

Inferência Estatística III

Análises de Variâncias

Prof. Dr. Juliano van Melis Parte II

Parte 1 Conteúdo

- Análise da Variância ANOVA
 - Introdução
 - Pressupostos da ANOVA
 - Teste de Levine para homogeneidade da variância
 - Estatística F para testar igualdade de várias médias
 - Interpretação do Quadro ANOVA
 - Outputs R, SPSS e SAS
 - ANOVA de um fator com o MS Excel® e R
 - ANOVA com dois fatores com MS Excel® e R
 - ANOVA com medidas repetidas
- Teste de Kruskall-Wallis

Parte 2

Conteúdo

· Correlação Linear Simples

- Coeficiente Correlação Linear de Pearson
- Significância da correlação linear
- Medida de associação paramétrica
- Teste t student para análise da significância CLP
- Aplicações e análises com MS Excel® e R

· Medida de associação não-paramétrica

- Teste de Spearman
- · Correlação Bisserial
- Avaliação

Análises de Variâncias

RELEMBRANDO ANOVA

iguais. A análise de variância é empregada para uma medida dependente"

Variável Dependente (métrica) Variável Independente (categórica)

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

$$x_{ij} = \bar{x}_{\cdot} + \underbrace{(\bar{x}_i - \bar{x}_{\cdot})}_{\text{erro}} + \underbrace{(x_{ij} - \bar{x}_i)}_{\text{erro}}_{\text{"ENTRO"}}$$
os grupos do grupo i

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Soma dos Desvios Quadrados ENTRE os grupos "Sum of Squares BETWEEN"

$$SSD_{B} = \sum_{i} \sum_{j} (\bar{x}_{i} - \bar{x}_{.})^{2} = \sum_{i} n_{i} (\bar{x}_{i} - \bar{x}_{.})^{2}$$

Soma dos Desvios Quadrados DENTRO dos grupos "Sum of Squares WITHIN"

$$SSD_W = \sum_i \sum_j (x_{ij} - \bar{x}_i)^2$$

Introdução Homocedasticidade ANOVA de ANOVA co & Pressupostos & Médias um fator dois fatoro

É possível normalizar a soma dos quadrados, calculando a *média dos desvios quadrados*

$$MS_W = SSD_W/(N-k)$$

 $MS_B = SSD_B/(k-1)$

Mean Squares Within & Between

N: número total k: número de grupos

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Pressupostos

- Resíduos (erros) devem seguir uma distribuição normal: erro_{ii} ~ N(0, σ²)
- Homogeneidade das variâncias: As contribuições das variâncias dos grupos devem ser equivalentes para a variância total.
- 3. Amostras independentes: a observação de uma variável não pode influenciar outra observação. Atenção para medidas repetidas!

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

$$F = MS_B/MS_W$$

Se o valor de F = 1

→ Médias dos Quadrados *ENTRE* os grupos é semelhante às Médias dos Quadrados *DENTRO* dos grupos.

Se o valor de F < 1

- Médias dos Quadrados ENTRE os grupos é menor que as Médias dos Quadrados DENTRO dos grupos.
- → Nesses dois casos, as variâncias dentro dos grupos é tão grande que sobressaem a qualquer sinal que os grupos tenham.

Se o valor de F > 1

- → Médias dos Quadrados ENTRE os grupos é maior que as Médias dos Quadrados DENTRO dos grupos.
- →Nesse caso, os grupos parecem ter papel importante para a variação dos valores.

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

TABELA ANOVA 1-FATOR

Fonte da Variação	SQ	gl	Variância	Razão F
Entre	SQE	k - 1	$S_{entre}^2 = \frac{SQE}{k-1}$	$F = \frac{S_{\text{entre}}^2}{S_{\text{entre}}^2}$
Dentro	SQD	n - k	$S_{dentro}^2 = \frac{SQD}{n - k}$	3 dentro
Total	SQT = SQE+SQD	n - 1		

E depois?

→ Fazer Tukey HSD (ou outro teste post hoc)

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Teste Tukey HSD (Honest Significant Difference)

As diferenças são significativas quando os "intervalos" não estão encostados no eixo 0.

& Médias dois fatores repetidas um fator

ETAPAS NECESSÁRIAS PARA EFETUAR UMA ANOVA

1. Verifique se os dados contínuos seguem uma distribuição normal shapiro.test(y)

2. Verifique o pressuposto de homocedasticidade

 $var.test(y \sim x)$ $bartlett.test(y \sim x)$ levene.test($y \sim x$)

- 3. Variáveis são independentes?
- + Número amostral semelhante
- + Amostragem suficiente

ANOVA de & Médias dois fatores um fator

TESTAR VALIDADE DA ANOVA

- 1. ANOVA significativa, execute um teste post hoc $TukeyHSD(aov(y \sim x))$
- 2. Cheque as homogeneidade das variâncias $plot(aov(y \sim x), which=1)$
- 3. Distribuição Normal dos resíduos $plot(aov(y \sim x), which=2)$
- → Considere Teste Não-paramétrico: Kruskal-Wallis

Devem apresentar valores médios próximo de 0 (Linha vermelha na

horizontal, no 0) Variâncias semelhantes e homogêneas (distribuição dos pontos no eixo y deve ser parecida)

Eixo x mostra as médias dos 3 grupos (valores aiustados - fitted)

- → Resíduos com distribuição normal
- → Números destacados são possíveis outliers.

ANOVA com & Médias

→ Quando há o interesse de verificar a relação entre duas variáveis categóricas em relação a uma variável contínua

data("ToothGrowth") ?ToothGrowth dente <- ToothGrowth

len ~ supp + dose

len [numérico]: Comprimento do Dente ("Tooth length") supp [fator]: Tipo de suplemente ("Supplement type"):

VC: Vitamine C OJ: Orange Juice.

dose [numeric]: Dose em mg/dia ("Dose in milligrams/day")

8	Pressupostos	& Médias	um fator dois fa		
	dose	0.5	1.0	2.0	
	VC	4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7	16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5	23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5	
	OJ	15.2 21.5 17.6 9.7 14.5 10 8.2 9.4 16.5 9.7	19.7 23.3 23.6 26.4 20 25.2 25.8 21.2 14.5 27.3	25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23	

Introdução Homocedasticidade ANOVA de ANOVA com & Pressupostos & Médias um fator dois fatores repetidas

QUADRO ANOVA 2-FATORES

Fonte da variação	Soma dos Quadrados	Graus de liberdade	Quadrados Médios QM (variâncias)	F
Linhas	SSDlinhas	Linhas-1	SSDlinhas/Linhas-1	QMIin/QMres
Colunas	SSDcolunas	colunas-1	SSDcolunas/col-1	QMcol/QMres
Linhas:Colunas	SSDinter	(I-1)(c-1)	SSDinter/(I-1)(c-1)	QMint/QMres
Resíduos	SSDresíduos	I.c.(n'-1)	SSDinter/I.c.(n'-1)	
TOTAL	SSDtotal	n-1		

Introdução Homocedasticidade ANOVA de ANOVA com ANOVA medidas & Pressupostos & Médias um fator dois fatores repetidas

Soma dos Desvios Quadrados

Softial dos Desvios Quadrados
$$SSD_{colunas} = m \sum_{j} (\overline{x_{\bullet j}} - \overline{x_{\bullet \bullet}})^{2} \qquad SSD_{linhas} = n \sum_{i} (\overline{x_{i \bullet}} - \overline{x_{\bullet \bullet}})^{2}$$
$$SSD_{int} = \sum_{i} \sum_{j} (\overline{x_{i j}} - \overline{x_{i \bullet}} - \overline{x_{\bullet j}} + \overline{x_{\bullet \bullet}})^{2} \qquad SSD_{TOTAL} = \sum_{i} (x_{i j} - \overline{x_{\bullet \bullet}})^{2}$$

 $X_{\bullet \bullet}$: Média geral X_{ij} : Média da linha i na coluna j $X_{\bullet i}$: Média da coluna j $X_{i \bullet}$: Média da linha i m: número de elementos para cada coluna j n : número de elementos para cada linha i

→Com interação entre fatores

→Quando a interação **não é significativa**, levar em consideração somente **modelo aditivo**

INTERPRETAÇÃO

 A dose recebida (dose) influencia nas médias do comprimento dos dentes

F_{2.54}= 92, p-valor<0.0001

•A fonte da vitamina C (supp) recebida influencia nas médias do comprimento dos dentes

 $F_{1.54}$ = 15.57, p-valor<0.0001

 A relação entre dose e comprimento dos dentes é influenciada pela fonte de vitamina C

F_{2,54} = 4.11, p-valor<0.05

ANCOVA

ANálise de COVAriância

Prós

- Custa menos (precisa de menos sujeitos)
- Maior poder estatístico

Contra:

- Princípio da independência
- Precisa estar em ordem ("Tempo1", "Tempo2" ...)
- Valores faltantes

ı	Dados "WIDE" ⇔				⇒	Dados "LONG"			
ID	Fator	Temp1	Temp2			ID	Fator	Tempo	Valor
1	Trata	0.1	0.2			1	Trata	1	0.1
2	Control	1.1	1.2			1	Trata	2	0.2
						2	Control	1	1.1
n	FatorX	5.1	5.2			2	Control	2	1.2
						n	FatorX	2	5.2

+ DISCIPLINA 11

Kruskal-Wallis

- →É alternativa não-paramétrica para o teste ANOVA para um fator (one-way ANOVA).
- → Semelhante ao Teste U de Wilcoxon pois também utiliza *ranking*.

Características

- · Análise de variância não paramétrica
- 3 ou + grupos independentes
- Hipótese: As distribuições de todos os grupos são iguais,
- · Hipótese: As medianas de todos os grupos são iguais
- · Insensível a outliers
- · Os grupos não precisam ter o mesmo tamanho

Kruskal-Wallis

ALTERNATIVA NÃO-PARAMÉTRICA PARA ANOVA *ONE WAY*

Cuidados

- Se a distribuição for normal é melhor usar o teste ANOVA de um critério (one-way)
- Precisa ter 4 ou mais elementos na amostra de cada grupo
- Se tiver só 2 grupos use o Mann-Whitney

Kruskal-Wallis

Friedman

ALTERNATIVA NÃO-PARAMÉTRICA PARA ANOVA *TWO WAY*

- → Alternativa para ANOVA com dois fatores (two-way ANOVA)
- →Equivalente ao **Teste de Sinais**, onde testa pares de + ou dentro de cada par.
- →É menos sensível que o teste de sinais de Wilcoxon

REGRESSÃO E CORRELAÇÃO LINEAR SIMPLES

Análises de Variâncias

Suponha que você queira descrever a relação entre duas **variáveis contínuas**: y e x, onde temos observações independentes individuais i.

Assumiremos que a relação entre essas duas variáveis é uma correlação linear, logo, assumimos a equação simples a seguir:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

Onde:

- y: variável dependente
- x: variável dependente
- lpha: intercepto da equação linear
- β: inclinação da equação linear (coeficiente da regressão)
- ε : erro {~ N(0, σ^2)}

Definição	Coefiente de Pearson	Medida de associação	Medida de associação
e Introdução	e Significância	paramétrica	não-paramétrica

data("anscombe")
plot(y1~x1, anscombe)
abline(lm(y1~x1, anscombe), col="red")

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

 $\label{eq:data("anscombe")} $$plot(y1^{x1}, anscombe)$ abline(lm(y1^{x1}, anscombe), col="red")$ $$$

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Conforme aumenta x, aumenta y

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

erro ~ N (0, σ^2)

Como estimar α , β e σ^2 ?

→Método dos Mínimos Quadrados (Ordinary Least Squares ou Method of Least Squares)

Encontrar valores de alfa e beta que minimizem a soma dos quadrados dos resíduos (SS)

$$SS_{res} = \sum_{i} (y_i - (\alpha + \beta x_i))^2$$

→ Método dos Mínimos Quadrados

→ Método dos Mínimos Quadrados

→ Método dos Mínimos Quadrados

http://students.brown.edu/seeing-theory/regression-analysis/index.html#section1

Definição Coefiente de Pearson Medida de associação Medida de as e Introdução e Significância paramétrica não-paran

→ Método dos Mínimos Quadrados

EXERCÍCIO

 $\hat{\beta} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$ $\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$

- 1. Abrir: "anscombe.xls"
- 2. Calcular Inclinação da reta (β)
- 3. Calcular intercepto (a)
- 4. Calcular Soma dos Desvios Quadrados

→ Método dos Mínimos Quadrados

	n	\bar{x}	ÿ	$\hat{B_0}$	$\hat{B_1}$	SSE
Model	11	9.00	7.50	3.00	0.50	13.76

http://students.brown.edu/seeing-theory/regression-analysis/index.html#section1

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Pressupostos

- -As amostras são representativas da população para que predição seja feita
- -O erro é uma variável aleatória com média zero
- -As variáveis independntes são medidas sem erros
- Os preditores são linearmente independentes (é possível expressar qualquer preditor como uma combinação linear dos outros)
- -Os erros **não apresentam correlação** (a matriz de variânciacovariância dos erros é diagonal e cada elemento diferente de zero é a variância do erro)
- -A variância do erro é constante ao longo das observações (homocedasticidade)

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Consequências de um Modelo Errado/Ruim

- -Atinge a teoria por trás
- -Coeficientes ineficientes ou enviesados (colinearidade, baixa significância) levam a interpretações errôneas (apesar de sua teoria)
- -Outliers implicam que você não está apto para utilizar o seu modelo para toda a sua população
- -Overfitting = overconfidence

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Como saber se meu modelo é Ruim/Errado?

- -Coeficiente de determinação
- -Gráfico dos resíduos
- -Teste de White (ou de Breusch-Pagan)
- -VIF (Variance Inflation Factor)
- -Leverage Points
- -Cook`s Distance
- -Teste de Outliers

Ver: https://www.statmethods.net/stats/rdiagnostics.html

Próximas disciplinas: Regressão Linear, Regressão Múltipla...

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Hipótese Nula: Inclinação é igual a zero:

$$\beta = 0$$

$$t = \frac{\hat{\beta}}{1 - \frac{\hat{\beta}}{\hat{\beta}}}$$
 graus de liberdade = n - 2

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Hipótese Nula: Inclinação é igual a zero:

$$\beta = 0$$

$$t = \frac{\hat{\beta}}{\text{s.e.}(\hat{\beta})}$$

s.e(
$$\hat{\beta}$$
) = $\sqrt{\frac{\sum (\hat{y}_i - y_i)^2 / (n-2)}{\sum (\bar{x} - x_i)^2}}$

Hipótese Nula: Inclinação é igual a zero:

$$\beta = 0$$

$$t = rac{\hat{eta}}{\mathrm{s.e.}(\hat{eta})}$$
 RSS: Residuals Sum of Squares

SS_x: Soma dos Desvios Quadrados de x

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Correlação (r: amostral)

É uma medida de relação linear entre duas variáveis. É definida pela fórmula a seguir e apresenta valores entre +1 e -1:

$$r = \frac{SS_{xy}}{\sqrt{SS_x} \cdot \sqrt{SS_y}}$$

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Correlação (ρ: populacional)

Pode ser entendida como o valor do coseno d ângulo formado pela linha entre ambas as retas das duas dimensões:

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Correlação (p e r)

Teste de Hipótese – Significância do coeficiente de correlação

Hipótese nula: $\rho = 0$

Hipótese alternativa: $\rho \neq 0$

$$t_c = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \qquad \text{graus de liberdade = n-2}$$

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Correlação (ρ e r)

Termo associado com a covariância

Covariância: significa co-variação, ou seja, como duas variáveis variam de forma conjunta

$$r = \frac{SS_{xy}}{\sqrt{SS_x} \cdot \sqrt{SS_y}}$$

ição Coefiente de Pearson Medida de associação Medida de asso

Correlação (ρ e r)

Termo associado com a covariância

Covariância: significa co-variação, ou seja, como duas variáveis variam de forma conjunta

$$r = \frac{SS_{xy}/n}{\sqrt{SS_x/n} \cdot \sqrt{SS_y/n}}$$

Definição Coefiente de Pearson Medida de associação Medida de asso e Introdução e Significância

Correlação (ρ e r)

Termo associado com a covariância

Covariância: significa co-variação, ou seja, como duas variáveis variam de forma conjunta

Definição Coefiente de Pearson Medida de associação Medida de as e Introdução <u>e</u> Significância paramétrica não-paran

Matriz de Variância-Covariância

$$\Sigma = \begin{vmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X,Y) & \operatorname{Cov}(X,Z) \\ \operatorname{Cov}(X,Y) & \operatorname{Var}(Y) & \operatorname{Cov}(Y,Z) \\ \operatorname{Cov}(X,Z) & \operatorname{Cov}(Y,Z) & \operatorname{Var}(Z) \end{vmatrix}$$

- → Muitas aplicações estatísticas calculam a matriz de variância-covariância para os estimadores de parâmetros em um modelo estatístico.
- → Importante para análises multivariadas

nte de Pearson Medida de associação Medida de a

Medidas de Associação

Data types	Index	Value range	Formula
Numerical and numerical	Correlation coefficient	-1 - 1	$\frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \times \sum (y - \bar{y})^2}} = \frac{Sxy}{\sqrt{Sxx \times Syy}}$
Numerical and categorical	Correlation ratio*	0 - 1	interclass variance intraclass variance + interclass variance
Categorical and categorical	Cramer's coefficient*	0-1	X ₀ ² the total number of values =

THERE ARE PERENT TYPE OF INDEXES CORDING TO

Fonte: Takahashi. 2008. The Manga Guide to Statistics

Definição Coefiente de Pearson Medida de associação Medida de associação

Medidas de Associação

Fonte: Takahashi. 2008. The Manga Guide to Statistics

Fonte: Takahashi. 2008. The Manga Guide to Statistics

Correlação - Observações importantes:

- O fato de duas variáveis serem fortemente correlacionadas não implica uma relação direta de *causa* e *efeito* entre elas.
 →Não se pode afirmar que X causa Y e nem que Y causa X.
- É possível que a correlação entre as duas variáveis possa ser causada por uma terceira variável, ou combinação de diversas outras variáveis. (exemplo: número de bares com número de igrejas em uma cidade)
- É possível que uma correlação forte entre duas variáveis seja apenas coincidência (*relações espúrias*).

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Coeficiente de Determinação (R2)

- •Medida de ajuste a uma regressão linear
- •É a porcentagem explicada pelo modelo linear
- •R² = Variação explicada/Total da variação
- •É sempre entre 0 e 100%
- •0% indica que o modelo não explica a variabilidade dos dados dependentes em relação a média
- •100% indica que o modelo explica toda a variabilidade dos dados dependentes em torno da média.

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Coeficiente de Determinação

- •Em algumas áreas é comum que R² seja baixo. Por exemplo, em psicologia (R² de 50% é alto)
- •Se seu ajuste (R²) for baixo, mas você tem preditores significativo, conclusões podem ser feitas acerca das mudanças dos valores dos preditores estarem associados a mudanças nos valores da resposta
- •Quando há muitas variáveis, utiliza-se o R² ajustado.
- •N: número amostral, n número de variáveis independentes e m o número de observações necessárias para conseguir uma boa precisão do modelo \rightarrow N = mⁿ

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Coeficiente de Determinação - Limitações

- •R² não consegue determinar quando as estimativas ou predições são enviesadas, por isso analisar os resíduos (gráficos) é muito importante
- •R² não indica se o modelo da regressão é adequado. Você pode ter um R² baixo mas um bom modelo ou ter um R² alto e um modelo que não está adequado aos dados
- •O R² estimado por você é o R² da população, com viés.

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Coeficiente de Determinação

O que o R² indica:

- Proporção de variabilidade total explicada pelo modelo;
- 2. Melhoria quanto ao modelo nulo
- É o quadrado da correlação (correlação varia de -1 a 1, coeficiente de determinação de 0 a 1).

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Correlação (ρ ou rho) de Spearman (r_s)

→Usa um coeficiente de correlação em ranking

O coeficiente de correlação de postos de Spearman (r_s) é uma medida da força da relação entre duas variáveis:

- Pode ser utilizado para descrever relações lineares e não lineares entre dados;
- Não requer que as populações de cada variável sejam normalmente distribuídas.
- O problema é que a interpretação não é tão clara.
- → Utilizado para descrever relações monotônicas

Correlação (p ou rho) de Spearman (r_s)

https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.phg

Definição Coefiente de Pearson Medida de associação Medida de associação e Introdução e Significância paramétrica não-paramétrica

Correlação de Spearman (r_s)

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} \qquad \rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}$$

QUANDO TEM EMPATES

EXERCÍCIO

Microsoft Office Excel

- 1. Abrir "notas spearman.xls"
- 2. Calcular r_s
- 3. Testar a hipótese de que a correlação é igual a zero entre as duas discplinas
- 4. Concluir

o Coefiente de Pearson Medida de associação Medida de ass

Correlação de Spearman (r_s)

EXERCÍCIO

- 1. Use data ("USArrests")
- 2. Primeiro veja a relação e avalie a correlação entre População urbana (UrbanPop) e Estupro (Rape)
 - a. Graficamente: plot (UrbanPop ~ Rape, USArrests)
 - b. Utilizando a função, veja a correlação de Spearman entre População urbana (UrbanPop) e Estupro (Rape):cor.test(x = USArrests\$UrbanPop,
 - y = USArrests\$Rape, method = "spearman")
- 4. Conclua
- 3. Agora faça o mesmo para a relação entre população urbana (UrbanPop) e Assassinatos (Murder)
- Definição Coefiente de Pearson Medida de associação Medida de associação e Significância paramétrica não-paramétrica

Correlação Bisserial (r_b ou r_{pb}) →Quando os grupos são artificiais (variável contínua que foi transformada em binomial, utiliza-se o r_b. Caso contrário, utilizase a correlação ponto-bisserial

→É um coefiente de Pearson "modificado"

$$r_b = \frac{(Y_1 - Y_0) \cdot \left(\frac{pq}{Y}\right)}{\sigma_{xy}}$$

Y₀: Média dos valores para valores de x=0,

Y₁: Média dos valores para valores de x=1,

q: Proporção de dados para x=0,

p: Proporção de dados para x=1,

σ, : Desvio padrão da população.

Definição Coefiente de Pearson Medida de associação Medida de associação Introdução e Significância paramétrica não-paramétrica

Correlação Bisserial (r_b ou r_{pb})

→Usado para relação entre uma variável dicotômica (1 ou 0, por ex) com uma variável contínua (naturalmente ou forçadamente) → Também varia de -1 a +1

$$r_{pb} = rac{M_1 - M_0}{s_n} \sqrt{pq}$$
 $s_n = \sqrt{rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}$

 M_1 = Média do grupo "1".

M₀ = Média do grupo "0"

s_n = Desvio padrão para todo o teste.

p = Proporção de casos no grupo "0".

q = Proporção de casos no grupo "1".

! Para amostras usa-se n-1!

Definição Coefiente de Pearson Medida de associação Medida de associação

Correlação Bisserial (r_b ou r_{pb})

$$r_b = \frac{\left(Y_{\rm I} - Y_{\rm O}\right) \cdot \left(\frac{pq}{Y}\right)}{\sigma_{\rm y}}$$

 Área pintada corresponde a p
 Área em branco corresponde a q

Correlação Bisserial (r_b ou r_{bb})

- **EXERCÍCIO**
- 1. Use data("mtcars")
- 2. Depois utilize a função cor.test() nas variáveis am (variável dicotômica) e mpg (variável contínua)
- 3. Conclua

→Não é normalmente utilizada.

→ **Problemas**: precisa apresentar os mesmos pressupostos de uma relação linear (homocedasticidade, independência), além de ser pouco robusta.

→Portanto, é mais utilizado ANOVA ou teste t para comparar valores médios

"Exceção": Mostra a força de uma associação.

Correlação Bisserial (r_b ou r_{pb})

→TESTE DE HIPÓTESE

H0: Não há correlação entre grupos e valores observados

$$t_0 = r\sqrt{\frac{n-2}{1-r^2}}$$

- 1. Abrir "sexo.xls"
- EXERCÍCIO

 Microsoft Office Excel
- 2. Calcular r_{pb}
- 3. Testar a hipótese de que a correlação é igual a zero entre "sexo" e "sexo"
- 4. Concluir

Análises de Variâncias

AVALIAÇÃO INDIVIDUAL