# Meeting Materials for QDrone Project Regular Internal Meeting

# Regular Internal Meeting for QDrone Project

Jan 7 2019 4PM at PSE 312

Participant: Jungwon Kang, Zahra Arjmandi, Kunwoo Park

### Prerequisites for Pursuing Project

- Software
  - Matlab
  - **■** C++
  - Ubuntu
  - ROS
- ☐ Theory (for backend: state estimation from sensor measurement)
  - EKF
  - MSCKF
  - Smoothing
- □ Sensor
  - GPS
  - IMU
  - Camera
  - LiDAR

#### **Tasks**

- ☐ Task 0: Building Systems
- ☐ Task 1: Localization
- ☐ Task 2: SLAM
- ☐ Task 3: Navigation

### Task 0: Building Systems

#### ☐ Building Complete Systems

#### **Building Systems**

Done!

DJI M100 (basic setup)

Done!

DJI M100 (payload integration)

DJI M600 + Gimbal (basic setup)

DJI M600 + Gimbal (payload integration)

Simulator

# Localization & Mapping

Localization (range-based)

SLAM

#### **Navigation**

Navigation (by just predefined via-point following)

### Task 1: Localization

#### ☐ Following Predefined Via-Points

#### **Building Systems**

DJI M100 (basic setup)

DJI M100 (payload integration)

DJI M600 + Gimbal (basic setup)

DJI M600 + Gimbal (payload integration)

Simulator

Localization & Mapping

Localization (range-based)

**In-progress** 

SLAM

#### **Navigation**

Navigation (by just predefined via-point following)

#### Task 2: SLAM

### ■ Building a Map

#### **Building Systems**

DJI M100 (basic setup)

DJI M100 (payload integration)

DJI M600 + Gimbal (basic setup)

DJI M600 + Gimbal (payload integration)

Simulator

# Localization & Mapping

Localization (range-based)

**SLAM** 

#### **Navigation**

Navigation (by just predefined via-point following)

### Task 3: Navigation

#### ☐ Building a Map by Next-Best-View Point Selection

#### **Building Systems**

DJI M100 (basic setup)

DJI M100 (payload integration)

DJI M600 + Gimbal (basic setup)

DJI M600 + Gimbal (payload integration)

Simulator

# Localization & Mapping

Localization (range-based)

SLAM

#### **Navigation**

Navigation (by just predefined via-point following)

### Meeting Results: What to do

- ☐ Common
  - Basic setup for 'DJI M600 + Gimbal' (primarily by Zahra & Kunwoo)
  - Booking a PSE 4th floor room equipped with motion capture systems
- □ Zahra
  - Understanding Kunwoo's EKF-based UWB localization code (including EKF)
- ☐ Kunwoo
  - Sending thesis and experiment plan to prof. Sohn
  - Writing a paper for ISPRS Geospatial Week 2019
- □ Jungwon
  - Writing a paper for IROS 2019

#### **Future Plan**

☐ Jungwon's Rough Suggestion for Future Plan

**Zahra** (primarily semantic SLAM)

**Kunwoo** (primarily UAV localization)

UWB-Inertial Odometry (UIO)

- EKF-based UIO and/or DOP
- MSCKF-based UIO and/or DOP

Localization with UIO + GPS switching

Conventional SLAM

- Using vision and/or LiDAR
- ORB2

Semantic SLAM

Fusion with deep

**Jungwon:** supports Kunwoo & Zahra mainly in technical issues.

### **IMU Calibration Problem**

Jan 24 2019

Participant: Jungwon Kang, Zahra Arjmandi, Kunwoo Park, Yujia Zhang

### Problem 1

☐ Where is the UWB receiver wrt IMU axis?



### Problem 2

☐ What is the initial R, T between UWB axis and IMU axis?



### Plan for Year 2019

Feb 5 2019

Participant: Jungwon Kang, Zahra Arjmandi, Kunwoo Park

#### Plan for Year 2019



#### **Payload**

- Positioning sensor: Pozyx / Spatial / DJI-RTK
- Imaging sensor: ZED stereo / FLIR Duo R / Sony A7III
- Velodyne LiDARs: Puck LITE / Puck Hi-Res / HDL-32E

## **Current Progress & To do next**

Mar 10 2019

Jungwon Kang

### Current Progress & To Do Next

| Subject                | Detailed Task                           | Current Progress                                                                                                                                             | To Do Next                                                                                                                                                                                |
|------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System<br>building     | Payload purchase                        | ■ Received Velodyne Puck Lite & Hi-Res                                                                                                                       | <ul> <li>Receiving the rest of ordered items         (All items are listed at the bottom of page.)</li> <li>Need to buy a cabinet with lockers</li> <li>Making a list of items</li> </ul> |
|                        | Testing M600 & Ronin-MX                 | <ul> <li>Tested Ronin-MX</li> <li>Not tested M600 due to a broken battery</li> <li>The broken battery (TB48S) was delivered to the OmniView tech.</li> </ul> | <ul> <li>Need to order extra TB48S batteries.</li> <li>(Need \$2000 for six TB48S)</li> </ul>                                                                                             |
|                        | Test of each payload                    | None                                                                                                                                                         |                                                                                                                                                                                           |
|                        | Payload integration                     | None                                                                                                                                                         |                                                                                                                                                                                           |
| Dataset<br>release     | UWB-IMU dataset<br>generation & release | None                                                                                                                                                         | <ul> <li>Need to do experiments</li> <li>Need to release the dataset to the public</li> <li>Need to submit a paper about the dataset</li> </ul>                                           |
| Localization solution  | UWB multilateration-based localization  | <ul> <li>Implemented an initial version of<br/>multilateration in C++</li> </ul>                                                                             | ■ Need to implement LM non-linear optimization in C++                                                                                                                                     |
|                        | UWB-EKF-based<br>localization           | ■ Implemented in MATLAB (by Kunwoo)                                                                                                                          | ■ Need to implement in C++ ■ Need to write a thesis draft by Kunwoo                                                                                                                       |
|                        | UWB-Smoothing-based localization        | <ul> <li>Implemented in MATLAB (by Jungwon)</li> <li>Submitted IROS paper</li> </ul>                                                                         | ■ Need to implement in C++                                                                                                                                                                |
| Navigation<br>solution | Coverage path planning                  | <ul><li>Implemented in MATLAB<br/>(by Zahra)</li></ul>                                                                                                       |                                                                                                                                                                                           |
|                        | Implementing in real systems            | None                                                                                                                                                         | ■ Need to implement in M100 & M600                                                                                                                                                        |

#### **Payload**

- Positioning sensor: Pozyx / Spatial / DJI-RTK
- Imaging sensor: ZED stereo / FLIR Duo R / Sony A7III
- Velodyne LiDARs: Puck LITE / Puck Hi-Res / HDL-32E