Smoothing Structured Decomposable Circuits

Andy Shih¹, Guy Van den Broeck², Paul Beame³, Antoine Amarilli⁴

¹Stanford University, ²University of California, Los Angeles, ³University of Washington, ⁴LTCI Télécom Paris, IP Paris

Probabilistic circuits

Are state-of-the-art for:

- Inference algorithms
 - * PGMs
 - * Probabilistic Programs
- Discrete density estimation

Can encode complex distributions

Can answer advanced queries but only if they are smooth!

	SPN	AC	PSDD
Decomposability			√ (S)
Determinsim	X		
Smoothness			
Pr(evid)			
Marginal			
MPE	X		
Marginal MAP	X	X	*
Expectation	X	X	*

Results

Task	Operations	Complexity
Smoothing	\oplus, \otimes	$O(m \cdot \alpha(m, n))$
Smoothing*	\oplus , \otimes	$\Omega(m \cdot \alpha(m, n))^*$
All-Marginal	$\oplus,\ominus,\otimes,\oslash$	$\Theta(m)$

Definition

A circuit is **smooth** if for every pair of children c_1 and c_2 of a \oplus -gate, $vars_{c_1} = vars_{c_2}$.

Not Smooth Smooth x_2 x_2 x_2 x_2 x_2 x_2 x_2 x_2 x_3 x_4 x_4 x_2 x_3 x_4 x_4 x_4 x_5 x_5

Structured Decomposability

Missing variables: 2 intervals

Traverse vtree in-order to get ordering π .

Variables of a subtree is an interval in π .

Semigroup Range-Sum

Theorem

Given n variables defined over a semigroup and m intervals, the sum of all intervals can be computed using $O(m \cdot \alpha(m, n))$ additions [Chazelle and Rosenberg 1989].

Split N variables into B blocks of size A

Trace additions using circuits

$$a = z(x_2) + z(x_3)$$
 $b = a + z(x_1)$
 $c = a + z(x_4)$
output b, c

Efficient smoothing / all-marginals

Table 2: Experiments on smoothing hand-crafted circuits and experiments on computing All-Marginals as part of the collapsed sampling algorithm. Sizes are reported in thousands (k).

(a) Time (in seconds) taken to smooth circuits.

Size	Naive	Ours	$\textbf{Speedup} \times \\$
40k	0.82 ± 0.01	0.04 ± 0.01	21 ± 1
416k	50 ± 0.3	0.31 ± 0.01	161 ± 6
1,620k	293 ± 2	0.74 ± 0.04	390 ± 30
8,500k	6050 ± 20	4.13 ± 0.09	1470 ± 40

(b) Number of \oplus , \ominus , \otimes , \oslash operations to compute All-Marginals when sampling the Segmentation-11 network.

Size	Naive	Ours	Impr %
)1ZC	114110	- Ours	Impi /
00k	$28,494 \pm 598$	$20,207 \pm 411$	29 ± 3
00k	$55,875 \pm 1,198$	$36,101 \pm 1,522$	35 ± 5
00k	$86,886 \pm 6,330$	$56,094 \pm 817$	35 ± 6