TD Feuille 1

(Géométrie vectorielle)

Exercice 1

- $\mathbf{1}^{\circ}$) Soit E un \mathbb{R} -espace vectoriel et (F_i) une famille de sous-espaces vectoriels. Montrer que $\cap_i F_i$ est un sous-espace vectoriel.
- $\mathbf{2}^{\circ}$) Soient F, G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel si et seulement si $F \subset G$ ou $G \subset F$. Effectuer un dessin dans le cas $E = \mathbb{R}^2$.
- 3°) Soient F et G deux sous-espaces vectoriels de E. Rappeler la définition de F+G et montrer qu'il s'agit d'un sous-espace vectoriel.
- $\mathbf{4}^{\circ}$) On donne $E = \mathbb{R}^3$, $H_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 ; x + y + \alpha . z = 0\}$. Trouver $H_{\alpha} \cap H_{\beta}$ et $H_{\alpha} + H_{\beta}$.

Exercice 2

- $\mathbf{1}^{\circ}$) Montrer que l'ensemble des applications linéaires de $\mathbb{R}^n \to \mathbb{R}^n$ muni de la composition des applications est un groupe G non commutatif dès que $n \geq 2$.
- 2°) Montrer que le centre de G est constitué de l'ensemble des homothéties.

Exercice 3 (sous-espaces vectoriels supplémentaires)

- $\mathbf{1}^{\circ}$) Rappeler deux définitions de deux sous-espaces vectoriels supplémentaires F et G d'un espace vectoriel E.
- $\mathbf{2}^{\circ}$) On considère $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0\}$. Montrer que

$$G = \{(x, y, z) \in \mathbb{R}^3 ; x - 2y + z = x + y - 2z = 0\}$$

est un supplémentaire de F et préciser la dimension de chacun de ces sous-espaces ainsi qu'une base de chacun d'eux.

- 3°) Décrire tous les sous-espaces supplémentaires de F.
- 4°) Soit $v \in \mathbb{R}^3$. Posons $v = v_F + v_G$ avec $v_F \in F$ et $v_G \in G$. Montrer que les deux applications

sont bien définies et linéaires.

- $\mathbf{5}^{\circ}$) Déterminer $Ker(p_F)$, $Im(p_F)$ ainsi que les éléments propres de cette application.
- **6°**) Que vaut $p_F \circ p_G$? Que vaut $p_F + p_G$? On pose par la suite $s = p_F p_G$.
- $\mathbf{7}^{\circ}$) Montrer que $s \circ s = Id_{\mathbb{R}^3}$. Quelle est la nature géométrique de la transformation s? Donner ses éléments propres.
- 8°) Donner l'expression analytique de p_F, p_G et celle de s.

Exercice 4

Sur \mathbb{R}^2 , on définit le produit scalaire canonique : si $\mathbf{v} = (v_1, v_2)$ et $\mathbf{w} = (w_1, w_2)$,

$$< v, w > = v_1 w_1 + v_2 w_2.$$

On dit que deux vecteurs sont orthogonaux lorsque leur produit scalaire est nul et on dit que deux sous-espaces vectoriels F et G sont orthogonaux si tout vecteur du premier est orthogonal à tout vecteur du second.

1°) Calculer

$$< v + w, v + w > - < v, v > - < w, w > .$$

 2°) On se donne dans cette question deux sous-espaces vectoriels supplémentaires F et G et l'on note $s = p_F - p_G$ comme dans l'exercice précédent. Déduire (en partie) de la première question que les trois propriétés suivantes sont équivalentes :

$$(i) \quad \forall \mathbf{v} \in \mathbb{R}^2, < s(\mathbf{v}), s(\mathbf{v}) > = < \mathbf{v}, \mathbf{v} >,$$

(ii)
$$\forall v, w \in \mathbb{R}^2, \langle s(v), s(w) \rangle = \langle v, w \rangle,$$

(iii) $F \text{ et } G \text{ sont deux sous } - \text{ espaces orthogonaux}$

$$(iii)$$
 F et G sont deux sous — espaces orthogonaux

Exercice 5

Dans le plan vectoriel euclidien rapporté à un repère orthonormé, soit D_{α} (pour $\alpha \in [0, \pi[$ fixé) la droite vectorielle dont une équation cartésienne est

$$x\sin\alpha - y\cos\alpha = 0.$$

- 1°) Dessiner cette droite et préciser un vecteur orthogonal à cette droite.
- $\mathbf{2}^{\circ}$) Déterminer la matrice de la symétrie orthogonale s_{α} relativement à la base canonique de \mathbb{R}^{2} .
- $\mathbf{3}^{\circ}$) Décrire le plus précisément possible le groupe engendré par s_{α} et s_{β} .