

KHULNA UNIVERSITY OF ENGINEERING & TECHNOLOGY

Department of Computer Science and Engineering

CSE 4128

Image Processing and Computer Vision Laboratory
Assignment 02

Date of Submission: 06 March, 2024

Submitted By	Submitted To	
Md Abu Saeed	Dr. Sk. Md. Masudul Ahsan	
Roll: 1907057	Professor	
Year: 4 th Semester: 1 st	Dipannita Biswas	
Department of Computer Science and	Lecturer	
Engineering (CSE)	Department of Computer Science and	
Khulna University of Engineering and Technology (KUET), Khulna-9203	Engineering (CSE)	
	Khulna University of Engineering and	
	Technology (KUET), Khulna-9203	

Task:

Apply **Canny edge detection** for detecting edges in images.

The steps involved in implementing the Canny edge detection algorithm:

- 1. **Differential operators** along x and y axis : the value of sigma will be user input.
- 2. **Non-maximum Suppression** finds peaks in the image gradient
- 3. **Hysteresis thresholding** locates edge strings

Gradient Calculation:

1. Here a Gaussian kernel is used based on user-defined sigma value.

$$G_{\sigma}(x,y) = rac{1}{2\pi\sigma^2} \mathrm{exp}igg(-rac{x^2+y^2}{2\sigma^2}igg)$$

2. Then the partial derivative w.r.to x and y are calculated. These are the kernel_x and kernel_y. Formulas are:

$$rac{\partial G_{\sigma}(x,y)}{\partial x} = -rac{x}{\sigma^2}G_{\sigma}(x,y) \qquad rac{\partial G_{\sigma}(x,y)}{\partial y} = -rac{y}{\sigma^2}G_{\sigma}(x,y)$$

3. The generated kernels(sigma = 0.7) are:

Fig-1: The kernel_y(left) and kernel_x(right)

4. Output Images are:

Fig-2: Convolved image using kernel_x(left) and kernel_y(right)

5. Magnitude at each pixel(x,y) is calculated using $\sqrt{((value_at_x)^2 + (value_at_y)^2)}$

Fig-3: Magnitude of previous two images

Non-maximum Suppression:

- 1. It converts the detected thick edges into thin edges.
- 2. It uses the gradient to find the pixels to compare with.

i-1,j+1	i,j+1	i+1,j+1
i-1,j	i,j	i+1,j
i-1,j-1	i,j-1	i+1,j-1

- 3. If the value at comparing pixel is greater than the values of other two pixels, then the value remains same, otherwise it is made 0.
- 4. Sample Output

Fig-4: Result before(left) and after(right) Non-max-Suppression

Hysteresis thresholding:

- 1. It finds a threshold value using global thresholding technique.
- 2. It converts the value into lower and higher threshold value.
- 3. It iterates the image, and check if pixel value is
 - a. larger than higher threshold, then assign 255
 - b. smaller than lower threshold, then assign 0.
 - c. Otherwise, assign a weak value (75).
- 4. After completing the dual thresholding, it performs hysteresis.

- 5. For each weak pixel of the image, it is connected to
 - a. any strong pixel, it is made 255,
 - b. otherwise, it is made 0.
- 6. The output is the final image.

Fig-5: Image after threshold(left) and hysteresis(right)

Final Input and Output:

Fig-6: Final Input and Output Image