

Calibeating

Dean P. Foster

This is not calibrated

Anything easily fixed isn't calibrated

Fix the obvious problems!

Calibration is unbiasedness

• Simple unbiasedness: $E(Y - \hat{Y}) \approx 0$.

Calibration is unbiasedness

- Simple unbiasedness: $E(Y \hat{Y}) \approx 0$.
- We want more:

$$E(Y - \hat{Y}|\hat{Y} \approx c) \approx 0$$

Human behavior: without incentives

Human behavior: With incentives!

An Amazon example

Calibration theory: example

Calibration is a minimal condition for performance

- On sequence: 0 1 0 1 0 1 0 ...
- The constant forecast of .5 is calibrated
- The constant forecast of .6 is not calibrated
- The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated

Calibration theory: example

Calibration is a minimal condition for performance

- On sequence: 0 1 0 1 0 1 0 ...
- The constant forecast of .5 is calibrated
- The constant forecast of .6 is not calibrated
- The variable forecast of .1 .9 .1 .9 .1 .9 ... is not calibrated
 - But the forecast .1 .9 .1 .9 ... is pretty good!
 - Yes, it has better "refinement."
 - But, it isn't calibrated.
 - Our goal: Keep this refinement, but make it calibrated

Calibration is achievable

Theorem

A calibrated forecast exists.

Calibration is achievable

Theorem

A calibrated forecast exists.

proof:

Apply mini-max theorem.

(Sergiu Hart)

Calibration is achievable

Theorem

A calibrated forecast exists.

Detailed proof:

- Game: between the statistician and Nature.
 - Natures strategy is a distribution over sequences of rain. (A distribution over the 2^T sequences.)
 - The statisticians strategy is a forecasting function. (A function mapping 2^T to $\{\epsilon, 2\epsilon, ..., 1\}$.)
 - This is a two person, zero sum game with a finite set of actions.
- If the statistician knew the process she could easily "win."
 - Compute $E(X_t|X_1,\ldots,X_{t-1})$
 - round to the nearest ϵ grid point
 - Play that forecast
 - By LLN the empirical average is close to the forecast
- By the mini-max theorem the statistician can always win.

Calibration exists: So what?

- Predicting the "grand average" is calibrated
 - But it is a crappy forecast.
- We have lots of ways of generating good forecasts:
 - probabilistic models
 - Time series: ARIMA, etc
 - on-line least squares regression
 - Combining experts
- None are guaranteed to be calibrated

Calibration exists: So what?

- Predicting the "grand average" is calibrated
 - But it is a crappy forecast.
- We have lots of ways of generating good forecasts:
 - probabilistic models
 - Time series: ARIMA, etc
 - on-line least squares regression
 - Combining experts
- None are guaranteed to be calibrated

Goal: Find a way to convert these good forecasts into calibrated forecasts without removing their goodness.

Bias / Variance decomposition

bias:

$$\beta \equiv E(Y|\hat{Y}) - \hat{Y}$$

variance:

$$VAR = Var(Y - E(Y|\hat{Y}))$$

Mean Squared error:

$$MSE = E(Y - \hat{Y})^2 = E(\beta^2) + VAR$$

- For binary sequences:
 - Bias is called Calibration
 - Variance is called Refinement
 - MSE is called Brier Score

Brier score

"Conditional expectation":

$$\rho(\mathbf{x}) = \frac{\sum_{t} Y_{t} I_{\hat{y}_{t} = \mathbf{x}}}{\sum_{t} I_{\hat{y}_{t} = \mathbf{x}}}$$

- Bias: $\beta(x) = \rho(x) x$
- Brier score / MSE:

$$BS = \frac{1}{T} \sum_{t=1}^{I} (Y_t - \hat{Y}_t)^2$$

Decomposition (MSE = bias + Variance):

$$\underbrace{\frac{1}{T} \sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2}_{BS} = \underbrace{\frac{1}{T} \sum_{t=1}^{T} (\hat{Y} - \rho(\hat{Y}))^2}_{Calibration} + \underbrace{\frac{1}{T} \sum_{t=1}^{T} (Y_t - \rho(\hat{Y}_t))^2}_{Refinement}$$

Defining calibeating

Calibration is fixable after the fact. But, can we fix it as we go along?

- Start with a forecast \hat{y}_t
 - Calibration $K(\hat{y})$
 - Refinement R(ŷ)
- Find a new forecast \tilde{y}_t that doesn't pay the calibration costs of \hat{y}

Definition (Calibeating)

 \tilde{y} calibeats \hat{y} if:

$$\mathsf{BS}(\tilde{y}) \leq R(\hat{y}).$$

- \tilde{y} keeps any patterns found by \hat{y}
- \bullet \tilde{y} doesn't "pay" the calibration error

Calibeating many forecasters

We can extend this to calibeating many forecasters.

Definition (Calibeating)

 \tilde{y} calibeats a collection of forecasts $\{\hat{y}^1, \dots, \hat{y}^n\}$ if for all i:

$$\mathsf{BS}(\tilde{y}) \leq R(\hat{y}^i).$$

Calibeating is easy

- Consider a family of forecasts: \hat{y}_t^i
 - Break up the interval [0, 1] into small buckets B_j .
 - Knowing which bucket each forecast is in is enough information to approximately compute the refinement of the forecast
 - Make these buckets into regression variables:

$$X_t^{ij} = I_{\hat{y}_t^i \in B_j}$$

• \tilde{y}_t is generated by an on line regression: $Y \sim X$.

Theorem

The forecast combination \tilde{y}_t will ϵ -calibeat \hat{y}_t^i if we use buckets with width less than ϵ .

Calibeating is easy, but it can be calibeaten!

We can find \tilde{y} that calibeats \hat{y} . But, there is no reason for \tilde{y} to be calibrated. So it can be calibeaten. The result likewise isn't calibrated, so it can be calibeaten.

Calibeating is easy, but it can be calibeaten!

We can find \tilde{y} that calibeats \hat{y} . But, there is no reason for \tilde{y} to be calibrated. So it can be calibeaten. The result likewise isn't calibrated, so it can be calibeaten.

This can go on ad infinitum

Stopping the infinite regress

We can have C_t calibeat A_t and B_t .

- Suppose at each time t we pick $B_t = C_t$.
- Requires a fixed point computation
- C_t calibeats A_t
- C_t calibeats C_t :

$$BS(C_t) \leq R(C_t)$$

So C_t is calibrated.

Stopping the infinite regress

We can have C_t calibeat A_t and B_t .

- Suppose at each time t we pick $B_t = C_t$.
- Requires a fixed point computation
- C_t calibeats A_t
- C_t calibeats C_t :

$$BS(C_t) \leq R(C_t)$$

So C_t is calibrated.

Theorem

For any set of forecasts, there is a combination forecast which calibeats each element in the set, and is also calibrated.

Freebie: Calibeating yourself is calibrated

If we use this theorem with an empty set then C is calibrated:

Corollary

If C calibeats itself, then C is calibrated.

About fixed points

Suppose we will forecast C_t . The calibeating algorithm would say we should instead forecast $g(A_t, C_t)$. If this happens to be C_t , we are done. Need to solve a fixed point: $C_t = g(A_t, C_t)$.

About fixed points

Suppose we will forecast C_t . The calibeating algorithm would say we should instead forecast $g(A_t, C_t)$. If this happens to be C_t , we are done. Need to solve a fixed point: $C_t = g(A_t, C_t)$.

Theorem (Outgoing distribution)

There exists a probability distribution on X such that:

$$E(|x - C|^2 - |x - g(C)|^2) \le \delta^2$$

for all $x \in \mathcal{X}$.

Proof is via the mini-max theorem (so linear programming can find the answer.)

• This means the BS of using C is better than the BS of using the correct answer g(C).

Tension between calibration and BS

- We know never to randomize when minimizing a quadratic loss function
- calibration requires randomization
- In fact, possibly LARGE randomizations, eg:

$$P(\hat{y}_t = .2) = P(\hat{y}_t = .5) = P(\hat{y}_t = .9) = 1/3$$

Tension between calibration and BS

- We know never to randomize when minimizing a quadratic loss function
- calibration requires randomization
- In fact, possibly LARGE randomizations, eg:

$$P(\hat{y}_t = .2) = P(\hat{y}_t = .5) = P(\hat{y}_t = .9) = 1/3$$

 Large randomizations are not "quadratic safe" in that the average will always have a much lower Brier score

Tension between calibration and BS

- We know never to randomize when minimizing a quadratic loss function
- calibration requires randomization
- In fact, possibly LARGE randomizations, eg:

$$P(\hat{y}_t = .2) = P(\hat{y}_t = .5) = P(\hat{y}_t = .9) = 1/3$$

 Large randomizations are not "quadratic safe" in that the average will always have a much lower Brier score

Theorem (with Johnson 2013)

Randomly rounding an exponential smooth to the nearest grid point is almost calibrated.

But this is merely calibrated, and doesn't easily extend to calibeating arbitrary forecasts.

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set \mathcal{X} , there exists a point $c \in \mathcal{X}$ such that:

$$|x-c|^2-|x-g(c)|^2\leq 0$$

for all $x \in \mathcal{X}$.

Proof is via the Brouwer's fixed point. In fact, it is equivalent to Brouwer's fixed point theorem.

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set \mathcal{X} , there exists a point $c \in \mathcal{X}$ such that:

$$|x-c|^2 - |x-g(c)|^2 \le 0$$

for all $x \in \mathcal{X}$.

Can create a deterministic "weak" calibration

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set \mathcal{X} , there exists a point $c \in \mathcal{X}$ such that:

$$|x-c|^2-|x-g(c)|^2\leq 0$$

for all $x \in \mathcal{X}$.

- Using rounding, it can create a local random calibrated forecast
 - Randomly round to nearest grid point
 - First few digits aren't random, just the least significant one
 - Need this minimal amount of rounding to avoid impossibility result mentioned this morning

Theorem (Outgoing fixed point)

For any smooth g() and any closed convex set \mathcal{X} , there exists a point $c \in \mathcal{X}$ such that:

$$|x-c|^2-|x-g(c)|^2\leq 0$$

for all $x \in \mathcal{X}$.

- Fixed points are hard to find
- Basically need to do exhaustive search at every time period
- CS people call complexity class PPAD

Forms of calibeating

We've have four forms of calibeating:

simple	Distribution	local random	deterministic
LS or	LP	Fixed point	Fixed point
average			
calibrated	classic	Both classic	Weak
	calibration	and weak	
quadratic safe	Not quadratic safe	quadratic safe	quadratic safe

Forms of calibeating

We've have four forms of calibeating:

simple	Distribution	local random	deterministic
LS or	ΙP	Fixed point	Fixed point
average		i ixea poiiti	Tixed point
calibrated	classic	Both classic	Weak
	calibration	and weak	vveak
quadratic safe	Not quadratic safe	quadratic safe	quadratic safe

Thanks!