학습목표

- >>> ALU에 대한 구조를 이해하고 ALU에서 처리되는 정수형 상수에 대한 표현법을 이해할 수 있다.
- >>> 논리 연산에 대한 처리 방법을 설명할 수 있다.
- >>> 정수형 상수의 덧셈기 및 뺄셈기에 대해 공부함으로써 ALU에 대한 기초를 확립할 수 있다.

학습내용

- >>> ALU Architecture
- >>> Integer Representation
- >>> Logic Operations
- >>> Integer Arithmetic(+/-)
- >>> Quiz, PBL, 탐구주제

ALU Architecture

Integer Representation: Unsigned

Decimal	Unsigned Binary
7	111
6	110
5	101
4	100
3	011
2	010
1	001
0	000

- n Bit 일 때 사용되는 Bit 조합의 개수: 2ⁿ
- n Bit 일 때 표현 가능 범위: 0 ~ 2ⁿ-1
- ③ Binary # $a_2a_1a_0$ 를 Decimal # d로 바꾸는 일반 식 : $\mathbf{d} = \sum_{0}^{n-1} a_i \cdot 2^i$ 110₂ → 1X2²+1X2¹+0X2⁰ = 6₁₀
- ③ Bit Extension: 0을 추가 $110_2(6_{10})$ → $0110_2(6_{10})$

Integer Representation: Signed Magnitude

Decimal	Signed Magnitude			
3	011			
2	010			
1	001			
0	000			
0	100			
-1	101			
-2	110			
-3	111			

- n Bit 일 때 사용되는 Bit 조합의 개수 : 2ⁿ-1
 → 0 중복
- Bit 일 때 표현 가능 범위: -2ⁿ⁻¹+1 ~ 2ⁿ⁻¹-1
- ③ Binary # $a_2a_1a_0$ 를 Decimal # d로 바꾸는 일반 식 : $\mathbf{d} = (-1)^{a_{i-1}} \sum_{0}^{n-2} a_i \cdot 2^i$ $110_2 \rightarrow (-1)^1 (1X2^1 + 0X2^0) = -2_{10}$
- 의 Bit Extension: Sign Bit 다음에 0을 추가 $110_2(6_{10}) \rightarrow 1010_2(6_{10})$, $010_2(2_{10}) \rightarrow 0010_2(2_{10})$

Integer Representation: 1's Complement

Decimal	Signed Magnitude
3	011
2	010
1	001
0	000
0	111
-1	110
-2	101
-3	100

- n Bit 일 때 사용되는 Bit 조합의 개수: 2ⁿ-1 → 0 중복
- n Bit 일 때 표현 가능 범위: -2ⁿ⁻¹+1 ~ 2ⁿ⁻¹-1

Integer Representation: 1's Complement

Decimal	Signed Magnitude
3	011
2	010
1	001
0	000
0	111
-1	110
-2	101
-3	100

- Decimal #로 바꾸는 방법
 Sign Bit가 0이면 → 그대로 Decimal #로 변환(+)
 Sign Bit가 1이면 → 1의 보수를 취하고 Decimal #로 변환(-)
- Sign Bit를 추가 $110_2(-1_{10})$ \rightarrow $1110_2(-1_{10})$, $010_2(2_{10})$ \rightarrow $0010_2(2_{10})$

Integer Representation: 2's Complement

Decimal	Signed Magnitude		
3	011		
2		010	
1		001	
0	004	000	1001
-1	-001	111	+001
-2		110	
-3		101	
-4		100	

- n Bit 일 때 사용되는 Bit 조합의 개수 : 2ⁿ
- n Bit 일 때 표현 가능 범위: -2ⁿ⁻¹ ~ 2ⁿ⁻¹-1

Integer Representation: 2's Complement

Decimal	Signed Magnitude		
3	→ 011		
2		010	
1		001	
0	001	000	1001
-1	-001	111	+001
-2		110	
-3		101	
-4		100	

- Decimal #로 바꾸는 방법
 Sign Bit가 0이면 → 그대로 Decimal #로 변환(+)
 Sign Bit가 1이면 → 2의 보수를 취하고 Decimal #로 변환(-)
- 의 Bit Extension: Sign Bit를 추가 $110_2(-2_{10}) \rightarrow 1110_2(-2_{10})$, $010_2(2_{10}) \rightarrow 0010_2(2_{10})$
- Overflow/Underflow 고찰