Sistema Embarcado de Alarme Para Sensoriamento de Gás e Fumaça

Emanuella Gomes Ribeiro

Instituto Federal de Educação, Ciência e Tecnologia do Ceará – Campus Maracanaú (IFCE)

Avenida Parque Central, S/N, Distrito Industrial I, 61.939-140 – Maracanaú – CE – Brasil

emanuellagomes6@gmail.com

Abstract. This report describes the assembly and configuration of a circuit that, when making communication with a Raspberry Pi microcomputer, transmits an audible alert and sends a message to the user registered in the Telegram application, describing what should be done when there is leak detection gases or smoke in an environment.

Resumo. Este relatório descreve a montagem e configuração de um circuito que, ao fazer comunicação com um microcomputador Raspberry Pi, emite um alerta sonoro e envia uma mensagem para o usuário cadastrado no aplicativo Telegram, descrevendo o que deve ser feito quando ocorre detecção de escape de gases ou fumaça em um ambiente.

1. Introdução

É muito comum veículos de comunicação, como jornais, programas de televisão e *sites* jornalísticos emitirem notas sobre acidentes provocados por vazamento de gás. Esse tipo de ocorrência acarreta em consequências como perda de bens materiais e oferece riscos para a saúde do ser humano, como inconsciência momentânea, queimaduras e até óbito.

Este trabalho tem como objetivo utilizar princípios da domótica, através do uso do sensor MQ2 e de tecnologias, como a Internet das Coisas, para satisfazer a necessidade de segurança, possibilitando a diminuição do risco de princípios de incêndio e a diminuição da quantidade de vítimas de acidentes causados por vazamentos de gases inflamáveis.

Utilizando-se de um circuito com chip PIC18F2550 conectado a um sensor MQ-2, disparam-se alertas sonoros e visuais que informam sobre o vazamento detectado. Para que seja possível a utilização de aplicações conectadas a Internet, interligamos o circuito supracitado completo em um microcomputador Raspberry PI, capaz de enviar dados sobre as alterações no ambiente ao aplicativo de mensagens intantâneas Telegram em conjunto com a interface de programação de aplicativos Tg.

2. Componentes Utilizados

Os componentes utilizados para a montagem do circuito foram :

(a) 1 microcontrolador da família PIC USB (18F2550);

- (b) 1 microcomputador Raspberry Pi B+;
- (c) 1 sensor de Gás MQ-2;
- (d) 1 Buzzer;
- (e) 1 Resistor;
- (f) 1 cabo de rede;
- (g) 1 Cabo MicroUSB.

2.1. Sensor MQ-2

É um sensor que contém dióxido de estanho, que faz detecção de gases, como Gás Liquefeito de Petróleo (GLP), e fumaça. Possui alta condutividade com a ocorrência da presença de gás/fumaça e baixa condutividade quando o ar está limpo. Seu nível de detecção pode ser ajustado por um potenciômetro presente na parte traseira e está na faixa de 300 a 10000 partes por milhão.

Figura 1. Sensor MQ-2

3. Desenvolvimento

A realização do projeto consiste de duas etapas : montagem do circuito e a implementação do programa para efetuar o monitoramento do ambiente de acordo com os níveis de gás ou fumaça captados pelo sensor MQ-2, transmitindo-os para o PIC18F2550 para processamento digital e comunicação serial com o RaspberryPi, este, por sua vez, faz uso da interface Tg para enviar ao número de telefone cadastrado uma mensagem que avisa que o vazamento esteja ocorrendo.

A primeira etapa é a montagem do circuito. O diagrama da figura 2 foi utilizado para auxiliar na montagem do circuito. Para a conversão analógico-digital, ao invés utilizar o conversor MCP3002, como mostra a ilustração, foi utilizado o PIC18F2550.

A segunda etapa foi a implementação do programa em linguagem C para efetuar o monitoramento do ambiente e a detecção da presença de gás/fumaça. O envio da mensagem para o aplicativo Telegram é feito com o auxílio da interface Tg, feita em linguagem Lua, que envia e recebe mensagens no terminal. Para o envio da mensagem no programa, foi feito um script em Shell Script que, através de comandos, faz com que o programa principal leia e receba mensagens de uma conta de usuário do Telegram pelo terminal. O código em C e o script podem ser acessados nos seguintes links : https://goo.gl/jx4QYr e https://goo.gl/jx4QYr e https://goo.gl/gflg7v.

3.1 Interface Tg

É uma interface de linha de comando que contém funções feitas nas linguagens C, Python e Lua e que pode ser instalado nos sistemas operacionais Linux, BSD e Mac OS X. É responsável por enviar e receber mensagens de um cliente do aplicativo Telegram cadastrado após a instalação dos arquivos das funções da interface.

Figura 2. Diagrama parcial de montagem do circuito

Figura 3. Circuito totalmente montado

4. Resultados Obtidos

Os resultados obtidos podem ser visualizados através dos links https://goo.gl/Bbgs3H.

5. Referências

G1. Saiba o que fazer em caso de vazamento de gás. Disponível em : http://g1.globo.com/sao-paulo/noticia/2010/05/saiba-o-que-fazer-em-caso-de-vazamento-de-gas.html>. Acesso em : 18 mai 2016.

Github. microcontroladores 20152/alertagas.c. Disponível em:

https://github.com/emanuella92gomesr/microcontroladores20152/blob/master/alertaga s.c>. Acesso em : 28 mai 2016.

Github. microcontroladores 20152/msg.sh. Disponível em:

https://github.com/emanuella92gomesr/microcontroladores20152/blob/master/msg.sh

. Acesso em : 28 mai 2016.

Github. Tg. Disponível em < https://github.com/vysheng/tg>. Acesso em : 10 mai 2016.

Telegram On Raspberry Pi. Disponível em : http://www.emmeshop.eu/blog/node/44>.

Acesso em: 10 mai. 2016.

YouTube. Sistema de Alerta de Detecção de Gás com Raspberry Pi e Sensor MQ2 (II) Disponível em: https://www.youtube.com/watch?v=ITTa18Qejug>. Acesso em : 28 mai

YouTube. Sistema de Alerta de Detecção de Gás utilizando Raspberry Pi e sensor MQ2 (Com explicação). Disponível em: https://www.youtube.com/watch?

<u>v=LoPkVgMkfBw</u>>. Acesso em : 28 mai. 2016.

MQ-2 Semiconductor Sensor for Combustible Gas . Disponível na Internet via https://www.pololu.com/file/0J309/MQ2.pdf. Arquivo capturado em 09 mai 2016.