Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №9 Экспериментальное построение частотных характеристик типовых динамических звеньев

Вариант - 11

Выполнил				(подпись)	
Проверил		(фамилия, и.о.)		_ (подпись)	
···	_ 20 <u>_</u> г.	Санкт-Петербург,	20 г.		
Работа выполн	ена с оценкой				
Дата защиты "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20г.			

Цель работы. Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исследуемые звенья:

- Идеальное интегрирующее $W(s) = \frac{k}{s}$ Изодромное $W(s) = \frac{k(1+Ts)}{s}$
- Дифференцирующее с замедлением.

$$W(s) = \frac{ks}{1 + Ts}$$

Исходные данные: k=5; T=0.1 с.

1. Исследование идеальное интегрирующее $W(s) = \frac{5}{s}$

Рисунок 1.1 - Схема моделирования

Рисунок $1.2 - \Gamma$ рафика зависимости y(t) и g(t)

Частотная передаточная функция

$$W(jw) = \frac{5}{jw} = \frac{-5}{w} j$$

$$U(w) = 0$$

$$V(w) = \frac{-5}{w}$$

$$A''(x) = \sqrt{U^2 + V^2} = \frac{5}{w}$$

$$\Phi''(x) = \frac{5}{w} = \frac{5}{w}$$

$$\Phi''(x) = \frac{V(w)}{U(w)} = \frac{-\pi}{2}$$

Таблица 1.1 – Экспериментальные данных

ω	$\lg \omega$	$A(\omega)$	$L(\omega) = 20 \lg A(\omega)$	Ψ(ω)
1	0	5	13.9794	$-\pi/2$
5	0.7	1	0	$-\pi/2$
15	1.18	0.333333	-9.54243	$-\pi/2$
25	1.4	0.2	-13.9794	$-\pi/2$
35	1.54	0.142857	-16.902	$-\pi/2$
45	1.65	0.111111	-19.0849	$-\pi/2$
55	1.74	0.090909	-20.8279	$-\pi/2$
65	1.81	0.076923	-22.2789	$-\pi/2$
75	1.88	0.066667	-23.5218	$-\pi/2$
85	1.93	0.058824	-24.609	$-\pi/2$
100	2	0.05	-26.0206	$-\pi/2$

Рисунок 1.3 – Графика АЧХ

Рисунок 1.4 – Графика ФЧХ

Рисунок 1.5 – Графика АФЧХ

Рисунок 1.6 – Графика ЛАЧХ

Рисунок 1.7 – Графика ЛФЧХ

Рисунок 1.8 – Графика асимптотическая ЛАЧХ

Таким образом, в области низких и высоких частот ЛАЧХ имеет асимптоту с наклоном -20 дБ/дек

2. Исследование изодромного звена $W(s) = \frac{k(Ts+1)}{s}$

Частотная передаточная функция

Тная передаточная функция
$$W(jw) = \frac{5(0.1jw+1)}{jw} = 0.5 + \frac{5}{jw} = 0.5 - \frac{5}{w}j$$

$$U(w) = 0.5$$

$$V(w) = \frac{-5}{w}$$

$$\Phi YX : \Phi(w) = \operatorname{arctg} \frac{V(w)}{U(w)} = \operatorname{arctg} \frac{-10}{w}$$

Таблица 2.1 – Экспериментальные данных

ω	$\lg \omega$	$A(\omega)$	$L(\omega) = 20 \lg A(\omega)$	$\Psi(\omega)$
1	0	5.024938	14.02261	-84.3
5	0.7	1.118034	0.9691	-63.4
15	1.18	0.600925	-4.42359	-33.7
25	1.4	0.538516	-5.37602	-21.8
35	1.54	0.520008	-5.6798	-16
45	1.65	0.512197	-5.81126	-12.53
55	1.74	0.508197	-5.87935	-10.3
65	1.81	0.505883	-5.91901	-8.75
75	1.88	0.504425	-5.94407	-7.6
85	1.93	0.503448	-5.9609	-6.7
100	2	0.502494	-5.97739	-5.7

Рисунок 2.1 – Графика АЧХ

Рисунок 2.3 – Графика АФЧХ

Рисунок 2.4 – Графика ЛАЧХ

Рисунок 2.5 – Графика ЛФЧХ

Рисунок 2.6 – Графика асимптотическая ЛАЧХ

Таким образом, в области низких частот ЛАЧХ имеет асимптоту с наклоном -- 20 дБ/дек, а в области высоких частот — асимптоту с наклоном 0 дБ/дек.

3.Исследование дифференцирующего звена с замедлением $W(s) = \frac{ks}{Ts+1}$

Частотная передаточная функция

$$\begin{split} W(jw) &= \frac{5\,jw}{0.1\,jw + 1} = \frac{5\,jw(1 - 0.1\,jw)}{1 + 0.01w^2} = \frac{0.5w^2}{1 + 0.01w^2} + \frac{5\,w}{1 + 0.01w^2} \\ U(w) &= \frac{0.5w^2}{1 + 0.01w^2} \\ V(w) &= \frac{5\,w}{1 + 0.01w^2} \\ A \, 4 \, 4 \, X : A(w) &= \sqrt{U^2 + V^2} = \sqrt{\frac{0.25w^4}{(1 + 0.01w^2)^2} + \frac{25w^2}{(1 + 0.01w^2)^2}} = \frac{5w}{\sqrt{1 + 0.01w^2}} \\ \Phi \, 4 \, 4 \, X : \Phi(w) &= \arctan \frac{V(w)}{U(w)} = \arctan \frac{10}{w} \end{split}$$

Таблица 3.1 – Экспериментальные данных

ω	$\lg \omega$	$A(\omega)$	$L(\omega) = 20 \lg A(\omega)$	Ψ(ω)
1	0	4.975186	13.93619	84.3
5	0.7	22.36068	26.9897	63.4
15	1.18	41.60251	32.38239	33.7
25	1.4	46.42383	33.33482	21.8
35	1.54	48.0762	33.6386	16
45	1.65	48.80935	33.77006	12.53
55	1.74	49.1935	33.83815	10.3
65	1.81	49.41858	33.87781	8.75
75	1.88	49.5614	33.90287	7.6
85	1.93	49.65753	33.9197	6.7
100	2	49.75186	33.93619	5.7

Рисунок 3.1 – Графика АЧХ

Рисунок 3.2 – Графика ФЧХ

Рисунок 3.3 – Графика АФЧХ

Рисунок 3.4 – Графика ЛАЧХ

Рисунок 3.5 – Графика ЛФЧХ

Рисунок 3.6 – Графика асимптотическая ЛАЧХ

Таким образом, в области низких частот ЛАЧХ имеет асимптоту с наклоном +20 дБ/дек, а в области высоких частот – асимптоту с наклоном 0 дБ/дек.

Вывод: использование частотной передаточной функции позволяет экспериментально построить частотные характеристики типовых динамических звеньев, которые позволяют изучить их свойства.