一、实验题目与要求

- 1. Implement exercise 2.3-7.
- 2. Implement priority queue.
- 3. Implement Quicksort and answer the following questions. (1) How many comparisons will Quicksort do on a list of n elements that all have the same value? (2) What are the maximum and minimum number of comparisons will Quicksort do on a list of n elements, give an instance for maximum and minimum case respectively.
- 4. Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n, and are allowed unit time access to the ith element of each list. Give an $O(\lg m + \lg n)$ time algorithm for computing the kth largest element in the union of the two lists. (For simplicity, you can assume that the elements of the two lists are distinct).

二、算法思想

1. 两数之和

最快捷的算法就是先将数列排序,然后用双指针算法,在数列一头一尾设置两个指针,不断向中间汇聚直到相遇,期间根据和的情况选择头指针向右移还是尾指针向左移,或者输出结果并同时往中间移。

2. 优先队列

堆是一种完全二叉树结构,对于大顶堆,根节点的值将大于等于子节点的值。实践中往往 不建立完全二叉树结构,而是以连续元素序列作为树结构,用下标模拟父子关系。其中,对于 索引以 0 起始的元素序列,下标为 n 的元素的左右子节点的下标分别为 2n+1 和 2n+2。

为了实现堆排序和优先级队列,需要实现几个堆操作算法:

- add: 在队列尾部加入新元素;
- sift up: 将序列尾部的元素向上移动到正确的位置(即重新调整为小顶堆);
- sift down: 将序列首部的元素向下移动到正确的位置;
- extract: 删除队列首部的元素。

堆调整算法实现为sift_up和sfit_down。该算法不断地比较父节点和子节点的元素值大小关系:如果父节点的值小于任一子节点的值,则将最大的节点值调整为父节点,原父节点下沉为子节点,并继续将其作为新的子树的根节点做堆调整处理。

Extract函数通过先记录队首元素,然后交换其与队尾元素(此时相当于已经将队首元素删除),然后将此时的队首元素(即原队尾元素)用sift_down下移,最后返回记录的原队首元素。

3. 快速排序

快速排序算法通过选取一个基准元素,将所有比基准元素小的元素移动到基准元素左侧, 比基准元素大的元素移动到右侧,随后继续对左右两端序列递归求解,实现时间复杂度为 $\Theta(n)$

lg n) 的排序。然而,若基准元素选取不佳(如选择到了最小或最大元素),则算法的时间复杂度将退化为 $\Theta(n^2)$,因为经过划分后,一段序列长为 n-1,另一段序列为空。

随机快速排序每次随机选择基准元素,则降低了选择到不好的基准元素(最大或最小元 素)的可能性,从而减少算法时间复杂度退化的可能。

然而,若序列所有元素均一致,随机快速排序算法的时间复杂度依然为 $\Theta(n^2)$ 。后文将描述解决此种情况的优化算法,同时描述另一种选取基准元素的方法,以进一步减少选择最差基 准元素的概率。

4. 两个有序数列的第k小值

可以通过二分法将问题规模缩小,假设p+q=k,A[p-1]对应A中第p个元素,总序列是由A,B组成的有序序列。

- 1. 如果序列A中的第p个元素小于序列B中的第q个元素,则序列A的前p个元素肯定都小于总序列的第k个元素,即序列A中的前p个元素肯定不是总序列的第k个元素,所以将序列A的前p个元素全部抛弃,形成一个较短的新序列;然后,用新序列替代原先的A序列,再找其中的第k p个元素(因为已经排除了p个元素,k需要更新为k-p),依次递归;
- 2. 同理,如果A序列中的第p个元素大于序列B中的第q个元素,则抛弃序列B的前q个元素,k = k q; 3. 如果序列A的第p个元素等于序列B的第q个元素,则第k个元素为A(p-1);

递归终止条件:

- 1. 如果一个序列为空,那么第 k 个元素就是另一个序列的第 k 个元素;
- 2. 如果 k = 1,那么直接返回 min(A[0], B[0]) ;
- 3. 如果 A[p-1] == B[q-1],则第 k 个数就为 A[p-1];

三、算法步骤与核心代码

1. 两数之和

按照上文的具体分析,代码如下:

```
while i<j:
    if lst[i]+lst[j]==t:
        if not f:print("满足要求的元素组为: ")
        f=1
        print(lst[i],lst[j])
        i+=1
        j-=1
    elif lst[i]+lst[j]<t:i+=1
    else:j-=1

if not f:print("不存在满足要求的元素组")
```

2. 优先队列

按照上文所述, 堆算法的核心是调整堆算法 _adjust_heap 的实现。所有堆算法都实现于

优先队列.py。

add函数的核心代码如下:

```
def add(self,value):
    self.heap.append(value)
    self._siftup(len(self.heap)-1)
```

其中的sift up函数利用递归思想,核心代码为

```
def_siftup(self,index):
    if index>0:
        parent=int((index-1)/2)
        if self.heap[parent]>self.heap[index]:
        self.heap[parent],self.heap[index]=self.heap[index],self.heap[parent]
        self._siftup(parent)
```

extract函数具体步骤上文已讲:

```
def extract(self):#删除堆顶元素并返回此元素值
    if not self.heap:print('队列已空!')
    value=self.heap[0]
    self.heap[0]=self.heap[len(self.heap)-1]
    self._siftdown(0)
    return value
```

```
def sift_down(self, index):
    if index < len(self.heap):
        left = 2 * index + 1
        right = 2 * index + 2
        if left < len(self.heap) and right < len(self.heap) \</pre>
```

3. 随机快速排序

随机快速排序的递归函数用python写可以写出很简洁的代码。该算法实现于快速排序.py 中。随机化过程即为获取随机数后将其与尾部元素交换,不再赘述。现以尾部元素为基准元素,从首元素开始遍历:若当前元素小于尾部元素,则将其移动到序列的前面(所有小于尾部 元素的

```
def qs(array):
    if len(array) < 2: return array
    t = array[0]
    l = [i for i in array[1:] if i <= t]</pre>
```

4. 两个有序数列的第k小值

根据上文的具体步骤,核心的函数见下:

r = [i for i in array[1:] if i > t]

元素序列)。该部分迭代的核心代码为

return qs(l) + [t] + qs(r)

```
def find_kth(llst, llen, rlst, rlen, k):
    if llen > rlen:
        return find_kth(rlst, rlen, llst, llen, k)

# 长度小的数组已经没有值了,从 rlst 找到第 k 大的数
    if not llen:
        return rlst[k-1]

# 找到第 1 大的数,比较两个列表的第一个元素,返回最小的那个
```

```
if k == 1:
    return min(llst[0], rlst[0])
middle = min(k >> 1, llen)
middle_ex = k - middle
# 舍弃 llst 的一部分
if llst[middle-1] < rlst[middle_ex-1]:
    return find_kth(llst[middle:], llen-middle, rlst, rlen, k-middle)
# 舍弃 rlst 的一部分
elif llst[middle-1] > rlst[middle_ex-1]:
    return find_kth(llst, llen, rlst[middle_ex:], rlen-middle_ex, k-middle_ex)
else:
    return llst[middle-1]
```

四、总结

学会了多种排序算法并将其进行了时间复杂度上的比较。第四题在思想上有很大的启发。