## GATE 2022 IN 36

1

## EE23BTECH11065 - prem sagar

## **Question**:

A signal  $V_{in}(t)$  shown is applied from t=0ms to t=6ms to the circuit shown Given the intial voltage across capacitor is 0.3V, and that the diode is ideal, the open circuit voltage  $V_{out}(t)$  at t=5ms is



Fig. 1.

## **Solution:**

| Symbol                 | Value | Description                     |
|------------------------|-------|---------------------------------|
| $V_{in}\left(t\right)$ |       | input signal                    |
| $V_{c}\left( t\right)$ |       | voltage across capacitor        |
| $V_{c}\left( 0\right)$ | 0.3V  | intial voltage across capacitor |
| $v_{out}(t)$           |       | open circuit voltage            |

TABLE 1 INPUT PARAMETERS

From Table 1 the circuit is a positive peak detector circuit

$$V_c(t) = V_{in}(t) - V_{out}(t)$$
 (1)

as diode is ideal

during positive half cycle of input signal it conducts allowing capacitor to charge to the peak voltage of input

$$V_{out}(t) = V_c(t) \tag{2}$$

$$= 1V \tag{3}$$

once the capacitor is charged to 1V it retains this voltage due to ideal diode's behaviour and open circuit condition.  $\therefore$  at t=5ms

$$V_{out} = 1V \tag{4}$$