Assignment rever jeethe ling anno Help concepts

https://powcoder.com

The University of Manchester

Add WeChat powcoder

Outline of this revision session

Vector spaces

Assignment Project Exam Help

- Rank of a matrix. https://powcoder.com

 Quadratic forms and definiteness of matrices
- · Spectral decrywsition chat powcoder

Resources: Orme (2009) Linear Algebra Notes and sequence of videos, both on BB in folder "Linear Algebra Resources".

Assignment Perojecth Exam Help

• bretipesalled per west of the free spanned denoted

 $\mathbf{A}^{n}\mathbf{d}\mathbf{d}^{k}\mathbf{W}^{(k)}\mathbf{C}^{(k)}\mathbf{n}^{(k)}\mathbf{z}^{(k)}\mathbf{p}^{(k)}\mathbf{v}^{(k)}\mathbf{c}^{(k)}\mathbf{d}\mathbf{e}^{(k)}\mathbf{r}^{(k)}$

Assignment Project Exametelp e; is one and all others are zero).

Then Interpreted by the Interpre

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 \dots + x_n \mathbf{e}_n = \sum_{i=1}^n x_i \mathbf{e}_i$$

Add WeChat powcoder

Vector spaces, Orme Chap 2

Note:

Assignment Project Exam Help

- (ii) $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are all $n \times 1$ and none of the \mathbf{e}_i can be expressed as a linear combination of the remaining \mathbf{e}_i , $j \neq i$.
 - (i) $\rightarrow \{\mathbf{e}_i\}_{i=1}^n \text{ spans } \mathbb{R}^n$.
 - Add : We Chate powcoder
 - (i) & (ii) $\rightarrow \{\mathbf{e}_i\}_{i=1}^n$ forms a basis for \mathbb{R}^n .

Vector spaces, Orme Chap 2

Assignment Project Exam Help

- $\underset{\text{A sub-space of }\mathbb{R}^n \text{ is a non-empty subset of }\mathbb{R}^n \text{ which is also a vector space}.$

Linearly (in)dependent sets, Orme Chap 2

Assignment: Project: Exam Help

If there exist scalars $\{\lambda_j\}_{j=1}^m$ with at least one $\lambda_j \neq 0$ such that $\sum_{j=1}^m \sum_{j=1}^m \sum_{j=1}$

Conversely, if $\sum_{j=1}^{m} \lambda_j \mathbf{x}_j = 0$ only holds for $\lambda_j = 0$, j = 1, 2, ..., m then \mathbf{A} Conversely, if \mathbf{C} is satisfied to \mathbf{C} in \mathbf{C}

Rank of a matrix, Orme Chap 3

Define

If {x, } ineprovedent detrence and column rank that is, the column rank = # of columns.

Add WeChat powcoder

If $\{x_{\bullet,j}\}_{j=1}^m$ form a linearly dependent set then X does not have full column rank and:

column rank of $\mathbf{X} = \max \min \#$ of columns of \mathbf{X} that can form a linearly independent set.

Rank of a matrix, Orme Chap 3

Similarly

https://powcoder.com If $\{x_{i,\bullet}\}_{i=1}^n$ form a linearly independent set then X has full row

rank that is, the row rank = # of rows.

Add WeChat powcoder

If $\{\mathbf{x}_{i,\bullet}\}_{i=1}^n$ form a linearly dependent set then **X** does not have full row rank and:

row rank of X = maximum # of rows of X that can form a linearlyindependent set.

Rank of a matrix, Orme Chap 3

Key result: row rank of X = column rank of X.

Assignment Project Exam Help

https://powcoder.com

- for \mathbf{X} $(n \times m)$: $rank(\mathbf{X}) \leq min[n, m]$.
- Add MeChatspowcoder
- if m = n then **X** is nonsingular $(det(\mathbf{X}) \neq 0 \text{ and } \mathbf{X}^{-1} \text{ exists})$ if and only if $rank(\mathbf{X}) = m(=n)$.

Quadratic forms

Let **A** be a $n \times n$ symmetric matrix, and **x** be a $n \times 1$ vector.

Assignment Project Exam Help

- A is positive definite (pd) iff x'Ax > 0 for all $x \neq 0$.
- https://powcoder.com/0.

The definitions of negative definiteness and negative definiteness are analogous only with direction of inequalities reversed.

Note $\bf A$ can also be indefinite in which case quadratic forms in $\bf A$ can be either positive or negative depending on $\bf x$.

Spectral decomposition of symmetric matrix, Orme Chap 6

Let **A** be a (real) symmetric $n \times n$ matrix then there exists

Assignment Project Exam Help $k = diag(\lambda_1, \lambda_2, ..., \lambda_n)$ where λ_i are (real) scalars,

• https://poweoder.com⁻¹ = x'), such that

Add we Chat powcoder A

 $\{\lambda_i, \mathbf{x}_{\bullet,i}\}_{i=1}^n$ known as eigenvalues and eigenvectors of **A**.

As a result:

Assignment Project Exam Help

• $tr(\mathbf{A}) \stackrel{d}{=} \sum_{i=1}^{n} a_{i,i} = \sum_{i=1}^{n} \lambda_i$ https://powcoder.com

Connection to positive definiteness of A:

- Addle Mgat Chatiff power der i = 1, 2, ..., n.
- **A** is positive (negative) semi- definite iff $\lambda_i \geq 0$ (≤ 0) for all $i = 1, 2, \ldots, n$.

Time to test your understanding

Assignment Project Exam Help

 I have posted some questions on Blackboard that test your understanding. Please try to do these. https://powcoder.com

 The solutions are also posted for your convenience but please do contact me if you have any questions about this material.

Add WeChat powcoder