

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2012 الموضوع

9	المعامل	الرياضيات الرياضيات	المادة
4	مدة الإنجاز	شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	الشعب(ة) أو المسلك

- La durée de l'épreuve est de 4 heures
- L'épreuve comporte cinq exercices indépendants deux à deux.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat
 - Le premier exercice se rapporte aux structures algébriques
 - Le deuxième exercice se rapporte aux nombres complexes
 - Le troisième exercice se rapporte à l'arithmétique
 - Le quatrième exercice se rapporte à l'analyse
 - Le cinquième exercice se rapporte à l'analyse

L'USAGE DES CALCULATRICES NON PROGRAMMABLES EST AUTORISE

L'usage de la couleur rouge n'est pas permis

Premier exercice: (3.5 points) Les deux parties I et II sont indépendantes

I-Pour tout a et b de l'intervalle $I = [1, +\infty[$ on pose: $a \perp b = (\sqrt{a} + \sqrt{b} - 1)^2$

- 0.5 1) Montrer que \perp est une loi de composition interne dans I
- 0.5 2) Montrer que la loi \perp est commutative et associative.
- 0.25 3) Montrer que (I, \perp) admet un élément neutre.

II-On rappelle que $(M_2(\Box),+,\times)$ est un anneau unitaire.

On considère l'ensemble $E = \left\{ M(x) = \begin{pmatrix} x & 2(x-1) \\ 0 & 1 \end{pmatrix} / x \in \square^* \right\}$

- 0.5 1) Montrer que E est une partie stable de $(M_2(\square),\times)$
 - 2) On considère l'application $\varphi \colon \Box^* \to E$ $x \mapsto M(x)$
- 0.5 a Montrer que φ est un isomorphisme de (\square^*,\times) vers (E,\times) .
- 0.5 b En déduire la structure de (E,\times) .
- 0.75 c- Montrer que l'ensemble $H = \left\{ \begin{pmatrix} 2^n & 2^{n+1} 2 \\ 0 & 1 \end{pmatrix} / n \in \square \right\}$ est un sous groupe de (E, \times)

Deuxième exercice : (3.5 points) les parties I et II sont indépendantes

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$

- **I-** On considère dans l'ensemble \Box l'équation : (E) $z^2 4\left(1 + \frac{2}{3}i\right)z + \frac{5}{3} + 4i = 0$
- 1) a-Vérifier que $z_1 = 1 + \frac{2}{3}i$ est une solution de l'équation (E)
- 0.25 b- Montrer que la deuxième solution de l'équation (E) est $z_2 = 3z_1$
 - 2) Soit θ un argument du nombre complexe z_1
- Ecrire en fonction de θ la forme trigonométrique du nombre complexe $\frac{5}{3} + 4i$
 - II- On considère trois points distincts deux à deux A , B et Ω , d'affixes respectifs les

RS25

الامتحان الوطني الموحد للبكالوريا –الدورة الاستدراكية كلاك – الموضوع – مادة: الرياضيات – شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

nombres complexes a, b et ω

Soit r la rotation de centre Ω et d'angle $\frac{\pi}{3}$. On pose P = r(A) et B = r(Q)

et soient p et q les affixes respectifs des points P et Q

0.5 1) a- Montrer que :
$$p = \omega + e^{i\frac{\pi}{3}}(a-\omega)$$
 et $q = \omega + e^{-i\frac{\pi}{3}}(b-\omega)$

0.25 b-Montrer que :
$$\frac{1 - e^{i\frac{\pi}{3}}}{1 - e^{-i\frac{\pi}{3}}} = e^{i\frac{4\pi}{3}}$$

0.5 c- Montrer que :
$$\frac{p-a}{q-b} = \frac{\omega-a}{\omega-b}e^{i\frac{4\pi}{3}}$$

2) On suppose que
$$\frac{\omega - a}{\omega - b} = e^{i\frac{2\pi}{3}}$$

- 0.25 a-Montrer que APQB est un parallélogramme.
- 0.75 b- Montrer que $\arg\left(\frac{b-a}{p-a}\right) = \frac{\pi}{2} \left[2\pi\right]$, en déduire que APQB est un rectangle.

Troisième exercice: (3 points)

- 0.25 1) a-Vérifier que le nombre 503 est premier.
- 0.75 b-Montrer que $7^{502} \equiv 1 [503]$; en déduire que $7^{2008} \equiv 1 [503]$
 - 2) On considère dans \Box 2 l'équation (E) : 49x 6y = 1
- Sachant que (1,8) est une solution particulière de l'équation (E); résoudre dans \square^2 l'équation (E) en précisant les étapes de la résolution.
 - 3) On pose $N = 1 + 7 + 7^2 + \dots + 7^{2007}$
- 0.25 a-Montrer que le couple $(7^{2006}, N)$ est solution de l'équation (E)
- b- Montrer que $N \equiv 0$ [4] et $N \equiv 0$ [503]
- 0.25 c- En déduire que le nombre N est divisible par 2012

Quatrième exercice:(7.5points)

- **I** Soit *g* la fonction numérique définie sur $[0, +\infty[$ par : $g(x) = \ln(1+x) \frac{x}{1+x}$
- 0.5 1) Etudier les variations de g sur $[0,+\infty[$

RS25

الامتحان الوطني الموحد للبكالوريا –الدورة الاستدراكية كلاك – الموضوع – مادة: الرياضيات – شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

- 0.5 2) En déduire le signe de g(x) sur l'intervalle $[0, +\infty]$
 - **II** Soit f la fonction numérique définie sur \Box par : $f(x) = e^x \ln(1 + e^{-x})$
- 1 1) Montrer que $\lim_{x \to \infty} f(x) = 1$ et $\lim_{x \to \infty} f(x) = 0$
- 0.5 2) Montrer que pour tout réel x on a : $f'(x) = e^x g(e^{-x})$
- 0.5 3) Dresser le tableau de variations de *f*
- 4) Construire la courbe (C) représentative de la fonction f et la courbe (C') représentative de la fonction (-f) dans le même repère $(O; \vec{i}, \vec{j})$. (on admet que -0,7 est une valeur approchée de l'abscisse du seul point d'inflexion de la courbe (C))
- 0.75 | 5) Montrer que pour tout x de l'intervalle [-1,0] on a : $0 < f'(x) \le g(e)$
- 0.75 6) Montrer que l'équation f(x)+x=0 admet un solution unique α dans \square et que $-1<\alpha<0$
- 7) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0 = 0$ et $u_{n+1} = -f(u_n)$ pour tout n de \mathbb{N}
- 0.5 a-Montrer que : $(\forall n \in \square)$; $-1 \le u_n \le 0$
- 0.75 b- Montrer que : $(\forall n \in \square)$; $|u_{n+1} \alpha| \le g(e)|u_n \alpha|$
- 0.5 c-En déduire que : $(\forall n \in \square)$; $|u_n \alpha| \le (g(e))^n$
- 0.25 d- Sachant que g(e) < 0,6; calculer $\lim_{n \to +\infty} u_n$

Cinquième exercice : (2.5 points)

- On considère la fonction F définie sur $]0,+\infty[$ par : $F(x) = \int_{\frac{1}{x}}^{x} \frac{\ln t}{1+t^2} dt$
- **0.25 1)** Calculer *F*(1)
- 0.75 2)a-Montrer que F est dérivable sur $]0,+\infty[$ et calculer F'(x)
- 0.5 b- En déduire que pour tout x de l'intervalle $]0,+\infty[$ on a : F(x)=0
- 0.5 3) En utilisant une intégration par parties , montrer que :

$$(\forall x > 0) ; F(x) = \left(Arc \tan x + Arc \tan \frac{1}{x}\right) \ln x - \int_{\frac{1}{x}}^{x} \frac{Arc \tan t}{t} dt$$

- 0.25 4) Montrer que : $(\forall x > 0)$; $Arc \tan \frac{1}{x} = \frac{\pi}{2} Arc \tan x$
- 0.25 Shear 5) Déduire que : $(\forall x > 0)$; $\ln x = \frac{2}{\pi} \int_{\frac{1}{x}}^{x} \frac{Arc \tan t}{t} dt$