

Analogue Electronics

5th lecture:

MOSFETs

- comparison: BJT vs. MOSFET
- transistor design in CMOS
- latchup problems
- · current-voltage characteristic
- biasing a MOSFET
- frequency behaviour

EEE331 Analogue Electronics

Lecture 5

EEE331

breakdown applications

EEE331 Analogue Electronics

Analogue Electronics

Comparison of transistor types: BJT vs. MOSFET

audio amplifiers,

phototransistors

criterion	BJT	JFET S	MOSFET s
principle	diffusion through one one forward and one reverse biased diode (depletion region)	reverse-biased pn-junction isolates gate from substrate	gate bias controls p source-drain current by electrostatic interaction across insulating gate
input current	$i_{B} = i_{C}/\beta \; (\mu A)$	small	<i>i</i> _G ≈0 (pA)
input impedance	low	high	very high
I/V transfer character.	exponential (exact)	modified square law	square-law (approx.)
transcoductance	high	medium	low
carrier type	minority	minority (depletion mode)	majority
radiation resistance	low	?	high
zero-offset of $I_{\rm C}(V_{\rm CE})$ or $I_{\rm DS}(V_{\rm DS})$	yes	?	none
gate-channel	-	partly reversible	irreversible=destructive

high power radio

switches, charge

transmitters, low-noise diff. amps measurement devices

Lecture 5

EEE331 Analogue Electronics

Design of BJTs in CMOS technology

- if collector C_1 is incorporated into the well, then a **lateral pnp BJT** is formed by $E\text{-}B\text{-}C_1$ where the additional MOSFET gate ensures reverse biasing (i.e. corresponding source drain-contacts operate in the cut-off region) <u>but</u>
- a biased substrate forms collector of a **parasitic vertical pnp BJT** formed by $E\text{-}B\text{-}C_2$ for some electrons diffusing out of the n-well

EEE331 Analogue Electronics

ecture 5

EEE331 Analogue Electronics

Derivation of MOSFET output characteristic

in the saturation region: $i_D \approx \frac{1}{2} \mu_n C_{ox}(W/L) (v_{GS} - V_{to})^2$

differentiating yields transconductance:

 $g_{\rm m} = di_{\rm D}/dV_{\rm GS} = \mu_{\rm n}C_{\rm ox}W/L(V_{\rm GS}-V_{\rm to}) = 2i_{\rm D}/V_{\rm ov}$

is much lower than for BJTs,

as $i_{\rm D}$ is usually up to a few A, while $V_{\rm ov} = v_{\rm GS} - V_{\rm to} = 0.2 - 0.5 {\rm V}$. Hence, use the ratio $i_{\rm D}/V_{\rm ov}$ as operational design parameter.

EEE331 Analogue Electronics

ecture 5

Analogue Electronics

Biasing of a MOSFET

- bad idea: fixing V_{GS}
 i depends on a number of par
 - $i_{\rm D}$ depends on a number of parameters that vary from device to device ($V_{\rm to}, C_{\rm ox}$, sometimes also W/L) and strongly depend on the temperature ($V_{\rm to}$ and $\mu_{\rm D}$)
- good idea: fixing $V_{\rm G}$ and connecting a resistance parallel to source Connecting a resistor $R_{\rm S}$ to the source yields $V_{\rm G} = V_{\rm GS} + R_{\rm S} i_{\rm D}$, i.e. a negative feedback that stabilises $i_{\rm D}$, analogous to emitter degeneracy in BJTs
- less good: using a drain-to-gate resistor $R_{\rm G}$. This yields $V_{\rm GS} = V_{\rm DS} = V_{\rm DD} R_{\rm D}i_{\rm D}$, i.e. also negative feedback that stabilises $i_{\rm D}$, but the output voltage swing would be limited
- best: use current mirrors to provide constant current source, e.g. for a 2-MOSFET current mirror: $i_{D2}/i_{REF} = i_{D2}/i_{D1} = (W_2/L_2)/(W_1/L_1)$

aspect ratio as layout design parameter

EEE331 Analogue Electronics

Lecture 5

EEE331

Analogue Electronics

Example of a typical MOSFET circuit: centroid layout

- The circuit is a differential amplifier, as the source electrodes are connected to a common current source and the diff. signals are fed into opposite base electrodes.
- Problem: diff. amplifiers are very sensitive to any mismatch between the two signal paths, which would increase the common-mode and decrease the diff. mode signal.

- Solution: replace single transistors by pairs of transistors at opposite positions on the substrate to eliminate linear process gradients, such as variations of $t_{\rm ox}$, that can be decomposed into x- and y- components.
- · Disadvantage: longer lines for cross-connection

EEE331 Analogue Electronics

Lecture 5

Analogue Electronics

Body effect in MOSFETs

- problem: substrate acts as 4th terminal (called body) which results in another pn-junction between the induced channel and the substrate
- substrate is usually common to many MOSFETs within a device and connected to most negative [positive] supply voltage in NMOS [PMOS], hence resulting reverse bias $V_{\rm SB}$ between source and body (in NMOS) will affect device operation by widening the depletion region and reducing the channel depth, so that $V_{\rm GS}$ has to be increased to maintain constant operation conditions and keep $i_{\rm D}$ constant.

EEE331 Analogue Electronics

Lecture 5

EEE331

Analogue Electronics

Mid frequency behaviour of MOSFET common source (CS) amp.

general CS amplifier circuit (left) and small signal equiv. circuit (right) at input: $i_{\rm G}$ =0, $R_{\rm in}$ = $R_{\rm G}$, $v_{\rm i=}v_{\rm sig}$ $R_{\rm G}/(R_{\rm G}+R_{\rm sig})\approx v_{\rm sig}$ (for large $R_{\rm G}$)

at output: $v_0 = -g_m v_{GS} (r_0 || R_D || R_L)$

hence voltage gain of signal to load: $G_{\text{mid}} = v_{\text{o}}/v_{\text{sig}} = -R_{\text{G}}/(R_{\text{G}} + R_{\text{sig}}) g_{\text{m}}(r_{\text{o}}||R_{\text{D}}||R_{\text{L}})$

EEE331 Analogue Electronics

cture 5

Analogue Electronics

High frequency behaviour of MOSFET common source (CS) amp.

now take capacitors into account to obtain voltage gain of signal to load: $G_{\text{high}} = V_{\text{o}}/V_{\text{sig}} = -R_{\text{G}}/(R_{\text{G}} + R_{\text{sig}}) \ g_{\text{m}}(r_{\text{o}}||R_{\text{D}}||R_{\text{D}}) \ 1/(1+j\omega/\omega_{\text{H}})$

 G_{mid}

× frequency dependence

where

 $\omega_{H}=1/\{(R_{G} || R_{sig})(C_{GS}+C_{GD}[1+g_{m}(r_{o}||R_{D}||R_{L})]\}$ is the high frequency 3dB-bandlimit

EEE331 Analogue Electronics

Lecture 5

EEE331

Analogue Electronics

Gate capacitance and high frequency behaviour of MOSFETs

Gate capacitance can be modelled by three capacitances $C_{\mathrm{GS}},\ C_{\mathrm{GD}}$ and C_{GB}

• MOSFET is cut off: channel disappears, thus

$$C_{\text{GS}} = C_{\text{GD}} = 0$$
, but $C_{\text{GB}} \approx WLC_{\text{ox}}$

• MOSFET operates in **triode region** with small v_{DS} : channel will be uniform in depth and total gate capacitance WLC_{ox} is distributed equally between source and drain ends:

$$C_{GS} = C_{GD} = \frac{1}{2}WLC_{ox}$$

• MOSFET operates in **saturation** where the channel has a tapered shape and is pinched off near the drain, so

$$C_{\rm GD}$$
=0, $C_{\rm GS} \approx 2/3 WLC_{\rm ox}$

Note: An additional small capacitance component should be added to $C_{\rm GS}$ and $C_{\rm GD}$ in all above equations due to spatial overlap of regions where source and drain diffusion extend slightly under the oxide gate, typically <10%

EEE331 Analogue Electronics

Lecture 5

