CSC 4020 Fundamentals of Machine Learning: I-Map

Baoyuan Wu

April 14

Topics

- Recap: Conditional Independence
- Markov Assumption and Definition of I-Maps
- I-Map to Factorization
- Factorization to I-Map
- Perfect Map

Graphs and Distributions

- Relating two concepts:
 - Independencies in distributions
 - Independencies in graphs
- I-Map is a relationship between the two

Recap: Conditional Independence

Recap: Conditional Independence

- Two variables X and Y are conditionally independent given Z if
 - P(X = x | Y = y, Z = z) = P(X = x | Z = z) for all values x,y,z
 - That is, learning the values of Y does not change prediction of X once we know the value of Z
 - notation: $(X \perp Y | Z)$

Recap: Conditional Independence

• X, Y independent $X \perp Y$ or $X \perp Y \mid \emptyset$ if and only if: $\forall x,y: P(x,y) = P(x)P(y)$

• X and Y are conditionally independent given Z: $X \perp Y | Z$ if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

Independencies in a Distribution

- Let P be a distribution over X
- Define I(P) to be the set of conditional independence assertions of the form $(X \perp Y|Z)$ that hold in P
- Example:

X	Υ	P(X,Y)
\mathbf{x}^{0}	y ⁰	0.08
\mathbf{x}^{0}	y ¹	0.32
X ¹	y ⁰	0.12
X^1	y ¹	0.48

X and Y are independent in P, e.g.,

$$P(x^1)$$
=0.48+0.12=0.6
 $P(y^1)$ =0.32+0.48=0.8
 $P(x^1,y^1)$ =0.48=0.6**x**0.8

Thus
$$(X \perp Y | \phi) \in I(P)$$

Independencies in a Distribution

- Let P be a distribution over X
- Define I(P) to be the set of conditional independence assertions of the form $(X \perp Y|Z)$ that hold in P
- Example:

X	Y	P(X,Y)
x^0	y ⁰	0.08
x^0	y ¹	0.32
X^1	y ⁰	0.12
X^1	y ¹	0.48

X and Y are independent in P, e.g.,

$$P(x^{1})$$
=0.48+0.12=0.6
 $P(y^{1})$ =0.32+0.48=0.8
 $P(x^{1},y^{1})$ =0.48=0.6**x**0.8

Thus
$$(X \perp Y | \phi) \in I(P)$$

How about this distribution?

X	Υ	P(X,Y)
\mathbf{x}^{0}	y ⁰	0.10
\mathbf{x}^{0}	y ¹	0.16
X^1	y ⁰	0.64
χ^1	y ¹	0.10

Markov Assumption and Definition of I-Map

Markov Assumption

- We now make this independence assumption more precise for directed acyclic graphs (DAGs)
- Each random variable X, is independent of its non-descendents, given its parents Pa(X)
- Formally, $(X \perp NonDesc(X)|pa(X))$

Can we read off the independencies from a graph?

Independencies in a Graph

Graph G with CPDs is equivalent to a set of independence assertions

$$P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$$

Local Conditional Independence Assertions (starting from leaf nodes):

```
I(G) = \{(L \perp I, D, S \mid G), \quad L \text{ is conditionally independent of all other nodes given parent } G
(S \perp D, G, L \mid I), \quad S \text{ is conditionally independent of all other nodes given parent } I
(G \perp S \mid D, I), \quad \text{Even given parents, } G \text{ is NOT independent of descendant } L
(I \perp D \mid \phi), \quad \text{Nodes with no parents are marginally independent}
(D \perp I, S \mid \phi)\} \quad D \text{ is independent of non-descendants } I \text{ and } S
```

- Parents of a variable shield it from probabilistic influence
 - Once value of parents known, no influence of ancestors
- Information about descendants can change beliefs about a node

Definition of I-MAP

- Let G be a graph associated with a set of independencies I(G)
- Let P be a probability distribution with a set of independencies I(P)
- Then G is an I-Map of P if $I(G)\subseteq I(P)$
 - Intuitively, A DAG G is an **I-Map** of a distribution P if the all Markov assumptions implied by G are satisfied by P
- From direction of inclusion
 - distribution can have more independencies than the graph
 - Graph does not mislead in independencies existing in P
 - Any independence that G asserts must also hold in P

Example of I-MAP

 $\mathsf{G_1}$ encodes no Independence, or $I(G_1) = \emptyset$

 $\mathsf{G_2}$ encodes no Independence, or $I(G_2)=\emptyset$

Example of I-MAP

 G_0 encodes $X \perp Y$ or $I(G_0) = \{X \perp Y\}$

 G_1 encodes no Independence, or $I(G_1)=\emptyset$

 G_2 encodes no Independence, or $I(G_2)=\emptyset$

X	Y	P(X,Y)
x^0	y^0	0.08
x^0	y^{I}	0.32
x^{I}	y^0	0.12
x^{I}	y^{I}	0.48

X and Y are independent in P, e.g.,

 G_0 is an I-map of P G_1 is an I-map of P G_2 is an I-map of P

Example of I-MAP

 G_0 encodes $X \perp Y$ or $I(G_0) = \{X \perp Y\}$

 G_1 encodes no Independence, or $I(G_1)=\emptyset$

 G_2 encodes no Independence, or $I(G_2)=\emptyset$

X	Y	P(X,Y)
x^0	y^0	0.4
x^0	y^{I}	0.3
x^{I}	y^0	0.2
x^{I}	y^{l}	0.1

X and Y are not independent in PThus $(X \perp Y) \notin I(P)$

 G_0 is not an I-map of P G_1 is an I-map of P G_2 is an I-map of P

Exercise

• Please draw an I-Map for each of the following distributions:

X	у	P(x,y)
0	0	0.25
0	1	0.25
1	0	0.25
1	1	0.25

X	у	P(x,y)
0	0	0.2
0	1	0.3
1	0	0.4
1	1	0.1

I-map to Factorization

What is factorization?

 factorization or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind

• In our context, for example:

$$P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$$
 or
$$P(I,D,G,L,S) = P(I)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G,L)$$

I-map to Factorization

- A Bayesian network G encodes a set of conditional independence assumptions I(G)
- Every distribution *P* for which G is an I-map should satisfy these assumptions
 - Every element of I(G) should be in I(P)
- This is the key property to allowing a compact representation

I-map to Factorization

- Consider Joint distribution P(I, D, G, L, S)
 - From chain rule of probability P(I,D,G,L,S) = P(I)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G,L)
 - Relies on no assumptions, also not very helpful
 - Last factor requires evaluation of 24 conditional probabilities

Factorization Theorem

• Thm: if G is an I-Map of P, then

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Pa(X_i))$$

I-map to Factorization

- Assume G is an I-map
 - Apply conditional independence assumptions induced from the graph
 - $D \perp I \in I(P)$ therefore P(D|I) = P(D)
 - $(L \perp I, D) \in I(P)$ therefore P(L|I, D, G) = P(L|G)
 - Thus we get

$$P(I, D, G, L, S) = P(I)P(D|I)P(G|I, D)P(L|I, D, G)P(S|I, D, G, L)$$

= $P(I)P(D)P(G|I, D)P(L|G)P(S|I)$

- Which is a factorization into local probability models
- Thus we can go from graphs to factorization of P

Exercise

 Please give the factorization of the distribution P according to the I-Map shown in the figure.

Factorization to I-map

Factorization to I-map

We can also show the opposite

Thm

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Pa_i) \implies \mathbf{G}$$
 is an I-Map of P

Proof (Outline)

$$P(Z \mid X,Y) = \frac{P(X,Y,Z)}{P(X,Y)} = \frac{P(X)P(Y \mid X)P(Z \mid X)}{P(X)P(Y \mid X)}$$
$$= P(Z \mid X)$$

Factorization to I-map

- We have seen that we can go from the independences encoded in G, i.e., I(G), to Factorization of P
- Conversely, Factorization according to G implies associated conditional independences
 - If P factorizes according to G then G is an I-map for P
 - Need to show that, if P factorizes according to G then I(G) holds in P

Example that independences in G hold in P

- P is defined by set of CPDs
- Consider independences for S in G, i.e.,

$$P(S \perp D, G, L|I)$$

Starting from factorization induced by graph

$$P(D, I, G, S, L) = P(I)P(D)P(G|I, D)P(L|G)P(S|I)$$

• Can show that P(S|I,D,G,L) = P(S|I) which is what we had assumed for P

Perfect Map

Perfect Map

- I-map
 - All independencies in *I*(G) present in *I*(P)
 - Trivial case: all nodes interconnected
- D-Map
 - All independencies in I(P) present in I(G)
 - Trivial case: all nodes disconnected
- Perfect map
 - Both an I-map and a D-map
 - Interestingly not all distributions P over a given set of variables can be represented as a perfect map
 - Venn Diagram where D is set of distributions that can be represented as a perfect map

