One-page design summary from: The Rokers

CONSTRAINTS: Your experiment must use a within-subjects design. You will test approximately 25 people. You must run your experiment using *Open Sesame*. The experiment must not take more than 30 minutes for a participant to complete. Your experiment must not use deception, even if temporary. You can only use innocuous manipulations and measures.

INSTRUCTIONS: For each of the sections below, write about your intentions as plainly as possible, using approximately 1-3 sentences in each case. You can replace the question with your answer. Do not exceed one page.

General question

Do tests boost memory, even when you get all of the answers wrong?

Testable question

Does having to guess the meaning of unfamiliar English words (e.g. *picaroon*), before being given the answer, improve performance on a subsequent cued recall task, relative to just studying the word-definition pair (e.g. *picaroon-cheat*)?

Contribution

Potts & Shanks (2014) have demonstrated this effect for a recognition test, where participants have to select the definitions they've seen (e.g. cheat) from among distractors. We are interested in whether their result will generalise to a more challenging format (i.e. cued recall, e.g. *picaroon-?*)

Independent variable

Study format (generate versus study). For some items, participants will seen e.g. *picaroon-?* And have to guess the answer, before being given it. For other items, they'll just be presented with the pair e.g. *picaroon-cheat*.

Dependent variable

Percent correct on the cued recall test.

Hypothesis

Recall will be higher for generated items than for studied items.

Stimuli

Rare English words and their definitions (e.g. *roke-mist*). We'll use the same pairs as Potts & Shanks (2014).