GPS: Genetic Prompt Search for Efficient Few-shot Learning (Xu et al. 2022)

Nguyễn Trung Kiên 21521024

Võ Đức Dương 21521992

Phạm Quốc Việt 21522792

Lường Đại Phát 21522443

Computer Science, University of Information Technology

Ngày 20 tháng 7 năm 2024

Mục lục

Prompt

Q GPS: Genetic Prompt Search for Efficient Few-Shot Learning

3 Thực nghiệm phương pháp

Mục lục

Prompt

- Quantity of the second of t
- Thực nghiệm phương pháp

Prompt là gì?

Prompt là một chuỗi các từ mô tả tác vụ mà một mô hình AI tạo sinh cần đưa ra câu trả lời.

prompt nghĩa là gì?

Từ "prompt" trong tiếng Anh có nhiều nghĩa phụ thuộc vào ngữ cảnh sử dụng:

- 1. Danh từ (noun):
 - Lời nhắc: Một gợi ý hoặc chỉ dẫn ngắn gọn để thúc đẩy ai đó làm điều gì đó. Ví dụ, trong
 các hệ thống máy tính hoặc chương trình học tập, "prompt" có thể là một câu hỏi hoặc một
 đoạn văn ngắn để người dùng phản hồi.
 - Dòng nhắc (trong máy tính): Là dấu nhắc mà hệ thống hiển thị để người dùng nhập lệnh.

Hình 1.1: Theo ChatGPT, prompt là gì?

Prompting

Prompting là quá trình viết hay thiết kế prompt cho mô hình để nó tạo ra phản hồi hoặc kết quả như mong muốn.

\neg						
L	e	ro-	-5	h	0	t

Classify the sentiment.

I disliked the food and the atmosphere:

One-shot

Classify the sentiment.

It was a great movie and excellent experience: positive

I disliked the food and the atmosphere:

Few-shot

Classify the sentiment.

It was a great movie and excellent experience: positive

The booths were crowded, and it was way too noisy: negative

enjoyed myself: positive

I disliked the food and the atmosphere:

Hình 1.2: Zero-shot, One-shot và Few-shot Prompting

GPT-3 Prompting

Hình 1.3: Các mô hình lớn nắm bắt văn cảnh tốt hơn¹

Tối ưu hóa model output

Với một tác vụ nào đó, làm thế nào để một mô hình ngôn ngữ đưa ra một câu trả lời tối ưu?

Hình 1.4: Fine-Tuning, Prompt Tuning² và **GPS**³

²The Power of Scale for Parameter-Efficient Prompt Tuning

³GPS: Genetic Prompt Search for Efficient Few-shot Learning → ← ■ → ← ■ → ■ ■ → へ ○ ○

Fine-Tuning

 Với một tác vụ mới và một mô hình pre-trained, thực hiện cập nhật tham số của mô hình sử dụng một dataset được gán nhãn dành riêng cho tác vu đó.

Fine-Tuning

Hình 1.5: Model Tuning

Fine-Tuning

- Với một tác vụ mới và một mô hình pre-trained, thực hiện cập nhật tham số của mô hình sử dụng một dataset được gán nhãn dành riêng cho tác vu đó.
- Nhược điểm: Tiêu tốn tài nguyên, khả năng multi-task không tốt.

Fine-Tuning

Hình 1.5: Model Tuning

Mục lục

Prompt

- Q GPS: Genetic Prompt Search for Efficient Few-Shot Learning
- Thực nghiệm phương pháp

GPS

 Với mỗi tác vụ, GPS sẽ tìm ra hard prompt tối ưu theo tư tưởng của Genetic Algorithm (Mitchell, 1980).

Hình 2.1: Prompt Tuning

GPS

- Với mỗi tác vụ, GPS sẽ tìm ra hard prompt tối ưu theo tư tưởng của Genetic Algorithm (Mitchell, 1980).
- Làm thế nào mà GPS tìm ra prompt tối ưu cho mỗi tác vụ?

Hình 2.1: Prompt Tuning

Thuật toán GPS

GPS hoạt động với:

- T là số các iteration.
- G^t là tập các prompts cho mỗi iteration.
- f_{GPS} là hàm mục tiêu giúp chọn ra K prompts có f_{GPS} cao nhất trên D_{dev} , tạo thành tập G_*^t .
- g_{GPS} là hàm giúp tạo ra các prompts mới. Từ G_*^t , g_{GPS} tạo ra tập G^{t+1} .

Algorithm 1 Genetic Prompt Search

Require: G^0 ; D_{dev} ; f_{GPS} ; g_{GPS} ; T; K; **Ensure:** Final optimized prompts, G^{T+1}

- 1: obtain handcrafted prompts G^0 as initialization
- 2: **for** each $t \in [0, T]$ **do**
- store G^t
- 4: calculate score for each prompt in G^t using f_{GPS} ,
- from G^t, select top K prompts as reproductive group G^t_{*},
- generate G^{t+1} based on G_*^t using g_{GPS} ,
- 7: end for
- 8: from stored {G⁰_{*},...,G^T_{*}}, select top K prompts as optimal prompts group G^{T+1} using g_{GPS}.
- 9: return G^{T+1};

Hình 2.2: Genetic Prompt Search

Ví dụ

Hình 2.3: Pipeline thực hiện của GPS

g_{GPS} - Prompt Generation Strategies

Nhóm tác giả thực hiện 3 chiến lược để tạo ra prompt mới cho iteration kế tiếp, bao gồm:

- Back Translation.
- Cloze.
- Sentence Continuation.

Back Translation

- Back Translation là một kỹ thuật tăng cường dữ liệu trong NLP.
- Một câu được dịch sang ngôn ngữ khác và sau đó tiếp tục dịch câu mới về ngôn ngữ gốc.

Hình 2.4: Back Translation

 Với GPS, mỗi prompt được dịch từ tiếng Anh sang 11 ngôn ngữ khác (Trung, Hàn, Nhật, ...) rồi sau đó được dịch lại về tiếng Anh.

Cloze

- Khởi tạo thủ công các prompt, sau đó loại bỏ đi một số từ (token)
- Sử dụng mô hình T5 (large pretrained text-to-text model) để điền vào các chỗ trống, tạo ra các prompt mới.

Hình 2.5: Fill in the blanks with T5

Sentence Continuation

Lấy ý tưởng từ $DINO^4$, sử dụng một pretrained language model để phát sinh ra các prompt mới theo template:

Write two question that mean the same thing.

- Sentence 1: « manual prompt ».
- Sentence 2: « new prompt by PLM »

Hình 2.6: Sentence Continuation

Mục lục

Prompt

- Q GPS: Genetic Prompt Search for Efficient Few-Shot Learning
- 3 Thực nghiệm phương pháp

Cài đặt

- Phát sinh prompt: Sentence Continuation
- Pretrained model sử dụng: T0 (3B), T5LM-XL

T0: test samples

T5: prompt generation

Hình 3.7: T5 models

Cài đặt

- Số lượng tác vụ: 4 tác vụ
- Số lượng data set: 10 datasets
- ullet Số lượng mẫu trong D_{dev} : 32 mẫu
 - ightarrow 8 shot cho mỗi tác vụ
- Số lượng step (iteration): 8 steps
- Input prompt: template

Cài đặt

- tham số choices_in_prompt: true

 Các answer choices (label) nằm trong prompt. Metric: accuracy
- tham số choices_in_prompt: false

 Reference nằm trong prompt. Metric: BLEU và ROUGE
 - \rightarrow Dự đoán answer choices (labels)
 - \rightarrow Prompt scoring: Accuracy on D_{dev}

Hình 3.8: input prompt template example - ANLI R1 dataset

Kết quả thực nghiệm

Dataset	Author	Our Results	
anli_r1	49.85	48.30	
anli_r2	61.23	44.53	
anli_r3	58.20	45.73	
hellaswag	40.23	36.06	
super_glue_cb	79.86	78.57	
super_glue_copa	96.82	85.57	
super_glue_rte	89.69	76.30	
super_glue_wic	61.38	59.18	
super_glue_wsc	70.93	67.00	
winogrande_winogrande_xl	56.34	53.86	

Bảng 1: Comparison of Author and Our Results

Tài liệu tham khảo

- GPS: Genetic Prompt Search for Efficient Few-Shot Learning
- Multitask Prompted Training Enables Zero-Shot Task Generalization
- The Power of Scale for Parameter-Efficient Prompt Tuning
- Large Language Models are Zero-Shot Reasoners
- Language Models are Few-Shot Learners
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
- Model-tuning Via Prompts Makes NLP Models Adversarially Robust
- Generating Datasets with Pretrained Language Models
- Making Pre-trained Language Models Better Few-shot Learners