Введение

Алексей Андреевич Сорокин

МГУ им. М.В.Ломоносова весенний семестр 2022—2023 учебного года Межфакультетский курс "Введение в компьютерную лингвистику" 1 марта, занятие 3 Нейронные сети.

Недостатки линейных классификаторов

• Линейный классификатор не может проверить равенство двух координат:

Недостатки линейных классификаторов

 Линейный классификатор не может проверить равенство двух координат:

 Часто полезные признаки в задачах — комбинации исходных признаков:

$$w[-2] = B \& POS(w[-1]) = ADP \& TAG(w[-1]).case = LOC$$

- Эти признаки приходится либо образовывать вручную, либо перебирать чрезмерно большое число комбинаций (SVM с полиномиальными ядрами).
- В результате модель не может выучить оптимальным образом большое число параметров.

Двуслойная нейронная сеть для проверки равенства

• Схема нейронной сети:

Двуслойная нейронная сеть для проверки равенства

• Схема нейронной сети:

• Вычисление функции $(g(x) = \max(x, 0))$:

	$z_1 = x + y - 1$	$z_2=1-(x+y)$	$h_1 = g(z_1)$	$h_2=g(z_2)$	$2(h_1+h_2)-1$
(0, 0)	-1	1	0	1	1
(0, 1)	0	0	0	0	-1
(1, 0)	0	0	0	0	-1
(1, 1)	1	-1	1	0	1

Нейронная сеть: распознающая способность

- Уже двуслойная нейронная сеть распознаёт больше, чем линейный классификатор.
- Для этого между слоями была добавлена ReLU-активация:

$$ReLU(x) = \theta(x) = \max(x, 0)$$

• Без функции активации ничего бы не получилось.

Нейронная сеть: распознающая способность

- Уже двуслойная нейронная сеть распознаёт больше, чем линейный классификатор.
- Для этого между слоями была добавлена ReLU-активация:

$$ReLU(x) = \theta(x) = \max(x, 0)$$

• Без функции активации ничего бы не получилось.

Theorem (Cybenko, Hornik)

Любую непрерывную функцию $f: \mathbb{R} \to \mathbb{R}$ можно приблизить двуслойной нейронной сетью. В качестве функции активации можно взять любую функцию, не являющуюся полиномом.

Общий вид нейронной сети

 Каждый нейрон сети вычитает взвешенную сумму нейронов с предыдущего слоя:

$$z_j^{(i)} = \sigma^{(i)}(\sum_r w_{jr}^{(i)} z_r^{(i-1)} + b_j^{(i)}), j = 1, \dots, m_i$$

- $\sigma^{(i)}$ функция активации на *i*-ом слое.
- Простейшие функции активации:

$$\sigma(x) = \max(x,0)$$
 (функция Хэвисайда, ReLU) $\sigma(x) = \frac{e^x}{e^x+1}$ (сигмоида).

 Каждый нейрон сети вычитает взвешенную сумму нейронов с предыдущего слоя:

$$z_j^{(i)} = \sigma^{(i)}(\sum_r w_{jr}^{(i)} z_r^{(i-1)} + b_j^{(i)}), j = 1, \dots, m_i$$

- Простейшие функции активации:

$$\sigma(x) = \max(x,0)$$
 (функция Хэвисайда, ReLU) $\sigma(x) = \frac{e^x}{e^x+1}$ (сигмоида).

• Эту запись можно перевести на матричный язык:

$$\mathbf{z}^{(i)} = \sigma^{(i)}(W^{(i)}\mathbf{z}^{(i-1)} + b^{(i)})$$

• Это полносвязный слой.

ullet Многослойная нейронная сеть вычисляет функцию $f:\mathbb{R}^n o\mathbb{R}^m$:

$$\mathbf{z}^{(1)} = \sigma^{(1)}(W^{(1)}\mathbf{x} + b^{(1)}),
\mathbf{z}^{(2)} = \sigma^{(2)}(W^{(2)}\mathbf{z}^{(1)} + b^{(2)}),
\dots
\mathbf{z}^{(N)} = \sigma^{(N)}(W^{(N)}\mathbf{z}^{(N-1)} + b^{(N)}),
y = \sigma(W\mathbf{z}^{(N)} + b)$$

ullet Многослойная нейронная сеть вычисляет функцию $f:\mathbb{R}^n o\mathbb{R}^m$:

$$\mathbf{z}^{(1)} = \sigma^{(1)}(W^{(1)}\mathbf{x} + b^{(1)}),
\mathbf{z}^{(2)} = \sigma^{(2)}(W^{(2)}\mathbf{z}^{(1)} + b^{(2)}),
\dots
\mathbf{z}^{(N)} = \sigma^{(N)}(W^{(N)}\mathbf{z}^{(N-1)} + b^{(N)}),
y = \sigma(W\mathbf{z}^{(N)} + b)$$

Обозначения:

$$f x - f входной вектор, & x \in \mathbb{R}^n, \ f y - f выходной вектор, & x \in \mathbb{R}^m, \ f W^{(i)} - f oбучаемая матрица \emph{i-го слоя}, & f W^{(i)} \in \mathbb{R}^{(m_i \times n)}, \ f b^{(i)} - f csoбодный член \emph{i-го слоя}, & f b^{(i)} \in \mathbb{R}^{m_i}, \ f M - f vucлo скрытых слоёв.$$

Функции активации

- Функции активации позволяют нейронным сетям вычислять нелинейные функции.
- Стандартные функции активации:

$$g(x) = x$$
 (тождественная) $g(x) = \max(x,0)$ (Rectified linear unit) $g(x) = \frac{e^x}{e^x+1}$ сигмоида $g(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}}$ гиперболический тангенс $g(x) = [\frac{e^{x_1}}{\sum e^{x_i}}, \dots, \frac{e^{x_n}}{\sum e^{x_i}}]$ (softmax)

Функции активации

- Применение функций активации:
 - ReLU сохраняет только положительные активации,
 - $\sigma(x)$ преобразует $(-\infty;\infty)$ в [0;1].

Функции активации

- Применение функций активации:
 - ReLU сохраняет только положительные активации,
 - $\sigma(x)$ преобразует $(-\infty, \infty)$ в [0, 1].
 - $\tanh(x)=2\sigma(\frac{x}{2})-1$ преобразует $(-\infty,\infty)$ в [-1,1].
 - softmax применяется, когда нужно вернуть вероятности (преобразует вектор из n чисел в распределение вероятностей p_1, \ldots, p_n).
- Функции активации должны быть дифференцируемы, чтобы сеть можно было обучать градиентными методами.

Обучение нейронной сети.

- Нейронная сеть задаёт функцию из некоторого параметрического семейства.
- Обучение сети: подбор этих параметров с целью наилучшего приближения значения на обучающей выборке.
- Обучение осуществляется градиентным спуском, другое название

 обратное распространение ошибок:

Обучение нейронной сети.

 Нейронная сеть задаёт функцию из некоторого параметрического семейства.

$$y' = F_{\theta}(x), \ \theta \in \mathbb{R}^n$$

• Качество ответа измеряется значением функции потерь:

$$L(y,y') \to \min_{\theta}$$

• Параметры оптимизируются шагом градиентного спуска:

$$\theta \leftarrow \theta - \eta \frac{\partial F(y, F_{\theta}(x))}{\partial \theta},$$

 $\theta > 0$ — темп обучения.

Обучение нейронной сети.

 Нейронная сеть задаёт функцию из некоторого параметрического семейства.

$$y' = F_{\theta}(x), \ \theta \in \mathbb{R}^n$$

• Качество ответа измеряется значением функции потерь:

$$L(y,y') \to \min_{\theta}$$

• Параметры оптимизируются шагом градиентного спуска:

$$\theta \leftarrow \theta - \eta \frac{\partial F(y, F_{\theta}(x))}{\partial \theta},$$

 $\theta > 0$ — темп обучения.

- Функция потерь считается:
 - Для одного объекта выборки (стохастический градиентный спуск).
 - Для группы объектов выборки (батча).

Функции потерь

- Пусть C(y,y') функция потерь, где y эталонный ответ, а y' ответ нейронного классификатора
- Возможные функции потерь:
 - Квадратичная: $(y-y')^2$. Применяется, когда классификатор возвращает $y' \in \mathbb{R}$.

Функции потерь

- Пусть C(y, y') функция потерь, где y эталонный ответ, а y' ответ нейронного классификатора
- Возможные функции потерь:
 - Квадратичная: $(y-y')^2$. Применяется, когда классификатор возвращает $y' \in \mathbb{R}$.
 - Бинарная кросс-энтропия (cross-entropy): $-(y \log y' + (1-y) \log (1-y'))$. Измеряет, насколько далеки две вероятности $y,y' \in [0,1]$.
 - ullet В случае $y\in\{0,1\}$ бинарная кросс-энтропия равна $-\log p(y)$.

Функции потерь

- Пусть C(y, y') функция потерь, где y эталонный ответ, а y' ответ нейронного классификатора
- Возможные функции потерь:
 - Квадратичная: $(y-y')^2$. Применяется, когда классификатор возвращает $y' \in \mathbb{R}$.
 - Бинарная кросс-энтропия (cross-entropy): $-(y \log y' + (1-y) \log (1-y'))$. Измеряет, насколько далеки две вероятности $y,y' \in [0,1]$.
 - В случае $y \in \{0,1\}$ бинарная кросс-энтропия равна $\log p(y)$.
 - Категориальная кросс-энтропия: $-(\sum_i y_i \log y_i')$. Измеряет расстояние между истинным вероятностным распределением $y=[y_1,\ldots,y_n]$ и предсказанным распределением $y'=[y_1',\ldots,y_n']$.
- Обе версии кросс-энтропии максимизируют вероятность обучающей выборки.

Приближение функций нейронными сетями

Приближение функции $y = \sin x$ на отрезке [-10; 10]. 3 полносвязных слоя, n = 10 нейронов на скрытых слоях.

Приближение функций нейронными сетями

Приближение функции $y=\sin x$ на отрезке [-10;10]. 3 полносвязных слоя, n=100 нейронов на скрытых слоях.

• Общая схема классификации:

$$\begin{array}{rcl} X & = & [x_1, \dots, x_n], \\ x_i & \in & \mathbb{R}^D, \\ s & = & \sum (X) = [\sum_i \{x_{i1}\}, \dots, \sum_i \{x_{iD}\}], \\ p = [p_1, \dots, p_K] & = & \operatorname{softmax}(Ws + b) \end{array}$$

• Общая схема классификации:

$$\begin{array}{rcl} X & = & [x_1, \dots, x_n], \\ x_i & \in & \mathbb{R}^D, \\ s & = & \sum (X) = [\sum_i \{x_{i1}\}, \dots, \sum_i \{x_{iD}\}], \\ p = [p_1, \dots, p_K] & = & \operatorname{softmax}(Ws + b) \end{array}$$

- Сеть состоит из трёх компонент:
 - Вычисление векторов слов x_i по слову w_i (0/1-вектора, $x_i = w_i$).

• Общая схема классификации:

$$\begin{array}{rcl} X & = & [x_1, \dots, x_n], \\ x_i & \in & \mathbb{R}^D, \\ s & = & \sum (X) = [\sum_i \{x_{i1}\}, \dots, \sum_i \{x_{iD}\}], \\ p = [p_1, \dots, p_K] & = & \operatorname{softmax}(Ws + b) \end{array}$$

- Сеть состоит из трёх компонент:
 - Вычисление векторов слов x_i по слову w_i (0/1-вектора, $x_i = w_i$).
 - Агрегация их в вектор предложения (покоординатный максимум, среднее или сумма).
 - Вычисления самой вероятной метки (однослойный персептрон)

- Сеть состоит из трёх компонент:
 - Вычисление векторов слов x_i по слову w_i (0/1-вектора, $x_i = w_i$).
 - Агрегация их в вектор предложения (покоординатный максимум, среднее или сумма).
 - Вычисления самой вероятной метки (однослойный персептрон)

- Сеть состоит из трёх компонент:
 - Вычисление векторов слов x_i по слову w_i (0/1-вектора, $x_i = w_i$).
 - Агрегация их в вектор предложения (покоординатный максимум, среднее или сумма).
 - Вычисления самой вероятной метки (однослойный персептрон)
- В линейном классификаторе первые две компоненты детерминиро обучается только последняя.
- То есть мы требуем, чтобы классы разделялись плоскостью в исходном пространстве признаков.

- Сеть состоит из трёх компонент:
 - Вычисление векторов слов x_i по слову w_i (0/1-вектора, $x_i = w_i$). • Агрегация их в вектор предложения (покоординатный максимум,
 - среднее или сумма).
 - Вычисления самой вероятной метки (однослойный персептрон)
- В линейном классификаторе первые две компоненты детерминиро обучается только последняя.
- То есть мы требуем, чтобы классы разделялись плоскостью в исходном пространстве признаков.
- Если первые две части будут обучаемые, то сеть "сама" научится так представлять тексты, чтобы классы можно было разделить плоскостью.

Дистрибутивные вектора

- Основная идея дистрибутивной семантики:
 - You should know the word by the company it keeps.
- Похожие слова встречаются в похожих контекстах.
- Можно представлять слово как усреднённый вектор контекста (Latent Semantic Analysis).

Дистрибутивные вектора

• Основная идея дистрибутивной семантики:

You should know the word by the company it keeps.

- Похожие слова встречаются в похожих контекстах.
- Можно представлять слово как усреднённый вектор контекста (Latent Semantic Analysis).
- Можно предсказывать контекст слова по его вектору (или наоборот).
- Тогда похожие слова будут приводить к похожим контекстам.

 Дистрибутивные вектора обучаются на задаче предсказания слова по контексту:

> вкусное Я съел зелёное яблоко . печёное

 Будем для простоты считать, что контекст тоже состоит из одного слова (например, предсказывается следующее слово справа).

 Дистрибутивные вектора обучаются на задаче предсказания слова по контексту:

- Будем для простоты считать, что контекст тоже состоит из одного слова (например, предсказывается следующее слово справа).
- Для каждого слова вводятся два вектора: u_i (входной) и v_i (выходной).
- По u_i предсказывается вероятностное распределение на множестве v_j :

$$p(w_j|w_i) = \frac{\exp((u_i, v_j))}{\sum\limits_k \exp((u_i, v_k))}$$

• Контекст (слово w_i) порождает вероятностное распределение $p = [p_1, \dots, p_{|D|}]$:

$$p_j = p(w_j|w_i) = \frac{\exp((u_i, v_j))}{\sum_k \exp((u_i, v_k))}$$

ullet Это распределение сравнивается с эталонным $\hat{oldsymbol{
ho}} = [0,\dots,1,\dots,0]$:

$$\hat{p}_r = 1 \leftrightarrow w_r$$
 находится в контексте с w_i

ullet Контекст (слово w_i) порождает вероятностное распределение $p = [p_1, \dots, p_{|D|}]$:

$$p_j = p(w_j|w_i) = \frac{\exp((u_i, v_j))}{\sum_k \exp((u_i, v_k))}$$

ullet Это распределение сравнивается с эталонным $\hat{oldsymbol{
ho}} = [0,\dots,1,\dots,0]$:

$$\hat{p}_r = 1 \leftrightarrow w_r$$
 находится в контексте с w_i

• Штраф за различие – кросс-энтропия:

$$Q(\hat{p}, p) = -\sum_{k} \hat{p}_{k} \log p_{k} = -\log p_{r}$$

Предсказание слова

 Штраф за различие можно минимизировать градиентным спуском:

$$u_{i} \leftarrow u_{i} - \frac{\partial Q(\hat{p}, p)}{\partial u_{i}},$$

$$v_{k} \leftarrow u_{i} - \frac{\partial Q(\hat{p}, p)}{\partial v_{k}}, k = 1, \dots, |D|$$

 Этот штраф изменяет один контекстный вектор и все выходные вектора.

 Штраф за различие можно минимизировать градиентным спуском:

$$u_{i} \leftarrow u_{i} - \frac{\partial Q(\hat{p}, p)}{\partial u_{i}},$$

$$v_{k} \leftarrow u_{i} - \frac{\partial Q(\hat{p}, p)}{\partial v_{k}}, k = 1, \dots, |D|$$

- Этот штраф изменяет один контекстный вектор и все выходные вектора.
- ullet На практике рассматривают контекст из нескольких слов (5-10) и предсказывают центральное.
- Вектор контекста: среднее векторов входящих в него слов.

Предсказание соседних слов

• По u_i предсказывается вероятностное распределение на множестве v_i :

$$p(w_j|w_i) = \frac{\exp((u_i, v_j))}{\sum_k \exp((u_i, v_k))} = \operatorname{softmax}((u_i, v_1), \dots, (u_i, v_k))$$

Предсказание соседних слов

• По u_i предсказывается вероятностное распределение на множестве v_i :

$$p(w_j|w_i) = \frac{\exp((u_i, v_j))}{\sum_k \exp((u_i, v_k))} = \operatorname{softmax}((u_i, v_1), \dots, (u_i, v_k))$$

• В матричном виде можно записать как

$$p = \operatorname{softmax}(Vu)$$

ullet i-ая строка матрицы V — представление i-го слова в словаре.

Обучение векторных представлений

• Схема предсказания:

$$x_i = \underbrace{[0, \dots, 0, x_{ij} = 1, 0, \dots, 0]}_{j - \text{ индекс } i \text{-го слова в словаре}}$$
 $h = \frac{1}{C}(Wx_1 + \dots + Wx_C),$
 $p = softmax(W'h)$

Обучение векторных представлений

• Схема предсказания:

$$x_i = \underbrace{[0, \dots, 0, x_{ij} = 1, 0, \dots, 0]}_{j - \text{ индекс } i \text{-го слова в словаре}}$$
 $h = \frac{1}{C}(Wx_1 + \dots + Wx_C),$
 $p = \text{softmax}(W'h)$

 Столбцы матрицы W (ранее U) и строки матрицы W' (на предыдущем слайде V)— сжатые представления слов.

Обучение векторных представлений

• Схема предсказания:

$$x_i = \underbrace{[0, \dots, 0, x_{ij} = 1, 0, \dots, 0]}_{j - \text{ индекс } i \text{-го слова в словаре}}$$

$$h = \frac{1}{C}(Wx_1 + \dots + Wx_C),$$

$$p = softmax(W'h)$$

- Столбцы матрицы W (ранее U) и строки матрицы W' (на предыдущем слайде V)— сжатые представления слов.
- Семантически близкие слова переходят в близкие вектора.
- Вектора сохраняют семантические связи:

$$k \ddot{i} n g - q u \ddot{e} e n = m \ddot{a} n - w o \ddot{m} a n$$

4 D > 4 A > 4 B > 4 B > B

Негативная выборка

• Стандартный штраф — кросс-энтропия:

$$Q(\pi,\pi') = -\sum_i \pi_i \log \pi_i'$$

• Его можно минимизировать градиентным спуском.

Негативная выборка

• Стандартный штраф — кросс-энтропия:

$$Q(\pi,\pi') = -\sum_i \pi_i \log \pi_i'$$

- Его можно минимизировать градиентным спуском.
- Обычно делают по-другому: на каждом шаге выбирают "положительное" слово и и отрицательное слово v и стараются максимизировать разницу между их вероятностями:

$$\log p(u|w_i) - \log p(v|w_i) \rightarrow \max$$

• Положительные — слова, встречавшиеся в данном контексте в корпусе, отрицательные — все остальные.

Негативная выборка

• Стандартный штраф — кросс-энтропия:

$$Q(\pi,\pi') = -\sum_i \pi_i \log \pi_i'$$

- Его можно минимизировать градиентным спуском.
- Обычно делают по-другому: на каждом шаге выбирают "положительное" слово и и отрицательное слово v и стараются максимизировать разницу между их вероятностями:

$$\log p(u|w_i) - \log p(v|w_i) \rightarrow \max$$

- Положительные слова, встречавшиеся в данном контексте в корпусе, отрицательные — все остальные.
- ullet Например, для "корпуса" и $w_i = мама$,

Мама мыла раму Моя мама красивая

"положительными" словами будут *мыла, моя, красивая*, а "отрицательными" — все остальные.

Векторные представления: пример

Векторные представления: пример

