

Protegiendo el oro con tu corazón

Caterina Fuster Barceló

Ingeniería Telemática por la UIB

Máster en Ciberseguridad por la UC3M

Estudiante de doctorado en Ciencia y Tecnología Informática en la UC3M

Aceptabilidad

Alto porcentaje de acierto

Inclusividad

Requisitos

Soporte de sensores low-cost

1. Biometría

Inclusividad y aceptabilidad

NO INVASIVAS

Identificación con Electrocardiogramas

El electrocardiograma es una prueba que registra la **actividad eléctrica** del corazón que se produce en cada **latido** cardiaco

Ventajas de un ECG

2. Nuestra Propuesta

Protección de datos

1. Construimos la matriz


```
init_seg = int(0.2 * mean_distance)
fin_seg = int(1.3 * mean_distance)
wind_s = r_peaks[init_window]
wind_e = r_peaks[init_window + peaks_window] + 10
for peak in r_peaks[init_window:init_window + peaks_window]:
    segment = filtered_ecg[peak - init_seg:peak + fin_seg]
all_segments.append(segment[:,np.newaxis])
ecm = np.concatenate(all_segments, 1)
```


2. Convertimos la matriz en un mapa de calor


```
ecm = electrocardiomatrix(distance, r_peaks, norm_ecg, init_window,
    peaks_window)

plt.figure()
sns.heatmap(ecm, xticklabels=False, yticklabels=False)
plt.close()
```


3. Repetimos para cada usuario y base de datos

3. CNN

Eficiencia

Inteligencia Artificial

La inteligencia artificial se refiere a la habilidad de la máquina a **aprender**, adaptarse y solucionar problemas complejos **automáticamente** que benefician a la sociedad


```
model = tf.keras.Sequential()
model.add(tf.keras.layers.Cropping2D(cropping=((4, 4), (7, 14)),
   input shape=input shape))
# LAYER ONE
model.add(tf.keras.layers.Conv2D(32, kernel size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.7))
# LAYER TWO
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dense(num classes, activation='softmax'))
# PARAMETERS
model.compile(loss=tf.keras.losses.categorical crossentropy,
                optimizer=tf.keras.optimizers.Adam(),
                metrics=['accuracy'])
```


TRAINING

```
train_history = model.fit(
    x= train_dataset,
    batch_size= batchsize,
    epochs=num_epochs,
    steps_per_epoch=len(train_dataset)//steps_epoch,
    verbose=1,
    validation_data=validation_dataset)
```


4. Experimentación y Resultados

Reproducibilidad, alto porcentaje de acierto, soporte de sensores low-cost y protección ante la coacción

Bases de Datos

NSRDB

NSRDB

¿Cómo afecta el ruido a nuestra señal?

MIT-BIHDB y PTBDB

¿Cómo afectan las cardiopatías a la identificación de usuarios?

97.89%

Usuarios sanos y con cardiopatías

97.09%

Usuarios con cardiopatías

GUDB

¿Cómo afectan las actividades cardiovasculares a la identificación de usuarios?

	2
9.3	5

9	9	.19%	Sentado o sentada
			Scrittado o Scrittado

98.59% Andando en cinta

95.51% Usando una bicicleta estática

94.00% Haciendo un examen de matemáticas

82.63% Corriendo en cinta

GUDB

¿Cómo afectan las actividades cardiovasculares a la identificación de usuarios?

97.74%

Poca actividad cardiovascular Sentada y andando (resting)

85.71%

Actividades cardiovasculares En bicicleta y corriendo (*cardio*)

GUDB

¿Cómo afectan las actividades cardiovasculares a la identificación de usuarios?

37.24%

Entrenando con *resting* y prediciendo con *cardio*

Aceptabilidad

Alto porcentaje de acierto

· ·

Inclusividad

Privacidad

Requisitos

Soporte de sensores low-cost

fin

Muchas gracias por vuestra atención!

- @cfusterbarcelo
- cfusterbarcelo.github.io
- @c4tchen