软件分析与验证 截止时间: Mar 20, 2022

作业1

授课老师: 贺飞 周雨豪 (2018013399)

助教:徐荣琛、谢兴宇、韩志磊、刘江宜

在开始完成作业前,请仔细阅读以下说明:

- 我们提供作业的 IATEX 源码,你可以在其中直接填充你的答案并编译 PDF(请使用 xelatex)。 当然,你也可以使用别的方式完成作业(例如撰写纸质作业后扫描到 PDF 文件之中)。但是请 注意,最终的提交一定只是 PDF 文件。提交时请务必再次核对,防止提交错误。
- 在你的作业中,请务必填写你的姓名和学号,并检查是否有题目遗漏。请重点注意每次作业的截止时间。截止时间之后你仍可以联系助教补交作业,但是我们会按照如下公式进行分数的折扣:

作业分数 = \min (实际分,满分× $(1-10\% \times \min ([迟交周数],10))).$

• 本次作业为独立作业,禁止抄袭等一切不诚信行为。作业中,如果涉及参考资料,请引用注明。

Problem 1: 判断题

给定下列陈述,请判断其是否正确。如果错误,请给出反例或解释原因。

1-1 给定任意的命题逻辑公式,它是否为有效式一定是可判定的。

Solution True ■

1-2 给定命题逻辑公式 F 和 G, 如果 F 是有效的且 G 不是有效的,则 $F \to G$ 一定不可满足。

Solution False. 当 G 取值为 True 时候 $F \to G$ 取值为 True, 所以并非不可满足 ■

1-3 给定命题逻辑公式 F 和 G, 如果 F 是可满足的且 $\neg G$ 是不可满足的,则 $F \wedge G$ 一定可满足。

Solution True ■

1-4 任意给定一个一阶逻辑公式,一定可以在有限时间内判定其是否有效。

Solution False. 如果公式非有效式则无法在有限时间内判定 ■

Problem 2: 解答题

2-1 考虑下列公式:

$$(P \to (Q \to R)) \to (\neg R \to (\neg Q \to \neg P))$$

请列出它的真值表,并判断:1)它是否有效;2)它是否可满足。

Solution

Р	Q	R	$P \to (Q \to R))$		原式
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	0	1	1
1	1	1	1	1	1

1) 非有效; 2) 可满足

2-2 在下列公式中,请标记出所有变元的自由出现:

$$\forall x.(f(x) \land \exists y.g(x,y,z)) \land \exists z.g(x,y,z)$$

Solution

$$\forall x.(f(x) \land \exists y.g(x,y,\underline{z})) \land \exists z.g(\underline{x},y,z)$$

见下划线字母

2-3 考虑论域 $\mathcal{D} = \{ \circ, \bullet \}$ 以及下面的解释函数

• $\mathcal{I}(f) = \{(\circ, \circ) \mapsto \circ, (\circ, \bullet) \mapsto \bullet, (\bullet, \circ) \mapsto \bullet, (\bullet, \bullet) \mapsto \bullet\}$

• $\mathcal{I}(g) = \{ \circ \mapsto \bullet, \bullet \mapsto \circ \}$

• $\mathcal{I}(p) = \{(\bullet, \circ), (\bullet, \bullet)\}$

求公式 $\forall x.p(f(g(x),x),x)$ 的取值。

周雨豪 作业1

Solution

$$\begin{split} x &\mapsto \circ \\ & \llbracket g(x) \rrbracket = \mathcal{I}(g)(\llbracket x \rrbracket) = \mathcal{I}(g)(\circ) = \bullet \\ & \llbracket f(g(x),x) \rrbracket = \mathcal{I}(f)(\llbracket g(x) \rrbracket, \llbracket x \rrbracket) = \mathcal{I}(f)(\bullet,\circ) = \bullet \\ & \llbracket p(f(g(x),x),x) \rrbracket = \mathcal{I}(p)(\bullet,\circ) = true \\ & x \mapsto \bullet \\ & \llbracket g(x) \rrbracket = \mathcal{I}(g)(\llbracket x \rrbracket) = \mathcal{I}(g)(\bullet) = \circ \\ & \llbracket f(g(x),x) \rrbracket = \mathcal{I}(f)(\llbracket g(x) \rrbracket, \llbracket x \rrbracket) = \mathcal{I}(f)(\circ,\bullet) = \bullet \\ & \llbracket p(f(g(x),x),x) \rrbracket = \mathcal{I}(p)(\bullet,\bullet) = true \end{split}$$

所以 $\forall x.p(f(g(x),x))$ 取值为 true

- **2-4** 请使用课程教授的相继式演算系统(包含命题逻辑中的 10 条规则和 4 条量词消去规则)构建推导树证明下列两个相继式:
 - 1. $\exists x.(p(x) \to q(x)) \vdash \forall y.p(y) \to \exists z.q(z)$
 - 2. $\forall y.p(y) \rightarrow \exists z.q(z) \vdash \exists x.(p(x) \rightarrow q(x))$

Solution

1. $p(c) \vdash p(c), q(c) \quad p(c), q(c) \vdash q(c)$ 切 $\overline{p(c) \to q(c), p(c) \vdash q(c)}$ 左蕴含 $p(c) \to q(c) \vdash \neg p(c), q(c)$ 右否定 $p(c) \to q(c) \vdash \neg p(c), \exists z. q(z)$ 右存在 $p(c) \to q(c), p(c) \vdash \exists z. q(z)$ 左否定 $p(c) \to q(c), \forall y.p(y) \vdash \exists z.q(z)$ 左全称 $\exists x.(p(x) \to q(x)), \forall y.p(y) \vdash \exists z.q(z)$ 左存在 $\exists x.(p(x) \to q(x)) \vdash \forall y.p(y) \exists z.q(z)$ 右蕴含 2. $p(z) \to q(z) \vdash p(z) \to q(z)$ 切 $p(z) \to \exists z. q(z) \vdash p(z) \to q(z)$ 左存在 $\overline{\forall y.p(y) \to \exists z.q(z) \vdash p(z) \to q(z)}$ 左全称 $\forall y.p(y) \to \exists z.q(z) \vdash \exists x.(p(x) \to q(x))$ 右存在