Séance informatique : fonctions et tableur

1 Optimiser ses recettes

Une entreprise artisanale fabrique des chaises de salon. Elle peut en fabriquer au maximum 25 par jour. Le coût de fabrication de x chaises est donné par la fonction C ci-dessous :

$$C(x) = 0.2x^3 - 5.05x^2 + 48.6x + 13.8$$

La recette de la vente de ces \boldsymbol{x} chaises est modélisée par la fonction R ci-dessous :

$$R(x) = 40x - 0.05x^2$$

On veut réaliser la feuille de calculs suivante :

	Α	В	С
1	quantité x	coût de production c(x)	recette r(x)
2	0	13,8	0
3	1	57,55	39,95
4	2	92,4	79,8
5	3	119,55	119,55

- 1. Préparer la feuille de calcul ci-dessus pour une quantité variant de 0 à 25 chaises. Entrer une formule dans les cellules B2 et C2, et l'étirer vers le bas afin de compléter automatiquement les colonnes B et C.
- 2. (a) Sélectionner les colonnes A, B et C, et insérer un diagramme pour représenter les courbes représentative des fonctions C et R.

Aide

Utiliser le diagramme XY (dispersion)

- (b) Déterminer graphiquement le nombre de chaises produites et vendues pour que l'entreprise réalise un bénéfice.
- (c) Déterminer graphiquement la quantité de chaises à produire et à vendre pour réaliser un bénéfice maximum. Avec la précision permise par le graphique, donner approximativement ce bénéfice maximum.
- 3. (a) Pour vérifier les résultats de la question précédente, ajouter une colonne Bénéfice dans la colonne D. Quelle formule peut-on utiliser en D2 qui, une fois étirée vers le bas, permet d'automatiser les calculs de la colonne D?
 - (b) Retrouver alors le bénéfice maximal espéré. Pour quelle quantité de chaises produites ce bénéfice est-il réalisé?

2 Optimisation du volume d'une boîte

On veut, à partir d'une feuille de papier cartonné de format 21 cm \times 29,7 cm, créer une boîte rectangulaire de volume maximum.

Pour ce faire, on découpe dans chaque coin des carrés de côté $x \, \mathrm{cm}$.

On se demande alors : quelle est la valeur de x pour laquelle le volume de la boîte est maximal?

- 1. Justifier que x est un nombre réel dans l'intervalle [0;10,5].
- 2. Entrer une formule dans les cellules B2, C2 et D2, et l'étirer vers le bas afin de compléter automatiquement les colonnes B, C et D.

	Α	В	С	D
1	х	Longueur de la boîte	Largeur de la boîte	Volume de la boîte
2	0	21	29,7	0
3	1			
4	2			
5	3			
6	4			
7	5			
8	6			
9	7			
10	8			
11	9			
12	10			
13				

3. Quel semble alors être le volume maximal de la boîte? Pour quelle valeur de x?