

Определение 4.19. Пусть функция f(x) определена для всех x > 0(соответственно для всех x < a). Если существуют такие числа $(k \ u \ l)$ что $\lim_{x\to +\infty}[f(x)-(kx+l)]=0$ $(\lim_{x\to -\infty}[f(x)-(kx+l)]=0)$, то прямая y = kx + l называется невертикальной асимптотой графика функции f(x) при $x \to +\infty$ (при $x \to -\infty$).

Коэффициенты k и l находятся следующим образом:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x}, \qquad l = \lim_{x \to +\infty} (f(x) - kx)$$

$$\left(k = \lim_{x \to -\infty} \frac{f(x)}{x}, \qquad l = \lim_{x \to -\infty} (f(x) - kx)\right).$$

Определение 4.20. Пусть функция f определена в некоторой окрестности или проколотой окрестности точки x_0 (быть может, носторонней) и пусть выполнено хотя бы одно из условий

$$\lim_{x\to x_0-0} f(x) = \infty \text{ или } \lim_{x_0+0} f(x) = \infty.$$

Тогда прямая $x = x_0$ называется вертикальной асимптотой графика функции f.

Раскрытие неопределенностей по § 4.10 правилу Лопиталя

Heonpedenenhocmb ви <math>a = 0

Теорема 4.22. Пусть заданы функции $f:(a,b)\to \mathbb{R}$ и $g:(a,b)\to \mathbb{R}$, удовлетворяющие условиям:

- 1. $\partial u \phi \phi e p e н ц u p y e м o c m u н a (a, b);$

- 1. Supple perhapsy sworm a har (a,b),

 2. $\lim_{x\to a+0} f(x) = \lim_{x\to a+0} g(x) = 0$;

 3. $g'(x) \neq 0 \ \forall x \in (a,b)$;

 4. $cywecmsyem \lim_{x\to a+0} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$.

 Torda cywecmsyem npedex

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}.$$
 (4.47)

 \mathcal{A} оказательство. В силу условий теоремы функции f и g не определены в точке a; доопределим их, положив f(a) = g(a) = 0. Теперь функции f и g непрерывны в точке a и удовлетворяют условиям теоремы Коши о конечных приращениях (см. §4.7) на любом отрезке [a, x], где a < x < b. Поэтому для каждого x, такое $\xi = \xi(x) \in (a, x)$, что

$$\underbrace{\frac{f(x)}{g(x)}} = \underbrace{\frac{f(x) - f(a)}{g(x) - g(a)}} = \underbrace{\frac{f'(\xi)}{g'(\xi)}} \tag{4.48}$$

$$\lim_{x \to a+0} \frac{f'(\xi(x))}{g'(\xi(x))} = \lim_{t \to a+0} \frac{f'(t)}{g'(t)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A.$$

Таким образом, из равенства (4.48) следует, что справедливо утверждение (4.47).

Доказанная теорема (с соответствующими изменениями ее условий) остается справедливой при $x \to a - 0$ и $x \to a$.

Теорема 4.23. Пусть заданы функции $f:(c,+\infty)\to \mathbb{R}$ и

 $g:(c,+\infty)\to\mathbb{R}$, удовлетворяющие условиям:

1.
$$\partial u \phi \phi e p e н u u p y e м o c m u н a (c, +\infty);$$

2.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$$

3.
$$q'(x) \neq 0 \ \forall x \in (c, +\infty)$$
:

2.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0;$$

3. $g'(x) \neq 0 \ \forall x \in (c, +\infty);$
4. $cywecmsyem \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}.$
 $Torda\ cywecmsyem\ u\ npeden$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Доказательство. Без ограничения общности можно считать, что c>0 (если c<0, то в качестве нового значения c возьмем, например,

Выполним замену переменного x = 1/t. Функции $\varphi(t) = f(1/t)$ и $\psi(t) = g(1/t)$ определены на интервале (0,1/c); если $x \to +\infty$, то $t \to +0$, и наоборот. На интервале (0, 1/c) существуют производные

$$\varphi'(t) = -\mathbf{f}'\left(\frac{1}{t}\right)\frac{1}{t}$$
 if $\psi'(t) = \mathbf{f}g'\left(\frac{1}{t}\right)\frac{1}{t^2}$

где штрихом обозначены производные функций f и g по первоначальному аргументу.

Из сказанного и условий теоремы следует, что функции $\varphi(t)$ и $\psi(t)$ удовлетворяют на интервале (0,1/c) условиям 1–3 теоремы 4.22. Покажем еще, что из существования предела $\lim_{x\to +\infty} \frac{f'(x)}{g'(x)} = A$ следует существование предела $\lim_{t\to +0} \frac{\varphi'(t)}{\psi'(t)}$ и равенство его A, то есть что вы-

полняется и условие 4 теоремы 4.22. Действительно, используя полученные выражения для производных $\varphi'(t)$ и $\psi'(t)$, находим

$$\lim_{t \to +0} \frac{\varphi'(t)}{\psi'(t)} = \lim_{t \to +0} \frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)} = \lim_{t \to +\infty} \frac{f'(x)}{g'(x)} = A.$$

Теперь из теоремы 4.22, примененной к функциям $\varphi(t)$ и $\psi(t)$, следует, что $\lim_{t \to +0} \frac{\varphi(t)}{\psi(t)} = A$. Но

$$\boxed{\frac{\varphi(t)}{\psi(t)}} = \frac{f\left(\frac{1}{t}\right)}{g\left(\frac{1}{t}\right)} = \boxed{\frac{f(x)}{g(x)}},$$

где x = 1/t, поэтому

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{t \to +0} \frac{\varphi(t)}{\psi(t)} = A.$$

Эта теорема остается верной с соответствующим видоизменением и при $x \to -\infty$.

 $Heonpedeлeнность вида \stackrel{\infty}{\sim}$

Теорема 4.24. Пусть заданы функции $f:(a,b) \to \mathbb{R}$ и $g:(a,b) \to \mathbb{R}$, удовлетворяющие условиям:

- 1. $\partial u \phi \phi e p e н ц u p y e м o c m u н a (a, b);$

- 2. $\lim_{x\to a+0} f(x) = \lim_{x\to a+0} g(x) = \infty;$ 3. $g'(x) \neq 0 \ \forall x \in (a,b);$ 4. $cywecmsyem \lim_{x\to a+0} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}.$ $Tor\partial a \ cywecmsyem \ u \ npeden$

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}.$$
 (4.49)

Доказательство. Если $a < x < x_0 < b$, то на отрезке $[x,x_0]$ функции f и g удовлетворяют условиям теоремы Коши о конечных приращениях (см. $\S 4.7$), поэтому существует такая точка $\xi = \xi(x_0,x)$, что

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)}, \quad x < \xi < x_0.$$
 (4.50)

Далее, в силу условия 2 теоремы, существует такая точка $x_1 = x_1(x_0), \ a < x_1 < x_0,$ что

$$f(x) \neq 0, \ g(x) \neq 0, \ f(x) \neq f(x_0) \ \forall x \in (a, x_1),$$

и, следовательно, можно выполнять деление на f(x), g(x) и $1-\frac{f(x_0)}{f(x)}$ (а также и на $1-\frac{g(x_0)}{g(x)}$, поскольку, в силу условий теоремы, $g(x)\neq g(x_0)$, см. теорему Коши § 4.7). Для этих значений x из (4.50) вытекает равенство

откуда
$$\frac{f(x)}{g(x)} = \underbrace{\frac{f'(\xi)}{g'(\xi)} - \frac{g(x_0)}{g(x)}}_{-\frac{f(x_0)}{f(x)}}.$$
 В правой части равенства (4.51) первый сомножи

В правой части равенства (4.51) первый сомножитель $\frac{f'(\xi)}{g'(\xi)}$ стремится к A при $x_0 \to a+0$, так как $a<\xi< x_0$, а второй, в силу условия 2 теоремы, стремится к 1 при $x\to a+0$ и фиксированном x_0 :

$$\lim_{x \to a+0} \frac{1 - \frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}} = 1. \tag{4.52}$$

(4.51)

Непосредственно перейти к пределу в равенстве (4.51) нельзя, поскольку указанные выше предельные переходы в сомножителях в правой части этого равенства происходят при разных условиях: при $x_0 \to a+0$ и при фиксированном x_0 , но $x\to a+0$. Однако если задать произвольно окрестность U(A) предела A, то, в силу условия 4 теоремы, можно сначала зафиксировать точку x_0 столь близко к точке a, что отношение $\frac{f'(\xi)}{g'(\xi)}$ попадет в эту окрестность, ибо $a<\xi< x_0$. Согласно же условию (4.52), для всех точек x, достаточно близких

к a, отношение $\frac{f(x)}{g(x)}$ (см. (4.51)) также будет принадлежать указанной окрестности U(A), а это означает справедливость утверждения (4.49).tim f(x)g(x) - lim