Model Training

Full report of model Predict price (regression)

XGBoost (s2) - v1

Мо

Model

Model ID	S-FINALPROJECT_MINHAL_KHURRUM-eiAJ88IP-17
Model type	Regression
Target	price
Backend	Python (in memory)
Algorithm	Xgboost regression
Trained on	2025/05/27 13:26
Columns	19
Train set rows	17309
Test set rows	4304
Weighting method	No weighting
Calibration method	No calibration
Code Env	DSS builtin env
Python version	3.9.20

Metadata Ŵ trainDataset:dataset-name kc_house_data_prepared Ŵ testDataset:dataset-name kc_house_data_prepared Ŵ evaluationDataset:dataset-name kc_house_data_prepared Ŵ model:algorithm XGBOOST_REGRESSION Ŵ model:date 2025-05-27T13:27:16.344+0000 Ŵ evaluation:date 2025-05-27T13:27:16.344+0000 Ŵ model:name → XGBoost (s2) - v1 + ADD A LABEL Optional. Informative labels for the model. The model:algorithm, model:date, model:name, trainDataset:dataset-name, testDataset:dataset-name labels, evaluation:date and evaluationDataset:dataset-name are automatically added.

Model

Custom

4.00M

Charts by Minhal

This graph represents **count of records** by **grade** and **price**. From this graph, I analyze that most of the houses lies in between the range of 0-1 million of price range.

If I talk about *grade* column then we have values in between 1-13, so we get:

- **Grade 1-2:** 100% house pricing between 0-1M.
- **Grade 2-3:** No house available
- **Grade 3-4:** 100% house pricing between 0-1M.
- **Grade 4-5:** 100% house pricing between 0-1M.
- Grade 5-6: 100% house pricing between 0-1M.
- Grade 6-7: 100% house pricing between 0-1M.
- **Grade 7-8:** 100% house pricing between 0-1M.
- **Grade 8-9:** 98% house pricing between 0-1M & 2% between 1-2M
- **Grade 9-10:** 90% house pricing between 0-1M & 10% between 1-2M

- **Grade 10-11:** 70% house pricing between 0-1M, 26% between 1-2M & 3% between 2-3M.
- **Grade 11-12:** 40% house pricing between 0-1M, 47% between 1-2M, 12% between 2-3M & 2% between 3-4M.
- **Grade 12-13:** 5% house pricing between 0-1M, 56% between 1-2M, 23% between 2-3M, 7% between 3-4M, 6% between 4-6M & 2% between 7-8M.

This graph represents **count of records** by **year built** and **price**. From this graph, I analyze that most of the houses lies in between the range of 0-1 million of price range.

This graph represents **count of records** by **view** and **price**. From this graph, I analyze that most of the houses lies in between the range of 0-1 million of price range and some of houses lie in between 1-2M as well.

If I talk about *view* column then we have values in between 0-4, so we get:

- View 0-1: 97% house pricing between 0-1M & 3% between 1-2M
- **View 1-2:** 85% house pricing between 0-1M, 13% between 1-2M & 2% between 2-3M.
- **View 2-3:** 85% house pricing between 0-1M, 12% between 1-2M & 2% between 2-3M.
- **View 3-4:** 62% house pricing between 0-1M, 30% between 1-2M, 6% between 2-3M, 1% between 3-4M & 1% between 4-6M.

This graph represents **count of records** by **square feat. living** and **price**. From this graph, I analyze that as the number of sqft. are increasing the the pricing are increasing gradually.

Where, in the last 2 bars where range is

11.3k-12.4k the price of houses is 7-8M

Where, in the last 2 bars where range is 11.3k-12.4k the price of houses is 7-8M 100% and where the price is 12.4k - 13.5k the price lies in between 2-3M 100%.

This graph represents **count of records** by **bathrooms** and **price**. From this graph, I analyze that:

- **From number of bathrooms (0-4),** most of the houses lies in between the range of 0-1 million of price.
- **From number of bathrooms (5-7),** there is increment of house whose price lies in between 1-2M as well.
- **For bathroom (7-8),** 50% of houses prices are lying in between 7-8M.

of house whose price lies in between 1-2M as well.

For bathroom (7-8), 50% of houses prices are lying in between 7-8M.

• From number of bathrooms (5-7), there is increment

Boxplot of bedrooms and price on kc_house_data_prepared

Charts by Khurrum

Waterfront homes are way more expensive. Only 40% of them are under \$1M, while most non-waterfront homes (95%) are under \$1M. About 17% of waterfront homes cost \$2M-\$3M. So, being near water clearly pushes the price up a lot.

No matter the condition, nearly all homes (95–99%) are under \$1M. Even top-condition homes aren't selling for much more. This means condition doesn't impact price as much as you'd think — other things matter more.

3-4

4-5

2-3

condition

1-2

Smaller lots mostly have cheaper homes. But once the lot size goes above 991K sqft, prices jump. Homes on huge lots are always above \$1M. Bigger land = higher price, simple as that.

Most homes with small or no basements (under 1,000 sqft) are priced under \$1M. As basement size grows, prices start climbing. Between 2,000–2,800 sqft, there's a mix of prices from \$1M to \$4M. Homes with basements over 3,300 sqft are all luxury — priced between \$4M and \$7M. Bigger basements clearly push the price higher

rds

Small homes (under 3,000 sqft) are almost always under \$1M. Once the size hits 4,000+ sqft, higher prices appear. Big houses (7,500+

0m-1m

1m-2m

Clusters

Full report of model Clustering on kc_house_data_prepared

KMeans (k=3)(s1) - v1

KMeans (k=3)

Cluster outliers

Trained in 16 seconds on 21613 records

Observations

- **sqft_living** is in average 69.13% greater: mean of 3518 against 2080 globally
- **grade** is in average 22.33% greater: mean of 9.37 against 7.66 globally
- **sqft_living15** is in average 49.90% greater: mean of 2978 against 1987 globally

Model ID	S-FINALPROJECT_MINHAL_KHURRUM-FYFZE2Zq- 1748376338632
Model type	Clustering
Code Env	DSS builtin env
Python version	3.9.20

Metadata

+ ADD A LABEL

Optional. Informative labels for the model. The *model:algorithm*, *model:date*, *model:name*, *trainDataset:dataset-name*, *testDataset:dataset-name* labels, *evaluation:date* and *evaluationDataset:dataset-name* are automatically added.

