9. Feature Extraction from Speech

Overview

- Learn about the most established feature extraction from speech
- Mel Frequency Cepstral Coefficients: MFCC

Quantization

- Uniform quantization:
 - 10-12 bit are sufficient to code speech
- Improvement:
 - Use distribution of amplitude values
 - $-\mu$ -law:

$$f_n^{(\mu)} = f_{\text{max}} \operatorname{sgn}(f_n) \frac{\log(1 + \mu \frac{|f_n|}{f_{\text{max}}})}{\log(1 + \mu)} \quad \mu \approx 200$$

$$\propto \log(1 + \mu' |f_n|)$$

Features in the Time Domain: Short-time Energy

Definition:

$$E^{(n)} = \sum_{m=0}^{M-1} |f_{m+n}|^2$$

Example:

Pre-emphasis

- Correct for filtering of the lips
- Iterative scheme:

$$f_n = f_n - \alpha f_{n-1}$$

• Typical values: α =0.95

From Signal to Spectrum: Fourier Transform

• Definition

$$F^{(m)}(e^{i\omega}) = \sum_{n=-\infty}^{\infty} f_n w_{m-n} e^{-i\omega n}$$

w_n: window function

 ω : frequency times 2π

Example: putting a rectangular on a speech signal

A Simple Example for Fourier Transform

→ Maple script "DFT.mw"

Fourier Transform in Practice

- Use "Fast Fourier Transform" (FFT)
- Requires number of samples N to be power of 2 (e.g. N=256)
- Code available
- Complexity N log(N)

Established Window Functions

- Use to get sharper peaks
- Rectangular window: $w_n^R = 1$
- Generalized Hamming Window:

$$w_n^H = (1 - \alpha) - \alpha \cos(\frac{2\pi n}{N - 1})$$
 (\alpha = 0.54 : standard Hamming window)

- Gauss window: $w_n^G = e^{-0.5(\frac{n-N/2}{3N/2})^2}$
- Parabola window: $w_n^P = 4\frac{n}{N}(1-\frac{n}{N})$

$$n=0...N-1$$

•Window functions vanish outside this interval

Rewrite of Fourier Transform

• Definition:

$$F^{(m)}(e^{i\omega}) = \sum_{n=-\infty}^{\infty} f_n w_{m-n} e^{-i\omega n}$$

- Window functions vanish outside the interval n=0...N-1
- Define $\omega = 2\pi v \frac{1}{N}$

$$F_{v}^{(m)} = \sum_{n=0}^{N-1} f_{m-n} w_{n} e^{-i2\pi v \frac{n}{N}}$$

Example for ö

Spectrogram

- Calculate a spectrum for any point in time
- Code the local intensity: color/grey scale

Spectrogram

http://www.wilhelm-kurz-software.de/dynaplot/applicationnotes/spectrogram.htm

Use praat to generate a Spectrogram

- Praat: software for doing phonetics by computer
- Written by: Paul Boersma and David Weenink
- quite powerful: spectrograms, formants, pitch, ...
- Download: http://www.fon.hum.uva.nl/praat/

Use praat to generate a Spectrogram

 \mapsto demo

Smoothing the Spectrogram: Filterbank

- Idea: imitate ear
 - Do an average over neighboring frequencies
 - Scale the frequencies according to the mel or the Bark scale
 - → Reduction from 256 Fourier coefficients to 24 outputs of a filterbank

Example of a Filterbank

Filterbank

- Spacing of center frequency:
 - According to mel scale:

$$Mel(f) = 2595 \log_{10}(1 + \frac{f}{700})$$

- Low frequency cut off:
 - E.g. 300 Hz (for telephone speech)
- High frequency cut off:
 - E.g. 3400 Hz (for telephone speech)
- Different settings for e.g. head set connected PC

Vocal Tract Length Normalization

• Idea:

- Average position of formants depends on length of vocal tract
- \mapsto varying position of frequencies of filter bank
- A kind of speaker adaptation

Vocal Tract Length Normalization: Frequency Warping

Training the Warping Factor

- Issue: how to scale for a specific speaker
- Slow version:
 - Use 11 different warping factors
 - Do speech recognition with all of them
 - Pick the best one
- Oldest approach
- Not very efficient
- Improvement: 10% less recognition errors

From Spectrum to Cepstrum

- Name: swapping of letters
- Idea: separate out the convolutional contribution
- Useful as a preparation to remove channel distortions (e.g. telephone)
- Cepstral mean subtraction (CMS)

Definition "Cepstrum"

Math for Cepstrum

- e_n: original signal (e.g. excitation from glotis)
- f_n: measured signal
- h_n: impulse response of channel (e.g. vocal tract)

$$f_n = \sum_{n = -\infty}^{\infty} h_{m-n} e_n$$

Math for Cepstrum

• Apply Fourier transform *F*

$$\mathcal{F}\{f_n\} = \mathcal{F}\{\sum_{n=-\infty}^{\infty} h_{m-n}e_n\}$$

• Use convolution theorem

$$F\{f_n\} = F\{h_n\}F\{e_n\}$$

Math for Cepstrum

Apply logarithm

$$\log(F\{f_n\}) = \log(F\{h_n\}) + \log(F\{e_n\})$$

• Impulse response and excitation now separated

Cepstrum: do discrete cosine transform after log

• Discrete cosine transform:

$$c_0^{(m)} = \sqrt{2/N} \sum_{v=0}^{N/2-1} \log(F_v^{(m)})$$

$$c_q^{(m)} = \sqrt{4/N} \sum_{\nu=0}^{N/2-1} \log(F_{\nu}^{(m)}) \cos(\frac{\pi q(2\nu+1)}{N})$$

Use of Cepstrum I: Identify Excitation Frequency of Glotis

From: Schuckat-Talamazzini

Dynamic Features

- Spectrum captures local aspects of speech
- Window size 25 ms
- Capture slow changes in spectrum
- Other name: delta features

Dynamic Features

- Calculate first and second derivatives
- Naïve approach to first derivative
 - Continuous function $\frac{df(t)}{dt} \approx \frac{f(t + \Delta t) f(t \Delta t)}{2\Delta t}$
 - Time discrete sampling $\frac{df(t_m)}{dt} \approx \frac{f(t_{m+\Delta}) f(t_{m-\Delta})}{2\Delta + 1}$

Difference/Regression

Regression Formula

$$\frac{df(t)}{dt} = \frac{\sum_{i=1}^{M} i(f(t_{m+i}) - f(t_{m-i}))}{\sum_{i=1}^{M} i^{2}}$$

•Check M=1

Dynamic Features

- Invented by Furui 1981
- Standard in any modern ASR system

- Alternative:
 - Linear mapping of neighboring feature vectors
- Issue:
 - Dimension of feature vectors

Linear Discriminant Analysis

- Method to decrease size of feature vector
- Maximize severability of class regions
- Linear transform of feature vectors
- More: later in the lecture

Complete Pipeline for Mel-Frequency Cepstral Coefficients (MFCC)

Alternative Feature Extraction Methods

- LP-Cepstrum (LP=linear prediction)
 - Derived from speech coding
 - No longer much in use
- PLP (=Perceptual linear prediction)
 - For certain applications popular
 - Claim: mode noise robust than MFCCs
 - Main change: us $|.|^{1/3}$ instead of log in MFCC

Summary

- Classical "plain vanilla" feature extraction: Mel-Frequency Cepstral Coefficients
- Main deficiency: not very noise robust
- Used in
 - Speech Recognition
 - Speaker Recognition
 - Music genre classification

