Computer Vision

Lingjie Zhang

$2024~\mathrm{SS}$

This course is based on the lecture EI70110 of Technical University of Munich

Contents

1	Wis	senswe	ertes über Bilder	1
	1.1	Darste	ellung von Bildern	1
	1.2	Bildgr	adient	4
		1.2.1	Der Gradient eines Bildes	4
		1.2.2	Diskretes und kontinuierliches Signal	4
		1.2.3	Die diskrete Ableitung	5
		1.2.4	Zweidimensionale Rekonstruktion	6
		1.2.5	Zweidimensionale Ableitung	6
		1.2.6	Endliche Approximation des Gaußfilters	7
		1.2.7	Sobel-Filter	8
		1.2.8	Zusammenfassung	8
	1.3	Merkn	nalspunkte-Ecken und Kanten	9

	1.3.1	Ecken und Kanten	9
	1.3.2	Harris Ecken- und Kantendetektor	9
	1.3.3	Praktische Realisierung des Harris-Detektors	11
	1.3.4	Zusammenfassung	12
1.4	Korres	spondenzschätzung für Merkmalspunkte	13
	1.4.1	Korrespondenzschätzung	13
	1.4.2	Sum of squared differences (SSD)	13
	1.4.3	Rotationsnormierung	14
	1.4.4	Bias and Gain Modell	16
	1.4.5	Normalized Cross Correlation (NCC)	17
	146	Zusammenfassung	18

1 Wissenswertes über Bilder

1.1 Darstellung von Bildern

Von Farbbild zum Intensitätsbild

- Farbbilder bestehen aus mehreren Kanälen
- In diesem Kurs ausschließlich Graustufenbilder

Figure 1.1: RBG image

Kontinuierliche und diskrete Darstellung

- Kontinuierliche Darstellung als Funktion zweier Veränderlicher (zum Herleiten von Algorithmen) $I: \mathbb{R}^2 \supset \Omega \to \mathbb{R}, (x,y) \mapsto I(x,y)$
- Häufige Annahmen:
 - I differenzierbar
 - Ω einfach zusammenhängend und beschränkt
- Diskrete Darstellung als Matrix $I \in \mathbb{R}^{m \times n}$ Eintrag $I_{k,l}$ entspricht dem Intensitätswert
- Skalierung typischerweise zwischen [0, 255] oder [0, 1]

VGA: 480× 640 Pixel (ca. 0.3 Megapixel)

HD: 720× 1280 Pixel (ca. 1.0 Megapixel)

FHD: 1080× 1920 Pixel (ca. 2.1 Megapixel)

Figure 1.2: Graph einer Funktion

Diskretes Abtasten

• Abtasten eines eindimensionalen Signals

$$S{f(x)} = (..., f(x-1), f(x), f(x+1), ...)$$

• Abtasten eines Bildes

$$S\{I(x,y)\} = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots \\ \cdots & I(x-1,y-1) & I(x-1,y) & I(x-1,y+1) & \cdots \\ \cdots & I(x,y-1) & I(x,y) & I(x,y+1) & \cdots \\ \cdots & I(x+1,y-1) & I(x+1,y) & I(x+1,y+1) & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Figure 1.3: Graph eines Fotos

Diskrete Darstellung/Matrixdarstellung

• Annahme: Ursprung links oben

• Matrixeintrag ist $I_{k,l} = S\{I(0,0)\}_{kl}$

Figure 1.4: Diskrete Darstellung/Matrixdarstellung

Zusammenfassung

- Bilder in Grautönen
- Bilder als Matrizen
- Bilder als glatte Funktionen

1.2 Bildgradient

1.2.1 Der Gradient eines Bildes

Figure 1.5: Der Gradient eines Bildes

Kanten sind starke lokale Änderungen der Intensität. Lokale Änderungen werden durch den Gradienten beschrieben.

$$\nabla I(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} I(x,y) \\ \frac{\partial}{\partial y} I(x,y) \end{bmatrix}$$

Wie schätzt man den Gradienten? Gegeben ist das Bild in diskreter Form $I \in \mathbb{R}^{m \times n}$.

$$\frac{\partial}{\partial x}I(x,y) \approx I(x+1,y) - I(x,y)$$
$$\frac{\partial}{\partial y}I(x,y) \approx I(x,y+1) - I(x,y)$$

1.2.2 Diskretes und kontinuierliches Signal

Interpolation Vom diskreten Signal $f[x] = S\{f(x)\}$ zum kontinuierlichen Signal f(x). Interpoliertes Signal ist Faltung der Abtastwerte mit dem Interpolationsfilter.

$$f(x) \approx \sum_{k=-\infty}^{\infty} f[k]h(x-k) =: f[x] * h(x)$$

Interpolationsfilter Diskretes Signal: $f[x] = S\{f(x)\}$. Kontinuierliches Signal: $f(x) \approx f[x] * h(x)$.

• Gaußfilter: h(x) = g(x)

• Ideales Interpolationsfilter: $h(x) = \operatorname{sinc}(x)$

• Damit gilt: f[x] * h(x) = f(x)

Figure 1.6: $g(x) = Ce^{\frac{-x^2}{2\sigma^2}}$

Figure 1.7: $sinc(x) = \frac{sin(\pi x)}{\pi x}, sinc(0) := 1$

1.2.3 Die diskrete Ableitung

Mit Hilfe des rekonstruierten Signals

- Algorithmisch
 - 1. Rekonstruktion des kontinuierlichen Signals
 - 2. Ableitung des kontinuierlichen Signals
 - 3. Abtastung der Ableitung
- Herleitung

$$- f'(x) \approx \frac{d}{dx}(f[x] * h(x))$$

$$f[x] * h'(x)$$

$$- f'[x] = f[x] * h'[x]$$

$$= \sum_{k=-\infty}^{\infty} f[x - k]h'[k]$$

$$\int_{-6.5}^{1.5} \frac{d}{dx} \operatorname{sinc}(x)$$

Figure 1.8: Sinc-Funktion(Langsames Abklingen)

Figure 1.9: Gaußfilter(Schnelles Abklingen)

1.2.4 Zweidimensionale Rekonstruktion

Separables 2D-Gaußfilter 2D-Rekonstruktion:
$$I(x,y)\approx I[x,y]*h(x,y)=\sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty}I[k,l]g(x-k)g(y-l)$$

1.2.5Zweidimensionale Ableitung

Ausnutzen der Separabilität Ableitung in x-Richtung

$$\frac{d}{dx}I(x,y) \approx I[x,y] * (\frac{d}{dx}h(x,y))$$
$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} I[k,l]g'[x-k]g(y-l)$$

Figure 1.10: h(x, y) := g(x)g(y)

$$S\{\frac{d}{dx}I(x,y)\} = I[x,y] * g'[x] * g[y]$$
$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} I[x-k,y-l]g'[k]g[l]$$

1.2.6 Endliche Approximation des Gaußfilters

Normierung des endlichen Filters

- In der Praxis wird die unendliche Summe durch wenige Summanden approximiert
- Wie wählt man eine geeignete Gewichtung C des Gaußfilters $g(x) = Ce^{\frac{-x^2}{2\sigma^2}}$?
- Interpoliertes Signal: $f(x) \approx \sum_{k=-\infty}^{\infty} f[k]g(x-k)$
- Abgetastetes interpoliertes Signal: $f[x] \approx \sum\limits_{k=-\infty}^{\infty} f[x-k]g[k]$
- Approximation durch endliche Summe: $f[x] \approx \sum_{k=-n}^{n} f[x-k]g[k]$
- Die endliche Approximation von f[x] ist eine gewichtete Summe der Werte f[x-n],...,f[x+n] mit den Gewichten g[n],...,g[-n]
- Normierungskonstante C so gewählt, dass sich alle Gewichte zu 1 addieren

• Wähle
$$C = \frac{1}{\sum\limits_{-n \le k \le n} e^{\frac{-k^2}{2\sigma^2}}}$$

1.2.7 Sobel-Filter

Herleitung

- Approximation von $S\{\frac{d}{dx}I(x,y)\} = I[x,y]*g'[x]*g[y] = \sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty}I[x-k,y-l]g'[k]g[l] \text{ durch}$ endliche Summe $\sum_{k=-1,0,1}\sum_{l=-1,0,1}I[x-k,y-l]g'[k]g[l]$
- Daraus folgt der Normierungsfaktor $C = \frac{1}{1+2e^{-\frac{1}{2\sigma^2}}}$
- Für die Wahl $\sigma = \sqrt{\frac{1}{2\log 2}}$ ergeben sich somit die Werte

$$g[-1] = \frac{1}{4}; g[0] = \frac{1}{2}; g[1] = \frac{1}{4}$$

$$g'[-1] = \frac{1}{2}\log 2; g'[0] = 0; g'[1] = -\frac{1}{2}\log 2 \quad (\frac{1}{2}\log 2 \approx 0.35)$$

- Aus praktischen Gründen sind ganzzahlige Filterkoeffizienten erwünscht
- Für das Detektieren von Intensitätsunterschieden ist ein Vielfaches des Gradienten ausreichend

Horizontales Sobel-Filter

Beispiel

1.2.8 Zusammenfassung

- Der Bildgradient ist ein wichtiges Werkzeug für die Bestimmung von lokalen Intensitätsänderungen
- Diskrete Ableitung wird durch Differenzieren des interpolierten Signals berechnet
- Sobel-Filter sind ganzzahlige Approximation eines Vielfachen des Gradienten

Figure 1.11: Sobel-Filterung

1.3 Merkmalspunkte-Ecken und Kanten

1.3.1 Ecken und Kanten

...liefern markante Bildmerkmale

- Bestimmung von Konturen
- Berechnungen von Bewegungen in Bildsequenzen
- Schätzen von Kamerabewegung
- Registrierung von Bildern
- 3D-Rekonstruktion

1.3.2 Harris Ecken- und Kantendetektor

Änderung des Bildsegments in Abhängigkeit der Verschiebung

- Ecke: Verschiebung in jede Richtung bewirkt Änderung
- Kante: Verschiebung in jede bis auf genau eine Richtung bewirkt Änderung
- Homogene Fläche: Keine Änderung, egal in welche Richtung

Formelle Beschreibung der Änderung

- Position im Bild: $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $I(x) = I(x_1, x_2)$
- Verschiebungsrichtung: $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$
- Änderung des Bildsegments:

$$S(u) = \int_{W} (I(x+u) - I(x))^{2} dx$$

• Differenzierbarkeit von I:

$$\lim_{u \to 0} \frac{I(x+u) - I(x) - \nabla I(x)^{\top} u}{||u||} = 0$$

Approximation der Änderung

- Folgerung aus Differenzierbarkeit: $I(x+u) I(x) = \nabla I(x)^{\top} u + o(||u||)$
- Restterm o(||u||)mit der Eigenschaft $\lim_{u\to 0} o(||u||)/||u|| = 0$
- Approximation für kleine Verschiebungen: $I(x+u) I(x) \approx \nabla I(x)^{\top} u$
- Approximation der Änderung im Bildsegment:

$$S(u) = \int_{W} (I(x+u) - I(x))^{2} dx \approx \int_{W} (\nabla I(x)^{\top} u)^{2} dx$$

Die Harris-Matrix

• Ausmultiplizieren des Integrals:

$$S(u) = \int_{W} (\nabla I(x)^{\top} u)^{2} dx = u^{\top} (\int_{W} \nabla I(x) \nabla I(x)^{\top} dx) u$$

• Harris-Matrix: $G(x) = \int_W \nabla I(x) \nabla I(x)^{\top} ds$

$$\nabla I(x)\nabla I(x)^{\top} = \begin{bmatrix} (\frac{\partial}{\partial x_1}I(x))^2 & \frac{\partial}{\partial x_1}I(x)\frac{\partial}{\partial x_2}I(x) \\ \frac{\partial}{\partial x_2}I(x)\frac{\partial}{\partial x_1}I(x) & (\frac{\partial}{\partial x_2}I(x))^2 \end{bmatrix}$$

• Approximative Änderung des Bildsegments:

$$S(u) \approx u^{\top} G(x) u$$

Eigenwertzerlegung

• Eigenwertzerlegung der Harris-Matrix:

$$G(x) = \int_{W} \nabla I(x) \nabla I(x)^{\top} dx = V \begin{bmatrix} \lambda_{1} & \\ & \lambda_{2} \end{bmatrix} V^{\top}$$

mit $VV^\top = I_2$ und den Eigenwerten $\lambda_1 \geq \lambda_2 \geq 0$

- Änderung in Abhängigkeit der Eigenvektoren: $V = [v_1, v_2]$

$$S(u) \approx u^{\top} G(x) u = \lambda_1 (u^{\top} v_1)^2 + \lambda_2 (u^{\top} v_2)^2$$

Art des Merkmals in Abhängigkeit der Eigenwerte

- Beide Eigenwerte positive
 - $-\ S(u)>0$ für alle u (Änderung in jede Richtung)
 - Untersuchtes Bildsegment enthält eine Ecke
- Ein Eigenwert positiv, ein Eigenwert gleich null

$$-S(u) \begin{cases} = 0, & \text{falls} \quad ; u = rv_2 \\ & \text{des Eigenvektors zum Eigenwert 0} \end{cases}$$

- Untersuchtes Bildsegment enthält eine Kante
- Beide Eigenwerte gleich null
 - $-\ S(u)=0$ für alle u (Keine Änderung, egal in welche Richtung)
 - Untersuchtes Bildsegment ist eine homogene Fläche

1.3.3 Praktische Realisierung des Harris-Detektors

Berechnung der Harris-Matrix

• Approximiere G(x) durch endliche Summe

$$G(x) = \int_{W} \nabla I(x) \nabla I(x)^{\top} dx \approx \sum_{\tilde{x} \in W(x)} \nabla I(\tilde{x}) \nabla I(\tilde{x})^{\top}$$

• Gewichtete Summe in Abhängigkeit der Position von \tilde{x}

$$G(x) \approx \sum_{\tilde{x} \in W(x)} w(\tilde{x}) \nabla I(\tilde{x}) \nabla I(\tilde{x})^{\top}$$

• Gewichte $w(\tilde{x}) > 0$ betonen Einfluss der zentralen Pixel

Eigenwerte

- In der Realität nehmen Eigenwerte nie genau den Wert Null an, z.B. auf Grund von Rauschen, diskreter Abtastung und numerischen Ungenauigkeiten
- Charakteristik in der Praxis
 - Ecke: zwei große Eigenwerte
 - Kante: ein großer Eigenwert, ein kleiner Eigenwert
 - Homogene Fläche: zwei kleine Eigenwerte
- Entscheidung mittels empirischer Schwellwerte

Ein einfaches Kriterium für Ecken und Kanten

- Betrachte die Größe $H:=\det(G)-k(\operatorname{tr}(G))^2=(1-2k)\lambda_1\lambda_2-k(\lambda_1^2+\lambda_2^2)$
- Ecke (beide Eigenwerte groß)
 - H größer als ein positiver Schwellwert
- Kante (ein Eigenwert groß, ein Eigenwert klein)
 - H kleiner als ein negativer Schwellwert
- Homogene Fläche (beide Eigenwerte klein)
 - H betragsmäßig klein

1.3.4 Zusammenfassung

Harris-Detektor zur Bestimmung von Merkmalspunkten

• Auswertung der (approximierten) Harris-Matrix

$$G(x) \approx \sum_{\tilde{x} \in W(x)} w(\tilde{x}) \nabla I(\tilde{x}) \nabla I(\tilde{x})^{\top}$$

- Eigenwertzerlegung von G(x) liefert auch Info über Richtung etwaiger Kanten
- Effiziente Implementierung mit Hilfe des Ausdrucks

$$H := \det(G) - k(\operatorname{tr}(G))^2$$

- Entscheidung mittels Schwellwerten
 - Ecke: $0 < \tau_{+} < H$
 - Kante: $H < \tau_{-} < 0$
 - Homogene Fläche: $\tau_- < H < \tau_+$

1.4 Korrespondenzschätzung für Merkmalspunkte

1.4.1 Korrespondenzschätzung

Problemstellung

- Gegeben sind zwei Bilder $I_1:\Omega_1\to\mathbb{R},I_2:\Omega_2\to\mathbb{R}$ derselben 3D-Szene
- Finde Paare von Bildpunkten $(x^{(i)},y^{(i)})\in\Omega_1\times\Omega_2$, die zu gleichen 3D-Punkten korrespondieren

- In dieser Session: Korrespondenzen für Merkmalspunkte in ${\cal I}_1$ und ${\cal I}_2$
- Habe Merkmalspunkte $\{x_1,...,x_n\}\subset\Omega_1$ und $\{y_1,...,y_n\}\subset\Omega_2$
- Finde passende Paare von Merkmalspunkten

1.4.2 Sum of squared differences (SSD)

Formelle Beschreibung

• Betrachte Bildausschnitte V_i um x_i und W_i um y_i in Matrixdarstellung und vergleiche die Intensitäten

d

- Ein Kriterium: $d(V, W) = ||V W||_F^2$
- Dabei ist $||A||_F^2 = \sum\limits_{kl} A_{kl}^2$ die quadrierte Frobenius
norm
- Finde zu V_i das W_j mit $j = \arg_{k=1,\dots,n} \min d(V_i, W_k)$
- Annahme: Wenn W_j zu V_i passt, dann auch umgekehrt

Änderungen der Beleuchtung oder Drehungen

• Normierung von Intensität und Orientierung benötigt!

1.4.3 Rotationsnormierung

mittels Gradientenrichtung

- Vorverarbeitung:
 - 1. Bestimme Gradienten in allen Merkmalspunkten.
 - 2. Rotiere Regionen um Merkmalspunkte so, dass Gradient in eine Richtung zeigt.
 - 3. Extrahiere V, W aus rotierten Regionen.

1.4.4 Bias and Gain Modell

Modellierung von Kontrast und Helligkeit

• Skalierung der Intensitätswerte (Gain) mit α

• Verschiebung der Intensitätswerte (Bias) mit β .

• Gain-Modell: $W \approx \alpha V$

• Bias-Modell: $W \approx V + \beta \mathbf{1} \mathbf{1}^{\top}$ $\mathbf{1} = (1, ..., 1)^{\top}$

• Bias-and-Gain Modell: $W \approx \alpha V + \beta \mathbf{1} \mathbf{1}^{\top}$

Skalierung bewirkt Kontraständerung

Verschiebung bewirkt Helligkeitsänderung

Berechnung des Mittelwerts

• Mittelwertbildung der Intensität

$$\bar{W} = \frac{1}{N} (\mathbf{1} \mathbf{1}^{\top} W \mathbf{1} \mathbf{1}^{\top})$$

$$\approx \frac{1}{N} (\mathbf{1} \mathbf{1}^{\top} (\alpha V + \beta \mathbf{1} \mathbf{1}^{\top}) \mathbf{1} \mathbf{1}^{\top})$$

$$= \alpha \frac{1}{N} (\mathbf{1} \mathbf{1}^{\top} V \mathbf{1} \mathbf{1}^{\top}) + \beta \mathbf{1} \mathbf{1}^{\top}$$

$$= \alpha \bar{V} + \beta \mathbf{1} \mathbf{1}^{\top}$$

• Subtraktion der Mittelwertmatrix

$$W - \bar{W} \approx \alpha V + \beta \mathbf{1} \mathbf{1}^{\top} - (\alpha \bar{V} + \beta \mathbf{1} \mathbf{1}^{\top})$$
$$= \alpha (V - \bar{V})$$

Berechnung der Standardabweichung

• Standardabweichung der Intensität

$$\begin{split} \sigma(W) &= \sqrt{\frac{1}{N-1}||W - \bar{W}||_F^2} \\ &= \sqrt{\frac{1}{N-1}} \mathrm{tr}((W - \bar{W})^{]\top}(W - \bar{W})) \\ &\approx \sqrt{\frac{1}{N-1}} \mathrm{tr}(\alpha(V - \bar{V})^{\top}\alpha(V - \bar{V})) \\ &= \alpha\sigma(V) \end{split}$$

Kompensation von Bias und Gain

- Normalisierung der Bildsegmente durch
 - Subtraktion des Mittelwertes.
 - Division durch Standardabweichung.

$$W_n := \frac{1}{\sigma(W)} (W - \bar{W})$$

$$\approx \frac{1}{\alpha \sigma(V)} (\alpha(V - \bar{V}))$$

$$= \frac{1}{\sigma(V)} (V - \bar{V})$$

$$= V_n$$

1.4.5 Normalized Cross Correlation (NCC)

Herleitung aus SSD

- SSD von zwei normalisierten Bildsegmenten $||V_n W_n||_F^2 = 2(N-1) 2\mathrm{tr}(W_n^\top V_n)$
- Die Normalized Cross Correlation der beiden Bildsegmente ist definiert als $\frac{1}{N-1} \mathrm{tr}(W_n^\top V_n)$
- Es gilt -1 \le NCC \le 1
- Zwei normalisierte Bildsegmente sind sich ähnlich, wenn
 - SSD klein (wenig Unterschiede)
 - NCC nahe bei +1 (hohe Korrelation)

1.4.6 Zusammenfassung

- Kompensiere Rotation durch Ausrichten des Gradienten für jeden Merkmalspunkt
- Extrahiere Bildsegment um jeden Merkmalspunkt.
- Beleuchtungskompensation durch Normierung der Bildsegmente.
- Vergleiche die normalisierten Bildsegmente durch SSD oder NCC.