Properties of symmetric matrices

18.303: Linear Partial Differential Equations: Analysis and Numerics Carlos Pérez-Arancibia (cperezar@mit.edu)

Let $A \in \mathbb{R}^{N \times N}$ be a symmetric matrix, i.e., (Ax, y) = (x, Ay) for all $x, y \in \mathbb{R}^N$. The following properties hold true:

- ullet Eigenvectors of A corresponding to different eigenvalues are orthogonal.
 - Let λ and μ , $\lambda \neq \mu$, be eigenvalues of A corresponding to eigenvectors x and y, respectively. Then $(Ax, y) = \lambda(x, y)$ and, on the other hand, $(Ax, y) = (x, Ay) = \mu(x, y)$. Subtracting these two identities we obtain $(\lambda \mu)(x, y) = 0$. Since $\lambda \neq \mu$ we conclude that (x, y) = 0.
- If $(Ax, x) \le 0$ (resp. $(Ax, x) \ge 0$) for all $x \ne 0$, then A has eigenvalues $\lambda \le 0$ (resp. $\lambda \ge 0$). Let x be an eigenvector of A with eigenvalue λ . Then $(Ax, x) = \lambda(x, x) = \lambda ||x||^2 \le 0$ which in view of the fact that ||x|| > 0, implies that $\lambda \le 0$.
- If (Ax, x) < 0 (resp. (Ax, x) > 0) for all $x \neq 0$, then A has eigenvalues $\lambda < 0$ (resp. $\lambda > 0$). In particular, A is invertible.
 - The same argument used above shows that $\lambda < 0$ is this case. Since all the eigenvalues are strictly negative, none of them is zero. Therefore, A is invertible.
- A is diagonalizable.
 - Since A is symmetric, it is possible to select an orthonormal basis $\{x_j\}_{j=1}^N$ of \mathbb{R}^N given by eigenvectors or A. Letting $V = [x_1, \dots, x_N]$, we have from the fact that $Ax_j = \lambda_j x_j$, that AV = VD where $D = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$ and where the eigenvalues are repeated according to their multiplicities. Therefore $A = VDV^T$. Note that we have used the fact that $VV^T = V^TV = I$.
- If (Ax, x) < 0 (resp. (Ax, x) > 0) for all $x \neq 0$, then A admits a factorization of the form $A = -D^T D$ (resp. $A = D^T D$) for some full-rank matrix D.
 - Since A is negative definite ((Ax, x) < 0), it has negative eigenvalues. The matrix of eigenvalues can thus be written as $D = -\Lambda^2$ with $\Lambda = \operatorname{diag}(\sqrt{|\lambda_1|}, \dots, \sqrt{|\lambda_N|})$. From the identity $A = -V\Lambda^2V^T = -(V\Lambda)(\Lambda V^T) = -D^TD$ we finally recognize the factor $D = \Lambda V^T$. The fact that D is full rank follows from both V and Λ being non-singular matrices.