Econ 7040: Assignment #3 Spring 2024 Eric M. Leeper

Due Monday, February 26, 2024 Instructions: Type all answers in LATEX

Consider a perfect foresight, constant endowment economy in which the government seeks to optimally finance a given sequence of government purchases, $\{g_t\}$, using a mix of costly inflation, π_t , and taxes, τ_t . Treat $\{g_t\}$ as the source of uncertainty, with purchases a stationary stochastic process. The government's objective function is

$$-\frac{1}{2}E_0 \sum_{t=0}^{\infty} \beta^t \left[\tau_t^2 + \theta(\nu_t - 1)^2 \right]$$
 (1)

where $\nu_t \equiv \frac{1}{\pi_t}$ is the inverse of the gross inflation rate. The bliss point is zero taxes and constant prices.

The economy's aggregate resource constraint is $c_t + g_t = y$. We imagine that individuals in the economy have preferences $u(c_t) = c_t$, so they are risk-neutral; hence, the stochastic discount factor in (2) is constant.

The government maximizes (1) subject to a bond-pricing condition and a government budget identity 1

bond pricing:
$$1 = \beta E_t \left(\frac{\nu_{t+1}}{Q_t} \right) \tag{2}$$

budget identity:
$$Q_t b_t = b_{t-1} \nu_t + g_t - \tau_t \tag{3}$$

where $b_t = B_t/P_t$ is the nominal bond stock deflated by the price level and Q_t is the price of the bond portfolio. All bonds mature in one period. $b_{-1} \ge 0$ is given.

Pay careful attention to where the expectations operator does and does not belong. This difference is central to the questions posed.

- 1. Describe *in words* what the objective function implies about social welfare and why (2) is a constraint on the government's problem.
- 2. Write down the lagrangian to maximize (1) subject to (2) and (3), letting μ_t be the multiplier on (2) and λ_t be the multiplier on (3).
- 3. Derive the first order conditions with respect to $\{\tau_t, \nu_t, Q_t, b_t, \mu_t, \lambda_t\}$, for $t = 0, 1, 2, \ldots$, solve for the multipliers, and substitute them into the first-order condition for ν_t . You should get an expression that involves $(\nu_t, \tau_{t-1}, \tau_t, b_{t-1})$. Notice that for t = 0 the expression is different from in subsequent periods, $t \geq 1$. Explain why they are different and what the difference implies for optimal policies at t = 0 and $t \geq 1$.
- 4. Consider the special case in which inflation becomes infinitely costly, $\theta \to \infty$. Derive

¹Government policies must also satisfy a transversality condition for government bonds.

- (a) the optimal rate of ν_t
- (b) the optimal evolution of taxes, τ_t
- (c) an expression for the optimal setting of the present value of taxes
- 5. Now consider the opposite extreme in which inflation is costless, so $\theta = 0$. For this question, assume government purchases obey $g_t = \bar{g}$. Derive
 - (a) the optimal evolution of taxes, τ_t
 - (b) an expression for optimal ν_t
 - (c) explain how an increase in \bar{g} is financed

* 2	Surprise Increas	e Tu tha mì	Reser	
	, , , , , , , , , , , , , , , , , , ,	inflation moul		in
	Qt bt + Tt =	bt-1 vt tgt		
FOL	Z\$; —	This is the sun	poise inflation	
	$\theta(v_0-1) =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
what	μ_{-1} ?	undefined or 2 then get (4)		
Optime Ct	rl policy fet.	map stat	e to policy vo	nable
	plinited out to			
((4) applies at 5) applies at	6 ≥ 2		

	Optin	ral	pl	ans	ane		ime	- inc	onsis	tent	(i.e	. if	yo	w	
_pe	rmit	re	optin	izati	ממ	at	a	late	V	date	·	o licy	ชน	les	
•	are	dif	teren	t.											
*	Time	Î	าเการ	isten	ιy	happ	ens	bec	ause	0	- <u>g</u> o	vł¹s	Înce	ntives	•
K	Optin	na l	pla	ŊĹ	are	Che	osen	at	€=C) C	reale	h	stori	•	
			١,							τ_{ϵ}					
X	Time	(onsis	tent	þo	líciez	a	ve v	rot	Misto	ry	depe	ender	nt.	
	Eı	ndug	eneoi	ک که	tate	Von	riable	s 9	ire	Hm	e C	rente			
	þer	ગંકા	nce	ίλ	hî	me	gen	ies.							
*	Con	ımitr	nent	m	cans	ał	t t=)	you	mo	ike	one	pol	ľuy	
	for	t	= 0 0.		Hlows		govt:		+ c	hoose	۷	cum	ent	policy	
Q	s me	lla	٥	eap	ectat	ious	4	f	utur	e	pol	lly.		•	
			→	Com	mitm	ent	all	om c	for	Po	licy	Sur	prise	٤.	
	Bec	alle	•	gi	2 o	tocha	atic.	G	ort.	Con	nmit	to	a	policy	
	fu	nebi	M	nî ve m	ex	bock	ation		La	١.					

	íŧ	- maki		omm						rchn	varle	po	Μω	beca	usC
*	Mu	h	of '	the	oph)	na)	mo	netar	y	políç	y	liter	atur	e	
	conc	clude getir)	that	•										
		⇒ Ø	-	00	Thi	0	ho(d	9							
		ئ													
		⇒ Lishon								E	y to	ixes)	9X	
	*	Bri	ngc	out	the	~	P	ЫW	W	10 net	any	b	ticu	nl pe	licy.
	lu	reper	h	w	four	sed	, vc	ry	mu	ich	on	th	نع ،	YCis	
	d	Lus	\	tion y							ons	iden		eniz	Pn
	Q :	trow	, d	<i>o</i> 1	μl	lomp	ave	M	hat	Ñ	mo	ve o	list o	otion	ary?