

LEVEL 1 IDS: Schichman-Hodges Model

This section describes the parameters and equations for the LEVEL 1 IDS: Schichman-Hodges model.

LEVEL 1 Model Parameters

The LEVEL 1 model parameters follow.

Basic Model Parameters

Name (Alias)	Units	Default	Description
LEVEL		1.0	DC model selector. LEVEL 1 is the Schichman-Hodges model.
COX	F/m 2	3.453e- 4	Oxide capacitance per unit gate area. If COX is not specified, it is calculated from TOX.
KP (BET, BETA)	A/V2		Intrinsic transconductance parameter. If KP is not specified and UO and TOX are entered, the parameter is computed from: KP = UO · COX The default=2.0718e-5 (NMOS), 8.632e-6 (PMOS).
LAMBDA (LAM, LA)	V -1	0.0	Channel-length modulation
TOX	m	1e-7	Gate oxide thickness
UO	cm2/ (V·s)		Carrier mobility

Effective Width and Length Parameters

nme (Alias) Units Default Description	
---------------------------------------	--

1	1	1	
DEL	m	0.0	Channel length reduction on each side. DELscaled = DEL · SCALM
LD (DLAT, LATD)	m		Lateral diffusion into channel from source and drain diffusion. If LD and XJ are unspecified, LD Default=0.0. When LD is unspecified but XJ is specified, LD is calculated as: LD Default=0.75 · XJ LD scaled = LD · SCALM
LDAC	m		This parameter is the same as LD, but if LDAC is in the .MODEL statement, it replaces LD in the Leff calculation for AC gate capacitance.
LMLT		1.0	Length shrink factor
WD	m	0.0	Lateral diffusion into channel from bulk along width WDscaled = WD · SCALM
WDAC	m		This parameter is the same as WD, but if WDAC is in the .MODEL statement, it replaces WD in the Weff calculation for AC gate capacitance.
WMLT		1.0	Diffusion layer and width shrink factor
XJ	m	0.0	Metallurgical junction depth: XJscaled = XJ · SCALM
XL (DL, (LDEL)	m	0.0	Accounts for masking and etching effects: XLscaled = XL · SCALM
XW (DW, WDEL)	m	0.0	Accounts for masking and etching effects: XWscaled = XW · SCALM

Threshold Voltage Parameters

Name (Alias)	Units	Default	Description
GAMMA	V 1/2	0.5276	Body effect factor. If GAMMA is not specified, it is calculated from NSUB (See Common Threshold Voltage Parameters).
NFS (DFS, NF, DNF)	cm -2 · V -1	0.0	Fast surface state density
NSUB (DNB, NB)	cm -3	1e15	Bulk surface doping. NSUB is calculated from GAMMA if not specified.
PHI	V	0.576	Surface inversion potential -PH is calculated from NSUB if not specified (See Common Threshold Voltage Parameters).
VTO (VT)	V		Zero-bias threshold voltage. If not specified, it is calculated. (See Common Threshold Voltage Parameters).

The LEVEL 1 MOSFET model should be used when accuracy is less important than simulation turn-around time. For digital switching circuits, especially when only a "qualitative" simulation of timing and function is needed, LEVEL 1 run-time can be about half that of a simulation using the LEVEL 2 model. The agreement in timing is approximately 10%. The LEVEL 1 model, however, results in severe inaccuracies in DC transfer functions of TTL-compatible input buffers, if these buffers are present in the circuit.

The channel-length modulation parameter LAMBDA is equivalent to the inverse of the Early voltage for the bipolar transistor. LAMBDA is a measure of the output conductance in saturation. When this parameter is specified, the MOSFET has a finite but constant output conductance in saturation. If LAMBDA is not input, the LEVEL 1 model assumes zero output conductance.

LEVEL 1 Model Equations

The LEVEL 1 model equations follow.

IDS Equations

In the LEVEL 1 model the carrier mobility degradation and the carrier saturation effect and weak inversion model are not included. This model determines the DC current as follows:

Cutoff Region, Vg3 ≤VIII

 $I_{\delta s} = 0.0$

Linear Region, vds < vgs - v th

$$I_{ds} = KP \cdot \frac{W_{eff}}{L_{eff}} \cdot \left(1 + LAMBDA \cdot v_{ds}\right) \cdot \left(v_{gs} - v_{tk} - \frac{v_{ds}}{2}\right) \cdot v_{ds}$$

Saturation Region, Vda ≥Vga - v th

$$I_{ds} = \frac{\mathit{KP}}{2} \cdot \frac{W_{eff}}{L_{eff}} \cdot (1 + \mathit{LAMBDA} \cdot v_{ds}) \cdot (v_{gs} - v_{fk})^2$$

Effective Channel Length and Width

The model calculates the effective channel length and width from the drawn length and width as follows:

$$\begin{split} L_{eff} &= L_{scale\delta} \cdot LMLT + XL_{scale\delta} - 2 \cdot (LD_{scale\delta} + DEL_{scale\delta}) \\ W_{eff} &= M \cdot (W_{scale\delta}WMLT + XW_{scale\delta} - 2 \cdot WD_{scale\delta}) \end{split}$$

Threshold Voltage, vth

 $v_{ab} \ge 0$

$$v_{tk} = v_{ki} + GAMMA \cdot (PHI + v_{sk})^{V2}$$

vsb < 0

$$v_{th} = v_{bi} + GAMMA \cdot \left(PHI^{1/2} + 0.5 \frac{v_{sb}}{PHI^{1/2}}\right)$$

Where the built-in voltage vbi is defined as:

$$v_{6i} = v_{6i} + PHI$$

01

$$v_{ei} = VTO - GAMMA \cdot PHI^{V2}$$

NOTE: See <u>Common Threshold Voltage Parameters</u> for calculation of VTO, GAMMA, and PHI if they are not specified.

Saturation Voltage, vsat

The saturation voltage for the LEVEL 1 model is due to channel pinch off at the drain side and is computed by:

$$v_{sof} = v_{gs} - v_{fk}$$

In the LEVEL 1 model, the carrier velocity saturation effect is not included.

Star-Hspice Manual - Release 2001.2 - June 2001

