Formalising Groth16 in Lean 4

Daniel Rogozin, for Yatima Inc

August 14, 2022*

In this document, we describe the Groth16 soundness formalisation in Lean 4. The text contains the protocol description as well as some comments to its implementation.

1 Preliminary definitions

We have a fixed finite field F, and F[X] stands for the ring of polynomials over F as usual. The corresponding listing:

```
variable {F : Type u} [field : Field F]
```

In Groth16, we have random values $\alpha, \beta, \gamma, \delta \in F$ that we introduce separately as an inductive data type:

inductive Vars: Type

| alpha : Vars | beta : Vars | gamma : Vars | delta : Vars

We also introduce the following parameters:

- $n_{stmt} \in \mathbb{N}$ the statement size;
- $n_{wit} \in \mathbb{N}$ the witness size;
- $n_{var} \in \mathbb{N}$ the number of variables.

In Lean 4, we introduce those parameters as variables in the following way:

```
variable {n_stmt n_wit n_var : Nat}
```

We also define several finite collections of polynomials:

- $u_{stmt} = \{ f_i \in F[X] \mid i < n_{stmt} \}$
- $u_{wit} = \{ f_i \in F[X] \mid i < n_{wit} \}$
- $v_{stmt} = \{ f_i \in F[X] \mid i < n_{stmt} \}$
- $v_{wit} = \{ f_i \in F[X] \mid i < n_{wit} \}$
- $w_{stmt} = \{ f_i \in F[X] \mid i < n_{stmt} \}$
- $w_{wit} = \{ f_i \in F[X] \mid i < n_{wit} \}$

We introduce those collections in Lean 4 as variables as well:

^{*}This document may be updated frequently.

Let $(r_i)_{i < n_{wit}}$ be a collection of elements of F (that is, each $r_i \in F$) parametrised by elements of n_{wit} . Define a polynomial $t \in F[X]$ as:

$$t = \prod_{i \in n_{wit}} (x - r_i).$$

Crearly, these r_i 's are roots of t. The definition in Lean 4:

```
\label{eq:variable} \begin{array}{l} variable\ (r\ :\ Fin\ n\_wit\ -\!\!\!> F) \\ \\ def\ t\ :\ F[X]\ :=\ Pi\ i\ in\ finRange\ n\_wit\ , \\ (x\ :\ F[X])\ -\ Polynomial.c\ (r\ i) \end{array}
```

2 Properties of t

The polynomial t has the following properties:

Lemma 1.

- 1. $deg(t) = n_{wit}$;
- 2. t is monic, that is, its leading coefficient is equal to 0;
- 3. If $n_{wit} > 0$, then deg(t) > 0.

We formalise these statements as follows (but we drop proofs):

```
\begin{array}{lll} lemma & nat\_degree\_t : (t\ r).natDegree = n\_wit \\ lemma & monic\_t : Polynomial.Monic (t\ r) \\ lemma & degree\_t\_pos (hm : 0 < n\_wit) : 0 < (t\ r).degree \end{array}
```