The Politics of Negativity: Sentiment, Bipartisanship, and Text Mining in the California Legislature

Group 4: Riley Berman, Min Kim (Authors), Sasha Mok (Secondary), Toby Liu (RA)

Credits: (Presentation) Riley Berman

Overview

Bipartisanship

2 Twitter

Speeches

Bipartisanship

Data: LegiScan

- California bill data from public tracking service LegiScan.
- Interacted with its API through its documentation.
- Many different type of bills. Restrict to Senate and Assembly bills (~90%) before 2025.

Data: LegiScan

- California bill data from public tracking service LegiScan.
- Interacted with its API through its documentation.
- Many different type of bills. Restrict to Senate and Assembly bills (~90%) before 2025.
 - \sim 35K bills.
 - 2009-2010 to 2025-2026 Regular Sessions.
 - 2009-2010 Regular Session = December 2008-November 2010.
 - Exclude Chad Mayes: the only Independent (2019-Present) in our dataset.

The legend himself

What is Bipartisanship?

- Lugar Center-McCourt School Bipartisan Index: bit complicated.
- We devised three metrics:

Bipartisanship

A bill is *bipartisan1* if at least one member of each party is a sponsor.

A bill is *bipartisan2* if the minority party makes up at least 25% of its sponsors.

A bill has a bipartisan3 score given by $\frac{\text{minority sponsors}}{\text{majority sponsors}} \in [0, 1]$.

For fairness, we weight bipartisan2 and bipartisan3 by their annual party proportions (Ballotpedia).

Graphs: Party Percentages

Party Composition by Session Year

Proportion of Democrats and Republicans in the California Legislature

Independents' proportion excluded (<3%) Data: Ballotpedia

Weight by dividing bill's

Republican sponsors Republican proportion

 $\frac{\mathsf{Democrat\ sponsors}}{\mathsf{Democrat\ proportion}}.$

Graphs: bipartisan1 and bipartisan2

Bipartisanship Share by Session Year

Historical decrease in bipartisanship

• \sim 12% of all bills are bipartisan1, 9% for bipartisan2.

 \sim 2.9% and 5.5% decrease respectively (= 150 and 260 less bipartisan bills).

Data: LegiScan

Graphs: bipartisan3

Bipartisanship3 by Session Year

Historical decrease in bipartisanship

0 6.11........................

1.0 = equal support from both parties, 0 = fully partisan Data: LegiScan

Graphs: bipartisan3 Insights

Distribution of Bipartisan3

Bipartisanship mostly occurs in 2:1 or equal party ratios

1.0 = equal support from both parties, 0.5 = 2:1 ratio Fully partisan (bipartisan3 = 0) bills excluded Data: LegiScan

Graphs: Not a Single-Party Issue

Share of Fully Partisan Bills Weighted by Party

Fully partisan bill = all sponsors belong to the same party Data: LegiScan

Conclusion

- Bipartisanship seems to be declining.
- bipartisan3 > 0.5 (and its weighted variable) has decreased significantly over time, suggesting that politicians are increasingly working in more lopsided, partisan ratios.
- Not a one-party issue.
- Modern research: bipartisanship pays.
 - "The 'secret sauce' for effective lawmaking."
 - Election incentives.
- Potential "solutions:"
 - Encourage cross-party collaboration and support bipartisan politicians across party lines.
 - Show politicians that bipartisanship *matters* through the vote.
 - Reform legislative rules/committees to encourage minority participation.

Data

- Tweets from the official Twitter handles of all California State Senators.
- Tried running own Python scraping code.
- Problem: Elon Musk.
- Scraper service through Appify, expensive.
- \bullet $\sim\!10.6K$ tweets ($\sim\!14\%)$ from 2013-2025.
- 36 senators.

Data

- Tweets from the official Twitter handles of all California State Senators.
- Tried running own Python scraping code.
- Problem: Elon Musk.
- Scraper service through Appify, expensive.
- \sim 10.6K tweets (\sim 14%) from 2013-2025.
- 36 senators.
- Date of tweet, likes, retweets, quotes, current follower count, and more (originally 155 variables).
 - Popularity = tweet + likes + retweets + quotes.
 - Popularity distribution is right-skewed ⇒ use median.
- Apply sentiment analysis model VADER.

Sentiment Analysis: VADER

"No, I am your father" has a compound score of -0.296.

VADER

- Valence Aware Dictionary and sEntiment Reasoner.[1]
- Originally developed in Python, 2014.
- Lexicon (dictionary) designed for social media.
- Popular rule-based model, not machine learning ⇒ not a "black box," predictable.
- Accounts for intensifiers, capitalization, punctuation, emoticons, slang, among others.
- R port or original package.
- Can score more positively then Bing, AFINN, and NRC.

VADER: An Example is Worth a Thousand Words...

- Compound = sentiment score $\in [-1,1] = [\text{very negative, very positive}].$
- Compound $> 0.05 \Rightarrow$ positive, $< -0.05 \Rightarrow$ negative.
- Positive = percentage of text that is positive.

Text	Compound	Positive	Neutral	Negative
I love today and I hate tomorrow	0.1280	0.326	0.388	0.287
I love today 😊 and I hate tomorrow	0.7579	0.466	0.365	0.169
I love today, but I hate tomorrow!	-0.5778	0.201	0.386	0.413
I love today, but I really HATE tomorrow!	-0.7416	0.168	0.388	0.444
I do not love today	-0.5216	0.000	0.543	0.457
Today is not bad	0.4310	0.487	0.513	0.000

Sentiment Analysis: VADER

Graphs: Party Sentiment

Sentiment Analysis of Tweets by Party

Are the parties becoming more negative?

Data: Twitter

Graphs: Certain Senators' Sentiment

Sentiment Analysis of Tweets of Top 8 Most Negative Senators

Are certain Senators becoming more negative?

Senators were ranked by their average compound score Data: Twitter

Graphs: Positive, Negative, and Neutral Tweets

Sentiment Distribution of Tweets

Recent increases in shares of negative and positive tweets

Data: Twitter

Graphs: Negativity Doesn't Pay

Median-Centered Popularity vs. Sentiment of Tweets

Negativity doesn't pay

Each dot represents a Senator's tweet
Popularity = Retweets + Replies + Likes + Quotes
Adjusted Popularity = Popularity - Median for each year and Senator
Note: 2 outliers removed
Data: Twitter

Political Polarization

- Idea: Does cross-party hostility translate into real differences in bipartisan behavior? Do more politicians who publicly berate the other party actually cooperate less with them politically?
 - If yes \Rightarrow problem.
 - If no ⇒ problem ("weaponization of political polarization").
- Filter tweets for a string of key words (ex: "democrat, woke, trump, far-left, far-right, etc.") and for only negative tweets.
- Very rare (< 1% of all tweets).

Political Polarization: Example

Example:

@AlvaradoGilSD4 (Senator Marie Alvarado-Gil, Republican)

"Once again, CA Dems are prioritizing criminals over victims.

SB 672 would offer parole to certain killers sentenced to life without parole, just because they were "youthful" when they committed their crime/s & have served 25 years.

I'll be voting NO when this hits the Floor."

Graphs: Political Polarization

Politically Polarizing Tweets: Year vs. Sentiment

Political polarization pays

Each dot represents a Senator's politically polarizing tweet Popularity = Retweets + Replies + Likes + Quotes Median popularity calculated for each year and Senator Data: Twitter

Graphs: Polarization Pays

Political Polarization vs. Bipartisanship

Are polarizing politicians less bipartisan?

Each dot represents a unique Senator's Twitter handle Bipartisan rate is calculated as bipartisanship/bills sponsored Data: Twitter, LegiScan

Conclusion

- Increasing tweet negativity for some Senators.
- More positive and negative tweets, less neutral tweets.
- Negativity language does not appear to pay significantly, but politically polarizing language does.
- Politically polarizing politicians don't seem to actually act on that cross-party resentment in the legislature.
- Potential "solutions:"
 - Be aware of performance tweeting. Make others and politicians aware of the behavior.
 - Value of cross-party collaboration.
 - If the incentives are there, the behavior will follow.

Speeches

Data

- Web scraped from California Assembly website.
- Press releases of Democrats and Republicans.
- 2017-2024.
- Apply VADER.
- Text Mining.

Graphs: Does Sentiment Change?

Graphs: Party topics

Democrat

```
board student
              college development president
            future
              sexual access safe T information
                            receive meeting
          social workers assistance association
     press counties chair housing veterans
           newsom care
         budget menta
   introduced
violent victims
   issue
 increase
     springs homelessness
        prices accessibility disclaimer
                   residents service measure
                    colleaguesfloor
                 bipartisan
```

Republican

Graphs: Charged Vocabulary by Party

Most Positive and Negative Words by Party

Using Bing sentiment lexicon

Graphs: Deeper Look

Democrat_positive

Democrat_negative

```
sustainable
equitable
reform survivor clear 🗸 abuşe
strong
                              gold promise
            limitoffendersignificant
            disappoint success
                   celebrate
```

Republican_negative

Republican_positive

Party Platforms

- Web scraped national party platform statements from 1840-2024.
- Text mining.

Party Platforms: Party Topics

Democratic

```
quality expand strong quality expand strong quality expand strong quality expand strong party action fair employment ensure including community protection community protection communities are schools committed housing million prode million prode million prode pay act communities global configuration of the protection communities plobs secretly benefits to communities global configuration of the protection communities plobs secretly benefits to communities global configuration of the protection communities plots are configuration of the protection of the protection communities plots are commu
```

Republican

Conclusion

- Average sentiment in press releases has stayed consistent.
- Party topics do differ.
- Charged (negative/positive) vocabulary is similar.
- Same game, different goals.

Skills Learned and Used

- R packages:
 - Web Scraping: RSelenium, rvest, netstat, wdman.
 - Data Wrangling: tidyverse, janitor, lubridate, fuzzjoin, data.table, tidylog, jsonlite.
 - **Graphing**: ggplot2, hrbrthemes, scales, knitr, kableExtra, webshot2.
 - Sentiment Analysis: reticulate, vader.
 - Text Mining: tidytext, wordcloud, reshape2, SnowballC, textdata, textstem.
- Interacting with an API through an API key to retrieve data.
- Multiple R projects (5 subprojects).
- Managing a GitHub repository, locally cloning, and using Git Large File Service (LFS).
 - https://github.com/RileyBerman/DataHack_Group4_Project
- LATEX+ Beamer.
- ChatGPT + Copilot (especially for graphing, commenting code).

Limitations and Further Research

Limitations:

- Broke college kids, Twitter is hard and expensive to scrape.
- Limited time frame (~6 weeks).
- Learning curve.
- VADER is not infallible.
- Our datasets have a wealth of information on bill text and titles. These could be interesting to apply sentiment analysis to.
- Deeper analysis to see exactly why our bipartisan metrics show a recent decline.
- Our datasets contain granular information on roll call/voting behavior of all California legislature politicians. We could explore these.
- A larger batch of tweets could enhance or contradict our findings.

- **LegiScan:** had to resort to Ballotpedia for session party counts. 120+ politicians could be recorded for a given session (vacancies, special appointments, deaths).
- The Nature of Politics: Ted Gaines and Brian Dahle both represented SD-001 in the 2019-2020 session. Gaines actually left early (January 7, 2019) to assume a new office as a Member of the California State Board of Equalization.
- What are Even Term Limits? Susan Eggman ended her tenure in the Assembly by replacing Cathleen Galgiani in the Senate in 2020, whom she had previously replaced in the Assembly in 2012. Same thing with Ted Gaines and Brian Dahle.

 This "double succession" where a California politician succeeds the same individual in both the Assembly and the Senate, happens 3 other times!

Incumbent	Replacement	Role Progression	Session Year
Jean Fuller	Shannon Grove	Assembly to Senate	2011-2012, 2019-2020
Marty Block	Toni Atkins	Assembly to Senate	2011-2012, 2017-2018
Cathleen Galgiani	Susan Eggman	Assembly to Senate	2013-2014, 2021-2022
Joel Anderson	Brian Jones	Assembly to Senate	2013-2014, 2019-2020
Ted Gaines	Brian Dahle	Assembly to Senate	2013-2014, 2019-2020
Detect on Coop			

Data: LegiScan

- LegiScan: The failure rate of bills is understated. Many bills
 die out in committees, chambers, and politicians' desks, never
 to be heard of again. Why we created a new variable to
 account for this.
 - Spike in the proportion of failed bills in 2015-2016 session.
- LegiScan: The "X" of a bill's number (ex: "ABX11")
 indicates that the bill occurred in a special (extraordinary)
 session.
 - Highest number of extraordinary sessions occur in... 2009-2010 session (post-recession)!

• Why do we analyze in session years not years?

Legislative Bill Activity by Year

Senate and Assembly activity follow the biennial session cycle

Bill activity refers to the most recent date on which action was taken on the bill Data: LegiScan

 Legislature activity is highly cyclical: lawmakers introduce bills in their first (odd-numbered) year, then work on them in the following (even-numbered) year.

Thanks for Listening!

References

[1] C.J. Hutto and Eric Gilbert. "VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text". In: Proceedings of the Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI: Association for the Advancement of Artificial Intelligence (AAAI), 2014.