НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Дисциплина: «Алгоритмы и структуры данных»

Выполнил: Кумар Денис

Студент гр. БПИ172

Преподаватель: Ахметсафина Римма Закиевна

Оглавление

1.Постановка задачи	3
1.1.Постановка задачи о нахождении максимального потока	
2.Используемые алгоритмы и структуры данных	
2.1.Алгоритмы поиска максимального потока	3
2.2.Структуры данных, использованные для эксперимента	3
3.Описание плана эксперимента	3
3.1.Реализация эксперимента	3
4.Результаты эксперимента	3
4.1.Результаты вычислений	3
4.2.Результаты измерений времени	3
4.3.Графики времени работы разных алгоритмов на одном файле	3
4.4.Графики времени работы одного алгоритма на разных файлах	3
5.Сравнительный анализ алгоритмов	3
5.1.Анализ данных на основе результатов эксперимента	3
5.2.Асимптотические оценки времени работы алгоритмов	3
6.Заключение	3
7.Использованная литература	3

1. Постановка задачи

Задача контрольного домашнего задания заключалась в реализации трёх алгоритмов расчета максимального потока в транспортной сети, проведении экспериментального исследования их эффективности и анализе полученных результатов.

Определение 1. Задача о максимальном потоке заключается в нахождении такого потока по транспортной сети, что сумма потоков из истока, или, что то же самое, сумма потоков в сток максимальна.

Определение 2. В теории графов транспортная сеть — ориентированный граф, в котором каждое ребро имеет неотрицательную пропускную способность и поток . Выделяются две вершины: источник и сток такие, что любая другая вершина сети лежит на пути из источника в сток.

Поток (flow) — функция со следующими свойствами для любых вершин:

- Ограничение пропускной способности (capacity constraints). Поток не может превысить пропускную способность. 🛭
- Антисимметричность (skew symmetry). Поток из u в v должен быть противоположным потоку из v в u. 2
- Сохранение потока (flow conservation): $\sum W \in V$ f(u, w) = 0 для всех $u \in V$, кроме источника и стока.

Величина потока (value of flow) — сумма потоков из источника.

2. Используемые алгоритмы и структуры данных

2.1. Алгоритмы поиска максимального потока

В данной задаче рассматриваются 3 алгоритма поиска максимального потока в транспортной сети: Форда-Фалкерсона, Эдмонса Карпа и Диница. Идея алгоритма Форда-Фалкерсона заключается в следующем. Изначально величине потока присваивается значение 0: для всех. Затем величина потока итеративно увеличивается посредством поиска увеличивающего пути (путь от истока к стоку, вдоль которого можно послать больший поток). Процесс повторяется, пока можно найти увеличивающий путь. Суть алгоритма Эдмонса Карпа отличается от Форда-Фалкерсона только поиском увеличивающего пути (он находится поиском в ширину).

Если говорить о Динице, то алгоритм представляет собой несколько фаз. На каждой фазе сначала строится остаточная сеть, затем по отношению к ней строится слоистая сеть (обходом в ширину), а в ней ищется произвольный блокирующий поток. Найденный блокирующий поток прибавляется к текущему потоку, и на этом очередная итерация заканчивается. Этот

алгоритм схож с алгоритмом Эдмондса-Карпа, но основное отличие можно понимать так: на каждой итерации поток увеличивается не вдоль одного кратчайшего пути, а вдоль целого набора таких путей (ведь именно такими путями и являются пути в блокирующем потоке слоистой сети).

2.2. Структуры данных, использованные для эксперимента Во входных файлах во всех трёх задачах граф задавался в виде матрицы смежности, которую было удобно хранить в двумерном векторе std::vector<vector<int>>.

3. Описание плана эксперимента

3.1. Реализация эксперимента

Каждый алгоритм был запущен 10 раз на всех входных данных. Значения максимальных потоков записывается в файл output.txt.

4. Результаты эксперимента

4.1. Результаты вычислений

File name	Answer	File name	Answer	File name	Answer
input_10_0.0.txt	31	input_610_0.0.txt	87	input_1210_0.0.txt	140
input_10_0.5.txt	45	input_610_0.5.txt	16592	input_1210_0.5.txt	31993
input_10_1.0.txt	468	input_610_1.0.txt	33270	input_1210_1.0.txt	65717
input_10_disco.txt	338	input_610_disco.txt	14500	input_1210_disco.txt	30665
input_310_0.0.txt	63	input_910_0.0.txt	150	input_1510_0.0.txt	88
input_310_0.5.txt	7817	input_910_0.5.txt	23495	input_1510_0.5.txt	41844
input_310_1.0.txt	16157	input_910_1.0.txt	49212	input_1510_1.0.txt	80504
input_310_disco.txt	7656	input_910_disco.txt	24059	input_1510_disco.txt	38754
input_1810_0.0.txt	88	input_2110_0.0.txt	122	input_2410_0.0.txt	67
input_1810_0.5.txt	41844	input_2110_0.5.txt	49487	input_2410_0.5.txt	58419
input_1810_1.0.txt	80504	input_2110_1.0.txt	99508	input_2410_1.0.txt	111565
input_1810_disco.txt	38754	input_2110_disco.txt	48794	input_2410_disco.txt	57884
input_2710_0.0.txt	134	input_2710_0.5.txt	74659	input_2710_1.0.txt	145476
input_2710_disco.txt	72513				

4.2. Результаты измерений времени

File name (.txt)	Ford-Fulkerson	Edmonds-Karp	Dinitz
input_10_0.0.txt	127440	10 324	27173
input_10_0.5.txt	16057	15630	9375
input_10_1.0.txt	56586	59710	21465
input_10_disco.txt	18540	30010	23830
input_310_0.0.txt	80273073	4 162 838	15343968
input_310_0.5.txt	8282377259	738123360	82330890
input_310_1.0.txt	9630126909	1261000400	92756710
input_310_disco.txt	2274134051	205158320	68459270
input_610_0.0.txt	232095367	30 876 510	56866514
input_610_0.5.txt	53319666680	4731948700	543455720
input_610_1.0.txt	1,27655E+11	8787139100	623682453
input_610_disco.txt	19266340235	1509865090	3096208574
input_910_0.0.txt	1599420147	88978176	147476189
input_910_0.5.txt	2,2326E+11	19214461600	202057100
input_910_1.0.txt	3,57073E+11	32962387160	1185641901
input_910_disco.txt	76324853107	5803043910	1225030100
input_1210_0.0.txt	2632324482	154220761	600911381
input_1210_0.5.txt	5,27475E+11	38058140170	4427265960
input_1210_1.0.txt	6,14007E+11	69729595400	1580262550
input_1210_disco.txt	1,99848E+11	12501917420	1783651630
input_1510_0.0.txt	2820678730	149850340	355200804
input_1510_0.5.txt	8,66558E+11	76877987600	7449399770
input_1510_1.0.txt	44126716376	1,33888E+11	2770412010
input_1510_disco.txt	2,71615E+11	24381224600	3265140990
input_1810_0.0.txt	7019550201	184495808	458433700
input_1810_0.5.txt	1,03674E+11	1,51095E+11	10336703760
input_1810_1.0.txt	2,786E+11	2,64992E+11	5427784230
input_1810_disco.txt	7,2878E+11	43964909930	5547541700
input_2110_0.0.txt	2778477657	222254197	658186253
input_2110_0.5.txt	2,47081E+11	1,11009E+11	8797844105

input_2110_1.0.txt	3,5184E+11	1,99709E+11	5358950207

input_2110_disco.txt	67931696812	42646955403	6618573401
input_2410_0.0.txt	2868179016	143078580	539763439
input_2410_0.5.txt	9574798456	1,58479E+11	11182440100
input 2410 1.0.txt	4,79513E+11	3,0168E+11	8177129609
input 2410 disco.txt	1,40875E+11	65195652804	7580890407
input_2710_0.0.txt	12645492424	485365132	1029913419
input_2710_0.5.txt	1,35519E+11	2,4293E+11	19119602605
input_2710_1.0.txt	7,54621E+11	4,44885E+11	11177753907
input_2710_disco.txt	2,53041E+11	95843273201	12844586908

4.3. Графики времени работы разных алгоритмов на одном файле

4.4. Графики времени работы одного алгоритма на разных файлах

5. Сравнительный анализ алгоритмов

5.1. Асимптотические оценки работы алгоритмов

Алгоритм Форда-Фалкерсона имеет сложность |E| * |f|, где |f| - величина максимального потока.

Алгоритм Эдмондса Карпа находит дополняющий путь за O(|E|). Общее число увеличений потока составляет O(|E| * |V|). Таким образом, сложность составляет O(|V| * |E| 2).

Алгоритм Диница имеет сложность O(|E| * |V| 2).

5.2. Асимптотические оценки времени работы алгоритмов

Из данных, приведенных в графиках в пункте 4, можно сделать вывод, что на разряженных графах дольше всего работает алгоритм Форда-Фалкерсона, затем идет алгоритм Эдмонса-Карпа и самый быстрый из них это алгоритм Диница. На графах средней плотности сохраняется тот же порядок, но при больших входных данных алгоритм Форда-Фалкерсона работает в среднем быстрее, чем алгоритм Эдмонса-Карпа. На плотных и несвязных графах алгоритмы работаю примерно так же, как и на разряженных. Из графиков видно, что самый быстрый алгоритм — это алгоритм Диница.

6. Заключение

В рамках данного контрольного домашнего задания было реализовано 3 алгоритма поиска максимального потока, измерено время выполнения каждого из них на разных входных данных и, на основе полученных данных, были сделаны выводы о каждом из алгоритмов.

7. Список литературы

- 1) http://e-maxx.ru/algo/dinic
- 3) https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/
- 4) Т. Кормен. Алгоритмы построение и анализ.