

COMS 4030A/7047A Adaptive Computation and Machine Learning

Hima Vadapalli

Semester I, 2022

Perceptron

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\boldsymbol{\theta}}(\boldsymbol{x})$ should give $p(y=1\mid \boldsymbol{x};\boldsymbol{\theta})$
 - Want $0 \le h_{\boldsymbol{\theta}}(\boldsymbol{x}) \le 1$
- Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Linear Classifiers

- A **hyperplane** partitions \mathbb{R}^d into two half-spaces
 - Defined by the normal vector $oldsymbol{ heta} \in \mathbb{R}^d$
 - heta is orthogonal to any vector lying on the hyperplane

• Consider classification with +1, -1 labels ...

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\intercal} \boldsymbol{x})$$
 where $\operatorname{sign}(z) = \left\{ \begin{array}{cc} 1 & \text{if } z \geq 0 \\ -1 & \text{if } z < 0 \end{array} \right.$

- Note that:
$$\pmb{\theta}^\intercal \pmb{x} > 0 \implies y = +1$$
 $\pmb{\theta}^\intercal \pmb{x} < 0 \implies y = -1$

The Perceptron

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}) \text{ where } \operatorname{sign}(z) = \left\{ \begin{array}{ll} 1 & \text{if } z \geq 0 \\ -1 & \text{if } z < 0 \end{array} \right.$$

• The perceptron uses the following update rule each time it receives a new training instance $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$

$$\theta_{j} \leftarrow \theta_{j} - \frac{\alpha}{2} \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)}$$
either 2 or -2

- If the prediction matches the label, make no change
- Otherwise, adjust θ

The Perceptron

Re-write as $\theta_j \leftarrow \theta_j + \alpha y^{(i)} x_j^{(i)}$ (only upon misclassification)

– Can eliminate α in this case, since its only effect is to scale θ by a constant, which doesn't affect performance

Perceptron Rule: If $m{x}^{(i)}$ is misclassified, do $m{ heta} \leftarrow m{ heta} + y^{(i)} m{x}^{(i)}$

Why the Perceptron Update Works

Why the Perceptron Update Works

- Consider the misclassified example (y = +1)
 - Perceptron wrongly thinks that $m{ heta}_{
 m old}^{\sf T} m{x} < 0$
- Update:

$$\theta_{\text{new}} = \theta_{\text{old}} + yx = \theta_{\text{old}} + x$$
 (since $y = +1$)

Note that

$$egin{aligned} oldsymbol{ heta_{
m new}} oldsymbol{x} &= (oldsymbol{ heta_{
m old}} + oldsymbol{x})^\intercal oldsymbol{x} \ &= oldsymbol{ heta_{
m old}}^\intercal oldsymbol{x} + oldsymbol{ heta^\intercal x} \ &= \|oldsymbol{x}\|_2^2 > 0 \end{aligned}$$

- Therefore, $m{ heta}_{
 m new}^{\intercal}m{x}$ is less negative than $m{ heta}_{
 m old}^{\intercal}m{x}$
 - So, we are making ourselves more correct on this example!

The Perceptron Cost Function

The perceptron uses the following cost function

$$J_p(\theta) = \frac{1}{n} \sum_{i=1}^n \max(0, -y^{(i)}\theta^T x^{(i)})$$

Where $\max(0, -y^{(i)}\theta^Tx^{(i)})$ = 0 if prediction is correct otherwise it is the confidence in the misprediction

Online Perceptron Algorithm

When an error is made, moves the weight in a direction that corrects the error

Improving the Perceptron

- The Perceptron produces many θ 's during training
- The standard Perceptron simply uses the final heta at test time
 - This may sometimes not be a good idea!
 - Some other θ may be correct on 1,000 consecutive examples, but one mistake ruins it!
- Idea: Use a combination of multiple perceptrons
 - (i.e., neural networks!)
- **Idea:** Use the intermediate θ 's
 - Voted Perceptron: vote on predictions of the intermediate θ 's
 - Averaged Perceptron: average the intermediate θ 's