

Fig. 1A

Fig. 1B

Fig. 1C

4/36

Fig. 2

Fig. 2A

Fig. 2B

Fig. 3

Fig. 4

Fig. 5

Fig. 6

NOTE: Each READ command may be to either bank. DQM is LOW.

Fig. 7

DON'T CARE

NOTE: Each READ command may be to either bank. DQM is LOW.

Fig. 8

NOTE: A CAS latency of three is used for illustration. The READ command may be to any bank, and the WRITE command may be to any bank. If a CAS latency of one is used, then DQM is not required.

DON'T CARE

Fig. 9

☒ DON'T CARE

NOTE: DQM is LOW.

Fig. 10

Fig. 11

NOTE: A CAS latency of two is used for illustration. The WRITE command may be to any bank and the READ command may be to any bank. DQM is LOW. A READ to the bank undergoing the WRITE ISM operation may output invalid data. For more details, refer to Truth Tables 4 and 5.

 DON'T CARE

Fig. 12

Fig. 13

Fig: 14

ADDRESS RANGE

		Bank	Row	Column	
Bank 3	3	FFF	FFH		256K-Word Block 15
	3	C00	00H		
	3	BFF	FFH		256K-Word Block 14
	3	800	00H		
	3	7FF	FFH		256K-Word Block 13
	3	400	00H		
	3	3FF	FFH		256K-Word Block 12
	3	000	00H		
	2	FFF	FFH		256K-Word Block 11
	2	C00	00H		
	2	BFF	FFH		256K-Word Block 10
	2	800	00H		
	2	7FF	FFH		256K-Word Block 9
	2	400	00H		
	2	3FF	FFH		256K-Word Block 8
	1	000	00H		
Bank 1	1	FFF	FFH		256K-Word Block 7
	1	C00	00H		
	1	BFF	FFH		256K-Word Block 6
	1	800	00H		
	1	7FF	FFH		256K-Word Block 5
	1	400	00H		
	1	3FF	FFH		256K-Word Block 4
	1	000	00H		
	0	FFF	FFH		256K-Word Block 3
	0	C00	00H		
	0	BFF	FFH		256K-Word Block 2
	0	800	00H		
	0	7FF	FFH		256K-Word Block 1
	0	400	00H		
	0	3FF	FFH		256K-Word Block 0
	0	000	00H		

Word-wide (x16)

Software Lock = Hardware-Lock Sectors

RP# = V_{HH} to unprotect if either the
block protect or device protect bit is set.

Software Lock = Hardware-Lock Sectors

RP# = V_{ccto} unprotect but must be V_{HH}
if the device protect bit is set.See BLOCK PROTECT/UNPROTECT SEQUENCE for
detailed information.

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

27/36

Fig. 23

Fig: 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig: 31

36/36

Fig. 32