Ch 7. Boundary Value Problems

Solving homework using Python

Program1. Matlab Code

1. Implement Program 13 and produce a plot similar to Output 13. Modify the program to explicitly specify the Dirichlet boundary conditions, $u(\pm 1) = 0$. Confirm that both results are identical (within machine precision).

```
Program 13
% p13.m - solve linear BVP u_xx = exp(4x), u(-1)=u(1)=0
                                                              Output 13
 N = 16:
                                                                                     max err = 1.261e-10
  [D,x] = cheb(N);
 D2 = D^2;
 D2 = D2(2:N,2:N);
                                        % boundary conditio: -0.5
  f = exp(4*x(2:N));
  u = D2 f;
                                        % Poisson eq. solve
  u = [0;u;0];
  clf, subplot('position',[.1 .4 .8 .5])
  plot(x,u,'.','markersize',16)
  xx = -1:.01:1;
  uu = polyval(polyfit(x,u,N),xx);
                                        % interpolate grid
                                                              -2.5<sup>L</sup>
  line(xx,uu,'linewidth',.8)
                                                                     -0.8
                                                                          -0.6
                                                                               -0.4
                                                                                     -0.2
                                                                                                0.2
                                                                                                     0.4
                                                                                                           0.6
                                                                                                                8.0
  grid on
  exact = (exp(4*xx) - sinh(4)*xx - cosh(4))/16;
  title(['max err = 'num2str(norm(uu-exact,inf))],'fontsize',12)
```

Program1. Python Code

```
N = 16
D \cdot x = cheb(N)
D2 = np.delete(np.delete((D **2), [0,N], 0), [0,N], 1)
f = np.e **(4 *x[1:N])
\begin{array}{ll} {\bf u} = {\rm np.linalg.solve(D2,f)} & \widetilde{D}_N^2 v = f. \\ {\bf u} = {\rm np.append(np.append([0],u),0)} & \underline{ } \end{array}
xx = np.arange(-1,1 +0.01,0.01)
uu = polyval(polyfit(x,u,N),xx)
exact = (np.power(np.e.(4*xx)) - np.sinh(4)*xx - np.cosh(4))/16^{-}
plt.figure(figsize=(16,8))
                                                                                                          u(x) = [e^{4x} - x \sinh(4) - \cosh(4)]/16.
plt.plot(xx,uu,linewidth=3,color='black',zorder=0)
plt.scatter(x,u,marker='o',s=100,color='red')
plt.title(r'max error = '+str(round(max(uu-exact),15)),fontsize=30)
plt.grid(linestyle=':')
plt.xticks(fontsize=20)
                                                                                                          u_{xx} = \frac{[16e^{4x}]}{16} = e^{4x} = f
plt.yticks(fontsize=20)
```


Program3. Matlab Code

3. Implement Program 15 and produce a plot similar to Output 15. Modify the program to use the Dirichlet boundary conditions, $u(\pm 1) = 0$, explicitly. (See the modified Matlab code below for reference.)

Program 15 % p15.m - solve eigenvalue BVP u_xx = lambda*u, u(-1)=u(1)=0 N = 36; [D,x] = cheb(N); $D2 = D^2$; D2 = D2(2:N,2:N); [V,Lam] = eig(D2); lam = diag(Lam); [foo,ii] = sort(-lam); % sort eigenvalues and -vectors lam = lam(ii); V = V(:,ii); clffor j = 5:5:30% plot 6 eigenvectors u = [0; V(:, j); 0]; subplot(7, 1, j/5)plot(x,u,'.','markersize',12), grid on xx = -1:.01:1; uu = polyval(polyfit(x,u,N),xx);line(xx,uu,'linewidth',.7), axis off text(-.4,.5,sprintf('eig %d =%20.13f*4/pi^2',j,lam(j)*4/pi^2)) text(.7,.5,sprintf('%4.1f ppw', 4*N/(pi*j))) end

Output 15

Program2. Python Code

```
N = 16
D. x = cheb(N)
D2 = np.delete(np.delete((D **2), [0,N], 0), [0,N], 1)
u = np.zeros(N-1)
change = 1; it = 0
while change > 1 * 10**(-15):
  unew = np.linalg.solve(D2,np.e **u)
  change = max(abs(unew-u))
  it += 1
                                              \widetilde{D}_N^2 v_{\text{new}} = \exp(v_{\text{old}}),
  u = unew
u = np.append(np.append([0],u),0)
xx = np.arange(-1,1+0.01,0.01)
uu = polyval(polyfit(x,u,N),xx)
plt.figure(figsize=(16.8))
plt.plot(xx,uu,linewidth=3,color='black',zorder=0)
plt.scatter(x,u,marker='o',s=100,color='red')
plt.title("no.steps = "+ str(it) + ", u(0) = "+ str(min(u)), fontsize=30)
plt.grid(linestyle=':')
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
```

$$u_{xx} = e^u$$
, $-1 < x < 1$, $u(\pm 1) = 0$.


```
N = 16
D_{x}x = cheb(N)
matrix = np.zeros_like(D**2)
input = np.delete(np.delete((D \star\star2),[0,N],0),[0,N],1)
matrix[1:N,1:N] = np.reshape(input,(N-1,-1)) ; matrix[0,0] = 1 ; matrix[N,N] = 1
\#f = np.e **(4 *x)
\#f = np.append(np.append([0], f[1:N]), 0)
\#u = np.linalg.inv(matrix) * np.matrix(f).T
u = np.matrix(np.zeros(N+1)).T
change = 1 ; it = 0
while change > 1 * 10**(-15):
  unew = np.linalg.inv(matrix) * np.power(np.e,u)
  unew[0,0] = 0 ; unew[N,0] = 0
  change = abs(unew.flatten() - u.flatten()).max()
  it += 1
  u = unew
xx = np.arange(-1.1 + 0.01, 0.01)
uu = polyval(polyfit(x,u,N),xx)
plt.figure(figsize=(16.8))
plt.plot(xx,uu,linewidth=3,color='black',zorder=0)
plt.scatter(x.np.array(u.flatten()), marker='o', s=100, color='red')
plt.title("no.steps = "+ str(it) + ", u(0) = "+ str((u.flatten()).min()), fontsize=30)
plt.grid(linestyle=':')
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
```

$$\begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

$$\widetilde{D}_N^2 v_{\text{new}} = \exp(v_{\text{old}}),$$

Program3. Matlab Code

```
Program 13
% p13.m - solve linear BVP u_xx = exp(4x), u(-1)=u(1)=0
                                                              Output 13
 N = 16:
                                                                                    max err = 1.261e-10
  [D,x] = cheb(N);
 D2 = D^2;
 D2 = D2(2:N,2:N);
                                        % boundary conditio: -0.5
  f = \exp(4*x(2:N));
  u = D2 f;
                                        % Poisson eq. solve
  u = [0;u;0];
  clf, subplot('position',[.1 .4 .8 .5])
  plot(x,u,'.','markersize',16)
  xx = -1:.01:1;
  uu = polyval(polyfit(x,u,N),xx);
                                       % interpolate grid
                                                              -2.5<sup>L</sup>
  line(xx,uu,'linewidth',.8)
                                                                    -0.8
                                                                         -0.6
                                                                               -0.4
                                                                                    -0.2
                                                                                               0.2
                                                                                                     0.4
                                                                                                          0.6
                                                                                                               8.0
  grid on
  exact = (exp(4*xx) - sinh(4)*xx - cosh(4))/16;
  title(['max err = 'num2str(norm(uu-exact,inf))],'fontsize',12)
```

Program3. Python Code

```
from numby.linalg import eig
N = 36
                                                                           Calculate Eigen Value(w), Eigen Vectors(v)
D.x = cheb(N)
D2 = np.delete(np.delete((D **2),[0,N],0),[0,N],1)
w.v = eig(D2)
lam = -(np.sort(abs(w))) ------
                                                                                           Set -\lambda and Set index
index = np.argsort(abs(w)) -
v = v[:,index] _____

    Select Eigen Vector on corresponding index

xx = np.arange(-1, 1 + 0.01, 0.01)
fig, ax = plt.subplots(6,1,sharex=True,sharey=True,figsize=(16,16))
for j in np.arange(5,30 +5,5):
  ax_{index} = int((i/5)-1)
                                                         Select Eigen Value and calculate
  new_v = v[:, i-1]
  u = np.append(np.append([0].new v).0)
                                                              The eigenvalues of this problem are \lambda = -\pi^2 n^2/4, n = 1, 2, \ldots, with corre-
  uu = polyval(polyfit(x,u,N),xx)
  ax[ax_index].scatter(x,u,marker='o',s=50,color='red')
                                                              sponding eigenfunctions \sin(n\pi(x+1)/2). Program 15 calculates the eigen-
  ax[ax_index].plot(xx,uu,linewidth=3,color='black',zorder=0)
  ax[ax\_index].set\_title("eig" + str(j) + " = " + str(round((lam[j-1]*4/np.pi**2),4)) +",
```


What is ppw??

factor of 3. The crucial quantity that explains this behavior is the number of points per wavelength ("ppw") in the central, coarsest part of the grid near x=0. With at least 2 points per wavelength, the grid is fine enough everywhere to resolve the wave. With less than 2 points per wavelength, the

The shape is similar to that of the matlab.

However, several graphs were drawn upside down.

There have been a few revisions, but they have not been resolved.

I executed the same code on the matlab (octave) and was able to get the upside-down graph.

Original Method in Book

Full Matrix Method

Program4. Matlab Code

Implement Program 16 and produce a plot similar to Output 16. Modify the program to explicitly specify the Dirichlet boundary conditions, $u(\pm 1, y) = u(x, \pm 1) = 0$. Confirm that both results are identical (within machine precision).

```
Program 16
% p16.m - Poisson eq. on [-1,1]x[-1,1] with u=0 on boundary
% Set up grids and tensor product Laplacian and solve for u:
  N = 24; [D,x] = cheb(N); y = x;
  [xx,yy] = meshgrid(x(2:N),y(2:N));
  xx = xx(:); yy = yy(:);
                               % stretch 2D grids to 1D vectors
  f = 10*sin(8*xx.*(yy-1));
  D2 = D^2; D2 = D2(2:N,2:N); I = eye(N-1);
  L = kron(I,D2) + kron(D2,I);
                                                     % Laplacian
  figure(1), clf, spy(L), drawnow
  tic, u = L \setminus f; toc
                    % solve problem and watch the clock
% Reshape long 1D results onto 2D grid:
  uu = zeros(N+1,N+1); uu(2:N,2:N) = reshape(u,N-1,N-1);
  [xx,yy] = meshgrid(x,y);
  value = uu(N/4+1, N/4+1);
% Interpolate to finer grid and plot:
  [xxx,yyy] = meshgrid(-1:.04:1,-1:.04:1);
  uuu = interp2(xx,yy,uu,xxx,yyy,'cubic');
  figure(2), clf, mesh(xxx,yyy,uuu), colormap([0 0 0])
  xlabel x, ylabel y, zlabel u
  text(.4, -.3, -.3, sprintf('u(2^{-1/2}, 2^{-1/2})) = %14.11f', value))
```


Program4. Python Code

```
N = 24
D_{x} = cheb(N)
y = \chi
xx, yy = np.meshgrid(x[1:N],y[1:N])
xx = xx.flatten(); yy = yy.flatten()
f = 10 * np.sin(8*xx*(yy-1))
D2 = np.delete(np.delete((D **2), [0, N], 0), [0, N], 1)
I = np.eye(N-1)
L = np.kron(1,D2) + np.kron(D2,1)
plt.figure(figsize=(8,8))
plt.spy(L)
plt.xticks(fontsize=15) ; plt.yticks(fontsize = 15)
```

$$u_{xx} + u_{yy} = 10\sin(8x(y-1)), -1 < x, y < 1, u = 0$$
 on the boundary.

Flatten Function

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \longrightarrow (1 \quad 2 \quad 3 \quad 4)$$

Examples

$$I \otimes \widetilde{D}_{N}^{2} = \begin{pmatrix} 1 & 7 & 5 & 2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{pmatrix} -14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{pmatrix} -14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{pmatrix}$$

$$\widetilde{D}_{N}^{2} \otimes I = \begin{pmatrix} -14 & & 6 & & -2 & \\ & -14 & & 6 & & -2 & \\ & & -14 & & 6 & & -2 & \\ \hline 4 & & -6 & & 4 & \\ & 4 & & -6 & & 4 & \\ & & 4 & & -6 & & 4 & \\ \hline -2 & & 6 & & -14 & \\ & & -2 & & 6 & & -14 & \\ & & -2 & & 6 & & -14 & \\ \hline \end{array}$$

$$I \otimes \widetilde{D}_N^2 = \begin{pmatrix} -14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{pmatrix} \xrightarrow{\begin{array}{c} -14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{array}} \xrightarrow{\begin{array}{c} -14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{array}} \xrightarrow{\begin{array}{c} -14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{array}$$

$$\widetilde{D}_{N}^{2} \otimes I = \begin{pmatrix} -14 & & & 6 & & -2 & \\ & -14 & & 6 & & -2 & \\ & & -14 & & 6 & & -2 & \\ \hline 4 & & -6 & & 4 & \\ & 4 & & -6 & & 4 \\ \hline & 2 & & 6 & & -14 & \\ & -2 & & 6 & & -14 & \\ & & -2 & & 6 & & -14 & \\ \hline \end{array}$$

The diagonal components are all filled with non-zero components when two expressions are plus.

```
u = np.linalg.solve(L.f)
uu = np.zeros((N+1,N+1)) : uu[1:N,1:N] = np.reshape(u,(N-1,-1))
                                                                                                 Set \mu(\pm 1, (x, y)) = 0
xx, yy = np.meshgrid(x,y)
value = uu[int(N/4)][int(N/4)]
from scipy.interpolate import interp2d
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
xxx = np.arange(-1, 1 + 0.04, 0.04)
yyy = np.arange(-1.1 + 0.04, 0.04)
xi, yi =np.meshgrid(xxx,yyy)
interp_spline = interp2d(xx.vv.uu)
                                                            Interpolate 2D
uuu = interp_spline(xxx,yyy)
fig = plt.figure(figsize=(16,10))
ax = plt.axes(projection='3d')
ax.plot_surface(yi,xi,uuu,rstride=1,cstride=1,cmap=cm.RdPu,linewidth=0.005,edgedolors='black',antialiased=False)
ax.set_xlim(1,-1); ax.set_ylim(-1,1); ax.set_zlim(-0.5,0.5)
ax.text(0.25,-0.75,-0.5,r"$\mu(2^{-\psi},\psi frac{1}{2}},2^{\psi},\psi frac{1}{2}}\$)="+str(value), fontsize=20)
```



```
matrix = np.zeros_like(D**2)
input = np.delete(np.delete((D **2),[0,N],0),[0,N],1)
matrix[1:N,1:N] = np.reshape(input,(N-1,-1)) ; matrix[0,0] = 1 ; matrix[N,N] = 1
                                                                                             • • •
I = np.eye(N+1)
                                                                                                          → Not Tilda(?) Function
L = np.kron(I,matrix) + np.kron(matrix,I)
                                                                     100
                                                                              200
                                                                                       300
                                                                                                 400
                                                                                                          500
plt.figure(figsize=(8,8))
plt.spy(L)
plt.xticks(fontsize=15) ; plt.yticks(fontsize = 15)
                                                         100
                                                         200
                                                         300
                                                         400
                                                         500
```


Original Method in Book

Full Matrix Method

Given that the axis changes and the same fluctuation is observed, it is assumed that the matrix has an error.

Program5. Matlab Code

Program 17 % p17.m - Helmholtz eq. u_xx + u_yy + (k^2)u = f on [-1,1]x[-1,1] (compare p16.m) % Set up spectral grid and tensor product Helmholtz operator: N = 24; [D,x] = cheb(N); y = x; [xx,yy] = meshgrid(x(2:N),y(2:N));xx = xx(:); yy = yy(:); $f = \exp(-10*((yy-1).^2+(xx-.5).^2));$ $D2 = D^2; D2 = D2(2:N,2:N); I = eye(N-1);$ k = 9: $L = kron(I,D2) + kron(D2,I) + k^2*eye((N-1)^2);$ % Solve for u, reshape to 2D grid, and plot: $u = L \setminus f$; uu = zeros(N+1,N+1); uu(2:N,2:N) = reshape(u,N-1,N-1);[xx,yy] = meshgrid(x,y);[xxx,yyy] = meshgrid(-1:.0333:1,-1:.0333:1);uuu = interp2(xx,yy,uu,xxx,yyy,'cubic'); figure(1), clf, mesh(xxx,yyy,uuu), colormap([0 0 0]) xlabel x, ylabel y, zlabel u text(.2,1,.022,sprintf('u(0,0) = %13.11f',uu(N/2+1,N/2+1)))figure (2), clf, contour (xxx,yyy,uuu) colormap([0 0 0]), axis square

5. Implement Program 17 and produce a plot similar to Output 17. Modify the program to explicitly specify the Dirichlet boundary conditions, $u(\pm 1, y) = u(x, \pm 1) = 0$. Confirm that both results are identical (within machine precision).

Program5. Python Code

```
N = 24
D_x x = cheb(N)
y = \chi
xx, yy = np.meshgrid(x[1:N],y[1:N])
xx = xx.flatten() ; yy = yy.flatten()
f = np.e ** (-10 * ((yy-1)**2 + (xx-0.5)**2))
D2 = np.delete(np.delete((D **2), [0,N], 0), [0,N], 1)
I = np.eye(N-1)
k = 9
L = np.kron(1,D2) + np.kron(D2,1) + k**2 * np.eye((N-1)**2)
u = np.linalg.solve(L.f)
uu = np.zeros((N+1,N+1)) ; uu[1:N,1:N] = np.reshape(u,(N-1,-1))
value = uu[int(N/2)][int(N/2)]
xx, yy = np.meshgrid(x,y)
xxx = np.arange(-1.1 + 0.04, 0.04)
yyy = np.arange(-1.1 + 0.04, 0.04)
xi, yi =np.meshgrid(xxx,yyy)
interp_spline = interp2d(xx,yy,uu,kind="cubic")
uuu = interp_spline(xxx,yyy)
```

$$k = 9$$
, $f(x, y) = \exp(-10[(y-1)^2 + (x - \frac{1}{2})^2])$.

 $u_{xx} + u_{yy} + k^2 u = f(x, y), -1 < x, y < 1, u = 0$ on the boundary,

$$I \otimes \widetilde{D}_{N}^{2} = \begin{pmatrix} -14 & 6 & -2 \\ 4 & -6 & 4 \\ -2 & 6 & -14 \end{pmatrix} -14 & 6 & -2 \\ & & & -14 & 6 & -2 \\ & & & 4 & -6 & 4 \\ & & & & -2 & 6 & -14 \end{pmatrix}$$

$$\widetilde{D}_{N}^{2} \otimes I = \begin{pmatrix} -14 & & & 6 & & -2 & \\ & -14 & & 6 & & -2 & \\ & & -14 & & 6 & & -2 & \\ & & & -14 & & 6 & & -2 & \\ \hline 4 & & & -6 & & 4 & \\ & & 4 & & -6 & & 4 & \\ & & 4 & & -6 & & 4 & \\ \hline -2 & & & 6 & & -14 & \\ & & -2 & & 6 & & -14 & \\ & & & -2 & & 6 & & -14 & \\ \hline \end{array}$$

I can see that it draws well unlike No.5.

I plotted the value corresponding to u on the graph.

Full Matrix Method

I can see that it draws well(same graph) unlike No.5.

Original Method in Book

Full Matrix Method

Program6. Python Code

6. (Exercise 7.2) Solve the boundary value problem u_{xx} + 4u_x + e^xu = sin(8x) using the spectral method on x ∈ [-1,1] with boundary conditions u(±1) = 0. Using the solution, construct and plot the polynomial p(x). As before, create a second version using the explicit Dirichlet boundary conditions specified. (hint: Start from Program 13.)


```
N = 16
D_{\cdot}x = cheb(N)
matrix = D**2 + 4*D + np.diagflat(np.e ** x)
D2 = np.delete(np.delete(matrix,[0,N],0),[0,N],1)
f = np.sin(8 *x[1:N])
u = np.linalg.solve(D2,f)
u = np.append(np.append([0],u),0)
xx = np.arange(-1, 1 + 0.01, 0.01)
fit = polyfit(x,u,N)
uu = polyval(fit,xx)
```

Polyfit Value

Polyfit Value

-1.09202418 1.08356233 0.19821011 -0.10150461 0.00959823]

