3P =1 -> P=1

Weighted Die:

03 01

X:

0.1 0.1 0.1 6.3

1 2 3 4 5 6

3P P P P

$$Variance(6) = [1.03 + 2.0.1 + 3.01 + 4.0.1 + 5.01 + 6.0.3] - 3.5^{2}$$

$$= [0.3 + 6.4 + 0.9 + 1.6 + 2.5 + 10.8] - 12.25$$

$$= [0.5 - 12.25 - 4.25]$$

$$V^{2} = E[X] = 3.5$$

$$V^{2} = E[(X-I)^{2}] = 4.25$$

$$\left[\frac{1}{6} + \frac{4}{6} + \frac{9}{6} + \frac{16}{6} + \frac{25}{6} + \frac{36}{6}\right] - 12.25 = 2.917$$

$$M = E(x) = 3.5 \quad \left[6^{2} = E(x-r)^{2}\right] = 2.917$$

The means of the two Probability distributions are the same; which means that the sum probability of

each of should equal to 1.

However, the Variance of the weighted die 13 higher then the Variance of the fair die, Which mean that the Poll Probability lat the fair die tends to be closer to the mean 3.5

$$P(\chi|\omega_{A}) \cdot P(\omega_{B}) = P(\chi|\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{A}) \cdot P(\omega_{B}) = P(\chi|\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{A}) \cdot P(\omega_{B}) = P(\chi|\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{A}) = \frac{1}{3} \Rightarrow P(\chi|\omega_{B}) \cdot 3P(\chi|\omega_{A})$$

$$P(\chi|\omega_{B}) = \frac{1}{3} \Rightarrow P(\chi|\omega_{B}) \cdot 3P(\chi|\omega_{B}) \cdot 3P(\chi|\omega_{B})$$

$$P(\chi|\omega_{B}) = \frac{1}{3} \Rightarrow P(\chi|\omega_{B}) \cdot 3P(\chi|\omega_{B}) \cdot 3P(\chi|\omega_{B})$$

$$P(\chi|\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B}) \cdot P(\omega_{B})$$

$$P(\chi|\omega_{B}) \cdot P(\omega_{B}) \cdot$$

J, C
0, (9-10) - 6, (x-1/2) - 26, 6, 1 (1 GA) = 0
$\frac{(3^{2}-3^{2})\chi^{2}+(-25^{2}H_{8}+20^{2}H_{F})\chi+(5^{2}H_{8}-6^{2}H_{R})}{2(\frac{1}{3}\cdot\frac{6\chi}{6\eta})}$
$\frac{\ln(\frac{1}{3} \cdot \frac{6\pi}{6\pi}) = 0}{7/172}$
11/1/2° 20