RESUME DE COURS DU CHAPITRE 7

Généralités sur les mouvements

Un mouvement peut être qualifié suivant

Sa Trajectoires:

Rectiligne:

Circulaire:

Parabolique:

Curviligne:

Sa vitesse:

- o Si la vitesse augmente au cours du mouvement, le mouvement est qualifié d'accéléré
- o Si la vitesse diminue au cours du mouvement, le mouvement est qualifié de ralenti
- o Si la vitesse est constante au cours du mouvement, le mouvement est qualifié d'uniforme

Il est nécessaire de qualifié le mouvement avec deux informations (trajectoire + vitesse).

Exemple: Mouvement rectiligne uniforme

Mouvement de translation rectiligne

La **vitesse moyenne** v d'un mobile est définit par :

d: distance parcourue en mètres (m)

 Δt : durée en seconde (s)

v: vitesse moyenne en mètres par secondes (m/s)

La **vitesse instantanée** d'un mobile en un point M_2 à l'instant t_2 est définit par :

$$v = \frac{M_3 - M_1}{t_3 - t_1}$$

où M_3 et M_1 sont les positions du mobile aux instants t_3 et t_1 .

L'accélération d'un mobile est définit par :

$$a = \frac{\Delta v}{\Delta t}$$

 Δv : variation de vitesse (m/s)

 Δt : durée en seconde (s)

a : accélération en mètres par secondes carré (m/s^2) .

L'accélération instantanée d'un mobile en un point M_2 à l'instant t_2 est définit par : $a=\frac{\mathbf{v}(\pmb{M}_3)-\mathbf{v}(\pmb{M}_1)}{t_3-t_1}$

$$a = \frac{v(M_3) - v(M_1)}{t_3 - t_1}$$

où $v(M_3)$ et $v(M_1)$ s ont les vitesses du mobile aux instants t_3 et t_1 .

Mouvement de translation rectiligne uniformément accéléré

Avec les mêmes notation que précédemment et $v(t_0)$ la vitesse initiale,

 $v = a \cdot \Delta t + v(t_0)$ La vitesse v atteinte au bout d'une durée Δt est :

 $d = \frac{1}{2} \cdot a \cdot \Delta t^2 + v(t_0) \cdot \Delta t$ La distance parcourue d au bout d'une durée Δt est :

Représentation des actions mécaniques : Forces

Une force exercée sur un solide correspond à une action mécanique exercée par l'extérieur sur un solide. Une force exercée sur un solide peut :

- Mettre en mouvement le solide
- Modifier la trajectoire du solide
- Déformer le solide

Il existe deux types de forces :

- Les forces à distance : 2 objets peuvent être en interaction sans se toucher (Ex : Force gravitationnelle, électromagnétique...)
- Les forces de contact : Dès que 2 solides sont en contact, il y a une force de contact de l'un sur l'autre et réciproquement. Le point d'application est le centre géométrique de la surface de contact.

De l'action mécanique à la force

Lorsqu'une boule de bowling est posée sur la piste, elle est soumise à l'attraction gravitationnelle de la Terre, qui l'attire vers le bas, et à l'action de la piste (appelé réaction), qui l'empêche de tomber.

Chaque action est modélisée par une force :

- La force exercée par la Terre sur la boule est noté $\overrightarrow{F_{T o B}}$
- La force exercée par la piste sur la boule est noté $\overrightarrow{F_{P o B}}$

Schématisation d'une force Une force est représentée ,sur un schéma, par un vecteur noté \vec{F} :

Ce vecteur \vec{F} est défini par :

- Son point d'application : Le point où l'on considère que la force s'exerce.
- Sa direction \overrightarrow{F}
- **Sa norme**: proportionnelle à la longueur du segment fléché et qui s'exprime en *Newton* (*N*)

Somme de forces

Additionner deux forces, revient à faire la somme vectorielle des deux vecteurs forces. Idem pour trois forces, etc...

Les forces couramment représentées

			Réaction d'un support		
		Poids d'un objet $ec{P}$	$ec{R}$ en absence de	Frottements secs $ec{f}$	Tension d'un fil $ec{T}$
			frottements		
		Action de la Terre sur un objet	Action d'un support	Action du support sur	Action du fil sur un
		Action de la Terre sur un objet	sur un objet	un objet	objet
	Point d'application	Centre de gravité	Centre de la surface de	Centre de la surface de	Point de contact entre le fil et l'objet
			contact entre l'objet et	contact entre l'objet et	
			le support	le support	
	Direction	Verticale	Perpendiculaire à la	Parallèle à la surface	e Parallèle au fil
			surface		
	Sens	Vers le bas	De la surface vers	Opposé au	De l'objet vers le fil
			l'objet	mouvement	
	Intensité	P = m. g	De même intensité	$f = -\alpha \cdot v^2$	Pas de formule
			que le Poids		
	Exemples				