Quadratic residue

Rikard Hjort hjortr@student.chalmers.se

July 10, 2018

1 Algorithm for finding non-residue

If p=2, then $Z_p^*=\{1\}$, and since 1 is a quadratic residue, Z_p^* contains no quadratic residues. We will therefore restrict ourselves to the case when $p\geq 3$.

Lemma 1.1. Exactly half the elements in \mathbb{Z}_p^* are quadratic residues.

Proof. Since Z_p^* is cyclic, it has at least one generator, g. By proposition 2, g^k is a quadratic residue iff $k \mid 2$. Since $\operatorname{ord}(g) = |Z_p^*| = p-1$, and p is odd, there are precisely $\frac{p-1}{2}$ values of k for which g^k is a quadratic residue, and as many that are quadratic non-residues.

This means that random sampling is efficient.

This makes it simple to devise an algorithm.

Algorithm 1.2.

Input p, a prime number ≥ 3 .

Output a, a quadratic non-residue.

- 1. Pick a random integer 1 < a < p. (Skip 1 as it is always both quadratic residues.)
- 2. Calculate $a^{\frac{p-1}{2}} = r$.
 - (a) If r = 1, repeat from step 1.
 - (b) Else, return a.

The algorithm will only return correct values (it is a Las Vegas algorithm), by proposition 4. The algorithm will probabilistically terminate, since there is $\frac{p-1}{2}$ quadratic non-residues in Z_p^* .

Runtime analysis Exponentiation can be done in polynomial time in $\log p$ with binary exponentiation, and decrementing p and halving it can be done in linear time or better, since it is simply a matter of flipping the least significant bit and shifting. Testing equality with 1 can be done in constant time.

The algorithm runs an expected number of 2 times, since by lemma 1.1 it has a $\frac{1}{2}$ probability to find a quadratic non-residueat every iteration. The total runtime is donimated by exponentiation, and thus runs in polynomial time in $\log p$.

2 Find quadratic residue of $a \in \mathbb{Z}_p^*$ given a quadratic non-residue b

We start with some helpful findings.

Lemma 2.1. Every quadratic residue of Z_p^* has exactly 2 roots.

Proof. If $a \in \mathbb{Z}_p^*$ is a quadratic residue, and $a = g^{2k}$ for some generator g, then also $a = (p-g^k)^2 = p^2 - 2pg^k + g^{2k} = g^{2k}$. Also, g^k and $p-g^k$ are different, since $g^k = p - g^k \Leftrightarrow p = 2g^k \Rightarrow 2 \mid p$ which is not possible, since p is odd. Furthermore,

$$b^2 = c^2 \Leftrightarrow c^{-1}bc^{-1}b = 1$$

which means $c^{-1}b$ is its own inverse (keep in mind Z_p^* is Abelian). Recall that that $|O_2| = \phi(2) = 1$, and $\operatorname{ord}(-1) = 2$, and thus $O_2 = \{-1\}$. Thus, only one element is its own inverse, namely -1. This means that $c^{-1}b = -1$, which in turn means $b = c^{-1}$. Thus, a can have precisely 2 roots, which are each other's inverses.

Lemma 2.2. For
$$a \in \mathbb{Z}_p^*$$
, $a^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue} \\ -1 & \text{if } a \text{ is a quadratic non-residue} \end{cases}$

Proof. If a is a quadratic residue, then for a generator g such that $g^{2k}=a$ we can express $a^{\frac{p-1}{2}}=g^{2k\frac{p-1}{2}}=g^{k(p-1)}=1$. If a is a quadratic non-residue, then for a generator g such that $g^{2k+1}=a$, we can express $a^{\frac{p-1}{2}}=g^{(2k+1)\frac{p-1}{2}}=g^{k(p-1)}g^{\frac{p-1}{2}}=g^{\frac{p-1}{2}}\neq 1$ since $\operatorname{ord}(g)\geq \frac{p-1}{2}$. On the other hand, $g^{\frac{p-1}{2}}$ is a root of 1, because squaring it gives 1. Thus, $g^{\frac{p-1}{2}}=-1$ by lemma 2.1.

We divide the solution into three cases.

2.1 $p \equiv 3 \mod 4$

For the case $p \equiv 3 \mod 4$ we need not bother with b. It suffices to note that $a^{\frac{p-1}{2}} \equiv 1 \mod p \Rightarrow a^{\frac{p-1}{2}} a = a^{\frac{p+1}{2}} \equiv a \mod p$, and since $p+1 \equiv 0 \mod 4$, we can safely divide p+1 by 4, and get $a^{\frac{p+1}{4}}$ as a root of a, and $p-a^{\frac{p+1}{4}}$ as the other.

$2.2 \quad p \equiv 5 \mod 5$

If $p \equiv 1 \mod 4$, there are two more cases: $p \equiv 1 \mod 8$ and $p \equiv 5 \mod 8$. The second case is simpler. $a^{\frac{p-1}{2}} = 1$ means $a^{\frac{p-1}{4}}$ is a root of 1 (we can safely divide by 4, as $p-1 \equiv 4 \mod 8$), and thus ± 1 . If $a^{\frac{p-1}{4}} = 1$, we are done by the same trick as before and return $a^{\frac{p+3}{4}}$. However, if $a^{\frac{p-1}{4}} = -1$, we can make use of b. $b^{\frac{p-1}{2}} = -1$ by lemma 2.2, so

$$a^{\frac{p-1}{4}} * b^{\frac{p-1}{2}} = 1 \Rightarrow a^{\frac{p+3}{4}} * b^{\frac{p-1}{2}} = a$$

Dividing by 2 again gives us that $\pm a^{\frac{p+3}{8}} * b^{\frac{p-1}{4}}$ is the roots of a.

2.3 $p \equiv 1 \mod 5$

This is by far the trickiest case. TODO.

3 Computational relation between square roots modulo n and factoring n

Equivalent, TODO