March 2021: IN SEMESTER ASSESSMENT B Tech IV SEMESTER

TEST - 1 **Scheme and Solution**

UE19CS254: Operating Systems

Answer All Questions Time: 2Hr Max Marks: 60

			el All Questions		IVIAX IVIAIKS. 00						
a)	What is peer to peer computing? Name the applications of the peer-to-peer computing environment. Ans: P2P does not distinguish clients and servers. Instead, all nodes are considered peers Where each peer acts as client, server or both1M Examples include Napster and Gnutella, Voice over IP (VoIP) such as Skype1M										
b)	What are the services provided by the operating systems?										
	Ans										
	Services provid	•									
	 User interface - Almost all operating systems have a user interface (UI). Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch Program execution - The system must be able to load a program into memory and to run that program, end execution, either normally or abnormally (indicating error) I/O operations - A running program may require I/O, which may involve a file or an I/O device. File-system manipulation - The file system is of particular interest. Programs need to read and write files and directories, create and delete them, search them, list file Information, permission management. Communications - Processes may exchange information, on the same computer or between computers over a network Communications may be via shared memory or through message passing (packets moved by the OS) Error detection - OS needs to be constantly aware of possible errors. Resource allocation - When multiple users or multiple jobs running concurrently, resources must be allocated to each of them, types of resources are- CPU cycles, main memory, file storage, I/O devices. Accounting - To keep track of which users use how much and what kinds of computer resources 										
c)		must be specified		nd burst time are give	en below-	5					
		Process ID	Arrival time	Burst Time(ms)							
	P1 4 6										
		P2	2	4							
		P3	0	2							
		P4	3	3							
			•								

		i. Calculate the waiting time and average waiting for round Robin Scheduling algorithm									
		(given time quantum= 3)									
		P3 P5 P2 P4 P1 P5 P2 P1									
		0 2 5 8 11 14 15 16 19									
		Waiting time for P1=16-3-4=9									
		Waiting time for P2=15-3-2=10									
		Waiting Time for P3=0									
		Waiting Time for P4=8-3=5									
		Waiting Time for P5=14-3-1=10									
		Average waiting time=(9+10+0+5+10)/5=6.8ms(2+1)M									
		ii. What will be the number of context switches for process P5? (Exclude the context switches									
		at the start of the process and at termination) No.of context switches=21/2M									
		iii. Does an increase in time quantum decrease the number of context switches? Yes context switches are reduced1/2M									
		iv. List the processes in the ready queue after 11ms.									
		Process in the ready queue: P5, P2, P11M									
		1100055 in the ready quote. 13, 12, 11									
2.	a)	What are the possible conditions for the process to move from running state to ready state?	4								
		A diagram depicting the same is required.									
		Soln									
		Diagram—2M									
		ready queue CPU									
		I/O wait queue I/O request									
		time slice									
		expired									
		child create child create child									
		terminates termination wait queue process									
		interrupt wait for an									
		occurs wait queue interrupt									
		The process moves from running state to ready state when,2M									
		I process needs I/o									
		II child process is created using fork()									
		III time slice has expired (in case of RR scheduling)									
		IV Process is interrupted									
	b)	Why short-term scheduler executes at a higher frequency than long-term scheduler?	2								
		The process executes for the few milliseconds before it goes for I/O. Context switch times is									
		very less	4								
	c)	An operating system uses Shortest Remaining Time First (SRTF) process scheduling algorithm. Consider the arrival times and execution times for the following processes:	4								
		Process Execution time Arrival time Process Execution time Arrival time	(2+								
		P1 20 0	1+1)								
		P2 25 15									
		P3 10 30									
		P4 15 45 i. What is the average waiting time for these processes?									
		1. What is the average waiting time for these processes:									

		Solution:											
		Gantt Chart:											
		P1 P2 P3 P2 P4											
		20 30 40 55 70											
		Waiting Time = Start Time - Arrival Time-execution time											
		i. Waiting time for P1=0											
		waiting time for P2=40-15-10=15											
		Waiting time for P3=30-30-0=0											
		Waiting time for P4=55-45-0=10											
		Average waiting time= $(0+15+0+10)/4=6.25$ time units1M											
		ii. No1M											
		iii. Round Robin Scheduling algorithm1M											
		III. Round Room Scheduling algorithm											
3.	a)	Why is it that threads are faster to create than processes? What are the benefits of threads?	4										
3.	a)		4										
		Threads are faster than process as they share parent processes address space.— 1M Benefits of threads											
		• Responsiveness – may allow continued execution if part of process is blocked or											
		 performing lengthy operations. Resource Sharing – threads share resources of process, easier than shared memory or 											
		message passing.											
		• Economy – cheaper than process creation, thread switching lower overhead than											
		context switching.											
		Scalability – process can take advantage of multiprocessor architectures.											
		Any 3 benefits specified—3M											
	b)	Write Peterson's solution to the critical section problem.	4										
	,	Ans											
		do {											
		flag[i] = true;1m											
		turn = j;1m											
		while (flag[j] && turn == j);1m											
		/* critical section */											
		flag[i] = false;1m											
		/* remainder section */											
		}while (true);											
	c)	List two programming examples of multithreading giving improved performance over a	2										
	- /	single-threaded solution.											
		Ans											
		• A Web server that services each request in a separate thread.											
		• A parallelized application such as matrix multiplication where different parts of											
		the matrix may be worked on in parallel.											
		• An interactive GUI program such as a debugger where a thread is used to monitor											
		user input, another thread represents the running application, and a third thread											
		monitors performance.	<u> </u>										
4	9)		4										
4	a)	Does the following code satisfy the requirements for solution to critical section problem?	4										
		while(true) { while(lock!=0);											
		lock=1;											
		Critical section											

		lock=0;									
		Remainder section }									
		If not, suggest the solution to critical section problem.									
		Ans:									
		Does not satisfy the requirements for critical section problem,1M									
		Suggested solution									
		Test and set must be atomic operation									
		boolean test_and_set (boolean *lock)3M									
		{									
		boolean rv = *lock;									
		*lock = TRUE;									
	return rv:										
		}									
	b) What is the significance of wait-for graph and resource allocation graph? Give an exam for each.										
		Solution									
		A wait-for graph is a directed graph used for deadlock detection in operating systems. IT is applicable for single instance resource type.									
		Resource allocation graph: The resource allocation graph is a directed graph. the resource allocation graph gives the complete information about all the processes which are holding some resources or waiting for some resources									
		some resources of waiting for some resources									
		P_1 P_2 P_3 P_4 P_4 P_5 P_6 P_7 P_8 P_8 P_8 P_8									
		(a) (b)									
		Resource-Allocation Graph wait for graph									
		2M each									
	c)	A counting semaphore S is initialized to 20. Then, 10 P operations and 6 V operations are performed on S. What is the final value of S?	2								
		Ans:									
		Final value of semaphore variable S									
		$= 20 - (10 \times 1) + (6 \times 1)$									
		=20-10+6									
		S=162M									
5	a)	Consider a program of size 26 bytes and a page size of 4 bytes. The physical address consists of 200 frames. The user program consists of 26 instructions a, b, c, z. Assume the size of each instruction to be 1 byte. Given a page table entry as shown below	5								
		Page number Frame number									
		0 7									
		1 26									
		2 52									
		3 20									
	1	3 20									

		4	55							
		5	6							
		Page table								
	i. What will be the numbe									
	No.of pages=26/4=6.5(7 pages)1M ii. Find the physical addresses for the instructions a, e, i, o, u?2M PA for a=7x4+0=28 PA for e=26x4+0=104									
	PA for i=52x4+0=208 PA for o=20x4+2=82 PA for u=6x4+0=24									
	iii. Calculate the fragmentation if exists?1m Yes, internal fragment exists.									
	Size of fragment=4-2=2bytes									
	iv. Reference to which ins	-	ge fault?1	m						
	Reference to instruction	•	•							
b)	How are the processes pro			eqution?	3					
	Ans:	nected from each	other during their ext	ceution:						
	Protection is provided by	usina two ragistar	a base and limit 1	Δſ						
	Protection is provided by	using two register	s base and mint.—If	VI						
	base	base + limit								
	address	yes								
	CPU ≥									
	no	no								
	trap to operating s	(etem								
	monitor—addressin		ry							
	The logical address gard	wated bust be su	ooton than on agua	l to hogo pogistop content						
	and it must be less than	_		l to base register content						
(2)	Consider the following se		<u>*1</u>		2					
c)	Segm		address Length		2					
	0	219	600							
	1	2300	14							
	2	90	100							
	3	1327	580							
	4	1952	96							
	What are the physical addresses for the following logical addresses?									
	a. 0,430									
	Physical address for segn	ment 0, byte 430=	=219+430=649							
	b. 1,10	411410	200.10.2210							
	Physical address for segrence 2,500	ment 1, byte 10=2	2300+10=2310							
	Physical address for segn	nent 2, byte 500	is invalid address							
	d. 3,400	-								
	Physical address for segn		=1327+400=1727							
	½ mark for each correct	answer								

		1															
6	a)											5					
		How many page faults occur while using LRU page replacement algorithms with 4															
	frames? I. Calculate the number of page faults2M																
		I.	Calci	1	1	1	` 		1	1	1		1	ı	1	1	
			1	4	3	4	2	1	5	6	2	1	2	3	7	6	
			1	1	1	hit	1	hit	1	1	hit	hit	hit	1	1	6	
				4	4		4		4	6				6	7	7	
					3		3		5	5				3	3	3	
							2		2	2				2	2	2	
			No.of	f page	faults=	=9	1M										
		II.		are th					•		_	•					
				ter and				_	_	g LRU	page	replac	emen	t algo	rithm		
		III.		it suff			•		•	43.5							
	1.\			es not													
	b)	b) What is the significance of valid-invalid bits of page table in paging and in demand paging?											2				
	Paging:																
		Valid indicates that the associated page is in the logical address space. Invalid indicates															
		that the associated page is not in logical address space. Invalid indicates															
		Demai	nd Pagi	ng:													
			in vali									and 0	signi	fies tl	nat the	e page	
			e invali	d or h	aven't	brougl	nt into	the m	emory	just y	et.						
		1M ea	ch														
	c) What is thrashing? What are the methods to prevent thrashing?												3				
		Ans:															
		Thrashing is a condition or a situation when the system is spending a major portion of its time in servicing the page faults, but the actual processing done is very negligible															
		1M															
		Metho	ds to p	revent	thrash	ing	-2M										
		1. Wo	rking se	et mod	el												
		2. Pag	e-fault	freque	ncy												