EXAMPLE 12.4

Svetlana tutors to make extra money for college. For each tutoring session, she charges a one-time fee of \$25 plus \$15 per hour of tutoring. A linear equation that expresses the total amount of money Svetlana earns for each session she tutors is y = 25 + 15x.

? Problem

What are the independent and dependent variables? What is the y-intercept and what is the slope? Interpret them using complete sentences.

Solution

The independent variable (x) is the number of hours Svetlana tutors each session. The dependent variable (y) is the amount, in dollars, Svetlana earns for each session.

The y-intercept is 25 (a = 25). At the start of the tutoring session, Svetlana charges a one-time fee of \$25 (this is when x = 25). 0). The slope is 15 (b = 15). For each session, Svetlana earns \$15 for each hour she tutors.

TRY IT 12.4

Ethan repairs household appliances like dishwashers and refrigerators. For each visit, he charges \$25 plus \$20 per hour of work. A linear equation that expresses the total amount of money Ethan earns per visit is y = 25 + 20x.

What are the independent and dependent variables? What is the y-intercept and what is the slope? Interpret them using complete sentences.

12.2 Scatter Plots

Before we take up the discussion of linear regression and correlation, we need to examine a way to display the relation between two variables x and y. The most common and easiest way is a **scatter plot**. The following example illustrates a scatter plot.

EXAMPLE 12.5

An educational researcher collects data on the vocabulary size of children as a function of age. The data is shown in Table 12.1. Is there a relationship between age and vocabulary size for young children? Construct a scatter plot. Let x = Child'sAge, and let y = Vocabulary Size.

Age (years)	Vocabulary Size (number of words)
3	655
4	1098
6	2463
7	3195

Table 12.1

USING THE TI-83, 83+, 84, 84+ CALCULATOR

To create a scatter plot:

- 1. Enter your X data into list L1 and your Y data into list L2.
- 2. Press 2nd STATPLOT ENTER to use Plot 1. On the input screen for PLOT 1, highlight On and press ENTER. (Make sure the other plots are OFF.)
- 3. For TYPE: highlight the very first icon, which is the scatter plot, and press ENTER.
- 4. For Xlist:, enter L1 ENTER and for Ylist: L2 ENTER.
- 5. For Mark: it does not matter which symbol you highlight, but the square is the easiest to see. Press ENTER.
- 6. Make sure there are no other equations that could be plotted. Press Y = and clear any equations out.
- 7. Press the Z00M key and then the number 9 (for menu item "ZoomStat"); the calculator will fit the window to the data. You can press WINDOW to see the scaling of the axes.

>

TRY IT 12.5

Amelia plays basketball for her high school. She wants to improve to play at the college level. She notices that the number of points she scores in a game goes up in response to the number of hours she practices her jump shot each week. She records the following data:

X (hours practicing jump shot)	Y (points scored in a game)
5	15
7	22
9	28
10	31

Table 12.2

X (hours practicing jump shot)	Y(points scored in a game)
11	33
12	36

Table 12.2

Construct a scatter plot and state if what Amelia thinks appears to be true.

A scatter plot shows the direction of a relationship between the variables. A clear direction happens when there is either:

- High values of one variable occurring with high values of the other variable or low values of one variable occurring with low values of the other variable.
- High values of one variable occurring with low values of the other variable.

You can determine the **strength** of the relationship by looking at the scatter plot and seeing how close the points are to a line, a power function, an exponential function, or to some other type of function. For a linear relationship there is an exception. Consider a scatter plot where all the points fall on a horizontal line providing a "perfect fit." The horizontal line would in fact show no relationship.

When you look at a scatterplot, you want to notice the overall pattern and any deviations from the pattern. The following scatterplot examples illustrate these concepts.

(b) Negative linear pattern (weak)

Figure 12.7

Figure 12.8

In this chapter, we are interested in scatter plots that show a linear pattern. Linear patterns are quite common. The linear relationship is strong if the points are close to a straight line, except in the case of a horizontal line where there is no relationship. If we think that the points show a linear relationship, we would like to draw a line on the scatter plot. This line can be calculated through a process called linear regression. However, we only calculate a regression line if one of the variables helps to explain or predict the other variable. If x is the independent variable and y the dependent variable, then we can use a regression line to predict y for a given value of x

12.3 The Regression Equation

Data rarely fit a straight line exactly. Usually, you must be satisfied with rough predictions. Typically, you have a set of data whose scatter plot appears to "fit" a straight line. This is called a Line of Best Fit or Least-Squares Line.

COLLABORATIVE EXERCISE

If you know a person's pinky (smallest) finger length, do you think you could predict that person's height? Collect data from your class (pinky finger length, in inches). The independent variable, x, is pinky finger length and the dependent variable, y, is height. For each set of data, plot the points on graph paper. Make your graph big enough and use a ruler. Then "by eye" draw a line that appears to "fit" the data. For your line, pick two convenient points and use them to find the slope of the line. Find the y-intercept of the line by extending your line so it crosses the y-axis. Using the slopes and the y-intercepts, write your equation of "best fit." Do you think everyone will have the same equation? Why or why not? According to your equation, what is the predicted height for a pinky length of 2.5 inches?

EXAMPLE 12.6

A random sample of 11 statistics students produced the following data, where x is the third exam score out of 80, and y is the final exam score out of 200. Can you predict the final exam score of a random student if you know the third exam score?

x (third exam score)	y (final exam score)
65	175
67	133
71	185
71	163
66	126

Table 12.3 Table showing the scores on the final exam based on scores from the third exam.