§3. ДЕКАРТОВЫ ПРОИЗВЕДЕНИЯ МНОЖЕСТВ

n°1. Понятие кортежа

Понятие *кортежа* будем считать основным, неопределяемым (слово кортеж происходит от французского слова *«cortege»* — торжественное шествие). Ограничимся интуитивным описанием этого понятия.

 $(a_1; a_2; ...; a_n) = (e_1; e_2; ...; e_n)$ тогда и только тогда, когда $a_1 = e_1$ и $a_2 = e_2$ и ... и $a_n = e_n$.

Если a_1 , a_2 , a_3 — числа, то пару $(a_1; a_2)$ можно изобразить точкой $M(a_1; a_2)$ на координатной плоскости (θxy) , а тройку $(a_1; a_2; a_3)$ можно изобразить точкой $N(a_1; a_2; a_3)$ в пространственной системе координат (θxyz) .

n°2. Декартовы произведения множеств

Определение. Пусть $A_1, A_2, \ldots A_n$, где $n \in \mathbb{N}$ и n > 1, — некоторые непустые множества. Декартовым произведением данных множеств называется множество, обозначаемое символом $A_1 \times A_2 \times \ldots \times A_n$ и состоящее из всевозможных кортежей вида (a_1, a_2, \ldots, a_n) , где $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$. Если $A_1 = A_2 = \ldots = A_n = A$, то вместо символа $A_1 \times A_2 \times \ldots \times A_n$ иногда используется символ A^n , причем множество A^n называется n-ой декартовой степенью множества A. Множества A^2 и A^3 называется еще декартовым квадратом и кубом множества A соответственно.

Итак, $A_1 \times A_2 \times ... \times A_n = \{(a_1; a_2; ...; a_n) \mid a_1 \in A_1 \text{ и } a_2 \in A_2 \text{ и ... и } a_n \in A_n\}.$ Если A_1 , A_2 , A_3 — числовые множества, то множество $A_1 \times A_2$ можно

изобразить на координатной плоскости (0xy) множеством { $M(x; y) | x \in A_1$ и $y \in A_2$ }, а множество $A_1 \times A_2 \times A_3$ можно изобразить множеством { $M(x; y; z) | x \in A_1$ и $y \in A_2$ и $z \in A_3$ } в пространственной системе координат (0xyz).

Пример. Найти $A \times B$, если 1) $A = \{m; n; q\}$ и $B = \{\Box; \bullet\}; 2$) A = [2;3] и B = [1; +∞].

Решение. 1) $A \times B = \{(a; e) \mid a \in A \text{ и } e \in B\} = \{(m; \square); (m; \bullet); (n; \square); (n; \bullet); (q; \square); (q; \bullet)\}.$

2) $A \times B = \{(a; e) \mid 2 \le a \le 3 \text{ и } e \ge 1\}$. Так как A и B — числовые множества, то декартово произведение $A \times B$ можно изобразить на координатной плоскости (0xy) множеством $\{M(x;y) \mid x \in A \text{ и } y \in B\}$, то есть множеством $\{M(x;y) \mid 2 \le x \le 3 \text{ и } y \ge 1\}$. Сравнивая $A \times B$ с множеством $B \times A = \{(a; e) \mid a \ge 1 \text{ и } 2 \le e \le 3\}$, убеждаемся, что $A \times B \ne B \times A$. Действительно, например, $(2; 4) \in (A \times B)$, но $(2; 4) \notin (B \times A)$.

Как следует из рассмотренного выше примера, декартово произведение двух множеств не обладает свойством коммутативности