Docket No. 396.43509X00 Serial No. 10/777,082 <u>April 25,</u> 2007

AMENDMENTS TO THE CLAIMS:

The following listing of claims replaces all prior listings, and all prior versions, of claims in the application.

LISTING OF CLAIMS:

- 1. (Currently amended) Insulated ultrafine powder comprising electroconductive ultrafine powder which is in the form of sphere, spheroid or acicular each having a minor axis in the range of 1 to 100 nm, and an insulating film applied onto said electroconductive ultrafine powder, said electroconductive ultrafine powder being made of a material selected from the group consisting of stannic oxide doped with antimony, indium trioxide doped with tin, zinc oxide doped with aluminum or gallium, and barium plumbate.
- 2. (Original) The insulated ultrafine powder according to Claim 1 wherein the insulating film has a relative dielectric constant of at least 20.
- 3. (Original) The insulated ultrafine powder according to Claim 1 wherein the insulating film comprises at least one species selected from the group consisting of an oxide having insulating properties and a nitride having insulating properties.
 - 4. (Cancelled).
- 5. (Original) The insulated ultrafine powder according to Claim 1 wherein the insulating film has a thickness being 0.3 nm or larger and not larger than the minor axis of the electroconductive ultrafine powder.

Docket No. 396.43509X00 Serial No. 10/777,082 April 25, 2007

- 6. (Withdrawn) A process for producing insulated ultrafine powder composed of electroconductive ultrafine powder which is in the form of sphere, spheroid or acicular each having a minor axis in the range of 1 to 100 nm and an insulating film which is made of a metal oxide having a relative dielectric constant of at least 20 and which is applied onto said electroconductive ultrafine powder, comprising any of the steps (a), (b) and (c), wherein step (a) comprises dispersing electroconductive ultrafine powder in an organic solvent; adding a metal alkoxide in the resultant dispersion; and precipitating a metal oxide on the surfaces of said electroconductive ultrafine powder by sol-gel reaction, the step (b) comprises dispersing electroconductive ultrafine powder in an aqueous solution of a metal salt; adding an alkali in the aqueous solution; precipitating a metal hydroxide on the surfaces of said electroconductive ultrafine powder; conducting dehydration condensation reaction by drying; and sticking a metal oxide onto the surfaces of said electroconductive ultrafine powder, and the step (c) comprises simultaneously or consecutively adding an aqueous solution of a metal salt and an aqueous solution of an alkali; precipitating a metal hydroxide on the surfaces of said electroconductive ultrafine powder; conducting dehydration condensation reaction by drying; and sticking a metal oxide onto the surfaces of said electroconductive ultrafine powder, and a subsequent step of calcining the metal oxide precipitated or stuck to the surfaces of said electroconductive ultrafine powder at a temperature higher than a temperature which is 900°C lower than the melting point of the metal oxide and also at a temperature lower than the melting point thereof.
- 7. (Withdrawn) A resin composite material which comprises at least one species selected from the group consisting of the insulated ultrafine powder as set

Docket No. 396.43509X00 Serial No. 10/777,082

April 25, 2007

forth in Claim 1 and polymer at a volumetic ratio (the powder / the polymer) in the

range of 5 / 95 to 50 / 50.

8. (Withdrawn) The resin composite material according to Claim 7 which

further comprises a filler.

9. (Withdrawn) The resin composite material according to Claim 7 which

has a relative dielectric constant of at least 20.

10. (Withdrawn) A high dielectric constant film or sheet comprising the

resin composite material as set forth in Claim 7 which is formed thereinto.

11. (Withdrawn) An electronic part which comprises the high dielectric

constant film or sheet as set forth in Claim 10.

12. (New) The insulated ultrafine powder according to Claim 1 wherein the

electroconductive ultrafine powder is made of stannic oxide doped with antimony.

13. (New) The insulated ultrafine powder according to Claim 1 wherein the

electroconductive ultrafine powder is acicular, and the minor axis is in the range of 5

nm to 70 nm.

14. (New) The insulated ultrafine powder according to Claim 13, wherein

the acicular electroconductive ultrafine powder has an aspect ratio of 2 to 100.

4

Docket No. 396.43509X00 Serial No. 10/777,082 <u>April 25, 2007</u>

- 15. (New) The insulated ultrafine powder according to Claim 14, wherein said aspect ratio is 10 to 40.
- 16. (New) The insulated ultrafine powder according to Claim 1, wherein said minor axis is in the range of 5 nm to 70 nm.