Mineração de Dados

02 - Dados

Marcos Roberto Ribeiro

Introdução

- Uma mineração de dados bem sucedida deve levar em consideração o tipo e a qualidade dos dados
- O tipo de dado diz respeito ao formato dos dados e isto pode definir quais técnicas de mineração podem ser usadas
- A qualidade é importante porque, embora muitas das técnicas de mineração de dados toleram certo nível de ruídos, a melhora da qualidade dos dados garante melhores resultados
- Além disto, em determinadas situações, é preciso modificar os dados brutos para que se tornem mais apropriados para certas técnicas de mineração
- Por exemplo, atributos contínuos podem ser discretizados ou o número de atributos pode ser reduzido

Tipos de Dados

- Um conjunto de dados pode ser visto como uma coleção de objetos de dados
- Os objetos de dados também podem ser chamados de registros, linhas, ponteiros, vetores, eventos, casos, exemplos, observações ou entidades
- Os objetos de dados são descritos por um número de atributos
- Outros nomes para atributos são variáveis, características, campos ou dimensões
- Exemplo: qualquer tabela ou resultado de uma consulta em um banco de dados é um conjunto de dados

Atributos e Medidas

- Um atributo é uma característica de um objeto que pode variar com o tempo ou de um objeto para outro
- Ex.: cor dos olhos e peso de pessoas
- A medição é o processo de dar um valor a um atributo
- Além disto, as propriedades de números são úteis para definir os tipos de atributos

Propriedades de Números

Distinção: $= e \neq$

Ordenação: <, \le , > e \ge

Adição: + e -

Multiplicação: × e ÷

Tipos de Atributos

Tipo	Descrição	Exemplos	Operações
Nominal	Valores nominais (= e	CEP, ID, Sexo	Modo, entropia
	≠)		
Ordinal	É possível ordenar os	Notas em letras	Mediana, porcenta-
	valores (> e <)		gens
Intervalar	As diferenças entre os	Datas, temperatura	Média, desvio padrão
	valores são significati-	(Celsius)	
	vas (+ e -)		
Proporcional	Existem diferenças e	Idade, temperatura	Média, geométrica
	proporções entre os	(Kelvin)	
	valores (\times e \div)		

- Os atributos nominais e ordinais são chamados de categorizados ou qualitativos. Já os atributos intervalares e proporcionais são chamados de numéricos ou categóricos
- Os atributos também podem ser discretos (contáveis) ou contínuos (valores do tipo real)
- Um atributo é *assimétrico* se apenas a presença de um valor é importante (diferente de zero)

Tipos de Conjuntos de Dados

- Podemos classificar os tipos de conjuntos de dados em três grandes grupos:
 - Dados em registros
 - Dados baseados em grafos
 - Dados ordenados
- Além disto é importante analisar as seguintes características dos dados:

Dimensão: Número de atributos

Dispersão: Poucos registros com valores diferentes de zero

Resolução: Nível de detalhes

Dados em Registros

- Este é o tipo de conjunto de dados mais comum
- Consiste em uma coleção de registros sendo que cada registro tem um número fixo de atributos

Dados de Transações

- Dados de transações são um tipo especial de dados em registros, onde cada registro (transação) é um conjunto de itens
- Um exemplo típicos são os carrinhos de compras de clientes de supermercados

Exemplo de Carrinho de Compras

TI	ID	Itens
1	1	pão, refrigerante, leite
2	2	cerveja, pão
3	3	cerveja, refrigerante, fralda, leite
4	1	cerveja, pão, fralda, leite
Ē	5	refrigerante, fralda, leite

Dados em Registros - Matriz de Dados

Matriz de Dados

- Se todos os atributos de um conjunto de dados são numéricos, então tal conjunto pode ser interpretado como uma matriz m x n (m linhas e n colunas)
- As matrizes de dados são interessantes porque podemos aplicar operações de matrizes para transformar os dados

Exemplo de Matriz de Dados

Carga X	Carga Y	Distância	Espessura
10.23	5.27	15.22	1.2
12.65	6.25	16.22	1.1
13.54	7.23	17.34	1.2
14.27	8.43	18.45	0.9

Dados em Registros - Matriz de Dados Dispersos

Matriz de Dados

- A matriz de dados dispersos é um caso especial de matriz de dados onde os atributos são do mesmo tipo e dispersos
- Um exemplo interessante é a matriz de termos de documentos contendo o número de vezes que o termo aparece no documento

Exemplo de Matriz de Termos de Documentos

	ednipe	treinador	jogo	bola	placar	partida	vitória	derrota
Doc 1	3	0	5	0	2	6	0	2
Doc 2	0	7	0	2	1	0	0	0
Doc 3	0	1	0	0	1	2	2	3

Dados Baseados em Grafos

- Os grafos são representações poderosas para dados
- Existem basicamente dois tipos de conjuntos de dados baseados em grafos:

Grafos que representam os relacionamentos entre objetos

 Por exemplo, os links entre páginas na Internet

Objetos de Dados que São Grafos

• Por exemplo, estruturas químicas

Dados Ordenados

- No caso dos dados ordenados, os atributos têm relacionamentos que envolvem ordenação no tempo ou espaço
- Basicamente existem os seguintes tipos:
 - Dados sequenciais
 - Dados de sequência
 - Dados de séries temporais
 - Dados espaciais

Dados Ordenados - Dados Sequenciais

- Os dados sequenciais basicamente são dados de registros com um tempo associado a cada registro
- Exemplo: Transações sequenciais de clientes

Cliente	Sequência de compras
c1	(t1: A, B) (t2: C,D) (t3: A, E)
c2	(t3: A, D) (t4: E)
c3	(t2: A, C)

Dados Ordenados - Dados de Sequência

- Os dados de sequência são sequências de dados individuais, como palavras ou letras
- Os dados de sequência são parecidos com os dados sequenciais, mas não possuem marcação de tempo
- Exemplo: Sequências de DNA

Dados Ordenados - Dados de Séries Temporais

- Os dados de séries temporais são um tipo especial de dados sequenciais que representa uma série de medições feitas no decorrer do tempo
- Exemplo: Sequência de medições de temperatura

Dados Ordenados - Dados Espaciais

- Os dados espaciais possuem informações geográficas
- Normalmente os dados que estão fisicamente próximos tendem a ter outras características semelhantes
- Exemplo: temperatura de pontos geográficos

Pré-Processamento de Dados

- As principais técnicas de pré-processamento de dados são:
 - Agregação
 - Amostragem
 - Redução de dimensionalidade
 - Seleção de subconjuntos de recursos
 - Criação de recursos
 - Discretização e binarização
 - Transformação de variáveis

Agregação

- "Menos é mais!"
- A agregação consiste em combinar vários registros em um único registro
- Os conjuntos de dados agregados são menores e com isto consumem menos memória e menos tempo de processamento
- A agregação serve também para se ter uma visão de mais alto nível dos dados
- Uma desvantagem da agregação é a potencial perda de detalhes

Amostragem I

- O tipo mais simples de amostragem é a *amostragem aleatória simples* onde há uma probabilidade igual de selecionar qualquer item
- Durante a seleção dos elementos podemos proceder de duas maneiras:
 - Remover o item selecionado da população (amostragem sem substituição)
 - Não remover os itens selecionados da população. Neste caso pode ocorrer repetições (amostragem com substituição)
- A amostragem aleatório simples pode não ser adequado quando a população possui poucos objetos de um determinado tipo
- Uma solução para este problema é utilizar a amostragem estratificada que traz objetos de todos os grupos da população

Amostragem II

Exemplo

8000 pontos

2000 pontos

500 pontos

- Um dos problemas relacionados a amostragem é definir o tamanho da amostra
- Observe as figuras com diferentes números de pontos
- O tamanho da amostra deve ser representativo e pequeno

Redução da Dimensionalidade

- Conjuntos de dados com um grande número de dimensões pode acarretar problemas às técnicas de mineração de dados tais como modelos de baixa precisão e alto consumo de memória e tempo para execução da mineração (maldição da dimensionalidade)
- Desta maneira, foram criados métodos para reduzir a dimensionalidade de conjuntos de dados sem que os elementos percam sua representatividade
- uma das técnicas mais usadas para a redução de dimensionalidade é a Análise de Componentes Principais (PCA)

Seleção de Subconjunto de Características

- Outra maneira de reduzir a dimensionalidade é usar apenas um subconjunto de características
- Os seguintes atributos podem ser descartados:
 - Atributos redundantes: são atributos que duplicam informações de outros atributos. Exemplo: o valor total pago por um produto que é calculado multiplicando-se a quantidade e o valor unitário
 - Atributos irrelevantes: são atributos que não possuem informações úteis. Exemplo: ID e CPF de alunos
- Alguns atributos podem ser eliminados de forma mais trivial, mas obter o melhor subconjunto de atributos não é uma tarefa fácil
- O ideal seria testar todas as combinações possíveis, mas muitas vezes isto não é viável na prática

Abordagens para Seleção de Características

- Existem três abordagens padrões:
 - **Abordagem Interna:** A seleção de atributos ocorre naturalmente como parte do algoritmo de mineração
 - Abordagem de Filtro: Os atributos são selecionados antes da mineração usando alguma técnica independente do algoritmo de mineração, por exemplo, correlação
 - Abordagem de Envoltório: Este método usa o algoritmo de mineração com caixa preta para encontrar o melhor subconjunto de atributos. Semelhante ao teste ideal, mas sem testar todas as cominações de atributos

Criação de Recursos

- A criação de recursos visa criar novos atributos a partir dos atributos existentes
- A ideia é que o número de atributos seja menor para termos as mesmas vantagens da redução de dimensionalidade
- As principais metodologias são as seguintes:
 - Extração de características
 - Mapeamento de dados para um novo espaço
 - Construção de características

Extração de Características

- A extração de características tem como objetivo criar um novo conjunto de atributos para representar os atributos originais dos objetos
- Esta metodologia é amplamente utilizada quando precisamos trabalhar com imagens
- Desta maneira, uma imagens contendo milhares de pixeis pode ser representa de outras formas, por exemplo, histograma de cores

Mapeamento de Dados para um Novo Espaço

- Padrões periódicos com quantidades significativa de ruídos são difíceis de detectar
- Porém, a aplicação de transformações como a *transformação de Fourier* podem tornar tais padrões mais explícitos

300

250 -200 -150 -

50

Série com ruído Transformação de Fourier

Construção de Recursos

• Em determinadas situações, a criação de novos atributos pode facilitar o processo de mineração de dados

Exemplo

- Considere um banco de dados de itens históricos contendo volume e massa
- O objetivo é classificar os itens de acordo com o material que são feitos (madeira, barro, bronze, etc.)
- um atributo de densidade (massa / volume) pode facilitar muito esta tarefa
- A construção de recurso normalmente é feita a partir do conhecimento do domínio do banco de dados

Discretização e Binarização

- Alguns algoritmos de mineração requerem que os atributos estejam categorizados ou ou sejam atributos binários
- Desta forma, pode ser necessário realizar discretização ou binarização
- A discretização transforma atributos contínuos em atributos categóricos
- Já a binarização transforma atributos numéricos em atributos binários

Exemplo de Binarização

• Usando $log_2(m)$ bits $(m \in o \text{ número de valores})$

Valor Original	Valor Inteiro	<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3
terrível	0	0	0	0
fraco	1	0	0	1
satisfatório	2	0	1	0
bom	3	0	1	1
excelente	4	1	0	0

Exemplo de Discretização

Discretização de frequência igual

Discretização K-means

Transformação de Variáveis

- A transformação de uma variável faz uma modificação em todos os valores desta variável dentro da base de dados
- Estas transformações podem ser necessárias para evitar discrepâncias entre valores de duas variáveis distintas
- Por exemplo, no caso de pessoas com atributos de idade e renda
 - A diferença entre duas idades pode ser muito menor do que a diferença entre duas rendas
 - Mesmo que os dois atributos tenham a mesma importância, alguns cálculos podem ser mais afetados por esta diferença de magnitude

Medidas de Semelhança e Diferença

- As medidas de semelhança e diferença são importantes para diversas técnicas de mineração de dados
- Em muitos casos, o conjunto inicial de dados é dispensado e depois do cálculo destas medidas
- Muitas técnicas usam alguma medida de distância para representar o qual próximos ou distantes estão dois objetos

Semelhanças e Diferenças para Atributos Simples

Tipo de Atributo	Diferença	Semelhança
Nominal	$d = \begin{cases} 0, & \text{se} x = y \\ 1, & \text{se} x \neq y \end{cases}$	$s = \begin{cases} 1, & \sec y \\ 0, & \sec y \end{cases}$
Ordinal ¹	$d = \frac{ x - y }{n - 1}$	s = d - 1
Intervalar ou proporcional	d = x - y	$s = -d, \ s = \frac{1}{1+d},$ $s = e^{-d}, \ \text{etc.}$
		$s=e^{-d}$, etc.

 $^{^{1}}$ Valores entre 0 e n-1, onde n é o número de termos

Distâncias Entre Objetos de Dados - Distâncias

 Uma das medidas de distâncias mais usadas em técnicas de mineração de dados é a distância euclidiana:

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

- Em geral, as medidas de distância são usadas para computar a matriz de distância contendo as distâncias entre os objetos do conjunto de dados
- Exemplo:

1	Matriz de Distância						
		p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄		
·	p_1	0.0	2.8	3.2	5.1		
	<i>p</i> ₂	2.8	0.0	1.4	3.2		
·	<i>p</i> ₃	3.2	1.4	0.0	2.0		
	<i>p</i> ₄	5.1	3.2	2.0	0.0		

Propriedades de Distâncias

 As medidas de distância que satisfazem as propriedades a seguir são chamadas de métricas

Positividade

- $d(x, y) \ge 0$ para todo $x \in y$
- d(x,x) = 0 para todo x

Simetria

• d(x,y) = d(y,x) para todo $x \in y$

Diferença Triangular

• $d(x,z) \ge d(x,y) + d(y,z)$ para todo x, $y \in z$

Referências I

TAN, P.-N., STEINBACH, M., and KUMAR, V. (2009). *Introdução ao data mining: mineração de dados*. Ciência Moderna, Rio de Janeiro.