Análisis de presencias con procesos de puntos

Generalidades

Gerardo Martín 2022-06-29

Introducción

¿Qué es un patrón de puntos?

· Base de datos de cosas o eventos en espacio

Figure 1: Patrones de puntos de densidad variable. A la izquierda células de mucosa gástrica en corte histológico. A la derecha, cúmulos de galaxias (Baddeley et al. 2016).

 \cdot Densidad \rightarrow conteos/unidad espacial

La intensidad de puntos

Figure 2: Ejemplo de medición de intensidad de puntos

Tipos de puntos

Puntos pueden representar tipos de objetos

Figure 3: Ubicaciones de dos especie de árbol, abeto y roble, en la misma parcela.

Tipos de puntos

Puntos pueden representar mediciones

Figure 4: Ubicaciones de árboles con mediciones de diámetro.

Tipos de puntos

Puntos pueden estar definidos en 1-4 dimensiones

Figure 5: Ejemplos de procesos de puntos en 1 y 3 dimensiones

Covariables

Los procesos de puntos pueden estar definidos en relación a covariables.

Figure 6: Datos de Beilschmiedia pendula sobre un modelo digital de elevación.

Tipos de PPMs

- · Completamente aleatorios (homogéneos)
- · Heterogéneos
 - · Procesos de puntos generalmente producidos por covariables
- Agregados

El modelado de procesos de puntos

- · Estimar variación de densidad
- · Densidad = No. puntos / unidad de área

Figure 7: Se analiza un patrón para predecir variación contínua.

 Estadísticamente, densidad puede tratarse con la distribución Poisson

Procesos de puntos en ecología

- \cdot Datos más comunes ightarrow sólo presencia
- Colecciones de patrones de puntos

Análisis de procesos de puntos

Es un análisis regresión

- \cdot Medir relación entre x y y
 - \cdot ¿Cómo afecta x al promedio de y?
- $\cdot \ x$ produce a y
 - · x variable independiente
 - $\cdot \; y$ variable dependiente de x

Ejemplo - Datos contínuos

En regresión lineal simple, tendríamos dos variables contínuas:

У	X
-1.2708822	-0.5604756
0.0267062	-0.2301775
1.3120164	1.5587083
-0.2770342	0.0705084
-0.8223308	0.1292877
1.6700373	1.7150650

Ejemplo - Gráfica de dispersión

A las cuales realizamos un análisis exploratorio:

Ejemplo - Regresión lineal

 \cdot Siendo un poco más generales que arriba y asumiendo que y es un patrón de puntos, podemos tener modelos de regresión así:

$$y(x) = \alpha + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$

- x son las variables ambientales
 - $\cdot y$ es la intensidad por unidad de área
 - \cdot $\, \alpha$ es el intercepto, y eta_i son los efectos de x sobre y
 - \cdot Cuánto va a cambiar y si "aumento" el valor de x en una unidad
 - \cdot ε es el error, varianza de y que x no explica

Ejemplo - La línea de regresión

Ejemplo - La ecuación

En el caso simple anterior:

$$\cdot y = \alpha + \beta \times x$$

$$\cdot \alpha = 0$$

$$\cdot \beta = 1$$

Regresión consiste en estimar todos los coeficientes para las variables \boldsymbol{x} .

Paréntesis

En un modelo de regresión lineal, tenemos:

 $\cdot \ W$ son mediciones de peso en Kg, y su modelo es:

$$W = \alpha + \beta E dad + \beta_{Sexo} + \varepsilon$$

· Donde las unidades que produce el modelo son peso en Kg

Modelos de nicho y distribución

- · Mediciones: coordenadas de presencia
- ¿Qué unidades produce el modelo estadístico para los puntos de presencia?

Diferencias entre regresión y PPs

- · Regresión lineal simple
 - $\cdot -\infty > y < \infty, y \in \mathbb{R}$
 - $\cdot \ y pprox \mathcal{N}$ (distribución Normal)
- Procesos de puntos
 - $y > 0, y \in \mathbb{Z}$
 - $\cdot \ y pprox \mathcal{P}$ (distribución Poisson)

Diferencias entre regresión y PPs

Para que y>0

· Regresión lineal

$$\cdot \ y(x) = \alpha + \beta_1 x_1 + \dots$$

· Regresión log-lineal

$$\cdot \ \log y(x) = \alpha + \beta_1 x_1 + \dots$$

· es decir:

$$y(x) = \exp(\alpha + \beta_1 x_1 + \dots)$$

Relación con métodos populares en MNE

Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology

Ian W. Renner* and David I. Warton

School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wales, NSW 2052, Australia.

**email: Ian.Renner@unsw.edu.au

Gráficamente

Los modelos ajustados

$$\ln \pi(g_i) = \ln \mu(g_i) = x(g_i)\beta$$

Son funciones log-lineales equivalentes de un conjunto de predictores

- · Maxent: maximiza la entropía $(\pi(g_i))$
- Procesos de puntos en general: maximizan verosimilitud Poisson (conteo de puntos por unidad espacial)

Comparaciones extensivas

- Equivalentes a MaxEnt
 - · Sin Regularización
 - · Features lineal y cuadrática

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2015, 6, 366-379

doi: 10.1111/2041-210X.12352

SPECIAL FEATURE - REVIEW

NEW OPPORTUNITIES AT THE INTERFACE BETWEEN ECOLOGY AND STATISTICS

Point process models for presence-only analysis

Ian W. Renner¹*, Jane Elith², Adrian Baddeley³, William Fithian⁴, Trevor Hastie⁴, Steven J. Phillips⁵. Gordana Popovic⁶ and David I. Warton⁶

¹School of Mathematical and Physical Sciences. The University of Newcastle, University Drive, Galleghan, NSW 2308, Australia; ³Cobool of BioSciences, The University of Melboume, Partwille, Vr. 3010, Australia; ³Department of Mathematics & Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; ⁴Department of Statistics, Stanford University, 390 Serra Mail, Stanford, CA 94303, USA; ⁵2201 4th Street, Boulder, CO 80304, USA; and ⁵School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wesles, Sydney, NSW 2052, Australia;

- · Regresión log-lineal
 - · Logística
 - Maxent
- Elipsoides (Martín et al. 2022)
 - · Centroide existe en espacio
 - · Sin colinealidad

Condiciones para equivalencia entre MPPs y envolturas

Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration

Gerardo Martín 1,*, Carlos Yáñez-Arenas 2, Xavier Chiappa-Carrara 1,2

¹ Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán

² Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sierra Papacal, Yucatán 97302, México

Figure 9: Frecuencia de condiciones ambientales en sitios de presencia para dos variables no correlacionadas.

Figure 10: Distancia al centroide en dos dimensiones ambientales no correlacionadas

Figure 11: Intensidad de puntos en dos dimensiones ambientales no correlacionadas para el mismo proceso de puntos.

Las lecciones

- · Procesos de puntos son la herramienta *ad-hoc* para puntos
- Maxent es una herramienta estadística de regresión, per se, no genera distribuciones
 - Favorabilidad, idoneidad son interpretaciones de los valores producidos
 - Los valores producidos representan el número esperado de puntos de presencia (exceptuando la salida logística)
- · Los PPMs son más transparentes, y por medio de **spatstat**:
 - Herramientas exploratorias, estimar y comparar efectos, diagnosticar modelos
 - Modelar estructura espacial

Desventajas de PPMs vs Maxent

- Formateo
- Difícil automatizar
- Más programación
- · Selección de modelo laboriosa
- · Optimización puede ser difícil
- · Poco práctico si analizaremos muchas especies

