Solutions to homework 3:

- 1. (a) $\exists a \in \mathbb{Z}, ((6 \mid a \text{ and } 8 \mid a) \text{ and } 48 \nmid a)$. The original statement is false, we prove by showing that the negation is false. Choose a = 24, which is divisible by 8 and 6. Thus the original statement is false.
 - (b) $\forall x \in \mathbb{Z}$ such that $(x \le 84)$ or $x \not\equiv 75 \mod 84$. The original statement is true, we can choose x = 159 which satisfies the condition x > 84 and by arithmetic we can see 159 = 84 + 75 meaning $159 \equiv 75 \mod 84$.
 - (c) $\forall x, y \in \mathbb{R}$ that $(x^2 < y^2 \lor x > y)$. The original statement is true, we can choose x = -1 and y = 1 such that $-1 \le 1$ and $(-1)^2 \ge (1)^2$.
- 2. For $a \in \mathbb{R}$, we define the set $S_a = \{x \in \mathbb{R} : (x \ge 0) \land (x < a 2)\}$. Show that $S_a = \emptyset$ if and only if $a \in (-\infty, 2]$.

Proof:

- If $a \in (-\infty, 2]$ then $S_a = \emptyset$: Assume that $a \in (-\infty, 2]$. We can say $a \le 2$ so $a 2 \le 0$, $S_a = \{x \in \mathbb{R} : (x \ge 0) \land (x < a 2 \le 0)\}$. Since $\sim (x \ge 0) = (x < 0)$, we can see that no $x \in \mathbb{R}$ can satisfy the the conditions of S_2 since the conditions are a contradiction. Thus, $S_2 = \emptyset$.
- If $S_a=\emptyset$ then $a\in (-\infty,2]$: Proof by Contrapositive. Assume that $a\notin (-\infty,2]$. So we can say that, a>2 and a-2>0. Since a-2>0 we can say that for S_a we can choose $x=\frac{a-2}{2}$ since it satisfies the conditions $x\geq 0$ and x< a-2. Thus $S_a\neq \emptyset$.

Thus by both directions we can conclude that the set $S_a = \emptyset$ if and only if $a \in (-\infty, 2]$.

- 3. Let $A = \{n \in \mathbb{N} : 5 \mid n \text{ or } 6 \mid n\}$
 - (a) $\exists x \in A$ such that $\exists y \in A$ such that $x + y \in A$. This statement is true.
 - **Proof:** Choose x=5 and y=10 such that x+y=15 and $15\equiv 0 \mod 5$, thus $x+y\in A$.
 - (b) $\forall x \in A, \forall y \in A, x + y \in A$. This statement is false. We can show by proving the negation $\exists x \in A, \exists y \in A \text{ such that } x + y \notin A$.
 - **Proof:** Choose x=6 and y=5 such that x+y=11 and $11\equiv 1 \bmod 5$ and $11\equiv 5 \bmod 6$ thus $11\notin A$.
 - (c) $\exists x \in A, \forall y \in A, x + y \in A$. This statement is true.
 - **Proof:** Assume $x, y \in A$. Choose x = 30.
 - ▶ Case 1: Assume that y = 5k, for some $k \in \mathbb{Z}$. Consider x + y = 5k + 30 and x + y = 5(k + 6), since $(k + 6) \in \mathbb{Z}$ then

x + y = 5n, for some $n \in \mathbb{Z}$, meaning that $x + y \in A$.

► Case 2: Assume that y = 6k, for some $k \in \mathbb{Z}$. Consider x + y = 5k + 30 and x + y = 6(k + 5), since $(k + 5) \in \mathbb{Z}$ then

x + y = 6n, for some $n \in \mathbb{Z}$, meaning that $x + y \in A$.

Thus, there exists $x \in A$ such that $\forall y \in A, x + y \in A$.

4. Solutions

- (a) $\forall n \in \mathbb{Z}, \exists y \in \mathbb{R} \text{ such that } y^n < y$.
- **Answer:** This statement is false we can show this by proving the negation of the statement is $\exists n \in \mathbb{Z}, \forall y \in \mathbb{R}$ such that $y^n \geq y$.
 - **Proof:** Assume that $n \in \mathbb{Z}$ and $y \in \mathbb{R}$.
 - Case 1: Let -1 < y < 1 we can choose n = 0 which satisfies $y^0 \ge y$ which evaluates to $1 \ge y$. Hence, $y^n \ge y$.
 - Case 2: Let $y \le -1$ we can choose n = 2, which satisfies $y^2 \ge y$, hence $y^n \ge y$.
 - Case 3: Let $y \ge 1$ we can choose n = 2, which satisfies $y^2 \ge y$, hence $y^n \ge y$.

Thus in all cases $\exists n \in \mathbb{Z}, \forall y \in \mathbb{R}$ such that $y^n \geq y$.

- (b) $\exists y \in \mathbb{R}$ such that $\forall n \in \mathbb{Z}$ with n > 1, we have $y^n < y$.
- **Answer:** This statement is true. The negation of this statement is $\forall y \in \mathbb{R}, \exists n \in \mathbb{Z}$ with n > 1, we have $y^n \leq y$.
 - ▶ **Proof:** Choose $y = \frac{1}{2}$ such that y > 0, it remains true that $y^n > 0$. Now consider the fact that $y^n = \left(2^{-1}\right)^n$ so that $y = \frac{1}{2^n}$, using this fact we know that $\frac{1}{2^n} \leq \frac{1}{2}$ for any $n \in \mathbb{N}$. Hence $y^n \leq y$.
- 5. $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z} \text{ such that } a^2 + b^2 \equiv 1 \mod 3.$

Proof: Assume $a, b \in \mathbb{Z}$.

- Case 1: Assume that $a \equiv 0 \mod 3$ such that a = 3k, for some $k \in \mathbb{Z}$ and let b = 1. Consider $a^2 + b^2 = 9k^2 + 1$ and $a^2 + b^2 = 3(3k^2) + 1$ and since we know that $3k^2$ is an integer then $a^2 + b^2 \equiv 1 \mod 3$.
- Case 2: Assume that $a \equiv 1 \mod 3$ such that a = 3k + 1, for some $k \in \mathbb{Z}$ and let b = 0. Consider $a^2 + b^2 = 9k^2 + 6k + 1$ and $a^2 + b^2 = 3(3k^2 + 2k) + 1$, since $(3k^2 + 1)$ is an integer we know that $a^2 + b^2 \equiv 1 \mod 3$.

Gabriel Amador Zarza Page 2 97852387

• Case 3: Assume that $a \equiv 2 \mod 3$ such that a = 3k + 2, for some $k \in \mathbb{Z}$ and let b = 0. Consider $a^2 + b^2 = 9k^2 + 12k + 4$ and $a^2 + b^2 = 3(3k^2 + 1) + 1$, since $(3k^2 + 1)$ is an integer we know that $a^2 + b^2 \equiv 1 \mod 3$.

Hence, by every case $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z} \text{ such that } a^2 + b^2 \equiv 1 \mod 3.$

6. For every positive number ε there is a positive number M for which

$$\left|1 - \frac{x^2}{x^2 + 1}\right| < \varepsilon,$$

whenever $x \geq M$.

Negation: There exists a positive number ε and for all positive numbers M there exists x for which

$$\left|1 - \frac{x^2}{x^2 + 1}\right| \ge \varepsilon,$$

and $x \geq M$.

7. (a) Every bounded function $f: \mathbb{R} \to \mathbb{R}$ is also linearly bounded. This statement is false.

Proof: Consider the constant function f(x) = 1 for all $x \in \mathbb{R}$.

First, we verify that f is bounded. We have $|f(x)| = |1| = 1 \le 1$ for all $x \in \mathbb{R}$. Taking n = 1, we see that f satisfies Definition 1, so f is bounded.

Now we show that f is not linearly bounded. Suppose, for the sake of contradiction, that f is linearly bounded. Then by Definition 2, there exists $j \in \mathbb{N}$ such that $|f(x)| \leq |jx|$ for all $x \in \mathbb{N}$ \mathbb{R} .

Consider x = 0. Then we have:

$$|f(0)| \le |j \cdot 0|$$
$$1 < 0$$

This is a contradiction. Hence not every bounded function $f: \mathbb{R} \to \mathbb{R}$ is also linearly bounded.

(b) Every linearly bounded function $f: \mathbb{R} \to \mathbb{R}$ is also bounded. This statement is false.

Proof: Consider the function f(x) = x for all $x \in \mathbb{R}$.

First, we verify that f is linearly bounded. Taking j = 1, we have:

$$|f(x)| = |x| = |1 \cdot x| = |jx|$$

So $|f(x)| \le |jx|$ for all $x \in \mathbb{R}$, which means f satisfies Definition 2. Therefore, f is linearly bounded.

Now we show that f is not bounded. Suppose, for the sake of contradiction, that f is bounded. Then by Definition 1, there exists $n \in \mathbb{N}$ such that $|f(x)| \leq n$ for all $x \in \mathbb{R}$.

Consider x = n + 1. Then:

$$|f(n+1)| = |n+1| = n+1 > n$$

This contradicts the assumption that $|f(x)| \leq n$ for all $x \in \mathbb{R}$.

Therefore, f(x) = x is linearly bounded but not bounded, so the statement is false.

(c) A function $f: \mathbb{R} \to \mathbb{R}$ is bounded if and only if f is strictly bounded. This statement is false.

Proof: We will show that the "only if" direction is false (i.e., bounded does not imply strictly bounded).

Consider the constant function f(x) = k for some fixed $k \in \mathbb{N}$.

First, we verify that f is bounded. We have $|f(x)| = k \le k$ for all $x \in \mathbb{R}$. Taking n = k in Definition 1, we see that f is bounded.

Now we show that f is not strictly bounded. By Definition 3, for f to be strictly bounded, there must exist $k \in \mathbb{N}$ such that |f(x)| < k for all $x \in \mathbb{R}$.

However, we have |f(x)| = k, and k < k is false.

Therefore, f(x) = k is bounded but not strictly bounded, so the "if and only if" statement is false.