AD-A039 235

ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMM--ETC
SYNCHRONOUS ALTERNATOR AN/LYSIS.(U)
OCT 76 M L gOSS

WERADCOM-2193

NL

AD-A039 235

WERADCOM-2193

NL

END
DATE
STAND
DATE
STAND
ST

ADA 039235

Report 2193

SYNCHRONOUS ALTERNATOR ANALYSIS

October 1976

Approved for public release; distribution unlimited.

U.S. ARMY MOBILITY EQUIPMENT
RESEARCH AND DEVELOPMENT COMMAND
FORT BELVOIR, VIRGINIA

Destroy this report when it is no longer needed.

Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	NO. 3. RECIPIENT'S CATALOG NUMBER
2193 (4) MERADCOM-2193 (9)	TYPE OF REPORT & PERIOD COVERE
106	et for
SYNCHRONOUS ALTERNATOR ANALYSIS,	Jahren 74 - June 76
	S. PERFORMING ORG. REPORT NUMBER
- AUTHOR(a)	6. CONTRACT OR GRANT NUMBER(+)
Melvin L. Goss	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Electrical Equipment Division, Electrical Power Laboratory	AREA & WORK UNIT NUMBERS
U.S. Army Mobility Equipment Research and Development Command, Fort Belvoir, Virginia 22060	G 1G762708AH67
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Electrical Power Laboratory (DRDME-E) U.S. Army Mobility Equipment Research and Development	13. NUMBER OF PAGES
Command, Fort Belvoir, Virginia 22060	87
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	
13/12_	Unclassified
LOSP.	J 154. DECLASSIFICATION/DOWNGRADING
8. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited.	- 0,5
	- Dandle
	O
7. DISTRIBUTION STATEMENT (of the electract entered in Block 20, If differen	it from Report)
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if differen	of from Report)
7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if differen	PRANTING
en de la companya del companya de la companya del companya de la c	PRESIDENT LIST
en de la companya del companya de la companya del companya de la c	PROBLEM 11 BY
en de la companya del companya de la companya del companya de la c	PROBLEM 11 BY
Andrew Commence of the commenc	Pron Report) Pron Report) Pron Report) Pron Report)
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block num	
IS. SUPPLEMENTARY NOTES	
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse cide if necessary and identity by block number Synchronous Alternator Numerical Analysis Digital Computer Analysis	
19. KEY WORDS (Continue on reverse cide if necessary and identity by block num Synchronous Alternator Numerical Analysis	
Numerical Analysis Digital Computer Analysis Magnetic Flux	abov)
16. SUPPLEMENTARY NOTES 16. KEY WORDS (Continue on reverse side if necessary and identity by block number Synchronous Alternator Numerical Analysis Digital Computer Analysis Magnetic Flux A two-dimensional analysis of the cross section of a salieunder no load is reported. The nonlinear effects of magnetic	nbor) nt-pole, synchronous aircraft alternato saturation were considered.
NEY WORDS (Continue on reverse elde if necessary and identity by block number of the solution algorithm is a modified version of an algorithm and analysis of the cross section of an algorithm is a modified version of an algorithm.	nt-pole, synchronous aircraft alternato saturation were considered.
Supplementary notes 18. KEY WORDS (Continue on reverse elde if necessary and identity by block number Synchronous Alternator Numerical Analysis Digital Computer Analysis Magnetic Flux A two-dimensional analysis of the cross section of a salieunder no load is reported. The nonlinear effects of magnetic The solution algorithm is a modified version of an algorithmiar, homopolar-inductor alternators. The details of the	nt-pole, synchronous aircraft alternato saturation were considered. ithm previously used in the analysis of algorithm and the computer program
NEY WORDS (Continue on reverse elde if necessary and identity by block numbers of the continue	nt-pole, synchronous aircraft alternato saturation were considered. ithm previously used in the analysis of algorithm and the computer program ERADCOM reports.
Synchronous Alternator Numerical Analysis Digital Computer Analysis Magnetic Flux A two-dimensional analysis of the cross section of a salieunder no load is reported. The nonlinear effects of magnetic The solution algorithm is a modified version of an algorinonlinear, homopolar-inductor alternators. The details of the implemented on a minicomputer were described in earlier ME This report contains teletypewriter terminal printouts of of the magnetic flux analysis was reached, but the number	nt-pole, synchronous aircraft alternato saturation were considered. ithm previously used in the analysis of algorithm and the computer program ERADCOM reports.
Synchronous Alternator Numerical Analysis Digital Computer Analysis Magnetic Flux A two-dimensional analysis of the cross section of a salier under no load is reported. The nonlinear effects of magnetic The solution algorithm is a modified version of an algorinonlinear, homopolar-inductor alternators. The details of the implemented on a minicomputer were described in earlier ME This report contains teletypewriter terminal printouts of	nt-pole, synchronous aircraft alternato saturation were considered. ithm previously used in the analysis of algorithm and the computer program ERADCOM reports.
Synchronous Alternator Numerical Analysis Digital Computer Analysis Magnetic Flux A two-dimensional analysis of the cross section of a salieunder no load is reported. The nonlinear effects of magnetic The solution algorithm is a modified version of an algorinonlinear, homopolar-inductor alternators. The details of the implemented on a minicomputer were described in earlier ME This report contains teletypewriter terminal printouts of of the magnetic flux analysis was reached, but the number	nt-pole, synchronous aircraft alternato saturation were considered. ithm previously used in the analysis of algorithm and the computer program ERADCOM reports.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered Contract Continues to the Contract Cont Takens of Massage transplation and entitle of the control of the c

S PAR TO THE DESCRIPTION OF BUILDING

UNCLASSIFIED

HTY CLASSIFICATION OF THIS PAGE(Then Date Ent.

SUMMARY

A two-dimensional analysis of the cross section of a homopolar-inductor alternator supplying a rectifier load was developed in previous investigations. In those investigations, the nonlinear effects of saturation of magnetic materials and nonlinear load currents were considered. Some of the partial-difference equations were parabolic. The analysis was applied for eddy currents, voltage waveshapes, and field excitations. An analysis was made on a 95-kVA homopolar-inductor alternator, 115/200-V; 3-phase; 3400-Hz; 40,800-rpm.

The computer programs which were developed were closely associated with the decision to use the minicomputer. Systems of equations normally require a large amount of computer time and are programs which are expensive to run. Both algorithm and computer implementation required investigations having many runs; therefore, application of dedicated minicomputer versus large frame became an economical decision. Fortran programs developed for this investigation are hardware dependent particularly for a virtual-memory technique for the storage of matrix data in mass-storage devices instead of a large-core memory.

The present investigation was limited to modification of these previously developed Fortran programs for the two-dimensional analysis of the salient-pole, synchronous alternator. Modification of the complex interrelated Fortran program and subroutines requires detailed and thorough study and evaluation for each modification.

This investigation is limited to no-load analysis of a model simulating a design of a 250-kVA; 120/240-V, 400-Hz, 8000-rpm salient-pole aircraft alternator. The discussion of the analysis emphasizes the interactive characteristics of the system of minicomputer programs applied in the solution of this different machine configuration.

PREFACE

This investigation, authorized under Project 1G762708AH67, was performed in the Electrical Equipment Division, Electrical Power Laboratory (formerly Laboratory 3000), US Army Mobility Equipment Research and Development Command. The work was performed under the direction of Dr. A. L. Jokl, Chief, Electrical Equipment Division. Dr. L. I. Amstutz assisted in the understanding of the computer implementation of the algorithm.

CONTENTS

Section	Title	Page
	SUMMARY	íii
	PREFACE	iv
1	BACKGROUND	1
11	PURPOSE	1
111	PROGRAM PRINTOUTS	1
IV	PROGRAM MODIFICATION	1
v	DISCUSSION	3
VI	CONCLUSION	4
	BIBLIOGRAPHY	5
	APPENDIX - Printout from Program Execution	6

SYNCHRONOUS ALTERNATOR ANALYSIS

I. BACKGROUND

This analysis of the salient-pole, synchronous alternator is related to a similar analysis performed on the homopolar-inductor alternator.

As in the homopolar-inductor-alternator analysis, the numerical method for solving the partial-difference equations is a strongly implicit iterative procedure taking into account the periodicity conditions of the salient-pole, synchronous alternator.

II. PURPOSE

The investigation demonstrates the analysis of salient-pole, synchronous machinery applying algorithms previously developed for the analysis of the homopolar-inductor alternator. This investigation required establishing a suitable rectangular grid system and selecting appropriate boundary conditions for the specification of the new-machine configuration.

III. PROGRAM PRINTOUTS

Several problem configurations for simulation of the salient-pole, synchronous alternator were tried. Such configurations were based on experimentation related to opposing characteristics of the simulation and the solution algorithm. Under load conditions, symmetrical boundary conditions should be specified for a pole pair. This configuration provided a grid space which was wide compared to its height. There is evidence that the solution algorithm converges more slowly when the grid space is wider than it is tall.

The result was to change to a single-pole, simulation model. The single-pole models were considered primarily to increase the rate of convergence of the solution and to reduce the execution time by specifying a fewer number of grid points.

IV. PROGRAM MODIFICATION

The analysis of homopolar-inductor alternators was developed as a general solution algorithm.¹ It was anticipated that programs and subroutines previously

A. L. Joki and L. I. Amstutz, Report 2113," Nonlinear Homopolar Inductor Alternators on Nonlinear Loads - Part I," USAMERDC, Fort Belvoir, VA, October 1974.

A. L. Jokl and L. I. Amstutz, Report 2114," Nonlinear Homopolar Inductor Alternators on Nonlinear Loads – Part II," USAMERDC, Fort Belvoir, VA, October 1974.

developed for the homopolar-inductor alternator could be modified to provide a solution algorithm for the salient-pole, machine configuration.

Programs and subroutines implemented for the solution algorithm combine to form a complex programming system. Modification of such a complex programming system is not a trivial exercise. Prior to modification, a time-consuming, detailed study is required on each portion of the program. Extensive use of common variables, multiple use of certain array or matrix variables, and logical branching are the programming factors requiring detailed analysis with modification.

The primary reason to modify the programs and subroutines was to make the change-of-boundary conditions resulting from different machine configurations. The boundary conditions are applied to values of the magnetic vector potential, A. For the left and right boundaries, magnetic vector potentials are identical for the homopolar-inductor alternator but are opposite sign for the salient-pole alternator. Similarly, lower and upper boundaries differ to permit a through flux for the homopolar configuration and to permit no through flux for lower and upper boundaries. Boundary changes in the algorithm were provided by introducing two new variables:

CSIGN = -1.0D00 CSYN = 0.0D00

Assignment to alternate values of these variables and recompiling should make solution of the homopolar configuration possible:

THE PROPERTY PROPERTY OF

CSIGN = 1.0D00 CSYN = 1.0D00.

Modification for the purpose of boundary-condition changes represents planned changes. Other planned changes included modification of the subroutine SETUP used by program UPDATE to change values of certain key common variables. Other planned changes in UPDATE reduced certain duplicated teletypewriter input used in the description of the configuration. Additional, planned changes made to program FLUX speeded the graphic output of the machine configuration on the CRT terminal.

Certain other modifications of programs and subroutines provide an effort to shorten programs and to reduce program execution time. Particular attention was given to program SOLVE and its functions and subroutines — Subroutines SAEB and TCTB — which determine reluctivity of iron from magnetic induction by a table-look-up procedure. Table variables were changed from Fortran assignment statements to data statements. Saving in execution time by this modification was minimal because these subroutines were executed only when recalculation of reluctivities was required

instead of every iteration of SOLVE. Other attempts were made to reduce the number of calls of special functions that require input and output from disc files.

Program modification and program execution both produce a large amount of teletypewriter or line-printer cutput. In order to provide for a chronological order to modifications and program runs, a system Fortran compatible subroutine called DATE was devised. A patch was introduced in the system program EDITOR at the beginning of a file edit. These system applications and minor modifications provide a valuable documentation aid used on these programs and others in support of research and development projects.

The programs and subroutines modified during this investigation are shown in the Appendix.

V. DISCUSSION

This analysis essentially represents a numerical analysis for the solution of partial differential equations. The analysis consequently contains those mysterious tricks associated with solutions of partial differential equations and another set associated with numerical analysis. The analysis of equipment retains certain experimental characteristics in spite of all the efforts to refine the procedures.

The numerical solution is provided by an iterative procedure designed to give an approximation for the solution within a specified limit of error. The procedure does provide a solution, but the experimental investigations attempt to achieve the solution within a fewer number of iterations. A sluggish convergence to the solution is a significant deterrent regardless of the size and speed of the computer system which is applied to its solution.

Another problem in the procedure requires more emphasis to be placed upon the problem grid than on easy and rapid specification of machine component sizes from a drawing. Certainly, more effort is required to reduce the tedious and time-consuming effort in establishing or significantly modifying the equivalent model of the procedure. Another aspect of this problem is that model definition in terms of polar coordinates would be preferred to the present rectangular coordinates. The significance of modification of the algorithm coordinate system is an investigation remaining to be performed.

The algorithm for this numerical analysis of electric machinery is implemented with a series of computer programs supported by a large number of functions and subroutines. The organization of programs is desirable in that progress of solution can be observed in intermediate results. The organization provides considerable amount of

error messages to guard against faulty data in parameters passed in functions or subroutines. Disadvantages of the modular organization include a difficult procedure for modifying common variables in each program and subroutine, and certain boundary conditions are imbedded in subroutine programs and add to the complexity of developing a common solution algorithm when machine configurations require modification of boundary conditions.

VI. CONCLUSION

It is concluded that algorithms implemented in Fortran programs and subroutines for the numerical solution of a homopolar-inductor alternator provide a solution of a salient-pole alternator after correction for different boundary conditions.

normalism with properties are trapperty, or an experience for a segmentation of the contract of the contract of

s cand their promise the articles an even direct indicate was no used by conductive

Seminorary of the least against an appropriate problem of the seminorary of the semi

bestromolique à grandont outrous et une faith laboration et le communication de l' dus bas montonels les rodinant estes e go bestrotique antagent estatuer e la corre e disc de nes normalise les equations forbres alla desh le contract de note expense et l'acceptant En respons alognations de seuvers merchinges all l'acques et discourant a beste du

BIBLIOGRAPHY

- Erdélyi, E. A., and A. L. Jokl, "Non-Symmetrical, Non-Linear Aerospace Alternators on Non-Linear Loads, Part I, Theoretical Fundamentals."
- Jokl, A. L., and L. I. Amstutz, Report 2113, "Nonlinear Homopolar Inductor Alternators on Nonlinear Loads - Part I," USAMERDC, Fort Belvoir, VA, October 1974.
- Jokl, A. L., and L. I. Amstutz, Report 2114, "Nonlinear Homopolar Inductor Alternators on Nonlinear Loads - Part II," USAMERDC, Fort Belvoir, VA, October 1974.
- Jokl, A. L., and L. I. Amstutz, "Non-Symmetrical, Non-Linear Aerospace Alternators on Non-Linear Loads, Part II, The Numerical Method."
- Jokl, A. L., E. A. Erdélyi, and L. I. Amstutz, "Non-Symmetrical, Non-Linear Aerospace Alternators on Non-Linear Loads, Part III, Results."
- Williams, Robert A., Report 2128, "Numerical Determination of the Flux Distribution in a Salient Pole, Aircraft Alternator," USAMERDC, Fort Belvoir, VA, February 1975.

APPENDIX

PRINTOUT FROM PROGRAM EXECUTION

Program	Page
UPDATE AND ORDER	
LIST	
MAP	
START AND SOLVE	
OTFN	. 51
FLUX	. 73

6 A Trans. Robert A., Remar, 2178, "Memerakal Deimin namen an die 1793 Frank Value of VA.

[Color of the Sentent Policy America America of VA. 12 AMERICA (1704 Policy of VA.)

UPDATE AND ORDER

The solution algorithm is a set of interactive Fortran programs and subroutines. In addition to a numerical analysis of a set of partial differential equations, this algorithm is a data-structure problem with programs for input, output, and inspection or modification of the data.

The printouts for several of the main programs of the analyses provide a record of the solution. The interactive nature of the program is emphasized, and the printouts supply examination of the machine configuration of the data structure and the status of progress toward the desired solution.

The program UPDATE is the main program to establish the data structure of a new configuration and to modify the structure. The printout for program UPDATE shows a modification procedure for any of 13 common variables. Prior to modification of subroutine SETUP, assignment of values to these common variables required loading and execution of a short Fortran program called PATCH.

This printout shows the use of the Fortran subroutine DATE which marks the date on the printout for modification of the data structure.

The symbol \$ is teletypewriter prompting for interactive keyboard input. A zero or carriage return parameter causes another printout of the consolidated variable listing. A negative parameter causes an exit to main program from SETUP where options to change data at designated nodes of the problem grid can be exercised.

The program ORDER performs its task on the data structure without any operator input except for system commands associated with load and go.

Class were a more say that the car to

I AND THE REPORT HERE AREADS AND

THIS IS THE DISC VERSION D 18JUNE 73

DATE: 02/ 13/ 76
IS THIS A NEW PROBLEM
\$99.
OLD SIZE WAS 36 BY 29

PRESENT SET UP NUMBER 51

TYPE ONE NODE: (52 TYPES DEFINED)

HE HN HW HS BD.MK CUR.MK CON.MK REL.MK MV.MK
21 52 21 21 -34 -1 -1 1 0

GENERAL DATA:

CONT FLUX CURRENT

UNIT LENGTH CONS CONT FLUX CURRENT 1.984375E-04 0.000000E 00 0.000000E 00 0.000000E 00 1.269000E 03 LOCATION BETA MOVEMENT TIME TIMES 0.000000E 00 0.000000E 00 0.000000E 00 0.000000E 00 0.000000E 00 0.000000E 00 0.000000E 00

ANY CHANGES TYPE PAR NO 1 THRU 13, 3

NUMP: 51 13 \$-51

ANY CHANGES TYPE PAR NO 1 THRU 13,13

AID: 1269. F10.0 \$1270.

ANY CHANGES TYPE PAR NO 1 THRU 13,13

AKPHI: 0. FI0.0

ANY CHANGES TYPE PAR NO 1 THRU 13,13

HRMV: Ø. FIØ.0

ANY CHANGES TYPE PAR NO 1 THRU 13,13

DELT: 0. F10.0

ANY CHANGES TYPE PAR NO 1 THRU 13,13

MORE: 1 13 \$001 ANY CHANGES TYPE PAR NO 1 THRU 13, 13 \$007

00N5:

Ø. FIØ.Ø

ANY CHANGES TYPE PAR NO 1 THRU 13, 3

CON7: \$0.

Ø. F10.0

ANY CHANGES TYPE PAR NO 1 THRU 13,13

ENL: \$0.

0. FI0.0

ANY CHANGES TYPE PAR NO 1 THRU 13, 3 \$010

VDS:

40. FI0.0

\$84.1 \$40.

ANY CHANGES TYPE PAR NO 1 THRU 13,13

PRESENT SET UP NUMBER 51

TYPE ONE NODE: (52 TYPES DEFINED)

HN HW HS BD.MK CUR.MK CON.MK REL.MK MV.MK

52 21 21 -34 -1 -1 1 0 HE 21

GENERAL DATA: UNIT LENGTH UNIT LENGTH CON5 CON7 FLUX CURRENT 1.984375E-04 0.000000E 00 0.000000E 00 0.000000E 00 1.270000E 03 LOCATION BETA MOVEMENT TIME TIMEB 0.000000E 00 0.00000E 00 OUTPUT. VOLTS NO.LOAD. VOLT REACTANCE 4.000000E 01 0.000000E 00 0.000000E 00

ANY CHANGES TYPE PAR NO 1 THRU 13, 13 5011

REAC: 50.

0. FI0.0

ANY CHANGES TYPE PAR NO 1 THRU 13,13 \$012

TIME: \$0.

0. F10.0

ANY CHANGES TYPE PAR NO 1 THRU 13,13 \$013

TIMEB:

6. FI0.0

ANY CHANGES TYPE PAR NO 1 THRU 13,13 5-10

SET RANGE:
MIN MAX FOR I:
\$99999
PACKING TYPES. 52
52 TYPES DEFINED 1014 TYPES AVAILABLE.
BUFFER CLEARED. SETUP RECORDED.
BUFFER CLEARED. SETUP RECORDED.
DATA SAVED ON FILE

PAUSE

SET RANGE : MIN MAX FOR I : \$// DATA

FORTRAN STOP

HAVE YOU COMPILED SUBROUTINE CUR AFTER A CHANGE IN VARIABLE AID?????

SOUTH THE PARTY THE TOTAL OF THE

CONSTRUCTOR OF ANY SPEC ASSESSED FOR

CARREL CHIEF FIRM HAVE DELY SERVICED THA

Total ways, I be and post that Ho the

ATTER MENT A DR. MIN THAT AND AND AND

医11年

Special Company of the Company

A NITE OF

\$//ATT,3,LT3,LCUEX,DISC \$//ATT,5,LT5,LCUEXB,DISC \$//FORT

LIST

The printout of program LIST consists of two parts. A modification was made to provide a brief heading to identify the problem, the date, and the grid size. The first part is a grid map that identifies nodes with grid space configuration. The first row of data identifies the width coordinate I (1 through IMAX). The first column of this part of the printout identifies the height coordinate V (VMAX through 1). This represents data of the ID matrix printed on three pages by the subroutine IDOUT.

The second printout of LIST identifies nodes with nine elements associated with every node. This output comes from ITYPE matrix and results from execution of subroutine TPOUT. Columns 2 through 10 represent elements of the nodes.

Variable	Property
HI	Distance to Node on Right
(Grid space 1/128 in/7.8125 x	10 ⁻³ in/1.984 x 10 ⁻⁴ meter)
6 91 50 H2	Distance to Node Above
5 71 100 H3 91 45	Distance to Node to Left
H4	Distance to Node Below
BD	Boundary Mark
(10 different variables) ³	
i de co Je co la	Current Density - Phase Windings
CON	Conductivity
TAREL IN	Reluctivity
(1:Air - 2:SAE 4340 Iron, rot	tor - 3:Armco Trancor T-Steel, stator)
VEL	Material Movement Indicator
(Different variables) ⁴	
	H1 (Grid space 1/128 in/7,8125 x H2 H3 H4 BD (10 different variables) ³ J CON REL (1:Air - 2:SAE 4340 Iron, rot VEL

A. L. Joki and L. I. Amstutz, Report 2113, "Nonlinear Homopolar Inductor Alternators on Nonlinear Loads – Part I," USAMERDC, Fort Belvoir, VA, October 1974,

6 Ibid.

THIS IS THE DISC "ERSION D 13JUNE73

PROBLEM LJ 51 DATÉ: 02/26/76

GRID SIZE 36 PY 29

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
29	50	51	51	51	51	51	51	8 51	51	51	51	51	51	51
28	4	5	5	5	5		5	5	5	5	5	5	5	5
27	4	5 49	. 5	5	5	5	5	5	5	5	5	5	5	5
26	4	49	49	49	49	49	49	49	49	49	49	49	49	49
25	46	47	47	-47	47	47	47	47	47	47	47	47	47	47
24	42	43	43	44	43	43	44	43	43	44	43	43	44	43
23	38	19	39	40	19	39	40	19	30	40	19	39	AA	19
22	38	19	39	40	19	39	40	19	39	40	19	39	40	19
21	38	19	39	40	19	39	40	19	39	40	19	39	40	19
20	34	35	36	36	35	36	36	35	36	36	35	36	36	35
19	30	31	31	31	31	31	31	31	32	32	32	32	32	32
18	18	25	25	25	25	25	25	19	29	15	19	29	15	19
17	18	25	25	25	25	25	26	2.2	22	22	22	15	15	15
16	18	25	25	25	25	25	26	21	27	27	22	15	15	15
15	18	25	25	25	25	25	26	21	27	27	22	15	15	15
14	18	25	25	25	25	25	26	2.1	27	27	22	15	15	15
13	18	25	25	25	2.5	25	26	21	27	27	22	15	15	15
12	18	25	25	25	25	25	26	21	27	27	22	15	15	15
11	18	25	25	2.5	25	2.5	26	21	27	27	22	15	15	15
10	18	25	25	25	25	25	26	21	27	27	22	15	15	15
9	18	19	19	19	19	19	20	21	21	21	22	15	15	15
8 7	14	. 15	15	15	15	15	17	17	17	17	17	15	15	15
7	14	15	15	15	15	15	15	15	15	15	15	15	15	15
6	11	12	12	12	12	12	12	12	12	15	12	12	12	18
5	7	10	10	10	10	10	10	10	10	10	10	10	10	10
4	7	8	8	8	8	8	8	8	8	8	8	8	8	8
3	4	5	5	5	5	5	5	5	5	5	5	5	5	5
3 2	4 4	5 5 2	5 2	5 2	5 5 2	5 2	5 2	5 5 2	5 2	5 2	5 2	5 2	5 5 2	5 2
1	1	5.	2	2	2	2	2	2	2	5	5	5	2	2

there is and a set an exercise with religious to compare the

15	16	17	18	19	20	21	22	23	24	25	26	27	28
51	51	51								51			51
5	5	5								5			5
			5	5	5	5		5		5	5	5	5
							40					40	49
			47		47	47		47	47	47		47	47
													44
								10					40
													40
													40
					35			35					36
													32
	15									15			15
					15								22
			15		15	15		15		15			28
15	15		15		15	15		15					28
			15		15			15					28
	15		15		15			15				23	28
								15					28
	15		15			15		15	15	15			28
	15	15			15	15		15	15	15	17	23	28
	15		15		15	15		15		15			23
	15		15										17
	15				15								15
								12		12			12
			10					10					10
	5			5					5	š	5		0
5	5	5	5	5	5	5	5	5	5	5	-	-	-
2	2	2	2	2	2	2	2	2	2	2	2	2	8 5 5 2
		51 51 5 5 5 5 49 49 47 47 43 44 39 40 39 40 39 36 32 32 29 15 15 15 15 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	51 51 51 5 5 5 5 5 5 49 49 49 47 47 47 43 44 43 39 40 19 39 40 19 36 36 35 32 32 32 29 15 19 15 1	51 51 51 51 5 5 5 5 5 5 5 5 49 49 49 49 47 47 47 47 43 44 43 43 39 40 19 39 39 40 19 39 36 36 35 36 32 32 32 32 29 15 19 29 15 1	51 51 51 51 51 51 51 5 5 5 5 5 5 5 5 5	51 51 51 51 51 51 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	51 51 51 51 51 51 51 51 51 51 51 5	51 51 51 51 51 51 51 51 51 51 51 51 5	51 51 51 51 51 51 51 51 51 51 51 51 51 5	51 51 51 51 51 51 51 51 51 51 51 51 51 5	51 51 51 51 51 51 51 51 51 51 51 51 51 5	51 51 51 51 51 51 51 51 51 51 51 51 51 5	51 51 51 51 51 51 51 51 51 51 51 51 51 5

29 51 51 51 51 51 51 51 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 63 <td< th=""><th></th><th>29</th><th>30</th><th>31</th><th>32</th><th>.33</th><th>34</th><th>35</th><th>36</th></td<>		29	30	31	32	.33	34	35	36
28 5 5 5 5 5 5 6 27 5 5 5 5 5 5 6 26 49 49 49 49 49 49 49 49 49 6 25 47 47 47 47 47 47 47 48 48 43 43 44 43 45 48 24 43 43 44 43 43 44 43 45 23 19 39 40 19 39 40 19 41 19 41 41 21 19 39 40 19 41 41 41 21 19 39 40 19 41 41 41 21 19 39 40 19 41 41 41 21 19 41	29		51			51	51	51	
26 49 48 48 48 48 48 48 49 <td< td=""><td></td><td></td><td></td><td>5</td><td></td><td>5</td><td>5</td><td>5</td><td>6</td></td<>				5		5	5	5	6
26 49 48 48 88 8 8 8 8 9 24 83 8 8 8 8 8 8 8 8 9 24 43 43 44 43 43 44 43 45 23 19 39 40 19 41 19 40 19 41 21 19 39 40 19 40 19 40 19 41 20 35 36 35 36 35 35		5	5	5	5	5		5	6
19 32° 31 31 31 31 31 31 33 18 19 19 25 25 25 25 25 24 17 22° 20° 25 25 25 25 25 24 16 28 20° 25 25 25 25 25 24 15 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 13 28 20° 25 25 25 25 25 25 24 12 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 9 23 20° 19 19 19 19 19 19 24 8 17 <td< td=""><td>26</td><td></td><td>49</td><td>49</td><td>49</td><td></td><td></td><td></td><td></td></td<>	26		49	49	49				
19 32° 31 31 31 31 31 31 33 18 19 19 25 25 25 25 25 24 17 22° 20° 25 25 25 25 25 24 16 28 20° 25 25 25 25 25 24 15 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 13 28 20° 25 25 25 25 25 25 24 12 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 9 23 20° 19 19 19 19 19 19 24 8 17 <td< td=""><td>25</td><td>A7</td><td>47</td><td>47</td><td>47</td><td></td><td></td><td></td><td></td></td<>	25	A7	47	47	47				
19 32° 31 31 31 31 31 31 33 18 19 19 25 25 25 25 25 24 17 22° 20° 25 25 25 25 25 24 16 28 20° 25 25 25 25 25 24 15 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 13 28 20° 25 25 25 25 25 25 24 12 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 9 23 20° 19 19 19 19 19 19 24 8 17 <td< td=""><td>24</td><td>43</td><td>43</td><td></td><td>43</td><td></td><td></td><td>43</td><td></td></td<>	24	43	43		43			43	
19 32° 31 31 31 31 31 31 33 18 19 19 25 25 25 25 25 24 17 22° 20° 25 25 25 25 25 24 16 28 20° 25 25 25 25 25 24 15 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 13 28 20° 25 25 25 25 25 25 24 12 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 9 23 20° 19 19 19 19 19 19 24 8 17 <td< td=""><td>23</td><td>19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	23	19							
19 32° 31 31 31 31 31 31 33 18 19 19 25 25 25 25 25 24 17 22° 20° 25 25 25 25 25 24 16 28 20° 25 25 25 25 25 24 15 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 13 28 20° 25 25 25 25 25 25 24 12 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 9 23 20° 19 19 19 19 19 19 24 8 17 <td< td=""><td>22</td><td>19</td><td>39</td><td></td><td>19</td><td>39</td><td></td><td></td><td>41</td></td<>	22	19	39		19	39			41
19 32° 31 31 31 31 31 31 33 18 19 19 25 25 25 25 25 24 17 22° 20° 25 25 25 25 25 24 16 28 20° 25 25 25 25 25 24 15 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 13 28 20° 25 25 25 25 25 25 24 12 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 9 23 20° 19 19 19 19 19 19 24 8 17 <td< td=""><td>21</td><td>19</td><td>39</td><td></td><td>19</td><td>39</td><td></td><td>19</td><td>41</td></td<>	21	19	39		19	39		19	41
19 32° 31 31 31 31 31 31 33 18 19 19 25 25 25 25 25 24 17 22° 20° 25 25 25 25 25 24 16 28 20° 25 25 25 25 25 24 15 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 14 28 20° 25 25 25 25 25 24 13 28 20° 25 25 25 25 25 25 24 12 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 10 28 20° 25 25 25 25 25 25 24 9 23 20° 19 19 19 19 19 19 24 8 17 <td< td=""><td>20</td><td>35</td><td>36</td><td>36</td><td>35</td><td>36</td><td>36</td><td>35</td><td>37</td></td<>	20	35	36	36	35	36	36	35	37
17 22 20 25 25 25 25 25 24 16 28 20 25 25 25 25 25 24 15 28 20 25 25 25 25 25 24 14 28 20 25 25 25 25 25 24 13 28 20 25 25 25 25 25 25 24 12 28 20 25 25 25 25 25 25 24 11 28 20 25 25 25 25 25 25 24 10 28 20 25 25 25 25 25 24 10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 19 24 8 17 17 15 15 15 15 15 16 7 15 15 15 15 15 15 16 8 18 18 8 8 <td< td=""><td>19</td><td>32</td><td>31</td><td>31</td><td>31</td><td>31</td><td>31</td><td>31</td><td>33</td></td<>	19	32	31	31	31	31	31	31	33
17 22 20 25 25 25 25 25 24 16 28 20 25 25 25 25 25 25 24 15 28 20 25 25 25 25 25 24 14 28 20 25 25 25 25 25 24 13 28 20 25 25 25 25 25 25 24 12 28 20 25 25 25 25 25 25 24 11 28 20 25 25 25 25 25 25 24 10 28 20 25 25 25 25 25 25 24 10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 19 24 8 17 17 15 15 15 15 15 16 7 15 15 15 15 15 15 16 8 18 18 <	18	19	19	25	25	25	2.5	25	24
13 28 20 25 25 25 25 25 24 12 28 20 25 25 25 25 25 24 11 28 20 25 25 25 25 25 24 10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 24 8 17 17 15 15 15 15 15 16 7 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 9 3 5 5 5 5 5 5 5 5 6	17	55	20	25	25	25	25	25	24
13 28 20 25 25 25 25 25 24 12 28 20 25 25 25 25 25 24 11 28 20 25 25 25 25 25 24 10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 24 8 17 17 15 15 15 15 15 16 7 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 9 3 5 5 5 5 5 5 5 5 6	16	28	20	25	25	25	25	25	24
13 28 20 25 25 25 25 25 24 12 28 20 25 25 25 25 25 24 11 28 20 25 25 25 25 25 24 10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 24 8 17 17 15 15 15 15 15 16 7 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 9 3 5 5 5 5 5 5 5 5 6	15	28	20	25	25	25	25	25	24
10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 19 24 8 17 17 15 15 15 15 15 15 16 7 15 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 3 5 5 5 5 5 5 5	14	28	20	25	25	25	2.5	25	24
10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 19 24 8 17 17 15 15 15 15 15 15 16 7 15 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 3 5 5 5 5 5 5 5	13	28	20	25	25	25	25	25	24
10 28 20 25 25 25 25 25 24 9 23 20 19 19 19 19 19 19 24 8 17 17 15 15 15 15 15 15 16 7 15 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 3 5 5 5 5 5 5 5	12	28	20	25	25	25	25	25	24
7 15 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 8 9 3 5 5 5 5 5 5 5 6	11	28	20	2.5	25	25	25	25	24
7 15 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 8 9 3 5 5 5 5 5 5 5 6		28	50	25	25	25	25	25	24
7 15 15 15 15 15 15 15 16 6 12 12 12 12 12 12 12 13 5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 8 9 3 5 5 5 5 5 5 5 6	9	23	20	19	19	19	19	19	24
6 12 12 12 12 12 12 12 13 15 16 16 16 16 16 16 16 16 16 16 16 16 16	8	17	17	15	15	15	15	15	16
5 10 10 10 10 10 10 10 9 4 8 8 8 8 8 8 9 3 5 5 5 5 5 5 6	7	15	15	15	15	15	15	15	10
4 8 8 8 8 8 8 9 9 3 5 5 5 5 5 5 6	6	12	12	12.	12	12	12		13
3 5 5 5 5 5 5 6	5	10	10						9
3 5 5 5 5 5 5 6 2 5 5 5 5 5 5 6 1 2 2 2 2 2 2 3		8	8						
1 2 2 2 2 2 2 2 3	3	5	5	5	3	3	?	?	0
1 2 2 2 2 2 2 2 3	2	5	5	2	3	2	5	3	0
	1	2	2	2.	2	2	2	2	3

```
H3
                                                                87
                                                                                    J CON PEL VEL
                          52
                         52
52
52
            21
   234567
                                      21
                                      21
                                                    52
                          52
                                      21
                                                    52
                          52
                                      21
                                                    52
                                                                                                                      0
                                                   52
                          52
                                                                                                         2 2
                                                                                                                       61
   89
                          52
            21
                                      21
                                                                                                                      Ø
                                                                                                          2
            21
                          52
                                      21
                                                    52
                         52
                                                   52
10
            21
                                      21
                                                                                                      2
                                                                                                                      0
                                                                                                         20
                         21
11
            21
                                      21
                                                   52
                                                                  -3
12
             21
                                      21
                                                    52.
                         21
 13
             21
                                      21
                                                    52
                                                                                                          2
                         21
                                                                                                                      Contraction of
             21
                                      21
                                                   21
                                                                                                         2
14
15
            21
                                      2.1
                                                   21
                                                                   0
                                                                                                         2
16
                         21
                                                   21
                                                                                                         22
             21
                                      21
                                                                                                                       0
                                      21
             21
                                                                                                                       Colored Label Commission to super
             21
                         21
                                      21
18
                                                   21
                                                                 -3
                                                                              -1
19
            21
                         21
                                      21
                                                   21
                                                                              -1
                                                                                                                       Confidence of Payor in Symposis
                                                                                                     1
            21
                         21
                                      21
                                                   21 21
20
                                                                                0
                                                                                          -1
                                                                                                                       O gate and the speciment of the state of
21
                                                                                           -1
                          21
23
            21
                         21
                                      21
                                                   21
                                                                                                                       Will be light many transport of a
                                                                              -6
             21
                         21
                                      21
                                                   21
                                                                                          -1
                                                                                                          later Court this dies assessed and there we
                                                                              -1
25
             21
                         21
                                      21
                                                   21
                                                                              -1
                                                                                           -1
                                                                                                                       Or to condition the second second
                                      21
                                                   21
26
             21
                         21
                                                                                                                       a solution and appropriate and one of the
            15
                         21
                                                   21
27
                                      21
                                                                    0
28
            21
                         21
                                      21
                                                   21
                                                                                                                     to the market of the softeness of the son
                                                                            -6
                                                                                         -1
                                                   51
29
            21
                                      15
                         21
                                                                                                                       Outsitely costs and the rest of
            21
                                      21
                             6
                                      21
             21
                                                   21
32
                             6
33
34
                                                   21
                                      21
             21
                                                   6
35
                         21
             21
                                      21
                                                                                                      1
                                                                                                                     Quality was productively and
36
37
38
39
             21
                                      21
                         21
                                                       6
                                                                                                          3
                                                                                                                       0
                         21
                                      21
                                                       6
                                                                                                          3
                                      2.1
                                                                                                          33
                                                                                                                       o a comparation of the second
             21
                         21
                                      21
                                                   21
 40
             21
                         21
                                      21
                                                   21
                                                                                                          3
                                                                                                                      Outside the season of the party of the season of the seaso
 41
             21
                         21
                                      2.1
                                                   21
                                                                                           -1
42
             21
                          52
52
                                                   21
                                                                                                                       " Today on the Yearth's love and
             21
                         52
                                      21
                                                                                                                   tario l'emplementare et l'especielle
                                                   21
                                                                                         -1
                                                                                                          3
                                                                             -1
                                                   21
            21
                          52
52
52
                                     21 21
                                                                                                                   The second of the property of the same of T
                           52
                                      21
                                                    52
52
                          52
                                      118
                                                                                                        the kollar part a leave receive accepted to
 50
             21
                          21
                                      21
                                                                                                    on the Commence of the special in the state of
 51
                                                                                                                       Out area with their facilities are now
                                                                                                                             J CON REL VEL
                                     H3 H4 BD
               HI
```

acceptant to any position

that a trace and a

MAP

Printouts for program MAP and several MAP subroutines provide six separate maps:

- 1. Boundary Map
- 2. Conductivity Map
- 3. Rotor Movement Map
- 4. Iron Map
- 5. Current Map
- 6. Dimensions Check Map

The negative problem number in the heading of the map is an indicator that a subsequent program START needs to be executed. It is noted that all six maps are made even though no useful information is provided in two maps. These maps provide the major comparison of the data structure and the simulation model specifications.

The boundary map depicts external boundaries with an E and internal boundaries or material changes with a B. The model shown, using air space above the stator and below the rotor, was intended to provide zero flux through stator-air interface above and zero flux through rotor-air interface below. This was an effort to provide the horizontal boundaries with configuration of the model rather than changing to software boundary conditions. The primary disadvantage is that grid locations in these air spaces require execution time and, perhaps, solution stability problems with larger numbers of grid points.

The conductivity map and the rotor movement map contain no useful information in this example.

In the iron map, S indicates SAE 4340 iron in the rotor and T indicates Trancor T steel in the stator. A blank indicates air.

The field current in the rotor coil is indicated with A and X on the current map. The machine was investigated for no load so no currents are shown for stator currents. The stars, or asterisks, provide information related to summation of currents at nodes adjacent to the coil.

The dimensions check map checks for consistent node spacing between the grid nodes. If all spaces are consistent, the entire map is blank except for coordinate symbols at head, left side, and bottom of map. An asterisk is an indication for a dimension error. An error in this example occurred in rows 1 and 29 because distance to node above, H2, and distance to node below, H4, were unequal values.

```
11111111112222222223333333
  123456789012345678901234567890123456
29 FEFEEEEFFFEEEEEEEEEEEEEEEEEE
28 F
27 E
24 FBR BB BB BB BB BB BB BB BB BB BB
23 FER BB ER BE BB BB BB BB BB BB BB BB
29 FBR 85 68 88 88 88 88 88 86 86 8
REPREBERBERBER D B
18 F
       BR BB BB BB BB BR FE
  E
       BRBB
                     BBBB
14
  F
       1
15
  F
         B
14
  F
  F
                           E
11 F
10 F
         R
       6
 EBRBBBBBBBB
                     BBBBBBBB
 F
4
 F
 3 E
,
 F
 FEFEEEEEEEEEEEEEEEEEEE
        11111111112222222223333333
  123456789012345678901234567890123456
```

11 1111 11 111 1111 1 1111 1 1111

CONDUCTIVITY MAP

,

LOCATION = 1 PROBLEM LJ -51

444696429395465443334

AND THE COURT OF THE SAME

ROTOR MOVEMENT MAP LOCATION = 1 PROBLEM LJ -51

```
111111111222222223333333
12345678901234567890123456
```

29

```
2
27
24
27 7 77 77 77 77 77 77 77 77 77 11 11 1
21 T TT TT TT TT TT TT TT TT T1 11 11
26 T TT TT
19
18
      55 SS SS SS SS SS
17
      14
        *5555$$$5555555
        $$$$$$$$$$$$$$$$
15
        SSSSSSSSSSSSS
14
13
        17
        SSSSSSSSSSSSS
        SSSSSSSSSSSSS
11
10
        SSSSSSSSSSSSSS
        SSSSSSSSSSSS
* 585858585859555555555555666858585858
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
```

CURRENT MAP LOCATION = 1 PROBLEM LJ -51

111111111222222223333333 12345678901234567890123456789012*456

24 25 24 27 21 200 18 17 14 *AAA* *XXX* 15 *AAA* *XXX* 14 *AAA* *XXX* 13 *XXX* *AAA* 1? *AAA* *XXX* -XXX 11 *AAA* *AAA* *XXX* *AAA* * (XX) * *****

2ª 2ª 27

DIMENSTONS CHECK LOCATION = 1 PROBLEM LJ -51

START AND SOLVE

The program START takes the configuration specification which has been input and checked by previous programs and provides an initial solution to magnetic vector potentials in the A matrix. After loading, an input on the keyboard of the negative value of problem number performs the initialization calculations. The problem number is changed to a positive value as the indication that this program was executed.

The next output comes from execution of the program SOLVE. This output indicates that the conditions for solution were reached after iteration 149.

The conditions of solution were achieved, but the number of iterations is wrong. A previous execution of SOLVE went through an estimated 100 iterations prior to this run. This procedure provides an analysis much closer to the acceptable solution than that provided by Program START. The reloading and restarting of SOLVE execution were required to retain table of Beta values which depends on logic path where the value of Flux is equal to the maximum and minimum value of the vector magnetic potentials. The Beta values of 50 are used as keys to subroutines to recalculate the reluctivities.

Printout of asterisk and period provides location pointers at the beginning of the program SOLVE. During the interval between the asterisk and period, the algorithm provides a real variable printout of Beta. If the Beta printout is zero, a recalculation of reluctivities is not done. If Beta is 50, then a recalculation of reluctivities is done and the parameters of subroutine RELSET are printed out. It was noted later that this parameter listing duplicates information shown in the 5-line printout for each iteration.

Subroutine RELSET parameters are:

PREV, PSREV, IIDR, IISDR, NNDR, NNSDR, MXI, MXJ.

The 5-line printout for each iteration is described in the chart:

Line 1		
1.	ITER	Iteration Number
2.	RMAX	Maximum Residual
3.	RMSR	RMS Residual
4.	CCR	Ave value of R
5.	NNSDR	% of nodes that DR ≥ 0.05 RELSET
	N	
6.	NNDR	% of nodes that DR ≤ 0.05

Line 2		
1.	(IMR,	Coordinate of RMAX
2.	JMR)	Coordinate of RMAX
3.	IISDR	Ave value of nodes that DR ≥ 0.05 RELSET
	Y	
4.	IIDR	Ave value of nodes that $ DR < 0.05$
Line 3		
1.	(IMRE,	Coordinate of RMAXE
2.	JMRE)	Coordinate of RMAXE
3.	(IMDRR,	Coordinate of DR max RELSET
4.	JMDRR)	Coordinate of DR max
Line 4	panotremporary	eki terminin diptemi ditapi ditapi di kanalari. Kempahan di karangan di kempahan di kempanan di kanalari di kempanan di kempanan di kempanan di kempanan di ke
1.	(IMR,	to see the control of the second of the seco
2.	JMR)	e paragoliana. 1921 il antre comune attito del altri il acceptanto estillo est
3.	GOAL	and the state of t
Line 5	out of contractor	of the great world to the sail of the sail
1.	RMAXE	Maximum Residual
2.	RMSRE	RMS Residual
3.	CCRE	Ave value of R
4.	DELMAX	
5.	RMSDEL	
6.	CCDEL	
7.	IOSR/PSREV	% of sign reversals DR < 0.05 RELSET
	R	
8.	IOR/PREV	% of sign reversals above saturation
9.	NCOND	English Control of The Literature and
10.	NAPPL	
11.	IOB/BETA	Beta = TDB (1, 2)
12.	EDDY	
13.	IPTDB	District the second and the second se

TO CALAD THE THORNESS TO ST.

```
$//ABSD, 15, 120, 65140, 1000
$//REW, 14
$//REW, 15
$//ABSL, 14
$//GO
THIS IS THE DISC VERSION D 18JUNE 73 RESTART
$999
RECALCULATE RELUCTIVITIES
$000
ENTER ITERATION LIMIT
$ 10
PRINT EVERY STEP
ITER RMAX RRMS
                    RCCR
                            DMAX
                                 DEMS DCCC
                                              REL OK BA B UB.E.C. PT
FLUX
       .978599E-01
  0.00
 45.01
        39.90 2 72 7 92 27 25
-2 1.E 02 2.E 01 6.E 00
                                               92 1 7
   (1,10)
                                               72 V 2
                                              (27,25)
   6.E-05 7.E-06 3.E-06 3.E-04 2.E-04 1.E-04 39845 1 1
                                                              0 0.E 00 1
  0.00
-1 2.E 02 2.E 01 6.E 00
                                               92 N 7
  (1,11)
                                               721 2
                                              ( 0, 0)
   2.E-04 1.E-05 4.E-06 S.E-04 3.E-04 2.E-04 39R45 0 0
                                                           50 0.E 00 2
 50.00
 44.65 40.05 1 75 6 93 27 25
 # 7.E 02 9.E 01 3.E 01
                                              93 V 6
75 V 1
  (28,25)
                                              (27,25)
   1.5-02 1.E-03 3.E-04 4.E-02 5.E-03 1.E-03 40R44 0 1
  0.00
1 3.E 02 4.E 01 2.E 01 (27,26) (36,25)
                                              93 4 6
                                             75V 1
  2.E-03 1.E-04 4.E-05 5.E-03 8.E-04 5.E-04 40R44 0 2
                                                             0 0.E 00 3
```

```
0.00
                                             93 N 6
75V 1
( 0, 0)
2 3.E 02 4.E 01 1.E 01
 (1,10)
 (13, 6)
 (13, 6) (13, 6) 2.E-04
9.E-04 8.E-05 3.E-05 2.E-03 4.E-04 2.E-04 40R44 0 3
                                                             0 A.E 00 3
 0.00
                                             93 N 6
75V I
( Ø, Ø)
3 2.E 02 3.E 01 1.E 01
 (1,10)
 ( 2,25)
  3.E-04 3.E-05 2.E-05 6.E-04 1.E-04 6.E-05 40R44 1 3
 0.00
22.25
        19.50 2 68 11 89 25 22
4 1.E 02 2.E 01 7.E 00
                                               89NI 1
                                               68V 2
 (36, 12)
                                              (25,22)
 (36,25)
 1.E-04 9.E-06 5.E-06 2.E-04 6.E-05 4.E-05 19R22 0 0 50 0.E 00
50.00
22.25 19.50 2 68 11 88 25 22
5 7.E 02 9.E 01 3.E 01
                                              88 NI I .
 (35,24) (25,21)
                                              (25,22)
  7.E-03 1.E-03 3.E-04 3.E-02 4.E-03 1.E-03 19R22 0 1
 0.00
6 1.E 03 8.E 01 2.E 01
                                               88N1 1
                                             68V 2
( 0, 0)
 (22,20)
 (1,25)
  4.E-03 2.E-04 7.E-05 8.E-03 8.E-04 3.E-04 19R22 0 2
 0.00
7 2.E 02 2.E 01 1.E 01
                                               88 NI 1
                                              68V 2
 (35,25)
  2.E-03 3.5-05 3.E-05 3.E-05 3.E-04 2.E-04 19R22 0 3 0 0.E 00 4
```

```
0.00
  8 2.E 02 2.E 01 8.E 00
                                               88NI 1
   (36,10)
                                                  68V 2
    ( 2,25)
                                                 ( 0, 0)
                          (35,25) 1.E-04
    6.E-04 4.E-05 1.E-05 1.E-03 2.E-04 2.E-04 19R22 0 3 0 0.E 00 4
   0.00
  38.84 35.35 2 63 10 89 21 21
  9 2.E 02 2.E 01 7.E 00
                                                 89NI 0
   (36,10)
                                                  63 V 2
                                                (21,21)
    ( 2,25) 1.E-04
4.E-04 3.E-05 1.E-05 1.E-03 8.E-05 4.E-05 35R38 1 3 0 0.E 00 4
   0.00
 10 9.E 01 1.E 01 6.E 00
                                                 89110
   (35,10)
                                                 63 V 2
                                              (0,0)
 (4,24) 1.E-04
1.E-04 8.E-06 4.E-06 9.E-04 3.E-04 2.E-04 35R38 0 3
ITERATION LIMIT. DUMP & RELOAD TO CONTINUE
BUFFER CLEARED. SETUP RECORDED.
DATA WRITTEN ON TAPE
THIS IS THE DISC VERSION D 18JUNE73
FORTRAN STOP
$//ABSD, 15, 120, 65140, 1000
S//REW, 14
$//REV, 15
$//ABSL,14
$//GO
THIS IS THE DISC VERSION D 18JUNE73
$000
ENTER ITERATION LIMIT
5020
PRINT EVERY STEP.
ITER RMAX RRMS ROCK DMAX
                                    DAMS DOCC
                                                REL OK BA B UB.E.C. PT
   0.00
 11 3.5 02 3.E 01 7.7 00
                                                 89110
   (1,10)
                                                 637 2
   (1,23)
   2.E-04 2.E-05 6.E-06 4.E-04 1.F-04 1.F-04 35R38 1 3 0 0.E 00 4
```

```
0.00
       35.50 2 66 8 91 16 24
 39.21
12 2.E 02 2.E 01 6.E 00
                                              911 8
                                              66V 2
  (36,10)
                                             (16,24)
   (36,12) 1.E-04
8.E-05 1.E-05 5.E-06 2.E-04 4.E-05 3.E-05 35R39 0 0 50 0.E 00 5
 50.00
                          8 91 16 24
 39.07
        35.58 2 66
13 3.E 02 5.E 01 2.E 01
                                              91 N 8
  (33,25)
                                              66V 2
                                             (16,24)
  (16,24)
  (3,25) 1.E-04
8.E-03 8.E-04 2.E-04 2.E-02 3.E-03 7.E-04 35R39 0 1
                                                            0 0.E 00 5
  0.00
                  1 53 12 87 15 23
 26.17
        22.82
                                              87112
14 4.E 02 3.E 01 1.E 01
                                              53 V 1
   (16,20)
                                             (15,23)
   (35,25)
                       ( 1,25) 1.E-04
   3.E-03 1.E-04 3.E-05 6.E-03 4.E-04 1.E-04 22R26 0 2
                                                            0 0.E 00 5
  0.00
 28.57 24.33 2 56 15 84 18 24
                                              84 NI 5
 15 1.E 02 2.E 01 8.E 00
                                              56V 2
   (1,28)
                                             (18,24)
    (35,25) 1.E-04
1.E-03 6.E-05 1.E-05 3.E-03 2.E-04 7.E-05 24R28 1 3
   0.00
  28.35
          24.55
                  1 55 12 87 18 24
                                              87N12
 16 1.E 02 2.E 01 7.E 00
                                             55V 1
(18,24)
   (36,10)
                        ( 2,25) 1.E-04
    3.E-04 2.E-05 6.E-06 5.E-04 9.E-05 7.E-05 24R28 0 0 50 0.E 00
  50.00
          24.28 1 56 13 86 18 24
  28.51
                                               86N13
 17 3.E 02 4.E 01 1.E 01
                                               56V 1
   (19,23)
                                              (18,24)
    6.E-03 5.E-04 1.E-04 9.E-03 1.E-03 4.E-04 24R28 0 1
```

```
0.00
 18 1.E 02 3.E 01 1.E 01
                                                         86N13
    (1,10)
                                                         56V 1
                                                        ( 0, 0)
     (22,24) 1.E-04
4.E-03 3.E-04 6.E-05 6.E-03 6.E-04 2.E-04 24R28 0 2 0 0.E 00 6
    0.00
 19 9.E 01 1.E 01 6.E 00
                                                         86N13
    (35,27)
                                                         56V 1
    (1,25)
                                                        ( 0, 0)
     (35,25) 1.E-04
5.E-04 2.E-05 6.E-06 1.E-03 2.E-04 2.E-04 24R28 0 3 0 0.E 00 6
    0.00
 20 2.E 02 2.E 01 7.E 00
                                                         86N13
                                       56V 1
    (36,27)
    ( 2,25)
                                                        (0,0)
(2.25) 1.E-04

2.E-04 2.E-05 6.E-06 3.E-04 8.E-05 6.E-05 24R28 1 3 0 0.E 00 6

ITERATION LIMIT. DUMP & RELOAD TO CONTINUE

BUFFER CLEFRED. SETUP RECORDED.

DATA WRITTEN ON TAPE

THIS IS THE DISC VERSION D 18JUNE73
FORTRAN STOP
$//ABSD, 15, 120, 65140, 1000
S/REV, 14
S/REV, 15
S//ABSL, 14
$//GO
THIS IS THE DISC VERSION D 18JUNE 73
5000
ENTER ITERATION LIMIT
$050
PRINT EVERY STEP
ITER RMAX RRMS
                        RCCR DYAX
                                                        REL OK BA B UB.E.C. PT
                                         DAME DOCC
   0.00
  26.55 20.13 1 40 16 83 19 24
21 1.E M2 2.E M1 6.E 00
                                                       83 11 6
   (36,29)
                                                       40V 1
                                                       (19,24)
    (34,24)
(2,25) 1.E-04
9.E-05 1.E-05 4.E-06 2.E-04 3.E-05 2.E-05 20R26 0 0 50 0.E 00 7
```

```
50.00
 26.77 20.13 2 41 17 82 19 24
                                           82 N1 7
22 2.E 02 2.F 01 9.E 00
                                           41V 2
  (19,23)
                                          (19,24)
  (19,24)
 (19,24) 9.F-05
6.E-03 4.E-04 6.E-05 8.E-03 6.E-04 2.E-04 20R26 0 1 0 0.E 00 7
  0.00
23 1.E 02 1.E 01 6.E 00
                                           82 NI 7
  (1,27)
                                           41V 2
  (18,25)
                                          (0,0)
                     (18,25) 9.E-05
  2.E-03 9.E-05 1.E-05 3.E-03 2.E-04 7.E-05 20R26 1 2
                                                       0 C.E 00 7
  0.00
 16.26 11.36 2 30 16 83 19 22
24 1.E 02 2.E 01 6.E 00
                                           83 NI 6
  (36,27)
                                          38V 2
                                       (19,22)
  (17,25)
  (17,25) 9.E-05
5.E-04 2.E-05 6.E-06 6.E-04 5.E-05 4.E-05 11R16 0 0 50 0.E 00 8
 50.00
       10.91 2 30 17 82 19 22
 16.04
25 1.E 02 2.E 01 7.E 00
                                           82 NI 7
  (19,23)
(19,24)
                                           30V 2
                                      (19,22)
  3.E-03 2.E-04 3.E-05 3.E-03 3.E-04 1.E-04 10R16 0 1 0 0.E 00 8
  0.00
26 2.5 02 2.E 01 6.E 00
                                           82 N1 7
                                           30V 2
  (1,27)
  (19,22)
                                         (0,0)
  (19,22) 8.F-05
1.E-03 7.E-05 1.E-05 2.E-03 2.E-04 1.E-04 10R16 0 2
  0.00
                                    BE TO THE MADE A DILLAR
27 3.E 02 2.E 01 7.E 00
                                           82 NI 7
  (19,20)
                                           30V 2
                                          (0,0)
                      (18,25) 8.E-05
 1.E-03 4.E-05 9.E-06 1.E-03 7.E-05 3.E-05 10R16 1 3 0 0.E 00 8
```

```
0.00
28 1.E 02 1.E 01 5.E 00
                             82 VI 7
  (36,29)
                                        30V 2
                                       (0,0)
   4.E-05 5.E-06 3.E-06 3.E-04 1.E-04 10816 0 3
  0.00
29 2.E 02 2.E 01 5.E 00
                                        82 NI 7
  (36,27) (25,24)
                                        30V 2
                                       (0,0)
   5.E-05 7.E-06 3.E-06 2.E-04 7.E-05 6.E-05 10R16 1 3
  0.00
30 1.E 02 2.E 01 5.E 00
                                        82N17
  (1,27)
                                        3011 2
  (1, 9)
                                       (0,0)
   4.E-05 6.E-06 3.E-06 1.E-04 3.E-05 2.F-05 10R16 0
                                                    50 0.E 00 9
 50.00
 10.94
         7.81 1 25 17 82 18 23
31 1.E 02 1.E 01 6.E 00
                                        82 NI 7
  (1,29)
  (19,24)
                                       (18,23)
9.E-04 7.E-05 2.E-05 2.E-03 3.E-04 8.E-05 7R10 0 1 0 0.E 00 9
32 1.E 02 1.E 01 5.E 00
                                        (36,26)
                                        25V 1
                                       ( 0, 0)
(36,25) 7.E-05
4.E-04 2.E-05 4.E-06 7.E-04 6.E-05 4.E-05 7RIO 1 2 0 0.E 00 9
 0.00
33 1.E 02 1.E 01 5.E 00
                                        82 NI 7
 (36,27)
                                       25V 1
                                       (0,0)
2.E-04 7.E-06 3.E-06 3.E-04 4.E-05 3.E-05 7RIO 0 0 50 0.E 00 10
```

```
50.00
 14.73 10.71 2 25 20 79 19 24
34 1.E 02 2.E 01 6.E 00
( 1,27)
( 5,25)
                                               79420
                                               25V 2
                                              (19,24)
   ( 5,25) 6.E-05
5.E-04 6.E-05 2.E-05 3.E-03 3.E-04 1.E-04 10R14 Ø 1
                                                              0 0.F 00 10
  0.00
35 1.E 02 2.E 01 5.E 00
                                               79 N2 Ø
(1,27)
                                               25V 2
                                              (0,0)
                        ( 1,25) 6.E-05
   4.E-04 3.E-05 7.E-06 9.E-04 1.E-04 1.E-04 10R14 0 2
                                                            0 0.E 00 10
  0.00
                                               79120
36 2.E 02 2.E 01 5.E 00
  (36,27)
                                               25V 2
  (34,24)
                                            ( 0, 0)
   (2,25) 6.E-05
1.E-04 1.E-05 5.E-06 3.E-04 3.E-05 2.E-05 10R14 1 3 0 0.E 00 10
  0.00
37 1.E 02 1.E 01 4.E 00
                                                79N20
  (36,29)
                                               25V 2
                                               ( 0, 0)
   4.E-05 4.E-06 2.E-06 3.E-04 1.E-04 1.E-04 10R14 0 3 0 0.E 00 10
  0.00
                                                79N20
38 2.E 02 2.E 01 5.E 00
  (1,27)
                                               25V 2
                                               ( 0, 0)
   ( 1,26) 6.E-05
5.E-05 6.E-06 3.E-06 2.E-04 6.E-05 5.E-05 10R14 1 3 0 0.E 00 10
  0.00
                                                79N2 Ø
39 1.E 02 1.E 01 4.E 00
                                               25V 2
  (1,27)
                                               ( 0, 0)
 (35,26) 6.E-05
4.E-05 5.E-06 2.E-06 1.E-04 2.E-05 1.E-05 10R14 0 0 50 0.E 00 11
```

```
50.00
  25.45 15.63 1 22 20 79 5 25
 40 9.E 01 1.E 01 4.E 00
                                                      79 N2 0
    (36,29)
                                                      22 V 1
    (20,25)
                                                     ( 5,25)
    3.E-04 3.E-05 9.E-06 1.E-03 2.E-04 5.E-05 15R25 1 1
                                                                    0 0.E 00 11
   0.00
 41 9.E 01 1.E 01 4.E 00
                                                      79120
   (36,27)
                                                      22 V 1
                                                     (0,0)
                           ( 2,25) 5.E-05
     1.E-04 7.E-06 3.E-06 2.E-04 4.E-05 3.E-05 15R25 Ø Ø 50 0.E 00 12
  50.00
  13.39
             9.15 1 13 27 72 2 24
 42 1.E 02 1.E 01 4.E 00
                                                      72 N2 7
   (1,27)
                                                      13 V 1
    (20,25)
                                                     (2,24)
  (3,25) 4.E-05
2.E-04 1.E-05 5.E-06 3.E-04 4.E-05 3.E-05 9RI3 1 1
                                                                    0 0.E 00 12
   0.00
 43 9.E ØI 1.E ØI 4.E ØØ
                                                      72 12 7
   (1,27)
                                                      13 V 1
   (13, 18)
                                                     (0,0)
 (35,25) 4.E-05
4.E-05 4.E-06 2.E-06 1.E-04 5.E-05 4.E-05 9RI3 0 0 50 0.E 00 13
BUFFER CLEARED. SETUP RECORDED.
DATA WRITTEN ON TAPE
THIS IS THE DISC VERSION D 18JUNE73
FORTRAN STOP
$//ABSD, 15, 120, 65140, 1000
$RESETTING SYSTEM
S//RESET
RESETTING SYSTEM
$//ATT,4,TTY
$//ATT,14,LT7,RELOAD,DISC 25 FEB 76
$//ATT,15,LT8,RELOAD,DISC
$//ABSL,14
$//GO
THIS IS THE DISC VERSION D 18JUNE73
$000
ENTER ITERATION LIMIT
PRINT EVERY STEP
```

```
XAPC
                              DAME DCCC REL OK B' 3 UB.E.C. PT
ITER RMAX RPMS
 50.00
  8.26
           .67 1 11 28 71 14 25
44 1.E 02 1.E 01 4.E 00
                                           71 N2 8
  (36,27)
  (2,25)
                                           (14,25)
                       ( 2,25) 4.E-05
  9.E-05 9.E-06 4.E-06 3.E-04 8.E-05 7.E-05 CR 3 7 1
  9.00
45 1.E 02 1.E 01 4.E 00
                                            71128
                                            117 1
  (36,28)
  (14,17) (36,25) 4.E-05
                                           (0,0)
  6.E-05 6.E-06 3.E-06 1.E-04 2.E-05 1.E-05 OR 8 1 2 0 0.E 00 13
  0.00
 46 7.E 01 8.E 00 3.E 00
                                           71 N2 8
                                            11V 1
  (1,29)
 (1,25) (0,0)
(27, 9) 4.E-05
2.E-05 3.E-06 1.E-06 2.E-04 1.E-04 9.E-05 0R 8 0 3 0 0.E 00 13
  0.00
47 1.E 02 1.E 01 4.E 00
                                            71 N2 8
11 V 1
  (1,27)
(1,24)
                                           (0,0)
 ( 1,24) 4.E-05 ( 0, 0)
7.E-05 5.E-06 2.E-06 2.E-04 4.E-05 3.E-05 0R 8 1 3 0 0.E 00 13
  0.00
 48 9.E 01 1.E 01 3.E 00
                                           71 N2 8
                                          110 1
   (36,27)
   (36, 9)
   (36, 9) 4.E-05
3.E-05 4.E-06 2.E-06 7.E-05 2.E-05 1.E-05 0R 8 0 0 50 0.E 00 14
  50.00
  10.49
          3.57 1 11 23 76 19 18
                                  76N23
 49 7.E 01 7.E 00 3.E 00
                                           117 1
   (36,29)
                                      (19,18)
   (33.25) 3.E-05
5.E-05 7.E-06 3.E-06 3.E-04 3.E-05 2.E-05 3R10 1 1 0 0.E 00 14
```

```
0.00
50 6.E 01 7.E 00 3.E 00
                                            76N23
                                            11V 1
  ( 1,25)
                                           (0,0)
  (35, 9) 3.F-05
4.E-05 3.E-06 2.E-06 6.E-05 3.E-05 2.E-05 3RI0 0 0 50 0.E 00 15
50.00
  8.48
         3.79 1 10 27 72 2 24
51 7.E 01 8.E 00 3.E 00
                                            72 N2 7
  (1,27)
                                            100 1
                                           ( 2,24)
  7.E-05 7.E-06 3.E-06 3.E-04 4.E-05 2.E-05 3R 8 1 1
                                                        0 0.E 00 15
 0.00
52 6.E 01 7.E 00 3.E 00
                                            72 N2 7
  (36,29)
                                            100 1
                                           ( 0, 0)
              (36,25) 3.E-05
  4.E-05 3.E-06 2.E-06 1.E-04 4.E-05 3.E-05 3R 8 0 2
                                                          Ø 0.E 00 15
 0.00
53 7.E.01 8.E 00 3.E 00
                                            72127
                                            10V 1
  (36,27) (28,24)
                                           (0,0)
  (7,24) 3.E-05
3.E-05 3.E-06 1.E-06 1.E-04 7.E-05 6.E-05 3R 8 0 3 0 0.E 00 15
  0.00
54 8.E 01 9.E 00 3.E 00
                                           10V 1
( 0, 0)
  ( 1,27)
  (1,23)
  3.E-05 3.E-06 1.E-06 7.E-05 1.E-05 8.E-06 3R 8 1 3
 0.00
55 6.E 01 6.E 00 2.E 00
                                            72 N2 7
  (1,29)
                                            10V 1
                                           ( 0, 0)
                   (33,22) 3.E-05
   2.E-05 2.E-06 1.E-06 2.E-04 9.E-05 7.E-05 3R 8 0 3
  0.00
56 9.E 01 1.E 01 3.E 00
                                            72 N2 7
  (36,27)
                                            10V 1
  (36, 9)
                                           ( 0, 0)
                    (36,11) 3.E-05
   3.E-05 4.E-06 1.E-06 8.E-05 3.E-05 3.E-05 3R 8 1 3
```

```
0.00
57 6.E 01 9.E 00 3.E 00
                                            72 N2 7
                                           (0, 0)
  (36, 19)
  (36, 9)
                      ( 1,20) 3.E-05
  2.E-05 3.E-06 1.E-06 8.E-05 1.E-05 9.E-06 3R 8 C 0 50 0.E 00 16
 50.00
 11.38 6.47 1 11 20 79 29 25
58 5.E 01 6.E 00 3.E 00
                                            79120
  (1,29)
                                             117 1
  (29,25)
                                           (29,25)
                     (29,25) 2.E-05
  4.E-05 5.E-06 3.E-06 2.E-04 3.E-05 2.E-05 6P11 1 1 0 0.E 00 16
  0.00
59 4.E 01 6.E 00 2.E 00
                                             79N20
  (35,29)
                                             111 1
                                           ( 0, 0)
  (1, 9)
 (35, 9) 2.E-05
1.E-05 2.E-06 1.E-06 5.E-05 3.E-05 2.E-05 GRII 0 0 50 0.E 00 17
 50.00
        1.79 1 9 26 73 22 18
  6.92
60 5.E 01 6.E 00 3.E 00
                                             73 NE 6
  (36,27)
                                             9V 1
                                            (22, 18)
 3.E-05 4.E-06 2.E-06 1.E-04 2.E-05 2.E-05 IR 6 1 1
                                                         0 0.E 00 17
  0.00
61 4.E 01 6.E 00 2.E 00
                                             73 126
  (36,29)
                                             94 1
                                           ( 0, 0)
   ( 4,24) 2.E-05
2.E-05 2.E-06 1.E-06 6.E-05 3.F-05 3.E-05 IR 6 0 2 0 0.E 00 17
  0.00
62 5.E 01 7.E 00 2.E 00
                                             73 12 6
  (1,27)
                                            9 1
 2.E-05 2.E-06 1.E-06 1.E-04 7.E-05 6.E-05 IR 6 0 3
  0.00
63 6.E 01 8.E 00 2.E 00
                                             73 N2 6
                                            97 1
  (1,10)
   6.E-05 4.E-06 1.E-06 8.E-05 1.E-05 7.E-06 IR 6 1 3 0 0.E 00 17
```

```
0.00
64 3.E 01 5.E 00 2.E 00
                                               73 126
  (36,29)
                                              90 1
  ( 8,21) 2.E-05
1.E-05 2.E-06 9.E-07 1.E-04 7.E-05 6.E-05 IR 6 0 3
  0.00
65 7.E 01 9.E 00 2.E 00
                                               73 126
                                              9V 1
( 0, 0)
  (36, 10)
   (36, 9)
  (36,10) 2.E-05
3.E-05 3.E-06 1.E-06 9.E-05 3.E-05 3.E-05 1R 6 0 3 0 0.E 00 17
  0.00
66 5.E @1 7.E ØØ 2.E ØØ
                                               73 N2 6
                                                9V 1
  (1,10)
                                              ( 0, 0)
  (1,24)
   (36, 9) 2.E-05
4.E-05 3.E-06 1.E-06 6.E-05 1.E-05 7.E-06 1R 6 1 3 0 0.E 00 17
  0.00
67 3.E Ø1 5.E ØØ 2.E ØØ
                                               73 N2 6
                                                9V 1
  (35,29)
  (1, 9)
                                              (0,0)
                        (35, 9) 2.E-05
 1.E-05 2.E-06 9.E-07 4.E-05 1.E-05 1.E-05 1R 6 0 0 50 0.E 00 18
 50.00
        2.88 1 11 19 80 25 17
68 3.E 01 5.E 00 2.E 00
                                               SUNIS
  (36,29)
                                               11V 1
  (13, 18)
                                              (25, 17)
   8.E-05 7.E-06 3.E-06 1.E-04 3.E-05 2.E-05 2R 5 0 1
                                                              0 0.E 00 18
  0.00
69 4.E 01 5.E 00 2.E 00
                                               80 VI 9
  (36,27)
                                              111 1
  (14, 17)
                                              ( 0. 0)
   2.E-05 3.E-06 1.E-06 4.E-05 2.E-05 1.E-05 2R 5 1 2
                                                              0 0.E 00 18
  0.00
70 3.E 01 5.E 00 2.E 00
                                               80119
  (1,27)
                                               1111
                                              (0,0)
 (26, 9) 2.E-05
1.E-05 2.E-06 1.E-06 6.E-05 3.E-05 3.E-05 2R 5 0 3 0 0.E 00 18
```

```
0.00
71 4.E 01 5.E 00 2.E 00
                                             BONI 9
  (1,27)
                                            ( 0, 0)
                       (27,10) 2.E-05
 4.F-05 2.E-06 1.E-06 1.E-04 5.E-05 4.E-05 2R 5 0 3 0 0.E 00 18
  0.00
72 5.E 01 7.E 00 2.E 00
                                              80119
                                              111 1
  (36, 9)
                                             ( 0, 0)
                       (36, 9) 2.E-05
  2.E-05 2.E-06 1.E-06 6.E-05 1.E-05 6.E-06 2R 5 1 3 0 0.E 00 18
  0.00
73 3.E 01 4.E 00 2.E 00
                                             80N19
                                             117 1
  (36,29)
  (36, 9)
  9.E-06 1.E-06 8.E-07 1.E-04 7.E-05 5.E-05 2R 5 0 3 0 0.E 00 18
  0.00
74 6.E 01 7.E 00 2.E 00
                                              80N19
  (1,10)
                                              11V 1
                                             ( 0, 0)
  ( 1,24) 2.₹-05
5.E-05 3.E-06 1.E-06 9.E-05 3.E-05 3.E-05 2R 5 0 3 ● 0.E 00 18
  0.00
75 5.E 01 6.E 00 2.E 00
                                            80N19
                                              11V 1
  (1,10)
                                             ( 0, 0)
   ( 1,19) 2.E-05
2.E-05 2.E-06 9.E-07 6.E-05 1.E-05 7.E-06 2R 5 1 3 P 0.E 00 18
  0.00
76 3.E 01 4.E 00 2.E 00
                                              BPNI 9
                                              11V 1
  (36,29)
  (1, 9)
   (36,20) 2.E-05
8.E-06 1.E-06 7.E-07 3.E-05 1.E-05 8.E-06 2R 5 0 0 50 0.E 00 19
 50.00
  3.10
          1.11 1 12 15 84 24 17
77 2.E 01 4.E 00 2.E 00
                                              84 NI 5
  (2,29)
                                              12 V 1
                                             (24,17)
  2.E-04 1.E-05 3.E-06 2.E-04 3.E-05 2.E-05 1R 3 0 1
```

```
0.00
78 3.E 01 5.E 00 2.E 00
                                                84N15
                                             12V 1
                                               (0,0)
   (13.18) 2.5-05
1.E-04 6.E-06 2.E-06 2.E-04 2.E-05 1.E-05 1R 3 1 2
  0.00
79 3.E 01 4.E 00 2.E 00
(1,27)
                                                84:115
                                                12V 1
                                              (0,0)
   ( 1,24) 2.E-05
2.E-05 2.E-06 1.E-06 6.E-05 2.E-05 2.E-05 1R 3 0 3 0 0.E 00 19
  0.00
80 4.E 01 5.E 00 2.E 00
                                                84 VI 5
  (36, 10)
                                                12 V 1
                        (27,13) 2.5-05
   1.5-05 2.E-06 8.E-07 7.E-05 4.E-05 3.E-05 IR 3 0 3 0 0.E 00 19
81 4.E 01 5.E 00 2.E 00
                                                84N15
  (36, 10)
                                                12V 1
                                               ( 0, 0)
   2.E-05 2.E-06 9.E-07 5.E-05 9.E-06 5.E-06 IR 3 1 3 0 0.E 00 19
  9.99
82 3.E 01 4.E 00 1.E 00
                                                84 NI 5
                                                12V 1
  (36, 9)
  7.E-06 1.E-06 7.E-07 1.F-04 7.E-05 5.E-05 1R 3 0 3 0 0.E 00 19
  P.00
83 6.E 01 6.E 00 2.E 00
                                                84 NI 5
                                               12V 1
( 0, 0)
  ( 1,23)
   3.F-05 3.E-06 1.E-06 7.E-05 2.E-05 2.E-05 1R 3 0 3
  0.00
                                               84 NI 5
12 V I
( 0, 0)
84 4.E 01 5.E 00 2.E 00
  (36,10)
   (36,12) 2.E-05
1.E-05 2.E-06 8.E-07 4.E-05 9.E-06 6.F-06 1R 3 1 3 0 0.E 00 19
```

```
0.00
85 2.E 01 4.E 00 1.E 00
                                              84N15
  (36,29)
                                              12V 1
  ( 1, 9)
                                             ( 0, 0)
                       ( 2,12) 2.E-05
   8.E-06 1.F-06 S.E-07 3.E-05 1.E-05 7.E-06 IR 3 0 0 50 0.E 00 20
 50.00
  1.55
           .88 1 13 15 84 25 17
86 2.F. 01 4.E 00 2.E 00
                                              84N15
  (1,10)
(25,17)
                                              13V 1
                                             (25, 17)
   2.E-04 1.E-05 3.E-06 3.E-04 4.E-05 2.E-05 ØR 1 Ø 1 Ø Ø.E ØØ 20
  0.00
87 4.E 01 4.E 00 2.E 00
                                              84115
                                             13V 1
(0,0)
  ( 1,27)
   6.E-05 4.E-06 2.E-06 8.E-05 1.E-05 0R 1 1 2
                                                            0 0.E 00 20
  0.00
88 3.E 01 4.E 00 1.E 00
                                              84 N1 5
                                              13V 1
  (36,27)
                                             ( 0, 0)
  (25, 18)
   (32,12) 1.E-05
2.E-05 2.E-06 9.E-07 4.E-05 2.E-05 2.E-05 0R 1 0 3
  0.00
89 3.E 01 4.E 00 1.E 00
                                              84 NI 5
  (36,10)
                                              13V 1
                                             (0,0)
   2.E-05 2.E-06 7.E-07 7.E-05 4.E-05 3.E-05 OR 1 0 3
                                             84 VI 5
13 V 1
( 0, 0)
90 4.5 01 5.5 00 1.5 00
  (1,10)
   3.5-05 2.5-06 8.5-07 4.5-05 7.5-06 4.5-06 OR 1 1 3 0 0.5 00 20
                                              84N15
91 2.E 01 3.E 00 1.E 00
  (1,29)
                                             (0, 0)
   7.E-06 1.E-06 6.E-07 1.E-04 5.E-05 4.E-05 CR 1 0 3
```

```
0.00
92 4.E 01 5.E 00 2.E 00
                                       84 VI 5
  (36, 18)
                                       13 1
  (14,17)
                                      (0,0)
  (36,18) 1.E-05
1.E-05 2.E-06 9.E-07 5.E-05 2.E-05 1.E-05 OR 1 0 3 0 0.E 00 20
  0.00
93 3.E 01 4.E 00 1.E 00
                                      84415
                                       13 V 1
                                      ( 0, 0)
   (36,14) I.E-05
1.E-05 2.E-06 7.E-07 4.E-05 8.E-06 5.E-06 OR I I 3 0 0.E 00 20
94 2.E 01 3.E 00 1.E 00
                                   84 N1 5
  ( 1,29)
                                     13V 1
  (1, 9)
                                      (0,0)
                   (36,24) 1.E-05
  9.E-06 1.E-06 5.E-07 3.E-05 9.E-06 6.E-06 OR 1 0 0 50 0.E 00 21
 50.00
  3.98 1.11 1 13 17 82 13 17
95 2.E 01 4.E 00 2.E 00
                                 82 N1 7
  ( 9,24)
                                      13 1 1
  (25,18)
                                     (13,17)
 1.E-04 1.E-05 3.E-06 5.E-04 5.E-05 2.E-05 1R 3 0 1 0 0.E 00 21
 0.00
96 2.E 01 3.E 00 1.E 00 82 N17
                                     137 1
  (36,25) 1.E-05
8.E-05 4.E-06 1.E-06 1.E-04 1.E-05 9.E-05 1R 3 1 2
97 2.E 01 3.E 00 1.E 00
                            82 NI 7
 (36,27)
                                      13 V 1
  (25,18) 1.E-05
4.E-05 2.E-06 7.E-07 5.E-05 2.E-05 1.E-05 1R 3 0 3 0 0.E 00 21
98 3.E 01 4.E 00 1.E 00
                                   82 N1 7
 ( 1,27)
                                      13V 1
 ( 1,24)
                                     ( 0, 0)
  2.E-05 2.E-06 7.E-07 7.E-05 3.E-05 3.E-05 1R 3 0 3 0 0.E 00 21
```

```
0.00
                                           82 NI 7
99 3.8 01 4.5 00 1.5 00
                                             13V 1
   (1,10)
                                             ( 0, 0)
   ( 1, 9) 1.E-05
1.E-05 2.E-06 7.E-07 3.E-05 7.E-06 4.E-06 1R 3 1 3 0 0.E 00 21
100 2.E 01 3.E 00 1.E 00 82N17
                                              13 V 1
   (36,29)
(28,14) 1.E-05
6.E-06 9.E-07 5.E-07 7.E-05 4.E-05 3.E-05 1R 3 0 3 0 0.E 00 21
IIERATION LIMIT. DUMP & RELOYD TO CONTINUE
BUFFER CLEARED. SETUP RECORDED.
DATA WRITTEN ON TAPE
DATA WRITTEN ON TAPE
THIS IS THE DISC VERSION D 18JUNE73
FORTRAN STOP
$//ABSD, 15, 120, 65140, 1000
$//REW, 14 25 FEB 76
$//REW, 15
S//ABSL, 14
$//GO
THIS IS THE DISC VERSION D 18JUNE73
RESTART
5000
ENTER ITERATION LIMIT
$200
PRINT EVERY STEP
                    RCCR DMAY DRMS DCCC REL OK BA B UB.E.C. PT
ITER RMAX RRMS
   0.00
                                               82 N1 7
 101 3.E 01 4.E 00 1.E 00
                                               13V 1
   (36, 10)
   (36, 10)
    (36,16) 1.E-05
1.E-05 2.E-06 6.E-07 4.E-05 2.E-05 1.E-05 IR 3 0 3 0 0.E 00 21
102 3.E 01 4.E 00 1.E 00 82 VI 7
                                               13V 1
    (1, 9)
                        ( 1, 9) 1.E-05
     1.E-05 1.E-06 6.E-07 4.E-05 6.E-06 4.E-06 1R 3 1 3. 0 0.E 00 21
```

to be did a few and the few of the contract of

```
0.00
103 2.E 01 3.E 00 1.E 00
                                                                                                                                92"17
       (1,29)
                                                                                                                                13 V 1
                                                                                                                              (.0, 0)
                                                                   (35,21) 1.5-05
         9.E-06 1.E-06 5.E-07 2.E-05 7.F-06 5.E-06 1R 3 0 0 50 0.E 00 22
     50.00
       6.64 5.09 1 13 13 86 12 17
104 2.E 01 3.E 00 2.5 00
                                                                                                                                86N13
       (36,26)
                                                                                                                                13 V 1
                                                                                                                              (12, 17)
        7.E-05 8.E-06 3.E-06 4.E-04 5.E-05 2.E-05 5R 6 0 1 0 0.E 00 22
       0.00
105 2.E 01 3.E 00 1.E 00
                                                                                                                                86113
        (36,27)
                                                                                                                              13V 1
        (36,25)
                                                                                                                              ( 0, 0)
        (36,25) 1.E-05
4.E-05 2.E-06 1.E-06 8.E-05 1.E-05 8.E-06 5R 6 1 2 0 0.E 00 22
       C.O. Har he a few transfers of the contract of
106 2.E 01 3.E 00 1.E 00
                                                                                                                                86N13
                                                                                                                                13V 1
                                                                                                                              (0,0)
         (34, 9) 1.E-05
1.E-05 1.E-06 6.E-07 3.E-05 1.E-05 1.E-05 5R 6 0 3
       0.00
107 2.E 01 3.E 00 1.E 00
                                                                                                                                86N13
                                                                                                                               13V 1
        ( 1,27)
        (1, 9)
                                                                                                                              (.0, 0)
         8.E-06 1.E-06 5.E-07 5.E-05 3.E-05 2.E-05 5R 6 0 3 0 0.E 00 22
       0.00
108 2.E 01 3.E 00 1.E 00
(36,27)
                                                                                                                                86N13
     (36,10) (36,12) 1.E-05
                                                                                                                     ( 0, 0)
        8.E-06 1.E-06 5.E-07 2.E-05 5.E-06 3.E-06 5R 6 1 3
       0.00
                                                                                              FF FE OF BE BE CLE IT T
109 2.E 01 2.E 00 9.E-01
                                                                                                                                86N1 3
       (36,29)
                                                                                                                                13 V 1
        (36,29)
                                                                                                                             ( 0, 0)
     5.E-06 7.E-07 4.E-07 6.E-05 3.E-05 3.E-05 5R 6 0 3 0 0.E 00 22
```

```
0.00
        5.97 1 12 17 82 25 17
  8.41
110 3.E 01 4.E 00 1.E 00
                                             82 117
  (1,10)
                                             12V 1
                                            (25, 17)
   (1, 9) 1.E-05
1.E-05 1.E-06 5.E-07 4.E-05 2.E-05 1.E-05 5R 8 0 3
  0.00
          5.97 1 12 16 83 25 17
  7.96
                                             83 NI 6
111 2.E 01 3.E 00 1.E. 00
   (1,11)
                                              12V 1
   (1,24)
                                             (25,17)
               ( 1,24) 1.E-05
   2.E-05 1.E-06 5.E-07 3.E-05 6.E-06 3.E-06 5R 7 1 3
  0.00
           5.97 1 12 16 83 25 17
  7.96
                                            83 N1 6
112 1.E 01 2.E 00 9.E-01
                                             12V 1
   (36,29)
                                             (25,17)
   (36, 9)
   (35,24) 1.E-05
6.E-06 7.E-07 4.E-07 2.E-05 5.E-06 4.E-06 5R 7 Ø Ø 50 Ø.E 00 23
  50.00
        5.97 1 12 16 83 25 17
   7.96
113 2.E 01 3.E 00 1.E 00
                                              83 N1 6
                                              12V 1
   (32,24)
                                             (25, 17)
    (32,25) 9.E-06
1.E-04 9.E-06 3.E-06 4.E-04 4.E-05 2.E-05 5R 7 0 1
                                                          Ø Ø.E ØØ 23
   0.00
           5.07 1 10 21 78 24 17
   7.05
114 2.E 01 2.E 00 1.E 00
                                              78121
                                             (24,17)
   (1,27)
    1.25) 9.E-06
5.E-05 4.E-06 1.E-06 9.E-05 1.E-05 7.E-06 5R 7 1 2
* 35 86 338
   0.00
           5.29 1 10 20 79 24 17
115 1.E 01 2.E 00 9.E-01
                                              79 N2 Ø
   (1,29)
                                              IØV I
    (35,25) 9.E-06
2.E-05 1.E-06 6.E-07 5.E-05 1.E-05 1.E-05 5R 7 0 3
```

```
0.00
   7.93
           5.29
                  1 10 20 79 24 17
116 2.E 01 2.5 00 9.E-01
                                              79"20
   (36,27)
                                              10V 1
   (34,24)
                                             (24,17)
                        (11,11) 9.E-06
    7.E-06 1.E-06 5.5-07 4.E-05 2.E-05 2.F-05 5R 7 0 3
                                                            Ø Ø.E ØØ 23
   0.00
   7.05
           5.29
                 2 10 19 80 24 17
117 2.E 01 3.E 00 8.E-01
                                              80N19
  (36, 18)
                                              10V 2
                                             (24, 17)
   7.E-06 1.E-06 5.E-07 2.E-05 4.E-06 2.E-06 5R 7 1 3
                                                            0 0.E 00 23
   0.00
   7.05
           5.29
                 2 10 20 79 24
                                   17
118 1.E 01 2.E 00 7.E-01
                                              79120
  (1,29)
                                              10V 2
                                             (24, 17)
   (27, 9) 9.E-06
4.E-06 6.E-07 3.E-07 5.E-05 3.E-05 2.E-05 5R 7 0 3
                                                            0 0.E 00 23
   0.00
  6.83
           5.07
                 1 11 17 82 24
119 2.E 01 3.E 00 9.E-01
                                              82 NI 7
   (1,11)
                                              111 1
                                             (24, 17)
                        ( 1,24) 9.E-06
   2.E-05 1.E-06 5.E-07 4.E-05 1.E-05 8.E-06 5R 6 1 3
                                                            0 0.E 00 23
   0.00
           5.29
                 1 11 17 82 24 17
120 2.E 01 3.E 00 8.E-01
                                              82 NI 7
   (36,10)
                                              11V 1
   (36, 9)
                                             (24, 17)
                        (36, 9) 9.E-06
    8.E-06 9.E-07 4.E-07 2.E-05 4.E-06 3.E-06 5R 6 0
                                                        Ø 50 Ø.E ØØ 24
  50.00
   6.83
                    11 17 82 24 17
121 2.E 01 2.E 00 1.E 00
                                              82NI 7
   (24, 18)
                                              114 1
                                             (24,17)
                        (28,25) 8.E-06
   2.E-04 1.E-05 2.E-06 3.E-04 3.E-05 1.E-05 5R 6 0
```

```
0.00
  7.05
          2.64 1
                     9 24 75 25 17
122 1.E 01 2.E 00 8.E-01
                                              75 N2 4
  (1,27)
                                               911 1
                                             (25, 17)
                       (14,16) 8.E-06
   2.E-05 2.E-06 8.E-07 3.E-05 8.E-06 6.E-06 27 7 1 2 0 0.E 00 24
  0.00
                     9 25 74 25 17
  7.49
          2.86
123 1.E 01 2.E 00 8.E-01
                                              74 N2 5
  (1,27)
                                               94 1
   (13, 18)
                                             (25, 17)
                        (13,18) 8.E-06
   2.E-05 1.E-06 4.E-07 2.E-05 6.E-06 4.E-06 2R 7 0 0 50 0.E 00 25
  50.00
   7.71
          2.86
                      9 26 73 25 17
                 2
124 1.E Ø1 2.E ØØ 1.E ØØ
                                              73 126
   (36,27)
                                               9V 2
                                             (25, 17)
                        (25, 17) 7.E-06
   2.E-04 1.E-05 2.E-06 3.E-04 3.E-05 1.E-05 2R 7 0 1
                                                            0 0.E 00 25
   0.00
   9.47
          3.08 1 7 31 68 13 17
125 2.E 01 2.E 00 9.E-01
                                              68N31
                                               7V 1
   (25, 19)
   (14, 17)
                                             (13, 17)
   $ (24,18) 7.E-06
5.E-05 3.E-06 1.F-06 9.E-05 2.E-05 2.E-05 3R 9 0 2
                                                           0 0.E 00 25
   0.00
   8.15
           2.64
                      7 29 70 13 17
126 2.E 01 2.E 00 8.E-01
                                              70N29
                                               7V 1
   (1,27)
                                             (13,17) .
   (13, 18)
                        (24,16) 7.E-06
    3.E-05 2.E-06 8.E-07 4.E-05 5.E-06 3.E-06 2R 8 1 3
                                                            0 0.E 00 25
   0.00
   7.93
           2.86
                1
                      7 28 71 24 17
127 1.E 01 1.E 00 G.E-01
                                              71 N2 8
   (1,29)
                                               74 1
                                              (24,17)
    (25,13) 7.E-06
4.E-06 6.E-07 3.E-07 4.E-05 2.E-05 1.E-05 2R 7 0 3 0 0.E 00 25
```

```
0.00
  7.93
          3.08 1
                     8 27 72 24 17
128 2.E Ø1 2.E ØØ 7.E-Ø1
                                              72 127
                                               8V 1
   (36, 27)
   (36, 9)
                                             (24, 17)
                        (36,10) 7.E-06
    7.E-06 9.E-07 4.E-07 2.E-05 7.E-06 6.E-06 3R 7 1 3
                                                            Ø Ø.E ØØ 25
  0.00
          3.08 2 8 28 71 24 17
  8.15
129 1.E 01 2.E 00 6.E-01
                                              71 N2 8
   (36,28)
                                               8V 2
   (36, 9)
                                             (24, 17)
   (1,20) 7.E-06
5.E-06 7.E-07 3.E-07 2.E-05 3.E-06 2.E-06 3R 8 0 0 50 0.E 00 25
 50.00
  7.93
          3.08 2
                      8 28 71 24 17
130 1.E 01 2.E 00 8.E-01
                                              71128
  (1,29)
                                               8W 2
                                             (24, 17)
                       ( 9,25) 7.E-06
   7.E-05 7.E-06 2.E-06 2.E-04 2.E-05 7.E-06 3R 7 0 1
                                                            0 0.E 00 25
  0.00
  8.59
          3.96 2
                      6 34 65 12 17
131 1.E 01 1.E 00 6.E-01
                                              65N34
  ( 1,27)
                                               6V 2
   (13,18)
                                             (12, 17)
   2.E-05 1.E-06 5.E-07 3.E-05 6.E-06 5.E-06 3R 8 1 2
                                                            0 0.E 00 25
* 资本 好 等 表 多
  0.00
  8.81
          4.63 2 6 33 66 25 17
132 1.F 01 2.E 00 6.E-01
                                              66N33
   (36, 27)
                                               6V 2
                                             (25, 17)
   (23, 17)
   (34,29) 7.E-06
6.E-06 6.E-07 3.E-07 1.E-05 4.E-06 3.E-06 4R 8 0 0 50 0.E 00 25
 19 NO 1. 5 NE
 50.00
          4.85
               5
                      6 33 66 25 17
133 1.E 01 2.E 00 7.E-01
                                              66N33
   (36,29)
                                               6V 2
                                             (25,17)
   3.E-05 3.E-06 1.E-06 1.E-04 2.E-05 8.F-06 4R 9
```

1

0 0.E 00 25

```
0.00
           .88 3 6 75 24 12 17
 10.79
134 1.E 01 2.E 00 6.E-01
                                          24N75
  (1,27)
(1,25)
                                           6 V 3
                                          (12,17)
                    ( 1,25) 6.E-06
   2.E-05 1.E-06 5.E-07 4.E-05 9.E-06 7.E-06 0R10 0 2
  9.99
 10.79
        1.98 3
                    6 70 29 25 17
                                          29170
135 2.E 01 2.E 00 6.E-01
   (1,27)
                                           6V 3
   (25,17)
(35,25) 6.E-06
8.E-06 8.E-07 4.E-07 2.E-05 3.E-06 2.E-06 1R10 1 3
   (1,25)
  0.00
  10.57 2.20 3 6 70 29 12 17
136 1.E Ø1 1.E ØØ 4.E-Ø1
                                          29170
                                           6V 3
   (36,29)
                (28,10) 6.E-06 (12,17)
   (2,25)
   3.E-06 3.E-07 2.E-07 2.E-05 1.E-05 9.F-06 2710 0 3
  0.00
  10.13
          2.20 3
                    6 59 40 12 17
137 2.E 01 2.E 00 6.E-01
                                           40N59
   (36,27)
                                           6V 3
   (36,26)
                                          (12, 17)
                    (36,10) 6.E-06
   5.E-06 6.E-07 2.E-07 1.E-05 6.E-06 5.E-06 2R10 1 3
                                                        0 0.E 00 25
   0.00
                   6 54 45 12 17
  10.13
          2.20 2
                                           45N54
138 1.E 01 2.E 00 5.E-01
   (1,27)
                                           61 S
                                          (12,17)
   (36, 9) 6.E-06
6.E-06 5.E-07 2.E-07 9.E-06 2.E-06 1.E-06 2RI0 0 0 50 0.E 00 25
  50.00
                                          34 3 5 19 5
       2.20 2
                    6 54 45 12 17
139 9.E 00 1.E 00 6.E-01
                                           45 N54
   (35,29)
                                            6V 2
                                          (12,17)
   (12,17)
              (13,18) 6.E-06
    5.E-05 4.E-06 1.E-06 7.E-05 1.E-05 5.E-06 2R10 1 1
```

```
0.00
  7.49
           .66 2 7 90 9 13 17
140 9.E 00 1.E 00 5.E-01
                                              9190
  (36,29)
(25,16)
                                              7V 2
                                            (13, 17)
   (23,15) 6.E-06
7.E-06 8.E-07 4.E-07 1.E-05 4.E-06 3.E-06 OR 7 Ø Ø 50 0.E 00 25
 50.00
  8.37 .66 2 7 90 9 13 17
141 1.E 01 1.E 00 5.E-01
                                              9190
                                              7V 2
   (36,28)
   (13,18)
                                            (13, 17)
   (13,17) 6.E-06
7.E-05 5.E-06 1.E-06 1.E-04 8.E-06 4.E-06 0R 8 1 1 0 0.E 00 25
  0.00
  7.05 1.32 2 7 94 5 12 16
142 9.E 00 1.E 00 4.E-01
                                              5N94
   (1,27)
                                               7V 2
   (13.18)
                                            (12,16)
   5.E-05 2.E-06 4.E-07 7.E-05 6.E-06 4.E-06 1R 7 Ø Ø 50 0.E 00 25
 50.00
  7.93 1.32 2 9 93 6 12 17
143 1.E 01 1.E 00 5.E-01
                                              6N93
   (1,27)
                                              91 2
                                            (12,17)
                       (25,17) 5.E-06
   8.E-05 5.E-06 1.E-06 1.E-04 1.E-05 8.E-06 IR 7 0 1
                                                           0 0.E 00 25
  0.00
                     6 95 4 25 17
 11.45
           .44
144 1.E 01 1.E 00 5.E-01
                                              4 195
  (36,27) (25,18)
                                               6V 2
                                             (25,17)
   6.E-05 3.E-06 7.E-07 8.E-05 5.E-06 2.E-06 QRII I 2
  0.20
        1.98 2
                      7 95 4 24 17
145 7.E 00 8.E-01 3.E-01
                                              4N95
                                              7V 2
   (36,29)
   (14,17)
                                            (24,17)
    (14,16) 5.E-06
1.E-05 6.E-07 2.E-07 3.E-05 9.E-06 8.E-06 IRII 0 3
```

```
0.00
 11.01
         1.98 2 7 94
                           5 24 17
                                             5194
146 1.E 81 1.E 88 4.E-81
  (1,27)
                                             7V 2
                                           (24,17)
   7.E-06 6.E-07 2.E-07 1.E-05 4.E-06 3.E-06 1R11 1 3 0 0.E 00 25
  0.00
                            5 24 17
 10.79
          2.20 2
                                             5N94
147 9.E 00 1.E 00 4.E-01
  (1,27)
                                             74 2
                                           (24,17)
                       ( 1,19) 5.E-06
   3.E-06 4.E-07 2.E-07 7.E-06 2.E-06 1.E-06 2R10 0 0 50 0.E 00 25
 50.00
                           5 24 17
 10.79
          2.20 2 7 94
148 7.E 00 8.E-01 4.E-01
                                             5 194
                                             74 2
   (36,29)
   (13, 18)
                                           (24,17)
   (13,17) 5.E-Ø6
3.E-Ø5 3.E-Ø6 9.E-Ø7 G.E-Ø5 6.E-Ø6 3.E-Ø6 2R1Ø 1 1
   0.00
           .88 1 6 98 1 12 17
  11.89
149 6.E 00 7.E-01 3.E-01
                                             1198
                                            6V 1
(12,17)
   (2,29)
   (14,17)
                       (24,14) 5.E-06
```

SOLUTION

ITER RMAX RRMS RCCR DMAX DRMS DCCC REL OK BA B UB.E.C. PT 149 6.E 00 7.E-01.3.E-01 IN98
5.E-06 5.E-07 2.E-07 7.E-06 2.E-06 2.E-06 0R11 0 0 50 0.E 00 25 BUFFER CLEARED. SETUP RECORDED.
DATA WRITTEN ON TAPE
THIS IS THE DISC VERSION D 18JUNE73

FORTRAN STOP \$//ARSD, 15, 120, 65140, 1000

THE CONTRACTOR

OTFN

The following programs are run at time during the execution of SOLVE program. The output printout supplies additional field condition indicators regarding the suitability of the solution algorithm.

Program OTFN maps field conditions by printout on line printer or teletypewriter printer. This analysis was performed only at location 1, and problems associated with rotor motion and location 2 were not considered. In addition, eddy currents and eddy-current losses were not considered so maps related to these conditions are not shown. The maps are shown in order as requested from the main program.

The main program OTFN recalculates residual by call of Subroutine RES. The R matrix is used as scratch matrix as residual values of each node must be recalculated before printout. The value of R matrix is multiplied by Scale and changed to integer values for printing. The scale of 1000 shown in heading is multiplier so values in residual map must be divided by 1000 for true values.

The clustering groups of negative residuals in the left-side region of air and positive residuals in the right-side region of air instead of intermixed positive and negative values are phenomena which remain unexplained. This clustering of negative and positive residuals in which maximum residual values occur either in the first or last columns is frequently observed in the iteration printout of the program SOLVE.

Print B provides an option to print a magnetic induction, or B, map. With this printout is a double conversion from metric to English units and from real to integer values. During this later conversion, a system error message is encountered when the value of B exceeds 32,767, the maximum integer value for single-precision, 16-bit integer variable. Although the error is not fatal, it does, in addition, provide a highly saturated flux condition especially for no-load conditions simulated on the alternator.

The print field angle prints a grid map of field angles in degrees. The arc tangent function of the X-component of the magnetic induction provides the angle subtended from the vertical. A negative angle means the direction of the X-component is to the left of vertical, and a positive angle means the X-component of B lies to the right. The angle along iron-air interfaces indicates flux at these interfaces is at right angles which is the desired condition. The field angle at vertical boundaries from iron is nearly 90 degrees which is again the proper field condition for solution of the present alternator configuration.

The relative permeability data is stored in DMAT matrix as the ratio of reluctivity

of space, 0.7957747E+06, to relative reluctivity of the material. The relative permeability is obtained by taking the reciprocal of the DMAT variable, multiplying by the reluctivity of air, and converting from a real to an integer variable. The relative permeability of the stator steel is in the 5000 range for unsaturated portions of the path. The value of permeability reduces for saturated grid spaces. Similarly, the relative permeability of the rotor iron is in the 300 range. The relative permeability of air grid spaces has value of unity.

The vector potential map in units of webers/meter consists of a vector in Z-plane. The positive value of vector potential can be considered a vector out of the page, or plane, of alternator configuration. On the opposite boundary, the negative value can be considered a vector into the page.

A similar group of printouts may be selected at rotor in location 2. However, this option was not exercised for this example, and certain variables requiring setup for material motion were never set. These printouts serve mainly to indicate values which can be associated with graphic representations shown in the next program.

are the first tension will be related. This first handle on a plant state of the second second second second s

the Angerial activation with resembling their best to seem about the second and the constitution will be weaking the second to t

PRINT R RESIDUALS IN AMPS X 1000 LOCATION = 1 PROBLEM LJ51 5 6 10 -5274 29 -4532 -4453 -4221 -3948 -3648 -3331 -2344 -3005 -2674 28 -6191 -211 -295 -321 -333 -334 -326 -318 -364 -283 27 -6853 -201 -303 -323 -320 -301 -290 -242 -225 -268 26 -4638 -312 -256 -283 -262 -256 -227 -169 -187 -148 -77 -6 25 34 -92 -12 -5 -16 -23 -128 0 24 -43 -43 -295 -1 -10 -53 0 23 -36 -280 -49 0 -169 -26 -110 0 0 22 -1 -1 -51 -215 -77 -187 -52 -123 9 -71 21 -82 -163 -228 -87 -130 -368 -232 -227 -256 -164 20 -275 -180 -165 -142 -24 -512 -3151 -884 -505 -85 19 -393 -343 -441 -223 -380 -2 -5 -475 -346 -306 -301 -254 18 -3119 -388 -330 -3215 -396 -428 -389 -351 -307 -248 -182 -57 -33 17 16 -3302 -380 -436 -410 -375 -344 -310 -170 -85 -16 -158 -132 15 -3354 -380 -432 -404 -361 -314 -267 -200 -242 -192 -169 -382 -376 -347 -293 -168 -427 -395 -3381 -3396 -415 -381 -334 -281 -229 -183 -159 -162 13 -393 -360 -317 -269 -219 -173 -145 -142 12 -3415 -361 -3477 -295 -122 -105 11 -350 -364 -333 -253 -206 -159 -3751 -351 -278 -241 -1'99 -149 -99 -59 -388 -314 10 9 -2432 -328 -291 -252 -218 -190 -164 -134 -91 -41 -10 -1 8 -1 7 -9 0 e 0 -13 -1 -1 0 0 0 6

-70

-145

-111

-1350

-70

-137

-101

-1289

-69

-128

-91

-1223

-66

-119

-82

-1152

-62

-108

-73

-1074

-58

-98

-64

-989

-10

-637

-2368

-2176

-1860

-1

-21

-129

-186

-1520

-53

-157

-145

-1462

-65

-152

-125

-1407

RE	SIDUALS	IN AMP	X 1000	LOCA	TION =	1	PROBLEM	LJ51		
J 29 28 27 26	11 -2018 -262 -204 -126	12 -1699 -237 -179 -105	13 -1386 -208 -153 -83	14 -1084 -176 -125 -63	15 -791 -144 -96 -37	16 -506 -111 -67 -13	17 -228 -79 -38	18 43 -49 -10 31	19 311 -18 17 55	20 575 10 45 79
25 24 23 22 21 20 19 18 17 16	-3 2 3 -9 -7 -139 -224 285 -33 -153	6 -34 -47 6 19 61 -116 60 -12	-368 -115 193 -28	1 36 0 -273 -45 84 -105 12 5	175 224 202 73 -40 -57 8 -4	2 -15 -9 -5 267 3 7	-16 -20 3 168 8 -65 -40 0	-7 -24 -39 21 -30 -28 2	0 -1 -1 -3 -27 -7 -1 1	-1 -13 -13 -9 -2 -1 -21
14 13 12 11 10 9 8 7 6 5 4 3	-153 -142 -127 -93 -41 2 9 -1 -53 -87	-48 -76	2 1 -1 -1 0 0	2 0 0 0 7	1 0 0	-26 -34	-20	-14 -10	0 0	-1 -1
2 1	-56 -899	-48 -804	-41 -706	-33 -606	-46 -25 -5 0 5	-16 -402	-7	-194	-88	21 19

10-10-150-

PI	ESIDUALS	IN AMPS	X 1000	LOCA	TION =	1.0	PROBLEM	1.J51		
J	21	22	23	24	25	26	27	28	29	30
29	835	1093	1349	1602	1853	2100	2344	2582	2812	3029
28	40	67	96	123	151	180	211	242	274	307
27	72	99	124	150	174	199	223	244	266	286
26	102	125	147	169	191	212	228	247	261	261
25	0	0	0	1	4	D	7	6	i	13
24	-59	1	-3	105	0	9	-74	-4	5	163
23	-23	2	-69	109	8	-10	-102	69	29	109
22	78	-62	-97	36	1	17	-96	Ø	20	75
21	43	-52	146	4	Ø	225	-28	0	42	25
20	-71	227	-7	5	303	44	7	43	12	81
19	50	105	193	44	163	14	80	101	209	291
18	-14	-9	-216	96	-121	-55	22	32	70	136
17	4	5	11	-48	-70	31	15	135	142	244
16	3	6	0	-27	8	8	51	234	247	234
15	1	- 1	1	2	-1	-13	98	213	239	250
14	-1	0	1	0	-1	-5	95	204	228	252
13	-1	-2	-2	2	1	-2	102	201	222	249
12	-1	-2	-3	2	3	-2	107	193	215	243
11	0	-2	-4	2	3	-1	112	180	209	240
10	-1	-2	-3	2	4	0	131	179	222	258
9	-1	-2	-2	5	6	5	98	159	202	241
8 7	-2	-1	-1	1	4	5	1	0	2	1
		0	0	0	1	2	2	2	1	1
		0	1	0	0		1 1	1	1	1
5	Ø									
4	3	10	16	23	29	36	42	48	53	59
3	27	40	53	65	77	86	94	101	107	111
2	31	42	51	60	67	73	1977	80	81	80
1	131	245	364	485	609	733	856	972	1079	1171

RE	SIDUALS	IN AMPS	X 1300	LOC	TON =	1	PROBLEM	LJ51	
J	31	32	33 -	34	35	36			
29	3223	3378	3463	3424	5094	5232			
28	339	361	361	320	3922	1084			
27	292	295	285	248	3784	883			
26	253	233	501	149	1654	-13			
25	8	1	15	12	-88	26			1
24	-3	11	261	-5	-30	881			
23	0	60	5.05	Ø	125	969			
22	0	70	129	Ø	151	976			
21	0	134	44	Ø	179	479			
20	155	190	163	223	416	2131			
19	472	470	422	617	891	1505			
18	329	277	329	489	1104	1565	· · · · · · · · · · · · · · · · · · ·		
17	282	307	349	409	1237	1587			
16	280	321	358	369	1276	1595			
15	287	328	358	354	1285	1593			
14	288	327	354	346	1580	1579			
13	284	321	346	339	1266	1550			
12	276	309	330	326	1239	1510			
11	270	294	304	294	1182	1544			
10	288	301	286	243	1107	1334			
9	274	2.92	281	234	677	4			
8		1	1	1	3	3			
7			1	0	2	4			
6 5			1	Ø	p 4	Sec.			
	1	_1	_1 •	0	5	1			
4	65	70	72	71	809	383			
3	113	111	106	95	1352	364			
5	76	70	61	48	1233	303			
4.1	1240	1277	1269	1206	1815	1328		23.0	

PRI \$	NT B									
	DUCTION	IN GAL	iss	LOCATIO	N = 1	PROB	LEY LJ5	1		
J	1	2	3	4	5	6	7	8		10
29	143	202	286	377	470	560	646	724	794	853
28	71	159	258	358	455	549	638	718	790	850
27	317	348	404	474	554	638	718	794	863	917
26	583	607	646	684	757	844	902	974	1065	1107
25	20140	20381	20176	20130	20393	20225	20040	20228	20031	19068
24	19980	20788	20071	19884	20801	20194	19509	20543	20180	17857
23	6806	2256	7089	6554	2351	7729	5482	2120	10975	8477
22	2932	2257	3096	2926	2350	3959	2911	2116	10552	10254
21	2403	2258	2471	2509	2352	3226	3167	2126	10981	11011
20	2552	2259	2594	2775	2358	3029	4015	2384	10947	11229
19	769	1056	702	1038	1180	852	2787	2605	10725	10773
18	768	885	808	982	1187	1390	2509	3171	9716	13319
17	790	845	889	1028	1301	1813	3192	6267	11804	21825
16	779	820	890	1018	1228	1525	1884	1961	1188	2731
15	732	769	842	958	1126	1341	1582	1559	1316	1698
14	654	692	765	875	1023	1205	1408	1376	1187	1245
13	553	594	672	783	926	1096	1286	1231	998	930
12	435	484	573	693	839	1007	1193	1111	811	661
11	307	373	480	614	768	938	1123	1016	645	407
10	176	275	408	557	719	892	1075	947	514	146
9	81	227	377	534	700	873	1053	911	440	170
8	16292	16311	16349	16408	16492	16608	16792	17014	17200	17764
7	16310	16330	16369	16430	16515	16633	16800	16979	17159	17492
6	16326	16347	16387	16448	16534	16649	16795	16948	17100	17241
5	16349	16370	16411	16474	16559	16664	16781	16900	16985	16911
4	16364	16385	16427	16489	16570	16664	16758	16826	16819	16652
3	50	51	54	58	64	71	79	88	97	106
2	28	30	34	40	47	55	64	72	81	89
1	6	12	21	29	38	47	. 57	65	74	82

IN	DUCTION	IN GAU	IN GAUSS LOCATION = 1 PROBLEM LJ51							
J	11	12	13	14	15	16	17	18	19	20
29	900	937	965	985	998	1007	1013	1015	1015	1013
28	899	936	964	985	998	1007	1013	1015	1015	1013
27	956	984	1002	1013	1020	1024	1026	1026	1026	1026
26	1104	1096	1089	1076	1061	1051	1046	1043	1043	1646
25	17831	17091	16091	14351	12052	10285	9146	4505	4504	9143
24	17085	17739	15312	8774	14075	13742	7443	13677	13676	7443
23	504	17352	18415	317	19201	19311	379	19379	19376	378
22	655	18226	18012	368	19238	19323	408	19394	19391	408
21	914	18221	18290	644	19226	19284	637	19333	19331	637
20	1927	17871	17893	2070	13663	18702	2072	18692	18690	2072
19	2949	17541	17389	3326	18142	18135	3326	18096	18096	3326
18	4161	17852	19144	2630	18709	18775	2358	18620	18620	2358
17	20933	20236	20280	11049	17378	17737	8318	17007	17007	8319
16	19337	19095	17065	16916	16348	15351	15371	15209	15210	15371
15	17604	16921	17094	16676	16364	16293	16150	16114	16115	16150
14	16935	17100	16837	16780	16701	16610	16578	16553	16553	16577
13	17041	16963	16954	16896	16847	16818	16794	16782	16782	16793
12	17054	17054	17017	16987	16958	16935	16922	16912	16912	16921
11	17134	17091	17082	17048	17022	17007	16983	16967	16966	16982
10	17225	17190	17159	17099	17045	16997	16946	16918	16918	16945
9	17752	17481	17253	17073	16929	16814	16739	16703	16702	16738
8	18946	17549	17075	16746	16506	16348	16260	16221	16220	16258
7	17554	17284	16588	16119	15820	15559	15383	15284	15284	15381
6	17080	16567	16051	15473	15035	14483	14015	13706	13705	14014
5	16533	15904	15154	14150	12913	11546	10356	9684	9684	10354
4	16206	15325	13890	11938	9665	7306	5106	3565	3564	5103
3	114	119	121	123	124	125	126	127	127	126
2	96	102	107	111	114	116	117	118	118	3 3 117
1	89	96	101	106	109	112	113	114	114	113

IN	DUCTION	IN GAU	ISS	LOCATIO	N = 1	PROB	LEM LJ5	1.		
J	21	22	23	24	25	26	27	28	29	30
29	1008	999	985	966	938	901	854	795	725	647
28	1008	999	985	965	937	900	851	791	719	639
27	1024	1020	1014	1003	984	957	918	863	795	719
26	1051	1061	1076	1089	1097	1104	1107	1065	975	903
25	10280	12050	14352	16091	17092	17833	19073	20038	20234	20045
24	13721	14099	8775	15316	17744	17088	17860	20177	20541	19505
23	19273	19251	317	18423	17361	504	8478	10972	2119	5482
22	19289	19282	368	18018	18236	654	10254	10552	2115	2910
21	19250	19269	644	18297	18230	914	11011	10982	2125	3166
20	18685	18687	2072	17900	17878	1928	11229	10948	2383	4013
19	18134	18149	3327	17397	17549	2950	10773	10725	2604	2786
18	18775	18715	2631	19155	17858	4164	13316	9716	3170	2508
17	17737	17382	11056	20292	20233	20924	21817	11800	62.64	3191
16	15351	16353	16924	17062	19093	19334	2733	1188	1959	1883
15	16293	16366	16677	17090	16928	17604	1699	1317	1559	1581
14	16609	16701	16779	16837	17105	16937	1245	1187	1375	1408
13	16817	16845	16894	16959	16964	17042	930	998	1231	1285
12	16933	16954	16985	17024	17054	17052	661	811	1110	1192
11	17004	17018	17045	17091	17092	17130	406	645	1015	1122
10	16994	17040	17097	17167	17191	17220	146	514	947	1074
9	16811	16924	17069	172.60	17483	17749	171	440	911	1052
8	16345	16502	16742	17080	17552	18943	17758	17194	17008	16787
7	15556	15816	16116	16590	17288	17556	17493	17159	16980	16800
6	14481	15032	15470	16051	16569 .	17084	17246	17104	16950	16796
5	11544	12911	14148	15152	15501	16530	16908	16982	16898	16780
4	73 03	9661	11934	13886	15322	16204	16649	16816	16824	16756
3	125	124	123	121	119	114	106	97	58	79
2	116	114	111	107	102	96	68	81	72	64
1	112	109	106	101	96	89	82	74	65	57

IN	DUCTION	IN GAU	ISS	LOCATIO	N = 1	PROBLE	M LJ51		
J	31	32	33	34	35	36			
29	561	471	378	286	205	145			
28	550	456	359	259	163	75			
27	639	555	475	405	351	318			
26	845	757	685	646	608	583			
25	20233	20401	20135	20179	20382	20140			
24	20187	2.0791	19878	20067	20786	19977			
23	7726	2351	6551	7086	2252	6796			
22	3957	2351	2925	3094	2256	2927			
21	3225	2353	2510	2.472	2259	2403			
20	3029	2358	2775	2596	2261	2555			18.3
19	852	1180	1038	703	1060	778			
18	1390	1187	983	808	887	772			
17	1813	1301	1028	890	846	790			
16	1525	1228	1018	891	820	779			
15	1340	1125	958	842	769	732			
14	1204	1022	875	765	691	654			
13	1095	925	783	671	593	553			
12	1006	838	692	572	483	434			
11	937	767	613	479	371	3 Ø 5			
10	891	718	556	407	273	174			
9	872	598	533	376	223	76			
8	16605	16490	16406	16348	16310	16292			
7	16633	16514	16429	16369	16330	16310			
6	16649	16534	16448	16386	16346	16326			
5	16662	16557	16473	16411	16369	16349			
4	16662	16568	16488	16426	16385	16364			
3	71	64	58	54	51	50			
5	55	47	40	34	30	28		Total .	
1	48	39	30	21	13	6			

PRINT	FIELD	ANGLE								
\$										
FIEL	D ANGLE	IN DEC	GREES	LOCA	TION =	1 P	ROBLEM I	LJ51		
J	1	2	3	4	5	6	7	8	9	10
29	71	42	28	20	15	12	9	°7	6	10
28	-49	-20	-12	-8	-6	-5	-4	-3	-2	-1
27	-81	-63	-49	-39	-32	-25	-21	-17	-13	-10
26	-86	-75	-64	-57	-48	-40	-34	-28	-21	-15
25	-88	-89	-87	-89	-88	-86	-88	-87	-84	-80
24	-77	-89	-76	-79	-89	-75	-82	-88	-69	-70
23	-50	-89	-47	-53	-87	-40	-61	-85	-14	-12
22	-74	-89	-67	-82	-89	-46	-72	-88	-10	-6
21	-88	-89	-80	-83	-89	-53	-53	-84	-9	-6
20	-82	-89	-87	-76	-86	-70	-52	-62	-8	-10
19	-53	-88	-61	-44	-75	-52	-27	-38	-2	-3
18	-75	-88	-81	-66	-76	-66	-46	-45	-27	-21
17	-87	-89	-87	-86	-87	-86	-85	-88	-72	-67
16	-88	-85	-83	-82	-80	-75	-64	-42	-79	-58
15	-86	-82	-77	-73	-69	-63	-54	-52	-81	-79
14	-85	-77	-70	-64	-53	-53	-47	-50	-71	-89
13	-83	-72	-63	-55	-49	-44	-39	-43	-62	-84
12	-80	-65	-54	-45	-39	-34	-30	-34	-52	-80
11	-75	-54	-41	-33	-28	-24	-20	-23	-38	-75
10	-63	-35	-24	-18	-15	-12	-10	-11	-19	-62
9	-9	-3	-2	-2	-1	-1	Ø	e	4	0
	89	89	88	88	87	87	86	87	88	8
7	89	89	88	88	88	87	87	88	89	85
6	89	89	89	88	88	88	88	88	-89	85
5	89	89	89	89	88	88	89	89	89	86
4	89	89	89	89	68	89	89	89	89	88
3 2	87	78	69	61	54	48	43	37	32	26
2	85	68	54	44	36	30	26	2.2	18	15
1	62	2.5	15	10	8	6	5	4	3	3

FIEL	D ANGLE	IN DE	GREES	LOCAT	TION =	l P	ROBLEM I	J51		
.J 29 28	11 3 -1	12 2 -1	13 2	14	15	16	17	18	19	20
27	-7	-5	-4	-2	-1	-1				
26	-11	-7	-5	-3	-1	-1				
25	-83	-83	-78	-73	-73	-63	-34	-17	16	34
24	-84	-56	-37	-64	-27	-6	-15	-10	10	15
23	-66	1	2	-4	Ø	Ø	-2	Ø	0	
22	-75	-2	-1	-26	0	0	-5	0	0	5
21	-66	-1	-1	-28	0	0	-5	0	Ø	5
20	-32	-1	-4	-11	0	-2	-2	1	-1	2
19	-20	-1	Ø	-4	1					
18	-47	-10	-4	-13	-2	Ø	-1	-1	1	1
17	-57	-23	-30	-36	-4	-19	-14	7	-7	1
16	-12	-20	-23	-17	-16	-12	-6	-2	2	6
15	-8	-9	-8	-8	-6	-4	-3	-1	1	3
14	-3	-4	-4	-3	-3	-2	-1	0	0	1
13	-3	-2	-2	-2	-1	-1				
12	-2	-1	-1	-1	-1					
11	-1									
10	0 2									
9 8 7	2	4	4	4	3	2 5	1	0	0	-1
8	45	23	16	11	8		3		-1	-3
7	66	45	30	22	16	11	6	2 4	-2	-6
6	73	59	44	34	26	19	11	7	-4 -7	-11
5	80	71	60	51	42	32	21			-21
4	86	83	79	75	69 .	62	49	21	-21	-49 -2
3 2	21	16	13	9	7	5	2	0	0	-1
2	12	10	8	6	4	3	1	Ø	Ø	
	2	2								

FIEL	D ANGLE	IN DEC	BREES	LOCAT	rion =	l PF	ROBLEM 1	J51		
J	21	22	23	24	25	26	27	28	29	30
29	0	-1	-1	-2	-2	-3	-4	-6	-7	-9
28	0	0	Ø	Ø	1	1	1	2	3	4
27	1	1	2	4	5	. 7	10	13	17	21
26	1	1	3	5	7	11	15	21	28	3
25	63	73	73	78 37	83	83	80	84	87	88
24	6	27	64	37	56	84	70	69	88	82
23	6 0	0	4	-2	-1	65	12	14	85	61
23	0	0	26	1	2	75	6	10	88	2
21	0 2	0	28	1	1	66	6	9	84	54
20	2	0	11	4	1	32	10	8	62	3
19	0	0 2	4	Ø	1	20	3	2	38	27
18	0	2	13	4	10	48	21	27	45	46
17	19	4	36	30	23	57	67	72	88	85
16	12	16	17	23	20	12	58	79	42	64
15	5	6	8	8	9	8	79	81	52	54
14	5 2	3	17 8 3	A	4	3	89	71	50	7
13	1	1	2	2	2	3	84	62	43	39
12	0	1	1	1	1	2	80	52	34	
11	0	Ø	0	0	0	1	75	38	23	2.0
10	0	0	Ø	Ø	e	Ø	62	19	- 11	. 0
9 8 7	-2	-3	-4	-4	-4	-2	-70	-4		
8	-5	-8	-11	-16	-23	-45	-87	-88	-87	-86
7	-11	-16	-22	-30	-45	-66	-85	89	-88	-87
6	-19	-26	-34	-44	-59	- 73	-85	-80	-88	-88
5	-32	-42	-51	-60	-71	-80	-86	-89	-89	-88
4 3	-62	-69	-75	-79	-83	-86	-88	-89	-89	-89
3	-5	-7	-9	-13	-16	-21	-26	-32	-37	-43
2	-3	-4	-6	-8	-10	-12	-15	-18	-22	-8
	a	a	-1	-1	-2	-2	-3	-3	-4	-5

FIE	ELD ANGL	E IN DE	GREES	LOCA	TION =	1	PROBI	LEM LJ51
J	31	32	33	34	35	36		53
29	-12	-15	-20	-27	-41	-68		
28	5	6	8	11	19	46		
27	25	31	39	49	63	80		
26	40	48	57	63	74	86		
25	86	88	89	87	89	88		
24	75	89	79	76	89	77		
23	40	87	53	47	89	50		
22	46	89	82	67	89	74		
21	53	89	83	80	89	88		
20	70	86	76	87	89	82		
19	52	75	44	61	88	52		
18	66	76	66	8!	88	74	10-1	
17	86	87	86	87	89	87		
16	75	80	82	83	86	89		
15	63	69	73	77	82	87		
14	53	59	65	70	78	85		
13	44	49	56	63	72	84		
12	34	39	45	54	66	81		
11	24	28	33	41	55	76		
10	12	15	18	24	36	65		
9	1	1	2	2	4	10		
8	-87	-87	-88	-88	-89	-89		
7	-87	-88	-88	-88	-89	-89		
6	-88	-88	-88	-89	-89	-89		
5	-88	-88	-89	-89	-89	-89		
4	-89	-89	-89	-89	-89	-89		
3	-48	-54	-61	-69	-76	-85		
2	-30	-36	-44	-54	-65	-82		
1	-6	-8	-10	-15	-23	-52		

REL	ATIVE P	ERMEABI	LITY	LOCAT	10N =	I P	ROBLEY L	J51		
J	1	2	3	4	5	6	7	8	9	10
29	1	- 1	1	1	1	. 1	1	1	1	1
88	1	1	1	1	1	1	1	1	1	1
27	1	1	1		1	1	1	1	1	1
26			1	1		1	BE WEST	1	_1	1
25	30	24	29	30	23	27	34	27	34	62
24	-37 5687	-18	-34	-38	17	-29	-47	51	30	100
22	3920		5745 4056	562Ø 3912		5797	5336		4874	5761
21	3392		3451	3485		-467Ø -414Ø	-3894		5108	5286
20	3525		3566	3745		-4018	-4103 -4713		4875	4856
19	1		1	3,45		-4010	-4/13	٠,	4891	4675
18	6 to 1	100				, '		, ,	-517	476
17	1	1	i	i		i		-504	507	410
16	1	1	1	1	1			1	,,,,	1
15	1	1	1	1	1	1	1	1		i
14	1	1	1	1	1	1	1	1	1	i
13	4	1	1	1	1	1	1	1	1	i
12		1	1	1	1	_ 1	1	1	1	1
11	plan.	3 to	1	1	1	/ 1	1	1	1	1
10	100	0.00%		1	1		1	1	1	1
9	280	070	071	200	!	!	l	1	1	1
8 7	279	278	274	269	261	250	236	219	196	146
6	277	275	271	265	259	248	235	223	201	166
5	275	272	268	262	255	247	236	225	208	191
4	273	271	267	261	254	246	238	228	223	228
3		-		201		240	200	200	234	247

PEL	ATIVE P	ERMEABIL	YTI.	LOCAT	ION =	1 1	PROBLEM	LJ51		
J	11	12	13	14	15	16	17	18	19	20
29	1	1	1	1	1	1	1	1	1	1
28	1	1	1	1	1	1	1	1	1	1
27	1	1	1	1	- 1		1 1	1	1	1
26	1	1	1	1	1	1	1		1	1
25	100	137	247	943	-4008	-5259	-5659	-4946	-4946	5660
24	-137	104	423	5725	1252	-1685	-5774	1720	1720	-5774
23	1	124	81	1	56	56	1	52	52	1
22		88	96	1	55	55	1	52	52	1
21	1	88	85	1	56	56	1	54	54	1
20	1	101	100	1	75	75	1	74	74	1
19	1	_ 1,	1	1	1		1 1	1		1
18	1	143	66		86	83	9	89	89	1
17	-14	-31	27	516	177	149		220	220	520
16	60	-72	215	229	273	370		387	387	372
15	154	-227	209	244	272	281	295	301	301	295
14	224	-211	231	237	243	250	254	256	256	254
13	215	225	225	229	232	234		237	237	236
12	215	216	220	223	225	226		228	228	558
11	205	209	515	216	219	222		225	225	224
10	195	197	203	209	216	223		228	228	226
9	148	168	191	515	227	236		2,44	244	241
8	73	160	211	239	260	275		289	589	285
7	159	183	249	296	326	351	370	382	382	370
6	509	250	302	355	407	433	455	465	465	455
5	257	318	391	448	488	510		-517	-517	517
4	289	376	459	506	-517	-516	504	510	510	504
3	1	1	1	1	1		1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
1	1		. 1	1	1		1 1	1	1	1

REL	ATIVE	PERMEAB	ILITY	LOCA	TION =	1 ¹ P	ROBLEY	LJ51		
J 29	21	22	23	24	25	26	27	28	29	30
28										. !
27										
26										
25	5257	4014	945	247	137	100	· · ·		0.7	
24	1685	-1252	-5724	423			62	35	27	34
23	56	57	->124	81	104	-137	100	-30	SI	-47
55	55	55	9.3	96	88		5760 5283	4875		5336
21	56	56		85	88	2008-	4855	5107	of contract	3894
20	74	75		100	101		4672	4873		4103
19		1		100	101		4012	4889		4713
18	83	85		66	143		476	-517		
17	149	177	516	27	-31	-14	4/0	-507	504	
16	370	273	229	215	-70	60		- 100	704	
15	281	272	244	209	-227	155				
14	250	243	237	231	-211	224				
13	234	232	229	225	225	215	•			
12	226	224	223	220	216	214				
11	221	219	216	212	209	205		1		
10	223	216	209	203	197	195		•		
9	236	227	213	191	168	148				
8	275	260	-239	211	160	73	146	196	219	236
. 7	351	326	296	249	183	160	167	201	223	236
6	433	407	355	302	250	209	191	208	225	236
5	510	488	448	391	318	257	228	223	228	237
4	-516	-517	506	459	376	290	247	234	234	239
3	1	1	1	1		/ ī	i i	i	i	1
2	1	1	1	1	1	1	1	1		i
1	-1	1	1	1	1	1	1	1	1	i

RELATIVE	PERMEAB	ILITY	LOCAT	ION =	l P	ROBLEM LJ51	
J 31 29 1 28 1 27 1	32	33 1 1	34	35 1 1	36 !	is the	
26 1 25 27 24 -29 23 5797 22 4669 21 4139 20 4018 19 1 18 1 17 1	23 -17 1	1 30 -39 5619 -3912 -3487 3747 1	1 29 -34 5745 -4056 -3452 -3570 1 1	1 24 -18 1 1 1	1 30 -37 5683 3943 3392 -3530 1		0.50 0.50 0.50 0.60 0.61 0.61 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
15	257 255	269 267 265 263 261	1 1 1 1 275 273 271 269 267	279 277 275 273 271	281 279 277 275 273		

PRINT VECTOR POTENTIAL

VECTOR POTENTIALS IN WB/M LOCATION = 1 PROBLEM LJ51

DIVIDE TABLE BY SCALE FACTOR SCALE FACTOR = .176E 06

J	1	2	3	4	5	6	7	8	9	.10
29	919	916	905	886	860	827	788	741	689	68
28	929	925	914	896	870	836	796	749	696	68
27	986	983	971	952	924	889	845	794	736	61
56	1091	1089	1078	1056	1029	991	940	882	815	78
25	4697	4780	4774	4665	4715	4695	4552	4532	4492	4281
24	8008	8546	8543	7976	8480	8470	7848	82.45	8224	7410
23	8610	8710	8709	8578	8648	8646	8409	8391	8387	7643
22	8858	8875	8875	8831	8819	8818	8659	8546	8542	7766
21	9045	9040	9040	9023	8993	8989	8870	8711	8687	7876
20	9249	9206	9205	9238	9173	9154	9123	8922	8786	8012
19	9253	9229	9226	9242	9199	9175	9130	8969	8807	8013
18	9297	9293	92 92	9293	9280	9263	9229	9135	8971	8502
17	9353	9353	9356	9360	93 63	9370	9387	9443	9581	9544
16	9409	9411	9417	9428	9443	9467	9506	9571	9645	9651
15	9462	9465	9475	9491	9515	9550	9599	9668	9731	9755
14	9509	9513	952.5	9546	9576	9618	9673	9745	9809	9842
13	9549	9554	9568	9591	9626	9672	9731	9806	9872	9908
12	9580	9586	9601	9627	9663	9712	9774	9851	9919	9956
11	9602	9608	9624	9651	9689	9739	9803	9880	9948	9985
10	9613	9619	9636	9663	9702	9754	9818	9895	9962	9997
9	9614	9620	9637	9665	9704	9755	9819	9896	9962	9992
8	8422	8428	8442	8467	8501	8546	8600	8660	8709	8727
7	7229	7233	7246	7267	7296	7334	7379	7425	7461	7464
6	6034	6038	6049	6066	6090	6121	6156	6190	6215	6206
5	3072	3074	3079	3087	3098	3112	3126	3138	3142	3124
4	108	107	107	-105	103	101	97	93	88	82
3	98	98	97	96	94	91	88	83	78	73
2	93	93	92	91	89	86	82	78	73	68
1	92	92	91	90	88	85	81	77	72	67

VE	CTOR POT	TENTIALS	IN WB/	M	LOCATION	1 = L	PROBL	EM LJ51	100	
	IDE TABL		TALE FAC	TOR		275				
J	11	12	13	14	15	16	17	18	19	20
29	570	505	437	367	295	222	149	75	Ø	-73
28	575	509	440	369	296	223	149	75	Ø	-73
27	602	529	455	380	304	228	152	76	0	-75
26	648	561	477	393	312	233	155	77	a	-76
25	3924	3703	3484	3106	2577	2160	1575	555	1	-552
24	6906	6886	5687	4289	4264	2860	1446	1418	1	-1416
23	6935	6925	5585	4289	4267	2860	1447	1420	1	-1417
22	6983	6969	5644	43 04	4277	2868	1453	1421	1 .	-1418
18	7058	7017	5677	4341	4284	2879	1472	1411	1	-1408
20	7212	7014	5739	4463	4222	2896	1568	1325	1	-1323
19	7238	7031	5739	4470	4226	2896	1569	1325	1	-1323
18	7461	7261	5982	4458	4329	2923	1502	1401	1	-1399
17	9376	7931	6492	5461	4294	3164	2144	1067	1	-1065
16	9611	8288	7105	5847	4652	3488	2316	1158	Ø	-1156
15	9750	8524	7260	6041	4821	3608	2404	1201	Ø	-1199
14	9846	8600	7367	6129		3671	2445	1222	Ø	-1221
13	9916	8671	7425	6183	4943	3705	2469	1234	Ø	-1233
12	9964	8713	7464	6216	4970	3726	2483	1241	0	-1240
11	9992	8735	7482	6230		3733	2486	1242	0	-1241
10	10000	8735	7472	6212		3712	2470	1234	0	-1233
9	9981	8649	7361	6104		3641	2423	1211	Ø	-1210
8	8647	8020	6956	5812		3489	2326	1163	Ø	-1162
7	7356	6955	6230	5291	4271	3213	2144	1072	0	-1071
6	6099	5809	5293	4569		2799	1864	929	Ø	-928
5	3066	2939	2706	2353		1440	954	477	0	-476
4	74	66	57	47		29	19	9	C	-9
3	66	59	51	43		26	17	9	Ø	-8
2	62	55	48	41		25	16	8	Ø	-8
1	61	54	47	40		24	16	8	Ø	-8

LOCATION = 1 PROBLEM LJ51 VECTOR POTENTIALS IN WB/M DIVIDE TABLE BY SCALE FACTOR SCALE FACTOR = .176E Ø6 21 22 23 24 25 26 27 28 29 30 29 -147 -220 -435 -504 -569 -293 -365 -631 -688 -740 28 -148 -222 -295 -367 -507 -574 -438 -637 -695 -748 -150 -153 27 -226 -528 -302 -378 -454 -600 -670 -735 -793 26 -231 -310 -392 -475 -560 -646 -733 -813 -881 -1572 -3702 -3923 25 -2157 -2575 -3104 -3482 -4281 -4531 -4492 24 -1444 -2854 -4262 -6885 -7410 -4287 -5686 -6905 -8223 -8244 23 -1445 -2855 -4265 -4287 -5583 -6924 -6934 -7643 -8386 -8391 -1450 -8546 22 -2863 -4275 -4302 -5642 -6969 -6982 -7765 -8541 -1469 21 -2874 -4282 -4339 -5676 -7017 -7057 -7875 -8686 -8710 20 -1565 -2893 -4220 -4461 -5738 -7013 -7211 -8011 -8785 -8921 -5738 19 -1567 -2893 -4223 -4458 -7030 -7237 -8012 -8806 -8968 -5981 -7461 18 -1499 -2921 -4327 -4456 -7260 -8501 -8970 -9134 -2142 17 -3162 -4292 -5460 -6491 -7929 -9374 -9543 -9579 -9442 -2314 -3486 -5845 16 -7104 -9649 -4651 -8286 -9609 -9644 -9570 15 -2402 -3606 -4820 -6039 -7258 -8522 -9749 -9754 -9730 -9666 -2444 -3669 -4896 -6128 -7365 -8598 -9845 -9840 -9808 -9744 13 -2468 -3704 -4942 -6181 -7423 -8670 -9914 -9907 -9871 -9804 12 -2482 -3725 -4969 -7463 -9849 -6215 -8712 -9962 -9954 -9917 11 -2485 -3732 -4979 -6228 -7481 -8734 -9991 -9984 -9947 -9879 -4957 -2470 -3711 -6211 -7471 -8734 -9998 -9995 -9961 -9894 -2423 -3640 -4865 -6102 -7359 -8648 -9979 -9991 -9961 -9895 -2325 -3488 -4650 -8646 -5810 -6955 -8019 -8726 -8709 -8660 -3212 -2144 -4270 -5289 -6954 -6229 -7355 -7463 -7460 -7424 -1863 -2798 -3716 -4568 -5291 -5808 -6098 -62 05 -6214 -6189 5 -954 -1440 -1916 -2352 -2705 -2939 -3065 -3123 -3141 -3138 -19 -28 -38 -47 -57 -66 -74 -81 -88 -93 -43 -17 -26 -35 -51 -59 -66 -72 -78 -83 -55 2 -25 -40 -48 -16 -33 -62 -68 -73 -78 -16 -24 -32 -40 -54 -47 -61 -67 -72 -77

LOCATION = 1 PROBLEM LJ51

DIVIDE TABLE BY SCALE FACTOR SCALE FACTOR = .176E Ø6

J	31	32	33	34	35	36
29	-787	-826	-860	-885	-904	-915
28	-795	-835	-869	-895	-914	-925
27	-844	-888	-923	-951	-970	-982
26	-939	-990	-1028	-1055	-1077	-1089
25	-4552	-4696	-4716	-4665	-4774	-4779
24	-7847	-8468	-8479	-7976	-8542	-8545
23	-8408	-8645	-8647	-8577	-8708	-8709
22	-8659	-8817	-8818	-8830	-8874	-8874
21	-8869	-8988	-8992	-9022	-9039	-9039
20	-9122	-9153	-9172	-9237	-9204	-9205
19	-9129	-9174	-9198	-9241	-9226	-9228
18	-9228	-9263	-9279	-9292	-9291	-9292
17	-9386	-9369	-9362	-9359	-9355	-9352
16	-9505	-9466	-9442	-9427	-9416	-9410
15	-9598	-9549	-9514	-9490	-9474	-9465
14	-9672	-9617	-9575	-9545	-9525	-9513
13	-9730	-9671	-9625	-9591	-9567	-9553
15	-9773	-9711	-9662	-9626	-9600	-9585
11	-9802	-9738	-9688	-9650	-9623	-9607
10	-9816	-9753	-9701	-9663	-9635	-9619
9	-9818	-9754	-9703	-9564	-9636	-9620
8	-8599	-8545	-8500	-8466	-8442	-8427
7	-7378	-7333	-7296	-7266	-7246	-7233
6	-6155	-6120	-6090	-6065	-6048	-6038
5	-3126	-3111	-3098	-3087	-3079	-3074
. 4	-97	-101	-103	-105	-106	-107
3	-87	-91.	-94	-96	-97	-98
2	-82	-86	-89	-91	-92	-93
1	-81	-85	-87	-90	-91	-92

FLUX

Program FLUX and associated subroutines provide the graphical output for this analysis. The graphics terminal has a hard-copy unit for making a permanent record of the CRT display.

The first picture (Figure 1) provides a record of the alternator configuration under consideration in problem LJ51. Dashed lines represent internal boundaries which clearly outline iron-air interfaces for rotor and stator. The upper and lower dashed lines are iron-air interfaces for airspace used to reduce the flux through these regions to zero. Stator and damper slots are shown although current values are not considered for either during this analysis.

In response to input of parameter 1 on the control teletypewriter, the magnetic field is drawn over the machine outline (Figure 2). This plot is equal values of magnetic induction, B. Series of closed curves are drawn which are symmetrical around the pole centerline. In several cases, the curves close on themselves across the vertical boundaries of the configuration. In those instances where curves appear to fail to close, this problem is really no indication that the solution algorithm has failed but that the program for drawing the display has failed at that point.

In response to input of parameter 2 on the control teletypewriter, the magnetic vector potential is drawn over the machine outline (Figure 3). The equipotential lines form closed curves which display a symmetrical relation around the pole centerline. These curves represent flux lines, and the flux lines at opposite vertical boundaries are in opposite direction just as the sign reversal in magnitudes of magnetic vector potential maps printed by the previous program.

A modification was made in this program to print curves of small interval near the maximum and minimum values of the magnetic vector potential. This modification tends to isolate the kernels which occur in the field coil winding on the rotor. The record also shows paths of leakage flux which occur in air between field poles. Note the flux lines at the iron-air interface are perpendicular as desired (Figures 4 and 5).

The number of lines to be plotted may be specified. The more lines requested, the smaller the interval between equipotential lines. The number of lines drawn is specified and should not be interpreted as degree of magnetic saturation.

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

Figure 1. LJ51 Machine Grid (10 Feb 76).

so have frames to be one of the property

the control of deal to be placed for the left of the Police of the Albertan of

Figure 2. LJ51 Magnetic Field (11 Feb 76): PRINB MOD; PLOTB MOD; FLUX MOD.

Figure 3. LJ51 Vector Potential (11 Feb 76): PRINB MOD; PLOTB MOD; FLUX MOD; 10 LINES.

Figure 4. Modification in the program. (Note the flux lines at iron-air interface are perpendicular as desired.)

Figure 5. Modification in the program.

DISTRIBUTION FOR MERADCOM REPORT 2193

No. Copies	Addressee	No. Copies	Addressee
	Department of Defense	1 1	Commander US Army Aberdeen Proving
1	Director, Technical Information Defense Advanced Research Projects Agency 1400 Wilson Blvd Arlington, VA 22209		Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 21005
12	Defense Documentation Center Cameron Station Alexandria, VA 22314 Department of the Army	1	Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-CM Aberdeen Proving Ground, MD
1	Commander, HQ TRADOC ATTN: ATEN-ME	1	21005 Commander
1	Fort Monroe, VA 23651 HQDA (DAMA-AOA-M) Washington, DC 20310		US Army Troop Support & Aviation Materiel Readiness Command ATTN: DRSTS-KTE 4300 Goodfellow Blvd
1	HQDA (DAEN-RDL) Washington, DC 20314		St Louis, MO 63120
í	HQDA (DAEN-MCE-D) Washington, DC 20314	1 ************************************	Commander US Army Electronics Research and Development Command
1	Commander US Army Missile Research &	ATTERNATION	ATTN: DRSEL-GG-TD Fort Monmouth, NJ 07703
	Development Command ATTN: DRSMI-RR Redstone Arsenal, AL 35809	l ser il e un	Commander Frankford Arsenal ATTN: Library, K2400, B1 51-2 Philadelphia, PA 19137
1	Director Army Materials and Mechanics Research Center AITN: DRXMR-STL Technical Library Watertown, MA 02172	1 (Ye) so w	Learning Resources Center US Army Engineer School Bldg 270 Fort Belvoir, VA 22060
1	US Army Ballistic Research Laboratories Technical Library DRXBR-LB (Bldg 305)	1 saris	Commandant US Army Command and General Staff College ATTN: ATSW-RI-L Fort Leavenworth, KS 66027
	Aberdeen Proving Ground, MD 21005	1	Commander and Director USAFESA
1	Commander Edgewood Arsenal ATTN: SAREA-TS-L		ATTN: FESA-RTD Fort Belvoir, VA 22060
	Aberdeen Proving Ground, MD 21010		MERADCOM
		1	Commander Technical Director

No. Copies Addressee

Assoc Tech Dir/R&D Assoc Tech Dir/Engrg & Acq Assoc Tech Dir/Matl Asmt Assoc Tech Dir/Tech Asmt CIRCULATE

Chief, Countermine Lab
Chief, Energy & Water Res Lab
Chief, Camouflage & Topo Lab
Chief, Marine & Bridge Lab
Chief, Mech & Const Eqpt Lab
Chief, Counter Intrusion Lab
Chief, Product Assur & Testing Lab
Chief, Material Technology Lab
Chief, TARSO
CIRCULATE

10

Elect Power Lab Elect Equip Div Function 4300, DRDME-RS 2

(M. L. Goss) Tech Reports Ofc Security Ofc

3 3 2 Tech Library

Requirements & Programs Ofc Public Affairs Ofc 1

Legal Ofc

Department of the Navy

- Director, Physics Program (421) Office of Naval Research Arlington, VA 22217 1
- Director Naval Research Laboratory 1 ATTN: Code 2627 Washington, DC 20375
- Officer-in-Charge (Code L31)
 Civil Engineering Laboratory
 Naval Construction Battalion Ctr 1 Port Hueneme, CA 93043
- Director Earth Physics Program Code 463 and the tax Office of Naval Research Arlington, VA 22217

Department of the Air Force

AFAPL/SFL 1 Wright-Patterson AFB, OH 45433