エミッタフォロアー

- ●コレクタ共通回路の別名
- ●ベースの電位にエミッタの電位が追従(follow)
- $v_{out}(t)$ が正の範囲で $v_{out}(t) = v_{in}(t) V_{BE}$
 - *V_{BE}*は0.6~0.8Vくらい
- ●増幅率(入出力交流成分の比)
 - ■電圧増幅率1
 - ■電流増幅率 β +1(≒β)

電界効果トランジスタ (FET)

- ●電圧で制御
 - ■接合トランジスタは電流で制御
- ●ソースS, ゲートG, ドレインDの3端子
- ●種類
 - ■接合型FET
 - MOSFET (金属酸化膜型FET)
 - ◆Depletion型
 - ◆エンハンスメント型☜
 - □ディジタル回路で主流

MOSFET

- ●n型の原理
 - ■絶縁体がキャパシタとなる
 - G-S間の電圧V_{GS}= 0
 - → n->pの部分で電流は流れない
 - G-S間の電圧V_{GS} > 0
 - ◆p型の部分が-に帯電
 - ●電流が流れる通路ができる□通路をチャネルとよぶ
- ●p型の原理
 - ■n型の場合と,正負が逆

等価回路

MOSFETを用いたスイッチ

- ●簡易的なスイッチ回路
- ●n型
 - v_{in}=0 → トランジスタ OFF (電流ながれない)
 - v_{in}= 大きい → トランジスタ ON
- p型
 - $v_{in}=V_{DD} \rightarrow OFF$
 - V_{in} = 小さい \rightarrow ON

MOSFETによる論理ゲート

- ●nMOSだけ、あるいはpMOSだけでも実現はできる
- ●問題
 - ■大きい抵抗をICに作るのが困難
 - ◆別のトランジスタを抵抗として 使う方式もある
 - ■出力できる電圧の幅がV_{DD}より狭い
 - ■消費電力が大きい

CMOS (Complementary MOS)

- ●p型とn型のMOSFETを論理ゲート等で相補的に利用する方式
 - 多くのLSIで利用
- ●回路記号
 - ソースとドレインを区別しない
 - ただし, ソースの接続先を限定
 - ◆pMOS: V_{DD}に接続
 - ◆nMOS: GNDに接続

CMOS論理ゲート: NOT

CMOS論理ゲート: NAND

CMOS論理ゲート: NAND

 \blacksquare IN1 = IN2 = V_{DD}

■ IN1 = 0, IN2 = V_{DD}

