Fourier integral

Fourier series were used to represent a function f defined of a *finite* interval (-p, p) or (0, L). It converged to f and to its periodic extension. In this sense Fourier series is associated with *periodic* functions.

Fourier integral represents a certain type of *nonperiodic* functions that are defined on either $(-\infty, \infty)$ or $(0, \infty)$.

From Fourier series to Fourier integral

Let a function f be defined on (-p, p). The Fourier series of the function is then

$$f(x) = \frac{1}{2p} \int_{-p}^{p} f(t) dt + \frac{1}{p} \sum_{n=1}^{\infty} \left[\left(\int_{-p}^{p} f(t) \cos \frac{n\pi}{p} t dt \right) \cos \frac{n\pi}{p} x + \left(\int_{-p}^{p} f(t) \sin \frac{n\pi}{p} t dt \right) \sin \frac{n\pi}{p} x \right]$$

$$(1)$$

If we let $\alpha_n = n\pi/p$, $\Delta \alpha = \alpha_{n+1} - \alpha_n = \pi/p$, we get

$$f(x) = \frac{1}{2\pi} \left(\int_{-p}^{p} f(t) dt \right) \Delta \alpha +$$

$$+ \frac{1}{\pi} \sum_{n=1}^{\infty} \left[\left(\int_{-p}^{p} f(t) \cos \alpha_n t dt \right) \cos \alpha_n x + \left(\int_{-p}^{p} f(t) \sin \alpha_n t dt \right) \sin \alpha_n x \right] \Delta \alpha$$
(2)

We now expand the interval (-p,p) by taking $p\to\infty$ which implies that $\Delta\alpha\to0$. Consequently,

$$\lim_{\Delta\alpha\to 0} \sum_{n=1}^{\infty} F(\alpha_n) \, \Delta\alpha \to \int_0^{\infty} F(\alpha) \, d\alpha$$

Thus, the limit of the first term in the Fourier series $\int_{-p}^{p} f(t) dt$ vanishes, and the limit of the sum becomes

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[\left(\int_{-\infty}^\infty f(t) \cos \alpha t \, dt \right) \cos \alpha x + \left(\int_{-\infty}^\infty f(t) \sin \alpha t \, dt \right) \sin \alpha x \right] d\alpha$$

This is the **Fourier** integral of f on the interval $(-\infty, \infty)$.

Definition: Fourier integral

The Fourier integral of a function f defined on the interval $(-\infty, \infty)$ is given by

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[A(\alpha) \cos \alpha x + B(\alpha) \sin \alpha x \right] d\alpha \tag{3}$$

where

$$A(\alpha) = \int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx \tag{4}$$

$$B(\alpha) = \int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx \tag{5}$$

Convergence of a Fourier integral

Theorem: Conditions for convergence

Let f and f' be piecewise continuous on every finite interval, and let f be absolutely integrable on $(-\infty,\infty)$ (i.e. the integral $\int_{-\infty}^{\infty} |f(x)| \ dx$ converges). Then the Fourier integral of f on the interval converges for f(x) at a point of continuity. At a point of dicontinuity, the Fourier integral will converge to the average

$$\frac{f(x+) + f(x-)}{2}$$

where f(x+) and f(x-) denote the limit of f at x from the right and from the left, respectively.

Example 1: Fourier integral representation

$$f(x) = \begin{cases} 0, & x < 0 \\ 1, & 0 < x < 2 \\ 0, & x > 2 \end{cases}$$

The function satisfies the assumptions of the theorem above, so the Fourier integral can be computed as follows:

$$A(\alpha) = \int_{-\infty}^{\infty} f(x) \cos \alpha x \, dx$$

$$= \int_{-\infty}^{0} f(x) \cos \alpha x \, dx + \int_{0}^{2} f(x) \cos \alpha x \, dx + \int_{2}^{\infty} f(x) \cos \alpha x \, dx$$

$$= \int_{-\infty}^{2} \cos \alpha x \, dx = \frac{\sin 2\alpha}{\alpha}$$

$$B(\alpha) = \int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx = \int_{0}^{2} \sin \alpha x \, dx = \frac{1 - \cos 2\alpha}{\alpha}$$

Substituting these coefficients into the Fourier integral

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[\left(\frac{\sin 2\alpha}{\alpha} \right) \cos \alpha x + \left(\frac{1 - \cos 2\alpha}{\alpha} \right) \sin \alpha x \right] d\alpha$$

Using trigonometric identities the last integral simplifies to

$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin \alpha \cos \alpha (x-1)}{\alpha} d\alpha$$

Comment: The Fourier integral can be used to evaluate integrals. For example, at x = 1, the result above converges to f(1); that is

$$\int_0^\infty \frac{\sin \alpha}{\alpha} \, d\alpha = \frac{\pi}{2}$$

The integrant $(\sin x)/x$ does not posses antiderivative that is an elementary function.

Cosine and sine integrals

Definition: Fourier cosine and sine integrals

(i) The Fourier integral of an even function on the interval $(-\infty, \infty)$ is the **cosine** integral

$$f(x) = \frac{2}{\pi} \int_0^\infty A(\alpha) \cos \alpha x \, d\alpha \tag{6}$$

where

$$A(\alpha) = \int_0^\infty f(x) \, \cos \alpha x \, dx \tag{7}$$

(ii) The Fourier integral of an odd function on the interval $(-\infty, \infty)$ is the **sine integral**

$$f(x) = \frac{2}{\pi} \int_0^\infty B(\alpha) \sin \alpha x \, d\alpha \tag{8}$$

where

$$B(\alpha) = \int_0^\infty f(x) \sin \alpha x \, dx \tag{9}$$

Example 2: Cosine integral representation

$$f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$$

This function is even, hence we can represent f by the Fourier cosine integral. We get

$$A(\alpha) = \int_0^\infty f(x) \cos \alpha x \, dx = \int_0^a f(x) \cos \alpha x \, dx + \int_a^\infty f(x) \cos \alpha x \, dx$$
$$= \int_0^a \cos \alpha x \, dx = \frac{\sin a\alpha}{\alpha}$$

and so

$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin a\alpha \cos \alpha x}{\alpha} d\alpha$$

The Fourier cosine and sine integrals, (6) and (8) respectively, can be used when f is neither odd not even and defined only on the half-line $(0, \infty)$.

In this case, (6) represents f on the interval $(0, \infty)$ and its even, but not periodic, extension to $(-\infty, 0)$.

Similarly, (8) represents f on the interval $(0, \infty)$ and its odd, but not periodic, extension to $(-\infty, 0)$.

Example 3: Cosine and sine integral representations

$$f(x) = e^{-x}, x > 0$$

(a) A cosine integral:

$$A(\alpha) = \int_0^\infty e^{-x} \cos \alpha x \, dx = \frac{1}{1 + \alpha^2}$$
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\cos \alpha x}{1 + \alpha^2} \, d\alpha$$

(b) A sine integral:

$$B(\alpha) = \int_0^\infty e^{-x} \sin \alpha x \, dx = \frac{\alpha}{1 + \alpha^2}$$
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\alpha \sin \alpha x}{1 + \alpha^2} \, d\alpha$$

Complex form

The Fourier integral (3) also possesses an equivalent **complex form**, or **exponential form**:

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) [\cos \alpha t \cos \alpha x + \sin \alpha t \sin \alpha x] dt d\alpha$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \alpha (t - x) dt d\alpha$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) [\cos \alpha (t - x) dt d\alpha]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) [\cos \alpha (t - x) - i \sin \alpha (t - x)] dt d\alpha$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{-i\alpha(t - x)} dt d\alpha$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) e^{-i\alpha t} dt \right) e^{i\alpha x} d\alpha$$

In order to derive the complex form, we used a few observations and tricks:

- (i) to get to the third line we used the fact that the integrand on the second line is an even function of α .
- (ii) to get from the third to fourth line, we added to the integrand zero in the form of an integral of an odd function

$$i\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \sin \alpha (t - x) dt d\alpha = 0$$

The complex Fourier integral can be expressed as

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} C(\alpha) e^{i\alpha x} d\alpha$$
 (10)

where

$$C(\alpha) = \int_{-\infty}^{\infty} f(x) e^{-i\alpha x} dx$$
 (11)

The convergence of a Fourier integral can be examined in a manner that is similar to graphing partial sums of a Fourier series.

Example: By definition of an improper integral, the Fourier cosine integral representation of $f(x) = e^{-x}$, x > 0, can be written as $f(x) = \lim_{b \to \infty} F_b(x)$ where

$$F_b(x) = \frac{2}{\pi} \int_0^b \frac{\cos \alpha x}{1 + \alpha^2} d\alpha$$

and *x* is treated as a parameter.

Similarly, the Fourier sine representation of $f(x) = e^{-x}$, x > 0, can be written as $f(x) = \lim_{b \to \infty} G_b(x)$ where

$$G_b(x) = \frac{2}{\pi} \int_0^b \frac{\alpha \sin \alpha x}{1 + \alpha^2} d\alpha$$

Fourier transform

We will now

- introduce a new integral transforms called **Fourier transforms**;
- expand on the concept of transform pair: an integral transform and its inverse;
- see that the inverse of an integral transform is itself another integral transform.

Transform pairs

Integral transforms appear in **transform pairs**: if f(x) is transformed into $F(\alpha)$ by an integral transform

$$F(\alpha) = \int_{a}^{b} f(x) K(\alpha, x) dx$$

then the function f can be recovered by another integral transform

$$f(x) = \int_{a}^{b} F(\alpha) H(\alpha, x) dx$$

called the **inverse transform**. The functions K and H in the integrands above are called the **kernels** of their respective transforms. For example $K(s,t) = e^{-st}$ is the kernel of the Laplace transform.

Fourier transform pairs

The Fourier integral is the source of three new integral transforms.

Definition: Fourier transform pairs

(i)

Fourier transform:

$$\mathcal{F}\{f(x)\} = \int_{-\infty}^{\infty} f(x) e^{-i\alpha x} dx = F(\alpha)$$
 (12)

Inverse Fourier transform:

$$\mathcal{F}^{-1}\left\{F(\alpha)\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\alpha) \ e^{i\alpha x} \ d\alpha = f(x) \tag{13}$$

(ii)

Fourier sine transform:

$$\mathcal{F}_{\mathcal{S}}\{f(x)\} = \int_{0}^{\infty} f(x) \sin \alpha x \, dx = F(\alpha)$$
 (14)

Inverse Fourier sine transform:

$$\mathcal{F}_s^{-1} \{ F(\alpha) \} = \frac{2}{\pi} \int_0^\infty F(\alpha) \sin \alpha x \, d\alpha = f(x)$$
 (15)

(iii)

Fourier cosine transform:

$$\mathcal{F}_{c}\{f(x)\} = \int_{0}^{\infty} f(x) \cos \alpha x \, dx = F(\alpha)$$
 (16)

Inverse Fourier cosine transform:

$$\mathcal{F}_c^{-1}\left\{F(\alpha)\right\} = \frac{2}{\pi} \int_0^\infty F(\alpha) \, \cos \alpha x \, d\alpha = f(x) \tag{17}$$

Existence

The existence conditions for the Fourier transform are more stringent than those for the Laplace transform. For example, $\mathcal{F}\{1\}$, $\mathcal{F}_s\{1\}$ and $\mathcal{F}_c\{1\}$ do not exist.

Sufficient conditions for existence are that f be absolutely integrable on the appropriate interval and that f and f' are piecewise continuous on every finite interval.

Operational properties

Transforms of derivatives.

(i) Fourier transform

Supose that f is continuous and absolutely integrable on the interval $(-\infty, \infty)$ and f' is piecewise continuous on every finite interval. If $f(x) \to 0$ as $x \to \pm \infty$, then integration by parts gives

$$\mathcal{F}\left\{f'(x)\right\} = \int_{-\infty}^{\infty} f'(x) \, e^{-i\alpha x} \, dx = \left[f(x) \, e^{-i\alpha x}\right]_{-\infty}^{\infty} + i\alpha \int_{-\infty}^{\infty} f(x) \, e^{-i\alpha x} \, dx$$

$$= i\alpha \int_{-\infty}^{\infty} f(x) \, e^{-i\alpha x} \, dx$$
That is: $\mathcal{F}\left\{f'(x)\right\} = i\alpha F(\alpha)$ (18)

$$\mathcal{F}\left\{f'(x)\right\} = i\alpha F(\alpha)$$

Similarly, under the added assumptions that f' is continuous on $(-\infty, \infty)$, f''(x) is piecewise continuous on every finite interval, and $f'(x) \to 0$ as $x \to \pm \infty$, we have

$$\mathcal{F}\left\{f^{\prime\prime}(x)\right\} = (i\alpha)^2 F(\alpha)$$

In general, under analogous conditions, we have

$$\mathcal{F}\left\{f^{(n)}(x)\right\} = (i\alpha)^n F(\alpha)$$

where n = 0, 1, 2,

It is important to realize that the sine and cosine transforms are not suitable for transforming the first derivatives and in fact any odd-order derivatives:

$$\mathcal{F}_s\{f'(x)\} = -\alpha \mathcal{F}_c\{f(x)\}$$
 and $\mathcal{F}_c\{f'(x)\} = \alpha \mathcal{F}_s\{f(x)\} - f(0)$

as these are not expressed in terms of the original integral transform.

(ii) Fourier sine transform (optional)

Suppose f and f' are continuous, f is absolutely integrable on $[0, \infty)$ and f'' is piecewise continuous on every finite interval. If $f \to 0$ and $f' \to 0$ as $x \to \infty$, then

$$\mathcal{F}_{s}\left\{f''(x)\right\} = \int_{0}^{\infty} f''(x) \sin \alpha x \, dx = \left[f'(x) \sin \alpha x\right]_{0}^{\infty} - \alpha \int_{0}^{\infty} f'(x) \cos \alpha x \, dx$$

$$= -\alpha \left[f(x) \cos \alpha x\right]_{0}^{\infty} - \alpha^{2} \int_{0}^{\infty} f(x) \sin \alpha x \, dx = \alpha f(0) - \alpha^{2} \mathcal{F}_{s}\left\{f(x)\right\}$$

$$\mathcal{F}_{s}\left\{f''(x)\right\} = -\alpha^{2} F(\alpha) + \alpha f(0) \tag{19}$$

(iii) Fourier cosine transform (optional)

Under the same assumptions, we find the Fourier the Fourier cosine transform of f''(x) to be

$$\mathcal{F}_c\left\{f''(x)\right\} = -\alpha^2 F(\alpha) - f'(0) \tag{20}$$

Properties of the Fourier transform

Let us identify time t with the variable x and the angular frequency ω with α . Then the Fourier transform of a function of time f(t), a signal, produces the spectrum of the signal in the representation given by the angular frequency ω .

1. Linearity

The Fourier transform is a linear operator:

$$\mathcal{F}\{k_1 f_1(t) + k_2 f_2(t)\} = k_1 F_1(\omega) + k_2 F_2(\omega) \tag{21}$$

where $\mathcal{F} \{f_1(t)\} = F_1(\omega)$ and $\mathcal{F} \{f_2(t)\} = F_2(\omega)$.

2. Time translation/shifting

Time translation or shifting by an amount t_0 leads to a phase shift in the Fourier

transform:

$$\mathcal{F}\left\{f(t-t_0)\right\} = e^{-i\omega t_0} F(\omega) \tag{22}$$

3. Frequency translation/shifting

$$\mathcal{F}\left\{e^{i\omega_0 t} f(t)\right\} = F(\omega - \omega_0) \tag{23}$$

The multiplication of f(t) by $e^{i\omega_0t}$ is called the **complex modulation**. Thus, the complex modulation in the time domain corresponds to a shift in the frequency domain.

4. Time scaling

$$\mathcal{F}\left\{f(kt)\right\} = \frac{1}{|k|} F\left(\frac{\omega}{k}\right) \tag{24}$$

Therefore if t is directly scaled by a factor k, then the frequency variable is inversely scaled by the factor k. Consequently, for k > 1 we have a time-compression resulting in a frequency spectrum expansion. For k < 1 there is a time-expansion and a resulting frequency spectrum compression.

5. Time reversal

This property follows from the time scaling for k = -1

$$\mathcal{F}\left\{f(-t)\right\} = F(-\omega) \tag{25}$$

6. **Symmetry**

This property is very useful in evaluation of certain Fourier transforms

$$\mathcal{F}\left\{F(t)\right\} = 2\pi f(-\omega) \tag{26}$$

7. Fourier transform and inverse Fourier transform of a derivative

$$\mathcal{F}\left\{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\right\} = i\omega F(\omega) \tag{27}$$

(28)

$$\mathcal{F}^{-1}\left\{\frac{\mathrm{d}F(\omega)}{\mathrm{d}\omega}\right\} = -itf(t) \tag{29}$$

8. Fourier transform of an integral

$$\mathcal{F}\left\{\int_{-\infty}^{t} f(u) \, du\right\} = \pi F(0)\delta(\omega) + \frac{1}{i\omega}F(\omega) \tag{30}$$

9. Fourier transform of a convolution

$$\mathcal{F}\left\{f_1(t) * f_2(t)\right\} = \mathcal{F}\left\{\int_0^t f_1(\tau) f_2(t-\tau) d\tau\right\} = F_1(\omega) F_2(\omega) \tag{31}$$

The counterpart of convolution in the time domain is multiplication in the frequency domain.

10. Fourier transform of a product

$$\mathcal{F}\{f_1(t) \ f_2(t)\} = \frac{1}{2\pi} F_1(\omega) * F_2(\omega)$$
 (32)

Example: Fourier transform of a simple piecewise continuous function

$$f(t) = \begin{cases} -2, & -\pi \le t < 0 \\ 2, & 0 \le t < \pi \\ 0, & \text{Otherwise} \end{cases}$$

Solution:

$$F(\omega) = \int_{-\pi}^{0} (-2)e^{-i\omega t} dt + \int_{0}^{\pi} (2)e^{-i\omega t} dt = \frac{2}{i\omega} \left[e^{-i\omega t} \right]_{-\pi}^{0} - \frac{2}{i\omega} \left[e^{-i\omega t} \right]_{0}^{\pi}$$
$$= \frac{2}{i\omega} \left[\left(1 - e^{i\omega \pi} \right) - \left(e^{-i\omega \pi} - 1 \right) \right] = \frac{2}{i\omega} \left[2 - 2\cos(\omega \pi) \right]$$
$$F(\omega) = \frac{4}{i\omega} \left[1 - \cos(\omega \pi) \right]$$