# Giant Anisotropic Spin Relaxation and Spin-valley Mixing in a Silicon Quantum Dot

Xin Zhang Supervisors: Hai-Ou Li, Guoping Guo





Guangcan Guo



**Guoping Guo** 



中国科学院量子信息重点实验室 CAS Key Laboratory of Quantum Information

Solid-State Quantum Information Group

Spin Control in Si MOS/Ge Hut Wire QD

Hybrid cQED system

Spin Control in Si/SiGe QD

Nano-mechanical resonator

Cryogenic Electronics

Theory of Quantum Computation



Hai-Ou Li



Gang Cao



**Baochuan Wang** 



Zhuozhi Zhang



Xiangxiang Song



Yuchun Wu

#### MOS QD fabricated from 200 mm commercial silicon wafer



#### Peak mobility $\sim 1.5*10^4$ cm<sup>2</sup>/(Vs)



K. Wang et al, arxiv:1905.01581









#### Motivation

#### B dependence



M. Kroutvar et al. Science 2004 L. C. Camenzind et al. Nat. Commun. 2018



R. R. Hayes et al. arXiv: 0908.0173 M. Xiao et al. Phys. Rev. Lett. 2010 C. H. Yang et al. Nat. Commun. 2013 L. Petit et al. Phys. Rev. Lett. 2018 F. Borjans et al. Phys. Rev. Appl. 2019 A. Hollmann et al. arXiv:1907.04146v1

#### Gate voltage dependence



S. Amasha et al. Phys. Rev. Lett. 2008 V. Srinivasa et al. Phys. Rev. Lett. 2013

#### Anisotropy



P. Scarlino et al. Phys. Rev. Lett. 2014
A. Hofmann et al. Phys. Rev. Lett. 2017
L. C. Camenzind et al. Nat. Commun. 2018



Variation:  $\times$  10



T.F. Watson et al. Nature 2018
W. Huang et al. Nature 2019
R. C. C. Leon et al. arXiv:1902.01550v3



#### Device and measurement method





$$P_{\uparrow} = c_1 \exp(-t_{\text{wait}}/T_1) + c_2$$



J. M. Elzerman et al. Nature 2004





#### B dependence: spin-valley relaxation hot-spot



C. H. Yang et al. Nat. Commun. 2013

- P. Huang et al. Phys. Rev. B. 2014
- C. Tahan and R. Joynt. Phys. Rev. B. 2014
- L. Petit et al. Phys. Rev. Lett. 2018
- F. Borjans et al. Phys. Rev. Appl. 2019
- A. Hollmann et al. arXiv:1907.04146v1



$$T_1^{-1} = \left(c_{\mathsf{J}}\omega_Z + c_{\mathsf{ph}}\omega_Z^5\right)F_{SV}(\omega_Z) + c_{\mathsf{p}}\omega_Z^p$$

$$F_{SV}(\omega_Z) = 1 - 1/\sqrt{1 + (\Delta_{SV}/\Delta_Z)^2}$$



P. Stano and J. Fabian, Phys. Rev. B. 2005 A. Hofmann et al. Phys. Rev. Lett. 2017





$$\Delta_{SV}(\phi) \sim \langle \uparrow_{ext}, -|\alpha_- r_y \sigma_x + \alpha_+ r_x \sigma_y| \downarrow_{ext}, + \rangle$$

$$\alpha_{-} = \beta - \alpha$$
  $\alpha_{+} = \beta + \alpha$  
$$r_{y}^{-+} = \langle -|r_{y}|+\rangle$$
  $r_{x}^{-+} = \langle -|r_{x}|+\rangle$ 









P. Huang et al. Phys. Rev. B. 2014









P. Huang et al. Phys. Rev. B. 2014



P. Huang et al. Phys. Rev. B. 2014









### Spin relaxation anisotropy with a large valley splitting











## Summary











HongWen Jiang



Xuedong Hu



Peihao Huang





**Dimitrie Culcer** 



Jianjun Zhang



Guilei Wang

## The anisotropy away from the "hot spot"



## Discussion about $\Gamma_0$



## Position of the extrema in the large valley splitting regime



