Devoir Libre

Exercice 1

- 1. Soit x un nombre réel.
 - (a) Calculer $\sqrt{2}\cos(x-\frac{\pi}{4})$ en fonction de $\cos(x)$ et $\sin(x)$.
 - (b) Déduire que $\cos(x)\sin(x) = \cos^2(x \frac{\pi}{4}) \frac{1}{2}$.
- 2. On considère la fonction numérique f définie sur \mathbb{R} par :

 $f(x) = \cos(4x) + \sin(4x) - \sqrt{2}\sin(8x)$

- (a) Montrer que $\cos(4x) + \sin(4x) = \sqrt{2}\cos(4x \frac{\pi}{4})$ et que $\sqrt{2}\sin(8x) = 2\sqrt{2}\cos(4x)\sin(4x)$.
- (b) Déduire que : $\forall x \in \mathbb{R} ; f(x) = \sqrt{2}[-2\cos^2(4x \frac{\pi}{4}) + \cos(4x \frac{\pi}{4}) + 1].$
- (c) Résoudre dans \mathbb{R} l'équation : $-2X^2+X+1=0$ et factoriser le polynôme $-2X^2+X+1.$
- (d) Déduire que $f(x) = -\sqrt{2}(\cos(4x \frac{\pi}{4}) 1)(2\cos(4x \frac{\pi}{4}) + 1)$
- (e) Montrer que $\forall x \in \mathbb{R} ; f(x) = 2\sqrt{2}\sin^2(2x \frac{\pi}{8})[1 + 2\cos(4x \frac{\pi}{4})].$
- (f) Résoudre dans \mathbb{R} l'équation : f(x) = 0.

Exercice 2

Soit $x \in \mathbb{R}$.On pose $A(x) = 2\cos^2(x) + \sqrt{3}\sin(2x) - 2\sqrt{2}\sin(x) - 2$

- 1. Calculer $A(\frac{\pi}{6})$ et $A(\frac{\pi}{3})$.
- 2. Montrer que : $(\forall x \in \mathbb{R}) : A(x) = 2\sin(x)(\sqrt{3}\cos(x) \sin(x) \sqrt{2})$.
- 3. Montrer que : $(\forall x \in \mathbb{R}) : \sqrt{3}\cos(x) \sin(x) = 2\cos(x + \frac{\pi}{6})$.
- 4. Déduire que $(\forall x \in \mathbb{R}) : A(x) = 2\sin(x)(2\cos(x + \frac{\pi}{6}) \sqrt{2}).$
- 5. Résoudre dans \mathbb{R} l'équation A(x) = 0.
- 6. Résoudre dans $]\frac{-\pi}{2}; \frac{\pi}{2}[$ l'inéquation A(x) > 0.

Exercice 3

Soit (u_n) une suite numérique définie par : $\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{4u_n + 3}{2 + u_n} \end{cases}$

- 1. Calculer u_1 et u_2 .
- 2. Montrer que : $(\forall n \in \mathbb{N}) : u_n > 3$.
- 3. Vérifier que : $(\forall n \in \mathbb{N}) : u_n^2 2u_n 3 = (u_n + 1)(u_n 3).$
- 4. Déterminer la monotonie de la suite (u_n) .
- 5. Déduire que : $(\forall n \in \mathbb{N}) : 3 < u_n \le 4$.
- 6. On considère (w_n) une suite définie par $: w_n = \frac{u_n 3}{u_n + 1}$.
 - (a) Montrer que la suite (w_n) est géométrique.Donner sa raison et son premier terme w_0 .

- (b) Exprimer w_n en fonction de n, puis déduire que : $u_n = \frac{3 \times 5^{n+1} + 1}{5^{n+1} 1}$.
- (c) Exprimer la somme $S_n = w_0 + w_1 + w_2 + \cdots + w_n$ en fonction de n.
- (d) Montrer que : $(\forall n \in \mathbb{N}) : w_n = 1 \frac{4}{u_n + 1}$
- (e) Déduire $S'_n = \frac{1}{u_0 + 1} + \frac{1}{u_1 + 1} + \dots + \frac{1}{u_n + 1}$ en fonction de n.
- 7. (a) Montrer que $(\forall n \in \mathbb{N}) : u_{n+1} 3 < \frac{1}{5}(u_n 3).$
 - (b) Déduire que $(\forall n \in \mathbb{N}^*)$: $u_n 3 < \left(\frac{1}{5}\right)^n$.