Ordinary Least Square Method (Geometric Interpretation)

Suppose, We are given data points and corresponding target as $(x_1,x_2) \rightarrow y$

- $\bullet \quad P_1(1,2) \to 3$
- $P_2(0,1) \to 1$
- $\bullet \quad P_3(0,0) \rightarrow 2$

This represented as features / basis vectors is :

∮ ₁	∮ ₂	у
1	2	3
0	1	1
0	0	2

Here, (\oint_1 , \oint_2) are the basis vectors commonly known as features. The **y** is the target variable / value to be predicted. With a general representation as :

Solution using OLS

The solution is the Linear combination of basis vectors represented as:

$$\hat{y} = w \oint = w_1 \oint_1 + w_2 \oint_2 + w_3 \oint_3 + \dots + w_d \oint_d$$

 \hat{y} is the linear combination of basis vectors, this will always span the column space created by ($\oint 1$, $\oint 2.....\oint d$).

The optimal solution can be obtained by minimizing the squared errors between $y & \hat{y}$.

i.e.
$$\min(\sum_{i=0}^{M} (y_i - \hat{y}_i)^2)$$

This can be done by solving for weights(w) as:

$$w = (\oint^T \oint)^{-1} \oint y$$

Geometric Intuition: Geometric representation of basis vectors

When the basis vectors are represented in \mathbb{R}^n space, we get vector $\hat{\mathbf{y}}$ in the space columns of (\oint_1 , $\oint_2 \dots \oint_d$). The Least square method tries to optimize the solution such that it is orthogonal to the span of data points X i.e. (\oint_1 , $\oint_2 \dots \oint_d$). The difference between predicted ($\hat{\mathbf{y}}$) and actual values(\mathbf{y}) is the error term given by:

$$\varepsilon = y - \hat{y} = y - (w_1 \phi_1 + w_2 \phi_2 + w_3 \phi_3 + \dots + w_d \phi_d)$$

References

- 1. Geometric Interpretation of OLS by Ben Lambert. (Link)
- 2. Least Squares and OLS by Penn State University. (Link)
- 3. Pattern Recognition & Machine Learning <Page 142-143> (Link)