

Ocean has absorbed ~30-40% of the CO_2 we've released.


```
Factors:

Physical
Ocean Circulation & Mixing

Chemical
Dissolved Inorganic Carbon (DIC)

Biological
Carbon capture ('productivity') and export.
```

Ocean Circulation

Ocean Circulation: Coriolis

Ocean Circulation: Coriolis

Northern Hemisphere

© 2005 Brooks/Cole - Thomson

Eckman Transport

~Surface Water

Northern Hemisphere

© 2005 Brooks/Cole - Thomson

Eckman Transport

~Surface Wind

~Surface Water

~Surface Wind

~Surface Water

Ocean Circulation: Up and Down

Ocean Circulation: Density

Atlantic Water-Bodies

Ocean Circulation: Density

Atlantic Water-Bodies

Ocean Circulation: Density

Ocean Circulation

Transport driven by wind and density flows. Turnover time ~1-3000 years.

Ocean Circulation

Transport driven by wind and density flows. Turnover time ~1-3000 years.

Ocean Circulation: Measurement

Ocean Circulation: Measurement

Dissolved Inorganic Carbon

DIC =
$$CO_2^* + HCO_3^- + CO_3^{2-}$$

pH = $-log_{10}([H^+])$

Dissolved Inorganic Carbon

DIC =
$$CO_2^* + HCO_3^- + CO_3^{2-}$$

pH = $-log_{10}([H^+])$

$$K_0 - \overline{fCO_2}$$
 $K_1 = \frac{[H^+][HCO_3^-]}{[CO_2^*]}$
 $K_2 = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$

$$K_0 = \frac{\frac{10021}{fCO_2}}{fCO_2}$$
 $K_1 = \frac{[H^+][HCO_3^-]}{[CO_2^*]}$
 $K_2 = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$

Equator

High Lat

High Lat

pCO 2 ~400ppm

The Solubility Pump

Carbon in Seawater: Measurement

Carbon in Seawater: Measurement

Carbon in Seawater: Biology

Carbon in Seawater: Biology

Total Biological Export: ~13 GtC

Annual fossil fuel release: 7.8 +/- 0.6 GtC

Small compared to solubility, but still BIG!

IPCC, AR5, Chapter 6

IPCC, AR5, Chapter 6

A. Stuhr, GEOMAR.

Photosynthesis captures CO₂ in the surface Remineralisation releases CO₂ in deep

Light

and

Nutrients

Biology: Light

Biology: Light

Mixed Layer Depth is critical

Biology: Nutrients

Productivity is limited by:

- P
- Fe
- Mn
- Co

Think: Biology + Circulation

High Lat

Think: Biology + Circulation

High Lat

Think: Biology + Circulation

High Lat

The Biological Pump

High Lat

Measuring Biology

Ocean-Atmosphere Carbon Fluxes

