Análisis Multivariado: Tarea 1

Análisis Descriptivo de Datos Multivariados

Fecha de entrega: 24 de febrero.

1. (1 punto) Para un punto \mathbf{x} en \mathbb{R}^p con p > 1 considerar para $t \in [-\pi, \pi]$ el mapeo $f : \mathbb{R}^p \to \mathbb{R}$ definido como

$$f(\mathbf{x}) = \begin{cases} \frac{x_1}{\sqrt{2}} + x_2 \sin(t) + x_3 \cos(t) + x_4 \sin(2t) + x_5 \cos(2t) + \dots + x_n \sin\left(\frac{p}{2}t\right) & \text{si } p \text{ es par} \\ \frac{x_1}{\sqrt{2}} + x_2 \sin(t) + x_3 \cos(t) + x_4 \sin(2t) + x_5 \cos(2t) + \dots + x_n \cos\left(\frac{(p-1)}{2}t\right) & \text{si } p \text{ es impar} \end{cases}$$

Mostrar que para dos puntos \mathbf{x} , \mathbf{y} en \mathbb{R}^p , se cumple que

$$||f_{\mathbf{x}}(t) - f_{\mathbf{v}}(t)||_{L_2} = \pi ||\mathbf{x} - \mathbf{y}||^2,$$

donde

$$||f_{\mathbf{x}}(t) - f_{\mathbf{y}}(t)||_{L_2} = \int_{-\pi}^{\pi} [f_{\mathbf{x}}(t) - f_{\mathbf{y}}(t)]^2 dt.$$

¿Cómo se relaciona esta propiedad con la identificación de clusters y outliers?

2. (2 puntos) Mostrar que si \mathbf{H}_n es la matriz de centrado definida como

$$\mathbf{H}_n = \mathbf{I}_{n \times n} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T$$

entonces

- i. \mathbf{H}_n es simétrica.
- ii. \mathbf{H}_n es idempotente.
- iii. Para una matriz $\mathbf{X}_{n \times p}$ la media muestral de $\mathbf{W} = \mathbf{H}_n \mathbf{X}$ es el vector $\mathbf{0}_p$.
- iv. La matriz de varianza y covarianza ${\bf S}$ de ${\bf X}$ se puede escribir como

$$\mathbf{S} = \frac{1}{n-1} \left(\mathbf{X}^T \mathbf{H}_n \mathbf{X} \right).$$

1

- 3. (1 punto) Sea **S** una matriz cuadrada tal que $\mathbf{S} = \mathbf{A}^T \mathbf{A}$, donde $\mathbf{A}_{n \times p}$ entonces
 - i. S es simétrica.
 - ii. S es semidefinida positiva.

Concluir por tanto que la matriz de varianza y covarianza muestral y la matriz de correlación muestral son simétricas y semidefinidas positivas.

- 4. (1 punto) Mostrar que si \mathbf{x} es un vector p-variado donde $\Sigma = \mathsf{Var}(\mathbf{x})$ entonces $\mathsf{Det}(\Sigma) \geq 0$.
- 5. (1 punto) Sea $\mathbf{X}_{n \times p}$ una matriz de datos y considerar la transformación

$$\mathbf{Y} = \mathbf{X}\mathbf{A}^T + \mathbf{1}_n\mathbf{b}^T,$$

donde $\mathbf{A}_{q \times p}$ y $\mathbf{b}_{q \times 1}$ son constantes. Mostrar que

$$\mathbf{S}_{\mathbf{Y}} = \mathbf{A}\mathbf{S}_{\mathbf{X}}\mathbf{A}^{T}.$$

6. (1 punto) Para un vector aleatorio \mathbf{x} tal que $\mathbb{E}(\mathbf{x}) = \mu$ y $\mathsf{Var}(\mathbf{x}) = \Sigma$ definimos a las medidas de asimetría y curtosis respectivamente como

$$\beta_{1,p} = \mathbb{E}\left[(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{y} - \mu) \right]^3$$

$$\beta_{2,p} = \mathbb{E}\left[(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right]^2,$$

donde \mathbf{x} y \mathbf{y} son independientes e idénticamente distribuidas. Mostrar que estas medidas son invariantes ante transformaciones lineales.

7. (3 puntos) El archivo *wine.txt* contiene 13 variables numéricas derivadas de un análisis químico en vinos de Italia de tres viñedos diferentes. Realizar un análisis descriptivo multivariado de los datos.