COT 2000 Foundations of Computing

Summer 2024

Lecture 2 – part 1

Homework 1 – Due 05/24/24

Lecture 2 – part 2

Review

Review

- What are the foundational topics in mathematics?
- What is discrete mathematics?
- Why is discrete mathematics important for Computer Science?
- Which topics are we going to cover in this course?
- What are some core concepts of set theory?
- What is the set-roster and set-builder notations in set theory?
- What the symbols ∈ and ∉ means?
- What does the symbols \subseteq , \subset and \nsubseteq means?

Lecture 2 – part 3

Language of Sets (cont)

Ordered pairs

- {a, b} and {b, a} represent the same set
- How to deal with ordered pairs? In an ordered pair we want to be able to indicate which element comes first.
- Solution:
- An ordered pair is a set of the form {{a}, {a, b}}.
- This set has elements, {a} and {a, b}. This allows us to distinguish between a and b and say that a is the first element of the ordered pair and b is the second element of the pair.
- The usual notation is more simply as (a, b).

Two ordered pairs (a, b) and (c, d) are equal if, and only if, a = c and b = d.

Symbolically:

(a, b) = (c, d) means that a = c and b = d.

Ordered Pairs

- a. Is (1, 2) = (2, 1)?
- b. Is $\left(3, \frac{5}{10}\right) = \left(\sqrt{9}, \frac{1}{2}\right)$?
- c. What is the first element of (1, 1)?

Solution

a. No. By definition of equality of ordered pairs,

$$(1, 2) = (2.1)$$
 if, and only if, $1 = 2$ and $2 = 1$.

But $1 \neq 2$, and so the ordered pairs are not equal.

b. Yes. By definition of equality of ordered pairs,

$$(3, \frac{5}{10}) = (\sqrt{9}, \frac{1}{2})$$
 if, and only if, $3 = \sqrt{9}$ and $\frac{5}{10} = \frac{1}{2}$.

Because these equations are both true, the ordered pairs are equal.

c. In the ordered pair (1, 1), the first and the second elements are both 1.

Cartesian product

Definition

Given sets A and B, the Cartesian product of A and B, denoted $A \times B$ and read "A cross B," is the set of all ordered pairs (a, b), where a is in A and b is in B. Symbolically:

$$\mathbf{A} \times \mathbf{B} = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

Let $A = \{1, 2, 3\}$ and $B = \{u, v\}$.

- a. Find $A \times B$
- b. Find $B \times A$
- c. Find $B \times B$
- d. How many elements are in $A \times B$, $B \times A$, and $B \times B$?

Let $A = \{1, 2, 3\}$ and $B = \{u, v\}$.

- a. Find $A \times B$
- b. Find $B \times A$
- c. Find $B \times B$
- d. How many elements are in $A \times B$, $B \times A$, and $B \times B$?

SOLUTION

a.
$$A \times B = \{(1, u), (2, u), (3, u), (1, v), (2, v), (3, v)\}$$

b.
$$B \times A = \{(u, 1), (u, 2), (u, 3), (v, 1), (v, 2), (v, 3)\}$$

c.
$$B \times B = \{(u, u), (u, v), (v, u), (v, v)\}$$

d. $A \times B$ has six elements. Note that this is the number of elements in A times the number of elements in B. $B \times A$ has six elements, the number of elements in B times the number of elements in A. $B \times B$ has four elements, the number of elements in B times the number of elements in B.

Cartesian Plane

Let **R** denote the set of all real numbers.

 $\mathbf{R} \times \mathbf{R}$ is the set of all ordered pairs (x, y) where both x and y are real numbers.

Lecture 2 – part 4

Relations and Functions

Relations

Example:

Let $A = \{0, 1, 2\}$ and $B = \{1, 2, 3\}$ and let us say that an element x in A is related to an element y in B if, and only if, x is less than y.

$$A \times B = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}.$$

$$\{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}.$$

Relations and the Cartesian Product

Definition

Let A and B be sets. A **relation** R from A to B is a subset of $A \times B$. Given an ordered pair (x, y) in $A \times B$, x is related to y by R, written x R y, if, and only if, (x, y) is in R. The set A is called the domain of R and the set B is called its co-domain.

The notation for a relation R may be written symbolically as follows:

x R y means that $(x, y) \in R$.

Example

A Relation as a Subset

Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$ and define a relation R from A to B as follows: Given any $(x, y) \in A \times B$,

$$(x, y) \in R$$
 means that $\frac{x - y}{2}$ is an integer.

- a. State explicitly which ordered pairs are in $A \times B$ and which are in R.
- b. Is 1 R 3? Is 2 R 3? Is 2 R 2?
- c. What are the domain and co-domain of R?

$$A = \{1, 2\}$$
 and $B = \{1, 2, 3\}$

$$(x, y) \in R$$
 means that $\frac{x - y}{2}$ is an integer.

- a. $A \times B = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$. To determine explicitly the composition of R, examine each ordered pair in $A \times B$ to see whether its elements satisfy the defining condition for R.
 - \checkmark (1, 1) $\in R$ because $\frac{1-1}{2} = \frac{0}{2} = 0$, which is an integer.
 - $(1,2) \notin R$ because $\frac{1-2}{2} = \frac{-1}{2}$, which is not an integer.
 - \checkmark (1, 3) $\in R$ because $\frac{1-3}{2} = \frac{-2}{2} = -1$, which is an integer.
 - $(2, 1) \notin R$ because $\frac{2-1}{2} = \frac{1}{2}$, which is not an integer.
 - \checkmark (2, 2) $\in R$ because $\frac{2-2}{2} = \frac{0}{2} = 0$, which is an integer.
 - $(2,3) \notin R$ because $\frac{2-3}{2} = \frac{-1}{2}$, which is an integer.

Thus

$$R = \{(1, 1), (1, 3), (2, 2)\}$$

The Circle Relation

Define a relation C from **R** to **R** as follows: For any $(x, y) \in \mathbf{R} \times \mathbf{R}$,

$$(x, y) \in C$$
 means that $x^2 + y^2 = 1$.

a. Is
$$(1,0) \in C$$
? Is $(0,0) \in C$? Is $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \in C$? Is $-2 C 0$? Is $0 C (-1)$? Is $1 C 1$?

- b. What are the domain and co-domain of C?
- c. Draw a graph for C by plotting the points of C in the Cartesian plane.

The Circle Relation

Define a relation C from **R** to **R** as follows: For any $(x, y) \in \mathbf{R} \times \mathbf{R}$,

$$(x, y) \in C$$
 means that $x^2 + y^2 = 1$.

- a. Is $(1,0) \in C$? Is $(0,0) \in C$? Is $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \in C$? Is -2 C 0? Is 0 C (-1)? Is 1 C 1?
- b. What are the domain and co-domain of C?
- c. Draw a graph for C by plotting the points of C in the Cartesian plane.

Solution

a. Yes, $(1, 0) \in C$ because $1^2 + 0^2 = 1$.

No, $(0, 0) \notin C$ because $0^2 + 0^2 = 0 \neq 1$.

Yes,
$$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \in C$$
 because $\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$.

No, $-2 \not\in 0$ because $(-2)^2 + 0^2 = 4 \neq 1$.

Yes, 0 C (-1) because $0^2 + (-1)^2 = 1$.

No, $1 \not \in 1$ because $1^2 + 1^2 = 2 \neq 1$.

Arrow Diagrams of Relations

Let $A = \{1, 2, 3\}$ and $B = \{1, 3, 5\}$ and define relations S and T from A to B as follows: For all $(x, y) \in A \times B$,

$$(x, y) \in S$$
 means that $x < y$ S is a "less than" relation.
 $T = \{(2, 1), (2, 5)\}.$

Draw arrow diagrams for S and T.

Solution

These example relations illustrate that it is possible to have several arrows coming out of the same element of A pointing in different directions. Also, it is quite possible to have an element of A that does not have an arrow coming out of it.

Functions

Definition

A function *F* from a set *A* to a set *B* is a relation with domain *A* and co-domain *B* that satisfies the following two properties:

- 1. For every element x in A, there is an element y in B such that $(x, y) \in F$.
- 2. For all elements x in A and y and z in B,

if
$$(x, y) \in F$$
 and $(x, z) \in F$, then $y = z$.

Properties (1) and (2) can be stated less formally as follows:

A relation F from A to B is a function if, and only if:

- 1. Every element of A is the first element of an ordered pair of F.
- 2. No two distinct ordered pairs in F have the same first element.

Each element in the domain corresponds to one and only one element of the co-domain.

More precisely, if F is a function from a set A to a set B, then given any element x in A,

property (1) from the function definition guarantees that there is at least one element of B that is related to x by F, and

property (2) guarantees that there is at most one such element.

Notation

If A and B are sets and F is a function from A to B, then given any element x in A, the unique element in B that is related to x by F is denoted F(x), which is read "F of x."

Function Machines

