

Aula 01 - Introdução aos Circuitos Digitais e Sistemas de Numeração

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

Apresentação

- Fundamentação básica acerca da eletrônica digital que rege todos os processos computacionais;
- Entendimento deste conteúdo facilitará o aprendizado dos demais conteúdos previstos no curso de Computação.

Sumário

- Introdução aos SDs;
- Revisão dos conceitos de eletrônica básica;
- Sinais Analógicos vs Digitais;
- Fundamentação dos sistemas Numéricos Posicionais;

- Sistema Numéricos
 - Decimal
 - Binário
 - Octal
 - Hexadecimal
- Conversão entre bases

O Processo de Abstração em SD

Tensão (Volt)	Corrente (Ampère)
4	0.1
12	0.3
16	0.4

Abstração Conj. de Instruções

MOV A,1 ADD A,#10

Abstração Arquiteturas

Abstração Linguagens

```
#include <stdio.h>
void main()
{
   printf("oi!")
}
```

Circuitos Digitais e Computação

Porque estudar Circuitos Digitais em um curso de Computação?

- O computador é um sistema digital
- Entender Circuitos Digitais auxilia na programação de computadores

Circuitos Digitais e Computação

- Desenvolvimentos efetivos em computação ubíqua;
- Sistemas de informação frequentemente devem ser interfaceados com outros sistemas
- Sistemas Embarcados e Sistemas Reconfiguráveis –
 ("Hardware Softening")

Grandezas Elétricas

- Corrente elétrica Ampère (A);
- Tensão Elétrica Volts (V);
- Resistividade Elétrica
 Ohm (Ω);

- Capacitância Elétrica -Faraday - F;
- Potência Elétrica Watts W;
- Indutância Elétrica -Henry - H.

Eletricidade: Intuição

1 Coulomb = carga elétrica de 6.25x10¹⁸ elétrons

Movimentação de Elétrons Livres

Lei De Ohm

Georg Simon Ohm (1787-1854)

Um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante. Essa constante é denominada de resistência elétrica. V

$$R = \frac{r}{I}$$

Resistores

Cor	1ª FAIXA	2ª FAIXA	3ª FAIXA	Multiplicador	Tolerância
Preto	0	0	0	X1	
Marrom	1	1	1	X10	±1%
Vermelho	2	2	2	X100	±2%
Laranja	3	3	3	хıК	
Amarelo	4	4	4	х10К	
Verde	5	5	5	x100K	±0.5%
Azul	6	6	6	X1M	±0.25%
VIOLETA	7	7	7	x10M	±0.1%
CINZA	8	8	8		±0.05%
Branco	9	9	9		
Dourado				X.1	±5%
Prateado				X.01	±10% 11

Resistores

- Impõem uma resistência ao fluxo dos elétrons;
- Em geral a resistência gera calor;
- Princípio básico de lâmpadas incandescentes, chuveiros, aquecedores, etc.

Cálculo de Resistores

• Série:

$$R(s) = R_a + R_b$$

• Paralelo:
$$R_{(p)} = \frac{R_a \times R_b}{R_a + R_b}$$

$$\frac{1}{R_{(p)}} = \frac{1}{R_a} + \frac{1}{R_b} + \dots$$

Exemplos

Capacitores

Componentes primários em circuitos digitais

Os componentes listados ao lado compõem a lista básica dentre todos os componentes de interesse para esta disciplina;

Estes são, do ponto de vista de Circuitos Digitais, componentes auxiliares. O foco principal serão Circuitos Integrados e Portas Lógicas.

O Mundo dos 0's e 1's

Sinais Discretos vs. Contínuos

Infinitos possíveis valores mensuráveis a qualquer momento; Representação complexa; Suscetível a ruídos.

Nº de possíveis valores finito, mensuráveis em intervalos específicos;

Representação simplificada;

Tolerância a ruídos.

Sinais Discretos vs. Contínuos

Vantagens:

- sistemas digitais são menos suscetíveis a ruídos elétricos.
- Facilidade de projeto, armazenamento e integração

Desvantagens

- O mundo é analógico! Necessário realizar conversão:
 - A/D (Analógica -> Digital)
 - D/A (Digital -> Analógica)

Lógica e Matemática Digital

- Sistemas digitais trabalham apenas com dois valores lógicos: ZEROS 0's e UNS 1's;
- Como representar quantidades apenas com 0's e 1's?

Sistemas Numéricos Posicionais

- Associam um "peso" ou potência a cada uma dos algarismos do número, dependendo da sua posição;
- Permitem a representação de quantidades infinitas.

Exemplos: (Base Decimal)

$$\frac{4}{10^{3}} \frac{2}{10^{2}} \frac{4}{10^{1}} \frac{2}{10^{0}}$$

$$= 4x10^{3} + 2x10^{2} + 4x10^{1} + 2x10^{0}$$

Base dos Sistemas Numéricos

A base, ou alfabeto dos sistemas numéricos posicionais define quantos símbolos distintos são utilizados:

- Decimal {1,2,3,4,5,6,7,8,9,0}
- Binária {1,0}
- Octal {1,2,3,4,5,6,7,0}
- Hexadecimal {1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,0}

Comparativo **Entre Bases Posicionais**

	Decimal	Bin.	Octal	Hexa.
	0	0000	0	0
	1	0001	1	1
	2	0010	2	2
	3	0011	3	3
0	4	0100	4	4
	5	0101	5	5
	6	0110	6	6
	7	0111	7	7
	8	1000	10	8
	9	1001	11	9
	10	1010	12	Α
	11	1011	13	В
	12	1100	14	С
	13	1101	15	D
	14	1110	16	E
	15	1111	17	F

24

Sistema Decimal

- O mais conhecido, utilizado e importante de todos:
- Amplamente utilizado pelas pessoas em seu dia-a-dia
- **Algarismos:** 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9

Lei de Formação:

- Conceito de **centena**, **dezena** e **unidade**
- Baseada no conceito de grupos de **10 unidades**

Zero grupos de **dez** grupos de **dez** unidades

Exemplos: (Base Decimal)

$$\mathbf{10^5} \quad \mathbf{10^4} \quad \mathbf{10^3} \quad \mathbf{10^2} \quad \mathbf{10^1} \quad \mathbf{10^0} \qquad \longleftarrow \begin{array}{l} \text{Potências associadas} \\ \text{as casas} \end{array}$$

$$\frac{4}{10^{3}} \frac{2}{10^{2}} \frac{4}{10^{1}} \frac{2}{10^{0}}$$

$$= 4 \times 10^{3} + 2 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

Sistema Binário

- Sistema numérico base para a computação moderna:
- Computador funciona a partir de números binários
- Algarismos: 0 e 1

Lei de Formação:

- Conceito semelhante ao do sistema decimal
- Baseada no conceito de grupos de 2 unidades

Sistema Binário

- Requer mais casas para representar uma mesma quantidade em comparação à base Decimal;
- Muito útil para lidar com números em sistemas digitais;

Sistema Binário

 Embora seja possível representar infinitas quantidades, em geral, do ponto de vista de Circuitos Digitais é interessante limitarmos o número de casas a serem utilizadas por motivos de implementação de hardware

Contagem em Binário

Decimal	Binário	Decimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Operações com Binários

Compreende as quatros operações básicas:

- Adição
- Subtração
- Multiplicação
- Divisão

Técnicas semelhantes às operações decimais convencionais

Adição entre

Binários

Inclui a regra de transporte para a próxima coluna:

 Popularmente conhecida com a regra do "vai um" (Carry);

Observe as operações com apenas um dígito

binário:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1 0

Algarismo referente ao vai um para a próxima coluna (2 positivo)

Exemplo de Adição entre Binários

Considere a adição de dos números binários **111** e **010**:

Subtração entre Binários

Inclui a regra de transporte para a próxima coluna:

Conhecida como a regra do "empresta um"

Observe as operações com apenas um dígito binário:

0 - 1 = 11
1 - 0 = 1
1 - 1 = 0

Algarismo referente ao sinal negativo (1 negativo)

Exemplo de Subtração entre Binários

Considere a subtração de dos números binários **100** e **010**:

Multiplicação entre Binários

Operação "idêntica" a operação com decimais:

apenas dois algarismos disponíveis

Observe as operações com apenas um dígito binário:

C	X	0	=	0	
C	X	1	=	0	
1	X	0	=	0	
1	X	1	=	1	

Exemplo de Multiplicação entre Binários

Considere a multiplicação de dos números binários **11** e **10**:

Divisão entre Binários

Operação análoga à operação com decimais:

Com a ressalva de ter apenas dois algarismos disponíveis

Decimal para Binário

Método das divisões sucessivas:

- Divide-se sucessivamente o número decimal pela base 2
- O binário correspondente será composto pelo último quociente seguido pelos restos das divisões em ordem inversa;

Decimal para Binário

Método das divisões sucessivas:

Considere, por exemplo, a conversão do número decimal 11:

Binário para Decimal

Conversão de binário para decimal segue o mesmo processo Troca-se a base 10 da lei de formação pela base **2 binária** Considere, por exemplo, a conversão do número binário 101:

- 1 grupo de quatro elementos;
- 0 grupos de dois elementos;
- 1 grupo de um elemento.

Binário para Decimal

Conversão Binário - Decimal

Exemplos:

Converta 42₁₀ para ?₂

Converta 1024₁₀ para ?₂

Converta 10000001₂ para ?₁₀

Converta 1011₂ para ?₁₀

Quantos algarismos são necessário para representar o número 4242₁₀ em base binária?

Sistema Octal

Dentre os principais, é o menos utilizado hoje em dia:

 Pode ser usado na programação de sistemas embarcados

Algarismos: 0, 1, 2, 3, 4, 5, 6, 7

Lei de Formação:

- Conceito semelhante ao do sistema decimal
- Baseada no conceito de grupos de 8 unidades

Zero grupo de **oito** grupos de **oito** unidades

Sistema Octal

- Requer mais casas para representar uma mesma quantidade em comparação à base Decimal, porém menos casas em comparação a base binária;
- Note que a base octal é uma base potência da base binária:

Contagem em Octal

Decimal	Octal
0	00
1	01
2	02
3	03
4	04
5	05
6	06
7	07

Decimal	Octal
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17

Decimal para Octal

Método das divisões sucessivas:

- Divide-se sucessivamente o número decimal pela base 8
- O octal correspondente será composto pelo último quociente seguido pelos restos das divisões em ordem inversa;

Considere, por exemplo, a conversão do número decimal 719:

$$719_{10} = 1317_{8}$$

Decimal para Octal

$$719_{10} = 1317_{8}$$

Octal para Decimal

- Conversão de octal para decimal segue o mesmo processo
- Troca-se a base 10 da lei de formação pela base 8 octal
- Considere, por exemplo, a conversão do número octal 144:
 - 1 grupo de dezesseis elementos;
 - 4 grupos de oito elementos;
 - ☐ 4 grupos de um elemento.

Octal para Decimal

- Conversão de octal para decimal segue o mesmo processo
- Troca-se a base 10 da lei de formação pela base 8 octal
- Considere, por exemplo, a conversão do número octal 144:
 - 1 grupo de dezesseis elementos;
 - 4 grupos de oito elementos;
 - 4 grupos de um elemento.

Conversão Decimal - Octal

Sistema Hexadecimal

- Comumente utilizado como um resumo de um binário
- Utiliza dezesseis algarismos {1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,0};
- Lei de Formação:
 - Conceito semelhante ao do sistema decimal
 - Baseada no conceito de grupos de 16 unidades

Sistema Hexadecimal

- Requer menos casas para representar uma mesma quantidade em comparação à base Decimal;
- Menos suscetível a erros de leitura que a base binária;
- Também é uma base potência de 2;

Dec.	Bin.	Hex.
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Dec.	Bin.	Hex.
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	C
13	1101	D
14	1110	Е
15	1111	F

Contagem em Hexadecimal

Decimal para Hexadecimal

Método das divisões sucessivas:

- Divide-se sucessivamente o número decimal pela base 16
- O hexadecimal correspondente será composto pelo último quociente seguido pelos restos das divisões em ordem inversa;
- Considere, por exemplo, a conversão do número decimal
 3882:

Decimal para Hexadecimal

Hexadecimal para Decimal

- Conversão de hexa para decimal segue o mesmo processo
- Troca-se a base 10 da lei de formação pela base 16 hexa
- Considere, por exemplo, a conversão do número hexa **1C3**:
 - 1 grupo de trinta e dois elementos;
 - C (12) grupos de dezesseis elementos;
 - 3 grupos de um elemento.

Conversão Hexadecimal- Decimal

CONVERSÕES ENVOLVENDO BINÁRIO PARA OCTAL E HEXADECIMAL

Binário para

- **Octat**ão de binário para octal consiste em segmentar o número binário em grupos de **três algarismos** e convertê-los para octal separadamente.
- Completar com zeros à esquerda até que se tenha algarismos em múltiplos de 3.
- Considere o número binário 10110:

Binário para

- **Chazación a**lio para hexa consiste em segmentar o número binário em grupos de **quatro algarismos** e convertê-los para hexadecimal separadamente.
- Completar com zeros à esquerda até que se tenha algarismos em múltiplos de 4.
- Considere o número binário 11100:

Octal para Binário

- Consiste no caminho inverso, converte-se cada algarismo octal para o binário de 3 algarismos correspondente e junta-os posteriormente.
- Considere o número octal 144:

Hexadecimal para

- **Chiversito** de hexa para binário consiste no caminho inverso, ou seja, converte-se cada algarismo hexa para o binário de 4 algarismos correspondente e junta-os posteriormente.
- Considere o número hexadecimal 1C3:

Correspondência para Diferentes Bases Numéricas

potência	valor	potência	valor	potência	valor
10 ⁰	1	2 ⁰	1	16 ⁰	1
10 ¹	10	2 ¹	2	16 ¹	16
10 ²	100	2 ²	4	16 ²	256
10 ³	1.000	2 ³	8	16 ³	4096
104	10.000	24	16	16 ⁴	65536
10 ⁵	100.000	2 ⁵	32	16 ⁵	1048576
10 ⁶	1.000.000	2 ⁶	64	16 ⁶	16777216
10 ⁷	10.000.000	27	128	16 ⁷	268435456
10 ⁸	100.000.000	28	256	16 ⁸	4294967296
10 ⁹	1000.000.000	2 ⁹	512	16 ⁹	68719476736
10 ¹⁰	10000.000.000	2 ¹⁰	1024	16 ¹⁰	1099511627776

Exercícios:

\rightarrow ?
\rightarrow ?
\rightarrow ?
\rightarrow ?
\rightarrow ? ₁₀

00111111 ₂	→? ₁₀
100100100	\rightarrow ? ₁₀
42 ₁₆	\rightarrow ?
BEABA ₁₆	\rightarrow ?

Exercícios:

1234 ₁₆	\rightarrow ?
F0F0 ₁₆	\rightarrow ?
42 ₈	\rightarrow ?
555 ₈	\rightarrow ?

7400 ₈	\rightarrow ?
4011 ₁₀	→?8
4081 ₁₀	\rightarrow ?
4147 ₈	\rightarrow ? ₁₆

Aula 01 - Introdução aos Circuitos Digitais e Sistemas de Numeração

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1