AER210F VECTOR CALCULUS AND FLUID MECHANICS

Quiz 2

26 October 2015 8:50 am - 9:50 am

Closed Book, No aid sheets, No calculators

Instructor: J. W. Davis

Last Name:		
Given Name:	Solutions	
Student #:		
Tutorial/TA:		

FOR MARKER USE ONLY			
Question	Marks	Earned	
1	10		
2	10		
3	10		
4	10		
5	14		
TOTAL	54	/ 50	

Note: The following integrals may be useful.

$$\int \cos^2\theta \, d\theta = \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta + C; \qquad \int \sin^2\theta \, d\theta = \frac{1}{2}\theta - \frac{1}{4}\sin 2\theta + C$$

$$\oint_{C} P dx + Q dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dR; \qquad \oiint_{S} \vec{F} \cdot \hat{n} dS = \iiint_{V} \nabla \cdot \vec{F} dV; \qquad \oint_{C} \vec{F} \cdot d\vec{r} = \iint_{S} \nabla \times \vec{F} \cdot d\vec{S}$$

1) Let R be the region in the first quadrant bounded by the parabolas: $x - y^2 = 0$, $x - y^2 = -4$, $x + y^2 = 9$, and $x + y^2 = 16$. Use a coordinate transformation to evaluate $\iint_R xy \, dR$. Provide a sketch of the original region in the x-y plane, and the new region in the u-v plane.

2) Verify Green's theorem for the line integral $\oint_C x^2 y \, dx + e^y \, dy$, where C is the triangle with vertices (0, 1), (0, 0) and (1, 1).

(10 marks)

Green's Thim:
$$\oint_{\mathbb{R}} P dx + Q dy = \int_{\mathbb{R}} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dR$$

$$P = x^{2}y \qquad \frac{\partial P}{\partial y} = x^{2}$$

$$Q = e^{y} \qquad \frac{\partial Q}{\partial x} = 0$$

a)
$$\int_{R} \left(\frac{JQ}{JR} - \frac{JP}{JY} \right) dR = \int_{0}^{1} dx \int_{x}^{1} (-2^{2}) dy = \int_{0}^{1} dx (-x^{2}) \left[\frac{y}{3} \right]_{x}^{2} = \int_{0}^{1} (-x^{2}) dx$$

$$= \int_{0}^{1} (x^{3} - x^{2}) dx = \left[\frac{x^{4}}{4} - \frac{x^{2}}{3} \right]_{0}^{1} = \frac{1}{4} - \frac{1}{3} = \left[-\frac{1}{12} \right]_{x}^{1}$$

b)
$$C_1: x=0$$
 $|xy=0|$
 $|xy=0$

C3:
$$y = 1$$
 | $7 \times 70 \Rightarrow x = 1 - t$ $0 \le t \le 1$
 $dy = 0$ $dx = -dt$

$$\int_{C3} x^{2}y dx + e^{y} dy = \int_{0}^{1} (1 - t)^{2} \cdot 1 \cdot (-dt) = -\int_{0}^{1} (1 - 2t + t^{2}) dt$$

$$= -\left[t - t^{2} + \frac{t^{3}}{3}\right]_{0}^{1} = -1 + 1 - \frac{1}{3} = -\frac{1}{3}$$

3) The fundamental theorem of calculus as applied to volume integrals gives the following results: for a function f(x, y, z) which is continuous over a volume V enclosed by a surface S, if $\hat{n} = n_x \hat{i} + n_y \hat{j} + n_z \hat{k}$ is the unit normal on S pointing to the exterior of V, then

$$\int_{V} \frac{\partial f}{\partial x} dV = \int_{S} f \hat{\mathbf{n}} \cdot \hat{\mathbf{i}} dS \; ; \qquad \int_{V} \frac{\partial f}{\partial y} dV = \int_{S} f \hat{\mathbf{n}} \cdot \hat{\mathbf{j}} dS \; ; \qquad \int_{V} \frac{\partial f}{\partial z} dV = \int_{S} f \hat{\mathbf{n}} \cdot \hat{\mathbf{k}} dS$$

Use this result to derive the Gradient and Divergence Theorems.

4) Evaluate the surface integral $\int_{S} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = x\hat{i} - y\hat{j} + z\hat{k}$, where S consists of the paraboloid $x = y^2 + z^2$, $0 \le x \le 1$, and the disk $y^2 + z^2 \le 1$, x = 1.

$$S_{1}: |_{c}+ x=u^{2}+v^{2}, y=u, z=v$$

$$S_{1}: |_{c}+ x=u^{2}+v^{2}, y=u, z=v$$

$$S_{1}: x=y^{2}+z^{2}$$

$$\Rightarrow F(u_{1}v) = (u^{2}+v^{2}, u_{1}v)$$

$$u^{2}+v^{2} \leq 1$$

$$z=(1, -2u, -2v)$$

$$Take = -ve \text{ to get outural normal}:$$

$$V = (-1, 2u, 2v) \text{ dudu}$$

$$V = (-1$$

5) Verify the Stokes' theorem for the vector field $\vec{F}(x,y,z) = z\hat{i} + 2xz\hat{j} + xy\hat{k}$ over the part of the plane 2x + 4y + z = 8 in the first octant. Provide a sketch of the surface and the boundary curve.

(14 marks)

$$\vec{F} = (z, Zxz, xy)$$

$$=(x-2x, 1-y, 7=)$$

$$= \left(-x, 1-y, 2z\right)$$

parameterize surface:
$$\Gamma(u,v) = (u,v,8-2u-4v)$$

$$0 \le u \le 4 \qquad 0 \le v \le 2-\frac{u}{2}$$

$$\vec{N} = \vec{\Gamma}_{x} \times \vec{\Gamma}_{y} = \begin{vmatrix} i & j & k \\ 0 & 1 & -4 \end{vmatrix}$$

$$\vec{N} = \vec{r}_{K} \times \vec{r} = \begin{vmatrix} i & j & k \\ 1 & 0 & -2 \\ 0 & 1 & -4 \end{vmatrix} = (2, 4, 1)$$

$$=7 \int_{S} Px \vec{F} \cdot N du dv = \int_{0}^{4} \int_{0}^{2-\frac{1}{2}} \left(-u, 1-v, 16-4u-8v\right) \cdot \left(2, 4, 1\right)$$

$$= \int_{0}^{4} \int_{0}^{2-\frac{1}{2}} \left(-2u+4-4v+16-4u-8v\right) = \int_{0}^{4} \int_{0}^{2-\frac{1}{2}} \left(20-6u-12v\right) dv$$

$$= \int_{0}^{4} \int_{0}^{2-\frac{1}{2}} \left(20v-6uv-6v^{2}\right)^{-2} \int_{0}^{4} \left(40-10u-12u+3u^{2}-24+12u-3u^{2}\right) du$$

$$= \int_{0}^{4} \left(16-10u+\frac{3}{2}u^{2}\right) du = \left[16u-5u^{2}+\frac{1}{2}u^{2}\right]_{0}^{4} = \left(4-80+32\right)$$

$$\vec{F} = (\xi, 2x\xi, xy)$$

$$C_{1} \cdot \vec{F}(t) = (4-4t, 2t, 0) \quad 0 \le t \le 1$$

$$\int_{C_{1}} \vec{F} \cdot d\vec{r} = \int_{0}^{1} dt(0, 0, 8t-8t^{2}) \cdot (-4, 2, 0) = \int_{0}^{1} 0 dt = 0$$

$$C_{2} \cdot \vec{F}(t) = (0, 2-7t, 8t) \quad 0 \le t \le 1$$

$$\int_{C_{2}} \vec{F} \cdot d\vec{r} = \int_{0}^{1} dt(8t, 0, 0) \cdot (0, -2, 8) = \int_{0}^{1} 0 dt = 0$$

$$C_{3} \cdot \vec{F}(t) = (4t, 0, 8-8t) \quad 0 \le t \le 1$$

$$\int_{C_{3}} \vec{F} \cdot d\vec{r} = \int_{0}^{1} dt(8-8t, 64t-64t^{2}, 0) \cdot (4, 0, -8)$$

$$= \int_{0}^{1} (3z-3zt) dt = \left[3zt-16t^{2}\right]_{0}^{1} = 3z-16 = 16$$