

RNA-Seq Analysis on Saccharomyces paradoxus

Eric Kramer Rosado Joan Pau Cebrià Costa Dylan Dalton Martínez

Principles of Genome Bioinformatics

Màster Universitari en Bioinformàtica per a les Ciències de la Salut

Introduction

Introduction

There is **increasing evidence** for **translation** of both **sense and antisense alternate frame ORFs**. This evidence is **generally ignored** and is usually presumed **as non-functional** although we argue this inference is made too quickly. (Ardern et al., 2020)

We here propose a **possible functionality** in that of **modulating gene expression**, a mechanism previously described but never in S *paradoxus* (Wight & Werner, 2013)

(Wight & Werner, 2013)

Search and study **Novel transcripts** with **High Expression** (TPM) with **antisense** overlapping

Material & Methods: Workflow

RAW RN

RAW RNA-SEQ DATA

FASTQ-C

Analyze read quality

Trimmomatic

Remove adapters & low q. reads

Hisat-2

Align to Reference Genome

Stringtie

Assemble transcripts using mapped reads

Novel Transcripts Known Transcripts

(Blevins et al., 2021)

Material & Methods: Workflow

Novel transcripts

1st Filter: Overlapping / antisense

Selection of genes overlapping antisense with previous described ones

2nd Filter: TPM expression

Selection of those transcripts upper the 3rd quartile

BLAST search

Use S.cerevisiae proteins as database

Material & Methods: Workflow

Novel Transcripts

1st Filter: Overlapping / antisense

Selection of genes overlapping antisense with previous described ones

2nd Filter: TPM expression

Selection of those transcripts upper the 3rd quartile

BLAST search

Use S.cerevisiae proteins as database

Results: %GC Content & Length

Results: %GC Content & Length

W = 4611844, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

H0: $\mu = \mu$; Length means equal **H1**: $\mu \neq \mu$; Length means different

W = 5417348, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

H0: $\mu = \mu$; GC% means equal **H1**: $\mu \neq \mu$; GC% means different

Results: %GC Content & Length

W = 4611844, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0 $\,$

W = 5417348, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

H0: $\mu = \mu$; Length means equal **H1:** $\mu \neq \mu$; Length means different

Significant!

H0: $\mu = \mu$; GC% means equal **H1**: $\mu \neq \mu$; GC% means different

Significant!

Results: Transcripts Per Million (TPM) No difference between sense and antisense transcription

W = 5740918, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

H0: $\mu = \mu$; TPM means equal **H1**: $\mu \neq \mu$; TPM means different

W = 5740918, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

HO: μ - μ ; TPM means equal

H1: $\mu \neq \mu$; TPM means different

Significant!

Results: Overlapping

941/1293 novel genes (72.78%)

Select novel genes which overlap in antisense with known genes

1017/6180 known genes (16.45%)

Results: Overlapping

No difference in strand distribution

Results: Overlapping

2nd Filter: TPM Expression

Select genes above third Quartile expression

Overlapping (antisense)

tpm novel expression limits known expression of known

Results: Overlapping sense vs antisense

W = 246055, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

H0: $\mu = \mu$; TPM means equal **H1**: $\mu \neq \mu$; TPM means different

Significant!

Results: Overlapping sense vs antisense

W = 246055, p-value < 2.2e-16 alternative hypothesis: true location shift is not equal to 0

H0: $\mu = \mu$; TPM means equal **H1**: $\mu \neq \mu$; TPM means different

Significant!

Results: Overlapping TPM ratio

Results: Overlapping TPM ratio

W = 133386, p-value = 0.0005448 alternative hypothesis: true location shift is not equal to 0

H0: $\mu = \mu$; Ratio means equal **H1**: $\mu \neq \mu$; Ratio means different

Significant!

Results: BLAST

Novel Genes

1st Filter: Overlapping / antisense

2nd Filter: TPM expression

52 High Expression Antisense Novel Genes

BLAST search

Use *S.cerevisiae* proteins as database

52 High Expression Antisense Novel Genes

BLAST search

Database: S.cerevisiae proteins >60 % Coverage >60% Identity

Query Seq ID	Subject Seq ID	Cov	% Iden	E-Value
SPAR_10:112902-113324(-)	YKL163W	82	42.222	1.7
SPAR_10:395945-396731(-)	YJL019W	74	93.333	1.43e-128
SPAR 11:352762-353164(+)	YKL053C-A	64	98.837	8.33e-60
SPAR 11:538727-539831(+)	YKR046C	74	97.048	0.0
SPAR_1:1914-2679(+)	YAR050W	99	65.613	7.38e-24
SPAR_1:2184-2679(+)	YAR050W	99	61.058	7.23e-15
SPAR_12:24337-26797(+)	YLL051C	87	88.343	0.0
SPAR 12:718642-719940(-)	YLR316C	84	43.182	0.014
SPAR 13:161767-164049(-)	YHR216W	69	74.834	3.43e-72
SPAR_13:20547-21697(+)	YML125C	81	96.795	0.0
SPAR 13:266344-271349(-)	YMR008C	74	72.203	0.0
SPAR 13:821071-822734(+)	YCR105W	63	25.067	4.32e-16
SPAR 14:266791-267189(-)	YNL190W	99	99.242	1.36e-82
SPAR_14:586307-588170(-)	YNL012W	90	91.555	0.0
SPAR_16:120217-121227(+)	YPL241C	68	75.546	8.22e-125
SPAR_2:415564-417000(-)	YBR101C	61	96.552	0.0
SPAR 4:258909-260042(-)	YDL115C	94	89.297	0.0
SPAR 4:974094-975130(-)	YDR367W	62	93.458	5.71e-133
SPAR_6:251473-251854(+)	YFR033C	69	68.182	3.27e-05
SPAR_7:65861-66544(+)	YGL230C	65	71.622	2.22e-76
SPAR 8:264668-270203(-)	YHR096C	62	69.019	0.0

Results: Overlapping Ontology Classification

Overlapping Known Genes

Results: Overlapping Ontology Classification

Overlapping Novel Genes

Results: Selection of Genes

Proposed candidate genes for further studies

Novel Genes		BLAST	Description	Known Genes	Prediction	Description	Ratio = TPM Known/
Contig	Transcript ID						TPM Novel
SPAR_10	STRG.2883.1	-		Spar_10.169	YJL077C	Ics3p protein	0.019351
SPAR_4	STRG.1125.1	YDR367W	Kei1p protein	Spar_4.594	YDR366C	Mor1p protein	0.003904
SPAR_7	STRG.1826.2	YGL230C		Spar_7.36	YGL230C	uncharacterized protein	0.023884
SPAR_12	STRG.3595.1	-		Spar_12.250	YLR154W-C	TAR1 protein	0.000910
SPAR_12	STRG.3595.2	-		Spar_12.256	YLR106C	ATPase midasin	0.001938

STRG.2883.1

STRG.1125.1

STRG.3595.1

STRG.1827.1

Discussion

- We describe the presence of less abundant novel transcripts in s_paradoxus.
- Novel genes transcripts are shorter and show less percentage of GC and distributed equally in the two strands of DNA.
- These novel transcripts overlap with the canonical genes in the genome.

Discussion

- Expression of the novel transcripts suggest a reduction of the expression of the canonical described ones.
- Novel transcripts impair the expression of canonical genes related to protein formation and interaction.
- Blast and GO analysis of the more expressed novel genes report putative roles in metabolism and meiosis.

- Ardern, Z., Neuhaus, K., & Scherer, S. (2020). Are Antisense Proteins in Prokaryotes Functional? *Frontiers in Molecular Biosciences*, 7, 187. https://doi.org/10.3389/fmolb.2020.00187
- Blevins, W. R., Ruiz-Orera, J., Messeguer, X., Blasco-Moreno, B., Villanueva-Cañas, J. L., Espinar, L., Díez, J., Carey, L. B., & Albà, M. M. (2021). Uncovering de novo gene birth in yeast using deep transcriptomics. *Nature Communications*, *12*(1). https://doi.org/10.1038/s41467-021-20911-3
- Dunham, M. J., & Louis, E. J. (2011). Yeast evolution and ecology meet genomics. *EMBO Reports*, 12(1), 8–10. https://doi.org/10.1038/embor.2010.204
- Wight, M., & Werner, A. (2013). The functions of natural antisense transcripts. *Essays in Biochemistry*, *54*, 91–101. https://doi.org/10.1042/bse0540091