

Modelo Relacional

Modelo Relacional

Operadores del algebra se pueden clasificar

Según la pertenencia a la teoría de conjuntos

Tradicionales

Especiales

Según la posibilidad de descomponerlos

Primitivos

Derivados

Según la cantidad de argumentos

Unarios

Binarios

Algebra Relacional (Básica)

Según la pertenencia a la teoría de conjuntos		Según la posibilidad de descomponerlos		Según la cantidad de argumentos
	<u>Tradicionales</u>		<u>Primitivos</u>	<u>Unarios</u>
1.	Unión	1.	Unión	1.Selección
2.	Intersección	2.	Diferencia	2.Proyección
3.	Diferencia	3.	Producto Cartesiano	<u>Binarios</u>
4.	Producto Cartesiano	4.	Selección	1.Unión
	Especiales	5.	Proyección	2.Diferencia
1.	Selección		<u>Derivados</u>	3.Producto
2.	Proyección	1.	Intersección	Cartesiano
3.	Join	2.	Join	4.Intersección
4.	División	3.	División	5.Join 6.División

Todos los operadores satisfacen la propiedad de clausura:

Todo operador del álgebra toma como argumento/s esquemas de relaciones y devuelve también un esquema de relación

Ninguna expresión del algebra puede generar tuplas repetidas

Generar expresiones encadenadas o anidadas

Anidar expresiones

Secuencias de operaciones y operador renombrar:

Es frecuente necesitar aplicar varios operadores uno tras otro

Anidar expresiones

Aplicar los operadores de a uno y crear resultados intermedios

Nombrar las relaciones intermedias

Temp ← Expresión

Secuencias de operaciones: Asignación

No sólo permite darle nombre a una relación sino también cambiar el nombre de sus atributos

R2 (nom_nuevo1, nom_nuevo2) R1

Donde:

- R1 tiene atributos nombre1 y nombre 2
- nombre1 y nom_nuevo1 están definidos sobre el mismo dominio
- idem para nombre2 y nom_nuevo2

Operador renombrar

No sólo permite renombrar el nombre de la relación sino también el nombre de sus atributos

$$\rho_{S(B1,B2, ..., Bn)}(R)$$
Renombra la relación R y sus atributos
$$\rho_{S}(R) \text{ o}$$
Renombra únicamente la relación
$$\rho_{(B1,B2, ..., Bn)}(R)$$
Renombra sólo los atributos

Donde:

- R es el nombre de la relación original
- S es el nuevo nombre de la relación
- B1, B2, ..., Bn son los nuevos nombres de los atributos. Si los atributos de R son (A1, A2, ..., An) en ese orden, entonces cada Ai se renombra como Bi

<u>NOTA:</u> En el caso que no necesiten ser renombrados todos los atributos, lo mismo se los debe mencionar a todos, y se colocan los mismos nombres, es decir, los viejos.

	Operador	Función	Notación
3	<u>Selección</u>	Genera otra relación cuyo esquema es el mismo de R y, en cuanto a la extensión, posee todas las tuplas de R que satisfacen la condición de selección	σ _{<condicion de="" selección=""></condicion>} (R)

Tomemos como ejemplo estas dos relaciones:

Al (Alumnos de Informática)

Dni	NyA	Loc	Carrera
12	Juan	Capital	LCC
80	Pedro	Rawson	LSI
27	Ana	Rawson	LCC

AG(Alumnos de G/GF/B)

Dni	NyA	Loc	Carrera
90	Lola	Zonda	LCG
27	Ana	Rawson	LB
81	Ana	Capital	LG
23	Jose	Capital	LCG

Analicemos el siguiente solicitud:

- Obtener los alumnos de Informatica que viven en Rawson.
 - Cual es la expresion del algebra correspondiente?
 - Cual es el resultado?

Operador selección

Observaciones:

✓ La **<condición de selección>** es una **expresión booleana** que puede utilizar los operadores de comparación {<,>,=,≤,≥,≠}. Estos operadores se aplican a atributos cuyos dominios son valores ordenados (numéricos, fechas, cadenas de caracteres). Un ejemplo de dominio no ordenado es COLOR={rojo, verde, amarillo}.

✓El operador selección es conmutativo:

$$\sigma_{\text{cond1}}$$
 (σ_{cond2} (R)) = σ_{cond2} (σ_{cond1} (R))

Ejemplo: Que obtiene esta expresion?

$$\sigma_{\text{cloc}=\text{``Rawson''}>}(\sigma_{\text{carrera}=\text{``LSI''}>}(AI)) = \sigma_{\text{cloc}=\text{``Rawson''}>}(\sigma_{\text{carrera}=\text{``LSI''}>}(AI))$$

- ✓ Siempre es posible reemplazar una cascada de selecciones en una sola:
- √ Las cláusulas pueden conectarse con operadores booleanos

$$\sigma_{\text{cond1}} (\sigma_{\text{cond2}} (R)) = \sigma_{\text{cond1}} \text{ and } cond2$$

Ejemplo:

$$\sigma_{\text{cloc}=\text{"Rawson"}} (\sigma_{\text{carrera}=\text{"LSI"}}(AI)) = \sigma_{\text{cloc}=\text{"Rawson"}} \text{ and } \text{carrera}=\text{"LSI"} (AI))$$

Operador	Función	Notación
<u>Proyección</u>	Genera otro esquema de relación que contiene solamente los atributos de R especificados en la lista de atributos	π _{<lista atributos="" de=""></lista>} R

Observaciones:

✓ La cantidad de tuplas de la relación resultante será menor o igual a la cantidad de tuplas de la relación R.

✓ El operador de proyección no es conmutativo.

Analicemos el siguiente solicitud:

- Obtener dni y nombre (y apellido) de todos los alumnos de Informatica.
 - Cual es la expresion del algebra correspondiente?
 - Cual es el resultado?
- Obtener dni y el nombre (y apellido) de los alumnos de Informatica que viven en Rawson.

Algunas consideraciones importantes:

Relaciones Unión Compatibles o Compatibles con la Unión

Dos relaciones, $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$, serán unión compatibles si tienen el mismo tipo de tuplas. Es decir, si ambas tienen grado n y si $dom(A_i)=dom(B_i)$ para $1 \le i \le n$.

Calificación de Atributos

Los atributos de una relación $R(A_1, A_2, ..., A_n)$ pueden ser calificados colocando el nombre de la relación, luego un punto y por último el nombre del atributo, por ejemplo, $R.A_2$.

Operador	Función	Notación
<u>Unión</u> *	Genera un esquema de relación que posee el mismo conjunto de atributos de R ₁ y R ₂ , e incluye las tuplas que pertenecen a R ₁ o a R ₂ o a ambas	R ₁ U R ₂

^{*} Los argumentos deben ser Unión Compatibles

Observaciones:

✓ La cantidad de tuplas de la relación resultante será menor o igual a la cantidad de tuplas de la relación R_1 + la cantidad de tuplas de R_2 .

✓El operador union es conmutativo.

Analicemos la siguiente solicitud:

- Obtener todos los alumnos de la Facultad, asumiendo que son los alumnos de Informatica, de Geologia, Geofisica y Biologia.
 - Cual es la expresion del algebra correspondiente?

Operador	Función	Notación
<u>Intersección</u> *	Genera un esquema de relación que posee el mismo conjunto de atributos de R ₁ y R ₂ , e incluye las tuplas que pertenecen a R ₁ y a R ₂	$R_1 \cap R_2$

Observaciones:

✓ El operador intersección es conmutativo.

Analicemos la siguiente solicitud:

- Obtener los datos de personas que son los alumnos de Informatica (AI) y tambien de alguna de las otras carreras (AG).
 - Cual es la expresion del algebra correspondiente?

Operador	Función	Notación
<u>Diferencia</u> *	Genera un esquema de relación que posee el mismo conjunto de atributos de R ₁ y R ₂ , e incluye las tuplas que pertenecen a R ₁ y no pertenencen a R ₂	R ₁ - R ₂

Observaciones:

✓ El operador diferencia no es conmutativo.

^{*} Los argumentos deben ser Unión Compatibles

Operador	Función	Notación
<u>Producto</u> <u>Cartesiano</u>	Genera un esquema de relación que posee la unión de atributos de R ₁ y R ₂ , y como tuplas todas las combinaciones posibles de las tuplas de R ₁ y R ₂	R ₁ x R ₂

Observaciones:

✓ El operador producto cartesiano es conmutativo.

Analicemos la siguiente expresion: ALUMNOS X MATERIAS

Que resultado obtendriamos?

Operador	Función	Notación
<u>Producto</u> <u>Cartesiano</u>	Genera un esquema de relación que posee la unión de atributos de R ₁ y R ₂ , y como tuplas todas las combinaciones posibles de las tuplas de R ₁ y R ₂	R ₁ x R ₂

Operador	Función	Notación
<u>Join</u>	Genera un esquema de relación que posee la unión de atributos de R ₁ y R ₂ , (n+m), y como tuplas todas las combinaciones posibles de R ₁ y R ₂ que satisfacen la condición de reunión	$R_1 \bowtie_{< cond. de reunión>} R_2$ Donde: $R1(A_1, A_2,, A_n)$ $R2(B_1, B_2,, B_m)$

Observaciones:

✓ La condición es de la forma <cond> y <cond> y ...y <cond>. Donde cada <cond> tiene la forma Ai θ Bj. Ai y Bj pertenecen al mismo dominio y θ es un operador de comparación $\{=,<,>,\leq,\geq,\neq\}$. Un join con una condición general como ésta, se denomina θ Join.

✓ En particular, cuando la condición utiliza el operador de comparación =, el join es llamado equijoin.

Operador	Función	Notación
<u>Natural</u> <u>Join</u>	Es equivalente a un equijoin con ciertas diferencias:	R ₁ * R ₂
	La condición de reunión es implícita, y es la igualdad sobre los atributos con idénticos nombres en ambas relaciones (R ₁ y R ₂). Además los atributos coincidentes son mostrados sólo una vez en la relación resultante.	

Comentarios:

- ✓ El operador **Natural Join es conmutativo**.
- ✓R1 y R2 deben tener uno o más atributos en común.

Operador	Función	Notación
Join Externo Derecho	Idem anterior pero además posee todas las tuplas de R2 que no tienen valores coincidentes en R1	$R_1 \bowtie_{} R_2$ Donde: $R1(A_1,A_2,,A_n)$ $R2(B_1,B_2,,B_m)$
Join Externo Izquierdo	Idem anterior pero además posee todas las tuplas de R1 que no tienen valores coincidentes en R2	$R_1 \Rightarrow_{\text{cond. de reunión}} R_2$ Donde: $R1(A_1, A_2,, A_n)$ $R2(B_1, B_2,, B_m)$
Join Externo Completo	Idem anterior pero además posee todas las tuplas de R1 que no tienen valores coincidentes en R2, y todas las tuplas de R2 que no tienen valores coincidentes en R1	R_1

Operador	Función	Notación
<u>Division</u>	Genera una relación que posee como atributos, los de R1 que no están en R2 (digamos Z'). Y en cuanto a las tuplas, todos aquellos valores Z' que están combinados en R1 con todos los valores presentes en R2.	R ₁ ÷ R ₂ Donde: Si Z son atributos de R1 y S los de R1, entonces S <u>c</u> Z

Comentarios:

✓El operador División no es conmutativo.

Algunos operadores presentados corresponden a <u>extensiones del algebra</u> básica, ellos son:

- 1. Join Externo Izquierdo
- 2. Join Externo Derecho
- 3. Join Externo Completo

Fundamentalmente en esta instancia trabajaremos con el conjunto de operadores básicos.

El standard SQL posee, entre otros, este tipo de operadores, y en ese contexto trabajaremos con ellos.

Prioridades de operaciones

Tienen prioridad las operaciones unarias sobre las binarias

Las expresiones del álgebra se evalúan de izquierda a derecha

Se pueden utilizar paréntesis para alterar el orden implícito de las expresiones

Secuencias de operaciones y operador renombrar:

Es frecuente necesitar aplicar varios operadores uno tras otro

Anidar expresiones

Aplicar los operadores de a uno y crear resultados intermedios

Nombrar las relaciones intermedias

Temp ← Expresión

Temp = Expresión

Operador renombrar

No sólo permite renombrar el nombre de la relación sino también el nombre de sus atributos

Donde:

- R es el nombre de la relación original
- S es el nuevo nombre de la relación
- B1, B2, ..., Bn son los nuevos nombres de los atributos. Si los atributos de R son (A1, A2, ..., An) en ese orden, entonces cada Ai se renombra como Bi

<u>NOTA:</u> En el caso que no necesiten ser renombrados todos los atributos, lo mismo se los debe mencionar a todos, y se colocan los mismos nombres, es decir, los viejos.

Modelo Relacional

- Estructura
- Integridad
- Manipulación

- Fin -