Algorithmic problems using Linked Lists

- Find the *n*th node from the end of a SLL.
- Simple approach: go through all elements to count the length of the list. When we know the length, we know at which position the nth node from the end is. Start again from the beginning and go to that position.
- Can we do it in one single pass over the list?
- We need to use two auxiliary variables, two nodes, both set to the first node of the list. At the beginning of the algorithm we will go forward n-1 times with one of the nodes. Once the first node is at the n^{th} position, we move with both nodes in parallel. When the first node gets to the end of the list, the second one is at the n^{th} element from the end of the list.

• We want to find the 3rd node from the end (the one with information 39)

N-th node from the end of the list

```
function findNthFromEnd (sll, n) is:
//pre: sll is a SLL, n is an integer number
//post: the n-th node from the end of the list or NIL
   oneNode ← sll head
   secondNode ← sll.head
   position \leftarrow 1
   while position < n and oneNode \neq NIL execute
      oneNode \leftarrow [oneNode].next
      position \leftarrow position + 1
   end-while
   if oneNode = NII then
      findNthFromEnd \leftarrow NIL
   else
   //continued on the next slide...
```

N-th node from the end of the list

```
while [oneNode].next ≠ NIL execute
    oneNode ← [oneNode].next
    secondNode ← [secondNode].next
    end-while
    findNthFromEnd ← secondNode
    end-if
end-function
```

Is this approach really better than the simple one (does it make fewer steps)?

- Write a subalgorithm which rotates a singly linked list (moves the first element to become the last one).
 - We have to do two things: remove the first node and then attach it after the last one.
 - Special cases:
 - an empty list
 - list with a single node

```
subalgorithm rotate(sll) is:
  if NOT (sll.head = NIL OR [sll.head].next = NIL) then
     first ← sll.head //save the first node
     sll.head ← [sll.head].next remove the first node
     current ← sll.head
     while [current].next \neq NIL execute
       current \leftarrow [current].next
     end-while
     [current].next \leftarrow first
     [first].next \leftarrow NIL
     //make sure it does not point back to the new head node
  end-if
end-subalgorithm
```

• Complexity: $\Theta(n)$

Think about it

- Given the first node of a SLL, determine whether the list ends with a node that has NIL as next or whether it ends with a cycle (the last node contains the address of a previous node as next).
- If the list from the previous problems contains a cycle, find the length of the cycle.
- Find if a SLL has an even or an odd number of elements, without counting the number of nodes in any way.
- Reverse a SLL non-recursively in linear time using $\Theta(1)$ extra storage.