Constraint Satisfaction Problems

Alpha-Beta Pruning Example

Sudoku

4						8		5
	3							
			7					
	2						6	
				8		4		
	4			1				
			6		3		7	
5		3	2		1			
1		4						

4	1	7	3	6	9	8	2	5
6	3	2	1	5	8	9	4	7
9	5	8	7	2	4	3	1	6
8	2	5	4	3	7	1	6	9
7	9	1	5	8	6	4	3	2
3	4	6	9	1	2	7	5	8
2	8	9	6	4	3	5	7	1
5	7	3	2	9	1	6	8	4
1	6	4	8	7	5	2	9	3

Example puzzle with a unique solution

No duplicates in row, column, or 3x3 box

Solving Sudoku via Search

4	A2	A3				8		5
	3							
			7					
	2						6	
				8		4		
	4			1				
			6		3		7	
5		3	2		1			
1		4						

- 61 depth, max 8 branching factor
- 4.6 x 10³⁸ possibilities
- Even on 1 million 10GHz, 1024 core machines, this is 1300 billion years!

- 20 squares fixed and
 61 need to be solved
- Find possible entries

- A2: 1**2345**67**8**9

- A3: 1 2 **3 4 5** 6 7 **8** 9

Build a tree:

A Smarter Way

4	A2	A3				8		5
	3							
			7					
	2						6	
				8		4		
	4			1				
			6		3		7	
5		3	2		1			
1		4						

Find possible entries

- A2: 1 **2 3 4 5** 6 7 **8** 9

- A3: 1 2 **3 4 5** 6 7 **8** 9

 Once we choose A2, that further limits our choices

Constraint Satisfaction Problems

- In a typical search problem
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test
- In a constraint satisfaction problem (CSP):
 - state is an assignment of values from a domain D_i to a set of variables X_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- A solution to a CSP is one that is complete (all variables are assigned) and consistent (no constraints are violated)
- Simple example of a formal representation language

Sudoku as a CSP

- Domain = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Variables = { A1, A2, ... A9, B1, B2, ... B9, ...

I1, I2, ... I9 }

- Constraints from row, column, and 3x3 cell restrictions
- Constraints =
 {A1≠A2, A1≠A3, A1≠A4, ...
 A1≠B1, A1≠C1, A1≠D1, ...
 A1≠B2, A1≠B3, A1≠C1, ...}

Simpler Example: Map Coloring

- Variables V_i = {WA, NT, Q, NSW, V, SA, T}
- Domain D_i = {red, green, blue}
- Constraints: adjacent regions must have different colors
 - e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),
 (blue,red), (blue,green)}

Simpler Example: Map Coloring

- Solutions are complete and consistent assignments
- One solution is shown above

```
WA = red, NT = green, Q = red, NSW = green,
```

V = red, SA = blue, T = green

Constraint Graph

- Constraint graph:
 - nodes are variables
 - arcs are constraints
- CSP benefits
 - Standard representation pattern: variables with values
 - Generic goal, successor functions
 - Generic heuristics (no domain specific expertise)
 - Graph can simplify search.
 - e.g. Tasmania is an independent subproblem.

Tasmania

Another Example: Cryptarithmetic

Another Example: Cryptarithmetic

Variables: F, O, U, R, T, W, X_1 , X_2 , X_3 Domain: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Constraints: Alldiff (F, O, U, R, T, W)

$$O + O = R + 10 \cdot X_1$$

 $X_1 + W + W = U + 10 \cdot X_2$
 $X_2 + T + T = O + 10 \cdot X_3$
 $X_3 = F, T \neq 0, F \neq 0$

Varieties of CSPs

Discrete variables

- finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
- infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., StartJob₁ + 5 ≤ StartJob₃

Continuous variables

- e.g., start/end times for Hubble Space Telescope observations
- linear constraints solvable in polynomial time by linear programming

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - -e.g., SA \neq WA
- Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Notice that many real-world problems involve real-valued variables

Solving CSPs

- Let's start with a straightforward approach, then fix it.
- Just like we did with Sudoku, let's treat this as a search problem.
 - Initial state: the empty assignment { }
 - Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - → fail if no legal assignments
 - Goal test: the current assignment is complete

Backtracking search

- Variable assignments are commutative, i.e.,
 [WA = red] followed by [NT = green] is the same as [NT = green] followed by [WA = red]
- Only need to consider assignments to a single variable at each depth of the tree
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve *n*-queens for *n* ≈ 25

Backtracking search

```
function Backtracking-Search(csp) returns a solution, or failure return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var \leftarrow Select-Unassigned-Variable(variables[csp], assignment, csp)

for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment according to Constraints[csp] then

add { var = value } to assignment

result \leftarrow Recursive-Backtracking(assignment, csp)

if result \neq failue then return result

remove { var = value } from assignment

return failure
```


Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Heuristics:

- 1. Most constrained variable
- 2. Most constraining variable
- 3. Least constraining value
- 4. Forward checking

H1: Most constrained variable

- Most constrained variable:
 choose the variable with the fewest legal values
- a.k.a. minimum remaining values (MRV) heuristic

H2: Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

H3: Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables
- Combining these heuristics makes 1000 queens feasible

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
 - NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y
- If X loses a value, neighbors of X need to be rechecked

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y
- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
      if RM-Inconsistent-Values (X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function RM-Inconsistent-Values (X_i, X_j) returns true iff remove a value
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy constraint(X_i, X_i)
         then delete x from Domain[X<sub>i</sub>]; removed \leftarrow true
   return removed
```

Time complexity: O(n²d³)

Picking up a little later after two steps of backtracking....

Example: n-queens

- States: n queens in n columns (nⁿ states)
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

 Given random initial state, AC-3 can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

Propositional Logic

CPSC 470 – Artificial Intelligence Brian Scassellati

Constraint Satisfaction Problems

4						8		5
	3							
			7					
	2						6	
				8		4		
	4			1				
			6		3		7	
5		3	2		1			
1		4						

World Characterization

	Search	CSP	
Fully Observable	Yes	Yes	
Deterministic	Yes	Yes	
Episodic	No	No	
Static	Yes	Yes	
Discrete	Yes	Mostly	

World Characterization

	Search	CSP	Today
Fully Observable	Yes	Yes	No
Deterministic	Yes	Yes	Yes
Episodic	No	No	No
Static	Yes	Yes	Yes
Discrete	Yes	Mostly	Yes

The Wumpus World

Grid-like world

- Noble hero
- Horrible wumpus
- Bottomless pits
- Gold

- Breeze
- Stench

Actions in the Wumpus World

Goals:

- find the gold
- kill the wumpus
- go home

Actions

- Move N,S,E,W
- Grab
- Shoot(N,S,E,W)
 - Only one arrow!

The Wumpus World

- If we had complete knowledge of the world, then we could simply build a search tree
- What if our perceptions are limited?

Incomplete Knowledge of the World

- Agent's percepts:
 - Stench
 - Breeze
 - Glitter
 - Bump
 - Scream
- Other than the agent, the world is static

Our First Wumpus Hunt

<u> </u>	eal	np	er	ΘZ	75
50	screa	dunq	glitter	breez	stenck
o South	No	No	No	No	No
o East	No	Yes	No	No	No
o West	No	No	No	Yes	No
o North	No	No	No	No	No
o East	No	No	No	No	Yes
o North	No	No	No	No	No
o Shoot(W)	No	No	No	Yes	Yes
es West	Yes	No	No	Yes	Yes
o North	No	No	No	No	Yes
o East	No	No	No	No	Yes
o Grab	No	No	Yes	No	No

Annotated Wumpus Hunt

stench	breeze	glitter	dwnq	scream	
No	No	No	No	No	South
No	No	No	Yes	No	East
No	Yes	No	No	No	West
No	No	No	No	No	North
Yes	No	No	No	No	East
No	No	No	No	No	North
Yes	Yes	No	No	No	Shoot(W)
Yes	Yes	No	No	Yes	West
Yes	No	No	No	No	North
Yes	No	No	No	No	East
No	No	Yes	No	No	Grab

Today we will see how to build an agent that can perform this reasoning

Representing Beliefs

- In most programming languages, it is easy to specify statements like this...
 - There is a pit in square [3,1]
- But it is difficult to specify statements like these...
 - There is a pit in either square [3,1] or [2,2]
 - There is no wumpus in square [2,2]
 - Because there was no breeze in square [1,2], there is a pit in square [3,1]
- Require an agent that can represent this knowledge and perform the reasoning to infer new conclusions

Components of a Logic

- A formal system for representing the state of affairs
 - A sentence is a representation of a fact about the world
 - A syntax that describes how to make sentences
 - A semantics that gives constraints on how sentences relate to the state of affairs
 - A proof theory a set of rules for deducing the entailments of a set of sentences

Properties of Logical Inference

- Inference is complete if it can find a proof for any sentence that is entailed
- A sentence is valid or necessarily true if and only if it is true under all possible interpretations in all possible worlds

There is a stench in [1,1] or there is not a stench in [1,1]

 A sentence is satisfiable if and only if there is some interpretation in some world for which it is true

There is a wumpus at [1,1]

Types of Commitment

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

- We make assumptions about
 - the world (ontological commitments)
 - the beliefs that an agent can hold (epistemological commitments)

Propositional Logic Syntax

- Basic Units (sentences)
 - True and False
 - Propositions P, Q, ...
- Connectives
 - $P \wedge Q$ and (conjunction)
 - Returns true if both P and Q are true
 - P v Q or (disjunction)
 - Returns true if either P or Q is true
 - $P \Rightarrow Q$ implication
 - If P is true then Q is also true
 - P ⇔ Q equivalence
 - P is true exactly when Q is true
 - ¬P negation
 - Returns true when P is false

Propositional Logic Grammar

BNF (Backus-Naur form) for PL Grammar:

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid ...
ComplexSentence \rightarrow (Sentence) \mid
Sentence \ Connective \ Sentence \mid
\neg Sentence
Connective \rightarrow \land \mid \lor \mid \Rightarrow \mid \Leftrightarrow
```

Also require an order of precedence

From highest to lowest: $\neg \land \lor \Rightarrow \Leftrightarrow$

Propositional Logic Semantics

Propositions can have any semantic meaning:

P = "Paris is the capital of France"

Q = "The wumpus is dead"

R = "Bill Gates is the US President"

 Compound functions can be derived from a truth table:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Validity and Inference

$$((P \lor H) \land \neg H) \Rightarrow P$$

P	Н	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \Rightarrow P$
False False True True	False True False True			

- Truth tables can also be used to test validity of a sentence
- Remember to read implications as conditionals:

$$\mathsf{P}\Rightarrow\mathsf{Q}$$

is read as

"if P then Q"

- Modus Ponens (Implication-Elimination)
 - From an implication and its premise, infer conclusion

$$\frac{\alpha \Rightarrow \beta , \alpha}{\beta}$$

- And-Elimination
 - From a conjunction, you can infer any conjunct

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \alpha_3 \wedge ... \wedge \alpha_n}{\alpha_i}$$

And-Introduction

- From a list of sentences, you can infer the conjunct

$$\frac{\alpha_1, \alpha_2, \alpha_3, \dots \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$$

Or-Introduction

From a sentence, infer its disjunction with anything

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee ... \vee \alpha_n}$$

- Double-Negative Elimination
 - From a double negation, infer the positive sentence

$$\frac{\neg\neg\alpha}{\alpha}$$

- Unit Resolution
 - From a disjunction in which one is false, then you can infer the other is true

$$\frac{\alpha \vee \beta , \ \neg \beta}{\alpha}$$

- Resolution
 - Since beta cannot be both true and false, one of the disjuncts must be true

$$\frac{\alpha \vee \beta , \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Implication is transitive

$$\frac{\neg \alpha \Rightarrow \beta \ , \ \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

Truth Table for Resolution

α	β	γ	$\alpha \lor \beta$	$\neg \beta \vee \gamma$	$\alpha \lor \gamma$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

Truth tables can also be used to verify the inference rules

$$\frac{\alpha \vee \beta , \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Logical Agents

- Input sentences can come from the user perceiving the world, or from a machinereadable representation of the world
- Infer new statements about the world that are valid

An Agent for the Wumpus World

Convert perceptions into sentences:

"In square [1,1], there is no breeze and no stench" ... becomes...

$$\neg B_{11} \land \neg S_{11}$$

 Start with some knowledge of the world (in the form of rules)

 $R1: \neg S_{11} \Rightarrow \neg W_{11} \land \neg W_{12} \land \neg W_{21}$

 $R2: \neg S_{21} \Rightarrow \neg W_{11} \land \neg W_{21} \land \neg W_{22}$

. . . .

R4: $S_{12} \Rightarrow W_{13} \vee W_{12} \vee W_{22} \vee W_{11}$

Finding the Wumpus

Percepts:

$$\neg S_{11}$$
 $\neg S_{21}$
 S_{12}

1. Apply modus ponens and and-elimination to $\neg S_{11} \Rightarrow \neg W_{11} \land \neg W_{12} \land \neg W_{21}$ to get $\neg W_{11} \quad \neg W_{12} \quad \neg W_{21}$

- 2. Apply modus ponens and and-elimination to $\neg S_{21} \Rightarrow \neg W_{11} \land \neg W_{21} \land \neg W_{22}$ to get $\neg W_{22} = \neg W_{21} = \neg W_{31}$
- 3. Apply modus ponens to $S_{12} \Rightarrow W_{13} \vee W_{12} \vee W_{22} \vee W_{11}$ to get $W_{13} \vee W_{12} \vee W_{22} \vee W_{11}$
- Apply unit resolution to #3 and #1
 W₁₃ ∨ W₂₂
- 5. Apply unit resolution to #4 and #2 **W**₁₃

The wumpus is in square [1,3]!!!

Problems with Propositional Logic

- Too many propositions!
 - How can you encode a rule such as "don't go forward if the wumpus is in front of you"?
 - In propositional logic, this takes (16 squares * 4 orientations) = 64 rules!
- Truth tables become unwieldy quickly
 - Size of the truth table is 2ⁿ where n is the number of propositional symbols

More Problems with Propositional Logic

- No good way to represent changes in the world
 - How do you encode the location of the agent?
- What kinds of practical applications is this good for?
 - Relatively little

Coming Up...

- More powerful logic!
 - First-order logic (also known as First Order Predicate Calculus)