Deep Learning

Syed Irtaza Muzaffar

Backpropagation in CNNs

- 1. Compute $\delta_k=\frac{\partial L}{\partial a_k}$ for each neuron in flattened layer using standard MLP backpropagation.
- 2. Directly copy these δ_k s at corresponding locations of previous subsampling layer.

From S layer From C layer Gradients in C layer

Backpropagation from subsampling to convolution layer

- Record index of pooled neuron during forward pass.
- lacksquare Backpropagate δ only to this pooled neuron.

- Mean-pooling is different.
 - ▶ All neurons are picked with uniform weight in forward pass.
 - lacksquare So backpropagate δ to each neuron with uniform weight.

1 S layer From C layer Gradients in C layer

Backpropagation in a convolutional layer

Backpropagation Equation

Recall the backpropagation equation for a traditional neuron.

$$\delta_j^{(1)} = h'(a_j) \sum_{k=1}^K \delta_k^{(2)} w_{kj}$$

- 1. Take all neurons affected by neuron j.
- 2. Compute dot-product between their δ values and connecting weights.
- 3. Multiply result by derivative of activation function of neuron j.

- Consider a neuron in a convolutional layer.
- In the forward pass, the blue neuron affects all neurons marked by x in the next layer.

Notice the flipped role of weights.

In the backward pass, the blue neuron computes the dot-product between δ values at the x-locations and connecting weights.

► The connecting weights are a horizontally and vertically flipped version of the weights used in the forward convolution pass.

► The adjacent red neuron affects a new but overlapping set of *x*-locations using the same connecting weights.

Since the weights are shared, the only difference is between the x-locations.

- **Equivalent** to convolving the δ -map by flipped weights.
- \blacktriangleright Therefore, backpropagation of δ values from a convolution layer is
 - **1.** just a convolution of the δ -map using flipped weights,
 - 2. followed by multiplication with derivatives of activation functions.

▶ What about boundary neurons? Who did they affect?

- **Equivalent** to convolving the δ-map by flipped weights *using zero-padding*.
- \blacktriangleright Therefore, backpropagation of δ values from a convolution layer is
 - 1. just a convolution of the δ -map using flipped weights with zero-padding,
 - 2. followed by multiplication with derivatives of activation functions.

Computing gradients in convolutional layer

- ▶ Consider a *valid* convolution of an $n \times n$ array with another $n \times n$ array.
 - ► *Size* of the result will be 1×1 .
- Now consider a *valid* convolution of an $(n+1) \times (n+1)$ array with an $n \times n$ array.
- What will be the size of the result?
- Now consider a *valid* convolution of an $(n+2) \times (n+2)$ array with an $n \times n$ array.
 - ▶ What will be the *size* of the result?

Computing gradients in convolutional layer

1D case

- lacktriangle Backpropagation computes the per-neuron δ -maps only.
- Per-weight derivatives are computed as the product of a *traditional* neuron's δ value and its input.

Consider 1D convolutional layer with 3 × 1 filter.

$$\frac{\partial L}{\partial w_{1}} = \delta_{1}0 + \delta_{2}x_{1} + \delta_{3}x_{2} + \delta_{4}x_{3} + \delta_{5}x_{4}$$

$$\frac{\partial L}{\partial w_{2}} = \delta_{1}x_{1} + \delta_{2}x_{2} + \delta_{3}x_{3} + \delta_{4}x_{4} + \delta_{5}x_{5}$$

$$\frac{\partial L}{\partial w_{3}} = \delta_{1}x_{2} + \delta_{2}x_{3} + \delta_{3}x_{4} + \delta_{4}x_{5} + \delta_{5}0$$

$$\frac{\partial L}{\partial w_{3}} = \delta_{1}x_{2} + \delta_{2}x_{3} + \delta_{3}x_{4} + \delta_{4}x_{5} + \delta_{5}0$$

$$= \begin{bmatrix} \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

• Verify that $\frac{\partial L}{\partial h} = \sum \delta_i$.

 δ -map

- 1. Zero-pad the input array with $\lfloor \frac{K}{2} \rfloor$ zeros on each side¹.
- 2. Perform valid convolution of the zero-padded input array by the δ -map of the next layer to obtain a $K \times K$ array of derivatives of the convolution weights.

3. Derivative of bias is just the sum of the δ -map.

¹Assuming square $K \times K$ convolution filter where K is odd

Summary

► From FC to Subsampling:

Direct copying of δ -values.

► From Subsampling to Conv:

Direct copy or weighted combination of δ -map.

From Conv:

 $conv2d(zeropad(\delta-map), fliplr(flipud(F)), 'valid')$

Gradients of convolution filter F:

conv2d(zeropad(input array), δ -map, 'valid')

Gradient of bias:

sum of δ -map