DM06 - Régimes transitoires

Exercice 1 – Charge ou décharge?

On considère le circuit représenté ci-contre, où l'interrupteur K est ouvert depuis très longtemps. On le ferme à l'instant t=0.

1. On suppose qu'avant la fermeture de l'interrupteur, le régime permanent est établi. Faire un schéma équivalent du circuit à $t=0^-$ et exprimer $i,\,i_1,\,i_2$ et u à l'instant $t=0^-$, juste avant la fermeture de l'interrupteur.

- 2. En déduire i, i_1 , i_2 et u à $t=0^+$, juste après la fermeture de K. Justifier soigneusement chaque réponse.
- 3. Que deviennent ces grandeurs en régime permanent $(t \to \infty)$.
- 4. Montrer que l'équation différentielle vérifiée par u(t) après la fermeture de l'interrupteur peut se mettre sous la forme :

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{\tau} = \frac{E}{3\tau}.$$

Exprimer τ en fonction de R et C.

- 5. Déterminer complètement u(t) pour $t \ge 0$. On fera apparaitre très clairement les différentes étapes de la résolution.
- **6.** En déduire l'expression de i(t).
- 7. Représenter graphiquement u(t) et i(t).
- 8. Déterminer la variation d'énergie $\Delta \mathcal{E}_C$ stockée par le condensateur en fonction de C et E. Commenter son signe.
- 9. On donne ci-dessous le graphe d'une des grandeurs électriques étudiées. S'agit-il de u(t) (en volts) ou de i(t) (en milliampères)? Déterminer graphiquement τ et en déduire les valeurs de R et C sachant que $E=5,0\,\mathrm{V}$.

