Large-Scale Evolution of Image Classifiers

Esteban Real¹ Sherry Moore¹ Andrew Selle¹ Saurabh Saxena¹ Yutaka Leon Suematsu² Jie Tan¹ Quoc V.Le¹ Alexey Kurakin¹

¹Google Brain

²Google Research

ICML, 2017

Presenter: Tianlu Wang

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

Motivation

- AlexNet, GoogleNet, VGG, ResNet...
- Designing neural network architectures can be challenging
- Discover network architectures automatically

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

Backgrounds

- Achievements: evolution algorithm outputs a fully-trained model with no human participation
- Drawbacks: significant computation
- Image classification, CIFAR-10, CIFAR-100

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

Neuro-evolution

- Weight evolution: back propagation
- Weight and architecture: NEAT algorithm (node and connection)

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

Non-evolutionary

- Bayesian optimization
- Reinforcement learning
- Q-learning

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- 5 Summary

Algorithm Overview

- Input: a population of models, each model is a trained single-layer nonconvolutional model with learning_rate = 0.1
- Measurement: accuracy on validation dataset

Algorithm Overview

- Input: a population of models, each model is a trained single-layer nonconvolutional model with learning_rate = 0.1
- Measurement: accuracy on validation dataset

Algorithm Overview

- Input: a population of models, each model is a trained single-layer nonconvolutional model with learning_rate = 0.1
- Measurement: accuracy on validation dataset

• When to stop?

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

Model Encoding

Individual model is encoded as a graph:

- Vertices
 - rank-3 tensor(image_width * image_height * channels)
 - activations(batch normalization with ReLU or plain linear layer)
- Edges
 - Identity connections
 - Convolutions

Model Encoding

Individual model is encoded as a graph:

- Vertices
 - rank-3 tensor(image_width * image_height * channels)
 - activations(batch normalization with ReLU or plain linear layer)
- Edges
 - Identity connections
 - Convolutions

Inconsistent input:

- pick and keep primary one
- reshape(interpolation/truncation/padding) non-primary ones

Mutations

The worker picks a mutation at random from a set:

- ALTER-LEARNING-RATE
- IDENTITY (effectively means keep training)
- RESET-WEIGHTS
- INSERT/REMOVE CONVOLUTION
- ALTER-STRIDE
- ALTER-NUMBER-OF-CHANNELS
- FILTER-SIZE
- INSERT-ONE-TO-ONE
- INSERT/REMOVE SKIP

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

More Details

- Poor initial conditions(12th silde)
- 45,000 training; 5,000 validation; 10000 test
- SGD with momentum of 0.9, batch size 50, weight decay 0.0001
- Computation cost: floating-point operations
- Inherit parameters' weights whenever possible

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

Progress of an evolution experiment

Repeatability of results and controls

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- Summary

Compared to hand-designed networks

Study	PARAMS.	C10+	C100+	REACHABLE?
MAXOUT (GOODFELLOW ET AL., 2013)	_	90.7%	61.4%	No
NETWORK IN NETWORK (LIN ET AL., 2013)	-	91.2%	-	No
ALL-CNN (SPRINGENBERG ET AL., 2014)	1.3 M	92.8%	66.3%	YES
DEEPLY SUPERVISED (LEE ET AL., 2015)	_	92.0%	65.4%	No
HIGHWAY (SRIVASTAVA ET AL., 2015)	2.3 M	92.3%	67.6%	No
RESNET (HE ET AL., 2016)	1.7 M	93.4%	$72.8\%^\dagger$	YES
EVOLUTION (OURS)	5.4 M 40.4 M	94.6%	77.0%	N/A
WIDE RESNET 28-10 (ZAGORUYKO & KOMODAKIS, 2016)	36.5 M	96.0%	80.0%	YES
WIDE RESNET 40-10+D/O (ZAGORUYKO & KOMODAKIS, 2016)	50.7 M	96.2%	81.7%	No
DENSENET (HUANG ET AL., 2016A)	25.6 M	96.7%	82.8%	No

Compared to auto-discovered networks

STUDY	STARTING POINT	CONSTRAINTS	POST-PROCESSING	PARAMS.	C10+	C100+
BAYESIAN (SNOEK ET AL., 2012)	3 LAYERS	FIXED ARCHITECTURE, NO SKIPS	NONE	-	90.5%	-
Q-LEARNING (BAKER ET AL., 2016)	-	DISCRETE PARAMS., MAX. NUM. LAYERS, NO SKIPS	TUNE, RETRAIN	11.2 M	93.1%	72.9%
RL (ZOPH & LE, 2016)	20 LAYERS, 50% SKIPS	DISCRETE PARAMS., EXACTLY 20 LAYERS	SMALL GRID SEARCH, RETRAIN	2.5 M	94.0%	-
RL (ZOPH & LE, 2016)	39 Layers, 2 pool Layers at 13 and 26, 50% skips	DISCRETE PARAMS., EXACTLY 39 LAYERS, 2 POOL LAYERS AT 13 AND 26	ADD MORE FILTERS, SMALL GRID SEARCH, RETRAIN	37.0 M	96.4%	-
EVOLUTION (OURS)	SINGLE LAYER, ZERO CONVS.	POWER-OF-2 STRIDES	None	5.4 M 40.4 M ENSEMB.	94.6% 95.6%	77.0%

- Introduction
 - Motivation
 - Backgrounds
- Related Work
 - Neuro-evolution
 - Non-evolutionary
- Methods
 - Algorithm Overview
 - Encoding and Mutations
 - More Details
- 4 Results
 - Progress of experiments
 - Comparisons
 - Meta-parameters
- 5 Summary

Improve the method

- Large population size
- More training steps
- Increase mutation rate
- Reset all weights

Summary

- Neuro-evolution starts from trivial initial conditions and yields fully trained models
- Construct large, accurate networks for two challenging and popular image classification benchmarks
- Large search space and high computation cost