

Problem Statement

- Goal: forecast US movie market based on monthly total gross box office revenue
- Data:
 - Box Office
 - Source: Box Office MOJO
 - Variables : Date, Total Gross

Economic Indicator: Monthly US Unemployment Rate

Assumptions

- Hypothesis:
 - Box office revenue is seasonal
 - It is correlated with economy
 - Historical trend is predictive for future values

Data Properties and Transformation

- Daily total gross data of US Box office from Jan 1982 to Apr 2018
- Transform daily total gross into monthly total gross
- Split into training set and testing set:
 - > Training set:
 - ? Apr 2017
 - Testing set:
 - May 2017 Apr 2018

Date	Day	Movies	TotalGross
01/1/2	Tue	20	10248284
01/2/2	Wed	20	4616413
01/3/2	Thu	20	3767510
01/4/2	Fri	20	6783240
01/5/2	Sat	20	10114063
01/6/2	Sun	20	6109144
01/7/2	Mon	19	1710810
01/8/2	Tue	19	1978472
01/9/2	Wed	19	1525350
01/10/2	Thu	19	1395114
01/11/2	Fri	23	5693000
01/12/2	Sat	23	7268117
1/13/02	Sun	23	4692094
1/14/02	Mon	23	1137194
1/15/02	Tue	23	1305321
1/16/02	Wed	23	1100225
1/17/02	Thu	23	1112025
1/18/02	Fri	24	9914214
1/19/02	Sat	24	10024101

Determining the training set

- For data of length 5 to 30 years, find the minimum sMAPE achieved across all models.
- Result:
 - > Training set:
 - > Apr 2002 Apr 2017

Exploration for Trend

- Clear linearly increasing trend
- Increasing variance

Decomposition

ADF Test for Stationarity

```
Augmented Dickey-Fuller Test
```

```
data: data.ts[, 1]
Dickey-Fuller = -6.7304, Lag order = 7, p-value = 0.01
alternative hypothesis: stationary
```


ACF and PACF

Exploration for Seasonality

Models

- 1.Linear regression with ARMA errors
- 2.Exponential Smoothing Model
- 3.Holt Winters
- 4. ARIMA, SARIMA, ARFIMA, and GARCH
- 5. NNAR
- 6.TBATS

xreg Result

```
Series: train[, 1]
```

Regression with ARIMA(2,1,2)(1,0,0)[12] errors

Coefficients:

ar1 ar2 ma1 ma2 sar1 xreg 0.1468 -0.0964 -1.3998 0.4059 0.8266 4.2112 s.e. 0.2417 0.0990 0.2336 0.2333 0.0441 1.7035

sigma^2 estimated as 37263: log likelihood=-1207.74

AIC=2429.48 AICc=2430.13 BIC=2451.83

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 12.01577 189.266 142.426 -3.883848 18.34319 0.8749033 -0.009272678

Call:

lm(formula = TotalGross ~ Movies, data = data.ts)

Residuals:

Min 1Q Median 3Q Max -723.00 -220.67 -85.91 219.60 1102.38

Coefficients:

| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 199.8769 | 31.7187 | 6.302 | 7.23e-10 | *** | Movies | 11.5395 | 0.8081 | 14.280 | < 2e-16 | ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 304.8 on 435 degrees of freedom Multiple R-squared: 0.3192, Adjusted R-squared: 0.3176 F-statistic: 203.9 on 1 and 435 DF, p-value: < 2.2e-16

Residuals of XREG Model

ETS Result

```
ETS(M,N,M)
Call:
 ets(y = train[, 1])
  Smoothing parameters:
    alpha = 0.0413
    gamma = 1e-04
 Initial states:
   1 = 776.392
   s=0.9863 0.7305 0.4919 1.5553 1.3069 0.748
          0.6247 0.8349 1.2807 1.3512 1.37 0.7196
  sigma: 0.19
     AIC
             AICc
                       BTC
2775.659 2778.568 2823.636
Training set error measures:
                   ME
                          RMSE
                                    MAE
                                               MPE
                                                       MAPE
                                                                MASE
                                                                           ACF1
Training set 22.56404 157.1561 118.8698 -0.9573125 14.45335 0.730201 -0.2403196
```


Holt Winters Result

	Length	Class	Mode
fitted	676	mts	numeric
X	181	ts	numeric
alpha	1	-none-	numeric
beta	1	-none-	numeric
gamma	1	-none-	numeric
coefficients	14	-none-	numeric
seasonal	1	-none-	character
SSE	1	-none-	numeric
call	2	-none-	call

ARIMA Result

```
Series: train[, 1]
ARIMA(4,1,1)
```

Coefficients:

ar1 ar2 ar3 ar4 ma1 -0.1427 -0.4900 -0.2741 -0.3971 -0.9371 s.e. 0.0705 0.0676 0.0674 0.0706 0.0218

sigma^2 estimated as 80075: log likelihood=-1271.42

AIC=2554.84 AICc=2555.33 BIC=2574

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 31.2711 278.2448 216.5319 -9.200128 31.16821 1.330126 -0.06627176

SARIMA Result

Series: train[, 1]
ARIMA(0,1,3)(1,0,0)[12]

Coefficients:

ma1 ma2 ma3 sar1 -1.2730 0.1610 0.1237 0.8142 s.e. 0.0741 0.1184 0.0721 0.0444

sigma^2 estimated as 38356: log likelihood=-1211.03

AIC=2432.06 AICc=2432.4 BIC=2448.02

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 15.80153 193.1235 146.7109 -3.687826 18.962 0.9012251 -0.00596499

ACF

ARFIMA Result

Call:

ARMA and GARCH Result

```
Title:
                                                                                            GARCH Modelling
Series: log.bo
ARIMA(2,0,1)(1,0,0)[12] with zero mean
                                                                                           Call:
                                                                                            garchFit(formula = \sim arma(1, 2) + garch(1, 1), data = log.bo,
Coefficients:
                                                                                               cond.dist = "std", trace = F)
          ar1
                    ar2
                              ma1
                                     sar1
      -0.2662 -0.1221 -0.9875 0.8426
                                                                                           Mean and Variance Equation:
s.e. 0.0763
                0.0755
                         0.0111 0.0390
                                                                                            data \sim arma(1, 2) + garch(1, 1)
                                                                                           <environment: 0x11e4e3ed8>
                                                                                            \lceil data = \log.bo \rceil
sigma^2 estimated as 0.05538: log likelihood=-1.32
AIC=12.64 AICc=12.98 BIC=28.6
                                                                                           Conditional Distribution:
                                                                                            std
Training set error measures:
                               RMSE
                                           MAE
                                                                        MASE
                                                                                           Coefficient(s):
Training set 0.01576539 0.2326989 0.1835699 80.96233 163.3329 0.5808288 -0.02103611
                                                                                                                                                                          beta1
                                                                                                               ar1
                                                                                                                           ma1
                                                                                                                                                              alpha1
                                                                                            0.00078797 -0.54439968 -0.18924317 -0.75300034
                                                                                                                                                         0.00000001
                                                                                                                                                                      0.70263499
                                                                                                 shape
        Box-Ljung test
                                                                                           10.00000000
data: fit.garch.arma$residuals^2
                                                                                           Std. Errors:
X-squared = 26.3, df = 12, p-value = 0.009732
                                                                                            based on Hessian
```


NNAR Result

	Length	Class	Mode
X	181	ts	numeric
m	1	-none-	numeric
р	1	-none-	numeric
P	1	-none-	numeric
scalex	2	-none-	list
scalexreg	2	-none-	list
size	1	-none-	numeric
xreg	181	-none-	numeric
subset	181	-none-	numeric
model	20	nnetarmodels	list
nnetargs	0	-none-	list
fitted	181	ts	numeric
residuals	181	ts	numeric
lags	12	-none-	numeric
series	1	-none-	character
method	1	-none-	character
call	3	-none-	call

TBATS Result

```
lambda
                          -none- numeric
alpha
                          -none- numeric
                          -none- NULL
beta
damping.parameter
                          -none- NULL
gamma.one.values
                          -none- numeric
gamma.two.values
                          -none- numeric
ar.coefficients
                          -none- numeric
ma.coefficients
                          -none- numeric
likelihood
                          -none- numeric
optim.return.code
                          -none- numeric
variance
                          -none- numeric
AIC
                          -none- numeric
                          -none- list
parameters
                          -none- numeric
seed.states
fitted.values
                   181
                                 numeric
                   181
                          ts
                                 numeric
errors
                  2353
                          -none- numeric
seasonal.periods
                          -none- numeric
k.vector
                          -none- numeric
                   181
                                 numeric
                          -none- numeric
                          -none- numeric
                          -none- call
call
                          -none- character
series
method
                          -none- character
```


Model Selection

SMAPE result:

Xreg 0.3111 Ets 0.3098

Hw 0.3077

Arima 0.4011

Sarima 0.3177

Arfima 0.3934

Garch 0.4249

Nnar 0.2322

Tbats 0.2968

Avg 0.2907

NNAR

Final Result - NNAR

Final Result - NNAR?

Future Work

- Try to forecast quarterly box office gross
- Add weight to historical data to balance forecasting power
- Utilize more independent variables to conduct multivariate analysis
- Ensemble models

