Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 3.2.2

по курсу общей физики на тему: «Резонанс напряжений»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будет наблюдаться резонанс напряжений в последовательной цепи переменного тока.

2 Теоретические сведения

Рассмотрим электрическую цепь, состоящую из резистора R и катушки индуктивности L с импедансом $Z_L = r_L + i\Omega L$, последовательно подключённых к внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой Ω (рис. 1).

Обозначим через U_R напряжение на резисторе, через U_L — напряжение на катушке и через U_{R+L} — суммарное напряжение на катушке и на резисторе. Для этих напряжений справедливы комплексные соотношения:

$$\hat{U}_R = \hat{I}_R, \quad \hat{U}_L = \hat{I}(r_L + i\Omega L)
\hat{U}_{R+L} = \hat{I}(R + r_L + i\Omega L).$$
(1)

Здесь r_L — активное сопротивление катушки, которое характеризует суммарные потери энергии в катушке, в том числе потери в её ферромагнитном сердечнике.

Переходя к модулям и фазам токов и напряжений, найдём из (1):

Рис. 1. Схема установки для изучения закона Ома в цепи переменного тока

$$U_R = I \cdot R, \qquad \text{tg } \psi_1 = 0; \qquad (2)$$

$$U_L = I \cdot \sqrt{r_L^2 + (\Omega L)^2}, \qquad \text{tg } \psi_2 = \frac{\Omega L}{r_L}; \qquad (3)$$

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2}, \qquad \text{tg } \psi_3 = \frac{\Omega L}{R+r_L}. \qquad (4)$$

В этих формулах U и I обозначают эффективные значения напряжений и токов (показания приборов).

Измеряя с помощью трёх вольтметров значения U_R , U_L и U_{R+L} . И зная сопротивление резистора R, нетрудно вычислить, пользуясь формулами (2), (3) и (4), силу тока в цепи, активное сопротивление катушки r_L , её индуктивность L, мощность P_L , выделяемую на катушке, и сдвиг фаз между током и напряжением на катушке.

Рассчитаем мощность переменного тока, выделяемую в катушке. Мгновенное значение мощности равно

$$P = U(t) \cdot I(t).$$

2 Оборудование

Средняя мощность за период T определяется формулой

$$\overline{P} = \frac{1}{T} \int_{0}^{T} U(t) \cdot I(t) dt$$

Полагая $I(t) = I\sqrt{2}\cos\Omega t,$ $U(t) = U\sqrt{2}\cos(\Omega t + \psi),$ получим после интегрирования:

$$\overline{P}_L = U_L \cdot I \cos \psi = I^2 \cdot r_L \tag{5}$$

Средняя мощность, выделяющаяся в катушке самоиндукции, определяется, таким образом, действительной частью её импеданса.

Активное сопротивление катушки r_L можно определить, если включить её в последовательный колебательный контур с известными параметрами — сопротивлением R и ёмкостью C (рис. 2). В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя совпадают: $\omega = \Omega$), реактивные сопротивления индуктивности и ёмкости одинаковы:

$$\omega_0 L = \frac{1}{\omega_0 C}.\tag{6}$$

Определив каким-либо экспериментальным способом добротность Q этого контура, можно рассчитать полное сопротивление контура R_{Σ} в резонансе, поскольку

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} \tag{7}$$

Резонансное сопротивление контура R_{Σ} включает в себя известное сопротивление резистора R и активное сопротивление катушки r_L :

$$R_{\Sigma} = R + r_L. \tag{8}$$

3 Оборудование

В работе используются: регулировочный автотрансформатор, катушка индуктивности с выдвижным сердечником, магазин емкостей, резисторы, амперметр, три вольтметра, ваттметр, осциллограф, универсальный мост.

Экспериментальная установка

Схема установки для исследования закона Ома в цепи переменного тока представлена на рис. 1. Цепь, состоящая из резистора $R_1 \simeq 100$ Ом и катушки L с выдвижным сердечником, подключена к автотрансформатору, выходное напряжение которого можно менять от 0 до 127 В. Напряжения на каждом из элементов и суммарное напряжение цепи измеряются тремя вольтметрами: V_R , V_L и V_{R+L} . Амперметр A измеряет ток в цепи, а ваттметр P — мощность, выделяющуюся на катушке.

Ваттметр электродинамической системы состоит из двух катушек, одна из которых вращается в магнитном поле другой, если через них течёт ток. Токовая катушка ваттметра II^* включается последовательно в исследуемую цепь, а катушка напряжений (потенциальная) VV^* — параллельно к элементу, в котором измеряется выделяемая мощность.

Предел измерений устанавливается при помощи переключателей или штепселей, которые вставляются в соответствующие гнёзда: произведение цифр против штепселя токовой катушки II^* и против переключателя катушки напряжений VV^* определяет мощность, соответствующую отклонению стрелки на всю шкалу. Отсчёт мощности ведётся по любой из шкал, обозначенных буквой P.

Источник питания

Рис. 2. Схема установки для наблюдения резонанса напряжений.

Схема установки для изучения резонанса напряжений изображена на рис. 2. Последовательно соединены резистор $R_2 \approx 5$ Ом, катушка L и магазин емкостей C. Амперметр A измеряет ток в цепи, вольтметр V_c — напряжение на ёмкости, вольтметр V_{Σ} — суммарное напряжение на контуре. Резонанс можно зафиксировать с помощью осциллографа, если подать на вход X напряжение с контура, а на вход Y — напряжение с резистора R_2 , пропорциональное току в цепи. В общем случае на экране виден эллипс. При резонансе эллипс вырождается в прямую линию.

Резонансные напряжения на контуре $U_{\Sigma, pes}$, и на ёмкости $U_{c, pes}$, рез равны соответственно

$$U_{\Sigma,\text{pe}_3} = I_{\text{pe}_3} = \frac{I_{\text{pe}_3}}{\Omega C}.$$
 (9)

Сравнивая (7) и (9), получим

$$Q = \frac{U_c, \text{pes}}{U_{\Sigma}, \text{pes}} \tag{10}$$

Формула (10) показывает, что добротность контура может быть найдена по измеренным значениям напряжений на контуре и на конденсаторе при резонансе. Зная добротность контура и ёмкость C, можно рассчитать R_{Σ} по формуле (7), а затем определить r_L .

4 Результаты измерений и обработка результатов

Снимем зависимости тока I, напряжений U_R , U_L , U_{R+L} и мощности P_L от координаты сердечника x. Вычислим активное сопротивление катушки r_L по формуле (5), а затем определим L, исходя из формулы (3)

Сопротивление реостата:

R_1	=	98	+	2	O_{M}
101	_	$\mathcal{I}\mathcal{O}$	- 1	~	\sim \sim

I, A	U_R , B	U_L , B	U_{R+L} , B	P_L , BT	x, MM	r_L , Om	L , м Γ н
0,50	43	102	113	14,50	5	58,00	622,87
0,55	49	98	103	14,00	7	46,28	547,98
0,63	54	94	111	13,25	9	33,92	466,64
0,65	59	91	111	13,00	11	30,77	434,96
0,70	62	88	110	12,50	13	25,51	392,03
0,73	65	85	109	12,00	15	22,83	366,23
0,75	67	82	108	11,75	17	20,89	341,78
0,78	69	80	107	11,50	19	19,15	323,04
0,80	71	78	107	11,25	21	17,58	305,42
0,80	73	76	107	11,00	23	17,19	297,56
0,83	74	74	106	10,75	25	15,79	281,20
0,85	74	71	105	10,50	27	14,53	261,96
0,85	75	70	105	10,25	29	14,19	258,35
0,88	76	69	104	10,25	31	13,39	247,49
0,88	77	67	104	10,00	33	13,06	240,28
0,88	78	66	104	10,00	35	13,06	236,59
0,90	79	65	104	10,00	37	12,35	226,62
0,90	79	64	103	10,00	39	12,35	223,03
0,90	80	63	103	10,00	40	12,35	219,44

Таблица 1. Зависимость тока I, активного сопротивления катушки r_L , индуктивности катушки L, напряжений U_R , U_L , U_{R+L} и мощности P_L от координаты сердечника x

Построим графики зависимостей L и r_L от положения сердечника и определим по ним значения L и r_L , соответствующие среднему (резонансному) положению сердечника.

$$r_L=18\pm 1~{
m Om}$$
 $L=310\pm 30~{
m m}\Gamma{
m H}$

Для среднего положения сердечника построим векторную диаграмму напряжений при горизонтальном расположении U_R .

Отложим на диаграмме активную $(U_{L, \text{ акт}})$ и реактивную $(U_{L, \text{ реакт}})$ составляющие напряжения на катушке и рассчитаем по ним значения L и r_L .

$$L = 318 \pm 14 \text{ м}\Gamma\text{H}$$
 $r_L = 2, 6 \pm 0, 2 \text{ Om}$

Рис. 3. Графики зависимостей индуктивности L и активного сопротивления катушки r_L от положения сердечника x

Рис. 4. Векторная диаграмма напряжений для среднего положения сердечника

Определим по диаграмме $\cos \Theta$ – сдвиг фаз между током и напряжением на катушке. Также вычислим значение по формуле (5)

$$\cos\Theta = 0,026 \pm 0,002$$
 (из диаграммы)

$$\cos \Theta = 0,180 \pm 0,007$$
 (по формуле (5))

С помощью векторной диаграммы по теореме косинусов выразим мощность P_L , выделяемую на катушке, через напряжения U_R , U_L , U_{R+L} и сопротивление R_1 .

$$\begin{split} P_L &= U_L I \cos \Theta = U_L \frac{U_R}{R_1} \frac{U_{L, \text{ akt}}}{U_L} = \frac{U_R}{R_1} (U_{L+R} \cos \varphi - U_R) = \\ &= \frac{U_R}{R_1} (U_{L+R} \frac{U_R^2 + U_{L+R}^2 - U_L^2}{2U_R U_{L+R}} - U_R) = \frac{U_{L+R}^2 - U_R^2 - U_L^2}{2R_1} \end{split}$$

$$P_L = 1,65 \pm 0,05 \text{ Bt}$$

Значение, измеренное ваттметром:

$$P_L^* = 11, 3 \pm 0, 3 \text{ BT}$$

В схеме, собранной по рис. 2, меняя емкость, настраиваем контур в резонанс с частотой сети. Снимем значения резонансного тока I, резонансного напряжения на емкости U_c , резонансного напряжения на контуре U_{Σ} и резонансное значение ёмкости.

Величина дополнительного сопротивления R_2 :

$$R_2 = 5, 6 \pm 0, 1 \text{ Om}$$

x, MM	<i>I</i> , A	U_c , B	U_{Σ}, B	C , мк Φ
9	1,5	218	25,5	20,2

Таблица 2. Величины, измеренные во время резонанса

Рассчитаем активное сопротивление катушки r_L через ток и напряжение на контуре:

$$r_L = \frac{U_{\Sigma}}{I} - R_2$$

$$r_L = 11, 4 \pm 0, 4 \text{ Om}$$

Рассчитаем r_L и L через добротность Q:

$$Q = rac{U_c}{U_{\Sigma}}$$
 $Q = 8, 5 \pm 0, 2$ $L = rac{1}{\omega_0^2 C} = rac{1}{\Omega^2 C}$ $L = 500 \pm 30 \text{ M} \Gamma \text{H}$ $r_L = rac{\omega_0 L}{Q} - R_2$ $r_L = 12, 9 \pm 0, 9 \text{ Om}$

Измерим индуктивность катушки L и ее активное сопротивление r_L с помощью моста E7-8 при заданной частоте:

ν, Гц	L , м Γ н	r_L , Om
100	372	13,9
1000	338	190,3

Таблица 3. Измерение индуктивности L и активного сопротивления r_L с помощью моста E7-8

Измерение сопротивления катушки с помощью омметра:

$$r_L = 4,28 \pm 0,05 \text{ Om}$$

5 Обсуждение результатов и выводы

Результаты измерений занесены в таблицу 3.

	Омметр	Мост Е7-8	График	Вект. диагр.	$f(I,U_{\Sigma})$	f(Q)
r_L , Om	$4,28 \pm 0,05$	$13,9 \pm 0,1$	18 ± 1	$2,6 \pm 0,2$	$11, 4 \pm 0, 4$	$12,9 \pm 0,9$
L , м Γ н	_	372 ± 5	310 ± 30	318 ± 14	_	500 ± 30

Таблица 4. Результаты измерений активного сопротивления r_L и индуктивности L различными способами

Значения достаточно сильно различаются из-за способа измерения величин. Реальную катушку можно заменить колебательным контуром с собственными параметрами: L – истинное значение индуктивности, C_L – емкость, r_L – активное сопротивление. В результате в этом контуре возникают колебания с собственной частотой ω_L . Поэтому величины, которые мы измеряем в цепи переменного тока могут заметно отличаться от величин, измеренных с помощью приборов, подключенных непосредственно к катушке.