ANOVA tables

- More than two treatments/groups
- Does not work for proportions \hat{p} to find π

What ANOVA hypothesis tests tells us...

- Determines if at least one of the treatments are different from one another
 - \circ One of the populations means μ_i is different from the rest

$$H_o$$
: $\mu_1 = \cdots = \mu_t$

 H_A : at least one of the means is different from the rest

- Give statement based on $p < \alpha$
- Does not tell us which one differs, only tells us if there is or is not a difference in means; use one of the following (see their page for more)
 - o Tukey HSD
 - o Bon Ferroni's
 - Wilcox Rank Sum

t	Number of levels/treatments (including placebo)
n_i	Number of observations in the <i>i</i> th treatment
N	Total sample size/number of treatments
y_{ij}	jth observation in the i th group
$ar{y}_i$	Sample mean of the i th group
s_i	Sample standard deviation of the <i>i</i> th group
$\bar{y} = \frac{1}{N} \sum_{i} \sum_{j} y_{ij}$	Grand mean
S	Total sample standard deviation of $\it N$
$F = \frac{MS_{treatment}}{MS_{error}}$	Critical point
<i>p</i> -value	<pre>pf(F,df.treatment,df.error,lower.tail=FALSE)</pre>

General layout...

Source	df	SS (sum of	MS (mean	F	p-value
	(degrees	squares)	of		(probability)
	of		squares)		
	freedom)				
Treatment/Between					
Error/Within					
Total					

How to find each by hand...

TREATMENT/BETWEEN VARIABILITY

$$df_{treatment} = t - 1$$

$$SS_T = \sum_{i}^{t} \sum_{j}^{n_i} (\bar{y}_i - \bar{y})^2 = \sum_{i}^{t} n_i (\bar{y}_i - \bar{y})^2$$

$$MS_{treatment} = \left(\frac{SS}{df}\right)_{treatment}$$

ERROR/WITHIN VARIABILITY

$$df_{error} = N - t$$

$$SS_{error} = \sum_{i}^{t} (n_i - 1)s_i^2$$

$$MS_{error} = \left(\frac{SS}{df}\right)_{error}$$

TOTAL

$$df_{total} = N - 1$$

$$SS_{total} = (N - 1)s^{2} = SS_{treatment} + SS_{error}$$

$$Var = s^{2} = \left(\frac{SS}{df}\right)_{total}$$

Tukey's Honestly Significant Difference (HSD)

- Applied after ANOVA test

Criteria for Tukeys...

- (1) ANOVA must be 100% pure assumptions
 - a. Independent observations → iid
 - b. Normally distributed
- (2) *****Variances must be equal*****
- (3) Works best with equal sample sizes (can still be used without it)

What it does...

- Determines which pairs of means differ from ANOVA tables
- Make a confidence interval of all different combinations of the tests

$$CI = (\bar{x}_i - \bar{x}_j) \pm q \sqrt{\frac{MS_{error}}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

q=qtukey(CL,nmeans=num_of_groups,df=df.error)

How to determine if one mean is significantly different from another...

- Compare two at a time
- If $0 \in CI \Longrightarrow$ not significantly different
- If $0 \notin CI \implies$ significantly different

Assigning letters...

- Create a table
- If they are not significantly different → same letter
- If they are → different
- Letters have no actual value, just show the likeness

Bonferroni Adjustment

- Similar to Tukey HSD but it adjusts p-values
- For each pair of group means α^* stays the same
- More conservative with the picks → reduces change of type I error
 - o Makes CI wider, not smaller

$\alpha^* = \frac{\alpha}{m}$	Critical point
α	Significance level
m	Number of tests

How to do it...

- (1) Obtain α^*
- (2) For each pair of group means, perform t-test. If $p < \alpha^* \implies$ significantly different

t.crit=qt((1-alpha.crit)/2)
$$p=1-pt(t.crit)$$

$$CI = (\bar{x}_i - \bar{x}_j) \pm t^* \sqrt{\frac{MS_{error}}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Wilcox-Rank-Sum w/ adjustment...

pairwise.wilcox.test(obs, treatment,
 p.adjust.method="bonferroni")

Kruskal-Wallis Test

- Alternative for an ANOVA test
- Use when assumptions of ANOVA are not met
 - o Normality cannot be assumed
- Compares medians instead of means

$$\chi^2 = \frac{12}{N(N+1)} \sum_{i=1}^{k} \left[\frac{R_i^2}{n_i} - 3(N+1) \right]$$

N	Total number of observations
k	Number of groups
n_i	Number of observations in group <i>i</i>
R_i	Sum of ranks for group i
χ^2	Test statistic

kruskal.test(response ~ group, data = your_data)

Linear Regression

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$	Intercept
$\hat{\beta}_1 = r \frac{s_y}{s_x}$	Slope
r	Pearson's correlation coefficient
$\epsilon = y_i - \hat{y}$	Residual
$SS = \sum (y_i - \hat{y})^2$	Sum of squares
$\hat{\sigma}_{\epsilon} = \sqrt{\frac{\sum (y_i - \hat{y})^2}{n - 2}} = \sqrt{MS_{error}}$	Standard deviation
$\sum (y_i - \hat{y})^2 \sum \epsilon^2$	Predicted (residual) variance
$MS_{error} = \hat{\sigma}_{\epsilon}^2 = \frac{\sum (y_i - \hat{y})^2}{n-2} = \frac{\sum \epsilon^2}{n-2}$	Mean square error

$$SE = \hat{\sigma}_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

 $model = lm(y \sim x1, data = your_data)$

summary(model)

predict(model, newdata = new_df)

predict(model, newdata = new_df, interval = "confidence")

predict(model, newdata = new df, interval = "prediction")

Confidence interval for \bar{y} at a given x^* ...

$$CI = \hat{y}(x^*) \pm t_{\alpha/2, df = n-2} \hat{\sigma}_{\epsilon} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Prediction interval for the next y at a given x^* ...

$$PI = \hat{y}(x^*) \pm t_{\alpha/2, df = n-2} \hat{\sigma}_{\epsilon} \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Making inferences about the true slope of the line...

$$t^* = \frac{\hat{\beta}_1 - \hat{\beta}_{1,H_o}}{SE}$$

$$SE = \frac{\sigma_{\epsilon}}{\sqrt{\sum (x_i - \bar{x})^2}}$$

Chi-squared Test

- Tells us if the quantitative data set has any values that stray away from the mean
- Only two data sets → see if they're different from one another
- Used when there is a certain standard; can use linear regression with this
 - Compare new data set with old one
- Two types: (1) goodness of fit test and (2) test for independence

(1) goodness of fit test

- Checks if distribution of a categorical variable matches the expected distribution
- Checking if number of times things happened in different categories what was expected, or different
- Useful to compare observed and expected counts under a specific hypothesis
- If p < 0.05 reject H_o based on chisq.test (...)

(2) test for independence

$$\chi^{2} = \sum \frac{(Obs_{i} + Exp_{i})^{2}}{Exp_{i}}$$
prob=pchisq(chi.sq,df=k-1)