

COMPUTER GRAPHICS

ЗАСОБИ ПРОГРАМУВАННЯ КОМП'ЮТЕРНОЇ ГРАФІКИ

Лек. 07 2021 ІПЗ-19

ЛЕКЦИЯ 9 РАСТЕРИЗАЦИЯ

Алгоритмы растеризации графических примитивов

- Отрезки
- Окружности

Аппроксимация цвета вдоль отрезка

Растеризация отрезка прямой

Параметрическое задние прямой

$$S(x_S, y_S)$$
 $E(x_E, y_E)$

$$x = x_S + (x_E - x_S) * u$$

 $y = y_S + (y_E - y_S) * u$

u — параметр, который принимает значения от 0 до 1

Параметрический алгоритм

(4-связный, пл.зпт)

 d_x - приращение t, если x увеличивается на 1 d_v - приращение t, если y увеличивается на 1

Параметрический алгоритм

(4-связный)

$$X_0 = d_x * (1 - x_s); Y_0 = d_y * (1 - y_s);$$

$$l = 1, 2,$$

While $X_l < C$ and $Y_l < C$:

$$If \ X_{l-1} > Y_{l-1}$$
: Y шаг $[i,j+1]$; $X_l = X_{l-1}, Y_l = Y_{l-1} + d_y$; $If \ X_{l-1} < Y_{l-1}$: X шаг $[i+1,j]$; $X_l = X_{l-1} + d_y, Y_l = Y_{l-1}$;

Параметрический алгоритм (пример)

$$x_S = 0.5, \ y_S = 0.5$$

 $x_E = 8.5, \ y_E = 4.5$
 $x = 0.5 + 8*u, \ y = 0.5 + 4*u, \ 0 <= u < 1$

$$C = 100, t=u*100$$

 $x = 0.5 + 0.08*t, y = 0.5 + 0.04*t, 0 <=t < 100$
 $d_x = 12.5, d_y = 25$
 $X_0 = 6.25, Y_0 = 12.5$

Параметрический алгоритм

ПРЯМАЯ

(пример)

$$X_0 = 6.25, Y_0 = 12.5$$

 $x = 0, y = 0$
STEP 1:

 $X_0 = 6.25, Y_0 = 12.5 / \rightarrow X_0 > Y_0$? step x / x = 1, y = 0 STEP 1:

 $X_1 = 18.75$, $Y_1 = 12.5 / \rightarrow X_1 > Y_1$? step y /x = 1, y = 1 STEP 2:

 $X_2 = 18.75, Y_2 = 37.5 / \rightarrow X_2 > Y_2$? step x / x = 2, y = 1

CTED 11. V 02.75 V 112.5 / \ \

STEP 11: $X_{11} = 93.75$, $Y_{11} = 112.5 / \rightarrow X_{11} > Y_{11}$? step x / x = 8, y = 4

Аппроксимация цвета вдоль отрезка прямой

Задан отрезок прямой $S(x_S, y_S)$, $E(x_F, y_F)$. $k = (y_E - y_S) / (x_E - x_S) < 1$. Количество шагов по Брезенхему $N = (x_E - x_S)$. Заданы RGB цвета R_S,G_S,B_S , и R_E,G_E,B_E . Простейший подход – линейная интерполяция каждой цветовой компоненты по параметру номер шага. Пусть i=0,1,...,N – номер шага. Тогда: $\mathbf{R}_{i} = [(\mathbf{R}_{E} - \mathbf{R}_{S})/\mathbf{N}] * i + \mathbf{R}_{S},$ $G_i = [(G_E - G_S)/N] * i + G_S,$

 $B_i = [(B_E - B_S)/N] * i + B_S.$

ОКРУЖНОСТЬ

Задана окружность радиус R.

Центр в начале координат.

$$x^2+y^2=R^2$$

Дуга в первом квадранте.

Обход по часовой.

Найдена точка Р.

Три претендента

$$P1(x_P+1, y_P)$$

$$P2(x_P+1, y_P-1)$$

$$P3(x_P, y_P-1)$$

ОКРУЖНОСТЬ

$$E_{P2} = (x_P + 1)^2 + (y_P - 1)^2 - R^2$$

Случай А $\rightarrow E_{P2} < 0$ выбираем между $P2 \ u \ P1$

Случай В $\rightarrow E_{P2} > 0$ выбираем между $P2 \ u \ P3$

ОКРУЖНОСТЬ

Случай А
$$eps = |R_{P1}| - |R_{P2}| = |(x_P + 1)^2 + y_P^2 - R^2| - |(x_P + 1)^2 + (y_P - 1)^2 - R^2|$$

If eps > 0 выбираем P2

If eps < 0 выбираем P1

ОКРУЖНОСТЬ

Случай В
$$eps = |R_{P3}| - |R_{P2}| = |x_P|^2 + (y_P - 1)^2 - R^2| - |(x_P + 1)^2 + (y_P - 1)^2 - R^2|$$

If eps > 0 выбираем P2

If eps < 0 выбираем РЗ

ОКРУЖНОСТЬ

Случай А $(x_P+1)^2+y_P^2-R^2>0$ $(x_P+1)^2+(y_P-1)^2-R^2<0$

$$epss = (x_P+1)^2 + y_P^2 - R^2 + (x_P+1)^2 + (y_P-1)^2 - R^2$$

$$epss = 2[(x_P+1)^2 + (y_P-1)^2 - R^2] + 2y_P-1 = 2[E_{P2} + y_P]-1$$

3D растр. Воксели.

3D растр. Воксели.

3D растр. Воксели.

Вопросы для экзамена

ТЕМА: РАСТЕРИЗАЦИЯ ГРАФИЧЕСКИХ ПРИМИТИВОВ

- 1. Параметрический алгоритм растеризации отрезка прямой.
- 2. Алгоритм Брезенхема растеризации дуги окружности.

Литература:

http://www.mari-el.ru/mmlab/home/kg/Lection5/lec5.html http://algolist.manual.ru/graphics/painting/line.php

Роджерс Д. Алгоритмические основы машинной графики.-М.: Мир, 1989. стр.48-72

END # 07