MATH 2031 Introduction to Real Analysis

April 16, 2013

Tutorial Note 19

Sequences and Series of Functions

- (I) Extended real number system
 - (i) **Definition:**

 $[-\infty,+\infty]=\mathbb{R}\cup\{-\infty,+\infty\}$ is called the extended real number system.

- (ii) Ordering in $[-\infty, +\infty]$
 - Usual ordering in \mathbb{R}
 - $\forall x \in \mathbb{R}, -\infty < x < +\infty$
- (iii) Supremum and Infimum in $[-\infty, +\infty]$

For any non empty set $S \subseteq [-\infty, +\infty]$, $+\infty$ is an upper bound of S and $-\infty$ is a lower bound of S. sup S = least upper bound of S in $[-\infty, +\infty]$ and inf S = greatest lower bound of S in $[-\infty, +\infty]$

- (iv) Arithmetics in $[-\infty, +\infty]$
 - Usual arithmetics in \mathbb{R}
 - For all $x \in \mathbb{R} \cup \{+\infty\}$ and c > 0,

$$x + (+\infty) = +\infty = (+\infty) + x$$
$$c(+\infty) = +\infty = (+\infty)c$$
$$c(-\infty) = -\infty = (-\infty)c$$

• For all $x \in \mathbb{R} \cup \{-\infty\}$ and c < 0,

$$x + (-\infty) = -\infty = (+\infty) - x$$
$$c(-\infty) = +\infty = (-\infty)c$$
$$c(+\infty) = -\infty = (+\infty)c$$

- $|+\infty| = +\infty = |-\infty|$
- (II) Infinite Limit
 - (i) Let $x_1, x_2 \cdots$ be sequence in $[-\infty, +\infty]$. Define

$$\lim_{n\to\infty} x_n = +\infty \iff \forall \text{ real } r > 0, \exists K \in \mathbb{N} \text{ such that } n \geq K \implies x_n > r.$$

$$\lim_{n\to\infty} x_n = -\infty \iff \forall \text{ real } r > 0, \exists K \in \mathbb{N} \text{ such that } n \geq K \implies x_n < -r.$$

(ii) Subsequence:

Let x_1, x_2, x_3, \cdots be a sequence, $x_{n_1}, x_{n_2}, x_{n_3}, \cdots$ is a subsequence of x_1, x_2, x_3, \cdots if $n_1 < n_2 < \cdots$.

$$\mathcal{L} = \left\{ z \in [-\infty, +\infty] \middle| \exists \text{ subsequence } x_{n_1}, x_{n_2}, x_{n_3}, \dots \text{ such that } \lim_{k \to \infty} x_{n_k} = z \right\}$$

is called the set of subsequential limits of x_1, x_2, x_3, \cdots .

(iii) Definition (limsup and liminf):

$$\limsup_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = \sup \mathcal{L} \text{ in } [-\infty, +\infty]$$

$$\liminf_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n = \inf \mathcal{L} \text{ in } [-\infty, +\infty]$$

(iv) Properties of limsup and liminf:

(i) For every sequence x_1, x_2, x_3, \dots , $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$ always exist since $\mathcal{L} \neq \emptyset$. Also

$$\liminf_{n \to \infty} x_n = \inf \mathcal{L} \le \sup \mathcal{L} = \limsup_{n \to \infty} x_n$$

(ii) If $\{x_n\}$ is not bounded above in \mathbb{R} , then $+\infty \in \mathcal{L}$, so $\limsup_{n \to \infty} x_n = \sup \mathcal{L} = +\infty$. If $\{x_n\}$ is not bounded below in \mathbb{R} , then $-\infty \in \mathcal{L}$, so $\liminf_{n \to \infty} x_n = \inf \mathcal{L} = +\infty$.

(iii) $\lim_{n\to\infty} x_n = z \in [-\infty, +\infty] \iff \mathcal{L} = \{z\} \iff \liminf_{n\to\infty} x_n = z = \limsup_{n\to\infty} x_n$

(iv)

$$\lim_{n \to \infty} \sup(-x_n) = \sup(-\mathcal{L}) = -\inf \mathcal{L} = -\lim_{n \to \infty} \inf x_n$$

$$\forall c > 0,$$

$$\lim_{n \to \infty} \sup(cx_n) = \sup(c\mathcal{L}) = c\inf \mathcal{L} = c \liminf_{n \to \infty} x_n$$

$$\lim_{n \to \infty} \inf(cx_n) = \inf(c\mathcal{L}) = c\sup \mathcal{L} = c \limsup_{n \to \infty} x_n$$

$$\forall c \in \mathbb{R},$$

$$\lim_{n \to \infty} \sup(c + x_n) = \sup(c + \mathcal{L}) = c + \inf \mathcal{L} = c + \liminf_{n \to \infty} x_n$$

$$\lim_{n \to \infty} \inf(c + x_n) = \inf(c + \mathcal{L}) = c + \sup \mathcal{L} = c + \limsup_{n \to \infty} x_n$$

(v) M_k -Theorem

For every sequence $\{x_n\}$, define $M_k = \sup\{x_k, x_{k+1}, x_{k+2}, \cdots\}$. Then

- (i) $M_1 \geq M_2 \geq M_3 \geq \cdots$ and
- (ii) $\limsup_{n\to\infty} x_n = \lim_{k\to\infty} M_k \in \mathcal{L}$.

(vi) m_k -Theorem

For every sequence $\{x_n\}$, define $m_k = \inf\{x_k, x_{k+1}, x_{k+2}, \cdots\}$. Then

- (i) $m_1 \le m_2 \le m_3 \le \cdots$ and
- (ii) $\liminf_{n\to\infty} x_n = \lim_{k\to\infty} m_k \in \mathcal{L}$.

(vii) Strong Form of Root test

For a sequence $\{a_n\}$ of real numbers,

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \left\{ \begin{array}{l} <1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converges absolutely;} \\ >1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverges} \end{array} \right.$$

(viii) Strong Form of Ratio test

For a sequence $\{a_n\}$ of non-zero real numbers,

$$\begin{split} & \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converges absolutely;} \\ & \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverges} \end{split}$$

Problem 1 Find the limit superior and limit inferior of each of the following sequence:

(i)
$$x_n = n \sin(e^{-n})$$
 for $n \in \mathbb{N}$

(ii)
$$y_n = 2^{n\cos(\frac{n\pi}{7})}$$
 for $n \in \mathbb{N}$

Solution:

(i) Notice that

$$\lim_{n\to\infty} n\sin(e^{-n}) = \lim_{n\to\infty} \frac{n}{e^n} \frac{\sin(e^{-n})}{e^{-n}} = \lim_{n\to\infty} \frac{n}{e^n} \lim_{\theta\to 0} \frac{\sin(\theta)}{\theta} = \lim_{n\to\infty} \frac{1}{e^n} = 0,$$

in which we have let $\theta = e^- n$. Since the limit exists, we get

$$\limsup_{n \to \infty} x_n = 0 = \liminf_{n \to \infty} x_n.$$

(ii) Since $0 < x_n < +\infty$, $\mathcal{L} \subseteq [0, +\infty]$. As 2^x is increasing and $|\cos x| \le 1$, we see that

If n = 7(2k+1), then $x_n = 2^{-7(2k+1)}$ and this subsequence $\{x_n\}$ converges to zero. Thus $\liminf_{n \to \infty} x_n = 0$.

If n = 14k, then $x_n = 2^{14k}$ and this subsequence $\{x_n\}$ converges to $+\infty$. Thus $\limsup_{n \to \infty} x_n = +\infty$.

Problem 2 Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers. Prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

Solution

Let $M_k = \sup\{a_k, a_{k+1}, \dots\}$ and $N_k = \sup\{b_k, b_{k+1}, \dots\}$, then we get

$$\sup\{a_k + b_k, a_{k+1} + b_{k+1}\} \le M_k + N_k.$$

Taking limit as $k \to \infty$ on both sides, we have

$$\lim_{k \to \infty} \sup\{a_k + b_k, a_{k+1} + b_{k+1}\} \le \lim_{k \to \infty} (M_k + N_k) = \lim_{k \to \infty} M_k + \lim_{k \to \infty} N_k$$

Then by M_k -theorem, we have

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

Problem 3 Find $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, $\limsup_{n\to\infty} \sqrt[n]{|a_n|}$ and $\liminf_{n\to\infty} \sqrt[n]{|a_n|}$, where

$$a_n = \begin{cases} \frac{n}{2^n} & \text{if } n \text{ is odd} \\ \frac{n}{2^n} & \text{if } n \text{ is even} \end{cases}$$

Solution:

Note that

$$0 < \left| \frac{a_{n+1}}{a_n} \right| = \begin{cases} \frac{(n+1)^2}{2n} & \text{if } n \text{ is odd} \\ \\ \frac{n+1}{2n^2} & \text{if } n \text{ is even} \end{cases} < +\infty,$$

and that for odd n, $\left|\frac{a_{n+1}}{a_n}\right| \to +\infty$ as $n \to \infty$; while for even n, $\left|\frac{a_{n+1}}{a_n}\right| \to 0$ as $n \to \infty$. So $\limsup_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = +\infty$ and $\liminf_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = 0$. Now consider

$$0 < \sqrt[n]{|a_n|} = \begin{cases} \frac{\sqrt[n]{n}}{2} & \text{if } n \text{ is odd} \\ \frac{(\sqrt[n]{n})^2}{2} & \text{if } n \text{ is even} \end{cases} < +\infty$$

and note that $\lim_{n\to\infty} \sqrt[n]{n} = 1$. Then since

$$\lim_{n\to\infty}\frac{\sqrt[n]{n}}{2}=\frac{1}{2}=\lim_{n\to\infty}\frac{(\sqrt[n]{n})^2}{2},$$

By intertwining sequence theorem, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}$.

Thus,
$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2} = \liminf_{n\to\infty} \sqrt[n]{|a_n|}$$
.

Remark:

If we consider a series $\sum_{n=1}^{\infty} a_n$ where a_n is as in this problem, then we cannot get any conclusion about the

convergence of $\sum_{n=1}^{\infty} a_n$ from the Strong form of ratio test.

However, from the Strong form of root test, we can see that $\sum_{n=1}^{\infty} a_n$ converges absolutely.