PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-041876

(43)Date of publication of application: 13.02.1998

(51)Int.CI.

H04B 7/26 H04J 3/00 H04L 27/00

(21)Application number: 08-196171

(71)Applicant: KOKUSAI ELECTRIC CO LTD

(22)Date of filing:

25.07.1996

(72)Inventor: NAITO MASASHI

(54) METHOD AND SYSTEM FOR ADAPTIVE MODULATED TRANSMISSION

(57)Abstract:

PROBLEM TO BE SOLVED: To improve error rate and information transmission efficiency by easily applying an adaptive modulating method, even to a TDMA-FDD system at different upper and lower frequencies to be used by demodulating a signal, corresponding to a reception time slot from a TDMA processing part.

SOLUTION: A timing signal showing the reception time slot of a present station is applied from a TDMA processing part 5 to an adaptive demodulation part 4. Thus, the demodulation part 4 extracts the signal of a time slot designated by that timing signal from orthogonal signals I and Q outputted from an RF part 2. Afterwards, that modulating system is detected, the data are demodulated and sent to the TDMA processing part 5 and an MI (modulating system request signal) for MS transmission from a base station is sent to a control part 6.

Thus, by shortening a frame cycle, the state change in a propagation path between two transmission frames is sufficiently reduced and even in the case of the TDMA-FDD system of which the frequencies to be used for up and down are made different, the adaptive modulating system can be easily applied, so that the error rate and information transmission efficiency can be improved.

LEGAL STATUS

[Date of request for examination]

24.03.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Best Available Copy

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-41876

(43)公開日 平成10年(1998) 2月13日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
H 0 4 B	7/26			H04B	7/26	С	
H04J	3/00			H04J	3/00	Н	
H04L	27/00			H04L	27/00	Z	

審査請求 未請求 請求項の数11 OL (全 7 頁)

(21)出願番号	特顯平8-196171	(71)出顧人 000001122 国際電気株式会社
(22) 出顧日	平成8年(1996)7月25日	東京都中野区東中野三丁目14番20号 (72)発明者 内藤 昌志
		東京都中野区東中野三丁目14番20号 国際 電気株式会社内
		(74)代理人 弁理士 高崎 芳紘

(54) 【発明の名称】 適応変調伝送方法とそのシステム

(57)【要約】

【課題】 上りと下りで使用周波数の異なるTDMA-FDD方式で適応変調方式を実現する。

【解決手段】 伝播路推定部7は、周波数 f 1で送られてきた信号の状態から周波数 f 1の伝播路状態を検出し、制御部6はその検出情報をもとに次の相手局からの送信時の変調方式を決定し、その変調方式を示す情報を相手局へ送る。相手局はこの情報を受信したら次の伝送フレームの変調をこの情報にもとづいて決定する。

【特許請求の範囲】

【請求項1】 基地局から移動局への下り回線と移動局から基地局への上り回線を別の周波数チャネルをそれぞれ時分割多重したチャネルで構成し、基地局及び移動局は自局の受信信号から自局へ向けての送信周波数に於ける伝搬路の状態を推定して互いに相手局の送信変調方式を決定するようにした適応変調伝送方法。

【請求項2】 請求項1記載の適応変調伝送方法に於いて、前記基地局及び移動局は、ある伝送フレーム内の自局の受信タイムスロットで受信した受信信号から前記伝搬路の状態を推定したとき、該推定した伝搬路の状態の下で予め定めた誤り率以下で最も多くの情報量の伝送が可能な変調方式を決定し、前記ある伝送フレームの次の伝送フレーム内の自局の送信タイムスロットで前記決定した変調方式を示す情報を含んだデータの送信を行い、該送信されたデータを受信した相手局は、当該受信データに含まれた変調方式を前記次の伝送フレームの次の伝送フレームに於ける送信時の変調方式とすることを特徴とする適応変調伝送方法。

【請求項3】 請求項1記載の適応変調伝送方法に於いて、前記移動局と基地局の伝送フレームのフレームタイミングを、1フレームのスロット数よりも少ないスロット数だけずらすとともに、

前記基地局及び移動局は、ある伝送フレーム内の自局の受信タイムスロットで受信した受信信号から前記伝搬路の状態を推定したとき、該推定した伝搬路の状態の下で予め定めた誤り率以下で最も多くの情報量の伝送が可能な変調方式を決定し、前記ある伝送フレーム内の自局の送信タイムスロットで前記決定した変調方式を示す情報を含んだデータの送信を行い、該送信されたデータを受信した相手局は、当該受信データに含まれた変調方式を前記ある伝送フレームの次の伝送フレームに於ける送信時の変調方式とすることを特徴とする適応変調伝送方法。

【請求項4】 請求項1から3の内の1つに記載の適応 変調伝送方法に於いて、前記伝搬路の推定は、送信側で 伝搬路推定用の特定パターンデータを送信することによ り行うようにしたことを特徴とする適応変調伝送方法。

【請求項5】 請求項1から3の内の1つに記載の適応 変調伝送方法に於いて、前記伝搬路の推定は、送信側で 誤り訂正符号を送信データに付加し、受信時の誤り検出 率から推定することを特徴とする適応変調伝送方法。

【請求項6】 請求項1から5記載の適応変調伝送方法 に於いて、基地局及び移動局に於けるある受信タイムス ロットの受信高周波信号の復調方法は、当該タイムスロットでの相手局の変調方式を決定して自局から送信した その変調方式に対応する復調方法とすることを特徴とす る適応変調伝送方法。

【請求項7】 基地局から移動局への下り回線と移動局から基地局への上り回線を別の周波数チャネルをそれぞ

れ時分割多重したチャネルで構成し、基地局及び移動局 は自局の受信信号から自局へ向けての送信周波数に於け る伝搬路の状態を推定して互いに相手局の送信変調方式 を決定するようにした適応変調伝送システムであって、 前記基地局及び移動局は、

ある伝送フレーム内の自局の受信タイムスロットで受信 した受信信号から前記伝搬路の状態を推定するための伝 搬路状態推定手段と、

該推定手段により推定した伝搬路の状態の下で予め定め た誤り率以下で最も多くの情報量の伝送が可能な変調方 式を決定するための変調方式決定手段と、

該決定手段により決定された変調方式を示す変調方式情報を前記ある伝送フレームの次の伝送フレーム内の自局の送信スロットのデータに加えて送信するように制御するための送信制御手段と、

相手局から1つの伝送フレームの自局の受信タイムスロットに送信されてきたデータに含まれる前記変調方式情報を取り出して前記1つの伝送フレームの次の伝送フレームの自局の送信タイムスロットの変調方式とするように制御する変調方式制御手段と、

を備えたことを特徴とする適応変調伝送システム。

【請求項8】 基地局から移動局への下り回線と移動局から基地局への上り回線を別の周波数チャネルをそれぞれ時分割多重したチャネルで構成し、基地局及び移動局は自局の受信信号から自局へ向けての送信周波数に於ける伝搬路の状態を推定して互いに相手局の送信変調方式を決定するようにした適応変調伝送であって、かつ前記移動局と基地局の伝送フレームのフレームタイミングを、1フレームのスロット数よりも少ないスロット数だけずらせた適応変調伝送システムに於いて、

ある伝送フレーム内の自局の受信タイムスロットで受信 した受信信号から前記伝搬路の状態を推定するための伝 搬路状態推定手段と、

該推定手段により推定した伝搬路の状態の下で予め定め た誤り率以下で最も多くの情報量の伝送が可能な変調方 式を決定するための変調方式決定手段と、

該決定手段により決定された変調方式を示す変調方式情報を前記ある伝送フレーム内の自局の送信スロットのデータに加えて送信するように制御するための送信制御手段と、

相手局から1つの伝送フレームの自局の受信タイムスロットに送信されてきたデータに含まれる前記変調方式情報を取り出して前記1つの伝送フレームの次の伝送フレームの自局の送信タイムスロットの変調方式とするように制御する変調方式制御手段と、

を備えたことを特徴とする適応変調伝送システム。

【請求項9】 請求項7及び8記載の適応変調伝送システムに於いて、前記伝搬路状態推定手段は、送信側から送られてきた伝搬路推定用の特定パターンデータの受信状態から伝搬路状態の推定を行うように構成したことを

特徴とする適応変調伝送システム。

【請求項10】 請求項7及び8記載の適応変調伝送システムに於いて、前記伝搬路状態推定手段は、送信側から送られてきた誤り訂正符号を付加したデータの誤り検出率から伝搬路状態の推定を行うよう構成されたことを特徴とする適応変調伝送システム。

【請求項11】 請求項7から10の内の1つに記載の 適応変調伝送システムに於いて、基地局及び移動局の復 調手段は、ある受信タイムスロットでの復調を、当該タ イムスロットでの相手局の変調方式を決定して自局から 送信したその変調方式に対応する復調方法によって行う ことを特徴とする適応変調伝送システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディジタル情報を無線伝送路経由で送受信するための適応変調伝送方法とそのシステムに係わり、特に1つの周波数チャネルを時分割多重により複数の移動局で使用するとともに、同一の移動局では上り回線と下り回線で異なる周波数チャネルを用いた移動無線システムに好適な適応変調伝送方法とそのシステムに関する。

[0002]

【従来の技術】時分割多重 (Time Division Multiple A ccess; TDMA) 方式は、複数のユーザチャネルを同一の周波数でアクセスすることにより基地局コストの提言が期待できることから、移動無線システムでは多く用いられている。一方、無線伝送路ではフェージングに対する対策が不可欠であって、その1つの方法が適応変調方式である。

【0003】この適応変調方式は、従来は図4に示すよ うなTDMA-TDD方式と呼ばれる伝送方式を対象と したものであった。(例えば松岡他「シンボルレート、 変調多値数可変適応変調方式の伝送特性解析」、電子情 報通信学会技術報告RCS94-64, Sep., 19 94参照) ここでTDD (Time Division Duplex) とい うのは、基地局40と1つの移動局41とが1つの周波 数チャネルを用いて送信と受信を時分割により行うもの である。なお、図4では移動局41の受信信号をRX、 送信信号をTXとして示しているが、TDMA-TDD 方式のチャネルのフレームは、複数個のタイムスロット に分割されていて (TDMA)、RX1、RX2、・・・、 TX1、TX2、・・・というように構成されている。この ように、TDD通信においては受信信号RXと、送信信 号TXは同一の周波数チャネルを交互に使うため、各方 向の通信信号は可逆性の原理により同じフェージング変 動をしている伝搬路を通ると見なせる。従ってこの伝搬 路の可逆性を利用すると、受信信号から測定した伝搬路 のS/Nや遅延スプレッドを用いて、次の送信タイミン グにおける伝搬路状況を推定することができる。その後 この推定値をもとに、予め設定した誤り率を満足しかつ

最大情報速度を得る最適な変調多値数等を決定し送信する。

【0004】図5は、上記した適応変調方式の伝送フレ ームと変調方式の決定方法の説明図で、簡単のため1周 波数チャネルを2チャネルで使用するものとして1フレ ームを2つのスロットに分けている。そして、伝送路の 第n-1フレームは、基地局 (BS) 側では第1チャネ ルの送信信号 TXB1 (n-1)、第2 チャネルの送信信 号TXB2 (n-1)、第1チャネルの受信信号RXB1 (n -1)、第2チャネルの受信信号RXB2(n-1)から 成っていて、移動局 (MS) 側ではこれに対応して第1 チャネルの受信信号RXM1 (n-1)、第2チャネルの 受信信号RXM2 (n-1)、第1チャネルの送信信号TXM1 (n-1) 、第2チャネルの送信信号 TXM2 (n-1)から成っている。今ある移動局が上記の第1チャネ ルを使用しているものとすると、基地局からの送信信号 TXB1(n-1) を受信信号 RXM1(n-1) として受信 したとき、その受信信号RXM1(n-1)から伝搬路歪 (例えば受信レベル、C/N、遅延スプレッド等)を検 出し、伝搬路の可逆性から基地局受信信号RXB1 (n-1) が受けるであろう伝搬路の回線品質を予測、推定す る。そしてこの予測推定した回線品質から、予め設定し た誤り率以下を満足する複数の変調方式の中から、最も 情報伝送効率のよい変調方式を選択し、その変調方式で もって変調した送信信号TXM1(n-1)を送信する。 基地局の方でも同様であって、移動局よりの送信信号を 受信し、その信号から次に自局の送信時に用いる変調方 式を決定する。このように、TDMA-TDD方式であ れば、自局が受信した信号から、自局送信信号が相手受 信局で受ける伝搬路の歪みを予測することが可能である ため、容易に適応変調方式を実現することができる。

[0005]

【発明が解決しようとする課題】従来の適応変調方式では、TDD通信による送受信信号の可逆性の原理により、送受が同じ伝搬路変動を受けているという性質を利用している。しかしPDCシステム(Personal Digital Cellular)に代表されるようなTDMA-FDD(Time Division Multiple Access-Frequency Division Duplex)方式では、送受で異なる周波数を使用するため異なる伝搬路変動が生じる。従って基地局と移動局のいづれにおいても自局送出伝搬路の状況を受信伝搬路の状況からは推定できないという問題点がある。

【0006】本発明の目的は、TDMA-FDD方式のシステムであっても適応変調方式を容易に実現できるようにした適応変調伝送方法とそのシステムを提供するにある。

[0007]

【課題を解決するための手段】上記の目的を達成するために、本発明は、基地局から移動局への下り回線と移動局から基地局への上り回線を別の周波数チャネルをそれ

ぞれ時分割多重したチャネルで構成し、基地局及び移動 局は自局の受信信号から自局へ向けての送信周波数に於 ける伝搬路の状態を推定して互いに相手局の送信変調方 式を決定するようにした適応変調伝送方法を開示する。

【0008】また、本発明は、前記の適応変調伝送方法に於いて、前記基地局及び移動局は、ある伝送フレーム内の自局の受信タイムスロットで受信した受信信号から前記伝搬路の状態を推定したとき、該推定した伝搬路の状態の下で予め定めた誤り率以下で最も多くの情報量の伝送が可能な変調方式を決定し、前記ある伝送フレームの次の伝送フレーム内の自局の送信タイムスロットで前記決定した変調方式を示す情報を含んだデータの送信を行い、該送信されたデータを受信した相手局は、当該受信データに含まれた変調方式を前記次の伝送フレームの次の伝送フレームに於ける送信時の変調方式とすることを特徴とする適応変調伝送方法を開示する。

【0009】また、本発明は、前記の適応変調伝送方法に於いて、前記移動局と基地局の伝送フレームのフレームタイミングを、1フレームのスロット数よりも少ないスロット数だけずらすとともに、前記基地局及び移動局は、ある伝送フレーム内の自局の受信タイムスロットで最も多くの情報量の伝送が可能な変調方式を決定し、前記ある伝送フレーム内の自局の送信タイムスロットで最も多くの情報量の伝送が可能な変調方式を決定し、前記ある伝送フレーム内の自局の送信タイムスロットで前記決定した変調方式を示す情報を含んだデータの送信を行い、該送信されたデータを受信した相手局は、当該受信データに含まれた変調方式を前記ある伝送フレームの次の伝送フレームに於ける送信時の変調方式とすることを特徴とする適応変調伝送方法を開示する。

【0010】また、本発明は、基地局から移動局への下 り回線と移動局から基地局への上り回線を別の周波数チ ャネルをそれぞれ時分割多重したチャネルで構成し、基 地局及び移動局は自局の受信信号から自局へ向けての送 信周波数に於ける伝搬路の状態を推定して互いに相手局 の送信変調方式を決定するようにした適応変調伝送シス テムであって、前記基地局及び移動局は、ある伝送フレ ーム内の自局の受信タイムスロットで受信した受信信号 から前記伝搬路の状態を推定するための伝搬路状態推定 手段と、該推定手段により推定した伝搬路の状態の下で 予め定めた誤り率以下で最も多くの情報量の伝送が可能 な変調方式を決定するための変調方式決定手段と、該決 定手段により決定された変調方式を示す変調方式情報を 前記ある伝送フレームの次の伝送フレーム内の自局の送 信スロットのデータに加えて送信するように制御するた めの送信制御手段と、相手局から1つの伝送フレームの 自局の受信タイムスロットに送信されてきたデータに含 まれる前記変調方式情報を取り出して前記1つの伝送フ レームの次の伝送フレームの自局の送信タイムスロット の変調方式とするように制御する変調方式制御手段と、

を備えたことを特徴とする適応変調伝送システムを開示 する。

【0011】さらに、本発明は、基地局から移動局への 下り回線と移動局から基地局への上り回線を別の周波数 チャネルをそれぞれ時分割多重したチャネルで構成し、 基地局及び移動局は自局の受信信号から自局へ向けての 送信周波数に於ける伝搬路の状態を推定して互いに相手 局の送信変調方式を決定するようにした適応変調伝送で あって、かつ前記移動局と基地局の伝送フレームのフレ ームタイミングを、1フレームのスロット数よりも少な いスロット数だけずらせた適応変調伝送システムに於い て、ある伝送フレーム内の自局の受信タイムスロットで 受信した受信信号から前記伝搬路の状態を推定するため の伝搬路状態推定手段と、該推定手段により推定した伝 搬路の状態の下で予め定めた誤り率以下で最も多くの情 報量の伝送が可能な変調方式を決定するための変調方式 決定手段と、該決定手段により決定された変調方式を示 す変調方式情報を前記ある伝送フレーム内の自局の送信 スロットのデータに加えて送信するように制御するため の送信制御手段と、相手局から1つの伝送フレームの自 局の受信タイムスロットに送信されてきたデータに含ま れる前記変調方式情報を取り出して前記1つの伝送フレ ームの次の伝送フレームの自局の送信タイムスロットの 変調方式とするように制御する変調方式制御手段と、を 備えたことを特徴とする適応変調伝送システムを開示す る。

[0012]

【発明の実施の形態】以下、本発明の実施の形態を説明する。図1は、本発明になる適応変調伝送システムの移動局の構成例を示すブロック図で、図2は、そのシステムに於ける伝送フレームと変調方式の決定方法の例を示すタイムチャートである。図1に於いて、移動局は、アンテナ1、RF(高周波)部2、適応変調部3、適応復調部4、TDMA処理部5、制御部6、及び伝搬路推定部7を備えた構成となっている。

【0013】図2のタイムチャートは、対象としているシステムはTDMA-FDD方式であり、基地局(BS)から移動局(MS)への下りの送信信号は周波数 f1、移動局から基地局への上りの送信信号は周波数 f2($\neq f$ 1)である。各伝送フレームのTXBj(n)及びTXMj(n)は、それぞれ基地局及び移動局から伝送される第nフレームの第 j チャネルの送信信号を表し、RXB j (n)及びRXMj(n)は上記各送信信号に対応する受信信号を表す点は図5と同じである。但し図1では第1チャネルのみ示していて、チャネル数は2として図示している

【0014】上記のような上りと下り回線で周波数の異なるシステムに於いて、フレームn-1の第1スロットで基地局からある移動局へ周波数f1の送信信号TXB1(n-1)が送信されると、この信号は周波数f1での

(5)

伝搬路歪み(以下f1伝搬路歪みという、他の周波数も同様)を受けて当該移動局に受信信号RXM1(n-1)として受信される。移動局ではこの受信信号RXM1(n-1)を受信すると、RF部2で直交検波して直交信号I、Qを出力する。伝搬路推定部7は、この信号I、Qから回線品質を調べ、f1伝搬路歪みを表す伝搬路情報を出力する。この情報は、S/N、遅延スプレッド、誤差信号等であり、制御部6はこの伝搬路情報に対応した最適の変調方式を定めてBS送信用変調方式要求信号(以下BS送信用MIという)を生成する。こうしてBS送信用MIが生成されると、これはTDMA処理部5へ送られる。

【0015】一方、図示は省略したが、基地局も図1と 同様な構成であって、受信信号RXM1 (n-1) には、 移動局から基地局への上り回線のf2伝搬路歪みに対応 したMS送信用MIが付加されて伝送されてくるので、 適応復調部4はこれを取り出して制御部6へ送る。TD MA処理部5では、制御部6から送られてきたBS送信 用MIをフレームnの送信データに付加して適応変調部 3へ出力する。適応変調部3では、この送信データを制 御部6からのMS送信用MIに対応した変調方式で変調 して送信I、Q信号を生成し、RF部2、アンテナ1を 介して基地局へ送信する。このときの送信信号は図1の TXM1 (n) である。こうして送信データとともにBS 送信用MIが送られるので、基地局では次の第n+1フ レームの送信信号 TXB1 (n+1) の送信時に、上記送 信されてきたBS送信用MIの指示している変調方式で 送信することにより、下り回線の f 1 伝搬路歪みに対応 した最適の変調方式での送信が可能になる。

【0016】なお、伝搬路歪みの検出方法としては、受信レベルの他、マルチパス歪みの程度、ベースパンドアイパターンの開口度を調べる方法や、送信スロットの一部に予め定めた変調パターンを設け、受信側で受信信号とその変調パターンとの相関演算によりS/N情報、遅延スプレッド等を抽出することにより、変調方式の多値数選択の判断に供することができる(鈴木他「適応変調方式における伝搬路特性推定方式」、電子情報通信学会技術報告RCS94-65、Sep.,1994参照)。また送信データに誤り訂正符号を付加し、誤り検出率から伝搬路歪みの状況を検出する方法も可能であり、本発明ではこれらはいづれの既知の方法を用いてもよい。

【0017】また、図1の適応復調部4の動作説明を補足すると、この復調部4にはTDMA処理部5から自局 (移動局)の受信タイムスロットを示すタイミング信号が与えられているので、RF部2から出力された直交信号I、Qからそのタイミング信号で指定されたタイムスロットの信号を取り出す。そしてその変調方式を検出してデータ復調を行い、復調データをTDMA処理部5へ送るとともに、前記した基地局からのMS送信用MIを

制御部6へ送る。この動作で、変調方式の検出は従来の TDMA-TDD方式の場合と同様に行えばよいが、T DMA-TDD方式と違って、本発明の場合は、基地局 でも移動局でも自局が受信する受信信号の変調方式は2 フレーム前に自局で決定して相手にMI(変調方式要求 信号)として送っているから、このMIを記憶しておい て復調するようにすることもできる。

【0018】以上に示した適応変調伝送システムによれば、フレーム周期をある程度短く構成すれば、2伝送フレームの間の伝搬路の状態変化は十分少ないとみなせるので、上りと下りで使用周波数の異なるTDMA-FDD方式の場合でも容易に適応変調方式が適用可能となり、周波数利用効率の改善をはかることができる。

【0019】図3は、本発明の適応変調伝送方法の別の 例を示すタイムチャートで、ハードウエアのブロック構 成としては移動局の場合は図1と同じである。また基地 局も同様の構成でよい。この伝送方法が図2の場合と異 なっているのは、移動局の送信フレームのタイミングを 基地局のそれよりも1スロット(一般に1フレームnス ロット構成のときは1~n-1スロットであってもよ い)分遅らせている点である。この伝送フレームのタイ ミング構成によると、一方の局の第nフレームで検出さ れた伝搬路歪みにより次のMIが決定されると、そのM Iは同一フレームの逆方向回線で相手局に伝えられるの で、第n+1フレームの送信時の変調方式として上記第 nフレームで決定されたMIが使用されることになる。 即ち図2の場合よりもより早い伝搬路の変動、あるいは より長いフレーム周期であっても、伝搬路状況の推定か らそれにもとづく変調出力の間までの時間が短縮される ので、より正確な変調方法の決定が可能になる。なお、 図3では移動局の伝送フレームを遅らせるものとした が、これは相対的にずれていれば、どちらが遅れても同 様な効果があることは明らかである。

[0020]

【発明の効果】TDMA-TDDシステムでしか実現できなかった適応変調方式を、TDMA-FDDシステムに適応可能にしたことにより、適応変調の利点である誤り率の改善と情報伝送効率の向上が可能となる効果は大きい。

【図面の簡単な説明】

【図1】本発明になる適応変調伝送システムの移動局の 構成例を示すブロック図である。

【図2】図1の移動局に於ける適応変調伝送方法の動作 例を示すタイムチャートである。

【図3】図1の移動局に於ける適応変調伝送方法の別の 動作例を示すタイムチャートである。

【図4】 TDMA-TDD方式の説明図である。

【図5】TDMA-TDD方式に於ける適応変調伝送方法の動作例を示すタイムチャートである。

【符号の説明】

- 1 アンテナ
- 2 RF部
- 3 適応変調部
- 4 適応復調部

- 5 TDMA処理部
- 6 制御部
- 7 伝搬路推定部

【図1】

【図5】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.