18.650 - Fundamentals of Statistics

2. Foundations of Inference

Goals

In this unit, we introduce a mathematical formalization of statistical modeling to make a principled sense of the **Trinity of statistical inference**.

We will make sense of the following statements:

1. Estimation:

" $\hat{p} = \bar{R}_n$ is an estimator for the proportion p of couples that turn their head to the right"

(side question: is 64.5% also an estimator for p?)

2. Confidence intervals:

"[0.56, 0.73] is a 95% confidence interval for p"

3. Hypothesis testing:

"We find statistical evidence that more couples turn their head to the right when kissing"

The rationale behind statistical modeling

- Let X_1, \ldots, X_n be n independent copies of X.
- ▶ The goal of statistics is to learn the distribution of X.
- ▶ If $X \in \{0,1\}$, easy! It's Ber(p) and we only have to learn the parameter p of the Bernoulli distribution.
- ► Can be more complicated. For example, here is a (partial) dataset with number of siblings (including self) that were collected from college students a few years back: 2, 3, 2, 4, 1, 3, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 2, 1, 3, 1, 2, 3, ...
- We could make no assumption and try to learn the pmf:

That's 7 parameters to learn.

• Or we could assume that $X-1 \sim \mathsf{Poiss}(\lambda)$. That's 1 parameter to learn!

Statistical model

Formal definition

Let the observed outcome of a statistical experiment be a sample X_1,\ldots,X_n of n i.i.d. random variables in some measurable space E (usually $E\subseteq \mathbb{R}$) and denote by \mathbb{P} their common distribution. A statistical model associated to that statistical experiment is a pair

$$(E,(\mathbb{P}_{\theta})_{\theta\in\Theta}),$$

where:

- ► E is called sample space
- ▶ $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ is a family of probability measures on E;
- Θ is any set, called parameter set.

Parametric, nonparametric and semiparametric models

- ▶ Usually, we will assume that the statistical model is well specified, i.e., defined such that $\mathbb{P} = \mathbb{P}_{\theta}$, for some $\theta \in \Theta$.
- This particular θ is called the true parameter, and is unknown: The aim of the statistical experiment is to *estimate* θ , or check it's properties when they have a special meaning $\theta > 2?$, $\theta \neq 1/2?$, ...)
- ▶ We often assume that $\Theta \subseteq \mathbb{R}^d$ for some $d \ge 1$: The model is called *parametric*.
- Sometimes we could have Θ be infinite dimensional in which case the model is called *nonparametric*.
- If $\Theta = \Theta_1 \times \Theta_2$, where Θ_1 is finite dimensional and Θ_2 is infinite dimensional: *semiparametric* model. In these models we only care to estimate the finite dimensional parameter and the infinite dimensional one is called *nuisance* parameter. We will not cover such models in this class.

Examples of parametric models

1. For n Bernoulli trials:

$$\left(\{0,1\}, (\mathsf{Ber}(p))_{p \in (0,1)}\right).$$

2. If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poiss}(\lambda)$ for some unknown $\lambda > 0$,

$$\left(\mathbb{N}, \left(\mathsf{Poiss}(\lambda)\right)_{\lambda>0}\right).$$

- 3. If $X_1, \ldots, X_n \overset{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, for some unknown $\mu \in \mathbb{R}$ and $\sigma^2 > 0$: $\left(\mathbb{R}, \left(\mathcal{N}(\mu, \sigma^2)\right)_{(\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)}\right).$
- 4. If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}_d(\mu, I_d)$, for some unknown $\mu \in \mathbb{R}^d$:

$$\left(\mathbb{R}^d, (\mathcal{N}_d(\mu, I_d))_{(\mu \in \mathbb{R})}\right).$$

Mixture of Gaussians

We now introduce a more sophisticated model: Mixtures of Gaussians.

Consider the following histogram of of running times (in seconds) for the 2017 Cherry Blossom run in D.C:

There are two races: 10 mile and 5k, each corresponding to a sub-population.

Sub-populations

Assume that each sub-population is Gaussian:

$$\mathcal{N}(\mu_1, \sigma_1^2)$$
 and $\mathcal{N}(\mu_2, \sigma_2^2)$

We also need to specify the size (or proportion) of each sub-population:

- \blacktriangleright $\pi \in (0,1)$: proportion of first sub-population
- ▶ 1π : proportion of second sub-population

Probability density function

Pdf of a mixture of two Gaussians:

$$f(x) = \pi \cdot \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right) + (1-\pi) \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_2)^2}{2\sigma_2^2}\right)$$

Figure 1: Mixture of $\mathcal{N}(0, 0.5^2)$ and $\mathcal{N}(1, 0.75^2)$ with $\pi = .3$

Probability density function

Pdf of a mixture of two Gaussians:

$$f(x) = \pi \cdot \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right) + (1-\pi) \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_2)^2}{2\sigma_2^2}\right)$$

Figure 2: Mixture of $\mathcal{N}(0, 0.5^2)$ and $\mathcal{N}(1, 0.75^2)$ with $\pi = .8$

Probability density function

Pdf of a mixture of two Gaussians:

$$f(x) = \pi \cdot \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right) + (1-\pi) \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} \exp\left(-\frac{(x-\mu_2)^2}{2\sigma_2^2}\right)$$

Figure 3: Mixture of $\mathcal{N}(0, 0.5^2)$ and $\mathcal{N}(3, 0.75^2)$ with $\pi = .4$

Cherry blossom

Cherry blossom

Sampling from a mixture of Gaussians

A simple way to understand mixture of Gaussians is to proceed in two steps:

- 1. Sample the *latent* variable $Z \sim \text{Ber}(\pi)$
- 2. Sample $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ independent of Z.
- 3. Define

$$X = ZX_1 + (1 - Z)X_2$$

One can check that X has the correct pdf.

Note that we can sample only one X_1 (if Z=1) or X_2 (if Z=0).

Mixture of Gaussian model

We may consider many scenarios for a model with mixtures of Gaussians, for example:

1. All five parameters unknown:

$$\left(\mathbb{R}, \left(\pi \cdot \mathcal{N}(\mu_1, \sigma_1^2) + (1 - \pi) \cdot \mathcal{N}(\mu_2, \sigma_2^2)\right) \quad \begin{array}{c} \pi \in (0, 1) \\ \mu_1, \mu_2 \in \mathbb{R} \\ \sigma_1^2, \sigma_2^2 \in (0, \infty) \end{array}\right).$$

2. Known variances (say $\sigma_1^2, \sigma_2^2 = 1$):

$$\left(\mathbb{R}, (\pi \cdot \mathcal{N}(\mu_1, 1) + (1 - \pi) \cdot \mathcal{N}(\mu_2, 1)) \quad \begin{array}{c} \pi \in (0, 1) \\ \mu_1, \mu_2 \in \mathbb{R} \end{array}\right).$$

3. Only unknown means (say $\sigma_1^2, \sigma_2^2 = 1$ and $\pi = \frac{1}{2}$):

$$\left(\mathbb{R}, (.5 \cdot \mathcal{N}(\mu_1, 1) + .5 \cdot \mathcal{N}(\mu_2, 1))_{\mu_1, \mu_2 \in \mathbb{R}}\right).$$

Examples of nonparametric models

1. If $X_1, \ldots, X_n \in \mathbb{R}$ are i.i.d with unknown *unimodal*¹ pdf f:

$$E = {\rm I\!R}$$

$$\Theta = \{ \text{uniumodal pdf } f \}$$

$${\rm I\!P}_\theta = {\rm I\!P}_f = \text{distribution with pdf} f$$

2. If $X_1, \ldots, X_n \in [0,1]$ are i.i.d with unknown invertible cdf F.

$$([0,1], (\mathbb{P}_F)_{\mathsf{cdf}\ F} \text{ such that } F^{-1} \text{ exists})$$
.

¹Increases on $(-\infty, a)$ and then decreases on (a, ∞) for some a > 0.

Identifiability

The parameter θ is called *identifiable* iff the map $\theta \in \Theta \mapsto \mathbb{P}_{\theta}$ is injective, i.e.,

$$\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$$

or equivalently:

$$\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$$

Examples

- 1. In all four previous examples, the parameter is identifiable.
- 2. If $X_i=\mathbb{I}_{Y_i\geq 0}$ (indicator function), $Y_1,\ldots,Y_n\stackrel{iid}{\sim}\mathcal{N}(\mu,\sigma^2)$, for some unknown $\mu\in\mathbb{R}$ and $\sigma^2>0$, are unobserved: μ and σ^2 are not identifiable (but $\theta=\mu/\sigma$ is).

Estimation

Parameter estimation

- Statistic: Any measurable function of the sample, e.g., $\bar{X}_n, \max_i X_i, X_1 + \log(1 + |X_n|)$, sample variance, etc...
- **Estimator** of θ : Any statistic whose expression does not depend on θ .
- An estimator $\hat{\theta}_n$ of θ is weakly (resp. strongly) if

$$\hat{\theta}_n \xrightarrow[n \to \infty]{\mathbb{P} \text{ (resp. } a.s.)} \theta \quad \text{(w.r.t. } \mathbb{P}_{\theta}\text{)}.$$

 \blacktriangleright An estimator $\hat{\theta}_n$ of θ is asymptotically normal if

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \sigma^2)$$

The quantity σ^2 is then called *asymptotic* variance

 $^{^2}$ Rule of thumb: if you can compute it exactly once given data, it is measurable. You may have some issues with things that are implicitly defined such as \sup or \inf but not in this class

Bias of an estimator

▶ Bias of an estimator $\hat{\theta}_n$ of θ :

$$\mathsf{bias}(\hat{\theta}_n) = \mathbb{E}\left[\hat{\theta}_n\right] - \theta.$$

- ▶ If $bias(\hat{\theta}) = 0$, we say that $\hat{\theta}$ is unbiased
- Example: Assume that $X_1,\ldots,X_n\stackrel{iid}{\sim} \mathrm{Ber}(p)$ and consider the following estimators for p:
 - $\hat{p}_n = \bar{X}_n \colon \operatorname{bias}(\hat{p}_n) = 0$
 - $\hat{p}_n = X_1 \colon \operatorname{bias}(\hat{p}_n) = 0$
 - $\qquad \qquad \hat{p}_n = \frac{X_1 + X_2}{2} \colon \operatorname{bias}(\hat{p}_n) = 0$
 - $\qquad \qquad \hat{p}_n = \sqrt{\mathbb{I}(X_1=1,X_2=1)} \sim \mathsf{Ber}(p^2) \colon \operatorname{bias}(\hat{p}_n) = p^2 p$

Variance of an estimator

An estimator is a random variable so we can compute its variance. We recall the shortcut fomula:

$$\operatorname{var}(X) = \operatorname{I\!E}[(X - \operatorname{I\!E}(X))^2] = \operatorname{I\!E}[X^2] - (\operatorname{I\!E}[X])^2$$

In the previous examples:

- $\hat{p}_n = \bar{X}_n : \operatorname{var}(\hat{p}_n) = \frac{p(1-p)}{n}$
- $\hat{p}_n = X_1 \colon \operatorname{var}(\hat{p}_n) = p(1-p)$
- $\blacktriangleright \ \hat{p}_n = \frac{X_1 + X_2}{2} \colon \operatorname{var}(\hat{p}_n) = \frac{p(1-p)}{2}$
- $\hat{p}_n = \sqrt{\mathbb{I}(X_1 = 1, X_2 = 2)} \sim \mathsf{Ber}(p^2)$: $\mathsf{var}(\hat{p}_n) = p^2(1 p^2)$

Quadratic risk

- We want estimators to have low bias and low variance at the same time.
- lacksquare The *Risk* (or *quadratic risk*) of an estimator $\hat{ heta}_n \in {
 m I\!R}$ is

$$\begin{split} R(\hat{\theta}_n) &= \mathbb{E}\left[|\hat{\theta}_n - \theta|^2\right] \\ &= \mathbb{E}\left[|\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n] + \mathbb{E}[\hat{\theta}_n] - \theta|^2\right] \\ &= \mathbb{E}\left[|\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n]|^2\right] + \mathbb{E}\left[|\mathbb{E}[\hat{\theta}_n] - \theta|^2\right] + 2\mathbb{E}\left[(\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n])(\mathbb{E}[\hat{\theta}_n] - \theta)\right] \\ &= \operatorname{var}(\hat{\theta}_n) + \operatorname{bias}^2(\hat{\theta}_n) + 2*0 \end{split}$$

► Low quadratic risk means that both bias and variance are small:

quadratic risk= $bias^2 + variance$

Exercises

Let X_1, X_2, \dots, X_n be a random sample from $\mathcal{U}([a, a+1])$.

- a) Find $\mathbb{E}\left[\bar{X}_n\right]$ (answer: $a + \frac{1}{2}$)
- **b)** Is $\bar{X}_n \frac{1}{2}$ an unbiased estimator for a? (answer:Yes)
- c) Find the variance of $\bar{X}_n \frac{1}{2}$.
- (answer: $\operatorname{var}(\bar{X}_n \frac{1}{2}) = \operatorname{var}(\bar{X}_n) = \frac{\operatorname{var}(X_1)}{n} = \frac{1}{12n}$)
- **d)** Find the quadratic risk of $\bar{X}_n \frac{1}{2}$. (answer: bias=0 so the answer is the same as in c)).

Confidence intervals

Confidence intervals

Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model based on observations X_1, \ldots, X_n , and assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0,1)$.

Confidence interval (C.I.) of level $1-\alpha$ for θ : Any random (depending on X_1, \ldots, X_n) interval $\mathcal I$ whose boundaries do not depend on θ and such that³:

$$\mathbb{P}_{\theta} \left[\mathcal{I} \ni \theta \right] \ge 1 - \alpha, \quad \forall \theta \in \Theta.$$

▶ C.I. of asymptotic level $1 - \alpha$ for θ : Any random interval \mathcal{I} whose boundaries do not depend on θ and such that:

$$\lim_{n\to\infty} \mathbb{P}_{\theta} \left[\mathcal{I} \ni \theta \right] \ge 1 - \alpha, \quad \forall \theta \in \Theta.$$

 $^{^3\}mathcal{I}\ni\theta$ means that \mathcal{I} contains $\theta.$ This notation emphasizes the randomness of \mathcal{I} but we can equivalently write $\theta\in\mathcal{I}.$

A confidence interval for the kiss example

- ▶ Recall that we observe $R_1, \ldots, R_n \stackrel{iid}{\sim} \mathsf{Ber}(p)$ for some unknown $p \in (0,1)$.
- ▶ Statistical model: $(\{0,1\},(\mathsf{Ber}(p))_{p\in(0,1)})$.
- ▶ Recall that our estimator for p is $\hat{p} = \bar{R}_n$.
- From CLT:

$$\sqrt{n} \frac{\bar{R}_n - p}{\sqrt{p(1-p)}} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1)$$

This means (precisely) that:

- $lackbox{\Phi}(x)$: cdf of $\mathcal{N}(0,1)$; $\Phi_n(x)$: cdf of $\sqrt{n}\frac{R_n-p}{\sqrt{p(1-p)}}$.
- Then: $\Phi_n(x) \approx \Phi(x)$ (CLT) when n becomes large. Hence, for all x>0,

$$\mathbb{P}\left[|\bar{R}_n - p| \ge x\right] \simeq 2\left(1 - \Phi\left(\frac{x\sqrt{n}}{\sqrt{p(1-p)}}\right)\right).$$

Confidence interval?

For a fixed $\alpha \in (0,1)$, if $q_{\alpha/2}$ is the $(1-\alpha/2)$ -quantile of $\mathcal{N}(0,1)$, then with probability $\simeq 1-\alpha$ (if n is large enough !),

$$\bar{R}_n \in \left[p - \frac{q_{\alpha/2}\sqrt{p(1-p)}}{\sqrt{n}}, p + \frac{q_{\alpha/2}\sqrt{p(1-p)}}{\sqrt{n}} \right].$$

More precisely

$$\lim_{n \to \infty} \mathbb{P}\left(\left[\bar{R}_n - \frac{q_{\alpha/2}\sqrt{p(1-p)}}{\sqrt{n}}, \bar{R}_n + \frac{q_{\alpha/2}\sqrt{p(1-p)}}{\sqrt{n}}\right] \ni p\right) = 1 - \alpha$$

- But this is **not** a confidence interval because it depends on p!
- To fix this, there are 3 solutions.

Solution 1: Conservative bound

▶ Note that no matter the (unknown) value of p,

$$p(1-p) \le 1/4$$

lacktriangle Hence, asymptotically with probability at least 1-lpha,

$$\bar{R}_n \in \left[p - \frac{q_{\alpha/2}}{2\sqrt{n}}, p + \frac{q_{\alpha/2}}{2\sqrt{n}} \right].$$

We get the asymptotic confidence interval:

$$\mathcal{I}_{\mathsf{conserv}} = \left[ar{R}_n - rac{q_{lpha/2}}{2\sqrt{n}}, ar{R}_n + rac{q_{lpha/2}}{2\sqrt{n}}
ight]$$

Indeed

$$\lim_{n\to\infty} \mathbb{P}(\mathcal{I}_{\mathsf{conserv}}\ni p) \ge 1 - \alpha$$

Solution 2: Solving the (quadratic) equation for p

 \blacktriangleright We have the system of two inequalities in p:

$$\bar{R}_n - \frac{q_{\alpha/2}\sqrt{p(1-p)}}{\sqrt{n}} \le p \le \bar{R}_n + \frac{q_{\alpha/2}\sqrt{p(1-p)}}{\sqrt{n}}$$

 \triangleright Each is a quadratic inequality in p of the form

$$(p - \bar{R}_n)^2 \le \frac{q_{\alpha/2}^2 p(1-p)}{n}$$

We need to find the roots $p_1 < p_2$ of

$$\left(1 + \frac{q_{\alpha/2}^2}{n}\right)p^2 - \left(2\bar{R}_n + \frac{q_{\alpha/2}^2}{n}\right)p + \bar{R}_n^2 = 0$$

▶ This leads to a new confidence interval $\mathcal{I}_{\mathsf{solve}} = [p_1, p_2]$ such that:

$$\lim_{n\to\infty} \mathbb{P}(\mathcal{I}_{\mathsf{solve}}\ni p) = 1 - \alpha$$

(it's complicated to write in generic way so let us wait to have values for n, α and \bar{R}_n to plug-in)

Solution 3: plug-in

- ▶ Recall that by the LLN $\hat{p} = \bar{R}_n \xrightarrow[n \to \infty]{\text{P.a.s.}} p$
- So by Slutsky, we also have

$$\sqrt{n} \frac{\bar{R}_n - p}{\sqrt{p(1-p)}} = \sqrt{n} \frac{\bar{R}_n - p}{\sqrt{\hat{p}(1-\hat{p})}} \cdot \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{p(1-p)}} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1)$$

► This leads to a new confidence interval:

$$\mathcal{I}_{\mathsf{plug-in}} = \left[\bar{R}_n - \frac{q_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \bar{R}_n + \frac{q_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \right]$$

such that

$$\lim_{n\to\infty} \mathbb{P}(\mathcal{I}_{\mathsf{plug-in}} \ni p) = 1 - \alpha$$

95% asymptotic CI for the kiss example

Recall that in the kiss example we had n=124 and $\bar{R}_n=0.645$. Assume $\alpha=5\%$.

For $\mathcal{I}_{\text{solve}}$, we have to find the roots of:

$$1.03p^2 - 1.32p + 0.41 = 0 p_1 = 0.558, p_2 = 0.724$$

We get the following confidence intervals of asymptotic level 95%:

- $ightharpoonup \mathcal{I}_{conserv} = [0.56, 0.73]$
- $\mathcal{I}_{\text{solve}} = [0.56, 0.72]$
- $ightharpoonup \mathcal{I}_{plug-in} = [0.56, 0.73]$

There are many⁴ other possibilities in softwares even ones that use the exact distribution of $n\bar{R}_n \sim \text{Bin}(n,p)$

$$\mathcal{I}_{\mathsf{R}\;\mathsf{default}} = \left[0.55\,,\,0.73\right]$$

⁴See R. Newcombe (1998). Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods.

Another example: The T

Photo from User: IIconic Rails on YouTube (c) Mikay Royce

Statistical problem

- You observe the times (in minutes) between arrivals of the T at Kendall: T_1, \ldots, T_n .
- You assume that these times are:
 - Mutually independent
 - Exponential random variables with common parameter $\lambda > 0$.
- You want to *estimate* the value of λ , based on the observed arrival times.

Discussion of the modeling assumptions

- Mutual independence of T_1, \ldots, T_n : plausible but not completely justified (often the case with independence).
- $ightharpoonup T_1, \ldots, T_n$ are exponential r.v.: lack of memory of the exponential distribution:

$$\mathbb{P}[T_1 > t + s | T_1 > t] = \mathbb{P}[T_1 > s], \quad \forall s, t \ge 0.$$

Also, $T_i > 0$ almost surely!

▶ The exponential distributions of $T_1, ..., T_n$ have the same parameter: in average all the same inter-arrival time. True only for limited period (rush hour $\neq 11$ pm).

Estimator

▶ Density of T_1 :

$$f(t) = \lambda e^{-\lambda t}, \quad \forall t \ge 0.$$

- $\blacksquare E[T_1] = \frac{1}{\lambda}.$
- ► Hence, a natural estimate of $\frac{1}{\lambda}$ is

$$\bar{T}_n := \frac{1}{n} \sum_{i=1}^n T_i.$$

 \blacktriangleright A natural estimator of λ is

$$\hat{\lambda} := \frac{1}{\bar{T}_n}.$$

First properties

► By the LLN's,

$$\bar{T}_n \xrightarrow[n \to \infty]{\text{a.s.}/\mathbb{P}} \frac{1}{\lambda}$$

Hence,

$$\hat{\lambda} \xrightarrow[n \to \infty]{\text{a.s.}/\mathbb{P}} \lambda.$$

By the CLT,

$$\sqrt{n} \left(\bar{T}_n - \frac{1}{\lambda} \right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \lambda^{-2}).$$

▶ How does the CLT transfer to $\hat{\lambda}$? How to find an asymptotic confidence interval for λ ?

The Delta method

Let Z_n be a sequence of random variables such that

$$\sqrt{n}(Z_n - \theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \sigma^2),$$

for some $\theta \in \mathbb{R}$ and $\sigma^2 > 0$ (asymptotically normal).

Let $g: \mathbb{R} \to \mathbb{R}$ be continuously differentiable at the point θ . Then,

- $ightharpoonup g(Z_n) \xrightarrow[n \to \infty]{\mathbb{P}}$
- $ightharpoonup (g(Z_n))_{n\geq 1}$ is also asymptotically normal;
- More precisely,

$$\sqrt{n} \left(g(Z_n) - g(\theta) \right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, g'(\theta)^2 \sigma^2).$$

Consequence of the Delta method

- $\blacktriangleright \sqrt{n} \left(\hat{\lambda} \lambda \right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \lambda^2).$
- ▶ Hence, for $\alpha \in (0,1)$ and when n is large enough,

$$|\hat{\lambda} - \lambda| \le \frac{q_{\alpha/2}\lambda}{\sqrt{n}}.$$

with probability approximately $1 - \alpha$.

▶ Can $\left[\hat{\lambda} - \frac{q_{\alpha/2}\lambda}{\sqrt{n}}, \hat{\lambda} + \frac{q_{\alpha/2}\lambda}{\sqrt{n}}\right]$ be used as an asymptotic confidence interval for λ ?

No! It depends on λ ...

Three "solutions"

- 1. The conservative bound: we have no a priori way to bound λ
- 2. We can solve for λ :

$$|\hat{\lambda} - \lambda| \le \frac{q_{\alpha/2}\lambda}{\sqrt{n}} \iff \lambda \left(1 - \frac{q_{\alpha/2}}{\sqrt{n}}\right) \le \hat{\lambda} \le \lambda \left(1 + \frac{q_{\alpha/2}}{\sqrt{n}}\right)$$

$$\iff \hat{\lambda} \left(1 + \frac{q_{\alpha/2}}{\sqrt{n}}\right)^{-1} \le \lambda \le \hat{\lambda} \left(1 - \frac{q_{\alpha/2}}{\sqrt{n}}\right)^{-1}.$$

It yields

$$\mathcal{I}_{\mathsf{solve}} = \left[\hat{\lambda} \left(1 + \frac{q_{\alpha/2}}{\sqrt{n}} \right)^{-1}, \hat{\lambda} \left(1 - \frac{q_{\alpha/2}}{\sqrt{n}} \right)^{-1} \right]$$

3. Plug-in yields

$$\mathcal{I}_{\mathsf{plug-in}} = \left[\hat{\lambda} \left(1 - \frac{q_{\alpha/2}}{\sqrt{n}}\right), \hat{\lambda} \left(1 + \frac{q_{\alpha/2}}{\sqrt{n}}\right)\right]$$

95% asymptotic CI for the Kendall T example

Assume that n=64 and $\bar{T}_n=6.23$ and $\alpha=5\%$.

We get the following confidence intervals of asymptotic level 95%:

- $ightharpoonup \mathcal{I}_{\sf solve} = [0.13\,,\,0.21]$
- $\blacktriangleright \ \mathcal{I}_{\mathsf{plug-in}} = \left[0.12\,,\,0.20\right]$

Meaning of a confidence interval

Take $\mathcal{I}_{\text{plug-in}} = \left[0.12\,,\,0.20\right]$ for example. What is the meaning of " $\mathcal{I}_{\text{plug-in}}$ is a confidence intervals of asymptotic level 95%".

Does it mean that

$$\lim_{n\to\infty} \mathbb{P}\left(\lambda \in \left[0.12, 0.20\right]\right) \ge .95?$$

There is a frequentist interpretation⁵: If we were to repeat this experiment (collect 64 observations) then λ would be in the resulting confidence interval about of the time (image credit: openintro.org).

⁵The frequentist approach is often contrasted with the Bayesian approach.

Hypothesis testing

Waiting time in the ER

- ► The average waiting time in the Emergency Room (ER) in the US is 30 minutes according to the CDC
- ► Some patients claim that the new Princeton-Plainsboro hospital has a longer waiting time. Is it true?
- Here, we collect only one sample: X_1, \ldots, X_n (waiting time in minutes for n random patients) with unknown expected value $\mathbb{E}[X_1] = \mu$.
- ▶ We want to know if $\mu > 30$.

This is a

© 2018 HealthTap, All rights reserved.

Statistical formulation

Consider the two hypotheses:

$$H_0: \mu \le 30$$

 $H_1: \mu > 30$

- ▶ H_0 is the *null hypothesis*, H_1 is the *alternative hypothesis*.
- ▶ We say that we test H_0 against H_1 .
- We want to decide whether to reject H_0 (look for evidence against H_0 in the data).

Heuristic⁶:

If
$$\bar{X}_n > 30 + {\rm buffer}$$
 then conclude that $\mu > 30$

⁶We will be more precise in Unit 4

Recap

- A statistical model is a pair of the form $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ where E is the sample space and $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ is a family of candidate probability distributions.
- A model can be well specified and identifiable.
- ► The trinity of statistical inference: estimation, confidence intervals and testing
- Estimator: one value whose performance can be measured by consistency, asymptotic normality, bias, variance and quadratic risk
- Confidence intervals provide "error bars" around estimators. Their size depends on the confidence level
- ► Hypothesis testing: we want to ask a yes/no answer about an unknown parameter.

ATTRI UTIO SU AR

Unit 2 Slide # 32

https://www.youtube.com/watch?v=VBBeRDa_gms

Citation/Attribution -- Photo from User: Ilconic Rails on YouTube (c) Mikay Royce

Unit 2 Slide # 43

 $\frac{https://doctors.healthtap.com/hs-fs/hubfs/waiting_room.jpgt=1511990105503\&width=640\&name=waiting_room.jpg}{Citation/Attribution} -- Image © 2018 HealthTap, All rights reserved.$