

UNIVERSITY OF TEHRAN Report for Computer Assignment 5 State Machine Coding, Pre- and Post-Synthesis Instructor: Dr. Navabi Danial Saeedi

Problem a: 10010 detector

Moore State Diagram

Verilog Code

```
timescale Ins/Ins
module moore10010(input clk,rst,j, output w);
reg [2:0] ns,ps;
parameter [2:0] A = 3'b0,B = 3'b001,C = 3'b010,D = 3'b011,E = 3'b100,F = 3'b101;
//Combinational
always @(ps,j) begin
ns = A;
case(ps)
A : ns = j ? B : A;
B : ns = j ? B : D;
C : ns = j ? B : D;
D : ns = j ? B : A;
E : ns = j ? B : D;
default: ns = A;
endcase
end
assign w = (ps == F) ? 1'b1 : 1'b0;
//Sequential
always @(posedge clk,posedge rst) begin
if(rst)
ps <= A;
else
ps <= ns;
end
endmodule</pre>
```

Part i.

Testbench

Simulation Result

Part ii.

Flow Summary

<<Filter>>

Flow Status Successful - Fri Jun 11 13:25:04 2021
Quartus Prime Version 20.1.0 Build 711 06/05/2020 SJ Lite Edition

Revision Name moore10010
Top-level Entity Name moore10010
Family Cyclone IV GX
Device EP4CGX15BF14A7

Timing Models Final

Total logic elements 5 / 14,400 (< 1 %)

Total registers 5

Total pins 4 / 81 (5 %)

Total virtual pins 0

Total memory bits 0 / 552,960 (0 %)

Embedded Multiplier 9-bit elements 0

 Total GXB Receiver Channel PCS
 0 / 2 (0 %)

 Total GXB Receiver Channel PMA
 0 / 2 (0 %)

 Total GXB Transmitter Channel PCS
 0 / 2 (0 %)

 Total GXB Transmitter Channel PMA
 0 / 2 (0 %)

 Total PLLs
 0 / 3 (0 %)

Part iii.

Testbench

```
timescale 1ps/1ps
module moore10010TB();
reg cclk = 0,jj,rrst;
wire pre;
wire post;
moore10010 CUT1(cclk,rrst,jj,pre);
moore10010_synth CUT2(cclk,rrst,jj,post);
always #50 cclk = ~cclk;
initial begin
#1 rrst = 1;
#10 rrst = 0;
#20 jj = 1;
#30 jj = 0;
#200 jj = 1;
#100 jj = 0;
#110 jj = 0;
```

Simulation Result

As you can see, the waveform of pre and post synthesis are the same.

Problem b: 10010 detector

Mealy State Diagram

Verilog Code

```
timescale 1ps/1ps
module mealy10010(input clk,rst,j, output w);
reg [2:0] ns,ps;
parameter [2:0] A = 3'b0,B = 3'b001,C = 3'b010,D = 3'b011,E = 3'b100;

//combinational
always @(ps,j) begin
ns = A;
case(ps)
A : ns = j ? B : C;
C : ns = j ? B : C;
C : ns = j ? A : E;
E : ns = j ? A : E;
E : ns = j ? B : C;
default: ns = A;
endcase
end

//sequential
always @(posedge clk,posedge rst) begin
if(rst)
ps <= A;
else
ps <= ns;
end
endmodule
endmodule</pre>
```

Part i.

Testbench

```
itimescale ins/ins
module mealy10010TB();
reg cclk = 0,jj,rrst;
wire ww;
mealy10010 CUT1(cclk,rrst,jj,ww);
always #50 cclk = ~cclk;
initial begin

#1 rrst = 1;
#10 rrst = 0;
#10 #20 jj = 1;
#30 jj = 0;
#200 jj = 1;
#110 jj = 0;
```

Simulation Result

Part ii.

Flow Summary	
< < <filter>></filter>	
Flow Status	Successful - Fri Jun 11 16:54:25 2021
Quartus Prime Version	20.1.0 Build 711 06/05/2020 SJ Lite Edition
Revision Name	mealy10010
Top-level Entity Name	mealy10010
Family	Cyclone IV GX
Device	EP4CGX15BF14A7
Timing Models	Final
Total logic elements	5 / 14,400 (< 1 %)
Total registers	4
Total pins	4 / 81 (5 %)
Total virtual pins	0
Total memory bits	0 / 552,960 (0 %)
Embedded Multiplier 9-bit elements	0
Total GXB Receiver Channel PCS	0/2(0%)
Total GXB Receiver Channel PMA	0/2(0%)
Total GXB Transmitter Channel PCS	0/2(0%)
Total GXB Transmitter Channel PMA	
Total PLLs	0/3(0%)

,

Part iii.

Testbench

```
itimescale 1 ns/ 1 ps
module mealy10010TB();
reg cclk = 0,jj,rrst;
wire pre;
wire post;
mealy10010_pre CUT1(cclk,rrst,jj,pre);
mealy10010_CUT2(cclk,rrst,jj,post);
always #50 cclk = ~cclk;
initial begin

#1 rrst = 1;
#10 rrst = 0;
#20 jj = 1;
#30 jj = 0;
#30 jj = 0;
#410 jj = 0;
#110 jj = 0;
```

Simulation Result

As you can see, the waveform of pre and post synthesis are the same.

Problem C: Compare Moore and Mealy Machine

Testbench

Simulation Result

,

Part i.

Part ii.

Part iii.

By adding delay to diff, the differences are due to changes on the inputs only:

As you can see there is no glitch anymore.