SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 4425

Alternativna tastatura za zaslone osjetljive na dodir temeljena na Fittsovom zakonu

Juraj Šušnjara

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

CONTENTS

1.	Uvo	d	1
	1.1.	Kratka povijest	1
	1.2.	Tipkovnice danas	2
	1.3.	Interakcija čovjeka i računala	4
2.	Diza	jniranje alternativne tipkovnice	5
	2.1.	Opis problema	5
		2.1.1. Fittsov zakon	6
		2.1.2. Genetski algoritam	6
	2.2.	Implementacija i rezultati	6
3.	Ispit	zivanje rezultata	7
4.	Zak	ljučak	8

1. Uvod

1.1. Kratka povijest

Tipkovnice i pisaće tehnologije postoje i razvijaju se već dosta vremena. Prvi pisaći strojevi osmišljeni su i patentirani još 1700-tih, dok su u proizvodnju krenuli 1870-tih godina. Na prvim se takvim strojevima nije čak ni mogao vidjeti onaj tekst koji se unosio jer se papir nalazio unutar njega sve do završetka stranice. Od tada su se dogodile mnoge promjene u dizajnu, načinu unošenja teksta, rasporedu tipki i samoj tehnologiji. Pisaći uređaji su s vremenom postajali sve jednostavniji i lakši za korištenje.

Figure 1.1: Primjer pisaćeg stroja - Hansen writing ball (1870)

Godine 1867. Cristopher Latham Sholes, uređivač novina iz Wisconsina, patentirao je svoj prvi pisaći stroj koji je razvio s prijateljima Carlos Glidden-om i Saumel W. Soule-om. Taj je stroj, kao i svi njegovi prethodnici, bio mehanički i zbog toga se već napisani znakovi nisu mogli samo tako izbrisati kao što to možemo danas na svojim računalima i mobitelima. Ukoliko je unio nešto krivo, korisnik je morao izvaditi papir i započeti iznova. Sholes je zbog toga želio osmisliti raspored znakova na tipkovnici koji bi korisniku omogućio da radi manje pogrešaka i brže unosi tekst. Prijedlog je bio da razdvoji najčešće korištene parove slova (*npr. "th" u engleskom jeziku*), tako da ne budu jedno pokraj drugoga, a i da korisnik naizmjence tipka s lijevom i desnom rukom.

Da bi se to ostvarilo bilo je potrebno proučiti bigrame¹ za određeni jezik. Sholes se mučio nekoliko godina kako bi usavršio raspored dok konačno nije došao do onog kakav se i danas koristi, a to je QWERTY.

Figure 1.2: Standardni QWERTY raspored

1.2. Tipkovnice danas

Iako je QWERTY najpopularnija tipkovnica to ne znači da je i najučinkovitija. Ona se danas koristi zbog toga što su svi navikli na nju, lako je korisiti i teško je naučiti i preći na neku drugu. Postoji još mnogo različitih rasporeda i načina unošenja teksta koji su se eksperimentalno pokazali učinkovitijim od QWERTY. Navest ću neke od njih kako bi čitatelje približio tematici s kojom se bavim u ovom radu.

Dvorak: Dvorak raspodijelu tipki razvio je August Dvorak, cilj mu je bio zamjeniti QWERTY. Smatrao je da će time uvelike ubrzati i olakšati unošenje teksta jer njegova raspodijela zahtjeva manje micanje prstiju i smanjuje količinu napravljenih pogrešaka u odnosu na QWERTY. Proučavao je frekvenciju slova i fiziologiju ljudskih ruku kako bi što bolje dizajnirao svoju tipkovnicu. Iako nije uspio u naumu da Dvorak postane standardna tipkovnica, većina operacijskih sustava omogućava korisniku da je koristi. Tipkovnica je prikazana na slici 1.3.

ATOMIK: Ova raspodijela napravljena je za korištenje stilus-a (engl. stylus) na zaslonima osjetljivim na dodir. Razvio ga je IBM koristeći Metropolis algoritam kako bi matematički minimizirali pokrete potrebne za napisati riječi na engleskom jeziku. Tipkovnica je prikazana na slici 1.4.

¹Frekvencija pojavljivanja parova slova u pojedinom jeziku

FITALY: Ovaj raspodijela je također napravljena za korištenje stilus-a ili jednog prsta na zaslonima osjetljivim na dodir. Najčešće korištena slova stavljena su u sredinu kako bi se minimizirali pokreti kada se tekst unosi samo jednim prstom. Tipkovnica je prikazana na slici 1.5.

Figure 1.3: Dvorak

Figure 1.4: ATOMIK

Z	V	С	Н	W	K
F	Ι	T	A	L	Y
space		N	E	space	
G	D	О	R	S	В
Q	J	U	M	Р	X

Figure 1.5: FITALY

1.3. Interakcija čovjeka i računala

Problematikom koju sam naveo u prethodna dva poglavlja bavi se područje zvano *Interakcija čovjeka i računala (engl. Human-Computer Interaction)*, skraćeno *HCI*. Istraživači u tom području bave se dizajnom i računalnom tehnologijom. Proučavaju se brojni načini na koje korisnik može imati interakciju s računalima te nastoji tu interakciju što više pojednostavniti, olakšati i ubrzati. Postoji mnogo načina za unos teksta, i mnogo će ih još nastati, pitanje je vremena koliko dugo će se još QWERTY koristiti. Zato je važno isprobati nove algoritme, metode i pristupe te ih eksperimentalno vrednovati kako bi se provjerila njihova učinkovitost i koliko su korisnici zadovoljni.

2. Dizajniranje alternativne tipkovnice

Ovo poglavlje obuhvaća opis samog problema te pristup njegovog rješavanja. TODO još 2-3 rečenice dodat, npr o soft keyboard, smartphonima bla bla

2.1. Opis problema

Cili ovog rada jest osmisliti alternativnu tipkovnicu za zaslone osjetljive na dodir koristeći Fittsov zakon. Jednostavnije rečeno, radio sam na dizajniranju tipkovnice s određenim raspodijelom tipki koja bi korisniku omogućila brže unošenje teksta u odnosu na QWERTY tipkovnicu. Algoritam koji sam koristio temelji se na zasadama Fittsovog zakona (detaljnije opisan u poglavlju 2.1.1.). Taj zakon predviđa vrijeme potrebno da korisnik reagira i pomakne nešto s jedne lokacije na drugu. To nešto može biti npr. kursor miša, ruka, noga ili konkretno što se tiče ovog rada: prst. To vrijeme je funkcija udaljenosti do odredišne lokacije i širine te lokacije: f(D, W). U okviru pronalaženja optimalne raspodijele znakova na tipkovnici, udaljenost predstavlja međusobnu udaljenost dvije tipke na tipkovnici koje planiramo uzastopno stisnuti, a širina jest širina same tipke. Kao što se već da naslutiti, cilj je minimizirati funkciju vremena što istovremeno znači i minimizirati vrijeme potrebno da se unese određeni tekst. Uzmimo kao primjer riječ PAS i da korisnik tekst unosi prstom jedne ruke. Kako bi izračunali vrijeme koje je potrebno da korisnik to unese trebamo izračunati udaljenost od P do A d(P, A) i širinu od A w(A), pa udaljenost od A do S d(A, S)i širinu od S w(S). Pretpostavlja se da je početni položaj korisnikova prsta iznad slova P, kada njega stisne potrebno je preći udaljenost d(P, A) da bi se stisnula tipka A širine w(A) pa udaljenost d(A, S) da bi se stisnula tipka S širine w(S). Iz ovoga vidimo kako će se pomoću Fittsovog zakona dobiti tipkovnica koja će imati slova koja se često uzastopno koriste, jedan blizu drugoga. Zbog toga je potrebno analizirati statistiku bigrama za ciljani jezik tipkovnice.

//TODO stavit sliku za PAS

Razmišljajući o tome kako pronaći raspodijelu tipki koja će prema Fittsovom za-

konu imati najkraće vrijeme unosa teksta, palo mi je na pamet kako bi bilo najjednostavnije isprobati svaku moguću i pronaći onu s najmanjim vremenom. Ali to nije baš tako jednostavno, ako uzmemo u obzir hrvatsku abecedu koja ima 30 slova, potrebno je ispitati $30! = 2.65 * 10^{32}$ mogućih različitih razmještaja, što bi vjerojatno potrajalo nekoliko stoljeća. Ako malo bolje razmislimo, ovaj problem predstavlja klasičan problem optimizacije, pitanje je kako pronaći minimum funkcije zadane Fittsovim zakonom uzevši u obzir sve moguće razmještaje slova. Postoje razne metode za rješiti taj problem, ja sam odlučio iskoristiti moć genetskog algoritma. Genetski algoritam i način na koji sam ga koristio su detaljno opisani u poglavlju 2.1.2.

2.1.1. Fittsov zakon

Fittsov zakon je opisni model ljudskog pokreta koji se primarno koristi u *HCI-u*¹ i *ergonomiji*². Kao što smo već rekli, Fittsov zakon predviđa vrijeme brzog pokreta do odredišne lokacije, to je funkcija udaljenosti do odredišta i širine tog odredišta. Ovaj zakon modelira čin pokazivanja (engl. *act of pointing*), to može biti fizičko dodirivanje nekog objekta, primjerice rukom i prstom, a može biti i virtualno kao što je strelicom miša na računalu. Fittsov zakon se pokazao učinkovit u mnogo različitih slučajeva, koristeći razne dijelove tijela (ruke, noge, usne, kretanje oka...), u raznim okolinama (čak i pod vodom) i u raznim društvenim skupinama (mladi, stariji, ljudi s posebnim potrebama...).

Paul Fitts je 1954. godine predložio metriku pomoću koje se vrednuje težina zadatka pokazivanja (brzog pomicanja na odredišnu lokaciju). Ta metrika se temelji na informacijskoj analogiji, gdje je D udaljenost do odredišta i gleda se na njega kao na signal, a W je širina ili tolerancija koja se ponaša kao šum. ID predstavlja indeks težine (engl. $index\ of\ difficulty$) i mjeri se u bitovima. Formula je dana izrazom 2.1.

$$ID = log_2(2D/W) \tag{2.1}$$

2.1.2. Genetski algoritam

2.2. Implementacija i rezultati

¹Interakcija čovjeka i računala.

²Znanstvena disciplina koja istražuje ljudski organizam i ponašanje, te pruža podatke o prilagođenošću predmeta s kojima čovjek dolazi u kontakt.

3. Ispitivanje rezultata

4. Zaključak

Zaključak.

Alternativna tastatura za zas	lone osjetljive na dodir temeljena na Fitts zakonu
	Sažetak
Sažetak na hrvatskom jeziku.	
Ključne riječi: Ključne riječi, od	vojene zarezima.
Alternative Touchs	screen Keyboard Based on Fitts Law
	Abstract