班级计科与 学号 220110515	姓名金正达	教师签字 工 图 3
_{实验日期}		总成绩

实验名称 声速的测量

一. 实验预习

相位比较法测量声速实验中,示波器上调出李萨如图形后,改变换能器的间距,连续记录出现正斜率和负斜率直线时接收器的位置(如下图所示),记录了 10 个位置数据 x_i (i=1, 2, 3, ……, 9, 10),所用声波频率为 f,如下表所示,请用逐差法处理数据,推导出声速 v 的表达式。

相位比较法测空气中声速,频率 $f=___$

次数	1	2	3	4	5	6	7	8	9	10
x_i										

$$\lambda = \frac{1}{5} (X_{10} - X_{5} + X_{9} - X_{4} + X_{8} - X_{3} + X_{7} - X_{2} + X_{6} - X_{1})$$

$$V = \lambda f$$

二. 实验现象及原始数据记录

极值法(驻波法)测空气中声速,温度 t=2、 \S ${}^{\circ}$ C,频率 $f=\S$ ${}^{\circ}$ ${}^{\circ}$ ${}^{\circ}$ ${}^{\circ}$ ${}^{\circ}$ ${}^{\circ}$

次数	1	2	3	4	5	6	7	8	9	10
l_i (mm)	42.810	47-560	52,330	57.055	61.684	66JY3	71,267	76 .880	80.703	85.536

相位比较法测空气中声速,温度 t= 2 ζ C ,频率 f= 37.04 ζ Hz

次数	1	2	3	4	5	6	7	8	9	10
l_i (mm)	90.649	95.398	[00,262	M.W.	109.695	1/4,375	119.155	124,889	128.612	134.349

(选做)波形移动法测空气中声速,温度 t = 23.8 $^{\circ}$ C,频率 f = 31.05 $^{\circ}$ kHz

次数	1	2	3	4	5	6	7	8	9	10
l_i (mm)	128.756	138.165	148.638	157.08	166.640	174093	185.479	194.030	204.543	214.138

时差法测空气中声速,温度 $t=23\cdot 8$ \odot

次数	1	2	3	4	5	6	7	8	9	10
l_i (mm)	1/0,000	120,000	130.000	140.000	000.00%	160.000	170 · 000	180.000	120.000	102000
t_i (µs)	457	485	51Y	542	571	60J	630	68.T	7/3	742

(选做) 时差法测固体中声速,温度 t =____ ℃

次数	1	2	3	4	5	6
材质						
l_i (mm)						
t_i (µs)						

教师	姓名
签字	王园强

三. 数据处理

【计算以上几种方法测得的声速,计算室温下空气中声速的理论值,分别计算四种方法得到的声速测量值与理论值的相对误差,根据时差法测量数据计算固体介质中的声速(选做),要有详细的计算过程,格式工整】

枢循流:
$$\lambda = \frac{2}{25}(\delta t_{-5} + \delta t_{-5} + \delta$$

相位法:
$$\lambda = \frac{2}{25}(134.349 + 128.612 + 124.889 + 119.155 + 114.37 \Gamma$$
 $-109.695 - 105.002 - 100.262 - 95.398 - 90.649)$
 $= 9.630 (mm)$
 $V = \lambda f = 356.769 (m/s)$
 $E = 3.235\%$

波形移纳流: $\lambda = \frac{1}{25}(214.138 + 204.543 + 194.030 + 185.479 + 176.093$ -166.640 - 157.085 - 148.638 - 138.165 - 128.756) = 9.398 (mm) $V = \lambda f = 548.262 (m/s)$ E = 0.773%

时差流:
$$V = \frac{1}{5} \cdot \frac{1}{50} (742 + 713 + 685 + 630 + 600 - 571 - 542 - 514 - 485 - 457) = 320.40 (m/s)$$

E = -7.289%

四. 实验结论及现象分析

(分析讨论以上几种方法测出的空气中的声速结果为何存在差异,从原理和操作上说明各自的优缺点)

- 小极值海罗人为判断极大幅值出现企置,受主观影响较大,
- 2.相应流和波形移动论都需要不为判断波形、受主观影响相对不大。
- 3. 时差的不局限于正弦流,上述三种方流、只能测量正弦波.

五. 讨论题

- 1. 使用驻波法测声速时,为什么示波器上观察到的是正弦波而不是驻波?
- 2. 用相位比较法测量波长时,为什么用直线而不用椭圆作为S2移动距离的判断数据?
- 3. 分析一下本实验中哪些因素可以引起测量误差。列出3条主要因素并说明原因。
- 签:1、示流器横轴为时间,当它置确定时,迎波表达前 y=(Ai-Az) cos 式x coswt 中的 cos 式x 为常数,令 A= (Ai-Az) cos 式x,即有 y=Acoswt,为正弦波。
 - 2. 直线更易于人为判断,减小误差.
 - 3、换能器之间气体不均匀,影响液的传播; 仪器开温使发出的声波频率不恒定,从而引起误差; 人为次数与判断波形不飞输,引起误差。