RanCh

July 8, 2019

Title Tools for abstract discrete Random Choice

<pre>URL http://github.com/mccauslw/RanCh</pre>
BugReports http://github.com/mccauslw/RanCh/issues
Version 0.0.0.9000
Description This package provides tools for a research project whose purpose is to help us better understand the foundations of stochastic discrete choice. It includes datasets compiled from the literature on context effects and stochastic intransitivity and from some recent experiments. It provides graphical tools to display likelihood function and posterior density contours, as well as regions, in the space of choice probabilities, defined by various stochastic choice axioms, context effects and other conditions.
Imports klaR, MASS, bitops, Smisc, ggtern
Depends R (>= 3.6.0)
License CC0
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented: 2 compromise_X3 2 create_P 3 dDir 4 dDir3_quantile 4
dDir_max

2 compromise_X3

comp	romise_X3	Compute	var	ious c	ross s	secti	ons o	f con	ıprom	ise effec	t regions	
Index												18
							• •					
	YG_trials											
	YG_raw											
	YG_demographics											
	YG_counts											
	similarity_X3											
	regularity_X3											
	RCD_prior_1											
	RanCh											
	proportions											
	plot_P3											
	plot_HD_Dir3											
	PC_trials											
	PC_raw											
	PC_demographics .											
	PC_counts											
	multiplicative_X3.											
	MC_raw											
	MC_counts											
	marginalize											
	marainaliza											_

Description

compromise_X3 computes six regions associated with similary effects

Usage

```
compromise_X3(pyx, pyz)
```

Arguments

рух	Binary choice probability, where \$y\$ is the between, or compromise object and \$x\$ is one of the extreme objects.
pyz	Binary choice probability, where \$y\$ is the between, or compromise, object and \$z\$ is the other extreme object.

Value

A list of six regions in barycentric coordinates. Rows are vertices, columns give ternary probabilities for objects x, y and z, respectively.

Cxyz region where there is a similarity effect with object \$y\$ as target, \$x\$ as competitor and \$z\$ as decoy

Czyx region where there is a similarity effect with object \$y\$ as target, \$z\$ as competitor and \$x\$ as decoy

Co region where there is neither similarity effect

create_P 3

```
Cx region with only the $x$ effect
Cz region with only the $y$ effect
```

Cxz region with both effects

Examples

```
C = compromise_X3(0.5, 0.6)
```

create_P

Random Choice Structure for a three-object universe

Description

create_P creates a random choice structure for a three-object universe from

Usage

```
create_P(p12, p23, p13, P1, P2, names = c("x", "y", "z"))
```

Arguments

p12	Probability of chosing object 1 when presented with objects 1 and 2
p23	Probability of chosing object 2 when presented with objects 2 and 3
P1	Probability of chosing object 1 when presented with objects 1, 2 and 3
P2	Probability of chosing object 2 when presented with objects 1, 2 and 3
P13	Probability of chosing object 1 when presented with objects 1 and 3

Value

A Random Choice Structure

```
P = create_P(21/40, 37/40, 28/40, 19/40, 15/40, names=c('Red', 'Purple', 'Pink'))
```

4 dDir3_quantile

Dirichlet density

Description

dDir computes the Dirichlet density at a point p in the regular simplex, for a vector alpha of Dirichlet parameters.

Usage

```
dDir(p, alpha, log = TRUE)
```

Arguments

p vector of probabilities on the regular simplex

alpha vector of Dirichlet parameters

log logical; if TRUE, the log density is returned

Value

density or log density value

dDir3_quantile	Quantile of third order Dirichlet density value	
----------------	---	--

Description

dDir3_quantile computes an approximation of the given quantile of a third order Dirichlet density value, under that Dirichlet distribution.

Usage

```
dDir3_quantile(quantile, alpha, normalized = FALSE)
```

Arguments

quantile the quantile of the desired density value

alpha a vector of Dirichlet parameters

normalized binary; if TRUE, return the quantile as a fraction of the maximum density value;

if FALSE, return the unnormalized quantile.

Value

The value of the quantile, normalized or not

dDir_max 5

dDir_max

Maximum density of a Dirichlet distribution

Description

max_dDir computes the maximum density of a Dirichlet distribution as a function of the parameter vector alpha.

Usage

```
dDir_max(alpha, log = TRUE)
```

Arguments

alpha vector of Dirichlet parameters.

logical; if TRUE, the log maximum density is returned.

Value

Density or log density value.

dDir_moments

Moments of Dirichlet density values

Description

moments_dDi computes a vector of the first n raw moments of Dirichlet density values, under that Dirichlet distribution.

Usage

```
dDir_moments(beta, n_mu, log = FALSE)
```

Arguments

n_mu number of moments to compute.log logical; if true return log moments.alpha vector of Dirichlet parameters.

Value

vector of moments

Dir_mult_ML

Dir3_HD_region	Compute highest density (HD) region for a third order Dirichlet dis-
	tribution

Description

This function computes a polygon approximating the highest density region of a third order Dirichlet distribution. This can be used to compute highest prior density and highest posterior density (HPD) regions.

Usage

```
Dir3_HD_region(alpha, HD_probability)
```

Arguments

alpha a vector of three (positive) Dirichlet parameters.

HD_probability probability of region to construct

Value

polygon approximation of HD region.

Dir_mult_ML

Marginal likelihood for Dirichlet-multinomial model

Description

Dir_mult_ML computes the marginal likelihood for a Dirichlet prior and multinomial data generating process.

Usage

```
Dir_mult_ML(alpha, N, log = TRUE)
```

Arguments

alpha vector of Dirichlet parameters

N vector of multinomial counts

logical; if TRUE, return the log Bayes factor.

Value

Marginal likelihood or log marginal likelihood

Ind_Dir_mult_ML 7

		_	
Tnd	Dir	mult	MI

Marginal likelihood for independent Dirichlet-multinomial model

Description

Ind_Dir_mult_ML computes the marginal likelihood for a model where rows of a count matrix are independent multinomial and the rows of the unknown random choice structure are a priori independent Dirichlet.

Usage

```
Ind_Dir_mult_ML(A, N, log = TRUE)
```

Arguments

corresponding row of a random choice structure.

N count matrix for a universe of objects.

log logical; if TRUE, return the log Bayes factor

marginalize Routines for simple manipulations of count matrices and random

choice structures.

Description

Marginalize a count matrix or random choice structure

Usage

```
marginalize(input_N, objects)
```

Arguments

input_N A count matrix

objects A vector of objects to retain

Details

This function takes as input a count matrix or random choice structure on a universe of objects and returns a marginalization of it to a universe that is a subset of the original universe.

Value

A count matrix

```
N_bce = marginalize(PC_counts, c(2,3,5))
P_abd = marginalize()
N
```

8 MC_trials

 MC_counts

Counts

Description

A 141x26x5 matrix with count data.

Usage

MC_counts

Format

An object of class array of dimension 141 x 31 x 5.

MC_raw

Population Choice experiment data

Description

Record of every choice made by every respondant.

Usage

MC_raw

Format

A data frame with 17 variables:

design

gender Sex of respondant: 1 for male, 2 for female

MC_trials

Table of choice trials, multiple choice experiment

Description

Table of choice trials, multiple choice experiment

Usage

MC_trials

multiplicative_X3 9

Format

```
A tibble with 18 variables

subject subject identifier

trial trial identifier (gives the order in which a subject sees choice sets)

set factor, name of choice set presented: 'ab', 'cde', etc., with objects in alphabetical order

choice factor, choice made by subject: 'a', 'b', 'c', 'd' or 'e'

set_perm factor, order of presentation of objects on screen, left to right

set_card Integer, cardinality of choice set (i.e. number of available options)

set_bin Binary representation of choice set (binary digits indicate object membership in choice set)

choice_int Integer code for chosen object: a=1, b=2, ..., e=5

ab, ac,...de revealed preference indicator: taking column ab as an example, value is 1 if a is revealed preferred to b, -1 if b is revealed preferred to a, 0 otherwise.
```

multiplicative_X3

Compute a cross section of the multiplicative inequality region

Description

multiplicative_X3 computes the region (a triangle) of ternary probabilities consistent with given binary probabilities and the multiplicative inequality.

Usage

```
multiplicative_X3(P)
```

Arguments

Ρ

A random choice structure

Value

A 3x3 matrix where each row gives one of the three vertices, in barycentric coordinates, of the triangular region where the multiplicative inequality holds.

```
P = create_P(0.7, 0.6, 0.8, 0.6, 0.3, 0.1, names = c('x', 'y', 'z')) multiplicative_X3(P)
```

10 PC_raw

PC_counts

Counts

Description

A 32x26x5 matrix with count data.

Usage

PC_counts

Format

An object of class array of dimension 32 x 31 x 5.

PC_demographics

Demographic information for population choice experiment

Description

Demographic information for population choice experiment

Usage

PC_demographics

Format

A data frame with demographic information on subjects

sex Sex of subject

age Age of subject in years

location Province or territory in Canada

PC_raw

Population Choice experiment data

Description

Record of trials in population choice experiment

Usage

PC_raw

Format

A data frame with 17 variables:

design

gender Sex of respondant: 1 for male, 2 for female

PC_trials 11

PC_trials

Table of choice trials, population choice experiment

Description

Table of choice trials, population choice experiment

Usage

PC_trials

Format

```
A tibble with 20 variables
```

domain factor, name of choice domain

subject subject identifier

trial trial identifier (gives the order in which a subject sees choice sets)

duration duration of trial in seconds

set factor, name of choice set presented: 'ab', 'cde', etc., with objects in alphabetical order

choice factor, choice made by subject: 'a', 'b', 'c', 'd' or 'e'

set_perm factor, order of presentation of objects on screen, left to right

set_card Integer, cardinality of choice set (i.e. number of available options)

set_bin Binary representation of choice set (binary digits indicate object membership in choice set)

choice_int Integer code for chosen object: a=1, b=2, ..., e=5

ab, ac,...de revealed preference indicator: taking column ab as an example, value is 1 if a is revealed preferred to b, -1 if b is revealed preferred to a, 0 otherwise.

plot_HD_Dir3

Plot highest density region for a third order Dirichlet distribution

Description

This function plots the Dirichlet highest density region in barycentric coordinates.

Usage

```
plot_HD_Dir3(A, HD_probability)
```

Arguments

```
HD_probability probability of highest density region alpha vector of Dirichlet parameters
```

```
plot_HD_Dir_3(0.95, c(23, 13, 4))
```

12 proportions

plot_P3

Plot a Random Choice Structure in barycentric coordinates

Description

plot_P3 plots four points specifying a Random Choice Structure for a universe of three objects.

Usage

```
plot_P3(P, perm = c(1, 2, 3), binary_pch = 1, ternary_pch = 20)
```

Arguments

P A random choice structure for a universe of three objects

perm A permutation of (1, 2, 3) specifying which objects in the universe correspond

to the bottom left, top, and bottom right vertex, respectively of the ternary plot.

binary_pch Plotting character (pch) for binary choice probabilities. Defaults to a hollow

circle.

ternary_pch Plotting character (pch) for ternary choice probability. Defaults to a solid circle.

The convention established with the defaults for binary_pch and ternary_pch allow one to distinguish between a binary choice probability and a ternary choice

probability that happens to be on the boundary of the triangle.

Examples

```
P = create_P(0.7, 0.6, 0.8, 0.6, 0.3, 0.1, names = c('x', 'y', 'z'))

plot_P3(P)
```

proportions

Random Choice Structure from count proportions

Description

proportions takes a count matrix as input, and returns choice proportions as a random choice structure.

Usage

```
proportions(N)
```

Arguments

Ν

A count matrix.

Value

A random choice structure.

```
PC_P = proportions(PC_counts)
```

RanCh 13

RanCh

RanCh: A package for abstract discrete Random Choice

Description

The RanCh package provides data, graphical tools and inference tools for abstract discrete random choice analysis.

Data sets

NA

RCD_prior_1

One-parameter Dirichlet prior for a RCS

Description

RCS_prior_1 computes a matrix of Dirichlet parameters for a one-parameter Dirichlet prior for a random choice structure.

Usage

```
RCD_prior_1(alpha, n_objects)
```

Arguments

alpha univariate parameter for the one-parameter Dirichlet prior.

n_objects number of objects in the universe.

Value

a matrix of Dirichlet parameters with the same dimensions as a count matrix for a universe of the same size.

regularity_X3

Compute a cross section of the regularity region

Description

regularity_X3 computes the region (a triangle or the empty set) of ternary probabilities consistent with given binary probabilities and the regularity condition.

Usage

```
regularity_X3(P)
```

14 similarity_X3

Arguments

Ρ

A random choice structure.

Value

If the region is empty, the output is NULL. Otherwise, a 3x3 matrix where each row gives one of the three vertices in barycentric coordinates.

Examples

```
P = create_P(0.7, 0.6, 0.8, 0.6, 0.3, 0.1, names = c('x', 'y', 'z'))
reg_region = regularity_X3(P)
```

similarity_X3

Compute various cross sections of similarity effect regions

Description

similarity_X3 computes six regions associated with similary effects

Usage

```
similarity_X3(pxz, pyz)
```

Arguments

OXZ	Rinary	choice i	probability	where \$	x\$ is one	of the	similar ob	jects and \$2	s is the
J / L	Dillary	CHOICC	probability,	WIICIC W	AΨ IS OHE	or the	miniai oo	ηccts and Ψ	LΨ IS tile

dissimilar object

pyz Binary choice probability, where \$y\$ is the other similar object and \$z\$ is the

dissimilar object

Value

A list of six regions in barycentric coordinates. Rows are vertices, columns give ternary probabilities for objects x, y and z, respectively.

Sxyz region where there is a similarity effect with object \$x\$ as target, \$y\$ as decoy and \$z\$ as competitor

Syxz region where there is a similarity effect with object \$x\$ as target, \$y\$ as decoy and \$z\$ as competitor

So region where there is neither similarity effect

Sx region with only the \$x\$ effect

Sy region with only the \$y\$ effect

Sxy region with both effects

```
S = similarity_X3(0.5, 0.6)
```

YG_counts 15

YG_counts Counts

Description

A 3x16x15x4 matrix with count data.

Usage

YG_counts

Format

An object of class array of dimension 16 x 2 x 15 x 4.

YG_demographics

Demographic information for subjects

Description

Demographic information for subjects

Usage

YG_demographics

Format

A data frame with demographic information on subjects

sex Sex of subject
educ Educational attainment by subject
region Region of subject's residence in US
race Race of subject
age_range Age range of subject

16 YG_raw

YG_raw

YouGov Experiment data

Description

Record of every choice made by every respondant.

Usage

YG_raw

Format

```
A data frame with 17 variables:
```

design

card

domain

combo

perm

choiceset Choice set as a character string

option_1 Object presented in first position: 1, 2, 3 or 4

option_2 Object presented in second position

option_3 Object presented in third position

option_4 Object presented in fourth position

response Object chosen: 1, 2, 3 or 4

order

gender Sex of respondant: 1 for male, 2 for female

educ Education of respondant: 1 for No high school, 2 for High school graduate, 3 for Some college, 4 for 2-year college, 5 for 4-year college, 6 for post-graduate

region Region of respondant: 1 for northeast, 2 for midwest, 3 for south, 4 for west

race Race of respondant: 1 for White, 2 for Black, 3 for Hispanic, 4 for Asian, 5 for Native American, 6 for Mixed, 7 for Other, 8 for Middle Eastern

age_cross Age category of respondant: 1 for 18-34, 2 for 35-54, 3 for 55 and over

YG_trials 17

YG_trials

Table of choice trials, population choice experiment

Description

Table of choice trials, population choice experiment

Usage

YG_trials

Format

A tibble with 17 variables

domain factor, name of choice domain

subject subject identifier

block block, equal to 1 or 2, identifying the first or second pass a subject makes through the domains.

trial trial identifier (gives the order in which a subject sees choice sets)

duration duration of trial in seconds

set factor, name of choice set presented: 'ab', 'bcd', etc., with objects in alphabetical order

choice factor, choice made by subject: 'a', 'b', 'c', or 'd'

set_perm factor, order of presentation of objects on screen, left to right

set_card Integer, cardinality of choice set (i.e. number of available options)

set_bin Binary representation of choice set (binary digits indicate object membership in choice set)

choice_int Integer code for chosen object: a=1, b=2, ..., d=4

ab, ac,...cd revealed preference indicator: taking column ab as an example, value is 1 if a is revealed preferred to b, -1 if b is revealed preferred to a, 0 otherwise.

Index

*Topic Multiplicative multiplicative_X3,9	RCD_prior_1, 13 regularity_X3, 13
*Topic datasets MC_counts, 8	similarity_X3,14
MC_raw, 8 MC_trials, 8 PC_counts, 10 PC_demographics, 10 PC_raw, 10 PC_trials, 11 YG_counts, 15 YG_demographics, 15 YG_raw, 16	YG_counts, 15 YG_demographics, 15 YG_raw, 16 YG_trials, 17
YG_trials, 17 *Topic inequality multiplicative_X3, 9	
<pre>compromise_X3, 2 create_P, 3</pre>	
dDir, 4 dDir3_quantile, 4 dDir_max, 5 dDir_moments, 5 Dir3_HD_region, 6 Dir_mult_ML, 6	
<pre>Ind_Dir_mult_ML,7</pre>	
marginalize, 7 MC_counts, 8 MC_raw, 8 MC_trials, 8 multiplicative_X3, 9	
PC_counts, 10 PC_demographics, 10 PC_raw, 10 PC_trials, 11 plot_HD_Dir3, 11 plot_P3, 12 proportions, 12	
RanCh, 13 RanCh-package (RanCh), 13	