Département de Mathématiques

Filière SMIA :

Exercices avec Corrigés Analyse 1

Série1

Exercice 0.1. Soient les quatre assertions suivantes :

- (a) $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$,
- (b) $\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x + y > 0$,
- (c) $\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$,
- $(d) \exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y^2 > x.$
- 1. Les assertions a, b, c, d sont-elles vraies ou fausses?
- 2. Donner leur négation.

Exercice 0.2. Écrire la négation des phrases suivantes :

- (1) $\forall x, \exists n : x \leq n.$
- (2) $\exists M: \forall n, |u_n| \leq M.$
- (3) $\forall x, \ \forall y, \ xy = yx.$
- (4) $\forall x, \ \exists y: \ yxy^{-1} = x$.
- (5) $\forall \epsilon > 0, \ \exists N \in \mathbb{N}: \ \forall n \geq N, \ |u_n| < \epsilon.$
- (6) $\forall x \in \mathbb{R}, \ \forall \epsilon > 0, \ \exists \alpha > 0 : \ \forall f \in \mathcal{F}, \ \forall y \in \mathbb{R}, \ |x y| < \alpha \Rightarrow$

$$|f(x) - f(y)| < \epsilon.$$

Exercice 0.3. Soient E et F deux ensembles, $f: E \to F$. Démontrer que :

$$\forall A, B \in \mathcal{P}(E) \quad (A \subset B) \Rightarrow (f(A) \subset f(B)),$$

$$\forall A, B \in \mathcal{P}(E) \quad f(A \cap B) \subset f(A) \cap f(B),$$

$$\forall A, B \in \mathcal{P}(E) \quad f(A \cup B) = f(A) \cup f(B),$$

$$\forall A, B \in \mathcal{P}(F) \quad f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B),$$

$$\forall A \in \mathcal{P}(F) \quad f^{-1}(F \setminus A) = E \setminus f^{-1}(A).$$

Exercice 0.4. On définit les cinq ensembles suivants :

$$A_1 = \{(x, y) \in \mathbb{R}^2, x + y < 1\},\$$

$$A_2 = \{(x, y) \in \mathbb{R}^2, |x + y| < 1\},$$

$$A_3 = \{(x, y) \in \mathbb{R}^2, |x| + |y| < 1\},$$

$$A_4 = \{(x, y) \in \mathbb{R}^2, x + y > -1\},\$$

$$A_5 = \{(x, y) \in \mathbb{R}^2, |x - y| < 1\}.$$

- 1. Représenter ces cinq ensembles.
- 2. En déduire une démonstration géométrique de l'équivalence : (|x+y|<1) et $|x-y|<1) \Leftrightarrow |x|+|y|<1$.

Exercice 0.5.

- $\text{1-} \quad \text{D\'emontrer que si } r \in \mathbb{Q} \text{ et } x \notin \mathbb{Q} \text{ alors } r+x \notin \mathbb{Q} \text{ et si } r \neq 0 \text{ alors } r \times x \notin \mathbb{Q}.$
- 2- Soient r et r' deux rationnels tels que r < r'. Montrer que $x = r + \frac{\sqrt{2}}{2}(r' r) \notin \mathbb{Q}$.
- 3- En déduire qu'entre deux rationnels distincts il y a au moins un irrationnel.

Exercice 0.6. Montrer que $x = 31.72\ 356\ 356\ 356\ 356..$ est un rationnel.

Exercice 0.7. Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[1,2]\cap \mathbb{Q}, \qquad [1,2[\ \cap \mathbb{Q}, \qquad \mathbb{N}, \qquad \left\{(-1)^n + \frac{1}{n+1}\right\}$$

Exercice 0.8. Soit I le sous-ensemble de \mathbb{R} défini par $I = \left\{ x \in \mathbb{R} : 1 \le \frac{x}{2} + \frac{1}{x+1} < 2 \right\}$.

- 1- Montrer que I est la réunion de deux intervalles que l'on déterminera.
- 2- Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément de ces intervalles.

Exercice 0.9. Soient A et B deux parties bornées de \mathbb{R} . On note $A+B=\{a+b:(a,b)\in A\times B\}$.

- 1- Montrer que $\sup A + \sup B$ est un majorant de A + B.
- 2- Montrer que $\sup(A+B) = \sup A + \sup B$.

Exercice 0.10. Soient a > 0 et $b \ge 0$ deux réels.

- 1- Montrer que l'ensemble $S=\{n\in\mathbb{N}: a\ n>b\}$ est non vide et admet un plus petit élément que l'on notera p.
- $\mbox{2- On pose } r = b (p-1)a. \mbox{ Montrer que } r < a.$
- 3- En déduire que $\forall x>0$ et $\forall y\geq 0$, il existe un couple $(q,r)\in\mathbb{N}\times[0,x[$ tel que y=qx+r. Montrer que ce couple est unique.

Exercice 0.11. Soit $A = \{x \in \mathbb{Q} : 1 < x \text{ et } x^2 < 2\}.$

- 1- Montrer que A est une partie non vide et majorée dans \mathbb{Q} .
- 2- Soit $r \in A$, montrer qu'il existe $n \in \mathbb{N}$ tel que $n(2-r^2) > 2r+1$. En déduire que $r' = r + \frac{1}{n} \in A$.
- 3- Soit $M \in \mathbb{Q}$ un majorant de A. Montrer que $M > \sqrt{2}$.
- 4- En déduire que $\sup A \notin \mathbb{Q}$.

Série3

Exercice 0.12. Soit un une suite bornée. Posons, pour tout entier $n\in\mathbb{N}$, $v_n=\inf\{u_k;k\geq 1\}$ $\sup\{u_k; k \ge n\}.$

Vérifier que vn est croissante majorée et que wn est décroissante minorée.

Exercice 0.13. Soit un la suite définie par : $\forall n \in \mathbb{N}, \ u_n = \frac{n}{2^{2n+1}}$.

- 1- Montrer que un est une suite géométrique et déterminer sa raison r.
- 2- Étudier la monotonie et la convergence de la suite un.

Exercice 0.14. Soient un une suite réelle et vn la suite dont le terme général est défini par :

$$v_0 = 0$$
, et $\forall n \ge 1$, $v_n = \frac{1}{n} \sum_{k=1}^{n} u_k$.

- $v_0=0 \text{, et } \forall n\geq 1 \text{, } v_n=\tfrac{1}{n} \ \sum_{k=1}^n \ u_k.$ 1- En utilisant la définition de la convergence, montrer que si $\lim_{n\to\infty} \ u_n=\ell\in\mathbb{R}$ alors $\lim_{n\to\infty} \ v_n=\ell.$
- 2- Montrer que si $\lim_{n\to\infty} (u_{n+1}-u_n)=\ell\in\mathbb{R}$ alors $\lim_{n\to\infty} \frac{u_n}{n}=\ell$. 3- On suppose que, pour tout $n\in\mathbb{N}$, $u_n>0$. Montrer que si $\lim_{n\to\infty} \frac{u_{n+1}}{u_n}=\ell\in\mathbb{R}$ alors $\lim_{n\to\infty} \sqrt[n]{u_n}=\ell$.

Exercice 0.15. Soit an la suite définie par $a_0 \in]1,2[$ et $a_{n+1}=\frac{4a_n+2}{a_n+3}$, pour tout $n \in \mathbb{N}$.

- 1- Montrer que an est une suite croissante majorée.
- 2- En déduire que an est convergente et déterminer sa limite.

Exercice 0.16. Pour chacune des des suites suivantes étudier le sens de variation (croissance, décroissance ou monotonie) et la convergence.

(a)
$$u_0 = \frac{1}{2}, \ \forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n};$$
 (b) $v_0 = 2, \ \forall n \in \mathbb{N}, v_{n+1} = \sqrt{v_n};$ (c) $w_0 = 1, \ \forall n \in \mathbb{N}, w_{n+1} = \frac{w_n}{w_n^2 + 1}.$

Exercice 0.17. Soient un et vn les deux suites définies par :

$$u_0 = v_0 = 0$$
 et pour $n \ge 1$, $u_n = \sum_{k=1}^{2n} \frac{k}{n^2}$ et $v_n = \sum_{k=1}^{2n} \frac{k}{k+n^2}$.

- 1- Montrer que la suite un est décroissante minorée. Déterminer sa limite.
- 2- On considère la suite de terme général $w_n = v_n u_n$. Montrer qu'elle est convergente et déterminer sa limite.
- 3- En déduire que un converge et donner sa limite.

Exercice 0.18. Soit $q \ge 2$ un entier et soit un la suite dont le terme général est donné par $u_n = \cos \frac{2n\pi}{q}$

- 1- Vérifier que pour tout entier n, $u_{n+q} = u_n$.

2- Calculer u_{nq} et u_{nq+1} . En déduire que la suite un n' a pas de limite. **Exercice 0.19.** Soit la suite un définie par $:u_0=a\geq 0$ et pour tout $n\geq 1,\ u_{n+1}=\frac{2u_n^2+2u_n+1}{2u_n+1}$

- 1- Montrer que $\forall n \in \mathbb{N}, \ u_n \geq 0.$
- 2- Établir que $\forall n \in \mathbb{N}, \ u_{n+1} \geq u_n + \frac{1}{2}$ puis que $u_n \geq u_0 + \frac{n}{2}$. En déduire la limite de un.

Exercice 0.20. On considère les suites réelles positifs un et vn définies par :

$$u_0=a>0$$
, $v_0=b>0$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sqrt{u_n\ v_n},\ v_{n+1}=rac{u_n+v_n}{2}.$ On suppose que $a< b$.

- 1- Montrer que $\forall n\geq 1$, $u_n\leq v_n$, $u_n\leq u_{n+1}$ et $v_{n+1}\leq v_n$.
- Montrer que un et vn sont convergentes et déterminer leur limite.

Exercice 0.21. Calculer les limites suivantes :

(a)
$$\lim_{x\to 1^+} \frac{x^2-9}{x^2+2x-3}$$
 (b) $\lim_{x\to 3} \frac{\sqrt{x+6}-x}{x^3-3x^2}$ (c) $\lim_{x\to \infty} \sqrt{x^2+4x-9}-x$ (d) $\lim_{x\to 0} x\sin\frac{1}{x}$ (e) $\lim_{x\to 0} x^2\left(1+2+\ldots+\left\lceil\frac{1}{|x|}\right\rceil\right)$.

Exercice 0.22. Soit la fonction $f(x) = x + \sqrt{x^2 + 1}$. Déterminer le domaine de définition de f et montrer qu elle est injective. Déterminer la fonction inverse de f.

Exercice 0.23. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue et périodique. Montrer que f est bornée.

Exercice 0.24. Soit f une fonction continue sur $[a, \infty[$ telle que $\lim_{x\to\infty} f(x) = \ell \in \mathbb{R}$. Prouver que f est bornée sur $[a, \infty[$.

Exercice 0.25. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction périodique qui admet une limite finie ℓ quand x tend vers ∞ . Démontrez que f est constante.

Exercice 0.26. Soient $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions continues et x_0 un point où $f(x_0) > g(x_0)$. Montrer qu'il existe un intervalle ouvert centré en x_0 dans lequel f est strictement plus grande que g.

Exercice 0.27. On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par : $f(x) = \frac{x^3 + 6x + 1}{9}$ et on définit la suite récurrente un par : $u_0 = 0$ et $u_{n+1} = f(u_n)$ pour tout $n \ge 0$.

- 1- Montrer que la fonction $g(x)=x^3-3x+1$ est strictement décroissante sur l'intervalle $\left[0,\frac{1}{2}\right]$. En déduire que l'équation g(x)=0 admet une solution unique x_0 dans $\left[0,\frac{1}{2}\right]$.
- 2- Déduire que x_0 est l'unique solution dans $\left[0,\frac{1}{2}\right]$ de l'équation f(x)=x et que $\forall x\in [0,x_0],\ f(x)\geq x$.
- 3- Montrer que $\forall n \in \mathbb{N}$, $0 \le u_n \le x_0$.
- 4- Étudier la monotonie de la suite un. Est-elle convergente ? Si oui déterminer sa limite.

Exercise 0.28. Soit $f:[0,1] \longrightarrow [0,1]$ une fonction continue. Montrer qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.

Exercice 0.29. Soient f et g deux fonctions réelles continues sur l'intervalle [a,b] et telles que $\sup_{x\in[a,b]}f(x)=\sup_{x\in[a,b]}g(x)$. Montrer qu'il existe $c\in[a,b]$ tel que f(c)=g(c).

Exercice 0.30. Considérons la fonction $f:[1,\infty[\longrightarrow \mathbb{R}$ définie par $f(x)=x^2$. Pour tout $n\in\mathbb{N}^*$ on pose $x_n=n+\frac{1}{n}$ et $y_n=n$. Pour $n\in\mathbb{N}^*$, calculer $|f(x_n)-f(y_n)|>2$. En déduire que f n'est pas uniformément continue

Exercice 0.31. Montrer que l'application $f: x \longrightarrow \sqrt{x}$ est uniformément continue sur R^+ .

(Indication : On pourra montrer d'abord que $\forall x_1, x_2 \in \mathbb{R}^+$ on a $|\sqrt{x_1} - \sqrt{x_2}| \leq \sqrt{|x_1 - x_2|}$.)

Exercise 0.32. Soit f une fonction continue sur [0,1]. Prouver que $\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^n (-1)^k f(\frac{k}{n})=0$.

(Indication : Utiliser l'uniforme continuité de f et considérer le cas n pair et le cas n impair.)

Exercice 0.33. Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue. Soient xn des réels dans]a,b[.

Montrer qu'il existe $x_0 \in]a,b[$ tel que $:f(x_0)=\frac{f(x_1)+f(x_2)+\ldots+f(x_n)}{n}.$

Contrôle Final 2014 avec Corrigé

Soient f la fonction définie par $f(x) = \sqrt{x(1-x)}$, D_f son domaine de définition et A le sous-ensemble de \mathbb{R} défini par : $A = \left\{ x \in D_f : f(x) > x \right\}$.

- 1- Déterminer D_f .
- 2- Montrer que A admet une borne supérieure (on ne cherchera pas à la déterminer).
- 3- Résoudre dans \mathbb{R} l'inéquation f(x) > x.
- 4- Montrer que A n'admet pas de plus grand élément.

Soit F la fonction définie sur \mathbb{R} par : $F(x) = a \sin x + 1$, où $a \in]-1,1[$ est une constante.

- 1- Montrer qu'il existe un réel x_0 tel que $F(x_0) = x_0$.
- 2- Montrer qu'il existe $\alpha \in]0,1[$, tel que pour tout $(x,y) \in \mathbb{R}$ on $a:|F(x)-F(y)| \leq \alpha |x-y|$.

On considère la suite xn définie par $x_1 = 1$ et, pour tout $n \ge 1$, $x_{n+1} = F(x_n)$.

- 3- Montrer que, $\forall n \geq 1, |x_{n+1} x_0| \leq \alpha |x_n x_0|$.
- 4- En déduire que la suite xn converge $vers x_0$.

Soit g la fonction définie par $g(x) = \arcsin(\sqrt{x})$.

- a) Déterminer le domaine de définition de g.
- b) Vérifier que g est dérivable dans]0,1[et calculer sa dérivée dans]0,1[
- c) Montrer que pour tout $x \in]0,1[$, $\frac{1}{2}\arccos(2x-1)+\arcsin(\sqrt{x})=\frac{\pi}{2}$.

$$\mathbb{R}^* \text{ par } h(x) = \frac{\cos x - 1}{x \cos x - \sin x}.$$

- a) Étudier l'existence de la limite en 0 de la fonction h.
- b) Est-il possible de prolonger h par continuité en 0?

Calculer
$$\lim_{x \to +\infty} x \ln\left(\frac{1+x}{x}\right)$$
.

Corrigé du CF_Analyse1_S1_Automne2014

Exercice 1 : On a $f(x) = \sqrt{x(1-x)}$.

- 1- La fonction f est bien définie si et seulement si, $x(1-x) \ge 0$. Or $x(1-x) \ge 0 \iff x \in [0,1]$. D'où $D_f = [0,1]$.
- 2- On a $f(\frac{1}{4}) = \sqrt{\frac{1}{4}(1-\frac{1}{4})} = \frac{1}{4}\sqrt{3} > \frac{1}{4}$. Donc $A \neq \emptyset$. De plus $A \subset D_f$ est majorée par 1. En tant que partie de $\mathbb R$ non vide et majorée, A admet donc une borne supérieure.
- partie de \mathbb{R} non vide et majoree, A admet donc une $x \in \mathbb{R}$ and $x \in [0,1]$ and $x \in$
- 4- D'après la question précédente, on a $A = \left]0, \frac{1}{2}\right[$, donc $\sup A = \frac{1}{2}$. Si A avait un plus grand élément, il serait égal à $\sup A = \frac{1}{2}$. Or $f(\frac{1}{2}) = \frac{1}{2}$, d'où $\frac{1}{2} \notin A$. Donc A n'a pas de plus grand élément.

Exercice 2: $f(x) = a \sin x + 1$, où $a \in]-1, 1[$.

- 1- On considère la fonction $g: x \mapsto a \sin x + 1 x$. C'est une fonction continue sur \mathbb{R} et on a g(0) = 1 > 0 et $g(3) = a \sin 3 + 1 3 < 0$. Donc par le théorème des valeurs intermédiaires, $\exists x_0 \in]1, 3[$ tel que $g(x_0) = 0$, c'est-à-dire $f(x_0) = x_0$.
- 2- La fonction f est dérivable sur $\mathbb R$ donc, en particulier, dérivable sur tout intervalle d'extrémités x et y. Donc $\forall x, y \in \mathbb R$, on a par le théorème des accroissements finis,

il existe c compris entre x et y tel que : $f(x) - f(y) = (x - y) \times f'(c) = (x - y) \times a \cos(c)$.

Et comme $\sup_{c \in \mathbb{R}} |a \cos(c)| \le |a|$, on a :

$$\forall x, y \in \mathbb{R}, \quad |f(x) - f(y)| = |a \cos(c)| \le \alpha |x - y|, \quad \text{avec } \alpha = |a|.$$

- 3- Pour tout $n \ge 1$ on a, d'après l'inégalité précédente, $|x_{n+1} x_0| = |f(x_n f(x_0))| \le \alpha |x_n x_0|$.
- 4- En appliquant successivement l'inégalité qu'on vient d'établir, on a :

$$|x_n - x_0| \le \alpha |x_{n-1} - x_0| \le \alpha^2 |x_{n-2} - x_0| \le \dots \le \alpha^{n-1} |x_1 - x_0|.$$

D'où $0 \le \lim_{n \to \infty} |x_n - x_0| \le |x_1 - x_0| \lim_{n \to \infty} \alpha^{n-1}$. Comme $\alpha \in]0,1[$, on conclut que $\lim_{n \to \infty} |x_n - x_0| = 0$ ce qui est équivalent à $\lim_{n \to \infty} |x_n - x_0| = 0$

Exercice 3 : On a $g(x) = \arcsin(\sqrt{x})$.

- a) La fonction g est bien définie si, et seulement si, $x \ge 0$ et $\sqrt{x} \in [-1, 1]$. On en déduit que $D_g = [0, 1]$.
- b) La fonction g est la composée de deux fonctions dérivables sur]0,1[donc elle est dérivable sur]0,1[et on a :

$$\forall x \in]0,1[, \quad g'(x) = (\sqrt{x})' \times (\arcsin)'(\sqrt{x}) = \frac{1}{2\sqrt{x}} \frac{1}{\sqrt{1 - (\sqrt{x})^2}} = \frac{1}{2\sqrt{x(1-x)}}.$$

c) Posons $h(x) = \frac{1}{2}\arccos(2x-1) + \arcsin(\sqrt{x})$, pour $x \in]0,1[$. Cette fonction est bien définie et est dérivable. Pour montrer qu'elle est constante sur]0,1[, il suffit de montrer que sa dérivée est partout nulle. On a

$$h'(x) = \left(\frac{1}{2}\arccos(2x-1)\right)' + \left(\arcsin(\sqrt{x})\right)'$$

$$= \frac{1}{2} \times (2x-1)' \times (\arccos)'(2x-1) + (\sqrt{x})' \times (\arcsin)'(\sqrt{x})$$

$$= \frac{1}{2} \times 2 \times \frac{-1}{\sqrt{1-(2x-1)^2}} + \frac{1}{2\sqrt{x(1-x)}} = \frac{-1}{\sqrt{4x(1-x)}} + \frac{1}{2\sqrt{x(1-x)}} = 0.$$

Ainsi $\forall x \in]0,1[, h(x) = h(\frac{1}{2}) = \frac{1}{2}\arccos 0 + \arcsin\sqrt{\frac{1}{2}} = \frac{1}{2} \times \frac{\pi}{2} + \arcsin\frac{\sqrt{2}}{2} = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}.$

Exercice 4 : Posons $f(x) = \cos x - 1$ et $g(x) = x \cos x - \sin x$. Ces deux fonctions sont dérivables sur \mathbb{R} (et donc en particulier au voisinage de 0) et on a f(0) = g(0) = 0. En appliquant la règle de l'Hospital on a :

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{f'(x)}{g'(x)} = \lim_{x \to 0^+} \frac{-\sin x}{\cos x - x \sin x - \cos x} = \lim_{x \to 0^+} \frac{-\sin x}{x \sin x} = -\infty.$$

De la même manière on obtient que $\lim_{x\to 0^-} \frac{f(x)}{g(x)} = \infty$. On en conclut que la fonction h n'admet pas de limite en 0

Elle n'admet donc pas de prolongement par continuité en 0.

Exercice 5: Remarquons que $x \ln \frac{1+x}{x} = \frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}$. En posant $u = \frac{1}{x}$ on a

$$\lim_{x \to +\infty} x \ln \frac{1+x}{x} = \lim_{u \to 0} \frac{\ln(1+u)}{u} = \lim_{u \to 0} \frac{\ln(1+u) - \ln(1+0)}{u - 0} = (\ln(1+x))' \Big|_{x=0} = 1.$$

Exercice 1 : 1.(a) est fausse il suffit de considérer lsa négation, qui est $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} x + y \leq 0$ est vraie. Étant donné $x \in \mathbb{R}$ il existe toujours un $y \in \mathbb{R}$ tel que $x + y \leq 0$, par exemple on peut prendre y = -(x + 1) et alors x + y = -1 < 0.

- 2. (b) est vraie, pour un x donné, on peut prendre (par exemple) y = -x + 1 et alors x + y = 1 > 0. La négation de (b) est $\exists x \in \mathbb{R} \forall y \in \mathbb{R} x + y \leq 0$.
- 3. (c) $: \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y > 0$ est fausse, par exemple x=-1,y=0. La négation est $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y \leq 0$.
- 4. (d) est vraie, on peut prendre x=-1. La négation est : $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ y^2 \leq x$.

Exercice 2:

- (1) $\exists x, \forall n : x > n$.
- $(2) \; \exists M : \forall n, |u_n| > M$
- (3) $\exists x, \exists y \ xy \neq yx$.
- $(4) \ \exists x, \forall y: yxy^{-1} \neq x.$
- (5) $\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N |u_n| \geq \epsilon$.
- (6) $\exists x \in \mathbb{R}, \exists \epsilon > 0, \forall \alpha > 0 : \exists f \in \mathcal{F}, \forall y \in \mathbb{R}, |x y| < \alpha \text{ et } |f(x) f(y)| > \epsilon$.

Exercice 3 : Soit $B \in \mathcal{P}(E)$ tel que $B \in f^{-1}(F \setminus A)$ alors $f(B) \in F \setminus A$ et $B \notin f^{-1}(A)$ soit $B \in E \setminus f^{-1}(A)$. Réciproquement $B \in E \setminus f^{-1}(A)$ alors $B \notin f^{-1}(A)$ donc $f(B) \notin A$ soit $f(B) \in F \setminus A$ et $B \in f^{-1}(F \setminus A)$.

Exercice 4: A_1 et A_4 définissent deux demi-plans (on trace les droites x+y=1 et x+y=-1, A_1 correspond au demi-plan inférieur par rapport à la droite x+y=1 et A_4 correspond au demi-plan supérieur par rapport à la droite x+y=-1. Par l'ensemble A_2 qui correspond à l'intersection de A_1 et A_4 . A_2 est défini par les inéquations x+y<1 et x+y>-1. Ces deux inéquations sont équivalentes à |x+y|<1. Pour obtenir A_5 on raisonne comme pour A_2 et on trace donc les droites x-y=1 et x-y=-1. L'ensemble A_5 sera l'intersection du demi-plan inférieur défini par la droite x-y=1 et du demi-plan supérieur défini par la droite x-y=-1. Pour représenter l'ensemble A_3 on distingue 4 cas :

Si $x \ge 0$ et $y \ge 0$ alors |x| + |y| < 1 correspond à x + y < 1.

Si $x \ge 0$ et $y \le 0$ alors |x| + |y| < 1 correspond à x - y < 1.

Si $x \le 0$ et $y \ge 0$ alors |x| + |y| < 1 correspond à -x + y < 1.

Si $x \le 0$ et $y \le 0$ alors |x| + |y| < 1 correspond à -x - y < 1.

Alors A_5 est l'intersection de A_2 et A_5 .

Exercice 1:

- 1) Soient $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$, supposons que $x + r = r^{'} \in \mathbb{Q}$ alors $x = r r^{'} \in \mathbb{Q}$ absurde. Soit $r \neq 0$, supposons que $rx = r^{'} \in \mathbb{Q}$ alors $x = \frac{r}{r} \in \mathbb{Q}$ absurde.
- 2) $\frac{\sqrt{2}}{2} \notin \mathbb{Q}$ et $r' r \in \mathbb{Q}$ d après 1, $\frac{\sqrt{2}}{2}(r' r) \notin \mathbb{Q}$. De même, $x = r + \frac{\sqrt{2}}{2}(r' r) \notin \mathbb{Q}$ On a x-r>0 et $x-r'=(r'-r)(\frac{\sqrt{2}}{2}-1)<0$. Ainsi $x\in [r,r']$ et $x\notin \mathbb{Q}$

Exercice 2:

$$10^{2}x = 3172, 356356356.....$$

$$10^{5}x = 3172356, 356356356...$$

$$x(10^{5} - 10^{2}) = 3172356 - 3172$$

$$x = \frac{3172356}{10^{5} - 10^{2}}$$

- 1) $A = [1, 2] \cap \mathbb{Q}$ alors $A \subset [1, 2]$. L'ensemble des minorants de A est $]-\infty, 1]$. L'ensemble des majorants de A est $[2, \infty[$.
 - $\sup(A) = 2 \in A$; 2 est le plus grand élément de A. $\inf(A) = 1 \in A$; 1 est le plus petit élément de A.
- 2) $B =]1, 2[\cap \mathbb{Q} \text{ alors } B \subset]1, 2[$. L'ensemble des minorants de B est $]-\infty, 1]$. L'ensemble des majorants de
 - $\sup(B)=2\notin B$; B n'admet pas de plus grand élément. $\inf(B)=1\notin B$; B n'admet pas de plus petit élément.
- 3) L'ensemble des minorants de \mathbb{N} est $]-\infty,0]$; $\inf(\mathbb{N})=0$ est le plus petit élément mais \mathbb{N} n' est pas
- 4) $C = (-1)^n + \frac{1}{n+1}$. Alors C est borné car $C \subset [-1,2]$. L'ensemble des minorants de C est $]-\infty,-1]$. L'ensemble des majorants de C est $[2, \infty[$. De plus $2 \in C(n = 0)$; $\sup(C) = 2$.

2 est le plus grand élément de C.

 $\inf(C) = -1$. En effet, $\forall x \in C; x \ge -1$ et d'après la propriété d'Archimède : $\forall \varepsilon > 0 \exists n \in \mathbb{N} \text{ tel que } \frac{1}{2n+1} < \varepsilon. \text{ Alors } (-1)^{2n+1} + \frac{1}{2n+1} < \varepsilon + (-1). \text{ D'après la caractérisation de la}$ borne inférieure, on a $\inf(C) = -1$.

Exercice 4:

- 1) D'abord $(*)\frac{x}{2} + \frac{1}{x+1} > 0$ et $x \neq -1$
 - (*) est équivalente à $\frac{x^2+x+2}{x+1}>0$, comme $x^2+x+2>0$; $\Delta<0$, il suffit que x+1>0 c'est à dire
 - Il faut résoudre les inéquations $(1)\frac{x^2+x+2}{x+1} \ge 1$ et $(2)\frac{x^2+x+2}{x+1} < 2$.

 - (1) implique que $x \in (]-\infty, 0] \cup [1, \infty[)\cap]-1, \infty[=]-1, 0] \cup [1, \infty[)\cap]$ (1) implique que $x \in]x_1, x_2[$ avec $x_1 = \frac{3-\sqrt{17}}{2}$ et $x_2 = \frac{3+\sqrt{17}}{2}$.

Alors $x \in I$, s'il vérifie (1) et (2), soit $x \in]x_1, 0] \cup [1, x_2]$.

2) $\inf(I) = x_1 \text{ et } \sup(I) = x_1.$

Exercice 4:

- 1) Soit $x \in A + B$ alors $\exists a \in A; b \in B$ tel que x = a + b et donc $x \le \sup(A) + \sup(B)$.
- 2) $\sup(A) + \sup(B)$ est un majorant de A + B, comme $\sup(A + B)$ est le plus petit des majorants, on a $\sup(A+B) \le \sup(A) + \sup(B)(1) .$

Soit $a \in B$ fixé, pour tout $b \in B$ on a $a+b \leq \sup(A+B)$ alors $\forall b \in B \; ; b \leq \sup(A+B) - a$. On en déduit que $\sup(B) \le \sup(A+B) - a$.

Pour tout $a \in A$, on a $a \leq \sup(A + B) - \sup(B)$, comme $\sup(A)$ est le plus petit des majorant, $\sup(A) \le \sup(A+B) - \sup(B)$ d'où $\sup(A) + \sup(B) \le \sup(A+B)(2)$. (1) et (2) implique l'égalité.

Exercice 6:

- 1) A est non vide car d'après la propriété d'Archimède, $\exists n_0 \in \mathbb{N}$ tel que $\frac{b}{a} < n_0$. $A \subset \mathbb{N}$ donc A est minorée . Soit $p = \min(A)$; $p \ge 1$ (car $b \ge 0$).
- 2) $p-1 \notin A \Rightarrow a(p-1) \le b$. Posons $r=b-a(p-1) \ge 0$, r-a=b-pa < 0. D'où $0 \le r < a$.
- 3) Posons x = a, y = b, q = p 1, r = y qx et $0 \le r < x$ Unicité : comme pest le minimum de $A, q = p - 1 \in \mathbb{N}$ est unique, on en déduit unicité de r.

Exercice 7:

- 1) $A \text{ est non vide} : \frac{5}{4} \in A.$
- $x \in A \Longrightarrow x > 1 \text{ d'où } x < x^2 < 2 \in \mathbb{Q} \text{ ; donc } A \text{ est une partie majorée de } \mathbb{Q}.$ 2) Soit $r \in A$ alors $\frac{2-r^2}{2r+1} > 0$, d'après la propriété d'Archimède, $\exists n \in \mathbb{N}^* \text{ tel que } n \frac{2-r^2}{2r+1} > 1$. $r' r = \frac{1}{n} > o \text{ d'où } r' > r > 1. \text{ Par ailleurs, } 2 r'^2 = 2 r^2 \frac{2r}{n} \frac{1}{n^2} > 2 r^2 \frac{2r+1}{n} = (2-r^2)[1 \frac{2r+1}{n(2-r^2)}] < 0. \text{ Donc } r' \in A.$ 3) Soit $M \in \mathbb{Q}$ where $x = r^2$ is the first state of $x = r^2$ and $x = r^2$ is the first state of $x = r^2$.
- 3) Soit $M \in \mathbb{Q}$ un majorant de A alors M > 1, supposons que $M < \sqrt{2}$ alors $M^2 < 2$ d'où $M \in A$. d'après 2), $M+\frac{1}{n}\in A$ ce qui est absurde. Donc $M>\sqrt{2}$
- 4) $\sqrt{2}$ est un majorant de A. Or tout M qui majore A doit être supérieur à $\sqrt{2}$ et sup $(A) \le \sqrt{2}$, on conclut que $\sup(A) \notin \mathbb{Q}$.

Exercice 1 : Posons $A_n = \{u_k; k \ge n\}$. On a $A_{n+1} \subset A_n$ donc $\inf(A_{n+1}) \ge \inf(A_n)$ et $\sup(A_{n+1}) \le \sup(A_n)$ d'où le résultat.

On a (u_n) est bornée alors $\exists m, M \in \mathbb{R}$ tel que $m \leq u_n \leq M$. On a $v_n \leq u_n$ donc (v_n) est majorée par M. $w_n \geq u_n$ alors (w_n) est minorée par m.

Exercice 2:

- 1) $\frac{u_{n+1}}{u_n} = \frac{e}{4}$ ainsi (u_n) est une suite géométrique de raison $r = \frac{e}{4}$.
- 2) $\frac{u_{n+1}}{u_n} < 1$, donc (u_n) est décroissante. Elle est convergente car 0 < r < 1.

Exercice 3:

1) $u_n \to l$ signifie

$$\forall \varepsilon > 0 \; \exists N_\varepsilon \forall n \geq N_\varepsilon \Longrightarrow |u_n - l| < \frac{\varepsilon}{2}$$

. On a

$$|v_n - l| \le \frac{1}{n} \sum_{k=1}^{N_{\varepsilon}} |u_k - l| + \frac{1}{n} \sum_{k=N_{\varepsilon}+1}^{n} |u_k - l|$$

$$\le \frac{1}{n} \sum_{k=1}^{N_{\varepsilon}} |u_k - l| + \frac{\varepsilon}{2}$$

Posons $A_{N_{\varepsilon}} = \sum_{k=1}^{N_{\varepsilon}} |u_k - l|$ est bornée, on a $\frac{A_{N_{\varepsilon}}}{n} \longrightarrow 0$. Alors $\forall \varepsilon > 0 \ \exists N_0 \in \mathbb{N} \ \forall \ n \ge N_0$ on a $\frac{A_{N_{\varepsilon}}}{n} < \frac{\varepsilon}{2}$. Ainsi pour $n \ge \max(N_{\varepsilon}, N_0)$ on a $|v_n - l| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

- 2) Posons $\beta_n = u_{n+1} u_n$ d'après 1) on a $\lim \frac{1}{n} \sum_{k=1}^{k=n} \beta_k = \lim_{n \to +\infty} \frac{u_{n+1} u_1}{n} = l$ soit $\lim_{n \to +\infty} \frac{u_{n+1}}{n} = l$. On en déduit que $\lim_{n \to +\infty} \frac{u_n}{n} = \lim_{n \to +\infty} \frac{u_n}{n-1} \frac{n-1}{n} = l$.
- 3) Posons $\alpha_n = \ln(u_{n+1}) \ln(u_n)$, alors d'après la question 2) $\lim_{n \to +\infty} \frac{\ln(u_n)}{n} = \ln(l)$. d'où $\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = l$.

Exercice 4:

- 1) Considérons la fonction $f(x) = \frac{4x+2}{x+2}$ pour $x \neq -2$. Alors $x \to f(x)$ est croissante, il suffit de comparer a_0 et $f(a_0)$. $f(a_0) a_0 = \frac{-(a_0 2)(a_0 + 1)}{a_0 + 3}$. Comme $a_0 \in]1, 2[$ et $a_n > 0$, on a $f(a_0) a_0 > 0$. Donc la suite (u_n) est croissante.
- 2) Montrons que a_n ∈]1,2[(*)par récurrence. On a (*) est vraie pour n = 0. Supposons que (*) est vraie à l'ordre n est montrons (*) pour l'ordre n + 1.
 1 < a_n < 2 ⇒ f(1) = ³/₂ < f(a_n) < f(2) = 2 d'où le résultat.
- 3) La suite (a_n) est croissante et majorée par 2 donc convergente. Soit $\lim u_n = l$ alors l est solution de l'équation l = f(l). d'où $l^2 - l - 2 = (l-2)(l+1) = 0$. Alors $\lim u_n = \sup(u_n) = 2$ $(1 \le l \le 2)$.

Exercice 5:

a) On a $f(x) = \sqrt{(x)}$ strictement croissante et $f(\frac{1}{2} = \frac{\sqrt{2}}{2} > \frac{1}{2}$. Donc la suite (u_n) est croissante et majorée par 1. La limite l'vérifie l'équation $l = \sqrt{l}$ soit $l^2 = l$ et $l = \sup(v_n) = 1$

b) $f(2) = \frac{\sqrt{2}}{2} < 2$. Donc la suite (v_n) est décroissante et minorée par 1. Donc $l = 1 = \inf(v_n)$

c) On $w_n > 0$, alors $\frac{w_{n+1}}{w_n} = \frac{1}{w_n^2 + 1} < 1$ d'où (w_n) est décroissante, minorée par 0donc convergente. La limite l vérifie $l = \frac{l}{l^2 + 1}$, soit $l = 0 = \inf(w_n)$.

Exercice 6:

1) $u_n = 2 + \frac{1}{n} > 2$, donc $(u_n) dcroissanteminorepar2$, $\lim u_n = 2$. 2,3) $w_n = v_n - u_n = \frac{-k^2}{n^2(k+n^2)}$. Or $\frac{1}{2n+n^2} < \frac{1}{k+n^2} < \frac{1}{n^2+1}$ alors $\frac{2n(2n+1)(4n+1)}{6(2n+n^2)} < -w_n < \frac{n}{n^2+1}$ $\frac{2n(2n+1)(4n+1)}{6(1+n^2)}$. Par la suite $\lim w_n = 0$ et $\lim v_n = \lim \lim w_n + u_n$

Exercice 7

1) $u_{n+q} = \cos(\frac{2(n+q)\pi}{a}) = u_n$

2) $u_{nq} = \cos(\frac{2nq\pi}{q}) = \cos(2n\pi) = 1$. et $u_{nq+1} = \cos\frac{2\pi}{q}$

2) La suite (u_n) n 'est pas de Cauchy :

$$\exists \varepsilon = \frac{1 - \cos(\frac{2\pi}{q})}{2} > 0$$

 $(\operatorname{car} q > 2) \ \forall n \ nq \ge n \ \operatorname{et} \ nq + 1 \ge n \ \operatorname{mais} \ u_{nq} - u_{nq+1}$

Exercice 8:

2) $u_{n+1} - u_n - \frac{1}{2} = \frac{4u_n + 1}{2u_n + 1} > 0$. On en déduit par télescopage que $u_n \ge a + \frac{n}{2}$. Donc $\lim u_n = +\infty$.

1) $v_{n+1} - u_{n+1} = \frac{(\sqrt{u_n} - \sqrt{v_n})^2}{2} \ge 0$ $\frac{u^{n+1}}{u_n} = \sqrt{\frac{v_n}{u_n}} \ge 1. \text{ D où } (u_n) \text{ est croissante. D autre part on a } v_{n+1} \le \frac{v_n + v_n}{2} = v_n.$

2) On a la suite (u_n) est croissante majorée par $v_0 = b$ donc convergente, soit $l = \lim u_n$. La suite (v_n) est décroissante minorée par $u_0 = a$ donc convergente, soit $l' = \lim v_n$. l, l' vérifient les équations suivantes : $l = \frac{l + l'}{2}$ et $l' = \sqrt{ll'}$ ce qui donne l = l'.

Exercice 1:

a)

$$\lim_{x \to 1^+} \frac{x^2 - 9}{x^2 + 2x - 3} = \lim_{x \to 1^+} \frac{(x - 3)(x + 3)}{(x - 1)(x + 3)} = \lim_{x \to 1^+} \frac{x - 3}{x - 1} = \infty$$

b)
$$\lim_{x\to 3} \frac{\sqrt{x+6}-x}{x^3-3x^2} = -\lim_{x\to 3} \frac{(x-3)(x+2)}{x^2(x-3)} = \frac{-5}{9}$$

d)

$$0 \leq |x \sin(\frac{1}{x})| \leq |x|$$

Alors

$$\lim_{x \to 0} |x \sin(\frac{1}{x})| = 0$$

$$A_x = 1 + 2 + \dots [\frac{1}{|x|}] = \frac{1}{2} ([\frac{1}{|x|}])([\frac{1}{|x|}] + 1)$$

Donc

$$\lim_{x \to 0} x^2 A_x = \lim_{x \to 0} \frac{1}{2} ((|x| [\frac{1}{|x|}])^2 + x^2 [\frac{1}{|x|}]).$$

On a et

$$x^{2}(\frac{1}{|x|}-1) < x^{2}[\frac{1}{|x|}] \le x^{2}\frac{1}{|x|}$$

D'où

$$\lim_{x \to 0} x^2 [\frac{1}{|x|}] = 0.$$

D' autre part on a :

$$|x|(\frac{1}{|x|}-1) < |x|[\frac{1}{|x|}] \le |x|\frac{1}{|x|}$$

D'où

$$\lim_{x \to 0} |x| [\frac{1}{|x|}] = 1.$$

et

$$\lim_{x \to 0} x^2 A_x = \frac{1}{2}$$

Exercice 2: On a $x^2 + 1 > 0$ alors $Dom(f) = \mathbb{R}$.

$$f'(x) = \frac{f(x)}{\sqrt{x^2 + 1}} > 0; \forall x \in \mathbb{R}.$$

la fonction $x \to f(x)$ est strictement monotone, donc iil existe une bijection de $\mathbb{R} \to f(\mathbb{R}) = \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x) = 0, +\infty$.

On résout l'équation $y = f(x) \Rightarrow f^{-1}(y) = \frac{y^2 - 1}{2y}, \forall y \in]0, +\infty[$.

Exercice 3 : La fonction est périodique, il existe T > 0 tel que f(x + T) = f(x) ($\forall x \in \mathbb{R}$). Alors la restriction de f est bornée sur [0, T] (Théorème de Heine) c'est-à-dire :

$$\exists M > 0 \forall x \in [0, T] |f(x)| \le M.$$

soit $x \in \mathbb{R} \Longrightarrow n = \left[\frac{x}{T}\right] \le \frac{x}{T} < n = \left[\frac{x}{T}\right] + 1$ alors $x - nT \in [0, T]$ et $|f(x)| = |f(x - nT)| \le M$, donc f est bornée.

Exercice 5: La fonction est périodique, il existe T>0 tel que f(x+T)=f(x) $(\forall x\in\mathbb{R})$. Soit $x_n=x+nT\Longrightarrow \lim_{n\to+\infty}=+\infty$ comme $\lim_{n\to+\infty}f(x)=l$ alors $\lim_{n\to+\infty}f(x_n)=l$ et $\forall x\in\mathbb{R}$ $f(x)=\lim_{n\to+\infty}f(x_n)=l$ donc f est constante.

Exercice 6: La fonction h = f - g est continue en x_0 et $h(x_0) > 0$. Soit

$$\epsilon = \frac{h(x_0)}{2} \; \exists \alpha > 0 \, tel \, que \, |x - x_0| < \alpha \Longrightarrow |h(x) - h(x_0)| < \epsilon$$

D'où $\forall x \in I_{x_0} =]x - x_0, x + x_0 [\Longrightarrow h(x) > \epsilon > 0 \text{ donc } f(x) > g(x) \ \forall x \in I_{x_0}.$

Exercice 6 : f,g étant continues sur [a,b] , $(\exists x_0 \in [a,b])$ telque $\sup(f(x)) = f(x_0)$ et $(\exists y_0 \in [a,b])$ telque $\sup(g(x)) = g(y_0)$ (Théorème de Heine). Si $x_0 = y_0$ rien à démontrer, supposons que $x_0 \neq y_0$. Posons h = f - g alors h est continue sur $[x_0, y_0]$

$$h(x_0) = f(x_0) - g(x_0) \ge 0$$

et

$$h(y_0) = f(y_0) - g(y_0) \le 0$$

Théorème de la valeur intermédiaire implique $\exists c \in [x_0, y_0]$ tel que h(c) = 0 soit f(c) = g(c)

Exercice 12: La fonction $x \longrightarrow f(x)$ est continue sur [0,1], donc uniformément continue.

$$\forall \epsilon > 0 \exists \alpha > 0; \forall x,y \in [0,1] tel \ que \ |x-y| < \alpha \Longrightarrow |f(x) - f(y)| < \epsilon$$

Posons

$$u_n = \frac{1}{n} \sum_{k=0}^{n} (-1)^k f(\frac{k}{n})$$

alors on a:

$$\begin{aligned} \mathbf{u}_{2n} &= \frac{1}{2n} \sum_{k=0}^{2n} (-1)^k f(\frac{k}{2n}) \\ &= \frac{1}{2n} \sum_{p=0}^{n} (-1)^{2p} f(\frac{2p}{2n}) + \frac{1}{2n} \sum_{p=0}^{n-1} (-1)^{2p+1} f(\frac{2p+1}{2n}) \\ &= \frac{1}{2n} \sum_{p=0}^{n-1} (f(\frac{2p}{2n}) - f(\frac{2p+1}{2n}) + \frac{f(1)}{2n} \end{aligned}$$

$$|u_{2n}| \le \frac{1}{2n} \sum_{p=0}^{n-1} |f(\frac{2p}{2n}) - f(\frac{2p+1}{2n})| + \frac{|f(1)|}{2n}$$

Si $\left|\frac{2p}{2n} - \frac{2p+1}{2n}\right| = \frac{1}{2n} < \alpha$ alors $\left|f\left(\frac{2p}{2n}\right) - f\left(\frac{2p+1}{2n}\right)\right| < \frac{\epsilon}{2}$ Il suffit de prendre $n > N = \left[\frac{1}{2\alpha}\right] + 1 > \frac{1}{2\alpha}$ Alors $\left|u_{2n}\right| \le \frac{\epsilon}{2} + \frac{|f(1)|}{2n}$ Aussi $\forall \epsilon > 0 \exists N_0 \in \forall n > N_0 \Longrightarrow \frac{|f(1)|}{2n} < \frac{\epsilon}{2}$ D'où

$$\forall \epsilon > 0 \ \exists N_1 = \max(N, N_0) \in \mathbb{N} \ \forall n > N_1 \Longrightarrow |u_{2n}| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} =$$

On conclut que $\lim_{n\to+\infty} |u_{2n}| = 0$ soit $\lim_{n\to+\infty} u_{2n} = 0$ De la même façon on démontre que $\lim_{n\to+\infty} u_{2n+1} = 0$ sauf que dans ce cas il n'y a qu' une seule somme. Finalement $\lim_{n\to+\infty} u_n = 0$