SD701 Big Data Mining

Data Preparation

Albert Bifet(@abifet)

Data Basics

Machine Learning/Data Mining Applications

- Business Analytics
 - · Is this costumer credit-worthy?
 - Is a costumer willing to respond to an email?
 - Do costumers divide in similar groups?
 - How much a costumer is going to spend next semester?
- World Wide Web
- · Financial Analytics
- Internet of Things
- Image Recognition, Speech
- ..

The Data Mining Process

- Data collection
- Data Preprocesing
 - Feature extraction
 - Data cleaning
 - · Feature selection and transformation
- Analytical processing and algorithms
- Data Postprocesing

Multidimensional Data

Example:

Competitor Name	Swim	Cycle	Run	Total
John T	13:04	24:15	18:34	55:53
Norman P	8:00	22:45	23:02	53:47
Alex K	14:00	28:00	n/a	n/a
Sarah H	9:22	21:10	24:03	54:35

Table: Triathlon results

- Example or Instance
 - data point, transaction, entity, tuple, object, or feature-vector
- Attribute or Feature
 - · field, dimension

Instance Types

Dense

- · red, white, Barcelona, 3, up
- · red, red, Barcelona, 4, down
- black, white, Paris, 2, up
- red, green, Paris, 3, down

Sparse

- 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Attribute Type

- Numerical
 - 0, 1, 3.43, 2.34, 4.23
- · Categorical or Discrete
 - +, -
 - red, green, black
 - · yes, no
 - up, down
 - Barcelona, Paris, London, New York
- Text Data: vector-space representation
 - The cat is black
- Binary: Categorical or Numerical

Analytical processing and algorithms

- Attribute/Column Relationships
 - Classification: predict value of a discrete attribute
 - Regression: predict value of a numeric attribute
- Instance/Row Relationships
 - Clustering: determine subsets of rows, in which the values in the corresponding columns are similar
 - Outlier Detection: determine the rows that are very different from the other rows

Big Data Scalability

- · Distributed Systems:
 - · Hardware: Hadoop cluster
 - Software: MapReduce, Spark, Flink, Storm
- Streaming Algorithms
 - · Single pass over the data
 - Concept Drift

Data Preparation

The Data Mining Process

- Data collection
- Data Preprocesing
 - Feature extraction
 - Data cleaning
 - · Feature selection and transformation
- Analytical processing and algorithms
- Data Postprocesing

Feature Extraction

- Sensor data: wavelets or Fourier Transforms
- Image Data: histograms or visual words
- Web logs: multidimensional data
- Network traffic: specific features as network protocol, bytes transferred
- Text Data: remove stop words, stem data, multidimensional data

Feature Conversion

- Numeric to Discrete
 - Equi-width ranges
 - Equi-log ranges
 - Equi-depth ranges
- Discrete to Numeric
 - Binarization: one numeric attribute for each value
- Text to Numeric
 - remove stop words, stem data, tf-idf, multidimensional data
- Time Series to Discrete Sequence Data
 - SAX: equi-depth discretization after window-based averaging
- Time Series to Numeric Data
 - · Discrete Wavelet Transform
 - Discrete Fourier Transform

Term Frequency-Inverse Document Frequency

- Term frequency
 - · Boolean "frequencies"
 - tf(t, d) = 1 if t occurs in d and 0 otherwise;
 - Logarithmically scaled frequency
 - $tf(t, d) = 1 + log f_{t,d}$, or zero if $f_{t,d}$ is zero;
 - · Augmented frequency,

$$tf(t, d) = 0.5 + 0.5 \cdot \frac{f_{t,d}}{\max\{f_{t',d} : t' \in d\}}$$

Inverse document frequency

$$idf(t, D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

· Term frequency-inverse document frequency

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

Data Cleaning

- Handling missing entries
 - · Eliminate entries with a missing value
 - Estimate missing values
 - Algorithms can handle missing values
- Handling incorrect entries
 - Duplicate detection and inconsistency detection
 - Domain knowledge
 - Data-centric methods
- Scaling and normalization
 - Standardization: for instance i, attribute j:

$$\mathbf{z}_{i}^{j} = \frac{\mathbf{x}_{i}^{j} - \mathbf{\mu}_{j}}{\sigma_{j}}$$

· Normalization:

$$y_i^j = \frac{x_i^j - \min_j}{\max_j - \min_j}$$

Feature selection and transformation

- Sampling for Static Data
 - · Sampling with Replacement
 - Sampling without Replacement: no duplicates
 - Biased Sampling
 - Stratified Sampling
- Reservoir Sampling for Data Streams
 - Given a data stream, choose k items with the same probability, storing only k elements in memory.

RESERVOIR SAMPLING

RESERVOIR SAMPLING

```
for every item i in the first k items of the stream
do store item i in the reservoir
n = k
for every item i in the stream after the first k items of the stream
do select a random number r between 1 and n
if r < k</p>
then replace item r in the reservoir with item i
n = n + 1
```

Figure: Algorithm Reservoir Sampling

Feature selection and transformation

- Feature Subset Selection
 - Supervised feature selection
 - Unsupervised feature selection
 - Biased Sampling
 - Stratified Sampling
- Dimensionality reduction with axis rotation
 - Principal Component Analysis
 - Singular Value Decomposition
 - Latent Semantic Analysis

Principal Component Analysis

- Goal: Principal component analysis computes the most meaningful basis to re-express a noisy, garbled data set.
 The hope is that this new basis will filter out the noise and reveal hidden dynamics
- Normalize Input Data
- Compute k orthonormal vectors to have a basis for the normalized data
- Sort these principal components
- Eliminate components with low variance

Principal Component Analysis

- Organize the data set X as an $m \times n$ matrix, where m is the number of features and n is the number of instances.
- Normalize Input Data: subtract off the mean for each instance x_i
- Calculate the SVD or the eigenvectors of the covariance
 - Find some orthonormal matrix P where Y = PX such that

$$S_{Y} = \frac{1}{n-1} Y Y^{T}$$

is diagonalized.

- The rows of P are the principal components of X.
- Sort these principal components
- Eliminate components with low variance