1	1.	A method comprising:	
2		providing at least two wireless transceiver interfaces; and	
3		disabling one wireless transceiver interface while another wireless	
4	transceiver i	nterface is conducting communication.	
1	2.	The method of claim 1, including:	
2		detecting activity signals from said at least two wireless transceiver	
3	interfaces;		
4		assigning a priority to each said wireless transceiver interface;	
5		tracking a potential communication associated with each said wireless	
6	transceiver interface;		
7		arbitrating control of communication between said at least two wireless	
8	transceiver interfaces based on the priority and the potential communication; and		
9		selectively energizing each said wireless transceiver interface based on the	
10	control of co	ommunication.	
1	3.	The method of claim 2, including:	
2		determining the type of each said wireless transceiver interface to mitigate	
3	cross-interfe	rence between said at least two wireless transceiver interfaces;	
4		deriving device characteristics and priority information from the priority	
5	and the type	of each said wireless transceiver interface; and	
6		sending said device characteristics and priority information to each said	
7	wireless tran	sceiver interface.	
1	4.	The method of claim 3, wherein assigning said priority including	
2	nrioritizino e	each said wireless transceiver interface based on a first criterion indicative of	

1

2

3

- 3 an overhead associated with said potential communication for each said wireless
- 4 transceiver interface.
- 5. The method of claim 3, wherein assigning said priority including prioritizing each said wireless transceiver interface based on a second criterion indicative of an amount of data associated with said potential communication for each said wireless transceiver interface.
- 1 6. The method of claim 3, wherein assigning said priority including
 2 prioritizing each said wireless transceiver interface based on a third criterion indicative of
 3 a power consumption associated with said potential communication for each said wireless
 4 transceiver interface.
 - 7. The method of claim 3, including:

 querying to acquire a channel lock for the control of communication; and
 providing ownership of the channel lock to one of the at least two wireless
 transceiver interfaces based on the device characteristics and priority information.
- 1 8. The method of claim 7, including:
 2 in response to an indication, gaining ownership of the channel lock; and
 3 opening a communication channel for a communication session associated
 4 with said one of the at least two active wireless transceiver interfaces.
- 1 9. The method of claim 8, including releasing the ownership of the channel lock when the communication session is finished.

1	10.	The method of claim 9, including transferring the ownership of the	
2	channel lock to another one of the at least two active wireless transceiver interfaces whe		
3	said communication channel becomes available for another communication session		
4	through time	slicing.	
1	11.	An apparatus comprising:	
2		a first communication interface corresponding to a first wireless device;	
3		a second communication interface corresponding to a second wireless	
4	device; and		
5		a module operably coupled to the first and second communication	
6	interfaces to disable communication between the first communication interface and said		
7	first wireless device while the second communication interface is conducting		
8	communicati	ion for said second wireless device.	
1	12.	The apparatus of claim 11, wherein said first communication interface to	
2	provide a firs	st activity signal, said second communication interface to provide a second	
3	activity signa	al, and said module to:	
4		detect the first and second activity signals, assign a priority to each said	
5	active wireless device, track a potential communication associated with each said		
6	communication interface, and to arbitrate control of communication between the first an		
7	second communication interfaces based on the priority and the potential communication		
8	corresponding to said first and second wireless devices; and		
9		selectively energize the first and second communication interfaces based	
10	on the comm	nunication protocol to mitigate cross-interference between said first and	

second wireless devices.

1	13.	The apparatus of claim 12, wherein said module to:	
2		determine the type of each said wireless device to mitigate cross-	
3	interference be	etween said first and second wireless devices;	
4		derive device characteristics and priority information from the priority and	
5	the type of each	ch said wireless device; and	
6		send said device characteristics and priority information to each said	
7	communication	on interface.	
1	14.	The apparatus of claim 13, wherein each said communication interface to:	
2		query said module to acquire a channel lock for the control of	
3	communication;		
4		in response to an indication from said module, gain ownership of the	
5	channel lock;		
6		open a communication channel for a communication session; and	
7		release the ownership of the channel lock when the communication	
8	session is fini	shed.	
1	15.	The apparatus of claim 14, wherein said module to:	
2		provide ownership of the channel lock to one of the first and second	
3	wireless devi	ces based on the device type and priority information; and	
4		transfer the ownership of the channel lock to another one of the first and	
5	second wirele	ess devices when said communication channel becomes available for another	
6	communicati	on session through time slicing.	
1	16.	An article comprising a medium storing instructions that enable a	
2	processor-bas	sed system to:	

3		provide at least two wheless transceiver interfaces, and
4		disable one wireless transceiver interface while another wireless
5	transceiver in	nterface is conducting communication.
1	17.	The article of claim 15 further storing instructions that enable the
2	processor-ba	sed system to:
3		detect activity signals from said at least two wireless transceiver
4	interfaces;	
5		assign a priority to each said wireless transceiver interface;
6		track a potential communication associated with each said wireless
7	transceiver in	nterface;
8		arbitrate control of communication between said at least two wireless
9	transceiver in	nterfaces based on the priority and the potential communication; and
10		selectively energize each said wireless transceiver interface based on the
11	control of co	mmunication.
1	18.	The article of claim 15 further storing instructions that enable the
2	processor-ba	sed system to:
3		determine the type of each said wireless transceiver interface to mitigate
4	cross-interfe	rence between said at least two wireless transceiver interfaces;
5		derive device characteristics and priority information from the priority and
6	the type of e	ach said wireless transceiver interface; and
7		send said device characteristics and priority information to each said
8	wireless tran	sceiver interface.

1	19.	The article of claim 15 further storing instructions that enable the
2	processor-ba	sed system to:
3		query to acquire a channel lock for the control of communication; and
4		provide ownership of the channel lock to one of the at least two wireless
5	transceiver in	nterfaces based on the device characteristics and priority information.
1	20.	The article of claim 15 further storing instructions that enable the
2	processor-ba	sed system to:
3		in response to an indication, gain ownership of the channel lock;
4		open a communication channel for a communication session associated
5	with said one	e of the at least two active wireless transceiver interfaces;
6		release the ownership of the channel lock when the communication
7	session is fin	ished; and
8		transfer the ownership of the channel lock to another one of the at least
9	two active w	ireless transceiver interfaces when said communication channel becomes
10	available for	another communication session through time slicing.
1	21.	A processor-based system comprising:
2		a processor;
3		a storage operably coupled to said processor to store a priority protocol
4	capable of tra	acking pending transactions associated with at least two active wireless
5	transceivers	and prioritizing one of said at least two active wireless transceivers;
6		at least two wireless transceiver interface devices operably coupled to said
7	processor to	provide corresponding gating signals associated with the at least two active
8	wireless tran	sceivers: and

session is finished.

9		an arbitration device operably coupled to said at least two wireless
10	transceiver in	terface devices to selectively provide communication control to said one of
11	at least two a	ctive wireless transceivers based on the priority protocol.
1	22.	The processor-based system of claim 21, wherein said arbitration device
2	selectively po	owers up or down the at least two wireless transceiver interface devices
3	based on the	communication control to mitigate cross-interference between said at least
4	two active wi	reless transceivers.
1	23.	The processor-based system of claim 22, wherein said arbitration device
2	to:	
3		determine the type of each said active wireless transceiver;
4		derive device characteristics and priority information from the priority and
5	the type of ea	ch said active wireless transceiver; and
6		send said device characteristics and priority information to each said
7	active wireles	ss transceiver.
1	24.	The processor-based system of claim 23, wherein each said wireless
2	transceiver in	terface device to:
3		query said arbitration device to acquire a channel lock for the
4	communication	on control;
5		in response to an indication from said arbitration device, gain ownership
6	of the channe	l lock;
7		open a communication channel for a communication session; and
8		release the ownership of the channel lock when the communication

1	25.	The processor-based system of claim 24, wherein said arbitration device	
2	to:		
3		provide ownership of the channel lock to one of the at least two active	
4	wireless tran	sceivers based on the device characteristics and priority information; and	
5		transfer the ownership of the channel lock to another one of the at least	
6	two active w	ireless transceivers when said communication channel becomes available for	
7	another com	munication session through time slicing.	
1	26.	A personal computer system comprising:	
2		a processor;	
3		a storage operably coupled to said processor to store a priority protocol	
4	capable of tracking pending transactions associated with at least two active wireless		
5	transceivers and prioritizing one of said at least two active wireless transceivers; and		
6		a shared interface to operably couple a chipset with a radio device	
7	interface including:		
8		at least two wireless transceiver interface devices operably coupled	
9	to said proce	ssor to provide corresponding gating signals associated with the at least two	
10	active wirele	ess transceivers, and	
11		an arbitration device operably coupled to said at least two wireless	
12	transceiver i	nterface devices to selectively provide communication control to said one of	
13	at least two	active wireless transceivers based on the priority protocol.	
1	27.	The personal computer system of claim 26, wherein said arbitration device	
2	to:		

3	S	electively power up or down the at least two wireless transceiver
4	interface devices	s based on the communication control to mitigate cross-interference
5	between said at	least two active wireless transceivers;
6	d	etermine the type of each said active wireless transceiver;
7	d	erive device characteristics and priority information from the priority and
8	the type of each	said active wireless transceiver; and
9	Se	end said device characteristics and priority information to each said
10	active wireless t	cansceiver.
1	28. T	he personal computer system of claim 27, wherein one of said at least
2	two active wirel	ess transceivers to communicate using a short range communication
3	standard-based p	protocol while another one of said at least two active wireless transceivers
4	to communicate	using a long range communication standard-based protocol with respect
5	to the short rang	e communication standard-based protocol.
1	29. T	the personal computer system of claim 26, wherein each said wireless
2	transceiver inter	face device to:
3	q	uery said arbitration device to acquire a channel lock for the
4	communication	control;
5	ir	response to an indication from said arbitration device, gain ownership
6	of the channel lo	ock;
7	o	pen a communication channel for a communication session; and
8	re	elease the ownership of the channel lock when the communication
9	session is finishe	ed.

1	30. The personal computer system of claim 29, wherein said arbitration device
2	to:
3	provide ownership of the channel lock to one of the at least two active
4	wireless transceivers based on the device characteristics and priority information; and
5	transfer the ownership of the channel lock to another one of the at least
6	two active wireless transceivers when said communication channel becomes available for
7	another communication session through time slicing.