

Trabajo Práctico

Sudoku

14 de diciembre de 2015

Metaheurísticas 2do Cuatrimestre de 2015

Integrante	LU	Correo electrónico
Kujawski, Kevin	459/10	kevinkuja@gmail.com
Ortiz de Zarate, Juan Manuel	45/10	jmanuoz@gmail.com

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar ÍNDICE ÍNDICE

${\rm \acute{I}ndice}$

1.	Introducción	2
2.	Descripción y formulación matemática	2
3.	Descripción de la Solución	3
4. .	Decisiones tomadas y su justificación	4
5. .	Experimentos	5
6. :	Modo de uso y Requerimientos	6
7.	Código fuente del programa	7
8.	Conclusiones	8
9. :	Referencias	8

1. Introducción

Sudoku es un juego de lógica cuyo objetivo es rellenar una cuadricula de tamaño 9x9, divididas a su vez en 9 cajas de 3x3, estas últimas llamadas cajas. Inicialmente contiene cierta cantidad de celdas con valores fijos pre-definidos y válidos, es decir, sus valores están entre [1,9], no hay repetidos por filas, columnas o cajas.

Las reglas del juego son:

- 1. Cada fila debe contener todos los números en el intervalo [1,9]
- 2. Cada columna debe contener todos los números en el intervalo [1,9]
- 3. Cada caja debe contener todos los números en el intervalo [1,9]

El objetivo del juego es rellenar las celdas en blanco de la cuadricula inicial respetando las reglas del juego. A pesar de las simpleza del objetivo y las reglas del juego, hay 6670903752021072936960 formas posibles de ser rellenada una cuadricula. Buscar una solución intentando todas las formas posibles es claramente imposible, y eso incentiva la utilización de una metaheurística para solucionar el juego.

En el presente trabajo, presentaremos una posible formulación matemática del Sudoku como un problema de optimización e dos propuestas de implementación utilizando dos metaheurísticas: Simulated annealing y Colonia de hormigas

2. Descripción y formulación matemática

Nuestra formulación matemática es una adaptación de (2). En esa formulación, las variables X_{ijk} son variables de decisión, definidas de la siguiente manera:

$$X_{ijk} = \left\{ \begin{array}{ll} 1 & \text{si el elemento (i,j) de la cuadricula contiene el valor k} \\ \\ 0 & \text{en caso contrario} \end{array} \right.$$

La formulación como programación lineal entera es la siguiente:

min 0
sujeto a
$$\sum_{i=1}^{9} X_{ijk} = 1, j = 1:9, k = 1:9$$

$$\sum_{j=1}^{3q} X_{ijk} = 1, i = 1:9, k = 1:9$$

$$\sum_{j=3q-2}^{3q} \sum_{i=3p-2}^{3p} X_{ijk} = 1, k = 1:9, p = 1:3, q = 1:3(3)$$

$$\sum_{k=1}^{3q} X_{ijk} = 1, i = 1:9, j = 1:9$$

$$X_{ijk} = 1 \forall (i, j, k) \in INICIALES$$

$$X_{ijk} \in 0, 1$$
(1)
(2)
(3)
(4)

Hay que notar que como se trata de un problema de satisfacibilidad, la formulación no necesita de una función objetivo, por eso la definimos como 0. Las restricciones (1),(2) y (3) garantizan que cada numero en el intervalo posible de la instancia solo aparezca una vez en cada columna, fila, y caja, respectivamente. La restricción (4) garantiza que todas las posiciones de la martiz esten rellenas. La restricción (5) fuerza que las variables fijas de la instancia permanezcas sin alterar.

3. Descripción de la Solución

4. Decisiones tomadas y su justificación

5. Experimentos

6. Modo de uso y Requerimientos

7. Código fuente del programa

A continuación incluimos el código fuente del programa desarrollado.

8. Conclusiones

9. Referencias

- 1. B. Felgenhauer, e F. Jarvis. (2006, January). Mathematics of Sudoku I.
- 2. A. Bartlett, T. Chartier, A. N. Langville, e T. Rankin. (2008). An Integer Pro- gramming Model for the Sudoku Problem. Journal of Online Mathematics and its Applications MAA, (8):1-14.