Algorithms HW

- 1. (Lang Exercise I.6, Aluffi Exercise II.4.8) Let G be a group, and let $g \in G$ be an element. Let $\gamma_g \colon G \to G$ be the function given by $h \mapsto ghg^{-1}$. Show that:
 - γ_g is an automorphism of G;
 - the function G → Aut(G) given by g → γ_g is a homomorphism;
 - the image of the homomorphism G → Aut(G) is a normal subgroup of Aut(G).

(The image is the group Inn(G) of inner automorphisms of G, and the quotient Out(G) = Aut(G)/Inn(G) is the outer automorphism group of G.)

1. We show that γ_g is a bijective homomorphism, for some fixed $g \in G$. Let $k, \ell \in G$ then we have

$$\gamma_{g}(k \cdot \ell) = g \cdot (k \cdot \ell) \cdot g^{-1} = g \cdot k \cdot e \cdot \ell \cdot g^{-1} = (g \cdot k \cdot g^{-1}) \cdot (g \cdot \ell \cdot g^{-1}) = \gamma_{g}(k) \cdot \gamma_{g}(\ell),$$

since group products are associative and by definition of the identity element. Hence γ_g is a homomorphism for all $g \in G$.

Now suppose $\gamma_g(h) = e$ for some $h \in G$ we have

$$\gamma_g(h) = e$$

$$ghg^{-1} = e$$

$$(g^{-1}g)h(g^{-1}g) = g^{-1}eg$$

$$h = g^{-1}eg$$

$$h = e.$$

Thus, $\gamma_g(h)$ is injective. Now let $k \in G$ and notice that $\gamma_g(g^{-1}kg) = g \cdot g^{-1}kg^{-1}g = k$. Moreover, $g^{-1}kg \in G$ since G is closed under its group operation. That is, γ_g is surjective for all $g \in G$. Hence, we have shown that γ_g is an automorphism of G.

2. Let $g, h \in G$. And let $f : G \to Aut(G)$ be the map $f(g) = \gamma_g$.

Consider the action of γ_{gh} on some group element k. We have

$$\gamma_{gh}(k) = (gh)k(gh)^{-1}$$

$$= (gh)k(h^{-1}g^{-1})$$

$$= g(hkh^{-1})g^{-1}$$

$$= (\gamma_g \circ \gamma_h)(k),$$

holds for all $k \in G$. That is, we have shown $f(g \cdot h) = f(g) \circ f(h)$, where \cdot denotes the product in G and \circ denotes function composition — the group operation in Aut(G). Hence, f is a homomorphism

3. We show directly that im f is closed under conjugation by homomorphism in Aut(G). Let $h \in Aut(G)$ and $\gamma_g \in \text{im } f$. There then exists an inverse homomorphism h^{-1} and consider the action of

$$h \circ \gamma_{g} \circ h^{-1}$$
.

This is an automorphism since the composition of group homomorphisms is again a group homomorphism check this.

Let $k \in G$ and consider

$$(h \circ \gamma_g \circ h^{-1})(k) = h(g \cdot h^{-1}(k) \cdot g^{-1})$$

$$= h(g) \cdot k \cdot h(g^{-1}), \qquad \text{since h is a homomorphism}$$

Moreover, $h(g) = g' \in G$ since h is an automorphism of G. That is, we have shown $(h \circ \gamma_g \circ g^{-1}) = f(g') \in \text{im } f$. And so, im f is a normal sunbgroup of Aut(G) by definition.

Page 2 of 10

Will Gilroy

2. What is the size of the symmetry group of the cube? Explain how you got your answer.

3. Determine the conjugacy classes in the alternating group A_6 . For each conjugacy class, you should give its size and say what its elements are.

We search for the conjugacy classes of S_n whose elements are even permutations. Note that this is a well-defined notion, since if $\sigma, \tau \in S_n$ are even permutations then $\sigma \tau \sigma^{-1}$ has a transposition decomposition whose length is a product of three even numbers, and is thus even.

Recall that the conjugacy classes are exactly given by the type of a permutation and that the number of valid conjugacy classes correspond to the number of partitions of n. And so, we will enumerate the partitions of 6 and then acquire the conjugacy classes of A_6 by choosing the classes which correspond to even partitions. The partitions of 6 are:

$$[1,1,1,1,1,1]$$
 $[2,2,2]$ $[2,2,1,1]$ $[2,1,1,1,1]$ $[3,3]$ $[3,2,1]$, $[3,1,1,1]$ $[4,2]$ $[4,1,1]$ $[5,1]$ $[6]$.

The bolded types are those which correspond to even partitions and so are the conjugacy classes of A_6 . Recall that these are the types whose number of entries have the same parity as 6 (i.e. these are the types with an even number of rows). Suppose $\sigma \in S_n$ has type $[a_1, \cdots, a_k]$ then the parity of σ is $(a_1 - 1) + \cdots + (a_k - 1)$, since each a_i denotes the length of a cycle which composes σ . Now notice $(a_1 - 1) + \cdots + (a_k - 1) = \sum_i a_i - \sum_{i=1}^k (-1) = 6 - 2\ell = 6 - 2\ell$ is even. And so indeed the chosen permutations give the conjugacy classes of A_6 .

However, we have a bit more counting to do. Recall that a conjugacy $[\sigma] \subseteq S_n$ splits into two conjugacy classes in A_n exactly when the type of σ consists of distinct odd numbers, and otherwise it splits into a single class in A_n . In our case we have [3,3] and [5,1] split into two classes in A_n . Hence, overall we have 1+1+2+1+1+2=8 conjugacy classes in A_6 .

Next we determine the sizes of each conjugacy class in A_6 . Note that the classes not of type [3,3] and [5,1] have the same size as the corresponding classes in S_n . The classes of type [3,3] and [5,1] split into two classes of equal sizes in A_6 . Recall that the class type gives the sizes of the cycles in cycle decomposition of $\sigma \in [\sigma]$. And so, we can

determine the size of each class by counting each distinct way of writing a permutation with the given types. For example, [2,2,1,1] corresponds to $\sigma=(a_1,a_2)(b_1b_2)(c_1)(d_1)$ where $a_i,b_i,c_i,d_i\in[n]$. There are 6! ways to populate these numbers, but then we have equivalent permutations given by cycling the elements in (a_1,a_2) and (b_1,b_2) and another equivalence given by interchanging the cycles, then a final equivalence given by interchanging the two trivial cycles. We do not need to consider any equivalence given by interchanging the positions of the 2-cycles and the trivial cycles, since this was included in our enumeration of the partitions of 6. And so the number of elements in the class of type [2,2,1,1] is given by $\frac{6!=720}{2:2\cdot2\cdot2}=\frac{720}{16}$.

A similar kind of counting gives us the following data. In the following $|[t_i]|$ means the number of elements in the conjugacy class whose type is given by $[t_i]$.

$$|[1,1,1,1,1,1,1]| = 1 |[2,2,1,1]| = \frac{720}{16} |[3,3]| = \frac{720}{3 \cdot 3 \cdot 2} \cdot \frac{1}{2} = \frac{720}{36}$$

$$|[3,1,1,1]| = \frac{720}{3 \cdot 3!} = \frac{720}{18} |[4,2]| = \frac{720}{4 \cdot 2} = \frac{720}{8} |[5,1]| = \frac{720}{5} \cdot \frac{1}{2} = \frac{720}{10}$$

Here the classes with type [3,3] and [5,1] in S_n split into two distinct equal sized classes in A_6 and so we have denoted the size of each split class in the data above. Then we can write the class formula

$$1 + 45 + 2(20) + 40 + 90 + 2(72) = 360 = |A_6|$$

Showing that we have counted the size of our conjugacy classes correctly.

Lastly, we write the elements of our classes. First consider the classes which do not split in A_6 . These classes have the same elements in A_6 as they do in S_6 . The type of the class tells us the cycle decomposition of its elements. For example the class whose type is [2,2,1,1] contains even permutations whose cycle decomposition is $\sigma = (a_1,a_2)(b_1,b_2)(c_1)(d_1)$ for $a_i,b_i,c_i,d_i \in [n]$ and distinct. Since permutation type is preserved by conjugation, this argument is well defined for a given conjugacy class. The same reasoning applies to the classes whose type is [1,1,1,1,1,1], [2,2,1,1], [3,1,1,1], or [4,2].

The classes in S_6 whose type is [3,3] or [5,1] split into two distinct equal size classes in A_6 . how do we figure out which elements belong to which class?

4. Let G be a group and $H \leq G$ a subgroup of index 2. Show that H is a normal subgroup of G.

Consider the action of conjugation on H by some element $k \in G$. If $k \in H$ then $kHk^{-1} = H$ since H is a subgroup. And so, we take $k \notin H$.

Recall that cosets partition G and [H:G]=2 means that there are two cosets of H in G. Since H is a subgroup of G we have $e_G \in H$ and so $k \in kH$. is this redundent, we kinda took this to be by definition of k also? And so $kH=\overline{H}$, the non-H coset. But then $\overline{H}k^{-1}$ contains e_G since $k \in \overline{H}$. And since cosets partition G we must have that $\overline{H}k^{-1}=H$. Overall, we have

$$kHk^{-1} = \overline{H}k^{-1} = H.$$

We have shown that $kHk^{-1} = H$ for all $k \in G$, that is, H is normal in G.

Lang proves this using a lot of machinary of the orbits of group actions and the kernel of group actions. That all seems more technical than what I've done here, but not necessarily anymore slick. Is that tru, or am I missing something?

5. (Lang Exercise I.15) Let G be a finite group acting transitively on a finite set X, with $\#X \geq 2$. Show that there exists an element $g \in G$ which acts on X without fixed points (i.e. $g \cdot x \neq x$ for all $x \in X$).

_

6. (Lang Exercise I.35) Show that there are exactly two non-abelian groups of order 8, up to isomorphism.

- 7. (Goursat's Lemma, Lang Exercise I.5) Let G_1 and G_2 be groups, and let H be a subgroup of $G_1 \times G_2$ such that the two projections $p_1 : H \to G_1$ and $p_2 : H \to G_2$ are surjective. Let N_1 be the kernel of p_2 , and let N_2 be the kernel of p_1 . We can view N_1 and N_2 as subgroups of G_1 and G_2 .
 - Show that N_1 is normal in G_1 and N_2 is normal in G_2 .
 - Prove that the image of H in $(G_1/N_1) \times (G_2/N_2)$ is the graph of an isomorphism $G_1/N_1 \cong G_2/N_2$.

_