Elaborazione numerica dei segnali

Esercitazione 3

Trasformata zeta

Richiami Teorici

☐ Definizione della trasformata *Z*:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

- Principali applicazioni
 - Per un sistema discreto lineare e tempo invariante, la funziona di Trasferimento è legata alla trasformata Z della risposta all'impulso discreta

Se:
$$x(n) = z_0^n \to y(n) = \sum_{k=-\infty}^{+\infty} h(k)x(n-k) = z_0^n \sum_{k=-\infty}^{+\infty} h(k)z_0^{-k} = z_0^n H(z_0)$$

- Conseguentemente
 - La risposta in frequenza è legata alla trasformata Z
 - lacktriangle La convoluzione lineare nel tempo discreto diventa un prodotto nelle trasformate Z

Alcune Trasformate Z

E' inoltre utile ricordare quanto segue:

SERIE GEONETRICA	
- infinita	
= 1 = 1	pe a <1
n=0 = $1-a$ (altimente man
_ venore "finita"	ans of
$\underset{\sim}{=} a^n = \underbrace{1 - a^{K+1}}$	
$n=0$ $=\frac{1}{1-a}$	

Sequenza $x(n)$	X(z)	ROC
$\delta(n)$	1	$\forall z$
$\delta(n-N), N>0$	z^{-N}	$\forall z - \{z = 0\}$
$\delta(n+N), N>0$	z^{+N}	$\forall z - \{z = \infty\}$
u(n)	$\frac{1}{1-z^{-1}}$	$\forall z > 1$
-u(-n-1)	$\frac{1}{1-z^{-1}}$	$\forall z < 1$
$\alpha^n u(n)$	$\frac{1}{1-\alpha z^{-1}}$	$\forall z > \alpha $
$-\alpha^n u(-n-1)$		$\forall z < \alpha $
$n\alpha^n u(n)$	$\frac{\frac{1-\alpha z^{-1}}{\alpha z^{-1}}}{\frac{(1-\alpha z^{-1})^2}{z^{-1}}}$	$\forall z > \alpha $
$n\alpha^{n-1}u(n)$	$\frac{z^{-1}}{(1-\alpha z^{-1})^2}$ $2\alpha z^{-1} - 1$	$\forall z > \alpha $
$(n-1)\alpha^n u(n)$	$(1-\alpha z^{-1})^2$	$\forall z > \alpha $
$n^2 \alpha^n u(n)$	$\frac{\alpha z^{-1}(1+\alpha z^{-1})}{(1-\alpha z^{-1})^3}$	$\forall z > \alpha $
$-n\alpha^n u(-n-1)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$\forall z < \alpha $
$\sin(\omega_o n)u(n)$	$\frac{\sin(\omega_o)z^{-1}}{1-2\cos(\omega_o)z^{-1}+z^{-2}}$	$\forall z > 1$
$\cos(\omega_o n)u(n)$	$\frac{1-2\cos(\omega_o)z^{-1}+z^{-2}}{1-\cos(\omega_o)z^{-1}}$ $\frac{1-\cos(\omega_o)z^{-1}}{1-2\cos(\omega_o)z^{-1}+z^{-2}}$	$\forall z > 1$
$\alpha^n \sin(\omega_o n) u(n)$	$\frac{1-2\cos(\omega_o)z^{-1}+z^{-2}}{\alpha\sin(\omega_o)z^{-1}}$ $\frac{1-2\alpha\cos(\omega_o)z^{-1}+\alpha^2z^{-2}}{1-2\alpha\cos(\omega_o)z^{-1}+\alpha^2z^{-2}}$	$\forall z > \alpha$
$\alpha^n \cos(\omega_o n) u(n)$	$\frac{1-\alpha\cos(\omega_o)z^{-1}}{1-2\alpha\cos(\omega_o)z^{-1}+\alpha^2z^{-2}}$	$\forall z > \alpha$
$\alpha^n \left[u(n) - u(n-N) \right]$	$\frac{1-\alpha^N z^{-N}}{1-\alpha z^{-1}}$	$\forall z > 0$

Proprietà Trasformate Z

Sequenza $x(n), y(n)$	X(z), Y(z)	ROC R_x , R_y
x(n-N)	$z^{-N}X(z)$	se $N > 0 \to R_x \setminus \{z = 0\}$
	500,500,00	se $N < 0 \to R_x \setminus \{z = \infty\}$
$\alpha_1 x(n) + \alpha_2 y(n), \ \alpha_1, \alpha_2 \text{ costanti}$	$\alpha_1 X(z) + \alpha_2 Y(z)$	contiene $R_x \cap R_y$
x(-n)	$X(z^{-1})$	$\frac{1}{R_x}$
$x^*(n)$	$X^{*}(z^{*})$	R_x
$x^*(-n)$	$X^*(\frac{1}{z^*})$	$\frac{1}{R_x}$
$\Re(x(n))$	$\frac{1}{2} [X(z) + X^*(z^*)]$	contiene R_x
$\Im(x(n))$	$\frac{1}{2i} [X(z) - X^*(z^*)]$	contiene R_x
x(-n)u(-n-1)	$X(z^{-1}) - x(0), x(n)$ causali	-
$\alpha^n x(n)$	$X(z/\alpha)$	$ \alpha \cdot R_x$
nx(n)	$-z\frac{d}{dz}X(z)$	R_x meno $z = \infty$ o $z = 0$
nx(-n)	$-z\frac{d}{dz}X(z^{-1})$	contiene $\frac{1}{R_x}$
$n\alpha^n x(n)$	$-z\frac{d}{dz}X(z/\alpha)$	$ \alpha \cdot R_x$ meno $z = \infty$ o $z = 0$
$\cos(2\pi f n)x(n)$	$\frac{1}{2}\left[X(ze^{j2\pi f}) + X(ze^{-j2\pi f})\right]$	_
$\sin(2\pi f n)x(n)$	$\frac{1}{2} \left[X(ze^{j2\pi f}) - X(ze^{-j2\pi f}) \right]$	7_1
$x(n) \star y(n)$	X(z)Y(z)	contiene $R_x \cap R_y$

Esercizio 1 (in forma di quiz)

- Si consideri un segnale a tempo discreto x[n] che abbia una trasformata zeta X(z) razionale. Dire quale delle seguenti affermazioni è vera:
 - 1. per un segnale x[n] causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo minimo
 - 2. per un segnale x[n] causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo massimo
 - 3. per un segnale x[n] anti-causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo massimo
 - 4. per un segnale x[n] anti-causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo minimo

Regione di convergenza (ROC)

- Il luogo dei punti complessi z per cui la serie che esprime H(z) converge in modo uniforme è detta regione di convergenza, o "Region of Convergence" (ROC) della trasformata Z di x(n).
 - Nella ROC, X(z) è una funzione analitica (ossia continua e infinitamente derivabile, con derivate continue).

Regione di convergenza (ROC)

Sequenze anticausali: la ROC è l'interno di una circonferenza

Sequenze causali: la ROC è l'esterno di una circonferenza

Sequenze bilatere: la ROC è una "corona circolare" delimitate da

due circonferenze

Nota: le precedenti definizioni di ROC possono comprendere anche situazioni in cui il raggio di una delle circonferenze coinvolte vada a infinito o a zero

Regione di convergenza (ROC)

- □ Per le sequenze a supporto finito la trasformata z converge per qualunque punto nel piano complesso eccetto:
 - z = 0, se esistono termini del tipo z^{-k} con k > 0
 - $|z|=\infty$, se esistono termini del tipo z^{-k} con k<0
- Per le sequenze a supporto infinito di tipo razionale $X(z) = \frac{b_0}{a_0} \prod_{i=1}^{p_n} (1-c_i z^{-1}) = \frac{b_0}{a_0} z^{p_d-p_n} \prod_{i=1}^{p_n} (z-c_i)$ CAUSALI
 - La regione di convergenza è del tipo $|z| > d_M$, dove d_M è il modulo del polo più distante dall'origine di X(z)
 - □ Non ci possono essere poli in $z \rightarrow \infty$
- ☐ ANTICAUSALI
 - La regione di convergenza è del tipo |z| < dm, dove d_m è il modulo del polo più vicino all'origine di X(z)

Soluzione 1

Si consideri un segnale a tempo discreto x[n] che abbia una trasformata zeta X(z) razionale. Dire quale delle seguenti affermazioni è vera:

1. per un segnale x[n] causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo minimo -> NO

2. per un segnale x[n] causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo massimo -> NO

3. per un segnale x[n] anti-causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo massimo

per un segnale x[n] anti-causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo minimo

Esercizio 2

Calcolare la trasformata zeta e la regione di convergenza dei seguenti segnali a tempo discreto:

1.
$$x[n] = \alpha^{|n|}$$

2.
$$x[n] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{altrove} \end{cases}$$

3.
$$x[n] = \begin{cases} n & 0 \le n \le N \\ 2N - n & N + 1 \le n \le 2N \\ 0 & \text{altrove} \end{cases}$$

 $x[n] = \alpha^{|n|}$ (è una "esponenziale bilatera" discrete)

$$X(z) = \sum_{n=-\infty}^{+\infty} \alpha^{|n|} z^{-n} = \sum_{n=0}^{+\infty} \alpha^n z^{-n} + \sum_{n=-\infty}^{-1} \alpha^{-n} z^{-n} =$$

$$= \sum_{n=0}^{+\infty} (\alpha z^{-1})^n + \sum_{m=0}^{+\infty} (\alpha z)^m - 1 = \frac{1}{1 - \alpha z^{-1}} + \frac{1}{1 - \alpha z} - 1 =$$

$$= \frac{1 - \alpha z + 1 - \alpha z^{-1} - 1 - \alpha^2 + \alpha z^{-1} + \alpha z}{(1 - \alpha z^{-1})(1 - \alpha z)} = \frac{1 - \alpha^2}{(1 - \alpha z^{-1})(1 - \alpha z)}$$

□ Regione di convergenza (osservando la convergenza delle serie geometriche utilizzate):

$$|\alpha z^{-1}| < 1, |\alpha z| < 1 \implies |z| > |\alpha|, |z| < \frac{1}{|\alpha|}$$

$$X(z) = \frac{1 - \alpha^2}{(1 - \alpha z^{-1})(1 - \alpha z)}$$

ROC:
$$|\alpha| < |z| < \frac{1}{|\alpha|}$$

□ La ROC è diversa da zero solo se $|\alpha|$ <1.

$$X(z) = \frac{1 - \alpha^2}{(1 - \alpha z^{-1})(1 - \alpha z)} = \frac{z(1 - \alpha^2)}{-\alpha z^2 + (1 + \alpha^2)z - \alpha}$$

Funzione Matlab zplane(num, den)

$$x[n] = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & \text{altrove} \end{cases}$$

$$X(z) = \sum_{n = -\infty}^{+\infty} x[n]z^{-n} = \sum_{n = 0}^{N-1} z^{-n} = \frac{1 - z^{-N}}{1 - z^{-1}}$$

$$X(z) = \frac{z^{-N}}{z^{-1}} \frac{z^{N} - 1}{z - 1} = \frac{z^{N} - 1}{z^{N-1}(z - 1)}$$

$$z = e^{j\frac{2\pi k}{N}} \quad k = 0, ..., N-1$$

ROC: |z| > 0

- \square Lo zero in z=1(k=0) cancella il polo in z=1:
- ☐ Infatti si può ricordare che $z^N 1 = (z 1)(z^{N-1} + z^{N-2} + ... + 1)$

\square Ad esempio per N=6

$$X(z) = \frac{z^6 - 1}{z^5(z - 1)}$$

□ Ricordando che

$$z^6 - 1 = (z - 1)(z^5 + z^4 + z^3 + z^2 + z + 1)$$

$$X(z) = \frac{z^5 + z^4 + z^3 + z^2 + z + 1}{z^5}$$

Funzione Matlab zplane(num, den)

$$x[n] = \begin{cases} n & 0 \le n \le N \\ 2N - n & N + 1 \le n \le 2N \\ 0 & \text{altrove} \end{cases}$$

 \square x[n] si può scrivere come la convoluzione tra due sequenze "porta":

$$x[n] = x_p[n] * x_p[n-1]$$

$$x_p[n] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{altrove} \end{cases}$$

- Ricordando poi le proprietà delle trasformate Z:
 - ☐ La convoluzione diventa un prodotto nel dominio Z
 - ☐ Il ritardo è facilmente trattabile

$$X(z) = X_p(z) \cdot (X_p(z) \cdot z^{-1}) = (X_p(z))^2 \cdot z^{-1}$$

Soluzione 2.3 - esempio: x[n] per N=6

Esercizio 2.3

$$X_p(z) = \frac{1 - z^{-N}}{1 - z^{-1}} \implies X(z) = z^{-1} [X_p(z)]^2 = z^{-1} \left(\frac{1 - z^{-N}}{1 - z^{-1}}\right)^2$$

$$X(z) = z^{-1} \frac{1 - 2z^{-N} + z^{-2N}}{1 - 2z^{-1} + z^{-2}} \implies X(z) = \frac{1}{z^{2N-1}} \frac{z^{2N} - 2z^{N} + 1}{z^{2} - 2z + 1}$$

$$X(z) = \frac{z^{2N} - 2z^N + 1}{z^{2N+1} - 2z^{2N} + z^{2N-1}}$$
 ROC : $0 < |z| < +\infty$

$$N = 6$$

□ Sviluppando i quadrati:

$$X(z) = \frac{z^{12} - 2z^6 + 1}{z^{13} - 2z^{12} + z^{11}}$$

Esercizio 3

- Calcolare la trasformata zeta delle sequenze:
 - 1. $x[n] = \alpha^n u[n]$
 - $2. \quad x[n] = \sin[\omega_0 n] \, u[n]$
 - $3. x[n] = \cos[\omega_0 n] u[n]$
 - 4. $x[n] = \alpha^n \cos[\omega_0 n] u[n]$
 - $5. x[n] = n\alpha^n u[n]$
 - $6. x[n] = n^2 \alpha^n u[n]$

calcolandone zeri e poli, e determinando di conseguenza la ROC

$$\square \quad x[n] = \alpha^n u[n]$$

 α reale

per definizione

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

 $|z| > \alpha$

$$X(z) = \sum_{n=0}^{+\infty} \alpha^n z^{-n} = \sum_{n=0}^{+\infty} (\alpha z^{-1})^n = \frac{1}{1 - \alpha z^{-1}} = \frac{z}{z - \alpha}$$

- ☐ Zero:
 - z=0
- □ Poli:
 - $z = \alpha$

□ Sequenza x[n] causale con un solo polo reale positivo

□ Sequenza x[n] causale con un solo polo reale negativo

$$x[n] = \sin[\omega_0 n] u[n]$$

$$X(z) = \sum_{n=0}^{+\infty} \sin[\omega_0 n] z^{-n} = \sum_{n=0}^{+\infty} \left(\frac{e^{j\omega_0 n} - e^{-j\omega_0 n}}{2j} \right) z^{-n} =$$

$$= \frac{1}{2j} \left[\sum_{n=0}^{+\infty} (e^{j\omega_0} z^{-1})^n - \sum_{n=0}^{+\infty} (e^{-j\omega_0} z^{-1})^n \right] =$$

$$= \frac{1}{2j} \left[\frac{1}{1 - e^{j\omega_0} z^{-1}} - \frac{1}{1 - e^{-j\omega_0} z^{-1}} \right] =$$

$$= \frac{1}{2j} \left[\frac{z^{-1} (e^{j\omega_0} - e^{-j\omega_0})}{(1 - e^{j\omega_0} z^{-1})(1 - e^{-j\omega_0} z^{-1})} \right] =$$

$$= \frac{z^{-1} \sin \omega_0}{(1 - e^{j\omega_0} z^{-1})(1 - e^{-j\omega_0} z^{-1})} =$$

$$= \frac{z^{-1} \sin \omega_0}{1 - 2 \cos(\omega_0) z^{-1} + z^{-2}}$$

$$x[n] = \sin[\omega_0 n] u[n]$$

$$X(z) = \frac{z^{-1} \sin \omega_0}{(1 - e^{j\omega_0} z^{-1})(1 - e^{-j\omega_0} z^{-1})} \qquad |z| > 1$$

$$= \frac{z^{-1} \sin \omega_0}{z^{-2} (z - e^{j\omega_0})(z - e^{-j\omega_0})}$$

$$= \frac{z \sin \omega_0}{(z - e^{j\omega_0})(z - e^{-j\omega_0})}$$

- \square Zero: z=0
- \square Poli: $z=e^{\pm j\omega_0}$

$$x[n] = \cos[\omega_0 n] u[n]$$

$$X(z) = \sum_{n=0}^{+\infty} \cos[\omega_0 n] z^{-n} = \sum_{n=0}^{+\infty} \left(\frac{e^{j\omega_0 n} + e^{-j\omega_0 n}}{2} \right) z^{-n} =$$

$$= \frac{1}{2} \left[\sum_{n=0}^{+\infty} (e^{j\omega_0} z^{-1})^n + \sum_{n=0}^{+\infty} (e^{-j\omega_0} z^{-1})^n \right] =$$

$$= \frac{1}{2} \left[\frac{1}{1 - e^{j\omega_0} z^{-1}} + \frac{1}{1 - e^{-j\omega_0} z^{-1}} \right] =$$

$$= \frac{1}{2} \left[\frac{2 - e^{j\omega_0} z^{-1} - e^{-j\omega_0} z^{-1}}{(1 - e^{j\omega_0} z^{-1})(1 - e^{-j\omega_0} z^{-1})} \right] =$$

$$= \frac{1 - \cos(\omega_0) z^{-1}}{(1 - e^{j\omega_0} z^{-1})(1 - e^{-j\omega_0} z^{-1})} =$$

$$= \frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$$

$$|e^{j\omega_0}z^{-1}| < 1$$

$$\downarrow \downarrow$$

$$|z| > 1$$

$$x[n] = \cos[\omega_0 n] u[n]$$

$$X(z) = \frac{1 - \cos(\omega_0) z^{-1}}{(1 - e^{j\omega_0} z^{-1})(1 - e^{-j\omega_0} z^{-1})} \qquad |z| > 1$$

$$= \frac{z^{-1} [z - \cos(\omega_0)]}{z^{-2} (z - e^{j\omega_0})(z - e^{-j\omega_0})}$$

$$= \frac{z[z - \cos(\omega_0)]}{(z - e^{j\omega_0})(z - e^{-j\omega_0})}$$

- □ Zeri:
 - $z = \cos(\omega_0) \quad z = 0$
- □ Poli:
 - $z = e^{\pm j\omega_0}$

$$x[n] = \alpha^{n} \cos[\omega_{0}n]u[n]$$

$$X(z) = \sum_{n=0}^{+\infty} \alpha^{n} \cos[\omega_{0}n]z^{-n} = \sum_{n=0}^{+\infty} \alpha^{n} \left(\frac{e^{j\omega_{0}n} + e^{-j\omega_{0}n}}{2}\right)z^{-n} =$$

$$= \frac{1}{2} \left[\sum_{n=0}^{+\infty} (e^{j\omega_{0}}\alpha z^{-1})^{n} + \sum_{n=0}^{+\infty} (e^{-j\omega_{0}}\alpha z^{-1})^{n}\right] =$$

$$= \frac{1}{2} \left[\frac{1}{1 - \alpha e^{j\omega_{0}}z^{-1}} + \frac{1}{1 - \alpha e^{-j\omega_{0}}z^{-1}}\right] =$$

$$= \frac{1}{2} \left[\frac{2 - \alpha e^{j\omega_{0}}z^{-1} - \alpha e^{-j\omega_{0}}z^{-1}}{(1 - \alpha e^{j\omega_{0}}z^{-1})(1 - \alpha e^{-j\omega_{0}}z^{-1})}\right] =$$

$$= \frac{1 - \alpha \cos(\omega_{0})z^{-1}}{(1 - \alpha e^{j\omega_{0}}z^{-1})(1 - \alpha e^{-j\omega_{0}}z^{-1})} =$$

$$= \frac{1 - \alpha \cos(\omega_{0})z^{-1}}{1 - 2\alpha \cos(\omega_{0})z^{-1} + \alpha^{2}z^{-2}}$$

$$|z| > |\alpha|$$

$$x[n] = \alpha^n \cos[\omega_0 n] u[n]$$

$$X(z) = \frac{1 - \alpha \cos(\omega_0) z^{-1}}{(1 - \alpha e^{j\omega_0} z^{-1})(1 - \alpha e^{-j\omega_0} z^{-1})} \qquad |z| > \alpha$$

$$\square$$
 Zeri: $z = \alpha \cos(\omega_0)$ $z = 0$

$$\square$$
 Poli: $z=\alpha e^{\pm j\omega_0}$

 \square Sequenza x[n] causale con poli complessi coniugati

$$x[n] = n\alpha^n u[n]$$

Usando la proprietà della derivata in frequenza:

$$X(z) = \mathcal{Z}\{nx[n]\} = -z\frac{d}{dz}\left[\frac{z}{z-\alpha}\right] = -z\frac{z-\alpha-z}{(z-\alpha)^2} = \frac{\alpha z}{(z-\alpha)^2}$$

Si ricordi che
$$\frac{d}{dz} \left[\frac{f(z)}{g(z)} \right] = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}$$

$$x_3(n) = n^2 a^n u(n)$$

Usando la proprietà della derivata in frequenza:

$$X_{3}(z) = Z[n x_{2}(n)] = -z \frac{d}{dz} \left[\frac{a z}{(z-a)^{2}} \right] = -z \frac{a(z-a)^{2} - 2(z-a)az}{(z-a)^{4}} =$$

$$= \frac{az(z+a)}{(z-a)^{3}}$$

$$ROC: |z| > |a|$$

Esercizio 4 (sotto forma di quiz)

Sia data la sequenza $x[n] = (-a)^n u[n]$ con u[n] la sequenza gradino unitario e a = 0.5.

La trasformata z di x[n], X(z):

- a) non ha poli
- b) non ha zeri e ha due poli semplici reali in $z=\pm 0.5$
- c) ha uno zero nell'origine, uno zero reale in z=-0.5 e due poli complessi coniugati in $z=\pm j0.5$
- d) ha uno zero nell'origine e due poli complessi coniugati in $z=\pm j0.5$
- e) ha uno zero nell'origine e un polo reale semplice in z = -0.5

Soluzione 4

- ☐ Si vede dunque che:
- □ Zero:
 - z=0
- □ Poli:
 - z = -a
- La risposta corretta è dunque:
 - ha uno zero nell'origine e un polo reale semplice in z = -0.5

Esercizio 5

Calcolare la trasformata zeta e la regione di convergenza dei seguenti segnali discreti:

1.
$$x[n] = \left[\left(\frac{1}{2} \right)^n + \left(\frac{3}{4} \right)^n \right] u[n-10]$$

2.
$$x[n] = \begin{cases} 1 & -10 \le n \le 10 \\ 0 & \text{altrove} \end{cases}$$

$$x(n) = \left[\left(\frac{1}{2} \right)^n + \left(\frac{3}{4} \right)^n \right] u(n-10)$$

$$x(n) = \left[\left(\frac{1}{2}\right)^{10} \left(\frac{1}{2}\right)^{n-10} + \left(\frac{3}{4}\right)^{10} \left(\frac{3}{4}\right)^{n-10} \right] u(n-10) = y(n-10)$$

$$y(n) = \left[\left(\frac{1}{2} \right)^{10} \left(\frac{1}{2} \right)^n + \left(\frac{3}{4} \right)^{10} \left(\frac{3}{4} \right)^n \right] u(n) = \left(\frac{1}{2} \right)^{10} \left(\frac{1}{2} \right)^n u(n) + \left(\frac{3}{4} \right)^{10} \left(\frac{3}{4} \right)^n u(n)$$

□ Per la linearità:

$$Y(z) = \left(\frac{1}{2}\right)^{10} Z \left[\left(\frac{1}{2}\right)^n u(n)\right] + \left(\frac{3}{4}\right)^{10} Z \left[\left(\frac{3}{4}\right)^n u(n)\right]$$

$$Y(z) = \left(\frac{1}{2}\right)^{10} Z \left[\left(\frac{1}{2}\right)^n u(n)\right] + \left(\frac{3}{4}\right)^{10} Z \left[\left(\frac{3}{4}\right)^n u(n)\right] =$$

$$= \left(\frac{1}{2}\right)^{10} \frac{z}{z - \frac{1}{2}} + \left(\frac{3}{4}\right)^{10} \frac{z}{z - \frac{3}{4}} \qquad |z| > \frac{1}{2}, |z| > \frac{3}{4}$$

Per la proprietà della traslazione nel tempo:

$$X(z) = z^{-10} Y(z) = \left(\frac{1}{2}\right)^{10} \frac{z^{-9}}{z - \frac{1}{2}} + \left(\frac{3}{4}\right)^{10} \frac{z^{-9}}{z - \frac{3}{4}}$$

$$ROC: |z| > \frac{3}{4}$$

$$x(n) = \begin{cases} 1 & -10 \le n \le 10 \\ 0 & \text{altrove} \end{cases}$$

$$x(n) = y(n+10)$$
 con $y(n) = \begin{cases} 1 & 0 \le n \le 20 \\ 0 & \text{altrove} \end{cases}$

□ Dall'esercizio 2.2 ricaviamo:

$$Y(z) = \frac{1 - z^{-21}}{1 - z^{-1}}$$
 $0 < |z| \le \infty$

$$X(z) = z^{10}Y(z) = \frac{z^{10}(1-z^{-21})}{1-z^{-1}}$$
 $ROC: 0 < |z| < \infty$

Esercizio 6

Determinare le sequenze casuali associate alle seguenti trasformate zeta:

1.
$$X_a(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

2.
$$X_b(z) = \frac{1}{(1-\frac{1}{2}z^{-1})(1-z^{-1})}$$

3.
$$X_c(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{1}{2}z^{-1}}$$

$$X_a(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} = \frac{z}{z - \frac{1}{2}}$$

□ Sequenza causale: $ROC: |z| > \frac{1}{2}$

$$x_a[n] = \left(\frac{1}{2}\right)^n u[n]$$

Sequenza $x(n)$	X(z)	ROC
$\frac{\delta(n)}{\delta(n)}$	1	$\forall z$
$\delta(n-N), N>0$	z^{-N}	$\forall z - \{z = 0\}$
$\delta(n+N), N>0$	z^{+N}	$\forall z - \{z = \infty\}$
u(n)	$\frac{1}{1-z^{-1}}$	$\forall z > 1$
-u(-n-1)	$\frac{\tilde{1}}{1-z^{-1}}$	$\forall z < 1$
$\alpha^n u(n)$	$\frac{1}{1-\alpha z^{-1}}$	$\forall z > \alpha $
$-\alpha^n u(-n-1)$	1	$\forall z < \alpha $
$n\alpha^n u(n)$	$\frac{1-\alpha z^{-1}}{\alpha z^{-1}}$ $\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$\forall z > \alpha $
$n\alpha^{n-1}u(n)$	$\frac{\overline{(1-\alpha z^{-1})^2}}{\frac{z^{-1}}{(1-\alpha z^{-1})^2}}$	$\forall z > \alpha $
$(n-1)\alpha^n u(n)$	$\frac{(1-\alpha z^{-1})^2}{\frac{2\alpha z^{-1}-1}{(1-\alpha z^{-1})^2}}$	$\forall z > \alpha $
$n^2\alpha^n u(n)$	$\frac{\alpha z^{-1} (1 + \alpha z^{-1})}{(1 - \alpha z^{-1})^3}$	$\forall z > \alpha $
$-n\alpha^n u(-n-1)$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$\forall z < \alpha $
$\sin(\omega_o n)u(n)$	$\frac{\sin(\omega_o)z^{-1}}{1-2\cos(\omega_o)z^{-1}+z^{-2}}$	$\forall z > 1$
$\cos(\omega_o n)u(n)$	$1-\cos(\omega_o)z^{-1}$	$\forall z > 1$
$\alpha^n \sin(\omega_o n) u(n)$	$\frac{1 - 2\cos(\omega_o)z^{-1} + z^{-2}}{\alpha\sin(\omega_o)z^{-1}}$ $\frac{1 - 2\alpha\cos(\omega_o)z^{-1} + \alpha^2z^{-2}}{1 - 2\alpha\cos(\omega_o)z^{-1} + \alpha^2z^{-2}}$	$\forall z > \alpha$
$\alpha^n \cos(\omega_o n) u(n)$	$1-\alpha \cos(\omega_o)z^{-1}$	$\forall z > \alpha$
$\alpha^n \left[u(n) - u(n-N) \right]$	$\frac{1 - 2\alpha \cos(\omega_o)z^{-1} + \alpha^2 z^{-2}}{\frac{1 - \alpha^N z^{-N}}{1 - \alpha z^{-1}}}$	$\forall z > 0$

$$X_{b}(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - z^{-1}\right)}$$

 \square Espansione in fratti semplici di X(z):

$$X_{b}(z) = \sum_{i} R_{i} \frac{1}{(1 - d_{i}z^{-1})} \qquad R_{i} = X_{b}(z)(1 - d_{i}z^{-1})|_{z = d_{i}}$$

- □ I poli di $X_b(z)$ sono: $d_1 = 1/2$ e $d_2 = 1$
- ☐ I residui corrispondenti valgono:

$$R_1 = \frac{1}{1 - z^{-1}} \Big|_{z = \frac{1}{2}} = -1$$
 $R_2 = \frac{1}{1 - \frac{1}{2}z^{-1}} \Big|_{z = 1} = 2$

$$X_b(z) = 2 \cdot \frac{1}{1 - z^{-1}} - 1 \cdot \frac{1}{1 - \frac{1}{2}z^{-1}}$$

□ Sequenza causale:

$$x[n] = 2u[n] - \left(\frac{1}{2}\right)^n u[n] = \left[2 - \left(\frac{1}{2}\right)^n\right] u[n]$$

$$X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{1}{2}z^{-1}} = \frac{1}{1 + \frac{1}{2}z^{-1}} - \frac{1}{2}z^{-1}\frac{1}{1 + \frac{1}{2}z^{-1}} = Y(z) - \frac{1}{2}z^{-1}Y(z)$$

con:

$$Y(z) = \frac{1}{1 + \frac{1}{2}z^{-1}}$$

$$x(n) = y(n) - \frac{1}{2}y(n-1)$$

□ Sequenza causale: $y(n) = \left(-\frac{1}{2}\right)^n u(n)$

$$x(n) = \left(-\frac{1}{2}\right)^{n} u(n) - \frac{1}{2} \left(\frac{1}{2}\right)^{n-1} u(n-1) = \left(-\frac{1}{2}\right)^{n} \left[u(n) + u(n-1)\right] =$$

$$= \left(-\frac{1}{2}\right)^{n} \left[u(n) + u(n) - \delta(n)\right] = 2\left(-\frac{1}{2}\right)^{n} u(n) - \delta(n)$$

Qualche precisazione sulla scomposizione in fratti semplici

- ☐ Alcune precisazioni sulla scomposizione in fratti semplici
- □ Ricordiamo innanzitutto che (dalle slides di teoria) ci siamo posti in un caso semplificato (e non nel caso generale). In particolare faremo sempre le seguenti <u>Ipotesi</u>:
 - Il grado del denominatore è maggiore del grado del numeratore
 - Le radici del denominatore sono semplici
 - La ROC di X(z) è del tipo $|z| > \rho$

Qualche precisazione sulla scomposizione in fratti semplici

Sotto le precedenti ipotesi, possiamo elaborare l'espressione di X(z) in modo che i polinomi al numeratore e denominatore abbiano termine noto unitario:

$$X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_{p_n} z^{-p_n}}{a_0 + a_1 z^{-1} + \dots + a_{p_d} z^{-p_d}} = \frac{b_0}{a_0} \frac{1 + \frac{b_1}{b_0} z^{-1} + \dots + \frac{b_{p_n}}{b_0} z^{-p_n}}{1 + \frac{a_1}{a_0} z^{-1} + \dots + \frac{a_{p_d}}{a_0} z^{-p_d}}$$

□ Espandiamo in fratti semplici la funzione X(z), espressa come rapporto tra polinomi nella variabile z^{-1} :

$$X(z) = \sum_{i} R_{i} \frac{1}{1 - d_{i} \cdot z^{-1}}$$

Dove gli R_i sono i residui della funzione X(z): $R_i = X(z)(1-d_i \cdot z^{-1})|_{z=d_i}$

Qualche precisazione sulla scomposizione in fratti semplici

- Qualche eccezione alle precedenti ipotesi che siamo in grado di trattare:
- Il grado del denominatore è minore o uguale del grado del numeratore. In questo caso (si veda l'ultimo esercizio)
 - Si può scrivere la frazione in una somma di frazioni su tutti i termini del numeratori
 - Su ciascuna frazione, possiamo "scomporre" il numeratore isolando un opportuno termine z^{-M} e poi usare le proprietà del ritardo
- □ I casi più generali (poli multipli, poli complessi) esulano dagli obiettivi di questo corso
 - Esiste tuttavia una trattazione generale, si veda ad esempio http://www.dii.unimo.it/~zanasi/didattica/Fondamenti%20CA Mec/Luc CA 06 Fratti semplici.pdf

Esercizio 7

Calcolare la sequenza corrispondente alle seguenti trasformate zeta:

1.
$$X(z) = (1+2z)(1+3z^{-1})(1-z^{-1})$$

2.
$$X(z) = \frac{3z}{(z-\frac{1}{2})(z+\frac{1}{4})}$$
 $|z| > \frac{1}{2}$

3.
$$X(z) = \frac{2z^3 + z^2}{(z+3)(z-1)}$$
 $|z| > 3$

$$X(z) = (1+2z)(1+3z^{-1})(1-z^{-1}) =$$

$$= (1+3z^{-1}+2z+6)(1-z^{-1}) =$$

$$= 1+3z^{-1}+2z+6-z^{-1}-3z^{-2}-2-6z^{-1} =$$

$$= 2z+5-4z^{-1}-3z^{-2}$$

$$x(n) = 2\delta(n+1) + 5\delta(n) - 4\delta(n-1) - 3\delta(n-2)$$

$$X(z) = \frac{3z}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{4}\right)} \qquad |z| > \frac{1}{2}$$

 \square Moltiplico numeratore e denominatore per z^{-2} :

$$X(z) = \frac{3z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

□ Espansione in fratti semplici di X(z):

$$X(z) = \sum_{i} R_{i} \frac{1}{(1 - d_{i}z^{-1})} \qquad R_{i} = X(z)(1 - d_{i}z^{-1})\Big|_{z = d_{i}}$$

☐ I poli di X (z) sono: $z_1 = 1/2$ e $z_2 = -1/4$

□ I residui corrispondenti valgono:

$$R_{1} = \frac{3z^{-1}}{\left(1 + \frac{1}{4}z^{-1}\right)}\bigg|_{z = \frac{1}{2}} = 4 \qquad R_{2} = \frac{3z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)}\bigg|_{z = -\frac{1}{4}} = -4$$

$$X(z) = \frac{4}{1 - \frac{1}{2}z^{-1}} - \frac{4}{1 + \frac{1}{4}z^{-1}}$$

Anti-trasformata:

$$x(n) = 4\left(\frac{1}{2}\right)^{n}u(n) - 4\left(-\frac{1}{4}\right)^{n}u(n) = 4\left[\left(\frac{1}{2}\right)^{n} - \left(-\frac{1}{4}\right)^{n}\right]u(n)$$

$$X(z) = \frac{2z^3 + z^2}{(z+3)(z-1)}$$
 $|z| > 3$

 \square Moltiplico numeratore e denominatore per z^{-3} :

$$X(z) = \frac{2 + z^{-1}}{z^{-1}(1 + 3z^{-1})(1 - z^{-1})} = z \frac{2 + z^{-1}}{(1 + 3z^{-1})(1 - z^{-1})}$$

Posso quindi scrivere X(z) come:

$$X(z) = zY(z)$$
 $Y(z) = \frac{2+z^{-1}}{(1+3z^{-1})(1-z^{-1})}$

☐ Espansione in fratti semplici di Y(z):

$$Y(z) = \frac{2 + z^{-1}}{(1 + 3z^{-1})(1 - z^{-1})}$$

$$Y(z) = \sum_{i} R_{i} \frac{1}{(1 - d_{i}z^{-1})} \qquad R_{i} = Y(z)(1 - d_{i}z^{-1})\Big|_{z = d_{i}}$$

- \square I poli di Y(z) sono: $d_1 = -3$ e $d_2 = 1$
- ☐ I residui corrispondenti valgono:

$$R_{1} = \frac{2+z^{-1}}{1-z^{-1}}\bigg|_{z=-3} = \frac{5}{4} \qquad \qquad R_{2} = \frac{2+z^{-1}}{1+3z^{-1}}\bigg|_{z=1} = \frac{3}{4}$$

$$Y(z) = \frac{5}{4} \frac{1}{1+3z^{-1}} + \frac{3}{4} \frac{1}{1-z^{-1}}$$

□ Anti-trasformata:

$$y(n) = \frac{3}{4}u(n) + \frac{5}{4}(-3)^n u(n)$$

$$x(n) = y(n+1) = \frac{1}{4} [3 + 5(-3)^{n+1}] u(n+1)$$