CAPÍTULO 6. Rectas en el plano. Semiplanos.

Ecuación de una recta en el plano

Toda ecuación de una recta r en el plano está asociada a la expresión $\mathbf{a_1x} + \mathbf{a_2y} + \mathbf{a_0} = \mathbf{0}$ donde $\mathbf{a_1}$, $\mathbf{a_2}$ y $\mathbf{a_0}$ son números reales y ($\mathbf{x_3y}$) representa cualquier punto que pertenece a la recta \mathbf{r}

- Si a₁≠0 y a₂≠0 entonces la expresión a₁x+a₂y+a₀=0 puede escribirse de la forma como y = mx + b notación que recibe el nombre de forma explícita de la recta r. El coeficiente m recibe el nombre de pendiente de la recta r y b ordenada correspondiente al punto de intersección entre el eje y y la recta r, (0;b)
- Si $a_1=0$ y $a_2\neq 0$ entonces la expresión $a_1x+a_2y+a_0=0$ puede escribirse de la forma como r: y = b es una recta horizontal
- Si $a_1 \neq 0$ y $a_2 = 0$ entonces la expresión $a_1x + a_2y + a_0 = 0$ puede escribirse de la forma como r: x = k es una recta vertical

Rectas definidas a partir de dos puntos

Sean los puntos $P(x_1; y_1)$ y $Q(x_2; y_2)$ que pertenecen a la recta r: y = mx + b esto significa que:

$$\begin{cases}
P \in r: y_1 = mx_1 + b \\
Q \in r: y_2 = mx_2 + b
\end{cases}$$

Resulta un sistema de ecuaciones lineales con dos incógnitas m y b

Si restamos miembro a miembro las ecuaciones del sistema se tiene:

$$y_1 - y_2 = mx_1 - mx_2 \Rightarrow y_1 - y_2 = m(x_1 - x_2)$$

Si
$$x_1 - x_2 \neq 0$$
 entonces $m = \frac{y_1 - y_2}{x_1 - x_2}$

Si se despeja b de cualquiera de las ecuaciones del sistema, por ejemplo, de la primera ecuación se tiene:

$$b = y_1 - \left(\frac{y_1 - y_2}{x_1 - x_2}\right) x_1$$

Rectas paralelas, coincidentes, secantes y perpendiculares

Sean las rectas r_1 : $y = m_1 x + b_1$ y r_2 : $y = m_2 x + b_2$:

- $r_1 // r_2$ (paralelas) si y solo si m_1 - m_2 =0 y $b_1 \neq b_2$
- r_1 y r_2 son coincidentes si y solo si m_1 - m_2 =0 y b_1 = b_2
- r_1 y r_2 son *secantes* si y solo si m_1 - $m_2 \neq 0$
- $r_1 \perp r_2$ (perpendiculares) si y solo si $m_1 \cdot m_2 = (-1)$

Cualquier recta en un plano divide a éste en dos regiones llamados *semiplanos*. Dicha recta recibe el nombre *recta frontera* o *recta borde*.

Las expresiones algebraicas que se representan como semiplanos son aquellas denominadas *inecuaciones lineales* con dos incógnitas.

Inecuación lineal

2

Una *inecuación lineal* es una desigualdad que incluye alguna de las siguientes relaciones de orden: "mayor que" (>); "menor que" (\leq); "menor o igual que" (\leq) y relacionan entre sí dos expresiones lineales.

Cuando se utilizan desigualdades o inecuaciones se debe tener presente algunas *propiedades de las desigualdades* (aunque en éste capítulo sólo se enuncian para desigualdades del tipo < son válidas para <, \le o \ge):

• Si a ambos miembros de una desigualdad se les suma un mismo número se obtiene otra desigualdad del mismo sentido.

$$a < b \implies a + c < b + c \quad \forall c \in \Re$$

• Si ambos miembros de una desigualdad se multiplican por un número positivo se obtiene otra desigualdad equivalente a la primera.

$$a < b \ y \ c > 0 \Rightarrow a.c > b.c$$

 Si ambos miembros de una desigualdad se multiplican por un número negativo la desigualdad cambia de sentido.

$$a < b \ y \ c < 0 \Rightarrow a.c > b.c$$

El sentido de una desigualdad se conserva al multiplicar sus dos miembros por un mismo número positivo, y se invierte si dicho número es negativo.

Una inecuación lineal con dos se pueden expresar de una de las formas siguientes:

$$ax+by+c > 0$$
; $ax+by+c < 0$; $ax+by+c \ge 0$; $ax+by+c \le 0$

con a, b y c reales y $a\neq 0$, $b\neq 0$

CAPÍTULO 7. Sistemas de inecuaciones y ecuaciones lineales

Ecuación lineal

Una ecuación lineal es una expresión de la forma $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ [1] donde $n \in \mathbb{N}$, $a_1, a_2, ..., a_n \in \mathbb{R}$ se denominan coeficientes y $b \in \mathbb{R}$ se llama término independiente y $x_1, x_2, ..., x_n$ son las incógnitas de la ecuación.

La solución de una ecuación lineal [1], si existe, es una n-upla de números reales $(s_1; ...; s_n)$ tal que:

$$a_1s_1+a_2s_2+a_3s_3+...+a_ns_n=b$$

Un sistema de ecuaciones lineales (SEL) es un conjunto finito de ecuaciones lineales.

El *conjunto solución de un SEL* es el conjunto formado por todas las soluciones del sistema, es decir, aquellas soluciones que satisfacen simultáneamente a todas las ecuaciones del sistema. Un sistema de ecuaciones lineales puede ser clasificado según su conjunto solución:

- a) SEL compatible determinado: Es aquel cuyo conjunto solución está formado por una única n-upla.
- b) SEL compatible indeterminado: Es aquel cuyo conjunto solución está formado por infinitas n-uplas.
- c) SEL incompatible determinado: Es aquel cuyo conjunto solución carece de elementos.

Se denominan SEL *equivalentes* a aquellos sistemas que poseen el mismo conjunto solución, aunque tengan distinta cantidad de ecuaciones.

La existencia de SEL equivalentes la base de los *métodos de resolución de los SEL* ya que mediante procedimientos algebraicos se obtiene un sistema equivalente a uno dado el cual resulta más conveniente para obtener la solución.

Para obtener sistemas equivalentes a uno dado se pueden realizar los siguientes procedimientos, cuantas veces y en el orden que se necesite, sobre las ecuaciones:

- 1) Reemplazar una ecuación por otra obtenida al multiplicar o dividir la primera ecuación por un número real distinto de cero. 2) La ecuación obtenida suele llamarse "múltiplo" de la primera.
- 3) Reemplazar una ecuación por otra obtenida al sumar o restar la primera ecuación por otra.
- 4) Intercambiar dos ecuaciones del SEL
- 5) Integrar las operaciones anteriores.

Un sistema de ecuaciones lineales puede expresarse en forma matricial de la manera siguiente:

$$AX = B$$

donde A es la matriz de los coeficientes, X la matriz de las incógnitas y B la de los términos independientes^I.

Matriz ampliada de un SEL es la matiz construida del siguiente modo [AIB] Método algebraico para la resolución de SEL: Método de Gauss

- 1) En la matriz ampliada del sistema se localiza la primera columna de izquierda a derecha, distinta de cero, y en esta se busca un elemento no nulo llamado *pivote* preferiblemente un uno (si es posible) si no lo fuera reemplazamos dicha fila por otra obtenida al dividir la misma por el valor del *pivote*.
- 2) Si es necesario, se pude intercambiar la primera fila con otra que contiene un elemento no nulo.
- 3) Se transforma en cero todos los elementos ubicados debajo del pivote, obtenidos mediante el reemplazo de distintas filas (exceptuando la del pivote) por otras halladas al sumar o restar estas filas por múltiplos la fila del pivote.
- 4) Se repiten los pasos del 1 al 3, excluyendo la primera fila. El proceso finalizará cuando ya no pueda elegirse un pivote.
- 5) En caso de obtener un valor numérico o expresión para cada incógnita del sistema, dichos valores o expresiones se deben verificar en el sistema de partida.

¹ Si **B** es una matriz nula, el SEL es llamado *homogéneo*. Estos sistemas son siempre son compatibles.

Ejemplo 1: Dado el siguiente SEL
$$\begin{cases} 2x & -3y & +z & =1 \\ x & +y & -z & =6 \\ -x & +2y & +2z & =-5 \end{cases}$$

A partir de la matriz ampliada del sistema:

Entonces el SEL en forma escalonada resulta:

$$\begin{cases} 2x - 3y + z = 1\\ \frac{5}{2}y - \frac{3}{2}z = \frac{11}{2}\\ \frac{14}{5}z = -\frac{28}{5} \end{cases}$$

Al despejar se obtiene: x = 3; y = 1; z = -2

Verificación:
$$\begin{cases} 2.3 & -3.1 & -2 & =1 \\ 3 & +1 & -(-2) & =6 \\ -3 & +2.1 & +2.(-2) & =-5 \end{cases}$$

Conjunto solución: $S = \{(3; 1; -2)\}$

A veces en el trascurso de la resolución de un sistema se encuentran situaciones tales como:

- Una ecuación con 0x = 0, 0y = 0, 0z = 0, si esto ocurre, en general el sistema es indeterminado (tiene infinitas
- Una ecuación con $0\mathbf{x} = \mathbf{a}$, $\mathbf{a} \neq 0$; $0\mathbf{y} = \mathbf{b}$, $\mathbf{b} \neq 0$; $0\mathbf{z} = \mathbf{c}$, $\mathbf{c} \neq 0$, (por ejemplo $0\mathbf{x} = \mathbf{7}$), si ello ocurre, el sistema es incompatible (NO hay solución).

Ejemplo 2 Sea el SEL
$$\begin{cases} 2x - 3y + z = 1 \\ x - y - z = 2 \end{cases}$$

A partir de la matriz ampliada del sistema:

$$\begin{pmatrix}
\boxed{2} & -3 & 1 & 1 \\
1 & -1 & -1 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\boxed{2} & -3 & 1 & 1 \\
0 & \frac{1}{2} & \frac{-3}{2} & \frac{3}{2}
\end{pmatrix}$$

Entonces el SEL en forma escalonada resulta: $\begin{cases} 2x - 3y + z = 1 \\ \frac{1}{2}y - \frac{3}{3}z = \frac{3}{2} \end{cases}$

Al despejar se obtiene: x = 5 + 4z; y = 3+3z; z = z cualquier número real.

Verificación:
$$\begin{cases} 2(5+4z) - 3(3+3z) + z = 1\\ 5+4z - (3+3z) - z = 2 \end{cases}$$

Ejemplo 3 Sea el SEL
$$\begin{cases} 3x & -2y = 10 \\ 2x & +3y = 9 \\ x & +y = 4 \end{cases}$$

A partir de la matriz ampliada del sistema:

$$\begin{pmatrix}
3 & -2 & | & 10 \\
2 & 3 & | & 9 \\
2 & 2 & | & 4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & -2 & | & 10 \\
0 & \frac{13}{3} & | & \frac{7}{3} \\
2 & 2 & | & 4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & -2 & | & 10 \\
0 & \frac{13}{3} & | & \frac{7}{3} \\
2 & 2 & | & 4
\end{pmatrix}$$

$$\Rightarrow
\begin{pmatrix}
3 & -2 & | & 10 \\
0 & \frac{13}{3} & | & \frac{7}{3} \\
0 & \frac{10}{3} & | & \frac{-8}{3}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & -2 & | & 10 \\
0 & \frac{13}{3} & | & \frac{7}{3} \\
0 & 0 & | & \frac{-58}{13}
\end{pmatrix}$$

Entonces el SEL en forma escalonada resulta:
$$\begin{cases} 3x & -2y & = 10 \\ & \frac{13}{3}y & = \frac{7}{3} \\ & 0y & = -\frac{58}{13} \end{cases}$$

Conjunto solución: **S**={ }

Sistema de ecuaciones lineales

Un sistema de ecuaciones lineales (SIL) es un conjunto finito de inecuaciones lineales.

Método de resolución gráfica de SIL

El método de la resolución de un sistema de inecuaciones se consiste en hallar la región del plano que resulta de la *intersección de los semiplanos* que representan el conjunto solución de cada una de las inecuaciones que forman el sistema:

- 1) Se representa, en un mismo plano cartesiano, los semiplanos que representan la solución de ambas inecuaciones.
- 2) Las soluciones del sistema son las coordenadas de los puntos que pertenecen a la vez a todos semiplanos.

Ejemplo: Sea el siguiente SIL
$$\begin{cases} x + 3y > 7 \\ 3x - 2y \ge -1 \\ 4x + y < 17 \end{cases}$$

S es la intersección de los tres semiplanos que representan gráficamente las tres inecuaciones del SEIL

Bibliografía

Haeussler, E. F., & Paul, R. S. (2003). Matemáticas para administración y economía. Pearson Educación.

De Guzmán, M. & Cólera, J. (1989). *Matemáticas I – COU*. Anaya.

APENDICE

Teorema Fundamental de la Numeración y concesión a otras bases

Teorema Fundamental de la Numeración (TFN) que establece la forma general de construir números en sistema posicional:

N, número válido en el sistema de numeración.

b, base del sistema de numeración. Cantidad de símbolos permitidos en el sistema. [Nota: el sistema decimal posee 10 símbolos]

 d_i : un símbolo cualquiera de los permitidos en el sistema de numeración.

n.: cantidad de dígitos de la parte entera.

, coma fraccionaria: Símbolo utilizado para separar la parte entera de un número de su parte fraccionaria.

k,: cantidad de dígitos de la parte decimal.

La expresión general que permite construir un número N, con una cantidad finita de decimales, en un sistema de numeración posicional de base b resuelta:

$$N = d_n b^n + ... + d_1 b^1 + d_0 b^0 + d_{-1} b^{-1} + ... + d_{-k} b^{-k}$$

El valor numérico de N resulta de la suma de cada dígito multiplicado por la potencia de la base correspondiente a la posición que ocupa en el número.

Esta representación posibilita la realización de algoritmos sencillos para efectuar operaciones aritméticas como así también para realizar la conversión de un número N en cualquier base (b) a base 10 y viceversa. Por ejemplo, convertir los números 10, 101₂, 703,4₈ y 6C,1₁₆ a base 10, aplicando el TFN, se obtiene que:

$$10,101_2 = 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 2 + 0 + 0,5 + 0 + 0,125 = 2,625_{10}$$

$$703.48 = 7.8^{2} + 0.8^{1} + 3.8^{0} + 4.8^{-1} = 448 + 0 + 3 + 0.5 = 451.5_{10}$$

$$6C,1_{16} = 6\cdot16^1 + C\cdot16^0 + 1\cdot16^{-1} = 96 + 12 + 0,0625 = 108,0625_{10}$$