CustomerID(PK)
Fname

Atribuições do Projeto e Decisões de Modelagem

Phone
Email

OrderID(PK)
OrderID(PK)
DinelD(FK)
Name

ProductiD(PK)
Name

Curso de Administrador de Banco de Dados em MySQL na Firjan Maracanã

Atribuições do Projeto

Nome	Função	Projetos	Contribuições
Victhor Felix	Engenharia	Implementação	Prototipagem
Lucas Ribeiro Rodrigues	Engenharia	Pesquisa	Especificações
Vinícius Lima de Oliveira	Gerenciamento de projetos	Planejamento	Pesquisa

Decisões de Modelagem - Estratégia de Normalização

Escolha de Modelagem: Terceira Forma Normal (3FN)

- Eliminação de redundâncias: Dados repetitivos foram extraídos para tabelas especializadas
- Integridade referencial: Relacionamentos bem definidos entre entidades
- Consistência transacional: Operações atômicas mantêm a coerência dos dados

Exemplo prático: A separação das tabelas ENDERECO e IMOVEL evita duplicação de informações geográficas, permitindo que múltiplos imóveis compartilhem o mesmo endereço quando aplicável.

Decisões de Modelagem - Entidades e Atributos

Escolha de Entidades e Atributos

Entidades Nucleares:

IMOVEL USUARIO PROPRIETARIO

Entidades de Suporte:

ENDERECO RESERVA PAGAMENTO

Entidades Corporativas:

EMPRESA FUNCIONARIO

Entidades Documentais:

NOTA_FISCAL ANUNCIO

Critérios de Definição de Atributos

- Atomicidade: Cada atributo contém um único valor
- Relevância: Atributos diretamente relacionados à entidade
- Necessidade: Evitar atributos "por precaução"

Decisões de Modelagem - Justificativas para Tipos de Dados

Tipos Textuais

```
-- CNPJ e CPF como VARCHAR para preservar zeros à esquerda CNPJ VARCHAR(14) PRIMARY KEY, -- Formato 12345678000199 CPF VARCHAR(11) PRIMARY KEY, -- Formato 12345678901 -- Nomes com tamanho adequado para dados brasileiros NOME VARCHAR(100) NOT NULL, -- Compatível com nomes completos -- Email com espaço para endereços longos EMAIL VARCHAR(60) NOT NULL, -- Suporta até 60 caracteres
```

O uso de VARCHAR permite flexibilidade no armazenamento enquanto preserva a formatação original dos documentos. Os tamanhos foram definidos com base nas especificações oficiais brasileiras.

Tipos Numéricos e Monetários

```
-- Valores monetários com precisão decimal
VALOR DECIMAL(10,2) NOT NULL, -- Até 10 dígitos, 2 casas decimais
-- Identificadores numéricos com auto-incremento
ID_IMOVEL INT PRIMARY KEY AUTO_INCREMENT, -- Faixa suficiente
```

DECIMAL é ideal para valores monetários por evitar erros de arredondamento. INT para IDs oferece uma faixa de 2+ bilhões de registros, suficiente para o escopo do projeto.

person_name	Salary	Year_of_ experience	Expected Position Level
Aman	100000	10	2
Abhinav	78000	7	4
Ashutosh	32000	5	8
Dishi	55000	6	7
Abhishek	92000	8	3
Avantika	120000	15	1
Ayushi	65750	7	5

The attributes salary and year_of_experience are on different scale and hence attribute salary can take high priority over attribute year_of_experience in the model

Decisões de Modelagem - Tipos Especializados e Relacionamentos

Tipos Especializados

```
-- Enumerações para domínios controlados
INTENCAO ENUM('Venda', 'Aluguel') NOT NULL,
TIPO ENUM('Apartamento', 'Casa', 'Comercial') NOT NULL,
-- Datas para controle temporal
CHECKIN DATE NOT NULL, -- Apenas data, sem hora
DATA_EMISSAO TIMESTAMP DEFAULT CURRENT_TIMESTAMP
```

ENUM garante consistência nos valores permitidos. DATE para datas simples e TIMESTAMP para registros temporais precisos com fuso horário.

Fundamentação dos Relacionamentos

T 1:N (EMPRESA → IMOVEL)

ALTER TABLE IMOVEL

ADD CONSTRAINT fk_imovel_empresa

FOREIGN KEY (CNPJ) REFERENCES EMPRESA(CNPJ)

T 1:1 (IMOVEL → ENDERECO)

ALTER TABLE IMOVEL

ADD CONSTRAINT fk_imovel_endereco

FOREIGN KEY (ID_ENDERECO) REFERENCES ENDERECO(ID_ENDERECO)

Considerações de Performance e Escalabilidade

Estratégia de Indexação

- Chaves primárias: Indexação automática por otimização do MySQL
- Chaves estrangeiras: Indexação para acelerar joins
- Campos de busca frequente: IMOVEL.TIPO, IMOVEL.INTENCAO

X Otimização de Espaço

- Tipos de dados adequados ao conteúdo esperado
- Uso de NULL apenas quando semanticamente apropriado
- Normalização para minimizar redundância

Benefícios das Estratégias Implementadas

As estratégias de indexação e otimização de espaço trabalham em conjunto para garantir que o banco de dados mantenha alta performance mesmo com o crescimento do volume de dados, permitindo escalabilidade sem degradação significativa de desempenho.

Decisões de Design para Flexibilidade Futura e Conformidade

Extensibilidade do Modelo

- Tabelas genéricas para endereços e contatos
- Enumerações expansíveis para novos tipos
- Estrutura modular para adição de novas entidades

X Manutenibilidade

- Nomenclatura consistente e autoexplicativa
- Documentação embutida via comentários SOL
- Estrutura modular para fácil evolução

Conformidade com Regulamentações

LGPD (Lei Geral de Proteção de Dados)

- Separação de dados pessoais em tabelas específicas
- Controle de acesso através de views e procedures

Normas Contábeis Brasileiras

- Campos para CNPJ/CPF formatados conforme padrões nacionais
- Suporte a notas fiscais eletrônicas

Before Normalization

Employee_Department

Emp_ID	Emp_Name	Department	Dept_Location	Emp_Skills
101	Nick Wise	HR	London	Recruitment,Payroll
102	John Cader	Finance	Australia	Budgeting
103	Lily Case	HR	London	Recruitment
104	Ford Dawid	IT	Chicago	Programming, Testing

Resumo Técnico

Arquitetura do Modelo HABITÁE

O modelo HABITÁE foi arquitetado seguindo as melhores práticas de engenharia de dados, balanceando performance, integridade e flexibilidade. As decisões técnicas foram fundamentadas em requisitos de negócio, normas regulatórias e projeções de crescimento futuro, resultando em uma base sólida para o sistema imobiliário.

Performance

Indexação estratégica e otimização de consultas

Integridade

Normalização e restrições de integridade referencial

Flexibilidade

Design modular e extensível para evolução

Esta documentação serve como guia de referência para desenvolvedores, administradores de banco de dados e equipe de negócios, garantindo compreensão consistente da estrutura implementada.

