Computer Aided Process Planning and Control

Module: 2

7/7/2014

CAPP

Coding refers to the process of assigning symbols to the parts

The **symbols** represent **design attributes** of parts or **manufacturing features** of part families

7/7/2014

CADD

 GT: An approach to manufacturing in which similar parts are identified and grouped together in order to take advantage of their similarities in design and production

There are three methods that can be used to form part families:

- Manual visual inspection
- Production flow analysis (PFA)
- Classification and coding

7/7/2014

CAPP

Coding Scheme Structures

- 1. Hierarchical structure (monocode)
 - Interpretation of each successive digit depends on the value of the preceding digit
- 2. Chain-type structure (polycode)
 - Interpretation of each symbol is always the same
 - No dependence on previous digits
- 3. Mixed-code structure(Hybrid)
 - Combination of hierarchical and chain-type structures

7/7/2014

CAPP

Opitz Classification System

- Mixed Code
- One of the first published classification and coding schemes for mechanical parts
- Can be applied to machined parts, non machined parts and purchased parts
- Considers both design and manufacturing Information

7/7/2014 CAPP 11

Opitz Coding System

MICLASS Coding Systems

7/7/2014 CAPP

Opitz Classification System

- Basic code = nine (9) digits
 - Digits 1 through 5 = FORM CODE primary shape and design attributes (hierarchical structure)
 - Digits 6 through 9 = SUPPLEMENTARY CODE attributes that are useful in manufacturing (e.g., dimensions, starting material)
 - Digits 10 through 13 = SECONDARY CODE production operation type and sequence

	M	IAIN	FORM	10	Main bore and stational machining	N	fachining of plane surfaces			les, i	teeths and		
0	1	no	Rectangular cross-section	0	No features	0	Without surface machining	0	Wi	ithou	t features		
1		cross-section	Ortogonal cross-section	1	One smooth bore	1	Chamfers	1	uo		One bore direction		
2	EL I	Same	Any cross- section	2	One bore multiple ascending	2	A flat surface	2	formati		everal bore directions		
3	Straight form	Rec	ctangular cross- section	3	One main bore with all form elements	3	Stepped surface	3	Without transformation /without gearing	hole	One bore direction		
4	Str		ectangular and togonal cross- section	4	Two main bores parallels	4	Stepped surface vertically inclined and/or opposed	4	Withc/w/	With hole	Several bore directions		
5			Other	5	More than two main bores paralells	5	Groove and/or slot	5	nation	0.0	Formed without drilling	Whe Digit is 7	•
6		an	Rectangular, igular arbitrary cross-section	6	Many main bored perpendicular	6	Groove and/or slot and 4	6	Tranformation /without gearing		Formed with drilling	15 7	
7	Curved form		Shaped part	7	Ring groove machining surfaces	7	Curved surface	7		Ge	aring	A/B:	> ;
8	Curv		naped part with eviations in the axis	8	7 + main bore	8	Guided surface	8	Gea	ring	with hole		
9		_	Other	9	Other	9	Other	9		0	ther		

	M	AIN FORM	IO	Main bore and tational machining	N	fachining of plane surfaces			les, ormi	teeths and ng		
0		Rectangular plane	0	No features	0	Without surface machining	0	Wi	thou	t features		
1	1	Right-angled triangle plane	1	One smooth bore	1	Chamfers	1	ion		One bore direction		
2	Plane/flat	Angularly	2	One bore multiple	2	A flat surface	2	format		everal bore directions		
3	Pls	Circular and rectangular	3	One main bore with all form elements	3	Stepped surface	3.	Without transformation /without gearing	With hole	One bore direction		
4		Other	4	Two main bores parallels	4	Stepped surface vertically inclined and/or opposed	4	With /v	With	Several bore directions		
5	Flat	part rectangular or logonal with small deviations	5	More than two main bores paralells	5	Groove and/or slot	5	nation gearing		Formed without drilling	Wher Digit is 6	1
6		t part round or any er shape with small deviations	6	Many main bored perpendicular	6	Groove and/or slot and 4	6	Tranformation /without gearing		Formed with drilling		
7		part with regularly arched form	7	Ring groove machining surfaces	7	Curved surface	7			aring	A/B <u><</u> A/C <u>></u>	:
8		Flat part with gularly arched form	8	7 + main bore	8	Guided surface	8	Gea	ring	with hole	A, C 2	
9		Other	9	Other	9	Other	9		0	ther	4	Ì

	N	DIGI AAIN I	7.7	rc	DIGIT 3 Main bore and stational machining	N	DIGIT 4 fachining of plane surfaces		Other ho	oles, ormi	teeths and		
0			Cuboid	0	No features	0	Without surface machining	0	W	ithou	t features		
1		Orto	ogonal parts	1	One smooth bore	1	Chamfers	1	u u		One bore direction		
2	rts		omposite allelepiped	2	One bore multiple ascending	2	A flat surface	2	rmatio		everal bore directions		
3	Block-like parts	Parts surfa	mit mounting ces and main bore	3	One main bore with all form elements	3	Stepped surface	3	Without transformation /without gearing	pattern	One bore direction		
4	Bloc	mour and n	arts with sting surfaces nain bore with ribution area	4	Two main bores parallels	4	Stepped surface vertically inclined and/or opposed	4	Withon /wi	With hole pattern	Several bore directions	When	_
5	8		Other	5	More than two main bores paralells	5	Groove and/or slot	5	mation		Formed without drilling	Digit is 8	1
6	850	Not shared case		6	Many main bored perpendicular	6	Groove and/or slot and 4	6	Tranformation /without gearing		Formed with drilling	Λ/Β.	_
7	Case-like parts	Not sh	Any form	7/	Ring groove machining surfaces	7	Curved surface	7			aring	A/B · A/C ·	<u>-</u>
8	Case-	Shared case		8	7 + main bore	8	Guided surface	8	Ge	aring	with hole	-	_
9		Sh	Any form	9	Other	9	Other	9		0	ther		20

- The total number of digits used in MICLASS classification system may vary from 12 to 30 digits. The digits can be divided into two. The first twelve digits are a universal nature and can be applied to any work part.
- The other 18 digits which is called supplemental codes can be used for data that are specific to the particular company. Those supplemental digits provide a flexibility to accommodate broad applications. Such as lot size, cost data, and operation sequence

7/7/2014 CAPP 39

MICLASS

- The name MICLASS stands for Metal Institute Classification System, and was developed by the Netherlands Organization for Applied Scientific Research (TNO) of Holland
- Includes both design and Manufacturing Information

7/7/2014 CAPP

MICLASS Code Structure

	IVIICLA	ASS Code Structure
	Code Position	Item
	1	Main Shape
	2	Chana Flamoute
	3	Shape Elements
	4	Position of Shape elements
	5	Main Dimension
	6	iviain Dimension
	7	Dimension Ratio
	8	Auxiliary Dimension
	9	Toloropeo Codos
	10	Tolerance Codes
	11	Material Codes
7/7/2014	12	Material Codes

Relay on one's experience. Most frequently this is the way industry operates.

Drawbacks

- Requires a significant period to accumulate
- Represents only approximate, not exact Knowledge
- > Is **not Directly applicable** to **new** processes

Need to automate.

MACHINIST HANDBOOKS

- Storing process capability information Represented in figures, tables or guidelines.
- Serve as reference and as guide for process selection

Hole Making Knowledge

Guidelines

- I. Dia < 0.5"
 - A. True position > 0.010"
 - 1. Tolerance > 0.010"

Drill the hole.

2. Tolerance < 0.010"

Drill and ream the hole.

- B. True position ≤ 0.010"
 - 1. Tolerance ≤ 0.010"

Drill, then finish bore the hole.

2. Tolerance ≤ 0.002"

Drill, semi-finish bore, then finish bore the hole.

II.,0.05" < dia ≤ 1.00"

Machining method																150										
Machining method			no	0	1 20	cur	эсу	el I	_	_				zin		-	of s	urfac	e qu	alie	_	_		791		
10 3		5	6	,	8	1	ш	10		12	13	14 to 16	1	2	3	4	5	6	7	9	10	13	12	13		
1. CHIP REMOVING PROCESSES				18						Y										79						
Turning	Т	Т	١.	١.	To	T	T	0	×	×	-	-	-	-	-	×	×	0	٠.	Т	Т					
Boring	t	t	١.						×	×	-	-	-	-	-	x	×	0		-	٠	H		+	100	
Drilling	T	T	t	t	t	Ť	t		0	×	×	-	-	-	×	×	0		t	t	1	-		+		
Reaming	1		١.	0	0	,	×	×	-	-	98		111		Ĥ	Ĥ		x	0	١.		-				
Peripheral milling	1	t		١.	t.		0	0	×	x	-	-	-	-	×	×	0	0		+	Ė	-	Н	Н	1	
Face milling	t	t					0	0	×	×		-	-	-	×	×	0			-			Н	+		
Planing and shaping	t	t	t	t	١.			0	0	×	×	-	H	-	x	×	0	-		+	+	Н	Н	+	1	
Broaching	t	١.		0	10	1,	d	×	-	-	_	-	Н			-	×	0	١,				Н	+		
II. ABRASION PROCESSES A. Using abrasive roots Centre-type cylindrical grinding	T	1.	0	0	I×	1	1	-1	-1								-1		J	Ι.				_	ed.	
Centreless cylindrical grinding	t		0	×	×	1	d.	-1	-			Н	Н			Н	-	x	x c	0		Н		+	-	
Internal grinding	t		0	0	×	١,		+	-			Н	Н		Н	Н	-	-	x c	١.		Н		+	-	
Surface grinding	t		0	0	×	,	1	-	-	-		Н	Н			Н	-	-		0		Н		+		
Abrasive belt grinding	T			0	0	1,	t	×	-1	-	П	П	Н			-	×	-	1	1.	-		-	+		
Surface honing			0	0	×	1-		-	1	7	1	П			П	П	7		٠,	×	0			+		
Shaft and internal honing •			0	0	×	1-	+	Ť	Ť	1	1	Н				M	1		1	+-	0	-		+	1	
Superfinish •		0	0	×	×	1-	-	Ť	t	T	T	Н					+	1	1	×	0	0			1	
B. Using loose abrasive		lei.	m	OC	1	l v	10					di	har		on.		20	00		-		211	oli			
Lapping			0	0	V	L	Τ.	Т	T	T	7				1	1			T	L		•	-	-	-	
		0	0	×	×	t:	+	+	+	+	+	\dashv	Н		+	1	-	1	1	×	•				1	
Vibratory and barrel finishing	Ť	-	-			+-	1	1	1	×	×				-	-			1.	Ť	ľ	~	-	+	+	
Abrasive-blast treatment	H					-		1	-	-	-		Н		-		×	0 0		١.	Н	Н	+	+	-	
	-				0	10	1	đ.			1	-	Н	-		-	· ·	- `	Η.	ŀ	Н		+	+		
Abrasive-blast treatment	-		-	-	-	0	0			×	-	-		-	-	-	×	0 0	1	-			1			

MACHINIST HANDBOOKS

e.g. Surface-finish chart - limiting extremes of process

8 μ in - use grinding, polishing, lapping

Usually not with milling, however, finish milling may achieve the specification.

The information is general. It does not mean every machine or shop can achieve that accuracy.

Turning limit (6.3 - 0.4 μ m or 250 - 16 μ inch)

Diamond turning at Lawrence Livermore Lab

(12.5 nm or 0.47 μ inch)

Decision Tables and Decision Trees

- Tools to assist in Decision making
- Are methods of describing the various actions associated with combination of input (conditions)

Decision rules must cover all possible situations so for using it in process planning these rules must be well though out.

7/7/2014 CAPP 4

Terminology

Stub	Rule 1	Rule 2	Rules 3,4	Rule 5	Rule 6	Rules 7,8
c1	T	T	T	F	F	F
c2	T	T	F	T	T	F
с3	T	F	-	T	F	-
a1	X	X		Х		
a2	X				X	
a3		X		X		
a4			X			X

condition stubscondition entriesaction stubsaction entries

014 CAPP

Decision Tables

To computerize the decision making, one simple way is to use decision tables.

If the conditions set in an entry are satisfied, the actions in the entry are executed.

The stub contains the condition or action statements. Entries mark which conditions or actions are applicable.

Each entry contain one rule.

7/7/2014

• To express the program logic we can use a limited-entry decision table consisting of 4 areas called the *condition stub*, *condition entry*, *action stub* and the *action entry*. Condition entry

		Rule1	Rule2	Rule3	Rule4
	Condition1	Yes	Yes	No	No
Condition	Condition2	Yes	X	No	X
stub	Condition3	No	Yes	No	X
	Condition4	No	Yes	No	Yes
	Action1	Yes	Yes	No	No
Action stub	Action2	No	No	Yes	No
	Action3	No	No	No	Yes
				Action Entry	

- Each condition corresponds to a variable, relation or predicate
- Possible values for conditions are listed among the condition alternatives
 - Boolean values (True / False) Limited Entry Decision Tables
 - Several values Extended Entry Decision Tables
- Each action is a procedure or operation to perform
- The entries specify whether (or in what order) the action is to be performed

7/7/2014 53

Limited Entry Decision tables

Condition stub specifies exactly what the conditions are , entries can only be T, F or Do not Care

Raining	Т	F	F
Hot		T	F
Go to arcade	Х		
Go to beach		Х	
Go to picnic			Х

7/7/2014 CAPP

Decision Tables Classifications

Based on the rule representation

- 1. Limited Entry Decision tables
- 2. Extended Entry Decision Tables
- 3. Mixed Entry Decision Tables

7/7/2014

Extended Entry Decision tables

Condition stub specifies the identification of the condition not the value. Values are specified in the condition entries

Temperature		<u>></u> 80	< 80
Weather	Raining	Not raining	Not raining
Go to arcade	Х		
Go to beach		х	
Go to picnic			х

Mixed Entry Decision Tables

Sequenced and unsequenced actions can be identified

True position > 0.01	т	Т	
True position < 0.01			
Dimensional tolerance > 0.1	Т		
Dimensional tolerance ≤ 0.1		T	
Drill	х	1	
Ream		2	
Bore			

Redundant Rules

Occurs when two rules have the same actions

7/7/2014

		Α	В	С
Condition	1	Т	Т	Т
	2			
	3	Т	Т	
	4		F	
Action	1	Х	х	
Action	2			Х
Action	3			х

CAPP

Factors to be considered while constructing Decision tables

- Completeness
- Accuracy
- Redundancy
- Consistency
- Loops
- Size

7/7/2014 CAP

Endless loop В С True Position > 0.01 Т Tolerance > 0.01 Т SF <u>></u> 60 Dia = 0 F Т F F Drill Ream Х Bore Х Dia = 0 SF = 60 Х Terminate Х SF = 40 μin, Dia : 2in, Tol 0.005in 7/7/2014

Example Decision Table									
CONDITIONS	Dia <u><</u> 0.5	Х	Х	Х	Х				
	0.5 <u><</u> D <u><</u> 1.0					Х	Х	Х	
	T.P < 0.010	Х	Х						
	T.P ≥ 0.01			Х	Х				
	Tol > 0.010	Х							
	0.002 <tol 0.010<="" <="" td=""><th></th><td>Х</td><td>Х</td><td></td><td></td><td></td><td></td><td></td></tol>		Х	Х					
	Tol <u><</u> 0.002				Х				
ACTIONS	Drill	Х	Х	Х	Х				
	Ream		X						
	Semi finish bore				Х				
¥	/7/2014 Finish bore			сарХ	Х				4

Decision Table Development Methodology

- 1. Determine conditions and values
- 2. Determine maximum number of rules
- 3. Determine actions
- 4. Encode possible rules
- 5. Encode the appropriate actions for each rule
- 6. Verify the policy
- 7. Simplify the rules (reduce if possible the number of columns)

7/7/2014 CAPP 65

DECISION TREES

To computerize the decision making, one simple way is to use decision trees.

Decision tree is a graph with a single root and branches originating from the root. Each branch has a condition statement associate with it. Actions are written at the terminal. Probabilities may be assigned to the branches...

- Root is source of the tree
- Each tree have only one root
- Roots and Nodes are having branches originating from them.
- Nodes: Mutually Excursive and Non Mutually Excursive
- Branches can have only two logical statement True of False

