Department of Computer Science and Engineering

NITK, Surathkal

CS800 - Number Theory and Cryptography

(Syllabus and Assessment Plan)

Semester: Ist M. Tech (ISE)

Academic Year: 2018-19

Credits: (3-0-2) 4

A. Syllabus

(Total No. of Theory Hrs. -32)

Sl. No.	Topic	Details	No. of Hrs.
1	Basic Concepts in Number Theory	 Divisibility Greatest common divisors Euclidean Algorithm Factorization of integers Congruence Modular arithmetic Quadratic residues Quadratic reciprocity Finite fields Time estimates for doing arithmetic 	8
2	Classical Encryption Techniques	Symmetric Cipher ModelSubstitution TechniquesTransposition Techniques	3
3	Block Ciphers	 Traditional Block Cipher Structures The Data Encryption Standard Advanced Encryption Standard Block Cipher Operation 	4

4	Stream Ciphers	Stream ciphersRC4	2
5	Pseudo Random Number Generators	 Principles of Pseudo random number generation. Pseudo random number generators. Randomness and Pseudo randomness. 	2
6	Public Key Cryptography	 Principles of Public-Key Cryptosystems. The RSA Algorithm. Diffie-Hellman Key Exchange. Elliptic curve cryptosystem. Probabilistic encryption. 	4
7	Cryptographic Hash Function	 Applications of Cryptographic hash Functions. Hash Functions. Message Authentication Codes. Message Digest. Digital Signatures 	5
8	User Authentication	 Remote user-authentication principles. Remote user-authentication using symmetric encryption. 	2
9	Zero-knowledge protocol	Overview of zero-knowledge concepts	1
10	Formal Verification	 Formal verification of cryptographic protocols: Survey. (Research paper by C.A. Meadows) Analyzing encryption protocols using formal verification techniques. (Research paper by R.A. Kemmerer) 	1

Text Books:

- Neal Koblitz, "Course on Number Theory and Cryptography", Springer-Verlag, 1986.
- Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, "Handbook of Applied Cryptography", CRC Press, 1996.
- Ivan Niven, Herbert S. Zukerman, Hugh L. Montgomery, "An Introduction to the Theory of Numbers", John Wiley, 5th Edition. 2015.
- William Stallings, "Cryptography and Network Security", Pearson, 6th Edition, 2015.

B. Assessment Plan

(Theory: Laboratory::75:25)

Theory (75%) Laboratory (25%)

1. Class Test: 10 % Mid-Sem: 5%

2. Mid-Sem: 20% End-Sem: 10%

3. End-Sem: 45 Lab Progress: 10%

Course Instructor Secretary Chairman
(B. R. Chandavarkar) (DPGC) (DPGC)