Diszkrét Matematika 1. Első zárthelyi dolgozat

Számológép használata megengedett (kivéve grafikus ill. programozható számológép). Időtartam: 90 perc. Minden feladat 10 pontot ér, a 2-es, 3-as, 4-es, 5-ös ponthatára: 20, 30, 40, 50.

- 1. Számítsa ki algebrai alakban a következőket:
 - **a.** (2+i)(3+2i);
 - **b.** $(-7+i)^2$;
 - c. (1+2i)(2+i);
 - **d.** $i + i^2 + i^3 + \ldots + i^{20}$;
- 2. A trigonometrikus alak segítségével számítsa ki a z értékét trigonometrikus és algebrai alakban is, majd adja meg az összes olyan w komplex számot trigonometrikus alakban, melyre $w^3 = z$.

$$z = \frac{(1+1\sqrt{3}i)^{12}}{(-1+i)^{18}}$$

- 3. Hol találhatók a komplex számsíkon azon pontok, melyekre teljesülnek az alábbi feltételek? Készítsünk ábrát, írjuk le a geometriai alakzatot szavakkal, és adjunk meg legalább egy konkrét számpéldát.
 - **a.** $z = \overline{z}$.
 - **b.** z = |z|.

 - **c.** $|z-2+i| \ge 3$. **d.** $|z| = |-iz^2|$.
- 4. Legyen $A = \{1, 2, 3, 4, 5\}, B = \mathbb{Z}$, az egész számok halmaza. Az alábbiak közül melyek igazak minden C halmaz esetén? Indokoljunk vagy adjunk ellenpéldát. Az a) 2 pontot, a többi 4-4 pontot ér.
 - **a.** $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
 - **b.** $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.
 - **c.** $A \cup (B \cap C) = (A \cup B) \cap C$.
- 5. Az alábbi R, illetve S relációkról döntsük el, hogy rendelkeznek-e a reflexív, szimmetrikus, tranzitív, illetve antiszimmetrikus tulajdonsággal az X, illetve Y halmazon. Számítsuk ki az $R \circ S$ és $S \circ R$ relációkat is: adjuk meg rendezett párok halmazaként.
 - **a.** $R = \{(1,2), (2,1), (3,4), (4,3), (2,2), (3,3), (4,4), (5,5)\}, X = \{1,2,3,4,5\}.$
 - **b.** $S = \{(x, y) \mid x, y \in \mathbb{N}, |x y| = 2\}, Y = \mathbb{N}.$
- 6. Választható az alábbi két feladat közül. A választást tüntessük fel a beadott lapon. 6F: Legyen $A = \{1, 2, 3, 4\}, B = \{6, 7, 8, 9\}$. Adjon meg egy-egy olyan $\mathbb{N} \to \mathbb{N}$ függvényt, melvekre
 - **a.** $f(A) \subseteq B$.
 - **b.** $f(A) \cap B = \emptyset$.
 - **c.** $\forall x \in A : f(x)^2 \in B$.
 - **d.** $f(A \cup B) \neq f(A)\Delta f(B)$.
 - e. $f^{-1}(B)$ kételemű

6R:

- a. Legyen $R \subseteq A \times A$ tranzitív és reflexív reláció! Igazolja, hogy $R \circ R = R!$
- b. Bizonyítsa be, hogy minden reláció, amely egyszerre tranzitív és irreflexív is, az szigorúan antiszimmetrikus is!