Notions associées au chapitre

- Parties d'un ensemble
- Produit cartésien
- · Application, ensemble d'application
- · Inclusions, intersection, union
- Notation $(x,y) \in E \times F$, E^n , ...
- n uplets et égalités
- Partition d'un ensemble, partition non propre
- · Introduction d'une relation binaire
- Graphes, diagramme de Hasse
- Représentation des relations binaires
- · Propriétés fondamentales des relations binaire
- Relation d'équivalence, relation d'ordre et leurs attributs (classes, ensemble quotient, ...)
- Propriété d'une relation d'équivalence
- · Ordre inverse, ordre produit, ordre lexicographique
- · Majoration minoration

Introduction générale (séance 1)

Parties d'un ensemble

② Question

Soit $E = \{1, 2, 3\}$ un ensemble:

- Donner l'ensemble des parties de E notées $\mathcal{P}(E)$.
- Pour un ensemble E quelconque, combien de parties possèdera t-il ?

Rappel

On appelle parties d'un ensemble E, généralement notée $\mathcal{P}(E)$ l'ensemble définit par :

$$\mathcal{P}(E) = \{A \subseteq E\}$$

C'est l'ensemble de tout les ensemble A étant inclus ou égal à E.

✓ Correction

- $\mathcal{P}(E) = \{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1\}, \{2\}, \{3\}, \emptyset\}$
- Tout ensemble possède un total de 2^n parties différentes ou égal à E.

Ensemble des applications

Question

Prenons quelques exemples de fonctions **réelles**, c'est à dire $f: \mathbb{R} \to \mathbb{R}$:

- $ullet f: x
 ightarrow x^2$
- $f: x \rightarrow x$

• $f: x \to \cos(x)$

Que peut-on dire sur ces dernières ?

✓ Correction

Les trois fonctions associent à chaque antécédant une seule et unique image, on parle alors d'**application**. Et, les trois possèdent le même ensemble d'entrée que de sortie.

Ces trois applications font partie d'un <u>ensemble</u> qui regroupe les applications qui prennent à valeurs dans $\mathbb R$ renvoient un réel. On appelle ceci **ensemble des applications de** $\mathbb R$ **dans** $\mathbb R$.

Et on note:

$$\mathcal{F}(\mathbb{R},\mathbb{R})$$

De manière générale

Soit E et F deux ensembles, on appelle ensemble des applications de E dans F, l'ensemble de toutes les fonctions qui à chaque élément d'un ensemble d'entrées (= antécédant) E associe une unique éléments de sortie (= image) de F. On note $\mathcal{F}(E,F)$.

Produit cartésien

Question

Déterminer le produit cartésien de $\{1,2,3\}$ avec $\{a,b\}$.

✓ Correction

On a:

$$\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

Rappel

Soit E_1, \ldots, E_n , n-ensembles, on note produit cartésien défini par :

$$\prod_{k=1}^n E_k = E_1 imes \ldots imes E_n = \{(x1,\ldots,x_n) \mid x_1 \in E_1,\ldots,x_n \in E_n\}$$

Puissance ensembliste

(i) Info

On a par définition :

$$E^n = \underbrace{E \times E \times E \dots \times E}_{n-fois}$$

Ainsi, si $x \in E^n$ alors x est un n-uplet de n composantes qui appartiennent toutes à m'ensemble E.

Les n-uplets

Soit $X=(x_1,\ldots,x_n)$ et $Y=(y_1,\ldots,y_m)$ deux n-uplets, on dit qu'ils sont égaux si :

- $(n = m) \Longrightarrow$ (même nombre de composantes)
- $\forall i \in [1;n]$ on a $x_i = y_i$, chaque composantes des deux n-uplets doivent êtres égales deux à deux.

Partition d'un ensembles

Soit E un ensemble et $I \subset \mathbb{N}$ un intervalle.

La famille $(F_i)_{i \in I}$ des parties de E est appelée partition de E si elle respecte les conditions suivantes :

- $\forall i \in I$, on a $F_i
 eq \emptyset$ Toutes parties ne peut être vide
- $\bigcup_{i=1}^{n} F_i = E$, L'union de toutes les parties doit donnée l'ensemble E complet.
- $\forall (i,j) \in I^2$ tel que $i \neq j$ avec $F_i \cap F_j = \emptyset$, l'intersection de toutes parties différentes doit donner l'ensemble vide. Aucune partie ne peut posséder les mêmes éléments qu'une autre.

② Question

Réfléchir sur un exemple de partition avec le groupe de classe.

(i) Info

- Si il existe une partie vide, en gros si on ne respecte pas la première condition mais les autres, alors dans ce cas on parlera de partition non propre.
- Avec la définition d'une partition, ça veut dire que pour chaque élément x de E, il existe une unique partie Fi
 avec x ∈ Fi.
 - Dans le cas où $\exists x \notin F_i$, la seconde condition n'est pas respectée
 - Dans le cas où *x* appartient à deux parties différentes, la troisième condition n'est pas respectée.

La notion de relation binaire

Considérons un ensemble ${\cal V}$ de voitures quelconques qui sont stockées dans un garage automobile.

- 1. Déterminer l'ensemble des entrées.
- 2. Spécifier les caractéristiques possibles entre voitures.
- 3. Déterminer une partition de V, une partition de l'ensemble C_{prim} qui représente l'ensemble des couleurs primaires.
- 4. En déduire les relations possibles pour ce contexte.
- 5. Représenter la/les relations trouvées de plusieurs manières (matricielle, graphe, tableau).

```
-- Données SQL
-- A déterminer pendant le cours
```

- 1. Parlons graphes
- 2. Montrer que la relation \mathcal{R} représente une relation d'équivalence.
 - 1. Donner les propriétés d'une relation d'équivalence
 - 2. Déterminer les différentes classes d'équivalences.
 - 3. Déterminer l'ensemble quotient.
 - 4. Vous déterminerez avec le tuteur les définitions "françaises" puis mathématiques des différents termes proposés.
- 3. Pourquoi ce n'est pas une relation d'ordre?
- 4. Prenons la relation \mathcal{T} définie par

$$orall v_1, v_2 \in V imes V \Longleftrightarrow v_1 ext{ plus clair que } v_2$$

Montrer que cette dernière représente une relation d'ordre.

5. \mathcal{T} est d'ordre total ou d'ordre partiel ?

6. La relation \leq est-elle d'ordre total ? Pourquoi ? Proposer plusieurs forme de relation \leq (lexicographique, date, taille, ...)