[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2023-2024 Scribed by: Subham Rathi (202151163) Lecture (Week 4)

Group

Introduction to Groups

Definition 1 (Group) A group is a set G equipped with an operation \cdot that satisfies the following properties:

- 1. Closure: For all $a, b \in G$, $a \cdot b \in G$.
- 2. Associativity: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 3. **Identity Element**: There exists an element $e \in G$ such that for all $a \in G$, $a \cdot e = e \cdot a = a$.
- 4. Inverse Element: For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Theorem 1 (Lagrange's Theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.

Proof: Consider the left cosets of H in G. These cosets form a partition of G, and each coset has the same order as H. Therefore, the order of H must divide the order of G.

Examples of Groups

- 1. The set of integers \mathbb{Z} with addition forms a group.
- 2. The set of non-zero rational numbers \mathbb{Q}^* with multiplication forms a group.
- 3. The symmetric group S_n , consisting of all permutations of n elements, is a group under composition.

Ring

Introduction to Rings

Definition 2 (Ring) A ring is a set R equipped with two operations, addition (+) and multiplication (\cdot) , such that R satisfies the following properties:

- 1. R is an abelian group under addition.
- 2. Multiplication is Associative: For all $a, b, c \in R$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 3. Distributive Property: For all $a, b, c \in R$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.

Lemma 1 *In a ring* R*, for any* $a, b \in R$ *,* (-a)b = a(-b) = -(ab)*.*

Proof: We have (-a)b+ab=(-a+a)b=0. Thus, (-a)b=-(ab). Similarly, a(-b)=-(ab).

Examples of Rings

- 1. The set of integers \mathbb{Z} with usual addition and multiplication is a ring.
- 2. The ring of polynomials R[x] with coefficients in a ring R is a ring.
- 3. The matrix ring $M_n(\mathbb{R})$ of all $n \times n$ matrices with real entries forms a ring.

Field

Introduction to Fields

Definition 3 (Field) A field is a set F equipped with two operations, addition (+) and multiplication (\cdot) , such that F satisfies the following properties:

- 1. F is a commutative group under addition.
- 2. $F \setminus \{0\}$ is a commutative group under multiplication, where 0 is the additive identity.
- 3. Multiplication Distributes Over Addition: For all $a, b, c \in F$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.

Examples of Fields

- 1. The set of rational numbers \mathbb{Q} is a field.
- 2. The field of real numbers \mathbb{R} is a field.
- 3. The field of complex numbers \mathbb{C} is a field.

Field Extension

Introduction to Field Extensions

Definition 4 (Field Extension) Let F and K be fields, where F is a subfield of K. Then, K is called a field extension of F, denoted as K/F.

Examples of Field Extensions

- 1. The field extension \mathbb{C}/\mathbb{R} represents the extension of real numbers to complex numbers.
- 2. The field extension $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ represents the extension of rational numbers by adding the square root of 2.
- 3. The field extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ represents a finite field extension, where \mathbb{F}_{p^n} is a finite field with p^n elements.

Advanced Encryption Standard (AES)

Introduction to AES

Definition 5 (AES) Advanced Encryption Standard (AES) is a widely-used symmetric encryption algorithm for securing data. It operates on blocks and supports key sizes of 128, 192, or 256 bits.

AES Key Sizes

Remark 1 AES supports three key sizes: 128 bits (AES-128), 192 bits (AES-192), and 256 bits (AES-256).

AES-128

Remark 2 AES-128 employs a 128-bit key for encryption, providing a good balance between security and performance.

AES-192

Remark 3 AES-192 uses a 192-bit key, enhancing security compared to AES-128, suitable for applications requiring a higher level of protection.

AES-256

Remark 4 AES-256 utilizes a 256-bit key, offering the highest level of security among the three variants, suitable for highly sensitive data.