Geschwindigkeitsmessung von Fahrzeugen durch Audio-Analyse

Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig
unauffällig
leichte Bedienung

ANSÄTZE

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) $(vgl.\ Martinshorn)$

$$\boldsymbol{v} = \frac{\boldsymbol{k} - \boldsymbol{1}}{\boldsymbol{k} + \boldsymbol{1}} \cdot \boldsymbol{c} \qquad mit \quad k = \frac{f_1}{f_2}$$

LAUTSTÄRKE-ÄNDERUNG

Konzept

"Je näher, desto lauter" \Rightarrow Pro Abstandsverdopplung: Pegel nimmt um 6 dB ab

$$d_2 = d_1 * 10^{\left(\frac{|L_1 - L_2|}{20}\right)} \quad und \quad v = \frac{\Delta d}{\Delta t}$$

ERGEBNISSE

- → Akkurate Berechnung
 - → Keine Konstanten notwendig
 - → Klares Geräusch notwendig (z. B. lauter Auspuff)

- → Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)
- → Konstanteneingabe notwendig (Abstand Mikrofon Straße)

 → Sohr anfällig für Mossfohlor (7 B. starker Wind)
 - → Sehr anfällig für Messfehler (z. B. starker Wind)

?

jugend forscht