STA 360/602L: Module 7.1

THE METROPOLIS ALGORITHM

DR. OLANREWAJU MICHAEL AKANDE

INTRODUCTION

- As a refresher, suppose $y=(y_1,\ldots,y_n)$ and each $y_i\sim p(y|\theta).$ Suppose we specify a prior $\pi(\theta)$ on $\theta.$
- Then as usual, we are interested in

$$\pi(heta|y) = rac{\pi(heta)p(y,| heta)}{p(y)}.$$

- **As** we already know, it is often difficult to compute p(y).
- Using the Monte Carlo method or Gibbs sampler, we have seen that we don't need to know p(y).
- As long as we have conjugate and semi-conjugate priors, we can generate samples directly from $\pi(\theta|y)$.
- What happens if we cannot sample directly from $\pi(\theta|y)$?

MOTIVATING EXAMPLE

- To motivate our discussions on the Metropolis algorithm, let's explore a simple example.
- Suppose we wish to sample from the following density

$$\pi(heta|y) \propto \exp^{-rac{1}{2} heta^2} + rac{1}{2} \exp^{-rac{1}{2}(heta-3)^2}$$

- This is a mixture of two normal densities, one with mode near 0 and the other with mode near 3.
- Note: we will cover finite mixture models properly soon.
- Anyway, let's use this density to explore the main ideas behind the Metropolis sampler.
- By the way, as you will see, we don't actually need to know the normalizing constant for Metropolis sampling but for this example, find it for practice!

MOTIVATING EXAMPLE

Let's take a look at the (normalized) density:

■ There are other ways of sampling from this density, but let's focus specifically on the Metropolis algorithm here.

- From a sampling perspective, we need to have a large group of values, $\theta^{(1)}, \ldots, \theta^{(S)}$ from $\pi(\theta|y)$ whose empirical distribution approximates $\pi(\theta|y)$.
- lacktriangle That means that for any two values a and b, we want

$$rac{\# heta^{(s)}=a}{S} \div rac{\# heta^{(s)}=b}{S} = rac{\# heta^{(s)}=a}{S} imes rac{S}{\# heta^{(s)}=b} = rac{\# heta^{(s)}=a}{\# heta^{(s)}=b} pprox rac{\pi(heta=a|y)}{\pi(heta=b|y)}$$

- Basically, we want to make sure that if a and b are plausible values in $\pi(\theta|y)$, the ratio of the number of the $\theta^{(1)},\ldots,\theta^{(S)}$ values equal to them properly approximates $\frac{\pi(\theta=a|y)}{\pi(\theta=b|y)}$.
- How might we construct a group like this?

- Suppose we have a working group $\theta^{(1)}, \ldots, \theta^{(s)}$ at iteration s, and need to add a new value $\theta^{(s+1)}$.
- Consider a candidate value θ^* that is close to $\theta^{(s)}$ (we will get to how to generate the candidate value in a minute). Should we set $\theta^{(s+1)} = \theta^*$ or not?
- $\hbox{ Well, we should probably compute $\pi(\theta^\star|y)$ and see if $\pi(\theta^\star|y) > \pi(\theta^{(s)}|y)$. }$ Equivalently, look at $r=\frac{\pi(\theta^\star|y)}{\pi(\theta^{(s)}|y)}.$
- By the way, notice that

$$egin{aligned} r &= rac{\pi(heta^\star|y)}{\pi(heta^{(s)}|y)} = rac{p(y| heta^\star)\pi(heta^\star)}{p(y)} \div rac{p(y| heta^{(s)})\pi(heta^{(s)})}{p(y)} \ &= rac{p(y| heta^\star)\pi(heta^\star)}{p(y)} imes rac{p(y)}{p(y| heta^{(s)})\pi(heta^{(s)})} = rac{p(y| heta^\star)\pi(heta^\star)}{p(y| heta^{(s)})\pi(heta^{(s)})}, \end{aligned}$$

which does not depend on the marginal likelihood we don't know!

- If r > 1
 - Intuition: $\theta^{(s)}$ is already a part of the density we desire and the density at θ^* is even higher than the density at $\theta^{(s)}$.
 - Action: set $\theta^{(s+1)} = \theta^{\star}$
- If r < 1,
 - Intuition: relative frequency of values on our group $\theta^{(1)},\ldots,\theta^{(s)}$ equal to θ^\star should be $\approx r=\frac{\pi(\theta^\star|y)}{\pi(\theta^{(s)}|y)}.$ For every $\theta^{(s)}$, include only a fraction of an instance of θ^\star .
 - Action: set $\theta^{(s+1)} = \theta^*$ with probability r and $\theta^{(s+1)} = \theta^{(s)}$ with probability 1 r.

- This is the basic intuition behind the Metropolis algorithm.
- Where should the proposed value θ^{\star} come from?
- Sample θ^* close to the current value $\theta^{(s)}$ using a symmetric proposal distribution $g[\theta^*|\theta^{(s)}]$. g is actually a "family of proposal distributions", indexed by the specific value of $\theta^{(s)}$.
- lacktriangledown Here, symmetric means that $g[heta^\star| heta^{(s)}]=g[heta^{(s)}| heta^\star].$
- The symmetric proposal is usually very simple with density concentrated near $\theta^{(s)}$, for example, $\mathcal{N}(\theta^{\star}; \theta^{(s)}, \delta^2)$ or $\mathrm{Unif}(\theta^{\star}; \theta^{(s)} \delta, \theta^{(s)} + \delta)$.
- After obtaining θ^* , either add it or add a copy of $\theta^{(s)}$ to our current set of values, depending on the value of r.

- The algorithm proceeds as follows:
 - 1. Given $\theta^{(1)}, \dots, \theta^{(s)}$, generate a candidate value $\theta^\star \sim g[\theta^\star | \theta^{(s)}]$.
 - 2. Compute the acceptance ratio

$$r=rac{\pi(heta^\star|y)}{\pi(heta^{(s)}|y)}=rac{p(y| heta^\star)\pi(heta^\star)}{p(y| heta^{(s)})\pi(heta^{(s)})}.$$

3. Set

$$heta^{(s+1)} = egin{cases} heta^\star & ext{with probability} & \min(r,1) \ heta^{(s)} & ext{with probability} & 1 - \min(r,1) \end{cases}$$

which can be accomplished by sampling $u \sim U(0,1)$ independently and setting

$$heta^{(s+1)} = \left\{ egin{array}{ll} heta^\star & ext{ if } & u < r \ heta^{(s)} & ext{ if } & ext{otherwise} \end{array}
ight. .$$

- Once we obtain the samples, then we are back to using Monte Carlo approximations for quantities of interest.
- That is, we can again approximate posterior means, quantiles, and other quantities of interest using the empirical distribution of our sampled values.

Some notes:

- The Metropolis chain ALWAYS moves to the proposed θ^* at iteration s+1 if θ^* has higher target density than the current $\theta^{(s)}$.
- Sometimes, it also moves to a θ^* value with lower density in proportion to the density value itself.
- This leads to a random, Markov process than naturally explores the space according to the probability defined by $\pi(\theta|y)$, and hence generates a sequence that, while dependent, eventually represents draws from $\pi(\theta|y)$.

METROPOLIS ALGORITHM: CONVERGENCE

- We will not cover the convergence theory behind Metropolis chains in detail, but below are a few notes for those interested:
 - The Markov process generated under this condition is ergodic and has a limiting distribution.
 - Here, think of ergodicity as meaning that the chain can move anywhere at each step, which is ensured, for example, if $g[\theta^{\star}|\theta^{(s)}] > 0$ everywhere!
 - By construction, it turns out that the Metropolis chains are reversible, so that convergence to $\pi(\theta|y)$ is assured.
 - Think of reversibility as being equivalent to symmetry of the joint density of two consecutive $\theta^{(s)}$ and $\theta^{(s+1)}$ in the stationary process, which we do have by using a symmetric proposal distribution.
- If you want to learn more about convergence of MCMC chains, consider taking one of the courses on stochastic processes, or Markov chain theory.

METROPOLIS ALGORITHM: TUNING

- Correlation between samples can be adjusted by selecting optimal δ (i.e., spread of the distribution) in the proposal distribution
- Decreasing correlation increases the effective sample size, increasing rate of convergence, and improving the Monte Carlo approximation to the posterior.
- However,
 - lacksquare δ too small leads to rpprox 1 for most proposed values, a high acceptance rate, but very small moves, leading to highly correlated chain.
 - δ too large can get "stuck" at the posterior mode(s) because θ^* can get very far away from the mode, leading to a very low acceptance rate and again high correlation in the Markov chain.
- Thus, good to implement several short runs of the algorithm varying δ and settle on one that yields acceptance rate in the range of 25-50%.

Burn-in (and thinning) is even more important here!

METROPOLIS IN ACTION

Back to our example with

$$\pi(heta|y) \propto \exp^{-rac{1}{2} heta^2} + rac{1}{2} ext{exp}^{-rac{1}{2}(heta-3)^2}$$

 $\pi(\theta|y)$

MOVE TO THE R SCRIPT HERE.

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

