Лабораторная работа №5

Исследование методов принятия решений при нечетком отношении предпочтения на множестве альтернатив

1. Цель работы: исследовать способы построения систем принятия решений на основе нечеткого отношения предпочтения на множестве альтернатив.

2. Теоретическое введение

Обозначим: X – множество возможных альтернатив (решений). Если $x_i \succ x_j$ вид отношения предпочтения, связывающего два решения x_i и x_j , то \succ – четкое отношение предпочтения, то есть решение x_i является более предпочтительным, чем решение x_i (строго предпочтительным).

Для решений x_i и x_j может быть определено нечеткое отношение предпочтения, определяющее степень предпочтения решения x_i по сравнению с решением x_j . Таким образом принятие решений в условиях неопределённости (при использовании нечетких множеств) основывается на:

- 1) нечетком описании множества альтернатив (решений);
- 2) нечетком определении отношения предпочтения (на описании нечеткого отношения предпочтения).

Если X – универсально множество (множество альтернатив); x_i – некоторая текущая рассматриваемая альтернатива, тогда X – множество всех возможных решений рассматриваемой задачи, а $C \subset X$ – множество допустимых альтернатив, обеспечивающих рациональное решение поставленной задачи.

Тогда для каждого $x_i \in X$ может быть определено значение функции принадлежности $\mu_c(x_i) \in [0,1]$, которое определяет степень допустимости выбора альтернативы x_i в качестве рационального решения рассматриваемой задачи.

Обозначим через X^D — подмножество альтернатив, рациональных с точки зрения решаемой задачи, тогда $X^D = \{x \mid x \in X, \mu_c(x) = \sup_{x \in X} (\mu_c(x))\}$, где $\mu_c(x)$ — непрерывная функция, \sup — верхний экстремум непрерывной функции $\mu_c(x)$. В случае, если $\mu_c(x_i)$ — дискретная функция для соответствующих решений $x_i \in X$, тогда множество X^D будет определено следующим образом: $X^D = \{x_i \mid x_i \in X, \mu_c(x_i) = \max_{x \in X} (\mu_c(x_i))\}$.

Если $\mu_c(x_i)$ — степень (мера) соответствия решений $x_i \in X$ требованиям задачи, то может быть сформировано отношение предпочтения $x_i R x_i$.

Понятие и свойство четкого отношения нестрогого предпочтения

Обозначим R — подмножество, определенное на множестве $X \times X$ (подмножество множества пар $(x_i, x_j) \in X \times X$). Таким образом R — некоторая операция сравнения альтернатив (решений) x_i и x_j между собой. Обозначим через R прямое, а через R^{-1} — обратное отношения нестрогого предпочтения. Если R — прямое отношение предпочтения (\succeq), то при сравнении двух альтернатив « x_i не хуже x_j » имеем $x_i R x_j$ ($x_i \succeq x_j$). Тогда обратное отношение R^{-1} может быть проинтерпретировано следующим образом: « x_j не лучше x_i », т.е. эквивалентно, либо заведомо хуже (тогда $x_j R^{-1} x_i$).

Через R^s обозначим отношение строгого предпочтения, через R^I — отношение безразличия (несравнимости, эквивалентности). Альтернатива x_i доминирует альтернативу x_j (является строго лучше x_j), если выполняется условие $x_i \succ x_j$. Альтернативы x_i и x_j связаны отношением строгого предпочтения (т.е. $x_i R^s x_j$). Тогда R^s — это множество пар, в которых элемент x_i (альтернатива x_i) строго предпочтительнее альтернативы x_j . Отношение безразличия R^I определяется следующим образом. Альтернатива x_i и x_j находятся в отношении безразличия ($(x_i R^I x_j)$ либо $(x_i, x_j) \in R^I$), если не выполняется ни предпочтение $x_i \succ x_j$, ни предпочтение $x_j \succ x_i$ (т.е. $x_i \succ x_j$ и $x_j \succ x_i$).

Для четких отношений $R(R^S, R^I)$ при $(x_i R x_j)$ степень предпочтения альтернативы x_i над альтернативой x_j равна 1. Если R – нечеткое отношение предпочтения, то должна быть определена степень

предпочтения альтернативы x_i относительно альтернативы x_j . Степень предпочтения для нечеткого отношения R определяется функцией принадлежности $\mu_R(x_i,x_j)$. Т.о. $\mu_R(x_i,x_j)$ определяет степень предпочтения альтернативы x_i относительно альтернативы x_i . Свойства функции $\mu_R(x_i,x_j)$:

- 1) $\mu_R: X \times X \to [0,1]$, т.е. функция $\mu_R(x_i, x_j)$ каждой паре альтернатив $(x_i, x_j) \in X \times X$ ставит в соответствие значение из интервала [0, 1], это значение есть степень предпочтения альтернативы x_i относительно альтернативы x_j ;
- 2) $\mu_R(x_i, x_i) = 1$, т.е. альтернатива x_i не может быть хуже сама себя;
- 3) $\mu_R(x_j,x_i)=0$ в том случае, если для пары альтернатив (x_i,x_j) с положительной степенью выполнено отношение R (т.е. $\mu_R(x_i,x_j)>0$ либо альтернативы x_i , x_j по выбранному критерию не могут быть сравнимы. Таким образом, если $\mu_R(x_i,x_j)>0$, то $\mu_R(x_j,x_i)=0$ и если $\mu_R(x_j,x_i)>0$, $\mu_R(x_i,x_j)=0$.

Т.о. для каждой пары $(x_i, x_j) \in R$ (либо, в общем виде $x_i R x_j$) определяется степень $\mu_R(x_i, x_j)$.

Виды нечетких отношений

- 1. Нечеткое отношение безразличия R^I предполагает, что альтернативы x_i и x_j не могут быть сравнимы с использованным отношением предпочтения R (здесь предполагается, что R– это отношение нестрогого предпочтения). Тогда если $x_i R^I x_j$, то $\mu_R^I (x_i, x_j)$ определяет степень безразличия альтернативы x_i по отношению к альтернативе x_j .
- 2. Отношение эквивалентности альтернатив R^E . Оно предполагает, что $R^E \subseteq R^I$. Отношение R^E определяется следующим образом: $R^E = R \cap R^{-I}$, где R отношение «не хуже» (x_i не хуже x_j), R^{-1} отношение «не лучше» (x_j не лучше x_i). Тогда если (x_i, x_j) $\in R^E$, то альтернативы x_i и x_j эквивалентны, а $\mu_R^E(x_i, x_j)$ определяет степень эквивалентности альтернатив x_i и x_j .
- 3. Нечеткое отношение строгого предпочтения R^S , тогда при $(x_i, x_j) \in R^s$ значение $\mu_R^S(x_i, x_j)$ определяет степень предпочтения альтернативы x_i над альтернативой x_j .

Таким образом отношения R^S , R^E , R^I могут связывать любую пару альтернатив $(x_i,x_j)\in X\times X$. Каждое из отношений R^S , R^E , R^I характеризуется своей функцией принадлежности $\mu_R(x_i,x_j)$, определяющей степень выполнения отношения для пары альтернатив (x_i,x_j) $\mu_R^S(x_i,x_j)$, $\mu_R^E(x_i,x_j)$, $\mu_R^I(x_i,x_j)$.

Если известны степени выполнения отношений R и R^{-l} (где R – отношение «не хуже» (x_i не хуже x_j), R^{-l} – отношение «не лучше» (x_j не лучше x_i), соответственно $\mu_R(x_i,x_j)$ и $\mu_{R^{-l}}(x_i,x_j)$), то значения, $\mu_R^S(x_i,x_j)$, $\mu_R^E(x_i,x_j)$, $\mu_R^I(x_i,x_j)$ могут быть вычислены следующим образом:

1) для отношения безразличия:

$$\mu_{R}^{I} = max[I - max(\mu_{R}(\ x_{i}, x_{j}\), \mu_{R^{-I}}(\ x_{j}, x_{i}\)); min(\ \mu_{R}(\ x_{i}, x_{j}\), \mu_{R^{-I}}(\ x_{i}, x_{j}\))];$$

2) для отношений эквивалентности:

$$\mu_R^E = min(\mu_R(x_i, x_j), \mu_{R^{-1}}(x_i, x_j));$$

3) для отношения строгого предпочтения:

$$\mu_R^S(x_i,x_j^-) = \mu_R(x_i,x_j^-) - \mu_{R^{-l}}(x_j^-,x_i^-)$$
, если $\mu_R(x_i,x_j^-) > \mu_{R^{-l}}(x_j^-,x_i^-)$ и $\mu_R^S(x_i,x_j^-) = 0$ в противном случае.

Линейность нечетких отношений

Если R (либо R^{-I}) связывает любые две альтернативны x_i и x_j , то отношение R является линейным. Т.о. в X нет несравнимых с помощью R (R^{-I}) решений, альтернативы из X могут быть упорядоченных с помощью R (R — нечеткое отношение нестрогого предпочтения). Если R — нечеткое отношение нестрогого предпочтения (с функцией принадлежности μ_R), то может быть сформулировано свойство, когда R не является линейным: если в X имеются 2 альтернативных x_i и x_j такие, что $\mu_R(x_i, x_j) = \mu_{R^{-l}}(x_i, x_j) = 0$.

Понятия сильно линейного нечеткого отношения предпочтения и слабо линейного нечеткого отношения предпочтения

Нечеткое отношение μ_R называется сильно линейным, если его функция принадлежности для любой пары альтернатив $(x_i, x_j) \in X \times X$ выполняется условие: $\max\{\mu_R(x_i, x_j), \mu_{R^{-l}}(x_j, x_i)\} = 1$. Нечеткое отношение μ_R называется слабо линейным, если его функция принадлежности удовлетворяет условию: из $\mu_R(x_i, x_j) = 0$ следует, что $\mu_{R^{-l}}(x_j, x_i) > 0$ для любой пары альтернатив $(x_i, x_j) \in X \times X$.

Пример сильно линейного отношения нестрогого предпочтения:

$$\mu_{R}(x_{i}, x_{j}) = x_{2} \begin{vmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ 1 & 0.2 & 1 & 0 \\ 1 & 1 & 1 & 0.5 \\ x_{3} & 0 & 0.8 & 1 & 1 \\ x_{4} & 1 & 1 & 0.3 & 1 \end{vmatrix}.$$

Пример слабо линейного отношения нестрогого предпочтения:

$$\mu_{R}(x_{i}, x_{j}) = x_{2} \begin{vmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ 1 & 0.55 & 0.6 & 0 \\ 0 & 1 & 0 & 0.5 \\ x_{3} & 0 & 0.8 & 1 & 0 \\ x_{4} & 0.8 & 0 & 0.7 & 1 \end{vmatrix}.$$

Решение задачи рационального выбора альтернатив из множества X на основе нечеткого отношения нестрогого предпочтения $\mathbf R$

Заданными являются:

- 1) множество альтернатив (решений) X в виде $X = \{x_1, x_2, ..., x_n\}$
- 2) нечеткое отношение предпочтения R (μ_R) с функцией принадлежности $\mu_R(x_i,x_j)$, определяющей степень выполнения нестрогого отношения предпочтения R для пары альтернатив (x_i,x_j) следующим образом: $\mu_R: X \times X \to [0,1]$, т.е. каждой паре (x_i,x_j) из декартового произведения $X \times X$ функция μ_R ставит в соответствие значение из интервала [0,1].

Т.к. множество X счетное и конечное, то должна быть задана матрица $\mu_R(x_i,x_j)$ отношения предпочтения μ_R .

Таким образом, обозначение нечеткого отношения нестрогого предпочтения R выполняется в виде μ_R . Если определено отношение $\mu_R(x_i,x_j)$, то является определенным и отношение $\mu_{R^{-1}}(x_j,x_i)$ (либо $\mu_R(x_i,x_i)$ в дальнейших обозначениях).

Решение задачи предполагает выбор из множества решений X подмножества недоминируемых альтернатив $X^{n\partial}$ с учетом отношений μ_R . Множество недоминируемых альтернатив $X^{n\partial}$ является нечетким, т.е. каждой из альтернатив $x_i \in X$ ставиться в соответствие значение, определяющее степень, с которой x_i не доминируют другие альтернативы. Степень доминирования альтернативой x_i альтернативы x_j определяется при учете отношения строгого предпочтения x_j связывающего эти альтернативы. Т.о. на основе нечеткого отношения нестрогого предпочтения x_j (связывающего пары альтернатив x_j солжно быть определено отношение x_j строгого предпочтения для пар x_j т.е. на основе x_j и x_j и должно быть определено x_j должно x_j должно

Множество недоминируемых альтернатив $X^{n\partial}$ формируется следующим образом:

1. Определяется нечеткое отношение строгого предпочтения $R^S(\mu_R^S)$ для каждой пары альтернатив (x_i, x_j) :

$$\mu_R^S(x_i, x_j) = \mu_R(x_i, x_j) - \mu_{R^{-1}}(x_j, x_i),$$

Либо

$$\mu_R^S(x_i, x_j) = \mu_R(x_i, x_j) - \mu_R(x_j, x_i).$$

Т.о. значение $\mu_R^S(x_i, x_j)$ – это степень, с которой альтернатива x_i доминирует альтернативу x_j .

- 2. Если является заданной величина $\mu_R^S(x_i, x_j)$ и является определенной альтернатива x_j , тогда $\mu_R^S(\cdot) > 0$ может быть использована для определения всех альтернатив x_i , которое доминирует альтернативу x_i .
- 3. Аналогичным образом может быть определена степень недоминируемости альтернативы x_j какой-либо из альтернатив $x_i \in X$. Степень недоминируемости альтернативой x_i альтернативы x_j определяется следующим образом: $\mu_R^{H\!/\!\!/}(x_i,x_j)=I-\mu_R^S(x_i,x_j)$, где $x_i\in X$, $i=\overline{I,n}$. В результате может быть получено n значений $\mu_R^{H\!/\!\!/}(x_i,x_j)$ степени недоминируемости альтернативами $x_i\in X$ альтернативы x_j .
- 4. Если альтернатива x_j не доминируется альтернативой x_i со степенью $\mu_R^{H\!\mathcal{I}}(x_i,x_j)$, то эта альтернатива x_j не доминируется всеми альтернативами x_i со степенью, определяемой следующим образом: $\mu_R^{H\!\mathcal{I}}(x_j) = \min_{i=I,n} (1 \mu_R^S(x_i,x_j)), \text{ либо } \mu_R^{H\!\mathcal{I}}(x_j) = \min_{i=I,n} (\mu_R^{H\!\mathcal{I}}(x_i,x_j)). \text{ Т.е. среди всех альтернатив определяется та (и ее степень <math>\mu_R^S(x_i,x_j)$ соответственно), которая не доминирует x_j в наименьшей степени (наименьшая степень недоминирования), т.о. получено нечеткое множество $\mu_R^{H\!\mathcal{I}}(x_j)$ ($i=\overline{I,n}$), где каждому элементу x_j поставлена в соответствие его степень недоминирования (т.е. с какой степенью x_j не доминируется другими альтернативами).
- 5. Среди всех элементов $x_j \in X$ с учетом соответствующих значений $\mu_R^{H,T}(x_j)$ определяется альтернатива x_h , не доминируемая другими альтернативами, следующим образом:

$$x_h: \mu_R^{H\mathcal{I}}(x_h) = \max_{x_i \in x} \mu_R^{H\mathcal{I}}(x_j).$$

В результате может быть определена альтернатива x_h , у которой степень недоминирования другими альтернативами x_i максимальна среди всех возможных значений $\mu_R^{H\!Z}(x_j)$. В итоге сформировано подмножество $X^{H\!Z}\subset X$ не- доминируемых альтернатив в виде:

$$X^{HJJ} = \{ x_h / x_h \in X \& \mu_R^{HJJ}(x_h) = \max_{x_j \in X} \mu_R^{HJJ}(x_j) \}.$$

Таким образом, альтернативы $x_h \in X^{H/\!\!\!\!/}$ являются наиболее эффективными среди всех альтернатив $x_i \in X$.

Пример реализации метода определения недоминируемых альтернатив. Множество альтернатив X имеет следующий вид: $X = \{x_1, x_2, x_3, x_4\}$

На множестве альтернатив X задано отношение нестрогого предпочтения R в виде:

$$\mu_{R}(x_{i}, x_{j}) = \begin{array}{c|ccc} & 1 & 0.3 & 0.3 & 0.1 \\ & 0.5 & 1 & 0.2 & 0.6 & . \\ & & 0.1 & 0.6 & 1 & 0.3 \\ & & & 0.6 & 0.1 & 0.5 & 1 \end{array}$$

В соответствии с нечеткими отношениями $\mu_R(\cdot)$ определено нечеткое отношение строгого предпочтения в виде:

$$\mu_R^s(x_i, x_j) = x_2 \quad 0.3 \quad \begin{vmatrix} x_1 & x_2 & x_3 & x_4 \\ x_1 & 0 & 0 & 0.2 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0.4 & 0 & 0 \\ 0 & 0.2 & 0 \end{vmatrix}$$

В соответствии с отношением $\mu_R^S(x_i, x_j)$ сформирована матрица (нечеткое множество) $\mu_R^{H\!/\!\!\!/}(x_i, x_j)$ не доминируемых альтернатив в виде:

$$\mu_{R}^{HJ}(x_{i},x_{j}) = x_{2} \quad 0.7 \quad 1 \quad 1 \quad 0.8 \quad 1$$

$$x_{3} \quad 1 \quad 0.6 \quad 1 \quad 1$$

$$x_{4} \quad 0.5 \quad 1 \quad 0.8 \quad 1$$

Понятно что для каждого столбца матрицы $\mu_R^{HJ}(x_i,x_j)$ – альтернативы x_j - должна быть выбрана минимальная степень недоминируемости ("наихудший" вариант недоминируемости). В результате получено нечеткое множество x^{HJ} недоминируемых альтернатив в следующем виде:

$$\mu_R^{HA}(x_i) = \begin{vmatrix} x_1 & x_2 & x_3 & x_4 \\ 0.5 & 0.6 & 0.8 & 0.5 \end{vmatrix}$$

Наибольшую степень недоминируемости имеет альтернатива $x_3(\mu_R^{H\!/\!\!\!/}(x_3)=0.8)$, которая должна быть выбрана в качестве эффективного решения.

Таким образом, для эффективных альтернатив $x_i \in X$ должно выполняется следующее условие:

$$\mu_{R}^{H\!/\!\!\!\!\!\mathcal{I}}(x) = \max_{x_j \in X} (\min_{x_i \in X} \mu_{R}^{H\!/\!\!\!\!\mathcal{I}}(x_i, x_j) = \max_{x_j \in X} \min_{x_i \in X} (1 - \mu_{R}^{S}(x_i, x_j)).$$

Решения задачи принятия решений с группой экспертов, характеризуемых весовыми коэффициентами

Заданым является количество экспертов, каждый из которых формирует свое отношение предпочтения для множества альтернатив. Количество экспертов обозначим через K. Определенно множество альтернатив X, имеющих вид $X = \{x_1, x_2, ..., x_n\}$. На множестве альтернатив X определено K отношений нестрогого предпочтения R_k ($k = \overline{I, K}$).

Т.о. каждый k-ый эксперт сформировал свое отношение предпочтения для альтернатив, т.е. сформировал матрицу отношения $R_K - \mu_{R_K}(x_i, x_j)$). Тогда элемент $\mu_{R_K}(x_i, x_j)$ определяет степень предпочтительности альтернативы x_i по отношению к альтернативе x_j по мнению k-го эксперта.

ЛПР по разному относится к экспертам, что определяется весовыми коэффициентами $\lambda_{\scriptscriptstyle K}$, назначенными каждому из них.

Условия для весовых коэффициентов:

$$0 \le \lambda_K \le 1; \sum_{k} \lambda_K = 1;$$

Задача состоит в определении эффективных (недоминируемых) альтернатив на основе мнений (отношений предпочтения) группы экспертов.

Алгоритм решения задачи предполагаемое построение двух видов сверток нечетких отношений предпочтений $R_{\scriptscriptstyle K}$, для каждой из которых определяется множество недоминируемых альтернатив.

1. Формулируется свертка Р отношений предпочтения как пересечения нечетких отношений нестрогого предпочтения R_{κ} :

$$P = R_1 \cap R_2 \cap ... \cap R_N = \min_{K=1,N} (\mu_{R_K}(x_i, x_j))$$

В результате сформировано "новое" обещающее отношение нестрогого предпочтения для пар альтернатив (x_i, x_j) .

2.Для полученного нечеткого отношения нестрогого предпочтения Р формулируется отношение строгого предпочтения P^S с функцией принадлежности μ_P^S следующим образом:

$$\begin{split} P^S &= P \setminus P^{-1}; \mu_p(x_i, y_j) = \mu_p(x_i, y_j) - \mu_{p^{-1}}(x_i, y_j) \text{ при } \mu_p(x_i, y_j) > \mu_{p^{-1}}(x_i, y_j)) \\ \mu_p^S(x_i, x_i) &= 0 \text{ в противном случае.} \end{split}$$

3.По аналогии с вышеизложенным методом формируется нечеткое множество $x^{H\!\!/\!\!\!\!/}$ недоминирующих альтернатив $(x^{H\!\!/\!\!\!/} \subset x)$ следующим образом:

$$\mu_P^{H\!/\!\!\!\!/}(x_j) = \min_{x_i \in X} (1 - \mu_P^S(x_i, x_j));$$

4. Формулируется свертка ${\it Q}$ отношений ${\it R}_{\it K}$, которая определяется следующим образом:

$$Q = \sum_{K} \lambda_{K} R_{K} \Rightarrow \mu_{Q}(x_{i}, y_{j}) = \sum_{K} \lambda_{K} \mu_{R_{K}}(x_{i}, y_{j})$$

В результате получено новое нечеткое отношение нестрогого предпочтения Q для которого д\б сформировано отношение строгого предпочтения Q^S и => множество недоминируемых альтернатив $x^{H\!\!/\!\!/2}$. Формирование множества недоминируемых альтернатив выполняется следующим образом:

$$\mu_Q^{H/2}(x_j) = \min_{x_i \in X} (1 - \mu_Q^S(x_i, x_j))$$

Таким образом, сформировано два множества недоминируемых альтернатив $\,\mu_{\scriptscriptstyle P}^{{\scriptscriptstyle H}\!\!\!/\!\!\!/\, 1}$ и $\,\mu_{\scriptscriptstyle Q}^{{\scriptscriptstyle H}\!\!\!/\, 2}$.

5.Определяется пересечение полученных множеств $\mu_P^{H\!J\!1}$ и $\mu_Q^{H\!J\!2}(x^{H\!J\!1}\cap x^{H\!J\!2})$ соответственно), функция принадлежности результирующего нечеткого множества определяются следующим образом:

$$\mu^{H\mathcal{I}}(x_i) = \min(\mu_P^{H\mathcal{I}1}(x_i); \mu_O^{H\mathcal{I}2}(x_i))$$

6.Из полученного в результате множества $x^{H,I}(x^{H,I}(x))$ выбирается та альтернатива x для которой значение $x^{H,I}(x)$ является максимальным т.е.:

$$x^* = arq \max_{x_j \in X} \mu^{H / 2}(x_j), j = \overline{1, n}$$

<u>Пример</u> реализации определения эффективной альтернативы при нескольких (N=5) отношениях нестрогого предпочтения $R_K(k=\overline{1,K})$.

На множестве $x=\{x_1,x_2,...,x_n\}$ заданы отношения предпочтения $\{R_K(k=\overline{1,N})\}$ матрицы $\mu_R(x_i,x_i)$ которых имеют вид:

$$\mu_{R_1}(x_i, x_j) = \begin{vmatrix} 1 & 1 & 0.2 & 0.4 \\ 0 & 1 & 0.8 & 0.6 \\ 0.5 & 0.5 & 1 & 0 \\ 0.5 & 0.5 & 0.8 & 1 \end{vmatrix}; \quad \mu_{R_2}(x_i, x_j) = \begin{vmatrix} 1 & 0 & 0.2 & 0.9 \\ 1 & 1 & 0.8 & 0.5 \\ 0.5 & 0.5 & 1 & 1 \\ 0.5 & 0.5 & 0 & 1 \end{vmatrix}; \quad \mu_{R_3}(x_i, x_j) = \begin{vmatrix} 1 & 0 & 0.2 & 0.9 \\ 1 & 1 & 0.8 & 0.5 \\ 0.5 & 0.5 & 1 & 1 \\ 0.5 & 0.5 & 0 & 1 \end{vmatrix}; \quad \mu_{R_4}(x_i, x_j) = \begin{vmatrix} 1 & 0.2 & 0.5 & 0 \\ 0.5 & 1 & 1 & 0.8 \\ 0.5 & 1 & 1 & 0.8 \\ 1 & 0.5 & 0.5 & 1 \end{vmatrix}; \quad \mu_{R_4}(x_i, x_j) = \begin{vmatrix} 1 & 0.2 & 0.5 & 0 \\ 0.5 & 1 & 1 & 0.8 \\ 0.5 & 1 & 1 & 0.8 \\ 1 & 0.5 & 0.5 & 1 \end{vmatrix}; \quad \mu_{R_4}(x_i, x_j) = \begin{vmatrix} 1 & 0.2 & 0.5 & 0 \\ 0.5 & 1 & 1 & 0.8 \\ 1 & 0.5 & 0.5 & 1 \end{vmatrix}; \quad \mu_{R_5}(x_i, x_j) = \begin{vmatrix} 1 & 0.1 & 1 & 0.6 \\ 0.5 & 1 & 0.3 & 1 \\ 0 & 0.5 & 1 & 0 \\ 0.5 & 0 & 0.5 & 1 \end{vmatrix}; \quad \lambda_1 = \lambda_2 = \lambda_4 = 0.3; \lambda_3 = 0.3; \lambda_5 = 0.1$$

В результате преобразований получены отношения Р и Q в следующем виде:

$$\mu_{P}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 0 & 0.2 & 0 \\ 0 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 0 \\ 0.5 & 0 & 0 & 1 \end{vmatrix}; \mu_{Q}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 0.34 & 0.49 & 0.62 \\ 0.5 & 1 & 0.67 & 0.71 \\ 0.45 & 0.45 & 1 & 0.39 \\ 0.6 & 0.45 & 0.5 & 1 \end{vmatrix};$$

Откуда $\mu_P^S(x_i, x_j)$ и $\mu_O^S(x_i, x_j)$ имеет вид:

$$\mu_P^S(x_i, x_j) = \begin{vmatrix} 0 & 0 & 0.2 & 0 \\ 0 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & 0 \end{vmatrix}; \mu_Q^S(x_i, x_j) = \begin{vmatrix} 0 & 0 & 0.4 & 0.02 \\ 0.16 & 0 & 0.22 & 0.77 \\ 0.45 & 0.45 & 1 & 0.39 \\ 0.6 & 0.45 & 0.5 & 1 \end{vmatrix};$$

Опуская вычисления $\mu_P^{H\!\!/\!1}(x)$ и $\mu_Q^{H\!\!/\!2}(x)$ сформулируем множества $\mu_P^{H\!\!/\!1}(x)$ и $\mu_Q^{H\!\!/\!2}(x)$ в виде:

$$\mu_P^{HJ1}(x) = [0.5; 1; 0.8; 0.5]; \mu_Q^{HJ2}(x) = [0.84; 1; 0.78 0.74];$$

Откуда получаем $\mu^{HJ}(x)$ в виде

$$\mu^{HJ}(x) = [0.5; 1; 0.78; 0.5];$$

Следовательно, эффективная альтернатива x_2 .

Решение задачи определения эффективной альтернативы группой экспертов, характеризуемых отношением нестрогого предпочтения между ними.

По аналогии с рассмотренной выше задачей заданными являются нечеткие отношения нестрогого предпочтения $\mu_{R_K}(x_i,x_j)$ для группы экспертов $(k=\overline{1,N})$ и задается нечеткое отношение предпочтения для этой группы экспертов (т.е. на сколько мнение i-го эксперта является более предпочтительным мнения j-го эксперта). Т.о. определимое $\mu_M(e_i,e_j)$, значение которой соответствует степени предпочтительности мнения i-го эксперта по сравнению с мнением j-го.

Алгоритм определения эффективных решений при заданном нечетком отношении предпочтения для экспертов состоит из следующих шагов:

1.Для каждого $\mu_{R_K}(x_i,x_j)(k=\overline{1,N})$ определяется $\mu_{R_K}^S(x_i,x_j)$ и соответственно $\mu_{R_K}^{H\!J}(x_i,x_j)$ полученный вектор значений $\mu_{R_K}^{H\!J}(x_j)$ является соответствующей K-ой строкой формулируемой матрицы Φ , т.е.

$$\mu_{R_{\kappa}}^{H\mathcal{I}}(x_{j}) = \mu_{\Phi}(k, x_{i}), j = \overline{1, n}; k = \overline{1, N}$$

Матрица Ф, сформированная на основе $\mu_{R_K}^{H\!A}(x_j)$ задает нечеткое соответствие между множеством экспертов $E = \{e_R \, | \, k = \overline{I,N} \, \}$ и множеством альтернатив $X = \{x_j \, | \, j = \overline{I,n} \, \}$.

2. Т.к заданной является матрица M, элементы $\mu_M(e_i,e_j)$ который задают нечеткое соответствие между экспертами (степень предпочтения экспертов), то м\б сформулирована свертка отношений Φ и M следующим образом:

$$\Gamma = \Phi^T \circ M \circ \Phi$$

где операция \circ представляют собой максимальную композицию для соответствующий матриц Φ^T, M, Φ . В результате формируется отношение Γ , а базе которого определяется $\mu_{\Gamma}^S(x_i, x_j), \, \mu_{\Gamma}^{H\!\!/\!\!\!/}(x_j)$.

- 3. С использованием полученных значений $\mu_{\Gamma}(x_i,x_j)$ и $\mu_{\Gamma}(x_j)$ формулируется скорректированное значение $\mu_{\Gamma}^{H\!\!/\!\!/}(x_j)$ (где $\mu_{\Gamma}(x_i,x_j)$ диагональные элементы соответствующей матрицы) следующим образом: $\mu_{\Gamma}^{H\!\!/\!\!/}(x_j) = \min(\mu_{\Gamma}^{H\!\!/\!\!/}(x_j), \mu_{\Gamma}(x_i,x_j))$
- 4.Среди полученных значений $\mu_{\Gamma}^{H\!\!/\!\!1}(x_j)$ выбираются максимальное, которое и соответствует эффективной альтернативе:

$$x^* = arq \max_{x_j \in X} \mu_{\Gamma}^{HJ}(x_j), j = \overline{1, n}$$

Пример реализации принятия решений при заданном отношении предпочтения.

 $\mu_{\scriptscriptstyle M}\left(e_{\scriptscriptstyle 1},e_{\scriptscriptstyle j}\right)$ для экспертов. Множество экспертов имеет вид: $E=\{e_{\scriptscriptstyle j}\mid j=\overline{1,5}\}$.

Матрица М задана в виде:

$$M = \begin{bmatrix} 1 & 0.2 & 0.2 & 0.1 & 0.9 \\ 0.4 & 1 & 0.3 & 0.2 & 0.7 \\ 0.2 & 0.5 & 1 & 0.1 & 0.1 \\ 0.8 & 0.3 & 0.6 & 1 & 0.3 \\ 0.5 & 0.2 & 0.4 & 0.6 & 1 \end{bmatrix}$$

Матрицы $\mu_{R_{\scriptscriptstyle K}}(x_{\scriptscriptstyle j})$ отношения предпочтения для N элементов заданы соответствующими этим матрицам из предыдущего примера. Для каждого $\mu_{R_{\!\scriptscriptstyle K}}(x_j)$ сформулировано $\mu_{{}^{\!H\!J}}^{{}^{\!H\!J}}(x_j)$ все N векторов $\mu_{R_K}^{H\!\mathcal{I}}(x_i)$ сведены в матрице Ф (К – ый вектор – к – ая строка матрицы Ф).

В результате матрица Ф имеет вид:

$$M_{\phi} = \begin{bmatrix} 0.7 & 0 & 0 & 0.9 \\ 0 & 1 & 0.6 & 0 \\ 0.8 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 0.7 \\ 0.6 & 0.8 & 0 & 0 \end{bmatrix}$$

Выполняется максимальная композиция для получения свертки Г в виде:

$$\begin{vmatrix} 0.7 & 0 & 0 & 0.9 \\ 0 & 1 & 0.6 & 0 \\ 0.8 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 0.7 \\ 0.6 & 0.8 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0.8 & 0.8 & 0.6 & 0.7 \\ 0.8 & 1 & 0.6 & 0.6 \\ 0.7 & 0.6 & 1 & 0.8 \\ 0.7 & 0.8 & 0.7 & 0.9 \end{vmatrix}$$

Отношение Γ^S определяется матрицей:

Отношение
$$I^{S}$$
 определяется матри
$$\mu_I^S(x_i, x_j) = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0.1 & 0 & 0 & 0.1 \\ 0 & 0.2 & 0 & 0 \end{vmatrix}$$

Откуда $\mu_{\Gamma}^{H\!/\!\!\!/}(x_j) = \{0.9 \ 0.8 \ 1 \ 0.9\},$ скорректированный-вектор $\mu_{\Gamma}^{H\!/\!\!\!/}(x_j)$ вид: $\mu_{\Gamma}^{H\!\!/\!\!\!/}(x_{j}) = \{0.8 \quad 0.8 \quad 1 \quad 0.9\}$. Откуда эффективная альтернатива (решение) - x_{4}

3. Варианты задания

Вариант задания, предполагает определение матриц отношений нестрогого предпочтения для каждого из экспертов, а также матрицы предпочтений для экспертов. Необходимо на основе исходных данных выполнить определение множества недоминируемых альтернатив с учетом отношения нечеткого предпочтения для экспертов.

Вариант 1.

$$\mu_{R_3}(x_i, x_j) = \begin{vmatrix} 1 & 0 & 0.5 & 0.5 \\ 0.3 & 1 & 0.4 & 0.7 \\ 0.2 & 0.4 & 1 & 0.5 \\ 0.2 & 0.1 & 0.6 & 1 \end{vmatrix}.$$

$$\mu_{R_{I}}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 0.3 & 0.5 & 0.4 \\ 0.5 & 1 & 0.5 & 0.4 \\ 0.2 & 0.6 & 1 & 0.3 \\ 0.4 & 0.1 & 0.8 & 1 \end{vmatrix}.$$

$$\mu_{R_{I}}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 1 & 0.8 & 0.1 \\ 0.2 & 1 & 0.3 & 0.4 \\ 0.1 & 0.6 & 1 & 0.3 \\ 0.6 & 0.6 & 0.5 & 1 \end{vmatrix}.$$

$$M = \begin{array}{c|cccc} & 1 & 0.3 & 0.3 & 0.1 \\ & 0.8 & 1 & 0.2 & 0.6 & . \\ & 0.3 & 0.6 & 1 & 0.4 \\ & 0.6 & 0.5 & 0.5 & 1 \end{array}$$

Вариант 2.

$$\mu_{R_I}(x_i, x_j) = \begin{vmatrix} 1 & 1 & 0.3 & 0.1 \\ 0.5 & 1 & 0.2 & 0.6 \\ 0.1 & 0.6 & 1 & 0.3 \\ 0.6 & 0.1 & 0.5 & 1 \end{vmatrix}.$$

$$\mu_{R_2}(x_i, x_j) = \begin{pmatrix} 1 & 0.3 & 0.8 & 0.6 \\ 0.2 & 1 & 0.4 & 0.45 \\ 0.3 & 0.7 & 1 & 0.5 \\ 0.5 & 0.2 & 0.33 & 1 \end{pmatrix}.$$

$$\mu_{R_3}(x_i, x_j) = \begin{vmatrix} 1 & 0 & 0.5 & 0.5 \\ 0.3 & 1 & 0.4 & 0.7 \\ 0.2 & 0.4 & 1 & 0.5 \\ 0.2 & 0.1 & 0.6 & 1 \end{vmatrix}.$$

$$\mu_{R_{I}}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 0.3 & 0.3 & 0.1 \\ 0.2 & 1 & 0.2 & 0.4 \\ 0.2 & 0.6 & 1 & 0.3 \\ 0.4 & 0.1 & 0.5 & 1 \end{vmatrix}.$$

$$\mu_{R_{I}}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 1 & 0.8 & 0.1 \\ 0.2 & 1 & 0.3 & 0.4 \\ 0.1 & 0.6 & 1 & 0.3 \\ 0.6 & 0.6 & 0.5 & 1 \end{vmatrix}.$$

$$M = \begin{array}{ccccc} 1 & 0.3 & 0.3 & 0.1 \\ 0.5 & 1 & 0.2 & 0.6 \\ 0.1 & 0.6 & 1 & 0.3 \\ 0.6 & 0.1 & 0.5 & 1 \end{array}$$

Вариант 3.

$$\mu_{R_{I}}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 1 & 0.3 & 0.1 \\ 0.5 & 1 & 0.2 & 0.8 \\ 0.1 & 0.8 & 1 & 0.3 \\ 0.3 & 0.1 & 0.5 & 1 \end{vmatrix}.$$

$$\mu_{R_2}(x_i, x_j) = \begin{vmatrix} 1 & 0.3 & 0.8 & 0.6 \\ 0.2 & 1 & 0.4 & 0.45 \\ 0.3 & 0.7 & 1 & 0.5 \\ 0.5 & 0.2 & 0.33 & 1 \end{vmatrix}.$$

$$\mu_{R_3}(x_i, x_j) = \begin{vmatrix} 1 & 0 & 0.5 & 0.5 \\ 0.3 & 1 & 0.4 & 0.7 \\ 0.2 & 0.4 & 1 & 0.5 \\ 0.2 & 0.1 & 0.6 & 1 \end{vmatrix}.$$

$$\mu_{R_{I}}(x_{i}, x_{j}) = \begin{vmatrix} 1 & 0.3 & 0.3 & 0.1 \\ 0.4 & 1 & 0.2 & 0.6 \\ 0.2 & 0.6 & 1 & 0.5 \\ 0.4 & 0.4 & 0.5 & 1 \end{vmatrix}.$$

$$\mu_{R_{I}}(x_{i},x_{j}) = \begin{vmatrix} 1 & 1 & 0.8 & 0.1 \\ 0.2 & 1 & 0.3 & 0.4 \\ 0.1 & 0.6 & 1 & 0.3 \\ 0.6 & 0.6 & 0.5 & 1 \end{vmatrix}. \qquad M = \begin{vmatrix} 1 & 0.8 & 0.3 & 0.1 \\ 0.8 & 1 & 0.2 & 0.6 \\ 0.1 & 0.8 & 1 & 0.2 \\ 0.6 & 0.4 & 0.2 & 1 \end{vmatrix}$$

Вариант 4.

$$\mu_{R_{I}}(x_{i},x_{j}) = \begin{vmatrix} 1 & 1 & 0.3 & 0.1 \\ 0.5 & 1 & 0.2 & 0.6 \\ 0.1 & 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 0.5 & 1 \end{vmatrix}. \qquad \mu_{R_{2}}(x_{i},x_{j}) = \begin{vmatrix} 1 & 0.3 & 0.8 & 0.6 \\ 0.2 & 1 & 0.4 & 0.45 \\ 0.3 & 0.8 & 1 & 0.5 \\ 0.5 & 0.4 & 0.33 & 1 \end{vmatrix}.$$

$$\mu_{R_{3}}(x_{i},x_{j}) = \begin{vmatrix} 1 & 0 & 0.5 & 0.5 \\ 0.3 & 1 & 0.4 & 0.7 \\ 0.2 & 0.8 & 1 & 0.5 \\ 0.6 & 0.1 & 0.6 & 1 \end{vmatrix}. \qquad \mu_{R_{1}}(x_{i},x_{j}) = \begin{vmatrix} 1 & 0.3 & 0.3 & 0.1 \\ 0.2 & 1 & 0.2 & 0.4 \\ 0.2 & 0.6 & 1 & 0.3 \\ 0.4 & 0.1 & 0.5 & 1 \end{vmatrix}.$$

$$\mu_{R_{1}}(x_{i},x_{j}) = \begin{vmatrix} 1 & 1 & 0.8 & 0.1 \\ 0.2 & 1 & 0.4 & 0.2 \\ 0.1 & 0.6 & 1 & 0.8 \\ 0.3 & 0.4 & 0.5 & 1 \end{vmatrix}.$$

4. Контрольные вопросы

- 1. Что такое функция принадлежности с точки зрения нечеткого отношения R?
- 2. Каким образом (с точки зрения формализации) задается степень предпочтения в отношении R- нечетком отношении нестрогого предпочтения?
- 3. Какие виды нечетких отношений могут быть использованы при принятии решений, как реализуется определение значений их функций принадлежности?
- 4. Что означает сильная линейность нечеткого отношения нестрогого предпочтения и слабая линейность нечеткого отношения нестрогого предпочтения?
- 5. Каким образом на основе нечеткого отношения нестрогого предпочтения определяется множество недоминируемых альтернатив?
- 6. Какой вид имеет формализация способа определения на основе нечеткого отношения нестрогого предпочтения множества недоминируемых альтернатив?
- 7. В чем состоит процедура определения множества недоминируемых альтернатив при принятии решений с группой экспертов, характеризуемых весовыми коэффициентами?
- 8. Какой вид имеет формализация процедуры определения множества недоминируемых альтернатив при принятии решений с группой экспертов, характеризуемых весовыми коэффициентами?
- 9. В чем состоит процедура определения множества недоминируемых альтернатив при принятии решений с группой экспертов, характеризуемых отношением нестрогого предпочтения?
- 10. Какой вид имеет формализация процедуры определения множества недоминируемых альтернатив при принятии решений с группой экспертов, характеризуемых отношением нестрогого предпочтения?