Generación de Datos Sintéticos para Backtesting de Estrategias de Inversión

Introducción

- Objetivo: Generar datos sintéticos para backtesting de estrategias de inversión.
- **Método:** Utilizar precios históricos y parámetros estimados para simular caminos de precios futuros.
- **Beneficio:** Permite probar estrategias en diferentes escenarios y reducir el riesgo de sobreajuste.

Proceso de Precios de Ornstein-Uhlenbeck

- Objetivo: Modelar la reversión a la media en los precios de los activos financieros.
- Uso: Comúnmente utilizado en finanzas para modelar la dinámica de tasas de interés, precios de commodities y otros activos financieros.

Definición del Proceso de Ornstein-Uhlenbeck

• Ecuación Diferencial Estocástica (SDE):

$$dX_t = \phi(\mu - X_t)dt + \sigma dW_t$$

donde:

- $\circ~X_t$ es el valor del proceso en el tiempo t.
- $\circ \ \phi$ es la velocidad de reversión a la media.
- $\circ \mu$ es el nivel de media al cual el proceso tiende a revertirse.
- $\circ \ \sigma$ es la volatilidad del proceso.
- $\circ W_t$ es un proceso de Wiener (movimiento browniano).

Interpretación de los Parámetros

- Velocidad de Reversión (ϕ): Determina la rapidez con la que el proceso vuelve a su media.
- Media (μ): El nivel promedio al cual el proceso se revierte.
- Volatilidad (σ): Representa la magnitud de las fluctuaciones aleatorias en el proceso.
- Proceso de Wiener (W_t): Introduce la aleatoriedad en el modelo.

Propiedades del Proceso

• Media:

$$\mathbb{E}[X_t] = \mu + (X_0 - \mu)e^{-\phi t}$$

- \circ El proceso tiende hacia la media μ con una tasa de decaimiento exponencial.
- Varianza:

$$ext{Var}(X_t) = rac{\sigma^2}{2\phi}(1-e^{-2\phi t})$$

 \circ La varianza aumenta inicialmente y se estabiliza en $rac{\sigma^2}{2\phi}$.

Paso 1: Estimación de Parámetros

Fórmulas

Modelo de Reversión a la Media:

$$P_{i,t} = E_0[P_{i,T_i}] + \phi(P_{i,t-1} - E_0[P_{i,T_i}]) + oldsymbol{\xi}_t$$

• Estimación de ϕ :

$$\phi = rac{\mathrm{cov}(Y,X)}{\mathrm{cov}(X,X)}$$

• Estimación de σ :

$$\sigma = \sqrt{ ext{var}(\xi_t)}$$

Implementación

```
def estimate_parameters(prices, E0):
    T max = len(prices)
    X = []
    Y = []
    for t in range(T_max - 1):
        X.append(prices[t] - E0)
        Y.append(prices[t + 1])
    X = np.array(X).reshape(-1, 1)
    Y = np.array(Y).reshape(-1, 1)
    model = LinearRegression().fit(X, Y)
    phi_hat = model.coef_[0][0]
    Z = np.full((T_max - 1, 1), E0)
    residuals = Y - Z - phi_hat * X
    sigma_hat = np.sqrt(np.var(residuals))
    return sigma_hat, phi_hat
```

Paso 2: Construcción de la Matriz de Umbrales

Fórmulas

Pares de Stop-Loss y Toma de Ganancias:

$$\pi = \{-12\sigma, -\sigma, \ldots, -\sigma\}$$
 $ar{\pi} = \{\sigma, \ldots, 12\sigma\}$

Implementación

```
def construct_mesh(sigma):
    pi = np.linspace(-12 * sigma, -sigma, 10)
    pi_bar = np.linspace(sigma, 12 * sigma, 10)
    mesh = np.array(np.meshgrid(pi, pi_bar)).T.reshape(-1, 2)
    return mesh
```

Paso 3: Generación de Caminos de Precios

Fórmulas

• Simulación de Caminos:

$$P_{i,t} = E_0 + \phi(P_{i,t-1} - E_0) + \mathcal{N}(0,\sigma)$$

Implementación

```
def generate_paths(N, T_max, sigma, phi, initial_price, E0):
    paths = np.zeros((N, T_max))
    paths[:, 0] = initial_price
    for i in range(N):
        for t in range(1, T_max):
            paths[i, t] = E0 + phi * (paths[i, t - 1] - E0) + np.random.normal(0, sigma)
    return paths
```

Paso 4: Aplicación de la Lógica de Trading

Lógica

- Reglas de Stop-Loss y Toma de Ganancias:
 - \circ Salir si π o $\bar{\pi}$ es alcanzado.
 - Salir si se alcanza el tiempo maximo de simulación
 - o Calcular el Sharpe Ratio para cada par de umbrales.

$$ext{Sharpe Ratio} = rac{\mathbb{E}[P_{i,T_i} - P_{i,0}]}{\sigma(P_{i,T_i} - P_{i,0})}.$$

Implementación

```
def apply_trading_logic(paths, mesh, T_max):
    N = paths.shape[0]
    results = []
    for pi, pi_bar in mesh:
        final_pnl = []
        for j in range(N):
            for t in range(T_max):
                pnl = paths[j, t] - paths[j, 0]
                if pnl <= pi or pnl >= pi_bar:
                    final_pnl.append(pnl)
                    break
                if t == T \max - 1:
                    final_pnl.append(pnl)
        sharpe_ratio = np.mean(final_pnl) / np.std(final_pnl)
        results.append([pi, pi_bar, sharpe_ratio])
    return pd.DataFrame(results, columns=['pi', 'pi_bar', 'sharpe_ratio'])
```

Paso 5: Determinación de la Regla Óptima

Implementación

```
def determine_optimal_rule(results):
    return results.loc[results['sharpe_ratio'].idxmax()]
```

Ejemplo de Uso

```
# Define input data
E0 = prices.mean()
# Step 1: Estimate parameters
sigma_hat, phi_hat = estimate_parameters(prices.values, E0)
# Step 2: Construct mesh
mesh = construct_mesh(sigma_hat)
# Step 3: Generate paths
N = 100000
T \max = 100
initial_price = prices.iloc[0]
paths = generate_paths(N, T_max, sigma_hat, phi_hat, initial_price, E0)
# Step 4: Apply trading logic
results = apply trading logic(paths, mesh, T max)
# Step 5: Determine optimal rule
optimal rule = determine optimal rule(results)
print(optimal_rule)
# Plot the contour
sorted results = results.sort values(by=['pi', 'pi bar'])
pivot table = sorted results.pivot table('sharpe ratio', 'pi', 'pi bar')
plt.figure(figsize=(10, 8))
contour = plt.contourf(pivot table.columns, pivot table.index, pivot table, cmap='viridis')
plt.title('Contour Plot of Sharpe Ratio')
plt.xlabel('pi')
plt.ylabel('pi bar')
plt.show()
```

Resultados

π	$ar{\pi}$	sharpe_ratio
-14790.6	13284.2	0.395471
-14790.6	10271.3	0.395304
-14790.6	1232.55	0.236317
-14790.6	2739	0.297171
-14790.6	4245.45	0.339421
-14790.6	5751.9	0.364218
-14790.6	7258.35	0.379567

Exploración del espacion R

Testeo de estrategia en datos históricos

Prueba de Estrategia de Inversión en Serie de Precios Real

- **Objetivo**: Probar una estrategia de inversión utilizando una serie temporal de precios real.
- **Método**: Aplicar reglas de stop-loss y toma de ganancias en datos históricos y calcular métricas de rendimiento.

Descarga de Datos Históricos

```
import yfinance as yf

# Descargar datos históricos de Bitcoin
btc_data = yf.download("BTC-USD", start="2020-01-01", end=pd.Timestamp.today().strftime('%Y-%m-%d'))
prices = btc_data['Close'].interpolate()
```

- Uso de yfinance : Descargar datos históricos de Bitcoin.
- Interpolación de valores NA: Rellenar valores faltantes en la serie de precios.

Definición de la Lógica de la Estrategia

```
def apply_strategy(prices, pi, pi_bar):
    initial_price = prices.iloc[0]
    pnl = 0
    for t in range(1, len(prices)):
        current_price = prices.iloc[t]
        pnl = current_price - initial_price

    if pnl <= pi or pnl >= pi_bar:
        break

return pnl
```

• Función apply_strategy: Aplica las reglas de stop-loss y toma de ganancias en la serie de precios.

• Parámetros:

- o pi: Umbral de stop-loss.
- o pi_bar: Umbral de toma de ganancias.

Prueba de la Estrategia en Datos Históricos

```
def test_strategy(prices, pi, pi_bar):
    pnl_list = []
    for start in range(len(prices) - 1):
        pnl = apply_strategy(prices[start:], pi, pi_bar)
        pnl_list.append(pnl)

sharpe_ratio = np.mean(pnl_list) / np.std(pnl_list)
    return pnl_list, sharpe_ratio
```

- Función test_strategy: Itera sobre la serie de precios y aplica la estrategia para calcular el PnL (Profit and Loss).
- Cálculo del Sharpe Ratio:

$$Sharpe\ Ratio = \frac{Promedio\ del\ PnL}{Desviación\ Estándar\ del\ PnL}$$

Ejecución de la Estrategia

```
# Valores de ejemplo para pi y pi_bar
pi = -2000 \# Stop-loss
pi_bar = 2000 # Toma de ganancias
# Probar la estrategia en datos históricos
pnl list, sharpe ratio = test strategy(prices, pi, pi bar)
# Imprimir resultados
print(f"Sharpe Ratio: {sharpe_ratio}")
# Graficar la distribución de PnL
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.hist(pnl_list, bins=50, alpha=0.75)
plt.title('Distribución de PnL')
plt.xlabel('PnL')
plt.ylabel('Frecuencia')
plt.grid(True)
plt.show()
```

Resultados

- Sharpe Ratio: 0.62
- Retorno Promedio: 50.78%

• Distribución de PnL:

Simulación de Monte Carlo y Precio de Opciones de Black-Scholes

Movimiento Browniano Geométrico (GBM)

- El modelo GBM es común en la simulación de precios de acciones en matemáticas financieras.
- Definido por la ecuación diferencial estocástica:

$$dS_t = \mu S_t \, dt + \sigma S_t \, dW_t$$

- Donde:
 - $\circ S_t$: Precio de la acción en el tiempo t.
 - \circ μ : Tasa de deriva (retorno promedio de la acción).
 - \circ σ : Volatilidad de la acción.
 - $\circ dW_t$: Proceso de Wiene $\overline{}$ (movimiento Browniano).

Movimiento Browniano Geométrico (GBM)

- Características:
 - No estacionario: No retorna a una media.
 - Deriva y volatilidad: Proporcionales al precio actual.
 - o Distribución log-normal: Los precios de las acciones tienden a ser positivos.
 - o Aplicación: Modelado de precios de activos financieros.

Proceso de Ornstein-Uhlenbeck (O-U) (Recordatorio)

Definición:

- Modelo para simular procesos revertidos a la media.
- Descrito por la ecuación diferencial estocástica:

$$dx_t = \phi(\mu - x_t)\,dt + \sigma\,dW_t$$

Características:

- Estacionario: Retorna a una media a largo plazo.
- \circ **Tasa de reversión:** ϕ controla la velocidad de retorno a μ .
- Aplicación: Modelado de tasas de interés, volatilidad, y otros fenómenos que revierten a la media.

Comparación de Características

Característica	GBM	O-U
Ecuación	$dS_t = \mu S_t dt + \sigma S_t dW_t$	$dx_t = \phi(\mu - x_t)dt + \sigmadW_t$
Media a largo plazo	No	Sí
Volatilidad	Proporcional al precio actual	Constante
Estacionariedad	No	Sí
Aplicación común	Precios de acciones	Tasas de interés, volatilidad

Resumen

• GBM:

- Modela crecimiento exponencial y fluctuaciones.
- Adecuado para activos financieros que no tienen tendencia a regresar a una media específica.

• O-U:

- Modela reversión a la media.
- Adecuado para fenómenos donde hay una tendencia natural a retornar a un nivel promedio.

Discretización del GBM

1. Aproximación del cambio en el precio de la acción:

$$rac{dS_t}{S_t}pprox \mu\,dt + \sigma\,dW_t$$

2. Cambio porcentual en S_t :

$$S_{t+dt} = S_t \exp\left(\left(\mu - 0.5\sigma^2
ight)dt + \sigma\,\sqrt{dt}\,Z_t
ight)$$

- 3. Distribución log-normal:
 - $\circ~Z_t$ es una variable normal estándar.
 - La exponeciación refleja que los precios bajo GBM son log-normales.

Parámetros en la Simulación

- r reemplaza a μ como tasa de deriva (tasa libre de riesgo).
- ullet $(r-0.5\sigma^2)$ ajusta la deriva por la volatilidad.
- El factor $0.5\sigma^2$ proviene de la corrección del Lema de Itô.

Proceso de Simulación

1. Inicialización de Parámetros:

- $\circ~S0$: Precio inicial
- $\circ K$: Precio de ejercicio
- $\circ T$: Tiempo hasta vencimiento
- r: Tasa libre de riesgo
- \circ σ : Volatilidad
- $\circ M$: Pasos de tiempo
- $\circ~N$: Trayectorias simuladas

2. Bucle a través de los Pasos de Tiempo:

- \circ Generar N variables normales estándar Z .
- Calcular el precio en el siguiente paso de tiempo:

$$S[:,i] = S[:,i-1] imes \exp\left((r-0.5\sigma^2) imes dt + \sigma imes \sqrt{dt} imes Z
ight)$$

Establecer Parámetros

```
S0 = 100  # Precio inicial de la acción
K = 105  # Precio de ejercicio
T = 1  # Tiempo hasta el vencimiento en años
r = 0.05  # Tasa de interés libre de riesgo
sigma = 0.2  # Volatilidad de la acción
M = 100  # Número de pasos de tiempo
N = 10000  # Número de trayectorias simuladas
```

Simular Trayectorias de Precios de Acciones

```
np.random.seed(123)
dt = T / M
S = np.zeros((N, M+1))
S[:, 0] = S0

for i in range(1, M+1):
    Z = np.random.randn(N)
    S[:, i] = S[:, i-1] * np.exp((r - 0.5 * sigma**2) * dt + sigma * np.sqrt(dt) * Z)
```

- dt: Incremento de tiempo.
- S: Matriz para almacenar precios simulados.
- Z: Variables aleatorias normales.

Calcular Intervalos de Confianza del 95%

```
S_mean = np.mean(S, axis=0)
S_ci_upper = np.quantile(S, 0.975, axis=0)
S_ci_lower = np.quantile(S, 0.025, axis=0)
```

- **S_mean:** Media de los precios simulados.
- **S_ci_upper**: Límite superior del IC del 95%.
- **S_ci_lower:** Límite inferior del IC del 95%.

Precio de Opción mediante Monte Carlo

```
payoffs = np.maximum(S[:, -1] - K, 0)
discounted_payoffs = np.exp(-r * T) * payoffs
mc_option_price = np.mean(discounted_payoffs)
```

- payoffs: Pago al vencimiento (Opcion Europea).
- discounted_payoffs: Pago descontado (al valor presente).
- mc_option_price: Precio de opción estimado por Monte Carlo.

Precio de Opción de Black-Scholes

```
 d1 = (np.log(S0 / K) + (r + 0.5 * sigma**2) * T) / (sigma * np.sqrt(T)) \\ d2 = d1 - sigma * np.sqrt(T) \\ bs_option_price = S0 * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)
```

- d1, d2: Variables de Black-Scholes.
- **bs_option_price**: Precio de opción de Black-Scholes.

Imprimir Precios de Opción

```
print(f"Monte Carlo Option Price: {mc_option_price:.2f}")
print(f"Black-Scholes Option Price: {bs_option_price:.2f}")
```

• Comparación de precios entre Monte Carlo y Black-Scholes.

Graficar Trayectorias y Intervalos de Confianza

```
plt.figure(figsize=(16, 9))
#plt.plot(S.T, color='gray', alpha=0.1)
plt.plot(S_ci_upper, color='red', linewidth=2, label='95% CI Upper')
plt.plot(S_ci_lower, color='red', linewidth=2, label='95% CI Lower')
```

Gráfico de trayectorias y límites de intervalos de confianza.

Sombrear Área entre la Trayectoria Más Alta y Más Baja

```
S_max = np.max(S, axis=0)
S_min = np.min(S, axis=0)
plt.fill_between(range(M+1), S_max, S_min, color='gray', alpha=0.5, label='Min-Max Range')
```

Monte Carlo Simulation of Stock Prices

Resultados de la Simulación

• Precio de opción mediante Monte Carlo:

```
o (7.99)
```

• Precio de opción de Black-Scholes:

```
(8.02)
```

Conclusión

- Los precios de opciones calculados mediante Monte Carlo y Black-Scholes son muy cercanos (\$7.99 vs \$8.02), demostrando la eficacia de ambos métodos para valorar opciones.
- **GBM** es adecuado para modelar precios de acciones debido a su naturaleza no estacionaria y crecimiento exponencial.
- O-U es más apropiado para variables que tienden a revertir a una media, como las tasas de interés.

¿Por qué usar un Proceso O-U?

- Reversión a la media es una característica observada en:
 - Spreads de estrategias de pares
 - Tasas de interés (modelo de Vasicek)
 - Diferenciales de tasas o commodities
- Estrategias que apuestan a la reversión (mean-reversion trading) se benefician de este modelo.
- Contrasta con activos de crecimiento (acciones, cripto), que pueden seguir procesos tipo GBM.

¿Por qué no usar GBM desde el inicio?

- GBM **no revierte a una media**, por lo que:
 - No captura oportunidades de arbitraje estadístico.
 - Es más adecuado para modelar precios sin ancla.
- O-U permite detectar zonas de sobrecompra/sobreventa relativa al promedio.

Bootstrapping y Estrategia de Trading

Introducción

- **Objetivo**: Realizar bootstrapping en datos de precios de Bitcoin y aplicar lógica de trading.
- Herramientas Utilizadas: Python, yfinance, statsmodels, pandas, numpy, matplotlib.

Paso 3: Función de Bootstrapping

```
def block_bootstrap(data, block_size, num_samples):
    n = len(data)
    bootstrapped_series = []
    for _ in range(num_samples):
        indices = np.arange(n)
        block_start = np.random.choice(indices[:-block_size])
        bootstrap sample = []
        for _ in range(int(n/block size)):
            block = data[block_start:block_start+block_size]
            bootstrap sample.extend(block)
            block_start = np.random.choice(indices[:-block_size])
        bootstrapped_series.append(bootstrap_sample[:n])
    return np.array(bootstrapped_series)
```

Paso 3: Función de Bootstrapping

- block_bootstrap: Realiza bootstrapping por bloques en los datos.
- Parámetros:
 - block_size : Tamaño de cada bloque.
 - o num_samples : Número de muestras bootstrapped a generar.

Paso 4: Parámetros de Bootstrapping

```
# Parámetros
block_size = 10
num_samples = 1000

# Realizar bootstrapping
bootstrapped_data = block_bootstrap(prices, block_size, num_samples)
```

- **block_size**: Tamaño de bloque fijado en 10.
- num_samples: Número de muestras fijado en 1000.
- **bootstrapped_data**: Datos resultantes del bootstrapping.

Paso 5: Modelado ARIMA en Series Bootstrap

```
from statsmodels.tsa.arima.model import ARIMA

model_params = []

for series in bootstrapped_data:
    model = ARIMA(series, order=(1, 0, 1))
    fitted_model = model.fit()
    model_params.append(fitted_model.params)

print(fitted_model.summary())
```

- Modelo ARIMA: Ajusta un modelo ARIMA (1,0,1) a cada serie bootstrapped.
- model_params : Guarda los parámetros ajustados del modelo.

Paso 6: Análisis de Parámetros

```
# Convertir a DataFrame para análisis
model_params_df = pd.DataFrame(model_params, columns=['const', 'ar.L1', 'ma.L1','sigma2'])
# Calcular estadísticas
param_means = model_params_df.mean()
param_ci = model_params_df.quantile([0.025, 0.975])

print("Parameter Means:")
print(param_means)
print("\n95% Confidence Intervals:")
print(param_ci)
```

Paso 6: Análisis de Parámetros

- model_params_df: DataFrame con los parámetros del modelo.
- Media y Intervalos de Confianza: Calcula la media y los intervalos de confianza al 95% para los parámetros.

Paso 7: Lógica de Trading y Visualización

```
sigma_hat = 1231.50
T_max = 100
results = apply_trading_logic(bootstrapped_data, construct_mesh(sigma_hat), T_max)
determine_optimal_rule(results)
sorted_results = results.sort_values(by=['pi', 'pi_bar'])
pivot_table = sorted_results.pivot_table('sharpe_ratio','pi', 'pi_bar')
```

Paso 7: Lógica de Trading y Visualización

- apply_trading_logic : Aplica la lógica de trading a los datos bootstrapped.
- Visualización: Muestra la exploración del espacio de parámetros en un gráfico de contorno.

Espacio de Parámetros R segun Bootstrap

Espacio de Parámetros R segun Datos Sinteticos

Resultados

Metodo	π	$ar{\pi}$	sharpe_ratio
Bootstrap	-14778	1231	1.446
Sintetico	-14778.6	1231.50	3.303

• Si bien los resultados son similares, el valor sharpe es más alto en el caso de los datos sintéticos, lo que sugiere una mayor variabilidad en los resultados.

Análisis de sensibilidad de la estrategia

- ¿Qué pasa si subestimamos σ o ϕ ?
- ¿La estrategia es robusta ante errores en la estimación?
- ¿Qué tan estable es el Sharpe Ratio frente a cambios leves en parámetros?

Ejercicio propuesto

• Simular el mismo conjunto de caminos con:

$$\circ~\phi\pm10\%$$

$$\circ~\sigma\pm10\%$$

- Comparar el cambio en el Sharpe Ratio.
- Visualizar cómo varía el óptimo en el espacio de $(\pi, \bar{\pi})$.

Esto da una medida de **estabilidad y robustez** de la estrategia.

Conclusión

- **Bootstrapping:** Permite generar múltiples muestras de datos para probar la robustez de un modelo.
- Modelado ARIMA: Ajusta modelos a las muestras bootstrapped para analizar la distribución de parámetros.
- **Lógica de Trading:** Aplica estrategias de trading y visualiza los resultados para encontrar parámetros óptimos.

¿Qué riesgos tienen los datos sintéticos?

- Suposiciones fuertes del modelo:
 - Normalidad, linealidad, independencia temporal.
- No capturan eventos extremos (colas gruesas, crashes).
- Pérdida de estructura temporal compleja:
 - Autocorrelaciones no lineales.
 - Regímenes de volatilidad (GARCH-like behavior).
- Pueden inducir falsa robustez si el modelo no generaliza.

¿Cómo mitigar estos riesgos?

- Validar con múltiples métodos (GBM, O-U, bootstrap).
- Complementar con datos reales y eventos históricos.
- Considerar simulaciones regime-switching o copulas si el foco es multiactivo.
- Evaluar sensibilidad de resultados a los parámetros del modelo.

Referencias

- López de Prado, M. (2018). *Advances in Financial Machine Learning*. Wiley. (Chapter 13)
- Codigos y ejemplos en Github