APPENDIX A NOTATIONS

For $X_i \in \mathbb{R}^{n_i \times m}$, let $\operatorname{col}(X_1, \dots, X_N) = [X_1^\top, \dots, X_N^\top]^\top$. $A \otimes B$ denotes the Kronecker product of matrices A and B. A > 0 means that A is a positive definite matrix, and A < 0 means that A is a negative definite matrix.

We recall that a function $\eta:[0,a)\to [0,\infty), a\in\mathbb{R}^+$ is a class $\mathcal K$ function if it is continuous, strictly increasing and $\eta(0)=0$. If a class $\mathcal K$ function η also satisfies $\eta(s)\to\infty$ as $s\to\infty$, then it is a class $\mathcal K_\infty$ function. A continuous function $\gamma:[0,a)\times [0,\infty)\to [0,\infty)$ is a class $\mathcal K\mathcal L$ function if for each fixed t, the function $\gamma(\cdot,t)$ is a class $\mathcal K$ function, and for each fixed s, s and s and s and satisfies s and s a

For a vector $x \in \mathbb{R}^n$, ||x|| denote the Euclidean norm, and $||x||_{\infty}$ denote the infinity norm:

$$||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} = (x^{\mathsf{T}} x)^{1/2}$$

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Given a Lebesgue measurable signal $x(t): I \to \mathbb{R}^n$, $||x||_{\mathcal{L}_p}^I$ denotes its \mathcal{L}_p norm defined as [1], [2]:

$$||x||_{\mathcal{L}_p}^I = \left(\int_I ||x(t)||_p^p dt\right)^{1/p} < \infty, p \in [1, \infty)$$

$$||x||_{\mathcal{L}_{\infty}}^{I} = \sup_{t \in I} ||x(t)||_{\infty}$$

Lemma 1: (Young's Inequality [3]) If a and b are nonnegative real numbers and θ and q are positive real numbers such that $\frac{1}{\theta} + \frac{1}{q} = 1$, then $ab \leq \frac{a^{\theta}}{\theta} + \frac{b^{q}}{q}$.

APPENDIX B

HAUTUS TEST FOR STABILIZABILITY

In this appendix, we use the Hautus test to verify the stabilizability of the system represented by the state-space pair (A,B). The system dynamics are given by:

$$\dot{\xi}_i(t) = A\xi_i(t) + Bu_i(t) + D\omega_i(t)$$

where the matrix A is:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \otimes I_2$$

The characteristic equation $\det(A-\lambda I)=0$ yields the eigenvalues:

$$\lambda_1 = 0, \quad \lambda_2 = 0$$

To test stabilizability for $\lambda = 0$, we construct the matrix $[A - \lambda I \mid B]$, where B is defined as:

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes I_2$$

This gives the augmented matrix:

$$[A - \lambda I \mid B] = [A \mid B] = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

It can be checked that $\operatorname{rank}([A-\lambda I\,|\,B])=4=n,$ where n denotes the number of states in the system. Thus, the system is stabilizable.

REFERENCES

- [1] S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, and L. Li, "String stability for vehicular platoon control: Definitions and analysis methods," *Annu. Rev. Control*, vol. 47, pp. 81–97, Mar. 2019.
- [2] Z. Zhan, S. M. Wang, T. L. Pan, P. Chen, W. H. K. Lam, R. X. Zhong, and Y. Han, "Stabilizing vehicular platoons mixed with regular human-piloted vehicles: An input-to-state string stability approach," *Transportmetrica B, Transp. Dyn.*, vol. 9, no. 1, pp. 569–594, Jan. 2021.
- [3] D. S. Bernstein, Ed., Matrix mathematics: theory, facts, and formulas. Princeton, NJ, USA: Princeton university press, 2009.