

Machine Learning

Maximum Entropy Markov Models (MEMM)

Task description – more formal

- Given a sentence and its tokens t_i , assign a single label $l \in L$ with L being the tagset (e.g. Penn Treebank, STTS) to every t_i
- This is a **structural problem**, where our input is a sequence ("a list of tokens") and the output is a sequence ("a list of labels"), and:
 - Both sequences have the same length
 - (This is not the case for OCR or speech recognition)

WORD	tag
the	DET
koala	N
put	V
the	DET
keys	N
on	P
the	DET
table	N

We are trying to find the sequence which gets the highest score:

• In our most advanced settings, we had:

Edge-score: A decision Tree

Node-score: A MaxEnt classifier

• But even this model is just an approximation of

$$argmax_{t_1^n} P(t_1^n | w_1^n) \sim argmax_{t_1^n} \prod_i P(w_i | t_i) \cdot P(t_i | t_{i-1})$$

• In the same manner, we could approximate as follows:

$$argmax_{t_1^n} P(t_1^n | w_1^n) \sim argmax_{t_1^n} \prod_i P(t_i | w_i, t_{i-1})$$

Comparison

$$argmax_{t_1^n} \prod_i P(w_i|t_i) \cdot P(t_i|t_{i-1})$$

- Has features between observations w and current tag t_i
- Has features between current tag t_i and previous tag t_{i-1}
- Decoded using Viterbi

$$argmax_{t_1^n} \prod_{i} P(t_i|w_i, t_{i-1})$$

- Has features between observations \boldsymbol{w} and current tag t_i
- Has features between current tag t_i and previous tag t_{i-1}
- Has features involving all three: w, t_i , t_{i-1}
- Decoded using Viterbi

Maximum Entropy Markov Model

• We use a different view of our approximation

$$argmax_{t_1^n} \prod_{i} P(t_i|w_i, t_{i-1})$$

- And build a single Maximum Entropy classifier for this distribution $P(t_i|w_i,t_{i-1})$
- And as you can already recall, this is the same as having a regular Maximum Entropy classifier, but:
 - The labels are now tuples!
 - Same holds for the decoding, but all of our node scores are 0! (But our edge scores are more potent!)

 W_1

 W_2

Maximum Entropy Markov Model

- We can now dissect the sequence as follows:
- The score of a sequence is now:

The score of this

Becomes the sum of this:

ART ADJ NN

 W_3

 W_4

Maximum Entropy Markov Model

- But since we are using the Maximum Entropy framework, we can access the entire input w and use it for feature calculation
- And score as follows:

Maximum Entropy Markov Model

- Templates:
 - We can now compare the expressiveness of a model using feature templates $\Phi(w,t)$
 - A classical Maximum Entropy classifier has only one template $\Phi_{Node}(w,t_i)$
 - The presented MEMM has the following templates:
 - $\Phi_{Node}(w, t_i)$
 - $\Phi_{Edge}(w, t_i, t_{i-1})$
 - This constitutes a MEMM of order 1

We are going a bit more global:

• 4 local models, 2 possible feature templates:

$$\Phi(w, y_i)$$
 and $\Phi(w, y_i, y_{i-1})$

• Yet again we reuse a single MaxEnt at every stage

• We use the features of the simple MaxEnt from the template $\Phi(w, y_i)$

Feature	λ for ART	λ for ADJ	λ for NN
CurrentWord=Die	0.6	0.1	0.25
CurrentWord=schöne	-0.1	0.8	0.3
CurrentWord=blaue	0.1	0.6	0.2
CurrentWord=Donau	0.1	0.1	1.4

And on top we use features of the template $\Phi(w, y_i, y_{i-1})$

• For y_i =ART

Feature	λART $\rightarrow ART$	λADJ $\rightarrow ART$	λNN $\rightarrow ART$	$\lambda < s >$ $\rightarrow ART$
CurrentWord=Die	-0.1	0.1	0.1	0.8
CurrentWord=schöne	-0.3	-0.8	-0.2	0.1
CurrentWord=blaue	-1.2	-0.6	-0.2	-0.5
CurrentWord=Donau	-0.1	-0.1	-1.4	-1

And on top we use features of the template $\Phi(w, y_i, y_{i-1})$

• For y_i =ADJ

Feature	λ ART → ADJ	λ ADJ → ADJ	$\lambda NN \rightarrow ADJ$	$\lambda < s > \rightarrow ADJ$
CurrentWord=Die	-0.3	0.1	-0.2	0.8
CurrentWord=schöne	0.9	-0.8	-0.2	0.1
CurrentWord=blaue	-1.2	0.7	-0.2	-0.5
CurrentWord=Donau	-0.1	-0.1	-1.4	-1

And on top we use features of the template $\Phi(w, y_i, y_{i-1})$

• For y_i =NN

Feature	$\lambda ART \rightarrow NN$	$\lambda ADJ \rightarrow NN$	$\lambda NN \rightarrow NN$	$\lambda < s > \rightarrow NN$
CurrentWord=Die	-0.1	0.25	-0.45	0.2
CurrentWord=schöne	0.1	-0.8	-0.2	-0.1
CurrentWord=blaue	-0.5	-0.3	-0.2	-0.5
CurrentWord=Donau	0.5	1.5	0.2	0.3

- By changing our model we can now use 48 additional features, so in total we got 60 features
- This is all done by the model, we only defined 4 features involving x:

Feature
CurrentWord=Die
CurrentWord=schöne
CurrentWord=blaue
CurrentWord=Donau

- Maximum Entropy combines those with every possible label, generating 12 features
- A local model with the current template bloats every feature an additional 12 times for every combination of $y_{i-1} \rightarrow y_i$

- The more expressive our feature templates get, the more sparse our observations in the training data
- We can therefore say that our model uses highly specific features.
- →One usually keeps all smaller templates to "back-off" to the less specific features in case we face something we have never seen

• Back to calculating...

• Example calculation for $y_1 = ART$ and $y_0 = start$

•
$$p(ART|w, y_0 = < s >) =$$

$$\frac{\exp(\sum_{f_i \in featuretable} \lambda_i f_i \ (w, y = ART, y_0 = < s >))}{\sum_{\hat{y} \in \{ART, ADJ, NN\}} exp\left(\sum_{f_i \in featuretable} \lambda_i f_i \ (w, y = \hat{y}, y_0 = < s >)\right)}$$

•
$$p(ART|w, y_0 = < s >) = \frac{\exp(0.6 + 0.8)}{\exp(0.6 + 0.8) + \exp(0.1 + 0.8) + \exp(0.25 + 0.2)} = 0.5$$

•
$$p(ADJ|w, y_0 = < s >) = \frac{\exp(0.1 + 0.8)}{\exp(0.6 + 0.8) + \exp(0.1 + 0.8) + \exp(0.25 + 0.2)} = 0.3$$

•
$$p(NN|w, y_0 = < s >) = \frac{\exp(0.25 + 0.2)}{\exp(0.6 + 0.8) + \exp(0.1 + 0.8) + \exp(0.25 + 0.2)} = 0.2$$

- Now we could continue calculating and we would end up with 27 additional probabilities, 9 for every transition
- I'm only giving the probabilities for the next time step since the rest is calculated in the same manner

Assume that the previous Word has the tag ART

•
$$p(ART|x, y_1 = ART) = \frac{\exp(-0.3 - 0.1)}{\exp(-0.3 - 0.1) + \exp(0.8 + 0.9) + \exp(0.3 + 0.1)} \approx 0.087$$

•
$$p(ADJ|x, y_1 = ART) = \frac{\exp(0.8+0.9)}{\exp(-0.3-0.1) + \exp(0.8+0.9) + \exp(0.3+0.1)} \approx 0.716$$

•
$$p(NN|x, y_1 = ART) = \frac{\exp(0.3+0.1)}{\exp(-0.3-0.1) + \exp(0.8+0.9) + \exp(0.3+0.1)} \approx 0.195$$

Assume that the previous Word has the tag ADJ

•
$$p(ART|x, y_1 = ADJ) = \frac{\exp(-0.1 - 0.8)}{\exp(-0.1 - 0.8) + \exp(0.8 - 0.8) + \exp(0.3 - 0.8)} = 0.2$$

•
$$p(ADJ|x, y_1 = ADJ) = \frac{\exp(0.8 - 0.8)}{\exp(-0.1 - 0.8) + \exp(0.8 - 0.8) + \exp(0.3 - 0.8)} = 0.5$$

•
$$p(NN|x, y_1 = ADJ) = \frac{\exp(0.3 - 0.8)}{\exp(-0.1 - 0.8) + \exp(0.8 - 0.8) + \exp(0.3 - 0.8)} = 0.3$$

Assume that the previous Word has the tag NN

•
$$p(ART|x, y_1 = NN) = \frac{\exp(-0.1 - 0.2)}{\exp(-0.1 - 0.2) + \exp(0.8 - 0.2) + \exp(0.3 - 0.2)} = 0.2$$

•
$$p(ADJ|x, y_1 = NN) = \frac{\exp(0.8 - 0.2)}{\exp(-0.1 - 0.2) + \exp(0.8 - 0.2) + \exp(0.3 - 0.2)} = 0.5$$

•
$$p(NN|x, y_1 = NN) = \frac{\exp(0.3 - 0.2)}{\exp(-0.1 - 0.2) + \exp(0.8 - 0.2) + \exp(0.3 - 0.2)} = 0.3$$

- By decoding with Viterbi we can find the most probable sequence
- We could now create even larger models

And would get more powerful features (and exponentially more!)

- In the end we would include every other label into our local decision, and we would end up with:
- "local models with global feature templates"

• \rightarrow is this the best we can do?

Maximum Entropy Markov Models

Label Bias of local models

- We use the Viterbi to "glue together" our local decisions
- What if one node can reach all states (artificial numbers)

against one node that has only 2 outputs

 The path will always prefer states with less outputs, no matter the task ("Label Bias")

• This might happen because our probabilities are normalized locally and do not incorporate this information...

- Since the local normalizations do not know anything about each other they are "explaining themselves away"
- → We have to normalize the right way
- → This idea is incorporated into Conditional Random Fields!

Recap

• A MEMM is just a Maximum Entropy classifier, with different features (additional template Φ_{Edge})

• We decode with Viterbi, but the scores originate from a single source

• The MEMM normalizes locally, and is therefore prone to the Label-Bias