Uitwerking van opgave 12 c bij paragraaf 2.4 van Huth&Ryan

De formule $\forall x(Px \to \exists yQy) \to \forall x\exists y(Px \to Qy)$ is een tautologie (overtuig jezelf hiervan). We geven een afleiding:

1	$\forall x (Px \to \exists y Qy)$	assumptie
2	$x_0 \mid Px_0 \lor \neg Px_0$	LEM
3	$ \hspace{.1cm} \hspace{.1cm} \hspace{.1cm} Px_0$	assumptie
4	$Px_0 \to \exists yQy$	$\forall x_{\mathrm{e}} \ 1$
5	$ \hspace{.1cm} \hspace{.1cm} \exists yQy$	$\mathrm{MP}\ 4,\ 3$
6	$\begin{vmatrix} y_0 & Qy_0 \end{vmatrix}$	assumptie
7	$ \ \ \ \ $	assumptie
8	Qy_0	copy 6
9	$Px_0 \rightarrow Qy_0$	\rightarrow_i 7-8
10		$\exists y_i \ 9$
11	$\exists y (Px_0 \to Qy)$	$\exists y_{\rm e} \ 5, \ 6\text{-}10$
12	$ \neg Px_0$	assumptie
13	Px_0	assumptie
14		$\neg_e\ 13, 12$
15	$ \ \ \ \ \ \ \ \ \ \$	$\perp_{\mathrm{e}} 14$
16	$Px_0 \rightarrow Qy_1$	$\rightarrow_i 13-15$
17		$\exists y_i \ 16$
18	$\exists y (Px_0 \to Qy)$	$\vee_{\rm e}$ 2, 3-11, 12-17
19	$\forall x \exists y (Px \to Qy)$	$\forall x_i \ 2\text{-}18$
20	$\forall x (Px \to \exists y Qy) \to \forall x \exists y (Px \to Qy)$	$\rightarrow_{\mathbf{i}} 1-19$