96 7. LÖSUNGEN

LÖSUNG 31. Bestimmen Sie die Ableitung von

$$f(x) = (x^2 + e^x)\sin(7x + 3).$$

Die Funktion f(x) kann als Produkt von zwei Funktionen a(x) und b(x) geschrieben werden: $f(x)=a(x)\cdot b(x)$ mit $a(x)=x^2+e^x$ und $b(x)=\sin(7x+3)$. Die Anwendung der Produktregel liefert dann f'(x)=a'(x)b(x)+a(x)b'(x). Die Ableitung von a(x) kann wegen Linearität einzeln bestimmt werden: $a'(x)=2x+e^x$. Die Ableitung von b(x) wird mit der Kettenregel bestimmt: $b'(x)=\cos(7x+3)\cdot(7+0)$. Insgesamt ist damit:

$$f'(x) = (2x + e^x)\sin(7x + 3) + (x^2 + e^x)\cos(7x + 3) \cdot 7$$

LÖSUNG 32. Bestimmen Sie die Ableitung von

$$f(x) = (x^3 + \sin(x)) \cdot e^{3x+2}.$$

Die Funktion f(x) kann als Produkt von zwei Funktionen a(x) und b(x) geschrieben werden: $f(x) = a(x) \cdot b(x)$ mit $a(x) = x^3 + \sin(x)$ und $b(x) = \exp(3x+2)$. Die Anwendung der Produktregel liefert dann f'(x) = a'(x)b(x) + a(x)b'(x). Die Ableitung von a(x) kann wegen Linearität einzeln bestimmt werden: $a'(x) = 3x^2 + \cos(x)$. Die Ableitung von b(x) wird mit der Kettenregel bestimmt: $b'(x) = \exp(3x+2) \cdot (3+0)$. Insgesamt ist damit:

$$f'(x) = (3x^2 + \cos(x)) \cdot e^{3x+2} + (x^3 + \sin(x)) \cdot e^{3x+2} \cdot 3$$
$$= (3x^3 + 3x^2 + 3\sin(x) + \cos(x)) \cdot e^{3x+2}$$

LÖSUNG 33. Bestimmen Sie die Ableitung von

$$g(x) = \frac{\ln(x) + 2^x}{\cos^2(x)}.$$

Die Funktion g(x) ist ein Quotient $g(x)=\frac{a(x)}{b(x)}$ mit $a(x)=\ln(x)+2^x$ und $b(x)=\cos^2(x)=(\cos(x))^2$. Zunächst die Vorüberlegung: $2^x=e^{x\cdot \ln 2}$ mit Ableitung $e^{x\cdot \ln 2}\cdot \ln 2=2^x\cdot \ln 2$. Damit ist $a'(x)=\frac{1}{x}+2^x\cdot \ln 2$. Die Ableitung von $\cos^2(x)$ ist nach Kettenregel $b'(x)=-2\cos(x)\sin(x)$. Insgesamt erhalten wir nach der Quotientenregel:

$$g'(x) = \frac{\left(\frac{1}{x} + 2^x \cdot \ln 2\right) \cdot \left(\cos^2(x)\right) - (\ln x + 2^x) \cdot (-2\sin x \cos x)}{\cos^4(x)}$$

LÖSUNG 34. Bestimmen Sie die Ableitung von

$$g(x) = \frac{x^2 + 4x}{\ln(x)} \,.$$

Die Funktion g(x) ist ein Quotient $g(x)=\frac{a(x)}{b(x)}$ mit $a(x)=x^2+4x$ und $b(x)=\ln(x)$. Wegen Linearität ist a'(x)=2x+4. Die Ableitung von b(x) ist $b'(x)=\frac{1}{x}$. Insgesamt erhalten wir nach der Quotientenregel:

$$g'(x) = \frac{(2x+4) \cdot (\ln x) - (x^2 + 4x) \cdot (\frac{1}{x})}{(\ln x)^2}.$$

 ${
m L\ddot{o}sung}$ 35. Bestimmen Sie die Ableitung von

$$h(x) = x^x \cdot \sqrt{\ln x} \,.$$

7. LÖSUNGEN 97

Zunächst die Vorüberlegung $x^x=e^{x\cdot \ln x}$ mit Ableitung $e^{x\cdot \ln x}\cdot (1\cdot \ln x+\frac{x}{x})$ wegen der Kettenregel, und $\sqrt{\ln x}=(\ln x)^{1/2}$ mit Ableitung $\frac{1}{2}(\ln x)^{-1/2}\cdot \frac{1}{x}$ ebenfalls wegen der Kettenregel. Damit gilt nach Produktregel

$$h'(x) = x^{x} \cdot (\ln x + 1) \cdot \sqrt{\ln x} + \frac{1}{2} \frac{x^{x}}{x\sqrt{\ln x}}$$

LÖSUNG 36. Bestimmen Sie die Ableitung von

$$h(x) = (\ln(x))^{\sqrt{x}} .$$

Zunächst ist $(\ln(x))^{\sqrt{x}} = \exp\left((\sqrt{x}) \cdot \ln\left(\ln x\right)\right)$ und damit ist nach Kettenregel und Produktregel:

$$h'(x) = \exp\left(\left(\sqrt{x}\right) \cdot \ln\left(\ln x\right)\right) \cdot \left(\left(\frac{1}{2\sqrt{x}}\right) \cdot \ln\left(\ln x\right) + \left(\sqrt{x}\right) \cdot \frac{\frac{1}{x}}{\ln x}\right)$$
$$= (\ln(x))^{\sqrt{x}} \cdot \left(\frac{\ln\left(\ln x\right)}{2\sqrt{x}} + \frac{\sqrt{x}}{x \ln x}\right)$$

LÖSUNG 37. Bestimmen Sie die Extremwerte und deren Art von

$$f(x) = \frac{x^4}{4} + x^3 - 2x^2 - 4.$$

Die Ableitungen lauten:

$$f'(x) = x^3 + 3x^2 - 4x$$
$$f''(x) = 3x^2 + 6x - 4$$

Die Nullstellen der ersten Ableitung lauten $x_1=0$ (ablesbar), $x_2=1$, $x_3=-4$ (z.B. mit p,q-Formel) und damit haben wir drei Kandidaten für Extremstellen mit $f(x_1)=-4$, $f(x_2)=-\frac{19}{4}$, $f(x_3)=-36$. Mit der Untersuchung der Krümmung ist ersichtlich:

$$f''(0)=-4<0: \qquad E_1(0|-4) \text{ ist ein relatives Maximum}$$

$$f''(1)=5>0: \qquad E_2(1|-\frac{19}{4}) \text{ ist ein relatives Minimum}$$

$$f''(-4)=20>0: \qquad E_3(-4|-36) \text{ ist ein relatives Minimum}$$

LÖSUNG 38. Bestimmen Sie die Extremwerte und deren Art von

$$f(x) = x^3 + \frac{3}{2}x^2 - 18x + 1$$
.

Die Ableitungen lauten:

$$f'(x) = 3x^2 + 3x - 18$$
$$f''(x) = 6x + 3$$

Die Nullstellen der ersten Ableitungen sind nach beispielsweise p,q-Formel $x_1=-3,\ x_2=2,$ mit $f(x_1)=-\frac{83}{2}$ und $f(x_2)=-21.$ Aus der Analyse der Krümmung ist ersichtlich:

$$f''(-3)=-15<0$$
 : $E_1(-3|-rac{83}{2})$ ist ein relatives Maximum $f''(2)=15>0$: $E_2(2|-21)$ ist ein relatives Minimum

LÖSUNG 39. Führen Sie zwei Schritte des Newton-Verfahrens zu g(x) ab $x_0 = 1$ durch:

$$g(x) = x^3 - 2.$$

98 7. LÖSUNGEN

Das Newtonverfahren lautet hier

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)} = x_n - \frac{x_n^3 - 2}{3x_n^2} = \frac{2}{3}(x_n + \frac{1}{x_n^2})$$

und damit ist:

$$x_0 = 1$$
 $x_1 = \frac{4}{3} \approx 1.333$
 $x_2 = \frac{91}{72} \approx 1.264$

Die tatsächliche Nullstelle liegt bei $\sqrt[3]{2} \approx 1.260$.

LÖSUNG 40. Führen Sie zwei Schritte des Newton-Verfahrens zu g(x) ab $x_0=2$ durch:

$$g(x) = 5 - x^2.$$

Das Newtonverfahren lautet hier

$$x_{n+1} = x_n - \frac{g(x)}{g'(x)} = x_n + \frac{5 - x_n^2}{2x_n} = \frac{x_n}{2} + \frac{5}{2x_n}$$

und damit ist:

$$x_0 = 2$$

 $x_1 = \frac{9}{4} = 2.25$
 $x_2 = \frac{161}{72} \approx 2.236$

Die tatsächliche Nullstelle ist $\sqrt{5} \approx 2.236$.

LÖSUNG 41. Berechnen Sie

$$\lim_{x \to \infty} \frac{\ln(\ln x)}{\ln x} \, .$$

Hier liegt der Fall " $\frac{\infty}{\infty}$ " vor, damit ist nach l'Hospital:

LÖSUNG 42. Berechnen Sie

$$\lim_{x \to 0} \frac{1}{e^x - 1} - \frac{1}{x}$$
.

Auf einem gemeinsamen Nenner ist:

$$\lim_{x \to 0} \frac{1}{e^x - 1} - \frac{1}{x} = \lim_{x \to 0} \frac{x - e^x + 1}{xe^x - x} \stackrel{\text{I.H.}}{=} \lim_{x \to 0} \frac{1 - e^x}{e^x + xe^x - 1} \stackrel{\text{I.H.}}{=} \lim_{x \to 0} \frac{-e^x}{2e^x + xe^x} = -\frac{1}{2} \,.$$