Exercice 255:

Soit $M \in \mathcal{M}_2(\mathbb{R})$. A quelle condition M admet-elle une racine carrée dans $\mathcal{M}_2(\mathbb{R})$?

 $\mathbf{1}^{\mathrm{er}}$ cas : Si $M = \lambda I_2$.

Si
$$\lambda \geqslant 0$$
 alors $M = (\sqrt{\lambda}I_2)^2$. Sinon $M = \begin{pmatrix} 0 & \sqrt{-\lambda} \\ -\sqrt{\lambda} & 0 \end{pmatrix}^2$

2ème cas : Si $\chi_M = (X - a)(X - b)$, avec $a \neq b \in \mathbb{R}$.

Analyse: On suppose qu'il existe $N \in \mathcal{M}_2(\mathbb{R})$ telle que $N^2 = M$.

 $\overline{\text{On a } (N^2 - aI_2)(N^2 - bI_2)} = 0.$

Donc N est annulée par un polynôme scindé à racines simples dans $\mathbb C$ donc $\mathbb N$ est diagonalisable dans $\mathbb C$ de valeurs propres α et β .

Tout vecteur propre de N est vecteur propre de M donc en notant E_M , F_M , E_N et F_N les sous-espaces propres respectifs de M et N, on a $E_N \subset E_M$ et $F_N \subset F_M$. Comme tous ces sous-espaces sont de dimension 1, ces inclusions sont des égalités.

Or M est diagonalisable dans $\mathbb R$ donc admet au moins un vecteur propre réel pour chaque valeur propre. Donc il en est de même de N.

En prenant ces vecteurs propres, on diagonalise simultanément M et N dans \mathbb{R} .

On note P la matrice de passage qui est réelle.

On a
$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = PMP^{-1}$$
 et $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} = PNP^{-1}$ donc α et β sont réels.

De plus, $\alpha^2 = a$ et $\beta^2 = b$.

Donc $a, b \ge 0$.

Synthèse : On suppose que $a, b \ge 0$.

On diagonalise M dans \mathbb{R} et on note P la matrice de passage.

Alors en posant
$$N = P^{-1} \begin{pmatrix} \sqrt{a} & 0 \\ 0 & \sqrt{b} \end{pmatrix} P$$
, on a $N^2 = M$.

3ème cas : Si $\chi_M = (X - a)^2$, avec $a \in \mathbb{R}$ et M non diagonalisable.

Analyse: On suppose qu'il existe $N \in \mathcal{M}_2(\mathbb{R})$ telle que $N^2 = M$.

Comme précédemment, il existe un vecteur propre de N qui soit réel (on prend le sous-espace propre de A associé à a qui est de dimension 1).

En prenant un deuxième vecteur réel libre avec le premier, et en notant P la matrice de passage associée (qui

est réelle), on a
$$\begin{pmatrix} a & y \\ 0 & a \end{pmatrix} = PMP^{-1}$$
 et $\begin{pmatrix} \alpha & x \\ 0 & \beta \end{pmatrix} = PNP^{-1}$ où $y \in \mathbb{R}$ et $x, \alpha, \beta \in \mathbb{C}$.

Donc $x, \alpha, \beta \in \mathbb{R}$ car N est réelle.

De plus, $\alpha^2 = a$, $\beta^2 = a$ et $2\alpha x = y$.

Donc $a \ge 0$.

Enfin, si a=0, N est trigonalisable dans \mathbb{C} et a toutes ses valeurs propres nulles donc est nilpotente.

Or elle est de taille 2 donc $M = N^2 = 0$. C' est absurde donc a > 0.

Synthèse : On suppose que a > 0.

 $\overline{\text{On trigonalise } M \text{ dans } \mathbb{R} \text{ et on note } P \text{ la matrice de passage.}$

Alors en posant
$$N = P^{-1} \begin{pmatrix} \sqrt{a} & \frac{y}{2\sqrt{a}} \\ 0 & \sqrt{a} \end{pmatrix} P$$
, on a $N^2 = M$.

On remarquera que de cette manière, on peut traiter aussi le cas M diagonalisable. Ce cas a été traité à part pour plus de clarté.

4ème cas : Enfin, si
$$\chi_M = (X - z)(X - \overline{z})$$
, avec $z \in \mathbb{C} \backslash \mathbb{R}$, on note $z = re^{i\theta}$. On pose $\alpha = \sqrt{r}e^{i\frac{\theta}{2}}$.

Si
$$\alpha + \overline{\alpha} = 0$$
, alors $\alpha \in i\mathbb{R}$ donc $z = \alpha^2 \in \mathbb{R}$. Absurde. Donc $\alpha + \overline{\alpha} \neq 0$. On pose $N = \frac{1}{\alpha + \overline{\alpha}}(M + \alpha \overline{\alpha}I_2) \in \mathcal{M}_2(\mathbb{R})$. On a $N^2 - M = \frac{1}{4r\cos^2(\frac{\theta}{2})}(M^2 + r^2I_2 + (2r - 4r\cos^2(\frac{\theta}{2}))M)$. Donc $N^2 - M = \frac{1}{4r\cos^2(\frac{\theta}{2})}(M^2 + r^2I_2 - 2r\cos(\theta)M) = \frac{\chi_M(M)}{4r\cos^2(\frac{\theta}{2})}$. Donc $N^2 - M = 0$ par théorème de Cayley-Hamilton et $N^2 = A$.

M admet une racine carrée dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si $M = \lambda I_2$ ou M diagonalisable dans \mathbb{C} à valeurs propres distinctes dans $\mathbb{C}\setminus\mathbb{R}^*$ ou M trigonalisable non diagonalisable à valeurs propres strictement positives.