

National Institute of Technology Goa

Programme Name: B.Tech Mid Semester Examinations

Course Name: System Programming Course Code: CS251
Date:08/03/2022 Time:09:30 AM-11:00 AM

Duration: 1 hour 30 minutes Max. Marks: 50

ANSWER ALL QUESTIONS

NOTE:

- The opcode table is attached for your reference.
- 1. Write an assembly language program for simplified instructional computer (SIC) to multiply a number with another number using successive addition. Assume that the multiplier and the multiplicand are available in memory. Let the product be stored in memory and also sent to an output device numbered '05'. Assume the starting address to be 3000.

[NOTE: This question is based on the individual thought process and creativity.]

(15 marks)

2. Assign the address and generate an object code for each of the instruction and constant declaration in the assembly language program written in Question 1. Write the object program also. Clearly state the outputs after the execution of pass 1 and pass 2 of the assembler.

(15 marks)

3. Explain the process of object code generation for the following instructions

a.	1059		RSUB	
b.	1051		TIXR T	
C.	104E		STCH BUFFER,X	
d.	103C		+LDT #4096	
e.	002D	EOF	BYTE C'EOF'	

in the following intermediate code generated after the execution of pass 1 of the assembler for SIC/XE

010/11			
0000	COPY	START 0	
0000	FIRST	STL	RETADR
0003		LDB	#LENGTH
		BASE	LENGTH
0006	CLOOP	+JSUB	RDREC
000A		LDA	LENGTH
000D		COMP	#0
0010		JEQ	ENGFIL
0013		+JSUB	WRREC
0017		J	CLOOP
001A	ENDFIL	LDA	EOF
001D		STA	BUFFER
0020		LDA	#3
0023		STA	LENGTH

0026 002A 002D 0030 0033 0036	EOF RETADR LENGTH BUFFER	+JSUB J BYTE RESW RESW RESB	WRREC @RETADR C`EOF` 1 1 4096
1036 1038 103A 103C 1040 1043 1046 1049 104B 104E 1051 1053 1056 1059	RDREC RLOOP EXIT INPUT	CLEAR CLEAR CLEAR +LDT TD JEQ RD COMPR JEQ STCH TIXR JLT STX RSUB BYTE	X A S #4096 INPUT RLOOP INPUT A, S EXIT BUFFER,X T RLOOP LENGTH X`F1`
105D	WRREC .	CLEAR	Х

. -----10 marks

- 4.
- a. Compare and contrast SIC and SIC/XE
- b. Which among absolute addressing and relative addressing is better? Justify your answer.
- c. Suppose that we make the program written for the Question 1 a relocatable program. To support relocation, nearly every instruction in the object program would need to have its operand address modified at load time. This would mean a large number of Modification records. How could we include the required relocation information without the large increase in the object program size?

(3+3+4=10 marks)

SIC/XE Instruction Set

Op codes in blue are SIC/XE only instructions Op codes in red are not implemented by the simulator

Notes: P=privileged, C=CC set (<,=,>), F=floating point See Appendix A of *System Software* by Beck for information on instruction formats and addressing modes.

Mnemonic	Format	Opcode	Effect	Notes
ADD m	3/4	18	$A \leftarrow (A) + (mm+2)$	
ADDF m	3/4	58	$F \leftarrow (F) + (mm+5)$	F
ADDR r1,r2	2	90	$r2 \leftarrow (r2) + (r1)$	
AND m	3/4	40	$A \leftarrow (A) \& (mm+2)$	
CLEAR r1	2	4	r1 ← 0	_
COMPF m	3/4	28	A: (mm+2)	C CF
COMPR r1,r2	3/4 2	88 A0	F : (mm+5) (r1) : (r2)	C
DIV m	3/4	24	A: (A) / (mm+2)	
DIVF m	3/4	64	F: (F) / (mm+5)	F
DIVR r1,r2	2	9C	$(r2) \leftarrow (r2) / (r1)$	
FIX	1	C4	A ← (F) [convert to integer]	
FLOAT	1	C0	F ← (A) [convert to floating]	F
HIO	1	F4	Halt I/O channel number (A)	Р
J m	3/4	3C	PC ← m	
JEQ m	3/4	30	PC ← m if CC set to =	
JGT m	3/4	34	PC ← m if CC set to > PC ← m if CC set to <	
JLT m JSUB m	3/4 3/4	38 48	L ← (PC); PC ← m<	
LDA m	3/4	99	A ← (mm+2)	
LDB m	3/4	68	B ← (mm+2)	
LDCH m	3/4	50	A [rightmost byte] ← (m)	
LDF m	3/4	70	F ← (mm+5)	F
LDL m	3/4	08	L ← (mm+2)	
LDS m	3/4	6C	$S \leftarrow (mm+2)$	
LDT m	3/4	74	T ← (mm+2)	
LDX m	3/4	04	X ← (mm+2)	
LPS m	3/4	D0	Load processor status from	Р
			<pre>information beginning at address m (see Section 6.2.1)</pre>	
			6.2.1)	
MUL m	3/4	20	$A \leftarrow (A) * (mm+2)$	
MULF m	3/4	60	F ← (F) * (mm+5)	
MULR r1,r2	2	98	r2 ← (r2) * (r1)	
NORM	1	C8	F ← (F) [normalized]	F
OR m	3/4	44	$A \leftarrow (A) \mid (mm+2)$	
RD m	3/4	D8	A [rightmost byte] ← data	Р
DMO	2	۸	from device specified by (m)	
RMO r1,r2 RSUB	<mark>2</mark> 3/4	AC 4C	r2 ← (r1) PC ← (L)	
SHIFTL r1,n	2	4C A4	r1 ← (r1); left circular	
311111211111	_	A.	shift n bits. [for assembled instruction, r2 is n-1]	
SHIFTR r1,n	2	A8	r1 ← (r1); right shift n bits	
,			with vacated bit positions	
			set equal to leftmost	
			bit of (r1) [for assembled	
			instruction, r2 is n-1]	
SIO	1	FØ	Start I/O channel number (A);	Р
			address of channel program	
CCV	2/4	FC	is given by (S)	
SSK m	3/4	EC	Protection key for address m	Р
STA m	3/4	0C	← (A) (see Section 6.2.4) mm+2 ← (A)	
STB m	3/4 3/4	78	mm+2 ← (A) mm+2 ← (B)	
STCH m	3/4	54	m ← (A) [rightmost byte]	
STF m	3/4	80	$mm+5 \leftarrow (F)$	F
STI m	3/4	D4	Interval timer value ←	Р '
			(mm+2) (see Section 6.2.1)	

```
STL m
                    3/4
                              14
                                      m..m+2 \leftarrow (L)
                    3/4
                              7C
                                      m..m+2 \leftarrow (S)
STS m
STSW m
                    3/4
                              E8
                                      m..m+2 \leftarrow (SW)
                                                                                    Р
STT m
                    3/4
                              84
                                      m..m+2 \leftarrow (T)
STX m
                    3/4
                              10
                                      m..m+2 \leftarrow (X)
                                      A \leftarrow (A) - (m..m+2)

F \leftarrow (F) - (m..m+5)

r2 \leftarrow (r2) - (r1)
                              1C
SUB m
                    3/4
                              5C
                                                                                       F
\mathsf{SUBF}\ \mathsf{m}
                    3/4
                              94
SUBR r1,r2
                     2
                                      Generate SVC interrupt. {for
SVC n
                     2
                              В0
                                         assembled instruction, r1 is n]
TD m
                    3/4
                              Ε0
                                      Test device specified by (m)
                                                                                    PC
                                                                                    PC
TIO
                    1
                              F8
                                      Test I/O channel number (A)
TIX m
                    3/4
                              2C
                                      X \leftarrow (X) + 1; (X) : (m..m+2)
                                                                                    C
                                      X \leftarrow (X) + 1; (X) : (r1)
                                                                                    C
TIXR r1
                    2
                              B8
                   3/4
                              DC
                                      Device specified by (m) \leftarrow (A)
                                                                                    Ρ
WD m
                                         [rightmost byte to device
                                          specified by m]
```