

# [HW-2]: Analysis of Electromyography (EMG) Signals

[EE-379K/385V]: NEURAL ENGINEERING

The University of Texas at Austin



### [HW-1 EE379K/385V] PNS: Peripheral Nerve Signals

#### **Notes:**

- HW-2 is due on March 23<sup>rd</sup>
- Please start early to make use of the QA session on Wednesday
- Read literature on EMG analysis and EMG-based classification
- Discuss with others but submit your own work!
- Analyze your results concisely and comprehensively!
- We want to know your thoughts and suggestions!



Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Experiment: recording from the flexor carpi radialis & extensor digitorum using surface EMG





Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Experiment: recording from the flexor carpi radialis & extensor digitorum using surface EMG

Class-1: Grasp: flexing of the fingers

Class-2: Pinch: fine pinching using the thumb and the index and middle fingers

Class-3: Point: Pointing forward with the index finger





Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Data: subject.mat file contains data of six runs with 10 trials of each class

**subject.run(i).emg:** (#samples x #sensors) contains emg data of i<sup>th</sup> run

**subject.run(i).header:** contains the header info of the i<sup>th</sup> run

.fs: sampling rate

.Label: labels of the 4 emg electrodes {ProxExt, DistExt, ProxFlx, DistFlx}

.EVENT.TYP: event triggers during the task

.EVENT.POS: position in samples of each trigger



Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Trial Organization: keep track of EVENT.TYP and EVENT.POS





Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Tasks: I) Prepare the data: filter and extract task periods



**DistExt** 

**ProxFlx** 

**DistFlx** 



Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Tasks: I) Prepare the data: filter and extract task periods









Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Tasks: II) Feature Extraction





Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Tasks: II) Feature Extraction: 2D feature space





Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

#### Tasks: III) Grand Average MAV patterns





Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!





Aim: - characterize EMG activity in the muscles of the forearm for different hand movements

- classify the type of movement using EMG signals!

Tasks: III) Classification: Transfer Decoders

