ЛАБОРАТОРНАЯ РАБОТА №1.Базовые сигналы в ЦОС

ЦЕЛЬ РАБОТЫ – изучение пакета Matlab,программирование базовых сигналов цифровой обработки (ЦОС) в пакете Matlab.

1.1 Теоретические сведения

Пакет Matlab

Для выполнения лабораторных работ используется система инженерных и научных расчетов Matlab (сокращение от MATrixLABoratatory — матричная лаборатория). Основным объектом системы Matlab является матрица. Все вычисления система осуществляет в арифметике с плавающей точкой.

Система Matlab работает в режиме интерпретации команд и операторов, которые вводятся в ходе сеанса в командной строке, а Matlab выполняет их немедленную обработку и выдает вычисленный результат. Однако в Matlab можно запустить на выполнение заранее подготовленную последовательность команд и операторов, записанную в виде файла с расширением .m (М-файл).

М-файлы разделяются на два вида: файлы-сценарии и процедуры-функции.

Все М-файлы должны располагаться в рабочем каталоге или каталоге, зарегистрированном в списке путей системы Matlab. Для изменения рабочего каталога необходимо выбрать в меню File пункт SetPath.... При проведении лабораторной работы система разрешает изменять только рабочий каталог и не разрешает добавлять и удалять каталоги из списка путей. При выходе из системы сведения о рабочем каталоге не сохраняются, поэтому при новом запуске Matlab его необходимо ввести заново.

Файлы-сценарии

Файл-сценарий — это текстовый файл, содержащий последовательности команд и операторов. В языке нет специальных операндов для обозначения начала и конца файла-сценария, а также точки входа. Началом сценария является начало файла, а концом соответственно конец файла.

Именем сценария является имя его файла, отсюда следуют ограничения, накладываемые на имена файлов:

- 1) имя файла сценария может содержать только символы латинского алфавита от A до Z и от a до z, цифры от 0 до 9 и символ подчеркивания;
- 2) имя файла должно начинаться с символова... z или а... z либо с символа подчеркивания.

Результат выполнения каждого оператора отображается в окне командной строки. Для того чтобы система не выводила результат, необходимо в конце оператора ставить точку с запятой.

Файлы процедуры-функции

Файл процедуры-функции также является текстовым файлом, содержащим последовательности команд и операторов. Отличия файла процедурыфункции от файла-сценария заключаются в следующем:

1. Первой строкой должен быть заголовок функции, имеющий следующий формат:

```
function [<cписок выходных параметров>] = <имя функции>(<список входных параметров>)
```

Имя функции должно совпадать с именем файла.

2. При выполнении функции она сначала компилируется во внутренний формат, после чего исполняется. В связи с этим функция выполняется на порядок быстрее файла-сценария, который работает в режиме интерпретации команд.

По соглашению, принятому в Matlab, начиная со второй строки функции может располагаться несколько строк комментария. Этот комментарий считается справкой по использованию функции и может быть вызван с помощью команды help и имени функции. Такую справку содержат абсолютно все функции пакета Matlab. Например:

```
help filter % справка по функции filter
```

Рассмотрим функцию, вычисляющую минимальное и максимальное значения массива (файл minmax.m):

```
function [minim, maxim] = minmax(a)
minim = min(a)
maxim = max(a)
```

Как видно из данного примера, функция может иметь несколько возвращаемых значений. Представленную в примере функцию можно использовать следующим образом:

```
[a,b] = minmax(x) % В а будет минимум, а в b - максимум а = minmax(x) % В а будет минимум, а максимум теряется
```

Данные в системе Matlab

В системе Matlab присутствует только один тип данных — это прямоугольный массив комплексных чисел. Для создания переменной ей просто необходимо присвоить некоторое значение. Существует несколько вариантов записи массива:

1. Объявление пустого массива. Объявление пустого массива, т.е. массива нулевого размера, имеет следующий вид:

```
a = []
```

2. Объявление скаляра. Скаляр является частным случаем матрицы, т.е. это матрица размером 1×1 . Пример:

```
a = 5
b = -4.8
c = 0.25 + 18i % Комплексное число
```

3. Объявление вектора. Для объявления вектора необходимо записать его элементы, разделенные пробелами, в квадратных скобках. Пример:

```
a = [0 1]
b = [3.1 -6]
c = [a 4 b] % Результат c = [0 1 4 3.1 -6]
```

4. Объявление монотонно возрастающего или убывающего вектора. Формат объявления монотонно возрастающего или убывающего вектора следующий: первый_элемент: [шаг:] конечный_элемент. Если шаг равен 1, то его разрешается опустить. Пример:

```
a = 1:10 % Результат b = [1 2 3 4 5 6 7 8 9 10]
b = 4:-2:-4 % Результат b = [4 2 0 -2 -4]
c = -1:3:10 % Результат b = [-1 2 5 8]
```

5. *Объявление массива*. Для объявления вектора необходимо записать его элементы в квадратных скобках, притом элементы строки разделяются пробелами, а строки между собой – точкой с запятой. Пример:

а = [1 2 3; 4 5 6; 7 8 9] % Результат
$$a = \begin{cases} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{cases}$$

Для объявления массивов также используются специальные функции. Вот некоторые наиболее часто используемые:

```
    zeros (m, n) — возвращает массив размеромт×n, заполненный нулями;
    nes (m, n) — возвращает массив размеромт×n, заполненный единицами;
    напо (m, n) — возвращает массив размеромт×n, заполненный псевдослучайными величинами, распределенными по равномерному закону;
    напо (m, n) — возвращает массив размеромт×n, заполненный псевдослучайными величинами, распределенными по нормальному закону.
```

В данных функциях может опускаться первый операнд. В этом случае возвращается квадратная матрица $n \times n$. Пример:

```
a = zeros(1, 100)% Вектор из 100 нулей
b = ones(20) % Матрица 20×20 единиц
c = rand(2, 50) % Матрица 2×50 псевдослучайных чисел
```

Доступ к массивам и его элементам

Доступ к массивам осуществляется по их именам. Все операции с массивами осуществляются по значению, т.е. например, при выполнении операции присваивания будет копироваться все содержимое массива. Пример:

```
a = [2 4 5; 4 6 1]
b = a
```

В результате выполнения данной программы переменная b будет иметь размер 2×3 и содержать значение [2 4 5; 4 6 1], притом a и b будут размещаться в разных участках памяти.

Для доступа к элементу массива необходимо после имени задать в круглых скобках индекс элемента, состоящий из двух чисел или векторов, разделенных запятой. Нумерация начинается с единицы. Первое число или вектор определяет номер строки (номера строк), второе — соответственно столбца. Если номер строки пропущен (обычно при обращении к элементам вектора), то он считается равным единице. Пример:

```
a = [11 \ 12 \ 13 \ 14 \ 15;
                             % Исходный массив
     21 22 23 24 25;
     31 32 33 34 35;
     41 42 43 44 45]
                        % Результат: b = 23
b = a(2, 3)
a(3) = 6
                        % Результат: a(1,3) = 0
c = a(3, 2:4)
                        % Результат: с = [32 33 34]
d = a([1 3], 1:3)
                        % Результат: d = [11 12 13;
                                           31 32 331
a([1 \ 4], [1 \ 5]) = zeros(2,2); % Результат:
                        % a = [0 12 13 14 0;
                               21 22 23 24 25;
                                31 32 33 34 35;
                                   42 43 44 0]
```

Арифметические операторы

В системе реализовано два типа арифметических операций. Операции над матрицами определены в соответствии с правилами линейной алгебры, а операции над массивами выполняются поэлементно. Для обозначения операций выполняемыми над элементами массива используется знак точки«.» (табл. 1.1).

Операции Matlab

Знак	Операция
+	Сложение: С=А+В
	Если A – скаляр, B – массив, то $C_{ij} = A + B_{ij}$.
	Если A — массив, B — скаляр, то $C_{ij} = A_{ij} + B$.
	Если А – массив, В – массив, то $C_{ij} = A_{ij} + B_{ij}$. Для выполнения операции
	сложения массивов они должны иметь одинаковый размер.
_	Вычитание: С=А-В
	Если A – скаляр, B – массив, то $C_{ij} = A - B_{ij}$.
	Если A – массив, B – скаляр, то $C_{ij} = A_{ij} - B$.
	Если А – массив, В – массив, то $C_{ij} = A_{ij} - B_{ij}$. Для выполнения операции
	вычитания массивов они должны иметь одинаковый размер.
*	Умножение матриц: С=А*В
	Если A – скаляр, B – массив, то $C_{ij} = A \cdot B_{ij}$.
	Если A – массив, B – скаляр, то $C_{ij} = A_{ij} \cdot B$.
	Если А – массив, В – массив, то $C_{ik} = \sum_{j=1}^{n} A_{ij} \cdot B_{jk}$. Для выполнения опера-
	ции число столбцов первого массива должно быть равно числу строк
	второго массива.
•*	Поэлементное умножение:С=А.*В
	Если A – скаляр, B – массив, то $C_{ij} = A \cdot B_{ij}$.
	Если A – массив, B – скаляр, то $C_{ij} = A_{ij} \cdot B$.
	Если А – массив, В – массив, то $C_{ij} = A_{ij} \cdot B_{ij}$. Для выполнения операции
	поэлементного умножения массивов они должны иметь одинаковый
	размер.
`	Транспонирование матрицы: А`
	Для действительных массивов результатом является транспонирован-
	ная матрица. Для комплексных массивов транспонирование дополня-
	ется комплексным сопряжением.
•	Транспонирование массива: А.`
	Для действительных и комплексных массивов строки просто заменя-
	ются столбцами. Комплексное сопряжение не выполняется.

Логические операторы. Операции отношения.

В языке Matlab используются следующие логические операторы (табл.1.2):

Операции отношения в Matlab

Операция	Отношение
>	Больше
<	Меньше
>=	Больше или равно
<=	Меньше или равно
==	Равно
~=	Не равно

Все логические операторы осуществляют операцию поэлементного сравнения двух массивов. Если один из операндов является скаляром, то он поэлементно сравнивается со всеми элементами другого операнда. Логические операторы возвращают в качестве результата массив того же размера, элементы которого равны единице, если результат сравнения соответствующих элементов равен ИСТИНА, и нулю – в противоположном случае.

Операторы <, >, <=, >= используются для сравнения только действительных частей комплексных элементов, а операции == и $\sim=$ осуществляют сравнение как действительных, так и мнимых частей. Пример:

```
X = [2 4 2.5;

12i 6 3]

Y = [3 4 12;

2 3 6]

Z = X >= Y

% Результат

Z = [0 1 0;

0 0 1]
```

Логические операции

В языке Matlab есть три логические операции (табл. 1.3):

Таблица 1.3

Логические операции в Matlab

Операция	И	ИЛИ	HE
Обозначение	&		~

При выполнении логических операций массив рассматривается как совокупность булевых переменных, так что значение 0 соответствует булеву значению FALSE, а любое другое значение — булеву значению TRUE. Функция ИС-КЛЮЧАЮЩЕЕ ИЛИ реализована в виде функции хог (А, В).

Логические операции имеют низший приоритет по отношению к операциям отношения и арифметическим операциям.

Оператор цикла с определенным числом операций

Оператор цикла с определенным числом операций имеет следующий вид:

```
for v = <выражение-массив>
<операторы>
end
```

Для прерывания выполнения цикла используется оператор break. Пример:

```
for i = 1:10

x(i) = i .^2

end % Результат x = [1 4 9 16 ... 100]

y = []

for k = [0 3 1 2]

y = [y 2.^k]

end % Результат y = [1 8 2 4]
```

Оператор цикла с неопределенным числом операций

Оператор цикла с неопределенным числом операций имеет следующий вид:

```
while <логическое выражение> <операторы> end
```

Цикл while ... end выполняется до тех пор, пока массив логического выражения не станет нулевым.

Логическое выражение имеет форму

```
выражение <оператор отношения> выражение,
```

где допустимы следующие операторы отношений : ==, ~=, <=, >=, <, >. Пример:

```
i = 1
s = 0
while x(i) \sim 0 \& i < 4
s = s + x(i)
i = i + 1
end
```

Условное выражение

Как и во всех языках программирования, в языке Matlab есть конструкции для организации условного выполнения операторов. Одна из конструкций имеет следующий формат:

```
if <логическое выражение> <операторы> elseif <логическое выражение> <операторы> else <операторы> else <oператоры> end
```

В условном выражении может присутствовать несколько блоков elseif или данный блок может отсутствовать. Также может отсутствовать блок else.

Логическое выражение имеет форму

```
выражение <оператор отношения> выражение,
```

где допустимы следующие операторы отношений : ==, \sim =, <=, <=, >=, <, >. Пример:

```
if a > 0
    b = 2
elseif a < 0
b = 0
else
    b = 1
end</pre>
```

В Matlab имеется еще одна конструкция для организации условного выполнения операторов:

```
switch <aнализируемое выражение>
  case <выражение 1>
<oператоры>
  case <выражение 2>
<oператоры>
  ···
  otherwise
<oператоры>
  end
```

Оператор switch последовательно сравнивает анализируемое выражение с выражениями, записанными после case, и если выражения равны, то выполняются соответствующие операторы. Если не было найдено ни одного равенства, то выполняются операторы, записанные после otherwise.

Графические возможности языка Matlab

Среда обладает богатыми возможностями для графического представления массивов как в двухмерном, так и в трехмерном виде. В пакет Matlab включены демонстрационные программы для показа возможностей системы, в том числе и графических. Для вызова демонстрационных примеров необходимо в командном окне ввести команду demo.

Далее будут рассмотрены графические функции, которые необходимы для выполнения лабораторных работ.

Функция plot

Функция plot имеет следующий синтаксис:

```
plot(y)
plot(x,y)
plot(x,y,s)
plot(x1,y1,s1,x1,y1,s1)
```

Функция plot(y) строит график элементов одномерного массива y в зависимости от номера элемента. Если элементы массива y комплексные, то строится график, каждая точка которого определяется соответствующей действительной и мнимой частями числа.

Функция plot (x,y) соответствует построению обычной функции, когда одномерный массив x соответствует значениям аргумента, а одномерный массив y – значениям функции (табл. 1.4).

Таблица 1.4 Управление функцией plot

Тип линии					
Непрерывная	-				
Штриховая					
Двойной пунктир	:				
Штрихпунктирная					
Тип	гочки				
Точка	•				
Плюс	+				
Звездочка	*				
Кружок	0				
Ц	вет				
Фиолетовый	m				
Голубой	С				
Красный	r				
Зеленый	g				
Синий	b				
Черный	k				

Функция plot(x,y,s) аналогична plot(x,y), с той разницей, что текстовая строка s определяет цвет и стиль линии, а также вид точек графика. Строкаs может содержать до трех символов из табл. 1.4.

Если цвет линии не указан, он выбирается по умолчанию из шести первых цветов, с желтого до синего, повторяясь циклически.

Функция plot (x1, y1, s1, x2, y2, s2) позволяет объединить несколько функций plot (x, y, s). Пример:

```
x = -pi:pi/100:pi

y = sin(x)

plot(y) % Результат показан на рис. 1.1,а

plot(x, y) % Результат показан на рис.1.1,б
```


Рис. 1.1. Результат работы примера, демонстрирующего работу функции plot

Функция stem

Функция stem выводит график элементов одномерного массива в виде вертикальных линий, которые заканчиваются в точках графика, помечаемых кружочком.

Функция stem имеет следующий синтаксис:

```
\begin{array}{c} \text{stem}\,(y) \\ \text{stem}\,(x,y) \\ \text{stem}\,(x,y,s) \end{array}
```

Первый вариант функции строит зависимость значений элементов массива от номера элемента, вторая зависимость — y(x), а третья — аналогична второй, за исключением того, что позволяет задавать цвет и стиль линий с помощью строки s. Правила задания стиля линий аналогичны функции plot. Пример:

```
x = -pi:pi/25:pi

y = sin(x)

stem(y) % Результат показан на рис. 1.2, а

stem(x, y) % Результат показан на рис.1.2, б
```


Рис. 1.2. Результат работы примера, демонстрирующего работу функции stem

Функция figure

Данная функция создает окно для вывода графика, т.е. дальнейший вывод графической информации будет осуществляться в данном окне, пока не встретится функция figure.

Функция subplot

Функция subplot предназначена для разбиения активного окна на области и выбора активной области для вывода графических данных. Функция subplot имеет следующий формат:

```
subplot(mnp);
subplot(m,n,p);
```

где m указывает, на сколько частей разбивается окно по вертикали, n- по горизонтали, p определяет номер области, в которую будут выводиться графические данные. Если числа n, m и p находятся в диапазоне от 1 до 9, то они обычно пишутся слитно (первый вариант записи функции), в противном случае они разделяются запятыми (второй вариант). Пример:

```
n = 0:99
x = sin(0.3*n)
y = cos(0.4*n)
subplot(211)
plot(x)
subplot(212)
plot(y)
```

Данная программа разбивает окно вывода на две части по вертикали и выводит график x в верхней части, а график y— в нижней. Результат работы программы показан на рис.1..

Рис. 1.3. Результат работы программы, демонстрирующей работу функции subplot

1.2 Базовые сигналы ЦОС

Наиболее важными последовательностями, которые часто используются в цифровой обработке сигналов, являются:

а)единичный импульс(рис. 1.2):

$$\delta(n) = \begin{cases} 1, & n = 0, \\ 0 & \text{иначе;} \end{cases}$$

Рис. 1.2. Единичный импульс

б)единичный скачок (рис. 1.3):

$$u(n) = \begin{cases} 1, & n > 0, \\ 0 & \text{иначе;} \end{cases}$$

Рис. 1.3. Единичный скачок

в)убывающая экспонента (рис. 1.4):

$$g(n) = a^n u(n), \quad |a| < 1;$$

Рис. 1.4. Убывающая экспонента (a = 0.8)

г)косинусоида (рис.1.5):

$$h(n) = A \cdot \cos\left(\frac{2\pi n}{n_0} + \varphi\right) = A \cdot \cos\left(\omega n + \varphi\right);$$

Рис. 1.5. Косинусоида $\cos\left(\frac{2\pi n}{16}\right)$

д)комплексная экспонента:

$$e^{j\omega n} = \cos(\omega n) + j\sin(\omega n).$$

1.3 Порядок выполнения работы

1.3.1 Сформируйте и постройте графики следующих последовательностей. Используйте для этого возможности вычисления синуса или косинуса от векторного аргумента:

$$x_1(n) = \sin(\omega_1 n),$$
 $n = 0 \dots 25,$
 $x_2(n) = \sin(\omega_1 n),$ $n = -15 \dots 25,$
 $x_3(n) = \sin\left(\omega_2 n + \frac{\pi}{2}\right),$ $n = -10 \dots 10,$
 $x_4(n) = \cos(\omega_3 n),$ $n = 0 \dots 50.$

Значения $\omega_1...\omega_3$ выберитеиз табл. 1.5.

Таблица 1.5

Значения	ω_1	ω_3
----------	------------	------------

Номер варианта	1	2	3	4	5	6
ω_1	$\pi/13$	$\pi/14$	$\pi/15$	$\pi/16$	$\pi/17$	$\pi/18$
ω_2	π	2π	3π	π	2π	3π
ω_3	$\pi/\sqrt{19}$	$\pi/\sqrt{21}$	$\pi/\sqrt{23}$	$\pi/\sqrt{20}$	$\pi/\sqrt{22}$	$\pi/\sqrt{18}$

Упростите $x_3(n)$, чтобы не использовать тригонометрические функции.

1.3.2. Сформируйте и постройте график следующих последовательностей:

$$x_1(n) = a_1 \delta(n - b_1),$$
 $n = 1 \dots 20,$
 $x_2(n) = a_2 \delta(n),$ $n = -15 \dots 15,$
 $x_3(n) = a_3 u(n - b_3),$ $n = 300 \dots 350,$
 $x_4(n) = a_4 u(n + b_4),$ $n = -10 \dots 0.$

Для выполнения задания напишите в Matlab функции delta(n).и unit_step(n) для расчета дельта-функции и функции единичного скачка соответственно. Значения $a_1 \dots a_4$ и $b_1 \dots b_4$ выберитеиз табл. 1.6.

Таблица 1.6

Числовые значения a_1a_4 и b_1b_4							
Номер варианта	1	2	3	4	5	6	
a_1	1,2	1,3	1,4	1,5	1,6	1,7	
b_1	4	5	6	7	8	9	
a_2	0,6	0,7	0,8	0,9	1,1	1,2	
a_3	1,8	1,7	1,6	1,5	1,4	1,3	
b_3	310	312	318	321	328	333	
a_4	3,8	4,0	4,2	4,4	4,6	4,8	
b_4	3	4	5	6	7	8	

1.3.3. Напишите функцию для формирования синусоиды, получаемой в результате дискретизации с частотой F_s непрерывной синусоиды:

$$s(t) = A\sin(2\pi f t + \varphi_0),$$

где $t=...-3\Delta T,-2\Delta T,-\Delta T,0,\Delta T,2\Delta T,...\Delta T=1/F_s;A$ – амплитуда;f – частота синусоиды; φ_0 – начальная фаза.

Функция должна иметь шесть входных аргументов: A, f, φ_0 , F_s , t_0 — начальное время, t_1 — конечное. Выходными параметрами функции должны быть временные отметки (моменты времени в которые выполняется дискретизация синусоиды) и значения синусоиды в эти моменты.

Сформируйте синусоиду дискретного времени дискретизацией синусоиды непрерывного времени со следующими параметрами (табл. 1.7):

Таблица 1.7 Числовые значения параметров для формирования синусоид дискретного времени

Номер варианта	1	2	3	4	5	6
Частота сигнала	900 Гц	1 кГц	1,1 кГц	1,3 кГц	1,4 кГц	1,5 кГц
Начальная фаза	45°	60°	30°	45°	60°	30°
Нормализованная	40	45	50	55	60	65
амплитуда						
Частота дискретизации	8 кГц	8 кГц	8 кГц	10 кГц	10 кГц	10 кГц
Начальное время	0 c	0 c	0 c	0 c	0 c	0 c
Конечное время	6 мс	7 мс	8 мс	4 мс	5 мс	6 мс

1.3.4. Напишите функцию для формирования затухающей экспоненты $g(n) = a^n u(n)$. Постройте график функции, выбрав параметр a согласно варианту (табл. 1.8).

Таблица 1.8

Значения	параметра	а

Номер варианта	1	2	3	4	5	6
а	0,7	0,75	0,8	0,85	0,9	0,95

1.3.5. Для формирования комплексной экспоненты может быть использована формула Эйлера:

$$x(n) = z^n = r^n e^{j\theta n} = r^n (\cos(\theta n) + j\sin(\theta n)),$$

где
$$z = re^{j\theta}, j^2 = -1.$$

Используйте данное выражение со следующими параметрами (табл. 1.9).

Таблица 1.9

параметры комплексных экспонент (угол о задан в радианах	Параметры комплексных экспонент (у	угол $ heta$	задан в	радианах
--	------------------------------------	--------------	---------	----------

Номер варианта	1	2	3	4	5	6
r	0,89	0,9	0,94	0,95	0,97	0,99
θ	30°	45°	60°	30°	45°	60°

Постройте график действительной и мнимой части для n=0...100. Как сказывается изменение θ ? Постройте график, откладывая по оси ординат действительную часть, а по оси абсцисс — мнимую (должна получиться спираль). Поэкспериментируйте с углом θ для получения спиралей различного вида.

1.3.6. При помощи формулы Эйлера из комплексных экспонент можно получать функции косинуса и синуса:

$$\sin(\varphi) = \frac{1}{2j} (e^{j\varphi} - e^{-j\varphi}),$$
$$\cos(\varphi) = \frac{1}{2} (e^{j\varphi} + e^{-j\varphi}).$$

Сформируйте и постройте графики следующих последовательностей используя приведенные формулы (комплексная единица в Matlab задается как 1 ј или 1 і):

$$x_1(n) = \sin(\omega_1 n),$$
 $n = 0 \dots 25,$
 $x_2(n) = \cos(\omega_1 n),$ $n = -15 \dots 25,$
 $x_3(n) = a^n \sin(\omega_2 n),$ $n = -20 \dots 0,$
 $x_4(n) = b^n \cos(\omega_2 n),$ $n = 0 \dots 50.$

Значения параметров ω_1 , ω_2 , a, b выберитеиз табл. 1.10.

Таблица 1.10

Значения параметров ω_1, ω_2, a, b						
Номер варианта	1	2	3	4	5	6
ω_1	$\pi/3$	$\pi/6$	$\pi/5$	$\pi/\sqrt{7}$	$\pi/8$	$\pi/13$
ω_2	$\pi/4$	$\pi/9$	$\pi/16$	$\pi/6$	$\pi/\sqrt{11}$	$\pi/3$
а	1,1	1,15	1,4	1,3	1,2	1,05
b	0,89	0,9	0,94	0,95	0,97	0,99