الحدوديـــــات

القدرات المنتظرة

 $oldsymbol{x}-a$ التمكن من تقنية القسمة الإقليدية على $oldsymbol{x}-a$ وإدراك قابلية القسمة على $oldsymbol{x}$

<u> I – الحدودية:كتابة و مصطلحات – تساوى حدوديتين</u>

<u>1- أنشطة</u>

<u>نشاط1</u>

لتكن الأعداد x و x+3 و x+5 أبعاد متوازي المستطيلات و x+5 حجمه

V(x) حدد

$$V(x) = x(x+3)(x+5) = x^3 + 8x^2 + 15x$$

التعبير $x^3 + 8x^2 + 15x$ يسمى تعبيرا حدوديا

هو V(x) هو الحد الذي له أكبر أس هذا الأس هو 3) نقول إن درجة الحدودية x^3

$$d^{\circ}(V(x)) = 3$$
 نکتب

نشاط2

حدد من بين التعابير التالية تلك التي تمثل حدوديات وحدد درجتها

$$P(x) = \frac{1}{3}x^5 - 3x^3 + 4x - 1$$
; $Q(x) = x^2 - \sqrt{2}x + 3$; $H(x) = -6$

$$T(x) = 3x^2 + 2|x|$$
; $G(x) = 2\left(\frac{1}{x^2}\right) + \frac{1}{x}$; $K(x) = 2x^4 - 2\sqrt{x} + 2$; $N(x) = 0$

عدد صحیح طبیعي یسمی حدیة a عدد صحیح طبیعي یسمی حدیة a عدد صحیح طبیعي یسمی حدیة *- کل تعبیر علی شکل ax^n حیث ax^n هو ax^n هو $a \neq 0$ درجة الحدیة $a \neq 0$ درجة الحدیة $a \neq 0$ درجة الحدیة $a \neq 0$

الحدية المنعدمة لا درجة لها

*- الحدودية هي كل تعبير على شكل مجموع تكون جميع حدوده حديات

$$\frac{1}{3}x^5$$
 و $-3x^3$ و $4x$ و $-3x^3$ و $P(x)$ *

$$-3x^3$$
 العدد 3 هو درجة الحد $-3x^3$ و 3- معامل الحد

$$\frac{1}{3}x^5$$
 العدد 5 هو درجة الحد $\frac{1}{3}x^5$ و $\frac{1}{3}$ معامل الحد

$$d^{\circ}(P(x)) = 5$$
 درجة الحدودية $P(x)$ هو 5 درجة

$$d^{\circ}\left(Q(x)\right)$$
 = 2 حدودية تتكون من 3 حدود $Q(x)$ *

$$d^{\circ}(H(x)) = 0$$
 حدودیة تتکون من حد واحد. $H(x)$ *

كل تعبير من التعابير
$$(x)$$
 و $G(x)$ و $K(x)$ ليس حدودية *

حدودية منعدمة ليست لها درجة
$$N(x)$$
 *

الحدودية المنعدمة هي كل حدودية معاملاتها منعدمة.

<u>نشاط3</u>

$$P(x) = -2x^5 + 3x^3 - 4x^4 + x^3 + x + x^2 - x^4$$
 اختصر الحدودية

اختصار حدودية هو كتابتها على شكل مجموع حدود درجتها مختلفة مثنى مثنى

$$P(x) = -2x^5 - 5x^4 + 4x^3 + x^2 + x$$
 هو $P(x) = -2x^5 - 5x^4 + 4x^3 + x^2 + x$

<u>نشاط2</u>

1- هل الحدوديتين P و Q متساويتان في كل الحالات

$$Q(x) = 3x^2 + x^3 - 4x + 1 + 3x^3$$
 $P(x) = 4x^3 + 3x^2 - 4x + 1$

$$Q(x) = \frac{1}{\sqrt{2} + 1}x^2 - 4x + 1 + P(x) = (\sqrt{2} - 1)x^2 - 4x + 1$$

$$Q(x) = x^2 - 3x^3 + x$$
 $P(x) = -3x^3 + x^2 - x$

$$P(x) = (a+b)x^3 + (b-c)x^2 + (a-c+1)x$$
 -2

حدد a و b و c لكي تكون P(x) حدودية منعدمة.

<u>2- تعارىف</u>

<u>تعرىف1</u>

لتكن P(x) حدودية مختصرة و غير منعدمة. درجة P(x) هي درجة الحد الذي له أكبر درجة $d^{\circ}ig(P(x)ig)$ نرمز لها بالرمز

<mark>ملاحظة:</mark> الحدودية المنعدمة ليست لها درجة

<u>غرىف2</u>

تگون حدودیتان ،مختصرتان غیر منعدمتین ، متساویتین إذا کانت لهما نفس الدرجة و کانت معاملات حدودها من نفس الدرجة متساویة مثنی مثنی

3- حالات خاصة

$$ax + b$$
 کل حدودیة من الدرجة الأولى تسمى حدانیة و تکتب على شکل $-*$

$$b \in \mathbb{R}$$
 ; $a \in \mathbb{R}^*$ حيث

$$ax^2 + bx + c$$
 الحدودية من الدرجة الثانية تسمى ثلاثية الحدود و تكتب على شكل $-*$

$$(b;c) \in \mathbb{R}^2$$
 $a \in \mathbb{R}^*$ حيث

<u>II- محموع و جداء</u>

<u>1- أنشطة</u>

$$d^{\circ}(P)+d^{\circ}(Q)$$
 و $d^{\circ}(P+Q)$ مع مقارنة $P(x)-Q(x)$ و $P(x)+Q(x)$

$$Q(x) = 3x^5 - 3x^3 - 6x - 3$$
 $P(x) = 4x^3 + 3x^2 - 4x + 1$

$$Q(x) = 4x^6 - 3x^3 - 4x^2 - 6$$
 $P(x) = -4x^6 + 2x^3 - 6x^2 + 1$ *

$$d^\circ(P){ imes}d^\circ(Q)$$
 ب- أحسب $P(x){ imes}Q(x)$ مع مقارنة $d^\circ(P{ imes}Q)$ و

$$Q(x) = 2x^{2} - 6x - 3$$
 $P(x) = -3x + 2$ *

$$Q(x) = x^3 - x^2 - 3$$
 $P(x) = 3x^2 - 4x + 1$ *

ج – عمل

$$Q(x) = (x+1)^3 - 27(x-1)^3$$
 $P(x) = (x-3)^2 - (5x+6)^2$

2- خاصيات

$$P + Q$$
 و Q هو حدودية يرمز لها بـ * مجموع حدوديتين $d^{\circ}(P + Q) \le \sup(d^{\circ}(P); d^{\circ}(Q))$

$$P-Q$$
 و Q هو حدودية يرمز لها بـ P

$$d^{\circ}(P-Q) \leq \sup(d^{\circ}(P);d^{\circ}(Q))$$
 ملاحظة

$$P \times Q$$
 و Q هو حدودية يرمز لها بـ $P \times Q$ -*

$$d^{\circ}(P \times Q) = d^{\circ}(P) + d^{\circ}(Q)$$
 ملاحظة

III- جدر حدودية - القسمة على x-a

<u>בגر حدودية</u>

<u>تعریف</u>

لتكن P(x) حدودية و α عددا حقيقيا تقول إن العدد α جدر للحدودية P(x) إذا كان α

<u>مثلة</u>

$$P(x) = x^3 + 4x^2 + x - 6$$

P(x)حدد من بين الأعداد التالية 1 و1- و 2 و 3-. تلك التي تمثل جدرا لـ

2) <u>القسمة على x-a</u>

نشطة

$$P(x) = x^3 + x + 1$$
 نعتبر

$$P(3)$$
 -

$$P(x)-P(3)=(x-3)Q(x)$$
 حيث $-2(x)=(x-3)Q(x)$

$$P(x) = 2x^4 - 3x^2 - x - 2$$
 ب- نعتبر

$$P(x)-P(1)=(x-1)Q(x)$$
 حيث $Q(x)$ حيث - حدد حدودية

$$P(x)-P(2)=(x-2)Q'(x)$$
 حيث $Q'(x)$ حيث - حدد حدودية

- خاصىة

. لتكن P(x) حدودية درجتها n حيث $n \geq 1$ عدداحقيقيا

$$P(x) = (x - \alpha)Q(x) + P(\alpha)$$
توجد حدودیة وحیدة $Q(x)$ درجتها $n-1$ درجتها

$$x - \alpha$$
 على $P(x)$ على غارج القسمة الاقليدية للحدودية $Q(x)$

$$x-\alpha$$
 على $P(x)$ على على القسمة الاقليدية للحدودية القسمة الاقليدية العباقي

ب- تقنية لحساب الخارج و الباقي

x-3لنحدد خارج و باقي القسمة الاقليدية لـ P(x) على

$$P(x) = -3x^4 + 2x^3 - x^2 - 5x + 1$$

$$P(x) = -2x^5 - x^2 + 3x - 2$$
 *

x-2حدد خارج و باقي القسمة الاقليدية لـ P(x) على

ج- <u>قابلية القسمة على على x-a</u>

<u>تعریف</u>

لتكن P(x) عددا حقيقيا $n \ge 1$ حدودية درجتها n

n-1 نقول إن Q(x) تقبل القسمة على $x-\alpha$ إذا وجدت حدودية P(x) درجتها

$$P(x) = (x - \alpha)Q(x)$$
حيث

$$P(\alpha) = 0$$
 ملاحظة: $P(x) = x^3 - x - 6$

$$P(2) = 0$$
 نلاحظ أن

$$P(x) = (x-2)Q(x)$$
حدد حدودیة $Q(x)$ حیث

لتكن (x) عددا حقيقيا n عددا حقيقيا لتكن P(x)

 $P\left(x\right)$ نقول إن $P\left(x\right)$ تقبل القسمة على x-lphaإذا و فقط إذا كان $P\left(x\right)$ تقبل القسمة على

$P(x) = 2x^3 - 5x^2 - 4x + 3$ تمرین نعتبر

$$x-3$$
 تأكد أن $P(x)$ تقبل القسمة على -1

$$P(x) = (x-3)Q(x)$$
 حيث $Q(x)$ حيث حدد حدودية -2

$$Q\left(x\right)$$
 عمل . $Q\left(x\right)$ عمل . $Q\left(x\right)$

$$P(x)$$
 استنتج تعميلا للحدودية

$$P(x) = 2x^3 + 3x^2 - 3x - 2$$

$$P(3)$$
 و $P(1)$ و $P(-2)$ -1

$$x+2$$
 على $P(x)$ على -2

9- بین إذا کان
$$lpha$$
 جدرا غیر منعدم لـ $P(x)$ فان $rac{1}{lpha}$ جدر لـ $P(x)$. استنتج الجذور الثلاث.

$$P(x) = 2x^3 + mx^2 - 11x - 6$$
 تمرین

$$x-2$$
 حدد m حيث $P(x)$ تقبل القسمة على -1

$$P(-3)$$
 نضع 3 . $m = 3$

$$P(x)$$
 استنتج تعميلا للحدودية