ECEN 4610

Capstone Fall 2014

The League of Extraordinary Engineers Team Responsibilities and System Diagram

Responsibilities	Roles	Hardware	Software
Trigger Capacitor	MotherBrain	Decoder and control	Plate Control Logic
Plates When Car is		bus	
Above			
Sense Car	RFID	RFID transmitter and	RFID Controls on Ve-
		reciever	hicle
Transmit Power	Road Power	Freq Converter,	-
		plates, and connection	
		to power grid	
Recieve Power	Vehicle Power	Rectifier/Converter,	-
		battery, plates, and	
		motors	

The League of Extraordinary Engineers Team Functional Decomposition

1 Function Decomposition Level 0 - Part 1

Module	Onboard Vehicle Power System
Inputs	Wireless energy from chargin pads
	Battery Voltage Levels
Outputs	RFID Signal
	DC power to battery
Functionality	The onboard system will take in battery
	voltafe levels to determine if the battery
	needs to acquire power from the road. Based
	on this information, differenct codes will be
	transmitted by the vehicle RFID tag in or-
	der to request power when needed. The on-
	board system the recieves power transmitted
	by the charge pads in the road power system
	and outputs the received energy in order to
	charge the vehicle battery.

2 Functional Decomposition Level 0 - Part 2

Module	Road Surface Power System
Inputs	RFID signal
	120V/60Hz Electrical Power
Outputs	ISM-Band Wireless Power
	Power Metering Information
Functionality	The road surface power system is powered
	by mains power from the electrical grid. An
	RFID reader and control subsystem deter-
	mines if power should be transmitted, based
	on the input RFID signal. Based on RFID
	readings the proper road-surface level charge
	pads are place in power transmit mode and
	output wireless power in an ISM band. The
	road system also meters power used by each
	vehicle and stores it in a database to be ac-
	cesed on the web by users or power compa-
	nies

3 Function Decomposition Level 1 - Part 1

3.1 Road Modules

Module	Power Meter
Inputs	Power from the Power Grid
Output	Electricity to the Frequency Converter and
	meter information to the meter controller
Functionality	Reads the amount of power going into the
	system from the power grid

Module	Frequency Converter
Inputs	120V 60Hz AC power from power meter
Output	Frequency Converted Signal to Capacitive
	Plates
Functionality	Changes the frequency from that of the
	power grid

Module	Capacitive Road Plates
Inputs	Frequency Converted Signal, Control Algo-
	rithm
Output	Wireless Frequency Converted Signal, Meter-
	ing Information
Functionality	Enables conversion from normal signal over a
	wire to a wireless signal. There will be many
	of these that are turned on and off by the
	control algorithm from the control module.
	Outputs its on/off state to determine power
	usage.

Module	RFID Reader
Inputs	RFID Signal from RFID Tag in Vehicle
Output	Data to Control Module in Road and Meter-
	ing Module
Functionality	Reads the RFID tag in the vehicle to send
	data to the control and metering modules

Module	Control Module
Inputs	RFID Reader Data
Output	On/Off signal to Control the different road
	plates
Functionality	This controls the Capacitive Road Plates. It
	determines if the capacitive plates need to be
	turned on based on the RFID data from the
	RFID Reader and turns them on and off

Module	Metering Module
Inputs	Takes in data from the Power Meter and
	RFID Reader
Output	Outputs data on power usage to a database
Functionality	Is used to charge users for their power us-
	age, by determining which vehicle is being
	charged through RFID data and how much
	power is being used from the power meter.

3.2 Vehicle Modules

Module	Vehicle Capacitive Plate Module
Inputs	Wireless Power from the Road Capacitive
	Plates
Output	Power over a wire to the Rectifier-Converter
	Module
Functionality	Receives power capacitively from the roads
	Capacitive Plates Module and converts it to
	standard electricity over a wire

Module	Rectifier-Converter Module
Inputs	Electricity from Vehicle Capacitive Plate
	Module
Output	Rectified Electricity to Vehicle Charge Con-
	troller
Functionality	Converts the electricity from the capacitive
	plates to a current and voltage that can be
	used by the charge controller.

Module	RFID Controller
Inputs	Data regarding the batteries state
Output	Control to the Active RFID Tag in the vehi-
	cle
Functionality	Sends data to the RFID Tag in the vehi-
	cle. This data determines if the vehicle needs
	power from the Road.

Module	Vehicle RFID Tag
Inputs	Data from RFID Controller
Output	Wireless signal to the Road RFID Reader
Functionality	Transmits the data from the RFID Con-
	troller to the RFID Reader in the Road.

Module	Charge Controller
Inputs	Electricity from power rectifier controller
Output	Electricity to the battery
Functionality	Charge the battery