ACOUSTIC METAMATERIALS RESEARCH UPDATE, V2.1 NOVEMBER 16, 2017

ED STOKES, ECE PROFESSOR RYAN HILL, ECE GRADUATE STUDENT MATIAS MENDIETA, ECE UNDERGRADUATE STUDENT

SINGLE RESONATOR EXPERIMENT

- Change the Volume with water and keep everything else constant
 - The Resonator's (Flask) cavity has a volume of Vcav ~47.78
 mL
 - The Volumes that measurements were taken at
 - 1.) Empty (No Water)
 - 2.) 20 % of Vcav filled with water
 - 3.) 40 % of Vcav filled with water
 - 4.) 50 % of Vcav filled with water
 - 5.) 60 % of Vcav filled with water
 - 6.) 80 % of Vcav filled with water
 - 7.) 100 % of Vcav filled with water

•
$$f_{resonance} = \frac{c}{2\pi} \sqrt{\frac{S}{V(l+\Delta l)}}$$

- C = Speed of Sound in Medium
- V = Volume of the Resonator Cavity
- S = Cross Sectional Area of the Neck
- l = Length/Height of the Neck
- Δl = Neck Length Adjustment, based on whether the neck is flanged
- Effective Length = $l + \Delta l$

SINGLE RESONATOR LAB SETUP

SINGLE RESONATOR RESULTS, V2

SINGLE RESONATOR RESULTS, V2

% of Cavity filled w/ Water	Cavity volume	Calculated Resonance Frequency	Measured Resonance Frequency
o %	100%	175 Hz	187 Hz
20 %	80%	196 Hz	206 Hz
40 %	60%	226 Hz	234 Hz
50 %	50%	248 Hz	254 Hz
60 %	40%	277 Hz	282 Hz
80 %	20%	392 Hz	387 Hz
100 %	0%	N/A (INF)	459 Hz

MULTIPLE RESONATOR THEORY

• Hybrid Resonance at f0 = (f HR2 - f HR1)/2

Sound Absorption Structures:

From Porous Media to Acoustic

<u>Metamaterials</u>

By Min Yang and Ping Sheng

Published In: The Annual Review of Materials Research

Annu. Rev. Mater. Res. 2017. 47:83-114

MULTIPLE RESONATOR DESIGN, V2

Front View

Back Side View

~6cm

Resonators

- Confirm the remaining Comsol Model (Single Resonator w/ Flow)
- Finish the Coupled Resonator w/ Flow Comsol Model
- Create a Coupled Resonator Setup with the physical Model
- Test the Physical Model
- Print the Multiple Resonator Model and test the model