Diffusion Model 扩散模型

== State at 2022-10-28 by Song1xinn==

1. Introduce

1.1 DALL-E 2

DALL·E2: https://openai.com/dall-e-2/ DALL·E mini: https://huggingface.co/spaces/dalle-mini/dalle-mini Imagen / Parti - Google

==DALL·E 2== CLIP + diffusion model

==CLIP==

□CLIP pre-trains an image encoder and a text encoder to predict which images were paired with which texts in our dataset. ②Then use this behavior to turn CLIP into a **zero-shot classifier**. ③Convert all of a dataset's classes into captions such as "a photo of a *dog*" and **predict the class of the caption** with a given image.

1.2 Generation Models

2. What's Diffusion Model

前提: 所有的图像都满足自然中的分布 (distribution) , 比如所有带有小猫的图都遵循一种分布、所有带有小狗的图都遵循一种分布。

2.1 Forward diffusion process (Training Process ONLY)

Given a data point sampled from a real data distribution $x_0 \sim q(x)$, let us define a **forward diffusion process** in which we add small amount of **Gaussian noise** to the sample in \$T\$ steps, producing a sequence of noisy samples $x_1,...,x_T$. The data sample x_0 gradually loses its distinguishable features as the step \$t\$ becomes larger. Eventually when $T \rightarrow \infty$, x_T is equivalent to an isotropic Gaussian distribution.

目标: \$q(x_T|x_0)\$

给定如下公式,其中 $\{\beta_t \in (0,1)\}_{t=1}^T$,可以理解为添加的噪声的占比,是自定的函数,所以可以看作已知量。 $\{\beta_t \in (0,1)\}_{t=1}^T$ 知量。 $\{\beta_t \in (0,1)\}_{t=1}^T$ 书,可以理解为添加的噪声的占比,是自定的函数,所以可以看作已知量。 $\{\beta_t \in (0,1)\}_{t=1}^T$ 书,可以理解为添加的噪声的占比,是自定的函数,所以可以看作已知。

那么,如果已知 x_{t-1} ,我们设定 x_t 为下述公式,其中 π \$\epsilon_t\$ 表示时刻 t 加的噪声: $x_t = \sqrt{\lambda_t} + \sqrt{1-\lambda_t} +$

==数学解释==

- 关于 \$\epsilon_t\$ 的高斯分布可以写作: \$\epsilon_t~N(0,\sigma_1^2)\$, 乘上 \$ w\$ 后方差变为 \$\sigma_1^2 * w^2\$, 加上 \$b\$ 后均值变为 \$0+b\$。
- 如果两个相互独立的高斯分布\$\epsilon_1~N(\mu_1,\sigma_1^2),
 \epsilon_2~N(\mu_2,\sigma_2^2)\$,那么\$\epsilon = (a\epsilon_1 ± b\epsilon_2)~N(a\mu_1±b\mu_2,a^2\sigma_1^2+b^2\sigma_2^2)\$
- 现在有两个高斯分布: \$\sqrt{\alpha_t(1-\alpha_{t-1})}\epsilon_{t-1}~N(0,\alpha_t(1-\alpha_{t-1})) \$, \$\sqrt{1-\alpha_t}\epsilon_t~N(0,1-\alpha_t) \$ 两个分布相加可以得到: \$\sqrt{\alpha_t(1-\alpha_t(1-\alpha_t-1))}\epsilon_{t-1} + \sqrt{1-\alpha_t}\epsilon_t ~N(0,1-\alpha_t\alpha_t\alpha_{t-1}))\$

可以推理得到 x_t 与 x_0 的关系,其中 a_t \$\bar\alpha_t\$ 表示累乘: x_t =\sqrt{\bar\alpha_t}x_{0} + \sqrt{1-\bar\alpha_t}\epsilon\label{4} \$\$ == 回到概率分析==

给定初始的数据分布 $x_0 \sim q(x)$, 可以不断地向分布中添加高斯噪声,该噪声的方差以固定值 θ 的 定,均值以 θ 的 θ 的数据 θ 的数 θ

== Question== Why forward diffusion process ?

2.2 Reverse diffusion process

if we can reverse the above process and sample from $q(x_{t-1}|x_t)$, we will be able to recreate the true sample from a Gaussian noise input, $x_T \sim N(0,1)$. Note that if β_t is small enough, $q(x_{t-1}|x_t)$ will also be Gaussian. Unfortunately, we cannot easily estimate $q(x_{t-1}|x_t)$ because it needs to use the entire dataset and therefore we need to learn a **model** p_0 to approximate these conditional probabilities in order to run the *reverse diffusion process*.

目标: \$p_\theta(x_0|x_T)\$

==数学解释==

根据前向过程,可以得到: \$q(x_{t}|x_{t-1},x_0) = \sqrt\alpha_tx_{t-1}+\sqrt{1-\alpha_t}\epsilon ~N(\sqrt\alpha_tx_{t-1},1-\alpha_t)\$\$ {q(x_{t-1},x_0)} = \sqrt{\bar\alpha_{t-1}}x_{0}+\sqrt{1-\bar\alpha_{t-1}}\epsilon ~N(\sqrt{\bar\alpha_{t-1}}x_{0},1-\bar\alpha_{t-1})\$\$

高斯分布的概率密度函数: \$ f(x) = \frac{1}{\sqrt{2\pi}\sigma}exp({-\frac{1}{2}(\frac{x-\mu}{\sigma})^2})\$, 于是有 \$N(\mu, \sigma^2) \propto exp({-\frac{1}{2}(\frac{x-\mu}{\sigma})^2})\$, 展开后在 \$exp\$中, 乘法就是相加,除法就是相减。

2.3 Algrithms

2.3.1 Training (Predict the noise)

Algrithm 1 Training	Note
1: repeat	
2: \$x_0 ~ q(x_0)\$	\$x_0\$ 为分布 \$q\$ 中随机采样的图像(数据集中取数据)
3: \$t ~ Uniform({1,,T})\$	\$ t\$ 即扩散次数,从 \$0\$ 到 \$T\$,对不同的图像是不固定的
4: \$\epsilon ~ N(0, I)\$	\$\epsilon\$ 高斯分布 \$N(0, I)\$ 中随机采样 的噪声(从前向过程获得)
5: Take gradient descent step on \q gradient_\theta $\ \epsilon - \epsilon_0(\q \alpha_t)x_0 + \sqrt{1-\beta}\alpha_t \le 1$	\$ε_θ\$ 即训练的模型,括号内是输入:时 间以及 \$x_t\$
6: until converged	

2.3.2 Sampling (To get \$x_0\$)

Algrithm 2 Sampling	Note
1: \$x_T ~ N(0, I)\$	\$x_T\$ 高斯分布 \$N(0,1)\$ 中随机采样的噪声
2: for \$t = T,,1 \$ do	
3: $z \sim N(0, 1)$ if $t > 1$, else $z = 0$	\$ t = 1\$ 即 \$x_0\$ 时刻没有噪声,其他时刻都有从分布中采样的噪声(重参数)

Algrithm 2 Sampling

Note

4: $x_{t-1} = \frac{1}{\sqrt{1-\lambda_t}}$ {\sqrt{1-\bar\alpha_t}\epsilon_\theta(x_t, t)) + \sigma_tz\$

5: end for

6: return \$x_0\$

3. Code

- diffusion model demo
- diffusion in DALL·E 2 (image generation)

References:

[1] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning. PMLR, 2021: 8748-8763. [2] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851. [3] https://openai.com/dall-e-2/ [4] https://huggingface.co/spaces/dalle-mini/dalle-mini [5] https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ [6] https://www.bilibili.com/video/BV1b541197HX/? spm_id_from=333.788&vd_source=7020551ede7e34125c5de7acc9417f8d [7] https://www.bilibili.com/video/BV1tY4y1N7jg/? spm_id_from=333.788.recommend_more_video.1&vd_source=7020551ede7e34125c5de7acc9417f8d [8] https://github.com/heejkoo/Awesome-Diffusion-Models [9] https://www.bilibili.com/video/BV1ad4y1c7vY/? spm_id_from=333.337.search-card.all.click&vd_source=7020551ede7e34125c5de7acc9417f8d