

Medical Al Sorcerers

Jonah Levine, Ethan Sandoval, Kevin Chen

AIT Deep Learning Spring 2025 Month Year

Presentation Outline

- Intro and Background
- Dataset
- Baseline Models
- Final Model Architecture
- Model Evaluation
- Results
- Challenges

 To enable faster, more accurate, and accessible diagnosis of skin cancer, potentially improving early detection and patient outcomes

- Skin cancer types
 - o Benign
 - Malignant
- Deep learning models excel at distinguishing patterns in images

Previous Solutions

DeepSkin

- → DenseNet169 and ResNet50
- → Attempts to address class imbalance in training data

U-Net and MobileNetV3

- → Combines a standard U-Net and an Improved MobileNetV3
- → Uses HAM-10000 dataset

Melanoma Skin Cancer Detection

- → Identification of melanoma, the most deadly type of skin cancer
- → Features custom built CNN Model architecture

Dataset

Source: ISIC

The International Skin Imaging
Collaboration is developing proposed
Digital Image Communication in Medicine
standards and engages the dermatology
and computer science communities to
improve diagnostic accuracy with the aid
of Al.

Skin Lesion Images

Approved medical quality images of skin lesions

Image Metadata

Values associated with each image

Data Cleansing and Balancing

Metadata

- → Focused on 3 main variables for training
 - Approx. Age
 - Approx. Size
 - Approx. Location

- → 96% Benign Observations
- → Augmented Malignant
 Observations

Milestone Recaps

Baseline Models

 1. Metadata Linear Regression

Baseline Models

2. Metadata MLP

Baseline Models

3. Image CNN

Final Model Architecture

- Used MobileNetV2 base model
- Fine tuned weights further
- 2D Global Average Pooling
- Binary Classification

Base Model MobileNetV2

keras.applications.MobileNetV2

- → Keras image classification model
- → "uses inverted residual blocks with bottlenecking features"
- → Pretrained on ImageNet
- → Good balance between performance and computational cost
- → Used pretrained weights and froze

Training Details

Optimizer

Adam

Loss Function

Binary Cross Entropy

Learning Rate

0.001

Regularization

Earlystopping

Results

Binary: Balanced Train and Validation

Using balanced image data for training, and evaluated using balanced data

Binary: Balanced Train, Unbalanced Validation

Using balanced image data for training, but evaluated on unbalanced/original data splits

Binary: Balanced Train, Unbal Val, Augmented Data

Using augmented and balanced image data for training, but evaluated on unbalanced data splits

Binary: RESN50 base model

Binary: Adding in the metadata

Multiclass Classification

With Unfreezing

No Unfreezing

Challenges

Large Image Dataset

- → ISIC API issues when working with such large (>500,000) image sets
- → Lack of detailed diagnosis information
- → Lack of malignant lesion representation

Combining Models

→ Model compatibility made it difficult for us to combine/concatenate our architectures into a larger single model

Image Metadata

- → Incomplete values for metadata categories
- → Needed to be processed alongside image set, further complicating task

Future Steps

Thank You!

References

```
https://keras.io/api/applications/mo
bilenet/
https://keras.io/api/applications/resn
et/
```