

Worksheet-01

Topics:- Coulomb's Law to Applications of Gauss's Law

1. A point charge at a distance "x" from another point charge experiences a force of repulsion. Which one of following graphs shows how the force is related to "x".

A. $\frac{1}{x^2}$

2. An uncharged metal object M is insulated from its surroundings. A positively charged metal sphere S is then brought near to M. Which diagram best illustrates the resultant distributions of charge on S and M?

3. A charged particle is in the electric field between two horizontal metal plates connected to a battery, as shown. There is a force F on the particle due to the electric field.

The separation of the plates is double. What is the new force on

USE THIS SPACE FOR SCRATCH WORK

the particle?

A. $\frac{F}{4}$

B. $\frac{F}{2}$

C. F

- D. 21
- 4. The electric field between two plates is E. Now the electric field between same two plates in a medium of relative permittivity "10" is:
 - A. 10E

B. $\frac{10}{E}$

C. $\frac{E}{10}$

- D. E+10
- 5. A large non-conducting sheet S is given a uniform positive charge density. Two uncharged small metal plates A and B are placed near the sheet as shown. Which of the following is false?

A. S attracts A

B. A attracts B

C. S attracts B

- D. B repels A
- 6. The figure shows three-point charges. If the net force on the central charge is zero, what is the value of a/b?

A. $\frac{2}{3}$

B. $\sqrt{\frac{2}{3}}$

C. $\frac{3}{2}$

- D. $\sqrt{\frac{3}{2}}$
- 7. The study of charges at rest under the action of electric forces is called:
 - A. Electromagnetics
- B. Electrostatics

C. Electricity

- D. Electrodynamics
- 8. The existence of an object is primarily because of:
 - A. Magnetic force
- B. Electric force
- C. Gravitational force
- D. Nuclear force
- 9. Which one is sure test for the presence of charge on a body?
 - A. Attraction

- B. Repulsion
- C. Both A and B
- D. None of these
- 10. Coulomb's force:
 - A. Obeys inverse square law
 - B. Depends on magnitudes of charges
 - C. Depends on medium between charges
 - D. All of these

- 11. If the distance between two charges is doubled the force between them:
 - A. Becomes 4 times
- B. Becomes 2 times
- C. Becomes $\frac{1}{4}$ times
- D. Becomes $\frac{1}{2}$ times
- 12. Conventionally attractive force between charges is taken as _____ and repulsive force is taken as _____.
 - A. Positive, Positive
- B. Positive, Negative
- C. Negative, Positive
- D. Negative, Negative
- 13. If the magnitude of both charges is doubled and distance between them is halved then electric force becomes?
 - A. 4 times

B. 8 times

C. 16 times

- D. 2 times
- 14. The value of electrical constant ε_0 is:
 - A. $9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
- B. $8.85 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{N}^{-1} \,\mathrm{m}^{-2}$
- C. $9 \times 10^9 \text{ N}^2 \text{ m}^2 \text{ C}^{-2}$
- D. 8.85×10⁻¹² C² N⁻² m⁻²
- 15. A charge q is divided into two parts ' q_1 and $(q-q_1)$ '.

What is the ratio $\frac{q}{q_1}$ so that force between the two parts

placed at a given distance is maximum?

A. 1:1

B. 2:1

C. 1:2

- D. 1:4
- 16. Two point charges placed at a certain distance r in air exert a force of F on each other. Then the new distance at which these charges will experience the same force in a medium of dielectric constant 'k' is::
 - A. r

 $B.\frac{r}{k}$

 $C.\frac{r}{\sqrt{l_k}}$

- $D. r\sqrt{k}$
- 17. The figure shows three point charges, if the net electric force on the central charge is zero, What is the value a/b:

$|\longleftarrow a \longrightarrow |\longleftarrow b \longrightarrow b \longrightarrow b$

- \oplus
- \oplus
- \oplus

- +2q
- +3q

A. $\frac{2}{3}$

 $B.\sqrt{\frac{2}{3}}$

 $C.\frac{3}{2}$

- $D.\sqrt{\frac{3}{2}}$
- 18. Two point charges exert a force of 20 N when a dielectric of dielectric constant "2" is present between them. If the dielectric is removed keeping all the other parameters same, what is the force now?
 - A. 40 N

B. 20 N

C. 10 N

D. 5 N

USE THIS SPACE FOR

SCRATCH WORK

- 19. Electric field due to point charge depends upon:
 - A. Magnitude of charge
 - B. Distance from charge
 - C. Medium in which charge is placed
 - D. All of these
- 20. Two positive charges $q_1 = 16 \mu C$ and $q_2 = 4 \mu C$ are separated by a distance of 3 m. The distance of zero field spot from smaller charge is:

A. 1 m

B. 2 m

C. 3 m

D. 4 m

- 21. The zero field spot in case of two unequal and opposite charges exist:
 - A. Between the charges at mid-point
 - B. Between the charges but closer to smaller charge
 - C. Both A and B
 - D. None of these
- 22. The ratio of electric force to electric field strength gives the units of:

A. Current

B. Charge

C. Time

D. None of these

23. In photocopier the drum is given _____ charge and toner is given _____ charge:

A. Positive, Negative

B. Positive, Positive

C. Negative, Positive

D. Negative, Negative

24. Electric flux passing through a surface area will be half of maximum value when:

A. \vec{A} makes 60° with \vec{E}

B. \vec{A} makes 30° with \vec{E}

C. \overrightarrow{A} makes 45° with \overrightarrow{E}

D. \vec{A} makes 0° with \vec{E}

25. Electric flux passing through a surface area will be $\frac{\sqrt{3}}{2}$

times the maximum flux if plane area makes angle with electric field.

A. 30°

B. 45°

C. 60°

D. 75°

26. The electric flux passing through a surface area is because of:

A. Acosθ only

B. $Asin\theta$ only

C. $A\sin(90^{\circ}-\theta)$ only

D. Both A and C

27. Five charge $q_1 = +1C$, $q_2 = +3C$, $q_3 = +5C$, $q_4 = -5C$ and $q_5 = -4C$ are present in a closed surface, the electric flux through that surface will be:

A. $\frac{18}{\varepsilon}$

B. $\frac{9}{\varepsilon_0}$

USE THIS SPACE FOR SCRATCH WORK

C. $\frac{5}{\varepsilon_{\circ}}$

- D. Zero
- 28. The flux passing through a closed surface does not depend
 - A. Charge enclosed
 - B. Medium present between charge and surface
 - C. Shape of surface
 - D. Both A and B
- 29. If E₁ is the electric field near an infinite charged sheet and E₂ is the electric field between two oppositely charged plates then which statement is correct?
 - A. $E_1 = E_2$

B. $E_1 = \frac{1}{2}E_2$

 $C.E_1 = 2E_2$

- **D.** $E_1 = \frac{1}{4}E_2$
- 30. Electric field strength between two similar and equally charged parallel plates is:
 - $A.\frac{\sigma}{2\varepsilon_{\circ}}$

B. $\frac{\sigma}{\varepsilon}$

C. $\frac{2\sigma}{\varepsilon_{\circ}}$

D. Zero

ANSWER KEY (Worksheet-01)						
1	A	11	C	21	D	
2	D	12	C	22	В	
3	В	13	C	23	A	
4	C	14	В	24	A	
5	D	15	В	25	C	
6	В	16	C	26	D	
7	В	17	В	27	D	
8	В	18	A	28	C	
9	В	19	D	29	В	
10	D	20	A	30	D	

SOLUTIONS

Chapter – 12 (WS-01)

- 1. Answer is "A"
 - **Solution:-**

"F" is inversely proportional to " x^2 " but it must be directly proportional to " $\frac{1}{x^2}$ " which means their curve must be a straight line.

- 2. Answer is "D"
 - **Solution:-**

An example of electrostatic induction.

- 3. Answer is "B"
 - **Solution:-**

$$F = qE \rightarrow E \infty \frac{1}{r}$$
 so when "r" is doubled

then "E" reduces to $\frac{E}{2}$ and hence $F \to \frac{F}{2}$

4. Answer is "C"

Solution:-

$$E \propto \frac{1}{\varepsilon_r}$$
 so $E' = \frac{E}{10}$

6. Answer is "B"

Solution:-

The net force is zero means that;

$$F_1 + F_2 = 0$$

$$\frac{K(2q)(q)}{a^2} + \frac{K(q)(3q)}{b^2} = 0$$

- $\frac{2}{3} = -\frac{a^2}{b^2}$
- $\frac{a}{a} = \sqrt{\frac{2}{2}}$
- 7. Answer is "B"

Solution:- As electrostatic is a combination of two words "electro" means charge and "static" means at rest.

8. Answer is "B"

Solution:- An object primarily is composed of millions of atoms and molecules which are binded together with most basically the electrical force.

9. Answer is "B"

Solution:- When we bring a "+ve" charged rod near an object under observation whose charge has to be determined then there are two possibilities

(i) Attraction occurs:-

If attractions occurs then there are further two possibilities, either it has "-ve" charge or it may have no charge and attraction occurred only due to electrostatic induction which leaves us double minded, so on attraction we are never 100% sure that object has charge or not.

(ii) Repulsion occurs:-

If repulsion occurs then only possibility is that same charge must be present on object under observation making 100% sure.

10. Answer is "D"

Solution:- As according to Coulomb's law;

 $F_c \propto q_1 q_1 \rightarrow$ Depends upon magnitudes of charges

$$F_c \propto \frac{1}{r^2} \rightarrow$$
 Obeys inverse square

$$F_c = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q_1q_2}{r^2} \rightarrow \text{ Depends upon "}\varepsilon_r$$
"

which is a medium parameter.

11. Answer is "C"

Solution:-
$$F = k \frac{q_1 q_2}{r^2} \implies F \propto \frac{1}{r^2}$$

12. Answer is "C"

Solution:- As attraction occurs between opposite charges which means if $q_1 = +ve$, $q_2 = -ve$ then

- $F_c \propto (+q_1)(-q_1) \propto -q_1q_2$ (Comes out to be negative).
- As repulsion takes place between either +ve, +ve or -ve, -ve so $F_c \propto (+q_1)(+q_2) \propto +q_1q_2$

 $F_c \propto (-q_1)(-q_2) \propto +q_1q_2$ (Comes out be +ve in these two cases)

13. Answer is "C"

Solution:-
$$F = \frac{k q_1 q_2}{r^2}$$

14. Answer is "B" Solution:- As

$$k = \frac{1}{4\pi\varepsilon_{\circ}}$$

$$k = \frac{1}{4\times3.14\times8.85\times10^{-12}} C^{2} N^{-1} m^{-2}$$

$$k = 9\times10^{9} N m^{2} C^{-2}$$

15. Answer is "B"

Solution:- If the charge q is divided into equal parts, the product of these parts and electric force between them will be maximum. i.e \Rightarrow $q_1 = q - q_1$

$$\Rightarrow q_1 + q_1 = q$$

$$\Rightarrow \frac{q}{q_1} = 2$$

16. Answer is "C"

Solution:-
$$F_{vac} = F_{med}$$

$$\frac{q_1 q_2}{4\pi \varepsilon_c r^2} = \frac{q_1 q_2}{4\pi \varepsilon_c k r'^2}$$

17. Answer is "B"

Solution:-
$$F_a = F_b$$
, $k \frac{(2q)(q)}{a^2} = k \frac{(3q)(q)}{b^2}$,

solve it.

18. Answer is "A"

Solution:-
$$F_{med} = \frac{F_{vac}}{\varepsilon_r}$$

19. Answer is "D"

Solution:-
$$\overrightarrow{E} = \frac{\overrightarrow{F}}{q_{\circ}}$$

20. Answer is "A"

Solution:
$$E_1 = E_2 \Rightarrow k \frac{q_1}{(3-d)^2} = k \frac{q_2}{d^2}$$

21. Answer is "D"

Solution:- In this case zero field location cannot be present between the two charges as \vec{E} starts from +ve and ends up at -ve, it must be on other side of smaller charge.

22. Answer is "B"

Solution:-
$$\frac{F}{E} = \frac{N}{\frac{N}{C}} = coulomb$$

23. Answer is "A"

Solution:- Positive charge is usually sprinkled on drum whereas toner being negative charge gets attracted to it.

24. Answer is "A"

Solution: $\phi = EA\cos\theta$

Put
$$\phi = \frac{EA}{2}$$
 and solve

25. Answer is "C"

Solution:
$$\phi = \frac{\sqrt{3}}{2} \phi_{\text{max}}$$

$$EA\cos\theta = \frac{\sqrt{3}}{2}EA$$

Solve for θ .

To find angle between plane area and electric field use

$$\alpha = 90^{\circ} - \theta$$

26. Answer is "D"

Solution:- As in relation of electric flux we have:

$$\phi_{e} = EA\cos\theta$$

Which can be written as;

$$\phi_e = EA\sin(90^\circ - \theta)$$

Which means $A\cos\theta = A\sin(90^{\circ}-\theta)$ so both options are true.

27. Answer is "D"

Solution:-

$$\phi = \frac{Q_{total}}{\varepsilon_{\circ}} = \frac{1 + 3 + 5 - 5 - 4}{\varepsilon_{\circ}} = zero$$

28. Answer is "C"

Solution:- For closed surface we apply

Gauss's law; $\phi_e = \frac{q}{\varepsilon_{\circ}}$, which does not

depend upon shape of surface rather depends upon charge and medium.

29. Answer is "B"

Solution:-

$$E_{1} = \frac{\sigma}{2\varepsilon_{\circ}}; E_{2} = \frac{\sigma}{\varepsilon_{\circ}} \Rightarrow \frac{E_{1}}{E_{2}} = \frac{\left(\frac{\sigma}{2\varepsilon_{\circ}}\right)}{\left(\frac{\sigma}{\varepsilon_{\circ}}\right)}$$

$$\frac{E_1}{E_2} = \frac{1}{2}$$

30. Answer is "D"

Solution:- Electric field will be zero because similar charges cancel their fields

