Artin: Symmetry

James Pagan

January 2024

Contents

1	Isometries		
	1.1	Definition	2
	1.2	Orthogonal Linear Operators	2
	1.3	Properties	4
	1.4	The Homomorphism $M_n \to O_n$	5
2 Iso	Ison	Isometries in \mathbb{R}^2	
	2.1	Algebraic Description	5
	2.2	Geometric Description	6
3	Fin	ite Groups of O_2 and M_2	8

1 Isometries

1.1 Definition

An **isometry** of \mathbb{R}^n is a distance preserving map f from \mathbb{R}^n to itself — a map such that for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$,

$$||f(\mathbf{v}) - f(\mathbf{w})|| = ||\mathbf{v} - \mathbf{w}||.$$

Isometries will map figures to congruent figures. It is easy to see that the composition of isometries is an isometry.

1.2 Orthogonal Linear Operators

Theorem 1. The following three conditions on a map $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ are equivalent:

- 1. φ is an isometry that fixes the origin: $\varphi(0) = 0$.
- 2. φ preserves dot products: $\varphi(\mathbf{v}) \cdot \varphi(\mathbf{w}) = \mathbf{v} \cdot \mathbf{w}$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
- 3. φ is an orthogonal linear operator.

Proof. Suppose (1). As φ is an isometry, $\|\varphi(\mathbf{u})\| = \|\mathbf{u}\|$ for all $\mathbf{u} \in V$. Then for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we utilize an identity expressing the dot product as a norm:

$$\mathbf{v} \cdot \mathbf{w} = \frac{\|\mathbf{v} - \mathbf{w}\|^2 - \|\mathbf{v}\|^2 - \|\mathbf{w}\|^2}{2}$$

$$= \frac{\|\varphi(\mathbf{v}) - \varphi(\mathbf{w})\|^2 - \|\varphi(\mathbf{v})\|^2 - \|\varphi(\mathbf{w})\|^2}{2}$$

$$= \varphi(\mathbf{v}) \cdot \varphi(\mathbf{w}),$$

which implies (2). We now utilize the following claim:

Claim 1. If $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ and $\mathbf{a} \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{b}$, then $\mathbf{a} = \mathbf{b}$.

Proof. Suppose $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ such that $\mathbf{a} \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{b}$. Then

$$(\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = (\mathbf{a} \cdot \mathbf{a}) - 2(\mathbf{a} \cdot \mathbf{b}) + (\mathbf{b} \cdot \mathbf{b}) = 0.$$

Hence, $\mathbf{a} - \mathbf{b} = \mathbf{0}$ and $\mathbf{a} = \mathbf{b}$.

Suppose (2). Let \mathbf{v}, \mathbf{w} be arbitrary vectors in \mathbb{R}^n , and define $\mathbf{u} = \mathbf{v} + \mathbf{w}$. Then

$$\begin{split} \varphi(\mathbf{u}) \cdot \varphi(\mathbf{u}) &= \mathbf{u} \cdot \mathbf{u} \\ &= \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) \\ &= \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \\ &= \varphi(\mathbf{u}) \cdot \varphi(\mathbf{v}) + \varphi(\mathbf{u}) \cdot \varphi(\mathbf{w}) \\ &= \varphi(\mathbf{u}) \cdot (\varphi(\mathbf{v}) + \varphi(\mathbf{w})). \end{split}$$

Similarly, we may deduce that

$$\begin{split} \varphi(\mathbf{u}) \cdot (\varphi(\mathbf{v}) + \varphi(\mathbf{w})) &= \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) \\ &= (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) \\ &= (\mathbf{v} \cdot \mathbf{v}) + 2(\mathbf{v} \cdot \mathbf{w}) + (\mathbf{w} \cdot \mathbf{w}) \\ &= \varphi(\mathbf{v}) \cdot \varphi(\mathbf{v}) + 2\varphi(\mathbf{v}) \cdot \varphi(\mathbf{w}) + \varphi(\mathbf{w}) \cdot \varphi(\mathbf{w}) \\ &= (\varphi(\mathbf{v}) + \varphi(\mathbf{w})) \cdot (\varphi(\mathbf{v}) + \varphi(\mathbf{w})). \end{split}$$

Piecing these two equalities together, we conclude through our claim that $\varphi(\mathbf{v}+\mathbf{w}) = \varphi(\mathbf{u}) = \varphi(\mathbf{v}) + \varphi(\mathbf{w})$. Thus φ is a linear operator; it is trivial to prove that φ is orthogonal using the images of the canonical basis of \mathbb{R}^n , which yields (3).

Assume (3). For all $\mathbf{u} \in \mathbb{R}^n$, let $u_1, \dots, u_n \in \mathbb{R}^n$ be unique scalars such that $\mathbf{u} = u_1 \mathbf{e}_1 + \dots + u_n \mathbf{e}_n$. Then by the Pythagorean Theorem for inner product spaces,

$$\|\varphi(\mathbf{u})\| = \|\varphi(u_1\mathbf{e}_1 + \dots + u_n\mathbf{e}_n)\|$$

$$= \|u_1\varphi(\mathbf{e}_1) + \dots + u_n\varphi(\mathbf{e}_n)\|$$

$$= \sqrt{\|u_1\mathbf{e}_1\|^2 + \dots + \|u_n\mathbf{e}_n\|^2}$$

$$= \sqrt{u_1^2 + \dots + u_n^2}$$

$$= \|\mathbf{u}\|.$$

For all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we may substitute \mathbf{u} for $\mathbf{v} - \mathbf{w}$ (and use the fact that $\varphi(\mathbf{v} - \mathbf{w}) = \varphi(\mathbf{v}) - \varphi(\mathbf{w})$) to yield that (1) — that φ is an isometry that fixes the origin.

We conclude that (1), (2), and (3) are equivalent conditions.

We conclude that isometries over \mathbb{R}^n are compositions of an orthogonal linear operator and a translation. More precisely, if f is an isometry and $f(\mathbf{1}) = \mathbf{a}$, then $f = t_{\mathbf{a}}\varphi$, where $t_{\mathbf{a}}$ is a translation and φ is an orthogonal lienar operator.

Theorem 2. The expression $f = t_{\mathbf{a}} \varphi$ for an isometry is unique.

Proof. Let f be an isometry. Define $f(\mathbf{0}) = \mathbf{a}$ and define $\varphi = t_{-\mathbf{a}}f$. There are two observations in order:

- 1. φ is an isometry, since φ is a composition of the two isometries f and $t_{-\mathbf{a}}$.
- 2. $\varphi(\mathbf{0}) = \mathbf{0}$, since $\varphi(\mathbf{0}) = t_{-\mathbf{a}}f(\mathbf{0}) = t_{-\mathbf{a}}(\mathbf{a}) = \mathbf{0}$.

Theorem 1 thus implies that φ is an orthogonal linear operator; the unicity of $t_{\mathbf{a}}$ is apparent, and the expression $\varphi = t_{-\mathbf{a}}f$ guarantees that φ is unique.

The composition of two such expressions is defined as follows: if $f = t_{\mathbf{a}}\varphi$ and $g = t_{\mathbf{b}}\psi$ are two isometries, then

$$t_{\mathbf{a}}t_{\mathbf{b}} = t_{\mathbf{a}+\mathbf{b}}$$
 and $\varphi t_{\mathbf{a}} = t_{\varphi(\mathbf{a})}\varphi;$

the last expression is verified by $\varphi(t_{\mathbf{a}}(\mathbf{x})) = \varphi(\mathbf{x} + \mathbf{a}) = \varphi(\mathbf{x}) + \varphi(\mathbf{a}) = t_{\varphi(\mathbf{a})}\varphi(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

1.3 Properties

Theorem 3. The set M_n of all isometries of \mathbb{R}^n forms a group under the operation of composition of isometries.

Proof. We must perform four rather routine calculations:

- 1. Closure: We established earlier that if f and g are isometries, then fg is an isometry
- 2. **Associativity**: The associativity of compositions of isometries follows from the associativity of function composition.
- 3. **Identity**: The identity mapping $f(\mathbf{x}) = \mathbf{x}$ is trivially an isometry.
- 4. **Inverse**: For all isometries $f = t_{\mathbf{a}}\varphi$, note that $f^{-1} = (t_{\mathbf{a}}\varphi)^{-1} = (\varphi)^{-1}(t_{\mathbf{a}})^{-1} = \varphi^{-1}t_{-\mathbf{a}} = t_{\varphi^{-1}(-\mathbf{a})}\varphi^{-1}$; as φ^{-1} is an orthogonal linear operator and $t_{\varphi^{-1}(-\mathbf{a})}$ is a translation, f^{-1} is an isometry.

We conclude that M_n is a group. We call the group of all orthogonal operators O_n

The form $f = t_{\mathbf{a}}\varphi$ depends on our choice of coordinates. If we wish to express f under some coordinate change η , the formula is familiar to Linear Algebra (defining this variant of f as f'):

$$f' = \eta^{-1} f \eta.$$

The determinant of an orthogonal operator on \mathbb{R}^n is ± 1 . The operator is said to be **orientation-preserving** if its determinant is 1 and **orientation-reversing** if its determinant is -1. Rather comically, the maping

$$\sigma: M_n \to \{-1, 1\}$$

that sends an isometry to the determinant of its orthogonal operator is a group homomorphism.

1.4 The Homomorphism $M_n \to O_n$

There is an important homomorphism π defined by dropping the translation of an isometry:

Theorem 4. The mapping $\pi: M_n \to O_n$ for an isometry $f = t_{\mathbf{a}} \varphi$ defined by $\pi(f) = \varphi$ is a surjective homomorphism. Its kernel is the set $\{t_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{R}^n\}$, which is a normal subgroup of M_n .

Proof. Suppose that $f = t_{\mathbf{a}}\varphi$ and $g = t_{\mathbf{b}}\psi$ are two isometries. Then

$$\pi(f)\pi(g) = \varphi\psi = \pi(t_{\mathbf{a}}t_{\varphi(\mathbf{b})}\varphi\psi) = \pi(t_{\mathbf{a}}\varphi t_{\mathbf{b}}\psi) = \pi(fg),$$

so π is a homomorphism. The surjectivity of π follows from the fact that $\varphi \in O_n$ implies $\varphi \in M_n$ and $\pi(\varphi) = \varphi$. As for the kernel, $\pi(f) = I$ implies that $f = t_{\mathbf{a}}$ for some $\mathbf{a} \in \mathbb{R}^n$; the kernel of any homomorphism is a normal subgroup.

2 Isometries in \mathbb{R}^2

2.1 Algebraic Description

To compute in the group M_2 , we choose some special isometries as generators and obtain relations between them. There are three generators of interest to us:

- 1. Translation: $t_{\mathbf{a}}$ by a vector \mathbf{a} : $t_{\mathbf{a}}(\mathbf{x}) = \mathbf{x} + \mathbf{a} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$.
- 2. **Rotation**: ρ_{θ} by an angle θ about the origin: $\rho_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- 3. **Reflection**: r about the \mathbf{e}_1 axis: $r(\mathbf{x}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Theorem 5. Let f be an isometry in \mathbb{R}^2 . Then $m = t_{\mathbf{a}}\rho_{\theta}$ or $m = t_{\mathbf{a}}\rho(\theta)r$, for a uniquely determined vector \mathbf{a} and angle θ , both possibly zero.

Proof. It remains to be proven that all orthogonal linear operators in \mathbb{R}^2 are of the form ρ_{θ} or $\rho_{\theta}r$ for unique θ .

Suppose that φ is an orthogonal operator. As its columns must have norm 1, we may define:

$$\mathcal{M}(\varphi) = \begin{bmatrix} \cos(\theta) & \cos(\phi) \\ \sin(\theta) & \sin(\phi) \end{bmatrix},$$

for some $\theta, \phi \in [0, 2\pi)$. The determinant of this matrix must satisfy

$$\begin{vmatrix} \cos(\theta) & \cos(\phi) \\ \sin(\theta) & \sin(\phi) \end{vmatrix} = \cos(\theta)\sin(\phi) - \sin(\theta)\sin(\phi) = \sin(\theta - \phi) \in \{1, -1\}.$$

Thus, $\theta - \phi \in \{\frac{\pi}{2}, \frac{3\pi}{2}\}$. If $\theta - \phi = \frac{3\pi}{2}$, then

$$\mathcal{M}(\varphi) = \begin{bmatrix} \cos(\theta) & \cos\left(\theta - \frac{3\pi}{2}\right) \\ \sin(\theta) & \sin\left(\theta - \frac{3\pi}{2}\right) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

If $\theta - \phi = \frac{\pi}{2}$, then

$$\mathcal{M}(\varphi) = \begin{bmatrix} \cos(\theta) & \cos\left(\theta - \frac{\pi}{2}\right) \\ \sin(\theta) & \sin\left(\theta - \frac{\pi}{2}\right) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}.$$

The first equation is ρ_{θ} , while the second is $\rho_{\theta}r$. This completes the proof.

2.2 Geometric Description

Theorem 6. Every isometry of the plane has one of the following forms:

- 1. Orientation-Preserving Isometries:
 - (a) **Translation**: A map $t_{\mathbf{a}}$ that sends \mathbf{x} to $\mathbf{x} + \mathbf{a}$.
 - (b) **Rotation**: Rotation of the plane through a nonzero angle θ about some point.
- 2. Orientation-Reversing Isometries:
 - (a) **Reflection**: A bilateral symmetry around a line ℓ .
 - (b) Glide Reflection: Reflection about a line ℓ , followed by a translation by a nonzero vector parallel to ℓ .

Proof. We must first prove (1) (b): that if $f = t_{\mathbf{a}}\rho_{\theta}$ and $\theta \neq 0$, then f is a rotation of the plane through a nonzero angle θ around some point.

Claim 2. For all isometries $f = t_{\mathbf{a}}\rho_{\theta}$, where $\theta \neq 0$, there exists a fixed point of f: a vector \mathbf{x} such that $f(\mathbf{x}) = \mathbf{x}$.

Proof. If $t_{\mathbf{a}}(\rho_{\theta}(\mathbf{x})) = \mathbf{x}$, then $\rho_{\theta}(\mathbf{x}) = \mathbf{x} - \mathbf{a}$ and $(\rho_{\theta} - I)\mathbf{x} = \mathbf{a}$. This equation has a solution if $\rho_{\theta} - I$ is invertible, so we examine its determinant:

$$\det(\rho_{\theta} - I) = \begin{vmatrix} \cos(\theta) - 1 & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) - 1 \end{vmatrix}$$
$$= (\cos(\theta) - 1)^2 + \sin^2(\theta)$$
$$= 2 - 2\cos(\theta)$$
$$= 2(1 - \cos(\theta)).$$

This equals zero when $\cos(\theta) = 1$, which occurs exclusively when $\theta = 0$ in the interval $[0, 2\pi)$. This value is excluded; thus $\rho_{\theta} - I$ has an inverse, and $\mathbf{x} = (\rho_{\theta} - I)^{-1}\mathbf{a}$. A quick computation verifies that $f(\mathbf{x}) = \mathbf{x}$.

Notice that $t_{-\mathbf{x}} \circ f \circ t_{\mathbf{x}}$ is an isometry and satisfies

$$t_{-\mathbf{x}}\circ f\circ t_{\mathbf{x}}(\mathbf{0})=t_{-\mathbf{x}}\circ f(\mathbf{x})=t_{-\mathbf{x}}(\mathbf{x})=\mathbf{0}.$$

Thus, Theorem 1 guarantees that $t_{-\mathbf{x}} \circ f \circ t_{\mathbf{x}} = \varphi$ for some orthogonal linear operator φ ; as φ is orientation-preserving, it is a rotation. Setting $f = t_{\mathbf{x}} \varphi t_{-\mathbf{x}}$ yields that f is a rotation around some point.

Now, we prove facts if f is orientation-reversing: if $f = t_{\mathbf{a}} \rho_{\theta} r$.

Claim 3. Isomtries of the form $f = \rho_{\theta} r$ consist of a reflection across some line through the origin.

Proof. First, we prove that f is constant along some line through the origin. Let $\mathbf{c}(t) = (\cos(t), \sin(t))$ for $t \in [0, 2\pi)$. Now, realize that

$$f(\mathbf{c}(0)) = f(\hat{\mathbf{i}}) = -f(i\,\hat{\mathbf{i}}) = -f(\mathbf{c}(\pi)).$$

If $f(\mathbf{c}(0)) = 0$, then f is constant along the x-axis; otherwise, $f(\mathbf{c}(\mathbf{0}))$ and $f(\mathbf{c}(\pi))$ have different signs, so the Intermediate Value Theorem guarantees that $f(\mathbf{c}(t))$ attains a zero at $s \in (0, \pi)$. Then f is constant along span($\mathbf{c}(s)$).

Whatever the case, denote this line by ℓ , and change coordinates such that ℓ is the \mathbf{e}_1 -axis. Then f is an isometry which fixes the origin, so it is an orthogonal

operator. As \mathbf{e}_1 is kept on its span, it is trivial that \mathbf{e}_2 must be mapped to its reflection across the \mathbf{e}_1 -axis. This demonstrates that f is the desired reflection.

For an isometry $f = t_{\mathbf{a}\rho_{\theta}}r$, let ℓ be the line through the origin that $\rho_{\theta}r$ reflects across; change coordinates such that ℓ is the \mathbf{e}_1 -axis. Our isometry is now of the form $m = t_{\mathbf{b}}r$, where \mathbf{b} is the vector \mathbf{a} with coordinates changed. For (x_1, x_2) , we have that

$$m\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = t_{\mathbf{b}}\left(\begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + b_1 \\ -x_2 + b_2 \end{bmatrix}$$

All points of the form $(*, \frac{1}{2}b_2)$ keep their y-coordinate; thus the line $y = \frac{1}{2}b_2$ remains on its span. Via the same logic in our claim, we conclude that the plane is reflected across this line — with a translation by the vector $b_1\mathbf{e}_1$. If $b_1 = 0$, then m is a reflection; otherwise, m has glide symmetry.

This completes the proof of Theorem 6.

Corollary 1. The glide line of the isometry $t_{\mathbf{a}}\rho_{\theta}r$ is parallel to the line of reflection of $\rho_{\theta}r$.

By similar logic invoked in Claim 2, the group of isometries that fix a vector \mathbf{x} in the plane is the group $t_{\mathbf{x}}O_2t_{-\mathbf{x}}$.

3 Finite Groups of O_2 and M_2

The **dihedral group** D_n has order 2n and is generated by two elements $x, y \in D_n$ that satisfy the relations

$$x^n = e$$
, $y^2 = e$, $yx = x^{-1}y$.

The elements of D_n are of the form $x^i y$, where $i \in \{0, \dots, n-1\}$. When n = 3, the dihedral group is isomorphic to the symmetric group: that is,

$$D_3 \cong S_3$$
.

This does not hold for n > 3, since $|S_n| = n!$ and $|D_n| = 2n$. The dihedral group encapsulates the symmetries of an n-gon.

Theorem 7. If ρ_{θ} is rotation by θ and r is reflection across a line through the origin, then $r\rho_{\theta} = \rho_{-\theta}r$.

Proof. Change coordinates such that the line is the e_1 axis. Then

$$r\rho_{\theta} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \rho_{-\theta}r,$$

as desired. \Box

Theorem 8. Let G be a finite group of O_2 . Then there exists $n \in \mathbb{Z}_{>0}$ such that G is isomorphic to one of the following:

- The cyclic group C_n generated by a rotation ρ_{θ} ,
- The dihedral group D_n generated by a rotation ρ_{θ} and a reflection r across the \mathbf{e}_1 -axis.

Proof. Let $S = \{\theta \mid \theta \in (0, 2\pi), \rho_{\theta} \in G\}$. This set must be finite, since $\{\rho_{\theta} \mid \theta \in S\}$ has the same cardinality and constitutes a subgroup of the finite group G.

If S is nonempty, let $\phi = \min S$. Define n as the order of ϕ as an element of G; then n is the minimum integer such that $n\phi = 2m\pi$ for some $m \in \mathbb{Z}_{>0}$. By the closure of G, the elements

$$\phi, 2\phi, \ldots, (n-1)\phi$$

are all elements of S.

Lemma 1. If $\varphi \in S$, then $\varphi = k\phi$ for some $k \in \{1, ..., n-1\}$.

Proof. Suppose to the contrary that $\varphi \notin \{\phi, 2\phi, \dots, (n-1)\phi\}$. Then for some $j \in \{0, \dots, n-1\}$,

$$j\phi < \varphi < (j+1)\phi$$
.

Adding $(n-j)\phi = -j\phi$ to this inequality yields

$$0 < \varphi - j\phi < \phi$$
.

We conclude by the closure of G that $\varphi - j\phi \in S$, contradicting the minimality of ϕ . Thus $\varphi = k\phi$ for some $k \in \mathbb{Z}_{>0}$.

Thus, $S = {\phi, \dots, (n-1)\phi}$. We conclude that if G contains no reflection, then

$$G = \{\rho_0, \rho_\phi, \dots, \rho_{(n-1)\phi}\} \cong C_n$$

if G contains a reflection, then a trivial application of Theorem 7 yields that

$$G = \{\rho_0, \dots, \rho_{(n-1)\phi}, r, \dots, \rho_{(n-1)\phi}r\} \cong D_n.$$

If S is empty, then G must contain ρ_0 , and may contain terms of the form $\rho_{\theta}r$ or r for $\theta \in (0, 2\pi)$. We are left with five cases:

- 1. If $G = \{\rho_0\}$, then $G \cong C_1$.
- 2. If $G = \{\rho_0, r\}$, then $G \cong C_2 \cong D_1$.
- 3. If $G = \{\rho_0, \rho_\theta r\}$ for some $\theta \in (0, 2\pi)$, then

$$(\rho_{\theta}r)^2 = \rho_{\theta}(r\rho_{\theta})r = \rho_{\theta}(\rho_{-\theta}r)r = \rho_0;$$

thus,
$$G \cong C_2 \cong D_1$$

4. If G contains r and a term of the form $\rho_{\theta}r$ for $\theta \in (0, 2\pi)$, then the closure of G yields that

$$\rho_{\theta} = (\rho_{\theta} r)(r) \in G.$$

This contradicts the emptiness of S, implying no such G exists.

5. If G contains two terms of the form $\rho_{\theta}r$ and $\rho_{\phi}r$ for distinct angles $\theta, \phi \in (0, 2\pi)$ such that $\theta > \phi$, then the closure of G yields that

$$\rho_{\theta-\phi} = \rho_{\theta}\rho_{-\phi}rr = \rho_{\theta}r\rho_{\phi}r \in G.$$

This contradicts the emptiness of S, implying no such G exists.

We have discussed all possibile finite groups G of O_2 ; in each ease, G was isomorphic to C_n or D_n for some $n \in \mathbb{Z}_{>0}$. This completes the proof.

We could generalize the above result to any line — not just the \mathbf{e}_1 -axis — if we changed coordinates to the line that performs the reflection. Intuitively, we may be rest assured that dihedral groups would coninue possessing 2n elements: n for rotations with preserved orientation and n for rotations with reversed orientation.

A subgroup Γ of the additive subgroup \mathbb{R}^+ is called **discrete** if there exists $\epsilon > 0$ such that for all nonzero $c \in \Gamma$, we have $|c| \geq \epsilon$.

Theorem 9. A discrete subgroup of Γ of \mathbb{R}^+ satisfies either $\Gamma = \{0\}$ or $\Gamma = \mathbb{Z}r$ for some $r \in \mathbb{R}$.

Proof. If Γ , contains a nonzero element, then let $r = \sup\{\epsilon \mid c \in \Gamma \implies |c| \ge \epsilon\}$. The following lemma is unnecessary, but my analysis-loving heart enjoys the detour:

Lemma 2. r is an element of Γ .

Proof. Suppose for contradiction that $r \notin \Gamma$. Then as $\frac{3}{2}r$ is not an lower bound, there exists $a \in \Gamma$ such that $r < |a| < \frac{3}{2}r$. As |a| is not a lower bound, there similarly exists another element |b| such that r < |b| < |a|. As Γ is a group, it contains |a| and |b|. Thus,

$$0 < |a| - |b| < \frac{3}{2}r - |b| < \frac{3}{2}r - r = \frac{1}{2} < r.$$

|a|-|b| is an element of Γ by its closure; this contradicts the minimality of r. We conclude that r must be an element of Γ .

Thus, r is the smallest positive element of Γ . If we suppose for contradiction that there exists $s \in \Gamma$ such that $s \neq rn$ for all $n \in \mathbb{Z}$, then there exists $min\mathbb{Z}$ such that

$$rm < s < r(m+1)$$
.

We deduce that

$$0 < s - rm < r;$$

this contradicts the minimality of r, implying that all elements of Γ are of the form rn for $n \in \mathbb{Z}$. Then $G = \mathbb{Z}r$.

The usage of this lemma dramatically simplifies Lemma 1 in Theorem 8. We now take a minute to extend our theorem about O_2 to any finite subgroup of M_2 :

Theorem 10. Let G be a finite group of isometries in the plane. Then there exists a vector \mathbf{x} such that $g(\mathbf{v}) = \mathbf{v}$ for all $g \in G$.

Proof. Let \mathbf{x} be any point in the plane: the set $S = \{g(\mathbf{x}) \mid g \in G\}$ is called the **orbit** of \mathbf{x} for the action of G. Any element of G will permute the orbit S; this is because each element of G is injective and G is closed under composition.

Lemma 3. If $S = \{\mathbf{s}_1, \dots, \mathbf{s}_n\}$ is a finite set of points in \mathbb{R}^n with centroid \mathbf{p} , then the centroid of $f(S) = \{f(\mathbf{s}_1), \dots, f(\mathbf{s}_n)\}$ is $f(\mathbf{p})$.

Proof. Noting that $f = t_{\mathbf{a}}\varphi$ for a translation $t_{\mathbf{a}}$ and an orthogonal linear operator φ , we need only prove that these maps individually map centroids to centroids.

For translations, we have that

$$t_{\mathbf{a}}(\mathbf{p}) = \frac{\mathbf{s}_1 + \dots + \mathbf{s}_n}{n} + \mathbf{a}$$

$$= \frac{(\mathbf{s}_1 + \mathbf{a}) + \dots + (\mathbf{s}_n + \mathbf{a})}{n}$$

$$= \frac{t_{\mathbf{a}}(\mathbf{s}_1) + \dots + t_{\mathbf{a}}(\mathbf{s}_n)}{n}.$$

For orthogonal linear operators, we have that

$$\varphi(\mathbf{p}) = \varphi\left(\frac{\mathbf{s}_1 + \dots + \mathbf{s}_n}{n}\right) = \frac{\varphi(\mathbf{s}_1) + \dots + \varphi(\mathbf{s}_n)}{n}.$$

Both $t_{\mathbf{a}}$ and φ map centroids to centroids; their composition yields the desired result for all isometries.

Let **v** be the centroid of S. All elements of G send S to S, so they send **v** to **v**; we conclude that $g(\mathbf{v}) = \mathbf{v}$ for all $g \in G$.

Corollary 2. Let G be a finite subgroup of M_2 . Then G is a finite subgroup of O_2 under a translation; if coordinates are chosen suitably, G becomes one of the groups C_n or D_n for $n \in \mathbb{Z}_{>0}$.