Lab 3: Interval Timer

ECEN 330

BYU Electrical & Computer Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

BYU Electrical & Computer Engineering IRA A. FULTON COLLEGE OF ENGINEERING

IRA A. FULTON COLLEGE OF ENGINEERING

Note: not all hardware devices need to connect to pins on the chip.

BYU Electrical & Computer Engineering IRA A. FULTON COLLEGE OF ENGINEERING

This timer is very similar to the counters you made in ECEN 220, except:

- Very little I/O aside from the CPU bus = this hardware was made to be controlled from software
- Has more features

Looking Inside

...from the commercial documentation...

...from the commercial documentation...

Table 4: Register Overview

Register Name	Address (hex)	Access Type	Default Value (hex)	Description
TCSR0	0x00	Read/Write	0x0	Control/Status Register 0
TLR0	0x04	Read/Write	0x0	Load Register 0
TCR0	0x08	Read	0x0	Timer/Counter Register 0
TCSR1	0x10	Read/Write	0x0	Control/Status Register 1
TLR1	0x14	Read/Write	0x0	Load Register 1
TCR1	0x18	Read	0x0	Timer/Counter Register 1

Remember we have 3 of these....

Address (hex)

0x00

0x04

80x0

0x10

0x14

0x18

TLR0

TCR0

TCSR1

TLR1

TCR1

Access Type Default Value (hex)

0x0

0x0

0x0

Read/Write

Read/Write

Read/Write

Read/Write

Read

Read

Description

Control/Status Register 0

Timer/Counter Register 0

Control/Status Register 1

Timer/Counter Register 1

Load Register 0

Load Register 1

BYU Electrical & Computer Engineering IRA A. FULTON COLLEGE OF ENGINEERING

0x0

0x0

Description

Control/Status Register 0

Timer/Counter Register 0

Control/Status Register 1

Timer/Counter Register 1

Load Register 1

Address (hex)

0x00

0x04

0x08

0x10

0x14

0x18

TLR0

TCR0

TCSR1

TLR1

TCR1

Access Type Default Value (hex)

0x0

Read/Write

Read/Write

Read/Write

Read/Write

Read

Read

Description

Control/Status Register 0

Timer/Counter Register 0

Control/Status Register 1

Timer/Counter Register 1

Load Register 1

Read/Write

Read/Write

Read/Write

Read/Write

Read

Read

0x00

0x04

0x08

0x10

0x14

0x18

TLR0

TCR0

TCSR1

TLR1

TCR1

Figure 6: Control/Status Register 0

Figure 7: Control/Status Register 1

Helpful snippet from the documentation:

- "Timer Control Status Register for timer/counter 0 (TCSR0) acts as the control and status register for the cascaded counter. TCSR1 is ignored in this mode.*"
- "TCSR1 register is used only for loading the TLR1 register in cascade mode."

Figure 6: Control/Status Register 0

Figure 6: Control/Status Register 0					
11	CASC	Read/Write	0	Enable cascade mode of timers 0 = Disable cascaded operation 1 = Enable cascaded operation	
7	ENT0	Read/Write	0	Enable Timer0 0 = Disable timer (counter halts) 1 = Enable timer (counter runs)	
5	LOAD0	Read/Write	0	Load Timer0 0 = No load 1 = Loads timer with value in TLR0	
4	ARHT0	Read/Write	0	Auto Reload/Hold Timer0	
1	UDT0	Read/Write	0	Up/Down Count Timer0	

Reload

BYU Electrical & Computer Engineering IRA A. FULTON COLLEGE OF ENGINEERING

Figure 6: Control/Status Register 0

Figure 7: Control/Status Register 1

CaptureTrig0 CaptureTrig1 AXI Lite IPIF Load Register Load Register TLR1 TLR0 Control/Status TCSR0 TCR0 TCR1 TCSR1 Control/Status 32b Counter 32b Counter TC_Interrupt Interrupt Logic PWM0 GenerateOut0 GenerateOut1

```
// You must configure the interval timer before you use it:
// 1. Set the Timer Control/Status Registers such that:
// - The timer is in 64-bit cascade mode
// - The timer counts up
// 2. Initialize both LOAD registers with zeros
// 3. Call the _reload function to move the LOAD values into the Counters
void intervalTimer_initCountUp(uint32_t timerNumber);
```

```
// You must configure the interval timer before you use it:
// 1. Set the Timer Control/Status Registers such that:
// - The timer is in 64-bit cascade mode
// - The timer counts down
// - The timer automatically reloads when reaching zero
// 2. Initialize LOAD registers with appropriate values, given the `period`.
// 3. Call the _reload function to move the LOAD values into the Counters
void intervalTimer_initCountDown(uint32_t timerNumber, double period);
```

Interval Timer

ENITO

Pood/Mrito

- "In Generate Mode, a timer interrupt is caused by the counter rolling over (the same condition used to reload the counter when ARHT is set to '1')."
- "The interrupt signals can be enabled or disabled with the ENIT bit in the TCSR."
- "The interrupt status bit (TINT) in the TCSR cannot be disabled and always reflects the current state of the timer interrupt."

0	ENITO	Read/vvrite		Enables the assertion of the interrupt signal for this timer. Has no effect on the interrupt flag in TCSR0. 0 = Disable interrupt signal 1 = Enable interrupt signal
8	TOINT	Read/Write	0	Timer0 Interrupt
				Indicates that the condition for an interrupt on this timer has occurred. If the timer mode is capture and the timer is enabled, this bit indicates a capture has occurred. If the mode is generate, this bit indicates the counter has rolled over. Must be cleared by writing a '1'.
				Read: 0 = No interrupt has occurred
				1 = Interrupt has occurred
				Write:

Enable Interrupt for TimerO

0 = No change in state of T0INT 1 = Clear T0INT (clear to '0')

Enable/Disable

```
// Enable the interrupt output of the given timer.
void intervalTimer_enableInterrupt(uint8_t timerNumber);

// Disable the interrupt output of the given timer.
void intervalTimer_disableInterrupt(uint8_t timerNumber);
```

Acknowledge

```
// Acknowledge the rollover to clear the interrupt output.
void intervalTimer_ackInterrupt(uint8_t timerNumber);
```

Use Register Read/Write Helper Fcns

```
static uint32_t readRegister(uint8_t timerNumber, uint32_t offset);
static void writeRegister(uint8_t timerNumber, uint32_t offset, uint32_t value);
```

Use helper functions for all register reads/writes (like last lab)

Except:

- Since we have 3 timers, the helper functions will take a "timerNumber" argument.
- Use this argument to choose the correct base address.