BP-0001

Bioanalytical Procedure for the Determination of MK-0001 (L-000000001) in Rat Plasma

This analytical method is based on an automated 96-well format protein precipitation extraction of drug (MK-0001) from rat plasma. MK-0001 and stable isotope labeled internal standard (SIL-MK-0001) are chromatographed using reversed phase chromatography and detected with tandem mass spectrometric detection employing a turbo ionspray (TIS) interface in the positive ion mode. The Multiple Reaction Monitoring (MRM) transitions monitored were m/z 457.1 \rightarrow 191.0 for the drug and m/z 462.1 \rightarrow 191.0 for the internal standard. The lower limit of quantitation (LLOQ) for this method is 0.200 ng/mL with a linear $1/x^2$ (weighting) calibration range from 0.200 to 200 ng/mL using a 20 μ L plasma sample. Standard solutions are prepared in ACN/H₂O [50/50] and stored at +4°C when not in use. EDTA is used as the anticoagulant and plasma study samples are stored at -70°C.

1 INSTRUMENTATION (MAY BE SUBSTITUTED BY THEIR EQUIVALENT)

Category	Manufacturer	Components
Mass Spectrometer	Applied Biosystems	API-5500 MS/MS
LC	Waters	Acquity Binary Solvent Manager Acquity Sample Manager Acquity Sample Organizer Acquity Column Manager
Liquid Handling	Hamilton	MicroLab Star

2 SUPPLIES (MAY BE SUBSTITUTED BY THEIR EQUIVALENT)

Category (General)	Manufacturer/ Supplier
Volumetric flasks, Class A (non-disposable)	Pyrex
Graduated cylinders and bottles	Pyrex
Teflon-lined screw caps	Wheaton
Amber glass vials, various sizes	Fisher
Polypropylene tubes (15-mL and 50-mL)	Fisher
Polypropylene Cryo vials and caps (3.6-mL)	Thermo Nunc
Protein LoBind Conical Tubes (15-mL and 50-mL)	Eppendorf
Conical bottom polypropylene microcentrifuge tubes	Eppendorf Fisher
0.75-mL non-coded V-bottom pushcap microtiter tubes	Micronic
	Micronic
TPE capcluster microtiter tube sealing caps	Wheaton
Manual tube decapper	Micronic
LoBoRack microtiter tube racks with locking lid	Micronic
96-round deep well extraction plates, polypropylene (1.2-mL)	Arctic White LLC
96-deep well collection plates, polypropylene with tapered bottom (2-mL)	Analytical Sales & Services
96-well plate storage mats (covers)	Phenomenex
Pierceable TPE cap mats	Micronic
ArctiSeal 96 well square silicone/PTFE Coating (Plate Mats)	Arctic White LLC
Advantage 9mm, 12x32, TPX Wide Mouth Twist MicroVial w/Built-In 100 μL Volume Insert	Analytical Sales & Services
Certified 9mm Blue Twist Cap w/ PTFE/Silicone Liner	Analytical Sales & Services
Weighing Spatula	Fisher
Aluminum weighing boats	Fisher
Tweezers	Fisher
Acquity UPLC _® HSS T3 1.8 μm 2.1 x 50mm Column (part number: 186003538)	Waters

Category (Equipment)	Manufacturer
Microbalance	Sartorius
Analytical Relance	Sartorius
Analytical Balance	Ohaus
Mini Vortavar	Fisher
Willi Voltexel	Scientific Industries
Multi tuha vartav mivar	VWR
Wuiti-tube voitex iiixei	Fisher
Thermomixer	Eppendorf
Migrapleta Da Frestar	Integrated Technologies
Analytical Balance Mini Vortexer Multi-tube vortex mixer Thermomixer Microplate De-Froster Refrigerated centrifuge Rotator	Ltd.
Pofrigarated contrifuga	Beckman
Kenngerated centinuge	Eppendorf
Rotator	Glas-Col
Column Heater	Waters Acquity
Diata casiar	Corning
riaic scaici	Matrix

Category (Pipettes)	Manufacturer
Repeater Plus Pipettes	Eppendorf
Combitips (various volumes)	Eppendorf
	Labsystem
	Rainin
Adjustable Pipettes	Fisher
	Eppendorf
	Thermo
	BioHit
Dinatta Ting	Thermo
Pipette Tips	Fisher
	Eppendorf

Category (Automation Supplies)	Manufacturer
Reagent Troughs	Hamilton
Automated Workstation Tips	Hamilton

3 REFERENCE STANDARDS

Category	Parent Drug (Analyte)	Internal Standard (IS)	
Analyte / L-Number	MK-0001 / L-000000001	$[^{13}C_2, D3]MK-0001/$	
Analyte / L-Number	WIK-0001 / L-000000001	L-000000001	
Form	001H	003M	
Molecular Weight (free form)	456.54	461.536	
Watson ID	MK-0001	SIL-MK-0001	

4 BIOLOGICAL MATRICES

Matrix	Species	Anticoagulant	Supplier
Plasma	Dot	EDTA	BioIVT
Fiasilia	Rat	EDTA	SALAR in house

5 REAGENTS (MAY BE SUBSTITUTED BY THEIR EQUIVALENT)

Reagent	Abbreviation	Provider	
Deionized water (Milli-Q)	H_2O	Millipore	
Acetonitrile (HPLC or LC/MS)	ACN	Fisher	
Isopropanol (Chromasolv)	IPA	Sigma-Aldrich	
Acetone (Chromasolv)	ACET	Sigma-Aldrich	
Propionic Acid	PA	Fisher	
0.1% Formic Acid in Acetonitrile (LC/MS)	0.1% FA in ACN or	Fisher	
0.170 Toffine Field in Fleetomatic (Ec/1415)	ACN with 0.1% FA	Tisher	
0.1% Formic Acid in Water (LC/MS)	0.1% FA in H ₂ O or H ₂ O with 0.1% FA	Fisher	
Dimethyl Sulfoxide (Chromasolv Plus)	DMSO	Sigma-Aldrich	
Formic Acid (98+% pure)	FA	Acros	
Water Solution contains 0.1% (v/v) formic acid,	ACN/H ₂ O/FA	Sigma-Aldrich	
20% (v/v) acetonitrile	[20/80/0.1]	Sigma-Aldrich	
Acetonitrile Solution contains 40.0% 2-propanol,	ACN/IPA/Acetone/FA	Sigma-Aldrich	
0.05% formic acid, 10.0% acetone	[50/40/10/0.05]	Digina-Aldrich	

${\bf 6}$ — SOLUTIONS (VOLUME OF SOLUTION PREPARED MAY BE SCALED AS NEEDED)

Solution Name	Preparation Summary	Use	Storage
ACN/H ₂ O [50/50]	500 mL ACN + 500 mL H ₂ O. Mix.	Diluent	Ambient
0.1% FA in ACN	Purchased or 1 mL FA + 1000 mL ACN. Mix.		
0.1% PA in H ₂ O	1 mL PA + 1000 mL H ₂ O. Mix.	- Mobile Phase A	
0.1% PA in ACN	1 mL PA + 1000 mL ACN. Mix.	Mobile Phase B	Ambient
ACN/H ₂ O/FA [20/80/0.1]	Purchased or 200 mL 0.1% FA in ACN + 800 mL 0.1% FA in H ₂ O. Mix.	Weak Wash	Ambient
ACN/IPA/Acetone/FA [50/40/10/0.05]	Purchased or 500 mL ACN + 400 mL IPA + 100 mL Acetone + 0.5 mL FA. Mix.	Strong Wash	Ambient
ACN/H ₂ O [10/90]	100 mL ACN + 900 mL H ₂ O. Mix.	Seal Wash	Ambient
0.1% FA in H ₂ O	Purchased or 1 mL FA + 1000 mL H ₂ O. Mix.	Post Extraction Dilution Solvent	Ambient

7 MK-0001 STANDARD PREPARATION

A. Stock Standard Solution

Weigh the compound and transfer into an amber glass vial. Dissolve in DMSO to make a 1.00 mg/mL <u>free form</u> stock solution while correcting for potency (e.g., purity, residual solvents, and excess water content) and salt factor, as appropriate. Mix well. Store refrigerated (+4°C).

B. <u>Working Standard Solutions</u>

Using adjustable pipettes, transfer the spike volume of each standard indicated in the table below into individual Protein LoBind Conical Tubes. Dilute to appropriate volume with diluent (ACN/ H_2O [50/50]). Mix well. Store refrigerated (+4°C).

Working Standard Solution ID	Spiking Standard Solution Conc. (ng/mL)	Spike Volume (mL)	Diluent Volume (mL)	Final Volume (mL)	Working Standard Conc. (ng/mL)	Plasma Standard Conc. ^a (ng/mL)
STD A	1,000,000 (Stock)	0.200	9.80	10.0	20,000	N/A
STD 8	20,000 (STD A)	1.00	9.00	10.0	2,000	200
STD 7	20,000 (STD A)	0.800	9.20	10.0	1,600	160
STD 6	2,000 (STD 8)	2.00	8.00	10.0	400	40.0
STD 5	2,000 (STD 8)	1.00	9.00	10.0	200	20.0
STD 4	2,000 (STD 8)	0.200	9.80	10.0	40.0	4.00
STD 3	200 (STD 5)	0.400	9.60	10.0	8.00	0.800
STD 2	200 (STD 5)	0.200	9.80	10.0	4.00	0.400
STD 1	200 (STD 5)	0.100	9.90	10.0	2.00	0.200

^a A 20 μL spike of the working standards into 180 μL plasma yields the plasma standard concentration.

8 MK-0001 QUALITY CONTROL (QC) SAMPLE PREPARATION

A. Stock QC Solution

Weigh the compound and transfer into an amber glass vial. Dissolve in DMSO to make a 1.00 mg/mL <u>free form</u> stock solution while correcting for potency (e.g., purity, residual solvents, and excess water content) and salt factor, as appropriate. Mix well. Store refrigerated (+4°C).

B. Working QC Solutions

Using adjustable pipettes, transfer the volumes of each QC indicated in the table below into Protein LoBind Conical Tubes. Dilute to appropriate volume with diluent (ACN/H₂O [50/50]). Mix well. Store refrigerated (+4°C).

Working QC Solution ID	Spiking QC Solution Conc. (ng/mL)	Spike Volume (mL)	Diluent Volume (mL)	Final Volume (mL)	Working QC Solution Conc. (ng/mL)
-A-	1,000,000 (Stock)	0.200	1.80	2.00	100,000
-B-	100,000 (QC A)	0.750	9.25	10.0	7,500
-C-	7,500 (QC B)	0.360	8.64	9.00	300
-D-	300 (QC C)	1.00	9.00	10.0	30
-E-	300 (QC C)	0.300	8.70	9.00	10

C. Matrix QCs

To a polypropylene tube, add the designated spiking volume of appropriate spiking solution to blank matrix. Cap the tube and briefly vortex. Aliquot 0.150 mL into micronic tubes, cap, and store at -70°C. The aliquot volume and QCs volume prepared may be scaled as needed. Matrix QCs may be used from freshly prepared or frozen samples.

Matrix QC ID	Spiking QC Solution Conc. (ng/mL)	Spike Volume (mL)	Matrix Volume (mL)	Final Volume (mL)	Matrix QC Conc. (ng/mL)
HIGH	7,500 (QC B)	0.300	14.7	15.0	150
MID	300 (QC C)	0.300	14.7	15.0	6.00
LOW	30.0 (QC D)	0.300	14.7	15.0	0.600
LLOQ	10.0 (QC E)	0.300	14.7	15.0	0.200

9 INTERNAL STANDARD (IS) PREPARATION

- 1. Stock Solution: (1.00 mg/mL SIL-MK-0001 stock solution): Weigh the compound and transfer into an amber glass vial. Dissolve in DMSO to make a 1.00 mg/mL stock solution while correcting for potency and salt factor, if available. Mix well. Store refrigerated (+4°C).
- 2. Intermediate Internal Standard Solution (10,000 ng/mL): Pipet 100 μ L of the internal standard stock solution into an amber glass vial and add 9.90 mL of ACN/H₂O [50/50]. Mix well. Store refrigerated (+4°C).
- 3. Working Internal Standard Solution (10.0 ng/mL): Pipet 50.0 μ L of the intermediate internal standard solution into an amber glass vial and add 49.95 mL of ACN/H₂O [50/50]. Mix well. Store refrigerated (+4°C).

10 UNKNOWN SAMPLE PREPARATION

The glassware, reagents, and dilutions described in this procedure should serve as a guide and may be substituted for their equivalent when necessary to obtain similar results.

Blank plasma:

- Thaw, vortex and centrifuge for 5 minutes at approximately 2800 rpm
- Store frozen (-20°C) when not in use.

Biological plasma samples (e.g., unknown samples, dilution check QCs):

- Allow samples to thaw completely
- Under ambient temperature, vortex samples for 5 minutes at 1200 rpm and centrifuge for 1 minute at approximately 2800 rpm
- Aliquot samples and control blank plasma as appropriate using the dilution scheme below, mix well:

Initial Dilution Factor	Sample Volume, µL	Blank Plasma, μL
5	12	48
10	12	108
20	12	228
40	12	234

After dilution, diluted samples can be analyzed immeditately or stored at -70°C before analysis

11 PROCEDURE

The glassware, reagents, and dilutions described in this procedure should serve as a guide and may be substituted for their equivalent when necessary to obtain similar results.

Blank plasma:

Thaw, vortex and centrifuge for 5 minutes at approximately 2800 rpm

Biological plasma samples (e.g., unknown samples, diluted unknown samples, matrix QCs):

- 1. Allow samples to thaw completely
- 2. Vortex samples for 5 minutes at 1200 rpm
- 3. Centrifuge at approximately 1200 RPM for 1 minute at ambient temperature.

Preparation of Calibration Standards, Quality Controls, Blanks, and Unknown Samples A.

Step	Activity
1	Prepare the standard spiked blank plasma as follows:
	To a microtiter tube, add:
	• 180 μL of blank plasma
	• 20 μL of the appropriate MK-0001 working standard solution
2	Cap the microtiter tubes and mix well. Remove any air bubbles.
3	Add to a 96-round deep well extraction plate (1.2 mL) the following:
	For Calibration Standards:
	• 20 μL of appropriate plasma standards (from Step 2 above)
	• 20 μL of IS working standard solution
	For Blank Samples:
	• 20 µL of appropriate blank plasma
	• 20 µL of Diluent
	For Standard 0 (IS Blank Sample):
	• 20 µL of appropriate blank plasma
	• 20 μL of IS working standard solution
	For Unknown, Diluted Unknown and Quality Control Samples*:
	Appropriate volume of unknown sample, diluted unknown or matrix QC (and blank)
	plasma if needed) for a final volume of 20 μL
	• 20 μL of IS working standard solution
4	Add 100 µL of crash solvent (0.1% FA in ACN) to extraction plate.
5	Seal the deep well extraction plate with appropriate plate mat.
6	Vortex for 60 seconds using a multi-vortexer at Speed 6.
7	Centrifuge the plate at 4000 RPM for 10 minutes at ambient temperature.
8	Transfer 50 µL of supernatant to a new deep well collection plate (2-mL).
9	Dilute the supernatant with 50 µL of 0.1% FA in H2O.
10	Seal the deep well collection plate with appropriate storage mat.
11	Vortex for 2 minutes using a multi-vortexer at Speed 6.
12	Centrifuge the plate at 1200 RPM for 1 minute at ambient temperature.
13	Place the deep well plate in the autosampler and inject appropriate volume.

 $^{^*}$ Note: if double dilution is required, add first to a 96-round deep well extraction plate (1.2 mL) plate: a. Appropriate volume of unknown or diluted unknown samples.

Note: The following dilution schemes may be used as a guide.

Single Dilutions				
Dilution Factor Sample Volume, μL Blank Plasma, μL				
2	10	10		
5	4	16		

Single Dilutions after the Initial Sample Dilution in Section 10				
Dilution Factor** 1:X Diluted Sample Volume, μL Blank Plasma, μL				
2	10	10		
5	4	16		
Double D	ilutions after the Initial Sample Dilution	on in Section 10		

b. Appropriate volume of blank plasma.

c. Vortex for 120 seconds at 1100 rpm at ambient temperature then process following Procedure A beginning with Step 3 for Unknown, Diluted Unknown and Quality Control Samples.

Dilution Factor**	1:X Diluted Sample Volume, µL	Blank Plasma, µL	Dilution 1 Dilution 2
10	20	180	10
	20	0	1
20	20	180	10
	10	10	2
50	20	180	10
	4	16	5
60	10	290	30
	10	10	2
80	10	190	20
	5	15	4
100	10	190	20
	4	16	5
200	10	390	40
	4	16	5

^{**} This dilution factor does not account for the initial dilution in the Section 10.

12 OPERATING PARAMETERS

UPLC	Settin	ıgs		
Column	Acquity UPLC® HSS T3 1.8 μm 2.1 x 50mm Column			
Loop Option	Partial 1	Loop		
Needle Type	PEEKSIL (Pep	tide Needle)		
Elution	Gradient, see bel	ow for details		
Flow Rate	0.6 mL	/min		
Mobile Phase A	0.1% PA in H ₂ O			
Mobile Phase B	0.1% PA in ACN			
Injection Volume (injection volume may be adjusted to obtain adequate response)	5 μL			
Column Temperature	Ambi	ent		
Autosampler Temperature	15 °	C		
Divert	Waste (A): Initial Detector (B): 1.10 min Waste (A): 2.00 min			
Run Time	3.0 minutes			
Retention Time	MK-0001: 1.60 min.	SIL-MK-0001: 1.60 min.		

UPLC Profile	Time (min)	Flow Rate (mL/min)	% A (0.1% PA in H ₂ O)	% B (0.1% PA in ACN)	Curve
	Initial	0.600	60.0	40.0	Initial
	0.20	0.600	60.0	40.0	6
	2.20	0.600	50.0	50.0	6
	2.21	0.600	5.0	95.0	6
	2.70	0.600	5.0	95.0	6
	2.71	0.600	60.0	40.0	6
	3.00	0.600	60.0	40.0	6

Wash Type	Wash Solvent	Wash Volume (µL)	Wash Time (min)
Weak Wash	ACN/H ₂ O/FA [20/80/0.1]	600	N/A
Strong Wash	ACN/IPA/Acetone/FA [50/40/10/0.05]	200	N/A
Seal Wash	ACN/H ₂ O [10/90]	N/A	5.00

MS	Settings	
Ion Source	Turbo Ionspray	
Ion Mode	Positive	
Q1/Q3 Resolutions	unit/unit	
Scan Type	MRM	
Ionization potential (IS)	5500 V	
Temperature	550°C	
Curtain Gas – N ₂ *	40	
GS 1 – N ₂ *	50	
GS 2 – N ₂ *	60	
$CAD - N_2*$	9	
MR pause between mass range	5.0070 ms	
MS settling time	0.0000 ms	

Ions Monitored*	Q1 m/z	Q3 m/z	Dwell (ms)	$\mathbf{DP}(\mathbf{V})$	$\mathbf{EP}(\mathbf{V})$	$\mathbf{CE}\left(\mathbf{V}\right)$	$\mathbf{CXP}(\mathbf{V})$
MK-0001	457.1	191.0	100.00	50	10	25	14
SIL-MK-0001	462.1	191.0	100.00	50	10	25	14

^{*}Parameters may be adjusted to obtain adequate response.

13 SYSTEM SUITABILITY

When assaying biological extracts:

An extracted system suitability sample at the LLOQ will be injected prior to sample analysis to ensure that the LC-MS/MS system is functioning as intended. The results should meet the following minimum acceptance criteria for system performance, or the samples cannot be injected, unless a valid scientific reason is observed and documented (e.g., signal: noise ratio ≥20:1, peak height).

Analyte	Peak Height	Retention time (min)
MK-0001 (0.2 ng/mL plasma STD)	≥800 cps	1.60 ± 0.25

When conducting stock or working solution stability assessments:

A neat 2.00 ng/mL solution of MK-0001 will be injected prior to initiating stock and working solution stability sample analysis to ensure that the LC-MS/MS system is functioning as intended.

- 1. Spike 20 μL of STD 1 and 20 μL of SIL-MK-0001 into a 3.6-mL nunc tube. Mix well
- 2. Add $100 \mu L$ of 0.1% FA in ACN to the sample.
- 3. Dilute the sample with 140 μ L of 0.1% FA in H₂O.
- 4. Cap the tube and briefly vortex to mix.
- 5. Transfer the solution into the sample injection plate.
- 6. Place the injection plate in the autosampler and inject appropriate volume.

Analyte	Peak Height	Retention time (min)
MK-0001	≥8000 cps	1.60 ± 0.25

14 SOFTWARE AND CALCULATION

- 1. Raw peak areas generated in the SCIEX Analyst® (ver. 1.6.2 or higher) software package are commonly exported into the WATSON system for quantitation.
- 2. Daily standard curves are constructed from peak area ratios of MK-0001 to internal standard versus the nominal concentrations of standards.
- 3. Unknown sample concentrations are calculated from the equation y = mx + b, by weighted $(1/x^2)$ linear least square regression of the calibration line constructed by plotting the peak area ratio (drug to internal standard) of the standard curve samples *versus* nominal drug concentration.

Jieutonne Archer James Marr Tonya Jackson James Schiller

APPENDIX A

GENERAL LIST OF USED ACRONYMS

ACET	Acetone		
ACN	Acetonitrile		
Ambient	Room Temperature		
APCI	Atmospheric Pressure Chemical Ionization		
BP	Bioanalytical Procedure		
°C	Degree Celsius		
CAD	Collisionally Activated Dissociation		
Conc.	Concentration		
DMSO	Dimethyl Sulfoxide		
EDTA	Ethylenediamine tetra-acetic acid		
FA	Formic Acid		
GLP	Good Laboratory Practice		
GS	Gas Source (for MS)		
H ₂ O	Water		
HPLC	High Performance Liquid Chromatography		
IPA	Isopropanol		
IS, ISTD	Internal Standard		
ISV	Ion Spray Voltage		
L	Volume Expressed in Liters		
LC-MS/MS	Liquid chromatography coupled to tandem mass spectrometer		
LLQ/LLOQ	Lower Limit of Quantitation		
МеОН	Methanol		
mg	Weight expressed in milligrams		
min	Time expressed in minutes		
mL	Volume expressed in milliliters		
MRL	Merck Research Laboratories		
MRM	Multiple Reaction Monitoring		
MS	Mass Spectrometer		
MTBE	Methyl Tert Butyl Ether		
N_2	Nitrogen		
N/A, NA	Not Applicable		
NDS	Nonclinical Drug Safety		
PA	Propionic Acid		
PBMC	Peripheral Blood Mononuclear Cells		
PCD	Preclinical Development		
PN	Part Number		
PPDM	Pharmacokinetics, Pharmacodynamics, and Drug Metabolism		
QC	Quality Control Sample		

APPENDIX A (Cont.)

QS	Quantity Sufficient		
rpm	Revolutions per minute		
S	Time expressed in seconds		
SALAR	Safety Assessment and Laboratory Animal Resources		
sig. fig.	Significant Figures		
SIL	Stable-labeled internal Standard		
SOP	Standard Operating Procedure		
STD	Standard		
TFA	Tri-fluoroacetic acid		
TIS	Turbo Ionspray		
ULQ/ULOQ	Upper Limit of Quantitation		
UPLC	Ultra Performance Liquid Chromatography		
Vol.	Volume		
WP	West Point		

DOCUMENT HISTORY

Document Version	Date Updated	Purpose
1.0	Updated Original	Original Document