Gramatici independente de context

• gramatici de tip 2

$$G = (N, \Sigma, P, S)$$

reguli de productie de forma

$$A \rightarrow \alpha$$
, $A \in \mathbb{N}$, $\alpha \in (\mathbb{N} \cup \Sigma)^*$

derivari de stanga/ dreapta

- derivare de stânga =>_{st}
 - o derivare directă in care se înlocuieste cel mai din stânga neterminal
- derivare de dreapta =>_{dr}

o derivare directă in care se înlocuieste cel mai din dreapta neterminal

Analiza sintactica

• *analiză sintactică* pt. cuvantul w succesiunea de derivări directe:

•
$$S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n = w$$

altfel spus: reprezintã o derivare pentru cuvântul w

analiză sintactică descendentă

daçã aceastã succesiune de derivãri directe se obtine pornind de la S si terminand cu w

analiză sintactică ascendentă

daçã aceastã succesiune de derivãri directe se obtine pornind de la w si terminand cu S

Arbore de derivare

- Fie G = (N,Σ,P,S) o gramatică independentă de context. Numim arbore de derivare sau arbore de analiză sintactică un arbore cu radacina, ordonat, cu următoarele proprietăpi:
- 1. Orice nod interior o eticheta din N;
- 2. Orice nod frunza o etichet \tilde{a} din $\Sigma \cup \{\epsilon\}$
- 3. Eticheta rãdãcinii este S;
- 4. Daçã un nod are eticheta A iar nodurile succesoare acestuia, în ordine de la stânga la dreapta sunt etichetate cu $X_1, X_2, \ldots X_n$ atunci $A \rightarrow X_1 X_2 \ldots X_n$ trebuie sã fie o productie din P.

Arbore de derivare

- **frontiera** (**frontul**): nodurile terminale, în ordine de la stânga la dreapta
- etichetele lor formeaza o secventa peste Σ^*
- obs: denumirea de frontiera (front) se foloseste si pentru a denumi succesiunea etichetelor nodurilor terminale

Teoremã.

Fie $G = (N, \Sigma, P, S)$ o gramatică independentă de context. Un cuvânt w peste alfabetul Σ , deci din Σ^* , apartine limbajului generat de G, adică $w \in L(G)$, dacă si numai dacă w este frontul unui arbore de analiză sintactică.

Gramatica ambigua

O gramatică $G = (N, \Sigma, P, S)$ independentă de context este *ambiguã*

dacă si numai dacă există cel putin un cuvânt w care admite doi a.a.s. distincti; în caz contrar gramatica este *neambiguã*.

- ⇔ ∃ 2 analize sintactice care folosesc numai derivari de stanga, diferite
- ⇒ ∃ 2 analize sintactice care folosesc numai derivari de dreapta, diferite

Simplificarea GIC

simbol neproductiv

Un simbol $A \in N$ este *neproductiv* dacă nu există nici o derivare de forma $A = ^* > x$ $(x \in \Sigma^*)$

• în caz contrar A este simbol productiv

Teorema

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã, fãrã simboluri neproductive

Simplificarea GIC

(transformari echivalente)

simbol inaccesibil

Un simbol $X \in \mathbb{N} \cup \Sigma$ este *simbol inaccesibil* dacă nu există nici o * derivare: $S = >^* \alpha X\beta$ $(\alpha, \beta \in (\mathbb{N} \cup \Sigma)^*)$

- în caz contrar simbolul este accesibil
- Teorema

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G**' = (**N**', Σ ', **P**', **S**) echivalentã, fărã simboluri inaccesibile

Simplificarea GIC

- Un simbol este **neutilizabil** dacă el este fie inaccesibil, fie neproductiv
- Teorema

 \forall **G**= (**N**, Σ , **P**, **S**) \exists **G'** = (**N'**, Σ ', **P'**, **S**) echivalentã fărã simboluri neutilizabile