ECOLE NATIONALE DE STATISTIQUE ET D'ANALYSE ECONOMIQUE (ENSAE), DAKAR

ISEP 2 - Devoir 1 d'Analyse 3 - 2021-2022 Durée : 2h

Exercice 1.

- 1. Donner la définition d'une équation déffiérentielle.
- 2. Expliquer comment résoudre une équation différentielle du premier ordre à variables séparables.
- 3. Montrer qu'une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ différentiable en un point x_0 de \mathbb{R}^n est continue en x_0 .

Exercice 2. Résoudre les équations différentielles

- 1. $y' = 1 x^2 + y^2$,
- 2. $(x^2 1)y' y = x^2$.

Exercice 3. On donne l'équation

$$y'' - 3y' + 2y = 1 + 2e^x$$
. (E)

On note (EH) l'équation homogène associée.

- 1. Montrer que $f_1(x) = e^x$ et $f_2(x) = e^{2x}$ sont des solutions de l'équation (EH).
- 2. Déterminer la solution générale de l'équation (EH).
- 3. Trouver une solution particulière de l'équation (E).
- 4. Donner la solution générale de (E).

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par

$$f(x,y) = \arccos \frac{1}{1+x^2+y^2}.$$

- 1. Etudier la continuité de f sur \mathbb{R}^2 .
- 2. La fonction f admet-elle des dérivées partielles dans toutes les direction en tout point de \mathbb{R}^2 ?
- 3. La fonction f est-elle différentiable sur \mathbb{R}^2 ? Le cas échéant, donner la différentielle de f sur \mathbb{R}^2 ?

Exercise 5. Soit $f : \mathbb{R} \times \mathbb{R}_+^* \to \mathbb{R}^2$ donnée par f(0,y) = (0,0) pour tout $y \in \mathbb{R}$ et

$$f(x,y) = \left(x^2 \sqrt{y} \cos \frac{1}{x^3}, x^2 \sqrt{y} \sin \frac{1}{x^3}\right)$$

si $(x, y) \in \mathbb{R}^* \times \mathbb{R}$.

- 1. Montrer que f est différentiable en tout point de \mathbb{R}^2 .
- 2. Déterminer la matrice jacobienne de f en tout point $(x, y) \in \mathbb{R}^2$.
- 3. Quelles sont les valeurs prise par le déterminant de la matrice jacobienne de f en tout point de \mathbb{R}^2 .