

SEÇÃO 1.2

R4. Cite seis tecnologias de acesso. Classifique cada uma delas nas categorias acesso residencial, acesso corporativo ou acesso móvel.

- DSL
 - É geralmente usado para acesso residencial.
- Cabo coaxial
 - É usado para acesso residencial e corporativo.
- Fibra óptica
 - É usada principalmente para acesso corporativo, mas também pode ser usada para acesso residencial
- Satélite
 - É usado principalmente para acesso móvel, mas também pode ser usado para acesso residencial.
- Wi-Fi
 - É usado principalmente para acesso residencial e corporativo
- Celular
 - É usado principalmente para acesso móvel
- R6. Cite as tecnologias de acesso residencial disponíveis em sua cidade. Para cada tipo de acesso, apresente a taxa downstream, a taxa upstream e o preço mensal anunciados.
- R10. Descreva as tecnologias de acesso sem fio mais populares atualmente. Faça uma comparação entre elas.
 - Wi-Fi
 - É uma tecnologia de rede sem fio que permite a conexão de dispositivos à Internet ou a outras redes sem a necessidade de cabos. Ele é amplamente utilizado em ambientes domésticos e empresariais e oferece alta velocidade de transmissão de dados.
 - O Bluetooth

É uma tecnologia de rede sem fio de curto alcance que permite a conexão de dispositivos eletrônicos, como smartphones, tablets e fones de ouvido, sem a necessidade de cabos.

ZigBee

É uma tecnologia de rede sem fio de baixa potência que é utilizada em aplicações de automação residencial e industrial.

LTE

É uma tecnologia de rede sem fio de alta velocidade que é utilizada em redes móveis de quarta geração (4G).

A comparação entre eles é que, o Wi-Fi oferece alta velocidade de transmissão de dados e é amplamente utilizado em ambientes domésticos e empresariais. O Bluetooth oferece baixo consumo de energia e é amplamente utilizado em dispositivos móveis. O ZigBee oferece alta eficiência energética e é utilizado em aplicações de automação residencial e industrial. O LTE oferece alta velocidade de transmissão de dados e é utilizado em redes móveis de quarta geração.

SEÇÃO 1.3

R11. Suponha que exista exatamente um comutador de pacotes entre um computador de origem e um de destino. As taxas de transmissão entre a máquina de origem e o comutador e entre este e a máquina de destino são R1 e R2, respectivamente. Admitindo que um roteador use comutação de pacotes do tipo armazena-e-reenvia, qual é o atraso total fim a fim para enviar um pacote de comprimento L? (Desconsidere formação de fila, atraso de propagação e atraso de processamento.)

O atraso total será dado pela soma do atraso de transmissão da máquina de origem para o comutador e do atraso de transmissão do comutador para a máquina de destino. O atraso de transmissão é dado pelo comprimento do pacote dividido pela taxa de transmissão, ou seja, L/R1 para a transmissão da máquina de origem para o comutador e

L/R2 para a transmissão do comutador para a máquina de destino. Portanto, o atraso total fim a fim será dado por (L/R1) + (L/R2).

R15. Alguns provedores de conteúdo criaram suas próprias redes. Descreva a rede da Google. O que motiva os provedores de conteúdo a criar essas redes?

A Google criou sua própria rede para reduzir seus pagamentos aos ISPs de nível mais alto e ter maior controle sobre como seus serviços são entregues aos usuários finais. A rede da Google é composta por uma infraestrutura de rede global que inclui data centers, servidores e roteadores, também se conecta a ISPs de nível 1 e paga por tráfego que troca com eles.

Os provedores de conteúdo criam suas próprias redes para ter maior controle sobre como seus serviços são entregues aos usuários finais e para reduzir seus pagamentos aos ISPs de nível mais alto. Ao criar suas próprias redes, os provedores de conteúdo podem garantir que seus serviços sejam entregues com alta qualidade e confiabilidade. Além disso, eles podem personalizar a infraestrutura de rede para atender às necessidades específicas de seus serviços.

SEÇÃO 1.4

R16. Considere o envio de um pacote de uma máquina de origem a uma de destino por uma rota fixa. Relacione os componentes do atraso que formam o atraso fim a fim. Quais deles são constantes e quais são variáveis?

Os componentes do atraso fim a fim são:

- Atraso de processamento nos nós intermediários: tempo que um nó leva para processar o pacote antes de encaminhá-lo para o próximo nó.
 - ➤ É do tipo variável
- Atraso de fila nos nós intermediários: tempo que um pacote passa esperando em uma fila antes de ser transmitido para o próximo nó.
 - ➤ É do tipo variável
- Atraso de transmissão no enlace: tempo que um pacote leva para ser transmitido pelo enlace.
 - ➤ É do tipo constante

- Atraso de propagação: tempo que um pacote leva para propagar pelo meio físico.
 - É do tipo constante

R18. Quanto tempo um pacote de 1.000 bytes leva para se propagar através de um enlace de 2.500 km de distância, com uma velocidade de propagação de 2,5 · 108 m/s e uma taxa de transmissão de 2 Mbits/s? Em geral, quanto tempo um pacote de comprimento L leva para se propagar através de um

) ca
Tempo de propagação = distancia / Valocidade propagação
2500 km = 2,5000000
TP = 2500000 - 0.01x
$TP = \frac{2500000}{2,5 \times 10^8} = 0,01$
Tempo de transmissão = Tamanho pacate / taca transmissão
TT= 1000 x8 = 0,004 s
Tempo total = 0,01+0,004 = 0,014s
TP= 1000
2

enlace de distância d, velocidade de propagação s, e taxa de transmissão de R bits/s? Esse atraso depende do comprimento do pacote? Depende da taxa de transmissão?

O atraso de propagação não depende do comprimento do pacote ou da taxa de transmissão, pois é determinado apenas pela distância física entre os nós e pela

velocidade de propagação do meio físico. Já o atraso de transmissão depende do tamanho do pacote e da taxa de transmissão.

- R19. Suponha que o hospedeiro A queira enviar um arquivo grande para o hospedeiro B. O percurso de A para B possui três enlaces, de taxas R1 = 500 kbits/s, R2 = 2 Mbits/s, e R3= 1 Mbit/s.
- a. Considerando que não haja nenhum outro tráfego na rede, qual é a vazão para a transferência de arquivo?
- b. Suponha que o arquivo tenha 4 milhões de bytes. Dividindo o tamanho do arquivo pela vazão, quanto tempo levará a transferência para o hospedeiro B?
- c. Repita os itens "a" e "b", mas agora com R2 reduzido a 100 kbits/s.
 - Alinha a.

A vazão para a transferência de arquivo será limitada pela menor taxa de transmissão dos enlaces, que é R1.

• Alinha b.

tempo de transferência = tamanho do arquivo / vazão = (4 x 10^6 bytes x 8 bits/byte) / 500 kbits/s = 64 segundos.

Logo levará 64 segundos.

• Alinha c.

tempo de transferência = tamanho do arquivo / vazão = (4 x 10^6 bytes x 8 bits/byte) / 100 kbits/s = 320 segundos logo levará 320 segundos.

SEÇÃO 1.5

- R22. Cite cinco tarefas que uma camada pode executar. É possível que uma (ou mais) dessas tarefas seja(m) realizada(s) por duas (ou mais) camadas?
 - Encapsulamento de dados:

Adicionar informações de cabeçalho e rodapé aos dados recebidos da camada superior para criar um pacote.

• Controle de fluxo:

Gerenciar a taxa de transmissão de dados para evitar a sobrecarga da camada inferior.

• Controle de erro:

Detetar e corrigir erros nos dados transmitidos.

• Roteamento:

Determinar o caminho mais eficiente para enviar dados através da rede.

• Controle de congestionamento:

Gerenciar a taxa de transmissão de dados para evitar a congestão da rede.

R23. Quais são as cinco camadas da pilha de protocolo da Internet? Quais as principais responsabilidades de cada uma dessas camadas?

Camada de aplicação:

Fornece serviços de rede para aplicativos, como e-mail, navegação na web e transferência de arquivos. Os protocolos comuns nesta camada incluem HTTP, SMTP e FTP.

 A principal responsabilidade: fornecer serviços de rede para aplicativos.

• Camada de transporte:

Fornece comunicação de extremidade a extremidade confiável e orientada a conexão entre processos de aplicativos em diferentes hospedeiros. Os protocolos comuns nesta camada incluem TCP e UDP.

 A principal responsabilidade: fornecer comunicação de extremidade a extremidade confiável e orientada a conexão entre processos de aplicativos em diferentes hospedeiros.

• Camada de rede:

Fornece roteamento de pacotes e encaminhamento de dados através de redes. Os protocolos comuns nesta camada incluem IP e ICMP.

 A principal responsabilidade: fornecer roteamento de pacotes e encaminhamento de dados através de redes.

• Camada de enlace de dados:

Fornece comunicação confiável entre hospedeiros adjacentes em uma rede. Os protocolos comuns nesta camada incluem Ethernet e Wi-Fi.

 A principal responsabilidade: fornecer comunicação confiável entre hospedeiros adjacentes em uma rede.

• Camada física:

Define as especificações elétricas, mecânicas e de procedimento para a transmissão de dados na rede.

 A principal responsabilidade: definir as especificações elétricas, mecânicas e de procedimento para a transmissão de dados na rede.

R24. O que é uma mensagem de camada de aplicação? Um segmento de camada de transporte? Um datagrama de camada de rede? Um quadro de camada de enlace?

• Uma mensagem de camada de aplicação:

È um pacote de dados enviado por um processo de aplicação em um hospedeiro e destinado a um processo de aplicação em outro hospedeiro.

• Um segmento de camada de transporte:

É um pacote de dados enviado por um processo de transporte em um hospedeiro e destinado a um processo de transporte em outro hospedeiro.

• Um datagrama de camada de rede:

É um pacote de dados enviado por um hospedeiro e destinado a outro hospedeiro em uma rede.

• Um quadro de camada de enlace:

É um pacote de dados enviado por um hospedeiro e destinado a outro hospedeiro em uma rede local.

R25. Que camadas da pilha do protocolo da Internet um roteador processa? Que camadas um comutador de camada de enlace processa? Que camadas um sistema final processa?

• Um roteador:

processa as camadas de rede e enlace de dados da pilha do protocolo da Internet. Ele examina o endereço IP de destino em um pacote para determinar o próximo salto na rede e, em seguida, encaminha o pacote para o próximo roteador ou hospedeiro.

• Um comutador de camada de enlace:

processa apenas a camada de enlace de dados da pilha do protocolo da Internet. Ele examina o endereço MAC de destino em um quadro para determinar para qual porta do comutador o quadro deve ser encaminhado.

• Um sistema final:

processa todas as cinco camadas da pilha do protocolo da Internet. A camada de aplicação fornece serviços de rede para aplicativos, a camada de transporte fornece comunicação de extremidade a extremidade confiável e orientada a conexão entre processos de aplicativos, a camada de rede fornece roteamento de pacotes e encaminhamento de dados através de redes, a camada de enlace de dados fornece comunicação confiável entre hospedeiros adjacentes em uma rede e a camada física define as especificações elétricas, mecânicas e de procedimento para a transmissão de dados na rede.