Processing twitter text

ANALYZING SOCIAL MEDIA DATA IN R

Vivek Vijayaraghavan
Data Science Coach

Lesson overview

- Why process tweet text?
- Steps in processing tweet text
 - removing redundant information
 - Converting text into a corpus
 - Removing stop words

Why process tweet text?

- Tweet text is unstructured, noisy, and raw
- Contains emoticons, URLs, numbers
- Clean text required for analysis and reliable results

Remove redundant information

- URLs
- special characters
- punctuations
- numbers

Remove redundant information

Convert the tweet text to a corpus

- URLs
- special characters
- punctuations
- numbers

Remove redundant information

Convert the tweet text to a corpus

Convert to lowercase

- URLs
- special characters
- punctuations
- numbers

Remove redundant information

Convert the tweet text to a corpus

Convert to lowercase

Remove common words or stop words

- URLs
- special characters
- punctuations
- numbers

Extract tweet text

```
# Extract 1000 tweets on "Obesity" in English and exclude retweets
tweets_df <- search_tweets("Obesity", n = 1000, include_rts = F, lang = 'en')</pre>
```

```
# Extract the tweet texts and save it in a data frame
twt_txt <- tweets_df$text</pre>
```

Extract tweet text

head(twt_txt, 3)

[1] "@WeeaUwU for real, obesity should not be praised like it is in today's society"

[2] "Great work by @DosingMatters in @AJHPOfficial on \"Vancomycin Vd estimation in adults with class III obesity\". As we continue to study/learn more about dosing in large body weight pts, we see that it's not a simple, one size, one level estimate that works https://t.co/KkYPqS6JzG"

[3] "The Scottish Government have an ambition to halve childhood obesity by 2030. This means reducing obesity prevalence in 2-15yo children in Scotland to 7%. \n\n\U0001f449 In 2018, this figure was 16%\n\nFind out more in our latest blog: https://t.co/FWp56QWjQc https://t.co/XBK8Je7F1A"

Removing URLs

```
# Remove URLs from the tweet text
library(qdapRegex)
twt_txt_url <- rm_twitter_url(twt_txt)</pre>
```

Removing URLs

twt_txt_url[1:3]

[1] "@WeeaUwU for real, obesity should not be praised like it is in today's society"

[2] "Great work by @DosingMatters in @AJHPOfficial on \"Vancomycin Vd estimation in adu with class III obesity\". As we continue to study/learn more about dosing in large body weight pts, we see that it's not a simple, one size, one level estimate that works"

[3] "The Scottish Government have an ambition to halve childhood obesity by 2030. This means reducing obesity prevalence in 2-15yo children in Scotland to 7%. \U0001f449In 2018, this figure was 16% Find out more in our latest blog:"

Special characters, punctuation & numbers

```
# Remove special characters, punctuation & numbers
twt_txt_chrs <- gsub("[^A-Za-z]", " ", twt_txt_url)</pre>
```

Special characters, punctuation & numbers

twt_txt_chrs[1:3]

- [1] "WeeaUwU for real obesity should not be praised like it is in today s society"
- [2] "Great work by DosingMatters in AJHPOfficial on Vancomycin Vd estimation in adults with class III obesity As we continue to study learn more about dosing in large body weight pts we see that it s not a simple one size one level estimate that works"
- [3] "The Scottish Government have an ambition to halve childhood obesity by This means reducing obesity prevalence in yo children in Scotland to In this figure was Find out more in our latest blog "

Convert to text corpus

```
twt_corpus[[3]]$content
```

```
[1] "The Scottish Government have an ambition to halve childhood obesity by
This means reducing obesity prevalence in yo children in Scotland to In
this figure was Find out more in our latest blog "
```


Convert to lowercase

• A word should not be counted as two different words if the case is different

```
# Convert text corpus to lowercase
twt_corpus_lwr <- tm_map(twt_corpus, tolower)
twt_corpus_lwr[[3]]$content</pre>
```

```
[1] "the scottish government have an ambition to halve childhood obesity by this means reducing obesity prevalence in yo children in scotland to in this figure was find out more in our latest blog "
```

What are stop words?

Stop words are commonly used words like a, an, and but

```
# Common stop words in English
stopwords("english")
```

```
"me"
                                    "myself"
                          "my"
                         "your" "yours"
[8] "ourselves" "you"
[15] "him"
         "his"
                          "himself" "she"
[22] "it"
         "its"
                         "itself" "they"
                          "which"
                                     "who"
[29] "themselves" "what"
[36] "these" "those"
                          "am"
                                    "is"
   "be"
           "been"
                         "being"
                                  "have"
Γ43]
                          "did"
                                   "doing"
            "does"
[50] "do"
             "i'm"
                          "you're"
                                    "he's"
[57] "ought"
```

Remove stop words

• Stop words need to be removed to focus on the important words

```
# Remove stop words from corpus
twt_corpus_stpwd <- tm_map(twt_corpus_lwr, removeWords, stopwords("english"))</pre>
```

```
twt_corpus_stpwd[[3]]$content
```

```
[1] " scottish government ambition halve childhood obesity means reducing obesity prevalence yo children scotland figure find latest blog "
```

Remove additional spaces

Remove additional spaces to create a clean corpus

```
# Remove additional spaces
twt_corpus_final <- tm_map(twt_corpus_stpwd, stripWhitespace)</pre>
```

```
twt_corpus_final[[3]]$content
```

[1] " scottish government ambition halve childhood obesity means reducing obesity prevalence yo children scotland figure find latest blog "

Let's practice!

ANALYZING SOCIAL MEDIA DATA IN R

Visualize popular terms

ANALYZING SOCIAL MEDIA DATA IN R

Vivek Vijayaraghavan
Data Science Coach

Lesson Overview

- Extract most frequent terms from the text corpus
- Remove custom stop words and refine corpus
- Visualize popular terms using bar plot and word cloud

Term frequency

• Extract term frequency which is the number of occurrences of each word

```
# Extract term frequency
library(qdap)
term_count <- freq_terms(twt_corpus_final, 60)
term_count</pre>
```

Term frequency

#	WORD	FREQ	#	WORD	FREQ	#	ŧ	WORD	FREQ	#	١ ا	WORD	FREQ
1	obesity	1026	16	healthy	61	3	31	problem	42	4	l6 g	get	31
2	S	313	17	childhood	59	3	32	body	41	4	17 <mark>r</mark>	n	31
3	health	129	18	one	56	3	33	new	41	4	l8 r	may	31
4	t	129	19	like	54	3	34	time	39	4	19 r	now	31
5	rates	125	20	realcanda	53	3	35	don	38		60 h	neart	30
6	people	121	21	meghann	52	3	36	also	37		51 e	eat	29
7	child	120	22	overweig	51	3	37	know	37	5	52 r	nelp	29
8	fat	104	23	will	50	3	38	us	36		3 s	sugar	29
9	ranks	98	24	just	49	3	39	life	35		54 v	world	29
10	california	97	25	diet	48	4	40	trump	35		55 e	epidemic	28
11	can	95	26	obese	47	4	41	children	34		66 <mark>r</mark>	e	28
12	diabetes	85	27	cancer	46	4	42	risk	34		57 s	study	28
13	amp	79	28	black	45	4	43	need	33	Ç	8 e	eating	27
14	weight	79	29	disease	43	4	14	think	32		59 c	day	26
15	food	66	30	many	42	4	45	dr	31	6	60 r	much	26

Removing custom stop words

```
# Remove custom stop words
twt_corpus_refined <- tm_map(twt_corpus_final,removeWords, custom_stop)</pre>
```

Term count after refining corpus

```
# Term count after refining corpus
term_count_clean <- freq_terms(twt_corpus_refined, 20)
term_count_clean</pre>
```

Term frequency after refining corpus

	WORD	FREQ	WORD	FREQ
1	health	129	11 healthy	61
2	rates	125	12 childhood	59
3	people	121	13 realcandaceo	53
4	child	120	14 meghanmccain	52
5	fat	104	15 overweight	51
6	ranks	98	16 diet	48
7	california	97	17 obese	47
8	diabetes	85	18 cancer	46
9	weight	79	19 black	45
10	food	66	20 disease	43

• Brand promoting an obesity management program can analyze these terms

Bar plot of popular terms

- Create a bar plot of terms that occur more than 50 times
- Bar plots summarize popular terms in an easily interpretable form

```
# Create a subset dataframe
term50 <- subset(term_count_clean, FREQ > 50)
```


Bar plot of most popular terms

library(ggplot2)

Bar plot of popular terms

Word cloud

- Visualize the frequent terms using word clouds
- Word cloud is an image made up of words
- Size of each word indicates its frequency
- Effective promotional image for campaigns
- Communicates the brand messaging and highlights popular terms

Word cloud based on min frequency

The wordcloud() function helps create word clouds

Word cloud based on min frequency

```
meghanmccain diseases medical
     professor care healthcare
     unhealthy
```

Colorful word cloud

Colorful word cloud

```
every realcandaceo heart bad poor medical sugar world diseases way take even professor gender still
             prevention society gless
                   countries physical
```

Let's practice!

ANALYZING SOCIAL MEDIA DATA IN R

Topic modeling of tweets

ANALYZING SOCIAL MEDIA DATA IN R

Vivek Vijayaraghavan

Data Science Coach

Lesson Overview

- Fundamentals of topic modeling
- Create a document term matrix or DTM
- Build a topic model from the DTM

Topic and Document

TOPIC

- Collection of dominant keywords representative of the topic.
- Example: Keywords
 "travel", "vacation",
 "hotel" representative
 of the topic "tourism".

Topic and Document

TOPIC

- Collection of dominant keywords representative of the topic.
- Example: Keywords
 "travel", "vacation",
 "hotel" representative
 of the topic "tourism".

DOCUMENT

- Term used to describe one text record.
- Example: A tweet on tourism is a document.

Topic modeling

- Task of automatically discovering topics
- Extract core discussion topics from large datasets
- Quickly summarize vast information into topics

How LDA works

• Latent Dirichlet Allocation algorithm for topic modeling

How LDA works

How LDA works

Document term matrix (DTM)

- Create a document term matrix
- DTM is a matrix representation of a corpus
- Documents are rows and words or terms are columns

Document Term Matrix (DTM)

Create a document term matrix

```
# Create a document term matrix
dtm <- DocumentTermMatrix(twt_corpus_refined)</pre>
```

Create a document term matrix

```
# Inspect the DTM
inspect(dtm)
```


Create a document term matrix

```
<<DocumentTermMatrix (documents: 1000, terms: 5079)>>
Non-/sparse entries: 12862/5066138
Sparsity
                 : 100%
Maximal term length: 29
Weighting : term frequency (tf)
Sample
    Terms
     california child diabetes fat food health people ranks rates weight
Docs
                                  0
                                        0
                                                    0
                                                               0
 131
                  0
                                                         0
 161
                  0
                                        0
                                                    0
                  0
                          0 0 1
                                                    0
 295
                  0
                          0 0
                                                    0
 418
                  0
                                                    0
 604
```


Preparing the DTM

Filter the DTM for rows that have a row sum greater than 0

```
# Find the sum of word counts in each Document
rowTotals <- apply(dtm , 1, sum)</pre>
```

```
# Select rows from DTM with row totals greater than zero
tweet_dtm_new <- dtm[rowTotals> 0, ]
```

Build the topic model

Create the topic model using the LDA() function

```
# Build the topic model
library(topicmodels)
lda_5 <- LDA(tweet_dtm_new, k = 5)</pre>
```

Build the topic model

Extracted 5 topics from the tweet corpus

```
# View top 10 terms in the topic model
top_10terms <- terms(lda_5,10)
top_10terms</pre>
```

View top 10 terms in the topic model

```
Topic 1
                   Topic 2
                                  Topic 3
                                              Topic 4
                                                           Topic 5
[1,] "disease"
                    "people"
                                   "black"
                                                            "weight"
                                               "child"
                                               "rates"
                                                            "diet"
[2,] "health"
                    "health"
                                   "fat"
[3,] "cancer"
                                   "trump"
                                              "ranks"
                                                            "food"
                    "diabetes"
[4,] "meghanmccain" "overweight"
                                   "childhood" "california" "diabetes"
[5,] "realcandaceo" "fat"
                                   "health"
                                               "fat"
                                                            "health"
[6,] "food"
                                                            "bmi"
                    "meghanmccain" "professor" "eat"
                    "realcandaceo" "gender"
[7,] "risk"
                                               "people"
                                                            "problem"
[8,] "heart"
                                                            "eating"
                    "body"
                                   "studies" "epidemic"
[9,] "weight"
                    "weight"
                                   "healthy"
                                               "health"
                                                            "disease"
                                   "problem"
[10,] "diabetes"
                    "obese"
                                               "healthy"
                                                            "family"
```

An obesity management program can center its theme around a core topic

Let's practice!

ANALYZING SOCIAL MEDIA DATA IN R

Twitter sentiment analysis

ANALYZING SOCIAL MEDIA DATA IN R

Vivek Vijayaraghavan
Data Science Coach

Lesson Overview

- What is sentiment analysis?
- Perform sentiment analysis on tweets
- Interpret to understand people's feelings and opinions

Sentiment analysis

- Retrieve information on perception of a product or brand
- Extract and quantify positive, negative and neutral opinions
- Emotions like trust, joy, and anger from the text

Significance of sentiment analysis

- Customer perceptions influence purchasing decisions
- Helps understand the pulse of what customers feel
- Proactive approach to listen to the customer and engage directly

How sentiment analysis works

- Pre-defined sentiment libraries to calculate scores
- Trained and scored based on meaning or intent of words
- Each word is scored based on its nearness to a positive or negative word
- Same concept is extended to words expressing specific emotions

Extract tweets on the topic of interest

Extract tweets on the topic of interest

Extract sentiment scores using 'syuzhet' package

Extract tweets on the topic of interest

Extract sentiment scores using 'syuzhet' package

Plot the sentiment scores

Extract tweets on the topic of interest

Extract sentiment scores using 'syuzhet' package

Plot the sentiment scores

Visualize and interpret customer perception and emotions

Extract tweets for sentiment analysis

Perform sentiment analysis

```
# Perform sentiment analysis for tweets on galaxy fold
library(syuzhet)
sa.value <- get_nrc_sentiment(twts_galxy$text)</pre>
```

View sentiment scores

```
# View the sentiment scores
sa.value[1:5,1:7]
```

anger	anticipation	disgust	fear	joy	sadness	surprise
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	0	0	0	0	0	0
1	0	0	0	0	0	0
1	1	0	2	1	1	1
0	0	0	1	0	0	0
0	0	0	0	0	0	0

Sum of sentiment scores

```
# Calculate sum of sentiment scores
score <- colSums(sa.value[,])</pre>
```

Data frame of sentiment scores

```
# Convert to data frame
score_df <- data.frame(score)</pre>
```

```
# View the data frame
score_df
```

	score		
	<dbl></dbl>		
anger	211		
anticipation	825		
disgust	214		
fear	253		
joy	412		
sadness	197		
surprise	315		
trust	641		
negative	487		
positive	1351		

Data frame of sentiment scores

Data frame of sentiment scores

View data frame with sentiment scores
print(sa.score)

sentiment	score	
<fctr></fctr>	<dbl></dbl>	
anger	211	
anticipation	825	
disgust	214	
fear	253	
joy	412	
sadness	197	
surprise	315	
trust	641	
negative	487	
positive	1351	

Plot and visualize sentiments

Plot and visualize sentiments using ggplot()

Visualize the sentiments

Let's practice!

ANALYZING SOCIAL MEDIA DATA IN R

