CLAIMS

What is claimed is:

1. A resistive memory device comprising:

a conductive bottom electrode;

a multi-resistive state element arranged on top of and in contact with the bottom electrode such that a bottom interface is created, the multi-resistive state element having a resistance; and

a conductive top electrode arranged on top of and in contact with the multiresistive state element such that a top interface is created;

wherein the resistance of the resistive memory device may be changed by applying a first voltage having a first polarity across the conductive electrodes and reversibly changed by applying a second voltage having a second polarity across the conductive electrodes; and

wherein at least the top interface or the bottom interface is subjected to a treatment directed towards changing properties of the at least one interface.

2. The resistive memory device of claim 1, wherein:

the at least one treatment is an ion implant.

3.	The resistive memory device of claim 1, wherein:
	the at least one treatment is exposure to an anneal.
4.	The resistive memory device of claim 4, wherein:
	the anneal is performed while the multi-resistive state element is formed
5.	The resistive memory device of claim 1, wherein:
	the at least one treatment is exposure to a gas.
6.	The resistive memory device of claim 1, wherein:
	the at least one treatment is at least partially caused through deposition of an
additi	onal layer in one of the conductive electrodes.
7.	The resistive memory device of claim 6, wherein:
	the at least one treatment is completed with an anneal that causes a chemical
reacti	on on the multi-resistive state element.

8.	The resistive memory device of claim 7, wherein:
	the anneal is performed after the bottom electrode is formed
9.	The resistive memory device of claim 8, wherein:
	the anneal is performed after the multi-resistive state element is formed
10.	The resistive memory device of claim 9, wherein:
	the anneal is performed after the top electrode is formed
11.	The resistive memory device of claim 6, wherein:
	the at least one treatment is completed with exposure to a gas that causes a
chemi	ical reaction in the multi-resistive state material.
12.	The resistive memory device of claim 11, wherein:
	the exposure is performed after the bottom electrode is formed
13.	The resistive memory device of claim 12, wherein:

the exposure is performed after the multi-resistive state element is formed

14.	The resistive memory device of claim 13, wherein: the exposure is performed after the top electrode is formed
15.	The resistive memory device of claim 6, wherein: the deposition is performed by sputtering.
16.	The resistive memory device of claim 6, wherein: the deposition is performed by chemical vapor deposition.
17.	The resistive memory device of claim 6, wherein: the deposition is performed by evaporation.
18.	The resistive memory device of claim 6, wherein:

the deposition is performed by atomic layer deposition.

The resistive memory device of claim 1, wherein:
the at least one treatment is caused by a chemical reaction between one of the less and the multi-resistive state element.
The resistive memory device of claim 19, wherein:
an anneal process is a catalyst for the chemical reaction.
The resistive memory device of claim 19, wherein:
an exposure to a gas is a catalyst for the chemical reaction.
The resistive memory device of claim 1, wherein:
the at least one treatment is caused by a laser treatment.
The resistive memory device of claim 1, wherein:
the at least one treatment is caused by a plasma process.

23.

The resistive memory device of claim 22, wherein:

the plasma process is a plasma etch.

24. The resistive memory device of claim 1, wherein:

both the bottom interface and the top interface are subject to a treatments, the treatments being different from each other.

25. The resistive memory device of claim 1, wherein:

the at least one treatment is caused by re-sputtering.

26. The resistive memory device of claim 1, wherein:

the at least one treatment is caused the bombardment of inert ions.