

A Few CNN Case Studies

1. Hand Written Digit Classification (LeNet - 1998)

input: a small single channel image

output: 10 outputs corresponding to the 10 digits 0-9.

60,000 training images,10,000 test images

2. Image Net Classification – Annual world cup for CV

input: colored image

output: 1000 outputs corresponding to the 1000 object classes

in the dataset

1.2 M training images and 100,000 test images

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

CNNs on MNIST

- 1. LeNet (1998)
 - 10 way neural network classifier
 - Handwritten digits as an input
 - Tolerant of various transformations like rotation and scale
 - Was used by banks to recognize handwritten numbers on digitized checks
 - 4 weight layers

CNNs on ImageNet

- 1. AlexNet (2012)
 - First CNN to successfully be able classify ImageNet images
 - Improved benchmark performance (top-5) on this image dataset from 26% to 15%
 - 7 layers deep
- 2. ZF Net (2013)
 - Reduced the top-5 error rate to 11.2%
 - No major contributions
 - Also 7 layers deep
- 3. VGGNet (2014)
 - Simple and elegant
 - Reduced the top-5 error rate 7.2%
 - Did not win the competition, GoogleNet did!
 - 6 layers deep

CNNs on ImageNet

- 4. GoogleNet (2014)
 - 2014 imagenet winner with top-5 error rate of 6.7%
 - Used inception modules
 - 22 layers deep and used side cost functions
- 5. ResNet (2015)
 - 2015 imagenet winner with top-5 error rate of 3.57
 - First truly deep network with 152 weight layers
- 6. CUImage (2016)
 - 2016 imagenet winner with top-5 error rate of 2.99
 - Ensemble approach, not very interesting
- 7. SENet (2017)
 - 2016 ImageNet winner with top-5 error rate of 2.251
 - Work by Momenta
 - The last ImageNet challenge!

Case Study: LeNet-5

greatlearning Learning for Life

[LeCun et al., 1998]

- Conv filters were 5x5, applied at stride 1
- Subsampling (Pooling) layers were 2x2 applied at stride 2
- Architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Source: Gradient Based Learning Applied to Document Recognition, LeCun et al. (1998)

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- Output volume size? (Hint: (227-11)/4+1)

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- Output volume size: (227-11)/4+1 = 55 for each H and W, so 55x55x96

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- Output volume size: 55x55x96
- Total number of parameters?

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- Output volume size: 55x55x96
- Total number of parameters: (11*11*3)*96 = **35K**

- **Input**: 227x227x3 images
- After CONV1: 55x55x96
- Second layer (POOL1): 3x3 filters applied
- What is the output volume size? (Hint: (55-3)/2+1 = 27)

[Krizhevsky et al. 2012]

• **Input**: 227x227x3 images

• After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied applied at stride 2

Output volume: 27x27x96

What is the number of parameters?

- **Input**: 227x227x3 images
- After CONV1: 55x55x96
- Second layer (POOL1): 3x3 filters applied applied at stride 2
- Output volume: 27x27x96
- What is the number of parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

• After POOL1: 27x27x96

Sourced with permission from: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al. (2012)

[Krizhevsky et al. 2012]

Architecture:

[227x227x3] **INPUT**

[55x55x96] **CONV1:** 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] **NORM1**: Normalization layer

[27x27x256] **CONV2:** 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] **NORM2:** Normalization layer

[13x13x384] **CONV3:** 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] **CONV5**: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Finishing with:

[4096] **FC6**: 4096 neurons

[4096] **FC7**: 4096 neurons

[1000] **FC8**: 1000 neurons (class scores)

Sourced with permission from: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al. (2012)

[Krizhevsky et al. 2012]

Architecture:

[227x227x3] **INPUT**

[55x55x96] **CONV1:** 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] **NORM1**: Normalization layer

[27x27x256] **CONV2:** 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] **NORM2:** Normalization layer

[13x13x384] **CONV3**: 384 3x3 filters at stride 1, pad 1

[13x13x384] **CONV4:** 384 3x3 filters at stride 1, pad 1

[13x13x256] **CONV5:** 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] **FC6**: 4096 neurons

[4096] **FC7**: 4096 neurons

[1000] **FC8:** 1000 neurons (class scores)

Salient points:

- Popularized use of ReLU in Vision
- Used Norm layers (not common anymore)
- Heavy data augmentation
- Dropout 0.5 in only last few fully-connected
- Batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
- Manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: **18.2% improved to 15.4%**

[Krizhevsky et al. 2012]

Architecture:

[227x227x3] **INPUT**

[55x55x96] **CONV1:** 96 11x11 filters at stride 4, pad 0 [55x55x48] x 2

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] **NORM1**: Normalization layer

[27x27x256] **CONV2:** 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] **NORM2:** Normalization layer

[13x13x384] **CONV3**: 384 3x3 filters at stride 1, pad 1

[13x13x384] **CONV4:** 384 3x3 filters at stride 1, pad 1

[13x13x256] **CONV5**: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] **FC6**: 4096 neurons [4096] **FC7**: 4096 neurons

[1000] **FC8:** 1000 neurons (class scores)

Historical Note:

Trained on GTX580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the feature maps on each GPU.

Sourced with permission from: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al. (2012)

A tool to analyze deep networks

http://dgschwend.github.io/netscope/#/editor

```
1 name: "AlexNet"
 2 laver {
     name: "data"
                                                                                            AlexNet (edit)
     type: "Data"
     top: "data"
     input param →
         shape: ┤
             dim: 128
             dim: 3
                                                                                       data
             dim: 227
11
             dim: 227
                                                                                         3ch · 227×227 (×128)
12
                                                                                       conv1
15 layer -
                                                                                       relu1
     name: "conv1"
     type: "Convolution"
    bottom: "data"
                                                                                         96ch · 55×55 (×128)
     top: "conv1"
     param -
                                                                                      norm1
21
       lr mult: 1
       decay_mult: 1
                                                                                         96ch · 55×55 (×128)
23
24
     param {
       lr mult: 2
                                                                                       pool1
       decay_mult: 0
                                                                                         96ch · 27×27 (×128)
     convolution param {
       num_output: 96
       kernel size: 11
                                                                                       conv2
       stride: 4
                                                                                       relu2
       weight_filler
         type: "gaussian"
34
         std: 0.01
                                                                                         256ch · 27×27 (×128)
       bias filler {
                                                                                      norm2
         type: "constant"
```


Case Study - ZFNet

[Zeiler and Fergus, 2013]

Similar to AlexNet with the following differences:

CONV1: (7x7 stride 2) instead of (11x11 stride 4)

CONV3,4,5: 512, 1024, 512 filters instead of 384, 384, 256 respectively

Reduced top 5 error on ImageNet From **15.4%** To **14.8%** *Later brought down to 11.2%*

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Pool

3*3 CONV 64

3*3 CONV 64

Input

VGG 16

Pool

3*3 CONV 256

3*3 CONV 96

Input

AlexNet

This model used:

- Smaller filters
 But
- Deeper networks

3x3 CONV stride 1, pad 1 2x2 MAX POOL stride 2

Why use smaller filters? (3x3 conv)

Answer: Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 but deeper, more non-linearities and fewer parameters.

Pool

3*3 CONV 64

3*3 CONV 64

Input

VGG 19

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

This model used:

- Smaller filters
 But
- Deeper networks

3x3 CONV stride 1, pad 1 2x2 MAX POOL stride 2

Improved from 11.2% top 5 error in ILSVRC 2013

To **7.3% top 5 error**

And yet, this model did not win!

Sourced with permission from: 'Very deep convolutional networks for large-scale image recognition, Simonyan & Zisserman (2015)

parnino				0 11 0		
arning			onfiguration			
for Life		D	C	В	A-LRN	Α
	19 weight	16 weight	16 weight	13 weight	11 weight	11 weight
	layers	layers	layers	layers	layers	layers
	X)	24 RGB image	nput (224×22	iı	
	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	conv3 64	conv3-64	conv3-64	conv3-64	LRN	
			pool	max		
	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
Bèst	conv3-128	conv3-128	conv3-128	conv3-128		
			pool	max		
performing	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
model	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
IIIOUEI	conv3-256	conv3-256	conv1-256			
	conv3-256					
			pool			
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	conv3-512	conv3-512	conv1-512			
	conv3-512					
			pool			
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	conv3-512	conv3-512	conv1-512			
	conv3-512					
			pool			
			4096			
			1096			
			1000			
			max	soft-		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

В	С	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224×2)	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	C
conv3-64	conv3-64	conv3-64	C
	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool		
	4096		
FC-	4096		
FC-	1000		
soft.	-max		

CONV3-64: [224x224x64] CONV3-64: [224x224x64]

POOL2: [112x112x64]

CONV3-128: [112x112x128] CONV3-128: [112x112x128]

POOL2: [56x56x128]

CONV3-256: [56x56x256]

CONV3-256: [56x56x256]

CONV3-256: [56x56x256]

POOL2: [28x28x256]

CONV3-512: [28x28x512]

CONV3-512: [28x28x512]

CONV3-512: [28x28x512]

POOL2: [14x14x512]

CONV3-512: [14x14x512]

CONV3-512: [14x14x512]

CONV3-512: [14x14x512]

POOL2: [7x7x512]

FC: [1x1x4096]

FC: [1x1x4096]

FC: [1x1x1000]

greatlearning Learning for Life

В	onfiguration	D	
	16 14	_	10
13 weight	16 weight	16 weight	19
layers	layers	layers	
	24 RGB image	e)	г
conv3-64	conv3-64	conv3-64	C
conv3-64	conv3-64	conv3-64	co
max	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		П
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
	A-10051014000440-111	Other West Middle Schools	co
max	pool		г
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool		П
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
	5.500-1.500-1.50-0.50	Security to the world and a pro-	co
max	pool		
	4096		
FC-	4096		
FC-	1000		
soft	-max		

•	
•	
i	
•	
•	
•	
l	
•	
1	
1 1 1	
1 1 1	

INPUT: [224x224x3]
CONV3-64: [224x224x64]
CONV3-64: [224x224x64]
POOL2: [112x112x64]
CONV3-128: [112x112x128]
CONV3-128: [112x112x128]
POOL2: [56x56x128]
CONV3-256: [56x56x256]
CONV3-256: [56x56x256]
CONV3-256: [56x56x256]
POOL2: [28x28x256]
CONV3-512: [28x28x512]
CONV3-512: [28x28x512]
CONV3-512: [28x28x512]
POOL2: [14x14x512]
CONV3-512: [14x14x512]
CONV3-512: [14x14x512]
CONV3-512: [14x14x512]
POOL2: [7x7x512]
FC: [1x1x4096]
FC: [1x1x4096]
FC: [1x1x1000]
CONV3-512: [28x28x512] CONV3-512: [28x28x512] POOL2: [14x14x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] POOL2: [7x7x512] FC: [1x1x4096] FC: [1x1x4096]

MEMORY 🚤
224*224*3=150K
224*224*64=3.2M
224*224*64=3.2M
112*112*64=800K
112*112*128=1.6M
112*112*128=1.6M
56*56*128=400K
56*56*256=800K
56*56*256=800K
56*56*256=800K
28*28*256=200K
28*28*512=400K
28*28*512=400K
28*28*512=400K
14*14*512=100K
14*14*512=100K
14*14*512=100K
14*14*512=100K
7*7*512=25K
4096
4096
1000

Total memory: 24M * 4 bytes ~= 93MB/image

Only for forward. What if we include backward?

greatlearning Learning for Life

138 Million	
total parameters!	

ConvNet C	onfiguration		_
В	С	D	П
13 weight	16 weight	16 weight	19
layers	layers	layers	
put (224×2)	24 RGB image	e)	F
conv3-64	conv3-64	conv3-64	cc
conv3-64	conv3-64	conv3-64	cc
max	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		Г
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
		Soldsten then soldstelle	co
max	pool		Г
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		-
FC-	4096		
FC-	4096		
FC-	1000		
soft-	-max		

FC: [1x1x1000]	>	INPUT: [224x224x3] CONV3-64: [224x224x64] CONV3-64: [224x224x64] POOL2: [112x112x64] CONV3-128: [112x112x128] CONV3-128: [112x112x128] POOL2: [56x56x128] CONV3-256: [56x56x256] CONV3-256: [56x56x256] CONV3-256: [56x56x256] POOL2: [28x28x256] CONV3-512: [28x28x512] CONV3-512: [28x28x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] FOOL2: [7x7x512] FC: [1x1x4096] FC: [1x1x4096]

224*224*3=150K	0
224*224*64=3.2M	(3*3*3)
224*224*64=3.2M	(3*3*64
112*112*64=800K	Ò
112*112*128=1.6M	(3*3*64
112*112*128=1.6M	(3*3*12
56*56*128=400K	Ò
56*56*256=800K	(3*3*12
56*56*256=800K	(3*3*25
56*56*256=800K	(3*3*25
28*28*256=200K	Ò
28*28*512=400K	(3*3*25
28*28*512=400K	(3*3*51
28*28*512=400K	(3*3*51
14*14*512=100K	0
14*14*512=100K	(3*3*51
14*14*512=100K	(3*3*51
14*14*512=100K	(3*3*51
7*7*512=25K	0
4096	7*7*51
4096	_
	4096*4
1000	4096*1

0
(3*3*3)*64 = 1,728
(3*3*64)*64 = 36,864
0
(3*3*64)*128 = 73,728
(3*3*128)*128 = 147,456
0
(3*3*128)*256 = 294,912
(3*3*256)*256 = 589,824
(3*3*256)*256 = 589,824
0
(3*3*256)*512 = 1,179,648
(3*3*512)*512 = 2,359,296
(3*3*512)*512 = 2,359,296
0
(3*3*512)*512 = 2,359,296
(3*3*512)*512 = 2,359,296
(3*3*512)*512 = 2,359,296
0
7*7*512*4096 = 102,760,448
4096*4096 = 16,777,216
4096*1000 = 4,096,000

Parameters not including biases

В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224×2)	24 RGB image	e)	Г
conv3-64	conv3-64	conv3-64	С
conv3-64	conv3-64	conv3-64	c
	pool	and the second second	
conv3-128	conv3-128	conv3-128	CC
conv3-128	conv3-128	conv3-128	cc
max	pool		
conv3-256	conv3-256	conv3-256	CC
conv3-256	conv3-256	conv3-256	cc
	conv1-256	conv3-256	cc
			co
	pool		
conv3-512	conv3-512	conv3-512	CC
conv3-512	conv3-512	conv3-512	cc
	conv1-512	conv3-512	cc
2			co
	pool		
conv3-512	conv3-512	conv3-512	cc
conv3-512	conv3-512	conv3-512	cc
	conv1-512	conv3-512	cc
			co
	pool		
	4096		
70000000	4096		
FC-	1000		
soft-	-max		

MEMORY

INPUT: [224x224x3] CONV3-64: [224x224x64]	224*224*3=150K 224*224*64=3.2M
CONV3-64: [224x224x64]	224*224*64=3.2M
	112*112*64=800K
POOL2: [112x112x64]	
CONV3-128: [112x112x128]	112*112*128=1.6M
CONV3-128: [112x112x128]	112*112*128=1.6M
POOL2: [56x56x128]	56*56*128=400K
CONV3-256: [56x56x256]	56*56*256=800K
CONV3-256: [56x56x256]	56*56*256=800K
CONV3-256: [56x56x256]	56*56*256=800K
POOL2: [28x28x256]	28*28*256=200K
CONV3-512: [28x28x512]	28*28*512=400K
CONV3-512: [28x28x512]	28*28*512=400K
CONV3-512: [28x28x512]	28*28*512=400K
POOL2: [14x14x512]	14*14*512=100K
CONV3-512: [14x14x512]	14*14*512=100K
CONV3-512: [14x14x512]	14*14*512=100K
CONV3-512: [14x14x512]	14*14*512=100K
POOL2: [7x7x512]	7*7*512=25K
FC: [1x1x4096]	4096
FC: [1x1x4096]	4096

1000

Most memory in early CONV layers

FC: [1x1x1000]

areatlearning

Carlo		J
Learning		

PARAMETERS

В	С	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	17
-	24 RGB image		H
conv3-64	conv3-64	conv3-64	cc
conv3-64	conv3-64	conv3-64	cc
max	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
72			co
max	pool	1111-0000000000000000000000000000000000	
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		
	4096		
FC-	4096		
FC-	1000		
soft-	-max		

INPUT: [224x224x3]	
CONV3-64: [224x224x64]	
CONV3-64: [224x224x64]	
POOL2: [112x112x64]	
CONV3-128: [112x112x128	31
CONV3-128: [112x112x128	_
POOL2: [56x56x128]	-
CONV3-256: [56x56x256]	
CONV3-256: [56x56x256]	
CONV3-256: [56x56x256]	
POOL2: [28x28x256]	
CONV3-512: [28x28x512]	
CONV3-512: [28x28x512]	
CONV3-512: [28x28x512]	
POOL2: [14x14x512]	
CONV3-512: [14x14x512]	
CONV3-512: [14x14x512]	
CONV3-512: [14x14x512]	
POOL2: [7x7x512]	
FC: [1x1x4096]	
[

FC: [1x1x4096] FC: [1x1x1000]

Parameters not including biases

Case Study: GoogLeNet

[Szegedy et al., 2014]

Inception module – with dimension reductions

Winner of ILSVRC 2014 with 6.7% top 5 error

Case Study: GoogLeNet

[Szegedy et al., 2014]

type	patch size/ stride	output	depth	#1×1	#3×3	#3×3	#5×5	#5×5	pool	noroma	ops
		size			reduce		reduce		proj	params	
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

This model has only 5 million parameters! (Removes FC layers completely)

Compared to AlexNet, this model has: 12X less params | 2x more compute | 6.67% top-5 error rate vs. 16.4%

[He et al., 2015]

Winner of ILSVRC 2015 **3.6%** top-5 error!

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

[He et al., 2015]

Sourced with permission from: Deep Residual Learning for Image Recognition, Kaiming He (2015)

greatlearning

Learning for Life

[He et al., 2015]

Experiments on CIFAR-10

Sourced with permission from: Deep Residual Learning for Image Recognition, Kaiming He (2015)

[He et al., 2015]

- greatlearning

 Learning for Life
- 2-3 weeks of training on 8 GPU machine
- At runtime: Faster than VGGNet (even with 8x more layers)

greatlearning

Learning for Life

[He et al., 2015]

[He et al., 2015]

Plain Network

ResNet

Sourced with permission from: Deep Residual Learning for Image Recognition, Kaiming He (2015)

[He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

ILVRC 2016

- CUImage was the winner with the ensemble approach.
- Classification error is down to 3.0% from 3.6% last year.
- Pretty boring, best model is just an ensemble
- https://www.reddit.com/r/MachineLearning/comments/54jiyy/large_scale_visual_recognition_challenge_2016/
- http://image-net.org/challenges/LSVRC/2016/results#loc

ILVRC 2017, Squeeze & Excitation Network greatlearning for Life

- Squeeze and Excitation block that can be added to a Conv Layer
- Add parameters to each channel of a convolutional block so that the network can adaptively adjust the weighting of each feature map.

ILVRC 2017, Squeeze & Excitation Network greatlearning by Excitation Network.

- Winning entry comprised a small ensemble of SENets that employed a standard multi-scale and multi-crop fusion strategy
- 2.251% top-5 error on the test set
- Nearly 25% improvement on the winning entry of 2016 (2.99% top-5 error)
- One of the high-performing networks is constructed by integrating SE blocks with a modified ResNeXt

Why ConvNets?

Images Source: 'Mastering the game of Go without human knowledge', Nature, David Silver et al. (2017)

Case Study: DeepMind's AlphaGo

The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

Policy network:

INPUT: [19x19x48]

CONV1: 192 5x5 filters, stride 1, pad 2 [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 [19x19] (probability map of promising

moves)

Excerpt Source: 'Mastering the game of Go without human knowledge', Nature, David Silver et al. (2017)

Summary

- ConvNets stack CONV, POOL, FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like:

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K-SOFTMAX

where N is usually up to \sim 5, M is large, 0 <= K <= 2.

But recent advances such as ResNet/GoogLeNet challenge this paradigm

"ConvNets need a lot of data to train"?

Finetuning

ConvNets usually not trained from scratch

greatlearning Learning for Life

Transfer Learning with CNNs

image 2. image conv-64 If you have small conv-64 Train on conv-64 dataset: fix all weights conv-64 **ImageNet** maxpool (treat CNN as fixed maxpool conv-128 conv-128 feature extractor), conv-128 conv-128 retrain only the maxpool maxpool classifier conv-256 conv-256 conv-256 conv-256 maxpool maxpool conv-512 conv-512 conv-512 conv-512 maxpool maxpool conv-512 conv-512 conv-512 conv-512 maxpool maxpool FC-4096 FC-4096 FC-4096 Swap softmax FC-4096 FC-1000 FC-1000 layer at end softmax softmax

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

If dataset is medium sized, "finetune". Use the old weights as initialization, train the full network or only some of the higher layers

Retrain bigger portion of network

greatlearning Learning for Life

Transfer Learning with CNNs

image 3. Medium dataset: **Finetune** Freeze Train

Transfer Learning with CNNs

Rule of thumb:

- Use only ~1/10th of the original learning rate in finetuning top layer
- And ~1/100th in intermediate layers

CNN Features off-the-shelf

[Razavian et al, 2014]

"Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful."

Source: 'CNN Features off-the-shelf: An Astounding Baseline for Recognition', Razavian et al. (2014)

Deep Convolutional Activation for Generic Visual Recognition

[Donahue, Jia et al., 2013]

	DeCAF ₆	DeCAF ₇
LogReg	$\textbf{40.94} \pm \textbf{0.3}$	40.84 ± 0.3
SVM	39.36 ± 0.3	40.66 ± 0.3
Xiao et al. (2010)	38.0	

Source: 'DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, Donahue, Jia, et al., (2013)

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

softmax

	very similar dataset	very different dataset
very little data	On the Top layer use Linear Classifier	?
quite a lot of data	Finetuning of few layers	?

softmax

Transfer learning with CNNs is common

Sources: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren, He et al. (2016)

E.g. Caffe Model Zoo: Lots of pretrained ConvNets

https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/szagoruyko/loadcaffe

Thank you!