More on the Representation Theory of $\mathrm{GL}(V)$

We're working over the fixed ground field \mathbb{C} . We abbreviate $\otimes_{\mathbb{C}}$ as \otimes . We denote by V some m-dimensional vector space.

The set of natural numbers $\mathbb N$ contains 0.

A **partition** of a natural number $n \geq 0$ is a tuple of positive natural numbers $\lambda = (\lambda_1, \dots, \lambda_t)$ with $\lambda_1 \geq \dots \geq \lambda_t$ and $\lambda_1 + \dots + \lambda_t = n$. We write $|\lambda| \coloneqq n$ and denote by $\ell(\lambda) \coloneqq t$ the **length** of λ . We observe that the length $\ell(\lambda)$ coincides with the number of rows of the Young diagram of shape λ . We write $\lambda \vdash n$ to mean that λ is a partition of n.

In this talk we will continue to explain the following connections:

1 Recalling the last talk

A filling of shape λ assigns to each box of the Young diagram of shape λ a natural number, or more generally elements of some set. A filling is a **semistandard Young tableaux** if it is weakly increasing in each row and strictly increasing in each column.

1.1 The irreducible representations $S^{\lambda}(V)$

We have previously seen that the isomorphism classes of irreducible finite-dimensional polynomial representations of GL(V) are indexed by the set of all partitions. For every partition λ with $\lambda = (\lambda_1, \dots, \lambda_t)$ let

$$\widetilde{M}^{\lambda}(V) = \bigwedge^{\widetilde{\lambda}_1}(V) \otimes \cdots \otimes \bigwedge^{\widetilde{\lambda}_n}(V).$$

where $\tilde{\lambda}$ is the transposed of λ . The tensor factor $\bigwedge^{\tilde{\lambda}_j}(V)$ hence comes from the j-th column of the Young diagram associated to λ , which has height $\tilde{\lambda}_j$. Note that $\widetilde{M}^{\lambda}(V) = 0$ if $\ell(\lambda) > m$, i.e. if the Young diagram of λ has more than m rows.

Example 1. The Young diagram of $\lambda = (3, 3, 2, 1)$ is given by

and therefore

$$\widetilde{M}^{\lambda}(V) = \bigwedge^{4}(V) \otimes \bigwedge^{3}(V) \otimes \bigwedge^{2}(V).$$

If T is a filling of shape λ by vectors $v_1, \ldots, v_n \in V$ then we get an associated element \tilde{v}_T of $\widetilde{M}^{\lambda}(V)$.

Example 2. For

$$T = \begin{bmatrix} v_1 & v_4 \\ v_2 & v_5 \\ v_3 \end{bmatrix}$$

the associated element is given by

$$\tilde{v}_T = (v_1 \wedge v_2 \wedge v_3) \otimes (v_4 \wedge v_5).$$

The submodule $Q^{\lambda}(V)$ of $\widetilde{M}^{\lambda}(V)$ is by definition generated by all differences

$$\tilde{v}_T - \sum_{T'} \tilde{v}_{T'} \tag{1}$$

where we run through all fillings T' of λ that arise from T as follows: We fix columns i and j of T with i < j and a fix a set of entries Y of the j-th column of T. We take any equinumerous subset X of the i-th column of T. Then we interchange the entries of X and Y while maintaining their vertical orders.

Example 3. For $\lambda = (2, 2, 2)$ we choose for the filling

$$T = \begin{vmatrix} v_1 & v_4 \\ v_2 & v_5 \\ v_3 & v_6 \end{vmatrix}$$

the first two entries of the second column, so that i = 1 and j = 2. We then get the following resulting fillings:

We hence quotient out the relation

$$\tilde{v}_T - \tilde{v}_{T_1'} - \tilde{v}_{T_2'} - \tilde{v}_{T_3'}$$
.

The irreducible polynomial representation of $\mathrm{GL}(V)$ associated to the partition λ is now given by

$$S^{\lambda}(V) = \widetilde{M}^{\lambda}(V)/Q^{\lambda}(V)$$
.

It is the **Schur module** associated to λ .

Example 4.

- (1) For $\lambda = (1, ..., 1) \vdash n$ we have $S^{\lambda}(V) = \bigwedge^{n}(V)$.
- (2) For $\lambda = (n)$ we have $S^{\lambda}(V) = \operatorname{Sym}^{n}(V)$.

Remark 5. The submodule $Q^{\lambda}(V)$ is already generated by those generators (1) in whose construction the columns i and j are adjacent, i.e. such that i = j - 1.

1.2 Characters

The polynomial GL(V)-representations can also be described by their characters: Using a basis e_1, \ldots, e_m of V we may identify GL(V) with $GL_m(\mathbb{C})$. For any finitedimensional polynomial representation $\rho \colon GL(V) \to GL(W)$ the **weight space** W_β for the **weight** $\beta = (\beta_1, \ldots, \beta_m) \in \mathbb{N}^m$ is given by

$$W_{\beta} = \{ w \in W \mid \operatorname{diag}(x_1, \dots, x_m).w = x_1^{\beta_1} \cdots x_m^{\beta_m} w \text{ for all } x_1, \dots, x_m \in \mathbb{C}^{\times} \}.$$

The representation W decomposes into weight spaces in the sense that $W = \bigoplus_{\beta \in \mathbb{N}^m} W_{\beta}$ and its **character** is the polynomial $\operatorname{Char}(W) \in \mathbb{Z}[x_1, \dots, x_m]$ given by

$$\operatorname{Char}(W)(x_1,\ldots,x_m) = \operatorname{tr}(\rho(\operatorname{diag}(x_1,\ldots,x_m))) = \sum_{\beta \in \mathbb{N}^m} \operatorname{dim}(W_\beta) x^\beta.$$

The character Char(W) is actually a symmetric polynomial, and the representation W is (up to isomorphism) uniquely determined by its character.

Example 6.

(1) The basis $e_{i_1} \wedge \cdots \wedge e_{i_n}$ of $\bigwedge^n(V)$ with $i_1 < \cdots < i_n$ consists of weight vectors, and its character given by is

$$\operatorname{Char}\left(\bigwedge^{n}(V)\right)(x_{1},\ldots,x_{m}) = \sum_{1 \leq i_{1} < \cdots < i_{n} \leq m} x_{i_{1}} \cdots x_{i_{n}} = e_{n}(x_{1},\ldots,x_{m}),$$

the n-th elementary symmetric polynomial in m variables.

(2) We see similarly that

$$\operatorname{Char}(\operatorname{Sym}^{n}(V))(x_{1},\ldots,x_{m}) = \sum_{1 \leq i_{1} \leq \cdots \leq i_{n} \leq m} x_{i_{1}} \cdots x_{i_{n}} = h_{n}(x_{1},\ldots,x_{m}),$$

the n-th complete homogeneous symmetric polynomial in m variables.

2 From S_n to $\mathrm{GL}(V)$

We denote for any group G by $\mathbb{1}_G$ the trivial representation of G. We denote for $n \geq 1$ by \mathbb{U}_{S_n} the sign representation of the symmetric group S_n .

For every $n \geq 0$ the tensor power $V^{\otimes n}$ is again a $\mathrm{GL}(V)$ -representation, and it is also a right S_n -representation via

$$(e_1 \otimes \cdots \otimes e_n).\sigma = e_{\sigma(1)} \otimes \cdots \otimes e_{\sigma(n)}.$$

It follows that for every S_n -representation E we get a GL(V)-representation

$$\mathbb{S}(E) := V^{\otimes n} \otimes_{\mathbb{C}[S_n]} E.$$

This construction results an exact (additive) functor

$$S: S_n\operatorname{-rep} \to \operatorname{GL}(V)\operatorname{-rep}$$
,

where S_n -rep is the category of finite-dimensional S_n -representations and GL(V)-rep denotes the category of finite-dimensional polynomial GL(V)-representations. The functor S is the **Schur functor**. It depends on both n and V, but we will omit this in our notation.

Example 7.

(1) We have that $\mathbb{1}_{S_n} \cong \mathbb{C}[S_n]/\langle \sigma - 1 \mid \sigma \in S_n \rangle_{\mathbb{C}}$ and thus

$$\mathbb{S}(\mathbb{1}_{S_n}) \cong V^{\otimes n} \otimes_{\mathbb{C}[S_n]} \mathbb{C}[S_n] / \langle \sigma - 1 \mid \sigma \in S_n \rangle_{\mathbb{C}}$$
$$\cong V^{\otimes n} / \langle x - x.\sigma \mid t \in V^{\otimes n} \rangle_{\mathbb{C}}$$
$$\cong \operatorname{Sym}^n(V).$$

(2) We find similarly that $\mathbb{S}(\mathbb{U}_{S_n}) \cong \bigwedge^n(V)$.

If V_1, \ldots, V_t are representations of the groups S_{n_1}, \ldots, S_{n_t} then for $n = n_1 + \cdots + n_t$,

$$V_1 \circ \cdots \circ V_t := \mathbb{C}[S_n] \otimes_{\mathbb{C}[S_{n_1} \times \cdots \times S_{n_t}]} (V_1 \boxtimes \cdots \boxtimes V_t)$$

is a representation of S_n .

Lemma 8. Let V_i , V and W be representations of symmetric groups. Then

- $(1) (V_1 \circ \cdots \circ V_s) \circ \cdots \circ (W_1 \circ \cdots \circ W_t) \cong V_1 \circ \cdots \circ W_t,$
- (2) $V \circ W \cong W \circ V$.

Lemma 9. If E and F are representations of symmetric groups S_a and S_b then

$$\mathbb{S}(E \circ F) \cong \mathbb{S}(E) \otimes \mathbb{S}(F) .$$

Proof. We find that

$$\mathbb{S}(E \circ F) = V^{\otimes (a+b)} \otimes_{\mathbb{C}[\mathbf{S}_{a+b}]} \mathbb{C}[\mathbf{S}_{a+b}] \otimes_{\mathbb{C}[\mathbf{S}_{a} \times \mathbf{S}_{b}]} (E \boxtimes F)$$

$$\cong V^{\otimes (a+b)} \otimes_{\mathbb{C}[\mathbf{S}_{a} \times \mathbf{S}_{b}]} (E \boxtimes F)$$

$$\cong (V^{\otimes a} \boxtimes V^{\otimes b}) \otimes_{\mathbb{C}[\mathbf{S}_{a}] \otimes \mathbb{C}[\mathbf{S}_{b}]} (E \boxtimes F)$$

$$\cong (V^{\otimes a} \otimes_{\mathbb{C}[\mathbf{S}_{a}]} E) \otimes (V^{\otimes b} \otimes_{\mathbb{C}[\mathbf{S}_{b}]} F)$$

$$= \mathbb{S}(E) \otimes \mathbb{S}(F)$$

as claimed.

3 Some representation theory of S_n

For better use of the Schur functor \mathbb{S} we need some understand of the representation theory of the symmetric group \mathbb{S}_n , where $n \geq 0$. In this section we always assume that $\lambda \vdash n$ unless otherwise specified.

A **numbering** of a Young tableaux Y of shape $\lambda \vdash n$ fills in the boxes of Y with the numbers $1, \ldots, n$. A **standard Young tableaux** is a semistandard Young tableaux that is also a numbering. This means that we assign to each box of the Young diagram of λ precisely one integer $1, 2, \ldots, n$ such that both rows and columns are (necessarily strictly) increasing.

3.1 The representation M^{λ}

Two numbering T and T' of a Young diagram of shape λ are **row-equivalent** if they have the same entries in each row. A **row tabloid** is an equivalence class of row-equivalent numbering. A row tabloid can be represented as follows:

Every numbering T defines a row tabloid [T].

The group S_n acts transitive on the set of numberings of shape λ , which induces a transitive group action on the set of row tabloids of shape λ . The **row group** R(T) of a numbering T is given by all permutations $\sigma \in S_n$ that act row-wise on T, i.e. the stabilizer of the associated tabloid [T].

It follows that S_n acts linearly on M^{λ} , the free vector space on the set of row tabloids of shape λ , and that for any numbering T of shape λ ,

$$M^{\lambda} \cong \mathbb{C}[S_n]/(p-1 \mid p \in R(T))$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[R(T)]} \mathbb{C}[R(T)]/(p-1 \mid p \in R(T))$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[R(T)]} \mathbb{1}_{R(T)}$$

If T is the "horizontal standard numbering", e.g.

for $\lambda = (5,4)$, then $R(T) = S_{\lambda_1} \times \cdots \times S_{\lambda_t}$ where $\lambda = (\lambda_1, \dots, \lambda_t)$ and thus

$$M^{\lambda} \cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[R(T)]} \mathbb{1}_{R(T)}$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[S_{\lambda_1} \times \dots \times S_{\lambda_t}]} \mathbb{1}_{S_{\lambda_1} \times \dots \times S_{\lambda_t}}$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[S_{\lambda_1} \times \dots \times S_{\lambda_t}]} (\mathbb{1}_{S_{\lambda_1}} \boxtimes \dots \boxtimes \mathbb{1}_{S_{\lambda_t}})$$

$$= \mathbb{1}_{S_{\lambda_1}} \circ \dots \circ \mathbb{1}_{S_{\lambda_t}}.$$

It follows that

$$\begin{split} \mathbb{S}(M^{\lambda}) &\cong \mathbb{S}(\mathbb{1}_{\mathcal{S}_{\lambda_{1}}} \circ \cdots \circ \mathbb{1}_{\mathcal{S}_{\lambda_{t}}}) \\ &\cong \mathbb{S}(\mathbb{1}_{\mathcal{S}_{\lambda_{1}}}) \otimes \cdots \otimes \mathbb{S}(\mathbb{1}_{\mathcal{S}_{\lambda_{t}}}) \\ &\cong \operatorname{Sym}^{\lambda_{1}}(V) \otimes \cdots \otimes \operatorname{Sym}^{\lambda_{t}}(V) \\ &=: M^{\lambda}(V) \,, \end{split}$$

or alternatively that

$$S(M^{\lambda}) = V^{\otimes n} \otimes_{\mathbb{C}[S_n]} \mathbb{C}[S_n]/(p-1 \mid p \in R(T))$$

$$\cong V^{\otimes n}/(x-x.p \mid p \in R(T))$$

$$\cong V^{\otimes n}/(x-x.p \mid p \in S_{\lambda_1} \times \cdots \times S_{\lambda_t})$$

$$\cong Svm^{\lambda_1}(V) \otimes \cdots \otimes Svm^{\lambda_t}(V).$$

3.2 The representation \widetilde{M}^{λ}

We can alter the construction of M^{λ} in two ways: Working with column instead of rows and introducing an alternating sign.

We denote by C(T) the column group of a numbering T, i.e. all permutations that act column-wise on T. We let \widetilde{M}^{λ} be the free vector generated by the numbering T of shape λ subject to the relations $T = \operatorname{sgn}(\sigma)\sigma T$ for $\sigma \in C(T)$. The resulting vector space generators [T] of \widetilde{M}^{λ} may be visualized as follows:

$$\begin{vmatrix} 1 & 4 \\ 2 & 5 \\ 3 \end{vmatrix} = - \begin{vmatrix} 2 & 4 \\ 1 & 5 \\ 3 \end{vmatrix} = \begin{vmatrix} 2 & 5 \\ 1 & 4 \\ 3 \end{vmatrix}$$

The group S_n acts on \widetilde{M}^{λ} via $\sigma[T] = [\sigma,T]$ for any numbering T of shape λ , and

$$\widetilde{M}^{\lambda} \cong \mathbb{C}[S_n]/(q - \operatorname{sgn}(q)1 \mid q \in C(T))$$

 $\cong \mathbb{U}_{\lambda_1} \circ \cdots \circ \mathbb{U}_{\lambda_t}.$

It follows that

$$\mathbb{S}(\widetilde{M}^{\lambda}) \cong \bigwedge^{\lambda_1}(V) \otimes \cdots \otimes \bigwedge^{\lambda_t}(V) = \widetilde{M}^{\lambda}(V).$$

Example 10. Let $\lambda = (2, 2, 1)$. Let $v_1, \ldots, v_5 \in E$ and consider an arbitrary numbering

$$T = \begin{bmatrix} \sigma(1) & \sigma(4) \\ \sigma(2) & \sigma(5) \end{bmatrix}$$

$$\sigma(3)$$

of shape λ , where $\sigma \in S_5$. In $\mathbb{S}(\widetilde{M}^{\lambda}) = V^{\otimes n} \otimes_{\mathbb{C}[S_n]} \widetilde{M}^{\lambda}$ we get an element

$$(v_1 \otimes \cdots \otimes v_5) \otimes [T] = (v_1 \otimes \cdots \otimes v_5) \otimes [\sigma.T_0]$$
$$= ((v_1 \otimes \cdots \otimes v_5).\sigma) \otimes [T_0]$$
$$= v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(5)} \otimes [T_0]$$

where

$$T_0 = \begin{array}{|c|c|} \hline 1 & 4 \\ \hline 2 & 5 \\ \hline 3 & \\ \hline \end{array}$$

is the "vertical standard numbering". By identifying \widetilde{M}^{λ} with $\mathbb{C}[S_n]/(q-1 \mid q \in C(T))$ via $[\tau] \mapsto \tau.[T_0] = [\tau.T_0]$ and using that $C(T) = S_3 \times S_2$ we find that the corresponding element of $\widetilde{M}^{\lambda}(V) = \bigwedge^3(V) \otimes \bigwedge^2(V)$ is given by

$$(v_{\sigma(1)} \wedge v_{\sigma(2)} \wedge v_{\sigma(3)}) \otimes (v_{\sigma(4)} \wedge v_{\sigma(5)})$$

Note that this is precisely the element $\tilde{v}_{\widetilde{T}}$ for the filling \widetilde{T} given as follows:

$$\widetilde{T} = \begin{bmatrix} v_{\sigma(1)} & v_{\sigma(4)} \\ v_{\sigma(2)} & v_{\sigma(5)} \end{bmatrix}$$

$$v_{\sigma(3)}$$

3.3 Specht modules

The irreducible representations of the symmetric group S_n can be indexed by the partitions $\lambda \vdash n$ and constructed as follows:

If T is any numbering of shape λ then its **Young centralizer** is the element

$$c_T := \sum_{q \in C(T)} \operatorname{sgn}(q) q \in \mathbb{C}[S_n].$$

The **Specht module** S^{λ} is the subspace of M^{λ} spanned by the elements $v_T := c_T \cdot [T]$ as T ranges through the numbering of shape λ . It holds that $\sigma \cdot v_T = v_{\sigma \cdot T}$ for every $\sigma \in S_n$ and numbering T of shape λ whence S^{λ} is a subrepresentation of M^{λ} .

Theorem 11 (Classification of irreducible representations of S_n).

- (1) The representations S^{λ} with $\lambda \vdash n$ are pairwise non-isomorphic irreducible representations of the symmetric group S_n , and every irreducible representation of S_n is of this form.
- (2) The elements v_T where T ranges through the standard Young tableaux of shape λ form a basis of S^{λ} . Hence

 $\dim S^\lambda = \text{number of standard Young tableaux of shape }\lambda\,.$

One can also construct the Specht module S^{λ} as a quotient of the representation \widetilde{M}^{λ} : The map

$$\widetilde{M}^{\lambda} \to S^{\lambda} \quad [T] \mapsto v_T$$

is a well-defined surjective homomorphism of S_n -representations. Its kernel Q^{λ} is generated by the differences

$$[T] - \sum_{T'} [T']$$

where [T'] runs through all numberings of λ that arise from T in the following way: We fix a column $j \geq 2$ of T and fix a set Y of entries the j-th column of T. Then for any equinumerous subset X of the (j-1)-th column of T we get such a T' by interchanging the entries of X and Y while presvering their vertical ordering.

We find from this explicit description of Q^{λ} the following:

Theorem 12. For any partition $\lambda \vdash n$,

$$\mathbb{S}(S^{\lambda}) \cong S^{\lambda}(V)$$
.

Proof. By applying the (exact) functor $\mathbb{S}(-)$ to the short exact sequence

$$0 \to Q^\lambda \to \widetilde{M}^\lambda \to S^\lambda \to 0$$

we get the short exact sequence

$$0 \to \mathbb{S}(Q^{\lambda}) \to \mathbb{S}(\widetilde{M}^{\lambda}) \to \mathbb{S}(S^{\lambda}) \to 0$$
.

We have previously seen that $\mathbb{S}(\widetilde{M}^{\lambda}) \cong \widetilde{M}^{\lambda}(V)$. We see from the calculations showcased in Example 10 and the explicit description of Q^{λ} and $Q^{\lambda}(V)$ together with Remark 5 that the image of $\mathbb{S}(Q^{\lambda})$ in $\mathbb{S}(\widetilde{M}^{\lambda})$ corresponds precisely to $Q^{\lambda}(V)$. Hence

$$\mathbb{S}(S^{\lambda}) \cong \mathbb{S}(\widetilde{M}^{\lambda})/\mathbb{S}(Q^{\lambda}) \cong \widetilde{M}^{\lambda}(V)/Q^{\lambda}(V) \cong S^{\lambda}(V)$$

proving the assertion.

Remark 13.

- (1) One can similarly construct the irreducible representations of S_n as subrepresentations \widetilde{S}^{λ} of M^{λ} . Then \widetilde{S}^{λ} is a quotient of M^{λ} and the compositions $S^{\lambda} \to M^{\lambda} \to \widetilde{S}^{\lambda}$ and $\widetilde{S}^{\lambda} \to \widetilde{M}^{\lambda} \to S^{\lambda}$ are isomorphisms. Hence $S^{\lambda} \cong \widetilde{S}^{\lambda}$.
- (2) It then follows that $\mathbb{S}(\widetilde{S}^{\lambda}) \cong \mathbb{S}(S^{\lambda}) \cong S^{\lambda}(V)$. If $\lambda = (\lambda_1, \dots, \lambda_t)$ then it follows from $\mathbb{S}(M^{\lambda}) \cong \operatorname{Sym}^{\lambda_1}(V) \otimes \dots \otimes \operatorname{Sym}^{\lambda_t}(V)$ that the Schur modules $S^{\lambda}(V)$ can also be constructed as quotients of $\operatorname{Sym}^{\lambda_1}(V) \otimes \dots \otimes \operatorname{Sym}^{\lambda_t}(V)$.
- (3) If $\ell(\lambda) > m$, i.e. if the Young diagram of λ has more than $m = \dim(V)$ rows, then $\mathbb{S}(S^{\lambda}) = S^{\lambda}(V) = 0$. If $\ell(\lambda) \leq m$ then $\mathbb{S}(S^{\lambda}) = S^{\lambda}(V)$ is again an irreducible representation.

Corollary 14. For any $n \geq 0$, $V^{\otimes n} \cong \bigoplus_{\lambda \vdash n} S^{\lambda}(V)^{\oplus f_{\lambda}}$ where f_{λ} denotes the number of standard Young tableaux of shape λ .

Proof. We find with Theorem 11 and Maschke's theorem that

$$\mathbb{C}[S_n] \cong \bigoplus_{\lambda \vdash n} (S^{\lambda})^{\oplus f^{\lambda}}$$

with

$$f_{\lambda}$$
 = multiplicity of S_{λ} in $\mathbb{C}[S_n]$
= dimension of S_{λ}
= number of standard Young tableaux of shape λ

where the second equality follows (for example) from the Artin–Wedderburn theorem. It follows that

$$V^{\otimes n} = V^{\otimes n} \otimes_{\mathbb{C}[S_n]} \mathbb{C}[S_n]$$

$$\cong \mathbb{S}(\mathbb{C}[S_n])$$

$$\cong \mathbb{S}\left(\bigoplus_{\lambda \vdash n} (S^{\lambda})^{\oplus f^{\lambda}}\right)$$

$$\cong \bigoplus_{\lambda \vdash n} \mathbb{S}(S^{\lambda})^{\oplus f^{\lambda}}$$

$$\cong \bigoplus_{\lambda \vdash n} S^{\lambda}(V)^{\oplus f^{\lambda}}$$

as claimed.

Example 15. The partitions of n=2 are $\lambda=(1,1)$ and $\mu=(2)$. Each of those partitions admits precisely one standard Young tableau:

$$\begin{array}{c|c} \hline 1 & 2 \\ \hline \end{array}$$

It follows that $f_{\lambda} = f_{\mu} = 1$ and therefore

$$V \otimes V = V^{\otimes 2} \cong S^{\lambda}(V)^{\oplus f_{\lambda}} \oplus S^{\mu}(V)^{\oplus f_{\mu}} \cong \operatorname{Sym}^{2}(V) \oplus \bigwedge^{2}(V)$$
.

Remark 16. The Schur functor $\mathbb{S} = V^{\otimes n} \otimes_{\mathbb{C}[S_n]} (-)$ admits a right adjoint given by $\mathbb{S}' = \operatorname{Hom}_{\operatorname{GL}(V)}(V^{\otimes n}, -)$. We have for every partition λ with $\lambda \vdash n$ and $\ell(\lambda) \leq m$ and every finite-dimensional polynomials $\operatorname{GL}(V)$ -representation W that

multiplicity of
$$S^{\lambda}$$
 in $\mathbb{S}'(W) = \dim \operatorname{Hom}_{\mathbb{S}_n}(S^{\lambda}, \mathbb{S}'(W))$

$$= \dim \operatorname{Hom}_{\operatorname{GL}(V)}(\mathbb{S}(S^{\lambda}), W)$$

$$= \dim \operatorname{Hom}_{\operatorname{GL}(V)}(S^{\lambda}(V), W)$$

$$= \operatorname{multiplicity} \text{ of } S^{\lambda}(V) \text{ in } W$$

We see in particular that $\mathbb{S}'(S^{\lambda}(V)) \cong S^{\lambda}$.

4 Translation into rings

4.1 The Grothendieck ring of GL(V)

Recall that the Grothendieck group $K_0(A)$ of an abelian category A is generated by the isomorphism classes of objects of A subject to the relation [B] = [A] + [C] for every short exact sequence $0 \to A \to B \to C \to 0$ in A. Then in particular

$$[A] + [B] = [A \oplus B] \tag{2}$$

for all $A, B \in \mathcal{A}$. If the abelian category \mathcal{A} is semisimple, i.e. if every short exact sequence in \mathcal{A} splits, then the relations (2) sufficie to construct $K_0(\mathcal{A})$.

Let \mathcal{A} be the semisimple category of finite-dimensional polynomial representations of GL(V). We abbreviate $K_0(GL(V)) := K_0(\mathcal{A})$ This becomes a ring when endowed with the multiplication

$$[V] \cdot [W] = [V \otimes W].$$

It follows from last week's classification of irreducible finite-dimensional polynomial GL(V)-representations that $K_0(GL(V))$ admits a \mathbb{Z} -basis given by the isomorphism classes $[S^{\lambda}(V)]$ where λ ranges through all partitions with $\ell(\lambda) \leq m$.

The character of a GL(V)-representation results in a well-defined ring homomorphism

Char:
$$K_0(GL(V)) \to \Lambda(m)$$

where $\Lambda(m)$ denotes the ring of symmetric polynomials in the variables x_1, \ldots, x_m .

4.2 The representation ring of S_n

For every $n \geq 0$ let R_n be the Grothendieck group of S_n -rep, the category of finite-dimensional S_n -representations. We can define on $R := \bigoplus_{n \geq 0} R_n$ a multiplication via

$$[E] \cdot [F] = [E \circ F].$$

Note that $1_R = [\mathbbm{1}_{S_0}]$ is multiplicative neutral and that this multiplication is associative and commutative by Lemma 8. The multiplication is also distributive and $R_i R_j \subseteq R_{i+j}$ for all $i, j \geq 0$. Hence R becomes a graded ring.

The category S_n -rep is semisimple by Maschke's theorem and it follows from Theorem 11 that R_n admits a \mathbb{Z} -basis given by the isomorphism classes $[S^{\lambda}]$ with $\lambda \vdash n$. The ring R hence damits a \mathbb{Z} -basis given by the isomorphism classes $[S^{\lambda}]$ where λ ranges through all partitions (of all natural numbers).

The additivity of the Schur functor(s) $S: S_n$ -rep $\to A$ gives for every $n \ge 0$ a group homomorphism $R_n \to \mathrm{K}_0(\mathrm{GL}(V))$, which together give a group homomorphism $R \to \mathrm{K}_0(\mathrm{GL}(V))$. It follows from Lemma 9 that this is a ring homomorphism. By abuse of notation we denote this homomorphism again by S.

We have argued in part (3) of Remark 13 that the kernel of $\mathbb{S}: R \to \mathrm{K}_0(\mathrm{GL}(V))$ is spanned by those $[S^{\lambda}]$ with $\ell(\lambda) > m$, whereas all other basis vector $[S^{\lambda}]$ with $\ell(\lambda) \leq m$ are mapped bijectively onto the basis $[S^{\lambda}(V)]$ of $\mathrm{K}_0(\mathrm{GL}(V))$.

4.3 The ring of symmetric functions

For every $k \geq 0$ let $\Lambda(k)$ denote the ring of symmetric polynomials, a subring of $\mathbb{Z}[x_1,\ldots,x_k]$.

When dealing with symmetric polynomials it often happens that the number of variables, k, does not matter: One has a family $(f_k)_{k\geq 0}$ of symmetric polynomials $f_k\in\Lambda(k)$ such that $f_k(x_1,\ldots,x_{k-1},0)=f_{k-1}(x_1,\ldots,x_{k-1})$ for every $k\geq 1$, and for every $k\geq 1$ an identity involving f_k which reduces for $x_k\to 0$ to the identity involving f_{k-1} .

Example 17. The elementary symmetric polynomials $e_n(x_1,...,x_k)$ and the completely symmetric polynomials $h_n(x_1,...,x_k)$ are for every $k \ge 1$ related by the formulas

$$\sum_{i=0}^{s} (-1)^{i} h_{s-i}(x_{1}, \dots, x_{k}) e_{i}(x_{1}, \dots, x_{k}) = 0$$

where $s \ge 0$. The identities in k-1 variables follows from the corresponding ones in k variables by setting $x_k \to 0$.

To formalize this phenomenon we introduce the **ring of symmetric functions** Λ : For every degree $n \geq 0$ we set

$$\Lambda_n := \left\{ (f_k)_{k \ge 0} \middle| \begin{array}{c} f_k \in \Lambda_n(k) \text{ with} \\ f_k(x_1, \dots, x_{k-1}, 0) = f_{k-1}(x_1, \dots, x_{k-1}) \\ \text{for every } k \ge 1 \end{array} \right\}$$

$$= \lim(\Lambda_n(0) \leftarrow \Lambda_n(1) \leftarrow \Lambda_n(2) \leftarrow \Lambda_n(3) \leftarrow \cdots)$$

where $\Lambda_n(k) \to \Lambda_n(k-1)$ is the group homomorphism given by setting $x_k \to 0$. We combine these groups into a graded ring $\Lambda = \bigoplus_{n>0} \Lambda_n$ with multiplication given by

$$(f_k)_{k>0} \cdot (g_k)_{k>0} \coloneqq (f_k g_k)_{k>0}$$
.

Example 18. For every $n \ge 0$ we have an element

$$e_n := (e_n(), e_n(x_1), e_n(x_1, x_2), e_n(x_1, x_2, x_3), \dots) \in \Lambda_n$$

and similarly elements $h_n, p_n \in \Lambda_n$. We get for every partition $\lambda = (\lambda_1, \dots, \lambda_t)$ an induced element

$$e_{\lambda} := e_{\lambda_1} \cdots e_{\lambda_t} \in \Lambda_{|\lambda|}$$

and similarly elements $h_{\lambda}, p_{\lambda} \in \Lambda_{|\lambda|}$.

Remark 19.

(1) We have that

$$\Lambda = \lim (\Lambda(0) \leftarrow \Lambda(1) \leftarrow \Lambda(2) \leftarrow \Lambda(3) \leftarrow \cdots)$$

in the category of graded rings.

(2) The elements of the ring Λ are not functions, despite its name.

Example 20 (Schur polynomials and Schur functions). Let λ be a partition. For every semistandard Young tableaux T of shape λ with entries in $\{1, \ldots, k\}$ let

$$x_T \coloneqq \prod_{i \in T} x_i$$
.

The **Schur polynomial** $s_{\lambda}(x_1,\ldots,x_k)$ is defined as

$$s_{\lambda}(x_1,\ldots,x_k) = \sum_{T'} x_{T'} \in \mathbb{Z}[x_1,\ldots,x_n]$$

where T' ranges through the semistandard Young tableaux of shape λ with entries in $\{1, \ldots, k\}$.

If for example $\lambda=(2,2)$ and k=3 then the semistandard Young tableaux are as follows:

1	1	1	1	1	1	1	2	1	2	2	2
2	2	2	3	3	3	2	3	3	3	3	3

The Schur polynomial $s_{(2,2)}(x_1,x_2,x_3)$ is therefore given by

$$s_{(2,2)}(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1^2 x_2 x_3 + x_1^2 x_3^2 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2 + x_2^2 x_3^3.$$

We observe the following:

- (1) The Schur polynomial $s_{\lambda}(x_1,\ldots,x_k)$ is homogeneous of degree $|\lambda|$.
- (2) If $\ell(\lambda) > k$, i.e. if the Young diagram of λ has more than k rows, then the Schur polynomial $s_{\lambda}(x_1, \ldots, x_k)$ vanishes since there exist no semistandard Young tableaux of shape λ with entries in $\{1, \ldots, k\}$. (We don't have enough entries to make the first column strictly increasing, which is required for a semistandard Young tableaux.)
- (3) The Specht module $S^{\lambda}(V)$ has a basis e_T where T ranges through the semistandard Young tableaux with entries in $\{1, \ldots, m\}$. Each e_T is a weight vector with corresponding weight x_T . Hence

$$s_{\lambda}(x_1,\ldots,x_m) = \operatorname{Char}(S^{\lambda}(V))(x_1,\ldots,x_m).$$

This shows in particular that $s_{\lambda}(x_1, \ldots, x_m)$ is a symmetric polynomial. We also see again that $s_{\lambda}(x_1, \ldots, x_m) = 0$ if $\ell(\lambda) > m$ since then $S^{\lambda}(V) = 0$.

(4) It holds that $s_{\lambda}(x_1, \dots, x_{k-1}, 0) = s_{\lambda}(x_1, \dots, x_{k-1}).$

We find that we get a well-defined element $s_{\lambda} \in \Lambda_{|\lambda|}$, the **Schur function**.

Proposition 21. For every $k \geq 0$ the ring of symmetric polynomials $\Lambda(k)$ has the Schur polynomials $s_{\lambda}(x_1, \ldots, x_k)$ with $\ell(\lambda) \leq k$ as a basis.

Corollary 22. The ring homomorphism Char: $K_0(GL(V)) \to \Lambda(m)$ is an isomorphim.

Proof. The basis $[S^{\lambda}(V)]$ of $K_0(GL(V))$ is mapped to the basis $s_{\lambda}(x_1, \ldots, x_m)$ of $\Lambda(m)$, both indexed with $\ell(\lambda) \leq m$.

We have for every $k \geq 0$ a homomorphism of graded rings

$$\Lambda \to \Lambda(k)$$
, $f \mapsto f(x_1, \dots, x_k)$

that assigns to f the entailed symmetric polynomial in k variables. An equality f = g holds in Λ if and only if for every $k \ge 0$ the equality $f(x_1, \ldots, x_k) = g(x_1, \ldots, x_k)$ hold.

Example 23. The equality $\sum_{i=0}^{s} (-1)^{i} h_{s-i} e_{i} = 0$ with $s \geq 0$ hold in Λ .

Proposition 24.

- (1) The symmetric functions e_1, e_2, \ldots generate Λ and are algebraically independent.
- (2) The monomials e_{λ} where λ ranges through all partitions form a \mathbb{Z} -basis of Λ .
- (3) The symmetric functions h_1, h_2, \ldots generate Λ and are algebraically independent.
- (4) The monomials h_{λ} where λ ranges through all partitions form a \mathbb{Z} -basis of Λ .
- (5) The symmetric functions s_{λ} where λ ranges through all partitions form a \mathbb{Z} -basis of Λ .

The mapping $e_i(x_1, \ldots, x_k) \mapsto e_i(x_1, \ldots, x_{k+1})$ with $i = 0, \ldots, k$ extends to an embedding of rings $\Lambda(k) \to \Lambda(k+1)$, and the above shows that one can regard Λ is the resulting colimit, i.e. as the polynomial ring $\mathbb{Z}[e_1, e_2, e_3, \ldots]$. Similarly for h_i instead of e_i .

Theorem 25. Let $\Phi \colon \Lambda \to R$ be the unique additive group homomorphism that maps the basis element e_{λ} to the element $[\widetilde{M}^{\lambda}]$ where λ ranges through all partitions.

- (1) The map Φ is an isomorphism of rings.
- (2) It holds that $\Phi(h_{\lambda}) = [M^{\lambda}].$
- (3) It holds that $\Phi(s_{\lambda}) = [S^{\lambda}].$

The multiplicity of Φ stems from the identity $\widetilde{M}^{\lambda} = \mathbb{U}_{\lambda_1} \circ \cdots \circ \mathbb{U}_{\lambda_t}$ for $\lambda = (\lambda_1, \dots, \lambda_t)$.

5 Representations and symmetric polynomials

Corollary 26. The composition

$$\Lambda \xrightarrow{\Phi^{-1}} R \xrightarrow{\mathbb{S}} K_0(GL(V)) \xrightarrow{\operatorname{Char}} \Lambda(m)$$

is given by $f \mapsto f(x_1, \ldots, x_m)$.

Proof. The assertion holds for the basis elements s_{λ} of Λ as

$$s_{\lambda} \mapsto [S^{\lambda}] \mapsto [\mathbb{S}(S^{\lambda})] = [S^{\lambda}(V)] \mapsto s_{\lambda}(x_1, \dots, x_m).$$

The general assertion follow by additivity of all occurring maps.

We have thus finally arrived at the following commutative diagram of rings:

$$\begin{array}{c|c}
R & \stackrel{\sim}{\longrightarrow} & \Lambda \\
\downarrow \downarrow & & \downarrow f \mapsto f(x_1, \dots, x_m) \\
\downarrow & & \downarrow f \mapsto f(x_1, \dots, x_m) \\
K_0(GL(V)) & \stackrel{\sim}{\longrightarrow} & \Lambda(m)
\end{array}$$

We have the following special cases of this diagram:

$$[S^{\lambda}] \longleftrightarrow s_{\lambda} \downarrow \qquad \qquad \downarrow$$

$$[S^{\lambda}(V)] \longleftrightarrow s_{\lambda}(x_{1}, \dots, x_{n})$$

$$[\widetilde{M}^{\lambda}] \longleftrightarrow e_{\lambda} \qquad \qquad [M^{\lambda}] \longleftrightarrow h_{\lambda} \downarrow \qquad \qquad \downarrow$$

$$[\widetilde{M}^{\lambda}(V)] \longleftrightarrow e_{\lambda}(x_{1}, \dots, x_{n}) \qquad [M^{\lambda}(V)] \longleftrightarrow h_{\lambda}(x_{1}, \dots, x_{n})$$

We can now use these correspondeces to translate between problems about the representation theory of S_n , the representation theory of GL(V), and the combinatorics of symmetric polynomials.

Example 27.

- (1) For every $n \geq 0$ there exists unique natural numbers f^{λ} for $\lambda \vdash n$ such that one and thus all of the following conditions hold:
 - a) $\mathbb{C}[S_n] \cong \bigoplus_{\lambda \vdash n} (S^{\lambda})^{\oplus f^{\lambda}},$
 - b) $V^{\otimes n} \cong \bigoplus_{\lambda \vdash n} S^{\lambda}(V)^{\oplus f^{\lambda}},$
 - c) $(x_1 + \dots + x_m)^n = \sum_{\lambda \vdash n} f^{\lambda} s_{\lambda}(x_1, \dots, x_m)$ for every $m \ge 0$,
 - d) $e_1^n = \sum_{\lambda \vdash n} f^{\lambda} s_{\lambda}$ in Λ .

We have already seen that it follows from the first description that f^{λ} is given by the number of standard Young tableaux of shape λ .

- (2) For every partition λ there exist unique natural numbers $K_{\mu,\lambda}$ for $\mu \triangleleft \lambda$ such that one and thus all of the following conditions hold:
 - a) $M^{\lambda} \cong S^{\lambda} \oplus \bigoplus_{\mu \lhd \lambda} (S^{\mu})^{\oplus K_{\mu,\lambda}},$

- b) $M^{\lambda}(V) \cong S^{\lambda}(V) \oplus \bigoplus_{\mu \lhd \lambda} S^{\mu}(V)^{\oplus K_{\mu,\lambda}},$
- c) $h_{\lambda}(x_1,\ldots,x_m) = s_{\lambda}(x_1,\ldots,x_m) + \sum_{\mu \leq \lambda} K_{\mu,\lambda} s_{\mu}(x_1,\ldots,x_m)$ for all $m \geq 0$,
- d) $h_{\lambda} = s_{\lambda} + \sum_{\mu \lhd \lambda} K_{\mu,\lambda} s_{\mu}$.

The numbers $K_{\mu,\lambda}$ are the **Kostka numbers**.

- (3) For every partition λ there exist unique natural numbers $K_{\mu,\lambda}$ such that one and thus all of the following conditions hold:
 - a) $\widetilde{M}^{\lambda} \cong S^{\tilde{\lambda}} \oplus \bigoplus_{\tilde{\mu} \lhd \lambda} (S^{\mu})^{\oplus K_{\tilde{\mu},\lambda}},$
 - b) $\widetilde{M}^{\lambda}(V) \cong S^{\tilde{\lambda}}(V) \oplus \bigoplus_{\tilde{\mu} \lhd \lambda} S^{\mu}(V)^{\oplus K_{\tilde{\mu},\lambda}},$
 - c) $e_{\lambda}(x_1,\ldots,x_m) = s_{\tilde{\lambda}}(x_1,\ldots,x_m) + \sum_{\tilde{\mu} \prec \lambda} K_{\tilde{\mu},\lambda} s_{\mu}(x_1,\ldots,x_m),$
 - d) $e_{\lambda} = s_{\tilde{\lambda}} + \sum_{\tilde{\mu} \lhd \lambda} K_{\tilde{\mu}, \lambda} s_{\mu}$.

The numbers $K_{\mu,\lambda}$ are again the Kostka numbers as above.

- (4) For any two partitions λ and μ there exist natural numbers $c_{\lambda,\mu}^{\nu}$ for $\nu \vdash |\lambda| + |\mu|$ such that one and thus all of the following conditions hold:
 - a) $S^{\lambda} \circ S^{\mu} \cong \sum_{\nu} (S^{\nu})^{\oplus c_{\lambda,\mu}^{\nu}},$
 - b) $S^{\lambda}(V) \otimes S^{\mu}(V) \cong \sum_{\nu} S^{\nu}(V)^{\oplus c_{\lambda,\mu}^{\nu}}$,
 - c) $s_{\lambda}(x_1, ..., x_m) s_{\mu}(x_1, ..., x_m) = \sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}(x_1, ..., x_m),$
 - d) $s_{\lambda}s_{\mu} = \sum_{\nu} c_{\lambda,\mu}^{\nu} s_{\nu}$.

The numbers $c_{\lambda,\mu}^{\nu}$ are the **Littlewood–Richardson coefficients**.