sol1.md 2025-10-18

Part 1: Optimal Policy

The return in this system is computed as: $S = R_{t+1} + \gamma \cdot R_{t+2}$ where:

- If the agent chooses the **left action**, $R_{t+1} = 1$ and $R_{t+2} = 0$.
- If the agent chooses the **right action**, $R_{t+1} = 0$ and $R_{t+2} = 2$.

We analyze which policy is optimal under different values of the discount factor \$\quad qamma\$:

1. $\gamma = 0$

When \$\gamma = 0\$, the return simplifies to just the immediate reward:

 $G_t = R_{t+1}$

Left action: \$G_t = 1\$
Right action: \$G_t = 0\$

Optimal Policy:

In this case, the optimal policy is to always go **left** (π_{left}), since it gives the higher immediate reward.

$2. \gamma = 0.9$

Here, the return takes into account both immediate and future rewards: $G_t = R_{t+1} + 0.9 \cdot R_{t+2}$

• **Left action:** \$G_t = 1 + 0.9 \cdot 0 = 1\$

• Right action: $G_t = 0 + 0.9 \cdot 2 = 1.8$

Optimal Policy:

The **right action** (π_{right}) becomes optimal, because the discounted future reward outweighs the immediate reward from going left.

3. $\gamma = 0.5$

With \$\gamma = 0.5\$, both policies result in the same total reward:

• **Left action:** \$G_t = 1 + 0.5 \cdot 0 = 1\$

• **Right action:** \$G_t = 0 + 0.5 \cdot 2 = 1\$

Optimal Policy:

Either policy (π_{left} or π_{right}) is optimal, since both yield the same total return.

Discount Factor (\$\gamma\$)	Left Policy (\$G_t\$)	Right Policy (\$G_t\$)	Optimal Policy
0	1	0	Left
0.9	1	1.8	Right

sol1.md 2025-10-18

Discount Factor (\$\gamma\$)	Left Policy (\$G_t\$)	Right Policy (\$G_t\$)	Optimal Policy
0.5	1	1	Either (Left/Right)