Đạo hàm và các bài toán giải phương trình, bất phương trình

1. Lý thuyết

a) Các công thức đạo hàm

Đạo hàm các hàm số cơ bản	Đạo hàm các hàm hợp $\mathbf{u} = \mathbf{u}(\mathbf{x})$
(c)' = 0 (c là hằng số)	
(x)' = 1	
$(x^{\alpha})' = \alpha . x^{\alpha - 1}$	$(u^{\alpha})' = \alpha.u'.u^{\alpha-1}$
$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}; \ x \neq 0$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}; \ x > 0$	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
$(\sin x)' = \cos x$	$(\sin u)' = u'.\cos u$
$(\cos x)' = -\sin x$	$(\cos u)' = -u'.\sin u$
$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	$(\tan u)' = \frac{u'}{\cos^2 u} = u'.(1 + \tan^2 u)$
$(\cot x)' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$	$(\cot u)' = -\frac{u'}{\sin^2 u} = -u'.(1 + \cot^2 u)$

b) Các quy tắc tính đạo hàm

Cho các hàm số u = u(x), v = v(x)

có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:

1.
$$(u + v)' = u' + v'$$

2.
$$(u - v)' = u' - v'$$

$$3. (u.v)' = u'.v + v'.u$$

$$4. \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2} \left(v = v(x) \neq 0\right)$$

Chú ý:

a)
$$(k.v)' = k.v'$$
 (k: hằng số)

b)
$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2} \quad \left(v = v(x) \neq 0\right)$$

Mở rộng:

$$(u_1 \pm u_2 \pm ... \pm u_n)' = u_1' \pm u_2' \pm ... \pm u_n'$$

 $(u.v.w)' = u'.v.w + u.v'.w + u.v.w'$

c) Đạo hàm của hàm số hợp

Cho hàm số y = f(u(x)) = f(u) với u = u(x). Khi đó: $y_x' = y_u'$. u_x'

2. Phương pháp giải:

- Sử dụng các quy tắc, công thức tính đạo hàm trong phần lý thuyết.
- Nhận biết và tính đạo hàm của hàm số hợp, hàm số có nhiều biểu thức.
- Sử dụng đạo hàm để giải phương trình, bất phương trình, chứng minh đẳng thức, bất đẳng thức.

3. Ví dụ minh họa:

Ví dụ 1: a) Cho f $(x) = 2x^3 + x - \sqrt{2}$, $g(x) = 3x^2 + x + \sqrt{2}$. Giải bất phương trình f'(x) > g'(x).

b) Cho
$$f(x) = 3x + \frac{60}{x} - \frac{64}{x^3} + 5$$
. Giải phương trình $f'(x) = 0$

c) Cho $y = \cos^2 x + \sin x$. Giải phương trình y' = 0.

Lời giải

a) Ta có f'(x) =
$$(2x^3 + x - \sqrt{2})' = 6x^2 + 1$$

$$g'(x) = (3x^2 + x + \sqrt{2})' = 6x + 1$$

Ta có:
$$f'(x) > g'(x) \Leftrightarrow 6x^2 + 1 > 6x + 1 \Leftrightarrow 6x^2 - 6x > 0 \Leftrightarrow 6x(x-1) > 0$$

 $\Leftrightarrow x \in (-\infty; 0) \cup (1; +\infty)$

Vậy phương trình có tập nghiệm là $S = (-\infty; 0) \cup (1; +\infty)$.

b) Ta có f'(x) =
$$\left(3x + \frac{60}{x} - \frac{64}{x^3} + 5\right)' = 3 - \frac{60}{x^2} + \frac{192}{x^4}$$

$$f'(x) = 0 \Leftrightarrow 3 - \frac{60}{x^2} + \frac{192}{x^4} = 0$$
 (1)

Đặt
$$t = \frac{1}{x^2}, (t > 0)$$

$$(1) \Leftrightarrow 192t^2 - 60t + 3 = 0 \Leftrightarrow \begin{bmatrix} t = \frac{1}{4} \\ t = \frac{1}{16} \end{bmatrix}$$

Với
$$t = \frac{1}{4} \Leftrightarrow \frac{1}{x^2} = \frac{1}{4} \Leftrightarrow x^2 = 4 \Leftrightarrow x = \pm 2$$

Với
$$t = \frac{1}{16} \Leftrightarrow \frac{1}{x^2} = \frac{1}{16} \Leftrightarrow x^2 = 16 \Leftrightarrow x = \pm 4$$

Vậy f'(x) = 0 có 4 nghiệm $x = \pm 2$, $x = \pm 4$.

c) Ta có: $y' = -2\sin x \cdot \cos x + \cos x = -\sin 2x + \cos x$

Khi đó, phương trình có dạng:

$$-\sin 2x + \cos x = 0 \Leftrightarrow \sin 2x = \cos x = \sin \left(\frac{\pi}{2} - x\right)$$

$$\Leftrightarrow \begin{bmatrix} 2x = \frac{\pi}{2} - x + 2k\pi \\ 2x = \pi - \frac{\pi}{2} + x + 2k\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + \frac{2k\pi}{3} \\ x = \frac{\pi}{2} + 2k\pi \end{bmatrix}; k \in \mathbb{Z}.$$

Vậy nghiệm của phương trình là $x = \frac{\pi}{6} + \frac{2k\pi}{3}$; $x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$.

Ví dụ 2: a) Cho y = tan x. Chứng minh $y' - y^2 - 1 = 0$ b) Cho y = xsinx. Chứng minh: $x.y - 2(y' - \sin x) + x(2\cos x - y) = 0$

Lời giải

a)
$$y' = (\tan x)^2 = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

Ta có: $y' - y^2 - 1 = 1 + \tan^2 x - \tan^2 x - 1 = 0$ (dpcm).

b)
$$y' = (x \sin x)' = x' \cdot \sin x + x \cdot (\sin x)' = \sin x + x \cos x$$
.

Ta có: $x.y - 2(y' - \sin x) + x(2\cos x - y)$

$$= x^2.\sin x - 2(\sin x + x\cos x - \sin x) + x(2\cos x - x\sin x)$$

$$= x^2 \sin x - 2x \cos x + 2x \cos x - x^2 \sin x = 0 \text{ (dpcm)}.$$

3. Bài tập tự luyện

Câu 1. Cho hàm số $y = \sqrt{x^2 - 1}$. Nghiệm của phương trình y'.y = 2x + 1 là:

A.
$$x = 2$$
.

B.
$$x = 1$$
.

D.
$$x = -1$$
.

Câu 2. Cho hàm số $f(x) = \frac{1}{3}x^3 - 2\sqrt{2}x^2 + 8x - 1$, có đạo hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0 là:

A.
$$\{-2\sqrt{2}\}.$$

B.
$$\{2;\sqrt{2}\}.$$
 C. $\{-4\sqrt{2}\}.$ **D.** $\{2\sqrt{2}\}.$

C.
$$\{-4\sqrt{2}\}$$
.

D.
$$\{2\sqrt{2}\}$$

Câu 3. Cho hàm số $y = 3x^3 + x^2 + 1$, có đạo hàm là y'. Để $y' \le 0$ thì x nhận các giá trị thuộc tập nào sau đây?

$$\mathbf{A.}\left[-\frac{2}{9};0\right].$$

$$\mathbf{B.} \left[-\frac{9}{2}; 0 \right].$$

$$\mathbf{C} \cdot \left(-\infty; -\frac{9}{2} \right] \cup [0; +\infty).$$

$$\mathbf{D.}\left(-\infty;-\frac{2}{9}\right]\cup\left[0;+\infty\right).$$

Câu 4. Cho hàm số $y = \frac{1}{3}x^3 - (2m+1)x^2 - mx - 4$, có đạo hàm là y'. Tìm tất cả các giá trị của m để $y' \ge 0$ với $\forall x \in \mathbb{R}$.

A.
$$m \in \left(-1; -\frac{1}{4}\right)$$
.

B.
$$m \in \left[-1; -\frac{1}{4}\right]$$
.

C.
$$m \in (-\infty; -1] \cup \left[-\frac{1}{4}; +\infty \right]$$
.

D.
$$m \in [-1; \frac{1}{4}]$$
.

Câu 5. Cho hàm số $y = -\frac{1}{3}mx^3 + (m-1)x^2 - mx + 3$, có đạo hàm là y'. Tìm tất cả các giá trị của m để phương trình y' = 0 có hai nghiệm phân biệt là $x_1,\ x_2$ thỏa mãn $x_1^2 + x_2^2 = 6$.

A.
$$m = -1 + \sqrt{2}$$
; $m = -1 - \sqrt{2}$.

B.
$$m = -1 - \sqrt{2}$$
.

C.
$$m = 1 - \sqrt{2}$$
; $m = 1 + \sqrt{2}$.

D.
$$m = -1 + \sqrt{2}$$
.

Câu 6. Cho hàm số $y = (2x^2 + 1)^3$, có đạo hàm là y'. Để $y' \ge 0$ thì x nhận các giá trị nào sau đây?

A. Không có giá trị nào của x.

B.
$$(-\infty;0]$$
.

C.
$$[0;+\infty)$$
.

Câu 7. Cho hàm số $f(x) = \frac{1-3x+x^2}{x-1}$. Giải bất phương trình f'(x) > 0.

A.
$$x \in \mathbb{R} \setminus \{1\}$$
. **B.** $x \in \emptyset$.

B.
$$x \in \emptyset$$
.

C.
$$x \in (1; +\infty)$$
.

D.
$$x \in \mathbb{R}$$
.

Câu 8. Cho hàm số $f(x) = \frac{x^3}{x-1}$. Phương trình f'(x) = 0 có tập nghiệm S là:

A.
$$S = \left\{0; \frac{2}{3}\right\}.$$

B.
$$S = \left\{-\frac{2}{3}; 0\right\}.$$

C.
$$S = \left\{0; \frac{3}{2}\right\}.$$

D.
$$S = \left\{-\frac{3}{2}; 0\right\}.$$

Câu 9. Cho hàm số $f(x) = \sqrt{x^2 - 2x}$. Tập nghiệm S của bất phương trình $f'(x) \ge f(x)$ có bao nhiêu giá trị nguyên?

A. 0.

B. 1.

C. 2.

D. 3.

Câu 10. Cho hàm số $y = x^3 + mx^2 + 3x - 5$ với m là tham số. Tìm tập hợp M tất cả các giá trị của m để y' = 0 có hai nghiệm phân biệt:

A.
$$M = (-3; 3)$$

B.
$$M = (-\infty; -3] \cup [3; +\infty)$$

$$\mathbf{C.}\ \mathbf{M} = \mathbf{R}$$

D.
$$M = (-\infty; -3) \cup (3; +\infty)$$
.

Câu 11. Cho hàm số $y = x^3 - 3x + 2017$. Bất phương trình y' < 0 có tập nghiệm là:

A.
$$S = (-1; 1)$$

B.
$$S = (-\infty; -1) \cup (1; +\infty)$$
.

C.
$$S = (1; +\infty)$$
.

D.
$$S = (-\infty; -1)$$
.

Câu 12. Cho hàm số $f(x) = x^4 + 2x^2 - 3$. Tìm x dể f'(x) > 0?

$$A - 1 < x < 0$$

B.
$$x < 0$$

C.
$$x > 0$$

D.
$$x < -1$$

Câu 13. Cho hàm số $y = (m-1)x^3 - 3(m+2)x^2 - 6(m+2)x + 1$. Tập giá trị của m để $y' \ge 0, \forall x \in R$ là

A.
$$[3; +\infty)$$

C.
$$[4\sqrt{2};+\infty)$$

D.
$$[1; +\infty)$$

Câu 14. Cho hàm số $f(x) = a\cos x + 2\sin x - 3x + 1$. Tìm a để phương trình f'(x) = 0 có nghiệm.

A.
$$|a| < \sqrt{5}$$

B.
$$|a| \ge \sqrt{5}$$

C.
$$|a| > 5$$

Câu 15. Cho hàm số $f(x) = \frac{\sin 3x}{3} - \cos x - \sqrt{3} \left(\sin x - \frac{\cos 3x}{3} \right)$. Giải phương

trình f'(x) = 0.

$$\mathbf{A.} \begin{bmatrix} x = \frac{\pi}{12} + k\pi \\ x = -\frac{3\pi}{8} + k\frac{\pi}{2} \end{bmatrix} (k \in \mathbb{R})$$

$$\mathbf{B.} \begin{cases} x = -\frac{\pi}{12} + k\pi \\ x = -\frac{3\pi}{8} + k\frac{\pi}{2} \end{cases} (k \in \mathbb{R})$$

C.
$$x = -\frac{\pi}{12} + k\pi$$

$$x = \frac{3\pi}{8} + k\frac{\pi}{2}$$
 $(k \in \mathbb{R})$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{12} + k\pi \\ x = \frac{3\pi}{8} + k\frac{\pi}{2} \end{bmatrix} (k \in \mathbb{R}).$$

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	D	A	В	A	С	A	С	С	D	A	С	В	В	С