

KILLARA HIGH SCHOOL

1999 TRIAL EXAMINATION

MATHEMATICS

3 Unit (Additional) and 3/4 Unit (Common)

Time Allowed - Two (2) hours (plus 5 minutes reading time)

Directions to Candidates

- Attempt ALL questions
- Show all necessary working, marks may be deducted for careless or untidy work
- Standard integrals are printed on the last page
- Board-approved calculators may be used
- Additional Answer Booklets are available

Question One

(a) For the function
$$f(x) = e^{x+1}$$
 find the inverse function $f^{-1}(x)$ and hence show that $f[f^{-1}(x)] = f^{-1}[f(x)] = x$

Solve the inequality
$$\frac{1}{x+2} \ge \frac{2}{x-3}$$
 and represent the solution on a number line.

(3 marks)

(c) If
$$\sum_{r=1}^{n} \frac{3}{2} (2)^{r-1} = 766 \frac{1}{2}$$
, find n

Question Two

(a) Prove that
$$\frac{2\cos A}{\csc A - 2\sin A} = \tan 2A$$
 (3 marks)

(b) Show that
$$\tan^{-1} x = \sin^{-1} \frac{x}{\sqrt{1+x^2}}$$
 (3 marks)

(c) Write down the expansion for
$$\sin(\alpha - \beta)$$
 and hence prove that $\sin(-\theta) = -\sin\theta$

(d) Find
$$\frac{d}{dx} \left[\frac{\ln x}{x} \right]$$
 and hence find the primitive function of $\frac{2 - \ln x}{x^2}$ (4 marks)

Question Three

- (a) The sides of a square sheet of cardboard are each 12m long. At each corner a square of x^2m^2 is cut away. The sides of the sheet are then turned up to form a box. Calculate:
 - (i) the values of x so that the box has a volume of 108m^3
 - (ii) the value of x so that the box has a maximum volume (5 marks)

(c)

Use mathematical induction to show that for all positive

integers
$$n$$
, $\sum_{r=1}^{n} a^{-r} = \frac{a^n - 1}{(a-1)a^n}$

(4 marks)

(d)

A polynomial $P(x) = ax^3 + bx^2 + cx + d$ has zeroes at -2, 2 and $\frac{3}{2}$.

It leaves a remainder of 12 when divided by x - 1. Find the values of a, b, c and d.

(3 marks)

Question Four

(a) The tangent at the point $P(2ap,ap^2)$ on the parabola $x^2 = 4ay$ cuts the y-axis at T. The line through the focus

S parallel to this tangent cuts the directrix at V. M is the mid-point of TV. Find the locus of M as P moves on the

parabola.

(5 marks)

(b)

If
$$3^x = 2^y = 6^z$$
, prove that $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$

(3 marks)

(c)

PT is a tangent to the circle and PBC is a secant. D is a point on PBC such that TD = TB.

Prove that $\angle CTD = \angle P$.

(4 marks)

Ling Ling it would be much better if this were on your answer short.

Question Five

(a) The graph shown below shows the cooling curve for a container of paraffin oil which as been heated to a temperature of 250° then allowed to cool in air whose temperature is 18°C.

It is known that the rate at which the temperature T of the oil is changing is given by ${}^{aT}/_{a} = k(T - M)$ where M is the temperature of the surrounding air and t is the time elapsed after cooling begins, in minutes.

- (i) Show that $T = M + Ae^{kt}$ is a solution to the given equation.
- (ii) Use the graph to write down the values of M and A.
- (iii) Find the value of k to one significant figure if the temperature of the oil drops to 103.3°C in 50 minutes of cooling.

(6 marks)

(b) Write the equation $2 \tan \theta - 3 \sec \theta = -2\sqrt{3}$ in the form $a \sin \theta + b \cos \theta = c$, and then by expressing the left hand side as sine of a compound angle, solve the equation for $0 \le \theta \le 360^{\circ}$

(6 marks)

Question Six

- (a) A particle moving in simple harmonic motion, passes through the centre of oscillation O with a velocity of 5cm/s. If it has a period of π seconds, find
 - (i) the value of n
 - (ii) the amplitude of the motion

(iii) the time taken for the particle to first reach x = 1.5cm

(5 marks)

(b) Express $\sec(\sin^{-1} x)$ in terms of x and hence write down $\int \sec(\sin^{-1} x) dx \quad (-1 < x < 1)$

(2 marks)

(c) The acceleration of a body moving in a straight line is given by

$$\frac{d^2x}{dt^2} = -\frac{24}{x^2}$$

where x is the displacement from the origin after t seconds. When t = 0 the body is 3 metres to the right of the origin with a velocity of 4m/s.

(i) Show that the velocity ν of the body in terms of x, is

$$v = \frac{4\sqrt{3}}{\sqrt{x}}$$

- (ii) Find an expression for t in terms of x
- (iii) How long does it take for the body to reach a point 10m to the right of the origin?

(5 marks)

Question Seven

(a) Show that the range of flight of a projectile fired at an angle of α to the horizontal and at a velocity ν is

$$\frac{v^2\sin 2\alpha}{g}$$

where g is the acceleration due to gravity

- (ii) A cannon fires a shell at an angle of 45° to the horizontal and strikes a point 50m beyond its target. When fired with the same velocity at an angle of 30° it hits a point 20m in front of the target. Calculate
 - (I) the distance of the target from the cannon
 - (II) the correct angles required to hit the target

(7 marks)

(b) By considering the value of $(1+x)^{2n}$ when x=1, prove that

$$\sum_{k=0}^{n} {2n \choose k} = 2^{2n-1} + \frac{(2n)!}{2(n!)^2}$$

(5 marks)