## Segurança da Informação – GBC083

Prof. Rodrigo Sanches Miani – FACOM/UFU

## Aula passada

Segurança da Informação- GBC083

## Informações básicas

► Email: miani@ufu.br

- Página do curso:
  - ► Teams procurar por "GBC083 2024/01" (chave de acesso: fq49gh2)
- ▶ Horário de atendimento sala 1B-148:
  - ▶ Terça-feira 15:00 16:30 ou Quarta-feira 14:00 14:50;
  - Dutros horários são possíveis! Basta enviar um email para marcar atendimento fora do horário acima.



## Avaliação – Trabalhos práticos

- Entrega eletrônica usando o Microsoft Teams;
- ▶ Tarefas atrasadas serão penalizadas:
  - ▶ I dia 10% da nota;
  - ▶ 2 a 3 dias 20% da nota;
  - ▶ Entre 4 a 21 dias 50% da nota;
  - Mais de 21 dias o TP não será pontuado.



## Datas importantes

| Semana | Data   | Conteúdo                                                     |
|--------|--------|--------------------------------------------------------------|
| 1      | 06/ago | Apresentação da disciplina                                   |
| 1      | 07/ago | Tópico 1 - Conceitos de Segurança - Parte 1                  |
| 2      | 13/ago | Tópico 1 - Conceitos de Segurança - Parte 2                  |
| 2      | 14/ago | Tópico 2 - Princípios de Criptografia                        |
| 3      | 20/ago | Defesa de Mestrado - Não haverá aula                         |
| 3      | 21/ago | Tópico 3 - Criptoanálise e ataques                           |
| 4      | 27/ago | Evento IA x Cybersecurity - Google - Não haverá aula         |
| 4      | 28/ago | Tópico 5 - Criptografia simétrica - Cifra de bloco - Parte 1 |
| 5      | 03/set | Tópico 5 - Criptografia simétrica - Cifra de bloco - Parte 2 |
| 5      | 04/set | Tópico 6 - Criptotrafia simétrica - DES - Parte 1            |
| 6      | 10/set | Tópico 6 - Criptotrafia simétrica - DES - Parte 2            |
| 6      | 11/set | Tópico 7 - AES - Parte 1                                     |
| 7      | 17/set | SBSeg 2024 - Não haverá aula                                 |
| 7      | 18/set | SBSeg 2024 - Não haverá aula                                 |
| 8      | 24/set | Tópico 7 - AES - Parte 2                                     |
| 8      | 25/set | Tópico 8 - Modos de cifra de bloco                           |
| 9      | 01/out | Discussão da primeira parte da disciplina - Dúvidas          |
| 9      | 02/out | P1                                                           |
| 10     | 08/out | Tópico 9 - Criptografia de chave pública                     |
| 10     | 09/out | Tópico 10 - RSA - Parte 1                                    |
| 11     | 15/out | Tópico 10 - RSA - Parte 2                                    |
| 11     | 16/out | Tópico 11 - Funções de Hash                                  |
| 12     | 22/out | Tópico 12 - Integridade, autenticação e não repúdio          |
| 12     | 23/out | Tópico 13 - Infraestrutura de chaves públicas - Parte 1      |
| 13     | 29/out | Tópico 13 - Infraestrutura de chaves públicas - Parte 2      |
| 13     | 30/out | Tópico 14 - Segurança na camada de transporte - Parte 1      |
| 14     | 05/nov | Tópico 14 - Segurança na camada de transporte - Parte 2      |
| 14     | 06/nov | Aula extra - Tópico a decidir                                |
| 15     | 12/nov | Discussão da segunda parte da disciplina - Dúvidas           |
| 15     | 13/nov | P2                                                           |
| 16     | 19/nov | Recuperação                                                  |
| 16     | 20/nov | Feriado - Não haverá aula                                    |



## Tópicos da aula

Segurança da Informação- GBC083

## Tópicos

- 1. Motivação para o estudo de segurança da informação
- 2. Pilares da segurança da informação
- 3. Ataques
- 4. Mecanismos de defesa



## Motivação

Segurança da Informação- GBC083

## Motivação – importância da segurança

- A importância das redes e o caráter sensível de dados e transações chamam atenção de indivíduos e grupos mal intencionados:
  - Muitos destes grupos estão buscando formas de obter vantagens financeiras;
  - Alguns destes grupos buscam notoriedade.



## Motivação – importância da segurança

# É comum ler nos noticiários relatos de ataques provocados por grupos de cibercriminosos:

- Hackers invadem sistemas críticos (cyberwarfare);
  - https://www.washingtonpost.com/technology/2023/12/11/china-hacking-hawaii-pacific-taiwan-conflict/
- Vazamento de dados Facebook, LinkedIn;
  - https://www.upguard.com/blog/biggest-data-breaches-us
- Vazamento e compilação de senhas;
  - https://gl.globo.com/economia/tecnologia/blog/altieresrohr/post/2021/06/09/entenda-por-que-o-suposto-vazamento-de-84bilhoes-de-senhas-nao-esta-preocupando-especialistas.ghtml
  - https://haveibeenpwned.com
- Ataques de ransomware;
  - https://www.cisoadvisor.com.br/dona-da-vans-e-north-face-e-atingida-por-ataque-de-ransomware/



## Motivação – importância da segurança

### Problemas de segurança podem:

- Causar perdas financeiras;
- Sujar a reputação da empresa;
- Causar problemas com a justiça;
- O que mais?
- Matar!
  - https://www.kaspersky.com.br/blog/stuxnet-as-origens/4391/
  - https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/



### Tendências...



## O que fazer?

### Pergunta:

E aí? Como tratar os inúmeros problemas discutidos anteriormente?



## O que fazer?

#### Pergunta:

E aí? Como tratar os inúmeros problemas discutidos anteriormente?

Uma **parte** da resposta envolve planejar e implementar MECANISMOS DE SEGURANÇA.



## Implementando segurança

- Computadores atuais são ricos em funcionalidades e complexos;
- Maioria dos usuários são leigos;
  - Atacantes tentam aproveitar essa brecha;
- Vontade de tornar tudo disponível o tempo todo e em qualquer lugar aumenta os problemas;
- Outro ponto importante: a segurança costuma ser implementada usando uma visão reativa;



## **Pilares**

Segurança da Informação – GBC083

## Pilares da segurança

 Um modelo de segurança simples mas largamente aplicado é conhecido como a tríade CID - Confidencialidade, Integridade e Disponibilidade;

 Os três conceitos acima envolvem os objetivos fundamentais da segurança tanto para dados quanto para serviços de informação e computação;

Veremos que a violação de qualquer um dos três princípios implica em sérias consequências para os envolvidos.



https://www.informationsecuritybuzz.com/isbuzzexpert-panel/cia-triad-and-new-emergingtechnologies-big-data-and-iot/

## Pilares da segurança

#### Confidencialidade:

• Garante que as informações não serão acessadas por agentes não autorizados.

## Objetivos da segurança

### Integridade:

 Garante que sistemas e informações só sejam modificados dentro das condições previstas;



## Objetivos da segurança

#### Disponibilidade:

 Garante que os dados e sistemas estejam disponíveis para aqueles que tem o direito de utilizá-los;

## Objetivos da segurança – Outra referência

Ref. - <a href="https://www.doc.ic.ac.uk/~ajs300/security/CIA.htm">https://www.doc.ic.ac.uk/~ajs300/security/CIA.htm</a>



## Ataques

Segurança da Informação – GBC083

## Ataques - Definição

- Qualquer ação que comprometa algum dos três princípios mostrados anteriormente:
  - Confidencialidade, integridade e disponibilidade



## Ataques – Tipos

#### Ataques passivos

- Obter informações a partir do monitoramento de comunicações;
- Tipos: vazamento de conteúdo de mensagem e análise de tráfego.

#### Ataques ativos

- Envolvem alguma modificação do fluxo de dados ou a criação de fluxo falso;
- Tipos: disfarce, repasse, modificação de mensagem e negação de serviço.



## Alguns exemplos de ataques...

 Força bruta: atacante testa exaustivamente diferentes possibilidades até encontrar um código ou senha;

#### Negação de serviço:

- Atacante tenta esgotar recursos do servidor enviando grande volume de requisições;
- Pode acarretar de perda de desempenho a indisponibilidade do serviço;
- Variação: ataque distribuído de negação de serviço.



## Ataques

- ▶ Malwares (malicious softwares):
  - Vírus:
  - Spywares;
  - Worms (vermes);
  - Cavalos de tróia;
  - Botnets.



## Ataques

#### Engenharia Social:

- Técnica que explora as fraquezas humanas e sociais;
- Tem como objetivo enganar e ludibriar pessoas, a fim de conseguir informações;
- Ataque clássico consiste em se fazer passar por um alto funcionário que tem problemas urgentes de acesso ao sistema;
- Ataque muito difícil de prevenir ou detectar;
- Kevin Mitnick, famoso hacker, afirmou que utilizava técnicas de Engenharia Social em mais de 80% de seus ataques.



## Ataques – Conhecimento x Complexidade



Aslan, Ö.; Aktuğ, S.S.; Ozkan-Okay, M.; Yilmaz, A.A.; Akin, E. A Comprehensive Review of Cyber Security Vulnerabilities, Threats, Attacks, and Solutions. *Electronics* **2023**, *12*, 1333.



## Mecanismos de defesa

Segurança da Informação- GBC083

- Protocolos de segurança:
  - ▶ TLS (Transport Layer Security):
    - Segurança na camada de transporte;
    - Oferece canal seguro para camada de aplicação;
    - Navegadores e servidores HTTP implementam o TLS;
    - Muito utilizado em transações na Web que envolvem, por exemplo, pagamento com cartão de crédito;
    - SSL implementa os mais famosos e importantes algoritmos de criptografia como RSA e AES.



#### Protocolos de segurança:

- ▶ IPSEC:
  - Autenticação e cifragem de pacotes IP (mecanismo de segurança na camada de rede);
  - Construção de Virtual Private Networks (VPNs)
  - Authentication Header (AH): autenticação e integridade;
  - ESP (Encapsulating Security Payload): autenticação, integridade e sigilo.



#### Firewall:

- Delimitam o perímetro de defesa da rede;
- Ponto por onde todo o tráfego que entra e sai da rede deve passar;
- Analisa todo o tráfego e bloqueia pacotes que não atendam a regras;
- Possibilita, por exemplo, bloquear acesso externo a sistemas que só devem ser acessados por agentes internos da rede.



- Sistemas de detecção de intrusão (Intrusion Detection System – IDS):
  - Detecção de situações nas quais há acesso (ou tentativa) não autorizado aos sistemas;
  - Baseados em assinaturas;
  - Baseados no comportamento normal;
  - Problema: alarmes falsos
  - Exemplo: Snort.





- Antivírus:
  - Detecção, identificação e remoção de vírus;
  - Várias soluções disponíveis no mercado:
    - AVG;
    - Avast;
    - Mcafee;
    - Norton;
    - Symantech;
    - Panda.



### ▶ Políticas de segurança:

- Diz respeito às regras que devem ser elaboradas e seguidas pelos utilizadores dos recursos de informação de uma empresa. Exemplos:
  - a) Backups frequência? Quais dados? Onde armazenar...;
  - b) Segurança no acesso físico Quem pode entrar? Quando?;
  - c) Conscientização de usuários quanto a comportamento adequado que evita problemas;
  - d) Atualizações constantes de antivírus, bases de assinaturas, etc;
  - e) Estudo de incidentes ocorridos;
  - f) Análise de métricas de segurança.



### Defesas - Políticas

## LEI GERAL DE PROTEÇÃO DE DADOS PESSOAIS



#### UMA REGRA PARA TODOS

Cria um cenário de segurança jurídica válido para todo o país.



#### CONSENTIMENTO

Uma das dez bases legais para o tratamento de dados pessoais é o seu próprio consentimento.



#### DEFINIÇÃO DO CONCEITO

São quesitos do tratamento que devem ser previamente informados ao cidadão.



#### CONSENTIMENTO DE MENOR

Nos casos de uso de base legal "consentimento" para dados de crianças, o consentimento deve ser dos pais ou responsável.



#### ABRANGÊNCIA EXTRATERRITORIA

Não importa se a base de tratamento de dados pessoais está dentro ou fora do Brasil.



#### TRANSFERÊNCIA INTERNACIONAL

Permite o compartilhamento com outros países que também protejam os dados pessoais.



#### FISCAL CENTRALIZADO

Ficará a cargo da Agência Nacional de Proteção de Dados Pessoais (ANPD)



#### RESPONSABILIDADE

Define os agentes de tratamento de dados e suas funções



#### **GESTÃO DE RISCOS E FALHAS**

Quem gere a base de dados pessoais deve fazer essa gestão.



#### **TRANSPARÊNCIA**

Se ocorrer vazamento de dados a ANPD e os indivíduos envolvidos devem ser avisados.



#### PENALIDADES RÍGIDAS

Falhas de segurança podem gerar multas pesadas.



#### FINALIDADE E NECESSIDADE

São quesitos do tratamento que devem ser previamente informados ao cidadão.

## Criptografia

#### A criptografia permite:

- Que o emissor da informação use uma chave para embaralhar a informação de maneira que só o destinatário com a mesma chave a entenderá;
- Que o emissor da informação seja autenticado;
- Que a informação não seja alterada durante o seu percurso (que o destino consiga verificar se houve alguma alteração).



## Discussões

GBC083 - Segurança da Informação

## Organizações totalmente seguras?

Com base no que foi discutido, é possível afirmar que uma organização é 100% segura?



## Organizações totalmente seguras?

Com base no que foi discutido, é possível afirmar que uma organização é 100% segura?

- Não! Não existe um modelo de segurança à prova de ataques;
- Um sistema que está seguro hoje pode não estar seguro amanhã;



## Organizações totalmente seguras? -Exemplo

### A segurança envolve:

- Aspectos tecnológicos um sistema de autenticação robusto;
- Aspectos técnicos um administrador de segurança experiente e com vastos conhecimentos na área;
- Aspectos sociais/humanos funcionários que seguem políticas e boas práticas;
- Aspectos educacionais fornecer treinamento aos envolvidos
   funcionários e terceiros.



# Organizações totalmente seguras? – Conclusão

- ▶ O objetivo não é construir uma rede 100% segura, mas sim um sistema confiável:
  - Capaz de anular os ataques mais casuais;
  - Tolerar acidentes! Ter um plano de contingência (famoso plano B).
- Uma tendência de pesquisa nos últimos anos envolve o uso de técnicas de aprendizado de máquina para identificar diferentes tipos de ataque.



## IA x Cybersecurity

- Aplicações de IA para problemas de cybersecurity estão atraindo muita atenção da indústria e academia;
- Estimativas indicam que o mercado de IA para cybersecurity irá crescer de I bilhão de dólares em 2016 para 34.8 bilhões de doláres até 2025;
- Diferentes tarefas tradicionais de segurança podem ser potencializadas com o uso de IA\*:
  - desenvolvimento de IDSs baseados em detecção de anomalias,
  - análise de malware,
  - identificação de phishing e URLs maliciosas,
  - construção de SIEMs (Security Information and Event Management Gerenciamento e Correlação de Eventos de Segurança).

## IA x Cybersecurity

- Contudo, o uso de lA para resolver tarefas de cybersecurity possui vantagens e desvantagens;
- Apesar de melhorar substancialmente diferentes práticas de cybersecurity, também facilita novas formas de ataques às próprias soluções de IA\*:
  - Envenenamento de dados (data poisoning)
  - Evasão (tempering of categorization model)

<sup>\*</sup>Trusting artificial intelligence in cybersecurity is a double-edged sword

#### Roteiro de Estudos

- Leitura do Capítulo I (Introdução) "Criptografia e segurança de redes. Princípios e práticas". William Stallings;
- 2. Estudo da vídeo-aula referente ao Tópico I;
  - https://www.youtube.com/@criptografia



#### Roteiro de Estudos

### Materiais complementares:

- I. Estudo da vídeo-aula I do curso de Segurança da Informação da UNIVESP
  - https://www.youtube.com/watch?v=JrVS7YsGw8w&list=P Lxl8Can9yAHenoHipBXp9XuJY4BBxBUPQ&index=2
- 2. Leitura dos capítulos 1, 2, 3 e 7 (são curtinhos!!) da Cartilha de Segurança para Internet do Cert.br:
  - https://cartilha.cert.br/livro/
- 3. Assistir os seguintes vídeos:
  - https://www.youtube.com/watch?v=KZC7vQOTuEw&t=5s
  - https://www.youtube.com/watch?v=erCAp\_Bd0AQ

