

Data 227
Autumn, 2023
Tidy data, spreadsheet tips

Tidy Data

"Tidy datasets provide a standardized way to link the structure of a dataset (its physical layout) with its semantics (its meaning)."

No one will demand that our data be tidy; they will demand that the analysis get done. Tidying data is not always necessary or useful, but this is a tool that may help us on the path to avoid suffering.

Data Semantics

- A dataset is a collection of values, usually either numbers (if quantitative) or strings (if qualitative).
- Values are organized in two ways. Every value belongs to a variable and an observation.
- A variable contains all values that measure the same underlying attribute (like height, temperature, duration) across units.
- An observation contains all values measured on the same unit (like a person, or a day, or a race) across attributes.

Wickham, H. . (2014).

Tidy Data principles

There are three interrelated rules which make a dataset tidy:

- Each variable forms a column.
- Each observation forms a row.
- Each type of observational unit forms a table.

Wickham, H. . (2014).

Column headers are values, not variable names (shows up frequently in tabular data).

```
## Row Col Hgt90 Hgt96 ... Deer97 Cover95 Fert
Spacing
## 0 1 1 NaN NaN ... -2147483648 0 0 15
## 1 1 2 14.0 284.0... 12015
## 2 13 17.0 387.0... 01015
## 3 1 4 NaN NaN ... -2147483648 0 0 15
##4 1 5 24.0 294.0...
##5 1 6 22.0 310.0...
##6 1 7 18.0 318.0...
```

```
##
                                 Name
Value
     'C' A CATERING AND EVENT COMPANY ... 4300-4304 N CENTRAL
AVE
     'C' A CATERING AND EVENT COMPANY ... 60634
## 2
     'C' A CATERING AND EVENT COMPANY
                                      ... Restaurant
## 3
         A CATERING AND EVENT COMPANY ... No Entry
## 4
     'C' A CATERING AND EVENT COMPANY ... 4300-4304 N CENTRAL
AVE
     'C' A CATERING AND EVENT COMPANY ... 60634
## 6
     'C' A CATERING AND EVENT COMPANY
                                      ... Restaurant
     'C' A CATERING AND EVENT COMPANY ... Pass
```

##		V1	V2	V3	V4	V5	V59 V60 V61	
##	0	MX000017004195504TMAX	310	310	310	320		-214
##	1	MX000017004195504TMIN	150	150	160	150		-214
##	2	MX000017004195504PRCP	0	0	0	0		-214
##	3	MX000017004195505TMAX	310	310	310	300		-214
##	4	MX000017004195505TMIN	200	160	160	150		-214
##	5	MX000017004195505PRCP	0	0	0	0		-214
##	6	MX000017004195506TMAX	300	290	280	270		-214
##	7	MX000017004195506TMIN	160	160	150	140		-214

```
## ['artist', 'track', 'date.entered', 'wk1', 'wk2', 'wk3', 'wk4']
## ['wk6', 'wk7', 'wk8', 'wk9', 'wk10', 'wk11', 'wk12', 'wk13']
## ['wk14', 'wk15', 'wk16', 'wk17', 'wk18', 'wk19', 'wk20', 'wk21']
## ['wk22', 'wk23', 'wk24', 'wk25', 'wk26', 'wk27', 'wk28', 'wk29']
## ['wk30', 'wk31', 'wk32', 'wk33', 'wk34', 'wk35', 'wk36', 'wk37']
## ['wk38', 'wk39', 'wk40', 'wk41', 'wk42', 'wk43', 'wk44', 'wk45']
## ['wk46', 'wk47', 'wk48', 'wk49', 'wk50', 'wk51', 'wk52', 'wk53']
## ['wk54', 'wk55', 'wk56', 'wk57', 'wk58', 'wk59', 'wk60', 'wk61']
```

Common Problems...

- A single observational unit is stored in multiple tables or f les these tables and f les are often split up by another variable, so that each represents a single year, person, or location, etc.
- As long as the format for individual records is consistent, this is an easy problem to f k.
- For example, consider the Household Pulse Survey run by the US Census Bureau.
- "Designed to quickly and efficiently deploy data collected on how people's lives have been impacted by the coronavirus pandemic."
- You can visit the Household Pulse Survey website to download multiple f les, one for every survey collection period, that could be combined to examine trends over time.

•

Household pulse survey reports

	A	В	С	D	E						
1	Employment Table 1. Experienced and Expected Loss of Employment Income, by Select Characteristics: Louisiana										
2	Source: U.S. Census Bureau Household Pulse Survey, Week 12.										
3	Total Population 18 Years and Older										
4	Select characteristics	Total	Experienced loss of employment income since March 13, 2020 (for self or hou member)								
5			Yes	No	Did not repo						
7	Total	3,431,432	1,865,288	1,550,309							
8	Age										
9	18 - 24	256,722	155,151	101,571							
10	25 - 39	1,019,855	600,179	417,200							
11	40 - 54	827,469	577,354	247,042							
12	55 - 64	603,466	279,496	322,633							
13	65 and above	723,921	253,108	461,863							
14	Sex										
15	Male	1,622,366	932,670	684,653							
16	Female	1,809,066	932,618	865,656							
17	Hispanic origin and Race										
18	Hispanic or Latino (may be of any race)	164,987	78,619	84,792							
19	White alone, not Hispanic	2,094,820	1,108,249	980,314							
20	Black alone, not Hispanic	1,046,743	598,454	441,517							
21	Asian alone, not Hispanic	49,738	25,478	23,029							
22	Two or more races + Other races, not Hispanic	75,144	54,487	20,657							
23	Education										
24	Less than high school	351,318	162,860	185,471							
25	High school or GED	1,322,659	842,622	475,974							
10	US AL AK AZ AR CA CO CT DE DC FL GA HI	ID IL IN IA KS	KY LA ME MD MA MI MN MS /	MO MT NE NV NH NJ NM NY	/NC /ND /OH /						

Data Cleaning

- Familiarize yourself with the data set.
- Check for structural errors (more on this in a bit).
- Check for data irregularities (use plots, summary statistics, etc.).
- Decide how to deal with missing values (beyond the scope of this class).
- Document data versions and changes made.

Familiarize yourself with the dataset

- Domain knowledge, domain knowledge, domain knowledge! Have a good grasp on what your variables mean, which are important, and which need cleaning.
- Ask as many questions of your collaborator(s) as you need. Do this sooner, rather than later!
- General steps:
- Check the f le size.
- Check the dimensions of your dataset.
- Check the f rst few rows of your dataset and the storage types of the variables to make sure you have read it in correctly.

Check for structural errors

Structural Errors: faulty data types, non-unique ID numbers, mislabeled variables, string inconsistencies, etc. It's hard to give you a full list, since there are so many ways a dataset can be messy!

General steps

- Check the names of the columns in your dataset and rename them if necessary.
- Check the storage formats of the variables.
- Look for duplicate rows.
- Check variations in a column (e.g., "female", "Female", "F", etc.)

Check for data irregularities

- Data Irregularities: accuracy concerns like invalid values and outliers.
 Invalid Values: Values that don't make sense.
- Individual Values: E.g., 19 pounds for a woman over 18, ages under 15 for a dataset of employees
- Across Columns: E.g., Sexual orientation, gender, and household partners
- Outliers:
- Repeat analysis with and without the point, and see if the results change.

Missing Values

- There are two types of missing values:
- Explicitly, i.e. f agged with None, NaN, NA, etc. Strategizing about missing values is beyond the scope of this class.
- Implicitly, i.e. simply not present in the data.
- One bad habit is entering a year in an early row and leaving later rows empty because they should be f lled with the value (and just are not, for some reason).
- We like explicit values, a lot! It's much more helpful to know if something was left missing intentionally.

Don't contaminate a stock solution

If you discover any of these errors in a data f le, never modify it directly, but instead write code to correct the value and explain why you made the f k.

You will be forgiven for having two nearly-identical copies of the data.

- Be consistent.
- Use a consistent data layout in multiple f les (make it tidy!).
- Use consistent codes for categorical variables.
- Use a consistent fixed code for any missing values. Use consistent variable names.
- Use consistent subject identifiers.
- Use consistent f le names.
- Use a consistent format for all dates.
- Use consistent phrases in your notes.
- Be careful about extra spaces within cells.

- Choose good names for things.
- As a general rule, don't use spaces, either in variable names or fle names
- Where you might uses paces, use underscores or perhaps hyphens.
- Be careful about extraneous spaces at the beginning or end of a variable name. Avoid special characters (\$,@,%,#,&,*,(,),!,/, etc.), except for underscores and hyphens.
- The main principle in choosing names, whether for variables or for f le names, is short, but meaningful.
- Finally, never include "f hal" in a f le name.

Shoutout to ISO-8601

Write dates like YYYY-MM-DD.

"When entering dates, we strongly recommend using the global ISO 8601 standard, YYYY-MM-DD, such as 2013-02-27."

If you like, you can read about some horror stories coming from spreadsheet errors.

(http://web.archive.org/web/2022 0810000430/www.eusprig.org/hor ror-stories.htm) Many of them involve incorrect date formatting.

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE CONFUSION. THAT'S WHY IN 1988 ISO SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

- Create a data dictionary. It is helpful to have a separate f le that explains what all of the variables are.
- Such a "data dictionary" might contain:
- The exact variable name as in the data f le.
- A version of the variable name that might be used in data visualizations.
- A longer explanation of what the variable means.
- The measurement units.
- Expected minimum and maximum values (helpful for data cleaning or identifying outliers).
- This is part of the metadata that you will want to prepare: information about the data.

- Don't leave any cells empty, and use some common code for missing data. Don't include calculations in the raw data.
- Don't use font color or highlighting as data.
- Make backups.
- Use data validation to avoid data entry errors. Save the data in plain text (usually, a .csv f le).

These tips come from Broman, K. W., & Woo, K. H. (2018). Data organization in spreadsheets. The American Statistician, 72(1), 2-10.