Лабораторная работа №2 по курсу Методы вычислений «Безусловная минимизация функций двух переменных. Прямые методы.»

Фроловский Алексей Вадимович

группа ИУ7-17 Вариант № 14 23 ноября 2012 года

Цель работы

Написать программы нахождения минимума, реализующие:

- 1. Метод минимизации по правильному симплексу;
- 2. Метод минимизации по деформируемому симплексу (Нелдера-Мида);
- 3. Метод случайного поиска.

Найти точку минимума квадратичной функции

$$z = 4x_1x_2 + 7x_1^2 + 4x_2^2 + 6\sqrt{5}x_1 - 12\sqrt{5}x_2 + 51 \tag{1}$$

с использованием указанных выше методов, а также используя возможности Optimization Toolbox Matlab. В качестве стартовой взять точку $(0; -\sqrt{5})$.

Для функции

$$z = x_2^3 + 2x_2x_1 + \frac{1}{\sqrt{x_1x_2}} + x_1 \tag{2}$$

с помощью созданих программ найти локальный минимум, ближайший к стартовой точке (3,3).

Критерий окончания выбрать так, чтобы координаты вычисленного приближения к точке минимума функции содержали три верные значащие цифры.

Ход работы

Найдем минимум функции (1) теоритическим способом. Составим и решим систему уравнений (3)

$$\begin{cases}
\frac{\partial f}{\partial x_1} = 0 \\
\frac{\partial f}{\partial x_2} = 0
\end{cases}$$
(3)

ИЛИ

$$\begin{cases} 4x_2 + 14x_1 + 6\sqrt{5} &= 0\\ 4x_1 + 8x_2 - 12\sqrt{5} &= 0 \end{cases}$$
 (4)

Получим $x_1 = -\sqrt{5}, x_2 = 2\sqrt{5}$. Подставим полученные значения в (1):

$$f(-\sqrt{5}, 2\sqrt{5}) = -24\tag{5}$$

Таким образом, минимальное значение функции -24 достигается в точке (-2.2362, 4.4719).

Доопределим функцию (2) так, чтобы обеспечить нахождение требуемого локального минимума. Для этого наложим на область определения ограничения $x_1 > 0, x_2 > 0$

Результаты

Сравнение работы методов для квадратичной функции (1)

Метод	x^*	$f(x^*)$	количество вычислений функции
Standart	(-2.2362, 4.4719)	-24.0000	85
Random bactracking	(-2.2357, 4.4721)	-24.0000	199
Regular simplex	(-2.2359, 4.4720)	-24.0000	52
Deformed simplex	(-2.2361, 4.4721)	-24.0000	143

Для функции (2)

Метод	x^*	$f(x^*)$	количество вычислений функции
Standart	(0.4742, 0.5406)	3.1200	90
Random backtracking	(0.4742, 0.5409)	3.1200	169
Regular simplex	(0.4743, 0.5406)	3.1200	114
Deformed simplex	(0.4743, 0.5407)	3.1200	116

Лучшие результаты как по точности, так и по трудоемкости, показывает метод с использоваением регулярного симплекса, в то время как использование деформируемого симплекса более эффективно для функции, имеющей овражную структуру. Метод случайного поиска показал значительно худшие результаты для обеих функций. С точки зрения точности поиска все три метода показали приблизительно одинаковые значения.