## Fatigue Failure in Metals

- Metallic machine parts subjected to repetitive/fluctuating/alternate/variables stresses fail at a stress value much lower than the stress required to cause failure on a single application of load. This is referred to as fatigue failure.
- Fatigue failure accounts for about 90% of all service failures due to mechanical causes.
- Fatigue failure usually initiates at a point of stress concentration such as a sharp corner or a notch.
- While failures due to static loads give a visible warning (yielding, large deformation), fatigue failure gives no warning. It is sudden and total, and hence dangerous.
- A fatigue failure has an appearance similar to a brittle fracture, as the fracture surfaces are flat and perpendicular to the stress axis with the absence of necking.

# Stages in Fatigue Failure in Metals



Stage I: Crack initiation (normally not visible to naked eye)

Stage II: Crack propagation
(appearance of beach marks/clamshell marks)

Stage III: Final fracture
(The remaining material cannot support the loads, leading to fracture)



clamshell

Shigley's Mechanical Engineering Design Salil S. Kulkarni  $https://en.wikipedia.org/wiki/Atlantic\_surf\_clam\#/media/File:Spisula\_solidissima\_shell.jpg$ 

# Examples of Fatigue Failures



Fatigue fracture surface of a forged connecting rod of AISI 8640 steel. The fatigue crack origin is at the left edge,



Fatigue fracture surface of a 200 mm diameter piston rod of an alloy steel steam hammer used for forging. Fatigue fracture is caused by pure tension where surface stress concentrations are absent and a crack may initiate anywhere in the cross section.









| $\sigma_{max}$ : max stress   | $\sigma_{min}$ : min stress |
|-------------------------------|-----------------------------|
| $\sigma_a$ : stress amplitude | $\sigma_m$ : mean stress    |
| $\sigma_r$ : stress range     |                             |

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$$

$$|\sigma_{max} - \sigma_{min}|$$

$$R = \frac{\sigma_{min}}{\sigma_{max}}$$
 Stress ratio

$$\sigma_a = \frac{|\sigma_{max} - \sigma_{min}|}{2}$$

$$\frac{|\sigma_{max} - \sigma_{min}|}{2} \qquad A = \frac{\sigma_a}{\sigma_m} = \frac{1 - R}{1 + R} \quad \text{Amplitude ratio}$$

Fluctuating stress

$$\sigma_r = \sigma_{max} - \sigma_{min}$$

# Rotating Bending Fatigue Testing Machine





# S-N Diagram for a Steel Alloy



1 kpsi = 6.895 MPa

Shigley's Mechanical Engineering Design

### Fatigue Life Methods

Attempt to predict the life in number of cycles to failure, N, for a specific level of loading.

- Stress life method used for high cycle fatigue ( $N \ge 10^3$ )
  - Based on stress levels only, assumes stresses are within elastic limit
  - Easiest to implement for a wide range of design applications
  - Has ample supporting data (experimental results)
  - Works best when the load amplitudes are predictable and consistent over the life of the part
  - Is the least accurate approach, especially for low-cycle applications.
- Strain life method used for low cycle fatigue ( $N \le 10^3$ )
  - Involves detailed analysis of the plastic deformation at localized regions.
  - Gives a good picture of the crack initiation stage
  - In applying this method, several idealizations must be made and hence uncertainties exist in the results. Hence not very widely used.
- Linear elastic fracture mechanics method
  - Assumes a crack is already present and detected.
  - It is employed to predict crack growth with respect to stress intensity.
  - Used in conjunction with computer codes and a periodic inspection program.

Salil S. Kulkarni

# Stress Life Approach

- The part is designed based on the material's fatigue strength (or **fatigue/endurance limit**) and a safety factor.
- Attempts to keep the stress levels so low that the crack initiation stage never begins



- Presence of fatigue/endurance limit for Ferrous alloys and titanium
- Absence of well defined fatigue/endurance limit for nonferrous allows like aluminium alloys
- Presence of a well defined endurance limit indicates infinite-life if cycled below the endurance limit

Collins, Failure of Materials in Mechanical Design

# Stress Life Approach – Endurance Limits and Fatigue Strengths of Common Metals

Steels 
$$\sigma'_e \approx \begin{cases} 0.5\sigma_{ult} & \sigma_{ult} < 1400 \text{ MPa} \\ 700 \text{ MPa} & \sigma_{ult} \ge 1400 \text{ MPa} \end{cases}$$

Cast Iron 
$$\sigma'_e \approx \begin{cases} 0.4\sigma_{ult} & \sigma_{ult} < 400 \text{ MPa} \\ 160 \text{ MPa} & \sigma_{ult} > 400 \text{ MPa} \end{cases}$$

 $\sigma'_e$ ,  $\sigma'_f$  are the endurance limit or fatigue strength obtained in lab conditions using polished specimens using bending fatigue tests

$$\sigma'_{f@5e8} \approx \begin{cases} 0.4\sigma_{ult} & \sigma_{ult} < 330 \text{ MPa} \\ 130 \text{ MPa} & \sigma_{ult} \geq 300 \text{ MPa} \end{cases}$$

$$\sigma'_{f@5e8} \approx \begin{cases} 0.4\sigma_{ult} & \sigma_{ult} < 280 \text{ MPa} \\ 100 \text{ MPa} & \sigma_{ult} > 280 \text{ MPa} \end{cases}$$

These are only estimates and are to be use only if the S-N data is unavailable and must be used with caution

Copper

Aluminium

# Estimating Cycles to Failure in the High Cycle Regime



The number of cycles to failure in the high cycle regime up to  $10^6$  (endurance limit) can be estimated using the Basquin relation

$$\sigma_a = \sigma_f'(2N)^b$$

 $\sigma'_f$  and b are material constants. If they are not readily available, they can be estimated using the values of the alternate stress required for failure at two distinct points, typically at  $N_I = 10^3$  and

$$b = \frac{\log\left(\frac{(\sigma_a)_1}{(\sigma_a)_2}\right)}{\log\left(\frac{N_1}{N_2}\right)}, \ \sigma'_f = \frac{(\sigma_a)_1}{(2N_1)^b} = \frac{(\sigma_a)_2}{(2N_2)^b}$$

specimen fails at  $N = 10^3$   $(\sigma_a)_1 \approx f \sigma_{ult}$  if no data is available (See next slide for f)

# Estimate of Fatigue Strength Fraction f of $S_{ut}$ at $10^3$ cycles for

$$S_e = 0.5 S_{ut}$$
 at  $10^6$  cycles



### Problem – No Endurance limit Correction & Zero Mean Stress

Given a 1050 HR (hot rolled) steel, estimate

- (a) the rotating-beam endurance limit at 10<sup>6</sup> cycles.
- (b) the fatigue strength of a polished rotating-beam specimen corresponding to 10<sup>4</sup> cycles to failure
- (c) the expected life of a polished rotating-beam specimen under a completely reversed

stress of 380 MPa.

#### Endurance strength Endurance strength $s2 := 0.5 \cdot sult = 310 \text{ MPa}$ N2 := 10

#### Stress amplitude corresponding to 1000 cycles

$$s1 := f \cdot sult = 533.2 \text{ MPa}$$
  $N1 := 10$ 

To find:

Fatigue strength at 
$$N := 10^4$$

 $b := \frac{\log_{\mathbf{e}} \left( \frac{s1}{s2} \right)}{\log_{\mathbf{e}} \left( \frac{N1}{N2} \right)} = -0.0785 \qquad sf := \frac{s2}{(2 \cdot N2)^b} = 968.3945 \text{ MPa}$ Answers

Fatigue strength at 
$$N = 10000$$
  
 $sN := sf \cdot (2 \cdot N) = 445.0212 \text{ MPa}$ 

Number of cycles to failure at stress amplitude sp = 380 MPa

nbay

 $Np := \frac{1}{2} \cdot \left(\frac{sp}{sf}\right)^{\overline{b}} = 74772.5822$  approximately 74700 cycles

# Endurance Limit Modifying Factors

$$\sigma_e = k_a k_b k_c k_d k_e k_f \sigma_e'$$

 $\sigma_e$  = endurance limit of the machine part at the critical location

 $k_a$  = surface condition modification factor (highly polishes sample has a higher endurance limit as compared to an unpolished sample)

 $k_b$  = size modification factor (smaller sample has larger endurance limit as compared to a larger sample)

 $k_c$  = load modification factor (parts subjected to bending have higher endurance as compared to parts subjected to axial loads and torsion)

 $k_d$  = temperature modification factor (endurance limit for steel decreases for temperatures > 300° C)

 $k_e$  = reliability factor (higher reliability requirements leads to a lower value of  $k_e$ )

 $k_f$  = miscellaneous-effects modification factor (accounts for reduction in endurance limit due to all other factors – residual stress, corrosion, cyclic frequency)

 $\sigma'_e$  = rotary-beam test specimen endurance limit

# Endurance Limit Modifying Factors

#### Surface Factor $k_a$

$$k_a = a\sigma_{ult}^b$$

|                        | Factor a               |                       | Exponent |
|------------------------|------------------------|-----------------------|----------|
| Surface Finish         | S <sub>ut</sub> , kpsi | S <sub>ut</sub> , MPa | ь        |
| Ground                 | 1.34                   | 1.58                  | -0.085   |
| Machined or cold-drawn | 2.70                   | 4.51                  | -0.265   |
| Hot-rolled             | 14.4                   | 57.7                  | -0.718   |
| As-forged              | 39.9                   | 272.                  | -0.995   |

#### Size Factor $k_b$

For bending and torsion

$$k_b = \begin{cases} 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 \le d \le 254 \text{ mm} \end{cases}$$

For non rotating round bar in bending or noncircular c/s see Shigley

For axial loading  $k_b = 1$ 

# $\mathbf{k}_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$

#### Temperature Factor $k_d$

| Temperature, °C | S <sub>T</sub> /S <sub>RT</sub> | If $\sigma'$ is known      |
|-----------------|---------------------------------|----------------------------|
| 20              | 1.000                           | If $\sigma'_e$ is known.   |
| 50              | 1.010                           | then                       |
| 100             | 1.020                           | $S_T$                      |
| 150             | 1.025                           | $k_d = \frac{S_T}{S_{RT}}$ |
| 200             | 1.020                           |                            |
| 250             | 1.000                           | If $\sigma'_e$ is unknown  |
| 300             | 0.975                           |                            |
| 350             | 0.943                           | then, calculate i          |
| 400             | 0.900                           | using temperatu            |
| 450             | 0.843                           | <u> </u>                   |
| 500             | 0.768                           | compensated $S_T$          |
| 550             | 0.672                           | And use $k_d = 1$          |
| 600             | 0.549                           | And use $n_d - 1$          |

# Endurance Limit Modifying Factors

#### Reliability Factor $k_e$

| Reliability, % | Transformation Variate $z_a$ | Reliability Factor $k_{ m e}$ |
|----------------|------------------------------|-------------------------------|
| 50             | 0                            | 1.000                         |
| 90             | 1.288                        | 0.897                         |
| 95             | 1.645                        | 0.868                         |
| 99             | 2.326                        | 0.814                         |
| 99.9           | 3.091                        | 0.753                         |
| 99.99          | 3.719                        | 0.702                         |
| 99.999         | 4.265                        | 0.659                         |
| 99.9999        | 4.753                        | 0.620                         |

$$\sigma_e = k_a k_b k_c k_d k_e k_f \sigma_e'$$

#### Miscellaneous-Effects Factor $k_f$

Factors including residual stress, corrosion, cyclic frequency, electrolytic plating, metal spraying, frettage corrosion

# Stress Concentration and Notch Sensitivity

- Have looked at the theoretical or geometrical stress concentration factors  $(K_t, K_{ts})$  earlier it depends on the geometry and loading
- Not all materials are equally sensitive to the presence of geometrically discontinuous
- For materials which are not fully sensitive to the presence of geometric discontinuous, a reduced value of  $K_t$  ( $Kt_s$ ) are used.
- This reduced factor is referred to as fatigue stress concentration factor  $K_f$  or  $K_{fs}$

$$\sigma_{max} = K_f \sigma_o \text{ or } \tau_{max} = K_{fs} \tau_o$$

• Notch sensitivity factor is defined as

$$q = \frac{K_f - 1}{K_t - 1}$$
 or  $q_{shear} = \frac{K_{fs} - 1}{K_{ts} - 1}$ 

• q = 0 indicates that the material is insensitive to a notch while q = 1 indicates that the material is fully sensitive to the notch

# Stress Concentration and Notch Sensitivity

Notch-sensitivity charts for steels and UNS A92024-T wrought aluminum alloys subjected to reversed bending or reversed axial loads.



For a given material, geometric discontinuity and loading determine  $K_t$  and q. Using the equation for the notch sensitivity find  $K_f$ .

$$K_f = 1 + q(K_t - 1)$$

The fatigue stress-concentration factor is then used as a multiplier of the nominal stress. We will use to modify both the mean stress component and the alternating stress component

### Problem – Zero Mean Stress & Endurance Limit Correction

A 1050 hot-rolled steel bar has been machined to a diameter of 2.5 cm. It is to be placed in reversed axial loading for 10000 cycles to failure at room temperature.

Using ASTM minimum properties, and a **reliability of 99 percent**, estimate the endurance limit, fatigue strength at 10000 cycles and the number of cycles to fail at  $\sigma_a = 380$  MPa.

### Problem – Zero Mean Stress & Endurance Limit Correction

#### UTS for HR 1050 steel

$$sult := 620 \text{ MPa}$$
  $f := 0.86$ 

#### Endurance strength

$$s2 := 0.5 \cdot sult = 310 \text{ MPa}$$
  $N2 := 10$ 

#### Correction Factors

#### Calculation of surface factor

$$a := 4.51$$
  $bsurF := -0.265$ 

$$ka := a \cdot \left(\frac{sult}{1 \text{ MPa}}\right)^{bsurF} = 0.8207$$

$$kb := 1$$
 No size effect for axial loading

$$kc := 0.85$$
 Load factor

$$kd := 1$$
 Temperature effect

$$ke := 0.814$$
 reliability factor

$$kf := 1$$
 Miscellaneous factor

$$s2C := ka \cdot kb \cdot kc \cdot kd \cdot ke \cdot kf \cdot s2 = 176.0345 \text{ MPa}$$

$$s1 := f \cdot sult = 533.2 \text{ MPa} \quad N1 := 10$$

Problem: Find the fatigue strength at 
$$N := 10000$$

#### Number of cycles to fail at sp := 380 MPa

$$b := \frac{\log_{\mathbf{e}} \left( \frac{s1}{s2C} \right)}{\log_{\mathbf{e}} \left( \frac{N1}{N2} \right)} = -0.1604 \qquad sf := \frac{s2C}{\left( 2 \cdot N2 \right)^b} = 1804.9991 \, \text{MPa}$$

#### Answers

#### Fatigue strength at N = 10000

$$sN := sf \cdot (2 \cdot N)^b = 368.5185 \text{ MPa}$$

#### Number of cycles to fail at sp = 380 MPa

$$Np := \frac{1}{2} \cdot \left(\frac{sp}{sf}\right)^{\frac{1}{b}} = 8259.3729$$
 Approximately 8200 cycles

#### Effect of Mean Stress on Endurance Limit



Tensile mean stress has a detrimental on the fatigue life while compressive mean stress has a beneficial effect

41

# Effect of Tensile Mean Stress on the Fatigue Life



Effects of Mean Stress on Fatigue Strength of Steels based on 10<sup>7</sup> to 10<sup>8</sup> Cycles



Effects of Mean Stress on Fatigue Strength of Aluminum based on  $5 \times 10^8$  Cycles

- A parabola called the Gerber line, can be fitted to the data with reasonable accuracy.
- A straight line connecting the fatigue strength with the ultimate strength, called the modified Goodman line, is a reasonable fit to the lower envelope of the data.

Norton, Machine Design, An Integrated Approach

## Effect of Mean Stress on the Fatigue Life



- Compressive mean stresses have a beneficial effect
- Tensile mean stresses have a detrimental effect
- To reduce the effects of alternating tensile stresses one deliberately introduce mean compressive stresses
- One way to do this is to create **residual compressive stress** in the material in regions

  where large alternating components are expected

Norton, Machine Design, An Integrated Approach

# Fatigue Criteria in Presence of Mean Stress



 $\sigma_e$  is the modified/corrected endurance limit

Soderberg line  $\frac{\sigma_a}{\sigma_e} + \frac{\sigma_m}{\sigma_y} = 1$ 

Modified Goodman line  $\frac{\sigma_a}{\sigma_e} + \frac{\sigma_m}{\sigma_{ult}} = 1$ 

Gerber line  $\frac{\sigma_a}{\sigma_e} + \left(\frac{\sigma_m}{\sigma_{ult}}\right)^2 = 1$ 

SME-elliptic line  $\left(\frac{\sigma_a}{\sigma_e}\right)^2 + \left(\frac{\sigma_m}{\sigma_y}\right)^2 = 1$ 

Yield (Langer) line  $\sigma_a + \sigma_m = \sigma_y$ 

Smith-Watson-Topper Criterion

$$\sigma_e = \sqrt{\sigma_{max}\sigma_a} = \sqrt{(\sigma_m + \sigma_a)\sigma_a}$$

If N is the factor of safety then replace  $\sigma_m$  and  $\sigma_a$  with  $N\sigma_m$  and  $N\sigma_a$ , respectively

# Factor of Safety (FOS) in the Presence of Mean Stress using augmented modified Goodman diagram









Norton, Machine Design, An Integrated Approach Salil S. Kulkarni

#### Finite Life in Presence of Mean Stress



- At point P, the part has infinite life
- At point Q, the part will fail before 10<sup>6</sup> cycles (finite life)
- Want to estimate the number of cycles when it fails
- Data is generally available for completely reversed loading
- Procedure: Find the equivalent complete reversed stress amplitude  $\sigma'_a$  and then use the Basquin equation to estimate the number of cycles to failure

$$\sigma_a' = \sigma_f' (2N_f)^b$$

#### Finite Life in Presence of Mean Stress

Multiple approaches available to estimate the equivalent fully reversed stress amplitude,  $\sigma'_{\alpha}$ corresponding to  $(\sigma_m, \sigma_a)$ 

#### Approach based on Goodman Diagram



From similar triangles

$$\frac{\sigma_a'}{\sigma_{ult}} = \frac{\sigma_a}{(\sigma_{ult} - \sigma_m)}$$

Therefore

$$\frac{\sigma_a'}{\sigma_{ult}} = \frac{\sigma_a}{(\sigma_{ult} - \sigma_m)} \qquad \sigma_a' = \frac{\sigma_a}{\left(1 - \frac{\sigma_m}{\sigma_{ult}}\right)}$$

Approach based on Smith-Watson-Topper (SWT) criterion

$$\sigma_a' = \sqrt{\sigma_{max}\sigma_a} = \sqrt{(\sigma_m + \sigma_a)\sigma_a}$$

- Approach based on Goodman diagram is widely used but is overly conservative and inaccurate
- SWT is reasonably accurate and **does not** require any material properties

#### Problem – Non Zero Mean Stress

A 1050 hot-rolled steel bar has been machined to a diameter of 2.5 cm. It is to be placed in reversed axial loading for 10000 cycles to failure at room temperature.

Using ASTM minimum properties, and a **reliability of 99 percent**, estimate the endurance limit, and the number of cycles to fail at  $\sigma_a = 160 \text{ MPa}$ ,  $\sigma_m = 100 \text{ MPa}$  using

- 1. approach based on the Goodman diagram
- 2. Approach based on the SWT criterion

### Problem – Endurance Limit Correction & Non Zero Mean Stress

#### UTS for HR 1050 steel

sult := 620 MPaf := 0.86

#### Endurance strength

 $s2 := 0.5 \cdot sult = 310 \text{ MPa}$  N2 := 10

#### Correction Factors

#### Calculation of surface factor

a := 4.51 bsurF := -0.265

$$ka := a \cdot \left( \frac{sult}{1 \text{ MPa}} \right)^{bsurF} = 0.8207$$

kb := 1 No size effect for axial loading

$$kc := 0.85$$
 Load factor

kd := 1 Temperature effect

ke := 0.814 reliability factor

$$kf := 1$$
 Miscellaneous factor

 $s2C := ka \cdot kb \cdot kc \cdot kd \cdot ke \cdot kf \cdot s2 = 176.0345 \text{ MPa}$ 

 $s1 := f \cdot sult = 533.2 \text{ MPa}$  N1 := 10

Endurance limit ME423 - IIT Bombay

Find Number of cycles to fail at sa := 160 MPa sm := 100 MPa

Constants for the Basquin curve
$$b := \frac{\log_{\mathbf{e}} \left(\frac{s1}{s2C}\right)}{\log_{\mathbf{e}} \left(\frac{N1}{N2}\right)} = -0.1604$$

$$sf := \frac{s2C}{(2 \cdot N2)^b} = 1804.9991 \text{ MPa}$$

#### Answers

equivalent fully reversed stress amplitude

$$sap := \frac{sa}{\left(1 - \frac{sm}{sult}\right)} = 1.9077 \cdot 10^{8} \text{ Pa}$$

$$Nf := \frac{1}{2} \cdot \left(\frac{sap}{sf}\right)^{\frac{1}{b}} = 6.0589 \cdot 10^{5}$$

#### Number of cycles to fail is approximately 605000

 $saswt := \sqrt{(sa + sm) \cdot sm} = 161.2452 \,\text{MPa}$ Equivalent stress amplitude based on

SWT criteria 161.2 MPa. Less than the

Endurance limit – does not fail

In general loading can be classified as

- Completely reversing simple loads (zero mean, but only one mode of loading)
- Fluctuating simple loads (nonzero mean, but only one mode of loading)
- Combinations of loading modes (axial, torsion, bending, e.g. rotating shaft subject to a static bending moment and carrying a torque)

#### Complications:

- The loading components can be at same/different frequencies, same/different phases
- As a result, in general, the direction of principal stresses change with time and damage accumulates in different planes

#### Classification of combined (multiaxial) loading:

Simple multiaxial loading

loading where direction of principal stresses do not change with time

Complex multiaxial

loading where direction of principal stresses change with time



Simple Multiaxial Loading (same frequency, same phase)  $\sigma_{xx} = a_o \sin 2\pi t$   $\sigma_{xy} = b_o \sin 2\pi t$ 

Complex Multiaxial Loading (same frequency, different phase)  $\sigma_{xx} = a_o \sin 2\pi t$   $\sigma_{xy} = b_o \sin(2\pi t + \pi/3)$ 

#### Simple Multiaxial Loading





#### Complex Multiaxial Loading



Direction of principal planes changes



Complex Multiaxial Loading (different frequencies)  $\sigma_{xx} = a_o \sin 2\pi t$ 

$$\sigma_{xy} = b_o \sin 4\pi t$$

#### Complex Multiaxial Loading



Direction of principal planes

ME423 - IIT Bombay

changes

#### Approach:

- To analyse static failures we used the idea of von Mises stress to combine various stress components to come up with a single number characterizing the state of stress at a point.
- Here too we will use the von Mises stress to find the equivalent alternating component and the equivalent mean components



#### Biaxial state of stress

$$\sigma_{vma} = (\sigma_{xxa}^2 - \sigma_{xxa}\sigma_{yya} + \sigma_{yya}^2 + 3\sigma_{xya})^{1/2}$$

Equivalent alternating stress

$$\sigma_{vmm} = (\sigma_{xxm}^2 - \sigma_{xxm}\sigma_{yym} + \sigma_{yym}^2 + 3\sigma_{xym})^{1/2}$$
 Equivalent mean stress

#### Here

$$\sigma_{xxa} = \frac{(\sigma_{xx})_{max} - (\sigma_{xx})_{min}}{2}, \ \sigma_{xxm} = \frac{(\sigma_{xx})_{max} + (\sigma_{xx})_{min}}{2} \qquad \sigma_{yya} = \frac{(\sigma_{yy})_{max} - (\sigma_{yy})_{min}}{2}, \ \sigma_{yym} = \frac{(\sigma_{yy})_{max} + (\sigma_{yy})_{min}}{2}$$

$$\sigma_{xya} = \frac{(\sigma_{xy})_{max} - (\sigma_{xy})_{min}}{2}, \ \sigma_{xym} = \frac{(\sigma_{xy})_{max} + (\sigma_{xy})_{min}}{2}$$

#### Triaxial state of stress

$$\sigma_{vma} = \frac{1}{\sqrt{2}} \left[ (\sigma_{xxa} - \sigma_{yya})^2 + (\sigma_{yya} - \sigma_{zza})^2 + (\sigma_{zza} - \sigma_{xxa})^2 + 6(\sigma_{xya}^2 + \sigma_{yza}^2 + \sigma_{zxa}^2) \right]^{1/2}$$

$$\sigma_{vmm} = \frac{1}{\sqrt{2}} \left[ (\sigma_{xxm} - \sigma_{yym})^2 + (\sigma_{yym} - \sigma_{zzm})^2 + (\sigma_{zzm} - \sigma_{xxm})^2 + 6(\sigma_{xym}^2 + \sigma_{yzm}^2 + \sigma_{zxm}^2) \right]^{1/2}$$

# Steps for Multiaxial Loading

- Theoretical/geometric stress concentration factors and notch sensitivity will be different for different loadings. Calculate the corresponding fatigue stress concentration factors
- Generate two stress elements—one for the alternating stresses and one for the mean stresses.
- Apply the appropriate fatigue stress concentration factors to each of the stresses; that is, apply  $(K_f)_{\text{bending}}$  for the bending stresses,  $(K_{fs})_{\text{torsion}}$  for the torsional stresses, and  $(K_f)_{\text{axial}}$  for the axial stresses.
- Calculate an equivalent von Mises stress for each of these two stress elements,  $\sigma_a$  and  $\sigma_m$
- Select a fatigue failure criterion.
- For the endurance limit,  $\sigma_e$ , the only correction factors that are affected by multiple load types are the size factor  $k_b$  and the load factor  $k_c$ .
- Find  $k_b$ , calculate it for each load and select the lowest one.
- The only load factor to be applied is corresponding to the axial load if it happens to be the dominant mode of loading. The load factor corresponding to the torsion load should not
- be applied as the that mode of loading is already considered while calculating the von Mises

# Cumulative Damage

A machine part is subject to  $n_1$  (given) fully reversed stress cycles with amplitude  $(\sigma_a)_1$  (given). It is then subject to  $n_2$  (not known) fully reversed stress cycles of amplitude  $(\sigma_a)_2$  (given) before it eventually fails. Find  $n_2$ . Assume  $(\sigma_a)_1 > \sigma_e$ ,  $(\sigma_a)_1 > \sigma_e$ . Assume that the equation of the Basquin curve is known.



# Cumulative Damage – Palmergren – Miner Theory

A machine part is subject to  $n_1$  (given) fully reversed stress cycles with amplitude  $(\sigma_a)_1$  (given). It is then subject to  $n_2$  (not known) fully reversed stress cycles of amplitude  $(\sigma_a)_2$  (given) before it eventually fails. Find  $n_2$ . Assume  $(\sigma_a)_1 > \sigma_e$ ,  $(\sigma_a)_1 > \sigma_e$ . Assume that the equation of the Basquin curve is known.



Salil S. Kulkarni

ME423 - IIT Bombay

# Cumulative Damage – Palmergren-Miner Theory

In general, if fully reversed stress cycles with amplitude  $(\sigma_a)_1, (\sigma_a)_2, \ldots, (\sigma_a)_k$  act for  $n_1, n_2, \ldots, n_k$  cycles with k $\sum n_i = n_{total}, \ n_{total} \ \text{total number of cycles to failure}$ 

then

$$\sum_{i=1}^{k} \frac{n_i}{N_i} = 1$$

and

$$\sum_{i=1}^{k} \frac{n_i}{N_i} = 1$$

$$\sum_{i=1}^{k} \frac{\alpha_i}{N_i} = \frac{1}{n_{total}}, \sum_{i=1}^{k} \alpha_i = 1, \ \alpha_i = \frac{n_i}{n_{total}}$$

 $\alpha_1, \alpha_2, \ldots, \alpha_k$  are the fraction of the total life spent at  $(\sigma_a)_1, (\sigma_a)_2, \ldots, (\sigma_a)_k$ 

#### Limitations of the Miner Rule:

Does not take into account the sequence in which the stress cycles are applied

# Saint Venant's Principle



In each of the three cases the resultant

load is the same

Saint Venant's principle states that the displacement, strain and stress distributions caused by <u>statically</u> equivalent force distributions in parts of the body which are sufficiently far from the loading parts are approximately the same

Accordingly the displacement, strain and stress distributions at section CD will be approximately the same in the three cases

The displacement, strain and stress distributions at section AB will be different in the three cases

# Design Factor and Factor of Safety

A solid circular rod undergoes a bending moment M = 100 Nm. Assuming that the yield strength of the material is 170 MPa and a **design factor of 2.5**, determine the minimum diameter of the rod. From the available sizes, choose an appropriate sized rod and determine the **factor of safety**.

Given:  $M = 100 \text{ Nm}, \, \sigma_y = 170 \text{ MPa}, \, n_d = 2.5$ 

To find: diameter of the circular rod and the factor of safety

For a rod of diameter d, the maximum bending stress is given by

$$\sigma_{max0} = \frac{Md/2}{I} = \frac{Md/2}{\frac{\pi}{64}d^4} = \frac{32M}{\pi d^3}$$

Using the design factor, the component is to be designed for  $\sigma_{max}$  given by

$$\sigma_{max} = n_d \sigma_{max0}$$

The minimum diameter,  $d_{min}$ , required to withstand  $\sigma_{max}$  is obtained by solving

$$\sigma_y = \sigma_{max}$$

From the catalog select  $d_s > d_{min}$  which is closest to  $d_{min}$ . The factor of safety is then given

60

by

$$FOS = \frac{\sigma_y}{32M/(\pi d_s^3)}$$

# Design Factors to be used for Ductile Materials

| 1.25 to 2.0    | Design of structures under static load for which there is a high level of confidence in all design data                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 to 2.5     | Design of machine elements under dynamic loading with average confidence in all design data                                                              |
| 2.5 to 4.0     | Design of static structures or machine element under dynamic loading with uncertainty about loads, material properties, environment                      |
| 4.0 and higher | Design of static structures or machine element under dynamic loading with uncertainty about some combinations of loads, material properties, environment |

# Design Factors to be used for Brittle Materials

|   |            | Design of structures under static load for which there is a high level of confidence in all design data |
|---|------------|---------------------------------------------------------------------------------------------------------|
| 1 | 4.0 to 8.0 | Design of static structures or machine element under dynamic loading with                               |
|   |            | uncertainty about loads, material properties, environment                                               |