Pandemic Learning Models and Educational Outcomes In Pennsylvania: Causal Inference Using Matching

Mena Tetali, Sara Murley, and Samantha Rudravajhala

Table of contents

O1 Motivation 02

Data Collection

03

Methods

04

Results

05

Lessons Learned

06

Next Steps

Motivation

Motivation

As the education system grapples with the consequences of the COVID-19 pandemic, we question if similar school districts with different COVID-19 policy choices have had different educational outcomes in the year following. Our project will:

- Analyze **district level data** in the Commonwealth of Pennsylvania, looking at how long districts were in-person during the 2020-2021 school year.
- Use **matching** to create pairs of districts that share certain characteristics but differ in their COVID-19 policies.
- Examine the **test scores** from **before and after the pandemic**.
- Investigate differences between district pairs

02 **Data Collection**

District Characteristics (covariates)

Future Ready PA

• Enrollment size, racial composition, geographic size, economically disadvantaged, gender, etc. by district

Digital Bridge K-12

Percentage of students in PA districts who do not have internet access

District Learning Models (treatment)

COVID-19 School Data Hub

 Whether PA districts were virtual, hybrid, or in-person for each month of the 2020-2021 school year.

PSSA Test Scores (outcome)

Commonwealth of Pennsylvania website.

 Percentage of school population who scored proficient in the Pennsylvania System of School Assessment exam

Data Wrangling

PA Learning Models

- Aggregated number of months spent in-person

PSSA Test Scores

 Calculated the average percentage of students in each district who scored proficient in English and Math for both 2019 (pre-COVID) and 2022 (post-COVID) datasets

Merged Dataset

- Merged clean PA Learning Models, PSSA Score, and District Demographics into one dataset to be used for matching
- Resulting dataset contains 1 row per district

O3 Methods

Matching

- Process that matches schools with similar characteristics (covariates) that differ in their COVID learning models
- Allows us to assess causal impact of COVID-19
 policy (when schools went back in-person) on
 educational outcomes by correcting for endogeneity

Matching Steps

- 1. Clean data and merge datasets
- 2. Scale numerical features (mean of 0, sd of 1)
- 3. Create treatment variable
 - a. 1 districts with at least 1 month fully in person in the 9 month range
 - b. O districts with no months in person in the 9 month range
- 4. Find pairs using MatchIt in R with the nearest neighbor method that combine 1 school district with the treatment and 1 school district without the treatment
- 5. Perform paired samples t-test across all pairs for both english and math scores to assess significance of results

Example Pairs

Matching Map

O4 Results

T-Test Results

Test	Statistic	P-Value	Degrees of Freedom
English T-Test	1.81	0.071	188
Math T-Test	2.54	0.012	188

Table 1: T-Test Results for English and Math Test Scores

Mean Test Score Differences with 95% Confidence Intervals

Conclusion

Schools that spent more time in-person during the examined period experienced a **smaller decline in math test scores**, with an **average difference of 0.97 percentage points** (t=2.54, df=188) compared to schools that had no in-person instruction. The result is significant at the 0.05 significance level.

Schools that spent more time in-person during the examined period experienced a **smaller decline in english test scores**, with an **average difference of 0.66 percentage points** (t=1.81, df=188)compared to schools that had no in-person instruction.

05 **Lessons Learned**

Learning Models Matter

- In Pennsylvania, in person learning was an important factor in explaining whether students in similar districts performed better more in person learning revealed a smaller decline in scores for Math
- Our results indicate the potentially imperative effect of immersive learning with a link to less negative student performance in certain subject areas and should be prioritized for future pandemics

06 Next Steps

Further Analysis

- Conduct analysis of learning models across different demographics:
 - Is the impact of COVID-19 policies on educational outcomes different for some pairs? For example, do policies have more of an impact for pairs of low-income districts or those with lower internet access?
- Experiment with different matching methods or spatial matching techniques to assess robustness of results
- Determine the impact of learning models on differences in test scores for different states