超関数の理論

1 はじめに

2 層

層については、[Sh16, KS90] にまとまった解説がある.

X を位相空間とし、Open(X) で X の開集合全体のなす集合を表す。Open(X) は開集合を対象とし包含写像を射とする圏になる。

層を考える雛形として、ガウス平面上の関数環を考える。 ${f C}$ をガウス平面とする。 ${f C}$ の開集合 U に対し、

$$\mathcal{O}_{\mathbf{C}}(U) \coloneqq \{U \perp \mathcal{O}正則関数 \}$$
 (2.1)

とおく. $\mathcal{O}_{\mathbf{C}}(U)$ の加法と乗法を (f+g)(z)=f(z)+g(z), (fg)(z)=f(z)g(z) で定めることで, $\mathcal{O}_{\mathbf{C}}(U)$ は環になる.

U と V を V \subset U をみたす ${\bf C}$ の開集合とする. $f\in {\cal O}_{{\bf C}}(U)$ に対し $f|_V\in {\cal O}_{{\bf C}}(V)$ を対応させることで環の射

$$\rho_{VU} \colon \mathcal{O}_{\mathbf{C}}(U) \to \mathcal{O}_{\mathbf{C}}(V); \quad \rho_{VU}(f) = f|_{V}$$
(2.2)

が定まる. この射を包含写像のひきおこす制限射 (restriction morphism) とよぶ.

今度は U と V を $U\cap V\neq\varnothing$ をみたす ${\bf C}$ の開集合とする。複素関数論では、次の事実を学ぶ。 $f\in {\cal O}_{{\bf C}}(U),\,g\in {\cal O}_{{\bf C}}(V)$ に対し、 $U\cap V$ で f=g となるとき、 $U\cup V$ で定義された正則関数 $h\in {\cal O}_{{\bf C}}(U\cup V)$ で

$$h|_U = f, \quad h|_V = g$$

となるものがただ一つ(!)存在する.

以上の現象を完全列の言葉を用いて眺める. U と V を V \subset U をみたす $\mathbf C$ の開集合とする. 次の列を考える.

$$0 \to \mathcal{O}_{\mathbf{C}}(U \cup V) \xrightarrow{\rho_{U(U \cup V)} \oplus \rho_{V(U \cup V)}} \mathcal{O}_{\mathbf{C}}(U) \oplus \mathcal{O}_{\mathbf{C}}(V) \xrightarrow{\rho_{(U \cap V)U} - \rho_{(U \cap V)V}} \mathcal{O}_{\mathbf{C}}(U \cap V). \quad (2.3)$$

ここで、 $\rho_{U(U \cup V)} \oplus \rho_{V(U \cup V)}$: $\mathcal{O}_{\mathbf{C}}(U \cup V) \to \mathcal{O}_{\mathbf{C}}(U) \oplus \mathcal{O}_{\mathbf{C}}(V)$ は $U \cup V$ 上の関数 f に対し $f|_U$ と $f|_V$ の組 $(f|_U, f|_V)$ を対応させる射である。ただし環 A と B に対し, $A \oplus B$ は単位元を持つ環と単位元を保つ射の圏 Ring における有限積である。

環の圏についてのコメント 環の圏における積は一般には直積 $A \times B$ であり、有限の積が直和 $A \oplus B$ である.積の添字圏として有限圏を取れば $A \oplus B$ と $A \times B$ は一致する.(直和は Ring の 余積ではない!)Ring における余積はテンソル積 $A \otimes_{\mathbf{Z}} B$ である.一般に $A \times B$ と $A \otimes B$ は同形ではないため,Ring はアーベル圏ではないことにも注意.(始対象は \mathbf{Z} で終対象は $\mathbf{0}$. したがって Ring には零対象が存在しないのでアーベル圏ではないという議論もできる.)

定義 2.1. X を位相空間とする. X 上の (アーベル群の) 前層 (presheaf) $\mathcal F$ は次のデータからなる.

- X の各開部分集合 U に対するアーベル群 $\mathcal{F}(U)$
- 部分開集合の各組 $V \subset U$ に対する群準同型 $\rho_{UV} \colon \mathcal{F}(U) \to \mathcal{F}(V)$ で, 次の条件 (1)–(3) を満たすもの.
 - $(1) \mathcal{F}(\varnothing) = 0,$
 - (2) $\rho_{UU} = id$,

元 $s \in \mathcal{F}(U)$ を \mathcal{F} の U 上の切断 (section) という. $s|_V$ で $\rho_{UV}(s) \in \mathcal{F}(V)$ を表し, s の V への制限 (restriction) とよぶ.

つまり、 $\mathsf{Open}(X)$ から Ab への反変関手で始対象 \varnothing を終対象 0 にうつすものが前層である.

3 超関数

参考文献

[Sh16] 志甫淳, 層とホモロジー代数, 共立出版, 2016.

[KS90] Masaki Kashiwara, Pierre Schapira, *Sheaves on Manifolds*, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.