04.0007.C

1)
$$P(\lambda) = (1 - \lambda)^3$$

$$X_1 = \begin{pmatrix} 0 & 2 & 2 & 2 \\ 0 & 1 & 2 & 2 \\ 0 &$$

uniquement 2 v. deurs propres donc pas diagonalisable

$$d_{orc} = \begin{pmatrix} X \\ 1-2 \end{pmatrix} \qquad or \qquad doini \quad K = Z = 0$$

on a alors
$$X_2 = \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix}$$

$$A = \begin{cases} 0 & T & Q \\ 0 & A \end{cases}$$
 avec
$$T = \begin{cases} 1 & 1 & 0 \\ 0 & 0 & 1 \end{cases}$$

$$\mathcal{X} = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

$$Q^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

3)
$$A^{n} = Q T^{n}Q^{-1}$$
 $aue_{i} T^{n} = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$