### UNIVERSIDADE DO VALE DO ITAJAÍ ESCOLA DO MAR, CIÊNCIA E TECNOLOGIA CURSO DE ENGENHARIA DE COMPUTAÇÃO

### **RELATÓRIO 02**

Análise de circuitos com díodos

por

Stephen Michael Apolinário

Relatório 02 referente a M1 de eletrônica básica. Professor(a): Walter Gontijo

#### **RESUMO**

APOLINÁRIO, Stephen Michael. RELATÓRIO REFERENTE A M1 DE ELETRÔNICA BÁ-SICA. Itajaí, 2022. 16 f. Engenharia De Computação, Escola do Mar, Ciência e Tecnologia, Universidade do Vale do Itajaí, Itajaí, 2022.

Neste relatório, será tratado os conteúdos vistos na aula de dia 12 de agosto de 2022, na Univali Itajaí, durante a matéria de Eletrônica Básica, ministrada pelo professor Walter Antonio Gontijo, na qual foi abordado a funcionalidade dos dois modelos de díodo: (i) Díodo ideal, (ii) sua composição (Anodo e Catodo), e (iii) seu comportamento.

Palavras-chave: Díodo ideal, Anodo, Catodo.

# LISTA DE ILUSTRAÇÕES

| Figura 1  | _ | Componentes do diodo            | 8 |
|-----------|---|---------------------------------|---|
| Figura 2  | _ | Polarização de um diodo ideal   | 9 |
| Figura 3  | _ | Circuito 01                     | 9 |
| Figura 4  | _ | Simulação do circuito 01        | 0 |
| Figura 5  | _ | Circuito 02                     | 1 |
| Figura 6  | _ | Circuito 02                     | 2 |
| Figura 7  | _ | Simulação do circuito 03        | 3 |
| Figura 8  | _ | Circuito 02 com fonte invertida | 4 |
| Figura 9  | _ | Circuito 03                     | 4 |
| Figura 10 | _ | Circuito 02 com fonte invertida | 5 |

## LISTA DE QUADROS

| Quadro 1 – | Comparação entre os resultados obtidos por simulação e os resultados ob- |    |
|------------|--------------------------------------------------------------------------|----|
|            | tidos por cálculo do circuito 01                                         | 11 |
| Quadro 2 – | Comparação entre os resultados obtidos por simulação e os resultados ob- |    |
|            | tidos por cálculo do circuito 01                                         | 13 |
|            |                                                                          |    |

## **SUMÁRIO**

| 4     | CONCLUSÃO                       | 16 |
|-------|---------------------------------|----|
| 3.3   | Comportamento de um diodo       | 14 |
| 3.2.3 | Circuito 02 com fonte invertida | 13 |
| 3.2.2 | Segundo Circuito                | 11 |
| 3.2.1 | Primeiro Circuito               | 9  |
| 3.2   | Diodo ideal                     | 8  |
| 3.1   | Componentes de um diodo         | 8  |
| 3     | DESENVOLVIMENTO                 |    |
| 2     | INTRODUÇÃO                      | 7  |
| 1     | OBJETIVOS                       | 6  |

## 1 OBJETIVOS

Os objetivos deste relatório possuem obter o conhecimento dos seguintes tópicos:

- 1) Componentes de um diodo (Anodo e Catodo)
- 2) Diodo ideal
- 3) Comportamento de um diodo

## 2 INTRODUÇÃO

Os diodos abordados nas aulas referenciadas neste relatório, são componentes eletrônicos que possuem a função de permitir a passagem de corrente elétrica em apenas uma direção. Sendo assim, os diodos são componentes semicondutores que possuem uma característica de polarização, ou seja, a passagem de corrente elétrica só ocorre quando o diodo é polarizado. Estes componentes são muito importantes para a eletrônica, pois através deles é possível criar circuitos mais complexos com a utilização de outros componentes eletrônicos.

#### 3 DESENVOLVIMENTO

#### 3.1 COMPONENTES DE UM DIODO

O diodo é um componente que possui 2 terminais, sendo eles: (i) catodo, e (ii) anodo. O catodo é o terminal negativo do diodo, e o anodo é o terminal positivo do diodo. A figura 1 mostra a representação esquemática de um diodo.



Figura 1 – Componentes do diodo

O simbolo na qual representa um diodo, é um triangulo, na qual o lado maior do triangulo representa o anodo, e o lado menor representa o catodo, que podem ser analisados através da imagem acima.

#### 3.2 DIODO IDEAL

O funcionamento de um diodo ideal é simples: Ou ele está com uma chave fechada, ou ele está com uma chave aberta. Quando o diodo está com a chave fechada, ele permite a passagem de corrente elétrica, com Rd=0, e quando o diodo está com a chave aberta, ele não permite a passagem de corrente elétrica, com  $Rd=\infty$ . A figura 2 mostra a representação esquemática de um diodo ideal.



Figura 2 – Polarização de um diodo ideal

#### 3.2.1 Primeiro Circuito

Com este conhecimento sobre diodo ideal, podemos encontrar a corrente e a tensão do circuito, que é mostrado na figura 3.



Figura 3 – Circuito 01

#### Resolução

Com o diodo polarizado... 
$$I=\frac{V}{R}\to\frac{10}{100}=0.1A$$
 
$$V=10V$$
 Com polarização reversa no diodo... 
$$ID=0\to (\text{Pois o diodo não deixa passar corrente})$$
 
$$Vd=-10V$$
 
$$Vo=0$$
 
$$Io=0$$
 
$$Io=0$$

Resolução: Circuito 01

Através da imagem 4 podemos verificar os resultados obtidos por simulação de díodo conduzindo. Observe que para realizar a simulação corretamente do diodo polarizado, foi removido o doido ideal, pois o seu funcionamento em um circuito é composto por uma chave fechada.



Figura 4 – Simulação do circuito 01

Com a tabela 1 podemos comparar os resultados obtidos por simulação com os resulta-

dos obtidos por cálculo, na qual comprovam que os cálculos estavam corretos.

Quadro 1 – Comparação entre os resultados obtidos por simulação e os resultados obtidos por cálculo do circuito 01

| Modelo\Variáveis | I    | V   |
|------------------|------|-----|
| Calculado        | 10mA | 10V |
| Simulado         | 10mA | 10V |

## 3.2.2 Segundo Circuito

Após ser estudado este primeiro circuito, podemos estudar o segundo circuito, que é mostrado na figura 5.



Figura 5 – Circuito 02

Para realizar a análise deste circuito, o mesmo será simplificado através de Thevenin

Resistor Equivalente: 
$$((4//8) + (2+8))//6 = 4.07\Omega$$

Para encontrar Vth...

$$x = \frac{16 * 8}{16 + 8} \simeq 5.33$$

Utilizando divisor de tensão. . .  $x = \frac{5.33}{4 + 5.33}$ 

$$x * 20 \simeq 11.42V$$

$$\frac{6}{8+6+2} * 11.42 \simeq 4.28V$$

$$IT = \frac{4.28}{4.07+10} \simeq 0.304A$$

$$VRL = 0.304 * 10 \simeq 3.04V$$

Resolução: Circuito 02

Após os cálculos acima, obtemos o circuito de Thévenin, demonstrado na imagem 6.



Figura 6 – Circuito 02

Através da imagem 7 podemos verificar os resultados obtidos por simulação.



Figura 7 – Simulação do circuito 03

Com a tabela 2 podemos comparar os resultados obtidos por simulação com os resultados obtidos por cálculo, na qual comprovam que os cálculos estavam corretos, mas tiveram uma pequena variação, devido a aproximação de valores nos cálculos.

Quadro 2 – Comparação entre os resultados obtidos por simulação e os resultados obtidos por cálculo do circuito 01

| Modelo\Variáveis | VRL   | IRL    |
|------------------|-------|--------|
| Calculado        | 3.04V | 0.304A |
| Simulado         | 3.06V | 0.306A |

### 3.2.3 Circuito 02 com fonte invertida

Invertendo a fonte do circuito 5, sabemos que o diodo irá ser polarizado reversamente, ou seja, terá seu funcionamento como uma chave aberta. A imagem 8 mostra o circuito com a fonte invertida.



Figura 8 – Circuito 02 com fonte invertida

Podemos afirmar então, que por motivos de ter uma chave aberta neste local, IR1 e VR1 são 0V, já Vd possui valor de -20V.

#### 3.3 COMPORTAMENTO DE UM DIODO



Figura 9 – Circuito 03

No circuito da imagem 9, podemos observar que existem 2 diodos e duas fontes, na qual V1 é AC e V2 é DC. Sabemos qua quando V1 estiver no semi ciclo negativo, o diodo não

irá conduzir, tendo em sua carga, somente a contribuição dada por V2. Quando V1 estiver no semi ciclo positivo, o diodo irá conduzir, tendo em sua carga, a contribuição dada por V1 e V2, gerando uma forma de onda como a mostrada a partir da imagem 10



Figura 10 – Circuito 02 com fonte invertida

Através da forma de onda, é possível perceber a forma de onda das duas fontes. Sendo a linha vermelha representada pela fonte V2, e a linha azul representada por V1. Note que quando a fonte V1 atingir a tensão menor que 3V, a tensão na carga passa a ter somente a contribuição da fonte V2. Ou seja, a tensão na carga terá somente o semi ciclo positivo da fonte V1, quando a fonte de tensão for superior a 3V.

### 4 CONCLUSÃO

Através deste relatório, o autor conseguiu entender o funcionamento de um diodo de forma básica, onde o mesmo tem o funcionamento de chave fechada ou aberta, mas através disso, foi possível entender, sua composição, além de entender o comportamento seu comportamento e sua aplicação em circuitos. Sendo assim, o diodo é um componente eletrônico que permite a passagem da corrente em somente um sentido.

Pode-se afirmar que o diodo possui diversas aplicações, e uma delas é atuar como um retificador, convertendo tensão alternada em continua. Porém, deve-se atentar que um diodo possui energia dissipada em formato de calor, e por isso, deve-se ter cuidado com a quantidade de corrente que passa por ele, pois pode causar um superaquecimento, e consequentemente, danificar o componente. Além disso, o diodo possui uma aplicação em circuitos de proteção, onde o mesmo pode ser utilizado para proteger circuitos de tensões altas, como por exemplo, em circuitos de proteção de baterias, onde o mesmo pode ser utilizado para proteger o circuito de uma bateria de um curto-circuito, ou até mesmo, de uma descarga excessiva.