

CHEMISTRY STANDARD LEVEL PAPER 1

Wednesday 12 May 2010 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.

							Ī		
0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
٢		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 No (259)
w		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
т		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 H0 164.93	99 Es
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 C f (251)
ble				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
dic Tal				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
The Periodic Table				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
			1	25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 Np (237)
	Number	Element Atomic Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic Number	Eler Atomic		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
			l	22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)		++
6		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
_	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

1. What is the coefficient of Fe₃O₄ when the following equation is balanced using the lowest whole numbers?

$$_$$
 Al(s) + $_$ Fe₃O₄(s) \rightarrow $_$ Al₂O₃(s) + $_$ Fe(s)

- A. 2
- B. 3
- C. 4
- D. 5
- 2. What is the mass, in g, of one molecule of ethane, C₂H₆?
 - A. 3.0×10^{-23}
 - B. 5.0×10^{-23}
 - C. 30
 - D. 1.8×10^{25}
- **3.** Which molecular formula is also an empirical formula?
 - A. PCl₃
 - B. C_2H_4
 - $C. H_2O_2$
 - $D. \quad C_6H_{12}O_6$
- **4.** Which of the following is consistent with Avogadro's law?
 - A. $\frac{P}{T} = \text{constant}(V, n \text{ constant})$
 - B. $\frac{V}{T}$ = constant (P, n constant)
 - C. Vn = constant(P, T constant)
 - D. $\frac{V}{n}$ = constant (P, T constant)

A sample of element X contains 69 % of ⁶³X and 31 % of ⁶⁵X. What is the relative atomic mass of X

	in th	is sample?
	A.	63.0
	B.	63.6
	C.	65.0
	D.	69.0
6.	How	many electrons does the ion $^{31}_{15}P^{3-}$ contain?
	A.	12
	B.	15
	C.	16
	D.	18
7.	Wha	t is the electron arrangement of the Mg ²⁺ ion?
	A.	2,2
	B.	2,8
	C.	2,8,2
	D.	2,8,8
8.	Whi	ch property decreases down group 7 in the periodic table?
	A.	Melting point
	B.	Electronegativity

C.

D.

Atomic radius

Ionic radius

5.

- **9.** Which oxides produce an acidic solution when added to water?
 - I. P_4O_{10}
 - II. MgO
 - III. SO₃
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **10.** What is the formula of magnesium fluoride?
 - A. Mg_2F_3
 - B. Mg₂F
 - C. Mg_3F_2
 - D. MgF₂
- 11. What is the shape of the ammonia molecule, NH₃?
 - A. Trigonal planar
 - B. Trigonal pyramidal
 - C. Linear
 - D. V-shaped (bent)
- **12.** Which molecule is polar?
 - A. CH₂Cl₂
 - B. BCl₃
 - C. Cl₂
 - D. CCl₄

- 13. Which substance can form intermolecular hydrogen bonds in the liquid state?
 - A. CH₃OCH₃
 - CH₃CH₂OH В.
 - CH₃CHO C.
 - CH₃CH₂CH₃ D.
- Which compound has a covalent macromolecular (giant covalent) structure? 14.
 - A. MgO(s)
 - $Al_2O_3(s)$ B.
 - C. $P_4O_{10}(s)$
 - D. $SiO_2(s)$
- The standard enthalpy changes for the combustion of carbon and carbon monoxide are shown below. 15.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_c^{\ominus} = -394 \text{ kJ mol}^{-1}$

$$\Delta H_c^{\Theta} = -394 \text{ kJ mol}^{-1}$$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_c^{\Theta} = -283 \text{ kJ mol}^{-1}$

$$\Delta H_{\rm c}^{\ominus} = -283 \text{ kJ mol}^{-1}$$

What is the standard enthalpy change, in kJ, for the following reaction?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. -677
- В. -111
- C. +111
- D. +677

16. Which is correct about energy changes during bond breaking and bond formation?

-7-

	Bond breaking	Bond formation		
A.	exothermic and ΔH positive	endothermic and ΔH negative		
B.	exothermic and ΔH negative	endothermic and ΔH positive		
C.	endothermic and ΔH positive	exothermic and ΔH negative		
D.	endothermic and ΔH negative	exothermic and ΔH positive		

17. Which processes are exother	ermic?
--	--------

- I. Ice melting
- II. Neutralization
- III. Combustion
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

18. Which unit could be used for the rate of a chemical reaction?

- A. mol
- B. $mol dm^{-3}$
- C. $mol dm^{-3} s^{-1}$
- D. dm³

- I. Increasing the temperature
- II. Adding a catalyst
- III. Increasing the concentration of reactants
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

20. What is the equilibrium constant expression, K_c , for the following reaction?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

-8-

A.
$$K_{c} = \frac{[NO_{2}]}{[N_{2}O_{4}]}$$

B.
$$K_{\rm c} = \frac{[NO_2]^2}{[N_2O_4]}$$

C.
$$K_c = \frac{[NO_2]}{[N_2O_4]^2}$$

D.
$$K_c = [NO_2][N_2O_4]^2$$

21. Consider the endothermic reaction below.

$$5CO(g) + I_2O_5(g) \rightleftharpoons 5CO_2(g) + I_2(g)$$

According to Le Chatelier's principle, which change would result in an increase in the amount of CO₂?

- A. Increasing the temperature
- B. Decreasing the temperature
- C. Increasing the pressure
- D. Decreasing the pressure

22. Which species behave as Brønsted-Lowry acids in the following reversible reaction?

$$H_2PO_4^-(aq) + CN^-(aq) \rightleftharpoons HCN(aq) + HPO_4^{2-}(aq)$$

- A. HCN and CN⁻
- B. HCN and HPO₄²⁻
- C. $H_2PO_4^-$ and HPO_4^{2-}
- D. HCN and H₂PO₄
- 23. Which of the following are weak acids in aqueous solution?
 - I. CH₃COOH
 - II. H_2CO_3
 - III. HCl
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **24.** In which species does sulfur have an oxidation number of 0?
 - A. SO₃
 - B. S_8
 - C. Na₂SO₄
 - D. H₂S

$$2MnO_4^-(aq) + Br^-(aq) + H_2O(1) \rightarrow 2MnO_2(s) + BrO_3^-(aq) + 2OH^-(aq)$$

− 10 **−**

- A. Br
- B. BrO_3^-
- C. MnO₄
- D. MnO₂
- **26.** Which changes could take place at the positive electrode (cathode) in a voltaic cell?
 - I. $Zn^{2+}(aq)$ to Zn(s)
 - II. $Cl_2(g)$ to $Cl^-(aq)$
 - III. Mg(s) to $Mg^{2+}(aq)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **27.** What is the structural formula of 2,3-dibromo-3-methylhexane?
 - A. CH₃CHBrCHBrCH(CH₃)CH₂CH₃
 - $B. \quad CH_3CHBrCBr(CH_3)CH_2CH_2CH_3 \\$
 - C. CH₃CH₂CHBrCBr(CH₂CH₃)₂
 - D. CH₃CHBrCHBrCH(CH₂CH₃)₂

- **28.** What happens when a few drops of bromine water are added to excess hex-1-ene and the mixture is shaken?
 - I. The colour of the bromine water disappears.
 - II. The organic product formed does not contain any carbon-carbon double bonds.
 - III. 2-bromohexane is formed.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **29.** What is the product of the following reaction?

$$\text{CH}_3\text{CH(OH)CH}_3 \xrightarrow{\text{Cr}_2\text{O}_7^{2-}/\text{H}^+} \rightarrow$$

- A. CH₃COOH
- B. CH₃COCH₃
- C. CH₃CH₂COOH
- D. CH₃CH₂CH₃
- **30.** How many significant figures are there in 0.00370?
 - A. 2
 - B. 3
 - C. 5
 - D. 6