Genetic Risk Scores

stratification & disease trajectories

Genome-wide Association studies (GWAS)

Single nucleotide polymorphism (SNP): This is a variation in a single nucleotide (i.e., **A**, **C**, **G**, or **T**) that occurs at a specific position in the genome. A SNP usually exists as two different forms (e.g., **A** vs. **T**). These different forms are called alleles. A SNP with two alleles has three different genotypes (e.g., **AA**, **AT**, and **TT**).

Data sources & repositories

Common workflow - single-trait PRS

Common workflow - multi-trait PRS

Multiple observations suggest "biomarkers → disease" links

PRS-PheWAS analysis

Biomarkers are more heritable than disease

Mendelian Randomization

NO

NO

Is your base

data QC'ed?

s vour base

data a single

GWAS?

modeling

lassosum: Penalized regression

Standard GWAS QC should be

Verify which is the effect allele

Consider running multi-trait GWAS analysis e.g. GenomicSEM or MTAG.

to generate more powerful base data

Perform standard GWAS QC (see

Ensure $h_{rm}^{2} > 0.05$.

Target N > 100

bigsnpr: R package

for genetic analyses

diverse data

performed (see [29], Section 2.1)

Multi-PRS is a weighted sum of PRSs

i.e. $w_1(PRS_1) + w_2(PRS_2) + w_3(PRS_3) + ...$

Common workflow - multi-trait PRS

Multi-PRS is a weighted sum of PRSs
i.e. w₁(PRS₁) + w₂(PRS₂) + w₃(PRS₃) + ...

Case study - disease stratification

ARR (%)	1.1	1.3	3.0
RRR	0.36	0.32	0.46

Case study - multi-trait PRS improves disease prevalence prediction

Use of PRS for trait / disease prediction

Use of PRS for trait / disease prediction

Limitations - ethnicity / ancestry

Limitations - polygenicity & pleiotropy

- Polygenicity: many variants one trait
- Pleiotropy: one variant many traits

- Large number of associations in population-based cohorts
- Can we group them together for enhanced interpretation?

Going further - EHR's & PRS

Summary

Two complementary approaches to improve predictive performance:

- Sample size → increase in statistical power
 - Multi-trait PRS analysis

Why does multi-PRS work?

- Quantitative traits have more power
- Genetic correlation between biomarkers and disease

The multi-trait PRS model:

Genetics →Biomarkers (molecular traits) →Disease

Bioinformatics Core

