

Global United Technology Services Co., Ltd.

Report No.: GTSE15110211601

FCC Report (WIFI)

Applicant: Shenzhen HAWK-EYE Aerial Photography Tech Company

Limited

Address of Applicant: Room 15B, 15 floor, Nanyuan Fengye Building, No. 1088

Nanshan Road, Nanshan district, Shenzhen, China.

Equipment Under Test (EUT)

Product Name: SPORTS CAMERA 4K

Model No.: FIREFLY6S, FIREFLY6S, FIREFLY6B,

FIREFLY6L, FIREFLY6Q, FIREFLY7S, FIREFLY6A,

GSC-200P, GSC-200K, KeyShare

FCC ID: 2AGM3-GSC200

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014

Date of sample receipt: November 16, 2015

Date of Test: November 17-23, 2015

Date of report issued: November 24, 2015

Test Result: PASS *

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	November 24, 2015	Original

Prepared By:	Zolward.Pan	Date:	November 24, 2015
	Project Engineer		
Check By:	hank. yan	Date:	November 24, 2015
	Reviewer		

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES.	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	7
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES.	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	13
	7.4	CHANNEL BANDWIDTH	14
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2	Radiated Emission Method	37
8	TES	T SETUP PHOTO	52
۵	EUT	CONSTRUCTIONAL DETAILS	E /

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	9kHz ~ 30MHz		(1)	
Radiated Emission			(1)	
Radiated Emission	1GHz ~ 26.5GHz ± 4.68dB		(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.	

5 General Information

5.1 Client Information

Applicant:	Shenzhen HAWK-EYE Aerial Photography Tech Company Limited	
Address of Applicant:	Room 15B, 15 floor, Nanyuan Fengye Building, No. 1088 Nanshan Road, Nanshan district, Shenzhen, China.	
Manufacturer:	Shenzhen HAWK-EYE Aerial Photography Tech Company Limited	
Address of Manufacture:	Room 15B, 15 floor, Nanyuan Fengye Building, No. 1088 Nanshan Road, Nanshan district, Shenzhen, China.	
Factory	Shenzhen Xinsifang Electronic Company limited.	
Address of Factor:	6 Floor, B Building, Songyuan Chuangxin keji Town, Zhangge community, Guannan Street, Baoan district, Shenzhen, China.	

5.2 General Description of EUT

Product Name:	SPORTS CAMERA 4K
Model No.:	FIREFLY6S, FIREFLY5S, FIREFLY6C, FIREFLY6B, FIREFLY6L, FIREFLY6Q, FIREFLY7S, FIREFLY6A, GSC-200P, GSC-200K, KeyShare
Operation Frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz
	802.11n(HT40): 2422MHz~2452MHz
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
	802.11n(HT40): 7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(H20)/802.11n(H40):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB antenna
Antenna gain:	0dBi(declare by Applicant)
Power supply:	DC 3.7V 1600mAh Li-ion Battery
	Charging voltage: DC 5.0V, 500mA

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note: The frequencies band for 802.11n(HT40) are from channel 3 to channel 9.

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)		
rest channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)	
Lowest channel	2412MHz	2422MHz	
Middle channel	2437MHz	2437MHz	
Highest channel	2462MHz	2452MHz	

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode (dutycycle>98%)
-------------------	--

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
Emerson Network Power	USB Charger	A1299	N/A	FCC VOC

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong

Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102

Tel: 0755-27798480 Fax: 0755-27798960

Project No.: GTSE151102116RF

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 27 2015	Mar. 26 2016	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 4 2014	Dec. 3 2015	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 30 2015	June 29 2016	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 30 2015	June 29 2016	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 26 2015	June 25 2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 30 2015	June 29 2016	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 30 2015	June 29 2016	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 26 2015	June 25 2016	
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016	
17	Power Meter	Anritsu	ML2495A	GTS540	June 30 2015	June 29 2016	
18	Power Sensor	Anritsu	MA2411B	GTS541	June 30 2015	June 29 2016	

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2015	Sep. 07 2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 30 2015	June 29 2016		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 30 2015	June 29 2016		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 30 2015	June 29 2016		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	June 30 2015	June 29 2016		
6	Coaxial Cable	GTS	N/A	GTS227	June 30 2015	June 29 2016		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Gen	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 8 of 64

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4:2014				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, St	weep time=auto			
Limit:	Fraguency range (MHz)	Limit (c	lBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test setup:	Reference Plane		_		
	ver				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 2116RF Test mode : WiFi mode Test Engineer: Rong

			1 dc cor	Loss	Level	Line	Limit	Remark
	MHz	dBu√	dB	₫B	dBu₹	dBu√	dB	
1 2 3 4 5	0. 192 0. 466 0. 634	46. 73 44. 22 43. 24 40. 89 34. 06	0.14 0.12	0.11 0.13	43.51 41.12	64.59 63.93 56.58 56.00	-20.42 -15.46 -21.68	QP QP QP QP

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 2116RF Test mode : WiFi mode Test Engineer: Rong

	Freq	Read	LISN Factor			Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.150	46.65	0.07	0.12	46.84	66.00	-19.16	QP
2	0.178	45.00	0.07	0.13	45.20	64.59	-19.39	QP
2	0.215	42.37	0.06	0.13	42.56	63.01	-20.45	QP
4	0.456	39.11	0.06	0.11	39.28	56.76	-17.48	QP
5	0.641	31.74	0.07	0.13	31.94	56.00	-24.06	QP
6	0.775	29.93	0.07	0.13	30.13	56.00	-25.87	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

Test CH		Peak Outp	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(GDIII)	Result
Lowest	7.53	7.28	7.24	7.40		
Middle	7.03	7.34	7.11	7.14	30.00	Pass
Highest	7.48	7.36	7.36	7.39		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Channel Ban	Limit(KHz)	Result		
rest orr	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Littit(KH12)	Nesuit
Lowest	9.649	16.438	17.638	36.198		
Middle	9.635	16.384	17.645	36.105	>500	Pass
Highest	10.139	16.428	17.644	36.138		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test CH		Power Spectra	Limit(dBm/3kHz)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(dBin/3Ki12)	Result
Lowest	-4.14	-7.54	-7.19	-9.78		
Middle	-4.74	-7.24	-7.06	-10.27	8.00	Pass
Highest	-4.28	-6.71	-6.87	-9.84		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method: ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guida				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Test plot as follows:

802.11g

Lowest channel

Highest channel

Highest channel

Page 26 of 64

7.6.2 Radiated Emission Method

7.6.2 Radiated Emission Me	_					
Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement D					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
· ·		Peak	1MHz	3MHz	Peak	
	Above 1GHz	RMS	1MHz	3MHz	Average	
Limit:	Freque		_imit (dBuV		Value	
			54.0		Average	
	Above 1	GHz	74.0		Peak	
Test setup:	EUT 3m < Turn 1.5m A	m n n n n n n n n n n n n n n n n n n n	Antenna Horn Anter Spectrum Analyzer Amplifie	nna		
Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rotathe maximum 5. The test-rece Specified Ba 6. If the emission the limit specified be EUT where the test in the limit specified be an average of the EUT where the test in the limit specified be an average of the EUT where the test in the limit specified be an average of the EUT where the test in the limit specified be a specified be a specified be a specified be a specified by the test in the test	t a 3 meter came position of the set 3 meters a ch was mounted the man dependent of the man dependent of the man dependent of the Edified, then testing the man would be age method as a measurements.	ber. The talk highest rack way from the don the top. If from one nations of the talk and to height of the talk highest to Peak aximum Holl UT in peak and could be d. Otherwis re-tested of the talk highest to the talk highest ta	ble was rotadiation. The interferer of a variable of the field one antennal was arranged hts from 1 rigrees to 360 at Detect Full discounting the emission one und then report of the content of the cont	le-height antenna r meters above the I strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find unction and 10dB lower than d the peak values ions that did not sing peak, quasi-	
Test Instruments:	Refer to section					
Test mode:	Refer to section	5.3 for details				
Test results:	Pass					

Page 27 of 64

Lowest

Measurement data:

Test mode:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:

802.11b

		00		. •		_		
Peak value	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	51.59	27.59	5.38	34.01	50.55	74.00	-23.45	Horizontal
2400.00	60.59	27.58	5.39	34.01	59.55	74.00	-14.45	Horizontal
2390.00	53.27	27.59	5.38	34.01	52.23	74.00	-21.77	Vertical
2400.00	62.37	27.58	5.39	34.01	61.33	74.00	-12.67	Vertical
Average va	lue:	•	-	-	•			-
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.37	27.59	5.38	34.01	37.33	54.00	-16.67	Horizontal
2400.00	46.66	27.58	5.39	34.01	45.62	54.00	-8.38	Horizontal
2390.00	40.19	27.59	5.38	34.01	39.15	54.00	-14.85	Vertical
2400.00	47.78	27.58	5.39	34.01	46.74	54.00	-7.26	Vertical
•		•	-	-	•			-
Test mode:		802.1	1b	Te	st channel:	F	lighest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.22	27.53	5.47	33.92	51.30	74.00	-22.70	Horizontal
2500.00	48.07	27.55	5.49	29.93	51.18	74.00	-22.82	Horizontal
2483.50	54.47	27.53	5.47	33.92	53.55	74.00	-20.45	Vertical
2500.00	50.57	27.55	5.49	29.93	53.68	74.00	-20.32	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization

Remark:

2483.50

2500.00

2483.50

2500.00

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

5.47

5.49

5.47

5.49

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

33.92

29.93

33.92

29.93

37.81

37.95

39.75

39.83

54.00

54.00

54.00

54.00

38.73

34.84

40.67

36.72

27.53

27.55

27.53

27.55

Page 28 of 64

Project No.: GTSE151102116RF

-16.19

-16.05

-14.25

-14.17

Horizontal

Horizontal

Vertical

Vertical

802.11g

Test mode:

Report No.: GTSE15110211601

Lowest

			. 9					
Peak value:	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.44	27.59	5.38	34.01	49.40	74.00	-24.60	Horizontal
2400.00	59.04	27.58	5.39	34.01	58.00	74.00	-16.00	Horizontal
2390.00	52.03	27.59	5.38	34.01	50.99	74.00	-23.01	Vertical
2400.00	60.51	27.58	5.39	34.01	59.47	74.00	-14.53	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.55	27.59	5.38	34.01	36.51	54.00	-17.49	Horizontal
2400.00	45.71	27.58	5.39	34.01	44.67	54.00	-9.33	Horizontal
2390.00	39.27	27.59	5.38	34.01	38.23	54.00	-15.77	Vertical
2400.00	46.74	27.58	5.39	34.01	45.70	54.00	-8.30	Vertical
Test mode:		802.1	1g	Tes	st channel:	F	lighest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.57	27.53	5.47	33.92	49.65	74.00	-24.35	Horizontal
2500.00	46.79	27.55	5.49	29.93	49.90	74.00	-24.10	Horizontal
2483.50	52.58	27.53	5.47	33.92	51.66	74.00	-22.34	Vertical
2500.00	49.07	27.55	5.49	29.93	52.18	74.00	-21.82	Vertical
Average va	lue:	T		1	T			T
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
				00.00	26.04	54.00	-17.19	Horizontal
2483.50	37.73	27.53	5.47	33.92	36.81	34.00	-17.13	Honzontal
2483.50 2500.00	37.73 34.06	27.53 27.55	5.47 5.49	29.93	37.17	54.00	-16.83	Horizontal

Test channel:

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 29 of 64

Test mode:

Report No.: GTSE15110211601

Lowest

Peak value	:	<u>'</u>		•		<u>'</u>		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.55	27.59	5.38	34.01	49.51	74.00	-24.49	Horizontal
2400.00	59.19	27.58	5.39	34.01	58.15	74.00	-15.85	Horizontal
2390.00	52.15	27.59	5.38	34.01	51.11	74.00	-22.89	Vertical
2400.00	60.69	27.58	5.39	34.01	59.65	74.00	-14.35	Vertical
Average va	lue:			•	•	•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.62	27.59	5.38	34.01	36.58	54.00	-17.42	Horizontal
2400.00	45.80	27.58	5.39	34.01	44.76	54.00	-9.24	Horizontal
2390.00	39.36	27.59	5.38	34.01	38.32	54.00	-15.68	Vertical
2400.00	46.84	27.58	5.39	34.01	45.80	54.00	-8.20	Vertical
Test mode:		802.1	1n(HT20)	Tes	st channel:	H	Highest	
Peak value				_		,		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.73	27.53	5.47	33.92	49.81	74.00	-24.19	Horizontal
2500.00	46.91	27.55	5.49	29.93	50.02	74.00	-23.98	Horizontal
2483.50	52.76	27.53	5.47	33.92	51.84	74.00	-22.16	Vertical
2500.00	49.21	27.55	5.49	29.93	52.32	74.00	-21.68	Vertical
Average va	lue:	1		ı	T	1		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.82	27.53	5.47	33.92	36.90	54.00	-17.10	Horizontal
2500.00	34.14	27.55	5.49	29.93	37.25	54.00	-16.75	Horizontal
2483.50	39.67	27.53	5.47	33.92	38.75	54.00	-15.25	Vertical
2500.00	35.97	27.55	5.49	29.93	39.08	54.00	-14.92	Vertical
Remark:								

Test channel:

802.11n(HT20)

Remark:

Page 30 of 64

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:		802.1	1n(HT40)	T	est channel:		Lowest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	49.73	27.59	5.38	34.01	48.69	74.00	-25.31	Horizontal
2400.00	58.10	27.58	5.39	34.01	57.06	74.00	-16.94	Horizontal
2390.00	51.28	27.59	5.38	34.01	50.24	74.00	-23.76	Vertical
2400.00	59.38	27.58	5.39	34.01	58.34	74.00	-15.66	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2390.00	37.05	27.59	5.38	34.01	36.01	54.00	-17.99	Horizontal
2400.00	45.13	27.58	5.39	34.01	44.09	54.00	-9.91	Horizontal
2390.00	38.71	27.59	5.38	34.01	37.67	54.00	-16.33	Vertical
2400.00	46.11	27.58	5.39	34.01	45.07	54.00	-8.93	Vertical
Test mode:		802.1	1n(HT40)	T	est channel:		Highest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarization
2483.50	49.56	27.53	5.47	33.92	48.64	74.00	-25.36	Horizontal
2500.00	46.01	27.55	5.49	29.93	49.12	74.00	-24.88	Horizontal
2483.50	51.43	27.53	5.47	33.92	50.51	74.00	-23.49	Vertical
2500.00	48.15	27.55	5.49	29.93	51.26	74.00	-22.74	Vertical
Average va	lue:	1					T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2483.50	37.12	27.53	5.47	33.92	36.20	54.00	-17.80	Horizontal
2500.00	33.59	27.55	5.49	29.93	36.70	54.00	-17.30	Horizontal
2483.50	38.89	27.53	5.47	33.92	37.97	54.00	-16.03	Vertical
2500.00	35.39	27.55	5.49	29.93	38.50	54.00	-15.50	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Test plot as follows:

Test mode:

802.11b

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:

802.11g

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Peak Search

Test mode:

802.11n(HT20)

Lowest channel

30MHz~10GHz

Atten 30 dB Next Peak Next Pk Right Next Pk Left Min Search Stop 25.000 GH: Sweep 1.434 s (601 pts) Start 10.000 GHz #VBW 300 kHz Pk-Pk Search Res BW 100 kHz Type Freq Amplitude -51.81 dBm Trace (1) X Axis 14.150 GHz Mkr → CF More 1 of 2

10GHz~25GHz

Copyright 2000-2012 Agilent Technologies

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 35 of 64

Test mode:

802.11n(HT40)

Lowest channel

30MHz~10GHz

| R T | Peak Search | R T | R T | Peak Search | Ref 20 dBm | Atten 30 dB | -51.34 dBm | Next Peak | Next Peak | Next Pk Right | Next Pk Right | Next Pk Left | Next Pk Left

10GHz~25GHz

Copyright 2000-2012 Agilent Technologies

Middle channel

30MHz~10GHz

10GHz~25GHz

Highest channel

30MHz~10GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209									
Test Method:	FCC Part15 C Section 15.209 ANSI C63.10:2013										
Test Frequency Range:	30MHz to 25GHz	• -									
Test site:	Measurement Dis	stance: 3m									
Receiver setup:	Frequency Detector RBW VBW Value 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Above 1GHz Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Average										
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak						
	Above 1CHz	Peak	1MHz	3MHz	Peak						
	Above IGHZ	RMS 1MHz 3MHz Average Frequency Limit (dBuV/m @3m) Value									
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Value						
	30MHz-88	30MHz-88MHz 40.00 Quasi-peak									
	88MHz-216	88MHz-216MHz 43.50 Quasi-peak									
	216MHz-96	216MHz-960MHz 46.00 Quasi-peak									
	960MHz-1	960MHz-1GHz 54.00 Quasi-peak									
	A la	211-	54.0	0	Average						
	Above 10	Above 1GHz 74.00 Peak									
	Ground Plane Above 1GHz Above 1GHz Turn Table 4m Turn Table 1.5m A	4m	Antenna Horn Ante Spectrum Analyzer	nna							
Test Procedure:	1. The EUT was	placed on the	top of a rot	ating table (0.8m for below						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
47.99	49.03	15.36	0.75	30.01	35.13	40.00	-4.87	Vertical
143.83	51.42	10.22	1.53	29.44	33.73	43.50	-9.77	Vertical
167.82	53.79	10.90	1.67	29.33	37.03	43.50	-6.47	Vertical
239.99	49.32	14.09	2.07	29.56	35.92	46.00	-10.08	Vertical
263.82	48.99	14.17	2.19	29.75	35.60	46.00	-10.40	Vertical
455.91	47.06	17.58	3.11	29.38	38.37	46.00	-7.63	Vertical
47.99	39.28	15.36	0.75	30.01	25.38	40.00	-14.62	Horizontal
107.89	52.42	14.44	1.26	29.65	38.47	43.50	-5.03	Horizontal
119.86	53.17	12.48	1.36	29.57	37.44	43.50	-6.06	Horizontal
167.82	54.68	10.90	1.67	29.33	37.92	43.50	-5.58	Horizontal
252.06	54.34	14.07	2.14	29.66	40.89	46.00	-5.11	Horizontal
833.32	43.98	22.42	4.58	29.17	41.81	46.00	-4.19	Horizontal

■ Above 1GHz

Test mode:		802.11b		Te	st channel:	Lowe	est	
Peak value:				,	_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	i i evei	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	41.17	31.79	8.62	32.10	49.48	74.00	-24.52	Vertical
7236.00	34.77	36.19	11.68	31.97	50.67	74.00	-23.33	Vertical
9648.00	33.11	38.07	14.16	31.56	53.78	74.00	-20.22	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.70	31.79	8.62	32.10	48.01	74.00	-25.99	Horizontal
7236.00	34.45	36.19	11.68	31.97	50.35	74.00	-23.65	Horizontal
9648.00	32.66	38.07	14.16	31.56	53.33	74.00	-20.67	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val			T			T	1	1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	30.19	31.79	8.62	32.10	38.50	54.00	-15.50	Vertical
7236.00	23.62	36.19	11.68	31.97	39.52	54.00	-14.48	Vertical
9648.00	23.44	38.07	14.16	31.56	44.11	54.00	-9.89	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	29.20	31.79	8.62	32.10	37.51	54.00	-16.49	Horizontal
7236.00	23.02	36.19	11.68	31.97	38.92	54.00	-15.08	Horizontal
9648.00	22.39	38.07	14.16	31.56	43.06	54.00	-10.94	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
1000105					· · · · · · · · · · · · · · · · · · ·			l

Remark:

16884.00

Project No.: GTSE151102116RF

Horizontal

54.00

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	40.08	31.85	8.66	32.12	48.47	74.00	-25.53	Vertical
7311.00	34.75	36.37	11.71	31.91	50.92	74.00	-23.08	Vertical
9748.00	34.06	38.27	14.25	31.56	55.02	74.00	-18.98	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	40.44	31.85	8.66	32.12	48.83	74.00	-25.17	Horizontal
7311.00	33.33	36.37	11.71	31.91	49.50	74.00	-24.50	Horizontal
9748.00	33.92	38.27	14.25	31.56	54.88	74.00	-19.12	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.87	31.85	8.66	32.12	39.26	54.00	-14.74	Vertical
7311.00	23.05	36.37	11.71	31.91	39.22	54.00	-14.78	Vertical
9748.00	23.30	38.27	14.25	31.56	44.26	54.00	-9.74	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	30.52	31.85	8.66	32.12	38.91	54.00	-15.09	Horizontal
7311.00	22.41	36.37	11.71	31.91	38.58	54.00	-15.42	Horizontal
9748.00	23.63	38.27	14.25	31.56	44.59	54.00	-9.41	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. " \ast ", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b			Test o	channel:		Highe	est	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fact (dE	tor	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4924.00	46.13	31.90	8.70	32.	15	54.58	74.	00	-19.42	Vertical
7386.00	35.76	36.49	11.76	31.8	33	52.18	74.	00	-21.82	Vertical
9848.00	37.59	38.62	14.31	31.7	77	58.75	74.	00	-15.25	Vertical
12310.00	*						74.	00		Vertical
14772.00	*						74.	00		Vertical
17234.00	*						74.	00		Vertical
4924.00	45.24	31.90	8.70	32.	15	53.69	74.	00	-20.31	Horizontal
7386.00	34.56	36.49	11.76	31.8	33	50.98	74.	00	-23.02	Horizontal
9848.00	33.72	38.62	14.31	31.7	77	54.88	74.	00	-19.12	Horizontal
12310.00	*						74.	00		Horizontal
14772.00	*						74.	00		Horizontal
17234.00	*						74.	00		Horizontal
Average val										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fact (dE	tor	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4924.00	36.95	31.90	8.70	32.	15	45.40	54.	00	-8.60	Vertical
7386.00	25.64	36.49	11.76	31.8	33	42.06	54.	00	-11.94	Vertical
9848.00	26.07	38.62	14.31	31.7	77	47.23	54.	00	-6.77	Vertical
12310.00	*						54.	00		Vertical
14772.00	*						54.	00		Vertical
17234.00	*						54.	00		Vertical
4924.00	35.54	31.90	8.70	32.	15	43.99	54.	00	-10.01	Horizontal
7386.00	23.93	36.49	11.76	31.8	33	40.35	54.	00	-13.65	Horizontal
9848.00	22.96	38.62	14.31	31.7	77	44.12	54.	00	-9.88	Horizontal
12310.00	*						54.	00		Horizontal
14772.00	*						54.	00		Horizontal
17234.00	*						54.	00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. " \ast ", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		-	Test o	channel:		lowes	st	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fact (dE	tor	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4824.00	39.76	31.79	8.62	32.1	10	48.07	74.	00	-25.93	Vertical
7236.00	33.88	36.19	11.68	31.9	97	49.78	74.	00	-24.22	Vertical
9648.00	32.47	38.07	14.16	31.5	56	53.14	74.	00	-20.86	Vertical
12060.00	*						74.	00		Vertical
14472.00	*						74.	00		Vertical
16884.00	*						74.	00		Vertical
4824.00	38.51	31.79	8.62	32.1	10	46.82	74.	00	-27.18	Horizontal
7236.00	33.67	36.19	11.68	31.9	97	49.57	74.	00	-24.43	Horizontal
9648.00	32.07	38.07	14.16	31.5	56	52.74	74.	00	-21.26	Horizontal
12060.00	*						74.	00		Horizontal
14472.00	*						74.	00		Horizontal
16884.00	*						74.	00		Horizontal
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fact (dE	tor	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4824.00	28.89	31.79	8.62	32.1	10	37.20	54.	00	-16.80	Vertical
7236.00	22.76	36.19	11.68	31.9	97	38.66	54.	00	-15.34	Vertical
9648.00	22.83	38.07	14.16	31.5	56	43.50	54.	00	-10.50	Vertical
12060.00	*						54.	00		Vertical
14472.00	*						54.	00		Vertical
16884.00	*						54.	00		Vertica
4824.00	28.08	31.79	8.62	32.1	10	36.39	54.	00	-17.61	Horizontal
7236.00	22.27	36.19	11.68	31.9	97	38.17	54.	00	-15.83	Horizontal
9648.00	21.83	38.07	14.16	31.5	56	42.50	54.	00	-11.50	Horizontal
12060.00	*						54.	00		Horizontal
14472.00	*						54.	00		Horizontal
16884.00	*						54.	00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Tes	t channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.91	31.85	8.66	32.12	47.30	74.00	-26.70	Vertical
7311.00	34.01	36.37	11.71	31.91	50.18	74.00	-23.82	Vertical
9748.00	33.53	38.27	14.25	31.56	54.49	74.00	-19.51	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.46	31.85	8.66	32.12	47.85	74.00	-26.15	Horizontal
7311.00	32.69	36.37	11.71	31.91	48.86	74.00	-25.14	Horizontal
9748.00	33.44	38.27	14.25	31.56	54.40	74.00	-19.60	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.80	31.85	8.66	32.12	38.19	54.00	-15.81	Vertical
7311.00	22.34	36.37	11.71	31.91	38.51	54.00	-15.49	Vertical
9748.00	22.80	38.27	14.25	31.56	43.76	54.00	-10.24	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.59	31.85	8.66	32.12	37.98	54.00	-16.02	Horizontal
7311.00	21.78	36.37	11.71	31.91	37.95	54.00	-16.05	Horizontal
9748.00	23.16	38.27	14.25	31.56	44.12	54.00	-9.88	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. " \ast ", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test channel:		Highe		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.12	31.90	8.70	32.15	52.57	74.00	-21.43	Vertical
7386.00	34.49	36.49	11.76	31.83	50.91	74.00	-23.09	Vertical
9848.00	36.69	38.62	14.31	31.77	57.85	74.00	-16.15	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.55	31.90	8.70	32.15	52.00	74.00	-22.00	Horizontal
7386.00	33.45	36.49	11.76	31.83	49.87	74.00	-24.13	Horizontal
9848.00	32.88	38.62	14.31	31.77	54.04	74.00	-19.96	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.10	31.90	8.70	32.15	43.55	54.00	-10.45	Vertical
7386.00	24.42	36.49	11.76	31.83	40.84	54.00	-13.16	Vertical
9848.00	25.20	38.62	14.31	31.77	46.36	54.00	-7.64	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	33.95	31.90	8.70	32.15	42.40	54.00	-11.60	Horizontal
7386.00	22.85	36.49	11.76	31.83	39.27	54.00	-14.73	Horizontal
9848.00	22.15	38.62	14.31	31.77	43.31	54.00	-10.69	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. " \ast ", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.14	31.79	8.62	32.10	48.45	74.00	-25.55	Vertical
7236.00	34.12	36.19	11.68	31.97	50.02	74.00	-23.98	Vertical
9648.00	32.64	38.07	14.16	31.56	53.31	74.00	-20.69	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.83	31.79	8.62	32.10	47.14	74.00	-26.86	Horizontal
7236.00	33.88	36.19	11.68	31.97	49.78	74.00	-24.22	Horizontal
9648.00	32.23	38.07	14.16	31.56	52.90	74.00	-21.10	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.23	31.79	8.62	32.10	37.54	54.00	-16.46	Vertical
7236.00	22.99	36.19	11.68	31.97	38.89	54.00	-15.11	Vertical
9648.00	22.99	38.07	14.16	31.56	43.66	54.00	-10.34	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.38	31.79	8.62	32.10	36.69	54.00	-17.31	Horizontal
7236.00	22.47	36.19	11.68	31.97	38.37	54.00	-15.63	Horizontal
9648.00	21.98	38.07	14.16	31.56	42.65	54.00	-11.35	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.22	31.85	8.66	32.12	47.61	74.00	-26.39	Vertical
7311.00	34.21	36.37	11.71	31.91	50.38	74.00	-23.62	Vertical
9748.00	33.67	38.27	14.25	31.56	54.63	74.00	-19.37	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.72	31.85	8.66	32.12	48.11	74.00	-25.89	Horizontal
7311.00	32.86	36.37	11.71	31.91	49.03	74.00	-24.97	Horizontal
9748.00	33.57	38.27	14.25	31.56	54.53	74.00	-19.47	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.08	31.85	8.66	32.12	38.47	54.00	-15.53	Vertical
7311.00	22.53	36.37	11.71	31.91	38.70	54.00	-15.30	Vertical
9748.00	22.93	38.27	14.25	31.56	43.89	54.00	-10.11	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.84	31.85	8.66	32.12	38.23	54.00	-15.77	Horizontal
7311.00	21.95	36.37	11.71	31.91	38.12	54.00	-15.88	Horizontal
9748.00	23.28	38.27	14.25	31.56	44.24	54.00	-9.76	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.66	31.90	8.70	32.15	53.11	74.00	-20.89	Vertical
7386.00	34.82	36.49	11.76	31.83	51.24	74.00	-22.76	Vertical
9848.00	36.93	38.62	14.31	31.77	58.09	74.00	-15.91	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	44.00	31.90	8.70	32.15	52.45	74.00	-21.55	Horizontal
7386.00	33.74	36.49	11.76	31.83	50.16	74.00	-23.84	Horizontal
9848.00	33.11	38.62	14.31	31.77	54.27	74.00	-19.73	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.59	31.90	8.70	32.15	44.04	54.00	-9.96	Vertical
7386.00	24.74	36.49	11.76	31.83	41.16	54.00	-12.84	Vertical
9848.00	25.43	38.62	14.31	31.77	46.59	54.00	-7.41	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.37	31.90	8.70	32.15	42.82	54.00	-11.18	Horizontal
7386.00	23.14	36.49	11.76	31.83	39.56	54.00	-14.44	Horizontal
9848.00	22.37	38.62	14.31	31.77	43.53	54.00	-10.47	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT40)			Test	channel:		Lowe	st	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)	polarization
4844.00	38.87	31.81	8.63	32.11		47.20	74.00		-26.80	Vertical
7266.00	33.32	36.28	11.69	31.94		49.35	74.00		-24.65	Vertical
9688.00	32.07	38.13	14.21	31.52		52.89	74.00		-21.11	Vertical
12060.00	*						74.	00		Vertical
14472.00	*						74.	00		Vertical
16884.00	*						74.	00		Vertical
4844.00	37.76	31.81	8.63	32.11		46.09	74.	00	-27.91	Horizontal
7266.00	33.18	36.28	11.69	31.94		49.21	74.	00	-24.79	Horizontal
9688.00	31.70	38.13	14.21	31.52		52.52	74.	00	-21.48	Horizontal
12060.00	*				_		74.	00		Horizontal
14472.00	*				•		74.	00		Horizontal
16884.00	*				_		74.	00		Horizontal

Average value:

Average var								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	28.07	31.81	8.63	32.11	36.40	54.00	-17.60	Vertical
7266.00	22.22	36.28	11.69	31.94	38.25	54.00	-15.75	Vertical
9688.00	22.44	38.13	14.21	31.52	43.26	54.00	-10.74	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4844.00	27.38	31.81	8.63	32.11	35.71	54.00	-18.29	Horizontal
7266.00	21.79	36.28	11.69	31.94	37.82	54.00	-16.18	Horizontal
9688.00	21.47	38.13	14.21	31.52	42.29	54.00	-11.71	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT40)		Test channel:			Midd	le	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)	polarization
4874.00	38.18	31.85	8.66	32.12		46.57	74.00		-27.43	Vertical
7311.00	33.55	36.37	11.71	31.91		49.72	74.00		-24.28	Vertical
9748.00	33.20	38.27	14.25	31.56		54.16	74.00		-19.84	Vertical
12185.00	*						74.00			Vertical
14622.00	*						74.00			Vertical
17059.00	*						74.00			Vertical
4874.00	38.84	31.85	8.66	32	.12	47.23	74.00		-26.77	Horizontal
7311.00	32.28	36.37	11.71	31	.91	48.45	74.00		-25.55	Horizontal
9748.00	33.13	38.27	14.25	31.56		54.09	74.00		-19.91	Horizontal
12185.00	*						74.	00		Horizontal
14622.00	*						74.	00		Horizontal
17059.00	*						74.	00		Horizontal
Average val			,							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor IB)	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4874.00	29.12	31.85	8.66	32	.12	37.51	54.	00	-16.49	Vertical
7311.00	21.89	36.37	11.71	31	.91	38.06	54.	00	-15.94	Vertical
9748.00	22.48	38.27	14.25	31	.56	43.44	54.	00	-10.56	Vertical
12185.00	*						54.	00		Vertical
14622.00	*						54.	00		Vertical
17059.00	*						54.	00		Vertical
4874.00	29.01	31.85	8.66	32	.12	37.40	54.	00	-16.60	Horizontal
7311.00	21.39	36.37	11.71	31	.91	37.56	54.	00	-16.44	Horizontal
9748.00	22.86	38.27	14.25	31	.56	43.82	54.	00	-10.18	Horizontal
12185.00	*						54.	00		Horizontal
14622.00	*						54.	00		Horizontal
17059.00	*						54.	00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	802.11n(HT40)		channel:	High		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	42.86	31.88	8.68	32.13	51.29	74.00	-22.71	Vertical
7356.00	33.69	36.45	11.75	31.86	50.03	74.00	-23.97	Vertical
9808.00	36.11	38.43	14.29	31.68	57.15	74.00	-16.85	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4904.00	42.48	31.88	8.68	32.13	50.91	74.00	-23.09	Horizontal
7356.00	32.75	36.45	11.75	31.86	49.09	74.00	-24.91	Horizontal
9808.00	32.35	38.43	14.29	31.68	53.39	74.00	-20.61	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val					_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	33.93	31.88	8.68	32.13	42.36	54.00	-11.64	Vertical
7356.00	23.65	36.45	11.75	31.86	39.99	54.00	-14.01	Vertical
9808.00	24.65	38.43	14.29	31.68	45.69	54.00	-8.31	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4904.00	32.95	31.88	8.68	32.13	41.38	54.00	-12.62	Horizontal
7356.00	22.17	36.45	11.75	31.86	38.51	54.00	-15.49	Horizontal
9808.00	21.65	38.43	14.29	31.68	42.69	54.00	-11.31	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

----end-----