Tempo e execução de múltiplas tarefas

Prof. Dr. Roberto Kenji Hiramatsu Prof. Dr. João Henrique Co<mark>rreia Pimentel</mark>

Sistemas Analógicos e Digitais

- Sistemas analógicos
 - Manipula quantidades físicas de forma analógica ao longo de uma faixa de operação

Sistema digital

- Manipula somente representações no formato digital
- São na maioria das vezes eletrônicos mas podem ser mecânicos, magnéticos ou pneumáticos.

Computadores, smartfones

Antes dos computadores Calculadores mecânicos Caixa registradora.

Quanto precisamos de uma saída analógica?

Velocidade Motores DC/AC

Converter áudio

Intensidade de iluminação

A saídas podem ser geradas por conversores digital analógico – DAC ou por técnica de PWM

DAC – Digital Analogic Converter – Conversor Digital-Analógico PWM – Pulse-Width Modulation

Quando precisamos de uma entrada analógica?

Medida de uma grandeza do mundo real

Teoria:

Fundo de escala, Resolução e precisão

- Fundo de escala (fe) 15V em conversão de 4 bits com resolução (K) de 1V
 - Saída analógica = K x Saída Digital

Modulação por largura de pulso – (Pulse Width Modulation - PWM)

- No Arduino UNO R3 não temos o DAC
 - No entanto existem uC que tem saídas DAC como o Arduino DUE
- O PWM, que é a modulação da largura de pulso digital, é "enxergada" como sinal analógico dependendo da frequência de operação
 - Controle de motores e aquecedores por exemplo.
 - Considere o resultado como media
 - Na biblioteca para o UNO R3 opera em 500Hz aproximadamente.
 - Não e adequada para reprodução de áudio.

lacktriangle

Pinos no Arduino UNO R3

Timer output	Arduino output	Chip pin	Pin name
OC0A	6	12	PD6
OCOB	5	11	PD5
OC1A	9	15	PB1
OC1B	10	16	PB2
OC2A	11	17	PB3
OC2B	3	5	PD3

Observe que número aqui representa o temporizador usado

Nem todos os pinos tem saída PWM Em outros uC tem que verificar disponibilidade

Leitura de sinal analógica

- Uso de ADC quase todos os uC tem este periférico
 - No arduino UNO R3:
 - Escala de fundo do ADC é 5V.
 - tem ADC de 10bits com resolução de 5V/1024=4,9mV
 - Converte em 0,1 milissegundos
- O Arduino UNO R3 tem somente 1 periférico ADC acessível dos pinos A0 a A6.

Como é o tratamento de um sinal de sensor para ser lida no ADC

FIGURE 2 RESISTANCE AS FUNCTION OF ILLUMINATION

Resistencia 350 Ohms

O valor médio da tolerância de resistência 0,1%

Fator de sensibilidade 2,00-2,20

Coeficiente de dispersão sensível 1%

Limite de deformação 2,0%

Ciclos de Vida: 1M

Coeficiente de compensação de temperatura: 9,11,16,23,27

Temperatura de trabalho: -30- +80

Exemplos de termopares para arduino

MAX6675 tipo K-módulo sensor de temperatura termopar MAX6675

R\$ 6,74 de AliExpress.com

em de no AliExpress.com | Alibaba Group

Modulo Max6675 + Termopar Tipo K Arduino Excelente!

R\$ 26,40 de Mercado Livre - Absolem Eletrons

MAX6675 + Termopar K 1/2m + jumpers Descrição: MAX6675 é um conversor AD com compensação de junta fria , correção de ...

Sensor Termopar Tipo K 600oc Modulo Leit.max6675 P/ Arduino

R\$ 35,00 de Mercado Livre - Argfbig

Termopar tipo K com medicão até 600oC. Modulo de leitura utiliza o chip MAX6675 para fazer a conexão do termopar ao arduino ...

Termopar Tipo K 0 a 800°C + Módulo de Leitura Max6675

R\$ 37,90 de Eletrogate ★★★★ (362)

Este Kit contém um Termopar Tipo K e um Módulo de Leitura Max6675 que são capazes de realizar medições de temperatuda de 0°C à ..

Montar o circuito abaixo para entender o PWM

Código teste

```
1 /** Autor: Roberto Kenji Hiramatsu
 2 Demostracao de leitura de potenciomentro para controle de
 3 intensidade de led
 5 int pinAnalog=3;
                              //Definindo PWM no pino 3
 6 void setup() {
     pinMode (pinAnalog, OUTPUT); // Precisa dizer que e uma saida di
                          // Para ver o valor lido
     Serial.begin(9600);
10 int anteriorV:
11 void loop() {
12
     int v=analogRead(A0);
                                 // Faz a leitura do valor analogico
    if(v!=anteriorV){
13
                                   // So imprime se for diferente
14
       Serial.println(v);
15
       anteriorV=v:
16
17
     analogWrite(pinAnalog, v>>2); // v>> mesmo que v/4
18
     delay(10);
                                          No Arduino os pinos
19
                                       analógicos são acessados
                                      com prefixo A seguindo do
                                       Número do pino analógico
```

Acionamento de motores

- Motores DC
 - Acionamento usando PWM para gerar uma tensão média
 - Normalmente aceita rotação nos dois sentidos por meio de mudança de polaridade
- Motor DC tipo Servomotor
 - Usando o PWM p<mark>ar</mark>a estabelecer ângulo de giro possui internamente controle PID para manter a posição
 - Usando em Robos
- Motor DC tipo Stepper (motor de passo)
 - Usa sequência de pulsos para mudar a posição
 - Não permite controle fino dos passos e não permite verificação de posição
- Motores AC
 - Criando uma forma de onda com frequência controlada por uC

DACs

Algumas características a pensar no

motor

- Torque
 - Sg90 → 1.8Kg/cm em máxima carga (stall)
- Curva de velocidade/torque
- Curva de Potência/torque
 - Considere usar do ponto de carga livre até o ponto de potencia máxima.
- Corrente de parti

Amplificadores de potencia Motores Drivers e ponte H Diodos são colocadores para proteger o circ

Diodos são colocados para proteger o circuito eletrônico das tensões reversas geradas

Vamos analisar o acionamento de motor abaixo

Duplique o projeto de:

Eventos gerados por pinos externos tratamento do encoder

- Interrupções externas são recebidas nos pinos 2 e 3 do Arduino UNO R3 e servem para atender operações geradas por sinais externos
 - O encoder do motor gera pulso que precisam ser

medidos

```
/*Conta pulsos da
volatile int cA=0;
void contaCHA(){
cA++;
}
```

57 void setup()

Por se tratar de evento gerado fora do loop normal o modificador volatile deve ser aplicado para a variável seja segura durante o acesso normal e por interrupção

Uma interrupção é definida como uma função que é sempre chamado quando ocorre o evento

O Arduino define attachInterrupt para registrar a interrupção

```
58 {
59    Serial.begin(9600);
60    iniciaLog();
61    attachInterrupt(digitalPinToInterrupt(pinEncCHA), contaCHA, RISING);
62    //attachInterrupt(digitalPinToInterrupt(pinEncCHB), contaCHB, RISING);
63    sentidoRot(false);
64 }
```

Exemplo usando servomotor e biblioteca servo.h

Código exemplo com biblioteca servo.h

```
#include <Servo.h>
Servo myservo; // create servo object to control a servo
int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup() {
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
 Serial.begin(9600);
int antVal=0;
void loop() {
 val = analogRead(potpin);
                                   // reads the value of the potentiometer (value between 0 and
1023)
 if(antVal!=val){
  antVal=val;
  Serial.println(val);
 val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180)
 myservo.write(val);
                               // sets the servo position according to the scaled value
 delay(15);
                            // waits for the servo to get there
```

Execício proposto 1

 Construa o circuito ábaixo similar ao proposto na 2 aula no Tinkecar. Faça com que o potenciômetro ligado no analógico A0 controle a velocidade de acendimento dos Leds com valor variando de 250ms a 2 segundos e que a transição do led de maio brilho desloque da direita para a esquerda e vice-versa. O potenciômetro ligado ao Analógico A1 deve controlar o brilho em torno do led de maior brilho como mostra a figura abaixo.

Proposição 2

- Usando o circuito de controle do motor mostrado nesta aula, proponha um projeto com controle de 2 motores que permita realizar uma volta circular com raio de 50cm.
- Considere para isso uma roda de 65mm de diâmetro e um chassi entre eixos de 10 cm.
- Dica 1: Desenhe e determine a proporção que cada roda deve percorrer com base na velocidade da roda mais rápida.
- Dica 2: Considere que o valor do PWM gera velocidade proporcional para tensões nas faixas entorno de 6V.

Leituras e videos

- Veja as explicações sobre registro de interrupção
- https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
- https://playground.arduino.cc/Code/Interrupts
- PWM
- Amplificadores
 - https://www.electronics-tutorials.ws/amplifier/amplifier-classes.html

Um pouco de teoria de motores DC

http://lancet.mit.edu/motors/motors3.html

Determinando parâmetros de um motor

https://www.youtube.com/watch?v=roINUVVpEbs

https://www.youtube.com/watch?v=gwFE-NkzR-k

Motores tipo stepper e servo

http://www.ni.com/white-paper/14863/en/

Leitura adicional

- Temopares
 - http://www.estatica-metrologia.com.br/termopares.p
 hp
- Circuito
 - http://diegobittencourt.blogspot.com.br/2011/09/boa-tardeconforme-combinado.html
- LDR
 - https://components101.com/ldr-datasheet

