Spring 2023

Lecture 16

Lecturer: Asst. Prof. M. Mert Ankarali

16.1 Minimality of Interconnected Systems

In this section we shall examine the conditions under which minimality is lost when minimal subsystems are interconnected in various configurations,

16.1.1 Series - Cascade Connection

Consider the following system structure where two sub systems, with transfer functions $G_1(s)$ and $G_2(s)$ and associated minimal representations $\begin{pmatrix} A_1 & B_1 \\ \hline C_1 & D_1 \end{pmatrix}$ and $\begin{pmatrix} A_2 & B_2 \\ \hline C_2 & D_2 \end{pmatrix}$, connected in series/cascade configuration.

$$\begin{array}{c|c}
u = u_1 \\
\hline
\begin{pmatrix}
A_1 & B_1 \\
\hline
C_1 & D_1
\end{pmatrix}
\end{array}
\begin{array}{c|c}
y_1 = u_2 \\
\hline
\begin{pmatrix}
A_2 & B_2 \\
\hline
C_2 & D_2
\end{pmatrix}
\end{array}
\begin{array}{c|c}
y = y_2 \\
\hline
\end{array}$$

The transfer function of the connection is simply equal to $G(s) = G_2(s)G_1(s)$. Let x_1 and x_2 state-variables of the sub-systems, then natural choice of the state variable for the series connection is $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Under this definition the state-space representation for the whole system can be found as

$$A = \begin{bmatrix} A_1 & 0 \\ \overline{B_2C_1} & A_2 \end{bmatrix} \;,\; B = \begin{bmatrix} \overline{B_1} \\ \overline{B_2D_1} \end{bmatrix} \;,\; C = \begin{bmatrix} D_2C_1 & C_2 \end{bmatrix} \;,\; D = \begin{bmatrix} D_2D_2 \end{bmatrix}$$

Clearly eigenvalues of A are the combination of the eigenvalues of A_1 and A_2 and the poles of the system Let's analyze the observability of the connection via PBH test.

$$\begin{bmatrix} \lambda I - A \\ \hline C \end{bmatrix} = \begin{bmatrix} \lambda I - A_1 & 0 \\ \hline -B_2 C_1 & \lambda I - A_2 \\ \hline D_2 C_1 & C_2 \end{bmatrix}$$

If we remember from the observability lecture that (A, C) (whole state-space model) pair is unobservable if and only if $\left[\frac{\lambda I - A}{C}\right]$ losses rank for some λ , which can only happen if λ is an eigenvalue of A. Let's assume

that λ_2 is an eigenvalue of A_2 but not eigenvalue of A_1 . Then $\left[\frac{\lambda I - A}{C}\right]_{\lambda = \lambda_2}$ looses rank, if $\exists v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

16-2 Lecture 16

such that

$$\left[\begin{array}{c|c} \lambda_2 I - A \\ \hline C \end{array}\right] v = 0 \Rightarrow \left[\begin{array}{c|c} \lambda_2 I - A_1 & 0 \\ \hline -B_2 C_1 & \lambda_2 I - A_2 \\ \hline D_2 C_1 & C_2 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = 0 \Rightarrow v_1 = 0 \& \left[\begin{array}{c|c} \lambda_2 I - A \\ \hline C_2 \end{array}\right] v_2 = 0$$

which contradicts with the fact that (A_2, C_2) is observable since both individual sub-system representations are minimal. In that respect $\left\lceil \frac{\lambda I - A}{C} \right\rceil$ can loose rank only at an eigenvalue of A_1 (i.e. a pole of A_2). Let's

 λ_1 is an eigenvalue of A_1 . Then $\left[\begin{array}{c} \lambda I - A \\ C \end{array}\right]_{\lambda = \lambda_1}$ looses rank, if $\exists v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ such that

$$\begin{bmatrix} \frac{\lambda_1 I - A}{C} \end{bmatrix} v = 0 \Rightarrow \begin{bmatrix} \frac{\lambda_1 I - A_1}{-B_2 C_1} & \frac{0}{\lambda_1 I - A_2} \\ \hline D_2 C_1 & C_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \Rightarrow v_1 \neq 0 \& Av_1 = \lambda_1 v_1 \text{ and }$$

$$\begin{bmatrix} \frac{\lambda_1 I - A_2}{C_2} & -B_2 C_1 \\ \hline C_2 & D_2 C_1 \end{bmatrix} \begin{bmatrix} v_2 \\ v_1 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} \frac{\lambda_1 I - A_2}{C_2} & -B_2 \\ \hline C_2 & D_2 \end{bmatrix} \begin{bmatrix} v_2 \\ C_1 v_1 \end{bmatrix} = 0$$

Note that $\begin{bmatrix} \lambda_1 I - A_2 & -B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} v_2 \\ C_1 v_1 \end{bmatrix} = 0$ implies that λ_1 is a **right** zero of $G_2(s)$ where v_2 and $C_1 v_1$ is the associated state-zero-direction and *input-zero-direction* respectively.

If we summarize the results, cascaded system is unobservable if $\exists (\lambda_1, v_1)$ and $v_2 \neq 0$ such that (λ_1, v_1) is an eigenvalue-eigenvector pair of A_1 and λ_1 is a **right** zero of $G_2(s)$ with v_2 and C_1v_1 as the state-zero-direction and input-zero-direction respectively.

Now let's analyze the reachability of the connection via PBH test.

 $\Rightarrow w_2^T = 0 \& w_1^T [\lambda_1 I - A_1 \mid B_1] = 0$

$$\left[\begin{array}{c|c|c} \lambda I - A \mid B \end{array}\right] = \left[\begin{array}{c|c|c} \lambda I - A_1 & 0 & B_1 \\ \hline -B_2 C_1 & \lambda I - A_2 & B_2 D_1 \end{array}\right]$$

If we remember from the reachability lecture that (A, B) (whole state-space model) pair is unreachable if and only if $\begin{bmatrix} \lambda I - A \mid B \end{bmatrix}$ losses rank for some λ , which can only happen if λ is an eigenvalue of A. Let's assume that λ_1 is an eigenvalue of A_1 but not eigenvalue of A_2 . Then $\begin{bmatrix} \lambda I - A \mid B \end{bmatrix}_{\lambda = \lambda_1}$ looses rank, if $\exists w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ such that

which contradicts with the fact that (A_1, B_1) is reachable since both individual sub-system representations are minimal. Now let λ_2 is an eigenvalue of A_2 . Then $\begin{bmatrix} \lambda I - A & B \end{bmatrix}_{\lambda = \lambda_2}$ looses rank, if $\exists w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ such that

$$\begin{bmatrix} w_1^T & w_2^T \end{bmatrix} \begin{bmatrix} \lambda_2 I - A \mid B \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} w_1^T & w_2^T \end{bmatrix} \begin{bmatrix} \frac{\lambda_2 I - A_1}{-B_2 C_1} & 0 & B_1 \\ -B_2 C_1 & \lambda_2 I - A_2 & B_2 D_1 \end{bmatrix} = 0$$

$$\Rightarrow w_2 \neq 0 \& w_2^T A_2 = w_2^T \lambda_2 \text{ and } \begin{bmatrix} w_1^T & w_2^T \end{bmatrix} \begin{bmatrix} \frac{\lambda_2 I - A_1}{-B_2 C_1} & B_1 \\ -B_2 C_1 & B_2 D_1 \end{bmatrix} = 0 \Rightarrow$$

$$\begin{bmatrix} w_1^T & -(B_2^T w_2)^T \end{bmatrix} \begin{bmatrix} \frac{\lambda_2 I - A_1}{C_1} & B_1 \\ -D_1 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} w_1^T & -(B_2^T w_2)^T \end{bmatrix} \begin{bmatrix} \frac{\lambda_2 I - A_1}{C_1} & -B_1 \\ -D_1 \end{bmatrix} = 0$$

Lecture 16 16-3

Note that $\begin{bmatrix} w_1^T & (-B_2^T w_2)^T \end{bmatrix} \begin{bmatrix} \frac{\lambda_2 I - A_1 & -B_1}{C_1 & D_1} \end{bmatrix} = 0$ implies that λ_2 is a **left** zero of $G_1(s)$ where w_1 and $(-B_2^T w_2)$ are the associated state-zero-direction and input-zero-direction respectively.

If we summarize the results, cascaded system is unreachable if $\exists (\lambda_2, w_2)$ and $w_1 \neq 0$ such that (λ_2, v_2) is a left eigenvalue-eigenvector pair of A_2 and λ_2 is a **left** zero of $G_1(s)$ with w_1 and $(-B_2^T w_2)$ as the state-zero-direction and *input-zero-direction* respectively.