In-Video Quizzes Week 7

Practice Quiz, 3 questions

3/3 points (100%)

/

Congratulations! You passed!

Next Item

1/1 point

1

Suppose
$$N = 3$$
 and $v(1) = v(2) = v(3) = 1$.

Which of the following payoff functions is superadditive?

a)
$$v(1,2)=3$$
, $v(1,3)=4$, $v(2,3)=5$, $v(1,2,3)=5$;

Correct

(b) is true.

- Use the definition of superadditivity to check that (b) is the answer.
- (a) is not supperaditive because $5 = v(2,3 \cup 1) < v(2,3) + v(1) = 5 + 1$.
- (c) is not supperaditive because $0 = v(1 \cup 2) < v(1) + v(2) = 1 + 1$.

c)
$$v(1,2) = 0$$
, $v(1,3) = 4$, $v(2,3) = 5$, $v(1,2,3) = 7$;

d) None of the above.

1/1 point

2

Suppose
$$N=2$$
 and $v(1)=0$, $v(2)=2$, $v(1,2)=2$.

What is the Shapley Value of both players?

$$igoplus a) \, \phi_1(N,v) = 1$$
 , $\phi_2(N,v) = 0$

$$\bigcirc$$
 b) $\phi_1(N,v)=1/2$, $\phi_2(N,v)=1/2$

C)
$$\phi_1(N,v)=1/3$$
, $\phi_2(N,v)=2/3$

Practice Quiz, 3 questions

3/3 points (100%)

Correct

(d) is true.

- Use the definition of the Shapley Value to compute its value for each player.
- Another way to find the Shapley Value is to notice that player 1 is a dummy player:
- when added to the unique coalition 1, 2, player 1's contribution is 0.
- By the theorem presented in the lecture, the Shapley Value satisfies the Dummy player axiom. Then, $\phi_1(N,v)$ must be 0.

1/1 point

3

• Suppose N=3 and v(1)=v(2)=v(3)=0, v(1,2)=v(2,3)=v(3,1)=2/3, v(1,2,3)=1.

Which allocation is in the core of this coalitional game?

- a) (0,0,0);
- b) (1/3, 1/3, 0);
- c) (1/3, 1/3, 1/3);

Correct

(c) is true.

- ullet By definition, the core of this game is formed by a triplet $(x_1,x_2,x_3)\in R^3_+$ that satisfies:
- $ullet x_i + x_j \geq 2/3 ext{ for } i
 eq j$
- $x_1 + x_2 + x_3 \ge 1$
- Then, the core is a singleton with $(x_1,x_2,x_3)=(1/3,1/3,1/3).$
- d) None of the above.

In-Video Quizzes Week 7

Practice Quiz, 3 questions

3/3 points (100%)