C91AR: Advanced Statistics using R

Wrangling Real Data

Dr Peter E McKenna

2025-02-11

Contents

1	Packages for todays session	2
2	What are we going to cover today	2
3	Summarising data in R	3
4	Using pipes to generate summaries	3
5	Examine the data	3
6	Dataset Metadata	3
7	Reseach questions	3
8	Descriptive Statistics	4
9	Working with reaction/decision time data	5
10	Data Visualisation with ggplot2	5
11	Visualising distributions using ggplot2	6
12	Taking a closer look at the distribution extremities	7
13	Based on the following plot, where would say is safe to start our distribution?	9
14	Visualise new distribution	9

15	Visualise transformed data	10
16	Checking correlations based on new parameters	12
17	ToM condition descriptives	13
18	Creating new tibbles/objects	13
19	Describing numeric vectors using psych package	14
20	Descritives of your numeric variables per each level of the predictors	14
21	Exercise: use the describe function from the $psych$ package to summarise both overall	1
	and group trends from the confidence rating participants gave after each decision.	15
22	Summarising the categorical variables	15
23	Visualising categorical data trends	15
24	Wrap up	18
25	Cleanup	18
26	References	19

1 Packages for todays session

2 What are we going to cover today

- Wrangling, summarising, and visualising numeric data
- Assessing the distribution of numeric data (though we will cover this more thoroughly in week 7)
- Wrangling, summarising, and visualising categorical data

3 Summarising data in R

- Now that we've looked at how to keep code tidy and how to tidy our data, build on what we've started to learn from the data wrangling operations
- I've shown you how to filter and select your data, and by adding more commands to your chain of pipes (|>) you can also start to generate summaries of your data

4 Using pipes to generate summaries

- Think about your data and what summaries would be useful for your research
- Let's read in our tidy data to get started

5 Examine the data

```
# Examine the data
glimpse(df)
```

6 Dataset Metadata

- id = anon participant code
- condition = ToM manipulation with three levels (Baseline, No-ToM, and ToM)
- trial = experiment trial
- rt = response time
- follow robot = whether participants followed the robot's suggestion
- accuracy = whether or not their maze route selection was correct
- conf = participants self reported confidence for each route decision.

7 Reseach questions

• Did robot ToM affect participants trust?

- Did robot ToM affect participants task performance?
 - Decision time
 - Confidence

8 Descriptive Statistics

- $\bullet~$ We use a combination of $\it Tidyverse$ verbs to select, group and summarise data
 - group_by
 - select
 - arrange
 - filter
 - summarise

```
df |>
    select(rt,
        conf) |>
    ggpairs() # from GGally
```


- You can see that rt is positively skewed and conf is negatively skewed
- Think, where is the tail?

```
# Test the normality of rt
# shapiro.test(df$rt)

# Test the normlisaty of conf
# shapiro.test(df$conf)

# For large datasets, use Anderson-Darling instead
# Null hypothesis is that the data follows a particular distribution
#library(nortest)

# response time
ad.test(df$rt)

# confidence
ad.test(df$conf)
```

• So, both rt and conf are not normally distributed

9 Working with reaction/decision time data

- Sometimes, you have to make a judgement call about what constitutes a theoretically valid response
 in your experiment.
- The minimum RT here is below zero, which is not possible
- One way to make an educated guess is to examine the histogram and hone in on the region of interest
- But, before I go any further...

10 Data Visualisation with ggplot2

- This is the package used to produce plots in R
- It comes with a whole host of its own functions and is very flexible in terms of the graphical aesthetics.
- Annoyingly, it does not use |> (e.g., pipes) but instead uses the + symbol.

• So, when you combine *Tidyverse* and *ggplot2* you often see a combination beginning with |> and ending with + to chain commands together.

11 Visualising distributions using ggplot2

Histogram of Response time (ms) distribution


```
# Visualise the full conf distribution

df |>
    select(conf) |>
    ggplot(mapping = aes(conf)) +
    geom_histogram(bins = 30) +
```

```
labs(y = "Frequency",
    title = "Histogram of Response time (ms) distribution")
```

Histogram of Response time (ms) distribution

12 Taking a closer look at the distribution extremities

```
# Visualise the observations near the y-axis origin

df |>
   filter(rt %in% c(0:700)) |> # I'm not interested in values below zero

ggplot(mapping = aes(rt)) +

geom_histogram(bins = 30) +

labs(y = "Frequency",

   title = "Histogram of Response time (ms) distribution")
```


13 Based on the following plot, where would say is safe to start our distribution?

14 Visualise new distribution

15 Visualise transformed data

• This measure is one approach to normalise positively and negatively skewed distributions

```
# Visualise the log transformed rt

df |>
    dplyr::filter(rt %in% c(500:5000)) |>
    ggplot(mapping = aes(log(rt))) +
    geom_histogram(bins = 30) +
    labs(y = "Frequency",
        title = "Histogram of log(response time; ms) distribution")
```

Histogram of log(response time; ms) distribution

Histogram of log(confidence) distribution

16 Checking correlations based on new parameters

• According to our new limits and log transformation, there is no correlation between response time and confidence.

17 ToM condition descriptives

```
# create a new object based on our chosen rt parameters

df1 <-
    df |>
    filter(rt %in% c(500:5000)) |>
    mutate(rt_log = log(rt),
        conf_log = log(conf)) |>
    mutate_if(is.character, as.factor)
```

18 Creating new tibbles/objects

- Be sure to create a comment explicitly stating what df1 represents
- You could do this in a separate .txt file or in your script

- The last line of the chain tells R to treat the character cols as factor, because converting factors back to characters is the default behaviour when creating new data objects
- df1 = data with rt 500:5000

```
## # A tibble: 3 x 7
    condition avg_rt sd_rt med_rt avg_conf sd_conf med_conf
##
    <fct>
             <dbl> <dbl> <dbl>
                                  <dbl> <dbl>
                                                 <dbl>
## 1 baseline 7.18 0.523
                         7.06
                                  4.38 0.346
                                                  4.49
## 2 No-ToM
             7.32 0.512 7.27
                                 4.45 0.289
                                                  4.61
              7.34 0.499 7.27
                                   4.46 0.224
## 3 ToM
                                                  4.60
```

19 Describing numeric vectors using psych package

```
# Overall summary of rt
df1 |>
  describe(omit = TRUE) # omit non-numeric vectors
```

20 Descritives of your numeric variables per each level of the predictors

```
# Condition level summary of rt
describe(rt_log ~ condition, data=df1) # remember, tilde means modelled by
```

21 Exercise: use the describe function from the *psych* package to summarise both overall and group trends from the confidence rating participants gave after each decision.

22 Summarising the categorical variables

- In the long data format (which is the go-to for R) each row represents a unique observation in the data.
- So, when you summarise categorical data, you need to input the number of rows into the calculation to compute overall proportions.

23 Visualising categorical data trends

Proportion of Robot Compliance per Condition


```
# How often were participants correct in their route selection?

df1 |>
    group_by(condition,
        accuracy) |>
    summarise(n = n(),
        .groups = 'drop') |>
```

```
mutate(freq = n / total_n) |>
 mutate(freq = round(freq * 100, digits = 2))
## # A tibble: 6 x 4
  condition accuracy
                       n freq
    <fct>
           <fct> <int> <dbl>
##
## 1 baseline correct
                      402 34.2
## 2 baseline incorrect 87 7.4
## 3 No-ToM correct 308 26.2
## 4 No-ToM incorrect 29 2.47
## 5 ToM
          correct 322 27.4
## 6 ToM
            incorrect 28 2.38
```

```
p_acc <-
  df1 |>
  group_by(condition,
           accuracy) |>
  summarise(n = n(),
            .groups = 'drop') |>
  mutate(freq = n / total_n) |>
  mutate(freq = round(freq * 100, digits = 2))
p_acc |>
  ggplot(aes(x = accuracy,
                y = freq,
                fill = condition,
                group = condition)) +
  geom_col(stat = "identity",
           position = "dodge") +
  labs(title = "Proportion of Response Accuracy per Condition",
       x = "Route Selection Accuracy",
       y = "Proportion of Responses (%)") +
  theme minimal()
```

25 CLEANUP 18

24 Wrap up

- Today we covered
 - How to wrangle and summarise numeric and categorical data
 - Had brief explosure to checking the normality of numeric distributions

Route Selection Accuracy

- You got your first taste of ggplot2 plotting
- Next week there are no official lectures or tutorials. Please get in touch to discuss anything. I'm happy to help de-bug your code.

25 Cleanup

```
# Clear data
rm(list = ls()) # Removes all objects from environment

# Clear packages
p_unload(all) # Remove all contributed packages

# Clear plots
```

26 REFERENCES 19

```
graphics.off() # Clears plots, closes all graphics devices

# Clear console
cat("\014") # Mimics ctrl+L
```

26 References