

Process Seheduling TAT = Zeidlio - Jeodlio (arrival)

CPUNTILIZATION = Total waiting x 100 %

Total Time

من يأتمي أولًا ليرخل أول

إذاكان يع عد المعتال نبدأ بأقل زمن له إذا لم يكن مع عود نلتزم بالترسي
 سب السعال.

2)SJF 1 el salas is de l'eli d'ales

ن عَن الرامة ونوفله الرابة ونوفله

إلى الله (Arriva) العديد ثم نقارن (Burst) الأفلامنهم يكمل إذا دفالمعلامه هريد نقوم إطفارة بين الثلاث و هكاذ / ولاننس عند الوحول الى لعنهم الآخر اندنطوح المدة الذهبي من (Burst) للعملية الحالمة.

مسر ال معامه المحدد بالسر ال ثم ننفر هل عد عملية دخلت إذا تم الحفول لأخلها مدر السرامة و لذخلها عدد السرامة و كفال المعامه المحدد بالسرال أم ننفر هل عد عملية دخلت إذا تم الحفول لأخلها عدد السرامة و هكذا

5) Priority (Preemptive)

JEDI (Priority) i ini (arrival) idio of gallis! -

ثم بدخل العملية كاملة و تنتقل اله الراج (Priority) الأعلى مرهكل ا .

Jobi (arrival) Jy 1 si (arrival) il lie ils 13!

نفوم بيتنقيذ ها لعند اله (Priority لحديد إذا وجد ثم نقارنه (Priority)! دا كان العديد

(Priority L Non-Precomptive) > (Priority) 1), the is see where will one of Deadlocks-

ع) ادا كان هائ وأنزة إلى إدا كان هائ بغطة ماهدة منه كل مديع يعني كان ما الح ك وداعان هناله أكثر تقطه تشك بالشعد عد يبكن النظل انهاء No dendlock sies pilal contain 1 les se mulus

Banker's Algorithma

NEED ->

عه عناطر بن المعادلة التالين Need = Max - Allocation

work -

هو نفسه (عالهانه) و نستفرجه بالمعادلة :. work 2 Total Number 4 - Total Allocation

فخرن العارب الااء الالم معمون المنافقة الشرط التالى NEED & WORK

١) إداكان الشرط صع ذف المعادلة التالية War = and to Work = Work + Allocation وهكذا إلى تنفيد جمع العملا ي -٢) إن المرط طفاء لا بنعد العملية وننتقل إلن العملية الأغرى عندانتها وكال العلاق نعرد إلمها

* لا تنسى تكتر المار الصعيع النهاري

Preemptive SJN

Preemptive Shortest Job First

• Example:

Process: p1 p2 n3 pArrival time: 0 2 4 5
Burst time: 7 4 4

• Schedule: ? 5 Z

Process ID	Arrival Time	Burst Time		
P1	0	12		
P2	2	4		
P3	3	6		
P4	8	5		

The average waiting time (in milliseconds) of the processes is _____

Shortest Job First Scheduling (Solve

~	

Process ID	Arrival Time	Burst Time
P1	0	10
P2	3	6
P3	7	1
P4	8	3

Exa: Priority (non-Preenptive) Actival Privaly 95

Example of SJF

Process	Arrival Time	Burst Time
P,	0	1
P ₂	4	4
P ₃	6	3
P	5	5

- SJF Gantt Chart
- Average waiting time =
- CPU utilization

Case Study

Time quantum is 5ms

Process Name	CPU burst time (ms)	Priority	
A	22	4	
В	18	2	
С	9	1	
D	10	3	
E	4	5	

Burst time and priority for different processes

milliseconas:

Process	Burst Time	Priority		
P_1	10	3		
P_2	1	1		
P_3	2	4		
P_4	1	5		
P_5	5	2		

Given processes with their Burst time

Round Robin Example:

Process	Duration	Order	Arrival Time		
P1	3	1	0		
P2	4	2	0		
P3	3	3	0		

Suppose time quantum is 1 unit.

Round Robin Example:

Process	Duration	Order	Arrival Time		
P1	3	1	0		
22 4		2	0		
P3	3	3	0		

Suppose time quantum is 1 unit.

P1	P2	P3	P1	P2	P3	P1	P2	P3	P2
0	38	20	165	20	49	86	20	18	10

P1 waiting time: 4 The average waiting time(AWT): (4+6+6)/3=5.33

P2 waiting time: 6

P3 waiting time: 6