平面向量与三角形四心的交汇

一、四心的概念介绍

- (1) 重心——中线的交点:重心将中线长度分成2:1;
- (2) 垂心——高线的交点:高线与对应边垂直;
- (3) 内心——角平分线的交点(内切圆的圆心): 角平分线上的任意点到角两边的距离相等;
- (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合

(1) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{O} \Leftrightarrow O \not\in \Delta ABC$ 的重心.

证法 1:设 $O(x, y), A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0} \Leftrightarrow \begin{cases} (x_1 - x) + (x_2 - x) + (x_3 - x) = 0 \\ (y_1 - y) + (y_2 - y) + (y_3 - y) = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{x_1 + x_2 + x_3}{3} \\ y = \frac{y_1 + y_2 + y_3}{3} \end{cases} \Leftrightarrow O \not\equiv \Delta ABC$$

的重心.

证法 2:如图

$$\therefore \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

$$=\overrightarrow{OA} + 2\overrightarrow{OD} = \overrightarrow{0}$$

$$\overrightarrow{AO} = 2\overrightarrow{OD}$$

$$\therefore A \setminus O \setminus D$$
 三点共线,且 $O \cap AD$

为2:1

- $\therefore O \in \Delta ABC$ 的重心
- (2) $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OC} \cdot \overrightarrow{OA} \Leftrightarrow O$ 为 $\triangle ABC$ 的垂心.

证明:如图所示 O 是三角形 ABC 的垂心,BE 垂直 AC,AD 垂直 BC, D、E 是垂

$$\not\exists E. \overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} \iff \overrightarrow{OB}(\overrightarrow{OA} - \overrightarrow{OC}) = \overrightarrow{OB} \cdot \overrightarrow{CA} = 0$$

$$\Leftrightarrow \overrightarrow{OB} \perp \overrightarrow{AC}$$

同理
$$\overrightarrow{OA} \perp \overrightarrow{BC}$$
 , $\overrightarrow{OC} \perp \overrightarrow{AB}$

 $\Leftrightarrow O$ 为 $\triangle ABC$ 的垂心

证明:
$$\because \frac{\overrightarrow{AB}}{c} \setminus \frac{\overrightarrow{AC}}{b}$$
 分别为 $\overrightarrow{AB} \setminus \overrightarrow{AC}$ 方向上的单位向量,

$$\therefore \frac{\overrightarrow{AB}}{c} + \frac{\overrightarrow{AC}}{b}$$
 平分 $\angle BAC$,

$$\therefore \overrightarrow{AO} = \lambda \left(\frac{\overrightarrow{AB}}{c} + \frac{\overrightarrow{AC}}{b} \right), \, \diamondsuit \lambda = \frac{bc}{a+b+c}$$

$$\therefore \overrightarrow{AO} = \frac{bc}{a+b+c} \left(\frac{\overrightarrow{AB}}{c} + \frac{\overrightarrow{AC}}{b} \right)$$

化简得 $(a+b+c)\overrightarrow{OA}+b\overrightarrow{AB}+c\overrightarrow{AC}=\overrightarrow{0}$

$$\therefore a\overrightarrow{OA} + b\overrightarrow{OB} + c\overrightarrow{OC} = \vec{0}$$

(4)
$$|\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}| \Leftrightarrow O$$
为 $\triangle ABC$ 的外心。

三、典型例题:

例 1: O是平面上一定点, $A \setminus B \setminus C$ 是平面上不共线的三个点,动点 P 满足 $\overrightarrow{OP} = \overrightarrow{OA} + \lambda (\overrightarrow{AB} + \overrightarrow{AC})$,

 $\lambda \in [0,+\infty)$,则点 P 的轨迹—定通过 ΔABC 的 (

- A.外心
- B . 内心 C . 重心

例 2: O 是平面上一定点,A、B、C 是平面上不共线的三个点,动点 P 满足 $\overrightarrow{OP} = \overrightarrow{OA} + \lambda (\frac{AB}{|\overrightarrow{AB}|} + \frac{AC}{|\overrightarrow{AC}|})$,

 $\lambda \in [0,+\infty)$,则点 P 的轨迹一定通过 ΔABC 的 ()

- A . 外心 B . 内心 C . 重心 D . 垂心

例 3:10 是平面上一定点, $A \setminus B \setminus C$ 是平面上不共线的三个点,动点 P 满足

$$\overrightarrow{OP} = \overrightarrow{OA} + \lambda (\frac{\overrightarrow{AB}}{|\overrightarrow{AB}| c \text{ o } B} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}| c \text{ o } C}) \text{ , } \lambda \in [0, +\infty) \text{ , } 则点 P 的轨迹—定通过 ΔABC 的 ()$$

- A.外心
- B. 内心

2) 已知 O 是平面上的一定点, A、B、C 是平面上不共线的三个点, 动点 P 满足

$$\overrightarrow{OP} = \overrightarrow{OA} + \lambda (\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|\sin B} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|\sin C})$$
 , $\lambda \in [0, +\infty)$,则动点 P 的轨迹一定通过 ABC 的()

- A. 重心
- B. 垂心
- C. 外心
- D. 内心

3)已知 O 是平面上的一定点,A、B、C 是平面上不共线的三个点,动点 P 满足

$$\overrightarrow{OP} = \frac{\overrightarrow{OB} + \overrightarrow{OC}}{2} + \lambda (\frac{\overrightarrow{AB}}{|\overrightarrow{AB}| \cos B} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}| \cos C}), \ \lambda \in [0, +\infty), \ \text{则动点 P 的轨迹—定通过^ABC 的(})$$

- B. 垂心
- C. 外心

例 4、已知向量 $\overrightarrow{OP_1}, \overrightarrow{OP_2}, \overrightarrow{OP_3}$ 满足条件 $\overrightarrow{OP_1} + \overrightarrow{OP_2} + \overrightarrow{OP_3} = \overrightarrow{0}$, $|\overrightarrow{OP_1}| = |\overrightarrow{OP_2}| = |\overrightarrow{OP_3}| = 1$, 求证: $\triangle P_1 P_2 P_3$ 是正三角形.

例 5、 ΔABC 的外接圆的圆心为 O,两条边上的高的交点为 H, $\overrightarrow{OH}=m(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})$,则实数 m = ______.

例 6、点 O 是三角形 ABC 所在平面内的一点,满足 $\overrightarrow{OA} \bullet \overrightarrow{OB} = \overrightarrow{OB} \bullet \overrightarrow{OC} = \overrightarrow{OC} \bullet \overrightarrow{OA}$,则点 O 是 ΔABC 的().

A . 三个内角的角平分线的交点

B. 三条边的垂直平分线的交点

C. 三条中线的交点

D . 三条高的交点

例 7 在 \triangle ABC 内求一点 P ,使 $AP^2 + BP^2 + CP^2$ 最小 .

例 8 已知O为 \triangle ABC所在平面内一点,满足 $|\overrightarrow{OA}|^2 + |\overrightarrow{BC}|^2 = |\overrightarrow{OB}|^2 + |\overrightarrow{CA}|^2 = |\overrightarrow{OC}|^2 + |\overrightarrow{AB}|^2$,则O为 \triangle ABC的 心.

例 9.已知 O 是 $^{\triangle}$ ABC 所在平面上的一点,若 $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OC} \cdot \overrightarrow{OA}$,则 O 点是 $^{\triangle}$ ABC 的()

A. 外心

- B. 内心
- C. 重心
- D. 垂心

例 10 .已知 O 为 ABC 所在平面内一点,满足 $|\overrightarrow{OA}|^2 + |\overrightarrow{BC}|^2 = |\overrightarrow{OB}|^2 + |\overrightarrow{CA}|^2 = |\overrightarrow{OC}|^2 + |\overrightarrow{AB}|^2$,则 O 点是 ABC 的()

A. 垂心

- B. 重心
- C. 内心
- D. 外心

例 11 已知 O 是 $^{\triangle}$ ABC 所在平面上的一点,若 $(\overrightarrow{OA} + \overrightarrow{OB}) \cdot \overrightarrow{AB} = (\overrightarrow{OB} + \overrightarrow{OC}) \cdot \overrightarrow{BC} = (\overrightarrow{OC} + \overrightarrow{OA}) \cdot \overrightarrow{CA} = 0$,则 O 点是 $^{\triangle}$ ABC 的()

A. 外心

- B. 内心
- C. 重心
- D. 垂心

例 12:已知 O 是 $^{\triangle}$ ABC 所在平面上的一点,若 $a\overrightarrow{OA}+b\overrightarrow{OB}+c\overrightarrow{OC}=\mathbf{0}$,则 O 点是 $^{\triangle}$ ABC 的()

A. 外心

- B. 内心
- C. 重心
- D. 垂心

例 13:已知 O 是 $^{\triangle}$ ABC 所在平面上的一点,若 $\overrightarrow{PO} = \frac{a\overrightarrow{PA} + b\overrightarrow{PB} + c\overrightarrow{PC}}{a + b + c}$ (其中 P 是 $^{\triangle}$ ABC 所在平面内任意一

点),则O点是△ABC的()

- A. 外心
- B. 内心
- C. 重心
- D. 垂心

四、配套练习:

1. 已知 $\triangle ABC$ 三个顶点 A、B、C 及平面内一点 P ,满足 \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = $\overrightarrow{0}$,若实数 λ 满足:

 $\overrightarrow{AB} + \overrightarrow{AC} = \lambda \overrightarrow{AP}$, $\mathbb{M} \lambda$ 的值为 () A.2 B. $\frac{3}{2}$ C.3 D.6 2. 若 $\triangle ABC$ 的外接圆的圆心为 O,半径为 1, $\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,则 $\overrightarrow{OA}\cdot\overrightarrow{OB}=($) B.0 C.1 D. $-\frac{1}{2}$ 3.点O在 ΔABC 内部且满足 $\overrightarrow{OA} + 2\overrightarrow{OB} + 2\overrightarrow{OC} = \overrightarrow{0}$,则 ΔABC 面积与凹四边形ABOC面积之比是(A.0 B. $\frac{3}{2}$ C. $\frac{5}{4}$ D. $\frac{4}{3}$ 4. $\triangle ABC$ 的外接圆的圆心为 O,若 $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$,则 $H \in \triangle ABC$ 的() A. 外心 B . 内心 C . 重心 5 . O 是平面上一定点 , A 、 B 、 C 是平面上不共线的三个点 , 若 $\overrightarrow{OA}^2 + \overrightarrow{BC}^2 = \overrightarrow{OB}^2$ $+\overrightarrow{CA}^{2} = \overrightarrow{OC}^{2} + \overrightarrow{AB}^{2}$,则O是 ΔABC 的() B . 内心 C.重心 A . 外心 6. $\triangle ABC$ 的外接圆的圆心为 O,两条边上的高的交点为 H, $\overrightarrow{OH} = m(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$, 则实数 m =_____ 7. (06 陕西)已知非零向量 \overrightarrow{AB} 与 \overrightarrow{AC} 满足: $(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}) \bullet \overrightarrow{BC} = 0$ 且 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \bullet \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = -\frac{1}{2}$,则 $^{\triangle}$ ABC为() A. 三边均不相等的三角形 B. 直角三角形 C. 等腰非等边三角形 D . 等边三角形 8. 已知 $\triangle ABC$ 三个顶点 $A \setminus B \setminus C$,若 $\overrightarrow{AB}^2 = \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{CB} + \overrightarrow{BC} \cdot \overrightarrow{CA}$,则 $\triangle ABC$ 为 (A. 等腰三角形 B. 等腰直角三角形 C. 直角三角形 D. 既非等腰又非直角三角形 9.已知 O 是平面上一定点 A、B、C 是平面上不共线的三个点 动点 P 满足 $\overrightarrow{OP} = \overrightarrow{OA} + \lambda (\overrightarrow{AB} + \overrightarrow{AC})$, $\lambda \in [0, +\infty)$. 则 P 点的轨迹一定通过△ABC 的() C. 重心 A. 外心 B. 内心 D. 垂心 10.已知 O 是 \triangle ABC 所在平面上的一点,若 $OA + OB + OC = \mathbf{0}$,则 O 点是 \triangle ABC 的() A. 外心 C. 重心 B. 内心 D. 垂心 11.已知 O 是 $^{\triangle}$ ABC 所在平面上的一点,若 $\overrightarrow{PO} = \frac{1}{3}(\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC})$ (其中 P 为平面上任意一点),则 O 点是 $^{\triangle}$ ABC 的(B. 内心 C. 重心 A. 外心 D. 垂心