

Politecnico di Milano Fisica Sperimentale I

a.a. 2016-2017 - Facoltà di Ingegneria dei Sistemi

II prova in itinere - 26/06/2017

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

1. Agli estremi di un'asta omogenea di massa M=12 kg e lunghezza L=2.5 m ($I_{asta}=\frac{1}{12}ML^2$) sono vincolati due corpi puntiformi di massa $m_1=M/3$ e $m_2=2m_1$. L'asta può girare senza attrito attorno a un asse orizzontale fisso, passante per il suo centro O. Il sistema è mantenuto in equilibrio nella configurazione orizzontale grazie ad una molla ideale di costante elastica k=900 N/m, attaccata all'estremo in cui è posta m_2 : in questa configurazione l'asse della molla è verticale.

- a. Si determini la deformazione Δx della molla in questa configurazione. [$\Delta x = 0.044 \text{ m}$] La molla viene poi scollegata. Nell'istante in cui il sistema assume configurazione verticale si determini:
- b. La velocità \vec{v}_1 e \vec{v}_2 delle masse m_1 ed m_2 rispettivamente; $[\vec{v}_1 = 2.47 \frac{\text{m}}{\text{s}} \hat{x}; \vec{v}_2 = -2.47 \frac{\text{m}}{\text{s}} \hat{x}]$
- c. La posizione del centro di massa $[\vec{y}_C = -0.21 \text{ m}\hat{y}]$
- d. Il modulo dell'accelerazione $a_{\rm C}$ del centro di massa $[\vec{a}_{\rm C}=g/12\hat{y}]$
- 2. Una cisterna, rialzata da terra di *H*=20 m, raccoglie tutta l'acqua che cade su una superficie *S* di 100 m² e presenta un piccolo foro di scarico praticato alla base della parete laterale. Il livello dell'acqua nella cisterna è *h*=0.5 m ed è costante nel tempo. Supponendo una piovosità annua di 2 m, distribuita uniformemente nel corso dell'anno, si calcoli:
 - a. La quantità di acqua Q, in litri al giorno, che viene fatta scaricare dal foro [Q=~550 l/giorno]
 - b. La superficie del foro di scarico (considerando $S \gg a$) [$a \approx 2 \text{ mm}^2$]
 - c. La massima distanza x rispetto al foro di scarico raggiunta sul terreno dall'acqua in uscita dalla cisterna [x=6.32 m]
 - d. In caso di improvvisa siccità (*Q*=0 l/giorno), determinare il tempo impiegato dalla cisterna per svuotarsi [185 giorni]
- 3. Si calcolino il rendimento ed il lavoro prodotto da una macchina termica reversibile che lavora con quattro serbatoi di calore alla temperatura di T_1 =500 K, T_2 =400 K, T_3 =300 K e T_4 =280 K, con i quali scambia i seguenti calori:
 - *Q*₁=5000 J;
 - $Q_2 > 0 \text{ J};$
 - $Q_3 = -Q_2$
 - Q_4 =-1400 J. [η =32,7%; W = 3600 J]
- 4. Un recipiente adiabatico e rigido è diviso in due parti uguali da una parete isolante. Una parte contiene n_1 moli di un gas perfetto monoatomico a temperatura T_1 = 300 K e pressione p_1 = 1 atm. L'altra parte contiene n_2 moli dello stesso gas a temperatura T_2 =500 K e p_2 = 3 atm.
 - a. Si determinino la temperatura (T_F), la pressione (p_F) nella condizione di equilibrio successiva alla rimozione della parete. [T_F =429 K; p_F = 2 atm]
 - b. Si calcoli la variazione dell'entropia dell'universo supponendo che il volume del contenitore sia 2 I. [$\Delta S_u = 0.697 \text{ J/K}$]

Costanti da utilizzare negli esercizi: