10. Allika kodeerimine

Arvutivõrgud IEE1100 Ivo Müürsepp

Allika mudel

Allika Entroopia

 Shannoni entroopia on informatsiooniallika poolt toodetava informatsiooni keskmine hulk.

$$H(A) = \sum_{j=1}^{N} p(a_j)I(a_j) = -\sum_{j=1}^{N} p(a_j)\log_2 p(a_j)$$

Allika Entroopia

FIGURE 2.1 H_n in bits per letter for n = 1, ..., 12 for Wealth of Nations.

Kood

 Koodi C all peetakse silmas ühest vastavust allika sümbolite a_i ja neid sümboleid kirjeldavate digitaalsete sümbolite (koodsõnade) c_i vahel.

USASCII code chart

	6 D 5					° ° °	° 0 -	0 - 0	0 ,	- 00	0 -	1-0	1 1
	b ₄	b 3	p s	b	Row	0	1	2	3	4	5	6	7
`]	0	0	0	0	0	NUL .	DLE	SP	0	@	P	``	Р
	0	0	0	_	1	SOH	DC1	!	1	Α.	· O	0	q
	0	0	_	0	2	STX	DC2	=	2	В	R	b	r
	0	0	-	_	3	ETX	DC3	#	3	C	S	С	\$
	0	1	0	0	4	EOT	DC4	•	4	D	Т	đ	1
	0	_	0	1	5	ENQ	NAK	%	5	Ε	J	e	U
	0	1	1	0	6	ACK	SYN	8	6	F	>	f	٧
	0	_	1	1	7	BEL	ETB	•	7	G	W	g	8
	_	0	0	0	8	BS	CAN	(8	н	X	h	×
	_	0	0	1	9	нТ	EM)	9	1	Y	i	у
	_	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	1	1	11	VT	ESC	+	;	К	С	k .	{
	١	-	0	0	12	FF	FS	•	<	L	\	1	1
	1	1	0	1	13	CR	GS	-	=	М	נ	E	}
	•	.1	1	0	14	so	RS		>	N	^	n	>
	1	1	1		15	Sl	US	/	?	0	_	0	DEL

Koodi parameetrid

Koodsõna keskmine pikkus

$$L = \sum_{j=1}^{N} p(a_j) n(a_j)$$

• Koodsõna keskmise pikkuse ja allika entroopia erinevust nimetatakse koodi liiasuseks (*redundancy*)

$$D = L - H$$

Morse kood

Α	i	-	•	S	•••	1	•
В		K		Т	-	2	••
С		L	•-••	U	••-	3	•••
D		М		٧	•••-	4	•••-
Е		N		W	•	5	****
F	••-•	0		Χ		6	
G		Р	••	Υ		7	
Н	****	Q		Z		8	
	••	R	•-•	0		9	

Analoog-digitaalmuundus

- Analoogsignaal pidev argumendis ja väärtuses s(t).
- Esimese sammuna fikseeritakse analoogsignaali väärtus mingil lõplikul hulgal ajahetkedel $s(n\cdot\Delta t)$.
- Protsessi nimetatakse diskreetimiseks.
- Nyquist-Shannon-Kotelnikovi teoreem:
 - Kui signaali s(t) ribalaius on B hertsi, siis on see signaal täielikult määratud disreetsete väljavõtetega ajavahemike 1/2B sekundi tagant.
 - Vajalik diskreetimissamm $\Delta t \leq 1/(2B)$
 - Põhiriba signaali korral diskreetimissagedus $f_s \ge 2f_m$

Diskreetimine

Aliased

Kõrge sagedusega nelinurksignaal

Kvantimine

- Signaali väärtus diskreetsetel ajahetkedel $s(n \cdot \Delta t)$ mõõdetakse mingi lõpliku täpsusega $\pm q/2$ ja salvestatakse digitaalsel kujul bittide arvuga n_B .
- Kvantimissammu q suurus on määratud bittide arvuga n_B ja sisendpinge maksimaalse muutumisvahemikuga U_{pp} (- U_m ... U_m)

$$q = \frac{U_{pp}}{2^{n_B} - 1} \approx \frac{U_{pp}}{2^{n_B}} = \frac{U_m}{2^{n_B - 1}}$$

• Kvantimisega kaasneb alati pöördumatu informatsioonikadu, mida iseloomustab kvantimismüra võimsusega

$$N = \frac{q^2}{12}$$

• Signaal-kvantimismüra suhe:

$$SNR \approx 6 \cdot n_B + 4.7 \, [dB]$$

Kvantimismüra

G.711 koodek

- 300-3400Hz
- $f_s = 8 \text{kHz}$
- r = 64kbit/s
- A ja μ seadused.
 - A = 87,6

$$|u_{v}| = \begin{cases} \frac{A|u_{s}|}{1 + \ln(A)} & 0 \le |m| \le \frac{1}{A} \\ \frac{1 + \ln(A|u_{s}|)}{1 + \ln(A)} & \frac{1}{A} \le |m| \le 1 \end{cases}$$

YUV kodeering

- Võimaldab värvusinfo suuremat kompressiooni
- Tagas omal ajal ühilduvuse mustvalge ja värvitelevisiooni vahel (analoog).
- Heleduskomponent Y (ITU-R BT.601)

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

Värvivahesignaalid U (blue projection) ja V (red projection)

$$\mathbf{U} = 0.492 \cdot (\mathbf{B} - \mathbf{Y})$$

$$\mathbf{V} = 0.877 \cdot (\mathbf{R} - \mathbf{Y})$$

Digitaaltehnikas Cb = U ja Cr = V (YCbCr)

Värvivahesignaalide aladiskreetimine

- Chroma Subsampling
- Inimsilma eraldusvõime on heleduse suhtes parem kui värvuse suhtes.
- Viimast asjaolu saab ära kasutada vähendamaks kujutise salvestamiseks kuluvat informatsioonihulka.
- Aladiskeetimise skeem esitatakse üldjuhul kolme arvuna J:a:b (näiteks 4:2:2)
 mis kirjeldab heledus- ja värvivahesignaalide diskreetide arvu J piksli laiuses
 ja kahe piksli kõrguses alas:
- J: Vaadeldava ala laius, tavaliselt 4
- a: Värvivahesignaali diskreetide arv (Cr, Cb) esimeses J pikslit sisaldavas reas.
- b: Värvivahesignaali muutuste arv (Cr, Cb) esimese ja teise rea vahel

Värvusinfo skeem (4x2 plokk)

Joonis: https://commons.wikimedia.org

Materjalid

- All About Circuits. Introduction to Digital-Analog Conversion.
 https://www.allaboutcircuits.com/textbook/digital/chpt-13/digital-analog-conversion/, 03.31.2018
- ITU-T Recommendation G.711 http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.711-198811-I!!PDF-E&type=items, 03.31.2018

