isZero

Test an expression to see if it is 0 or not: find arguments (for numerals) wis Side that the heavest place of the control of

- ullet c_0 returns its second argument, make it tru will yield iszro $c_0= ext{tru}$
- All other truncals (where the And Srewn Mapplies s at least once!
- Make $s = \lambda x$.fls, ignoring its argument.

Putting that: cstutorcs

$$iszero = \lambda m.m (\lambda x.fls) tru$$
 (1)

Assignment Project Exam Help iszero co

 $(\lambda m.m (\lambda x.fls) tru) c_0$

https://tutoffeb.trucom

 \rightarrow ($\lambda z. z$) tru

WeChat: cstutorcs

Assignment Project Exam Help

```
\begin{array}{c} (\lambda m.m \, (\lambda x. {\tt fls}) \, {\tt tru}) \, c_2 \\ \textbf{https:}/(\lambda {\tt tutopeous} \, (\lambda x. {\tt fls}) \, {\tt tru} \\ \rightarrow (\lambda z. \, (\lambda x. {\tt fls}) \, ((\lambda x. {\tt fls}) \, z)) \, {\tt tru} \\ \rightarrow (\lambda x. {\tt fls}) \, ((\lambda x. {\tt fls}) \, {\tt tru}) \\ \textbf{WeChat:} \, \, \textbf{cstutorcs} \end{array}
```

Predecessor(!)

Testing to see if something is the latively straightforward but Help predecessor requires some deverness.

- In UAE, we defined pred as an annihilation operation over successors.
- In λ -Galculus, we essentially need to reconstruct our numeral, while keeping that or the below α . COM

$$prd = \lambda m.fst (m ss zz)$$
 (2)

Where

$$zz = pair c_0 c_0 \tag{4}$$

$\mathsf{UAE} \longleftrightarrow \lambda$

Assignment Project Exam Help

 $realbool = \lambda b.b \text{ true false}$ (5)

We Chat:
$$\operatorname{Cstutorcs}^{\text{realnat}} = \lambda c_n . c_n (\lambda x. \operatorname{succ} x) 0$$
 (7)

 $churchnat = \lambda n. \lambda s. \lambda z. applyN \ n \ s \ z \tag{8}$

Curious Constructions

Assignment Project Exam Help

$$\Omega = (\lambda x. x x)(\lambda x. x x) \tag{9}$$

When you a tetion you get triple of the sk comm

$$(\lambda x.x x)(\lambda x.x x) \to (\lambda x.x x)(\lambda x.x x) \tag{10}$$

Because the finition land converget that finite number of steps, they are known as divergent.

Y-Combinator

Assignment Project Exam Help

$$Y = \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$$
(11)

https://tutorcs.com
Unfortunately, it only works under call by name. The following

Unfortunately, it only works under call by name. The following fixed-point combinator solves the problem of general recursion for the call by value evaluation strategy.

call by value evaluation strategy.

Call by value evaluation strategy.

(12)

Factorial

$$WeChat_{att}C_{rat}U_{fix}CS$$
(14)
(15)

To save time and energy, we are encoding this using the enriched calculus.

J. Carette (McMaster University)

Inductive Syntax of λ -Calculus

Assignment Project Exam Help Let V be a countable set of variable names. The set of terms is the smallest

set \mathcal{T} such that:

- $\underbrace{ \begin{array}{c} \bullet \quad \mathcal{V} \subseteq \underbrace{ https://tutorcs.com} \\ \bullet \quad \iota_1 \in \mathcal{T} \land x \bullet \mathcal{V} \\ \end{array} }_{\lambda x.t_1 \in \mathcal{T}}$

- Via the definition, we are define strength the same way as we did under UAE.

Assignment Project Exam Help

```
The set of free variables of a term t, written FV(t) is defined as follows:
 FV(x) https://tutorcs.com
FV(\lambda x.t_1) = FV(t_1) \setminus \{x\}
```

 $FV(t_1t_2) = FV(t_1) \cup FV(t_2)$

WeChat: cstutorcs

Assignment Project Exam Help

The intuitive (but wrong) definition:

```
\begin{array}{ll}
[x \mapsto s]x & = & s \\
[x \mapsto s]y & + & + & + \\
[x \mapsto s]\lambda y.t_1 & = & \lambda y.[x \mapsto s]t_1 \\
[x \mapsto s](t_1 t_2) & = & ([x \mapsto s]t_1)([x \mapsto s]t_2)
\end{array}
```

WeChat: cstutorcs

Why wrong?

Anisworks gensopphy well in the situations, tsuch as the following let p $[x \mapsto (\lambda z.z \ w)](\lambda y.x) \to \lambda y.\lambda z.z \ w \tag{16}$

Consider the following: //tutorcs.com $[x \mapsto y](\lambda x.x) \to \lambda x.y \tag{17}$

• This happens because we pass the substitution through lambdas without checking first to see if the variable we're replacing is bound!

Another try

If we fix the bit where we ignore bound vs. free variables...

This expression by Svalyate Ute Way We Sxpec O. In.

$$[x \mapsto y](\lambda x.x) \to \lambda x.x \tag{18}$$

But the following expression to es CS tutores

$$[x \mapsto z](\lambda z.x) \to \lambda z.z$$
 (19)

- When we sub in z, it becomes bound to λz .
- This is known as variable capture.

Accept No Substitutes!

An order to be in the set of free variables contained within the expression types substitution to pass through a λ abstraction, the abstracted variable must not be in the set of free variables contained within the expression types substitution to pass through a λ abstraction, the abstracted variable must not be in the set of free variables contained within the expression types substitution.

$$\begin{array}{lll} & & & & & & & \\ [x \mapsto s] y & & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & & & \\ [x \mapsto s] (\lambda y \mapsto y) & & \\ [x \mapsto s] (\lambda y \mapsto y) & & \\ [x \mapsto s] (\lambda y \mapsto$$

Still wrong

Ansiderite following expression Project Exam Help $[x \mapsto y \ z](\lambda y.x \ y)$ (20)

https://tutorcs.com
No substitution can be performed, even though it would be reasonable

- No substitution can be performed, even though it would be reasonable to expect one.
- By relabeling the some other arbitrary label, we can avoid the capture as well volcamula: at: CSTUTOTCS

$$[x \mapsto y \ z](\lambda y.x \ y) \rightarrow [x \mapsto y \ z](\lambda w.x \ w) \rightarrow (\lambda w.y \ z \ w)$$
 (21)

Relabelling

Assignment, Project Fxames Help variables are interchangeable in all contexts.

This is known as α -equivalence.

By working the containt of the second partition:

$$[x \mapsto s]x = s$$

$$[x \mapsto s]y = y \qquad \text{if } y \neq x$$

$$[x \mapsto s](\lambda x, t_1) = \lambda y, [x \mapsto s]t_1 \qquad \text{if } y \neq x \text{ and } y \notin FV(s)$$

$$[x \mapsto s](t) = \lambda t_1 + t_2 + t_3 + t_4 + t_4 + t_5 + t_4 + t_5 + t_5$$

Operational Semantics of λ -Calculus

Here is the operational semantics of the CbV (call by value) λ-Calculus Assignment Project Exam Help

Note that these are the semantics for the **pure** λ -Calculus.

Things of note

Assignment Project Exam Help

- One application rule (E-AppAbs), and two *congruence* rules, (E-App1) and (F-App2).
- and (F-App2).

 Note have placement of values Controls (before of execution).
 - ▶ We may only proceed with (E-App2) if t_1 is a value, implying that (E-App1) is inapplicable.
 - ► The reason this strategy is called "call by value" is because the term being substituted in E-AppAbs crust be a value.