Problem (Problem 1):

- (a) Show that \mathbb{R} is not a free \mathbb{Z} -module.
- (b) Compute $hom_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$ and $hom_{\mathbb{Z}}(\mathbb{R}, \mathbb{Z})$.

Solution:

(a) Suppose toward contradiction that $\mathbb R$ were a free $\mathbb Z$ -module. Then, there would be some unique $\mathbb Z$ -linear combination

$$1 = z_1b_1 + \cdots + z_nb_n$$

with $b_1, \ldots, b_n \in B$, where B is the basis for \mathbb{R} . We observe now that for any $k \in \mathbb{Z}_{>0}$,

$$\frac{1}{k} = z_1'b_1' + \dots + z_m'b_m'$$

for some other basis elements $b_1', \ldots, b_m' \in B$ and integers z_1', \ldots, z_m' . Suppose toward contradiction that there were some b_i' such that $b_i' \notin \{b_1, \ldots, b_n\}$. Then, we would have

$$1 = k(z'_1b'_1 + \dots + z'_mb'_m)$$

= $kz'_1b'_1 + \dots + kz'_mb'_m$,

implying that 1 has a non-unique expression of integral linear combinations of basis elements, contradicting the assumption that \mathbb{R} is free over \mathbb{Z} .

Now operating under the assumption that for every $q \in \mathbb{Q}$, we have a unique \mathbb{Z} -linear combination

$$q = z_1 b_1 + \cdots + z_n b_n,$$

we then get the \mathbb{Z} -linear map $s: \mathbb{Q} \to \mathbb{Z}$ given by

$$(z_1b_1 + \cdots + z_nb_n) \mapsto z_1 + \cdots + z_n.$$

It is well-defined as the expression is unique, and it is Z-linear since

$$(z_1b_1 + \dots + z_nb_n) + (y_1b_1 + \dots + y_nb_n) = (z_1 + y_1)b_1 + \dots + (z_n + y_n)b_n$$
$$k(z_1b_1 + \dots + z_nb_n) = kz_1b_1 + \dots + kz_nb_n$$

for $k, y_i, z_i \in \mathbb{Z}$. Finally, it is a nonzero \mathbb{Z} -homomorphism simply because \mathbb{Q} contains nonzero elements. Yet, this contradicts what we have shown in part (b), where there are no nonzero \mathbb{Z} -homomorphisms from \mathbb{Q} to \mathbb{Z} .

(b) We claim that both $hom_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z})$ and $hom_{\mathbb{Z}}(\mathbb{R},\mathbb{Z})$ are zero. Toward this end, observe that

$$\varphi\left(\frac{a}{b}\right) = k\varphi\left(\frac{a}{kb}\right)$$

for all $\frac{a}{b} \in \mathbb{Q}$ with $\frac{a}{b} \neq 0$ and all $k \in \mathbb{Z}_{>0}$. Yet, this can only be the case if $\phi(\frac{a}{b}) = 0$, whence $hom_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}) \cong \{0\}$. Similarly, if $r \in \mathbb{R}$ is real with $r \neq 0$, then

$$\varphi(\mathbf{r}) = \mathbf{k}\varphi\Big(\frac{\mathbf{r}}{\mathbf{k}}\Big),$$

for all $k \in \mathbb{Z}_{>0}$, so that $\varphi(r) = 0$, and thus $hom_{\mathbb{Z}}(\mathbb{R}, \mathbb{Z}) \cong \{0\}$.

Problem (Problem 2): Let R be a commutative ring with 1. Suppose there are integers m_1 and m_2 such that $R^{m_1} \cong R^{m_2}$. Prove that $m_1 = m_2$.

Solution: Let I be a maximal ideal of R, and let K = R/I. We claim that if $M_1 \cong M_2$ are isomorphic R-modules, then $M_1/IM_1 \cong M_2/IM_2$ are isomorphic as R/I-vector spaces. Toward this end, we let

$$\psi: M_1 \to M_2/IM_2$$

be a surjective homomorphism of R-modules defined by $M_1 \xrightarrow{\phi} M_2 \xrightarrow{\pi} M_2/IM_2$, whence $\ker(\psi) = IM_1$, as

$$\psi(v_1) = 0 + IM_2$$

if and only if $\varphi(v_1) \in IM_2$, whence $\varphi(v_1) = i\varphi(w_1)$ with $i \in I$, or that $\varphi(iw_1) \in IM_2$, so $iw_1 \in IM_1$. The reverse inclusion follows from the first isomorphism theorem, as $IM_1 \subseteq \ker(\psi)$ by observation. Thus, we have an isomorphism $\overline{\psi} \colon M_1/IM_1 \to M_2/IM_2$.

We claim that the action

$$(r+I) \cdot (m+IM_1) = r \cdot m + IM_1$$

is a well-defined action of R/I on M_1/IM_1 . Toward this end, we let $r_1 + I = r_2 + I$, whence $r_1 - r_2 \in I$. For any $\mathfrak{m} + IM_1 \in M_1/IM_1$, we have (as the quotient module M_1/IM_1 is well-defined)

$$\begin{split} (r_1 + I) \cdot (m + IM_1) &= r_1 \cdot m + IM_1 \\ &= (r_1 - r_2 + r_2) \cdot m + IM_1 \\ &= ((r_1 - r_2) \cdot m + IM_1) + (r_2 \cdot m + IM_1) \\ &= (0 + IM_1) + (r_2 \cdot m + IM_1) \\ &= r_2 \cdot m + IM_1. \end{split}$$

The rest of the axioms for the action of R/I on M_1/IM_1 follow from the axioms of R-modules.

Thus, it follows that if $R^{m_1} \cong R^{m_2}$, then we have

$$R^{m_1}/IR^{m_1} \cong R^{m_2}/IR^{m_2}$$
 $K^{m_1} \cong K^{m_2}$,

whence $m_1 = m_2$ by the invariance of dimension for vector spaces.

Problem (Problem 4): Let R be a local ring with maximal ideal I.

- (a) Show that if M is a finitely generated module with $I \cdot M = M$, then $M = \{0\}$.
- (b) If M is a finitely generated R-module, and $y_1, ..., y_m \in M$ are such that $\overline{y_1}, ..., \overline{y_m} \in M/IM$ generate M/IM, then $y_1, ..., y_m$ generate M.

Solution:

(a) Let $M = \langle x_1, \dots, x_n \rangle$, and suppose IM = M. Then, it follows that there are $v_1, \dots, v_n \in I$ such that

$$x_n = v_1 \cdot x_1 + \cdots + v_n \cdot x_n$$
,

whence

$$(1 - v_n) \cdot x_n = v_1 \cdot x_1 + \cdots + v_{n-1} \cdot x_{n-1},$$

whence, since I is a local ring,

$$x_n = (1 - v_n)^{-1} (v_1 \cdot x_1 + \dots + v_{n-1} \cdot x_{n-1}),$$

meaning that $M = \langle x_1, \dots, x_{n-1} \rangle$. Inductively, any generating subset of M can be reduced in this fashion until $M = \{0\}$.

(b) Let $N = \langle y_1, \dots, y_m \rangle$. We wish to show that

$$M = N + IM$$
.

Toward this end, let $v \in M$. If $v \in IM$, then we are done. Else, if $v \notin IM$, it follows that $v + IM \neq 0 + IM$, so there are $\alpha_1, \ldots, \alpha_m$ such that

$$v + IM = \alpha_1 \cdot (y_1 + IM) + \dots + \alpha_m \cdot (y_1 + IM)$$
$$= (\alpha_1 \cdot y_1 + \dots + \alpha_m \cdot y_m) + IM.$$

In particular, this means there is some $q \in IM$ such that

$$v = (\alpha_1 \cdot y_1 + \cdots + \alpha_m \cdot y_m) + q,$$

whence M = N + IM.

Consider the subspace I(M/N) of M/N. We seek to show that I(M/N) = M/N. Let $\nu + N \in M/N$. Since $\nu \in M$, it follows that there are $r_1, \ldots, r_n \in I$ and $q \in IM$ such that

$$v = \sum_{i=1}^{n} r_i \cdot y_i + q.$$

In particular, this means that v + N = q + N. Since q + N = ip + N for some $p \in M$, we have i(p + N) = v + N, whence I(M/N) = M/N, meaning that by part (a), we have $M/N \cong \{0\}$, or that M = N. Thus, y_1, \ldots, y_n generate N.