

Tema 4 - Variables aleatorias continuas multidimensionales

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Variables aleatorias bidimensionales continuas

Variables aleatorias bidimensionales continuas Introducción

DEFINICIÓN DE VARIABLE ALEATORIA BIDIMENSIONAL CONTINUA.

Recordemos que una v.a. bidimensional **continua** cuando su conjunto de valores en \mathbb{R}^2 , $(X,Y)(\Omega)$ es un producto de intervalos.

DEFINICIÓN FUNCIÓN DE DISTRIBUCIÓN CONJUNTA

La función de distribución acumulada conjunto o simplemente distribución conjunta se define como

$$F_{XY}(x,y) = P(X \le x, Y \le y).$$

Función de distribución acumulada, función de densidad

DEFINICIÓN FUNCIÓN DE DENSIDAD CONJUNTA

Sea $f_{XY}:\mathbb{R} imes\mathbb{R}\mapsto [0,+\infty)$ diremos que es una densidad bidimensional del vector aleatorio bidimensional (X,Y) si

$$F_{XY}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{XY}(t_x,t_y) dt_x dt_y.$$

Llamaremos dominio de la variable conjunta a

$$D_{XY} = \{(x,y) \in \mathbb{R}^2 | f_{XY}(x,y) > 0 \}.$$

Es decir es el conjunto de valores posibles que toma la v.a. (X,Y).

Gráfica de una función de densidad

Gráfica

Propiedades de la función de densidad conjunta

Sea (X,Y) una **variable aleatoria bidimensional continua** con dominio $D_{XY}\subset \mathbb{R}^2.$

Su función de densidad conjunta verifica las siguientes propiedades:

•

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(x,y) \quad dx dy = 1.$$

· Sea B un subconjunto cualquiera del dominio D_{XY} . El valor de la probabilidad $P((X,Y)\in B)$ se puede calcular de la forma siguiente:

$$P((X,Y)\in B)=\int\!\int_B\!f_{XY}(x,y)\quad dxdy.$$

Es decir, la probabilidad de que la variable bidimensional tome valores en B es igual al volumen que genera la densidad conjunta sobre el recinto B.

Distribuciones marginales

Variables aleatorias marginales y su distribución

Consideremos una variable aleatoria bidimensional continua (X,Y) confunción de densidad conjunta $f_{XY}(x,y)$ y con dominio D_{XY} .

La de la **función de densidad conjunta** contiene suficiente información para obtener las **funciones de densidad** de las variables X e Y.

Dichas variables X e Y se denominan variables marginales y sus correspondientes funciones de densidad, funciones de densidad marginales f_X de la variable X con dominio D_X y f_Y de la variable Y con dominio D_Y .

Veamos cómo obtener f_X y f_Y a partir de la densidad conjunta f_{XY} .

Funciones de probabilidad marginales

Proposición. Cálculo de las funciones de densidad marginales.

Sea (X,Y) una variable aleatoria bidimensional continua con función de densidad conjunta $f_{XY}(x,y)$, con $(x,y)\in D_{XY}$.

Las **funciones de densidad marginales** $f_X(x)$ y $f_Y(y)$ se calculan usando las expresiones siguientes:

$$f_X(x)=\int_{-\infty}^{+\infty}f_{XY}(x,y) \ dy.$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x,y) dx$$

Independencia de variables aleatorias continuas

Recordemos que dos sucesos A y B son independientes si

$$P(A \cap B) = P(A) \cdot P(B).$$

¿Cómo trasladar dicho concepto al caso de variables aleatorias continuas?

Dada una variable aleatoria bidimensional continua (X,Y) con dominio D_{XY}

Así que al menos todos los sucesos de la forma $P\left(X \leq x, \ Y \leq y\right)$ deberán ser independientes.

Esto implicará que cualesquiera dos sucesos de cada variables con independientes.

Independencia de variables aleatorias continuas

CONDICIONES PARA INDEPENDENCIA DE VARIABLES ALEATORIAS BIDIMENSIONALES CONTINUAS

Dada (X,Y) una variable aleatoria bidimensional continua con función de densidad f_{XY} y funciones de probabilidad marginales f_X y f_Y .

Diremos que X e Y son independientes si se cumple al menos una de las siguientes condiciones:

- $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$ para todo $(x,y) \in D_{XY}(y)$
- $F_{XY}(x,y) = F_X(x) \cdot F_Y(y)$ para todo $(x,y) \in D_{XY}(y)$

Esperanza y varianza de las distribuciones marginales

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx.$$

$$E(Y) = \int_{-\infty}^{+\infty} y \cdot f_Y(y) \quad dy.$$

$$\sigma_X^2 = Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2.$$

$$\sigma_Y^2 = Var(Y) = E((Y - E(Y))^2) = E(Y^2) - E(Y)^2.$$

Distibuciones condicionales

· Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. X condicionada a que Y=y como

$$f_{X|Y=y}(x)=rac{f_{XY}(x,y)}{f_{Y}(y)}, ext{ para todo } x\in D_{X}.$$

· Dado un valor fijo $y \in D_Y$ definimos la distribución condicional de la v.a. Y condicionada a que X=x como

$$f_{Y|X=x}(y)=rac{f_{XY}(x,y)}{f_X(x)}, ext{ para todo } Y\in D_Y.$$

Distibuciones condicionales e independencia

PROPIEDAD

Si las variables X e Y son independientes se cumple que

$$f_{X|Y=y}(x)=f_X(x)$$

$$\cdot \ f_{Y|X=x}(y) = f_Y(y)$$

Esperanzas condicionales

$$E(X|Y=y) = \int_{-\infty}^{+\infty} x \cdot f_{X|Y=y}(x) \quad dx.$$

$$E(Y|X=x) = \int_{-\infty}^{+\infty} y \cdot f_{Y|X=x}(y) \quad dy.$$

PROPIEDAD

Si las variables X e Y son independientes se cumple que

1.
$$E(X|Y = y) = E(X)$$

2.
$$E(Y|X = x) = E(Y)$$

Esperanzas de funciones de v.a. continuas bidimensionales. Covarianza y correlación

Esperanzas de funciones de v.a. continuas bidimensionales

DEFINICIÓN:

Sea (X,Y) una variable aleatoria bidimensional continua y $g(X,Y):\mathbb{R}^2\mapsto\mathbb{R}$ una función de esa variable bidimensional entonces

$$E(g(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) \cdot f_{XY}(x,y) \quad dxdy.$$

Esperanzas de funciones de v.a. continuas bidimensionales

Propiedad: En particular:

$$egin{align} E(X+Y) &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x+y) \cdot f_{XY}(x,y) & dxdy = \mu_X + \mu_Y. \ Var(X+Y) &= E\left((X+Y-E(X+Y))^2
ight) \ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x+y-(\mu_X+\mu_Y))^2 \cdot f_{XY}(x,y) & dxdy. \ \end{aligned}$$

Esperanzas de funciones de v.a. continuas bidimensionales

Propiedad: Sea (X,Y) una variable aleatoria bidimensional entonces se cumple que:

$$E(X + Y) = E(X) + E(Y) = \mu_X + \mu_Y$$
.

- · Si X e Y son independientes entonces $E(X \cdot Y) = E(X) \cdot E(Y) = \mu_X \cdot \mu_Y$.
- · Si X e Y son independientes entonces $Var(X+Y)=Var(X)+Var(Y)=\sigma_X^2+\sigma_y^2$.

Covarianza y correlación

Medida de la variación conjunta: covarianza

Se denomina **covarianza** entre las variables X e Y:

$$\sigma_{XY} = Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)).$$

La covarianza puede calcularse también con:

$$Cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y) = E(X \cdot Y) - \mu_X \cdot \mu_Y,$$

Propiedad. Si las variables X e Y son **independientes**, entonces Cov(X,Y)=0.

Es una consecuencia de que si X e Y son independientes entonces que vimos que $E(X\cdot Y)=E(X)\cdot E(Y)=\mu_X\cdot \mu_Y$.

Covarianza entre las variables

La **covarianza** es una medida de lo relacionadas están las variables X e Y:

- · Si cuando $X \geq \mu_X$, también ocurre que $Y \geq \mu_Y$ o viceversa, cuando $X \leq \mu_X$, también ocurre que $Y \leq \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será positivo y la **covarianza** será positiva.
- · Si por el contrario, cuando $X \geq \mu_X$, también ocurre que $Y \leq \mu_Y$ o viceversa, cuando $X \leq \mu_X$, también ocurre que $Y \geq \mu_Y$, el valor $(X \mu_X)(Y \mu_Y)$ será negativo y la **covarianza** será negativa.
- En cambio, si a veces ocurre una cosa y a veces ocurre otra, la **covarianza** va cambiando de signo y puede tener un valor cercano a 0.

Propiedades de la covarianza

· Sea (X,Y) una variable aleatoria bidimensional. Entonces la varianza de la suma/resta se calcula usando la expresión siguiente:

$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \cdot Cov(X, Y).$$

· Sea (X,Y) una variable aleatoria bidimensional donde las variables X e Y son **independientes**. Entonces:

$$Var(X + Y) = Var(X) + Var(Y).$$

Coeficiente de correlación entre las variables

Definición del coeficiente de correlación. Sea (X,Y) una variable aleatoria bidimensional. Se define el **coeficiente de correlación** entre las variables X e Y como:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}} = \frac{E(X \cdot Y) - \mu_X \cdot \mu_Y}{\sqrt{E(X^2) - \mu_X^2} \cdot \sqrt{E(Y^2) - \mu_Y^2}}.$$

Coeficiente de correlación entre las variables

Observación: Si las variables X e Y son independientes, su coeficiente de correlación $ho_{XY}=0$ es nulo ya que su covarianza lo es.

Notemos también que la **correlación** no tiene unidades y es invariante a cambios de escala.

Además, la covarianza de las variables tipificadas $\frac{X-\mu_X}{\sigma_X}$ y $\frac{Y-\mu_Y}{\sigma_Y}$ coincide con la correlación de X e Y.

El **coeficiente de correlación** es un valor normalizado ya que siempre está entre -1 y 1: $-1 \le \rho_{XY} \le 1$.

Coeficiente de correlación entre las variables

Observación. Si las variables X e Y tiene dependencia lineal, por ejemplo si $Y=a\cdot X+b$ para algunas constantes $a,b\in\mathbb{R}$, entonces su **coeficiente de correlación** $\rho_{XY}=\pm 1$, es decir toma el valor 1 si la pendiente a>0 y -1 si a<0.

De forma similar:

- · si $Cor(X,Y)=+1\ X$ e Y tienen relación lineal con pendiente positiva.
- · si $Cor(X,Y)=-1\,X$ e Y tienen relación lineal con pendiente negativa.

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X,Y) una variable bidimensional Notemos que

$$Cov(X,X) = \sigma_{XX} = \sigma_X^2.$$

$$Cov(Y,Y) = \sigma_{YY} = \sigma_Y^2.$$

$$\sigma_{XY} = Cov(X,Y) = Cov(Y,X) = \sigma_{YX}.$$

Se denomina matriz de varianzas-covarianzas y se suele denotar como Σ a

$$\Sigma = egin{pmatrix} Cov(X,X) & Cov(X,Y) \ Cov(Y,X) & Cov(Y,Y) \end{pmatrix} = egin{pmatrix} \sigma_{XX} & \sigma_{XY} \ \sigma_{YX} & \sigma_{YY} \end{pmatrix} = egin{pmatrix} \sigma_{X}^2 & \sigma_{XY} \ \sigma_{YX} & \sigma_{Y}^2 \end{pmatrix}$$

Matriz de varianzas-covarianzas y matriz de correlaciones

Sea (X,Y) una variable bidimensional Notemos que

- · $Cor(X, X) = \rho_{XX} = 1$.
- · $Cor(Y,Y) = \rho_{YY} = 1$.
- $\rho_{XY} = Cor(X,Y) = Cor(Y,X) = \rho_{YX}.$

Matriz de varianzas-covarianzas y matriz de correlaciones

Se denomina matriz de correlaciones a

$$R = \begin{pmatrix} Cor(X,X) & Cor(X,Y) \\ Cor(Y,X) & Cor(Y,Y) \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{YX} & 1 \end{pmatrix} = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{XY} & 1 \end{pmatrix}.$$

La distribución normal bivariante

Definición de distribción normal bivariante

Sea (X,Y) una variable continua bidimensional con $E(X)=\mu_X$, $E(Y)=\mu_X$

$$\sigma_X^2 = Var(X)$$
, $\sigma_Y^2 = Var(Y)$, $\sigma_{XY} = Cov(X,Y)$.

Y si denotamos por

$$\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$$

y por

$$\Sigma = \left(egin{array}{cc} \sigma_X^2 & \sigma_{XY} \ \sigma_{XY} & \sigma_Y^2 \end{array}
ight).$$

Definición de distribución normal bivariante

Diremos que el vector $inom{X}{Y}$ sigue una ley **normal o gaussiana bidimensional**

$$N\left(\mu=\left(egin{array}{cc} \mu_X \ \mu_Y \end{array}
ight), \Sigma=\left(egin{array}{cc} \sigma_X^2 & \sigma_{XY} \ \sigma_{XY} & \sigma_Y^2 \end{array}
ight)
ight)$$

si su densidad es

$$f_{XY}(x,y) = rac{1}{\sqrt{(2\pi)^2\cdot\det(\Sigma)}}\cdot e^{-rac{1}{2}((x,y)-\mu)^t\cdot\Sigma^{-1}\cdot((x,y)-\mu)}.$$

Gráfica de la distribución gaussiana (X,Y).

Distribuciones multidimensionales

Conceptos básicos. Función de probabilidad y de distribución.

Consideremos un vector compuesto de n variables aleatorias continuas (X_1, X_2, \ldots, X_n)

Su función de densidad de probabilidad es una función

$$f_{X_1,X_2,\ldots,X_n}:\mathbb{R}^n\mapsto [0,+\infty)$$
 tal que

$$egin{aligned} F_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) &= P(X_1 \leq x_1,X_2 \leq x_2,\ldots,X_n \leq x_n) \ &= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_n} f(t_1,t_3,\ldots,t_n) & dt_1 dt_2 \cdots dt_n. \end{aligned}$$

Independencia

DEFINICIÓN INDEPENDENCIA

Diremos que la variables continuas X_1, X_2, \ldots, X_n son **INDEPENDIENTES** cuando

$$f_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = f_{X_1}(x_1)\cdot f_{X_2}(x_2)\cdot \ldots \cdot f_{X_n}(x_n).$$

Propiedad

Las variables X_1, X_2, \ldots, X_n son INDEPENDIENTES si y solo si

$$F_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = F_{X_1}(x_1)\cdot F_{X_2}(x_2)\cdot \ldots \cdot F_{X_n}(x_n).$$

Conceptos básicos

VECTOR DE MEDIAS

Si denotamos $E(X_i) = \mu_i$ para $i = 1, 2, \ldots, n$ el **vector de medias** es

$$E(X_1, X_2, \dots, X_n) = (E(X_1), E(X_2), \dots, E(X_n)) = (\mu_1, \mu_2, \dots, \mu_n).$$

COVARIANZA Y VARIANZAS

Si denotamos $\sigma_{ij} = Cov(X_i, X_j)$ para todo i, j en $1, 2, \ldots n$ entonces tenemos que

- $: \; \sigma_{ii} = Cov(X_i, X_i) = \sigma_{ii} = \sigma_i^2.$
- $: \; \sigma_{ij} = Cov(X_i, X_j) = Cov(X_j, X_i) = \sigma_{ji}.$

Conceptos básicos

Si denotamos $ho_{ij} = Cor(X_i, X_j)$ para todo i, j en $1, 2, \ldots n$ entonces tenemos que

$$\cdot \ \rho_{ii} = Cor(X_i, X_i) = 1.$$

$$\cdot \
ho_{ij} = Cor(X_i, X_j) = Cor(X_j, X_i) =
ho_{ji}.$$

Matrices de varianzas-covarianzas y de correlaciones

$$\Sigma = egin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \ dots & dots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}, \qquad R = egin{pmatrix} 1 &
ho_{12} & \dots &
ho_{1n} \
ho_{21} & 1 & \dots &
ho_{2n} \ dots & dots & \ddots & dots \
ho_{n1} &
ho_{n2} & \dots & 1 \end{pmatrix}.$$