

Amendments to the Specification:

Please replace paragraphs [0008] and [0020] with the following amended paragraphs [0008] and [0020] :

[0008] In one aspect of the invention there is provided a ceramic article having a composition comprising u ($\text{Al}_2\text{O}_3\text{-TiO}_2$) + v (R) + w ($3\text{Al}_2\text{O}_3\text{-}2\text{SiO}_2$) + x (Al_2O_3) + y (SiO_2) + z ($1.1\text{SrO-}1.5\text{Al}_2\text{O}_3\text{-}13.6\text{SiO}_2\text{-TiO}_2$) + a ($\text{Fe}_2\text{O}_3\text{-TiO}_2$) + b ($\text{MgO-}2\text{TiO}_2$), where, R is $\text{SrO-Al}_2\text{O}_3\text{-}2\text{SiO}_2$ or $11.2\text{SrO-}10.9\text{Al}_2\text{O}_3\text{-}24.1\text{SiO}_2\text{-TiO}_2$, where u , v , w , x , y , z , a and b are weight fractions of each component such that $(u+v+w+x+y+z+a+b=1)$, and $0.5 \leq u \leq 0.95$, $0.01 \leq v \leq 0.5$, $0.01 \leq w \leq 0.5$, $0 \leq x \leq 0.5$, $0 \leq y \leq 0.1$, $0 \leq z \leq 0.5$, $0 \leq a \leq 0.3$, and $0 \leq b \leq 0.3$. $0.5 \leq u \leq 0.95$, $0.01 \leq v \leq 0.5$, $0.01 \leq w \leq 0.5$, $0 \leq x \leq 0.5$, $0 \leq y \leq 0.1$, $0 \leq z \leq 0.5$, $0 \leq a \leq 0.3$, and $0 \leq b \leq 0.3$. Phases of aluminum titanate ($\text{Al}_2\text{O}_3\text{-TiO}_2$), strontium feldspar ($\text{SrO-Al}_2\text{O}_3\text{-}2\text{SiO}_2$), mullite ($3\text{Al}_2\text{O}_3\text{-}2\text{SiO}_2$), alumina (Al_2O_3), and/or glass have been observed by x-ray diffraction, and electron-probe micro-analysis in the inventive ceramic. These phases are not required to be perfectly stoichiometric, or crystalline in the final product.

[0020] The invention provides an aluminum titanate-based ceramic comprising u ($\text{Al}_2\text{O}_3\text{-TiO}_2$) + v (R) + w ($3\text{Al}_2\text{O}_3\text{-}2\text{SiO}_2$) + x (Al_2O_3) + y (SiO_2) + z ($1.1\text{SrO-}1.5\text{Al}_2\text{O}_3\text{-}13.6\text{SiO}_2\text{-TiO}_2$) + a ($\text{Fe}_2\text{O}_3\text{-TiO}_2$) + b ($\text{MgO-}2\text{TiO}_2$), where, R is $\text{SrO-Al}_2\text{O}_3\text{-}2\text{SiO}_2$ or $11.2\text{SrO-}10.9\text{Al}_2\text{O}_3\text{-}24.1\text{SiO}_2\text{-TiO}_2$, where u , v , w , x , y , z , a and b are weight fractions of each component such that $(u+v+w+x+y+z+a+b=1)$, and $0.5 \leq u \leq 0.95$, $0.01 \leq v \leq 0.5$, $0.01 \leq w \leq 0.5$, $0 \leq x \leq 0.5$, $0 \leq y \leq 0.1$, $0 \leq z \leq 0.5$, $0 \leq a \leq 0.3$, and $0 \leq b \leq 0.3$. $0.5 \leq u \leq 0.95$, $0.01 \leq v \leq 0.5$, $0.01 \leq w \leq 0.5$, $0 \leq x \leq 0.5$, $0 \leq y \leq 0.1$, $0 \leq z \leq 0.5$, $0 \leq a \leq 0.3$, and $0 \leq b \leq 0.3$.