3A005 - Examen du 26 Octobre 2016

Durée 2h, Documents et calculatrice non autorisés. Tout matériel électronique interdit

Exercice 1. Racines d'équation (12/30)

On considère l'équation f(x) = 0, avec $f(x) = x^4 - x^3 - 18x^2 - 52x + 32$.

- 1. Montrer qu'il existe une racine réelle *r* dans l'intervalle [0,1].
- 2. Montrer que cette racine r est l'unique racine dans l'intervalle [0,1].
- 3. Montrer que f'(x) est borné par $a \le f'(x) \le b$. Calculer les valeurs de a et b.
- 4. On propose une méthode de point fixe définie par $x_{n+1} = \varphi(x_n) = x_n + \lambda f(x_n)$, où λ est un réel. Montrer que la condition $0 < \lambda < 2/87$ assure la convergence quelle que soit l'initialisation de $x_0 \in [0,1]$.
- 5. On définit l'erreur à l'itération n, par $e_n = x_n r$. Exprimer l'erreur e_{n+1} en fonction de e_n .
- On admet que la relation |1 + λf'(x)| < 0.1 est vérifiée à chaque itération. Quel est le nombre minimum d'itérations n pour réduire l'erreur en-dessous de 10⁻⁶, pour x₀ ∈ [0,1]?
- 7. Construire le schéma de la méthode de Newton pour ce problème. Comparer avec la méthode du point fixe précédente.

Exercice 2. Méthodes directes (12/30)

Soit la matrice
$$A = \begin{pmatrix} 1 & -3 & 1 \\ 2 & -5 & 2 \\ 2 & -7 & 1 \end{pmatrix}$$

- 1. Peut-on appliquer la factorisation de Cholesky sur la matrice A ? pourquoi ?
- 2. Trouver la décomposition LU de A avec le formulaire suivant (détailler les calculs). A = LU, avec :

Pour
$$1 \le j \le n$$
: $U_{ij} = A_{ij} - \sum_{k=1}^{i-1} L_{ik} U_{kj}$, pour $1 \le i \le j$
 $L_{jj} = 1$
 $L_{ij} = (A_{ij} - \sum_{k=1}^{j-1} L_{ik} U_{kj}) / U_{jj}$, pour $j + 1 \le i \le n$

3. Résoudre avec une méthode de descente puis remontée, le système $Ax_1 = b_1$, avec $b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

- 4. Résoudre le système $Ax_2 = b_2$, avec $b_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ et $Ax_3 = b_3$, avec $b_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
- 5. Déduire des questions précédentes la matrice A^{-1} .
- 6. Calculer le nombre de conditionnement $Cond_{\infty}(A)$.
- 7. Au vu de la valeur obtenue à la question précédente, que peut-on dire du conditionnement de A ? Argumenter.

Exercice 3. Méthodes itératives (6/30)

- 1. Un schéma itératif est défini par $x^{(k+1)} = \Omega x^{(k)} + c$. Exprimer l'erreur à l'itération (k+1) en fonction de l'erreur à l'itération (k). En déduire que la convergence de ce schéma ne dépend pas du vecteur c.
- 2. La condition nécessaire et suffisante de convergence du schéma défini dans 3.1 est $\rho(\Omega) < 1$. Montrer que $||\Omega|| < 1$ est une condition suffisante de convergence pour ce schéma.
- 3. La méthode du gradient est définie par $x^{(k+1)} = x^{(k)} + \alpha_k r^{(k)}$,

avec
$$r^{(k)} = b - Ax^{(k)}$$
 et $\alpha_k = \frac{(r^{(k)})^T r^{(k)}}{(r^{(k)})^T A r^{(k)}}$

Montrer que le vecteur résidu $r^{(k+1)}$ est perpendiculaire à $r^{(k)}$: $\left(r^{(k+1)}\right)^T r^{(k)} = 0$