Dark matter from confining SO(N)-like gauge theories with two Dirac fermions.

Joachim Pomper

Supervisor: Dr. Suchita Kulkarni

Student seminar TU Wien

16.03.2023

Outline

- SIMP dark matter
- ullet UV-models: The SO(N) case
- IR-description
- UV-models: Generalizations

Let us start with the usual story!

Astrophysical observations point to the existence of a non-visible type of matter, that makes up 26% of universes energy budget.

Evidence on various scales:

- Galaxy scale:
 Rotational curves
- Cluster scale:
 Visible mass too little to hold together Coma cluster
- Cosmological scale:
 CMB anisotropies

Figure: Energy budget of the universe within ACDM model.

Cusp vs. Core problem

Observed DM halo density profiles are more **cored** compared to profiles found in cold DM simulations, which are rather **cusp**.

Figure: Data from the DDO 154 dwarf galaxy [Murayama (2022)].

Figure: Suggested DM self-interaction crosssection in dependence of average velocity [Kaplinghat, Tulin, and Yu, American Physical Society (APS) 116 (2016)].

- Sufficient self-interactions resolve structure formation problems.
- $3 \rightarrow 2$ cannibalization drives freeze out.
- Mediator for thermal equilibrium until freeze out.

Dark QCD

Dark matter from a SM-extension by a confining, strongly interacting sector based on dark SU(N), Sp(N), SO(N)-gauge theory with fermionic matter.

Dark QCD

Dark matter from a SM-extension by a **confining, strongly interacting** sector based on dark SU(N), Sp(N), SO(N)-gauge **theory** with fermionic matter.

- Dark matter is made of pseudo Nambu-Goldstone states (dark pions) of a spontaneously broke flavor symmetry $G \to H$.
- Pion masses of $m_\pi \approx \mathcal{O}(100 \mathrm{MeV})$ give required $\langle \sigma v \rangle / m_\pi$.
- Remaining flavor symmetry H may protect pions from decay.
- Pions fields correspond to maps of $\pi: \mathcal{M} \to G/H$.
- 3 \rightarrow 2 process may be described by topological terms of Wess-Zumino type in non-linear Σ -model.

UV - models: The SO(N) case

Model concept in the UV

Isolated dark sector

Flavor symmetries of the theory

Isolated strong sector:

Action of O(4) symmetry

Organise u- and d-quarks with charge conjugates in 2×2 matrix.

Action of SO(4) subgroup:

$$\begin{pmatrix} u & -d_C \\ d & u_C \end{pmatrix} \qquad \vdash \stackrel{SO(4) \cong SU(2) \times SU(2)}{\longleftarrow} \qquad U_I \begin{pmatrix} u & -d_C \\ d & u_C \end{pmatrix} U_R^{\dagger}$$

Action of Z_2 subgroup :

$$\left(\begin{array}{ccc} u & -d_C \\ d & u_C \end{array}\right) & \longmapsto & Z_2 \\ & & & & \\ \end{array}$$

$$\left(\begin{array}{ccc} u_C & -d_C \\ d & u \end{array}\right)$$

Charge assignments for dark photon

- $U(1)_D$ gauge theory is consistent
- Pion currents are non-anomalous
- Non-abelian flavor symmetry remains

$$\Rightarrow$$
 Anomaly cancellation $\mathcal{Q}^2=\mathbb{1}$

Charge assignment: $Q \propto \sigma_{3,R}$

Explict breaking: $O(4) \rightarrow SU(2) \times U(1)$

 $U(1)_D$ gauge transformation:

$$\begin{pmatrix} u & -d_C \\ d & u_C \end{pmatrix} \qquad \longmapsto \qquad U(1)_D \qquad \qquad \qquad \begin{pmatrix} u & -d_C \\ d & u_C \end{pmatrix} e^{-i\alpha Q}$$

Particles relevant for DM phenomenology

pseudo scalar mesons

(Pseudo) Nambu-Goldstone bosons:

One for each local coordinate in the coset space $G/H=Z_2\ltimes SU(4)/O(4)\cong SU(4)/SO(4)$ These are the lightes states !

Flavor singlet meson:

Heavier than the pions

vector mesons

O(4) Classification

 $SU(2) \times U(1)$ Classification

Large N arguments

Using a 't Hoof large N-limit comparing SO(N)-vector theories.

Scaling of gauge-coupling:

$$g \xrightarrow[N \to \infty]{} 0$$
 with $Ng^2 = \lambda = fixed$

Axial anomaly in chiral limit:

$$\partial_{\mu}j^{\mu}_{\eta'}=-g^2rac{\epsilon^{\mu
u
ho\sigma}}{8\pi^2}G_{\mu
u}G_{
ho\sigma}\xrightarrow[N
ightarrow\infty]{}0$$

Conclusion

For large N, the η' may be important for phenomenology.

IR - description

(Pseudo) Nambu-Goldstone fields

Nambu-Goldstone fields $\xi = (\pi, \eta')$ parametrize local deviations from the vacuum configuration, e.g.

$$\xi: \mathcal{M} o G_F/H = \left\{ egin{array}{ll} SU(4)/SO(4) \ & & \ & U(4)/O(4) \end{array}
ight.$$
 in Large N limit

Since G_F/H is connected, compact and symmetric we may choose

$$\Sigma[\xi](x) = \exp\left(-2i \frac{\xi^{a}(x)}{f_{\pi}} T_{a}^{F,\text{broken}}\right)$$

which transforms linearly under G_F flavor transformations.

$$\Sigma[\xi] \xrightarrow{g \in G_F} g\Sigma[\xi]g^{\dagger}$$

(Non-anomalous) Low energy effective Lagrangian

Gell-Mann-Oakes-Renner:
$$m_{\pi}^2 = \frac{m\mu^3}{2 f_{\pi}^2}$$

$$m_{\eta'}^2 = m_{\pi}^2 + \Delta m_{\eta'}^2$$

Topological terms and coset homotopy

The coset space G/H has non vanishing 4th homotopy group:

$$\pi_4(U(4)/O(4)) = \pi_4(SU(4)/SO(4)) \neq 0$$

Problem:

• The standard construction/classification of topological terms in non-linear sigma model by Witten, Weinberg and d'Hoker requires $\pi_4(G/H) = 0$.

```
    [Witten, Nucl. Phys. B 223 (1983)]
    [D'Hoker and Weinberg, Physical Review D 50 (1994)]
    [Brauner and Kolešová, Nuclear Physics B 945 (2019)]
```

 Modern approaches give more general classification but no practical construction.

```
[Davighi and Gripaios, Journal of High Energy Physics 2018 (2018)]
[Lee, Ohmori, and Tachikawa, SciPost Physics 10 (2021)]
```

't Hooft anomaly matching argument

Using the gauge principle to detect anomalous terms in the effective field theory.

Anomalous WTI:
$$\delta S_{e\!f\!f}^{gauged} = \mathcal{A}_{UV}$$
 and $S_{e\!f\!f} = \lim_{A o 0} S_{e\!f\!f}^{gauged}$

Wess and Zumino derived an effective action that solves the anomaly equation. [Wess and Zumino, Physics Letters B 37 (1971)]

Wess-Zumino effective action

$$S_{WZ}[\xi = (\eta', \pi)] = \frac{D_C}{48\pi^2 f_\pi} \int_0^1 \mathrm{d}t \int_{S^4} \mathrm{Tr} \left\{ \xi \left((U[t\xi])^{-1} \mathrm{d}U[t\xi] \right)^4 \right\}$$

$$\approx \frac{D_C}{250 f_\pi \pi^2} \epsilon^{\mu\nu\sigma\rho} \int_{S^4} \mathrm{d}^4 x \ \mathrm{Tr} \left\{ \pi \partial_\mu \pi \partial_\nu \pi \partial_\sigma \pi \partial_\rho \pi \right\}$$

- Does not depend on η' in lowest order χ PT.
- Removes superfluous $\pi(t,x) \mapsto -\pi(t,x)$ symmetry in S_{eff} .
- Incorporates 3 → 2 process.

Inclusion of the dark photon Z'

Non-Anomalous contributions:

Exchange derivatives:

$$\partial_{\mu} U^2 \longmapsto \mathrm{D}_{\mu} U^2 = \partial_{\mu} U^2 + i e_D A_{\mu} \left(\mathcal{Q} U^2 + U^2 \Sigma_0^{\dagger} \mathcal{Q}^{\top} \Sigma_0 \right)$$

Anomalous contributions:

Anomaly equation:

$$S_{eff} = \lim_{A \to Z'} S_{eff}^{gaugeo}$$

$$\propto \begin{cases} Tr \left\{ \pi \ Q^2 \right\} &= 0 \\ Tr \left\{ \eta' \ Q^2 \right\} &\neq 0 \end{cases}$$

Depending on lifetime $\tau_{\eta'}$ (and mass m'_{η}) of the η' the dark matter scenario might be significantly altered or spoiled.

 η' -decay may lower the calculated relic abundance of dark matter significantly.

Limiting cases:

- η' decays almost instantly
 - ⇒ NO DARK MATTER
- $au_{\eta'} pprox ext{age of universe.}$
 - ⇒ Pion abundance not affected.

UV - models: Generalizations

Generalizations

Almost all the results so far depend on

- The presence of a chirally broken phase.
- The fact that fermions transform under a real representation.

So can we get the same for different gauge-theories than SO(N) with vector-representation fermions?

For example:

- Adjoint representations
- SO(N) tensor representations
- Sp(2N) two index anti-symmetric representation

Conformal window considerations

Figure: Conformal window for Sp(2N) with fundamental (blue), adjoint (red) and two index anti-symmetric (green). [Lee, Ohmori, and Tachikawa, SciPost Physics 10 (2021)]

Anomalous symmetry breaking

The chiral anomaly functional depends on the gauge-group representation.

1) General symmetry breaking pattern

$$U(4) \rightarrow Z_K \ltimes SU(4) \rightarrow O(4)$$

	SO(N)-Vector	<i>Sp</i> (2 <i>N</i>)-A2T	<i>SO</i> (<i>N</i>)-Adj.	<i>Sp</i> (2 <i>N</i>)-Adj.
K	2	2(N-1)	2(N-2)	2(N+1)

- 2) In naive 't Hooft large N considerations, the anomalous contribution does not vanish.
 - $\Rightarrow \eta'$ might not be light and thus not too relevant.

Summary

What I talked about today:

- Dark QCD-like models based on SO(N)-vector might realize SIMP dark matter.
- One has to be careful about the role of η' .
- Problems and solution concerning Wess-Zumino terms.
- Situation for other real representations not so clear.

Summary

What I talked about today:

- Dark QCD-like models based on SO(N)-vector might realize SIMP dark matter.
- One has to be careful about the role of η' .
- Problems and solution concerning Wess-Zumino terms.
- Situation for other real representations not so clear.

What I left out:

- Construction of gauge-invariant operators.
- Details on discrete symmetries
- Inclusion of vector mesons via local hidden symmetry.

Discrete symmetries

Charge conjugation C:

$$\forall \forall \ q \mapsto \Omega C \bar{q}^\top$$

IR
$$\pi \mapsto \pi^{\top}$$

$$\cup \lor q(t,\vec{x}) \mapsto \eta_P \gamma^0 q(t,-\vec{x})$$

IR
$$\pi(t, \vec{x}) \mapsto -\pi(t, -\vec{x})$$

The choice $\eta_P = \pm i$ is adopted:

- Parity and flavor symmetries commute.
- All (pseudo) Nambu-Goldstone bosons (pNGB) are pseudo scalars.

Dark pion mass

Figure: The solid horizontal line depicts the perturbative limit of $m_\pi/f_\pi \approx <2\pi$, providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and halo shape constraints on the self-scattering cross section, placing a lower limit on the pion mass. Each shaded region depicts the resulting approximate range for m_π [Hochberg et al., Physical Review Letters 115 (2015)]

4th Homotopy group of SU(4)/SO(4)

Fibration:

$$SO(4) \rightarrow SU(4) \rightarrow SU(4)/SO(4)$$

Long exact sequence:

- $Ker(h_2) = Img(h_1) = 0 \rightarrow h_2$ is injective
- $\pi_4(SU(4)/SO(4)) \cong Img(h_2) = Ker(h_3)$

$$\Rightarrow \frac{\pi_4(SU(4)/SO(4))}{\pi_4(SU(4)/SO(4))}$$

• $Ker(h_3) \neq 0$

Full UV Lagrangian

$$-rac{1}{4}~G^lpha_{\mu
u}~G^{\mu
u}_lpha$$

Yang-Mills term for dark gluons : Based on
$$G_D = Sp(4)$$

$$-rac{1}{4}~F'_{\mu
u}~F'^{\mu
u}$$

Yang-Mills term for dark photon : Based on $U_D(1)$

$$+ \overline{u} i \gamma^{\mu} D_{\mu} u + m \overline{u} u$$

$$+ \overline{d} i \gamma^{\mu} D_{\mu} d + m \overline{d} d$$

Dirac term of dark quarks 2 flavors: u and d quarks Charged under $G_D \times U_D(1)$

$$+ \left(D'_{\mu} \phi \right)^{\dagger} D'^{\mu} \phi + V \left[\phi^{\dagger} \phi \right]$$

Dark scalar charged under $U_D(1)$

$$+ \frac{\epsilon}{2\cos(\theta_W)} F'_{\mu\nu} B^{\mu\nu}$$

Kinetic mixing of $U_D(1)$ with SM hypercharge

Meson spectrum in 2 flavor Sp(4)-fund. gauge theory

Figure: Meson spectrum in *Sp*(4)-fundamental with 2 flavors. Taken from [Zierler et al. (2022), arXiv:hep-lat/2210.11187]

	$\overline{\Psi_{\mathcal{C}}} \ T_n^{\Psi} \Psi + \left(\overline{\Psi_{\mathcal{C}}} \ T_n^{\Psi} \Psi \right)^*$	JD		$\overline{\Psi_{\mathcal{C}}} \ T_{\mathcal{N}}^{\pi} \Psi + \left(\overline{\Psi_{\mathcal{C}}} \ T_{\mathcal{N}}^{\pi \top} \Psi \right)^*$	<i>I</i> ₃	e_D
π_1	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d+\overline{d}\gamma^5u\right)$	1-	π^A	$\overline{u}\gamma^5d$	1	0
π_2	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d-\overline{d}\gamma^5u\right)$	1-	π^B	$\overline{d}\gamma^5 u$	-1	0
π_3	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5u-\overline{d}\gamma^5d\right)$	1-	π^{C}	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5u-\overline{d}\gamma^5d\right)$	0	0
π_4	$\frac{1}{2}\left(\overline{u_{\mathcal{C}}}\gamma^5u + \overline{u}\gamma^5u_{\mathcal{C}}\right)$	1-	π^D	$\frac{1}{\sqrt{2}}\overline{u_{\mathcal{C}}}\gamma^5u$	-1	-1
π_5	$rac{1}{2}\left(\overline{d_{\mathcal{C}}}\gamma^{5}d+\overline{d}\gamma^{5}d_{\mathcal{C}}\right)$	1-	π^E	$rac{1}{\sqrt{2}}\overline{d}\gamma^5d_{\mathcal{C}}$	1	-1
π_6	$rac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d_{\mathcal{C}}+\overline{u_{\mathcal{C}}}\gamma^5d ight)$	1-	π^{F}	$\overline{u}\gamma^5 d_{\mathcal{C}}$	0	-1
π_7	$\frac{1}{2}\left(\overline{u_{\mathcal{C}}}\gamma^5u - \overline{u}\gamma^5u_{\mathcal{C}}\right)$	1-	π^G	$\frac{1}{\sqrt{2}}\overline{u}\gamma^5 u_{\mathcal{C}}$	1	1
π_8	$rac{1}{2}\left(\overline{d}\gamma^5d_{\mathcal{C}}-\overline{d_{\mathcal{C}}}\gamma^5d ight)$	1-	π^{H}	$rac{1}{\sqrt{2}}\overline{d}_{\mathcal{C}}\gamma^{5}d$	-1	1
π_9	$rac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d_{\mathcal{C}}-\overline{u_{\mathcal{C}}}\gamma^5d ight)$	1-	π'	$\overline{u_{\mathcal{C}}}\gamma^5 d$	0	1