

Data Collection and Preprocessing Phase

Date	14 JUNE 2025
Team ID	SWTID1749621188
Project Title	Anemia Sense Leveraging-Machine Learning- For-Precise Anemia Recognition
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

The dataset was obtained from a structured CSV file containing hematological parameters like Hemoglobin, MCH, MCHC, MCV, and a binary anemia result. Initial exploration involved checking the shape, data types, and value distributions. No missing values or duplicates were found. Numerical columns were analyzed through descriptive statistics and visualized using histograms, KDE plots, and box plots. Outliers were detected in Hemoglobin and MCH and reviewed for impact. Since all features were numerical, no encoding was required. The cleaned and processed data was then prepared for further modeling.

Section	Description
Data Overview	DIMENSIONS:
Data Overview	Shape of the dataset (rows, columns): (1421, 6) DESCRIPTIVE STATISTICS: Descriptive statistics for numerical columns:
	min 0.000000 25% 0.000000 50% 0.000000 75% 1.000000 max 1.000000

Bivariate Analysis


```
import pandas as pd
Loading Data
                                                                                                  df = pd.read_csv('/content/Sheet 1-anemia.csv')
                                                                                                  print(df.head())

        Gender
        Hemoglobin
        MCH
        MCHC
        MCV
        Result

        1
        14.9
        22.7
        29.1
        83.7
        0

        0
        15.9
        25.4
        28.3
        72.0
        0

        0
        9.0
        21.5
        29.6
        71.2
        1

        0
        14.9
        16.0
        31.4
        87.5
        0

        1
        14.7
        22.0
        28.2
        99.5
        0

                                                                                        ₹
                                                                                                  1
                                                                                                  3
                                                                                                  4
Handling Missing Data
                                                                                     3) MISSING VALUE ANALYSIS
                                                                                     [ ] # Check for missing values
print("\nMissing values per column:")
missing_values = df.isnull().sum()
print(missing_values)
                                                                                          Missing values per column:
Gender 0
Hemoglobin 0
MCH 0
MCH 0
MCH 0
RCY 0
Result 0
dtype: int64
                                                                                     ▶ # Calculate percentage of missing values
                                                                                           print("\nPercentage of missing values per column:")
missing_percentage = (df.isnull().sum() / len(df)) * 100
print(missing_percentage)
                                                                                           Percentage of missing values per column:
Gender 0.0
Hemoglobin 0.0
MCH 0.0
MCHC 0.0
MCHC 0.0
MCV 0.0
Result 0.0
dtype: float64
                                                                                     [ ] # This dataset is quite clean with no missing values.
# If there were missing values, you would see output from the above commands.
Data Transformation
                                                                                         DATA TRANSFORMATION
                                                                                                # First, load the dataset
                                                                                                  import pandas as pd
                                                                                                  df = pd.read_csv('/content/Sheet 1-anemia.csv')
                                                                                                  # Rename Gender for clarity
df['Gender_Label'] = df['Gender'].map({0: 'Female', 1: 'Male'})
                                                                                                  # Optional: Normalize/scale numerical columns
                                                                                                   from sklearn.preprocessing import StandardScaler
                                                                                                  # Selecting numerical columns
num_cols = ['Hemoglobin', 'MCH', 'MCHC', 'MCV']
scaler = StandardScaler()
                                                                                                   df[num_cols] = scaler.fit_transform(df[num_cols])
```


Feature Engineering	Attached the feature engineering code in the final submission
Save Processed Data	y_test snape: (285,) # Save cleaned dataset df.to_csv('processed_anemia_data.csv', index=False)