3 3

3.1 $Kx = \lambda x$ (λ is Eigenvalues, X is Eigenvectors) $X^{T}Kx = x^{T}\lambda x = \lambda x^{T}x$ $X^{T}Kx = \lambda x^{T}x$ $for x^{T}x = |x|^{2}$ and x is non-zero we have $x^{T}x = |x|^{2} > 0$

So, if $x^T k x > 0$ we have $\lambda > 0$

So, we have

OK is a symmetric matrix

DA of K > 0

we get K is positive semidefinite

3.2

1. $K_{ij} = k(x^{(i)}, x^{(j)}) = 0$ Since $O(k_{ij}) = 0$ for all i, jeigenvalues of $k_{ij} > 0$ $O(k_{ij})$ is symmetric

We get Kij is positive semi-definite Thus, $k(x, y) = \alpha$ is a kernel 2. Because $f: \mathbb{R}^d \to \mathbb{R}$ we get $f(x) \cdot f(y) = \langle f(x), f(y) \rangle$ Thus, $k(x,y) = \langle \phi(x), \phi(y) \rangle$ where $\phi(x) = f(x)$ we get $k(x,y) = f(x) \cdot f(y)$ is a kernel

3. Kij = a. Kij + b. Kzij

 $X^{T}K_{ij}X = \alpha \cdot X^{T}K_{iij}X + b \cdot X^{T}K_{2ij}X$ (a, b > 0) We have, $X^{T}K_{iij}X > 0$ and $X^{T}K_{2ij}X > 0$

Thus XTKijX >0

> Kij is positive semidefine

> k(x,y) is a pernel

4. $R_1(x,y) = \langle \phi(x), \phi(y) \rangle$ $= \langle \phi(x), \phi(x) \rangle$ $= \langle \phi(x), \phi(y) \rangle$

= < \(\phi(\phi)\) \(\phi(\phi)\) \(\phi(\phi)\)

We get $R(x,y) = \langle \varphi'(x), \varphi'(y) \rangle$ where $\varphi'(x) = \frac{\varphi(x)}{\|\varphi(x)\|} \qquad \varphi'(y) = \frac{\varphi(y)}{\|\varphi(y)\|}$