

1

Lab: the final models

Add a gwesp term to the faux.mesa.high model

And conduct model assessments

We will compare three models

Model	Network Statistics g(y)
Edges + nodal attributes + mixing by attributes + degree(0)	# of edges # edges for each grade and race group # edges that are within-race & within-grade (DH) # Isolates
Edges + Attributes + GWESP(0.25)	# of edges # edges for each grade and race group # edges that are within-race & within-grade (DH) weighted shared partners, with decay set to 0.25
Edges + Attributes + GWESP(0.5)	# of edges # edges for each grade and race group # edges that are within-race & within-grade (DH) weighted shared partners, with decay set to 0.5

These fits can take a while

- So we won't do this interactively now
 - We'll just show the results
- But you can implement these on your own when you have some time

Model Comparison

Current Model Fit Report

Current Model Summary

Model1 Model2 Model3 -8.186*** -8.522*** -8.551*** edges nodefactor.Grade.8 1.633* 1.396* 1.428* nodefactor.Grade.9 2.670*** 2.178*** 2.213*** nodefactor.Grade.10 3.053*** 2.475*** 2.516*** nodefactor.Grade.11 2.247*** 2.285*** nodefactor.Grade.12 3.501*** 2.871*** 2.910*** nodefactor.Race.Hisp -1.396*** -1.114*** -1.092*** nodefactor.Race.NatAm -1.336*** -1.087*** -1.093*** nodefactor.Race.Other -2.165* -2.074* -2.134* nodefactor.Race.White -0.725* -0.588* -0.604* nodematch.Grade.7 7.469*** 5.975*** 6.006*** nodematch.Grade.8 4.292*** 3.237*** 3.215*** nodematch.Grade.9 2.060*** 1.613*** 1.626*** nodematch.Grade.10 1.281* 1.052* 1.059* nodematch.Grade.11 2.495*** 1.831*** 1.789*** nodematch.Grade.12 1.361. 0.971 0.911 -Tnf*** -Tnf*** -Tnf*** nodematch.Race.Black nodematch.Race.Hisp 0.678. 0.569. 0.555. nodematch.Race.NatAm 1.272*** 1.053*** 1.058*** nodematch.Race.Other -Inf*** -Inf*** -Inf*** nodematch.Race.White 0.340 0.315 0.342 1.305*** NA degree0 NA gwesp.fixed.0.25 1.398*** NA gwesp.fixed.0.5 NΔ NA 1.257*** AIC 1806 1664 1659 BIC 1965 1823 1818

- The gwesp term is clearly significant.
- And note how the homophily coefs changes from model 1 after the gwesp is added to models 2 & 3
 - About 10-20% smaller
 - That's the impact of controlling for triadic closure effects
- Some weak evidence here that the 0.5 decay is a better fit for the gwesp term

SISMID 2025: NME

Model Comparison

GOF comparison for all 3 models:

Simulating networks from the model

- A fitted model describes a probability distribution across all networks of this size
 - The model assigns a probability to every possible network
 - The model terms and the estimated coefficients make some networks more likely than others
- You can simulate networks from this distribution
 - Using the same MCMC algorithm that was used for estimation and GOF
- And the simulated networks will be centered on the network statistics in the original observed network
 - This is why these models are really useful for network epidemiology

Simulation (finally!) from Model 3

7

Now I'm curious

What happens if we fit just edges + gwesp?

- So I tried it
 - gwesp(0.5) triggered a degeneracy stop
 - so did gwesp(0)
 - gwesp(0.25) did return a fit ...

MCMC dx for edges + gwesp(0.25)

The traceplots show moderate autocorrelation

The distributions look ok tho

Could try upping the MCMC.interval control parameter

GOF for edges + gwesp(0.25)

Better than Model 1, about the same as Model 2

But the fit to the geodesics is poor, especially near the mode

10

Summary

- Now we can say something about this network
- Both transitivity and homophily clearly play a role in clustering these friendships
 - Homophily
 - Also reproduces the geodesic distribution
 - But not the degree distribution of the local shared partner clustering
 - Transitivity (Triadic closure)
 - Reproduces the degree distribution and captures the local clustering (ESP) well
 - But not the geodesic distribution
- The model with both does best
 - And simulations from this model look remarkably similar to the observed network

This is what makes EpiModel so powerful

Believable network simulations, based on:

- Robust, principled statistical methodology for estimation and inference with a fully general modeling framework (ergms/tergms)
- Simulations deeply rooted in empirical network data that reproduce observed network statistics (in and out of the model)
- And simple data collection requirements (egocentric samples)

All of this is also embedded in a fully general stochastic epidemic modeling package