Problem A. 奇異裝置

Time limit: 4 seconds Memory limit: 512 megabytes

考古學家們發現了一個可能是由遠古文明所創造的奇異裝置。這個裝置有一個顯示器,可顯示兩個整數:x 與 y。

考古學家們在研究了這個裝置後,發現它其實是一種特殊的計時器。它持續累計著由過去的某時刻起經過的時刻個數 (以一整數 t 表示)。然而此裝置用了一種相當奇特的方式來做顯示。若目前所累計的時刻數量為 t,裝置的顯示器將顯示兩個整數: $x=((t+\left\lfloor\frac{t}{B}\right\rfloor) \bmod A)$ 以及 $y=(t \bmod B)$ 。此處的 $\lfloor x \rfloor$ 表示小於等於 x 的最大整數。

這群考古學家還發現,這個奇異裝置的顯示器並非隨時都在運作;實際上,僅有某n 個時段顯示器會運作。第i 個時段為由時刻 l_i 至時刻 r_i 的中連續的時刻構成的區段 (包含 l_i 及 r_i)。考古學家們希望得知在此裝置的顯示器運作時,共有多少個不同的數對 (x,y) 會出現在顯示器上。

兩個數對 (x_1, y_1) 和 (x_2, y_2) 不同,定義為 $x_1 \neq x_2$ 或 $y_1 \neq y_2$ 。

Input

第一行包含三個整數 $n \cdot A$ 以及 B $(1 \le n \le 10^6; 1 \le A, B \le 10^{18})$ 。

接下來 n 行的每一行包含二整數 l_i 及 r_i ,表示顯示器有在運作的時間區段 $[l_i,r_i]$ $(0 \le l_i \le r_i \le 10^{18} \ ; \ r_i < l_{i+1})$ 。

Output

輸出為一數字,表示顯示器運作期間,出現在顯示器上的不同的數對 (x,y) 總數。

Scoring

$$\Leftrightarrow S = \sum_{i=1}^{n} (r_i - l_i + 1) \perp L = \max_{i=1}^{n} (r_i - l_i + 1) \circ$$

Subtask 1 (points: 10)

 $S \le 10^6$.

Subtask 2 (points: 5)

n = 1.

Subtask 3 (points: 5)

 $A \cdot B \le 10^6$.

Subtask 4 (points: 5)

B=1.

Subtask 5 (points: 5)

 $B \leq 3$.

Subtask 6 (points: 20)

 $B < 10^6$.

Subtask 7 (points: 20)

 $L \leq B$.

Subtask 8 (points: 30)

無特別限制。

Examples

input	output
3 3 3	4
4 4	
7 9	
17 18	
3 5 10	31
1 20	
50 68	
89 98	
2 16 13	5
2 5	
18 18	

Note

在第一個範例中,顯示器於各時刻顯示的數對如下:

t	(x,y)
4	(2,1)
7	(0,1)
8	(1,2)
9	(0,0)
17	(1,2)
18	(0,0)

因此共有 4 個不同的數對 (0,0),(0,1),(1,2),(2,1)。

Problem B. 橋梁

Time limit: 2 seconds Memory limit: 512 megabytes

聖彼得堡水路的總長度大約為 282 km,水面 約佔城市總面積的 7%。

Wikipedia

聖彼得堡位於由 m 座橋梁連接而成的 n 座島嶼上。島嶼用 1 到 n 的整數編號,橋梁用 1 到m 的整數編號。每座橋連接兩個不同的島嶼。有些橋梁是在彼得大帝時代興建的,有些是近代才造的,也因此不同的橋梁其承重能力也不同。若一輛車要通過編號為 i 的橋梁,則車的重量不能超過 d_i 。有時聖彼得堡的橋梁會進行修繕工程,但這並不表示橋梁會因此提升其承重能力,換句話說,修繕後的橋梁,其承重能力 d_i 可能增加也可能減少。你要開發一個產品來幫助市民以及訪客,目前開發的模組中能進行兩類操作:

- 1. 將橋梁 b_i 的承重限制改為 r_i 。
- 2. 計算一輛重量為 w_i 的車,從島嶼 s_i 出發能到達的島嶼個數。

請你回答所有第二類操作的答案。

Input

第一行包含二整數 n 與 m — 分別表示聖彼得堡的島嶼數量及橋梁數量 $(1 \le n \le 50\,000, 0 \le m \le 100\,000)$ 。

接下來 m 行中,第 i 行包含三個整數 $u_i \cdot v_i$ 及 d_i ,表示該橋梁所連接的兩座島嶼為 u_i 及 v_i ,且其初始的承重限制為 d_i $(1 \le u_i, v_i \le n ; u_i \ne v_i ; 1 \le d_i \le 10^9)$ 。

接下來這行包含一整數 q — 表示操作的個數 $(1 \le q \le 100\,000)$ 。

接下來的 q 行每行為一個操作。

每個操作的描述由三個整數構成,開頭的整數為 t_i ($t_i \in \{1,2\}$)。

若 $t_j = 1$,此操作即為第一類操作,接下來的兩個整數 b_j 及 r_j 表示橋梁 b_j 的承重限制將調整為 r_j $(1 \le b_j \le m, 1 \le r_j \le 10^9)$;

若 $t_j=2$,此操作即為第二類操作,接下來的兩個整數 s_j 及 w_j 表示有一重量為 w_j 的車將由島嶼 s_j 出 發 $(1 \le s_j \le n$, $1 \le w_j \le 10^9)$ 。

Output

對每一個第二類操作,於個別的一行輸出其答案。

Scoring

Subtask 1 (points: 13)

 $n \le 1000, m \le 1000, q \le 10000.$

Subtask 2 (points: 16)

島嶼和橋梁形成一個鏈 (chain),m = n - 1, $u_i = i$, $v_i = i + 1$ $(1 \le i \le m)$ 。

Subtask 3 (points: 17)

島嶼和橋梁形成一個完全二元樹 (complete binary tree), $n=2^k-1$,m=n-1, $u_i=\lfloor\frac{i+1}{2}\rfloor$, $v_i=i+1$ $(1\leq k\leq 15,\,1\leq i\leq m)$ 。

Subtask 4 (points: 14)

所有的 t_j 皆為 2.

Subtask 5 (points: 13)

島嶼和橋梁形成一個樹 (tree) m = n - 1.

Subtask 6 (points: 27)

無特別限制。

Examples

input	output
3 4	3
1 2 5	2
2 3 2	3
3 1 4	
2 3 8	
5	
2 1 5	
1 4 1	
2 2 5	
1 1 1	
2 3 2	
7 8	1
1 2 5	7
1 6 5	7
2 3 5	5
2 7 5	7
3 4 5	7
4 5 5	4
5 6 5	
6 7 5	
12	
2 1 6	
1 1 1	
2 1 2	
1 2 3	
2 2 2	
1 5 2	
1 3 1	
2 2 4	
2 4 2	
1 8 1	
2 1 1	
2 1 3	

Note

綠線表示當前操作中的汽車可以通過的橋梁。綠色頂點代表這輛車可以到達的島嶼。箭頭指向汽車最初 所在的島嶼。

Рис. 1: Picture for the first test

(f) Query 11

(g) Query 12

Рис. 2: Picture for the second test

Problem C. 路燈

Time limit: 5 seconds Memory limit: 512 megabytes

一輛自動駕駛計程車正在 Innopolis 鎮的街道上行駛。這條街道上有 n+1 個計程車停靠站。這些停靠站將街道分隔為 n 個路段,每一路段都有一個路燈。當第 i 個路燈亮起,它會照亮第 i 到第 i+1 個停靠站之間的路段;否則,這個路段將是暗的。

考量到安全性,這輛自動駕駛計程車只能行駛在被照亮的路段。換言之,這輛計程車可以從停靠站 a 行 駛至停靠站 b (a < b) 的話,表示停靠站 a 至 a+1、a+1 至 a+2、...、b-1 至 b 這些停靠站間的路段全都是被照亮的。

在發生了一些意外的故障或修復後,街道上的路燈可能是亮起,也可能是熄滅的。

給定所有的路燈於時刻 0 的狀態,接下來的 q 個時刻 $(1,2,\ldots,q)$ 每個時刻會發生下列二事件其中之一:

- "toggle i" 切換第 i 個路燈的狀態。也就是説,若原來這盞路燈是亮起的,將變為熄滅;若原來是熄滅的,則變為亮起。
- "query a b" 自駕計程車部門的負責人想知道,由時刻 0 起至當前時刻,共有多少小時 (連續兩個時刻間隔恰為一小時) 這輛計程車可以由停靠站 a 行駛至停靠站 b。

請你協助自駕計程車部門的負責人,回答這些問題。

Input

第一行包含兩個整數 n 和 q $(1 \le n, q \le 300\,000)$ — 表示路燈的數量與事件數。

第二行包含一個字串 s ,表示路燈的初始狀態 (|s|=n) , s_i 為 '1' 表示第 i 個路燈是亮起的; s_i 為 '0' 表示第 i 個路燈是熄滅的。

接下來 q 行每行描述一個時刻發生的事件。第 i 行描述時刻 i 所發生的事件。

- "toggle i" (1 < i < n) 切換第 i 個路燈的狀態。
- "query a b" $(1 \le a < b \le n+1)$ 計算由時刻 0 起至當前時刻,共有幾個小時這輛計程車能從停靠站 a 行駛至停靠站 b (連續兩時刻的間隔恰為 1 小時)。

q 個事件中至少有一個是 query。

Output

對於每個 query 事件,輸出一個整數,表示該問題的答案。

Scoring

Subtask 1 (points: 20)

 $n \le 100, q \le 100.$

Subtask 2 (points: 20)

對所有的 "query a b" 事件 b-a=1.

Subtask 3 (points: 20)

所有的 "toggle i" 事件皆表示「亮起第 i 盞路燈」。換言之,"toggle i" 事件發生後,第 i 盞路燈一定是亮的。

APIO 2019 Russia, Innopolis, May, 18-19, 2019

Subtask 4 (points: 20)

所有 toggle 事件發生於第一個 query 事件之前。

Subtask 5 (points: 20)

無特別限制。

Example

input	output	
5 7	1	
11011	2	
query 1 2	0	
query 1 2	0	
query 1 6	1	
query 3 4	2	
toggle 3		
query 3 4		
query 1 6		

Note

In the sample test:

Hour	Lamp states	Query	Answer
1	11011		
		query 1 2	1
2	11011		
		query 1 2	1 and 2
3	11011		
		query 1 6	None
4	11011		
		query 3 4	None
5	11011		
		toggle 3	
6	11111		
		query 3 4	6
7	11111		
		query 1 6	6 and 7