Package 'kernReg'

June 27, 2014

Title Linear Principal Components Kernel Regression Methods

Type Package

 plot.kpca
 14

 plot_explore_kpclr
 14

 plot_explore_kpcr
 16

 plot_kpca
 17

 plot_pdp
 18

 predict.kpclr
 18

 predict.kpcr
 19

 print.explore_kpclr
 20

 print.explore_kpcr
 21

Index		28
	weights_for_kpclr	26
	summary.kpcr	
	summary.kpclr	25
	summary.kpca	25
	summary.explore_kpcr	24
	summary.explore_kpclr	24
	set_desired_model	23
	print.kpcr	22
	print.kpclr	22
	print.kpca	21

auto_select_best_kpclr_model

Auto-Select Best KPCLR Model

Description

Selects the best KPCLR model based based on finding the minimum cost-weighted error model that has a fn:fp ratio within the bounds defined by fp_max_cost, fn_min_cost, fp_min_cost and fn_max_cost. The model can always be hand-selected using set_desired_model.

Usage

```
auto_select_best_kpclr_model(explore_kpclr_obj, fp_max_cost = NULL,
  fn_min_cost = NULL, fp_min_cost = NULL, fn_max_cost = NULL)
```

Arguments

explore_kpclr_obj

 fn_{max_cost}

An object of type explore_kpclr.

fp_max_cost The maximum cost of a false positve. Together with fn_min_cost, this will inform the algorithm of the maximum cost ratio of fp:fn. If left to the default

NULL, the maximum cost ratio will be 25% more than the desired cost ratio.

fn_min_cost The minimum cost of a false negative. Together with fp_max_cost, this will inform the algorithm of the maximum cost ratio of fp:fn. If left to the default NULL, the maximum cost ratio will be 25% more than the desired cost ratio.

fp_min_cost The minimum cost of a false positive. Together with fn_max_cost, this will inform the algorithm of the minimum cost ratio of fp:fn. If left to the default

NULL, the minimum cost ratio will be 25% less than the desired cost ratio.

The maximum cost of a false negative. Together with fp_min_cost, this will inform the algorithm of the minimum cost ratio of fp:fn. If left to the default NULL, the minimum cost ratio will be 25% less than the desired cost ratio.

Value

An object of type explore_kpclr with information regarding the auto- selected model.

Author(s)

Adam Kapelner and Justin Bleich

Examples

```
## Not run:
 #first create classification data
 X = matrix(rnorm(300), ncol = 4)
 y = rbinom(300, 1, 0.5)
 #now explore kernel models using the default kernel list
 explore_kpclr_obj = explore_kpclr_models(X, y)
 #now we plot to see how the models built on the training data performed on the validation data
 plot(explore_kpclr_obj)
 #we are comfortable with allowing the computer to decide which model is best based on
 #the minimum cost-weighted error model which falls wthin a default range of the error ratio.
 explore_kpclr_obj = auto_select_best_kpclr_model(explore_kpclr_obj)
 #re-plotting shows a blue line indicating the favored model
 plot(explore_kpclr_obj)
 ## End(Not run)
auto_select_best_kpcr_model
                         Auto-Select Best KPCR Model
```

Description

Selects the best KPCR model based on finding the minimum sum of squared error on the validation data. The model can always be hand-selected using set_desired_model.

Usage

```
auto_select_best_kpcr_model(explore_kpcr_obj)
```

Arguments

```
explore_kpcr_obj

An object of type explore_kpcr.
```

Value

An object of type explore_kpcr with information regarding the auto- selected model.

Author(s)

Adam Kapelner and Justin Bleich

Examples

```
## Not run:
#first create data
X = matrix(rnorm(300), ncol = 4)
y = rnorm(300)
#now explore kernel models using the default kernel list
explore_kpcr_obj = explore_kpcr_models(X, y)
#now we plot to see how the models built on the training data performed on the validation data
plot(explore_kpcr_obj)
```

```
#we are comfortable with allowing the computer to decide which model is best based on lowest SSE
explore_kpcr_obj = auto_select_best_kpcr_model(explore_kpcr_obj)
#re-plotting shows a blue line indicating the favored model
plot(explore_kpcr_obj)
## End(Not run)
```

```
build_final_kpclr_or_kpcr_model

Create Final Kernel Model
```

Description

Once the user has finished exploring different kernel regressions via explore_kpclr_models or explore_kpcr_models and has estimated future performance on the test data via eval_winning_r_model_on_test_data or eval_winning_lr_model_on_test_data, we now build the final kernel model using all the data from X, y.

Usage

```
build_final_kpclr_or_kpcr_model(explore_kpclr_or_kpcr)
```

Arguments

```
explore_kpclr_or_kpcr
```

The object built from explore_kplr_models or explore_kplcr_models.

Value

The model corresponding to the winning_kernel_num and the winning_rho_num housed in the explore object.

Author(s)

Adam Kapelner and Justin Bleich

Examples

```
## Not run:
#This example is for regression, but it works the same for logistic regression.
#first create regression data
X = matrix(rnorm(300), ncol = 4)
y = rbinom(300, 1, 0.5)
#now explore kernel models using the default kernel list and misclassification costs
explore_kpcr_obj = explore_kpclr_models(X, y)
#now we plot to see how the models built on the training data performed on the validation data
plot(explore_kpcr_obj)
#suppose we choose the 2nd kernel and the 10th rho
explore_kpcr_obj = set_desired_model(explore_kpcr_obj, 2, 10)
#now we build this model using the training and validation data and assess
#out-of-sample performance by predicting on the test data
explore_kpcr_obj = eval_winning_lr_model_on_test_data(explore_kpcr_obj)
#show results to console
explore_kpcr_obj
```

build_kpca_object 5

```
#we build a model using all the data in [X, y] to provide to the user who will use
#it to predict on future cases. This model should perform slightly better than the
#out-of-sample test split prediction results printed to console above
model_for_future_prediction = build_final_kpclr_or_kpcr_model(explore_kpcr_obj)
```

```
## End(Not run)
```

build_kpca_object

Builds a Kernel PCA Object

Description

Based on the original design matrix (the "data"), build an object which houses information about the data in a transformed / kernelized space based on a kernel of the user's choice. This function will standardize (i.e. center and scale) each predictor column.

Usage

```
build_kpca_object(X, kernel_type, params = c())
```

Arguments

X The original design matrix

kernel_type One of the valid kernel types: vanilla, rbf, poly, tanh, bessel, laplace, anova,

spline.

params A list of parameters specific to the kernel of the user's choice. Each kernel type

has a required number of parameters that must be passed otherwise the function

will throw an error.

Value

A list composed of the original data, the kernel, the K matrix, the centered K matrix, the non-zero eigenvalues and eigenvectors of K and K in the eigenbasis

Author(s)

Justin Bleich and Adam Kapelner

References

Berk, R., Bleich, J., Kapelner, A., Henderson, J. and Kurtz, E., Using Regression Kernels to Forecast A Failure to Appear in Court. (2014) working paper

See Also

dots

Examples

```
#create a random predictor matrix with four predictors
X = matrix(rnorm(100), ncol = 4)
#build a KPCA object using the anova kernel with hyperparameters sigma = 0.1 and d = 3
kpca_obj = build_kpca_object(X, "anova", c(0.1, 3))
#display some information to the console
kpca_obj
```

```
eval_winning_lr_model_on_test_data

Evaluate Test Data
```

Description

After a "satisfactory" model is selected by the user using the explore_kpcr_models function, we now predict on the test data to get a glimpse into this model's future out-of-sample performance. Warning: once this is done, you cannot "go back" and "try" to assess performance on new kernels as this would then be snooping. Run this function when you are ready to close the books on this data set and never look back.

Usage

```
eval_winning_lr_model_on_test_data(explore_kpclr_obj,
   use_validation_data = TRUE)
```

Arguments

```
explore_kpclr_obj
```

This object is built from explore_kplcr_models. We assume the user has updated this object with a satisfactory model by settings winning_kernel_num to denote which kernel is selected for the final model and setting winning_rho_num to denote which proportion of the variance of the kernel matrix is selected for the final model.

use_validation_data

Should we use the validation data along with the training data. Default is TRUE. From our experience, leaving this FALSE allows models with better out-of-sample error ratios (number of false negatives to false positives or vice versa). The tradeoff is a larger overall misclassification error because the model is build with the sample size of the training data, not the training plus the validation data.

Value

An expanded explore_kpclr list object with new entries that contain information about the performance of the final model on the test data: test_confusion, the confusion matrix of the test data; test_confusion_proportions, the confusion matrix of the test data as proportions of the number of test observations; test_misclassification_error, the total misclassification error of the test data and test_weighted_cost, the cost of the errors made as defined by the fn_cost and fp_cost specified by the user when constructing the model via explore_kplcr_models.

Author(s)

Adam Kapelner and Justin Bleich

See Also

```
explore_kpclr_models
```

Examples

```
## Not run:
 #first create binary classification data
 X = matrix(rnorm(300), ncol = 4)
 y = rbinom(300, 1, 0.5)
 #now explore kernel models using the default kernel list and misclassification costs
 explore_kpclr_obj = explore_kpclr_models(X, y)
 #now we plot to see how the models built on the training data performed on the validation data
 plot(explore_kpclr_obj)
 #suppose we choose the 2nd kernel and the 10th rho
 explore_kpclr_obj = set_desired_model(explore_kpclr_obj, 2, 10)
 #we can re-plot to ensure the chosen model is properly marked with a vertical line
 plot(explore_kpclr_obj)
 #now we build this model using the training and validation data and assess
 #out-of-sample performance by predicting on the test data
 explore_kpclr_obj = eval_winning_lr_model_on_test_data(explore_kpclr_obj)
 #show results to console
 explore_kpclr_obj
 ## End(Not run)
eval_winning_r_model_on_test_data
```

Description

After a "satisfactory" model is selected by the user using the explore_kpcr_models function, we now predict on the test data to get a glimpse into this model's future out-of-sample performance. Warning: once this is done, you cannot "go back" and "try" to assess performance on new kernels as this would then be snooping. Run this function when you are ready to close the books on this data set and never look back.

Evaluate Test Data

Usage

```
eval_winning_r_model_on_test_data(explore_kpcr, use_validation_data = TRUE)
```

Arguments

explore_kpcr

This object is built from explore_kpcr_models. We assume the user has updated this object with a satisfactory model by settings winning_kernel_num to denote which kernel is selected for the final model and setting winning_rho_num to denote which proportion of the variance of the kernel matrix is selected for the final model.

use_validation_data

Should we use the validation data along with the training data. Default is TRUE. From our experience, leaving this FALSE allows models with better out-of-sample error ratios (number of false negatives to false positives or vice versa). The tradeoff is a larger overall misclassification error because the model is build with the sample size of the training data, not the training plus the validation data.

Value

An expanded explore_kpcr list object with new entries that contain information about the performance of the final model on the test data: L2_err, the sum of squared error; rmse, the root mean squared error and L1_err, the sum of absolute error.

Author(s)

Adam Kapelner and Justin Bleich

See Also

```
explore_kpcr_models
```

Examples

```
## Not run:
#first create regression data
X = matrix(rnorm(300), ncol = 4)
y = rnorm(300)
#now explore kernel models using the default kernel list
explore_kpcr_obj = explore_kpcr_models(X, y)
#now we plot to see how the models built on the training data performed on the validation data
plot(explore_kpcr_obj)
#suppose we choose the 2nd kernel and the 10th rho
explore_kpcr_obj = set_desired_model(explore_kpcr_obj, 2, 10)
#we can re-plot to ensure the chosen model is properly marked with a vertical line
plot(explore_kpcr_obj)
#now we build this model using the training and validation data and assess
#out-of-sample performance by predicting on the test data
explore_kpcr_obj = eval_winning_r_model_on_test_data(explore_kpcr_obj)
#show results to console
explore_kpcr_obj
## End(Not run)
```

 ${\tt explore_kpclr_models} \quad \textit{Explore KPCLR for many kernels}$

Description

Performs the full procedure outlined in the paper. We first take three splits of the data randomly and a cost ratio. Then, we take in a list of kernels. For each kernel, we build a KPCR model on the training data (the first split). Then we look at performance of each kernel over a range of # of principle components (by proportion of kernel matrix explained, ρ). We pick the proportion that is closest to the predicted cost ratio for each kernel. Now, for each kernel, we have a model. We then predict all models on the validation data (the second split) and pick the best model. Using this best model, we predict on the test data (the third split) and report the out-of-sample statistics

Usage

```
explore_kpclr_models(X, y, kernel_list = NULL, seed = 0,
   split_props = c(1/3, 1/3, 1/3), rho_seq = seq(from = 0.3, to = 0.95, by =
   0.05), fn_cost = 1, fp_cost = 1, family = "binomial", num_cores = 1)
```

explore_kpclr_models 9

Arguments

X	The data's predictor matrix.
у	The data's response vector.
kernel_list	A list of kernels to assess performance of over a variety of PC's by % explained. Each element of this list is a list itself with keys "kernel_type" and "params." If left unspecified, the default are four ANOVA models: (1) sigma = 0.1 , d = 2 (2) sigma = 100 d = 2 (3) sigma = 0.1 , d = 3 (4) sigma = 100 , d = 3
seed	A seed to set the random generator. This is required because re-runs will result in different training-validation-test splits which would allow a user to snoop on the test data. We default this to 0 but please use your own seeds to avoid seed conflict.
split_props	When splitting the data into training, validation and test sets respectively, what proportions are assigned to each set? This must be numeric of size 3 and the numbers will be normalized to sum to one. The default split is uniform (1/3, 1/3, 1/3).
rho_seq	A collection of proportions of the variance explained of the kernel matrix to use. The default is 30% , 35% ,, 95% .
fn_cost	The target cost of a false negative (defaults to 1). Together with fp_cost, this will inform the algorithm of the desired ratio of costs.
fp_cost	The target cost of a false positive (defaults to 1). Together with fn_cost, this will inform the algorithm of the desired cost ratio of fp:fn.
family	The family parameter to be passed to the glm function. Default is "binomial." Note that when family is set to "quasibinomial," AIC calculations are not possible.

Value

num_cores

An object of class explore_kplcr which is a list housing the results of the procedure

The number of cores to use in parallel during computation.

Author(s)

Justin Bleich and Adam Kapelner

References

Berk, R., Bleich, J., Kapelner, A., Henderson, J. and Kurtz, E., Using Regression Kernels to Forecast A Failure to Appear in Court. (2014) working paper

See Also

kpclr

Description

Performs the full procedure outlined in the paper. We first take three splits of the data randomly and a cost ratio. Then, we take in a list of kernels. For each kernel, we build a KPCR model on the training data (the first split). Then we look at performance of each kernel over a range of # of principle components (by proportion of kernel matrix explained, ρ). We pick the proportion that is closest to the predicted cost ratio for each kernel. Now, for each kernel, we have a model. We then predict all models on the validation data (the second split) and pick the best model. Using this best model, we predict on the test data (the third split) and report the out-of-sample statistics

Usage

```
explore_kpcr_models(X, y, kernel_list = NULL, seed = 0, split_props = c(1/3, 1/3, 1/3), rho_seq = seq(from = 0.3, to = 0.95, by = 0.05), num_cores = 1)
```

Arguments

Χ	The data's predictor matrix
У	The data's response vector
kernel_list	A list of kernels to assess performance of over a variety of PC's by % explained. Each element of this list is a list itself with keys "kernel_type" and "params." If left unspecified, the default are four ANOVA models: (1) sigma = 0.1 , d = 2 (2) sigma = 100 d = 2 (3) sigma = 0.1 , d = 3 (4) sigma = 100 , d = 3
seed	A seed to set the random generator. This is required because re-runs will result in different training-validation-test splits which would allow a user to snoop on the test data. We default this to 0 but please use your own seeds to avoid seed conflict.
split_props	When splitting the data into training, validation and test sets respectively, what proportions are assigned to each set? This must be numeric of size 3 and the numbers will be normalized to sum to one. The default split is uniform (1/3, 1/3, 1/3).
rho_seq	A collection of proportions of the variance explained of the kernel matrix to use. The default is 30%, 35%,, 95%.

The number of cores to use in parallel during computation.

Value

num_cores

An object of class explore_kplcr which is a list housing the results of the procedure.

Author(s)

Justin Bleich and Adam Kapelner

References

Berk, R., Bleich, J., Kapelner, A., Henderson, J. and Kurtz, E., Using Regression Kernels to Forecast A Failure to Appear in Court. (2014) working paper

kernReg 11

See Also

kpcr

kernReg	Linear Principal Components Kernel Regression Methods

Description

A tool to select and run kernel PCA linear models for regression and classification

Author(s)

Justin Bleich

Sleich@wharton.upenn.edu> and Adam Kapelner <kapelner@wharton.upenn.edu>

References

Berk, R., Bleich, J., Kapelner, A., Henderson, J. and Kurtz, E., Using Regression Kernels to Forecast A Failure to Appear in Court. (2014) working paper

kpclr Run a logistic regression using Kernel PCA	
--	--

Description

kpclr runs a logistic regression on features created from an eigendecomposition of a certain dimension of the kernelized data

Usage

```
kpclr(kpca_object, y, num_pcs = NULL, frac_var = NULL, weights = NULL,
family = "binomial")
```

Arguments

kpca_object	The object that contains the kernel and the kernelized data with its eigendecomposition
У	The response to be regressed on the features which are the principal components of the kernelized data
num_pcs	The number of principal components to use for the regression (this or frac_var must be specified)
frac_var	Pick the number of principal components to use based on the fraction of variance to explain (this or num_pcs must be specified)
weights	Weights to be used on each observation in a weighted generalized least squares implementation. If not specified (default), uniform weights are used
family	The family parameter to be passed to the glm function. Default is "binomial." Note that with this default, AIC calculations are not possible.

12 kpcr

Value

An lm object with the kpca_object embedded as well as the number of principal components used

Author(s)

Justin Bleich and Adam Kapelner

References

Berk, R., Bleich, J., Kapelner, A., Henderson, J. and Kurtz, E., Using Regression Kernels to Forecast A Failure to Appear in Court. (2014) working paper

See Also

kpcr

レ	n	^	r
- N	v	L	

Run a linear regression using Kernel PCA

Description

kpcr runs a linear regression on features created from an eigendecomposition of a certain dimension of the kernelized data

Usage

```
kpcr(kpca_object, y, num_pcs = NULL, frac_var = NULL)
```

Arguments

kpca_object	The object that contains the kernel, the kernelized data with its eigendecomposition
У	The response to be regressed on the features which are the principal components of the kernelized data
num_pcs	The number of principal components to use for the regression (this or frac_var must be specified)
frac_var	Pick the number of principal components to use based on the fraction of variance to explain (this or num_pcs must be specified)

Value

An lm object with the kpca_object embedded as well as the number of principal components used

Author(s)

Justin Bleich and Adam Kapelner

References

Berk, R., Bleich, J., Kapelner, A., Henderson, J. and Kurtz, E., Using Regression Kernels to Forecast A Failure to Appear in Court. (2014) working paper

plot.explore_kpclr 13

See Also

kpclr

Description

This is an S3 convenience method for the function plot_explore_kpclr. Please follow the link for the full documentation.

Usage

```
## S3 method for class explore_kpclr
plot(x, ...)
```

Arguments

x The explore_kpclr object to plot... Other parameters to pass to plot_explore_kpclr.

Author(s)

Adam Kapelner and Justin Bleich

Description

This is an S3 convenience method for the function plot_explore_kpcr. Please follow the link for the full documentation.

Usage

```
## S3 method for class explore_kpcr plot(x, ...)
```

Arguments

x The explore_kpcr object to plot... Other parameters to pass to plot_explore_kpcr.

Author(s)

Adam Kapelner and Justin Bleich

14 plot_explore_kpclr

plot.kpca

Plots the kernel matrix

Description

This is an S3 convenience method for the function plot_kpca. Please follow the link for the full documentation.

Usage

```
## S3 method for class kpca plot(x, ...)
```

Arguments

x The kpca object to plot

... Other parameters to pass to plot_kpca.

Author(s)

Adam Kapelner and Justin Bleich

Description

Many kernel principle components logistic regression models were fitted on the training data via explore_kpclr_models. This function will create one plot for each of the kernel models investigated. At every value of rho (the proportion of variance of the kernel matrix explained), the following three things will be plotted (1) the ratio of the number of false negatives to the number of false positives when predicted out of sample (2) the AIC of the model (3) the cost-weighted error of the out-of-sample validation data.

Usage

```
plot_explore_kpclr(explore_kpclr_obj, tile_cols = 3, ylim = NULL,
    min_fn_fp_ratio = NULL, max_fn_fp_ratio = NULL,
    quantile_aic_to_display = 0.75, quantile_cwe_to_display = 0.95,
    color_winning_model = "blue", color_num_fn_fp_ratio = "black",
    color_aic = "firebrick3", color_cwe = "forestgreen",
    show_rho_numbers = TRUE, text_label_offset_pct = 0.1,
    kernels_to_plot = NULL, ...)
```

plot_explore_kpclr 15

Arguments

explore_kpclr_obj

An object of type explore_kpclr built with explore_kpclr_models

tile_cols When plotting all kernel model performances, how many kernels per plot win-

dow column? Default is 3.

ylim The ylim parameter which is passed to the plot function.

min_fn_fp_ratio

If specified, plots a horizontal line on the y-axis representing the lower bound of the ratio of the number of false negatives to false positives. Defaults to the value set by auto_select_best_kpclr_model (if it was run previously). If not, no line is plotted.

max_fn_fp_ratio

If specified, plots a horizontal line on the y-axis representing the upper bound of the ratio of the number of false negatives to false positives. Defaults to the value set by auto_select_best_kpclr_model (if it was run previously). If not, no line is plotted.

quantile_aic_to_display

When plotting the AICs for each model, which quantile should be truncated? Default is 95%.

quantile_cwe_to_display

When plotting the cost-weighted-errors for each model, which quantile should be truncated? Default is 75%.

color_winning_model

What color is the vertical line of the winning model. Default is blue.

color_num_fn_fp_ratio

What color are the ratios of false negatives to false positive? The default is black.

color_aic What color are the AIC lines? Default is reddish.

color_cwe What color are the cost weighted error lines? Default is greenish.

show_rho_numbers

Plot the rho number on each of the exploratory plots. Default is TRUE.

text_label_offset_pct

If the rho numbers are plotted, what percent offset below the points? Default is

kernels_to_plot

A list of indices of the kernels to plot. If left to the default NULL, all kernels are plotted.

Other parameters to pass to plot. Of particular interest is xlim which will limit some models from being displayed.

Author(s)

Adam Kapelner and Justin Bleich

16 plot_explore_kpcr

Description

Many kernel principle components logistic regression models were fitted on the training data via explore_kpcr_models. This function will create one plot for each of the kernel models investigated. At every value of rho (the proportion of variance of the kernel matrix explained), the AIC of the model and the sse of the out-of-sample validation data is plotted.

Usage

```
plot_explore_kpcr(explore_kpcr_obj, tile_cols = 3,
   quantile_aic_to_display = 0.75, color_winning_model = "blue",
   color_sse = "black", color_aic = "firebrick3", show_rho_numbers = TRUE,
   text_label_offset_pct = 0.1, label_skip = 3, ...)
```

Arguments

explore_kpcr_obj An object of type explore_kpcr built with explore_kpcr_models When plotting all kernel model performances, how many kernels per plot wintile_cols dow column? Default is 3. quantile_aic_to_display When plotting the AICs for each model, which quantile should be truncated? Default is 75%. color_winning_model What color is the vertical line of the winning model. Default is blue. color_aic What color are the AICs? Default is reddish. color_sse What color are the SSEs? Default is greenish. show_rho_numbers Plot the rho number on each of the exploratory plots. Default is TRUE. text_label_offset_pct If the rho numbers are plotted, what percent offset below the points? Default is label_skip If the rho numbers are plotted, how many should be skipped? Default is 3. Other parameters to pass to plot.

Author(s)

Adam Kapelner and Justin Bleich

plot_kpca 17

plot_kpca	Plots the kernel matrix

Description

Illustrates the kernel matrix as a heatmap.

Usage

```
plot_kpca(kpca_object, lower_triangular = TRUE, transform = NULL,
    col.regions = rainbow(200, end = 0.78), main = NULL, ...)
```

Arguments

The kpca object to plot kpca_object lower_triangular If the kernel is symmetric (the usual case), setting this to TRUE will only plot the lower triangle. Default is TRUE. How to color the heatmap. The default is color but if you would like to produce a col.regions grayscale images for publication, you can use something like gray(100 : 0 / 100). transform An optional function to transform the entries of K. Title of the plot. Default is the description of the kernel. main Other parameters to pass to levelplot. Especially useful are xlim and ylim to . . . look at a portion of the matrix. Also, use the at to mimic limits on the magnitudes of the entries of K. For instance seq(1000, 2000, by = 20) will only graph entries between 1,000 and 2,000. Do not change the "by" parameter here, 20 seems to be a good choice. Standardize the at parameter allows better apples: apples comparisons across the same kernel with different hyperparameters

Author(s)

Adam Kapelner and Justin Bleich

Examples

```
#create a random predictor matrix with four predictors
X = matrix(rnorm(100), ncol = 4)
#build a KPCA object using the anova kernel with hyperparameters sigma = 0.1 and d = 3
kpca_obj = build_kpca_object(X, "anova", c(0.1, 3))
#visualize the kernel
plot_kpca(kpca_obj) #"plot(kpca_obj)" also works and is recommended
```

(e.g. the radial basis kernel with different gamma values).

18 predict.kpclr

)

Plots a PDP for a kernel regression

Description

plot_pdp plots a partial dependence plot (PDP; Friedman, 2001) for one of the predictors. The function allows the PDP to be plotted to arbitrary accuracy and allows parameters to be passed for customization of the plotting. This function relies on package **ICEbox**.

Usage

```
plot_pdp(kpca_model, predictor, type = "link", frac_to_build = 1, ...)
```

Arguments

kpca_model A linear or logistic kernel PCA regression model

predictor The predictor to build a PDP for. It can be the number of the column or the

column's name

type The type argument that gets passed to the kpca_predict function

frac_to_build The fraction of the design matrix to construct the PDP from.

Other parameters to pass to the plot function

Author(s)

Justin Bleich and Adam Kapelner

References

Berk, R., Bleich, J., Kapelner, A., Henderson, J. and Kurtz, E., Using Regression Kernels to Forecast A Failure to Appear in Court. (2014) working paper

See Also

```
predict.kpcr, predict.kpclr, plot
```

predict.kpclr

Predicts for new data

Description

predict.kpclr predicts using the kernel PCA logistic model for new data

Usage

```
## S3 method for class kpclr
predict(object, new_data, type = "response", num_cores = 1,
    ...)
```

predict.kpcr 19

Arguments

object The Kernel PCA logistic model used to predict

new_data The new data the user wishes to predict

type Which output to return to the user. Use "response" for predicted probability and "link" for a logit (see predict.glm for more information)

num_cores Number of cores for parallel prediction

... Other parameters to be passed to predict.glm

Value

A vector of predictions with lenth of the number of rows of new_data generated via predict.glm

Author(s)

Justin Bleich and Adam Kapelner

See Also

```
predict.glm
```

Examples

```
## Not run:
#first create binary classification data
X = matrix(rnorm(300), ncol = 4)
y = rbinom(300, 1, 0.5)
#build a KPCA object using the anova kernel with hyperparameters sigma = 0.1 and d = 3
kpca_obj = build_kpca_object(X, "anova", c(0.1, 3))
#build a kpclr model using 75% of the variance in the kernel matrix and weights for 1:1 cost ratio
kpclr_mod = kpclr(kpca_obj, y, frac_var = 0.75, weights = weights_for_kpclr(y))
#create 10 new data records and forecast on the new data
x_star = matrix(rnorm(40), ncol = 4)
y_hat = predict(kpclr_mod, x_star)
## End(Not run)
```

predict.kpcr

Predicts for new data

Description

predict.kpcr predicts using the kernel PCA model for new data

Usage

```
## S3 method for class kpcr
predict(object, new_data, num_cores = 1, ...)
```

20 print.explore_kpclr

Arguments

object The Kernel PCA linear model object used to predict
new_data The new data the user wishes to predict
num_cores Number of cores for parallel prediction
Other parameters to be passed to predict.lm

Value

A vector of predictions with lenth of the number of rows of new_data generated via predict.lm

Author(s)

Justin Bleich and Adam Kapelner

See Also

```
predict.lm
```

Examples

```
## Not run:
#first create regression data
X = matrix(rnorm(300), ncol = 4)
y = rnorm(300)
#build a KPCA object using the anova kernel with hyperparameters sigma = 0.1 and d = 3
kpca_obj = build_kpca_object(X, "anova", c(0.1, 3))
#build a kpcr model using 75% of the variance in the kernel matrix
kpcr_mod = kpclr(kpca_obj, y, frac_var = 0.75)
#create 10 new data records and forecast on the new data
x_star = matrix(rnorm(40), ncol = 4)
y_hat = predict(kpcr_mod, x_star)
## End(Not run)
```

print.explore_kpclr Prints a summary of a explore_kpclr object

Description

Prints a summary of a explore_kpclr object

Usage

```
## S3 method for class explore_kpclr
print(x, ...)
```

Arguments

x The explore_kpclr object to be summarized in the console

... Other parameters to pass to the default print function

print.explore_kpcr 21

Author(s)

Justin Bleich and Adam Kapelner

print.explore_kpcr

Prints a summary of a explore_kpcr object

Description

Prints a summary of a explore_kpcr object

Usage

```
## S3 method for class explore_kpcr
print(x, ...)
```

Arguments

x The explore_kpcr object to be summarized in the console

... Other parameters to pass to the default print function

Author(s)

Justin Bleich and Adam Kapelner

print.kpca

Prints a summary of a kpca object

Description

Prints a summary of a kpca object

Usage

```
## S3 method for class kpca print(x, ...)
```

Arguments

x The kpca object to be summarized in the console

... Other parameters to pass to the default print function

Author(s)

22 print.kpcr

print.kpclr

Prints a summary of a kpclr object

Description

Prints a summary of a kpclr object

Usage

```
## S3 method for class kpclr print(x, ...)
```

Arguments

x The kpclr object to be summarized in the console

... Other parameters to pass to the default print function

Author(s)

Justin Bleich and Adam Kapelner

print.kpcr

Prints a summary of a kpcr object

Description

Prints a summary of a kpcr object

Usage

```
## S3 method for class kpcr print(x, ...)
```

Arguments

x The kpcr object to be summarized in the console

... Other parameters to pass to the default print function

Author(s)

set_desired_model 23

set_desired_model

Sets Desired Model

Description

Given an object created with explore_kpcr_models or explore_kpclr_models and plotted with plot.explore_kpcr or plot.explore_kpclr respectively, the user now chooses a desired model by selecting a kernel and a rho index from this visualization. This function simply inputs this information into the object returned by the explore_kpclr_models or explore_kpclr_models functions. If the user wishes to reset the desired model, run this function with NULL for the arguments winning_kernel_num and winning_rho_num.

Usage

```
set_desired_model(explore_kpcr_or_kpclr_obj, winning_kernel_num,
    winning_rho_num)
```

Arguments

```
explore_kpcr_or_kpclr_obj

The object created by running explore_kpcr_models or explore_kpclr_models winning_kernel_num

The desired model's kernel index.

winning_rho_num

The desired model's rho index.
```

Value

An object of type exlore_kpcr or explore_kpclr augmented with information about the user's desired model.

Author(s)

Adam Kapelner and Justin Bleich

Examples

```
## Not run:
#Note this is example is for classification, but it works the same for regression
#first create classification data
X = matrix(rnorm(300), ncol = 4)
y = rbinom(300, 1, 0.5)
#now explore kernel models using the default kernel list
explore_kpclr_obj = explore_kpclr_models(X, y)
#now we plot to see how the models built on the training data performed on the validation data
plot(explore_kpclr_obj)
#we believe that the third kernel and the 9th value of rho is the "best" model
explore_kpclr_obj = set_desired_model(explore_kpclr_obj,
winning_kernel_num = 3, winning_rho_num = 9)
#re-plotting shows a blue line indicating the model we just set
plot(explore_kpclr_obj)
## End(Not run)
```

summary.explore_kpclr Prints a summary of a explore_kpclr object

Description

Prints a summary of a explore_kpclr object

Usage

```
## S3 method for class explore_kpclr
summary(object, ...)
```

Arguments

object The explore_kpclr object to be summarized in the console
... Other parameters to pass to the default summary function

Author(s)

Justin Bleich and Adam Kapelner

```
summary.explore_kpcr Prints a summary of a explore_kpcr object
```

Description

Prints a summary of a explore_kpcr object

Usage

```
## S3 method for class explore_kpcr
summary(object, ...)
```

Arguments

object The explore_kpcr object to be summarized in the console
... Other parameters to pass to the default summary function

Author(s)

summary.kpca 25

summary.kpca

Prints a summary of a kpca object

Description

Prints a summary of a kpca object

Usage

```
## S3 method for class kpca
summary(object, ...)
```

Arguments

object The kpca object to be summarized in the console

... Other parameters to pass to the default summary function

Author(s)

Justin Bleich and Adam Kapelner

summary.kpclr

Prints a summary of a kpclr object

Description

Prints a summary of a kpclr object

Usage

```
## S3 method for class kpclr
summary(object, ...)
```

Arguments

object The kpclr object to be summarized in the console

... Other parameters to pass to the default summary function

Author(s)

26 weights_for_kpclr

summary.kpcr

Prints a summary of a kpcr object

Description

Prints a summary of a kpcr object

Usage

```
## S3 method for class kpcr
summary(object, ...)
```

Arguments

object The kpcr object to be summarized in the console

Other parameters to pass to the default summary function

Author(s)

Justin Bleich and Adam Kapelner

weights_for_kpclr

Creates weights for kpca logistic regression

Description

weights_for_kpca_logistic_regression will set individual weights for each observation in the training data based on two things (1) the ratio of 1's and 0's in the training set and (2) the user-set false-negative to false-positive ratio.

Usage

```
weights_for_kpclr(y_train, fn_to_fp_ratio = 1)
```

Arguments

The responses for the training data - a binary vector of length n. y_train

fn_to_fp_ratio The ratio of the "severity" of the false negative to the "severity" of the false positive (defaults to 1)

Value

A vector of weights of length n.

Author(s)

weights_for_kpclr 27

Examples

```
y_train = c(rep(0, 100), rep(1, 200))
weights = weights_for_kpclr(y_train)
table(weights)
```

Index

```
*Topic Components
                                                 print.explore_kpcr, 21
    kernReg, 11
                                                 print.kpca, 21
*Topic Kernel
                                                 print.kpclr, 22
    kernReg, 11
                                                 print.kpcr, 22
*Topic Logistic
                                                 set_desired_model, 2, 3, 23
    kernReg, 11
                                                 summary.explore_kpclr, 24
*Topic Principal
                                                 summary.explore_kpcr, 24
    kernReg, 11
                                                 summary.kpca, 25
*Topic Regression,
                                                 summary.kpclr, 25
    kernReg, 11
                                                 summary.kpcr, 26
*Topic Regression
    kernReg, 11
                                                 weights_for_kpclr, 26
auto_select_best_kpclr_model, 2, 15
auto_select_best_kpcr_model, 3
build_final_kpclr_or_kpcr_model, 4
build_kpca_object, 5
dots, 5
eval_winning_lr_model_on_test_data, 4,
eval_winning_r_model_on_test_data, 4, 7
explore_kpclr_models, 4, 7, 8, 14, 15, 23
explore_kpcr_models, 4, 8, 10, 16, 23
kernReg, 11
kernReg-package (kernReg), 11
kpclr, 9, 11, 13
kpcr, 11, 12, 12
plot, 18
plot.explore_kpclr, 13, 23
plot.explore_kpcr, 13, 23
plot.kpca, 14
plot_explore_kpclr, 13, 14
plot_explore_kpcr, 13, 16
plot_kpca, 14, 17
plot_pdp, 18
predict.glm, 19
predict.kpclr, 18, 18
predict.kpcr, 18, 19
predict.lm, 20
print.explore_kpclr, 20
```