Lab 1

```
// This code is mostly complete. You need to just fill in the lines where it says
// "... your code goes here"
module proc(DIN, Resetn, Clock, Run, Done);
        input [15:0] DIN;
        input Resetn, Clock, Run;
        output Done;
        reg [15:0] BusWires;
        reg [3:0] Sel; // BusWires selector
        reg [0:7] Rin;
        reg [15:0] Sum;
        reg IRin, Done, Ain, Gin, AddSub;
        reg [2:0] Tstep_Q, Tstep_D;
        wire [2:0] III, rX, rY; // instruction opcode and register operands
        wire [0:7] Xreg;
        wire [15:0] R0, R1, R2, R3, R4, R5, R6, R7, A;
        wire [15:0] G;
        wire [15:0] IR;
        wire IMM;
        assign III = IR[15:13];
        assign IMM = IR[12];
        assign rX = IR[11:9];
        assign rY = IR[2:0];
        dec3to8 decX (rX, Xreg);
        parameter T0 = 3'b000, T1 = 3'b001, T2 = 3'b010, T3 = 3'b011;
        // Control FSM state table
        always @(Tstep_Q, Run, Done)
        case (Tstep_Q)
        T0: // data is loaded into IR in this time step
        if (\simRun) Tstep_D = T0;
        else Tstep_D = T1;
        T1: // some instructions end after this time step
        if (Done) Tstep_D = T0;
        else Tstep_D = T2;
        T2: // always go to T3 after this
        Tstep_D = T3;
        T3: // instructions end after this time step
        Tstep_D = T0;
        default: Tstep_D = 3'bxxx;
        endcase
        /* OPCODE format: III M XXX DDDDDDDDD, where
          III = instruction, M = Immediate, XXX = rX.
        * If M = 0, DDDDDDDDD = 000000YYY = rY
            If M = 1, DDDDDDDDD = #D is the immediate operand
```

```
* III M Instruction Description
* 000 0: mv rX,rY
                       rX <- rY
* 000 1: mv rX,#D rX <- D (0 extended)
* 001 1: mvt rX,#D rX <- D << 8
* 010 0: add rX,rY
                     rX <- rX + rY
* 010 1: add rX,#D rX <- rX + D
* 011 1: sub rX,#D
                       rX <- rX - D */
parameter mv = 3'b000, mvt = 3'b001, add = 3'b010, sub = 3'b011;
// selectors for the BusWires multiplexer
parameter Sel_R0 = 4'b0000, Sel_R1 = 4'b0001, Sel_R2 = 4'b0010, Sel_R3 = 4'b0011,
Sel_R4 = 4'b0100, Sel_R5 = 4'b0101, Sel_R6 = 4'b0110, Sel_R7 = 4'b0111, Sel_G = 4'b1000,
Sel_D /* immediate data */ = 4'b1001, Sel_D8 /* immediate data << 8 */ = 4'b1010;
// Control FSM outputs
always @(*) begin
// default values for control signals
Done = 1'b0; Ain = 1'b0; Gin = 1'b0; AddSub = 1'b0; IRin = 1'b0; Rin = 8'b0;
Sel = 4'bxxxx;
case (Tstep_Q)
T0: // store instruction on DIN in IR
IRin = 1'b1;
T1: // define signals in T1
case (III)
       mv: begin
       // ... your code goes here
                                       if (IMM == 1'b1)
                                            begin
                                                  Sel = Sel_D;
                                            end
                                       else if (IMM == 0)
                                            begin
                                                  Sel = \{1'b0, rY\};
                                            end
                                            Rin = Xreg;
                                            Done = 1'b1;
       end
       mvt: begin
       // ... your code goes here
                                       Sel = Sel_D8;
                                       Rin = Xreg;
                                       Done = 1'b1;
       end
       add, sub: begin
       // ... your code goes here
                                       if(III == add)
```

```
begin
                                                      if (IMM == 1'b1)
                                                             begin
                                                                   Sel = Sel_D8;
                                                             end
                                                      else if (IMM == 0)
                                                             begin
                                                                   Sel = \{1'b0, rY\};
                                                             end
                                                end
                                          else if(III == sub)
                                                begin
                                                      Sel = \{1'b0, rX\};
                                                end
                                                Ain = 1'b1;
        end
        default:;
endcase
T2: // define signals T2
case (III)
        add: begin
        // ... your code goes here
                                          if (IMM == 1'b1)
                                                begin
                                                      Sel = Sel_D;
                                                end
                                          else if (IMM == 0)
                                                begin
                                                      Sel = \{1'b0, rY\};
                                                end
                                          AddSub = 1'b0;
                                          Gin = 1'b1;
        end
        sub: begin
        // ... your code goes here
                                          if (IMM == 1'b1)
                                                begin
                                                      Sel = Sel_D;
                                                end
                                          else if (IMM == 0)
                                                begin
                                                      Sel = \{1'b0, rY\};
```

```
AddSub = 1'b1;
                                           Gin = 1'b1;
          end
          default:;
  endcase
  T3: // define T3
  case (III)
          add, sub: begin
                               // ... your code goes here
                                Sel = Sel_G;
                                Rin = Xreg;
          end
          default:;
  endcase
  default:;
  endcase
  end
//assign R1 = Rin;
//assign R0 = Xreg;
//assign A = Sel;
//assign G = Rin;
  // Control FSM flip-flops
  always @(posedge Clock)
  if (!Resetn)
  Tstep_Q <= T0;
  else
  Tstep_Q <= Tstep_D;
  regn reg_0 (BusWires, Rin[0], Clock, R0);
  regn reg_1 (BusWires, Rin[1], Clock, R1);
  regn reg_2 (BusWires, Rin[2], Clock, R2);
  regn reg_3 (BusWires, Rin[3], Clock, R3);
  regn reg_4 (BusWires, Rin[4], Clock, R4);
  regn reg_5 (BusWires, Rin[5], Clock, R5);
  regn reg_6 (BusWires, Rin[6], Clock, R6);
  regn reg_7 (BusWires, Rin[7], Clock, R7);
  regn reg_A (BusWires, Ain, Clock, A);
  regn reg_IR (DIN, IRin, Clock, IR);
  // alu
  always @(*)
  if (!AddSub)
  Sum = A + BusWires;
  else
  Sum = A - BusWires;
```

```
// define the internal processor bus
       always @(*)
       case (Sel)
       Sel_R0: BusWires = R0;
       Sel_R1: BusWires = R1;
       Sel_R2: BusWires = R2;
       Sel_R3: BusWires = R3;
       Sel_R4: BusWires = R4;
       Sel_R5: BusWires = R5;
       Sel_R6: BusWires = R6;
       Sel_R7: BusWires = R7;
       Sel_G: BusWires = G;
       Sel_D: BusWires = {7'b0000000, IR[8:0]};
       Sel_D8: BusWires = {IR[7:0], 8'b00000000};
       the lab document
       endcase
endmodule
module dec3to8(W, Y);
       input [2:0] W;
       output [0:7] Y;
       reg [0:7] Y;
       always @(*)
       case (W)
       3'b000: Y = 8'b10000000;
       3'b001: Y = 8'b01000000;
       3'b010: Y = 8'b00100000;
       3'b011: Y = 8'b00010000;
       3'b100: Y = 8'b00001000;
       3'b101: Y = 8'b00000100;
       3'b110: Y = 8'b00000010;
       3'b111: Y = 8'b00000001;
       endcase
endmodule
module regn(R, Rin, Clock, Q);
       parameter n = 16;
       input [n-1:0] R;
       input Rin, Clock;
       output [n-1:0] Q;
       reg [n-1:0] Q;
       always @(posedge Clock)
       if (Rin)
       Q <= R;
Endmodule
```

regn reg_G (Sum, Gin, Clock, G);

1 1 1	1			*	_				7									
Wayon Dofferilt																		
Mave - Delagir																		
	Msgs																	
A Resetn 1																		
0 CLOCK_50 0																	5	_
♦ Run																		
1 Struction 5201	0000	101c	32ff	H.	22ff	ff			6200	00			5.	5201				
— proc —																		
A Resetn St1																		
♦ Clock St0																	_	
A Run St1																		
1 5201 5201 5201	0000	101c	32ff	H.	, 52ff	f			6200	00			5.	5201				
O Done 0																		
1 ← IR 6200	00	101c		\32ff) 52ff				(6200				\$5201				
⊕ ◆ Tstep_Q 000	000	001	000)	(001	(000	(001	(010	(011	(000	(001	(010	(011	(000	(001	(010	(011	(000	
#-◆ R0 001	001c		001c															
∓ → R1 ffe3	3				(ff00				\\ tttt				\ffe3				(0101	
## A ◆-#							00JJ)) (###				(0100			
#> G ffe3	23							HH.				(ffe3				(0101		
+-<> BusWires xxxx	X	001c		(ff00		(ff00	}00€) (ttt		(ffff) 001c	(ffe3		0100	(0001	(0101		

Wave - Default ==																					
<u>,</u>	Msgs																				
±-♦ KEY	10	(00) 11 00 01	00 (10 (00 (11 00)10 (00 (11 (00)10	0 (11 00) (10 (00) 11 (00) 10 00	(10 00	(10 00	(11 00	(<mark>0</mark>	00 (10	00 (10) 00 j	(11 (00	(10 00	00 (10 (00	(10	00 11 00	0 (10 00	(10)
MS ♦ -±	1xxxxxxxx1	1xxxxxxxx0 1xxxxxxxxx1																			
+-counter	94	(00		02		(03				04					05				90 (
♣ MClock	Sto																				
— broc —																					
♣ PClock	St1																5	5			
A Resetn	St1																				
⇔ Run	St1																				
± ₩	6200		101c		(32ff		\ 52ff				(6200					5201				(0000	
Done 💠	0				5															5	
+-4 inst_mem 6200	6200	(0000) 101c		\32ff		\ 52ff				(6200					5201				(0000		
H-V FSM	001	000	(001	(000	(001	(000	(001	(010	(011	(000	(00)	(010	(011		000	(001	010	(011	000 ((001	(000
± ₹ 80	001c			001c																	
#-> R1	##					0JJ),ttt					ffe3				(0101		