- Lemma: Let $\phi_1, \phi_2, ..., \phi_n, \psi$ be propositional logic formulae. $\phi_1, \phi_2, ..., \phi_n \models \psi$ iff $\models \phi_1 \implies (\phi_2 \implies ... (\phi_n \implies \psi))$.
- **Validity**: Let ϕ be a propositional logic formula. ϕ is **valid** if $\models \phi$.
- Lemma: A clause $D = L_1 \vee L_2 \vee ... \vee L_m$ is **valid** iff there is a propositional atom p such that L_i is p and L_j is $\neg p$ for some $1 \le i, j \le m$.
- **Satisfiability**: Let ϕ be a propositional logic formula. ϕ is **satisfiable** if it evaluates to T under some valuation.
- Proposition: Let ϕ be a propositional logic formula. ϕ is satisfiable iff $\neg \phi$ is not valid.
- **Conjunctive normal form (CNF)**: a formula *C* is in *conjunctive normal form (CNF)* has the following form:
 - Literal: $L ::== p | \neg p$
 - Clause: $D ::== L|L \vee D$
 - Formula: $C ::== D|D \wedge C$
- From truth table to CNF:
 - For each line l where ϕ evaluates to F, construct a clause ψ_l as $\psi_l = L_{l,1} \vee L_{l,2} \vee ... \vee L_{l,n}$, where $L_{l,i} = \neg p_i$ if p_j is T; otherwise, $L_{l,i} = p_i$.
 - Then $\phi \equiv \psi_1 \wedge \psi_2 \wedge ... \wedge \psi_m$ where ψ are constructed for every line evaluating ϕ to F.
- Given a propositional logic formula in CNF, we can check the validity of the formula in *linear* time.
- Any propositional logic formula can be transformed to CNF by three steps:
 - Remove every implications via $\phi \implies \psi \equiv \neg \phi \lor \psi$.
 - Push every negation to literals via De Morgan's laws.
 - Apply law of distribution.
- Algorithm for checking the satisfiability of a propositional logic formula:
 - Compute a CNF formula ψ such that $\psi = \neg \phi$.
 - Check the validity of ψ .
 - Return ϕ is satisfiable if ψ is not valid; otherwise, ϕ is unsatisfiable.
- Given a propositional logic formula in CNF, it is easy to check its validity, but hard to check its satisfiability.
- **Horn formula**: a propositional logic formula *H* of the following form:
 - \circ $P ::== \bot | \top | p$
 - \circ $A ::== P|P \wedge A$
 - Horn clause: $C :== A \implies P$

- $\circ \ \ H ::== C|C \wedge H$
- Algorithm for checking the satisfiability of a Horn formula ϕ :
 - Mark T if it occurs in ϕ .
 - If there is a Horn clause $P_1 \wedge P_2 \wedge ... \wedge P_n \implies Q$ in ϕ s.t. all P_i for $1 \le i \le n$ are marked, then mark Q.
 - Return ϕ is unsatisfiable if \bot is marked; otherwise, ϕ is satisfiable.
- Equisatisfiability: ϕ and ψ are equisatisfiable if ϕ is satisfiable iff ψ is satisfiable.
- **Tseitin transformation**: For every propositional logic formula ϕ , there is a propositional logic formula ψ in CNF s.t. ϕ and ψ are *equisatisfiable*.