ME1020 Homework 4

Abhishek Ghosh

ME21BTECH11001

Question 1:-

Finding Centroids for respective labelled parts by considering O as origin

1)
$$A_1 = 0.5X2 = 1 inch^2$$

 $x_1 = -5$; $y_1 = 0.25$

2)
$$A_2 = 0.5X5 = 2.5 inch^2$$

 $x_2 = -4.25$; $y_2 = 3$

3)
$$A_3 = \frac{\pi}{2}(4.5^2 - 4^2) = 2.125\pi \ inch^2$$

 $x_3 = 0$

Quarter-circular area	c c	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Somicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$

Centroid for symmetric disc is $\frac{4R}{3\pi}$; $\Rightarrow ABCDEF = Disc_{ABC} - Disc_{DEF}$ y is y coordinate for centroid of disc

$$\Rightarrow y_3 = \frac{A_{ABC}y_{ABC} - A_{DEF}y_{DEF}}{A_{ABC} - A_{DEF}} + 5.5 = \frac{\frac{\pi}{2}(4.5)^2 \left(\frac{4}{3\pi}(4.5)\right) - \frac{\pi}{2}(4)^2 \left(\frac{4}{3\pi}(4)\right)}{\frac{\pi}{2}(4.5^2 - 4^2)} + 5.5$$

$$\Rightarrow y_3 = 8.21$$

4)
$$A_4 = 0.5X2 = 1 inch^2$$

 $x_4 = 5$; $y_4 = 5.5$

For whole figure let centroid be (\bar{x}, \bar{y})

$$\varSigma A_i = A_1 + A_2 + A_3 + A_4 = 4.5 + 2.125\pi = 11.1725 \ inch^2$$

$$\Rightarrow \overline{x} = \frac{\sum A_i x_i}{\sum A_i} = \frac{-5X1 - 4.25X2.5 + 0X2.125\pi + 5X1}{11.1725} = -0.950 \ inch$$

Similarly,

$$\Rightarrow \overline{y} = \frac{\sum A_i y_i}{\sum A_i} = \frac{1X0.25 + 2.5X3 + 8.21X2.125\pi + 1X5.5}{11.1725} = 6.08 \ inch$$

Centroid at (-0.950, 6.08) inches

Question 2:-

a) Given figure ABCDEF = $Traingle_{ABC}$ - $Triangle_{DEF}$ For ABC:- (AC is x axis and OB is y axis)

For Triangle with base b and height h moment of inertia with centroid as origin of axes is

$$I_{\chi\chi} = \frac{bh^3}{36}$$

Using parallel axis theorem to find $I_{\chi\chi}$ along base

$$\Rightarrow I_{xx} = \frac{bh^3}{36} + \frac{bh}{2} \left(\frac{h}{3}\right)^3 = \frac{1}{12}bh^3$$

$$\Rightarrow I_{xx} = \frac{1}{12}(160)(80)^3 = 6.8267 \, X \, 10^6 \, mm^4$$

About y axis ABC = AOB + COB = 2 X MOIAOB

And for a right Angled triangle moment of inertia about axis (origin of axes at vertex) is given by

$$I_{yy} = \frac{hb^3}{12}$$

$$\Rightarrow I_{yy} = 2\left(\frac{1}{12}(80)(80)^3\right) = 6.8267 \, X \, 10^6 \, mm^4$$

Polar moment of inertia:-

$$\Rightarrow J_o = I_{xx} + I_{yy} = 2 X 6.8267 X 10^6 mm^4 = 13.65 X 10^6 mm^4$$

Right triangle (Origin of axes at vertex.)

Similarly for DEF:-

$$\Rightarrow I_{xx} = \frac{1}{12}(80)(60)^3 = 1.44 \, X \, 10^6 \, mm^4$$

Triangle DEF=DOE+FOE=2 X MOIDOE

$$\Rightarrow I_{yy} = 2\left(\frac{1}{12}(60)(40)^3\right) = 0.64X \ 10^6 \ mm^4$$

$$\Rightarrow J_o = I_{xx} + I_{yy} = (1.44 + 0.64) X \ 10^6 \ mm^4 = 2.08 \ X \ 10^6 \ mm^4$$

For entire $ABCDEF = Traingle_{ABC} - Triangle_{DEF}$

$$\Rightarrow (J_o)_{ABCDEF} = (J_o)_{ABC} - (J_o)_{DEF}$$

$$\Rightarrow (J_0)_{ABCDEF} = (13.65 - 2.08) \times 10^6 = 11.57 \times 10^6 \text{ mm}^4$$

b) Centroid of ABCDEF = Traingle_{ABC} - Triangle_{DEF} For triangle centre of mass is at h/3 from base By symmetry $x_{ABC} = x_{DEF} = 0$ For ABC

$$A_{ABC} = \frac{1}{2}(160)(80) = 6400 \text{ mm}^2$$

 $y_{ABC} = \frac{80}{3}$

For DEF

$$A_{DEF} = -\frac{1}{2}(80)(60) = -2400 \text{ mm}^2$$

 $y_{ABC} = \frac{60}{3} = 20$

For whole figure let centroid be at (\bar{x}, \bar{y})

$$\Sigma A_i = A_{ABC} + A_{DEF} = 6400 - 2400 = 4000 \ mm^4$$

$$\Rightarrow \bar{y} = \frac{\Sigma A_i y_i}{\Sigma A_i} = \frac{6400 \left(\frac{80}{3}\right) - 2400(20)}{4000} = 30.67$$

For finding MOI about centroid we use parallel axis theorem

$$\Rightarrow J_{Centroid} = J_o - A_{ABCDEF} y^2 = 11.57 \times 10^6 - (4000)(30.67)^2$$

$$\Rightarrow J_{Centroid} = 7.807 X 10^6 mm^4$$

Question 3:-

 TABLE B-4
 Properties of Channel Sections: SI Units

Designation	Mass (kg/m)	Area (mm²)	Depth (mm)	Flange		Wak	Axis X-X			Axis Y-Y			
				Width (mm)	Thickness (mm)	Web thickness (mm)	I (10 ⁶ mm ⁴)	$S = I/c$ (10^3 mm^3)	$r = \sqrt{I/A}$ (mm)	I (10 ⁶ mm ⁴)	$S = I/c$ (10^3 mm^3)	$r = \sqrt{I/A}$ (mm)	x (mm)
C380 × 74	74.0	9 480	381	94.5	16.5	18.2	168	882	133	4.58	61.8	22.0	20.3
× 60	60.0	7610	381	89.4	16.5	13.2	145	762	138	3.82	54.7	22.4	19.8
× 50.4	50.4	6 4 5 0	381	86.4	16.5	10.2	131	688	143	3.36	50.6	22.9	20.0
C310 × 45	45.0	5 680	305	80.5	12.7	13.0	67.4	442	109	2.13	33.6	19.4	17.1
× 37	37.0	4740	305	77.5	12.7	9.83	59.9	393	113	1.85	30.6	19.8	17.1
× 30.8	30.8	3 920	305	74.7	12.7	7.16	53.7	352	117	1.61	28.2	20.2	17.7
C250 × 45	45.0	5 680	254	77.0	11.1	17.1	42.9	339	86.9	1.64	27.0	17.0	16.5
× 37	37.0	4740	254	73.4	11.1	13.4	37.9	298	89.4	1.39	24.1	17.1	15.7
\times 30	30.0	3 790	254	69.6	11.1	9.63	32.8	259	93.0	1.17	21.5	17.5	15.4
× 22.8	22.8	2890	254	66.0	11.1	6.10	28.0	221	98.3	0.945	18.8	18.1	16.1

a)

From ASTM data for C250 X 22.8 we obtain

$$A = 2890 \text{ } mm^2$$
; $I_{xx} = 28 \text{ } X \text{ } 10^6 \text{ } mm^4$; $I_{yy} = 0.945 \text{ } X \text{ } 10^6 \text{ } mm^4$;

Distance between edge to centroidal axis , $x_1=16.10\ mm$

$$Total\ Area\ , A_{tot} = 2(2890 + (10)(375))\ mm^2 = 13.28\ X\ 10^3\ mm^2$$

Distance between centre of plate to C, d = 127 + 5 = 132 mm

For a rectangular plate MOI with centre of axis about centroid is given by

$$I_{xx} = \frac{1}{12}bh^3; I_{yy} = \frac{1}{12}hb^3$$

Also base b=250~mm; finding MOI about C:-

$$I_{xx} = 2(I_{xx})_{channel} + 2((I_{xx})_{plate} + A_{plate}d^2)$$
 {parallel axis theorem}
= $2(28 \times 10^6) + 2(\frac{1}{12}(375)(10) + (375)(10)(132)^2)$

$$I_{xx} = 186.74 \, X \, 10^6 mm^4$$

$$I_{yy} = 2(\left(I_{yy}\right)_{channel} + A_{plate}\left(\frac{250}{2} + x_1\right)^2) + 2\left(I_{yy}\right)_{plate} \qquad \text{\{parallel axis theorem\}}$$

$$= 2\left(0.945 X 10^6 + (2890)\left(\frac{250}{2} + 16.10\right)^2\right) + 2\left(\frac{1}{12}(10)(375)^3\right)$$

 $I_{yy} = 204.84 \, X \, 10^6 \, mm^4$

b)

$$k_x = \sqrt{\frac{I_{xx}}{A_{tot}}} = \sqrt{14.06 \, X \, 10^3} =$$
118.6 mm

$$k_y = \sqrt{\frac{I_{yy}}{A_{tot}}} = \sqrt{15.42 \times 10^3} = 124.19 \, mm$$

Question 4:-

About y axis

$$dI_{yy} = x^{2}dA$$

$$\Rightarrow I_{yy} = \int x^{2}dA$$

$$\Rightarrow I_{yy} = \int_{1}^{2} x^{2}dA = \int_{1}^{2} x^{2} \frac{x^{3}}{4} dx = \int_{1}^{2} \frac{x^{5}}{4} dx$$

$$\Rightarrow I_{yy} = \frac{[x^{6}]_{1}^{2}}{24} = \frac{2^{6} - 1}{24} = \frac{63}{24} = 2.625 mm$$

$$dA = ydx \Rightarrow dA = \frac{x^3}{4}dx$$

About x axis

$$dI_{xx} = y^2 dA$$

For given figure

$$(I_{xx})_{ABCD} = (I_{xx})_{OBC} - (I_{xx})_{OAD}$$

For OBC
$$dA_1 = xdy \Rightarrow dA = \left(2 - (4y)^{\frac{1}{3}}\right)dy$$

For OAD $dA_2 = xdy \Rightarrow dA = \left(1 - (4y)^{\frac{1}{3}}\right)dy$

$$\begin{split} I_{xx} &= \int y^2 dA_1 - \int y^2 dA_2 \\ &\Rightarrow I_{xx} = \int_0^2 y^2 \left(2 - (4y)^{\frac{1}{3}}\right) dy - \int_0^{\frac{1}{4}} y^2 \left(1 - (4y)^{\frac{1}{3}}\right) dy \\ &= \left[\frac{2y^3}{3} - 4^{\frac{1}{3}} \frac{y^{\frac{10}{3}}}{\frac{10}{3}}\right]_0^2 - \left[\frac{y^3}{3} - 4^{\frac{1}{3}} \frac{y^{\frac{10}{3}}}{\frac{10}{3}}\right]_0^{\frac{1}{4}} \\ &= \left(\frac{16}{3} - \frac{(2^3) \ 3}{5}\right) - \left(\frac{1}{3(2^6)} - \frac{3}{(2^6)10}\right) = \frac{2^{10} - 1}{15(2^7)} = 0.533 \\ Area, A &= \int_1^2 dA = \int_1^2 y dx = \int_1^2 \frac{x^3}{4} dx = \frac{[x^4]_1^2}{16} = \frac{15}{16} = 0.9375 \end{split}$$

Radius of gyration:-

$$I_{yy} = k_y^2 A \Rightarrow \mathbf{k}_y = \sqrt{\frac{I_{yy}}{A}} = \sqrt{2.8} = 1.673 \ mm$$

$$I_{xx} = k_x^2 A \Rightarrow \mathbf{k}_x = \sqrt{\frac{I_{xx}}{A}} = \sqrt{0.568} = 0.753 \ mm$$

$$J_o = I_{xx} + I_{yy} = (k_x^2 + k_y^2)A = k_o^2 A$$

$$\Rightarrow k_o = \sqrt{\frac{I_{xx} + I_{yy}}{A}} = \sqrt{3.368} = 1.835 \ mm$$