Funkcija gubitka (*loss*)

$$L\left(y,h_{\widehat{\theta}}(x)\right)$$

 $L\left(y,h_{\widehat{\theta}}(x)\right)$ Koliko gubimo ako koristimo ovaj model umesto savršenog modela?

Savršene predikcije → gubitak = 0

L1:
$$L(y, h_{\widehat{\theta}}(x)) = |y - h_{\widehat{\theta}}(x)|$$

L2:
$$L(y, h_{\widehat{\theta}}(x)) = (y - h_{\widehat{\theta}}(x))^2$$

Ovo su primeri simetričnih funkcija gubitka

Funkcija gubitka (*loss*)

$$L\left(y, h_{\widehat{\theta}}(x)\right) = RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\widehat{\theta}}(x^{(i)})\right)^{2}}$$

Root MSE (ista merna jedinica kao y)

Funkcija fitovana korišćenjem *trening* podataka Šta je cilj mašinskog učenja?

Dobra generalizacija

Da dobro određujemo vrednost izlaza za *nove* primere

(različite od onih iz trening skupa)

Gubitak na TRENING skupu

Greška je previše optimistična: $\hat{\theta}$ je prilagođen baš podacima na kojima merimo gubitak

Ne znamo šta će se zaista desiti na novim podacima

Šta možemo?

Možemo da je procenimo

Trebaju nam primeri koji se ne nalaze u trening skupu

Šta želimo?

Generalizacionu (pravu) grešku: gubitak na SVIM mogućim primerima

SVI mogući odnosi GDP i životnog veka

Problem: ne možemo je odrediti

Postupak obučavanja i evaluacije

Kako podeliti podatke?

Tipično: 90/10, 80/20, 70/30

Ne zaboravite da izmešate podatke

Premalo za dobru procenu heta

Trening

Test

Trening

Test

Premalo za dobru procenu generalizacione greške

Stratifikacija

- Prilikom deljenja podataka, obezbediti da delovi imaju istu raspodelu kao i ceo skup podataka
- Teško za male skupove podataka
- Pojednostavljena varijanta: očuvati raspodelu ciljne promenljive
 - Sortirati podatke u odnosu na ciljnu promenljivu
 - Ako je K broj delova, neka instance sa indeksima $i+j\cdot K$ čine deo P_i za $i=1,\ldots,K$ i $j=0,1,\ldots$

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
0	6	2	1
7	2	3	4
1	3	1	5
6	5	1	5
4	9	7	6
3	3	4	6
1	1	6	7
7	2	1	7
1	9	0	8
2	9	9	9

Greška na test skupu (ono šta imamo)

- Možemo je proceniti pomoću primera koji se ne nalaze u okviru trening skupa
 - Podelićemo skup podataka na trening i test skup
 - Model ćemo trenirati na trening skupu
 - Trenirani model ćemo evaluirati na test skupu
- RMSE na primerima iz *test* skupa:

$$\frac{1}{N_{test}} \sqrt{\sum_{i=1}^{N_{test}} \left(y^{(i)} - h_{\widehat{\theta}}(x^{(i)})\right)^2}$$
 Funkcija fitovana korišćenjem trening podataka – nikada nije videla primere iz test skupa

Postupak obučavanja i evaluacije

