ECSE 200 - Electric Circuits 1 Tutorial 7

ECE Dept., McGill University

The circuit model for a photovoltaic cell is given in figure. The current i_a is proportional to the solar insolation (kW/m^2) .

(a) Find the load resistance, R, and maximum power transfer when $i_{\rm a}=1$ A and $R_2=4$ Ω

Problem P 5.6-1 Solution

(a) The value of the current in R_2 is 0 A so $v_{oc}=4i_a=4$ V. Then KVL gives

$$8i_a + 4i_a - V_s = 0 \Rightarrow V_s = 12i_a = 12 \text{ V}$$

Problem P 5.6-1 Solution

Next, KVL gives, $4i_a = R_2 i_{sc} \Rightarrow i_{sc} = 1 \text{ A}$

(b) The power delivered to the resistor to the right of the terminals is maximized by setting R equal to the Thevenin resistance of the part of the circuit to the left of the terminals:

$$R=R_t=rac{V_{oc}}{i_{sc}}=rac{4}{1}=4~\Omega.~{
m and}~P_{max}=rac{v_{oc}^2}{4R_t}=2~{
m W}$$

Find the maximum power transfer to R in the figure.

Problem P 5.6-3 Solution

Reduce the circuit using source transformations:

Then maximum power will be dissipated in resistor R when: $R = R_t = 60$ Ω and the value of that maximum power is $P_{max} = i_R^2 = (0.03)^2(60) = 54$ mW

For the circuit in figure, prove that for R_s (source resistance) variable and R_L fixed, the power dissipated in R_L is maximum when $R_s = 0$.

Problem P 5.6-4 Solution

$$V_L = V_s \frac{R_L}{R_s + R_L}$$

$$\therefore p_L = \frac{V_L^2}{R_L} = \frac{V_s^2 R_L}{(R_s + R_L)^2}$$

By inspection, p_L is max when you reduce R_s to get the smallest denominator. \therefore set $R_s = 0$

A resistive circuit was connected to a variable resistor, and the power delivered to the resistor was measured as shown in Figure. Determine the Thevenin equivalent circuit.

Problem P 5.6-9 Solution

From the plot, the maximum power is 5 W when R = 20 Ω . Therefore: R_t = 20 Ω and $p_{max} = \frac{(v_{oc})^2}{4R_t} \Rightarrow v_{oc} = \sqrt{p_{max}4R_t} = \sqrt{5(4)20} = 20 \text{ V}$

Given that $0 \le R \le \infty$ in the circuit shown in Figure, determine value of R that maximizes the power $p_a = i_a V_a$ and the corresponding maximum value of p_a .

Problem P 5.6-12 Solution

Replace the combination of resistor R and the 20 Ωand 2 $\Omega resistors$ by an equivalent resistance.

Problem P 5.6-12 Solution

The maximum power theorem indicates that the maximum value of occurs when $R_{eq}=R_t$. In this case, $R_t=8~\Omega$. We require

$$8 = R_{eq} = \frac{20(R+2)}{20 + (R+2)} \Rightarrow R = 11.333 \ \Omega$$

This isnt a standard resistance value but it is an acceptable value for this problem since $0 \le 11.333 \le \infty$. Then

$$p_a = \frac{(V_a)^2}{R_{eq}} = \frac{(3)^2}{8} \ 1.125 \ W$$

Thank you!