	Reg. No							
B.Tech	DEGRÉE E	XAMINATI	ON, N	OVEM	BER 202	3	1.	23
		Fifth Semeste				3 25	11/1	200
1900	C301T - FOR	MALLANGII	AGE AN	ID ATIT	OMATA		1.	
	candidates admitt) X	4 W	
(For the C	OPE	N BOOK EXAM	INATION	1			^	
NT (1	8 CS	C301	TO	(18))
Note: i. Specific approved THI	PFF text hooks (F	Printed or photoco					<u> </u>	
ii. Handwritten class note	es (certified by the	faculty handling	the cours	e / Head	of the Depart	ment).		
Time: 3 Hours						Max.	Mark	s: 100
	Answer	FIVE Questions				Mark	ks BL	CO
_H		the mandatory qu						
A software engineer in In initial phase the rustart with a letter (a-occurrences of letters	le for naming an z or A-Z). After	identifier is set.	The rules	are an 10	ientifier musi	E .	3	1
a) Design a E- NFA Marks)	using Thompson	a's Construction	for the ic	lentified	grammar (5	;	16)	
b) Convert the E- NFA c) Check whether the	string "abc2" is a	ccepted by the lan		3 Marks)				
ii. Which one is an equiv (A) Letter(Letter digit)*		ression for the ide (B) Letter (D) (letter	digit*			1	1	1 2
in. Give an example of va	alid that belongs t	to the language.		•		1	1	1
(A) ab		(B) abc						
(C) 1		(D) aa				10	3	2
2 i. Consider the gramman S → NP VP	r given below:	this a the				18	3	2
$S \rightarrow NP VP$			man					
$S \rightarrow VP$	Verb → book	k include read						
NP → Det NOM	Aux → does							
NOM → Noun NOM → Noun NOI	V							
VP → Verb								
VP → Verb NP								
2. Simplify the g	nals and non-term grammar (6 Mark rammar to CNF (above grammar c	s) 6 Marks)				J		
4. Check if the and the man re	ead a book" (2 M	arks)	,8		* 1			
ii. What can be told abo	ut the above gram	nmar?				1	1	1
(A) Certain terminals	in the grammar	(B) Few t	_		e inherently			
cannot be derived			nt in the g 11 useless					
(C) It has 3 unit produ						1	1	1
ii. I: Regular grammars II: Context free gram	are a subset of Co mars are accepted	ынехі гтее Grami l by FSA	Hars				•	-
(A) I is true and II is:	false	(B) Both	I and II a	re true				
(C) II is true and I is	false	(D) Both	are false					
2								

_* de	onsider following grammar celarationlist → declaration declarationlist celaration → type idlist T		18	3	2	
id ty	list \rightarrow idlist ',' I I pe \rightarrow int float char	•				
I - (a						
(b (c (d) Convert to GNF (6 marks)) Construct a PDA for that grammar (6 i	marks) nce and Rejection by PDA (2 marks)				
ji. A		1.0	1	1	2	
🥟 (A) A->BCa or B-> b) A->B or B->a	(B) A->BC or A->A (D) A->BC or A->a				
	hich of the following statement is false?		1	1	2	
	A context free language is also a regular language A recursive language is also a regular language	(B) A context free language is also recursive enumerable language (D) Both recursive and context free				
4 id	Consider following push down automata (H	language are regular language	18	<u> </u>	4 10	3
a.	$\delta(q_1, \epsilon, Z) \rightarrow (q_1, SZ)$ $\delta(q_1, 20, N) \rightarrow (q_1, \epsilon)$	idit. 1 II, t then, g = goto)	10		•	5
s:	$\delta(q_1,), Y) \rightarrow (q_1, \varepsilon)$					
	$\delta(q_1, >, X) \rightarrow (q_1, \varepsilon)$ $\delta(q_1, 10, W) \rightarrow (q_1, \varepsilon)$					
	$\delta(q_1, a, V) \rightarrow (q_1, \varepsilon)$					
	$\delta(q_1, t, T) \rightarrow (q_1, \varepsilon)$ $\delta(q_1, g, G) \rightarrow (q_1, \varepsilon)$					
	$\delta(q_1,i,S) \rightarrow (q_1, DTGN)$				20	
	$\delta(q_1, (D) \rightarrow (q_1, VXWY)$					
	(a) Convert the given PDA to CFG (10)(b) Simplify the grammar (4)(c) Identify the string and write the ID for	string acceptance (4)				
مننهط	What kind of Data Structure used in PDA?		1		1	2
	(A) Stack (C) Tree	(B) Queue (D) List				
dii.	How many tuples are there in PDA?	(2) 2.00	1		1	2
6	(A) 6	(B) 8	_		-	-
a	(C) 7	(D) 4				
5 je	some gallon of milk and bread. First she be quantity of milk. (2 marks)	the given scenario. Jay visits a store to buy uys milk followed by bread, which is twice the	18 :		4	3
	b) Design a TM along with transition table c) Give a sample acceptance and rejection	string for the constructed TM (4 mark)				
a . rii.	A: The Machine Halts when there is no pos B: The TM final state has an outgoing tran Which of the following is true?	ssible transition to follow sition	1		1	3
	(A) A and B are true (C) A is true and B is false	(B) A and B are false(D) A is false and B is true			9	
iii.	Turing Machine (TM) tape head can move (A) Multi-tape TM	in left, right, up or down direction in (B) Multi-track TM	1		1	3
	(C) Multi-head TM	(D) Multi-dimensional TM				

6	A financial trader made consecutive investme fall, he discovered that he could always earn quantity n, provided the quantity of the first st a) Provide the investor with a diagrammati machine that would only take investments if and would therefore provide a respectable pro b) Check whether the string "aaabbccc" is acc	reasonably by investing in a third stock of tock remained the same. c representation of an appropriate Turing they met the previously stated conditions fit. (10 marks)	18	4	4
Sii.	is a special symbol in seven tuple repres (A) F (C) Q	entation of Turing Machine used for blank (B) B (D) ∑	1	1	4
iii.	Which type of language is recognized by a Tu (A) Context-Free Language (C) Recursively Enumerable Language	ring Machine? (B) Context-Sensitive Language (D) Regular Language	1	1	4
7 i.	account of this, a local sport is organized by the villagers. The selection of players in this year happens according to the given table (Here 0 indicates women and 1 indicates men). The positioning of the players is made in such a way that at any position, if village A places a set of players from set i, then village B should also place the set of players from set I only. This pattern will repeat for other sets also. i A B				5
	a) An audience claims that there are at least two ways in which the men and women of villages A and B can be placed after fulfilling the condition of the game. Is this true? If yes, give the sequence. (10 marks) b) Assuming the above given table is a MPCP problem, convert it into PCP. (4 marks) c) Construct a TM, for another game in which if village A places men then village B should place woman and vice versa. Design a TM to help village B in doing so. (4				8
b.	marks) i. Consider the statements: S1: All recursively enumerable languages are countable. S2: Set of all non-regular languages over the alphabet {a,b,c} is recursively enumerable. (A) Both S1 and S2 are true (B) Only S1 is true (C) Only S2 is true (D) Both S1 and S2 are false			1	5
iji.	Which type of problems can be included in cla (A) Sometimes solvable in polynomial time	(B) Always solvable in linear time	1	1	5
	(C) Always solvable in exponential time	(D) Always solvable in polynomial time			

* . = €