Глава 1. Внедрение БШС на нефтегазовых месторождениях

ПЕРЕДЕЛАТЬ ВСЕ неправильно

Цифровая трансформация является первостепенной задачей для развития нефтегазового комплекса. Переход производства к новой модели управления «Индустрия 4.0» позволит бизнесу сохранить лидирующие позиции и не утратить производственного потенциала [1, 2]. Неотъемлемой частью такой трансформации является внедрение беспроводных технологий [1, 2, 3, 4, 5, 6, 7].

Современные беспроводные широкополосные сети связи (БШС), обладая рядом преимуществ, нашли свое широкое применение в задачах мониторинга и управления различных производственных или гражданских объектов, технологических установок, движущихся транспортных средств и т.п. К ряду таких преимуществ можно отнести возможность получения информации с любой точки контролируемой территории, быстрый ввод в эксплуатацию, сокращение капитальных затрат на создание и эксплуатацию сети, высокая гибкость, мобильность и масштабируемость.

Нефтегазовые объекты часто расположены в труднодоступной местности на обширной территории в несколько киллометров. Данный фактор является ключевым преимуществом беспроводных технологий для развертывания по сравнению с кабельными коммуникациями.

Беспроводная связь в автоматизации промышленного производства способствует осуществлению производственных процессов более экономически эффективно, гибко и надежно, а также позволяет реализовывать новые концепции автоматизации [8]. Для управления большими объемами на месторождениях применение применение беспроводных каналов связи в режиме 60/24/7, позволяющая операторам принимать обоснованные управленческие решения, своевременно диагностировать и устранять неисправности, а также оптимизировать работу АСУ ТП в целом [9].

Не маловажную роль на месторождениях играет безопасность. Технологические объекты на нефтяных или газовых месторождениях, оснащенных широкополосным подключением, позволяют соответствовать современным концепциям и требованиям в сфере безопасности персонала и безопасности имущества, включая охрану с использованием беспроводных камер видеонаблюдения. Для предоставления доступа к объекту могут использоваться

дополнительные возможности, такие как считывание номерных знаков и распознавание лиц. А благодаря использованию тепловых камер можно контролировать риски отключения и перегрузки даже с помощью периодических снимков оборудования на промысле.

Внедрение БШС особенно хорошо подходят для систем видеонаблюдения, поскольку позволяют расположить камеры там, где они нужны, а не там, где удобно для подключения к проводной сети.

В данном исследовании в рамках цифровой трансформации «Индустрия 4.0» представлены модели и методы оптимизации при проектировании беспроводных сетей на месторождениях (Рисунок 1.1).

Рисунок 1.1 — Задача синтеза топологии при проектировании БШС в рамках цифровой трансформации "Индустрия 4.0".

1.1 Этапы проектирования БШС

Для обеспечения высокого качества беспроводной связи необходимо проводить грамотное проектирование БШС. Существуют различные подходы к проектированию беспроводных сетей. Для одних задачей является максимальная зона покрытия, для других — достижения максимальной производительности передачи данных, для третьих — нахождения баланса между зоной охвата и производительностью [10]. В диссертации будут предложены модели и методы оптимального размещения базовых станций (БС) БШС, целью которых является максимальная зона охвата. Процесс проектирования современной БШС, как правило, для такого подхода имеет следующие основные этапы (Рисунок 1.2):

Рисунок 1.2 — Этапы проектирования БШС.

Любое проектирование БШС всегда начинается с первоначального обследования местности. В данный этап входят задачи радиобследования и радиопланирования. оценки реальных размеров области контроля, наличие стационарных инженерно-технических сооружений, мешающих передачи сигнала, такими как металлические конструкции, перекрытия, стены и т.д. При развертывании БШС в открытой местности также немаловажную роль играет наличие перепада высот. В ходе выполнения комплекса работ на местности, определяются возможные точки размещения оборудования [11]. На основе результатов данного этапа проводится выбор типов моделей оборудования для дальнейшего их размещения и организации сети.

Производительность и дальность действия беспроводных сетей не безграничны. При их проектировании стоит учитывать множество параметров: частота, скорость, мощность излучения [10]. На этапе выбора оборудования необходимо определиться с протоколом будущей БШС и подготовить необходимый комплекс технических средств для развертывания будущей сети. БС является основополагающем устройством будущей сети, которая отвечает за покрытие заданной области. Покрытие в свою очередь зависит от мощности передатчика устройства, усиления антенн, чувствительности приемного устройства.

После определения множества возможных точек размещения БС на этапе обследования местности и выборе возможных типов и моделей оборудований можно переходить непосредственно к размещению БС и определению топологической структуры сети. Этап выбора топологической структуры будущей сети является ключевой проблемой данной диссертации. В рамках данной проблемы будут предложены модели и методы оптимального размещения БС для организации БШС.

После решения задачи синтеза топологии, для полученного размещения решаются задачи оценки характеристик производительности БШС. Для расчета оценок широко применяется аппарат теории массового обслуживания (ТМО). Примерами таких задач являются расчет надежности всех элементов сети [12, 13, 14], оценка характеристик качества канала, вероятности потери пакетов, пропускной способности, времени доставки сообщений в сети [15, 16, 17, 18, 19, 20], оценка межконцевой задержки сети [18, 19]. В работе [21] рассматривают стохастическую модель марковской цепи для оценки качества передачи данных автоматизированных систем управления технологическим процессом (АСУ ТП) в условиях помех и прерываний. Одним из современных направлений в исследовании характеристик производительности БШС является использование ТМО в совокупности с методами машинного обучения (МО) [22, 23].

Описанная процедура проектирования БШС является общей для большинства внедрения беспроводных коммуникационных сетей. В зависимости от конкретных целей, которые преследуют проектировщики, план работ может требовать содержание конкретных этапов и подзадач проектирования. В общем же случае проектирование БШС будет происходить согласно данной последовательности этапов. В изложенной концепции важным является представление места результатов исследования данной диссертации в глобальной задаче комплексного проектирования.

1.2 Анализ современных беспроводных широкополосных технологий передачи данных

Существуют множество различных протоколов БШС, используемых на месторождении. Любая сеть имеет свои преимущества для конкретной задачи. Исходя из специфики таких задач, можно выделить два больших класса. Первый класс — это сети, узлами которого являются измерительные устройства (сенсоры) АСУ ТП. Такие сети называют ячеистые сенсорные сети. Для таких сетей характерны низкоскоростной трафик, малое энергопотребление, высокие требования к надежности передачи, а также надежности, непосредственно, оборудования. Вторым классом сетей являются БШС, для которых характерны высокая скорость передачи, большая дальность передачи сигнала от несколько десятков метров до несколько сотен метров. Примерами таких сетей являются сети второго уровня, объединяющие кластеры сенсорных сетей для передачи данных в центр управления. Также примером является БШС сбора мультимедийного трафика с беспроводных камер видеонаблюдения.

1.2.1 Wi-Fi

Семейство протоколов IEEE 802.11 или Wi-Fi является одним из популярных протоколов среди беспроводных сетей широкополосного доступа. Широкое применение Wi-Fi не могло не отразиться и на нефтегазовом секторе [24, 25, 26, 27].

Стандарт определяет два типа топологий. Первая топология в стандарте называется независимой (Independent Basic Service Set, IBSS) на основе "точка-точка". Такую сеть также называют Ad-Hoc сетью. Передача в сети произво-

дится на основе децентрализованного алгоритма доступа. Хоть и не существует главной базовой станции, в сети Ad-Hoc в каждый момент времени любой узел может взять ведущую роль базовой станции. Следующий тип — централизованная топология. Такой тип сети называют Infrastracture Basic Service Set или просто BSS [28]. Узлы сети могут обмениваться только с базовой станцией, обеспечивающее взаимодействие между всеми конечным узлами сети.

Стек протоколов стандарта IEEE 802.11 соответствует общей структуре 802 (Рисунок 1.3). Физический уровень практически соответствует физическому уровню в модели OSI. Канальный уровень во всех протоколах 802.х разбит на два или более подуровня. Подуровень управления доступа к среде обеспечивает адресацию и механизмы управления доступом к каналам. Подуровень МАС выступает в качестве интерфейса между физическим уровнем и подуровнем управления логическим соединением (LLC). Задача LLC состоит в том, чтобы сделать различия стандартов 802.11х невидимыми для сетевого уровня [29]. На уровне МАС протокола 802.11 определяются два типа доступа к среде передачи данных: функция распределенной координации (Distributed Coordination Function, DCF) и функция централизованной координации (Point Coordination function, PCF), работающий только в режиме IBSS [30].

Рисунок 1.3 — Часть стека протоколов 802.11

Развитие стандарта. Первый стандарт в 1997 году поддерживал скорость передачи до 1,2 Мбит/с с рабочем диапазоном частот 2,4 ГГц. Уже в 1999

году стандарт 802.1b скорость передачи достигала 11 Мбит/с. В тот же 1999 год одновременно вышел 802.11a, поддерживающий способ модуляции OFDM – мультиплексирование с ортогональным частотным разделением каналов. Данный метод модуляции пришел на смену методов прямой последовательности для расширения спектра (direct sequence spread spectrum, DSSS) и псевдослучайная перестройка рабочей частоты (frequency-hopping spread spectrum, FHSS). Протокол работает в диапазоне частот 5ГГц. Данное введение позволило увеличить скорость до 54 Мбит/с. В 2003 году появился 802.11g, в котором OFDM стал совместим с 802.11b DSSS. В 2009 году, в рамках стандарта 802.11n была завершена работа над методами передачи данных SU-MIMO (Single User – Multiple Input Multiple Output), которые одновременно используют несколько антенн на приемнике и передатчике, что дает очередной выигрыш в скорости. Благодаря четырем антеннам и более широким каналам стандарт 802.11 теперь определяет скорости до 600 Мбит/с [29, 31]. В 2013 году появился стандарт 802.11ас с максимальной теоретической скоростью беспроводного соединения 3,47 Гбит/с. В данном стандарте представлена технология одновременная передача по нескольким антеннам сразу четырем клиентам MU-MIMO (Multi User — Multiple Input Multiple Output). В 2021 была представлена сеть шестого поколения Wi-Fi 6, стандарт получил название IEEE 802.11ах. Скорость передачи достигает 9608 Мбит/с. Стандарт работает на частотах 2,4 ГГц и 5 ГГц. Реализована новый тип модуляции – 1024-QAM. Теперь MU-MIMO работает для одновременной передачи до восьми клиентам. Кроме того, Wi-Fi 6 обеспечивает эффективную работу в сетях IoT, существенно повышая эффективность работы с малыми объемами данных и эффективно используя батарею маломощных измерительных устройств за счет сокращения обмена служебной информацией.

Беспроводной широкополосный доступ вдоль протяженных автомобильных дорог. Обеспечение безопасности на автодорогах, в том числе на промысле, является актуальной задачей на сегодняшний день. Одним из методов ее решений является создание современной инфраструктуры передачи мультимедийной информации вдоль протяженных автомагистралей [32]. Для реализации такой сети разработан стандарт IEEE 802.11p/WAVE. Протокол разработан для обмена данными между высокоскоростными транспортными средствами, а также между транспортными средствами и придорожной инфраструктурой. Такие сети называются V2X (Vehicle-to-everything). 802.11p работает в диапазоне 5,85–5,925 ГГц для движущихся объектов на скорости до 200 км/ч мимо неподвижных базовых станций на расстоянии до 1 км. Протокол IEEE 802.11р входит в состав стандарта Wireless Access in Vehicular Environ (WAVE) и является своего рода интерфейсом для связи с IEEE 1609. В совокупности два этих стандарта определяют интерфейс и набор дополнительных функций для обеспечения связи между движущимися объектами [33].

Ячеистая топология стандарта 802.11. Стандарт поддерживает MESH топологию. Все нововведения относятся к МАС уровню и рассматриваются вопросы маршрутизации пакетов в рамках mesh-сети. Фактически в стандарте рассматриваются сетевой и транспортный уровень модели OSI. Пакет уровня MAC содержит дополнительный MESH - заголовок в отличие от стандартных заголовка пакетов 802.11. В заголовке указывается время жизни пакеты при пересылке через несколько узлов сети [34]. Такой подход помогает решить проблему наличия циклов при выборе пути передачи. Протоколы маршрутизации делят на два класса: проактивный – каждый узел строит свою таблицу маршрутизации и делится информацией об изменении топологии сети со своими соседями и реактивный – таблицы маршрутизации не строятся, маршрут составляется по мере необходимости. Стандарт 802.11s определяет гибридный протокол маршрутизации по умолчанию – HWMP (Hybrid Wireless Mesh Protocol). Также стандарт позволяет разработчикам оборудования использовать альтернативные методы маршрутизации. Режим энергосбережения в 802.11s является опциональным [30]. Точки доступа MESH-сети (MESH Access Point, MAP) всегда активны, так как в любой момент времени могут обратиться устройства, не поддерживающие непосредственно 802.11s. Необходимость возникает в случае ІоТ, когда всегда устройства имеют автономное питание (измерительные устройства, датчики) [34].

При внедрении беспроводных технологий необходимо учитывать специфику выполняемых задач будущей сети. Для каждого конкретной цели существуют свои требования к скорости передачи данных, дальности связи, потребляемой мощности, помехозащищённости, надежности и т.д. Чтобы учесть специфику данных задач разработано множество беспроводных решений, охватывающее дальность связи от несколько сантиметров до десятков километров и скоростей передачи от единиц Кбит/с до сотен Мбит/с.

1.2.2 LTE

Сеть LTE (Long-Term Evolution) состоит из двух компонентов:

- сети радиодоступа E-UTRAN (Evolved Universal Terrestrial Radio Access Network);
- архитектура ядра сети SAE (System Architecture Evolution)

Сеть радиодоступа E-UTRAN состоит из базовых станций сети eNodeB (или eNB, evolved Node B). Интерфейс X2 позволяет соединить узлы eNodeB по принципу «каждый с каждым» для переключения устройств между базовыми станциями.

Основным компонентом архитектуры SAE является Evolved Packet Core (EPC), в состав которого входят следующие логические элементы [35]:

- 1. ММЕ (Mobility Management Entity) узел управления мобильностью абонентского терминала, взаимодействует с базовыми станциями с помощью протоколов плоскости управления C-plane через интерфейс S1-C;
- 2. UPE (User Plane Entity) выполняет сжатие заголовков IP-протоколов, шифрование потоков данных, терминацию пакетов данных плоскости пользователя, коммутацию пакетов данных при обеспечении мобильности пользователя. Передача данных пользователей происходит согласно протоколам плоскости пользователя U-plane, вза-имодействие с eNode происходит с помощью интерфейса S1-U.

Архитектура сети LTE представлена на рисунке 1.4. Интерфейс S1 необходим для соединения базовой станции eNodeB с узлами MME/UPE.

Базовые станции eNB выполняют функции управления радиоресурсами (Radio Resource Managment, RRM): управление радиоканалами (Radio Bearer Control), управление доступом (Radio Admission Control), управление мобильностью (Connection Mobility Control), динамическое распределение ресурсов (Dynamic Resource Allocation).

LTE в России работает на частотах в диапазоне 800, 1800 и 2600 М Γ ц. В нижних диапазонах, где всё отлично с покрытием, проблема найти полосу достаточной для полноценного LTE ширины. В верхних обычно хорошо с частотным ресурсом, но площадь покрытия в 5-6 раз меньше при прочих равных.

Рисунок 1.4 — Архитектура сети LTE.

В 2010-е годы переход к 4G LTE-A (LTE-Advanced) предоставил возможность передачи на скоростях в нисходящем канале до 100 Мбит/с для мобильных и 1 Гбит/с для малоподвижных абонентов. Такая скорость дала возможность передачи высокоскоростного мультимедийного трафика. В сетях LTE-Advanced из архитектуры сети LTE исчезло понятие контроллера радиосети (Radio Network Controller, RNC), который выполнял функцию по управлению коммуникационными ресурсами. Управляющие функции перешли к базовым станциям, которые теперь, помимо обслуживания радиочасти, стали принимать решение о маршрутизации всего поступившего к ним трафика от абонентов. Данное введение позволяет организовывать соединения между близкими абонентами напрямую, минуя ядро сети, что существенно разгружает межузловую нагрузку на опорной сети.

1.2.3 5G NR.

Принято выделять три основные области применения для сетей 5G:

- 1. eMBB (enhanced Mobile BroadBand) предоставление усовершенствованного широкополосного мобильного доступа для сценариев, где приоритетом являются пользовательская скорость передачи данных, трафик на единицу площади, мобильность, энергоэффективность и эффективность использования спектра;
- 2. mMTC (massive Machine-Type Communication) развертывание крупномасштабной системы межмашинной связи с высокой плотностью соединений, характеризуется большим количеством подключенных устройств, передающих низкоскоростной трафик, который нечувствителен к задержкам;
- 3. URLLC (Ultra-Reliable and Low-Latency Communication) предоставление высоконадежного соединения с очень низкой задержкой передачи данных.

Международный союз электросвязи МСЭ-R определил показатели главных эксплуатационных характеристик сети, достижение которых позволяет отнести ее к сети 5-го поколения. Требования к ключевым показателям эффективности сетей 5G/IMT-2020 определены в 3GPP TR 38.913 [36]:

- пиковая скорость передачи данных в канале вниз (DL) 20 Гбит/с и в канале вверх (UL) 10 Гбит/с;
- пиковая спектральная эффективность для DL 30 бит/с/ Γ ц и для UL 15 бит/с/ Γ ц;
- сквозная задержка на уровне управления (control plane latency) 10 мс, на уровне пользователя (user plane latency) для услуг типа eMBB 4 мс в UL/DL и для услуг типа URLLC 0,5 мс в UL/DL;
- вероятность потери пакета 10^{-5} для пакета размеров 32 байт со сквозной задержкой в сети в 1 мс для услуг URLLC;
- максимально возможное ослабление радиосигнала между передатчиком и приемником (Maximum Coupling Loss, MaxCL), при котором данные могут быть успешно приняты 164 дБ при скорости передачи данных равной 160 бит/с;
- плотность подключенных устройств: 1 млн на 1 км 2 ;

- срок работы батареи устройства: 10-15 лет для устройств IoT/M2M/D2D;
- скорость передвижения абонентского устройства до 500 км/ч и беспрерывное обслуживание при хэндовере.

По спецификациям 3GPP диапазоны 5G/IMT-2020 разделены на два поддиапазона (Frequency Range) FR1 (450–6000 МГц) и FR2 (24,25 – 52,6 ГГц). Также документами ассоциации GSMA частоты на 3 группы: ниже 1 ГГц (частотный диапазон FR1), в полосе 1 – 6 ГГц (частотный диапазон FR1) и свыше 6 ГГц (частотный диапазон FR2) [37].

В отличие от предыдущих поколений, где для каждого нового поколения сетей связи (2G, 3G, 4G) разрабатывался новый радиоинтерфейс, для технологии 5G/IMT-2020 планируется применять как новый радиоинтерефейс (New Radio или NR согласно спецификациям 3GPP), так и эволюцию стандарта LTE-A. Стандарт LTE-A продолжает эволюционировать, приближаясь по своим характеристикам к возможностям стандарта NR. В стандарте LTE-A уже реализована поддержка активных антенных систем, использование более эффективного кодирования и модуляции, агрегация нескольких частотных каналов, уменьшенная задержка на уровне радиоинтерфейса. Новый радио-интерфейс NR изначально разрабатывался для обеспечения более высоких скоростей передачи данных и меньших задержек, более эффективного использования частотного ресурса [37].

Чтобы обеспечить интеграцию с существующими устаревшими системами 4G и обеспечить независимое развертывание 5G RAN и 5G Core, 3GPP определил набор параметров архитектуры.

Для обеспечения интеграцию с существующими сетями 4G/LTE 3GPP определил несколько вариантов развёртывания (Deployment Options) сетей 5G NR. Существует варианты совместного развёртывания с существующими сетями LTE-A — класс Non-Standalone (NSA). Внедрение новых полноценных сетей 5G NR относятся к классу Standalone (SA). Большинство операторов не смогут единовременно перевести все имеющиеся сети LTE на 5G из-за огромных затрат и связанных с этим проблем обратной/прямой совместимости между системами [38, 39, 40, 41]. Варианты архитектуры определяются в соответствии с различными сценариями развертывания сетей.

На рисунке 1.5 представлены варианты развёртывания сетей 5G. Все варианты размещения содержат различные типы базовых станций: eNB — базовая

Рисунок 1.5 — Сценарии развертывания 5G NR

станция существующей сети LTE, gNB — базовая станция новой сети 5G NR, en-gNB и ng-eNB — базовые станции, которые обеспечивает стандарт сети LTE для оконечных пользователей и подключены к ядру 5GC новой сети 5G NR. Здесь NG-C, NG-U — протоколы интерфейса между gNB/eLTE eNB и функциями плоскости управления (Control Plain, CP) и плоскости пользователя (User Plane, UP), соответственно. Интерфейсы S1-C (плоскость управления) и S1-U (плоскость пользователя) — интерфейсы сетей LTE для связи базовой станции с EPC. Хх — межсетевой интерфейс между узлом LTE eNB и узлом gNB, и интерфейс Xn — межсетевой интерфейс между двумя узлами gNB.

Варианты развертывания 5G:

- Вариант 2. Сценарий развертывания новой сети SA NR, наиболее привлекателен в областях, где нет устаревшей системы LTE и требуется развертывание полноценной системы доступа 5G NR. В SA NR базовые станции gNB (Next Generation NodeB) подключаются к ядру 5GC (5G core);
- Вариант 3/3A/3х. Сценарий развертывания NSA NR в существующий EPC сети LTE. Предполагается, что данный сценарий будет самым распространенным на практике [42]. Передача пользовательских данных сети NR от базовой станции en-gNB будет происходить непосредственно к EPC или через базовую станцию LTE eNB;
- Вариант 4/4А. Сценарий развертывания сети NSA NR, в которой имеющиеся базовые станции LTE eNB усовершенствованы до ng-eNB и

вместо ядра EPC используется 5GC. Якорной точкой для терминации NG-C являются базовые станции сети радиодоступа NR (gNb). Данная архитектура является финальной версией перехода к сценарию комбинированного использования сети 5G/LTE;

- Вариант 5. Сценарий развертывания особенно подходит для областей,
 где нет устаревшей системы LTE и развернуты развитые системы доступа E-UTRA. При данном сценарии развертывания базовые станции пg-eNB подключаются к 5GC;
- Вариант 7/7А. Сценарий может использоваться как промежуточный этап, в котором имеющиеся базовые станции eNB и ядро EPC сети LTE возможно обновить до ng-eNB и 5GC. В качестве основных базовых станций выступают ng-eNB, которые подключаются к 5GC. LTE построена более полно и, следовательно, более надежна для обработки сигналов. Базовые станции gNB подключаются через ng-eNB или непосредственно напрямую к 5GC.

1.3 Определение параметров БШС, необходимых для решения задач размещения базовых станций

Этап выбора топологической структуры беспроводной сети состоит из решения задач оптимального размещения БС. В дальнейшем для решения данных задач необходимо будет ввести параметры БС: радиус связи – максимальная теоретическая дальность связи базовой станции с соседней станцией, удовлетворяющей требуемому качеству передачи сигнала; и радиус покрытия – максимальный теоретический радиус зоны покрытия БС для связи с устройствами. Данные параметры рассчитываются исходя из конфигурации БС. Далее будет представлен метод расчета. Все технические характеристики для расчета берутся из технического паспорта БС.

В БШС в большинстве случаев используются радиоволны сантиметрового диапазона. Отличительной чертой распространения данных радиоволн является почти полное отсутствие явления дифракции и прямолинейность распространения. Волны практически не огибают преград при распространении,

поэтому существенное влияние оказывают рельеф местности, преграды и погодные условия.

Для расчета дальности действия связи используют модели распространения радиосигнала [43, 44, 45, 46]. Существуют различные модели, которые можно объединить в три основные категории [47]:

- теоретические модели. Данные модели обычно основана на физическом предположении об идеальных условиях;
- эмпирические модели. Это наборы уравнений, разработанные на основе различных данных полевых измерений. Одним из основных недостатков таких моделей является то, что они не могут использоваться для различных ситуации без изменений, поскольку они точны только для случая с теми же характеристиками, в которых проводились измерения;
- детерминированные модели. Модели очень сложны, поскольку они требуют детального знания местоположения, размеров и физических параметров всех препятствий в данной области. Такое детальное исследование может приводить к чрезмерным накладным расходам, которые в большинстве случаев могут быть лишними.

1.3.1 Энергетический потенциал канала связи

Для оценки производительности канала связи используется уравнение энергетического потенциала, который учитывает все усиления и потери уровня сигнала при его распространении от передатчика к приемнику через беспроводную среду передачи, кабели, разъемы, различные препятствия (Рисунок 1.6) [10].

В определении энергетического потенциала беспроводной линии связи участвуют следующие параметры:

- эффективная изотропно-излучаемая мощность передатчика (Equivalent Isotropically Radiated Power, EIRP), являющаяся суммой выходной мощности передатчика и коэффциента усиления антенны за вычетом потерь в антенном кабеле разъемах передающего тракта;
- потери пр распротранении в свободном протранстве;

 чувствительность приемника, потери в антенном кабеле и коэффициент усиления антенны приемника.

Полное уравнение можно записать следующим образом:

$$P_{tr} - L_{tr} + G_{tr} - L_{fs} + G_{recv} - L_{recv} = SOM + P_{recv}, \tag{1.1}$$

где:

- $-P_{tr}$ мощность передатчика, дБм;
- $-L_{tr}$ потери сигнала на антенном кабеле и разъемах передающего тракта, дБ;
- $-G_{tr}$ усиление антенны передатчика, дБ;
- $-L_{fs}$ потери в свободном пространстве, дБ;
- $-G_{recv}$ усиление антенны приемника, дБ;
- $-L_{recv}$ потери сигнала на антенном кабеле и разъемах приемного тракта, дБ;
- P_{recv} чувствительность приемника, дБм;
- SOM запас на замирание сигнала, дБ.

Энергетический потенциал указывает на качество канала передачи радиосигналов.

Рисунок 1.6 — Энергетический потенциал линии связи.

На стороне передатчика выходной мощностью является величина, равная мощности, подводимой к антенне. Данная величина из паспортной доку-

ментации устройства имеет различные значения в зависимости от каждого поддерживаемого оборудованием стандарта и конкретных скоростей. В реальной условиях значения мощностей, как правило могут незначительно отклоняться от паспортных значений. Предельная мощность передатчика определяется государственными органами. Для примера, для БШС семейства протоколов IEEE 802.11 не превышает 100 мВт или, выражая в децибеллах, не боллее 20 дВм [48].

Затухание сигнала могут происходить в кабелях антенны, зависящие от типа кабеля и рабочей частоты. При подключении антенны желательно обходиться минимальной длиной кабеля. Потери сигнала в антенном кабеле принимают 0,1...2 дБ/м. В технической документации в потерях кабеля также учтена величина затухания в кабельных разъемах.

Усиление антенны описывает фокусирование переданного или полученного сигнала. Значения даны относительно полуволнового диполя или теоретического изотропного излучателя [8].

К потерям при распространении относятся все виды затухания сигнала, которые имеют место при его распространении от антенны передатчика к антенне приемника. Самая простая оценка потерь в свободном пространстве получается, если предположить, что сигналы передаются во всех направлениях, то есть мощность излучается одинаково во всех направлениях, и в зоне передачи или вокруг нее нет препятствий, которые могли бы повлиять на распространение электромагнитных сигналов [49].

Существуют большое количество моделей распространения. Каждая имеет свои плюсы и минусы. В зависимости от конкретных задач при проектировании возможно использовать наиболее подходящую. Ниже будут представлены модели распространения, широко используемые для сетей БШС на открытой местности.

1.3.2 Модель потерь в свободном пространстве

При распространении сигнала от передатчика к приемнику часть сигнала рассеивается, по этой причине мощность на приемной стороне будет уменьшаться с увеличением расстоянии от передающей антенны. Данное затухание

сигнала называют потерями в свободном пространстве (Free Space Path Loss, FSPL).

Потери при распространении между двумя неизотропными антеннами в свободном пространстве (в воздухе) можно выразить из уравнения Фрииса (1.2):

Мощность принимаемой антенны рассчитывается из уравнения передачи Фрииса:

$$\frac{P_{recv}}{P_{tr}} = G_{tr}G_{recv}\left(\frac{c}{4\pi Rf}\right)^2,\tag{1.2}$$

где c — скорость света, f — частота, R расстояние между приемной и передающей антенной.

$$L_{fs} = 20 \lg F + 20 \lg R - G_{tr} - G_{recv} + K, \tag{1.3}$$

где F – центральная частота, на котором работает канал связи, R – расстояние между приемной и передающей антенной и K – константа.

Константа K зависит от размерностей частоты и расстояния:

- для частоты, выраженной в $\Gamma\Gamma$ ц, и расстояния, выраженная в км, константа K равна 92.45;
- для частоты, выраженной в М Γ ц, и расстояния, выраженная в км, константа K равна 32.4;
- для частоты, выраженной в М Γ ц, и расстояния, выраженная в м, константа K равна -27.55.

Потери L_{fs} выразим из уравнения энергетического потенциала канала связи (1.1) как:

$$L_{fs} = P_{tr} - L_{tr} + G_{tr} + G_{recv} - L_{recv} - P_{recv} - SOM. \tag{1.4}$$

Запас на замирание сигнала, SOM, учитывает все возможные факторы отрицательно влияющие на дальность связи. К таким факторам относятся:

- температурный дрейф чувствительности приемника и выходной мощности передатчика;
- влияние погодных условий на передачу сигнала: туман, снег, дождь;
- потери в антенно-фидерном тракте, возникающие из-за рассогласования фидера и антенны.

Приемник испытывает совокупное воздействие всех этих физических факторов, которые различаются в зависимости от положения приемника и передатчика в среде распространения.

Минимальная значения величины запаса на замирание (System Operating Margin, SOM) должна быть не меньше 10 дБ. Считается, что 10-ти децибельный запас по усилению достаточен для инженерного расчета, но на практике зачастую используют значение 20...30 дБ [10].

Максимально возможную дальность связи между приемником и передатчиком выводится из уравнений (1.3) и (1.4):

$$R = 10^{\frac{L_{fs} - 20 \lg F + G_{tr} + G_{recv} - K}{20}}. (1.5)$$

1.3.3 Модель распространения SUI

Модель распространения SUI (Stanford University Intern) предложена рабочей группой, занимающаяся исследованием беспроводной широкополосной сети IEEE 802.16 [50]. Модель включена в стандарты IEEE и широко используется в WiMax, а также в LTE [51]. Подходит для использования в сельской местности с различным типом рельефа, а также в небольших населенных пунктах. Модель испытана на равнинах, пересеченной, холмистой местности и лесных массивах. SUI модель используется для диапазона частот 1900 МГц — 11 Ггц [52]. Высоты антенн БС в диапазоне от 10 до 80 м, высота антенны мобильного устройства — от 2 до 10 м, расстояние между БС и устройством от 0,1 до 8 км.

Грубая оценка потери сигнал описывается с помощью модели SUI как

$$L_0 = A + 10\gamma \lg (R/R_0), \qquad (1.6)$$

$$A = 20 \lg \left(\frac{4\pi R_0}{\lambda}\right)$$

И

$$\gamma = a - bh_t + \frac{c}{h_t},$$

где R — дальность связи, R_0 — минимальная разрешенная дальность (100 м), $\lambda = c/f$ — длина волны, f — частота в МГц, h_t — высота антенны БС. Параметры a,b и c, определяющие следующие типы местности (Таблица 1):

- тип А холмистая местность или густые лесные массивы;
- тип В пересеченная местность или полугустые лесные массивы;
- тип С открытые поля.

Таблица 1 — Численные значения параметров модели SUI.

Параметры модели	Местность А	Местность В	Местность С
a	4,6	4	3.6
b	0,0075	0,0065	0.005
c	12,6	17,1	20

Формула (1.6) была получена эмпирически для несущей частоты 2 ГГц и высоты приемника 2 м. Для использования модели с другими частотами и высотами необходимо добавить поправочные коэффициенты

$$L_{fs} = L_0 + \Delta L_f + \Delta L_h + s, \tag{1.7}$$

где ΔL_f – корректирующий коэффициент для частот свыше 2 ГГц ΔL_h – корректирующий фактор высоты антенны устройства (м) s – корректирующий фактор теневого эффекта, имеющий значения в диапазоне 8,2 < S < 10,6 дБ. Параметр ΔL_f рассчитывается

$$\Delta L_f = 6 \lg (f/2000),$$

параметр ΔL_h выбирается исходя из выбора типа местности

$$\Delta L_h = egin{cases} -10.8\lg{(h_r/2)} & \text{для типа A и B,} \\ -20\lg{(h_r/2)} & \text{для типа C,} \end{cases}$$

где h_r – высоты антенны устройства.

Из уравнений (1.3) и (1.7) можно вывести дальность действия связи:

$$R = 10^{\left(\frac{L_{fs} - L_0 - \Delta L_f - \Delta L_h - s - A}{10\gamma} + \lg R_0\right)}$$
(1.8)

1.3.4 Модель двух лучевого распространения

Двух лучевая модель описывает мощность принятого сигнала как интерференцию двух копий переданного сигнала: первая — луч прямой видимости, вторая — отраженная от поверхности [53]. Два луча электромагнитных волн от передатчика приходят в приемник с определенной разностью фаз и амплитуд. Разность фаз происходит из-за дополнительного времени распространения волны, отраженного от земли [54, 55, 56, 57].

Мощность принимаемого сигнала, в соответствии с двухлучевой моделью равна

$$P_{recv} = \frac{P_{tr} \cdot G_{tr} \cdot G_{recv} \cdot h_{tr}^2 \cdot h_{recv}^2}{R^4}, \tag{1.9}$$

где P_{recv} – чувствительность приемника, P_{tr} – мощность передатчика, G_{tr} – усиление антенны передатчика, G_{recv} – усиление антенны приемника, h_{tr} – высота передатчика, h_{recv} – высота приемника, R – расстояние между приемником и передатчиком.

Потери в свободном пространстве из формулы (1.9) вычисляются как:

$$L_{fs} = 40 \lg R - 10 \lg G_{tr} - 10 \lg G_{recv} - 20 \lg h_{tr} - 20 \lg h_{recv}, \tag{1.10}$$

Тогда из формул (1.3) и (1.10) дальность рассчитывается как

$$R = 10^{\frac{L_{fs} + 10 \lg G_{tr} + 10 \lg G_{recv} + 20 \lg h_{tr} h_{recv}}{40}}. (1.11)$$

1.3.5 Модель Окамура-Хата

Модель распространения [58] сигнала используется для частотного диапазона 150-1500 МГц, расстояние между БС и абонентским устройством 1-100 метров, высота антенн БС 30-200 метров, высоты антенн абонентских устройств 1-10 метров, дальности телекоммуникационной связи 1-20 км. Модель Окамура-Хата учитывает особенности территории и плотность застройки: открытая сельская местность, пригородная местность и городская местность. Для каждого случая выражается свой расчет потерь.

Городская (Urban) местность.

$$L_u = 69.55 + 26.16 \lg f_c - 13.82 \lg h_b - a(h_m) + + (44.9 + 6.55 \lg h_b) \lg R,$$
(1.12)

$$L_{fs} = L_u, (1.13)$$

где f_c – несущая частота, h_b – высота антенн БС, h_m – высота антенны абонентского устройства, $a(h_m)$ – поправочный коэффициент.

Поправочный коэффициент $a(h_m)$ выражается для малых и средних городов

$$a(h_m) = (1.1\lg f_c - 0.7)h_m - (1.56\lg f_c - 0.8)$$
(1.14)

и для больших городов

$$a(h_m) = \begin{cases} 8.29(\lg(1.54h_m))^2 - 1.1, & 150 \leqslant f_c \leqslant 200, \\ 3.2(\lg(11.75h_m))^2 - 4.97, & 400 \leqslant f_c \leqslant 1500. \end{cases}$$
(1.15)

Пригородная местность.

$$L_{fs} = L_u - 2(\lg(f_c/28))^2 - 5.4.$$
 (1.16)

Сельская (открытая) местность.

$$L_{fs} = L_u - 4.78(\lg(f_c))^2 + 18.33\lg(f_c) - 40.94.$$
 (1.17)

1.3.6 Расчет параметров БС, необходимых для задачи оптимизации

Используя любую из представленных моделей распространения (уравнения (1.5), (1.8) или (1.11)) можно рассчитать теоретическое максимальную дальность связи R_{jq} между базовыми станциями и радиусом покрытия r_j с предположением об отсутствии препятствий, отражений, влияния контуров

местности и т. д. Это допущение приемлемо для нашего случая с открытой местностью.

Рисунок 1.7 — Соединение между станциями.

Для расчета дальности связи R_{jq} (Рисунок 1.7), базовые станции s_j и s_q будут рассматриваться как станции $nepe \partial am uk$ и npue mhuk, соответственно. Будем считать, что станции оборудованы направленными антеннами с усилениями G_{tr}^R и G_{recv}^R .

Рисунок 1.8 — Покрытие станции

Каждая базовая станция оснащена всенаправленной антенной с заданным усилением антенны G^r_{tr} . Данная антенна необходимо для покрытия заданной области.

При вычислении радиуса покрытия r_j (Рисунок 1.8) базовая станция будем считать nepedamukom, а пользовательское устройство npuemhukom.

1.4 Оценка характеристик производительности сети с помощью стохастических моделей массового обслуживания

В данной работе рассматривается задача области телекоммуникационного покрытия при проектировании БШС. С увеличением дальности телекоммуникационного покрытия сети ухудшается качества передачи: уменьшается мощность передаваемого сигнала, и в свою очередь падает пропускная способность. В связи с этим одной из важнейших задач при проектировании является оценки характеристик производительности будущей сети. Одной из такой характеристикой является время межонцевой задержки. Данная характеристика представляет собой время необходимое для передачи пакета через сеть от источника до места назначения.

1.4.1 Время передачи пакета в канале

Структура кадра Wi-Fi

Основой стандарта 802.11 является распределенная функция координации DCF (Distributed coordination function). Согласно данному механизму, станция, желающая передать пакет данных, слушает шумы в передающей среде в течение заранее определённого периода времени. Если передающая среда свободна, станция может передавать пакеты. В противном случае станция ждет определенное количество времени, прежде чем опять предпринять попытку отправки пакета.

Время передачи пакета в беспроводной среде, главным образом зависит от коллизии. Протокол 802.11 борется с данной проблемой с помощью метода множественного доступа к среде с прослушиванием среды и избежанием коллизий (CSMA/CA, Carrier-sense multiple access with collision avoidance), когда станции выполняют процедуру отсрочки (backoff procedure) передачи для всех узлов, которые ожидают передачи. Для решений проблемы "скрытой станции"стандарт поддерживает механизм RTC/CTS (Рисунок 1.9).

Рисунок 1.9 — Процедура Backoff

На МАС-подуровне для определения состояния среды передачи существуют межкадровые интервалы (Inter Frame Space, IFS) — периоды ожидания между передачей кадров. В стандарте определено несколько типов межкадровых интервалов:

- уменьшенный межкадровый интервал (Reduced IFS, RIFS), используется в некоторых случаях, когда необходимо уменьшить накладные расходы при передаче;
- короткий межкадровый интервал (Short IFS, SIFS), необходим беспроводному устройству для обработки принятого кадра и ответом об его получении;
- межкадровый интервал функции (PCF IFS, PIFS);
- межкадровый интервал функции (DCF IFS, DIFS);
- арбитражный межкадровый интервал (Arbitration IFS, AIFS), используется устройствами для получения доступа к среде с помощью метода EDCA, поддерживающими QoS (Quality Of Service);
- расширенный межкадровый интервал (Extended IFS, EIFS), является самым длинным интервалом, используется устройством в случае, если кадр пришел с ошибкой.

В течение времени равному интервалу DIFS, станция, желающее передать кадр должна определить состояние среды. По истечению времени DIFS, если среда свободна, начинается процедура отсрочки. Станция начинает период молчания случайной длины, равномерно распределенного в интервале [0, CW], где CW – это окно конкуренции (Contetion Window) равное целому числу из интервала $CW_{min} << CW << CW_{max}$. Далее в соответствии с алгоритмом RTS/CTS каждый узел сети, перед тем как послать данные в «эфир», сначала отправляет специальное короткое сообщение, которое называется RTS (Ready To Send). Это говорит о готовности узла к отправке данных. Такое RTS-сооб-

щение, содержащее информацию о продолжительности предстоящей передачи и об адресате, доступно всем узлам в сети, если только они не скрыты от отправителя. Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения NAV (Network Allocation Vector). Приемная станция, получив сигнал RTS, отвечает посылкой сигнала CTS (Clear To Send), свидетельствующего о готовности станции к приему информации через интервал SIFS. После успешном получения кадра CTS передающая станция выжидает время SIFS и посылает пакет данных. По завершению приемная станция должна послать передатчику кадр АСК, подтверждающий безошибочный прием. Если подтверждение нет, передатчик делает вывод об ошибке [29]. В таком случае отправитель удваивает период молчания и повторяет передачу кадра, продолжая экспоненциально увеличивать длину паузы. Увеличение СW происходит, пока кадр успешно не будет передан или не будет достигнуто максимальное число повторов.

В 802.11е добавили функцию гибридной координации НСF, онсованная на DCF и PCF. В стандарте появился расширенный распределенный доступ к каналу (Enhanced distributed channel access, EDCA). Метод обеспечивает доступ к среде, использую 8 уровней приоритетов пользователей (user priority, IP) и 4 категории доступа (access categories, AC): background (AK_BK), best effort (AK_BE), video (AK_VI), voice (AK_VO). На беспроводном устройстве, реализующем QoS, поддерживается четыре независимые очереди (Рисунок 1.10). Вместо одного таймера DIFS назначаются различные таймеры AIFS и продолжительность CW для каждой категории AC. Когда станция в сети желает начать передачи, она ждет, пока NAV уменьшится до 0. После, в случае, если канал свободен, станция ждет время AIFS и сразу отсчитывает CW до завершения.

Функция НСГ обеспечивает возможность передавать станции сразу последовательность кадров. Когда станция получает доступ к среде передачи, ей выделяется определенный период времени ТХОР(transmisson opportunity). Интервал ТХОР – это время, в течение которого станция может отправлять кадры после того как получит доступ к среде передачи. ТХОР необходим для того, чтобы увеличить пропускную способность высокоприоритетных данных, таких как видео и голос.

Рисунок 1.10 — Очереди с поддержкой QoS

LTE

При формировании информационного ресурса в стандарте LTE используются два метода. Первый метод — мультиплексирование с ортогональным частотным разнесением (Orthogonal Frequency Division Multiplexing, OFDM), используется для нисходящего канала DL от базовой станции к абонентскому устройству. Второй метод — мультиплексирование с частотным разнесением с передачей на одной несущей (Single-Carrier Frequency Division Multiple Access, SC-FDMA), используется для восходящего канала UL от абонентского устройства к базовой станции.

Стандарт LTE на физическом уровне использует технологию Orthogonal Frequency Division Multiplexing (OFDM), решающая проблему межсимвольной интерференции при высокоскоростной передачи с многолучевым распространением сигнала. Технология OFDM предполагает передачу широкополосного сигнала посредством независимой модуляции узкополосных поднесущих. Один OFDM символ содержит набор модулированных поднесущих. Во временной области OFDM-символ включает поле данных и циклический префикс, повторно передаваемый в конце предыдущего символа. Данный префикс необходим для

борьбы с межсимвольной интерференции в приемнике, вследствие многолучевого распространения сигнала. Отраженный сигнал, приходящий с задержкой, попадает в зону префикса и не накладывается на полезный сигнал. В LTE принят шаг между поднесущими $\Delta f = 15~\mathrm{k\Gamma L}$, что соответствует длительности OFDM-символа 66,7 мкс [59].

Для формирования группового сигнала восходящих каналов в сетях LTE используется схема мультиплексирования с частотным разнесением с передачей на одной несущей SC-FDMA. Эта схема может работать в системах, функционирующих как в режиме с временным дуплексированием, так и в режиме с частотным дуплексированием.

Существующий канальный ресурс состоит из ресурсных блоков, каждый из которых включает 12 последовательных поднесущих в частотной области, занимающих полосу 180 к Γ ц, и одного интервала 0,5 мс во временной области. Таким образом, каждый блок ресурсов состоит из $7 \cdot 12 = 84$ ресурсных элементов в случае обычного циклического префикса и $6 \cdot 12 = 72$ ресурсных элементов в случае расширенного циклического префикса [59].

Стандарт поддерживает две структуры кадров: частотный дуплекс (Frequency Division Duplex, FDD) и временной дуплекс (Time Division Duplex, TDD). Практически вся обработка на физическом уровне идентична для FDD и TDD, разница между ними в основном заключается в структуре кадров, как показано на рисунке 1.11. Передача по радиоканалу осуществляется кадрами длиной $T_{\text{кадр}} = 10$ мс. Все временные параметры в спецификации LTE привязаны к минимальному временному кванту $T_s = 1/(2048 \cdot \Delta f)$, где Δf — шаг между поднесущими.

В случае работы FDD имеются две несущие частоты: для передачи по восходящей линии связи (f_{UL}) и для передачи по нисходящей линии связи (f_{DL}) . Каждый кадр состоит из 10 субкадров восходящей линии связи и 10 субкадров нисходящей линии связи [60]. Передача по восходящей и нисходящей линиям связи может происходить одновременно в пределах одной соты. Каждый субкадр состоит из двух смежных слотов длительностью 0,5 мс. При полномдуплексном режиме радиоканалы в восходящем и нисходящем каналах передаются параллельно, но с оговоренным в стандарте сдвигом [34].

В случае работы TDD имеется только одна несущая частота. Передачи по восходящей и нисходящей линиям связи всегда разделены во времени [60]. Для обеспечения ассимметрии трафика восходящего и нисходящего каналов, в TDD поддерживаются 7 различных конфигураций, соответствующих разным соотношениям восходящего и нисходящего каналов (таблица 2). Буква «D» соответствует субкадру нисходящей линии связи, «U» соответствует субкадру восходящей линии связи, а «S» соответствует специальному субкадру. Как видно из таблицы, в субкадрах 0 и 5 всегда осуществляется передача «вниз», а в субкадре, следующим за специальным, всегда осуществляется переда «вверх».

Конфигурация	Периодичность	Номер субкадра									
вверх-вниз	вверх-вниз	0	1	2	3	4	5	6	7	8	9
0	5 мс	D	S	U	U	U	D	S	U	U	U
1	5 мс	D	S	U	U	D	D	S	U	U	D
2	5 мс	D	S	U	D	D	D	S	U	D	D
3	10 мс	D	S	U	U	U	D	D	D	D	D
4	10 мс	D	S	U	U	D	D	D	D	D	D
5	10 мс	D	S	U	D	D	D	D	D	D	D
6	5 мс	D	S	U	U	U	D	S	U	U	D

Таблица 2 — Конфигурации кадра в LTE при временном дуплексе (TDD)

Важной частью любой системы TDD является обеспечение достаточно больших защитных периодов, в течение которых оборудование может переключаться между передачей и приемом без перекрытия передаваемых и принимаемых сигналов. В LTE защитные периоды создаются путем разделения одного или двух субкадров, называемых специальными субкадрами. Информация в специальных субкадрах разделена на три поля: часть нисходящего канала

(Downlnk Pilot Time Slot, DwPTS), защитный период (Guard Period, GP) и часть восходящего канала (– Uplink Pilot Time Slot, UpPTS).

5G NR

В сетях 5G NR передача данных в восходящем UL и нисходящем DL направлениях организуется на основе кадров (frame) длительностью $T_f = 10$ мс. Каждый кадр делится на 10 субкадров (subframe) длительностью $T_{sf} = 1$ мс. Каждый субкадр содержит 2^{μ} слотов. [61, 62].

Одной из ключевых особенностей 5G, открывающая многие преимущества, является тот факт, что расстояние между поднесущими может принимать различные значения, в отличие от LTE, где значение фиксировано и равно 15 кГц. В зависимости от μ (таблица 3) в сетях 5G-NR используются OFDM поднесущие с различной шириной спектра: 15кГц, 30кГц, 60кГц, 120кГц и 240кГц. Количество слотов определяется шириной спектра поднесущей и составляет 1, 2, 4, 8 или 16 слотов, в отличие от сетей LTE, где используется единая структура с двумя слотами на каждый субкадр.

μ	Интервалы		
	поднесущих,	Циклический префикс	Количество слотов
	Δf , к Γ ц		
0	15	Обычный	1
1	30	Обычный	2
2	60	Обычный, Расширенный	4
3	120	Обычный	8
4	240	Обычный	16

Таблица 3 — Интервалы поднесущих

Использование различных частот открывает широкие возможности для гибкой настройки сети при предоставлении тех или иных услуг. Так для приложений критичных к уровню задержек, целесообразно использовать поднесущие с широким спектром при меньшей длительности символа, и наоборот, при передаче трафика широкополосного доступа в интернет и низкоскоростного

трафика интернета вещей – использовать узкий спектр поднесущих. Уплотнение развертывания засчет уменьшения размерами сот и использование высоких частот с большей пропускной способностью может привести к уменьшению задержки радиоинтерфейса.

Рисунок 1.12 — Структура кадра 5G NR

1.4.2 Расчет времени межконцевой задержки

Добавить статью с машинным обучением

Многофазная сеть массового обслуживания с узлами M/M/1

Как уже было отмечено ранее, любая сеть обязана гарантировать качество обслуживания QoS. При проектировании БШС важно оценить характеристики производительности будущей сети. Одной из таких характеристик сети является межконцевая (сквозная) задержка [16, 18, 63, 64, 65, 66, 67, 68, 69, 70, 15, 71],

характеризующее максимальное время передачи пакетов в сети от источника до места назначения.

Для расчета сквозной задержки сети часто используют стохастические модели массового обслуживания [16, 18, 63, 69, 15, 71]. Рассмотрим специальный случай БШС. Все БС связаны последовательно между собой в сеть, образуя линейную топологию. Для расчета межконцевой задержки представим БШС как многофазную сеть массового обслуживания (СеМО) с кросс-трафиком и узлами M/M/1 (Рисунок 1.13). Кросс-трафик подразумевает поступление пакетов с некоторой заданной интенсивностью λ на каждую фазу СеМО. Узлами сети являются БС. Согласно символике Дж. Кендала, обозначение M указывает на показательное распределение случайной величины [72, 73]. Каждая такая БС характеризуется случайными величинами входящего потоком пакетов и временем их обслуживания, принадлежащие экспоненциальному закону распределения. Каждый узел имеет один обслуживающий прибор. Для такой СеМО принято допущение о бесконечном размере буфера, в котором пакеты ожидают своего обслуживания. Данное допущение позволяет получить аналитическое решение, которое возможно использовать для произвольного размера СеМО данной топологии.

Рисунок 1.13 — Се
МО с кросс-трафиком и узлами M/M/1

На вход каждой станции поступает пуассоновский поток. Пуассоновский процесс представляет собой случайный процесс, характеризующийся экспоненциально распределенным временем между событиями. Это один из наиболее важных случайных процессов в теории вероятностей, который широко используется для моделирования поведения трафика и входов во многих коммуникационных сетях и системах [70, 71, 69, 68].

В пуассоновском процессе события происходят непрерывно и независимо друг от друга. Функция распределения имеет вид [72, 73]:

$$P(X < x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0; \\ 0, & x < 0. \end{cases}$$

Для входящего потока, интервалы между поступлениями заданны случайной величиной с экспоненциальным распределением и интенсивностью λ . Время обслуживания на узле задана также экспоненциальным распределением и интенсивностью μ .

По теореме Бурке [74], поток на выходе узла M/M/1, а значит на входе каждой последующей фазы тоже пуассоновский. Интенсивность на выходе каждой фазы равна суммарной интенсивности всех входящих потоков с интенсивностями λ .

Пропускная способность на практике часто составляет половину от заданной в спецификации оборудования [10, 75]. Интенсивность времени обслуживания рассчитывается по формуле:

$$\mu_j = 0.5 \cdot p_j / w,$$

где: p_j - пропускная способность j-ой станции, Мбит/с; w - средний размер пакета, Мбит.

Для каждой станции коэффициент загрузки равен:

$$\rho_j = \frac{\sum \lambda}{\mu_j} = \frac{q \cdot \lambda}{\mu_j} < 1,$$

где q — число входящих потоков. Условие $ho_j < 1$ является необходимым и достаточным условием существования стационарного режима функционирования CeMO.

Далее по формуле Литтла [76] можно рассчитать время задержки на каждой станции:

$$\overline{T_j} = \frac{\rho_j}{1 - \rho_j} \cdot \frac{1}{q \cdot \lambda}.$$

Тогда межконцевая задержки в сети равна

$$\overline{T} = \sum \overline{T_j}. (1.18)$$

Оценка времени межкоцневой задержки с помощью стохастической модели массового обслуживания

Рисунок 1.14 — Прогнозная модель времени межконцевой задержки

поправить рисунок

Существуют более сложные модели очередей для оценок характеристик с более сложными видами распределения входящего трафика и времени обслуживания. Адекватные оценки дают модели с коррелированными входным потоком [77, 78, 16, 15]. Для аппроксимации времени обслуживания в беспроводных каналах используют фазовые распределения [78, 16, 15, 79, 80] К сожалению, такие модели труднорешаемы и использование их в задачах оптимизации нецелесообразно в связи с большими временными затратами на расчет. Исследования таких СеМО представлены в работе [81], в которой был предложен метод калибровки моделей массового обслуживания с помощью имитационного моделирования в среде NS-3 БШС протокола IEEE 802.11n. На вход поступали пакеты, сгенерированные по экспоненциальному закону. С помощью NS-3 была получена выборка, для которой было восстановлено PH-распределения по трем

моментам для случая с узлами M/PH/1/N и экспоненциальное распределение по среднему значению для случая с узлами M/M/1/N. По умолчанию в NS-3 размер буфера MAC-уровня составляет N=500 [82]. Сравнение моделей представлено на рисунке 1.15. Также представлено модель M/M/1 с бесконечным буфером. Как видно их графиков CeMO с узлами M/M/1 показывает достаточное приближение. Выбор модели с бесконечным буфером обусловлен тем, что производители не указывают в документации размер выделенной памяти для хранения пакетов в своем оборудовании и определение его размера является отдельной большой задачей. Из результатов сравнения видно, что M/M/1/N и M/M/1 отличаются несущественно. Потери пакетов, часто происходят не из-за переполнения буфера памяти, а коллизий и потерь в беспроводном канале. Существенным преимуществом CeMO с узлами M/M/1 над другими более сложными моделями является наличие быстрого аналитического решения.

Рисунок 1.15 — Сравнение моделей массового обслуживания с данным NS-3

В данном исследовании было решено использовать аналитическую модель CeMO с узлами M/M/1 для задачи оптимального размещения. Согласно предложенной концепции проектирования, в дальнейшем полученную БШС, после этапа синтеза топологии, можно будет проверить на более сложных моделей. Этап включает в себя математическое, имитационное моделирования для оценок характеристик производительности как время задержек, длины очередей, пропускная способность, вероятность потери пакетов и т.к. Такой подход проектирования позволяет провести комплексную проверку соответствия QoS для полученного размещения BC.

1.5 Выводы по главе 1

В главе представлены следующие результаты исследования:

- 1. Обоснована актуальность внедрения БШС в рамках глобальной цифровой трансформации. Представлена актуальность внедрения современных БШС в рамках интеллектуальных транспортных систе: VANET сети, железные дороги, линии метрополитена и в рамках «Индустрия 4.0» нефтегазового сектора.
- 2. Представлено комплексное проектирование БШС и место в нем задачи синтеза топологий.
- 3. Проведен анализ современных беспроводных широкополосных технологий, широко использующихся при проектировании БШС вдоль протяженных участков автомобильных и железных дорог, линий метрополитена и магистральных трубопроводов.
- 4. Проведен обзор моделей для расчета дальности телекоммуникационной связи. Представлены модели затухания сигнала в свободном пространстве, используемые для развертывания сетей в открытой местности: сети семейства протоколов IEEE 802.11, LTE и 5G.
- 5. Был проведен анализ канала данных современных БШС для оценки времени передачи пакетов.
- 6. Оценка задержек в каналах БШС проводится с использованием стохастических моделей массового обслуживания. Проведен анализ моделей очередей, широко используемых для оценки производительности сетей телекоммуникации. Для оценки времени задержки в сети в ходе поиска оптимального размещения была выбрана аналитическая модель СеМО с пуассоновским входным потоком и экспоненциальным временем обслуживания на фазах.

Результаты исследования, представленные в этой главе, были опубликованы в работах [81, 83, 84].