

Fonctions de référence

Maths Seconde

Fonction paire

Une fonction dont la courbe est symétrique par rapport à l'axe des ordonnées est une fonction paire.

Elle vérifie f(-x) = f(x)

Fonction affine

ullet Une fonction affine f est définie sur $\mathbb R$ par f(x)=ax+b avec $(a;b)\in\mathbb R^2$

a =coefficient directeur

b = ordonnée à l'origine

• Quand b = 0, $f: x \mapsto ax$ est une fonction linéaire $a > 0 \Longrightarrow f$ croissante $a < 0 \Longrightarrow f$ décroissante $a = 0 \Longrightarrow f$ constante

• Propriétés :

- Une fonction affine est représentée par une droite.
- Une fonction linéaire est représentée par une droite passant par l'origine du repère.
- Propriété des accroissements : Soit la fonction affine f définie sur \mathbb{R} par f(x) = ax + b et deux réels $\neq m$ et n.

Alors: $a = \frac{f(m) - f(n)}{m - n} = \frac{\Delta y}{\Delta x}$

Fonction carré

- La fonction carré f est définie sur $\mathbb R$ par $f(x)=x^2$
- La courbe $y=x^2$ est symétrique par rapport à l'axe des ordonnées. La fonction carré est paire.
- La fonction carré est décroissante $]-\infty;0]$ et croissante sur $[0;+\infty[$.

Fonction impaire

Une fonction dont la courbe est symétrique par rapport à l'origine du repère est une fonction impaire.

Elle vérifie f(-x) = -f(x)

Fonction inverse

- La fonction inverse est la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$
- La courbe est une hyperbole, elle est symétrique par rapport à l'origine du repère. La fonction inverse est donc impaire.
- La fonction inverse est décroissante sur $]\infty; 0[$ puis sur $]0; +\infty[$.

• Soit *a* et *b* deux réels de même signe.

Fonction cube

- La fonction cube est la fonction f définie sur $\mathbb R$ par $f(x)=x^3$
- La courbe est symétrique par rapport à l'origine du repère. La fonction est impaire.
- La fonction cube est strictement croissante sur R.

 $a < b \iff a^3 < b^3$

• $\forall x > 1: x^3 > x^2 > x$

 $\bullet \forall \ 0 \leqslant x \leqslant 1 : x^3 < x^2 < x$

Fonction racine carrée

- La fonction racine carrée est la fonction f définie sur $[0;+\infty[$ par $f(x)=\sqrt{x}$
- f est strictement croissante sur l'intervalle $[0; +\infty[$
- Si $(a; b) \in \mathbb{R}^+$ alors $a < b \iff \sqrt{a} < \sqrt{b}$

