Kern einer Matrix

$$\operatorname{Kern}(A) := \{ x \in \mathbb{R}^m \mid A \cdot x = 0 \} \subseteq \mathbb{R}^m$$

- · Menge aller Vektoren, die auf O abgebildet werden
- · ist ein Unterraum des Rm

6 insb. ist naturlich immer 0 € Kern (A)

Bild einer Matrix

$$\mathsf{Bild}(A) := \left\{ A \times \mathsf{I} \times \epsilon \mathbb{R}^{\mathsf{m}} \right\} = \mathsf{Iin}\left(\left\{a_1, a_2, \dots, a_n\right\}\right) \subseteq \mathbb{R}^{\mathsf{n}}$$

- · ist ein Unterraum des Rn
- · wird auch als Spaltenraum bezeichnet

Rang einer Matrix

- · es ist $rg(A) = rg(A^T)$
 - Ly max. Anzahl lin. unabh. Spalten
- Lymax. Anzahl lin. unabh. Zeilen
- $\cdot rg(A) \leq min\{m,n\}$

Dimensionssatz
$$m = dim(Kern(A)) + dim(Bild(A))$$

Spaltenanzahl

(z)
$$d_{im}(Kern(A)) = m - rg(A)$$

A ist invertierbar
$$\iff$$
 Kern $(A) = \{0\}$ \iff rg $(A) = n$ \iff Bild $(A) = \mathbb{R}^n$

Lineare Gleichungssysteme

Betrachte das lineare System

$$I \quad 2x - y = 1$$

$$II \times +y = 5$$

Dieses System Kann als Matrix-Vektor-Produkt geschrieben werden

$$\begin{array}{c|c} & \hline z & -1 \\ \hline 1 & 1 \\ \end{array} \cdot \begin{array}{c} x \\ y \\ \end{array} = \begin{array}{c} 1 \\ 5 \\ \end{array}$$

Allgemein suchen wir für

- · eine Koeffizientenmatrix A & Rnim
- · eine "vechte Seite" b & R"

einen Vektor $x \in \mathbb{R}^m$ mit Ax = b.

La x ist dann eine Lösung des Systems

Was bedeutet es, dass x eine Lösung ist?

Sei be \mathbb{R}^n and $x \in \mathbb{R}^m$ mit Ax = b.

$$\rightarrow b = A \cdot x = \sum_{j=1}^{m} A_{i,j} \cdot x_{j}$$

- · b lässt sich als Linear Kombination der Spalten von A schreiben
- · eine Lösung x besteht aus den Koeffizienten (einer) der Linearkombinationen

Zentrale Beobachtung: Ax=b ist lösbar <=> b ∈ Bild(A)

Schauen wir uns das für zwei Beispiele an:

• Es ist $b_1, b_2 \in Bild(A) = Ax = b_1 | \bar{o}sbar$

=> Ax = bz lösbar

Lösungsmenge eines Systems Ax = b Sei x̄ ∈ IR^m eine Lösung, also Ax̄ = b. Dann sind alle Lösungen gegeben durch: $\mathcal{L}(A, b) = \{ \hat{x} + y \mid y \in \text{Kern}(A) \}$ Achtung: · L (A,b) ist i.A. Kein Unterraum, sondern ein affiner Unterraum Gaffiner UR W ist ein verschobener Unterraum, hier: d(A,b) = x + Kern(A) Li genau dann ein UR, wenn x=0 eine Lösung ist (=> b=0) Warum sieht L(A,b) so aus ? Se: $\tilde{x} \in \mathbb{R}^m$ mit $A\tilde{x} = b$ und $y \in Kevn(A)$. Dann ist $A(\bar{x}+y) = A\bar{x} + Ay = A\bar{x} = b$ Sei $\widehat{x} \in \mathbb{R}^m$ eine Lösung und $x \in \mathbb{R}^m$ eine weitere Lösung, also $x, \widehat{x} \in \mathcal{L}(A,b)$. Dann ist $A(x-\hat{x}) = b-b=0$, also $\exists y: x-\hat{x} = y \in \text{Kern}(A)$ (=) $x = \hat{x} + y$ Was sagt uns das über die mögliche Anzahl von Lösungen? Mögliche Anzahl von Lösungen für Ax=b: (1) Es gibt Kein & ER mit Ax = b => O Lösungen (2) $\exists \hat{x} \in \mathbb{R}^m \text{ mit } A\hat{x} = b \text{ und } \text{Kern}(A) = \{0\}$ => d(A, b) = {x} (genau 7 Losung) (3) $\exists \hat{x} \in \mathbb{R}^m \text{ mit } A\hat{x} = b \text{ und } \text{Kern}(A) \neq \{0\}$ => unendlich viele Lösungen, da Kern (A) ein UR ist Insgesamt gilt also: Schritt 7 : Gibt es eine Lösung? Ax = b ist losbar <=> be Bild(A) Schritt Z: Wenn es eine Lösung gibt: 1st die Lösung eindeutig? Lösung ist eindeutig (=) Kern $(A) = \{0\}$

```
A:\mathbb{R}^m\to\mathbb{R}^n
 (1) rg(A) = n = m
                        Existenz
                           · die Spalten von A bilden eine Basis des Bildvaums 1Rn (= Rm)
                            Ls b e lin ({a, ... an}), da a, ... an EZS von IR"
                        Eindeutigkeit
                          · wegen der lin. Unabh. von az...an ist die Darstellung von 6 eindeutig
                           L's eindeutige Lösung
                          · insb. ist Kern(A) = {0} und daher muss die Lõsung (die existiert) eindeutig sein
 (2) rg(A) = m < n
                        Existenz
                          · Es ist dim(Bild(A)) < R" und daher Bild(A) & R"
                            Ls es gibt be/R" mit b & Bild(A)
                            Für belR" gilt also
                                 1) b \in B:Id(A) \Rightarrow Es existient eine Lösung
                                 2) b& Bild(A) => Es existiert keine Lösung
                        Eindeutigkeit
                           · wegen dim(Kern(A)) = 0 ist Kern(A) = {0}
                             Lo Losung ist eindeutig
 (3) rg(A) = n < m
                        Existenz
                          · n lin. unabh. Vektoren (Spalten) im R<sup>n</sup>
                            Ly dim (Bild(A)) = n => Bild(A) = R" => b & Bild(A) for alle be R"
                          · Ax=b ist for alle b losbar
                        Eindeutigkeit
                          · es ist dim(Kern(A)) > 0 => Kern(A) + {0}
                            Ly Losung ist night eindeutig
 (4) rg(A) < m,n
                        Existenz
                          · Es ist dim (Bild(A)) < R" und daher Bild(A) & R"
                            Ls es gibt be Rn mit b & Bild (A)
                            Für belR" git also
                                1) be Bild (A) => Es existiert eine Lösung
                                 2) b & Bild(A) => Es existient Keine Lösung
                        Eindeutigkeit
                           · es ist dim (Kevn (A)) > 0 => Kevn (A) $ {0}
                            Ly Losung ist night eindeutig
```

Zusammenfassung

	Rang(A)		dim (Kern(A))	#Lōsungen	
System mit regulärer Matrix	rg(A)=m=n	voller Rang	0	1	
unterbestimmtes System	rg(A) = n < m	voller Zeilenrang	m -rg(A) > 0	000	
überbestimmtes System	rg(A)= m < n	voller Spaltenrang	0	0 oder 1	
System mit Rangdefizit	rg(A)< m,n		m -rg(A) > 0	O oder ∞	

Zwei geometrische Perspektiven

Spaltenperspektive

- · haben wir oben schon gesehen
- · wir versuchen den Vektor b als Linearkomb. der Spalten von A zu schreiben

Faustregel: (1) je mehr lin. unabh. Zeilen, desto größer wird der abzudeckende Raum
(2) je mehr lin. unabh. Spalten, desto größer ist der abgedeckte Raum
Ls "größer" in Bezug auf die Dimension

Zeilenperspektive

wird nochmal überarbeitet...

$$\begin{bmatrix} a_{77} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

- · falls es ein je {7, 7, 3} gibt mit ajj = 0 und bj ≠ 0, dann gibt es Keine Lösung
- falls es ein $j \in \{7,7,3\}$ mit $a_{i,j} = 0$ gibt und für alle $i \in \{7,7,3\}$ gilt: $a_{i,i} = 0 \Rightarrow b_i = 0$, dann gibt es unendlich viele Lösungen

$$\begin{bmatrix} a_{11}, a_{12}, a_{13} \end{bmatrix}$$
 $\begin{bmatrix} X_1 \\ b_1 \end{bmatrix}$ · falls $a_{i,i} \neq 0$, $1 \leq i \leq 3$, dann gibt es genau eine Lösung $a_{2,2}, a_{2,3}$ · $X_2 = b_2$ Lyandere Fälle Kann man sich analog zu oben überlegen $a_{3,2}$ X_3 b_3

· Lösungen erhält man durch Rückwärtseinsetzen

$$x_3 = \frac{1}{a_{3,3}} \cdot b_3$$
 $x_2 = \frac{1}{a_{2,2}} \left(b_2 - a_{2,3} \cdot x_3 \right)$ $x_3 = \frac{1}{a_{2,2}} \left(b_3 - a_{2,2} \cdot x_2 - a_{2,3} \cdot x_3 \right)$

- · Laufzeit : O(n2)
- · für eine untere D-Matrix benutzt man analog Vorwärtseinsetzen
 4 beginne mit ann

Ziel des Gauß-Algorithmus

Ly Transformiere Matrix A in obere Dreiecksmatrix

Evlaubte Operationen (1) Zeilen vertauschen

- (Z) Zeile mit λ≠0 skalieren
- (3) Vielfaches einer Zeile zu anderer Zeile addieren

(Spalten-) Pivoting

- · bei Gauß konn es sein, doss Pivotelement = 0 ist
 - La dann muss man versuchen aktuelle Zeile mit Zeile weiter unten tauschen

lm Allgemeinen gilt:

· im K-ten Schrift betrachte Elemente ai, k , i ≥ K und tausche die Zeile mit betragsmäßig größtem Element nach oben

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 2 & 2 & 1 \\ \hline \\ 1 & 2 & 2 & 1 \end{bmatrix} \xrightarrow{\text{I} \leftrightarrow \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ \hline \\ -2 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{\text{I} \leftrightarrow \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ \hline \\ -2 & 1 & 0 \end{bmatrix} \xrightarrow{\text{II} - \frac{1}{2}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \\ \hline \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{5}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II} - \text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix} \xrightarrow{\text{II}} \begin{bmatrix} -2 & -1 & 1 & 1 \\ 0 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ \hline \end{bmatrix}$$

Bemerkung

Alle drei Operationen Können als Matrixmultiplikation ausgedrückt werden! (Whaaat?!)

Zeilen vertauschen

Zeile mit A + O skalieren

$$\begin{bmatrix} \gamma_2 & & & \\ & 1 & & \\ & & 7 \end{bmatrix} \quad \begin{bmatrix} 2 & 3 & 0 \\ & 0 & 1 & 0 \\ & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 3/2 & 0 \\ & 0 & 1 & 0 \\ & & 0 & 0 & 1 \end{bmatrix}$$

Vielfaches von einer Zeile zu einer anderen addieren

· diese Matrizen heißen Elementarmatrizen
La sind alle invertierbar (Wie sehen die Inversen aus?)

Warum andert sich die Lösungsmenge durch den Gauß-Algo. nicht? Sei $A \in \mathbb{R}^{m,n}$, be \mathbb{R}^m und $E \in \mathbb{R}^{m,m}$ invertierbar. Dann gilt für $x \in \mathbb{R}^n$:

$$Ax = b \iff (EA)x = Eb$$

Jeder Schritt im Algorithmus entspricht Mult. von links mit invertierbarer Matrix Lalso verändert sich die Lösungsmenge nicht.