Contents

cubation 1
Load libraries
Read in the data
Functions
Relative abundance of phyla
PCoA
Alpha Diversity
Statistics
Soil chemical measurements
Nitrate "NO3"
Amonia "NH3"
Microbial Biomass
pH
Total Nitrogen via combustion analysis
Total Carbon via combustion analysis
Gravimetric moisture content
Under Construction

Incubation

Masters experiment, incubation of soils amended with various amendments

Load libraries

```
library(phyloseq)
library(tidyverse)
library(vegan)
library(ggpubr)
```

Read in the data

```
use readRDS to load phyloseq object
inc.raw <- readRDS("Data/incubation_raw.RDS")
inc.raw

## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 43726 taxa and 350 samples ]
## sample_data() Sample Data: [ 350 samples by 13 sample variables ]
## tax_table() Taxonomy Table: [ 43726 taxa by 6 taxonomic ranks ]</pre>
```

Functions

```
# Put phyloseq object into a df with .02% phylum (glomed at phylum level)
RelativeAbundanceDf <- function(physeq) {
    physeq %>% tax_glom(taxrank = "Phylum") %>% transform_sample_counts(function(x) {
        x/sum(x)
```

```
}) %>% psmelt() %>% filter(Abundance > 0.02) %>% arrange(Phylum)
}
# Function to plot relative abundance
PlotRelativeAbundance <- function(df) {</pre>
    ggplot(df, aes(x = as.factor(day), y = Abundance, fill = Phylum)) +
    facet_grid(treatment ~ .) +
    geom bar(stat = "identity") +
    #scale fill manual(values = phylum.colors) +
        # Remove x axis title
    theme(axis.title.x = element_blank()) +
    guides(fill = guide_legend(reverse = TRUE, keywidth = 1, keyheight = 1)) +
    ylab("Relative Abundance (Phyla > 2%) \n") +
    ggtitle("Phylum Composition of Incubation Soils \n Bacterial Communities by Treatment")
}
#Scale reads function to be used prior to ordination
ScaleReads <- function(physeq, n) {</pre>
  physeq.scale <- transform_sample_counts(physeq, function(x) {</pre>
    (n * x/sum(x))
  })
  otu_table(physeq.scale) <- floor(otu_table(physeq.scale))</pre>
  physeq.scale <- prune_taxa(taxa_sums(physeq.scale) > 0, physeq.scale)
  return(physeq.scale)
}
# Function to summarise a data frame and give statistics
DataSummary <- function(data, varname, groupnames) {</pre>
  require(plyr)
  SummaryFunc <- function(x, col) {</pre>
    c(mean = mean(x[[col]], na.rm = TRUE), sd = sd(x[[col]], na.rm = TRUE))
  }
  data.sum <- ddply(data, groupnames, .fun = SummaryFunc, varname)</pre>
  data.sum <- rename(data.sum, c(mean = varname))</pre>
}
Use function from above to create df with .02% of the phylum level of OTUs
inc.raw.phylum.2percent <- RelativeAbundanceDf(inc.raw)</pre>
# Plot and save image
inc.phylum.abundance <- PlotRelativeAbundance(inc.raw.phylum.2percent)</pre>
tiff('Images/inc.phylum.abundance.tiff', units="in", width=5, height=5, res=300)
inc.phylum.abundance
dev.off()
## pdf
##
inc.phylum.abundance
```

Phylum Composition of Incubation Soils Bacterial Communities by Treatment

Some data wrangling to make the plots look nicer

```
# First split into two phyloseq objects
# Incubation
inc.treatment <- subset_samples(inc.raw, day %in% c("0", "7", "14", "21", "35", "49", "97"))
# Amends
inc.amend <- subset_samples(inc.raw, treatment %in% c("AlfalfaAmend", "CompostAmend"))
# Now let's pool the reps so that y-axis goes to 1, need to do for each object
inc.merged <- inc.treatment
variable.1 <- as.character(get_variable(inc.merged, "treatment"))
variable.2 <- as.character(get_variable(inc.merged, "day"))
sample_data(inc.merged)$TreatmentAndDay <- mapply(paste0, variable.1, variable.2, collapse = "-")
inc.merged <- merge_samples(inc.merged, "TreatmentAndDay")
sample_data(inc.merged)$treatment <- levels(sample_data(inc.treatment)$treatment)</pre>
```

Relative abundance of phyla

```
# Innie to outtie, make df and plot relative abumndace
treatments.abundance <- PlotRelativeAbundance(RelativeAbundanceDf(inc.treatment))
amendments.abundance <- PlotRelativeAbundance(RelativeAbundanceDf(inc.amend))
mergeddf.abundance <- PlotRelativeAbundance(RelativeAbundanceDf(inc.merged))

# Save as images, high quality
tiff('Images/treatments.abundance.tiff', units="in", width=5, height=5, res=300)
treatments.abundance</pre>
```

```
dev.off()
## pdf
## 2
tiff('Images/amendments.abundance.tiff', units="in", width=5, height=5, res=300)
amendments.abundance
dev.off()
## pdf
## 2
tiff('Images/mergeddf.abundance.tiff', units="in", width=5, height=5, res=300)
mergeddf.abundance
dev.off()
## pdf
## pdf
## 2
treatments.abundance
```


 $\verb|amendments.abundance||$

Phylum Composition of Incubation Soils Bacterial Communities by Treatment

Phylum Composition of Incubation Soils Bacterial Communities by Treatment

PCoA

We already have the function ScaleReads to re-sample our data to a specific read number per sample.

```
# Now call the function with the phyloseq object you wish to scale
inc.scale.treatment <- ScaleReads(inc.treatment, n = 6000)</pre>
```

Fix day levels in sample_data

```
sample_data(inc.scale.treatment)$day <- factor(sample_data(inc.scale.treatment)$day,
levels = c("0", "7", "14", "21", "35", "49", "97"))</pre>
```

Now use the ordinate function from phyloseq

```
inc.ordination.treatment <- ordinate(physeq = inc.scale.treatment, method = "PCoA", distance = "bray")</pre>
```

Use plot_ordination to create the plot then manipulate it with ggplot2

```
inc.ordination.plot.treatment <- plot_ordination(physeq = inc.scale.treatment, ordination = inc.ordinat
    color = "day", shape = "treatment", title = "PCoa of Incubation Bacterial Communities") +
    #scale_color_manual(values = phylum.colors) +
    geom_point(aes(color = day), alpha = 0.7, size = 4) +
    geom_point(color = "grey90", size = 1.5)

tiff('Images/inc.ordination.plot.treatment.tiff', units="in", width=10, height=10, res=300)
inc.ordination.plot.treatment
dev.off()</pre>
```

pdf

2

inc.ordination.plot.treatment

PCoa of Incubation Bacterial Communities

Alpha Diversity

First remove OTUs that sum to 0

```
inc.treatment.pruned <- prune_species(speciesSums(inc.treatment) > 0, inc.treatment)
richness.data <- plot_richness(inc.treatment.pruned, measures = "Shannon")
richness.df <- richness.data$data

scaled.richness.data <- plot_richness(inc.scale.treatment, measures = "Shannon")
scaled.df <- scaled.richness.data$data

richness.shannon <- ggplot(richness.df, aes(x = day, y = value), color = treatment) +
    geom_boxplot(aes(color = treatment), position = "dodge") +
    facet_grid(*treatment)
richness.shannon</pre>
```


scaled.richness.shannon

Statistics

Interesting results shown so far, we can see that the communities are changing over time and in response to nutrients

```
# Stats
# Adonis
inc.scale.df <- as(sample_data(inc.scale.treatment), "data.frame")</pre>
inc.distance <- distance(inc.scale.treatment, "bray")</pre>
inc.adonis <- adonis(inc.distance ~ treatment + day, inc.scale.df)</pre>
inc.adonis
##
## Call:
## adonis(formula = inc.distance ~ treatment + day, data = inc.scale.df)
##
## Permutation: free
##
  Number of permutations: 999
##
## Terms added sequentially (first to last)
##
              Df SumsOfSqs MeanSqs F.Model
##
                                                  R2 Pr(>F)
                      4.313 1.43755 17.199 0.09412 0.001 ***
## treatment
                     14.259 2.37648 28.432 0.31119
                                                      0.001 ***
## day
               6
                     27.249 0.08359
                                             0.59469
## Residuals 326
## Total
             335
                     45.820
                                             1.00000
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# I'm pretty sure the order you feed the categories
incadonis.reverse <- (adonis(inc.distance ~ day + treatment, inc.scale.df))</pre>
```

Soil chemical measurements

Plot the other data, mainly we want to explore how the nutrient concentration and microbial biomass numbers are changing during the course of the incubation.

```
inc.treatment
## phyloseq-class experiment-level object
## otu_table()
                 OTU Table:
                                      [ 43726 taxa and 336 samples ]
## sample_data() Sample Data:
                                      [ 336 samples by 13 sample variables ]
## tax_table()
                  Taxonomy Table:
                                      [ 43726 taxa by 6 taxonomic ranks ]
sample_data(inc.treatment)$day <- as.factor(sample_data(inc.treatment)$day)</pre>
inc.data <- as.data.frame(sample_data(inc.treatment))</pre>
colnames(inc.data)
    [1] "i_id"
                                      "sample"
    [3] "treatment"
                                      "replication"
##
    [5] "jar"
                                      "day"
##
                                      "N_flash"
##
   [7] "pH"
##
  [9] "C_flash"
                                      "gravimetric_water_content"
## [11] "NH3"
                                      "NO3"
## [13] "MBC_mg.kg_per_dry_wt_soil"
```

Nitrate "NO3"

```
inc.nitrate.eb <- DataSummary(inc.data, varname = "NO3", groupnames = c("day", "treatment"))
inc.nitrate.eb
      day treatment
##
                           NO3
                                       sd
## 1
            Alfalfa
                           NaN
                                       NA
## 2
           CompAlfa
        0
                           NaN
                                       NA
## 3
            Compost
                           NaN
                                       NA
## 4
        0
            Control
                           NaN
                                       NA
## 5
        7
            Alfalfa 4.0158333 1.40372827
## 6
        7
           CompAlfa 0.7890000 0.26608099
## 7
        7
            Compost
                     2.3883333 0.41559166
## 8
       7
            Control 4.3295000 0.45983881
## 9
       14
            Alfalfa 6.7978333 1.02079528
## 10
           CompAlfa 1.9499167 0.31778136
       14
## 11
       14
            Compost 0.1792500 0.09437783
## 12
       14
            Control 5.7135000 0.37824928
## 13
       21
            Alfalfa 11.6335622 1.88920063
       21
           CompAlfa 4.6493122 0.93634659
## 14
## 15
       21
            Compost 0.0373955 0.03194408
## 16
     21
            Control 6.6623122 1.23079502
## 17
       35
            Alfalfa 20.8315490 1.73690734
## 18
       35
           CompAlfa 9.2763823 1.75712854
## 19
      35
            Compost 0.1278823 0.09516716
```

```
## 20 35
           Control 11.4509657 0.61981764
## 21 49
           Alfalfa 28.1442543 4.47671101
## 22 49 CompAlfa 14.4175043 0.70669332
## 23 49
          Compost 0.2011710 0.20800801
## 24 49
           Control 14.7184210 0.58758991
## 25 97
           Alfalfa 38.1015833 0.94668363
           CompAlfa 22.2865000 0.93478170
## 26 97
## 27 97
            Compost 6.6065000 2.39839062
## 28 97
           Control 21.3129167 1.22645813
plot.inc.nitrate.eb <- ggplot(inc.nitrate.eb, aes(x = day, y = NO3, group = treatment, color = treatment
  geom_errorbar(aes(ymin = NO3 - sd, ymax = NO3 + sd), width = 1, position = position_dodge(0.05)) +
  geom_line(aes(linetype = treatment)) +
  geom_point(aes(shape = treatment)) +
 labs(title = "Plot of NO3 by day", x = "Day", y = "NO3") +
 theme_classic()
tiff('Images/nitrate.eb.tiff', units="in", width=5, height=5, res=300)
plot.inc.nitrate.eb
dev.off()
## pdf
##
inc.nitrate <- ggplot(inc.data, aes(x = day, y = NO3, group = treatment)) +
  geom_point(aes(color = treatment))
tiff('Images/nitrate.tiff', units="in", width=5, height=5, res=300)
inc.nitrate
dev.off()
## pdf
plot <- ggplot(inc.data, aes(x = treatment, y = NO3, color = treatment)) +</pre>
 facet_grid(~day) +
  geom_boxplot(position = "dodge") +
  theme(axis.title.x=element_blank(), axis.text.x=element_blank(), axis.ticks.x=element_blank())
tiff("Images/boxplot.nitrate.tiff", units = "in", width = 5, height = 5, res = 300)
plot
dev.off()
## pdf
inc.data.7 <- inc.data %>%
  filter(day == 7) %>%
  ggplot(aes(x = treatment, y = NO3, color = treatment)) +
  geom_boxplot() +
  #facet_grid( \sim day) +
  rotate_x_text(angle = 45) +
  geom_hline(yintercept = mean(inc.data$NO3), color = "red") +
  stat_compare_means(method = "anova") +
  stat_compare_means(label = "p.signif", method = "t.test", ref.group = ".all.")
tiff("Images/nitrate.day.7.boxplot.tiff", units = "in", width = 5, height = 5, res = 300)
inc.data.7
dev.off()
```

pdf

```
##
test <- inc.data %>%
  filter(day == 7)
stat.day.7 <- ggboxplot(test, x = "treatment", y = "NO3", color = "treatment", legend = "none") +</pre>
  rotate_x_text(angle = 45) +
  geom_hline(yintercept = mean(test$NO3)) +
  stat_compare_means(method = "anova") +
  stat_compare_means(label = "p.signif", method = "t.test", ref.group = ".all.")
tiff('Images/stat.day.7.tiff', units="in", width=5, height=5, res=300)
#insert ggplot code
stat.day.7
dev.off()
## pdf
##
     2
plot.inc.nitrate.eb
```

Plot of NO3 by day

inc.nitrate

stat.day.7

Amonia "NH3"

```
inc.amonia.eb <- DataSummary(inc.data, varname = "NH3", groupnames = c("day", "treatment"))

plot.inc.amonia.eb <- ggplot(inc.amonia.eb, aes(x = day, y = NH3, group = treatment, color = treatment)
    geom_errorbar(aes(ymin = NH3 - sd, ymax = NH3 + sd), width = 1, position = position_dodge(0.05)) +
    geom_line(aes(linetype = treatment)) +
    geom_point(aes(shape = treatment)) + labs(title = "Plot of NH3 by day", x = "Day", y = "NH3") +
    theme_classic()
plot.inc.amonia.eb</pre>
```


inc.amonia <- ggplot(inc.data, aes(x = day, y = NH3, group = treatment)) + geom_point(aes(color = treatment))
inc.amonia</pre>

Microbial Biomass

inc.micr.biomass.c <- ggplot(inc.data, aes(x = day, y = MBC_mg.kg_per_dry_wt_soil, group = treatment))
inc.micr.biomass.c</pre>


```
tiff('Images/inc.micr.biomass.c.tiff', units="in", width=5, height=5, res=300)
inc.micr.biomass.c
dev.off()
```

pdf ## 2

pH

```
inc.pH.eb <- DataSummary(inc.data, varname = "pH", groupnames = c("day", "treatment"))</pre>
plot.inc.pH.eb <- ggplot(inc.pH.eb, aes(x = day, y = pH, group = treatment, color = treatment)) +</pre>
  geom_errorbar(aes(ymin = pH - sd, ymax = pH + sd), width = 1, position = position_dodge(0.05)) +
  geom_line(aes(linetype = treatment)) +
  geom_point(aes(shape = treatment)) +
  labs(title = "Plot of pH by day", x = "Day", y = "MBC") +
  theme_classic()
plot.inc.pH.eb
```


Total Nitrogen via combustion analysis

```
inc.N_flash.eb <- DataSummary(inc.data, varname = "N_flash", groupnames = c("day", "treatment"))

plot.inc.N_flash.eb <- ggplot(inc.N_flash.eb, aes(x = day, y = N_flash, group = treatment, color = treatment geom_errorbar(aes(ymin = N_flash - sd, ymax = N_flash + sd), width = 1, position = position_dodge(0.0 geom_line(aes(linetype = treatment)) +
    geom_point(aes(shape = treatment)) +
    labs(title = "Plot of N_flash by day", x = "Day", y = "% N") +
    theme_classic()
plot.inc.N_flash.eb</pre>
```



```
plot.inc.N_flash.eb
dev.off()

## pdf
## 2
inc.N_flash <- ggplot(inc.data, aes(x = day, y = N_flash, group = treatment)) + geom_point(aes(color = inc.N_flash))</pre>
```


Total Carbon via combustion analysis

```
inc.C_flash.eb <- DataSummary(inc.data, varname = "C_flash", groupnames = c("day", "treatment"))

plot.inc.C_flash.eb <- ggplot(inc.C_flash.eb, aes(x = day, y = C_flash, group = treatment, color = treatment geom_errorbar(aes(ymin = C_flash - sd, ymax = C_flash + sd), width = 1, position = position_dodge(0.0 geom_line(aes(linetype = treatment)) +
    geom_point(aes(shape = treatment)) +
    labs(title = "Plot of C_flash by day", x = "Day", y = "% C") +
    theme_classic()
plot.inc.C_flash.eb</pre>
```


Gravimetric moisture content

Day

```
tiff('Images/plot.inc.gravimetric_water_content.eb.tiff', units="in", width=5, height=5, res=300)
plot.inc.gravimetric_water_content.eb
dev.off()
```

```
## pdf
## 2
```

inc.gravimetric_water_content <- $ggplot(inc.data, aes(x = day, y = gravimetric_water_content, group = to inc.gravimetric_water_content)$


```
tiff('Images/inc.gravimetric_water_content.tiff', units="in", width=5, height=5, res=300)
inc.gravimetric_water_content
dev.off()
```

pdf ## 2

Under Construction

Try tax_glom to identify the OTUs on one group but not another

```
inc.raw.control <- subset_samples(inc.raw, treatment == "Control" & day == "0")
inc.raw.alfalfa <- subset_samples(inc.raw, treatment == "Alfalfa" & day == "0")
# Day zero comparison of control and alfalfa DTUs
control.no.0 <- filter_taxa(inc.raw.control, function(x) sum(x) >0, TRUE)
alfalfa.no.0 <- filter_taxa(inc.raw.alfalfa, function(x) sum(x) >0, TRUE)
control.taxa <- rownames(tax_table(control.no.0))
alfalfa.taxa <- rownames(tax_table(alfalfa.no.0))
length(intersect(control.taxa, alfalfa.taxa))</pre>
```

```
## [1] 3284
# OTUs in alfalfa day 0 only
only.alfalfa <- setdiff(alfalfa.taxa, control.taxa)
length(only.alfalfa)</pre>
```

[1] 1573

tax.in.alf <- tax_table(inc.raw.alfalfa)[only.alfalfa]</pre>

Below melt for plotting and prune to get taxa from larger phyloseq object #only.alfalfa.day.0 <- prune_taxa(only.alfalfa, inc.raw.alfalfa) #only.alfalfa.day.0.df <- psmelt(only.alfalfa.day.0)