9 강데이터 저장과 파일

■ ■ 컴퓨터과학과 정재화

목 차

01. 물리적 저장장치

02. 파일

03. 저장장치 관리

물리적 저장장치

- 물리적 저장장치의 구성
- 물리적 저장장치별 특징

1. 물리적 저장장치는 데이터 접근 속도, 용량을 기준으로 다양한 장치로 구성

1. 휘발성

- ▶ 캐시: 고비용 저장장치로 빠른 접근 속도를 보장
- ▶ 메인 메모리: 실제 프로그램과 데이터 적재 공간

2. 비휘발성

- ▶ 플래쉬 메모리: 메인 메모리와 유사하나 비휘발성
- ▶ 자기 디스크: 데이터베이스 전체를 안정적으로 저장
- ▶ 광학 디스크 드라이브: CD, DVD, Blue-ray 등
- ▶ 테이프 장치: 용량이 크고 저렴하나 순차 접근 방식으로 접근 속도가 매우 느림

파일

- 물리적 저장장치
- 파일의 구성
- 파일 구조화

■ ■ 데이터베이스 구성

- - - - 데이터베이스 구성 요소

1. 파일

▶ 데이터를 영구적으로 저장하기 위해 사용되는 가장 기초적인 논리적 구조

2. 블럭

- ▶ 파일을 고정적인 길이로 분할하여 생기는 균등한 크기의 데이터 묶음
- ▶ 일반적으로 메모리와 디스크간 데이터 전송 단위로 결정

3. 레코드

- ▶ 블럭을 구성하는 요소
- ▶ 더 이상 분리될 수 없는 최소 데이터 저장 단위

■■■ 고정 길이 레코드

1. 고정적인 바이트 수를 갖는 레코드를 저장하는 기법

사원 릴레이션

1. 데이터 접근

- ▶ 모든 레코드는 42 바이크 크기로 구성
- ▶ i번째 레코드 접근
 - (i-1) * 42 + 1번째 바이트부터 42개의 바이트를 읽어 접근

1. 블럭의 길이가 레코드 길이로 정확히 나눠지지 않아 잔여 공간을 비워두는 방법

▶ 블럭 내의 남은 공간 낭비

	레코드1
블럭1	:
	레코드k
	레코드k+1
블럭2	• •

2. 블럭의 길이가 레코드 길이로 정확히 나눠지지 않아 한 레코드를 두 블럭어 나누어 저장하는 방법

▶ 레코드 접근 시 두 블럭을 접근

	레코드1
블럭1	:
	레코드k 레코드k+1 (1)
	· ·
	레코드k+1 (2)
블럭2	: :

┗ ■ ■ 고정 길이 레코드 할당의 문제

1. 레코드 삭제 시

- ▶ 해당 레코드가 저장된 위치에 빈공간이 생성
- ▶ 장시간 레코드의 삽입 및 삭제 발생 시, 저장 공간에 많은 낭비가 발생

2. 레코드 삭제 시 대처 방안

- ▶ 마지막 레코드로 공백 대체
- ▶ 삭제 레코드 이후의 레코드를 이동
- ▶ 가용 리스트 관리

■■■ 레코드 삭제 대처

1. 마지막 레코드로 공백 대체

<u>사번</u>	이름	부서명	연봉
12012	홍길동	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000

- ■ ■ ■ 레코드 삭제 대처

2. 삭제 레코드 이후의 레코드를 이동

레코드1
레코드2
레코드3
레코드4
레코드5
레코드6
레코드7
레코드8

사번	이름	부서명	연봉
12012	홍길동	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
	<u> </u>	' '	· · · · · · · · · · · · · · · · · · ·
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000

- ■ ■ ■ 레코드 삭제 대처

2. 삭제 레코드 이후의 레코드를 이동

레코드1
레코드2
레코드3
레코드5
레코드6
레코드7
레코드8

사번	이름	부서명	연봉
12012	홍길동	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000

■■■ 고정 길이 레코드

3. 가용 리스트 관리

파일헤더			공백 레코	보드 포인터 -	
레코드1	12012	홍길동	인사부	90,000,000	+
레코드2	12034	임꺽정	재무부	80,000,000	
레코드3	13019	이순신	법무지원부	90,000,000	
레코드4	13030	장보고	인사부	75,000,000 =	
레코드5	13044	나철수	시설관리부	80,000,000	+
레코드6	14001	김영희	마케팅부	90,000,000	
레코드7	14004	유관순	총무부	92,000,000	
레코드8	14017	안창호	생산부	98,000,000	4

1. 블럭에 저장되는 레코드의 길이가 서로 다른(가변적) 레코드를 할당하는 방법

- 2. 가변 길이 레코드가 사용되는 상황
 - ▶ 한 블럭 내에 저장되는 레코드 유형이 둘 이상
 - ▶ 길이가 고정되지 않은 컬럼의 개수가 하나 이상
 - ▶ 레코드가 멀티셋을 허용한 컬럼를 가질 때

레코드의 컬럼값이 여러 개인 컬럼

- ■ □ ■ 가변 길이 레코드

CHAR	(8) VA	RCHAR(2	20) CHAR	(10) INT	
	사번	이름	부서명	연봉	
	12012	홍길동	인사부	90,000,000	
	12034	임꺽정	재무부	80,000,000	
	13019	이순신	법무지원부	90,000,000	
	13030	장보고	인사부	75,000,000	
	13044	나철수	시설관리부	80,000,000	
	14001	김영희	마케팅부	90,000,000	
	14004	유관순	총무부	92,000,000	
	14017	안창호	생산부	98,000,000	
4		12	22	26 27	

바이트 번호 27,6 12012 인사부 90,000,000 NULL 홍길동

■ ■ 슬롯페이지 구조

- ■ □ ■ 파일 구조화 방법

1. 파일 구조화

▶ 파일 수준에서 레코드를 관리(순서 등)하는 기법

사번	이름	부서명	연봉
12012	홍길동	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000

블럭 1 블럭 2 블럭 3 : 블럭 n

■ ■ 파일 구조화 방법의 종류

- ▶ 힙 파일 구조: 저장순서 고려없이 파일 내 임의의 위치에 배치
- ▶ 순차 파일 구조:레코드들이 탐색키 기준으로 정렬되어 저장
- ▶ 해시 파일구조: 해시 함수를 사용하여 블럭 주소를 계산

40.000.000

사번	이름	부서명	연봉
12012	홍길동	인사부	90,000,000
12034	임꺽정	재무부	80,000,000
13019	이순신	법무지원부	90,000,000
13030	장보고	인사부	75,000,000
13044	나철수	시설관리부	80,000,000
14001	김영희	마케팅부	90,000,000
14004	유관순	총무부	92,000,000
14017	안창호	생산부	98,000,000

■■■ 순차 파일 구조의 예

탐색키

사번	이름	부서명	연봉	_
14001	김영희	마케팅부	90,000,000	
13044	나철수	시설관리부	80,000,000	
14017	안창호	생산부	98,000,000	
14004	유관순	총무부	92,000,000	-
13019	이순신	법무지원부	90,000,000	-
12034	임꺽정	재무부	80,000,000	-
13030	장보고	인사부	75,000,000	-
12012	홍길동	인사부	90,000,000	-

.....

- ■ □ ■ 순차 파일 구조

1. 레코드가 검색키 순서대로 정렬

2. 레코드가 파일에 삽입되는 시점에서 키 값이 부여

3. 장점

- ▶ 검색키에 대한 정렬 연산이 불필요, 키 값들의 순서로 레코드를 판독하는 연산에 효율적
- ▶ 현재 레코드에서 정렬된 키 순서로 다음 레코드를 찾을 때 부가 적인 블럭 접근이 불필요
- ▶ 이진 탐색을 사용하면 더 빠르게 레코드를 검색

4. 단점

▶ 레코드 삽입, 삭제에 많은 비용 소요

■■■ 오버플로우 블럭

1. 순차 파일 구조에서 레코드의 정렬된 상태 유지를 위해 삽입된 신규 블럭

<u>사번</u>	이름	부서명	연봉	
14001	김영희	마케팅부	90,000,000	
13044	나철수	시설관리부	80,000,000	
14017	안창호	생산부	98,000,000	
14004	유관순	총무부	92,000,000	
13019	이순신	법무지원부	90,000,000	
12034	임꺽정	재무부	80,000,000	
13030	장보고	인사부	75,000,000	
12012	홍길동	인사부	90,000,000	_
16048	손흥민	총무부	40,000,000	

저장장치 관리

- 저장장치 접근
- 버퍼 관리자
- 버퍼 교체 전략

1. 파일은 논리적 관점에서의 저장 객체

2. 실제 저장될 때에는 여러 개의 물리적 단위인 블럭으로 저장

- ▶ 블럭은 메모리와 디스크 간 데이터의 전송 단위
- ▶ 일반적으로 2KB ~ 32KB 사용
- ▶ 블럭 전송을 최소화 할 수록 입출력 소요 시간이 단축
 - 사용 중인 블럭을 지속적으로 메모리에 적재
 - 한정적 공간으로 인하여 필요에 따라 특정 블럭 할당을 해지
 - 메모리 내부에 버퍼라는 공간에 블럭을 저장하고, 이를 관리하기 위한 버퍼 관리자를 사용

■■■ 저장장치 접근

1. DBMS상의 소프트웨어는 필요한 블럭이 있을 때 버퍼 관리자에게 해당 블럭을 요청

- ▶ 요청된 블럭이 버퍼에 있다면, 버퍼 관리자는 블럭이 위치한 메모리 주소를 프로그램에게 전달
- 요청된 블럭이 없는 경우, 버퍼 관리자는 버퍼내의 새로운 공간을 할당하고 해당 블럭을 적재
- ▶ 더 이상 적재할 공간이 없다면, 버퍼에 있는 기존 블럭을 선택하여 할당을 해지하고 해당 블럭을 적재

--- 버퍼 교체 전략

......

1. 버퍼 교체 전략

- ▶ 가용 공간을 확보 하기 위해 기존에 적재된 블럭의 할당을 특정 기준에 의하여 해지
- ▶ 미래에 가장 적게 사용될 블럭을 선택하여 디스크로 내보내는 것이 이상적인 버퍼 교체 전략
- ▶ 버퍼 교체 전략 기법
 - LRU(Least Recently Used): 최근에 가정 적게 참조된 블럭을 교체
 - MFU(Most Frequently Used): 특정 기간동안 가장 여러번 사용된 블럭을 선택하여 블럭을 교체

■■■ 고정 블럭과 블럭 강제 출력

......

1. 고정 블럭

- ▶ 장애로 인하여 메모리의 데이터가 손실되어 작업이 중단될 경우, 중단된 작업의 결과물이 디스크에 기록되는 것을 방지
- ▶ 디스크 블럭이 교체되는 것을 제한

2. 블럭 강제 출력

- ▶ 시스템 로그와 같이 중요한 데이터는 디스크에 영구적으로 기록되어야 함
- ▶ 버퍼 공간이 필요 없어도 강제로 디스크에 기록

DATABASE SYSTEMS

다음 시간에는

10강 인덱싱을

학습하겠습니다.

