

CONTENTS

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Summary of Methodologies
 - Collect data
 - Wrangle data
 - Explore & Analyse
 - Visualize
 - Build Models
- Summary of Results
 - Exploratory Analysis
 - Launch success improvement
 - KSC LC-39A high success rate
 - Visualization Analysis
 - Launch sites near the coast
 - Predictive Analysis

INTRODUCTION

Background SpaceX is an industry leader in spaceflight technology. Their advantage is based on their capacity to successfully land and reuse the Falcon 9 booster. We will use public data and machine learning to determine whether SpaceX will successfully reuse the first stage rocket. Focus Contributing factors to success/failure Success rate over time Optimal predictive model to achieve 100% success rate

METHODOLOGY

- Collection
- Wrangling
- Exploration
- Visualization
- Build/Test Models
 - Logistic Regression
 - Decision Tree
 - Support Vector
 - K Nearest Neighbour

DATA COLLECTION & WRANGLING

Collect Wrangle API call to request data Load data Apply .json() and .json normalize() Create binary "Class" landing to decode and convert to dataframe outcome column Determine success outcome Pre-process data and filter out non Falcon 9 boosters Convert and save data to csv Convert and save data to csv

EDA VISUALS & METHODOLOGY

Visuals Analysis Payload mass vs launch site Improved success rate over time Payload mass vs orbit type Payload - Launch site correlation Payload mass vs flight number Payload - Orbit type correlation Launch site vs flight number

EDA VISUAL RESULTS

EDA VISUAL RESULTS

- KSC LC 39A had high success rate under 5,000kg
- CCAFS SLC 40 high success rate over 6,500 kg
- Orbit, launch site and payload were shown to be determining factors in landing success
- ES-L1, GEO, HEO, SSO orbits all had high success rate
- Improved launch success over time

EDA & SQL RESULTS

Findings

- First successful ground pad landing Dec 22, 2015
- Avg payload mass 2928.4 kg
- 100 successful mission outcomes, 1 failed mission outcome

Landing_Outcome	Total Count
No attempt	10
Success (ground pad)	5
Success (drone ship)	5
Failure (drone ship)	5
Controlled (ocean)	3
Uncontrolled (ocean)	2
Precluded (drone ship)	1
Failure (parachute)	1

INTERACTIVE FOLIUM MAP

PREDICTIVE ANALYSIS RESULTS

CONCLUSION

Our data analysis shows a consistent improvement in landing success since the first launch on Dec 22, 2015. Payload mass, orbit, and launch site were found to be contributing factors to a successful mission outcome.

As an industry leader in spaceflight technology, SpaceX has demonstrated the capability to successfully land and reuse the Falcon 9 booster.