

Cloning Scheme for Generating pCMV-NS35

FIG. 2

1	TCGCGCGTTT AGCGCGCAAA	TCGCGCGTTT CGGTGATGAC AGCGCGCAAA GCCACTACTG	GGTGAAAACC CCACTTTTGG	TCTGACACAT AGACTGTGTA	GCAGCTCCCG CGTCGAGGGC	GAGACGGTCA CTCTGCCAGT	CAGCTTGTCT GTCGAACAGA	GTAAGCGGAT CATTCGCCTA
81	GCCGGGAGCA	GCCGGGAGCA GACAAGCCCG TCAGGGCGCG GGGCCTCGT CTGTTCGGGC AGTCCCGCGC	TCAGGGGGGG	TCAGCGGGTG AGTCGCCCAC	TTGGCGGGTG. AACCGCCCAC	TCGGGGCTGG AGCCCCGACC	CTTAACTATG GAATTGATAC	CGCCATCAGA
161	GCAGATIGTA CGTCTAACAT	CTGAGAGTGC GACTCTCACG	GCAGATIGIA CIGAGAGIGC ACCAIAIGAA CGICIAACAI GACICICACG IGGIAIACII		Stul GCTTTTTGCA AAAGCCTAGG CCTCCAAAAA AGCCTCCTCA CGAAAAACGT TTTCGGATCC GGAGGTTTTT TCGGAGGAGT	II CCTCCAAAAA GGAGGTTTTT	AGCCTCCTCA TCGGAGGAGT	CTACTTCTGG
241	AATAGCTCAG TTATCGAGTC	AATAGCTCAG AGGCCGAGGC TTATCGAGTC TCCGGCTCCG	GGCCTCGGCC	TCTGCATAAA AGACGTATTT	AATAGCTCAG AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAT TAGTCAGCCA TGGGGCGGAG TTATCGAGTC TCCGGCTCCG CCGGAGCCGG AGACGTATTT ATTTTTTTA ATCAGTCGGT ACCCGCCTC	TAGTCAGCCA ATCAGTCGGT	TGGGGCGGAG ACCCCGCCTC	AATGGGCGGA TTACCCGCCT
321	ACTGGGCGGG TGACCCGCCC	GAGGGAATTA	ACTGGGCGG GAGGGAATTA TTGGCTATTG GCCATTGCAT ACGTTGTATC TGACCGCCC CTCCCTTAAT AACCGATAAC CGGTAACGTA TGCAACATAG	GCCATTGCAT	ACGTTGTATC TGCAACATAG	TATATCATAA TATGTACATT ATATAGTATT ATACATGTAA	TATGTACATT ATACATGTAA	TATATTGGCT ATATAACCGA
401	CATGTCCAAT GTACAGGTTA	CATGTCCAAT ATGACCGCCA TGTTGACATT GTACAGGTTA TACTGGCGGT ACAACTGTAA	TGTTGACATT ACAACTGTAA	GATTATTGAC CTAATAACTG	GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC CTAATAACTG ATCAATAATT ATCATTAGTT AATGCCCCAG	TAGTAATCAA ATCATTAGTT	TTACGGGGTC AATGCCCCAG	ATTAGTTCAT TAATCAAGTA
481	AGCCCATATA TCGGGTATAT	AGCCCATATA TGGAGTTCCG CGTTACATAA TCGGGTATAT ACCTCAAGGC GCAATGTATT	CGTTACATAA GCAATGTATT	CTTACGGTAA GAATGCCATT	CTTACGGTAA ATGGCCCGCC GAATGCCATT TACCGGGCGG	TGGCTGACCG CCCAACGACC ACCGACTGGC GGGTTGCTGG	CCCAACGACC GGGTTGCTGG	CCCCCCATT
561	GACGTCAATA CTGCAGTTAT	GACGTCAATA ATGACGTATG TTCCCATAGT CTGCAGTTAT TACTGCATAC AAGGGTATCA	TTCCCATAGT AAGGGTATCA	AACGCCAATA TTGCGGTTAT	AACGCCAATA GGGACTTTCC TTGCGGTTAT CCCTGAAAGG	ATTGACGTCA ATGGGTGGAG TATTTACGGT TAACTGCAGT TACCCACCTC ATAAATGCCA	ATGGGTGGAG TACCCACCTC	TATTTACGGT ATAAATGCCA
641	AAACTGCCCA TTTGACGGGT	AAACTGCCCA CTTGGCAGTA TTTGACGGGT GAACCGTCAT	CATCAAGTGT GTAGTTCACA	ATCATATGCC AAGTCCGCCC TAGTATACGG TTCAGGCGGG		CCTATTGACG TCAATGACGG GGATAACTGC AGTTACTGCC		TAAATGGCCC ATTTACCGGG

FIG. 3A

721	GCCTGGCATT AT CGGACCGTAA TA	ATGCCCAGTA	CATGACCTTA GTACTGGAAT	CGGGACTTTC GCCCTGAAAG	CTACTTGGCA GATGAACCGT	GTACATCTAC CATGTAGATG	GTATTAGTCA CATAATCAGT	TCGCTATTAC AGCGATAATG
801	CATGGTGATG CG GTACCACTAC GC	CGGTTTTGGC GCCAAAACCG	AGTACACCAA TCATGTGGTT	TGGCCGTGGA ACCCGCACCT	TAGCGGTTTG ATCGCCAAAC	TAGCGGTITG ACTCACGGGG ATTICCAAGT ATCGCCAAAC IGAGTGCCCC TAAAGGTICA		CTCCACCCCA
881	TTGACGTCAA TGO	GCTCAAAC	TTTTGGCACC AAAATCAACG AAAACCGTGG TTTTAGTTGC	AAAATCAACG TTTTAGTTGC	GGACTTTCCA AAATGTCGTA CCTGAAAGGT TTTACAGCAT		ATAACCCGC TATTGGGGCG	CCCGTTGACG
961	CAAATGGGCG GI GTTTACCCGC CA	AGGCGTGT TCCGCACA	ACGGTGGGAG TGCCACCCTC	GTCTATATAA CAGATATATT	GTCTATATAA GCAGAGCTCG CAGATATATT CGTCTCGAGC	TTTAGTGAAC AAATCACTTG	CGTCAGATCG CCTGGAGACG GCAGTCTAGC GGACCTCTGC	CCTGGAGACG GGACCTCTGC
1041	CCATCCACGC TG GGTAGGTGCG ACA	TTTGACC AAAACTGG	TCCATAGAAG AGGTATCTTC	ACACCGGGAC TGTGGCCCTG	CGATCCAGCC GCTAGGTCGG	TCCGCGGCCG AGGCGCCGGC	GGAACGGTGC CCTTGCCACG	ATTGGAACGC TAACCTTGCG
1121	GGATTCCCCG TGC CCTAAGGGGC AC	CCAAGAGT	GACGTAAGTA CTGCATTCAT	CCGCCTATAG ACTCTATAGG GCCGCATATC TGAGATATCC		CACACCCCTT	TGGCTCTTAT ACCGAGAATA	GCATGCTATA CGTACGATAT
1201	CTGTTTTTGG CT GACAAAAACC GA	CTTGGGGCCT	ATACACCCCC GCTCCTTATG CTATAGGTGA TGGTATAGCT TAGCCTATAG TATGTGGGGG CGAGGAATAC GATATCCACT ACCATATCGA ATCGGATATC	GCTCCTTATG CGAGGAATAC	CTATAGGTGA GATATCCACT	TGGTATAGCT ACCATATCGA		GTGTGGGTTA
1281	TTGACCATTA AACTGGTAAT	TTGACCACTC AACTGGTGAG	CCCTATTGGT GGGATAACCA	GACGATACTT TCCATTACTA CTGCTATGAA AGGTAATGAT	TCCATTACTA AGGTAATGAT	ATCCATAACA TGGCTCTTTG TAGGTATTGT ACCGAGAAC		CCACAACTAT GGTGTTGATA
1361	CTCTATTGGC TAT	ATGCCAA	TACTCTGTCC TTCAGAGACT ATGAGACAGG AAGTCTCTGA	TTCAGAGACT AAGTCTCTGA	GACACGGACT	CTGTATTTTT GACATAAAAA	ACAGGATGGG TGTCCTACCC	GTCCATTTAT

FIG. 3B

1441	TATTTACAAA ATAAATGTTT	TTCACATATA AAGTGTATAT	CAACAACGCC GTTGTTGCGG	GTCCCCCGTG CAGGGGGCAC	CCCCCAGTTT GGCCGTCAAA	TTATTAAACA AATAATTTGT	TTATTAAACA TAGCGTGGGA TCTCCGACAT AATAATTTGT ATGGCACCCT AGAGGCTGTA	TCTCCGACAT AGAGGCTGTA
1521	CTCGGGTACG	TGTTCCGGAC	ATGGGCTCTT TACCCGAGAA	CTCCGGTAGC		GGCGGAGCTT CCACATCCGA CCGCCTCGAA GGTGTAGGCT	GCCCTGGTCC CATCCGTCCA CGGGACCAGG GTAGGCAGGT	CATCCGTCCA
1601	GCGGCTCATG	GCGGCTCATG GTCGCTCGGC AGCTCCTTGC CGCCGAGTAC CAGCGAGCCG TCGAGGAACG		TCCTAACAGT AGGATTGTCA	GGAGGCCAGA CCTCCGGTCT	CTTAGGCACA	GCACAATGCC CGTGTTACGG	CACCACCACC
1681	AGTGTGCCGC ACAA TCACACGCCG TGTT	GGCCGT	GCCGCTAGGG TATGTGTCTG AAAATGAGCT CCGCCATCCC ATACACAGAC TTTTACTCGA	TATGTGTCTG		CGGAGATTGG GCCTCTAACC	CGGAGATTGG CCTCGCACCT GGACGCAGAT GCCTCTAACC CGAGCGTGGA CCTGCGTCTA	GGACGCAGAT
1761	GGAAGACTTA		AGAAGAAGAT TCTTCTTCTA	GCAGGCAGCT	GAGTTGTTGT CTCAACAACA	ATTCTGATAA TAAGACTATT	ATTCTGATAA GAGTCAGAGG TAACTCCCGT TAAGACTATT CTCAGTCTCC ATTGAGGGCA	TAACTCCCGT ATTGAGGGCA
1841	TGCGGTGCTG TTAA ACGCCACGAC AATT	TTAACGGTGG	AGGGCAGTGT TCCCGTCACA	AGTCTGAGCA TCAGACTCGT	AGTCTGAGCA GTACTCGTTG TCAGACTCGT CATGAGCAAC	CTGCCGCGCG	CGCCACCAGA	CATAATAGCT GTATTATCGA
+2	GACAGACTAA	CAGACTGTTC	CTTTCCATGG	GTCTTTCTG	CAGTCACCGT	CGTCGACCTA	ECORI AGAATTCACC TCTTAAGTGG	M A A A A A A A A A A TGGCTGCAT TACCGACGTA
+2 2001	+2 Y A A Q 1 ATGCAGCTCA TACGTCGAGT	G Y K GGGCTATAAG CCCGATATTC		V L V L N P S V A A GTGCTAGTAC TCAACCCCTC TGTTGCTGCA	V A A TGTTGCTGCA	T L G F G A Y ACACTGGGCT TTGGTGCTTA TGTGACCCGA AACCACGAAT	T G A Y TTGGTGCTTA AACCACGAAT	M S K CATGTCCAAG GTACAGGTTC

FIG. 30

I T Y S T Y G ATCACGTACT CCACCTACGG TAGTGCATGA GGTGGATGCC CCCCACTCTT GTTAATGGTG ACCGTCGGGG TGGCAGCCCC တ ප G V R T I T T GGGGTGAGAA CAATTACCAC I R T CATCAGGACC GTAGTCCTGG I D P N TCGATCCTAA C AGCTAGGATT C CGAGTACCCT GCTCATGGGA G Ħ 4

C H S T D A GTGCCACTCC ACGGATGCCA CACGGTGAGG TGCCTACGGT GACATAATAA TTTGTGAGGA CTGTATTATT AAACACTGCT A D G G C S G G A Y GCCGACGCC GCTCTAT CGCTGCCC CCACGAGCC CCCCGGAATA CAAGTTCCTT GTTCAAGGAA Œ 2161

CACCGCCACC A R L V V L A GCGAGACTGG TIGIGCICGC CGCTCTGACC AACACGAGGG T V L D Q A E T A G ACTGTCCTTG ACCAAGCAGA GACTGCGGGG TGACAGGAAC TGGTTCGTCT CTGACGCCCC CATCCATCTT GGGCATTGGC AC 2241

GGAGAGATCC CTTTTTACGG CCTCTCTAGG GAAAAATGCC G E I P GGAGAGATCC (S T T GTCCACCACC CAGGTGGTGG N I E E V A L AACATCGAGG AGGTTGCTCT TTGTAGCTCC TCCAACGAGA P P G S V T V P H P CCTCCGGGCT CCGTCACTGT GCCCCATCCC GCAGGCCCGA GGCAGTGACA CGGGGTAGGG

GACGAACTCG CTGCTTGAGC 口 GAAGAAGTGC CTTCTTCACG × G R H L I F C H S K GGGGGGCAT CTCATCTTCT GTCATTCAAA CCCTCTGTA GAGTAGAAGA CAGTAAGTTT CCCCTCTGTA P L E V I K G CCCTCGAAG TAATCAAGGG GGGGAGCTTC ATTAGTTCCC K A I CAAGGCTATC GTTCCGATAG 2401

¥ GGCATCAATG CCGTAGTTAC G GGTCGCATTG C A CCGCAAAGCT C 2481

GTGATAGACT GCAATAGGTG CACTATCTGA CGTTATGCAC Z CTTCGACTCG (GAAGCTGAGC) တ Ω [Z4 ATGACCGCT ATACCGCCA
TACTGCCCCA TATGCCCCCT Ω ပ H G CGATGCCCTC GCTACGGGAG H 4 Δ D V V V V A T GATGTTGTCG TCGTGGCAAC CTACAACAGC AGCACCGTTG 2561

FIG. 3D

GCTGTCTCCC S > P Q D CCCCAAGAT (TGGTAACTCT GTTAGTGCGA GGGGGTTCTA T I E T I L ACCATTGAGA CAATCACGCT P T F CCCTACCTTC A GGGATGGAAG 1 ACAGTCGATT TCAGCCTTGA TGTCAGCTAA AGTCGGAACT Ω S a V T Q TCTCACCCAG ACAGTGGGTC 2641

F V A P G E R P S G TTTGTGGCAC CGGGGAGCG AAACACGTG GCCCCTCGC GGGGAGGCCG G K P G I Y R GGAAGCCAGG CATCTACAGA CCTTCGGTCC GTAGATGTCT Ç ACTGGCAGGG (TGACCGTCCC) Ç GCACTCAACG TCGGGGCAGG CGTGAGTTGC AGCCCGTCC 召 G R T Q R GCACTCAACG 2721

ACCCCCCCC ACACTACAGT TGCGGGCGGC TCTGATGTCA [±] A GTATGAGCTC / П įΨ M F D S S V L C E C Y D A G C A W ATGITCGACT CCTCCGTCCT CTGTGAGTGC TATGACGCAG GCTGTGCTTG TACAAGCTGA GCAGCAGGA GACACTCACG ATACTGCGTC CGACACGAAC 2801

H Ŀ > O ഥ 3 Ē [E] Ц H O ပ > д G М Н Z \mathbf{z} 4 2 Ы 24 7 GTCTTTACAG CAGAAATGTC TTGGGAGGGC ATCTTGAATT TAGAACTTAA TGCCAGGACC GCTTCCCGTG ACACCCGGG TGTGGGGCCC GCGTACATGA TAGGCTACGA ATCCGATGCT 2881

0 \succ ¥ > Ы \succ Д П Z 回 G S 0 ¥ H 0 S Ы Ŀ I ¥ \mathbf{H} H G L StuI 4

CTTACCTGGT AGCGTACCAA GAATGGACCA TCGCATGGTT GAGAACCTTC CTCTC CTCTTC CTCTTGGAAG GCAGAGTGGG (CETCTCACCC) CCCAGACAAA CACTITCIAT TATAGATGCC GCCTCACTCA CGGAGTGAGT 2961

L I R L K P T TTGATTCGCC TCAAGCCCAC AACTAAGCGG AGTTCGGGTG CACCTTCACA GTGGAAGTGT ပ × 3 P P S W D Q M CCCCCATCGT GGGACCAGAT GGGGGTAGCA CCCTGGTCTA Q A P TCAAGCCCCT AGTTCGGGGA A T V C A R A GCCACCGIGT GCGTACCGC 3041

FIG. 3E

Σ

Ç

pCMV-NS35

GTCACCAAAT CAGTGGTTTA GACGCACCCA H L H G P T P L L Y R L G A V Q N E I T L CCTCCATGGG CCAACACCCC TGCTATACAG ACTGGGGGGT GTTCAGAATG AAATCACCT GGAGGTACCC GGTTGTGGGG ACGATATGTC TGACCCGCGA CAAGTCTTAC TTTAGTGGGA

GCCTCCTTG CCGACGAAAC 口 CGCCGCAGGA V L V G G V L GTGCTCGTTGTTG CACGAGCAAC П A D L E V V T S T W GCCGACCTGG AGGTCGTCAC GAGCACCTGG Y I M T C M S ACATCATGAC ATGCATGTCG TGTAGTACTG TACGTACAGC

K P A I I P D AAGCGGCAA TCATACCTGA TTCGGCCGTT AGTATGGACT GTCATAGIGG GCAGGGICGT CTIGICCGGG CAGIATCACC CGICCCAGCA GAACAGGCCC G တ Н > 24 C > Η AGGCTGCGTG CGCCCCATAA CGCACAGTTG TCCGACGCAC ပ Ç A A Y C L S T GCCGCGTATT GCCTGTCAAC +2 3281

CCCTACTACG GGGATGATGC 3361

R Q A E V I A P A V CGTCAGGCAG AGGTTATCGC CCCTGCTGTC GCAGTCGTC TCCAATAGGG GGGACGACAG T A S GACCGCGTCC CTGGCGCAGG K A L G L L Q AAGGCCTCG GCCTCCTGCA TTCCGGGAGC CGGAGGACGT L A E Q F K Q TCGCCGAGCA GTTCAAGCAG AGCGCTCGT CAAGTTCGTC 3441

S GGGATACAAT ACTTGGCGGG CCCTATGTTA TGAACCGCCC ᆸ Ç F I S CTTCATCAGT GAAGTAGTCA E T F W A K H M W N CGAGACCTTC TGGGGAAGC ATATGTGGAA GCCGCTTCG TATACACCTT Q T N W Q K L CAGACCAACT GGCAAAACT GICTGGTIGA CCGTITITGA +5

L P G N P A I A S L M A F T A A V T S P L T T T COCCEGED ACCEGED TECTION TO TECTION TO TECTION TO TECTION TO TECTION TECTION TECTION TO TECTION TO TECTION TO TECTION တ $\mathbf{A} \cdot \mathbf{V}$ H CTTGTCAACG GAACAGTTGC 3601

FIG. 3F

A F V TGCCTTTGTG ACGGAAACAC A A P G A A T GCCGCCCCC GTGCCCTAC CGCCGGGGC CACGCCGATG G W V A A Q L GGTGGGTGGC TGCCCAGCTC CCACCCACCG ACGGGTCGAG ATATTGGGGG (TATAACCCCC) Ç G CCTCTTCAAC / GGAGAAGTTG 1 S Q T L GCCAAACCCT (CGGTTTGGGA (3681

G Y G A G COTATEGECC I L A G ATCCTTGCAG (TAGGAACGTC Ç CCTCATAGAC GGAGTATCTG Ц L G K V TGGGGAAGGT (Ц AGTGTTGGAC 1 Ç > တ A I G CGCCATCGC / GCGGTAGCCG 3761

AATCTACTGC TTAGATGACG z D L V GGACCTGGTC P S T E CCTCCACGCA (Д G E V P GGTGAGGTCC C CCACTCCAGG G I M S GATCATGAGC (CTAGTACTCG (G A L V A F K GGAGCTCTTG TGGCATTCAA CCTCGAGAAC ACCGTAAGTT H, G V A GGGCGTGGCG (7 3841

P G E CCCGGGCGAG GGGCCCGCTC R H V G GGCACGTTGG (CCGTGCAACC (I L R R ATACTGCGCC (ĸ C A A CTGTGCAGCA A GCCCTCGTAG TCGGCGTGGT CGGGAGCATC AGCCGCACCA > Ç > Н ¥ S P G CTCGCCGGA GAGCGGGCCT P A I L CCGCCATCCT GCCCCTAGGA +5 3921

Y V P E ACGTGCCGGA TGCACGCCT P T H Y CCCACGCACT A GGGTGCGTGA 1 \triangleright 4 H V S CCATGITICC (GCTACAAAGG S R G N CCCGGGGAA A F A S R G N GCCTTCGCCT CCCGGGGAA CGGAAGCGGA GGGCCCCCTT CCGCCTGATA (G A V Q W M N GGGCAGTGC AGTGGATGAA CCCCGTCACG TCACCTT 4001

CACCAGTGGA 3 0 H R R L GAGGCGACTG (CTCCGCTGAC (L T V T Q L L CTCACTGTAA CCCAGCTCCT GAGTGACATT GGGTCGAGGA ACTCAGCAGC (TGAGTCG) လ တ A A R V T A I GCTGCCGCG TCACTGCCAT CGACGGCGC AGTGACGGTA S D A GAGCGATGCA CTCGCTACGT 4081

L S D GTTGAGCGAC CAACTCGCTG I C E V TATGCGAGGT ATACGCTCCA W D W I TGGGACTGGA 1 ACCCTGACCT A R D I AAGGGACATC ' TTCCCTGTAG ' P C S G S W L CCATGCTCCG GTTCCTGGCT GGTACGAGGC CAAGGACCGA C T T GIGIACCACT (CACATGGIGA (I S S E TAAGCTCGGA (ATTCGAGCCT 4161

FIG. 3G

G	ဗ္ဗဗ္ဗ
×	AAG
LKAKLMPQLPGIPFVSCQRGYKG BamHI	GGCTAAAAGC TAAGCTCATG CCACAGCTGC CTGGGATCCC CTTTGTGTCC TGCCAGGGG GGTATAAGGG CCATTTTCG ATTCGAGTAC GGTGTCGACG GACCTAGGG GAAACACAGG ACGGTCGCGC CCATATTCCC
Ŋ	90
œ	ည္သည္ဟ
0	CAG
ပ	TGC
လ	TCC
>	CAC
ţ z 4	CTTT
дН	ဗ္ဗဗ္ဗ
G I BamHI	GGATCCC
ა ლ	TGGG
ρ.	ပ္ပပ
ы	CTG
~	CAG
P 4	CCA
Σ	ATG
ᆸ	CTC
×	TAAG
A	ပ္ပပ္ပ
×	AAA
H	SCTA
:*E	
H	ACC. TGG
×	TTAAGACC AATTCTGG
+2 F K T	TTTAAGACCT AAATTCTGGA
+5	4241

G D G I M H T R C H C G A E I T G H V K N G T	GGGGACGGCA TCATGCACAC TCGCTGCCAC TGTGCAGCTG AGATCACTGG ACATGTCAAA AACGGGACGA CCCTGCCGT AGTACGTGTG AGGGGGGGG ACACCTGCGT TCTAGTGACC TGTACAGTTT TTGCCCTGCT
G	ဗ္ဗဗ္ဗ
Z	Ā Ē
×	AAA
>	GAG
Ħ	ACAT
G	ဗ္ဗဗ္ဗ
H	ACTC
н	GATC
Þ	A F
A	CGAC
G	SS
ပ	TGT(ACA(
Ħ	CAC
ပ	ACG
24	TCGC
H	AC
H	STG
×	TAG
	TC/ AGI
Ι	GI
G	ğğ
Ω	CTG
Ö	
œ	SCT
3	ည် ညီည
>	GGTCTGGCGA
7	
+	4321

GPR TCRN MWS GTF PINA YTT GP C	CGGTCCTAGG ACCTGCAGGA ACATGTGGAG TGGGACCTTC CCCATTAATG CCTACACCAC GGGCCCTGT GCCAGGATCC TGGACGTCCT TGTACACCTC ACCCTGGAAG GGGTAATTAC GGATGTGGTG CCCGGGGACA	
G	ဗ္ဗဗ္ဗ	
H	CAC	
H	A T	
×	CTAC	
A	ဗဗ	
z	AT	
H	ATTA	
д	000	
[24	TTC	
H	ACC	
G	TGGG	
S	PG LC	
3	ACC.	
Σ	CATG	
Z	ĂĔ.	
2	AGGA	
ပ	ည္ညည္သ	
H	ACC TGG/	
24	AGG	
М	558	
ტ	CGGT	
>	SS	
H	ATC IAG	
×	AGG	
Σ	TG/ACT	
+2	_	
Į	440	

<u>ئ</u>	ဗ္ဗဗ္ဗဗ္ဗ
APNYTFALWRVSAEEYVELKQVG	TGCGCCGAA CTACACGTTC GCGCTATGGA GGGTGTCTGC AGAGGAATAC GTGGAGATAA GGCAGGTGGG ACGCGGCTT GATGTGCAAG CGCGATACCT CCCACAGACG TCTCCTTATG CACCTCTATT CCGTCCACCC
×	A FI
-	ATA TAT
되	GAG
>	GTG
×	IAC
괴	YY.
4	AGAG(TCTC(
4	ပ္ပဗ္ဗ
Ω	AGA
>	GGTG
¥	A T
3	ACC
1	CTA
ď	Ď S S S
Z 4	TTC
H	ACG
>	CTAC
Z	TT A
4	999
¥	TGCG
Ч	ည္ပဋ
_	CTT
Д	7999999 1222222
Η	ACC
+2	4481

	92 I
H	CACA
Œ	Ĕ Ă
Œ	£ ₹
闰	CTT
щ	56
S	ATCG
д	ပ္ပဗ္ဗ
>	CAG
ď	GTC
	ខ្លួន
٥.	PSS
	ဗ္ဗဗ္ဗ
	TAT
×	₹E
Ц	CTT GAA
z	TAT
YVTG MIT DNL KCPC QVP SPEFFT	TACCICACGG GTAICACTAC ICACAAICIT AAAIGCCCGT GCCAGGICCC AICGCCCGAA ITITICACAG AIGCACIGCC CAIACIGAIG ACIGITAGAA ITIACGGGCA CGGICCAGGG IAGCGGCCII AAAAAGIGIC
H	AC
H	ACT TGA
Σ	TATG
ტ	00
H	ACG TGC
>	GTG
×	TAC ATG
Ħ	GACTTCCAC
<u> </u>	AAG
Ω	GGAC CCTG
+2	4561 GGACTTCCAC CCTGAAGGTG

ტ	CCT
>	CAT
~	CAGA
[* 4	¥1
လ	ICA AGI
>	CAT
ы	TC AG
ы	750 700
<u>~</u>	900
ı	ACG
	ပ ပ ပ
П	SAA
ρ.	ပ္ပိုင္တို
×	GTTC
ပ	ပ္ပပ္
Д	255
Д	0000
A	88
ᄄ	ĬŢ¥.
~	555
Ħ	CATA
ᆸ	CTA
~	ပ္လိပ္လိ
VRL HRFA PPC KPL LREE VSF R V G	GGIGCGCCTA CATAGGITIG CGCCCCCTG CAAGCCCTTG CTGCGGGGGG AGGTATCATI CAGAGTAGGA CCACGCGGAI GTATCCAAAC GCGGGGGGAC GTTCGGGAAC GACGCCCTCC TCCATAGTAA GTCTCATCCT
ဇ	္မည္ ဗ္ဗ
Ω	3AC
Ц	TTG
[H]	AT.
+2	4641

P C E P E P D V A V L T S M L T D CCTTGCGAGC CCGAACCGGA CGTGGCCGTG TTGACGTCA TGCTCACTGA GGAACGCTCG GGCTTGGCCT GCACCGGCAC AACTGCAGGT ACGAGTGACT L H E Y P V G S Q L CTCCACGAT ACCGGTAGG GTCGCATTA GAGGTGCTTA TGGGCCATCC CAGCGTTAAT 4721

FIG. 3H

S S A TCCTCGGCTA AGGAGCCGAT A R G S P P S V A S GCGAGGGGAT CACCCCTC TGTGGCCAGC CGCTCCCTA GTGGGGGGAG ACACCGGTCG R R L CCGAAGGIIG (CCCIICCAAC I T A E A A G ATAACAGCAG AGGCGCCGG TATTGTCGTC TCCGCCGGCC TCCCTCCCAT AGGGAGGTA Ħ လ щ 4801

E A N AGAGGCCAAC TCTCCGGTTG S P D A E L I TCCCCTGATG CTGAGCTCAT AGGGGACTAC GACTCGAGTA T C T A N H D CTTGCACGC TAACCATGAC GAACGTGGCG ATTGGTACTG H L K A T
CTCAAGGCAA (
GAGTTCCGTT (A P S CGCTCCATCT (S Q L S GCCAGCTATC (CGGTCGATAG (7 4881

I T R V E S E N K V V I L D S F D ATCACCAGG TTGAGTCAGA AAACAAAGTG GTGATTCTGG ACTCCTTCGA TTGTTTTCAC CACTAAGACC TGAGGAAGCT GGGGGGCAAC A Z G G R Q E M GGCAGGAGAT CCGTCCTCTA C ĸ CTCCTATGGA (GAGGATACCT (4961

F A Q TTCGCCCAGG AAGCGGGTCC GTCTCGGAGA CCCGCAGAAA TCCTGCGGAA GGGCGTCTTT AGGACGCCTT I S V GATCTCCGTA (CTAGAGGCAT (TCCGCTTGTG AGGCGAACAC ρ4 5041

P P V ACCACCTGTG TGGTGGACAC AGTGGAGACG TGGAAAAAGC CCGACTACGA TCACCTCTGC ACCTTTTTCG GGCTGATGCT 囯 Ω М × × 3 Œ CCGGACTATA ACCCCCCGCT GGCCTGATAT TGGGGGGCGA TTGGGGGGG (A L P V CCCTGCCCGT 1 GGGACGGGCA A +2 5121

CGGACGGTGG TCCTCACTGA GCCTGCCACC AGGAGTGACT > > H 24 TCGGAAGAAG AGCCTTCTTC × × ĸ S P P V P P P T TCCCTCCCC AGGCAGGAC ACGCAGGCG P P K ACCTCCAAAG 1 TGGAGGTTTC A C P L P GCCGCTTCC / CGGCGAAGG GTCCATGGCT CAGGTACCGA C ပ Ç Ħ 7

ACGGGCGACA TGCCCGCTGT S F G S S T S G I AGCTTTGGCA GCTCCTCAAC TTCCGGCATT TCGAAACCGT CGAGGGGGTTG AAGGCCGTAA CGCCACCAGA 1 CGCGTGGTCT 1 S T L S T A L A E L ATCAACCCTA TCTACTGCCT TGGCCGAGCT TAGTTGGGAT AGATGACGGA ACCGGCTCGA +5 5281

FIG. 33

M P P CATGCCCCC GTACGGGGGG GGATAAGGAG S Y S S CCTATTCCTC တ GACGCTGAGT CTGCGACTCA 闰 ⋖ CCCCGACTCC P A P S G C P CCCCCCTT CTGGCTGCCC GGCGGGGAA GACCGACGGG N T T T S S E ATACGACAAC ATCCTCTGAG TATGCTGTTG TAGGAGACTC

> Δ 闰 ď Z 4 [2] S S > \vdash S 3 S O Ω တ П Ω BamHI Ω G Ω, ы G M ᆸ 7

CGCAGGATGT GAGGCCAACG GGTCAGTAGT (CCAGTCATCA (CATGGTCAAC GTACCAGTTG AGCGACGGGT (TCGCTGCCA (AGCCTGGGGA TCCGGATCTT TCGGACCCCT AGGCCTAGAA CTGGAGGGGG A 5441

CTGCCCATCA V T P C A A E E Q K GTCACCCGT GCGCGCGGA AGAACAGAAA CAGTGGGGCA CGCGGCGCCT TCTTGTCTTT 7 5521

R Q K AAGCCAGAAG TTCCGTCTTC S A C Q GTGCTTGCCA A CACGAACGGT S L R H H N L V Y S T T S R S CTACGTCACC ACATTTGGT GTATTCCACC ACCTCACGCA GATGCAGTGG TGTTAAACCA CATAAGGTGG TGGAGTGCGT N A L S N S L ATGCACTAAG CAACTCGTTG TACGTGATTC GTTGAGCAAC 7 5601

GTTAAAGCAG CGGCGTCAAA CAATTTCGTC GCGCAGTTT 4 ¥ ¥ × > D S H Y Q D V L K E GACAGCCATT ACCAGGAGT ACTCAAGGAG CTGTCGGTAA TGGTCCTGCA TGAGTTCCTC Œ × > Ω **>** GCAAGTICIG Ы K V T F D R L AAAGTCACAT TTGACAGACT TTTCAGTGTA AACTGTCTGA 5681

TTTGGTTATG AAACCAATAC G K S K CAAATCCAAG GTTTAGGTTC P H S A CACACTCAGC (CACACTCAGC) Ы CTGACGCCCC GACTGCGGGG ы H N L L S V E E A C S AACTTGCTAT CCGTAGAGGA AGCTTGCAGC TTGAACGATA GCCATCTCCT TCGAACGTCG V K A
AGTGAAGGCT
TCACTTCCGA +2 5761

FIG. 32

E D N GGAGGACAAT CCTTCTGTTA J V W K D L L TCCGTGTGGA AAGACCTTCT AGGCACACCT TTCTGGAAGA H A R K A V T H I N CATGCCAGAA AGGCCGTAAC CCACATCAAC GTACGGTCTT TCCGGCATTG GGTGTAGTTG CCTCCGTTGC (CCAGGCAACG ပ œ GGGCAAAGA (CCCGTTTTCT (4 G 5841

K G G R K P A AAGGGGGTC GTAAGCCAGC TTCCCCCAG CATTCGGTCG K N E V F C V Q P E AAGAAGGGG TITICIGGG TCAGCCIGAG TICITICIGGACGCA AGICGGACTC I M A CATCATGGCT GTACTACCGA V T P I D T T GTAACACCAA TAGACACTAC CATTGTGGTT ATCTGTGATG 5921

K L P AAGCTCCCT TTCGAGGGA CGTGGTTACA E K M A L Y D GAAAAGATGG CTTTGTACGA CTTTTCTACC GAAACATGCT GCGCGTGTGC (CGCGCACACG (GTGTTCCCCG ATCTGGGCGT CACAAGGGGC TAGACCCGCA G Ω Д ĵz, R L I TCGTCTCATC (AGCAGAGTAG (6001

S × 3 ¥ 0 > Ц E F EcoRI > 24 0 G а ഗ \succ 0 [z, C \succ S S G Σ > ¥ Ц 4

GTGGAAGTCC CACCTTCAGG TCGTCCAAGC GTTGAATTCC CAACTTAAGG AGGACAGCGG TCCTGTCGCC AATACTCACC TTATGAGTGG TACGGATTCC A GGGAAGCTCC TGGCCGTGAT 6081

AGCGACATCC GTACGGAGGA TCGCTGTAGG CATGCCTCCT Ω တ T R C F D S T V T E ACCCGCTGCT TTGACTCCAC AGTCACTGAG TGGCGACGA AACTGAGGTG TCAGTGACTC CTCGTATGAT GAGCATACTA Ω × മ GITACCCCAA K K T P M G F AAGAAACCC CAATGGGGTT TTCTTTGGG 6161

TATGTTGGGG ATACAACCCC G CGAGAGGCTT CGAGA V A I K S L T GTGGCCATCA AGTCCCTCAC CACCGGTAGT TCAGGGGGGTG Q A R CCAAGCCGC (GGTTCGGGCG (Q C C D L D P CAATGITGIG ACCICGACC GITACAACAC IGGAGCIGGG A I Y GGCAATCTAC CCGTTAGATG

TAGCTGTGGT A S G V L T T GCGAGGGGG TACTGACAC CGCTCGCGG ATGACTGTTG CAGGTGCCGC GTCCACGCGC G E N C G Y R GGGGAGACT GCGCTATCG CCCTCTTGA CGCCGATAGC CAATTCAAGG (G P L T GCCTCTTAC (CGGGAGAATG (

FIG. 3K

C T M L V C G TGCACCATGC TCGTGTGG ACGTGGTACG AGCACACCC L Q D GCTCCAGGAC CGAGGTCCTG A A C R A A G GCAGCCTGTC GAGCCGCAGG CGTCGGACAG CTCGCCGTCC CAAGGCCCGG GITCCGGGCC × Ø × r c y i cttgctacat GAACGATGTA H AACACCCTCA TTGTGGGAGT 6401

E A M GAGGCTATGA CTCCGATACT G V Q E D A A S L R A F T GGGGGTCCAG GAGGACGCG CGAGCCTGAG AGCCTTCACG CCCCAGGTC CTCCTGCGCC GCTCGGACTC TCGGAAGTGC CGACGACTTA GTCGTTATCT GTGAAAGCGC GCTGCTGAAT CAGCAATAGA CACTTTCGCG +2 6481

E L I T S C S S N V GAGCICATAA CATCATGCTC CTCCAACGTG CTCGAGTATT GTAGTACGAG GAGGTTGCAC ATACGACTTG TATGCTGAAC H × G D P P Q P E GGGGACCCC CACAACCAGA CCCTGGGGG GTGTTGGTCT T R Y S A P P CCAGGTACTC CGCCCCCT GGTCCATGAG GCGGGGGGGAA 6561

P L A R A A W CCCTCGCGA GAGCTGCGTG GGGGAGCGCT CTCGACGCAC CCTACAACC GGGATGTTGG V Y Y L T R D GTCTACTACC TCACCCGTGA CAGATGATGG AGTGGGCACT H, S V A H D G A G K R TCAGTCGCC ACGACGCGC TGGAAAGAGG AGTCAGCGGG TGCTGCCGCG ACCTTTCTCC 6641

GCGAGGATGA ď CACACTGTGG (3 \vdash N I I M F A P AACATAATCA TGTTTGCCCC TTGTATTAGT ACAAACGGGG CTGGCTAGGC A G 3 R H T P V N S AGACACACTC CAGTCAATTC TCTGTGTGAG GTCAGTTAAG E T A GGAGACAGCA A CCTCTGTCGT 6721

GATGCCCCGG CTACGGGGCC ¥ G × Q A L D C E I CAGGCCTCG ATTGCGAGAT GTCCGGGAGC TAACGCTCTA AGCGTCCTTA TAGCCAGGGA CCAGCTTGAA TCGCAGGAAT ATCGGTCCCT GGTCGAACTTT CCATITCITI GGTAAAGAAA H F I L M T TACTGATGAC (ATGACTACTG (6801

GCATTTTCAC TCCACAGTTA CGTAAAGTG AGGTGTCAAT Ы လ [24 4 G L S TGGCTCAGC (P I I Q R L H CCAATCATTC AAAGACTCCA GGTTAGTAAG TTTCTGAGGT GGATCTACCT n o C Y S I E P L TGCTACTCCA TAGAACCACT ACGATGAGGT ATCTTGGTGA 6881

FIG. 3L

DCMIV-NS35

R H R AGACACCGG TCTGTGGCCC R A W GCGAGCTTGG CGCTCGAACC TTTGAACCCC ATGGCGGGAA AAACTIGGGG TACCGCCCTT ĖΨ > Ç × E I N R V A A C L R GAAATCAATA GGGTGGCCGC ATGCCTCAGA CTTTAGTTAT CCCACCGGCG TACGGAGTCT CTCTCCAGGT GAGAGGTCCA G Д S

CTGGGCAGTA 4 CCCGGAGCGT CCGCGCTAGG CTTCTGGCCA GAGGAGGCAG GCTGCCATA TGTGGCAAGT ACCTCTTCAA GGGCCTCGCA GGGCGCACG CTCCTCCGTC CCGACGGTAT ACACCGTTCA TGGAGAAGTT 7041

TTCACGCCTG GCTACAGCGG
AAGTGCCGAC CGATGTCGCC G 4 H [z, A A G Q L D L S G W GCCGCTGGCCTGG TCGCCTGACTT GTCCGCTGG R T K L K L T P I A AGAACAAAGC TCAATAGCG TCTTGTTTCG AGTTTGAGTG AGGTTATCGC 7121

A G V GCAGGGTAG CGTCCCCATC R P R W I W F C L L L L A CGGCCCCGC TGGTCTGGT TTTGCCTACT CCTGCTTGCT GGCCCGGCG ACCTAGACCA AAACGGATGA GGACGAACGA I H S V S H A TATCACAGCG IGTCTCAIGC ATAGIGICGC ACAGAGIACG GGGAGACATT 1 0 G 7201

AAAGGCGCGC TTTCCGCGCG AAAAATCTAG TTTTTAGATC AAAAAAAA TTTTTTTTT TGGGGTAAAC ACTCCGGCCT ACCCCATTTG TGAGGCCGGA CGATGAAGGT GCTACT CCTCCCCAAC GGAGGGGTTG C GCATCTACCT (CGTAGATGGA (ල

BAMHI MluI

CATCTGTTGT GTAGACAACA AGTTGCCAGC TCAACGGTCG CAGCCTCGAC TGTGCCTTCT GTCGGAGCTG ACACGGAAGA GCTCGCTGAT CGAGCGACTA ACGCGTTAGA TGCGCAATCT AGGATCCACT TCCTAGGTGA CAAGATATCA GTTCTATAGT 7361

GAAATTGCAT CTTTAACGTA GGAAGGIGCC ACTCCCACIG ICCTITCCIA ATAAAAIGAG CCITCCACGG IGAGGGIGAC AGGAAAGGAI IAITITACTC CCTTGACCCT GCCGTGCCTT (7441

FIG. 3M

7521	CGCATTGTCT GCGTAACAGA	CGCATTGTCT GAGTAGGTGT GCGTAACAGA CTCATCCACA	CATTCTATTC GTAAGATAAG		TGGGGGTGG GGTGGGGCAG ACCCCCACC CCACCCGTC	GACAGCAAGG CTGTCGTTCC	GGGAGGATTG GGAAGACAAT CCCTCCTAAC CCTTCTGTTA	GGAAGACAAT CCTTCTGTTA
7601	AGCAGGCATG TCGTCCGTAC	CTGGGGAGCT	CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC CTGAGCGACG	GCTCGGTCGT	GACTCGCTGC GCTCGGTCGT TCGGCTGCGG CGAGCGGTAT CTGAGCGACG CGAGCCAGCA AGCCGACGCC GCTCGCCATA	CGAGCGGTAT GCTCGCCATA
7681	CAGCTCACTC	AAAGGCGGTA TTTCCGCCAT	ATACGGTTAT TATGCCAATA	CCACAGAATC	CCACAGAATC AGGGGATAAC GGTGTCTTAG TCCCCTATTG	GCAGGAAAGA CGTCCTTTCT	ACATGTGAGC AAAAGGCCAG TGTACACTCG TTTTCCGGTC	AAAAGGCCAG TTTTCCGGTC
7761	CAAAAGGCCA GTTTTCCGGT	GGAACCGTAA	AAAGGCCGCG TTTCCGGCGC	TTGCTGGCGT	GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCCATAG GCTCCGCCCC CCTTGGCATT TTTCCGGCGC AACGACCGCA AAAAGGTATC CGAGGCGGG		CCTGACGAGC ATCACAAAAA GGACTGCTCG TAGTGTTTT	ATCACAAAAA TAGTGTTTTT
7841	TCGACGCTCA AGCTGCGAGT	TCGACGCTCA AGTCAGAGGT GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC TCCCTCGTGC AGCTGCGAGT TCAGTCTCCA CCGCTTTGGG CTGTCCTGAT ATTTCTATGG TCCGCAAAGG GGGACCTTCG AGGGAGCACG	GGCGAAACCC	GACAGGACTA CTGTCCTGAT	TAAAGATACC ATTTCTATGG	AGGCGTTTCC TCCGCAAAGG	CCCTGGAAGC TCCCTCGTGC GGGACCTTCG AGGGAGCACG	TCCCTCGTGC AGGGAGCACG
7921	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC CTATGGACAG	CGCCTTTCTC		GCGTGGCGCT TTCTCAATGC CGCACCGCGA AAGAGTTACG	TTCTCAATGC AAGAGTTACG
8001	TCACGCTGTA		TTCGGTGTAG AAGCCACATC	GTCGTTCGCT CAGCAAGCGA	CCAAGCTGGG GGTTCGACCC	CTGTGTGCAC GACACACGTG	GAACCCCCC TTCAGCCCGA CTTGGGGGGC AAGTCGGGCT	TTCAGCCCGA AAGTCGGGCT
8081	CCGCTGCGCC		ACTATCGTCT TGATAGCAGA	TGAGTCCAAC ACTCAGGTTG	TTATCCGGTA ACTATCGTCT TGAGTCCAAC CCGGTAAGAC ACGACTTATC AATAGGCCAT TGATAGCAGA ACTCAGGTTG GGCCATTCTG TGCTGAATAG	ACGACTTATC TGCTGAATAG	GCCACTGGCA GCAGCCACTG CGGTGACCGT CGTCGGTGAC	GCAGCCACTG
8161	GTAACAGGAT		AGGTATGTAG TCCATACATC		GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC CGCCACGATG TCTCAAGAAC TTCACCACCG	AAGTGGTGGC TTCACCACCG	CTAACTACGG	CTACACTAGA GATGTGATCT

FIG. 3N

8241	AGGACAGTAT TCCTGTCATA	TTGGTATCTG AACCATAGAC	CGCTCTGCTG GCGAGACGAC	AAGCCAGTIA TTCGGTCAAT	CCTTCGGAAA GGAAGCCTTT	AAGAGTTGGT AGCTCTTGAT TTCTCAACCA TCGAGAACTA	AGCTCTTGAT TCGAGAACTA	CCGCCAAACA
8321	AACCACCGCT TTGGTGGCGA	GGTAGCGGTG	GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG CAGATTACGC GCAGAAAAA CCATCGCCAC CAAAAAACA AACGTTCGTC GTCTAATGCG CGTCTTTTT	GTTTTTTGT TTGCAAGCAG CAAAAAAAA AACGTTCGTC	CAGATTACGC GTCTAATGCG			GAAGATCCTT CTTCTAGGAA
8401	TGATCTTTTC ACTAGAAAAG	TACGGGGTCT ATGCCCCAGA	GACGCTCAGT	GGAACGAAAA CCTTGCTTTT	CTCACGTTAA GAGTGCAATT	GGGAITITIGG ICAIGAGAII CCCIAAAACC AGIACICIAA	GGGATTTTGG TCATGAGATT CCCTAAAACC AGTACTCTAA	ATCAAAAAGG TAGTTTTTCC
8481	ATCTTCACCT TAGAAGTGGA	AGATCCTTTT TCTAGGAAAA	AGATCCTTTT AAATTAAAAA TGAAGTTTTA TCTAGGAAAA TTTAATTTTT ACTTCAAAAT	TGAAGTTTTA ACTTCAAAAT	AATCAATCTA TTAGTTAGAT	AAGTATATAT TTCATATATA	GAGTAAACTT CTCATTTGAA	GGTCTGACAG CCAGACTGTC
8561	TTACCAATGC		TTAATCAGTG AGGCACCTAT CTCAGCGATC AATTAGTCAC TCCGTGGATA GAGTCGCTAG	CTCAGCGATC GAGTCGCTAG		TGTCTATTIC GTTCATCCAT AGTTGCCTGA CTCCCCGTCG ACAGATAAAG CAAGTAGGTA TCAACGGACT GAGGGGCAGC	AGTTGCCTGA TCAACGGACT	CTCCCCGTCG
8641	TGTAGATAAC ACATCTATTG	TACGATACGG	GAGGGCTTAC CTCCCGAATG	CATCTGGCCC GTAGACCGGG	CAGTGCTGCA GTCACGACGT	CAGTGCTGCA ATGATACCGC GAGACCCACG CTCACCGGCT GTCACGACGT TACTATGGCG CTCTGGGTGC GAGTGGCCGA	GAGACCCACG CTCTGGGTGC	CTCACCGGCT
8721	CCAGATTTAT GGTCTAAATA	CAGCAATAAA GTCGTTATTT	CAGCAATAAA CCAGCCAGCC GTCGTTATTT GGTCGGTCGG	GGAAGGCCC	AGCGCAGAAG TCGCGTCTTC	TGGTCCTGCA ACTTTATCCG ACCAGGACGT TGAAATAGGC		CCTCCATCCA
8801	GTCTATTAAT CAGATAATTA	TGTTGCCGGG	AAGCTAGAGT TTCGATCTCA	AAGTAGTTCG TTCATCAAGC	AAGTAGTTCG CCAGTTAATA TTCATCAAGC GGTCAATTAT	GTTTGCGCAA CAAACGCGTT	CGTTGTTGCC GCAACAACGG	ATTGCTACAG TAACGATGTC
8881	GCATCGTGGT	GTCACGCTCG	GTCACGCTCG TCGTTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAGTGCGAGC AGCAAACCAT ACCGAAGTAA GTCGAGGCCA AGGGTTGCTA	TGGCTTCATT ACCGAAGTAA	CAGCTCCGGT TCCCAACGAT GTCGAGGCCA AGGGTTGCTA	TCCCAACGAT AGGGTTGCTA	CAAGGCGAGT TACATGATCC GTTCCGCTCA ATGTACTAGG	TACATGATCC ATGTACTAGG

FIG. 30

8961	CCCATGTTGT GGGTACAACA	GCAAAAAAGC CGTTTTTCG		GGTTAGCTCC TTCGGTCCTC CCCCAGGAG GCCAATCGAGG AAGCCAGGAG GC	CGATCGTTGT GCTAGCAACA	CAGAAGTAAG TTGGCCGCAG GTCTTCATTC AACCGGCGTC	TTGGCCGCAG	TGTTATCACT ACAATAGTGA
9041	CATGGTTATG	GCAGCACTGC		TACTGTCATG	CCATCCGTAA GGTAGGCATT	GATGCTTTTC TGTGACTGGT GAGTACTCAA CTACGAAAAG ACACTGACCA CTCATGAGTT	TGTGACTGGT ACACTGACCA	GAGTACTCAA CTCATGAGTT
9121	CCAAGTCATT		CTGAGAATAG TGTATGCGGC GACCGAGTTG SACTCTTATC ACATACGCCG CTGGCTCAAC	GACCGAGTTG CTGGCTCAAC	CTCTTGCCCG GAGAACGGGC	GCGTCAATAC GGGATAATAC CGCAGTTATG CCCTATTATG	GGGATAATAC CCCTATTATG	CGCGCCACAT
9201	AGCAGAACTT TCGTCTTGAA	TAAAAGTGCT ATTTTCACGA	IAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGGGAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC ATTTTCACGA GTAGTAACCT TTTGCAAGAA GCCCGCTTT TGAGAGTTCC TAGAATGGCG ACAACTCTAG	AAACGTTCTT TTTGCAAGAA	CGGGGCGAAA GCCCCGCTTT	ACTCTCAAGG ATCTTACCGC TGAGAGTTCC TAGAATGGCG	ATCTTACCGC TAGAATGGCG	TGTTGAGATC ACAACTCTAG
9281	CAGTTCGATG	TAACCCACTC	GTGCACCCAA	CTGATCTTCA GACTAGAAGT	GCATCTTTA CGTAGAAAAT	CTTTCACCAG GAAAGTGGTC	CGTTTCTGGG TGAGCAAAA GCAAAGACCC ACTCGTTTTT	TGAGCAAAA ACTCGTTTTT
9361	CAGGAAGGCA GTCCTTCCGT		AAATGCCGCA AAAAAGGGAA ITTACGGCGI TITITCCCIT	TAAGGGCGAC ATTCCCGCTG	ACGGAAATGT TGCCTTTACA		TACTCTTCCT TTTTCAATAT ATGAGAAGGA AAAAGTTATA	TTTTCAATAT AAAAGTTATA
9441	TATTGAAGCA ATAACTTCGT	TTTATCAGGG AAATAGTCCC	ITTATCAGGG TTATTGTCTC ATGAGGGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC AAATAGGGGT AAATAGTCCC AATAACAGAG TACTCGCCTA TGTATAAACT TACATAAATC TTTTTATTTG TTTATCCCCA	ATGAGGGGAT TACTCGCCTA	ACATATTTGA TGTATAAACT	ATGTATTTAG TACATAAATC	AAAAATAAAC TTTTTATTTG	AAATAGGGT TTTATCCCCA
9521	TCCGCGCACA	TTTCCCCGAA AAAGGGGCTT	rttccccgaa aagtgccacc tgacgtctaa gaaaccatta aaaggggctt ttcacggtgg actgcagatt ctrtggtaat	TGACGTCTAA ACTGCAGATT		TTATCATGAC ATTAACCTAT AATAGTACTG TAATTGGATA		AAAAATAGGC TTTTTATCCG
9601	GTATCACGAG	GCCCTTTCGT CGGGAAAGCA	ပဗ					

FIG. 3P

FIG.4

-	TCGCGCGTTT AGCGCGCAAA		CGGTGATGAC GGTGAAAACC GCCACTACTG CCACTTTTGG	TCTGAC AGACTC	ACAT GCAGCTCCG	GAGACGGTCA CTCTGCCAGT	CAGCTTGTCT GTAAGCGGAT GTCGAACAGA CATTCGCCTA	GTAAGCGGAT CATTCGCCTA
81	GCCGGGAGCA	GACAAGCCCG	GACAAGCCCG TCAGGCGCG TCAGCGGCTG TTGGCGGGTG TCGGGGCTGG CTGTTCGGGC AGTCGCCCCAC AACCGCCCAC AGCCCCGACC	TCAGCGGGTG	TTGGCGGGTG AACCGCCCAC	TCGGGGGCTGG AGCCCCGACC	CTTAACTAIG CGGCATCAGA GAATIGAIAC GCGGTAGICI	CGGCATCAGA GCCGTAGTCT
161	GCAGATIGTA	L.	CTGAGAGTGC ACCATATGAA GACTCTCACG TGGTATACTT	GCTTTTTGCA CGAAAAACGT	StuI GCTTTTTGCA AAAGCCTAGG CCTCCAAAAA CGAAAAAGGT TTTCGGATCC GGAGGTTTTT	II CCTCCAAAAA GGAGGTTTTT	AGCCTCCTCA CTACTTCTGG TCGGAGGAGT GATGAAGACC	CTACTTCTGG GATGAAGACC
241	AATAGCTCAG TTATCGAGTC	AATAGCTCAG AGGCCGAGGC TTATCGAGTC TCCGGCTCCG	AATAGCTCAG AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAT TAGTCAGCCA TGGGGGGGAG ATTGGGCGGA TTATCGAGTC TCCGGCTCCG CCGGAGCCGG AGACGTATTT ATTTTTTTA ATCAGTCGGT ACCCCGCCTC TTACCGGCCT	TCTGCATAAA AGACGTATTT	TAAAAAAAT ATTTTTTA	TAGTCAGCCA ATCAGTCGGT	TGGGGCGGAG	ATTGGGCGGA TTACCCGCCT
321	ACTGGGCGGG TGACCCGCCC		GAGGGAATTA TTGGCTATTG CTCCCTTAAT AACCGATAAC	GCCATTGCAT CGGTAACGTA	GCCATTGCAT ACGTTGTATC TATATCATAA CGGTAACGTA TGCAACATAG ATATAGTATT	TATATCATAA ATA'TAGTATT	TATGTACATT TATATTGGCT ATACATGTAA ATATAACGGA	TATATTGGCT ATATAACCGA
401	CATGTCCAAT GTACAGGTTA	ATGACCGCCA TACTGCCGCT	ATGACCGCCA TGTTGACATT TACTGGCGGT ACAACTGTAA	GATTATTGAC CTAATAACTG	GATTATTGAC TAGTTATTAA TAGTAATCAA CTAATAACTG ATCAATAATT ATCATTAGTT	TAGTAATCAA ATCATTAGTT	TTACGGGGTC ATTAGTTCAT AATGCCCCAG TAATCAAGTA	ATTAGTTCAT TAATCAAGTA
481	AGCCCATATA TCGGGTATAT		TGGAGTTCCG CGTTACATAA ACCTCAAGGC GCAATGTATT	CTTACGGTAA GAATGCCATT	CTTACGGTAA ATGGCCGGC TGGCTGACCG CCCAACGACC CCCGCCCATT GAATGCCATT TACCGGGGG ACCGACTGGC GGGTTGCTGG GGGGGGTAA	TGGCTGACCG ACCGACTGGC	CCCAACGACC GGGTTGCTGG	CCCGCCCATT
561	GACGTCAATA		ATGACGTATG TTCCCATAGT TACTGCATAC AAGGGTATCA	AACGCCAATA TTGCGGTTAT	AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT TTGCGGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC ATAAATGCCA	ATTGAGGTCA TAACTGCAGT	ATGGGTGGAG TACCCACCTC	TATTTACGGT ATAAATGCCA

FIG. 5A

641	AAACTGCCCA TTTGACGGGT	CTTGGCAGTA GAACCGTCAT	CATCAAGTGT GTAGTTCACA	ATCATATGCC A	AAGTCCCCC TTCAGGCGGG	CCTATTGACG GGATAACTGC	TCAATGACGG TAAATGGCCC AGTTACTGCC ATTTACCGGG	TAAATGGCCC
721	GCCTGGCATT	ATGCCCAGTA TACGGGTCAT	CATGACCTTA GTACTGGAAT	CGGGACTTTC GCCCTGAAAG	CTACTTGGCA	GTACATCTAC	GTATTAGTCA TCGCTATTAC CATAATCAGT AGCGATAATG	TCGCTATTAC AGCGATAATG
801	CATGGTGATG		CGGTTTTGGC AGTACACCAA GCCAAAACCG TCATGTGGTT	TGGGCGTGGA	TAGCGGTTTG ATCGCCAAAC	ACTCACGGGG TGAGTGCCCC	ATTTCCAAGT CTCCACCCCA TAAAGGTTCA GAGGTGGGGT	CTCCACCCCA
881	TTGACGTCAA AACTGCAGTT	TGGGAGTTTG ACCTCAAAC	TTTTGGCACC	AAAATCAACG TTTTAGTTGC	GGACTTTCCA CCTGAAAGGT	AAATGTCGTA TTTACAGCAT	GGACTTICCA AAATGICGIA AIAACCCCGC CCGTIGACG CCIGAAAGGI ITIACAGCAI IAITGGGGCG GGGCAACIGC	CCCGTTGACG GGGCAACTGC
961	CAAATGGGCG		ACGGTGGGAG TGCCACCCTC	GTCTATATAA CAGATATATT	GCAGAGCTCG TTTAGTGAAC CGTCTCGAGC AAATCACTTG	TTTAGTGAAC AAATCACTTG	CGTCAGATCG CCTGGAGACG GCAGTCTAGC GGACCTCTGC	CCTGGAGACG GGACCTCTGC
1041	CCATCCACGC	⊢∢	GTTTTGACC TCCATAGAAG ACACCGGGAC CAAAACTGG AGGTATCTTC TGTGGCCCTG	ACACCGGGAC TGTGGCCCTG	CGATCCAGCC TCCGCGGCCG GCTAGGTCGG AGGCGCCGGC		GGAACGGTGC ATTGGAACGC CCTTGCCACG TAACCTTGCG	ATTGGAACGC TAACCTTGCG
1121	GGATTCCCCG	⊢∢	GCCAAGAGT GACGTAAGTA CGGTTCTCA CTGCATTCAT	CCGCCTATAG	CCGCCTATAG ACTCTATAGG CACACCCTT GCCGCATATC TGAGATATCC GTGTGGGGAA	CACACCCCTT GTGTGGGGAA	TGCCTCTTAT GCATGCTATA ACCGAGAATA CGTACGATAT	GCATGCTATA
1201	CTGTTTTTGG GACAAAAACC	CTTGGGGCCT	ATACACCCCC TATGTGGGGG	GCTCCTTATG CGAGGAATAC	GCTCCTTATG CTATAGGTGA TGGTATAGCT CGAGGAATAC GATATCCACT ACCATATCGA	TGGTATAGCT ACCATATCGA	TAGCCTATAG GTGTGGGTTA ATCGGATATC CACACCCAAT	GTGTGGGTTA
1281	TTGACCATTA	TTGACCACTC AACTGGTGAG	CCCTATTGGT GGGATAACCA	GACGATACTT CTGCTATGAA	TCCATTACTA AGGTAATGAT	ATCCATAACA TAGGTATTGT	TGGCTCTTTG CCACAACTAT ACCGAGAAAC GGTGTTGATA	CCACAACTAT GGTGTTGATA

FIG. 5B

GAGATAACCG A	ATATACGGTT	ATGAGACAGG					
TATTTACAAA ATAAATGTTT	TATTTACAAA TTCACATATA ATAAATGTTT AAGTGTATAT	1	GTCCCCCGTG	CAACAACGCC GTCCCCGTG CCCGCAGTTT GTTGTTGCGG CAGGGGGCAC GGGCGTCAAA	TTATTAAACA AATAATTTGT	TTATTAAACA TAGCGTGGGA TCTCCGACAT AATAATTTGT ATCGCACCCT AGAGGCTGTA	TCTCCGACAT AGAGGCTGTA
CTCGGGTACG	TGTTCCGGAC ACAAGGCCTG		CTCCGGTAGC	GGGGGAGCTT	CCACATCCGA GGTGTAGGCT	GCCTGGTCC	CATCCGTCCA GTAGGCAGGT
GCGGCTCATG	TCGCTCGGC		TCCTAACAGT AGGATTGTCA	GGAGGCCAGA CCTCCGGTCT	CTTAGGCACA	GCACAATGCC CGTGTTACGG	CACCACCACC
AGTGTGCCGC TCACACGGCG	ACAAGGCCGT TGTTCCGGCA		TATGTGTCTG	AAAATGAGCT TTTTACTCGA	CGGAGATTGG	GCTCGCACCT	GGACGCAGAT CCTGCGTCTA
GGAAGACTTA CCTTCTGAAT	AGGCAGCGGC TCCGTCGCCG		GCAGGCAGCT	GAGTTGTTGT CTCAACAACA	ATTCTGATAA TAAGACTATT	GAGTCAGAGG TAACTCCCGT CTCAGTCTCC ATTGAGGGCA	TAACTCCCGT ATTGAGGGCA
GCGCTGCTG	TTAACGGTGG AATTGCCACC	AGGCCAGTGT	AGTCTGAGCA TCAGACTCGT	GTACTCGTTG CATGAGCAAC	CTGCCGCGCG	CGCCACCAGA	CATAATAGCT GTATTATCGA
						EcoRI	M A A
GACAGACTAA CTGTCTGATT	CAGACTGTTC GTCTGACAAG		GTCTTTTCTG CAGAAAAGAC	CAGTCACCGT GTCAGTGGCA	CGTCGACCTA GCAGCTGGAT	AGAATTCACC TCTTAAGTGG	ATGGCTGCAT TACCGACGTA
	TCGGGTACG AGCCCATGC CGGCTCATG GCGGGTCATG GTGTGCCGC CACACGGCC CACACGGCC CACACGACTTA ACACACGAC TCTCTGAAT TCTCTGAAT TCTCTGATT	CTCGGGTACG TGTTCCGGAC GAGCCCATGC ACAAGGCCTG GCGCCCATGC ACAAGGCCTG GCCCCAGTAC CAGCGAGCCG TCACAGGCCGT TCACAGGCGC TGTTCCGGCA GCAAGACTTA AGGCAGCGC CCTTCTGAAT TCCGTCGCCG TGCGGTGCTG TTAACGGTGC ACGCCACGAC AATTGCCACC CTGTCTGATT GTCTGACAAG	CTCGGGTACG TGTTCCGGAC ATGGGCTCTT GAGCCCATGC ACAAGGCCTG TACCCGAGAA GCGGCTCATG GTCGCTCGGC AGCTCCTTGC GCGAGTAC CAGCGAGCCG TCGAGGAACG TCACACGCCG TCGTCCCTTGC TCACACGCCG TCGTCCCTTGC TCACACGCCG TCTCCTTCT TCACACGCCG TGTTCCGGCA CGCCATCCC TCCCTCTGAAT TCCGTCGCCG TCTTCTTCTA TCCGGTGCTG TTAACGGTGG AGGGCAGTGT ACGCCACGAC AATTGCCACC TCCCGTCACA GACAGACTAA CAGACTGTTC CTTTCCATGG CTGTCTGATT GTCTGACAAG GAAAGGTACC	TCGGCTACG TGTTCCGGAC ATGGGCTCTT CTCCGGTAGC AGCCCATGC ACAGGCCTG TACCCGAGAA GAGGCCATCG CGGCTCATG GTCGCTCGGC AGGTTGTCT GCCGAGTAC CAGGGAGCG TCGAGGAACG GTGTGCGG ACAAGGCCGT GGCGGTAGGG TATGTGTCT GAAGACTTA AGGCAGCGC AGAAGAAGAT GCAGGCAGCT CTTCTGAAT TCCGTCGCC TCTTCTTCTA CGTCCGTCGA GCGCTGCTG TTAACGGTCG AGGGCAGTGT AGTCTGAGCA GCGCTGCTG TTAACGGTCG AGGGCAGTGT AGTCTGAGCA TCTCTGAAT TCCGTCCACC TCCCGTCACA TCTCTGATT GTCTGACAAG GAAAGGTACC CAGAAAAGAC TGTCTGATT GTCTGACAAG GAAAGGTACC CAGAAAAGAC	TCGGGTACG TGTTCCGGAC ATGGGCTCTT CTCCGGTAGC GGCGGAGGTT AGCCCATGC ACAAGGCCTG TACCCGAGA GAGGCCATCG CCGCCTCGAA CGGCTCATG GTCGCTCGGC AGCTCCTTGC TCCTAACAGT GGAGGCCAGA GCCGAGTAC CACCGAGCG TCGAGGAACG AGGATTGTCA CCTCCGGTCT GTGTGCCGC ACAAGGCCG TCGAGGAACG AGGATTGTCA CCTCCGGTCT CACACGCCG TGTTCCGGCA CCGCCATCCC ATGTACTCTG AAAATGAGCT CACACGCCG TGTTCCGGCA CCGCCATCCC ATGTACTCGAC CACACGCCG TGTTCCGCC ACAAGAAGAT GCAGCAGCC CACACGCCG TGTTCCTTCTTA CGCCGCTCGA CTCAACAACA GCGCTGCTG TTAACGGTGG AGGCCATCT CGTCCGTCGA CTCAACAACA CCCCACGAC AATTGCCACC TCCGTCACA TCAGACACAC ACAGACTAA CACACTGTTC CTTTCCATGG GTCTTTTCTG CACTCGCT TGTCTGATT GTCTGACAAG GAAAGGTACC CAGAAAGAC GTCAGTGGCA TGTCTGATT GTCTGACAAG GAAAGGTACC CAGAAAAGAC GTCAGTGGCA	TGTTCCGGAC ATGGGCTCTT CTCCGGTAGC GGCGCAGAAACGCCTG TACCCGAGAA GAGGCCATCG CCGCCTCGAACGA CAGGCCATCG CCGCCTCGAACGC TCGGGAACG AGGATTGTCA CCTCCGGTCTTTGTTCTTCTCGCTCCTCCTCCTCCTCCTC	TGTTCCGGAC ATGGGCTCTT CTCCGGTAGC GGCGGAGCTT CCACATCCGA ACAAGGCCTG TACCCGAGAA GAGGCCATCG CGGCCTCGAA GGTGTAGGCT CAGCGAGCCG TCGAGGAACG TCCTAACAGT GGAGGCCAGA CTTAGGCACA CAGCGAGCCG TCGAGGAACG AGGATTGTCA CCTCCGGTCT GATCCGTGT TGTTCCGGCA GGCGTAGGG TATGTGTCT AAAATGAGCT CAGAGATTGC TGTTCCGGCA CGCCATCCC ATACACAGAC TTTTACTCGA GCCTCTAACC TGTTCCGGCA CGCCATCCC ATACACAGAC TTTTACTCGA GCCTCTAACC TTAACGGTGG AGGCAGTGT AGTCTGACG CTCAACACA TACACGCGC AATTGCCACC TCCTTCTTCTA CGTCCGTCGA GTCTCGTTG TCAGACTGTTC TCCTTCTTCTA CGTCCGTCGT CAGAGCGCGC CAGACTGTTC CTTTCCATGG GTCTTTTCTG CAGACACCTA GACGCCCTA CAGACTGTTC CTTTCCATGG GTCTTTTCTG CAGACACCTA CAGACTGTTC CTTTCCATGG GTCTTTTCTG CAGACACCTA GTCTGACAAG GAAAGGTACC CAGAAAAGAC GTCAGTGGCA GCAGCTGGAT

FIG. 50

CATGTCCAAG T L G F G A Y ACACTGGGCT TTGGTGCTTA TGTGACCCGA AACCACGAAT V L V L N P S V A A GIGCTAGIAC TCAACCCCTC TGTIGCTGCA CACGAICAIG AGTIGGGGAG ACAACGACGI GGGCTATAAG G Y A A Q ATGCAGCTCA (TACGTCGAGT (2001

I T Y S T Y G ATCACGTACT CCACCTACGG TAGTGCATGA GGTGGATGCC G V R T I T G S P GGGTGAGAA CAATTACCAC TGGCAGCCC CCCCACTCTT GTTAATGGTG ACCGTCGGGG CATCAGGACC I D P N TCGATCCTAA A H G I GCTCATGGGA T CGAGTACCCT A +2 2081

T D A ACGGATGCCA TGCCTACGGT GTGCCACTCC / D I I C D E GACATAATAA TTTGTGACGA CTGTATTATT AAACACTGCT GGGGGCTTAT G ¥ G K F L A D G G C S G CAAGTICCIT GCCACGGC GGTGCTCGGG GTTCAAGGAA CGCTGCCGC CCACGAGCCC +5 2161

CACCGCCACC A R L V V L A GCGAGACTGG TTGTGCTCGC CGCTCTGACC AACACGAGGG GACTGCGGGG CTGACGCCCC G ¥ H D Q A E ACCAAGCAGA (ACTGTCCTTG / > \vdash GGCCATTGGC G ය T S I L CATCCATCTT GTAGGTAGAA 7

G E I P F Y G GGAGAGATCC CTTTTACGG CCTCTCTAGG GAAAAATGCC S T T GTCCACCACC CAGGTGGTGG N I E E V A L AACATCGAGG AGGTTGCTCT TTGTAGCTCC TCCAACGAGA GCCCCATCCC ccrcceger ccgrcacter 2321

GACGAACTCG M GAAGAAGTGC (CTTCTTCACG (L I F C H S K CTCATCTTCT GTCATTCAAA GAGTAGAAGA CAGTAGTTT GGGGAGACAT (CCCCTCTGTA (Η æ G CCCCTCGAAG TAATCAAGGG GGGGAGCTTC ATTAGTTCCC G > 闰 Д K A I CAAGGCTATC GTTCCGATAG 2401

L D V S V I P T S G CTTGACGTGT CCGTCATCC GACCAGCGC GAACTGCACA GGCAGTAGGG CTGGTCGCCG CTACCGCGGT GATGGCGCCA Ç 24 G I N A V A Y GGCATCAATG CCGTGGCCTA CCGTAGTTAC GGCACCGGAT V A L GGTCGCATTG CCAGCGTAAC A A K L CCGCAAAGCT (GGCGTTTCGA +5 2481

FIG. 5D

V I D C N T C GTGATACGTG CACTATCTGA CGTTATGCAC CTTCGACTCG GAAGCTGAGC S D V V V A T D A L M T G Y T G D GATGTTGTCG TCGTGCCAC CGATGCCCTC ATGACCGCT ATACCGGCA CTACAACAGC AGCACCGTTG GCTACGGGAG TACTGGCCGA TATGGCCGCT ტ 2561

GCTGTCTCCC > 4 T I E T I T L P Q D ACCATIGAGA CAATCAGGCT CCCCCAAGAT TGGTAACTCT GTTAGTGCGA GGGGGTTCTA T V D F S L D P T F ACAGTCGATT TCAGCCTTGA CCCTACCTTC TGTCAGCTAA AGTCGGAACT GGGATGGAAG V T Q TGTCACCCAG A ACAGTGGGTC I 2641

CCCCTCCGCC T G R G K P G I Y R F V A P G E R ACTGGCAGG GGAGCCAGG CATCTACAGA TTTGTGGCAC GGGGGAGCG TGACGTCC GTAGATGTCT AAACACCGTG GCCCCTCGC R T Q R R G R GCACTCAACG TCGGGCAGG CGTGAGTTGC AGCCCCGTCC 2721

T P A E T T V ACCCCCCC ACACTACACT TGCGGCCGC TCTCATGTCA C E C Y D A G C A W Y E L CTGTGAGTGC TATGAGGCAG GCTCTGCTTG GTATGAGCTC GACACCAAC CATACTGGAG S S V L CGTCCGTCCT (M F D S ATGTTCGACT (S TACAAGCTGA 2801

StuI H Ŀ G [L] 3 ſτι M ı٦ Ξ Ω 0 ပ д G Д Н z Σ ¥ æ u 7

GTCTTTACAG CAGAAATGTC TTGGGAGGGC AACCCTCCCG ATCTTGAATT TAGAACTTAA TGCCAGGACC A GCTTCCCGTG ACACCCCGGG TGTGGGGCCC GCGTACATGA TAGGCTACGA 2881

0 \succ K > Ц \succ Д Ы z 回 G S 0 × \vdash 0 S П Ι4 H ¥ \vdash H G L StuI +2

AGCGTACCAA TCGCATGGTT CTTACCTGGT GAATGGACCA GCAGAGTGGG CCTCTCACCC CCCAGACAAA CACTITCIAT GIGAAAGAIA TATAGATGCC ATATCTACGG GCCTCACTCA CGGAGTGAGT 2961

FIG. SE

L I R L K P T TTGATTCGCC TCAAGCCCAC CCCCCATCGT GGGACCAGAT GTGATTCGCC TCAAGCCCAC GGGGCTGGT GTGGAAGTGT TTGATTCGCC TCAAGCCGC GGGGGTGCTCACA AACTAAGCGG AGTTCGGGTG Q A P TCAAGCCCT (AGTTCGGGGA (A T V C A R A GCCACCGTGT.GCGCTAGGGC 3041

GTCACCAAAT CAGTGGTTTA 24 V Q N E I T L T H P GITCAGATG AAATCACCT GACGCACCA CAAGTCTTAC ITTAGTGGGA CTGCGTGGGT ACTGGGCGCT (TGACCCGCGA P T P L L Y R CCAACACCC TGCTATACAG GGTTGTGGGG ACGATATGTC CCTCCATGGG GGAGGTACCC C Ħ

Y I M T C M S A D L E V V T S T W V L V G G V L A A L ACATCATGAC ATGCATGTCG GCGCGCTCCT GCTGCTTTG TGTACTACT TACGATGTCG CGCCGCGCGCGCGCGCGCGCGCGAAC TGTAGTACTG TACGTACAGC CGCCGCAGCA CCGACGAAAC 3201

A AAGCCGCCAA TCATACCTGA TTCGGCCGTT AGTATGGACT A Д CTTGTCCGGG CAGTATCACC CGTCCCAGCA GAACAGGCCC G > GTCATAGTGG GCAGGGTCGT ĸ G H AGGCTGCGTG CGGCGCATAA CGGACAGTTG TCCGACGCAC G CCTGTCAAC A A Y C GCCGCGTATT (Ç 3281

CCCTACTACG G M M GGGATGATGC C S Q H L P Y TGCTCTCAGC ACTTACCGTA ACGAGAGTCG TGAATGGCAT H CATGGAAGAG CTACCTTCT Œ F × L Y R E F D E CTCTACCGAG AGTTCGATGA GAGATGGCTC TCAAGCTACT R E V CAGGGAAGTC (GTCCCTTCAG (3361

GGGACGACAG CCCTGCTGTC М CGTCAGGCAG AGGTTATCGC GCAGTCCGTC TCCAATAGCG A > ы 4 Ç 吆 GACCGCGTCC (CTGCCCAGG) F K Q K A L G L L Q GITCAAGCAG AAGGCCCTCG GCCTCCTGCA CAAGITCGTC TTCCGGGAGC CGGAGGACGT L A E Q TCGCCGAGCA (AGCGGCTCGT 3441

ACTTGGCGGG TGAACCGCCC × G I Q Y CCCTATGTTA F I S CTTCATCAGT (GAAGTAGTCA W A K H M W N TGGGGAAGC ATATGTGGAA ACCCGCTTCG TATACACCTT CGAGACCTTC 7 H Þ CÀGACCAACT GGCAAAAACT GTCTGGTTGA CCGTTTTTTT 3521

CTAACCACTA GATTGGTGAT \vdash CAGCTGCTGT CACCAGCCCA GTCCACCACA GTGGTCGGGT တ L P G N P A I A S L M A F T A A V CTGCCTGGTA ACCCGCCCAT TGCTTCATTG ATGGCTTTTA CAGCTGCTGT GACGGACCAT TGGGGGGGTA ACGAAGTAAC TACCGAAAAT GTCGACGACA L S T CTTGTCAACG GAACAGTTGC (3601

S Q T L L F N I L G G W V A A Q L A A P G A A T A F V GCCAAACCCT CCTCTTCAAC ATTGGGG GGTGGGTGG TGCCCAGCTC GCCGCCCC GTGCCGTAC TGCCTTTGTG CGCTTGGGA GGAGAAGTTG TATAACCCCC CCACCCACCG ACGGGTCGAG CGGCGGGGGC CACGGCGATG ACGGAAACAC 7 3681

ATCCTTGCAG GGTATGGCGC TAGGAACGTC CCATACCGCG G G ¥ Ч CCTCATAGAC GGAGTATCTG Ω S V G L G K V AGTGTTGGAC TGGGGAAGGT TCACAACCTG ACCCCTTCCA CCCCGACCGA ATCGACCGCG GCGGTAGCCG CGCCATCGGC G 4 G A G L A G A G A G CCCCCCCC

AATCTACTGC TTAGATGACG z GGACCTGGTC > Ч Ω GEVPSTE GGTGAGGTCC CCTCCACGGA CCACTCCAGG GGAGGTGCCT GATCATGAGC လ × G A L V A F K GGAGCICTIG IGGCATICAA CCICGAGAAC ACCGIAAGII G V A GGGCGTGGCG CCCGCACCGC > 3841

CCCGGCCGAG C A A I L R R H V G CTGTGCAGCA ATACTGCGCC GGCACGTTGG GACACGTCGT TATGACGCGG CCGTGCAACC A L V V G V V GCCCTCGTAG TCGGCGTGGT CGGGAGCATC AGCCGCACCA > S P G CTCGCCCGGA GAGCGGGCCT P A I L CCGCCATCCT (GGCGGTAGGA 7 3921

A F A S R G N H V S P T H Y V P E GCCTTCGCCT CCGGGGGAA CCATGTTTCC CCCACGCACT ACGTGCCGGA CGGAAGCGGA GGGCCCCTT GGTACAAAGG GGGTGCGTGA TGCACGGCCT G A V Q W M N R L I GGGGCAGTGC AGTGGATGAA CCGCTGATA 3 4001

CACCAGTGGA GAGGCGACTG CTCCGCTGAC 24 L T V T Q L L CTCACTGTAA CCCAGCTCCT GAGTGACATT GGGTCGAGGA L S S ACTCAGCAGC TGAGTCGTCG A A R V T A I GCTGCCGCG TCACTGCCAT CGACGGGCGC AGTGACGGTA S D A GAGCGATGCA CTCGCTACGT 4081

FIG. 5G

L S D GTTGAGCGAC CAACTCGCTG W D W I C E V TGGGACTGGA TATGCGAGGT ACCCTGACCT ATACGCTCCA AAGGGACATC 1 CCATGCTCCG GTTCCTGGCT GGTACGAGGCCGA GTGTACCACT CACATGGTGA I S S E TAAGCTCGGA (ATTCGAGCCT (4161

C × \succ G ĸ 0 C S > بعثا Д BamHI \vdash G Δ, П 0 Д Z П × ¥ × П 3 H \mathbf{x} ſz, 7

GGTATAAGGG TGCCAGCGCG ACGCTCGCGC CTTTGTGTCC 3 CTGGGATCCC GACCCTAGGG CCACAGCTGC (GGTGTCGACG (TAAGCTCATG ATTCGAGTAC GGCTAAAAGC CCGATTTTCG TTTAAGACCT AAATTCTGGA

4241

AACGGGACGA TTGCCCTGCT C Z ACATGTCAAA TGTACAGTTT > 二 G D G I M H T R C H C G A E I T G GGGGGGGGG TCATGCACAC TCGCTGCCAC TGTGGAGCTG ACATCACTGG ACCACGGTG ACACCTCGAC TCTAGTGACC V W R GGTCTGGCGA (CCAGACCGCT (

GGGCCCCTGT CCCGGGGACA ပ М G T C R N M S G T F P I N A Y T T ACCTGCAGGA ACATGTGGAG TGGGACCTTC CCCATTAATG CCTACACCAC TGGACGCACGTAATTAC GGATGTGGTG CGGTCCTAGG / ĸ G M R I V TCAGGATCGT (+2 4401

V E I R Q V G GTGGAGATAA GGCAGGTGGG CACCICIAIT CCGICCACCC A L W R V S A E E Y GCGCTATGGA GGGTGTCTGC AGAGGATAC CCCACAGACG TCTCCTTATG Y T F CTACACGTTC (GATGTGCAAG (T P L P A P N ACCCCCTTC CTGCGCGAA TGGGGGGAAG GACGCGGCTT 4481

TTTTCACAG AAAAAGTGTC D F H Y V T G M T T D N L K C P C Q V P S P E GEACTTCCAC TACGTGAGG GTATGACTAC TGACAATCTT AAATGCCCGT GCCAGGTCC ATGCCCGAA CCTGAAGGTG ATGCACTGCC CATACTGATG ACTGTTAGAA TTTACGGGCA CGGTCCAGGG TAGCGGCTT 4561

R V G CAGAGTAGGA GTCTCATCCT L R E E V S F CTGCGGGGG AGGTATCATT GAGGCCCTCC TCCATAGTAA K P L CAAGCCCTTG (H R F A P P C CATAGGITIG CGCCCCTG GTATCCAAAC GCGGGGGGAC GGTGCGCCTA Ч 24 E L D G AATTGGACGG (TTAACCTGCC (4641

いに

L T S M L T D TTGACGTCCA TGCTCACTGA AACTGCAGGT ACGAGTGACT CGTGGCCGTG 4 > P C E P E P D CCTTGCGAGC CCGAACGGA S Q L GTCGCAATTA CAGCGTTAAT CTCCACGAAT GAGGTGCTTA

TGTGGCCAGC TCCTCGGCTA ACACCGGTCG AGGAGCCGAT ¥ S S ¥ CACCCCCTC 7 A R G S GCGAGGGGAT (CGCTCCCCTA (I T A E A A G R R L ATAACAGCAG AGGCGGCCGG GCGAAGGTTG TATTGTCGTC TCCGCCGGCC CGCTTCCAAC TCCCTCCCAT AGGGAGGGTA 7 S 4801

S P D A E L I E A N TCCCCTGATG CTGAGCTCAT AGAGGCCAAC AGGGGACTAC GACTCGAGTA TCTCCGGTTG CTTGCACCGC TAACCATGAC GAACGTGCCG ATTGGTACTG Н L K A T CTCAAGGCAA GAGTTCCGTT A P S CGCTCCATCT GCGAGGTAGA S Q L S GCCAGCTATC (CGGTCGATAG (+2 4881

V I L D S F D GTGATTCTGG ACTCCTTCGA CACTAAGACC TGAGGAAGCT I T R V E S E N K V ATCACCAGGG TTGAGTCAGA AAACAAAGTG TAGTCGTCC AACTCAGTCT TTTGTTTCAC GGGCGGCAAC A z Ç S L L W R Q E M CTCCTATGGA GGCAGGAT GAGGATACCT CCGTCCTCTA 4961

F A Q TTCGCCCAGG AAGCGGGTCC S R R CTCCGGAGA C P A E I L R K CCCCCAGAAA TCCTGCGGAA GGGCGTCTTT AGGACGCCTT GATCTCCGTA (A E E D E R E GCGGAGGAGG ACGAGCGGA CGCCTCCTCC TGCTCGCCCT TCCGCTTGTG AGGCGAACAC Н

V E T W K R P D Y E P P V AGTGGAGACG TGGAAAAAGC CCGACTACGA ACCACTGTG TCACCTCTGC ACCTTTTTCG GGCTGATGCT TGGTGGACAC P D Y N P P L CCGGACTATA ACCCCCGCT GCCCTGATAT TGGGGGGCGA TTGGGGGGG C A L P V CCCTGCCGT CGGGCA A 5121

TCCTCACTGA GGACGGTGG 7 TCGGAAGAAG (ACCTTCTTC) × × × М Ч P P K
ACCTCCAAAG
TGGAGGTTTC C P L P CCCCCTTCC / ပ GTCCATGGCT CAGGTACCGA G 耳 5201

ACGCCCCACA Δ c S G I TTCCGGCATT TCGAAACCGT CGAGGAGTTG AAGGCCGTAA S S T GCTCCTCAAC လ S F G S AGCTTTGGCA (GCCCACCAGA / 4 S T A L A E L TCTACTGCCT TGGCCGAGCT AGATGACGGA ACCGGCTCGA TAGTTGGGAT ATCAACCCTA တ 5281

M P P CATGCCCCC GTACGGGGGG D A E S Y S S GACGCTGAGT CCTATTCCTC CTGCGACTCA GGATAAGGAG P D S CCCCGACTCC (GGGGCTGAGG (P A P S G C P CCCGCCCTT CTGGCTGCCC GGCCGGGAA GACCGACGG S S E ATCCTCTGAG (TAGGAGACTC (N T T T AT ATACGACAAC / 5361

囯 Ø Z ď [2] တ S > Н S 3 ß C Ω S Ω Д D 1 BamHI G Α 国 Ü 闰 ļ 7

CGGAGGATGT GAGGCCAACG CTCCGGTTGC GGTCAGTAGT CCAGTCATCA CATGGTCAAC GGTACCGTACCGTACCGTACCAGTTCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCCAGTTCAGT AGCGACGGGT TCGCTGCCCA CTGGAGGGG AGCCTGGGGA TCGGGATCTT GACCTCCCCC TCGGACCCCT AGGCCTAGAA 5441

CTGCCCATCA GACGGGTAGT щ V T P C A A E E Q K GTCACCCGT GCGCGCGGA AGAACAGAAA CAGTGGGGCA CGCGGCGCCT TCTTGTCTTT V C C S M S Y S W T G A L CGTGTGCTGC TCAATGTCTT ACTCTTGGAC AGGCGCACTC GCACACGAC AGTTACAGAA TGAGAACCTG TCCGCGTGAG 5521

R Q K AAGCCAGAAG TTCCGTCTTC S A C Q GEGETTGCCA A CACGAACGGT 1 S GTATTCCACC ACCTCACGCA CATAAGGTGC TGGAGTGCT 2 ល S × CTACGTCACC ACAATTTGGT GATGCAGTGG TGTTAAAACCA > П z H Ħ 24 CAACTCGTTG (GTTGAGG Ц တ Z N A L S ATGCACTAAG (TACGTGATTC (7 5601

GTTAAAGCAG CGGCGTCAAA CAATTTCGTC GCCGCAGTTT ഗ 4 4 ¥ × > GACAGCCATT ACCAGGACGT ACTCAAGGAG CIGTCGGTAA TGGTCCTGCA TGAGTTCCTC 团 × > P 0 \succ H ល Q V L GCAAGTICTG (CGTICAAGAC (> K V T F D R L AAAGTCACAT TTGACAGACT TTTCAGTGTA AACTGTCTGA 5681

TTTGGTTATG AAACCAATAC G CAAATCCAAG 1 GTTTAGGTTC 4 ഗ × L T P P H S A CTGAGCCCC CACACTCAGC GACTGCGGG GTGTGAGTCG AGCTTGCAGC TCGAACGTCG လ ပ ¥ AACTTGCTAT CCGTAGAGGA TTGAACGATA GGCATCTCCT M ы > လ r L AGTGAAGGCT I A × > 5761

GGAAGACAAT CCTTCTGTTA CATGCCAGAA AGGCCGTAAC CCACATCAAC TCCGTGTGGA AAGACCTTCT GTACGGTCTT TCCGGCATTG GGTGTAGTTG AGGCACACCT TTCTGGAAGA Д 3 S ¥ × 4 ¥ Ħ CGTCCGTTGC ပ ĸ G A K D GGGCAAAGA CCCGTTTTCT 5841

CATTCGGTCG GTAAGCCAGC 24 K G G R AAGGGGGGTC (TTCCCCCCAG K N E V F C V Q P E AAGAAGGAG TITICIGGI ICAGCCIGAG ITCTIGCICC AAAGACGCA AGICGGACTC CATCATGGCT V T P I D T T GTAACACCAA TAGACACTAC CATTGTGGTT ATCTGGATG 5921

K L P AAGCTCCCCT TTCGAGGGGA CGTGGTTACA > A L Y D CTTTGTACGA (¥ GAAAAGATGG CTTTTCTACC × × GCGCGTGTGC CCCCCACACG GTGTTCCCCG ATCTGGGCGT CACAAGGGGC TAGACCCGCA Ç Ω Д R L I TCGTCTCATC (AGCAGAGTAG (6001

S ~ 3 ď 0 > ы E F Ecori > × 0 G Д S \succ 0 Ŀ c \succ S ß Ö \mathbf{z} > ¥ Ц 7

GTGGAAGTCC CACCTTCAGG TCGTGCAAGC GTTGAATTCC CAACTTAAGG AGGACAGCGG AATACTCACC TTATGAGTGG TACGGATICC A GGGAGCTCC TGGCCGTGAT (ACCGCCACTA (6081

GTACGGAGGA AGCGACATCC GTACGGAGGA TCGCTGTAGG CATGCCTCCT 囯 24 Ω တ T R C F D S T V T E ACCCCTGCT TTGACTCCAC AGTCACTGAG TGGCCACGA AACTGAGGTG TCACTGACTC CTCGTATGAT GAGCATACTA Ω တ P M G F CAATGGGGTT GITACCCCAA щ K K T P AAGAAAACCC TTCTTTGGG 6161

TATGTTGGGG ATACAACCCC G CGAGAGGCTT ĸ 闰 V A I K S L T GTGGCCATCA AGTCCCTCAC CACCGGTAGT TCAGGGAGTG CCAAGCCCGC (GCTCCCC) Q C C D L D P CAATGITGIG ACCICGACC GITACAACAC IGGAGCIGGG GGCAATCTAC (CCGTTAGATG (¥ 6241

TAGCTGTGGT A S G V L T T GCGAGCGCG TACTGACAAC CGCTCGCCGC ATGACTGTTG R C R CAGGTGCCGC (GGGGAGAACT GCGGCTATCG CCCCTCTTGA CGCCGATAGC CAATTCAAGG (G P L T GCCTCTTAC (CGGGAGAATG (+5

L V C G TCCTCTCC TGCACCATGC 7 Σ H CCAGGTCCTG / A A C R A A G GCAGCCIGTC GAGCGCAGG CGTCGCACAG CTCGGCGTCC K A R CAAGGCCCGG GTTCCGGGCC AACACCCTCA CTTGCTACAT TTGTGGGAGT GAACGATGTA × ပ H 6401

E A M GAGGCTATGA CTCCGATACT A F T AGCCTTCACG TCGGAAGTGC **[**24 E D A A S L R
GAGGACGCG CGAGCCTGAG
CTCCTGCGCC GCTCGGACTC G V Q GGGGTCCAG CCCCCAGGTC V V I C E S A GTCGTTATCT GTGAAAGCGC CAGCAATAGA CACTTTCGCG D D L CGACGACTTA (GCTGCTGAAT (6481

CTCCAACGTG GAGGTTGCAC GAGCICATAA CATCATGCTC CTCGAGTATT GTAGTAGGAG G D P P Q P E Y D L GGGGACCCC CACAACCAGA ATACGACTTG CCCCTGGGGG GTGTTGGTCT TATGCTGAAC A P P CGCCCCCT G T R Y S CCAGGTACTC C GGTCCATGAG G 6561

GAGCTGCGTG 4 ¥ P L A R CCCTCGCGA G GGGGAGCGCT C 24 CCCTACAACC (V Y Y L T R D GTCTACTACC TCACCGTGA CAGATGATGG AGTGGCACT S V A H D G A G K R TCAGTCGCC ACGACGCGC TGGAAAGAGG AGTCAGCGGG TGCTTCTCC 6641

A R M GCGAGGATGA CGCTCCTACT CACACTGTGG GTGTGG GTGTGACC G 3 ᆸ H W L G N I I M F A P CTGGCTAGGC AACATAATCA TGTTTGCCCC GACCGATCC TTGTATTAGT ACAAACGGG E T A R H T P V N S GGAGACAGCA AGACACACTC CAGTCAATTC CCTCTGTCGT TCTGTGTGAG GTCAGTTAAG 6721

CTACGGGGCC GATGCCCCGG ¥ S Q A L D C E I CAGGCCCTCG ATTGCGAGAT GTCCGGGAGC TAACGCTCA CCAGCTTGAA GGTCGAACTT S V L I A R D AGCGTCCTTA TAGCCAGGA TCGCAGGAAT ATCGGTCCCT H F F CCATTTCTTT A GGTAAAGAAA I L M T TACTGATGAC (ATGACTACTG 6801

A F S L H S Y GCATTTCAC TCCACAGTTA CGTAAAAGTG AGGTGTCAAT C Y S I E P L D L P P I I Q R L H G L S TGCTACTCCA TAGAACCACT GGATCTACCT CCAATCATTC AAAGACTCCA TGGCCTCAGC ACGATGAGGT ATCTTGGTGA ACCGGAGTCG 6881

R H R AGACACCGGG TCTGTGGCCC GCGAGCTTGG R V A A C L R K L G V P P L GGTGGCCGC ATGCCTCAGA AAACTTGGGG TACGGCGTT CCCACCGCG TACGGAGTCT TTTGAACCCC ATGGCGGGAA > ĸ GAAATCAATA (CTTTAGITAT (CTCTCCAGGT GAGAGGTCCA G Д 6961

A R S V R A R L L A R G G R A A I C G K Y L F N W A V CCCGGAGCGT CCGCGCTAGG CTTCTGGCCA GAGGAGGCAG GGCTGCCATA TGTGGCAAGT ACCTCTTCAA CTGGGCAGTA GGGCCTCGCA GGCGCGATCC GAAGACCGGT CTCCTCCGTC CCGACGGTAT ACACCGTTCA TGGAGAGTT GACCGTCAT 7041

TTCACGGCTG GCTACAGCGG AAGTGCCGAC CGATGTCGCC Ç ¥ H [z. GCCGCTGGCC AGCTGGACTT GTCCGGCTGG CGCCGACCGG TCGACCTGAA CAGGCCGACC 3 Ö S A A G Q L D L GCCGCTGGC AGCTGGACTT R T K L K L T P I A AGAACAAAGC TCAAACTCAC TCCAATAGCG TCTTTTCG AGTTTGAGTG AGGTTATCGC

A G V GCAGGGTAG CGTCCCCATC W I W F C L L L L A TGGATCTGCT TTTGCCTACT CCTGCTTGCT ACCTAGACCA AAACGGATGA GGACGAACGA CCGCCCCCC 1 Y H S V S H A TATCACAGG TGTCTCATGC ATAGTGTCGC ACAGAGTACG G D I GCGAGACATT CCCTCTGTAA 7201

AAAGGCGCGC TTTCCGCGCGC AAAAATCTAG 1 TGGGGTAAAC ACTCCGGCCT AAAAAAAAA ACCCCATTTG TGAGGCCGGA TTTTTTTTT CGATGAAGGT GCTACTTCCA ø CCTCCCCAAC GGAGGGGTTG z Д G I Y L GCATCTACCT (CGTAGATGGA (

BamHI MluI

GTAGACAACA CATCTGTTGT AGTTGCCAGC TCAACGGTCG GCTCGCTGAT CAGCCTCGAC TGTGCCTTCT CGAGCGACTA GTCGGAGCTG ACACGGAAGA ACGCGTTAGA (TGCGCAATCT (AGGATCCACT CAAGATATCA GTTCTATCA 7361

GAAATTGCAT CTTTAACGTA ATAAAATGAG TATTTTACTC TCCTTTCCTA AGGAAGGAT 1 GGAAGGTGCC ACTCCCACTG CCTTCCACGG TGAGGGTGAC CCTTGACCCT GGCCACGGAA CCCGTGCCTT TIGCCCCTCC AACGGGGAGG

FIG. 5M

GCAAGACAAT CCTTCTGTTA CCACCCCTAT CCTCCCCATA ATCACAAAAA TAGTGTTTTT **AAAAGGCCAG** GCAGCCACTG TTTTCCGGTC TCCCTCGTGC AGGGAGCACG TTCTCAATGC AAGAGTTACG TTCAGCCCGA AAGTCGGGCT GCGACGATTC TCGCCTGCGG CCTGACGAGC GGACTCG CCCTGGAAGC GAACCCCCCG CITGGGGGGC ACATGTGAGC TGTACACTCG CGCACCGCGA GCGTGCCGCT GCCACTGGCA CGGTGACCGT GACAGCAAGG GCTCGGTCGT GCTCCGCCCC AGGCGTTTCC TCCGCAAAGG CTGTGTGCAC (GACACGCG) GCAGGAAAGA GGAAGCCCTT CCTTCGGGAA ACGACTTATC TGCTGAATAG GGTGGGGCAG TTTTCCATAG (AAAAGGTATC (GACTCGCTGC TAAAGATACC A GCCTTTCTC CCGGTAAGAC GGCCATTCTG CCAACCTGGG AGGGGATAAC TCCCCTATTG CTCGCTCACT GAGCGAGGA G CCACAGAATC GGTGTCTTAG TTGCTGGCGT AACGACCGCA GACAGGACTA CTGTCCTGAT TGAGTCCAAC ACTCAGGTTG TGGGGGGTGG ACCCCCCACC GATACCTGTC CTATGGACAG GICCTICCCI CAGCAAGCGA CATTCTATTC : ATACGGTTAT TATGCCAATA CTTCCGCTTC AAAGGCCGCG TITTCCGGCGCGC GGCGAAACCC CCCCTTACCG TTCGCTGTAG AAGCCACATC ACTATCGTCT TGATAGCAGA CTCATCCACA (GGAACCGTAA GGTATCTCAG CCATAGAGTC AAAGGCGGTA TTTCCGCCAT GACCCCTCGA TCCGACCCTG AGGCTGGGAC CTGGGGAGCT TCAGTCTCCA TTATCCGGTA AGTCAGAGGT AATAGGCCAT CAGCTCACTC / CAAAAGGCCA TCACGCTGTA AGTGCGACAT CGCATTGTCT GCGTAACAGA AGCAGGCATG TCGTCCGTAC TCGACGCTCA AGCTGCGAGT GCTCTCCTGT CGAGAGGACA CCGCTGCGCC GCCGACGCGG 7521 7601 8001 7681 7761 7841 7921 8081

FIG. 5N

CTACACTAGA GATGTGATCT

CTAACTACGG

AAGTGGTGGC TTCACCACCG

GCGGTGCTAC AGAGTTCTTG CGCCACGATG TCTCAAGAAC

AGGTATGTAG TCCATACATC

GTAACAGGAT TAGCAGAGCG CATTGTCCTA ATCGTCTCGC

GTAACAGGAT

8161

8241	AGGACAGTAT TCCTGTCATA	TTGGTATCTG AACCATAGAC	CGCTCTGCTG GCGAGACGAC	AAGCCAGTTA TTCGGTCAAT	CCTTCGGAAA GGAAGCCTTT	AAGAGTTGGT TTCTCAACCA	AGCTCTTGAT TCGAGAACTA	CCGCCAAACA
8321	AACCACCGCT	GGTAGCGGTG	GTTTTTTGT TTGCAAGCAG CAAAAAAACA AACGTTGGTC	TTGCAAGCAG AACGTTCGTC	CAGATTACGC GTCTAATGCG	GCAGAAAAA CGTCTTTTT	AGGATCTCAA TCCTAGAGTT	GAAGATCCTT CTTCTAGGAA
8401	TGATCTTTTC ACTAGAAAAG	TACGGGGTCT ATGCCCCAGA	GACGCTCAGT	GGAACGAAAA CCTTGCTTTT	CTCACGTTAA GAGTGCAATT	GGGATTTTGG CCCTAAAACC	TCATGAGATT AGTACTCTAA	ATCAAAAAGG TAGTTTTTCC
8481	ATCTTCACCT TAGAAGTGGA	AGATCCTTTT TCTAGGAAAA	AAATTAAAAA TTTAATTTTT	TGAAGTTTTA ACTTCAAAAT	AATCAATCTA TTAGTTAGAT	AAGTATATAT TTCATATATA	GAGTAAACTT CTCATTTGAA	GGTCTGACAG CCAGACTGTC
8561	TTACCAATGC	' '	AGGCACCTAT	CTCAGCGATC	TGTCTATTTC ACAGATAAAG		AGTIGCCIGA CICCCCGICG ICAACGGACI GAGGGGCAGC	CTCCCCGTCG
8641	TGTAGATAAC ACATCTATTG	TACGATACGG	GAGGGCTTAC CTCCCGAATG	CATCTGGCCC	CATCTGGCCC CAGTGCTGCA GTAGACCGGG GTCACGACGT	ATGATACCGC TACTATGGCG	ATGATACCGC GAGACCCACG CTCACCGGCT TACTATGGCG CTCTGGGTGC GAGTGGCCGA	CTCACCGGCT
8721	CCAGATTTAT GGTCTAAATA	CAGCAATAAA GTCGTTATTT	CCAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG TCGCGTCTTC	TGGTCCTGCA	ACTTTATCCG TGAAATAGGC	CCTCCATCCA
8801	GTCTATTAAT	TGTTGCCGGG	AAGCTAGAGT TTCGATCTCA	AAGTAGTTCG TTCATCAAGC	AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA CGTTGTTGCC TTCGATCTCA TTCATCAAGC GGTCAATTAT CAAACGCGTT GCAACAACGG	GTTTGCGCAA CAAACGCGTT	CGTTGTTGCC GCAACAACGG	ATTGCTACAG TAACGATGTC
8881	GCATCGTGGT	GTCACGCTCG	TCGTTTGGTA AGCAAACCAT	TGGCTTCATT ACCGAAGTAA	TCGTTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT TACATGATCC AGCAAACCAT ACCGAAGTAA GTCGAGGCCA AGGGTTGCTA GTTCCGCTCA ATGTACTAGG	TCCCAACGAT AGGGTTGCTA	CAAGGCGAGT GTTCCGCTCA	TACATGATCC ATGTACTAGG

FIG. 50

8961	CCCATGTTGT GGGTACAACA	GCAAAAAGC CGTTTTTCG		GGTTAGCTCC TTCGGTCCTC CGATCGTTGT CCAATCGAGG AAGCCAGGAG GCTAGCAACA	CCATCGTTGT GCTAGCAACA	CAGAAGTAAG GTCTTCATTC	CAGAAGTAAG TTGGCCGCAG GTCTTCATTC AACCGGCGTC	TGTTATCACT ACAATAGTGA
9041	CATGGTTATG	GCAGCACTGC)	ATAATTCTCT TACTGTCATG CCATCCGTAA TATTAAGAGA ATGACAGTAC GGTAGGCATT	CCATCCGTAA GGTAGGCATT	CCATCCGTAA GATGCTTTTC TGTGACTGGT GGTAGGCATT CTACGAAAG ACACTGACCA	GATGCTTTTC TGTGACTGGT GAGTACTCAA CTACGAAAAG ACACTGACCA CTCATGAGTT	GAGTACTCAA CTCATGAGTT
9121	CCAAGTCATT	1		TGTATGCGGC GACCGAGTTG ACATACGCCG CTGGCTCAAC	CTCTTGCCCG	GCGTCAATAC	GGGATAATAC CCCTATTATG	CGCGCCACAT
9201	AGCAGAACTT TCGTCTTGAA	TAAAAGTGCT ATTTTCACGA		CATCATIGGA AAACGIICIT CGGGGGAAA ACTCICAAGG AICITACCGC IGTIGAGAIC GIAGIAACCI ITIGCAAGAA GCCCGCIII IGAGAGIICC IAGAAIGGCG ACAACICIAG	CGGGGCGAAA GCCCCGCTTT	ACTCTCAAGG TGAGAGTTCC	ACTCTCAAGG ATCTTACCGC TGAGAGTTCC TAGAATGGCG	TGTTGAGATC ACAACTCTAG
9281	CAGTTCGATG	TAACCCACTC	GTGCACCCAA	CTGATCTTCA GCATCTTTTA GACTAGAAGT CGTAGAAAAT	GCATCTTTA	CTTTCACCAG GAAAGTGGTC	CTTTCACCAG CGTTTCTGGG TGAGCAAAA GAAAGTGGTC GCAAAGACCC ACTCGTTTTT	TGAGCAAAA ACTCGTTTTT
9361	CAGGAAGGCA		AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA TACTCTTCCT TTTACGGCGT TTTTTCCCTT ATTCCCGCTG TGCCTTTACA ACTTATGAGT ATGAGAAGGA	TAAGGGCGAC ATTCCCGCTG	ACGGAAATGT TGCCTTTACA	TGAATACTCA ACTTATGAGT	TACTCTTCCT ATGAGAAGGA	TTTTCAATAT AAAAGTTATA
9441	TATTGAAGCA ATAACTTCGT	TTTATCAGGG AAATAGTCCC	TTATTGTCTC ATGAGCGGAT AATAACAGAG TACTCGCCTA	ATGAGGGGAT TACTCGCCTA	ACATATTTGA TGTATAAACT	ACATATTTGA ATGTATTTAG AAAAATAAAC AAATAGGGGT TGTATAAAGT TACATAAATC TTTTTATTTG TTTATCCCCA	AAAAATAAAC TTTTTATTTG	AAATAGGGT TTTATCCCCA
9521	TCCGCGCACA	TTTCCCCGAA AAAGGGGCTT		AAGTGCCACC TGACGTCTAA GAAACCATTA TTATCATGAC ATTAACCTAT AAAAATAGGC TTCACGGTGG ACTGCAGATT CTTTGGTAAT AATAGTACTG TAATTGGATA TTTTTATCCG	GAAACCATTA CTTTGGTAAT	TTATCATGAC AATAGTACTG	ATTAACCTAT TAATTGGATA	AAAAATAGGC TTTTTATCCG
9601	GTATCACGAG CATAGTGCTC	GCCCTTTCGT CGGGAAAGCA	ပဗ					

FIG. 5P

FIG. 6

-	TCGCGCGTTT AGCGCGCAAA	CGGTGATGAC GCCACTACTG	GGTGAAAACC CCACTTTTGG	py TCTGACACAT AGACTGTGTA	PCMV-II TCTGACACAT GCAGCTCCCG GAGACGGTCA AGACTGTGTA CGTCGAGGCC CTCTGCCAGT		CAGCTTGTCT GTCGAACAGA	GTAAGCGGAT
81	GCCGGGAGCA	GACAAGCCCG	TCAGGGGGGG	TCAGCGGGTG	TTGGCGGGTG TCGGGGGTGG AACCGCCCAC AGCCCGACC		CTTAACTATG GAATTGATAC	CGCCATCAGA GCCGTAGTCT
161	GCAGATTGTA	CTGAGAGTGC	ACCATATGAA TGGTATACTT	GCTTTTTGCA CGAAAAACGT	CTGAGAGTGC ACCATATGAA GCTTTTTGCA AAAGCCTAGG CCTCCAAAAA AGCCTCCTCA CTACTTCTGG GACTCTCACG TGGTATACTT CGAAAAACGT TTTCGGATCC GGAGGTTTTT TCGGAGGAGT GATGAAGACC	CCTCCAAAAA GGAGGTTTTT	AGCCTCCTCA TCGGAGGAGT	CTACTTCTGG GATGAAGACC
241	AATAGCTCAG TTATCGAGTC	AGGCCGAGGC TCCGGCTCCG	GGCCTCGGCC TCTGCATAAA CCGGAGCCGG AGACGTATTT	TCTGCATAAA AGACGTATTT	AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAT TAGTCAGCCA TGGGGCGGAG AATGGGCGGA TCCGGCTCCG CCGCAGCCGG AGACGTATTT ATTTTTTA ATCAGTCGGT ACCCGCCTC TTACCCGCCT	TAGTCAGCCA ATCAGTCGGT	TGGGGGGGAG ACCCGGCCTC	AATGGGCGGA TTACCCGCCT
321	ACTGGGCGGG TGACCGGCCC	GAGGGAATTA CTCCCTTAAT	TTGGCTATTG	GCCATTGCAT	TTGGCTATTG GCCATTGCAT ACGTTGTATC TATATCATAA AACCGATAAC CGGTAACGTA TGCAACATAG ATATAGTATT		TATGTACATT ATACATGTAA	TATATTGGCT ATATAACCGA
401	CATGTCCAAT GTACAGGTTA	ATGACCGCCA TACTGGCGGT	TGTTGACATT ACAACTGTAA	GATTATTGAC CTAATAACTG	GATTATIGAC IAGTTATTAA TAGTAATCAA CTAATAACTG ATCAATAAIT ATCA'ITAGIT		TTACGGGGTC AATGCCCCAG	ATTAGTTCAT TAATCAAGTA
481	AGCCCATATA TCGGGTATAT	TGGAGTTCCG ACCTCAAGGC	TGGAGTTCCG CGTTACATAA ACCTCAAGGC GCAATGTATT	CTTACGGTAA GAATGCCATT	CTTACGGTAA ATGGCCGCC TGGCTGACCG CCCAACGACC GAATGCCATT TACCGGGGG ACCGACTGGC GGGTTGCTGG	TGGCTGACCG ACCGACTGGC	CCCAACGACC GGCTTGCTGG	CCCCCCATT
561	GACGTCAATA	ATGACGTATG TACTGCATAC	TTCCCATAGT AAGGGTATCA	AACGCCAATA TTGCGGTTAT	ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT TACTGCATAC AAGGGTATCA TTGCGGTTAT CCCTGAAAGG TAACTGCAGT TACCCACCTC ATAAATGCCA	ATTGACGTCA TAACTGCAGT	ATGGGTGGAG TACCCACCTC	TATTTACGGT ATAAATGCCA
641	AAACTGCCCA TTTGACGGGT	CTTGGCAGTA GAACCGTCAT	CATCAAGTGT GTAGTTCACA	ATCATATGCC TAGTATACGG	CATCAAGTGT ATCATATGCC AAGTCCGCCC CCTATTGACG TCAATGACGG GTAGTTCACA TAGTATACGG TTCAGGCGGG GGATAACTGC AGTTACTGCC	CCTATTGACG GGATAACTGC		TAAATGGCCC ATTTACCGGG

FIG. 7A

721	GCCTGGCATT	ATGCCCAGTA TACGGGTCAT	CATGACCTTA GTACTGGAAT	CGGGACTTTC GCCTGAAAG	CTACTTGGCA GATGAACCGT	GTACATCTAC CATGTAGATG	GTATTAGTCA CATAATCAGT	TCGCTATTAC AGCGATAATG
801	CATGGTGATG	1	AGTACACCAA TCATGTGGTT	TGGGCGTGGA ACCCGCACCT	TAGCGGTTTG ATCGCCAAAC	ACTCACGGGG TGAGTGCCCC	ACTCACGGGG ATTTCCAAGT TGAGTGCCCC TAAAGGTTCA	CTCCACCCCA
881	TTGACGTCAA] '	TGGGAGTTTG TTTTGGCACC ACCCTCAAAC AAAACCGTGG	AAAATCAACG TTTTAGTTGC		GGACTITCCA AAATGTCGTA CCTGAAAGGT TTTACAGCAT	ATAACCCCGC TATTGGGGCG	CCCGTTGACG
961	CAAATGGGCG	GTAGGCGTGT CATCCGCACA	ACGGTGGGAG TGCCACCCTC	GTCTATATAA CAGATATATT	GCAGAGCTCG CGTCTCGAGC	TTTAGTGAAC AAATCACTTG	CGTCAGATCG GCAGTCTAGC	CCTGGAGACG GGACCTCTGC
1041	CCATCCACGC	TGTTTTGACC ACAAAACTGG	TCCATAGAAG AGGTATCTTC	ACACCGGGAC TGTGGCCCTG		TCCGCGGCCG	CGATCCAGCC TCCGCGGCCG GGAACGGTGC ATTGGAACGC GCTAGGTCGG AGGCGCCGGC CCTTGCCACG TAACCTTGCG	ATTGGAACGC TAACCTTGCG
1121	GGATTCCCCG		TGCCAAGAGT GACGTAAGTA CCGCCTATAG ACTCTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA ACGGTTCTCA CTGCATTCAT GGCGGATATC TGAGATATCC GTGTGGGGGAA ACCGAGAATA CGTACGATAT	CCCCCTATAG	ACTCTATAGG TGAGATATCC	CACACCCCTT TGGCTCTTAT GTGTGGGGAA ACCGAGAATA	TGGCTCTTAT ACCGAGAATA	GCATGCTATA
1201	CTGTTTTTGG	CTTGGGGCCT	ATACACCCC TATGTGGGGG	GCTCCTTATG	CTATAGGTGA GATATCCACT	TGGTATAGCT ACCATATCGA		GTGTGGGTTA
1281	TTGACCATTA AACTGGTAAT	TTGACCACTC	CCCTATTGGT GGGATAACCA	GACGATACTT CTGCTATGAA	TCCATTACTA AGGTAATGAT	ATCCATAACA TAGGTATTGT		CCACAACTAT
1361	CTCTATTGGC	TATATGCCAA ATATACGGTT	TACTCTGTCC TTCAGAGACT ATGAGACAGG AAGTCTCTGA	TTCAGAGACT AAGTCTCTGA	GACACGGACT	CTGTATTTTT GACATAAAAA	CTGTATTTT ACAGGATGGG GTCCATTTAT GACATAAAAA TGTCCTACCC CAGGTAAATA	GTCCATTTAT

FIG. 7B

AGAGGCTGTA TCTCCGACAT TTATTAAACA TAGCGTGGGA ATCCCACCT AATAATTTGT CAGGGGGAC GGGCGTCAAA GICCCCCTG CCCCCAGIII CAACAACGCC GTTGTTGCGG TTCACATATA AAGTGTATAT TATTACAAA ATAAATGTTT 1441

CATCCGTCCA GTAGGCAGGT GCCCTGGTCC CCACATCCGA (GCTGTAGGCT (GCCGCAGCTT (CCCCCTCGAA (CTCCGGTAGC GAGGCCATCG CTCGGGTACG TGTTCCGGAC ATGGGCTCTT GAGCCCATGC ACAAGGCCTG TACCCGAGAA 1521

CACCACCACC GCACAATGCC CTTAGGCACA (GGAGGCCAGA TCCTAACAGT AGGATTGTCA AGCTCCTTGC TCGAGGAACG GTCGCTCGGC CAGCGAGCCG GCGCCTCATG

1601

GGACGCAGAT CCTGCGTCTA CGAGCGTGGA GCTCGCACCT CGGAGATTGG GCCTCTAACC TTTTACTCGA AAAATGAGCT CCCCCATCCC ATACACAGAC TATGTGTCTG GGCGCTAGGG TCACACGCC TGTTCCGCCA AGTGTGCCGC ACAAGGCCGT 1681

TAACTCCCGT ATTGAGGGCA GAGTCAAGGG GAGTTGTTGT ATTCTGATAA CTCAACAACA TAAGACTATT GCAGGCAGCT AGGCAGCGGC AGAAGAAGAT TCCGTCGCCC TCTTCTTCTA GGAAGACTTA CCTTCTGAAT 1761

CATAATAGCT GTATTATCGA CGCCACCAGA GTACTCGTTG CTGCCGCGCGCCGCCGCATGAGCAAC CACGCGCGCCCC TGCGGTGCTG TTAACGGTGG AGGGCAGTGT AGTCTGAGCA AGGCCACGAC AATTGCCACC TCCCGTCACA TCAGACTCGT 1841

CTCGAGCAAG GAGCTCGTTC AGAATTCAGA TCTTAAGTCT GACAGACTAA CAGACTGTTC CTTTCCATGG GTCTTTTCTG CAGTCACCGT CGTCGACCTA CTGTCTGATT GTCTGACAAG GAAAGGTACC CAGAAAAGAC GTCAGTGGCA GCAGCTGGAT 1921

Ecori

XbaI BamHI MluI

2001

CTTCTAGTTG GAAGATCAAC CGCGCCAAGA TATCAAGGAT CCACTACGCG TTAGAGCTCG CTGATCAGCC TCGACTGTGC GCGCGGTTCT ATAGTTCCTA GGTGATGCGC AATCTCGAGC GACTAGTCGG AGCTGACACG TCTAGAAAGG AGATCTTTCC

=1G. 7C

GTCGTTCGGC CAGCAAGCCG AAAGAACATG TTTCTTGTAC GGGAAGCGTG TGCACGAACC ACGTGCTTGG TCCTAATAAA CAAGGGGGAG GTTCCCCCTC AGGATTATT GCCCCCTGA AAAGGGGGAC CGGGGGGACT AAGACACGAC TTATCGCCAC TTCTGTGCTG AATAGCGGTG GCTGCGCTCG CGACC (CATAGGCTCC TTCTCCCTTC AAGAGGGAAG GTGACAGGAA CTGGGCTGTG GACCGC GGCAGGACAG ATAACGCAGG TATTGCGTCC CACTGTCCTT ATACCAGGCG TATGGTCCGC GAATCAGGGG / TCACTGACTC GGCGTTTTTC (CCGCAAAAAG (TCGCTCCAAG AGCGAGGTTC GTGCCACTCC CACGCTGAGG GGTGGGGTGG GACTATAAAG CTGATATTTC CTGTCCGCCT GCAGAACTCA GGTTGGGCCA CCAACCCGGT GCTTCCTCGC 7 GTTATCCACA CAATAGGTGT AACCCGACAG TIGGGCIGIC CCGCGTTGCT TACCGGATAC TCTAGGTCGT ACATCCAGCA GGTGTCATIC TATICIGGGG CCACAGIAAG ATAAGACCCC ACCCTGGAAG CGGAAGGAAC TGGGACCTTC CGTCTTGAGT GAGCTCTTCC CGGTAATACG GCCATTATGC CGTAAAAAGG (CTCCACCCCT CCCTGCCGCT CTCAGTTCGG CAGTCAAGCC GCCTTCCTTG CGGTAACTAT GCCATTGATA GCATGCTGGG CACTCAAAGG GCCCAGGAAC CCGGTCCTTG GCTCAAGTCA CGAGTTCAGT CTGTAGGTAT (GACATCCATA (GGAGGGGGCA TGCATCGCAT TGTCTGAGTA ACGTAGCGTA ACAGACTCAT CCICCCCCT CGCGGAATAG CCTGTTCCGA GCCCCTTATC ACAATAGCAG TGTTATCGTC GGTATCAGCT CCATAGTCGA GCCAGCAAAA AATGCTCACG (TACGAGG) CAACAAACGG GTTGTTTGCC AAAAATCGAC CGTGCGCTCT TTTTTAGCTG GGCCTGGCGA CCCGACCGCT ATGAGGAAAT 1
TACTCCTTTA A GATTGGGAAG / TGCGGCGAGC ACGCCGCTCG TGAGCAAAAG ACTCGTTTTC GCGCTTTCTC CCCCGAAGAG CCAGCCATCT GCTCGGTAGA CGAGCATCAC GCTCGTAGTG CTTCGAGGGA CCCCGTTCAG GGGCAAGTC GAAGCTCCCT 2081 2161 2241 2321 2401 2481 2561 2641 2721

FIG. 7D

2801	TGGCAGCAGC ACCGTCGTCG	CACTGGTAAC GTGACCATTG	AGGATTAGCA TCCTAATCGT	GAGCGAGGIA	TGTAGGGGT GCTACAGAGT ACATCGGCGA CGATGTCTCA	GCTACAGAGT CGATGTCTCA	TCTTGAAGTG AGAACTTCAC	GTGGCCTAAC CACCGGATTG
2881	TACGGCTACA	CTAGAAGGAC GATCTTCCTG	AGTATTTGGT TCATAAACCA	ATCTGCGCTC TAGACGCGAG	ATCTGCGCTC TGCTGAAGCC AGTTACCTTC TAGACGCGAG ACGACTTCGG TCAATGGAAG		GGAAAAAGG TTGGTAGCTC CCTTTTTCTC AACCATCGAG	TTGGTAGCTC
2961	TTGATCCGGC	AAACAAAGCA TTTGTTTGGT	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA AGCAGCAGAT AAACAAACGT TCGTCGTCTA		TACGCGCAGA AAAAAAGGAT ATGCGCGTCT TTTTTCCTA	AAAAAAGGAT TTTTTCCTA
3041	CTCAAGAAGA GAGTTCTTCT	TCCTTTGATC AGGAAACTAG	TTTTCTACGG AAAAGATGCC	GGTCTGACGC CCAGACTGCG	GGTCTGACGC TCAGTGGAAC CCAGACTGCG AGTCACCTTG		GTTAAGGGAT CAATTCCCTA	TTTGGTCATG AAACCAGTAC
3121	AGATTATCAA TCTAATAGTT	AAAGGATCTT TTTCCTAGAA		CTTTTAAATT GAAAATTTAA	CACCTAGATC CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA GTGGATCTAG GAAAATTTAA TTTTTACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT	TTTTAAATCA AAAATTTAGT	ATCTAAAGTA TAGATTTCAT	TATATGAGTA ATATACTCAT
3201	AACTTGGTCT TTGAACCAGA	GACAGTTACC	AATGCTTAAT TTACGAATTA	CAGTGAGGCA GTCACTCCGT	CCTATCTCAG CGATCTGTCT GGATAGAGTC GCTAGACAGA		ATTTCGTTCA TCCATAGTTG TAAAGCAAGT AGGTATCAAC	TCCATAGTTG
3281	CCTGACTCCC GGACTGAGGG	CGTCGTGTAG	CGTCGTGTAG ATAACTACGA TACGGGAGGG GCAGCACATC TATTGATGCT TG CCCTCCC	TACGGGAGGG FG CCCTCCC	CTTACCATCT GGCCCAGTG CTGCAATGAT GAATGGTAGA CCGGGGTCAC GACGTTACTA	GGCCCAGTG CGGGGTCAC		ACCGCGAGAC TGGCGCTCTG
3361	CCACGCTCAC	CGGCTCCAGA GCCGAGGTCT	TTTATCAGCA ATAAACCAGC AAATAGTCGT TATTTGGTCG	ATAAACCAGC TATTTGGTCG	CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC GTCGGCCTTC CCGGCTCGCG TCTTCACCAG	GCCGAGCGC		CTGCAACTTT
3441	ATCCGCCTCC TAGGCGGAGG	ATCCAGTCTA TAGGTCAGAT	ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTTG TAGGTCAGAT AATTAACAAC GGCCCTTCGA TCTCATTCAT CAAGCGGTCA ATTATCAAAC	CCGGGAAGCT	AGAGTAAGTA TCTCATTCAT	GTTCGCCAGT CAAGCGGTCA	TAATAGTTTG ATTATCAAAC	CGCAACGTTG

FIG. 7E

3521	TTGCCATTGC AACGGTAACG	TACAGGCATC ATGTCCGTAG	GTGGTGTCAC CACCACAGTG		GCTCGTCGTT TGGTATGGCT CGAGCAGCAA ACCATACCGA	TCATTCAGCT AGTAAGTCGA	CCGGTTCCCA GCCCAAGGGT	ACGATCAAGG TGCTAGTTCC
3601	CGAGTTACAT GCTCAATGTA	GATCCCCCAT	GTTGTGCAAA CAACACGTTT	AAAGCGGTTA TTTCGCCAAT	GCTCCTTCGG	TCCTCCGATC AGGAGGCTAG	GTTGTCAGAA CAACAGTCTT	GTAAGTTGGC CATTCAACCG
3681	CGCAGTGTTA	TCACTCATGG AGTGAGTACC	TTATGGCAGC	ACTGCATAAT TGACGTATTA	TCTCTTACTG AGAGAATGAC	TCATGCCATC AGTACGGTAG	CGTAAGATGC TTTTCTGTGA GCATTCTACG AAAAGACACT	TTTTCTGTGA AAAAGACACT
3761	CTGGTGAGTA	CTCAACCAAG	TCATTCTGAG AGTAAGACTC	AATAGTGTAT TTATCACATA	GCGCCACCG AGTTGCTCTT CGCCGCTGGC TCAACGAGAA	AGTTGCTCTT TCAACGAGAA	GCCGGCGTC AATACGGGAT CGGGCCGCAG TTATGCCCTA	AATACGGGAT TTATGCCCTA
3841	AATACCGCGC TTATGGCGCG	CACATAGCAG GTGTATCGTC	CACATAGCAG AACTTTAAAA GTGTATCGTC TTGAAATTTT	GTGCTCATCA	GTGCTCATCA TTGGAAAACG TTCTTCGGGG CACGAGTAGT AACCTTTTGC AAGAAGCCCC	TTCTTCGGGG AAGAAGCCCC	CGAAAACTCT GCTTTTGAGA	CAAGGATCTT GTTCCTAGAA
3921	ACCGCTGTTG TGGCGACAAC	AGATCCAGTT TCTAGGTCAA	CGATGTAACC GCTACATTGG	CACTCGTGCA GTGAGCACGT	CCCAACTGAT GGGTTGACTA	CTTCAGCATC	TITIACITIC ACCAGCGITI AAAAIGAAAG IGGICGCAAA	ACCAGCGTTT TGGTCGCAAA
4001	CTGGGTGAGC	AAAAACAGGA TTTTTGTCCT	AAAAACAGGA AGGCAAAATG TTTTTGTCCT TCCGTTTTAC	CCGCAAAAA GGCGTTTTTT	GGGAATAAGG GCGACACGGA CCCTTATTCC CGCTGTGCCT		AATGTTGAAT TTACAACTTA	ACTCATACTC TGAGTATGAG
4081	TTCCTTTTTC AAGGAAAAG	AATATTATTG TTATAATAAC	AATATTATTG AAGCATTTAT TTATAATAAC TTCGTAAATA	CAGGGTTATT GTCCCAATAA	GTCTCATGAG	CGGATACATA GCCTATGTAT	TTTGAATGTA AAACTTACAT	TTTAGAAAAA AAATCTTTT
4161	TAAACAAATA ATTTGTTTAT	GGGGTTCCGC	GCACATTTCC	CCGAAAAGTG GGCTTTTCAC	CCACCTGACG TCTAAGAAAC GGTGGACTGC AGATTCTTTG	TCTAAGAAAC AGATTCTTTG	CATTATTATC GTAATAATAG	ATGACATTAA TACTGTAATT
4241	CCTATAAAA GGATATTTT	TAGGCGTATC ATCCGCATAG	ACGAGGCCCT TGCTCCGGGA	TTCGTC				

FIG. 7F

FIG. 8

1				TCTGACACAT AGACTGTGTA	
51				GCCGGGAGCA CGGCCCTCGT	
101				TCGGGGCTGG AGCCCCGACC	
151				ACCATATGAA TGGTATACTT	
	Sti	ıI			
201	AAAGCCTAGG TTTCGGATCC			CTACTTCTGG GATGAAGACC	
251				TAAAAAAAT ATTTTTTTA	
301				GAGGGAATTA CTCCCTTAAT	
351				TATGTACATT ATACATGTAA	
401				GATTATTGAC CTAATAACTG	TAGTTATTAA ATCAATAATT
451					TGGAGTTCCG ACCTCAAGGC
501					CCCAACGACC GGGTTGCTGG
551					AACGCCAATA TTGCGGTTAT
601					AAACTGCCCA TTTGACGGGT
651	CTTGGCAGTA GAACCGTCAT	CATCAAGTGT GTAGTTCACA	ATCATATGCC TAGTATACGG	AAGTCCGCCC TTCAGGCGGG	CCTATTGACG GGATAACTGC
701					CATGACCTTA GTACTGGAAT
751					TCGCTATTAC AGCGATAATG
801	CATGGTGATG GTACCACTAC	CGGTTTTGGC	AGTACACCAA TCATGTGGTT	TGGGCGTGGA ACCCGCACCT	TAGCGGTTTG ATCGCCAAAC
851					TGGGAGTTTG ACCCTCAAAC

901	TTTTGGCACC	AAAATCAACG	GGACTTTCCA	AAATGTCGTA	ATAACCCCGC
	AAAACCGTGG	TTTTAGTTGC	CCTGAAAGGT	TTTACAGCAT	TATTGGGGCG
951	CCCGTTGACG	CAAATGGGCG	GTAGGCGTGT	ACGGTGGGAG	GTCTATATAA
	GGGCAACTGC	GTTTACCCGC	CATCCGCACA	TGCCACCCTC	CAGATATATT
1001	GCAGAGCTCG	TTTAGTGAAC	CGTCAGATCG	CCTGGAGACG	CCATCCACGC
	CGTCTCGAGC	AAATCACTTG	GCAGTCTAGC	GGACCTCTGC	GGTAGGTGCG
1051	TGTTTTGACC	TCCATAGAAG	ACACCGGGAC	CGATCCAGCC	TCCGCGGCCG
	ACAAAACTGG	AGGTATCTTC	TGTGGCCCTG	GCTAGGTCGG	AGGCGCCGGC
1101	GGAACGGTGC	ATTGGAACGC	GGATTCCCCG	TGCCAAGAGT	GACGTAAGTA
	CCTTGCCACG	TAACCTTGCG	CCTAAGGGGC	ACGGTTCTCA	CTGCATTCAT
1151	CCGCCTATAG	ACTCTATAGG	CACACCCCTT	TGGCTCTTAT	GCATGCTATA
	GGCGGATATC	TGAGATATCC	GTGTGGGGAA	ACCGAGAATA	CGTACGATAT
1201	CTGTTTTTGG	CTTGGGGCCT	ATACACCCCC	GCTCCTTATG	CTATAGGTGA
	GACAAAAACC	GAACCCCGGA	TATGTGGGGG	CGAGGAATAC	GATATCCACT
1251	TGGTATAGCT	TAGCCTATAG	GTGTGGGTTA	TTGACCATTA	TTGACCACTC
	ACCATATCGA	ATCGGATATC	CACACCCAAT	AACTGGTAAT	AACTGGTGAG
1301	CCCTATTGGT	GACGATACTT	TCCATTACTA	ATCCATAACA	TGGCTCTTTG
	GGGATAACCA	CTGCTATGAA	AGGTAATGAT	TAGGTATTGT	ACCGAGAAAC
1351	CCACAACTAT GGTGTTGATA	CTCTATTGGC GAGATAACCG	TATATGCCAA ATATACGGTT	TACTCTGTCC	TTCAGAGACT AAGTCTCTGA
1401	GACACGGACT	CTGTATTTT	ACAGGATGGG	GTCCATTTAT	TATTTACAAA
	CTGTGCCTGA	GACATAAAAA	TGTCCTACCC	CAGGTAAATA	ATAAATGTTT
1451	TTCACATATA AAGTGTATAT	CAACAACGCC	GTCCCCGTG	CCCGCAGTTI	TTATTAAACA AATAATTTGT
1501	TAGCGTGGGA ATCGCACCCT	TCTCCGACAT AGAGGCTGTA	CTCGGGTACG	TGTTCCGGAC ACAAGGCCTG	ATGGGCTCTT TACCCGAGAA
1551	CTCCGGTAGO	GGCGGAGCTT	CCACATCCGA GGTGTAGGCT	GCCCTGGTCC	CATCCGTCCA GTAGGCAGGT
1601	GCGGCTCATG	GTCGCTCGGC	: AGCTCCTTGC	TCCTAACAGT	GGAGGCCAGA
	CGCCGAGTAC	CAGCGAGCCG	: TCGAGGAACG	AGGATTGTCA	CCTCCGGTCT
1651	CTTAGGCACA GAATCCGTGT	GCACAATGCC CGTGTTACGC	CACCACCACO	AGTGTGCCGC TCACACGGCC	ACAAGGCCGT G TGTTCCGGCA
1701	GGCGGTAGGG CCGCCATCCG	TATGTGTCTC	AAAATGAGC1	CGGAGATTGO CCCTCTAACO	GCTCGCACCT CGAGCGTGGA
1751	GGACGCAGA1 CCTGCGTCT	CCTTCTAAA	A AGGCAGCGGC	AGAAGAAGA TCTTCTTCT	r GCAGGCAGCT A CGTCCGTCGA
1801	GAGTTGTTGT	TATTCTGATAI	A GAGTCAGAGO	G TAACTCCCG	TGCGGTGCTG
	CTCAACAACA	TAAGACTAT	CTCAGTCTCO	C ATTGAGGGC	A ACGCCACGAC
					

1851	TTAACGGTGG AGGGCAGTGT AGTCTGAGCA GTACTCGTTG CTGCCGCGCG AATTGCCACC TCCCGTCACA TCAGACTCGT CATGAGCAAC GACGGCGCGC
1901	CGCCACCAGA CATAATAGCT GACAGACTAA CAGACTGTTC CTTTCCATGG GCGGTGGTCT GTATTATCGA CTGTCTGATT GTCTGACAAG GAAAGGTACC
÷2	M A P EcoRI
1951	GTCTTTTCTG CAGTCACCGT CGTCGACCTA AGAATTCACC ATGGCGCCCA CAGAAAAGAC GTCAGTGGCA GCAGCTGGAT TCTTAAGTGG TACCGCGGGT
2001	I T A Y A Q Q T R G L L G C I I T TCACGGCGTA CGCCCAGCAG ACAAGGGGCC TCCTAGGGTG CATAATCACC AGTGCCGCAT GCGGGTCGTC TGTTCCCCGG AGGATCCCAC GTATTAGTGG
2051	S L T G R D K N Q V E G E V Q I V AGCCTAACTG GCCGGGACAA AAACCAAGTG GAGGGTGAGG TCCAGATTGT TCGGATTGAC CGCCCTGTT TTTGGTTCAC CTCCCACTCC AGGTCTAACA
2101	S T A A Q T F L A T C I N G V C GTCAACTGCT GCCCAAACCT TCCTGGCAAC GTGCATCAAT GGGGTGTGCT CAGTTGAEGA CGGGTTTGGA AGGACCGTTG CACGTAGTTA CCCCACACGA
+2 2151	W T V Y H G A G T R T I A S P K G GGACTGTCTA CCACGGGGCC GGAACGAGGA CCATCGCGTC ACCCAAGGGT CCTGACAGAT GGTGCCCCGG CCTTGCTCCT GGTAGCGCAG TGGGTTCCCA
2201	P V I Q M Y T N V D Q D L V G W P CCTGTCATCC AGATGTATAC CAATGTAGAC CAAGACCTTG TGGGCTGGCC GGACAGTAGG TCTACATATG GTTACATCTG GTTCTGGAAC ACCCGACCGG
2251	A S Q G T R S L T P C T C G S S CGCTTCGCAA GGTACCCGCT CATTGACACC CTGCACTTGC GGCTCCTCGG GCGAAGCGTT CCATGGGCGA GTAACTGTGG GACGTGAACG CCGAGGAGCC
2301	D L Y L V T R H A D V I P V R R R ACCTTTACCT GGTCACGAGG CACGCCGATG TCATTCCCGT GCGCCGGCGG TGGAAATGGA CCAGTGCTCC GTGCGGCTAC AGTAAGGGCA CGCGGCCGCC
2351	G D S R G S L L S P R P I S Y L K GGTGATAGCA GGGGCAGCCT GCTGTCGCCC CGGCCCATTT CCTACTTGAA CCACTATCGT CCCCGTCGGA CGACAGCGGG GCCGGGTAAA GGATGAACTT
	G S S G G P L L C P A G H A V G AGGETECTEG GGGGGTECGE TGTTGTGECE CGCGGGGCAC GCCGTGGGCA TCCGAGGAGC CCCCCAGGCG ACAACACGGG GCGCCCCGTG CGGCACCCGT
+2 2451	I F R A A V C T R G V A K A V D F TATTTAGGGC CGCGGTGTGC ACCCGTGGAG TGGCTAAGGC GGTGGACTTT ATAAATCCCG GCGCCACACG TGGGCACCTC ACCGATTCCG CCACCTGAAA
	I P V E N L E T T M R S P V F T D ATCCTGTGG AGAACCTAGA GACAACCATG AGGTCCCCGG TGTTCACGGA TAGGGACACC TCTTGGATCT CTGTTGGTAC TCCAGGGGCC ACAAGTGCCT

2551	TAACTCCTCT	CCACCAGTAG	TGCCCCAGAG	F Q V CTTCCAGGTG GAAGGTCCAC	GCTCACCTCC
2601	H A P T ATGCTCCCAC TACGAGGGTG	AGGCAGCGGC	K S T I AAAAGCACCA TTTTCGTGGT	V P A AGGTCCCGGC TCCAGGGCCG	TGCATATGCA
2651	A Q G Y GCTCAGGGCT CGAGTCCCGA	ATAAGGTGCT	V L N AGTACTCAAC TCATGAGTTG	PSVA CCCTCTGTTG GGGAGACAAC	CTGCAACACT
+2 2701	GGGCTTTGGT	GCTTACATGT	S K A H CCAAGGCTCA GGTTCCGAGT	G I D TGGGATCGAT ACCCTAGCTA	P N I CCTAACATCA GGATTGTAGT
+2 2751	R T G V GGACCGGGGT CCTGGCCCCA	GAGAACAATT	ACCACTGGCA	S P I T GCCCCATCAC CGGGGTAGTG	GTACTCCACC
2801	TACGGCAAGT	TCCTTGCCGA	G G C CGGCGGGTGC GCCGCCCACG	S G G A TCGGGGGGCG AGCCCCCCGC	CTTATGACAT
+2 2851	AATAATTTGT	GACGAGTGCC	H S T D ACTCCACGGA TGAGGTGCCT	A T S TGCCACATCC ACGGTGTAGG	ATCTTGGGCA
2901		CCTTGACCAA	GCAGAGACTG	A G A R CGGGGGCGAG GCCCCGCTC	ACTGGTTGTG
2951	CTCGCCACCG	CCACCCCTCC	GGGCTCCGTC	T V P I ACTGTGCCCC TGACACGGGG	ATCCCAACAT
3001	CGAGGAGGTT	GCTCTGTCCA	CCACCGGAGA	I P F GATCCCTTTT CTAGGGAAAA	TACGGCAAGG
	A I P L CTATCCCCT GATAGGGGA	CGAAGTAATC	AAGGGGGGA	R H L I GACATCTCAT CTGTAGAGTA	CTTCTGTCAT
3101	TCAAAGAAGA	AGTGCGACGA	ACTCGCCGCA	K L V A AAGCTGGTCG TTCGACCAGC	CATTGGGCAT
+2 3151	CAATGCCGTG	GCCTACTACC	GCGGTCTTGA	V S V CGTGTCCGTC CGCACAGGCAG	ATCCCGACCA
⁺² 3201	GCGGCGATGT	TGTCGTCGTG	GCAACCGATG	A L M T CCCTCATGAC GGGAGTACTG	CGGCTATACC

32		G D F GGCGACTTC CCGCTGAAG	G ACTC	GTGAT	AGACTG	CAAT I	ACGTGT	STCA C	CCAGAC	agt
3:	*2 301	D F S CGATTTCAG GCTAAAGTC	C CTTG	ACCCTA	CCTTCA	CCAT	TGAGACI	AATC P		CCC
3:	+2 351	Q D A AAGATGCTG TTCTACGAG	T CTCC	CGCACT	CAACGT	CGGG	GCAGGA(CTGG (CAGGGGG	AAG
3		P G I CCAGGCATO GGTCCGTAG	T ACAG	ATTTGT	GGCACC	GGGG	GAGCGC	CCCT (CCGCCAT	F GTT CAA
3	+2 451	D S S CGACTCGTC GCTGAGCAC	C GTCC	TCTGTG	AGTGCT	ATGA	CGCAGG	CTGT (GCTTGGT.	ATG
3	+2 501	E L T AGCTCACGO TCGAGTGCO	C CGCC	GAGACT	ACAGTT	AGGC	TACGAG	CGTA (CATGAAC	ACC
3		P G L CCGGGGCTT GGCCCCGA	C CCGT	GTGCCĀ	GGACCA	TCTT	GAATTT	TGGG 1	AGGGCGT	CTT
	+2	T G I StuI		H I 1	A C	н ғ	L S	Q	T K	Q
3	601	TACAGGCC1	C ACTO AG TGAG	ATATAG TATATC	ATGCCC TACGGG	ACTT STGAA	TCTATC AGATAG	CCAG :	ACAAAGC TGTTTCG	AGA TCT
3	+2 651	S G E GTGGGGAGA CACCCCTC	A CCTT	CCTTAC	CTGGT	AGCGT	ACCAAG	CCAC	CGTGTGC	GCT
3	+2 701		A P AG CCCC TC GGGG	TCCCCC	ATCGTO	GGAC	CAGATG	TGGA .	agtgttt	GAT
3	+2 751	R L I TCGCCTCAI AGCGGAGT	AG CCCA	CCCTCC	ATGGG	CCAAC	ACCCCT	GCTA	TACAGAC	TGG
3	+2 801	G A V GCGCTGTT CGCGACAA	CA GAAT	GAAATC	ACCCT	SACGC	ACCCAG	TCAC	CAAATAC	ATC
3	+2 851	M T C ATGACATG TACTGTAC	CA TGTC	GGCCGA	CCTGG	AGGTC	GTCACG	AGCA	CCTGGGT	CCT
3	•2 901	V G CGTTGGCG GCAACCGC	GC GTCC	TGGCTG	CTTTG	GCCGC	GTATTC	CCTG	TCAACA	GCT

3951 	C V V I GCGTGGTCAT CGCACCAGTA	V G R AGTGGGCAGG TCACCCGTCC	V V L S GTCGTCTTGT CAGCAGAACA	CCGGGAAGCC	GGCAATCATA
4001	P D R E CCTGACAGGG GGACTGTCCC	V L Y AAGTCCTCTA TTCAGGAGAT	R E F CCGAGAGTTC GGCTCTCAAG	GATGAGATGG	AAGAGTGCTA
	BamHI	MluI			
4051		CGCGTTAGAG GCGCAATCTC			
4101	GTTGCCAGCC	ATCTGTTGTT	TGCCCCTCCC	CCGTGCCTTC	CTTGACCCTG
	CAACGGTCGG	TAGACAACAA	ACGGGGAGGG	GGCACGGAAG	GAACTGGGAC
4151	GAAGGTGCCA	CTCCCACTGT	CCTTTCCTAA	TAAAATGAGG	AAATTGCATC
	CTTCCACGGT	GAGGGTGACA	GGAAAGGATT	ATTTTACTCC	TTTAACGTAG
4201	GCATTGTCTG	AGTAGGTGTC	ATTCTATTCT	GGGGGGTGGG	GTGGGGCAGG
	CGTAACAGAC	TCATCCACAG	TAAGATAAGA	CCCCCACCC	CACCCGTCC
4251	ACAGCAAGGG	GGAGGATTGG	GAAGACAATA	GCAGGCATGC	TGGGGAGCTC
	TGTCGTTCCC	CCTCCTAACC	CTTCTGTTAT	CGTCCGTACG	ACCCCTCGAG
4301	TTCCGCTTCC	TCGCTCACTG	ACTCGCTGCG	CTCGGTCGTT	CGGCTGCGGC
	AAGGCGAAGG	AGCGAGTGAC	TGAGCGACGC	GAGCCAGCAA	GCCGACGCCG
4351	GAGCGGTATC	AGCTCACTCA	AAGGCGGTAA	TACGGTTATC	CACAGAATCA
	CTCGCCATAG	TCGAGTGAGT	TTCCGCCATT	ATGCCAATAG	GTGTCTTAGT
4401	GGGGATAACG	CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG
	CCCCTATTGC	GTCCTTTCTT	GTACACTCGT	TTTCCGGTCG	TTTTCCGGTC
4451	GAACCGTAAA	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC
	CTTGGCATTT	TTCCGGCGCA	ACGACCGCAA	AAAGGTATCC	GAGGCGGGGG
4501	CTGACGAGCA	TCACAAAAAT	CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG
	GACTGCTCGT	AGTGTTTTA	GCTGCGAGTT	CAGTCTCCAC	CGCTTTGGGC
4551	ACAGGACTAT	AAAGATACCA	GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG
	TGTCCTGATA	TTTCTATGGT	CCGCAAAGGG	GGACCTTCGA	GGGAGCACGC
4601	CTCTCCTGTT GAGAGGACAA	CCGACCCTGC	CGCTTACCGG GCGAATGGCC	ATACCTGTCC TATGGACAGG	GCCTTTCTCC CGGAAAGAGG
4651	CTTCGGGAAG	CGTGGCGCTT	TCTCAATGCT	CACGCTGTAG	GTATCTCAGT
	GAAGCCCTTC	CCACCGCGAA	AGAGTTACGA	GTGCGACATC	CATAGAGTCA
4701	TCGGTGTAGG AGCCACATCC	TCGTTCGCTC AGCAAGCGAG	CAAGCTGGGC	TGTGTGCACG ACACACGTGC	AACCCCCGT TTGGGGGGCA
4751	TCAGCCCGAC	CGCTGCGCT	TATCCGGTAA	CTATCGTCTT	GAGTCCAACC
	AGTCGGGCTC	GCGACGCGA	ATAGGCCATT	GATAGCAGAA	CTCAGGTTGG
4801	CGGTAAGACI GCCATTCTGT	CGACTTATCG	CCACTGGCAG GGTGACCGTC	CAGCCACTGG GTCGGTGACC	TAACAGGATT ATTGTCCTAA

4851	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA	AGTGGTGGCC
	TCGTCTCGCT	CCATACATCC	GCCACGATGT	CTCAAGAACT	TCACCACCGG
4901				TGGTATCTGC ACCATAGACG	
4951	AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC	CGGCAAACAA
	TCGGTCAATG	GAAGCCTTTT	TCTCAACCAT	CGAGAACTAG	GCCGTTTGTT
5001	ACCACCGCTG	GTAGCGGTGG	TTTTTTTGTT	TGCAAGCAGC	AGATTACGCG
	TGGTGGCGAC	CATCGCCACC	AAAAAAACAA	ACGTTCGTCG	TCTAATGCGC
5051				GATCTTTTCT CTAGAAAAGA	
5101	ACGCTCAGTG	GAACGAAAAC	TCACGTTAAG	GGATTTTGGT	CATGAGATTA
	TGCGAGTCAC	CTTGCTTTTG	AGTGCAATTC	CCTAAAACCA	GTACTCTAAT
5151	TCAAAAAGGA	TCTTCACCTA	GATCCTTTTA	TAAAAATTAATT	GAAGTTTTAA
	AGTTTTTCCT	AGAAGTGGAT	CTAGGAAAAT	ATTTTTAATT	CTTCAAAATT
5201				GTCTGACAGT CAGACTGTCA	
5251				GTCTATTTCG CAGATAAAGC	
5301	GTTGCCTGAC	TCCCCGTCGT	GTAGATAACT	ACGATACGGG	AGGGCTTACC
	CAACGGACTG	AGGGGCAGCA	CATCTATTGA	TGCTATGCCC	TCCCGAATGG
5351	ATCTGGCCCC	AGTGCTGCAA	TGATACCGCG	AGACCCACGC	TCACCGGCTC
	TAGACCGGGG	TCACGACGTT	ACTATGGCGC	TCTGGGTGCG	AGTGGCCGAG
5401	CAGATTTATC	AGCAATAAAC	CAGCCAGCCG	GAAGGGCCGA	GCGCAGAAGT
	GTCTAAATAG	TCGTTATTTG	GTCGGTCGGC	CTTCCCGGCT	CGCGTCTTCA
5451	GGTCCTGCAA	CTTTATCCGC	CTCCATCCAG	TCTATTAATT	GTTGCCGGGA
	CCAGGACGTT	GAAATAGGCG	GAGGTAGGTC	AGATAATTAA	CAACGGCCCT
5501	AGCTAGAGTA TCGATCTCAT	AGTAGTTCGC TCATCAAGCG	CAGTTAATAG	TTTGCGCAAC AAACGCGTTG	GTTGTTGCCA CAACAACGGT
5551	TTGCTACAGG	CATCGTGGTG	TCACGCTCGT	CGTTTGGTATA	GGCTTCATTC
	AACGATGTCC	GTAGCACCAC	AGTGCGAGCA	CCAAACCATA	CCGAAGTAAG
5601	AGCTCCGGTT	CCCAACGATO	: AAGGCGAGT1	ACATGATCCC	CCATGTTGTG
	TCGAGGCCAA	GGGTTGCTAG	: TTCCGCTCAJ	TGTACTAGGG	GGTACAACAC
5651	CAAAAAAGCG	GTTAGCTCCT	TCGGTCCTCG	GATCGTTGTC	AGAAGTAAGT
	GTTTTTCGC	CAATCGAGGA	AGCCAGGAGG	GCTAGCAACAC	TCTTCATTCA
5701	TGGCCGCAG1 ACCGGCGTCF	GTTATCACTO	ATGGTTATGG TACCAATACG	G CAGCACTGCA C GTCGTGACGT	TAATTCTCTT ATTAAGAGAA
5751	ACTGTCATGC	CATCCGTAAC	ATGCTTTTC:	r GTGACTGGTG	AGTACTCAAC
	TGACAGTACC	GTAGGCATTC	TACGAAAAGI	A CACTGACCAC	TCATGAGTTG

5801			ACCGAGTTGC TGGCTCAACG	
5851			GCAGAACTTT CGTCTTGAAA	
5901			CTCTCAAGGA GAGAGTTCCT	
5951			TGCACCCAAC ACGTGGGTTG	
6001	CATCTTTTAC GTAGAAAATG		 GAGCAAAAAC CTCGTTTTTG	AGGAAGGCAA TCCTTCCGTT
6051			 CGGAAATGTT GCCTTTACAA	
6101	ACTCTTCCTT TGAGAAGGAA		 TTATCAGGGT AATAGTCCCA	
6151		CATATTTGAA GTATAAACTT	 AAAATAAACA TTTTATTTGT	
6201			 GACGTCTAAG CTGCAGATTC	
6251		TTAACCTATA AATTGGATAT	TATCACGAGG ATAGTGCTCC	

FIG. 9H

FIG. 10

			Metal	laalaTyralaA	LlaGlnGlyTyrLysVaILeuVal
2	AGCTTACA	aaacaaatt	CACCATGG	CTGCATATGCAG	CTCAGGGCTATAAGGTGCTAGTA
	TCGAATGT	TTTGTTTA <i>F</i>	GTGGTACCC	SACGTATACGTO	GAGTCCCGATATTCCACGATCAT
	^		^	^	^
	1 HIND3,	21 NCOI,	30 NDEI,	58 SCAI,	

- LeuAsnProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGly
 62 CTCAACCCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGG
 GAGTTGGGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCC
- IleAspProAsnIleArgThrGlyValArgThrIleThrThrGlySerProIleThrTyr

 ATCGATCCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTAC
 TAGCTAGGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATG

 122 CLAI,
- IleCysAspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeu
 242 ATTTGTGACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGGCACTGTCCTT
 TAAACACTGCTCACGGTGAGGTGCCTACGGTGTAGGAACCCGTAACCGTGACAGGAA
- AspGlnAlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProProGly
 GACCAAGCAGAGACTGCGGGGGCGAGACTGGTTGTGCCCACCGCCACCCCTCCGGGC
 CTGGTTCGTCTCTGACCCCCCGCTCTGACCAACACGAGCGGTGGCGGTGGGGAGGCCCG
 309 ALWN1,
- SerValThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIle
 362 TCCGTCACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATC
 AGGCAGTGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAG
- ProPheTyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeuIlePhe
 422 CCTTTTTACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGAGACATCTCATCTTC
 GGAAAAATGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGAGTAGAAG
- CysHisSerLysLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsn
 482 TGTCATTCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAAT
 ACAGTAAGTTTCTTCTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTA
- AlaValAlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAspValVal
 542 GCCGTGGCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTC
 CGGCACCGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAG

556 SAC2, 566 DRD1,

ValValAlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSexVallleAsp
602 GTCGTGGCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGAC
CAGCACCGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTG

621 BSPH1,

CysAsnThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGlu

FIG. 11A

TGCAATACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTACCTTCACCATTGAG ACGTTATGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGAAGTGGAAGTGGTAACTC

- ThrileThrieuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArg
 722 ACAATCACGCTCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGG
 TGTTAGTGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCC
- GlyLysProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAsp 782 GGGAAGCCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGCATGTTCGAC CCCTTCGGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCGTACAAGCTG

822 BGLI, 839 DRD1,

887 SACI.

GluThrThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAsp
902 GAGACTACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGAC
CTCTGATGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTG

937 SMAI XMAI,

991 STUI,

SerGlnThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrVal
1022 TCCCAGACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTG
AGGGTCTGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCAC

1075 DRA3,

- CysAlaArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArg
 1082 TGCGCTAGGGCTCAAGCCCCTCCCCCATCGTGGAACTGTGGAAGTGTTTGATTCGC
 ACGCGATCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCG
- LeuLysProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsn
 1142 CTCAAGCCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAAT
 GAGTTCGGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTA

1156 NCOI,

- - 1236 BSPH1, 1240 DRD1, 1243 AVA3, 1251 EAG1 XMA3, 1256 DRD1,
- GluValValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyr 1262 GAGGTCGTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCCGCGTAT CTCCAGCAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATA

CysleuSerThrGlyCysValVallleValGlyArgValValLeuSerGlyLysProAla TGCCTGTCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCA ACGGACAGTTGTCCGACGACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGT

1375 NAEI,

IleIleProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGln
ATCATACCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAG
TAGTATGGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACCTTCTCACGAGAGTC

1391 DRD1,

- HisLeuProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeu
 1442 CACTTACCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTC
 GTGAATGGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAG
- GlyLeuLeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsn GGCCTCCTGCAGACCGCGTCCCGTCAGGCAGGGTTATCGCCCCTGCTGTCCAGACCAAC CCGGAGGACGTCTGGCCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTG

1508 PSTI, 1513 TTH3I,

TrpGlnLysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGln
1562 TGGCAAAAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAA
ACCGTTTTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTT

1571 XHOI, 1592 NDEI,

TyrLeuAlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPhe
1622 TACTTGGCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTT
ATGAACCGCCCGAACAGTTGCGACGACCATTGGGGCGGTAACGAAGTAACTACCGAAAA

1649 BSTE2,

ThrAlaAlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGly
1682 ACAGCTGCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGG
TGTCGACGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATAACCCC

1683 ALWN1 PVU2,

GlyTrpValAlaAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGly
1742 GGGTGGGTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGC
CCCACCCACCGACGGGTCGAGCGGCGGGGCCACGGCGATGACGGAAACACCCGCGACCG

1800 ESP1.

LeuAlaGlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAla 1802 TTAGCTGGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCA AATCGACCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGT

1808 KAS1 NARI.

1886 SACI, 1905 BSPH1,

Pr SerThrGluAspLeuValAsnLeuLeuProAlalleLeuSerProGlyAlaLeuVal
1922 CCCTCCACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTA
GGGAGGTGCCTCGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGGCCTCGGGAGCAT

1934 TTH3I,

ValGlyValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaVal
1982 GTCGGCGTGGTCTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTG
CAGCCGCACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCAC

2010 NAEI, 2023 SMAI XMAI,

GlnTrpMetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHis
CAGTGGATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCAC
GTCACCTACTTGGCCGACTATCGGAAGCGGAGGGCCCCCTTGGTACAAAGGGGGTGCGTG

2073 SMAI XMAI, 2099 DRA3,

TyrValProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrVal
TACGTGCCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTA
ATGCACGGCCTCTCGCTACGTCGACGGCGCGCAGTGACGGTATGAGTCGTCGGAGTGACAT

2121 PVU2,

ThrGlnLeuLeuArgArgLeuHisGlnTrplleSerSerGluCysThrThrProCysSer
2162 ACCCAGCTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCC
TGGGTCGAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGG

2165 ALWN1, 2170 MST2,

GlySerTrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThr
2222 GGTTCCTGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACC
CCAAGGACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGG

2226 ECON1,

2291 ESP1, 2306 PVU2, 2316 BAMHI,

- GlyTyrLysGlyValTrpArgGlyAspGlyIleMetHisThrArgCysHisCysGlyAla 2342 GGGTATAAGGGGGTCTGGCGAGGGGACGCATCATGCACACTCGCTGCCACTGTGGAGCT CCCATATTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGA
- GlullethrGlyHisValLysAsnGlyThrMetArgIleValGlyProArgThrCysArg

 2402 GAGATCACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGG

 CTCTAGTGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCC

2431 BSAB1, 2447 AVR2, 2454 SSE83871, 2455 PSTI,

AsnMetTrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeu 2462 AACATGTGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCTT TTGTACACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAA

2686 ASE1, 2503 APAI,

ProAlaProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIle
CCTGCGCCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATACGTGGAGATA
GGACGCGGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTAT

2559 PSTI.

2600 DRA3,

- CysGlnValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPhe
 2642 TGCCAGGTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTT
 ACGGTCCAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAA
- AlaProProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGlu
 CGCGCCCCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAA
 CGCGGGGGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTT
- TyrProValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSer
 TACCCGGTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCC
 ATGGCCCATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGG

 2763 HGIE2, 2815 AAT2,

2856 EAG1 XMA3,

SerProProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAla
TCACCCCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCA
AGTGGGGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGT

2895 BALI, 2909 NHEI,

ThrCysThrAlaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrp
2942 ACTTGCACCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGG
TGAACGTGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACC

2972 ESP1, 2975 SACI,

- ArgGinGluMetGlyGlyAsnileThrArgValGluSerGluAsnLysValValIleLeu 3002 AGGCAGGAGTGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTG TCCGTCCTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGAC
- AspSerPheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGlu
 3062 GACTCCTTCGATCCGCTTGTGGCGGAGGAGGACGAGCGGGAGATCTCCGTACCCGCAGAA
 CTGAGGAAGCTAGGCGAACACCGCCTCCTCCTCGCCCCTCTAGAGGCATGGGCGTCTT

3102 BGL2,

FIG. 11E

3149 ALWN1, 3170 EAG1 XMA3,

AsnProProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGly
3182 AACCCCCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGC
TTGGGGGGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCG

3223 HGIE2, 3235 NCOI,

- CysProLeuProProLysSerProProValProProProArgLysLysArgThrVal
 3242 TGCCGCTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTG
 ACGGCGAAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCAC
- ValleuThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGly
 3302 GTCCTCACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGC
 CAGGAGTGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCG

3338 SACI, 3352 HIND3,

- SerGlyCysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGly
 3422 TCTGGCTGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGG
 AGACCGACGGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGGACCTCCCC

3443 EAM11051,

GluProGlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsn 3482 GAGCCTGGGGATCCTGGCGACGGGTCATGGTCAACGGTCAGTAGTGAGGCCAAC CTCGGACCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTG

3490 BAMHI, 3491 BSAB1, 3493 BSPE1,

AlaGluAspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrPro 3542 GCGGAGGATGTCGTGCTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCG CGCCTCCTACAGCACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGC

3595 DRA3,

CysAlaAlaGluGluGlnLysLeuProlleAsnAlaLeuSerAsnSerLeuLeuArgHis
TGCGCCGCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCAC
ACGCGCGCCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTG

3606 SAC2, 3617 ALWN1, 3661 PFLM1,

HisasnleuValtyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThr 3662 CACAATTTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACA GTGTTAAACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGT

3687 DRA3,

 ${\tt PheAspArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAla}$

TTTGACAGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCA AAACTGTCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGT

AlaAlaSerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrPro 3782 GCGGCGTCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCC CGCCGCAGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGG

3822 HIND3,

ProHisSerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArg
3842 CCACACTCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGA
GGTGTGAGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCT

3881 AAT2, 3896 BGLI,

- LysAlaValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrPro
 3902 AAGGCCGTAACCCACATCAACTCCGTGTGGAAGACCTTCTGGAAGACAATGTAACACCA
 TTCCGGCATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGT
- IleAspThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGly
 3962 ATAGACACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGT
 TATCTGTGATGGTACTACTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCA
- ArgLysProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMet
 4022 CGTAAGCCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATG
 GCATTCGGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGCACGCGCACACGCTTTTCTAC
- AlaLeuTyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPhe
 4082 GCTTTGTACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTC
 CGAAACATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAG
- GlnTyrSerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThr
 4142 CAATACTCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACC
 GTTATGAGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGG

4166 ECORI,

ProMetGlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIle
CCAATGGGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATC
GGTTACCCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAG

4235 DRD1, 4242 ALWN1,

ArgThrGluGluAlalleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlalle
4262 CGTACGGAGGAGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATC
GCATGCCTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAG

4307 BGLI, 4314 BALI,

Lysserleuthrgluargleutyrvalglyglyproleuthrasnserargglygluasn AAGTCCTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAAC TTCAGGGAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTG

4351 APAI,

CysGlyTyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeu 4382 TGCGGCTATCGCAGGTGCCGCGCGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTC

ACGCCGATAGCGTCCACGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAG

ThrCysTyr1leLysAleArgAleAleCysArgAleAleGlyLeuGlnAspCysThrMet
4442 ACTTGCTACATCAAGGCCCGGGCAGCCTGTCGAGCCGCAGGGCTCCAGGACTGCACCATG
TGAACGATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGGTAC

4458 SMAI KMAI.

LeuValCysGlyAspAspLeuValValIleCysGluSerAlaGlyValGlnGluAspAla
4502 CTCGTGTGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCG
GAGCACACCCCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGC

4514 DRD1, 4517 TTH3I,

- AlaSerLeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspPro
 GCGAGCCTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCC
 CGCTCGGACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCTGGGG
- ProGlnProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAla
 4622 CCACAACCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCC
 GGTGTTGGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGG

4643 SACI,

HisAspGlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAla
4682 CACGACGCCGTGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCTCGCG
GTGCTGCCGCGACCTTTCTCCCAGATGATGAGTGGGCACTGGGATGTTGGGGGGAGCGC

4737 NRUI,

- ArgAlaAlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIle
 4742 AGAGCTGCGTGGGAGACAGCAAGACACTCCAGTCAATTCCTGGCTAGGCAACATAATC
 TCTCGACGCACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAG
- MetPheAlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeu 4802 ATGTTTGCCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTT TACAAACGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAA

4812 PFLM1, 4813 DRA3,

IleAlaArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSer
4862 ATAGCCAGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCC
TATCGGTCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGG

4899 BGL2.

IleGluProLeuAspLeuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSer
4922 ATAGAACCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCA
TATCTTGGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGT

4960 NCOI,

LeuHisSerTyrSerProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGly
4982 CTCCACAGTTACTCTCCAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGG
GAGGTGTCAATGAGAGGTCCACTTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAACCC

5021 SPHI, 5041 KPNI,

FIG. 11H

- ValProProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAla 5042 GTACCGCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCC CATGGCGGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGGATCCGAAGACCGG
 - 5070 APAI, 5097 BALI,
- ArgGlyGlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLys
 5102 AGAGGAGGCAGGCCCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAG
 TCTCCTCCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTC
 - 5119 NDEI,
- LeuLysLeuThrProlleAlaAlaAlaGlyGlnLeuAspLeuSerGlyTrpPheThrAla
 CTCAAACTCACTCCAATAGCGGCCGCTGGCCAGCTGGACTTGTCCGGCTGGTTCACGGCT
 GAGTTTGAGTGAGGTTATCGCCGGCGACCGTCGACCTGAACAGGCCGACCAAGTGCCGA
 - 5180 NOTI, 5181 EAG1 XMA3, 5188 BALI, 5192 PVU2,
- GlyTyrSerGlyGlyAspIleTyrHisSerValSerHisAlaArgProArgTrpIleTrp
 5222 GGCTACAGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGG
 CCGATGTCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGGCGACCTAGACC
 - 5246 DRA3,
- PheCysLeuLeuLeuAlaAlaGlyValGlyIleTyrLeuLeuProAsnArgOP

 5282 TTTTGCCTACTCCTGCTTGCTGCAGGGGTAGGCATCTACCTCCTCCCCAACCGATGAAGG
 AAAACGGATGAGGACGAACGACGTCCCCATCCGTAGATGGAGGAGGGGTTGGCTACTTCC
 - 5301 PSTI, 5331 HGIE2,
- - 5378 XBAI, 5390 SALI,

FIG. 111

FIG. 12

2	ACCTTACAAA	MetalaalaTyralaalaGlr CAAAATGGCTGCATATGCAGCTCAG	nGlyTyrLysValLeuValLeuAsn GGCTATAAGGTGCTAGTACTCAAC
-		GTTTTACCGACGTATACGTCGAGTC	
	^	^	^

1 HIND3, 24 NDEI, 52 SCAI,

ProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAsp 62 CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGAT GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA

116 CLAI,

- ProAsnileArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 TACGGCAAGTTCCTTGCCGACGGGGGTGCTCGGGGGGGCGCTTATGACATAATATTTGT
 ATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGCGAATACTGTATTATAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln
 GACGAGTGCCACTCCACGGATGCCACATCCATCTTGGCCACTGCACTGTCCTTGACCAA
 CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCCGTAACCGTGACAGGAACTGGTT
- ThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 362 ACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCCTTTT
 TGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGAAAA
- TyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeuIlePheCysHis
 TACGGCAAGGCTATCCCCTCGAAGTAATCAAGGGGGGGAGACATCTCATCTTCTGTCAT
 ATGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGAGTAGAAGACAGTA
- SerLysLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaVal
 TCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCCGTG
 AGTTTCTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCAC
- AlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAspValValValVal

 542 GCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTG
 CGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

 550 SAC2, 560 DRD1,
- AlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVallleAspCysAsn GCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAAT CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1,

 ${\tt ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle}$

FIG. 14A

- 662 ACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTTCACCATTGAGACAATC
 TGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 722 ACGCTCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGGAAG
 TGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCCCCTTC
- ProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 CCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

881 SACI,

ThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu
902 ACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT
TGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI,

GluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln
GAATTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG
CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC

985 STUI,

ThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAla
1022 ACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCT
TGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACGCGA

1069 DRA3,

- ArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLys
 1082 AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG
 TCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTC
- ProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGluIle
 CCCACCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC
 GGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAG

1150 NCOI,

- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu
 1262 GTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCCGCGTATTGCCTG
 CAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATAACGGAC

QE JC13	
(o) my	OFFICE
BER 2	MARK
PATENT & TRI	Sec.

S rThrGlyCysValVallleValGlyArgValValLeuSerGlyLysProAlaIleIle
1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT

1369 NAEI,

ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu
1382 CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTA
GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTGAAT

1385 DRD1,

- ProtyrileGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu 1442 CCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC GGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
 1502 CTGCAGACCGCGTCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAA
 CACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTT

 1502 PSTI, 1507 TTH3I,
- LysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnTyrLeu
 1562 AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTG
 TTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAAC

 1565 XHOI, 1586 NDEI,
- AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla
 GCGGGCTTGTCAACGCTGCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT
 CGCCCGAACAGTTGCGACGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGA

 1643 BSTE2, 1677 ALWN1 PVU2,
- AlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGlyGlyTrp
 1682 GCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG
 CGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATAACCCCCCCACC
- ValAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyLeuAla
 1742 GTGGCTGCCCAGCTCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTAGCT
 CACCGACGGTCGAGCGGGGGCCCACGGCGATGACGGAAACACCCGGGACCGAATCGA

1794 ESP1,

- GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGlyTyr

 GGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGGTAT

 CCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA

 1802 KAS1 NARI.
- GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer GGCGCGGGCGTGGCGGAGCTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC CCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGG

1878 SACI, 1899 BSPH1,

FIG. 14C

ThrGluAspLeuValAsnLeuLeuProAlaIl LeuSerProGlyAlaLeuValValGly ACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTCGGC TGCCTCGTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGGCCTCGGGAGCATCAGCCG

1928 TTH31,

1922

- ValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGlnTrp 1982 GTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGCAGTGG CACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTCACC
 - 2004 NAEI, 2017 SMAI XMAI,
- MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal 2042 ATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTG TACTTGGCCGACTATCGGAAGCGGAGGGCCCCCTTGGTACAAAGGGGGTGCGTGATGCAC
 - 2067 SMAI XMAI, 2093 DRA3,
- ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln
 CCGGAGAGCGATGCAGCTGCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG
 GGCCTCTCGCTACGTCGACGGGCGCAGTGACGTTAGAGTCGTCGGAGTGACATTGGGTC
 - 2115 PVU2, 2159 ALWN1,
- LeuleuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySer
 2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCC
 GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGG
 - 2164 MST2, 2220 ECON1,
- TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
 2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTA
 ACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGAT
- LysGlyValTrpArgGlyAspGlyIleMetHisThrArgCysHisCysGlyAlaGluIle
 2342 AAGGGGGTCTGGCGAGGGGACGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC
 TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAG
- ThrGlyHisValLysAsnGlyThrMetArglleValGlyProArgThrCysArgAsnMet
 2402 ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCCAGGATCCTGGACGTCCTTGTAC
 - 2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,
- TrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAla
 TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCTTCCTGCG
 ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC
 - 2480 ASE1, 2497 APAI,
 - ${\tt ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln}$

CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATACGTGGAGATAAGGCAGGGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC

2553 PSTI,

ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln
2582 GTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG
CACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC

2594 DRA3.

- ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro 2642 GTCCCATCGCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCACGCGGATGTATCCAAACGCGGG
- ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro
 CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG
 GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC

2757 HGIE2,

ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu 2762 GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG

2809 AAT2,

ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
2022 ACTGATCCCTCCCATATAACAGCAGAGGCCGGCCGGCCGAAGGTTGGCGAGGGGATCACCC
TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCCCCTAGTGGG

2850 EAG1 XMA3,

ProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAlaThrCys
CCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGC
GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG

2889 BALI, 2903 NHEI,

ThralaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGln
2942 ACCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAG
TGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTC

2966 ESP1, 2969 SACI,

- GluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer 3002 GAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG
- PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu 3062 TTCGATCCGCTTGTGGCGGAGGAGGACGAGGGGGGAGATCTCCGTACCCGCAGAAATCCTG AAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCTCTAGAGGCATGGGCGTCTTTAGGAC

3096 BGL2,

ArgLysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro 3122 CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTATAACCCC

GCCTTCAGAGCCTCTAAGCG	ダインののフィクののころなってのの	ACCCGCGCCGGCCTG	DODOTTATA
CCC11CMONOCC1C1WWCCG	GG I CCGGGWCGGGCW	WCCCGCGCCC I (NINIIOOOG

- 3143 ALWN1, 3164 EAG1 XMA3,
- ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro
 3182 CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG
 GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGCC
 - 3217 HGIE2, 3229 NCOI,
- LeuproprolysSer roValproproproArgLysLysArgThrValValLeu
 3242 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTC
 GAAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCACCAGGAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer

 3302 ACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGTGGTCTTCGAAACCGTCGAGG
 - 3332 SACI, 3346 HIND3,
- CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluPro
 3422 TGCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGGGGCCT
 ACGGGGGGGGCTGAGGCTCAGGATAAGGAGGTACGGGGGGGACCTCCCCCTCGGA
 - 3437 EAM11051,
- GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu
 3482 GGGGATCCGGATCTTAGCGACGGGTCATGGTCAACGGTCAGTAGTGAGGCCAACGCGGAG
 CCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCGCCTC
 - 3484 BAMHI, 3485 BSAB1, 3487 BSPE1,
- AspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAla 3542 GATGTCGTGCTCCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGCGCC CTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGG
 - 3589 DRA3, 3600 SAC2,
- AlaGluGluGlnLysLeuProlleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn
 3602 GCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAAT
 CGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTA
 - 3611 ALWN1, 3655 PFLM1,
- LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp 3662 TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTACAGTGTAAACTG
 - 3681 DRA3.
- ArgleuGlnValleuAspSerHisTyrGlnAspValleuLysGluVallysAlaAlaAla 3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCG TCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTCGCCGC

SerLysVallysAlaAsnLeuLeuSerValGluGluAlaCysS rLeuThrProProHis TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCCACAC AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTGTG

3816 HIND3,

SerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAla
3842 TCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAAAGGCC
AGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTCCGG

3875 AAT2, 3890 BGLI,

- ValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp 3902 GTAACCCACATCAACTCCGTGTGGAAAGACCTTCTGGAAGACAATGTAACACCAATAGAC CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGGTCGTAAG
 TGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu
 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATGGCTTTG
 GGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGCACGCGCACACGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr
 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGAAGCTCCCAATGC
 ATGCTGCACCAATGTTTCGAGGGGAACCGCCACTACCCTTCGAGGATGCCTAAGGTTATG
- SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet TCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTAC

4160 ECORI,

GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr 4202 GGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACG CCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGC

4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer
4262 GAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAGTCC
CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
4322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCCTCTTGACGCCG

4345 APAI,

TyrargargCysargAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCys
4382 TATCGCAGGTGCCGCGCGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTCACTTGC
ATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG

Tyrilelysalaargalaalacysargalaalaglyleuglaaspcystarmetleuval Tacatcaaggcccggccagcctgtcgagccgcagggctccaggactgcaccatgctcgtg Atgtagttccgggcccgtcggacagctccggcgtcccgaggtcctgacgtgctacgagcac

4452 SMAI XMAI,

CysGlyAspAspLeuValValIleCysGluSerAlaGlyValGlnGluAspAlaAlaSer
4502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGGGGGGAGC
ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCCCCCC

4508 DRD1, 4511 TTH31,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGln
 4562 CTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCCACAA
 GACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGGACCCCTGGGGGGTGTT
- ProGlutyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp
 4622 CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC
 GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTG

4637 SACI,

GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla GGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCCTCGCGAGAGCT CCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGAGCGCTCTCGA

4731 NRUI.

- AlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe 4742 GCGTGGGAGACAGCAGACACCTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT CGCACCCTCTGTCGTTCTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIleAla GCCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGCC CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCGG

4806 PFLM1, 4807 DRA3,

ArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGlu
4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCCTGCTACTCCATAGAA
TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT

4893 BGL2,

ProLeuAspleuProProllelleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis 4922 CCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG

4954 NCOI,

SerTyrSerProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro 4982 AGTTACTCTCCAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCG TCAATGAGAGGTCCACTTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAACCCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGly

- 5042 CCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGGA
 GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGATCCGAAGACCGGTCTCCT
 - 5064 APAI, 5091 BALI,
- GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys 5102 GGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTCAAA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT
 - 5113 NDEI,
- - 5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,
- SerGlyGlyAspileTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys
 5222 AGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGGTTTTGC
 TCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGGCGACCTAGACCAAAACG
 - 5240 DRA3.
- LeuleuleuAlaAlaGlyValGlyIleTyrLeuLeuProAsnArgOP
 5282 CTACTCCTGCTTGCTGCAGGGGTAGGCATCTACCTCCCCAACCGATGAATAGTCGAC
 GATGAGGACGAACGACGTCCCCATCCGTAGATGGAGGAGGGGTTGGCTACTTATCAGCTG
 - 5295 PSTI, 5336 SALI,

FIG. 141

FIG. 15

- - 1 HIND3, 24 NDEI, 52 SCAI,
- ProserValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAsp 62 CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGAT GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA
 - 116 CLAI,
- ProAsnileArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGGCAAGTTCCTTGCCGACGGCGGTGCTCGGGGGGGCGCTTATGACATAATATTTGT
 ATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCGCGAATACTGTATTATTAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln
 242 GACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGGCACTGTCCTTGACCAA
 CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCCGTAACCGTGACAGGAACTGGTT
- ThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 362 ACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCCTTTT
 TGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGAAAA
- TyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeuIlePheCysHis
 TACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGAGACATCTCATCTTCTGTCAT
 ATGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGAGTAGAAGACAGTA

FIG. 17A

- SerlyslyscysaspGluleuAlaAlaLysleuValAlaLeuGlylleAsnAlaVal TCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCCGTG AGTTTCTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCAC
- AlaTyrTyrArgGlyLeuAspValSerVallleProThrSerGlyAspValValVal 542 GCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGCGATGTTGTCGTCGTG CGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVallleAspCysAsn 602 GCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAAT CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1.

- ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle
 662 ACGTGTGTCACCCAGACAGTCGATTCAGCCTTGACCCTACCTTCACCATTGAGACAATC
 TGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 ACGCTCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGGAAG
 TGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCCCTTC
- ProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 CCAGGCATCTACAGATTTGTGGCACCGGGGAGCGCCCCTCCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

881 SACI.

ThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu
902 ACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT
TGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI,

GluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln
GAATTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG
CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC

985 STUI,

ThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAla ACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCT TGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACGCGA

1069 DRA3,

ArgAlaGlnAlaProPr ProS rTrpAspGlnMetTrpLysCysLeulleArgLeuLys AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG

TCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTC

ProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGluIle CCCACCCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC GGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAG

1150 NCOI,

- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu
 1262 GTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCCGCGTATTGCCTG
 CAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATAACGGAC
- SerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIle
 1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
 AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTĀGTĀT

1369. NAEI,

ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu
1382 CCTGACAGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTA
GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTGAAT

1385 DRD1,

- ProTyrIleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu 1442 CCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC GGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
 1502 CTGCAGACCGCGTCCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAA
 GACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTT

 1502 PSTI, 1507 TTH3I,
- LysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIieGlnTyrLeu
 1562 AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTG
 TTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAAC

1565 XHOI, 1586 NDEI,

AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla 1622 GCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT CGCCCGAACAGTTGCGACGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGA

1643 BSTE2, 1677 ALWN1 PVU2,

AlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGlyGlyTrp
1682 GCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG
CGACAGTGGTCGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATAACCCCCCCACC

ValalaalaGlnLeualaalaPr GlyAlaalaThrAlaPheValGlyAlaGlyLeuala GTGGCTGCCCAGCTCGCCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTAGCT CACCGACGGGTCGAGCGGCGGGGGCCACGGCGATGACGAAACACCCGCGACCGAATCGA

1794 ESP1,

- GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGlyTyr
 1802 GGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGGTAT
 CCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA

 1802 KAS1 NARI,
- GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer

 GGCGCGGGCGTGGCGGAGCTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC

 CCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGG

 ^

1878 SACI, 1899 BSPH1,

ThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGly
1922 ACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTCGGC
TGCCTCCTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGCCTCGGGAGCATCAGCCG

1928 TTH3I,

ValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGlnTrp
1982 GTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGCAGTGG
CACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTCACC

2004 NAEI, 2017 SMAI XMAI,

MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal
2042 ATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTG
TACTTGGCCGACTATCGGAAGCGGAGGGCCCCCTTGGTACAAAGGGGGTGCGTGATGCAC

2067 SMAI XMAI, 2093 DRA3,

ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln
CCGGAGAGCGATGCAGCTGCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG
GGCCTCTCGCTACGTCGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySer
2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCC
GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGG

2164 MST2, 2220 ECON1,

- TrpLeuArgAspIleTxpAspTrpIleCysGluValLeuSerAspPheLysThrTxpLeu
 2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTA
 ACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGAT

2285 ESP1, 2300 PVU2, 2310 BAMHI,

FIG. 17D

6	PEJCI	8
	OFR 2 TOUR	OFFICE
/	φ., Δ .	N. S.
		224

- LysGlyValTzpAzgGlyAspGlyIleMetHisThzAzgCysHisCysGlyAlaGluIle
 2342 AAGGGGTCTGGCGAGGGGACGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC
 TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAG
- ThrGlyHisValLysAsnGlyThrMetArglleValGlyProArgThrCysArgAsnMet
 ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCCTTGTAC

2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,

TrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAla
TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTCCTGCG
ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC

2480 ASE1, 2497 APAI,

ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln
CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATACGTGGAGATAAGGCAG
GGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC

2553 PSTI.

ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln
2582 GTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG
CACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC

2594 DRA3,

- ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro 2642 GTCCCATCGCCCGAATTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGG
- ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro
 CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG
 GGGACGTTCGGGAACGCCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC

2757 HGIE2,

ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu
2762 GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC
CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG

2809 AAT2,

ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
2822 ACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGTTGGCGAGGGATCACCC
TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCCCCTAGTGGG

2850 EAG1 XMA3,

ProserValAlaserserSerAlaserGlnLeuserAlaProserLeuLysAlaThrCys
CCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGC
GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG

2889 BALI, 2903 NHEI,

FIG. 17E

ThrâlaasniisaspserProaspalaGluLeuIleGluAlaasnLeuLeuTrpargGln ACCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAG TGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTC

2966 ESP1, 2969 SACI,

- GlumetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer 3002 GAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG
- PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu
 TTCGATCCGCTTGTGGCGGAGGAGGACGAGCGGGAGATCTCCGTACCCGCAGAAATCCTG
 AAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCCTCTAGAGGCATGGGCGTCTTTAGGAC

3096 BGL2,

- - 3143 ALWN1, 3164 EAG1 XMA3,
- ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro
 3182 CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG
 GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGCC
 - 3217 HGIE2, 3229 NCOI,
- LeuProProProLysSerProProValProProProArgLysLysArgThrValValLeu
 3242 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTC
 GAAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCACCAGGAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
 3302 ACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCGTCGAGG
 - 3332 SACI, 3346 HIND3,
- CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluPro
 3422 TGCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCTGGAGGGGGAGCCT
 ACGGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGGACCTCCCCCTCGGA
 - 3437 EAM11051.
- GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu 3482 GGGGATCCGGATCTTAGCGACGGGTCATGGTCAACGGTCAGTGAGGCCAACGCGGAG CCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCGCCTC
 - 3484 BAMHI, 3485 BSABI, 3487 BSPE1,
- AspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAla 3542 GATGTCGTGCTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGCGCC CTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGG

AlaGluGluGlnLysLeuProlleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn GCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAAT CGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTA

3611 ALWN1, 3655 PFLM1,

LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp 3662 TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG

3681 DRA3.

- ArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAla
 3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCG
 TCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTCGCCGC
- SerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHis
 TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCACAC
 AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTGTG

3816 HIND3.

SerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAla
TCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAAAGGCC
AGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTCCGG

3875 AAT2, 3890 BGLI,

- ValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp
 3902 GTAACCCACATCAACTCCGTGTGGAAGACCTTCTGGAAGACCAATGTAACACCAATAGAC
 CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTCGTAAG
 TGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCAGCATTC
- ProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATGGCTTTG GGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGCACGCGCACACGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr
 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTCCAATAC
 ATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAGGTTATG
- SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet 1142 TCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTAC

4160 ECORI,

GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr 4202 GGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACG CCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGC

FIG. 17G

4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer 4262 GAGGAGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAGTCC CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
4322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCG

4345 APAI,

- TyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCys
 4382 TATCGCAGGTGCCGCGGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTCACTTGC
 ATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG
- TyrlleLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeuVal
 4442 TACATCAAGGCCCGGGCAGCCTGTCGAGCCGCAGGGCTCCAGGACTGCACCATGCTCGTG
 ATGTAGTTCCGGGCCCGTCGGACAGCTCCGAGGTCCTGACGTGGTACGAGCAC

4452 SMAI XMAI,

4508 DRD1, 4511 TTH31,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGln
 4562 CTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCACAA
 GACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGACCCCTGGGGGGTGTT
- ProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp
 4622 CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC
 GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTG

4637 SACI,

GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla 4682 GGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCTCGCGAGAGCT CCGCGACCTTTCTCCCAGATGATGGGGTGGGCACTGGGATGTTGGGGGGAGCGCTCTCGA

4731 NRUI,

- AlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe 4742 GCGTGGGAGACAGCAAGACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT CGCACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIleAla 4802 GCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGCC CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCGG

4806 PFLM1, 4807 DRA3,

ArgAspGlnLeuGluGlnAlaLeuAspCysGluIl TyrGlyAlaCysTyrSerIleGlu

FIG. 17H

OPE OCISE TO SUBSE	Appln. No. 09/721,479 Replacement Sheet
CATENT & TRACE	AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT
	4893 BGL2,
4922	ProleuAspleuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis CCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG
	4954 NCOI,
4982	SerTyrSerProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValProAGTTACTCTCCAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCGTCAATGAGGGTCCACTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAACCCCATGGC
	5015 SPHI, 5035 KPNI,
5042	ProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGlyCCCTTGCGAGCCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGACGGGGCCCGGGCCTCGCAGGCGCGAACCCGGTCTCCT
	5064 APAI, 5091 BALI,
5102	GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys GGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTCAAA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT
	5113 NDEI,
5162	LeuThrProlleAlaAlaAlaGlyGlnLeuAspLeuSerGlyTrpPheThrAlaGlyTyrCTCACTCCAATAGCGGCCGCTGGCCAGCTGGACTTGTCCGGCTGGTTCACGGCTGGCT
	5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,
5222	SerGlyGlyAspIleTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys AGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGGTTTTGC TCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGCGACCTAGACCAAAACG
	5240 DRA3,
5282	LeuleuleuleuAlaAlaGlyValGlyIleTyrLeuleuProAsnArgMetSerThrAss CTACTCCTGCTTGCTGCAGGGGTAGGCATCTACCTCCTCCCCAACCGAATGAGCACGAAT GATGAGGACGAACGACGTCCCCATCCGTAGATGGAGGAGGGGGTTGGCTTACTCGTGCTTA
	5295 PSTI,

ProlysProGlnArgLysThrLysArgAsnThrAsnArgArgProGlnAspValLysPhe
5342 CCTAAACCTCAAAGAAAGACCAAACGTAACACCAACCGGCGGCGCGCAGGACGTCAAGTTC
GGATTTGGAGTTTCTTGTTGCATTGTGGTTGGCCGCCGGCGTCCTGCAGTTCAAG

5380 NOTI, 5381 EAG1 XMA3, 5390 AAT2, 5401 SMAI XMAI,

ProGlyGlyGlyGlnileValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu
5402 CCGGGTGGCGGTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCGCAGGGGCCCTAGATTG
GGCCCACCGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGCGTCCCCGGGATCTAAC

5449 APAI,

- GlyValargalathrarglysthrserGluargSerGlnProArgGlyArgArgGlnPro
 5462 GGTGTGCGCGCGAGAAAGACTTCCGAGCGTCGCAACCTCGAGGTAGACGTCAGCCT
 CCACACGCGCGCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCAGTCGGA
 - 5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,
- IleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro
 5522 ATCCCAAGGCTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGCCC
 TAGGGGTTCCGAGCAGCCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCCATGGGAACCGGG
 - 5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,
- LeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
 5582 CTCTATGGCAATGAGGGCTGCGGGTGGGCGGATGGCTCCTGTCTCCCCGTGGCTCTCGG
 GAGATACCGTTACTCCCGACGCCCCACCCGCCCTACCGAGACAGAGGGGCACCGAGAGCC

5650 APAI, 5698 SALI,

5702 AC TG

FIG. 17J

1 HIND3, 24 NDEI, 52 SCAI,

ProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAsp 62 CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGAT GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA

116 CLAI,

- ProAsnileArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGGCAAGTTCCTTGCCGACGGCGGGTGCTCGGGGGGGCGCTTATGACATAATAATTTGT
 ATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGCGAATACTGTATTATAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln
 242 GACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGGCACTGTCCTTGACCAA
 CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCCGTAACCGTGACAGGAACTGGTT
- ThrValProHisProAsnIleGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 362 ACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCCTTTT
 TGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGAAAA
- TyrGlyLysAlaileProLeuGluValIleLysGlyGlyArgHisLeuIlePheCysHis
 TACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGAGACATCTCATCTTCTGTCAT
 ATGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGAGTAGAAGACAGTA
- SerLysLysLysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlyIleAsnAlaVal
 TCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCCGTG
 AGTTTCTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCAC
- AlaTyrTyrArgGlyLeuAspValSerValIleProThrSerGlyAspValValValVal
 542 GCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTG
 CGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVallleAspCysAsn
GCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAAT
CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1.

FIG. 18A

ThrCysValThrGlnThrValAspPheSerLeuAspPr ThrPheThrIleGluThrIle ACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTACCTTCACCATTGAGACAATC TGCACAGAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGAAGTGGTAACTCTGTTAG

- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 ACGCTCCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGGAAG
 TGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCCTTC
- ProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 CCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

881 SACI.

ThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu
902 ACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT
TGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI,

GluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln
GAATTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG
CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC

985 STUI,

ThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAla
1022 ACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCT
TGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACGCGA

1069 DRA3,

- ArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeuIleArgLeuLys
 1082 AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG
 TCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTC
- ProThrLeuHisGlyProThrProLeuLeuTyrArgLeuGlyAlaValGlnAsnGluIle 1142 CCCACCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC GGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAG

1150 NCOI,

- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu 1262 GTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCCGCGTATTGCCTG

CAGTGCTCGTGGACCACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATAACGGAC

- SerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIle
 1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
 AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT
 - 1369 NAEI,
- ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu
 1382 CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTA
 GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACCTTCTCACGAGAGTCGTGAAT

 1385 DRD1,
- ProTyrlleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu 1442 CCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC GGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
 1502 CTGCAGACCGCGTCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAA
 GACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTT

 1502 PSTI, 1507 TTH3I,
- LysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnTyrLeu
 1562 AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTG
 TTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAAC

 1565 XHOI, 1586 NDEI,
- AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla GCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT CGCCCGAACAGTTGCGACGGACCATTGGGGCCGGTAACGAAGTAACTACCGAAAATGTCGA
 - 1643 BSTE2, 1677 ALWN1 PVU2,
- AlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGlyGlyTrp
 1682 GCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG
 CGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATAACCCCCCCACC
- ValAlaAlaGlnLeuAlaAlaProGlyAlaAlaThrAlaPheValGlyAlaGlyLeuAla 1742 GTGGCTGCCCAGCTCGCCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTAGCT CACCGACGGTCGAGCGGGGGCCACGGCGATGACGGAAACACCCGCGACCGAATCGA
 - 1794 ESP1,
- GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGlyTyr

 1802 GGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGGTAT

 CCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA
 - 1802 KAS1 NARI,
- GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer 1862 GGCGCGGGCGGGGGGGCTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC CCGCCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGG
 - 1878 SACI, 1899 BSPH1,

ThrGluAspleuValAsnleuleuPr AlaileleuSerPr GlyAlaleuValValGly
1922 ACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTCGGC
TGCCTCCTGGACCAGTTAGATGACGGCGGGGAGAGCGGGCCTCGGGAGCATCAGCCG

1928 TTH31,

ValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGlnTrp 1982 GTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGCAGTGG CACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTCACC

2004 NAEI, 2017 SMAI XMAI,

MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal
ATGAACCGGCTGATAGCCTTCGCCTCCGGGGGAACCATGTTTCCCCCACGCACTACGTG
TACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTGCGTGATGCAC

2067 SMAI XMAI, 2093 DRA3,

ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln
2102 CCGGAGAGCGATGCAGCTGCCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG
GGCCTCTCGCTACGTCGACGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySer
2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCC
GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGG

2164 MST2, 2220 ECON1,

- TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
 2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTA
 ACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGAT
- LysGlyValTrpArgGlyAspGlyIleMetHisThrArgCysHisCysGlyAlaGluIle
 2342 AAGGGGGTCTGGCGAGGGGACGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC
 TTCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAG
- ThrGlyHisValLysAsnGlyThrMetArglleValGlyProArgThrCysArgAsnMet
 2402 ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCAGGATCCTGGACGTCCTTGTAC

2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,

TrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAla
TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCTTCCTGCG
ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC

2480 ASE1, 2497 APAI,

FIG. 18D

ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATACGTGGAGATAAGGCAG GGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC

2553 PSTI.

ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln 2582 GTGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG CACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC

2594 DRA3,

- ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro 2642 GTCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGG
- ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro
 CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG
 GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC

2757 HGIE2,

ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu
2762 GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC
CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG

2809 AAT2,

ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
2822 ACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGTTGGCGAGGGGATCACCC
TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCCCCTAGTGGG

2850 EAG1 XMA3,

ProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAlaThrCys
CCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGC
GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG

2889 BALI, 2903 NHEI,

ThrAlaAsnHisAspSerProAspAlaGluLeuIleGluAlaAsnLeuLeuTrpArgGln
2942 ACCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAG
TGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTC

2966 ESP1, 2969 SACI,

- GluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer
 GAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC
 CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG
- PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu
 TTCGATCCGCTTGTGGCGGAGGAGGAGGGGGGGGGAGATCTCCGTACCCGCAGAAATCCTG
 AAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCCTCTAGAGGCATGGGCGTCTTTAGGAC

3096 BGL2,

 ${\tt ArgLysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro}$

CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTATAACCCC GCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGGCAAACCCGCGCCCGGCCTGATATTGGGG

3143 ALWN1, 3164 EAG1 XMA3,

ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro
3182 CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG
GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGC

3217 HGIE2, 3229 NCOI,

- LeuProProProLysSerProProValProProProArgLysLysArgThrValValLeu
 3242 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTC
 GAAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGGAGCCTTCTTCGCCTGCCACCAGGAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
 3302 ACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCGTCGAGG

3332 SACI, 3346 HIND3,

- CysProProAspSerAspAlaGluSerTyrSerSerMetProProLeuGluGlyGluPro
 3422 TGCCCCCCGACTCCGACGCTGAGTCCTATTCCTCCATGCCCCCCCTGGAGGGGGGGCCT
 ACGGGGGGGCTGAGGCTGCGACTCAGGATAAGGAGGTACGGGGGGGACCTCCCCCTCGGA

3437 EAM11051.

GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu
3482 GGGGATCCGGATCTTAGCGACGGGTCATGGTCAACGGTCAGTAGTGAGGCCAACGCGGAG
CCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCGCCTC

3484 BAMHI, 3485 BSAB1, 3487 BSPE1,

AspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAla
3542 GATGTCGTGTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGCGCC
CTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGG

3589 DRA3, 3600 SAC2,

AlaGluGluGlnLysLeuProlleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn GCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAAT CGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTA

3611 ALWN1, 3655 PFLM1,

LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp 3662 TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG

3681 DRA3,

ArgleuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAla
3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCG

ሞ	ርዋርያ	CGTT	נ מרוי	CD	<u> </u>	CT	CCC	ፈዋ:	ልም	CC	70	ሶ ኖ	cc	PA	GAG	: T'	77	ጉጥ(~	B B 6	ጉ ጥ	ጥሮ	CT	 30	cc	
- X '	C I GA			160.0	-	91	LUC	ያልሙ	MΔ	w			u	~~		36.	<u>د د د</u>	- 4 1		·	44		u,	 ےو	_6	

- SerlysVallysAlaAsnleuleuSerValGluGluAlaCysSerleuThrProProHis
 TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCACAC
 AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTGTG
 - 3816 HIND3,
- SerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAla
 3842 TCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAAAGGCC
 AGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTCCGG
 - 3875 AAT2, 3890 BGLI,
- ValthrHislleAsnSerValtrpLysAspLeuLeuGluAspAsnValthrProlleAsp
 3902 GTAACCCACATCAACTCCGTGTGGAAAGACCTTCTGGAAGACAATGTAACACCAATAGAC
 CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTCGTAAG
 TGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu
 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATGGCTTTG
 GGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGCACACGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr
 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTCCAATAC
 ATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAGGTTATG
- SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet 4142 TCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTAC
 - 4160 ECORI,
- GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr 4202 GGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACG CCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGC
 - 4229 DRD1, 4236 ALWN1,
- GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer
 4262 GAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAGTCC
 CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGG
 - 4301 BGLI, 4308 BALI,
- LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
 4322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCGGC
 GAGTGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCG
 - 4345 APAI.
- TyrArgArgCysArgAlaSerGlyValL uThrThrSerCysGlyAsnThrLeuThrCys
 4382 TATCGCAGGTGCCGCGGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTCACTTGC
 ATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG

OPEVO	18
(APR 2 1 200	COFFICE
FIFAT & TRAD	CHARTE

TyrilelysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeuVal 4442 TACATCAAGGCCCGGGCAGCCTGTCGAGCCGCAGGGCTCCAGGACTGCACCATGCTCGTG ATGTAGTTCCGGGCCCGTCGGACACCTCGGCGTCCCGAGGTCCTGACGTGCTACGAGCAC

4452 SMAI XMAI,

CysGlyAspAspLeuValVallleCysGluSerAlaGlyValGlnGluAspAlaAlaSer
4502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGTCCAGGAGGACGCGGGGGAGC
ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCCCCCG

4508 DRD1, 4511 TTH31,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGln
 4562 CTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCCACAA
 GACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGGCCCCCTGGGGGGTGTT
- ProGluTyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp
 4622 CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGTCGCCCACGAC
 GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTG

4637 SACI,

GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla
4682 GGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCCTCGCGAGAGCT
CCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGAGCGCTCTCGA

4731 NRUI,

- AlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe 4742 GCGTGGGAGACAGCAGACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT CGCACCTCTGTCGTTCTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIleAla
 4802 GCCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGCC
 CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCGG

4806 PFLM1, 4807 DRA3,

ArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGlu
4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA
TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT

4893 BGL2,

ProLeuAspleuProProIleIleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis 4922 CCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG

4954 NCOI.

SerTyrSerProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro 4982 AGTTACTCTCCAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCG TCAATGAGAGGTCCACTTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAACCCCATGGC

5015 SPHI, 5035 KPNI,

ProleuargalatrparghisargalaargSerValargalaargLeuLeualaargGly CCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGGA GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGATCCGAAGACCGGTCTCCT

5064 APAI, 5091 BALI,

GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys 5102 GGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTCAAA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT

5113 NDEI,

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGlyAspIleTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys
5222 AGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCGCTGGATCTGGTTTTGC
TCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGGCGACCTAGACCAAAACG

5240 DRA3,

LeuLeuLeuAlaAlaGlyValGlyIleTyrLeuLeuProAsnArgMetSerThrAsn
5282 CTACTCCTGCTGCAGGGGTAGGCATCTACCTCCTCCCAACCGAATGAGCACGAAT
GATGAGGACGAACGACGTCCCCATCCGTAGATGAGGAGGGGTTGGCTTACTCGTGCTTA

5295 PSTI,

ProLysProGlnArgLysThrLysArgAsnThrAsnArgArgProGlnAspValLysPhe CCTAAACCTCAAAGAAAGACCAAACGTAACACCAACCGGCGCCGCGCGAGGACGTCAAGTTC GGATTTGGAGTTTCTTGCTTTTCTGGTTTGCATTGTGGTTGGCCGCCGGCGTCCTGCAGTTCAAG

5380 NOTI, 5381 EAG1 XMA3, 5390 AAT2, 5401 SMAI XMAI,

ProGlyGlyGlnIleValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu
5402 CCGGGTGGCGGTCAGATCGTTGGTGGAGGTTTACTTGTTGCCGCGCAGGGGCCCTAGATTG
GGCCCACCGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGCGTCCCCGGGATCTAAC

5449 APAI,

GlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnPro
5462 GGTGTGCGCGAGGAGAAAGACTTCCGAGCGTCGCAACCTCGAGGTAGACGTCAGCCT
CCACACGCGCGCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCAGTCGGA

5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,

IleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro
5522 ATCCCAAGGCTCGTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGCCC
TAGGGGTTCCGAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGCCCCATGGGAACCGGG

5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,

LeutyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
5582 CTCTATGGCAATGAGGGCTGCGGGTGGGCGGGATGGCTCCCGTGTCTCCCGTGGCTCTCGG
GAGATACCGTTACTCCCGACGCCCCACCCGCCCTACCGAGGACAGAGGGGCACCGAGAGCC

ProSerTrpGlyProThrAspProArgArgArgAerArgAsnLeuGlyLysVallleAsp
5642 CCTAGCTGGGGCCCCACAGACCCCCGGCGTAGGTCGCGCAATTTGGGTAAGGTCATCGAT
GGATCGACCCCGGGGTGTCTGGGGGCCGCATCCAGCGCGTTAAACCCATTCCAGTAGCTA

5650 APAI, 5696 CLAI,

- ThrLeuThrCysGlyPheAlaAspLeuMetGlyTyrIleProLeuValGlyAlaProLeu
 5702 ACCCTTACGTGCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTT
 TGGGAATGCACGCCGAAGCGGCTGGAGTACCCCATGTATGGCGAGCAGCCGCGGGGAGAA
 - 5724 HGIE2, 5750 KAS1 NARI, 5756 ECON1,
- GlyGlyAlaAlaArgAlaLeuAlaHisGlyValArgValLeuGluAspGlyValAsnTyr
 5762 GGAGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAAGACGGCGTGAACTAT
 CCTCCGCGACGGTCCCGGGACCGCGTACCGCAGGCCCAAGACCTTCTGCCGCACTTGATA

5772 BSTXI, 5775 APAI,

AlaThrGlyAsnLeuProGlyCysSerOC AM
5822 GCAACAGGGAACCTTCCTGGTTGCTCTTAATAGTCGAC
CGTTGTCCCTTGGAAGGACCAACGAGAATTATCAGCTG

5854 SALI,

FIG. 18J

FIG. 19

- - 1 HIND3, 24 NDEI, 52 SCAI,
- ProservalalaalaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAsp 62 CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGAT GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA
 - 116 CLAI,
- ProAsnileArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 122 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGGCAAGTTCCTTGCCGACGGCGGGTGCTCGGGGGGCGCTTATGACATAATTTGT
 ATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGCGAATACTGTATTATTAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln
 GACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGGCACTGTCCTTGACCAA
 CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGAACCCGTAACCGTGACAGGAACTGGTT
- AlaGluThrAlaGlyAlaArgLeuValValLeuAlaThrAlaThrProProGlySerVal
 GCAGAGACTGCGGGGGGGAGACTGGTTGTGCTCGCCACCGCCACCCCTCCGGGCTCCGTC
 CGTCTCTGACGCCCCCGCTCTGACCAACACGAGCGGTGGCGGTGGGGAGGCCCGAGGCAG
 303 ALWN1,
- ThrValProHisProAsnileGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 362 ACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGAGAGATCCCTTTT
 TGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGAAAA
- TyrGlyLysAlalleProLeuGluVallleLysGlyGlyArgHisLeullePheCysHis
 TACGGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGGAGACATCTCATCTCTGTCAT
 ATGCCGTTCCGATAGGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGAGTAAGAAGACAGTA

FIG. 21A

	SerlyslyslysCysAspGluLeuAlaAlaLysLeuValAlaLeuGlylleAsnAlaVal
482	TCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCCGT
	AGTTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCAC

AlatyrtyrArgGlyLeuAspValSerValIleProThrSerGlyAspValValValVal

542 GCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGGCGATGTTGTCGTCGTG

CGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVallleAspCysAsn GCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAAT CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1,

- ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle
 662 ACGTGTGTCACCCAGACAGTCGATTCAGCCTTGACCCTACCTTCACCATTGAGACAATC
 TGCACACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 ACGCTCCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGGAAG
 TGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCCTTC
- ProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 CCAGGCATCTACAGATTTGTGGCACCGGGGGGGCCCCCTCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

881 SACI,

ThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu
902 ACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT
TGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI,

GluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln
GAATTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG
CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC

985 STUI,

ThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAla 1022 ACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCT TGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACGCGA

1069 DRA3,

ArgAlaGlnAlaProProProSerTrpAspGlnMetTrpLysCysLeulleArgLeuLys
1082 AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG

TCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTC

- ProthzleuhisGlyProthrProleuleuTyrArgleuGlyAlaValGlnAsnGluIle
 1142 CCCACCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC
 GGGTGGGAGGTACCCGGTTGTGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAG
 - 1150 NCOI,
- - 1230 BSPH1; 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu
 1262 GTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTTGGCCGCTATTGCCTG
 CAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATAACGGAC
- SerThrGlyCysValVallleValGlyArgValValLeuSerGlyLysProAlaIleIle
 1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
 AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT
 - 1369 NAEI,
- ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu
 1382 CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTA
 GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTGAAT

 1385 DRD1,
- ProTyrlleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu 1442 CCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC GGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
 1502 CTGCAGACCGCGTCCGGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAA
 GACGTCTGGCGCAGGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTT

 1502 PSTI, 1507 TTH3I,
- AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla GCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT CGCCCGAACAGTTGCGACGACCATTGGGGCCGTAACGAAGTAACTACCGAAAATGTCGA
 - 1643 BSTE2, 1677 ALWN1 PVU2,
- AlaValThrSerProLeuThrThrSerGlnThrLeuLeuPheAsnIleLeuGlyGlyTrp 1682 GCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG CGACAGTGGTCGGTGATTGGTGATCGGTTTGGGAGAGAGTTGTATAACCCCCCCACC

FIG. 21C

PE	JC136
(agg 2	TOPE TO A STATE A STAT
CATERIT	B TRADEMA

ValalaglaleualaalaproglyalaalathralapheValGlyalaglyLeuala 1742 GTGGCTGCCAGCTCGCCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTTAGCT CACCGACGGTCGAGCGGGGGCCCACGGCGATGACGGAAACACCCGGACCGAATCGA

1794 ESP1,

GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGlyTyr

GGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGGTAT

CCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA

1802 KAS1 NARI,

GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer
1862 GGCGCGGGGGGGGGGGGGCTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC
CCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGG

1878 SACI, 1899 BSPH1,

ThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGly
1922 ACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTCGGC
TGCCTCCTGGACCAGTTAGATGACGGCCGTAGGAGAGCGGCCTCGGGAGCATCAGCCG

1928 TTH3I,

ValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGlnTrp 1982 GTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGCAGTGG CACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTCACC

2004 NAEI, 2017 SMAI XMAI,

MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal
2042 ATGAACCGGCTGATAGCCTTCGCCTCCCGGGGGAACCATGTTTCCCCCACGCACTACGTG
TACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTGCGTGATGCAC

2067 SMAI XMAI, 2093 DRA3,

ProGluserAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln
CCGGAGAGCGATGCAGCTGCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG
GGCCTCTCGCTACGTCGACGGGCGCAGTGACGGTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTrplleSerSerGluCysThrThrProCysSerGlySer
2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCC
GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGG

2164 MST2, 2220 ECON1,

- TrpLeuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
 2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTA
 ACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGAT

2285 ESP1, 2300 PVU2, 2310 BAMHI,

FIG. 21D

- LysGlyValTzpArqGlyAspGlyIleMetHisThrArqCysHisCysGlyAlaGluIle
 2342 AAGGGGGTCTGGCGAGGGGACGGCATCATGCACACTCGCCGCGACTGTGGAGCTGAGATC
 TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAG
- ThrGlyHisValLysAsnGlyThrMetArglleValGlyProArgThrCysArgAsnMet
 2402 ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCCCAGGATCCTGGACGTCCTTGTAC
 - 2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,
- TrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAla
 TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCTTCCTGCG
 ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC
 - 2480 ASE1, 2497 APAI,
- ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln
 CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATACGTGGAGATAAGGCAG
 GGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC
 - 2553 PSTI.
- ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln 2582 GTGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG CACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC
 - 2594 DRA3,
- ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro 2642 GTCCATCGCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAACGCGGG
- ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro
 CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG
 GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC
 - 2757 HGIE2.
- ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu
 2762 GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC
 CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG
 - 2809 AAT2,
- ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
 2822 ACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGTTGGCGAGGGGATCACCC
 TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCCCCTAGTGGG
 - 2850 EAG1 KMA3,
- ProSerValAlaSerSerSerAlaSerGlnLeuSerAlaProSerLeuLysAlaThrCys
 CCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGC
 GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG
 - 2889 BALI, 2903 NHEI,

FIG. 21E

ThralaashiisaspserproaspalagluleuileglualaashleuleuTrparggln 2942 ACCGCTAACCATGACTCCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAG TGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTC

2966 ESP1, 2969 SACI,

- GluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer 3002 GAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAACAAAGTGGTGATTCTGGACTCC CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG
- PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu
 3062 TTCGATCCGCTTGTGGCGGAGGAGGACGAGGAGATCTCCGTACCCGCAGAAATCCTG
 AAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCTCTAGAGGCATGGGCGTCTTTAGGAC

3096 BGL2,

- ArglysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro
 3122 CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGCCGGACTATAACCCC
 GCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCCAAACCCGCGCCGGCCTGATATTGGGG
 - 3143 ALWN1, 3164 EAG1 XMA3,
- ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro
 3182 CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG
 GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGC
 - 3217 HGIE2, 3229 NCOI,
- LeuProProProLysSerProProValProProProArgLysLysArgThrValValLeu
 3242 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTC
 GAAGGTGGAGGTTTCAGGGGAGGACACGGAGGCGTGCTTCTTCGCCTGCCACCAGGAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
 3302 ACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGTCTTCGAAACCGTCGAGG
 - 3332 SACI, 3346 HIND3,
- - 3437 EAM11051,
- GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAlaAsnAlaGlu
 3482 GGGGATCCGGATCTTAGCGACGGTCATGGTCAACGGTCAGTGAGGCCCAACGCGGAG
 CCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCGCCTC
 - 3484 BAMHI, 3485 BSAB1, 3487 BSPE1,
- AspValValCysCysS rMetSerTyrS rTrpThrGlyAlaLeuValThrProCysAla 3542 GATGTCGTGCTGCTCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGCGCC CTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGG

3589 DRA3, 3600 SAC2,

- AlaGluGluGlnLysLeuPr IleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn 3602 GCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAAT CGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTA
 - 3611 ALWN1, 3655 PFLM1,
- LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp
 3662 TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC
 AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG
 - 3681 DRA3,
- ArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAla
 3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCG
 TCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTCGCCGC
- SerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHis
 TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCACAC
 AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTGTG
 - 3816 HIND3.
- SerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAla
 TCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAAAGGCC
 AGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTCCGG
 - 3875 AAT2, 3890 BGLI,
- ValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp 3902 GTAACCCACATCAACTCCGTGTGGAAGACCTTCTGGAAGACAATGTAACACCAATAGAC CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTCGTAAG
 TGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlaArgLeuIleValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATGGCTTTG GGTCGAGCAGAGAGAGAGAGAGAGAGAGAGACCCGCACGCGCACACGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr
 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGAAGCTCCTACGGATTCCAATAC
 ATGCTGCACCAATGTTTCGAGGGGAACCGCCACTACCCTTCGAGGATGCCTAAGGTTATG
- SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet 4142 TCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTAC
 - 4160 ECORI,
- GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr 4202 GGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACG CCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGC

FIG. 21G

4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer GAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAGTCC CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
4322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCG

4345 APAI.

- TyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCys
 4382 TATCGCAGGTGCCGCGCGCGCGTACTGACAACTAGCTGTGGTAACACCCTCACTTGC
 ATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG
- TyrlleLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeuVal
 4442 TACATCAAGGCCCGGGCAGCCTGTCGAGGCCGCAGGGCTCCAGGACTGCACCATGCTCGTG
 ATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGGTACGAGCAC

4452 SMAI XMAI,

CysGlyAspAspLeuValValIleCysGluSerAlaGlyValGlnGluAspAlaAlaSer
4502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGCGAGC
ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCGCTCG

4508 DRD1, 4511 TTH31,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGln
 4562 CTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCACAA
 GACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCTGGGGGGTGTT
- ProGlutyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp
 4622 CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGCTCGCCCACGAC
 GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTG

4637 SACI,

GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla
4682 GGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCCTCGCGAGAGCT
CCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGAGCGCTCTCGA

4731 NRUI.

- AlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe 4742 GCGTGGGAGACAGCAGCACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT CGCACCCTCTGTCGTTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIleAla GCCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGCC CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCGG

4806 PFLM1, 4807 DRA3,

ArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGlu

AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCGGACGATGAGGTATCTT

4893 BGL2,

ProleuAspleuProProllelleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis
4922 CCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC
GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG

4954 NCOI,

SerTyrSerProGlyGluIleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro
4982 AGTTACTCTCCAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCG
TCAATGAGAGGTCCACTTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAACCCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGly
5042 CCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGACCGCTCCCT
GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGCATCCGAAGACCGGTCTCCT

5064 APAI, 5091 BALI,

GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys GGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTCAAA CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT

5113 NDEI,

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGlyAspileTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys
5222 AGCGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGGTTTTGC
TCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGGCGACCTAGACCAAAACG

5240 DRA3,

LeuleuleuAlaAlaGlyValGlyIleTyrLeuleuProAsnArgMetSerThrAsn . 5282 CTACTCTGCTGCAGGGGTAGGCATCTACCTCCCCAACCGAATGAGCACGAAT GATGAGGACGACGACGTCCCCATCCGTAGATGAGGAGGGGTTGGCTTACTCGTGCTTA

5295 PSTI,

5380 NOTI, 5381 EAG1 KMA3, 5390 AAT2, 5401 SMAI KMAI,

ProGlyGlyGlyGln1leValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu
5402 CCGGGTGGCGGTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCGCAGGGGCCCTAGATTG
GGCCCACCGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGCGTCCCCGGGATCTAAC

5449 APAI,

- GlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnPro
 5462 GGTGTGCGCGCGACGAGAAAGACTTCCGAGCGTCGCAACCTCGAGGTAGACGTCAGCCT
 CCACACGCGCGCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCAGTCGGA
 - 5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,
- IleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro
 5522 ATCCCAAGGCTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGCCC
 TAGGGGTTCCGAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCCATGGGAACCGGG
 - 5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,
- LeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
 5582 CTCTATGGCAATGAGGGCTGCGGGTGGGCGGGATGGCTCCTGTCTCCCGTGGCTCTCGG
 GAGATACCGTTACTCCCGACGCCCACCGCCCTACCGAGGACAGAGGGGCACCGAGAGCC
- ProSerTrpGlyProThrAspProArgArgArgSerArgAsnLeuGlyLysVallleAsp

 5642 CCTAGCTGGGGCCCCACAGACCCCCGGCGTAGGTCGCGCAATTTGGGTAAGGTCATCGAT
 GGATCGACCCCGGGGTGTCTGGGGGCCGCATCCAGCGCGTTAAACCCATTCCAGTAGCTA
 - 5650 APAI, 5696 CLAI,
- ThrLeuThrCysGlyPheAlaAspLeuMetGlyTyrIleProLeuValOC AM
 5702 ACCCTTACGTGCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCTAATAGTCGAC
 TGGGAATGCACGCCGAAGCGGCTGGAGTACCCCATGTATGGCGAGCAGATTATCAGCTG
 - 5724 HGIE2, 5755 SALI,

FIG. 21J

- - 1 HIND3, 24 NDEI, 52 SCAI,
- ProSerValAlaAlaThrLeuGlyPheGlyAlaTyrMetSerLysAlaHisGlyIleAsp 62 CCCTCTGTTGCTGCAACACTGGGCTTTGGTGCTTACATGTCCAAGGCTCATGGGATCGAT GGGAGACAACGACGTTGTGACCCGAAACCACGAATGTACAGGTTCCGAGTACCCTAGCTA
 - 116 CLAI,
- ProAsnileArgThrGlyValArgThrIleThrThrGlySerProIleThrTyrSerThr
 CCTAACATCAGGACCGGGGTGAGAACAATTACCACTGGCAGCCCCATCACGTACTCCACC
 GGATTGTAGTCCTGGCCCCACTCTTGTTAATGGTGACCGTCGGGGTAGTGCATGAGGTGG
- TyrGlyLysPheLeuAlaAspGlyGlyCysSerGlyGlyAlaTyrAspIleIleIleCys
 182 TACGGCAAGTTCCTTGCCGACGGCGGGTGCTCGGGGGGGCGCTTATGACATAATTTGT
 ATGCCGTTCAAGGAACGGCTGCCGCCCACGAGCCCCCCGCGAATACTGTATTATTAAACA
- AspGluCysHisSerThrAspAlaThrSerIleLeuGlyIleGlyThrValLeuAspGln
 242 GACGAGTGCCACTCCACGGATGCCACATCCATCTTGGGCATTGGCACTGTCCTTGACCAA
 CTGCTCACGGTGAGGTGCCTACGGTGTAGGTAGGACCCGTAACCGTGACAGGAACTGGTT
- ThrValProHisProAsnileGluGluValAlaLeuSerThrThrGlyGluIleProPhe
 362 ACTGTGCCCCATCCCAACATCGAGGAGGTTGCTCTGTCCACCACCGGAGAGATCCCTTTT
 TGACACGGGGTAGGGTTGTAGCTCCTCCAACGAGACAGGTGGTGGCCTCTCTAGGGAAAA
- TyrGlyLysAlaIleProLeuGluValIleLysGlyGlyArgHisLeuIlePheCysHis
 422 TACGCAAGGCTATCCCCCTCGAAGTAATCAAGGGGGGAGACATCTCATCTTCTGTCAT
 ATGCCGTTCCGATAGGGGGAGCTTCATTAGTTCCCCCCCTCTGTAGAGTAGAAGACAGTA

FIG. 22A

SerlyslyslyscysaspGluleuAlaAlaLysleuValAlaLeuGlyIleAsnAlaVal TCAAAGAAGAAGTGCGACGAACTCGCCGCAAAGCTGGTCGCATTGGGCATCAATGCCGTG AGTTTCTTCACGCTGCTTGAGCGGCGTTTCGACCAGCGTAACCCGTAGTTACGGCAC

AlaTyrTyrArgGlyLeuAspValSerVallleProThrSerGlyAspValValVal
542 GCCTACTACCGCGGTCTTGACGTGTCCGTCATCCCGACCAGCGCGATGTTGTCGTCGTC
CGGATGATGGCGCCAGAACTGCACAGGCAGTAGGGCTGGTCGCCGCTACAACAGCAGCAC

550 SAC2, 560 DRD1,

AlaThrAspAlaLeuMetThrGlyTyrThrGlyAspPheAspSerVallleAspCysAsn
GCAACCGATGCCCTCATGACCGGCTATACCGGCGACTTCGACTCGGTGATAGACTGCAAT
CGTTGGCTACGGGAGTACTGGCCGATATGGCCGCTGAAGCTGAGCCACTATCTGACGTTA

615 BSPH1,

- ThrCysValThrGlnThrValAspPheSerLeuAspProThrPheThrIleGluThrIle
 662 ACGTGTGTCACCCAGACAGTCGATTTCAGCCTTGACCCTACCTTCACCATTGAGACAATC
 TGCACAGTGGGTCTGTCAGCTAAAGTCGGAACTGGGATGGAAGTGGTAACTCTGTTAG
- ThrLeuProGlnAspAlaValSerArgThrGlnArgArgGlyArgThrGlyArgGlyLys
 ACGCTCCCCAAGATGCTGTCTCCCGCACTCAACGTCGGGGCAGGACTGGCAGGGGGAAG
 TGCGAGGGGGTTCTACGACAGAGGGCGTGAGTTGCAGCCCCGTCCTGACCGTCCCCTTC
- ProGlyIleTyrArgPheValAlaProGlyGluArgProSerGlyMetPheAspSerSer
 CCAGGCATCTACAGATTTGTGGCACCGGGGGAGCGCCCCTCCGGCATGTTCGACTCGTCC
 GGTCCGTAGATGTCTAAACACCGTGGCCCCCTCGCGGGAGGCCGTACAAGCTGAGCAGG

816 BGLI, 833 DRD1,

881 SACI,

ThrValArgLeuArgAlaTyrMetAsnThrProGlyLeuProValCysGlnAspHisLeu
902 ACAGTTAGGCTACGAGCGTACATGAACACCCCGGGGCTTCCCGTGTGCCAGGACCATCTT
TGTCAATCCGATGCTCGCATGTACTTGTGGGGCCCCGAAGGGCACACGGTCCTGGTAGAA

931 SMAI XMAI,

GluPheTrpGluGlyValPheThrGlyLeuThrHisIleAspAlaHisPheLeuSerGln 962 GAATTTTGGGAGGGCGTCTTTACAGGCCTCACTCATATAGATGCCCACTTTCTATCCCAG CTTAAAACCCTCCCGCAGAAATGTCCGGAGTGAGTATATCTACGGGTGAAAGATAGGGTC

985 STUI,

ThrLysGlnSerGlyGluAsnLeuProTyrLeuValAlaTyrGlnAlaThrValCysAla 1022 ACAAAGCAGAGTGGGGAGAACCTTCCTTACCTGGTAGCGTACCAAGCCACCGTGTGCGCT TGTTTCGTCTCACCCCTCTTGGAAGGAATGGACCATCGCATGGTTCGGTGGCACACGCGA

1069 DRA3,

ArgAlaGlnAlaProProProS rTrpAspGlnMetTrpLysCysLeulleArgLeuLys AGGGCTCAAGCCCCTCCCCCATCGTGGGACCAGATGTGGAAGTGTTTGATTCGCCTCAAG

TCCCGAGTTCGGGGAGGGGGTAGCACCCTGGTCTACACCTTCACAAACTAAGCGGAGTTC

- Pr ThrleuHisGlyProThrPr LeuLeuTyrArgleuGlyAlaValGlnAsnGluIle
 1142 CCCACCTCCATGGGCCAACACCCCTGCTATACAGACTGGGCGCTGTTCAGAATGAAATC
 GGGTGGGAGGTACCCGGGTTGTGGGGGACGATATGTCTGACCCGCGACAAGTCTTACTTTAG
 - 1150 NCOI.
- - 1230 BSPH1, 1234 DRD1, 1237 AVA3, 1245 EAG1 XMA3, 1250 DRD1,
- ValThrSerThrTrpValLeuValGlyGlyValLeuAlaAlaLeuAlaAlaTyrCysLeu
 1262 GTCACGAGCACCTGGGTGCTCGTTGGCGGCGTCCTGGCTGCTTTGGCCGCGTATTGCCTG
 CAGTGCTCGTGGACCCACGAGCAACCGCCGCAGGACCGACGAAACCGGCGCATAACGGAC
- SerThrGlyCysValValIleValGlyArgValValLeuSerGlyLysProAlaIleIle
 1322 TCAACAGGCTGCGTGGTCATAGTGGGCAGGGTCGTCTTGTCCGGGAAGCCGGCAATCATA
 AGTTGTCCGACGCACCAGTATCACCCGTCCCAGCAGAACAGGCCCTTCGGCCGTTAGTAT
 - 1369 NAEI,

1385 DRD1,

- ProAspArgGluValLeuTyrArgGluPheAspGluMetGluGluCysSerGlnHisLeu
 1382 CCTGACAGGGAAGTCCTCTACCGAGAGTTCGATGAGATGGAAGAGTGCTCTCAGCACTTA
 GGACTGTCCCTTCAGGAGATGGCTCTCAAGCTACTCTACCTTCTCACGAGAGTCGTGAAT
- ProTyrlleGluGlnGlyMetMetLeuAlaGluGlnPheLysGlnLysAlaLeuGlyLeu
 1442 CCGTACATCGAGCAAGGGATGATGCTCGCCGAGCAGTTCAAGCAGAAGGCCCTCGGCCTC
 GGCATGTAGCTCGTTCCCTACTACGAGCGGCTCGTCAAGTTCGTCTTCCGGGAGCCGGAG
- LeuGlnThrAlaSerArgGlnAlaGluValIleAlaProAlaValGlnThrAsnTrpGln
 1502 CTGCAGACCGCTCCGTCAGGCAGAGGTTATCGCCCCTGCTGTCCAGACCAACTGGCAA
 GACGTCTGGCGCAGGCAGTCCGTCTCCAATAGCGGGGACGACAGGTCTGGTTGACCGTT

 1502 PSTI, 1507 TTH31,
- LysLeuGluThrPheTrpAlaLysHisMetTrpAsnPheIleSerGlyIleGlnTyrLeu
 1562 AAACTCGAGACCTTCTGGGCGAAGCATATGTGGAACTTCATCAGTGGGATACAATACTTG
 TTTGAGCTCTGGAAGACCCGCTTCGTATACACCTTGAAGTAGTCACCCTATGTTATGAAC

 1565 XHOI, 1586 NDEI,
- AlaGlyLeuSerThrLeuProGlyAsnProAlaIleAlaSerLeuMetAlaPheThrAla GCGGGCTTGTCAACGCTGCCTGGTAACCCCGCCATTGCTTCATTGATGGCTTTTACAGCT CGCCCGAACAGTTGCGACGGACCATTGGGGCGGTAACGAAGTAACTACCGAAAATGTCGA
 - 1643 BSTE2, 1677 ALWN1 PVU2,
- AlavalthrSerPr LeuthrthrSerGlnthrLeuLeuPheAsnileLeuGlyGlyTrp 1682 GCTGTCACCAGCCCACTAACCACTAGCCAAACCCTCCTCTTCAACATATTGGGGGGGTGG CGACAGTGGTCGGGTGATTGGTGATCGGTTTGGGAGGAGAAGTTGTATAACCCCCCCACC

FIG. 22C

ValalaalaGlnLeualaalaProGlyAlaalaThrAlaPheValGlyAlaGlyL uAla GTGGCTGCCCAGCTCGCCGCCCCCGGTGCCGCTACTGCCTTTGTGGGCGCTGGCTTAGCT CACCGACGGGTCGAGCGGGGGGCCACGGCGATGACGGAAACACCCGCGACCGAATCGA

1794 ESP1,

GlyAlaAlaIleGlySerValGlyLeuGlyLysValLeuIleAspIleLeuAlaGlyTyr
1802 GGCGCCGCCATCGGCAGTGTTGGACTGGGGAAGGTCCTCATAGACATCCTTGCAGGGTAT
CCGCGGCGGTAGCCGTCACAACCTGACCCCTTCCAGGAGTATCTGTAGGAACGTCCCATA

1802 KAS1 NARI.

GlyAlaGlyValAlaGlyAlaLeuValAlaPheLysIleMetSerGlyGluValProSer
GGCGCGGGCGTGGCGGAGCTCTTGTGGCATTCAAGATCATGAGCGGTGAGGTCCCCTCC
CCGCGCCCGCACCGCCCTCGAGAACACCGTAAGTTCTAGTACTCGCCACTCCAGGGGAGG

1878 SACI, 1899 BSPH1,

ThrGluAspLeuValAsnLeuLeuProAlaIleLeuSerProGlyAlaLeuValValGly
1922 ACGGAGGACCTGGTCAATCTACTGCCCGCCATCCTCTCGCCCGGAGCCCTCGTAGTCGGC
TGCCTCCTGGACCAGTTAGATGACGGGCGGTAGGAGAGCGGCCCTCGGGAGCATCAGCCG

1928 TTH3I,

ValValCysAlaAlaIleLeuArgArgHisValGlyProGlyGluGlyAlaValGlnTrp
1982 GTGGTCTGTGCAGCAATACTGCGCCGGCACGTTGGCCCGGGCGAGGGGGCAGTGCAGTGG
CACCAGACACGTCGTTATGACGCGGCCGTGCAACCGGGCCCGCTCCCCCGTCACGTCACC

2004 NAEI, 2017 SMAI XMAI,

MetAsnArgLeuIleAlaPheAlaSerArgGlyAsnHisValSerProThrHisTyrVal 2042 ATGAACCGGCTGATAGCCTTCGCCTCCGGGGGAACCATGTTTCCCCCACGCACTACGTG TACTTGGCCGACTATCGGAAGCGGAGGCCCCCTTGGTACAAAGGGGGTGCGTGATGCAC

2067 SMAI XMAI, 2093 DRA3,

ProGluSerAspAlaAlaAlaArgValThrAlaIleLeuSerSerLeuThrValThrGln
CCGGAGAGCGATGCAGCTGCCGCGTCACTGCCATACTCAGCAGCCTCACTGTAACCCAG
GGCCTCTCGCTACGTCGACGGGCGCAGTGACGTTATGAGTCGTCGGAGTGACATTGGGTC

2115 PVU2, 2159 ALWN1,

LeuLeuArgArgLeuHisGlnTrpIleSerSerGluCysThrThrProCysSerGlySer
2162 CTCCTGAGGCGACTGCACCAGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCC
GAGGACTCCGCTGACGTGGTCACCTATTCGAGCCTCACATGGTGAGGTACGAGGCCAAGG

2164 MST2, 2220 ECON1,

TrpleuArgAspIleTrpAspTrpIleCysGluValLeuSerAspPheLysThrTrpLeu
2222 TGGCTAAGGGACATCTGGGACTGGATATGCGAGGTGTTGAGCGACTTTAAGACCTGGCTA
ACCGATTCCCTGTAGACCCTGACCTATACGCTCCACAACTCGCTGAAATTCTGGACCGAT

2285 ESP1, 2300 PVU2, 2310 BAMHI,

FIG. 22D

LysGlyValtzpAzgGlyAspGlyIleMetHisThrArgCysHisCysGlyAlaGluIle AAGGGGGTCTGGCGAGGGGACGGCATCATGCACACTCGCTGCCACTGTGGAGCTGAGATC TTCCCCCAGACCGCTCCCCTGCCGTAGTACGTGTGAGCGACGGTGACACCTCGACTCTAG

- ThrGlyHisValLysAsnGlyThrMetArglleValGlyProArgThrCysArgAsnMet
 2402 ACTGGACATGTCAAAAACGGGACGATGAGGATCGTCGGTCCTAGGACCTGCAGGAACATG
 TGACCTGTACAGTTTTTGCCCTGCTACTCCTAGCAGCATCCTGGACGTCCTTGTAC
 - 2425 BSAB1, 2441 AVR2, 2448 SSE83871, 2449 PSTI,
- TrpSerGlyThrPheProlleAsnAlaTyrThrThrGlyProCysThrProLeuProAla

 2462 TGGAGTGGGACCTTCCCCATTAATGCCTACACCACGGGCCCCTGTACCCCCCTTCCTGCG

 ACCTCACCCTGGAAGGGGTAATTACGGATGTGGTGCCCGGGGACATGGGGGGAAGGACGC
 - 2480 ASE1, 2497 APAI,
- ProAsnTyrThrPheAlaLeuTrpArgValSerAlaGluGluTyrValGluIleArgGln
 CCGAACTACACGTTCGCGCTATGGAGGGTGTCTGCAGAGGAATACGTGGAGATAAGGCAG
 GGCTTGATGTGCAAGCGCGATACCTCCCACAGACGTCTCCTTATGCACCTCTATTCCGTC
 - 2553 PSTI,
- ValGlyAspPheHisTyrValThrGlyMetThrThrAspAsnLeuLysCysProCysGln 2582 GTGGGGGACTTCCACTACGTGACGGGTATGACTACTGACAATCTTAAATGCCCGTGCCAG CACCCCTGAAGGTGATGCACTGCCCATACTGATGACTGTTAGAATTTACGGGCACGGTC
 - 2594 DRA3,
- ValProSerProGluPhePheThrGluLeuAspGlyValArgLeuHisArgPheAlaPro 2642 GTCCCATCGCCCGAATTTTTCACAGAATTGGACGGGGTGCGCCTACATAGGTTTGCGCCC CAGGGTAGCGGGCTTAAAAAGTGTCTTAACCTGCCCCACGCGGATGTATCCAAAACGCGGG
- ProCysLysProLeuLeuArgGluGluValSerPheArgValGlyLeuHisGluTyrPro 2702 CCCTGCAAGCCCTTGCTGCGGGAGGAGGTATCATTCAGAGTAGGACTCCACGAATACCCG GGGACGTTCGGGAACGACGCCCTCCTCCATAGTAAGTCTCATCCTGAGGTGCTTATGGGC
 - 2757 HGIE2,
- ValGlySerGlnLeuProCysGluProGluProAspValAlaValLeuThrSerMetLeu 2762 GTAGGGTCGCAATTACCTTGCGAGCCCGAACCGGACGTGGCCGTGTTGACGTCCATGCTC CATCCCAGCGTTAATGGAACGCTCGGGCTTGGCCTGCACCGGCACAACTGCAGGTACGAG
 - 2809 AAT2,
- ThrAspProSerHisIleThrAlaGluAlaAlaGlyArgArgLeuAlaArgGlySerPro
 2822 ACTGATCCCTCCCATATAACAGCAGAGGCGGCCGGGCGAAGGTTGGCGAGGGGATCACCC
 TGACTAGGGAGGGTATATTGTCGTCTCCGCCGGCCCGCTTCCAACCGCTCCCCTAGTGGG
 - 2850 EAG1 XMA3,
- ProservalalaserseralaserglnLeuseralaProserLeuLysalaThrCys
 CCCTCTGTGGCCAGCTCCTCGGCTAGCCAGCTATCCGCTCCATCTCTCAAGGCAACTTGC
 GGGAGACACCGGTCGAGGAGCCGATCGGTCGATAGGCGAGGTAGAGAGTTCCGTTGAACG
 - 2889 BALI, 2903 NHEI,

FIG. 22E

Thralaashiisasps rproaspalagluleulleglualaashleuleutrparggin 2942 ACCGCTAACCATGACTCCCTGATGCTGAGCTCATAGAGGCCAACCTCCTATGGAGGCAG TGGCGATTGGTACTGAGGGGACTACGACTCGAGTATCTCCGGTTGGAGGATACCTCCGTC

2966 ESP1, 2969 SACI,

- GluMetGlyGlyAsnIleThrArgValGluSerGluAsnLysValValIleLeuAspSer 3002 GAGATGGGCGGCAACATCACCAGGGTTGAGTCAGAAAACAAAGTGGTGATTCTGGACTCC CTCTACCCGCCGTTGTAGTGGTCCCAACTCAGTCTTTTGTTTCACCACTAAGACCTGAGG
- PheAspProLeuValAlaGluGluAspGluArgGluIleSerValProAlaGluIleLeu
 TTCGATCCGCTTGTGGCGGAGGAGGACGAGGAGATCTCCGTACCCGCAGAAATCCTG
 AAGCTAGGCGAACACCGCCTCCTCCTGCTCGCCCCTCTAGAGGCATGGGCGTCTTTAGGAC

3096 BGL2.

- ArgLysSerArgArgPheAlaGlnAlaLeuProValTrpAlaArgProAspTyrAsnPro
 3122 CGGAAGTCTCGGAGATTCGCCCAGGCCCTGCCCGTTTGGGCGCGGGCCGGACTATAACCCC
 GCCTTCAGAGCCTCTAAGCGGGTCCGGGACGGCCAAACCCGCGCCGGCCTGATATTGGGG
 - 3143 ALWN1, 3164 EAG1 XMA3,
- ProLeuValGluThrTrpLysLysProAspTyrGluProProValValHisGlyCysPro
 3182 CCGCTAGTGGAGACGTGGAAAAAGCCCGACTACGAACCACCTGTGGTCCATGGCTGCCCG
 GGCGATCACCTCTGCACCTTTTTCGGGCTGATGCTTGGTGGACACCAGGTACCGACGGCC
 - 3217 HGIE2, 3229 NCOI,
- LeuProProProLysSerProProValProProProArgLysLysArgThrValValLeu
 3242 CTTCCACCTCCAAAGTCCCCTCCTGTGCCTCCGCCTCGGAAGAAGCGGACGGTGGTCCTC
 GAAGGTGGAGGTTTCAGGGGAGGACACGGAGCCGTCCTTCTTCGCCTGCCACCAGGAG
- ThrGluSerThrLeuSerThrAlaLeuAlaGluLeuAlaThrArgSerPheGlySerSer
 3302 ACTGAATCAACCCTATCTACTGCCTTGGCCGAGCTCGCCACCAGAAGCTTTGGCAGCTCC
 TGACTTAGTTGGGATAGATGACGGAACCGGCTCGAGCGGTGGTCTTCGAAACCGTCGAGG
 - 3332 SACI, 3346 HIND3,
- - 3437 EAM11051,
- GlyAspProAspLeuSerAspGlySerTrpSerThrValSerSerGluAl&AsnAlaGlu 3482 GGGGATCCGGATCTTAGCGACGGGTCATGGTCAACGGTCAGTGAGGCCAACGCGGAG CCCCTAGGCCTAGAATCGCTGCCCAGTACCAGTTGCCAGTCATCACTCCGGTTGCGCCTC
 - 3484 BAMHI, 3485 BSAB1, 3487 BSPE1,
- AspValValCysCysSerMetSerTyrSerTrpThrGlyAlaLeuValThrProCysAla 3542 GATGTCGTGTGCTCCAATGTCTTACTCTTGGACAGGCGCACTCGTCACCCCGTGCGCC CTACAGCACACGACGAGTTACAGAATGAGAACCTGTCCGCGTGAGCAGTGGGGCACGCGG

3589 DRA3, 3600 SAC2,

- AlaGluGluGlnLysLeuProlleAsnAlaLeuSerAsnSerLeuLeuArgHisHisAsn 3602 GCGGAAGAACAGAAACTGCCCATCAATGCACTAAGCAACTCGTTGCTACGTCACCACAAT CGCCTTCTTGTCTTTGACGGGTAGTTACGTGATTCGTTGAGCAACGATGCAGTGGTGTTA
 - 3611 ALWN1, 3655 PFLM1,
- LeuValTyrSerThrThrSerArgSerAlaCysGlnArgGlnLysLysValThrPheAsp 3662 TTGGTGTATTCCACCACCTCACGCAGTGCTTGCCAAAGGCAGAAGAAAGTCACATTTGAC AACCACATAAGGTGGTGGAGTGCGTCACGAACGGTTTCCGTCTTCTTTCAGTGTAAACTG
 - 3681 DRA3,
- ArgLeuGlnValLeuAspSerHisTyrGlnAspValLeuLysGluValLysAlaAlaAla
 3722 AGACTGCAAGTTCTGGACAGCCATTACCAGGACGTACTCAAGGAGGTTAAAGCAGCGGCG
 TCTGACGTTCAAGACCTGTCGGTAATGGTCCTGCATGAGTTCCTCCAATTTCGTCGCCGC
- SerLysValLysAlaAsnLeuLeuSerValGluGluAlaCysSerLeuThrProProHis
 TCAAAAGTGAAGGCTAACTTGCTATCCGTAGAGGAAGCTTGCAGCCTGACGCCCCCACAC
 AGTTTTCACTTCCGATTGAACGATAGGCATCTCCTTCGAACGTCGGACTGCGGGGGTGTG
 - 3816 HIND3,
- SerAlaLysSerLysPheGlyTyrGlyAlaLysAspValArgCysHisAlaArgLysAla

 TCAGCCAAATCCAAGTTTGGTTATGGGGCAAAAGACGTCCGTTGCCATGCCAGAAAGGCC

 AGTCGGTTTAGGTTCAAACCAATACCCCGTTTTCTGCAGGCAACGGTACGGTCTTTCCGG
 - 3875 AAT2, 3890 BGLI,
- ValThrHisIleAsnSerValTrpLysAspLeuLeuGluAspAsnValThrProIleAsp 3902 GTAACCCACATCAACTCCGTGTGGAAAGACCTTCTGGAAGACAATGTAACACCAATAGAC CATTGGGTGTAGTTGAGGCACACCTTTCTGGAAGACCTTCTGTTACATTGTGGTTATCTG
- ThrThrIleMetAlaLysAsnGluValPheCysValGlnProGluLysGlyGlyArgLys^{**}
 3962 ACTACCATCATGGCTAAGAACGAGGTTTTCTGCGTTCAGCCTGAGAAGGGGGGTCGTAAG
 TGATGGTAGTACCGATTCTTGCTCCAAAAGACGCAAGTCGGACTCTTCCCCCCAGCATTC
- ProAlaArgLeuileValPheProAspLeuGlyValArgValCysGluLysMetAlaLeu
 4022 CCAGCTCGTCTCATCGTGTTCCCCGATCTGGGCGTGCGCGTGTGCGAAAAGATGGCTTTG
 GGTCGAGCAGAGTAGCACAAGGGGCTAGACCCGCACGCGCACACGCTTTTCTACCGAAAC
- TyrAspValValThrLysLeuProLeuAlaValMetGlySerSerTyrGlyPheGlnTyr
 4082 TACGACGTGGTTACAAAGCTCCCCTTGGCCGTGATGGGAAGCTCCTACGGATTCCAATAC
 ATGCTGCACCAATGTTTCGAGGGGAACCGGCACTACCCTTCGAGGATGCCTAAGGTTATG
- SerProGlyGlnArgValGluPheLeuValGlnAlaTrpLysSerLysLysThrProMet 4142 TCACCAGGACAGCGGGTTGAATTCCTCGTGCAAGCGTGGAAGTCCAAGAAAACCCCAATG AGTGGTCCTGTCGCCCAACTTAAGGAGCACGTTCGCACCTTCAGGTTCTTTTGGGGTTAC
 - 4160 ECORI,
- GlyPheSerTyrAspThrArgCysPheAspSerThrValThrGluSerAspIleArgThr 4202 GGGTTCTCGTATGATACCCGCTGCTTTGACTCCACAGTCACTGAGAGCGACATCCGTACG CCCAAGAGCATACTATGGGCGACGAAACTGAGGTGTCAGTGACTCTCGCTGTAGGCATGC

FIG. 22G

4229 DRD1, 4236 ALWN1,

GluGluAlaIleTyrGlnCysCysAspLeuAspProGlnAlaArgValAlaIleLysSer GAGGAGGCAATCTACCAATGTTGTGACCTCGACCCCCAAGCCCGCGTGGCCATCAAGTCC CTCCTCCGTTAGATGGTTACAACACTGGAGCTGGGGGTTCGGGCGCACCGGTAGTTCAGG

4301 BGLI, 4308 BALI,

LeuThrGluArgLeuTyrValGlyGlyProLeuThrAsnSerArgGlyGluAsnCysGly
4322 CTCACCGAGAGGCTTTATGTTGGGGGCCCTCTTACCAATTCAAGGGGGGAGAACTGCGGC
GAGTGGCTCTCCGAAATACAACCCCCGGGAGAATGGTTAAGTTCCCCCCTCTTGACGCCG

4345 APAI,

- TyrArgArgCysArgAlaSerGlyValLeuThrThrSerCysGlyAsnThrLeuThrCys
 4382 TATCGCAGGTGCCGCGGAGCGGCGTACTGACAACTAGCTGTGGTAACACCCTCACTTGC
 ATAGCGTCCACGGCGCGCTCGCCGCATGACTGTTGATCGACACCATTGTGGGAGTGAACG
- TyrlleLysAlaArgAlaAlaCysArgAlaAlaGlyLeuGlnAspCysThrMetLeuVal
 4442 TACATCAAGGCCCGGGCAGCCTGTCGAGCCCGCAGGGCTCCAGGACTGCACCATGCTCGTG
 ATGTAGTTCCGGGCCCGTCGGACAGCTCGGCGTCCCGAGGTCCTGACGTGGTACGAGCAC

4452 SMAI XMAI,

CysGlyAspAspLeuValVallleCysGluSerAlaGlyValGlnGluAspAlaAlaSer
4502 TGTGGCGACGACTTAGTCGTTATCTGTGAAAGCGCGGGGGTCCAGGAGGACGCGGGGGGGAGC
ACACCGCTGCTGAATCAGCAATAGACACTTTCGCGCCCCCAGGTCCTCCTGCGCCCCCCG

4508 DRD1, 4511 TTH3I,

- LeuArgAlaPheThrGluAlaMetThrArgTyrSerAlaProProGlyAspProProGln
 4562 CTGAGAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCTGGGGACCCCCCACAA
 GACTCTCGGAAGTGCCTCCGATACTGGTCCATGAGGCGGGGGGACCCCTGGGGGGTGTT
- ProGlutyrAspLeuGluLeuIleThrSerCysSerSerAsnValSerValAlaHisAsp
 4622 CCAGAATACGACTTGGAGCTCATAACATCATGCTCCTCCAACGTGTCAGCCCCACGAC
 GGTCTTATGCTGAACCTCGAGTATTGTAGTACGAGGAGGTTGCACAGTCAGCGGGTGCTG

4637 SACI,

GlyAlaGlyLysArgValTyrTyrLeuThrArgAspProThrThrProLeuAlaArgAla 4682 GGCGCTGGAAAGAGGGTCTACTACCTCACCCGTGACCCTACAACCCCCCTCGCGAGAGCT CCGCGACCTTTCTCCCAGATGATGGAGTGGGCACTGGGATGTTGGGGGGAGCGCTCTCGA

4731 NRUI,

- AlaTrpGluThrAlaArgHisThrProValAsnSerTrpLeuGlyAsnIleIleMetPhe 4742 GCGTGGGAGACAGCAAGACACTCCAGTCAATTCCTGGCTAGGCAACATAATCATGTTT CGCACCCTCTGTCGTTCTGTGTGAGGTCAGTTAAGGACCGATCCGTTGTATTAGTACAAA
- AlaProThrLeuTrpAlaArgMetIleLeuMetThrHisPhePheSerValLeuIleAla GCCCCACACTGTGGGCGAGGATGATACTGATGACCCATTTCTTTAGCGTCCTTATAGCC CGGGGGTGTGACACCCGCTCCTACTATGACTACTGGGTAAAGAAATCGCAGGAATATCGG

4806 PFLM1, 4807 DRA3,

ArgAspGlnLeuGluGlnAlaLeuAspCysGluIleTyrGlyAlaCysTyrSerIleGlu

- 4862 AGGGACCAGCTTGAACAGGCCCTCGATTGCGAGATCTACGGGGCCTGCTACTCCATAGAA TCCCTGGTCGAACTTGTCCGGGAGCTAACGCTCTAGATGCCCCCGGACGATGAGGTATCTT
- ProleuAspleuProProllelleGlnArgLeuHisGlyLeuSerAlaPheSerLeuHis 4922 CCACTGGATCTACCTCCAATCATTCAAAGACTCCATGGCCTCAGCGCATTTTCACTCCAC GGTGACCTAGATGGAGGTTAGTAAGTTTCTGAGGTACCGGAGTCGCGTAAAAGTGAGGTG

4954 NCOI,

SerTyrSerProGlyGlulleAsnArgValAlaAlaCysLeuArgLysLeuGlyValPro 4982 AGTTACTCCAGGTGAAATCAATAGGGTGGCCGCATGCCTCAGAAAACTTGGGGTACCG TCAATGAGAGGTCCACTTTAGTTATCCCACCGGCGTACGGAGTCTTTTGAACCCCATGGC

5015 SPHI, 5035 KPNI,

ProLeuArgAlaTrpArgHisArgAlaArgSerValArgAlaArgLeuLeuAlaArgGly
CCCTTGCGAGCTTGGAGACACCGGGCCCGGAGCGTCCGCGCTAGGCTTCTGGCCAGAGGA
GGGAACGCTCGAACCTCTGTGGCCCGGGCCTCGCAGGCGCGATCCGAAGACCGGTCTCCT

5064 APAI, 5091 BALI,

GlyArgAlaAlaIleCysGlyLysTyrLeuPheAsnTrpAlaValArgThrLysLeuLys
5102 GGCAGGGCTGCCATATGTGGCAAGTACCTCTTCAACTGGGCAGTAAGAACAAAGCTCAAA
CCGTCCCGACGGTATACACCGTTCATGGAGAAGTTGACCCGTCATTCTTGTTTCGAGTTT

5113 NDEI.

5174 NOTI, 5175 EAG1 XMA3, 5182 BALI, 5186 PVU2,

SerGlyGlyAsplleTyrHisSerValSerHisAlaArgProArgTrpIleTrpPheCys
5222 AGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCGCTGGATCTGGTTTTGC
TCGCCCCCTCTGTAAATAGTGTCGCACAGAGTACGGGCCGGGCCGACCTAGACCAAAACG

5240 DRA3,

LeuleuleuAlaAlaGlyValGlyIleTyrLeuleuProAsnArgMetSerThrAsn CTACTCCTGCTTGCTGCAGGGGTAGGCATCTACCTCCCCAACCGAATGAGCACGAATGAGGACGACGACGCTCCCCATCCGTAGATGGAGGAGGGGTTGGCTTACTCGTGCTTA

5295 PSTI.

5380 NOTI, 5381 EAG1 XMA3, 5390 AAT2, 5401 SMAI XMAI,

ProGlyGlyGlyGlnIleValGlyGlyValTyrLeuLeuProArgArgGlyProArgLeu
5402 CCGGGTGGCGGTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCGCAGGGGCCCTAGATTG
GGCCCACCGCCAGTCTAGCAACCACCTCAAATGAACAACGGCGCGTCCCCGGGATCTAAC

5449 APAI,

- GlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnPro
 5462 GGTGTGCGCGGACGAGAAAGACTTCCGAGCGGTCGCAACCTCGAGGTAGACGTCAGCCT
 CCACACGCGCGCTGCTCTTTCTGAAGGCTCGCCAGCGTTGGAGCTCCATCTGCAGTCGGA
 - 5467 BSSH2, 5478 XMNI, 5502 XHOI, 5511 AAT2,
- IleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro
 5522 ATCCCAAGGCTCGTCGGCCCGAGGGCAGGACCTGGGCTCAGCCCGGGTACCCTTGGCCC
 TAGGGGTTCCGAGCAGCCGGGCTCCCGTCCTGGACCCGAGTCGGGCCCATGGGAACCGGG
 - 5548 ALWN1, 5558 ESP1, 5564 SMAI XMAI, 5568 KPNI,
- LeuTyrGlyAsnGluGlyCysGlyTrpAlaGlyTrpLeuLeuSerProArgGlySerArg
 5582 CTCTATGGCAATGAGGCTGCGGGTGGGCGGGATGGCTCCTGTCTCCCGTGGCTCTCGG
 GAGATACCGTTACTCCCGACGCCCCACCCGCCCTACCGAGGACAGAGGGCCACCGAGAGCC
- ProSerTrpGlyProThrAspProArgArgArgSerArgAsnLeuGlyLysValIleAsp

 5642 CCTAGCTGGGGCCCCACAGACCCCCGGCGTAGGTCGCGCAATTTGGGTAAGGTCATCGAT
 GGATCGACCCCGGGGTGTCTGGGGGCCGCATCCAGCGCGTTAAACCCATTCCAGTAGCTA
 ^
 - 5650 APAI, 5696 CLAI,
- ThrLeuThrCysGlyPheAlaAspLeuMetGlyTyrIleProLeuValGlyAlaProLeu
 5702 ACCCTTACGTGCGGCTTCGCCGACCTCATGGGGTACATACCGCTCGTCGGCGCCCCTCTT
 TGGGAATGCACGCCGAAGCGGCTGGAGTACCCCATGTATGGCGAGCAGCCGCGGGGAGAA
 - 5724 HGIE2, 5750 KAS1 NARI, 5756 ECON1,
- GlyGlyAlaAlaArgAlaOC AM 5762 GGAGGCGCTGCCAGGGCCTAATAGTCGAC CCTCCGCGACGGTCCCGGATTATCAGCTG

5785 SALI,

FIG. 22J

FIG. 23