

MAT1161 – Cálculo de Uma Variável P2 – 19 de maio de 2016

Nome Legível	:	
Assinatura	:	
Matrícula	:	Turma :

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
3^a	2,0		

r	T2(2,0)	P2 Maple (3,0)	P2 (5,0)	Total (10,0)	Revisão

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções.
 Não é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno n\(\tilde{a}\)o poder\(\tilde{a}\) sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara, rigorosa e de preferência sucinta. Respostas sem justificativas não serão consideradas.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Não é permitido o uso de calculadora ou qualquer dispositivo eletrônico.
- Esta prova possui 3 questões. Confira.

Questão 1

Considere a função f definida por partes:

$$f(x) = \begin{cases} f_1(x), & -2 \le x \le 0 \\ f_2(x), & 0 < x \le 1 \\ f_3(x), & 1 < x \le 2 \end{cases}$$

tal que

- $f_1(x) = a^x + b$, a > 0, $a \neq 1$, $b \in \mathbb{R}$
- \bullet O gráfico de f_2 é metade de uma semicircunferência
- $\bullet\,$ O gráfico de f_3 é um segmento de reta

A figura abaixo é o gráfico de f:

(a) Sabendo que:

- \bullet Os valores máximos de $f_1,\,f_2$ e f_3 são 0, 1, 2, respectivamente
- O ponto $\left(-1, -\frac{1}{2}\right)$ pertence ao gráfico de f

determine as expressões das funções f_1 , f_2 e f_3 , explicitando o valor das constantes a e b. Solução:

Os pontos (0,0) e $\left(-1,-\frac{1}{2}\right)$ pertencem ao gráfico de f_1 :

$$\begin{cases} f_1(-1) = \frac{1}{a} + b = -\frac{1}{2} \\ f_1(0) = 1 + b = 0 \end{cases} \Rightarrow a = 2, b = -1$$

Logo,

$$f_1(x) = 2^x - 1.$$

Para determinar a expressão de f_2 devemos primeiramente determinar a equação da circunferência de centro (1,0) e raio 1:

$$(x-1)^2 + y^2 = 1$$
.

Logo,

$$y = \pm \sqrt{1 - (x - 1)^2} \,.$$

Como o gráfico de f_2 é um trecho da semicircunferência superior, segue que

$$f_2(x) = \sqrt{1 - (x - 1)^2}$$
.

Como o gráfico de f_3 é um segmento de reta, sua expressão é da forma $f_3(x) = cx + d$, onde c e d são constantes reais. Pelas informações do enunciado, temos que o gráfico de f_3 passa pelos pontos (1,1) e (2,2). Logo,

$$\begin{cases} f_3(1) = c + d = 1 \\ f_3(2) = 2c + d = 2 \end{cases} \Rightarrow c = 1, d = 0$$

Assim,

$$f_3(x) = x.$$

(b) A função f é inversível? Em caso afirmativo, esboce abaixo a reta y=x e o gráfico de f^{-1} .

Lembre-se de justificar as suas respostas!

Solução:

Sim, pois f é estritamente crescente em todo o seu domínio.

Questão 2

Considere a função $f(x) = \cos(3x) + 2$.

(a) Considere como domínio de f o maior intervalo possível para que f seja inversível e para que o gráfico de f^{-1} (a função inversa de f) passe pelo ponto $P = \left(2, \frac{\pi}{2}\right)$. Nestas condições, determine o domínio de f e também o de f^{-1} , e determine uma expressão para $f^{-1}(x)$.

Solução:

Sabendo que os gráficos de f e f^{-1} devem ser simétricos com relação à reta y=x, se o ponto $P=\left(2,\frac{\pi}{2}\right)$ pertence ao gráfico de f^{-1} , então o ponto $Q=\left(\frac{\pi}{2},2\right)$ pertence ao gráfico de f. Ou seja, $\mathrm{Dom}(f)$ deve ser um intervalo que contenha $x=\frac{\pi}{2}$ no qual f seja estritamente crescente ou decrescente.

Observe que:

$$f'(x) = -3\operatorname{sen}(3x) = 0 \iff x = \frac{k\pi}{3}, \ k \in \mathbb{Z}.$$

Como $\frac{\pi}{3} < \frac{\pi}{2} < \frac{2\pi}{3}$, então $\text{Dom}(f) = \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$. Além disso, $\text{Im}(f) = [1, 3] = \text{Dom}(f^{-1})$.

Para determinar a expressão de f^{-1} :

$$y = \cos(3x) + 2 \iff y - 2 = \cos(3x) \tag{1}$$

Para isolar a variável x, devemos aplicar aos dois lados da equação (1) a função inversa de $\cos(3x), \ x \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$. Para determiná-la, considere $\theta = 3x$ (logo $\theta \in [\pi, 2\pi]$). Abaixo esboçamos a curva $y = \cos(\theta)$:

- Se $g(\theta) = \cos(\theta), \ \theta \in [0, \pi],$ então $g^{-1}(\theta) = \arccos(\theta)$
- A curva em azul $(\theta \in [\pi, 2\pi])$ pode ser obtida por uma reflexão da curva tracejada com relação ao eixo vertical seguida de um deslocamento de 2π unidades para a direita.
- Conclui-se que se $g(\theta) = \cos(\theta)$, $\theta \in [\pi, 2\pi]$, então $g^{-1}(\theta) = 2\pi \arccos(\theta)$ (reflexão da curva $y = \arccos(\theta)$ com relação ao eixo horizontal seguida de deslocamento de 2π unidades para cima)

Assim, voltando à equação (1):

$$y = \cos(3x) + 2 \quad \Leftrightarrow \quad y - 2 = \cos(3x)$$
$$\Leftrightarrow \quad 2\pi - \arccos(y - 2) = 3x$$
$$\Leftrightarrow \quad x = \frac{2\pi - \arccos(y - 2)}{3}$$

E então,

$$f^{-1}(x) = \frac{2\pi - \arccos(x-2)}{3}.$$

(b) Determine a equação da reta tangente ao gráfico de f^{-1} no ponto P. Solução:

$$y = (f^{-1})'(2)(x-2) + f^{-1}(2).$$

Temos que
$$f^{-1}(2) = \frac{2\pi - \arccos(0)}{3} = \frac{\pi}{2}$$
.

Pelo Teorema da Função Inversa,

$$(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{3\operatorname{sen}\left(\frac{3\pi}{2}\right)} = \frac{1}{3}.$$

Logo, a equação pedida é:

$$y = \frac{1}{3}(x-2) + \frac{\pi}{2}.$$

Questão 3

Considere as funções $f(x) = \int_0^x (t-4)^4 e^t dt$ e $g(x) = x^2$.

(a) Escreva a expressão da função h definida por h(x) = f(g(x)). Solução:

$$h(x) = \int_0^{x^2} (t-4)^4 e^t dt$$

(b) Derive a função h.

Solução:

$$h'(x) = f'(q(x))q'(x) = (x^2 - 4)^4 e^{x^2} 2x$$
.

(c) Determine a(s) abscissa(s) (coordenada x) do(s) ponto(s) de máximo local e de mínimo local de h, caso exista(m).

Solução:

$$h'(x) = (x^2 - 4)^4 e^{x^2} 2x = 0 \iff x = -2, 0, 2$$

Estudo de sinal de h'(x):

	$-\infty < x < -2$	-2 < x < 0	0 < x < 2	$2 < x < \infty$
$(x^2-4)^4$	+	+	+	+
e^{x^2}	+	+	+	+
2x	_	_	+	+
h'(x)	_	_	+	+

Conclui-se que o intervalo de crescimento de h é $[0, +\infty)$ e o intervalo de decrescimento é $(-\infty, 0]$. Logo, em x = 0 temos um mínimo local de h. Em x = 2 e x = -2 não existem máximos nem mínimos.

(d) Calcule a segunda derivada da função h.

Solução:

$$h''(x) = 4(x^{2} - 4)^{3} 2x e^{x^{2}} 2x + (x^{2} - 4)^{4} e^{x^{2}} 2x 2x + (x^{2} - 4)^{4} e^{x^{2}} 2$$

$$= 16x^{2} e^{x^{2}} (x^{2} - 4)^{3} + 4x^{2} e^{x^{2}} (x^{2} - 4)^{4} + 2e^{x^{2}} (x^{2} - 4)^{4}$$

$$= 2e^{x^{2}} (x^{2} - 4)^{3} (8x^{2} + 2x^{2} (x^{2} - 4) + (x^{2} - 4))$$

$$= 2e^{x^{2}} (x^{2} - 4)^{3} (2x^{4} + x^{2} - 4)$$

(e) Determine a(s) abscissa(s) (coordenada x) do(s) ponto(s) de inflexão de h, caso exista(m). Solução:

$$h''(x) = 2e^{x^2}(x^2 - 4)^3(2x^4 + x^2 - 4) = 0 \iff x = -2 \text{ ou } x = 2 \text{ ou } 2x^4 + x^2 - 4 = 0.$$

Para resolver a equação $2x^4 + x^2 - 4 = 0$, considere $y = x^2$:

$$2x^4 + x^2 - 4 = 0 \iff 2y^2 + y - 4 = 0 \iff y = \frac{-1 \pm \sqrt{33}}{4}$$

Como $y=x^2\geq 0,$ descartaremos a solução negativa $\dfrac{-1-\sqrt{33}}{4}$. Logo,

$$2x^4 + x^2 - 4 = 0 \iff x = \sqrt{\frac{-1 + \sqrt{33}}{4}} = \alpha \text{ ou } x = -\sqrt{\frac{-1 + \sqrt{33}}{4}} = -\alpha.$$

Estudo de sinal de h''(x):

	$-\infty < x < -2$	$-2 < x < -\alpha$	$-\alpha < x < \alpha$	$\alpha < x < 2$	$2 < x < \infty$
$2(x^2-4)^3$	+	_	_	_	+
e^{x^2}	+	+	+	+	+
$2x^4 + x^2 - 4$	+	+	_	+	+
h''(x)	+	_	+	_	+

Conclui-se que os intervalos de concavidade para cima do gráfico de h são $(-\infty, -2]$, $[-\alpha, \alpha]$, $[2, +\infty)$ e os intervalos de concavidade para baixo são $[-2, -\alpha]$ e $[\alpha, 2]$. Logo, as abscissas dos pontos de inflexão são $x = -2, -\alpha, \alpha, 2$.