Actividad 3

SAIs

1) Un equipo informático domestico está compuesto por un ordenador de 200 W de consumo, un monitor (50w), un router (10w) y una impresora de 10w. Queremos instalar un SAI que proteja toda esa instalación y vamos a una tienda donde nos enseñan un modelo de 300 VA por 78€ y otro de 500VA por 118€. Ambos tienen un factor de potencia del 60%, ¿cuál deberíamos elegir?

1º Método:

Consumo total de la instalación \rightarrow 200w + 50w + 10w + 10w = 270w / Sobredimensiono \rightarrow 270w / 0,8 = 337,5w

 φ = Potencia activa (W) / Potencia aparente (VA) ; Potencia activa = φ * Potencia aparent

Modelo 1 → Potencia Activa = 0,6 * 300VA = 180

Modelo 2 → Potencia Activa = 0,6 * 500VA = 300

Ninguno seria una opción

2º Método:

Modelo 1 → Potencia Activa = 0,6 * 300VA = 180

Modelo 2 → Potencia Activa = 0,6 * 500VA = 300

2) Encuentra un SAI (marca, modelo, tipo, potencia, autonomía y tiempo de respuesta), que debe tener conectados una fuente de alimentación ATX de 450W y un monitor de 17", que consume 75W, teniendo en cuenta que se quiere dimensionar para que el consumo de equipos alcance el 75% de la potencia suministrada por el SAI.

Consumo total de la instalación \rightarrow 450w + 75w = 525w / Sobredimensiono \rightarrow 525w / 0,8 = 656VA 656/0,75 = 875w

Salicru SPS One 700VA V2

Marca	Modelo	Tipo	Potencia (VA)	Autonomía (minutos)	Tiempo de Respuesta (ms)
Salicru	Salicru SPS One 700VA V2	SCHUKO	700 VA	Hasta 20 min	6 ms

- 3) Encuentra un SAI, (marca, modelo, tipo, potencia, autonomía y tiempo de respuesta), que debe tener conectados a tomas de batería los siguientes equipos:
 - 3 torres de $180w \rightarrow 3 * 180 = 540w$
 - 2 monitores LED de 10w → 2 * 10 = 20w
 - 1 router de 20w → 20w
 - 2 switches de 10w → 2 * 10w = 20w
 - 1 impresora de 200w → 200w

La potencia total es: 540 W + 20 W + 20 W + 20 W + 200 W = 800 W Sobredimensiono \rightarrow 800 w / 0,8 = 1000VA

APC Back UPS Pro BR1600MI SAI 1600VA

Marca	Modelo	Tipo	Potencia (VA)	Autonomía (minutos)	Tiempo de Respuesta (ms)
APC	APC Back UPS Pro BR1600MI SAI 1600VA	SAI Off-Line	1600 VA		

4) ¿A cuántos equipos de 250W podría dar servicio de forma adecuada un SAI de 6000VA con un factor de potencia de 0,7?

Calcular la Potencia Real (W): 250w / 0,8 = 312,5

- Potencia Real (W) = Capacidad en VA x Factor de Potencia
- Potencia Real (W) = 6000 VA x 0.7 = 4200 W

Potencia de cada equipo:

Potencia de cada equipo: 250 W

Calcular cuántos equipos de 250 W puede alimentar el SAI:

- Número de Equipos = Potencia Real del SAI (W) / Potencia de Cada Equipo (W)
- Número de Equipos = 4200 W / 312,5 W = 13 equipos

Redondear al número entero más cercano:

 El SAI puede alimentar adecuadamente a aproximadamente 16 equipos de 250 W cada uno.

- 5) De los siguientes SAI. Calcula el factor de potencia y la autonomía a carga máxima de los siguientes SAI
 - 1° SAI \rightarrow 360 W / 700 VA = 0,5% ////// ((1 x 12V x 7AH x 0,5) / 700VA) x 60 = 3,6 minutos
 - 2° SAI \rightarrow 1320 W / 2200 VA = 0,6% /////// ((2 x 24 x 12 x 0,6) / 2200VA) x 60 = 9,42 minutos
 - 3° SAI \rightarrow 540W / 900 VA = 0,6% ///////// ((1 x 12 x 9,4 x 0,6) / 900VA) x 60 = 4,51 minutos
- 6) ¿Cuál es la autonomía de un SAI de 600 W a carga máxima que tiene un factor de potencia del 70 % y dos baterías de 12V y 9Ah? ¿Y si una batería deja de funcionar?

600 w / 0.7 = 857 VA

 $(2 \times 12V \times 7AH \times 0.7) / 857 VA) \times 60 = 8.23 minutos$

 $(1 \times 12V \times 7AH \times 0.7) / 857 VA) \times 60 = 4.11 minutos$