Un pas vers la construction de l'intégrale de Lebesgue

Lemme. Soient $\alpha_i \in \mathbb{R}^+$, $A_i \in \mathcal{M}$ deux à deux disjoints et $\varphi = \sum_{i=1}^N \alpha_i \chi_{A_i}$ une fonction étagée positive. Alors, la quantité $\sum_{i=1}^N \alpha_i \mu(A_i)$ est indépendante de la décomposition choisie de φ .

Soient $\varphi = \sum_{i=1}^{N} \alpha_i \chi_{A_i} = \sum_{i=1}^{N} \beta_i \chi_{A_i}$ deux décompositions de φ , avec $\alpha_i, \beta_j \in \mathbb{R}^+$ et $A_i, B_j \in \mathcal{M}$ et $X = \bigcup_{i=1}^{N} A_i = \bigcup_{j=1}^{M} B_j$. Les parties A_i (resp. B_j) sont supposés deux à deux disjoints. Il en résulte alors que

$$\varphi = \sum_{i=1}^{N} \alpha_i \chi_{A_i} = \sum_{i=1}^{N} \alpha_i \chi_{\bigcup_{j=1}^{M} A_i \cap B_j} = \sum_{i=1}^{N} \alpha_i \sum_{j=1}^{M} \chi_{A_i \cap B_j} = \sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_i \chi_{A_i \cap B_j}$$

De même, en utilisant le fait que $B_j = \bigcup_{i=1}^N A_i \cap B_j$, on obtient

$$\varphi = \sum_{j=1}^{M} \sum_{i=1}^{N} \beta_j \chi_{A_i \cap B_j}$$

Par conséquent, pour tout $(i,j) \in \{1,2,...,N\} \times \{1,2,...,M\}$ tel que $A_i \cap B_j = \emptyset$, on a $\alpha_i = \beta_j$. En effet, pour $x \in A_i \cap B_j = \emptyset$, on a $\varphi(x) = \alpha_i \chi_{A_i \cap B_j}(x) = \beta_j \chi_{A_i \cap B_j}(x)$. Il s'en suit que

$$\sum_{i=1}^{N} \alpha_{i} \mu(A_{i}) = \sum_{i=1}^{N} \alpha_{i} \mu\left(\bigcup_{j=1}^{M} A_{i} \cap B_{j}\right) = \sum_{i=1}^{N} \sum_{j=1}^{M} \alpha_{i} \mu(A_{i} \cap B_{j}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \beta_{j} \mu(A_{i} \cap B_{j}) = \sum_{j=1}^{M} \beta_{j} \mu(B_{j})$$

D'où le résultat.