Ранг на система вектори

доц. Евгения Великова

Октомври 2020

Максимално линейно независима подсистема

определение МЛНП

Нека F е поле и A_1,\ldots,A_k вектори от F^n . $\{A_{i_1},\ldots,A_{i_r}\}\subset\{A_1,\ldots,A_k\}$ е максимално линейно независима подсистема (МЛНП), когато

- ullet $\{A_{i_1}, \dots, A_{i_r}\}$ са линейно независими,
- $\bullet \ A_j \in \ell(A_{i_1}, \ldots, A_{i_r}), \ \forall j = 1, \ldots, k.$

Твърдение

Всеки ненулев набор от вектори на F^n има максимално линейно независима подсистема.

Ако $U = \ell(A_1, \dots, A_k)$ имаме, че U е крайнопородено ненулево линейно подпространство на $F^n \Rightarrow$ съществува базис A_{i_1}, \dots, A_{i_r} на U A_{i_1}, \dots, A_{i_r} е МЛНП на A_1, \dots, A_k .

∃ базис на подпространство, съществува и МЛНП

Теорема

V е подпространство $\mathcal{O} \neq V \subset F^n$ над поле F и $\ell(A_1,\ldots,A_t) = V$.

Тогава V има базис B_1,\ldots,B_r , за който $\{B_1,\ldots,B_r\}\subseteq\{A_1,\ldots,A_t\}.$

Доказателство:

$$\ell(A_1,\ldots,A_t)=V
eq \{\mathcal{O}\}\Rightarrow \exists A_i
eq \mathcal{O}$$
 полагаме $B_1=A_i$ Стъпка $1:B_1$ е ЛНЗ

- ullet ако $\{A_1,\ldots,A_t\}\subset \ell(B_1)\Rightarrow \{B_1\}$ е базис и край.
- ullet ако $\exists A_I
 otin \ell(B_1)$, тогава $B_2 = A_I \Rightarrow B_1, B_2$ ЛНЗ o Стъпка 2.

Стъпка
$$k$$
- ако $\{B_1,\dots,B_k\}$ ЛНЗ и $\{B_1,\dots,B_k\}\subset\{A_1,\dots,A_t\}$, тогава:

- ullet ако $\{A_1,\ldots,A_t\}\subset \ell(B_1,\ldots,B_k)$, тогава $\{B_1,\ldots,B_k\}$ базис, край.
- ullet ако съществува $A_p
 otin \ell(B_1, \dots, B_k)$, тогава $B_{k+1} = A_p \Rightarrow B_1, \dots, B_k, B_{k+1}$ ЛНЗ и o Стъпка k+1.

$$B_1,\ldots,B_r$$
 са ЛНЗ $\{B_1,\ldots,B_r\}\subseteq\{A_1,\ldots,A_t\}$ $\{A_1,\ldots,A_t\}\subseteq\ell(B_1,\ldots,B_r)$ $\Rightarrow B_1,\ldots,B_r$ е базис на V

пример

Вектори
$$A_1=(3,1,-4)$$
, $A_2=(-1,-2,3)$, $A_3=(-4,-1,5)$, $A_4=(7,-7,0)$, $A_5=(2,4,-6)$ и $A_6=(-7,2,5)$ от \mathbb{Q}^3

$$\begin{pmatrix} A_1: & 3 & 1 & -4 \\ A_2: & -1 & -2 & 3 \\ A_3: & -4 & -1 & 5 \\ A_4: & 7 & -7 & 0 \\ A_5: & 2 & 4 & -6 \\ A_6: & -7 & 2 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} A_1: & 3 & 1 & -4 \\ A_2 + 2A_1: & 5 & 0 & -5 \\ A_3 + A_1: & -1 & 0 & 1 \\ A_4 + 7A_1: & 28 & 0 & -28 \\ A_5 - 4A_1: & -10 & 0 & 10 \\ A_6 - 2A_1: & -13 & 0 & 13 \end{pmatrix}$$

Установяваме, че:

 A_1,A_2 ЛНЗ, A_1,A_2,A_3 ЛЗ и следователно $A_3\in \ell(A_1,A_2)$, A_1,A_2,A_4 ЛЗ, A_1,A_2,A_5 са ЛЗ и A_1,A_2,A_6 са ЛЗ. A_1,A_2 е МЛНП на $\{A_1,\ldots,A_6\}$.

ранг на система от вектори

Твърдение:

Ако A_{i_1}, \ldots, A_{i_r} и A_{j_1}, \ldots, A_{j_s} са максимално линейни подсистеми на векторите A_1, \ldots, A_k , тогава r=s.

Да допуснем, че едното от двете числа е по-голямо, например r>s. $A_{i_1},\dots,A_{i_r}\in\ell(\{A_{j_1},\dots,A_{j_s})$, $\Rightarrow\{A_{i_1},\dots,A_{i_r}\}$ са ЛЗ - противоречие (те са МЛНП)

$\Rightarrow r = s$.

Ранг на система вектори - определение

Рангът на система вектори A_1, \ldots, A_k е равен на броя на векторите в една максимално линейно независима подсистема, и се записва $r(A_1, \ldots, A_k) = r$.

$$r(A_1,\ldots,A_k)=r \;\;\Leftrightarrow\;\; \exists\; \{A_{i_1},\ldots,A_{i_r}\}$$
- МЛНП

Свойства ранг на система и МЛНП:

Нека A_1, \ldots, A_k е набор от вектори от линейно пространство V. Тогава:

- Линейната обвивка на набора от вектори и на неговата МЛНП съвпадат,
- $r(A_1,\ldots,A_k)=r=\dim\ell(A_1,\ldots,A_k),$
- $r(A_1, \dots, A_k) = r \Leftrightarrow$ в набора от вектори има r линейно независими вектора и всеки r+1 вектора са линейно зависими.

Доказателство: Нека $\{A_{i_1},\dots,A_{i_r}\}$ е МЛНП за A_1,\dots,A_k . Ако $U=\ell(A_{i_1},\dots,A_{i_r})$ и $W=\ell(A_1,\dots,A_k)$. $\Rightarrow U\subset W$. $A_j\in\ell(A_{i_1},\dots,A_{i_r}),\ \ \forall j=1,\dots,k\Rightarrow W\subset U$ получаваме, че W=U.

 $\ell(A_{i_1},\dots,A_{i_r})=W=\ell(A_1,\dots,A_k)$ и $\{A_{i_1},\dots,A_{i_r}\}$ ЛНЗ \Rightarrow те са базис на $\ell(A_1,\dots,A_k)\Rightarrow r(A_1,\dots,A_k)=r=\dim\ell(A_1,\dots,A_k).$

свойства базис и размерност на подпространство

Свойства

- Всеки r линейно независими вектора в r мерно подпространство образуват базис.
- Всеки r+1 вектора в r мерно подпространство са ЛЗ.
- Всяко линейно независимо множество вектори от подпространството V може да се допълни до базис ;

Теорема

Нека $V \subset F^n$ е подпространство, тогава :

$$\dim v = r \Leftrightarrow \left\{ egin{array}{ll} \mathsf{съществуват} & r & \mathsf{линейно} & \mathsf{независими} & \mathsf{вектора} & \mathsf{във} & V \\ \mathsf{всеки} & r+1 & \mathsf{вектора} & \mathsf{ot} & V & \mathsf{са} & \mathsf{линейно} & \mathsf{зависими} \end{array}
ight.$$

празна