Е. А. СИДОРОВА, Т. В. МАНОХИНА, С. П. ЖЕЛЕЗНЯК

ПРОГРАММИРОВАНИЕ ЛИНЕЙНЫХ ВЫЧИСЛИТЕЛЬНЫХ ПРОЦЕССОВ НА VBA

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

Е. А. Сидорова, Т. В. Манохина, С. П. Железняк

ПРОГРАММИРОВАНИЕ ЛИНЕЙНЫХ ВЫЧИСЛИТЕЛЬНЫХ ПРОЦЕССОВ НА VBA

Утверждено методическим советом университета в качестве учебно-методического пособия к выполнению самостоятельной и лабораторных работ

УДК 004.42(075.8) ББК 32.973я73 С34

Программирование линейных вычислительных процессов на VBA: Учебно-методическое пособие к выполнению самостоятельной и лабораторных работ / Е. А. Сидорова, Т. В. Манохина, С. П. Железняк; Омский гос. ун-т путей сообщения. Омск, 2021. 36 с.

Учебно-методическое пособие разработано в соответствии с рабочими программами дисциплин информационного профиля с учетом требований ФГОС ВО последнего поколения.

Содержит краткие теоретические сведения по программированию линейных вычислительных процессов на VBA. Рассмотрены основные формы представления чисел и правила записи арифметических выражений на VBA, операторы ввода и вывода данных, особенности программирования алгоритмов линейной структуры на VBA. Представлены примеры решения задач, индивидуальные практические задания, контрольные вопросы для самопроверки, тестовые вопросы.

Предназначено для выполнения самостоятельной и лабораторных работ обучающимися всех направлений подготовки (специальностей) очной и заочной форм обучения по дисциплинам, изучающим основы программирования.

Библиогр.: 4 назв. Табл. 12. Рис. 9.

Рецензенты: доктор техн. наук, профессор В. Н. Горюнов; доктор техн. наук, профессор А. А. Кузнецов.

© Омский гос. университет путей сообщения, 2021

ОГЛАВЛЕНИЕ

Введение	5
1. Общие требования к выполнению заданий	6
2. Запись чисел и арифметических выражений	8
3. Операторы ввода и вывода данных	11
4. Линейные вычислительные процессы	14
5. Создание пользовательской формы и работа с ней	17
6. Задания	23
7. Контрольные вопросы	31
8. Примеры тестовых вопросов	32
Библиографический список	35

ВВЕДЕНИЕ

Использование персональных компьютеров во всех областях человеческой деятельности определяет необходимость получения базовых знаний по вычислительной технике, в том числе по программированию. В качестве базового языка программирования в настоящем пособии используется язык Visual Basic for Applications (VBA) – достаточно простой в освоении и наиболее распространенный язык в приложениях Microsoft Office.

В пособии приведены основные формы представления чисел и правила записи арифметических выражений на VBA, операторы ввода и вывода данных, особенности алгоритмизации и программирования линейных вычислительных процессов на VBA, порядок создания простейших пользовательских форм. Рассмотрены основные этапы выполнения заданий, приведен пример графической схемы алгоритма, представлены листинги программ решения поставленных задач, контрольные и тестовые вопросы, а также большое количество индивидуальных вариантов заданий.

Библиографический список, приведенный в конце пособия, содержит литературу для углубленного изучения материала по рассматриваемой тематике.

1. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ

Работа по изучению каждой темы включает в себя одно или несколько заданий. В общем случае при их выполнении необходимо соблюдать следующие порядок и требования.

- 1. Создать рабочую книгу Excel. В свойствах файла в поле *Название* указать свои фамилию и группу, например: Иванов_40a. Сохранить рабочую книгу с поддержкой макросов с именем, указанным в табл. 1.1.
- 2. Создать в книге Excel в редакторе VBA стандартный модуль Module1 (переименовывать его не нужно). В разделе общих объявлений (в начале) модуля ввести оператор Option Explicit для запрета использования необъявленных переменных. Далее в этом модуле записывать программы всех заданий текущей работы.
 - 3. Каждое задание выполнять в следующем порядке:
 - 3.1. Записать в тетрадь условие задачи индивидуального варианта (ИВ).
- 3.2. Вручную изобразить в тетради графическую схему алгоритма (ГСА) решения задачи ИВ.
 - 3.3. В Excel-файле создать рабочий лист с именем, указанным в табл. 1.1.
- 3.4. Скопировать из соответствующей таблицы заданий строку с условием задачи ИВ и вставить ее в виде рисунка на лист Excel.
- 3.5. Составить и набрать в модуле Module1 программу решения задачи ИВ, оформив ее отдельной процедурой с именем, указанным в табл. 1.1. В программе:
 - а) выбрать рабочий лист, указанный в п. 3.3;
 - б) очистить содержимое необходимого диапазона ячеек;
 - в) данные на листе Excel разместить, начиная со строки с номером ИВ + 10;
- г) исходные данные и полученные результаты вывести с соответствующими текстовыми пояснениями;
- д) числовые результаты вывести в формате контрольных значений, указанных в условии задачи ИВ;
- е) при цветовом оформлении вывода данных на лист Excel оттенок заданного базового цвета в модели RGB установить равным 200 + ИВ;
- ж) для каждого оператора предусмотреть комментарии, поясняющие выполняемые действия.
- 3.6. Запустить программу на исполнение, получить результаты и сверить их с заданными контрольными значениями. При необходимости доработать и отладить программу.
 - 3.7. Записать отлаженную программу в тетрадь.

Требования к именам объектов

	Объект	Структура имени	Пояснения	Примеры
	Файл (рабочая книга	Фамилия_NN_Вид работы N.xlsm	Фамилия — фамилия студента; NN — порядковый номер занятия в семестре;	Иванов_08_лаб 6.xlsm Иванов_10_КСР 3.xlsm
	Excel)		Вид работы — лабораторная работа (лаб) или контроль самостоятельной работы (КСР);	
			N – номер занятия по виду работы	
	Рабочий лист Excel	Фамилия_Тема_зN_вN	<i>Тема</i> – краткое обозначение темы задания;	Иванов_Лин_31_в5
1			3N – номер задания в работе;	
			eN — номер варианта выполняемого задания	
	Процедура	Фамилия_Тема_зN_вN	Аналогично рабочему листу Excel	Иванов_Лин_31_в5
		Фамилия_Тема_зN_вN_способN	Выполнение задания <i>способом N</i> (при наличии нескольких способов решения задачи)	Иванов_Лин_31_в5_способ1

 Π р и м е ч а н и е. Номера заданий (3N) должны строго соответствовать их порядковым номерам в перечне заданий на текущую работу.

2. ЗАПИСЬ ЧИСЕЛ И АРИФМЕТИЧЕСКИХ ВЫРАЖЕНИЙ

Язык VBA позволяет обрабатывать числа двух типов: целые и вещественные. Целые числа записывают в программе обычным образом, например: 5, –20. Для записи вещественных чисел на VBA применяются два формата:

основная (естественная) форма записи с фиксированной точкой. Запись числа с фиксированной точкой совпадает со стандартной математической записью десятичного числа, за исключением того, что в качестве разделителя целой и дробной частей используется точка. Знак плюс и нулевую целую часть можно опустить, например: 5.38, .874, 0.012, -973.6;

экспоненциальная (показательная, нормализованная, константа с порядком) форма записи числа с плавающей точкой в виде:

$$mEp$$
,

где m — мантисса (число с фиксированной точкой);

E – основание показательной функции (число 10);

p — порядок (показатель степени числа 10).

Указанную формулу математически можно интерпретировать как $m \cdot 10^p$.

Мантисса m и порядок p могут быть как отрицательными, так и положительными числами.

В нормализованной научной записи порядок p выбирается такой, чтобы абсолютная величина мантиссы оставалась не меньше единицы, но строго меньше десяти, т. е. $1 \le |m| < 10$. В таком виде представляет мантиссу и Excel.

В инженерной практике, математике и информатике мантисса обычно выбирается в пределах $0,1<|m|\leq 1$.

В VBA допускается записывать мантиссу в любой из указанных форм.

Число в экспоненциальной форме записывается без пробелов, знак «+» и незначащие нули можно опускать, мантиссу опускать нельзя. Экспоненциальную форму применяют при записи в программе очень больших или очень малых чисел. Аналогично подобные значения, полученные в результате работы программы, VBA отображает также в экспоненциальном представлении.

Примеры преобразования чисел из обычного математического вида в экспоненциальный формат:

$$10000000 \rightarrow 1 \cdot 10^{7} \rightarrow 1E + 07;$$

$$0,000041 \rightarrow 4,1 \cdot 10^{-5} \rightarrow 4.1E - 05;$$

$$-230000000 \rightarrow -2,3 \cdot 10^{8} \rightarrow -2.3E + 08;$$

$$-0,000008 \rightarrow -8 \cdot 10^{-6} \rightarrow -8E - 06.$$

Примеры преобразования чисел, записанных в экспоненциальном формате, в обычный математический вид:

$$5.26E+09 \rightarrow 5,26\cdot10^{9} \rightarrow 52600000000;$$

 $3.4 E-09 \rightarrow 3,4\cdot10^{-9} \rightarrow 0,00000000034;$
 $-1.3+05 \rightarrow -1.3\cdot10^{5} \rightarrow -130000;$
 $-7E-08 \rightarrow -7\cdot10^{-8} \rightarrow -0,00000007.$

В арифметических выражениях могут присутствовать константы, переменные, функции и знаки арифметических операций, перечень которых представлен в табл. 2.1.

Таблица 2.1 Арифметические операции VBA

Наименование операции	Обозначение	Синтаксис	Описание
Сложение	+	A + B	Сложение А и В
Вычитание	_	A – B	Вычитание В из А
Умножение	*	A * B	Умножение А на В
Деление	/	A/B	Деление А на В
Возведение в степень	۸	A ^ B	Возведение А в степень В
Целочисленное деление	1	A\B	Деление А на В, дробная часть результата отбрасывается, число не округляется, например: $7 \setminus 2 = 3$
Остаток от деления целых чисел А на В	Mod	A Mod B	Остаток от деления A на B; результат — целое число, например: 5 Mod 3 = 2

Основные встроенные математические функции VBA представлены в табл. 2.2. Для вызова встроенной функции необходимо указать ее имя (идентификатор) и аргументы, заключенные в круглые скобки: Имя_функции(Аргументы). В качестве аргументов функции могут выступать константы, переменные, арифметические выражения, другие функции. Запись функций, отсутствующих в числе встроенных, осуществляют с помощью имеющихся встроенных функций, используя известные математические соотношения (см. табл. 2.2).

Таблица 2.2 Запись математических функций на VBA

Наименование функции	Математическая запись	Запись на VBA
Основны	ые встроенные функции VB	4
Абсолютное значение	x	Abs(x)
Арктангенс	arctg x	Atn(x)
Корень квадратный	\sqrt{x}	Sqr(x)
Косинус	$\cos x$	Cos(x)
Натуральный логарифм	$\ln x$	Log(x)
Показательная функция (экспонента)	e^x	Exp(x)
Синус	$\sin x$	Sin(x)
Тангенс	tg x	Tan(x)
Целая часть числа	_	Fix(x)
Запись других функ	сций с использованием мате	гматических
соотношен	ий и встроенных функций	VBA
Арксинус	$\arcsin x = \arctan\left(\frac{x}{\sqrt{1 - x^2}}\right)$	$Atn(x/Sqr(1-x^2))$
Арккосинус	$\arccos x = \arctan\left(\frac{\sqrt{1-x^2}}{x}\right)$	$Atn(Sqr(1-x^2) / x)$
Корень <i>n</i> -й степени	$\sqrt[n]{x} = x^{1/n}$	x ^ (1/n)
Логарифм по основанию <i>а</i>	$\log_a x = \frac{\ln x}{\ln a}$	Log(x) / Log(a)
Десятичный логарифм	$\lg x = \frac{\ln x}{\ln 10}$	Log(x) / Log(10)

Приоритет выполнения операций в арифметическом выражении:

- 1) вычисление значения функции;
- 2) возведение в степень;
- 3) умножение и деление;
- 4) целочисленное деление;
- 5) остаток от деления;
- б) сложение и вычитание.

Для изменения порядка действий применяются круглые скобки. Операции одного приоритета выполняются последовательно слева направо. Выражение

записывается в одну строку, при этом нельзя опускать знак умножения или ставить подряд два знака операций. Если числитель или знаменатель дроби содержит сумму, разность или произведение, то их следует заключать в скобки.

Примеры записи арифметических выражений на VBA приведены в табл. 2.3.

Таблица 2.3 Примеры записи арифметических выражений на языке VBA

Математическая запись	Запись на VBA	
$z = \sin^2 x^3$	$z = Sin(x ^3) ^2$	
$z = \frac{\arctan^3 x + 4}{\lg^2 x} - \sqrt[4]{y}$	$z = (Atn(x) ^3 + 4) / (Log(x) / Log(10)) ^2 - y ^(1 / 4)$	
$z = \sin\sqrt{x} + \frac{e^{3x-4}}{5\lg x}$	z = Sin(Sqr(x)) + Exp(3 * x - 4) / 5 / Tan(x) или $z = Sin(Sqr(x)) + Exp(3 * x - 4) / (5 * Tan(x))$	

3. ОПЕРАТОРЫ ВВОДА И ВЫВОДА ДАННЫХ

В VBA ввод данных можно осуществлять разными способами:

- непосредственно в тексте программы;
- в диалоговом окне во время выполнения программы;
- из ячеек листа Excel.

Перечисленные способы ввода данных и соответствующие примеры приведены в табл. 3.1.

Вывод информации также можно выполнить несколькими способами:

- в диалоговое окно;
- в ячейки листа Excel;
- в окно отладки *Immediate*.

Особенности реализации этих способов и соответствующие примеры приведены в табл. 3.2. Для вывода числового значения в заданном формате в диалоговое окно или в окно отладки служит функция Format с указанием требуемого количества десятичных знаков. Для установки заданного числового формата в ячейке листа Excel используется свойство NumberFormat.

Ввод и вывод данных также можно осуществлять с помощью пользовательской формы (см. разд. 5).

Способы ввода данных

Способ вво,	да данных	Формат записи	Примеры
Присваива-	константа	Const Имя As Tun =Значение	Const x As Single = 25
ние значения	переменная	[Let] Имя_переменной = Выражение	Let $x = 25$ или $x = 25$
Генерировани случайного чис в диапазоне [М	сла	x = Fix(Rnd * (Max - Min + 1) + Min)	'Генерирование числа x в диапазоне '[-20; +20]: x = Fix(Rnd * 41 - 20)
Ввод данных	в диалоговое	Числовая переменная: Имя_переменной = Val(InputBox("Сообщение"))	x = Val(InputBox("Введите значение x"))
окно		Строковая переменная: <i>Имя_переменной</i> = InputBox("Сообщение")	t = InputBox("Введите текст")
Ввод данных рабочего листа		U мя_переменной = Cells(i, j), где i, j — порядковые номера строки и столбца, на пересечении которых находится ячейка рабочего листа Excel	'Ввод из ячейки В1:
Ввод данных из текстового поля (<i>TextBox</i>) на пользовательской форме		Числовая переменная: <i>Имя_переменной</i> = Val(<i>Имя_TextBox</i> .Text)	x = Val(Число_x.Text)
		Строковая переменная: $Имя_переменной = Имя_TextBox$. Text	fam = Фамилия.Text

Способ вы	вода данных	Формат записи	Примеры
В диалогов	ое окно	MsgBox "Пояснение" & Результат	МsgВох "Значение массы =" & m
В ячейки рабочего листа Excel		$Cells(\mathbf{i},\mathbf{j}) = "Текст"$ $Cells(\mathbf{i},\mathbf{j}) = \mathit{Имя}_\mathit{nеременной}$	'Вывод в ячейку A2 текста "x=": Cells(2, 1) = "x=" 'Вывод в ячейку B2 текущего значения x: Cells(2, 2) = x
В окно отла Immediate	адки	Debug.Print [Выводной список]	Debug.Print "Результат у="; у
	текст в Label	Имя_надписи.Caption = "Текст"	Имя . Caption = "Иванов И.И."
на пользо-	значение переменной в <i>Label</i>	U мя_надписи. Caption = U мя_переменной	Число_x.Caption = x
форму	значение переменной в <i>TextBox</i>	U мя_ T ext B ox. T ext = U мя_ n еременной	Число_x.Text = x
		Цветовое оформление ячеек на л	ucme Excel
Установка цвета шрифта в ячейке		Cells(i, j).Font.Color = RGB(r, g, b), где r , g , b — интенсивность (целое число в диапазоне от 0 до 255) соответственно красного, зеленого и синего цвета	'Синий цвет шрифта в ячейке A1: Cells(1, 1).Font.Color = RGB(0, 0, 250)
Установка цвета фона (заливки) в ячейке		$\label{eq:cells} \textbf{Cells}(i,j). \textbf{Interior.Color} = \textbf{RGB}(r,g,b)$	'Заливка ячейки А1 красным цветом: Cells(1, 1).Interior.Color = RGB(222, 0, 0)

4. ЛИНЕЙНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ ПРОЦЕССЫ

Наиболее простыми для выполнения являются программы, реализующие алгоритм линейного вычислительного процесса. В этом случае программа обычно содержит операторы ввода данных, расчета значений и вывода полученных результатов. Операторы записываются последовательно друг за другом в естественном порядке их следования и выполняются только один раз.

Пример 1. Составить ГСА и вычислить значение функции R для задания из табл. 4.1.

Таблица 4.1 Задание для примера 1

Ва- ри- ант	Условие задачи	Исход- ные данные	Промежуточные значения и результат R
вN	Определить R — среднее геометрическое чисел A , B , C : $A = \frac{e^{3x} - \sin^2 k}{x \cdot h - k }; B = \sqrt[3]{\arctan x^3 + 2}; C = \lg^2 (7x + h^{-3})$	x = 0.45 k = 16.7 h = 0.23	A = 0.43 B = 1.28 C = 3.73 R = 1.27

ГСА решения примера 1 с описанием выполняемых действий приведена на рис. 4.1. Она включает в себя блоки для ввода исходных данных, вычисления и вывода значений A, B, C и искомого значения функции R.

В соответствии с ГСА составим программу расчета. Для освоения различных способов ввода данных в программе зададим значение x константой, остальные исходные данные введем разными способами: одну переменную – с листа Excel, другую – с помощью функции InputBox.

Выведем результаты работы разными способами:

- 1) на лист Excel в отдельных ячейках промежуточные значения, рассчитанные по заданным формулам, и соответствующие поясняющие комментарии;
 - 2) в диалоговое окно результат вычисления R;
- 3) в окно отладки Immediate в трех отдельных строках исходные данные, промежуточные значения и результат R;
- 4) выделим одну ячейку с поясняющим комментарием шрифтом красного цвета RGB(200 + ИВ, 0, 0), а ячейку с промежуточным значением заливкой зеленым цветом RGB(0, 200 + ИВ, 0).

Листинг программы решения примера 1 с подробными комментариями приведен на рис. 4.2, результат ее работы — на рис. 4.3, 4.4. Сравнение полученных результатов с указанными в задании контрольными значениями позволяет сделать вывод о том, что задача решена верно.

Рис. 4.1. ГСА решения примера 1

Для удобства чтения программы длинные программные инструкции рекомендуется записывать в несколько строк. Для этого в месте логического разделения оператора ставятся пробел и знак подчеркивания (см. рис. 4.2), указывающий на продолжение инструкции в следующей строке.

```
' Запрет использования необъявленных переменных
Option Explicit
Sub Фамилия Лин зN вN ()
                                               ' Начало процедуры
  Worksheets("Фамилия_Лин_зN_вN").Select
                                              ' Выбор листа Excel
                                               ' Очистка строк с 10 по 25
  Range("10:25").Clear

    Объявление переменных:

  Dim k As Single, h As Single
  Dim A As Single, B As Single, C As Single, R As Single
  Const x As Single = 0.45
                                               ' Объявление константы х
                                               'Ввод значения k с листа Excel из ячейки В9
  k = Cells(9, 2)
  h = Val(InputBox("Введите h"))
                                               ' Ввод значения h в диалоговое окно

    Вывод поясняющего текста в ячейки листа Excel:

  Cells(10, 1) = "Промежуточные значения:"
  Cells(11, 1) = "A =" : Cells(12, 1) = "B =" : Cells(13, 1) = "C ="
  Cells(11, 1).Font.Color = RGB(200, 0, 0)
                                                'Красный цвет шрифта в ячейке А11
  Cells(12, 2).Interior.Color = RGB(0, 200, 0)
                                                'Заливка ячейки В12 зеленым цветом

    Расчет промежуточных значений:

  A = (Exp(3 * x) - Sin(k) ^ 2) / x / Abs(h - k)
  B = (Atn(x^3) + 2)^(1/3)
  C = (Log(7 * x + h ^ (-3)) / Log(10)) ^ 2
  Cells(11, 2). NumberFormat = "0.00"
                                        'Установка числового формата в ячейках листа Excel
  Cells(12, 2). NumberFormat = "0.00"
  Cells(13, 2).NumberFormat = "0.00"

    Вывод промежуточных значений на лист Excel:

  Cells(11, 2) = A: Cells(12, 2) = B: Cells(13, 2) = C
  R = (A * B * C) ^ (1/3)
                                                 'Расчет результата R
  MsgBox "R = " & Format(R, "0.00")
                                                 'Вывод значения R в диалоговое окно
  Вывод исходных данных и результатов расчета в окно отладки:
                                                                            Символ переноса
  Debug.Print "Исходные данные: "; "x ="; x, "k ="; k, "h ="; h
                                                                            программной строки
  Debug.Print "Промежуточные значения: "; "A = "; Format(A, "0.00"), _____
               "B = "; Format(B, "0.00"), "C = "; Format(C, "0.00")
  Debug.Print "Среднее геометрическое чисел A, B, C: R = "; Format(R, "0.00")
End Sub
```

Рис. 4.2. Листинг программы решения примера 1

Рис. 4.3. Результат решения примера 1 на листе Excel

Рис. 4.4. Результат решения примера 1 в окне отладки

5. СОЗДАНИЕ ПОЛЬЗОВАТЕЛЬСКОЙ ФОРМЫ И РАБОТА С НЕЙ

Разработка пользовательского интерфейса заключается в создании *пользовательской формы* и наполнении ее элементами управления (ЭУ), которые выбираются на панели инструментов *Toolbox*. Основными элементами управления являются следующие.

- 1. *Label* (надпись, метка) область, в которой отображается заданный текст, например, какое-либо пояснение, приглашение для ввода данных и т. п.
- 2. *TextBox* (текстовое поле) применяется для приема данных, вводимых пользователем, и для вывода информации.
- 3. CommandButton (командная кнопка) применяется для запуска процедур и макросов.

Для изменения последовательности автоматического перехода по объектам на форме нужно щелчком правой кнопки мыши на свободном месте формы вызвать контекстное меню, выбрать в нем опцию *Tab Order*, а затем с помощью кнопок *MoveUp* или *MoveDown* переместить требуемый объект выше или ниже по списку.

Рассмотрим создание формы на конкретном примере.

Пример 2. Создать пользовательскую форму для ввода и обработки персональных данных обучающегося.

Этап 1. Создадим пользовательскую форму, выполнив следующие действия.

- 1. Откроем редактор VBA и с помощью команды *Insert* → *UserForm* создадим новую форму.
 - 2. В качестве имени формы (Name) укажем фамилию обучающегося.
- 3. В качестве заголовка формы (*Caption*) укажем фамилию, инициалы и индекс группы обучающегося в виде «Фамилия И.О., гр. 99х».
 - 4. Изменим серый цвет фона формы на любой другой светлый цвет.
- 5. Изменим размер формы, установив следующие значения свойств (VBA может скорректировать установленные размеры в рамках существующих в нем ограничений):

```
высота (Height) = 300 + \text{ИВ},
ширина (Width) = 400 + \text{ИВ},
```

где ИВ – номер индивидуального варианта обучающегося.

- 6. Создадим на форме элементы управления (рис. 5.1), каждому из которых присвоим информативное имя в соответствии с табл. 5.1:
- 1) в правом верхнем углу формы разместим надпись, в которую с помощью свойства *Picture* вставим рисунок из любого графического файла;
- 2) в левой части формы создадим четыре надписи, заголовки которых являются приглашениями для ввода фамилии, имени, отчества и индекса группы;
- 3) справа от каждой надписи создадим текстовые поля для ввода соответствующих данных (поля должны быть пустыми);
- 4) под рисунком разместим командные кнопки *«Запуск»* и *«Выход»*, изменим тип и размер шрифта заголовка кнопки *«Запуск»* с помощью свойства *Font*, а цвет шрифта с помощью свойства *ForeColor*.

Рис. 5.1. Вид окна дизайнера формы на первом этапе работы

 $\label{eq:Table} {\rm Tabuu\,u\,a\,\,5.1}$ Имена элементов управления на форме

Элемент управления	Имя (<i>Name</i>)
	, ,
Надпись (Label1)	Н_ФИО_Рисунок
Надпись (Label2)	Н_ФИО_Фамилия
Надпись (Label3)	Н_ФИО_Имя
Надпись (Label4)	Н_ФИО_Отчество
Надпись (Label5)	Н_ФИО_Группа
Текстовое поле (TextBox1)	Т_ФИО_Ввод_фамилии
Текстовое поле (TextBox2)	Т_ФИО_Ввод_имени
Текстовое поле (TextBox3)	Т_ФИО_Ввод_отчества
Текстовое поле (TextBox4)	Т_ФИО_Ввод_группы
Командная кнопка (CommandButton1)	К_ФИО_Запуск
Командная кнопка (CommandButton2)	К_ФИО_Выход

Примечание. Сокращение ФИО соответствует первым буквам фамилии, имени, отчества, например, для Иванова Петра Сергеевича – ИПС.

7. Нажав клавишу F5 или выполнив команду *Run Sub/UserForm*, запустим форму на выполнение. Убедимся в том, что курсор находится в поле для ввода фамилии, а по нажатию клавиши Enter происходит последовательный переход по объектам строго в следующем порядке: Т_ФИО_Ввод_фамилии → Т_ФИО_Ввод_имени → Т_ФИО_Ввод_отчества → Т_ФИО_Ввод_группы → К_ФИО_Запуск. В противном случае изменим последовательность автоматического перехода по объектам в режиме *Tab Order*, как показано на рис. 5.2 (при этом для удобства все надписи целесообразно собрать в начале списка, поскольку они выводятся на форму одновременно сразу при ее загрузке).

Рис. 5.2. Вид окна *Tab Order*

- **Этап 2.** Для вывода результатов обработки персональных данных дополнительно к имеющимся на форме объектам разместим в ее левом нижнем углу следующие элементы управления (рис. 5.3):
- 1) надпись с именем H_ФИО и заголовком *«Длина ФИО»*. В свойстве *ControlTipText* этой надписи укажем фамилию обучающегося;
- 2) справа от надписи с именем H_ФИО текстовое поле с именем T_ФИО для вывода результата вычисления суммы длин фамилии, имени и отчества (поле должно быть пустым);
- 3) надпись с именем H_ФИО_Сообщение для вывода текстового сообщения (надпись должна быть пустой);
 - 4) командную кнопку с именем К ФИО Очистка и заголовком «Очистка»;
 - 5) изменим заголовок кнопки «Запуск» на фамилию обучающегося.

Рис. 5.3. Вид окна дизайнера формы на втором этапе работы

Этап 3. Нажав клавишу F7, перейдем в редактор программного кода и составим процедуры обработки нажатия командных кнопок (листинг программы приведен на рис. 5.4):

- 1) для кнопки *«Выход»* запрограммируем конец работы;
- 2) для кнопки «Очистка» запрограммируем очистку всех необходимых полей на форме;
- 3) для кнопки *«Фамилия»* запрограммируем вычисление и вывод на форму суммы длин фамилии, имени и отчества и текстового сообщения *«Студент гр. 99х И.О. Фамилия»*.

Этап 4. Запустим форму на выполнение, введем произвольные персональные данные (например, Иванов Петр Сергеевич) и последовательно проверим работу каждой кнопки. Результат работы программы по нажатию на кнопку «Фамилия» представлен на рис. 5.5.

По завершении работы сохраним файл с поддержкой макросов.

```
Option Explicit
                             Запрет использования необъявленных переменных
Private Sub K_ФИО_Выход_Click()
                                    'Процедура для кнопки "Выход"
                                    'Конец работы
  End
End Sub
Private Sub K_ΦИО_Очистка_Click()
                                   'Процедура для кнопки "Очистка"
  Т_ФИО_Ввод_фамилии = " "
                                    ' Очистка поля Т_ФИО_Ввод_фамилии
  Т_ФИО_Ввод_имени = " "
                                    'Очистка поля Т ФИО Ввод имени
  Т_ФИО_Ввод_отчества = " "
                                    'Очистка поля Т_ ФИО_Ввод_отчества
  Т ФИО Ввод группы = ""
                                    'Очистка поля Т_ ФИО_Ввод_группы
  " " = ONO T
                                    'Очистка поля Т ФИО
  Н_ФИО_Сообщение = " "
                                    'Очистка надписи Н_ ФИО_Сообщение
  'Установка курсора в поле Т_ ФИО_Ввод_фамилии:
  T_ФИО_Ввод_фамилии.SetFocus
End Sub
                                    'Процедура для кнопки "Фамилия"
Private Sub K_ΦИO_3anycκ_Click()
  Вычисление и вывод на форму суммы длин фамилии, имени и отчества:
  T_\Phi MO = Len(T_\Phi MO_B вод_фамилии) + Len(T_\Phi MO_B вод_имени) + _
          Len(T_ФИО_Ввод_отчества)
  'Формирование и вывод на форму текстового сообщения:
  Н_ФИО_Сообщение = "Студент гр. " & Т_ФИО_Ввод_группы & " " & _
                 Left(T_ФИО_Ввод_имени, 1) & "." & _
                 Left(T_ФИО_Ввод_отчества, 1) & ". " & _
                 Т_ФИО_Ввод фамилии
  'Установка курсора на кнопку К_ФИО_Очистка:
  К_ФИО_Очистка.SetFocus
End Sub
```

Рис. 5.4. Листинг программного кода обработки нажатия кнопок на форме

Рис. 5.5. Вид окна результата работы формы после нажатия кнопки «Фамилия»

6. ЗАДАНИЯ

Задание 1. В соответствии с индивидуальным вариантом (табл. 6.1) преобразовать числа (письменно в лабораторной тетради):

- из математического вида в экспоненциальный формат;
- из экспоненциального формата в математический вид.

Таблица 6.1 Индивидуальные варианты для задания 1

Вариант	Математический вид	Экспоненциальный формат
1	2	3
	1000000 →	2.45E+03 →
0	$0,0000023 \rightarrow \dots$	7E–04 →
	−710000 →	-3.065E+05 →
	-0,0068 →	-8.26E-03 →
	-0,00001 →	4.865E+04 →
1	-80300 →	$-2.12E+06 \rightarrow \dots$
1	$0,00000077 \rightarrow \dots$	$-1.3E-05 \rightarrow \dots$
	40100 →	8E–06 →
	520000 →	-1.9E-05 →
2	$-0,00032 \rightarrow \dots$	-2.056E+03 →
2	-860000 →	1.6E–04 →
	$0,00000006 \rightarrow \dots$	5.27E+05 →
	$0,00795 \rightarrow \dots$	1.417E+03 →
3	-5400000→	6.3E–04 →
3	18000 →	$-2.703E+06 \rightarrow \dots$
	$-0,000019 \to \dots$	$-1.65E-05 \rightarrow \dots$

Продолжение табл. 6.1

1	2	3
	0,000057 →	-1.43E+04 →
4	-4520,3→	2.88E+05 →
4	-0,00024 →	$-7.2E-06 \rightarrow \dots$
	3210000 →	$4.134E-03 \rightarrow \dots$
	-16700000 →	-6.92E+06 →
5	$0,0000003 \rightarrow \dots$	$6.412E+05 \rightarrow \dots$
3	78900→	7.5E–03 →
	-0,0048 →	-9E-05 →
	-0,00008 →	9.5E–04 →
6	–7050→	$-3.33E-06 \rightarrow \dots$
O	3280000 →	-8.9E+03 →
	0,0002 →	$6.54E+03 \rightarrow \dots$
	-0,0000092 →	8.7E–05 →
7	$0,0036 \rightarrow \dots$	-3.7E+07 →
/	-510046→	4.3E+04 →
	52000,7 →	$-1.4E-05 \rightarrow \dots$
	-63042,1→	7.1E+06 →
8	-0,00000004 →	$-2.65E-04 \rightarrow \dots$
O	37000 →	4E–03 →
	0,000055 →	-5.27E+05 →
	81000000 →	$8.22E-05 \rightarrow \dots$
9	0,00225 →	$1.45E+04 \rightarrow \dots$
	-206400→	$-3.9E-06 \rightarrow \dots$
	-0,00000065 →	-5.14E+05 →
	-0,000000812 →	-5.8E-04 →
10	560000 →	-4.98E+03 →
10	0,000031 →	7.3E–04 →
	-64498,8→	2.15E+06 →
	$0,0000091 \to \dots$	9.2E+04 →
11	-96530 →	-6.9E-03 →
11	-0,00043 →	$-2.18E+06 \rightarrow \dots$
	702000 →	3.14E–04 →
	-0,00082 →	$-1.8E+06 \rightarrow \dots$
12	$0,00000035 \rightarrow \dots$	$8.29E-05 \rightarrow \dots$
12	-847000,8 →	$4.75E+05 \rightarrow \dots$
	6400000 →	-2.83E-06 →
	-45200 →	$-7.54E+06 \rightarrow \dots$
13	90010 →	2.17E+03 →
13	-0,0000029 →	3.6E–05 →
	$0,00874 \rightarrow \dots$	-5.2E-04 →

Окончание табл. 6.1

1	2	3
	0,00000027 →	9E–06 →
1.4	600220 →	-6.4E-04 →
14	$-0.000781 \rightarrow \dots$	-4.6E+05 →
	-67500 →	8.77E+03 →
	$-0.00495 \rightarrow \dots$	-7.63E-03 →
15	$0,000009 \rightarrow \dots$	$-3.22E+06 \rightarrow \dots$
13	-8555,21 →	$1.24E-05 \rightarrow \dots$
	872100 →	9.2E+04 →
	$0,000158 \rightarrow \dots$	2.2E–05 →
16	–2400 →	-8.61E+04 →
10	-0,00000088 →	1.777E+03 →
	747000,7→	-5.7E-06 →
	-0,0022 →	–7.99E+05 →
17	–78000,3→	$3.34E-04 \rightarrow \dots$
1 /	6920000 →	7E+06 →
	0,000099 →	-6.2E-03 →
	33000 →	3.1E+06 →
18	-0,00001 →	3E–03 →
10	–77665 →	-2.1E+04 →
	$0,0000044 \rightarrow \dots$	-8.578E-05 →

Задание 2. В соответствии с индивидуальным вариантом (табл. 6.2) записать на языке VBA арифметические выражения (письменно в лабораторной тетради).

Таблица 6.2 Индивидуальные варианты для задания 2

Вариант	Арифметические выражения	Вариант	Арифметические выражения
1	2	3	4
0	$y = 5x^{2} - e^{4} \sin x^{2},$ $z = \frac{\arctan^{4} x}{5 + \lg^{2} x} - \sqrt[3]{x}$	10	$y = \sqrt{ \ln^3 x } + e^{3x-2},$ $z = \sqrt[3]{\frac{4 + \sin^2 x}{7x}} - \lg x^2$
1	$y = \ln 5 - x - e^{\cos x},$ $z = \frac{1 + \sin^3 x}{5x^2} - \sqrt[4]{\operatorname{tg} x}$	11	$y = \sin^2 x^4 - \left \sqrt{5 - x} \right ,$ $z = \ln x^3 - \frac{e^2 - \sqrt[3]{x}}{3 \lg x}$

Окончание табл. 6.2

1	2	3	4
2	$y = \operatorname{arctg} x^{2} + \ln x^{3} ,$ $z = \frac{\sqrt[3]{\sin x}}{x - e^{x}} + \operatorname{tg}^{2} x^{5}$	12	$y = \arctan \sqrt{x} + \cos^3 x^2,$ $z = \frac{e^x}{\sin x - \lg x} + \sqrt[3]{ 4x }$
3	$y = \sqrt[5]{\cos^2 x} + \lg x,$ $z = \lg \sqrt{x} + \frac{e^{2x-3}}{2\sin x}$	13	$y = \sqrt{\lg x^2} + e^{4x},$ $z = \sqrt[3]{ \cos x } + \frac{\sin^3 x}{2x^2}$
4	$y = \sqrt{\left \operatorname{arctg} x^{4}\right } - \lg x^{2},$ $z = \frac{e^{x} - 5}{3\sqrt[4]{x}} - \cos^{2} x^{3}$	14	$y = \lg x - \sqrt[5]{\lg^3 x},$ $z = \frac{\sqrt{x} + 4}{3e^x} - \ln x^3 $
5	$y = \lg^{2} x + \sqrt[3]{\lg x + 4},$ $z = \sqrt{\frac{8 + e^{3x}}{3\sin^{3} x}} + 7 x $	15	$y = \sqrt{\lg x - \cos^3 x },$ $z = \frac{\sqrt[3]{\ln^2 x^3 + 4x}}{e^{2x} - 5}$
6	$y = \sqrt[3]{ tgx } + \sin^3 x,$ $z = \frac{e^{3+x}}{4\cos x} + \arctan \sqrt{x^5}$	16	$y = 3\cos x^{4} + \lg x^{3},$ $z = \frac{\lg x - e^{x+2}}{2\ln x} - \sqrt[5]{x^{2}}$
7	$y = \left \operatorname{tg} \sqrt{x} + \sqrt[5]{x^2} \right - e^{-3x},$ $z = \frac{25 - \operatorname{arctg}^2 x}{x^3 \ln x} - \lg x$	17	$y = \operatorname{arctg}^{2} \ln x + \sqrt{\lg x},$ $z = \sqrt[3]{\frac{7 - \ln x}{5 \operatorname{tg}^{4} x}} - \left 2 - e^{3x} \right $
8	$y = \lg^3 x - \sqrt{ \lg x },$ $z = \sqrt[4]{\frac{\sin^3 x^2}{2x}} + e^{2x}$	18	$y = \sqrt{\left \sin^3 x\right + \lg x},$ $z = \frac{e^{x+4} + 8}{9\sqrt[4]{x}} - \ln x$
9	$y = \cos\left x^{3}\right - \sqrt{e^{5-x}},$ $y = \sqrt[4]{\arctan^{3}x} - \frac{\lg x^{2} + 7}{3\ln x}$	19	$y = 6x^3 - e^2 \cos x^4,$ $z = \frac{\arctan 3x}{7x + \lg^3 x} - \sqrt[5]{x}$

Задание 3. В соответствии с индивидуальным вариантом (табл. 6.3) перевести на общепринятый математический язык арифметические выражения, записанные на языке VBA (письменно в лабораторной тетради).

Таблица 6.3 Индивидуальные варианты для задания 3

Вариант	Арифметические выражения на языке VBA	
1	2	
0	$y = x + (Abs(Tan(x) ^2)) ^(1/3)$ z = Log(Sqr(x)) / 3 / Exp(2 * x) + Sin(x)	
1	$y = 7 * x + Log(Sqr(x ^ 3))$ $z = Log(x ^ 4) / Log(10) / 5 / Cos(x) ^ 2 - 4$	
2	y = Sqr(Abs(x - 2)) + Exp(-3) $z = (Log(x ^ 3) / Log(10)) ^ 2 - 1 / 5 / Sqr(x)$	
3	$y = Exp(x - 2) - Abs(Atn(x ^ 3))$ $z = Log(Abs(3 * x ^ (-4))) / (5 - SIN(x) ^ 3) - 5$	
4	$y = (x * Tan(x ^4) ^2) ^(1/4) + 5$ $z = (6 + Sin(x) ^2) / Exp(x + 4) - Log(Abs(x))$	
5	$y = Sqr(Log(x ^2)) + Cos(4 * x) ^3$ $z = Exp(2 * x) / (2 - Sin(x)) + Atn(Sqr(x))$	
6	$y = Cos(x) ^3 - Log(2 * x) / Log(10)$ $z = (3 * x - Sin(2 * x)) / 4 / Log(x) ^2 + 5$	
7	$y = Atn(x) ^4 + (Log(x) / Log(10)) ^3$ $z = Sqr(x + Cos(x) ^2) / 3 / Exp(x - 1) + 2$	
8	$y = (\text{Log}(2 * x) / \text{Log}(10)) ^ 3 - \text{Sqr}(x ^ 4 + 1)$ $z = \text{Sqr}(3 + \text{Abs}(\text{Sin}(x))) / \text{Atn}(x ^ 2) + 4 * x$	
9	$y = (x + Abs(Cos(x) ^2)) ^(1/3)$ z = Log(Sqr(2 * x)) / 3 / Exp(4 + x) + Tan(x)	

Окончание табл. 6.3

1	2	
10	$y = (x + 4) ^ (2 / 3) + Cos(x ^ 2) ^ 3$ $z = (Log(x ^ 4) + Sqr(Cos(x) ^ 5)) / Atn(x) - x ^ 2$	
11	$y = Atn(Sqr(x ^3)) + Exp(5 * x)$ $z = (Log(Abs(x)) / Log(10)) ^2 / Cos(x ^3) ^2 + 4$	
12	$y = Log(3 * x) / Log(10) + Sqr(Cos(x) ^ 5)$ $z = Atn(x ^ 2) / 4 / (2 + Tan(x)) + 3 * Exp(2)$	
13	$y = Sqr(Exp(x)) + Abs(x + 2)$ $z = Log(x) / Log(10) / (5 + Atn(x)^4) - x^(1/3)$	
14	$y = Sin(x ^4) ^2 - Abs(x - 2) ^(1/4)$ $z = Log(12/(x ^3 + 3)) / Log(10) - Exp(2 + x)$	
15	$y = Log(Abs(4 * x ^2)) + Exp(-3)$ $z = Sqr(Abs(3 * x)) / (x - Sin(x) ^2) + 9 * x$	
16	$y = 5 * x ^2 - Exp(4) * Sin(x) ^ (1/5)$ $z = (Log(x + 3) / Log(10) + Sqr(x)) / 4 / Abs(x) - 7$	
17	$y = (\text{Log}(x) / \text{Log}(10)) ^2 + \text{Abs}(2 - \text{Exp}(3))$ $z = \text{Sqr}(\text{Sin}(2 * x) ^3 + \text{Atn}(x)) / (1 - \text{Log}(x)) + 2$	
18	$y = Atn(x ^2) ^(1/3) + Log(x + 2) / Log(10)$ $z = Sqr(x) / (3 + x) - Abs(Log(x ^3) ^2)$	

Задание 4. В соответствии с общими требованиями к выполнению заданий (см. разд. 1) и индивидуальным вариантом (табл. 6.4) составить ГСА и программу расчета значения R. Работу выполнить и оформить по образцу примера 1. Краткое обозначение темы задания 4 в именах объектов — Лин.

Таблица 6.4 Индивидуальные варианты для задания 4

Вари-	Условие задачи	Исходные данные	Промежуточ- ные значения и результат <i>R</i>
1	2	3	4
0	Определить R – среднее арифметическое чисел A , B , C : $A = \lg^{3}(5x); B = 4.7 \Big 1.3 - e^{2 \cdot x} \Big ; C = \frac{\cos^{5} y + \sqrt[3]{x}}{d \cdot \sqrt{x + 2}}$	x = 1,17 y = 27,9 d = 0,6	A = 0.45 B = 42.68 C = 0.33 R = 14.49
1	Определить R — сумму кубов чисел K , L , N : $K = \sqrt[5]{ a - e^{2x} }; L = \lg^2 x^6; N = \frac{b - \sqrt{3 + \cos^2 x}}{4 \cdot \sin^3 x}$	x = 2,1 a = 1,1 b = 5,2	K = 2,31 L = 3,74 N = 1,32 R = 66,82
2	Определить R – произведение модулей чисел D , G , K : $D = \frac{\operatorname{tg}\sqrt{3x - a} + \cos^3 x}{4 - x}; \ G = 3.7e^{\sin x} + \frac{5\sqrt{x + 5}}{h \cdot x^2};$ $K = \lg a - x $	x = 11 a = 10,3 h = 3,2	D = 2.74 G = 1.37 K = -0.15 R = 0.58
3	Определить R – среднее геометрическое чисел K , L , N : $K = \sqrt[5]{e^3 - f}; \ L = \lg \left \frac{-x^5}{\sqrt{x}} \right ; \ N = \frac{2 - \sin^3(ax)}{4 \cdot \ln x}$	x = 2,1 a = 7,3 f = 2,2	K = 1,78 L = 1,45 N = 0,66 R = 1,19
4	Определить R — среднее геометрическое чисел A, D, P : $A = \frac{j + \sqrt[3]{\lg y}}{1.5 \cdot x^2}; D = e^{\sin^2 x} + \sqrt{\arctan x^2};$ $P = \left xy^{-3} - \ln^2 y \right $	x = 3,3 y = 8,2 j = 5,1	A = 0.37 D = 2.24 P = 4.42 R = 1.54
5	Определить R – целую часть суммы чисел G , U , I : $G = \frac{\arctan^2 x}{\sqrt[3]{x} + \lg a}; \ U = \left \ln(7x^2) - 5 \right ;$ $I = q \cdot e^{\sqrt{x}} + \cos^4 x$	x = 12 a = 9.5 q = 0.3	G = 0.68 U = 1.92 I = 10.09 R = 12

Продолжение табл. 6.4

1	2	3	4
6	Определить R – среднее арифметическое чисел Z , F , Y : $Z = \frac{\lg^2 a + e^x}{5 \cdot a}; F = \sqrt[3]{5 + \sqrt{x^2 - k}};$ $Y = \ln\left \cos^2 x - 5.7\right $	x = 6,3 a = 17,1 k = 6,4	Z = 6,39 F = 2,21 Y = 1,55 R = 3,38
7	Определить R – среднее арифметическое чисел K , P , Y : $K = \frac{\sqrt[5]{\cos^3 x + \ln x}}{5 \cdot \arctan x}; P = \sqrt{t + e^{-x}};$ $Y = \lg \left -0.2x^2 - a \right $	x = 5,3 a = 2,9 t = 3,1	K = 0.16 P = 1.76 Y = 0.93 R = 0.95
8	Определить R – целую часть произведения чисел A , N : $A = \cos^3 \left(\sqrt{\sin \left -bx \right + k} \right); \ \ N = \frac{0.63 + e^{\cos^2 x}}{3 \cdot \lg x^2}$	x = 1,3 b = 15,1 k = 8,2	A = -0.96 N = 2.49 R = -2
9	Определить R – среднее геометрическое чисел W , F , C : $W = \frac{\arctan b}{d + \sqrt[3]{\lg x}}; \ F = 4.3e^{x-7b}; \ C = \sqrt{ \ln x - 5 }$	x = 10,1 b = 1,7 d = 8,9	W = 0.12 F = 0.71 C = 1.64 R = 0.52
10	Определить R — модуль разности чисел C , P : $C = \sqrt{\frac{\ln x^2 - \cos x}{t \cdot e^x}} + 0.5; P = \lg^2 x^3 + \sqrt[4]{x \sin^3 a}$	x = 11 a = 10,2 t = 2,1	C = 0.51 P = 11.15 R = 10.65
11	Определить R — сумму квадратов чисел K , M : $K = \sqrt{ 1 - \ln^2 x } + e^{x-a}; M = \sqrt[3]{\frac{b + \sin^2 x}{7 \cdot x}} - \lg x^2$	x = 3 a = 2,2 b = 3,9	K = 2,68 M = -0,38 R = 7,33
12	Определить R – квадрат разности чисел D , F : $D = \sqrt{\left \arctan x^5\right } + \lg x^3 \; ; \; F = \frac{\left h - e^x\right }{q \cdot \sqrt[4]{x}} - \cos^2 x^3$	x = 2,4 h = 5,1 q = 2,7	D = 2,39 F = 1,67 R = 0,52

Окончание табл. 6.4

1	2	3	4
13	Определить R – модуль разности квадратов чисел S , W : $S = \sqrt{\lg x + \cos^2 x} \; ; \; W = \frac{\sqrt[3]{\ln x^3 + x \cdot y}}{ d - 2 \cdot x } + e^{3 - x}$	x = 3.5 y = 3.8 d = 4.9	S = 1,19 W = 1,83 R = 1,94
14	Определить R – целую часть суммы чисел F , H : $F = \arctan^2 \ln x + \sqrt{\lg x} \; ; H = \sqrt[3]{\frac{a + \ln x}{0.2 \cdot \lg^4 x}} - \left b - e^x \right $	x = 4.8 a = 10.6 b = 40.1	F = 1.83 H = -81.26 R = -79
15	Определить R – модуль произведения чисел K , N : $K = \lg^3 x - \sqrt{ 2 - \lg x } \; ; \; N = \sqrt[4]{\frac{\sin^3 x^2 + j}{q \cdot x}} + e^{-0.5 \cdot x}$	x = 4.7	K = -8,57 N = 0,84 R = 7,23
16	Определить R — сумму кубов чисел G , P : $G = \left \cos x^{3}\right - \sqrt{e^{5-x}} \; ; \; P = \sqrt[4]{\arctan^{3} x} - \frac{\lg x^{2} + m}{b \cdot \ln x}$	x = 3,1 b = 6,9 m = 3,3	G = -2.53 P = 0.64 R = -15.96
17	Определить R – среднее арифметическое чисел Y , Z : $Y = \sin^2 x^4 - \sqrt{ x-w }, \ Z = \ln x^3 - \frac{e^2 - \sqrt[3]{x}}{n \cdot \lg x}$	x = 4.5 w = 5.1 n = 2.2	Y = 0.22 Z = 3.95 R = 2.08
18	Определить R – модуль разности чисел N , S : $N = \arctan \sqrt{x} + \cos^3 x^2, \ S = \frac{\lg x + e^x}{k \cdot \sin x} + \sqrt[3]{b \cdot x}$	x = 1,4 k = 1,5 b = 2,9	N = 0.81 S = 4.44 R = 3.62

Задание 5. Создать пользовательскую форму для ввода и обработки своих персональных данных. Работу выполнить и оформить по образцу примера 2.

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1) Какие форматы используются для записи вещественных чисел?
- 2) Перечислите арифметические операции VBA.

- 3) Какими способами можно осуществить ввод данных в программу?
- 4) Как программно установить цвет шрифта на листе Excel?
- 5) Как программно установить цвет заливки на листе Excel?
- 6) Какие операторы могут использоваться в программах, реализующих алгоритм линейного вычислительного процесса?
 - 7) В каком порядке выполняются операции в арифметическом выражении?
 - 8) Какие элементы управления можно создать на пользовательской форме?
- 9) Как на пользовательской форме изменить последовательность автоматического перехода по объектам?

8. ПРИМЕРЫ ТЕСТОВЫХ ВОПРОСОВ

Вопрос № 1 (один верный ответ)

В результате выполнения команды $X = Cells(1, 2) \dots$

Варианты ответов:

- 1) переменной X будет присвоено значение из ячейки В1 на листе Excel;
- 2) переменной X будет присвоено значение из ячейки A2 на листе Excel;
- 3) на лист Excel в ячейку B1 будет выведено значение переменной X;
- 4) такой команды в VBA не существует.

Вопрос № 2 (несколько верных ответов)

Какие команды применяются для вывода данных в VBA?

Варианты ответов:

- 1) MsgBox;
- 2) Cells;
- 3) Debug.Print;
- 4) Range;
- 5) InputBox.

Вопрос № 3 (несколько верных ответов)

Какие команды применяются для ввода данных в VBA?

Варианты ответов:

- 1) Dim;
- 2) Cells;
- 3) Debug.Print;
- 4) Fix;
- 5) InputBox.

Вопрос № 4 (несколько верных ответов)

Какой знак используется в операторе MsgBox для объединения нескольких элементов выводного списка в одну строку?

Варианты ответов:

- 1)&
- 2) \$
- 3);
- 4) #

Вопрос № 5 (несколько верных ответов)

Чему будут равны значения переменных Z и T после вычисления арифметических выражений?

$$Z = 33 \setminus 4 - 31 \text{ Mod } 8 + \text{Fix}(7 - 3.4);$$

$$T = Fix(15/2) - 45 \text{ Mod } 24 + 23 \setminus 7.$$

Варианты ответов:

- 1) Z = 4, T = -11;
- 2) Z = -4, T = 1;
- 3) Z = -2.75, T = -10.7;
- 4) Z = -3, T = 1.

Вопрос № 6 (несколько верных ответов)

Какие арифметические выражения записаны верно на VBA?

a)
$$\sqrt[3]{\frac{\lg^3 d + f}{\ln k d^2}} \rightarrow ((\operatorname{Tan}(d)^3 + f) / \log(k * d^2))^(1/3);$$

б)
$$\operatorname{arctg}^2 \ln \sqrt{b+c} \rightarrow \operatorname{Atn}(\log(\operatorname{sqr}(b+c)))^2;$$

B)
$$\frac{\cos^3 x - \sqrt[5]{gx}}{r - x} \to \cos(x)^3 - (g * x)/(r - x).$$

Варианты ответов:

- 1) a;
- 2) _б;
- 3) в;
- 4) все выражения записаны верно.

Вопрос № 7 (несколько верных ответов)

Какие арифметические выражения на VBA записаны с ошибками?

a) $\cos^4 \sin \sqrt{y} \rightarrow \cos^4 \sin(Sqr(y));$

6)
$$\left| \sqrt[3]{\text{tg}x} \right| \rightarrow \text{Abs}(\text{Tan}(x)^{\wedge}(1/3));$$

B)
$$0.5 \sin^3 \left| \frac{a-f}{b \cdot c} \right| \to 0.5 * \sin(Abs((a-f)/b*c))^3;$$

Γ) $\operatorname{arctg}^3 e^{x \sin y} \to \operatorname{Atn}(\operatorname{Exp^x} * \operatorname{Sin}(y))^3.$

Варианты ответов:

- 1) a;
- 2) 6;
- 3) B;
- **4)** Γ.

Вопрос № 8 (один верный ответ)

Какое имя имеет процедура, представленная на рисунке?

Варианты ответов:

- 1) MODA;
- 2) Module1;
- 3) Modules;
- 4) Option Explicit;
- 5) На рисунке нет процедур.

Библиографический список

- 1. Лебедев, В. М. Программирование на VBA в MS Excel: учебное пособие / В. М. Лебедев. Москва: Юрайт, 2020. 306 с. Текст: непосредственный.
- 2. Казанский, А. А. Прикладное программирование на Excel 2019: учебное пособие / А. А. Казанский. Москва: Юрайт, 2020. 171 с. Текст: непосредственный.
- 3. Сидорова, Е. А. Основы программирования на языке VBA: учебное пособие / Е. А. Сидорова, С. П. Железняк. Омск: Омский государственный университет путей сообщения, 2021. 118 с. Текст: непосредственный.
- 4. ГОСТ 19.701–90 (ИСО 5807–85). Единая система программной документации. Схемы алгоритмов, программ, данных и систем. Обозначения условные и правила выполнения. Москва: Изд-во стандартов, 1990. 36 с. Текст: непосредственный.

Учебное издание

СИДОРОВА Елена Анатольевна, МАНОХИНА Татьяна Витальевна, ЖЕЛЕЗНЯК Светлана Петровна

ПРОГРАММИРОВАНИЕ ЛИНЕЙНЫХ ВЫЧИСЛИТЕЛЬНЫХ ПРОЦЕССОВ НА VBA

Учебно-методическое пособие

Редактор Н. А. Майорова

Подписано в печать 07.06.2021. Формат $60 \times 84^{-1}/_{16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 2,3. Уч.-изд. л. 2,5. Тираж 80 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35