постановка задачи

- 1. Произвести обзор современных тенденций по моделям теплопереноса в многослойных структурах
- 2. Разработать физико-математическую оптимизационную модель теплопереноса в многослойных полупроводниковых наноструктурах;
- 3. Применить разработанную оптимизационную модель к изучению процессов теплопереноса в арсенид галлиевых структурах типа AlAs/GaAs
- 4. Сравнить результаты моделирования с данными, полученными из экспериментов и с помощью пакетных приложений.

полупроводниковые приборы

ДИСКРЕТНЫЕ ТРАНЗИСТОРЫ

ПРЕИМУЩЕСТВА

ИССЛЕДОВАНИЯ В ОБЛАСТИ
НАНОЭЛЕКТРОНИКИ ВАЖНЫ ДЛЯ
РАЗРАБОТКИ НОВЫХ ПРИНЦИПОВ, А
ВМЕСТЕ С НИМИ И НОВОГО
ПОКОЛЕНИЯ СВЕРХМИНИАТЮРНЫХ
СУПЕРБЫСТРОДЕЙСТВУЮЩИХ
СИСТЕМ ОБРАБОТКИ ИНФОРМАЦИИ

ТЕРМОРЕСТОР В ВИДЕ БУСИНКИ, ПОКРЫТОЙ ЭПОКСИДНОЙ СМОЛОЙ

ЛАЗЕРНЫЙ ДИОД

ПРОБЛЕМЫ

ПОСТОЯННЫЙ РОСТ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ЭЛЕМЕНТНОЙ БАЗЫ В СОВОКУПНОСТИ С МИНИАТЮРИЗАЦИЕЙ ЭЛЕКТРОНИКИ ВЛЕЧЕТ ЗА СОБОЙ УВЕЛИЧЕНИЕ УДЕЛЬНОЙ ВЫДЕЛЯЕМОЙ ТЕПЛОВОЙ ЭНЕРГИИ, КОТОРУЮ НЕОБХОДИМО ОТВОДИТЬ ДЛЯ ПОДДЕРЖАНИЯ РАБОТОСПОСОБНОСТИ УСТРОЙСТВ. ПРОБЛЕМА ОТВОДА ТЕПЛА УВЕЛИЧИВАЕТСЯ ПО МЕРЕ РОСТА СЛОЕВ ПОЛУПРОВОДНИКОВЫХ НАНОСТРУКТУР

ИНТЕГРАЛЬНЫЕ СХЕМЫ

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

ТЕПЛОПЕРЕНОС- БАЗИРУЕТСЯ

НА ТРЕХ ВИДАХ ТЕПЛОПЕРЕДАЧИ;

- -ТЕПЛОПРОВОДНОСТЬ
- -КОНВЕКЦИЯ
- -ИЗЛУЧЕНИЕ

ТВЕРДЫЕ РАСТВОРЫ

ТВЕРДЫЕ РАСТВОРЫ НА ОСНОВЕ СОЕДИНЕНИЙ A^3 B^5 - Сходные по СТРУКТУРЕ, Т.Е. ИМЕЮЩИЕ ОДИНАКОВЫЕ КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ С БЛИЗКИМИ ПО ЗНАЧЕНИЮ ПЕРИОДАМИ, И СВОЙСТВАМИ, СПОСОБНЫЕ ОБРАЗОВЫВАТЬ МЕЖДУ СОБОЙ

ТЕПЛОПРОВОДНОСТЬ

-ПЕРЕНОС ТЕПЛА
ОСУШЕСТВЛЯЕТСЯ В РЕЗУЛЬТАТЕ
ПЕРЕДАЧИ ЭНЕРГИИ ОТ ЧАСТИЦ С
БОЛЬШЕЙ ЭНЕРГИЕЙ ЧАСТИЦАМ С
МЕНЬШЕЙ ЭНЕРГИЕЙ ПРИ
НЕПОСРЕДСТВЕННОМ
КОНТАКТЕГОРЯЧИХ ЧАСТЕЙ
СИСТЕМЫ С ХОЛОДНЫМИ

ФОНОНЫ

ОГРАНИЧЕННЫЕ В ПРОСТРАНСТВЕ ВОЛНОВЫЕ ВОЗБУЖДЕНИЯ РЕШЕТКИ ТВЕРДОГО ТЕЛА, ТИПА ВОЛНОВЫХ ПАКЕТОВ

ГЕТЕРОСТРУКТУРА –

СТРУКТУРА, ОБРАЗОВАННАЯ СОВОКУПНОСТЬЮ НЕСКОЛЬКИХ ГЕТЕРОПЕРЕХОДОВ (С РАЗМЕРОМ ДО НЕСКОЛЬКИХ ДЕСЯТКОВ НАНОМЕТРОВ)

ЗОННАЯ СТРУКТУРА ВЕЩЕСТВА

- Ev – ВАЛЕНТНАЯ ЗОНА, ОБРАЗОВАВШАЯСЯ В ХОДЕ РАСЩЕПЛЕНИЯ УРОВНЕЙ ВАЛЕНТНЫХ ЭЛЕКТРОНОВ

 $Ec ext{-}$ 3ОНА ПРОВОДИМОСТИ, СЛЕДУЮЩАЯ ЗА ВАЛЕНТНОЙ ЗОНОЙ, И СЧИТАЮЩАЯСЯ ЗОНОЙ РАЗРЕШЕННЫХ ЭНЕРГИЙ

Eg — ЗАПРЕЩЕННАЯ ЗОНА, РАСПОЛОЖЕННАЯ МЕЖДУ ВАЛЕНТНОЙ ЗОНОЙ Ev И ЗОНОЙ ПРОВОДИМОСТИ E_c

СВЕРХРЕШЕТКА –

ТВЕРДОТЕЛЬНАЯ ПЕРИОДИЧЕСКАЯ СТРУКТУРА, В КОТОРОЙ НАРЯДУ С ПОТЕНЦИАЛОМ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ ДЕЙСТВУЕТ ВСТРОЕННЫЙ ПОТЕНЦИАЛ. – ОДНОМЕРНЫЙ ПОТЕНЦИАЛ V(Z), ПЕРИОД КОТОРОГО d МЕНЬШЕ ДЛИНЫ СВОБОДНОГО ПРОБЕГА ЭЛЕКТРОНОВ, НО БОЛЬШЕ ПОСТОЯННОЙ РЕШЕТКИ a

ГЕТЕРОПЕРХОД - под

НИМ БУДЕМ ПОНИМАТЬ
КОНТАКТ ДВУХ РАЗЛИЧНЫХ ПО
ХИМИЧЕСКОМУ СОСТАВУ
ПОЛУПРОВОДНИКОВ,
ПРИ КОТОРОМ
КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА
ОДНОГО МАТЕРИАЛА БЕЗ
НАРУШЕНИЯ ПЕРИОДИЧНОСТИ
ПЕРЕХОДИТ В РЕШЕТКУ
ДРУГОГО МАТЕРИАЛА

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ –ВЕЩЕСТВА,КОТОРЫЕ ПО СВОЕЙ УДЕЛЬНОЙ ПРОВОДИМОСТИ ЗАНИМАЮТ ПРОМЕЖУТОЧНОЕ МЕСТО МЕЖДУ ПРОВОДНИКАМИ И ДИЭЛЕКТРИКАМИ И ОТЛИЧАЮТСЯ ОТ ПРОВОДНИКОВ СИЛЬНОЙ ЗАВИСИМОСТЬЮ УДЕЛЬНОЙ ПРОВОДИМОСТИ ОТ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ, ТЕМПЕРАТУРЫ И РАЗЛИЧНЫХ ВИДОВ ИЗЛУЧЕНИЯ

ПЕРЕНОС ТЕПЛА - ОСОБЕННОСТИ НАНОМИРА

- происходит замена классических моделей процесса на квантовые, базирующиеся на основе законов квантовой механики (уравнение Шредингера);
- начальные составляющие части системы, такие как электрон, дырка, экситон и иные, а также сама система из атомов могут быть описаны волновой функцией, зависящей от переменных, которые определяют степень свободы системы и которая может рассматриваться как амплитуда вероятности обнаружения частицы в установленных координатах и временном факторе.

НАНОМИР – ОБЪЕКТЫ, РАЗМЕР КОТОРЫХ НЕ ПРЕВЫШАЕТ100НМ $(1HM = 10^{-9}M)$ (ПРИРОДНЫЕ И ПОЛУЧЕННЫЕ В РЕЗУЛЬТАТЕ ЭКСПЕРИМЕНТОВ И НАПРАВЛЕННОГО ИЗГОТОВЛЕНИЯ)

ПРОСТЫЕ ОБЪЕКТЫ:

- -НАНОТОЧКИ()D-ОБЪЕКТЫ) -НАНОМОСТИКИ(1D-ОБЪЕКТЫ И
- КВАЗИ 1D- ОБЪЕКТЫ)
- -HAHOCTEHKИ(2D-ОБЪЕКТЫ)
- -НАНОЧАСТИЦЫ(ДИЭЛЕКТРИЧЕСКИЕ, ПОЛУПРОВОДНИКОВЫЕ,
- МЕТАЛЛИЧЕСКИЕ)
- -НАНОПРОВОЛОКИ
- НАНОТРУБКИ
- НАНОКЛАСТЕРЫ
- -НАНАОСЫ
- -НАНОЗАЗОРЫ И НАНОНАПОРЫ

БОЛЕЕ СЛОЖНЫЕ ОБЪЕКТЫ:

- -НАНОПРОВОЛОКИ С ПОКРЫТИЯМИ
- -СВЕРХРЕШЕТКИ
- -НАНОТРУБКИ С НАНОЧАСТИЦАМИ ВНУТРИ
- СЛОЖНЫЕ НАНОПРОВОЛОКИ
- -нанокомпозиты
- НАНОЖИДКОСТИ
- -нанопыль

КОНТАКТНЫЕ СТРУКТУРЫ:

- КОНТАКТЫ НАНОПРОВОЛОКА-
- НАНОТРУБКА
- -КОНТАКТЫ НАНОЧАСТИЦА-НАНОПРОВОЛОКА, НАНОЧАСТИЦА-
- НАНОТРУБКА
- -КОНТАКТЫ НАНОПРОВОЛОК
- РАЗЛИЧНЫХ МАТЕРИАЛОВ
- -КОНТАКТЫ НАНОИГЛ С
- ПОДЛОЖКАМИ
- КОНТАКТЫ НАНОСТРУКТУР ЧЕРЕЗ жидкости

СЛОЖНЫЕ СТРУКТУРЫ(НАНОУСТРОЙСТВА):

- -НАНОТРАНЗИСТОРЫ
- -ПОЛУПРОВОДНИКОВЫЕ НАНОЛАЗЕРЫ
- -СИСТЕМЫ ЗАПИСИ И ЧТЕНИЯ ИНФОРМАЦИИ С
- **НАНОРАЗМЕРАМИ**
- -НАНОТЕРМОРЕЗИСТОРЫ
- -НАНОТЕРМОМИКРОСКОПЫ

МНОГОСЛОЙНЫЕ СТРУКТУРЫ - СВЕРХРЕШЕТКИ

Сверхрешетка GaAs/AlAs и профиль дна зоны проводимости и верха валентной зоны перпендикулярно слоям сверхрешетки.

 $E_{g1}\;$ и $E_{g2}\;$ - ширины запрещенной зоны свехрешетки

При осуществлении контакта двух полупроводников, имеющих разную ширину запрещенной зоны $E_{\rm g1}$ и $E_{\rm g2}$ устанавливается термодинамическое равновесие. В таком состоянии уровень Ферми является единым.

Граница гетероперхода — важная составляющая часть гетероструткур- в ее пределах происходит изменение свойств полупроводникового материала (структура энергетических зон, эффективные массы носителей заряда и их подвижность)

модель коллуэя

МОДЕЛЬ КОЛЛУЭЯ

Модель используется для нахождения теплопроводности для объемного материала. В модели Коллуэя применяется решение уравнения Больцмана в приближении времени релаксации. Недостаток модели: учитываются только нормальные процессы между фононами (нельзя обеспечить конечную величину теплопроводности)

Выражение теплопроводности имеет вид:

$$\lambda = [k_B/(2\pi^2 \nu)] (k_B T/\hbar)^3 (I_1 + I_2^2/I_3),$$

где k_B — постоянная Больцмана, = 1, 380649*10-23 Дж/к; \hbar - постоянная Дирака = h/ 2π , где h — постоянная Планка; ν —скорость звука в кристалле; l_1 l_2 l_3 ток

ВРЕМЕНА РЕЛАКСАЦИИ

 au_c — комбинированное время релаксации; au_N - время релаксации по нормальным процессам рассеивания; $au_c^{-1} = au_U^{-1} + au_N^{-1} + au_i^{-1} + au_b^{-1}$ au_U - время релаксации за счет процессов с перебросом; au_i — время релаксации за счет процессов рассеивания на примесях, неоднородностях, дефектах; au_b — время релаксации при рассеивании на границах.

$$I_{1} = \int_{0}^{\theta_{D_{S}}/T} \tau_{c} \, \xi^{4} \exp(\xi) \, [\exp(\xi) - 1]^{-1} \, d\xi$$

$$I_{2} = \int_{0}^{\theta_{D_{S}}/T} \tau_{c} / \tau_{N} \, \xi^{4} \exp(\xi) \, [\exp(\xi) - 1]^{-1} \, d\xi$$

$$I_{3} = \int_{0}^{\theta_{D_{S}}/T} (1 - \tau_{c} / \tau_{N}) \, \tau_{N}^{-1} \, \xi^{4} \exp(\xi) \, [\exp(\xi) - 1]^{-1} \, d\xi$$

НЕОБХОДИМОЕ ПРЕОБРАЗОВАНИЕ МОДЕЛИ КОЛЛУЭЯ\

чтобы получить теплопроводность конечной величины следует произвести модификацию модели Коллуэя, приняв во внимание резистивные процессы рассеивания, протекающие с потерей импульса, т.е. процессы с перебросом.

выбор модели

Физико-математическая модель теплопереноса в многослойных полупроводниковых наноструктурах (заимствована модель из работ * и **)

Уравнение Больцмана для фононов

$$\overrightarrow{\nu_s} \cdot \nabla f_s(\overrightarrow{k}) = \left[\frac{\partial f_s(\overrightarrow{k})}{\partial t}\right]_{st}$$

где ν_s — скорость звука; $f_s(\overrightarrow{\mathbf{k}})$ — функция распределения фононов , s — й ветки; k — волновой вектор; индекс st означает «со столкновениями»

$$\overrightarrow{v_s} \cdot \frac{\partial f_s(\overrightarrow{k})}{\partial T} \cdot \nabla T = -\frac{f_s^0(\overrightarrow{k}) - f_s(\overrightarrow{k})}{\tau_s^*(\overrightarrow{k})}$$

где индекс s означает продольные акустические (LA) и поперечные (TA) фононы, f_s^0 – равновесная функция распределения; $\tau_s^*(\overrightarrow{k}) = (1+\beta/\tau_{N_s})\tau_s$

Проведем исследование теплопроводности внутреннего слоя, который лежит в границах от z=0 до z = $l_{\rm w}$, где $l_{\rm w}$ - толщина слоя

В случае внутреннего слоя градиент температуры направлен вдоль оси х. Тогда, уравнение Больцмана для фононов, принимает вид

ДВУМЕРНАЯ
ГЕТЕРОСТРУКТУРА;
ВНУТРЕННИЙ СЛОЙ
ТОЛЩИНОЙ LW И
ДВА БАРЬЕРНЫХ
ОДИНАКОВОЙ
ТОЛЩИНЫ LB

$$v_{sx} \frac{\partial T}{\partial x} \frac{\partial f_s^0(\vec{k})}{\partial T} + v_{sz} \frac{\partial \delta f_s(\vec{k})}{\partial z} + \frac{\delta f_s(\vec{k})}{\tau_s^*} = 0 (1)$$

где v_{sx} , v_{sz} — скорости фононов по осям x и z соответственно, $f_s^0 =$ равновесная функция распределения.

ВЫБОР МОДЕЛИ (ПРОДОЛЖЕНИЕ)

Представим гетероструктуру в своем базовом состоянии как структуру, имеющую три слоя: внутренний слой шириной l_w и находящийся между двумя барьерными слоями, имеющими одинаковую толщину l_b

$$egin{aligned} \delta f_{ec{k},s} \, (\, ec{m{v}}_{ec{k},s,} \, z) &= \ -\, m{ au}_s^* \, m{v}_{sx} \, rac{\partial T}{\partial x} rac{\partial f_{ec{k},s}^0}{\partial T} \{ 1 \, + \ m{\psi}(ec{m{v}}_{ec{k},s}) \, exp[-\, z/(m{ au}_s^* m{v}_{sz})] \} \, (2) \ \mathrm{гдe} \, m{\psi} \, - \ \mathrm{ЯВЛЯЕТСЯ} \, \mathrm{НЕКОТОРОЙ} \, m{\phi}$$
УНКЦИЕЙ

Вводим параметры рассеивания p^+, p^- , показывают вероятность зеркального отраженияот верхней и нижней границы Значения $(1 - p^+)$, $(1 - p^-)$ показывают вероятности отражения от указанных границ диффузионно

Схема распространения фононов

$$\begin{split} \delta f_{\vec{k},s}^{+} \left(\overrightarrow{\nu}_{\vec{k},s}, z \right) &= -\tau_{s}^{*} \cdot \nu_{sx} \frac{\partial T}{\partial x} \, \frac{\partial f_{\vec{k},s}^{0}}{\partial T} \, \Theta^{+}(p^{+}, p^{-}, \nu_{sz}) \qquad (\nu_{sz} > 0); \\ \delta f_{\vec{k},s}^{-} \left(\overrightarrow{\nu}_{\vec{k},s,} z \right) &= -\tau_{s}^{*} \cdot \nu_{sx} \frac{\partial T}{\partial x} \, \frac{\partial f_{\vec{k},s}^{0}}{\partial T} \, \Theta^{-}(p^{+}, p^{-}, \nu_{sz}) \qquad (\nu_{sz} < 0); \\ \mathsf{rAe}, \\ \Theta^{+}(p^{+}, p^{-}, \nu_{sz}) &= 1 - \left[\frac{(1-p^{-}) + p^{-}(1-p^{+})exp(-l_{w}/\tau_{s}^{*}\nu_{sz})}{1-p^{+}p^{-}exp(-2\,l_{w}/\tau_{s}^{*}\nu_{sz})} \right] exp[(-z/(\tau_{s}^{*}\nu_{sz})] \\ \Theta^{-}(p^{+}, p^{-}, \nu_{sz}) &= 1 - \left[\frac{(1-p^{+}) + p^{+}(1-p^{-})exp(l_{w}/\tau_{s}^{*}\nu_{sz})}{1-p^{+}p^{-}exp(2\,l_{w}/\tau_{s}^{*}\nu_{sz})} \right] exp[(l_{w}-z)/(\tau_{s}^{*}\nu_{sz})] \end{split}$$

ВЫБОР МОДЕЛИ(ПРОДОЛЖЕНИЕ)

$$q_s = -\frac{1}{l_w} \frac{\partial T}{\partial x} \frac{k_B}{(2\pi)^3} \left(\frac{k_B}{\hbar}\right)^3 T^3 \int_0^{\theta_{D_s}/T} \frac{\tau_s^*}{\nu_s} \frac{\xi^4 \exp(\xi)}{[\exp(\zeta) - 1]^2} d\xi \cdot I(p^+, p^-, \eta(\xi))$$

где,

$$I(p^{+}, p^{-}, \eta(\xi) = \int_{0}^{l_{w}} dz \int_{0}^{2\pi} \cos^{2}\phi d\phi \int_{0}^{\pi/2} \Theta^{+} \sin^{3}\theta d\theta + \int_{\pi/2}^{\pi} \Theta^{-} \sin^{3}\theta d\theta$$
(4)

где ϕ – азимутальный угол; θ - полярный угол.

ПОДСТАВЛЯЯ В УРАВНЕНИЕ ТЕПЛОПРОВОДНОСТИ Ф-И (3) И (4) ПОЛУЧИМ

$$q_{s}$$

$$= -\frac{4\pi}{3} \frac{\partial T}{\partial x} \frac{k_{B}}{(2\pi)^{3}} \left(\frac{k_{B}}{\hbar}\right)^{3} T^{3} \int_{0}^{\theta_{D_{s}}/T} \frac{\tau_{s}^{*}}{\nu_{s}} \frac{\xi^{4} \exp(\xi)}{[\exp(\zeta) - 1]^{2}} \left[1 - (3/4 \gamma (\eta(\xi), p^{+}, p^{-}))\right] d\xi$$

$$\gamma\left(\eta(\xi),p^+,p^-\right) = \int\limits_0^{\pi/2} \frac{\left[1-exp\left(-\eta_s\left(\xi\right)\right)/cos\,\theta\right)\right]}{1-p^+p^-\exp\left(-2\eta_s\left(\xi\right)\right)/cos\,\theta\right)} \times \\ \times \left[2-p^+-p^-+(p^++p^--2p^+p^-)\exp\left(-\eta_s\left(\xi\right)\right)/cos\,\theta\right)\right] cos\theta sin^3\,\theta d\theta d\phi$$
 Здесь $\eta_S=l_W/\Lambda_S^*=l_W/\left(\tau_S^*\nu_S^-\right)$ — средняя длина свободного пробега фононов, соответствующая времени релаксации τ_S^*

ВЫБОР МОДЕЛИ (ПРОДОЛЖЕНИЕ)

Отсюда получаем теплопроводность внутреннего слоя $(\lambda_{ws}=-\vec{q}_s/\nabla T)$ для LA- и TA-мод соответственно:

$$\lambda_{ws} = \frac{k_B}{6\pi^2} \left(\frac{k_B}{\hbar}\right)^3 T^3 \int_0^{\theta_{D_s}/T} \frac{\tau_s^*}{\nu_s} \frac{\xi^4 \exp(\xi)}{[\exp(\zeta) - 1]^2} \left[1 - (3/4 \ \gamma \ (\eta(\xi), p^+, p^-))\right] d\xi$$

Вводя дебаевскую плотность числа состояния фононов $D_s^D = \omega^2/(2\pi^2 - {v_s}^2)$ перепишем последнюю формулу как:

$$\lambda_{ws} = \frac{1}{3} \left(\frac{k_B}{\hbar} \right) k_B T \int_{0}^{\theta_{D_s}/T} \frac{\tau_s^*}{v_s} \frac{\xi^4 \exp(\xi)}{[\exp(\zeta) - 1]^2} \cdot D_s^D \cdot [1 - (3/4 \ \gamma \ (\eta(\xi), p^+, p^-)] \ d\xi$$

Общую теплопроводность, полученную от вклада всех поляризаций (одна продольная – LA и две поперечные – TA) можно записать в виде $\lambda_w = \lambda_{wLA} + \lambda_{wTA}$. Отметив, что если $p^+, p^- > 1$, $(1 - (3/4) \ \gamma) > 1$, приходим к выражению для теплопроводности объемного тела

$$\lambda_o = \sum_{s} \frac{1}{3} \frac{k_B}{\hbar} k_B T \int_{0}^{\theta_{D_s}/T} \frac{\tau_s^*}{\nu_s} \frac{\xi^4 \exp(\xi)}{[exp(\xi) - 1]^2} D_s^D d\xi$$

* H. P. Ziambaras E., Phonon knudsen flow in nanostructured semiconductor systems, Journal Applied Physics, 99.054303.2006.

ОБЗОР ПОДХОДОВ К МОДЕЛЯМ ТЕПЛОПЕРЕНОСА В МНОГОСЛОЙНЫХ СТРУКТУРАХ

ТЕМА СТАТЬИ	«Вычисление эффективного коэффициента теплопроводности сверхрешетки на основе кинетического уравнения Больцмана с использованием первопринципных расчетов» (Известия вузов) (2)	«Расчет теплопереноса в наноразмерных гетероструктурах» (НАНОМАТЕРИАЛЫ И НАНОТЕХНОЛОГИИ, Известия вузов) (1)	«Обратная коэффициентная задача теплопереноса в слоистых наноструктурах» (Известия вузов, материалы электронной техники)
АВТОРЫ	К.К. Абгарян; И.С. Колбин	К.К. Абгарян; И.С. Колбин	К.К. Абгарян; Р.Г. Носков; Д.Л. Ревизников
ГОД	2019	2018	2017
МЕТОД РЕШЕНИЯ	модель модального подавления, аппроксимирующая решение кинетического уравнения Больцмана для фононов.	модель, в которой распределение тепла предполагалось постоянным внутри слоя, при этом температура ступенчато изменялась на интерфейсах слоев	восстановление коэффициентов термического сопротивления на границах соприкосновения слоев, изготовленных из разных материалов, с помощью решения обратной задачи теплопереноса
ИССЛЕДУЕМЫЙ МАТЕРИАЛ	AlAs/GaAs	AlAs/GaAs	AlAs/GaAs
КОЛИЧЕСТВО СЛОЕВ	Структуры с периодом в 1, 2, 3, 6, 10, 17, 25, 40 монослоев	N= 1000	От 2 до 5 слоев
ПО	almaBTE		Не указано

АЛЬТЕРНАТИВНЫЕ МОДЕЛИ ПО ОБЗОРАМ РАБОТ

Рассмотрим иные подходы к моделированию процесса теплопереноса в наноразмерных гетероструктурах на примере работ

Выбранная модель	модель работы	Модель статьи 2	Модель статьи 1
Основной базовый принцип	БАЗОВОЕ УРАВНЕНИЕ - УРАВНЕНИЕ БОЛЬЦМАНА С ПРЕОБРАЗОВАНИЕМ МОДЕЛИ КОЛЛУЭЯ И УЧЕТОМ КНУДСОНОВСКОГО ДВИЖЕНИЯ ФОНОНВ	МОДЕЛЬ МОДАЛЬНОГО ПОДАВЛЕНИЯ, АППРОКСИМИРУЮЩАЯ РЕШЕНИЕ КИНЕТИЧЕСКОГО УРАВНЕНИЯ БОЛЬЦМАНА	МОДЕЛЬ, ПРЕДПОЛАГАЕТ РАСПРЕДЕЛЕНИЕ ТЕЛПА ВНУТРИ СЛОЯ ПОСТОЯННЫМ, ПРИ ЭТОМ ТЕСПЕРАТУРА СТУПЕНЧАТО ИЗМЕНЯЛАСЬ НА ИНТЕРФЕЙСАХ СЛОЕВ
Достоинства	В ПОЛНОМ ОБЪЕМЕ РАССМОТРЕНЫ МЕХАНИЗМЫ РАССЕЯНИЯ АККУСТИЧЕСКИХ ФОНОНВ ВНУТРИ СЛОЯ: КАК ЗАРКАЛЬНОЕ ОТРАЖЕНИЕ ТАК И ДИФФУЗНОЕ	ПЕРВОПРИНЦИПНЫЕ РАСЧЕТЫ ПОЗВОЛЯЮТ ЛЕГКО НАХОДИТЬ ДИСПЕРСИОННЫЕ ПАРАМЕТРЫ И ПАРАМЕТРЫ РАССЕИВАНИЯ (данные получены из открытой библиотеки проекта ALMA) МОДЕЛЬ ОБРАБАТЫВАЕТСЯ НА ПК almabte и показывает хорошие результаты в Сопоставлении с данными Эксперимента	ДЛЯ РАСЧЕТА РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПО СЛОЯМ ИСПОЛЬЗОВАЛСЯ ГИБРИДНЫЙ КОНЕЧНО-РАЗНОСТНЫЙ НЕЙРОСЕТЕВОЙ АЛГОРИТМ, ПРИМЕНЕНИЕ КОТОРОГО ПОКАЗАЛО ХОРОШУЮ СХОДИМОСТЬ ДАННЫХ РАСЧЕТОВ С ЭКСПЕРИМЕНТАЛЬНЫИМИ ДАННЫМИ
Недостатки	НЕ РАСММАТРИВАЕТСЯ ГРАНИЧНОЕ ТЕРМОСОПРОТИВЛЕНИЕ ВВИДУ СЛОЖНОСТИ ФОРМУЛЫ МОДЕЛИ ТРУДНО ПОДОБРАТЬ ИНСТРУМЕНТ ДЛЯ ЕЕ РЕШЕНИЯ	ДЛЯ УВЕЛИЧЕНИЯ ТОЧНОСТИ НЕОБХОДИМО НАЛИЧИЕ ПРОФИЛЯ ПОСЛОЙНОГО РАСПРЕДЕЛЕНИЯ ВЕЩЕСТВ	БЫЛ РАССМОТРЕН СЛУЧАЙ С ОДИНАКОВЫМ РАЗМЕРОМ СЛОЕВ И ОДИНАКОВЫМ РАСПРЕДАЛЕНИЕМ ТЕМПЕРАТУРЫ ВНУТРИ СЛОЯ.

► ПРОГРАММНЫЙ КОМПЛЕКС almaBTE

ALMAMABTE - ЭТО ПРОГРАММНЫЙ ПАКЕТ, КОТОРЫЙ РЕШАЕТ ЗАВИСЯЩЕЕ ОТ ПРОСТРАНСТВА И ВРЕМЕНИ ТРАНСПОРТНОЕ УРАВНЕНИЕ БОЛЬЦМАНА ДЛЯ ФОНОНОВ, ИСПОЛЬЗУЯ В КАЧЕСТВЕ ВХОДНЫХ ДАННЫХ ТОЛЬКО ВЫЧИСЛЕННЫЕ ВЕЛИЧИНЫ АВ-INITIO.

АВ INITIO (ЛАТ. ОТ НАЧАЛА) В ФИЗИКЕ — РЕШЕНИЕ ЗАДАЧИ ИЗ ПЕРВЫХ ОСНОВОПОЛАГАЮЩИХ ПРИНЦИПОВ БЕЗ ПРИВЛЕЧЕНИЯ ДОПОЛНИТЕЛЬНЫХ ЭМПИРИЧЕСКИХ ПРЕДПОЛОЖЕНИЙ. ОБЫЧНО ПОДРАЗУМЕВАЕТСЯ ПРЯМОЕ РЕШЕНИЕ УРАВНЕНИЙ КВАНТОВОЙ МЕХАНИКИ.

ПРОГРАММА МОЖЕТ ПРОГНОЗИРОВАТЬ ПЕРЕНОС ФОНОНОВ В ОБЪЕМНЫХ КРИСТАЛЛАХ И СПЛАВАХ, ТОНКИХ ПЛЕНКАХ, СУПЕРСЛОЯХ И МНОГОЯРУСНЫХ СТРУКТУРАХ С РАЗМЕРАМИ В ДИАПАЗОНЕ НИЙ-МИМ. СРЕДИ МНОГИХ ДРУГИХ ВЕЛИЧИН, ПРОГРАММА МОЖЕТ ВЫДАВАТЬ ТЕПЛОПРОВОДНОСТИ И ЭФФЕКТИВНЫЕ ТЕПЛОПРОВОДНОСТИ, ПРОСТРАНСТВЕННО-РАЗРЕШЕННЫЕ СРЕДНИЕ ТЕМПЕРАТУРНЫЕ ПРОФИЛИ И РАСПРЕДЕЛЕНИЯ ТЕПЛОВЫХ ТОКОВ, РАЗРЕШЕННЫЕ ПО ЧАСТОТЕ И ПРОСТРАНСТВУ. ЕГО ПЕРВООСНОВНЫЙ ХАРАКТЕР ДЕЛАЕТ ALMABTE ОСОБЕННО ПОДХОДЯЩИМ ДЛЯ ИССЛЕДОВАНИЯ НОВЫХ МАТЕРИАЛОВ И СТРУКТУР.

> АЛГОРИТМ РАСЧЕТА С ИСПОЛЬЗОВАНИЕМ ПК almaBTE

выводы

Были рассмотрены различные математические модели и алгоритмы, применяемые для изучения теплопереноса в арсенид галлиевых наноструктурах.

Принципиальным по мнению автора работы является необходимость учитывать рассеяние фононов как внутри слоев гетероструктуры так и на границе (интерфейсе), в алгоритмической зависимости от вариантов поведения термического сопротивления сверхрешетки:

- Возможна интерференция волн, отраженных от разных интерфейсов, которая приводит к разрывам частотных распределений фононов. Такое положение наблюдается в случае, если средняя длина свободного пробега превышает период более чем в 10 раз;
- Если средняя длина свободного пробега не достаточна для разрыва частот, то решающим влиянием на термическое сопротивление решетки будет оказывать единичный интерфейс.
- Для термического сопротивления многослойной системы безусловное влияние оказывает период решетки и зависимость теплопроводности от материалов. Увеличение периода решетки до определенных границ (пока толщина слоя не превысит порогового значения) приводит к увеличению теплопроводности. Однако в случае, если период решетки становится больше критической толщины, которая равна длине свободного пробега фононов, рост теплопроводности больше не наблюдается.

Именно сочетание всех указанных факторов для внесения в модель теплопереноса, позволит создать модель, способную дать вычисленные данные максимально приближенные к данным, полученным экспериментальным путем.

ЗАКЛЮЧЕНИЕ

- Осуществлен обзор подходов к моделям теплопереноса в многослойных структурах.
- Изучены различные математические модели и алгоритмы, применяемые для изучения теплопереноса в арсенид галлиевых наноструктурах.
- Проанализированы достоинства и недостатки рассмотренных моделей и предложены подходы к решению поставленной задачи

СПАСИБО ЗА ВНИМАНИЕ!