LR4: LR(1) Parsing

LR Parsing

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

SLR limitation: lack of context

Input: id = id

$$S' \to S$$

$$S \to L = R \mid R$$

$$L \to *R \mid id$$

$$R \to L$$

S'

R

id

2:
$$S \rightarrow L \bullet = R$$

 $R \rightarrow L \bullet$

Find all lookaheads for reduce $R \rightarrow L \bullet$

No! $R \rightarrow L \bullet reduce$ and $S \rightarrow L \bullet = R$ do not co-occur due to the $L \rightarrow *R$ rule

Solution: Canonical LR(1)

- Extend definition of configuration
 - Remember lookahead
- New closure method
- Extend definition of Successor

LR(1) Configurations

- [A $\rightarrow \alpha \bullet \beta$, a] for a \in T is valid for a viable prefix $\delta \alpha$ if there is a rightmost derivation
- S \Rightarrow * $\delta A \eta \Rightarrow$ * $\delta \alpha \beta \eta$ and $(\eta = a \gamma)$ or $(\eta = \epsilon \text{ and } a = \$)$
- Notation: [A $\rightarrow \alpha \bullet \beta$, a/b/c]
 - if $[A \to \alpha \bullet \beta, a]$, $[A \to \alpha \bullet \beta, b]$, $[A \to \alpha \bullet \beta, c]$ are valid configurations

LR(1) Configurations

$$S \rightarrow B B$$

 $B \rightarrow a B \mid b$

$$S \Rightarrow BB \Rightarrow BaB \Rightarrow Bab$$

 $\Rightarrow aBab \Rightarrow aaBab \Rightarrow aaaBab$

- $S \Rightarrow^*_{rm} aaBab \Rightarrow_{rm} aaaBab$
- Item $[B \rightarrow a \bullet B, a]$ is valid for **viable prefix** aaa
- $S \Rightarrow^*_{rm} BaB \Rightarrow_{rm} BaaB$

In BaB \Rightarrow BaaB the string aB is the **handle** (rhs of B)

• Also, item $[B \rightarrow a \bullet B, \$]$ is valid for viable prefix *Baa*

$$S \Rightarrow BB \Rightarrow BaB \Rightarrow BaB$$

LR(1) Closure

Closure property:

- If $[A \rightarrow \alpha \bullet B\beta, a]$ is in set, then $[B \rightarrow \bullet \gamma, b]$ is in set if $b \in First(\beta a)$
- Compute as fixed point
- Only include contextually valid lookaheads to guide reducing to B

Starting Configuration

- Augment Grammar with S' just like for LR(0), SLR(1)
- Initial configuration set is

$$I = closure([S' \rightarrow \bullet S, \$])$$

Example: closure($[S' \rightarrow \bullet S, \$]$)

$$[S' \rightarrow \bullet S, \$]$$

$$[S \rightarrow \bullet L = R, \$]$$

$$[S \rightarrow \bullet R, \$]$$

$$[L \rightarrow \bullet * R, =]$$

$$[L \rightarrow \bullet id, =]$$

$$[R \rightarrow \bullet L, \$]$$

$$[L \rightarrow \bullet * R, \$]$$

$$[L \rightarrow \bullet * R, \$]$$

$$[L \rightarrow \bullet id, \$]$$

$$[L \rightarrow \bullet id, \$]$$

$$S \rightarrow L = R \mid R$$

$$L \rightarrow * R \mid id$$

$$R \rightarrow L$$

$$S' \rightarrow \bullet S, \$$$

$$S \rightarrow \bullet L = R, \$$$

$$S \rightarrow \bullet L = R, \$$$

$$S \rightarrow \bullet L = R, \$$$

$$L \rightarrow \bullet * R, \$$$

$$L \rightarrow \bullet * R, =/\$$$

$$R \rightarrow \bullet L, \$$$

 $S' \rightarrow S$

LR(1) Successor(C, X)

- Let $I = [A \rightarrow \alpha \bullet B\beta, a]$ or $[A \rightarrow \alpha \bullet b\beta, a]$
- Successor(I, B)
 - = closure([A $\rightarrow \alpha$ B \bullet β , a])
- Successor(I, b)
 - = closure([A $\rightarrow \alpha b \bullet \beta, a]$)

LR(1) Example

LR(1) Example (contd)

LR(1) Example (contd)

		id		*	\$	S	L	R
	0	S 1		S10		7	2	13
	1		R4		R4			
	2		S 3		R5			
Productions	3	S4		S 8			5	6
$1 \mid S \to L = R$	4				R4			
$2 S \to R$	5				R5			
$3 L \to *R$	6				R1			
$\begin{array}{c c} 4 & \mathbf{L} \to \mathbf{id} \end{array}$	7				Acc			
	8	S4		S 8			5	9
	9				R3			
	10	S 1		S10			11	12
	11		R5		R5			
	12		R3		R3			
	13				R2			

 $2 \mid S \to R$

 $3 \mid L \rightarrow R$

4 $L \rightarrow id$

 $5 \mid R \rightarrow L$

LR(1) Construction

- 1. Construct $F = \{I_0, I_1, ... I_n\}$
- 2. a) if $[A \rightarrow \alpha \bullet, a] \in I_i$ and A != S'then action[i, a] := reduce $A \rightarrow \alpha$
 - b) if $[S' \rightarrow S \bullet, \$] \in I_i$ then action[i, \$] := accept
 - c) if $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ and Successor $(I_i, a)=I_j$ then action[i, a] := shift j
- 3. if Successor(I_i , A) = I_j then goto[i, A] := j

LR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state

- Note: LR(1) only reduces using A $\rightarrow \alpha$ for $[A \rightarrow \alpha \bullet$, a] if a is the next input symbol
- LR(1) states remember context by virtue of lookahead
- Possibly many more states than LR(0) due to the lookahead!
 - LALR(1) combines some states

 $S \rightarrow AaAb$

 $S \rightarrow BbBa$

 $A \rightarrow \varepsilon$

 $B \rightarrow \epsilon$

Q: Write down the LR(1) automaton and parse table for the above grammar. Is it an LR(1) grammar?

LR(1) Conditions

- A grammar is LR(1) if for each configuration set (itemset) the following holds:
 - For any item $[A \to \alpha \bullet x \beta, a]$ with $x \in T$ there is no $[B \to \gamma \bullet, x]$
 - For any two complete items [A $\rightarrow \gamma \bullet$, a] and [B $\rightarrow \beta \bullet$, b] then a != b.
- Grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) \subset LR(k)$
- Languages expressible by grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) = LR(k)$

Canonical LR(1) Recap

- LR(1) uses left context, current handle and lookahead to decide when to reduce or shift
- Most powerful parser so far (can handle more context-free grammars)
- LALR(1) is practical simplification with fewer states used by yacc/bison to avoid the very large tables generated by LR(1)

Merging States in LALR(1)

- $S' \rightarrow S$ $S \rightarrow XX$ $X \rightarrow aX$ $X \rightarrow b$
- Same Core Set
- Different lookaheads

R/R conflicts when merging

•
$$B \rightarrow d$$

 $B \rightarrow f X g$
 $X \rightarrow ...$

 If R/R conflicts are introduced, grammar is not LALR(1)!

LALR(1)

- LALR(1) Condition:
 - Assumption: merging does not introduce reduce/reduce conflicts
 - Shift/reduce cannot be introduced
- Merging brute force or step-by-step
- More compact than canonical LR, like SLR(1)
- More powerful than SLR(1)
 - Not always merge to full Follow Set

Set-of-items with Epsilon rules

