JP05344881A

MicroPatent Report

PRODUCTION OF L-PHENYLALANINE BY FERMENTATION METHOD

[71] Applicant: AJINOMOTO CO INC

[72] Inventors: KIKUCHI TAKASANE;

FUKASE KUMIKO; SOTOUCHI NAOHITO; KURAHASHI OSAMU

[21] Application No.: JP04154941

[22] Filed: 19920615

[43] Published: 19931227

[No drawing]

Go to Fulltext

[57] Abstract:

PURPOSE: To raise productivity of L-phenylalanine by desensitizing an enzyme to be subjected to feedback control with L- phenylalanine and culturing a transformant transduced with a gene encoding an enzyme having removed feedback inhibition. CONSTITUTION: A bacterium of Escherichia coli deficient in tyrR and tyrA is transformed with a DNA fragment encoding an enzyme having removed feedback inhibition substantially with L-phenylalanine by variation of one or more amino acids of DS and CM-PD and with a recombinant vector containing DNA fragment encoding SK to give a transformant. The transformant is cultured and L-phenylalanine produced in the medium is collected to produce L- phenylalanine. COPYRIGHT: (C)1993, JPO&Japio

[51] Int'l Class: C12N00121 C12N01552 C12N01554 C12N01570 C12P01322 C12N00121 C12R00119 C12P01322 C12R00119

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-344881

(43)公開日 平成5年(1993)12月27日

(51)Int.Cl. ⁵ C 1 2 N	1/21 15/52 15/54	識別記号	庁内整理番号 7236-4B	FI	技術表示箇所
	15/70	ZNA			
			8931-4B	C12N	15/ 00 A
				審査請求 未請求	・請求項の数3(全17頁) 最終頁に続く
(21)出顧番号		特願平4-154941		(71)出願人	000000066 味の素株式会社
(22)出顧日		平成 4年(1992) 6	月15日		東京都中央区京橋1丁目15番1号
				(72)発明者	菊池 慶実 神奈川県川崎市川崎区鈴木町1-1 味の 素株式会社中央研究所内
				(72)発明者	深瀬 久美子 神奈川県川崎市川崎区鈴木町1-1 味の 素株式会社中央研究所内
				(72)発明者	外内 尚人 神奈川県川崎市川崎区鈴木町 1 ー 1 味の 素株式会社中央研究所内
					最終頁に続く

(54)【発明の名称】 発酵法によるLーフェニルアラニンの製造法

(57)【要約】

【目的】 L-フェニルアラニンによるフィードバック 制御を受ける酵素を脱感作し、これらフィードバック阻 客の解除された酵素をコードする遺伝子が導入された形 質転換株を培養することにより、L-フェニルアラニン の発酵生産の生産性を高める。

【構成】 DS、CM-PDの1ないしそれ以上のアミノ酸の変異により実質的にL-フェニルアラニンによるフィードバック阻害が解除された酵素をコードするDN A断片と、そしてSKをコードするDN A断片を含む組換えベクターで、 tyrR、tyrA欠失のエシェリヒア・コリ微生物を形質転換して得られる形質転換体、及び該形質転換体を培養することにより培地中に生産されたL-フェニルアラニンを取得することを特徴とする発酵法によるL-フェニルアラニンの製造法。

【特許請求の範囲】

【請求項1】エシェリヒア属に属する微生物であって、 宿主がtyrR、tyrA遺伝子を欠失したものであ り、かつ、フィードバック阻害が解除されたエシェリヒ ア属由来の3ーデオキシーDーアラビノへプツロン酸ー 7-リン酸シンターゼ(以下DSと略す)であって、a roFにコードされるもののN末端より147番目のア スパラギン酸残基がアスパラギン残基に置換されたD S、aroFにコードされるもののN末端より181番 目のセリン残基がフェニルアラニン残基に置換されたD S、aroGにコードされるもののN末端より150番 目のプロリン残基がロイシン残基に置換されたDS、a roGにコードされるもののN末端より202番目のア ラニン残基がスレオニン残基に置換されたDS、aro GにコードされるもののN末端より146番目のアスパ ラギン酸残基がアスパラギン残基に置換されたDS、a roGにコードされるもののN末端より147番目のメ チオニン残基がイソロイシン残基に置換され332番目 のグルタミン酸残基がリジン残基に置換されたDS、a roGにコードされるもののN末端より147番目のメ チオニン残基がイソロイシン残基に置換されたDS、a roGにコードされるもののN末端より157番目のメ チオニン残基がイソロイシン残基に置換され219番目 のアラニン残基がスレオニン残基に置換されたDS、の 内から選ばれるいずれか1つをコードするDNA断片 と、フィードバック阻害が解除されたエシェリヒア属由 来のコリスミン酸ムターゼープレフェン酸デヒドラター ゼ(以下CM-PDと略す)であって、330番目のセ リン残基がプロリン残基に置換されたCM-PD、33 0番目のセリン残基がアスパラギン酸残基に置換された CM-PD、330番目のセリン残基以降が欠失したC M-PD、の内から選ばれるいずれか1つをコードする DNA断片と、シキミ酸キナーゼ(以下SKと略する) をコードするDNA断片がエシャリヒア風細菌用ベクタ 一に挿入されて得られる組換えベクターを保持するも

【請求項2】微生物がエシェリヒア・コリAJ12741である特許請求の範囲第1項記載の微生物。

【請求項3】特許請求の範囲第1項記載の微生物を用いることを特徴とする発酵法によるL-フェニルアラニンの製法性

【発明の詳細な説明】

[0001]

【産業上の利用分野】 L-フェニルアラニンは甘味料アスパルテームの原料として近年需要が急増しているアミノ酸である。本発明は、L-フェニルアラニンの生産に関するものである。

[0002]

【従来の技術】微生物を用いてLーフェニルアラニンを 発酵生産する製造法としては、組換え体エシェリヒア・ コリを用いるものに、特開昭56-1890、特開昭57-170184、特開昭58-103398、特開昭61-92565、特開平1-104160、国際公開WO87/00202がある。またL-フェニルアラニンまたはL-チロシンの製造法としては、コリネバクテリウム属の変異株を用いるものに、特開昭61-128897があり、組換え体コリネバクテリウムを用いるものに、特開昭60-24192、特開昭61-260892、特開昭61-124375が知られている。

【0003】通常、L-フェニルアラニン生合成経路においては、その中心的役割を果たすキーエンザイムが最終産物により、フィードバック阻害を受ける。上記従来技術では、このフィードバック阻害の解除がなされたキーエンザイムを有する微生物を用いることにより、Lーフェニルアラニンの生産を行うことを原理としている。【0004】従来技術において、フィードバック阻害解除の対象となるキーエンザイムとしては、3-デオキシーD-アラビノへプツロン酸-7-リン酸シンターゼ(以下、「DS」と略する)や、プレフェン酸デヒドラターゼ(以下、「PD」と略する)などがある。

【0005】このうちまずDSについてであるが、エシ ェリヒア・コリにおいては、DSには3種類のアイソザ イムが存在することが知られている。これらは、aro F、aroG、aroHと呼ばれる遺伝子にコードさ れ、それぞれレーチロシン、レーフェニルアラニン、レ ートリプトファンによるフィードバック阻害を受ける。 【0006】これらの遺伝子に関する塩基配列及びアミ ノ酸配列は、既に報告されている [aroF: Hudson, G.S. and Davidson, B.E., J. Mol. Biol., 180, 1023 (1984) / a r o G: Davies, W. D. and Davidson, B. E., Nucleic Acids Res., 13, 4045 (1982) / a r o H : Ra y, J.M. et al, J. Bacteriol., 170, 5500 (1988)]. 【0007】芳香族アミノ酸を効率的に生産するために は、これらDSを改良することが不可欠である。3種類 のDS遺伝子のうち、aroHにコードされるDSにつ いては、Lートリプトファンによるフィードバック阻害 が解除された変異型aroHが報告されている [Ray, J.M. et al, J. Bacteriol., 170, 5500 (1988)] . L かしながら、本来、aroH由来のDS活性は、他のD S活性に比して非常に低いため、組換えDNA技術によ る改良には適さず、aroF、aroGにコードされる DSをフィードバック阻害解除したもの利用がより効率 的であると考えられる。

【0008】 Lーチロシンによる<u>aroF</u>のフィードバック阻害解除変異の例としてはウェーバーとハーマンによる報告 [Weaver, L.M. and Herrmann, K.M., J. Bacteriol., 172, 6581 (1990)] があり、N末端より148番目のLープロリン残基がLーロイシン残基に置換している。

【0009】フィードバック阻害が解除されたDSのう ち、変異部位が明示されたものが芳香族アミノ酸の発酵 生産に応用された例としては、以下に示す2、3の例が 知られるのみである。エドワーズらが、aroFにコー ドされるDSの152番目のレーグルタミン残基をレー イソロイシン残基に置換することでレーチロシンによる フィードバック阻害を解除し、L-フェニルアラニンの 発酵生産に利用している [国際公開WO87/0020 2]。また、シネンキらはaroGにコードされるDS の76番目のL-ロイシン残基をL-バリン残基に置換 することにより、Lーフェニルアラニンによるフィード バック阻害を解除したDS(aroG)を取得してL-フェニルアラニンの発酵生産に利用している [特開昭5 8-103398]。しかしながら、本報告では、L-フェニルアラニンによるフィードバック阻害が解除され たDSの酵素活性のデータ及びレーフェニルアラニンの 生産量は記載されていない。

【0010】次にPDについてであるが、エシェリヒア ・コリにおいては、コリスミン酸ムターゼ(以下、「C M」と略する) およびPD活性を有する2機能酵素 (C M-PD) の存在が知られ、該酵素活性はフェニルアラ ニンによりフィードバック阻害を受ける。尚、該酵素は pheAと呼ばれる遺伝子にコードされており、ハドソ ンとデビッドソンにより、該遺伝子の塩基配列および該 酵素のアミノ酸配列が報告されている [Hudson, G.S. a nd Davidson, B.E., J. Mol. Biol., 180, 1023 (198 4)]。フェニルアラニンを効率的に生産するためには、 このCM-PDのフェニルアラニンによるフィードバッ ク阻害を解除することが肝要であり、その方法におい て、アミノ酸レベルで解析されたものはいくつか知られ ている。例えば、ゲッシングとデビットソンは、CMー PDの2個(N末端より226番目と338番目) のト リプトファン残基をジメチル [2-ヒドロキシー5-ニ トロベンジルスルフォニウムプロマイド] で修飾する と、フィードバック阻害に耐性の酵素ができることを報 告している [Gething, M. J. H. and Davidson, B. E., Eu r. J. Biochem., 78, 111 (1977)]。また、バックマン らは、CM-PDのN末端側より338番目のトリプト ファン残基以降を欠失させるか、あるいはこの残基をア ルギニンーグリシンに置換することによりフィードバッ ク阻害の解除された酵素ができることを見いだしている [特開平1-235597]。さらに、エドワーズら は、やはり338番目のトリプトファン残基の位置にト リプトファンーアルギニンーセリンープロリンのアミノ 酸配列を挿入することにより、同様にフィードバック阻 客を解除した [国際特許WO87/00202]。これ らはすべて、338番目のトリプトファン残基について 注目したものであり、その他の残基についての知見はな

【0011】一方、コリネ型細菌においては、PD単独

の活性を有する酵素(PD)があり、この反応もフェニルアラニンによってフィードバック阻害を受けていることが知られている。

【0012】該酵素をコードする遺伝子のうち、尾崎ら [Ozaki, A. et al., Agric. biol.chem., 49, 2925 (1986)]、及び伊藤ら [Ito, H. et al., Appl. Microbio l. Biotechnol., 33, 190 (1989)] はフェニルアラニンによるフィードバック阻害が解除された遺伝子について報告している。また、フォレッチーとシンスキーは、天然型のPD遺伝子の塩基配列を報告しており、エシェリヒア・コリK-12のpheA遺伝子との相同性を指摘している [Follettie, M.T. and Sinsky, A.J., J. Bacteriol., 167, 695 (1986)]。しかしながら、コリネ型細菌においてフィードバック阻害が解除された酵素遺伝子の塩基配列に関する知見はなかった。ましてや、塩基配列レベルでの変換、それに伴うアミノ酸置換による阻害解除の試みは実施されていなかった。

【0013】 Lーフェニルアラニンの生合成系のもう1つのキーエンザイムにシキミ酸キナーゼ(以下、SKと略する。)があるが、エシェリヒア・コリのSK遺伝子aroLはデフェイターらによりクローニングされ [J. Bacteroil., 165, 226 (1986)] その塩基配列が決定されている [J. Bacteriol., 165, 233 (1986)]。しかしながらエシェリヒア・コリにおいてSKをLーフェニルアラニンの発酵生産に利用した具体的例はまだ報告されておらず、コリネ型細菌において報告があるのみである(特開昭62-143682)。

【0014】またエシェリヒア・コリにおいては、芳香 族アミノ酸が過剰に生産されるとTyrRというタンパ ク質が活性化され、芳香族アミノ酸生合成経路中の2種 類のDS(遺伝子としてaroF、aroG)、SK (遺伝子としてaroL)、そしてチロシンアミノトラ ンスフェラーゼ(遺伝子としてtyrB) の遺伝子の発 現を抑制する、いわゆるフィードバック抑制機構が存在 することが知られている [J. Bacteriol., 108, 400 (1 971)]。このTyrRタンパク質の遺伝子(tyrR) が欠失したエシェリヒア・コリを用いてL-フェニルア ラニンを発酵生産させている具体的な例としてはチョイ とトライプらの例 [Biotechnol. Lett., 4, 223 (198 2)]、[特開昭57-170184]が知られている。 この例ではtyrR遺伝子の欠失したエシェリヒア・コ リに導入する遺伝子としては<u>aroFとpheA</u>の2つ だけが具体的に挙げられている。

[0015]

【本発明が解決しようとする課題】本発明の目的は、L ーフェニルアラニンを、効率よく発酵生産する方法を提供することである。

[0016]

【課題を解決するための手段】本発明者らは、効率よく レーフェニルアラニンを発酵生産する方法を開発するこ とを目的として研究を重ねた結果、本発明を完成するに 至った。

【0018】さらに本願発明は、エシェリヒア属にする 微生物であって、宿種が t y r R 、 t y r A 遺伝子を欠 失したものであり、かつ、フィードバック阻害が解除さ れたエシェリヒア風由来のDSであって、a r o Fにコ ードされるもののN末端より147番目のアスパラギン 酸残基がアスパラギン残基に置換されたDS、aroF にコードされるもののN末端より181番目のセリン残 基がフェニルアラニン残基に置換されたDS、aroG にコードされるもののN末端より150番目のプロリン 残基がロイシン残基に置換されたDS、aroGにコー ドされるもののN末端より202番目のアラニン残基が スレオニン残基に置換されたDS、aroGにコードさ れるもののN末端より146番目のアスパラギン酸残基 がアスパラギン残基に置換されたDS、aroGにコー ドされるもののN末端より147番目のメチオニン残基 がイソロイシン残基に置換され332番目のグルタミン 酸残基がリジン残基に置換されたDS、aroGにコー ドされるもののN末端より147番目のメチオニン残基 がイソロイシン残基に置換されたDS、aroGにコー ドされるもののN末端より157番目のメチオニン残基 がイソロイシン残基に置換され219番目のアラニン残 基がスレオニン残基に置換されたDS、の内から選ばれ るいずれか1つをコードするDNA断片と、フィードバ ック阻害が解除されたエシェリヒア属由来のCM-PD であって、330番目のセリン残基がプロリン残基に置 換されたCM-PD、330番目のセリン残基がアスパ ラギン酸残基に置換されたCM-PD、330番目のセ リン残基以降が欠失したCM-PD、の内から選ばれる いずれか1つをコードするDNA断片と、SKをコード するDNA断片がエシャリヒア属細菌用ベクターに挿入 されて得られる組換えベクターを保持するものであり、 および該微生物を用いることを特徴とする発酵法による レーフェニルアラニンの製造法である。

【0019】本発明者らは、まずエシェリヒア・コリの 天然型DS遺伝子をクローニングし、これを変異させる ことによりフィードバック阻害が解除されたDSをコー ドする新規遺伝子を取得した。また、プレビバクテリウ ム・ラクトファーメンタムの天然型PD遺伝子をクロー ニングし、また、Lーフェニルアラニン生産菌よりフィードバック阻害が解除されたPDをコードする遺伝子を取得し、変異点を決定した。さらに、エシェリヒア・コリの天然型CM-PD遺伝子をクローニングし、プレビバクテリウム・ラクトファーメンタムにおける変異点を基にこれを変異させることによりフィードバック阻害が解除されたCM-PDをコードする新規遺伝子を取得した。またSKをコードする遺伝子は通常の方法でクローニングした。

【0020】次に、DSをコードする遺伝子とPDをコードする遺伝子を組み合わせて<u>tyrR</u>遺伝子、<u>tyrA</u>遺伝子の欠失したエシェリヒア・コリに導入した時よりも、DSをコードする遺伝子とPDをコードする遺伝子、さらにはSKをコードする遺伝子を組み合わせた時の方がLーフェニルアラニンの発酵生産がよいことを見いだし、本発明を完成するに至った。

【0021】以下、本発明を詳細に説明する。

【0022】本発明における、フィードバック阻害が解除されたDSをコードする新規遺伝子の取得は、以下のようにして行なうことができる。

【0023】先ず、エシェリヒア・コリK-12のMC 1061株(ATCC53338)の染色体DNAより PCR法を用いて<u>aroF、aroG</u>遺伝子をクローニ ングし、ヒドロキシルアミンを用いて目的の遺伝子を変 異させた。

【0024】 aroF及びaroGとは、Lーチロシン、Lーフェニルアラニンでそれぞれフィードバック阻害を受けるDSをコードする遺伝子をいい、遺伝的多系性などによる変異型も含む。尚、遺伝的多系性とは、遺伝子上の自然突然変異により蛋白質のアミノ酸配列が一部変化している現象をいう。

【0025】遺伝子に変異を生じさせるには、リコンピナントPCR法 [PCR Technology, Stockton press (1989)】、部位特異的変異法 [Kramer, W. and Frits, H. J., Methods in Enzymology, 154, 350 (1987)] や当該遺伝子を保有する菌株を紫外線照射する方法もしくは化学薬剤処理 (NーメチルーN'ーニトロソグアニジン、亜硝酸など) する方法、更に目的遺伝子を化学合成する方法がある。

【0026】DSにおいて、他のアミノ酸に関換されるアミノ酸残基とは、Lーチロシン、Lーフェニルアラニン、あるいはLートリプトファンによるフィードバック阻害のメカニズムに関わるアミノ酸配列領域に存在するアミノ酸残基をいう。例えば<u>aroF</u>によってコードされるDSでは、N末端側より147番目のアスパラギン酸残基、181番目のセリン残基をいい、これらは表1にまとめられている。

【0027】DSにおける他のアミノ酸残基への置換とは、Lーチロシン、Lーフェニルアラニン、あるいはLートリプトファンによるフィードバック阻害が解除され

【0028】

変異遺伝子	ァ ミ ノ 酸 置 N末端よりの位置	換 部 位 	対応塩基配列
a r o F 1 5	1 4 7 番目 A	s p → A s n	$G A T \rightarrow A A T$
aroF33	181番目 S	er → Phe	$T C C \rightarrow T T C$
arog 4	1 5 0 番目 P	ro→Leu	$C C A \rightarrow C T A$
aroG 8	202番目 A	la → Thr	$G C C \rightarrow A C C$
ar o G 1 5	1 4 6 番目 A	$s p \rightarrow A s n$	$G A T \rightarrow A A T$
aroG17	1 4 7 番目 M	e t → 1 1 e	$A T G \rightarrow A T A$
	3 3 2 番目 G	$l u \rightarrow L y s$	$G A A \rightarrow A A A$
ar o G 2 9	1 4 7 番目 M	e t → 1 1 e	$A T G \rightarrow A T A$
аго G 4 0	157番目 M	et IIe	$A T G \rightarrow A T A$
	2 1 9 番目 A	la - Thr	$G C G \rightarrow A C G$

【0029】本発明における、フィードバック阻害が解除されたPD、即ちプレビバクテリウム・ラクトファーメンタムにおいてはPD、エシェリヒア・コリにおいてはCM-PDをコードする新規遺伝子の取得は、以下のようにして行った。

【0030】まず、Lーフェニルアラニンを良好に生産するプレビバクテリウム・ラクトファーメンタムの、Lーフェニルアラニンによるフィードバック阻害が解除されたPD遺伝子の塩基配列を決定、解析することにより、生産株では野生株と比べて1アミノ酸が置換していることを見いだした。次に、本知見に基づきエシェリヒア・コリK-12におけるCM-PDの相同領域に同じアミノ酸置換、すなわち、330番目のセリン残基をプロリン残基に置換したところ、フィードバック阻害の解除したCM-PDを取得することができた。あるいは該330番目のセリン残基をアスパラギン酸残基に置換したCM-PDおよび該330番目のセリン残基以降が欠失したCM-PDを造成したところ、該酵素がフィードバック阻害解除されていることが判明した。

【0031】本発明でいうPD活性を有する酵素とは、コリネ型細菌などの微生物由来で単独の該活性を有するもの、さらにエシェリヒア・コリなどの微生物由来でCM-PDといった2機能の活性を有するものをいう。

【0032】PDにおいて、他のアミノ酸に置換される、あるいは欠失されるアミノ酸残基とは、Lーフェニルアラニンによるフィードバック阻害のメカニズムに関わるアミノ酸配列領域に存在するアミノ酸残基をいう。例えば、ブレビバクテリウム・ラクトフェルメンタムのPDにおいてはN末端側より235番目、エシェリヒア・コリのCM-PDにおいてはN末端側より330番目のセリン残基の置換であり、また、エシェリヒア・コリのCM-PDのN末端側より330番目のセリン残基以降の欠失をいう。

【0033】PDにおいて、他のアミノ酸残基への置換とは、Lーフェニルアラニンによるフィードバック阻害が解除されるような他のアミノ酸への置換をいい、たとえばプレビバクテリウム・ラクトフェルメンタムのPDにおいてはN末端側より235番目、エシェリヒア・コリのCM-PDにおいてはN末端側より330番目のセリン残基のプロリン残基への置換をさす。さらにはエシェリヒア・コリK-12の該330番目のセリン残基をアスパラギン酸残基に置換したものをいう。

【0034】SK遺伝子についてはエシェリヒア・コリ K-12のMC1061株の染色体DNAよりPCR法 を用いてaroL遺伝子をクローニングした。クローニ ングの方法についてはPCR以外の、従来より行われて いるエシェリヒア・コリの遺伝子ライブラリーより取得 する方法でもよい。

【0036】 <u>tyrR</u>遺伝子の欠失したエシェリヒア・ コリの取得は、先ず t y r R 遺伝子のクローニングより 行った。エシェリヒア・コリK-12のMC1061株 の染色体DNAよりPCR法を用いてtyrR遺伝子を クローニングした。このtyrR遺伝子を適当な制限酵 素で処理することにより欠失 t y r R遺伝子を構築し、 この欠失tyrR遺伝子をエシェリヒア・コリの染色体 上の正常なtyrRと入れ換えること、つまり相同性組 換えを利用した遺伝子置換の手法によりtyrRの欠失 したエシェリヒア・コリを造成した。尚、欠失tyrR 遺伝子の構築には制限酵素処理で欠失させる他、先に述 べたような化学薬剤処理やリコンピナントPCR法、部 位特異的変異法、更に欠失 t y r R 遺伝子を化学合成す る方法が考えられる。またエシェリヒア・コリを紫外線 照射する方法もしくは化学薬剤処理(NーメチルーN' ーニトロソグアニジン、亜硝酸など) する方法などによ り、tyrR遺伝子の欠失したエシェリヒア・コリを直 接造成することもできる。

【0037】 tyrA遺伝子の欠失したエシェリヒア・コリの取得もtyrRの場合と同様にして達成される。 tyrA遺伝子はプレフェン酸デヒドロゲナーゼをコードする遺伝子である。該酵素はプレフェン酸からLーチロシンを合成する経路の反応を触媒するものであり、これを欠損した株ではプレフェン酸がLーフェニルアラニンへと効率よく変換される。

【0038】以上の方法で取得した、フィードバック阻 客が解除されたDSおよびPD遺伝子、そしてSK遺伝 子を含む組換えDNAで形質転換された<u>tyrR</u>、<u>tyrA</u>遺伝子が欠失したエシェリヒア・コリを培養し、培 養液にLーフェニルアラニンを生成蓄積せしめ、これを 採取した。

【0039】使用するL-フェニルアラニン生産用の培地は、炭素源、窒素源、無機イオン及び必要に応じその他の有機成分を含有する通常の培地である。

【0040】炭素源としては、グルコース、ラクトー

ス、ガラクトース、フラクトースやでんぷんの加水分解物などの糖類、グリセロールやソルビトールなどのアルコール類、フマール酸、クエン酸、コハク酸等の有機酸類を用いることができる。

【0041】窒素源としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。

【0042】有機微量栄養源としては、ピタミンB1、 Lーチロシンなどの要求物質または酵母エキス等を適量 含有させることが望ましい。

【0043】これらの他に、必要に応じて、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。

【0044】培養は好気的条件下で16~72時間実施するのがよく、培養温度は30℃~45℃に、培養中pHは5~7に制御する。尚、pH調整には無機あるいは有機の酸性あるいはアルカリ性物質、更にアンモニアガス等を使用することができる。

【0045】発酵液からのLーフェニルアラニンの採取 は通常イオン交換樹脂法、沈澱法その他の公知の方法を 組み合わせることにより実施できる。

【0046】以上に述べた方法により、フィードバック 阻害が解除されたDSおよびPD、そしてSKを有する <u>tyrR</u>、<u>tyrA</u>遺伝子の欠失したエシェリヒア・コ リ形質転換株を培養すると、Lーフェニルアラニン生産 性について大幅な向上がみられた。このことは本発明の 有用性を実証したものである。

【0047】以下、実施例に基づき更に具体的に説明する。

[0048]

【実施例】

実施例1 フィードバック阻害が解除されたDSをコードする新規遺伝子の取得

(1) エシェリヒア・コリの<u>aroF</u>由来変異型DS遺伝子の取得

エシェリヒア・コリK-12のMC1061株から、通常の方法に従って染色体DNAを抽出した。一方、公知の文献 [J. Mol. Biol., 180, 1023 (1984)] に記載されている aroF遺伝子の塩基配列に基づいて配列番号1及び2に示すような合成DNAプライマー2本を通常の方法で合成した。

配列番号1 GCTAACCAGT AAAGCCAACA

配列番号 2 CCCACTTCAG CAACCAGTTC

これらはそれぞれ<u>aroF</u>遺伝子の上流及び下流に相同な配列を有する。この染色体DNAとDNAプライマーを用いてエルリッチらの方法 [PCR Technology, Stockton press (1989)] に従ってPCR反応を行ない、1.5 KbpのDNA断片を得た。以下、図1の左側に示すように、この断片を制限酵素<u>Eco</u>RVと<u>Eco</u>47II

1で切断した後、pHSG398 (宝酒造社製) のSm a I 切断物をT4DNAリガーゼを用いて連結した。こ の反応混合物でエシェリヒア・コリK-12のJM10 9株(宝酒造社製)を形質転換し、生育したクロラムフ ェニコール耐性株の中でaroF遺伝子が挿入されたプ ラスミドを保有する菌株からプラスミドを抽出し、プラ スミドpHSG-aroFを取得した。更にpHSGaroFを制限酵素EcoRIとHindIIIで切断 することにより得たaroF遺伝子含有DNA断片を、 T4DNAリガーゼでプラスミドpTS1 (特願平2-192162) のEcoRI、HindIII切断フラ グメントと連結した。この反応混合物でエシェリヒア・ コリK-12のDS欠損(aroF、aroG、aro H) 株AB3257を形質転換した (AB3257株 は、エシェリヒア・コリ ジェネティック ストック センターより入手した)。生育したアンピシリン耐性株 の中でレーチロシン、レーフェニルアラニン、レートリ プトファンの要求性が消失した株からプラスミドを抽出 し、プラスミドpTS-aroFを取得した。

【0049】次に、プラスミドpTS-aroFをヒドロキシルアミンを用いた方法 [J. Mol. Biol., 175, 331 (1984)] によって変異処理を行なった後、AB3257株に形質転換し、アンピシリン耐性株を取得後、1mMのLーチロシン添加の最少培地に生育した株を2株選択し、これらの菌株よりフィードバック阻害が解除されたaroF遺伝子を含有するプラスミドpTS-aroF15及びpTS-aroF33を得た。フィードバック阻害が解除されていないaroFを含むプラスミドを保有するAB3257株は、図2に示す通り最少培地に1mMのLーチロシンを加えると、該DS活性がフィードバック阻害を受け、LーフェニルアラニンやLートリプトファンといった芳香族アミノ酸を合成できず、生育することができなくなる。

【0050】 (2) エシェリヒア・コリの<u>a r o G</u>由来 変異型DS遺伝子の取得

 aroF遺伝子の場合と同様にして、変異型aroG遺伝子を取得した。公知の文献 [Nucleic Acids Res., 10, 4045 (1982)] に記載されているaroG遺伝子の塩基配列に基づいて配列番号3及び4に示すような合成DNAプライマー2本を合成した。

配列番号3 GTATTTACCC CGTTATTGTC

配列番号 4 ACTCCGCCGG AAGTGACTAA

該プライマーとMC1061株の染色体DNAを用いて、PCR反応を行ない、2.1kbpのDNA断片を得た。以下、図1の右側に示すように、この断片を制限酵素SalIとEco47IlIで切断した後、pHSG398(宝酒造社製)のSalIとSmal切断物をT4DNAリガーゼを用いて連結した。この反応混合物でJM109株を形質転換し、生育したクロラムフェニコール耐性株の中でaroG遺伝子が挿入されたプラス

ミドを保有する菌株からプラスミドを抽出し、プラスミ ドpHSG-aroGを取得した。さらにpHSG-a roGを制限酵素EcoRIとHindlIIで切断す ることにより得られた<u>aroG</u>を含有するDNA断片 を、T4DNAリガーゼで、pTS1のEcoRI、H indlll切断フラグメントと連結した。この反応混 合物でAB3257株 (aroF、aroG、aro H) を形質転換し、生育したアンピシリン耐性株の中で Lーチロシン、L-フェニルアラニン、L-トリプトフ ァンの要求性が消失している株からプラスミドを抽出 し、プラスミドpTS-aroGを取得した。 【0051】次に、このプラスミドを<u>aroF</u>の場合と 同様にヒドロキシルアミンによる変異処理を行なった 後、AB3257株に形質転換し、アンピシリン耐性株 を取得した。これらの菌株から10mMのL-フェニル アラニン添加の最少培地に生育した菌株を6株選択し、 これらの菌株よりフィードバック阻害が解除されたar oG遺伝子を含有するプラスミドpTS-aroG4、 pTS-aroG8, pTS-aroG15, pTSaroG17, pTS-aroG29, pTS-aro G40を得た。フィードバック阻害が解除されていない aroGを含むプラスミドを保有するAB3257株 は、図3に示す通り最少培地に10mMのLーフェニル アラニンを添加すると、該DS活性がフィードバック阻 客を受け、LートリプトファンやLーチロシンといった 芳香族アミノ酸を合成できず、生育することができなく

【0052】(3) DS酵素活性の測定 上述の変異型<u>aroF</u> (2種類)及び変異型<u>aroG</u> (6種類)を含有するプラスミドを、DS活性を有しな いエシェリヒア・コリAB3257株に導入して形質転 換株を取得し、それぞれをA J I 2 5 9 8 (A B 3 2 5 7/pTS-aroF15), AJ12599 (AB3 257/pTS-aroF33), AJ12562 (A B3257/pTS-aroG4), AJ12600 (AB3257/pTS-aroG8), AJ1256 3 (AB3257/pTS-aroG15), AJ12601 (AB3257/pTS-aroG17) 、AJ 12602 (AB3257/pTS-aroG29) 及 UAJ12603 (AB3257/pTS-aroG4 0) と命名した。これらの内、代表株としてAJ125 63、AJ12603をそれぞれ、エシェリヒア・コリ FERM BP-3567, FERM BP-35 68として微工研に寄託した。尚、比較のため、天然型 の遺伝子を含有するプラスミドも同株に導入した。 【0053】これらの菌株を既知のLーフェニルアラニ ン生産培地 [Sugimoto, S. et al., J. Biotechnol., 5, 237 (1989)] を用いて24時間培養した。この培養菌

体より超音波破砕によって粗酵素液を調製し、通常の方

法 [Gollub, E. et al., Methods Enzymol., 17, 349]

なる。

に従って、aroFの場合はLーチロシン存在下で、a roGの場合はLーフェニルアラニン存在下でDSの酵 素活性を測定した。その結果、図2と図3に示すよう に、天然型のもの(エシェリヒア・コリAB3257/ pTS-aroF) ではLーチロシンの存在下で酵素活 性が強く阻害されているのに対し、それぞれの変異型の ものではレーチロシンによるフィードバック阻害が解除 されていた。同様に、もう一方の天然型のもの(エシェ リヒア・コリAB3257/pTS-aroG) では、 L-フェニルアラニンの存在下で酵素活性が強く阻害さ れるのに対し、それぞれの変異型のものではLーフェニ ルアラニンによるフィードバック阻害が解除されてい た。さらに変異型のうちAJ12562株のDSは、L ーフェニルアラニンによるフィードバック阻害が解除さ れているだけではなく、L-フェニルアラニンの濃度に 従って、酵素活性が上昇した。

【0054】(4)フィードバック阻害が解除されたD Sの変異点の決定

フィードバック阻害が解除されたDSの遺伝子であるaroF15、aroF33、aroG4、aroG8、aroG15、aroG17、aroG29、aroG4の塩基配列を通常の方法 [Molecular Cloning (Second Edition), Cold Spring Harbor Press (1989)] に従って決定した。具体的なアミノ酸配列上の置換部位及びその対応塩基配列上の変異点を表1に示す。これらの配列はすべて、これまでに報告のないものであった。

【0055】実施例2 フィードバック阻害が解除されたPDをコードする新規遺伝子の取得

(1) プレビバクテリウム変異型PDの変異点の決定 まず、既知のコリネバクテリウムのPD遺伝子 [Follet tie, M. T. and Sinsky, A. J., J. Bacteriol., 167, 69 5 (1986)] との相同性を指標として、プレビバクテリウ ム・ラクトファーメンタム野生株のPD遺伝子を含むプ ラスミドpAJ16中のNcoI断片の塩基配列をダイ デオキシ法により決定した。配列を配列表の配列番号5 に示す。尚、該プラスミドは、プレリバクテリウム・ラ クトファーメンタムAJ12125 (FERM-P75 46) に保持される。尚、該アミノ酸配列はコリネバク テリウムのものと比べて、わずか1アミノ酸残基異なっ ていた。次に、同じくプラスミドpPH14上にあるブ レビバクテリウム・ラクトファーメンタムのフェニルア ラニン生産株のPDをコードする遺伝子の塩基配列を決 定したところ、配列表の配列番号6に示すような配列が 得られた。尚、該プラスミドはブレビバクテリウム・ラ クトファーメンタムAJ12259 (FERM P-3 565) 株に保有されるものを使用した。野生株とフィ ードバック阻害解除がなされた株で比較したところ23 5番目のセリン残基がプロリン残基に変異していた。

【0056】 (2) エシェリヒア・コリの変異型CM-PDをコードする新規遺伝子の構築

まず、エシェリヒア・コリK-12のRR1株から、通常の方法に従って、染色体DNAを抽出した。

【0057】一方、公知の文献 [Hudson, G.S. and Davidson, B.E., J. Mol. Biol., 180,1023 (1984)] に記載されているpheA遺伝子の塩基配列に基づいて、以下に示すような合成DNAプライマー4本 (配列番号7-10) を通常の方法で化学合成した。

配列番号 7 TCAACAAGCT GGAACGGACG

配列番号8 CGCCGATTTA CCGCCTTGAG

配列番号9 CCGTCTGGAA CCACGCCCGA T

配列番号10 ATCGGGCGTG ATTCCAGACG G

7と8はそれぞれ<u>pheA</u>遺伝子の上流および下流に相同な配列を持つ。9と10はたがいに相補的であり、T(チミン塩基)がC(シトシン塩基)に置換した1塩基のみ異なる以外、330番目のセリン残基近傍の配列と相同性を持つ。エシェリヒア・コリK-12のCM-PDとプレビバクテリウム・ラクトファーメンタムのPDとは高い相同性を有し、特にエシェリヒア・コリK-12のCM-PDのN末端より330番目のセリン残基は、プレビバクテリウム・ラクトファーメンタムPDのN末端より235番目のセリン残基に相当するものである。該配列番号9、10は、330番目のセリン残基がプロリン残基となるよう合成されている。

【0058】次に、染色体DNA1μgと、配列番号7 および10のプライマーおのおの300ng、または配 列番号8および9のプライマーおのおの300ngを用 いて、PCR反応を行い、それぞれ1.3Kbpと0. 5KbpのDNA断片を得た。該PCRの方法は、エル リッチらの方法[Erlich, H.A., ed., PCR Technology. Stockton press (1989)]にしたがって、連続複製反応装 置 (Thermal cycler, Perkin Elmer Cetus社製) を用い て94℃1分間、50℃2分間、72℃3分間の反応を 1サイクルとして20サイクル行なった。これらのDN A断片をアガロースゲル電気泳動し、DNA回収キット (Gene Clean, フナコシ社製) をもちいて回 収し、更にこれらの断片と配列番号7と8のプライマー を用いてPCR反応を行い、1.8KbpのDNA断片 を得た。この断片を制限酵素BamHIとPstlで切 断した後、1.7KbpのDNA断片をアガロースゲル 電気泳動により回収し、更にこの断片とプラスミドpH SG398(宝酒造社製)のBamHI、Pstl切断 物をT4リガーゼを用いて連結した。これをエシェリヒ ア・コリK-12のKA197株 (pheA) に形質転 換し、クロラムフェニコール耐性株の中で、フェニルア ラニン要求性が消失している株からプラスミドを回収 し、pPHABと命名した。塩基配列を決定することに より該プラスミドが、330番目のセリン残基がプロリ ン残基に置換した変異型CM-PD酵素遺伝子を保有す ることを確認した。

【0059】(3) エシェリヒア・コリK-12のty

rA遺伝子欠損性W3110株の造成

まず、エシェリヒア・コリK-12のW3110株(国 立遺伝研究所より入手)をストレプトマイシンを含む平 板培地に塗布することにより、ストレプトマイシン耐性 株を取得した。次に、この株とエシェリヒア・コリKー 12のME8424株 (HfrPO45, thi, re 1A1, tyrA::Tn10, ung-1, nad B) (国立遺伝研究所より入手) の培養液を混合し、3 7℃で15分間放置して接合伝達を行わせた後、ストレ プトマイシン、テトラサイクリン、L-チロシンを含む 平板培地に塗布し、生じたコロニー即ちエシェリヒア・ コリK-12のW3110 (tyrA) 株を取得した。 この株に、(2)で得たプラスミドpPHABを形質転 換により導入した。尚、エシェリヒア・コリK-12の 該形質転換株 [W3110 (<u>tyrA</u>) / pPHAB] は微工研に寄託されており、寄託番号はFERM BP -3566である。

【0060】(4) PD酵素活性の測定

エシェリヒア・コリK-12のW3110 (tyrA) / (pPHAB) 株の菌体を、L培地を用いて37℃、15時間培養した培養液を遠心分離することにより集菌した。次いで、該菌体を生理食塩水にて2回洗浄し、氷冷下0.5mMジチオスレイトールを含む250mMのトリス塩酸緩衝液 (pH7.5) に懸濁した後、30秒間、4回の超音波 (20kHz) 破砕することにより粗酵素液を調製した。

【0061】PD酵素活性測定は、常法[Cotton, R.G. H. and Gibson, F., Meth. in Enzymol., 17, 564 (1970)]に従った。すなわち、粗酵素液を用いて、1 mMプレフェン酸パリウムおよび0.5 mMチロシンを含む50mMトリス塩酸緩衝液(pH8.2)存在下、37℃10分反応させ、1 N水酸化ナトリウムを加えて反応を停止後、生成したフェニルピリビン酸を320 n mの吸光波長にて測定した。蛋白定量法はプロテイン アッセイキット(Bio Rad社製)を用い、そのプロトコールに従った。結果は第4図に示すように、野生型CMーPDでは0.5 mMLーフェニルアラニン存在下で強く酵素反応が阻害されるのに対し、変異型CMーPDは5 mMLーフェニルアラニンでもほとんど阻害を受けなかった。

【0062】さらにLーフェニルアラニンの非存在下での野生型酵素遺伝子を保有するプラスミドの場合は、3.5×10²U/mg蛋白で、変異型の場合は1.5×10⁴U/mg蛋白と、より高い酵素活性を示した。このことにより、当該変異を導入することにより、Lーフェニルアラニンによるフィードバック阻害解除のみならず、酵素量または酵素活性が40倍増大させることができた。

【0063】(5) エシェリヒア・コリの変異型CM-PDをコードする新規遺伝子の構築 また(2)同様に、配列番号11-14の合成DNAを作製し、これを用いて330番目のセリン残基がアスパラギン酸残基に置換したCM-PDおよび330番目のセリン残基以降が欠失したCM-PDをコードする遺伝子を構築した。これらの遺伝子を含有するプラスミドはそれぞれpPHAD、pPHATermと命名した。

配列番号 11 CCGTCTGGAA GACCGC CCGA T

配列番号 12 ATCGGGCGGT CTTCCA GACG G

配列番号 13 CCGTCTGGAA TGACGCCCGA T

配列番号 14 ATCGGGCGTC ATTCCAGACG G

【0064】更に、このプラスミドをW3110 (\underline{t} \underline{y} \underline{r} \underline{A}) 株に通常の形質転換法を用いて導入した。なお、W3110 (\underline{t} \underline{y} \underline{r} \underline{A}) / \underline{p} PHAD, W3110 (\underline{t} \underline{y} \underline{r} \underline{A}) / \underline{p} PHATermid それぞれ後工研に寄託されており、寄託番号はそれぞれFERM BP-3652とFERM BP-3653である。

【0065】(6) PD酵素活性の測定

エシェリヒア・コリK-12のW3110 (<u>tyrA</u>) /pPHAD株、W3110 (<u>tyrA</u>) /pPHATerm株の菌体を、L培地を用いて37℃、15時間培養した培養液を遠心分離することにより集菌した。次いで(4)と同様にして、PD酵素活性の測定を行った。結果は(4)と同様であり、変異型CM-PDは5mM L-フェニルアラニンでもほとんど阻害を受けなかった。

【0066】さらに、L-フェニルアラニンの非存在下でのこれら2種の変異型酵素の活性は1.5×10⁴U/mg蛋白であった。このことにより、当該変異を導入することによっても、L-フェニルアラニンによるフィードバック阻害解除のみならず、酵素量または酵素活性が40倍増大させることができた。

【0067】実施例3 SK遺伝子の取得 まず、エシェリヒア・コリK-12のMC1061株か ら、通常の方法に従って、染色体DNAを抽出した。

【0068】一方、公知の文献 [J. Bacteriol., 165, 233 (1986)] に記載されている<u>aro</u>L遺伝子の塩基配列に基づいて、以下に示すような合成DNAプライマー2本(配列番号15-16) を通常の方法で化学合成した。

配列番号 1 5 GCGGAGCTCG AGAAGTGGTG 配列番号 1 6 ACTCAGAATT CCTTCCGAGC

15と16はそれぞれa r o L遺伝子の上流及び下流にほぼ相同な配列を有する。この染色体DNAとDNAプライマーを用いてエルリッチらの方法 [PCR Technolog y, Stockton press (1989)] に従ってPCR反応を行ない、1.0KbpのDNA断片を得た。以下、図5に示すように、この断片を制限酵素E c o R I と S a c Iで切断した後、p H S G 3 9 8(宝酒造社製)のE c o R

Iと<u>Sac</u>I切断物をT4DNAリガーゼを用いて連結 してpHSG-aroLを得た。

【0069】実施例4 <u>tyrR、tyrA</u>遺伝子が欠 失したエシェリヒア・コリK-12のW3110株の造 成

エシェリヒア・コリK-12のMC1061株から、通常の方法に従って染色体DNAを抽出した。一方、公知の文献 [J. Biol. Chem., 261, 403 (1986)] に記載されている tyrR遺伝子の塩基配列に基づいて配列番号17及び18に示すような合成DNAプライマー2本を通常の方法で合成した。

配列番号17 GGATTAAAGC TTTGGAGCTT 配列番号18 GTGGATGAAT TCACCACCGA

1. 9 K b pのDNA断片を得た。この断片を制限酵素 <u>EcoRIとHindIII</u>で切断した後、pTS1の <u>EcoRIとHindIII</u>の切断物とT4DNAリガーゼを用いて連結しpTS-<u>tyrR</u>を得た。

【0070】次にpTS-tyrRを制限酵素Bglllで判断しtyrR遺伝子内の約300bpの断片を欠失させ、残りの断片をDNAプランティングキット(宝酒造社製)で平滑末端化した後、再び環状化させpTS-ΔtyrRを構築した。構築したpTS-ΔtyrRをエシェリヒア・コリK-12のW3110株(国立遺伝研究所より入手)に導入して、相同性組換えを起こして染色体上の正常なtyrR遺伝子と、導入したΔtyrR遺伝子が置換した株を3-フルオロチロシン耐性により選択し、tyrR遺伝子が欠失したエシェリヒア・コリK-12のW3110株を造成した。

【0071】次に、造成した<u>tyrR</u>遺伝子の欠失したエシェリヒア・コリK-12のW3110株をストレプトマイシンを含む平板培地に塗布することにより、ストレプトマイシン耐性株を取得した。次に、この株とエシェリヒア・コリK-12のME8424株(HfrPO45、<u>thi、relA1、tyrA</u>::Tn10、<u>ung-1、nadB</u>)(国立遺伝研究所より入手)の培養液を混合し、37℃で15分間放置して接合伝達を行わせた後、ストレプトマイシン、テトラサイクリン、しーチロシンを含む平板培地に塗布し、生じたコロニー即ち<u>tyrR、tyrA</u>遺伝子の欠失したエシェリヒア・コリK-12のW3110株を取得した。

【0072】実施例5 Lーフェニルアラニンの発酵生 産 (1) フィードバック阻害が解除されたDSおよびCM ーPD、そしてSKを保有する<u>tyrR、tyrA</u>遺伝 子の欠失したエシェリヒア・コリK-12のW3110 株の造成

実施例1で得られた、フィードバック阻害が解除された DS遺伝子を含有するpTS-aroG4を制限酵素E coRIとHindllIでaroG4部分を切り出 し、この断片をpBR322のEcoRI、HindI II切断部位に挿入してプラスミドpBR-aroG4 (アンピシリン耐性マーカー) を取得した。また、実施 例2で得られたフィードバック阻害が解除されたCM-PD遺伝子を含有するpPHABを、制限酵素BamH IとHindlllで消化しCM-PD遺伝子含有フラ グメントを切り出し、この断片をpBR-aroG4の BamHI、HindlII切断部位に挿入してプラス ミドpBGA1を構築した。さらにpBGA1をEco R 1 と Bam H 1 で消化してaroG4-phe A断片 を切り出し、この断片をpMW19 (和光純薬社製) の EcoRI、BamHI切断部位に挿入してプラスミド pMGA1を構築した。

【0073】さらにpHSG-<u>aroLをEco</u>RIと <u>Sac</u>Iで<u>aroL</u>断片を切り出し、この断片をpMG A1の<u>Eco</u>RI、<u>Sac</u>I切断部位に挿入してプラス ミドpMGALIを構築した。

【0074】次にpMGA1またはpMGAL1を<u>tyrR</u>、<u>tyrA</u>遺伝子の欠失したエシェリヒア・コリK-12のW3110株にそれぞれ導入し、形質転換株W3110(<u>tyrR</u>、<u>tyrA</u>)/pMGA1および形質転換株W3110(<u>tyrR</u>、<u>tyrA</u>)/pMGA L1を造成した。該形質転換株はそれぞれAJ1274 0株、AJ12741株と命名し、微工研に寄託(FERM P-12999、FERM P-13000) した。

【0075】(2) Lーフェニルアラニン生産性前項で記載した形質転換株AJ12604をLーフェニルアラニン生産用培地(グルコース20g、リン酸水素2ナトリウム29.4g、リン酸2水素カリウム6g、塩化ナトリウム1g、塩化アンモニウム2g、クエン酸ナトリウム10g、グルタミン酸ナトリウム0.4g、硫酸マグネシウム7水和物3g、塩化カルシウム0.23g、サイアミン塩酸塩2mg、チロシン75mgを水1Lに含む)を用いて、37℃で24時間培養した。その結果を表2に示す。尚、定量は高速液体クロマトグラフィーで実施した。

【0076】 【表2】

L-フェニルアラニン

萬 株

茗 積 貴

(g/L)

AJ12740

4. 05

A J 1 2 7 4 1

4. 31

[0077] 鎖の数:一本鎖 【発明の効果】レーフェニルアラニンの発酵生産におい トポロジー:直鎖状 て、効率のよい新規生産菌及び該菌株を用いるレーフェ 配列の種類:他の核酸 合成DNA ニルアラニンの製造法を提供する。 【配列表】 GTATTTACCC CGTTATTGTC 配列番号:1 配列番号:4 配列の長さ:20 配列の長さ:20 配列の型:核酸 配列の型:核酸 鎖の数:一本鎖 鎖の数:一本鎖 トポロジー: 直鎖状 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列の種類:他の核酸 合成DNA GCTAACCAGT AAAGCCAACA 20 ACTCCGCCGG AAGTGACTAA 配列番号:2 配列番号:5 配列の長さ:20 配列の長さ:948 配列の型:核酸 配列の型:核酸 鎖の数:一本鎖 鎖の数:二本鎖 トポロジー: 直鎖状 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列の種類:genomic DNA 起源 配列 CCCACTTCAG CAACCAGTTC 生物名:プレビパクテリウム・ラクトファーメンタム(B 配列番号:3 revibacteriumlactofermentum) 配列の長さ:20 株名: AJ12125 (FERM P-7546) 配列の型:核酸

ATG AGC GAC GCA CCA ATT GTT GTG GCC TAT TTG GGG CCT GCC GGA ACC

Met Ser Asp Ala Pro Ile Val Val Ala Tyr Leu Gly Pro Ala Gly Thr

1 5 10 15

TTC ACC GAA GAA GCC CTC TAC AAA TTT GCC GAC GCC GGC GTA TTC GGC 96

Phe Thr Glu Glu Ala Leu Tyr Lys Phe Ala Asp Ala Gly Val Phe Gly

20 25 30

GAC GGT GAG ATC GAG CAG CTA CCA GCC AAA TCG CCA CAA GAA GCT GTC 144

Asp Gly Glu Ile Glu Gln Leu Pro Ala Lys Ser Pro Gln Glu Ala Val

35 40 45

-11-

GAC GCG GTC	CGC CAC GGC	ACC GCC	CAG TTC	GCG GTG	GTC GCC	ATC	GAA 192
Asp Ala Val	Arg His Gly	Thr Ala	Gln Phe	Ala Val	Val Ala	lle	Glu
50		55		60			
AAC TTC GTC							
Asn Phe Val			Pro Thr		Ala Leu	Asp	
65	70		C11 C11	75	CAT ATT	000	80
GGC TCC AAC							
Gly Ser Asn	Val Gin 11e	lie wia	90	GIU LEU	ASP ITE	95	rne
TCC ATC ATG		CGC ACT		CCC GAC	GTC AAA		CTC 336
Ser lle Met							
	100	,	105		110		
GCC ACC CAC		TAC CAA	CAA GTG	AAA AAC		GCA	ACC 384
Ala Thr His	Pro Val Gly	Tyr Gln	Gln Val	Lys Asn	Trp Met	Ala	Thr
115		120			125		
ACC ATT CCG	GAC GCC ATO	TAT CTT	TCA GCA	AGC TCC	AAC GGC	GCC	GGC 432
Thr lle Pro	Asp Ala Met	Tyr Leu	Ser Ala	Ser Ser	Asn Gly	Ala	Gly
130		135		140			
GCA CAA ATG	GTT GCC GAA	GGA ACC	GCC GAC	GCA GCC	GCA GCG	CCC	TCC 480
Ala Gln Met			Ala Asp		Ala Ala	Pro	Ser
145	150			155			160
CGC GCA GCC							
Arg Ala Ala		Gly Leu		ren Ası	Asp Asp		Ala
GAC GTC CGC	165	. vcc ccc	170	CCA CTC	CAA CCC	175	GCA 576
Asp Val Arg							
nop var mg	180	, ,,,,	185		190	0111	
GCC GTT TCC		GGC CAC		ACC TCC		TTC	TCC 624
Ala Val Ser	Glu Pro Thi	Gly His	Asp Arg	Thr Ser	Val Ile	Phe	Ser
195		200			205		
CTA CCG AAT	GTG CCA GGG	AGC CTC	GTG CGC	GCC CTC	AAC GAA	TTC	GCC 672
Leu Pro Asn	Val Pro Gly	Ser Leu	Val Arg	Ala Leu	Asn Glu	Phe	Λla
210		215		220			
ATC CGT GGC	GTC GAC CTC	ACC CGC	ATC GAA	TCC CGC	CCC ACC	CGC	AAA 720
Ile Arg Gly			Ile Glu		Pro Thr	-	
225	230		OTC CLC	235	CC1 C1T		240
GTC TTC GGA							
Val Phe Gly	245	rne nis	250	ite ser	GIY mis	255	Arg
GAC ATC CCC		GCC CTC		CTC CAC	CTC CAA		GAA 816
Asp Ile Pro							
	260		265		270		
GAA CTC GTA	TTC GTC GGT	TCC TGG	CCC TCC	AAC CGT	GCA GAA	GAC	AGC 864
Glu Leu Val	Phe Val Gly	Ser Trp	Pro Ser	Asn Arg	Ala Glu	Asp	Ser
275		280			285		
ACG CCC CAA	ACC GAC CAA	CTA GCT	AAC GTA	CAC AAG	GCG GAC	GAA	TGG 912
Thr Pro Gln	Thr Asp Glr	Leu Ala	Asn Val	His Lys	Ala Asp	Glu	Trp
290		295		300			
GTT CGC GCA							948
Val Arg Ala	Ala Ser Glu	Gly Arg	Lys Leu	Asn			

305 310 315

配列番号:6 配列の種類: genomic DNA

鎖の数:二本鎖 revibacteriumlactofermentum) トポロジー:直鎖状 株名:AJ12259(FERM P-3565)

配列

配列	Ī															
ATG	AGC	GAC	GCA	CCA	ATT	GTT	GTG	GCC	TAT	TTG	GGG	CCT	GCC	GGA	ACC	48
Met	Ser	Asp	Ala	Pro	Ile	Val	Val	Ala	Tyr	Leu	Gly	Pro	Ala	Gly	Thr	
1				5					10					15		
TTC	ACC	GAA	GAA	GCC	CTC	TAC	AAA	TTT	GCC	GAC	GCC	GGC	GTA	TTC	GGC	96
Phe	Thr	Glu	Glu	Ala	Leu	Tyr	Lys	Phe	Ala	Asp	Ala	Gly	Val	Phe	Gly	
			20					25					30			
GAC	GGT	GAG	ATC	GAG	CAG	CTA	CCA	GCC	AAA	TCG	CCA	CAA	GAA	GCT	GTC	144
Asp	Gly	Glu	lle	Glu	Gln	Leu	Pro	Ala	Lys	Ser	Pro	Gln	Glu	Ala	Val	
-	-	35					40					45				
GAC	GCG	GTC	CGC	CAC	GGC	ACC	GCC	CAG	TTC	GCG	GTG	GTC	GCC	ATC	GAA	192
Asp	Ala	Val	Arg	His	Gly	Thr	Ala	Gln	Phe	Ala	Val	Val	Ala	Ile	Glu	
-	50		_		-	55					60					
AAC	TTC	GTC	GAC	GGC	ccc	GTC	ACC	ccc	ACC	TTC	GAC	GCC	CTT	GAC	CAG	240
Asn	Phe	Val	Asp	Gly	Pro	Val	Thr	Pro	Thr	Phe	Asp	Ala	Leu	Asp	Gln	
65			-	-	70					75	•			-	80	
GGC	TCC	AAC	GTG	CAA	ATC	ATC	GCC	GAA	GAA	GAA	CTC	GAT	ATT	GCC	TTT	288
										Glu						•
-				85					90			-		95		•
TCC	ATC	ATG	GTC	CGG	CCA	GGG	ACT	TCG	СТТ	GCC	GAC	GTC	AAA	ACC	CTC	336
Ser	Ile	Met	Val	Arg	Pro	Gly	Thr	Ser	Leu	Ala	Asp	Val	Lys	Thr	Leu	
			100	-				105			-		110			
GCC	ACC	CAC	CCG	GTT	GGG	TAC	CAA	CAA	GTG	AAA	AAC	TGG	ATG	GCA	ACC	384
Ala	Thr	His	Pro	Val	Gly	Tyr	Gln	Gln	Val	Lys	Asn	Trp	Met	Ala	Thr	
		115					120					125				
ACC	ATT	CCG	GAC	GCC	ATG	TAT	CTT	TCA	GCA	AGC	TCC	AAC	GGC	GCC	GGC	432
Thr	He	Pro	Asp	Ala	Met	Tyr	Leu	Ser	Ala	Ser	Ser	Asn	Gly	Ala	Gly	
	130					135					140					
GCA	CAA	ATG	GTT	GCC	GAA	GGA	ACC	GCC	GAC	GCA	GCC	GCA	GCG	CCC	TCC	480
Ala	Gln	Met	Val	Ala	Glu	Gly	Thr	Ala	Asp	Ala	Ala	Ala	Ala	Pro	Ser	
145					150					155					160	
CGC	GCA	GCC	GAA	CTC	TTC	GGA	CTG	GAA	CGC	CTT	GTT	GAT	GAT	GTC	GCC	528
Arg	Ala	Ala	Glu	Leu	Phe	Gly	Leu	Glu	Arg	Leu	Val	Asp	Asp	Val	Ala	
				165					170					175		
GAC	GTC	CGC	GGC	GCC	CGC	ACC	CGC	TTC	GTT	GCA	GTC	CAA	GCC	CAA	GCA	576
Asp	Val	Arg	Gly	Ala	Arg	Thr	Arg	Phe	Val	Ala	Val	Gln	Ala	Gln	Ala	
			180					185					190			
GCC	GTT	TCC	GAA	CCG	ACC	GGC	CAC	GAC	CGC	ACC	TCC	GTC	ATT	TTC	TCC	624
Ala	Val	Ser	Glu	Pro	Thr	Gly	His	Asp	Arg	Thr	Ser	Val	Ile	Phe	Ser	
		195					200					205				
CTA	CCG	AAT	GTG	CCA	GGC	AGC	CTC	GTG	CGC	GCC	CTC	AAC	GAA	TTC	GCC	672
Leu	Pro	Asn	Val	Pro	Gly	Ser	Leu	Val	Arg	Ala	Leu	Asn	Glu	Phe	Ala	
	210					215					220					
ATC	CGT	GGC	GTC	GAC	CTC	ACC	CGC	ATC	GAA	CCC	CGC	CCC	ACC	CGC	AAA	720

lle Arg Gly Val Asp Leu Thr Arg Ile Glu Pro Arg Pro Thr Arg Lys 230 GTC TTC GGA ACC TAC CGC TTC CAC CTG GAC ATA TCC GGA CAT ATC CGC 768 Val Phe Gly Thr Tyr Arg Phe His Leu Asp Ile Ser Gly His Ile Arg 245 250 GAC ATC CCC GTC GCC GAA GCC CTC CGC GCA CTC CAC CTC CAA GCC GAA 816 Asp Ile Pro Val Ala Glu Ala Leu Arg Ala Leu His Leu Gln Ala Glu 260 265 GAA CTC GTA TTC GTC GGT TCC TGG CCC TCC AAC CGT GCA GAA GAC AGC 864 Glu Leu Val Phe Val Gly Ser Trp Pro Ser Asn Arg Ala Glu Asp Ser 280 ACG CCC CAA ACC GAC CAA CTA GCT AAC GTA CAC AAG GCG GAC GAA TGG 912 Thr Pro Gln Thr Asp Gln Leu Ala Asn Val His Lys Ala Asp Glu Trp 295 GTT CGC GCA GCA AGC GAA GGA AGG AAA CTT AAC TAG 948 Val Arg Ala Ala Ser Glu Gly Arg Lys Leu Asn 310 315

 配列番号:7
 配列の長さ:21

 配列の長さ:20
 配列の型:核酸

 配列の型:核酸
 鎖の数:一本鎖

 身の数:一本鎖
 トポロジー:直鎖状

トポロジー:直鎖状 配列の種類:他の核酸 合成DNA

配列の種類:他の核酸 合成DNA 配列

配列 CCGTCTGGAA GACCGCCCGA T

配列

 TCAACAAGCT GGAACGACG
 20
 21

 配列番号:8
 配列番号:12

 配列の長さ:20
 配列の長さ:21

 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状
 ・パロジー:直鎖状

配列の種類:他の核酸 合成DNA 配列の種類:他の核酸 合成DNA

配列

配列

CGCCGATTTA CCGCCTTGAG 20 ATCGGGCGGT CTTCCAGACG G 2 配列番号:9 配列番号:13

 配列の長さ:21
 配列の長さ:21

 配列の型:核酸
 配列の型:核酸

 鎖の数:一本鎖
 鎖の数:一本鎖

 トポロジー:直鎖状
 トポロジー:直鎖状

配列の種類:他の核酸 合成DNA 配列の種類:他の核酸 合成DNA

配列

 CCGTCTGGAA CCACGCCCGA T
 21
 CCGTCTGGAA TGACGCCCGA T

 配列番号:10
 配列番号:14

 配列の長さ:21
 配列の長さ:21

 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状
 もポロジー:直鎖状

配列の種類:他の核酸 合成DNA 配列の種類:他の核酸 合成DNA

ATCGGGCGTG ATTCCAGACG G 21 ATCGGGCGTC ATTCCAGACG G 21

配列番号:11 配列番号:15

-14-

配列

配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCGGAGCTCG AGAAGTGGTG 20

配列番号:16 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

ACTCAGAATT CCTTCCGAGC 20

配列番号:17 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

【図1】

GGATTAAAGC TTTGGAGCTT

20

配列番号:18 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GTGGATGAAT TCACCACCGA

20

【図面の簡単な説明】

【図1】pTS-<u>aroF</u>、pTS-<u>aroG</u>の構築 【図2】天然型及び変異型<u>aroF</u>のDS活性における、L-チロシンによる阻害度を示すものである。 【図3】天然型及び変異型<u>aroG</u>のDS活性におけ

【図3】天然型及び変異型<u>aroG</u>のDS活性における、L-フェニルアラニンによる阻害度を示すものである。

【図4】野生型および変異型のコリスミン酸ムターゼープレフェン酸デヒドラターゼの、フェニルアラニンによるプレフェン酸デヒドラターゼ活性の阻害を表したものである。

【図5】pMGA1及びpMGAL1の構築

【図2】

【図4】

[図5]

フロントページの続き

(51) Int. Cl. ⁵ 識別記号 庁内整理番号 FI 技術表示箇所 C 1 2 P 13/22 C 8931-4 B //(C 1 2 N 1/21 C 1 2 R 1:19) (C 1 2 P 13/22 C 1 2 R 1:19)

1

(72) 発明者 倉橋 修

神奈川県川崎市川崎区鈴木町1-1 味の 素株式会社中央研究所内