Projekt LVS-IR-Taubenstein

Projektpartner: Sascha Filimon, Roman Ossner

Gruppenbetreuer: Dr. André Klima

Projektgruppe: Alexander Fogus, Lea Vanheyden, Zorana Spasojević

2. Mai 2020

Ludwig Maximilians Universität

Inhaltsverzeichnis

- 1. Hintergrund
- 2. Datengrundlage
- 3. Modell
- 4. Ergebnisse
- 5. Sensitivitätsanalyse
- 6. Fazit
- 7. Anhang
- 8. Literaturverzeichnis

Hintergrund

- Konfliktsituation zwischen Mensch und Natur bzw. Tierreich im Alpengebiet
- Kooperation des Departments für Geographie an der LMU, Lawinencamp Bayern, Gebietsbetreuer Mangfallgebirge, Alpenregion Tegernsee/Schliersee und dem Deutschen Alpenverein München (DAV)
- Spezielle Untersuchungen am Spitzingsee
 - → Territorium von Wildtieren
 - ↓ Beliebte Gegend für Sportler
- Untersuchung über die Mitnahme von LVS-Geräten anhand von Checkpoints und manueller Datenerhebung
 - ↓ Ziel: Das Verhalten der Besucher analysieren

Datengrundlage

- Untersuchungsgegenstand: Wintersportler (vorrangig Skitourengänger & Schneeschuhgeher)
- Untersuchungszeitraum der Checkpoints Wintersaison 18/19
 Genauer Zeitraum: 25.12.2018 13.04.2019
- Checkpoints an zwei Routen (Nord- und Südseite) erfassen:
 - → Messungen insgesamt: 37216

 - → Personen ohne LVS-Gerät: 28911
- Untersuchungszeitraum der manuellen Erhebung am 27.02 und 28.02.2019
 - Genaue Daten aus Alex Deskriptiv

Datengrundlage

- Grafik zu Checkpoints Wintersaison 18/19
- Graf zu Studentischer Zählung 19/20

Lineares Regressionsmodell

- Erwartungswert einer Zufallsvariable wird durch Linearkombination von Kovariablen beschrieben
- Problem: Oft unzureichend, da auch nicht lineare Einflüsse auf Zielvariable wirken können
- Tabelle unterteilt in lineare und nicht lineare Kovariablen?

Univariate Glättung

Ermöglicht flexible Modellierung genau einer metrischen Kovariable auf Zielvariable

Daten

 (y_i, z_i) zu der metrischen Zielvariable y und einer metrischen Kovariable z

Modell

$$y_i = f(z_i) + \epsilon_i$$
, wobei ϵ_i i.i.d. $N(0, \sigma^2)$

Daraus folgt:

$$E(y_i) = f(z_i) \text{ und } Var(y_i) = \sigma^2, i = 1, ..., n$$

 \Rightarrow Erwartungswert der Zielvariable wird durch Funktion f modelliert

Penalisierte Splines basierend auf B-Splines

- Funktion f durch Spline modellieren
- Konstruktion des Penalisierten Splines durch B-Spline Basisfunktion und Strafterm

Penalisierte Splines basierend auf B-Splines

B-Spline Basisfunktion

$$f(z) = \sum_{j=1}^{d} \gamma_j B_j(z)$$
, wobei $d = m + l - 1$

$$B'_{j}(z) = \frac{z - k_{j}}{k_{j+l} - k_{j}} B_{j}^{l-1}(z) + \frac{k_{j+l+1} - z}{k_{j+l+1} - k_{j} + 1} B_{j+1}^{l-1}(z).$$

- Basisfunktion aus (I+1) Polynomstücke des gewünschten Grades (I)
 - \downarrow werden an den Knoten ($\mathit{I}-1-\mathit{mal}$) stetig zusammengesetzt
- Basisfunktion $(B_j(z))$ mit dem Kleinste-Quadrate-Schätzer $\hat{\gamma}_j$ skalieren

Skalierte Basisfunktionen addieren

Penalisierte Splines basierend auf B-Splines

Strafterm

$$\lambda \int (f'(z))^2 dz$$

- Ziel: Rauen Schätzfunktionen entgegenwirken, d.h. zu starke Anpassung der Daten verhindern
- Bestrafung durch Glättungsparameter λ
- Für $\lambda \to \infty$, annähernd lineare Schätzfunktion

Zyklische P-Splines

Additives Modell

- Stellt ein nicht-parametrisches Regressionsmodell dar
- Vorteil: Neben linearen Effekten können auch nicht-lineare Einflüsse von Kovariablen auf Zielvariable modelliert werden

Standardmodell der additiven Regression (rausnehmen):

$$y_i = \underbrace{f_1(z_{i1}) + \ldots + f_q(z_{iq})}_{\text{nicht-parametrische Effekte}} + \underbrace{\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}}_{\text{parametrische Effekte}} + \epsilon_i$$

- Keine normalverteilte Zielvariable
- Zielvariable nimmt typischerweise Verteilung aus Exponentialfamilie an

Zielgröße

Beobachtete Zielgröße ist Binomial-verteilt $y_i|x_i \sim B(1,\pi_i)$:

$$y_i = \begin{cases} 1 & \text{,wenn Person mit LVS-Gerät identifiziert wird} \\ 0 & \text{,wenn Person ohne LVS-Gerät identifiziert wird.} \end{cases}$$

Erwartungswert

Für den Erwartungswert der Zielvariable gilt:

$$E(y_i) = \pi_i = \frac{e \times p(\eta_i)}{1 + e \times p(\eta_i)} = h(\eta_i)$$

Logit-Link

$$\log(\pi_i) = \log(\tfrac{\pi_i}{1-\pi_i})$$

Additiver Prädiktor:

Der Erwartungswert μ der Zielvariable y wird mit dem additiven Prädiktor:

```
\eta_i = f_{1,2}(Uhrzeit_i, Datum_i)^* + f_3(Lawinenwarnstufe_i) + f_4(Wochentag_i) + f_5(Temperatur_Residuen_i)^{**} + f_6(Sonneneinstrahlung_Residuen_i)^{**} + f_7(Schneehoehe_Residuen_i)^{**} + \beta_0 + \beta_1(Ferientag_i)
```

Bemerkung*: Modell kann durch Interaktionseffekt ergänzt werden → Nicht-lineare Interaktion zwischen Datum und Uhrzeit

Bemerkung**: Smooth-Funktion für Residuen der Kovariablen Temperatur, Sonneneinstrahlung und Schnehöhe, da ansonsten Geneurvity, stellt nicht-lineare Form der Kollinearität dar

Soll Tabelle mit Parametrischen und nicht Parametrischen Variablen eingefügt werden?

Gruppierte Daten (Überschriften für Spalten d Matrix hinzuf.)

- Bisher: Betrachtung von Individualdaten
- Weitere Möglichkeit: Gruppierte Daten
 Nach identische Zeilen der Kovariablen-Datenmatrix gruppieren

- G=Anzahl verschiedener Kovariablenvektoren
 ⇒ G deutlich kleiner als n=Stichprobenumfang
- Problem: Überdispersion

Überdispersion (Formeln Varianz u. Dispersionspara.?)

- Varianz ist ein wichtiges Instrument für Charakterisierung einer Verteilung
- Gilt als Streuungsmaß und beschreibt Konzentration der Verteilung um den Erwartungswert
- Abschätzung der Varianz für gruppierte Daten möglich
- Problem: In Praxis ist empirische Varianz oft h\u00f6her als durch Binomial-Modell gesch\u00e4tzt
 - \Rightarrow Unterschätzung der Varianz wird als Überdispersion bezeichnet

Gamm

