LGN 5810 - Genética Quantitativa

Introdução

- A decomposição de Fisher dos valores genotípicos está associada ao valor fenotípico:
 - Fenótipo = Genótipo + Ambiente
 - A variância fenotípica (V_p) de características quantitativas consiste de um conjunto da variância genética (V_g), da variância ambiental (V_e) e da variância da interação entre genótipo e ambiente (V_{ge}): V_p=V_g+V_e+V_{ge}
 - A variância genética é influenciada por:
 - Variância observada da genética aditiva (V_a): Influência de múltiplos genes
 - Variância epistática (V_i): Interação entre os genes
 - Variância de dominância (Vd): Sobreposição do efeito de um gene sobre outro
 - Como: $V_g = V_a + V_i + V_d$

- As conclusões de Mendel baseiam-se em dois experimentos principais:
 - Experimento com monoíbridos: Reprodução de organismos baseados em um único traço
 - Experimento com diíbridos: Associação de traços diferentes

- Experimento com monoíbridos: Reprodução de organismos baseados em um único traço (fenótipo):
 - Cruzamento entre parentais homozigotos (RR x rr) resultaram em uma progênie com todos os indivíduos produzindo sementes lisas (dominância)
 - O intercruzamento de F1 (100% Rr) resultou em uma proporção de três sementes lisas para uma rugosa
 - Conclusão de que indivíduos heterozigotos (Rr) intercruzados produzem gametas R e r (segregação) que, quando fecundados, resultam em uma progênie F2 com ¼ de RR, ½ de Rr e ¼ de rr

- Experimento com diíbridos: Associação de traços (fenótipos) diferentes:
 - Sendo o locus R para a característica lisa/rugosa e o locus Y para a característica verde/amarela, o cruzamento RRYY x rraa resulta em F1 com todos os indivíduos lisos e amarelos (RrYy)
 - F2 do intercruzamento de F1 (gametas R, r, Y e y independentes) resultando em sementes lisas e amarelas (RRYY, RRYy, RrYY, RrYy), lisas e verdes (Rryy, Rryy), rugosas e amarelas (rrYY, rrYy) e rugosas e verdes (rryy)
 - Totalizando 16 genótipos: 9 lisas e amarelas, 3 lisas e verdes, 3 rugosas e amarelas e 1 rugosa e amarela.
 - Duas características herdáveis diferentes segregam de maneira independente

- As leis de Mendel apresentam excessões:
 - Dominância incompleta: Heterozigoto com fenótipo intermediário entre os homozigotos (cor de flores)
 - Codominância: Heterozigoto apresenta simultaneamente os fenotipos de ambos genitores (tipo sanguíneo - ABO)
 - Imprinting genômico: Expressão diferenciada de acordo com a origem parental
 - Desequilíbrio de ligação: Dois genes localizados no mesmo cromossomo são herdados juntos por apresentarem estarem muito próximos
 - O crossing-over quebra a ligação gênica

- As características estudadas por Mendel (qualitativas) são raras na natureza:
 - Influenciados por um ou poucos genes com efeitos proeminentes
 - Epistasia: Genes podem mascarar o efeito de outros
 - Pleiotropia: Um gene com vários efeitos ao mesmo tempo
 - A maioria dos traços, principalmente associados à agricultura, são determinados por vários genes ao mesmo tempo (quantitativos)

- Fatores externos afetam as frequências fenotípicas da população:
 - Discrepantes das proporções esperadas nas segregações independentes de caracteres monogênicos (3:1) e de caracteres poligênicos (9:3:3:1)
 - Testes de aderência: Análise da interação de duas variáveis pelo estabelecimento de uma hipótese nula (Herança Mendeliana) contra uma hipótese alternativa (Fatores externos)

	Dentro das populações	Entre as populações
Aumenta a variação genética	Mutação Migração Alguns tipos de seleção natural	Mutação Deriva genética Alguns tipos de seleção natural
Reduz a variação genética	Deriva genética Alguns tipos de seleção natural	Migração Alguns tipos de seleção natural

Hardy-Weinberg

- Aplicação de métodos probabilísticos (teste de aderência) à genética Mendeliana
- As suposições de Hardy-Weinberg atendem o equilíbrio para um único locus baseado em alguns pressupostos para populações:
 - Tamanho infinito
 - Acasalamento aleatório (panmixia)
 - Sem sobreposição de gerações
 - Não afetadas por mutação
 - Não afetadas por seleção
 - Não afetadas por migração
 - Não afetadas por endogamia
 - Não afetadas por deriva
- As frequências alélicas em uma população permanecem inalteradas

Hardy-Weinberg

- Quando as frequências genotípicas ou alélicas de uma população não estão de acordo com o equilíbrio de Hardy-Weinberg, indica que alguma força evolutiva está atuando:
 - Se afetadas por forças evolutivas, as frequências alélicas são estabilizadas após uma geração de acasalamento aleatório
 - Qui-quadrado:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

Teste de probabilidade:

•
$$G = -2\sum_{i=1}^{n} \sum_{j\geq i}^{n} N_{ij} \ln \frac{\widehat{N}_{ij}}{N_{ij}}$$

Genética Quantitativa

- A maioria dos caracteres são representados por múltiplos loci e alelos, em populações com forte sobreposição de gerações, dificultando sua representação genotípica
- Ronald Fisher demonstrou, em 1918, que a herança de características quantitativas poderia ser explicada pelos efeitos cumulativos de muitos genes, cada um seguindo as regras de Mendel:
 - Este método é limitado, uma vez que considera que todos os genes influenciam igualmente uma característica, que seus efeitos são aditivos e que os loci não estão ligados, o que geralmente não ocorre em características multigênicas.

Genética Quantitativa

- Fisher (1928 e 1929) sugeriu que, como alelos deletérios raros são encontrados majoritariamente nos heterozigotos, a seleção deveria favorecer alelos que causam os heterozigotos a assemelhar-se aos homozigotos:
 - A seleção atua nos efeitos médios dos alelos
 - Força lenta e cumulativa
- Wright (1929 e 1934) questionou que a intensidade de seleção atuando sobre o loci modificador dificilmente será uma força evolutiva significativa:
 - A dominância seria majoritariamente fisiológica
 - Estas fracas forças de seleção não poderiam superar a deriva e outras forças evolutivas

Fonte: Manna et al. (2011)

Genética Quantitativa

- O modelo mais simples de distribuição genética em populações finitas foi introduzido por Fisher (1930) e Wright (1931):
 - População de tamanho N constante de geração em geração
 - Organismos diplóides
 - Sem sobreposição de gerações
 - Reprodução aleatória
 - Frequências alélicas não são afetadas po mutação, migração ou seleção
- Efeito da deriva:
 - Após algumas gerações, um alelo é fixado e o outro é perdido, não como resultado da seleção, mas exclusivamente da aleatoriedade

Fonte: Hartl e Clark (2010)

- A decomposição de Fisher dos valores genotípicos está associada ao valor fenotípico:
 - Fenótipo = Genótipo + Ambiente
 - Os valores genotípicos representam todos os genes associados a determinado fenótipo

- A diferença entre as médias dos fenótipos dos homozigotos B₂B₂ e B₁B₁ é representado por 2a
- A dominância é medida por k:
 - k=1 implica em completa dominância de B₁
 - k=-1 implica em completa dominância de B₂
 - k=0 implica em falta de dominância, de forma que B₁ e B₂ são aditivos.
 - Se k>1, a expressão fenotípica do heterozigoto é maior que de ambos homozigotos, e o locus apresenta superdominância
 - Se k<1 os homozigotos apresentam expressão fenotípica maior que do heterozigoto, representando uma subdominância.

- O valor genotípico em qualquer locus pode ser decomposto em:
 - Valor genotípico médio da população
 - Efeitos aditivos dos dois genes (valor genético)
 - Valor de desvio de dominância derivado da interação entre os genes
- A relação entre o conteúdo gênico e o valor genotípico não é linear:
 - A melhor aproximação desta relação consiste da regressão dos menores quadrados dos valores genotípicos do número de alelos B₁ e B₂ no genótipo N₁ e N₂
 - Declive influenciado pelo conteúdo gênico, dos efeitos aditivos, das frequências alélicas e do grau de dominância

Fonte: Lynch e Walsh (1998)

• Particionamento baseados na aditividade do valor genotípico (\widehat{G}) e derivações destes valores resultado da dominância (δ) :

•
$$G_{ij} = \widehat{G}_{ij} + \delta_{ij}$$

- Sendo μG a média do valor genotípico na população, α₁ e α₂ os declives de regressão, N₁ e N₂ os valores preditivos e δ_{ij} o erro residual:
 - $G_{ij} = \mu G + \alpha_1 N_1 + \alpha_2 N_2 + \delta_{ij}$
- Em função do genótipo N₁ em organismos diplóides:
 - $N_1 + N_2 = 2 \Rightarrow N_1 = 2 N_2$
 - $G_{ij} = \mu G + \alpha_1 (2 N_2) + \alpha_2 N_2 + \delta_{ij}$
- Reduzindo o valor do intercepto da curva para $\iota = \mu G + \alpha_1$, têm-se que:
 - $G_{ij} = \iota + (\alpha_2 \alpha_1)N_2 + \delta_{ij}$
- Reduzindo o valor do declive da curva para $\alpha = \alpha_2 \alpha_1$, têm-se que:
 - $G_{ij} = \iota + \alpha N_2 + \delta_{ij}$

- Tomando os valores de esperança para $G_{ij} = \mu G + \alpha_1 N_1 + \alpha_2 N_2 + \delta_{ij}$ para dois alelos, têm-se que:
 - O valor esperado do erro residual (δ_{ij}) é 0, uma vez que o desvio de dominância é perdido na produção dos gametas (interação entre os dois parentais):
 - $\mu G = \mu G + \alpha_1 E(N_1) + \alpha_2 E(N_2) + 0$
 - $\hat{G}_{ij} = \mu G + \alpha_i + \alpha_j$, ou seja:
 - Para G_{11} : $\hat{G}_{11} = \mu G + \alpha_1 + \alpha_1 \Rightarrow \hat{G}_{11} = \mu G + 2\alpha_1$
 - Para G_{21} : $\hat{G}_{21} = \mu G + \alpha_2 + \alpha_1 \Rightarrow \hat{G}_{21} = \mu G + \alpha_2 + \alpha_1$
 - Para G_{22} : $\hat{G}_{22} = \mu G + \alpha_2 + \alpha_2 \Rightarrow \hat{G}_{22} = \mu G + 2\alpha_2$

- O excesso médio do alelo $B_2(\alpha_2^*)$ é a diferença entre o valor genotípico médio de indivíduos com ao menos uma cópia de B_2 e o valor genético médio de um indivíduo aleatório da população:
 - $\alpha_2^* = (G_{12}P_{12|2} + G_{22}P_{22|2}) \mu_G$, para o qual $P_{ij|i}$ representa a probabilidade condicional do genótipo B_iB_j
- Todos os indivíduos recebendo o alelo B₂ de um genitor, possuem uma probabilidade (acasalamento aleatório) p₂ de receber outro B₂ do outro genitor, e uma porção p₁ de receber B₁:
 - $\bullet \quad \alpha_2^* = G_{12} + p_1 + G_{22} + p_2 \mu_G$
 - Os valores genotípicos destes dois casos, respectivamente, são de 2α e α(1+k), assim, a subtração da média populacional pelas condições é:
 - $\alpha_2^* = \{p_1[a(1+k)] + p_2(2a)\} 2\alpha p_2(1+p_1k)$, reduzido como:
 - $\alpha_2^* = p_1 a [1 + k(p_1 p_2)] \Rightarrow \alpha_2^* = p_1 \alpha$
 - Enquanto para o alelo B₁:
 - $\alpha_1^* = -p_2 a [1 + k(p_1 p_2)] \Rightarrow \alpha_1^* = -p_2 a$
 - Os desvios apresentam sinais diferentes pois representam desvios do valor genotípico médio da população, e apresentam valor esperado de 0

- O valor aditivos (α_i) é definido como o coeficiente de regressão dos quadrados mínimos do valor genotípico no conteúdo gênico:
 - Refere-se aos efeitos médios que distinguem-se dos efeitos médios de outras ações, como dominância
 - $M = E(\delta_{ij}^2) \Rightarrow M = E\left[\left(G_{ij} \mu_G \alpha_i \alpha_j\right)^2\right] \Rightarrow M = \left(G_{11} \hat{G}_{11}\right)^2 P_{11} + \left(G_{12} \hat{G}_{12}\right)^2 P_{12} + \left(G_{22} \hat{G}_{22}\right)^2 P_{22}$
 - Sendo $P_{11} = p_1^2$, $P_{12} = 2p_1p_2$ e $P_{22} = p_2^2$, o excesso médio α_i^* (parâmetro biológico) e o valor aditivo α_i (parâmetro de regressão dos mínimos quadrados) são parâmetros equivalentes em populações com acasalamento aleatório, assim, os valores são os mesmos:
 - $\alpha_2 = p_1 \alpha$
 - $\alpha_1 = -p_2 a$

 Sabendo que o declive da curva de uma regressão univariada é a covariância entre a variável resposta e a variável preditiva, dividida pela variância da variável preditiva, o declive pode ser representado por:

Para os quais os termos de covariância e variância estão em função dos efeitos dos genes (a e k) e das frequências dos alelos (p₁ e p₂):

Genotype	Gene Content (N)	Genotypic Value (G)	Freq.	$G\cdot N$	N^2	-	Dominance Deviation $(\delta = G - \widehat{G})$
B_1B_1	0	0	p_1^2	0	0	ı	
B_1B_2	1	(1 + k)a	$2p_{1}p_{2}$	(1 + k)a	1	$\iota + \alpha$	$(1+k)a - \iota - \alpha$
B_2B_2	2	2a	p_2^2	4a	4	$\iota + 2\alpha$	$2a - \iota - 2\alpha$

Fonte: Lynch e Walsh (1998)

- Assim, os valores genotípicos ponderados por suas frequências (G) são expressos em função conteúdo gênico (N) com o declive (α) da regressão dos quadrados mínimos, em função das frequências alélicas do alelo recessivo (p₂)
- Diferentes graus de dominância (k) podem ser preditos:
 - Sem dominância, ou aditividade completa (k=0)
 - Dominância parcial (k=0,75)
 - Superdominância (k=2)
- Sob acasalamento aleatório, a frequência média para a qual o alelo B₂ é substituído aleatoriamente por B₁ é representado pelo valor médio de substituição alélica (α):
 - $\alpha = a[1 + k(p_1 p_2)]$
 - No caso de aditividade completa (k=0), α é α, enquanto para todos os outros casos α está em função de k e as frequências alélicas na população
 - Sob dominância, o efeito fenotípico de uma substituição gênica depende do estado do alelo não substituído

Gene content	Genot. value	Adj. value	Frequency
0	0	2.25	0.0625
1	3	2.25	0.3750
2	2	2.25	0.5625

- Após a divisão dos valores genotípicos, as fontes de variação genética também podem ser subdivididas, tomando $G = \hat{G} + \delta$, têm-se a variância genética total:
 - $\sigma_G^2 = \sigma^2(\hat{G} + \delta)$, ou pelas propriedades de identidades úteis:

•
$$\sigma_G^2 = \sigma^2(\hat{G}) + 2\sigma^2(\hat{G}, \delta) + \sigma^2(\delta)$$

- Das propriedades da regressão dos mínimos quadrados, o preditor de regressão (\hat{G}) não está relacionado com o erro residual (δ), assim, a variância genética total atribuível a um locus é a soma dos componentes aditivos (σ_A^2) e de dominância (σ_D^2):
 - $\sigma_G^2 = \sigma_A^2 + \sigma_D^2$
 - A variância genética aditiva representa o quanto da variância de G é explicada pela regressão em N₂ ou N₁:
 - A variância genética de dominância representa o quanto da variância de G é explicada pelo efeito dominante:
 - $\bullet \quad \alpha_D^2 = (2p_1p_2\alpha k)^2$

- Em casos aditivos (k=0), a variância genética aditiva máxima é alcançada com p₁=p₂=0,5, na qual o heterozigoto é mais pronunciado
- Com o efeito de dominância, o valor aditivo da variância genética é maximizado com as maiores frequências do alelo recessivo:
 - Estes alelos raros causam pequenas alterações na variância genética por sua expressão pouco frequente
- As magnitudes relativas de variância genética aditiva e de dominância não fornecem informações do efeito aditivo de um gene:
 - A dominância contribui ao valor de variância genética aditiva
 - Mesmo em casos de dominância completa, σ_D^2 dificilmente será superior que σ_A^2
 - No caso de superdominância (k>1), existem casos intermediários de frequências gênicas em que σ_A^2 é zero, quando a regressão dos quadrados mínimos de G em N_2 possuí um declive 0

Conclusões

- A divisão dos valores genotípicos nos componentes aditivos e de dominância são úteis em espécies diploides com acasalamento aleatório, no qual cada genitor fornece um alelo por locus de cada progênie:
 - O desvio de dominância é perdido na produção dos gametas, uma vez que representa uma interação entre os dois parentais
 - G representa o componente herdável e δ o componente não-herdável dos valores genotípicos individuais
- Para o melhoramento, a soma dos valores aditivos de seus genes representam o valor genético (breeding value - A), reforçando a importância da decomposição de Fisher

Parental Genotype	Breeding Value	Mean Genotypic Value of Progeny	Deviation of Expected Progeny Mean from μ_G
B_2B_2	$2\alpha_2$	$a[2p_2 + p_1(1+k)]$	α_2
B_1B_2	$\alpha_1 + \alpha_2$	$a[p_2+(1+k)/2]$	$(\alpha_1 + \alpha_2)/2$
B_1B_1	$2\alpha_1$	$ap_2(1+k)$	$lpha_1$

Fonte: Lynch e Walsh (1998)

Referências

- Fisher RA. 1919. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Earth and Environmental Science Transactions of The Royal Society of Edinburgh. 52(2):399–433.
- Garcia, A. A. F. (2024). Quantitative Genetics. Department of Genetics, ESALQ/USP. Retrieved from https://statgen.esalq.usp.br/quantgenetics/index/.
- Glover T, Mitchell K. 2016. An introduction to biostatistics. Third edition. Long Grove, Illinois: Waveland Press Inc.
- Hartl DL, Clark AG. 2010. Princípios de Genética de Populações-4. Artmed Editora.
- Lynch M, Walsh B. 1998. Genetics and analysis of quantitative traits. Sinauer Sunderland, MA.
- Manna F, Martin G, Lenormand T. 2011. Fitness Landscapes: An Alternative Theory for the Dominance of Mutation. Genetics. 189(3):923–937.
- Pierce BA. 2014. Genetics: a conceptual approach. 5. ed. New York, NY: W.H. Freeman, a Macmillan Higher Education company
- Skipper RA. 2024. Revisiting the Fisher-Wright Controversy.
- Wang T. 2011. On coding genotypes for genetic markers with multiple alleles in genetic association study of quantitative traits. BMC Genet. 12(1):82.

Obrigado!

carvalhopc@usp.br linktr.ee/carvalhopc