Fyrirlestur á ráðstefnu Íslenska stærðfræðafélagsins í Reykholti

Michael Albert, Bjarki Guðmundsson, Henning Úlfarsson

Otago Háskólinn, Háskólinn í Reykjavík

13. Október, 2013

Auka umraðanir

- Collatz-ferlið
- Ahugaverðir eiginleikar
- Auka umraðanir
- Næstu skref

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x + 1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x + 1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

$$\begin{array}{c|cc} x & f(x) & \mathsf{skref} \\ \hline 12 & 6 & n \\ \end{array}$$

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x + 1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	\overline{n}
6	3	n

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x+1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	n
6	3	n
3	10	u

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x+1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

\boldsymbol{x}	f(x)	skret
12	6	n
6	3	n
3	10	u
10	5	n

Næstu skref

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x + 1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5	16	u

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x+1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5	16	u
16	8	n

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x+1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5	16	u
16	8	n
8	4	n

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x+1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5	16	u
16	8	n
8	4	n
4	2	n

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x + 1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5	16	u
16	8	n
8	4	n
4	2	n
2	1	n

$$f(x) = \begin{cases} x/2 & \text{ef } x \equiv 0 \pmod{2} \\ 3x+1 & \text{ef } x \equiv 1 \pmod{2} \end{cases}$$

x	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5	16	u
16	8	n
8	4	n
4	2	n
2	1	n
1		

Collatz-tilgátan

Collatz-ferlið

Tilgátan

Collatz-ferlið endar á 1 fyrir hvaða upphafstölu sem er

Collatz-tilgátan

Collatz-ferlið

Tilgátan

Collatz-ferlið endar á 1 fyrir hvaða upphafstölu sem er

- Sett fram af Lothar Collatz árið 1937
- Margir búnir að reyna, enn óleyst
- Búið að athuga fyrir allar tölur upp að $5 \times 2^{60} \approx 5.764 \times 10^{18}$

x	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5	16	u
16	8	n
8	4	n
4	2	n
2	1	n
1		

Auka umraðanir

Losum okkur við veldi af 2.

<u>Upphafsumröðunin</u>

\boldsymbol{x}	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5		

Losum okkur við veldi af 2.

\boldsymbol{x}	f(x)	skref
12	6	n
6	3	n
3	10	u
10	5	n
5		

Áhugaverðir eiginleikar

•00000

Losum okkur við veldi af 2. Þetta eru allt mismunandi tölur svo við getum breytt listanum í umröðun.

12 6 3 10 5

Næstu skref

<u>Upphafsumröðunin</u>

k	fjöldi
1	1

Með tölvuprófunum fást eftirfarandi gögn, sem gefa neðri mörk á réttan fjölda mismunandi umraðana sem fást á þennan hátt.

Áhugaverðir eiginleikar

000000

k	fjöldi
1	1
2	1

k	fjöldi
1	1
2	1
3	2

k	fjöldi
1	1
2	1
3	2
4	3

k	fjöldi
1	1
2	1
3	2
4	3
5	5

k	fjöldi
1	1
2	1
3	2
4	3
5	5
6	8

Collatz-ferlið

k	fjöldi
1	1
2	1
3	2
4	3
5	5
6	8
7	13

k	fjöldi
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21

k	fjöldi
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21
9	34

Auka umraðanir

$\underline{}$	fjöldi
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21
9	34
10	55

fjöldi
1
1
2
3
5
8
13
21
34
55
89

Mögulegar aðgerðaraðir

Af hverju Fibonacci-tölurnar?

Mögulegar aðgerðaraðir

Af hverju Fibonacci-tölurnar?

• Dæmigerð aðgerðaröð nunnunun

Af hverju Fibonacci-tölurnar?

- Dæmigerð aðgerðaröð nunnunun
- Innihalda aldrei uu, því eftir u fæst slétt tala og því kemur næst n-skref

Af hverju Fibonacci-tölurnar?

- Dæmigerð aðgerðaröð nunnunun
- Innihalda aldrei uu, því eftir u fæst slétt tala og því kemur næst n-skref
- Pær enda alltaf á n því halinn var klipptur af (vantar síðasta u-skrefið inn í halann)

Af hverju Fibonacci-tölurnar?

- Dæmigerð aðgerðaröð nunnunun
- Innihalda aldrei uu, því eftir u fæst slétt tala og því kemur næst n-skref
- Pær enda alltaf á n því halinn var klipptur af (vantar síðasta u-skrefið inn í halann)
- Því eru $\operatorname{fib}(k+1)$ mögulegar aðgerðaraðir af lengd k

Mögulegar aðgerðaraðir

Af hverju Fibonacci-tölurnar?

- Dæmigerð aðgerðaröð nunnunun
- Innihalda aldrei uu, því eftir u fæst slétt tala og því kemur næst n-skref
- Pær enda alltaf á n því halinn var klipptur af (vantar síðasta u-skrefið inn í halann)
- ullet Því eru $\mathrm{fib}(k+1)$ mögulegar aðgerðaraðir af lengd k

Þurfum því að sýna að hver möguleg aðgerðaröð sé lögleg

Stakið í halanum er $X=2^x$. Látum $N=n^{-1}$, $U=u^{-1}$ og vinnum áfram með aðgerðaröðina nunnunun:

Collatz-ferlið

Stakið í halanum er $X=2^x$. Látum $N=n^{-1}$, $U=u^{-1}$ og vinnum áfram með aðgerðaröðina nunnunun:

$$U(X) = (X - 1)/3$$

Collatz-ferlið

Stakið í halanum er $X=2^x$. Látum $N=n^{-1}$, $U=u^{-1}$ og vinnum áfram með aðgerðaröðina nunnunun:

$$U(X) = (X - 1)/3$$

 $NU(X) = (2X - 2)/3$

Collatz-ferlið

Stakið í halanum er $X=2^x$. Látum $N=n^{-1}$, $U=u^{-1}$ og vinnum áfram með aðgerðaröðina nunnunun:

$$U(X) = (X - 1)/3$$

$$NU(X) = (2X - 2)/3$$

$$UNU(X) = (2X - 5)/9$$

Stakið í halanum er $X=2^x$. Látum $N=n^{-1}$, $U=u^{-1}$ og vinnum áfram með aðgerðaröðina nunnunun:

$$U(X) = (X - 1)/3$$

$$NU(X) = (2X - 2)/3$$

$$UNU(X) = (2X - 5)/9$$

$$NUNU(X) = (4X - 10)/9$$

$$UNUNU(X) = (4X - 19)/27$$

$$NUNUNU(X) = (8X - 38)/27$$

$$NNUNUNU(X) = (16X - 76)/27$$

$$UNNUNUNU(X) = (16X - 103)/81$$

$$NUNUNUNU(X) = (32X - 206)/81$$

Collatz-ferlið

Stakið í halanum er $X=2^x$. Látum $N=n^{-1}$, $U=u^{-1}$ og vinnum áfram með aðgerðaröðina nunnunun:

$$U(X) = (X - 1)/3$$

$$NU(X) = (2X - 2)/3$$

$$UNU(X) = (2X - 5)/9$$

$$NUNU(X) = (4X - 10)/9$$

$$UNUNU(X) = (4X - 19)/27$$

$$NUNUNU(X) = (8X - 38)/27$$

$$NNUNUNU(X) = (16X - 76)/27$$

$$UNNUNUNU(X) = (16X - 103)/81$$

$$NUNUNUNU(X) = (32X - 206)/81$$

X barf bví að uppfylla $32X = 206 \mod 81$, eða $X = 52 \mod 81$

Almenna skilyrðið

• Nú var $X=2^x$ svo við fáum $2^x=52 \bmod 81$

Næstu skref

- Nú var $X=2^x$ svo við fáum $2^x=52 \bmod 81$
- Almennt fæst jafna á forminu $2^x=c \bmod 3^y$ sem hefur alltaf lausn því 2 er frumstæð rót mátað við 3^y fyrir öll y

Auka umraðanir

Almenna skil<u>vrðið</u>

- Nú var $X=2^x$ svo við fáum $2^x=52 \mod 81$
- Almennt fæst jafna á forminu $2^x = c \mod 3^y$ sem hefur alltaf lausn því 2 er frumstæð rót mátað við 3^y fyrir öll y

Þar með eru allar mögulegar aðgerðaraðir löglegar og við fáum því eina umröðun úr hverri

Auka umraðanir

- Nú var $X = 2^x$ svo við fáum $2^x = 52 \mod 81$
- Almennt fæst jafna á forminu $2^x = c \mod 3^y$ sem hefur alltaf lausn því 2 er frumstæð rót mátað við 3^y fyrir öll y

Par með eru allar mögulegar aðgerðaraðir löglegar og við fáum því eina umröðun úr hverri, a.m.k. . . .

k	fjöldi	fib(k
10	55	55
11	89	89

k	fjöldi	fib(k
10	55	55
11	89	89
12	144	144

k	fjöldi	fib(k
10	55	55
11	89	89
12	144	144
13	233	233

k	fjöldi	fib(k
10	55	55
11	89	89
12	144	144
13	233	233
14	377	377

Auka umraðanir

•0000

k	fjöldi	fib(k
10	55	55
11	89	89
12	144	144
13	233	233
14	377	377
15	611	610

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2
17	1600	1597	3

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2
17	1600	1597	3
18	2587	2584	3

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2
17	1600	1597	3
18	2587	2584	3
19	4185	4181	4

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2
17	1600	1597	3
18	2587	2584	3
19	4185	4181	4
20	6771	6765	6

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2
17	1600	1597	3
18	2587	2584	3
19	4185	4181	4
20	6771	6765	6
21	10953	10946	7

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2
17	1600	1597	3
18	2587	2584	3
19	4185	4181	4
20	6771	6765	6
21	10953	10946	7
22	17720	17711	9

k	fjöldi	fib(k)	auka
10	55	55	
11	89	89	
12	144	144	
13	233	233	
14	377	377	
15	611	610	1
16	989	987	2
17	1600	1597	3
18	2587	2584	3
19	4185	4181	4
20	6771	6765	6
21	10953	10946	7
22	17720	17711	9
23	28669	28657	12

Lítum aftur á

$$U(X) = (X - 1)/3$$

$$NU(X) = (2X - 2)/3$$

$$UNU(X) = (2X - 5)/9$$

$$NUNU(X) = (4X - 10)/9$$

$$UNUNU(X) = (4X - 19)/27$$

$$NUNUNU(X) = (8X - 38)/27$$

$$NNUNUNU(X) = (16X - 76)/27$$

$$UNNUNUNU(X) = (16X - 103)/81$$

$$NUNUNUNU(X) = (32X - 206)/81$$

Auka umraðanir

00000

Collatz-ferlið

Lítum aftur á

$$U(X) = (X - 1)/3$$

$$NU(X) = (2X - 2)/3$$

$$UNU(X) = (2X - 5)/9$$

$$NUNU(X) = (4X - 10)/9$$

$$UNUNU(X) = (4X - 19)/27$$

$$NUNUNU(X) = (8X - 38)/27$$

$$NNUNUNU(X) = (16X - 76)/27$$

$$UNNUNUNU(X) = (16X - 103)/81$$

$$NUNUNUNU(X) = (32X - 206)/81$$

Sjáum að þetta eru línur

Röðin á línunum ákvarðar umröðunina.

Röðin á línunum ákvarðar umröðunina. Skurðpunktar breyta röðinni. Eftir stærsta skurðpunkt breytist umröðunin ekki.

Röðin á línunum ákvarðar umröðunina. Skurðpunktar breyta röðinni. Eftir stærsta skurðpunkt breytist umröðunin ekki.

Lausnir innan stærsta skurðpunktar

Lausnir á $2^x = c \mod 3^y$, fyrir ákveðna aðgerðaröð, gefa af sér umraðanir.

- Alltaf til lausn utan við stærsta skurðpunkt
- Á milli samliggjandi skurðpunkta gæti verið lausn, þannig fást ólíkar umraðanir
- ullet Þetta gerist fyrst fyrir aðgerðaröð af lengd 14

Fyrsta auka umröðunin

Collatz-ferlið

• Aðgerðaröðin unnunununnnn gefur okkur skilyrðið

$$2^x = 16 \mod 729$$

Fyrstu tvær lausnirnar eru x = 4 og x = 490

• Aðgerðaröðin unnunununnnn gefur okkur skilyrðið

$$2^x = 16 \mod 729$$

Auka umraðanir

Fyrstu tvær lausnirnar eru x = 4 og x = 490

• Lausnin x=4 samsvarar ferli sem endar á 2^4

• Aðgerðaröðin unnunununnnn gefur okkur skilyrðið

$$2^x = 16 \mod 729$$

Auka umraðanir

Fyrstu tvær lausnirnar eru x = 4 og x = 490

- Lausnin x=4 samsvarar ferli sem endar á 2^4
- Lausnin x = 490 samsvarar ferli sem endar á 2^{490}

Fyrsta auka umröðunin

• Aðgerðaröðin unnununnunnn gefur okkur skilyrðið

$$2^x = 16 \mod 729$$

Fyrstu tvær lausnirnar eru x = 4 og x = 490

- Lausnin x=4 samsvarar ferli sem endar á 2^4
- Lausnin x = 490 samsvarar ferli sem endar á 2^{490}
- Stærsti skurðpunktur er $\approx 44{,}05$ og því fást mismunandi umraðanir:

1	4	9	14	6	11	15	8	13	5	10	2	7	12	3
1	9	Ο	1.4	6	11	15	0	19	5	10	2	7	10	4

Collatz-ferlið

• Núverandi gögn gefa okkur að aukafjöldinn er u.þ.b.

$$\sqrt{\operatorname{fib}(k-11)}$$
 fyrir $k \ge 15$

Auka umraðanir

Núverandi gögn gefa okkur að aukafjöldinn er u.b.b.

$$\sqrt{\operatorname{fib}(k-11)}$$
 fyrir $k \ge 15$

Auka umraðanir

 Þegar aukaumröðun finnst þá gefur hún af sér óendanlega margar nýjar í lengri lengdum (keðjur og fjölskyldur)

Hversu margar auka

• Núverandi gögn gefa okkur að aukafjöldinn er u.þ.b.

$$\sqrt{\operatorname{fib}(k-11)}$$
 fyrir $k \ge 15$

- Þegar aukaumröðun finnst þá gefur hún af sér óendanlega margar nýjar í lengri lengdum (keðjur og fjölskyldur)
- ullet Mjög gróft efra mark er $k^2 \mathrm{fib}(k)$

Collatz-ferlið

Núverandi gögn gefa okkur að aukafjöldinn er u.þ.b.

$$\sqrt{\operatorname{fib}(k-11)}$$
 fyrir $k \ge 15$

Auka umraðanir

- Þegar aukaumröðun finnst þá gefur hún af sér óendanlega margar nýjar í lengri lengdum (keðjur og fjölskyldur)
- Mjög gróft efra mark er $k^2 \operatorname{fib}(k)$
- Með því að finna efra mark á skurðpunktana má endurbæta betta í (k+1)fib(k)

Uppbygging o.fl.

• Vitum lítið um uppbyggingu umraðananna

Næstu skref ○●○

Uppbygging o.fl.

- Vitum lítið um uppbyggingu umraðananna
- Einnig væri gaman að rannsaka svipuð ferli, t.d. n'=n, u'=un.

Spurningar?