. מעל \mathbb{R}^2 מעל הפעולות הסטנדרטיות מרוכבים: מרחב וקטורי \mathbb{R}^2

 \mathbb{C} סימון: נסמן את המרוכבים בעזרת

.i=(0,1) הערה: נשתמש ב־ $\mathbb C$ בהתאמה בהתאמה וכן ההגדרה $1\mapsto (1,0)$

z=a+ib עבורם $a,b\in\mathbb{R}$ מסקנה: יהי אזי קיימים ויחידים $z\in\mathbb{C}$

 $(a+ib)\,(c+id)=(ac-bd)+i\,(ad+bc)$ אזי $a,b,c,d\in\mathbb{R}$ מכפלת מרוכבים: יהיו

 $.i^2 = -1$:טענה

 $a,b \in \mathbb{R}$. Re (a+ib)=a אזי $a,b \in \mathbb{R}$ החלק הממשי: יהיו

 $\operatorname{Im}\left(a+ib
ight)=b$ אזי $a,b\in\mathbb{R}$ החלק המדומה: יהיו

 $\overline{a+ib}=a-ib$ אזי $a,b\in\mathbb{R}$ הצמוד: יהיו

 $|a+ib|=\sqrt{a^2+b^2}$ אזי $a,b\in\mathbb{R}$ הערך המוחלט: יהיו

 $\operatorname{Re}\left(z
ight)=0$ עבורו $z\in\mathbb{C}$:מספר מדומה מספר

 $\operatorname{Im}\left(z
ight)=0$ עבורו $z\in\mathbb{C}:$ מספר ממשי טהור:

למה: יהי $z\in\mathbb{C}$ אזי

- $\overline{\overline{(z)}} = z \bullet$
- $|\overline{z}| = |z| \bullet$
- $.z\overline{z} = |z|^2 \bullet$

 $.z^{-1}=rac{\overline{z}}{\leftert z
ightert ^{2}}$ אזי $z\in\mathbb{C}ackslash\left\{ 0
ight\}$ מסקנה: יהי

מסקנה: $\mathbb C$ עם הפעולות שהוגדרו מלעיל הינו שדה.

טענה: יהיו $z,w\in\mathbb{C}$ אזי

- .Re $(z) = \frac{z + \overline{z}}{2}$ •
- .Im $(z) = \frac{z \overline{z}}{2i}$ •
- $.\overline{z+w} = \overline{z} + \overline{w} \bullet$
 - $.\overline{z\cdot w} = \overline{z}\cdot \overline{w} \bullet$
- $\overline{(rac{z}{w})} = rac{\overline{z}}{\overline{w}}$ אזי w
 eq 0 נניח כי
 - $|z\cdot w| = |z|\cdot |w|$ •
- $\left| {\frac{z}{w}}
 ight| = rac{\left| z
 ight|}{\left| w
 ight|}$ אזי w
 eq 0 נניח כי
 - $-|z| \le \operatorname{Re}(z) \le |z| \bullet$
 - $.-\left\vert z\right\vert \leq\operatorname*{Im}\left(z\right) \leq\left\vert z\right\vert \text{ }\bullet$

 $|z+w| \leq |z| + |w|$ אזי $z,w \in \mathbb{C}$ טענה אי שיוויון המשולש: יהיו

 $|\sum_{i=1}^n z_i w_i| = \left(\sum_{i=1}^n |z_i|^2\right) \left(\sum_{i=1}^n |w_i|^2\right)$ אזי $|z_1 \dots z_n, w_1 \dots w_n \in \mathbb{C}$ יהיו $z, w \in \mathbb{C}$ ויהיו $z, w \in \mathbb{C}$ אזי מסקנה: יהיו $z, w \in \mathbb{C}$ ויהיו

- $.|z| |w| \le |z w| \bullet$
- $.|a+ib| \le |a|+|b| \bullet$

 $e^{i heta}=\cos{(heta)}+i\sin{(heta)}$ אזי $heta\in\mathbb{R}$ הצגה פולרית/הצגה קוטבית: יהי

.arg $(z)=\left\{ heta\in\mathbb{R}\mid z=\left|z\right|e^{i heta}
ight\}$ אזי $z\in\mathbb{C}$ הארגומנט: יהי

 $z=|z|\cdot e^{i heta}$ עבורו $heta\in(-\pi,\pi]$ אזי קיים ויחיד $z\in\mathbb{C}ackslash\{0\}$ אזי יהי

. $\operatorname{Arg}(z)= heta$ אזי $heta\in\operatorname{arg}(z)\cap(-\pi,\pi]$ ויהי $z\in\mathbb{C}ackslash\{0\}$ אזי הארגומנט העיקרי: יהי

. הערה: יהי איים אזי הארגומנט העיקרי אזי $z\in\mathbb{C}\backslash\left\{ 0
ight\}$ הערה: יהי

.arg $(z)=\{\operatorname{Arg}(z)+2k\pi\mid k\in\mathbb{Z}\}$ הערה:

טענה: יהיו $heta,\phi\in\mathbb{R}$ ויהיו heta>0 אזי

$$.\overline{r \cdot e^{i\theta}} = r \cdot e^{-i\theta} \bullet$$

$$.(r \cdot e^{i\theta}) \cdot (s \cdot e^{i\phi}) = rs \cdot e^{i(\theta + \phi)} \bullet$$

. $\operatorname{arg}\left(zw\right)=\operatorname{arg}\left(z\right)+\operatorname{arg}\left(w\right)$ אזי $w,z\in\mathbb{C}$ מסקנה: יהיו

$$\left(r\cdot e^{i heta}
ight)^{-1}=rac{1}{r}\cdot e^{-i heta}$$
 אזי $heta>0$ ויהי $heta\in\mathbb{R}$ אזי

$$(r\cdot e^{i heta})^{-1}=rac{1}{r}\cdot e^{-i heta}$$
 אזי $r>0$ אויהי $heta\in\mathbb{R}$ ויהי $heta\in\mathbb{R}$ אזי $n\in\mathbb{R}$ אזי $n\in\mathbb{R}$ יהי $n\in\mathbb{R}$ יהי $n\in\mathbb{R}$ יהי $n\in\mathbb{R}$ יהי $n\in\mathbb{R}$ יהי $n\in\mathbb{R}$ יהי

 $.(\cos{(heta)}+i\sin{(heta)})^n=\cos{(n heta)}+i\sin{(n heta)}+i\sin{(n heta)}$ אזי $n\in\mathbb{Z}$ ויהי $heta\in\mathbb{R}$ ויהי מסקנה נוסאת דה מואבר: יהי

$$\sqrt[n]{re^{i heta}}=\left\{\sqrt[n]{re^{i(rac{ heta+2\pi k}{n})}}\mid k\in\{0,\dots,n-1\}
ight\}$$
 אזי $n\in\mathbb{N}_+$ יהי $n\in\mathbb{N}_+$ יהי $n\in\mathbb{N}_+$ יהי $n\in\mathbb{N}_+$ יהי

$$1.\sqrt[n]{1}=\left\{e^{rac{2i\pi k}{n}}\mid k\in\{0,...,n-1\}
ight\}$$
 אזי $n\in\mathbb{N}_+$ אזי יחידה: יהי