Preprocessing

- Remove outliers by Savitzky-Golay smoothing filter on each band and index.
- Functional normalize three indices: NDVI, MNDWI, SWIR by univariate FPCA estimation.

Multivariate FPCA

Consider 30 principle components and Epan kernel. Then select ξ_{ik} only between 2001 and 2011 as the detection set: $\widehat{\xi}_{ik}$, $\widehat{\lambda}_k$ and $i=1,2,\cdots,N=11$. id = 7

Sigmoid function

Apply a sigmoid function $1/\{1+exp(-\beta x)\}$ to the estimated $\widetilde{\xi}_{ik}$, $\beta=0.5$.

Detection

For each of the first three princple components (k = 1, 2, 3):

Compute

$$T_N^k(x) = \frac{1}{N} \left(\sum_{1 \le i \le Nx} \widetilde{\xi}_{ik} - x \sum_{i=1}^N \widetilde{\xi}_{ik} \right)^2$$

for $0 \le x \le 1$.

• Then estimate start and end of the urbanization

$$\widehat{P}_1^k = \lfloor N \times \min\{x : T_N^k(x) = \max_{0 \le y \le 1} T_N^k(y)\} \rfloor$$

$$\widehat{P}_2^k = \lceil N \times \max\{x : T_N^k(x) = \max_{0 \le y \le 1} T_N^k(y)\} \rceil$$

Decide the changing type by Δ_k be the $|\widehat{\xi}_{\widehat{P}_1^k,k} - \max(\widehat{\xi}_{\widehat{P}_2^k,k},\widehat{\xi}_{\widehat{P}_2^k+1,k})|$:

$$\widehat{P}_1 = \sum_{k=1}^{3} \widehat{P}_1^k I\{\Delta_k = \max_{1 \le k \le 3} \{\Delta_k\}\}, \widehat{P}_2 = \sum_{k=1}^{3} \widehat{P}_2^k I\{\Delta_k = \max_{1 \le k \le 3} \{\Delta_k\}\}.$$

Results

of correct detection for P_1 : 121/139, and # of correct detection for P_2 : 123/139.

pointID = 116

$$P_2 = 2005, \ \widehat{P}_2 = 2009$$

