Всеволод Заостровский, 409 группа

Отчёт по задаче "Решение уравнения типа теплопроводности с коэффициентами в дивергенции".

Содержание

1	Пос	становка задачи.	2
	1.1	Одномерный Лаплас	2
	1.2	Двумерный Лаплас	2
2	Алгоритм решения одномерной схемы.		2
	2.1	Дискретизация	2
	2.2	Общий вид матрицы уравнения	3
	2.3	Решение схемы	3
3	Алгоритм решения двумерной схемы.		4
	3.1	Дискретизация	4
	3.2	Общий вид матрицы уравнения	4
	3.3	Решение схемы	6
	3.4	Алгоритм для программирования	8
4	Тесты.		9
	4.1	Простейший случай $(k = \text{const})$	9
	4.0	Honoeroguu $\ddot{\mathbf{u}}$ k	O

1 Постановка задачи.

1.1 Одномерный Лаплас

Необходимо решить уравнение:

$$u_t(t, x) = \operatorname{div}(k(x) \operatorname{grad} u(t, x)).$$

Будем считать, что $0 \le t, x \le 1$. В моём варианте, краевые условия:

$$u(t,x)\big|_{x\in\partial\Omega}=0,\quad \Omega=[0,1].$$

 $u(0,x)=u^0(x),\quad x\in\Omega.$

1.2 Двумерный Лаплас

Необходимо решить уравнение:

$$u_t(t, x, y) = \operatorname{div}(k(x, y) \operatorname{grad} u(t, x, y)).$$

Будем считать, что $0 \le t, x, y \le 1$. В моём варианте, краевые условия:

$$u(t, x, y)\big|_{(x,y)\in\partial\Omega} = 0, \quad \Omega = [0, 1] \times [0, 1].$$

 $u(0, x, y) = u^{0}(x, y), \quad (x, y) \in \Omega.$

2 Алгоритм решения одномерной схемы.

2.1 Дискретизация

Уравнение будем приближать посредством следующей схемы:

$$\frac{u_i^{n+1}-u_i^n}{\tau} = \frac{k(x_{i+\frac{1}{2}})^{\frac{u_{i+1}^{n+1}-u_i^{n+1}}{h}} - k(x_{i-\frac{1}{2}})^{\frac{u_i^{n+1}-u_{i-1}^{n+1}}{h}}}{h}.$$

Краевые условия:

$$u(t,x)\big|_{x\in\partial\Omega} = 0, \quad \Omega = [0,1].$$

 $u(0,x) = u^0(x), \quad x \in \Omega.$

2.2 Общий вид матрицы уравнения.

Преобразуем схему:

$$u_i^{n+1} - u_i^n = \tau k(x_{i+\frac{1}{2}}) \frac{u_{i+1}^{n+1} - u_i^{n+1}}{h^2} - \tau k(x_{i-\frac{1}{2}}) \frac{u_i^{n+1} - u_{i-1}^{n+1}}{h^2}.$$

$$u_i^{n+1} - u_i^n = \tau k(x_{i+\frac{1}{2}}) \frac{u_{i+1}^{n+1}}{h^2} - u_i^{n+1} \frac{\tau}{h^2} (k(x_{i+\frac{1}{2}}) + k(x_{i-\frac{1}{2}})) + \tau k(x_{i-\frac{1}{2}}) \frac{u_{i-1}^{n+1}}{h^2}.$$

Таким образом, получим:

$$-u_{i+1}^{n+1}k(x_{i+\frac{1}{2}})\frac{\tau}{h^2}+u_i^{n+1}\left(1+\frac{\tau}{h^2}(k(x_{i+\frac{1}{2}})+k(x_{i-\frac{1}{2}}))\right)-u_{i-1}^{n+1}k(x_{i-\frac{1}{2}})\frac{\tau}{h^2}=u_i^n. \tag{1}$$

Матрица примет вид:

$$A = \begin{pmatrix} c & b_{+} & 0 & 0 & 0 & \dots & 0 \\ b_{-} & c & b_{+} & 0 & 0 & \dots & 0 \\ 0 & b_{-} & c & b_{+} & 0 & \dots & 0 \\ 0 & 0 & b_{-} & c & b_{+} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & b_{-} & c & b_{+} \\ 0 & 0 & 0 & \dots & 0 & b_{-} & c \end{pmatrix}, \text{где} \begin{cases} c = 1 + \frac{\tau}{h^{2}} (k(x_{i+\frac{1}{2}}) + k(x_{i-\frac{1}{2}})), \\ b_{+} = -k(x_{i+\frac{1}{2}}) \frac{\tau}{h^{2}}, \\ b_{-} = -k(x_{i-\frac{1}{2}}) \frac{\tau}{h^{2}}. \end{cases}$$

2.3 Решение схемы.

Итоговый вид интересующей нас системы:

$$Au^{n+1} = u^n, \quad u^n := (u_0^n, u_1^n, \dots u_{N_x}^n).$$

Как видно, эту системы легко решить методом прогонки: двигаясь от 0-го слоя к N-му. Несколько сложнее дела обстоят с двумерной схемой, которая описана ниже.

3 Алгоритм решения двумерной схемы.

3.1 Дискретизация.

Уравнение будем приближать посредством следующей схемы:

$$\frac{u_i^{n+1} - u_i^n}{\tau} = \frac{k(x_{i+\frac{1}{2},j}) \frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h_X} - k(x_{i-\frac{1}{2},j}) \frac{u_{i,j}^{n+1} - u_{i-1,j}^{n+1}}{h_X}}{h_X} + \frac{k(x_{i,j+\frac{1}{2}}) \frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h_Y} - k(x_{i,j-\frac{1}{2}}) \frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_Y}}{h_Y}}{h_Y}.$$

Краевые условия:

$$u(t, x, y)\big|_{(x,y)\in\partial\Omega} = 0, \quad \Omega = [0, 1] \times [0, 1].$$

 $u(0, x, y) = u^{0}(x, y), \quad x \in \Omega.$

3.2 Общий вид матрицы уравнения.

Для придания выкладкам хоть сколько-нибудь приемлемого вида, здесь и далее считаем $h_X=h_Y=h=\frac{1}{N_X-1}, \quad N_X=N_Y.$ Пользуясь вычислениями из предыдущего раздела, получим:

$$\begin{split} u_{i,j}^{n+1} - u_{i,j}^n &= \tau k(x_{i+\frac{1}{2}}, y_j) \frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h^2} - \tau k(x_{i-\frac{1}{2}}, y_j) \frac{u_{i,j}^{n+1} - u_{i-1,j}^{n+1}}{h^2} + \\ &+ \tau k(x_{i,y_{j+\frac{1}{2}}}) \frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h^2} - \tau k(x_i, y_{j-\frac{1}{2}}) \frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h^2}. \\ u_{i,j}^{n+1} - u_{i,j}^n &= -u_{i,j}^{n+1} \frac{\tau}{h^2} \left(k(x_{i+\frac{1}{2}}, y_j) + k(x_{i-\frac{1}{2}}, y_j) + k(x_i, y_{j+\frac{1}{2}}) + k(x_i, y_{j-\frac{1}{2}}) \right) + \\ + \tau k(x_{i+\frac{1}{2}}, y_j) \frac{u_{i+1,j}^{n+1}}{h^2} + \tau k(x_{i-\frac{1}{2}}, y_j) \frac{u_{i-1,j}^{n+1}}{h^2} + \tau k(x_i, y_{j+\frac{1}{2}}) \frac{u_{i,j+1}^{n+1}}{h^2} + \tau k(x_i, y_{j-\frac{1}{2}}) \frac{u_{i,j-1}^{n+1}}{h^2}. \end{split}$$

Итоговая схема выглядит следующим образом:

$$\begin{split} u_{i,j}^{n+1} \left(\frac{1}{\tau} + \frac{1}{h^2} \left(k(x_{i+\frac{1}{2}}, y_j) + k(x_{i-\frac{1}{2}}, y_j) + k(x_i, y_{j+\frac{1}{2}}) + k(x_i, y_{j-\frac{1}{2}}) \right) \right) - \\ &+ \frac{1}{h^2} \left[-u_{i+1,j}^{n+1} k(x_{i+\frac{1}{2}}, y_j) - u_{i-1,j}^{n+1} k(x_{i-\frac{1}{2}}, y_j) - u_{i,j+1}^{n+1} k(x_i, y_{j+\frac{1}{2}}) - u_{i,j-1}^{n+1} k(x_i, y_{j-\frac{1}{2}}) \right] \\ &= \frac{u_{i,j}^n}{\tau}. \end{split}$$

Эту схему можно записать в огромную ($\mathbb{R}^{N_X^4}$) разреженную блочную матрицу вида:

$$A = \begin{pmatrix} I & 0 & 0 & 0 & 0 & \dots & 0 \\ D_{-} & C & D_{+} & 0 & 0 & \dots & 0 \\ 0 & D_{-} & C & D_{+} & 0 & \dots & 0 \\ 0 & 0 & D_{-} & C & D_{+} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & D_{-} & C & D_{+} \\ 0 & 0 & 0 & \dots & 0 & 0 & I \end{pmatrix},$$

описание блоков:

Блок C:

$$C = \begin{pmatrix} c & b_{+} & 0 & 0 & 0 & \dots & 0 \\ b_{-} & c & b_{+} & 0 & 0 & \dots & 0 \\ 0 & b_{-} & c & b_{+} & 0 & \dots & 0 \\ 0 & 0 & b_{-} & c & b_{+} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & b_{-} & c & b_{+} \\ 0 & 0 & 0 & \dots & 0 & b_{-} & c \end{pmatrix},$$

в матрице C:

$$\begin{cases} c = \frac{1}{\tau} + \frac{1}{h^2} \left(k(x_{i+\frac{1}{2}}, y_j) + k(x_{i-\frac{1}{2}}, y_j) + k(x_i, y_{j+\frac{1}{2}}) + k(x_i, y_{j-\frac{1}{2}}) \right), \\ b_+ = -k(x_{i+\frac{1}{2}}, y_j) \frac{1}{h^2}, \\ b_- = -k(x_{i-\frac{1}{2}}, y_j) \frac{1}{h^2}; \end{cases}$$

Блок I: I — единичная матрица размера $N_X \times N_X$;

Блок
$$D_-$$
: $D_- = -k(x_i, y_{j-\frac{1}{2}}) \frac{\tau}{h^2} I =: d_- I;$

Блок
$$D_+$$
: $D_- = -k(x_i, y_{j+\frac{1}{2}}) \frac{\tau}{h^2} I =: d_+ I$.

Итоговый вид уравнения:

$$Au^{n+1} = \frac{u^n}{\tau}.$$

По предыдущему слою мы будем находить следующий, начиная с 0-го слоя, который нам дан, по условию. Отметим, что мы хотим построить трёхмерную матрицу $U = (u_{i,j}^n)_{0 \le i,j \le N_X}^{0 \le n \le N}$, но форма записи матрицы A предполагаем, что множество $(u_{i,j}^n)_{0 \le i,j \le N_X}^{n=\mathrm{const}}$ вытягивается в вектор u^n :

$$u^{n} = (u_{0,0}^{n}, u_{1,0}^{n}, u_{2,0}^{n}, \dots u_{0,1}^{n}, u_{0,2}^{n}, \dots u_{0,N_{X}}^{n}, u_{1,N_{X}}^{n}, \dots u_{N_{X},N_{X}}^{n})^{T}$$

3.3 Решение схемы.

Для решения этой системы также можно применять прогонку (точнее, её более общую модификацию). Мы применим итеративный алгоритм решения с предобуславливателем, который подробно опишем ниже. Общий вид таких алгоритмов:

$$B\frac{u^{n+1,p+1} - u^{n+1,p+1}}{\theta} + Au^{n+1,p} = b^n.$$

В нашем случае,

A — матрица, описанная в разделе 3.2. Следует отметить, что эта матрица пятидиагональная, так что, несмотря на то, что формально она принадлежит пространству $\mathbb{R}^{(N_X+1)^4}$, для её хранения требуется лишь $5*(N_X+1)^2$ памяти (по массиву для каждой из 5 диагоналей), а умножение матрицы на вектор требует $10*(N_X+1)^2$ арифметических операций.

 $u^{n,p}$ — результат после p-ой итерации процесса для n слоя ответа. Отметим, что мы считаем $u^{n,0}=u^n$.

- θ итерационный параметр. Наивысшая (в некотором смысле) скорость сходимости достигается при $\theta=\frac{2}{m+M}$, где M и m соответственно, максимальное и минимальное собственные значения матрицы.
- B предобуславливатель, берётся разным для разных задач. Мы рассмотрим $B=A\big|_{k(x_i,y_j)=rac{k(x_0,y_0)+k(x_{N_X},y_{N_X})}{2}}.$

Итерироваться мы будем следующим образом:

1. Заметим, что:

$$B\frac{u^{n+1,p+1} - u^{n+1,p+1}}{\theta} + Au^{n+1,p} = \frac{u^n}{\tau} \Leftrightarrow \begin{cases} By^{p+1} = \frac{u^n}{\tau} - Au^{n+1,p}, \\ u^{n+1,p+1} = u^{n+1,p} + \theta y^{p+1}. \end{cases}$$

2. За $O(N^2)$ вычислим вектор $b - Ax^p$.

3. С помощью метода Фурье за $O(N^3)$ решим систему $By^{p+1} = b - Ax^p$. Схема при этом принимает вид:

$$\frac{u_{i,j}^{n+1}}{k\tau} - \frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} - u_{i-1,j}^{n+1}}{h^2} - \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h^2} = \underbrace{f(x_i, y_j)}_{=(\frac{u^n}{\tau} - Au^{n+1,p})/k}\Big|_{i,j} = \frac{u^n}{k\tau} - \frac{1}{k}Au^{n+1,p}.$$

4. Следующий вектор в итеративной процедуре вычислим по формуле $x^{k+1} = x^k + \tau y^{k+1}.$

3.4 Алгоритм для программирования.

На шаге n нам известны слои вплоть до u^n (слой — матрица, вытянутая в вектор). u^0 задан изначально.

1. Нужно решить уравнение:

$$Au^{n+1} = \frac{u^n}{\tau}.$$

Для этого:

(а) Решаем уравнение

$$By^{k+1} = \frac{u^n}{\tau} - Ax^k,$$

где B — матрица Фурье с постоянным k.

- (b) Вычисляем $x^{k+1} = x^k + \theta y^{k+1}$.
- (с) Повторяем процедуру пока не увидим сходимость.
- 2. Таким образом, от слоя к слою, восстановим всю матрицу.

4 Тесты.

4.1 Простейший случай (k = const)

Для простоты сравнения с предыдущим отчетом было рассмотрено k=1. В целом, всё аналогично предыдущему случаю, поэтому здесь не проводилось более глубоких тестов. На графике 1 по оси y отложено значение функции, по оси x — порядковый номер тройки точек (x,y,z): вывод задачи представлен в виде

$$(x, y, z,$$
численное решение, аналитическое решение $)$

и, при заданном разбиении каждой точки равномерной сетки соответствует натуральное число.

Отметим, что сходимость итерационного алгоритма в этом случае происходила за одну итерацию, как и должно быть.

4.2 Непостоянный k

Рассмотрим k(x, y) = x:

$$u_t(t, x) = \operatorname{div}(x \operatorname{grad} u(t, x)) = u_x + x(u_{xx} + u_{yy}).$$

Если рассмотреть краевое условие:

$$u(t, x, y)\big|_{x \in \partial\Omega} = 0, \quad \Omega = [0, 1] \times [0, 1].$$

 $u(0, x, y) = e^x \sin y, \quad x \in \Omega.$

То можно (мне повезло) угадать решение:

$$u(t, x, y) = e^t e^x \sin y.$$

Рис. 1: Замыкание на постоянный k.