

10/566941

SEQUENCE LISTING

<110> Dyer, Cheryl J.
Du, Fengxing
Grosz, Michael D.
Byatt, John C.

MAP20 Rev'd ACT/PTO 02 FEB 2006

<120> USE OF A SINGLE NUCLEOTIDE POLYMORPHISM IN THE CODING REGION OF
THE LEPTIN RECEPTOR GENE TO ENHANCE PORK PRODUCTION

<130> 11916.0058.PCUS02

<150> US. 60/553,582

<151> 2004-03-16

<150> U.S. 60/493,158

<151> 2003-08-07

<160> 44

<170> PatentIn version 3.3

<210> 1

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 1

atgatgaggc agttgttgca a

21

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic nucleotide

<400> 2

ccttccctgc aatgttgtct

20

<210> 3

<211> 773

<212> DNA

<213> Sus scrofa

<400> 3

gtgggttaag gacctgatgt tgtcactact atggctcgag tcactgctgg ggcatgagtt

60

tgatccctgg tcctggaaat tcacatgctg tgcattgtggc catatatata tgtatgtatg

120

tgtatatatata tacactcaca tacatgtata tatatatatg tgagtgtata tatatatattta

180

tgatgtcaaa ttaatgggga aaataaaaatg tgaatttcta aaaaggggtg ctaaagagtg	240
gcattatctc taagggtata tgctccctct taagtataac actttggaca atggaagagc	300
tttgtattag gcactgtttg agcacttgga aagttaaata attattgttg aagactgcat	360
gttttaatct tagatacttc ctattnatgt cttagtcaaa atgattaatt gctttctat	420
gtgtctttta aatgtcctaa cagaatttat ttatgtgata actgcatttg acttggcata	480
tccaattact ccttggaaat ttaagttgtc ttgcattgcca ccaaatacaa catatgactt	540
cctcttgcct gctggaatct caaagaacac ttcaactttg aatggacatg atgaggcagt	600
tgttggaaacg gaacttaatt caagtggtac ctacttatca aacttatctt ctaaaacaac	660
tttccactgt tgctttgga gtgaggaaga taaaaactgc tctgtacatg cagacaacat	720
tgaggaaag gcatttgttt cagcagtaaa ttcccttagtt tttcaacaaa cag	773

<210> 4	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 4	
gcactgtttg agcacttgga	20
<210> 5	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 5	
ccttccctgc aatgttgtct	20
<210> 6	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 6	
ttcaactttg aatggacatg atgag	25

```

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 7
gtggaaagtt gttttagaag ataagtttga 30

<210> 8
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 8
tggaaacg gaactt 16

<210> 9
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 9
tggaaatg gaactta 17

<210> 10
<211> 421
<212> DNA
<213> Sus scrofa

<220>
<221> CDS
<222> (133)..(420)

<220>
<221> misc_feature
<222> (299)..(299)
<223> N = T or C

<220>
<221> misc_feature
<222> (310)..(310)
<223> N = T or A

```

```

<220>
<221> misc_feature
<222> (311)..(311)
<223> N = T or C

<400> 10
gcactgttg agcacttgga aagttaaata attattgttg gagactgcat gttttaatct      60
tagataacttc ctattnatgt ctttgtcaaa atgattaatt gttttctat gtgtctttta      120
aatgtcctaa ca gaa ttt att tat gtg ata act gca ttt gac ttg gca tat      171
          Glu Phe Ile Tyr Val Ile Thr Ala Phe Asp Leu Ala Tyr
          1           5           10

cca att act cct tgg aaa ttt aag ttg tct tgc atg cca cca aat aca      219
Pro Ile Thr Pro Trp Lys Phe Lys Leu Ser Cys Met Pro Pro Asn Thr
          15          20          25

aca tat gac ttc ctc ttg cct gct gga atc tca aag aac act tca act      267
Thr Tyr Asp Phe Leu Leu Pro Ala Gly Ile Ser Lys Asn Thr Ser Thr
          30          35          40          45

ttg aat gga cat gat gag gca gtt gtt gaa ang gaa ctt aat nna agt      315
Leu Asn Gly His Asp Glu Ala Val Val Glu Xaa Glu Leu Asn Xaa Ser
          50          55          60

ggc acc tac tta tca aac tta tct tct aaa aca act ttc cac tgt tgc      363
Gly Thr Tyr Leu Ser Asn Leu Ser Ser Lys Thr Thr Phe His Cys Cys
          65          70          75

ttt tgg agt gag gaa gat aaa aac tgc tct gta cat gca gac aac att      411
Phe Trp Ser Glu Asp Lys Asn Cys Ser Val His Ala Asp Asn Ile
          80          85          90

gca ggg aag g
Ala Gly Lys
          95

<210> 11
<211> 96
<212> PRT
<213> Sus scrofa

<220>
<221> misc_feature
<222> (56)..(56)
<223> The 'Xaa' at location 56 stands for Lys, Arg, Thr, or Met.

<220>
<221> misc_feature
<222> (60)..(60)
<223> The 'Xaa' at location 60 stands for Lys, Arg, Thr, Ile, Glu, Gly,
          Ala, Val, Gln, Pro, Leu, or Ser.

<400> 11

```

Glu Phe Ile Tyr Val Ile Thr Ala Phe Asp Leu Ala Tyr Pro Ile Thr
1 5 10 15

Pro Trp Lys Phe Lys Leu Ser Cys Met Pro Pro Asn Thr Thr Tyr Asp
20 25 30

Phe Leu Leu Pro Ala Gly Ile Ser Lys Asn Thr Ser Thr Leu Asn Gly
35 40 45

His Asp Glu Ala Val Val Glu Xaa Glu Leu Asn Xaa Ser Gly Thr Tyr
50 55 60

Leu Ser Asn Leu Ser Ser Lys Thr Thr Phe His Cys Cys Phe Trp Ser
65 70 75 80

Glu Glu Asp Lys Asn Cys Ser Val His Ala Asp Asn Ile Ala Gly Lys
85 90 95

<210> 12
<211> 4050
<212> DNA
<213> Sus scrofa

<400> 12
cttctctgaa gtaagatgac gtgtccaaag ttctctgtgg ctttgttaca ttggaaattt 60
atttatgtga taactgcatt tgacttggca tatccaatta ctccctggaa atttaagttg 120
tcctgcattc caccaaatac aacatatgac ttcccttgc ctgctggaaat ctcaaagaac 180
acttcaactt tgaatggaca ttagtggca gttgtgaaa cggaacttaa tataagtgg 240
acctacttat caaacttatac ttctaaaaca actttccact gttgctttt gaggagggaa 300
gataaaaaact gctctgtaca tgcagacaac attgcaggga aggcatggat ttcagcagta 360
aattccttag ttttcaaca aacaggtgca aactggaaaca tacagtgtgc gatgaaagag 420
gacttgaaat tattcatctg ttatatggag tcattattta agaattcctt caagaattat 480
gaccttaaag ttcatctttt atatgttctg ctcgaagtgt tagaaggatc acctctgctc 540
ccccagaaag gtagtttca gagcgttcaa tgcaactgca gtgctcgtga atgttgtgaa 600
tgccatgtgc ctgtgtcgcc agccaaactc aactacaccc ttcttatgtt tttgaaaatc 660
acatctggtg gagcagtttt tcactcacct ctcgtgcag ttcagccat aaacgttgtg 720
aagcctgatc caccattagg tttgcataatg gaaatcacag acactggtaa tttaaagatt 780
tcttggtcca gcccacact ggtaccattt caacttcaat atcaagtaaa atattcagag 840

aattctacaa	caaatacgat	agaagctgat	gagatcgct	cagatacatc	tctgcttgc	900
gacagtgtgc	ttccgggtc	ttcatatcgat	gttcagggtga	ggggcaagag	actggatggc	960
ccaggaatct	ggagtgactg	gagcaccccc	tttactttta	ccacacaaga	tgttatatac	1020
tttccaccta	aaattctgac	aagtgttggg	tctaacattt	ctttcactg	catctataaa	1080
aatgagaaca	agatcgttc	ctcaaaaaag	attgttttgt	ggatgaattt	agctgagaag	1140
attcctcaaa	gtcagtatga	tgttgtggg	gaccatgtta	gcaaagtac	ttttccaaat	1200
atgaatgcaa	ccaaacctcg	aggaaagttc	acctatgtat	cagtgtactg	ctgcaatgag	1260
cacgagtgcc	accatcgcta	tgctgagtt	tatgtgattt	atgtcaatat	caatatatca	1320
tgtgaaactg	atgggtactt	aactaaaatg	acttgcagat	ggtcaaccaa	tgcaatccaa	1380
tcacttgg	gaagcactt	gcagttgagg	tatcatagga	gtacccctcta	ctgttctgac	1440
gttccatctg	tgcattccat	atctgaaccc	aaagattgcc	agttgcagag	agatggttt	1500
tatgaatgca	tatttcagcc	aatatttctg	ctatctggct	atacaatgt	gattagaata	1560
aatcaccgt	tgggttca	tgattctcca	ccaacatgt	tcattcctga	ttccgtggg	1620
aaaccgctgc	ctccatccag	tgtgaaagca	gaaattactg	caaaaattgg	attactgaaa	1680
atatcttggg	agaagccagt	cttcccagag	aataatctt	agttccagat	tcgctatgg	1740
ttaagtggaa	aagaagtaca	gtgaaagatc	tatgaggat	atgacacaaa	gtttaaatcc	1800
accagtctcc	cgggccaga	cctgttgca	gtctatgct	tccaggtgc	ctgttaagagg	1860
ctagatggac	tggctattt	gagtaattgg	agtactccag	cctacacagt	tgtcacggat	1920
gtaaaagttc	ctatcagagg	acctgaattt	tggagaataa	ttaatgaaga	tgccactaaa	1980
aaagagagga	atatcactt	gctctggaa	cctctgat	aaaatgactc	attgtgcagc	2040
gtgagaagtt	atgtggtcaa	acatcatact	tcccgccat	gaacatggc	agaagatgt	2100
ggaaaccaca	ctaaactcac	tttccttgg	acagagcaag	cacattctgt	tacagttct	2160
gccgtcaatt	caattggtgc	ttcttccgca	aattttaatt	taacattctc	atggcccatt	2220
agcaaagtaa	atatcgta	gtcgctcagt	gcttacccctt	taaacagcag	ttgtgtggg	2280
cttcctggc	tgcttcacc	cagtgattac	aatctgatgt	attttattct	tgagtggaaa	2340
attcttaatg	aagaccatga	aattaaatgg	ctcagaatcc	cttcctctgt	taaaaagtat	2400
tatatccacg	atcattttat	tcctatttag	aaatatcaat	tcagtcttta	ccccatattc	2460
atggaaggag	tggggaaacc	gaagataatt	aacagttca	cccaagatgg	tgaaaaacac	2520

cggaatgatg caggtctata tgtaattgtg ccaataatta tttcctcttc aatcttattg	2580
cttggAACAT tgttaatgtc acaccaaaga atgaaaaAGC tattttggA agatgttcca	2640
aACCCCAAGA actgttcctg ggcacaAGGA cttaatttC agaAGCCGGA aacatttgAG	2700
catctttta tcaaggACAC agaATCAGTg acatttggCC ctcttcttt ggagcctgAA	2760
accatttcAG aagatATCAG tGTTGATAcA tCATGGAAA ataaggatGA gatggtgCCA	2820
ccaactACAG tCTCTCTACT ctTGACAAct ccggACCTTg AAAAGAGTC aatttGTATT	2880
agtGACCAAC gcAGCAGTGC ccACTTCTCT gaggCTgAgA gcatGGAGAT aactCGTgAG	2940
gatgAAAATA gaAGACAGCC ctCTATTAAA tatGCCACCC tgCTCAGCAG ccCTAAATCA	3000
ggTgAAACTg agCAAGAGCA agAACTTGTa agtagCTTgg tcAGCAGATg cttCTCTAGC	3060
agcaattccc taccgAAAGA gtCTTCTCG aatAGCTCAT gggAGATAGA aACCCAGGCC	3120
tTTTTATTt tatCAGATCA gcatCCCAAT atGACTTCAC cacACCTTC cttCTCAGAA	3180
ggattggatg aacttatgaa gtttgaggGA aatttccccA aagaacataa tgacgaaagg	3240
tctgtCTATT atttaggAGT cacCTCAATC aaaaAGAGAG agAGTgATGT gttttgACT	3300
gatgAGTCaa gagTgCGGTg cccattCCCA gcccACTgTT tattcgCTgA catCAAATC	3360
ctCCAGGAGA gCTgTTcaca cttgtAGAA aataATTCA atttaggaAC ttCTGGTCAG	3420
aAGACTTTG tatCTTACAT gcCTCAATTt caAACTTGTt caACTCAGAC tcAGAAGATA	3480
atggAAAACA agATGTATGA CCTAACCGTC taAGTTcATT ccAGAAACAT CTCAGATTa	3540
tGATGGGATG agTCATATTAGGTAATAT gttCTACATG gTgTTCCATA gcAGAGAGAA	3600
aaaaATTGAG tcaaATTGA aaATGACTTC aaaAGTTAAAG gagATCTGTT tGTCACACT	3660
cAGTAATACA gaaaaaaaaa TGTGAGAAAG CCTTCAAGAG CCTAGTAATG TAGACCTACT	3720
cttCTAATGA ttCTCTTAAC CGGCTACAGT gggAAgTTCT cGAATGCCTT gTGTCTAGCT	3780
agAAAACAAGC ccaACAATAC tagCGTTTG AGCATTAAATC tCATGTAGAA AGAGCTAATC	3840
catCTGAATT ACACATACAT CTGAAAGAAG ACTTCAGACT AACACTTGTG AAATGTAATG	3900
tCTTCAAGAG TGTGATTGTT ttATCTTGAG gTGTCTTGT tttACACTAA tttACACATA	3960
cACATATGCA cACTTGTATC TAATAGGCAc CCTGTACATT GTTAAATATA TGATGTACTT	4020
gtTTTGTGC taaaaaaaaaaa aaaaaaaaaaaa	4050

<210> 13
 <211> 1025
 <212> DNA
 <213> Sus scrofa

```

<220>
<221> misc_feature
<222> (1)..(1025)
<223> N = unknown

<400> 13
tgagtgtga cttgaagcat ttggcacatt gttcaagttc acacaagccc tatgggcaca      60
acttttaaac ctaatcttt tatgatgcc accaaagtag cttaaatctt ggcataatt      120
tgagaggaa gtttatttc ctttagctt tgcgtcgta aaatgattac tcctgaggaa      180
atatgaccct acatttgta tttggaaaca gggagtcagt tttattggaa agggatgaga      240
ggggtagaa gaatgtcatg cttagggttg taaaaccttta ttcttggtcc aggatcaccc      300
actggttggg gagtttcatc caagatgtt cactacttga gactaggctt aaaaataaaa      360
ggctgttctt attcctctgg tcaatatgtt gctcatctt aaacaggaac atagggtcc      420
aatangannn ccccagtctt gtatgttactt gtaccttaac ttttgcctt ttctttcttc      480
ttannagctt taacttanna aatattgtca tcttgccttac cctgacnnat gatttatctt      540
catcaatctg ttttagacttg aagtcannngc tcaaattann ttctgnnnntt tcatnnnnnn      600
cnnnnntngn nnnnnnnnnnn nnnagcttgt gtgccaattt nnnnnnnnnnn natgaantac      660
tcnnnnnnnn nnnnnnnnnnn nnngnnnaaa nnnnnnnnnnn nnnncnnncnn nnnnnnnnnnn      720
nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn      780
nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn      840
nnnnnnnnnn nnnncagnnt natgaannnn nnctanannn nnnncnacttg gacctgggc      900
actattgtgg tctcaggagt tctgttccca ggattcagga attcactaga gtgtacacag      960
agcatgacaa aaccttggc tgactggacc atttatcagt ttctttcc ttgttcttcta      1020
ggtcc                                         1025

```

```

<210> 14
<211> 446
<212> DNA
<213> Sus scrofa

```

```

<220>
<221> misc_feature
<222> (1)..(446)
<223> N = unknown

```

```

<400> 14

```

caggaattcg gcaccagaca taatgtaatg ttttctaactttaat	60
attgcctgcc aatgggtggtg tttaaatttgt gtagaaagact ctgcctaaga gttgcgactt	120
ttcttgcataat gttttgtatc gtgtattata taacctgaac atcgcttaag agagacatac	180
accccccggcc ccttgcgcaggc gaggacagca gtgggtctgc cctacgcctt gtccgagttg	240
ctaataattcc tcaacccctt caccaaccgg tttgggaaac aggattctca cgtagatac	300
gaaatggtct cgattgagct tttacttttg tatagttcaa caggggtaga gagccatggg	360
acatggtttt acccctgttc tacccaaatc catatacatg cgnnggnnt taactggnnn	420
ctactataat tnnnnnntttt cnnnnnt	446

<210> 15
 <211> 770
 <212> DNA
 <213> Sus scrofa

<220>	
<221> misc_feature	
<222> (1)..(770)	
<223> N = unknown	
<400> 15	
caaggaagag aagctaaggc aagatttcaa aaacagaaat ccaagaattc cagcaaacca	60
gggttagatt catagtacaa ggtctatgtat atatttgc tacaagaagg ttttcttaggc	120
aacagaatat caaaagaggg gtaaagccta catatcttca gtctaaaaaa tgaagttata	180
aaactcttag tgtcttaagc tatgtttca acagaccctc tgatatttgg aaaagcagag	240
gaaaatttgg aagcccactg ttgcaatcaa caggagctac taaaatttta gtctattttt	300
ttcaactcta tcagttcttt tcttataactc aaatgattat cctggctatt aaataatctc	360
tttcctccct ccacacaccc gctgccagtg gactctcctt ttatataattt tacttttga	420
attcaagtct tctatatactt agtacaatgg ccaaaaaaac taagcttct aaggcaccca	480
agagttagaa ctttcattt cctacttcat atgcaagaaa ttttctctcc ctttgtctac	540
ttcataagta atgatttagca atgggtaaat atcaaaagag ctaacggtag actatatttt	600
aggcatggaa taatttccct taatagacat tatccagtag ccccccttta ttggcagnnn	660
atatgtnnnn ngnnnnctcag tngatgccnn nnncnnnnnn tngtactgaa cgctacatat	720
gctattcttt nntatacant catanntatg nnnannnnnnn actnacnnnn	770

<210> 16

```

<211> 362
<212> DNA
<213> Sus scrofa

<400> 16
gggaccgtca gtgtgaccaa atcagggcgc cagtgccagc cgtggaattc ccaatatccc      60
cacacacaca ctttcaccgc cctccgttcc ccagaactga atggagggca ctcctattgc      120
cgcaacccag ggaatcagaa ggaagctccc tggtgcttca cttggatga gaacttaag      180
tccgacctgt gtgacatccc agcatgtgat tcaaaggatt ccaaagagaa gaataaaatg      240
gaaaatcctgt acatactggt gcccagtgtt gccatcccc tggccattgc cttactcttc      300
ttcttcatct gtgtctgtcg caataaccag aagtcgtcct caccggctgt ccagaggcaa      360
cc                                         362

<210> 17
<211> 625
<212> DNA
<213> Sus scrofa

<400> 17
gtacacagat gtaaaaacac ttagtgttca cacgtttgat taaaatattt acaaattttt      60
tcattagtac attaaacctt tcgctttatt catcttaat gtcttcagg agggtgactc      120
ccccccattag cgtgactcaa tacaaacttt gcaagtgggg ggaccacgga acccggaagt      180
ctactgctgt gcccgttcta tggcgaggca gctgtaactg gttacgaacc cgtgtggaa      240
atagtatttgc gaaaccttctt ggcagatttc ttacatcgat attcaatatg agctgcgaat      300
catatgctcg tagttaggaa aatgtcagga aaccctgagt gtgcctgctt tgttgacaa      360
agctattttc gagtcatgtt ggaaggcaag ggcattccagc gcctggcatg gaggagaaga      420
ggtagccct gccccccacc ttcccagcct ttttctgaga tggggtaat tcggccttag      480
atgacaagcg ctcaactctg aacaagagac ggccatctca caccgtctca attagtccag      540
gatgtgtgtc agggctgcga gaggtcggag aggaaatgcg gggaaacttgt tcacttcttg      600
ctcagtttgg atcaactgag ctgca                                         625

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

```

<400> 18	
ggcagctgta actggttacg aa	22
<210> 19	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 19	
tccgcagctca tattgaataa cgatgt	26
<210> 20	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 20	
aaggttccaaa tactcttcc	19
<210> 21	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 21	
aaggttccaaa tactatttc	19
<210> 22	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic nucleotide	
<400> 22	
cagaccctct gatatttgaa aaagca	26
<210> 23	
<211> 33	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223> Synthetic nucleotide		
<400> 23		
gccaggataa tcatttgagt ataagaaaag aac		33
<210> 24		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 24		
acaggagctca taaaat		17
<210> 25		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 25		
caggagctat taaaat		16
<210> 26		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 26		
acattctaag acaaccgaaa tggca		25
<210> 27		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 27		
ctagggatct attttcact ttgttaagtt catt		34
<210> 28		
<211> 25		

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 28		
ataatttca taaagaccca ctaat		25
<210> 29		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 29		
cataaaggcc cactaat		17
<210> 30		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 30		
ttaatgtctt ccaggagggt gactc		25
<210> 31		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 31		
cacacatcct ggactaattg agacg		25
<210> 32		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 32		
caagaattcc agcaaaccag gg		22

```

<210> 33
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 33
ctcttgggtg ccttagaaag cttag 25

<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 34
gggagtttca tccaagatgt ttcac 25

<210> 35
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 35
aaactgataa atggtccagt cagcc 25

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

<400> 36
ttcccaatat cccccacacac 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic nucleotide

```

<400> 37		
gctggatgt cacacaggtc		20
<210> 38		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 38		
tggaaacag gatttcacg		20
<210> 39		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 39		
tggatttggg tagaacaggg		20
<210> 40		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 40		
cagcagccct aaatcaggtg		20
<210> 41		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic nucleotide		
<400> 41		
aggcctgggt ttcttatctcc		20
<210> 42		
<211> 406		
<212> DNA		
<213> Sus scrofa		

```

<220>
<221> misc_feature
<222> (103)..(103)
<223> N = T or G

<400> 42
tcataacaact ttgcagtggg gggaccacgg aaccggaaag tctactgttg tgcccggtct      60
atggtgaggc agctgttaact ggttacgaac ccgtgttgg aanaagtattt ggaactttct      120
tggcagattt cttacatcggt tattcaatat gagctgcgaa tcataatgctc gtagtttagga      180
aaatgtcagg aaaccccgag tgtgcctgct ttgtttgaca aagctatttt cgagtcatgt      240
tggaaaggcaa gggcatccag cgcctggcat ggaggagaag aggtagcccc tgccccccac      300
cttcccagcc tttttctgag atgttggtaa ttcggtccta gatgacaagc gctcaactct      360
gaacaaggga cggccgtctc acaccgtctc aattagtcca ggatgt      406

<210> 43
<211> 395
<212> DNA
<213> Sus scrofa

<220>
<221> misc_feature
<222> (192)..(192)
<223> N = T or C

<400> 43
gatatatttt agctacagaa ggttttctag gcaacagaat atcaaaagag gggtaaagcc      60
tacatatctt cagtctaaaa aatgaagtta taaaactctt agtgtcttaa gctatgtttt      120
caacagaccc tctgatattt ggaaaagcag aggaaaattt ggaagccccac tggcaatc      180
aacaggagct antaaaattt tagtctattt tttcaactct atcagttctt ttcttatact      240
caaatgatta tcctggctat taaataatct ctccctccc tccacacacc cgctgccagt      300
ggactctcct ttttatattt ttacttttg aattcaagtc ttctatatct tagtacaatg      360
gccaaaaaaaaa ctaagtttc taaggcaccc aagag      395

<210> 44
<211> 838
<212> DNA
<213> Sus scrofa

<400> 44
tctggtcaat atgttagctca tctctaaaag gaacataggg ctccaatagg aggacccag      60

```

tctttagtt aagtgtacct taacttttg cttcttcctt cttcttagga gctttaactt	120
aggaaaatcta tcacatctgtt aaccctgaca aatgatttat ctcatcaat ctgtttaaac	180
ttgaagtcag aggctcaaata tattttctgt ttttcataa agttcagatt ttgagagact	240
ggtagcagc ttgtgtgcc aatthaaggcc tttaaatgaa atactcaaaa ttctagattt	300
atcctaagtt taaaattgca aacctataact tcagctccac tctcccttca aatttttcta	360
cagaacctct gcaaagatag ggagactatc tgaccatacc aaagtataaa acattctaag	420
acaaccgaaa tggcagataa ttttcataaa grccactaa tctctagtc tatatagagt	480
gaaatgaact tacaaaagtg aaaaatagat ccctagcaca ctgaccttaa aactgatcta	540
aatccataca tcaataggcc agacttggag ttcccatcat ggcacagtgg ttaaagaacc	600
cgactaggaa tcacatcagggtt gcaggtaa tccctggcct tgctcagtgg gttaagaatc	660
cagcattgct gtgagctgtg gtgttaggtcg cagacgtggc tcagattcca cggtgctgtg	720
gctctggcgt aggcgggagg ctacagctct gattagaccc ctcgcctaata atgccagggg	780
tgcaaaaaat cgcctaataat gccatgggtg cagccctaga aaagacaaaa aaaaaaaaaa	838