

UNIVERSITY OF TEHRAN

Electrical and Computer Engineering Department Digital Logic Design, ECE 367, Fall 1397 Computer Assignment 1 Basic Switch and Gate Structures in Verilog

nd Gate Structures in Vernog Week 5

Name:	
Date:	

The problem for this assignment is a circuit that calculates the number of 1's on its data inputs. The circuit that you start with has three inputs (n=2) and it is cascadable to build any circuit with 2^n-1 inputs. Assume complement of all inputs are available and use Verilog \sim operation for getting the complement of circuit primary inputs.

- 1. Show switch level circuit diagram for a Complex gate CMOS structure for a circuit with a, b, and c inputs and y_0 and y_1 outputs. The outputs (y_1, y_0) form a two-bit number that represent the total; number of 1's on inputs a, b, and c. Where possible, factor out a variable (using Boolean Distributive law) to save nMOS and pMOS transistors. We refer to this circuit as One's Count with 3 inputs (OC3). Use a minimum number of nMOS and pMOS transistors. Use #(3, 4, 5) delay values for the nMOS transistors and #(5, 6, 7) for the pMOS transistors. As indicated above use \sim when complements of a, b, and c are needed. The \sim operation will not be counted as using transistors in your design. However, complementing an output will require two MOS transistors.
- 2. Show Verilog description for OC3 circuits of Part 1. Use delay values given above.
- **3.** Generate a testbench for the OC3 circuit of Part 2, apply test data and justify the results you are getting. Explain X and Z values.
- **4.** Describe the circuit of OC3 circuit of Part 2 using Verilog gate primitives. Adjust primitive gate delays to make the delay of the gate level OC3 circuit of this part as close as possible to the transistor-based circuit of Part 2.
- **5.** Generate a testbench that instantiates the transistor-level OC3 of Part 2 and the gate-level OC3 of Part 4. Test the two OC3 descriptions simultaneously and explain the differences.
- **6.** Describe the circuit of Part 2 using two **assign** statements. Adjust **assign** statement delays to make the delay of this description as close as possible to the gate-level circuit.
- **7.** Generate a testbench that instantiates the descriptions of Parts 2, 4, and 6. Test the three circuits simultaneously and explain the differences.