Option Pricing

OptionPricing

Prof. Luis Seco University of Toronto Department of Mathematics Department of Mathematical Finance

July 23, 2011

Table of Contents

- Example
- Discounted Values
 - Implied Probabilities
- Markets
- Pricing Theory
 - Binomial Pricing Theory
 - Multiperiod Pricing Models/Theory
 - Efficient Market Hypothesis

Example

Example-Pricing a Call Option

- In the following example we will price a call option.
- For the moment ignore interest rates.
- A call option has the payoff function:

$$f_0(S) = (S - \$1)_+.$$

Example-Pricing a Call Option Continued...

- Can we assume p = 50%. Is V = 0.50?... NO!
- The actual price of the option is

$$V = 1/3$$
\$

but why?

- The price of the option is V = 1/3, how do we get this number?
- Let's construct a replicating portfolio:
 - We borrow \$1/3
 - ② We buy \$2/3 of S,

then we will exactly cover (or hedge) our payoff.

 Since it costs \$1/3 to purchase this portfolio, the price should be the same.

Discounted Values

Time is money.

- ullet Assume the existence of a bond with constant interest rate r.
- We build the following portfolio Π:

$$\Pi = \left(\frac{2}{3}\right) \text{ Stock units } + \left(-\frac{1}{3}\right) \text{Bonds}$$

Time is Money Continued...

• No matter what *p* is, absence of arbitrage implies:

Option Price
$$= \frac{2}{3} - \frac{1}{3}B$$
$$= \frac{2}{3} - \frac{1}{3}e^{-rT}.$$

where T is the time to expiration and r is the (constant) interest rate.

Implied Probabilities

• We can still achieve:

Option Price =
$$\mathbb{E}\left(e^{-rT} f_0\right)$$

= $p e^{-rT}$

by selecting

$$p = \frac{2}{3}e^{rT} - \frac{1}{3}$$

 \bullet In other words, we can construct a probability measure $\mathbb P$ for the stock process, such that

Option Price
$$= \mathbb{E}_{\mathbb{P}} \left(B_T^{-1} f_0 \right)$$
.

Implied Probabilites Continued...

 More generally, if we define the (arbitrage-free) price to equal the discounted pay-off

$$V=B_T^{-1}\,f_0,$$

then, there exists a measure \mathbb{P} under which V is a martingale: its value today is its expected future value.

Markets

Implied Market Data

Example (Implied Market Data)

Assume the call option in the previous example is sold for \$0.50.

$$\frac{2}{3} - \frac{1}{3}e^{-r} = 0.5.$$

Hence, the risk-free rate must equal

$$r = -\ln 2$$
.

Incomplete Markets

Example (Incomplete Markets)

Assume the stock valued at \$1 today, can be worth

$$S = \begin{cases} \$2 \\ \$1 \\ \$0.5 \end{cases}$$

after a year. How can we price the call option with strike 1?.

Solution (Incomplete Markets)

Two possibilities:

- Another derivative price is known
- 2 We can re-balance our hedge once before maturity.

Pricing Theory

Binomial Pricing Theory

Pay-off matrix:

$$D = \begin{bmatrix} 1 & 2 \\ 1 & 0.5 \end{bmatrix}$$

• The replicating strategy is given by:

$$D \cdot \begin{bmatrix} x = \text{bond units} \\ y = \text{stock units} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Cost vector:

$$q = (0.9, 1).$$

Price:

Price =
$$q \cdot x$$

= $q \cdot D^{-1} \cdot$ (Pay-off vector)
= Expected Pay-off

4□ > 4□ > 4 = > 4 = > = 9 < 0

Multiperiod Pricing

- \bullet Assume a call option with strike \$75 can be priced as follows (r=0):
- So its value today is \$15.
- This is the arbitrage-free price. Implied probabilities can be obtained as usual.

Pricing Theory (One Period)

- Implied probabilities can be obtained, not only from prices dictated by arbitrage arguments, but also from market prices.
- The implications of this is that a probabilistic approach to pricing is more useful than might have seemed from the considerations above.

Defintions: Pricing Theory I

- In this section we assume there is a probability space for the payoffs of N securities available for trading,
 - A security is characterized by its cost now, and its payoff after one unit of time.
 - The cost of the *i*-th security, i = 1, ..., N, is q_i .
 - The payoff is given by the random variable $D_i(\omega)$.

 - The expected payoff of a security is $E(D_i(\omega))$. A portfolio is a vector $\theta = (\theta_1, \dots \theta_N) \in \mathbb{R}^N$, which represents the holdings of each security. θ_i can be positive or negative.
 - **1** If θ_i is positive, our position is said to be long.
 - 2 If θ_i is negative, our position is said to be short.
 - The payoff of the portfolio θ is $\theta \cdot D(\omega)$.
 - A market is said complete if

$$\mathsf{Span}\{\theta \cdot D(\omega), \ \theta \in \mathbb{R}^N\} = L^2(\mu).$$

and markets are usually assumed to be complete. In a complete market, for any payoff there is a portfolio with that payoff.

◆□▶ ◆周▶ ◆三▶ ◆三▶ ● めぬべ

Definitions: Pricing Theory II

- Continuing...
 - The cost of a portfolio θ is $q \cdot \theta$.
 - If a portfolio has nonzero cost, i.e. $q\cdot\theta\neq0$, one defines its return to be

$$R_{\theta}(\omega) = \frac{\theta \cdot D(\omega)}{q \cdot \theta}.$$

Efficient Market Hypothesis

- In a real market, there are hedgers (people trying to minimize risk), speculators (people trying to maximize return) and arbitrageurs (people detecting market inefficiencies).
- We say that there is an **arbitrage opportunity** if there is a portfolio θ such that

$$q \cdot \theta \leq 0$$
, and $D \cdot \theta \geq 0$ a.e.,

and $D \cdot \theta > 0$ with non-zero probability.

Efficient Market Hypothesis (EMH)

The **Efficient Market Hypothesis (EMH)** states that there is no arbitrage and there are no transaction costs.

Riesz representation

Theorem (Riesz representation)

If p_i are linear functionals of the payoffs $L^2(\mu)$, then there exists a random variable $\pi(\omega)$ such that

$$p \cdot \theta = E(\theta \pi \cdot D), \quad \text{all } \theta \in \mathbb{R}^N.$$
 (1)

If markets are complete, π is unique. If there are no arbitrage opportunities, $\pi > 0$.

State-Price Deflator and Riskless

- In the case that we consider the cost as that linear functional, we obtain that the cost of a portfolio is the expectation of its payoff with probabilistic weight $\pi(\omega)$, which is called the state-price deflator.
- The name comes from the fact that

$$E(R_{\theta}\pi) = 1 \tag{2}$$

for all portfolios θ .

- We always assume that $D_0(\omega)$ is constant for all $\omega \in \Omega$. This is a savings account.
- A riskless bond is a portfolio θ_0 of constant payoff i.e. such that $\theta \cdot D(\omega) = \theta \cdot D(\omega')$ for all $\omega, \omega' \in \Omega$.
 - It always exists: put $\theta = (1, 0, \dots, 0)$.
 - Then from (2) we find

$$R^0 \equiv E(R_{\theta_0}) = \frac{1}{E(\pi)}.$$

Riskless Interest Rate

• The riskless interest rate is given by

$$r=-rac{1}{T}\mathrm{ln}\mathbb{E}\left(R_{ heta_0}
ight).$$

Theorem: Price Deflator and Arbitrage

Theorem

Price Deflator and Arbitrage A price deflator exists if and only if there is no arbitrage.

Proof: Price Deflator \rightarrow No Arbitrage

Proof.

- If a price deflator exists, then $\Pi(0) = E(\pi \Pi(T))$.
- 2 Since π is positive as a functional on L, if $\Pi(T) > 0$ then $\Pi(0) > 0$ and if $\Pi(T) = 0$ then $\Pi(0) = 0$.
- 3 On the other hand, let us suppose that there is no arbitrage. Let us consider the price-payoff vector space $V = \mathbb{R} \times L$.
 - The (cost, pay-off) hyperplane is

$$M = \{(-\theta \cdot q, \theta \cdot P) : \theta \in \mathbb{R}^N\}.$$

- The cone $K = \mathbb{R}_+ \times L_+$ contains all securities of non-positive price and non-negative payoff.
- If there is no arbitrage, then $K \cap M = \{0\}$.

10 Q Q

Proof: Price Deflator \rightarrow No Arbitrage Continued...

Proof.

Continuing...

→ By the separating hyperplane theorem, there exists a functional

$$F:V o\mathbb{R}$$

such that F(x) = 0 for all $x \in M$ and F(x) > 0 for all $x \in K \setminus \{0\}$.

 \rightarrow The Riesz representation of F(x) is

$$F(\mathbf{v}, \mathbf{c}) = \alpha \mathbf{v} + E(\phi \cdot \mathbf{c}).$$

 \rightarrow In terms of α and ϕ , we have that

$$-\alpha \theta \cdot \mathbf{q} + \mathbb{E}(\phi \cdot (\theta \cdot P)) = 0$$

for all $\theta \in \mathbb{R}^N$. \therefore Hence $\pi \equiv \frac{\phi}{\alpha}$ is a price deflator.

