3. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 15.11.2018 23:59

Zeit	Raum	Abgabe im Moodle; Mails mit Betreff: [SMD1819]
Di. 10-12	CP-03-150	tobias.hoinka@udo.edu, felix.geyer@udo.edu
		und jan.soedingrekso@udo.edu
Di. 16-18	CP-03-150	simone.mender@udo.edu und alicia.fattorini@udo.edu
Mi. 10-12	CP-03-150	$\operatorname{mirco.huennefeld@udo.edu}$ und kevin3.schmidt@udo.edu

WS 2018/2019

5 P.

Prof. W. Rhode

Aufgabe 10: Zwei Populationen

Gegeben seien zwei Populationen von jeweils 10 000 Punkten in einer Ebene. Die Population P_0 sei eine zweidimensionale, korrelierte Gaußverteilung mit:

$$\mu_x = 0$$
, $\mu_y = 3$, $\sigma_x = 3.5$, $\sigma_y = 2.6$ und Korrelation $\rho = 0.9$

Die zweite Verteilung P_1 ist gegeben durch eine Gaußverteilung in x mit

$$\mu_x = 6$$
 und $\sigma_x = 3.5$,

und einer Gaußverteilung in y, deren Mittelwert linear von x abhängt:

$$\mathbf{E}[y|x] = \mu_{y|x} = a + bx$$
 mit $a = -0.5, b = 0.6$ und $\mathbf{Var}[y|x] = \sigma_{y|x}^2 = 1$

a) Zeigen Sie mithilfe der Formel für die bedingte Wahrscheinlichkeit der 2D Normalverteilung¹,

$$f(y|x) = \frac{1}{\sqrt{2\pi}\sigma_y\sqrt{1-\rho^2}} \cdot \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{\tilde{y}}{\sigma_y} - \rho\frac{\tilde{x}}{\sigma_x}\right]^2\right) \tag{1}$$

dass die zweite Population ebenfalls einer 2D Normalverteilung entspricht. Geben Sie an, wie die Parameter μ_y' , σ_y' und ρ der 2D Normalverteilung aus den Parametern a, b und σ_y der 1D Normalverteilung der Population P_1 bestimmt werden.

- b) Stellen Sie die beiden Populationen zusammen in einem zweidimensionalen Scatter-Plot dar.
- c) Berechnen Sie die Stichproben-Mittelwerte und -Varianzen von x und y sowie die Stichproben-Kovarianz und den -Korrelationskoeffizienten für die Einzelpopulationen und die Gesamtheit beider Populationen.

¹Von Blatt 2, Aufgabe 7: Zweidimensionale Gaußverteilung

3. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 15.11.2018 23:59

Sigenschaften der Population P_0 ,

WS 2018/2019

Prof. W. Rhode

d) Erzeugen Sie eine weitere Population mit den Eigenschaften der Population P_0 , diesmal jedoch nur mit 1000 Punkten. Erstellen Sie anschließend ein HDF5-File mit drei Keys und speichern Sie die drei erzeugten Populationen unter eindeutigen Bezeichnern ab. Nutzen sie dafür das Python Paket pandas, siehe Python Hands-On.

Aufgabe 11: Fisher-Diskriminante: Per Hand

5 P.

Führen Sie eine lineare Diskriminazanalyse nach Fisher per Hand durch.

Population 0: (1;1) (2;1) (1,5;2) (2;2) (2;3) (3;3)

Population 1: (1,5;1) (2,5;1) (3,5;1) (2,5;2) (3,5;2) (4,5;2)

- a) Berechnen Sie die Mittelwerte $\vec{\mu}$ und Streumatrizen S_i , sowie die kombinierte Streumatrix S_{ij} .
- **b)** Wie lautet $\vec{\lambda}$?
- c) Zeichnen Sie die Punkte der beiden Populationen in einen Graphen ein, zusammen mit der Projektionsgeraden $\vec{\lambda} = \lambda \cdot \vec{e}_{\vec{\lambda}}$.
- d) Projezieren Sie die einzelnen Punkte auf diese Gerade.
- e) Wählen Sie einen geeigneten Parameter λ_{cut} und berechnen Sie die dazugehörige Effizienz und Reinheit. Warum haben Sie diesen Parameter gewählt?

Aufgabe 12: Fisher-Diskriminante: Implementierung

10 P.

Gegeben seien die Populationen P_0_10000 und P_1 aus der Aufgabe "Zwei Populationen". Nutzen Sie das dort erstellt HDF5-File für diese Aufgabe. (Sie finden die Datei ebenfalls im Moodle.)

Hinweis: Es sei Ihnen erlaubt Pakete z.B. für lineare Algebra zu benutzen, jedoch nicht Pakete, die die Diskriminanzanalyse durchführen.

- a) Berechnen Sie die Mittelwerte μ_{P0} und μ_{P1} der beiden Populationen.
- b) Berechnen Sie die Kovarianzmatrizen V_{P0} und V_{P1} der beiden Populationen, sowie die kombinierte Kovarianzmatrix $V_{P0,P1}$.
- c) Konstruieren Sie eine lineare Fisher-Diskriminante $\vec{\lambda} = \lambda \cdot \vec{e}_{\vec{\lambda}}$. Geben Sie diese Geradengleichung an.
- d) Stellen Sie die Populationen als Projektion auf die Gerade aus c) in einem eindimensionalen Histogramm dar.

- e) Betrachten Sie P0 als Signal und P1 als Untergrund. Berechnen Sie die Effizienz und die Reinheit des Signals als Funktion eines Schnittes $\lambda_{\rm cut}$ in λ und stellen Sie die Ergebnisse in einem Plot dar.
- f) Bei welchem Wert von $\lambda_{\rm cut}$ wird nach der Trennung das Signal-zu-Untergrundverhältnis S/B maximal? Erstellen Sie auch hierzu einen Plot.
- g) Bei welchem Wert von $\lambda_{\rm cut}$ wird nach der Trennung die Signifikanz $S/\sqrt{S+B}$ maximal? Erstellen Sie auch hierzu einen Plot.
- h) Wiederholen Sie die Schritte a) bis g) für den Fall, dass P0 nun die Population P_0_1000 bezeichnet. Was fällt Ihnen auf? Interpretieren Sie die Ergebnisse.