Un cadre de conception pour l'impression des structures minces multi-échelles, incluant une analyse de flambement non intrusive

Edouard Duriez 1, @ , Frederic Lachaud **2, *, @** , Catherine Azzaro-Pantel **3, <u>@</u> , <u>loseph Morlier</u> 2, *, <u>@</u> , M**iguel Charlotte 4, *, @

joseph.morlier@isae-supaero.fr

How to check local buckling in multiscale topology optimization?

About Me? https://ica.cnrs.fr/en/author/jmorlier/

• Prof in Structural and Multidisciplinary Optimization

About https://ica.cnrs.fr/en/author/jmorlier/

• 6 PhDs, 3 MsCs

MDO for Aerospace systems Including LCA := EcoOptimization

Digital fabrication

Recycling

Launch

Au programme

Part1: EMTO

Part2: Buckling mitigation

Conclusions

CSMA 2024 5

Au programme

- •Part1: EMTO
- Part2: Buckling mitigation
- Conclusions

CSMA 2024 6

Q: How to find structural designs, materials and additive manufacturing processes with the lowest life-cycle CO2 footprint?

OSMA 2024 7

Hypothesis 1

- \bullet ${\it CO}_2$ emissions minimization of parts
 - If material choice is **imposed** => mass minimization

If not... more complicated

OSMA 2024

Mass minimization of parts

Redesign through topology optimization
 same performance

OSMA 2024

Mass minimization of parts

Redesign through topology optimization
 same performance but lower mass

SMA 2024

Mass minimization of parts

Redesign through topology optimization
 same performance but lower mass

SMA 2024 12

Unit cell/material/process

as new design variables in Structural and Multidisciplinary

Optimization

Eco Material selection **Eco Process** selection

https://www.ansys.com/blog/the-impact-of-materials-on-sustainability-part-2

Unit cell design (anisotropy)

Digital materials

OSMA 2024 11

Multi-scale TO (well connected+ locally-oriented)

A two level optimization that combines Unit cell design & Topology Optimization

Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52(6):1229–1241.

Wu, Jun, Ole Sigmund, and Jeroen P. Groen. "Topology optimization of multi-scale structures: a review." Structural and Multidisciplinary Optimization 63.3 (2021): 1455-1480.

SMA 2024 14

Main MTO methods

Approach	Examples	Connectivity	Locally adapted	Speed	Manufacturability
De-homogenization	[1],[2]				
Parametrized lattice	[3]				
Connectors	[4]				

[1] Grégoire Allaire, Perle Geoffroy-Donders et Olivier Pantz. « Topology optimization of modulated and oriented periodic microstructures by the homogenization method ». en. In: Computers & Mathematics with Applications. [2] Groen, Jeroen P., and Ole Sigmund. "Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures." International [5] Wu, Jun, et al. "Topology Optimization of Multi-Scale Structures: A Review." Journal for Numerical Methods in Engineering

[3] Wang, Chuang, et al. "Concurrent Design of Hierarchical Structures with Three-

Dimensional Parameterized Lattice Microstructures for Additive Manufacturing." Structural and Multidisciplinary Optimization

[4] Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. Journal of Materials Science

Structural and Multidisciplinary Optimization

Scale-bridging variables

Orientation : α

Cubicity : x_{cub}

→ relative importance of the two principal directions. A value of 1 means the two principal directions are equivalent, while a value of 0 means the first principal direction alone is considered.

Microscale Problem

Since the objective is to create microstructure with optimal properties towards specific directions, the objective function is a weighted function of the two components $E\alpha$ 1111 and $E\alpha$ 2222

the problem being solved at the micro-scale to obtain the i^{th} i^{th} -

macrocell.

$$\begin{split} & \underset{\rho_{i,j}}{\text{minimize}} & \quad c_i = E_{1111}^{i\alpha} * (1 - \frac{x_{\text{cub}}^i}{2}) + E_{2222}^{i\alpha} * \frac{x_{\text{cub}}^i}{2} \\ & \text{subject to} & \quad K_i u_i^{A(pq)} = f_i^{(pq)} \\ & \quad \sum_{j=1}^m \rho_{i,j} \leq m * x_{\text{dens}}^i \\ & \quad \epsilon < \rho_{i,j} < 1 \end{split}$$

where K_i is the i^{th} -macrocell assembled stiffness matrix, $u_i^{A(pq)}$ and $f_i^{(pq)}$ are the global displacement vector and the external force vector of the i^{th} -macrocell for the case (pq) respectively, $\rho_{i,j}$ is the density of the j^{th} micro-element of the i^{th} -macrocell.

In all the results presented in Section 2.4, micro-structures of size 100*100 are used.

Rotated homogenized stiffness tensor

$$\mathbf{E}^{\alpha} = \mathbf{M}_{\alpha}^{T} * \mathbf{E} * \mathbf{M}_{\alpha} = (E_{klmn}^{\alpha})_{k,l,m,n \in \{1,2\}}$$

CSMA 2024

Transmission zones

- To address connectivity issue
- Impose location of strain transmission from one cell to another
- ⇒ Periodic boundary conditions only in those locations

 Difference to Kinematical Connective constraints: absence of nondesign zones

Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. Journal of Materials Science 43:5157–5167. https://doi.org/10.1007/s10853-008-2722-y

Multiscale Topology Optimization

Macroscale Problem

 $\underline{x^i} = [x^i_{\text{dens}}, x^i_{\text{or}}, x^i_{\text{cub}}]$

best unit cell per quad

Microscale Problem

minimize
$$c_i = E_{1111}^{i\alpha} \times (1 - \frac{x_{\text{cub}}^i}{2}) + E_{2222}^{i\alpha} \times \frac{x_{\text{cub}}^i}{2}$$

subject to
$$K_i u_i^{A(pq)} = f_i^{(pq)}$$

$$\sum_{i=1}^{m} \rho_{i,j} \le m \times x_{\text{dens}}^{i}$$

subject to
$$Ku = f$$

MBB Problem 30x10 macro elements

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{i,j} \le n \times m \times v_{f}$$

Theoretical

compliance 192.7

$$\epsilon < \rho_{i,j} < 1$$

Since the objective is to create micro-structure with optimal properties towards specific directions, the objective function is a weighted function of the two components $E\alpha$ 1111 and $E\alpha$ 2222

Comparison

• Top88 versus EMTO

OSMA 2024 20

How to speed up?

• To address speed issue ($t_{tot} = t_{cell} * n_{cell} * n_{it}$; $t_{cell} = 10'$)

https://github.com/SMTorg/SMT

database:

https://data.mendeley.com/datasets/b5hyzxg7fv/1

DOI: 10.17632/b5hyzxg7fv.1

• $t_{tot} = 10$ " on 200-300 macro-element design

Elastic tensor's surrogate

to Avoid Nelement*cellOptimization at each macroOptim step

• 3 inputs: macro-density, angle, cubicity

• 6 outputs : elastic tensor values

• Gaussian interpolation: capture local effects but mitigate noise

• E1111

Density

Orientation

Cubicity

Tensor

Micro-

structure

database

E₁₂₁₂

Efficient Multiscale Topology Optimization

Macroscale Problem

$$\underset{x_{\text{dens}}^{i}, x_{a}^{i}, x_{b}^{i}, \dots}{\text{minimize}} \quad c = u^{T} K u$$

subject to
$$Ku = f$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{i,j} \le n \times m \times v_{f}$$

$$\epsilon < \rho_{i,j} < 1$$

Nearest Optimal

$$x^i = [x_{\text{dens}}^i, x_{\text{or}}^i, x_{\text{cub}}^i]$$

Cubicity of the cells

Gaussian Process Regression

$$\mathbf{E}_{\text{pred}}(x^i) = \frac{\sum_{l=1}^k G(x^i, x_l) \mathbf{E}_{\text{db}}(x_l)}{\sum_{l=1}^k G(x^i, x_l)}$$

$$G(x^{i}, x_{l}) = \exp\left(\frac{-d_{\text{eucl}}(x^{i}, x_{l})^{2}}{2b^{2}}\right)$$

$$x^{i\prime} = [x_{\text{dens}}^i + \Delta, x_{\text{or}}^i, x_{\text{cub}}^i] \qquad \Delta = 0.01$$

$$\frac{\partial \mathbf{E}_{\text{pred}}}{\partial x_{\text{dens}}}(x^i) \approx \frac{\mathbf{E}_{\text{pred}}(x^{i\prime}) - \mathbf{E}_{\text{pred}}(x^i)}{\Delta}$$

Theoretical compliance 192.7

Orientation of the cells

Result on classical test cases

• 4x14*14 design variables; stopping criteria: tolfun< 10^{-3}

CSMA 2024

More info

Duriez, E., Morlier, J., Charlotte, M., & Azzaro-Pantel, C. (2021). A well connected, locally-oriented and efficient multi-scale topology optimization (EMTO) strategy. Structural and Multidisciplinary Optimization, 1-24.

SMA 2024 27

Au programme

Part1: EMTO

Part2: Buckling mitigation

Conclusions

CSMA 2024 28

Do you see a difference (Left2Right)?

SMA 2024 29

Avoid buckling constraint in the TopOpt loop

- Is there a « cheap »post treatment capable of detecting microstructures responsible for the buckling ??
- We start by diminishing the size of the design to be studied by regrouping elements 4 by 4.
- We then retrieve the buckling load factors (BLF) and the associated eigen vectors of this design for the first 12 modes, using part of the code from

Ferrari, F., Sigmund, O. & Guest, J.K. Topology optimization with linearized buckling criteria in 250 lines of Matlab. Struct Multidisc Optim (2021).

>>topBuck250(480,240,3,4,2,'N',0.5,2,[0.1,0.7,1.2],300,2,0,0,0,{['V','C'],2.5})).

SMA 2024 3

"buckling score" (b_j) for each cell, capturing how its elements are affected by buckling The mean of this weighted displacement over each cell (j) is noted d_{ij} .

(a) The MBB beam problem.

(b) Output of EMTO.

OSMA 2024 31

Experimental validation

- Comparison to top88 (smoothed) on same grid and same total volume fraction.
- Planar stiffness (N/m2) : $S = \frac{F}{\delta e}$

£ 5000							
(N) 80 4000 3000	M	~	_	1			1
3000 - 2000 - 1000 -	1	~	^	1	~	V	

Method	planar stiffness (N/m²)	$F_{\lim}/t(N/m)$
EMTO + BMPT	6.48×10 ⁷	2.67e5
ЕМТО	6.48×10^{7}	1.44e5
top88 smoothed	6.17×10^7	2.67e5

=> EMTO takes advantage of printing anisotropy

Au programme

Part1: EMTO

Part2: Buckling mitigation

Conclusions

CSMA 2024 35

Conclusions

- VS monoscale:
 - Lower compliance
 - Lower maximum load
 - Higher energy absorption
- Design acceleration through SMT
- Framework enabling to easily mitigate local buckling
 - Keep stiffness advantage while having buckling limit load similar to monoscale
- Directional properties similar to composites (CFRP), but using only one material (and void) => easier recyclability?

CSMA 2024

ensource initiatives

https://github.com/topggp/blog

https://github.com/mid2SUPAERO/EMTO

https://aithub.com/mid2SUPAERC

https://github.com/mid2SUPAERO/SOMP_Ansys

CSMA 2017 et 2019

CSMA 2022

CSMA 2022

CSMA 2024

CSMA 2024

https://aithub.com/mid2SUPAERO/EMTO/tree/main/buckling

Get rights and content 2

Show more V

with derivatives

+ Add to Mendeley a Share 55 Cite

https://doi.org/10.1016/j.advengsoft.2019.03.005 21

Advances in Engineering Software Volume 135, September 2019, 102662

A Python surrogate modeling framework

Rémi Lafage C . Joseph Morlier D . Joaquim R.R.A. Martins C .

Advances in Engineering Software Volume 188, February 2024, 103571

Get rights and content 7

SMT 2.0: A Surrogate Modeling Toolbox with a focus on hierarchical and mixed variables Gaussian processes

 $\underline{\textit{Paul Saves}}^{\,\alpha\,b\,1}\,\, \not\gtrsim\,\, \underline{\otimes}\,, \\ \underline{\textit{R\'emi Lafaqe}}^{\,\alpha\,1}\,\,\underline{\otimes}\,, \\ \underline{\textit{Nathalie Bartoli}}^{\,\alpha\,1}\,\,\underline{\otimes}\,, \\ \underline{\textit{Youssef Diouane}}^{\,c\,1}\,\,\underline{\otimes}\,, \\ \underline{\textit{Nathalie Bartoli}}^{\,\alpha\,1}\,\,\underline{\otimes}\,, \\ \underline{\textit{Nathal$ Jasper Bussemaker d1 €, Thierry Lefebyre a1 €, John T. Hwang e1 €, Joseph Morlier f1 € looguim R.R.A. Mortins 91

+ Add to Mendeley 4 Share 55 Cite

https://doi.org/10.1016/j.advengsoft.2023.103571 74

https://smt.readthedocs.io/en/latest/

THANK YOU

https://www.linkedin.com/pulse/possible-build-aircraft-wing-lego-joseph-morlier/?articleId=6627240732975480832

https://www.tripadvisor.fr/LocationPhotoDirectLink-g187529-d574612-i349532022-Museum_of_Natural_Science_Museo_de_Ciencias_Naturales-Valencia_Province_o.html

Is it possible to build an aircraft wing in LEGO® ?

OSMA 2024 33