# COMP11212 - Fundamentals of Computation

#### Todd Davies

February 3, 2014

## Introduction

The building of real-life computing systems, e.g. mobile phone, tv/video remote control, internet shopping, air-traffic control, internet banking, etc., is always a complex task. Mistakes can be very annoying, costly and sometimes life threatening. Methods and techniques to support the building and understanding of such systems are essential. This course unit provides an introduction to the basic computer science ideas underlying such methods. It is also a part of, and an introduction to, the Modelling and Rigorous Development theme.

## Aims

This course unit provides a first approach to answering the following questions. What methods are there that can help understanding complicated systems or programs? How can we make sure that a program does what we intend it to do? How do computers go about recognizing pieces of text? If there are two ways of solving the same problem, how can we compare them? How do we measure that one of them gives the solution faster? How can we understand what computers can do in principle, and are there problems that are not solvable by a computer?

# Additional reading

None.

# Contents

| 1        | Ter | minology                              | 3 |
|----------|-----|---------------------------------------|---|
| <b>2</b> | Des | scribing languages                    | 3 |
|          | 2.1 | Describing languages through patterns | 3 |
|          | 2.2 | Regular expressions                   | 3 |
|          |     | 2.2.1 Discarding brackets             | 4 |
|          |     | 2.2.2 Matching a regular expression   | 4 |

## 1 Terminology

In order to talk about Strings in any meaningful way, we must first define terminology that we can use to describe exactly what we mean. What follows is a list of the terminology used throughout the course:

- A **symbol** is basically a letter. They are the basic component of all the data we use in the course. Examples include: a, A, (, \$, 7.
- An **alphabet** is a collection of symbols that we can think of as a set. Example alphabets may include binary (0, 1), latin letters  $(a, \ldots, z, A, \ldots, Z)$  etc.
- A **String** is a collection of symbols grouped together, sometimes called a word. Examples include *ababa* and *100101*.
- The empty word is a String consisting of no symbols. It is denoted by the letter  $\epsilon$ .
- Concentration an operation that takes two Strings and combines them to create one longer String. For example concentrating t and he would create the. We can use the power notation to concentrate a String with itself any number of times. For example,  $ho^3$  would give us hohoho.
- A language is a collection of Strings that can be thought of as a set. Examples of languages could be  $\{\emptyset\}$ ,  $\{\epsilon\}$ ,  $\{hot, hotter, hottest\}$  or  $\{a^n | n \in \mathbb{N}\}$ .

We also have notation for describing generic instances of such entities:

| Entity   | Generic notation |
|----------|------------------|
| Symbol   | x, y, z          |
| Alphabet | $\Sigma$         |
| String   | s, t, u          |
| Language | $\mathcal L$     |

Languages as sets Since languages are thought of as sets, we can perform all the usual set operations on them (see my COMP11120 notes for more information on these operations). Languages can be concentrated as described above, however, an interesting case is when a languages is subject to concatenation zero times ( $\mathcal{L}^0$ ), since this would return the empty word  $\epsilon$ .

Sometimes, we may want to define any finite number of concatenations of a language, and this is known as the **Kleene star**. The notation is  $(\mathcal{L})^*$ .

Kleene is pronounced like genie.

## 2 Describing languages

## 2.1 Describing languages through patterns

A pattern describes a generic form that a set of Strings can take. If any String from the set is compared with the pattern then it will match the pattern. Any String from outside the set will not match the pattern.

For example, the pattern  $(ab)^*$  would match Strings such as  $\epsilon$ , ab, abab,  $abab \dots ab$ .

 $\epsilon$  is matched here since it satisfies the pattern  $(ab)^0$ . This comes about because, the Kleene star matches all concatenations of a String.

## 2.2 Regular expressions

The terms *pattern* and *regular expression* are pretty much synonymous. The operators allowed in a regular expression are:

| Empty pattern | The character $\emptyset$ is a pattern.           |
|---------------|---------------------------------------------------|
| Empty word    | The character $\epsilon$ is a pattern.            |
| Letters       | Every letter in $\Sigma$ is a pattern.            |
| Concatenation | If $x$ and $y$ are patterns, then so is $(xy)$ .  |
| Alternative   | If $x$ and $y$ are patterns, then so is $(x y)$ . |
| Kleene Star   | If $x$ is a pattern, then so is $(x^*)$ .         |

### 2.2.1 Discarding brackets

Just like in high-school mathematics, brackets can be discarded when unnecessary. For example, the pattern  $((0|1)^*0)$  is equivalent to  $(0|1)^*0$ , and (2|(1|0)) is the same as (2|1|0).

If we were to analyse a pattern in a recursive fashion, then in order to end our analysis, we would eventually have to find one of a selection of base cases. The highlighted rows here represent step cases (that is to say that at least another level of recursion is needed to finish our analysis), while the un-highlighted lines are base

#### 2.2.2 Matching a regular expression

As was implied above, we can define a regular expression by recursively applying more operators to a 'base case' until we have the desired pattern.

The following patterns match the following words:

**Empty word** The empty word only matches the pattern  $\epsilon$ .

Base case A literal inside a pattern will match a word that is the same as the literal.

Concatenation If two words are next to eachother in a pattern, then they will be matched as the concatenation of them b

**Alternative**  $(s_1|s_2)$  will match  $s_1$  or  $s_2$ .

**Kleene star**  $(s)^*$  will match any number of consecutive instances of s.