第35届全国青少年信息学奥林匹克竞赛

模拟赛三

第二试

时间: 2018 年 7 月 8 日 08:00 ~ 13:00

题目名称	А	В	С	
英文名称	a	b	С	
输入文件	a.in	b.in	c.in	
输出文件	a. out	b. out	c.out	
时间限制	1s	2s	2s	
内存限制	512MB	512MB	512MB	
比较方式	全文比较	全文比较	全文比较	
题目类型	传统	传统	传统	

提交源程序文件名

对于 C++ 语言	а.срр	b.cpp	с.срр
对于 C 语言	a.c	b.c	C.C
对于 Pascal 语言	a.pas	b.pas	c.pas

编译选项

对于 C++ 语言	std=c++11 -O2		
对于 C 语言			
对于 Pascal 语言	-02	-02	-02

1 A

1.1 Description

给定一个 n 个点 m 条边的带权有向图, 不存在自环, 可能存在重边. 求出一个权值和最小的边集的子集, 使得存在至少一个点可以通过这些边到达所有点.

1.2 Input Format

第一行两个整数 n, m.

接下来 m 行一行三个整数 u, v, w, 表示一条从 u 到 v 权值为 w 的有向边.

1.3 Output Format

输出一行一个整数表示满足要求的集合的最小权值和; 若不存在, 输出 -1.

1.4 Sample

1.4.1 Input

5 9

2 5 12

3 2 9

2 5 10

5 4 4

5 3 7

4 3 8

3 4 8

2 3 4

4 1 3

1.4.2 Output

21

1.5 Constraints

对于所有数据, $1 \le n \le 500$, $1 \le m \le \frac{n(n-1)}{2}$, $u_i \ne v_i$, $1 \le w_i \le 10^9$.

• Subtask 1 (20pts): $n \le 10$

• Subtask 2 (20pts): $n \leq 50$

• Subtask 3 (30pts): $n \le 100$

• Subtask 4 (30pts): $n \le 500$

2 B

2.1 Description

给定 n 个待安装的软件包,每个软件包有一个安装时间 t_i .

给定一个 n 个点 m 条边的有向无环图代表软件包之间的依赖关系 (可能存在重边). 一条从 u 到 v 的有向边代表软件包 v 必须在软件包 u 安装完成之后开始安装. 在满足这个上述条件的前提下,没有依赖关系的软件包可以并行安装.

对于每个软件包 i 都可以用 c_i 的代价将其安装时间减 1. 同一个软件包可以多次减 1, 但不可被减为负数.

现在, 给定一个预算 w, 求在支出的代价不大于 w 的前提下, 安装完所有软件包的需要的最小时间.

2.2 Input Format

第一行三个整数 n, m, w.

第二行 n 个整数 t_i ,表示每个软件包的安装时间

第三行 n 个整数 c_i ,表示将每个软件包安装时间减 1 的代价

接下来 m 行, 每行两个整数 u, v, 表示软件包 v 依赖软件包 u.

2.3 Output Format

输出一行一个整数表示最小时间.

2.4 Sample

2.4.1 Input

10 7 12

1 1 2 2 3 3 2 1 3 2

4 6 10 5 1 10 5 1 5 9

8 10

7 8

5 6

3 9

1 2

9 10

3 4

2.4.2 Output

5

2.5 Constraints

对于所有数据, $1 \le n \le 55$, $1 \le m \le 400$, $1 \le t_i \le 10^3$, $1 \le w_i \le 10^4$.

- Subtask 1 (20pts): $n \le 10, t_i \le 3, c_i \le 10$
- Subtask 2 (30pts): $n \le 55, t_i \le 50, c_i \le 10^4$
- Subtask 3 (20pts): $n \le 35$
- Subtask 4 (30pts): $n \le 55$

3 C

计算化学式为 C_nH_{2n+2} 的烷烃的同分异构体个数.

多组数据. 答案对 998244353 取模.

3.1 输入格式

第 1 行一个整数 T, 表示数据组数.

接下来 T 行, 每行一个整数 n, 表示询问化学式为 C_nH_{2n+2} 的烷烃的同分异构体个数.

3.2 输出格式

共输出 T 行,每行一个整数,表示答案.

3.3 Sample

3.3.1 Input

5

3

4

5

233

666

3.3.2 Output

1

2

3

134793965

35803200

3.4 Explanation

$$\begin{array}{c} CH_{3} \\ \\ C_{4}H_{10} \not \text{ 有 2 种: } CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{3}, \ CH_{3} \longrightarrow CH \longrightarrow CH_{3} \end{array}$$

3.5 Hints

如果你不知道什么是烷烃,那么你可以认为这个问题等价于求 n 个点的无标号无根树并且满足每个点的度数 ≤ 4 的树的个数.

3.6 Constraints

测试点编号	$oldsymbol{T}$	\boldsymbol{n}	分值
1	=1	≤ 8	5
2	= 1	≤ 200	5
3	= 1	≤ 200	5
4	= 1	≤ 2000	5
5	= 1	≤ 2000	5
6	=1	≤ 2000	5
7	= 1	=66666	5
8	=1	$\leq 10^{5}$	5
9	= 1	$\leq 10^{5}$	5
10	=1	$\leq 10^{5}$	5
11	= 1	$\leq 10^{5}$	5
12	=1	$\leq 10^{5}$	5
13	$=10^{5}$	$\leq 10^{5}$	40

对于 100% 的数据, $1 \le T \le 10^5, 1 \le n \le 10^5$.