

Sistema supervisório com Node-RED via Modbus

Discentes:

André Paiva Caroline Alves Jeisiane Macedo Pedro Augusto Correia

Salvador, 01 de dezembro de 2022

Introdução

Nos últimos anos, presenciamos uma crescente procura das empresas pela adoção da automatização de processos.

Tal automatização promove redução de custos e aumento na produtividade.

Neste contexto, destaca-se a importância dos sistemas supervisórios.

Importância de Sistemas Supervisórios

- Monitoramento de dados de um processo
- Controle de dados de um processo
- Aumento da produtividade
- Redução de custos

Projeto desenvolvido

- Prova de conceito de um sistema supervisório
- Demonstração de funcionamento e configuração

Componentes de Hardware

Core PC Interface PC Arduino Circuito

Componentes de Software

Supervisório/IHM e CLP Comunicação entre Supervisório e CLP Comunicação CLP e arduino

Node-RED

- Ferramenta versátil que facilita a criação de aplicações loT desenvolvida pela IBM.
- Possui uma abordagem gráfica para programação baseada em fluxos através do navegador.
- As conexões são realizadas por nós com propósitos definidos de execução. Cada nó recebe o dado, o processa de acordo com sua função e passa adiante.
- O projeto de fluxo pode ser exportado via JSON.

Modbus

- É um protocolo aberto para transmissão de informações entre dispositivos, via portas serial ou Ethernet, desenvolvido pela Modicon e pertencente atualmente à Schneider.
- É um dos protocolos mais utilizados na automação industrial devido à sua facilidade de implementação.
- Arquitetura Mestre/Escravo (ou Cliente/Servidor).
- A transmissão pode ser feita em modo RTU ou ASCII. Esses modos não se comunicam entre si. A versão TCP/IP utiliza o modo RTU.

Arquitetura da aplicação

Desenvolvimento do projeto

Core PC

O Core PC é um PC que fica em uma das extremidades da rede, sendo utilizado como um Modbus Server e como interface humano-máquina por meio de um Dashboard que possibilita controle e monitoramento.

Interface PC

O Interface PC é um PC configurado para simular o comportamento de um CLP, servindo apenas para interfaceamento e transmissão de informações por entre as extremidades da rede configurada (Core PC e Arduino).

Arduino

O Arduino é a extremidade da rede que se conecta diretamente com o circuito. A nível industrial, seria equivalente ao dispositivo responsável por ler informações de sensores e mandar os comandos para os atuadores.

```
// Definição de constantes
dos pinos utilizados
#define LED 13
#define BTN 8

#include <Modbus.h>
#include <ModbusSerial.h>

// Offset de registradores
const int LED_HREG = 100;
const int BTN_HREG = 108;

// Objeto ModbusSerial
ModbusSerial mb;
```

```
void setup() {
    // Configuração da comunicação Modbus
    mb.config(&Serial, 9600, SERIAL_8N1);

    // Configuração de ID
    mb.setSlaveId(4);

    // Definição de pinos
    pinMode(BTN, INPUT_PULLUP);
    pinMode(LED, OUTPUT);

    // Configuração de registradores
    mb.addHreg(LED_HREG, 0);
    mb.addHreg(BTN_HREG, 0);
}
```

```
void loop() {
    // Chamada da task Modbus
    mb.task();

    // Rotina de atualização do LED
    if(mb.Hreg(LED_HREG) == 1){
        digitalWrite(LED, true);
    }else if(mb.Hreg(LED_HREG) == 0){
        digitalWrite(LED, false);
    }

    // Rotina de leitura do botão
    mb.Hreg(BTN_HREG, !digitalRead(BTN));
}
```

Circuito

O circuito representa os sensores que podem ser lidos e atuadores que podem ser controlados. Na nossa montagem, o botão simula um sensor, e o LED, um atuador.

Conexões com o Arduino

- Pino 8: Botão, INPUT_PULLUP
- Pino 13: LED, OUTPUT

Vídeo - Demonstração do funcionamento

Considerações Finais

 Conseguimos fazer uma prova de conceito demonstrando didaticamente algumas aplicações de Redes Industriais.

 Apesar de em indústrias reais a rede geralmente ser de uma escala bem maior, conseguimos reproduzir conceitos essenciais para uma rede industrial, como uma interface de supervisão e controle, dispositivos mediadores, controladores, sensores e atuadores.

Obrigado pela atenção!