Occupe RC = 0 RC = 1 Cloney RE = 1 EVO11 Eculue e 1 Li Se (1) les + Registres des controlleurs et DMA RO - DMA RE_Scanner RCPT- DMA RC-Scanner. REK - DTIA . L pombe RD-Scanner +rought (2) les + pames systèmes Svc (cause, id-périph, a, N.) (0,6pt) Debut LSiGiats. switch cause of Lecture: Etat-processus & blogne; 11 Appel'au pilote du schanner Entrée-Asynchone-Scanner. Init (20, N); 1 Appel au schelula LPSW (Schedules). Etal-processes à blopre, Sothe-Happerrone-DMA-Diste - Init (Q,N), Epsw(scheshuler); shil-< R. Ca.CX+S Entrée-Agnationo-scanner. Init (2), NJ. (1pt). Delsy si RE-Scanner= 1 Als 1/ Lancer le transfet RE-scanner = 0; RC-Scanner = 1 Simon Enfiler (FEIS, SlemEIS); f. 88%

Sortie - Asynchrone - DMA - Disque o Init (D N2). (118pt). Delah si RE-DISA = 1 Alos // Inidialise le DMA. RO-DMA L Q. RCPT DMA < No RAC-DMA L 1; // 1 = ecitive 1/ Initialiser le controlleur. RE-MSKEO; RC-Disk + 1; Simon / methe en attente la Demade E/S enfiler (FEIS, DenEIS. fsi s Routine d'it Disquel 1 (19t). Delout 25.6. CXX Si errem Alas Traiter-Errem (); simm Etat-processus ¿ prêt, Si Tvi le (FEIS) Aly // Lancer une autre lem Els. Southe - Asynchrone - DMA-Dick - Init (sem . a), sem M2 184 LR.G.CXL>

(2)

Rouhine d'it scanner (); (2phs). Delat LSIGN (Xt). Si errem Alng Fraiter-Errem (); simon 11 Recuper le car. R < RB-Scanner 9 // Rest un registre du processeur. Hov Q, R; Si N + O Aly D++ 1/ Lamcer le + Consfert d'1 autre car REScanner 60% sinn l'Etat-processes à prêt Si Trishe (FEIS) Also Defiler (dem, FEIS) Entree_Asynchrone_scanner. Init (Sen and) Suns 185

(3)

Exercice 2

1. Diagramme d'exécution :

=1ms

riph	
<u> </u>	

CPU	Perij
	h
1	
-	
-	
2	
2	
2 2	
 ယ	
 ယ	
 S	
 ယ	
 3	
	ယ
 1 2 2	ω
 Ν	ယ
 2	3 3
2	3
သ	
သ	
ယ	
ယ	
ω	
ယ	
Н	
ш	
3 1 1 2	1 1
Ν	Н

2. Etat des files d'attente :

	A l'instant 15ms	A l'instant 25ms	A l'instant 30ms
File Prêt	\rightarrow P1		Ø
File Bloqué	P3	P1	P1

3. Les priorités des processus :

		T	
P3	P2	P1	
10	6	6	A l'instant 15ms
	0	10	A l'instant 25ms
	2	0	A l'instant 30ms

De nombre thatimum d'entrées dans la rable des pages. 16 8its pour coller le n3 de la page =) on peut avoir au maximum 216 pages =) 216 entrées dans la table des pages. 2) Nombre de pages occupées par les trableaux A, B, etc. in entier est sur 1 octets la taille le la page est 256 octets la taitle de chaque tableau est 1024 octets. => le nombre de pages de chaque tableau = 1024 = 14 pages Donc, le nombre de pages pour les tableaux A,B, C est 1/2 pages . 3) La chaine le references. 015902610,03711 04812 Coole 256 fais 256 fais 256 fais 256 fais Rg: si en considère le code en assemblem CEI] = A [i] + B [i]. = MOV RL, A[] nov RZ, BIIJ. ADD R1, R2. MOV CTIS, RI =) la chane = 010509 0206010 0307011 0408012

562:
ENO3: . Taille de la MC = 1 MO = 2° octets.
. Taille de la page = 256 octets = 2° octets
. L'espace d'adressage logique est le 16 Mo = 2º octets
Date nombre de bits d'une adresse logique.
Ologique = (P,d).
t'espace d'adressage logique est le 16170 = 224
=) [24 bits pour coller une à logique].
à le nombre de bits du Déplacement.
(2) le nombre de bits du Déplacement. taille de la page = 256 octiets = 28 ochets
- 18 boits pour cooler le séplacement.
le nombre se sits du nombre de la page. 21 pt) = le nombre bits de l'a logique - nombre de bits du déplacent
= le nombre boits de l'ad logique - nombre de bots du déplacent
= 211-8 = M6 6its pour coder le numéro de la page
Le nombre re bits d'une apphysique. taille le MC = 1 Md = 20 octets
28 pt) 1000 so MC = 1Md = 220 octobers
=) Lo bits pour coder une a physique.
la nombre de bits du numéro de frame.
Taille de las MC 220 12
Taille paye 28 12 8
→ 12 bits pour coler le n° de frame
(4)

(1) Application de LRU avec 4 frames

	0	1	5	9	0	2	6	10	0	3	7	AA	O	4	8	12
F1	0	O	0	0	0	O	O	0	0	0	0	0	0	0	0	0
F2		1	1	1	1	2	2	2	2	3	3	3	3	4	4	le
P3 .			5	5	5	5	S	6	Ь	6	7	7	7	7	8	8
Fy				9	9	9	9	10	10	Vo	10	11	Μ	(1	11	12
DP	X	Х	X	X	-	X	X	Χ	_	X	X	*	-	X	X	X
///	$\frac{DV}{X} \times \frac{X}{X} \times \frac{X}{X} = \frac{13}{16} = \frac{1}{100}$															

(5) LRU avec 3 frames.

	0	1	5	9	0	2	6	10	0	3	7	MA	0	4	8	12
F1	0	0	0	g	9	9	6	6	6	3	3	3	0	0	0	12
F2	X	1	1	1	0	0	0	10	VO	10	7	1	7	4	4	4
F3			5	5	5	2)	2	2	0	0	0	11	11	11	8	X
DP	X	X	X	X	X	X	Х	X	X	X	X	χ	X	X	X	1
-	1	112	DP -	11		400	1) La	иX							

