Ordinary Differential Equations
Achilles D. Speliotopoulos

Achilles D. Marional Equations

The need to solve ordinary differential equations is.

Pervasive in all fields of physican ranging from Newtonian dynamics

Mewhonian dynamics

Met = 5 F(r, df, t)

to thermodynamice:

dE = TdS - pdV

to quantum mechanics:

- the del + VY = EY.

For the next few weeks we will focus on the solution of ordinary differential equations.

F(y, &, , , , , , , , x) = 0

in which we wish to determine it as a function of a single variable x. This cannot be done in general, and in fact there isn't even a methodology to solvery these equations that will for all ordinary differential equations. With the exception of a few special cases, we are left with solving each on a case-by-case basis. We start with fermino logy. The <u>order</u> of the differential equation is the highest order derivative of y that appears in F, The differential equation is linear if Fis.

a linear function of y, dy, ax axin, Dehruise,

it is nonlinear.

The differential equation is homogeneous if- $F(0, 0, \chi) = 0.5$ o there is in the moderne or.

First order ODEs First order differential equations have the form, $\frac{dy}{dx} = M(y, x)$ It is not hard to think of a 1st order ODE That cannot be solved analytically; such as: If, however, M(y,x) is separable into a product of two functions: Mly,x)=Y(y)X(a), dy = Ty X(x), I dy = Xwdx so that

Then: $\int_{y_0}^{y} d\tilde{y} = \int_{x_0}^{\chi} X(\tilde{x}) d\tilde{x}.$

and we can see that a unique solution of y is obtained if the boundary condition: is given. What is left is to do the integral - often not possible in closed form - and then solve for y in terms of x, which is also not necessarily possible. dy = y=(1-p) /1-y1+p 11 (with y(0)=0. Then: $\frac{y^{-\frac{1}{2}}dy}{y^{-\frac{1}{2}}y^{+\frac{1}{2}}} = dx$ $Z = \int_{0}^{4} \frac{s^{\frac{1}{2}(p-1)} ds}{\sqrt{1-sp+1}}$ DMU = 52(p+1) wendu = \frac{1}{2}(p+1) \s \frac{1}{2}(p-1) ds x = 2 | <u>cosudu</u> = 2 u pti | <u>Ti-sin</u>²u pti $\frac{1}{2}(pt1)\chi = u \Rightarrow \sin\left(\frac{1}{2}(pt1)\chi\right) = \sin u$ $sin\left[\frac{1}{2}(pt)\chi\right] = y'_{2}(pt)$ $= y'_{2}(pt)$ $= y'_{2}(pt)$ $= y'_{2}(pt)$

$$E = \frac{1}{2}m\left(\frac{dx}{dt}\right)^2 + V(x)$$

$$\frac{dx}{dt} = \pm \sqrt{\frac{2}{m}(E - V(\omega))}$$

$$V(x) = \frac{1}{2} m w^2 x^2 \quad \chi(0) = 0$$

$$t = \pm \int_{0}^{\infty} \frac{dx}{\sqrt{\frac{2\pi}{m} - w^{2}x^{2}}} = \pm \int_{0}^{\infty} \frac{dx}{\sqrt{1 - \frac{mw^{2}x^{2}}{2E}}}$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U = \sqrt{2} W \times du = \sqrt{2} W \times du$$

$$U =$$

Linear 1st order OPE For linear ordinary differential equations we can also find a general bolution. The most general linear ODF has she form P(x) dy + g(x)y = f(x) but since we can divide out by P(x), Ay + Q(X)y = H(X). To solve this equation, we use an integration factor. Namely, we note that add(egy) = eddy + eddyy. Ed & (edy) = # # # # by choosing: dg = B(x) the ODE reduces to e-8 d (e-84) = H(x)

separable. Then * which is

$$\frac{1}{4}(e^{2}y) = e^{2}H(x)$$

so flat

$$e^{g}y = K + \int_{x_{0}}^{x} e^{g(x)}H(x)dx$$

and k is an integration constant. Then:

$$y(x) = K e^{g(x)} + e^{g(x)} \int_{x_0}^{x} e^{g(\widehat{x})} H(\widehat{x}) d\widehat{x}$$

Now, we take as out bounday condition's

Than:

$$\int y(x) = y_0 e^{-\left(\frac{1}{2}(x) - g(x)\right)} + \int_{x_0}^{x_0} -\left[\frac{1}{2}(x) - g(x)\right] + \left(\frac{1}{2}(x) - g(x)\right] + \left(\frac{1}{2}(x) - g(x)\right) + \left(\frac{1}{2}(x) - g(x)$$

g(x) is determined shrough: The equation:

Ol:

$$g(x) - g(x_0) = \int_{x_0}^{x} Q(s) ds$$

is independent of the boundary condition to,
This is called the inhomogeneous polishim,

in physics. Then: $|y(x) = y_0 \exp\left[-\int_{x_0}^{x} \omega dx\right] + \int_{x_0}^{\infty} G(x, x) H(x) dx$

V(W = Vo sin (wt)

with the boundary condition. (or

with all condition)

g(0) = 90

$$\frac{dg + f}{dt} = \frac{V_0 \sin(\omega t)}{R}$$

$$T = RC$$

and:
$$g(t) = go exp \left[-\int_0^t \frac{ds}{t} \right] + \int_0^\infty G_1(t, \overline{t}) N(\overline{t}) d\overline{t}$$

$$-(\underline{t-t}) N(t-\overline{t})$$

$$G_1(t,\overline{t}) = \exp\left[-\int_{\overline{t}}^{t} \frac{dt}{dt}\right] O(t-\overline{t}) = e^{-\left(\frac{t-\overline{t}}{2}\right)} O(t-\overline{t})$$

$$g_{h}(t) = g_{0} e^{t} Z$$

$$g_{p}(t) = \int_{0}^{\infty} V(t) e^{-(t-t')} dt$$

$$= V_{0} \int_{0}^{\infty} \sin(\omega t') e^{-(t-t')} dt$$

$$= V_{0} \int_{0}^{\infty} \sin(\omega t') e^{-(t-t')} dt$$

$$= V_{0} e^{t} \int_{0}^{\infty} e^{t} Z \sin(\omega t') dt$$

and y(x) = yh(x) + yp(x), This is true in general for linear ODEs. The solution can always be written as a superposition of a homogeneous and an inhomogeneous solution. In terms of physics, the inhomogeneous solution depends on Hex, which can often be identified as an external, driving Jerm, an when x = 12, yo is identified as the steady state Solution. Then Yn is the transient solution. · By making use of she heariside feunchion $D(x) = \begin{cases} 1 & \text{if } x < 1 \\ 0 & \text{if } x < 0. \end{cases}$

we can write: $y_{\ell}(x) = \int_{\mathcal{X}}^{\infty} H(\hat{x}) \exp\left[-\int_{\hat{x}}^{x} dx\right] dx - \hat{x} d\hat{x}$

 $y_{p}(x) = \int_{X_{0}}^{X} H(\tilde{x}) \exp\left[-\int_{\tilde{x}}^{X} G(s)ds\right] \Theta(x-\tilde{x}) d\tilde{x} + \int_{X}^{X} H(\tilde{x}) \exp\left[-\int_{\tilde{x}}^{X} G(s)ds\right] \Theta(x-\tilde{x}) d\tilde{x}$ $\chi_{0} \qquad \chi > \tilde{\chi}$

The function? $G(x,\hat{x}) = exp\left[-\int_{\hat{x}}^{x}Qsds\right]O(x-\hat{x})$

is ralled a Green's fanction, which plays an essential

$$\begin{aligned} & = \bigvee_{R} e^{\frac{1}{2}x} \left(e^{2i\omega t} - e^{2i\omega t} \right) e^{\frac{1}{2}x} dt \\ & = \bigvee_{R} e^{\frac{1}{2}x} Re \left[\frac{1}{1} e^{(2i\omega + \frac{1}{2})t} dt \right] \\ & = \bigvee_{R} e^{\frac{1}{2}x} Re \left[\frac{1}{1} e^{(2i\omega + \frac{1}{2})t} dt \right] \\ & = \bigvee_{R} e^{\frac{1}{2}x} Re \left[\frac{1}{1} e^{(2i\omega + \frac{1}{2})t} - \frac{1}{1} dt \right] \\ & = \bigvee_{R} e^{\frac{1}{2}x} \left[\frac{1}{1} e^{\frac{1}{2}x} e^{\frac{1}{2}(i\omega + \frac{1}{2})t} - \frac{1}{1} e^{\frac{1}{2}(i\omega +$$

Bolt) = 123 [w[ett = cos(wt)] + = sin(wt)] Vo 1+lwc)2[w[ett = cos(wt)] + = sin(wt)] Vo Notice that 9,00=0 as expected and gn(0)=90. Notice also sheet as t >> T, Juli 20, white go(t) = T Yo [sin(wt) - wt cos(wt)] Thus, gh(t) is the transient solution—while gpit)
depends on the undial conductions—while gpit)
is called the driven solution sine it depends on
\(\text{(t)}, \text{ does not die off w/t, and does not depend
\(\text{(t)}, \text{ does not die off w/t, and does not depend
\(\text{on the unitial conductions.}\) Non-linear First Order DDE's Grennal, non-linear ODE's are solved in a caseby-case basis. Bernoullik Egn

Bernoullis equation is she simplest generalization of a 1st order $dy + P(x)y = Q(x)y^{\eta}.$

Z=41-n Define

$$\frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{1-n}y^{n}\frac{dz}{dx}.$$

so that

$$\frac{1}{1-n}y^n\frac{dx}{dx}+P(x)y=G(x)y^n$$

$$\frac{dz}{dx} + (i-n)P(x)z = Q(x)$$

and we are back to a linear ODE, where the boundaries condition is now:

Exact Differentials

Consider the two dimensional vector field 7 (xy) = v(x,y) ê, + vz (xy) êz.

That is irrotational, or closed, if
$$\nabla x \vec{v} = 0$$

$$\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_k}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$
 $\frac{\partial v_l}{\partial x} - \frac{\partial v_l}{\partial y} = 0$

Equivalently, dF= 2Fdx + 2Fdy. = Vidx + Vzdy. The only exact vector field on the plane is. F(x,y) = constant.W.dx+Vrdy=0 $\frac{dy}{dx} = -\frac{v_1}{v_2}$, which given she pash what F depends on. is the first law. In a process for which E=constant).
Who internal energy remains constant) 0=Tds-pdx ds = f PV=NFBT > For an ideal gas, ds = Uke S= Nkelo(Yo)+ So

Graphical Mediods Remember that if we have a function y(x), its graph as a function of x gives a curve: At each point, dy = dans 200 gives she slope of y witx. This observative gives a potential means to graphically sobre nonlinear, to de ontes, For many bystem, this is she only way of solvier she ODE, A general 1st order ODE has the form.

At = Mlyix). Since Myxx) is known, we know by at each point in the x-y-plane, and thus we know dy everywhere. Remembering that dy is a slope, consider the trajectory $\vec{c}=(x,y(x))$ of a particle that satisfies the ODE, Then: $\frac{dc}{dx} = (1, \frac{dy}{dx}).$ and we can graph she slope of the everywhere

Which path is taken (16 depende on the boundary condition y (xo) = 40 c(x0) = (x0, y0) Standing at shis points draw a trajectory so shat it is targent This will be the graphical polation of the ODE,

	Linear 2 nd Order ODE's
\	We will mostly be concerned with linear, 2nd order. ODE's, she most general of which has she from:
•	$\frac{dy}{dy} + p(x) \frac{dy}{dy} + g(x) \frac{dy}{dy} = \frac{1}{2} \frac{dx}{dy}$
,	The homogeneous and order ODE is often written as
	$\lambda = \frac{1}{2} $
	when it is called a Strum-Romeritle equations, we Notice that because there are linear equations, we have the shen as
	Notice that themself
	coan write then as $\angle[Y] = f(x)$
	where $P = d^2 + 9(x)d + 3(x)$
	is a linear operator. The homogeneous
	L(y)=0. Lounal of shis.
	Hen means that y lies in the kernal of this. operator.
	sperator.