TEAM MEMBERS

María José García Daniel Murillo Paul Garay Roberto Barrón

PREDICTING BREAST CANCER

with Machine Learning

https://github.com/MajoGarciaMontes/FINAL-PROJECT

01

Objective / main questions

02

Architecture of our ML solution

03

Data gathering and cleansing

04

ML model design

05

API integration

06

Visualization / Dashboard

07

Conclusions / Next steps

OBJECTIVE / MAIN QUESTIONS

CONTEXT

- 'A woman born today has about a 1 in 8 chance of being diagnosed with breast cancer at some time during her life' National Cancer Institute
- The costs of having more advanced tests done to determine whether a tumor is benign or malignant can go up exponentially, so not every patient will be able to have them done.

OBJECTIVE

Develop a Machine learning (ML) model and train it with relevant breast cancer variables to predict the probability of developing breast cancer.

MAIN QUESTIONS TO SOLVE

- ?
- •What classification fits the patient? (benign / malignant tumor).
- •Which is the best model to use?
- What is the accuracy of the classification?

ARCHITECTURE OF OUR ML SOLUTION

During the last 6 months we have learned to create data solutions:

PROJECT PROPOSAL

ETL

ML DESIGN

API

DASHBOARD CODING

USER TESTING PROJECT EVALUATION

DATA GATHERING / CLEANSING

GATHERING

 We were looking for a dataset with relevant information and with a significant size to train the data with ML.

University of Wisconsin (DS) repository

FORMAT

CSV file 569 datapoints

SIZE

30 variables of characteristics of the tumor and the final diagnosis

CONTENT

LEANSING

- 1) Cleansing for database creation
 - Drop of columns without data
 - Check for missing values
- 2) Cleansing for ML model
 - Pre-process of categorical data
 - Drop of unnecessary columns

ML MODEL DESING

	Precision	Recall	F1-score
BENIGN	0.97	0.97	0.97
MALIGNANT	0.96	0.94	0.95
Accuracy	0.97		

RANDOM FOREST

	Precision	Recall	F1-score
BENIGN	0.99	0.98	0.98
MALIGNANT	0.96	0.98	0.97
Accuracy	0.98		

The model is **accurate**

for both benign & malignant tumor. Its predictions are nearly always correct with high

precision scores and the model correctly finds nearly all the true 'malignant tumors' as the recall scores were

extremely high.

WHY IT IS IMPORTANT TO LOOK FOR THE HIGHEST PREDICTION RECALL?

The costs of mis-classifying a 'malignant tumor' as a 'benign tumor' are extremely high. It was not acceptable that this kind of tool could misdiagnose a patient with cancer as a 'healthy patient' and send them home without treatment.

API INTEGRATION

WHAT?

Flask API that allows users to submit input data for a breast cancer prediction and returns the scores of the ML model.

VISUALIZATION / DASHBOARD

- •Friendly and simple, empowered by a potent ML model.
- •Allows users (doctors) to **make decisions** before recommending more expensive tests

- 30 inputs to fill out and compare the patient's tumor vs. prediction model
- Charts show how trustworthy our model is
- Prediction result and recommendation

CONCLUSIONS / NEXT STEPS

- Our model was successful on learning with the provided dataset and developing a high level of prediction of breast cancer.
- The random forest model achieved the highest accuracy, precision, f1-scores and recall vs.
 logistic regression.
- ML has the potential to reduce costs while still being reliable for screening breast cancer.

NEXT STEPS

- Having more recent data could improve our precision and make our model be more in touch with today.
- Having more feature variables could improve the model scores or even work better with other ML models, such as a Neural Network.

ANY QUESTIONS?

