K-means clustering

Tomáš Vinař 21.11.2024

Formulácia problému

Vstup: n-rozmerné vektory x_1, x_2, \ldots, x_t a počet zhlukov k

Výstup: Rozdelenie vektorov do k zhlukov:

- priradenie vstupných vektorov do zhlukov zapísané ako čísla c_1,c_2,\ldots,c_t , kde $c_i\in\{1,2,\ldots,k\}$ je číslo zhluku pre x_i
- ullet centrum každého zhluku, t.j. n-rozmerné vektory $\mu_1, \mu_2, ..., \mu_k$

Hodnoty c_1, \ldots, c_t a μ_1, \ldots, μ_k volíme tak, aby sme minimalizovali súčet štvorcov vzdialeností od každého vektoru k centru jeho zhluku:

$$\sum_{i=1}^{t} \|x_i - \mu_{c_i}\|_2^2$$

Pre vektory $a=(a_1,\ldots,a_n)$ a $b=(b_1,\ldots b_n)$ je druhá mocnina vzdialenosti $\|a-b\|_2^2=\sum_{i=1}^n(a_i-b_i)^2$

Príklad vstupu

x_1	-2.00	-0.50
x_2	-1.20	0.20
x_3	-0.60	-0.20
x_4	-0.50	1.80
x_5	-0.30	1.50
x_6	0.00	-2.00
x_7	0.10	-0.40
x_8	0.20	1.90
x_9	0.40	0.10
x_{10}	0.40	-1.50
x_{11}	0.50	0.40
x_{12}	1.00	2.00
x_{13}	1.20	-1.50
x_{14}	1.60	-0.80
x_{15}	2.00	-1.10
k = 3		

Príklad výstupu

-2.00	-0.50	1
-1.20	0.20	1
-0.60	-0.20	1
-0.50	1.80	3
-0.30	1.50	3
0.00	-2.00	2
0.10	-0.40	1
0.20	1.90	3
0.40	0.10	1
0.40	-1.50	2
0.50	0.40	1
1.00	2.00	3
1.20	-1.50	2
1.60	-0.80	2
2.00	-1.10	2
-0.47	-0.07	
1.04	-1.38	
0.10	1.80	
	-1.20 -0.60 -0.50 -0.30 0.00 0.10 0.20 0.40 0.40 0.50 1.00 1.20 1.60 2.00 -0.47 1.04	-1.200.20-0.60-0.20-0.501.80-0.301.500.00-2.000.10-0.400.201.900.400.100.40-1.500.500.401.002.001.20-1.501.60-0.802.00-1.10-0.47-0.071.04-1.38

Algoritmus

Heuristika, ktorá nenájde vždy najlepšie zhlukovanie.

Začne z nejakého zhlukovania a postupne ho zlepšuje.

Inicializácia:

náhodne vyber k centier $\mu_1, \mu_2, ..., \mu_k$ spomedzi vstupných vektorov

Opakuj, kým sa niečo mení:

- ullet priraď každý bod najbližšiemu centru: $c_i = rg \min_j \left\| x_i \mu_j
 ight\|_2$
- $\bullet\,$ vypočítaj nové centrá: $\mu_j\,$ bude priemerom (po zložkách) z vektorov $x_i,$ pre ktoré $c_i=j$

Zvolíme náhodné centrá μ_i

Vektory priradíme do zhlukov (hodnoty c_i)

Zabudneme μ_i

Dopočítame nové μ_i (suma klesla z 30.05 na 19.66)

Dopočítame nové c_i (suma klesla z 19.66 na 17.39)

Prepočítame μ_i

Prepočítame c_i

Prepočítame μ_i

Prepočítame c_i (žiadna zmena, končíme)

