FCC RF Test Report

APPLICANT : CT Asia (HK) Ltd. EQUIPMENT : Mobile phone

BRAND NAME : BLU

MODEL NAME : DASH J

FCC ID : YHLBLUDASHJ

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Oct. 30, 2015 and testing was completed on Nov. 27, 2015. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Prepared by: Andy Yeh / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 1 of 41

Testing Laboratory

Report No.: FR5O3008C

Report Issued Date : Dec. 03, 2015 Report Version : Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1 1.2	Applicant	
	1.3	Product Feature of Equipment Under Test	
	1.4	Product Specification subjective to this standard	
	1.5	Modification of EUT	
	1.6	Testing Location	
	1.7	Applicable Standards	
2		CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1	Carrier Frequency Channel	8
	2.2	Pre-Scanned RF Power	9
	2.3	Test Mode	10
	2.4	Connection Diagram of Test System	11
	2.5	Support Unit used in test configuration and system	12
	2.6	EUT Operation Test Setup	12
	2.7	Measurement Results Explanation Example	12
3	TES1	result	13
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	
	3.4	Conducted Band Edges and Spurious Emission Measurement	
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	39
4	LIST	OF MEASURING EQUIPMENT	40
5	UNC	ERTAINTY OF EVALUATION	41
ΑP	PEND	X A. CONDUCTED TEST RESULTS	
ΑP	PEND	IX B. RADIATED TEST RESULTS	
ΑP	PEND	OIX C. SETUP PHOTOGRAPHS	

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 2 of 41 Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR5O3008C	Rev. 01	Initial issue of report	Dec. 03, 2015

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 3 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	RSS-247 5.2(1)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	RSS-Gen 6.6	99% Bandwidth	-	Pass	-
3.2	15.247(b)	RSS-247 A5.4(4)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	RSS-247 5.2(2)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15 247(d)	RSS-247	Conducted Band Edges	< 20dDa	Pass	-
3.4	15.247(d)	5.5	Conducted Spurious Emission	- ≤ 20dBc	Pass	-
3.5	15.247(d)	RSS-247 5.5	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.18 dB at 2486.760 MHz
3.6	15.207	RSS-GEN 8.8	AC Conducted Emission	15.207(a)	Pass	Under limit 8.64 dB at 0.180 MHz
3.7	15.203 & 15.247(b)	N/A	Antenna Requirement	N/A	Pass	-

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 4 of 41

Report No.: FR5O3008C

Report Issued Date : Dec. 03, 2015 Report Version : Rev. 01

1 General Description

1.1 Applicant

CT Asia (HK) Ltd.

Unit1309-11, 13th Floor 9 Wing Hong Street Cheung Sha Wan Kowloon, Hong Kong

1.2 Manufacturer

CT Asia (HK) Ltd.

Unit1309-11, 13th Floor 9 Wing Hong Street Cheung Sha Wan Kowloon, Hong Kong

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	Mobile phone
Brand Name	BLU
Model Name	DASH J
FCC ID	YHLBLUDASHJ
Equipment Brand Name Model Name FCC ID EUT supports Radios application IMEI Code HW Version SW Version	GSM/GPRS
	WLAN2.4GHz 802.11b/g/n HT20/ HT40
	Bluetooth v3.0+EDR
	Bluetooth v4.0 LE
Equipment Brand Name Model Name FCC ID EUT supports Radios application IMEI Code HW Version SW Version	Conducted: 351771053532694/351771053532702
	Conduction: 351771053532918/351771053532926
	Radiation: 351771053532835/351771053532843
HW Version	S4016-MB-V1.0
SW Version	DASH J_V01_GENERIC
EUT Stage	Production Unit

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 5 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

1.4 Product Specification subjective to this standard

802.11b : 17.00 dBm (0.0501 W) 802.11g : 21.14 dBm (0.1300 W) 802.11n HT20 : 20.59 dBm (0.1146 W) 802.11n HT40 : 20.49 dBm (0.1119 W) 802.11b : 12.85MHz 802.11g : 17.75MHz 802.11n HT20 : 18.55MHz 802.11n HT40 : 36.30MHz		
Tx/Rx Channel Frequency Range	802.11b/g/n : 2412 MHz ~ 2462 MHz	
	802.11b : 17.00 dBm (0.0501 W)	
Maximum (Peak) Output Power to	802.11g : 21.14 dBm (0.1300 W)	
Antenna	802.11n HT20 : 20.59 dBm (0.1146 W)	
	802.11n HT40 : 20.49 dBm (0.1119 W)	
	802.11b : 12.85MHz	
00% Occupied Bandwidth	802.11g : 17.75MHz	
39% Occupied Baildwidth	802.11n HT20 : 18.55MHz	
	802.11n HT40 : 36.30MHz	
Antenna Type	802.11b/g/n: PIFA Antenna with gain 3 dBi	
Type of Medulation	802.11b: DSSS (DBPSK / DQPSK / CCK)	
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)	

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 6 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

1.6 Testing Location

Test Site	AX: +86-755-8637-9595 Sporton Site No.				
	1F & 2F, Building A, Morning Busin	ess Center, No. 4003 ShiGu Rd., Xili			
Test Site Location	Town, Nanshan District, Shenzhen, G	uangdong, P. R. China			
Test Site Location	TEL: +86-755-8637-9589				
	FAX: +86-755-8637-9595				
Took Cita No	Sporton Site No.				
Test Site No.	TH01-SZ				

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.				
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan				
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P. R. China				
	TEL: +86-755-3320-2398				
Took Cita No	Sporton Site No.	FCC/IC Registration No.			
Test Site No.	03CH02-SZ	566869/4086F			

Note: The test site complies with ANSI C63.4 2009 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03
- ANSI C63.10-2009

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 7 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400-2483.5 MHz	3	2422	9	2452
2400-2403.3 IVITZ	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 8 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)									
Po	wer vs. Chan	inel		Power vs. Data Rate						
Channel	Channel Frequency MHz) Data Rate 1Mbps		Channel	11Mbps						
CH 01	2412 MHz	16.15			16.93					
CH 06	2437 MHz	16.28	CH 11	16.98		16.88				
CH 11	2462 MHz	<mark>17.00</mark>								

	2.4GHz 802.11g RF Output Power (dBm)										
Power vs. Channel				Power vs. Data Rate							
Channel	Frequency (MHz)	Data Rate	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	
	(1011 12)	6Mbps									
CH 01	2412 MHz	20.93									
CH 06	2437 MHz	<mark>21.14</mark>	CH 06	21.11	21.08	21.06	21.09	21.08	21.10	21.12	
CH 11	2462 MHz	21.04									

	2.4GHz 802.11n HT20 RF Output Power (dBm)										
Power vs. Channel				Power vs. MCS Index							
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 01	2412 MHz	20.32									
CH 06	2437 MHz	20.38	CH 11	20.47	20.45	20.44	20.44	20.45	20.45	20.48	
CH 11	2462 MHz	<mark>20.59</mark>									

	2.4GHz 802.11n HT40 RF Output Power (dBm)										
Power vs. Channel				Power vs. MCS Index							
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 03	2422 MHz	20.39									
CH 06	2437 MHz	20.44	CH 09	20.07	20.09	20.12	20.09	20.07	20.11	20.14	
CH 09	2452 MHz	<mark>20.49</mark>									

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 9 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

<2.4GHz>

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

Test Cases			
AC Conducted	Made 4 + CCM050 Idle + Directorial link + W/ ANT ink + Fembrus + Adoptor + Dettern + CIM4		
Mode 1 : GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + Adapter + Battery + SIM1 Emission			
Remark: For Radiated Test Cases, The tests were performance with Adapter, and Earphone.			

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 10 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 11 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth	Nokia	BH-108	PYAHS-107W	N/A	N/A
۷.	Earphone	NORIA	B11-100	TANG-107W	14/74	19/7
3.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
				AC I/P:		
4.	Notebook	Lenovo	E540	FCC Doc	N/A	Unshielded, 1.2 m
4.	Notebook	Lenovo	E340	I CC DOC	IV/A	DC O/P:
						Shielded, 1.8 m
5.	Earphone	Lenovo	SH100	N/A	Unshielded, 1.2m	N/A
6.	iPod Earphone	Apple	N/A	N/A	Unshielded, 1.6m	N/A

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 5 + 10 = 15 (dB)

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 12 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r03.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 1MHz and set the Video bandwidth (VBW) = 3MHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 13 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Please refer to Appendix A of this test report.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 14 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas.
 Guidance v03r03 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A of this test report.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 15 of 41 Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 16 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A of this test report.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 17 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 18 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Bruce Huang

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 19 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Bruce Huang

Page Number : 20 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Bruce Huang

Page Number : 21 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Bruce Huang

Page Number : 22 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Bruce Huang

Page Number : 23 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Bruce Huang

Page Number : 24 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Bruce Huang

Page Number : 25 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Bruce Huang

Page Number : 26 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Bruce Huang

Page Number : 27 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

 Test Mode :
 802.11n HT40
 Temperature :
 24~26℃

 Test Band :
 2.4GHz Low
 Relative Humidity :
 50~53%

 Test Channel :
 03
 Test Engineer :
 Bruce Huang

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 28 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Bruce Huang

Page Number : 29 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	09	Test Engineer :	Bruce Huang

Page Number : 30 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 31 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- The EUT was set 3 meters from the interference receiving antenna, which was mounted on the 4. top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	98.25	-	-	10Hz
802.11g	88.54	1.39	0.72	1kHz
2.4GHz 802.11n HT20	88.77	1.30	0.77	1kHz
2.4GHz 802.11n HT40	79.20	0.65	1.54	3kHz

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 32 of 41 Report Issued Date: Dec. 03, 2015

Report No.: FR5O3008C

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 33 of 41

Report Issued Date: Dec. 03, 2015

Report No.: FR5O3008C

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 34 of 41 Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 35 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

3.6.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 36 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	21~23℃				
Test Engineer :	Jacky Yang	Relative Humidity :	41~43%				
Test Voltage :	120Vac / 60Hz	Phase :	Line				
Eupation Type	GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + Adapter + Battery						
Function Type :	SIM1						

Site : CO01-SZ

Condition: FCC 15C_QP LISN_L_20150304 LINE

Mode : Mode 1

IMEI : 351771053532918/351771053532926

			OVET	штиптс	Reau	TITOM	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBu∇	dB	dBu∇	dBu∇	dB	dB	
1	0.18	44.20	-10.44	54.64	33.40	0.48	10.32	Average
2 *	0.18	56.00	-8.64	64.64	45.20	0.48	10.32	QP
3	0.22	39.60	-13.10	52.70	28.80	0.53	10.27	Average
4	0.22	51.60	-11.10	62.70	40.80	0.53	10.27	QP
5	0.27	35.38	-15.74	51.12	24.60	0.56	10.22	Average
6	0.27	47.68	-13.44	61.12	36.90	0.56	10.22	QP
7	0.31	31.66	-18.18	49.84	20.90	0.56	10.20	Average
8	0.31	43.96	-15.88	59.84	33.20	0.56	10.20	QP
9	0.36	29.63	-19.11	48.74	18.90	0.55	10.18	Average
10	0.36	42.33	-16.41	58.74	31.60	0.55	10.18	QP
11	0.45	28.57	-18.32	46.89	17.80	0.61	10.16	Average
12	0.45	40.47	-16.42	56.89	29.70	0.61	10.16	QP

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 37 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

Test Mode :	Mode 1	Temperature :	21~23℃
Test Engineer :	Jacky Yang	Relative Humidity :	41~43%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Function Type:	GSM850 Idle + Bluetooth L	ink + WLAN Link + E	arphone + Adapter + Battery +

SIM1

: CO01-SZ Site

Condition: FCC 15C_QP LISN_N_20150304 NEUTRAL

IMEI : 351771053532918/351771053532926

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.18	44.21	-10.16	54.37	33.41	0.49	10.31	Average
2 *	0.18	55.71	-8.66	64.37	44.91	0.49	10.31	QP
3	0.22	39.20	-13.46	52.66	28.40	0.53	10.27	Average
4	0.22	51.10	-11.56	62.66	40.30	0.53	10.27	QP
5	0.27	35.59	-15.61	51.20	24.79	0.57	10.23	Average
6	0.27	46.99	-14.21	61.20	36.19	0.57	10.23	QP
7	0.31	31.48	-18.36	49.84	20.70	0.58	10.20	Average
8	0.31	43.58	-16.26	59.84	32.80	0.58	10.20	QP
9	0.36	32.64	-16.01	48.65	21.90	0.56	10.18	Average
10	0.36	40.74	-17.91	58.65	30.00	0.56	10.18	QP
11	0.46	32.25	-14.46	46.71	21.50	0.59	10.16	Average
12	0.46	41.15	-15.56	56.71	30.40	0.59	10.16	QP

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ

: 38 of 41 Page Number Report Issued Date: Dec. 03, 2015 Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 39 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Jan. 28, 2015	Nov. 05, 2015~ Nov. 13, 2015	Jan. 27, 2016	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 28, 2015	Nov. 05, 2015~ Nov. 13, 2015	Jan. 27, 2016	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Jan. 28, 2015	Nov. 05, 2015~ Nov. 13, 2015	Jan. 27, 2016	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz;Ma x 30dBm	Oct. 20, 2015	Nov. 27, 2015	Oct. 19, 2016	Radiation (03CH02-SZ)
Spectrum Analyzer	R&S	FSV40	101041	10kHz~40GHz; Max 30dBm	Oct. 20, 2015	Nov. 27, 2015	Oct. 19, 2016	Radiation (03CH02-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 06, 2015	Nov. 27, 2015	May 05, 2016	Radiation (03CH02-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	May 06, 2015	Nov. 27, 2015	May 05, 2016	Radiation (03CH02-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-128 5	1GHz~18GHz	Jan. 20, 2015	Nov. 27, 2015	Jan. 19, 2016	Radiation (03CH02-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Aug. 17, 2015	Nov. 27, 2015	Aug. 16, 2016	Radiation (03CH02-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz ~3000MHz / 30 dB	Jan. 28, 2015	Nov. 27, 2015	Jan. 27, 2016	Radiation (03CH02-SZ)
Amplifier	Agilent	8449B	3008A010 23	1GHz~26.5GHz	Oct. 20, 2015	Nov. 27, 2015	Oct. 19, 2016	Radiation (03CH02-SZ)
AC Power Source	Chroma	61601	616010002 470	N/A	NCR	Nov. 27, 2015	NCR	Radiation (03CH02-SZ)
Turn Table	Chaintek	T-200	N/A	0~360 degree	NCR	Nov. 27, 2015	NCR	Radiation (03CH02-SZ)
Antenna Mast	Chaintek	MBS-400	N/A	1 m~4 m	NCR	Nov. 27, 2015	NCR	Radiation (03CH02-SZ)
EMI Receiver	R&S	ESCI7	100724	9kHz~3GHz;	Jan. 28, 2015	Nov. 10, 2015~ Nov. 11, 2015	Jan. 27, 2016	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	103892	9kHz~30MHz	Feb. 02, 2015	Nov. 10, 2015~ Nov. 11, 2015	Feb. 01, 2016	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	MessTec	AN3016	16850	9kHz~30MHz	Feb. 02, 2015	Nov. 10, 2015~ Nov. 11, 2015	Feb. 01, 2016	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Aug. 07, 2015	Nov. 10, 2015~ Nov. 11, 2015	Aug. 06, 2016	Conduction (CO01-SZ)
Pulse Limiter	COM-POWER	LIT-153 Transient Limiter	53139	150kHz~30MHz	Oct. 20, 2015	Nov. 10, 2015~ Nov. 11, 2015	Oct. 19, 2016	Conduction (CO01-SZ)

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 40 of 41
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.3 dB
Confidence of 95% (U = 2Uc(y))	2.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	5 0 AD
Confidence of 95% (U = 2Uc(y))	5.0 dB

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : 41 of 41
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : A1 of A1
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

A1 - DTS Part

Test Engineer:	Bruce Huang	Temperature:	24~26	°C
Test Date:	2015/11/5~2015/11/13	Relative Humidity:	50~53	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail				
11b	1Mbps	1	1	2412	12.60	9.04	0.50	Pass				
11b	1Mbps	1	6	2437	12.75	10.00	0.50	Pass				
11b	1Mbps	1	11	2462	12.85	10.00	0.50	Pass				
11g	6Mbps	1	1	2412	17.50	15.32	0.50	Pass				
11g	6Mbps	1	6	2437	17.70	15.68	0.50	Pass				
11g	6Mbps	1	11	2462	17.75	15.80	0.50	Pass				
HT20	MCS0	1	1	2412	18.20	15.44	0.50	Pass				
HT20	MCS0	1	6	2437	18.45	16.88	0.50	Pass				
HT20	MCS0	1	11	2462	18.55	17.00	0.50	Pass				
HT40	MCS0	1	3	2422	36.20	35.44	0.50	Pass				
HT40	MCS0	1	6	2437	36.30	35.16	0.50	Pass				
HT40	MCS0	1	9	2452	36.30	35.36	0.50	Pass				

TEST RESULTS DATA Peak Power Table

	2.4GHz Band											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
11b	1Mbps	1	1	2412	16.15	30.00	3.00	19.15	36.00	Pass		
11b	1Mbps	1	6	2437	16.28	30.00	3.00	19.28	36.00	Pass		
11b	1Mbps	1	11	2462	17.00	30.00	3.00	20.00	36.00	Pass		
11g	6Mbps	1	1	2412	20.93	30.00	3.00	23.93	36.00	Pass		
11g	6Mbps	1	6	2437	21.14	30.00	3.00	24.14	36.00	Pass		
11g	6Mbps	1	11	2462	21.04	30.00	3.00	24.04	36.00	Pass		
HT20	MCS0	1	1	2412	20.32	30.00	3.00	23.32	36.00	Pass		
HT20	MCS0	1	6	2437	20.38	30.00	3.00	23.38	36.00	Pass		
HT20	MCS0	1	11	2462	20.59	30.00	3.00	23.59	36.00	Pass		
HT40	MCS0	1	3	2422	20.39	30.00	3.00	23.39	36.00	Pass		
HT40	MCS0	1	6	2437	20.44	30.00	3.00	23.44	36.00	Pass		
HT40	MCS0	1	9	2452	20.49	30.00	3.00	23.49	36.00	Pass		

TEST RESULTS DATA Average Power Table (Reporting Only)

	2.4GHz Band										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)					
11b	1Mbps	1	1	2412	0.08	12.94					
11b	1Mbps	1	6	2437	0.08	13.03					
11b	1Mbps	1	11	2462	0.08	14.16					
11g	6Mbps	1	1	2412	0.53	12.18					
11g	6Mbps	1	6	2437	0.53	13.63					
11g	6Mbps	1	11	2462	0.53	13.08					
HT20	MCS0	1	1	2412	0.52	10.07					
HT20	MCS0	1	6	2437	0.52	10.37					
HT20	MCS0	1	11	2462	0.52	10.81					
HT40	MCS0	1	3	2422	1.01	9.35					
HT40	MCS0	1	6	2437	1.01	9.53					
HT40	MCS0	1	9	2452	1.01	9.66					

TEST RESULTS DATA Peak Power Density

	2.4GHz Band											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail				
11b	1Mbps	1	1	2412	-8.86	3.00	8.00	Pass				
11b	1Mbps	1	6	2437	-8.66	3.00	8.00	Pass				
11b	1Mbps	1	11	2462	-8.05	3.00	8.00	Pass				
11g	6Mbps	1	1	2412	-13.78	3.00	8.00	Pass				
11g	6Mbps	1	6	2437	-9.79	3.00	8.00	Pass				
11g	6Mbps	1	11	2462	-11.67	3.00	8.00	Pass				
HT20	MCS0	1	1	2412	-13.52	3.00	8.00	Pass				
HT20	MCS0	1	6	2437	-11.83	3.00	8.00	Pass				
HT20	MCS0	1	11	2462	-12.89	3.00	8.00	Pass				
HT40	MCS0	1	3	2422	-18.23	3.00	8.00	Pass				
HT40	MCS0	1	6	2437	-16.40	3.00	8.00	Pass				
HT40	MCS0	1	9	2452	-16.49	3.00	8.00	Pass				

Appendix B. Radiated Spurious Emission

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2365.44	48.66	-25.34	74	49.52	27.13	9.2	37.19	154	66	Р	Н
		2387.04	36.61	-17.39	54	37.27	27.25	9.32	37.23	154	66	Α	Н
000 441	*	2412	99.92	1	-	100.42	27.31	9.43	37.24	154	66	Р	Н
802.11b CH 01	*	2412	93.95	ı	1	94.45	27.31	9.43	37.24	154	66	Α	Н
2412MHz		2386.32	45.11	-28.89	74	45.77	27.25	9.32	37.23	155	343	Р	V
2412111112		2386.86	31.82	-22.18	54	32.48	27.25	9.32	37.23	155	343	Α	V
	*	2412	94.53	1	-	95.03	27.31	9.43	37.24	155	343	Р	V
	*	2412	88.45	-	-	88.95	27.31	9.43	37.24	155	343	Α	V
		2389.11	47.91	-26.09	74	48.57	27.25	9.32	37.23	154	66	Р	Н
		2369.4	31.73	-22.27	54	32.43	27.19	9.32	37.21	154	66	Α	Н
	*	2437	99.57	-	-	99.99	27.42	9.43	37.27	154	66	Р	Н
	*	2437	93.6	-	-	94.02	27.42	9.43	37.27	154	66	Α	Н
		2488.24	46.93	-27.07	74	46.99	27.6	9.66	37.32	154	66	Р	Н
802.11b		2484.28	32.31	-21.69	54	32.52	27.54	9.55	37.3	154	66	Α	Н
CH 06 2437MHz		2350.5	43.12	-30.88	74	44.03	27.07	9.2	37.18	155	343	Р	V
2437 WIF1Z		2388.84	29.66	-24.34	54	30.32	27.25	9.32	37.23	155	343	Α	V
	*	2437	97.53	-	-	97.95	27.42	9.43	37.27	155	343	Р	V
	*	2437	91.6	-	-	92.02	27.42	9.43	37.27	155	343	Α	V
		2493.28	46.4	-27.6	74	46.46	27.6	9.66	37.32	155	343	Р	V
		2484.32	31.88	-22.12	54	32.09	27.54	9.55	37.3	155	343	Α	V

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B1 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

	*	2462	102.82	-	-	103.08	27.48	9.55	37.29	200	41	Р	Н
	*	2462	96.77	-	-	97.03	27.48	9.55	37.29	200	41	Α	Н
		2487.6	50.93	-23.07	74	51.1	27.6	9.55	37.32	200	41	Р	Н
802.11b		2486.84	41.52	-12.48	54	41.73	27.54	9.55	37.3	200	41	Α	Н
CH 11 2462MHz	*	2462	99.27	-	1	99.53	27.48	9.55	37.29	155	343	Р	V
240211112	*	2462	93.31	-	-	93.57	27.48	9.55	37.29	155	343	Α	V
		2488.52	49.49	-24.51	74	49.55	27.6	9.66	37.32	155	343	Р	V
		2486.64	39.32	-14.68	54	39.53	27.54	9.55	37.3	155	343	Α	V
Remark		o other spurious for		k and Ave	rage limit line.								

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B2 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz WIFI 802.11b (Harmonic @ 3m)

(MHz) 4824 4824 4824 4824 4874 4874 7311 7311 4874 4874	(dBµV/m) 53.82 48.86 54.11 48.96 54.18 48.89 50.4 38.41 53.8 49.89	Limit (dB) -20.18 -5.14 -19.89 -5.04 -19.82 -5.11 -23.6 -15.59 -20.2	Line (dBμV/m) 74 54 74 54 74 54 74 54 74 54 74	Level (dBμV) 65.79 60.83 66.08 60.93 66.25 60.96 55.85 43.86	Factor (dB/m) 31.26 31.26 31.26 31.26 31.36 31.36 35.96	Loss (dB) 13.37 13.37 13.37 13.48 13.48 16.59	Factor (dB) 56.6 56.6 56.6 56.91 56.91 58	Pos (cm) 150 150 150 150 150 150 170 150	Pos (deg) 360 360 360 360 100	Avg. (P/A) P A P A P A	(H/V) H H V H H
4824 4824 4824 4824 4874 4874 7311 7311 4874	53.82 48.86 54.11 48.96 54.18 48.89 50.4 38.41 53.8	-20.18 -5.14 -19.89 -5.04 -19.82 -5.11 -23.6 -15.59	74 54 74 54 74 54 74 54	65.79 60.83 66.08 60.93 66.25 60.96 55.85 43.86	31.26 31.26 31.26 31.26 31.36 31.36 35.96	13.37 13.37 13.37 13.48 13.48 16.59	56.6 56.6 56.6 56.91 56.91 58	150 150 150 150 150	360 360 360 360 360 360	P A P A	H H V V H
4824 4824 4824 4874 4874 7311 7311 4874	48.86 54.11 48.96 54.18 48.89 50.4 38.41 53.8	-5.14 -19.89 -5.04 -19.82 -5.11 -23.6 -15.59	54 74 54 74 54 74 54	60.83 66.08 60.93 66.25 60.96 55.85 43.86	31.26 31.26 31.26 31.36 31.36 35.96	13.37 13.37 13.48 13.48 16.59	56.6 56.6 56.91 56.91 58	150 150 150 150	360 360 360 360 360	A P A P	H V V H
4824 4824 4874 4874 7311 7311 4874	54.11 48.96 54.18 48.89 50.4 38.41 53.8	-19.89 -5.04 -19.82 -5.11 -23.6 -15.59	74 54 74 54 74 54	66.08 60.93 66.25 60.96 55.85 43.86	31.26 31.26 31.36 31.36 35.96	13.37 13.37 13.48 13.48 16.59	56.6 56.6 56.91 56.91 58	150 150 150 150	360 360 360 360	P A P	V V H
4824 4874 4874 7311 7311 4874	48.96 54.18 48.89 50.4 38.41 53.8	-5.04 -19.82 -5.11 -23.6 -15.59	54 74 54 74 54	60.93 66.25 60.96 55.85 43.86	31.26 31.36 31.36 35.96	13.37 13.48 13.48 16.59	56.6 56.91 56.91 58	150 150 150	360 360 360	A P A	V H H
4874 4874 7311 7311 4874	54.18 48.89 50.4 38.41 53.8	-19.82 -5.11 -23.6 -15.59	74 54 74 54	66.25 60.96 55.85 43.86	31.36 31.36 35.96	13.48 13.48 16.59	56.91 56.91 58	150 150	360 360	P A	Н
4874 7311 7311 4874	48.89 50.4 38.41 53.8	-5.11 -23.6 -15.59	54 74 54	60.96 55.85 43.86	31.36 35.96	13.48 16.59	56.91 58	150	360	Α	Н
7311 7311 4874	50.4 38.41 53.8	-23.6 -15.59	74 54	55.85 43.86	35.96	16.59	58				
7311 4874	38.41 53.8	-15.59	54	43.86				174	100	Р	Н
4874	53.8				35.96						ı ''
		-20.2	74			16.59	58	174	100	Α	Н
4874	49.89			65.87	31.36	13.48	56.91	150	360	Р	٧
	40.00	-4.11	54	61.96	31.36	13.48	56.91	150	360	Α	٧
7311	50.5	-23.5	74	55.95	35.96	16.59	58	174	100	Р	٧
7311	39.02	-14.98	54	44.47	35.96	16.59	58	174	100	Α	٧
4924	55.37	-18.63	74	66.4	31.46	13.59	56.08	150	360	Р	Н
4924	50.42	-3.58	54	61.45	31.46	13.59	56.08	150	360	Α	Н
7386	52.67	-21.33	74	57.94	36.08	16.66	58.01	150	274	Р	Н
7386	41.23	-12.77	54	46.5	36.08	16.66	58.01	150	274	Α	Н
4924	55.66	-18.34	74	66.69	31.46	13.59	56.08	150	360	Р	٧
4924	50.89	-3.11	54	61.92	31.46	13.59	56.08	150	360	Α	٧
7386	54.98	-19.02	74	60.25	36.08	16.66	58.01	150	274	Р	V
7386	46.21	-7.79	54	51.48	36.08	16.66	58.01	150	274	Α	V
ot e	4924 4924 7386 7386 4924 4924 7386 7386	4924 55.37 4924 50.42 7386 52.67 7386 41.23 4924 55.66 4924 50.89 7386 54.98	4924 55.37 -18.63 4924 50.42 -3.58 7386 52.67 -21.33 7386 41.23 -12.77 4924 55.66 -18.34 4924 50.89 -3.11 7386 54.98 -19.02 7386 46.21 -7.79	4924 55.37 -18.63 74 4924 50.42 -3.58 54 7386 52.67 -21.33 74 7386 41.23 -12.77 54 4924 55.66 -18.34 74 4924 50.89 -3.11 54 7386 54.98 -19.02 74 7386 46.21 -7.79 54	4924 55.37 -18.63 74 66.4 4924 50.42 -3.58 54 61.45 7386 52.67 -21.33 74 57.94 7386 41.23 -12.77 54 46.5 4924 55.66 -18.34 74 66.69 4924 50.89 -3.11 54 61.92 7386 54.98 -19.02 74 60.25 7386 46.21 -7.79 54 51.48	4924 55.37 -18.63 74 66.4 31.46 4924 50.42 -3.58 54 61.45 31.46 7386 52.67 -21.33 74 57.94 36.08 7386 41.23 -12.77 54 46.5 36.08 4924 55.66 -18.34 74 66.69 31.46 4924 50.89 -3.11 54 61.92 31.46 7386 54.98 -19.02 74 60.25 36.08 7386 46.21 -7.79 54 51.48 36.08	4924 55.37 -18.63 74 66.4 31.46 13.59 4924 50.42 -3.58 54 61.45 31.46 13.59 7386 52.67 -21.33 74 57.94 36.08 16.66 7386 41.23 -12.77 54 46.5 36.08 16.66 4924 55.66 -18.34 74 66.69 31.46 13.59 4924 50.89 -3.11 54 61.92 31.46 13.59 7386 54.98 -19.02 74 60.25 36.08 16.66 7386 46.21 -7.79 54 51.48 36.08 16.66	4924 55.37 -18.63 74 66.4 31.46 13.59 56.08 4924 50.42 -3.58 54 61.45 31.46 13.59 56.08 7386 52.67 -21.33 74 57.94 36.08 16.66 58.01 7386 41.23 -12.77 54 46.5 36.08 16.66 58.01 4924 55.66 -18.34 74 66.69 31.46 13.59 56.08 4924 50.89 -3.11 54 61.92 31.46 13.59 56.08 7386 54.98 -19.02 74 60.25 36.08 16.66 58.01 7386 46.21 -7.79 54 51.48 36.08 16.66 58.01	4924 55.37 -18.63 74 66.4 31.46 13.59 56.08 150 4924 50.42 -3.58 54 61.45 31.46 13.59 56.08 150 7386 52.67 -21.33 74 57.94 36.08 16.66 58.01 150 7386 41.23 -12.77 54 46.5 36.08 16.66 58.01 150 4924 55.66 -18.34 74 66.69 31.46 13.59 56.08 150 4924 50.89 -3.11 54 61.92 31.46 13.59 56.08 150 7386 54.98 -19.02 74 60.25 36.08 16.66 58.01 150 7386 46.21 -7.79 54 51.48 36.08 16.66 58.01 150	4924 55.37 -18.63 74 66.4 31.46 13.59 56.08 150 360 4924 50.42 -3.58 54 61.45 31.46 13.59 56.08 150 360 7386 52.67 -21.33 74 57.94 36.08 16.66 58.01 150 274 7386 41.23 -12.77 54 46.5 36.08 16.66 58.01 150 274 4924 55.66 -18.34 74 66.69 31.46 13.59 56.08 150 360 4924 50.89 -3.11 54 61.92 31.46 13.59 56.08 150 360 7386 54.98 -19.02 74 60.25 36.08 16.66 58.01 150 274 7386 46.21 -7.79 54 51.48 36.08 16.66 58.01 150 274	4924 55.37 -18.63 74 66.4 31.46 13.59 56.08 150 360 P 4924 50.42 -3.58 54 61.45 31.46 13.59 56.08 150 360 A 7386 52.67 -21.33 74 57.94 36.08 16.66 58.01 150 274 P 7386 41.23 -12.77 54 46.5 36.08 16.66 58.01 150 274 A 4924 55.66 -18.34 74 66.69 31.46 13.59 56.08 150 360 P 4924 50.89 -3.11 54 61.92 31.46 13.59 56.08 150 360 A 7386 54.98 -19.02 74 60.25 36.08 16.66 58.01 150 274 P 7386 46.21 -7.79 54 51.48 36.08 16.66 58.01 150 <td< td=""></td<>

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B3 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.29	67.39	-6.61	74	68.05	27.25	9.32	37.23	159	41	Р	Н
		2389.83	46.91	-7.09	54	47.57	27.25	9.32	37.23	159	41	Α	Н
000 44 =	*	2412	102.94	-	-	103.44	27.31	9.43	37.24	159	41	Р	Н
802.11g CH 01	*	2412	92.32	1	-	92.82	27.31	9.43	37.24	159	41	Α	Н
2412MHz		2388.3	61.42	-12.58	74	62.08	27.25	9.32	37.23	150	287	Р	V
2412111112		2389.92	41.18	-12.82	54	41.84	27.25	9.32	37.23	150	287	Α	V
	*	2412	98	1	1	98.5	27.31	9.43	37.24	150	287	Р	V
	*	2412	87.25	1	-	87.75	27.31	9.43	37.24	150	287	Α	V
		2388.3	57.42	-16.58	74	58.08	27.25	9.32	37.23	153	23	Р	Н
		2389.11	38.42	-15.58	54	39.08	27.25	9.32	37.23	153	23	Α	Н
	*	2437	104.32	-	-	104.74	27.42	9.43	37.27	153	23	Р	Н
	*	2437	93.61	-	-	94.03	27.42	9.43	37.27	153	23	Α	Н
		2484.12	56.4	-17.6	74	56.61	27.54	9.55	37.3	153	23	Р	Н
802.11g		2485.84	39.28	-14.72	54	39.49	27.54	9.55	37.3	153	23	Α	Н
CH 06 2437MHz		2385.96	51.87	-22.13	74	52.53	27.25	9.32	37.23	150	287	Р	V
243/ WITZ		2389.74	33.96	-20.04	54	34.62	27.25	9.32	37.23	150	287	Α	V
	*	2437	100.37	-	-	100.79	27.42	9.43	37.27	150	287	Р	V
	*	2437	89.9	1	-	90.32	27.42	9.43	37.27	150	287	Α	V
		2484.68	54.87	-19.13	74	55.08	27.54	9.55	37.3	150	287	Р	V
		2483.52	38.2	-15.8	54	38.41	27.54	9.55	37.3	150	287	Α	V

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B4 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

	*	2462	104.03	-	-	104.29	27.48	9.55	37.29	154	33	Р	Н
	*	2462	93.36	-	-	93.62	27.48	9.55	37.29	154	33	Α	Н
		2484	72.73	-1.27	74	72.94	27.54	9.55	37.3	154	33	Р	Н
802.11g		2483.52	51.28	-2.72	54	51.49	27.54	9.55	37.3	154	33	Α	Н
CH 11 2462MHz	*	2462	95.47	-	1	95.73	27.48	9.55	37.29	150	95	Р	٧
2402WI12	*	2462	84.27	-	1	84.53	27.48	9.55	37.29	150	95	Α	V
		2484.36	64.08	-9.92	74	64.29	27.54	9.55	37.3	150	95	Р	٧
		2483.52	38.62	-15.38	54	38.83	27.54	9.55	37.3	150	95	Α	٧
Remark		o other spurious for		c and Ave	rage limit line.								

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B5 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz WIFI 802.11g (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11g		4824	46.23	-27.77	74	58.2	31.26	13.37	56.6	150	360	Р	Н
CH 01		4004	45.05	20.05	74	57.00	24.20	40.07	50.0	450	360	Р	V
2412MHz		4824	45.95	-28.05	74	57.92	31.26	13.37	56.6	150	300	P	V
		4874	42.48	-31.52	74	54.55	31.36	13.48	56.91	150	360	Р	Н
802.11g		7311	48.47	-25.53	74	53.92	35.96	16.59	58	174	100	Р	Н
CH 06 2437MHz		4874	42.87	-31.13	74	54.94	31.36	13.48	56.91	150	360	Р	٧
2437 WITIZ		7311	46.81	-27.19	74	52.26	35.96	16.59	58	174	100	Р	٧
		4924	44.32	-29.68	74	55.35	31.46	13.59	56.08	150	360	Р	Н
802.11g		7386	49.52	-24.48	74	54.79	36.08	16.66	58.01	150	274	Р	Н
CH 11		4924	45.55	-28.45	74	56.58	31.46	13.59	56.08	150	360	Р	٧
2462MHz		7386	46.55	-27.45	74	51.82	36.08	16.66	58.01	150	274	Р	V

Remark

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B6 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.	11010	ricquonoy	20701	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	1 01.
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.92	69.02	-4.98	74	69.68	27.25	9.32	37.23	155	168	Р	Н
		2389.92	43.35	-10.65	54	44.01	27.25	9.32	37.23	155	168	Α	Н
802.11n	*	2412	100.55	-	-	101.05	27.31	9.43	37.24	155	168	Р	Н
HT20	*	2412	89.88	-	-	90.38	27.31	9.43	37.24	155	168	Α	Н
CH 01		2389.92	56.21	-17.79	74	56.87	27.25	9.32	37.23	151	262	Р	٧
2412MHz		2389.47	34.73	-19.27	54	35.39	27.25	9.32	37.23	151	262	Α	V
	*	2412	93.23	-	-	93.73	27.31	9.43	37.24	151	262	Р	٧
	*	2412	81.55	-	-	82.05	27.31	9.43	37.24	151	262	Α	V
		2389.2	54.82	-19.18	74	55.48	27.25	9.32	37.23	158	33	Р	Н
		2389.65	39.1	-14.9	54	39.76	27.25	9.32	37.23	158	33	Α	Н
	*	2437	103.11	-	-	103.53	27.42	9.43	37.27	158	33	Р	Н
	*	2437	92.05	-	-	92.47	27.42	9.43	37.27	158	33	Α	Н
802.11n		2483.92	53.63	-20.37	74	53.84	27.54	9.55	37.3	158	33	Р	Н
HT20		2484.88	38.88	-15.12	54	39.09	27.54	9.55	37.3	158	33	Α	Н
CH 06		2389.38	46.18	-27.82	74	46.84	27.25	9.32	37.23	151	262	Р	V
2437MHz		2389.02	32.14	-21.86	54	32.8	27.25	9.32	37.23	151	262	Α	V
	*	2437	96.16	-	-	96.58	27.42	9.43	37.27	151	262	Р	V
	*	2437	84.57	-	-	84.99	27.42	9.43	37.27	151	262	Α	V
		2486.84	48.73	-25.27	74	48.94	27.54	9.55	37.3	151	262	Р	V
		2485.64	33.63	-20.37	54	33.84	27.54	9.55	37.3	151	262	Α	V

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B7 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

	*	2462	102.59	-	-	102.85	27.48	9.55	37.29	167	159	Р	Н
	*	2462	91.29	-	-	91.55	27.48	9.55	37.29	167	159	Α	Н
802.11n		2484.72	72.48	-1.52	74	72.69	27.54	9.55	37.3	167	159	Р	Н
HT20		2483.52	46.6	-7.4	54	46.81	27.54	9.55	37.3	167	159	Α	Н
CH 11	*	2462	99.1	-	1	99.36	27.48	9.55	37.29	156	285	Р	V
2462MHz	*	2462	87.28	-	-	87.54	27.48	9.55	37.29	156	285	Α	V
		2484.2	69.06	-4.94	74	69.27	27.54	9.55	37.3	156	285	Р	V
		2483.68	41.75	-12.25	54	41.96	27.54	9.55	37.3	156	285	Α	V
Remark		o other spurious for		k and Ave	rage limit line.								

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B8 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		4824	43.52	-30.48	74	55.49	31.26	13.37	56.6	150	360	P	Н
HT20													
CH 01													
2412MHz		4824	45.99	-28.01	74	57.96	31.26	13.37	56.6	150	360	Р	V
802.11n		4874	43.84	-30.16	74	55.91	31.36	13.48	56.91	150	360	Р	Н
HT20		7311	48.11	-25.89	74	53.56	35.96	16.59	58	174	100	Р	Н
CH 06		4874	45.45	-28.55	74	57.52	31.36	13.48	56.91	150	360	Р	V
2437MHz		7311	47.87	-26.13	74	53.32	35.96	16.59	58	174	100	Р	V
802.11n		4924	43.26	-30.74	74	54.29	31.46	13.59	56.08	150	360	Р	Н
HT20		7386	47.2	-26.8	74	52.47	36.08	16.66	58.01	150	274	Р	Н
CH 11		4924	44.17	-29.83	74	55.2	31.46	13.59	56.08	150	360	Р	V
2462MHz		7386	46.36	-27.64	74	51.63	36.08	16.66	58.01	150	274	Р	V
Remark		oother spurious for results are PASS		and Ave	rage limit line.								

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B9 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2388.66	71.76	-2.24	74	72.42	27.25	9.32	37.23	176	41	Р	Н
		2389.47	44.81	-9.19	54	45.47	27.25	9.32	37.23	176	41	Α	Н
	*	2422	97.66	-	-	98.12	27.37	9.43	37.26	176	41	Р	Н
	*	2422	87.13	-	-	87.59	27.37	9.43	37.26	176	41	Α	Н
802.11n		2488.8	57.07	-16.93	74	57.13	27.6	9.66	37.32	176	41	Р	Н
HT40		2485.92	38.07	-15.93	54	38.28	27.54	9.55	37.3	176	41	Α	Н
CH 03		2388.39	62.61	-11.39	74	63.27	27.25	9.32	37.23	150	359	Р	V
2422MHz		2387.58	36.21	-17.79	54	36.87	27.25	9.32	37.23	150	359	Α	V
	*	2422	87.86	-	-	88.32	27.37	9.43	37.26	150	359	Р	V
	*	2422	77.79	-	-	78.25	27.37	9.43	37.26	150	359	Α	V
		2485.16	49.24	-24.76	74	49.45	27.54	9.55	37.3	150	359	Р	٧
		2484.28	32.34	-21.66	54	32.55	27.54	9.55	37.3	150	359	Α	٧
		2389.2	61.79	-12.21	74	62.45	27.25	9.32	37.23	176	41	Р	Н
		2389.83	41.84	-12.16	54	42.5	27.25	9.32	37.23	176	41	Α	Н
	*	2437	99.09	-	-	99.51	27.42	9.43	37.27	176	41	Р	Н
	*	2437	88.56	-	-	88.98	27.42	9.43	37.27	176	41	Α	Н
802.11n		2486.84	65.63	-8.37	74	65.84	27.54	9.55	37.3	176	41	Р	Н
HT40		2483.72	42.98	-11.02	54	43.19	27.54	9.55	37.3	176	41	Α	Н
CH 06		2388.21	55.24	-18.76	74	55.9	27.25	9.32	37.23	150	359	Р	V
2437MHz		2389.92	34.89	-19.11	54	35.55	27.25	9.32	37.23	150	359	Α	V
	*	2437	90.73	-	-	91.15	27.42	9.43	37.27	150	359	Р	V
	*	2437	79.61	-	-	80.03	27.42	9.43	37.27	150	359	Α	٧
		2484.16	56.4	-17.6	74	56.61	27.54	9.55	37.3	150	359	Р	V
		2484	34.96	-19.04	54	35.17	27.54	9.55	37.3	150	359	Α	V

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B10 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

		2384.43	60.22	-13.78	74	60.92	27.19	9.32	37.21	176	158	Р	Н
		2381.28	37.23	-16.77	54	37.93	27.19	9.32	37.21	176	158	Α	Н
	*	2452	98.19	-	-	98.49	27.42	9.55	37.27	176	158	Р	Н
	*	2452	87.22	-	-	87.52	27.42	9.55	37.27	176	158	Α	Н
802.11n		2486.76	72.82	-1.18	74	73.03	27.54	9.55	37.3	176	158	Р	Н
HT40		2483.6	47.13	-6.87	54	47.34	27.54	9.55	37.3	176	158	Α	Н
CH 09		2387.31	49.39	-24.61	74	50.05	27.25	9.32	37.23	159	292	Р	٧
2452MHz		2388.12	31.8	-22.2	54	32.46	27.25	9.32	37.23	159	292	Α	V
	*	2452	93.18	-	-	93.48	27.42	9.55	37.27	159	292	Р	٧
	*	2452	82.68	-	-	82.98	27.42	9.55	37.27	159	292	Α	٧
		2483.52	66.92	-7.08	74	67.13	27.54	9.55	37.3	159	292	Р	V
		2483.88	41.32	-12.68	54	41.53	27.54	9.55	37.3	159	292	Α	V
		•	•		•	•	•		•	•	•		

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B11 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Harmonic @ 3m)

								•					
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		4844	43.02	-30.98	74	54.94	31.29	13.37	56.58	150	360	Р	Н
HT40		7266	46.88	-27.12	74	52.69	35.91	16.55	58.27	200	360	Р	Н
CH 03		4844	43.13	-30.87	74	55.05	31.29	13.37	56.58	150	360	Р	٧
2422MHz		7266	47.59	-26.41	74	53.4	35.91	16.55	58.27	200	360	Р	٧
802.11n		4874	43.04	-30.96	74	55.11	31.36	13.48	56.91	150	360	Р	Н
HT40		7311	47.01	-26.99	74	52.46	35.96	16.59	58	150	360	Р	Н
CH 06		4874	43.48	-30.52	74	55.55	31.36	13.48	56.91	150	360	Р	٧
2437MHz		7311	47.03	-26.97	74	52.48	35.96	16.59	58	150	360	Р	٧
802.11n		4904	43.55	-30.45	74	54.88	31.43	13.59	56.35	150	360	Р	Н
HT40		7356	46.54	-27.46	74	51.85	36.03	16.62	57.96	150	360	Р	Н
CH 09		4904	45.39	-28.61	74	56.72	31.43	13.59	56.35	150	360	Р	٧
2452MHz		7356	47.22	-26.78	74	52.53	36.03	16.62	57.96	150	360	Р	٧
Domark	1. No	o other spurious f	ound.						•			•	

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B12 of B15
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C

^{2.} All results are PASS against Peak and Average limit line.

15C Emission below 1GHz

2.4GHz WIFI 802.11n HT40 (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		143.49	14.83	-28.67	43.5	30.75	12.23	2.33	30.48			Р	Н
		282.2	16.55	-29.45	46	30.02	13.77	3.06	30.3			Р	Н
		368.53	19.31	-26.69	46	30.66	15.34	3.48	30.17			Р	Н
		460.68	22.23	-23.77	46	30.81	17.38	4.05	30.01			Р	Н
2.4GHz		659.53	24.61	-21.39	46	29.79	19.64	4.88	29.7			Р	Н
802.11n		835.1	28.06	-17.94	46	30.5	21.42	5.5	29.36	164	235	Р	Н
HT40		134.76	14.09	-29.41	43.5	29.8	12.45	2.33	30.49			Р	٧
LF		307.42	16.31	-29.69	46	29.35	13.95	3.28	30.27			Р	٧
		442.25	20.38	-25.62	46	29.57	16.99	3.86	30.04			Р	٧
		618.79	23.17	-22.83	46	28.88	19.35	4.69	29.75			Р	٧
		687.66	25.74	-20.26	46	30.73	19.8	4.88	29.67			Р	٧
		891.36	27.11	-18.89	46	28.84	21.77	5.76	29.26	158	311	Р	٧
Remark		o other spurious f		line.									

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B13 of B15 Report Issued Date : Dec. 03, 2015

Report No. : FR5O3008C

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency per 15.209(c).							
!	Test result is over limit line.							
P/A	Peak or Average							
H/V	Horizontal or Vertical							

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B14 of B15
Report Issued Date : Dec. 03, 2015
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLUDASHJ Page Number : B15 of B15
Report Issued Date : Dec. 03, 2015

Report No.: FR5O3008C