Facial Attribute Editing using Neural Networks

Generative Adversarial Networks

Contents

- Intro to Model and How it works
- Training process
- Loss Metrics
- Graphs
- Generated Samples

Model

Intro

- Networks:
 - o G-enc
 - \blacksquare Encodes the Image to Latent space(Z)
 - o G-dec
 - Decodes the Image to original Image Conditioned on specified attributes
 - o C & D
 - Attribute Classification constraint works on logits captured at end Layer
 - Real/Fake Detector
- Loss functions
 - Reconstruction Loss which preserves the original attributes
 - Adversarial Loss for Real like Sample (WGAN)
 - Cross entropy for Attribute Classification

Training Process

- Load the batch of images (Image[?,128,128,3]+Attribute[?,len(Desired_Attributes)])
- Generate Valid Random Attribute vectors
- Main Three Steps
 - o Generate samples for Original and Random Attribute
 - Generated_image_original = Gdec {Genc(Xa),original Attribute vector}
 - Generated_image_random=Gdec {Genc(Xa),random_Attribute vector}
 - Discriminate samples for Original and Random Attribute
 - \blacksquare Xa_logits_{gan},Xa_logits_{attr}=D(Xa), C(Xa)
 - Xb_logits_{gan},Xb_logits_{attr}=D(Generated_image_{random}), C(Generated_image_{random})
 - Calculate Reconstruction loss
- Define Loss functions Three steps
 - $O-loss = (Xa_logits_{gan} Xb_logits_{gan}) + 10.0*GP + Xa_loss_{attr} (More in Next Slide)$
 - \circ G-loss = Avg(Xb_logits_{gan})+10.0*Xb_loss_{attr}+100*Reconstruction_loss (More in next Slide)
- Define Optimizers (Adam)
 - D-step = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(d_loss, var_list=d_var)
 - G-step = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(g_loss, var_list=g_var,global_step=global_step)

Xa: Original Image

- Run for epoch in n_epochs:
 - Run for batch in n_batches:
 - $\blacksquare \quad \text{Run D-step} : G_\text{step} = 5 : 1$

Loss Metrics

- WGAN-GP
 - $\circ L_{D}^{WGAN} = E[D(Xa)] E[D(Generated_image_{random})]$
 - $\circ L_{G}^{WGAN} = E[D(Generated_image_{random})]$
 - Gradient Penalty = $\lambda^* (||\nabla_x(D_{u}(x))||_2 1)^2$
 - \circ Total_loss = $L_D^{WGAN} + L_G^{WGAN} + Gradient Penalty$
- Xa_loss_{attr}: tf.losses.sigmoid_cross_entropy(a, Xa_logit_{attr})
- Xb_loss_{attr}: tf.losses.sigmoid_cross_entropy(a, Xa_logit_{attr})

Graphs

Generated Samples

Original

Original

Bangs

Bald

Black Hair Blond hair BrownHair

Bushy EyeBrows Spects

Gender

Mouth open Mustache (Slight)

Beard

Pale Skin

Age

End

