75.03 & 95.57 Organización del Computador

U3 – ARQUITECTURA DEL CONJUNTO DE INSTRUCCIONES

- Arquitectura de computadoras
 - "Son las características computacionales visibles al programador, es decir, los atributos que tienen impacto directo en la ejecución lógica de un programa"
 - Ejemplo: existencia de una instrucción de máquina que permite multiplicar

- Arquitectura de computadoras
 - ISA (Instruction Set Architecture) / Arquitectura de Programación
 - Repertorio de instrucciones
 - Especificación de su operación
 - Registros
 - Tipos de datos
 - Modos de direccionamiento
 - Formato de instrucciones
 - Memoria
 - Word size
 - Big / Little Endian
 - Direccionamiento
 - Espacio de direcciones (address space)

- Organización de computadoras
 - "Implementación de la arquitectura (microarquitectura). Define las unidades operativas y sus interconexiones (señales de control, interfaces entre el CPU y los periféricos, tecnología de memoria, trayecto de datos, etc.)"
 - Ejemplo: cómo la instrucción de multiplicar se ejecuta internamente (por sumas sucesivas u otro circuito electrónico)

- Organización de computadoras
 - Diferentes implementaciones de una misma arquitectura
 - Costos
 - Velocidad de procesamiento
 - Consumo de energía
 - Ejemplo: Intel x86 Arquitectura Intel64
 - Sistemas embebidos (smartphones, tablets, gadgets, etc.) (Intel Atom)
 - Bajo costo y consumo de energía
 - Servidores (Intel Xeon)
 - Alta velocidad de procesamiento

- Organización de computadoras
 - Microarquitectura
 - Cableada (hardware latches, contadores, decodificadores, etc.)
 - Ejemplos
 - En general todos los procesadores de tipo RISC (ej. ARM Acorn RISC Machine)
 - Microprogramada ("software" microprograma / microcódigo)
 - Ejemplos
 - IBM System/360
 - DEC VAX
 - PDP-11
 - x86 (algunas instrucciones complejas)

- Familia de computadoras
 - Misma arquitectura base, distintas organizaciones (implementaciones)
 - Modelos con prestaciones y precios diferentes pero compatibles entre sí
 - Ejemplos:
 - Intel x86 (8086, 80286 ..., Pentium, Core, Atom, Xeon, etc.)
 - IBM Mainframe (360/370/390/zArch)
 - Power ISA
 - SPARC
 - ARM

Modelo de Capas

- Clasificación de computadoras según su poder de cálculo
 - Supercomputadoras
 - Extremadamente rápidas
 - Manejan volúmenes de datos enormes
 - Poseen miles de CPU
 - Usos específicos:
 - Aplicaciones científicas
 - Simulaciones
 - Campo militar

- Supercomputadoras
 - Supercomputer Fugaku (Japón)
 - 442,0 PetaFlops
 - 7,6 MM Núcleos (Fujitsu A64FX 48C 2.2GHz)
 - 5.000 TBytes de memoria

- Supercomputadoras
 - Summit (EEUU)
 - 148,6 PetaFlops
 - 2,4 MM Núcleos (IBM POWER9 22C 3.07GHz)
 - 2.800 TBytes de memoria

- Supercomputadoras
 - Sierra (EEUU)
 - 94,6 PetaFlops
 - 1,5 MM Núcleos (IBM POWER9 22C 3.1GHz)
 - 1.382 TBytes de memoria

- Supercomputadoras
 - DeepBlue IBM (EEUU-1996)
 - 11,38 GigaFlops
 - POWER2 Super Chip
 - Uso específico: Juego de ajedrez

- Supercomputadoras, ¿y en la Argentina?
 - Huayra Muyu Servicio Meteorológico Nacional
 - 370,4 TeraFlops
 - 4.096 Núcleos (Xeon Gold 6142 2.60 GHz)
 - o 12.288 GB de memoria

- Supercomputadoras, ¿y en la Argentina?
 - TUPAC Centro de Simulación Computacional
 - 48 TeraFlops
 - 4.096 Núcleos (AMD 6276 2.3GHz)
 - 8.192 GB de memoria

- Clasificación de computadoras según su poder de cálculo
 - Macrocomputadoras o Mainframes
 - Muy rápidas
 - Manejan volúmenes de datos muy grandes
 - Poseen cientos de CPU
 - Muy alta disponibilidad
 - Usos comerciales y científicos:
 - Sistemas de gestión bancarios
 - Telecomunicaciones
 - Instituciones gubernamentales

- Macrocomputadoras o mainframes
 - IBM Mainframe zArchitecture (z15)
 - Hasta 192 Núcleos (z15 CPU 5.2 GHz)
 - Hasta 40 TB de memoria

- Clasificación de computadoras según su poder de cálculo
 - Minicomputadoras o servidores middle range
 - Rápidas
 - Manejan volúmenes de datos grandes
 - Poseen decenas de CPU
 - Usos comerciales:
 - Empresas medianas y grandes
 - Varios equipos en una misma empresa

- Minicomputadoras o servidores middle range
 - IBM Power System E950 (POWER 9)
 - Oracle Sparc M8 (SPARC v9)
 - Oracle Exadata Database Machine X8M-2 (Intel64)
 - HPE Integrity (Intel Itanium IA-64)

- Clasificación de computadoras según su poder de cálculo
 - Microcomputadoras / PC
 - Uso individual o redes pequeñas a medianas
 - Manejan volúmenes de datos no muy grandes
 - Poseen uno o varios CPU
 - Uso hogareño, educativo, comercial, recreativo:
 - Estaciones de trabajo en empresas
 - Computadora en el hogar
 - Negocios / Colegios
 - Consolas de videojuego

- Microcomputadoras / PC
 - IBM PC compatible
 - Apple Macintosh
 - Video consolas

- Clasificación de computadoras según su poder de cálculo
 - Computadoras portátiles / notebooks / netbooks
 - Uso individual portátil
 - Manejan volúmenes de datos no muy grandes
 - Poseen uno o varios CPU
 - Uso hogareño, educativo, comercial:
 - Estaciones de trabajo en empresas
 - Computadora en el hogar
 - Negocios / Colegios

- Computadoras portátiles / notebooks / netbooks
 - Sony
 - Toshiba
 - HP
 - Dell

- Clasificación de computadoras según su poder de cálculo
 - Computadoras de mano
 - Uso individual portátil acotado
 - Manejan volúmenes de datos pequeños
 - Poseen uno o varios CPU
 - Uso hogareño, comercial:
 - Acopio de datos en vía pública
 - Información personal
 - Visualización de contenidos

- Computadoras de mano
 - Smartphones
 - Tabletas
 - Dispositivos "usables" (Ej. Samsung Gear 2)

Arquitectura Harvard

- Arquitectura Harvard
 - Las instrucciones y los datos se almacenan en memorias diferentes
 - Hay dos conexiones entre la unidad de control de la CPU y cada sistema de memoria
 - Las instrucciones se pueden cargar al mismo tiempo que los datos (instruction fetch y data access en paralelo por distintos buses)
 - Se manejan distintos espacios de direcciones para instrucciones y datos lo que dificulta la programación
 - Implementado en algunos microcontroladores PIC y en procesadores de señales digitales (DSP) (Ej. Texas Instruments TMS320 C55x processors)
 - Usado en los DSP para streaming de datos:
 - Mayor ancho de banda de memoria
 - Ancho de banda más predecible

Referencias

- "Computer Organization and Architecture Designing for Perfomance"
 10ma edición. William Stallings
 (http://williamstallings.com/ComputerOrganization/)
- "Structured Computer Organization" 6ta edición. Andrew Tanenbaum / Todd Austin (http://www.pearsonhighered.com/educator/product/Structured-Computer-Organization-6E/9780132916523.page)
- Top 500 Supercomputer Sites (http://www.top500.org)