

General information

Designation

Ochroma spp. (MD) L

Tradenames

FLEXICORE, CONTOURKORE, PRO-BALSA

Typical uses

Cores for sandwich structures; model building; floatation; insulation;

Composition overview

Compositional summary

Renewable content

Cellulose/Hemicellulose/Lignin/12%H2O	
Material family	Natural
Base material	Wood (tropical)

100

%

Composition detail (polymers and natural materials)

Wood	100	%
------	-----	---

Price

Price	* 3 04	- 4	4.88	USD/lb
1 1100	0.04			000/10

Physical properties

Density	0.00614	-	0.00759	lb/in^3
Relative density	0.1	-	0.15	
Cells/volume	8.19e6	-	1.64e7	/in^3
Anisotropy ratio	10	-	30	

Mechanical properties

0.609	-	0.754	10^6 psi
* 1.65	-	2.03	ksi
2.32	-	3.63	ksi
* 1.03	-	1.26	% strain
1.23	-	1.81	ksi
1.09	-	1.31	ksi
0.493	-	0.609	10^6 psi
2.61	-	3.19	ksi
* 0.045	-	0.0551	10^6 psi
* 0.464	-	0.566	ksi
* 0.0116	-	0.0145	10^6 psi
* 0.35	-	0.4	
	* 1.65 2.32 * 1.03 1.23 1.09 0.493 2.61 * 0.045 * 0.464 * 0.0116	* 1.65 - 2.32 - * 1.03 - 1.23 - 1.09 - 0.493 - 2.61 - * 0.045 - * 0.464 - * 0.0116	* 1.65

SIEDUPIICK					
Shape factor	5.5				
Hardness - Vickers	* 0.35	-	0.43	HV	
Hardness - Brinell	* 1.35	-	1.64	ksi	
Hardness - Janka	* 78.7	-	96.7	lbf	
Fatigue strength at 10^7 cycles	* 0.783	-	0.957	ksi	
Mechanical loss coefficient (tan delta)	* 0.0122	-	0.015		
Densification strain	0.65	-	0.75		
Differential shrinkage (radial)	* 0.05	-	0.06	%	
Differential shrinkage (tangential)	* 0.07	-	0.09	%	
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%	
Tangential shrinkage (green to oven-dry)	4	-	4.8	%	
Volumetric shrinkage (green to oven-dry)	6.8	-	8.3	%	
Work to maximum strength	* 0.157	-	0.192	ft.lbf/in^3	
Impact & fracture properties					
Fracture toughness	0.455	-	0.546	ksi.in^0.5	
Thermal preparties					
Thermal properties Glass temperature	171	_	216	°F	
·	248		284	°F	
Maximum service temperature	* -99.4	-		°F	
Minimum service temperature		-	-9.4		
Thermal conductivity	* 0.052	-	0.0693	BTU.ft/hr.ft^2.°F	
Specific heat capacity	0.396	-	0.408	BTU/lb.°F	
Thermal expansion coefficient	* 1.11	-	6.11	μstrain/°F	
Electrical properties					
Electrical resistivity	* 6e13	-	2e14	µohm.cm	
Dielectric constant (relative permittivity)	* 2.45	-	3		
Dissipation factor (dielectric loss tangent)	* 0.021	-	0.026		
Dielectric strength (dielectric breakdown)	123	-	124	V/mil	
Magnetic properties					
Magnetic type	Non-mag	netio	;		
Ontical properties					
Optical properties	0				
Transparency	Opaque				
Durability					
	Limited u	100			
Water (fresh)	Littiled	130			
Water (fresh) Water (salt)	Limited t				

Strong acids	Unacceptable
Weak alkalis	Limited use
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 4.99e3	-	5.5e3	BTU/lb
CO2 footprint, primary production	* 0.574	-	0.633	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 427	-	472	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0745	-	0.0823	lb/lb
Fine machining energy (per unit wt removed)	* 2.43e3	-	2.69e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.424	-	0.469	lb/lb
Grinding energy (per unit wt removed)	* 4.66e3	-	5.15e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.813	-	0.899	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse	
Reference	
Shape	