

NCKU Programming Contest Training Course Course 14 2010/07/02

Tsung-Wei Huang (electron)

twhuang@eda.csie.ncku.edu.tw

http://eda.csie.ncku.edu.tw/~twhuang/2010_07_02.rar

Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

Outline

Shortest Path

- Key technique: *relaxation*
 - Maintain upper bound d[v] on $\delta(s,v)$:

```
Relax(u,v,w) {
   if (d[v] > d[u]+w) then d[v]=d[u]+w;
}
```


Bellman Ford

```
BellmanFord()
                                        Initialize d[], which
   for each v \in V
                                       will converge to
      d[v] = \infty;
                                        shortest-path value \delta
   d[s] = 0;
   for i=1 to |V|-1
                                       Relaxation:
      for each edge (u,v) \in E
                                       Make |V|-1 passes,
         Relax(u,v, w(u,v));
                                       relaxing each edge
                                       Test for solution:
   for each edge (u,v) \in E
                                       have we converged yet?
      if (d[v] > d[u] + w(u,v))
                                        Ie, ∃ negative cycle?
            return "no solution";
```

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

Bellman Ford

- Relax function: $d(v) \le d(u) + w(u, v)$
- After finding the shortest path...

$$d(u) + w(u, v) >= d(v)$$
?

Difference Constraint

Given:

$$X1 - X2 \le 0$$

$$X1 - X5 \le -1$$

$$X2 - X5 \le 1$$

$$X3 - X1 \le 5$$

$$X4 - X1 \le 4$$

$$X4 - X3 \le -1$$

$$X5 - X3 \le -3$$

$$X5 - X4 \le -3$$

Find:

A feasible solution of X1, X2, ..., X5

Difference Constraint

Difference Constraint

PKU-1201

PKU-2983

Outline

Dijkstra

• Find shortest path from s to t.

IBM. event sponsor

delmin

Dijkstra

PKU-1724

Outline

A* Search

- 1. DFS-based searching algorithm
- 2. Estimation function (the optimal value) for prune

Minimum Vertex Cover acm International Collegiate Programming Confession Sponsor

UVA-10160

K-shortest Path

Non-Simple: PKU-2449

Simple: SGU-145

