

Figure 3

A2058

COLO205

HCT115

HCT116 wt

HCT116 Bax-/-

HCT116 Bax+/-

Effect of DR4 / DR5 Functional Antibodies on Colon and Melanoma Cancer Cell Lines Figure 5

BEST AVAILABLE COPY

Figure 6

Isviviu2 %

Figure 7

DR5 Antibody Agonist - Colo 205 Efficacy Study **Fime (days)** Figure 9 400ug anti-DR5 Mab, 6X in 12 days PBS control

Tumor Volume +/- s.e.m. (mm3)

Figure 10

Anti-DR5 Dose Response, COLO205 Subcutaneous Model

Pathways For Caspase Activation and Apoptosis

Predominant Anti-Apoptotic Features of Tumor Cells:

- ➤ Over-expression of Bcl 2
- ➤ Increased Levels of IAP's
- **≯Mutations in Bax**

Anti-DR4 or DR5-induced apoptosis in A2058 cells in

Figure 14

Effect of LB 672 On Normal And Tumor Cells

PK and PD Study of Smac Mimetic LBP672 In Nude Mice Bearing HCT116 Tumors

PK SUMMARY

Model: Athymic nude mice bearing subcutaneous HCT116 tumors

Dose: single 25 mg/kg i.v. trifluoroacetate salt (20.3 mg/kg free base) in D5W.

LBP672 rapidly absorbed by tumor Tmax @ 0.5 h. Mean tumor Cmax @ 4620ng/g (9.38 uM).

At 16 h. post dose LBP672 mean tumor [co] @ 55.1 ng/g (110 nM).

NFkB Activation By The Proteosome

degradation of IkB by the proteosome. NFkB activates transcription of genes that protect the cell Viruses, growth factors, radiation or chemotherapeutic drugs activate pathways that lead to the from apoptosis

BEST AVAILABLE COPY

208 Proteosome Inhibitors -[Chymotryptic Activity]

Compound	Description	Selectivity	IC50	MTD
NVP-AFB340-NX	Boronate	Good	< InM	3mg/kg-1x
NVP-AFD314-NX	Boronate	Good	< InM	3mg/kg-1x

Good

Poor

20 mg/kg-2x

3nM

Excellent

Beta-Lactame

NVP-AEV273-NX

Good

Sol.

NVP-AFB340-NX

Figure 19

Effect of Proteosome Inhibitors On A2058 -Luc

Effect of Proteosome Inhibitors On The Hepatocarcinoma Figure 20

Effect of Proteosome Inhibitors On Normal Human Mammary Figure 21

Functional Activity

Figure 23 Anti-DR5 DNA Sequence Light Chain Variable Region

GCATCACCTGCAAGGCCAGTCAGGATGTGAATACTGCTATAGCCTGGTATCAACAAA GTTCGGTGCTGGGACCAAGCTGGAGCTGAAACGGGCTGATGCTGCACCAACTGTATCC GACATTGCGATGACCCAGTCTCACAAGTTCATGTCCACATTAGTGGGAGACAGGGTCA ACCAGGGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTC TGGAGGCTGAAGATGCTGCCACTTATTACTGCCAGCAGTGGAGTAGTAACCCGCTCAC CCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTA ATCTTCCCACC

Heavy Chain Variable Region

TATATAAAATACAATGAGAAATTCAAGGACAGGGCCACATTGACTGCGGACAAATCCT CCAACACAGTCTATATGGAGCTTAGTCGATTGACATCTGAAGGCTCTGCGGTCTATTTC GTGAAGCTGTCCTGCAAGGCTTCTGGCTACACCTTCACTGACTATACTATACACTGGGT AAAGCAGAGGTCTGGACAGGGTCTTGAGTGGATTGGGTGGTTTTACCCTGGAGGTGGT TGTGCAAGACACGAAGAGGGCATCTATTTTGACTACTGGGGCCAAGGCACCACTCTCA CAGGCAAAGGTCCAGCTGCAGTCTGGAGCTGAGCTGGTGAAACCCGGGGCATCA CAGTCTCCTCA

DR5 V_H Sequence – Heavy Chain Subgroup 2B

Lys Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val

Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr Thr Ile His Trp Val

Lys Gln Arg Ser Gly Gln Gly Leu Glu Trp Ile Gly Trp Phe Tyr Pro Gly Gly

Gly Tyr Ile Lys Tyr Asn Glu Lys Phe Lys Asp Arg Ala Thr Leu Thr Ala Asp

Lys Ser Ser Asn Thr Val Tyr Met Glu Leu Ser Arg Leu Thr Ser Glu Gly Ser FR3

Ala Val Tyr Phe Cys Ala Arg His Glu Glu Gly Ile Tyr Phe Asp Tyr Trp Gly

FR4

Gln Gly Thr Thr Leu Thr Val Ser Ser

DR5 V_L Sequence- Kappa Light Chain Subgroup 5

FR1

Asp Ile Ala Met Thr Gln Ser His Lys Phe Met Ser Thr Leu Val Gly Asp

CDRI

Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Asn Thr Ala Ile Ala

FR2

Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Ala CDR2 Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly

Thr Asp Tyr Thr Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr

CDR3

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr

Lys Leu Glu Leu Lys Arg Ala

Figure 27 TRAIL induced apoptosis in Hela cells

Reverse transfection

	scre	screen 1	scre	screen2
	(-TRAIL)	(-TRAIL) (+TRAIL) (-TRAIL) (+TRAIL)	(-TRAIL)	(+TRAIL)
AV row data	29221.7	29221.7 9368.75		59419.2 26782.7
AV normalized controls	100	32	100	45
survival ratio controls	0.	0.32	0	0.45
AV SD normalized controls	7.06	16.12	6.18	10.76
AV SD among duplicates	5.75	8.02	4.11	6.71
AV SD of survival ratio for				
each siRNA among the 2		12.	12.87	
experiments				

Cell viability assay

BEST AVAILABLE COPY

REST AVAILABLE COPY

20h

Screen

Figure 28

Log(ratio)

ratio	P value	annotation
8.09	0.000	H.s plexin B1 (PLXNB1), mRNA"
9.24	0.000	H.s. SET domain-containing protein 7 (SET7), mRNA
9.89	0.001	H.s. mitogen-activated protein kinase kinase kinase 5 (MAP3K5), mRNA"""""
10.22	0.001	H.s. STE20-like kinase (JIK), mRNA
10.46	0.001	H.s. putative endoplasmic reticulum multispan transmembrane protein (RFT1), mRh
10.47	0.001	H.s MAP kinase-interacting serine/threonine kinase 1 (MKNK1), mRNA"""
10.70	0.001	H.s mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2), trans
11.29	0.002	Homo sapiens phosphatidylinositol-4-phosphate 5-kinase, type I, gamma (PIP5K1C
11.88	0.004	MAP2k5
12.31	0.005	Q62862 SER/THR FAMILY OF PROTEIN KINASES-RELATED
12.51	900.0	H.s. cyclin-dependent kinase 6 (CDK6), mRNA"""""
12.73	0.008	H.s muscle, skeletal, receptor tyrosine kinase (MUSK), mRNA"""
12.76	0.007	H.s. activin A receptor type II-like 1 (ACVRL1), mRNA"""""
12.92	0.008	H.s. Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR), mRNA"
13.16	0.011	H.s ribosomal protein S6 kinase, 90kD, polypeptide 5 (RPS6KA5), mRNA"""
13.26	0.007	H.s. hypothetical protein FLJ21802 (FLJ21802), mRNA (mina53 related)
13.95	0.018	H.s. mitogen-activated protein kinase 7 (MAPK7), mRNA
74.00	0.008	H.s glycogen synthase kinase 3 alpha (GSK3A), mRNA"""
75.07	0.010	hypothetical protein FLJ32312 (FLJ32312),
77.75	0.007	similar to Pyruvate kinase, M2 isozyme (LOC148283),
78.62	0.004	H.s. hypothetical protein FLJ11712 (FLJ11712), mRNA
80.10	0.004	H.s B lymphoid tyrosine kinase (BLK), mRNA"""
84.64	0.003	P53
94.56	0.001	Hs. signal recognition particle 72kD (SRP72), mRNA

Figure 31

Figure 32

Sensitization of HcT116-Bax-/- to TRAIL by inhibition of the proteasome

Measurement after 24 h, 5 µM LC, 1 µM MG-132, 1 nM MG-262

BEST AVAILABLE COPY

Figure 34
MG-262 restores the mitochondrial apoptosis pathway

Sequence of DR5'A' heavy chain variable region

TATAAAATACAATGAGAAATTCAAGGACAGGCCACATTGACTGCGGACAAATCCTC CAACACAGTCTATATGGAGCTTAGTCGATTGACATCTGAAGACTCTGCGGTCTATTTC TGTGCAAGACACGAAGAGGGCATCTATTTTGACTACTGGGGCCAAGGCACCACTCTC GCAGAGGTCTGGACAGGGTCTTGAGTGGATTGGGTGTTTTACCCCTGGAGGTGGTTA **AAGGTCCAGCTGCAGTCTGGAGCTGAGCTGGTGAAACCCGGGGCATCAGTGAA** GCTGTCCTGCAAGGCTTCTGGCTACACCTTCACTGACTATACTATACACTGGGTAAA ACAGTCTCCTCA

Amino acid sequence of VH

KVQLQQSGAELVKPGASVKLSCKASGYTFTDYTIHWVKQRSGQGLEWIGWFYPGGGYIK YNEKFKDRATLTADKSSNTVYMELSRLTSEDSAVYFCARHEEGIYFDYWGQGTTLTVSS DNA Sequence of DR5'A' light chain variable region

CCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTATACTCTCACCATCAGCAGTGT GCAGGCTGAAGACCTGGCACTTTATTACTGTCAGCAACATTATACCACTCCATTCACGT GCATCACCTGCAAGGCCAGTCAGGATGTGAATACTGCTATAGCCTGGTATCAACAAA GACATTGTGATGACCCAGTCTCACAAGTTCATGTCCACATCAGTGGGAGACAGGGTCA ACCAGGGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTC TCGGCTCGGGGACAAGTTG

Amino acid sequence of VL

DIVMTOSHKFMSTSVGDRVSITCKASQDVNTAIAWYQQKPGQSPKLLIYWASTRHTGVPDR FTGSGSGTDYTLTISSVQAEDLALYYCQQHYTTPFTFGSGTKL