Predicting Survival in the Titanic Data Set

We will be using a decision tree to make predictions about the Titanic data set from Kaggle. This data set provides information on the Titanic passengers and can be used to predict whether a passenger survived or not.

Loading Data and modules

import numpy as np import pandas as pd import seaborn as sb import matplotlib.pyplot as plt import sklearn from pandas import Series, DataFrame from pylab import rcParams from sklearn import preprocessing from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import train_test_split from sklearn import metrics from sklearn.metrics import classification report

Url= https://raw.githubusercontent.com/BigDataGal/Python-for-DataScience/master/titanic-train.csv (https://raw.githubusercontent.com/BigDataGal/Python-for-DataScience/master/titanic-train.csv)

```
titanic = pd.read csv(url)
```

titanic.columns = ['Passengerld','Survived','Pclass','Name','Sex','Age','SibSp','Parch','Ticket','Fare','Cabin','Embarked']

You use only Pclass, Sex, Age, SibSp (Siblings aboard), Parch (Parents/children aboard), and Fare to predict whether a passenger survived.

```
In [1]: import pandas as pd
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_auc_
import seaborn as sns
```

```
In [2]: Data= sns.load_dataset('titanic')
Data.head()
```

de	adult_male	who	class	embarked	fare	parch	sibsp	age	sex	pclass	survived	
Na	True	man	Third	S	7.2500	0	1	22.0	male	3	0	0
	False	woman	First	С	71.2833	0	1	38.0	female	1	1	1
Na	False	woman	Third	S	7.9250	0	0	26.0	female	3	1	2
	False	woman	First	S	53.1000	0	1	35.0	female	1	1	3
Na	True	man	Third	S	8.0500	0	0	35.0	male	3	0	4
												4

In [3]: #You use only Pclass, Sex, Age, SibSp (Siblings aboard), Parch (Parents/children
to predict whether a passenger survived.

In [4]: Data.drop(axis=1,columns=["embarked","class",'who','adult_male','deck','embark_to Data.head()

```
Out[4]:
```

	survived	pclass	sex	age	sibsp	parch	fare
0	0	3	male	22.0	1	0	7.2500
1	1	1	female	38.0	1	0	71.2833
2	1	3	female	26.0	0	0	7.9250
3	1	1	female	35.0	1	0	53.1000
4	0	3	male	35.0	0	0	8.0500

In [5]: Y=Data["survived"] Y.head()

Out[5]: 0 0

1

1

1

Name: survived, dtype: int64

In [6]: Data['age'].fillna(method ='ffill',inplace = True) Data

Out[6]:

	survived	pclass	sex	age	sibsp	parch	fare
0	0	3	male	22.0	1	0	7.2500
1	1	1	female	38.0	1	0	71.2833
2	1	3	female	26.0	0	0	7.9250
3	1	1	female	35.0	1	0	53.1000
4	0	3	male	35.0	0	0	8.0500
886	0	2	male	27.0	0	0	13.0000
887	1	1	female	19.0	0	0	30.0000
888	0	3	female	19.0	1	2	23.4500
889	1	1	male	26.0	0	0	30.0000
890	0	3	male	32.0	0	0	7.7500

891 rows × 7 columns

```
In [7]: Sex = Data["sex"]
    Dummy = pd.get_dummies(Sex)
    Dummy.drop(columns=["female"],inplace=True)
    Dummy.rename(columns={"male": "sex"})
```

Out[7]:		sex
	0	1
	1	0
	2	0
	3	0
	4	1
	886	1
	887	0
	888	0
	889	1

890

891 rows × 1 columns

1

In [8]: Data

Out[8]:

	survived	pclass	sex	age	sibsp	parch	fare
0	0	3	male	22.0	1	0	7.2500
1	1	1	female	38.0	1	0	71.2833
2	1	3	female	26.0	0	0	7.9250
3	1	1	female	35.0	1	0	53.1000
4	0	3	male	35.0	0	0	8.0500
886	0	2	male	27.0	0	0	13.0000
887	1	1	female	19.0	0	0	30.0000
888	0	3	female	19.0	1	2	23.4500
889	1	1	male	26.0	0	0	30.0000
890	0	3	male	32.0	0	0	7.7500

891 rows × 7 columns

```
In [9]: Data.drop(axis=1,columns=['sex',"survived"],inplace=True)
Data.head()
```

Out[9]: pclass age sibsp parch fare 0 3 22.0 1 0 7.2500 1 38.0 1 0 71.2833 1 2 3 26.0 7.9250 3 1 35.0 1 0 53.1000

3 35.0

0

0

8.0500

```
In [10]: df = pd.merge(Data ,Dummy ,left_index=True,right_index=True)
    df.rename(columns={'male':'sex'},inplace= True)
    df.head()
```

```
Out[10]:
               pclass
                        age sibsp parch
                                               fare sex
            0
                    3 22.0
                                 1
                                            7.2500
                                                      1
                       38.0
                                        0 71.2833
            1
                    1
                                 1
                                                      0
            2
                    3 26.0
                                 0
                                        0
                                            7.9250
            3
                    1 35.0
                                        0 53.1000
                                                      0
                                 1
                                            8.0500
            4
                    3 35.0
                                 0
                                                      1
```

```
In [11]: #checking wehther there is any null value or not
for i in df.columns:
    print(i,df[i].isnull().sum())
```

pclass 0
age 0
sibsp 0
parch 0
fare 0
sex 0

In [12]: x_train,x_test,y_train,y_test = train_test_split(df,Y,test_size = 0.25, random_st

In [13]: clf = DecisionTreeClassifier()
 clf.fit(x_train,y_train)

```
In [14]: feature name=list(df.columns)
         class_name = list(y_train.unique())
         feature name
Out[14]: ['pclass', 'age', 'sibsp', 'parch', 'fare', 'sex']
In [15]: clf.score(x_train,y_train)
Out[15]: 0.9925149700598802
In [16]: y_pred = clf.predict(x_test)
In [17]: # accuracy of our classification tree
         print("Accuracy of this model is {}%".format(round((100*clf.score(x_test,y_test)))
         Accuracy of this model is 74.888%
In [18]: from sklearn import metrics
         print("Confusion matrix:-\n", metrics.confusion_matrix(y_test, y_pred))
         Confusion matrix:-
          [[110 23]
          [ 33 57]]
In [ ]:
```