```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
!file /content/creditcard.csv.zip
/content/creditcard.csv.zip: cannot open `/content/creditcard.csv.zip' (No such file or directory)
df = pd.read_csv('/content/creditcard.csv')
df.head()
<del>____</del>
        Time
                    V1
                              V2
                                        V3
                                                  V4
                                                            V5
                                                                      V6
                                                                                V7
      0
           0 -1.359807 -0.072781 2.536347
                                           1.378155 -0.338321 0.462388
                                                                         0.239599
                                                                                    0.0986
                         0.266151 0.166480
                                            0.448154
                                                      0.060018 -0.082361
                                                                                    0.0851
              1.191857
                                                                         -0.078803
      2
           1 -1 358354 -1 340163 1 773209
                                            0.379780 -0.503198
                                                                1 800499
                                                                          0.791461
                                                                                    0 2476
           1 -0.966272 -0.185226 1.792993 -0.863291
                                                      -0.010309
                                                                1.247203
                                                                          0.237609
                                                                                    0.3774
      4
           0.592941 -0.2705
     5 rows × 31 columns
df.info()
<pr
     RangeIndex: 21878 entries, 0 to 21877
     Data columns (total 31 columns):
         Column Non-Null Count Dtype
     0
                  21878 non-null
         Time
                                  int64
                  21878 non-null
      1
         V1
                                  float64
      2
         V2
                  21878 non-null
                                  float64
      3
         V3
                  21878 non-null
                                  float64
      4
         V4
                  21878 non-null
                                  float64
      5
         V5
                  21878 non-null
                                  float64
      6
         ۷6
                  21878 non-null
                                  float64
         V7
                  21878 non-null
                                  float64
      8
                  21878 non-null
                                  float64
         V8
      9
         V9
                  21878 non-null
                                  float64
      10
         V10
                  21878 non-null
                                  float64
                  21878 non-null
                                  float64
         V11
      11
         V12
                  21878 non-null
                                  float64
      12
      13
         V13
                  21878 non-null
                                  float64
      14
         V14
                  21878 non-null
                                  float64
      15
         V15
                  21878 non-null
                                  float64
      16
         V16
                  21878 non-null
                                  float64
      17
         V17
                  21878 non-null
                                  float64
                  21878 non-null
      18
         V18
                                  float64
      19
         V19
                  21878 non-null
                                  float64
      20
         V20
                  21878 non-null
                                  float64
         V21
                  21878 non-null
                                  float64
      21
                  21878 non-null
      22
         V22
                                  float64
      23
         V23
                  21878 non-null
                                  float64
      24
         V24
                  21878 non-null
                                  float64
      25
         V25
                  21878 non-null
                                  float64
      26
         V26
                  21878 non-null
                                  float64
      27
         V27
                  21878 non-null
                                  float64
      28
         V28
                  21878 non-null
                                  float64
                  21877 non-null
         Amount
                                  float64
                  21877 non-null float64
      30 Class
     dtypes: float64(30), int64(1)
     memory usage: 5.2 MB
print('Shape Of The Dataset', df.shape)
print('Class Categories', df['Class'].unique())
print('Number Of Records With The Class Value 0: ', (df.Class == 0).sum())
print('Number Of Records With The Class Value 1: ', (df.Class == 1).sum())
   Shape Of The Dataset (21878, 31)
     Class Categories [ 0. 1. nan]
     Number Of Records With The Class Value 0: 21791
     Number Of Records With The Class Value 1:
sns.countplot(x='Class', data=df)
```

```
<Axes: xlabel='Class', ylabel='count'>
```



```
x = df.corr()['Class'][:30]
```

Time 0.003817 V1 -0.285602 0.259959 V3 -0.476294 ٧4 0.261522 V5 -0.263605 V6 -0.124538 -0.395674 V7 ٧8 0.200598 V9 -0.175465 V10 -0.363563 V11 0.284211 -0.321828 V13 -0.009892 V14 -0.441833 V15 -0.009043 V16 -0.327048 -0.426317 V17 -0.201947 V18 V19 0.029348 0.065875 V20 V21 0.042885 V22 -0.024029 -0.041799 V24 -0.029307 V25 0.032147 V26 0.017745 0.135965 V27 0.022922

```
x = df.corr()['Class'][:30]
```

0.006824

Name: Class, dtype: float64

V28

Amount

x.plot.bar(figsize=(16, 9), title="Correlation Of Features With Target Variable", grid=True)

plt.figure(figsize=(16, 9))

sns.heatmap(df.corr())


```
y = df.corr()['Class']

df2 = df.copy()

for i in df.columns:
    if abs(y[i]) < 0.13:
        df2.drop(columns=[i], inplace=True)</pre>
```

sns.heatmap(df2.corr(), annot=True)

df2.head()

_		V3	V4	V10	V11	V12	V14	V16	V17	C]
	0	2.536347	1.378155	0.090794	-0.551600	-0.617801	-0.311169	-0.470401	0.207971	
	1	0.166480	0.448154	-0.166974	1.612727	1.065235	-0.143772	0.463917	-0.114805	
	2	1.773209	0.379780	0.207643	0.624501	0.066084	-0.165946	-2.890083	1.109969	
	3	1.792993	-0.863291	-0.054952	-0.226487	0.178228	-0.287924	-1.059647	-0.684093	
	4	1.548718	0.403034	0.753074	-0.822843	0.538196	-1.119670	-0.451449	-0.237033	
	4									•

```
Next steps: Generate code with df2 View recommended plots

plt.figure(figsize=(16, 9))
```



```
x = df2.corr()['Class'][:9]
```

x.plot.bar(figsize=(16, 9), title="Top Correlated Features With The Target Variable", grid=True)

<axes: title={'center': 'Top Correlated Features With The Target Variable'}>


```
print(y.isnull().sum())
df2.dropna(subset=['Class'], inplace=True)
X = df2.drop('Class', axis=1)
y = df2['Class']
rus = RandomUnderSampler(random_state=42)
X_resampled, y_resampled = rus.fit_resample(X, y)
# ... rest of your code
→ 0
{\it from \ imblearn.under\_sampling \ import \ RandomUnderSampler}
\mbox{\tt\#} Separate features (X) and target (y)
X = df2.drop('Class', axis=1)
y = df2['Class']
# Initialize RandomUnderSampler
rus = RandomUnderSampler(random_state=42)
\ensuremath{\mbox{\sc \#}} 
 Fit and apply the resampler to the data
X_{resampled}, y_{resampled} = rus.fit_{resample}(X, y)
# Convert the resampled data back to a DataFrame
\label{local_def} downsampled\_df = pd.concat([pd.DataFrame(X\_resampled, columns=X.columns), pd.DataFrame(y\_resampled, columns=['Class'])], axis=1)
downsampled_df.head()
```

	V1	V2	V3	V4	V 5	V7	V8	V 9	
0	1.080471	-0.898196	-0.101167	-2.207604	-0.807356	-0.345683	0.071073	1.866907	
1	-1.642711	-0.987960	2.219241	-3.413385	0.231503	-0.360119	0.472436	3.187289	-2
2	-2.138696	1.377871	1.642452	-0.013499	-0.109421	-0.633353	-3.075967	0.554068	-(
3	-1.055962	0.843840	1.568174	-0.011194	0.422437	0.566527	0.422157	-0.068220	-(
4	-0.334535	0.241851	1.727856	-0.862383	-0.580904	-0.040325	-0.181736	0.383812	-(
	1 2	 1.080471 -1.642711 -2.138696 -1.055962 	 1.080471 -0.898196 -1.642711 -0.987960 -2.138696 1.377871 -1.055962 0.843840 	0 1.080471 -0.898196 -0.101167 1 -1.642711 -0.987960 2.219241 2 -2.138696 1.377871 1.642452 3 -1.055962 0.843840 1.568174	0 1.080471 -0.898196 -0.101167 -2.207604 1 -1.642711 -0.987960 2.219241 -3.413385 2 -2.138696 1.377871 1.642452 -0.013499 3 -1.055962 0.843840 1.568174 -0.011194	0 1.080471 -0.898196 -0.101167 -2.207604 -0.807356 1 -1.642711 -0.987960 2.219241 -3.413385 0.231503 2 -2.138696 1.377871 1.642452 -0.013499 -0.109421 3 -1.055962 0.843840 1.568174 -0.011194 0.422437	0 1.080471 -0.898196 -0.101167 -2.207604 -0.807356 -0.345683 1 -1.642711 -0.987960 2.219241 -3.413385 0.231503 -0.360119 2 -2.138696 1.377871 1.642452 -0.013499 -0.109421 -0.633353 3 -1.055962 0.843840 1.568174 -0.011194 0.422437 0.566527	0 1.080471 -0.898196 -0.101167 -2.207604 -0.807356 -0.345683 0.071073 1 -1.642711 -0.987960 2.219241 -3.413385 0.231503 -0.360119 0.472436 2 -2.138696 1.377871 1.642452 -0.013499 -0.109421 -0.633353 -3.075967 3 -1.055962 0.843840 1.568174 -0.011194 0.422437 0.566527 0.422157	0 1.080471 -0.898196 -0.101167 -2.207604 -0.807356 -0.345683 0.071073 1.866907 1 -1.642711 -0.987960 2.219241 -3.413385 0.231503 -0.360119 0.472436 3.187289 2 -2.138696 1.377871 1.642452 -0.013499 -0.109421 -0.633353 -3.075967 0.554068 3 -1.055962 0.843840 1.568174 -0.011194 0.422437 0.566527 0.422157 -0.068220

View recommended plots

downsampled_df.shape

→ (172, 17)

Next steps:

sns.countplot(x='Class', data=downsampled_df)

<Axes: xlabel='Class', ylabel='count'>

Generate code with downsampled_df

sns.scatterplot(x='V11', y='V17', hue='Class', data=df2)

import warnings

To ignore all warnings
warnings.filterwarnings('ignore')
Pair Plot of all variables
sns.pairplot(downsampled_df, hue='Class')

!pip install lazypredict

\longrightarrow Collecting lazypredict

Downloading lazypredict-0.2.12-py2.py3-none-any.whl (12 kB)

Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from lazypredict) (8.1.7)

Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from lazypredict) (1.2.2) Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from lazypredict) (2.0.3)

Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from lazypredict) (4.66.4)

Fraud detection.ipynb - Colab

```
Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from lazypredict) (1.4.2)
     Requirement already satisfied: lightgbm in /usr/local/lib/python3.10/dist-packages (from lazypredict) (4.1.0)
     Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (from lazypredict) (2.0.3)
     Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from lightgbm->lazypredict) (1.25.2)
     Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from lightgbm->lazypredict) (1.11.4)
     Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->lazypredict) (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->lazypredict) (2023.4)
     Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->lazypredict) (2024.1)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->lazypredict) (3.5 Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->lazypredict)
     Installing collected packages: lazypredict
     Successfully installed lazypredict-0.2.12
from sklearn.model_selection import train_test_split
from lazypredict.Supervised import LazyClassifier
# Separate features and target
x = downsampled_df.drop(columns= 'Class')
y = downsampled df['Class']
# Split the data into training and testing sets
x\_train, \ x\_test, \ y\_train, \ y\_test = train\_test\_split(x, \ y, \ test\_size=0.2, \ random\_state=42)
# Fit all models
clf = LazyClassifier(predictions=True)
models, predictions = clf.fit(x_train, x_test, y_train, y_test)
```

```
100%| | 29/29 [00:01<00:00, 23.17it/s][LightGBM] [Info] Number of positive:
    [LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was
    You can set `force_col_wise=true` to remove the overhead.
    [LightGBM] [Info] Total Bins 757
    [LightGBM] [Info] Number of data points in the train set: 137, number of used feature
    [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.503650 -> initscore=0.014599
    [LightGBM] [Info] Start training from score 0.014599
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
    [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf
[LightGBM]	[Warning]	No	further	splits	with	positive	gain,	best	gain:	-inf

	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken
Model					
AdaBoostClassifier	1.00	1.00	1.00	1.00	0.13
BaggingClassifier	1.00	1.00	1.00	1.00	0.04
XGBClassifier	1.00	1.00	1.00	1.00	0.09
DecisionTreeClassifier	1.00	1.00	1.00	1.00	0.02
RandomForestClassifier	1.00	1.00	1.00	1.00	0.18
QuadraticDiscriminantAnalysis	1.00	1.00	1.00	1.00	0.04
SGDClassifier	0.97	0.97	0.97	0.97	0.02
LGBMClassifier	0.97	0.97	0.97	0.97	0.15
PassiveAggressiveClassifier	0.97	0.97	0.97	0.97	0.02
ExtraTreesClassifier	0.97	0.97	0.97	0.97	0.14
KNeighborsClassifier	0.97	0.97	0.97	0.97	0.02
LinearSVC	0.97	0.97	0.97	0.97	0.02
LabelSpreading	0.94	0.94	0.94	0.94	0.02
LabelPropagation	0.94	0.94	0.94	0.94	0.02
LinearDiscriminantAnalysis	0.94	0.94	0.94	0.94	0.04
LogisticRegression	0.94	0.94	0.94	0.94	0.03
NuSVC	0.94	0.94	0.94	0.94	0.02
Perceptron	0.94	0.94	0.94	0.94	0.02
RidgeClassifier	0.94	0.94	0.94	0.94	0.03
RidgeClassifierCV	0.94	0.94	0.94	0.94	0.02
CalibratedClassifierCV	0.94	0.94	0.94	0.94	0.05
SVC	0.94	0.94	0.94	0.94	0.02
GaussianNB	0.94	0.94	0.94	0.94	0.02
ExtraTreeClassifier	0.89	0.88	0.88	0.89	0.02
BernoulliNB	0.89	0.88	0.88	0.88	0.02
NearestCentroid	0.86	0.85	0.85	0.85	0.02

Next steps: Generate code with models

https://colab.research.google.com/drive/1bL7jEdOQNSWR2zwYnJL4BuJmSPGen41s#scrollTo=pCPUS3BCx1KK&printMode=true

View recommended plots

```
from sklearn.semi supervised import LabelSpreading
from sklearn.model selection import GridSearchCV
from sklearn.metrics import classification_report
X = downsampled_df.drop('Class', axis=1)
y = downsampled_df['Class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LabelSpreading()
param_grid = {
    'kernel': ['knn', 'rbf'],
    'gamma': ['scale', 'auto', 0.1, 1.0],
    alpha': [0.1, 0.2, 0.5, 0.8],
    'n_neighbors': [3, 5, 7]
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy', verbose=1)
grid search.fit(X train, y train)
best params = grid search.best params
best score = grid search.best score
print(f"Best Hyperparameters: {best params}")
print(f"Best Cross-validation Accuracy: {best_score:.2f}")
best model = grid search.best estimator
y pred = best model.predict(X test)
print("\nClassification Report on Test Set:")
print(classification_report(y_test, y_pred))
Fitting 5 folds for each of 96 candidates, totalling 480 fits
     Best Hyperparameters: {'alpha': 0.2, 'gamma': 1.0, 'kernel': 'rbf', 'n_neighbors': 3}
     Best Cross-validation Accuracy: 0.96
     Classification Report on Test Set:
                     precision recall f1-score support
                           0.94
                                     0.94
                                                 0.94
               0.0
                                                               18
               1.0
                        0.94
                                  0.94
                                                 0.94
                                                               17
         accuracy
                                                 0.94
                                                               35
         macro avg
                           0.94
                                      0.94
                                                 0.94
                                                               35
                           0.94
                                      0.94
                                                 0.94
     weighted avg
                                                               35
from \ sklearn.preprocessing \ import \ StandardScaler
from \ sklearn.semi\_supervised \ import \ LabelSpreading, \ LabelPropagation
from xgboost import XGBClassifier
from \ sklearn.ensemble \ import \ Voting Classifier
from sklearn.metrics import classification_report, confusion_matrix
X = downsampled_df.drop(columns='Class')
y = downsampled_df['Class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
label spreading = LabelSpreading()
label_propagation = LabelPropagation()
xgb = XGBClassifier(use label encoder=False, eval metric='logloss')
ensemble = VotingClassifier(estimators=[
   ('label_spreading', label_spreading),
   ('label_propagation', label_propagation),
   ('xgb', xgb)
], voting='hard')
ensemble.fit(X train, y train)
y_pred = ensemble.predict(X_test)
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
    Confusion Matrix:
     [[16 2]
      [ 0 17]]
     Classification Report:
```

https://colab.research.google.com/drive/1bL7jEdOQNSWR2zwYnJL4BuJmSPGen41s#scrollTo=pCPUS3BCx1KK&printMode=true

support	recall f1-score		precision	
18	0.94	0.89	1.00	0.0
17	0.94	1.00	0.89	1.0
35	0.94			accuracy
35	0.94	0.94	0.95	macro avg
35	0.94	0.94	0.95	weighted avg

from sklearn.model_selection import GridSearchCV

from sklearn.preprocessing import StandardScaler

 $from \ sklearn.semi_supervised \ import \ LabelSpreading, \ LabelPropagation$

from xgboost import XGBClassifier

from sklearn.ensemble import VotingClassifier

from sklearn.metrics import classification_report, confusion_matrix

X = downsampled_df.drop(columns='Class')

y = downsampled_df['Class']