Grupa A

Zadanie 1. (10 pkt)

Rozważmy przestrzeń probabilistyczną ([0,1], $\mathcal{B}_{[0,1]}$, λ), gdzie λ jest miarą Lebesgue'a. Niech $Y_n(\omega) = \ln(\omega+1) \cdot \mathbf{1}_{[0,1-1/n)} + 2\mathbf{1}_{[1-1/n,1]}$ oraz niech $X(\omega) = 2\omega^2$.

- Wyznacz postać filtracji generowanej przez proces $\{Y_n\}$.
- Wyznacz postać procesu $X_n = \mathbb{E}(X|Y_n)$.
- Czy proces $Y_n = X_n^2$ jest martyngałem względem filtracji generowanej przez proces X?

Zadanie 2. (10 pkt)

Niech X_i będą niezależnymi zmiennymi losowymi takimi, że dla każdego k naturalnego dodatniego zachodzi $\mathbb{P}(X_k=k)=\frac{1}{k}$ oraz $\mathbb{P}(X_k=0)=\frac{k-1}{k}$. Niech $M_n=\prod_{i=1}^n X_i,\ M_0=0$. Udowodnij, że proces M jest martyngałem względem filtracji genereowanej przez zmienne X_i .

Zadanie 3. (10 pkt)

Niech (X_i) będzie ciągiem całkowalnych zmiennych losowych i niech $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$. Załóżmy, że dla dowolnego $n \geq 1$ zachodzi $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = aX_n + bX_{n-1}$, gdzie $a \in (0,1)$ i a+b=1. Dla jakich wartości parametru α $S_n = \alpha X_n + X_{n-1}$ jest martyngałem względem filtracji $\{\mathcal{F}_n\}$?

Zadanie 4. (10 pkt)

Niech S, T będą momentami stopu względem pewnej filtracji z czasem $[0, +\infty)$. Sprawdź, czy momentem stopu jest zmienna losowa:

- 1. S + T/2,
- 2. $\min(S,T) + \max(S,T)$.

Zadanie 5. (5 pkt)

Podaj definicje podmartyngału.

Grupa B

Zadanie 1. (10 pkt)

Rozważmy przestrzeń probabilistyczną ([0,1], $\mathcal{B}_{[0,1]}, \lambda$), gdzie λ jest miarą Lebesgue'a. Niech $Y_n(\omega) = 2\omega^2 \cdot \mathbf{1}_{[0,1-1/n^2)} + \mathbf{1}_{[1-1/n^2,1]}$ oraz niech $X(\omega) = \sqrt{\omega}$.

- Wyznacz postać filtracji generowanej przez proces $\{Y_n\}$.
- Wyznacz postać procesu $X_n = \mathbb{E}(X|Y_n)$.
- Czy proces $Y_n = X_n^3$ jest martyngałem względem filtracji generowanej przez proces X?

Zadanie 2. (10 pkt)

Niech $\{X_n\}$ będzie ciągiem niezależnych zmiennych losowych o średniej 0, całkowalnych w 2 potędze. Niech $S_n = \sum_{k=1}^n X_k$ oraz $T_n^2 = \sum_{k=1}^n Var[X_k]$. Udowodnij, że $(S_n^2 - T_n^2)$ jest martyngalem względem filtracji naturalnej procesu X.

Zadanie 3. (10 pkt)

Niech $(Y_n)_{n=0}^{\infty}$ będzie ciągiem całkowalnych zmiennych losowych adaptowanym do filtracji $\{\mathcal{F}_n\}_{n=0}^{\infty}$. Załóżmy, że istnieją ciągi liczb $\{u_n\}$, $\{v_n\}$, $n \geq 0$ takie, że $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = u_nY_n + v_n$. Znajdź ciągi liczbowe $\{a_n\}$, $\{b_n\}$, $n \geq 0$ takie, że ciąg zmiennych losowych $M_n = a_nY_n + b_n$, n > 1 jest martyngałem względem filtracji $\{\mathcal{F}_n\}$.

Zadanie 4. (10 pkt)

Niech S, T będą momentami stopu względem pewnej filtracji z czasem $[0,+\infty)$. Sprawdź, czy momentem stopu jest zmienna losowa:

- 1. (S+T)/2,
- 2. $\min(S,T) + T$.

Zadanie 5. (5 pkt)

Podaj definicję warunkowej wartości oczekiwanej.