

Yıldız Teknik Üniversitesi Elektrik-Elektronik Fakültesi Bilgisayar Mühendisliği Bölümü

BLM1022 SAYISAL ANALİZ Gr: 2 Öğr.Gör.Dr.Ahmet Elbir Dönem Projesi

İsim: ismail Orhan No : 23011081

Mail: ismail.orhan@std.yildiz.edu.tr

Ön Bilgi

Program sayısal analiz dersinden öğrenilen 10 farklı metodu içeriyor. Kullanıcıdan girilen fonksiyon polinom, üstel, trigonometrik, logaritmik, ters trigonometrik olarak 5 farklı türü klavyeden girilmesi destekleniyor. Bu işlemler ise sırasıyla şöyledir:

- 1. Bisection Yöntemi
- 2. Regula-Falsi Yöntemi
- 3. Newton-Raphson Yöntemi
- 4. NxN'lik bir matrisin tersi
- 5. Cholesky (ALU) Yöntemi
- 6. Gauss Seidal Yöntemi
- 7. Sayısal Türev (merkezi, ileri ve geri farklar tümü hesaplanmalıdır)
- 8. Simpson Yöntemi(hem 1/3, hem de 3/8 yöntemi)
- 9. Trapez Yöntemi
- 10. Değişken dönüşümsüz Gregory Newton Enterpolasyonu

YÖNTE	MLERIN Y	APILIP YAI	PILMADIĞI		DAKİ TABL ERİNİZ	ODA GÖS	TERİLDİĞİ	GİBİ 1/0 O	LARAK
1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1

Desteklenen Fonksiyon Tarzı

Kök bulma Yöntemleri (1,2,3), sayısal türev ve integral yöntemleri (7,8,9) için ilk istenilen parametre fonksiyondur. Bu fonksiyon bir çok ifadeyi destekliyor.

Fonksiyon

Fonksiyonda kullanıcıdan fonksiyonu bir string ifade olarak girilmesi istenir. Ve kullanıcının istediği yöntemler yapılır.

Özel Fonksiyon Formatları

- 1. Fonksiyonda Euler ifadesi → e ile gösterilir
- 2. Fonksiyonda pi ifadesi→ p ile gösterilir
- 3. Fonksiyonda In ifadesi → In şeklinde yazabilirsiniz
- Fonksiyonda logaritma a tabanında b→ log_(a)(b) yada log_a(b) ile gösterebilirsiniz.
- 5. Fonksiyonda üstel ifadeleri → ^ ile yazılmalı.
- 6. Nedeni bilinmeyen bir problem yüzünden lütfen fonksiyonlardaki ifadesi tekrardan silinip yazılmalı.(Bu sorun, genellikle kopyaladığın metindeki eksi işaretinin (–) aslında bir normal kısa tire (-) değil, farklı bir karakter olmasından kaynaklanıyor olabilir.)
- 7. Fonksiyonda çarpma ifadesi . olarak gösterilemez. diğer kısımlar hem aşağıda gördüğünüz gibi hemde tahmin edeceğiniz gibidir.

```
Lütfen fonksiyonu giriniz (örnek: x^2+\sin(x)-5):

x^2 + \sin(x) * \cos(2 * x) - \log_{(\tan(x^2 + 1))}(x + 4) + \arctan(x) + e^(x / 2)
```

Matris Girişi

Matrisin tersini alma (4) ve lineer denklem çözümü yöntemleri (5,6) için ilk istenilen parametre NxN'lik bir kare matris için N değeridir. Daha sonra ise kullanıcıdan ilk satırdan başlayarak birer birer değerleri girmesi istenir. Eleman giriş işlemi bittikten sonra matris yazdırılır.

```
Matris boyutunu girin: 3
[0][0]: 3
[0][1]: 6
[0][2]: 2
[1][0]: 9
[1][1]: 5
[1][2]: 1
[2][0]: 7
[2][1]: 4
[2][2]: 8
Girilen Matris: [
3.000000 6.000000
                    2.000000
9.000000 5.000000
                   1.000000
7.000000 4.000000
                    8.000000
```

Ana Menü

Program çalıştırıldıktan sonra bütün metotlar sıralanır listelenir. Bu aşamada kullanıcıdan kullanmak istediği metodun numarasını girmesi beklenir. Metodu seçtikten sonra ise verilen o metodun gerektirdiği parametreleri girer veri sonucu ulaşır. Eğer kullanıcı menüde 0 girerse program kapanır.

```
Çıkış: 0
Bisection Yöntemi: 1
Regula-Falsi Yöntemi: 2
Newton-Raphson Yöntemi: 3
Matris Tersi Alma: 4
Cholesky Ayrıştırma Yöntemi: 5
Gauss-Seidel Yöntemi: 6
Sayısal Türev: 7
Simpson Kuralı ile İntegral: 8
Trapez Kuralı ile İntegral: 9
Gregory-Newton Enterpolasyonu: 10
Seçiminizi giriniz:
```

Kullanıcının seçtiği metot ile olan işlemler bittikten sonra program direk menüyü ekrana getirerek tekrardan bir seçenek sorar.

Program bitiş gösterimi :

```
Çıkış: 0
Bisection Yöntemi: 1
Regula-Falsi Yöntemi: 2
Newton-Raphson Yöntemi: 3
Matris Tersi Alma: 4
Cholesky Ayrıştırma Yöntemi: 5
Gauss-Seidel Yöntemi: 6
Sayısal Türev: 7
Simpson Kuralı ile İntegral: 8
Trapez Kuralı ile İntegral: 9
Gregory-Newton Enterpolasyonu: 10
Seçiminizi giriniz: 0
Program sona ermiştir...%
```

Bisection Yöntemi

Parametreler

- 1.Fonksiyon
- 2 .Başlangıç değeri
- 3. Bitiş değeri
- 4. Hata miktarı (epsilon)
- 5. Maximum iterasyon

Bulunan kök: 1.311595

```
Lütfen fonksiyonu giriniz (örnek: x^2 + log_(sin(5 * x))(x - 5) ):
    x^3 - cos(x) - 2

Aralık başlangıcını girin: 1

Aralık bitişini girin: 2

Kabul edilebilir hata payını girin (epsilon): 0.000001

Maksimum iterasyon sayısını girin: 100

Başlangıç noktası : 1.000000
Bitiş noktası : 2.000000
Orta nokta : 1.500000
f(Başlangıç) : -1.540302
f(Bitiş) : 6.416147
f(Orta nokta) : 1.304263
İterasyon sayısı : 1

Başlangıç noktası : 1.000000
Bitiş noktası : 1.550000
f(Başlangıç) : -1.540302
f(Bitiş) : 1.304263
f(Bitiş) : 1.304263
f(Orta nokta : 1.250000
f(Başlangıç) : -1.540302
f(Bitiş) : 1.304263
f(Orta nokta) : -0.362197
İterasyon sayısı : 2

Başlangıç noktası : 1.311594
f(Başlangıç) : -0.000015
f(Bitiş) : 0.000010
f(Orta nokta) : -0.000002
İterasyon sayısı : 19

Başlangıç noktası : 1.311594
Bitiş noktası : 1.311594
Bitiş noktası : 1.311596
Orta nokta : 1.311595
G(Başlangıç) : -0.000002
İterasyon sayısı : 19

Başlangıç noktası : 1.311595
G(Başlangıç) : -0.0000002
f(Bitiş) : 0.000010
f(Orta nokta) : 0.0000004
İterasyon sayısı : 20
```

Regula-Falsi Yöntemi

Parametreler

- 1.Fonksiyon
- 2 .Başlangıç değeri
- 3. Bitiş değeri
- 4. Hata miktarı (epsilon)
- 5. Maximum iterasyon

```
Lütfen fonksiyonu giriniz (örnek: x^2 + \log_{(\sin(5 * x))(x - 5)}): \ln(x + 1) - x^2 + 2
 Aralık başlangıcını girin: 1
 Aralık bitişini girin: 2
 Kabul edilebilir hata payını girin (epsilon): 0.000001
 Maksimum iterasyon sayısını girin: 100
 Başlangıç noktası : 1.000000
Başlangıç noktası : 1.000000
Bitiş noktası : 2.000000
Yaklaşık kök : 1.652582
f(Başlangıç) : 1.693147
f(Bitiş) : -0.901388
f(Yaklaşık kök) : 0.244506
İterasyon sayısı : 0
Başlangıç noktası : 1.652582
Bitiş noktası : 2.000000
Yaklaşık kök : 1.726713
f(Başlangıç) : 0.244506
f(Bitiş) : -0.901388
f(Yaklaşık kök) : 0.021559
 İterasyon sayısı : 1
 Başlangıç noktası : 1.733677
Bitiş noktası : 2.000000
Yaklaşık kök : 1.733681
f(Başlangıç) : 0.000012
f(Bitiş) : -0.901388
f(Yaklaşık kök) : -0.000000
İterasyon sayısı : 5
   Başlangıç noktası : 1.733677
  Baştangıç noktası : 1.733677
Bitiş noktası : 1.733681
Yaklaşık kök : 1.733680
f(Başlangıç) : 0.000012
f(Bitiş) : -0.000000
f(Yaklaşık kök) : 0.000002
İterasyon sayısı : 6
   Bulunan kök: 1.733680
```

Newton-Raphson Yöntemi

Newton-Raphson yöntemindeki fonksiyon türev hesabında fonksiyon türevinin alma zorluğu yüzünden sayısal türev yönteminde ki merkezi türev yöntemi ile yapılmıştır.

Parametreler

- 1.Fonksiyon
- 2. x'in başlangıç değeri
- 3. Hata miktarı
- 4. Maximum iterasyon sayısı

```
Lütfen fonksiyonu giriniz (örnek: x^2 + \log_{(\sin(5 * x))(x - 5)}):
e^x + x^3 - 3*ln(x + 2) - 5
Başlangıç değerini girin (x0): 1
Kabul edilebilir hata payını girin (epsilon): 0.000001
Maksimum iterasyon sayısını girin: 100
x[n]
                     : 1.000000
x[n+1] (Yeni x) : 1.970170
f(x[n]) : -4.577555
f'(x[n]) (Türev) : 4.718304
İterasyon sayısı : 1
x[n]
                    : 1.970170
x[n+1] (Yeni x) : 1.655551
f(x[n]) : 5.682822
f'(x[n]) (Türev) : 18.062592
İterasyon sayısı : 2
                        : 1.582336
 x[n]
 x[n+1] (Yeni x) : 1.582327
f(x[n]) : 0.000098
 f'(x[n]) (Türev) : 11.529922
İterasyon sayısı : 5
 x[n] : 1.582327
x[n+1] (Yeni x) : 1.582328
f(x[n]) : -0.000006
 f'(x[n]) (Türev) : 11.539459
 İterasyon sayısı : 6
 Bulunan kök: 1.582328
```

Matrisin Tersini Alma

Parametreler

- 1. Matris
- 2. Matrisin Boyutu

```
Matris boyutunu girin: 3
[0][0]: 3
[0][1]: 6
[0][2]: 2
[1][0]: 9
[1][1]: 5
[1][2]: 1
[2][0]: 7
[2][1]: 4
[2][2]: 8

Girilen Matris: [
3.000000 6.000000 2.000000
9.000000 5.000000 1.000000
7.000000 4.000000 8.000000

]
Matrisin Tersi: [
-0.128571 0.142857 0.014286
0.232143 -0.035714 -0.053571
-0.003571 -0.107143 0.139286
]
```

Cholesky (ALU) Yöntemi

Parametreler

- 1. Matris
- 2. Matrisin Boyutu
- 3. Değer Matris(sonuç matris)

```
Matris boyutunu girin: 3
[0][0]: 3
[0][1]: 6
[0][2]: 2
[1][0]: 9
[1][1]: 5
[1][2]: 1
[2][0]: 7
[2][1]: 4
[2][2]: 8

Girilen Matris: [
3.000000 6.000000 2.000000
9.000000 5.000000 1.000000
7.000000 4.000000 8.000000
]
Denklem sisteminin sağ taraf değerlerini girin (değer matrisi): 3
5
8

Alt Üçgen Matris (L):
3.000000 0.000000 0.000000
9.000000 -13.000000 0.000000
7.000000 -10.000000 7.179487
Üst Üçgen Matris (U):
1.000000 2.000000 0.384615
0.000000 1.000000 0.384615
0.000000 0.000000 1.000000
Denklem sisteminin çözümü:
x1 = 0.442857
x2 = 0.089286
x3 = 0.567857
```

Gauss-Seidel Yöntemi

Parametreler

- 1. Matris
- 2. Matrisin Boyutu
- 3. Değer Matris(sonuç matris)
- 4. Hata miktarı
- 5. Noktaların başlangıç değerleri

```
Matris boyutunu girin: 3
[0][0]: 3
[0][1]: 6
[0][2]: 2
[1][0]: 9
[1][1]: 5
[1][2]: 1
[2][0]: 7
[2][1]: 4
[2][2]: 8

Girilen Matris: [
3.000000 6.0000000 2.0000000
9.0000000 5.0000000 1.0000000
7.0000000 4.0000000 8.0000000
]
Denklem sisteminin sağ taraf değerlerini girin (değer matrisi): 3
5
8

Başlangıç değerlerini girin: x1 için başlangıç değeri: 1 x2 için başlangıç değeri: 1 x2 için başlangıç değeri: 1 x3 için başlangıç değeri: 1
X3 için başlangıç değeri: 1
X6bul edilebilir hata oranını girin: 0.000001

1. Iterasyon Sonuçları: x1 = -0.111111 x2 = 0.22222 x3 = 0.986111

2. Iterasyon Sonuçları: x1 = 0.322531 x2 = 0.010031 x3 = 0.712770
```

```
16. Iterasyon Sonuçları:
x1 = 0.442857
x2 = 0.089286
x3 = 0.567858

17. Iterasyon Sonuçları:
x1 = 0.442857
x2 = 0.089286
x3 = 0.567857

Denklem sisteminin çözümü:
x1 = 0.442857
x2 = 0.089286
x3 = 0.567857
```

Sayısal Türev Yöntemi

Parametreler

- 1. Fonksiyon
- 2. türevi hesaplanacak nokta
- 3. h, formülde kullanılacak değişim farkı

```
Lütfen fonksiyonu giriniz (örnek: x^2 + log_(sin(5 * x))(x - 5) ):
sin(x) * ln(x + 2) + x^2

Türev alınacak noktayı girin: 1

Adım boyutunu girin (h): 0.001

Geri fark yöntemi ile türev sonucu: 2.873420
İleri fark yöntemi ile türev sonucu: 2.874732

Merkezi fark yöntemi ile türev sonucu: 2.874076
```

Simpson Yöntemi (1/3 ve 3/8)

Parametreler

- 1. Fonksiyon
- 2. Hesaplanması istenilen integral aralığı
- 3. Aralığın kaça bölüneceği

```
Lütfen fonksiyonu giriniz (örnek: x^2 + log_(sin(5 * x))(x - 5) ): e^x * sin(x) + ln(x + 1)

İntegral alt sınırını girin: 0

İntegral üst sınırını girin: 2

Bölme sayısını girin (n): 12

Simpson 1/3 kuralı ile integral sonucu: 6.692628

Simpson 3/8 kuralı ile integral sonucu: 6.692504
```

Trapez Yöntemi

Parametreler

- 1. Fonksiyon
- 2. Hesaplanması istenilen integral aralığı
- 3. Aralığın kaça bölüneceği

```
Lütfen fonksiyonu giriniz (örnek: x^2 + log_(sin(5 * x))(x - 5) ): e^x * sin(x) + ln(x + 1)

İntegral alt sınırını girin: 0

İntegral üst sınırını girin: 2

Bölme sayısını girin (n): 12

Trapez kuralı ile integral sonucu: 6.697330
```

Gregory-Newton Enterpolasyon

Parametreler

- 1. Enterpolasyon yapılacak polinomun derecesi
- 2. Noktaların x ve y değerleri
- 3. İstenilen x değeri

```
Enterpolasyon yapılacak polinomun derecesini girin: 4
Polinomun bilinen noktalarını girin (x'leri küçükten büyüğe sıralayarak):

    noktanın x ve y değerlerini girin (x y): 0 0
    noktanın x ve y değerlerini girin (x y): 0.2 0.396

3. noktanın x ve y değerlerini girin (x y): 0.4 0.743
4. noktanın x ve y değerlerini girin (x y): 0.6 1.032
5. noktanın x ve y değerlerini girin (x y): 0.8 1.266
Hangi x değeri için enterpolasyon yapmak istiyorsunuz: 0.3
İleri Fark Tablosu:
x = 0
                 0.000000
                                   0.396000
                                                      -0.049000
                                                                         -0.009000
                                                                                             0.012000
                0.396000
                                   0.347000
                                                     -0.058000
x = 1
                                                                         0.003000
x = 2
               0.743000
                                   0.289000
                                                      -0.055000
                1.032000
                                   0.234000
x = 3
x = 4
                1.266000
Sonuç: f(0.300000) = 0.576469
```

İstisna Durumlar

Bisection yöntemi ve Regula-Falsi Yönteminde eğer kullanıcı içinde kök olmayan bir aralık verirse kullanıcıya hatayı bildirir ve program durdurulur.

```
Lütfen fonksiyonu giriniz (örnek: x^2 + log_(sin(5 * x))(x - 5) ): x^2 + 5 - cos(12*x)

Aralık başlangıcını girin: 1

Aralık bitişini girin: 5

Kabul edilebilir hata payını girin (epsilon): 0.001

Maksimum iterasyon sayısını girin: 10

Başlangıç noktası : 1.000000
Bitiş noktası : 5.000000
Orta nokta : 3.000000
f(Başlangıç) : 5.156146
f(Bitiş) : 30.952414
f(Orta nokta) : 14.127964
İterasyon sayısı : 1
Hata: Verilen (1.0000, 5.0000) aralığında kök yoktur.
```

Matrisin tersini almada eğer matrisin tersi alınamıyorsa yani matrisin determinantı 0 ise kullanıcıya hatayı bildirir ve program durdurulur.

```
Matris boyutunu girin: 3
[0][0]: 1
[0][1]: 2
[0][2]: 3
[1][0]: 4
[1][1]: 5
[1][2]: 6
[2][0]: 7
[2][1]: 8
[2][2]: 9

Girilen Matris: [
1.000000 2.000000 3.000000
4.000000 5.000000 6.000000
7.000000 8.000000 9.000000

]
Bu matrisin tersi bulunmamaktadır.
```

Simpson yönteminde eğer kullanıcı aralığı hem çift (simpson 1/3 den kaynaklı) hemde 3 ün katı (simpson 3/8 den kaynaklı) seçmez ise kullanıcıya bir uyarı verilir ve tekrar n değeri girmesi istenir.

```
Lütfen fonksiyonu giriniz (örnek: x^2 + log_(sin(5 * x))(x - 5) ):
e^x * cos(x) + log(x + 2)

İntegral alt sınırını girin: 1

İntegral üst sınırını girin: 6

Bölme sayısını girin (n): 5

n değeriniz hem çift (simpson 1/3 den kaynaklı) hemde 3 ün katı (simpson3/8 den kaynaklı) olmalı lütfen tekrar giriniz...
Bölme sayısını girin (n): 4

n değeriniz hem çift (simpson 1/3 den kaynaklı) hemde 3 ün katı (simpson3/8 den kaynaklı) olmalı lütfen tekrar giriniz...
Bölme sayısını girin (n): 6

Simpson 1/3 kuralı ile integral sonucu: 134.457748

Simpson 3/8 kuralı ile integral sonucu: 134.300293
```