Définition:

un point P un repère \Re deux vecteurs \overrightarrow{R} et $\overrightarrow{M_P}$

Écriture simplifiée

 $\{V\} = \left\{ \frac{\vec{R}}{M_P} \right\}_{\mathcal{R}}$

Données

Champs de vecteurs

Propriété:

- Équiprojectivité
- \vec{R} unique et $\overrightarrow{M_P}$ tel que $\overrightarrow{M_O} = \overrightarrow{M_P} + \vec{R} \wedge \overrightarrow{PO}$
 - $\{V\}$ est un torseur dont \vec{R} résultante $\overrightarrow{M_P}$ moment résultant
 - \overrightarrow{R} et $\overrightarrow{M_P}$: éléments de réduction en P

Notation:

$$\{\tau\} = \left\{ \overrightarrow{R} \atop \overrightarrow{M_P} \right\}_P = \left\{ \begin{matrix} R_\chi & M_\chi \\ R_y & M_y \\ R_z & M_z \end{matrix} \right\}_{\mathcal{R}}$$
 Point de réduction P \uparrow \uparrow Repère Composantes de \overrightarrow{R} Composantes de $\overrightarrow{M_P}$

Relation fondamentale:

Un torseur peut s'écrire en tout point

$$\{\tau\} = \left\{\frac{\overrightarrow{R}}{M_P}\right\}_P = \left\{\frac{\overrightarrow{R}}{M_O}\right\}_O \qquad \text{Tel que } \overrightarrow{M_O} = \overrightarrow{M_P} + \overrightarrow{R} \wedge \overrightarrow{PO}$$

Opérations:

même point et même repère

• Automoment : \vec{R} . $\overrightarrow{M_P}$

• Égalité
$$\{V_1\} = \{V_2\}$$
 : $\overrightarrow{R_1} = \overrightarrow{R_2}$ et $\overrightarrow{M_{1P}} = \overrightarrow{M_{2P}}$

• Somme $\{V\} = \{V_1\} + \{V_2\}$

Résultante : $\vec{R} = \vec{R_1} + \vec{R_2}$

Moment résultant : $\overrightarrow{M_P} = \overrightarrow{M_{1P}} + \overrightarrow{M_{2P}}$

• Comoment $V = \{V_1\} \otimes \{V_2\}$

V est un scalaire : V = $\overrightarrow{R_1}$. $\overrightarrow{M_{2P}}$ + $\overrightarrow{R_2}$. $\overrightarrow{M_{1P}}$

Torseurs particuliers:

- Torseur nul : $\vec{R} = \vec{0}$ et $\overrightarrow{M_P} = \vec{0}$
 - Glisseur : $\overrightarrow{M_P} = \overrightarrow{0}$
 - Torseur couple : $\vec{R} = \vec{0}$

Axe central

Définition:

L'axe central : lieu géométrique (droite, somme de points) où \overrightarrow{R} est colinéaire à $\overrightarrow{M_P}$

Soit
$$\{\tau\}\left\{\frac{\vec{R}}{M_P}\right\}_P$$
 avec $\vec{R} \neq \vec{0}$

$$\Delta = \sum I$$
 tel que $\overrightarrow{M_I} = k\overrightarrow{R}$

Propriétés:

- Axe central : droite de vecteur unitaire \vec{R}
- Le moment du torseur est minimal sur axe central
 - K est le pas de l'axe central
- Pas d'axe central pour les torseurs dont le moment est nul