Contrôle 12 décembre 2017 sujet A

Déterminer l'expression des dérivées des fonctions suivantes :

a.
$$f: x \mapsto -7$$

b.
$$g: x \mapsto 4x - 34$$

c.
$$h: x \longmapsto x - \frac{1}{x}$$

c.
$$h: x \longmapsto x - \frac{1}{x}$$
 d. $j: x \longmapsto 2\sqrt{x} + \frac{1}{x}$

1. Ecrire le taux de variation entre les points d'abscisses
$$3$$
 et $3+h$ pour la fonction inverse.

Exercice 3 (4 points)

Déterminer l'expression des dérivées des fonctions suivantes :

a.
$$f: x \mapsto (2x^2 - 1)(4x - 1)$$

a.
$$f: x \mapsto (2x^2-1)(4x-1)$$
 b. $g: x \mapsto (5x^4-x+1)(3-2x^2)$

c.
$$h: x \longmapsto (3-x) \cdot \frac{1}{x}$$

c.
$$h: x \longmapsto (3-x) \cdot \frac{1}{x}$$
 d. $j: x \longmapsto (x^2-3) \cdot \sqrt{x}$

Soit \mathcal{C} la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^2}{12}$.

Soit T la droite d'équation $T:y=-\frac{1}{3}x-\frac{3}{10}.$

T est-elle tangente à la courbe C?

On considère la fonction f définie sur $\mathbb R$ par la relation :

$$f(x) = x^2 - 2 \cdot x - 1$$

On munit le plan d'un repère (O; I; J) orthonormal. On donne ci-dessous la courbe \mathscr{C}_f représentative de f.

On note respectivement (d) et (Δ) les tangentes à la courbe \mathscr{C}_f au point d'abscisse $\frac{1}{2}$ et 2.

- Déterminer les coordonnées des points de la courbe \mathscr{C}_f ayant respectivement $\frac{1}{2}$ et 2 pour abscisse.
- Calculer une expression pour le nombre dérivé f'(x).
- 3. Par le calcul:
 - a. Déterminer les coefficients directeurs des droites (d) et (Δ) .
 - b. Déterminer les équations réduites des droites (d) et (Δ) .

Exercice 6 (4 points)

Déterminer l'expression de la dérivée de chacune des fonctions suivantes :

a.
$$f(x) = \frac{x+1}{3x+1}$$

b.
$$g(x) = \frac{5x+1}{3-2x}$$

c.
$$h(x) = \frac{x^2 + 3x + 1}{2x + 1}$$
 d. $j(x) = \frac{x + 1}{\sqrt{x}}$

$$\mathbf{d.} \ j(x) = \frac{x+1}{\sqrt{x}}$$