Sat Solver Optimisations

Anatoly Weinstein

January 2, 2024

This document contains research into optimisations of CNF-SAT problems.

1 Definitions

Boolean Function. A boolean function $f: V \subseteq Variables \rightarrow \{0,1\}$ with truthy sets $P \subseteq \mathcal{P}(Variables)$ yields 1 if $V \in P$, else yields 0.

SAT Boolean Satisfyability Equation.

We define a boolean formula by the following context-free grammar with start variable S, a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables and a set of binary operations $Operation = \{\cdot, +, \oplus, \dots\}$ and an assigned boolean function $f_{Operation} : \mathcal{P} \subseteq \{L, R\} \rightarrow \{0, 1\}$, where L and R is the truthiness of left and right respectively.

$$S \rightarrow (S)$$

$$S \rightarrow S Operation S$$

$$S \rightarrow \neg S$$

$$S \rightarrow Variable$$

CNF Unmixed conjunctive normal form.

We define a boolean formula in conjunctive normal form by the following context-free grammar with start variable S and a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables.

 $\begin{array}{cccc} S & \rightarrow & (Disjunction) \\ S & \rightarrow & S \cdot (Disjunction) \\ Disjunction & \rightarrow & Literal \\ Disjunction & \rightarrow & Disjunction + Literal \\ Literal & \rightarrow & Variable \\ Literal & \rightarrow & \neg Variable \\ \end{array}$

2 Transformation Techniques

- **U-SAT** Unmixed conjunctive normal form. Given a CNF-SAT formula, we call it unmixed, if every disjunction consists of either positive or negated literals.
- **3-CNF-SAT** Unmixed conjunctive normal form. Given a CNF-SAT formula, we call it unmixed, if every disjunction consists of either positive or negated literals.

TODO

U3-SAT A formula that is *unmixed* and in TODO

3 Optimisation Techniques

Contradiction. A formula with contradictional disjunctions is not satisfiable.

$$\forall A: X \cdot \neg X \cdot A(X) = \bot$$

Common Literals. A formula with common literals is not satisfiable.

$$\forall A: X \cdot \neg X \cdot A(X) = \bot$$