PRÁCTICA 2. DIVIDE Y VENCERÁS

Grupo: Las Algas

Ana Buendía, Andrés Millán, Paula Villanueva, Juan Antonio Villegas

OBJETIVOS

- ullet Traspuesta de una matriz 2^k elementos.
- ullet Traspuesta de una matriz N^M elementos.
- Calcular mínimo y máximo de un vector.

ESPECIFICACIONES

Persona	CPU	OS
Ana	i5-6200U 2.30GHz	Ubuntu 16.04 LTS
Andrés	i5-8250U 3.40GHz	Antergos 4-19.29 LTS
Paula	i7-5600U 2.60GHz	Ubuntu 18.04 LTS
Juan Antonio	i7-4500U 3.00GHz	Ubuntu 18.04 LTS

EFICIENCIA TEÓRICA (NO DYV)

- n: número de elementos.
- Recorre una vez la matriz: $T(n) = a \cdot n$.

EFICIENCIA TEÓRICA (DYV)

• intercambiar: O(n).

EFICIENCIA TEÓRICA (DYV)

EFICIENCIA TEÓRICA (DYV)

- trasponerDyV:
 - a: dos primeras líneas.
 - b: tiempo ejecución intercambiar.

$$T(n) = a + T\left(\frac{n}{4}\right) + nb$$

$$n = 2^k \Rightarrow t_k = T(2^k) = 4t_{k-2} + 2^k b + a$$

 $t_{k+2} - 4t_k = 2^k b + a$

$$t_k^h = c_1 2^k + c_2 (-2)^k \ t_k^p = c_3 k 2^k + c_4 \ t_k = c_1 2^k + c_2 (-2)^k + c_3 k 2^k + c_4 \ O(nlog_2 n)$$

EFICIENCIA EMPÍRICA (NO DYV)

EFICIENCIA EMPÍRICA (DYV)

EFICIENCIA HÍBRIDA (NO DYV)

K = 1.4927433516698971

EFICIENCIA HÍBRIDA (DYV)

K = 3.205694396131746

COMPARACIÓN DYV Y NO DYV

TRASPUESTA DE UNA MATRIZ 4X4 (DYV)

TRASPUESTA DE UNA MATRIZ 4X4 (DYV)

1	1	1	1
2	2	2	2
3	3	3	3
1 2 3 4	4	4	4

Paso	1		
1	2	1	1
1	2	2	2
3	3	3	3
4	4	4	4

Paso	2		
1	2	1	2
1	2	1	2
3	3	3	3
4	4	4	4

```
Paso 3

1 2 1 2

1 2 1 2

3 4 3 3

3 4 4 4
```

```
Paso 4

1 2 1 2

1 2 1 2

3 4 3 4

3 4 3 4
```

Paso	5		
1	2	3	4
1	2	3	4
1	2	3	4
1	2	3	4

EFICIENCIA TEÓRICA (NO DYV)

```
int maximo (const vector<int> & flechita) {
   int max = flechita[0];

   for (auto elemento: flechita)
       if (elemento > max)
       max = elemento;

   return max;
}
```

O(n)

EFICIENCIA TEÓRICA (DYV)

```
int maximo (vector<int> &flechita, int l, int r) {
   if (l ≤ r) {
      if (r - l ≤ 1)
        if (flechita[l] < flechita[r]) return flechita[r];
      else return flechita[l];
   else {
      int m = (l + r)/2;
      int maxL = maximo(flechita, l, m);
      int maxR = maximo(flechita, m + 1, r);
      if (maxL < maxR) return maxR;
      else return maxL;
   }
}</pre>
```

MÁXIMO Y MÍNIMO DE UN VECTOR EFICIENCIA TEÓRICA (DYV)

• maximo:

$$T(n)=a \;\; si \; n \leq 2 \ T(n)=T\left(rac{n}{2}
ight)+b \;\; si \; n>2$$

$$n=2^k\Rightarrow T(2^k)=t_k=2t_{k-1}+b$$
 $t_k^h=c_12^k \ t_k^p=-rac{-b}{2}=c_2 \ t_k=c_12^k+c_2\Rightarrow T(n)=c_1n+c_2\Rightarrow O(n)$

EFICIENCIA EMPÍRICA (NO DYV)

EFICIENCIA EMPÍRICA (DYV)

EFICIENCIA HÍBRIDA (NO DYV)

EFICIENCIA HÍBRIDA (DYV)

COMPARACIÓN DYV Y NO DYV

 $No\ DyV: f(x) = 8.371884234608126x + 10051.1421$

DyV: g(x) = 12.6470098x + 15089.5402

CONCLUSIONES

- El enfoque DyV en estos casos no es más eficiente.
- La recursividad consume tiempo de ejecución que afecta a la eficiencia.
- Los algoritmos DyV son sencillos de entender.