
NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004 BY BONNIE MCBRIDE AND SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

prob
o/f=1.5 rocket equilibrium p,bar=20 pi/pe=22.222
react
 fuel=C2H5OH(L) wt=100 t,k=297
 oxid=02 wt=100

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=F EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

Pc,BAR = 20.000000

Pc/P = 22.2220

end

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS =

NFZ= 1 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY
EXPLODED FORMULA

F: C2H5OH(L) 1.000000 -0.3333921E+05 297.00 0.0000

C 2.00000 H 6.00000 0 1.00000

O: O2 1.000000 0.000000E+00 0.00 0.0000

O 2.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES)
LAST thermo.inp UPDATE: 9/09/04

g 7/97	*C	tpis79	*CH	g 4/02	CH2
g 4/02	CH3	g11/00	CH2OH	g 7/00	CH30
g 8/99	CH4	g 7/00	СНЗОН	srd 01	CH300H
tpis79	*CO	g 9/99	*CO2	tpis91	COOH
tpis91	*C2	g 6/01	C2H	g 1/91	C2H2,acetylene
g 5/01	C2H2, vinylidene	g 4/02	CH2CO, ketene	g 3/02	O(CH)20
srd 01	HO(CO)2OH	g 7/01	C2H3, vinyl	g 6/96	CH3CO,acetyl
g 1/00	C2H4	g 8/88	C2H4O,ethylen-o	g 8/88	CH3CHO, ethanal
g 6/00	CH3COOH	srd 01	OHCH2COOH	g 7/00	C2H5
g 7/00	C2H6	g 8/88	С2Н5ОН	g 7/00	CH3OCH3
srd 01	CH302CH3	g 8/00	C20	tpis79	*C3
n 4/98	C3H3,1-propynl	n 4/98	C3H3,2-propynl	g 2/00	C3H4,allene
g 1/00	C3H4,propyne	g 5/90	C3H4,cyclo-	g 3/01	C3H5,allyl

O/F = 1.500000

			EFFECTIVE FUEL	EFFE	CTIVE OXIDANT	MIXTURE
ENTHA	LPY		h(2)/R		h(1)/R	h0/R
(KG-M	OL) (K)	/KG	-0.72483648E+03	0.0	0000000E+00	-0.28993459E+03
KG-FOI	RM.WT.	/KG	bi(2)		bi(1)	b0i
*C			0.43413669E-01	0.0	0000000E+00	0.17365468E-01
*H			0.13024101E+00	0.0	0000000E+00	0.52096403E-01
*0			0.21706834E-01	0.6	2502344E-01	0.46184140E-01
POINT	ITN	T	С	H	0	
1	22	3232.250	-15.733	-10.195	-16.220	
Pinf/	Pt = 1	.730587				
2	4	3064.794	-15.961	-10.379	-16.584	
Pinf/Pt = 1.731234						
2	2	3064.681	-15.961	-10.379	-16.584	
3	5	2256.369	-16.047	-11.080	-19.573	

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 290.1 PSIA CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	C2H5OH(L)	1.000000	-277638.832	297.000
OXIDANT	02	1.000000	0.000	0.000

O/F= 1.50000 %FUEL= 40.000000 R,EQ.RATIO= 1.316017 PHI,EQ.RATIO= 1.389185

	CHAMBER	THROAT	EXIT
Pinf/P	1.0000	1.7312	22.222
P, BAR	20.000	11.552	0.90001
T, K	3232.25	3064.68	2256.37
RHO, KG/CU M	1.6399 0	1.0104 0	1.1023-1
H, KJ/KG	-2410.66	-3058.90	-5556.22
U, KJ/KG	-3630.26	-4202.27	-6372.68
G, KJ/KG	-41747.5	-40356.4	-33016.4
S, KJ/(KG)(K)	12.1701	12.1701	12.1701
M, (1/n)	22.036	22.286	22.978
(dLV/dLP)t	-1.02474	-1.01881	-1.00126
(dLV/dLT)p	1.4837	1.3885	1.0339
Cp, KJ/(KG)(K)	5.8444	5.2543	2.4928
GAMMAs	1.1330	1.1339	1.1819
SON VEL, M/SEC	1175.5	1138.6	982.3
MACH NUMBER	0.000	1.000	2.553

PERFORMANCE PARAMETERS

Ae/At	1.0000	4.1609
CSTAR, M/SEC	1738.5	1738.5
CF	0.6550	1.4428
Ivac, M/SEC	2142.8	2833.7
Isp, M/SEC	1138.6	2508.2

MOLE FRACTIONS

*CO	0.24774	0.24309	0.22294
*C02	0.13490	0.14392	0.17609
COOH	0.00001	0.00000	0.00000
*H	0.02202	0.01804	0.00272
HCO	0.00001	0.00000	0.00000
HO2	0.00002	0.00001	0.00000
*H2	0.10302	0.10191	0.11219
H20	0.44009	0.45440	0.48400
*0	0.00468	0.00301	0.00003
*OH	0.03970	0.03034	0.00198
*02	0.00780	0.00528	0.00005

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C	*CH	CH2	CH3	CH2OH
CH30	CH4	СНЗОН	CH300H	*C2
C2H	C2H2,acetylene	C2H2, vinylidene	CH2CO, ketene	O(CH)20
HO(CO)2OH	C2H3, vinyl	CH3CO,acetyl	C2H4	C2H4O,ethylen-o
CH3CHO, ethanal	СНЗСООН	OHCH2COOH	C2H5	C2H6
С2Н5ОН	CH3OCH3	CH302CH3	C20	*C3
C3H3,1-propynl	C3H3,2-propynl	C3H4,allene	C3H4,propyne	C3H4,cyclo-
C3H5,allyl	C3H6,propylene	C3H6,cyclo-	C3H6O,propylox	C3H6O, acetone
C3H6O,propanal	C3H7,n-propyl	C3H7,i-propyl	С3Н8	C3H8O,1propanol
C3H8O,2propanol	C3O2	*C4	C4H2,butadiyne	C4H4,1,3-cyclo-
C4H6,butadiene	C4H6,1butyne	C4H6,2butyne	C4H6,cyclo-	C4H8,1-butene
C4H8,cis2-buten	C4H8,tr2-butene	C4H8,isobutene	C4H8,cyclo-	(CH3COOH) 2
C4H9,n-butyl	C4H9,i-butyl	C4H9,s-butyl	C4H9,t-butyl	C4H10,n-butane
C4H10,isobutane	*C5	C5H6,1,3cyclo-	C5H8,cyclo-	C5H10,1-pentene
C5H10,cyclo-	C5H11,pentyl	C5H11,t-pentyl	C5H12,n-pentane	C5H12,i-pentane
CH3C (CH3) 2CH3	C6H2	C6H5,phenyl	C6H5O, phenoxy	C6H6
C6H5OH, phenol	C6H10,cyclo-	C6H12,1-hexene	C6H12,cyclo-	C6H13,n-hexyl
C6H14,n-hexane	C7H7,benzyl	C7H8	${\tt C7H80,cresol-mx}$	C7H14,1-heptene
C7H15,n-heptyl	C7H16,n-heptane	C7H16,2-methylh	C8H8,styrene	C8H10,ethylbenz
C8H16,1-octene	C8H17,n-octyl	C8H18,n-octane	C8H18,isooctane	C9H19,n-nonyl
C10H8, naphthale	C10H21,n-decyl	C12H9,o-bipheny	C12H10,biphenyl	HCCO
HCHO, formaldehy	НСООН	H2O2	(HCOOH) 2	03
C(gr)	H20(cr)	H2O(L)		

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS