Exercises 199

4.29 Maximizing probability of satisfying a linear inequality. Let c be a random variable in \mathbb{R}^n , normally distributed with mean \bar{c} and covariance matrix R. Consider the problem

maximize
$$\mathbf{prob}(c^T x \ge \alpha)$$

subject to $Fx \le g$, $Ax = b$.

Assuming there exists a feasible point \tilde{x} for which $\bar{c}^T \tilde{x} \geq \alpha$, show that this problem is equivalent to a convex or quasiconvex optimization problem. Formulate the problem as a QP, QCQP, or SOCP (if the problem is convex), or explain how you can solve it by solving a sequence of QP, QCQP, or SOCP feasibility problems (if the problem is quasiconvex).

Geometric programming

4.30 A heated fluid at temperature T (degrees above ambient temperature) flows in a pipe with fixed length and circular cross section with radius r. A layer of insulation, with thickness $w \ll r$, surrounds the pipe to reduce heat loss through the pipe walls. The design variables in this problem are T, r, and w.

The heat loss is (approximately) proportional to Tr/w, so over a fixed lifetime, the energy cost due to heat loss is given by $\alpha_1 Tr/w$. The cost of the pipe, which has a fixed wall thickness, is approximately proportional to the total material, *i.e.*, it is given by $\alpha_2 r$. The cost of the insulation is also approximately proportional to the total insulation material, *i.e.*, $\alpha_3 rw$ (using $w \ll r$). The total cost is the sum of these three costs.

The heat flow down the pipe is entirely due to the flow of the fluid, which has a fixed velocity, *i.e.*, it is given by $\alpha_4 T r^2$. The constants α_i are all positive, as are the variables T, r, and w.

Now the problem: maximize the total heat flow down the pipe, subject to an upper limit C_{\max} on total cost, and the constraints

$$T_{\min} \le T \le T_{\max}, \qquad r_{\min} \le r \le r_{\max}, \qquad w_{\min} \le w \le w_{\max}, \quad w \le 0.1r.$$

Express this problem as a geometric program.

4.31 Recursive formulation of optimal beam design problem. Show that the GP (4.46) is equivalent to the GP

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{N} w_i h_i \\ \text{subject to} & w_i / w_{\max} \leq 1, \quad w_{\min} / w_i \leq 1, \quad i = 1, \dots, N \\ & h_i / h_{\max} \leq 1, \quad h_{\min} / h_i \leq 1, \quad i = 1, \dots, N \\ & h_i / (w_i S_{\max}) \leq 1, \quad S_{\min} w_i / h_i \leq 1, \quad i = 1, \dots, N \\ & 6i F / (\sigma_{\max} w_i h_i^2) \leq 1, \quad i = 1, \dots, N \\ & (2i - 1) d_i / v_i + v_{i+1} / v_i \leq 1, \quad i = 1, \dots, N \\ & (i - 1/3) d_i / y_i + v_{i+1} / y_i + y_{i+1} / y_i \leq 1, \quad i = 1, \dots, N \\ & y_1 / y_{\max} \leq 1 \\ & E w_i h_i^3 d_i / (6F) = 1, \quad i = 1, \dots, N. \end{array}$$

The variables are w_i , h_i , v_i , d_i , y_i for i = 1, ..., N.

- **4.32** Approximating a function as a monomial. Suppose the function $f: \mathbf{R}^n \to \mathbf{R}$ is differentiable at a point $x_0 \succ 0$, with $f(x_0) > 0$. How would you find a monomial function $\hat{f}: \mathbf{R}^n \to \mathbf{R}$ such that $f(x_0) = \hat{f}(x_0)$ and for x near x_0 , $\hat{f}(x)$ is very near f(x)?
- **4.33** Express the following problems as convex optimization problems.
 - (a) Minimize $\max\{p(x), q(x)\}\$, where p and q are posynomials.
 - (b) Minimize $\exp(p(x)) + \exp(q(x))$, where p and q are posynomials.
 - (c) Minimize p(x)/(r(x) q(x)), subject to r(x) > q(x), where p, q are posynomials, and r is a monomial.