CSE320: Data Communications

Chapter 05 Analog Transmission

Asif Shahriar Lecturer, CSE, BRACU

Basics

- Data vs signal
 - Data is the actual information (text, file, etc)
 - Signal is the means by which information is transmitted (electrical signal, radio wave, etc)
- Characteristics / properties of an analog signal
 - Amplitude
 - Frequency
 - Phase

Phase

Phase = 180°

Phase = 270°

Digital-to-Analog Conversion (DAC)

Digital-to-Analog Conversion (DAC)

 Digital-to-analog conversion (DAC) is the process of converting digital data (typically represented by bits) into an analog signal (a continuous signal that can vary over time)

 Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data

DAC: HOW

- Choose a carrier signal
 - Carrier: A signal with fixed properties (amplitude, frequency, or phase)
- Modulate the carrier signal (keying)
 - Encode digital data by modifying a property of the carrier
- Transmit over communication channel (radio wave / cable / fiber)
- Decode at receiver end

DAC: Definitions

- Carrier: A signal that transports digital data in analog waveform
- Keying: Manipulating the carrier signal to uniquely identify the digital data being carried
 - Modulation is applicable to both analog and digital signals
 - Keying is a type of digital modulation

Types of Digital-to-Analog Conversion

Amplitude Shift Keying (ASK)

- In ASK, digital data is represented by changing the amplitude of the carrier
- Start with a carrier signal with amplitude 'A'
- Modulation
 - '1': Keep amplitude unchanged
 - o '0': Make amplitude zero

Binary Amplitude Shift Keying (BASK)

Also known as On Off Keying (OOK)

Implementation of BASK

Multi-level ASK (MASK)

- Sending a single bit per signal element is wasteful
- Efficient approach: Send multiple bits per signal element (MASK)
- 4-ASK: 4 different amplitude levels to represent two bits at a time (00, 01, 10, 11)
- Double bit rate compared to BASK

Multi-level ASK (MASK)

Frequency Shift Keying (FSK)

- In FSK, digital data is represented by changing the frequency of the carrier
- Start with a carrier signal with frequency f_c ,
- Modulation
 - '1': Increase frequency $f_I = f_c + \Delta f$
 - '0': Decrease frequency $f_2 = f_c \Delta f$

Binary Frequency Shift Keying (BFSK)

Coherent & Non-coherent FSK

 Non-coherent FSK Scheme: When we change from one frequency to another, the phase of the carrier signal can change abruptly

• Coherent FSK Scheme: When we change from one frequency to another, the phase of the carrier signal remains consistent

Implementation of Coherent BFSK

Coherent B-FSK can be implemented by using one Voltage-controlled
 Oscillator (VCO), that changes its frequency according to the input voltage

Multi-level FSK (MFSK)

- Like ASK, FSK can also send multiple bits per signal element (MFSK)
- **4-FSK:** 4 different frequencies to represent two bits at a time (00, 01, 10, 11)

Phase Shift Keying (PSK)

- In PSK, digital data is represented by changing the phase shift of the carrier
- Phase of a signal refers to its starting position (angle) within a cycle, expressed in degrees (0° $\leq \theta < 360^{\circ}$) or radians (0 $\leq \theta < 2\pi$)
- Advantages of PSK:
 - Less sensitive to noise than ASK
 - Can achieve higher bit rate than FSK

Binary Phase Shift Keying (BPSK)

- Modulation
 - '1': phase = 0°
 - o '0': phase = 180°

Implementation of BPSK

Quadrature PSK (QPSK)

- In QPSK we -
 - Parallelize the bit stream by splitting every two incoming bits
 - Apply two BPSKs in parallel (one carrier frequency is phase shifted 90° from the other)
 - Combine the two signals to get the modulated signal
- Double bit rate compared to BPSK

Implementation of QPSK

Concept of a Constellation Diagram

Constellation Diagram for BASK & BPSK

• Show constellation diagrams for ASK (OOK) and BPSK

Constellation Diagram for QPSK

Constellation Diagram for QPSK

Quadrature Amplitude Modulation (QAM)

Can we change two signal components simultaneously?

- QAM is a combination of ASK and PSK
 - Benefit: QAM can transmit more bits per signal element

- Can we change all three components simultaneously?
 - It will increase the complexity of both transmitter and receiver

Constellation Diagram for QAMs

