9.15 Al finalizar el primer semestre de gobierno se realizó una encuesta entre 1200 ciudadanos, 414 de los cuales declararon ser oficialistas, 196 declararon no ser ni oficialistas ni opositores y el resto declaró ser opositor. En base a esa información muestral estimar por máxima verosimilitud (p ₁ , p ₂), donde p ₁ es la probabilidad de	
que un ciudadano elegido al azar sea oficialista y	y p_2 la de que sea opositor.
X1: Cont de audedonor objectite	ontre 1200
X2: Cont de andedonos spocitor	s entre 1200
Xz: Cont de andodonos mi spead	le mi spointor entre 1200
$\theta = [P_1, P_2]$	
P(" Opn Op") = 1- P(Opu Op)	- 1-P ₁ -P ₂
$(X_1, X_2, X_3) \sim \mathcal{M}(1200, P_1, P_1, P_1, P_1, P_1, P_1, P_1, P_1$	P211-P2
$ (\theta) = f(x) = \frac{1200}{x_1! x_2! x_3!} \rho_1^{x_1} \rho_2^{x_2}$	2 (1-P ₁ -P ₂)
DJ 9.14)	2n (c)
- 2 2n(1-P1-P2) x 1 dn(P1) e 2 dn(P2)	1200! 11 { x1+x2+ x3=1200}
	$\chi_1 \chi_2 \chi_3$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{x_3}{1 - P_1 - P_2} + \frac{x_1}{n_1} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_1} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_1}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_1}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_1}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0 \quad 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{-x_3}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{x_1}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_1} = \frac{x_1}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{x_1}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{x_2}{1 + x_2 + x_3} + \frac{x_2}{1 - P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{x_1}{1 - P_1 - P_2} + \frac{x_2}{P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{x_2}{1 + x_2 + x_3} + \frac{x_2}{1 - P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{x_2}{1 + x_2 + x_3} + \frac{x_2}{1 - P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{x_2}{1 + x_2 + x_3} + \frac{x_2}{1 - P_2} = 0$$

$$\frac{\partial \ln L(\theta)}{\partial P_2} = \frac{x_2}{1 + x_2 + x_3} + \frac{x_2}{1$$