Agrégation Interne Polynômes et corps finis

On pourra consulter les ouvrages suivants.

- P. Boyer, J. J. Risler: Algèbre pour la licence 3. Groupes, anneaux, corps. Dunod (2006).
- F. Combes Algèbre et géométrie. Bréal (2003).
- J. P. ESCOFFIER. Toute l'algèbre de la licence. Dunod (2006).
- S. Francinou, H. Gianella, S. Nicolas : Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
- S. Francinou, H. Gianella. Exercices de mathématiques pour l'agrégation. Algèbre 1. Masson (1994).
 - F. Liret. Arithmétique. Dundod (2011).
 - D. Perrin. Cours d'algèbre. Ellipses (1996).
 - A. Szpirglas. Mathématiques L3. Algèbre. Pearson (2009).

- I - Caractéristique d'un anneau, d'un corps

Définition 1 Un corps est un anneau commutatif unitaire dans lequel tout élément non nul est inversible.

Un corps est donc, a priori, commutatif.

Pour tout nombre premier $p \geq 2$, $\mathbb{F}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$ désigne le corps commutatif des classes résiduelles modulo p.

Pour cette partie, $(\mathbb{K}, +, \cdot)$ est un corps.

Le sous-corps premier de \mathbb{K} est le plus petit sous-corps de \mathbb{K} .

On note \mathbb{K}_0 le sous-corps premier de \mathbb{K} .

- 1. Rappeler la définition de la caractéristique d'un anneau commutatif unitaire.
- 2. Soient $\mathbb{A} \subset \mathbb{B}$ deux anneaux commutatifs unitaires. Montrer qu'ils sont de même caractéristique.
- 3. Montrer que si caract (\mathbb{K}) = 0, le sous-corps premier \mathbb{K}_0 de \mathbb{K} est alors infini isomorphe à \mathbb{Q} et dans le cas contraire, cette caractéristique est un nombre premier $p \geq 2$ et \mathbb{K}_0 est fini isomorphe à \mathbb{F}_p .
- 4. Montrer que si K est fini, il est alors de cardinal p^n , où $p \ge 2$ est un nombre premier.
- 5. Donner un exemple de corps infini de caractéristique $p \geq 2$.
- 6. Soit A un un anneau commutatif unitaire de caractéristique $p \geq 2$, où p est un nombre premier.
 - (a) Montrer que l'application :

$$\varphi: \ \mathbb{A} \ \to \ \mathbb{A}$$
$$a \ \mapsto \ a^p$$

est un morphisme d'anneaux (morphisme de Frobénius).

(b) Soient n, r deux entiers naturels non nuls et a_1, \dots, a_r des éléments de A. Montrer que :

$$\left(\sum_{i=1}^{r} a_i\right)^{p^n} = \sum_{i=1}^{r} a_i^{p^n}$$

7. Soient \mathbb{K} un corps de caractéristique $p \geq 2$, n un entier naturel non nul et R un polynôme à coefficients dans \mathbb{K}_0 . Montrer que :

$$\forall \lambda \in \mathbb{K}, \ (R(\lambda))^{p^n} = R(\lambda^{p^n})$$

- 8. Montrer qu'un corps fini commutatif ne peut être algébriquement clos.
- 9. Montrer que si \mathbb{K} est un corps fini commutatif alors toute application de \mathbb{K} dans \mathbb{K} est polynomiale.
- 10. Montrer que tout polynôme irréductible dans un corps de caractéristique nulle est premier avec son polynôme dérivé.

Que se passe-t-il pour \mathbb{K} de caractéristique $p \geq 2$.

- II - Polynômes irréductibles dans \mathbb{F}_p et corps finis

Pour cette partie, $p \geq 2$ est un nombre premier.

Pour tout entier $n \in \mathbb{N}^*$, on note $\mathcal{U}_n(p)$ l'ensemble de tous les polynômes unitaires irréductibles de degré n dans $\mathbb{F}_p[X]$ et $I_n(p)$ le cardinal de $\mathcal{U}_n(p)$.

L'ensemble $\mathcal{U}_n(p)$ peut, a priori, être vide.

Pour tout entier $n \in \mathbb{N}^*$, on note \mathcal{D}_n l'ensemble de tous les diviseurs de n dans \mathbb{N}^* .

- 1. Soient \mathbb{K} un corps et $P \in \mathbb{K}[X]$ un polynôme unitaire de degré $n \geq 1$.
 - (a) Montrer que l'algèbre $\frac{\mathbb{K}[X]}{(P)}$ est de dimension n et $(\overline{X^k})_{0 \le k \le n-1}$ en est une base.
 - (b) Montrer que les conditions suivantes sont équivalentes :
 - i. $\frac{\mathbb{K}[X]}{(P)}$ est un corps;
 - ii. l'anneau $\frac{\mathbb{K}[X]}{(P)}$ est intègre;
 - iii. le polynôme P est irréductible.
- 2. Montrer que pour tout polynôme $P \in \mathcal{U}_n(p)$, l'anneau quotient $\frac{\mathbb{F}_p[X]}{(P)}$ est un corps fini de cardinal p^n et peut être muni d'une structure de \mathbb{F}_p -espace vectoriel de dimension n.
- 3. Calculer $I_1(p)$ et $I_2(p)$.
- 4. Donner tous les polynômes unitaires de degré 2 irréductibles dans $\mathbb{F}_{2}\left[X\right]$ et dans $\mathbb{F}_{3}\left[X\right]$.

5.

- (a) Montrer que le polynôme $P(X) = X^4 + X^3 + 1$ est irréductible dans $\mathbb{F}_2[X]$. En déduire un corps à 16 éléments. Nous noterons \mathbb{F}_{16} ce corps.
- (b) Montrer que le groupe multiplicatif \mathbb{F}_{16}^* est cyclique engendré par un élément ω de \mathbb{F}_{16}^* racine du polynôme P.
- (c) Montrer que $\omega, \omega^2, \omega^4$ et ω^8 sont les racines du polynôme $X^4 + X^3 + 1$ dans \mathbb{F}_{16} .
- (d) Montrer que la famille $(\omega, \omega^2, \omega^4, \omega^8)$ est une base de \mathbb{F}_{16} sur \mathbb{F}_2 .
- 6. Soient n un entier naturel nul et :

$$P_n(X) = X^{p^n} - X \in \mathbb{F}_p[X]$$

(a) Soient $d \in \mathbb{N}^*$, $P \in \mathcal{U}_d(p)$ et $\mathbb{F}_{p^d} = \frac{\mathbb{F}_p[X]}{(P)}$. Montrer que :

$$\forall k \in \mathbb{N}, \ \forall \overline{Q} \in \mathbb{F}_{p^d}, \ \overline{Q}^{p^{kd}} = \overline{Q}$$

(b) Montrer que, pour tout $d \in \mathcal{D}_n$, $\mathcal{U}_d(p)$ est l'ensemble de tous les polynômes unitaires irréductibles de degré d dans $\mathbb{F}_p[X]$ qui divise le polynôme P_n .

- (c) Montrer que si $P \in \mathcal{U}_d(p)$ est un diviseur de P_n , l'entier $d = \deg(P)$ est alors un diviseur de n.
- (d) Montrer que le polynôme $P_n(X) = X^{p^n} X$ est sans facteurs carrés dans $\mathbb{F}_p[X]$ et en déduire que :

$$X^{p^n} - X = \prod_{d \in \mathcal{D}_n} \prod_{P \in \mathcal{U}_d(p)} P$$

- 7. Déduire de ce qui précède un algorithme de calcul des $I_n(p) = \operatorname{card}(\mathcal{U}_n(p))$.
- 8. Donner tous les polynômes unitaires de degré 4 irréductibles dans $\mathbb{F}_2[X]$.
- 9. Montrer que pour tout entier $n \in \mathbb{N}^*$, il existe dans $\mathbb{F}_p[X]$ des polynômes irréductibles de de degré n.
- 10. Soient n un entier naturel non nul, P un polynôme unitaire et irréductible de degré n dans $\mathbb{F}_p[X]$ et \mathbb{F}_{p^n} le corps $\frac{\mathbb{F}_p[X]}{(P)}$.

On désigne par \mathbb{K} un autre corps à p^n éléments.

Comme \mathbb{K} est de caractéristique p, le corps \mathbb{F}_p peut être identifié au sous-corps premier de \mathbb{K} et un polynôme dans $\mathbb{F}_p[X]$ à un polynôme dans $\mathbb{K}[X]$.

- (a) Montrer que le polynôme P a des racines dans \mathbb{K} .
- (b) En déduire l'existence d'un isomorphisme de corps de \mathbb{F}_{p^n} sur \mathbb{K} .

 Donc, a un isomorphisme près, il n'existe qu'un seul corps à p^n éléments, c'est $\mathbb{F}_{p^n} = \frac{\mathbb{F}_p[X]}{(P)}$ où $P \in \mathcal{U}_n(p)$.
- 11. On se donne un entier $n \geq 1$ et on note G le groupe des automorphismes de corps de \mathbb{F}_{p^n} .
 - (a) Montrer que l'application $\alpha: \lambda \mapsto \lambda^p$ est un automorphisme de corps de \mathbb{F}_{p^n} .
 - (b) Montrer que α est d'ordre n dans G.
 - (c) Montrer que G est un groupe cyclique engendré par α .