AI Lab 2 : Agents and Environments

Environment: The environment is a village called "Binary" pur, with two categories of people: category 0 is *Kid* and category 1 is *Adult*.

State:

- At time t, the $s_t \in \{0, 1\}$, i.e., the state is $s_t = 0$ or $s_t = 1$. Note that the state can assume only one of the values. Here 0 means Kid and 1 means Adult.
- State is generated with $P(s_t = 0) = p_{kid}$, $P(s_t = 1) = p_{adult} = 1 p_{kid}$.

Observation:

- $o_t = (h_t)$, where h_t denotes height of a given person.
- The height a Kid is distributed between 2 to 4.5 feet as shown. The distribution is given by

Height	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	4	4.2	4.4
% of kids in that height	1	9	0.5	5	4.5	15	0.8	4.2	13	7	22	8	10

• Choose your own distribution for the height of an Adult.

Action: Agent observes o_t and needs to decide whether the person is Kid or an Adult. The action set $a_t = \{0, 1\}$, where 0 means Kid and 1 means Adult.

Reward: The reward $r_t = R(s_t, a_t)$, R(0,0) = 1, R(1,1) = 1, R(0,1) = 0, R(1,0) = 0, i.e., if the prediction is correct then reward is 1, else it is 0.

- 1. Produce a dataset file which contains $t, s_t, h_t, a_t, r_t, t = 1, \dots, 1000$. Use a new line for each t.
- 2. Plot histograms of the height of the *Kid* and *Adult*.
- 3. Measure the performance of the agent, i.e., average reward.

1 Dynamic Control Task: Room Cleaner Robot

Consider a robot which cleans the room which contains dirt.

Environment: The room is a grid with dimensions $x_{size} \times y_{size}$. It has walls on all sides and the robot if it tries to move out it will hit the wall and stay in the same place. 10 random locations contain dirt.

State: At time t, the agent is in location (x_t, y_t) . d_t is an array of size $x_{size} \times y_{size}$, and it contains the information on dirt.

Observation: $o_t = (x_t, y_t)$, i.e., the agent gets to observe its position. It does not observe the dirt information.

Action: Agent need to decide whether it has to move right, left, up, down or pick up the dirt. The action set $a_t = \{\text{up,down,right,left, pick-dirt}\}$. The agent picks one action at random.

Reward: The reward $r_t = R(s_t, a_t)$, reward is -1 if the agent tries to pick-dirty in a clean grid, -10 on hitting the wall and is equal to the amount of dirt when it picks the dirt.

- 1. Print out the activity at each time $t=1,\dots,100$, location of the agent, dirt in each location, action of the agent and the reward obtained.
- 2. Measure the performance of the agent, i.e., the average reward obtained.