3. Hausaufgabe – Theoretische Grundlagen der Informatik 3 Abgabe: 15.11.2012 in der Vorlesung

WS 2012/2013

Stand: 8.11.2012

Hausaufgabe 1 5 Punkte

Sei $n \in \mathbb{N}$ und seien β, β' Belegungen der Variablen X_1, \ldots, X_n . Wir schreiben $\beta \leq \beta'$, wenn $\beta(X_i) \leq \beta'(X_i)$ für alle $1 \leq i \leq n$. Eine Formel $\varphi(X_1, \ldots, X_n)$ der Aussagenlogik heißt monoton, falls $[\![\varphi]\!]^{\beta} \leq [\![\varphi]\!]^{\beta'}$ für alle Belegungen β, β' der Variablen X_1, \ldots, X_n mit $\beta \leq \beta'$.

Zeigen Sie, dass eine Formel $\varphi(X_1,\ldots,X_n)$ monoton ist genau dann, wenn sie alleine mit den Variablen X_1,\ldots,X_n und \top,\bot,\wedge und \vee dargestellt werden kann.

Hausaufgabe 2 5 Punkte

Nehmen Sie für die folgenden Aufgaben an, dass Ihnen \top und \bot nicht als aussagenlogische Formeln zur Verfügung stehen. Wir betrachten hier nur Funktionen und Formeln mit mindestens einer Variablen.

- (i) Zeigen Sie, dass {NAND} funktional vollständig ist. Dabei ist φ NAND ψ definiert als $\neg(\varphi \wedge \psi)$.
- (ii) Zeigen Sie, dass $\{\land,\lor,\to\}$ nicht funktional vollständig ist.

Hausaufgabe 3 5 Punkte

- (i) Geben Sie für jedes $n \in \mathbb{N}$ eine Formel φ_n an, deren Länge polynomiell in n ist, die Länge jeder äquivalenten Formel in KNF aber exponentiell in n ist. Begründen Sie Ihre Antwort.
- (ii) Geben Sie analog zur vorigen Aufgabe Formeln ψ_n an, deren Länge polynomiell in n ist, die Länge jeder äquivalenten Formel in DNF aber exponentiell in n ist. Begründen Sie Ihre Antwort.

Hinweis: Betrachten Sie

$$\varphi_1(X_1) = X_1$$

$$\varphi_{n+1}(X_1, \dots, X_{n+1}) = \varphi_n(X_1, \dots, X_n) \oplus X_{n+1}.$$

Hausaufgabe 4 5 Punkte

Wir betrachten quadratische Dominosteine, deren Seiten mit je einer Zahl beschriftet sind. Dominosteine passen nebeneinander, wenn die nebeneinanderliegenden Seiten mit derselben Zahl beschriftet sind.

Formal ist ein Dominostein $D = (a_1, a_2, a_3, a_4)$ ein 4-Tupel von Zahlen. Dieser Stein passt rechts neben einen anderen Dominostein $D' = (a'_1, a'_2, a'_3, a'_4)$, wenn $a_3 = a'_1$ gilt. Analog passt D oberhalb von D', wenn $a_2 = a'_4$ gilt. Die folgende Grafik illustriert diesen Zusammenhang.

Die Position der a_i :

Beispiel einer unvollständigen Parkettierung:

Ein Dominosystem \mathcal{D} ist eine endliche Menge von Dominosteinen. Eine Parkettierung von $\mathbb{Z} \times \mathbb{Z}$ über
einem Dominosystem \mathcal{D} ist eine Abbildung $P: \mathbb{Z} \times \mathbb{Z} \to \mathcal{D}$, so dass $P(i,j)_3 = P(i+1,j)_1$ und
$P(i,j)_2 = P(i,j+1)_4$ für alle $i,j \in \mathbb{Z}$, wobei $P(i,j)_k$ für das k-te Element des Tupels $P(i,j)$ steht.
Analog ist eine Parkettierung von $\mathbb{Z}_n \times \mathbb{Z}_n$ definiert, wobei $\mathbb{Z}_n = \{-n, \dots, n\}$. Beachten Sie, dass eine
Parkettierung jeden Dominostein in $\mathcal D$ beliebig oft verwenden kann. Dominosteine dürfen nicht rotiert
werden.

Zeigen Sie, dass eine Parkettierung von $\mathbb{Z} \times \mathbb{Z}$ über einem Dominosystem \mathcal{D} existiert genau dann, wenn für jedes $n \geq 1$ eine Parkettierung von $\mathbb{Z}_n \times \mathbb{Z}_n$ existiert.