VIP Detection Sensor

딥러닝을 활용한 영상에서의 특정 인물 인식

Agenda

프로젝트 의의, 활용방안

지난 2017년 Apple의 IPHONE X 가출시되고, 얼굴인식으로 관리하는 Face ID가 쌍둥이를 구분해낼 수 있는지에 대한 이슈가 있었습니다.

Twin or Not?

과연 실시간 영상에서 특정인물을 인식하여 다른 사람과 분류하고, Face ID의 쌍둥이 이슈 처럼 유사인물과 <mark>정확히 구분이 가능한지</mark> 구현해 보고 싶었습니다.

VIP Detection Sensor 소개

VIP Detection Sensor란,

VIP로 라벨링한 특정인물을 다른 사람과 구별하여 영상에서 인식하는 모델을 말합니다.

VIP Detection Sensor 특징

- 때will ITWILL 실시간 타겟 감지가 가능합니다. (휴대용 웹캠 이용)
 - 인식하고자 하는 타겟을 변경하여도 라벨 학습이 가능하도록
 모델을 설계하였습니다.
 - Face_recognition-OpenCV library를 기반으로 합니다.
 : 앞, 옆모습에 상관없이 얼굴을 잘 인식합니다.
 - 모델의 <mark>정확도가 높고</mark>, GPU 기반으로 빠른 처리가 가능합니다.

프로젝트 일정

시간 자원을 적절히 분배하기 위해 프로젝트 일정을 만들어 진행하였습니다. 프로젝트 일정에 대해 최적/최악 데드라인을 설정하여 기한을 지키려 하였습니다.

데이터 수집 에상 소요 기간: 1일 처적 데드라인 9/4 최악 데드라인 9/5	데이터 정제 예상 소요 기간: 3일 최적 데드라인 9/7 최악 데드라인 9/11	모델 설계 및 구현 예상 소요 기간: 2일 최적 데드라인 9/9 최악 데드라인 9/15	최적화 ■ 마지막까지 계속 진행
PPT 제작 착수 • 예상 소요 기간: 3일 • D-3	모델 활용방안 구상 ■ D-2	마무리 • D-1	최종 완성 • 9/20(목)

Agenda

모델 제작 과정

데이터 수집 : OpenCV-Face_recognition, Google

데이터 정제 : Python

모델 설계 및 최적화 프레임워크 : Keras

데이터 수집

- OpenCV
- Google
- 라벨 이미지(VIP)는 동영상 녹화 후 OpenCV-Face_recognition을 사용했으며, 비라벨 이미지 는 Google의 이미지를 웹 스

크롤링 하여 수집하였습니다.

■ 자체 제작 코드 (Python) 라벨/비라벨 이미지를 정형 화 시키기 위해 모두 64 x 64 의 크기로 맞춰주고, 비라벨 이미지의 경우 비정상 파일을 제거해주는 코드를 Python을 통해 제작 하였습니다.

- 모델 설계 및 훈련
- Keras 모델 설계시 Keras를 기반 으로 연구원 4명이 각기 다 른 CNN 모델을 설계하였습 니다. Keras는 딥러닝 프레 임워크 중에서 가장 간결하 고 직관적이기 때문에 선택 하였습니다.

■ Keras
Keras 내장 함수인
evaluate를 사용하여 최종
적으로 모델의 정확성을 평
가하였습니다.
또한, 파라미터를 조절하면
서 최적의 모델을 찾고자 하
였습니다.

데이터 수집

데이터 수집은 라벨/비라벨로 나누어 진행되었습니다.

라벨 데이터: VIP 동영상을 촬영 후 수집

비라벨 데이터: Google 이미지 웹 스크롤링을 통한 수집

라벨 이미지

라벨 이미지는 OpenCV-Face_recognition을 통해 수집되었습니다. 그 결과 손상된 파일은 없지만, 픽셀 의 크기가 다른 이미지들의 집합이 형성되었습니다. 따라서 픽셀 크기를 정제하는 작업이 요구되었습니다.

비라벨 이미지

비라벨 이미지는 Google 웹스크롤링을 통해 수집되었습니다. 그 결과 손상된 이미지와 정상 이미지가 모두 수집되었고, 또한 픽셀의 크기가 다른 이미지 집합이 형성되었습니다. 따라서 손상된 파일을 걸러내고 픽셀 사이즈를 통일하는 작업이 요구되었습니다.

데이터 정제

Python 코드를 통해 비라벨 이미지의 손상된 파일을 제거하고, OpenCV의 resize 기능을 사용해, 라벨/비라벨 이미지의 크기를 일괄적으로 조정하였습니다.

운영환경구축

VIP Detection Sensor 를 구현하기 위한 운영환경을 구축하였습니다.

수많은 시행착오와 트러블 슈팅 끝에, 가장 호환이 잘 되는 버전으로 설치하였습니다.

모델 흐름도

얼굴 영역 인식 후, 3가지 프로세스가 동시에 진행됩니다. 먼저 VIP인지 판별하며, 동시에 감정/성별을 판별하는 프로세스가 진행됩니다.

모델 흐름도_1.얼굴영역인식-오류

얼굴 영역을 인식하기 위해 OpenCV와 haarcascade frontalface XML 파일을 사용하였는데, 얼굴의 모양과 비슷한 사물을 인식하고 정면 얼굴만 인식하는 문제를 발견하였습니다.

CODE

Import cv2

if __name__ == '__main__':
 cap = cv2.VideoCapture(0) cascade_path
 ="/usr/local/opt/opencv/share/OpenCV/haarcascades/
haarcascade frontalface default.xml"

모델 흐름도_1.얼굴영역인식-오류

다른 각도의 얼굴 영역을 인식하기 위해 haarcascade profileface XML 파일을 추가 사용하였으나, 얼굴 영역에 중복 detecting 되는 또 다른 문제점을 발견하였습니다.

CODE

Import cv2

```
if __name__ == '__main__':
    cap = cv2.VideoCapture(0) cascade_path
    ="/usr/local/opt/opencv/share/OpenCV/haarcascades/
haarcascade_frontalface_default.xml"
    cap = cv2.VideoCapture(0) cascade_path
    ="/usr/local/opt/opencv/share/OpenCV/haarcascades/haarcascade_profileface_default.xml"
```

모델 흐름도_1.얼굴영역인식-오류해결

얼굴 영역은 Face_recognition 라이브러리를 통해 포착하였습니다. Face_recognition은 얼굴의 눈썹,눈,코,입,턱을 Landmark하여 얼굴을 인식합니다.

VIDEO

얼굴에는 총 68개의 랜드마크가 존재하는데, 어떤 얼굴에서든 랜드마 크를 찾기 때문에 어떤 각도에서도 얼굴을 인식 할 수 있습니다.

CODE

rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
rgb = imutils.resize(frame, width=400)
r = frame.shape[1] / float(rgb.shape[1])

detect the (x, y)-coordinates of the bounding boxes # corresponding to each face in the input frame, then compute

모델 흐름도_1.얼굴영역인식-성능개선

Face_recognition 라이브러리를 통해 98%이상의 확률로 얼굴 영역을 인식하고 Cropping 되어 저장된 이미지 데이터는 라벨 판별을 위한 프로세스에 활용하였습니다.

FACE RECOGNITION

LABEL DECISION

모델 흐름도_2.성별/감정 판별

성별/감정 판별은 오픈소스를 활용하여 적용하였습니다. 이를 통해 얼굴로 인식한 모든 오브젝트에 대하여 <mark>성별, 감정</mark>이 표시되도록 하였습니다.

VIDEO

CODE

emotion classifier

= load_model(emotion_model_path, compile=False)

gender_classifier

= load_model(gender_model_path, compile=False)

emotion_target_size

= emotion_classifier.input_shape[1:3]

gender_target_size

= gender_classifier.input_shape[1:3]

gender_offsets = (30, 60) emotion offsets = (20, 40)

모델 구상 및 훈련 요약

CNN 모델 설계를 위해 프레임워크는 Keras를 선택하였고, Facebook의 Deep Face와 VGG-Face 사례를 참고하여 모델을 구상하였습니다.

K Keras

- Keras는 딥러닝 프레임워크 중에서 가장 간결하고 직관적이며 사용하기 쉽기 때문에 사용이 편리하였습니다.
- 모듈화가 잘 되어있기 때문에 빠르게
 모델을 구현하거나 레이어를 교체할
 수 있었습니다.
- 내부적으로 tensorflow를 backend 로 두고 있기 때문에, tensorflow의 기능도 사용하면서 동시에 간결한 모 델을 구성할 수 있었습니다.

모델 구상 및 훈련 요약

팀원들이 모델의 학습률을 높이기 위해 Optimizer를 기준으로 각각 모델을 구현하였습니다. 결과적으로 Adam을 사용하였을 때, 94%라는 가장 높은 정확도를 기록했습니다.

백광흠

- Optimizer : Momentum
- 활성화 함수 : relu
- 배치 정규화 : o
- 가중치 초기값 설정 : he
- 손실률/정확도 : 0.88

김건태

- Optimizer : AdaGrad
- 활성화 함수 : relu
- 배치 정규화 : o
- 가중치 초기값 설정 : he
- 손실률/정확도: 0.90

차호성

- Optimizer : RMSProp
- 활성화 함수 : relu
- 배치 정규화 : o
- 가중치 초기값 설정 : he
- 손실률/정확도: 0.91

은해찬

- Optimizer : Adam
- 활성화 함수 : relu
- 배치 정규화: o
- 가중치 초기값 설정 : he
- 손실률/정확도 : 0.94

Agenda

프로젝트 의의, 활용방안

타겟을 VIP(Oracle YU)로 잘 인식하는지 영상을 통해 시뮬레이션 하였습니다. 단독출연 시 라벨 인식의 정확도는 최대 98%였고, 공동출연 시 88%를 기록했습니다.

단독출연	공동출연
라벨 인식 정확도 : 98%	라벨 인식 정확도 : 88%

타겟과 유사인물을 대상으로, 라벨 판별 시뮬레이션을 실시하였습니다. 유사인물에 대해 98%의 비율로 <mark>라벨이 아니라고 분류</mark>하였습니다.

VIP

유사인물

98%의 확률로 비라벨 값으로 분류.

Agenda

프로젝트 의의

GPU 운영환경 구축

1 수많은 시도 끝에 최적의 운영환경을 구축하여 GPU 환경에서 모델을 구현하였습니다.

학습을 통한 모델 구현

02 Keras를 기반으로 OpenCV, face-recognition 등의 라이브러리와 Deep face, VGG-face 모델을 학습하여 모델을 구현하였습니다.

오류해결과 성능개선 **03** 초기에 발생한 오류를 인지하여 해결하였고, 성능 개선을 통해 98%의 정확도를 구현하였습니다.

활용 방안

VIP Detection Sensor 는 얼굴인식을 기반으로 특정인물을 분류하기 때문에 다른 분야에서도 활용될 수 있습니다.

<얼굴 인식 및 감정 판별>

- 심리 상담 또는 정신 상담 시 환자의 얼 굴을 인식하고 감정 분석하는데 활용할 수 있습니다.
- 보다 정확한 진단을 위해 <mark>정확도를 높이</mark> 는 참고 자료로써 사용될 수 있습니다.

<타겟 위치 알림>

- 미아를 찾거나 행방 불명된 취객 찾기 등
 에 사용이 가능합니다.
- 얼굴인식을 통한 <mark>출석체크, 출입문 통과</mark> 등에 사용될 수 있습니다.

<백화점 VIP 고객 찾기>

- 백화점 특정 코너를 자주 방문하는 고객일 경우, 얼굴을 인식하여 맞춤 상품 추천 합니다.
- VIP 고객 방문 정보를 직원에게 전달
 하여 빠른 상황대처가 가능하게 합니다.

THANK YOU