

Course	Methods_Test 2_ Year12
Student name:	Teacher name:
Date: 30 March	
Task type:	Response
Time allowed for th	is task:45 mins
Number of question	ns:8
Materials required:	Calculator with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	46 marks
Task weighting:	10%
Formula sheet provided: Yes	

Note: All part questions worth more than 2 marks require working to obtain full marks.

(3.2.1-3.2.3)Q1

(3 & 3 = 6 marks)Determine y in terms of x for the following.

a)
$$\frac{dy}{dx} = 5x^3 - \frac{2}{x^2}$$
 given that $y = 10$ when $x = 2$.

b)
$$\frac{dy}{dx} = \frac{50x^2}{(5 - x^3)^5}$$
 given that $y = 100$ when $x = 2$.

Q2 (3.2.21-3.2.22)(4 marks)

A particle travels along a straight line such that its acceleration at time t seconds is equal to $(5t - 1)m/s^2$. When t = 1 the displacement is 22 metres and when t = 3 the displacement is -10 metres. Determine the displacement when t = 6.

(2. 2, 1 & 2 = 7 marks)

Consider the function f(x) which is graphed for $2 \le x \le 6$.

a) By using rectangles of width one unit, as shown above, determine a lower estimate for the area under f(x) for $2 \le x \le 6$.

- b) By using rectangles of width one unit, as shown above, determine an upper estimate for the area under f(x) for $2 \le x \le 6$.
- c) Determine a better approximation for the area under f(x) for $2 \le x \le 6$.
- d) Describe two different methods to improve the approximation for the area under f(x) for $2 \le x \le 6$.

(3 & 2 = 5 marks)

An oil tank is drained of oil such that if ${}^{V\,kL}$ of oil in the tank t seconds after draining commences is

$$\frac{dV}{dt} = 230 - \frac{120}{(t+3)^4}$$

described by

The initially full tank is emptied in 2 mins.

a) How much oil was in the full tank? (nearest kL)

b) How much oil was drained from the tank in the fifth second, nearest kL.

$$(3.2.11 - 3.2.14)$$

(2, 2 & 2 = 6 marks)

Consider a function f(x) which is only defined for $-5 \le x \le 7$ with

$$f(-5)=0=f(0)=f(7)$$

$$f(-4)=8$$

$$f(-1)=11$$

$$\int_{5}^{0} f(x) dx = 22$$

$$\int_5^7 f(x)dx = -43$$

It is known that $f(x) \ge 0$ for $-5 \le x \le 0$ and $f(x) \le 0$ for $0 < x \le 7$. Determine.

a)
$$\int_4^1 f'(x) dx$$

b)
$$\int_{0}^{z} f(x) dx$$

c) The area between y = f(x) and the x axes for $-5 \le x \le 7$.

(2 & 2 = 4 marks)

Q6 (3.2.20) (4 marks)

Determine to two decimal places the area between the curves $y = x^3 + x + 1$ and y = 4x. (Hint- Sketch the curves first on your classpad)

Q7 (3.2.16)
$$y = \int_{0}^{t} t^{3} + 3(1 + 4e^{2t})^{5} dt$$
Consider Determine.
$$\underline{dy}$$

b)
$$\frac{d^2y}{dx^2}$$

(2 & 4 = 6 marks)

Q8 (3.1.4) (4 marks)

The instantaneous rate of decline in the number of kangaroos on a particular park is 30% of the population per year. If there were 12 050 kangaroos on the park 3 years ago, how many will be on the park in four years from now

Q9 (3.2.6)
(a) Determine
$$\frac{d}{dx} \left(x(x+1)^{\frac{1}{3}} \right)$$
.

(b) Using your result from part (a) and without using your classpad determine $\int \frac{x}{3(x+1)^{\frac{2}{3}}} dx$

Working out space

Working out space