Integrated Energy System: Co-optimization & Design Issues

James McCalley

Harpole Professor of Electrical & Computer Engineering lowa State University

Year 1

Year 2

■ Year N

Energy Systems Integration 102
National Renewable Energy Laboratory
Golden, Colorado, August 3-7, 2015

Overview

- 1. A high-level view of:
 - US energy, transportation, water, GHG
 - Strategies to address GHG: abatement curves
- 2. Orientation of this discussion
- 3. Expansion planning: modeling and issues
- 4. Impedance vs. pipes&bubbles
- 5. Co-optimization for
 - G&T
 - G&T&Pipeline
 - G&T&Pipeline&Fuels&Transportation
- 6. Design objectives
- 7. Design procedure
- 8. Conclusions

US Energy Flow-2014

The 59.4 Quads of rejected energy, identified by the 5 red circles, represent opportunities to reduce the total energy consumed in the US.

Estimated U.S. Energy Use in 2014: ~98.3 Quads

Source: LLNL 2015. Data is based on DOE/EIA-0035(2015-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80% for the industrial sector, and 21% for the transportation sector. Totals may not egual sum of components due to independent rounding, LLNL-MH-410527

US Energy/Water Flow-2011

A recent report [1] indicates several major U.S. groundwater aquifers are stressed and are being depleted, particularly the Ogallala Aquifer in the Midwest. The diagram indicates most fresh groundwater use is for irrigation Focus on technology choices which reduce groundwater withdrawals?

K. Zerrenner, "New graphic from DOE illustrates the energy-water-land nexus," http://blogs.edf.org/energyexchange/2014/07/24/new-graphics-from-doe-illustrate-the-energy-water-land-nexus/.

US Carbon Emissions - 2014

Technologies which do not produce GHG or produce very little (highlighted in red boxes), need to displace the highest GHG emitters (coal and petroleum) and eventually, natural gas as well.

CII.
Estimated U.S. Carbon Emissions in 2014: ~5,410 Million Metric Tons Lawrence Livermore
National Laboratory

Abatement Curves

The below abatement curve shows, for each technology option,

- <u>Economics</u>, height on the vertical axis: the average cost, compared to a reference, of avoiding 1 ton CO_{2e} in \$/ton (negative values indicate net benefit to the economy over the lifecycle of the option whereas positive values indicate net cost to the economy);
- Impact, width on horizontal axis: The amount of CO_{2e} that can be reduced annually via this option.
- → A major objective of the ESI work should be, for the technology options, to make the height more negative and to increase the width (increase the impact, i.e., the CO_{2e} that can be reduced annually via this option).
- → The technology options in blue are identified because I think they have high potential for an attractive combination of economics and impact.

McKinsey & Company, "Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost?" U.S. Greenhouse Gas Abatement Mapping Initiative, Executive Report, December, 2007, available at www.mckinsey.com/en/Client_Service/Sustainability/Latest_thinking/Reducing_US_greenhouse_gas_emissions.aspx. There is a 2010 revision at www.mckinsey.com/client_service/sustainability/latest_thinking/greenhouse_gas_abatement_cost_curves.

Orientation of This Discussion

technology Solar PV/thermal, biofuels, fuel cells, storage, heat pumps...

Virtual Power Plant

cmmnty/ind

Flex-fuel poly-generation power plants

Or Energy Hub, Hybrid Energy System,

city

District heat/cooling systems

Local transportation systems

state

region

intrconnctn

Local transmission & pipeline systems

Long distance

freight & passenger

transportation

nation

Hi capacity

interregional

continent transmission

- Generation expansion planning (GEP): identifies least cost generation investments assuming transmission is infinite.
- Transmission expansion planning (TEP): identifies least cost transmission plan assuming a particular generation expansion plan.
- Co-optimized expansion planning (CEP): does both GEP and TEP simultaneously.

- An exploratory/design app; not a predictive app.
- It is multi-period
- Demand modeled via "blocks" of load duration curve:

- Costs include:
 - Investment
 - operation/maintenance
- Objective: minimize present worth of all costs over simulation period
- Discount rate, i
- Time value of money:

$$PW = FW(t) \times \frac{1}{(1+i)^t}$$

A \$100 cost at t=20yrs, with i=5%, has PW=\$37.69.

→ Pushing the same cost further out in time reduces its PW.

- Retirements: forced or decision
- End-effects: artificial end to time means
 - Calculation does not see full operational life of investments which will bias in favor of investments with high O&M
 - So either "salvage" remaining life of investment as a revenue at the end year T:

$$PW(SV) = -SV(T) \times \frac{1}{(1+i)^{T}}$$

or extend to account for operational cost to end of life:

$$PW(OC) = \sum_{t=T}^{T+LIFE} (FOM(t) + VOM(t) + FC(t)) \times \frac{1}{(1+i)^{t}} = \sum_{t=T}^{T+LIFE} TOC(t) \times \frac{1}{(1+i)^{t}}$$

Simple approach: assume TOC(t)=TOC (same for all t). Then:

$$PW(OC) = TOC \sum_{t=T}^{T+LIFE} \frac{1}{(1+i)^{t}}$$

But do not include both PW(SV) and PW(OC).

Impedance (MIP) vs. Pipes&Bubbles (LP)

Inject 1 MW into bus 1 to supply 1 MW load at bus 3.

For impedance model

$$P_{13} = 1 \frac{2}{1+2} = 0.67$$

For P&B model

$$0 \le P_{13} \le 1$$

That is, we can obtain any split we want, depending on how we coordinate the valves.

Impedance vs. Pipes&Bubbles

Both enforce nodal balance, i.e.,

$$P_{Di} + \sum_{j} P_{ij} = P_{Gi}$$

Demand at Busi

Line Flow Out of Bus i

Generation at Busi

Impedance vs. Pipes&Bubbles

Both use linear models for existing transmission

$$\begin{aligned} P_{ij} &= B_{ij} \left(\theta_i - \theta_j \right) \\ -P_{i,j \max} &\leq P_{ij} \leq P_{i,j \max} \\ -P_{i,j \max} &\leq P_{ij} \leq P_{i,j \max} \end{aligned}$$

For Generation Expansion

Impedance model

MIN GenInvestCost+
GenOpCost
Subject to:

Nodal Balance Constraint
Line flow calculation for existing ccts
Line flow constraint for existing ccts

Pipes & Bubbles model

MIN GenInvestCost+
GenOpCost
Subject to:
Nodal Balance Constraint

Line flow constraint for existing ccts

- All equations are linear with the variables.
- Therefore both problems are linear programs.
- → Use the impedance model and obtain the better fidelity with little increase in computation time.

For Transmission Expansion

Impedance model

MIN GenInvestCost+

GenOpCost+

TransInvestCost

Subject to:

Nodal Balance Constraint

LineFlow calculation - existing ccts

LineFlow constraint - existing ccts

LineFlow calculation - candidate ccts

LineFlow constraint - candidate ccts

Because transmission lines with impedance are either in or out, this problem is mixed integer.

But there is even worse news ⊗...

$$P_{ij} = z_{ij} B_{ij} \left(\theta_i - \theta_j \right)$$

Pipes & Bubbles model

MIN GenInvestCost+

GenOpCost+

TransInvestCost

Subject to:

Nodal Balance Constraint

LineFlow constraint - existing ccts

LineFlow constraint - candidate ccts

This problem treats line capacity as a continuous variable and so remains a linear program.

The integer variable is multiplied by the angles →A nonlinear mixed integer program!

For Transmission Expansion

What is the problem?

For the impedance model, the TEP results in an integer, nonlinear circuit flow expression

$$P_{ij} = z_{ij} B_{ij} \left(\theta_i - \theta_j \right)$$

This means the problem is a MINLP.

MINLP are very difficult to solve because they combine the combinatorial difficulties of integer programs with the nonconvexity difficulties of nonlinear programs.

And so... we use the <u>disjunctive</u> representation, which replaces the nonlinear integer expression with two integer inequalities.

disjunctive: serving to divide or separate.

For Transmission Expansion

Co-optimized Infrastructure (CI) Design

Co-optimization: the simultaneous identification of 2 or more classes of related infrastructure decisions within 1 optimization problem.

Make investment & retirement decisions to MINIMIZE...

Co-optimization: what is it?

Co-optimization: the simultaneous identification of 2 or more classes of related infrastructure decisions within 1 optimization problem.

Wind & transmission

cost of {G&T investment
+production+O&M}

Trans investment

Co-optimization: why?

Amount/location of gen & load influence transm needs. Transmission availability influences generation location.

Co-optimization: why?

It is useful when decisions for one infrastructure class affect decisions for another infrastructure class.

Co-optimization: why?

A co-optimization of two related decisions must be as good as, or better than, a sequence of individual optimizations.

Better? In what sense?

Co-optimization identifies less costly solutions, while satisfying all GEP and TEP constraints.

Illustration using EI model

- El 24-node, using ISU co-optimization model
- 20 years simulation
- Each node is characterized using EI data
 - Demand, capacity factor, capacity credit, reserves requirements
- Each year is modeled through 20 load blocks
- 19 Generation technologies
- 37 Transmission line interfaces
- Salvage model for end effects

Sequential (P&B)

Co-optimization (P&B)

Illustration 2 (El Model) - Costs

Cost Category (NPV)	_	Co-optimization (Pipes & Bubbles)
Gen Investment	\$736B	\$735B
Tx Investment	\$23.7B	\$17.6B
Operational	\$1544B	\$1546B
Total Cost	\$2304B	\$2299B

NATURAL GAS CHARACTERISTICS Energy Content 1,027 (MMBTU/MMcf)

PIPELINE CHARACTERISTICS		
Diameter (inch)	42	
Transmission Capacity (MMcf/day)	1,800.0	
Transmission Capacity (MMcf/hour)	75.00	

COMPRESSOR STATION CHARACTERISTICS		
Distance between stations (miles)	50	
Power (HP per station)	25,000	

PIPELINES INVESTMENT COST

PIPELINE INVESTMENT COSTS		
Pipeline Investment Cost (*) (\$ per inch - mile)	155,000	This i high.
Pipeline Investment Cost (\$ per mile)	6,510,000	rnign.

COMPRESSOR STATION COSTS		
Compressor Station Inv. Cost (*) (\$ per HP)	2,600	
Compressor Station Inv. Cost (\$ per mile)	1,300,000	

(*) Source: North America Midstream Infrastructure through 2035: Capitalizing on Our Energy Abundance. The INGAA Foundation. March 18, 2014

6,510,000\$/mile + \$1,300,000\$/mile = \$7,810,000\$/mile

$$\frac{7,810,000\$/mile}{75mmcf/hr} = 104,133\$/(mmcf/hr \times mile)$$

 $\underline{104,133\$/mmcf/hr\times mile)} = 101.4\$/(mmbtu/hr\times mile)$ 1027mmbtu/mmcf

PIPELINE SYSTEM INVESTMENT COSTS		
Pipeline System Investment Cost (\$ per mile)	7,810,000	
Pipeline System Investment Cost (\$ per (MMcf/hr x mile))	104,133	
Pipeline System Investment Cost (\$ per (MMBTU/hr x mile))	101.40	

Obtain "post-combustion" values: 101.4*7196=730,000\$/GW-mile

TRANSMISSION LINE INVESTMENT COST

CONVENTIONAL COMBINED CYCLE PLANT CHARACTERISTICS		
Heat Rate (MMBTU/GWh)	7,196	

TRANSMISSION LINE INVESTMENT COSTS Transmission Line Investment Cost 1,000,000 (\$ per GW - mile) Transmission Line Investment Cost (\$ per (MMBTU/h x mile)) 139.0

This is low.

Similar analysis, but of a specific case, done by BPA and AGA, is here: www.northwestchptap.org/NwChpDocs/Transmission and N Gas Comparing Pipes and Wires 03

2304.pdf

PIPELINE FLOW MODELS

ASSUMPTIONS

One-dimensional. horizontal, compressible, isothermal, steady-state

flow

Isothermal flows are used for modeling slow transients, like normal operational demand changes.

HIGH-FIDELITY MODEL

SET OF PARTIAL DIFFERENTIAL **EQUATIONS**

- Momentum conservation law
- Energy conservation law

Mass conservation law

We may linearize the Weymouth equations about selected pressure conditions to obtain:

$$c_i \rho_i - c_j \rho_j = K'_{i,j} G_{i,j}$$

APPROXIMATE MODEL

SET OF NONLINEAR **ALGEBRAIC EQUATIONS**

Turbulent flows in rough pipes

Panhandle B Eqts

AGA Partially Turbulent **Eats**

Weymouth Eqts

$$\rho_i^2 - \rho_j^2 = K_{i,j} G_{i,j}^2$$

Weymouth equations are frequently used in the design of transmission networks, because they usually overestimate the pressure drop calculations and are thus conservative - see Mohitpour et al. (2003)

ELECTRIC vs. GAS TRANSMISSION MODELING

<u>Important difference</u>: Linearized power flow equations are pretty good for MW flows. However, in linearized gas flow equations, constants c_i and c_j are sensitive to pressures, so a piecewise linear gas pipeline model is necessary.

MODEL 0 (MINLP, dsjnctve electric/nonlinear gas)

Minimize: Generation Costs & Transmission Lines Costs (operational & investment)

Production & Storage Operational Costs and Pipelines Operational & Investments Costs subject to

ELECTRIC SYSTEM CONSTRAINTS

GAS SYSTEM CONSTRAINTS

Electric Generating Units constraints

- Maximum power output (capacity credit)
- Maximum electricity output (capacity factor)

NG Wells Production constraints

• Bounds on the production levels

Transmission network constraints

- Node power balance eqts
- DC Power flow eqts
- Transmission lines capacity bounds

Transmission network constraints

- Node gas balance eqts
- Gas flow pressure eqts
- Pipelines capacity bounds

NONLINFAF

Power system security and reliability constraints

- Electric Generating Units reserves
- Generation capacity constraints
- Balance (additions and retirements)
- Lower and upper bounds

NG Storage constraints

- Lower and upper storage levels (storage, injection, and withdrawal).
- Energy balance constraints

Transmission lines investment constraints using a Disjunctive Model

INTEGERS

<u>Pipelines investment constraints using a</u>

<u>Disjunctive Model</u>

INTEGERS

31

POSSIBLE GAS/ELECTRIC EXPANSION MODELS

Model Number	Electric line representation	Gas pipeline representation	Type of problem	Difficulty
Model 0	Linear disjunctive	Nonlinear disjunctive	MINLP	Extreme
Model 1	Linear disjunctive	Linear disjunctive	MILP	Very high
Model 2	Linear disjunctive	P&B	MILP	High
Model 3	P&B	Linear disjunctive	MILP	High
Model 4	P&B	P&B	LP	Low

SOLUTION APPROACHES

In all strategies, limit candidate expansion lines (electric + gas) as much as possible.

- 1. Model 1 w/PWL gas lines: Solve model 1 w/1-piece PWL for each gas line.
- 2. Model 1 with successive linearizations:
 - a. Solve model 1 w/1-piece PWL for each gas line.
 - b. Resolve model 1 linearizing about solution obtained in (a). Repeat until change in solution is within tolerance.
- 3. Model 4-Initialization: Use Model 4 (fully P&B) to obtain initial solution to use in linearization. Then use either approach 1 or 2 above.
- 4. Model 2-Model 3: Iterate between models 2 and 3.

→ We have used approach #1.

SYSTEM DESCRIPTION

- El 24-node
- 20 years simulation
- Each node characterized using El data
 - → Demand, capacity factor, capacity credit, reserves requirements
- Each year modeled via 20 load blocks
- 19 Generation technologies
- 10 Natural Gas production areas, EIA
- 37 Transmission line interfaces
- 32 Pipeline interfaces, from EIA
- Salvage model for end effects

ILLUSTRATION USING EI MODEL – RESULTS (Pipes & Bubbles modeling)

Cost Category (NPV)	Co-optimization: Generation and Transmission	Co-optimization: Generation, Transmission and Pipelines
Gen Investment	\$735B	\$732B
Tx Investment	\$17.6B	\$18.4B
Pipeline Investment	-	\$11.5B
Operational	\$1546B	\$1516B
Total Cost	\$2299B	\$2278B

ILLUSTRATION USING EI MODEL - RESULTS

Comparing co-optimization solutions obtained for the model with and without a natural gas system

Natural gas flows (MMcf/h) in 2035

Interconnection (EI): Electric gen, trans, pipeline, \$5 gas

Interconnection (EI): Electric gen, trans, pipeline: \$9 Gas

Co-optimized Infrastructure (CI) Design

Co-optimization: the simultaneous identification of two or more classes of infrastructure decisions within one optimization problem.

Can be applied to combinations of the below:

- Electric generation & transmission, storage, demand response
- Natural gas facilities (pipelines, wells, processing plants)
- Transportation facilities (highway, rail, air: fleets and fixed)
- Other fuel facilities: oil pipelines, rail for coal, fuel storage
- Agriculture systems (land, water, transport systems)
- Thermal networks for district energy systems
- Water systems (processing, purification, reuse)

Co-optimized cost-minimization: Multi-period w/network structure

passenger networks load energy system

Transportation Modeling

Transportation demand is specified node-to-node, except for energy commodities.

Summary of networks represented in cost-minimization problem

Network	Flow	Commoditie	s Units	Infrast.	Fleet	Demand
Energy	Single	Electric	GWhr/	Electric	N/A	Nodes
	comm.	Natural gas	m l~gas time-period	Pipeline		
		H_2 , NH_3		Pipeline		
		Petroleum		Pipeline		
Energy	Multicomm.	Bituminous	Tons/	Rail	Diesel, elect.	Nodes
comm.		Subbitmns	time-period	Barge	Diesel	
coal & bio.		Lignite		Highway	Diesel, hybrid	
Freight	Multicomm.	Grains	Tons/	Rail	Diesel, elect.	Arcs
		Chemicals		Barge	Diesel	
		Gravel, etc.		Highway	Diesel, hybrid	
Passenger	Single		Pssngrs/	Highway	Gasoline, elect.	Arcs
comm. time-period 600mph air 150mph HSR 65mph LDV	comm.		time-period 600mph air	Rail	Diesel, elect.	
				Rail	Electric	
	Air	Petroleum				

Energy – transportation coordination

"Energy commodities" (e.g., coal, feedstocks) are represented in the transportation network (as transported tons) and the energy network (as MWh). Both flows are coordinated.

Transportation loading on energy system: all transportation modes produce demand in energy networks.

Modeling: mathematical formulation for cost minimization problem

$ \label{eq:min} \mathbf{min} \{ CostOp^E + CostInv^E + CostOp^T + CostFleetInv^T + CostInfInv^T \} $	(3.2)	Minimize operational and in	vestment cost
subject to:			
Meet energy demand at the appropriate nodes			Yellow is energy
$\sum_i \eta_{(i,j)}(\mathbf{t}) e_{(i,j)}(\mathbf{t}) - \sum_i e_{(j,i)}(\mathbf{t}) = d_j^E(\mathbf{t}) + d_j^{ET}(\mathbf{t}) j \in \mathcal{N}_d^E$	(3.3)	Meet energy demand	commodity.
DC power flow equations		DO	
$e_{(i,j)}(\mathbf{t}) - e_{(j,i)}(\mathbf{t}) = b_{(i,j)} \left(\theta_i(\mathbf{t}) - \theta_j(\mathbf{t}) \right) P_E \Delta(\mathbf{t}), (i,j) \in \mathcal{A}_{DC}^E$	(3.4)	DC power flow	
Generation capacity must cover peak demand at electric nodes			
$\sum_{\cdot} cf_{(i,j)}(\mathbf{t}) eCap_{(i,j)}(\mathbf{t}) \geq peakD_j^E(\mathbf{t}), j \in \mathcal{N}_p^E$	(3.5)	Meet electric peak demand	
Transportation demand for non-energy commodities	٦		
$\sum_{i=1}^{n} f_{(i,j,k,m)}(\mathbf{t}) = d_{(i,j,k)}^{T}(\mathbf{t}), k \in \mathcal{K} \backslash \mathcal{K}_{e}$	(3.6)		
m Transportation demand for energy commodities	}	Meet transportation demand	4
$\sum_{m} f_{(i,j,k,m)}(\mathbf{t}) = heatContent_{k}^{-1}(\mathbf{t}) e_{(n_{(i,k)}^{E}, n_{(j,k)}^{E})}(\mathbf{t}), k \in \mathcal{K}_{e}$	(3.7)	Woot transportation domain	4
Fleet upper bound for transportation flows	ر		
$\sum_{k} f_{(i,j,k,m)}(\mathbf{t}) \leq fleetCap_{(i,j,m)}(\mathbf{t}) \Delta(\mathbf{t})$	(3.8)	Max. fleet capacity	
Infrastructure upper bound for transportation flows			
$\sum_{k} \sum_{m \in \mathcal{M}_{l}} f_{(i,j,k,m)}(\mathbf{t}) \leq infCap_{(i,j,l)}(\mathbf{t}) \Delta(\mathbf{t})$	(3.9)	Max. transportation infrastru	icture capacity
Decision variables:			
Energy flows: $0 \le lbe_{(i,j)}(\mathbf{t}) \le e_{(i,j)}(\mathbf{t}) \le eCap_{(i,j)}(\mathbf{t}) \Delta(\mathbf{t})$	(3.10)	- Energy flows and investmer	nte
Energy capacity inv.: $\mathit{lbeInv}_{(i,j)}(\mathbf{t}) \leq \mathit{eInv}_{(i,j)}(\mathbf{t}) \leq \mathit{ubeInv}_{(i,j)}(\mathbf{t})$	$(3.11) \qquad \int$	Lifergy nows and investmen	ແວ
Transportation flows: $f_{(i,j,k,m)}(\mathbf{t}) \ge 0$	(3.12)		
$\text{Fleet inv.:} \qquad \textit{lbFleetInv}_{(i,j,m)}(\mathbf{t}) \leq \textit{fleetInv}_{(i,j,m)}(\mathbf{t}) \leq \textit{ubFleetInv}_{(i,j,m)}(\mathbf{t})$	(3.13)	 Transportation flows and inv 	estments/
		•	

(3.15)

Phase angles:

 $-\pi \leq \theta_i(\mathbf{t}) \leq \pi$

 $lbInfInv_{(i,j,l)}(\mathbf{t}) \leq infInv_{(i,j,l)}(\mathbf{t}) \leq ubInfInv_{(i,j,l)}(\mathbf{t})$

Summary of long-distance transp/energy study results

1. Natural gas as transportation fuel

→ Reducing natural gas use in electric power while increasing its use as a transportation fuel (CNG and LNG) serves to diversify both sectors while decreasing both total cost of, and GHG emissions from, the energy/transportation system. This option is unattractive if natural gas use in the electric sector continues to grow.

2. US high-speed rail investment [1]

→ Development of a US passenger high-speed rail system diversifies the transportation sector, and, under a low carbon electric generation portfolio, leads to a reduction in GHG emissions by between 3 and 10% over a 40-year period. The investment in fixed infrastructure causes long-term cost savings to be small but positive assuming a petroleum price increase of 3% per year, and travel time valued at average hourly wages. The expansive US travel distances, the travel convenience of HSR, and HSR total electric dependence makes this option attractive.
[1] V. Krishnan, E. Kastrouni, V. Pyrialakou, K. Gkritza, and J. McCalley, "An optimization model of energy and transportation systems:

assessing the impact of high-speed rail on U.S. passenger transportation investment," to appear, Transportation Research Part C, 2015.

3. Use of biomass for biofuels & biopower [2]

→ Biomass can play a significant role in reducing GHG emissions mainly through deployment of biofuels, particularly ethanol. Although biopower may flourish in some parts of the country, its national impact will remain limited unless the investment and operational cost of biopower technologies (combustion, gasification, and anaerobic digestion) are reduced. Use of biofuels in transportation competes with food via land use and so may not be an attractive option at high penetration levels.

[2] V. Krishnan and J. McCalley, "The Role of Bio-renewables in National Electric and Transportation Systems Portfolio Planning 45

for Low Carbon Economy," under review by Renewable Energy.

Design: High-speed rail (HSR)

Results are similar to the high-speed rail corridors designated by DOT.

Netplan Results

DOT Designations

Design objectives: EES-S/FRRA

- E: Environmental sustainability;
- E: Economic sustainability;
- S: Social sustainability;
- FRRA:
 - > Flexibility: operational speed of response;
 - Reliability: service availability (SAIDI, SAIFI);
 - Resilience: economic service availability ability to minimize & recover from priceconsequences of extreme events;
 - Adaptability: A long-term version of resilience ability to economically adapt infrastructure to adverse and permanent changes in technology/fuel availability or cost.

A design tool

Design levels

attention than another? Why?

Design procedure

- 1. Identify services:
 - electricity services (cooling, heating, lighting...)
 - fuel services (conversion, heating...)
 - transportation services (passenger, freight...)
 - water services (human needs, irrigation, power plant cooling...)
 - agricultural services (food, feedstocks...)
- 2. Identify technologies to provide services, energy carriers to supply technologies;
- 3. Characterize and model each service/technology/carrier:
 - interconnections with other subsystems,
 - costs (investment/operational),
 - performance (efficiency, environmental, FRRA);
- 4. Explore strengths of each service/technology/carrier within higher-level systems, temporal/geo-scales.
- 5. Inform/interact with decision-makers at appropriate levels.

Decision process

Level	Decision-makers	Barriers
Technology	Business owners	The business case
Community or industry City	Community/city leaders, Community/city populace. Or organization's board Local infrastructure operators, Agencies & regulators of 1 state	 Financing infrastructure developments Interconnections to existing networks Compliance with environmental permitting Local codes and permits Local regulatory treatment
State/ region Interconnection/ nation/ continent	Community/city leaders (many) State, region, or nation populace. Many infrastructure operators Agencies & regulators of many states Coordinating groups Federal agencies and regulators	 Balkanized decision-making Parochialism, NIMBYism Lack of accepted mechanisms to achieve equitable cost/benefit allocation Uncertainties: in policy, growth in services, climate, technology maturation

Concluding comments

- Interdependencies matter to infrastructure decisions
 - Generation ←→ Transmission
 - Generation ←→ Transmission←→ Gas pipeline
 - Energy←→ Transportation
 - Biofuels←→ Food
 - Water ←→Agriculture←→ Energy
- EES-S/FRRA are infrastructure design objectives
- Design issues:
 - Economies of scale: to be discussed tomorrow
 - Design procedure: an important "ESI community" research goal
 - Should one level receive more attention than another?
 - →Which level has largest benefit to cost ratio where cost: for design, materials, labor, O&M, and ... decision process complexity.
 - Decision process stakeholder processes is a research focus.
 - Communication with the media is essential.

"When a reporter approaches, I generally find myself wishing for a martini."

-- Jonas Salk, Nobel Prize winner

Concluding comments

I prefer scientists/engineers as information sources because...

- "I want to hear it from the horse's mouth."
- "I want to see research 'personalized'."
- "I would like to hear it from the originator, not the middleman."
- "I am drawn by scientists' enthusiasm about the work they do."

Source: Horrigan, 2008

Lulu Rodriguez: Expert on the communication of science and risk. See: