§ 1. Производная функции

§ 1.1. Теоретический материал

Понятие производной

 \Rightarrow Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Предел отношения приращения Δy функции в этой точке (если он существует) к приращению Δx аргумента, когда $\Delta x \to 0$, называется производной функции f(x) в точке x_0 .

Обозначения: $f'(x_0)$ или $y'(x_0)$ или $\frac{df(x_0)}{dx}$ или $f'|_{x=x_0}.$

Таким образом,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

 \Rightarrow Вычисление производной называется $\partial u \phi \phi$ еренцированием функции.

Таблица производных

1.
$$(c)' = 0$$
, $c = \text{const}$;

2.
$$(x^{\alpha})' = \alpha \cdot x^{\alpha-1}$$
 (где $\alpha \in \mathbb{R}$); в частности, $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$;

3.
$$(a^x)' = a^x \cdot \ln a$$
, $a > 0$; в частности, $(e^x)' = e^x$;

4.
$$(\log_a x)' = \frac{1}{x \ln a}$$
, $a > 0$, $a \neq 1$; в частности, $(\ln x)' = \frac{1}{x}$;

$$5. (\sin x)' = \cos x;$$

$$6. (\cos x)' = -\sin x;$$

7.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x};$$

8.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x};$$

9.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}};$$

10.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}};$$

11.
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2};$$

12.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2};$$

$$13. (\sinh x)' = \cosh x;$$

$$14.\ (\operatorname{ch} x)' = \operatorname{sh} x;$$

15.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x};$$

16.
$$(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$$
.

Основные правила дифференцирования

Пусть c — константа, а u(x) и v(x) имеют производные в некоторой точке x. Тогда функции $u(x)\pm v(x),$ $c\cdot u(x),$ $u(x)\cdot v(x)$ и $\frac{u(x)}{v(x)}$ (где $v(x)\neq 0$) также имеют производные в этой точке, причем

1. $(u \pm v)' = u' \pm v';$

2. $(u \cdot v)' = u'v + uv'$, в частности, $(cu)' = c \cdot u'$;

3.
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
, в частности, $\left(\frac{c}{v}\right)' = -\frac{cv'}{v^2}$.

Пусть теперь функция $u = \varphi(x)$ имеет производную в точке x_0 , а функция y = f(u) — в точке $u_0 = \varphi(x_0)$. Тогда сложная функция $y = f(\varphi(x))$ также имеет производную в точке x_0 , причем

$$y'(x_0) = y'(u_0) \cdot u'(x_0).$$

Геометрический смысл производной

Пусть функция y = f(x) имеет производную в точке x_0 . Тогда существует касательная к графику этой функции в точке $M_0(x_0; y_0)$, уравнение которой имеет вид

$$y-y_0=f'(x_0)(x-x_0).$$

При этом $f'(x_0) = \operatorname{tg} \alpha$, где α — угол наклона этой касательной к оси Ox (рис. 80).

Рис. 80

⇒ Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой и имеет уравнение

$$y-y_0=-\frac{1}{f'(x_0)}\cdot(x-x_0).$$

Если $f'(x_0) = 0$ (т. е. касательная горизонтальна), то нормаль вертикальна и имеет уравнение $x = x_0$.

 \Rightarrow Пусть даны две пересекающиеся в точке $M_0(x_0, y_0)$ кривые $y = f_1(x)$ и $y = f_2(x)$, причем обе функции имеют производные в точке x_0 . Тогда углом между этими кривыми называется угол между касательными к ним, проведенными в точке M_0 .

Этот угол φ можно найти из формулы

$$\operatorname{tg} \varphi = \frac{f_2'(x_0) - f_1'(x_0)}{1 + f_1'(x_0) \cdot f_2'(x_0)}.$$

Логарифмическая производная

При нахождении производных от показательно-степенной функции $u(x)^{v(x)}$, а также других громоздких выражений, допускающих логарифмирование (произведение, частное и извлечение корня), удобно применять логарифмическую производную.

 \Rightarrow Логарифмической производной от функции y = f(x) называется производная от логарифма этой функции:

$$(\ln y)' = \frac{y'}{y}.$$

Используя логарифмическую производную, нетрудно вывести формулу для производной показательно-степенной функции $u(x)^{v(x)}$:

$$(u^{v})' = u^{v} \cdot v' \cdot \ln u + u^{v-1} \cdot u' \cdot v.$$

Производная неявной функции

Пусть функция y=y(x), обладающая производной в точке x, задана неявно уравнением $F(x,y)=0. \tag{1.1}$

Тогда производную y'(x) этой функции можно найти, продифференцировав уравнение (1.1) (при этом y считается функцией от x) и разрешая затем полученное уравнение относительно y'.

Производные высших порядков

 \Rightarrow Производная f'(x) от функции f(x) называется также производной первого порядка. В свою очередь производная от функции f'(x) называется производной второго порядка от функции f(x) (или второй производной) и обозначается f''(x).

Аналогично определяются производная третьего порядка (или третья производная), обозначаемая f'''(x) и т. д.

Производная n-го порядка обозначается $f^{(n)}(x)$.

Производная функций, заданных параметрически

Пусть функция y=f(x) определена параметрически функциями x=x(t) и y=y(t). Тогда если функции x(t) и y(t) имеют производные в точке t_0 , причем $x'(t_0) \neq 0$, а функция y=f(x) имеет производную в точке $x_0=x(t_0)$, то эта производная находится по формуле

$$y'(x_0) = rac{y_t'(t_0)}{x_t'(t_0)}$$
 или $y_x' = rac{y_t'}{x_t'}.$

Вторая производная y''(x) находится по формуле

$$y_{xx}'' = \frac{y_t'' \cdot x_t' - x_t'' \cdot y_t'}{(x_t')^3}.$$