Domande di teoria analisi 2

Sono le più probabili ma non le uniche:

1. Teorema dell'esistenza degli zeri in 3 dimensioni.

Sia $D \subset R^n$ un insieme connesso per archi e sia $f: D \to R$ una funzione continua. Se esistono v, w $\in D$ tali che f(v) * f(w) < 0 allora esiste un punto $z \in D$ tali che f(z) = 0.

2. Weiestras generalizzato

Sia $D \subset \mathbb{R}^n$ un insieme compatto e sia $f: D \to \mathbb{R}$ una funzione continua allora f ammette il minimo e il massimo assoluti

3. Teorema della funzione gradiente nullo

Sia $D \subset R^n$ un insieme aperto connesso per archi. Se $f: D \to R$ è una funzione di classe C^1 tale che $df(x) = 0 \ \forall x$ allora f(x) è costante.

4. Teorema del punto critico

Sia $D \subset \mathbb{R}^n$ un insieme connesso e $f: D \to \mathbb{R}$ è una funzione continua su $D, x_0 \in D$ è un punto critico di f se la funzione non è differenziabile in quel punto.

Se è differenziabile e le derivate prime in quel punto sono nulle allora è un punto stazionario.

5. Differenziale totale

Se f(x, y) una funzione derivabile in un intorno di (x_0, y_0) e siano le derivate parziali $f_x(x, y)$ e $f_y(x, y)$ continue in (x_0, y_0) allora f(x, y) è una funzione differenziabile in (x_0, y_0) .