Ch-4 Quadratic Equations

- 1. A Polynomial of the form $p(x) = ax^2 + bx + c$, where $a \ne 0$ and a, b, c are real numbers and x is a real variable is called a **quadratic polynomial**.
- 2. An equation p(x) = 0, where p(x) is a quadratic polynomial is called a quadratic equation i.e. $ax^2 + bx + c = 0$, $a \ne 0$.
- 3. **Zeros of Quadratic Equations** Those values of x for which $ax^2 + bx + c = 0$ is satisfied are called zeros of quadratic equation.
- 4. Quadratic equation is classified into two categories
 - a. Pure quadratic equation of type $-ax^2 + c = 0$, by putting b = 0 in $ax^2 + bx + c = 0$.
 - b. Affected quadratic equation of type $ax^2 + bx + c = 0$, $b \neq 0$.
- 5. Roots of Quadratic Equations If α , β are the zeros of the polynomial $ax^2 + bx + c$. Then α , β are called roots of corresponding equation.

$$ax^{2} + bx + c = 0$$

$$p(\alpha) = p(\beta) = 0$$
i.e.,
$$a\alpha^{2} + b\alpha + c = 0$$
, and
$$a\beta^{2} + b\beta + c = 0$$

- 6. Pure quadratic equation $ax^2 + c = 0$ can be solved by any one of the following methods
 - a. By Taking square root
 - b. By factorization
- 7. Affected quadratic equation can be solved by any one of the following method
 - a. By splitting middle term
 - b. By method of completing the square
- 8. $D = b^2 4ac$, is called the discriminant which decides the nature of roots.
 - a. If D > 0, Roots are real and unequal.
 - b. If D = 0, Roots are real and equal.
 - c. If D < 0, No Real roots are possible.
- 9. The quadratic formula or Sridhar Acharya's formula to find the roots of $ax^2 + bx + c = 0$ is $x = \frac{-b \pm \sqrt{b^2 4ac}}{2}$.