数理统计练习

- 1. 说明参数区间估计的精度与置信水平 $1-\alpha$ 的关系.
- 2. 某工厂通过抽样调查得到8名工人一周内生产的产品数如下:

50, 40, 30, 70, 50, 40, 50, 70

试求经验分布函数 $F_n(x)$.

3. 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单样本,试判断统计量

$$\frac{\overline{X} - \mu}{\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}}$$
服从什么分布,写出必要过程.

4. 设
$$X_1, X_2, \dots, X_n$$
 是 $X \sim N(\mu, \sigma^2)$ 的样本(μ 已知),记 $S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$,

$$S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 判断 S_1^2, S_2^2 是否是 σ^2 的无偏估计量?

5、某工厂生产一种螺钉,标准要求长度是 68 mm,实际生产的产品其长度服从正态分布 $N(\mu,3.6^2)$,考虑假设检验问题 $H_0:\mu=68$ $H_1:\mu\neq68$,记 \overline{X} 为样本均值,按下列方式进行假设:

当
$$|\bar{X}-68|>1$$
时,拒绝假设 H_0 ;当 $|\bar{X}-68|\leq1$ 时,接受假设 H_0

当样本容量 n = 64 时,求:

- (1) 犯第一类错误即弃真错误的概率 α ;
- (2) 犯第二类错误即取伪错误的概率 β . (设 $\mu = 70$)
- **6、**有甲、乙两个试验员,对同样的试验样本进行分析,各人试验分析结果见下表(分析结果服从正态分布),

试验号码	1	2	3	4	5	6	7	8
甲	4.3	3.2	3.8	3.5	3.5	4.8	3.3	3.9
乙	3.7	4.1	3.8	3.8	4.6	3.9	2.8	4.4

并算得 $s_1^2 = 0.2927$, $s_2^2 = 0.2927$ 试问甲、乙两个试验员的分析结果之间有无显著差异 $(\alpha = 0.05)$?