Part 1

Exercise 10.2.

(a) Show that in a well-ordered set, every element except the largest (if one exists) has an immediate successor.

Proof. Let X be a well-ordered set and $x \in X$ not be the largest element. Then the set $\{y \in X : y > x\}$ is nonempty and has a smallest element, which is clearly the immediate successor of x.

(b) Find a set in which every element has an immediate successor that is not well-ordered.

Solution. The integers \mathbb{Z} .

Exercise 10.4.

(a) Let \mathbb{Z}_{-} denote the set of negative integers in the usual order. Show that a simply ordered set A fails to be well-ordered if and only if it contains a subset having the same order type as \mathbb{Z}_{-} .

Proof. (\Longrightarrow) Suppose A has a simple order < that is not well-ordered. Let B be a nonempty subset of A with no least element and pick some $b_1 \in B$. For any $k \ge 1$ choose $b_{k+1} < b_k$, which will always exist since B has no least element. Then $\{b_n\} \subset A$ and $f : \{b_n\} \to \mathbb{Z}_-$ defined by

$$f(b_n) = -n$$

is clearly an order preserving bijection.

(\Leftarrow) Suppose A has a subset B with the same order type as \mathbb{Z}_- . Then clearly B has no least element because, letting $f: \mathbb{Z}_- \to B$ denote an order preserving bijection, for any $b \in B$ we have some $n \in \mathbb{Z}_-$ such that f(n) = b and some $f(n-1) \in B$ such that f(n-1) < b. Therefore A is not well-ordered.

(b) Show that if A is simply ordered and every countable subset of A is well-ordered, then A is well-ordered.

Proof. Suppose A is not well-ordered. By part (a), there exists a subset B of A that has the same order type as \mathbb{Z}_{-} , so B is a countable subset of A that is not well-ordered. \square

Exercise 23.2. Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.

Proof. Suppose $\bigcup A_n = C \cup D$ is a separation of $\bigcup A_n$. Since each A_n is a subset of the union $\bigcup A_n$, by Lemma 23.2, each A_n lies entirely within C or D. For n = 1, without loss of generality suppose A_1 lies entirely within C. Notice that if A_n lies within C for all n > 1, then $\bigcup A_n = C$ and $D = \emptyset$, contradicting C, D being a separation. So let m be the least integer such that A_m lies within D. Our hypothesis indicates that there exists $a \in A_{m-1} \cap A_m$, but this is a contradiction, since A_{m-1} lies entirely in C and A_m lies entirely in D, where C and D are disjoint. Therefore $\bigcup A_n$ must be connected.

Exercise 23.5. A space is *totally disconnected* if its only connected subspaces are one-point sets. Show that if X has the discrete topology, then X is totally disconnected. Does the converse hold?

Proof. Let X have the discrete topology and A be a connected subspace of X. Notice that if A is empty it cannot be connected. So let $x \in A$. If $A - \{x\}$ is nonempty then $\{x\}, A - \{x\}$ forms a separation of A, so it must be the case that $A - \{x\}$ is empty and $A = \{x\}$. Hence all connected subspaces of X are singleton sets.

No, the converse does not hold. The rational numbers as the subspace of the usual topology on \mathbb{R} are totally disconnected but not discrete.

Exercise 23.8. Determine whether or not \mathbb{R}^{ω} is connected in the uniform topology.

Solution. \mathbb{R}^{ω} is not connected in the uniform topology, for an argument identical to the one given for the box topology in Example 23.6. Specifically, we separate \mathbb{R}^{ω} into bounded and unbounded sequences of real numbers. These are clearly nonempty disjoint sets, and they are open, since for any $\mathbf{a} \in \mathbb{R}^{\omega}$ the ball

$$B(\mathbf{a},1) = (a_1 - 1, a_1 + 1) \times (a_2 - 1, a_2 + 1) \times \cdots$$

consists entirely of bounded sequences if \mathbf{a} is bounded and unbounded sequences if \mathbf{a} is unbounded. Therefore \mathbb{R}^{ω} is not connected.

Exercise 24.4. Let X be an ordered set in the order topology. Show that if X is connected, then X is a linear continuum.

Proof. Suppose x < y for some $x, y \in X$. Then $(-\infty, y)$ and (x, ∞) are open, nonempty, and their union is all of X. Thus they cannot be disjoint, so there exists $z \in (-\infty, y) \cap (x, \infty)$ so that x < z < y.

Next suppose for contradiction that there is a nonempty subset A of X that is bounded above without a least upper bound. Let B be the (nonempty) set of upper bounds for A.

Notice that if there was an upper bound $a_u \in A$ then for any upper bound $b \in B$, $a_u \leq b$, hence a_u would be a least upper bound of A. Therefore A and B are disjoint nonempty sets. Define the open sets

$$U = \bigcup_{a \in A} (-\infty, a)$$
 $V = \bigcup_{b \in B} (b, \infty)$

Note that V is actually just equal to the set of upper bounds B. This is because there is no least bound, so for any $b \in B$ there will exist another $b_0 \in B$ so that $b \in (b_0, \infty)$. Also, it is worth noting that $A \subset U$ which follows by similar reasoning, since there is no maximum within A.

Now U, V are nonempty disjoint open sets. Also for any $x \in X$, if x is an upper bound for A then $x \in V$ and if x is not an upper bound for A then there exists $a \in A$ so that x < a, hence $x \in U$. Thus $X = U \cup V$ and U, V form a separation of X. By contradiction, it must be the case that X has the least upper bound property.

Exercise 24.5. Consider the following sets in the dictionary order. Which are linear continua?

- (a) $\mathbb{Z}_+ \times [0,1)$ Yes.
- (b) $[0,1) \times \mathbb{Z}_+$ No. There is no element between 0×1 and 0×2 .
- (c) $[0,1) \times [0,1]$ Yes.
- (d) $[0,1) \times [0,1)$ No. There is no least upper bound for $A = (-\infty, \frac{1}{2} \times 1)$ but A is nonempty and bounded above by $\frac{3}{4} \times 0$.

Exercise 24.8 (a). Is a product of path-connected spaces necessarily path connected?

Solution. In the product topology, yes. Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be a collection of path-connected spaces and give $\prod X_{\alpha}$ the product topology. Let $\mathbf{x}, \mathbf{y} \in \prod X_{\alpha}$. Since each X_{α} is path connected, there exists a continuous map $f_{\alpha}: [a_{\alpha}, b_{\alpha}] \to X_{\alpha}$ such that $f_{\alpha}(a_{\alpha}) = \pi_{\alpha}(\mathbf{x})$ and $f_{\alpha}(b_{\alpha}) = \pi_{\alpha}(\mathbf{y})$. Define

$$g_{\alpha}: [0,1] \to [a_{\alpha}, b_{\alpha}]$$
 by $g(x) = a_{\alpha} + (b_{\alpha} - a_{\alpha})x$

which is clearly continuous (when $a_{\alpha} < b_{\alpha}$ this acts as expected, when $a_{\alpha} = b_{\alpha}$ this is just the constant function which is also continuous). Then define $f : [0,1] \to \prod X_{\alpha}$ by

$$f(x) = (f_{\alpha} \circ g_{\alpha}(x))_{\alpha \in J}$$

which is also continuous by Theorem 19.6. It is also evident that $f(0) = \mathbf{x}$ and $f(1) = \mathbf{y}$. Hence $\prod X_{\alpha}$ is path connected.

Part 2

(a) Let X be an uncountable subset of S_{Ω} . Prove that X and S_{Ω} have the same order type. Hint: let $f: X \to S_{\Omega}$ be $f(x) = \min(S_{\Omega} - f((-\infty, x) \cap X))$.

Proof. First, let us define some notation for sections:

$$X_a = (-\infty, a) \cap X$$

$$S_a = (-\infty, a)$$

so that f defined above can be rewritten as

$$f(x) = \min(S_{\Omega} - f(X_x))$$

We begin by proving a lemma: images of sections in X are sections in S_{Ω} . Suppose for contradiction that this is not the case, and let y be the least element of X such that $f(X_y)$ is not a section of S_{Ω} . Then there exists a < b such that $b \in f(X_y)$ and $a \notin f(X_y)$. Let $x \in X_y$ such that f(x) = b, so

$$b = f(x) = \min(S_{\Omega} - f(X_x)).$$

However, x < y so we know that $f(X_x)$ is a section of S_{Ω} . Then it is clear that

$$f(X_x) \cup \{\min(S_{\Omega} - f(X_x))\} = f(X_x) \cup \{b\}$$

is also a section of S_{Ω} . Since a < b, it must be the case that $a \in f(X_x)$, but of course $X_x \subset X_y$ and $f(X_x) \subset f(X_y)$, so this contradicts $a \notin f(X_y)$. We conclude that for all $y \in X$, $f(X_y)$ is a section of S_{Ω} .

Next we show f is order preserving. Let $x, y \in X$ such that x < y. Then $f(X_y)$ is a section of S_{Ω} which contains f(x). Therefore $S_{\Omega} - f(X_y)$ contains elements that are all strictly greater than f(x). Hence

$$f(y) = \min(S_{\Omega} - f(X_y))$$

must be strictly greater than f(x). We conclude f is order preserving and also injective.

Next suppose for contradiction that f is not surjective. Let a be the least element of S_{Ω} such that $a \notin f(X)$. Then the section $S_a \subset f(X)$. We've already shown that f is injective, and since S_a is countable, it cannot be the case that $f(X) = S_a$ as this would contradict X being uncountable. So f(X) must contain some elements greater than a. Let b be the least element such that $b \in f(X)$ and a < b. Let $x \in X$ such that f(x) = b. Now there must exist a $y \in X$ such that x < y, because $X_x \cup \{x\}$ is countable and X is uncountable. Then $f(X_y)$ is a section containing f(x) and since a < f(x), $f(X_y)$ must also contain a. This contradicts $a \notin f(X)$. We conclude f is surjective.

We have shown f is an order preserving bijection, and therefore X and S_{Ω} have the same order types.

(b) Is it possible for a well-ordered set to have the same cardinality as S_{Ω} , but not the same order type?

Solution. Yes. Consider the set $A = S_{\Omega} \cup \{\Omega\}$ from Lemma 10.2. This set has a different order type than S_{Ω} , as every section of S_{Ω} is countable, but the section of A by Ω is uncountable. We can construct a bijection fairly easily however: let s denote the immediate successor function and define $f: A \to S_{\Omega}$ by

$$f(x) = \begin{cases} s(x) & \text{if } x \neq \Omega \\ \min(S_{\Omega}) & \text{if } x = \Omega. \end{cases}$$

Then f is well defined by Exercise 10.2(a) and clearly a bijection.