MODERN ALGEBRA II SPRING 2013: FIFTH PROBLEM SET

- 1. Let $f(x) = x^2 + 3x + 2 = (x+1)(x+2) \in (\mathbb{Z}/6\mathbb{Z})[x]$. Find a root of f(x) which is not -1 or -2, and use this new root to find a different factorization of f(x) into linear factors.
- 2. Let R be the subring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ of \mathbb{R} . Let $I = (6+\sqrt{2})$ be the principal ideal generated by $6+\sqrt{2}$. Follow the outline of Problem 7 in HW 4 to show that $R/I \cong \mathbb{Z}/34\mathbb{Z}$. Is I a maximal ideal? A prime ideal?
- 3. Let F be a field, and consider the ring F[x].
 - (i) Let I be the principal ideal (x-r) in F[x]. Using the fact that every coset p(x) + I contains a unique representative of the form a, where $a \in F$, conclude that $F[x]/I \cong F$, and in fact the homomorphism $\phi \colon F \to F[x]/I$ defined by $\phi(a) = a + I$ is an isomorphism. Note that this agrees with the fact that, if $\operatorname{ev}_r \colon F[x] \to F$ is the evaluation homomorphism, then $I = \operatorname{Ker} \operatorname{ev}_r$, so that $F[x]/I \cong \operatorname{Im} \operatorname{ev}_r = F$. Is I a prime ideal? A maximal ideal?
 - (ii) Let I be the principal ideal (x^2) in F[x]. Show that every coset p(x) + I contains a unique representative of the form $a_0 + a_1x$, where $a_0, a_1 \in F$. Write the coset $a_0 + a_1x + I$ in abbreviated form as $a_0 + a_1\alpha$, where $\alpha = x + I$, and describe addition and multiplication in F[x]/I using this form. In other words, given two elements $a_0 + a_1\alpha, b_0 + b_1\alpha \in F[x]/I$, describe

$$(a_0 + a_1\alpha) + (b_0 + b_1\alpha)$$
 and $(a_0 + a_1\alpha) \cdot (b_0 + b_1\alpha)$.

In particular, what is α^2 in the ring F[x]/I when written in the form $a_0 + a_1\alpha$? Is I a prime ideal? A maximal ideal?

(iii) Let I be the principal ideal $(x^2 - 1)$ in F[x]. Show again that every coset p(x) + I contains a unique representative of the form $a_0 + a_1 x$, where $a_0, a_1 \in F$. Again write the coset $a_0 + a_1 x + I$ in abbreviated form as $a_0 + a_1 \alpha$, where $\alpha = x + I$, and describe addition and multiplication in F[x]/I using this form, in other words, given two elements $a_0 + a_1 \alpha$, $b_0 + b_1 \alpha \in F[x]/I$, describe

$$(a_0 + a_1\alpha) + (b_0 + b_1\alpha)$$
 and $(a_0 + a_1\alpha) \cdot (b_0 + b_1\alpha)$.

- In particular, what is α^2 when written in the form $a_0 + a_1 \alpha$? Is I a prime ideal? A maximal ideal? Exhibit two nonzero elements of F[x]/I whose product is 0.
- (iv) Continuing with (iii), still with $I=(x^2-1)$ and now assuming that F is not of characteristic 2, consider the ring homomorphism $F[x] \to F \times F$ defined by $p(x) \mapsto (p(1), p(-1))$, in other words the homomorphism (ev₁, ev₋₁). Show that I is in the kernel of both ev₁ and ev₋₁, and that there is an induced ring homomorphism $\varphi \colon F[x]/I \to F \times F$, where $F \times F$ is viewed as a product ring. (In other words, $\varphi(p(x) + I) = (p(1), p(-1))$.) What is $\varphi(\alpha)$ (where as before $\alpha = x + I$)? Find elements $a_0 + a_1\alpha$ and $b_0 + b_1\alpha$ such that $\varphi(a_0 + a_1\alpha) = (1, 0)$ and $\varphi(b_0 + b_1\alpha) = (0, 1)$. (Where do we need to assume that characteristic $F \neq 2$?) Show that φ is surjective. Finally show that $\ker \varphi = I$ and hence that φ is an isomorphism from F[x]/I to $F \times F$.
- 4. Let F be a field, and let $E : F[x] \to F^F$ be the homomorphism from polynomials with coefficients in F to the ring of all functions from F to itself. Show that, if F is **infinite**, then E is injective but never surjective. (For both the injectivity and the failure to be surjective, you can use the fact that a nonzero polynomial $p(x) \in F[x]$ cannot be zero on infinitely many elements of F.)
 - On the other hand, if F is **finite**, show that E is surjective but never injective. (If the elements of F are listed as a_1, \ldots, a_n , first show that, for every i, there exists a polynomial $p_i \in F[x]$ such that $p_i(a_i) = 1$ and $p_i(a_j) = 0$ for $j \neq i$; in fact, you can take $p_i(x)$ to be a nonzero multiple of $(x a_1) \cdots (x a_{i-1})(x a_{i+1}) \cdots (x a_n) = \prod_{j \neq i} (x a_j)$. Then argue that every function from F to itself can be written as a linear combination $\sum_{i=1}^n c_i p_i(x)$ for appropriate $c_i \in F$.)