

Virtualização: Conceitos e Níveis de Implementação

Tecnologias de Virtualização e Centros de Dados Mestrado em Engenharia Informática

Mário M. Freire Departamento de Informática Ano Letivo 2023/2024

Estes slides são parcialmente baseados no livro:

Distributed and Cloud Computing: From Parallel Processing to the Internet of Things, Kai Hwang, Jack Dongarra, Geoffrey C. Fox (Authors), Morgan Kaufmann, 1st edition, 2011, ISBN-13: 978-0123858801, 672 pages.

- Conceito de Virtualização e de Máquina Virtual
- Níveis de Implementação de Virtualização
- Mérito Relativo da Virtualização nos Diferentes Níveis
- Impacto da Virtualização ao Nível do Hardware no Crescimento e Custos de um Centros de Dados

- Um computador convencional tem uma única imagem de sistema operativo (OS ou SO).
- Isto oferece uma arquitetura rígida que conjuga de forma rígida o software aplicacional a uma plataforma de hardware específica.
- Software que funcione bem numa dada máquina pode não ser executável noutra plataforma com um conjunto de instruções diferente sob um SO fixo.

- As máquinas virtuais (VMs) oferecem soluções inovadoras para:
 - Recursos subutilizados;
 - Inflexibilidade ao nível das aplicações;
 - Gestão de software;
 - Preocupações de segurança nas máquinas físicas existentes;
 - Disponibilidade.

- Máquinas virtuais (VMs):
 - Uma VM pode ser fornecida para qualquer sistema de hardware.
 - Uma VM é construída com recursos virtuais geridos por um sistema operativo convidado (guest OS) para executar uma aplicação específica.
 - Entre as VMs e a plataforma hospedeira ou anfitriă (host), é necessário instalar uma camada de middleware designada por hypervisor ou monitor de máquina virtual (VMM - virtual machine monitor).
 - A abordagem VM oferece independência do sistema operativo e das aplicações em relação ao hardware.

- Tipos de Máquinas virtuais (VMs):
 - VM nativa (native VM ou bare metal VM): instalada através de um hypervisor em modo privilegiado.
 - VM alojada (hosted VM): aqui, o hypervisor é executado em modo não privilegiado. O sistema operativo hospedeiro (host OS) não precisa de ser modificado.
 - VM em modo duplo: parte do hypervisor é executado no nível do utilizador e outra parte é executado no nível supervisor. Neste caso, o sistema operativo hospedeiro pode ter que ser modificado.

Conceito de Virtualização e de Máquina Virtual

Três tipos de máquinas virtuais (VM) representadas em b), c) e d), comparadas com a máquina física tradicional representada em a)

Conceito de Virtualização e de Máquina Virtual

Multiplexagem, suspensão, fornecimento e migração em serviço de máquinas virtuais num ambiente distribuído

- Máquina Virtual: representação de uma máquina real usando software que fornece um ambiente operativo que pode correr ou hospedar (host) um sistema operativo convidado (guest OS).
- Sistema Operativo Convidado (guest OS): sistema operativo correndo num ambiente de máquina virtual que de outra forma correria diretamente num sistema físico separado.
- Camada de Virtualização: middleware entre o hardware subjacente e as máquinas virtuais, também designado por hypervisor ou virtual machine monitor (VMM).

Conceito de Virtualização e de Máquina Virtual

Arquitetura de um sistema de computação antes e após virtualização

(b) After virtualization

- A função principal da camada de software para virtualização é virtualizar o hardware físico de uma máquina hospedeira em recursos virtuais para serem usados exclusivamente por VMs.
- O software de virtualização cria a abstração de VMs por interposição de uma camada de virtualização em vários níveis de um sistema de computador.
- As camadas de virtualização comuns incluem o nível de arquitetura do conjunto de instruções (ISA), o nível de hardware, o nível do sistema operativo, o nível de suporte biblioteca e o nível de aplicação.

Virtualização desde o hardware até às aplicações em 5 níveis de abstração

Nível de aplicação	JVM, .NET CLR
Nível de biblioteca (user-level API)	vCUDA, WINE, WABI, LxRun
Nível de sistema operativo	Docker, LXC (Linux Containers)
Nível de camada de abstração do hardware	MS Hyper V, Xen, KVM/QEMU, VMWare,
Nível de arquitetura do conjunto de instruções (ISA)	Bochs, Crusoe, QEMU, BIRD, Dynamo

- Nível de arquitetura do conjunto de instruções (ISA).
- No nível ISA, a virtualização é executada através da emulação de uma determinada ISA pela ISA da máquina hospedeira (host).
- Por exemplo, o código binário MIPS pode ser executado numa máquina hospedeira baseada em x86 com a ajuda de emulação ISA.
- Com esta abordagem, é possível executar uma grande quantidade de código binário legado escrito para vários processadores no hardware de uma nova máquina hospedeira (host).
- A emulação do conjunto de instruções conduz a ISA virtuais criadas em qualquer máquina hardware.

- Nível de arquitetura do conjunto de instruções (ISA)
- O método de emulação básico é através de interpretação de código.
- Um programa interprete interpreta as instruções fonte para as instruções alvo, uma a uma.
- Uma instrução fonte pode necessitar de dezenas ou centenas de instruções alvo nativas para executar a sua função (neste caso, este processo é relativamente lento).
- Para um melhor desempenho, é desejável ter tradução binária dinâmica (dynamic binary translation).
- Esta abordagem traduz blocos básicos de instruções fonte dinâmicas para instruções alvo. Os blocos básicos podem também ser estendidos a traces de programas ou super blocos para aumentar a eficiência da tradução.

- Nível de abstração do hardware
- A virtualização ao nível do hardware é executada no topo da estrutura (bare) do hardware.
- Por um lado, esta abordagem gera um ambiente de hardware virtual para uma máquina virtual.
- Por outro lado, o processo gere o hardware subjacente através de virtualização.
- A ideia é virtualizar os recursos de um computador, tais como processadores, memória e dispositivos de I/O.
- A intenção é melhorar a taxa de utilização de hardware através de vários utilizadores simultaneamente.
- O hypervisor Xen tem sido usado para virtualizar máquinas baseadas em x86 para correr Linux.

- Nível do sistema operativo
- Refere-se a uma camada de abstração entre o sistema operativo tradicional e as aplicações do utilizador.
- A virtualização de nível OS cria containers isolados num único servidor físico e as instâncias de sistema operativo para utilizar o hardware e software em datacenters.
- Os containers comportam-se como servidores reais.
- A virtualização de nível OS é frequentemente usada na criação de ambientes de hosting virtuais para alocar recursos de hardware entre um grande número de utilizadores mutuamente desconfiados.
- É também usado, em menor grau, na consolidação de hardware do servidor, movendo serviços em hosts separados para containers num servidor.

- Nível de suporte biblioteca
- A maioria das aplicações usam APIs exportadas por bibliotecas ao nível do utilizador em vez de usar morosas chamadas ao sistema (system calls) pelo sistema operativo.
- Uma vez que a maioria dos sistemas fornecem APIs bem documentadas, tal interface torna-se num candidato para virtualização.
- A virtualização com interfaces de biblioteca é possível através do controlo da ligação de comunicação entre aplicações e o resto do sistema através de API hooks.
- A ferramenta de software WINE implementou esta abordagem para suportar aplicações do Windows sobre hosts UNIX.
- Outro exemplo é o vCUDA que permite a aplicações em execução dentro de VMs alavancar a aceleração de hardware GPU.

- Nível de aplicação
- A virtualização ao nível da aplicação virtualiza uma aplicação como uma VM.
- Num sistema operativo tradicional, uma aplicação frequentemente corre como um processo.
- Por isso, a virtualização ao nível da aplicação também é conhecido como virtualização ao nível do processo.

- Nível de aplicação
- A abordagem mais popular é a de instalar VMs de linguagens de alto nível (HLL).
- Neste cenário, a camada de virtualização assenta como um programa aplicacional sobre o sistema operativo.
- Esta camada exporta uma abstração de uma máquina virtual que pode executar programas escritos e compilados para uma dada definição de máquina abstrata.
- Qualquer programa escrito na HLL e compilado para esta VM será capaz de correr nela.
- O Java Virtual Machine (JVM) e o Microsoft .NET CLR (Common Language Runtime) são dois bons exemplos desta classe de VMs.

- Nível de aplicação
- Outras formas de virtualização ao nível da aplicação são conhecidas como: application isolation (isolamento de aplicações), application sandboxing ou application streaming.
- O processo consiste em envolver (acondicionar, wrapping) a aplicação numa camada que está isolada do sistema operativo hospedeiro (host OS) e de outras aplicações.
- O resultado é uma aplicação que é muito mais fácil de distribuir e remover de estações de trabalho do utilizador.
- Um exemplo é a plataforma de virtualização de aplicações LANDesk que instala aplicações autocontidas (self-contained) e ficheiros executáveis num ambiente isolado, sem a necessidade de instalação, modificações no sistema, ou privilégios de segurança avançados.

Mérito Relativo da Virtualização nos Diferentes Níveis

Nível de Implementação	Desempenho	Flexibilidade de Aplicações	Complexidade de Implementação	Isolamento de Aplicações
Nível de aplicação	2	2	5	5
Nível de biblioteca (user-level API)	3	2	2	2
Nível de sistema operativo	5	2	3	2
Nível de camada de abstração de hardware	5	3	5	4
Nível de arquitetura do conjunto de instruções	1	5	3	3

(1 - fraco, 5 - muito bom)

Impacto da Virtualização no Crescimento e Custos de um Centros de Dados

Crescimento e redução de custos de centros de dados ao longo dos anos

