```
In [1]: # Import libraries here
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
In [2]: # Load the dataset from the CSV file
        df = pd.read csv('diabetes.csv')
        # Display the first few rows of the dataset
        print(df.head())
        print("
        print("")
        # Get information about the dataset
        print(df.info())
            Pregnancies
                         Glucose BloodPressure SkinThickness
                                                                  Insulin
                                                                            BMI
                                                                                 \
        0
                             148
                                              72
                                                              35
                                                                           33.6
                      6
        1
                                                              29
                                                                           26.6
                      1
                              85
                                              66
                                                                        0
        2
                      8
                             183
                                              64
                                                              0
                                                                        0 23.3
        3
                      1
                              89
                                                              23
                                                                       94 28.1
                                              66
        4
                      0
                             137
                                              40
                                                              35
                                                                      168 43.1
           DiabetesPedigreeFunction Age
                                            Outcome
        0
                               0.627
                                        50
                                                  1
        1
                               0.351
                                                  0
                                        31
        2
                               0.672
                                        32
                                                  1
        3
                               0.167
                                        21
                                                  0
                               2.288
                                        33
                                                  1
        <class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
 #
     Column
                                Non-Null Count Dtype
     ____
 0
     Pregnancies
                                768 non-null
                                                int64
     Glucose
 1
                                768 non-null
                                                int64
 2
     BloodPressure
                                768 non-null
                                                int64
 3
     SkinThickness
                                768 non-null
                                                int64
 4
     Insulin
                                768 non-null
                                                int64
 5
     BMI
                                768 non-null
                                                float64
 6
     DiabetesPedigreeFunction
                                768 non-null
                                                float64
 7
     Age
                                768 non-null
                                                int64
     Outcome
 8
                                768 non-null
                                                int64
dtypes: float64(2), int64(7)
```

memory usage: 54.1 KB

None

```
In [3]: # print the number of missing values within the dataset
        print("Number of Missing Values:")
        print("-----")
        for col in df.columns:
           missing_row = df.loc[df[col] == 0].shape[0]
           print(col + ": " + str(missing_row))
        print("")
        Number of Missing Values:
        ______
        Pregnancies: 111
        Glucose: 5
        BloodPressure: 35
        SkinThickness: 227
        Insulin: 374
        BMI: 11
        DiabetesPedigreeFunction: 0
        Age: 0
        Outcome: 500
In [4]: # replace missing values with 'NaN'
        print("Replacing values of '0' with 'NaN'...")
        for col in df.columns:
           if col != 'Outcome':
               if col != 'Pregnancies':
                   df[col] = df[col].replace(0, np.NaN)
        print("")
        Replacing values of '0' with 'NaN'...
In [5]: # confirm that these columns no longer have values of zero
        print("Number of Entries Equal to Zero:")
        print("----")
        for col in df.columns:
           missing_row = df.loc[df[col] == 0].shape[0]
           print(col + ": " + str(missing_row))
        print("")
        Number of Entries Equal to Zero:
        ______
        Pregnancies: 111
        Glucose: 0
        BloodPressure: 0
        SkinThickness: 0
        Insulin: 0
        BMI: 0
        DiabetesPedigreeFunction: 0
        Age: 0
        Outcome: 500
```

```
In [6]: # Check for missing values
        df.isna().sum()
Out[6]: Pregnancies
                                       0
        Glucose
                                       5
                                      35
        BloodPressure
        SkinThickness
                                     227
        Insulin
                                     374
        BMI
                                      11
        DiabetesPedigreeFunction
                                       0
        Age
                                       0
        Outcome
                                       0
        dtype: int64
In [7]: | # replace 'NaN' values with the mean of non-missing values
        print("Replacing 'NaN' values with the mean of non-missing values...")
        for col in df.columns:
            if col != 'Outcome':
                if col != 'Pregnancies':
                     df[col] = df[col].fillna(df[col].mean())
        print("")
        Replacing 'NaN' values with the mean of non-missing values...
In [8]: # Check for missing values
        df.isna().sum()
Out[8]: Pregnancies
                                     0
        Glucose
                                     0
        BloodPressure
                                     0
        SkinThickness
                                     0
        Insulin
                                     0
        BMI
                                     0
        DiabetesPedigreeFunction
                                     0
        Age
                                     0
        Outcome
                                     0
        dtype: int64
In [9]: # Check for duplicated values
        df.duplicated().sum()
```

Out[9]: 0

```
In [10]: # Check the statistical summary of the dataset
    print("Statistical Summary:")
    print("-----")
    print(df.describe())
```

Statistical Summary:

27.500000

32.400000

36.600000

67.100000

25%

50%

75%

max

	Pregnancies	Glucose	BloodPressure	SkinThicknes	s Insulin	\
count	768.000000	768.000000	768.000000	768.00000	768.000000	
mean	3.845052	121.686763	72.405184	29.153420	155.548223	
std	3.369578	30.435949	12.096346	8.790942	2 85.021108	
min	0.000000	44.000000	24.000000	7.00000	14.000000	
25%	1.000000	99.750000	64.000000	25.00000	121.500000	
50%	3.000000	117.000000	72.202592	29.153420	155.548223	
75%	6.000000	140.250000	80.00000	32.00000	155.548223	
max	17.000000	199.000000	122.000000	99.00000	846.000000	
	BMI	DiabetesPedigreeFunction		Age	Age Outcome	
count	768.000000		768.000000	768.000000 768	3.000000	
mean	32.457464		0.471876	33.240885	0.348958	
std	6.875151		0.331329	11.760232	0.476951	
min	18.200000		0.078000	21.000000	0.00000	

0.243750

0.372500

0.626250

2.420000

24.000000

29.000000

41.000000

81.000000

0.000000

0.000000

1.000000

1.000000

In [26]: print(plt.style.available) plt.style.use('tableau-colorblind10')

['Solarize_Light2', '_classic_test_patch', '_mpl-gallery', '_mpl-gallery-nogrid', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10']

```
In [46]: df.plot.scatter(x="BloodPressure", y="Insulin")
```

Out[46]: <AxesSubplot:xlabel='BloodPressure', ylabel='Insulin'>

