Stochastic Processes

Week 07 (Version 2.0)

Estimation Theory - Part II

Hamid R. Rabiee Fall 2021

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Introduction to Optimal Frequentist Estimator

- In the Frequentist's point of view, an optimal estimator is both unbiased and minimum variance.
- How can we obtain an estimator $\hat{\theta}$ that is unbiased?
 - Given any biased estimator $\hat{\theta}_b$ with bias b, then we can remove the bias to obtain an unbiased estimator $\hat{\theta}$ from $\hat{\theta}_b$, i. e. $\hat{\theta} = \hat{\theta}_b b$.
- How can we obtain a minimum variance estimator $\hat{\theta}_{mv}$ from an unbiased estimator?
 - We need to obtain a lower bound for an unbiased estimator and make sure $\hat{\theta}$ my achieve that bound.

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

• The score $s(\theta)$ is defined as the gradient of the log-likelihood function with respect to the parameter vector.

$$s(\theta) = \frac{\partial \log L(\theta|x)}{\partial \theta} = \frac{\partial \log f(x|\theta)}{\partial \theta}$$

• When evaluated at a particular value of the parameter vector, the score indicates the sensitivity of the log-likelihood function to infinitesimal changes to the parameter values.

- The mean of score $s(\theta)$:
- Although $s(\theta)$ is a function of θ , it also depends on the observations X, at which the likelihood function is evaluated, and the expected value of the score, evaluated at the true parameter value θ , is zero.

$$\begin{split} \mathrm{E}(s\mid\theta) &= \int_{\mathcal{X}} f(x\mid\theta) \frac{\partial}{\partial\theta} \log\mathcal{L}(\theta\mid x) \, dx \\ &= \int_{\mathcal{X}} f(x\mid\theta) \frac{1}{f(x\mid\theta)} \frac{\partial f(x\mid\theta)}{\partial\theta} \, dx = \int_{\mathcal{X}} \frac{\partial f(x\mid\theta)}{\partial\theta} \, dx \end{split}$$

• We can interchange the derivative and integral by using Leibniz integral rule:

$$rac{\partial}{\partial heta} \int_{\mathcal{X}} f(x | heta) \, dx = rac{\partial}{\partial heta} 1 = 0$$

• If we repeatedly sample from some distribution, and repeatedly calculate its score, then the mean value of the scores would tend to zero asymptotically.

• The **Fisher Information** is defined as the variance of score. It is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X.

$$\mathcal{I}(heta) = \mathrm{E} \Bigg[\left(rac{\partial}{\partial heta} \log f(X | heta)
ight)^2 igg| heta \Bigg] = \int_{\mathbb{R}} \left(rac{\partial}{\partial heta} \log f(x | heta)
ight)^2 f(x | heta) \, dx$$

• The Fisher information is not a function of a particular observation, as the random variable *X* has been averaged out.

• If $\log f(x|\theta)$ is twice differentiable with respect to θ , and under certain regularity conditions, then the Fisher information may also be written as:

$$\mathcal{I}(heta) = -\operatorname{E}\!\left[rac{\partial^2}{\partial heta^2} \log f(X | \, heta) igg| \, heta
ight]$$

- The regularity conditions are as follows:
 - The partial derivative of $f(X \mid \theta)$ with respect to θ exists.
 - The integral of $f(X \mid \theta)$ can be differentiated under the integral sign with respect to θ .
 - The support of $f(X \mid \theta)$ does not depend on θ .

Fisher Information

For i.i.d. samples $x_1, ..., x_n$:

Since $f(X|\theta) = \prod f(x_i|\theta)$, the Fisher Information is:

$$E_{\theta}\left[\left(\frac{\partial}{\partial \theta}\log(f(X|\theta))\right)^{2}\right] = n E_{\theta}\left[\frac{\partial}{\partial \theta}\log(f(x_{i}|\theta))\right]^{2}$$

Proof:

$$E_{\theta} \left[\frac{\partial}{\partial \theta} \log (f(X|\theta)) \right]^{2} = E_{\theta} \left[\frac{\partial}{\partial \theta} \log \left(\prod f(x_{i}|\theta) \right) \right]^{2}$$

$$= E_{\theta} \left[\sum_{i=0}^{\infty} \frac{\partial}{\partial \theta} \log(f(x_{i}|\theta)) \right]^{2} = nE_{\theta} \left[\frac{\partial}{\partial \theta} \log(f(x|\theta)) \right]^{2}$$

If
$$f(X|\theta)$$
 satisfies $\frac{\partial}{\partial \theta} E_{\theta} \left[\frac{\partial}{\partial \theta} \log(f(X|\theta)) \right]$

$$= \int \frac{\partial}{\partial \theta} \left[\frac{\partial}{\partial \theta} \log (f(X|\theta)) \right] f(X|\theta) dx$$

Then:

$$E_{\theta}\left[\left(\frac{\partial}{\partial \theta}\log(f(X|\theta))\right)^{2}\right] = -E_{\theta}\left[\frac{\partial^{2}}{\partial \theta^{2}}\log(f(X|\theta))\right]$$

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

- The Cramer–Rao bound (CRB) expresses a lower bound on the variance of unbiased estimators of a deterministic (fixed, though unknown) parameter θ , stating that the variance of any such estimator is at least as high as the inverse of the Fisher information.
- An unbiased estimator which achieves this lower bound is said to be efficient.
- Suppose θ is an unknown deterministic parameter which is to be estimated from n independent observations of x, each from a distribution according to some probability density function $f(x|\theta)$.

• The variance of any *unbiased* estimator $\hat{\theta}$ of θ is then bounded by the reciprocal of the Fisher information $I(\theta)$:

$$ext{var}(\hat{ heta}) \geq rac{1}{I(heta)}$$

• The efficiency of an unbiased estimator $\hat{\theta}$ measures how close this estimator's variance comes to this lower bound; estimator efficiency is defined as:

$$e(\hat{ heta}) = rac{I(heta)^{-1}}{ ext{var}(\hat{ heta})}$$

• The Cramer–Rao lower bound gives: $e(\hat{ heta}) \leq 1$

Let $x_1, ..., x_n$ have joint pdf $f(X|\theta)$:

Let $\hat{\theta} = w(X) = w(x_1, ..., x_n)$ be any estimator where $E_{\theta}[w(X)]$ is differentiable by θ , and for any function h with $E_{\theta}[x(X)] < \infty$, Suppose:

$$\frac{\partial}{\partial \theta} \int \dots \int h(x) f(x|\theta) dx_1 \dots dx_n = \int \dots \int h(x) \frac{\partial}{\partial \theta} f(x|\theta) dx_1 \dots dx_n$$

Then:
$$var_{\theta}(\hat{\theta}) = var_{\theta}[w(X)] \ge \frac{(\frac{\partial}{\partial \theta} E_{\theta}[w(X)])^2}{E_{\theta}[(\frac{\partial}{\partial \theta} \log(f(X|\theta)))^2]} \to Fisher Information$$

If w(X) is unbiased then: $E_{\theta}[w(X)] = \theta$ and $\frac{\partial}{\partial \theta} E_{\theta}[w(X)] = 1$, and:

$$ext{var}(\hat{ heta}) \geq rac{1}{I(heta)}$$

Example: $x_1, ..., x_n iid p(\lambda)$

$$E_{\lambda}w(x) = \lambda \rightarrow \frac{\partial}{\partial \lambda}E[w(x)] = 1$$

$$log f(x|\lambda) = log \frac{e^{-\lambda} \lambda^{x}}{x!} = -\lambda + x log \lambda - log \lambda!$$

$$\frac{\partial}{\partial \lambda} log f = -1 + \frac{x}{\lambda} \to \frac{\partial^2}{\partial \lambda^2} log f = -\frac{x}{\lambda^2}$$

Fisher Information =
$$-nE_{\lambda} \left[\frac{\partial^2}{\partial \lambda^2} \log(f(x|\theta)) \right] = -n \left(-\frac{E[X]}{\lambda^2} \right) = \frac{n}{\lambda}$$

$$Var[w] \ge \frac{\lambda}{n} \quad Var_{\lambda}\bar{X} = \frac{\lambda}{n}$$

 \rightarrow (\bar{X} is unbiased and achieves the CRB (i.e. it is an UMVUE)

Example: $x_1, ..., x_n$ iid $f(X|\theta)$ uniform; $0 < X < \theta$

$$\frac{\partial}{\partial \theta} log f = -\frac{1}{\theta} \to E_{\theta} \left[\frac{\partial}{\partial \theta} log(f) \right]^{2} = \frac{1}{\theta^{2}} \quad Fisher \, Information$$

Fisher Information =
$$-nE_{\lambda} \left[\frac{\partial^2}{\partial \lambda^2} \log(f(x|\theta)) \right] = -n \left(-\frac{E[X]}{\lambda^2} \right) = \frac{n}{\lambda}$$

CR bound: if w is unbiased for
$$\theta$$
, $Var_{\theta}w \ge \frac{\theta^2}{n}$

How to find estimator:

$$Y = \max(X_i) \leftarrow Sufficient Statistic$$

$$f_Y(y|\theta) = \frac{ny^{n-1}}{\theta^n} \quad 0 < y < \theta$$

Problem with CR approach:

- gives you a lower bound
- can it be attained?

Yes, if $f(X|\theta)$ is a regular one-parameter exponential family and an unbiased estimator exists.

Example: $x_1, ..., x_n$ iid $N(\mu, \delta^2)$ interested in δ^2

$$log f(X|\mu,\delta^2) = -\frac{1}{2}log 2\pi\delta^2 - \frac{1}{2}\frac{(x-\mu)^2}{\delta^2}$$

$$\frac{\partial}{\partial \delta^2} log f = -\frac{1}{2\delta^2} + \frac{1}{2} \frac{(x - \mu)^2}{\delta^4}$$

$$\frac{\partial^2}{\partial (\delta^2)^2} log f = \frac{1}{2\delta^4} - \frac{(x-\mu)^2}{\delta^6} - E\left[\frac{\partial^2}{\partial (\delta^2)^2} log f\right] = \frac{1}{2\delta^4}$$

 \Rightarrow any unbiased estimator w for δ^2 satisfies:

$$Var(w) \ge \frac{2\delta^4}{n}$$

$$Var(\delta^2) = \frac{2\delta^4}{n-1}$$

• When is bound attainable?

$$(cov(w,y))^2 \le (var w)(var y)$$

$$y = \frac{\partial}{\partial \theta} \log f(X|\theta)$$

When do we have equality in Cauchy-Schwartz?

$$a(w - Ew) = y - Ey$$

$$y = \frac{\partial}{\partial \theta} \log f(X|\theta) \qquad E[y] = 0$$

Bound is attained when: $a(\theta)[w - \theta] = \frac{\partial}{\partial \theta} \log f(X|\theta)$.

Corollary: $x_1, ..., x_n$ iid $f(X|\theta)$ satisfies CRB,

Let likelihood function $L(\theta|X) = \pi f(X_i|\theta)$

If w is any unbiased estimator of θ , then it attains the CRB lower bound, iff:

$$\frac{\partial}{\partial \theta} \log L(X|\theta) = a(\theta)[w(X) - \theta]$$
 for some function $a(\theta)$.

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Rao-Blackwell Theorem

- The Rao-Blackwell theorem uses sufficiency to characterizes the transformation of an arbitrarily estimator into an estimator that is optimal by the mean-squared-error (MSE) criterion.
- Recall: x and y are random variables:

$$E[X] = E[E[X|Y]]$$

$$var(X) = var(E[X|Y]) + E[var(X|Y)]$$

Rao-Blackwell Theorem:

Let w be unbiased for θ , and let T be a sufficient statistic for θ :

Define
$$\phi(T) = E[w|T]$$
, then:

$$E[\phi(T)] = \theta$$

and
$$var(\phi(T)) \leq var_{\theta}(T)$$
.

Rao-Blackwell Theorem

Proof:

(1) $\phi(T) = E_{\theta}(w|T)$ is an estimator because T is sufficient \Rightarrow conditioned dist. of \underline{X} given T does not depend on θ and w is a function of \underline{X} only:

$$E_{\theta}(\phi(T)) = E_{\theta}(E(w|T)) = E_{\theta}(w) = \theta$$

(2)
$$Var_{\theta}(w) = Var_{\theta}[E(w|T)] + E_{\theta}[Var(w|T)]$$

$$= Var_{\theta}(\phi(T)) + E_{\theta}\left(Var(w|T)\right) \ge Var_{\theta}(\phi(T))$$
positive

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

- The minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.
- How to find an UMVUE?

2 strategies for finding UMVUE's:

- (1) Let T be a complete suff. Stat. for θ , find a function $\phi(T)$ of T, such that $E_{\theta}[\phi(T)] = \theta$.
- (2) Let w be any unbiased estimator and T be a suff. Stat. for θ , compute $\phi(T) = E(w|T)$.

Example:

 x_1, \ldots, x_n iid $N(\mu, 1)$,

Median $(x_1, ..., x_n)$ is unbiased.

However, it can't be UMVUE since it is not a

sufficient statistics for θ ,

(i.e. sufficient statistics is \overline{X}).

Is UMVUE unique?

Claim: UMVUE is unique.

Proof:

Suppose w is also UMVUE:

Then,
$$w^* = \frac{w + w'}{2}$$
 is also unbiased; $E_{\theta}[w^*] = \theta$,

$$Var_{\theta}[w^*] = \frac{1}{4}Var_{\theta}[w] + \frac{1}{4}Var_{\theta}[w'] + \frac{1}{2}conv(w, w'),$$

use *Cauchy – Shwartz*:

$$\leq \frac{1}{4} Var_{\theta}[w] + \frac{1}{4} Var_{\theta}[w'] + \frac{1}{2} \left[Var_{\theta}[w] Var_{\theta}[w'] \right]^{\frac{1}{2}}$$

$$= Var_{\theta}[w] \quad \text{(because } [w'] = Var_{\theta}[w] \text{)}$$

When the equality in Cauchy-Schwartz holds?

$$(w' - Ew') = a(\theta)(w - E(w))$$

 $cov_{\theta}(w, w') = E(w - Ew)(w' - Ew')$
 $= a(\theta)E_{\theta}(w - Ew)^2 = a(\theta)var(w)$
In the above $a(\theta) = 1 \Rightarrow w = w'$.

Example: $x_1, ..., x_n$ iid $Bern(\theta)$

We know \bar{X} is the *UMVUE* (CRB attained)

Showed $T = \sum X_i$ is a complete suff. Stat. for θ .

$$E(T) = n\theta \implies \phi(T) = \frac{T}{n}$$

Example: $x_1, ..., x_n$ iid $N(\mu, \delta^2)$

Showed $T = (T_1, T_2) = (\sum X_i, \sum X_i^2)$ is a complete suff. stat. for $N(\mu, \delta^2)$

Consider
$$(\bar{X}, S^2) = \left(\frac{T_1}{n}, \frac{1}{n-1}\left(T_2 - \frac{T_1^2}{n}\right)\right)$$

Example: x_1, \dots, x_n iid $U(0, \theta)$

We showed that $\frac{n+1}{n}y$ is an unbiased estimator for θ , $y = \max(X_i)$ Can show y is a complete suff. stat. for θ .

 $\Rightarrow \frac{n+1}{n}y$ is the *UMVUE*.

Example: $x_1, ..., x_n$ iid $p(\lambda)$

Interested in estimating $\theta = e^{-\lambda} = P_{\lambda}(X = 0)$

 $\sum x_i \sim p(n, \lambda)$ is a complete sufficient statistic and:

$$\frac{\sum xi}{n}$$
 is the UMUVE for λ

Guess $e^{-x} \leftarrow not \ unbiased$.

$$W(X) = \begin{cases} 1 & X = 0 \\ 0 & X > 0 \end{cases}$$

 $E_{\lambda}(w) = e^{-\lambda} \rightarrow unbiased$

Compute $E_{\lambda}(w|T)$:

$$\phi(t) = E(w|T = t) = P_{\lambda} \left(X_1 = 0 | \sum_{i=2}^{n} X_i = t \right)$$

$$= \frac{P_{\lambda}(X_1 = 0, \sum_{i=2}^n X_i = t)}{P_{\lambda}(\sum_{i=1}^n X_i = t)} = \frac{P_{\lambda}(X_1 = 0)P_{\lambda}(\sum_{i=2}^n X_i = t)}{P_{\lambda}(\sum_{i=1}^n X_i = t)}$$

$$X_i \sim P(\lambda)$$

$$\sum_{i=2}^n X_i \sim P((n-1)\lambda)$$

$$\sum_{i=1}^n X_i \sim P(n\lambda)$$

$$\Rightarrow \phi(t) = \frac{\left[e^{-\lambda}\right] \left[e^{-(n-1)\lambda} \times \frac{\left[(n-1)\lambda\right]^t}{t!}\right]}{e^{-n\lambda} \times \frac{\left[n\lambda\right]^t}{t!}}$$

We can write:
$$\phi(t) = \left(\frac{n-1}{n}\right)^t = \left(\left(1 - \frac{1}{n}\right)^n\right)^{\frac{1}{n}\sum x_i}$$

as
$$n \to \infty$$
, $\phi(t) \to e^{-\bar{X}}$

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Bayes Estimation

Bayes estimation:

- Frequentists or classical regards the parameter θ as an unknown but fixed.
- Bayes: regards θ as random variable, with prior distribution $\pi(\theta)$.
- Observe data x_1, \dots, x_n
- Update the prior into a posterior distribution; $\pi(\theta|X)$.

$$\pi(\theta|X) = \frac{f(X,\theta)}{m(X)} = \frac{f(X|\theta)\pi(\theta)}{m(X)}$$

$$m(x) = \int f(X|\theta)\pi(\theta)d\theta = marginal\ dist.\ of\ X$$

Bayes estimation

Example: $x_1, ..., x_n$ iid $Bernoulli(\theta), \theta \sim \beta eta(\alpha, \beta)$

$$egin{aligned} \pi(heta) &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} heta^{lpha-1} (1- heta)^{eta-1} \ f(x) heta) &= heta^{\sum x_i} (1- heta)^{n-\sum x_i} \ m(x) &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} \int_0^1 heta^{\sum x_i+lpha-1} (1- heta)^{n-\sum x_i+eta_{-1}} d heta \ &= heta \Big(\sum x_{i+}lpha, n - \sum x_i + eta \Big) \ &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} rac{\Gamma(\sum x_i+lpha)\Gamma(n-\sum x_i+eta)}{\Gamma(n+lpha+eta)} \ \Gamma(heta+lpha+eta) \ &= rac{f(lpha+eta)}{m(x)} \ &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} rac{\sum x_i+lpha-1}{\Gamma(lpha)\Gamma(eta)} \times rac{1}{m(lpha)} \ &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} \times rac{1}{m(lpha)} \ &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} = rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(lpha)} = rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma($$

Bayes Estimation

Finding the posterior:

- (a) Calculate $\pi(\theta) f(X|\theta)$
- (b) Factor into piece depending on θ and piece not depending on θ .
- (c) Drop piece not depending on θ , multiply and divide by constants.
- (d) $\pi(\theta|X)$ is k(X) times what is left. choose k(X) s.t. $\int \pi(\theta|X) d\theta = 1$

Example:
$$x_1, ..., x_n$$
 i.i.d. $N(\mu, \delta^2), \delta^2$ known
$$f(x \mid \mu) = (2\Pi\delta^2)^{-\frac{n}{2}} e^{-\frac{1}{2\delta^2} \sum (x_i - \mu)^2}$$

$$\Pi(\mu) = N(\mu_0, \delta_0^2)$$

$$\pi(\mu) f(x \mid \mu) = \left(\frac{1}{\sqrt{2\pi\delta^2}}\right)^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2s^2} \sum (x_i - \mu)^2} e^{-\frac{1}{2\delta_0^2} (\mu - \mu_0)^2}$$

$$\alpha \exp\left[-\frac{1}{2\delta_0^2} (\mu - \mu_0)^2 - \frac{1}{2\delta^2} \sum (x_i - \bar{x})^2 - \frac{1}{2\delta^2} n(\bar{x} - \mu)^2\right]$$

$$= \exp\left[-\frac{1}{2} \left(\frac{(\mu - \mu_0)^2}{\delta_0^2} + \frac{n(\bar{x} - \mu)^2}{\delta^2}\right)\right]$$

$$= \exp\left[-\frac{1}{2}\left(\frac{(\mu - \mu_0)^2}{\delta_0^2} + \frac{n(\bar{x} - \mu)^2}{\delta^2}\right)\right]$$

$$= \exp\left[-\frac{1}{2}\left(\left(\frac{1}{\delta_0^2} + \frac{n}{\delta^2}\right)\mu^2 - 2\mu\left(\frac{\mu_0}{\delta_0^2} + \frac{n\bar{x}}{\delta^2}\right) + \frac{\mu\delta^2}{\delta_0^2} + \frac{n\bar{x}^2}{\delta^2}\right)\right]$$

$$= \frac{-1}{2}a\mu^2 - 2b\mu = \frac{-1}{2}a\left(\mu - \frac{b}{a}\right)^2$$

$$a = \frac{1}{\delta_0^2} + \frac{n}{\delta^2} \qquad \pi(\mu)f(x \mid \mu) \propto \exp\left[-\frac{1}{2}a\left(\mu - \frac{b}{a}\right)^2\right]$$

$$b = \frac{\mu_c}{\delta_0^2} + \frac{n\bar{x}}{\delta^2} \qquad = N\left(\frac{b}{a}, \frac{1}{a}\right) \sim \pi(\mu \mid \underline{x})$$

Bayes estimator:

(1) Maximum A Posteriori (MAP) Estimator:

In Bayesian statistics, a maximum a posteriori probability (MAP) estimate is an estimate of an unknown quantity, that equals the mode of the posterior distribution.

Given
$$x_1, ..., x_n$$
 i.i.d. with $f(x_i|\theta)$; and $\pi(\theta)$
$$f(X|\theta) = \prod_{i=1}^n f(x_i|\theta)$$
:

$$\hat{\theta}_{MAP}(X) = \arg \max_{\theta} \pi(\theta | X) = \arg \max_{\theta} [f(X | \theta)\pi(\theta)]$$

How to compute Maximum A Posteriori (MAP):

- Analytically: when the mode(s) of the posterior distribution can be given in closed form. This is the case when conjugate priors are used.
- Numerical optimization: such as the conjugate gradient method or Newton's method. This usually requires first or second derivatives, which have to be evaluated analytically or numerically.
- Modification of an expectation-maximization (EM) algorithm. This does not require derivatives of the posterior density.
- Monte Carlo method using simulated annealing.

(2) Bayes Minimum Loss (Risk) Estimator:

- Define a loss function $L(\theta, \hat{\theta})$ $L(\theta, \hat{\theta}) = loss \ of \ estimation \ \theta \ by \ \hat{\theta}$
- Minimize the expected loss:

$$\min \int_{\Theta} L(\theta, \hat{\theta}) \pi(\theta | X) d\theta$$

• Then $\hat{\theta}$ is the Bayes minimum loss estimator.

(1)
$$L(\theta - \hat{\theta}) = (\theta - \hat{\theta})^2$$
 squared error loss $\Rightarrow \hat{\theta} = E(\theta | X)$

(2)
$$L(\theta - \hat{\theta}) = |\theta - \hat{\theta}|$$
 absolute error loss
 $\Rightarrow \hat{\theta} = Median \ of \ \pi(\theta|X)$

Example:
$$x_1, ..., x_n$$
 iid $N(\mu, \delta^2)$

Posterior is normed with mean: $\left(\frac{\mu_0}{\delta_0^2} + \frac{n\bar{x}}{\delta^2}\right) / \left(\frac{1}{\delta_0^2} + \frac{n}{\delta^2}\right)$ And variance: $1 / \left(\frac{1}{\delta_0^2} + \frac{n}{\delta^2}\right)$ using squared loss criterion.

$$egin{align} \hat{\mu} &= E(\mu \mid x) = lpha ar{x} + (1-lpha)\mu_0 \ lpha &= n/\delta^2/igg(rac{n}{\delta^2} + rac{1}{\delta_0^2}igg) = rac{n}{n + rac{\delta^2}{\delta_0^2}}
onumber \end{aligned}$$

Note:

(1) As
$$n \to \infty$$
, $\alpha \to 1$
 $\Rightarrow E(\mu \mid x) \to \bar{x}$

(2) Vague prior information:

Let
$$\delta_0^2 \to \infty$$

$$\mu \sim N(\mu_0, \infty) \Rightarrow E(\mu \mid x) \to \bar{x}$$

(3) Good prior info:

Let
$$\delta_0^2 \to 0 \Rightarrow E(\mu \mid x) \to \mu_0$$

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Conjugate Prior

In Bayesian probability theory, if the posterior distribution $\pi(\theta \mid x)$ is in the same probability distribution family as the prior probability distribution $\pi(\theta)$, the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function $f(x|\theta)$.

Examples:

Conjugate Prior	Likelihood	Posterior
Beta	Bernoulli	Beta
Gamma	Poisson	Gamma
Normal	Normal	Normal

Bayesian Estimation with Conjugate Priors

Example: $x_1, ..., x_n$ i.i.d. $Bern(\theta)$

Prior: $\beta eta(\alpha, \beta)$

Posterior βeta : $(\alpha + \sum X_i, n - \sum X_i + \beta)$

Use squared error loss: $E(\theta|X) = \frac{\alpha + \sum X_i}{\alpha + \beta + n}$

$$E(\theta|X) = wX + (1-w)\frac{\alpha}{\alpha+\beta}$$
; where $w = \frac{n}{\alpha+\beta+n}$

Problems with Bayes Estimator

Choice of prior:

- Subjective Conjugate Priors
- What can we do when we do not have the prior?
- Use: non-informative priors:

Prior:
$$\pi(\theta) = 1, \forall \theta$$

- Can we do better?
- Use Jeffreys Prior

Jeffreys Prior

Jeffreys Prior: is a non-informative (objective) prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: $\pi(\theta) \propto \left[\det I(\theta)\right]^{\frac{1}{2}}$.

Example: $x_1, ..., x_n$ iid $Bern(\theta)$

$$\log(f(X|\theta)) = x\log\theta + (1-x)\log(1-\theta)$$

$$\frac{\partial}{\partial \theta} \log (f(X|\theta)) = \frac{x}{\theta} - \frac{1-x}{1-\theta} \to \frac{\partial^2}{\partial \theta^2} \log (f(X|\theta)) = \frac{-x}{\theta^2} + \frac{1-x}{(1-\theta)^2}$$

$$E_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log (f(X|\theta)) \right] = -\frac{1}{\theta} - \frac{1}{1-\theta} = -\frac{1}{\theta(1-\theta)}$$

$$\pi(\theta) \propto (\frac{1}{\theta(1-\theta)})^{\frac{1}{2}} i.e. \beta eta(\frac{1}{2}, \frac{1}{2})$$

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Consistency

Def: a sequence of estimators:

 $w_n = w_n(x_1, ..., x_n)$ is a consistent sequence of estimators of the parameter θ if for any $\epsilon > 0$, $\theta \in \Theta$:

$$\lim_{n\to\infty} P_{\theta}(|w_n - \theta| < \epsilon) = 1$$

or:
$$\lim_{n\to\infty} P_{\theta}(|w_n - \theta| \ge \epsilon) = 0$$

(it means w_n converges to θ in probability)

Consistency

Theorem:

If w_n is a sequence of estimators of a parameter θ with:

- (a) $\lim_{n\to\infty} Var_{\theta}(w_n) = 0$ and
- (b) w_n unbiased estimator of θ

Then w_n is a consistent sequence of estimators of θ .

Proof:

Chebychev
$$\Rightarrow P_{\theta}(|w_n - \theta| \ge \varepsilon) \le \frac{E_{\theta}(w_n - \theta)^2}{\varepsilon^2}$$

$$E_{\theta}(w_n - \theta)^2 = E_{\theta}(w_n + Ew_n - Ew_n - \theta)^2$$

$$= Var_{\theta}w_n + (Bias_{\theta}w_n)^2$$

Consistency

Why do frequentists use MLE's?

- MLE's are consistent
- MLE's are asymptotically unbiased

Theorem:

Let $x_1, ..., x_n$ iid $f(X|\theta)$.

Let $L(\theta|X) = \prod f(X_i|\theta)$

$$\hat{\theta} = MLE \text{ of } \theta$$

Then we have:

 $\hat{\theta}_n$ is a consistent estimator of θ .

Condition: support of pdf does not depend on parameters and rules

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Efficiency

Let
$$I(\theta) = E_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2$$
.

Def:

Let w be an unbiased estimator of θ . The efficiency of w is:

$$eff(w) = \frac{[1/n I(\theta)]}{var(w)}$$
 CR lower bound

Efficiency

Definition:

A sequence of estimators w is said to be asymptotically efficient if:

$$\lim_{n\to\infty} eff(w_n)\to 1$$

As $n \to \infty$, var w_n attains CR lower bound.

- MLE's are asymptotically efficient.
- MLE's are asymptotically normal.

i.e.
$$\sqrt{n}(\hat{\theta}_n - \theta) \to N(0, \frac{1}{I(\theta)})$$

- MLE's are (with some fairly general conditions):
- (1) Consistent, (2) asymptotically unbiased, (3) asymptotically efficient,
- (4) asymptotically normal.

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Example: $x_1, ..., x_n$ iid $N(\mu, \delta^2)$, want to estimate δ^2 :

MLE
$$\widehat{\delta_1}^2 = \frac{s}{n}$$
 when $s = \sum (x_i - \bar{x})^2$

Bayes (Jeffery's prior)
$$\pi(\delta^2) \propto \frac{1}{s^2}$$
 $\widehat{\delta_2^2} = \frac{s}{n-2}$

UMVUE
$$\widehat{\delta_3^2} = \frac{s}{n-1}$$

	$\widehat{\delta}_1^2$	$\widehat{oldsymbol{\delta}}_2^2$	$\widehat{oldsymbol{\delta}}_3^2$
Estimator	$\frac{S}{n}$	$\frac{S}{n-2}$	$\frac{S}{n-1}$
MSE	$\delta^4 \left(\frac{2n-1}{n^2} \right)$	$\delta^4 \left(\frac{2n-1}{(n-2)^2} \right)$	$\delta^4 \left(\frac{2}{n-1} \right)$

theta	k1	MLE	Bayes	UMVUE
0 . 10	2	0.0258	0.0250	0.0148
0.20	4	0.0171	0.0169	0.0125
0.30	6	0.0159	0.0151	0.0134
0.40	8	0.0154	0.0140	0.0141
0.50	10	0.0142	0.0126	0.0138
0.60	12	0.0127	0.0110	0.0128
0.70	14	0.0105	0.0090	0.0109
0.80	16	0.0077	0.0067	0.0082
0.90	18	0.0042	0.0038	0.0045
0.95	19	0.0021	0.0022	0.0023

Example: let $R = \# of tosses needed to reach k heads, \theta = p(head)$

$$P[R = r] = r^{-1} C_{k-1} \theta^k (1 - \theta)^{r-k}$$
 $r = k, k + 1, ...$

R has negative binomial distribution.

(1) MLE
$$\widehat{\theta_1} = \frac{k}{r}$$

(2) Bayes
$$\pi(\theta) \propto [\theta(1-\theta)]^{-\frac{1}{2}}$$

$$\Rightarrow \pi(\theta|R) \propto \theta^{k-\frac{1}{2}} (1-\theta)^{r-k-\frac{1}{2}}$$

$$\Rightarrow \widehat{\theta_2} = E(\theta|R) = \frac{k + \frac{1}{2}}{r + 1}$$

(3) UMVUE: r is complete and sufficient for θ :

$$E\left[\frac{1}{r-1}\right] = \frac{\theta}{k-1}$$

$$\Rightarrow \widehat{\theta_3} = \frac{k-1}{r-1}$$
 which is the UBMUE of θ .

(4) Can't calculate MSE exactly:

Instead: simulation study:

Fix k and θ

Generate R

Calculate $\hat{\theta}_i (\hat{\theta}_i - \theta)^2$.

Outline of Week 7 Lectures

- Introduction to Optimal Frequentist Estimator
- Score and Fisher Information
- Cramer-Rao Bound (CRB)
- Rao-Blackwell Theorem
- UMVUE
- Bayesian Estimation
- Conjugate Prior
- Consistency
- Efficiency
- Estimator Comparison
- Summary

Summary

(1) Likelihood:

Estimate θ by the value $\hat{\theta}$ which maximizes the likelihood (2) Bayes:

Let $\pi(\theta)$ be a prior distribution for θ leading to a posterior $\pi(\theta|\underline{X})$

Let $L(\theta, \hat{\theta})$ be a loss function. Choose $\hat{\theta}$ to minimize:

$$\int_{\Theta} L(\theta, \hat{\theta}) \pi(\theta | X) d\theta$$

$$L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2 \implies \hat{\theta} = E[\theta|X]$$

$$L(\theta, \hat{\theta}) = |\theta - \hat{\theta}| \implies \hat{\theta} = \text{median of } \pi(\theta|X)$$

Summary

(3) Frequentist:

- (a) If possible, find the UMVUE of θ .
- (b) If (a) impossible, use the MLE $\hat{\theta}$ which is asymptotically unbiased and whose efficiency $\rightarrow 1$ as $n \rightarrow \infty$.

(1), (2) and (3) may not exist!

Example:

MLE:
$$X \sim N(\mu, \delta^2)$$

$$X = \mu, \quad \delta^2 \longrightarrow 0$$

UMVUE: Bern(p). Then $\theta = \frac{p}{1-p} \Longrightarrow$ UMVUE of θ does not exist.

Summary

■ MLE and Bayes may not be unique, but UMVUE is unique.

■ MLE has invariance property, UMVUE and Bayes do not.

Bayes: incorporate prior information, but MLE and UMVUE don't.

Next Week:

Hypothesis Testing

Have a good day!