Book 解题报告

成都七中 王迪

Contents

1	题目大意	2
2	算法分析	2
3	40% 的算法	2
4	60% 的算法	3
5	100% 的算法	3

1 题目大意

构造一个长度为 N 的整数数列 $\{S_N\}$, 满足:

- $S_1 = X$;
- 对于 $1 < i \le N$, $S_i S_{i-1}$ 要么为 +A, 要么为 -B, 其中 A, B 均为正整数;
- $\sum_{1 \le i \le N} S_i = M_\circ$

对于 40% 的数据, $N \le 100$, $A, B \le 5$;

对于 60% 的数据, $N \leq 1000$;

对于 100% 的数据, $N \leq 10^5$ 。

数据保证有解。

2 算法分析

由于题目只要求构造一个可行解,所以很容易直接想到各种各样的贪心算法,但我所知的一些贪心算法都是不正确的,而盲目的贪心也不能帮助我们认清题目的本质。

所以我们考虑用数学语言来刻画这个问题:

令 $D_i = S_{i+1} - S_i$, 其中 $1 \le i < N$, 那么要么 $D_i = A$, 要么 $D_i = -B$ 。

则 $S_i = X + \sum_{1 \le i \le i} D_i$ 。 我们尝试用 D_i 表示 M:

$$M = \sum_{1 \le i \le N} (X + \sum_{1 \le j < i} D_j)$$

令 $T = M - N \cdot X$, 我们考虑上式每一个 D_i 出现的次数,则有:

$$T = \sum_{1 \le i < N} D_i \times (N - i)$$

此时,我们发现问题是把 1 到 N-1 的整数分成两个集合,一个集合中数之和乘以 A,另一个集合中数之和乘以 B,而这两个值的差为 T。

我们已经可以给出一些可以获得部分分的动态规划算法。

因为对 1 到 N-1 的每个整数有两个选择,我们考虑进行"降维"操作,即通过一些假设增加我们的已知量。

对所有 $1 \le i < N \Leftrightarrow D_i = +A$,计 $Q = A \cdot \sum_{1 \le i \le N} (N - i) = A \cdot \frac{N(N-1)}{2}$ 。

考虑 Q 和 T 的差值, 而对于 D_i 若改变它为 -B 则这个差值将减少 (A+B)(N-i)。

因为数据保证有解,故 Q-T 必为 (A+B) 的倍数,且记 $P=\frac{Q-T}{A+B}$,有 $0 \le P \le \frac{N(N-1)}{2}$ 。

于是问题变成了一个经典问题: 从 1 到 N-1 中选择一些数,使得和为 P。

现在就可以比较轻松地设计算法了。

3 40% 的算法

因为 N < 100,而 $P = O(N^2)$,所以我们可以设计一个动态规划算法。

记 dp[i][j] 表示用 1 到 i 的数能否得到选一些和为 j,则有 dp[i][j] = dp[i-1][j] or dp[i-1][j-i]。

时间复杂度 $O(N^3)$, 期望得分 40 分。

4 60% 的算法

直接的动态规划显然没有利用题目的特殊性:可用的数字是从 1 到 N-1,具有连续性!容易设计出一个贪心的算法:每次从未选数中选择最大的一个不超过 P 的数,添加进方案中,然后迭代进行下去。

这个结论其实是显然的:

- 若 $P \le N 1$, 则可以直接构造出;
- 若 $P \ge N$, 则我们的过程可以这样表示: $P = (N-1) + (N-2) + \cdots + (N-k) + R$ 。
 - 若 R < N k,则可以直接构造;
 - 否则,可以把 (N-K-1) 添加进方案,然后迭代下去。因为 $P \leq \frac{N(N-1)}{2}$,所以一定是可以构造出来的。

所以简单的两重循环,每次找到可用的最大数即可,时间复杂度 $O(N^2)$, 期望得分 60 分。

5 100% 的算法

由上面的分析可以发现,我们构造出的方案一定是从 N-1 开始递减连续的一段,再加上一个单独的值,所以完全可以 O(N) 实现。期望得分 100 分。