HOMEWORK 3

QUESTION 1

According to the result in Problem 5(a) of Hw2, int ${\cal C}_1$ is convex since ${\cal C}_1$ is a convex set.

ullet First, we know there exists a $w^T\in\mathbb{R}^nackslash\{oldsymbol{0}\}$ and $b\in\mathbb{R}$ which satisfies:

$$w^T x \le b, \forall x \in intC_1 \ w^T x \ge b, \forall x \in C_2$$
 (1)

- ullet We also know the fact that a point of C_1 is the limit of points in int C_1 (by the lemma on slide 34 of \S 3).
- ullet $f(x)=w^Tx$ is continuous on the closure of C_1 .
- Then $\forall x' \in C_1$, we could find a series $\{x_k\}$ which converges to x'. And $\forall \epsilon>0$, we could find a $\delta>0$ s.t. if $|x'-x_k|<\delta$, then $|w^Tx'-w^Tx_k|<\epsilon$. Since ϵ can be arbitrarily small and $\{x_k\}$ converges to x', we could say

$$w^T x' \le b \tag{2}$$

Therefore the conclusion holds.

QUESTION 2

(a.)

if $\theta=1$ or $\theta=0$, it's a trivial case. Else:

 $orall x,y\in S_lpha,x
eq y$ and $orall heta\in (0,1)$ we have:

$$f(\theta x + \bar{\theta}y) \le \theta f(x) + \bar{\theta}f(y) < \alpha \tag{3}$$

$$\therefore heta x + ar{ heta} y \in S_lpha$$

by definition, S_{lpha} is convex.

Similarly, if $\theta=1$ or $\theta=0$, it's a trivial case. Else:

 $orall x,y\in C_lpha,x
eq y$ and $orall heta\in(0,1)$ we have:

$$f(\theta x + \bar{\theta}y) \le \theta f(x) + \bar{\theta}f(y) \le \alpha$$
 (4)

$$\therefore \theta x + \overline{\theta} y \in C_{\alpha}$$

by definition, C_{lpha} is convex.

(b.)

The effective domain of f is $S=\{x:f(x)<+\infty\}$

if heta=1 or heta=0 , it's a trivial case. Else:

 $\forall x,y \in S, x
eq y ext{ and } orall heta \in (0,1) ext{ we have:}$

$$f(\theta x + \bar{\theta}y) \le \theta f(x) + \bar{\theta}f(y) < +\infty$$
 (5)

$$\therefore \theta x + \bar{\theta} y \in S$$

by definition, the effective domain of f is convex.

(C.)

For a certain X we set $lpha=f(x^*)$, then we have $M=C_lpha\cap X$. Let's prove this:

In one side, $orall x^* \in M$, we have $x^* \in X$ and $f(x^*) \leq lpha$

$$\therefore x^* \in C_lpha \cap X$$

On the other side, $\forall x' \in C_{\alpha} \cap X$, we have $x' \in X$ and $f(x') \leq \alpha \leq f(x)$ $\forall x \in X$.

$$\therefore x' \in M$$

$$\therefore M = C_{\alpha} \cap X$$

since we have proven that C_{α} is convex in 2. (a), and we know the fact that the intersect of two convex sets is convex, we can derive that M is also convex.

QUESTION 3

 $\therefore f$ is convex

 \therefore its domain $\mathrm{dom} f=S$ is convex and $orall x,y\in S$ and $heta\in[0,1]$, Jensen's inequality holds:

$$f(\theta x + \bar{\theta}y) \le \theta f(x) + \bar{\theta}f(y) \tag{6}$$

First, we choose a line segment $\,l_{xy}$

Suppose $f(\theta_0x+\bar{\theta}_0y)<\theta_0f(x)+\bar{\theta}_0f(y)$ for some $\theta_0\in(0,1)$, we consider the case where $\theta\in(0,\theta_0)$.

Assume that there exists a series $\{ heta_k\}\ s.\ t.f(heta_kx+ar{ heta}_ky)= heta_kf(x)+ar{ heta}_kf(y)$

In $\{\theta_k\}$ we choose θ as the nearest one to θ_0 , then we could find a small enough ϵ s.t.

$$f(\theta_1 x + \overline{\theta}_1 y) < \theta_1 f(x) + \overline{\theta}_1 f(y) f(\theta_2 x + \overline{\theta}_2 y) < \theta_2 f(x) + \overline{\theta}_2 f(y)$$

$$(7)$$

Where $\theta_1 = \theta - \epsilon, \theta_2 = \theta + \epsilon$.

 $\because f$ is convex, $u_1= heta_1x+ar{ heta}_1y$ and $u_2= heta_2x+ar{ heta}_2y$ are all in S.

However,

$$f(\frac{1}{2}u_1 + \frac{1}{2}u_2) = f(\theta x + \bar{\theta}y) = \theta f(x) + \bar{\theta}f(y) > \frac{1}{2}[f(u_1) + f(u_2)] \quad (8)$$

Which contradicts condition (5)

 \therefore $heta
otin \{ heta_k\}$, and we can keep repeating the same operation through $\{ heta_k\}$ and find that $orall heta \in (0, heta_0)$ s.t.

$$f(\theta x + \bar{\theta}y) < \theta f(x) + \bar{\theta}f(y) \tag{9}$$

And when $\theta \in (\theta_0, 1)$, the proof method is the same.

Therefore the conclusion holds.

QUESTION 4

According to the First-order condition for convexity, $orall x,y\in \mathrm{dom}\, f$, f should satisfy:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \tag{10}$$

$$f(y) - \nabla f(y)^T (y - x) \le f(x) \tag{11}$$

From equations (9) and (10), we can immediately derive that:

$$0 \ge (\nabla f(x)^T - \nabla f(y)^T)(y - x) \tag{12}$$

Which means:

$$\langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \ge 0, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \text{dom } f$$
 (13)