Definition A rule δ is a minimax rule if $\max_{\theta} R(\theta, \delta) \leq \max_{\theta} R(\theta, \delta')$ for any other rule δ' . It minimizes the maximum risk.

Since minimax minimizes the maximum risk (ie), the loss averaged over all possible data $X \sim f$) the choice of rule is not influenced by the actual data X = x (though given the rule δ , the action $\delta(x)$ is data-dependent). It makes sense when the maximum loss scenario must be avoided, but can can lead to poor performance on average.

Definition Suppose we have a prior probability $\pi=\pi(\theta)$ for θ . Denote by

$$r(\pi, \delta) = \int R(\theta, \delta) \pi(\theta) d\theta$$

the Bayes risk of rule δ . A Bayes rule is a rule that minimizes the Bayes risk.

Let $\pi(\theta|x) = \frac{L(x;\theta)\pi(\theta)}{h(x)}$ denote the posterior following from likelihood L and prior π . Denote by $\int L_S(\theta,\delta(\mathbf{x}))\pi(\theta|x)d\theta$ the expected posterior loss.

A Bayes rule minimizes the EPL.

$$\int R(\theta, \delta) \pi(\theta) d\theta = \int \int L_S(\theta, \delta(x)) L(\theta; x) \pi(\theta) dx d\theta$$

$$= \int \int L_S(\theta, \delta(x)) \pi(\theta|x) h(x) dx d\theta$$

$$= \int h(x) \left(\int L_S(\theta, \delta(x)) \pi(\theta|x) d\theta \right) dx$$

That is for each x we choose $\delta(x)$ to minimize the integral

$$\int L_S(\theta, \delta(\mathbf{x})) \pi(\theta|x) d\theta$$

Bayes rules for Point estimation

Zero-one loss Minimize

$$\int_{-\infty}^{\infty} \pi(\theta|x) L_{S}(\theta, \widehat{\theta}) d\theta = \int_{\widehat{\theta}+b}^{\infty} \pi(\theta|x) d\theta + \int_{-\infty}^{\widehat{\theta}-b} \pi(\theta|x) d\theta$$
$$= 1 - \int_{\widehat{\theta}-b}^{\widehat{\theta}+b} \pi(\theta|x) d\theta$$

That is we want to maximize

$$\int_{\widehat{\theta}-b}^{\widehat{\theta}+b} \pi(\theta|x)d\theta$$

If $\pi(\theta|x)$ is unimodal the maximum is attained by choosing $\widehat{\theta}$ to be the mid-point of the interval of length 2b for which $\pi(\theta|b)$ has the same value at both ends.

If $\pi(\theta|x)$ is unimodal and symmetric, the optimal $\widehat{\theta}$ is the median (equal to the mean and mode) of the posterior distribution. As $b \to 0$, $\widehat{\theta} \to$ the global mode of the posterior distribution.

Absolute error loss

$$\int |\widehat{\theta} - \theta| \pi(\theta|x) d\theta = \int_{-\infty}^{\widehat{\theta}} (\widehat{\theta} - \theta) \pi(\theta|x) d\theta + \int_{\widehat{\theta}}^{\infty} (\theta - \widehat{\theta}) \pi(\theta|x) d\theta.$$

Differentiate wrt $\widehat{\theta}$ and equate to zero.

$$\int_{-\infty}^{\widehat{\theta}} \pi(\theta|x)d\theta - \int_{\widehat{\theta}}^{\infty} \pi(\theta|x)d\theta = 0$$

That is, the optimal $\widehat{\theta}$ is the median of the posterior distribution.

Quadratic loss

Minimize

$$\mathbb{E}_{\theta|\mathbf{x}}[(\widehat{\theta} - \theta)^2] = [(\widehat{\theta} - \overline{\theta})^2] + \mathbb{E}[(\theta - \overline{\theta})^2]$$

where $\bar{\theta}$ is the posterior mean of θ . Note that $\hat{\theta}$ and $\bar{\theta}$ are constants in the posterior distribution of θ so that $(\hat{\theta} - \bar{\theta})\mathbb{E}(\theta - \bar{\theta}) = 0$. The Quadratic loss function is minimized when $\hat{\theta} = \bar{\theta}$, the posterior mean.

Example

X is Binomial (n,θ) , and the prior $\pi(\theta)$ is a Beta (α,β) distribution.

$$\mathbb{E}(\theta) = \frac{\alpha}{\alpha + \beta}$$

The distribution is unimodal if $\alpha, \beta > 1$ with mode

$$\frac{\alpha - 1}{\alpha + \beta - 2}.$$

The posterior distribution of $\theta \mid x$ is Beta $(\alpha + x, \beta + n - x)$. With zero-one loss and $b \to 0$ the Bayes estimator is $(\alpha + x - 1)/(\alpha + \beta + n - 2)$. For a quadratic loss function, the Bayes estimator is $(\alpha + x)/(\alpha + \beta + n)$, and for an absolute error loss function is the median of the posterior loss function.

Finding minimax rules

If δ is a Bayes rule for prior π , with $r(\pi, \delta) = C$, and δ_0 is a rule for which $\max_{\theta} R(\theta, \delta_0) = C$, then δ_0 is minimax.

Proof: (Y&S Ch 2) if for some other rule δ' , $\max_{\theta} R(\theta, \delta') = C - \epsilon$ for some $\epsilon > 0$ (so δ_0 is not minimax), then $r(\pi, \delta') \leq C - \epsilon$ (the mean is less than or equal the maximum) and $r(\pi, \delta') < r(\pi, \delta)$ so δ is not the Bayes rule for π , a contradiction.

[This is an informal treatment which assumes the min and max exist - see Y&S Ch 2 Sec 2.6]

If δ is a Bayes rule for prior π with the property that $R(\theta, \delta)$ does not depend on θ , then δ is minimax.

Proof: (Y&S Ch 2) Let $R(\theta, \delta) = C$ (no θ dependence). For δ' as above, $r(\pi, \delta') \leq C - \epsilon$. But $r(\pi, \delta) = C$ so δ is not the Bayes rule for π , a contradiction.

This result is useful, as it gives an approach to finding minmax rules. Bayes rules are sometimes easy to compute, so if we find a prior that yields a Bayes rule with constant risk for all θ we have the minimax rule.

Bayes rules are 'nearly always' admissible (see GJJ Sec 6.2, Y&S Sec 2.7).

Exercise Suppose θ takes one of K possible values, with K finite, and π is a prior that puts non-zero probability on each possible θ . Show that if δ is a Bayes rule with respect to π , then δ is admissible.

Application: finding a minimax estimator for quadratic loss.

The risk function is

$$\begin{split} \mathbb{E}_{X|\theta}[(\widehat{\theta}-\theta)^2] &= [\mathrm{Bias}(\widehat{\theta})]^2 + \mathrm{Var}[\widehat{\theta}] \\ &= \left[\theta - \mathbb{E}\left(\frac{\alpha+X}{\alpha+\beta+n}\right)\right]^2 + \mathrm{Var}\left[\frac{\alpha+X}{\alpha+\beta+n}\right] \\ &= \left[\theta - \left(\frac{\alpha+n\theta}{\alpha+\beta+n}\right)\right]^2 + \frac{n\theta(1-\theta)}{(\alpha+\beta+n)^2} \\ &= \frac{[\theta(\alpha+\beta)-\alpha]^2 + n\theta(1-\theta)}{[\alpha+\beta+n]^2} \end{split}$$

The Bayes estimator with constant risk is minimax, for this to hold coefficients of θ and θ^2 in the numerator must be zero. That is $\alpha=\beta=\sqrt{n}/2$, so the minimax estimator using quadratic loss is $(\alpha+x)/(\alpha+\beta+n)=(x+\sqrt{n}/2)/(n+\sqrt{n})$.

Hypothesis testing with loss functions

 $X_i \sim f(x;\theta)$ iid for i=1,2,...,n: test $H_0:\theta=\theta_0$ against $H_1:\theta=\theta_1$.

Decision rule is δ_C when we use a critical region C so $\delta_C(x) = H_1$ if $x \in C$ and otherwise $\delta_C(x) = H_0$.

Loss function:

$$L_S(\theta, \delta_C(x)) = \begin{cases} a & \theta = \theta_0, x \in C \\ b & \theta = \theta_1, x \notin C \end{cases}$$

so the loss for Type I error is a (H_0 holds and we accept H_1) and the loss for Type II error is b (H_1 holds and we accept H_0).

The risk function for the rule δ_C is

$$R(\theta_0; \delta_C) = \int L_S(\theta_0, \delta_C(x)) f(x; \theta_0) dx$$
$$= \int a \mathbb{I}(x \in C) f(x; \theta_0) dx$$
$$= a\alpha$$

as $\alpha = P(X \in C|H_0)$ is the probability for Type I error, and

$$R(\theta_1; \delta_C) = b\beta,$$

as $\beta = P(X \notin C|H_1)$ is the probability for a Type II error.

Calculate the Bayes risk $r(\pi, \delta_C)$. Let $\pi(\theta_0) = p_0$ and $\pi(\theta_2) = p_1$ be the prior probabilities that H_0 and H_1 hold. The Bayes risk is

$$r(\pi, \delta_C) = \sum_{\theta \in \{\theta_0, \theta_1\}} R(\theta; \delta_C) \pi(\theta)$$
$$= p_0 a \alpha(C) + p_1 b \beta(C).$$

The Bayes test chooses the critical region C to minimize the Bayes risk. Notice that, as we vary C, the levels α and β vary, so the level of the Bayes test is determined from the requirement that C minimizes the Bayes risk.

The Neyman-Pearson lemma states that the best test of size α of H_0 vs H_1 is a likelihood ratio test with critical region

$$C' = \left\{ x; \frac{L(\theta_1; \mathbf{x})}{L(\theta_0; \mathbf{x})} \ge A \right\}$$

for some constant A > 0 chosen so that $P(X \in C'|H_0) = \alpha$.

The following theorem tells us how to choose the critical region to minimize the Bayes risk, in the same way that the Neyman-Pearson lemma tells us how to maximize the power at fixed size.

Theorem (GJJ p129) the critical region for the Bayes test is the critical region for a LR test with

$$A = \frac{p_0 a}{p_1 b}$$

Every LR test is a Bayes test for some p_0, p_1 .

Example Let X_1,\ldots,X_n be $\mathrm{N}(\mu,\sigma^2)$ with σ^2 known, and we want to test $H_0:\mu=\mu_0$ vs $H_1:\mu=\mu_1$, with $\mu_1>\mu_0$. The critical region for the LR test

$$\frac{L(\theta_1; \mathbf{x})}{L(\theta_0; \mathbf{x})} \ge A$$

becomes

$$\bar{x} \ge \frac{\sigma^2 \log(A)}{n(\mu_1 - \mu_0)} + \frac{1}{2}(\mu_0 + \mu_1) = B(\text{ say})$$

In the classical case we ignore the exact value of B, but in a Bayes test $A=p_0a/(p_1b)$ and we substitute into B. As an example take

$$\mu_0 = 0, \mu_1 = 1, \sigma^2 = 1, n = 4, a = 2, b = 1, p_0 = 1/4, p_1 = 3/4$$

Then the Bayes test has critical region

$$\bar{x} \ge \frac{1}{4}\log(\frac{1}{3} \times \frac{2}{1}) + \frac{1}{2} = \frac{1}{4}\log(\frac{2}{3}) + \frac{1}{2} = 0.399$$

For this test (using the fact that \bar{X} is $N(\mu, 1/4)$)

$$\alpha = P(\bar{X} \ge 0.3999 \mid \mu = 0, \sigma^2/n = 1/4) = 0.212$$

and

$$\beta = P(\bar{X} < 0.3999 \mid \mu = 1, \sigma^2/n = 1/4) = 0.115$$

In a classical approach fixing $\alpha=0.05,\,B=1.645\sqrt{1/4}=0.822,\,$ so

$$\beta = P(\bar{X} < 0.822 \mid \mu = 1, \sigma^2 = 1/4) = 0.363$$

In the Bayes test α has been increased and β decreased.

Stein's paradox and the James-Stein Estimator

Let $X_i \sim N(\mu_i,1), \ i=1,2,...,p$ be jointly independent so we have one data point for each of the p μ_i -parameters. Let $X=(X_1,...,X_p)$ and $\mu=(\mu_1,...,\mu_p)$. The MLE $\hat{\mu}$ for μ is $\hat{\mu}_{MLE}=X$. This estimator is inadmissable for quadratic loss.

This is a paradox which forces us to think about the meaning of admissibility, and the implications of Quadratic Loss.

Proof (of the Stein paradox): Consider the alternative estimator

$$\hat{\mu} = \left(1 - \frac{a}{\sum_i X_i^2}\right) X \quad \text{(the James-Stein estimator)}$$

We will show that if a=p-2 then $R(\mu,\hat{\mu}) < R(\mu,\hat{\mu}_{MLE})$ for every $\mu \in R^n$, so that the MLE is inadmissable in this case.

First, the risk for $\hat{\mu}_{MLE}$ is

$$R(\mu, \hat{\mu}_{MLE}) = \sum_{i=1}^{p} \mathbb{E}(|\mu_{i} - \hat{\mu}_{MLE,i}|^{2})$$

$$= \sum_{i=1}^{p} \mathbb{E}(|\mu_{i} - X_{i}|^{2})$$

$$= p$$

recognizing $Var(X_i) = 1$.

In order to calculate $R(\mu, \hat{\mu})$, it is convenient to use Stein's Lemma, for Normal RV,

$$\mathbb{E}((X_i - \mu)h(X)) = \mathbb{E}\left(\frac{\partial h(X)}{\partial X_i}\right).$$

This can be shown by integrating by parts. Noting

$$\int (x_i - \mu)e^{-(x_i - \mu_i)^2/2} dx = -e^{-(x_i - \mu_i)^2/2}$$

we have

$$\int_{-\infty}^{\infty} (x_i - \mu_i) h(x) e^{-(x_i - \mu_i)^2/2} dx_i = -h(x) e^{-(x_i - \mu_i)^2/2} \Big|_{x_i = -\infty}^{x_i = \infty} + \int_{-\infty}^{\infty} \frac{\partial h(x)}{\partial x_i} e^{-(x_i - \mu_i)^2/2} dx_i$$

The first term is zero if h(x) (for eg) is bounded, giving the lemma.

Now

$$\begin{split} R(\mu,\hat{\mu}) &= \sum_{i=1}^p \mathbb{E}(|\mu_i - \hat{\mu}_i|^2) \quad \text{with} \quad \hat{\mu}_i = \left(1 - \frac{a}{\sum_i X_i^2}\right) X_i \\ \mathbb{E}(|\mu_i - \hat{\mu}_i|^2) &= \mathbb{E}(|\mu_i - X_i|^2) - 2a\mathbb{E}\left(\frac{(X_i - \mu_i)X_i}{\sum_j X_j^2}\right) \\ &+ a^2\mathbb{E}\left(\frac{X_i^2}{(\sum_j X_j^2)^2}\right) \\ \mathbb{E}\left(\frac{(X_i - \mu_i)X_i}{\sum_j X_j^2}\right) &= \mathbb{E}\left(\frac{\partial}{\partial X_i} \frac{X_i}{\sum_j X_j^2}\right) \quad \text{Stein's lemma} \\ &= \mathbb{E}\left(\frac{\sum_j X_j^2 - 2X_i^2}{(\sum_j X_j^2)^2}\right) = \mathbb{E}\left(\frac{1}{\sum_j X_j^2} - 2\frac{X_i^2}{(\sum_j X_j^2)^2}\right) \end{split}$$

Putting the pieces together,

$$\sum_{i=1}^{p} \mathbb{E}(|\mu_{i} - \hat{\mu}_{i}|^{2}) = R(\mu, \hat{\mu}_{MLE}) - (2ap - 4a)\mathbb{E}\left(\frac{1}{\sum_{j} X_{j}^{2}}\right) + \mathbb{E}\left(\frac{1}{\sum_{j} X_{j}^{2}}\right)$$

$$= p - (2ap - 4a - a^{2})\mathbb{E}\left(\frac{1}{\sum_{j} X_{j}^{2}}\right)$$

and this is less than p if $2ap-4a-a^2>0$ and in particular at a=p-2, which minimizes the risk over $a\in R$.

We have shown that the obvious (MLE) estimator is inadmissable, and we do better to use an estimator in which data for different μ_i influence the value at other μ_i . This is surprising, given that the data are independent.

We have not shown that the James Stein estimator is admissible.