

CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241

Lecture 10

- Reproduce the input
 - Via learning features
- Unsupervised learning
 - Efficient way to learn features
 - Still need a loss function implicit supervision
- Supervised learning
 - Need labels/annotations

- Encoder decoder
- Encoding
 - Key idea

- Compare PCA/SVD
 - PCA produce smaller set of vectors
 - Approximate the input vectors via linear combination.
 - Very efficient for certain applications.
- Autoencoder
 - Can learn nonlinear dependencies
 - Can use convolutional layers
 - Can use transfer learning

- Encoder: h = f(x)
 - Compress input into a latent-space
 - Usually smaller dimension
- Decoder: r = g(f(x))
 - Reconstruct input from the latent space

Original Input

Latent Representation

- Encoder: h = f(x)
 - Compress input into a latent-space
 - Usually smaller dimension
- Decoder: r = g(f(x))
 - Reconstruct input from the latent space

• Shallow

Deep

• CNN

- Reconstruction
 - Latent vector of size 2
 - Compression from 28x28

Feature learning

- Define a loss function
 - MSE, CE, etc.
- Optimize

Feature learning

- Image retrieval
 - Dimensionality reduction helps

Autoencoder – application

Denoising

Autoencoder – application

• Image colorization

Autoencoder – application

Anomaly detection

Properties

- Data-specific
 - Compress data similar to what they have been trained on
- Lossy
 - Outputs will be degraded compared to the original inputs
- Learned automatically from examples
 - It is easy to train
 - It will perform well on data similar to training samples
- Compare with hand-crafted features

Questions?