ИЗПИТ

по Математически анализ, специалност "Приложна математика" 5 февруари 2015г.

- 1. Нека $f:D\longrightarrow \mathbb{R}^m$ е изображение с дефиниционна област $D\subset \mathbb{R}^n$. Дайте дефиниция на "множество, релативно отворено в D". Докажете, че ако f е непрекъсната в D, то първообразът $f^{-1}(U):=\{x\in D:\ f(x)\in U\}$ на всяко отворено подмножество U на \mathbb{R}^m е релативно отворено в D.
- 2. Нека Δ е паралелотоп в \mathbb{R}^n и f е реалнозначна функция, дефинирана в него. Дефинирайте сума на Риман за f. Дефинирайте граница на риманови суми, когато диаметърът на подразбиването клони към нула. Докажете, че ако римановите суми имат граница, то функцията е ограничена.
- 3. Нека $D = \left\{ (x,y) \in \mathbb{R}^2 : y \geq x^2, \ x+y \leq 2, \ x \geq 0 \right\}$ и $f:D \longrightarrow \mathbb{R}$ е непрекъсната функция, дефинирана в D. Представете интеграла $\int \int_D f(x,y) \mathrm{d}x \mathrm{d}y$ като повторен веднъж с външно интегриране по x и веднъж с външно интегриране по y. Напишете в явен вид множеството ∂D .
- 4. Дайте дефиниция на "множество, измеримо по Пеано-Жордан". Докажете, че едно ограничено подмножество на \mathbb{R}^n е измеримо по Пеано-Жордан точно тогава, когато контурът му е множество, пренебрежимо по Лебег.
- 5. Нека F е непрекъснато векторно поле, дефинирано в областта $\Omega \subset \mathbb{R}^3$. Докажете, че ако криволинейният интеграл от втори род от това поле върху частично гладка крива $\Gamma \subset \Omega$ с начало A и край B не зависи от Γ , а само от A и B, то полето F е потенциално. Пресметнете

$$\int_{\Gamma} \frac{yz dx + xz dy + xy dz}{1 + x^2 y^2 z^2},$$

където Γ е кривата $(\cos t, \sin t, t), 0 \le t \le 2\pi$.

6. Напишете формулата за свеждане на повърхнинен интеграл от първи род към двоен риманов интеграл. Намерете лицето на повърхнината, зададена с

$$\varphi(r,\alpha) = (r\cos\alpha, r\sin\alpha, \sqrt{16 - r^2}), \ 0 \le \alpha \le \frac{\pi}{2}, \ 0 \le r \le 2\alpha.$$

- 7. Нека Ω е област в \mathbb{R}^2 с частично гладка граница $\partial\Omega$ и нека $F=(F_1,F_2)$ е гладко векторно поле, дефинирано в околност на $\overline{\Omega}=\Omega\cup\partial\Omega$. Докажете формулата на Грийн за F и Ω , ако $\overline{\Omega}$ е криволинеен трапец и по двете променливи.
- 8. Формулирайте и докажете закона на Архимед.