Implementing an SVM A shot in the dark

Daniel Hanson, Sam Kreter, Brendan Marsh, and Christina R.S. Mosnick

Abstract—The abstract goes here.

Index Terms—IEEE, IEEEtran, journal, IFTEX, paper, template.

I. INTRODUCTION

HIS demo file is intended to serve as a "starter file" for IEEE journal papers produced under LATEX using IEEEtran.cls version 1.8b and later. I wish you the best of success.

> mds August 26, 2015

A. Subsection #1

Subsection text here. Sample text and stuff goes here.

II. IMPLEMENTATION

III. EXPERIMENTS

After the SVMs were all trained using the bootstrapping method, we used a committee-waterfall approach to determine the best class for each test point. In order to do this, the SVMs are grouped by classifier, with 7 independently trained SVMs per each of the 8 classifiers. Each test point is run through each of the 7*8=56 SVMs. When committee results are gathered, if the point has less than 4 committee votes for each classifier, it is unclassified. If the point has 4 or more votes from just one classifier group, it is classified to that group. If the point has 4 or more votes from multiple classification committees, it is classified to the committee with the most votes, or in the event of a tie, to a random choice between the tie.

IV. CONCLUSION

V. REFERENCES

Appendix one text goes here.

ACKNOWLEDGMENT

Christina would like to thank her mom for her support.

REFERENCES

- [1] Tulloch, Andrew. A Basic Soft-Margin Kernel SVM Implementation In Python Tullo.ch. N.p., 2013. Web. 24 Mar. 2016.
- [2] Quadratic Programming With Python And CVXOPT. N.p., 2016. Web. 24
- [3] How To Calculate A Gaussian Kernel Effectively In Numpy. Stats.stackexchange.com. N.p., 2016. Web. 24 Mar. 2016.
- Scipy.Spatial.Distance.Pdist Scipy V0.17.0 Reference Docs.scipy.org. N.p., 2016. Web. 24 Mar. 2016.

Michael Shell Biography text here.

PLACE РНОТО HERE

John Doe Biography text here.

Jane Doe Biography text here.