Lagoon Overflow Project

Introdution

Introdution

 $\blacksquare \mbox{ Note that } p_n(z) = 1 - z q_{n-1}(z) \mbox{ and therefore, } p_n(0) = 1.$

IDR is a Krylov subspace solver with one more flavor. The residuals in IDR are forced to be in subspaces G_j of decreasing dimension.

IDR is a Krylov subspace solver with one more flavor. The residuals in IDR are forced to be in subspaces \mathcal{G}_j of decreasing dimension. These nested subspaces are defined by:

$$\mathcal{G}_j = (\mathbf{I} - \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

where S is a fixed proper subspace of \mathbb{C}^N and $0 \neq \omega_j$'s are scalars.

IDR is a Krylov subspace solver with one more flavor. The residuals in IDR are forced to be in subspaces \mathcal{G}_j of decreasing dimension. These nested subspaces are defined by:

$$\mathcal{G}_j = (\mathbf{I} - \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

where S is a fixed proper subspace of \mathbb{C}^N and $0 \neq \omega_j$'s are scalars.

Theorem

Let \mathbf{A} be any matrix in $\mathbb{C}^{N\times N}$ and let $v\neq 0$ be any vector in \mathbb{C}^N , and let \mathcal{G}_0 be the full Krylov space $\mathcal{K}_{N+1}(\mathbf{A},\mathbf{v})$. Let \mathcal{S} be any (proper) subspace of \mathbb{C}^N such that \mathcal{G}_0 and \mathcal{S} do not share any nontrivial invariant subspace of \mathbf{A} and define \mathcal{G}_j by

$$\mathcal{G}_j = (\mathbf{I} - \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

for $j=1,2,3,\cdots$ where $0 \neq \omega_j$ are scalars then:

IDR is a Krylov subspace solver with one more flavor. The residuals in IDR are forced to be in subspaces \mathcal{G}_j of decreasing dimension. These nested subspaces are defined by:

$$\mathcal{G}_j = (\mathbf{I} - \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

where S is a fixed proper subspace of \mathbb{C}^N and $0 \neq \omega_j$'s are scalars.

Theorem

Let \mathbf{A} be any matrix in $\mathbb{C}^{N\times N}$ and let $v\neq 0$ be any vector in \mathbb{C}^N , and let \mathcal{G}_0 be the full Krylov space $\mathcal{K}_{N+1}(\mathbf{A},\mathbf{v})$. Let \mathcal{S} be any (proper) subspace of \mathbb{C}^N such that \mathcal{G}_0 and \mathcal{S} do not share any nontrivial invariant subspace of \mathbf{A} and define \mathcal{G}_j by

$$\mathcal{G}_j = (\mathbf{I} - \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

for $j=1,2,3,\cdots$ where $0 \neq \omega_j$ are scalars then: (i) $\mathcal{G}_j \subset \mathcal{G}_{j-1}, \forall j > 0$.

IDR is a Krylov subspace solver with one more flavor. The residuals in IDR are forced to be in subspaces \mathcal{G}_j of decreasing dimension. These nested subspaces are defined by:

$$\mathcal{G}_j = (\mathbf{I} - \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

where S is a fixed proper subspace of \mathbb{C}^N and $0 \neq \omega_j$'s are scalars.

Theorem

Let \mathbf{A} be any matrix in $\mathbb{C}^{N\times N}$ and let $v\neq 0$ be any vector in \mathbb{C}^N , and let \mathcal{G}_0 be the full Krylov space $\mathcal{K}_{N+1}(\mathbf{A},\mathbf{v})$. Let \mathcal{S} be any (proper) subspace of \mathbb{C}^N such that \mathcal{G}_0 and \mathcal{S} do not share any nontrivial invariant subspace of \mathbf{A} and define \mathcal{G}_j by

$$\mathcal{G}_j = (\mathbf{I} - \omega_j \mathbf{A})(\mathcal{G}_{j-1} \cap \mathcal{S})$$

for $j=1,2,3,\cdots$ where $0 \neq \omega_j$ are scalars then:

(i)
$$\mathcal{G}_j \subset \mathcal{G}_{j-1}$$
, $\forall j > 0$.

(ii)
$$\mathcal{G}_j = \{\mathbf{0}\}$$
 for some $j \leq N$

Usually in Krylov solvers we find \mathbf{x}_n then we find corresponding \mathbf{r}_n . In IDR we will do the other way arround, if a recurssion for \mathbf{r}_n 's is given, we have to be able to find corresponding \mathbf{x}_n 's.

Usually in Krylov solvers we find \mathbf{x}_n then we find corresponding \mathbf{r}_n . In IDR we will do the other way arround, if a recurssion for \mathbf{r}_n 's is given, we have to be able to find corresponding \mathbf{x}_n 's. Assuming this is possible we have the following, Let $\nabla u_k := u_k - u_{k-1}$.

$$\mathbf{A}\nabla\mathbf{x}_{n+1} = \mathbf{A}(\mathbf{x}_{n+1} - \mathbf{x}_n) = \mathbf{A}\mathbf{x}_{n+1} - \mathbf{A}\mathbf{x}_n$$

$$= \mathbf{A}\mathbf{x}_{n+1} - \mathbf{b} + \mathbf{b} - \mathbf{A}\mathbf{x}_n$$

$$= -\mathbf{r}_{n+1} + \mathbf{r}_n$$

$$= -p_{n+1}(\mathbf{A})\mathbf{r}_0 + p_n(\mathbf{A})\mathbf{r}_0$$

$$= (p_n(\mathbf{A}) - p_{n+1}(\mathbf{A}))\mathbf{r}_0$$

Usually in Krylov solvers we find \mathbf{x}_n then we find corresponding \mathbf{r}_n . In IDR we will do the other way arround, if a recurssion for \mathbf{r}_n 's is given, we have to be able to find corresponding \mathbf{x}_n 's. Assuming this is possible we have the following, Let $\nabla u_k := u_k - u_{k-1}$.

$$\mathbf{A}\nabla\mathbf{x}_{n+1} = \mathbf{A}(\mathbf{x}_{n+1} - \mathbf{x}_n) = \mathbf{A}\mathbf{x}_{n+1} - \mathbf{A}\mathbf{x}_n$$

$$= \mathbf{A}\mathbf{x}_{n+1} - \mathbf{b} + \mathbf{b} - \mathbf{A}\mathbf{x}_n$$

$$= -\mathbf{r}_{n+1} + \mathbf{r}_n$$

$$= -p_{n+1}(\mathbf{A})\mathbf{r}_0 + p_n(\mathbf{A})\mathbf{r}_0$$

$$= (p_n(\mathbf{A}) - p_{n+1}(\mathbf{A}))\mathbf{r}_0$$

We can find \mathbf{x}_{n+1} here without solving the system if $p_n(z)-p_{n+1}(z)$ is divisible by z, as follows:

Usually in Krylov solvers we find \mathbf{x}_n then we find corresponding \mathbf{r}_n . In IDR we will do the other way arround, if a recurssion for \mathbf{r}_n 's is given, we have to be able to find corresponding \mathbf{x}_n 's. Assuming this is possible we have the following, Let $\nabla u_k := u_k - u_{k-1}$.

$$\mathbf{A}\nabla\mathbf{x}_{n+1} = \mathbf{A}(\mathbf{x}_{n+1} - \mathbf{x}_n) = \mathbf{A}\mathbf{x}_{n+1} - \mathbf{A}\mathbf{x}_n$$

$$= \mathbf{A}\mathbf{x}_{n+1} - \mathbf{b} + \mathbf{b} - \mathbf{A}\mathbf{x}_n$$

$$= -\mathbf{r}_{n+1} + \mathbf{r}_n$$

$$= -p_{n+1}(\mathbf{A})\mathbf{r}_0 + p_n(\mathbf{A})\mathbf{r}_0$$

$$= (p_n(\mathbf{A}) - p_{n+1}(\mathbf{A}))\mathbf{r}_0$$

We can find \mathbf{x}_{n+1} here without solving the system if $p_n(z)-p_{n+1}(z)$ is divisible by z, as follows:

$$\mathbf{A}\nabla\mathbf{x}_{n+1} = \mathbf{A}\psi_n(\mathbf{A})\mathbf{r}_0$$

We saw in any Krylov solvers $\mathbf{r}_n = p_n(\mathbf{A})\mathbf{r}_0 \in \mathcal{K}_{n+1}(\backslash \mathcal{K}_n)$ where degree of p_n is exactly n.

We saw in any Krylov solvers $\mathbf{r}_n = p_n(\mathbf{A})\mathbf{r}_0 \in \mathcal{K}_{n+1}(\backslash \mathcal{K}_n)$ where degree of p_n is exactly n. Therefore, we have:

$$\mathbf{r}_n = \sum\limits_{k=0}^n lpha_k \mathbf{A}^k \mathbf{r}_0$$
 , $lpha_n
eq 0$

We saw in any Krylov solvers $\mathbf{r}_n = p_n(\mathbf{A})\mathbf{r}_0 \in \mathcal{K}_{n+1}(\backslash \mathcal{K}_n)$ where degree of p_n is exactly n. Therefore, we have:

$$\mathbf{r}_n = \sum\limits_{k=0}^n lpha_k \mathbf{A}^k \mathbf{r}_0$$
 , $lpha_n
eq 0$

Let $\mathbf{v}_n \in \mathcal{K}_{n+1} \backslash \mathcal{K}_n$ be any arbitrary vector, then $\mathbf{A} \mathbf{v}_n \in \mathcal{K}_{n+2} \backslash \mathcal{K}_{n+1}$.

We saw in any Krylov solvers $\mathbf{r}_n = p_n(\mathbf{A})\mathbf{r}_0 \in \mathcal{K}_{n+1}(\backslash \mathcal{K}_n)$ where degree of p_n is exactly n. Therefore, we have:

$$\mathbf{r}_n = \sum\limits_{k=0}^n lpha_k \mathbf{A}^k \mathbf{r}_0$$
 , $lpha_n
eq 0$

Let $\mathbf{v}_n \in \mathcal{K}_{n+1} \backslash \mathcal{K}_n$ be any arbitrary vector, then $\mathbf{A}\mathbf{v}_n \in \mathcal{K}_{n+2} \backslash \mathcal{K}_{n+1}$. Hence, any arbitrary vector in $\mathcal{K}_{n+2} \backslash \mathcal{K}_{n+1}$ can be written as:

$$-\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k}$$

We saw in any Krylov solvers $\mathbf{r}_n = p_n(\mathbf{A})\mathbf{r}_0 \in \mathcal{K}_{n+1}(\backslash \mathcal{K}_n)$ where degree of p_n is exactly n. Therefore, we have:

$$\mathbf{r}_n = \sum\limits_{k=0}^n lpha_k \mathbf{A}^k \mathbf{r}_0$$
 , $lpha_n
eq 0$

Let $\mathbf{v}_n \in \mathcal{K}_{n+1} \backslash \mathcal{K}_n$ be any arbitrary vector, then $\mathbf{A}\mathbf{v}_n \in \mathcal{K}_{n+2} \backslash \mathcal{K}_{n+1}$. Hence, any arbitrary vector in $\mathcal{K}_{n+2} \backslash \mathcal{K}_{n+1}$ can be written as:

$$-\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k}$$

Therefore, we can write:

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k}$$

Our goal was computing \mathbf{x}_{n+1} provided that \mathbf{r}_{n+1} is known. Let's replace r_i 's by $\mathbf{b} - \mathbf{A}\mathbf{x}_i$ in above formula to get \mathbf{x}_{n+1} :

Our goal was computing \mathbf{x}_{n+1} provided that \mathbf{r}_{n+1} is known. Let's replace r_i 's by $\mathbf{b} - \mathbf{A}\mathbf{x}_i$ in above formula to get \mathbf{x}_{n+1} :

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k} \longrightarrow$$

$$\mathbf{b} - \mathbf{A} \mathbf{x}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k (\mathbf{b} - \mathbf{A} \mathbf{x}_{n-k})$$

$$= (\sum_{k=0}^n \beta_k) \mathbf{b} - \mathbf{A} (\alpha \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{x}_{n-k})$$

Our goal was computing \mathbf{x}_{n+1} provided that \mathbf{r}_{n+1} is known. Let's replace r_i 's by $\mathbf{b} - \mathbf{A}\mathbf{x}_i$ in above formula to get \mathbf{x}_{n+1} :

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^{n} \beta_k \mathbf{r}_{n-k} \longrightarrow$$

$$\mathbf{b} - \mathbf{A} \mathbf{x}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^{n} \beta_k (\mathbf{b} - \mathbf{A} \mathbf{x}_{n-k})$$

$$= (\sum_{k=0}^{n} \beta_k) \mathbf{b} - \mathbf{A} (\alpha \mathbf{v}_n + \sum_{k=0}^{n} \beta_k \mathbf{x}_{n-k})$$

Consequently \mathbf{x}_{n+1} would be solution of

$$\mathbf{A}\mathbf{x}_{n+1} = (1 - \sum_{k=0}^{n} \beta_k)\mathbf{b} + \mathbf{A}(\alpha \mathbf{v}_n + \sum_{k=0}^{n} \beta_k \mathbf{x}_{n-k}).$$

Our goal was computing \mathbf{x}_{n+1} provided that \mathbf{r}_{n+1} is known. Let's replace r_i 's by $\mathbf{b} - \mathbf{A}\mathbf{x}_i$ in above formula to get \mathbf{x}_{n+1} :

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k} \longrightarrow$$

$$\mathbf{b} - \mathbf{A} \mathbf{x}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k (\mathbf{b} - \mathbf{A} \mathbf{x}_{n-k})$$

$$= (\sum_{k=0}^n \beta_k) \mathbf{b} - \mathbf{A} (\alpha \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{x}_{n-k})$$

Consequently \mathbf{x}_{n+1} would be solution of

$$\mathbf{A}\mathbf{x}_{n+1} = (1 - \sum_{k=0}^{n} \beta_k)\mathbf{b} + \mathbf{A}(\alpha \mathbf{v}_n + \sum_{k=0}^{n} \beta_k \mathbf{x}_{n-k}).$$

 \mathbf{x}_{n+1} is computable without solving the system if $(1 - \sum_{k=0}^{n} \beta_k) = 0$.

We want $1 - \sum_{k=0}^{n} \beta_k = 0$ or equivalently $\sum_{k=0}^{n} \beta_k = 1$. This equation can be established by:

$$\sum_{k=0}^{n} \beta_k \mathbf{r}_{n-k} = \mathbf{r}_n - \sum_{k=1}^{n} \gamma_k \nabla \mathbf{r}_{n-k+1}.$$

We want $1 - \sum_{k=0}^{n} \beta_k = 0$ or equivalently $\sum_{k=0}^{n} \beta_k = 1$. This equation can be established by:

$$\sum_{k=0}^{n} \beta_k \mathbf{r}_{n-k} = \mathbf{r}_n - \sum_{k=1}^{n} \gamma_k \nabla \mathbf{r}_{n-k+1}.$$

Because,

$$\beta_0 \mathbf{r}_n + \beta_1 \mathbf{r}_{n-1} + \dots + \beta_n \mathbf{r}_0 = \mathbf{r}_n - \gamma_1 \nabla \mathbf{r}_n - \gamma_2 \nabla \mathbf{r}_{n-1} - \dots - \gamma_n \nabla \mathbf{r}_1$$

$$= (1 - \gamma_1) \mathbf{r}_n + (\gamma_1 - \gamma_2) \mathbf{r}_{n-1} + \dots$$

$$+ (\gamma_{n-1} - \gamma_n) r_1 + \gamma_n \mathbf{r}_0$$

We want $1 - \sum_{k=0}^{n} \beta_k = 0$ or equivalently $\sum_{k=0}^{n} \beta_k = 1$. This equation can be established by:

$$\sum_{k=0}^{n} \beta_k \mathbf{r}_{n-k} = \mathbf{r}_n - \sum_{k=1}^{n} \gamma_k \nabla \mathbf{r}_{n-k+1}.$$

Because,

$$\beta_0 \mathbf{r}_n + \beta_1 \mathbf{r}_{n-1} + \dots + \beta_n \mathbf{r}_0 = \mathbf{r}_n - \gamma_1 \nabla \mathbf{r}_n - \gamma_2 \nabla \mathbf{r}_{n-1} - \dots - \gamma_n \nabla \mathbf{r}_1$$
$$= (1 - \gamma_1) \mathbf{r}_n + (\gamma_1 - \gamma_2) \mathbf{r}_{n-1} + \dots + (\gamma_{n-1} - \gamma_n) r_1 + \gamma_n \mathbf{r}_0$$

which implies:

$$\beta_0 = 1 - \chi_1$$

$$\beta_1 = \chi_1 - \chi_2$$

$$\vdots$$

$$\beta_n = \chi_1$$

So, in general for any Krylov solver we can write:

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k}.$$

So, in general for any Krylov solver we can write:

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k}.$$

Now let's replace $\sum_{k=0}^{n} \beta_k \mathbf{r}_{n-k}$ by $\mathbf{r}_n - \sum_{k=1}^{n} \gamma_k \nabla \mathbf{r}_{n-k+1}$ to get:

$$\mathbf{r}_{n+1} = \mathbf{r}_n - \alpha \mathbf{A} \mathbf{v}_n - \sum_{k=1}^n \gamma_k \nabla \mathbf{r}_{n-k+1}$$
 (2.1)

So, in general for any Krylov solver we can write:

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k}.$$

Now let's replace $\sum_{k=0}^{n} \beta_k \mathbf{r}_{n-k}$ by $\mathbf{r}_n - \sum_{k=1}^{n} \gamma_k \nabla \mathbf{r}_{n-k+1}$ to get:

$$\mathbf{r}_{n+1} = \mathbf{r}_n - \alpha \mathbf{A} \mathbf{v}_n - \sum_{k=1}^n \gamma_k \nabla \mathbf{r}_{n-k+1}$$
 (2.1)

In equation (2.1) we are using all residuals from 0 to n. Depth of recurssion is so long, in order to get short recurssions we need to have $\gamma_k=0$ for $k\geq m$ where $m\ll N$.

So, in general for any Krylov solver we can write:

$$\mathbf{r}_{n+1} = -\alpha \mathbf{A} \mathbf{v}_n + \sum_{k=0}^n \beta_k \mathbf{r}_{n-k}.$$

Now let's replace $\sum_{k=0}^{n} \beta_k \mathbf{r}_{n-k}$ by $\mathbf{r}_n - \sum_{k=1}^{n} \gamma_k \nabla \mathbf{r}_{n-k+1}$ to get:

$$\mathbf{r}_{n+1} = \mathbf{r}_n - \alpha \mathbf{A} \mathbf{v}_n - \sum_{k=1}^n \gamma_k \nabla \mathbf{r}_{n-k+1}$$
 (2.1)

In equation (2.1) we are using all residuals from 0 to n. Depth of recurssion is so long, in order to get short recurssions we need to have $\gamma_k=0$ for $k\geq m$ where $m\ll N.$ So, I will change the upper limit from n to l.

$$\mathbf{r}_{n+1} = \mathbf{r}_n - \alpha \mathbf{A} \mathbf{v}_n - \sum_{k=1}^{l} \gamma_k \nabla \mathbf{r}_{n-k+1}$$
 (2.2)

Equation (2.2) can be written in general for all Krylov solvers. It is time to add IDR flavor.

$$\mathbf{r}_{n+1} = \mathbf{r}_n - \alpha \mathbf{A} \mathbf{v}_n - \sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1}$$
 (2.2)

Equation (2.2) can be written in general for all Krylov solvers. It is time to add IDR flavor.

We want to force residuals to be in $\mathcal{G}_{j+1} := (\mathbf{I} - \omega_{j+1} \mathbf{A})(\mathcal{G}_j \cap \mathcal{S})$. Therefore, there should be a $\mathbf{v}_n \in \mathcal{G}_j \cap \mathcal{S}$ such that

$$\mathbf{r}_{n+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \tag{2.3}$$

$$\mathbf{r}_{n+1} = \mathbf{r}_n - \alpha \mathbf{A} \mathbf{v}_n - \sum_{k=1}^{l} \gamma_k \nabla \mathbf{r}_{n-k+1}$$
 (2.2)

Equation (2.2) can be written in general for all Krylov solvers. It is time to add IDR flavor.

We want to force residuals to be in $\mathcal{G}_{j+1} := (\mathbf{I} - \omega_{j+1} \mathbf{A})(\mathcal{G}_j \cap \mathcal{S})$. Therefore, there should be a $\mathbf{v}_n \in \mathcal{G}_j \cap \mathcal{S}$ such that

$$\mathbf{r}_{n+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \tag{2.3}$$

Equating (2.2) and (2.3) leads to

$$\mathbf{v}_n := \mathbf{r}_n - \sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1}$$
 and $\alpha := \omega_{j+1}$

Making this change in (2.2) gives the following:

$$\begin{cases} \mathbf{r}_{n+1} &= (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\ \mathbf{v}_n &= \mathbf{r}_n - \sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1} \in \mathcal{G}_j \cap \mathcal{S} \end{cases}$$
(2.4)

Making this change in (2.2) gives the following:

$$\begin{cases} \mathbf{r}_{n+1} &= (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\ \mathbf{v}_n &= \mathbf{r}_n - \sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1} \in \mathcal{G}_j \cap \mathcal{S} \end{cases}$$
(2.4)

Finding \mathbf{v}_n and ω_j would be a great step toward our goal. So, let $\mathcal{S} := \mathcal{N}(\mathbf{P}^*)$ where $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_s]$. \mathcal{S} has codimension s.

Making this change in (2.2) gives the following:

$$\begin{cases}
\mathbf{r}_{n+1} &= (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\
\mathbf{v}_n &= \mathbf{r}_n - \sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1} \in \mathcal{G}_j \cap \mathcal{S}
\end{cases} (2.4)$$

Finding \mathbf{v}_n and ω_j would be a great step toward our goal. So, let $\mathcal{S} := \mathcal{N}(\mathbf{P}^*)$ where $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_s]$. \mathcal{S} has codimension s.

Since $\mathbf{v}_n \in \mathcal{S}$, we have to have $\mathbf{P}^*\mathbf{v}_n = 0$, and consequently,

$$\mathbf{P}^*(\sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1}) = \mathbf{P}^* \mathbf{r}_n$$

Making this change in (2.2) gives the following:

$$\begin{cases}
\mathbf{r}_{n+1} &= (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\
\mathbf{v}_n &= \mathbf{r}_n - \sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1} \in \mathcal{G}_j \cap \mathcal{S}
\end{cases} (2.4)$$

Finding \mathbf{v}_n and ω_j would be a great step toward our goal. So, let $\mathcal{S} := \mathcal{N}(\mathbf{P}^*)$ where $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_s]$. \mathcal{S} has codimension s.

Since $\mathbf{v}_n \in \mathcal{S}$, we have to have $\mathbf{P}^*\mathbf{v}_n = 0$, and consequently,

$$\mathbf{P}^*(\sum_{k=1}^l \gamma_k \nabla \mathbf{r}_{n-k+1}) = \mathbf{P}^* \mathbf{r}_n$$

where γ_k 's are unknowns, so, we have a linear system of s equations in l unknowns, which is uniquely solvable if l=s.

By letting l=s and introducing the following new notaions equation (2.4) can be written in more compact form:

By letting l=s and introducing the following new notaions equation (2.4) can be written in more compact form: Let

$$\nabla \mathbf{R}_{n:n-s+1} := [\nabla \mathbf{r}_n \nabla \mathbf{r}_{n-1} \cdots \nabla \mathbf{r}_{n-s+1}] \text{ and } \mathbf{c}_n = [\gamma_1^{(n)} \ \gamma_2^{(n)} \cdots \gamma_s^{(n)}]^T \text{ gives the following:}$$

By letting l=s and introducing the following new notaions equation (2.4) can be written in more compact form: Let

$$\nabla \mathbf{R}_{n:n-s+1} := [\nabla \mathbf{r}_n \ \nabla \mathbf{r}_{n-1} \ \cdots \ \nabla \mathbf{r}_{n-s+1}] \text{ and } \mathbf{c}_n = [\gamma_1^{(n)} \ \gamma_2^{(n)} \cdots \gamma_s^{(n)}]^T \text{ gives the following:}$$

$$\begin{cases} \mathbf{r}_{n+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\ \mathbf{v}_n = \mathbf{r}_n - \nabla \mathbf{R}_{n:n-s+1} \mathbf{c}_n \end{cases}$$
(2.5)

By letting l=s and introducing the following new notaions equation (2.4) can be written in more compact form: Let

$$\nabla \mathbf{R}_{n:n-s+1} := [\nabla \mathbf{r}_n \ \nabla \mathbf{r}_{n-1} \ \cdots \ \nabla \mathbf{r}_{n-s+1}] \text{ and } \mathbf{c}_n = [\gamma_1^{(n)} \ \gamma_2^{(n)} \cdots \gamma_s^{(n)}]^T \text{ gives the following:}$$

$$\begin{cases} \mathbf{r}_{n+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\ \mathbf{v}_n = \mathbf{r}_n - \nabla \mathbf{R}_{n:n-s+1} \mathbf{c}_n \end{cases}$$
(2.5)

For computing \mathbf{v}_n we need s+1 residuals, therefore, computing the first residual in \mathcal{G}_{j+1} needs s+1 residuals in \mathcal{G}_j . So, we can expect \mathbf{r}_{n+1} be in \mathcal{G}_{j+1} if $n+1 \geq (j+1)(s+1)$.

By letting l=s and introducing the following new notaions equation (2.4) can be written in more compact form: Let

$$\nabla \mathbf{R}_{n:n-s+1} := [\nabla \mathbf{r}_n \ \nabla \mathbf{r}_{n-1} \ \cdots \ \nabla \mathbf{r}_{n-s+1}] \text{ and }$$

$$\mathbf{c}_n = [\gamma_1^{(n)} \ \gamma_2^{(n)} \cdots \gamma_s^{(n)}]^T \text{ gives the following:}$$

$$\begin{cases} \mathbf{r}_{n+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\ \mathbf{v}_n = \mathbf{r}_n - \nabla \mathbf{R}_{n:n-s+1} \mathbf{c}_n \end{cases}$$
(2.5)

For computing \mathbf{v}_n we need s+1 residuals, therefore, computing the first residual in \mathcal{G}_{j+1} needs s+1 residuals in \mathcal{G}_j . So, we can expect \mathbf{r}_{n+1} be in \mathcal{G}_{j+1} if $n+1 \geq (j+1)(s+1)$.

Therefore the relationship between n and j will be $j = \lfloor \frac{n}{s+1} \rfloor$.

By letting l=s and introducing the following new notaions equation (2.4) can be written in more compact form: Let

$$\nabla \mathbf{R}_{n:n-s+1} := [\nabla \mathbf{r}_n \ \nabla \mathbf{r}_{n-1} \ \cdots \ \nabla \mathbf{r}_{n-s+1}] \text{ and }$$

$$\mathbf{c}_n = [\gamma_1^{(n)} \ \gamma_2^{(n)} \cdots \gamma_s^{(n)}]^T \text{ gives the following:}$$

$$\begin{cases} \mathbf{r}_{n+1} = (\mathbf{I} - \omega_{j+1} \mathbf{A}) \mathbf{v}_n \\ \mathbf{v}_n = \mathbf{r}_n - \nabla \mathbf{R}_{n:n-s+1} \mathbf{c}_n \end{cases}$$
(2.5)

For computing \mathbf{v}_n we need s+1 residuals, therefore, computing the first residual in \mathcal{G}_{j+1} needs s+1 residuals in \mathcal{G}_j . So, we can expect \mathbf{r}_{n+1} be in \mathcal{G}_{j+1} if $n+1 \geq (j+1)(s+1)$.

Therefore the relationship between n and j will be $j=\lfloor \frac{n}{s+1} \rfloor$. Since $\mathcal{G}_{j+1}\subset \mathcal{G}_j$ repeating these calculations will produce new residuals r_{n+2},r_{n+3},\cdots in \mathcal{G}_{j+1} .

Choice of ω_j 's: The ω_{j+1} can be chosen "freely" in calculation of first residual in \mathcal{G}_{j+1} but the same value must be used in calculation of the subsequent residuals in \mathcal{G}_{j+1} . We choose ω_{j+1} such that \mathbf{r}_{n+1} has minimum norm.

This choic will leads to $\omega_{j+1} = \frac{\mathbf{t}^* \mathbf{v}_n}{\mathbf{t}^* \mathbf{t}}$ where $\mathbf{t} = \mathbf{A} \mathbf{v}_n$

The algorithm for solving linear system will be:

■ Compute first s+1 residuals using any (OrthoRres) method like GMRES.

- Compute first s+1 residuals using any (OrthoRres) method like GMRES.
- \blacksquare Compute $\mathbf{c}_n = (\mathbf{P}^* \nabla \mathbf{R_{n:n-s}})^{-1} \mathbf{P}^* \mathbf{r}_n$

- Compute first s+1 residuals using any (OrthoRres) method like GMRES.
- lacksquare Compute $\mathbf{c}_n = (\mathbf{P}^*
 abla \mathbf{R}_{\mathbf{n}:\mathbf{n}-\mathbf{s}})^{-1} \mathbf{P}^* \mathbf{r}_n$
- lacksquare Compute $\mathbf{v}_n = \mathbf{r}_n
 abla \mathbf{R}_{n:n-s} \mathbf{c}_n$

- Compute first s+1 residuals using any (OrthoRres) method like GMRES.
- lacksquare Compute $\mathbf{c}_n = (\mathbf{P}^*
 abla \mathbf{R}_{\mathbf{n}:\mathbf{n}-\mathbf{s}})^{-1} \mathbf{P}^* \mathbf{r}_n$
- lacksquare Compute $\mathbf{v}_n = \mathbf{r}_n
 abla \mathbf{R}_{n:n-s} \mathbf{c}_n$
- Compute $\omega_{j+1} = \frac{(\mathbf{A}\mathbf{v}_n)^*\mathbf{v}_n}{||\mathbf{A}\mathbf{v}_n||_2^2}$ (if \mathbf{r}_{n+1} is first residual in \mathcal{G}_{j+1})

- Compute first s+1 residuals using any (OrthoRres) method like GMRES.
- lacksquare Compute $\mathbf{c}_n = (\mathbf{P}^*
 abla \mathbf{R}_{\mathbf{n}:\mathbf{n}-\mathbf{s}})^{-1} \mathbf{P}^* \mathbf{r}_n$
- lacksquare Compute $\mathbf{v}_n = \mathbf{r}_n
 abla \mathbf{R}_{n:n-s} \mathbf{c}_n$
- Compute $\omega_{j+1} = \frac{(\mathbf{A}\mathbf{v}_n)^*\mathbf{v}_n}{||\mathbf{A}\mathbf{v}_n||_2^2}$ (if \mathbf{r}_{n+1} is first residual in \mathcal{G}_{j+1})
- Compute \mathbf{r}_{n+1}

- Compute first s+1 residuals using any (OrthoRres) method like GMRES.
- lacksquare Compute $\mathbf{c}_n = (\mathbf{P}^*
 abla \mathbf{R}_{\mathbf{n}:\mathbf{n}-\mathbf{s}})^{-1} \mathbf{P}^* \mathbf{r}_n$
- lacksquare Compute $\mathbf{v}_n = \mathbf{r}_n
 abla \mathbf{R}_{n:n-s} \mathbf{c}_n$
- Compute $\omega_{j+1} = \frac{(\mathbf{A}\mathbf{v}_n)^*\mathbf{v}_n}{||\mathbf{A}\mathbf{v}_n||_2^2}$ (if \mathbf{r}_{n+1} is first residual in \mathcal{G}_{j+1})
- Compute \mathbf{r}_{n+1}
- Compute \mathbf{x}_{n+1}

So far we have

$$\begin{cases}
\mathbf{r}_n = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{v}_{n-1} \\
\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-1:n-s} \mathbf{c}_{n-1}
\end{cases} (2.5)$$

Where
$$\nabla \mathbf{R}_{n-1:n-s} = [\nabla \mathbf{r}_{n-1} \nabla \mathbf{r}_{n-2} \cdots \nabla \mathbf{r}_{n-s}]$$
 and $\mathbf{c}_{n-1}^T = [\gamma_1^{(n-1)} \cdots \gamma_s^{(n-1)}].$

So far we have

$$\begin{cases} \mathbf{r}_n = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{v}_{n-1} \\ \mathbf{v}_{n-1} = \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-1:n-s} \mathbf{c}_{n-1} \end{cases}$$
 (2.5)

Where
$$\nabla \mathbf{R}_{n-1:n-s} = [\nabla \mathbf{r}_{n-1} \nabla \mathbf{r}_{n-2} \cdots \nabla \mathbf{r}_{n-s}]$$
 and $\mathbf{c}_{n-1}^T = [\gamma_1^{(n-1)} \cdots \gamma_s^{(n-1)}].$

I want to change the order of columns in $\nabla \mathbf{R}_{n-1:n-s}$ and re-write it as $\nabla \mathbf{R}_{n-s:n-1} = [\nabla \mathbf{r}_{n-s} \nabla \mathbf{r}_{n-s+1} \cdots \nabla \mathbf{r}_{n-1}]$, consequently we have to change order of γ 's and re-write $\mathbf{c}_{n-1}^T := [\gamma_s^{(n-1)} \cdots \gamma_1^{(n-1)}] =$

So far we have

$$\begin{cases}
\mathbf{r}_n = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{v}_{n-1} \\
\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-1:n-s} \mathbf{c}_{n-1}
\end{cases} (2.5)$$

Where $\nabla \mathbf{R}_{n-1:n-s} = [\nabla \mathbf{r}_{n-1} \nabla \mathbf{r}_{n-2} \cdots \nabla \mathbf{r}_{n-s}]$ and $\mathbf{c}_{n-1}^T = [\gamma_1^{(n-1)} \cdots \gamma_s^{(n-1)}].$

I want to change the order of columns in $\nabla \mathbf{R}_{n-1:n-s}$ and re-write it as $\nabla \mathbf{R}_{n-s:n-1} = [\nabla \mathbf{r}_{n-s} \nabla \mathbf{r}_{n-s+1} \cdots \nabla \mathbf{r}_{n-1}]$, consequently we have to change order of γ 's and re-write

$$\mathbf{c}_{n-1}^T := [\gamma_s^{(n-1)} \cdots \gamma_1^{(n-1)}] = [\gamma_1^{(n-1)} \cdots \gamma_s^{(n-1)}].$$

So far we have

$$\begin{cases}
\mathbf{r}_n = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{v}_{n-1} \\
\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-1:n-s} \mathbf{c}_{n-1}
\end{cases} (2.5)$$

Where $\nabla \mathbf{R}_{n-1:n-s} = [\nabla \mathbf{r}_{n-1} \nabla \mathbf{r}_{n-2} \cdots \nabla \mathbf{r}_{n-s}]$ and $\mathbf{c}_{n-1}^T = [\gamma_1^{(n-1)} \cdots \gamma_s^{(n-1)}].$

I want to change the order of columns in $\nabla \mathbf{R}_{n-1:n-s}$ and re-write it as $\nabla \mathbf{R}_{n-s:n-1} = [\nabla \mathbf{r}_{n-s} \nabla \mathbf{r}_{n-s+1} \cdots \nabla \mathbf{r}_{n-1}]$, consequently we have to change order of γ 's and re-write $\mathbf{c}^T_{-1} := [\gamma_s^{(n-1)} \cdots \gamma_s^{(n-1)}] = [\gamma_s^{(n-1)} \cdots \gamma_s^{(n-1)}].$

With this cosmetic change (2.5) turns into (2.6):

$$\begin{cases}
\mathbf{r}_n = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{v}_{n-1} \\
\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-s:n-1} \mathbf{c}_{n-1}
\end{cases} (2.6)$$

$$\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-s:n-1} \mathbf{c}_{n-1}$$

$$= \mathbf{r}_{n-1} - \sum_{k=0}^{s-1} \nabla \mathbf{r}_{n-s+k} \gamma_{k+1}^{(n-1)}$$

$$= \mathbf{r}_{n-1} - \sum_{k=0}^{s-1} (r_{n-s+k} - r_{n-s+k-1}) \gamma_{k+1}^{(n-1)}$$

$$\begin{aligned} \mathbf{v}_{n-1} &= \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-s:n-1} \mathbf{c}_{n-1} \\ &= \mathbf{r}_{n-1} - \sum_{k=0}^{s-1} \nabla \mathbf{r}_{n-s+k} \gamma_{k+1}^{(n-1)} \\ &= \mathbf{r}_{n-1} - \sum_{k=0}^{s-1} (r_{n-s+k} - r_{n-s+k-1}) \gamma_{k+1}^{(n-1)} \\ &= \mathbf{r}_{n-1} - (-\gamma_1 r_{n-s-1} + \sum_{k=1}^{s-1} r_{n-s-1+k} (\gamma_k^{(n-1)} - \gamma_{k+1}^{(n-1)}) + \gamma_s \mathbf{r}_{n-1}) \end{aligned}$$

$$\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - \nabla \mathbf{R}_{n-s:n-1} \mathbf{c}_{n-1}$$

$$= \mathbf{r}_{n-1} - \sum_{k=0}^{s-1} \nabla \mathbf{r}_{n-s+k} \gamma_{k+1}^{(n-1)}$$

$$= \mathbf{r}_{n-1} - \sum_{k=0}^{s-1} (r_{n-s+k} - r_{n-s+k-1}) \gamma_{k+1}^{(n-1)}$$

$$= \mathbf{r}_{n-1} - (-\gamma_1 r_{n-s-1} + \sum_{k=1}^{s-1} r_{n-s-1+k} (\gamma_k^{(n-1)} - \gamma_{k+1}^{(n-1)}) + \gamma_s \mathbf{r}_{n-1})$$

$$= \mathbf{r}_{n-1} - (R_{n-s-1:n-1} \begin{bmatrix} -\gamma_1^{(n-1)} \\ \gamma_1^{(n-1)} - \gamma_2^{(n-1)} \\ \vdots \\ \gamma_s^{(n-1)} \end{bmatrix})$$

So far we got,

$$\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - (\mathbf{R}_{n-s-1:n-1} \begin{bmatrix} -\gamma_1^{(n-1)} \\ \gamma_1^{(n-1)} - \gamma_2^{(n-1)} \\ \vdots \\ \gamma_s^{(n-1)} \end{bmatrix})$$

$$= \mathbf{r}_{n-1} + (\mathbf{R}_{n-s-1:n-1} \begin{bmatrix} \gamma_1^{(n-1)} \\ \gamma_2^{(n-1)} - \gamma_1^{(n-1)} \\ \vdots \\ -\gamma_s^{(n-1)} \end{bmatrix})$$

So far we got,

$$\mathbf{v}_{n-1} = \mathbf{r}_{n-1} - (\mathbf{R}_{n-s-1:n-1} \begin{bmatrix} -\gamma_1^{(n-1)} \\ \gamma_1^{(n-1)} - \gamma_2^{(n-1)} \\ \vdots \\ \gamma_s^{(n-1)} \end{bmatrix})$$

$$= \mathbf{r}_{n-1} + (\mathbf{R}_{n-s-1:n-1} \begin{bmatrix} \gamma_1^{(n-1)} \\ \gamma_2^{(n-1)} - \gamma_1^{(n-1)} \\ \vdots \\ -\gamma_s^{(n-1)} \end{bmatrix})$$

$$=\mathbf{R}_{n-s-1:n-1}\begin{bmatrix} \gamma_1^{(n-1)} \\ \gamma_2^{(n-1)} - \gamma_1^{(n-1)} \\ \vdots \\ 1 - \gamma_s^{(n-1)} \end{bmatrix} := \mathbf{R}_{n-s-1:n-1} \ \mathsf{diff} \begin{bmatrix} 0 \\ \mathbf{c}_{n-1} \\ 1 \end{bmatrix}$$

On the last page we derived:

$$\mathbf{v}_{n-1} = \mathbf{R}_{n-s-1:n-1} diff \begin{bmatrix} 0 \\ \mathbf{c}_{n-1} \\ 1 \end{bmatrix}$$

On the last page we derived:

$$\mathbf{v}_{n-1} = \mathbf{R}_{n-s-1:n-1} diff \begin{bmatrix} 0 \\ \mathbf{c}_{n-1} \\ 1 \end{bmatrix}$$

Moreover,

$$\mathbf{r_n} = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{v}_{n-1}.$$

Therefore,

$$\mathbf{r_n} = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{R}_{n-s-1:n-1} diff \begin{bmatrix} 0 \\ \mathbf{c}_{n-1} \\ 1 \end{bmatrix} := (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{R}_{n-s-1:n-1} \mathbf{y}_n$$
(2.7)

On the last page we derived:

$$\mathbf{v}_{n-1} = \mathbf{R}_{n-s-1:n-1} diff \begin{bmatrix} 0 \\ \mathbf{c}_{n-1} \\ 1 \end{bmatrix}$$

Moreover,

$$\mathbf{r_n} = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{v}_{n-1}.$$

Therefore,

$$\mathbf{r_n} = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{R}_{n-s-1:n-1} diff \begin{bmatrix} 0 \\ \mathbf{c}_{n-1} \\ 1 \end{bmatrix} := (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{R}_{n-s-1:n-1} \mathbf{y}_n$$
(2.7)

Equation (2.7) brings us the following theorem:

THM: The generalized Hessenberg decomposition for IDR(s) is given by

$$\mathbf{A}\mathbf{R}_n\mathbf{Y}_n\mathbf{D}_w^{(n)}=\mathbf{R}_{n+1}\underline{\mathbf{Y}}_n^o$$

where $\mathbf{R}_{n+1} = [\mathbf{r}_0 \cdots \mathbf{r}_n]$. For $s < k \le n$ the k^{th} column of upper triangular matrix $\mathbf{Y}_n \in \mathbb{C}^{n \times n}$ and of the extended Hessenberg matrix $\underline{\mathbf{Y}}_n^o \in \mathbb{C}^{(n+1) \times n}$ are defined by:

$$\mathbf{Y}_{n}\mathbf{e}_{k} = \begin{bmatrix} \mathbf{o}_{k-(s+1)} \\ \mathbf{y}_{k} \\ \mathbf{o}_{n-k} \end{bmatrix}, \underline{\mathbf{Y}}_{n}^{o}\mathbf{e}_{k} = \begin{bmatrix} \mathbf{o}_{k-(s+1)} \\ \mathbf{y}_{k} \\ -1 \\ \mathbf{o}_{n-k} \end{bmatrix}$$

where
$$\mathbf{y}_k = \begin{bmatrix} & \gamma_1^{(k)} \\ & \gamma_2^{(k)} - \gamma_1^{(k)} \\ & \vdots \\ & 1 - \gamma_s^{(k)} \end{bmatrix}$$
 and diagonal matrix $\mathbf{D}_\omega^{(n)}$ is given

by $\mathbf{e}_k^T \mathbf{D}_{\omega}^{(n)} \mathbf{e}_k = \omega_j$, $j = \lfloor \frac{k}{k+1} \rfloor$.

The leading portions of matrices $\mathbf{Y}_n, \underline{\mathbf{Y}}_n^o$ and $\mathbf{D}_o mega^{(n)}$ are given by Hessenberg decomposition of starting procedure.

The leading portions of matrices $\mathbf{Y}_n, \underline{\mathbf{Y}}_n^o$ and $\mathbf{D}_o mega^{(n)}$ are given by Hessenberg decomposition of starting procedure.

Proof: We sort the terms in equation (2.7) according to occurance of the matrix $\bf A$ and obtain:

$$\mathbf{r_n} = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{R}_{n-s-1:n-1} \mathbf{y}_n \tag{2.7}$$

$$\omega_j \mathbf{A} \mathbf{R}_{n-s-1:n-1} \mathbf{y}_n = \mathbf{R}_{n-s-1:n-1} - \mathbf{r}_n = \mathbf{R}_{n-s-1:n} \begin{bmatrix} \mathbf{y}_n \\ -1 \end{bmatrix}$$
 (2.8)

Which is the n^{th} column:

The leading portions of matrices $\mathbf{Y}_n, \underline{\mathbf{Y}}_n^o$ and $\mathbf{D}_o mega^{(n)}$ are given by Hessenberg decomposition of starting procedure.

Proof: We sort the terms in equation (2.7) according to occurance of the matrix ${\bf A}$ and obtain:

$$\mathbf{r_n} = (\mathbf{I} - \omega_j \mathbf{A}) \mathbf{R}_{n-s-1:n-1} \mathbf{y}_n$$
 (2.7)

$$\omega_j \mathbf{A} \mathbf{R}_{n-s-1:n-1} \mathbf{y}_n = \mathbf{R}_{n-s-1:n-1} - \mathbf{r}_n = \mathbf{R}_{n-s-1:n} \begin{bmatrix} \mathbf{y}_n \\ -1 \end{bmatrix}$$
 (2.8)

Which is the n^{th} column:

$$\omega_j \mathbf{A} \mathbf{R}_n \begin{bmatrix} \mathbf{o}_{n-(s+1)} \\ \mathbf{y}_n \end{bmatrix} = \mathbf{R}_{n+1} \begin{bmatrix} \mathbf{o}_{n-(s+1)} \\ \mathbf{y}_n \\ -1 \end{bmatrix}$$

We know convergence of all these methods depends on how good our initial guess is. We do n iterations then we can use current information to start the procedure with a better initial vector.

We know convergence of all these methods depends on how good our initial guess is. We do n iterations then we can use current information to start the procedure with a better initial vector.

Let $\mathbf{A} \in \mathbb{R}^{N \times N}$ Using IDR(s)Eig after n steps we get:

$$\mathbf{A}\mathbf{R}_{n}\mathbf{Y}_{n}\mathbf{D}_{\omega}^{(n)} = \mathbf{R}_{n}\underline{\mathbf{Y}}_{n}^{0} - \mathbf{r}_{n+1}\mathbf{e}_{n}^{T}$$

Let's call $\mathbf{Y}_n\mathbf{D}_{\omega}^{(n)}$ just \mathbf{Y}_n for simplicity.

We know convergence of all these methods depends on how good our initial guess is. We do n iterations then we can use current information to start the procedure with a better initial vector.

Let $\mathbf{A} \in \mathbb{R}^{N \times N}$ Using IDR(s)Eig after n steps we get:

$$\mathbf{A}\mathbf{R}_{n}\mathbf{Y}_{n}\mathbf{D}_{\omega}^{(n)} = \mathbf{R}_{n}\underline{\mathbf{Y}}_{n}^{0} - \mathbf{r}_{n+1}\mathbf{e}_{n}^{T}$$

Let's call $\mathbf{Y}_n \mathbf{D}_{\omega}^{(n)}$ just \mathbf{Y}_n for simplicity.

 \mathbf{Y}_n and $\underline{\mathbf{Y}}_n^0$ have some structure like the structure given below for

$$n=7$$
 and $s=3$:

$$Y_n = \begin{bmatrix} * & * & * & * & * & 0 & 0 & 0 \\ 0 & * & * & * & * & * & 0 & 0 \\ 0 & 0 & * & * & * & * & * & 0 \\ 0 & 0 & 0 & * & * & * & * & * \\ 0 & 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 &$$

We can transfer the pencil $(\mathbf{Y}_n^0, \mathbf{Y}_n)$ to $(\mathbf{T}_n, \mathbf{S}_n)$ where \mathbf{T}_n and \mathbf{S}_n are (quasi) triangular while defending the structure using LZ algorithm.

We can transfer the pencil $(\mathbf{Y}_n^0, \mathbf{Y}_n)$ to $(\mathbf{T}_n, \mathbf{S}_n)$ where \mathbf{T}_n and \mathbf{S}_n are (quasi) triangular while defending the structure using LZ algorithm. Then we will have the following equations:

$$\mathbf{T}_n = \mathbf{L} \mathbf{Y}_n^0 \mathbf{Z}, \quad \mathbf{S}_n = \mathbf{L} \mathbf{Y}_n \mathbf{Z} \tag{3.1}$$

Therefore, we have:

$$\mathbf{A}\mathbf{R}_{n}\mathbf{L}^{-1}\mathbf{S}_{n}\mathbf{Z}^{-1} = \mathbf{R}_{n}\mathbf{L}^{-1}\mathbf{T}_{n}\mathbf{Z}^{-1} - \mathbf{r}_{n+1}\mathbf{e}_{n}^{T}$$

We can transfer the pencil $(\mathbf{Y}_n^0, \mathbf{Y}_n)$ to $(\mathbf{T}_n, \mathbf{S}_n)$ where \mathbf{T}_n and \mathbf{S}_n are (quasi) triangular while defending the structure using LZ algorithm. Then we will have the following equations:

$$\mathbf{T}_n = \mathbf{L} \mathbf{Y}_n^0 \mathbf{Z}, \quad \mathbf{S}_n = \mathbf{L} \mathbf{Y}_n \mathbf{Z} \tag{3.1}$$

Therefore, we have:

$$\mathbf{A}\mathbf{R}_{n}\mathbf{L}^{-1}\mathbf{S}_{n}\mathbf{Z}^{-1} = \mathbf{R}_{n}\mathbf{L}^{-1}\mathbf{T}_{n}\mathbf{Z}^{-1} - \mathbf{r}_{n+1}\mathbf{e}_{n}^{T}$$

Letting $\mathbf{R}_n\mathbf{L}^{-1}=\hat{\mathbf{R}}_n$ and applying \mathbf{Z} on right we get:

$$\mathbf{A}\hat{\mathbf{R}}_n\mathbf{S}_n = \hat{\mathbf{R}}_n\mathbf{T}_n - \mathbf{r}_{n+1}\mathbf{z}^T$$

where \mathbf{z}^T is the last row of \mathbf{Z} .

By discarding the last k = n - m columns of each side we get:

$$\mathbf{A}\hat{\mathbf{R}}_{m}\mathbf{S}_{m} = \hat{\mathbf{R}}_{m}\mathbf{T}_{m} - \mathbf{r}_{n+1}\mathbf{z}_{0}^{T}$$

Where $\hat{\mathbf{R}}_m$ consist of first m columns of $\hat{\mathbf{R}}_n$, \mathbf{S}_m and \mathbf{T}_m are $m \times m$ leading submatrix of \mathbf{S}_n and \mathbf{T}_n respectively and \mathbf{z}_0^T consist of first m components of \mathbf{z}^T .

By discarding the last k = n - m columns of each side we get:

$$\mathbf{A}\mathbf{\hat{R}}_{m}\mathbf{S}_{m} = \mathbf{\hat{R}}_{m}\mathbf{T}_{m} - \mathbf{r}_{n+1}\mathbf{z}_{0}^{T}$$

Where $\hat{\mathbf{R}}_m$ consist of first m columns of $\hat{\mathbf{R}}_n$, \mathbf{S}_m and \mathbf{T}_m are $m \times m$ leading submatrix of \mathbf{S}_n and \mathbf{T}_n respectively and \mathbf{z}_0^T consist of first m components of \mathbf{z}^T .

Now, we have to turn this equation to a generalized Hessenberg decomposition. We start doing that by creating zero at the first component of \mathbf{z}_0^T .

By discarding the last k = n - m columns of each side we get:

$$\mathbf{A}\hat{\mathbf{R}}_{m}\mathbf{S}_{m} = \hat{\mathbf{R}}_{m}\mathbf{T}_{m} - \mathbf{r}_{n+1}\mathbf{z}_{0}^{T}$$

Where $\hat{\mathbf{R}}_m$ consist of first m columns of $\hat{\mathbf{R}}_n$, \mathbf{S}_m and \mathbf{T}_m are $m \times m$ leading submatrix of \mathbf{S}_n and \mathbf{T}_n respectively and \mathbf{z}_0^T consist of first m components of \mathbf{z}^T .

Now, we have to turn this equation to a generalized Hessenberg decomposition. We start doing that by creating zero at the first component of \mathbf{z}_0^T .

There will be different number of elimination matrices at each step chasing the bulge both up and down, so, to avoid having tons of notifications I will use "hat" for showing there is a bulge in $S_m^{(i)}$ and $T_m^{(i)}$. "hat" will be used on L_i , R_i and also there will be "hat" on $\hat{R}_m^{(i)}$ which is not indicating existence of bulge.

We start by the following equation:

$$\mathbf{A}\mathbf{\hat{R}}_{m}\mathbf{S}_{m}=\mathbf{\hat{R}}_{m}\mathbf{T}_{m}-\mathbf{r}_{n+1}\mathbf{z}_{0}^{T}$$

We start by the following equation:

$$\mathbf{A}\hat{\mathbf{R}}_{m}\mathbf{S}_{m} = \hat{\mathbf{R}}_{m}\mathbf{T}_{m} - \mathbf{r}_{n+1}\mathbf{z}_{0}^{T}$$

Applying G_1 to create zero at the first place of \mathbf{z}_0^T on right that acts on first and second columns, it adds proper multiple of second column to first column so that we defend the zero structure of upper-triangular parts of S_m and T_m , we have

$$\mathbf{A}\hat{\mathbf{R}}_{m}\mathbf{S}_{m}\mathbf{G}_{1} = \hat{\mathbf{R}}_{m}\mathbf{T}_{m}\mathbf{G}_{1} - \mathbf{r}_{n+1}\mathbf{z}_{1}^{T}.$$

This equation can be re-written as:

We start by the following equation:

$$\mathbf{A}\hat{\mathbf{R}}_{m}\mathbf{S}_{m} = \hat{\mathbf{R}}_{m}\mathbf{T}_{m} - \mathbf{r}_{n+1}\mathbf{z}_{0}^{T}$$

Applying G_1 to create zero at the first place of \mathbf{z}_0^T on right that acts on first and second columns, it adds proper multiple of second column to first column so that we defend the zero structure of upper-triangular parts of S_m and T_m , we have

$$\mathbf{A}\hat{\mathbf{R}}_{m}\mathbf{S}_{m}\mathbf{G}_{1} = \hat{\mathbf{R}}_{m}\mathbf{T}_{m}\mathbf{G}_{1} - \mathbf{r}_{n+1}\mathbf{z}_{1}^{T}.$$

This equation can be re-written as:

$$\mathbf{A}\hat{\mathbf{R}}_{m}^{(1)}\hat{\mathbf{S}}_{m}^{(1)} = \hat{\mathbf{R}}_{m}^{(1)}\mathbf{T}_{m}^{(1)} - \mathbf{r}_{n+1}\mathbf{z}_{1}^{T}$$
(3.2)

(Note that I did not put hat on T_m because there is no bulge in T_mG_1 !)

The followings are evident: $\mathbf{z}_0^T \mathbf{G}_1 = [0 * * \cdots *] = \mathbf{z}_1^T$

$$\mathbf{T}_{m}^{(1)} = \begin{bmatrix} t & t & t & t & 0 & 0 & 0 \\ + & t & t & t & t & 0 & 0 \\ 0 & 0 & t & t & t & t & t \\ 0 & 0 & 0 & t & t & t & t \\ 0 & 0 & 0 & 0 & t & t & t \\ 0 & 0 & 0 & 0 & 0 & t & t \\ 0 & 0 & 0 & 0 & 0 & 0 & t \end{bmatrix}, \quad \hat{\mathbf{S}}_{m}^{(1)} = \begin{bmatrix} s & s & s & s & 0 & 0 & 0 \\ \oplus & s & s & s & s & s & 0 & 0 \\ 0 & 0 & s & s & s & s & s & 0 \\ 0 & 0 & 0 & s & s & s & s & s \\ 0 & 0 & 0 & 0 & s & s & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & 0 & 0 & s & s \end{bmatrix}$$

The followings are evident: $\mathbf{z}_0^T \mathbf{G}_1 = [0 * * \cdots *] = \mathbf{z}_1^T$

$$\mathbf{T}_{m}^{(1)} = \begin{bmatrix} t & t & t & t & 0 & 0 & 0 \\ + & t & t & t & t & 0 & 0 \\ 0 & 0 & t & t & t & t & 0 \\ 0 & 0 & 0 & t & t & t & t \\ 0 & 0 & 0 & 0 & t & t & t \\ 0 & 0 & 0 & 0 & 0 & t & t \\ 0 & 0 & 0 & 0 & 0 & 0 & t \end{bmatrix}, \quad \hat{\mathbf{S}}_{m}^{(1)} = \begin{bmatrix} s & s & s & s & 0 & 0 & 0 \\ \oplus & s & s & s & s & 0 & 0 \\ 0 & 0 & s & s & s & s & 0 \\ 0 & 0 & 0 & s & s & s & s \\ 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \end{bmatrix}$$

" \oplus " is a bulge that needs to be eliminated. This can be done by elimination matrix \mathbf{L}_1 applied on left to both $\hat{\mathbf{S}}_m^{(1)}$ and $\mathbf{T}_m^{(1)}$ adding proper multiple of row 1 to row 2 turning $\hat{\mathbf{S}}_m^{(1)}$ to upper-triangular form. This will not disturb anything in $\mathbf{T}_m^{(1)}$.

Therefore, we will have:

$$\mathbf{L}_1 \mathbf{\hat{S}}_m^{(1)} := \mathbf{S}_m^{(1)}, \ \mathbf{L}_1 \mathbf{T}_m^{(1)} := \mathbf{T}_m^{(1)},$$

Therefore, we will have:

$$\mathbf{L}_1 \hat{\mathbf{S}}_m^{(1)} := \mathbf{S}_m^{(1)}, \ \mathbf{L}_1 \mathbf{T}_m^{(1)} := \mathbf{T}_m^{(1)},$$

or equivalently

$$\hat{\mathbf{S}}_m^{(1)} = \mathbf{L}_1^{-1} \mathbf{S}_m^{(1)}, \ \mathbf{T}_m^{(1)} = \mathbf{L}_1^{-1} \mathbf{T}_m^{(1)}$$

Therefore, we will have:

$$\mathbf{L}_1 \hat{\mathbf{S}}_m^{(1)} := \mathbf{S}_m^{(1)}, \ \mathbf{L}_1 \mathbf{T}_m^{(1)} := \mathbf{T}_m^{(1)},$$

or equivalently

$$\hat{\mathbf{S}}_m^{(1)} = \mathbf{L}_1^{-1} \mathbf{S}_m^{(1)}, \ \mathbf{T}_m^{(1)} = \mathbf{L}_1^{-1} \mathbf{T}_m^{(1)}$$

By substituting this in equation (3.2) we have:

$$\mathbf{A}\hat{\mathbf{R}}_{m}^{(1)}\mathbf{L}_{1}^{-1}\mathbf{S}_{m}^{(1)} = \hat{\mathbf{R}}_{m}^{(1)}\mathbf{L}_{1}^{-1}\mathbf{T}_{m}^{(1)} - \mathbf{r}_{n+1}\mathbf{z}_{1}^{T}$$

By letting $\hat{\mathbf{R}}_m^{(1)}\mathbf{L}_1^{-1}=\hat{\mathbf{R}}_m^{(2)}$ we get

$$\mathbf{A}\hat{\mathbf{R}}_{m}^{(2)}\mathbf{S}_{m}^{(1)} = \hat{\mathbf{R}}_{m}^{(2)}\mathbf{T}_{m}^{(1)} - \mathbf{r}_{n+1}\mathbf{z}_{1}^{T} \quad (3.3)$$

Next step will create zero in second position of \mathbf{z}_1^T by \mathbf{G}_2 on right. Applying this transformation we have:

$$\mathbf{A}\hat{\mathbf{R}}_m^{(2)}\mathbf{S}_m^{(1)}\mathbf{G}_2 = \hat{\mathbf{R}}_m^{(2)}\mathbf{T}_m^{(1)}\mathbf{G}_2 - \mathbf{r}_{n+1}\mathbf{z}_2^T.$$
 Where $\mathbf{z}_2^T := \mathbf{z}_1^T\mathbf{G}_2 = [0\ 0 * * \cdots *].$

Next step will create zero in second position of \mathbf{z}_1^T by \mathbf{G}_2 on right. Applying this transformation we have:

$$\mathbf{A}\hat{\mathbf{R}}_m^{(2)}\mathbf{S}_m^{(1)}\mathbf{G}_2 = \hat{\mathbf{R}}_m^{(2)}\mathbf{T}_m^{(1)}\mathbf{G}_2 - \mathbf{r}_{n+1}\mathbf{z}_2^T.$$

Where $\mathbf{z}_2^T := \mathbf{z}_1^T \mathbf{G}_2 = [0 \ 0 * * \cdots *].$

Let $\hat{\mathbf{S}}_m^{(2)} := \mathbf{S}_m^{(1)} \mathbf{G}_2$, $\mathbf{T}_m^{(2)} := \mathbf{T}_m^{(1)} \mathbf{G}_2$. By this notation we have:

$$\mathbf{A}\hat{\mathbf{R}}_{m}^{(2)}\hat{\mathbf{S}}_{m}^{(2)} = \hat{\mathbf{R}}_{m}^{(2)}\mathbf{T}_{m}^{(2)} - \mathbf{r}_{n+1}\mathbf{z}_{2}^{T}.$$
 (3.4)

 $\hat{\mathbf{S}}_m^{(2)}$ and $\mathbf{T}_m^{(2)}$ have the following form:

$$\mathbf{T}_{m}^{(2)} = \begin{bmatrix} t & t & t & t & 0 & 0 & 0 \\ + & t & t & t & t & 0 & 0 \\ 0 & + & t & t & t & t & 0 \\ 0 & 0 & 0 & t & t & t & t \\ 0 & 0 & 0 & 0 & t & t & t \\ 0 & 0 & 0 & 0 & 0 & t & t \\ 0 & 0 & 0 & 0 & 0 & 0 & t \end{bmatrix}, \quad \hat{\mathbf{S}}_{m}^{(2)} = \begin{bmatrix} s & s & s & s & 0 & 0 & 0 \\ 0 & s & s & s & s & s & 0 & 0 \\ 0 & 0 & s & s & s & s & s & 0 \\ 0 & 0 & 0 & s & s & s & s & s \\ 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 &$$

" \oplus " has to be eliminated by a Gauss transform on left, L_2 , adding proper multiple of row 2 to row 3. This will create a bulge in (3,1) position of $T_m^{(2)}$ disturbing the Hessenberg structure. So far we have:

$$\hat{\mathbf{T}}_m^{(2)} := \mathbf{L}_2 \mathbf{T}_m^{(2)}, \ \mathbf{S}_m^{(2)} := \mathbf{L}_2 \hat{\mathbf{S}}_m^{(2)}$$

OR equivalently:

$$\mathbf{T}_m^{(2)} = \mathbf{L}_2^{-1} \hat{\mathbf{T}}_m^{(2)}, \ \hat{\mathbf{S}}_m^{(2)} := \mathbf{L}_2^{-1} \mathbf{S}_m^{(2)}$$

" \oplus " has to be eliminated by a Gauss transform on left, L_2 , adding proper multiple of row 2 to row 3. This will create a bulge in (3,1)position of $T_m^{(2)}$ disturbing the Hessenberg structure. So far we have:

$$\hat{\mathbf{T}}_m^{(2)} := \mathbf{L}_2 \mathbf{T}_m^{(2)}, \ \ \mathbf{S}_m^{(2)} := \mathbf{L}_2 \hat{\mathbf{S}}_m^{(2)}$$

OR equivalently:

$$\mathbf{T}_m^{(2)} = \mathbf{L}_2^{-1} \hat{\mathbf{T}}_m^{(2)}, \ \hat{\mathbf{S}}_m^{(2)} := \mathbf{L}_2^{-1} \mathbf{S}_m^{(2)}$$

 $\hat{\mathbf{T}}_m^{(2)}$ and $\mathbf{S}_m^{(2)}$ have following form:

$$\hat{\mathbf{T}}_{m}^{(2)} = \begin{bmatrix} t & t & t & t & 0 & 0 & 0 \\ + & t & t & t & t & 0 & 0 \\ \oplus & + & t & t & t & t & 0 \\ 0 & 0 & 0 & t & t & t & t \\ 0 & 0 & 0 & 0 & t & t & t \\ 0 & 0 & 0 & 0 & 0 & t & t \\ 0 & 0 & 0 & 0 & 0 & 0 & t \end{bmatrix}, \quad \mathbf{S}_{m}^{(2)} = \begin{bmatrix} s & s & s & s & 0 & 0 & 0 \\ 0 & s & s & s & s & 0 & 0 \\ 0 & 0 & s & s & s & s & s \\ 0 & 0 & 0 & s & s & s & s \\ 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & s & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \\ 0 & 0 & 0 & 0 & 0 & s & s \end{bmatrix}$$

As of now, we have:

$$\mathbf{A}\mathbf{\hat{R}}_{m}^{(2)}\mathbf{L}_{2}^{-1}\mathbf{S}_{m}^{(2)} = \mathbf{\hat{R}}_{m}^{(2)}\mathbf{L}_{2}^{-1}\mathbf{\hat{T}}_{m}^{(2)} - \mathbf{r}_{n+1}\mathbf{z}_{2}^{T}$$

Letting $\hat{\mathbf{R}}_m^{(3)} := \hat{\mathbf{R}}_m^{(2)} \mathbf{L}_2^{-2}$ we get:

$$\mathbf{A}\hat{\mathbf{R}}_{m}^{(3)}\mathbf{S}_{m}^{(2)} = \hat{\mathbf{R}}_{m}^{(3)}\hat{\mathbf{T}}_{m}^{(2)} - \mathbf{r}_{n+1}\mathbf{z}_{2}^{T}$$
 (3.5)

As of now, we have:

$$\mathbf{A}\mathbf{\hat{R}}_{m}^{(2)}\mathbf{L}_{2}^{-1}\mathbf{S}_{m}^{(2)} = \mathbf{\hat{R}}_{m}^{(2)}\mathbf{L}_{2}^{-1}\mathbf{\hat{T}}_{m}^{(2)} - \mathbf{r}_{n+1}\mathbf{z}_{2}^{T}$$

Letting $\hat{\mathbf{R}}_m^{(3)} := \hat{\mathbf{R}}_m^{(2)} \mathbf{L}_2^{-2}$ we get:

$$\mathbf{A}\hat{\mathbf{R}}_{m}^{(3)}\mathbf{S}_{m}^{(2)} = \hat{\mathbf{R}}_{m}^{(3)}\hat{\mathbf{T}}_{m}^{(2)} - \mathbf{r}_{n+1}\mathbf{z}_{2}^{T}$$
 (3.5)

The bulge in $\hat{\mathbf{T}}_m^{(2)}$ has to be eliminated by a Gauss transform on right, let's call it \mathbf{R}_2 , adding proper multiple of column 2 to column 1. But, this transformation will create a bulge in $\mathbf{S}_m^{(2)}$.

$$\hat{\mathbf{T}}_{m}^{(2)}\mathbf{R}_{2} = \begin{bmatrix} t & t & t & t & 0 & 0 & 0 \\ + & t & t & t & t & 0 & 0 \\ 0 & + & t & t & t & t & 0 \\ 0 & 0 & 0 & t & t & t & t \\ 0 & 0 & 0 & 0 & t & t & t \\ 0 & 0 & 0 & 0 & 0 & t & t \\ 0 & 0 & 0 & 0 & 0 & 0 & t \end{bmatrix},$$

Continuing this procedure after m-1 steps we end up with $z_{m-1}^T=\alpha e_m^T$ and following form:

$$AR_m S_m = R_m T_m - r_{n+1} \alpha e_m^T$$

Where R_m is N-by-m matrix of m residuals, S_m will be upper-triangular, T_m will be upper-Hessenberg.