Technische Universität Ilmenau Fakulät IA Fachgebiet Biosignalverarbeitung

Praktikum EKG-Signalanalyse WS 2021/22

Versuchsprotokoll

EKG-Signalanalyse

9. Dezember 2021

1 Vorbereitungsaufgaben

1.1 EKG-Vorverarbeitung

Entwickeln Sie eine Strategie zur EKG-Vorverarbeitung (Filterung)! Bedenken Sie dabei, dass die EKG-Vorverarbeitung maßgeblichen Einfluss auf die Qualität der QRS-Detektion hat.

1.2 QRS-Detektion

1.2.1

Entwickeln Sie einen Algorithmus zur adaptiven QRS-Detektion, von dem Sie ein möglichst gutes Detektionsergebnis erwarten! Achten Sie dabei besonders auf dessen prinzipielle Online-Fähigkeit. 250 ms Zeitvorlauf sollen dabei nicht überschritten werden, d.h. zur Entscheidungsfindung, ob ein Abtastwert zum Zeitpunkt t eine R-Zacke darstellt oder nicht, können maximal die Abtastwerte der nächsten 250 ms einbezogen werden. Notieren und erklären Sie die verwendeten Operatoren/Formeln und beschreiben Sie den Block der Entscheidungsfindung in einem Programmablaufplan bzw. Entscheidungsbaum!

1.2.2

Entwickeln Sie zu diesem Algorithmus die zugehörige(n) MATLAB-Funktion(en) und bringen Sie den Quelltext schriftlich zum Praktikum mit! Benutzen Sie folgende Funktionsschnittstelle:

 $function \ [R_Positionen\,, \ Entscheidungssignal\,, \ Schwellwertverlauf\,, \ Lernphase] \ = \ QRS_Detektion \ (EKG_Signal\,, \ fa\,);$

2 Praktikumsaufgaben

2.1 EKG-Ableitung mit Hilfe des Biosignalverstärkers "g.BSamp" und "g.ECGbox"

Leiten Sie jeweils ein 5 minütiges EKG eines Studenten innerhalb der folgenden vier Phasen ab. Achten Sie dabei auf die Auswahl der Kanäle!

- Lagetyp-Phase: Proband liegt und atmet normal (alle Kanäle)
- Ruhe-Phase: Proband liegt und atmet normal (Kanal mit größter R-Zacke)
- RESP-Phase: Proband liegt und atmet langsam tief ein und tief aus (Kanal mit größter R- Zacke)
- STEH-Phase: Proband steht und atmet normal (Kanal mit größter R-Zacke)

2.2 Bestimmung der elektrischen Herzachse

Mit Hilfe des Matlab-GUI "Datenanzeigen" können die abgeleiteten Signale dargestellt und ausgewertet werden. Für die Bestimmung des Lagetyps gehen Sie wie folgt vor:

- Laden Sie die abgeleiteten Daten und filtern Sie diese, falls nötig
- Wählen Sie einen Artefakt-freien Signalabschnitt
- Suchen Sie die höchste der R-Zacke
- Bestimmen Sie die Amplitude der Zacken zu einem Zeitpunkt in den Ableitungen I, II und III,benutzen Sie dazu den "Data-Cursor" von Matlab.
- Tragen Sie die Funktionswerte in das vorgefertigte Protokoll ein und bilden Sie von mindestens zwei Vektoren graphisch den Summenvektor
- Mit Hilfe des Cabrera-Kreises können Sie nun den Lagetyp bestimmen.

2.3 EKG-Vorverarbeitung

Unter dem Menü-Punkt EKG-Vorverarbeitung stehen Ihnen Methoden zur Signal-Vorverarbeitung (Filterung) bereits fertig zur Verfügung. Überprüfen Sie die Wirksamkeit der von Ihnen vorgeschlagenen Vorverarbeitungsmethoden und deren Parametereinstellungen anhand der EKG-Signale der MIT-Datenbank: 100, 106, 107, 208 und 222 visuell! Überlagern Sie die Signale mit einem Drift und einer 50 Hz-Sinusschwingung!

2.4 QRS-Detektion mit Hilfe von MATLAB

2.4.1

Implementieren Sie Ihren entwickelten Algorithmus zur QRS-Detektion in die Funktion QRS_Detektion.m

2.4.2

Evaluieren Sie Ihren QRS-Detektor anhand der folgenden EKG-Signale der MIT-Datenbank: 100, 106, 107, 208 und 222! Notieren Sie die Detektionsquote! Wo liegen die Stärken bzw. die Schwächen Ihres Detektors?

2.4.3

Versuchen Sie anhand der Ergebnisse dieses ersten Detektionstests den Detektionsalgorithmus bzw. (falls angebracht) auch Ihre EKG-Vorverarbeitung zu optimieren! Wiederholen Sie den Detektionstest! Inwieweit konnten die Detektionseigenschaften verbessert werden?

2.5 Analyse der Herzfrequenzvariabilität

2.5.1

Analysieren Sie die aufgezeichneten EKG-Signale während der drei Phasen (RUHE, RESP und STEH)!

Interpretieren Sie die Unterschiede in den Ergebnissen der einzelnen Phasen der HRV-Analyse!

2.5.2

Vergleichen Sie die HRV-Ergebnisse des Praktikumsprobanden mit den Ergebnissen eines Polyneuropathie-Patienten (Datei: zwickau.dat).