Экранированные объекты, помещения, технические средства

ПОЛЕ ГИПОГЕОМАГНИТНОЕ

Методы измерений и оценки соответствия уровней полей техническим требованиям и гигиеническим нормативам

Издание официальное

53 8-2000/223

ГОССТАНДАРТ РОССИИ Москва

Предисловие

1 РАЗРАБОТАН Закрытым акционерным обществом (ЗАО) «Научно-технический центр испытаний радиоэлектронных средств» (НТЦ ИРЭС)

ВНЕСЕН Открытым акционерным обществом (ОАО) «Центральный научно-исследовательский институт радиоэлектронных систем» (ЦНИИРЭС)

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 27 марта 2001 г. № 138-ст
 - 3 ВВЕДЕН ВПЕРВЫЕ

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Определения, обозначения и сокращения	2
4 Показатели гипогеомагнитного поля	3
5 Требования к средствам измерений	3
6 Общие требования к проведению измерений	4
7 Методы измерений и оценки	4
8 Оформление результатов измерений	5
Приложение А Коэффициенты ослабления напряженности ГГМП	6
Приложение Б Калибровочный стенд и метод калибровки магнитометров	6
Приложение В Порядок выбора контрольных точек для измерения гипогеомагнитного поля в	
объектах и на рабочих местах	7
Приложение Г Перечень средств измерений интенсивности геомагнитного и гипогеомагнитного	
полей	8
Приложение Д Библиография	11

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Экранированные объекты, помещения, технические средства

ПОЛЕ ГИПОГЕОМАГНИТНОЕ

Методы измерений и оценки соответствия уровней полей техническим требованиям и гигиеническим нормативам

Shielded facilities, spaces, installations. Reduced geomagnetic field. Methods of measuring and assessment of field intensity compliance with technical requirements and hygiene standards

Дата введения 2002-01-01

1 Область применения

Настоящий стандарт распространяется на наземные, подземные, надводные и подводные экранированные объекты, помещения, технические средства, места размещения радиоэлектронных средств (РЭС) при их производстве, испытаниях и эксплуатации, а также на рабочие места персонала, расположенные в этих местах.

Стандарт устанавливает методы измерений гипогеомагнитного поля (ГГМП) внутри экранированных объектов, помещений, технических средств (далее — объекты) и на рабочих местах персонала стационарных экранированных объектов (далее — рабочие места), методы оценки соответствия результатов измерений ГГМП техническим требованиям к РЭС и гигиеническим критериям [1] по ГГМП к рабочим местам, а также требования к средствам измерений ГГМП и методы их калибровки.

Стандарт не устанавливает требований к РЭС и гигиеническим нормативам к рабочим местам по ГГМП.

Стандарт не распространяется на объекты и рабочие места летательных аппаратов и транспортных средств.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.326—89 Государственная система обеспечения единства измерений. Метрологическая аттестация средств измерений

ГОСТ 12.0.002—80 Система стандартов безопасности труда. Термины и определения

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.3.019—80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности

ГОСТ 4401-81 Атмосфера стандартная. Параметры

ГОСТ 22261—94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 26632—85 Уровни разукрупнения радиоэлектронных средств по функционально-конструктивной сложности. Термины и определения

ГОСТ Р 8.563—96 Государственная система обеспечения единства измерений. Методики выполнения измерений

 \star

3 Определения, обозначения и сокращения

3.1 В настоящем стандарте применяют следующие термины и соответствующие определения.

3.1.1 гипогеомагнитное поле: Магнитное поле внутри экранированного объекта, являющееся суперпозицией магнитных полей, создаваемых:

- геомагнитным полем, ослабленным экраном объекта;

- полем остаточной намагниченности ферромагнитных частей конструкции объекта;

- полем постоянного тока, протекающего по шинам и частям конструкции объекта (рабочего места).

3.1.2 рабочее место: По ГОСТ 12.1.005.

3.1.3 вредный производственный фактор: По ГОСТ 12.0.002.

3.1.4 геомагнитное поле (магнитное поле Земли): По ГОСТ 4401 и [2].

3.1.5 угол наклонения: По ГОСТ 4401 и [2].

3.1.6 открытое пространство: Пространство над поверхностью земли, расположенное рядом с контролируемым объектом, простирающееся от границы, находящейся на расстоянии более трех высот объекта или соседних с объектом сооружений и на расстоянии не менее 30 м от места размещения металлических подземных коммуникаций или заглубленных объектов.

3.1.7 техническая безопасность: Условие, при котором максимальное значение коэффициента ослабления K_{Γ} в месте расположения РЭС на объекте меньше установленного в нормативных

документах на конкретные РЭС.

- 3.1.8 санитарно-гигиеническая безопасность: Состояние рабочего места персонала объекта, при котором максимальное значение K_{Γ} в месте расположения тела человека в процессе трудовой деятельности меньше установленного в [1].
 - 3.1.9 радиоэлектронное средство: По ГОСТ 26632.

3.1.10 предельно допустимый уровень: По [1].

3.1.11 магнитометр: Средство измерения параметров магнитного поля напряженности (индук-

ции), направления и градиента.

3.1.12 магнитометр однокомпонентный: Магнитометр, при помощи которого определяют напряженность (индукцию) модуля вектора магнитного поля по максимальному показанию отсчетного устройства при поворотах измерительного преобразователя в пространстве контрольной точки или путем измерения ортогональных составляющих напряженности H_x , H_y и H_z магнитного поля в контрольной точке и вычисления модуля вектора напряженности H, A/M, из выражения

$$H = \sqrt{H_x^2 + H_y^2 + H_z^2} \,. \tag{1}$$

3.1.13 магнитометр многокомпонентный: Магнитометр, показания которого не зависят от ориентации измерительного преобразователя в пространстве.

3.1.14 контрольная точка: Пространство с заданными координатами, в котором размещают

магнитометр при измерении параметров магнитного поля.

3.2 В настоящем стандарте применяют следующие обозначения:

 H_0 , A/м, — напряженность модуля вектора геомагнитного поля, измеренная в направлении магнитного меридиана Север-Юг в конкретной точке открытого пространства на высоте 1,5-1,7 м от земной поверхности или по магнитным картам Земли [2].

 $H_{\rm B},~{
m A/m},~-$ максимальная напряженность модуля вектора ГГМП, измеренная внутри экрани-

рованного объекта или на рабочем месте.

 $H_{
m B}$ (n), A/м, — максимальная напряженность модуля вектора ГГМП, измеренная в данной

контрольной точке объекта или рабочего места.

 K_{Γ} — коэффициент ослабления напряженности H_0 модуля вектора геомагнитного поля открытого пространства по отношению к напряженности $H_{\rm B}$ модуля вектора ГГМП, измеренной внутри экранированного объекта или на рабочем месте.

 $K_{\Gamma}(n)$ — коэффициент ослабления напряженности H_0 модуля вектора геомагнитного поля открытого пространства по отношению к напряженности $H_{\rm B}$ (n) модуля вектора ГГМП, измеренной

в данной контрольной точке объекта или рабочего места.

 K_{Γ} предельно допустимый уровень коэффициента ослабления геомагнитного поля внутри экранированного объекта, установленный в нормативных документах на РЭС или в [1].

 H_{0x} , H_{0y} , H_{0z} и H_{Bx} , H_{By} , H_{Bz} , A/м, — ортогональные составляющие модуля вектора напряженности постоянного магнитного поля.

 $(n)-1, 2, 3, \ldots$ номер контрольной точки.

 $I_{\mathrm{K}\Gamma},\,\mathrm{A},\,-$ ток, протекающий через витки К Γ .

 $H_{\mathrm{K}\Gamma}$, А/м, — модуль вектора напряженности магнитного поля, направленного вдоль оси К Γ , возбуждаемого током $I_{\mathrm{K}\Gamma}$.

 H_n , А/м, — модуль вектора напряженности магнитного поля, направленного вдоль оси КГ,

равный разности или сумме напряженности H_0 и $H_{\mathrm{K}\Gamma}$.

 $B_{K\Gamma}$, Тл, — плотность магнитного потока (индукции) в направлении оси КГ, измеренная в центре КГ.

3.3 В настоящем стандарте применяют следующие сокращения:

РЭС — радиоэлектронное средство;

ГМП — гипомагнитное поле;

ГГМП — гипогеомагнитное поле;

ПДУ — предельно допустимый уровень;

КГ — катушка Гельмгольца;

КТ — контрольная точка.

4 Показатели гипогеомагнитного поля

- 4.1 Устанавливают следующие показатели ГГМП.
- 4.1.1 Напряженность модуля вектора постоянного магнитного поля $H_{\rm B}$ внутри экранированного объекта или на рабочем месте.
- 4.1.2 Коэффициент ослабления K_{Γ} напряженности H_0 модуля вектора геомагнитного поля, измеренной в открытом пространстве, по отношению к напряженности $H_{\rm B}$ модуля вектора ГГМП, измеренной внутри экранированного объекта или на рабочем месте.

Значение K_r определяют по формуле

$$K_{\rm r} = \frac{H_0}{H_{\rm p}} \,. \tag{2}$$

4.2 Классы условий труда при воздействии ГГМП на рабочие места персонала экранированных объектов в течение рабочей смены приведены в приложении А и [1].

5 Требования к средствам измерений

- 5.1 Для измерения напряженности модуля вектора постоянного магнитного поля (H_0 и H_B) в пространстве необходимо использовать магнитометр, имеющий следующие характеристики:
- 5.1.1 Пределы измерения напряженности модуля постоянного магнитного поля от 0,3 до 200 А/м.
 - 5.1.2 Основная допускаемая погрешность измерения, %, не более:
 - $0,3-3,0 \text{ A/M} \dots \pm 5$
 - $3-30 \text{ A/M} \dots \pm 3$
 - $30-200 \text{ A/M} \dots \pm 3$
- 5.1.3 Дополнительная допускаемая погрешность измерения не должна превышать 10 % погрешности, приведенной в 5.1.2 при воздействии одного из следующих факторов:
 - климатических условий эксплуатации;
 - напряженности переменного магнитного поля:
 - 50 Γ ц не менее 5 A/м;
 - 400 Гц не менее 0,6 А/м.
 - 5.1.4 Конструктивное исполнение портативное.
 - 5.1.5 Питание от автономного источника.
- 5.2 Условия эксплуатации, устойчивость к механическим и климатическим воздействиям по ГОСТ 22261.
- 5.3 Методы измерений напряженности модуля вектора постоянного магнитного поля в пространстве, приводимые в эксплуатационной документации на магнитометр, должны соответствовать требованиям ГОСТ Р 8.563 и настоящего стандарта.
- 5.4 Измерения должны проводиться приборами, прошедшими метрологическую аттестацию и имеющими действующее свидетельство о поверке.

Примечание — Допускается до 2005 г. метрологическую аттестацию магнитометров, применяемых для измерений магнитного поля, проводить по ГОСТ 8.326.

5.5 Описание калибровочного стенда и метода калибровки магнитометров для измерения напряженности постоянного магнитного поля приведено в приложении Б.

6 Общие требования к проведению измерений

6.1 Перед измерениями необходимо провести следующую подготовку.

6.1.1 Выбрать контрольные точки в пространствах объекта и рабочего места и установить их координаты относительно элементов конструкции объекта и рабочего места.

Порядок выбора контрольных точек приведен в приложении В.

6.1.2 Обеспечить проведение измерений в контрольных точках в соответствии с требованиями безопасности, установленными в нормативной документации на контролируемые РЭС, объект и рабочее место. Другие требования безопасности — по ГОСТ 12.3.019.

6.1.3 Подготовить магнитометры в соответствии с эксплуатационной документацией на ис-

пользуемые магнитометры.

6.2 Определить значение H_0 в открытом пространстве на территории, расположенной рядом с контролируемым объектом, по 7.5 или по магнитным картам для данной местности [2].

6.3 Измерение напряженности $H_{B(n)}$ ГГМП в контрольных точках проводят в штатных климатических, механических и электромагнитных условиях эксплуатации контролируемых РЭС, объекта и рабочего места, если иное не установлено в нормативных документах.

6.4 Измерения, обработку результатов и оценку соответствия параметров ГМП и ГГМП техническим требованиям и [1] должны проводить лица с высшим техническим (средним техническим) образованием, прошедшие в установленном порядке обучение и аттестацию на знание методов контроля ГГМП.

7 Методы измерений и оценки

7.1 Оценку соответствия параметров ГГМП проводят путем измерения $H_{{\rm B}(n)}$ в каждой контрольной точке, вычисления $K_{{\rm r}(n)}$ и его сравнения с предельно допустимым значением $K_{{\rm r}}$ пду, установленным в технических требованиях или в [1].

7.2 Методы измерений

7.2.1 Измерения H_0 и $H_{\rm B}$ проводят методом непосредственной оценки модуля вектора напряженности постоянного магнитного поля. H_0 и $H_{\rm B}$ определяют по отсчетному устройству многокомпонентного магнитометра.

7.2.2 Допускается измерения H_0 и $H_{\rm B}$ проводить при помощи однокомпонентного магнитометра. При этом значение модуля вектора напряженности постоянного магнитного поля определяют по максимальному значению, фиксируемому на отсчетном устройстве магнитометра при перемещении его в пространстве контрольной точки или путем измерения ортогональных составляющих ($H_{0\rm X}$, $H_{0\rm Y}$, $H_{0\rm Z}$ или $H_{\rm BX}$, $H_{\rm By}$, $H_{\rm BZ}$) и вычисления модулей по следующим формулам:

$$H_0 = \sqrt{H_{0x}^2 + H_{0y}^2 + H_{0z}^2}, \qquad (3)$$

$$H_{\rm B} = \sqrt{H_{\rm BX}^2 + H_{\rm BY}^2 + H_{\rm BZ}^2} \,. \tag{4}$$

7.3 Характеристики погрешности измерений

7.3.1 Допускаемые относительные погрешности измерений H_0 и $H_{\rm B}$ не должны превышать приведенных в 5.1.2 (при доверительной вероятности 0,95).

7.3.2 Данный метод обеспечивает следующие значения составляющих относительной погрешности измерений H_0 и $H_{\rm R}$:

- случайная составляющая — менее 0,5 %;

- неисключенная систематическая составляющая — менее 5 %.

 Π р и м е ч а н и е — В значение погрешности не входит составляющая при неточной установке одноком-понентного магнитометра при измерениях ортогональных составляющих H_{0x} , H_{0y} , H_{0z} и H_{Bx} , H_{By} , H_{Bz} .

7.3.3 Данный метод обеспечивает следующие значения составляющих относительной погрешности K_{Γ} :

- случайная составляющая — менее 0,7 %;

- неисключенная систематическая составляющая — менее 7 %.

7.4 Средства измерений

Для измерений рекомендуется применять средства измерений, приведенные в приложении Г.

7.5 Метод измерений

- 7.5.1 В открытом пространстве, прилегающем к контролируемому объекту, на высоте 1,5-1,7 м от поверхности земли при помощи магнитометра измерить значение H_0 .
- 7.5.2 Повторить измерение H_0 по 7.5.1 3 5 раз в других точках поверхности земли, каждая из которых должна быть расположена на расстоянии не менее 10 м от другой и вычислить среднее арифметическое значение результатов измерений. Вычисленные значения H_0 занести в протокол измерений.
- 7.5.3 Последовательно в каждой контрольной точке, подлежащей контролю внутри объекта и на рабочем месте, выбранной по 6.1.1, измерить значение $H_{\rm n(n)}$.
- 7.5.4 Повторить измерение $H_{\rm B(n)}$ 3 5 раз в тех же контрольных точках, в той же последовательности и вычислить среднее арифметическое значение результатов измерений в каждой контрольной точке. Вычисленные значения $H_{\rm B(n)}$ занести в протокол измерений.
- 7.6 Оценка соответствия уровней гипогеомагнитных полей техническим требованиям и гигиеническим нормативам
 - 7.6.1 Определить K_r в каждой контрольной точке объекта и рабочего места по формуле

$$K_{\Gamma(n)} = \frac{H_0}{H_{\mathrm{B}(n)}} \,. \tag{5}$$

7.6.2 Экранированный объект соответствует требованиям безопасности для РЭС при условии, если $K_{\Gamma(n)}$ в каждой контрольной точке будет равен или меньше $K_{\Gamma(\Pi)}$

$$K_{\Gamma(n)} \le K_{\Gamma \Pi \coprod Y}.$$
 (6)

7.6.3 Экранированный объект не соответствует требованиям безопасности для РЭС, если хотя бы одно из $K_{\Gamma(n)}$ в любой контрольной точке будет больше $K_{\Gamma\Pi \Pi Y}$

$$K_{r(n)} > K_{r} \prod_{l} y.$$
 (7)

7.6.4 Рабочее место экранированного объекта соответствует требованиям безопасности для персонала, если $K_{r(n)}$ в контрольных точках в течение рабочей смены, вычисленные на трех уровнях от поверхности пола: 0,5, 1,0 и 1,2 м — при рабочей позе оператора сидя и 0,5, 1,0 и 1,7 м — при рабочей позе оператора стоя, будут равны или меньше K_{r} ПДу

$$K_{\Gamma(n)} \le K_{\Gamma \prod \prod y}.$$
 (8)

7.6.5 Условия труда на рабочем месте считают вредными, если в течение рабочей смены хотя бы одно из $K_{\Gamma(n)}$ в контрольных точках, вычисленных на трех уровнях от поверхности пола: 0,5, 1,0 и 1,2 м при рабочей позе оператора сидя и 0,5, 1,0 и 1,7 м — при рабочей позе оператора стоя, будет больше $K_{\Gamma(\Pi,\Pi)}$

$$K_{r(n)} > K_{r \text{ IIII}}. \tag{9}$$

7.7 Контроль точности результатов измерений

- 7.7.1 Значение точности оценки $K_{\Gamma(n)}$ должно быть указано в нормативных документах на конкретное РЭС.
- 7.7.2 Точность измерений ГГМП и оценка соответствия значений $K_{\Gamma(n)}$ гигиеническим нормативам по данной методике определяют в виде предела допускаемой относительной погрешности используемых магнитометров.
- 7.7.3 Периодичность контроля значений систематической составляющей погрешности измерений в соответствии с межповерочными интервалами используемых магнитометров.

8 Оформление результатов измерения

8.1 Результаты измерений и оценку соответствия уровней ГГМП техническим требованиям, установленным в настоящем стандарте и [1], оформляют в виде протокола.

ПРИЛОЖЕНИЕ А (справочное)

Коэффициенты ослабления напряженности ГГМП

Таблица А.1

Воздействую- щий фактор	Коэффициент ослабления напряженности ГГМП Классы условий труда							
	1-й степени	2-й степени	3-й степени	4-й степени	- (экстремаль- ный)			
	1	2	3.1	3.2	3.3	3.4	4	
	Гипогеомаг- нитное поле	На уровне естествен- ного фона	< 2,0	≤ 5,0	≤ 10,0	≤ 20,0	≤ 50,0	_

ПРИЛОЖЕНИЕ Б (справочное)

Калибровочный стенд и метод калибровки магнитометров

- Б.1 Магнитометр калибруют в магнитном поле, возбуждаемом в центре катушки Гельмгольца (КГ) постоянным током $I_{K\Gamma}$ от источника питания любого типа, обеспечивающего ток от 0 до 30 А при 8 20 витках КГ. Точность установки тока не более \pm 0,5 %.
- $5.2~{
 m K}\Gamma$ размещают на деревянной подставке на высоте не менее $1,2~{
 m M}$ от пола и потолка и на расстоянии не менее $2~{
 m M}$ от ферромагнитных предметов, находящихся в помещении. Все крепежные элементы конструкции ${
 m K}\Gamma$ должны быть выполнены из диамагнитных материалов.
- Б.3 КГ располагают в пространстве таким образом, чтобы геометрическая ось, проведенная через центры обоих колец КГ, была направлена вдоль вектора напряженности магнитного поля в данном помещении с отклонением не более \pm 1,0°.
- Б.4 В КГ устанавливают ток такой величины и направления, чтобы значение модуля вектора напряженности поля КГ $H_{\rm K\Gamma}$ было равно значению модуля вектора напряженности геомагнитного поля H_0 в данном помещении и эти векторы полей были направлены навстречу друг другу. Регулируя величину тока и направление оси КГ в небольших пределах, добиваются в центре КГ значений напряженности H_n поля менее 0,1 А/м.
- Б.5 Устанавливают выносной датчик магнитометра в центре КГ на деревянной доске, ориентированной вдоль оси КГ, и, плавно уменьшая ток $I_{\text{КГ}}$, калибруют магнитометр, начиная со значения H_n , равного 0,3 А/м, и увеличивая каждое последующее значение H_n в 2 раза (0,3, 0,6, 1,2 и т. д.) до значения, равного H_0 .

При уменьшении тока $I_{\rm K\Gamma}$ до нуля изменяют его полярность и продолжают калибровку при значениях H_n , больших H_0 в данном помещении. В этом случае напряженность поля H_n в центре КГ будет равна сумме напряженностей поля КГ $H_{\rm K\Gamma}$ и геомагнитного поля H_0 .

- Б.6 Полученные в калибровочных точках показания магнитометра должны быть в пределах $\pm 2\%$ номинальных значений H_n , превышающих 15 А/м.
- Б.7 Устанавливают выносной датчик магнитометра в центре КГ в положение 180° от первоначального и проводят калибровку отрицательных значений H_n согласно Б.5 и Б.6.
 - Б.8 Плотность магнитного потока $B_{K\Gamma}$, Тл, в центре КГ рассчитывают по формуле

$$B_{K\Gamma} = 4.5 \cdot 10^{-7} \frac{NI_{K\Gamma}}{R}, \qquad (E.1)$$

где N — число витков $K\Gamma$;

R — радиус КГ, м (для магнитометра, линейный размер которого менее 150 мм, значение R должно быть равно или более 0,35 м);

 $I_{\mathrm{K}\Gamma}$ — ток, протекающий через витки К Γ , А.

Напряженность поля, возбуждаемого током $I_{K\Gamma}$ в центре КГ, определяют по формуле

$$H_{K\Gamma} = \frac{B_{K\Gamma}}{\mu_0} \,, \tag{5.2}$$

где μ_0 — магнитная постоянная воздуха, Γ н/м, равная

Схема КГ приведена на рисунке Б.1

Ікг — ток в катушке Гельмгольца; R — радиус катушки Гельмгольца; H_0 — вектор напряженности геомагнитного поля; I_0 угол наклонения вектора геомагнитного поля; $H_{\rm K\Gamma}$ — вектор напряженности магнитного поля в катушке Гельмгольца, возбуждаемый током $I_{\rm K\Gamma}$

Рисунок Б.1 — Схема катушки Гельмгольца

Б.9 Магнитометр должен быть устойчивым к воздействию переменных магнитных полей промышленной частотой 50 Гц, напряженностью не менее 5 А/м и 400 Гц, напряженностью не менее 0,6 А/м.

Контроль магнитометра на устойчивость к воздействию переменных магнитных полей проводят в той же $K\Gamma$. Устанавливают выносной датчик магнитометра по оси $K\Gamma$. Фиксируют показания магнитометра H_n . Возбуждают в КГ магнитное поле синусоидальной формы сначала частотой 50 Гц, а затем частотой 400 Гц, регистрируя при этом значения H_n , которые не должны отличаться более чем на $\pm 2~\%$ от показаний магнитометра без воздействия на него переменного магнитного поля.

приложение в (обязательное)

Порядок выбора контрольных точек для измерения гипогеомагнитного поля в объектах и на рабочих местах

- В.1 Выбор контрольных точек измерения ГГМП проводят для:
- В.1.1 оценки значения коэффициента ослабления $K_{\rm r}$, создаваемого конструкциями объекта; В.1.2 оценки значения коэффициента ослабления $K_{\rm r}$ в месте размещения уязвимой к ГГМП РЭС (при определении технической безопасности);
- В.1.3 оценки значения коэффициента ослабления $K_{\rm r}$ на рабочем месте персонала (при определении санитарно-гигиенической безопасности).
 - В.2 Оценку по В.1.1 проводят, если наибольший внутренний размер объекта:
 - В.2.1 до 1 м в одной точке геометрического центра объекта;
- В.2.2 от 1 до 3 м в точке геометрического центра объекта и в точках, расположенных на расстоянии 0,5 м от каждой стенки по осям симметрии объекта;
- В.2.3 от 3 до 30 м в точке геометрического центра объекта (или на высоте 1,5 м от пола) и в точках, расположенных на расстоянии 0,5 м от каждой боковой стенки объекта, образуемых пересечениями сетки с шагом 1,0 м на высоте 1,0 м от пола.

В протоколе измерений фиксируют значения $K_{\rm r}$, измеренные во всех контрольных точках. Для характеристики объекта по ГГМП указывают коэффициент ослабления $K_{\rm p}$, измеренный в точке геометрического центра объекта.

- В.3 Оценку по В.1.2 проводят в месте размещения уязвимой к ГГМП РЭС на расстоянии не менее 0,2 м от РЭС и не менее 0,5 м от стенки объекта или от элемента конструкции объекта. В протоколе измерений фиксируют значения K_{Γ} , измеренные во всех контрольных точках.
- В.4 Оценку по В.1.3 проводят на каждом рабочем месте на трех уровнях от поверхности пола: 0,5, 1,0 и 1,2 м — при рабочей позе оператора сидя и $0,5,\ 1,0$ и 1,7 м — при рабочей позе оператора стоя.
 - В протоколе измерений фиксируют значения K_{Γ} , измеренные во всех контрольных точках.

ПРИЛОЖЕНИЕ Г (рекомендуемое)

Перечень средств измерений интенсивности геомагнитного и гипогеомагнитного полей

Таблица Г.1

Наименование средства измерения (изготовитель, разработчик)	Основные технические характеристики				
1 Миллитесламетр портативный модульный МПМ-2 (Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений, пос. Менделеево Московской обл.)					
	Диапазон, мТл	Цена деления низшего разряда, мТл	Основная погрешность, %		
	± 20 ± 200	0,01 0,1	± 7,5 ± 7,5		
	Однокомпонентный.				
	Чувствительный элемент: преобразователь Холла, встроенный в зонд. Длина соединительного кабеля — 0,5 м.				
en e	Дисплей: 3	3 1/ ₂ разряда, ЖКИ.			
	Питание: ч	етыре батареи типа АА или вы	нешний блок питания — 5 В.		
	Размеры, мм: электронный блок — $85 \times 165 \times 45$; зонд — \emptyset 6 × 120.				
	Масса, кт:	электронный блок — 0,4; зог	нд $-0,05$.		
	Позволяет измерять компоненты вектора магнитной индукции переменного магнитного поля от 40 до 200 Гц.				
	Позволяет оценивать модуль вектора индукции постоянного и переменного магнитного поля				
2 Магнитометр портативный — из- меритель постоянного поля трехком-	Режим измерения компонент и модуля вектора напряженности магнитного поля				
понентный ИГМП-3к (ЗАО «Научно- технический центр испытаний радиоэлектронных средств», г. Моск-	Диапазон, А/м	Цена деления низшего разряда, А/м	Основная погрешность, %		
ва; Ижевский государственный технический университет, г. Ижевск)	±200	0,1	± 5		
телнический университет, т. накевеку	Трехкомпонентный.				
	Чувствительные элементы: ортогонально расположенные миниатюрные феррозонды, встроенные в выносной датчик, соединенный с электронным блоком кабелем длиною 0,7 м.				
	Дисплей: 3 ¹ / ₂ разряда, ЖКИ.				
	Питание: батарея типа «Корунд» или внешний источник питания 9 В.				
	Размеры, мм: электронный блок — $54 \times 90 \times 180$; датчик 18×120 ;				
	Масса, кг: электронный блок — 0,3; датчик — 0,07.				
	Тип интерфейса для подключения к ПЭВМ — RS-232.				
	Позволяет измерять:				
	модуль вектора и ортогональные компоненты напряженности постоянного магнитного поля;				
	градиент модуля вектора напряженности поля;				
	угол наклона вектора напряженности поля.				
	Позволяет устанавливать порог срабатывания световой и звуковой индикации, калибровочные значения напряженности поля, автоматический и ручной режимы измерений				

Продолжение таблицы Г.1

Наименование средства измерения (изготовитель, разработчик)	Основные технические характеристики				
3 Магнитометр портативный — из- меритель постоянного поля одноком-	магнитного поля				
понентный ИГМП-1к (ЗАО «Науч но-технический центр испытани радиоэлектронных средств», г. Мо	Диапазон, Цена деления низшего А/м разряда, А/м		Основная погрешность, %		
ква; Ижевский государственный технический университет, г. Ижевск)	± 200	0,1	± 5		
	Однокомпонентный.				
	Чувствительный элемент: миниатюрный феррозонд, встроенный в выносной датчик, соединенный с электронным блоком кабелем длиной 0,7 м				
	Дисплей: 3	3 ¹ / ₂ разряда, ЖКИ.			
	Питание: 6	батарея типа «Корунд» или вн	ешний источник питания 9 В.		
	Размеры, г	мм: электронный блок — 25 >	< 75 × 165; датчик — 5 × 30.		
	Позволяет	:			
	измерять ортогональные компоненты напряженности постоянного магнитного поля;				
	оценивать модуль вектора напряженности постоянного магнитного поля;				
	устанавливать порог срабатывания световой и звуковой сигнализации, калибровочные значения напряженности поля				
4 Магнитометр феррозондовый	Режим измерения компонент вектора индукции магнитного поля				
МФ-1 (Раменское приборостроительное конструкторское бюро, г. Раменское Московской обл.)	Диапазон, мкТл	Цена деления низшего разряда, мкТл	Основная погрешность, %		
	± 2	0,01	± 5		
	± 20 ± 200	0,1 1,0	± 5 ± 5		
	Однокомпонентный.				
	Чувствительный элемент: феррозондовый преобразователь, встроенный в зонд.				
	Длина соединительного кабеля — 1,2 м.				
	Дисплей: 3 $^{1}/_{2}$ разряда, цифровой индикатор.				
	Питание: две батареи типа «АА» и сеть ~ 220 В 50 Гц.				
	Размеры, мм: электронный блок — $210 \times 105 \times 90$; зонд — $25 \times 40 \times 50$.				
	Масса, кг: электронный блок — 1,5; зонд — 0,05.				
	Позволяет оценивать модуль вектора индукции постоянного магнитного поля				

ГОСТ Р 51724—2001

Продолжение таблицы Г.1

Наименование средства измерения (изготовитель, разработчик)	Основные технические характеристики				
5 Измеритель магнитного поля КИМП-91 (Ижевский государ- ственный технический университет, г. Ижевск)	Режим измерения компонент вектора индукции магнитного поля				
	Диапазон, мкТл	Цена деления прибора, мкТл	Погрешность, %		
	± 2 ± 5 ± 10 ± 20 ± 50 ± 200	0,1 0,25 0,5 1,0 2,5 5,0	± 5 ± 5 ± 5 ± 5 ± 5 ± 5		
	Однокомп	онентный.			
	Чувствительный элемент: феррозондовые преобразователи, встроенные в зонд. Длина соединительного кабеля — 1,5 м.				
	Дисплей: 1	магнитоэлектрический прибо	р, стрелочный индикатор.		
	Питание: сеть ~220 В 50 Ги.				
	Размеры, мм: электронный блок — $190 \times 100 \times 220$; зонд $110 \times 50 \times 20$.				
	Масса, кг: электронный блок — 1,5; зонд — 0,07.				
	Позволяет оценивать модуль вектора градиент постоянного магнитного поля				
6 Малогабаритный цифровой ком-	Режим из	иерения компонент вектора и	ндукции магнитного поля		
понентный магнитометр МФ-03-М (ИЗМИРАН, г. Троицк Московской обл.)	Диапазон, мкТл	Цена деления низшего разряда, мкТл	Погрешность, %		
	± 2 ± 20 ± 40 ± 80 ± 200	1 10 20 40 100	± 1 ± 1 ± 1 ± 1 ± 1		
	Однокомпонентный, цифровой.				
	Чувствительный элемент: феррозондовый преобразователь, встроенный в зонд.				
	Длина соединительного кабеля — 1,0 м.				
	Дисплей: цифровой индикатор.				
	Питание: 9 В от батареи типа «Корунд» или от сети ~220 В 50 Гц с помощью адаптера 9 В				

ПРИЛОЖЕНИЕ Д (справочное)

Библиография

- [1] Р 2.2.755—99 Руководство. Гигиенические критерии оценки и классификация условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса. Госсанэпиднадзор РФ, 1999
- [2] Физические величины. Справочник /А.П. Бабичев, Н.А. Бабушкин и др.; под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991

ГОСТ Р 51724-2001

УДК 62-784.7:539.16:006.354

OKC 33.020

П90

ОКСТУ 6500

Ключевые слова: экранированные объекты, помещения, технические средства, рабочие места, гипогеомагнитное поле, геомагнитное поле, показатели, методы и средства измерений, калибровка средств измерений

> Редактор Т.А. Леонова Технический редактор *Н.С. Гришанова* Корректор *В.И. Кануркина* Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000.

Сдано в набор 03.04.2001. Уч.-изд. л. 1,20. Тираж 400 экз.

Подписано в печать 10.05.2001. C 815. Зак. 458.

Усл. печ. л. 1,86.