Школа анализа данных БММО

Домашнее задание №3

$$p(X,Z,v,\theta|\alpha,a,b) = \prod_{k=1}^{\infty} \left[Beta(v_k|1,\alpha) \prod_{d=1}^{D} Beta(\theta_k^d|a,b) \right] \prod_{n=1}^{N} \prod_{k=1}^{\infty} \left(\prod_{d=1}^{D} \theta_k^{dx_n^d} (1-\theta_k^d)^{1-x_n^d} v_k \prod_{i=1}^{k-1} (1-v_i) \right)^{[z_n=k]}$$

1 Вариационный вывод

$$q(Z)q(\theta)q(v) \approx p(Z,\theta,v|X,\alpha,a,b) = \frac{p(X,Z,\theta,v|\alpha,a,b)}{p(X|\alpha,a,b)}$$

Воспользуемся формулами вариационного вывода

1.1 Расчет q(z)

$$\log q(z) \propto E_{q(\theta)q(v)} \sum_{n=1}^{N} \sum_{k=1}^{\infty} [z_n = k] \left(\sum_{d=1}^{D} [x_n^d \log \theta_k^d + (1 - x_n^d) \log(1 - \theta_k^d)] + \log v_k + \sum_{i=1}^{k-1} log(1 - v_i) \right) =$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{\infty} [z_n = k] \left(E_{q(\theta)} \log p(x_n | \theta_k) + E_{q(v)} \log v_k + \sum_{i=1}^{k-1} E_{q(v)} log(1 - v_i) \right)$$
(1)

$$\begin{split} q(z) &\sim \prod_{n=1}^{N} \prod_{k=1}^{\infty} \exp\left([z_n = k](E_{q(\theta)} \sum_{d=1}^{D} [x_n^d \log \theta_k^d + (1 - x_n^d) \log(1 - \theta_k^d)] + E_{q(v)} \log v_k + \sum_{i=1}^{k-1} E_{q(v)} log(1 - v_i))\right) \\ q(z_n = k) &\sim \exp\left(E_{q(\theta)} \sum_{d=1}^{D} [x_n^d \log \theta_k^d + (1 - x_n^d) \log(1 - \theta_k^d)] + E_{q(v)} \log v_k + \sum_{i=1}^{k-1} E_{q(v)} log(1 - v_i)\right) \\ q(z_n = k) &= \frac{\exp\left(\sum_{d=1}^{D} [x_n^d E_{q(\theta)} \log \theta_k^d + (1 - x_n^d) E_{q(\theta)} \log(1 - \theta_k^d)] + E_{q(v)} \log v_k + \sum_{i=1}^{k-1} E_{q(v)} log(1 - v_i)\right)}{\sum_{p=1}^{\infty} \exp\left(\sum_{d=1}^{D} [x_n^d E_{q(\theta)} \log \theta_k^d + (1 - x_n^d) E_{q(\theta)} \log(1 - \theta_p^d)] + E_{q(v)} \log v_p + \sum_{i=1}^{p-1} E_{q(v)} log(1 - v_i)\right)} = r_{nk} \\ E_{q(z)}[z_n = k] &= r_{nk} \end{split}$$

1.2 Расчет $q(\theta)$

$$\log q(\theta) \propto E_{q(v)q(z)} \sum_{k=1}^{\infty} \sum_{d=1}^{D} ((a-1)log(\theta_k^d) + (b-1)log(1-\theta_k^d)) + \sum_{n=1}^{N} \sum_{k=1}^{\infty} [z_n = k] \sum_{d=1}^{D} [x_n^d \log \theta_k^d + (1-x_n^d)log(1-\theta_k^d)] =$$

$$= \sum_{d=1}^{D} \sum_{k=1}^{\infty} ((a-1+\sum_{n=1}^{N} r_{nk}x_n^d)log(\theta_k^d) + (b-1+\sum_{n=1}^{N} r_{nk}(1-x_n^d))log(1-\theta_k^d))$$

$$\theta_k^d \sim Beta(a+\sum_{n=1}^{N} r_{nk}x_n^d, b+\sum_{n=1}^{N} r_{nk}(1-x_n^d)) = Beta(a_{\theta dk}, b_{\theta dk})$$

$$(2)$$

1.3 Расчет q(v)

$$\log q(v) \propto E_{q(\theta)q(z)} \sum_{k=1}^{\infty} ((1-1)\log(v_k) + (\alpha - 1)\log(1 - v_k)) + \sum_{n=1}^{N} \sum_{k=1}^{\infty} [z_n = k] [\log v_k + \sum_{i=1}^{k-1} \log(1 - v_i)] =$$

$$= \sum_{k=1}^{\infty} [(1-1+\sum_{n=1}^{N} r_{nk}) \log v_k + (\alpha - 1 + \sum_{n=1}^{N} \sum_{i>k} r_{ni})]$$

$$v_k \sim Beta(1+\sum_{n=1}^{N} r_{nk}, \alpha + \sum_{n=1}^{N} \sum_{i>k} r_{ni}) = Beta(a_{vk}, b_{vk})$$
(3)

1.4 Достаточные статистики

Теперь нужно воспользоваться свойством для распределения из экспоненциального класса (в нашем случае бета-распределение)

Пусть $x \sim Beta(a, b)$:

аналогично

$$p(x) = \frac{x^{a-1}(1-x)(b-1)}{B(a,b)} = \frac{1}{B(a,b)} exp((a-1)\log x + (b-1)\log(1-x))$$

$$\theta_1 = a - 1, \theta_2 = b - 1$$

$$E\log x = \frac{d\log B(\theta_1 + 1, \theta_2 + 1)}{d\theta_1} = \frac{d\log \Gamma(a) - \log \Gamma(a+b)}{da} = \psi(a) - \psi(a+b)$$

 $E\log(1-x) = \psi(b) - \psi(a+b)$

Теперь мы можем рассчитать r_{nk} :

$$r_{nk} = \frac{\exp\left(\sum_{d=1}^{D} \left[\psi(b_{\theta dk}) - \psi(a_{\theta dk} + b_{\theta dk}) + x_n^d(\psi(a_{\theta dk}) - \psi(b_{\theta dk}))\right] + \psi(a_{vk}) - \psi(a_{vk} + b_{vk}) + \sum_{i=1}^{k-1} (\psi(b_{vk}) - \psi(a_{vk} + b_{vk}) + \sum_{i=1}^{k-1} (\psi(b_{vk}) - \psi(a_{vk} + b_{vk}))\right]}{\sum_{p=1}^{\infty} (..)}$$

(4)

1.5 Вариационная нижняя оценка

$$\mathbb{L}(q) = E_{q(z)q(\theta)q(v)} \log P(X, Z, v, \theta | \alpha, a, b) - E_{q(z)q(\theta)q(v)} \log q(z, v\theta) =$$

$$= \sum_{k=1}^{\infty} \left[(1 - a_{vk})(\psi(a_{vk}) - \psi(a_{vk} + b_{vk})) + (\alpha - b_{vk})(\psi(a_{vk}) - \psi(a_{vk} + b_{vk})) + \log B(a_{vk}, b_{vk}) - \log B(1, \alpha) + \right]$$

$$+ \sum_{k=1}^{D} \left((a - a_{\theta dk})(\psi(a_{\theta dk}) - \psi(a_{\theta dk} + b_{\theta dk})) + (b - b_{\theta dk})(\psi(b_{\theta dk}) - \psi(a_{\theta dk} + b_{\theta dk})) + \log B(a_{\theta dk}, b_{\theta dk}) - \log B(a, b) \right] +$$

$$+ \sum_{k=1}^{D} \sum_{k=1}^{\infty} r_{nk} \left[\sum_{d=1}^{D} x_n^d(\psi(a_{\theta dk}) - \psi(a_{\theta dk} + b_{\theta dk})) + (1 - x_n^d)(\psi(b_{\theta dk}) - \psi(a_{\theta dk} + b_{\theta dk})) + \psi(a_{vk}) - \psi(a_{vk} + b_{vk}) + \right]$$

$$+ \sum_{k=1}^{C} (\psi(b_{vk}) - \psi(a_{vk} + b_{vk})) - \log r_{nk}$$

$$(5)$$

2 Протестировать полученный алгоритм на небольшой подвыборке Digits. Качественно охарактеризовать, как влияют параметры модели α , a, b на вид и количество образующихся кластеров. Выбрать конкретные значения α , a, b и использовать их во всех дальнейших экспериментах

Рассмотрим подвыборку длины 3000

2.1 Выбор константы для вычисления числа кластеров

На изображении выше видно, что взятая константа, равная 100 слишком большая, т.к. быстро становится много пустых кластеров, и в конце они практичеки все нулевые. Будем испольвзовать далее предложенную константу, равную 10

3 Выбор α

Из графика выше следует, чем выше значение параметра α (b) тем больше вероятность, что v примет значение близкое к нулю, т.е. вероятность очередного кластера для любого объекта будет мала, чем меньше α тем вероятнее, что очереденой x сгенерирован из данного кластера. Аналогично для малых α - только в этом случае, напротив вероятность первых кластеров будет очень высокая, а на остальные ничего не останется (следует из метода ломки палки) Таким образом, брать $\alpha > 1.5$ неразумно.

Посмотрим, какие кластеры будут получаться взависимости от α

Рис. 3.0.1: $\alpha = 3$

Рис. 3.0.2: $\alpha = 1.3$

Рис. 3.0.3: $\alpha = 0.7$

Рис. 3.0.4: $\alpha = 0.15$

В нашей задаче мы знаем, что кластеров должно быть не очень много, поэтому будем использовать $\alpha=0.15$ (тем более на большой выборке число кластеров увеличится)

3.1 Выбор a, b

3.1.1 a = b

Рис. 3.1.1: a = b

Рис. 3.1.2: a = b = 1e - 5

Рис. 3.1.3: a = b = 10

При больших значениях a,b получаем, что значение каджого пиксела стремится быть сконцентрировано вблизи значения 0.5 (серый фон), а при малых a=b значения пикселов сконцентрированы вблизи 0 и 1, это то, что нам нужно. Поэтому выбираем a,b<1

Рис. 3.1.4: a = b

Если b > a получаем больше черных пикселов, если b < a, больше белых пикселов.

Рис. 3.1.5: a = 0.5b = 0.001

Рис. 3.1.6: a = 0.5b = 0.99

На рисунках разница не заметна, видимо для a,b<1 метод хорошо обучается и стартовое значение нивелируется. В таком случае далее будем использовать a=0.5b=0.5

4 Запустить алгоритм на полной выборке Digits. Сколько и каких получилось кластеров? Рассмотреть величины q(zn = k) в качестве признаков n-го объекта выборки, обучить любой классификатор на образованных данных, построить матрицу точности на контрольной выборке. Проинтерпретировать результат

Рис. 4.0.1: Центры кластеров На всех данных (14 кластеров)

Присутствуют все 10 цифр, это хорошо.

Обучим классификатор (SVC) на признаках z: получили ассuracy=0.84814 ($test_size=0.3$) Рассмотрим матрицу Precision (строки-истиррые значения, столбцы-предсказанные

0	1	2	3	4	5	6	7	8	9
0.9773	0.0000	0.0000	0.0000	0.0000	0.0286	0.0000	0.0000	0.0000	0.0462
0.0000	0.9804	0.2037	0.0000	0.0000	0.0143	0.0000	0.0000	0.0526	0.0000
0.0227	0.0000	0.7407	0.0000	0.0000	0.0000	0.0000	0.0000	0.1053	0.0923
0.0000	0.0000	0.0185	1.0000	0.0000	0.0143	0.0000	0.0290	0.0702	0.0923
0.0000	0.0000	0.0000	0.0000	0.9574	0.0143	0.0000	0.0580	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0213	0.8429	0.0000	0.0000	0.0000	0.0769
0.0000	0.0196	0.0000	0.0000	0.0213	0.0000	1.0000	0.0000	0.0351	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.7971	0.0000	0.0000
0.0000	0.0000	0.0370	0.0000	0.0000	0.0429	0.0000	0.0290	0.7018	0.0308
0.0000	0.0000	0.0000	0.0000	0.0000	0.0429	0.0000	0.0870	0.0351	0.6615

Наиболее интересно, что часто предсказываем: для цифры 1 значение 2 (см. класер 6)

² раза - 5

² раза - 9

¹ раз - 4

¹ раз - 0

² раза - 2

² раза - 1

¹ раз - 8

¹ раз - 7

¹ раз - 3

¹ раз - 6

Для цифры 9 значение 7 (см. кластер 10) для цифры 3 значение 8 (см. кластер 9) для цифры 3,4,6 значение 9 (см. кластер 9)

5 Протестировать алгоритм в условиях, когда обучающие данные приходят порциями. Как меняются кла- стеры по мере добавления данных с новыми видами цифр?

Рис. 5.0.1: Каждая строка это дообучение 150 образцами

Когда приходят новые виды цифр кластеры немного расплываются (облако становится менее четким). В этом случае следовало бы увеличить число кластеров, но в случае дообучения число кластеров постоянно. С другой стороны мы получаем дополнительную информацию - цифры становятся более "общими"