Formal Language Selected Homework Chapter 3.3

4. Construct right- and left-linear grammars for the language

$$L = \{a^n b^m : n \ge 2, m \ge 3\}.$$

- 8. In Theorem 3.5, prove that $L(\widehat{G}) = (L(G))^R$. (\$\infty]
- **11.** Find a regular grammar for the language $L = \{a^n b^m : n + m \text{ is even}\}.$
- 13. Find regular grammars for the following languages on $\{a, b\}$.
 - (a) $L = \{w : n_a(w) \text{ and } n_b(w) \text{ are both even}\}.$
 - (b) $L = \{w : (n_a(w) n_b(w)) \mod 3 = 1\}.$
- 17. Let $G_1 = (V_1, \Sigma, S_1, P_1)$ be right-linear and $G_2 = (V_2, \Sigma, S_2, P_2)$ be a left-linear grammar, and assume that V_1 and V_2 are disjoint. Consider the linear grammar $G = (\{S\} \cup V_1 \cup V_2, \Sigma, S, P)$, where S is not in $V_1 \cup V_2$ and $P = \{S \to S_1 | S_2\} \cup P_1 \cup P_2$. Show that L(G) is regular.

501

4. Right linear grammar:

 $S \rightarrow aaA$

 $A \rightarrow aA|B$

 $B \rightarrow bbbC$

 $C \to bC|\lambda$

Left linear grammar:

 $S \rightarrow Abbb$

 $A \rightarrow Ab|B$

 $B \rightarrow Caa$

 $C \to Ca|\lambda$

11. Split this into two cases: (i) n and m are both even and (ii) n and m are both odd. The solution then falls out easily, with

$$S \rightarrow aaS|A$$
 (ii) $5' \rightarrow aa5'|aB$ $A \rightarrow bbA|\lambda$ $B \rightarrow bbB|b$

taking care of case (i). Initial variable 5, > 5/5

13. (a) First construct a dfa for L. This is straightforward and gives transitions such as

$$\delta(q_0, a) = q_1, \delta(q_0, b) = q_2,$$
 $\delta(q_1, a) = q_0, \delta(q_1, b) = q_3,$
 $\delta(q_2, a) = q_3, \delta(q_2, b) = q_0,$
 $\delta(q_3, a) = q_2, \delta(q_3, b) = q_1,$

with q_0 the initial and final state. Then the construction of Theorem 3.4 gives the answer

$$q_0 o aq_1\,|bq_2|\,\lambda,$$
 $q_1 o bq_3|aq_0,$ $q_2 o aq_3|bq_0,$ $q_3 o aq_2|bq_1.$ (b) see heat pose.

17. Obviously, $L(G_1)$ is regular, as is $L(G_2)$. We can show that their union is also regular by constructing the following dfa.

The condition that V_1 and V_2 should be disjoint is essential so that the two nfa's are distinct.

13.(6)

