Epistemology of BTC

This notebook serves to analyze best approaches to explaining BTC.

by Steven Black October 2023

Raw data

This data comes from the file "btc-epistemology.xlsx". Just copy the range that includes the subjects column and the prerequisite "1" marks.

```
In[*]:= exceldata = "block
        1
                1
                                                    1
    block reward
                           1
        1
             1
                             1
                                         1
    blockchain
        1
    block time
        1
    change
        1
                                                        1 1
    change address
        1
                                                       1 1
    coinbase tx
                    1 1 1
    halving
        1
                    1
                             1
    hashing
        1
    issuance
                        1
        1
                        1
    mempool
              1
```

```
1
                          1
mining 1 1 1
          1 1 1 1
                                        1 1
mining difficulty 1
                     1
mining diff adj
 1
              1 1
                         1
proof of work
                    1
   1
              1
                 1
receive
   address
              1
                       1
satoshi
       1
transaction 1
                          1
   1
                                      1 1 1
                     1
tx fee
   1
     1 1
transactions
   1
   1
        1
utxo
                    1
      1
  1
           1
";
rawdata = ImportString[
 StringReplace[
  StringReplace[
   StringReplace[
    StringReplace[
     StringReplace[exceldata, {
      "\t\n" → ", 0\n"
      , "\t" → ", "
      }
     ]
     ", ," → ", 0,"
```

```
}]
          , {
           ", ," → ", 0,"
          }]
         , \{", " \rightarrow ", 0"\}
        1
        , "\n' \rightarrow "\n'"
       1
       , "CSV"
      ]
Out[0]=
     \{\{block, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0\},\
      {block reward, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0},
      {blockchain, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
      {block time, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},
      {change, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0},
      {change address, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1},
      {coinbase tx, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1},
      {halving, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
      \{issuance, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0\},\
      {mempool, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0},
      \{\text{mining}, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0\},\
      {mining diff adj, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0},
      {proof of work, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
      {transaction, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0},
      {utxo, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}}
 In[*]:= subjects = rawdata[All, 1];
     data = rawdata[All, 2;;];
 In[•]:= literals =
       Sort[Flatten[List[subjects[#[1]]] → subjects[#[2]]]] & /@ Position[data, 1]]];
     literals // Length
Out[0]=
     100
 In[*]:= Column[literals]
Out[0]=
     block → hashing
     block → mempool
     block → mining
     block → transactions
     blockchain → block
```

blockchain → block time blockchain → hashing blockchain → proof of work $block\ reward \rightarrow block$ block reward → blockchain block reward → mining block reward → mining difficulty block reward → satoshi block reward \rightarrow transactions block reward \rightarrow tx fee $block\ time \rightarrow block$ block time → mining block time \rightarrow mining difficulty change → change address $\textbf{change} \rightarrow \textbf{receive address}$ change → satoshi $change \rightarrow transaction$ change \rightarrow tx fee change address → change $\textbf{change address} \, \rightarrow \, \textbf{receive address}$ change address → satoshi change address \rightarrow transaction change address → utxo $\texttt{coinbase} \ \texttt{tx} \to \texttt{block}$ coinbase tx → block reward coinbase $tx \rightarrow mining$ coinbase $tx \rightarrow proof of work$ coinbase tx → receive address coinbase tx → satoshi coinbase $tx \rightarrow transaction$ coinbase $tx \rightarrow utxo$ halving → block reward $\texttt{halving} \to \texttt{block} \ \texttt{time}$ halving → coinbase tx halving → issuance halving → mining hashing → proof of work issuance → blockchain $issuance \rightarrow block\ reward$ $issuance \rightarrow block time$ $\texttt{issuance} \rightarrow \texttt{coinbase} \ \texttt{tx}$ issuance → halving issuance → mining $issuance \rightarrow proof of work$ $issuance \rightarrow satoshi$ $mempool \rightarrow block$ mempool → blockchain mempool → mining $mempool \rightarrow tx fee$ mining → block $mining \rightarrow blockchain$ mining → block reward $mining \rightarrow coinbase tx$ $mining \rightarrow hashing$

```
mining \rightarrow mempool
      mining \rightarrow mining diff adj
      mining → mining difficulty
      mining \rightarrow proof of work
      mining \rightarrow transactions
      mining \rightarrow tx fee
      mining diff adj → block time
      mining diff adj → hashing
      mining diff adj \rightarrow mining
      mining diff adj → mining difficulty
      mining diff adj \rightarrow proof of work
      mining difficulty → block
      mining difficulty \rightarrow block time
      mining difficulty → hashing
      \hbox{mining difficulty} \to \hbox{mining diff adj}
      mining difficulty \rightarrow proof of work
      proof of work → blockchain
      proof of work → hashing
      proof of work → mining
      proof of work \rightarrow mining difficulty
      receive address \rightarrow transaction
      receive address → utxo
      satoshi → transaction
      \texttt{transaction} \rightarrow \texttt{block}
      transaction \rightarrow change
      transaction → change address
      transaction \rightarrow mempool
      transaction → receive address
      transaction → satoshi
      transaction \rightarrow tx fee
      transactions → blockchain
      transactions → transaction
      transactions \rightarrow utxo
      tx fee → proof of work
      tx fee → satoshi
      tx fee → transaction
      utxo → blockchain
      utxo → change
      utxo \rightarrow receive address
      utxo → satoshi
      utxo \rightarrow transaction
In[•]:= vertices = VertexList[literals]
      {block, hashing, mempool, mining, transactions, blockchain,
       block time, proof of work, block reward, mining difficulty,
       satoshi, tx fee, change, change address, receive address,
       transaction, utxo, coinbase tx, halving, issuance, mining diff adj}
```

Out[0]=

```
In[0]:= twoD = Graph[
         literals
         , VertexSize → Small
         , VertexLabels → "Name"
         , VertexLabelStyle → Directive[Black, 18, Bold]
         , EdgeStyle → Directive[Gray]
         , EdgeShapeFunction → {{"CarvedArrow", "ArrowSize" → .02}}
Out[•]=
```



```
In[0]:= threeD = Graph3D[
       literals
        , Boxed → True
        , BoxStyle → Directive[Dashed]
        , VertexLabels → "Name"
        , VertexLabelStyle → Directive[Red, 18, Bold]
        , VertexSize → 0.2
        , VertexStyle \rightarrow Orange
        , EdgeStyle → Directive[Thick]
        , EdgeShapeFunction → {{"CarvedArrow", "ArrowSize" → .02}}
      ]
```

Set: Tag Inherited in Inherited [State] is Protected.

Community Graph

```
In[@]:= CommunityGraphPlot[
        literals
        , ImageSize → 900
        , ImageMargins \rightarrow 20
        , VertexSize \rightarrow 0.05
        , VertexLabels → "Name"
        , CommunityBoundaryStyle \rightarrow Automatic
        , VertexLabelStyle \rightarrow Directive[Red, Italic, Bold, 15]
        (*, EdgeShapeFunction \rightarrow \{\{"CarvedArrow", "ArrowSize" \rightarrow .01\}\}*)
      ]
```


Layered Graph

In[o]:=

```
In[0]:= LayeredGraphPlot[
          literals
          , Bottom
          , ImageSize → 1200
          , ImageMargins \rightarrow 20
          , VertexSize \rightarrow \{2.75, .5\}
          , AspectRatio \rightarrow 1
          , VertexLabelStyle → Directive[Bold, 15]
          (*,VertexSize→0.05
          , VertexLabels→"Name"
          , \texttt{EdgeShapeFunction} \mathbin{\verb+}\{ \texttt{"CarvedArrow"}, \texttt{"ArrowSize"} \mathbin{\to} .02 \} \}
          , PlotTheme \rightarrow "ClassicDiagram"
         ]
Out[0]=
```


In[0]:= ReverseSortBy[

Table[{vertices[x], VertexDegree[literals][x]}, {x, 1, Length[vertices]}], Last]

```
Out[0]=
       {{mining, 20}, {transaction, 15}, {proof of work, 12}, {block, 12},
        {coinbase tx, 11}, {block reward, 11}, {blockchain, 11}, {mining difficulty, 10},
        {utxo, 9}, {satoshi, 9}, {issuance, 9}, {tx fee, 8}, {change, 8},
        \{block\ time,\,8\}, \{receive\ address,\,7\}, \{mining\ diff\ adj,\,7\}, \{mempool,\,7\},
        {hashing, 7}, {change address, 7}, {transactions, 6}, {halving, 6}}
```

Scoring prerequisites and complexities

Prerequisites Scores

```
In[o]:= prerequisites = AssociationThread@@ (ReverseSortBy[
             Table[{
               vertices[x]
               , VertexInDegree[literals][x]}
              , {x, 1, Length[vertices]
              }]
             , Last]
            // Transpose
     prerequisites // Dataset[
         , ItemStyle \rightarrow {Black}
         , HeaderStyle \rightarrow Bold
         , HeaderBackground \rightarrow LightYellow
         , MaxItems → (vertices // Length)
        ] &
```

Out[•]=		
	mining	9
	transaction	8
	satoshi	8
	proof of work	8
	block	8
	blockchain	7
	hashing	6
	tx fee	5
	receive address	5
	mining difficulty	5
	block time	5
	utxo	4
	block reward	4
	transactions	3
	mempool	3
	coinbase tx	3
	change	3
	mining diff adj	2
	change address	2
	issuance	1
	halving	1

Complexity Scores

```
In[o]:= complexity = AssociationThread@@ (ReverseSortBy[
            Table[{
               vertices[x]
               , VertexOutDegree[literals][x]}
              , {x, 1, Length[vertices]}]
           ]
           // Transpose
         );
     complexity // Dataset[#, ItemStyle \rightarrow {Black}, HeaderStyle \rightarrow Bold,
         HeaderBackground → LightYellow, MaxItems → (vertices // Length)] &
```

Out[•]=

mining	11
issuance	8
coinbase tx	8
transaction	7
block reward	7
utxo	5
mining difficulty	5
mining diff adj	5
halving	5
change address	5
change	5
proof of work	4
mempool	4
blockchain	4
block	4
tx fee	3
transactions	3
block time	3
receive address	2
satoshi	1
hashing	1

Prerequisite minus Complexity Scores

```
In[o]:= ReverseSort[Merge[{prerequisites, -complexity}, Total]] //
       {\tt Dataset[\#, ItemStyle \rightarrow \{Black\}, HeaderStyle \rightarrow Bold,}
         HeaderBackground → LightYellow, MaxItems → (vertices // Length)] &
```

Out[0]=

satoshi	7
hashing	5
block	4
proof of work	4
receive address	3
blockchain	3
block time	2
tx fee	2
transaction	1
transactions	0
mining difficulty	0
mempool	-1
utxo	-1
change	-2
mining	-2
change address	-3
mining diff adj	-3
block reward	-3
halving	-4
coinbase tx	-5
issuance	-7

Vertex views

```
In[•]:= Table[
      Labeled[
        Framed[
         Graph[
          Select[literals, #[1] == x || #[2] == x &]
           , ImageSize → 700
           , ImageMargins → 20
           , VertexSize → 0.05
           , VertexLabels \rightarrow "Name"
           , VertexLabelStyle → Directive[Red, Italic, Bold, 20]
           , EdgeShapeFunction \rightarrow {{"CarvedArrow", "ArrowSize" \rightarrow .02}}
         ]
        ]
        , x
        , Top
        , LabelStyle → "Section"
       , {x, vertices}
     ]
```

block

In[0]:= literals // Length

Out[0]=

100

```
In[0]:= ve = Table[VertexEccentricity[literals, v], {v, vertices}];
     HighlightGraph[literals, Table[
       Style[v, ColorData["TemperatureMap", ve[VertexIndex[literals, v]] / Max[ve]]],
       {v, vertices}], VertexLabels → "Name",
      VertexLabelStyle → Directive[Black, 24, Bold]]
```

Out[0]=


```
In[•]:= Table[
      Labeled[
        Framed[
         NeighborhoodGraph[
          literals
           , х
           , ImageSize → 700
           , ImageMargins \rightarrow 20
           , VertexSize \rightarrow 0.05
           , VertexLabels \rightarrow "Name"
           , VertexLabelStyle → Directive[Red, Italic, Bold, 18]
           , EdgeShapeFunction → {{"CarvedArrow", "ArrowSize" → .02}}
        ]
        , StringJoin[x, " neighborhood"]
        , LabelStyle \rightarrow "Section"
       , {x, vertices // Sort}
     ]
```

Out[•]=

block neighborhood


```
In[o]:= AssociationThread[VertexList[literals], VertexDegree[literals]] // ReverseSort
Out[0]=
           \langle\,\big|\,\mbox{mining} \rightarrow \mbox{20, transaction} \rightarrow \mbox{15, proof of work} \rightarrow \mbox{12,}
            block \rightarrow 12, coinbase tx \rightarrow 11, block reward \rightarrow 11, blockchain \rightarrow 11,
            mining difficulty \rightarrow 10, issuance \rightarrow 9, utxo \rightarrow 9, satoshi \rightarrow 9, change \rightarrow 8,
```

tx fee \rightarrow 8, block time \rightarrow 8, mining diff adj \rightarrow 7, receive address \rightarrow 7, change address \rightarrow 7, mempool \rightarrow 7, hashing \rightarrow 7, halving \rightarrow 6, transactions \rightarrow 6 \mid \rangle

```
In[0]:= LayeredGraphPlot[
       literals
       , Bottom
       , ImageSize → 900
       , ImageMargins \rightarrow 20
       , VertexSize \rightarrow \{2.75, .5\}
       , AspectRatio → 0.75
       , VertexLabelStyle \rightarrow Directive[Bold, 15]
       (*,VertexSize→0.05
       , VertexLabels→"Name"
       , {\tt EdgeShapeFunction} {\tt + \{"CarvedArrow", "ArrowSize" \rightarrow .02\}\}}
       , PlotTheme → "ClassicDiagram"
      ]
```

Out[0]=

