Análisis Matemático II - Tarea 1

Fecha límite: domingo 26 de septiembre a las 23:59 horas

Andrés Casillas García de Presno

1. Sea $J: \mathcal{C}_c^0(\mathbb{R}^n) \to \mathbb{R}$ una medida de Haar. Sea f una función continua. Prueba que $f \in \mathcal{C}_c^0(\mathbb{R}^n)$ si y sólo si $|f| \in \mathcal{C}_c^0(\mathbb{R}^n)$, y que

$$|J(f)| \le J(|f|) \qquad \forall f \in \mathcal{C}_c^0(\mathbb{R}^n).$$

En particular,

$$\left| \int_{\mathbb{R}^n} f \right| \le \int_{\mathbb{R}^n} |f| \qquad \forall f \in \mathcal{C}_c^0(\mathbb{R}^n).$$

Soluci[o]n

Demostremos que con las hip[o]tesis dadas, $|f| \in \mathcal{C}_c^0(\mathbb{R}^n)$.

Supongamos f continua, y demostremos que |f| tambi[e]n lo es. Sean $\epsilon > 0$ y $x_0 \in \mathbb{R}^n$ arbitrarios, y sea δ la que nos asegura la continuidad de f. Para evitar confusiones de notaci[o]n, sea abs(f) = |f|. Veamos primero que $|f(x) - f(x_0)| \ge |f(x)| - |f(x_0)|$, por lo que $abs(|f(x) - f(x_0)|) \ge abs(|f(x)| - |f(x_0)|)$, pero $abs(|f(x) - f(x_0)|) = |f(x) - f(x_0)|$, por lo que $|f(x) - f(x_0)| \ge abs(|f(x)| - |f(x_0)|)$. As[i], si $||x - x_0|| < \delta$ entonces $\epsilon > |f(x) - f(x_0)| \ge abs(|f(x)| - |f(x_0)|)$, en particular $abs(|f(x)| - |f(x_0)|) < \epsilon$, por lo que |f| es continua.

Ahora bien, $f \neq 0$ si y solo si $|f| \neq 0$, por lo $\underline{\text{que }} \{x \in \mathbb{R}^n | f(x) \neq 0\} = \{x \in \mathbb{R}^n | abs(f(x)) \neq 0\}$, de forma que $\{x \in \mathbb{R}^n | f(x) \neq 0\} = \{x \in \mathbb{R}^n | abs(f(x)) \neq 0\}$ i.e. sop(f) = sop(|f|) lo cual implica que, dado que f es continua, $f \in \mathcal{C}_c^0(\mathbb{R}^n)$ si y solo si $|f| \in \mathcal{C}_c^0(\mathbb{R}^n)$.

Demostremos ahora que $|J(f)| \leq J(|f|)$. Sea $f \in \mathcal{C}_c^0(\mathbb{R}^n)$. Sabemos que $f \leq |f|$, por lo que, por monotno[i]a de J, $J(f) \leq J(|f|)$.

Caso 1: $0 \le J(f)$

Como $0 \le J(f) \le J(|f|)$ entonces J(f) = |J(f)| y por lo tanto $|J(f)| \le J(|f|)$.

Caso 2: J(f) < 0

Sean $A = \{x \in \mathbb{R}^n | f(x) < 0\}, B = \{x \in \mathbb{R}^n | f(x) > 0\}$. Consideremos las funciones:

$$f_1(x) = \begin{cases} f(x) & si \quad x \in A \\ 0 & si \quad x \notin A \end{cases}, f_2(x) = \begin{cases} f(x) & si \quad x \in B \\ 0 & si \quad x \notin B \end{cases}$$

Veamos primero que f_1, f_2 son continuas y tienen soporte compacto. Es claro que $A, B \subseteq sop(f)$, por lo que $\overline{A}, \overline{B} \subseteq \overline{sop(f)}$, pero $\overline{sop(f)} = sop(f)$, por lo que $\overline{A}, \overline{B} \subseteq sop(f)$ donde $sop(f_1) = \overline{A}$ y $sop(f_2) = \overline{B}$, de forma que tanto $sop(f_1)$ como $sop(f_2)$ son compactos, pues son subconjuntos cerrados de un compacto.

Veamos ahora que ambas son continuas. Veremos el caso de f_1 , pues el de f_2 es totalmente an[a]logo. Supongamos por reducci[o]n al absurdo que f_1 no es continua. Si f_1 no fuera continua en alg[u]n $x \in A$, como para toda $x \in A$, $f_1 = f$, entonces f ser[i]a discontinua. Podemos pensar entonces que f_1 es discontinua en algun $x \in (\mathbb{R}^n \setminus A)$. Entonces existe una sucesi[o]n (x_k) de elementos de \mathbb{R}^n tales que $(x_k) \to x$, mas $(f_1(x_k)) \not\to f_1(x) = 0$. Esta sucesi[o]n necesariamente tiene una infinidad de terminos que son elementos de A (pues de lo contrario no se cumplir[i]a que $(f_1(x_k)) \not\to f(x) = 0$). As[i], podemos extraer la subsucesi[o]n (x_{k_n}) de (x_k) que consta exclusivamente de elementos de A. Pero como $f_1 = f$ en A, entonces $(f_1(x_{k_n})) = f(x_{k_n})$, por lo que existe una sucesi[o]n de elementos de A tales que $(x_{k_n}) \to x$, pero $f(x_{k_n}) \not\to f(x) = 0$, lo cual contradice la continuidad de f. (La demostraci[o]n para f_2 es totalmente an[a]loga).

As[i], tanto f_1 como f_2 son funciones continuas con soporte compacto.

Es claro que $f = f_1 + f_2$ y que $|f| = f_2 - f_1$, por lo que $J(f) = J(f_1) + J(f_2)$ y $J(|f|) = J(f_2) - J(f_1)$ por linealidad de J. Ahora bien, como $f_1 \leq 0$, entonces $J(f_1) \leq J(0)$ donde J(0) = 0, pues J(f) = J(f+0) = J(f) + J(0) por linealidad de J. Por un argumento an[a]logo $J(f_2) \geq 0$. Veamos entonces que $|J(f)| = |J(f_1) + J(f_2)| \leq |J(f_1)| + |J(f_2)| = -J(f_1) + J(f_2) = J(|f|)$ que es lo que se quer[i]a demostrar.

En clase vimos que $J(f) = c \int_{\mathbb{R}^n} f$ para alguna constante c > 0, para toda funcion f continua con soporte compacto. As[i], tenemos que

$$|J(f)| \le J(|f|)$$

$$= |c \int_{\mathbb{R}^n} f| \le c \int_{\mathbb{R}^n} |f|$$
$$= |c| |\int_{\mathbb{R}^n} f| \le c \int_{\mathbb{R}^n} |f|$$

Si c = 0 se da la igualdad, y si c > 0 tenemos que |c| = c, de forma que

$$\left| \int_{\mathbb{R}^n} f \right| \le \int_{\mathbb{R}^n} |f|$$

2. Prueba que, si $f \in \mathcal{C}^0_c(\mathbb{R}^n)$, $f \geq 0$ y $f(x_0) > 0$ para algún $x_0 \in \mathbb{R}^n$, entonces

$$\int_{\mathbb{R}^n} f > 0.$$

Soluci[o]n

Como $f \in \mathcal{C}_c^0(\mathbb{R}^n)$, en particular es continua. As[i], sea $\delta > 0$ tal que si $||x - x_0|| < \delta$ entonces $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$.

Consideremos tambi[e]n $||x-x_0||_{\infty} < \frac{\delta}{\sqrt{n}}$ y veamos que $\{x \in \mathbb{R}^n | ||x-x_0||_{\infty} < \frac{\delta}{\sqrt{n}}\}$ $\subset \{x \in \mathbb{R}^n | ||x-x_0|| < \delta\}$. Sabemos, por un reslutado de an[a]lisis 1, que $||x||_s \le n^{\frac{1}{s}} ||x||_{\infty}$ si $1 \le s < \infty$, de forma que $||x||_2 \le n^{\frac{1}{2}} ||x||_{\infty}$, de forma que si $||x-x_0||_{\infty} < \frac{\delta}{\sqrt{n}}$ entonces, por la desigualdad anterior, $||x-x_0||_2 \le n^{\frac{1}{2}} ||x-x_0||_{\infty} < n^{\frac{1}{2}} \frac{\delta}{\sqrt{n}} = \delta$ i.e. $||x-x_0||_2 < \delta$, lo cual prueba la contenci[o]n deseada.

Veamos ahora que $\{||x-x_0||_{\infty} < \frac{\delta}{\sqrt{n}}\} = \{x \in \mathbb{R}^n | x \in [a_1,b_1] \times \times [a_n,b_n] \text{ con } a_i = x_{0_i} - \frac{\delta}{\sqrt{n}}, b_i = x_{0_i} + \frac{\delta}{\sqrt{n}} \text{ para toda } i \in \{1,...,n\}\} \text{ donde estoy pensando que } x_0 = (x_{0_1},...,x_{0_n}).$

- $\leftarrow) \text{ Sea } x \in [a_1,b_1] \times \times [a_n,b_n] \text{ entonces } x_i \in [a_i,b_i] \text{ para toda} i \in \{1,...,n\} \text{ i.e. } x_{0_i} \frac{\delta}{\sqrt{n}} < x_i < x_{0_i} + \frac{\delta}{\sqrt{n}} \text{ por lo que } -\frac{\delta}{\sqrt{n}} < x_i x_{0_i} < \frac{\delta}{\sqrt{n}}, \text{ es decir, } |x_i x_{0_i}| < \frac{\delta}{\sqrt{n}} \text{ para toda } i \in \{1,...,n\}, \text{ por lo que } x \in \{||x x_0||_{\infty} < \frac{\delta}{\sqrt{n}}\}.$

Llam[e]mosle Q' al conjunto $x \in \{||x - x_0||_{\infty} \leq \frac{\delta}{\sqrt{n}}\}$. Veamos el siguiente lema, que probaremos por inducci[o]n:

 $\underline{\text{Lema}} \, \int_{\mathbb{R}^n} f \ge \int_{Q'} f.$

Prueba del Lema: Por inducci[o]n sobre n.

Caso base: n = 1

El soporte de f ser[i]a un intervalo [a, b] y $Q' = [a', b'] \subseteq [a, b]$.

 $\int_{\mathbb{R}} f = \int_{[a,a']} f + \int_{[a',b']} f + \int_{[b',b]} f \text{ y como } f \geq 0, \text{ entonces, por monoton} [i] \text{a de la integral, } \int_{[a,a']} f \geq \int 0 = 0 \text{ y } \int_{[b',b]} f \geq \int 0 = 0, \text{ lo cual prueba que } \int_{\mathbb{R}} f \geq \int_{[a',b']} f.$

 $\frac{\text{Hip[o]tesis de inducci[o]n:}}{f(x_0) > 0 \text{ par alg[u]n } x_0 \in \mathbb{R}^{n-1}, \text{ entonces } \int_{\mathbb{R}^{n-1}} f \geq \int_{Q'} f$

<u>Paso inductivo</u>: Sea $f \in \mathcal{C}_c^0(\mathbb{R}^n)$, $f \geq 0$ y tal que $f(x_0) > 0$ par alg[u]n $x_0 \in \mathbb{R}^n$. Sea $Q = [a_1, b_1] \times ... \times [a_n, b_n]$ un rect[a]ngulo que contenga a sop(f). Por lo visto anteriormente, $Q' \subseteq Q$. Ahora bien, por definici[o]n,

$$\int_{\mathbb{R}^n} f = \int_Q f = \int_{a_n}^{b_n} (\int_{a_{n-1}}^{b_{n-1}} (... (\int_{a_1}^{b_1} f(x_1,...,x_n) dx_1) dx_2)...) dx_n.$$

Pensemos en la funci[o]n $g:=f(x_2,...,x_n)=\int_{a_1}^{b_1}f(x_1,...,x_n)dx_1$. Por un resultado probado en clase, sabemos que g es continua. Ahora bien, como f tiene soporte compacto, entonces g tambi[e]n debe tenerlo, pues si no lo tuviera entonces f tampoco lo tendr[i]a (por def. de g). As[i], $g \in \mathcal{C}_c^0(\mathbb{R}^{n-1})$. $g \geq 0$ pues la integral es mon[o]tona, $\int_{\mathbb{R}^n}0=0$ (para cualquier $n \in \mathbb{N}$), y sabemos que $f \geq 0$, por lo que $g = \int_{a_1}^{b_1}fdx_1 \geq 0$. Ahora bien, sea $x_1 \in \{||x-x_0||_{\infty} \leq \frac{\delta}{\sqrt{n}}\}, x_1 = (x_{1_1},...,x_{1_n})$. Veamos que $g(x_1) = f(x_{1_2},...,x_{1_n}) = \int_{a_1}^{b_1}f(x_{1_1},...,x_{1_n})dx_{1_1} \geq (b_1-a_1)(\frac{f(x_0)}{2}) > 0$, por elecci[o]n de $\frac{\delta}{\sqrt{n}}$. As[i], g cumple con las hip[o]tesis de inducci[o]n, por lo que $\int_{\mathbb{R}^n}f = \int_Q f = \int_{\mathbb{R}^{n-1}}g \geq \int_{Q'}f$, que es lo que se quer[i]a demostrar.

3. Sean $g \in \mathcal{C}^0_c(\mathbb{R}^m)$ y $h \in \mathcal{C}^0_c(\mathbb{R}^{n-m})$ donde $1 \leq m < n$. Denotamos por $g \odot h: \mathbb{R}^n \to \mathbb{R}$ a la función

$$(g \odot h)(x_1, x_2, \dots, x_n) := g(x_1, \dots, x_m)h(x_{m+1}, \dots, x_n).$$

Prueba que $g \odot h \in \mathcal{C}_c^0(\mathbb{R}^n)$ y que

$$\int_{\mathbb{R}^n} (g \odot h) = \left(\int_{\mathbb{R}^m} g \right) \left(\int_{\mathbb{R}^{n-m}} h \right).$$

Soluci[o]n

Veamos primero que $g \odot h \in \mathcal{C}_c^0(\mathbb{R}^n)$. Afirmo que $\{x \in \mathbb{R}^n : g \odot h(x) \neq 0\} = \{x \in \mathbb{R}^m : g(x) \neq 0\} \times \{x \in \mathbb{R}^{n-m} : h(x) \neq 0\}$.

 \rightarrow) Sea $x \in \{x \in \mathbb{R}^n : g \odot h(x) \neq 0\}$, por definici[o]n tenemos que $g(x_1, ..., x_m) h(x_{m+1}, ..., x_n) \neq 0$ lo cual implica que $g(x_1, ..., x_m) \neq 0$ y $h(x_{m+1}, ..., x_n) \neq 0$ i.e. $x \in \{x \in \mathbb{R}^m : g(x) \neq 0\}$ y $x \in \{x \in \mathbb{R}^{n-m} : h(x) \neq 0\}$.

←) Sea $x \in \{x \in \mathbb{R}^m : g(x) \neq 0\} \times \{x \in \mathbb{R}^{n-m} : h(x) \neq 0\}$, por definici[o]n, $g(x_1, ..., x_m) \neq 0$ y $h(x_{m+1}, ..., x_n) \neq 0$ y como \mathbb{R} no tiene divisores de 0 se sigue que $g \odot h(x) = g(x_1, ..., x_m)h(x_{m+1}, ..., x_n) \neq 0$, es decir $x \in \{x \in \mathbb{R}^n : g \odot h(x) \neq 0\}$.

Veamos ahora que $\overline{\{x \in \mathbb{R}^n : g \odot h(x) \neq 0\}} \subseteq \overline{\{x \in \mathbb{R}^m : g(x) \neq 0\}} \times \overline{\{x \in \mathbb{R}^{n-m} : h(x) \neq 0\}}$. Sea $x \in \overline{\{x \in \mathbb{R}^n : g \odot h(x) \neq 0\}}$ y sea $\epsilon > 0$. Por definici[o]n, existe $y \in \{x \in \mathbb{R}^n : g \odot h(x) \neq 0\}$ tal que $y \in B_{\epsilon}^{\parallel_2}(x)$ i.e. $||y - x||_2 < \epsilon$. Sea $\Pi_m : \mathbb{R}^n \to \mathbb{R}^m$, $\Pi_m(x) = (x_1, ..., x_m)$. An[a]logamente, sea $\Pi_{m-n} : \mathbb{R}^n \to \mathbb{R}^{m-n}$, $\Pi_{m-n}(x) = (x_{m+1}, ..., x_{m-n})$. Como sabemos que $||y - x||_2 = \sqrt{(y_1 - x_1)^2 + ... + (y_n - x_n)^2}$, es claro entonces que $||y - x||_2 \ge ||\Pi_m(y) - \Pi_m(x)||$ y $||y - x||_2 \ge ||\Pi_{m-n}(y) - \Pi_{m-n}(x)|| < \epsilon$. Por el resultado anterior, sabemos que $\Pi_m(y) \in \{x \in \mathbb{R}^m : g(x) \neq 0\}$ y $\Pi_{m-n}(y) \in \{x \in \mathbb{R}^{m-m} : h(x) \neq 0\}$, lo cual implica que $\Pi_m(x) \in \{x \in \mathbb{R}^m : g(x) \neq 0\}$ y $\Pi_{m-n}(x)$, tenemos que $x \in \{x \in \mathbb{R}^m : g(x) \neq 0\}$. Como adem[a]s $x = \Pi_m(x) \times \Pi_{m-n}(x)$, tenemos que $x \in \{x \in \mathbb{R}^m : g(x) \neq 0\} \times \{x \in \mathbb{R}^{n-m} : h(x) \neq 0\}$, que es lo que se quer[i]a demostrar.

As[i] las cosas, $sop(g \odot h) \subset sop(g) \times sop(h)$, y como por hip[o]tesis sop(g) y sop(h) son compactos, entonces $sop(g) \times sop(h)$ es compacto (resultado de an[a]lisis 1). Como $sop(g \odot h)$ es un subconjunto cerrado (pues es la cerradura de otro conjunto) contenido en un compacto $(sop(g) \times sop(h))$, entonces $sop(g \odot h)$ es compacto.

Veamos ahora que $g \odot h$ es continua. Para eso, basta con ver que las proyecciones $\Pi_m(x)$ y $\Pi_{m-n}(x)$ son continuas. Veamos el caso de $\Pi_m(x)$, pues el caso de $\Pi_{m-n}(x)$ es an[a]logo.

Sean $x \in \mathbb{R}^n$, $\epsilon > 0$ y (x_k) una sucesi[o]n de puntos del dominio tales que $(x_k) \to x$. Como existe una k_0 tal que para toda $k > k_0$ se cumple que $||x_k - x|| < \epsilon$ y adem[a]s $||x_k - x|| \ge ||\Pi_m(x_k) - \Pi_m(x)||$, entonces para toda $k > k_0$ se cumple que $||\Pi_m(x_k) - \Pi_m(x)|| < \epsilon$, es decir, $\Pi_m(x_k) \to \Pi_m(x)$, por lo que $\Pi_m(x)$ es continua (y an[a]logamente lo es $\Pi_{m-n}(x)$).

As[i], como g y h son continuas, y la composici[o]n de continuas es continua, entonces $g \circ \Pi_m$ y $h \circ \Pi_{m-n}$ son continuas. Como el producto de continuas es continua, entonces $(g \circ \Pi_m)(h \circ \Pi_{m-n})$ es continua, pero $g \odot h = (g \circ \Pi_m)(h \circ \Pi_{m-n})$, por lo que $g \odot h$ es continua.

Probemos ahora que $\int_{\mathbb{R}^n} (g \odot h) = \left(\int_{\mathbb{R}^m} g \right) \left(\int_{\mathbb{R}^{n-m}} h \right)$.

Veamos primero que $sop(g) \times sop(h) \subseteq sop(g \odot h)$. Sean $x \in sop(g) \times sop(h)$ y $\epsilon > 0$. Por definici[o]n sabemos que existe una sucesion (x_k) de elementos de Int(sop(g)) tales que $(x_k) \to \Pi_m(x)$, es decir, existe k_1 tal que para toda $k > k_1$, $||x_k - \Pi_m(x)|| < \frac{\epsilon}{2}$. An[a]logamente, existe una sucesion (y_k) de elementos de Int(sop(h)) tales que $(y_k) \to \Pi_{n-m}(x)$ i.e. existe k_2 tal que para toda $k > k_2$, $||y_k - \Pi_{n-m}(x)|| < \frac{\epsilon}{2}$. Para cada $k \in \mathbb{N}$, definimos $z_k = (x_k, y_k) \in \mathbb{R}^n$. por construcci[o]n, $z_k \in Int(sop((g \odot h)))$ y tomando $k = max\{k_1, k_2\}$ tenemos que $||z - x|| \le ||x_k - \Pi_m(x)|| + ||y_k - \Pi_{n-m}(x)|| < \epsilon$ (pues $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ siempre que $\sqrt{a}\sqrt{b} \ge 0$), es decir, $z \in B_{\epsilon}(x)$ lo cual prueba el resultado.

Ahora s[i]. Por definici[o]n, $\int_{\mathbb{R}^n} (g \odot h) = \int_{a_n}^{b_n} (...(\int_{a_1}^{b_1} (g \odot h) dx_1)...) dx_n$ donde $Q = [a_1, b_1] \times ... \times [a_n, b_n]$ es un rect[a]ngulo que contiene a $sop(g \odot h)$. Como $sop(g) \times sop(h) \subseteq sop(g \odot h) \subset Q$, por lo que $sop(g) \subset [a_1, b_1] \times ... \times [a_m, b_m]$ y $sop(h) \subset [a_{m+1}, b_{m+1}] \times ... \times [a_n, b_n]$. Notemos tambi[e]n que $g(x_1, ..., x_m)$ es una constante con respecto a las n-m variables restantes, y que $h(x_{m+1}, ..., h_n)$ es una constante con respecto a las primeras m variables. As[i], las cosas, por linealidad de la integral, tenemos lo siguiente:

$$\int_{\mathbb{R}^n} (g \odot h) = \int_{a_n}^{b_n} (...(\int_{a_1}^{b_1} g(x_1,...,x_m)h(x_{m+1},...,x_n)dx_1)...)dx_n = ...$$

$$\dots = \int_{a_n}^{b_n} (\dots (\int_{a_{m+1}}^{b_{m+1}} h(x_{m+1}, \dots, x_{m+1}) \int_{a_m}^{b_m} \int_{a_{m-1}}^{b_{m-1}} \dots \int_{a_1}^{b_1} g(x_1, \dots, x_m) dx_1) \dots dx_m$$

$$= \int_{a_n}^{b_n} (\dots (\int_{a_{m+1}}^{b_{m+1}} h(x_{m+1}, \dots, x_{m+1}) \int_{\mathbb{R}^m} g) dx_{m+1}) \dots) dx_n$$

$$= (\int_{\mathbb{R}^m} g) (\int_{a_n}^{b_n} (\dots (\int_{a_{m+1}}^{b_{m+1}} h(x_{m+1}, \dots, x_n) dx_{m+1}) \dots) dx_n)$$

$$= (\int_{\mathbb{R}^m} g) (\int_{\mathbb{R}^{n-m}} h)$$

4. Prueba que, si $f \in \mathcal{C}^0_c(\mathbb{R}^n)$, entonces f es uniformemente continua en \mathbb{R}^n .

Soluci[o]n

Sea $f|_{sop(f)}: sop(f) \to \mathbb{R}$ la funci[o]n restricci[o]n de f a su soporte. Por ser una funci[o]n continua (pues f es continua en \mathbb{R}^n) definida en un conjunto compacto (pues, por hip[o]tesis, $f \in \mathcal{C}_c^0(\mathbb{R}^n)$) entonces $f|_{sop(f)}$ es uniformemente continua en su dominio. As[i], $\exists \delta_1 > 0$ tal que $\forall \epsilon > 0$, si $||x-y|| < \delta_1$ entonces $|f(x) - f(y)| < \epsilon$ para toda $x, y \in sop(f)$.

Ahora bien, sea $\epsilon > 0$ y sean $x, y \in \mathbb{R}^n$ tales que $||x-y|| < \delta$. Propongo $\delta = \delta_1$ mostrada anteriormente.

Notemos primero que si $x, y \in sop(f)$ el resultado se sigue de la afirmaci[o]n anterior.

Si $x, y \in (\mathbb{R}^n \setminus sop(f))$ entonces, por definici[o]n de sop(f), tenemos que f(x) = f(y) = 0, por lo que se cumple que siempre que $||x - y|| < \delta$ suceder[a] que $|f(x) - f(y)| = |0 - 0| = 0 < \epsilon$.

As[i] las cosas, el [u]nico caso interesante es si $x \in sop(f)$ y $y \in (\mathbb{R}^n \setminus sop(f))$. Veamos primero las siguientes observaciones:

Observaci[o]n 1:
$$\forall x \in \partial sop(f)$$
, $f(x) = 0$.

Como $f \in \mathcal{C}_c^0(\mathbb{R}^n)$, en particular f es continua en todo \mathbb{R}^n , por lo que podemos tomar una sucesi[o]n de puntos, digamos (x_k) tales que $(x_k) \in (\mathbb{R}^n \setminus sop(f))$ y $(x_k) \to x$. Dicha sucesi[o]n existe por definici[o]n de frontera de un conjunto. Ahora bien, por ser f continua, sabemos que $(f(x_k) \to f(x))$, pero $(f(x_k)) = (0)$, es decir, dicha sucesi[o]n es

la sucesion constante 0 (por definici[o]n de sop(f)), lo cual implica que f(x) = 0.

Observaci[o]n 2: existe $z \in \partial sop(f)$ tal que $||x-z|| \le ||x-y||$.

Consideremos al funci[o]n $L:[0,1]\subset\mathbb{R}\to\mathbb{R}^n$ dada por L(t)=x+t(y-x). Dicha funci[o]n es continua, pues dada $\epsilon>0$ basta con tomar $\delta=\frac{\epsilon}{\|y-x\|}$ para ver que si $|t_1-t_2|<\frac{\epsilon}{\|y-x\|}$ entonces $|t_1-t_2|||y-x||<\epsilon$ i.e $||(t_1-t_2)(y-x)||=||x+t_1(y-x)-(x+t_2(y-x))||=||f(t_1)-f(t_2)||<\epsilon$. Por ser continua, cumple el teorema del valor intermedio, es decir que para todo $z\in\{x+t(y-x)|t\in[0,1]\}$ existe un $t\in\mathbb{R}$ tal que L(t)=z. Denotemos por Im(L) a la imagen de L y por Int(sop(f)) al interior del soporte. Veamos que $Im(L)\cap\partial sop(f)\neq\emptyset$. Supongamos que $Im(L)\cap\partial sop(f)=\emptyset$. Sabemos que $L(1)\in(\mathbb{R}^n\setminus sop(f))$ y que $L(0)\in sop(f)$. Por el teorema del valor intermedio tendr[i]amos que $L^{-1}\{x\in Im(L)|x\in(\mathbb{R}^n\setminus sop(f))\}\cup L^{-1}\{x\in Im(L)|x\in sop(f)\}=[0,1]$, pero, como L es continua, esos dos conjuntos son abiertos (pues son preim[a]genes de abiertos bajo una funci[o]n continua), por lo que su uni[o]n es un conjunto abierto, contradiciendo la igualdad anterior. Por lo tanto $Im(L)\cap\partial sop(f)\neq\emptyset$.

Por lo tanto, por el teorema del valor intermedio, existe $t_0 \in (0,1)$ tal que $L(t_0) = z$ con $z \in \partial sop(f)$. Es decir, $x + t_0(y - x) = z$, de forma que $||x - z|| = ||x - (x + t_0(y - x))|| = ||-t_0(y - x)|| = t_0||y - x||$ con $t_0 \in (0,1)$, por lo que ||x - z|| < ||x - y||.

Ahora es f[a]cil ver que si $||x-y|| < \delta$ entonces para alguna $z \in \partial sop(f)$ garantizada por la observaci[o]n 2, $||x-z|| < ||x-y|| < \delta$ implica que $||x-z|| < \delta$. Como $z \in \partial sop(f)$, por la observaci[o]n 1, sabemos que f(x) = 0 y como sop(f) es cerrado entonces $z \in sop(f)$, de forma que tenemos garantizado que si $||x-z|| < \delta$ entonces $|f(x)-f(z)| < \epsilon$ (por elecci[o]n de $\delta = \delta_1$), pero |f(x)-f(z)| = |f(x)-0| = |f(x)-f(y)| (pues $y \in (\mathbb{R}^n \setminus sop(f))$)de forma que $|f(x)-f(y)| < \epsilon$, que es lo que se quer[i]a demostrar.

5. Considera el espacio $\mathcal{C}_c^0(\mathbb{R}^n)$ con la norma

$$||f||_{\infty} := \max_{x \in \mathbb{R}^n} |f(x)|,$$

y sea $J:\mathcal{C}^0_c(\mathbb{R}^n)\to\mathbb{R}$ una medida de Haar. ¿Es cierto que J es continua? Justifica tu afirmación.

Soluci[o]n

Afirmo que $J: \mathcal{C}_c^0(\mathbb{R}^n) \to \mathbb{R}$ no es continua siempre que $J(f) = c \int_{\mathbb{R}^n} f$ para alguna $\underline{c} > \underline{0}$. Veamos que $J: \mathcal{C}_c^0(\mathbb{R}^n) \to \mathbb{R}$ es discontinua en la constante $f: \mathbb{R} \to \mathbb{R}, f(x) = 0$ para toda $x \in \mathbb{R}$. Pensemos en las siguientes funciones $f_{\delta}: \mathbb{R} \to \mathbb{R}$:

$$f_{\delta}(x) = \begin{cases} 0 & si \quad x \notin \left[\frac{-2}{\delta}, \frac{2}{\delta}\right] \\ \frac{\delta^2}{4}(x + \frac{2}{\delta}) & si \quad x \in \left[\frac{-2}{\delta}, 0\right] \\ -\frac{\delta^2}{4}(x - \frac{2}{\delta}) & si \quad x \in \left[0, \frac{2}{\delta}\right] \end{cases}$$

Veamos que para toda $\delta \in \mathbb{R}^+$, f_{δ} es una funci[o]n continua. Es claro que f_{δ} es continua en $(\mathbb{R} \setminus \left[\frac{-2}{\delta}, \frac{2}{\delta}\right])$, pues en dicho dominio es una funci[o]n constante. As[i], sean $x_0 \in \left[\frac{-2}{\delta}, \frac{2}{\delta}\right]$ y $\epsilon > 0$. Propongo $\delta' = \min\{|x_0|, \frac{4\epsilon}{\delta^2}\}$. Como $\delta' \leq |x_0|$, entonces si $|x - x_0| < \delta'$ entonces $x, x_0 \in \left[\frac{-2}{\delta}, 0\right]$ o $x, x_0 \in \left[0, \frac{2}{\delta}\right]$. Hagamos el caso en el que $x, x_0 \in \left[\frac{-2}{\delta}, 0\right]$ ya que el otro caso es totalmente an[a]logo. Tambi[e]n supongamos $\delta' = \frac{4\epsilon}{\delta^2}$ pues corresponde a las vecindades peque[n]as.

Asi
$$|x-x_0| < \frac{4\epsilon}{\delta^2} \iff \left|\frac{\delta^2}{4}(x-x_0)\right| < \epsilon \iff \left|\frac{\delta^2}{4}(x+\frac{-2}{\delta}) - \frac{\delta^2}{4}(x_0+\frac{-2}{\delta})\right| < \epsilon \iff |f(x) - f(x_0)| < \epsilon.$$

Es claro tambi[e]n que $sop(f_{\delta}) = \left[\frac{-2}{\delta}, \frac{2}{\delta}\right]$, que, por ser un conjunto cerrado y acotado y subconjunto de \mathbb{R} , es compacto.

As[i], $f_{\delta} \in \mathcal{C}_{c}^{0}(\mathbb{R})$ para toda $\delta \in \mathbb{R}^{+}$.

Veamos ahora que $J: \mathcal{C}^0_c(\mathbb{R}^n) \to \mathbb{R}$ no es continua en f, es decir, que existe una $\epsilon > 0$ tal que para toda $\delta > 0$, $||f - f_{\delta}||_{max} < \delta$ y a pesar de eso $|J(f) - J(f_{\delta})| > \epsilon$.

Propongo $\epsilon=\frac{c}{2}$,
donde c>0 es la que conocemos de $J(f)=c\int_{\mathbb{R}}f$. Veamos que $||f-f_{\delta}||_{max}=||f_{\delta}||_{max}=\frac{\delta}{2}<\delta$, y a pesar de es
o $|J(f)-J(f_{\delta})|=|J(f_{\delta})|=|c\int_{\mathbb{R}}f_{\delta}|=|c|=c>\frac{c}{2}=\epsilon$.

Veamos ahora que si c=0, entonces J(f)=0 para toda $f\in \mathcal{C}_c^0(\mathbb{R}^n)$. En este caso afirmo que J es continua y propongo $\delta=1$. Sea $\epsilon>0$, $f,g\in \mathcal{C}_c^0(\mathbb{R}^n)$. Es claro que si $||f-g||_{max}<1$ se cumple que $|J(f)-J(g)|=0<\epsilon$.