Homework 5

Math 141

Due October 16, 2020 by 5pm

Topics covered: quotient spaces

Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from Armstrong's book, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1. Consider \mathbb{R} with the standard topology. Define a function $q: \mathbb{R} \to \{a, b, c\}$ by

$$q(x) = \begin{cases} a & x > 0 \\ b & x = 0 \\ c & x < 0 \end{cases}$$

Let \mathcal{P} be the associated partition. Describe the quotient topology on \mathcal{P} . ¹

 \Box

Problem 2. Give examples of maps $\mathbb{R} \to \mathbb{R}$ that have the following properties.

- (a) Closed, but not continuous.
- (b) Continuous, but neither open nor closed.²

 \Box

Problem 3. Let X be the space of unordered pairs of points on the circle.

- (a) Describe X as a quotient space (of what?).
- (b) Identify X with a space we've seen before.

 \square

Problem 4 (Armstrong 4.31). Assume G acts on a space X. For $x \in X$ define its stabilizer

$$G_x = \{g \in G : g(x) = x\}.$$

- (a) Show that the stabilizer of any point is a closed subgroup of G when X is Hausdorff.
- (b) Show that points in the same orbit have conjugate stabilizers for any X. 3

Solution. \Box

Problem 5 (Armstrong 4.32). Assume G is compact, X is Hausdorff, and G acts transitively on X. Show that X is homeomorphic to the orbit space G/G_y , where G_y is the stabilizer of some $y \in X$.

Solution. \Box

Problem 6. Determine the orbit spaces for the Frieze groups (there are 7) acting on an infinite strip $\mathbb{R} \times [0,1]$. You do not need to give careful proof, but you should give some explanation.⁴

Solution. \Box

¹Hint: it is one we've seen before.

²Hint: Perhaps before thinking about a formula it is worth drawing a picture of what a function with this property might look like.

³Recall that subgroups H, K of a group G are conjugate if there exists $a \in G$ so that $H = aKa^{-1}$.

⁴Take a look at the Wikipedia page on "Frieze Groups"