Week??

Juan Patricio Carrizales Torres Section 3: Proof by Minimum Counterexample

January 18, 2022

With the aid of **Theorem 7**, we were able to describe a more general principle of mathematical induction that can prove the quantified statement $\forall n \in S, P(n)$, where $S = \{n \in \mathbb{Z} : n \geq m\}$ for some integer m. However, there would be times where applying induction directly would not be so readily feasable. Therefore, one can use a Proof by Minimum Counterexample, which involves both techniques of proof by Mathematical Induction and proof by contradiction.

In a proof by Minimum Counterexample, one assumes for the statement $\forall n \in S, P(n)$ that there is some nonempty set $A \subseteq S$ such that $\forall x \in A, \sim P(x)$. Since S is well ordered, it follows that A has some lowest term m. Then, with the aid of mathematical induction we show that P(n) is true for all integers $n \geq m$, which leads to a contradiction.

Problem 33. Use proof by minimum counterexample to prove that $6 \mid 7n(n^2 - 1)$ for every positive integer n.

Proof. Assume, to the contrary, that there are positive integers n for which $6 \nmid 7n (n^2 - 1)$. By the Well-ordering principle, there must be a lowest counterexample m. Therefore, $6 \mid 7n (n^2 - 1)$ for all positive integers n < m. Since $6 \mid 7 (1^2 - 1)$ and $6 \mid 7 \cdot 2 (2^2 - 1)$, it follows that the result is true for n = 1, 2 and so $m \ge 3$. Thus, m = k + 2 for some integer $1 \le k < m$.

Note that

$$7m (m^{2} - 1) = 7(k + 2) ((k + 2)^{2} - 1)$$

$$= 7(k + 2) (k^{2} + 4k + 4 - 1)$$

$$= 7k(k^{2} - 1) + 7k(4k + 4) + 7 \cdot 2 (k^{2} + 4k + 3)$$

$$= 7k(k^{2} - 1) + 7 (6k^{2} + 12k + 6)$$

$$= 7k(k^{2} - 1) + 7 \cdot 6 (k^{2} + 2k + 1)$$

Since k < m, it follows that $6 \mid 7k(k^2 - 1)$ and so $7k(k^2 - 1) = 6c$ for some integer c. Thus,

$$7m (m^{2} - 1) = 6c + 7 \cdot 6 (k^{2} + 2k + 1)$$
$$= 6 (c + 7 (k^{2} + 2k + 1))$$

Because $(c+7(k^2+2k+1)) \in \mathbb{Z}$, it follows that $6 \mid 7m(m^2-1)$ which leads to a contradiction.

Problem 34. Use the method of minimum counterexample to prove that $3 \mid (2^{2n} - 1)$ for every positive integer n.

Proof. Assume, to the contrary, that there are $n \in \mathbb{N}$ such that $3 \nmid (2^{2n} - 1)$. By the Well-ordering principle, the nonempty set of counterexamples must have a minimum which can be denoted as m. Since $3 \mid (3)$ and $3 \mid (15)$, it follows that the result is true for n = 1 and n = 2. Thus, $m \geq 3$ and so it can be expressed as m = k + 2 for $1 \leq k < m$. Because the positive integer k < m, it follows that $3 \mid (2^{2k} - 1)$ and so $2^{2k} - 1 = 3x$ for some integer x.

Observe that

$$2^{2m} - 1 = 2^{2(k+2)} - 1$$

$$= 2^{2k} (2^4) - 1$$

$$= 2^{2k} (15+1) - 1$$

$$= 2^{2k} - 1 + 15 \cdot 2^{2k}$$

$$= 3x + 15 \cdot 2^{2k}$$

$$= 3 (x + 5 \cdot 2^{2k})$$

Since $(x+5\cdot 2^{2k})\in \mathbb{Z}$, it follows that $3\mid (2^{2m}-1)$, which leads to a contradiction.

Problem 35. Give a proof by minimum counterexample that $1+3+5+\cdots+(2n-1)=n^2$ for every positive integer n.

Proof. Assume, to the contrary, that there are positive integers n such that $1+3+5+\cdots+(2n-1)\neq n^2$. Let m be the smallest such integer. Since $2(1)-1=1^2$, it follows that $m\geq 2$. Thus, the integer m can be expressed as m=k+1 for $1\leq k < m$. Therefore, $1+3+5+\cdots+(2k-1)=k^2$.

Observe that

$$1+3+5+\cdots+(2m-1) = 1+3+5+\cdots+(2(k+1)-1)$$
$$= [1+3+5+\cdots+(2k-1)]+(2(k+1)-1)$$
$$= k^2+2k+1 = (k+1)^2 = m^2$$

This clearly leads to a contradiction.

Problem 36. Prove that $5 \mid (n^5 - n)$ for every integer n.

Proof. Since $5 \mid (0^5 - 0)$, we consider the positive and negative integers. Suppose, to the contrary, that there are positive integers n such that $5 \nmid (n^5 - n)$. Let m be the smallest such positive integer. Because $5 \mid (1^5 - 1)$, it follows that m > 2 and so it can be expressed

as m = k + 1, where $1 \le k < m$. Thus, $5 \mid (k^5 - k)$ and so $k^5 - k = 5c$ for some $c \in \mathbb{Z}$. Therefore,

$$m^{5} - m = (k+1)^{5} - (k+1)$$

$$= k^{5} + 5k^{4} + 10k^{3} + 10k^{2} + 5k + 1 - (k+1)$$

$$= (k^{5} - k) + 5(k^{4} + 2k^{3} + 2k^{2} + k)$$

$$= 5(c + k^{4} + 2k^{3} + 2k^{2} + k)$$

Since $(c + k^4 + 2k^3 + 2k^2 + k) \in \mathbb{Z}$, it follows that $5 \mid (m^5 - m)$, which leads to a contradiction.

We know that the set of negative integers can be expressed as $\mathbb{Z}_{-} = \{-x : x \in \mathbb{N}\}$. Now, note that if $5 \mid (k^5 - k)$ for some $k \in \mathbb{N}$, then $k^5 - k = 5x$, where $x \in \mathbb{Z}$, and so

$$(-k)^{5} - (-k) = -k^{5} - (-k)$$
$$= -(k^{5} - k)$$
$$= -5x = 5(-x).$$

Since $-x \in \mathbb{Z}$, it follows that $5 \mid [(-k)^5 - (-k)]$.

Because we have proven that $5 \mid (n^5 - n)$ for every $n \in \mathbb{N}$, it follows that the result is also true for all negative integers.

Problem 37. Use proof by minimum counterexample to prove that $3 \mid (2^n + 2^{n+1})$ for every nonnegative integer n.

Proof. Assume, to the contrary, that there is some nonnegative integer n such that $3 \nmid (2^n + 2^{n+1})$. By **Theorem 7**, there must be a smallest nonnegative integer m such that $3 \nmid (2^m + 2^{m+1})$. Since $3 \mid (2^0 + 2^{0+1})$, it follows that $m \geq 1$ and so m = k + 1, where $0 \leq k < m$. Therefore, $3 \mid (2^k + 2^{k+1})$ and so $2^k + 2^{k+1} = 3c$ for some $c \in \mathbb{Z}$. Note that

$$2^{m} + 2^{m+1} = 2^{k+1} + 2^{(k+1)+1}$$

$$= 2 \cdot 2^{k} + 2 \cdot 2^{k+1}$$

$$= 2(2^{k} + 2^{k+1}) = 2(3c) = 3(2c)$$

Because $2c \in \mathbb{Z}$, it follows that $3 \mid (2^m + 2^{m+1})$. This leads to a contradiction.

Problem 38. Give a proof by minimum counterexample that $2^n > n^2$ for every integer $n \ge 5$.

Proof. Assume, to the contrary, that there are integers $n \geq 5$ such that $2^n \leq n^2$. By the Well-ordering principle, there is a smallest integer $m \geq 5$ such that $2^m \leq m^2$. Since

 $2^5 = 32 > 25 = (5)^2$, it follows that the statement is true for n = 5. Therefore, $m \ge 6$ and so it can be expressed as m = k + 1, where $5 \le k < m$. Thus, $2^k > k^2$. Note that

$$2^{m} = 2^{k+1}$$

$$= 2 \cdot 2^{k}$$

$$> 2 \cdot k^{2} = k^{2} + k^{2}$$

$$\geq k^{2} + 5k = k^{2} + 2k + 3k$$

$$\geq k^{2} + 2k + 15$$

$$> k^{2} + 2k + 1 = (k+1)^{2}.$$

Therefore, $2^{k+1} = 2^m > m^2 = (k+1)^2$, which leads to a contradiction.

Problem 39. Prove that $12 \mid (n^4 - n^2)$ for every positive integer n.

Proof. Suppose, to the contrary, that there are $n \in \mathbb{N}$ such that $12 \nmid (n^4 - n^2)$. Let m be the smallest such integer. Because $1^4 - 1^2 = 0$, $2^4 - 2^2 = 12$, and $3^4 - 3^2 = 72 = 12(6)$ it follows that $m \geq 4$. Hence, m can be expressed as m = k + 3 for $1 \leq k < m$. Therefore, $12 \mid (k^4 - k^2)$ and so $k^4 - k^2 = 12c$, where $c \in \mathbb{Z}$. Observe that

$$m^{4} - m^{2} = (k+3)^{4} - (k+3)^{2}$$

$$= k^{4} + 3 \cdot 4k^{3} + 3^{2}6k^{2} + 3^{3}4k + 3^{4} - k^{2} - 6k - 9$$

$$= (k^{4} - k^{2}) + 6 \cdot 2k^{3} + 6 \cdot 3^{2}k^{2} + 6(18 - 1)k + 72$$

$$= 12c + 6(2k^{3} + 3^{2}k^{2} + 17k + 12)$$

$$= 12c + 6[2(k^{3} + 6) + k(9(k+1) + 8)].$$

We now show that k(9(k+1)+8) is even. If k is even, then we are set (**Theorem 3.17**). On the other hand, if k is odd, then k+1 is even and so 9(k+1)+8 is even since it is the sum of two even integers (**Theorem 3.16**). Thus, k(9(k+1)+8) is even (**Theorem 3.17**). Therefore, k(9(k+1)+8)=2y for some $y \in \mathbb{Z}$ and so

$$\begin{split} m^4 - m^2 &= 12c + 6\left[2\left(k^3 + 6\right) + k\left(9(k+1) + 8\right)\right] \\ &= 12c + 6\left[2\left(k^3 + 6\right) + 2y\right] \\ &= 12c + 12\left(k^3 + y + 6\right) = 12\left(k^3 + c + y + 6\right). \end{split}$$

Since $k^3 + c + y + 6 \in \mathbb{Z}$, it follows that $12 \mid (m^4 - m^2)$, which leads to a contradiction. \square

Problem 40. First we prove a lemma.

Lemma 1. Let $t \in \mathbb{N}$. Then

$$2^t = 2^0 + 2^1 + \ldots + 2^{t-1} + 1$$

Proof. We proceed by induction. Since $2^1 = 2 = 2^0 + 1$, it follows that the lemma is true for t = 1. Assume that

$$2^k = 2^0 + 2^1 + \ldots + 2^{k-1} + 1.$$

We prove that

$$2^{k+1} = 2^0 + 2^1 + \ldots + 2^k + 1.$$

Note that

$$2^{k+1} = 2 \cdot 2^k$$

$$= 2 (2^0 + 2^1 + \dots + 2^{k-1} + 1)$$

$$= 2^1 + 2^2 + \dots + 2^k + 2 = 2^1 + 2^2 + \dots + 2^k + (1 + 2^0)$$

$$= 2^0 + 2^1 + 2^2 + \dots + 2^k + 1.$$

By the Principle of Mathematical Induction, this result is true.

We now proceed to prove the result

Result 40. Let $S = \{2^r : r \in \mathbb{Z}, r \geq 0\}$. Use proof by minimum counterexample to prove that for every $n \in \mathbb{N}$, there exists a subset S_n of S such that $\sum_{i \in S_n} i = n$.

Proof. Assume, to the contrary, that there is some $n \in \mathbb{N}$ such that $\sum_{i \in S_n} i \neq n$ for all possible subsets S_n of S. Let m be the smallest such positive integer. Since $2^0 = 1$ and $\{2^0\} \subseteq S$, it follows that $m \geq 2$. Hence, m = k + 1 for $1 \leq k < m$.

Therefore, there is some subset S_k of S such that $\sum_{i \in S_k} i = k$. Note that

$$m = k + 1 = \sum_{i \in S_k} i + 1.$$

If $2^0 \notin S_k$, then $S_m = S_k \cup \{2^0\}$. Therefore, $S_m \subseteq S$ and $\sum_{i \in S_m} i = m$, which leads to a contradiction.

On the other hand, if $2^0 \in S_k$, then define $A = \{t : t \geq 1, t \in \mathbb{Z}, 2^t \notin S_k\}$. By the Well-ordering principle, there is a smallest element $t \in A$. Observe that, by **Lemma 1**,

$$2^t = 2^0 + 2^1 + \ldots + 2^{t-1} + 1.$$

Therefore, let $B = \{2^0, 2^1, \dots, 2^{t-1}\}$. Then, $S_m = (S_k - B) \cup \{2^t\}$ and so

$$\sum_{i \in S_m} i = \sum_{i \in (S_k - B)} i + 2^0 + 2^1 + \dots + 2^{t-1} + 1$$

$$= \sum_{i \in (S_k - B)} i + \sum_{i \in B} i + 1$$

$$= \sum_{i \in S} i + 1 = k + 1 = m,$$

which leads to a contradiction.

Theorems used:

Theorem 3.16. Let $x, y \in \mathbb{Z}$. Then x and y are of the same parity if and only if x + y is even.

Theorem 3.17. Let a and b be integers. Then ab is even if and only if a is even or b is even.