3.11. PROBLEMS 105

- Matrices
- Column vectors, row vectors.
- Matrix operations: addition, scalar multiplication, multiplication.
- The vector space $M_{m,n}(K)$ of $m \times n$ matrices over the field K; The ring $M_n(K)$ of $n \times n$ matrices over the field K.
- The notion of a *linear map*.
- The image Im f (or range) of a linear map f.
- The kernel Ker f (or nullspace) of a linear map f.
- The $rank \operatorname{rk}(f)$ of a linear map f.
- The image and the kernel of a linear map are subspaces. A linear map is injective iff its kernel is the trivial space (0) (Proposition 3.17).
- The unique homomorphic extension property of linear maps with respect to bases (Proposition 3.18).
- Quotient spaces.
- The vector space of linear maps $\operatorname{Hom}_K(E, F)$.
- Linear forms (covectors) and the dual space E^* .
- Coordinate forms.
- The existence of *dual bases* (in finite dimension).

3.11 Problems

Problem 3.1. Let H be the set of 3×3 upper triangular matrices given by

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}.$$

- (1) Prove that H with the binary operation of matrix multiplication is a group; find explicitly the inverse of every matrix in H. Is H abelian (commutative)?
- (2) Given two groups G_1 and G_2 , recall that a homomorphism if a function $\varphi \colon G_1 \to G_2$ such that

$$\varphi(ab) = \varphi(a)\varphi(b), \quad a, b \in G_1.$$