# Aktorik Sensorik Labor 1

Anton Kress (S872899), Jan Abel (S876662) October 2020

## Aufgabenstellung

#### 1 Termi

In der ersten Laborübung sollen die Werte der Elemente des Ersatzschaltbildes eines permanent erregten Gleichstrommotors bestimmt werden.

#### Vorbereitung:

- 1. Um Parameter richtig identifizieren zu k\u00f6nnen, muss man viele Messungen durchf\u00fchren. Nun ist die Frage, wie man einen statistisch relevanten Wert f\u00fcr einen Parameter aus vielen Messungen bekommt ...
- 2. Recherchieren Sie nach der Methode der Kleinsten Quadrate und finden Sie heraus, wie diese Methode funktioniert.
- 3. Was ist ein Inkrementalgeber? Welche Typen davon gibt es? Wie funktioniert so ein Gereät? Lesen Sie bitte die Wikipedia Seiten dazu: <a href="https://en.wikipedia.org/wiki/Incremental-encoder">https://en.wikipedia.org/wiki/Incremental-encoder</a> und <a href="https://de.wikipedia.org/wiki/Inkrementalgeber">https://de.wikipedia.org/wiki/Inkrementalgeber</a>).

#### 1.1 Messung des Stillstandsdrehmomentes

Das vom Motor abgegebene Antriebsmoment ist über die Momentenkonstante  $k_M$  mit dem Motorstrom verknüpft. Ziel der ersten Teilaufgabe ist die Bestimmung dieser Konstante  $k_M$ . Hierzu wird der Motorstrom mit Hilfe unseres Netzteiles von 0 A bis 2 A vorgegeben und das Drehmoment mit Hilfe der Federwaage gemessen. Der Motor wird bei dieser Messung im Stillstand betrieben. Die entstehende Kennlinie, die das Drehmoment über dem Motorstrom darstellt, wird in MATLAB gezeichnet und die Steigung dieser Kennlinie stellt die Konstante  $k_M$  dar.

#### 1.2 Messung des Ankerwiderstandes R

Ein wesentlicher Teil des Modells der permanent erregten Gleichstrommaschine ist der Ankerwiderstand R. Ziel dieser Teilaufgabe ist es, diesen zu bestimmen. Welcher Teil des technischen Aufbaus des Motors liegt im Stromkreis, wurde aber bisher nicht berücksichtigt? Wenn dieses Bauteil weiter außen vor gelassen wird, welche Konsequenz hat das für die Durchführung der Messung des Ankerwiderstandes R? Schlagen sie nun eine geeignete Messung vor und bestimmen sie nach dieser den Ankerwiderstand R.

### 1.3 Messung der Leerlaufkennlinie

Die induzierte Spannung  $u_i$  ist proportional zur Winkelgeschwindigkeit des Motors  $\omega$ . Es gilt  $u_i(t) = k_i \cdot u(t)$ . Ziel der zweiten Teilaufgabe ist die Bestimmung der Konstanten  $k_e$ . Wir geben mit Hilfe unserse Netzteiles die Motorspannung mit 0 V bis 12 V vor und messen die Drehzahl. Hierbei wird der Motor nicht belastet, d. h. er wird im Leerlauf betrieben. Die entstehende Kennlinie wird Leerlaufkennlinie genannt und wird mit Hilfe von MATLAB dargestellt. Die gesuchte Konstante  $k_e$  ist die Steigung dieser Kennlinie. Zur Messung der Drehzahl verwenden wir einen Inkrementalencoder. Er wird an Timer 3 des Mikrocontrollers C167, der ein Inkrementalenkoder-Interface besitzt, angeschlossen und in Vierfachauswertung betrieben. Wir erhalten so eine Pulszahl von P2 2000 Pulsen pro Umdrehung. Die Abtastzeit der Interruptroutine, in der der Inkrementaldekoder ausgewertet wird, beträgt T  $\alpha$  1 ms.

Was ist der Unterschied zwischen Drehzahl und Winkelgeschwindigkeit? Welche Variablei werden für diese beiden Angaben benutzt?

| Beuth-Hochschule für    | Labor für               |  | Übungsveranstaltung für |
|-------------------------|-------------------------|--|-------------------------|
| Technik Berlin          | Automatisierungstechnik |  | Aktorik & Sensorik      |
| Prof. DrIng. FJ Morales |                         |  | 3 von 10                |

1.4 Messung der Kennlinie des Leistungsverstärkers
Die Eingangsspannung des Leistungsverstärkers wird im Bereich von – 12 V bis + 12 V mit Hilfe
des Netzteiles vorgegeben und die Ausgangsspannung mit Hilfe des Multimeters gemessen.
Aus der Verstärkerkennlinie, in der mit MATLAB die Ausgangsspannung über der
Eingangsspannung dargestellt wird, erhält man die Verstärkung A des Leistungsverstärkers.

Hinweis: Nehmen Sie genug Messpunkte auf, damit Sie mögliche Nichtlinearitäten der Kennlinie feststellen können

| Beuth-Hochschule für    | Labor fur               |  | Ubungsveranstaltung für |
|-------------------------|-------------------------|--|-------------------------|
| Technik Berlin          | Automatisierungstechnik |  | Aktorik & Sensorik      |
| Prof. DrIng. FJ Morales |                         |  | 4 von 10                |



Figure 1: Aufbau der CBM-Toolchain

```
1 % Aktorik & Sensorik - WS 2020
2 %
3 % 1.1 Messung des Stillstandsdrehmomentes
5 % Datum: 27.10.2020
6 % Autoren: Anton Kress, S872899
             Jan Abel,
7 %
                             S876662
9 clear
10 home
11 close all
12
FolderName = "./src/";
14 A_Name = "A.mat";
17 A_test = FolderName + A_Name;
18 A = fullfile(FolderName, A_Name);
B = fullfile(FolderName, B_Name);
_{21} % A = B - 3 letzte Elemente - Arbeitsbereich
22 load(A);
23 load(B);
24 r=0.01;
25 % Auslesen der Ströme und Drehmomente
A_plot=sortrows(A,2);
27 B_plot=sortrows(B,2);
```

```
28
29 % lineares fitting im Arbeitsbereich - Kraft
30 f1 = polyfit(A_plot(:,2), A_plot(:,3), 1);
_{
m 32} % linares fitting im Arbeitsbreich - Drehmoment
33 f2 = polyfit(A_plot(:,2), A_plot(:,3)*r, 1);
34 % Momentenkonstante k_m entspricht Steigung der Gerade
k_m=f2(1,1)
37 % Erzeugung der Ausgleichsgerade
x1 = linspace(0, 2.5);
y1 = polyval(f1, x1);
y2 = polyval(f2, x1);
41
42
43 figure(1);
44 plot(B_plot(:,2), B_plot(:,3),'x', x1, y1, 'r','linewidth',2);
45 axis([0 2.5 0 2.5])
46 title('Kraft')
47 xlabel('I_a in A');
48 ylabel('F in N');
49 grid on
51 figure(2)
52 plot(B_plot(:,2), B_plot(:,3)*r ,'x', x1, y2, 'r','linewidth',2);
53 axis([0 2.5 0 0.025])
title('Drehmoment')
subtitle(['k_m=' num2str(k_m)])
56 xlabel('I_a in A');
57 ylabel('M_m in Nm');
58 grid on
```



Figure 2: Aufbau der CBM-Toolchain

```
1 % Aktorik & Sensorik - WS 2020
^2 % ^3 % 1.2 Messung des Ankerwiderstandes
5 % Datum:
              27.10.2020
6 % Autoren: Anton Kress, S872899
              Jan Abel,
7 %
                              S876662
9 clear
10 home
11 close all
12
FolderName = "./src/";
14 B_Name = "B.mat";
B = fullfile(FolderName, B_Name);
17 % Auslesen der Ströme und Spannungen
18 load(B);
B_plot=sortrows(B,1);
_{21} % lineares fitting im Arbeitsbereich
f2 = polyfit(B_plot(:,1), B_plot(:,2), 1);
23 % Leitwert G entspricht Steigung der Gerade
_{24} % R = 1/G
_{25} R=1/f2(1,1)
_{26} % Erzeugung der Ausgleichsgerade
27 x1 = linspace(0, 8);
```

```
28 y1 = polyval(f2, x1);
29
30 figure(1);
31 plot(B_plot(:,1), B_plot(:,2),'x', x1, y1, 'r','linewidth',2);
32 axis([0 8 0 2.5])
33 title('Ankerwiderstand')
34 subtitle(['R=' num2str(R)])
35 xlabel('U_a in V');
36 ylabel('I_a in A');
37 grid on
38
39 print('BarPlot','-dpng')
40
41 %file = append(mfilename, '.png')
42 %anton = fullfile('./src/', file)
43
44
45 %saveas(hello, './src/img.png', 'png');
```



Figure 3: Aufbau der CBM-Toolchain

```
1 % Aktorik & Sensorik - WS 2020
^2 % ^3 % 1.3 Messung der Leerlaufkennlinie
5 % Datum:
              27.10.2020
6 % Autoren: Anton Kress, S872899
7 %
              Jan Abel,
                              S876662
9 clear
10 home
11 close all
12
FolderName = "./src/";
14 C_Name = "C.mat";
15 C = fullfile(FolderName, C_Name);
17 % Auslesen der Winkelgeschwindikeit und Spannungen
18 load(C);
19 C_plot=sortrows(C,1);
20 % Pulse pro Umdrehung in [pulse/rad]
21 Pz=2000/(2*pi)
22 % Pulse pro Inkrement in [pulse/ink]
23 alpha=4
24 % Faktor in [ink/rad]
25 lambda= Pz/alpha
26 % lineares fitting im Arbeitsbereich
27 f3 = polyfit(C_plot(:,2), C_plot(:,1), 1);
```

```
28 % die Steigung hat die Einheit [Ink/V ms]
29 % ke hat die Einheit [Vs/rad]
30 k_e=lambda/(1000*f3(1,1))
31 % Erzeugung der Ausgleichsgerade
32 x1 = linspace(0, 12);
33 y1 = polyval(f3, x1);
34
35 figure(1);
36 plot(C_plot(:,2), C_plot(:,1),'x', x1, y1, 'r','linewidth',2);
37 axis([0 12 0 180])
38 title('Leerlauf')
39 subtitle(['k_e=' num2str(k_e)])
40 xlabel('U_a in V');
41 ylabel('INC per T');
42 grid on
```



Figure 4: Aufbau der CBM-Toolchain

```
1 % Aktorik & Sensorik - WS 2020
_2 % _3 % 1.4 Messung der Kennlinie des Leistungsverstärkers
5 % Datum:
              27.10.2020
6 % Autoren: Anton Kress,
                              S872899
7 %
              Jan Abel,
                              S876662
9 clear
10 home
11 close all
12
FolderName = "./src/";
14 D_Name = "D.mat";
D = fullfile(FolderName, D_Name);
17 % Auslesen der EIngangs und Ausgangsspannungen
18 load(D);
19 D_plot=sortrows(D,1);
_{21} % lineares fitting im Arbeitsbereich
f4 = polyfit(D_plot(3:17,1), D_plot(3:17,2), 1);
23 % Verstärkung A entspricht Steigung der Gerade
A = f4(1,1)
25 % Erzeugung der Ausgleichsgerade
26 x1 = linspace(-10, 10);
27 y1 = polyval(f4, x1);
```

```
plot(D_plot(:,1), D_plot(:,2),'x', x1, y1, 'r','linewidth',2);
axis([-10 10 -15 15])
title('Verstärkung')
subtitle(['A=' num2str(A)])
xlabel('U_e in V');
ylabel('U_a in V');
grid on
```