N26F300 VLSI SYSTEM DESIGN (GRADUATE LEVEL)

Instructor & TA

Instructor: 邱瀝毅 (Lih-yih Chiou), Ph.D.

email: lihyih@mail.ncku.edu.tw

TEL: 06-2757575 ext 62447

Web: http://lpvlsi.ee.ncku.edu.tw/~lphplab/index.html

Office: EE 95309 (奇美樓)

Course website: http://moodle.ncku.edu.tw

TA: 蕭育書/簡才淦/柯柏洲/吳冠麟

TEL: 06-2757575 ext 62400-2852

Room: EE95316/EE95604 (奇美樓)

email: vsd2010@lpvlsi.ee.ncku.edu.tw

office hour: Tue. 19:00--21:00 EE95316

Electronic Device: iPod

Fall 2010

Components Inside iPOD

Processor ?? / ARM ??

Codec / Wolfson

Linear Technology

DAC / Wolfson

Disk Drive / Toshiba

Fall 2010 VLSI System Design

Firewire / Texas Instrument

NCKU **EE LY Chiou**

Public Fabless End-Markets Breakdown

Source: www.fsa.org

Top 10 Fabless Companies in 2006

	Company	2006 Revenue (US millions)	
1	QUALCOMM	\$4,331.0	
2	Broadcom	\$3,667.8	
3	ScanDisk Corporation	\$3,257.5	
4	NVIDIA Corporation	\$3,068.8	
5	Marvell Technology Group Ltd.	\$2,237.6	
6	LSI Logic	\$1,982.1	
7	Xilinx, Inc.	\$1,871.6	
8	MediaTek Incorporation	\$1,624.5	
9	Altera	\$1,285.5	
10	Conexant Systems	\$985.6	

Fall 2010 VLSI System Design

Source: www.fsa.org

Top 10 Fabless Companies in 2009

2009	2008(2Q)	2007	公司名	2008年 前兩季 營收(億美元)	主要產品
1	1	1	Qualcomm (高通)	6.6	手機晶片 、 無線通訊晶片
2			AMD	5.3	繪圖晶片、fab to Global Foundries
3	2	4	Broadcomm (博通)	4.2	手機晶片、無線通訊晶片 、 數據機與GPS晶片
4	7	7	聯發科	3.5	光儲存晶片、 手機晶片 、 數位電視晶片
5	3	2	nVidia	3.1	繪圖晶片
6	4	5	Marvell (邁威爾)	2.7	網路晶片、手機晶片
7	8	8	Xilinx(智霖)	1.7	可程式邏輯晶片 (主要用於家電及電腦週邊)
8	6	6	LSI	1.4	儲存晶片、 光儲存晶片
9	10	10	Altera (阿爾特拉)	1.2	可程式邏輯晶片
10	9	9	Avago (安華高)	0.87	類比晶片

Target Digital Design Implementation

Standard Cell Design Style

Selects pre-design cells (of the same height) to implement logic

These cells may be

- Logic gates: nand2, NOT, and2, and4, nor2, mux2, decoder etc.
- Latches: latchx1, latchrx2, ...
- Flip-flops: pdffx1, pdffx2,...
- Basic blocks: fulladder

Target Levels of Design Abstractions

Course Objectives

- Provide fundamental design concepts
 - Modeling systems using Verilog-HDL
 - Digital IC design flow using modern CAD tools
 - Design of synchronous systems
 - Synthesis of HDL

- Establish design and analysis skills for
 - Multi-cycle architecture
 - Pipelined architectures

Course Prerequisites

- Digital Logic Design (must)
 - Boolean algebra
 - Logic minimization
 - □ Arithmetic units (+,-,*, AND, OR, ...)
 - Finite state machine
- Computer Organization (must)
 - Multi-cycle CPU
 - Pipeline CPU
 - Cache
- Self-motivation in learning CAD tools and Verilog HDL

Outline

- Basic Digital IC System Design (7 weeks)
 - VLSI System Design Flow
 - EDA Tools
 - Digital Design Using Verilog
 - Synthesis of Digital Logic
- Advanced IC System Design (7 weeks)
 - Design of digital processors and periphery
 - Project

Hours Arrangement

- □ Lecture
 - □ Time: Thursday 9:10-noon
 - Location: EE 92177
 - Most of the weeks except tutorial sessions
- Laboratory
 - Selected weeks
 - □ Location: SoC Lab (EE 95312@奇美樓)
 - DO NOT LOCK TERMINALS. Otherwise, your right will be suspended (7 days x number of violations)
- NO FOOD or DRINK in the lecture hall or computer labs

References

References

- "Advanced Digital Design with Verilog HDL," Michael D. Ciletti, Prentice Hall, 2003. ISBN: 0-13-089161-4
- "FSM based Digital Design using Verilog HDL," Peter Minns and Ian Elliott, Wiley, 2008. ISBN: 978-0-470-06070-4
- "Digital Design: An Embedded System Approach Using Verilog," by Peter J. Ashenden. Weste and David Harris, Morgan Kaufmann, 2008. ISBN: 978-0-12-369527-7
- "Computer Organization and Design: The Hardware/Software Interface," 3th ed. by David A. Patterson and John L. Hennessy, Morgan Kaufmann Pub., 2005. ISBN: 981-2592-17-2
- "Verilog HDL: A Guide to Digital Design and Synthesis," 2nd ed. by Samir Palnitkar, Prentice Hall, 2003. ISBN: 0-13-044911-3

Grading Policy

- Grading will be based on the following items:
 - Participation
 - Homework assignments
 - Quizzes and Exams
 - Final project report/demo

Homework Assignments

- Principles
 - Help you to learn the materials
 - Promote self-motivated learning capability as a graduate student
 - Focus on your learning and self-evaluation
- Ideas
 - Longer period of time for an HW assignment
 - A series of small labs as homework
 - A contest problem as homework
 - A project-oriented homework

Homework Assignments

- □ 4~ 6 homework assignments
- Submission electronically through the course website before the specified time and date
- If you fail to do so, your assignment is considered
 OVERDUE and gets NO credit.
- An EXTRA paper copy needs to be delivered in class

Exams

- □ Schedule
 - Midterm exam: Thursday, Nov 04, 2010
 - NO final

There will be no make-up exams (in very special circumstances, written excuse and official proofs are required for make-up exams).

Final Project

Principles

- Use learned design skills for your target applications
- Need team work ($4\sim7$ persons/team)
- Promote self-tracking capability as a graduate student
- Focus on end results

□ Ideas

- Propose and present your interested project based on requirements
- Discuss your team project regularly on Moodle
- Emphasize on verified designs
- Plan and meet your own schedule

Final Project

Schedule

- Proposal presentation (11/18, Thu.)in class
- □ Project submission/Demo (1/20, Tue.)09:00 @Moodle ; 10:00 ~ 18:00 @EE95312
- □ Project Presentation (1/22, Thu.)09:00 ~ 12:00 @ EE95312

□ Topic

Design a general pipeline processor that can work with a compiler and communicate with external modules (either memory or accelerators) via on-chip buses

Course Policy

- Encourage you to discuss assigned problems with peers
- Must complete his/her assignment independently or as specified
- Any person/team who is found to be dishonesty in homework assignments, examines/quizzes, or the project, the involved person(s) will receive an "O" on the evaluated instrument (paper, exam, project, homework, etc.)

Notes

- Applying SoC Lab entrance authorization needs to have your department entrance card (門禁卡) number. For details, please check the web http://lpvlsi.ee.ncku.edu.tw
- Submit your head photo in JPEG to course website
- When the photo is received, you will be assigned an SoC Lab account, which all homework and project will be graded based on tools in this lab.

Tutorials on 9/16 & 9/24

- Contents
 - Basics of Unix, Environment in SoC Lab, NC-Verilog,
 Debussy, Design Vision
- Class hours arrangement
 - □ 9:10-10:00 Regular session/Tutorial Overview
 - 10:10-noon Hand-on practices @SoC Lab
- Group arrangement (by student ID)
 - Even: 9/16
 - Odd: 9/24
- Suggestion: Watch tutorial video last year first

Tutorials on 10/21 & 10/24

- Contents
 - Advanced Design Vision and AndeSight Basics
- Class hours arrangement
 - □ 9:10-10:00 Regular session/Tutorial Overview
 - 10:10-noon Hand-on practices @SoC Lab
- Group arrangement (by student ID)
 - Even: 9/16
 - Odd: 9/24
- Suggestion: Watch tutorial video last year first