凸錐の露出性について

武流野 フィゲラ 浪蓮草 (統計数理研究所) Vera Roshchina (ニューサウスウェールズ大学) James Saunderson (モナシュ大学)

2020年8月25日

背景

はじめに

- K: 閉凸錐
- C: 部分空間, a:ベクトル

 $(\mathcal{L} + a) \cap \mathcal{K} \neq \emptyset$ とする.

基本的な問題

 $\operatorname{dist}(x,\mathcal{L}+a)$ と $\operatorname{dist}(x,\mathcal{K})$ を用いて、 $\operatorname{dist}(x,(\mathcal{L}+a)\cap\mathcal{K})$ を評 価するのは可能でしょうか.

- K は多面錐のとき ⇒ Hoffman's Lemma
- \mathcal{K} は半正定値錐 \mathcal{S}^n_+ のとき \Rightarrow Sturm's error bound

J. F. Sturm.

Error bounds for linear matrix inequalities.

SIAM Journal on Optimization, 10(4):1228–1248, Jan. 2000.

A. J. Hoffman.

On approximate solutions of systems of linear inequalities. Journal of Research of the National Bureau of Standards, 49(4), 1957.

基本的な問題

 $\operatorname{dist}(x, \mathcal{L} + a)$ と $\operatorname{dist}(x, \mathcal{K})$ を用いて、 $\operatorname{dist}(x, (\mathcal{L} + a) \cap \mathcal{K})$ を評 価するのは可能でしょうか.

- 一般の κ のとき、以下があれば、エラーバウンドが得られる:

 - K の面残差関数 (facial residual function)
 - 面縮小法 (facial reduction)

武流野

Amenable cones: error bounds without constraint qualifications.

https://arxiv.org/abs/1712.06221.

To appear in Mathematical Programming

今日の課題

恭順錐のクラスを調べることであり、他の露出生の概念との比較 を行うことである.

- C: 閉凸集合
- *F* ⊂ *C*: 閉凸集合

Definition (凸集合の面)

F は C の面 \Leftrightarrow if $\alpha x + (1 - \alpha)y \in F$, with $x, y \in C$, $\alpha \in (0, 1)$, then $x, y \in F$.

F ⊲ *C* を書く.

Definition (露出面 (Exposed face))

 $F \triangleleft C$ が**露出面** $\Leftrightarrow F = C \cap H$ を満たす C の支持超平面 H が存 在する.

恭順錐 (Amenable cones)

$$\operatorname{dist}(x,S) := \min\{\|y - x\| \mid y \in S\}$$

Definition (Amenable cones)

 \mathcal{K} は**恭順 (amenable)** $\Leftrightarrow \mathcal{F}$ が \mathcal{K} の面のとき,ある $\kappa > 0$ に対 して

 $\operatorname{dist}(x,\mathcal{F}) \leq \kappa \operatorname{dist}(x,\mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}.$

```
(リマインダー: \mathcal{F} = \mathcal{K} \cap \operatorname{span} \mathcal{F} 常に成り立つ.)
例:
```

- 対称錐(例:半正定値錐, 2次錐)
- 多面錐
- 狭義凸錐 (例:p 次錐, ただし $p \in (1, \infty)$)
- K_1, K_2 が恭順のとき、 $\Rightarrow K_1 \times K_2$ が恭順である.

恭順凸集合 (Amenable convex sets)

C:閉凸集合

Definition (恭順面)

F extcolored C が恭順面 \Leftrightarrow すべての有界集合 B に対して,以下を満たす $\kappa > 0$ が存在する:

$$\operatorname{dist}(x, F) \leq \kappa \operatorname{dist}(x, C), \quad \forall x \in B \cap \operatorname{aff} F.$$

C が恭順凸集合 $\stackrel{\text{def}}{\Longleftrightarrow}$ すべての面 $F \unlhd C$ が恭順面である.

Proposition (L., Roshchina, Saunderson)

 C_1, C_2 : 恭順凸集合とする.

- **1** C₁ ∩ C₂ は恭順である.
- ② *C*₁ × *C*₂ は恭順である.

Theorem (L., Roshchina, Saunderson)

- ① K が恭順錐 \Rightarrow すべてのスライスが恭順凸集合になる.
- ② C:恭順凸集合ならば、 $\mathcal{K} = \text{cone}(\{1\} \times C)$ が恭順錐である.

新たの恭順集合

- Doubly nonnegative cone: $\mathcal{S}^n_+ \cap \mathcal{N}_n$
- Spectrahedral set:

$$C = \{ y \in \mathbb{R}^m \mid A_0 + \sum_{i=1}^m A_i y_i \succeq 0 \}$$

• 等質錐 (Homogeneous cone): S_+^n のスライスだから.

C. B. Chua.

Relating homogeneous cones and positive definite cones via T-algebras. *SIAM Journal on Optimization*, 14(2):500–506, 2003.

L. Faybusovich.

On Nesterov's approach to semi-infinite programming. *Acta Applicandae Mathematica*, 74(2):195–215, Nov 2002.

凸集錐の露出生について

$$\mathcal{F}$$
 is a face of $\mathcal{K} \stackrel{\text{def}}{\Longleftrightarrow} \mathcal{F} \unlhd \mathcal{K}$
 $\mathcal{K}^* := \{ y \mid \langle y, x \rangle \geq 0, \forall x \in \mathcal{K} \}$

- **1** Projectionally exposed cone $\stackrel{\text{def}}{\Longleftrightarrow} \forall \mathcal{F} \unlhd \mathcal{K}$ there exists a projection such that $P\mathcal{K} = \mathcal{F}$.
- ② Amenable cones $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ for every face $\mathcal F$ of $\mathcal K$ there is $\kappa>0$ such that

$$\operatorname{dist}(x, \mathcal{F}) \le \kappa \operatorname{dist}(x, \mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}.$$

- $\bullet \text{ Nice cone } \stackrel{\text{def}}{\Longleftrightarrow} \forall \mathcal{F} \unlhd \mathcal{K}, \quad \mathcal{F}^* = \mathcal{K}^* + \mathcal{F}^{\perp}.$
- Facially exposed cone $\stackrel{\text{def}}{\Longleftrightarrow}$ every face is facially exposed.

Proposition

$$1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4$$
. If dim $\mathcal{K} \leq 3$, $4 \Rightarrow 1$.

反例について

- Facially exposed \Leftarrow Nice \Leftarrow Amenable \Leftarrow Projectionally exposed.
- **②** dim \mathcal{K} < 3 \mathcal{O} ≥ \mathcal{E} , Facially exposed \Rightarrow Projectionally exposed
- ③ Pataki の予想 ('13): Facially exposed ⇒ Nice¹.
- Roshchina('14): 露出錐であり nice ではない 4次元錐が存在 する²
- Nice ← Amenable が成り立つが、逆の方は?

¹On the connection of facially exposed and nice cones, Journal of Mathematical Analysis and Applications, 2013

²Facially exposed cones are not always nice, SIOPT, 2014

Theorem (L., Roshchina, Saunderson)

niceであり、恭順ではない4次元の錐が存在する.

Figure: 恭順ではない錐のスライス

露出生の比較

露出生のまとめ

- Facially exposed \leftarrow Nice \leftarrow Amenable \leftarrow Projectionally exposed.
- **②** dim $\mathcal{K} \leq 3$ \emptyset \mathcal{E} \mathfrak{F} , Facially exposed \Rightarrow Projectionally exposed
- **3** dim $\mathcal{K} > 4$ のとき、 Facially exposed \Rightarrow Nice. Nice \Rightarrow Amenable.
- 4 Amenable ⇒ Projectionally exposed については?

Theorem (L., Roshchina, Saunderson)

 $\dim \mathcal{K} < 4 \mathcal{O} \geq \mathfrak{F}$, Amenable \Leftrightarrow Projectionally exposed

というこは反例がれば、 $\dim \mathcal{K} > 5$.

今後の課題

- 恭順であり Projectionally Exposed ではない 5 次元の錐を見つ けること.
- 恭順錐のクラスを広げること。
- L., Vera Roshchina and James Saunderson Amenable cones are particularly nice In Preparation