CS-5783 : Assignment 04

Question 1.

Calculation of conditional perobability for each feature.

Methodology:

We will be using Gaussian distribution to get conditional perobabilities.

(i) Calculate mean for each feature over each class.

(ii) Calculate standon deviation for each feature over each dass.

(iii) Use normal distribution formulae to compute conditional perobability, mean of xis for dan & given by:

normal distributes
$$P(x_j | C = C_i) = \frac{1}{\sqrt{2\pi 6_{ji}^2}} e^{\left(-\frac{(x_j - \mu_{ji})^2}{26_{ji}^2}\right)}$$
std of x_j 's for class C_i

where

$$\mu_{j} = \frac{\sum x_{j}}{\operatorname{cant}(x_{j})}$$

$$\sigma^2 = \sum_{N} (x_j - p_j)^2$$
; $N \rightarrow number of samples.$

Based on these formulaes while the μ , ϵ^2 , ϵ and conditional probability for all features for given class. In detail radialations for two features is shown:-

Feature (1): #Rooms

da elas ->	Apartment	Cordo	House
mean(µ)	= 6-85 = 4+8+5+6+9+6++ = 6-85	= 6.83 = 6.83	= 6.14
Vasion 9	$= (7 - 6.85)^{2} + (8 - 6.85)^{2} + (8 - 6.85)^{2} + (9 - 6.85)^{2} + (9 - 6.85)^{2} + (9 - 6.85)^{2} + (7 - 6.85)^{2} + (6 - 6.85)^{2} + (7 - 6.85)^{2}$	$= (6 - 6.83)^{2} + (1 - 6.83)^{2} + (6$	$= (6-6.19)^{2}+(6-6.14)^{2}+$ $(6-6.14)^{2}+(7-6.14)^{2}+$ $(7-6.14)^{2}+(7-6.14)^{2}+$ $(7-6.14)^{2}$
3+9 (e)	$= 1.809$ $= \sqrt{1.809} = 1.345$	$= 2.56$ $= \sqrt{2.56} = 1.60$	= 0.47 = 0.69
for fertill values of features)	$P(G Apt) = \frac{(6-685)^{2}}{2\times1.909^{2}}$ $= \frac{0.24}{2\times1.909}$ $P(A Apt) = 0.29$ $P(8 Apt) = 0.20$	$\frac{P(6 \text{condo})}{1} = \frac{P(6 \text{condo})}{2 \times 2 \cdot 56^{2}}$ $= 0.21$ $P(7 \text{condo}) = 0.24$ $P(8 \text{condo}) = 0.49$	$P(6 Howe) = \frac{(6-6.14)^{2}}{2\pi(0.47)^{2}}$ $= 0.56$ $P(7 Howe) = 0.26$ $P(8 Howe) = 0.015$
		Marky, American	
Ł			

Feature 2: # Bothrooms

Clous->	Apartment	Condo	House
statist			
Mean(µ)	= 1+1+1+ 2·5+1+ 1·5+1 7 = 1.28	= 1.33	= 1.07
Youane (62)	$= (1-1\cdot28)^{2}+(1-1\cdot28)^{2}+$ $(1-1\cdot28)^{2}+(1\cdot5-1\cdot28)^{2}+$ $(1-1\cdot28)^{2}+(1\cdot5-1\cdot28)^{2}+$ $(1-1\cdot28)^{2}$ 6	$= (1-1\cdot33)^{2} + (1-1\cdot33)^{2} + (2-5-1\cdot33)^{2} + (1\cdot5-1\cdot33)^{2} + (1-1\cdot33)^{2} + (1-1\cdot33)^{2} + (1-1\cdot33)^{2}$	$= (1-1-07)^{2}+(1+107)^{2}-(1-1-07)^{2}+(1-1-07)^{2}+(1-1-07)^{2}+(1-1-07)^{2}+(1-1-07)^{2}+(1-1-07)^{2}+(1-1-07)^{2}$ $= 0.035$
231(5)	= 0.321	= 0.366	= \(\sqrt{0.035} = 0-188 \)
8fg (E)	- 10-321 = 0-56	= 10-366 = 0.60	V8.672
Conditional Probabilities for text set	$P(i Apt) = \left(\frac{(1-i-28)^2}{2(0-56)^2}\right)$ $\frac{1}{\sqrt{2\pi(0-56)^2}} \times e$	$P(1 Gando) = \frac{-(1-1\cdot33)^2}{2(0\cdot6)^2}$	$P(1 Howe) = \frac{1}{2\pi(0.18)^2}$
values of features	= 0.62	= 0-57	= 1.97
v		p (1.5 condo) = 0.63	p(1.5 Haur) = 0.155
	PR		

For the sumaining features the calculated values are tabulated in next page,

	at .									
Dan a	2030	38.71	215.502	14.68	39.65	194.60	13.95	34.28	161.79	12.32
	# Bedroun	3.42	6.40%	0.97	3.33	959.0	6.81	30.5	0.3249	t5.0
)	# garages	1.2.1	964.0	0.69	1.32	0.2601	18:0	to:	6.989	0.83
	Living	1.505	0.496	40C-0	(.553	6.857	0.926	1.341	6440.0	0.2 (2
	Lonol	6.10	10.562	3.25	6.024	6.452	2.54	6.6309	5.0146	2.24
	Faice Lond	133	13.07	3.61	1 3·H		19-4	5.76	0.32	6.54
)	Features -	Apostment: L	d	Ь	Condo : L	- "	, lo	Howse ; L	- 1	0 6

Conditional possibabilities of different features.

Class (P) >	P(Xj Apartment)	P(xj/Condo)	P(X; House)	
Features.	Values				
local	6-0931	0-104	0.083	0.5 2.1×10-5	
Price	8-3607	0.106	P80-0	1 × 10-4	
	8.14	0.107	0.085	1.51×10-8	
	9.1416	6.097	0.080	6.62 X10-27	
land	6.7265	0.047	0.15	0.17	
Area	9.00	0.103	0.116	0.16	
Living	1.652	0.115	0.429	0.8 %	
Area	1.504	0.56	0.419 0.431	0.35 4.63 6.21	0
1.0	1.2	0.51	0.401	0.47	
# Garage)	1.5	0.552	0.23	0.42	
110-1	2	0.37	0.45	0.69	
# Bed Doms	3	0.34	0.324	0.15	
Vac d	44	0.0025	0.027	0.023	
Age of home	43	0.0021	0.025	0.017	
	3		0.0009	0.0015	
	31	0.023	0.02	0.030	
	30	0.022	6.022	0.029	
					C
					Č