EE6367: Topics in Data Storage and Communications

2023

Lecture 21: 13 November 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

21.1 General Single-Bit Quantization Schemes

Any one-bit quantization scheme takes the form

$$Y_i = \mathbb{1}_{\{X_i \in \mathcal{A}_i\}}.\tag{21.1}$$

For a fully distributed scheme, the A_i are fixed and independent of the samples X_i . However, in an interactive scheme the A_i can depend on the X_i .

21.1.1 A Potential One-Bit Scheme

The mean of a random variable X can be written in another form as

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{\infty} x f_X\left(x\right) dx \tag{21.2}$$

$$= \int_0^\infty \Pr(X > t) dt - \int_{-\infty}^0 \Pr(X < t) dt$$
 (21.3)

$$= \int_0^\infty \mathbb{E}\left[\mathbb{1}_{\{X>t\}}\right] dt - \int_{-\infty}^0 \mathbb{E}\left[\mathbb{1}_{\{X$$

$$\approx \sum_{j=0}^{\alpha} \mathbb{E}\left[\mathbb{1}_{\{X>j\Delta\}}\right] \Delta - \sum_{j=-\beta}^{0} \mathbb{E}\left[\mathbb{1}_{\{X$$

Thus, we can create a potential scheme in which the j^{th} user transmits $\mathbb{1}_{\{X_j < j\Delta\}}$.

21.2 Threshold Based Schemes

In threshold-based schemes, we have $A_i = (-\infty, \theta_i]$, and $Y_i = \mathbb{1}_{(X_i \leq \theta_i)}$. We state the following claim.

Theorem 21.1. For any threshold-based scheme and symmetric log-concave f_X , we have

$$\sqrt{m} \left(\hat{\mu} - \mu \right) \xrightarrow{d} \frac{1}{\kappa \left(\mu \right)}$$
(21.6)

as $m \to \infty$. Further,

$$\lim_{m \to \infty} MSE \to \frac{1}{\kappa(\mu)}$$
 (21.7)

$$\kappa\left(\mu\right) \triangleq \int_{-\infty}^{\infty} \frac{f_X^2\left(t-\mu\right)}{F_X\left(t-\mu\right)F_X\left(\mu-t\right)} \lambda\left(t\right) dt \tag{21.8}$$

$$\Lambda_m(\tau) \triangleq \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{\theta_i \leqslant \tau} \tag{21.9}$$

$$\lambda\left(\tau\right) \triangleq \frac{d}{d\tau} \lim_{m \to \infty} \Lambda_m\left(\tau\right) = \frac{d\Lambda\left(\tau\right)}{d\tau}.$$
(21.10)

Note that $\Lambda_{m}\left(z\right)$ is the approximation of a CDF. Further, if θ_{i} is uniform over $\left[-\beta,\alpha\right]$, then

$$\kappa\left(\mu\right) = \int_{-\beta}^{\alpha} \frac{f_X^2\left(t - \mu\right)}{F_X\left(t - \mu\right)F_X\left(\mu - t\right)} \frac{1}{\alpha + \beta} dt. \tag{21.11}$$