GSM Procedures

Cell Selection:

La procedura di *Cell Selection* nel sistema GSM (Global System for Mobile Communications) è il processo attraverso il quale un dispositivo mobile (MS, Mobile Station) sceglie la cella più appropriata alla quale connettersi all'avvio o quando perde la connessione con la cella attuale. Questo processo è essenziale per garantire che il dispositivo mantenga una connessione affidabile alla rete cellulare. La procedura di Cell Selection può essere suddivisa in due fasi principali: *Initial Cell Selection* e *Normal Cell Selection*.

Initial Cell Selection

Questa fase avviene quando il dispositivo mobile si accende per la prima volta o quando non è associato a nessuna cella specifica. Durante questa procedura:

- 1. <u>Scansione delle Frequenze</u>: Il dispositivo mobile esegue una scansione delle frequenze per rilevare i canali di controllo delle celle (BCCH, Broadcast Control Channel) disponibili.
- 2. <u>Misurazione dei Segnali</u>: Una volta rilevati i canali BCCH, il dispositivo misura la potenza del segnale ricevuto da ciascuna cella.
- 3. <u>Selezione della Cella</u>: Il dispositivo seleziona la cella con il segnale più forte, assumendo che soddisfi determinati criteri minimi (ad esempio, una soglia minima di potenza del segnale).
- 4. <u>Sincronizzazione e Accesso</u>: Dopo aver selezionato la cella, il dispositivo si sincronizza con essa e tenta di accedere alla rete inviando una richiesta di accesso.

Normal Cell Selection

Questa fase avviene quando il dispositivo mobile è già connesso a una cella, ma deve selezionare una nuova cella, ad esempio, perché la qualità del segnale della cella corrente è diminuita o la cella attuale non è più disponibile. Durante questa procedura:

- 1. <u>Monitoraggio Continuo</u>: Il dispositivo mobile monitora continuamente la qualità del segnale della cella attuale e delle celle vicine.
- 2. <u>Criteri di Selezione</u>: Se la qualità del segnale della cella attuale scende al di sotto di una certa soglia, il dispositivo valuta le celle vicine per determinare quale offra la migliore qualità del segnale.
- 3. <u>Handover</u>: Se viene trovata una cella con una qualità del segnale significativamente migliore, il dispositivo esegue un handover verso quella cella.

Criteri di Selezione

Durante entrambe le fasi di Cell Selection, il dispositivo mobile utilizza vari criteri per selezionare la cella migliore:

Potenza del Segnale: La potenza del segnale ricevuto è il criterio principale.

Qualità del Segnale: Include fattori come il rapporto segnale-rumore.

<u>Parametri di Sistema</u>: Informazioni trasmesse dalla cella attraverso il canale BCCH, come la frequenza di downlink e altri parametri specifici della rete.

In sintesi, la procedura di Cell Selection nel GSM è il processo attraverso il quale un dispositivo mobile seleziona la cella più appropriata per connettersi alla rete, garantendo una connessione affidabile e di alta qualità attraverso la scansione delle frequenze, la misurazione del segnale e la selezione basata su criteri definiti.

• Location Update:

La procedura di *Location Update* in una rete cellulare GSM (Global System for Mobile Communications) è il processo attraverso il quale un dispositivo mobile (Mobile Station, MS) informa la rete della sua nuova posizione quando si sposta da una cella a un'altra o quando cambia area di registrazione (Location Area). Questo aggiornamento è essenziale per permettere alla rete di sapere sempre dove si trova il dispositivo, in modo da poter instradare chiamate, messaggi e dati correttamente.

Tipi di Location Update

Ci sono tre principali tipi di location update in una rete GSM:

- 1. <u>Periodic Location Update</u>: Eseguito periodicamente dal dispositivo per informare la rete che è ancora attivo e disponibile. Questo aiuta a mantenere aggiornata la posizione dell'utente nel caso in cui non ci siano altre attività di aggiornamento.
- 2. <u>Location Area Update</u>: Avviene quando il dispositivo mobile si sposta da una Location Area a un'altra. Una Location Area è un gruppo di celle gestite da un singolo VLR (Visitor Location Register).
- 3. <u>Implicit Location Update</u>: Viene attivato da altre attività di comunicazione, come una chiamata o un messaggio SMS, che automaticamente aggiornano la posizione del dispositivo.

Procedura di Location Update

- 1. <u>Rilevamento della Nuova Location Area</u>: Quando il dispositivo si sposta e rileva una nuova Location Area, riconosce la necessità di aggiornare la propria posizione.
- 2. <u>Richiesta di Location Update</u>: Il dispositivo invia una richiesta di Location Update alla nuova cella tramite il canale di controllo (RACH, Random Access Channel). Questa richiesta include l'identificativo del dispositivo (IMSI o TMSI) e l'identificativo della nuova Location Area.

- 3. <u>Verifica della Rete</u>: La rete riceve la richiesta e verifica l'identità del dispositivo consultando il HLR (Home Location Register) e il VLR corrente. Se il dispositivo è autenticato, la rete procede con l'aggiornamento.
- 4. <u>Aggiornamento dei Registri</u>: Il VLR della nuova Location Area aggiorna il record del dispositivo, e se necessario, notifica il HLR del cambiamento di posizione. Il vecchio VLR rimuove i dati del dispositivo.
- 5. <u>Conferma del Location Update</u>: La rete invia una conferma di successo al dispositivo mobile, completando la procedura di aggiornamento della posizione.

Differenze con IMSI Attach

<u>IMSI Attach</u>: Avviene quando il dispositivo si accende o entra in una nuova area di copertura, registrando il dispositivo nella rete.

<u>Location Update</u>: Avviene durante il movimento del dispositivo, aggiornando la rete sulla nuova posizione del dispositivo all'interno della stessa area di registrazione o tra diverse aree di registrazione.

Call Set-up:

La procedura di *Call Set-Up* in una rete GSM (Global System for Mobile Communications) è il processo attraverso il quale una chiamata viene stabilita tra due utenti. Ecco una descrizione dettagliata della procedura:

- 1. L'utente PSTN/ISDN compone il Mobile Subscriber International ISDN Number (MSISDN) dell'utente che desidera chiamare (numero telefonico);
- 2. Il numero chiamato viene analizzato dalla rete PSTN/ISDN, che instrada la chiamata al GMSC della PLMN dell'utente chiamato avvalendosi del National Destination Code (NDC);
- 3. Il GMSC riceve il messaggio che richiede di impostare una chiamata attraverso la rete SS7, che contiene l'MSISDN dell'utente chiamato;
- 4. Il GMSC identifica l'HLR contenente i dati dell'utente chiamato (non è a conoscenza della posizione del MS!!);
- 5. Il GMSC invia un messaggio richiedendo di "inviare informazioni di routing" all'HLR;
- 6. L'HLR identifica l'indirizzo del VLR in cui è attualmente registrato l'MS chiamato;
- 7. L'HLR invia un messaggio "fornire numero di roaming" al MSC/VLR;
- 8. Il MSC/VLR assegna temporaneamente un Mobile Station Roaming Number (MSRN) da utilizzare per la chiamata;
- 9. L'MSRN viene inoltrato dall'MSC all'HLR;
- 10. Il GMSC instrada la chiamata verso il MSC/VLR della LocationArea in cui si trova attualmente la MS;
- 11. Il MSC/VLR attiva la procedura di paging:
 - Identifica il LA attualmente visitato grazie all'IMSI
 - Invia un comando di paging a tutti i BSC dell'area di localizzazione
- 12. BSC richiede ai BTS di inviare il messaggio di paging destinato al MS sul canale di paging (PCH): questo messaggio contiene il TMSI assegnato alla SM;

- 13. La MS risponde al messaggio di paging richiedendo uno Stand alone Dedicated Control CHannel (SDCCH) tramite Random Access Channel (RACH);
- 14. Il MSC/VLR attiva l'autenticazione e le procedure di cifratura;
- 15. Per la comunicazione viene assegnato un Traffic Channel (TCH);
- 16. Il MSC/VLR notifica al chiamante che il telefono chiamato sta squillando;
- 17. L'utente chiamato risponde alla chiamata;
- 18. La connessione tra i due utenti è stabilita.

Fasi della Procedura di Call Set Up (ChatGpt, più organizzato)

1. Inizio della Chiamata:

• Origination Request: L'utente avvia una chiamata digitando un numero e premendo il tasto di chiamata. Il dispositivo mobile invia una richiesta di chiamata alla stazione base più vicina attraverso il canale di accesso (RACH).

2. Accesso alla Rete:

- <u>Channel Request</u>: La stazione base riceve la richiesta di chiamata e risponde con un messaggio di assegnazione del canale (AGCH), che assegna un canale dedicato (SDCCH, Standalone Dedicated Control Channel) al dispositivo mobile per il setup della chiamata.
- <u>Service Request</u>: Il dispositivo mobile utilizza il canale dedicato per inviare una richiesta di servizio (CM Service Request) al BSC, che inoltra la richiesta all'MSC.

3. Autenticazione:

- Authentication Request: L'MSC invia una richiesta di autenticazione al dispositivo mobile. Questo processo implica la verifica dell'identità dell'utente utilizzando l'IMSI e un algoritmo di autenticazione.
- Response: Il dispositivo mobile risponde con le informazioni richieste, che vengono confrontate con i dati memorizzati nel HLR/VLR.

4. Cifratura:

- <u>Ciphering Mode Command</u>: Se l'autenticazione è completata con successo, l'MSC invia un comando di cifratura per iniziare la crittografia del canale di comunicazione.
- <u>Ciphering Mode Complete</u>: Il dispositivo mobile risponde confermando l'inizio della cifratura.

5. Setup della Chiamata:

• <u>Call Setup Request</u>: Il dispositivo mobile invia una richiesta di setup della chiamata all'MSC, specificando il numero di destinazione.

• <u>Call Proceeding</u>: L'MSC inoltra la richiesta di chiamata alla parte chiamata attraverso la rete.

6. Allertamento e Suoneria:

- Paging: L'MSC della parte chiamata invia un messaggio di paging attraverso le stazioni base nella Location Area della parte chiamata per localizzare il dispositivo chiamato.
- <u>Alerting</u>: Una volta che il dispositivo chiamato viene localizzato, la rete invia un messaggio di allertamento, facendo squillare il telefono del destinatario.

7. Risposta della Chiamata:

- <u>Alerting Response</u>: Il dispositivo chiamato risponde all'allertamento, e la rete invia un messaggio di connessione al chiamante.
- <u>Connect</u>: Quando il destinatario risponde alla chiamata, la rete invia un messaggio di connessione al chiamante e la chiamata viene stabilita.

8. Completamento della Chiamata:

 Assignment of Traffic Channel: La chiamata viene trasferita su un canale di traffico dedicato (TCH, Traffic Channel), consentendo la comunicazione vocale tra le due parti.

Importanza della Procedura di Call Set-Up

La procedura di Call Set-Up è cruciale per:

<u>Stabilire una Connessione Affidabile</u>: Garantisce che la chiamata venga stabilita correttamente tra i due utenti.

Sicurezza: Include fasi di autenticazione e cifratura per proteggere le comunicazioni.

<u>Gestione delle Risorse</u>: Assicura che i canali di comunicazione vengano allocati e utilizzati in modo efficiente.

In sintesi, la procedura di Call Set-Up in GSM è un processo complesso e coordinato che coinvolge diversi elementi della rete per stabilire una chiamata tra due utenti, garantendo sicurezza, affidabilità e efficienza.

