PROBLEM SET 1

Zhiqiang Xie 77892769

Problem 1

a. By Master Theorem, $log_39=2$,

 $T(n) \in \Theta(n^2 lg(n))$

b. By Master Theorem, $log_35>1$, and n^{log_35} is polynomially large than n,

 $T(n) \in \Theta(n^{log_35})$

c. Let $n=2^{8m}$, we can get:

 $T(2^{8m}) = 7T(2^m) + 64m^2$, rename $S(m) = T(2^{8m})$ to prodece:

 $S(m) = 7S(m/8) + 64m^2$, we can get $S(m) \in \Theta(m^2)$ by Master Theorem,

Therefore, $T(n) \in \Theta(lg^2(n))$

d. Assume that $T(n) \in O(n)$ and try $T(n) \leq cn$ and $\Theta(n) = dn$, we abtain:

 $T(n) \leq rac{c}{2}n + rac{c}{4}n + dn$

 $=(rac{3c}{4}+d)n\leq cn$, as long as $c\geq 4d$, which is satisfiable.

Futher more, since $T(n) \geq dn$, $T(n) \in \Theta(n)$

e.

- $\bullet \ \log(\log(n)) = o(\log(n)) = o((\log(n))^2) = o(\sqrt{n})$
- $log(n!) = \Theta(nlog(n)) = o(n^{4/3}) = o(n^2)$
- $2^{log(n^{log(log(n))})} = o(e^n) = o(n!) = o(n^n)$

Problem 2 & 3

Algorithm 1

$$T(n) = \Theta(1) + \sum\limits_{i=3}^n (\Theta(1) + (\lfloor \sqrt{i}
floor - 1) * \Theta(1)) \in O(n^{3/2})$$

Algorithm 2

 $T(V,E) = \Theta(1) + \sum_{i=1}^V (\Theta(1) + n)$, where n is the number of nodes which is adjacent to vertex V_i .

Therefore, $T(V,E) = \Theta(1) + V + \sum_{i=1}^{V} n = \Theta(1) + V + E \in \Theta(V+E)$, where V,E are the number of vertex and edge.

Algorithm 3

$$T(n) = T(n-1) + 2T(n-2) + \Theta(1)$$

For simplification, we set $T(1) = T(2) = \Theta(1) = 1$, here we attain:

$$\left[egin{array}{c} T_n \ T_{n+1} \ 1 \end{array}
ight] = M* \left[egin{array}{c} T_{n-1} \ T_n \ 1 \end{array}
ight]$$
 Where $M=\left(egin{array}{ccc} 0 & 1 & 0 \ 2 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight)$

Then we can get the Eigenvector matrix and Eigenvalue matrix:

$$\Lambda = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & -1 \end{array}
ight) S = \left(egin{array}{ccc} 1 & 1 & 1 \ 1 & 2 & -1 \ -2 & 0 & 0 \end{array}
ight)$$

$$\left[egin{array}{c} T_1 \ T_2 \ 1 \end{array}
ight] = \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight] = -rac{1}{2} \left[egin{array}{c} 1 \ 1 \ -2 \end{array}
ight] + \left[egin{array}{c} 1 \ 2 \ 0 \end{array}
ight] + rac{1}{2} \left[egin{array}{c} 1 \ -1 \ 0 \end{array}
ight]$$

Therefore, $T_n = -rac{1}{2}*1^{n-1} + 2^{n-1} + rac{1}{2}(-1)^{n-1} \in \Theta(2^n)$

Algorithm 4

$$T(n) = \Theta(n) + T(n/3) + 2T(2n/3)$$
 (For wrost case)

Assume that $T(n) \in O(n^2)$ and try $T(n) <= cn^2 - dn$ and $\Theta(n) = en$, we attain:

$$T(n) \leq en + rac{c}{9}n^2 - rac{d}{3}n + rac{8}{9}n^2 - rac{4d}{3}n$$

$$=cn^2+(e-\tfrac{5d}{3})n$$

 $\leq cn^2 - dn$, as long as $d \geq rac{3}{2}e$, which is satisfiable

Therefore, $T(n) \in O(n^2)$

Problem 4

a.
$$\sum_{i=1}^{n} \frac{1}{i^2} < 2 - \frac{1}{n} < 2$$
, $(n > 1)$

As for n=1,2, the base cases (1 < 2, 1 + 1/4 < 2) are true.

Suppose the inequation to be true for $n=k,k\in Z^+$, we have

$$\sum\limits_{i=1}^{k+1}rac{1}{i^2} < 2 - rac{1}{k} + rac{1}{(k+1)^2} = 2 - rac{k^2 + k + 1}{k(k+1)^2} < 2 - rac{k^2 + k}{k(k+1)^2} = 2 - rac{1}{k+1}$$

Therefore, by the principle of induction, the inequation is true for all $n \in Z^+$

b. Since n is a interger and n > 2, we can simplify this inequation to be:

$$n > (1 + 1/n)^n$$

As for n=3, the base case ($4^3=64<81=3^4$) is true.

Suppose the inequation to be true for n = k, k >= 3, we have

$$(1 + \frac{1}{n+1})^{n+1} < (1 + 1/n)^{n+1} = (1 + 1/n)^n * (1 + 1/n) < n * (1 + 1/n) = n + 1$$

Therefore, by the principle of induction, the inequation is true for all integer n > 2

Problem 5

a. Based on the formula, we can attain:

$$x_{n+1}-x_n=rac{1}{2}(rac{lpha}{x_n}-x_n)<0$$
 if $x_n>\sqrt{lpha}$

$$x_{n+1}^2-lpha=rac{1}{4}(x_n^2-2lpha+rac{lpha^2}{x_n^2})>0$$
 if $x_n>\sqrt{lpha}$

Therefore, since $x_1>\sqrt{lpha}$, $x_{n+1}< x_n$, and $x_n>\sqrt{lpha}$ will be true for all $n\in Z^+$ and x_n will converge to \sqrt{lpha}

Therefore, $lim_{n o\infty}x_n=\sqrt{lpha}$

b.
$$\epsilon_{n+1}=x_{n+1}-\sqrt{lpha}=rac{1}{2}(x_n-2\sqrt{lpha}+rac{lpha}{x_n})=rac{(x_n-\sqrt{lpha})^2}{2x_n}=rac{\epsilon_n^2}{2x_n}<rac{\epsilon_n^2}{2\sqrt{lpha}}$$
, since $x_n>\sqrt{lpha}$ for all n

From $eta=2\sqrt{lpha}$, the formula becomes $rac{\epsilon_{n+1}}{eta}<(rac{\epsilon_n}{eta})^2$ for all n>0

Therefore, $\epsilon_{n+1} < eta(rac{\epsilon_1}{eta})^{2n}$

c.
$$rac{\epsilon_1}{eta}=(2-\sqrt{3})/(2*\sqrt{3})=0.077<1/10$$
 and certainly $rac{\epsilon_n}{eta}<1/10$ for all $n>0$

Based on the formula above: $\epsilon_{n+1} < eta(rac{\epsilon_1}{eta})^{2n}$, we attain:

$$\epsilon_5 < 2*\sqrt{3}*(0.077)^{(2^4)} = 5.29*10^{-18} < 4*10^{-16}$$

$$\epsilon_6 < 2*\sqrt{3}*(0.077)^{(2^5)} = 8.08*10^{-36} < 4*10^{-32}$$