

# MEMORY HIERARCHY (PART I)

Siqiang Luo
Assistant Professor

☐ In previous lectures, we have learnt (conceptual) data models. These data models need to be (physically) stored in the storage medium (e.g., disks).



☐ "How to store the data" must be related to "how to retrieve/query them efficiently".



What is an ideal case for storing big data?



What is an ideal case for storing big data?



- □ Ideally, we should have <u>infinite</u> size of <u>fast accessing</u> storage, and they are persistent.
  - ☐ Infinite size to store big data.
  - □ Fast accessing guarantees fast read/write of the data.
  - ☐ Persistency ensures keeping the data when we power off the system.

# However, the ideal case is not easy to realize

The dilemma of storage design

- Fast storage with a large size is expensive; we may afford
  - ☐ Faster storage with a smaller size
  - ☐ Slower storage with a larger size

The dilemma of storage design

- □ Fast storage with large size is expensive; we may afford
  - ☐ Faster storage with smaller size
  - Slower storage with larger size
- ☐ Suppose you are given 800SGD, how do you allocate your budget to buy different types of storage?
  - □ Cache: \$20/MB
  - ☐ Main Memory: \$20/GB
  - ☐ Disk: \$20/TB



# If all the budget is for disk

large storage (40TB)



Slow access



# If all the budget is for cache

small storage (40MB)



**Fast access** 



Get large and fast enough storage

Memory Hierarchy

We will introduce the concept more formally

# **OUTLINE**

- **☐** What is memory hierarchy?
- **☐** Why we need memory hierarchy?

# OUTLINE

- **□** What is memory hierarchy?
- **☐** Why we need memory hierarchy?

#### CONCEPTS

☐ The storage space in the computer is used to store data and instructions ☐ Instructions are the "codes" that tell the processor what to do ☐ The storage space is divided into multiple cells, each having an address ☐ Most modern computers are byte-addressable. ☐ Each address identifies a single byte of storage.

☐ For example, 256GB memory has 256\*1024\*1024\*1024 addresses

# THREE MAIN CATEGORY OF STORAGE







**Secondary Memory** 

#### **CACHE-MEMORY**

☐ High speed
 ☐ Small capacity (often between 8 KB and 64 KB)
 ☐ Expensive
 ☐ Regarded as a buffer between the CPU and the slower main memory
 ☐ Hold data and program instructions which are most frequently used by the CPU



#### **MAIN-MEMORY**

□ Holds data and instructions on which the computer is currently working
 □ Relatively high speed but slower than cache-memory
 □ Data is lost if power-offed
 □ Much larger capacity than cache memory (often between 2 GB and 32 GB)
 □ Less expensive than cache memory

#### **SECONDARY-MEMORY**

- ☐ Also known as external memory☐ in many situations, we may simply use the most common example "disk".
- ☐ Much slower than main memory when accessing data
  - ☐ Even with SSD (Solid State Disk), the accessing cost is still higher
- ☐ Can store data permanently

☐ Example: Hard Disk, SSD

## **MEMORY HIERARCHY**

- People often simplify
- ☐ Cache memory → Cache
- □ Main Memory → Memory
- ☐ Secondary Memory → Disk



Jim Gray's analogy on memory hierarchy

Note for Register: small amounts of high-speed memory contained within the CPU

#### **MORE COMPLICATED MEMORY HIERARCHY**

- ☐ In fact, cache can be further divided into L1 cache, L2 cache, L3 cache.
  - □L1 cache is the fastest but smallest
  - □L3 cache is the slowest but largest
  - □L2 cache is in the middle
- ☐ For simplicity, in this course we simply merge them into a simple cache layer.

# OUTLINE

- **☐** What is memory hierarchy?
- **☐** Why we need memory hierarchy?

□ Suppose we need 256GB storage for a computer, can we design a computer with 256GB **cache memory** without main memory and disk/secondary memory?



□ Suppose we need 256GB storage for a computer, can we design a computer with 256GB **cache memory** without main memory and disk/secondary memory?

- ☐ -- It can be too expensive
- □ -- No permanent storage



□ Suppose we need 256GB storage for a computer, can we design a computer with 256GB **main memory** without cache memory and disk?



□ Suppose we need 256GB storage for a computer, can we design a computer with 256GB main memory without cache memory and disk?

- -- It can still be relatively expensive
- -- No permanent storage
- No buffer between CPU and main memory. The CPU speed can be much faster than main memory, causing latencies.

# TRADE-OFF BETWEEN SPEED AND PRICE



# TRADE-OFF BETWEEN SPEED AND PRICE



#### **SUMMARY OF MEMORY HIERARCHY**

- ☐ Memory hierarchy consists of a set of memory layers, where a faster memory layer has a smaller capacity.
- ☐ Memory hierarchy is needed concerning the following factors (most important ones)
  - ☐ Reasonable price
  - ☐ Enough capacity to hold data
  - ☐ Data persistency