Developing an antimicrobial strategy for sepsis in Malawi

Joe Lewis 2019-02-20

Contents

P	reface	5
	Introduction1.1 Chapter Overview1.2 Sepsis in sub-Saharan Africa	

4 CONTENTS

Preface

Joe's thesis

6 CONTENTS

Chapter 1

Introduction

1.1 Chapter Overview

The syndrome of sepsis is an ancient one; from Hippocrates to Galen and Semmelweis, the potentially serious consequences of infection have long been recognized. Modern definitions of sepsis conceptualise it as a syndrome of life threatening organ dysfunction due to a deleterious and dysregulated host response to infection, but despite increased understanding of its pathogenesis, mortality from sepsis remains high. Progress has been made in improving sepsis mortality in high income settings through timely application of basic care: early appropriate antimicrobials, aggressive fluid resuscitation and organ support largely in a critical care environment. Limited data from low resource settings including sub-Saharan Africa (sSA) suggest that mortality remains high, and increasing evidence suggests that exporting high-income setting sepsis protocols to sSA has the potential to do harm. Data to guide sepsis management protocols for sSA are urgently needed.

Data on sepsis aetiology from sSA to guide antimicrobial strategies are lacking; currently, in Blantyre Malawi, for example, empirical management of sepsis is the norm and patients often receive prolonged empiric courses of broad spectrum antimicrobials – largely ceftriaxone, a third-generation cephalosporin antibiotic. The effects of this at an individual level are unknown, but on a population level invasive Escherichia coli and Klebsiella pneumoniae bacteria are showing an alarming increase in ceftriaxone resistance since the drug was introduced in Malawi in 2005. The majority of these resistant bacteria are so-called extended-spectrum beta lactamase producers (ESBL-producers) and are often untreatable with locally available antimicrobials. Novel antimicrobial strategies are needed to safely preserve ceftriaxone - a first and last line antibiotic - for those who need it.

It is the hypothesis of this thesis, then, that sepsis is Malawi is caused by a wide variety of infections that are currently unrecognised and untreated, and that this is contributing to high sepsis mortality. Conversely, prolonged ceftriaxone exposure in sepsis survivors is causing acquisition and carriage of resistant bacteria (principally ESBL Enterobacteriaceae, henceforth ESBL-E) and their transportation into the community. I will argue that sustainable antimicrobial strategies for sepsis in sSA can not only consider mortality; the unintended consequences in terms of antimicrobial resistance (AMR) acquisition in a setting where empiric management of infection is the norm must also be considered, and mitigated against where possible. In this chapter, I will review, firstly, the definitions, epidemiology, aetiology and management of sepsis, with a focus on aetiology and antimicrobial treatment; and secondly, the epidemiology and drivers of ESBL-E carriage, both with a focus on sSA.

1.2 Sepsis in sub-Saharan Africa

1.2.1 Search strategy

A review of the literature was undertaken to identify prospective cohort, case control studies or randomised controlled trials (RCTs) of sepsis in sub-Saharan Africa with the search terms sepsis AND ((Angola OR Benin OR Botswana OR Burkina Faso OR Burundi OR Cameroon OR Cape Verde OR Central African Republic OR Chad OR Comoros OR Republic of the Congo OR Congo Brazzaville OR Democratic republic of the Congo OR Cote d'Ivoire OR Djibouti OR Equatorial Guinea OR Eritrea OR Ethiopia OR Gabon OR The Gambia OR Ghana OR Guinea OR Guinea-Bissau OR Kenya OR Lesotho OR Liberia OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Mozambique OR Namibia OR Niger OR Nigeria OR Reunion OR Rwanda OR Sao Tome and Principe OR Senegal OR Seychelles OR Sierra Leone OR Somalia OR South Africa OR Sudan OR Swaziland OR Eswatini OR Tanzania OR Togo OR Uganda OR Western Sahara OR Zambia OR Zimbabwe) OR Africa). Pubmed and scopus were searched, yielding 5460 unique studies on 17 July 2018. Inclusion criteria were any prospective cohort, RCT or case-control studies of sepsis in sSA (defined as taking place in the countries listed in search terms panel) recruiting patients using sepsis 1,2 or 3 definitions. Abstract review was undertaken resulting in inclusion of 91 studies for full text review. Eleven publications providing data on eight prospective cohorts[1–8] and three intervention studies (two RCTs[9,10] and one before-after intervention[11]) were identified. These data inform the following review, alongside non-systematically searched studies examining sepsis in high-resource settings.

In order to put sepsis aetiology data in context, systematic searches of the Pubmed and Scopus databases for leptospirosis, brucellosis, Q fever, Rickettsioses, arboviruses (dengue, or chikungunya) and histoplasmosis prevalence in unselected sepsis or fever cohorts in sSA were undertaken. Because a recent systematic review has examined these pathogens up to 2013 (see "sepsis aetiology" below), the date of these searches were restricted the 2014 to the present. Any studies examining disease prevalence in cohorts of febrile adults or children were included; outbreaks were excluded. Studies where the inclusion criteria were not clear (including those with, for example, "suspected leptospirosis" with no further details) were excluded. Finally, systematic searches of Pneumocystis Jiroveci pneumonia (PCP) were made using the search terms below; because a recent systematic review has examined the role of PCP up to 2015, the date on this search was restricted to 2015 or later. Table 1.1 shows the search terms, number of of hits and number of included studies after full text review: nine studies provided data on Leptospirosis[12–20], seven on Brucellosis[21–27], seven on Q-fever[19,23,28–31], six on Rickettsioses[19,28,32–35], eighteen on Dengue[13,15,19,20,28,34,36–47], thirteen on Chikingunya[15,20,34,37,40,42,44–50], three on Zika [43–45], two on Histoplasmosis[51,52] and none on PCP. Details of the included studies are provided below.

1.2.2 Defining sepsis

Sepsis is a heterogenous syndrome, with no diagnostic gold standard. In 1991 the first modern sepsis diagnostic criteria were defined in a consensus conference of key opinion makers[53] (Table 1.2). Sepsis was defined as the presence of the systemic inflammatory response syndrome (SIRS) plus infection, with a gradient of severity increasing through severe sepsis (sepsis plus organ dysfunction) to septic shock. These definitions were widely adopted as entry points into clinical trials, but ongoing concerns that SIRS was both insensitive and nonspecific for the diagnosis of sepsis led to an expansion of the diagnostic criteria in 2001[54] again by expert consensus. Despite these revised guidelines the SIRS criteria largely continued to be preferred both as the entry point to clinical trials of sepsis and in clinical practice until the development of the current sepsis-3 definitions in 2016[55].

The sepsis-3 definitions redefined sepsis as "life threatening organ dysfunction triggered by infection", a definition that rendered the sepsis-2 severe sepsis category obsolete. In contrast to the previous diagnostic criteria that had relied largely on expert opinion, the sepsis-3 criteria attempted to use a probabilistic approach to defining sepsis, by mandating that sepsis should be associated with excess mortality. The sequential organ dysfunction score (SOFA, Table 1.3), an organ-dysfunction score already in use in high income settings, and

Tab			stuc	

Organism	Search	$n_abstracts$	$n_included$
Leprospirosis	Leptospir AND	187	9
Brucellosis	Brucell AND	123	7
Q-fever	((Q fever) OR (coxiella)) AND	315	7
Rickettsioses	(Ricketts OR typhus OR (spotted fever)) AND	375	6
Arboviruses	(dengue OR chikungunya OR arbovir) AND	1422	Dengue 18, Chikungunya 13, Zika 3
Histoplasmosis	Histoplasm AND	72	2
PCP	(((((PCP) OR pneumocystis) OR "pneumocystis carini*") OR "pneumocystis jiroveci")) AND	87	0

All searches inluded the sSA country list in addition to the disease-specific terms above.

shown to be associated with mortality[56] was selected to operationalise the definition of sepsis. An acute change in SOFA of 2 or more points defines sepsis under sepsis-3.

Mindful that the SOFA score requires a large number of variables and is difficult to apply at the bedside, the consensus guideline group suggest the use of a simpler score, quick SOFA to identify patients who may have sepsis. Any two of: altered mental status, SBP < 100mmHg or respiratory rate > 22 defines a positive qSOFA score. qSOFA does not define sepsis; rather, under sepsis-3 patients with a qSOFA score of 2 or more are at increased risk of poor outcomes and should be screened for sepsis using a full SOFA score. The qSOFA was derived by identifying factors associated with mortality in large datasets of patients with infection from the United States and validated in further US and German datasets; in these datasets it showed good discriminant ability to predict mortality, equivalent to full SOFA score outside the intensive therapy unit (ITU)[57].

Finally, sepsis-3 defines septic shock as persistent hypotension requiring vasopressors to maintain mean arterial blood pressure (MAP) above 65mmHg and serum lactate greater than 2mmol /L. This definition was arrived at by a combination of consensus and systematic review to identify potential defining variables and validation in large datasets from the United States, where it was found to be strongly associated with mortality[58].

1.2.3 Applicability of sepsis-3 definitions in sub-Saharan Africa

Application of the sepsis-3 definitions, both in terms of clinical use and as inclusion criteria for research studies in sub-Saharan African low resource settings, is problematic. Several of the domains of SOFA require the results of blood tests, which may not be available. In Blantyre, and elsewhere in sSA, intensive organ support with inotropes or mechanical ventilation (invasive or non-invasive) may not be available[59] or be difficult to access[60], yet use of these treatment modalities form components of the SOFA score. Both lactate measurement and inotropic support may be unavailable in some settings and yet these define septic shock. Five studies have validated the qSOFA score in sub-Saharan African settings[6,61–64] and found variable discriminant ability for mortality but it is not clear how this score should be deployed in this setting; no studies have been undertaken to link qSOFA score to clinical action, and it is not intended to define sepsis under sepsis-3. The optimal sepsis definitions (both clinical and for research) for sSA are therefore not clear.

1.2.4 Sepsis epidemiology in sub-Sahara Africa

1.2.4.1 Incidence

The changing case definition of sepsis over time hampers estimation of incidence even in high-income settings, furthermore sepsis is not included in global burden of disease estimates. Different methods of defining sepsis from disease registries can result in very different estimates[65], but a recent systematic review and meta-analysis of 27 studies from 9 high income countries found a recent population incidence rate of 437/100,000 person-years (95% CI 334-571) for sepsis and 270 (95% CI 176 – 412) for severe sepsis with an increasing incidence over time from 1979 to 2015[66]. Crudely extrapolating these estimates to the worldwide population would result in 20.7 million sepsis and 10.7 million severe sepsis cases a year, largely in low resource settings. However, no data are available from low or middle income settings and these estimates must be treated with caution.

1.2.4.2 Risk factors: the sepsis population in sub-Saharan Africa

In high-income settings, risk factors for sepsis have been identified, though once again changing definitions as well as a lack of large scale community based studies make it difficult to draw definitive conclusions. However, chronic diseases (including HIV) and immunosuppressive agents have been associated with increased sepsis incidence, as well as older age[67,68]. In the United States, male sex and black ethnicity (vs white) and poverty are associated with increased sepsis incidence and severity[69].

Though equivalent studies aiming to identify risk factors for sepsis in adults in sSA are lacking, it is clear from the available data that HIV-infection is the dominant risk factor there. Summary patient demographics from the 10 identified sepsis studies are shown in Table 1.4; of 2788 included patients with available HIV status, 69% (1809/2788) were HIV infected, and often with advanced disease; of 1278 HIV-infected patients from 5 studies the study median CD4 count ranges from 52-168 cells/ μ L. In keeping with the epidemiology of the HIV epidemic in Africa, these patients are young, with average ages (variably reported as mean or median) ranging from 30-39 across the studies. These studies recruited an equal proportion of males and females (1444/2812 males, 51%), suggesting that sex is not a risk factor.

These data contrast sharply with the sepsis population in high income settings, from whom the majority of sepsis data have been generated, and who are older and mostly HIV uninfected [67,70,71]. The need for data from sSA to guide sepsis treatment protocols, rather than extrapolating from the high-income setting sepsis population, is clear.

1.2.4.3 Outcomes

Summary outcomes for sepsis and severe sepsis in sSA from the identified studies are presented in Figure 1.1 below. Summary statistics of 28 or 30-day mortality were extracted from identified studies or, if 28- or 30-day data were not available, in-hospital mortality was used. For interventional studies, in order to reflect the "usual-care" mortality, only the usual care arms were included. Pooled mortality estimates were then generated using a random effect meta-analysis of proportions with a generalised linear mixed model (GLMM, the so called binomial-normal model) using the meta package in R. Exact binomial 95% mortality confidence intervals were used throughout.

It is clear that there is significant heterogeneity in outcomes of sepsis and severe sepsis in sSA, likely reflecting diverse patient and pathogen populations and variation in availability of available resources. This heterogeneity means that summary estimates should be interpreted with extreme caution but severe sepsis (49% [95% CI 39-58]), as expected, seems to carry a higher mortality hazard than sepsis (23% [95% CI 12-38]). Data of outcomes beyond 30 days are absent.

How does this compare to high income settings? A recent meta-analysis of population level estimates in high income settings found that a pooled sepsis 30-day mortality estimate of 17% (95% CI 11-26%)[66],

Study	Year	n						M	ortality (%)	95% CI
Wait 2015	2008	213		-						[0.16; 0.28]
Ssekitoleko 2011 (1)	2009	96				-				[0.32; 0.52]
Ssekitoleko 2011 (2)	2009	150		_						[0.23; 0.38]
Chimese 2012	2010	161			-					[0.33; 0.48]
Auma 2013	2012	216		-					0.19	[0.14; 0.25]
Huson 2014	2012	382							0.04	[0.02; 0.07]
Random effects model		1218			-		•		0.23	[0.12; 0.38]
			I	ı	ı	ı	ı	ı		
		(0	0.2	0.4	0.6	8.0	1		

Figure 1.1: Pooled sepsis (A, top) and severe sepsis (B, bottom) inpatient mortality in sSA

though even older cohort studies as well as the more recent large sepsis-3 derivation cohorts have found considerably lower mortalities for sepsis (as defined by sepsis-2) ranging from 4-7%[[57]; Rangel-Frausto1995; Serafim2018]. Most recent (largely post-2005) estimates of 30-day mortality from severe sepsis range from from 18-29%[65,66,71–73]. It seems likely therefore, that both sepsis and severe sepsis 30-day mortality is considerably higher in sSA than in high-income settings. The reasons for this are not clear, but are likely to be multifactorial; resource limitation is likely to play a part but the HIV epidemic in sSA, differing pathogen burden and lack of data and evidence based guidelines to inform optimal management in sSA may also play a role.

In the longer term, sepsis mortality continues to rise after the usual sepsis-study primary end point of 28 or 30 days, though data from sSA are absent. A systematic review in 2010 of long term sepsis mortality identified 26 studies (with none from low-resource settings) that reported long term sepsis mortality; 1 year mortality ranged from 22-72%, increasing to 45-75% at greater than 3 years[74]. Both short and long term morbidity is formidable also, though, once again, data from low income settings including sSA are absent. Cohort studies with no comparator group may not identify morbidity that is sepsis-specific (rather morbidity that is related to critical illness) but new, long-lasting reduction in physical and cognitive function with associated functional impairment have been identified in matched cohort studies in sepsis survivors[[75]; Iwashyna2010]. Health-related quality of life in sepsis survivors in high-income settings have been found to be persistently below population norms[74]. Increased incidence of cardiovascular disease, renal failure and further episodes of infection are seen following a hospital discharge for sepsis[[76]; Bergh2017; Ou2016]. Long term sepsis outcomes in sSA are unknown.

1.2.5 Sepsis aetiology in sub-Saharan Africa

The 11 identified prospective sepsis studies in sSA carried out various combinations of diagnostic testing for malaria (either microscopy or rapid diagnostic test) and aerobic and mycobacterial blood culture; a summary is shown in Table 1.5 and xx below. The commonest bloodstream infection (BSI) in all studies where mycobacterial blood cultures were carried out was tuberculosis – present in a higher proportion than of all BSI isolates from aerobic culture combined - though it is important to note that mycobacterial blood cultures in most studies were carried out in HIV infected people and bacteraemic tuberculosis is almost exclusively HIV-associated. The importance of bacteraemic tuberculosis as a cause of sepsis is further examined in an individual patient data meta analysis in chapter 3. With the exception of one study, malaria was less common than BSI, highlighting the importance of non-malarial fever in sSA as malaria control efforts reduce the burden of malaria.

- 1 Jacob ST, Moore CC, Banura P *et al.* Severe sepsis in two Ugandan hospitals: a prospective observational study of management and outcomes in a predominantly HIV-1 infected population. *PLoS One* 2009;4:e7782. doi:10.1371/journal.pone.0007782
- 2 Waitt PI, Mukaka M, Goodson P et al. Sepsis carries a high mortality among hospitalised adults in Malawi in the era of antiretroviral therapy scale-up: a longitudinal cohort study. The Journal of infection 2015;70:11–9. doi:10.1016/j.jinf.2014.07.004
- 3 Ssekitoleko R, Jacob ST, Banura P et al. Hypoglycemia at admission is associated with inhospital mortality in Ugandan patients with severe sepsis. Crit Care Med 2011;39:2271–6. doi:10.1097/CCM.0b013e3182227bd2
- 4 Ssekitoleko R, Pinkerton R, Muhindo R et al. Aggregate evaluable organ dysfunction predicts in-hospital mortality from sepsis in Uganda. Am J Trop Med Hyg 2011;85:697–702. doi:10.4269/ajtmh.2011.10-0692
- 5 Chimese SM, Andrews B, Lakhi S. The Etiology And Outcome Of Adult Patients Presenting With Sepsis To The University Teaching Hospital, Lusaka, Zambia. *Med J Zambia* 2012;**39**:19–22.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663186/pdf/nihms524771.pdf
- 6 Moore CC, Hazard R, Saulters KJ et al. Derivation and validation of a universal vital assessment (UVA) score: a tool for predicting mortality in adult hospitalised patients in sub-Saharan Africa. BMJ Glob Health

- 2017;**2**:e000344. doi:10.1136/bmjgh-2017-000344
- 7 Huson MAM, Kalkman R, Stolp SM et al. The impact of HIV on presentation and outcome of bacterial sepsis and other causes of acute febrile illness in Gabon. *Infection* 2015;43:443–51. doi:10.1007/s15010-015-0753-2
- 8 Amir A, Saulters KJ, Muhindo R et al. Outcomes of patients with severe infection in Uganda according to adherence to the World Health Organization's Integrated Management of Adolescent and Adult Illness fluid resuscitation guidelines. J Crit Care 2017;41:24–8. doi:10.1016/j.jcrc.2017.04.042
- 9 Andrews B, Muchemwa L, Kelly P et al. Simplified severe sepsis protocol: a randomized controlled trial of modified early goal-directed therapy in Zambia. Crit Care Med 2014;42:2315–24. doi:10.1097/ccm.0000000000000541
- 10 Andrews B, Semler MW, Muchemwa L et al. Effect of an Early Resuscitation Protocol on In-hospital Mortality Among Adults With Sepsis and Hypotension. JAMA 2017;318:1233. doi:10.1001/jama.2017.10913
- 11 Jacob ST, Banura P, Baeten JM *et al.* The impact of early monitored management on survival in hospitalized adult Ugandan patients with severe sepsis: a prospective intervention study*. *Crit Care Med* 2012;40:2050–8. doi:10.1097/CCM.0b013e31824e65d7
- 12 Zida S, Kania D, Sotto A *et al.* Leptospirosis as Cause of Febrile Icteric Illness, Burkina Faso. *Emerging Infectious Diseases* 2018;**24**:1569–72. doi:10.3201/eid2408.170436
- 13 Guillebaud J, Bernardson B, Randriambolamanantsoa TH et al. Study on causes of fever in primary healthcare center uncovers pathogens of public health concern in Madagascar. PLOS Neglected Tropical Diseases 2018;12:e0006642. doi:10.1371/journal.pntd.0006642
- 14 Maze MJ, Cash-Goldwasser S, Rubach MP et al. Risk factors for human acute leptospirosis in northern Tanzania. PLOS Neglected Tropical Diseases 2018;12:e0006372. doi:10.1371/journal.pntd.0006372
- 15 Gadia CLB, Manirakiza A, Tekpa G et al. Identification of pathogens for differential diagnosis of fever with jaundice in the Central African Republic: a retrospective assessment, 2008–2010. BMC Infectious Diseases 2017;17:735. doi:10.1186/s12879-017-2840-8
- 16 Hagen RM, Frickmann H, Ehlers J *et al.* Presence of Borrelia spp. DNA in ticks, but absence of Borrelia spp. and of Leptospira spp. DNA in blood of fever patients in Madagascar. *Acta Tropica* 2018;**177**:127–34. doi:10.1016/j.actatropica.2017.10.002
- 17 Biscornet L, Dellagi K, Pagès F et al. Human leptospirosis in Seychelles: A prospective study confirms the heavy burden of the disease but suggests that rats are not the main reservoir. PLOS Neglected Tropical Diseases 2017;11:e0005831. doi:10.1371/journal.pntd.0005831
- 18 Dreyfus A, Dyal JW, Pearson R *et al.* Leptospira Seroprevalence and Risk Factors in Health Centre Patients in Hoima District, Western Uganda. *PLOS Neglected Tropical Diseases* 2016;**10**:e0004858. doi:10.1371/journal.pntd.0004858
- 19 Hercik C, Cosmas L, Mogeni OD *et al.* A diagnostic and epidemiologic investigation of acute febrile illness (AFI) in Kilombero, Tanzania. *PLOS ONE* 2017;**12**:e0189712. doi:10.1371/journal.pone.0189712
- 20 Chipwaza B, Mugasa JP, Selemani M *et al.* Dengue and Chikungunya Fever among Viral Diseases in Outpatient Febrile Children in Kilosa District Hospital, Tanzania. *PLoS Neglected Tropical Diseases* 2014;8:e3335. doi:10.1371/journal.pntd.0003335
- 21 Cash-Goldwasser S, Crump JA, Halliday JEB et al. Risk Factors for Human Brucellosis in Northern Tanzania. The American Journal of Tropical Medicine and Hygiene 2018;98:598–606. doi:10.4269/ajtmh.17-0125
- 22 Gafirita J, Njunwa KJ, Ruhirwa R et al. Seroprevalence of Brucellosis among Patients Attending a District Hospital in Rwanda. The American Journal of Tropical Medicine and Hygiene 2017;97:831–5. doi:10.4269/ajtmh.16-0632
- 23 Boone I, Henning K, Hilbert A et al. Are brucellosis, Q fever and melioidosis potential causes of febrile

- illness in Madagascar? Acta Tropica 2017;172:255-62. doi:10.1016/j.actatropica.2017.05.013
- 24 Glanville WA de, Conde-Álvarez R, Moriyón I et al. Poor performance of the rapid test for human brucellosis in health facilities in Kenya. PLOS Neglected Tropical Diseases 2017;11:e0005508. doi:10.1371/journal.pntd.0005508
- 25 Njeru J, Melzer F, Wareth G *et al.* Human Brucellosis in Febrile Patients Seeking Treatment at Remote Hospitals, Northeastern Kenya, 2014-2015. *Emerging infectious diseases* 2016;**22**:2160–4. doi:10.3201/eid2212.160285
- 26 Chipwaza B, Mhamphi GG, Ngatunga SD et al. Prevalence of Bacterial Febrile Illnesses in Children in Kilosa District, Tanzania. PLOS Neglected Tropical Diseases 2015;9:e0003750. doi:10.1371/journal.pntd.0003750
- 27 Feleke SM, Animut A, Belay M. Prevalence of Malaria among Acute Febrile Patients Clinically Suspected of Having Malaria in the Zeway Health Center, Ethiopia. *Japanese Journal of Infectious Diseases* 2015;**68**:55–9. doi:10.7883/yoken.JJID.2013.062
- 28 Amoako N, Duodu S, Dennis FE et al. Detection of Dengue Virus among Children with Suspected Malaria, Accra, Ghana. Emerging Infectious Diseases 2018;24:1544–7. doi:10.3201/eid2408.180341
- 29 Njeru J, Henning K, Pletz MW *et al.* Febrile patients admitted to remote hospitals in Northeastern Kenya: seroprevalence, risk factors and a clinical prediction tool for Q-Fever. *BMC Infectious Diseases* 2016;**16**:244. doi:10.1186/s12879-016-1569-0
- 30 Mourembou G, Nzondo SM, Ndjoyi-Mbiguino A et al. Co-circulation of Plasmodium and Bacterial DNAs in Blood of Febrile and Afebrile Children from Urban and Rural Areas in Gabon. The American Journal of Tropical Medicine and Hygiene 2016;95:123–32. doi:10.4269/ajtmh.15-0751
- 31 Angelakis E, Mediannikov O, Socolovschi C et al. Coxiella burnetii-positive PCR in febrile patients in rural and urban Africa. International Journal of Infectious Diseases 2014;28:107–10. doi:10.1016/j.ijid.2014.05.029
- 32 Maina AN, Farris CM, Odhiambo A et al. Q Fever, Scrub Typhus, and Rickettsial Diseases in Children, Kenya, 2011–2012. Emerging Infectious Diseases 2016;22:883–6. doi:10.3201/eid2205.150953
- 33 Sothmann P, Keller C, Krumkamp R et al. <i>Rickettsia felis</i> Infection in Febrile Children, Ghana. The American Journal of Tropical Medicine and Hygiene 2017;96:16–0754. doi:10.4269/ajtmh.16-0754
- 34 Elfving K, Shakely D, Andersson M *et al.* Acute Uncomplicated Febrile Illness in Children Aged 2-59 months in Zanzibar Aetiologies, Antibiotic Treatment and Outcome. *PLOS ONE* 2016;**11**:e0146054. doi:10.1371/journal.pone.0146054
- 35 Mourembou G, Lekana-Douki JB, Mediannikov O et al. Possible Role of <i>Rickettsia felis</i>in Acute Febrile Illness among Children in Gabon. Emerging Infectious Diseases 2015;**21**:1808–15. doi:10.3201/eid2110.141825
- 36 Vu DM, Mutai N, Heath CJ et al. Unrecognized Dengue Virus Infections in Children, Western Kenya, 2014-2015. Emerging infectious diseases 2017;23:1915–7. doi:10.3201/eid2311.170807
- 37 Waggoner J, Brichard J, Mutuku F et al. Malaria and Chikungunya Detected Using Molecular Diagnostics Among Febrile Kenyan Children. Open Forum Infectious Diseases 2017;4:ofx110. doi:10.1093/ofid/ofx110
- 38 Kolawole OM, Seriki AA, Irekeola AA et al. Dengue virus and malaria concurrent infection among febrile subjects within Ilorin metropolis, Nigeria. Journal of Medical Virology 2017;89:1347–53. doi:10.1002/jmv.24788
- 39 Nasir IA, Agbede OO, Dangana A et al. Dengue virus non-structural Protein-1 expression and associated risk factors among febrile Patients attending University of Abuja Teaching Hospital, Nigeria. Virus Research 2017;230:7–12. doi:10.1016/j.virusres.2016.12.011
- 40 Ngoi CN, Price MA, Fields B *et al.* Dengue and Chikungunya Virus Infections among Young Febrile Adults Evaluated for Acute HIV-1 Infection in Coastal Kenya. *PLOS ONE* 2016;**11**:e0167508.

- doi:10.1371/journal.pone.0167508
- 41 Onoja A, Adeniji J, Olaleye O. High rate of unrecognized dengue virus infection in parts of the rainforest region of Nigeria. *Acta Tropica* 2016;**160**:39–43. doi:10.1016/j.actatropica.2016.04.007
- 42 Kajeguka DC, Kaaya RD, Mwakalinga S et al. Prevalence of dengue and chikungunya virus infections in north-eastern Tanzania: a cross sectional study among participants presenting with malaria-like symptoms. BMC Infectious Diseases 2016;16:183. doi:10.1186/s12879-016-1511-5
- 43 Sow A, Loucoubar C, Diallo D et al. Concurrent malaria and arbovirus infections in Kedougou, southeastern Senegal. Malaria Journal 2016; $\bf 15$:47. doi:10.1186/s12936-016-1100-5
- 44 Kayiwa JT, Nankya AM, Ataliba IJ et al. Confirmation of Zika virus infection through hospital-based sentinel surveillance of acute febrile illness in Uganda, 2014–2017. Journal of General Virology Published Online First: July 2018. doi:10.1099/jgv.0.001113
- 45 Makiala-Mandanda S, Ahuka-Mundeke S, Abbate JL *et al.* Identification of Dengue and Chikungunya Cases Among Suspected Cases of Yellow Fever in the Democratic Republic of the Congo. *Vector-Borne and Zoonotic Diseases* 2018;**18**:364–70. doi:10.1089/vbz.2017.2176
- 46 Muianga A, Pinto G, Massangaie M et al. Antibodies Against Chikungunya in Northern Mozambique During Dengue Outbreak, 2014. Vector-Borne and Zoonotic Diseases 2018;vbz.2017.2261. doi:10.1089/vbz.2017.2261
- 47 Mugabe VA, Ali S, Chelene I *et al.* Evidence for chikungunya and dengue transmission in Quelimane, Mozambique: Results from an investigation of a potential outbreak of chikungunya virus. *PloS one* 2018;**13**:e0192110. doi:10.1371/journal.pone.0192110
- 48 António VS, Muianga AF, Wieseler J et al. Seroepidemiology of Chikungunya Virus Among Febrile Patients in Eight Health Facilities in Central and Northern Mozambique, 2015–2016. Vector-Borne and Zoonotic Diseases 2018;18:311–6. doi:10.1089/vbz.2017.2227
- 49 Sow A, Faye O, Diallo M et al. Chikungunya Outbreak in Kedougou, Southeastern Senegal in 2009–2010. Open Forum Infectious Diseases 2018;5:ofx259. doi:10.1093/ofid/ofx259
- 50 Olajiga OM, Adesoye OE, Emilolorun AP et al. Chikungunya Virus Seroprevalence and Associated Factors among Hospital Attendees in Two States of Southwest Nigeria: A Preliminary Assessment. *Immunological Investigations* 2017;**46**:552–65. doi:10.1080/08820139.2017.1319383
- 51 Bahr NC, Sarosi GA, Meya DB et~al. Seroprevalence of histoplasmosis in Kampala, Uganda. Medical~Mycology~2016;**54**:295–300. doi:10.1093/mmy/myv081
- 52 Mandengue CE, Ngandjio A, Atangana PJ. Histoplasmosis in HIV-Infected Persons, Yaoundé, Cameroon. *Emerging Infectious Diseases* 2015;**21**:2094–6. doi:10.3201/eid2111.150278
- 53 Bone RC, Balk RA, Cerra FB et~al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101:1644–55.http://www.ncbi.nlm.nih.gov/pubmed/1303622
- 54 Levy MM, Fink MP, Marshall JC et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Critical Care Medicine 2003;31:1250–6. doi:10.1097/01.CCM.0000050454.01978.3B
- 55 Singer M, Deutschman CS, Seymour CW et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801. doi:10.1001/jama.2016.0287
- 56 Vincent JL, Mendonça A de, Cantraine F et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on 'sepsis-related problems' of the European Society of Intensive Care Medicine. Critical care medicine 1998;26:1793–800.http://www.ncbi.nlm.nih.gov/pubmed/9824069
- 57 Seymour CW, Liu VX, Iwashyna TJ et al. Assessment of Clinical Criteria for Sepsis. JAMA 2016;315:762.

- doi:10.1001/jama.2016.0288
- 58 Shankar-Hari M, Phillips GS, Levy ML *et al.* Developing a New Definition and Assessing New Clinical Criteria for Septic Shock. *JAMA* 2016;**315**:775. doi:10.1001/jama.2016.0289
- 59 Jacob ST, West TE, Banura P. Fitting a square peg into a round hole: are the current Surviving Sepsis Campaign guidelines feasible for Africa? Crit Care 2011;15:117. doi:10.1186/cc9981
- 60 Prin M, Itaye T, Clark S et~al. Critical Care in a Tertiary Hospital in Malawi. World J Surg 2016;40:2635–42. doi:10.1007/s00268-016-3578-y
- 61 Huson MA, Kalkman R, Grobusch MP *et al.* Predictive value of the qSOFA score in patients with suspected infection in a resource limited setting in Gabon. *Travel Med Infect Dis* 2017;**15**:76–7. doi:10.1016/j.tmaid.2016.10.014
- 62 Huson MAM, Katete C, Chunda L et al. Application of the qSOFA score to predict mortality in patients with suspected infection in a resource-limited setting in Malawi. Infection 2017; $\mathbf{45}$:893–6. doi:10.1007/s15010-017-1057-5
- 63 Aluisio AR, Garbern S, Wiskel T et al. Mortality outcomes based on ED qSOFA score and HIV status in a developing low income country. The American Journal of Emergency Medicine Published Online First: March 2018. doi:10.1016/j.ajem.2018.03.014
- 64 Rudd KE, Seymour CW, Aluisio AR *et al.* Association of the Quick Sequential (Sepsis-Related) Organ Failure Assessment (qSOFA) Score With Excess Hospital Mortality in Adults With Suspected Infection in Low- and Middle-Income Countries. *JAMA* 2018;**319**:2202. doi:10.1001/jama.2018.6229
- 65 Gaieski DF, Edwards JM, Kallan MJ et al. Benchmarking the Incidence and Mortality of Severe Sepsis in the United States*. Critical Care Medicine 2013;41:1167–74. doi:10.1097/CCM.0b013e31827c09f8
- 66 Fleischmann C, Scherag A, Adhikari NKJ et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. American Journal of Respiratory and Critical Care Medicine 2016;193:259–72. doi:10.1164/rccm.201504-0781OC
- 67 Angus DC, Linde-Zwirble WT, Lidicker J et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical care medicine 2001;29:1303–10.http://www.ncbi.nlm.nih.gov/pubmed/11445675
- 68 Tsertsvadze A, Royle P, Seedat F et~al. Community-onset sepsis and its public health burden: a systematic review. Systematic reviews 2016;5:81. doi:10.1186/s13643-016-0243-3
- 69 Mayr FB, Yende S, Linde-Zwirble WT *et al.* Infection Rate and Acute Organ Dysfunction Risk as Explanations for Racial Differences in Severe Sepsis. *JAMA* 2010;**303**:2495. doi:10.1001/jama.2010.851
- 70 Seymour CW, Gesten F, Prescott HC et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. New England Journal of Medicine 2017;376:2235–44. doi:10.1056/NEJMoa1703058
- 71 PRISM Investigators, Rowan KM, Angus DC *et al.* Early, Goal-Directed Therapy for Septic Shock A Patient-Level Meta-Analysis. *New England Journal of Medicine* 2017;**376**:2223–34. doi:10.1056/NEJMoa1701380
- 72 Kaukonen K-M, Bailey M, Suzuki S *et al.* Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. *JAMA* 2014;**311**:1308–16. doi:10.1001/jama.2014.2637
- 73 Stevenson EK, Rubenstein AR, Radin GT et al. Two Decades of Mortality Trends Among Patients With Severe Sepsis. Critical Care Medicine 2014;42:625–31. doi:10.1097/CCM.00000000000000006
- 74 Winters BD, Eberlein M, Leung J et al. Long-term mortality and quality of life in sepsis: A systematic review*. Critical Care Medicine 2010;38:1276–83. doi:10.1097/CCM.0b013e3181d8cc1d
- 75 Shah FA, Pike F, Alvarez K et al. Bidirectional Relationship between Cognitive Function and Pneumonia.

 $American\ Journal\ of\ Respiratory\ and\ Critical\ Care\ Medicine\ 2013; \textbf{188}: 586-92.\ doi: 10.1164/rccm. 201212-2154OC$

76 Yende S, Linde-Zwirble W, Mayr F et al. Risk of cardiovascular events in survivors of severe sepsis. American journal of respiratory and critical care medicine 2014;189:1065-74. doi:10.1164/rccm.201307-1321OC

Table 1.2: Sepsis diagnostic criteria

Definition	Diagnosis	Criteria
Sepsis-1 (1991)	SIRS Sepsis Severe Sepsis Septic shock	Two or more of: Temperature > 38°C or < 36°C, Heart rate > 90 /min, Respiratory rate > 20 /min or PaCO2 < 32mmHg (4.3 kPa), White blood cell count > 12 x 10-9 /Lor < 4 x 10-9 /L or > 10% immature forms SIRS plus proven or suspected infection Sepsis plus acute organ dysfunction Sepsis with persistent hypotension after fluid resuscitation
Sepsis-2 (2001)	Sepsis	Infection documented or suspected and some of the following General variables: temperature $> 38^{\circ}\mathrm{C}$ or $< 36^{\circ}\mathrm{C}$, heart rate > 90 min-1 or $> \mathrm{SD}$ above normal for age, tachypnoea, altered mental status, significant oedema or positive fluid balance ($> 20\mathrm{ml/kg}$ over 24hrs), hyperglycaemia $> 7.7\mathrm{mmol/L}$ Inflammatory variables: white blood cell count $> 12~\mathrm{x}$ 10-9 /L or $< 4~\mathrm{x}$ 10-9 /L or $> 10\%$ immature forms, plasma C-reactive protein $> \mathrm{SD}$ above normal, plasma procalcitonin $> 2~\mathrm{SD}$ above normal Haemodynamic variables: arterial hypotension (SBP $< 90~\mathrm{mmHg}$ or MAP $< 70~\mathrm{mmHg}$ or SBP decrease $> 40\mathrm{mmHg}$ in adults or 2SD below normal range, SvO2 $> 70\%$, Cardiac index > 3.5
	Severe sepsis Septic shock	Sepsis plus organ dysfunction Organ dysfunction variables: arterial hypoxaemia (PaO2 / FiO2) < 300, acute oliguria (urine output < 0.5 ml kg-1 hr -1 for at least 2 hours), creatinine increase > 0.5mg/dL, coagulation abnormalities (INR > 1.5 or aPTT > 60s), ileus, thrombocytopenia (platelet count < 100,000 /mL, hyperbilirubinaemia (plasma bilirubin > 4mg /dL or 70 mmol /L Sepsis plus hypotension SBP < 90mmHg or MAP < 60mmHg or reduction in SBP of 40mmHg from baseline despite adequate volume resuscitation
Sepsis-3 (2016)	Sepsis	Infection plus life threatening organ dysfunction defined by an acute change in SOFA score of 2 or more
	Septic shock	Persisting hypotension requiring vasopressors to maintain MAP 65mmHg AND serum lactate below 2mmol /L

 $\rm SIRS=Systemic$ Inflammatory Response Syndrome, $\rm SD=Standard$ deviation, $\rm SBP=Systolic$ blood pressure, $\rm MAP=Mean$ arterial blood pressure

Table 1.3: Sequential organ failure assessment (SOFA) score

1	Table 1.3: Sequential organ failure assessment (SOFA) score Score								
System	0	1	2	3	4				
Respiratory Pao2 / FiO2 mmHg (kPa)	400 (53.3)	< 400 (53.3)	< 300 (40)	< 200 (26.7) with respiratory support	< 100 (13.3) with respiratory support				
Coagulation Platelets x100,000/ mL	150	< 150	< 100	< 50	< 20				
Liver									
Bilirubin mg /dL (mmol/ L)	<1.2(20)	1.2-1.9 (20 – 32)	2.0 - 5.9 (33-101)	$6.0 - 11.9 \ (102 - 204)$	> 12.0 (204)				
Cardiovascular									
Cardiovascular	MAP > 70mmHg	$\mathrm{MAP} < 70\mathrm{mmHg}$	Dopamine < 5 or dobutamine any dose	Dopamine 5.1 - 15 or epinephrine < 0.1 or nore- pinephrine < 0.1	Dopamine > 15 or epinephrine > 0.1 or nore-pinephrine > 0.1				
CNS									
Glasgow coma scale	15	13-14	10-12	7-9	< 6				
Renal									
Creatinine mg/dL (mmol /L)	< 1.2 (110)	1.2 – 1.9 (110 -170)	2.0 - 3.4 (171 - 299)	3.5 - 4.9 (300 - 440)	> 5.9 (440)				
Urine output (ml/day)				< 500	< 200				

 ${\rm PaO2=Arterial~partial~pressure~of~oxygen,~FiO2=Inspired~fraction~of~oxygen,~MAP=mean~arterial~blood~pressure,~CNS=Central~nervous~system.~All~doses~of~inotropes~are~micrograms/kg/min}$

Table 1.4: Characteristics of patients recruited to sSA sepsis studies

Study	Type	Year	Country	Inc. criteria	n	Male	Age	HIV infected	Median CD4
Jacob 2009	Cohort	2006	Uganda	Severe sepsis	382	156/382 (41%)	34.8 (11.2)	320/382 (85%)	52 (16-131)
Jacob 2012	Before- after	2006	Uganda	Severe sepsisc	245	95/245 (39%)	34 (28-41)	207/245 (86%)	43 (11-178)
		2008-09		•	426	207/426 (49%)	34 (27-40)	362/426 (85%)	63 (15-178)
Waitt 2015	Cohort	2008-09	Malawi	Sepsis	213	87/213 (41%)	30 (25-39)	161/213 (76%)	NR
Ssekitoleko 2011 (1)	Cohort	2009	Uganda	Sepsis	96	193/418 (46%)	35.1 (12.0)	331/418b (83%)	NR
Ssekitoleko 2011 (2)	Cohort	2009	Uganda	Sepsis	150	94/150 (63%)	35 (13)	96/150 $(64%)$	NR
Chimese 2012	Cohort	2010	Zambia	Sepsis	161	79/161 (49%)	39 (15.6)	110/138 (80%)	NR
Andrews 2014	RCT	2012	Zambia	Severe sepsis	112	58/109 (53%)	35 (1.4)	88/109 (81%)	NR
Auma 2013	Cohort	2012	Uganda	Sepsis	216	106/216 $(49%)$	32 (27-43)	122/216 (56%)	NR
Andrews 2017	RCT	2012-13	Zambia	Severe sepsis	209	117/209 (56%)	36.7 (12.4)	187/209 $(89.5%)$	66 (21-143)
Huson 2014	Cohort	2012-13	Gabon	Sepsis	384	142/382 (37%)	34 (25-46)	77/384 (20%)	168 (61-438)
Amir 2016	Cohort	2014-15	Uganda	Severe sepsis	218	110/218 (50%)	35 (26-50)	125/218 (57%)	78 (20-202)

RCT = randomised controlled trial. All studies use a modified sepsis-2 definition of sepsis or severe sepsis. Age is given as median (IQR) or mean (SD). Units of CD4 count are cells/microlitre. Jacob 2012 includes two cohorts of patients – results shown for both separately - and includes data from patients included in Jacob 2009. The n here includes those not included in this publication but the summary estimates include all patients as they cannot be disaggregated

Table 1.5: Aetiology of sepsis in sSA

Study	BSI	MTB BSI	Malaria
Jacob 2009	48/382 (13%)	156/382 (22%)	34.8 (15%)
Jacob 2012	$83/671 \ (12\%)$	$104/576 \ (18\%)$	$83/671 \ (12\%)$
Waitt 2015	33/213 (15%)	ND	$26/213 \ (12\%)$
Ssekitoleko 2011 (1)	ND	ND	ND
Ssekitoleko 2011 (2)	39/150~(26%)	ND	7/150~(5%)
Chimese 2012	27/161 (17%)	ND	ND
Andrews 2014	26/109 (24%)	$32/81 \ (40\%)$	2/109 (2%)
Auma 2013	41/216 (19%)	ND	9/216 (4%)
Andrews 2017	29/209 (14%)	43/187 (23%)	3/47 (6%)
Huson 2014	39/384 (10%)	NR	130/384 (33%)
Amir 2016 TOTAL	ND 365/2493 (15%)	ND 234/1093 (21%)	ND 311/2139 (15%)

Table 1.6: BSI isolates in sepsis in sSA $\,$

Organism	N
S. aureus	109
Non-Typhoidal Salmonellae	84
S. pneumoniae	67
Non-salmonellae Enterobacteriaceae	46
Cryptococcus spp.	20
S. Typhi	6
Other	33
TOTAL	365

Excluded are coagulase-negative Staphylococci, alpha-haemolytic Streptococci other than Pneumococcus, Bacillus spp. and Micrococci as likely contaminants.