Lecture 16, Nov 20 2014

Dynamic Programming

- Main problem with greedy approaches: sometimes we cannot commit up-front.
- Dynamic programming:
 - » Meta-technique, not a specific algorithm.
- Main idea:
 - » solve many small sub-problems,
 - » combine solution to several small sub-problems to solve larger sub-problems.
 - » continue combining until we solve the original problem.
- Contrast with greedy

187

Simple example

- Problem:
 - » Given a line with nodes $v_{\it l},~v_{\it l},~\dots~,~v_{\it n}$
 - **③ ③ ④ ① ① ⑥ ③ ③**
 - » Each node v_i has positive weight w_i
 - » Choose a subset of nodes such that
 - Total weight of the chosen nodes is maximized

 - For simplicity: output only the value of maximum weight set (do not list nodes)
- What is the problem with greedy approach?

Simple example - continued

Subproblems:

 $W_i = \max \min \text{weight if we only consider nodes } 1 \text{ through } i = 0$

- Observation: $W_{i+1} = \max\{W_i \text{ , } W_{i-1} + w_{i+1}\}$ Either
 - » do not use w_{i+1}
 - » use w_{i+1} , in which case do not use w_i
- Running time?
 - » Constant time per iteration
 - » niterations total
 - $\Theta(n)$

189

Longest Common Subsequence

• Consider two sequences:

$$x = A B C B D A B |x| = n$$

 $y = B D C A B A |y| = n$

- Subsequence "keep order, delete some elements"
- Goal: Find longest subsequence common to x and y
- Greedy: does not seem to work
- Brute force:
 - » Consider all substrings of x, all substrings of y, compare. Total: $O(2^{m+n}(m+n))$.
 - » Better: take any substring of x, check against y. Total: $O(2^m n)$, still too slow!

Main step

A_BC BDC

ABC BDC

191

Optimum Substructure

A **B C B** D **A** B B D C A B A

- Define subproblems: $C(i,j) = LCS(x_1,x_2,...,x_i,y_1,y_2,...,y_j)$ Observe that C(m,n) is the answer that we seek.
- Theorem:

$$C(i, j) = \begin{cases} C(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max\{C(i, j-1), C(i-1, j)\} & \text{otherwise} \end{cases}$$

- Proof: Case 1, $x_i = y_j$
 - » Consider $Z=z_1,\ldots z_k$ LCS of $(x_1\ldots x_i),\ (y_1\ldots y_j)$
 - » if $z_k \neq x_i$, then z is not LCS !!! (Why??)
 - » Now we claim that $z_1...z_{k-1}$ is LCS of $(x_1...x_{i-1}),\;(y_1...y_{j-1})$
 - Proof: if there is a longer than Z- z_k = z_1 ... z_{k-1} sequence, just extend it and claim contradiction

Proof: continued

$$C(i, j) = \begin{cases} C(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max\{C(i, j-1), C(i-1, j)\} & \text{otherwise} \end{cases}$$

- Case 2: $x_i \neq y_j$ either: $z_k = x_i$ (2a) or $z_k = y_j$ (2b) or not equal to either of them. (2c)

 - » Case 2b is symmetric.
 - » Do Case 2c at home.

193

Recursive algorithm

$$C(i, j) = \begin{cases} C(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max\{C(i, j-1), C(i-1, j)\} & \text{otherwise} \end{cases}$$

- We can use the theorem to construct a recursive algorithm.
- Depth of the tree is O(m+n), leads to $O(3^{m+n})$ bound, too large!

Repeating sub-questions!

Analysis

- Main idea: we see repeating sub-questions
- How many different sub-questions?
 - » One per C(i,j) calculation: only O(mn) different ones!
- Two different ways to implement:
 - » memoization: after computing sub-problem answer, remember it.
 - » dynamic programming: compute the table bottom-up.

195

$$C(i, j) = \begin{cases} C(i-1, j-1) + 1 & \text{if } x_i = y_j \\ \max\{C(i, j-1), C(i-1, j)\} & \text{otherwise} \end{cases}$$

Computing the table

• Fill the table starting from top-left corner, and going row-by-row:

	y _i	В	D	С	Α	В	Α
X _i							
		0	0	0	0	0	0
Α	0 \	. 0	0	0	1	1	1
В	0	→ 1 -	→ 1 <	_ 1	1	2	2
С	0	1	1	~ 2 -	→ 2 <	_ 2	2
В	0	1	1	2	2	31	3
D	0	1	2	2	2	3*	3
Α	0	1	2	2	3	3	→ 4
R	0	1	2	2	3	4	4 *

- Each element depends on the one above, one left, and if $x_i = y_i$, then it is one more then the diagonal up-left element.
- Think about dynamic programming as "filling the table of subproblems"
- Possible implementation to allow trace-back: add flag [up | down | diagonal] to each entry

Matrix chain multiplication

• Consider the following chain: $A_1 \times A_2 \times \cdots \times A_n$, A_1 is $[p_o \times p_1]$, A_2 is $[p_1 \times p_2]$, etc.

$$[A_1 \times A_2]_{i,j} = \sum_{k=1}^{p_1} A_1[i,k] A_2[k,j], \text{ time } \approx p_0 p_1 p_2$$

- Example: [5x100] [100x2] [2x50]
 - » Multiplying last two and then by the first one: $100x2x50 + 5x100x50 = \frac{35,000}{100}$ multiplications.
 - » Multiplying first two and then by the last one: 5x100x2 + 5x2x50 = 1500
- Order of multiplication affects the amount of work!

197

Solving matrix chain multiplication

- Why can't we just use as subproblems the time to multiply matrices 1 to i??
- Observation:
 - » Consider last optimum multiplication: $(A_1 \times \cdots \times A_k) \times (A_{k+1} \times \cdots \times A_n)$
 - » Then both $(A_1 \times \cdots \times A_k)$ and $(A_{k+1} \times \cdots \times A_n)$ were computed optimally !! (Why ??)
- Subproblems: m(i,j) is best "time" to multiply $(A_i \times \cdots \times A_j)$

$$m(i, j) = \begin{cases} 0 & \text{if } i = j\\ \min_{i \le k < j} \{ m(i, k) + m(k+1, j) + p_{i-1} p_k p_j \} & \text{if } i < j \end{cases}$$

• Answer is m(1,n)

Matrix chain continued

• Lets try to analyze using recurrence relation: $m(i,j) = \begin{cases} m(i,k) + m(i,k) + m(i,k) + m(i,k) + m(i,k) + m(i,k) \end{cases}$

$$m(i,j) = \begin{cases} 0 & \text{if } i = j \\ \min_{1 \le k < j} \left[m(i,k) + m(k+1,j) + p_{i-1} p_k p_j \right] & \text{if } i < j \end{cases}$$

- Wrong approach! There are only $O(n^2)$ different subproblems!
- Build the table bottom up, for decreasing row index i. Alternatively, start with diagonal, then elements m(i,i+1), then elements m(i,i+2), etc.
- O(n) per each m(i,j), total $O(n^3)$. Why is it $\Omega(n^3)$?

 $T(n) \ge 1 + \sum_{k=1}^{n-1} [T(k) + T(n-k) + 1] \ge 2 \sum_{k=1}^{n-1} T(k) + n$ by induction, easy to show that $T(n) \ge 2^{n-1}$

Computing m(i,j) takes about j-i time j-i is at least n/2 in yellow area size of area n/4 by n/4