Sequence and Series

Soham Gadhave

4th September 2021

Terms of Sequence: Let $\langle a_n \rangle$ be a sequence then a_1, a_2, \cdots, a_n are called terms of a sequence

Range of a Sequence: The set of all distinct terms of a sequence is called its range

Bounded and Unbounded sequence:

- 1. Bounded Above Sequences: A sequence $< a_n >$ is said to be bounded above if there exists a real number k such that $a_n \le k$ for all $n \in \mathbb{N}$
- 2. Bounded Below Sequences: A sequence $< a_n >$ is said to be bounded below if there exists a real number k such that $a_n \ge k$ for all $n \in \mathbb{N}$

A sequence which is bounded above and bounded below is called a bounded sequence.

3. Unbounded Sequence: A sequence is said to be unbounded if it is not bounded.

Ex Bound Above and Bound Below sequence: $a_n = <\frac{1}{n}>$

Ex Neither Bound Above nor Bound Below sequence: $a_n = <(-1)^n n >$

Supremum(least-upper bound): The supremum of the range set the sequence is called Supremum of that sequence.

Infimum(greatest-lower bound): The infimum of the range set the sequence is called Infimum of that sequence.

Note:

- 1. If a sequence is unbounded above then its Supremum is ∞
- 2. If a sequence is unbounded below then its Infimum is $-\infty$
- 3. If for any sequence its Supremum and Infimum are finite (or it exists) then it is a bounded sequence

Monotonocity of a Sequence:

- 1. Monotonic Increasing Sequence: Let $\langle a_n \rangle$ be a sequence, the this sequence is called monotonically increasing sequence if $a_{n+1} \geq a_n$ for all $n > N, N \in \mathbb{N}$.
- 2. Strictly Monotonic Increasing Sequence: Let $\langle a_n \rangle$ be a sequence, the this sequence is called strictly monotonically increasing sequence if $a_{n+1} \geq a_n$ for all $n \geq N, N \in \mathbb{N}$.
- 3. Monotonic Decreasing Sequence: Let $< a_n >$ be a sequence, the this sequence is called monotonically decreasing sequence if $a_{n+1} \le a_n$ for all $n \ge N, N \in \mathbb{N}$.
- 4. Strictly Monotonic Decreasing Sequence: Let $< a_n >$ be a sequence, the this sequence is called strictly monotonically decreasing sequence if $a_{n+1} < a_n$ for all $n \ge N, N \in \mathbb{N}$.

Sequence	Bounded Above	Bounded Below	Range Set
Ex.1 $a_n = \langle \frac{1}{n} \rangle, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$	yes, 1	yes, 0	$R = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\}$
Ex.2 $a_n = <(-1)^n>, -1, 1, -1, 1, \cdots$	yes, 1	yes, -1	$R = \{-1, 1\}$
Ex.3 $a_n = \langle \frac{(-1)^n}{n} \rangle, -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \cdots$	yes, $\frac{1}{2}$	yes, -1	$R = \left\{-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \cdots \right\}$
Ex.4 $a_n = <1 + (-1)^n > , 0, 2, 0, 2, \cdots$	yes, 0	yes, 2	$R = \{0, 2\}$
Ex.5 $a_n = \langle \frac{n}{n+1} \rangle, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$	yes, 1	yes, $\frac{1}{2}$	$R = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots \right\}$
Ex.6 $a_n = \langle n \rangle, 1, 2, 3, 4, \cdots$	no	yes, 1	$R = \{1, 2, 3, 4, \cdots\}$
Ex.7 $a_n = <-n>, -1, -2, -3, -4, \cdots$	yes, -1	no	$R = \{-1, -2, -3, -4, \cdots\}$
Ex.8 $a_n = \begin{cases} 2, & \text{if } n \text{ is prime} \\ n, & \text{if } n \text{ is not prime} \end{cases}$	no	yes, 1	$R = \{1, 2, 2, 4, 2, 6, \cdots\}$
Ex.9 $a_n = <(-1)^n n>, -1, 2, -3, 4, \cdots$	no	no	$R = \{-1, 2, -3, 4, \cdots\}$

Limit point / Cluster point

- If a sequence is bounded and has only one limit point, then that sequence converges to that point.
- If a sequence has more than one limit points then its limit does not exist.
- Examples:

1.
$$a_n = \begin{cases} 2, & \text{if n is prime} \\ n, & \text{if n is not prime} \end{cases}$$

It has a limit point at 2, because every neighbourhood of 2 has infinite number of terms if the sequence.

• Results:

- 1. Bolzano Weierstrass Theorem: Every bounded sequence has a limit point.
- 2. Unbounded sequence may have a limit point.

Limit of a Sequence: Let $\langle a_n \rangle$ be a sequence, limit of the sequence is denoted by $\lim_{n \to \infty} a_n$.

• Result:

- 1. A sequence can have atmost one limit.
- 2. Unbounded sequence cannot have limit.
- 3. A non-monotonic sequence can have limit. Ex: $<\frac{(-1)^n}{n}>$.
- 4. A bounded sequence may not have a limit. Ex: $<(-1)^n>$.
- 5. Limit of a sequence is also a limit point, but the converse is not true.