## Chapter 2: Quantum Dynamics

Yuquan Chen

2019/03/26

## 1 Recap

## Box 1.1: Postulates of Quantum Mechanics

**Postulate 1.** At any time t, the state of a physical system is defined by a ket  $|\psi\rangle$ , or *state* in a relevant Hilbert space H.

**Postulate 2.** The only possible result of measuring observable A is one of the eigenvalues of A

$$SG(z) = \begin{pmatrix} +1 & \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Aside:

- 1. If A is Hermitian, then the measurement gives a real number.
- 2. If A's spectrum is discrete, then we only see quantized result.

**Postulate 3.** Every measurable physical quantity A is described by a Hermitian operator.

**Postulate 4.** If  $A|u_{\alpha}\rangle = a_{\alpha}|u_{\alpha}\rangle$ , then for a system in  $|\psi\rangle$ , when we measure A, then the probability of getting  $a_{\alpha}$  is  $P(a_{\alpha}) = |\langle u_{\alpha}|\psi\rangle|^2$ .

Aside: If we have degenerate  $a_{\alpha}$ 's  $\{|u_{\alpha,1}\rangle, |u_{\alpha,2}\rangle, ...\}$  share the same eigenvalue, then  $P(a_{\alpha}) = \sum_{i} |\langle u_{\alpha,i} | \psi \rangle|^2$ 

Example: A = I, all  $a_{\alpha} = 1$ 

**Postulate 5.** If a measurement projects  $|\psi\rangle$  into a new state  $|u_{\alpha}\rangle$ , then a physical new state should be  $|u'_{\alpha}\rangle = \frac{|u_{\alpha}\rangle}{\sqrt{\langle u_{\alpha}|u_{\alpha}\rangle}}$ , so that  $\langle u'_{\alpha}|u'_{\alpha}\rangle = 1$ .

**Postulate 6.** Between measurement the state vector  $|\psi(t)\rangle$  evolves in time with time dependent Shrödinger's equation

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle$$

here  $\hat{H}$  is a Hamiltonian.

## Box 1.2: Time evolution and H

If the Hamiltonian of the system is H, then the time evolution operator U(t) is

$$U(t) = e^{-iHt}$$

2