

Prof. Dr. M. Grohe

E. Fluck, A. Riazsadri, J. Feith

Übungsblatt 11

Abgabetermin: Mittwoch, der 25. Januar 2023 um 14:30

- Die Abgabe dieses Blattes wird am Mittwoch, dem 18.01. um 16 Uhr freigeschaltet.
- Die Lösungen der Hausaufgaben werden online via Moodle abgegeben.
- Die Hausaufgaben müssen in Gruppen von je drei Studierenden aus dem gleichen Tutorium abgegeben werden.
- Einzelabgaben werden mit 0 (Null) Punkten bewertet. Bitte versucht immer zu dritt arbeiten und abzugeben, das heißt wenn ein Teammitglied aufhört, sucht euch bitte ein weiteres Teammitglied.
- Nummer des Tutoriums, Nummer des Übungsblattes und Namen und Matrikelnummern der Studierenden sind auf das erste Blatt jeder Abgabe aufzuschreiben
- Es wird nur eine PDF-Datei, maximale Größe 15 MB, akzeptiert. Als Dateiname bitte Blatt-XX_Tutorium-YY_Gruppe-ZZZ.pdf mit der Nummer des aktuellen Blattes, des Tutoriums und der Abgabegruppe im Dateinamen verwenden.
- Musterlösungen zu den Hausaufgaben werden nach der Globalübung am Mittwoch, dem 25.01. in Moodle hochgeladen.

Tutoriumsaufgabe 1 (Dominating Set)

Wir betrachten das folgende Entscheidungsproblem:

DOMINATING SET

Eingabe: Ein Graph G und eine Zahl $k \in \mathbb{N}$.

Frage: Gibt es eine Knotenmenge $D\subseteq V(G)$ mit $|D|\leq k$, so dass für jeden Knoten $v\in V(G)\setminus D$ ein Knoten $w\in D$ mit $vw\in E(G)$ existiert?

Zeigen Sie, dass Dominating Set NP-schwer ist.

Prof. Dr. M. Grohe

E. Fluck, A. Riazsadri, J. Feith

Tutoriumsaufgabe 2 (Approximation für Vertex Cover)

- a) Sei G ein Graph, M ein Matching von G und C ein Vertex Cover von G. Zeigen Sie, dass $|M| \leq |C|$ gilt.
- b) Entwickeln Sie einen 2-Approximationsalgorithmus für VERTEX COVER mit polynomieller Laufzeit.
- c) Zeigen Sie durch die Angabe eines geeigneten Graphen, dass Ihr Algorithmus für jedes $\varepsilon > 0$ kein (2ε) -Approximationsalgorithmus ist.

Hinweis: Betrachten Sie für (b) inklusionsweise maximale Matchings.

Tutoriumsaufgabe 3 (Graph Homomorphism)

Sei H ein Graph. Wir betrachten das folgende Entscheidungsproblem:

Graph Homomorphism

Eingabe: Zwei Graphen G und H.

Frage: Gibt es einen Homomorphismus von G nach H, d.h. existiert eine Abbildung $f \colon V(G) \to V(H)$ so, dass für alle $v, w \in V(G)$ mit $vw \in E(G)$ auch $f(v)f(w) \in E(H)$ gilt?

Zeigen Sie, dass Graph Homomorphism NP-schwer ist.

Aufgabe 4 (Set Packing)

6 Punkte

Wir betrachten das folgende Entscheidungsproblem:

SET PACKING

Eingabe: Eine Menge U, eine Menge $S \subseteq Pot(U)$, eine Zahl $k \in \mathbb{N}$.

Frage: Enthält S k disjunkte Mengen, d.h. existiert eine Menge $S' = \{S_1, \ldots, S_k\} \subseteq S$ der Größe k mit $S_i \cap S_j = \emptyset$ für alle $i \neq j$?

Zeigen Sie, dass Set Packing NP-vollständig ist.

E. Fluck, A. Riazsadri, J. Feith

Aufgabe 5 (Approximation für Vertex Cover)

$$9(2+3+2+2)$$
 Punkte

Wir erinnern uns an die Tiefensuche (DFS) in Graphen. Ein Durchlauf der Tiefensuche auf einem zusammenhängenden Graphen G kann durch einen (gerichteten) DFS-Spannbaum T repräsentiert werden, welcher genau die Kanten enthält, die in der Ausführung "genommen" wurden.

Zum Beispiel repräsentiert der rot (und dick) gedruckte Spannbaum T rechts einen DFS-Durchlauf auf dem linken Graphen, beginnend beim Knoten 1.

Wir bezeichnen die Knoten eines solchen Baums T, welche keine ausgehende Kante besitzen, als die Blätter von T; alle anderen Knoten nennen wir interne Knoten.

- a) Sei G ein zusammenhängender Graph und T ein DFS-Spannbaum von G. Zeigen Sie, dass die Blätter von T ein Independent Set von G sind.
- b) Zeigen Sie, dass jeder Baum T ein Matching besitzt, welches alle internen Knoten von T überdeckt.
- c) Folgern Sie, dass das folgende Verfahren ein 2-Approximationsalgorithmus für VERTEX COVER auf zusammenhängenden Graphen ist:
 - 1. Wähle einen beliebigen Startknoten $r \in V(G)$.
 - 2. Berechne mittels Tiefensuche von r aus einen DFS-Spannbaum T von G.
 - 3. Gebe $I(T) = \{v \in V(G) \mid v \text{ ist interner Knoten von } T\}$ aus.
- d) Zeigen Sie durch die Angabe einer geeigneten Familie $\mathcal{G} = (G_n)_{n \in \mathbb{N}}$ von Graphen, dass für alle $\varepsilon > 0$ das obrige Verfahren kein (2ε) -Approximationsalgorithmus für Vertex Cover ist.