SFWR ENG 3A04 Summary

Author: Kemal Ahmed Instructor: Dr. Ridha Khedri

Date: Fall 2014

Math objects made using MathType; graphs made using Winplot.

Please join GitHub and contribute to this document. There is a guide on how to do this on my GitHub.

Table of Contents

ecture 2	1
Hierarchy of Requirement Specifications	1
Traceability Matrix	
Early Assignment Details	
• •	
Requirements Cont.	2

Lecture 2

Hierarchy of Requirement Specifications

Pre Requirements:

- Requirements:
 - o Requirements Document
 - System Specifications
 - Other Documents
 - Legal
 - Security
 - Privacy
 - o Architectural Design
 - Types:
 - Dynamic
 - Stable
 - Determined by:
 - o Elements
 - o Connectors
 - Detailed Design

Traceability Matrix

Traceability Matrix: a method of showing how each of the elements satisfies a requirement. You can use this to determine if a feature is necessary or if you are missing a feature.

Elements (E _i) \	R_1	R ₂	R _n
Elements (E _i) \ Requirements (R _i)			
E_1		P	P
E_2	T		
E _n			

Early Assignment Details

• The assignment can be submitted to a contest

• 2014-15 connect

• dx.org/connect

• Deadline: April 1st, 2015

• Prize: \$2000

Requirements Cont.

Business Event (BE): input to a system

Environment / system interactions:

- I/O between system and user
- look at the system as a black box
- the last output occurs when the "business has been carried

Viewpoints (VP):

- A target set of requirements
- Think of it as different perspectives of how someone would want the system to be designed
- Includes things like who is using your product, but also who will be affected, such as economic perspective, i.e. cost

The more <u>viewpoints</u> you have, the better the representation of the system because you get a better overall perspective.

e.g. 1)

For a BE_1 , you have a list of VPs from VP_1 to VP_n , and for BE_2 you have a list of VPs from VP_1 to VP_m .

If you have 2 viewpoints that have little relevance, you don't get rid of it. Instead, you mark them as void. This is because you may need it for the next BE(s)

Functional Requirements: Non-functional Requirements: