Math 63: Real Analysis

Winter 2024

PSET 6 — 02/14/2024

Prof. Erchenko Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

(a) Introduction to Analysis by Maxwell Rosenlicht

Problem 1.

$$\operatorname{Let} f(x) = \frac{1+x}{1+x^3}.$$

(i) Find a largest subset $U \subseteq \mathbb{R}$ where f is well-defined. Is f continuous on U?

Since f is a rational function where the numerator and denominator consist of polynomial functions, it is well-defined where the denominator is nonzero. Thus, $U = \mathbb{R} \setminus \{-1\}$.

Since U is open and f is a rational function, f is continuous on U (We proved this result in class.).

(ii) Let U be as in part (i). Let g be a function such that g(x) = f(x) if $x \in U$. Is there a way to define g on $\mathbb{R} \setminus U$ to obtain a continuous function g on \mathbb{R} ?

Note: value at x = -1 is not defined, which is not demonstrated in this plot.

For g to be continuous on \mathbb{R} , we need to define g at -1 such that $\lim_{x\to -1} g(x) = g(-1)$. Since g has an indeterminate form at -1, we use L'Hôpital's rule to find the limit:

$$\lim_{x \to -1} \frac{1+x}{1+x^3} = \lim_{x \to -1} \left[\frac{\mathrm{d}}{\mathrm{d}x} (1+x) / \frac{\mathrm{d}}{\mathrm{d}x} (1+x^3) \right]$$
$$= \lim_{x \to -1} \frac{1}{3x^2}$$
$$= \frac{1}{3}$$

Thus, we can define

$$g(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \setminus \{-1\} \\ \frac{1}{3} & \text{if } x = -1 \end{cases}$$

to obtain a continuous function on \mathbb{R} .

Problem 2.

Determine the points where the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous.

Claim 2.1. The function f is continuous at all points $(x, y) \neq (0, 0)$.

Proof. Note that the function f is a composition of two functions; $f = h \circ g$, where

$$g: \mathbb{R}^2 \to \mathbb{R}$$
 and $h: \mathbb{R} \to \mathbb{R}$
$$(x,y) \mapsto x^2 + y^2$$

$$t \mapsto \frac{1}{t}.$$

Since $U := \{ p \in \mathbb{R}^2 \mid p \neq (0,0) \}$ is open, both g is continuous over U, and, in turn, f is continuous over U (composition of continuous functions is continuous).

Claim 2.2. The function f is not continuous at (0,0).

Proof. f is continuous at (0,0) if and only if

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0).$$

However;

$$\lim_{(x,y)\to(0,0)} f\big(x,y\big) = \lim_{(x,y)\to(0,0)} \frac{1}{x^2+y^2} = \infty,$$

so the limit does not exist. However, f(0,0) = 0 so f is not continuous at (0,0).

Problem 3.

Let $f : [a, b] \to \mathbb{R}$ with a < b be continuous. Show that functions

$$m(x) = \inf \{ f(y) \mid a \le y \le x \}$$
 and $M(x) = \sup \{ f(y) \mid a \le y \le x \}$

are continuous on [a, b].

We will show that m is continuous on [a, b]. The proof for M is analogous.

Claim 3.1. The function m is continuous on [a, b].

Proof. Let $x_0 \in [a, b]$. We need to show that $\lim_{x \to x_0} m(x) = m(x_0)$.

First, note that:

- **1.** $m(x) \le f(x)$ for all $x \in [a, b]$, by definition of m, so m is bounded above by f.
- **2.** m(x) is monotonically decreasing on [a,b]. This also follows from the definition of m, since it is the infimum of all values of f at points less than or equal to x.

Since f is continuous on [a,b], we have $\lim_{x\to x_0} f(x) = f(x_0)$. Thus, for any $x_0 \in [a,b]$ and every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x-x_0| < \delta \implies |f(x)-f(x_0)| < \varepsilon$. For any such ε and δ , pick x so that $|x-x_0| < \delta$ (and, consequently, $|f(x)-f(x_0)| < \varepsilon$). We claim that $|m(x)-m(x_0)| < \varepsilon$.

Since f is continuous, by definition of m as an infimum of all previous values of f, if $x < x_0$ and $m(x) \neq m(x_0)$ then m(x) = f(y) for some $y \in [x, x_0]$. Since all points in that range are within δ of x_0 , we have $|f(y) - f(x_0)| < \varepsilon$. Furthermore, since m(x) is monotone decreasing, $m(x_0) \leq m(x)$ when $x < x_0$, so $m(x_0) = f(z)$ for some $z \in [x, x_0]$ if $m(x) \neq m(x_0)$. Thus, either $m(x) = m(x_0)$ and $|m(x) - m(x_0)| = 0$ or

$$|m(x) - m(x_0)| = |f(y) - f(z)| < \varepsilon$$
 for some $x_0 - \delta < x < y, z < x_0$.

Since this works for any ε and any x_0 , we have $|m(x) - m(x_0)| < \varepsilon$.

Claim 3.2. The function M is continuous on [a, b].

Proof. The proof is analogous to the proof for m. Since $M(x) \ge f(x)$ for all $x \in [a,b]$, by definition of M, M is bounded below by f. Also, M(x) is monotonically increasing on [a,b]. This also follows from the definition of M, since it is the supremum of all values of f at points less than or equal to x. Since f is continuous on [a,b], we have $\lim_{x\to x_0} f(x) = f(x_0)$. Thus, for any $x_0 \in [a,b]$ and every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x-x_0| < \delta \implies |f(x)-f(x_0)| < \varepsilon$. For any such ε and δ , pick x so that $|x-x_0| < \delta$ (and, consequently, $|f(x)-f(x_0)| < \varepsilon$). We claim that $|M(x)-M(x_0)| < \varepsilon$.

Since f is continuous, by definition of M as an supremum of all previous values of f, if $x < x_0$ and $M(x) \neq M(x_0)$ then M(x) = f(y) for some $y \in [x, x_0]$. Since all points in that range are within δ of x_0 , we have $|f(y) - f(x_0)| < \varepsilon$. Furthermore, since M(x) is monotone increasing, $M(x_0) \geq M(x)$ when $x < x_0$, so $M(x_0) = f(z)$ for some $z \in [x, x_0]$ if $M(x) \neq M(x_0)$. Thus, either $M(x) = M(x_0)$ and $|M(x) - M(x_0)| = 0$ or

$$|M(x) - M(x_0)| = |f(y) - f(z)| < \varepsilon$$
 for some $x_0 - \delta < x < y, z < x_0$.

Since this works for any ε and any x_0 , we have $|M(x) - M(x_0)| < \varepsilon$.

Problem 4.

Show if each of this functions is uniformly continuous on $\mathbb R$ or not.

(i) $f(x) = x^2$.

Claim 4.1. The function $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

Proof. Suppose for the sake of contradiction that $f(x) = x^2$ is uniformly continuous on \mathbb{R} .

Then, for every $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$. Consider $\varepsilon = 1$ and suppose there exists such a δ . For any $x_1 \in \mathbb{R}$, pick $x_2 = x_1 + \frac{\delta}{2}$. Then,

$$|f(x_1) - f(x_2)| = \left| (x_1 + \frac{\delta}{2})^2 - x_1^2 \right| = \left| \delta x_1 + \frac{\delta^2}{4} \right| < \varepsilon = 1$$

However, since \mathbb{R} is unbounded, we can pick x_1 such that $x_1 > \frac{1}{\delta}$, so that $\delta x_1 > 1$. Since $\frac{\delta^2}{4} > 0$ for all $\delta > 0$, we have $\left| \delta x_1 + \frac{\delta^2}{4} \right| > 1$, contradicting the assumption that $\left| \delta x_1 + \frac{\delta^2}{4} \right| < 1$. Hence, $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

(ii) $f(x) = \sqrt{|x|}$.

Claim 4.2. The function $f(x) = \sqrt{|x|}$ is uniformly continuous on \mathbb{R} .

Proof. We will show that f is uniformly continuous on \mathbb{R} . Let $\varepsilon > 0$. We need to find a $\delta > 0$ such that for all $x, y \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$. We claim that $\delta = \varepsilon^2$ works. Let $x, y \in \mathbb{R}$ such that $|x - y| < \delta = \varepsilon^2$. Then,

$$|f(x) - f(y)| = \left| \sqrt{|x|} - \sqrt{|y|} \right|$$

$$\leq \sqrt{|x| - |y|}$$

$$\leq \sqrt{|x - y|}$$

$$< \sqrt{\delta} = \varepsilon \qquad \text{since } |x - y| < \delta$$

Thus, for all $x, y \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$. Hence, f is uniformly continuous on \mathbb{R} .

Problem 5.

Let (E, d_E) be a compact metric space, and let $f, f_1, f_2, f_3, \ldots : E \to \mathbb{R}$ be continuous real-values functions on E, with $\lim_{n \to \infty} f_n = f$. Prove that if $f_1(p) \le f_2(p) \le f_3(p) \le \cdots$ for all $p \in E$ then the sequence f_1, f_2, f_3, \ldots converges uniformly.

We will show that the sequence f_1, f_2, f_3, \ldots converges uniformly to f. Let $\varepsilon > 0$. We need to find an $N \in \mathbb{N}$ such that for all $n \geq N$ and all $p \in E$, $|f_n(p) - f(p)| < \varepsilon$. Since $f_n \to f$, for every $p \in E$, there exists an $N_p \in \mathbb{N}$ such that for all $n \geq N_p$, $|f_n(p) - f(p)| < \frac{\varepsilon}{3}$. Since E is compact, there exists a finite subcover $\{U_1, U_2, \ldots, U_k\}$ of E. Let $N = \max{\{N_{p_1}, N_{p_2}, \ldots, N_{p_k}\}}$. Then, for all $n \geq N$ and all $p \in E$, $|f_n(p) - f(p)| < \varepsilon$. Thus, the sequence f_1, f_2, f_3, \ldots converges uniformly to f.

Problem 6.

Let (X, d_X) and (Y, d_Y) be metric spaces. Assume (Y, d_Y) is complete. Show that a sequence of functions $f_n : X \to Y$ converges uniformly on X if and only if it is uniformly Cauchy on X.

We will show that a sequence of functions $f_n: X \to Y$ converges uniformly on X if and only if it is uniformly Cauchy on X.

Claim 6.1. The sequence of functions $f_n: X \to Y$ converges uniformly on X if and only if it is uniformly Cauchy on X.

Proof. We will first show that if the sequence of functions $f_n: X \to Y$ converges uniformly on X, then it is uniformly Cauchy on X. We will then show that if the sequence of functions $f_n: X \to Y$ is uniformly Cauchy on X, then it converges uniformly on X.

1. (\Longrightarrow) Suppose the sequence of functions $f_n: X \to Y$ converges uniformly on X. Then, for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n, m \ge N$ and all $x \in X$, $|f_n(x) - f_m(x)| < \varepsilon$. Thus, for all $n, m \ge N$,

$$\sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon.$$

Therefore, the sequence of functions $f_n: X \to Y$ is uniformly Cauchy on X.

2. (\iff) Suppose the sequence of functions $f_n: X \to Y$ is uniformly Cauchy on X. Then, for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n, m \ge N$,

$$\sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon.$$

Since (Y, d_Y) is complete, the sequence of functions $f_n: X \to Y$ converges pointwise to some function $f: X \to Y$. We need to show that the sequence converges uniformly on X. Meaning, for $\varepsilon > 0$. We need to find an $N \in \mathbb{N}$ such that for all $n \geq N$ and all $x \in X$, $|f_n(x) - f(x)| < \varepsilon$.

- 1. Since the sequence of functions $f_n: X \to Y$ is uniformly Cauchy on X, there exists an $N \in \mathbb{N}$ such that for all $n, m \ge N$, $\sup_{x \in X} |f_n(x) f_m(x)| < \frac{\varepsilon}{2}$.

 2. Furthermore, since the sequence of functions $f_n: X \to Y$ converges pointwise to $f: X \to Y$, there exists
- **2.** Furthermore, since the sequence of functions $f_n: X \to Y$ converges pointwise to $f: X \to Y$, there exists an $N' \in \mathbb{N}$ such that for all $n \geq N'$, $|f_n(x) f(x)| < \frac{\varepsilon}{2}$ for all $x \in X$.

3. Let $N'' = \max\{N, N'\}$. Then, for all $n \ge N''$ and all $x \in X$,

$$|f_n(x) - f(x)| \le |f_n(x) - f_{N''}(x)| + |f_{N''}(x) - f(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus, the sequence of functions $f_n: X \to Y$ converges uniformly on X.

Problem 7.

Let (X, d_X) be a metric space. A function $g: X \to \mathbb{R}$ is bounded on X if $\exists M$ such that $|g(x)| \leq M$ for all $x \in X$. Suppose that $f_n: X \to \mathbb{R}$ is bounded on X for each $n \in \mathbb{N}$. Show that if a sequence of of f_n converges uniformly to a function $f: X \to \mathbb{R}$ then f is bounded on X.

We will show that if a sequence of of f_n converges uniformly to a function $f: X \to \mathbb{R}$ then f is bounded on X.

Claim 7.1. If a sequence of of f_n converges uniformly to a function $f: X \to \mathbb{R}$ then f is bounded on X.

Proof. Since $f_n \to f$ uniformly, for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ and all $x \in X$, $|f_n(x) - f(x)| < \varepsilon$. Since f_n is bounded on X for each $n \in \mathbb{N}$, there exists an M_n such that $|f_n(x)| \leq M_n$ for all $x \in X$. Let $M = \max\{M_1, M_2, \dots, M_N\}$. Then, for all $x \in X$,

$$|f(x)| \le \underbrace{|f(x) - f_N(x)|}_{<\varepsilon} + \underbrace{|f_N(x)|}_{< M} < \varepsilon + M$$

Since ε is arbitrary, we have $|f(x)| \le M$ for all $x \in X$. Thus, f is bounded on X.