

SC8701 EVM 用户指南 SC8701 EVM User Guide

——上海南芯半导体科技有限公司

目录

1		基本	く信息	氢	. 4
2		-		数设置	
_	2.			人设置	
		2.1.		输入输出电压	
		2.1.	2	输入输出限流值	. 5
		2.1.	.3	大电流能力	. 5
		2.1.	4	开关频率	6
		2.1.	.5	死区时间	6
		2.1.	6	PWM 和 IPWM 动态控制	6
	2.	2	测证	∜SETUP	7
3		原理	图	口物料表	. 8
4		PCB	版图	<u> </u>	0
5		性能	影测 词	式1	4
	5.	•		^区 测试1	
	5.	_		出电压纹波	
	5.	-		rtup and shutdown	
	5.			英负载测试	
	5.			3.限流测试	
	5.	6	静态	5电流1	17

图录

Figure 1.	SC8701 评估板	4
Figure 2.	放电模式测试示意图	7
Figure 3.	PCB 原理图	8
Figure 4.	PCB 版图	
Figure 5.	Top layer	11
Figure 6.	Top Overlay	
Figure 7.	Mid-Layer 1	12
Figure 8.	Mid-Layer 2	12
Figure 9.	Bottom Layer	13
Figure 10). 效率测试(vs I_OUT),VOUT=5V	14
Figure 11	. 效率测试 (vs I_OUT) ,VOUT=9V	14
Figure 12	2. 输出纹波; VIN=8V, VOUT=12V, IBUS=1A	15
表录 Table 1.	EVM 参数	4
Table 2.	- · · · · シ · · · · · · · · · · · · · ·	
Table 3.	开关频率设定	
Table 4.	死区时间设置	6
Table 5.	物料表	9
Table 6.	不同 VOUT 和 VIN 情况下纹波大小(IBUS=1A)	15
Table 7.	Startup and shutdown	15
Table 8.	负载切换测试,Slew-Rate=1A/uS,10Hz	
Table 9.	负载切换测试,Slew-Rate=0.25A/uS,1kHz	
Table 10.		
Table 11.	113 /3/243 _ 12/	
Table 12.	, - 9 , 1 13 1 143 200	
Table 13.	/ / / 5	
Table 14.	VOUT=5V,不同 VIN 下的电流	17

1 基本信息

SC8701 是一款宽电压范围、高效率 DC-DC 转换器。输入输出电压支持低至 2.7V 高至 30V 的范围, 采用外置 MOSFET 方案, 可支持大电流应用。

SC8701 EVM 板如下图所示。

Figure 1. SC8701 评估板

该 EVM 版本号为 SC8701_EVM_C7.1,参数如下:

Table 1. EVM 参数

EVM 版本号	SC8701_EVM_C7.1
适用芯片型号*	SC8701
输入电压范围 (VIN)	2.7 – 30 V
输出电压范围 (VOUT)	2.7 – 30 V
IBUS 电流采样电阻阻值	10mΩ
IBAT 电流采样电阻阻值	10mΩ
默认输出电压	5V
默认工作频率	460 kHz
默认死区时间	20 ns
EVM 板尺寸	69.47mm x 50.42mm (4 层板)

^{*}芯片型号区别详见规格书。

Table 2. I/O 口说明

端口 描述	
-------------------	--

SOUTHCHIP CONFIDENTIAL

J1	VIN	VIN 正端接入端口
J2	功率地	VIN 负端接入端口
J3	VOUT	VOUT 正端接入端口
J4	功率地	VOUT 负端接入端口
P1	信 号 地	AGND 接入端口
P2	使能选择	芯片工作状态控制,/CE=low,允许工作;/CE=high,禁止工
P2		作
P3	PWM 控制端口	输出电压调节,具体接法详见 2.1
P4	IPWM 控制端口	IPWM 信号接口,建议初始 IPWM 接 VHI,具体接法详见 <u>2.1</u>
P5	I-IN 限流	设定选择 I-IN 限流方式:限流值固定 vs 调节限流值动态调节。
Po		建议初始测试选择固定限流方式
P6		设定选择 I-OUT 限流方式: 限流值固定 vs 调节限流值动态调
Po	I-OUT 限流	节。建议初始测试选择固定限流方式
P7	信号地	AGND 接入端口

2 功能参数设置

2.1 默认设置

2.1.1 输出电压

VOUT 电压由分压电阻 R19 和 R20 进行设置,默认设置 5V,可根据需要更改,公式如下:

$$VOUT_SET = 1.22V \times \left(1 + \frac{R19}{R20}\right)$$

2.1.2 输入输出限流值

EVM 评估板 I-IN 电流限流值默认设置为 10A, I-OUT 限流值默认为 3A。如果需要调节,可改变相应 ILIM1, ILIM2 管脚的电阻值,相应的公式如下:

$$I_{IN_LIM} = 1.212 \text{ V} \times \frac{R13}{R30 \times R1}$$
 $I_{IOUT_LIM} = 1.212 \text{ V} \times \frac{R15}{R33 \times R2}$

2.1.3 大电流能力

EVM 提供两种不同的 MOSFET 封装以供选择, TOP 层为 3*3 封装的 MOSFET, BOTTOM 层为 5*6 封装的 MOSFET, 用于大电流大功率应用。用户可根据应用条件选择不同封装的 MOSFET 进行评估测试。

2.1.4 开关频率

芯片开关频率默认设置为 400kHz。如果需要调整,可改变芯片第 10 管脚的外接电阻 R25 的值, 具体设置如下:

Table 3. 开关频率设定

R25	frequency
0 Ω	200 kHz
68 kΩ	400 kHz
float	600 kHz

2.1.5 死区时间

Table 4. 死区时间设置

R23	死区时间
0 Ω	20 ns
68 kΩ	40 ns
270 kΩ	60 ns
float	80 ns

2.1.6 PWM 和 IPWM 动态控制

1、输入输出电流的动态调节

P4 的 IPWM 管脚接频率范围为 20kHz 至 100kHz 的 PWM 信号,来实现输入或输出电流的动态调节,调节范围为设定值的 0%到 100%。通过 ITUNE 管脚选择需要进行 IPWM 调节的限流对象。例如,如果需要对 I-IN 限流值进行动态调节,则将 P5 的 ILIM1 管脚和 ITUNE 管脚相连,同时在 P4 的 IPWM 管脚输入 PWM 信号;若不需此功能,则将 P5 的 ILIM1 管脚和 AGND 管脚相连,并将 P4 的 ITUNE 管脚和 IPWM 管脚悬空。具体计算公式如下 (D为 IPWM 信号占空比):

$$I_N=I_N_LM \times D$$

 $I_OUT=I_OUT_LM \times D$

2、输出电压动态调节

可通过 20kHz 至 100kHz 的 PWM 信号动态调节 VOUT 输出电压,调节范围为设定值的 1/6 到 100%。PWM 信号可通过 P3 的 PWM 端口输入。若不使用该动态调节功能,须将 PWM 管脚接 VHI 或其他逻辑高电平。具体计算公式如下 (D 为 PWM 信号占空比):

VOUT=VOUT_SET
$$\times (\frac{1}{6} + \frac{5}{6}D)$$

功能详情请参见 SC8701 DATASHEET。

2.2 测试 SETUP

Figure 2. 放电模式测试示意图

- 1、参考 2.1 来设定输出电压值,限流电流值
- 2、如果不需要动态调节输出电压, P3 的 PWM 端口接 VHI 或者浮空(如果浮空, 输出电压为 VOUT/6); 如果需要动态调节输出电压, PWM 端口外接一个 3V 左右的 20 kHz-100 kHz 的 PWM 信号。
- 3、如不需要动态调节输入输出电流,P5的 ILIM1 端口和 P6的 ILIM2 端口接 AGND,然后进入第5步;如需要动态调节输入输出电流,进入第5步
- 4、如果仅需要调节输入电流, P5 的 ILIM1 端口接 ITUNE, P6 的 ILIM2 端口接 AGND, P3 的 IPWM 外接一个 3V 左右的 20kHz-100 kHz 的 PWM 信号; 同理,可以调节输出电流。
- 5、直流电源接 J1 和 J2
- 6、电子负载接 J3 和 J4, 电子负载设定在 CC 模式

3 原理图和物料表

Figure 3. PCB 原理图

SOUTHCHIP CONFIDENTIAL

Table 5. 物料表

Comment Description		Designator	Footprint	Pins
10uF/50V	Capacitor, X5R, 1206, 50V, 10%, 10uF	C1, C2, C3, C4, C5, C6, C25, C26, C27, C28, C29, C30	1206C	2
NC	Capacitor, X5R, 0603, 50V, 10%	C7, C8, C15	0603C	2
47pF/6.3V	Capacitor, X5R, 0603, 6.3V, 10%, 47pF	C9, C10	0603C	2
100nF/16V	Capacitor, X5R, 0603, 16V, 10%, 100nF	C11, C12	0603C	2
1uF/50V	Capacitor, X5R, 0603, 50V, 10%, 1uF	C13, C14	0603C	2
15nF/6.3V	Capacitor, X5R, 0603, 6.3V, 10%, 15nF	C16	0603C	2
10nF/6.3V	Capacitor, X5R, 0603, 6.3V, 10%, 10nF	C17	0603C	2
1uF/6.3V	Capacitor, X5R, 0603, 6.3V, 10%, 1uF	C18	0603C	2
1uF/16V	Capacitor, X5R, 0603, 16V, 10%, 1uF	C19, C20	0603C	2
100nF/50V	Capacitor, X5R, 0603, 50V, 10%, 100nF	C21, C22, C23, C24	0603C	2
100uF/35V	POSCAP (固态电容), 6.3x11, 35V, 100uF	C31, C32	ECAP_6.3X11	2
1N4148	Diode	D1, D2, D3, D4, D5, D6	SOD323F	2
JACK	Jack	J1, J2, J3, J4	JACK65	1
Inductor	Inductor, 3.3uH, 13x13x5	L1	IND_135T	2
Header 2	Header, 2-Pin	P1, P7	HDR1X2	2
JUMP1	Header, 3-Pin	P2	HDR1X3	3
Header 3	Header, 3-Pin	P3, P4, P5, P6	HDR1X3	3
NMOS_3x3	30V NMOS, 3x3,	Q1, Q2, Q3, Q4	DFN8P330x330	8
NMOS_5x6 (NC)	30V NMOS, 5x6,	Q1B, Q2B, Q3B, Q4B	DFN-5-6	8
2N7002	N-Channel MOSFET	Q5	LC-SOT-23(SOT-23-3)	3
10m	Metal resistor, 1206, 1W, 1%	R1, R2	1206R	2
NC	Resistor, 0603, 1/4W, 1%	R3, R4	0603R	2
0R	Resistor, 0603, 1/4W, 1%	R5, R6, R7, R8, R9, R10, R11, R12, R23	0603R	2
1k	Resistor, 0603, 1/4W, 1%	R13, R14, R15, R16	0603R	2
200k	Resistor, 0603, 1/4W, 1%	R17	0603R	2
10k	Resistor, 0603, 1/4W, 1%	R18	0603R	2
32.4K	Resistor, 0603, 1/4W, 1%	R20	0603R	2
100k	Resistor, 0603, 1/4W, 1%	R19, R24, R27, R29, R31	0603R	2
68K	Resistor, 0603, 1/4W, 1%	R25	0603R	2
15K	Resistor, 0603, 1/4W, 1%	R26	0603R	2
150K	Resistor, 0603, 1/4W, 1%	R28	0603R	2
12.1k	Resistor, 0603, 1/4W, 1%	R30	0603R	2
24k	Resistor, 0603, 1/4W, 1%	R32	0603R	2
40.2k	Resistor, 0603, 1/4W, 1%	R33	0603R	2
TP	test point	TP1, TP2, TP3, TP4, TP5	SIP-1P	1
SC8701		U1	QFN32-4x4	33

PCB 版图 4

Figure 4. PCB 版图

Figure 5. Top layer

Figure 6. Top Overlay

Figure 7. Mid-Layer 1

Figure 8. Mid-Layer 2

Figure 9. Bottom Layer

性能测试 5

默认测试条件: frequency=400kHz, L= 3.3uH

5.1 效率测试

在外界温度为25度的情况下,效率值如下图所示:

Figure 10. 效率测试 (vs I_OUT) ,VOUT=5V

Figure 11. 效率测试 (vs I_OUT), VOUT=9V

5.2 输出电压纹波

SC8701 EVM USER GUIDE

SOUTHCHIP SEMICONDUCTOR

Figure 12. 输出纹波; VIN=8V, VOUT=12V, IBUS=1A

其他情况纹波见下表:

Table 6. 不同 VOUT 和 VIN 情况下纹波大小 (IBUS=1A)

VOUT VIN	4.5V	8V	12V	16V	24V
5V	8.8 mV	16 mV	17.6 mV	20.8 mV	21.6 mV
9V	32 mV	23.2 mV	17.6 mV	27.2 mV	33.2 mV
12V	43.2 mV	32 mV	15.2 mV	24.8 mV	46.4 mV

5. 3 Startup and shutdown

Table 7. Startup and shutdown

SC8701 EVM USER GUIDE

SOUTHCHIP CONFIDENTIAL

^{*} Shutdown 时, VOUT 端有 1A 的负载

5.4 切换负载测试

Table 8. 负载切换测试, Slew-Rate=1A/uS,10Hz

SOUTHCHIP CONFIDENTIAL

Table 9. 负载切换测试, Slew-Rate=0.25A/uS, 1kHz

5.5 限流测试

Table 10.不同 VIN 对应的 I_IN 值, VOUT=9V

VIN	5	8	12	16	24
ZI_I	3.345	3.072	2.958	2.959	2.961

test condition: charging mode, VOUT=9V

Table 11.不同 VIN 对应的 I_IN 值, VOUT=5V

VIN	5	8	12	16	24
I_IN	3.139	2.958	2.957	2.958	2.961

test condition: charging mode, VOUT=5V

5.6 静态电流

Table 12./CE=high,不同 VIN 下的电流

VIN(V)	5	8	12	16	24
IQ(uA)	24.14UA	39.71	60.85	82.06	126.34

Table 13.VOUT=20V,不同 VIN 下的电流

VIN(V)	5	8	12	16	24
IQ(mA)	107.02	86.29	58.79	30.96	21.724

Table 14. VOUT=5V,不同 VIN 下的电流

VIN(V)	5	8	12	16	24
IQ(mA)	8.034	17.268	25.63	26.95	26.34