BASIC ALGORITHMS

Algorithms for small problems

Diego Klabjan
Professor, Industrial Engineering and Management Sciences

Northwestern ENGINEERING

ENUMERATION

Bellman's Optimality Equation

- $V_t(s_t) = \max_{a_t \in \mathcal{A}} [r(s_t, a_t) + \gamma E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V_{t+1}(s_{t+1}|s_t)]$
- Compute value functions recursively
 - Training (planning)
- Given computed value functions
 - 'Measure' state
 - Solve optimization problem

$$\max_{a \in \mathcal{A}} [r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} V(\bar{s}|s)]$$

- Often not many actions enumerate
- Often deterministic system no expectation

Enumeration

- For *t*=*T* down to 0
 - For each possible state s_t
 - Compute

$$V_t(s_t) = \max_{a_t \in \mathcal{A}} [r(s_t, a_t) + \gamma E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V_{t+1}(s_{t+1}|s_t)]$$

- Works if
 - Small number of states
 - Small number of actions
 - Somehow cope with expectation
- Three courses of dimensionality

VALUE ITERATION

Value Iteration

- $V(s) = \max_{a \in \mathcal{A}} [r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} V(\bar{s}|s)]$
- Assume right-hand side known
 - Use approximate V
 - Can compute left-hand side
 - Gives better approximation of V

Value Iteration

- For $k = 0,1,2,\cdots$
 - For each possible state s
 - Compute

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} [r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} V_k(\bar{s}|s)]$$

- If discount factor less than 1 and everything is finite
 - Convergence (pointwise) to optimal value function
- Same pitfalls as enumeration
- No explicit policy

Value Function and Policy

- $\pi(s) = \underset{a \in \mathcal{A}}{arg\max}[r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)}V(\bar{s}|s)]$
 - If V optimal, π is optimal
- $V(s) = r(s, \pi(s)) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} V^{\pi}(\bar{s}|s)$
 - Must know V^{π}
 - If π is optimal, V is optimal

Other Applications of Value Iteration

- Shortest Path can be solved by value iteration
- Other algorithms
 - Levensthein distance
 - String algorithms
 - String alignment
 - Dynamic time warping
 - Generalization of Levensthein
 - Graphical models
 - Viterbi algorithm

POLICY ITERATION

Evaluating Policy

• Given policy π find V^{π}

$$V^{\pi}(s) = E_{\substack{a \sim \pi(a|s) \\ \bar{s} \sim p(\bar{s}|s,a)}} [r(s,a) + \gamma V^{\pi}(\bar{s}|s)]$$

- Can use similar idea to value iteration
- Given approximate right-hand side
 - Find better left-hand side by using the equation

Iterative Policy Evaluation

- Problem
 - Evaluate given policy π
- Solution: iterative application of Bellman expectation equation
- $v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_{\pi}$
- For $k = 0,1,2,\cdots$
 - For each possible state s compute

$$v_{k+1}(s) = E_{\substack{a \sim \pi(a|s) \\ \bar{s} \sim p(\bar{s}|s,a)}} [r(s,a) + \gamma v_k(\bar{s}|s)]$$

• Convergence to V^{π} can be proven

Evaluate Policy

$$\boldsymbol{v}_{k+1} = \boldsymbol{R}^{\boldsymbol{\pi}} + \gamma \boldsymbol{P}^{\boldsymbol{\pi}} \boldsymbol{v}_k$$

• Limit $k \to \infty$

$$v^{\pi} = R^{\pi} + \gamma P^{\pi} v^{\pi}$$

$$v^{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

- Algorithm is a way to compute the inverse
 - Inverse exists if discount less than 1

•
$$\mathbf{R}^{\pi} = \left(E_{a \sim \pi(a|s)} r(s,a) \right)_{s} = \left(\sum_{a \in \mathcal{A}} \pi(a|s) r(s,a) \right)_{s}$$

•
$$\mathbf{P}^{\pi} = \left(\sum_{a \in \mathcal{A}} \pi(a|s) P_{ss'}^{a}\right)_{s,s'}$$

Policy Iteration

- Given a policy π
 - Evaluate policy π

$$V^{\pi}(s) = \mathbb{E}[r_t + \gamma r_{t+1} + \dots | S_t = s]$$

• Improve the policy by acting greedily with respect to V^{π} $\pi' = \operatorname{greedy}(V^{\pi})$

- This process of policy iteration always converges to π^* optimal policy
 - Finite cardinality assumptions

Policy Iteration Algorithm

- Loop
 - For $k = 0,1,2,\cdots$
 - For each possible state s compute

$$v_{k+1}(s) = E_{a \sim \pi(a|s)} \left[r(s, a) + \gamma v_k(\bar{s}|s) \right]$$

$$\bar{s} \sim p(\bar{s}|s, a)$$

- Let v^{π} be the converged function
- For each possible state s compute

$$\pi'(s) = \max_{a} r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} v^{\pi}(\bar{s}|s)$$

• Set $\pi = \pi'$

Generalized Policy Iteration

- Loop
 - For $k = 0,1,2,\cdots$, K // K iterations to evaluate the policy
 - For each possible state s compute

$$v_{k+1}(s) = E_{a \sim \pi(a|s)} \left[r(s, a) + \gamma v_k(\bar{s}|s) \right]$$
$$\bar{s} \sim p(\bar{s}|s, a)$$

• Improve the policy by acting greedily with respect to v_{K+1}

$$\pi = \operatorname{greedy}(v_{K+1})$$

- The inner loop approximately computes the inverse of the matrix in $v^\pi = (I \gamma P^\pi)^{-1} R^\pi$
- K=0
 - Value iteration

- Value iteration
 - Per iteration time low
 - Needs more iterations

- Policy iteration
 - Per iteration time high
 - Controlled by K
 - Needs fewer iterations
 - More flexible

Weaker convergence assumptions for policy iteration

Trade-off