Gaussian and Linear Gaussian Observation Models

CS772A: Probabilistic Machine Learning
Piyush Rai

Gaussian Distribution (Univariate)

- Distribution over real-valued scalar random variables $Y \in \mathbb{R}$, e.g., height of students in a class
- lacktriangle Defined by a scalar mean μ and a scalar variance σ^2

$$\mathcal{N}(Y = y | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - \mu)^2}{2\sigma^2}\right]$$

- Mean: $\mathbb{E}[Y] = \mu$
- Variance: $var[Y] = \sigma^2$
- Inverse of variance is called precision: $\beta = \frac{1}{\sigma^2}$.

Gaussian PDF in terms of precision
$$\mathcal{N}(Y=y|\mu,\beta) = \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(y-\mu)^2\right]$$

Gaussian Distribution (Multivariate)

- Distribution over real-valued vector random variables $Y \in \mathbb{R}^D$
- Defined by a mean vector $\mu \in \mathbb{R}^D$ and a covariance matrix Σ

$$\mathcal{N}(\mathbf{Y} = \mathbf{y} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp[-(\mathbf{y} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu})]$$

- Note: The cov. matrix **∑** must be symmetric and PSD
 - All eigenvalues are positive
 - $\mathbf{z}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{z} \geq 0$ for any real vector \mathbf{z}
- The covariance matrix also controls the shape of the Gaussian
- lacktriangle Sometimes we work with precision matrix (inverse of covariance matrix) $oldsymbol{\Lambda} = oldsymbol{\Sigma}^{-1}$

Covariance Matrix for Multivariate Gaussian

spreads along oblique

CS772A: PML

Posterior Distribution for Gaussian's Mean

Its MLE/MAP estimation left as an exercise

• Given: N i.i.d. scalar observations $y = \{y_1, y_2, ..., y_N\}$ assumed drawn from $\mathcal{N}(y|\mu, \sigma^2)$

■ Note: Easy to see that each y_n drawn from $\mathcal{N}(y|\mu,\sigma^2)$ is equivalent to the following

Thus y_n is like a noisy version of μ with zero mean Gaussian noise added to it $y_n = \mu + \epsilon_n$ where $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

• Let's estimate mean μ given y using fully Bayesian inference (not point estimation)

A prior distribution for the mean

- lacktriangle To computer posterior, need a prior over μ
- Let's choose a Gaussian prior

$$p(\mu|\mu_0, \sigma_0^2) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

$$\propto \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

- lacktriangle The prior basically says that $\underline{a\ priori}$ we believe μ is close to μ_0
- lacktriangle The prior's variance σ_0^2 denotes how certain we are about our belief
- lacktriangle We will assume that the prior's hyperparameters (μ_0,σ_0^2) are known
- Since σ^2 in the likelihood $\mathcal{N}(y|\mu,\sigma^2)$ is known, Gaussian prior $\mathcal{N}(\mu|\mu_0,\sigma_0^2)$ on μ is also conjugate to the likelihood (thus posterior of μ will also be Gaussian); PML

The posterior distribution for the mean

■ The posterior distribution for the unknown mean parameter μ

On conditioning side, skipping all fixed params and hyperparams from the notation

$$p(\mu|\mathbf{y}) = \frac{p(\mathbf{y}|\mu)p(\mu)}{p(\mathbf{y})} \propto \prod_{n=1}^{N} \exp\left[-\frac{(y_n - \mu)^2}{2\sigma^2}\right] \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

■ Easy to see that the above will be prop. to exp of a quadratic function of μ . Simplifying:

$$p(\mu|\mathbf{y}) \propto \exp\left[-\frac{(\mu-\mu_N)^2}{2\sigma_N^2}\right] \text{Gaussian posterior (not a surprise since the chosen prior was conjugate to the likelihood)}$$

$$\frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2} \text{Contribution from the prior } \frac{1}{\sigma_0^2} = \frac{1}{N\sigma_0^2} + \frac{N\sigma_0^2}{N\sigma_0^2} = \frac{N\sigma_0^2}{N\sigma_0^2} + \frac{N\sigma_0^2}{N\sigma_0^2} = \frac{N\sigma_0^2}{N\sigma_0^2} + \frac{N\sigma_0^2}{N\sigma_0^2} = \frac{N\sigma_0^2}{N\sigma_0^2} = \frac{N\sigma_0^2}{N\sigma_0^2} + \frac{N\sigma_0^2}{N\sigma_0^2} = \frac{N\sigma_0^2}{$$

- \blacksquare What happens to the posterior as N (number of observations) grows very large?
 - Data (likelihood part) overwhelms the prior

• Posterior's variance σ_N^2 will approximately be σ^2/N (and goes to 0 as $N \to \infty$)

• The posterior's mean μ_N approaches \bar{y} (which is also the MLE solution)

Meaning, we become very-very certain about the estimate of μ

The Predictive Distribution

• If given a point estimate $\hat{\mu}$, the plug-in predictive distribution for a test y_* would be

This is an approximation of the true PPD
$$p(y_*|y)$$
 $p(y_*|\hat{\mu}, \sigma^2) = \mathcal{N}(y_*|\hat{\mu}, \sigma^2)$

lacktriangle On the other hand, the posterior predictive distribution of x_* would be

The best point estimate

$$p(y_*|\mathbf{y}) = \int p(y_*|\mu, \sigma^2) p(\mu|\mathbf{y}) d\mu$$
$$= \int \mathcal{N}(y_*|\mu, \sigma^2) \mathcal{N}(\mu|\mu_N, \sigma_N^2) d\mu$$

This "extra" variance σ_N^2 in PPD is due to the averaging over the posterior's uncertainty

$$=\mathcal{N}(y_*|\mu_N,\sigma^2+\sigma_N^2)$$
 If conditional is Gaussian then marginal is also

For an alternative way to get the above result, note that, for test data

$$y_* = \mu + \epsilon$$
 $\mu \sim \mathcal{N}(\mu_N, \sigma_N^2)$ $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Using the **posterior** of μ since we are at test stage now

$$\Rightarrow p(y_*|\mathbf{y}) = \mathcal{N}(y_*|\mu_N, \sigma^2 + \sigma_N^2)$$

Since both μ and ϵ are Gaussian r.v., and are independent, y_* also has a Gaussian posterior predictive, and the respective means and variances of μ and ϵ get added up

A useful fact: When we have conjugacy, the posterior predictive distribution also has a closed form (will see this result more formally when talking about exponential family distributions)

> PRML [Bis 06], 2.115, and also mentioned in probstats refresher slides

72A: PML

Gaussian Observation Model: Some Other Facts

- MLE/MAP for μ , σ^2 (or both) is straightforward in Gaussian observation models.
- Posterior also straightforward in most situations for such models
 - (As we saw) computing posterior of μ is easy (using Gaussian prior) if variance σ^2 is known
 - Likewise, computing posterior of σ^2 is easy (using gamma prior on σ^2) if mean μ is known
- If μ , σ^2 both are unknown, posterior computation requires computing $p(\mu, \sigma^2 | y)$
 - Computing joint posterior $p(\mu, \sigma^2 | y)$ exactly requires a jointly conjuage prior $p(\mu, \sigma^2)$
 - "Gaussian-gamma" ("Normal-gamma") is such a conjugate prior a product of normal and gamma
 - Note: Computing joint posteriors exactly is possible only in rare cases such this one
- lacktriangle If each observation $y_n \in \mathbb{R}^D$, can assume a likelihood/observation model $\mathcal{N}(y|\mu,\Sigma)$
 - lacktriangle Need to estimate a vector-valued mean $\mu \in \mathbb{R}^D$. Can use a multivariate Gaussian prior
 - Need to estimate a $D \times D$ positive definite covariance matrix Σ . Can use a Wishart prior
 - If μ , Σ both are unknown, can use Normal-Wishart as a conjugate prior

Linear Gaussian Model (LGM)

■ LGM defines a noisy lin. transform of a Gaussian r.v. θ with $p(\theta) = \mathcal{N}(\theta | \mu, \Lambda^{-1})$

Both $\boldsymbol{\theta}$ and \boldsymbol{y} are vectors (can be of different sizes)

Also assume A, b, Λ, L to be known; only θ is unknown

$$y=A heta+b+\epsilon$$
 Noise vector - independently and drawn from $\mathcal{N}(\epsilon|\mathbf{0},\mathbf{L}^{-1})$

posterior and marginal likelihood

(and both Gaussian)

 \blacksquare Easy to see that, conditioned on $\boldsymbol{\theta}$, \boldsymbol{y} too has a Gaussian distribution

$$p(\mathbf{y}|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{y}|\boldsymbol{A}\boldsymbol{\theta} + \boldsymbol{b}, \boldsymbol{L}^{-1})$$

■ Assume $p(\theta)$ as prior and $p(y|\theta)$ as the likelihood, and defining $\Sigma = (\Lambda + A^T L A)^{-1}$

Posterior of
$$\theta$$

$$p(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{y})} = \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\Sigma}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{L}(\boldsymbol{y}-\boldsymbol{b})+\boldsymbol{\Lambda}\boldsymbol{\mu}),\boldsymbol{\Sigma})$$

Marginal likelihood
$$p(y) = \int p(y|\theta)p(\theta)d\theta = \mathcal{N}(y|A\mu + b,A\Lambda^{-1}A^{\top} + L^{-1})$$

- Many probabilistic ML models are LGMs
- These results are very widely used (PRML Chap. 2 contains a proof)