Meshing

Umberto Castellani Robotics, Vision and control

3D modelling from reality pipeline

Acquisition Registration Meshing **Advances**

Overall aim

 Once views are aligned a merging procedure is required to obtain a single mesh of the entire object

Surface reconstruction

Polygonal mesh

Input

Set of irregular sample points

- with or without normals
- examples: multi-view stereo, union of range scan vertices

Set of range scans

- each scan is a regular quad or trimesh
- normal vectors can be obtained through local connectivity

Surface reconstruction

Two approaches:

Explicit

Local surface connectivity estimation

Point interpolation

Implicit

Signed distance function estimation

Mesh approximation

Explicit methods

- Connect sample points by triangles
- Exact interpolation of sample points
- Bad for noisy or misaligned data
- Can lead to holes or non-manifold situations

Implicit methods

- estimate a signed distance function(SDF);
- 2. extract 0-level set mesh using Marching Cubes

Ouput is a Watertight manifold by construction!

Explicit vs Implicit

Input Implicit Explicit

Esplicit method

- Mesh reconstruction from range image,
 - Idea: points are on a regular grid where the connectivity can be inherited from the pixel neighbourhood

- Zippering range scans,
 - Idea: "Zipper" several scans to one single model

Mesh from range image

 Points are on a regular grid where the connectivity can be inherited from the pixel neighbourhood,

BUT...

- 1) Not all the pixels on the range image are the projection of a point on the 3D space!
 - a binary mask can be used to define valid points,
- 2) Nearby pixels should not correspond to nearby points on the 3D space!

 a robust strategy can be used to remove long edges.

See Matlab script available from lab section!

Zippering range scans

- "Zipper" several scans to one single model
- Project & insert boundary vertices
- 2. Intersect boundary edges
- 3. Discard overlap region
- 4. Locally optimize triangulation

Not much used in practice!

Implicit methods

- Several methods for signed distance computation (SDF)
 - Marching Cube: classical method
 - Poisson method: the currently most used method

E.g.: signed distance to the tangent plane of the closest point

• Idea: sample the SDF

• Idea: sample the SDF

$$\bullet F(\mathbf{x}) < 0$$

Marching square

- 16 different configurations in 2D
- 4 equivalence classes (up to rotational and reflection symmetry + complement)

Marching square

 4 equivalence classes (up to rotational and reflection symmetry + complement)

3D case!

Marching Cubes (Lorensen and Cline 1987)

- Load 4 layers of the grid into memory
- Create a cube whose vertices lie on the two middle layers
- Classify the vertices of the cube according to the implicit function (inside, outside or on the surface)

Compute case index. We have 2^8 = 256 cases (0/1 for each of the eight vertices) – can store as 8 bit (1 byte) index.

Unique cases (by rotation, reflection and complement)

Using the case index, retrieve the connectivity in the look-up table

Example: the entry for index 33 in the look-up table indicates that the cut edges are e₁; e₄; e₅; e₆; e₉ and e₁₀; the output triangles are (e₁; e₉; e₄) and (e₅; e₁₀; e₆).

Compute the position of the cut vertices by linear interpolation:

$$\mathbf{v}_s = t\mathbf{v}_a + (1 - t)\mathbf{v}_b$$
$$t = \frac{F(\mathbf{v}_b)}{F(\mathbf{v}_b) - F(\mathbf{v}_a)}$$

V_S e₅ v₅

Move to the next cube

 Global fitting of an indicator function using Partial Differential Equation (PDE),

Oriented points

Indicator function

 $\chi_{\mathcal{M}}$

Oriented points

Indicator gradient

$$\nabla \chi_{\mathcal{M}}$$

But we can estimate its gradient! ©

Oriented points

Indicator function

$$\chi_{\mathcal{M}}$$

Indicator gradient

$$\nabla \chi_{\mathcal{M}}$$

Reconstruct χ by solving the Poisson equation

$$\Delta X_M = \nabla \cdot (\nabla X_M)$$

See Meshlab excercise in Lab!