EE25BTECH11064 - Yojit Manral

Question:

Prove or disprove: The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y - 10 = 0 and 2x + y + 5 = 0.

Solution:

 \rightarrow Let

$$\mathbf{n_1}^T \mathbf{x} = c_1$$
 $\mathbf{n_2}^T \mathbf{x} = c_2$ $\mathbf{n_3}^T \mathbf{x} = c_3$

where

$$\mathbf{n_1} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \qquad c_1 = 0 \tag{1}$$

$$\mathbf{n_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \qquad c_2 = 10 \tag{2}$$

$$\mathbf{n_3} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad c_3 = -5 \tag{3}$$

 \rightarrow The three lines are concurrent if there exists some unique x such that

$$\begin{pmatrix} \mathbf{n_1}^T \\ \mathbf{n_2}^T \\ \mathbf{n_3}^T \end{pmatrix} \mathbf{x} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \tag{4}$$

$$\mathbf{A} \quad \mathbf{x} = \mathbf{B} \tag{5}$$

 \rightarrow A unique **x** exists iff the augmented matrix (**A**|**B**) is a full-rank matrix (i.e., rank 2 for a system of 2 variables).

$$(\mathbf{A}|\mathbf{B}) = \begin{pmatrix} 5 & 4 & 0 \\ 1 & 2 & 10 \\ 2 & 1 & -5 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow (1/5)R_1} \begin{pmatrix} 1 & 4/5 & 0 \\ 0 & 6/5 & 10 \\ 2 & 1 & -5 \end{pmatrix}$$
(6)

$$\xrightarrow{R_3 \leftrightarrow R_3 - 2R_1} \begin{pmatrix} 1 & 4/5 & 0 \\ 0 & 1 & 25/3 \\ 0 & -3/5 & -5 \end{pmatrix}$$
 (7)

$$\frac{R_3 \leftrightarrow R_3 + (3/5)R_2}{R_1 \leftrightarrow R_1 - (4/5)R_2} \longleftrightarrow \begin{pmatrix} 1 & 0 & -20/3 \\ 0 & 1 & 25/3 \\ 0 & 0 & 0 \end{pmatrix} \tag{8}$$

$$\implies \mathbf{x} = \begin{pmatrix} -20/3 \\ 25/3 \end{pmatrix} \tag{9}$$

Only 2 nonzero rows in the matrix in (8) \longrightarrow Rank of augmented matrix (A|B) is 2

- \longrightarrow The matrix (A|B) is a full rank matrix
- \longrightarrow A unique **x** exists satisfying all equations
- \longrightarrow The 3 lines are concurrent at $\mathbf{x} = \begin{pmatrix} -20/3 \\ 25/3 \end{pmatrix}$

Fig. 0: Plot of the three lines