's Disease diagnosis by sparse representation, International Conference on Innnovation in Medicine and Healthcare (InMed), 2014
- [7] Daoqiang Zhanga, Yaping Wanga, Luping Zhoua, Hong Yuana, Dinggang Shena, Multimodal Classification of Alzheimer's Disease and Mild Cognitive Impairment Neuroimage. 2011 April 1; 55(3): 856-867
- [8] D. Salas-Gonzalez, J. M. Gorriz, J. Ramírez, M. Lopez, I Alvarez, Compute-aided diagnosis of Alzheimer's disease using support vector machines and classification trees Phys. Med. Biol. 55 (2010) 2807-2817
- [9] Ruaa Adeeb Abdulmunem Al-falluji MRI based Techniques for Detection of Alzheimer: A Survey International Journal of Computer Applications (0975 8887)
 Volume 159 No 5, February 2017

- [10] S.Mareeswari1, Dr.G.Wiselin, A survey Early Detection of Alzheimer's Disease using different techniques International Journal on Computational Science and Applications (IJCSA) Vol.5, No.1, February 2015
- [11] Bellman RE, 1961, Adaptive control processes: a guided tour, Princeton University Press.
- [12] David L. Donoho Department of Statistics *High-Dimensional Data Analysis:*The Curses and Blessings of Dimensionality August 8, 2000
- [13] Benson Mwangi, Tian Siva Tian, Jair C. Soares A review of feature reduction techniques in neuroimaging Neuroinformatics. 2014 April; 12(2): 229-244. doi:10.1007/s12021-013-9204-3.
- [14] Siqi Liu, Sidong Liu, $EARLY\ DIAGNOSIS\ OF\ ALZHEIMER'S\ DISEASE\ WITH\ DEEP\ LEARNING$
- [15] Saman S., Ghassem T., Classification of Alzheimer's Disease Structural MRI Data by Deep Learning Convolutional Neural Networks 22 Jul 2016
- [16] Diederik P. Kingma, Max Welling, Auto-Encoding Variational Bayes 1 May 2014
- [17] D. E. Rumelhart, G. E. Hinto, and R. J. Williams. Learning Internal Representations by Error Propagation 9 October 1986
- [18]: I. Guyon, G. Dror, V. Lemaire, G. Taylor and D. Silver Autoencoders, Unsupervised Learning, and Deep Architectures 2012
- [19] P. Vincent H. Larochelle I. Lajoie Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion 2010
- [20] ADVERSARIAL EXAMPLES FOR GENERATIVE MODELS
- [21] Danilo J. Rezende, Shakir Mohamed, Daan Wierstra Stochastic Backpropagation and Approximate Inference in Deep Generative Models
- [22] Bennett, D. A., Evans, D. A., 1922. Alzheimer's Disease. Disease-a-Month 38(1), 7-64.
- [23] Nakako, S., Kato, T., Nakamura., 1996. Acetylcholinesterase activity in cerebrospinal fluid of patients with alzhimer's disease and senile dementia. Journal of the Neurological Sciences 75(2).

- [24] Rodriguez-Violante M., Cervantes A., Vargas S., 2010. Papel de la función mitocondrial en las enfermedades neurodegenerativas. Arch Neurocien (Mex) Vol. 15, N°1: 39-46
- [25] Swerdlow, R., 2011 Brain agin, alzheimer's diseas, and mitochondira. Biochim Biophys Acta 1812(12), 1630-1639
- [26] Nations U., 2008 Department of economic and social affairs, world population prospects.
- [27] Arnáiz E,., Almkvist O., 2003,. Neuropsychological features of mild cognitive impairment and preclinical Alzheimer's disease.
- [28] Palmer K., Berger A. K., Monastero R., Winblad B., Bäckman L., Fratiglioni L. 2007. Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology 68 (19): 1596-1602. PMID 17485646. doi:10.1212/01.wnl.0000260968.92345.3f.
- [29] Carlesimo GA, Oscar-Berman M (junio de 1992). «Memory deficits in Alzheimer's patients: a comprehensive review». Neuropsychol Rev 3 (2): 119-69. PMID 1300219.
- [30] Frank EM (septiembre de 1994). «Effect of Alzheimer's disease on communication function». J S C Med Assoc 90 (9): 417-23. PMID 7967534.
- [31] Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A., Mayo de 2001. Sundowning and circadian rhythms in Alzheimer's disease». Am J Psychiatry 158 (5): 704-711. PMID 11329390.
- [32] Mu Y., Gage FH, 2011 Dec, Mol Neurodegener. 2011 Dec 22;6:85. doi: 10.1186/1750-1326-6-8 Adult hippocampal neurogenesis and its role in Alzheimer's disease.
- [33] FeldMan H. H., Atlas of Alzheimer's Disease. Informa Healthcare
- [34] Susanne G. Mueller, Michael W. Weiner, Neuroimaging Clin N Am. 2005 November; 15(4): 869?xii. The Alzheimer?s Disease Neuroimaging Initiative
- [35] Gorji, H. T.; Haddadnia, J. (2015-10-01). A novel method for early diagnosis of Alzheimer's disease based on pseudo Zernike moment from structural MRI". Neuroscience. 305: 361?371. ISSN 1873-7544. PMID 26265552. doi:10.1016/j.neuroscience.2015.08.013.

28 A.1. Primera sección

[36] Zhu, Xiaofeng; Suk, Heung-II; Shen, Dinggang (2014-10-15). A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis". NeuroImage. 100: 91?105. ISSN 1095-9572. PMC 4138265? Freely accessible. PMID 24911377. doi:10.1016/j.neuroimage.2014.05.078.

- [37] Wright G., Magnetic Resonance Imaging EEE Signal Process. Mag. 14 (1997)56?66.
- [38] Lauterbur P. C., 1973. Ïmage Formation by Induced Local Interactions: Examples of Employing Nuclear Magnetic Resonance". Nature. 242 (5394):
- [39] "Britain's brains produce first NMR scans". New Scientist: 588. 1978.
- [40] Snehal More, V.V.Hanchate, .^A Survey on Magnetic Resonance Image Denoising Methods International Research Journal of Engineering and Technology (IRJET), Volume: 03 Issue: 05 | May-2016

Índice alfabético

estado de la técnica, 7 estado del arte, 5, 7 manual de estilo, 1 minitoc, 5 objetivo del proyecto, 7