h2021

Oppgave 1

concept	concept	concept	concept	fact
book	shop	locations	time	book
All	All	All	All	location
type	type	continent	year	shop
author	location	country	month	time
name		state	day	
		city		unit_sold
				dollars_sold

b)^

c)snowflake splitt everything into smaller pieces

Oppgave 2

Office

Oslo: 1001100 Bergen: 0100010 Trondheim: 0010001

Gender:

 $\begin{array}{l} \text{Male: } 1100101 \\ \text{Female: } 0011010 \end{array}$

Title:

Developer: 1010011
Tester: 0101000

Project manager: 0000100

Dependent: Yes: 1100110

No: 0011001

a)

1010011

1100110

1000010. first and second last

b)

11111111 -

0010001 =

1101110

c)1101110

1100101

1100100

d)

 $1001100 \ or$

0100010

1101110

1101110

0101000

0101000

Oppgave 3

Instance	Type	A	В	С	D	Class
1	High	3.5	4.0	7.0	-2.00	Н
2	High	2.0	-4.0	4.0	2.00	Н
3	Low	9.1	4.5	18.2	-2.25	L
4	High	2.0	-6.0	4.0	3.00	Н
5	High	1.5	7.0	3.0	-3.50	Н
6	High	7.0	-6.5	14.0	3.25	Н
7	Low	2.1	2.5	4.2	-1.25	L
8	Low	8.0	-4.0	16.0	2.00	L

Table 1: Data for pre-processing.

Would remove Type as is same as Class.

Looks like C = 2*A, would remove A or C

D = -1/2*B, would remove B or D

h2021 2

Since feature is 10^6 we would need to run it $2^{10^6}times$.

Oppgave 5

Name: Nominal

Age: Ratio

Joining Date: Interval

Title: Ordinal

Oppgave 6

Α	4
В	5
С	5
D	2
E	4
A, B	3
A, C	4
A, E	2
В, С	4
B, E	4
C, E	3
A, B, C	3
A, B, E	2
A, C, E	2
B, C, E	3
A, B, C, E	2

h2021 3

[(('B',), 5), (('C',), 5), (('A',), 4), (('E',), 4), (('D',), 2)]

D is eliminted

Sorted list:

[[('C',), ('A',)],

[('B',), ('C',), ('E',)],

[('B',), ('C',), ('A',), ('E',)],

[('B',), ('E',)],

[('B',), ('C',), ('A',), ('E',)],

[('B',), ('C',), ('A',)]]

First: second: Third:

root root root

|--B(1) |--B(2)

|--C(1) |--C(2)

|--A(1)

|--E(1)

Forth: fifth: Sixth:

root root root

Projected FP-tree

Project E:

Path B, C, A, E has highest count

Projected FP-tree root \rightarrow B(4) \rightarrow C(3) \rightarrow A(2), A(2) is under support limit 3 and is removed

Frequente Path= {EB(4), EC(3), EBC(3)}

Project A:

Test for projecttion AB:

Test for projection AC: B:3

BC:3

h2021

```
Frequente Path {AB(3)}
B:1
root \rightarrow B(3)
Frequnte Path{AC(4), ACB(3)}
Project C:
[('C',)],
                                                     root
[('B',), ('C',)],
                                                     |--C(1)
[('B',), ('C',)]
                                                     |--B(4)
[('B',), ('C',)],
                                                         |--C(4)
[('B',), ('C',)]
C:1
BC:4
Projected FP-tree: root → B(4)
Frequnte path{CB(4)}
Project B:
[('B',)],
                                                     root
[('B',)],
                                                     |--B(5)
[('B',)],
[('B',)],
[('B',)],
B:5
Frequent path = \{\emptyset\}
```

h2021

```
[P(0, 0), P(3.25, 1.0)]
---
Cluster 0: (0, 0)
[P1(0, 2), P2(0, 0), P3(1.5, 0)]
Cluster 1: (3.25, 1.0)
[P4(5, 0), P5(5, 2)]
---
[P(0, 0), P(5.0, 1.0)]
---
Cluster 0: (0, 0)
[P1(0, 2), P2(0, 0), P3(1.5, 0)]
Cluster 1: (5.0, 1.0)
[P4(5, 0), P5(5, 2)]
No change, exiting...
```

	(5,8)	(6,7)	(6,5)	(2,4)	(3,4)	(5,4)	(7,4)	(9,4)	(3,3)	(8,2)	(7,5)
(5,8)	0	1	1	3	2	0	2	4	2	3	2
(6,7)	1	0	0	3	3	1	1	3	3	2	1
(6,5)	1	0	0	1	1	1	1	1	2	2	0
(2,4)	3	3	1	0	0	0	0	0	1	2	1
(3,4)	2	3	1	0	0	0	0	0	0	2	1
(5,4)	0	1	1	0	0	0	0	0	1	2	1
(7,4)	2	1	1	0	0	0	0	0	1	1	0
(9,4)	4	3	1	0	0	0	0	0	1	1	1
(3,3)	2	3	2	1	0	1	1	1	0	1	2
(8,2)	3	2	2	2	2	2	1	1	1	0	1
(7,5)	2	1	0	1	1	1	0	1	2	1	0
DENSITY:	: 4	6	9	8	8	10	10	9	7	5	9

Found points where density is above minptr and these are cors. Se that P1 and P10 both are neighbors to cores and is therefor BORDER

h2021 7

```
[P1(5, 8, PointType.BORDER),
P2(6, 7, PointType.CORE),
P3(6, 5, PointType.CORE),
P4(2, 4, PointType.CORE),
P5(3, 4, PointType.CORE),
P6(5, 4, PointType.CORE),
P7(7, 4, PointType.CORE),
P8(9, 4, PointType.CORE),
P9(3, 3, PointType.CORE),
P10(8, 2, PointType.BORDER),
P11(7, 5, PointType.CORE)]
```

Instance	Age	Car	Risk
1	25	Sports	L
2	20	Vintage	Н
3	25	Sports	L
4	45	SUV	Н
5	20	Sports	Н
6	25	SUV	Н

$$GINI = 1 - \frac{2}{6}^2 - \frac{4}{6}^2 = 0.44$$

	H:2, L:0	H:1, L:2	H:1, L0
Sorted	20	25	45
Split position	10	22.5	35
H≤	0	2	3
L≤	0	0	2
H >	4	2	1
L >	2	2	0
GINI≤	1 - 0 - 0 = 1	$\frac{1 - \frac{2}{2}^2}{\frac{0}{2}^2} = 0.0$	$\frac{1 - \frac{3}{5}^2 - \frac{2}{5}^2 = 0.48$
GINI >	$\frac{1 - \frac{4}{6}^2 - \frac{2}{6}^2}{0.44} =$	$\frac{1 - \frac{2}{4}^2 -}{\frac{2}{4}^2} = 0.5$	$\frac{1 - \frac{1}{1}^2}{\frac{0}{1}^2} = 0$

h2021

8

	L	Н
Sport	2	1
Vintage	0	1
SUV	0	2

$$GINI_{sport} = 1 - \frac{2}{3}^2 - \frac{1}{3}^2 = 0.44$$

$$GINI_{vintage} = 1 - \frac{0}{1}^2 - \frac{1}{1}^2 = 0.0$$

$$GINI_{SUV} = 1 - \frac{0}{2}^2 - \frac{2}{2}^2 = 0.0$$

$$GINI = \frac{3}{6} * 0.44 + \frac{1}{6} * 0 + \frac{2}{6} * 0 = 0.22$$

Best split on Car

Best splitt on Sport, all other cars are High

calculate AGE again