# APUNTS

La segona meitat del 1r curs

AUTOR: EDUARDO PÉREZ MOTATO

# Índex

| 1 | Programació Orientada als Objectes                                                                      | 1        |
|---|---------------------------------------------------------------------------------------------------------|----------|
| 2 | Càlcul en Diverses Variables $2.1  \text{Boles a } \mathbb{R}^n \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $ | <b>2</b> |
| 3 | Algorítmia i Combinatòria en Grafs. Mètodes Heurístics                                                  | 4        |
| 4 | Probabilitat                                                                                            | 6        |
| 5 | Càlcul Numèric                                                                                          | 8        |

# Programació Orientada als Objectes

### Càlcul en Diverses Variables

**Definició:**  $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}$ 

**Definició:** Siguin  $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$  i  $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ , definim  $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) > = x_1y_1 + x_2y_2 + \dots + x_ny_n$  com a pro(producte escalar)

ducte escalar.

**Definició:**  $||(x_1, x_2, \dots, x_n)|| = +\sqrt{\langle x, x \rangle}$  on  $x = (x_1, x_2, \dots, x_n)$ . Això és la distància del punt x a  $(0, 0, \dots, 0)$ .

Propietats de la norma:

- 1.  $||x|| \ge 0$  per tot  $x \in \mathbb{R}^n$
- 2.  $||\lambda x|| = |\lambda|||x||$  per tot  $x \in \mathbb{R}^n$  i  $\lambda \in \mathbb{R}$
- 3. Designaltat triangular:  $||x+y|| \le ||x|| + ||y||$  per tot  $x, y \in \mathbb{R}^n$

Desigualtat de Cauchy-Schwartz:  $< x,y> \le ||x||||y||$  per tot  $x,y\in \mathbb{R}^n$ . Això ho acceptem.

Observem que 
$$-1 \le \frac{\langle x,y \rangle}{||x||||y||} \le 1$$
 i definim l'angle entre els vectors  $x$  i  $y$  com l'angle  $\alpha$  tal que  $\cos \alpha = \frac{\langle x,y \rangle}{||x|||||y||}$ , és a dir,  $\langle x,y \rangle = ||x||||y||\cos \alpha$ .

**■ Exemple** Trobem els valors de  $\mathbb{R}^3 \perp (-1, -2, 1)$ . Busquem  $(x_1, x_2, x_3) \in \mathbb{R}^n$  tal que  $< (x_1, x_2, x_3), (-1, -2, 1) >= 0 \Leftrightarrow -x_1 - 2x_2 + x_3 = 0$ .

#### 2.1 Boles a $\mathbb{R}^n$

 $\underline{\text{Si } n=2}$  la bola de centre  $(x_0,y_0)$  i radi R és  $\{(x,y) \in \mathbb{R}^2 : ||(x,y)-(x_0,y_0)|| < R\} = (\text{disc}) = \{(x,y) \in \mathbb{R}^2 : (x-x_0)^2 + (y-y_0)^2 < R^2\}.$  Això és una bola oberta, denotada per

**Notació.** Fem servir  $\mathfrak{B}_R(x_0, y_0, \dots)$  la bola oberta (< R) i  $\overline{\mathfrak{B}_R}(x_0, y_0, \dots)$  la tancada  $(\le R)$ . Es farà servir més la bola oberta.

**Definició:** Sigui  $A \subset \mathbb{R}^n$ , definim  $\mathring{A} = \{ \vec{x} \in \mathbb{R}^n : R > 0 | \mathfrak{B}_R(\vec{x}) \subset A \}$ 

- Exemple 1.  $A = \{(x, y) : x \ge 0\}$ , llavors  $\mathring{A} = \{(x, y) : x > 0\}$ 
  - 2.  $A = \{(x, y, z) : -a \le x \le a, -b \le y \le b, -c \le z \le c\}$ , llavors  $\mathring{A} = \{(x, y, z) : -a < x < a, -b < y < b, -c < z < c\}$

**Definició:** Un conjunt  $A \subset \mathbb{R}^n$  es diu obert si  $A = \mathring{A}$ , és a dir, si tot punt del conjunt A és també un punt d' $\mathring{A}$ .

# Algorítmia i Combinatòria en Grafs. Mètodes Heurístics

**Definició:** Un graf és un objecte combinatori que està format per un parell ordenat de vèrtex i arestes (G = (V, E)). Una aresta (E) està etiquetat per un origen i un destí (o extrems si no estan orientades) sent aquests vèrtexs (V).

**Definició:** Un graf dirigit, o orientat, és un graf on les arestes tenen direcció, com si fos una fletxa.

**Definició:** Un graf no dirigit serà un graf on les arestes no tenen direccions. Podem suposar que l'aresta és bidireccional.

**Definició:** Un graf és planar si es pot unir tots els vèrtexs sense que es creuin les arestes. Si s'han de creuar obligatòriament, és un graf no planar.

**Teorema** Tot graf no planar té un subgraf  $K_{3,3}$  o  $P_5$ .

#### Definició: (Propietats dels grafs)

- 1. L'ordre d'un graf és el nombre de vèrtex
- 2. La grandària d'un graf és el nombre d'arestes
- 3. La valència d'un vèrtex és el nombre d'arestes entrant o sortint del vèrtex. Si surt i es connecta en si mateix compta com dos.
- 4. La valència d'entrada és el nombre d'arestes entrant.
- 5. La valència de sortida és el nombre d'arestes sortint.
- 6. Els vèrtexs amb valència 1 s'anomenen fulles.

- 7. Els vèrtexs amb valència més gran que dos es diuen **branching** (o **encreuament**).
- 8. Un **camí** és la seqüència de vèrtexs connectats linealment. La llargària d'un camí és el nombre de vèrtexs.
- 9. Un **circuit** és un camí tancat, és a dir, un camí que comença i termina al mateix lloc.

**Definició:** Un graf no dirigit és **connex** si hi ha un camí des de tot vèrtex qualsevol fins a tot altre.

**Definició:** Un component connex és un subgraf connex i maximal.

**Definició:** Un graf dirigit és **connex** si hi ha un camí des de tot vèrtex qualsevol fins a tot altre.

**Proposició** Per a un graf (V, E) no orientat les afirmacions següents són equivalents:

- 1. (V, E) és un graf connex.
- 2.  $\forall v_o \in V$ , existeix un camí d'arestes de  $v_o$  a  $v, \forall v \in V$ .
- 3.  $\exists v_o \in V$ tal que existeix un camí d'arestes de  $v_o$  a v.

Notació. Fem servir o per multiplicar camins.

**Definició:** Un graf dirigit és **feblement connex** si hi ha un camí des de tot vèrtex qualsevol fins a tot altre sense fer servir l'orientació, és a dir, seria connex en cas que fos no orientat.

**Definició:** Un graf dirigit és **semi connex** si al escullir qualssevol dos vèrtexs del graf hi existeix un camí connectant-los, sigui d'un sentit o d'altre.

## **Probabilitat**

**Definició:** Un fenomen o experiment aleatori presenten les següents característiques:

- Abans de realitzar l'experiment no sabem el resultat però sí el conjunt de resultats possibles.
- En teoria es pot realitzar sota les mateixes condicions infinites vegades.
- Es pot assignar probabilitats als resultats.

**Definició:** L'espai mostral és el conjunt de possibles resultats de l'experiment aleatori. Es denota per la lletra  $\Omega$  i els seus elements per  $\omega$ .

**Definició:** Un esdeveniment és una col·lecció de subconjunts de l'espai mostral. Es pot calcular la probabilitat d'un esdeveniment. Ha de tenir estructura de  $\sigma$ -àlgebra.

**Notació.** Si  $\omega \in \Omega$  és un resultat de l'experimental tal que  $\omega \in A$ , diem que A s'ha realitzat.

**Definició:** Sigui  $\mathcal{A}$  una col·lecció de subconjunts d' $\Omega$ .  $\mathcal{A}$  és una  $\sigma$ -àlgebra si es compleix el següent:

- 1.  $\Omega \in \mathcal{A}$
- 2. Si  $A \in \mathcal{A}$ , aleshores  $A^c \in \mathcal{A}$ .
- 3. Si  $A_1, A_2, \ldots$  són elements d' $\mathcal{A}$ , aleshores  $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

Corolari: (propietats d'una  $\sigma$ -àlgebra) Sent  $\mathcal{A}$  una  $\sigma$ -àlgebra

•  $\emptyset \in \mathcal{A}$ 

- $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- $A, B \in \mathcal{A} \Rightarrow B \setminus A = B \cap A^c \in \mathcal{A}$

**Definició:** (Fórmula de Laplace) La probabilitat d'un esdeveniment A sempre que el conjunt de resultats possibles sigui finit i equiprobable, la fórmula de Laplace es pot aplicar.

$$\mathbb{P}(A) = \frac{\text{Casos probables a } A}{\text{Casos possibles}}$$

Una altra manera de calcular la probabilitat és fent servir una visió frequentista:

$$\mathbb{P}(A) = \lim_{n \to \infty} f_n(A)$$
 on  $f_n(A) := \frac{\text{nombre de cops que hem obtingut } A}{n}$ 

**Definició:** (axiomes de Kolmogorov) Siguin  $\Omega$  un conjunt i  $\mathcal{A}$  una  $\sigma$ -àlgebra sobre  $\Omega$ . Una probabilitat és qualsevol aplicació  $\mathbb{P}:\mathcal{A}\longrightarrow [0,1]$  que compleix el següent:

- $\mathbb{P}(\Omega) = 1$  Si  $\{A_n, n \geq 1\} \subset \mathcal{A}$  són disjunts dos a dos llavors

$$\mathbb{P}(\bigcup_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

**Definició:** Un espai de probabilitat és la terna  $(\Omega, \mathcal{A}, \mathbb{P})$ .

Notació. Per a unions disjuntes fem servir  $\uplus$ .

**Corolari:** Propietats dels axiomes de Kolmogorov.

- 1.  $\mathbb{P}(\emptyset) = 0$
- 2.  $A, B \in \mathcal{A} \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- 3.  $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ 4.  $A \subset B \Rightarrow \mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$
- 5.  $\mathbb{P}(A \cup B) < \mathbb{P}(A) + \mathbb{P}(B)$

**Definició:** Quan parlem de *odds* de A, definim:

- Odds a favor de A: Odds(A) = \( \frac{\mathbb{P}(A)}{\mathbb{P}(A^c)} \)
  Odds en contra de A: Odds(A^c) = \( \frac{\mathbb{P}(A^c)}{\mathbb{P}(A)} \)
- Exemple  $\operatorname{Odds}(A) = \frac{3}{2} \Longleftrightarrow \mathbb{P}(A) = \frac{3}{2}\mathbb{P}(A^c)$  i sabem que  $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ , llavors en resoldre tenim  $\mathbb{P}(A) = 0.6$  i  $\mathbb{P}(A^c) = 0.4$ .

## Càlcul Numèric

Hi ha 3 tipus d'errors (4 si em comptes a mi):

- 1. Errors en les dades d'entrada
- 2. Errors a les operacions
- 3. Errors de truncament

Aquí es tractaran principalment els dos primers.

Teorema (Representació en punt flotant en base b) Per  $b \in \mathbb{N}$ ,  $b \geq 2$ . Tot  $x \in \mathbb{R}$ ,  $x \neq 0$  pot ser representat de la següent forma:

$$x = s(\sum_{i=1}^{\infty} \alpha_i b^{-i}) b^q$$

amb  $s \in \{-1,1\}, q \in \mathbb{Z}$  i  $\alpha_i \in \{0,1,\ldots,b-1\}$ . A més, la representació anterior és única si  $\alpha_1 \neq 0$  i els  $\alpha_i$  no són tots b-1 d'una posició en endavant.

Definició: (Representació en punt flotant) És la versió finita de la representació. En aquesta representació, tot nombre x consta de

- $\bullet$  el signe, s
- la mantissa, que només consta d'un nombre finit de dígits,  $\delta_1, \delta_2, \dots, \delta_t$  expressats en base b, i
- $\bullet$ l'exponent, q, que està limitat a un rang prefixat,  $q_{\min} \leq q \leq q_{\max}$