Modelos de Investigación Operativa, Ingeniería Informática Universidad de Valladolid

Práctica 4

Daniel González Alonso

14 de marzo de 2017

Resumen

En este documento se describen los problemas y los resultados obtenidos de la práctica 4 del tema 2 de la asignatura Modelos de Investigación Operativa de Ingeniería Informática, Universidad de Valladolid.

1. Introducción

Esta práctica trata de problemas de cubrimiento máximo. El modelo empleado para resolver estos problemas es el siguiente:

Maximizar
$$\sum_{i=1}^m h_i \cdot z_i \tag{1}$$
 Sujeto a
$$\sum_{j \in N_i} x_j \geq z_i \qquad \qquad i=1,\dots,m$$

$$\sum_{j=1}^n x_j \leq P$$

$$x_j \in \{0,1\} \qquad \qquad j=1,\dots,n$$

$$z_i \in \{0,1\} \qquad \qquad i=1,\dots,m$$

Donde x_j representa si se abre una instalación en j (1) o no (0), z_i nos dice si la demanda de i queda cubierta (1) o no (0), h_i es la demanda de i y P es el número de instalaciones que se van a abrir. El objetivo del modelo como se puede observar es maximizar la demanda que queda cubierta para un cierto número de instalaciones.

2. Ejercicios

Para la práctica 4 se hicieron los siguientes ejercicios:

2.1. MODELO DE LOCALIZACIÓN DE CUBRIMIENTO MÁXIMO APLI-CADO A UN PROBLEMA DE PUBLICIDAD

Los datos disponibles para este problema eran una matriz $a_{i,j}$ que nos dice si una persona i consume una cierta revista j, la cual se encuentra en el archivo data/publicidad.dat. Siendo el número de consumidores m=50 y el número de revistas n=10. Además se nos dice que la demanda $h_i=1$ en todos los casos. El objetivo del problema consiste en maximizar el número de personas a las que se puede cubrir con P anuncios (valores entre 1 y 10).

Este problema se encuentra resuelto mediante $Xpress\ Mosel$ en el fichero publicidad.mos. Los resultados obtenidos para los distintos valores de P se muestran en la siguiente tabla:

Valor de P	Puntos instalados	Porcentaje de de-	Puntos cubiertos
		manda cubierta	
1	35	14 %	1, 2, 4, 5, 6, 7, 10
2	13, 35	18 %	1, 2, 3, 4, 5, 6, 7, 8, 10
3	3, 6, 35	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
4	2, 3, 6, 35	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
5	2, 3, 6, 10, 43	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
6	1, 3, 6, 21, 35, 45	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
7	1, 2, 3, 6, 9, 10, 24	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
8	1, 3, 5, 6, 21, 35, 37, 45	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
9	1, 2, 3, 5, 6, 9, 10, 24, 37	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
10	1, 2, 3, 5, 6, 9, 10, 18, 24, 37	20%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Cuadro 1: Resultados Max Covering para el problema de publicidad

Como se puede observar en la tabla 2.1, a partir de el número de instalaciones P=3 el porcentaje de demanda cubierta se mantiene constante, posiblemente debido a que a pesar de llegar a cubrir más puntos no hay suficientes consumidores de esa revista, por ello si buscamos minimizar el número de anuncios publicitarios, P=3 sea la mejor opción.

2.2. Problema de cubrimiento máximo para el ejemplo de centros de ambulancias

Este problema consiste en maximizar la demanda cubierta con P instalaciones de ambulancias. Para ello se nos dice que el numero de posibles puntos de instalación es m=10 y el número de puntos de demanda es m=20. En el fichero data/ambulancias.dat tenemos los datos del problema, por un lado tenemos la matriz $a_{i,j}$, donde un 1 indica que el punto i puede ser cubierto por un punto en j y un 0 si no. Al ser una matriz dispersa, en el fichero están almacenados solo aquellos valores donde haya un 1. En el fichero también está almacenada la demanda h_i .

El problema ha sido resuelto mediante $Xpress\ Mosel$ en el fichero ambulancias.mos, el cual calcula el modelo anterior con valores de P entre 0 y 10. Los resultados obtenidos se muestran en la siguiente tabla:

Valor de P	Puntos instalados	Porcentaje de de-	Puntos cubiertos
		manda cubierta	
1	4	35.4779%	7, 8, 10, 11, 12, 13
2	3, 5	69.0257%	3, 4, 5, 8, 11, 12, 13, 16, 17
3	3, 5, 9	80.6679%	3, 4, 5, 8, 11, 12, 13, 14, 15,
			16, 17, 18, 19
4	3, 4, 5, 9	89.951 %	3, 4, 5, 7, 8, 10, 11, 12, 13, 14,
			15, 16, 17, 18, 19
5	3, 4, 6, 8, 10	95.3125%	3, 4, 5, 7, 8, 9, 10, 11, 12, 13,
			14, 15, 16, 17, 18, 19, 20
6	2, 3, 4, 6, 8, 10	100 %	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
			12, 13, 14, 15, 16, 17, 18, 19,
			20
7	1, 2, 3, 5, 6, 8, 10	100 %	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
			12, 13, 14, 15, 16, 17, 18, 19,
			20
8	1, 2, 3, 4, 5, 6, 8, 10	100 %	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
			12, 13, 14, 15, 16, 17, 18, 19,
			20
9	2, 3, 4, 5, 6, 7, 8, 9, 10	100%	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
			12, 13, 14, 15, 16, 17, 18, 19,
			20
10	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	100 %	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
			12, 13, 14, 15, 16, 17, 18, 19,
			20

Cuadro 2: Resultados Max Covering para el problema de ambulancias

Como se puede observar en la tabla 2.2, a partir del valor P=6 la demanda se cubierta totalmente.

2.3. Problema de Servicio Sanitario

Para este problema se nos daban dos archivos de datos data/aint1.dat y data/aint5.dat con el formato:

- 1. m (número de puntos de demanda)
- 2. n (número de puntos de servicio)
- 3. h_i i = 1, ..., m (demandas, una por línea)
- 4. $d_{i,j}$ $i=1,\ldots,m$ $j=1,\ldots,n$ (matriz $m\times n$ de distancias, en Hectómetros)

Y con estos datos se nos pide resolver el problema de cubrimiento máximo para valores de P desde 1 hasta 10, con una distancia de cubrimiento de 250 (25 Km). Para cada valor de P hay que obtener el porcentaje de población cubierta a una distancia máxima.

■ Para el archivo de datos aint1 este problema se encuentra resuelto en el fichero servicio_sanitario_aint1.mos. Los resultados obtenidos fueron los siguientes:

Valor de P	Porcentaje cubierto
1	84.6573%
2	95.2638%
3	98.5311 %
4	100 %
5	100 %
6	100 %
7	100 %
8	100 %
9	100 %
10	100 %

Cuadro 3: Resultados Max Covering para el problema aint1 de Servicio Sanitario

■ Para el archivo de datos aint5 este problema se encuentra resuelto en el fichero servicio_sanitario_aint5.mos. Los resultados obtenidos fueron los siguientes:

Valor de P	Porcentaje cubierto
1	89.89%
2	98.4877%
3	99.8096%
4	100%
5	100 %
6	100 %
7	100 %
8	100 %
9	100 %
10	100 %

Cuadro 4: Resultados Max Covering para el problema aint1 de Servicio Sanitario