Tests paramétriques

Considérons une variable aléatoire X pour laquelle on note $\mu = \mathbb{E}(X)$ et $\sigma^2 = \text{Var}(X)$ les vraies valeurs des paramètres. Considérons alors un échantillon $(X_1,...,X_n)$ de n variables aléatoires iid de même loi que X dont on connaît une réalisation $(x_1,...,x_n)$.

Étape 5 (À ne pas oublier)

Conclusion et interprétation du test

Comparaison de la moyenne théorique de X à un standard μ_0

Cas où la variance est connue

Étape 1 (Statistique de test)

$$Z = \sqrt{n} \frac{\overline{X} - \mu}{\sigma}$$

Étape 2 (Loi de la statistique de test)

- Si X suit une loi normale, $\mathcal{L}(Z) = \mathcal{N}(0,1)$
- Si X suit une autre loi avec n > 30, $\mathcal{L}(Z) = \mathcal{N}(0,1)$

Étape 3 (Détermination de la zone de rejet au seuil α)

- Si $\mathcal{H}_0: \mu = \mu_0$, la zone de rejet est définie par $|Z| > z_{(1-\frac{\alpha}{2})}$
- Si $\mathcal{H}_0: \mu \leq \mu_0$, la zone de rejet est définie par $Z > z_{(1-\alpha)}^2$
- Si $\mathcal{H}_0: \mu \geq \mu_0$, la zone de rejet est définie par $Z < -z_{(1-\alpha)}$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$z_0 = \sqrt{n} \frac{\overline{x} - \mu_0}{\sigma}$$

Cas où la variance est inconnue

Étape 1 (Statistique de test)

$$T = \sqrt{n} \frac{\overline{X} - \mu}{S_c} = \sqrt{n - 1} \frac{\overline{X} - \mu}{S}$$

Étape 2 (Loi de la statistique de test)

- Si X suit une loi normale, $\mathcal{L}(T) = \mathcal{T}_{n-1}$
- Si X suit une autre loi avec n > 30, $\mathcal{L}(T) = \mathcal{N}(0,1)$

Étape 3 (Détermination de la zone de rejet au seuil α)

Dans le cas où la statistique de test suit une loi $\mathcal{N}(0,1)$, les zones de rejets sont les mêmes que précédemment.

Dans le cas de la statistique de Student, on a :

- Si $\mathcal{H}_0: \mu = \mu_0$, la zone de rejet est définie par $|T| > t_{(n-1,1-\frac{\alpha}{2})}$
- Si $\mathcal{H}_0: \mu \leq \mu_0$, la zone de rejet est définie par $T > t_{(n-1,1-\alpha)}$
- Si $\mathcal{H}_0: \mu \geq \mu_0$, la zone de rejet est définie par $T < -t_{(n-1,1-\alpha)}$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$t_0 = \sqrt{n} \frac{\overline{x} - \mu_0}{s_c} = \sqrt{n - 1} \frac{\overline{x} - \mu_0}{s}$$

Comparaison de la variance théorique de X à un standard σ_0^2

Étape 1 (Statistique de test)

$$K = \frac{(n-1)S^2}{\sigma^2}$$

Étape 2 (Loi de la statistique de test)

Si X suit une loi normale, $\mathcal{L}(K) = \chi_{n-1}^2$

Étape 3 (Détermination de la zone de rejet au seuil α)

- Si $\mathcal{H}_0: \sigma^2 = \sigma_0^2$, la zone de rejet est définie par $K > k_{(n-1,1-\frac{\alpha}{\alpha})}$ ou $K < \infty$ $k_{(n-1,\frac{\alpha}{2})}$
- Si $\mathcal{H}_0: \sigma^2 \leq \sigma_0^2$, la zone de rejet est définie par $K > k_{(n-1,1-\alpha)}$ Si $\mathcal{H}_0: \sigma^2 \geq \sigma_0^2$, la zone de rejet est définie par $K < k_{(n-1,\alpha)}$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$k_0 = \frac{(n-1)s^2}{\sigma_0^2}$$

Comparaison d'une proportion théorique à un $D_1 = X_{1,1} - X_{2,1}, ..., D_n = X_{1,n} - X_{2,n}$ pour lequel les tests de comparaison de μ_1 et standard p_0

C'est un cas particulier de la sous-section 1.1 lorsque les conditions d'approximation de la loi binomiale par la loi normale sont vérifiées $(n \ge 30, np > 5 \text{ et } n(1-p) > 5)$. Si on note $\hat{P} = \overline{X}$ l'estimateur empirique du paramètre p, on a :

Étape 1 (Statistique de test)

$$Z = \sqrt{n} \frac{\hat{P} - p}{\sqrt{p(1-p)}}$$

Étape 2 (Loi de la statistique de test)

$$\mathcal{L}(Z) = \mathcal{N}(0,1)$$

Étape 3 (Détermination de la zone de rejet au seuil α)

- Si $\mathcal{H}_0: \mu = \mu_0$, la zone de rejet est définie par $|Z| > z_{(1-\frac{\alpha}{2})}$
- Si $\mathcal{H}_0: \mu \leq \mu_0$, la zone de rejet est définie par $Z > z_{(1-\alpha)}$
- Si $\mathcal{H}_0: \mu \geq \mu_0$, la zone de rejet est définie par $Z < -z_{(1-\alpha)}$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$z_0 = \sqrt{n} \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}}$$

Comparaison des moyennes théoriques de deux variables aléatoires

Considérons mes variables aléatoires X_1 et X_2 avec $\mu_1 = \mathbb{E}(X_1)$, et $\mu_2 = \mathbb{E}(X_2)$, $\sigma_1^2 = \text{Var}(X_1) \text{ et } \sigma_2^2 = \text{Var}(X_2).$

Considérons alors deux échantillons $X_{1,1},...,X_{1,n}$ et $X_{2,1},...,X_{2,m}$ respectivement de n et m variables aléatoires iid de même loi que X_1 et X_2 respectivement. On note $x_{1,1},...,x_{1,n}$ et $x_{2,1},...,x_{2,m}$ les réalisations respectives de ces échantillons.

4.1Comparaison des moyennes théoriques de deux variables aléatoires : échantillons appariés

Les échantillons $X_{1,1},...,X_{1,n}$ et $X_{2,1},...,X_{2,n}$ (de même taille) sont dits appariés si pour tout $i \in [1, n]$, $X_{1,i}$ et $X_{2,i}$ caractérisent une même mesure effectuée à deux instants différents sur un même individu.

Dans ce cas, on travaillera sur l'échantillon des variables aléatoires indépendantes

 μ_2 se traduisent par des tests de comparaison de la moyenne $\mu_1 - \mu_2$ avec la valeur nominale 0.

Comparaison des moyennes théoriques de deux variables aléatoires : échantillons non appariés

4.2.1Cas où les variances sont connues

Étape 1 (Statistique de test)

$$Z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$$

Étape 2 (Loi de la statistique de test)

- Si X_1 et X_2 suivent une loi normale, $\mathcal{L}(Z) = \mathcal{N}(\mu_1 \mu_2, 1)$
- Si X_1 et X_2 suivent une autre loi avec n > 30 et m > 30, $\mathcal{L}(Z) = \mathcal{N}(\mu_1 \mu_2, 1)$ Sous l'hypothèse nulle $\mu_1 = \mu_2$ et donc $\mathcal{L}(Z_0) = \mathcal{N}(0,1)$

Étape 3 (Détermination de la zone de rejet au seuil α)

- Si $\mathcal{H}_0: \mu_1 = \mu_2$, la zone de rejet est définie par $|Z| > z_{(1-\frac{\alpha}{2})}$
- Si $\mathcal{H}_0: \mu_1 \leq \mu_2$, la zone de rejet est définie par $Z > z_{(1-\alpha)}$
- Si $\mathcal{H}_0: \mu_1 \geq \mu_2$, la zone de rejet est définie par $Z < -z_{(1-\alpha)}$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$z_0 = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$$

4.2.2 Cas où les variances sont inconnues mais égales

Étape 1 (Statistique de test)

$$T = \frac{\overline{X_1} - \overline{X_2}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \text{ avec } S_p^2 = \frac{(n-1)S_{c1}^2 + (m-1)S_{c2}^2}{n+m-2}$$

Étape 2 (Loi de la statistique de test)

- \bullet Si X_1 et X_2 suivent une loi normale, alors sous l'hypothèse nulle $\mathcal{L}(T_0)=\mathcal{T}_{n+m-2}$
- \bullet Si X_1 et X_2 suivent une autre loi avec n>30 et m>30, $\mathcal{L}(T_0)=\mathcal{N}(0,1)$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$t_0 = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_{c1}^2}{n} + \frac{s_{c2}^2}{m}}}$$

Étape 3 (Détermination de la zone de rejet au seuil α)

Dans le cas où la statistique de test suit une loi $\mathcal{N}(0,1)$, les zones de rejets sont les mêmes que précédemment.

Dans le cas de la statistique de Student, on a :

- Si $\mathcal{H}_0: \mu_1 = \mu_2$, la zone de rejet est définie par $|T_0| > t_{(n+m-2,1-\frac{\alpha}{2})}$
- Si $\mathcal{H}_0: \mu_1 \leq \mu_2$, la zone de rejet est définie par $T_0 > t_{(n+m-2,1-\alpha)}$
- Si $\mathcal{H}_0: \mu_1 \geq \mu_2$, la zone de rejet est définie par $T_0 < -t_{(n+m-2,1-\alpha)}$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$t_0 = \frac{\overline{x_1} - \overline{x_2}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

Cas où les variances sont inconnues et différentes

Étape 1 (Statistique de test)

$$T = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{S_{c1}^2}{n} + \frac{S_{c2}^2}{m}}}$$

Étape 2 (Loi de la statistique de test)

- Si X_1 et X_2 suivent une loi normale, alors sous l'hypothèse nulle $\mathcal{L}(T_0) = \mathcal{T}_{\nu}$ avec $a = \frac{S_{c1}^2}{n}$, $b = \frac{S_{c2}^2}{m}$ et $\nu = \frac{(a+b)^2}{\frac{a^2}{m^2} + \frac{b^2}{m}}$
- Si X_1 et X_2 suivent une autre loi avec n > 30 et m > 30, $\mathcal{L}(T_0) = \mathcal{N}(0,1)$

Étape 3 (Détermination de la zone de rejet au seuil α)

Dans le cas où la statistique de test suit une loi $\mathcal{N}(0,1)$, les zones de rejets sont les mêmes que précédemment.

Dans le cas de la statistique de Student, on a :

- \bullet Si $\mathcal{H}_0: \mu_1=\mu_2,$ la zone de rejet est définie par $|T_0|>t_{(\nu,1-\frac{\alpha}{2})}$
- Si $\mathcal{H}_0: \mu_1 \leq \mu_2$, la zone de rejet est définie par $T_0 > t_{(\nu,1-\alpha)}$
- \bullet Si $\mathcal{H}_0: \mu_1 \geq \mu_2,$ la zone de rejet est définie par $T_0 < -t_{(\nu,1-\alpha)}$

5 Comparaison de deux variances théoriques

Étape 1 (Statistique de test)

$$F = \frac{S_{c1}^2}{S_{c2}^2}$$

Étape 2 (Loi de la statistique de test)

Si X_1 et X_2 suivent une loi normale, $\mathcal{L}(F) = \mathcal{F}^2_{(n-1,m-1)}$

Étape 3 (Détermination de la zone de rejet au seuil α)

- \bullet Si $\mathcal{H}_0:\sigma_1^2=\sigma_2^2,$ la zone de rejet est définie par $F>f_{(n-1,m-1),1-\frac{\alpha}{2}}$ ou $F< f_{(n-1,m-1),\frac{\alpha}{2}}$
- Si $\mathcal{H}_0: \sigma_1^2 \leq \sigma_2^2$, la zone de rejet est définie par $F > f_{(n-1,m-1),1-\alpha}$
- Si $\mathcal{H}_0: \sigma_1^2 \geq \sigma_2^2$, la zone de rejet est définie par $F < f_{(n-1,m-1),\alpha}$

Étape 4 (Sous \mathcal{H}_0 , réalisation de la statistique pour l'échantillon)

$$f_0 = \frac{s_1^2}{s_2^2}$$