FORMELBLATT

REIHEN UND GRENZWERTE

$$e^{\times} = \sum_{n=0}^{\infty} \frac{1}{n!} \times^n = 1 + \times + \frac{\times^2}{2!} + \frac{\times^3}{3!} + \dots \times \in \mathbb{R}$$
 (Exponential Funktion)

$$\sin (x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
 $x \in \mathbb{R}$ (Sinus)

$$\cos (x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots, \qquad x \in \mathbb{R}$$
 (Cosinus)

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + ... = \frac{1}{1 + x}$$
, |x| < 1 (geometrische Reihe)

$$\sum_{n=0}^{\infty} \frac{1}{n^{n}} = 1 + \frac{1}{2^{n}} + \frac{1}{3^{n}} + \frac{1}{4^{n}} + \dots$$
 Konvergent $\iff \times > 1$ (harmonische Reihe)

$$\stackrel{\bullet}{\oplus} \sum_{n=0}^{\infty} (-1)^n \, a_n \quad \text{konvergent} \quad \Longleftrightarrow \lim_{n \to \infty} \, a_n = 0 \quad \left(\underbrace{\text{Leibniz-Kriterium}} \right) \quad \stackrel{\bullet}{\oplus} \quad \left| \sum_{n=0}^{\infty} \, a_n \right| \, \leqslant \, \sum_{n=0}^{\infty} \, |a_n| \, \left(\underbrace{\text{Dreiecksungleichung}} \right)$$

$$\lim_{n\to\infty} n\sqrt{n} = 1 \qquad \lim_{n\to\infty} \frac{n}{n!} = \infty \qquad \lim_{n\to\infty} (1 + \frac{x}{n})^n = e^x \qquad \lim_{x\to 0+} \frac{1}{x} = \infty$$

$$\lim_{n\to\infty} n\sqrt{n} = 1 \qquad \lim_{n\to\infty} \frac{n^n}{n!} = \infty \qquad \lim_{n\to\infty} (1 - \frac{x}{n})^n = \frac{1}{e^x} \qquad \lim_{x\to 0-} \frac{1}{x} = -\infty$$

- DIFFERENTIALE UND INTEGRALE-

$$(f(x) - g(x))' = f'(x) - g(x) + f(x) - g'(x)$$
 (Produktregel)

$$(F \times) \cdot g \times) \cdot h \times)' = F'(x) \cdot g \times) \cdot h \times) + F(x) \cdot g'(x) \cdot h \times) + F(x) \cdot g \times) \cdot h'(x) \times (Produktregel)$$

$$(g (f (x)))' = g'(f (x)) \cdot f'(x)$$
 (kettenregel)

$$(h (g (f (x))))' = h' (g (f (x))) \cdot g' (f (x)) \cdot f' (x)$$
 (kettenregel)

$$(F^{-1})'(y) = \frac{1}{F'(x)}, \qquad y = F(x)$$
 (Umkehrfunktionsregel)

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$
 (Partielle Integration)

$$\int f(x) dx = \int f(g(t)) \cdot g'(t) dt$$
, $x = g(t)$, $dx = g'(t) dt$ (Substitutions regel)

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)|$$

$$\int_{a}^{b} f(x) \cdot f'(x) dx = \int_{f(a)}^{f(b)} x dx$$
 (Spezialfall Substitutions regel)

$$g'(x) = \int_a^b \partial_x f(x, y) dy$$
 für $g(x) = \int_a^b f(x, y) dy$ (Differenzieren von Parameter-Integral)

Funktion	Ableitung
×n	h × ⁿ⁻¹
1×h	- n ×**1
1×	1 2√x
η×	1 n n x n-1
e×	e×
ln (×)	1 <u>x</u>

Funktion	Ableitung
sin (x)	cos (×)
cos (x)	-sin(x)
tan (x)	1 1
arcsin (x)	1 1 - x ²
arccos (x)	$\frac{-1}{\sqrt{1 - x^2}}$
arctan (x)	1 1 x ²

Funktion		Al	leitu	ng	
sinh (x)		Co	osh (x)	
cosh(x)		s	inh (x)	
tanh(x)		-	osh² ((x)	4
loga(x)		<u>×</u>	1 In	(a)	
o×		٥×	ln	(a)	
××	××	(1	+	ln	(×))

Berr	erkur	ıg:				
Alter	nativ	geli	ten (auch		
•	tan'	=	1	+	tan²	
•	tanh	′ =	1	_	tanh	2

	Funktion			Stammfunktion
Γ	k	E	\mathbb{R}	k×
		xn		$\frac{1}{n+1} \cdot x^{n+1}$
		1 ×		ln /×l
		√X		$\frac{2}{3} \times \frac{3}{2}$
		ħ√x		$\frac{n}{n+1} \cdot (\sqrt[n]{x})^{n+1}$

Funktion	Stammfunktion
e*	e×
In (x)	x (ln (x) - 1)
o×	ax In (a)
loga(x)	$\frac{\times}{\ln (a)} (\ln (x) - 1)$
sin (x)	- CoS (×)

Stammfunktion
sin (×)
$\ln \left(\frac{1}{\cos(x)}\right)$
cosh (×)
sinh (×)
In (cosh(x))

-TRIGNOMETRISCHE FUNKTIONEN-

$$\oplus$$
 $\sin^2(x) + \cos^2(x) = 1$, $x \in \mathbb{R}$ (Trignometrischer Pythagoras)

		0	<u>п</u> 6	<u> </u>	<u>π</u> 3	<u>π</u>	$\frac{2}{3}\pi$	<u>3</u> π	<u>5</u> π	π
Sin	(x)	0	1/2	12 2	13	1	<u>√3</u> 2	<u>12</u> 2	1/2	0
COS	(x)	1	<u>13</u> 2	<u> 12</u> 2	1/2	0	- 1/2	- 12	$-\frac{13}{2}$	1
tan	(x)	0	<u>13</u> 3	1	13	<u>+</u> ∞	- 13	-1	- 13	0

tan (-x) = - tan (x)

$$\cos(-x) = \cos(x)$$

$$\sin (x + y) = \sin (x) \cos (y) + \sin (y) \cos (x)$$

(Additionstheorem - Sinus)

$$\cos (x + y) = \cos (x) \cos (y) - \sin (x) \sin (y)$$

(Additionstheorem-Cosinus)

$$\sin(2x) = 2 \sin(x) \cos(x)$$

(Doppelter - Winkel - Sinus)

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 1 - 2 \sin^2(x) = 2 \cos^2(x) - 1$$
 (Doppetter-Winkel-Cosinus)

$$\sin^2(x) = \frac{1}{2} - \frac{1}{2} \cos(2x)$$

$$\cos^2(x) = \frac{1}{2} + \frac{1}{2} \cos(2x)$$

$$cos (x + 2\pi) = cos (x)$$