This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- (•) BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 733 991 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

25.09.1996 Bulletin 1996/39

(21) Application number: 95203430.4

(22) Date of filing: 10.10.1990

(84) Designated Contracting States: **DE FR GB IT**

(30) Priority: 05.01.1990 US 461881

(62) Application number of the earlier application in accordance with Art. 76 EPC: 90119399.5

(71) Applicant: SYMBOL TECHNOLOGIES, INC. Bohemia New York 11716-3300 (US)

(72) Inventors:

 Pavlidis, Theodosios Setauket, NY 11733 (US) (51) Int. CI.⁶: **G06K 19/06**

 Wang, Ynjuin Paul Port Jefferson Station, NY 11766 (US)

 Swartz, Jerome Old Field, NY 11733 (US)

(74) Representative: Maggs, Michael Norman et al Kilburn & Strode 30 John Street London WC1N 2DD (GB)

Remarks:

This application was filed on 09 - 12 - 1995 as a divisional application to the application mentioned under INID code 62.

(54) High density two dimensional symbol set

(57)A nonvolatile electro-optical read-only memory includes a substrate on which is printed (or otherwise inscribed) a complex symbol or "label" with a high density two-dimensional symbology, a variable number of component symbols or "codewords" per row, and a variable number of rows. Codewords in alternating rows are selected from mutually exclusive subsets of a mark pattern such as a (17.4) mark pattern. The subsets are defined in terms of particular values of a discriminator function, which is illustrated as being a function of the widths of bars and spaces in a given codeword. In the illustrated embodiment, each subset includes 929 available codewords; that, plus a two-step method of decoding scanned data, permitting significant flexibility in defining mappings of human-readable symbol sets into codewords. The memory may be used in conjunction with a scanner and a suitable control system in a number of applications, e.g., robotic operations or automated microfilm searching.

FIG. 3

Description

5

1. Background of the Invention

The present invention relates to a method of reading and decoding a machine readable symbol, the symbol including a plurality of adjacent groups of codewords, each group comprising a plurality of individual codewords having a detectable mark/space pattern. It further relates to apparatus for reading and decoding such symbols. Typically, the symbol is printed or otherwise inscribed on a substrate, thereby defining a non-volatile electro-optical read-only memory. The symbol or "label" typically has a high density two-dimensional symbology, a variable number of component symbols or "codewords" per line, and a variable number of lines.

1.1 Bar Code Symbology

A bar code is typically a linear array of elements that are either printed directly on an object or on labels that are affixed to the object. As shown in Figures 1 and 2, bar code elements typically comprise bars and spaces, with bars varying widths representing strings of binary zeros. Many bar codes are optically detectable and are read by devices such as scanning laser beams or handheld wands. Other bar codes are implemented in magnetic media. The readers and scanning systems electro-optically decode the symbol to multiple alphanumerical characters that are intended to be descriptive of the article or some characteristic thereof. Such characters are typically represented in digital form as an input to a data processing system for applications in point-of-sale processing, inventory control, and the like Scanning systems of this general type have been disclosed, for example, in US Patent Nos. 4,251,798; 4,360,798; 4,369,361; 4,387,297; 4,409,470 and 4,460,120, all of which have been assigned to the same assignee as the instant application.

Most bar codes presently used contain only five or six letters or digits, no more than a typical vehicle license plate. In view of the relatively small amount of data contained in a typical linear bar code, the most typical applications of a bar code is to use the encoded data merely as an index to a file or data base associated with the computer system comprehensive information is available.

As noted above, the contrasting parallel bars and spaces (referred to herein as "marks") or typical optically-detectable bar codes have varying widths. Generally, the bars and spaces can be no smaller than a specified minimum width, termed the code's "unit" (or "x dimension" or "module"). While the theoretical minimum unit size is the wavelength of the light being used to read the bar code, other practical limitations exist. Among those limitations are the desired depth of field of the reading equipment, the limitations of a given printing process, and the robustness of the printed image to be correctly read despite dust, dirt, and minor physical damage.

The bar code symbols are formed from bars or elements typically rectangular in shape with a variety of possible widths.

The specific arrangement of elements defines the character represented according to a set of rules and definitions specified by the code or "symbology" used. The relative size of the bars and spaces is determined by the type of coding used, as is the actual size of the bars and spaces. The number of characters per inch represented by the bar symbol is referred to as the density of the symbol. To encode a desired sequence of characters, a collection of element arrangements are concatenated together to form the complete bar code symbol, with each character of the message being represented by its own corresponding group of elements. In some symbologies as a unique "start" and "stop" character is used to indicate where the bar code begins and ends. A number of different bar code symbologies exist. These symbologies include UPS/EAN, Code 39, Code 93, Code 128, Codebar, and Interleaved 2 of 5.

45 1.2 Symbologies of (n,k) Type

55

Some bar codes are referred to as belonging to the (n,k) family defined by Savir and Laurer in "The Characteristics and Decodeability of the universal Product Code, "IBM Systems Journal, Vol. 14, No. 1,1973. A code of the (n,k) type represents characters uniquely by a string of n bits each containing k runs of one bit (i.e., k bars) and k runs of zero bits (i.e., spaces). An (n,k) code is decodable in both directions, i.e., by scanning it either forwards or backwards. Such bar codes are often referred to by numbers n and k; for example, the well-known Code 93 derives its name from this (n,k) notation, i.e., n = 9 and k = 3. The UPC code is an example of a (7,2) code, i.e., n = 7 and k = 2.

1.3 Prior Two-Dimensional Bar Codes

Known two-dimensional bar codes exist that are extensions of one-dimensional bar codes, in that one-dimensional bar codes are stacked with horizontal guard bars between them to increase the density. An example of such bar codes is seen in U.S. Patent No. 4,794,239, to Allais.

An obstacle to increasing the density of two-dimensional bar codes is the need for a certain minimum height in the vertical direction. A minimum height is needed to ensure that a human operator can keep a "scan line: (i.e., the path of a given scanning motion, such as that achieved by passing a hand-held wand across a bar code) within the area of a single bar-code row. Figure 1 illustrates this difficulty: scan lines 10, 11 and 12 present identical exemplar paths of, e.g., hand-held wands over the bar code 15, 16, 17. It will be seen that with a tall bar code 15, the scan lines 10 all stay within the confines of one bar code row, whereas with shorter bar codes 16 or 17, the scan lines 11 and 12 cross from one row to another.

Another limitation seen in some known two-dimensional bar codes is the use of fixed maps to translate from codewords to characters. The fixed maps restrict the flexibility of applications. For example, the well-known Code 49 has six fixed maps (i.e., six modes) to translate a codeword numerically or alphanumerically.

Although such two dimensional bar codes provide some increase in the storage capacity, such codes are still used as indices for file look-up, rather than as a complete data file in itself.

Still another drawback of some known two-dimensional codes is the need for a fixed number of codewords per line (referred to here as a "row") and the limitation of a maximum number of rows. For instance, Code 49 (a bar code generally in accordance with the aforementioned Allais '239 patent) has 4 codewords per row and 8 rows maximum.

Yet another problem is the lack of flexibility in choosing a suitable security system. (The term "security" is commonly used to refer to confidence in accuracy or correctness; it is usually specified by a misdecode rate, e.g., in errors per million.) Code 49, for example, provides a very high level of security while sacrificing about 30% of its codewords on average for checking errors. In some applications however, a lesser degree of security may be an acceptable trade-off in return for a greater codeword density; the ability to vary the security would be advantageous.

The closest prior art is represented by US-A-4794239 relating to a multitrack bar code symbol and an associated decoding method. That document discloses a method of reading and decoding a machine readable symbol, the symbol including a plurality of adjacent individual code words having a detectable mark/space pattern; the code words together defining, when taken in sequence, an encoded version of the data to be decoded, the method comprising:

(a) scanning and reading the codewords, not necessarily in the said sequence;

- (b) calculating, for each codeword X, a discriminator function f(X);
- (c) dividing the scanned codewords into a plurality of partial scans;
- (d) recreating the said sequence by stitching together the partial scans; and
- (e) decoding the codewords and outputting or storing the sequenced decoded data.

2. Summary of the Invention

25

30

55

The present invention enables the use of an improved high-density two-dimensional symbology, as well as a flexible method for using the symbology to encode and decode data. The symbology may be used to create a nonvolatile read-only memory, which in turn may be used in a computer system.

Prior codes have been restricted in terms of information capacity or density. The present invention allows the use of symbologies which may achieve storage capacity of up to 1 kilobytes of memory within an area of one to four square inches. The significance of such a memory one should not be underestimated - it represents about 250 English words, about the size of a page or screen display. As an information unit, such unit is most suitable for many applications.

2.1 Summary of Label Row-Wise Organization

A suitable exemplary two-dimensional label for use with the method and apparatus of the invention may comprise multiple rows of codewords; that is, the term "label" is used here to mean a complex marking of specified dimensions that includes a number of codewords organized in rows. Each codeword is a mark pattern comprising a plurality of elements or marks; the marks can be of various heights, as in a bar code, or can be of a relatively small height to form a "dot code". Not just any mark pattern can constitute a codeword, however; each codeword belongs to a specific family or "set" of mark patterns that conforms to a particular descriptive rule about some characteristic of each mark pattern, e.g., a rule about the width of each mark and the total width of each mark pattern.

The codewords in any two adjacent rows are written in mutually exclusive subsets of the mark-pattern set (although in some embodiments the union of the subset is not exhaustive of the set itself). In particular, each subset of the mark-pattern set is defined so that it includes, as valid codewords for that subset, only those mark patterns that satisfy certain discriminator-function criteria.

Such row-wise usage of alternating subsets of codewords, grouped according to discriminator-function criteria, permits quick determination whether a row has been crossed, without the need for a horizontal guard bar. This is, for a given scanned codeword in a label, determination of the discriminator function indicates whether the codeword comes from the same row as the previously-scanned codeword or from a different row (that is, whether the scan line has crossed between rows as illustrated in Figure 1).

Detection of line-crossing permits "stitching" of partial scans of particular rows into a map (e.g., in memory) of the label. The stitching process is roughly analogous to stitching a number of pieces of colored fabric into a predesigned quilt that displays, e.g., a picture: as each "piece" is required by the scanning process, it is incorporated piecewise into the appropriate point of the label.

For example, suppose that computation of the appropriate discriminator functions reveals that a scanning pass has scanned the first half of row 1 and the second half of row 2 of a label such as is shown in Figure 3. Assume that the respective longitude of the scanned data with respect to the ends of the label are known, e.g., through detection of start-and/or stop-codes. The knowledge that a row boundary has been crossed permits all the scanned data from the scanning pass to be incorporated into the respective proper rows of the label map at the respective proper longitudes (assuming no scanning or decoding errors); the data from the scanning pass need not be discarded merely because the data did not come from a single desired row.

As another (greatly simplified) hypothetical example, assume that a part of one row has been scanned and that the data "123456789" are incorporated into the label map as a result. Further assume that a second scanning pass of that row is made, and that the data "6789ABCD" are decoded as a result. If the overlapping portion if any between the two scanned data "pieces" - in this case, the "6789" portion - can be determined (e.g., with string-matching techniques such as described below), then the remainder of the later-scanned data can be approximately incorporated into the label map (in this case, the "ABCD" portion).

Consequently, the operator need not be scrupulously careful to sweep the wand over the label one row at a time; virtually any scanning pass that includes either a row's start code or a stop code, or that can somehow be determined to overlap with data already incorporated in the label map, will yield usable data (assuming no coding or decoding errors). Such a label thus advantageously increases the density of information by permitting height reductions in the codewords.

2.2 Summary of Organization of Codeword Subsets

As noted, above, a key feature of the invention is the use of different codeword subsets, preferably in different rows, each subset satisfying certain discriminator-function criteria. In one embodiment described here for illustrative purposes, a (17,4) symbology is used. A discriminator function is used to divide the 11,400 available mark patterns in that symbology into three mark pattern subsets of 929 codewords each.

The discriminator function may take as its inputs the various widths of the on- and off marks of a mark pattern (e.g., optically detectable bars and spaces) and may provide as an output a number from 0 to 8. Three subsets may then be selected whose discriminator function values are 0, 3, and 6, respectively, and whose mark widths meet certain other criteria. Each subset thus comprises a collection of codewords, all of whose discriminator functions are both equal to each other and readily distinguishable from those of the codewords in the other two subsets.

The availability of 929 codewords in each subset, each with a unique discriminatory-function number, permits each codeword to be used to represent a two-digit number in base 30. This capability leads to several advantages.

As shown in Figure 5, each digit of the two-digit base-30 number can be used in an "alpha mode" or in a "mixed mode"; that is, each digit can be mapped into a 30-place alphabetic translation table of into a 30-place mixed alphanumeric translation table. In each of these 30 place tables, one or more digits are reserved for use as signals to change translation tables.

Alternatively, each two-digit number can be used in a "numeric mode" or in a "user mode" that is, each number can be mapped into a 929-place numeric translation table or into any of up to twenty-seven 929-place user-defined translation tables. In each of these tables as well, one or more digits are reserved for use as signals to begin using a different translation table.

2.3 Summary of Two-Step Decoding Method

In the first step of the preferred method, when a codeword is scanned, the discriminator function of the scanned codeword is computed to determine the codeword subset of which the scanned codeword is a member. A t-sequence number based on the width of the marks comprising the codeword is also computed; that number is used as an entry point into a lookup table for the codeword subset in question. The lookup table yields a number from 0 to 928, which is parsed into a two-digit number in base 30.

In the second step, the high- and low-order digits of the base-30 number are used to determine the symbolic meaning assigned to the codeword (which may include an instruction to change translation tables.

The method of the invention thus advantageously permits the user to define multiple translation tables. In addition, the invention is not constrained by logical limits on the number of codewords per row nor on the number of rows. This gives the user freedom to lay out the symbology in areas of varying shapes.

25

30

45

55

2.4 Summary of Error Detection and Correction

A row-oriented incremental error detection capability is provided through the use of a checksum codeword for each row. After completion of low-level decoding but before performance of high-level decoding, various checksum computations are performed to test the accuracy of the scan.

In addition, a "final" checksum codeword for the label as a whole is used for additional security. The use of these checksums permits a limited degree of error recovery, since the checksums reflect the information contents of each of the codewords in the label. That is, errors in decoding particular codewords can be corrected in some circumstances by "subtracting" the known correct codewords from the checksum, so to speak, thereby yielding the correct value for the erroneously decoded codeword.

If the test results are satisfactory, the high-level decoding step is performed.

2.5 Summary of System Implementation

15

35

50

The present invention may be applied within a system for reading bar code symbols or the like, including a hand-held scanning unit in a lightweight, portable housing including a symbol-detection device for generating a laser beam directed toward a symbol to be read, and for receiving reflected light from such symbol to produce electrical signals corresponding to data represented by the symbol; a data processing device for processing the data represented by the symbol having a state according to at least first and second different coding procedures; and a read-control device to actuate the symbol-detection device to initiate reading of a symbol; wherein the symbol includes at least two groups of codewords; each codeword representing at least one information-bearing character and being selected from among a set of valid mark patterns. Each mark pattern comprises a pattern of marks, each mark pattern being representative of encoded data according to one of a plurality of different coding procedures; the codewords in each group being selected from a subset of mark patterns, the subset for said group being defined by a specified rule for that group that differs from the rule specified for said a different group each coding procedure being a function of the state of the data processing device.

3. Brief Description of the Drawings

Figure 1A is an illustration of a prior-art bar code symbology.

Figure 1B is an illustration of a label in accordance with the present invention;

Figure 2 is an illustration of the relationship between an x-sequence and a t-sequence in a codeword comprising part of a label embodying the present invention;

Figure 3 is an exemplar layout of an illustrative high density two-dimensional symbology design in accordance with the invention;

Figure 4 is a block-diagram illustration of the use of alternate sub-symbologies in different rows of a multi-row label in accordance with the invention:

Figure 5 is a table showing alternate translation modes for encoding or decoding codewords:

Figure 6 is a state-machine diagram of aspects of a method for using the table shown in Figure 5;

40 Figure 7 is a pictorial representation of a sequence of encoding a string of readable characters into scannable codewords;

Figure 8 is a logic diagram of an illustrative circuit for computing a checksum for a row in a label embodying the invention; Figure 9 shows a similar circuit for computing an additional checksum for the entire label.

Figure 10 is a schematic illustration of the layout of codewords within a label;

45 Figures 11 through 13 are logic diagrams of illustrative circuits for performing error recovery in accordance with the invention;

Figures 14A through 14D, Figures 15A through 15D, and Figures 16A through 16D depict tables used for decoding codewords in three different sub-symbologies.

Figure 17 is a C-language program that may be used to generate these tables;

Figure 18 is a block diagram of a computer system using a nonvolatile electro-optical memory in accordance with the invention;

Figure 19a, 19b, 19c, and 19d is an alternative type of laser scanning pattern that may be used in connection with the present invention;

Figure 20 is an alternative arrangement of a bar code symbol; and

Figure 21 is a cross-sectional view of an implementation of a hand-held laser scanner which may be used to implement the present invention.

4. DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

4.1 Stitching of Partial Scans

5

10

20

35

45

The label of the invention proves especially useful for stitching together of partial scans. As noted above (and referring to Figure 1), when scan lines 12 cross codeword rows in a label 17, the partial scans must be "stitched" or pieced together. For example, consider a retail store checkout counter where a sales clerk manually passes a hand-held wand over a multirow label. If the wand's travel does not run substantially parallel to the label, the scan line may pass from one row to another; parts of different rows are thus scanned, but neither row is scanned completely.

Stitching entails building a map of each row of the label (e.g. in memory); successive passes of the wand result in a greater degree of filling in the map. It can be accomplished by using known string matching algorithms, such as disclosed in D Sankoff and J B Kruskal, editors, Time Warps, String Edits, and Macro-molecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, Massachusetts, 1983. One such algorithm is described below.

5 4.2 Partitioned Symbology

Stitching is facilitated by using different sub-symbologies in alternate rows, selected so that the scanner can made a local decision on whether a row has been crossed. Using different sub-symbologies in alternate rows allows the elimination of horizontal guard bars seen in prior-art code symbologies, thus permitting high density of information.

The illustrative embodiment of the present invention utilizes an advantageous scheme for organizing codewords into readily distinguishable groups. The scheme makes use of the principle of coding theorem to pick only a fraction of available mark patterns as legal code words to increase decoding reliability; it can be applied to any of a number of labels.

One such label, referred to here as a "PDF417" label (for "Portable Data File 417"), is described as an illustration of this invention. PDF417 is a (17,4) label of the (n.k) type described above. Each codeword has 4 bars and 4 spaces with a total width of 17 modules.

It can be shown that this code yields a set of 11,440 different combinations of mark patterns. To increase decoding reliability, only a fraction of these available mark patterns are used as valid codewords.

4.3 Discriminator Function for Defining Subset Partition

As a first step in selecting a group of mark patterns for such use for this particular code, the 11,440 mark patterns are partitioned into nine subsets or "clusters," by calculating a discriminator function f(X) for each mark pattern X:

$$f(X) = (x_1-x_3+x_5-x_7) \mod 9$$

where x_1, x_3, x_5 and x_7 stand for the bars' widths, and x_2, x_4, x_6 and x_8 stand for the spaces' widths. The discriminator function f(X) above is one of possible alternative equations used to subdivide the different possible combinations into nine different subsets.

Further narrowing is performed on three of the nine subsets of mark patterns, namely the subsets in which f(X)=0, f(X)=3, and f(X)=6 (sometimes called cluster(0) cluster(3) and cluster(6), respectively). The narrowing is performed in part by defining a "t-sequence" for each mark pattern. Each element t_k of the t-sequence is computed according to the formula:

$$t_{k} = x_{k+1} + x_{k+1}$$
 where k = 1, . . . , 7

The three subsets cluster(i) (where i = 0, 3, 6) are narrowed by selecting mark patterns where no mark width x_j is more than six (where j = 1, ..., 7), and where no t_k is more than nine (where k = 1, ..., 7).

Thus, the three final subsets cluster(i) of the mark patterns X that are selected for use as code words can be summarized as follows:

cluster (i) =
$$\{x = f(X) = i, xj \le 6, t_k \le 9\}$$

where i = 0, 3, 6, j = 1, ..., 8, and k = 1, ..., 7. After sorting each cluster by the t-sequence while suppressing duplicate entries, it can be shown that each cluster(i) includes at least 934 mark patterns. The closest prime number to 934 is 929; accordingly, 929 mark patterns are selected from each cluster(i) for use as codewords. (For convenience, the term "x-sequence," with respect to any given mark pattern, is defined as the number having its digits $x_1x_2...x_9$).

The t-sequence of each codeword can be used to identify that codeword, since it can be shown that each such tsequence is unique within the three subsets cluster(i). It will be apparent that only the first six digits of the seven-digit t-

sequence need be used to uniquely specify a codeword of the (17,4) type, since as illustrated in Figure 2, the value of the final t-sequence element t_7 is completely determined by the first six elements t_1 and the fixed total Σx_i of the mark pattern. As an example, suppose that t₁=2, t₂=4, t₃=6, t₄=7, t₅=6, and t₆=4; the t-sequence for that codeword would be 246764.

The partition just described has the advantage that, by computing f(X) for any scanned mark pattern, the mark pattern's membership (or non-membership) in a codeword subset can guickly be ascertained. Furthermore, since the tsequence for each codeword is unique, computation of the t-sequence permits that value to be used in a lookup table to determine the symbolic meaning assigned to a scanned mark pattern that belongs to a codeword subset.

Other equivalent discriminator functions f(X) may be constructed and used. Preferably, such a discriminator function should partition the available mark patterns into clusters (not necessarily nine clusters) approximately uniform in size. In addition, the clusters selected for use as codewords preferably are equidistant in "error distance", that is, the probability that a codeword from any of selected clusters A, B, C, etc., will be mistaken for a codeword from another one of those clusters should be of the same order of magnitude regardless of which of the other clusters is considered.

15 4.4 Generating Subsets of Codewords

An example of a computer program for generating lists of codewords for the various clusters(i) is set forth in Figure 17. The example program is written for convenience in the well-known C programming language, although any suitable language may be used; the example program is used generally as follows:

1. The program of Figure 17 is used to generate 9 output files, referred to here as out(i), where i = 0, ..., 8. Only the output files out(0), out(3), and out(6) are used; they may be renamed as "cluster" files cluster(0), cluster(3), and cluster(6), respectively.

2. All three cluster files are conventionally sorted to remove ambiguous entries, i.e., to eliminate any mark pattern whose t-sequence is identical to the t-sequence of any other mark pattern.

3. The cluster files cluster(3) and cluster(6) are conventionally filtered to remove those entries in which any t, is wider than 9.

4. In the cluster file cluster(0), those odd entries (i.e., the first entry, third entry, etc) in which any tk is wider than 6 are filtered out, as are those even entries in which any t, is wider than 7. This is an arbitrary restriction designed to help make cluster(0) approximately the same size as cluster(3) and cluster(6), inasmuch as without such a restriction cluster(0) would be larger than the other two.

5. The first 929 t-sequences of each of the filtered cluster files are selected as the desired entries for the respective lookup tables.

4.5 Multirow Label Using Alternating Codeword Subsets

In the multirow label of the invention, each row uses codewords from a different subset than the rows immediately adjacent to it. This enables the scanner to recognise with a high degree of precision whether a scan line has crossed a row in the middle of a codeword, because if a row has been crossed, the codewords scanned will not yield the same f(X) as the previous row.

A row of codewords in accordance with the invention may conveniently contain unique start and stop codes in the conventional manner whose x-sequences are, e.g., 81111113 and 71121113 respectively. These start and stop codes are unique in that no other codeword in any cluster has the same t-sequence as either of them; furthermore, they are members of none of the final subsets of codewords because the required condition $x_i \le 6$ for all j = 1, ..., 8 is not true for those codes. The start code may be selected to have its widest bar away from the ensuing data codewords to reduce the possibility of intercodeword interference, as is the above start code; if desired, the stop code may be so selected as well.

The height unit module ratio H (the ratio of the height of a codeword (or a row) to one module width) may be changed from label to label or even from row to row depending on the printing/scanner (system or channel) resolution. R, or on the need of various applications. Figure 3 shows the first and the last rows having H approximately equal to 10, the rows in between having H approximately equal to 3, and the resolution R being approximately equal to 10 mil.

The first row of the multirow label uses cluster(0) codes, the second row cluster(3) codes, the third cluster(6) codes, the fourth cluster(0) codes, the firth cluster(3) codes, and so on. There is no logical limit on the number of codewords per row or the total number of rows.

In the embodiment illustrated here, the first codeword in each row is dedicated for use as a row identifier and the last codeword in each row is a checksum. (The maximum number of rows is thus 929, i.e., the number of codewords in the dedicated cluster). It is of course possible to distinguish between forward scanning and backward scanning of the row by matching the start/stop codeword forwardly or backwardly.

20

5

25

30

4.6 Other Row-Wise Partitioning of Codewords

It will be apparent to those of ordinary skill having the benefit of this disclosure that the invention is not limited to the specific mark patterns, discriminator function f(X), and t-sequence described above. The foregoing method of deriving a symbology can be applied in a substantially similar manner to yield equivalent symbologies having other kinds of mark patterns.

For example, labels can be constructed from bars of varying shades of gray or even from bars of a wide range of colors, instead of from black and white marks only. In such a label, a discriminator function for dividing all possible mark patterns into mutually exclusive codeword subsets, and a t-sequence function for uniquely identifying each codeword within a subset, may be based on a readily detectable attribute of a mark such as its hue or its gray scale value as well as on the width of each mark (or in lieu of the width, or in combination with the width).

It will likewise be apparent that broadly construed, the same principle encompasses the equivalent use of codewords of different colors (or shades of gray) in alternate rows. That is, all rows of a multi-row label could use the same subset of mark patterns as codewords, but in different colors or shades or orientations; the determination whether a row has been crossed would be made based on whether a color or shade or orientation change had occurred.

4.7 Subset Organization for Two-Step Decoding

In the illustrative, width-based embodiment described above, since each cluster(i) includes 929 codewords, each t-sequence in a cluster thus will correspond to a number from 0 to 928. The codewords in each subset can be organized according to a base 30 system in which one codeword, representing a number in base 30, is used to signify two alphanumeric characters.

Codewords can be scanned and decoded as follows. When a codeword is scanned, its t-sequence is noted. The t-sequence is then used as input to an initial, low-level decoding step; the output from the low-level decoding step is a number from 0 to 928 which in turn is used as an input to a high-level decoding step.

4.8 Initial Low-Level Decoding Step

40

45

The low-level decoding step entails looking up the t-sequence in a table for the appropriate cluster to find a corresponding value. The table may be created as described above. Referring to Figure 14A (a lookup table for cluster(0)), for example, the t-sequence 246764 corresponds to the value 111.

The actual circuitry for the lookup tables may be conventional; it will be appreciated by those of ordinary skill that the use of a prime number of codewords in a subset, e.g., 929, advantageously facilitates the design of the circuitry.

4.9 Mode-Dependent High-Level Decoding Step

The look-up value 111 from the foregoing example can be broken down into a two-number sequence in base 30, each number being in the range of 0-29 and having a high-level value V_H and a low-level value V_L . The base-30 sequence is computed as follows:

 $V_H = x \text{ div } 30; \text{ and }$

 $V_1 = x \mod 30$.

For the t-sequence used above, 246764, yielding a look-up value of 111, the high level value is 3, and the low level value is 21, since 111=3x30 + 21. Each of the high and low values (i.e., 3 and 21) is then evaluated by looking it up in a suitable (arbitrary) table, such as shown in Figure 5.

The examplar table in Figure 5 shows 30 decoding modes, including Alpha, Numeric, Mixed, ad User modes. The various User modes are designated as the modes in Figure 5 corresponding to columns 3 through 29 (with column 0 being Alpha mode).

In the illustrative embodiment, the Alpha mode is the default mode; therefore, the sample t-sequence 246784 ultimately translates into the two-letter sequence DV, via the lookup value 111 and the base-30 sequence 3,21.

It will be seen that the coding arrangement depicted in Figure 5 provides for mode switching that can be advantageously effected either within a single codeword or within a strong of codewords. The technique for invoking mode switching varies depending on the current decoder mode.

4.10 Examples of High-Level Decoding

The state machine diagram in Figure 6 illustrates a high-level decoding process in accordance with the invention for the exemplar embodiment. For convenience, a two-number sequence in base 30 is represented as "xxH xxL" or "(xxH, xxL)", where "xx" represents an arbitrary one or two-digit number. For example, a high-level value of 18 and a low-level value of 10 is depicted herein as 18H, 10L or as (18H, 10L).

As an example, assume the decoder is currently in Alpha mode. As shown in Figure 5, changing from Alpha mode to Mixed mode required that either the high value or the low value of the two-digit base-30 sequence be equal to 28. If the high value is 28, then the low value is unimportant for mode switching purposes; likewise, if the low value is 28, then the high value is unimportant for mode switching purposes.

For Alpha mode, a high value of 28 signals to the decoder that a mode switch to Mixed mode (depicted in Figure 5 as "ms" or Mixed-mode switch) must be effected; therefore, the low value of the high value/low value pair will be interpreted in the Mixed mode. A low value of 28 allows the decoder to interpret the high value of the high value/low value pair in the current mode, namely Alpha mode, and then to switch into Mixed mode. This mode switching technique allows a final value to be decoded in the current mode before switching to the next mode, therefore, eliminating waste resulting from using an extra high value/low value pair to insure that a final high value is interpreted in the current mode.

With decoding being done in Alpha mode, a hypothetical value of 856 yields 28H 16L, i.e. a high value of 28 and a low value of 16 (since 856 = 28x30 + 16). The high value of 28 toggles the decoder into Mixed mode, and the low value 16, when translated according to Mixed mode protocol, yields "!" (an exclamation point).

To change from Alpha mode to User mode, a high value of 29 (depicted as "us" or User-mode switch) and any low value n within the range of 3 to 29 is required. Low values of 0, 1, or 2 result in no mode switch, a switch to Mixed mode, or a switch to Numeric mode, respectively. In contrast to switching from Alpha to Numeric or Mixed modes, a switch to a User mode cannot be done by a low value of 29; any such values are ignored.

Switching between other modes is done in a generally similar manner, as shown in Figures 5 and 6. Referring to those Figures, a decoder in Numeric mode can only directly switch to Alpha mode or Mixed mode. To toggle from Numeric mode to Alpha mode a non-position dependent value of 927 is required, i.e., either a high-level value or a low-level value equal to 927 will effect the mode switch. Likewise, to toggle from Numeric mode to Mixed mode a non-position dependent value of 928 is required. It will be apparent that the numbers 927 and 928 are the last two positions in the Numeric mode, and are reserved for mode-switching characters for convenience.

To change from User mode to one of the predefined modes (Alpha, Numeric or Mixed) a high value of 29 and a low value within the range 0 to 2 is required. The low value in this combination corresponds to the predefined mode into which the decoder is switching (i.e. a low value of 0 corresponds to Alpha mode, a low value of 1 corresponds to Mixed mode and a low value of 2 corresponds to Numeric mode.

For example, assume that the current mode is Alpha and that three consecutive codewords are to be decoded: 872, 345 and 99. Translating into base 30, 872 yields a high level value of 29 and a low level value of 2 (872=29x30 + 2). The first codeword 872 thus defines a User mode into which the decoder is switching. Referring to Figure 5, if the decoder is in Alpha mode and a high level value of 29 and a low level value of 2 are encountered (as in the example above), the decoder changes to Numeric mode.

As another example, assume that the decoder is in Alpha mode and that the scanned codeword's lookup value is 723. In this case $V_H = 723$ div 30 = 24, and $V_L = 723$ mod 30 = 3. Therefore, the decoded codeword is (24H,3L). Since the current mode is Alpha, Figure 5 yields (Y,D) as the respective values for the decoded codeword (24H,3L).

Decoding of values in the Numeric mode differs from decoding of values in Alpha mode and Mixed mode. Decoding in Numeric mode treats a two-number sequence as a number in base 926. For example, suppose that the current mode is Alpha and that the following three codewords are encountered 872, 345 and 99. A base 30 conversion of the first codeword 872 yields H = 29 and L = 2. This sequence signals the decoder to switch from Alpha mode to Numeric mode. Switching to the radix-926 decoding system, the second and third codewords are decoded as $(345 \times 926) + 99 = 319569$.

The User modes may be used with considerable flexibility. All or part of one or more modes may be used to represent a special user-defined code; for example, frequently-occurring words, phrases, sentences, paragraphs, etc., can be assigned to respective positions within a User mode. A given phrase etc., can be represented in the label as a single codeword (combined with a "us" mode-switch command if necessary). It will be apparent that a great many different words, phrases, etc., can be represented, e.g., in the coding scheme depicted in Figure 5 as illustrations.

4.11 Encoding Method

55

20

An encoding procedure is the reverse process of the decoding procedure. For example, referring to Figure 6, a license plate number "HUD-329" when encoded yields the following strong of codewords: 230, 926, 843, 69. Each element of the original string "HUD-329" is located in Table 2 and translated according to proper mode protocol. The first four elements of the string are translated using Alpha mode. This results in H=7, U=20, D=3, and (hyphen) =26.

The last three elements may be translated using Mixed mode. To switch to Mixed mode from Aopha mode a Mixed Shift (28) character is needed. The Mixed-mode translation then results in 3=3, 2=2 and 9=9. The complete string is thus 7 20 3 26 28 3 2 9.

This string is partitioned into high value/low value pairs, with resulting pairs (7,20) (3,26) (28,3) and (2,9). Each of these pairs is encoded as a codeword. To encode a high value/low value pair, the high value is multiplied by 30, and the low value is added to the result of this multiplication.

For example, the pair (7,20) is encoded by multiplying 7 times 30 and adding 20, yielding a result of 250. All four pairs are encoded in this manner; the resulting string is 230 116 843 69. The string is translated into codewords in accordance with the appropriate lookup table for the codeword subset in use. Assuming hypothetically that cluster(0) is in use, the string is expressed using the codewords corresponding respectively to t-sequences 335633 (for 230), 255663 (for 116), etc.

4.12 Checksum Computation

15

20

25

30

35

40

45

.7

A checksum and error recovery scheme provides a row-oriented incremental error detection capability and high primitive decoding reliability. Within each row, a long polynomial division checksum scheme is used.

For convenience, each i-th codeword may be referred to by a corresponding index number a_i , i.e., by the result of the low-level decoding step discussed above for that codeword. Each codeword's index number a_i will thus have a value from 0 to 928; each codeword is referred to sometimes for convenience by its index number.

Each row with codewords a_{n-1}, a_{n-2}, ..., a₀ can be represented as a polynomial;

$$a(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}$$

This polynomial is referred to herein as the message polynomial, as discussed in, e.g., Shin Lin & D.J. Costello, Jr., Error Control Coding, 1983.

A row checksum b_{r0} is defined as the remainder resulting from dividing the message polynomial a(x) by a generator polynomial (see ibid.):

$$g_r(x) = x + 926$$

Those of ordinary skill will recognize that 926 is the complement of 3 in a Galois Field based on 929, or GF(929).

The checksum of each row can conveniently be computed using the checksum encoding circuit shown in Figure 8. In Figures 8 through 13, the circle-plus (modula addition), circle-X (modulo multiplication), and circle-C (modulo complementation) symbols are defined over GF(929) as:

$$x$$
 (circle-plus) $y = (x + y) \mod 929$

$$x (circle-X) y = (x * y) mod 929$$

(circle-C)
$$x = 929 - x$$

where x and y are any numbers from 0 to 928. It will of course be recognized that the design and construction of actual circuitry is a matter of routine implementation by those of ordinary skill. Such circuitry consequently is not further discussed here.

To perform the checksum computation, the register b_{r0} is initialized to 0. The input is a sequence of codewords' index numbers a_3 in a row, fed one number at a time into the input. The input fans into the output line (e.g., to a label printer) and the checksum encoding circuit simultaneously.

As the first codeword is input, the circle-plus computation is performed with the codeword's number a_i sequence and b_{r0} (i.e., 0) as operands. The output of that computation and the number 926 is fed to the circle-X computation; the input of that computation is complemented and stored in the b_{r0} register. After all of the codewords in a row have been processed through the checksum encoding circuit, the complement of the final value of b_{r0} is the checksum and is appended at the end of the row. The sequence of codewords for the row (e.g., as printed) is now a_{n-1} , a_{n-2} , ..., a_0 , 929- b_{r0} .

A similar scheme is used to compute a structure checksum, one representing the entire label. For this second type of checksum, all codewords in the label as printed (9ncluding the codewords representing the checksums for each row except the last row) form the message polynomial, which may be expressed as:

$$a(x) = a_{m,2} + a_{m,3}x + ... + a_{m,n-1}x^{n-3} + b_{m-1,ro}x^{n-z} + ... + a_{1,n-1}x^{nm-3}$$

where the coefficients are defined as in Figure 10, tracing backwardly from right to left and bottom to top. A different generator polynomial is used to calculate a remainder in a similar fashion as before, namely:

$$g_s(x) = (x + 926)(x + 920)$$

Dividing the new message polynomial by this new generator polynomial results in a remainder $b(x) = b_{s0} + b_{s1x}$. Complementing the coefficients of this remainder yields two parity-check codewords, which serve as a structure checksum as discussed below.

In implementation this division is accomplished by using a division circuit such as shown in Figure 9. The registers b_{s0} and b_{s1} are initialized as zeros. As soon as the message polynomial has entered the output and the circuit, the complements of the parity-check codewords are in the registers and are appended in the order b_{s1} , b_{s0} just before the checksum of the last row. Then the checksum b_{r0} of the last row is computed and appended to the end of the last row, as shown in Figure 10.

It will be noted that there are no user-definable codewords corresponding to the positions $a_{m,1}$ and $a_{m,0}$. These positions are reserved for the codewords $b_{s,1}$ ad $b_{s,0}$ as shown in Figure 10. Thus, in a label with m rows and no codewords per row, the total number of user-definable codewords is nm-4m-2, i.e., the number of codewords per row times the number of rows, minus four codewords for each row (a start code, a stop code, a row number, and a row checksum), and also minus the two parity-check codewords (i.e., the structure checksum).

4.13 Gross Error Detection

5

35

55

Gross error detection may be accomplished as follows. At the beginning of the scanning process, all entries (e.g., "slots" or "grid locations") of the map of the label are initialized to indicate unknown characters.

The low -level decoding step, as applied to a signal generated by any given scanning pass, will generate a sequence of one or more index numbers, one for each codeword that was scanned. Each index number may be any number from 0 to 928, depending on the t-sequence of the corresponding scanned codeword.

For each scanning pass, three arrays DA, CA, and FA are constructed (e.g., in memory in accordance with conventional techniques) to represent the codewords scanned in that pass:

- A "decoding array" DA represents the index numbers that are obtained from the tables in Figures 14A through 16D and that correspond to the scanned codewords.
- A "cluster array" CA represents the clusters or subsets to which the respective scanned codewords belong.
- A "confidence array" FA represents the confidence existing in the accuracy of the decoding of the respective scanned codewords.

For example, a scanning pass and low-level decoding step may generate a decoding array DA comprising a sequence of index numbers such as (293, 321, 209, 99, 679). The corresponding sequence of clusters might be (3, 3, 0, 0, 0) indicating that the first two codewords were members of cluster(S) and the final three were members of cluster(O). This implies that the subsequence comprising the second and third codewords (represented by 321 and 209 in the array DA) bracket the point at which a row was crossed, i.e., that the two codewords are in two adjacent rows. Because such row-crossing subsequences frequently have higher error probability, they are assigned a relatively low weight in confidence array FA. In the example above, the confidence array FA for the scanned codewords might be (3, 1, 1, 3, 3).

Now suppose that a previous scanning pass had resulted in a decoding array DA of (293, 329, 222, 999, 999) for the same sequence of codewords, where 999 represents an unknown codeword whose confidence level is zero. Further assume that the confidence array FA for that previous scanning pass is (3, 3, 1, 0, 0), because the row was crossed between the third and fourth characters on that pass instead of between the second and third characters as hypothesized in the previous paragraph.

A "voting" process may be used to compare the confidence arrays for the two scanning passes to determine which results are more likely to be correct. For example, the voting rules may be as follows:

- 1. If two successive scans of a given codeword result in the same index number after low-level decoding, then the corresponding confidence figures in the two confidence arrays FA are added;
- 2. In contract, if two successive scans result in different numbers for the same codeword, then (a) if one of the two index numbers has a higher confidence level than the other, the higher-confidence index number "survives" and is filled into the decoding array DA, but the confidence level for the corresponding position in the confidence array FA is reduced by the confidence level for the nonsurviving index number, (b) if both index numbers have equal confidence levels, then neither index number survives; instead the unknown-codeword index number 999 is used as the "surviving" index number and the confidence is reset to zero; and

3. If the index number a_l for one scan of a given codeword is 999 (representing an unknown codeword) and an acceptable index number for the other scan (i.e., an index number from 0 to 928), then the acceptable index number is kept, and the confidence level of that index number remains the same.

It will of course be appreciated by those of ordinary skill that a wide variety of conventional array and memory-management techniques may be used for creating and manipulating the arrays DA, CA, and FA. For example, the decoding array DA might be the label map itself, with a temporary array being used to hold the index numbers a, for a new scan and with surviving index numbers from that scan being written into the appropriate position in the array DA (or perhaps not written if the same index number is already represented at that position). In such an example the cluster array CA and the confidence array FA might each be "shadows" of the decoding array DA, with as many positions in each as there are in the decoding array DA.

When the decoding array DA has been filled with an acceptable index number a_i for all codeword positions corresponding to a particular row in the label, the representation of that row in the decoding array DA is set aside. That is, regardless of the confidence that exists about the accuracy of the contents of the decoding array DA, once the row has been decoded to indicate acceptable index numbers for each codeword, no further decoding is done for codewords in that row; additional error detection proceeds as described below.

4.14 Further Error Detection and Recovery by Checksumming

5

20

25

40

45

50

Errors may still exist in the decoding array DA for a particular row even after that row is set aside. Before performing high-level decoding, the redundant information stored in the row checksums and the label checksum can advantageously be used to detect and/or recover from errors in scanning any particular codeword by a process of elimination.

Generally speaking, if all but one or two of the codewords in the entire label are known to be correct, the correct values of the unknown codewords can be computed by "subtracting" (so to speak) the values of the known codewords from the values of the checksums, which of course reflect the values of all codewords, known and unknown.

Errors in any particular row may be detected by using a syndrome divider such as shown in Figure 11. The register d_{r0} is initialised to zero. After the index numbers a_l of the scanned row are fed to the syndrome divider, the register d_{r0} indicates the detection result. If d_{r0} is equal to zero, the corresponding row was correctly scanned and its image or map in memory can be locked; otherwise, an error occurred in the scanning and decoding of the row, and the row must be rescanned. If all codewords in the label are decoded ad check summed without error, then the following error recovery step can be skipped.

When the total number of still-unknown codewords is less or equal to two, a error recovery scheme as follows can be invoked. The unknown codewords first are replaced in the label map with zeros. A syndrome S_i is then computed for each i=1,2. Since by hypothesis the position p_v of the unknown (i.e., erroneous) codewords is known, where v=1,2, only the values of those unknown codewords need be computed. As a first step, an error value e_{pv} is computed for each error position p_v by solving the following system of matrix equations:

$$\begin{bmatrix} S_1 \\ S_2 \end{bmatrix} = \begin{bmatrix} 3^{p1} & 3^{p2} \\ 3^{2(p1)} & 3^{2(p2)} \end{bmatrix} \begin{bmatrix} e_{pi} \\ e_{p2} \end{bmatrix}$$

If only one error exists, the system becomes overdetermined, that is, more information is present than is needed to solve the above matrix, which reduces to:

$$\begin{bmatrix} S_1 \\ S_2 \end{bmatrix} = \begin{bmatrix} 3^{p1} \\ 3^{2(p2)} \end{bmatrix} e_{p1}$$

For an assumed one-error case, if the above matrix equation system is consistent (that is, if the foregoing two matrix equations yield the same solutions), then one error does indeed exist ad the solution of 3^{p1} is the error value, i.e., the correct value of the unknown codeword. Otherwise, an undiscovered second error exists in the label, and the decoding result is rejected.

After successfully solving for the error values, the complement of error values are filled into the corresponding unknown codewords' locations. Then the error detection computation is performed again for those rows containing unknown codewords. If no errors are detected, the decoding result then is taken as correct; otherwise, the decoding result is likewise rejected.

4.15 Nonvolatile Memory and Computer System

20

25

Referring to Figure 18, a nonvolatile electro-optical memory 100 may be created by marking a suitable substrate (e.g., paper) with one or more labels in accordance with the foregoing description. The memory 100 may be combined with a fixed or movable scanner 110 for use as a storage device for a suitably programmed computer such as a processor 120.

For example, a robot might have an on-board computer programmed to control the robot to perform simple tasks, such as selectively moving an object 130 by means of a manipulator 140. An on-board scanner 110 might operate as the robot's "eyes" for reading labels of the kind described above. In similar fashion, a conveyor system might include a fixed scanner 130 and a moving belt that served as the manipulator 140. The label preferably contains a list of instructions for operating the robot, with the computer on-board. The robot responding to data and instructions contained on the label.

It will of course be recognized by those of ordinary skill (having the benefit of this disclosure) that the invention is capable of being adapted to other uses and in other embodiments than the illustrative ones disclosed above. Furthermore, the invention may be implemented in numerous specific architectures. A few examples are briefly mentioned below for illustrative purposes:

- The decoder of a conventional one-dimensional scanner could be reprogrammed to perform one or more of the functions described above, e.g., by replacing a read-only memory (ROM) chip containing the programming if the scanner is so constructed:
- A scanning system could be built using a suitably programmed microprocessor or other computational unit to perform one or more of the above functions. The programming could be loaded into dynamic read-write memory (RAM), or could be "burned" into read-only memory (ROM) either on-board or out-board of the microprocessor;
- A scanning system could be built using a computation unit specially designed to perform the functions described above;
- parallel processing technology could be used to partition the work of decoding the various parts of a label;

and so forth. The actual design and construction of any particular implementation is a matter of routine for those of ordinary skill having the benefit of this disclosure, the details of which are not further discussed here.

Referring to Figure 18, a computer system including a nonvolatile memory 100 of the type described could be used in a number of applications. As an illustrations, an overnight package delivery service (e.g., Federal Express, UPS, Purolator, and the like) might have certain of its package-sorting functions automated through the use of memories 100 in the form of printed labels in accordance with the foregoing, applied to packages such as the object 130 shown in the figure. In one such possibility, package shippers would fill out a waybill 100 by responding to queries posed by a suitable computer program. The program's printed output (e.g., on a laser printer or dot matrix printer) might include both a human-readable destination address and a label 100 as described above in which that information was encoded in scannable form. The shipper would affix the printed waybill 100 to the object 130 being shipped. (Other information such as the shipper's telephone number and the like could likewise be so encoded.) One of the key advantages of the high data capacity memory 100 of the present invention is that it may be created at the warehouse or loading dock by an inexpensive printer so that updated or corrected information may be applied at the point of shipment. The fact that the memory is merely a paper label means that it is inexpensive and disposable. Thus, the present invention may be implemented in conjunction with a portable terminal and thermal printer to create and print a label, even in a remote location. Such a portable terminal, connected to scanner, allows the user to scan, print, and apply the label to the article quickly and inexpensively. At various points during shipment, suitable robots could read the label 100 and, using manipulators 140, direct the object 130 appropriately; e.g., a scanner 110 could read the memory 100 to generate a signal; based on the content of that signal, a manipulator 140 controlled by a processor 120 could move the object 140 as appropriate.

A similar arrangement could be used in a warehouse inventory control system. A label of the type described could be printed or otherwise applied to or inscribed on one or more sides of a shipping carton or directly to merchandise. The label might have encoded therein as much information as desired about the specific item, e.g., its type, color, dimensions, weight, point of manufacture, lot number and so forth. A suitable robot could be used as an order-filling machine by moving within the warehouse and, using its scanner, searching for merchandise whose label indicates that it matches a specified order. (Searching could of course be in accordance with techniques now known or hereafter developed.) It will be apparent that this arrangement would permit information about specific merchandise items to be stored locally at the merchandise itself.

Another feature of the present invention is to utilize the bar code according to the present invention so that it may be affixed to an article as a means of identifying that article and associating information with the article much like a "read-only memory" or identification tag implemented in so called RF ID systems. One such implementation is to print a variety of different bar code symbols which are available in easily disposable and affixable format so that information

may be easily and quickly affixed to the article. One example of an application is in connection with the repair and service of equipment. The use of a service record is useful for quality control and documentation purposes, but it is often impractical to store detailed written records with the equipment. The use of a high density, encoded service report affixed to the equipment in the form of a two dimensional bar code is especially advantageous. The service technician may select the appropriate PDF label from a set of labels corresponding to repairs performed, and attach the label to the repaired equipment. If the equipment is returned for subsequent repairs, the service technician has the complete service history attached to the equipment in only a few square inches.

Such local storage could advantageously take the place of a separate file of information about the item, e.g., stored in a computer database and keyed to a bar-code serial number on the item. Local storage would reduce the problem of dealing with "orphan" merchandise whose serial numbers were not known to the computer database. In addition, it would permit rapid in-processing of newly-received merchandise shipments, in that complete information about the new merchandise could be scanned into the warehouse's information system, obviating the need for the shipper to generate and transmit a separate information file (e.g., on a computer tape or by hard copy) about the specified items being shipped. This would similarly be advantageous in, e.g., libraries or other organizations that regularly received shipments of books or similar objects that required cataloguing.

Another example, a nonvolatile memory and scanner system could be used for enhanced searching of microfilm rolls or microfiche sheets. Assume that a large body of text and/or graphical information is stored photographically on a roll of microfilm. An example of such information might be the thousands of documents - printed, typed, handwritten, drawn, or a combination thereof - that can be involved in a large litigation. Known computerized litigation support systems permit paralegals to summarize each document page in a database; for each document page, selected information from the database could be inscribed as a label in accordance with the foregoing on the corresponding frame of microfilm, in a corner or other appropriate location.

A microfilm reader could be equipped with (a) input means such as a keyboard by which a user could specify search criteria (e.g., in Boolean logic); (b) a fixed scanner to read microfilm labels as the microfilm was scrolled; and (c) control means to determine whether a given microfilm frame satisfied the specified search criteria. The user would then be able to view documents conveniently. In the case of multiple-reel document collections, a master index or indexes could be encoded on a separate reel; output means such as a CRT or an LCD or LED display could be used to instruct the user as to which reel to mount to locate the specific document desired.

For example, a microfilm reader with a scanner might be designed to be coupled to and controlled by a conventional desktop, laptop, or notebook computer in a conventional manner as a peripheral device (or the essentials of such a computer could be built into the reader). The computer would not need to have the entire document-summary data base available on disk storage, since the microfilm itself would contain the necessary information; it would suffice if the computer was programmed (e.g., in ROM) to perform the desired search functions using the label-encoded data from the microfilm.

Still another feature of the present invention is to provide a method for processing information by optically scanning indicia on the surface of a substrate, the indicia including a plurality of codewords scanned sequentially and organized into at least two independent scanning paths, each codeword being either an information codeword or a control codeword, and each information codeword corresponding to at least one information-containing character. A plurality of different mapping functions are provided each associating the code word with one character out of a set of different characters, with only one mapping function being active at any given time. Each codeword in any one scanning path is distinct from any codeword in an adjacent scanning path. Using such a codeword data structure, the method includes the steps of: determining whether a scanned codeword is an information codeword or a control codeword; decoding the codeword according to the mapping function if said codeword is an information codeword; and processing the codeword if the codeword is a control codeword. If the codeword is a control codeword, it identifies a new mapping function, and processing of subsequently scanned codewords take place using the new mapping function.

As an example of the different scanning paths that may be used, and a different organization of the codewords, reference is made to Figures 19 and 20.

Figure 19a, 19b, 19c, and 19d is an alternative type of laser scanning pattern that may be used in connection with the present invention.

The present invention may be implemented in a hand-held, laser-scanning, bar code reader unit such as illustrated in Figure 21. This hand-held device of Figure 21 is generally of the style disclosed in U.S. Patent 4,760,248, issued to Swartz et al, assigned to Symbol Technologies, Inc., and also similar to the configuration of a bar code reader commercially available as part number LS 8100II from Symbol Technologies, Inc. Alternatively, or in addition, features of U.S. patent 4,387,297 issued to Swartz et al, or U.S. Patent 4,409,470 issued to Shepard et al, both such patents assigned to Symbol Technologies Inc, may be employed in constructing the bar code reader unit of Figure 21. These patents 4,760,248, 4,387,297 and 4,409,470 are incorporated herein by reference. A outgoing light beam 151 is generated in the reader 100, usually by a laser diode or the like, and directed to impinge upon a bar code symbol a few inches from the front of the reader unit. The outgoing beam 151 is scanned in a fixed linear pattern, or more complex pattern such as shown in Figure 19 may be employed and the user positions the hand-held unit so this scan pattern traverses the

symbol to be read. The use of a central dark portion, such as in Fig. 19d, may be used for aiming, or other visual techniques associated with alignment. Reflected light 152 from the symbol is detected by a light-responsive device 146 in the reader unit, producing serial electrical signals to be processed for identifying the bar code. The reader unit 100 is a gun shaped device, having a pistol-grip type of handle 153 and movable trigger 154 is employed to allow the user to activate the light beam 151 and detector circuitry when pointed at the symbol to be read, thereby saving battery life if the unit is self-powered. A light-weight plastic housing 155 contains the laser light source, the detector 146, the optics and signal processing circuitry, and the CPU 140 as well as a battery 162. A light-transmissive window 156 in the front end of the housing 155 allows the outgoing light beam 151 to exit and the incoming reflected light 152 to enter. The reader 100 is designed to be aimed at a bar code symbol by the user from a position where the reader 100 is spaced from the symbol, i.e., not touching the symbol or moving across the symbol. Typically, this type of hand-held bar code reader is specified to operate in the range of perhaps several inches.

As seen in Figure 21, a suitable lens 157 (or multiple lens system) is used to collimate and focus the scanned beam into the bar code symbol at an appropriate reference plane, and this same lens 157 may be used to focus the reflected light 152. A light source 158 such as a semiconductor laser diode is positioned to introduce a light beam into the axis of the lens 157 by a partially-silvered mirror and other lenses or beam-shaping structure as needed, along with an oscillating mirror 159 which is attached to a scanning motor 160 activated when the trigger 154 is pulled. If the light produced by the source 158 is not visible, an aiming light may be included in the optical system, again employing a partially-silvered mirror to introduce the bema into the light path coaxially with the lens 157. The aiming light, if needs, produces a visible-light spot which is scanned just like the laser beam; the user employs this visible light to aim the reader unit at the symbol before pulling the trigger 154.

In real applications, either the length of bar code should be fixed, or an additional character should be placed in the bar code to indicate its length. If not, misdecodings may occur.

If the length of the bar code is fixed, the performance of decoding using stitching might be better than that of decoding using a complete scan, because the reject rate and the misdecode rate is less in most good quality bar code (in cases that the quality of the bar code is very very poor, the misdecode rate may be greater, but never greater than 2K times, K is the number of the scans used for stitching).

Although the present invention has been described with respect to multiple line bar codes, it is not limited to such embodiments. It is conceivable that the method of the present invention may also find application for use with various machine version or optical character recognition applications in which information is derived from other types of indicia such as characters or from the surface characteristics of the article being scanned.

In all of the various embodiments, the elements of the scanner may be assembled into a very compact package that allows the scanner to be fabricated as a single printed circuit board or integral module. Such a module can interchangeably be used as the laser scanning element for a variety of different types of data acquisition systems. For example, the module may be alternately used in a hand-held scanner, a table top scanner attached to a flexible arm or mounting extending over the surface of the table or attached to the underside of the table top, or mounted as a subcomponent or subassembly of a more sophisticated data acquisition system.

The module would advantageously comprise a laser/optics subassembly mounted on a support, a scanning element such as a rotating or reciprocating mirror, and a photodetector component. Control or data lines associated with such components may be connected to an electrical connector mounted on the edge or external surface of the module to enable the module to be electrically connected to a mating connector associated with other elements of data acquisition system.

An individual module may have specific scanning or decoding characteristics associated with it, e.g. operability at a certain working distance, or operability with a specific symbology or printing density. The characteristics may also be defined through the manual setting of control switches associated with the module. The user may also adapt the data acquisition system to scan different types of articles or the system may be adapted for different applications by interchanging modules on the data acquisition system through the use of the simple electical connector.

The following claims are intended to encompass all such uses, implementations, and embodiments.

A nonvolatile electro-optical read-only memory includes a substrate on which is printed (or otherwise inscribed) a complex symbol or "label" with a high density two-dimensional symbology, a variable number of component symbols or "codewords" per row, and a variable number of rows. Codewords in alternating rows are selected from mutually exclusive subsets of a mark pattern such as a (17.4) mark pattern. The subsets are defined in terms of particular values of a discriminator function, which is illustrated as being a function of the widths of bars and spaces in a given codeword. In the illustrated embodiment, each subset includes 929 available codewords; that, plus a two-step method of decoding scanned data, permitting significant flexibility in defining mappings of human-readable symbol sets into codewords. The memory may be used in conjunction with a scanner and a suitable control system in a number of applications, e.g., robotic operations or automated microfilm searching.

Claims

5

10

15

25

30

35

50

55

- 1. A method of reading and decoding a machine readable symbol, the symbol including a plurality of groups of codewords, arranged in a plurality of lines within the symbol, each group comprising a plurality of individual codewords having a detectable mark/space pattern; at least some of the codewords together defining, when taken in sequence, an encoded version of the data to be decoded, the method comprising:
 - (a) scanning and reading the codewords, not necessarily in the said sequence:
 - (b) calculating a function f(X) the value of which distinguishes the group containing X from at least one other group of codewords;
 - (c) determining the line in which the codeword X lies at least partially by the value of f(X), and dividing the scanned codeword into a plurality of partial scans, each partial scan consisting wholly of codewords of one group;
 - (d) recreating the said sequence; and
 - (e) decoding the codewords and outputting or storing the sequenced decoded data.
- 2. A method as claimed in Claim 1 in which the function f(X) may take a plurality of discrete values, the line in which the codeword X falls being uniquely determined by f(X).
- 20 3. A method as claimed in Claim 1 or Claim 2 in which the mark/space patterns within any given group are approximately equidistant in terms of error distance from the mark/space patterns within any other group.
 - 4. A method as claimed in Claim 1 in which the codewords are arranged in a plurality of adjacent rows within the symbol, the row in which the codeword X lies being determined at least partially by the value of f(X).
 - A method as claimed in Claim 4 in which corresponding codewords in each group are aligned in a direction perpendicular to the rows.
 - A method as claimed in Claim 4 or Claim 5 in which the codewords are scanned row-wise or at a skewed angle thereto, the codewords X_i (i = 1,2...) on scanning being assigned to a common row only for so long as f(X_i) remains constant.
 - 7. A method as claimed in Claim 4 and Claim 6 in which the values of f(X) uniquely discriminate between any codeword lying in a first row and any codeword lying in a second adjacent row.
 - 8. A method as claimed in Claim 7 in which the respective values of f(X) also uniquely discriminate between any codeword lying in the first or second rows, and any codeword lying in a third row, adjacent to the second row.
- 9. A method as claimed in any one of the preceding claims in which each mark/space pattern comprises a plurality of bars and spaces in which f(X) is a function of the widths of the individual bars and/or spaces making up the codeword X.
 - 10. A method as claimed in Claim 9 in which each mark/space pattern has exactly four bars and in which

45
$$f(X) = (x_1 - x_3 + x_5 - x_7) \mod 9$$

where:

 $x_1 =$ width of 1st bar $x_3 =$ width of 2nd bar $x_5 =$ width of 3rd bar $x_7 =$ width of 4th bar

- 11. A method as claimed in Claim 10 in which a scanned mark/space pattern is determined not to be a codeword if f(X) does not equal O, 3 or 6.
- 12. A method as claimed in any one of the preceding claims in which a scanned mark/space pattern is determined not to be a codeword if any of the marks or spaces making up the pattern are wider than a specified width limit.

- 13. A method as claimed in any one of the preceding claims in which a scanned mark/space pattern is determined not to be a codeword if the distance between the start of any one of the marks or spaces making up the pattern, and the start of the adjacent such mark or space, is greater than a specified limit.
- 14. A method as claimed in any one of the preceding claims in which a scanned mark/space pattern is determined not to be a codeword if the pattern does not comprise exactly a given number of marks and spaces.
 - 15. A method as claimed in Claim 12 in which the total width of a valid codeword is 17 units, and the width limit is 6 units.
 - 16. A method as claimed in Claim 13 in which the total width of a valid codeword is 17 units, and the specified units is 9 units.
- 17. A method as claimed in Claim 14 in which the total width of a valid codeword is 17 units, and in which the said given number is 4 marks and 4 spaces.
 - 18. A method as claimed in any one of the preceding claims comprising calculating a t-sequence for the codeword X and decoding the codeword X according to the t-sequence and f(X); the t-sequence being defined as a sequence of N-1 digits t_i where N is the total number of marks and spaces in the pattern and t_i is equal to the measured distance between the beginning of the ith mark or space and the beginning of the next following mark or space respectively (Figure 2).
 - 19. A method as claimed in Claim 18 in which the codeword X is decoded by looking up in a table in memory an index number which, for a given value of f(X) uniquely corresponds to the calculated t-sequence.
 - 20. A method as claimed in Claim 19 including converting the index number into respective hight and low values, defined as follows:

V_H = (index number) div m

V₁ = (index number) mod m

and decoding the codeword X as two consecutive items corresponding to entries in a further look-up table at addresses V_{H} and V_{L} .

21. A method as claimed in Claim 20 in which m = 30.

10

20

25

30

35

45

55

- 22. A method as claimed in any one of Claims 19 to 21 including the following steps:
- (a) maintaining in memory a plurality of look-up tables corresponding to a plurality of decoding modes (eg figure 5);
 - (b) maintaining a variable in memory representative of the decoding mode currently active;
 - (c) when the index value for the codeword X, or the value of V_H or V_L , corresponds to a control character which specifies a new decoding mode, changing to the said new mode and updating the decoding mode variable.
 - 23. A method as claimed in any one of the preceding claims when dependent upon Claim 4 including calculating a checksum for each row and determining that an error has occurred if the calculated checksum does not match a checksum provided by a checksum-codeword in the row.
- 24. A method as claimed in Claim 23 including the following steps, for each row:
 - (a) scanning the mark/space patterns within the row and decoding each recognised codeword where possible, to an index value;
 - (b) storing the respective index values in a decoding array (DA);
 - (c) repeating steps (a) and (b) until an index number has been stored in the decoding array for;
 - (i) the row check sum codeword for the row; and
 - (ii) all but one of the codewords in the row; and

- (d) reconstructing the missing one codeword using the row checksum codeword.
- 25. A method as claimed in Claim 23 including the following steps:
 - (a) scanning the mark/space patterns within a row and decoding each recognised codeword, where possible, to an index value;
 - (b) storing the respective index values in a decoding array (D);
 - (c) repeating steps (a) and (b) as necessary for each row, and for all rows until an index number has been stored in the decoding array for:

(i) a symbol checksum codeword;

5

20

25

35

40

45

50

55

- (ii) all but two of the codewords in the symbol; and
- (iii) the row check sum codewords for the rows having the missing codewords; and
- (d) reconstructing the missing codewords using the row checksum codewords and the symbol checksum codeword.
 - 26. A method as claimed in any one of Claims 23 to 25 including the following steps:
 - (a) scanning the mark/space patterns and decoding each recognised codeword, where possible, to an index value;
 - (b) storing the respective index values in a decoding array (DA);
 - (c) determining a confidence level corresponding to each of the elements of the decoding array (DA) and storing the confidence levels in a corresponding confidence array (FA);
 - (d) re-scanning, re-decoding, and re-determining index values and corresponding confidence values;
 - (e) updating the decoding array and the confidence array according to the index values and confidence values determined at step (d) and the values in the decoding and confidence arrays.
- 27. Apparatus for reading and decoding a machine readable symbol, the symbol including a plurality of groups of codewords, arranged in a plurality of lines within the symbol, each group comprising a plurality of individual codewords having a detectable mark/space pattern; at least some of the codewords together defining, when taken in sequence, an encoded version of the data to be decoded, the apparatus including means for scanning and reading the codewords, not necessarily in the said sequence, means for decoding the code words and means for outputting or storing the sequenced decoded data; characterised by:
 - (a) means for calculating a function f(X) the value of which distinguishes the group containing X from at least one other group of codewords;
 - (b) means for determining the line in which the codeword X lies at least partially by the value of f(X), and for dividing the scanned codewords into a plurality of partial scans, each partial scan consisting wholly of code words of one group; and
 - (c) means for recreating the said sequence.

FIG. 3

row0	Cluster0
row1	Cluster3
row2	Cluster6
row4	Cluster0
row n	Cluster (n mod 3)+3

FIG. 4

Value/Mode	Alpha	Mixed	Numeric	User(s)
0	Α	0	0	1
1	B C	1	1	
2	С	2	1	
3	D	3		<u>'</u>
4	E	4		l licos
5	E F	3 4 5		user defined
6	G	6 7 8 9		value
	Н	7		1
7 8	I	8		1
9	J	9		1
10	K	A		1
11	L	В		mode 3 mode 20
12	M	С		to to
13	N	D		mode 191 mode 29
14	0	E	to	mode 191 mode 29
15	P	F	1	ì
16	Q	!		!
17	Q R S	\$		1
18	S	%		1
19	T	&		1
20	U	*		1
21	V	(ŀ	ı
22	W)		1
23	X	•		1
24	Y	+		1
25	Z	æ		
26	•	1		1
27	space	:		I
28	ms	as		l
29	us	us		us
30				
to			V	ļ
925			925	
926			space	
927			as	as
928			ms	ms

FIG. 5

23

FIG. 8

Output

Input

FIG. 9

X 27

B solution of the state of the

a _{1,n-1}	⁰ 1,n−2		a _{1,1}	a _{1,0}	b _{1,r0}
a _{2,n-1}	a _{2,n-2}		a _{2,1}	a _{2,0}	b _{2,r0}
a _{m-1,n-1}	a _{m-1,n-2}		a _{m-1,1}	$a_{m-1,0}$	b _{m-1,r0}
a _{m,n-1}	a _{m,n-2}	,	b _{s1}	b _{s0}	b _{m,r0}

FIG. 10

FIG. 11
Syndrome divider

FIG. 12

FIG. 13

		Table I :	The	t-sequ	ence	table.	Cluste	rO	·
t-seq	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
222266	0	226655	50	244664	100	324545	150	334333	200
222277	l	226666	51	245542	101	324556	151	334344	201
222355	2	226733	52	245553	102	324645	152	334355	202
222366	3	226755	53	245564	103	324656	153	334366	203
222444	4	227722	54	245653	104	325523	154	334377	204
222455	5	227744	55	245664	105	325534	155	334433	205
222466	6	227766	56	245764	106	325545	156	334444	206
222477	7	233354	57	246642	107	325556	157	334455	207
222555	8	233365	58	246653	108	325567	158	334466	208
222566	9	233443	59	246664	109	325634	159	334533	209
222666	10	233454	60	246675	110	325645	160	334544	210
222677	11	233465	61	246764	111	325656	161	334555	211
223355	12	233476	62	247753	112	325745	162	334566	212
223366	13	233554	63	255552	113	326623	163	334577	213
223444	14	233565	64	255563	114	326634	164	334644	214
223455	15	233665	65	255574	115	326645	165	334655	215
223466	16	233676	66	255663	116	326656	166	334666	216
223544	17	234443	67	256652	117	326745	167	334755	217
223555	18	234454	68	256663	118	327734	168	335422	218
223566	19	234465	69	256674	119	332255	169	335433	219
223577	20	234476	70	257752	120	332266	170	335444	220
223655	21	234543	71	266662	121	332344	171	335455	221
223666	22	234554	72	267762	122	332355	172	335466	222
223677	23	234565	73	322245	123	332366	173	335477	223
224444	24	234654	74	322256	124	332444	174	335522	224
224455	25	234665	75	322267	125	332455	175	335533	225
224466	26	234765	76	322334	126	332466	176	335544	226
224533	27	235532	77	322345	127	332477	177	335555	227
224544	28	235543	78	322356	128	332555	178	335566	228
224555	29	235554	79	322445	129	332566	179	335577	229
224566	30	235565	80	322456	130	332577	180	335633	230
224577	31	235643	81	322467	131	332666	181	335644	231
224644	32	235654	82	322556	132	333244	182	335655	232
224655	33	235665	83	323334	133	333255	183	335666	233
224666	34	235676	84	323345	134	333266	184	335755	234
224755	35	235765	85	323356	135	333333	185	336522	235
225533	36	236632	86	323434	136	333344	186	336533	236
225544	37	236643	87	323445	137	333355	187	336544	237
225555	38	236654	88	323456	138	333366	188	336555	238
225566	39	236665	89	323467	139	333377	189	336566	239
225577	40	236743	90	323545	140	333433	190	336622	240
225633	41	236765	91	323556	141	333444	191	336633	241
225644	42	237732	92	323567	142	333455	192	336644	242
225655	43	237754	93	323656	143	333466	193	336655	243
225666	44	244442	94	324423	144	333477	194	336666	244
225744	45	244453	95	324434	145	333544	195	336744	245
225766	46	244464	96	324445	146	333555	196	337633	246
226622	47	244553	97	324456	147	333566	197	3376\$5	247
226633	48	244564	98	324467	148	333655	198	337733	248
226644	49	244575	99	324534	149	333666	199	337755	249

FIG. 14A

343343 250 354453 300 424546 350 435523 400 444266 453 3431354 251 354464 301 425524 351 435534 401 444277 451 343136 252 354475 302 425535 352 435545 402 444322 452 3431376 253 354553 303 425546 353 435556 403 444334 454 343434 254 354564 304 425635 354 435634 404 444344 454 343434 255 354575 305 426624 355 435645 405 444355 455 3431365 256 354664 306 426635 356 436523 406 444366 456 3431554 257 355442 307 432234 357 436534 407 444377 457 3431565 258 355453 308 432245 318 436545 408 444422 418 343432 260 355546 310 43234 360 436634 410 44444 460 344343 261 355553 311 432345 361 436645 411 444455 461 344345 262 355566 312 432356 362 436734 412 444466 462 344365 263 355663 313 432367 363 437634 412 444466 462 344432 264 355664 314 432445 364 437734 414 444531 464 344452 266 356553 316 432467 366 442255 416 444554 465 344455 267 356664 316 432467 366 442255 416 444554 465 344455 267 356664 312 432345 361 436645 411 444564 466 344455 267 356664 312 432345 361 436645 411 444564 466 344455 267 356664 312 432345 361 432467 366 437734 414 444554 466 344455 267 356664 316 432467 366 442255 416 444556 467 344456 268 356553 316 432467 366 442255 416 444555 466 344455 267 356664 318 432457 366 442255 416 444554 466 344455 267 356664 318 433243 369 442344 419 444664 468 344455 267 356664 318 433243 369 442344 419 444664 468 344455 270 356664 328 433233 368 422333 418 444664 468 344554 269 356653 319 433243 369 442344 419 444665 467 344565 270 356666 320 433345 370 442355 242 445333 471 344565 270 356666 320 433345 370 442355 420 445322 470 344565 270 356663 320 433345 370 442355 420 445323 478 344574 268 356653 321 433345 371 442366 421 443333 471 344565 273 357753 321 433345 371 442366 421 443533 478 344574 272 357653 322 433345 379 442355 420 445323 478 345543 279 366652 329 433445 319 43345 424 42377 422 445344 472 345554 280 366663 330 433456 380 443555 420 445333 478 345554 281 367752 331 33343345 381 443266 421 44556 486 346554 281 367523 331 433456 380 443555 430 445644 486 346554 288 422246 334 43345 380 443555 430			Table I :	The	t-sequ	ence	table. C	luste	r0	 .
343354 251 354464 301 425524 351 435534 401 444277 451 343365 252 354475 302 425353 352 435556 403 444333 453 343376 253 354553 303 425546 353 435556 403 444334 454 343454 255 354664 306 426635 356 436523 406 444366 4366 4363 434556 256 354664 306 426635 356 436523 406 444366 4366 4363 43555 258 355442 307 432234 357 436534 407 444377 453 343565 258 355442 307 432234 357 436534 407 44437 453 343556 258 355442 307 432236 359 436623 400 44433 459 444356 260 355542 310 432334 360 436634 410 444446 462 434443 265 356564 314 432467 363 44225 416 44455 461 344443 265 356564 314 432445 364 43254 266 356553 316 432467 366 442255 416 444554 465 344452 268 356654 317 432345 361 432646 417 44456 462 444553 268 356656 317 432365 365 442244 415 44455 465 344454 266 356563 319 432367 366 442255 416 44455 466 344452 266 356553 316 432467 366 442255 416 444555 466 344452 266 356553 316 432467 366 442255 416 444555 466 344554 266 356553 316 432467 366 442255 416 444555 466 344452 268 356664 320 433245 300 442355 420 443534 4455 469 344455 267 356664 320 433245 300 442355 420 443524 419 444655 469 344556 270 356664 320 433245 370 442355 420 445324 475 344564 270 356664 320 433245 370 442355 420 445324 472 344566 273 356563 319 433223 368 442344 419 444655 469 344565 270 356664 320 433245 370 442355 420 445324 472 34566 477 34566 477 34566 370 326664 320 433245 370 442355 420 445324 472 34566 477 345656 370 326666 320 433245 370 442355 420 445324 475 345665 273 356563 326 433346 379 442345 429 44566 479 345566 273 356563 326 433345 379 442346 423 445356 474 345566 477 345556 281 367523 321 33326 371 442366 421 445333 471 345654 271 356552 324 433334 374 442455 424 445366 474 345566 376 478 345665 273 356563 326 433366 376 442355 420 445322 475 345654 281 367552 324 33356 376 442355 420 445322 475 345666 273 365563 326 433366 376 442355 420 445322 475 345666 273 365563 326 3336 3336 3336 3336 3336 33	t-seq		t-seq	val	t-seq	val	t-seq	val	t-seq	val
343156 251 354464 301 425524 351 435534 401 444277 451 343165 252 354475 302 425535 352 435545 402 444322 452 34334367 253 354553 303 425546 353 435556 403 444334 454 343454 255 354564 304 426624 355 435645 405 444355 455 3434665 256 354664 306 426635 356 436523 406 444366 456 3434565 256 354664 306 426635 356 436523 406 444366 456 343566 259 35464 309 432256 359 436624 409 444437 457 457 343565 269 355442 307 432234 357 436534 407 444377 457 343565 259 355464 309 432256 359 436623 409 444433 459 344332 260 355542 310 432334 360 436634 410 44444 460 344343 261 355553 311 432345 361 436645 411 444455 461 344342 262 355564 312 432356 362 436734 412 444466 462 344432 264 355664 314 432445 364 437734 414 44453 464 344432 264 355664 314 432445 364 437734 414 44453 465 344465 267 356563 319 432237 366 42225 416 44555 466 344465 267 356563 319 432237 366 44224 415 444554 465 344452 266 356563 319 432237 366 442255 416 444555 466 344465 267 356564 317 432556 367 442266 417 444566 467 344556 269 356563 319 433232 368 442344 415 444554 465 344456 269 356563 319 433234 369 42244 415 444554 465 344565 270 356664 320 433243 370 442355 420 443532 470 344556 270 356664 320 433243 370 442355 420 443532 470 344556 271 356753 321 433256 371 442366 421 443533 471 344654 272 357653 322 433267 372 442377 422 445344 472 344556 273 356753 321 433256 371 442366 421 443533 471 344654 276 36652 329 356653 338 433323 373 442444 423 445554 478 345544 276 365652 329 335653 338 33343 374 442255 420 445322 470 345556 329 356663 326 433356 376 442355 420 445322 470 345556 329 356663 326 33356 376 442355 420 445322 470 345556 329 356663 326 33334 373 442464 423 445544 423 445544 423 445544 327 365552 324 433334 374 442255 424 445366 474 445554 424 445544 424 445544 425 445544 427 445554 428 445552 428 445555 426 445522 470 345556 329 445556 329 445456 326 445555 426 445555 426 445552 426 445552 426 445552 426 445552 426 445552 426 445552 426 445552 426 445552 426 445552 426 445552 426 445552 426 445552 426 445662 429 445662 429 445662 429 4455			_		424546	350	435523	400	444266	450
343365 252 354475 302 425313 352 405345 402 444322 452 343376 253 354553 303 425546 353 435556 403 444333 453 343443 254 354564 304 425635 354 43664 404 444346 453 343454 255 354575 305 426613 356 436523 406 444356 453 343456 256 35442 307 432234 357 436534 407 444377 4377 343565 258 355453 308 432236 359 436623 409 44433 459 3433665 259 355464 309 432236 359 436623 409 444433 459 344343 261 355564 311 432345 361 43664 410 444466 462 344365 263 355563 311 432345 364 43773 411 444466 462 344454 266 356564 314 432445 364 43773 411 444456 462 344456 265		251	354464	301	425524	351	435534	401	444277	451
343176 251 354553 303 425546 353 435556 403 444333 433444 354475 304 425635 354 404 444344 454 343454 255 354664 306 426635 356 436523 406 444366 456 343554 305 436534 407 444377 457 343565 256 354664 306 426635 356 436534 407 444377 457 343565 258 355442 307 432234 357 436534 407 444377 457 343565 259 355464 309 432236 358 436634 409 444422 488 343434 260 355542 310 432345 360 436634 410 444444 460 344343 261 3555542 311 432345 361 437734 412 444455 461 344432 264 355653 313 4323667 365 421244	343365	252	354475	302	425535	352	435545			
343443 254 354564 304 425635 354 435634 404 444344 454 343454 255 354566 306 426635 356 436523 406 444356 456 343554 257 355462 307 432234 357 436534 407 444377 457 343565 258 355462 309 432256 359 436623 406 444422 458 343655 259 355462 309 432256 359 436623 406 444442 458 344332 260 355542 310 432334 360 436634 410 444444 456 344334 261 355553 311 432345 361 436645 411 444455 461 344354 262 355564 312 432356 362 436734 412 444466 462 344434 265 355653 313 432367 363 437634 413 444477 463 344435 266 356553 316 432465 365 442244 415 444533 464 344443 265 356564 314 432467 366 442255 416 444555 466 344454 266 356553 316 432467 366 442255 416 444555 466 344455 267 356564 317 432356 367 442266 417 444566 462 344454 266 356553 318 432245 368 442244 415 44454 465 344455 267 356564 317 432356 367 442266 417 444566 462 344554 269 356653 319 43223 368 442333 418 444644 468 344454 266 356553 319 43223 368 442333 418 44464 468 344554 269 356653 319 433234 369 442355 420 445322 470 344565 270 356664 320 433245 370 442355 420 445322 470 344565 271 356553 321 433256 371 442366 421 445333 471 344654 272 357653 321 433256 371 442366 421 445333 471 344554 269 356653 328 433323 378 442365 420 445322 475 344554 269 356653 328 433324 370 442355 420 445322 473 344565 271 356553 321 433256 371 442366 421 445333 471 344564 272 357653 321 433256 371 442366 421 445333 471 344565 273 357753 323 433323 373 44244 423 445356 473 345542 274 365552 327 433367 377 442566 427 445344 472 345543 278 366563 328 433343 374 442455 424 445366 479 345554 280 366663 330 433456 380 443255 420 445522 486 345554 280 366663 330 433456 380 443266 430 445644 486 346554 289 422346 334 433356 380 443265 439 445555 489 345565 281 367752 331 43356 380 443265 439 445555 489 345565 281 367752 331 43356 380 443266 430 445644 486 346554 289 422346 334 434343 389 443355 439 446633 489 346563 289 423345 340 434456 390 443444 438 346654 291 42346 343 43456 391 443455 439 446643 489 346656 290 423335 340 434456 391 443444 438 446642 486 346665 294 42346 334 43456 391	343376	253	354553	303	425546	353				
343454 255 354575 305 426624 355 435645 405 444355 455 343465 256 354664 306 426635 356 436523 406 444366 455 343555 258 355453 308 432234 357 436534 407 444377 457 343565 258 355453 308 432235 358 436545 408 444422 458 343665 259 355464 309 432256 359 436623 409 44433 459 344332 260 355542 310 432334 360 436634 410 44444 460 344355 261 355553 311 432345 361 436645 411 444455 461 344356 263 355564 312 432356 362 436734 412 44466 462 344365 263 355654 312 432356 362 436734 412 444466 462 344365 263 355653 313 432367 363 437634 413 444477 463 344432 264 355664 314 432445 364 437734 414 444533 464 344454 266 356553 316 432467 366 442255 416 444555 466 344454 266 356553 316 432467 366 442256 417 444566 467 344543 268 356642 318 433223 368 442333 418 44644 468 344554 269 356664 310 43256 367 442266 417 44566 467 344565 267 356664 310 432356 367 442266 417 44566 467 344576 271 356753 321 433256 371 442366 421 445333 471 344576 271 356753 321 433256 370 442355 420 445322 470 344576 271 356753 322 433267 372 442377 422 445344 472 344655 270 356664 320 433245 370 442366 421 445333 471 345432 274 365552 324 433334 374 442455 424 445366 474 345433 275 365563 328 433345 375 442466 425 445322 470 3445576 271 356753 323 433323 373 442464 423 445355 473 345543 278 366563 328 433345 379 442366 421 445335 473 345543 278 366563 328 433345 379 442366 427 44544 477 345532 278 366563 328 433345 379 442366 427 44544 477 345532 278 366563 328 433345 379 443244 429 445666 479 345554 280 366663 330 433456 380 443255 430 445552 480 345565 281 367752 331 433565 381 443255 430 445552 480 345565 281 367752 331 433565 381 443266 431 445553 481 345576 282 422244 332 43356 380 443255 430 445552 480 345565 281 367752 331 433565 381 443266 431 445553 481 345576 282 422246 334 433367 377 442366 427 44544 429 445664 428 445664 428 445664 428 445664 428 445665 289 423354 339 43456 390 443466 40 44644 490 346664 294 42346 334 434367 390 443466 40 44644 490 346664 294 42346 334 43456 391 443565 440 446622 496	343443	254	354564	304	425635				1	
343465 256 354664 306 426635 356 436523 406 444366 456 343554 257 355442 307 432234 357 436534 406 444377 443 343365 258 355453 308 432234 358 436545 408 444422 458 343365 259 355464 309 432236 359 436634 410 444444 460 344331 261 3555642 311 432356 362 436734 410 444455 461 344365 263 355564 312 432356 362 436734 412 444453 464 344432 264 3556542 315 432456 365 442244 415 444533 464 344465 266 356553 316 432456 365 442244 415 444555 466 344564 266 356563	343454	255	354575	305	426624					
343554 257 355442 307 432234 357 436534 407 444377 457 343565 258 355463 308 432245 358 436623 409 444432 458 343365 259 355464 309 432256 359 436623 409 444433 458 344332 260 355542 310 432334 360 436634 410 44444 460 344343 261 355553 311 432345 361 436645 411 444455 461 344354 262 355564 312 432356 362 436734 412 444466 462 344342 263 355664 314 432445 364 437734 414 444533 464 344443 265 356542 315 432467 366 442244 415 444574 465 344443 265 356564 311 432456 365 442244 415 44454 465 344454 266 356553 316 432467 366 442255 416 444555 466 344454 266 356564 317 43256 367 442266 417 44566 467 34453 268 356642 318 433223 368 442333 418 444644 468 344554 269 356653 319 433234 369 442344 419 44655 469 344565 270 356664 320 433245 370 442355 420 445322 470 344565 270 356664 320 433245 370 442355 420 445322 470 344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 357653 322 433267 372 442377 422 445344 472 344665 273 357653 322 433267 372 442377 422 445344 472 345643 275 365563 328 33334 373 442444 423 445366 471 345454 276 365663 326 4333367 377 442566 427 445466 479 345552 278 366563 328 33345 375 442466 425 445422 475 345454 276 365663 328 433343 378 442455 426 445333 471 34554 276 365663 328 433345 375 442566 427 445444 477 345552 278 366652 329 433445 379 442566 427 445444 477 345552 278 366652 329 433445 379 443266 421 445333 476 345454 276 365663 328 433356 380 443225 420 445355 478 345545 280 366663 330 433545 381 443266 431 445533 481 345576 282 42224 332 433567 382 443277 432 44564 488 345554 280 366663 330 433545 381 443266 431 445550 483 345554 280 366663 330 433455 381 443244 429 445664 479 345554 280 366663 330 433455 381 443244 429 445664 479 345554 280 366663 330 433455 380 443255 430 445552 480 345565 281 367752 331 43356 380 443255 430 445552 480 345565 287 422357 337 434367 387 443266 441 446644 468 346665 285 422346 334 434356 391 443444 438 44642 488 346554 289 423356 344 434556 391 443455 491 3466643 292 423435 342 434556 391 443455 491 3466643 292 423435 342 434556 391 443565 446	343465	256	354664	306	426635					
343565 258 355453 308 432245 358 436545 408 444422 458 343665 259 355464 309 432256 359 436623 409 444434 459 344332 260 355542 310 432334 360 436634 410 444444 460 34433 261 355553 311 432345 361 436645 411 44455 461 344354 262 355564 312 432356 362 436734 412 444466 462 344365 263 355663 313 432367 363 437634 413 444477 463 344436 264 355664 314 432445 364 437734 414 44453 464 344443 265 356542 315 432456 365 442244 415 44454 465 344454 266 356553 316 432467 366 442255 416 444555 466 344454 266 356553 316 432467 366 442255 416 444555 466 344455 267 356564 317 432356 367 442266 417 444566 462 344555 269 356653 319 433223 368 442343 418 44464 468 344556 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344665 273 357753 323 433323 373 44244 423 445335 473 345432 274 365552 324 433334 374 442455 424 445366 474 345443 272 357653 322 433267 372 442377 422 445344 472 34565 270 356663 325 433345 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 345432 274 365552 324 433334 374 442455 424 445366 474 345432 274 365552 327 433367 377 442566 427 445444 477 345532 278 366563 326 433345 376 442255 426 445333 478 345443 275 365563 325 433345 376 442555 426 445333 478 345543 279 366552 327 433367 377 442566 427 445444 477 345532 278 366563 326 433345 376 442555 426 445333 478 345543 279 366552 327 433367 377 442566 427 445444 477 345532 278 366563 330 43345 380 443255 430 445552 480 345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 422224 332 433345 381 443266 431 445533 481 345576 282 422235 333 43343 384 443344 438 446522 489 345565 281 367752 331 433545 380 443255 430 445552 480 345565 281 367752 331 433545 380 443266 431 445533 481 345576 282 422235 333 43345 386 443356 436 445644 488 345665 285 422335 335 434345 385 443355 439 445655 489 345564 284 422366 334 434367 387 443355 439 446643 489 345564 289 423324 339 434435 389 443455 439 446643 499 346664 294 423366 341 434566 391 443566 440 446644 499 346652 289 423336 341	343554	257	355442	307	432234					
343665 259 355464 309 432256 359 436623 409 444433 459 344332 260 355542 310 432334 360 436634 410 444444 460 344343 261 355553 311 432356 361 436645 411 444456 462 344365 263 355564 312 432356 362 436734 412 444666 462 344365 263 355653 313 432367 363 437634 413 444477 463 344443 264 355664 314 432445 364 437734 414 444533 464 344443 265 356542 315 432456 365 442244 415 444564 468 344454 266 356553 316 432467 366 442255 416 444555 466 344455 267 356564 317 432556 367 442266 417 444566 467 344543 268 356642 318 433223 368 442333 418 444644 468 344554 269 356653 319 433245 370 442365 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 357753 323 433324 374 442466 423 445346 474 345443 275 365563 326 433345 376 442555 426 445333 471 345542 274 365552 324 433334 374 442466 423 445346 474 345454 276 365663 326 433334 374 442466 423 445326 473 345543 277 366552 327 433367 377 442566 427 445444 477 345543 278 365563 328 433345 375 442666 423 445422 475 345545 278 366563 328 433345 375 442666 423 445422 475 345554 280 366663 326 433356 376 442555 426 445433 476 345554 280 366663 328 433434 378 443235 429 44555 428 345554 280 366663 330 43345 379 443266 421 44553 483 345554 280 366663 330 43345 379 443266 421 44553 483 345554 280 366663 330 43345 379 443266 431 44553 483 345554 280 366663 330 43345 389 443255 430 445552 480 3455564 284 422246 334 43356 380 443255 430 445552 480 345555 281 367752 331 433556 382 443375 433 433 433 433 433 433 433 433 433 43	343565	258	355453	308			1			
344332 260 355542 310 432334 360 436634 410 444444 460 344343 261 355554 312 432355 361 436645 411 444455 461 344354 262 355564 312 432356 362 436734 412 444466 4622 496 344362 264 3556563 313 432367 363 437634 413 444477 463 344432 264 355664 314 432445 364 437734 414 444533 464 344443 265 356542 315 432456 365 442244 415 444544 465 344454 266 356553 316 432467 366 442255 416 444555 466 344454 266 356564 317 432556 367 442266 417 444566 467 344543 268 356642 318 433223 368 442333 418 444654 468 344554 269 356653 319 433234 369 442344 419 444655 469 344565 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344665 273 357753 322 433267 372 442377 422 445344 472 344665 273 357753 323 433323 373 442444 423 445335 473 345432 274 365552 324 433334 374 442455 424 445366 474 345443 275 365563 326 433345 376 442555 426 445335 473 345543 276 36663 326 433356 376 442555 426 445433 476 345543 279 366663 326 433356 376 442555 426 445433 476 345543 279 366652 329 433445 379 442566 417 444566 479 345554 280 366663 320 433356 376 442555 426 445433 476 345554 280 366663 326 433356 376 442555 426 445433 476 345564 284 422246 334 433367 377 442566 417 44566 479 345554 280 366663 320 433356 376 442555 426 445433 476 345564 284 422246 334 43334 378 443266 411 44553 478 345565 281 367752 311 433556 382 443255 430 445552 480 345564 284 422246 334 43334 378 443266 411 44553 488 345565 281 367752 31 433565 382 443277 412 44564 486 345554 280 366663 330 433565 382 443277 412 44564 486 345554 284 422246 334 43434 378 443333 433 445555 488 345565 281 367752 31 433565 382 443255 430 445552 480 345564 284 422246 334 43434 378 443333 433 445555 488 345565 281 367752 311 433565 382 443277 412 445644 486 346534 289 423346 336 434356 386 443356 431 445633 488 345564 284 422246 334 434367 387 443433 437 445655 487 345564 286 422346 336 43456 391 443455 491 346663 291 423366 344 34356 391 443455 491 346663 291 423366 344 34356 391 443566 444 446642 488 346554 289 423335 340 434455 393 443555 44	343665		355464							
344343 261 355553 311 432345 361 436645 411 444455 461 344354 262 355564 312 432356 362 436734 412 444466 462 3434365 263 355653 313 432367 363 437634 413 444477 463 444454 264 355664 314 432445 364 437734 414 444533 464 344445 266 356553 316 432467 366 442255 416 444555 466 344454 266 356553 316 432467 366 442255 416 444555 466 344454 266 356553 316 432467 366 442255 416 444555 466 344543 268 356642 318 433223 368 442333 418 444644 468 344554 269 356653 319 433234 369 442344 419 44655 469 344565 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 34654 272 357653 322 433267 372 442377 422 445344 473 344564 272 357653 322 433267 372 442377 422 445344 473 345432 274 365552 324 433334 374 442455 424 445345 473 345432 274 365552 324 433334 374 442455 424 445346 474 345432 275 365563 325 433345 375 442466 425 445342 475 345432 277 366552 327 433367 376 442555 426 44543 476 345443 275 365563 326 433345 375 442466 425 445344 476 345432 277 366552 327 433367 377 442366 427 445444 477 345532 278 366563 326 433345 376 442555 426 445433 476 345454 276 366663 326 433356 376 442555 426 445433 476 345554 280 366663 326 433356 376 442555 426 445433 476 345554 280 366663 326 433356 376 442555 426 445433 476 345554 280 366663 326 433356 376 442555 426 445453 478 345554 280 366663 326 433356 376 442555 426 445453 478 345554 280 366663 326 433356 376 442555 426 445455 478 345554 280 366663 326 433356 376 442555 426 445455 478 345554 280 366663 326 433367 377 442566 427 44544 479 345554 280 366663 326 433366 376 442555 426 445455 478 345554 280 366663 326 433366 376 442555 426 445453 476 345554 280 366663 326 433356 376 442555 426 445453 476 345554 280 366663 320 43356 380 443255 430 445555 488 345554 280 366663 320 43356 380 443555 430 445555 488 345554 280 366663 330 43356 380 443555 430 445555 488 345554 280 366663 330 43455 380 443555 430 445555 488 345554 289 42335 333 434353 381 443333 433 445653 289 423356 335 434355 380 443555 445 446652 492 446652 291 423366 341 434455 3	344332									
344354 262 355564 312 432356 362 436734 412 44466 462 344365 263 355653 313 432367 363 437634 413 444477 463 344432 264 355664 314 432445 364 437734 414 444533 464 34445 265 356542 315 432456 365 442244 415 444554 465 344454 266 356553 316 432467 366 442255 416 444555 466 344454 266 356553 316 432467 366 442255 416 444555 466 344454 268 356564 317 432556 367 442266 417 444566 467 344543 268 356653 319 433223 368 442333 418 444644 468 344554 269 356653 319 433243 369 442344 419 444655 469 344555 270 356664 320 433245 370 442355 420 445322 470 344565 270 356664 320 433245 370 442355 420 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 357753 323 433323 373 442444 423 445335 473 345432 274 365552 324 433334 374 442455 424 445366 474 345465 277 366552 327 433356 376 442555 426 445422 475 345465 277 366552 327 433367 377 442566 427 44544 477 345532 278 366563 328 433345 375 442666 425 445422 475 345454 270 366552 327 433367 377 442566 427 44544 477 345532 278 366563 328 433345 375 442666 425 445422 475 345543 279 366652 329 433445 379 442255 420 445333 478 345554 280 366663 330 433456 380 443255 430 445555 488 345556 281 367752 331 433545 381 443266 431 445533 481 345564 283 422246 334 43334 384 443244 429 44566 479 345554 280 366663 330 433456 380 43255 430 445555 483 345556 281 367752 331 433545 381 443266 431 445533 481 345554 280 366663 330 433456 380 443255 430 445555 483 345556 281 367752 331 433545 381 443266 431 445533 481 345554 280 366663 330 433456 380 443255 430 445555 483 345554 284 422246 334 43434 384 443344 438 446642 488 345554 289 42335 335 434353 383 443333 437 445655 487 345554 289 42335 333 434323 383 443334 379 445654 289 42336 336 434356 380 443255 430 445555 489 345554 289 423355 333 434343 384 443344 438 446652 499 346654 291 423346 341 43465 391 443566 440 446644 490 346654 291 423346 341 434456 391 443566 440 446642 490 346654 293 423346 341 43456 391 443566 440 446642 490 346654 293 423346 341 43455 394 443566 440 4466622 496 346654 293 423346 341 43456 394 443	344343		I .				,			
344365 263 355653 313 432367 363 437634 413 444477 463 344432 264 355664 314 432445 364 437734 414 444533 464 344443 265 356542 315 432456 365 442244 415 444544 465 344545 266 356553 316 432467 366 442255 416 444555 466 344555 267 356564 317 432556 367 442266 417 444566 467 344554 269 356653 319 433234 369 442344 419 444655 469 344555 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 35753 322 433267 372 442377 422 445344 472 345443 275 365563 325 433345 375 442466 425 445355 473 345432 274 365552 324 433324 374 442455 424 445366 474 345443 275 365563 325 433345 375 442466 425 445422 475 345443 275 365563 326 433345 375 442466 425 445422 475 345454 276 366563 328 433343 378 442464 429 445455 478 345554 279 366552 327 433367 377 442566 427 445444 477 345543 279 366652 329 433445 379 443266 421 445335 473 345554 278 366563 328 433434 378 443255 420 445455 478 345554 278 366563 328 433434 378 443255 420 445455 478 345554 280 366663 330 433456 380 443255 430 445552 480 345565 281 367752 331 433545 381 443266 431 445533 481 345565 281 367752 331 43345 379 443244 429 445466 479 345565 281 367752 331 43345 379 443244 429 445466 479 345565 281 367752 331 43345 389 443257 430 445552 480 345565 281 367752 331 43345 381 443266 431 445533 481 345565 285 422345 333 434323 383 443334 438 443344 438 445566 488 345565 285 422335 333 434323 383 443335 433 445555 483 345654 284 422246 334 434345 385 443355 433 445555 483 345654 284 422346 336 434356 386 443366 436 445644 486 346532 291 423346 341 434456 391 443477 441 44655 491 346663 291 423346 341 434456 391 443455 439 443653 493 346663 291 423346 341 43456 391 443556 444 446544 490 346654 293 423446 344 434556 394 443556 444 446552 492 434663 299 423346 341 434556 391 443556 444 446552 492 434663 299 423346 341 43456 391 443556 444 446552 492 434663 299 423346 341 434556 391 443556 444 446552 492 436664 293 423446 344 434556 391 443556 444 446552 492 436664 2	ľi						1			
344432 264 355664 314 432445 364 437734 414 444533 464 344443 265 356552 315 432456 365 442244 415 444544 465 344454 266 356553 316 432467 366 442255 416 444555 466 344465 267 356564 317 432556 367 442266 417 444566 467 344552 268 356652 318 433223 368 442333 418 444644 468 344554 269 356653 319 433234 369 442344 419 444655 469 344565 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344576 273 357753 323 43323 373 442444 423 445345 473 345432 274 365552 324 433334 374 442455 424 445356 474 345443 275 365563 325 433345 375 442466 425 445422 475 345454 276 366653 326 433356 376 442555 426 445433 476 345454 276 366563 328 433434 378 443264 429 445466 479 345554 280 366663 330 43345 379 443244 429 445466 479 345554 280 366663 330 43345 379 443244 429 445466 479 345554 280 366663 330 43345 379 443244 429 445466 479 345565 281 367752 331 433545 381 443266 431 44553 481 345576 282 422224 332 433545 379 443244 429 445466 479 345564 284 422236 334 433345 381 443266 431 44553 481 345576 282 422224 332 43356 382 443277 432 445544 482 345653 283 422234 333 433343 383 443333 433 445555 483 345576 284 422234 332 43356 386 443366 436 445644 486 346532 287 422335 333 434323 383 443334 4334 445566 484 345576 288 422246 334 434334 384 443344 438 445566 484 345576 288 422246 334 434345 381 443366 436 445644 486 346532 287 422335 335 343432 383 443333 433 445555 483 345576 282 422234 339 434345 381 443366 436 445644 486 346532 287 422335 335 343432 388 443444 438 446642 488 346565 290 423335 340 43445 390 443466 440 44644 490 346632 291 423346 341 434456 391 443575 444 446555 491 346664 291 423346 341 434456 391 443565 444 446534 494 346654 299 423346 341 43456 391 443565 444 446555 495 346665 290 423335 340 43445 390 443466 440 446644 490 346632 291 423346 341 434456 391 443565 444 446555 495 346654 299 423346 341 43456 391 443565 444 446555 495 346654 299 423346 341 434556 394 443566 440 446644 490 346654 299 423446 343 4										
344443 265 356542 315 432456 365 442244 415 444544 465 344454 266 356553 316 432467 366 442255 416 444555 466 344543 268 356642 318 433223 368 442344 419 444655 466 344554 269 356664 320 433245 370 442355 420 445322 470 344556 270 356664 320 433245 370 442355 420 445322 470 344565 270 356664 320 433245 370 442355 420 445322 470 344654 272 357653 322 433267 372 442377 422 445344 472 344654 275 365563 324 433334 374 442455 424 445366 474 345453 276 365663 32	i						l .			
344454 266 356553 316 432467 366 42225 416 444555 466 344465 267 356564 317 432556 367 442266 417 444566 467 344543 268 356642 318 433223 368 442333 418 444644 468 344554 269 356653 319 433234 369 442344 419 444655 469 344576 271 356753 321 433256 371 442366 421 445322 470 344665 273 357653 322 433267 372 442377 422 445344 472 344665 273 357753 323 433323 373 442444 423 445355 473 345432 274 365552 324 433334 374 442455 424 445366 474 345443 275 365663 326 433345 375 442466 425 445422 475 345452 278 366563 326 433356 376 442555 426 445434 477 345532 278 366563 328 433434 378 443233 428 445444 477 345554 280 366663 328 433434 378 443233 428 445466 479 345554 280 366663 328 433456 380 443255 430 445522 480 345565 281 367752 331 43345 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 43345 381 443266 431 445533 481 345643 283 422224 332 433566 382 443277 432 445544 482 345665 287 42224 332 433556 382 443277 432 445544 482 345665 287 42224 332 433566 380 443255 430 445522 480 345565 281 367752 331 43345 381 443266 431 445533 481 345543 283 422235 333 434323 383 443333 433 445555 483 345643 283 422235 333 434323 383 443333 433 445555 483 345665 285 422335 335 434345 386 443366 436 445644 486 346554 284 422246 334 43434 384 443344 434 445566 484 345665 285 422335 335 343432 388 443333 433 445555 483 345665 285 422335 335 343432 388 443333 433 445555 483 345665 285 422335 335 343432 388 443444 434 445664 486 3466643 289 423346 336 434345 389 443444 438 446422 488 346555 290 423335 340 43445 390 443466 440 446444 490 346663 291 423346 341 434456 391 443477 441 446455 491 346663 292 423466 344 434556 394 443566 440 446644 490 346664 291 423466 344 34356 391 443466 440 446644 490 346664 291 423466 344 34346 391 4434566 440 446642 488 346664 291 423466 344 34356 391 443466 440 446644 490 346664 291 423466 344 34356 391 443466 440 446644 490 346664 291 423466 344 343566 391 4434665 291 423346 341 434456 391 443566 444 446622 492 346664 291 423466 344 34556 394 443665 294										
344465 267 356564 317 43256 367 442266 417 444566 467 344543 268 356642 318 433223 368 442333 418 444644 468 344554 269 356653 319 433234 369 442344 419 444655 469 344565 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344565 273 357753 323 433323 373 442444 423 445366 474 345443 275 365563 325 433345 375 442466 425 445422 475 345445 276 365563 325 433345 375 442466 425 445422 475 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445456 479 345554 280 366663 320 433456 380 443255 430 445522 480 345565 281 367752 331 43356 380 443255 430 445522 480 345565 281 367752 331 433545 381 43266 431 445533 481 345643 283 422246 334 434343 384 443344 434 445566 484 345665 285 422346 336 434333 383 443333 437 445555 483 345654 284 422246 334 434334 384 443344 434 445566 484 345665 285 422346 336 434365 380 43356 380 433565 281 367752 331 433565 382 443277 432 445544 482 345664 328 422246 334 434334 384 443344 434 445566 484 345665 285 422346 336 434365 380 443355 435 445643 488 345654 284 422246 334 434334 384 443344 434 445566 484 345665 285 422335 335 434345 389 443355 435 445633 481 345654 288 422346 336 434365 380 443356 380 443555 483 345654 284 422246 334 434345 385 443335 433 445555 483 345654 284 422346 336 434356 386 443344 438 446422 488 346554 289 423324 339 434345 389 443455 439 446433 489 346564 289 423324 339 434445 390 43466 440 446444 490 346652 291 423346 341 434556 391 443477 441 446455 491 346663 291 423346 341 434556 391 443477 441 446455 491 346663 291 423346 341 434556 394 443566 440 446644 490 346663 291 423346 341 434556 394 443566 444 446652 492 346663 294 423346 344 434556 391 443566 444 446662 2498 346663 294 423346 343 434555 393 443555 443 446633 493 346664 293 42346 343 434545 390 443666 440 446644 490 346663 294 423346 344 434556 391 443566 444 4466622 496 346665 294 423346 343 434545 393 443555 443 446653 493 346665 294 423346 346 344									_	
344543 268 356642 318 433223 368 442333 418 444644 468 344554 269 356653 319 433234 369 442344 419 444655 469 344565 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344655 273 357753 323 433323 373 442444 423 445355 473 345432 274 365552 324 433334 374 442455 424 445366 474 345454 275 365563 325 433345 375 442466 425 445422 475 345454 276 365663 326 433356 376 442555 426 445433 476 345454 276 365663 326 433356 376 442555 426 445433 476 345532 278 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345554 279 366652 329 433445 379 443244 429 445466 479 345556 281 367752 331 433545 381 443266 431 445533 481 345576 282 422224 332 433556 382 443277 432 445544 482 345565 281 367752 331 433545 381 443266 431 445553 481 345576 282 422224 332 433556 382 443277 432 445554 482 345565 283 422335 333 434323 383 443333 433 445555 486 345565 285 422335 335 434343 384 443344 434 445566 484 345665 285 422366 336 43345 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445665 487 346565 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 43445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443477 441 446652 491 346653 291 423346 341 434456 391 443477 441 446652 491 346665 294 42346 334 43445 390 443466 440 446444 490 346652 291 423346 341 434456 391 443477 441 446652 491 346665 294 423346 341 434456 391 443566 444 446653 491 346665 294 423346 343 43456 394 443566 444 446653 493 346665 294 423346 343 43456 394 443566 444 446652 496 346652 294 42346 344 43656 394 443566 444 446652 496									-	
344554 269 356653 319 433234 369 442344 419 444655 469 344565 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 357753 323 433323 373 442444 423 445355 473 345432 274 365552 324 433334 374 442455 424 445366 474 345443 275 365563 325 433345 375 442466 425 445422 475 345454 276 365663 326 433356 376 442555 426 445433 476 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433445 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 422224 332 433556 382 443277 432 445544 482 345643 283 422235 333 434323 383 443333 433 445555 483 345654 284 422246 334 343434 384 443344 344 44566 484 345654 284 422246 334 343434 384 443344 344 44566 484 345654 284 422246 334 343435 385 443355 435 445633 485 345754 286 422346 336 434345 385 443355 435 445633 485 345654 287 422357 337 434367 387 443433 437 445655 483 345654 288 422346 336 434345 385 443356 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346565 280 423346 336 434345 385 443356 436 445644 486 346554 289 423324 339 434423 388 443444 438 446422 488 346565 290 423335 340 43445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443477 441 446455 491 346654 291 423346 341 434456 391 443477 441 446455 491 346665 294 42346 343 43455 393 443555 443 446533 493 346665 290 423335 340 434456 391 443477 441 446455 491 346665 294 42346 343 434556 394 443556 444 446522 492 346665 294 42346 343 434556 394 443556 444 446522 492 346665 294 42346 343 434556 394 443556 444 446554 494 346654 293 42346 343 434556 394 443556 444 446553 493 346665 294 42346 343 434565 394 443566 444 446522 492 346665 294 42346 343 434565 394 443566 444 446533 493 346665 294 42346 343 434545 395 443655 445 4466522 492 346665 294 42346 343 434556 394 443566 444 446522 496								,		
344565 270 356664 320 433245 370 442355 420 445322 470 344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 357753 323 433323 373 442444 423 445355 473 345432 274 365552 324 433334 374 442455 424 445366 474 345432 275 365563 325 433356 375 442666 425 445422 475 345454 276 365563 326 433356 376 442555 426 445433 476 345545 277 366552 327 433345 377 442666 427 445444 477 345543 279 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433445 379 443244 429 445466 479 345554 280	1		ľ							
344576 271 356753 321 433256 371 442366 421 445333 471 344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 357753 323 433323 373 442444 423 445355 473 345432 274 365552 324 433334 374 442455 424 445366 474 345443 275 365563 325 433345 375 442466 425 445422 475 345454 276 365663 326 433356 376 442555 426 445433 476 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433445 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 42224 332 433545 381 443266 431 445533 481 345643 283 422235 333 434323 383 443333 433 445555 483 345665 285 422335 335 434345 385 443366 436 445644 482 345665 285 422346 334 434345 385 443366 436 445644 486 345654 286 422346 334 434345 385 443366 436 445644 486 346554 288 422346 336 434356 386 443366 436 445644 486 346554 288 422346 336 434356 386 443366 436 445644 486 346554 289 423357 337 434367 387 443433 437 445655 487 346554 289 423357 337 434367 387 443433 437 445655 487 346554 289 423357 337 434367 387 443433 437 445655 487 346554 289 423357 337 434367 387 443433 437 445655 487 346554 289 423357 337 434367 387 443433 437 445655 487 346554 289 42336 341 434366 391 443477 441 446455 491 346664 291 423346 341 434456 391 443477 441 446455 491 346664 291 423346 341 434456 391 443477 441 446455 491 346664 291 423346 341 434456 391 443477 441 446455 491 346664 291 423346 341 434456 391 443477 441 446455 491 346664 291 423346 341 434456 391 443477 441 446455 491 346665 294 42346 341 434456 391 443477 441 446455 491 346664 291 423466 341 434456 391 443477 441 446552 492 346664 291 423466 344 43645 395 443666 444 446544 494 346665 294 423466 344 43645 395 443665 444 446544 494 346665 294 423466 344 43645 395 443665 444 446544 494 346554 295 442446 343 443566 394 443666 444 446544 494 346665 294 423546 344 434556 394 443665 444 446552 492 346665 294 423546 344 434556 394 443665 444 446552 492 346665 294 423546	1		L .							
344654 272 357653 322 433267 372 442377 422 445344 472 344665 273 357753 323 433323 373 442444 423 445355 473 345432 274 365552 324 433334 374 442455 424 445366 474 345443 275 365563 325 433345 375 442466 425 445422 475 345454 276 365663 326 433356 376 442555 426 445433 476 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433456 380 443255 430 445522 480 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433556 381 443266 431 445533 481 3455643 283										
344665 273 357753 323 433323 373 442444 423 445355 473 345432 274 365552 324 433334 374 442455 424 445366 474 345443 275 365563 325 433356 375 442466 425 445422 475 345454 276 365663 326 433356 376 442555 426 445433 476 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 43345 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433556 382 443277 432 445544 482									-	
345432 274 365552 324 433334 374 442455 424 445366 474 345443 275 365563 325 433345 375 442466 425 445422 475 345454 276 365663 326 433356 376 442555 426 445433 476 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433445 379 443244 429 445466 479 3455543 279 366663 330 433456 380 443255 430 445522 480 3455654 280 366663 330 433456 380 443255 430 445522 480 345643 281 367752 331 433545 381 443266 431 445533 481 <	l .									
345443 275 365563 325 433345 375 442466 425 445422 475 345454 276 365663 326 433356 376 442555 426 445433 476 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 43345 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 3456643 282 422243 332 433556 382 443277 432 445544 482 345654 284 422246 334 434334 384 443333 433 445555 483 <td< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			,							
345454 276 365663 326 433356 376 442555 426 445433 476 345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433456 380 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 345643 282 42224 332 433556 382 443277 432 445544 482 345654 284 422246 334 434323 383 443334 433 435566 484 345655 285 422335 335 434345 385 443356 436 445644 486			1							
345465 277 366552 327 433367 377 442566 427 445444 477 345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433445 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 422224 332 433556 382 443277 432 445544 482 345643 283 422235 333 434323 383 443333 433 445566 484 345654 284 422246 334 434334 384 443344 434 445666 484 345655 285 422335 335 434356 386 443366 436 445644 486 345754 286 422346 336 434356 386 443664 436 445644 486 346532 287										
345532 278 366563 328 433434 378 443233 428 445455 478 345543 279 366652 329 433445 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 422224 332 433556 382 443277 432 445544 482 345643 283 422235 333 434323 383 443333 433 445555 483 345654 284 422246 334 434343 384 443344 434 445663 445664 445664 484 345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655			i .							
345543 279 366652 329 433445 379 443244 429 445466 479 345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 42224 332 433556 382 443277 432 445544 482 345643 283 422235 333 434323 383 443333 433 445555 483 345654 284 422246 334 434334 384 443344 434 445666 484 345655 285 422335 335 434345 385 443355 435 445633 485 345754 286 422346 336 434356 386 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446642 486 346532 287 422357 337 434667 387 443433 437 445655 487 346543 288	ı									
345554 280 366663 330 433456 380 443255 430 445522 480 345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 422224 332 433556 382 443277 432 445544 482 345643 283 422235 333 434323 383 443333 433 445565 483 345654 284 422246 334 434334 384 443344 434 445566 484 345655 285 422335 335 434345 385 443355 435 445633 485 345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346553 287 423324 339 434433 389 443455 439 446433 489 346555 290			•					1		
345565 281 367752 331 433545 381 443266 431 445533 481 345576 282 422224 332 433556 382 443277 432 445544 482 345643 283 422235 333 434323 383 443333 433 445555 483 345654 284 422246 334 434334 384 443344 434 445566 484 345655 285 422335 335 434345 385 443355 435 445633 485 345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434433 389 443455 439 446433 489 346555 290 423335 340 434445 390 443466 440 446444 490 346632 291	ſ									
345576 282 422224 332 433556 382 443277 432 445544 482 345643 283 422235 333 434323 383 443333 433 445555 483 345654 284 422246 334 434334 384 443344 434 445566 484 345665 285 422335 335 434345 385 443355 435 445633 485 345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434433 389 443455 439 446433 489 346555 290 423335 340 434445 390 443466 440 446444 490 346632 291 423435 342 434534 392 443544 442 446522 492 346643 292										
345643 283 422235 333 434323 383 443333 433 445555 483 345654 284 422246 334 434334 384 443344 434 445566 484 345665 285 422335 335 434345 385 443355 435 445633 485 345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423435 342 434534 392 443544 442 446522 492 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
345654 284 422246 334 434334 384 443344 434 445566 484 345665 285 422335 335 434345 385 443355 435 445633 485 345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443574 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446534 494 346654 293										
345665 285 422335 335 434345 385 443355 435 445633 485 345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443577 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346655 294 423546 344 434556 394 443556 444 446534 494 346655 294								,		
345754 286 422346 336 434356 386 443366 436 445644 486 346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443477 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346655 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296	B.									
346532 287 422357 337 434367 387 443433 437 445655 487 346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443477 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496										402
346543 288 422446 338 434423 388 443444 438 446422 488 346554 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443477 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496	Į.		4					,		
346554 289 423324 339 434434 389 443455 439 446433 489 346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443477 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496	1									
346565 290 423335 340 434445 390 443466 440 446444 490 346632 291 423346 341 434456 391 443477 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496	•									
346632 291 423346 341 434456 391 443477 441 446455 491 346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496	1									
346643 292 423435 342 434534 392 443544 442 446522 492 346654 293 423446 343 434545 393 443555 443 446533 493 346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496	1			f				•		
346654 293 423446 343 434545 393 443555 443 446533 493 346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496										
346665 294 423546 344 434556 394 443566 444 446544 494 346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496			1							1
346754 295 424424 345 434645 395 443655 445 446555 495 347643 296 424435 346 435423 396 444222 446 446622 496	_									
347643 296 424435 346 435423 396 444222 446 446622 496			ı							
370 11022 470	1		i .							
	347732	297	424446	347	435434	397	444233	447	446633	490
242764 200 404469 240										
347734 298 424437 348 435445 398 444244 448 446644 498 354442 299 424535 349 435456 399 444255 449 446655 499										4

FIG. 14B

		Table I:	The	t-sequ	ience	table.	Cluste	ъ	
t-seq	Val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
446733	500	456643	550	533335	600	544445	650	554222	700
447522	501	456654	551	533346	601	544456	651	554233	701
447544	502	456743	552	533435	602	544534	652	554244	702
447633	503	457543	553	533446	603	544545	653	554255	703
447722	504	457643	554	534324	604	545323	654	554266	704
447744	505	457743	555	534335	605	545334	655	554322	705
453332	506	464442	556	534346	606	545345	656	554333	706
453343	507	464453	557	534424	607	545423	657	554344	707
453354	508	464464	558	534435	608	545434	658	554355	708
453365	509	464553	559	534446	609	545445	659	554366	709
453443	510	464564	560	534535	610	545523	660	554422	710
453454	511	465442	561	535424	611	545534	661	554433	711
453465	512	465453	562	535435	612	545545	662	554444	712
453476	513	465464	563	535524	613	545634	663	554455	713
453554	514	465542	564	535535	614	546423	664	554466	714
453565	515	465553	565	536524	615	546434	665	554533	
454332	516	465564	566	536624	616	546523	666	554544	715 716
454343	517	465653	567	542223	617	546534	667	554555	717
454354	518	466442	568	542234	618	546623	668	554644	718
454365	519	466453	569	542245	619	546634	669	555222	
454432	520	466542	570	542256	620	547623	670	555233	719 720
454443	521	466553	571	542334	621	552233	671	555244	
454454	522	466642	572	542345	622	552244	672	555255	721 722
454465	523	466653	573	542356	623	552255	673	555322	723
454476	524	467642	574	542367	624	552266	674	555333	724
454543	525	475552	575	542445	625	552277	675	555344	725
454554	526	476552	576	542456	626	552333	676	555355	726
454565	527	522225	577	543223	627	552344	677	555422	727
454654	528	522236	578	543234	628	552355	678	555433	728
455332	529	522247	579	543245	629	552366	679	555444	729
455343	530	522336	580	543256	630	552444	680	555455	
455354	531	523325	581	543323	631	552455	681	555522	730 731
455365	532	523336	582	543334	632	552466	682	555533	732
455432	533	523347	583	543345	633	552555	683	555544	733
455443	534	523436	584	543356	634	553222	684	555555	734
455454	535	524425	585	543367	635	553233	685	555633	735
455465	536	524436	586	543434	636	553244	686	555644	736
455532	537	525525	587	543445	637	553255	687	556322	737
455543	538	532224	588	543456	638	553266	688	556333	738
455554	539	532235	589	543545	639	553322	689	556344	739
455565	540	532246	590	544223	640	553333	690	556422	740
455643	541	532257	591	544234	641	553344	691	556433	741
455654	542		592	544245	642	553355	692	556444	742
456432	543	532346	593	544256	643	553366	693	556522	743
456443	544	532357	594	544323	644	553433	694	556533	744
456454	545	532446	595	544334	645	553444	695	556544	745
456532	546		596	544345	646	553455	1	556622	746
456543	547		597	544356	647	553466		556633	747
456554	548		598	544423	648	553544		556644	748
456632	549		599	544434	649	553555		557422	749

FIG. 14C

		Table I	The	t-sequ	neuce	table.	Cluste	er3	
t-seq	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
222563	0	234327	50	266224	100	323775	150	334685	200
222574	1	234338	51	266235	101	324642	151	334752	201
222585	2	234349	52	266246	102	324653	152	334763	202
222596	3	234762	53	266257	103	324664	153	334774	203
222663	4	234773	54	266335	104	324675	154	334785	204
222674	5	234784	55	266346	105	324686	155	334863	205
222685	6	234795	56	267324	106	324753	156	334874	206
222696	7	234873	57	267335	107	324764	157	335752	207
222774	8	234884	58	267346	108	324775	158	335763	208
222785	9	235427	59	267435	109	324864	159	335774	209
222796	10	235438	60	268424	110	325742	160	335852	210
223652	11	235862	61	268435	111	325753	161	335863	211
223663	12	235873	62	269524	112	325764	162	335874	212
223674	13	235884	63	277223	113	325775	163	335963	213
223685	14	235973	64	277234	114	325853	164	336852	214
223696	15	236527	65	277245	115	325864	165	336863	215
223763	16	236962	66	277256	116	326842	166	336952	216
223774	17	236973	67	277334	117	326853	167	336963	217
223785	18	244226	68	277345	118	326864	168	337952	218
223796	19	244237	69	278323	119	326953	169	343227	219
223874	20	244248	70	278334	120	327942	170	343238	220
223885	21	244259	71	278345	121	327953	171	343249	221
224752	22	244337	72	278434	122	332552	172	343662	222
224763	23	244348	73	279423	123	332563	173	343673	223
224774	24	244772	74	279434	124	332574	174	343684	224
224785	25	244783	75	322453	125	332585	175	343695	225
224796	26	244794	76	322464	126	332596	176	343773	226
224863	27	245326	77	322475	127	332663	177	343784	227
224874	28	245337	78	322486	128	332674	178	344227	228
224885	29	245348	79	322497	129	332685	179	344238	229
224974	30	245437	80	322553	130	332696	180	344327	230
225852	31	245872	81	322564	131	332774	181	344338	231
225863	32	245883	82	322575	132	332785	182	344662	232
225874	33	246426	83	322586	133	333552	183	344673	233
225885	34	246437	84	322597	134	333563	184	344684	234
225963	35	246972	85	322664	135	333574	185	344762	235
225974	36	247526	86	322675	136	333585	186	344773	236
226952	37	255225	87	322686	137	333596	187	344784	237
226963	38	255236	88	322775	138	333652	188	344873	238
226974	39	255247	89	323542	139	333663	189	345327	239
233227	40	255258	90	323553	140	333674	190	345427	240
233238	41	255336	91	323564	141	333685	191	345762	241
233249	42	255347	92	323575	142	333696		345773	242
233662	43	256325	93	323586	143	333763		345862	243
233673	44	256336	94	323597	144			345873	244
233684	45	256347	95	323653	145			346862	245
233695	46	256436	96	323664	146			346962	246
233773 233784	47	257425	97	323675	147			354226	247
233795	48	257436	98	323686	148			354237	248
233193	47	258525	99	323764	149	334674	199	354248	249

FIG. 15 A

	•	Table I :	The	t-sequ	ence	table. C	luste	·3	
t-seq	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
354337	250	422576	300	433475	350	443685	400	497223	450
354772	251	422665	301	433486	351	443763	401	497234	451
354783	252	423432	302	433542	352	443774	402	498323	452
355226	253	423443	303	433553	353	444552	403	522233	453
355237	254	423454	304	433564	354	444563	404	522244	454
355326	255	423465	305	433575	355	444574	405	522255	455
355337	256	423476	306	433586	356	444652	406	522266	456
355772	257	423487	307	433653	357	444663	407	522277	457
355872	258	423543	308	433664	358	444674	408	522333	458
356326	259	423554	309	433675	359	444752	409	522344	459
356426	260	423565	310	433764	360	444763	410	522355	460
365225	261	423576	311	434542	361	444774	411	522366	461
365236	262	423654	312	434553	362	444863	412	522377	462
365247	263	423665	313	434564	363	445652	413	522444	463
365336	264	424532	314	434575	364	445663	414	522455	464
366225	265	424543	315	434642	365	445752	415	522466	465
366236	266	424554	316	434653	366	445763	416	522555	466
366325	267	424565	317	434664	367	445852	417	523322	467
366336	268	424576	318	434675	368	445863	418	523333	468
367325	269	424643	319	434753	369	446752	419	523344	469
367425	270	424654	320	434764	370	446852	420	523355	470
376224	271	424665	321	435642	371	446952	421	523366	471
376235	272	424754	322	435653	372	453227	422	523377	472
376246	273	425632	323	435664	373	453238	423	523433	473
376335	274	425643	324	435742	374	453662	424	523444	474
377224	275	425654	325	435753	375	453673	425	523455	475
377235	276	425665	326	435764	376	453684	426	523466	476
377324	277	425743	327	435853	377	453773	427	523544	477
377335	278	425754	328	436742	378	454227	428	523555	478
378324	279	426732	329	436753	379	454327	429	524422	479
378424	280	426743	330	436842	380	454662	430	524433	480
387223	281	426754	331	436853	381	454673	431	524444	481
387234	282	426843	332	437842	382	454762	432	524455	482
387245	283	427832	333	437942	383	454773	433	524466	483
387334	284	427843	334	442552	384	455662	434	524533	484
388323	285	432442	335	442563	385	455762	435	524544	485
388334	286	432453	336	442574	386	455862	436	524555	486
389423	287	432464	337	442585	387	464226	437	524644	487
422343	288	432475	338	442596	388	464237	438	525522	488
422354	289	432486	339	442663	389	464772	439	525533	489
422365	290	432497	340	442674	390	465226	440	525544	490
422376	291	432553	341	442685	391	465326	441	525555	491
422387	292	432564	342	442774	392	475225	442	525633	492
422443	293	432575	343	443552	393	475236	443	525644	493
422454	294	432586	344	443563	394	476225	444	526622	494
422465	295	432664	345	443574	395	476325	445	526633	495
422476	296	432675	346	443585	396	486224	446	526644	496
422487	297	433442	347	443652	397	486235	447	526733	497
422554	298	433453	348	443663	398	487224	448	527722	498
422565	299	433464	349	443674	399	487324	449	527733	499

FIG. 15B

		Table I :	The	t-sequ	ence	table. C	luste	r3	
t-seq	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
532332	500	542453	550	554552	600	632444	650	643354	700
532343	501	542464	551	554563	601	632455	651	643365	701
532354	502	542475	552	554652	602	633222	652	643432	702
532365	503	542486	553	554663	603	633233	653	643443	703
532376	504	542553	554	554752	604	633244	654	643454	704
532387	505	542564	555	554763	605	633255	655	643465	705
532443	506	542575	556	555552	606	633266	656	643543	706
532454	507	542664	557	555652	607	633322	657	643554	707
532465	508	543442	558	555752	608	633333	658	644332	708
532476	509	543453	559	555852	609	633344	659	644343	709
532554	510	543464	560	563227	610	633355	660	644354	710
532565	511	543475	561	563662	611	633366	661	644432	711
533332	512	543542	562	563673	612	633433	662	644443	712
533343	513	543553	563	564662	613	633444	663	644454	713
533354	514	543564	564	564762	614	633455	664	644532	714
533365	515	543575	565	574226	615	633544	665	644543	715
533376	516	543653	566	585225	616	634322	666	644554	716
533432	517	543664	567	596224	617	634333	667	644643	717
533443	518	544442	568	622223	618	634344	668	645432	718
533454	519	544453	569	622234	619	634355	669	645443	719
533465	520	544464	570	622245	620	634422	670	645532	720
533476	521	544542	571	622256	621	634433	671	645543	721
533543	522	544553	572	622267	622	634444	672	645632	722
533554	523	544564	573	622334	623	634455	673	645643	723
533565	524	544642	574	622345	624	634533	674	646532	724
533654	525	544653	575	622356	625	634544	675	646632	725
534432	526	544664	576	622445	626	635422	676	646732	726
534443	527	544753	577	623323	627	635433	677	652442	727
534454	528	545542	578	623334	628	635444	678	652453	728
534465	529	545553	579	623345	629	635522	679	652464	729
534532	530	545642	580	623356	630	635533	680	652475	730
534543	531	545653	581	623434	631	635544	681	652553	731
534554	532	545742	582	623445	632	635633	682	652564	732
534565	533	545753	583	624423	633	636522	683	653442	733
534643	534	546642	584	624434	634	636533	684	653453	734
534654	535	546742	585	624445	635	636622	685	653464	735
535532	536	546842	586	624534	636	636633	686	653542	736
535543	537	552552	587	625523	637	637622	687	653553	737
535554	538	552563	588	625534	638	637722	688	653564	738
535632	539	552574	589	626623	639	642332	689	653653	739
535643	540	552585	590	632222	640	642343	690	654442	740
535654	541	552663	591	632233	641	642354	691	654453	741
535743	542	552674	592	632244	642	642365	692	654542	742
536632	543	553552	593	632255	643	642376	693	654553	743
536643	544	553563	594	632266	644	642443	694	654642	744
536732	545	553574	595	632277	645	642454	695	654653	745
536743	546	553652	596	632333	646	642465	696	655442	746
537732	547	553663	597	632344	647	642554	697	655542	747
537832	548	553674	598	632355	648	643332	698	655642	748
542442	549	553763	599	632366	649	643343	699	655742	749

FIG. 15C

	Ţ	able I :	The	t-seque	ence	table. C	luster	-3	
t-seq	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
662552	750	743255	800	762453	850	862343	900		
662563	751	743322	801	762464	851	862354	901		
662574	752	743333	802	762553	852	862443	902		
662663	753	743344	803	763442	853	863332	903	1	
663552	754	743355	804	763453	854	863343	904		
663563	755	743433	805	763542	855	863432	905	İ	
663652	756	743444	806	763553	856	863443	906		
663663	757	744222	807	764442	857	864332	907		
664552	758	744233	808	764542	858	864432	908		
664652	759	744244	809	764642	859	864532	909		
664752	760	744322	810	772552	860	872442	910		
673662	761	744333	811	772563	861	872453	911		
722224	762	744344	812	773552	862	873442	912		
722235	763	744422	813	773652	863	873542	913		
722246	764	744433	814	832224	864	942224	914		
722335	765	744444	815	832235	865	952223	915		
723324	766	744533	816	833324	866	952234	916		
723335	767	745322	817	842223	867	953223	917		
724424	768	745333	818	842234	868	953323	918	•	
732223	769	745422	819	842245	869	962222	919	1	
732234	770	745433	820	842334	870	962233	920		
732245	771	745522	821	843223	871	962244	921		
732256	772	745533	822	843234	872	962333	922		
732334	773	746422	823	843323	873	963222	923		
732345	774	746522	824	843334	874	963233	924		
733223	775	746622	825	844323	875	963322	925		
733234	776	752332	826	844423	876	963333	926		
733245	777	752343	827	852222	877	964222	927		
733323	778	752354	828	852233	878	964322	928		
733334	779	752365	829	852244	879		-		
733345	780	752443	830	852255	880]		
733434	781	752454	831	852333	881				
734323	782	753332	832	852344	882				
734334	783	753343	833	853222	883				
734423	784	753354	834	853233	884		:	!	
734434	785	753432	835	853244	885				
735423	786	753443	836	853322	886				
735523	787	753454	837	853333	887				
742222	788	753543	838	853344	888		•		
742233	789	754332	839	853433	889	İ	;		
742244	790	754343	840	854222	890				
742255	791	754432	841	854233	891		i		
742266	792	754443	842	854322	892		:		
742333	793	754532	843	854333	893		!		
742344	794	754543	844	854422	894	į		l	
742355	795	755332	845	854433	895				ļ
742444	796	755432	846	855322	896				Ì
743222	797	755532	847	855422	897				ļ
743233	798	755632	848	855522	898				
743244	799	762442	849	862332	899		1		- 1

FIG. 15D

		Table I	: The	e t-seq	uence	e table.	Clust	er6	
t-seq	val	t-seq	val		val	t-seq	val	t-seq	val
222236	0	233357	50	244445	100	255555	150	268643	200
222247	1	233368	51	244456	101	256322	151	269632	
222258	2	233379	52	244467	102	256333	152	269643	201
222269	3	233446	53	244556	103	256344	153	277442	202
222336	4	233457	54	245323	104	256355	154	277453	203
222347	5	233468	55	245334	105	256366	155	277464	204
222358	6	233557	56	245345	106	256377	156	277553	205
222369	7	234324	57	245356	107	256433	157	278542	206
222447	8	234335	58	245367	108	256444	158	278553	207
222458	9	234346	59	245378	109	256455	159	279642	208
222469	10	234357	60	245434	110	256466	160	322226	209
223325	11	234368	61	245445	111	256544	161	322237	210
223336	12	234379	62	245456	112	256555	162	1	211
223347	13	234435	63	245467	113	257422	163	322248 322259	212
223358	14	234446	64	245545	114	257433	164	322337	213 214
223369	15	234457	65	245556	115	257444	165	322348	214
223436	16	234468	66	246423	116	257455	166	322359	216
223447	17	234546	67	246434	117	257466	167	322772	217
223458	18	234557	68	246445	118	257533	168	322783	218
223469	19	235424	69	246456	119	257544	169	322794	219
223547	20	235435	70	246467	120	257555	170	323326	220
223558	21	235446	71	246534	121	257644	171	323337	221
224425	22	235457	72	246545	122	258522	172	323348	222
224436	23	235468	73	246556	123	258533	173	323359	223
224447	24	235535	74	246645	124	258544	174	323437	224
224458	25	235546	75	247523	125	258555	175	323448	225
224469	26	235557	76	247534	126	258633	176	323872	226
224536	27	235646	77	247545	127	258644	177	323883	227
224547	28	236524	78	247556	128	259622	178	323894	228
224558	29	236535	79	247634	129	259633	179	324426	229
224647	30	236546	80	247645	130	259644	180	324437	230
225525	31	236557	81	248623	131	259733	181	324448	231
225536	32	236635	82	248634	132	266332	182	324537	232
225547	33	236646	83	248645	133	266343	183	324972	233
225558	34	237624	84	248734	134	266354	184	324983	234
225636	35	237635	85	249723	135	266365	185	325526	235
225647	36	237646	86	249734	136	266376	186	325537	236
226625	37	237735	87	255233	137	266443	187	326626	237
226636	38	238724	88	255244	138	266454	188	332225	238
226647	39	238735	89	255255	139	266465	189	332236	239
226736	40	244234	90	255266	140	266554	190	332247	240
227725	41	244245	91	255277	141	267432	191	332258	241
227736	42	244256	92	255333	142	267443	192	332269	242
233235	43	244267	93	255344	143	267454	193	332336	243
233246	44	244278	94	255355	144	267465	194	332347	244
233257	45	244334	95	255366	145	267543	195	332358	245
233268	46	244345	96	255377	146	267554	196	332369	246
233279	47	244356	97	255444	147	268532	197	332447	247
233335 233346	48	244367	98	255455	148	268543	198	332458	248
233340	49	244378	99	255466	149	268554	199	333225	249

FIG. 16A

	To	ible I:	The	-seque	nce t	able. Cli	ustert	5	
t-seq	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
333236	250	344246	300	355256	350	366266	400	387442	450
333247	251	344257	301	355267	351	366322	401	387453	451
333258	252	344268	302	355323	352	366333	402	388542	452
333269	253	344324	303	355334	353	366344	403	422227	453
333325	254	344335	304	355345	354	366355	404	422238	454
333336	255	344346	305	355356	355	366366	405	422249	455
333347	256	344357	306	355367	356	366433	406	422662	456
333358	257	344368	307	355434	357	366444	407	422673	457
333369	258	344435	308	355445	358	366455	408	422684	458
333436	259	344446	309	355456	359	366544	409	422695	459
333447	260	344457	310	355545	360	367322	410	422773	460
333458	261	344546	311	356323	361	367333	411	422784	461
333547	262	345324	312	356334	362	367344	412	423327	462
334325	263	345335	313	356345	363	367355	413	423338	463
334336	264	345346	314	356356	364	367422	414	423762	464
334347	265	345357	315	356423	365	367433	415	423773	465
334358	266	345424	316	356434	366	367444	416	423784	466
334425	267	345435	317	356445	367	367455	417	423873	467
334436	268	345446	318	356456	368	367533	418	424427	468
334447	269	345457	319	356534	369	367544	419	424862	469
334458	270	345535	320	356545	370	368422	420	424873	470
334536	271	345546	321	357423	371	368433	421	425962	471
334547	272	346424	322	357434	372	368444	422	432226	472
335425	273	346435	323	357445	373	368522	423	432237	473
335436	274	346446	324	357523	374	368533	424	432248	474
335447	275	346524	325	357534	375	368544	425	432259	475
335525	275	346535	326	357545	376	368633	426	432337	476
335536	277	346546	327	357634	377	369522	427	432348	477
335547	278	346635	328	358523	378	369533	428	432772	478
335636	279	347524	329	358534	379	369622	429	432783	479
336525	280	347535	330	358623	380	369633	430	432794	480
336536	281	347624	331	358634	381	376332	431	433226	481
336625	282	347635	332	359623	382	376343	432	433237	482
336636	283	348624	333	359723	383	376354	433	433248	483
337625	284	348724	334	365222	384	376365	434	433326	484
337725	285	354223	335	365233	385	376443	435	433337	485
343224	286	354234	336	365244	386	376454	436	433348	486
343235	287	354245	337	365255	387	377332	437	433437	487
343246	288	354256	338	365266	388	377343	438	433772	488
343257	289	354267	339	365277	389	377354	439	433783	489
343268	290	354278	340	365333	390	377432	440	433872	490
343279	291	354334	341	365344	391	377443	441	433883	491
343335	292	354345	342	365355	392	377454	442	434326	492
343346	293	354356	343	365366	393	377543	443	434337	493
343357	294	354367	344	365444	394	378432	444	434426	494
343368	295	354445	345	365455	395	378443	445	434437	495
343446	296	354456	346	366222	396	378532	446	434872	496
343457	297	355223	347	366233	397	378543	447	434972	497
344224	298	355234	348	366244	398	379532	448	435426	498
344235	299	355245	349	366255	399	379632	449	435526	499

FIG. 16B

Table I : The t-sequence table. Cluster6										
t-seq	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val	
442225	500	454257	550	466345	600	479522	650	543772	700	
442236	501	454324	551	466423	601	479622	651	543872	701	
442247	502	454335	552	466434	602	486332	652	544226	702	
44 2268	503	454346	553	466445	603	486343	653	544326	703	
442269	504	454357	554	466534	604	486354	654	544426	704	
442336	505	454435	555	467323	605	486443	655	552225	705	
442347	506	454446	556	467334	606	487332	656	552236	706	
442358	507	455224	557	467423	607	487343	657	552247	707	
442447	508	455235	558	467434	608	487432	658	552258	708	
443225	509	455246	559	467523	609	487443	659	552336	709	
443236	510	455324	560	467534	610	488432	660	552347	710	
443247	511	455335	561	468423	611	488532	661	553225	711	
443258	512	455346	562	468523	612	497442	662	553236	712	
443325	513	455424	563	468623	613	522552	663	553247	713	
443336	514	455435	564	475222	614	522563	664	553325	714	
443347	515	455446	565	475233	615	522574	665	553336	715	
443358	516	455535	566	475244	616	522585	666	553347	716	
443436	517	456324	567	475255	617	522663	667	553436	717	
443447	518	456335	568	475266	618	522674	668	554225	718	
444225	519	456424	569	475333	619	523652	669	554236	719	
444236	520	456435	570	475344	620	523663	670	554325	720	
444247	521	456524	571	475355	621	523674	671	554336	721	
444325	522	456535	572	475444	622	523763	672	554425	722	
444336	523	457424	573	476222	623	524752	673	554436	723	
444347	524	457524	574	476233	624	524763	674	555225	724	
444425	525	457624	575	476244	625	525852	675	555325	725	
444436	526	464223	576	476255	626	532227	676	555425	726	
444447	527	464234	577	476322	627	532238	677	555525	727	
444536	528	464245	578	476333	628	532662	678	563224	728	
445325	529	464256	579	476344	629	532673	679	563235	729	
445336	530	464267	580	476355	630	532684	680	563246	730	
445425	531	464334	581	476433	631	532773	681	563257	731	
445436	532	464345	582	476444	632	533227	682	563335	732	
445525	533	464356	583	477222	633	533327	683	563346	733	
445536	534	464445	584	477233	634	533662	684	564224	734	
446425	535	465223	585	477244	635	533673	685	564235	735	
446525	536	465234	586	477322	636	533762	686	564246	736	
446625	537	465245	587	477333	637	533773	687	564324	737	
453224 453235	538	465256	588	477344	638	534762	688	564335	738	
453246	539 540	465323	589 590	477422	639	534862	689	564346	739	
453257	541	465334 465345	591	477433 477444	640	542226	690	564435	740	
453268	542	465356	592	477533	641 642	542237	691	565224	741	
453335	543	465434	593	47/333		542248	692	565235	742	
453346	544	465445	594	478333	643	542337	693	565324	743	
453357	545	466223	595	478422	644	542772	694	565335	744	
453446	546	466234	596	478433	645	542783 543226	695	565424	745	
454224	547	466245	597	478522	646 647	543237	696	565435	746	
454235	548	466323	598	478533	648	543326	697 698	5662 2 4 566324	747	
454246	549	466334	599	479422	649	543337	699	566424	748 749	

FIG. 16C

Table I : The t-sequence table. Cluster6									
t-seq_	val	t-seq	val	t-seq	val	t-seq	val	t-seq	val
566524	750	622442	800	674324	850	742552	900		
574223	751	622453	801	674335	851	742563	901		
574234	752	622464	802	675224	852	743552	902	1	
574245	753	622475	803	675324	853	743652	903		
574256	754	622553	804	675424	854	752662	904		
574334	755	622564	805	684223	855	762226	905		
574345	756	623542	806	684234	856	772225	906		
575223	757	623553	807	684245	857	772236	907		
575234	758	623564	808	684334	858	773225	908		
575245	759	623653	809	685223	859	773325	909		
575323	760	624642	810	685234	860	783224	910		
575334	761	624653	811	685323	861	783235	911		
575345	762	625742	812	685334	862	784224	912	i	
575434	763	632552	813	686223	863	784324	913		
576223	764	632563	814	686323	864	794223	914		
576234	765	632574	815	686423	865	794234	915		
576323	766	632663	816	695222	866	795223	916		
576334	767	633552	817	695233	867	795323	917		:
576423	768	633563	818	695244	868	832332	918		
576434	769	633652	819	695333	869	832343	919		
577223	770	633663	820	696222	870	832354	920		
577323	771	634652	821	696233	871	832443	921		
577423	772	634752	822	696322	872	833432	922		
577523	773	642227	823	696333	873	833443	923		
585222	774	642662	824	697222	874	834532	924		
585233	775	642673	825	697322	875	842442	925		
585244	776	643662	826	697422	876	842453	926		
585255	777	643762	827	722332	877	843442	927		
585333	778	652226	828	722343	878	843542	928		
585344	779	652237	829	722354	879	3774	720		
586222	780	652772	830	722365	880		[
586233	781	653226	831	722443	881		1		
586244	782	653326	832	722454	882				
586322	783	662225	833	723432	883		ļ		
586333	184	662236	834	723443	884		{		
586344	785	662247	835	723454	885		j		
586433	786	662336	836	723543	886				
587222	787	663225	837	723543	887				
587233	788	663236	838	724543	888		Ī		
587322	789	663325	839	725632	889		}		
587333	790	663336	840	732442	890		!		
587422	791	664225	841	732453	891		i		
587433	792	664325	842	732464	892		ļ		
588322	793	664425	843	732553	893				ļ
588422	794	673224	844	733442	894				
588522	795	673235	845	733453	895		1		ĺ
596332	796	673246	846	733542	896		1		
596343	797	673335	847	733553	897		1		
597332	798	674224	848	734542	898		- }		
597432	799	674235	849	734642	899		Ì		1

FIG. 16D

FIG. 17A

../src/pdf174.c

```
#include <stdio.h>
#define MODULE 9
FILE *fopen(), *fout[9];
int t[8];
int x[8] = \{0,0,0,0,0,0,0,0,0\};
int b[13] = \{0,0,0,0,0,0,0,0,0,0,0,0,0,0\};
int m = 7;
int n = 9; /*17 - 8*/
int other = 0;
int total = 0;
int grteq(i)
int i;
int k, flag;
    flag=0;
    for(k=0;k<=m;k++) if(x[k] >= i) flag=1;
    return(flag);
}
```

FIG. 17B

```
void s(i)
int i;
int k, sum, j, tmp;
    sum=0;
    for(k=0;k<1;k++) sum += x[k];
    if(i == m)
      x[m] = n - sum;
      for(k=0;k< m;k++) t[k] = x[k]+x[k+1];
      tmp = x[0] - x[2] + x[4] - x[6];
      tmp = tmp%MODULE;
      if (tmp < 0) tmp += MODULE;
       total++;
       if(grteq(6)) other++;
         else( b[tmp]++;
               for (k=0; k<m; k++)
                  fprintf(fout[tmp], "%d ", t[k]+2);
               fprintf(fout[tmp], "\n");
             }
     }else{
       for (j=0; j \le (n-sum); j++) \{x[i]=j; s(i+1); \}
     }
}
```

FIG. 17C

```
main()
{
int k;

fout[0]=fopen("out0","w");
fout[1]=fopen("out1","w");
fout[2]=fopen("out2","w");
fout[3]=fopen("out3","w");
fout[4]=fopen("out4","w");
fout[5]=fopen("out5","w");
fout[6]=fopen("out6","w");
fout[7]=fopen("out7","w");
fout[8]=fopen("out8","w");
s(0);
for(k=0;k<MODULE;k++) fclose(fout(k));</pre>
```


FIG. 20

