



Timely Accurate Diagonostics for a TB-Free Africa

## Laboratory Quality Management System

Module 12:

## Process Control: Quality Control for Quantitative Tests

Venue:

Presenter:

Date:

### Introduction

MINISTRY OF HE LT CONTROL OF LOW PROPERTY OF HE LT CONTROL OF HE LT CONTRO

- (QC) is a component of process control
- Monitors and allows for detecting errors in the testing system.
- Errors may be due to test system failure, adverse environmental conditions, or operator performance.
- Gives confidence that test results are accurate
  - and reliable before patient results are



### Module Outline

- Control materials
- Establishing the value range
- Graphical representation of control ranges
- Interpreting quality control data
- Using quality control information





## The Quality Management System











Timely Accurate Diagonostics for a TB-Free Africa

# Whether you think you can or whether you think you can't, you're right! (Henry Ford)



## Quality is.....

Invisible when GOOD

¶ Impossible to ignore when BAD







## **Quantitative Tests**

- Measure the quantity of a particular substance in a sample
- Quality control for quantitative tests is designed to assure that patient results are:
  - Accurate
  - Reliable





## Implementation steps

- Establish policies and procedures
- O Assign responsibility, train staff
- Select high quality controls
- Establish control ranges
- Develop graphs to plot control values Levey-Jennings charts
- Monitor control values
  - Develop procedures for corrective action
  - Record all actions etakene date: 01-

## What is Quality Control?

- (?) Part of quality management focused on fulfilling quality requirements (ISO 9000:2005)
- () Included during each assay run to verify that the test is working









## 2. Control Materials

### **Defining Control materials**

- Contain an established amount of the substance being tested- the analyte.
- Controls are tested at the same time and in the same way as patient samples.
- The purpose is to validate the reliability of the test system evaluate the operator's performance and environmental conditions that might impact results.



## Purpose of running IQC

Check accuracy of test system

-Compare observed to expected results



Assess precision of test system

-within run and between precision



Predict and or detect potential errors.

-Trend Analysis









## Frequency of QC Runs

\*\* Stability of method

(daily, batch, probability of rejecting analytical run)



Risk of harm to patient
action that can be taken
before error could be detected.







## **QC-Quantitative Tests**

Regular IQC performance along with patient samples

Manufacturer Ranges/lab ranges used as limits

Comparison of **observed results** to **expected results** 

CAPA if IQCs outside of the limits



### Control Vs. Calibrator

### **△** Control

Similar to patient's samples with established concentration Ensure that procedure is working properly

### Calibrator

Substance with a specific concentration

Set the measuring points of a scale





## **Quality Control-Materials**

Should approximate same matrix as patient samples



Stable over long periods of time.









## **Choosing Control Materials**

- Values cover medical decision points
- Similar to the test sample
- Controls are usually available in high,

normal, and low ranges







## Preparation and Storage of Control Material

- Adhere to manufacturer's instructions
- Keep adequate amount of same lot number
- Store correctly







# 3. Establishing the Value range for control materials Steps in Implementing Quantitative QC

- Obtain control material
- Run each control 20 times over 30 days
- Calculate mean and +/-1,2,3 Standard Deviations







## Measures of central tendency

- •Measures of central tendency provide us with a measure that describes the entire dataset using a single value that represents the center, or middle of its distribution.
- Include:
  - Mean
  - Mode
  - Median







## Measures of central tendency: Mean

#### Mean

observations in a dataset divided by the number of observations. Also called Average.





Median = 158

## Mean-formula

$$X = \frac{\sum X}{n}$$

Where 
$$\bar{X}$$
 = Mean
$$\sum X = \text{Sum of values}$$

$$n = \text{Number of values}$$
values

#### **Example**

10, 15,30, 7, 42, 79 and 83

$$\bar{x} = \frac{\sum x}{n}$$

,where  $\bar{x}$  is sample mean.

$$\bar{x} = \frac{10+15+30+7+42+79+83}{7}$$



## Measures of spread

Describe how similar or varied the set of observed values of a dataset are.







## Measures of spread: Variance

## Variance $(\sigma^2)$ is a measurement of the spread between values in a data set

#### For samples:

variance = 
$$s^2 = \frac{\sum (x - \bar{x})^2}{n-1}$$

standard deviation=  $s = \sqrt{s^2}$ 

#### Calculating Formula

$$s^2 = \frac{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}{n-1}$$

#### For populations:

variance = 
$$\sigma^2 = \frac{\Sigma (x - \bar{x})^2}{n}$$

standard deviation =  $\sigma = \sqrt{\sigma^2}$ 

#### Calculating Formula

$$\sigma^2 = \frac{\Sigma x^2 - \frac{(\Sigma x)^2}{n}}{n}$$





## Measures of spread: Standard Deviation

Standard deviation is the square root of the variance

For Sampl
$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

For population
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$





## Measures of spread: Coefficient of Variation (CV or CoV)

CV is the ratio of the standard deviation to the mean (usually expressed in percentage)

$$CV$$
 (%) =  $\left(\frac{Standard\ deviation}{Mean}\right) \times 100$ 





### Normal distribution

A function that represents the distribution of many random variables as a symmetrical bell-shaped graph.

Most measurements in the

laborate population







rmal

## Normal distribution: The Central Limits Theorem

Also called the empirical rule (68:95:99.7)







## 4. Graphically Representing Control Ranges

## Monitoring Quantitative Quality Control Data











### **Control Charts**

- () A graphical method for displaying control results
- () Plot of Observed values and expected values
- () Expected values represented by control limits (acceptable range of values) e.g. mean,





### **Control Charts**

() When observed values falls within the control limit- method is performing properly

() When values falls outside control limit problem may be developing





### **Control Charts**

Most common: Shewhart, Levey Jennings(LJ), run chart

Mean is the target value

1s, 2s, 3s are control limits for the chart

±15, 68%, ±25- 95%, ±35- 99.7%

used to assess method performance and continual improvement.





## Levey-Jennings (LJ) Chart

() Graphical method for evaluating whether process is in control or out of control.

- () Simple data analysis and display
- () Also used for trends, shifts







## 5. Interpreting QC data

**ACTIVITY 12-1 Calculation of Mean and Standard** Deviation

Purpose: To practice calculating the mean and deviation (SD) of a set of data standard establishing control to use for ranges

Suggested time: 15 minutes

Instructions: Calculate the mean and SD using Annex the two Standard Deviational® A and ksheets LQMS/PP/012, Version 1.0, Effective date: **Provided** 33 Jun-2019

Timely Accurate Diagonostics for a TB-Free Africa

## Activity 12-2 Creation of Levy-Jennings Charts

Purpose: To create Levey-Jennings Charts to monitor examination results by visualizing daily control data.

Suggested time: 15 minutes



## Levey-Jennings (LJ) Chart

### LJ Chart for BD Facs Presto High ControlMarch 2019







## Levey-Jennings Chart Shift









# Levey-Jennings Chart Trend









# Monitoring QC Data

**L-J Charts** 

Plot observed values for each run, make decision regarding acceptability of run

Monitor over time the precision and accuracy of the equipment/method

Review charts at defined intervals and take necessary action.



## Westgard Rules

Developed by Dr. James O. Westgard

Uses decision criteria or control rules

Allows determination of whether an analytical run is "in-control" or "out-of-control"



Dr. Westgard





# Why use Westgard Rules

Reduce Costs while maintaining a high level of certainty that our process are in control





Reduce false rejection rates without compromising quality









# **Westgard Rules**

1₂5 rule

1₃ rule

**a**2<sub>2S</sub> rule

R<sub>4S</sub> rule

₹4<sub>1S</sub> rule

₹ 10<sub>x</sub> rule

Nomenclature

1<sub>2s</sub>- indicates
control value
(observed) exceeds
2S control limits





# Westgard 1<sub>2s</sub> Rule

#### 1<sub>25</sub> rule: "warning rule"



Alerts to possible problems

Not cause for rejecting a run

Must then evaluate the 1<sub>3S</sub> rule









## Westgard 1<sub>2s</sub> Rule



# LJ Chart for BD Facs Presto High Control\_March 2019







# Westgard 1<sub>3s</sub> Rule



#### 1<sub>3S</sub> rule

1 control value exceeds ± 3SD

Run must be rejected







## Westgard 1<sub>3s</sub> Rule







# Westgard 2<sub>2s</sub> Rule

#### 2<sub>2S</sub> rule

2 consecutive control values

exceed ± 2SD in the same direction

Patient results cannot be released

Requires corrective Action







# Westgard 2<sub>2s</sub> Rule

LJ Chart for BD Facs Presto High Control March 2019





2 consecutive control values level fall outside ± 2SD

1-N 3-N 5-N 7-N 11-N 11-N 15-N 19-N 22-N 22-N 23-N 31-N





<sup>7</sup>alue

# Westgard R<sub>4s</sub> Rule

#### R<sub>4S</sub> rule

1 control result exceeds the mean by -2SD, and the other control exceeds the mean by +2SD



The range between the two results will therefore exceed 4 SD



#### Westgard R<sub>4s</sub> Rule

#### LJ Chart for BD Facs Presto High Control\_March 2019







1-1 3-1 5-1 7-1 111-1 113-1 115-1 115-1 115-1 125-1 225-1 225-1 225-1 31-1





# Westgard 4<sub>1s</sub> Rule

#### 4<sub>15</sub> rule

Requires control data from previous runs







# Westgard 4<sub>1s</sub> Rule

#### LJ Chart for BD Facs Presto High Control\_March 2019







# Westgard 10<sub>x</sub> Rule

#### 10<sub>x</sub> rule

Requires control data from previous runs



■10 consecutive QC control are on one side of the mean





# Westgard 10<sub>x</sub> Rule

LJ Chart for BD Facs Presto High Control\_March 2019 Lab Value 501  $10_{x}$ rule viola -2sd tion - - 3sd Lab Value 10 consecutive control results fall on one side of the mean 





#### When a rule is violated?

**Warning Rule:** use other rules inspect the control points

Rejection Rule: "Out of Control

Stop testing



Do not report patient results until problem is solved and controls indicate proper performance







# Westgard MultiRule

uses a combination of decision criteria/control rules, to decide whether an analytical run is in-control or out-of-control.

Different control rules to judge the acceptability of an analytical run.



# Westgard Multirule QC







# Quality Control is used to monitor the **accuracy** and the **precision** of the assay.

What are accuracy and precision?







#### **Performance Characteristics**

Quality Testing

() Accuracy/Bias: Closeness of agreement between the measured value and the true value.

() Precision: Repeatability or reproducibility of measurement data.





# Monitoring QC Data









# Precision Vs. Accuracy Testing









# Monitoring QC Data









## **Detecting error**

- Random error: variation in QC results with no pattern- only a cause for rejection if outside 2SDs.
- Systematic error: not acceptable, correct the source of error

#### Examples:

- Shift-control on one side of the mean 6 consecutive days
- Trend-control moving in one directionheading toward an "out of control" value







## Performance Characteristics

 Accuracy/Bias: how close you are to the true value.

• Precision: is how close two or more measurements are to each other.





# Precision Vs. Accuracy









#### Precision



- **Precision:** is how close two or more measurements are to each other.
- Within run precision and between run precision
- Precision measures <u>random error</u> in (scatter in data)





## Accuracy/Bias



- · Accuracy: how close you are to the true value.
- Accuracy measures systematic in data
- Systematic errors tend to be consistent in and direction





#### 6. Using QC information





## If QC is out of control

#### O STOP testing

- o Identify and correct problem
- O Repeat testing on patient samples and controls after correction
- O Do not report patient results until problem is solved and controls indicate proper performance







#### Possible Problems

- Degradation of reagents or kits
- Control material degradation
- Operator error
- Failure to follow manufacturer's instructions
- An outdated procedure manual
- Equipment failure
- Calibration error





#### Assessment

- 1. Differentiate between accuracy and precision.
- 2. What factors to consider when Selecting control material for the laboratory.
- 3. Name three sources of Control Materials.
- 4. Explain the use of a Levey-Jennings chart.

Describe how to correct "out of continuational®



# Summary

A quality control program for quantitative tests is essential. It should:

- Monitor all quantitative tests
- Have written policies and procedures, followed by laboratory staff
- Have a quality manager for monitoring and reviewing QC data
- O Use statistical analysis, provide for good records
- O Provide for troubleshooting and corrective action





## **Key Messages**

- A QC program allows the laboratory to differentiate between normal variation and error.
- The QC program monitors the accuracy and precision of laboratory assays.
- O The results of patient testing should never be released if the QC results for the test run do not meet the laboratory target values.





#### References

ISO 15189:2012 Medical Laboratories -Requirements for Quality and Competence

« Clause 5.6.2, 5.6.3 & 5.6.4»

- · CLSI
- ASLM





# Acknowledgement













74





