Aufgabe 4

(a) Der Satz von Rice ist hier nicht anwendbar, denn hier geht es darum, wie etwas berechnet wird, und nicht was.

Die Sprache L_1 ist rekursiv und kann durch eine TM M' wie folgt entschieden werden:

- 1) Berechne $x := (2^{|\langle M \rangle|} 1) 1$
- 2) Simuliere M für x Schritte
- 3) Falls M terminiert, soll M' verwerfen Falls M nicht terminiert hat, soll M' akzeptieren

Korrektheit:

- Falls $\langle M \rangle \not\in L_1 \Rightarrow M$ hält nicht in weniger als $x := 2^{|\langle M \rangle|} 1$ Schritten $\Rightarrow M'$ verwirft
- Falls $\langle M \rangle \not\in L_1 \Rightarrow M$ hält in weniger als $x := 2^{|\langle M \rangle|} 1$ Schritten $\Rightarrow M'$ akzeptiert
- (b) Der Satz von Rice ist hier anwendbar, da es um eine partielle Funktion geht.

$$S = \{f_M | f_M(\langle M \rangle) = 1\}$$

$$L_2 = L(S) = \{\langle M \rangle | M \text{ berechnet eine Funktion aus } S\}$$

$$= \{\langle M \rangle | M \text{ berechnet auf Eingabe } \langle M \rangle \text{ den Wert } 1\}$$

 $S \neq \emptyset$, da es in S eine TM M' gibt, die jede Eingabe löscht und dann genau eine 1 schreibt.

 $S \neq R,$ da es in Reine T
MM''gibt, die jede Eingabe löscht und dann genau eine
0 schreibt.

Gemäß Satz von Rice ist L_2 nicht entscheidbar.

(c) Der Satz von Rice ist hier anwendbar, da es um eine partielle Funktion geht.

$$S = \{f_M | f_M(\langle M' \rangle) = 1 \text{ für alle TM } M', \text{ die 3 Zustände haben} \}$$
 $L_3 = L(S) = \{\langle M \rangle | M \text{ berechnet eine Funktion aus } S \}$
 $= \{\langle M \rangle | M \text{ berechnet auf Eingabe } \langle M' \rangle \text{ den Wert 1 für alle TM } M' \text{ mit 3 Zuständen} \}$

 $S \neq \emptyset$, da es in S eine TM M_1 gibt, die für jede Eingabe 1 ausgibt.

 $S \neq R$, da es in R eine TM M_0 gibt, die für jede Eingabe 0 ausgibt.

Gemäß Satz von Rice ist L_3 nicht entscheidbar.

Aufgabe 5

- (a) Sei A ein Aufzähler von L mit Ausgabeband $Ausgabe_A$. Dann gibt es auch seinen Sparsamen Aufzähler SA mit:
 - A
 - Ausgabeband Ausgabe_{SA}

Unser Sparsame Aufzähler geht nun wie folgt vor:

- 1) A zählt neues Wort w von L auf seinem Band $Ausgabe_A$ auf.
- 2) SA ließt nun w und überprüft nun, ob w auf $Ausgabe_{SA}$ schon steht.
 - \rightarrow Steht w schon auf $Ausgabe_{SA}$, fahre einfach mit 1) fort.

 \rightarrow Steht w noch nicht auf $Ausgabe_{SA}$, schreibe es dort und fahre mit 1) fort.

Die Überprüfung, ob ein Wort w bereits auf $Ausgabe_{SA}$ steht, geht ja in linearer Zeit.

Damit gibt es für jede rekursiv aufzählbare Sprache L einen sparsamen Aufzähler.

(b) Angenommen die Aussage gilt für rekursiv aufzählbare Sprachen L. Also gibt es für L einen kanonisch-organisierten Aufzähler koA. Nun kann man mit koA die Sprache L entscheiden, nicht nur erkennen:

Sei w das Wort, welches wir überprüfen wollen:

- Zählt koA das Wort w auf, so ist $w \in L$ (bekannt).
- Zählt koA das Wort w noch nicht auf, aber ein Wort w', welches in kanonischer Reihenfolge nach w liegt, so wird w auch nie aufgezählt werden. So ist $w \notin L$.

Damit entscheidet koA L. Deswegen muss L rekursiv sein. \Rightarrow Widerspruch Also ist die Aussage falsch.

Aufgabe 6

Wir definieren die Diagonalsprache $D = \{w \in \{0, 1\}^* | w = w_i \text{ und } M_i \text{ akzeptiert } w \text{ nicht}\}$ wobei M_i das i-te Wort der Sprache L ist. Diese Sprache ist auf jeden Fall entscheidbar weil ich für jede Eingabe w einfach das i finden kann, dann M_i simulieren kann und dann das Ergebnis einfach negieren.

Trotzdem ist diese Sprache auf jeden Fall nicht in L. Angenommen es gäbe eine Sprache $M_i \in L$ die dieses D erkennt.

Fall 1: $w_j \in D \Rightarrow M_j$ akzeptiert w $\Rightarrow w_j \notin D$

Fall 2: $w_i \notin D \Rightarrow M_i$ akzeptiert w nicht $\Rightarrow w_i \in D$

Da beide Fälle zum Widerspruch führen ist die Annahme falsch in somit ist die Diagonalsprache nicht in L.