

Departamento de Ciencias Matemáticas Álgebra lineal Orlando García Jaimes

Taller complementario sobre producto escalar

1) De ser posible, encontrar escalares a, b y c, de modo que el vector v = (a, b, c) sea ortogonal a la pareja de vectores dada:

a)
$$u = (1, 2, 1)$$
 y $w = (1, -1, 1)$

b)
$$u = (-3, 4, 2)$$
 y $w = (0, -1, 2)$

c)
$$u = (1, 0, 1)$$
 y $w = (0, 1, 1)$

2) En cada caso, determinar todas las constantes a tales que se satisfaga la igualdad:

a)
$$||(0,3,a)|| = 5$$

b)
$$||(1,2a,1)|| = 2$$

c)
$$||(3a,0,-4)|| = 5$$

3) De ser posible, determinar todos los números reales a tales que la pareja de vectores sea ortogonal:

a)
$$u = (a, 2, -1)$$
 y $w = (a, -a, 3)$

b)
$$u = (4, a, 3)$$
 y $w = (-1, a, -a)$

c)
$$u = (a, 1, a)$$
 y $w = (a, a, -2)$

4) Dada la siguiente matriz A, verificar para cada par de vectores que $Ax \cdot y = x \cdot A^t y$,

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 1 & 0 \\ -1 & 1 & 2 \end{array} \right]$$

a)
$$x = (1, 2, 3)$$
 y $y = (1, 1, 1)$

b)
$$x = (-1, 0, 1)$$
 y $y = (2, -1, 1)$

c)
$$x = (0, 1, 1)$$
 y $w = (2, 1, -2)$

- 5) Sean u, v, w vectores de \mathbb{R}^3 tales que u es ortogonal a v y w, demostrar que u es ortogonal a cualquier vector de la forma $\alpha v + \beta w$, con α y β escalares.
- 6) Encuentre una condición sobre los números a y b tal que $\{(a,b),(b,-a)\}$ y $\{(a,b),(-b,a)\}$ forman una base ortonormal de \mathbb{R}^2 .
- 7) Sea V un espacio vectorial con producto escalar y sean ${\bf u}$ y ${\bf v}$ vectores de V, demostrar las siguientes proposiciones:

- a) Si **u** y **v** son ortonormales, entonces $\|\mathbf{u} \mathbf{v}\| = \sqrt{2}$
- b) $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4} (\|\mathbf{u} + \mathbf{v}\|^2 \|\mathbf{u} \mathbf{v}\|^2)$
- c) $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$
- 8) En cada caso, verificar que los vectores son ortogonales, y por tanto forman una base de \mathbb{R}^3 . Usar el producto escalar para determinar las coordenadas del vector (2,3,1) en cada base:
 - a) u = (1, 2, 1), v = (1, -1, 1) y w = (-3, 0, 3)
 - b) u = (-3, 4, 2), v = (0, -1, 2) y w = (10, 6, 3)
 - c) u = (1, 1, 1), v = (0, -1, 1) y w = (2, -1, -1)
- 9) Para cada literal del ejercicio 8) normalizar los vectores para construir una bases ortonormal de \mathbb{R}^3 , y usar el producto escalar para determinar las coordenadas del vector (2,3,1) en cada base.
- 10) Usar el proceso de Gram-Schmidt, para construir una base ortonormal para \mathbb{R}^3 , a partir de la base dada:
 - a) u = (3, 2, -1), v = (1, -1, 1) y w = (2, 1, -1)
 - b) u = (1, 0, 2), v = (0, 2, 2) y w = (0, 4, 1)
 - c) u = (1, -1, 0), v = (-1, 3, -1) y w = (0, -1, 1)
 - d) u = (2, 1, 1), v = (1, 1, 1) y w = (1, 1, 2)
- 11) Sean $u = (u_1, u_2)$ y $v = (v_1, v_2)$ vectores de \mathbb{R}^2 , defina

$$\langle u, v \rangle = 3u_1v_1 + 4u_2v_2$$
 y $||u|| = \sqrt{\langle u, u \rangle} = \sqrt{3u_1^2 + 4u_2^2}$

- a) Si u = (1,2) y v = (-2,3) calcular $\langle u, v \rangle$
- b) Probar que la opración así definida es un producto escalar en \mathbb{R}^2 .
- c) Verificar que $\langle (4,3), (1,-1) \rangle = 0$, es decir los vectores $v_1 = (4,3)$ y $v_2 = (1,-1)$ son ortogonales y por tanto forman una base para \mathbb{R}^2 . Usar el producto escalar arriba definido para escribir el vector (3,-1) como combinación lineal de v_1 y v_2 . Calcular la norma de v_1 y v_2 , $||v_1||$ y $||v_2||$. Construir vectores u_1 y u_2 de norma 1 a partir de v_1 y v_2 . Usar nuevamente el producto escalar para escribir el vector (3,-1) como combinación lineal de los vectores u_1 y u_2 .
- d) Dar otro ejemplo de vectores v_1 y v_2 de \mathbb{R}^2 , no nulos, y tales que $\langle v_1, v_2 \rangle = 0$. Repetir el literal c) para los nuevos vectores v_1 y v_2 .
- 12) Sea D_2 el espacio vectorial de las matrices diagonales 2×2 con componentes reales bajo las operaciones usuales de matrices. Si A y B están en D_2 , defina

$$\langle A, B \rangle = a_{11}b_{11} + a_{22}b_{22} \quad y \quad ||A|| = \sqrt{\langle A, A \rangle} = \sqrt{a_{11}^2 + a_{22}^2}$$

- a) Sean $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ y $B = \begin{bmatrix} -4 & 0 \\ 0 & 1 \end{bmatrix}$, calcular $\langle A, B \rangle$
- b) Probar que la operación definida $\langle A, B \rangle$ es un producto escalar en D_2

- c) Verificar que las matrices $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ y $A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ forman una base para D_2 , y que $\langle A_1, A_2 \rangle = 0$
- d) Dar un ejemplo de dos matrices A, B, en D_2 no nulas, distintas de A_1 y A_2 , y tales que ||A|| = 1, ||B|| = 1 y $\langle A, B \rangle = 0$.
- e) Para las matrices A y B en el literal d), encontrar escalares α y β tales que la matriz $C = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$ se pueda escribir como $C = \alpha A + \beta B$. (Usar el producto escalar para encontrar α y β .)

Referencias

- [1] Asmar, A. (1995). Tópicos en Teoría de Matrices. Medellín: Universidad Nacional de Colombia.
- [2] García, O., Villegas, J.A. y Castaño, J.I. (2012) Álgebra lineal. Fondo Editorial Universidad EAFIT. Medellín.
- [3] Grossman, S. (1996). Álgebra Lineal con Aplicaciones. 5ta. Ed. McGraw-Hill. México.
- [4] Hill, R. (1996). Álgebra Lineal Elemental con Aplicaciones. Prentice Hall. México.
- [5] Kolman, B. (1999). Álgebra Lineal con Aplicaciones y Matlab. 6ta. Ed. Prentice Hall. México.
- [6] Lay, D. (1999). Álgebra Lineal y sus Aplicaciones. 2a. Ed. Prentice Hall, México.