KRP — Assignment 4

Instructor: Yizheng Zhao

April 22, 2024

 \star This assignment, due on 26th May at 23:59, contributes to 10% of the final marks for this course. Please be advised that only Questions 1 - 8 are mandatory. Nevertheless, students can earn up to one bonus mark by completing Question 9. This bonus mark can potentially augment a student's overall marks but is subject to a maximum total of 100 for the course. By providing bonus marks, we aim to incentivize students to excel in their studies and reward those with a remarkable grasp of the course materials.

Question 1. ALC-Worlds Algorithm

Use the \mathcal{ALC} -Worlds algorithm to decide the satisfiability of the concept name B_0 w.r.t. the simple TBox:

$$\begin{cases}
B_0 \equiv B_1 \sqcap B_2 \\
B_1 \equiv \exists r.B_3 \\
B_2 \equiv B_4 \sqcap B_5 \\
B_3 \equiv P \\
B_4 \equiv \exists r.B_6 \\
B_5 \equiv B_7 \sqcap B_8 \\
B_6 \equiv Q \\
B_7 \equiv \forall r.B_4 \\
B_8 \equiv \forall r.B_9 \\
B_9 \equiv \forall r.B_{10} \\
B_{10} \equiv \neg P
\end{cases}$$

Draw the recursion tree of a successful run and of an unsuccessful run. Does the algorithm return a positive or negative result on this input?

Question 2. Finite Boolean Games

Determine whether Player 1 has a winning strategy in the following finite Boolean games, where in both cases $\Gamma_1 := \{x_1, x_3\}$ and $\Gamma_2 := \{x_2, x_4\}$.

$$-\psi := (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_3 \vee x_4)$$

Question 3. Infinite Boolean Games

Determine whether Player 2 has a winning strategy in the following infinite Boolean games where the initial configuration t_0 assigns *false* to all variables.

$$-\psi := (x_1 \wedge x_2 \wedge \neg y_1) \vee (x_3 \wedge x_4 \wedge \neg y_2) \vee (\neg (x_1 \vee x_4) \wedge y_1 \wedge y_2)$$

provided that: $\Gamma_1 := \{x_1, x_2, x_3, x_4\}$ and $\Gamma_2 := \{y_1, y_2\}$

Question 4. Complexity of Concept Satisfiability in ALC Extensions

The universal role is a role u such that its extension is fixed as $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ in any interpretation \mathcal{I} . Let \mathcal{ALC}^u be a DL extending \mathcal{ALC} with the universal role.

- Show that concept satisfiability in \mathcal{ALC}^u without TBoxes is EXPTIME-complete.

Question 5. Subsumption in \mathcal{EL}

Consider the following \mathcal{EL} TBox:

$$\mathcal{T} := \left\{ \begin{array}{c} A \sqsubseteq B \sqcap \exists r.C \\ B \sqcap \exists r.B \sqsubseteq C \sqcap D \\ C \sqsubseteq (\exists r.A) \sqcap B \\ (\exists r.\exists r.B) \sqcap D \sqsubseteq \exists r.(A \sqcap B) \end{array} \right\},$$

where A, B, C, D are concept names.

Use the classification procedure for \mathcal{EL} to check whether the following subsumptions hold w.r.t. \mathcal{T} .

- $A \sqsubseteq \exists r. \exists r. A$
- $B \sqcap \exists r.A \sqsubseteq \exists r.C$

Question 6. Conservative Extension (2 marks)

Let \mathcal{T}_1 be an \mathcal{EL} TBox, with C and D as \mathcal{EL} concepts. Let us further consider $\mathcal{T}_2 := \mathcal{T}_1 \cup \{A \sqsubseteq C, D \sqsubseteq B\}$, wherein A and B are new concept names (as in Lemma 6.1).

- Show that \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 .
- Is this still the case after adding $A \sqsubseteq B$ to \mathcal{T}_2 ?
- What about adding $B \sqsubseteq A$?

Question 7. \mathcal{EL} Extension (2 marks)

We consider the DL \mathcal{EL}_{si} extending \mathcal{EL} by concept descriptions of the form $\exists^{sim}(\mathcal{I},d)$, where \mathcal{I} is a finite interpretation and $d \in \Delta^{\mathcal{I}}$. Their semantics is defined as follows.

$$(\exists^{\text{sim}}(\mathcal{I},\mathsf{d}))^{\mathcal{J}} := \{\mathsf{d}' \mid \mathsf{d}' \in \Delta^{\mathcal{J}} \text{ and } (\mathcal{I},\mathsf{d}) \eqsim (\mathcal{J},\mathsf{d}')\}$$

Concept inclusions are then defined as usual.

- Show that each \mathcal{EL}_{si} concept description is equivalent to some concept descriptions of the form $\exists^{sim}(\mathcal{I},d)$.
- Show that \mathcal{EL}_{si} is more expressive than \mathcal{EL} .
- Show that checking subsumption in \mathcal{EL}_{si} without any TBox can be done in polynomial time.

Question 8. ALC-Elim Algorithm

Use the ALC-Elim algorithm to decide satisfiability of:

- the concept name A w.r.t. $\mathcal{T} := \{A \sqsubseteq \exists r.A, \top \sqsubseteq A, \forall r.A \sqsubseteq \exists r.A\}$
- the concept description $\forall r. \forall r. \neg B \text{ w.r.t. } \mathcal{T} := \{ \neg A \sqsubseteq B, A \sqsubseteq \neg B, \top \sqsubseteq \neg \forall r. A \}$

Give the constructed type sequence Γ_0 , Γ_1 , In the case of satisfiability, also give the satisfying model constructed in the proof of Lemma 5.10.

Question 9 (with 1 bonus mark). Simulation

We consider simulations, which are "one-sided" variants of bisimulations. Given interpretations \mathcal{I} and \mathcal{J} , the relation $\sigma \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}}$ is a simulation from \mathcal{I} to \mathcal{J} if

- whenever $d \sigma d'$ and $d \in A^{\mathcal{I}}$, then $d' \in A^{\mathcal{I}}$, for all $d \in \Delta^{\mathcal{I}}$, $d' \in \Delta^{\mathcal{I}}$, and $A \in \mathbb{C}$;
- whenever d σ d' and (d, e) $\in r^{\mathcal{I}}$, then there exists an e' $\in \Delta^{\mathcal{I}}$ such that e σ e' and (d', e') $\in r^{\mathcal{I}}$, for all d, e $\in \Delta^{\mathcal{I}}$, d' $\in \Delta^{\mathcal{I}}$, and $r \in \mathbb{R}$.

We write $(\mathcal{I}, d) = (\mathcal{J}, d')$ if there is a simulation σ from \mathcal{I} to \mathcal{J} such that $d \sigma d'$.

- Show that $(\mathcal{I}, d) \sim (\mathcal{J}, d')$ implies $(\mathcal{I}, d) = (\mathcal{J}, d')$ and $(\mathcal{J}, d') = (\mathcal{I}, d)$.
- Is the converse of the implication above also true?
- Show that, if $(\mathcal{I}, \mathsf{d}) = (\mathcal{J}, \mathsf{d}')$, then $\mathsf{d} \in C^{\mathcal{I}}$ implies $\mathsf{d}' \in C^{\mathcal{I}}$ for all \mathcal{EL} concept descriptions C.
- Which of the constructors disjunction, negation, or universal restriction can be added to \mathcal{EL} without losing the property above?
- Show that \mathcal{ALC} is more expressive than \mathcal{EL} .