Devoir 4 MTH 6415

Olivier Sirois - 1626107 Corey Ducharme - 1626614

2018-03-28

4.19 (3.19 ed. 4)

a)

Dans ce problème, nous avons à chaque étape k deux décision possible se stationner avec une probabilité p ou réessayer plus tard à l'étape k-1. Comme montrer dans l'énoncé de b). Une décision optimale est prise si on trouve un stationnement lorsqu'il nous reste seulement k* essaies restants. Nous povons modéliser ce problème sous la forme des équations de Bellmann. Soit J_k le coût à l'étape k:

$$J_k(x_k) = \begin{cases} p * k + (1-p) * J_{k-1}(x_{k-1}), & \text{si on essaie de se stationner} \\ J_{k-1}(x_{k-1}), & \text{sinon} \end{cases}$$

Qui est équivalent à :

$$J_k(x_k) = \begin{cases} pk + (1-p)J_{k-1}(x_{k-1}), & \text{si on essaie de se stationner} \\ pJ_{k-1}(x_{k-1}) + (1-p)J_{k-1}(x_{k-1}), & \text{sinon} \end{cases}$$
 puisque $p + (1-p) = 1$.

Posons maintenant $F_k = E\{J_k(x_k)\}$ qui est le coût minimal espéré si on est à k place de stationnement de notre destination.

$$\min E\{J_k(x_k)\} = \min \begin{cases} pk + (1-p)E\{J_{k-1}(x_{k-1})\}, \\ pE\{J_{k-1}(x_{k-1})\} + (1-p)E\{J_{k-1}(x_{k-1})\}, \end{cases}$$

En mettant les termes en commun et en remplaçant avec F_k , on trouve:

$$\min E\{J_k(x_k)\} = p \min(k, E\{J_{k-1}(x_{k-1})\}) + (1-p) * E\{J_{k-1}(x_{k-1})\}$$
$$F_k = p \min(k, F_{k-1}) + (1-p) * F_{k-1}$$

En définissant q = (1 - p), on retrouve l'équation demandée.

$$F_k = p \min(k, F_{k-1}) + q F_{k-1}$$

b)

Pour cette question, on nous demande de confirmer l'optimalité de la politique expliqué dans l'énoncé. Comme nous l'avons vu dans la question a), la fonction F_k utilise le minimum entre k et F_{k-1} . Si on réussi à prouver qu'il y a seulement un point d'intersection entre k et F_{k-1} , on est capable d'un déduire que la politique aura la forme décrite dans l'énoncé.

En utilisant les définitions de la question précédent et en commençant avec $F_0=C,$ on peut dire:

$$F_1(1) = p \min(1, C) + qC$$

$$F_2(2) = p \min(2, C) + qF_1(1) = p \min(2, C) + qp \min(1, C) + q^2C$$

$$F_3(3) = p \min(3, C) + qF_2(2) = p \min(3, C) + qp \min(2, C) + q^2p \min(1, C) + q^3C$$

de forme plus générale :

$$F_k(k) = \begin{cases} q^k C + \sum_{i=1}^k i q^{k-i} p, & \text{si } k < C \\ q^k C + \sum_{i=1}^C i q^{k-i} p + \sum_{i=C}^k C q^{k-i} p, & \text{si } k > C \end{cases}$$

on peut alors traduire cette forme en différence:

$$F_k - F_{k-1} = q^k C - q^{k-1} C + kp$$

Alors,

$$F_0 = C$$

$$F_1 = F_0 + q^1 C - q^0 C + p$$

$$F_2 = F_1 + q^2 C - q^1 C + 2p$$

Avec un peu de manipulation, on peut voir que pour tout i satisfaisant à l'équation de l'énoncé, $F_i - F_{i-1} < 1$. cela nous assure donc que nous aura seulement une intersection avec k qui correspondera au seuil de la politique. Parallèlement, la valeur d'i ou l'équation dans l'énoncé ne tiendra plus ce qui vérifie l'énoncé.

4.16 (3.16 de l'ed. 4)

Pour ce problème, on peut suivre la démarche que nous avons faites dans le cours sur le problème de la vente d'un actif. Évidemment, il y a certaines différences. On peut commencer par définir les décisions possible à chaque étape. $u_k=1$ si on vend et $\mu_k=0$ si on ne vend pas.

On définie maintenant la variable d'état y_k de notre problème qui est la meilleur offre reçue. Étant donné que nous conservons toutes les offres, On peut prend le maximum entre l'offre et y_{k-1} qui est le maximum de toutes les autres offres reçues.

$$y_k = \begin{cases} \max(y_{k-1}, \omega_k) & P = p_k \\ y_{k-1} & P = (1 - p_k) \end{cases}$$

On peut voir que nous avons deux variables aléatoire dans notre problème, pour ne pas tous les écrire à chaque fois, nous allons définir la variable $\Omega_k(\omega_k, p_k)$ qui est la vecteur aléatoire de notre problème.

On défini maintenant la variable d'état x_k de notre système à la période k+1.

$$x_k + 1 = \begin{cases} y_k & \text{si } \mu_0 = \dots = \mu_k = 1 \\ \Delta & \text{sinon} \end{cases}$$

Les décisions admissible à une étape k quelconque sont

$$\begin{cases} \mu_k = 0 & \text{si } x_k = \Delta \\ \mu_k = \{0, 1\} & \text{sinon} \end{cases}$$

À chaque étape k>0, on perd de l'argent sur la maintenance. Le profit à l'étape k est donc

$$g(x_k, \mu_k, \Omega_k) = \begin{cases} x_k - kc & \text{si } \mu_k = 1\\ 0 & \text{sinon} \end{cases}$$

Soit $J_k(x_k)$, le profit espéré optimal de l'étape k jusqu'à N. Son expression est

$$J_k(x_k) = \begin{cases} 0 & \text{si } x_k = \Delta \\ x_N & \text{si } k = N \text{ et } x_N \neq \Delta \\ \max(x_k - kc, E_{\Omega_k} [J_{k+1}(y_k)]) & \text{sinon} \end{cases}$$

On peut remplacer la valeur de x_{k+1} par y_k dans la fonction J_{k+1} puisque nous savons que nous n'allons pas vendre. On voie que notre maximum contient à gauche, la décision de vendre et à droite, la décision d'attendre.

Ainsi, nous pouvons déterminer que la décision optimale, si on a encore le choix est de vendre si et seulement si

$$x_k \ge \alpha_k \equiv E_{\Omega_k} \left[J_{k+1}(y_k) \right] + kc$$

1.14 (1.21 de l'ed. 4)

Pour ce numéro on nous demande de vérifier l'optimalité des politiques décrites en a), b) et c). Nous allons premièrement commencer par généraliser le critère de sélection de u pour chaque étape.

étant donné que pour la prise de décision nous avons pas encore l'information pour chacune des valeurs w étant donné sa stochasticité, nous allons généraliser $w_k=\bar{w},\,\forall k$

$$J_N(x_N) = x_N \rightarrow \text{aucune d\'ecision}$$

$$J_{N-1}(x_{N-1}) = (1 - u_{N-1}) * x_{N-1} + J_N(x_{N-1} + x_{N-1} * \bar{w} * u_{N-1}) =$$

$$J_{N-1}(x_{N-1}) = x_{N-1}(2 + u_{N-1}(\bar{w} - 1))$$

$$J_{N-2}(x_{N-2}) = (1 - u_{N-2}) * x_{N-2} + (x_{N-2} + x_{N-2} * u_{N-2} * \bar{w})(2 + u_{N-1}(\bar{w} - 1))...$$

Comme vous pouvez le voir, la fonction J commence déjà à etre très grande. Par contre, nous pouvons analyser la prise de chaque décision à partir de J_N . Évidemment, aucune décision ne peut être prise à J_N étant donné que c'est l'état final. Par contre, lorsqu'on remonte à J_{N-1} , on peut voir que sa dérivé donne tout simplement $(\bar{w}-1)$.

a)

Sachant que $\bar{w} > 1$, nous savons que la première décision est $u_{N-1} = 1$ vu que $(\bar{w}-1)$ est strictement positif. Pour maximiser le terme nous allons donc utiliser u_{N-1} jusqu'à sa limite positive qui est de 1.

Évidemment, on ne peut pas confirmer que toute les étapes vont se comporter de cette manière. Cependant, nous pouvons fixer la valeur de u_{N-1} à 1 et le transmettre ensuite dans le terme J_{N-2} . Cela nous donnera donc:

$$J_{N-1} = x_{N-1}(2+(1)*(\bar{w}-1)) = x_{N-1}(1+\bar{w})$$

$$J_{N-2} = (1-u_{N-2})*x_{N-2} + (x_{N-2}+x_{N-2}*u_{N-2}*\bar{w})(1+\bar{w}) = \dots$$

$$J_{N-2} = x_{N-2}(2+\bar{w}+u_{N-2}(\bar{w}+\bar{w}^2-1))$$

Encore une fois, le terme $(\bar{w} + \bar{w}^2 - 1)$ est strictement positif étant donné que $\bar{w} > 1$. En continuant jusqu'à k, on peut ainsi voir que le terme à l'intérieur du u donne:

$$J_{N-k} = x_{N-k}(\dots + u_{N-k}(\bar{w} * (\bar{w} + 1)^{k-1} - 1))$$

qui est strictement croissant dans le cas de $\bar{w}>1$, ce qui confirme donc que la décision sera $u_k=1, \forall k$

b)

Dans le cas de $0 < \bar{w} < \frac{1}{N}$, on peut voir dès le départ que la décision pour J_{N-1} sera 0. De la, nous pouvons repartir de la pour trouver J_{N-2} . Donc:

$$J_{N-1} = x_N(2)$$

$$J_{N-2} = x_{N-2}(3 + u_{N-2}(2\bar{w} - 1))$$

$$J_{N-3} = x_{N-3}(4 + u_{N-3}(3\bar{w} - 1))...$$

$$J_{N-k} = x_{N-k}(k + 1 + u_{N-k}(k\bar{w} - 1))$$
&
$$U_{N-N} = U_0 = u_0(N + 1 + u_0(N\bar{w} - 1))$$

On peut voir que tant que $(k\bar{w}-1)<0$, nous allons prendre comme décision $u_k=0$ étant donné que le maximum de J se trouve au point ou u est minimale, soit 0 (sa limite inférieur). Évidemment, on peut voir aussi qu'avec $\bar{w}=\frac{1}{N}$, nous avons au point J_0 : $(\frac{N}{N}-1)=0$, ce qui démontre qu'à la limite supérieur de notre plage pour \bar{w} nous avons une décision indécise, tandis qu'avec n'importe quel valeur de $\bar{w}<\frac{1}{N}$, nous aurons $(k\bar{w}-1)<0, \forall k$.

c)

Évidemment, pour cette question nous commençons avec une valeur de $\bar{w} \leq 1$, nous pouvons déjà voir que la valeur de $(\bar{w}-1)$ sera inférieur ou égale à 0, ce qui implique que notre première décision sera presque assurément $u_{N-1}=0$. Évidemment, on peut réutiliser notre formule développer en b) pour trouver la valeur de k' qui rendra $(k'\bar{w}-1) \geq 0 \rightarrow \bar{w} \geq \frac{1}{k'}$.

Par contre, le système est discrèt. Alors nous ne pouvons pas simplement utiliser cette formule directement. Par contre, en discrétisant la formule, nous allons nécessairement avoir une valeur \bar{k} dans lequel notre seuil se trouvera entre \bar{k} et $\bar{k}+1$, ce qui nous ramène donc à la forme :

$$\frac{1}{\bar{k}+1} < \bar{w} \le \frac{1}{\bar{k}}$$

alors, pour les valeurs ou $0 \le k \le \bar{k}$, nous aurons $u_{N-k} = 0$, et pour les valeurs ou $N \ge k \ge \bar{k} + 1$, nous aurons $u_{N-k} = 1$, ce qui correspond à l'énoncé.