222

EPITA

Mathématiques

Contrôle (S2)

 $\max\ 2018$

Nom:					
Prénom :					
Entourer le nom de votre profess	eur de TD : Mme Bo	oudin / Mme Daa	adaa / M. Ghaner	n / M. Goron / M	Ime Trémoulet
Classe:					
NOTE:					

2

Contrôle

Durée : trois heures

Documents et calculatrices non autorisés

Consignes:

- vous devez répondre directement sur les feuilles jointes.
- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.
- aucune réponse au crayon de papier ne sera corrigée.
- -toute personne ne respectant pas ces consignes se verra attribuer la note $00/\sqrt{20}$.

Exercice 1 (4,5 points)

2. Via le changement de variable $u=\sqrt{t},$ déterminer $J=\int_1^3 \frac{\mathrm{d}t}{\sqrt{t}+\sqrt{t^3}}.$

3. Via le changement de variable $u = \ln(t)$ déterminer $K = \int_1^e \frac{\ln(t)}{t(1+\ln^2(t))} dt$.

Exercice 2 (2 points)

Soient (u_n) et (v_n) deux suites réelles.

1. On suppose (u_n) convergente et (v_n) divergente. Peut-on conclure quant à la convergence ou la divergence de $(u_n + v_n)$? Justifier votre réponse.

2. On suppose (u_n) et (v_n) divergentes. Peut-on conclure quant à la convergence ou la divergence de $(u_n + v_n)$? Justifier votre réponse.

Exercice 3 (3,5 points)

Soit (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{n!}{n^n}$.

1. Montrer que $\frac{u_{n+1}}{u_n} = \left(\frac{an}{bn+1}\right)^n$ où a et b sont deux entiers à déterminer.

- 2. En déduire la monotonie de (u_n) . Peut-on en conclure que (u_n) est convergente? Justifier votre réponse.
- 3. Montrer (sans récurrence) que $u_n \leqslant \frac{1}{n}$.

4. En déduire la limite de (u_n) .

Exercice 4 (2 points)

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \sum_{k=1}^n \frac{1}{n^2 + k}$.

1. Montrer que (u_n) est convergente en précisant sa limite.

2. Montrer que (nu_n) est convergente en précisant sa limite.

Exercice 5 (3 points)

Déterminer les limites suivantes :

1.
$$\lim_{n \to +\infty} n^2 \left(\sqrt{1 + \ln\left(1 + \frac{1}{n^2}\right)} - 1 \right).$$

Exercice 6 (3 points)

Soient (u_n) et (v_n) définies pour tout $n \in \mathbb{N}^*$ par $u_n = \sum_{k=1}^n \frac{1}{k^2}$ et $v_n = u_n + \frac{1}{n}$.

Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 7 (3 points)

Les ensembles suivants sont-ils des $\mathbb{R}\text{-ev}\,?$ Justifiez votre réponse.

1. $E = \{ P \in \mathbb{R}[X], P(1) = P'(2) \}.$

2. $F = \{(x, y) \in \mathbb{R}^2, \sqrt{\pi} x - \ln(3)y = 0\}.$

3. $G = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ n'a pas de limite}\}.$