THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

ABSTRACT.

1. Introduction

Aquí va la introducción.

2. Preliminaries

3. Hausdorff properties implies patch triviality

Gadgets:

A the base frame

Its point space S = pt(A).

NA is the assembly of nucleus of A.

The compact saturated sets of S,

Q(S).

The preframe of open filters of A,

 A^{\wedge} .

The preframe of open filters of $\Omega(S)$.

$$\Omega(S)^{\wedge}$$
.

The set of compact quotients

$$KA = \{j \in NA \mid A_j \text{ is compact}\}.$$

First we recall that every open filter $F\in A^\wedge$ has three faces, that is, determines (and its determine) by :

- The compact saturated $Q \in \mathcal{Q}S$.
- $\nabla \in \Omega(S)^{\wedge}$.
- The compact quotient $A \to A_F$.
- The fitted nucleus v_F .

Hoffman-Mislove can be rephrase:

There is a bijection between compact quotients of A and compact saturated sets of S

Also, if $j^* \colon A \to B$ is a monotone morphism and $F \subseteq A$, $G \subseteq B$ filters in A, B, respectively, we can produce new filters as follows

(1)
$$b \in j^*F \Leftrightarrow j_*(b) \in F$$
 and $a \in j_*G \Leftrightarrow j^*(a) \in G$

where $a \in A, b \in B$ and j_* is the right adjoint of j^* . Here $j^*F \subseteq B$ and $j_*G \subseteq A$ are filters on B and A, respectively.

Proposition 3.1. For $j = j^* \colon A \to B$ a monotone morphism and $G \in B^{\wedge}$, then $j_*G \in A^{\wedge}$.

Proof. By (1), j_*G is a filter on A. We need j_*G to satisfy the open filter condition. Let $X \subseteq A$ be such that $\bigvee X \in j_*G$, with X directed. Then

$$Y = \{j(x) \mid x \in X\}$$

is directed and $j(\bigvee X) = \bigvee j[X] = \bigvee Y \in G$. Since G is a open filter, exists $y = j(x) \in Y$ such that $y \in G$. Thus $x \in j_*G$, so that, $j_*G \in A^{\wedge}$.

Definition 3.2. A frame has KC if every compact quotient of A is a closed one. In other words every compact sublocale is close.

Denote by $\Re rm$ the subcategory of Frm of Hausdorff frames in the sense of Johnstone and Shu.

In (citar el artículo) Sexton says that $A \in \mathbf{Frm}$ is *tidy* if for all $F \in A^{\wedge}$

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$

where $d = d(\alpha) = f^{\alpha}(0)$, $f = \dot{\nabla}\{v_y \mid y \in F\}$, $v_y \in NA$ and $0 = 0_A$ (the reason for the last two clarifications will be understood later).

We want translate this same notion, but for A_j when $j \in NA$, so that, for all $F \in A_j^{\wedge}$, if $x \in F$ then $d \vee x = 1$, with d similar to before, because for this case we have that $v_y \in NA_j$ and $0_{A_j} = j(0)$.

Let's note that we need open filters F in A and in A_j , prenuclei f in A and A_j and elements d in A and in A_j . To make writing easier, we will denote by \hat{F} , \hat{f} and \hat{d} , to the open filter, prenuclei and element associated with the prenucleus, respectively, in the frame A. In the frame A_j we use the usual notation, so that, F, f and d for the open filter, prenuclei and element associated to the prenucleus.

Simmons proves in (citar el Vietoris y los resultados) that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{f^{\infty}} & A \\
U_A \downarrow & & \downarrow U_A \\
\mathcal{O}S & \xrightarrow{F^{\infty}} & \mathcal{O}S
\end{array}$$

commutes laxly, so that, $U_A \circ f^{\infty} \leq F^{\infty} \circ U_A$.

In this diagram U_A is the spatial reflection morphism, f^{∞} and F^{∞} represent the associated nuclei associatos to the filters $F \in A^{\wedge}$ and $\nabla \in \mathcal{O}S^{\wedge}$.

We prove something more general here, since we consider the diagram

$$\begin{array}{ccc}
A & \xrightarrow{\hat{f}^{\infty}} & A \\
\downarrow j & & \downarrow j \\
A_j & \xrightarrow{f^{\infty}} & A_j
\end{array}$$

Lemma 3.3. For j, f and \hat{f} as before, it holds that $j \circ \hat{f} \leq f \circ j$.

Proof. By (1) is true that

$$\hat{f} = \bigvee^{\cdot} \{v_y \mid y \in j_* F\} \quad \text{ and } \quad f = \bigvee^{\cdot} \{v_{j(y)} \mid j(y) \in F\}.$$

then, for $a \in A$ it is hold

$$v_y(a) = (y \succ a) \le \hat{f}(a) \le j(\hat{f}(a)).$$

Also, for all $a, y \in A$, $(y \succ a) \land y = y \land a$ and

$$j((y \succ a) \land y) \le j(a) \Leftrightarrow j(y \succ a) \land j(y) \le j(a)$$
$$\Leftrightarrow j(y \succ a) \le (j(y) \succ j(a)).$$

Thus

$$v_y(a) \le j(\hat{f}(a)) \le (j(y) > j(a)) = v_{j(y)}(j(a)) \le f(j(a)).$$

Therefore
$$j \circ \hat{f} \leq f \circ j$$
.

For \hat{f} and f be nuclei, we need their idempotent closeds.

Corollary 3.4. For j, f and \hat{f} as before, it is hold that $j \circ \hat{f}^{\infty} \leq f^{\infty} \circ j$

Proof. For an ordinal α we will check that $j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j$. We will do it by transfinite induction.

If $\alpha = 0$, it is trivial.

For the induction step, we assume that for α it holds. Then

$$j\circ \hat{f}^{\alpha+1}=j\circ \hat{f}\circ \hat{f}^{\alpha}\leq f\circ j\circ \hat{f}^{\alpha}\leq f\circ f^{\alpha}\circ j=f^{\alpha+1}\circ j,$$

where the first inequality is Lemma 3 and the second is true by the induction hypothesis.

If λ is a limit ordinal, then

$$\hat{f}^{\lambda} = \bigvee \{ \hat{f}^{\alpha} \mid \alpha < \lambda \}, \quad f^{\lambda} = \bigvee \{ f^{\alpha} \mid \alpha < \lambda \}$$

and

$$j \circ \hat{f}^{\lambda} = j \circ \bigvee_{\alpha < \lambda} \hat{f}^{\alpha} = \bigvee_{\alpha < \lambda} j \circ \hat{f}^{\alpha}.$$

Thus, by the induction hypothesis, we have that

$$j \circ \hat{f}^{\alpha} \le f^{\alpha} \circ j \Rightarrow \bigvee_{\alpha < \lambda} j \circ \hat{f}^{\alpha} \le \bigvee_{\alpha < \lambda} f^{\alpha} \circ j.$$

Therefore $j \circ \hat{f}^{\lambda} \leq f^{\lambda} \circ j$.

We now have the tools to prove the following:

Proposition 3.5. If A is a tidy frame, then A_i is tidy.

Proof. It is easy to prove that $F \subseteq j_*F$. Since A is tidy and $F \in A^{\wedge}$, it is true that $x \in F \Rightarrow \hat{d} \lor x = 1$,

where
$$\hat{d} = d(\alpha) = f^{\alpha}(0)$$
.

If $\hat{d} \leq d$, then $d \vee x = 1$, for $d = d(\alpha) = f^{\alpha}(j(0))$.

Thus, for Corollary 3.4

$$\hat{d} = \hat{d}(\alpha) \le j(\hat{d}(\alpha)) = j(\hat{f}^{\alpha}(0)) \le f^{\alpha}(j(0)) = d(\alpha) = d.$$

Therefore if $x \in F$, then $d \lor x = 1$ and A_i is tidy.

The block structure on a frame is an important problem and its related with some separation properties of frames.

Proposition 3.6. For $F \in A^{\wedge}$ and $Q \in \mathcal{Q}S$, if $j \in [v_Q, w_Q]$, then $U_*jU^* \in [v_F, w_F]$, where U^* is the morfism spatial reflection U_* is the right adjoint.

Proof. Since N is a functor, we have

$$\begin{array}{c|c}
A & NA \\
U & & \downarrow \\
OS & NOS
\end{array}$$

and $N(U)_*$ is the right adjoint of $N(U)^{\wedge}$. Note the following:

- (1) $N(U)(j) \le k \Leftrightarrow j \le N(U)_*k$.
- (2) If $k \in NOS$ then $N(U)(j) \le k \Leftrightarrow Uj \le kU$.
- (3) $N(U)_*k = U_*kU^*$ and $UN(U)_*k = k(U)$.

In 3), if j = k, $N(U)_*(j) = U_*jU^*$ and $UN(U)_*j = jU$. For $x \in F$

$$x \in A \xrightarrow{U^*} \mathcal{O}S \xrightarrow{j} \mathcal{O}S \xrightarrow{U_*} A$$

and $U_*(j(U(x))) = \bigwedge(S \setminus j(U(x)))$. Note that $U_*(j(U^*(x))) \subseteq \operatorname{pt} A$. Thus

$$x \in F \Leftrightarrow Q \subseteq U(x) \Leftrightarrow U(x) \in \nabla(j) = \nabla(Q) \Leftrightarrow S \setminus j(U(x)) = \emptyset$$
$$\Leftrightarrow \bigwedge (S \setminus j(U(x))) = 1 = (U_*jU^*)(x)$$
$$\Leftrightarrow x \in \nabla(U_*jU^*)$$

Therefor
$$F = \nabla (U_* j U^*)$$
.

In this way we have a function

Proposition 3.7. For every $A \in \mathcal{H}rm$ the interval corresponding to the block determined by a open filter $F \in A^{\wedge}$ is trivial, that is,

$$[v_F, w_F] = \{*\}$$

Proof. We know that for all $F \in A^{\wedge}$ the following holds: $v_F \leq w_F$. As a contradition, suppose that exists $F \in A^{\wedge}$ such that $w_F \nleq v_F$, that is, exists $a \in A$ such that $w_F(a) \not \leq v_F(a)$.

Note that $w_F(a) \neq 1$, otherwise

$$1 = w_F(a) = \bigwedge \{ p \in M \mid a \le p \} \le p$$

and this is a contradition because $p \neq 1$.

Then $1 \neq w_F(a) \nleq v_F(a)$ and for the property (H), exists $u \in A$ such that

(2)
$$u \not\leq w_F(a)$$
 and $\neg u \not\leq v_F(a)$

Due to monotony, $w_F(0) \leq w_F(a)$ and $v_F(0) \leq v_F(a)$. Thus, for 2 we have that

(3)
$$i) u \not\leq w_F(0)$$
 and $ii) \neg u \not\leq v_F(0)$.

For 3-(i) is true that $u \nleq \bigwedge M$, in particular, $u \nleq p$ for all $p \in M$. Therefore, $\neg u \leq p$ and $\neg u \leq w_F(0)$. If 3-(ii) is true, then $u \notin F$, in otherwise

$$u \in F \Rightarrow v_u \le f \Rightarrow v_u(0) = \neg u \le f(0)$$

and this is a contradition. Thus, for the Birkhoff's separation lemma, exists a completely prime filter G such that $u \notin G \supseteq F$. We take

$$q = \bigvee \{ y \in A \mid y \notin G \}$$

the point corresponding to G. Thus, $u \notin G$, $u \leq q$. If $q \notin F$, then $q \in M$ and $u \not \leq q$. Hence $u \leq q$, $u \not \leq q$ and this is a contradition.

A consequence of the Proposition 3.7 is that $v_F = w_F$, so that, $A_{v_F} = A_{w_F}$ and $A_{w_F} \simeq \mathcal{O}M \simeq \mathcal{O}Q$. Thus, for all $j \in KA$ we have that $j = v_F$. Then in the Huasdorff case

$$\begin{array}{ccc}
A & \longrightarrow & A_F \\
\downarrow & & \downarrow^g \\
\mathcal{O}S & \longrightarrow & \mathcal{O}S_{\nabla}
\end{array}$$

where g is an isomorphism and $A_F \simeq \mathcal{O}Q \simeq \mathcal{O}S_{\nabla}$.

On the other hand, $U_*u_{Q'}U^* = v_F$ if and only if $u_{Q'}U^* = U^*v_F$, for the adjuntion properties and U^* the spatial reflection morphism. Therefore

6 THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

$$A \xrightarrow{v_F} A$$

$$U_* \uparrow \downarrow U \qquad U \downarrow \uparrow U_*$$

$$\mathcal{O}S \xrightarrow{v_\nabla} \mathcal{O}S$$

so that, if $A \in \mathcal{H}rm$ then patch trivial implies KC.

The above is the proof of the following theorem.

Theorem 3.8. If $A \in \mathcal{H}rm$. then every compact quotient is isomrphic to a closed quotient of the topology of a Hausdorff space.

Proposition 3.9. Every Hausdorff frame A (in the sense of Johnstone and Shou) is tidy, that is, A is patch trivial.

Proof. \Box

REFERENCES