目 录

第 1 章 以太网端口配置命令	1-1
1.1 以太网端口配置命令	1-1
1.1.1 broadcast-suppression	1-1
1.1.2 description	1-1
1.1.3 display interface	1-2
1.1.4 display lock-port-mac-aging-time	1-5
1.1.5 display loopback-detection	1-6
1.1.6 display port	1-7
1.1.7 duplex	1-7
1.1.8 flow-control	1-8
1.1.9 interface	1-9
1.1.10 lock-port mac-aging	1-10
1.1.11 loopback	
1.1.12 loopback-detection interval-time	1-11
1.1.13 loopback-detection run	
1.1.14 mac-address max-mac-count	1-12
1.1.15 mdi	
1.1.16 port access vlan	
1.1.17 port hybrid pvid vlan	
1.1.18 port hybrid vlan	
1.1.19 port link-type	
1.1.20 port trunk permit vlan	
1.1.21 port trunk pvid vlan	
1.1.22 port vlan filter disable	
1.1.23 reset counters interface	
1.1.24 shutdown	
1.1.25 speed	1-20
第2章以太网端口汇聚配置命令	2-1
2.1 以太网端口汇聚配置命令	2-1
2.1.1 display link-aggregation	2-1
2.1.2 link-aggregation	
第3章以太网端口镜像配置命令	
3.1 以太网端口镜像配置命令	
3.1.1 display mirror	
3.1.2 monitor-port	
3.1.3 port mirror	
3.1.4 port mirror observing-port	

第1章 以太网端口配置命令

1.1 以太网端口配置命令

1.1.1 broadcast-suppression

【命令】

broadcast-suppression *pct* undo broadcast-suppression

【视图】

以太网端口视图

【参数】

pct: 指定以太网端口最大广播流量的线速度百分比,取值范围为 5~100, 缺省值为 100,步长为 5。百分比越小,则允许通过的广播流量也越小。

【描述】

broadcast-suppression 命令用来限制端口上允许通过的广播流量的大小,当广播流量超过用户设置的值后,系统将广播流量作丢弃处理,从而使广播所占的流量比例降低到合理的范围,保证网络业务的正常运行。undobroadcast-suppression 命令用来恢复端口上允许通过的广播流量为缺省值 100,即端口上允许通过的广播流量为 100%,不对广播流量进行抑制。

【举例】

允许 20%的广播报文通过,即对端口的广播流量作 80%的广播风暴抑制。 [Quidway-Ethernet0/1] broadcast-suppression 20

1.1.2 description

【命令】

description text

undo description

【视图】

以太网端口视图

【参数】

text: 端口描述字符串,最多为80个字符。

【描述】

description 命令用来设置端口的描述字符串,undo description 命令用来取消端口描述字符串。

缺省情况下,端口描述字符串为空。

【举例】

#设置以太网端口 Ethernet0/1 的描述字符串为 lanswitch-interface。

[Quidway-Ethernet0/1] description lanswitch-interface

1.1.3 display interface

【命令】

display interface [interface_type | interface_type interface_num |
interface_name]

【视图】

所有视图

【参数】

interface_type: 端口类型。

interface_num:端口号。

interface_name:端口名,表示方法为 interface_name=interface_type

interface_num.

参数的具体说明请参见 interface 命令中的参数说明。

【描述】

display interface 命令用来显示端口的配置信息。

在显示端口信息时,如果不指定端口类型和端口号,则显示交换机上所有的端口信息;如果仅指定端口类型,则显示该类型端口的所有端口信息;如果同时指定端口类型和端口号,则显示指定的端口信息。

【举例】

#显示以太网端口 Ethernet0/1 的配置信息。

<Quidway> display interface ethernet0/1

```
Ethernet0/1 current state : UP
IP Sending Frames' Format is PKTFMT ETHNT 2, Hardware address is
00e0-fc00-0010
Description: aaa
The Maximum Transmit Unit is 1500
Media type is twisted pair, loopback not set
Port hardware type is 100 BASE TX
100Mbps-speed mode, full-duplex mode
Link speed type is autonegotiation, link duplex type is autonegotiation
Flow-control is not supported
The Maximum Frame Length is 1536
Broadcast MAX-ratio: 100%
PVID: 1
Mdi type: auto
Port link-type: access
Tagged VLAN ID : none
 Untagged VLAN ID: 1
Last 5 minutes input rate 229 bytes/sec, 2 packets/sec
Last 5 minutes output rate 25 bytes/sec, 0 packets/sec
input: 0 packets, 0 bytes
        0 broadcasts, 0 multicasts
input: 0 input errors, 0 runts, 0 giants, 0 throttles, 0 CRC
        O frame, O overruns, O aborts, O ignored, O parity errors
Output: 0 packets, 0 bytes
        O broadcasts, O multicasts, O pauses
Output: 0 output errors, 0 underruns, 0 buffer failures
        O aborts, O deferred, O collisions, O late collisions
        0 lost carrier, 0 no carrier
```

表1-1 端口配置信息描述表

域名	描述
Ethernet0/1 current state	以太网端口当前开启或关闭状态

域名	描述
IP Sending Frames' Format	以太网帧格式
Hardware address	端口硬件地址
Description	端口描述字符串
The Maximum Transmit Unit	最大传输单元
Media type	介质类型
loopback not set	端口环回测试状态
Port hardware type	端口硬件类型
100Mbps-speed mode, full-duplex mode	端口的双工状态和速率均设置为自协商状态,与 对端协商的实际结果是 100Mbit/s 速率和全双工
Link speed type is autonegotiation, link duplex type is autonegotiation	模式
Flow-control is not supported	端口流控状态
The Maximum Frame Length	端口允许通过的最大以太网帧长度
Broadcast MAX-ratio	端口广播风暴抑制比
PVID	端口缺省 VLAN ID
Mdi type	网线类型
Port link-type	端口链路类型
Tagged VLAN ID	标识在该端口有哪些 VLAN 的报文需要打 Tag 标记
Untagged VLAN ID	标识在该端口有哪些 VLAN 的报文不需要打 Tag 标记
Last 5 minutes input rate 229 bytes/sec, 2 packets/sec	端口最近五分钟输入和输出速率和报文数
Last 5 minutes output rate 25 bytes/sec, 0 packets/sec	

域名	描述
input: 0 packets, 0 bytes	
0 broadcasts, 0 multicasts	
input: 0 input errors, 0 runts, 0 giants, 0 throttles, 0 CRC	
0 frame, 0 overruns, 0 aborts, 0 ignored, 0 parity errors	
Output: 0 packets, 0 bytes	 端口输入/输出报文和错误信息统计
0 broadcasts, 0 multicasts, 0 pauses	
Output: 0 output errors, 0 underruns, 0 buffer failures	
0 aborts, 0 deferred, 0 collisions, 0 late collisions	
0 lost carrier, 0 no carrier	

1.1.4 display lock-port-mac-aging-time

【命令】

display lock-port-mac-aging-time

【视图】

所有视图

【参数】

无

【描述】

display lock-port-mac-aging-time 命令用来显示锁定端口对应的 MAC 地址表的老化时间。

【举例】

#显示锁定端口对应的 MAC 地址表的老化时间。

<Quidway> display lock-port-mac-aging-time

The mac aging time of lock-port: 1 hour(s)

表1-2 显示锁定端口对应的 MAC 地址表的老化时间

域名	描述
The mac aging time of lock-port: 1 hour(s)	锁定端口对应的 MAC 地址表的老化时间为 1 小时

1.1.5 display loopback-detection

【命令】

display loopback-detection

【视图】

所有视图

【参数】

无

【描述】

display loopback-detection 命令用来显示端口环回监测功能是否被开启,如果已经开启,则还会显示出定时监测的时间间隔和目前被环回的端口信息。

【举例】

#显示端口环回监测功能的开启情况。

<Quidway> display loopback-detection

Loopback-detection is running

Detection interval time is 30 seconds

There is no port existing loopback link

表1-3 端口环回监测功能的开启情况信息描述表

域名	描述
Loopback-detection is running	端口环回监测功能处于开启状态
Detection interval time is 30 seconds	定时监测时间间隔为 30 秒
There is no port existing loopback link	目前没有端口被环回

1.1.6 display port

【命令】

display port { hybrid | trunk }

【视图】

所有视图

【参数】

hybrid:显示 Hybrid 端口。

Trunk:显示 Trunk 端口。

【描述】

display port 命令用来显示当前系统是否有链路类型为 Hybrid 或者 Trunk 的端口,如果有,则显示出对应的端口名。

【举例】

#显示当前系统存在的 Hybrid 端口。

<Quidway> display port hybrid

Now, the following hybrid ports exist:

Ethernet0/1

Ethernet0/2

以上信息表示当前系统有两个 Hybrid 端口,分别为 Ethernet0/1 和 Ethernet0/2。

1.1.7 duplex

【命令】

duplex { auto | full | half }

undo duplex

【视图】

以太网端口视图

【参数】

auto: 端口处于自协商状态。

full: 端口处于全双工状态。

half:端口处于半双工状态。

【描述】

duplex 命令用来设置以太网端口的全双工/半双工属性, undo duplex 命令用来将端口的双工状态恢复为缺省的自协商状态。

缺省情况下,端口处于自协商状态。

相关配置可参考命令 speed。

【举例】

#将以太网端口 Ethernet0/1 端口设置为自协商状态。

[Quidway-Ethernet0/1] duplex auto

1.1.8 flow-control

【命令】

flow-control

undo flow-control

【视图】

以太网端口视图

【参数】

无

【描述】

flow-control 命令用来开启以太网端口的流量控制特性,以避免拥塞发生时丢失数据包, undo flow-control 命令用来关闭以太网端口流量控制特性。

缺省情况下, 关闭以太网端口的流量控制。

【举例】

#开启以太网端口 Ethernet0/1 的流量控制。

[Quidway-Ethernet0/1] flow-control

1.1.9 interface

【命令】

interface { interface type interface num | interface name }

【视图】

系统视图

【参数】

interface_type: 端口类型,取值为 Ethernet。

interface_num:端口号,采用槽位编号/端口编号的格式。对于 S2026 以太 网交换机,Ethernet 的槽号取值范围为 $0\sim2$,槽号取 0 表示交换机提供的固定以太网端口,端口号取值范围为 $1\sim24$;槽号取 1 或 2 分别表示两个扩展模块提供的以太网端口,端口号只能取 1。

对于 S2008/S2016 以太网交换机,Ethernet 的槽号取值范围为 0~1,槽号取 0表示交换机提供的固定以太网端口,S2008 以太网交换机的端口号取值范围为 1~10,S2016 以太网交换机的端口号取值范围为 1~18;槽号取 1表示扩展模块提供的以太网端口,端口号只能取 1。

对于 S2403H 以太网交换机,Ethernet 的槽号取值范围为 $0\sim1$,槽号取 0表示交换机提供的固定以太网端口,端口号取值范围为 $1\sim25$;槽号取 1表示扩展的以太网端口,端口号只能取 1。

interface_name: 端口名,表示方法为 interface_name= interface_type interface num。

【描述】

interface 命令用来进入以太网端口视图。用户要配置以太网端口的相关参数,必须先使用该命令进入以太网端口视图。

【举例】

#进入 Ethernet0/1 以太网端口视图。

[Quidway] interface ethernet0/1

1.1.10 lock-port mac-aging

【命令】

lock-port mac-aging { age-time | no-age }

undo lock-port mac-aging

【视图】

系统视图

【参数】

age-time:端口的地址老化时间,取值范围为 1 \sim 24,单位为小时。缺省值

为1小时。

no-age:表示地址永不老化。

【描述】

lock-port mac-aging 命令用来设置锁定端口对应的 MAC 地址表的老化时间, undo lock-port mac-aging 命令用来恢复老化时间为缺省值。

相关配置可参考命令 display lock-port-mac-aging-time。

【举例】

#设置锁定端口对应的 MAC 地址表的老化时间为 2 小时。

[Quidway] lock-port mac-aging 2

1.1.11 loopback

【命令】

loopback { external | internal }

【视图】

以太网端口视图

【参数】

external: 外环测试。

internal: 内环测试。

【描述】

loopback 命令用来设置以太网端口进行环回测试,以检验以太网端口工作是否正常,环回测试执行一定时间后将自动结束。

缺省情况下,以太网端口不进行环回测试。

【举例】

#对以太网端口 Ethernet0/1 进行内环测试。

[Quidway-Ethernet0/1] loopback internal

1.1.12 loopback-detection interval-time

【命令】

Ioopback-detection interval-time time undo loopback-detection interval-time

【视图】

系统视图

【参数】

time: 定时监测端口外部环回情况的时间间隔,取值范围为 5~300,单位为 秒。缺省值为 30 秒。

【描述】

loopback-detection interval-time 命令用来设置定时监测端口外部环回情况的时间间隔, undo loopback-detection interval-time 命令用来恢复该时间间隔为缺省值。

相关配置可参考命令 display loopback-detection。

【举例】

#设置定时监测各个端口外部环回情况的时间间隔为 10 秒。

[Quidway] loopback-detection interval-time 10

1.1.13 loopback-detection run

【命令】

loopback-detection run

undo loopback-detection run

【视图】

系统视图

【参数】

无

【描述】

loopback-detection run 命令用来开启端口环回监测功能,以监测各个端口是否外部环回,如果发现某端口被环回,交换机会将该端口处于受控工作状态。undo loopback-detection run 命令用来关闭端口环回监测功能。

缺省情况下,关闭端口环回监测功能。

相关配置可参考命令 display loopback-detection。

【举例】

#开启端口环回监测功能。

[Quidway] loopback-detection run

1.1.14 mac-address max-mac-count

【命令】

mac-address max-mac-count count undo mac-address max-mac-count

【视图】

以太网端口视图

【参数】

count: 端口可以学习的最大 MAC 地址数,取值范围为 0~4096,取值为 0 表示不允许该端口学习 MAC 地址。

【描述】

mac-address max-mac-count 命令用来设置以太网端口最多可以学习到的 MAC 地址数,如果该端口学习到的 MAC 地址条数超过用户设置的值后,该端口将不再对 MAC 地址进行学习。undo mac-address max-mac-count 命令用来取消对以太网端口最多学习到的 MAC 地址数进行限制。

缺省情况下,不限制以太网端口最多可以学习的 MAC 地址数,但最多可以学习的 MAC 地址数仍会受到 MAC 地址表的限制。

【举例】

#不限制以太网端口 Ethernet0/1 最多学习到的地址数。

[Quidway-Ethernet0/1] undo mac-address max-mac-count

1.1.15 mdi

【命令】

mdi { across | auto | normal }

undo mdi

【视图】

以太网端口视图

【参数】

across:连接网线类型为交叉网线。

auto: 自动识别是平行网线还是交叉网线。

normal: 连接网线类型为平行网线。

【描述】

mdi 命令用来设置以太网端口的网线类型, undo mdi 命令用来恢复以太网端口网线类型的缺省值。

缺省情况下,以太网交换机自动识别所连接的网线类型。

需要注意的是,该设置只对 10/100Base-T 端口有效。

【举例】

#将以太网端口 Ethernet0/1 的网线类型设置为自动识别。

[Quidway-Ethernet0/1] mdi auto

1.1.16 port access vlan

【命令】

port access vlan vlan_id undo port access vlan

【视图】

以太网端口视图

【参数】

vlan_id: IEEE802.1Q 中定义的 VLAN ID, 取值范围为 2~4094。

【描述】

port access vian 命令用来把 Access 端口加入到指定的 VLAN 中,undo port access vian 命令用来把 Access 端口从指定 VLAN 中删除。

此命令使用的条件是 vlan_id 所指的 VLAN 必须存在。

【举例】

#将 Ethernet0/1 端口加入到 VLAN3 中(VLAN3 已经存在)。

[Quidway-Ethernet0/1] port access vlan 3

1.1.17 port hybrid pvid vlan

【命令】

port hybrid pvid vlan vlan_id
undo port hybrid pvid

【视图】

以太网端口视图

【参数】

vlan_id: IEEE802.1Q 中定义的 VLAN ID,取值范围为 1~4094。缺省值为 1。

【描述】

port hybrid pvid vlan 命令用来用来设置 Hybrid 端口的缺省 VLAN ID, undo port hybrid pvid 命令用来恢复端口的缺省 VLAN ID。

Hybrid 端口可以和 isolate-user-vlan 同时配置。但如果缺省 VLAN 是在 isolate-user-vlan 中建立了映射的 VLAN,则不允许修改缺省 VLAN ID,只有在解除映射后才能进行修改。

本 Hybrid 端口的缺省 VLAN ID 和相连的对端交换机的 Hybrid 端口的缺省 VLAN ID 必须一致,否则报文将不能正确传输。

相关配置可参考命令 port link-type。

【举例】

#将 Hybrid 端口 Ethernet0/1 的缺省 VLAN 设为 100。

[Quidway-Ethernet0/1] port hybrid pvid vlan 100

1.1.18 port hybrid vlan

【命令】

port hybrid vlan vlan_id_list { tagged | untagged }
undo port hybrid vlan vlan_id_list

【视图】

以太网端口视图

【参数】

 $vlan_id_list$: $vlan_id_list$ = [$vlan_id1$ [to $vlan_id2$]]&<1-10>,Hybrid 端口要加入的 VLAN 的范围,可以是离散的, $vlan_id$ 取值范围为 1~4094。 &<1-10>表示前面的参数最多可以重复输 10 次。

tagged: 所指定 VLAN 的报文将带有标签。

untagged: 所指定 VLAN 的报文不带标签。

【描述】

port hybrid vlan 命令用来将 Hybrid 端口加入到指定的已经存在的 VLAN, undo port hybrid vlan 命令用来将 Hybrid 端口从指定的 VLAN 中删除。

Hybrid 端口可以属于多个 VLAN。如果多次使用 **port hybrid vlan** *vlan_id_list* { **tagged** | **untagged** }命令,那么 Hybrid 端口上允许通过的 VLAN 是这些 *vlan_id_list* 的合集。

此命令使用的条件是: vlan_id 所指的 VLAN 必须存在。

相关配置可参考命令 port link-type。

【举例】

将 Hybrid 端口 Ethernet0/1 加入到 2、4、50 \sim 100 VLAN 中,并且这些 VLAN 的报文将带有标签。

[Quidway-Ethernet0/1] port hybrid vlan 2 4 50 to 100 tagged

1.1.19 port link-type

【命令】

port link-type { access | hybrid | trunk }
undo port link-type

【视图】

以太网端口视图

【参数】

access: 设置端口为 Access 端口。

hybrid:设置端口为 Hybrid 端口。

trunk: 设置端口为 Trunk 端口。

【描述】

port link-type 命令用来设置以太网端口的链路类型, undo port link-type 命令用来恢复端口的链路类型为缺省状态,即为 Access 端口。

在一台以太网交换机上,Trunk 端口和 Hybrid 端口不能同时被设置。

如果某端口被指定为镜像端口,则不能再被设置为 Trunk 端口。

缺省情况下,端口为 Access 端口。

【举例】

#将以太网端口 Ethernet0/1 设置为 Trunk 端口。

[Quidway-Ethernet0/1] port link-type trunk

1.1.20 port trunk permit vlan

【命令】

port trunk permit vlan { vlan_id_list | all }
undo port trunk permit vlan { vlan_id_list | all }

【视图】

以太网端口视图

【参数】

vlan_id_list: *vlan_id_list* = [*vlan_id1* [**to** *vlan_id2*]]&<1-10>, 为此 Trunk 端口加入的 VLAN 的范围,可以是离散的,*vlan_id* 取值范围为 2~4094。 &<1-10>表示前面的参数最多可以重复输 10 次。

all:将 Trunk 端口加入到所有 VLAN 中。

【描述】

port trunk permit vlan 命令用来将 Trunk 端口加入到指定的 VLAN, undo port trunk permit vlan 命令用来将 Trunk 端口从指定的 VLAN 中删除。

Trunk 端口可以属于多个 VLAN。如果多次使用 port trunk permit vlan 命令,那么 Trunk 端口上允许通过的 VLAN 是这些 *vlan_id_list* 的集合。

此命令使用的条件是: vlan_id 所指的 VLAN 不是缺省 VLAN。

相关配置可参考命令 port link-type。

【举例】

将 Trunk 端口 Ethernet0/1 加入到 2、4、50~100 VLAN 中。

[Quidway-Ethernet0/1] port trunk permit vlan 2 4 50 to 100

1.1.21 port trunk pvid vlan

【命令】

port trunk pvid vlan vlan id

undo port trunk pvid

【视图】

以太网端口视图

【参数】

vlan_id: IEEE802.1Q 中定义的 VLAN ID,取值范围为 1~4094。缺省值为 1。

【描述】

port trunk pvid vlan 命令用来设置 Trunk 端口的缺省 VLAN ID, undo port trunk pvid 命令用来恢复端口的缺省 VLAN ID。

本 Trunk 端口的缺省 VLAN ID 和相连的对端交换机的 Trunk 端口的缺省 VLAN ID 必须一致,否则报文将不能正确传输。

相关配置可参考命令 port link-type。

【举例】

#将 Trunk 端口 Ethernet0/1 的缺省 VLAN 设为 100。

[Quidway-Ethernet0/1] port trunk pvid vlan 100

1.1.22 port vlan filter disable

【命令】

port vlan filter disable

undo port vlan filter disable

【视图】

以太网端口视图

【参数】

无

【描述】

port vlan filter disable 命令用来关闭端口的 VLAN 过滤功能,即不过滤带着不认识 VLAN 标签的报文,undo port vlan filter disable 命令用来恢复端口的 VLAN 过滤功能为缺省开启状态。

缺省情况下,端口的 VLAN 过滤功能是启动的。

【举例】

#关闭端口 Ethernet0/1 的 VLAN 过滤功能。

[Quidway-Ethernet0/1] port vlan filter disable

1.1.23 reset counters interface

【命令】

reset counters interface [interface_type | interface_type interface_num |
interface_name]

【视图】

用户视图

【参数】

interface_type: 端口类型。

interface_num:端口号。

interface_name:端口名,表示方法为 interface_name= interface_type interface_num。

参数的具体说明请参见 interface 命令中的参数说明。

【描述】

reset counters interface 命令用来清除端口的统计信息,以便重新对端口进行相关信息的统计。

在清除端口信息时,如果不指定端口类型和端口号,则清除交换机上所有的端口信息;如果仅指定端口类型,则清除该类型端口的所有端口信息;如果同时指定端口类型和端口号,则清除指定的端口信息。

当 802.1X 使能后,端口信息不能被清除。

【举例】

#清除以太网端口 Ethernet0/1 端口统计信息。

<Quidway> reset counters interface ethernet0/1

1.1.24 shutdown

【命令】

shutdown

undo shutdown

【视图】

以太网端口视图

【参数】

无

【描述】

shutdown 命令用来关闭以太网端口,undo shutdown 命令用来打开以太网端口。

缺省情况下,以太网端口为打开状态。

需要注意的是, S2026 以太网交换机的堆叠口不支持本命令。

【举例】

#打开以太网端口 Ethernet0/1。

[Quidway-Ethernet0/1] undo shutdown

1.1.25 speed

【命令】

speed { 10 | 100 | auto }

undo speed

【视图】

以太网端口视图

【参数】

10: 表示端口速率为 10Mbit/s。

100: 表示端口速率为 100Mbit/s。

auto: 表示端口速率处于双方自协商状态。

【描述】

speed 命令用来设置端口的速率,undo speed 命令用来恢复端口的速率为缺省值。

缺省情况下,端口速率处于双方自协商状态。

相关配置可参考命令 duplex。

【举例】

#将以太网端口 Ethernet0/1 的端口速率设置为 10Mbit/s。

[Quidway-Ethernet0/1] speed 10

第2章 以太网端口汇聚配置命令

2.1 以太网端口汇聚配置命令

2.1.1 display link-aggregation

【命令】

display link-aggregation [master_port_num]

【视图】

所有视图

【参数】

master_port_num: 汇聚端口组的主端口号。

【描述】

display link-aggregation 命令用来显示汇聚端口的相关信息。

如果指定了汇聚端口组的主端口号,则显示相关汇聚端口组的信息;如果不指定汇聚端口组的主端口号,则显示所有的汇聚端口的相关信息。

相关配置可参考命令 link-aggregation。

【举例】

#显示主端口号为 Ethernet0/1 的汇聚端口组的相关信息。

<Quidway> display link-aggregation ethernet0/1

Master port: Ethernet0/1

Other sub-ports:

Ethernet0/2

Mode: both

表2-1 端口汇聚信息描述表

域名	描述
Master port	主端口
Other sub-ports	其他成员端口
Mode	汇聚模式

2.1.2 link-aggregation

【命令】

link-aggregation port_num1 to port_num2 { both | ingress }
undo link-aggregation { master port num | all }

【视图】

系统视图

【参数】

port_num1: 用来表示加入汇聚的以太网端口起始范围值。

port_num2: 用来表示加入汇聚的以太网端口终止范围值。

both:表示汇聚组中各成员端口根据源 MAC 地址和目的 MAC 地址对出端口方向的数据流进行负荷分担。

ingress: 表示汇聚组中各成员端口仅根据源 MAC 地址对出端口方向的数据流进行负荷分担。

master_port_num:端口汇聚的主端口号。

all: 所有汇聚端口。

【描述】

link-aggregation 命令用来将一组端口设置为汇聚端口,并把端口中端口号最小的作为主端口, undo link-aggregation 命令用来删除以太网端口汇聚。

需要注意的是,进行汇聚的以太网端口必须同为 10M_FULL(10Mbit/s 速率,全双工模式)或 100M_FULL(100Mbit/s 速率,全双工模式),否则无法实现汇聚。

相关配置可参考命令 display link-aggregation。

【举例】

#根据源 MAC 地址和目的 MAC 地址对出端口方向的数据流进行负荷分担。

[Quidway] link-aggregation ethernet0/1 to ethernet0/2 both

第3章 以太网端口镜像配置命令

3.1 以太网端口镜像配置命令

3.1.1 display mirror

【命令】

display mirror

【视图】

所有视图

【参数】

无

【描述】

display mirror 命令用来显示镜像端口内容。

相关配置可参考命令 monitor-port, port mirror。

【举例】

#显示镜像端口内容。

[Quidway] display mirror

The monitored ports:

Ethernet0/2 Ethernet0/3 Ethernet0/4 Ethernet0/5 Ethernet0/6

表3-1 端口镜像显示信息描述表

域名	描述
The observing port	镜像端口
The monitored ports	被镜像端口列表

3.1.2 monitor-port

【命令】

monitor-port { interface_type interface_num | interface_name }
undo monitor-port { interface_type interface_num | interface_name }

【视图】

系统视图

【参数】

interface_name: 指定镜像端口名,表示方式为 interface_name= interface_type interface_num 。其中 interface_type 为端口类型, interface num为端口编号。

【描述】

monitor-port 命令用来设置镜像端口, undo monitor-port 命令用来删除镜像端口。

指定的镜像端口不能够为汇聚端口和 Trunk 端口,当新的镜像端口设置后,原有的镜像端口被自动取消,被镜像端口没有变化。

需要注意的是,在没有配置镜像端口时,配置被镜像端口不能成功。同时, 在存在被镜像端口时,删除镜像端口不能成功。

相关配置可参考命令 port mirror, display mirror。

【举例】

#设置以太网端口 Ethernet0/1 为镜像端口。

[Quidway] monitor-port ethernet0/1

3.1.3 port mirror

【命令】

port mirror { interface_type interface_ num | interface_name } [to
{ interface_type interface_ num | interface_name }]

undo port mirror { interface_type interface_ num | interface_name } [to
{ interface_type interface_ num | interface_name }]

【视图】

系统视图

【参数】

{ interface_type interface_num | interface_name } [to { interface_type interface_num | interface_name }]: 指定被镜像端口。不使用 to 参数指定一个被镜像端口;使用 to 参数可以指定连续的多个被镜像端口。其中,interface_name 为端口名,表示方式为 interface_name=interface_type interface_num。interface_type 为端口类型,interface_num 为端口编号。

【描述】

port mirror 命令用来设置被镜像端口,undo port mirror 命令用来删除被镜像端口。

需要注意的是,在没有配置镜像端口时,配置被镜像端口不能成功。同时, 在存在被镜像端口时,删除镜像端口不能成功。

相关配置可参考命令 monitor-port, display mirror。

【举例】

#设置以太网端口 Ethernet0/1 为被镜像端口。

[Quidway] port mirror ethernet0/1

3.1.4 port mirror observing-port

【命令】

port mirror interface_list1 observing-port { interface_type interface_num |
interface_name }

undo port mirror interface_list1 observing-port { interface_type interface_ num | interface_name }

【视图】

系统视图

【参数】

interface_list1:指定被镜像端口列表。interface_list1 = { interface_type interface_num | interface_name } [to { interface_type interface_num | interface_name }]。

interface_name: 指定镜像端口名,表示方式为 interface_name= interface_type interface_num 。其中 interface_type 为端口类型,interface_num为端口编号。

【描述】

port mirror observing-port 命令用来设置镜像端口和被镜像端口, undo port mirror observing-port 命令用来删除镜像端口和被镜像端口。

此命令相当于执行了 monitor-port、port mirror 两条命令,即设置被镜像端口的同时指定镜像端口,且指定的镜像端口不能为汇聚端口和 Trunk 端口。 当新的镜像端口设置后,原有的镜像端口被自动取消。

相关配置可参考命令 monitor-port, port mirror, display mirror。

【举例】

#设置以太网端口 Ethernet0/1 为镜像端口, Ethernet0/2 为被镜像端口。

[Quidway] port mirror ethernet0/2 observing-port ethernet0/1