REAL-TIME RENDERING OF VOLUMETRIC CLOUD

Jing Wang

3D Engine Team

Content

- Introduction
- Render Cloud
- Cloud Self-shadowing
- Conclusion

Clouds are important part over sky.

Their form and appearance change over time and weather.

Many artists also express feeling with clouds.

Cloud bodies interact with the environment, contribute to lighting composition. (reflection, god-ray, etc.)

Clouds also appear in movies and games.

Rendering clouds efficiently and beautifully is important.

In the last few decades, billboard and shy dome are used (real-time)

Billboard

Sky dome

These years: volumetric cloud

	Polygon	Billboard	Sky dome	Volumetric cloud
Various cloud types	X (wispy shape is difficult)	✓	✓	✓
Inter-cloud shadow	✓	X (billboard cannot rotate)	✓	✓
Evolve over time (time of day)	X	X	X	✓
Clouds pass overhead	X	X	X	✓
Performance	X	✓	✓	(can be optimised)

Render Cloud

Real-time vs Offline Rendering

Real-time rendering

Time: $0.017 \sim 0.033$ seconds / frame

Quality: low

Use case: video games

Offline rendering

Time: minutes to days / frame

Quality: high

Use case: films, simulations

Ray Marching

Volume Scattering Processes

Ray Marching

$$\begin{split} L_i(p) &= T_r(p_0 \to p) L_o(p_0) + \int_0^t T_r(p' \to p) L_s(p') dt' \\ &= T_r(p_0 \to p) L_o(p_0) + \sum_{i=0}^n T_r((p+id) \to p) L_s(p') d_{step} \end{split}$$

$$T_r(p' o p) = e^{-\int_0^d \sigma_a(p+t\omega)dt}$$
 $L_s(p) = \sum_i^{|lights|} P(g,\theta_i) V(i,p) L(p)$
The visibility term is according to occlusion 14

Rendering Results

Cloud Self-shadowing

Cloud Self-shadowing

Effects from Occlusion

Cloud's occlusion

- 1. Cast shadow on ground
- 2. Self-shadowing
- 3. Light shaft (god ray)

Self-shadowing Methods

- 1. Secondary ray marching
- 2. Exponential shadow map
- 3. Beer shadow map
- 4. Fourier opacity map

But, how are they Different in:

```
Memory footprint,
Render time,
Visual result,
etc...
```

We need to measure it!

Cloud Self-shadowing Method

Secondary ray marching (second ray) View ray Cast second ray to the light source,

Cast second ray to the light source, Compute how much light is occluded

Cloud Self-shadowing Method

Exponential shadow map (ESM) Beer shadow map (BSM) Generate shadow maps Fourier opacity map (FOM) View ray For every **sample** on the view ray, Query the shadow map to get occlusion.

Cloud Self-shadowing Method

Exponential shadow map (ESM)

R 16f

Store exp(cz), compute exp(cz)*exp(-cd) and clamp to [0, 1]

Beer shadow map (BSM)

R 16f G 16f B 16f

Store front depth R, mean density G, maximum optical depth B Compute exp(min(B, G*max(0, d-R)))

Fourier opacity map (FOM)

R 16f G 16f B 16f A 16f

R 16f G 16f B 16f

Explain the distribution of occlusion along the ray as a function, and use Fourier series to approximate, the 7 values store a_0 to a_3 , And b_1 to b_3

Visual Result

Secondary ray marching 20 steps

Second ray EM SM YOM Second ray high

Secondary ray marching 1000 steps (ground truth, about 140 ms/frame)

ESM

FOM

1. Memory usage

- 2. Render time over the number of steps
 - a. Secondary ray marching
 - b. Three shadow map methods
- 3. Render time over shadow map resolution
- 4. Render time over screen resolution
- 5. Render time over cloud coverage

Memory usage

Methods	Memory Footprint (MB)
Secondary Ray Marching	0
ESM (512×512)	4
ESM (1024×1024)	16
$BSM (512 \times 512)$	12
BSM (1024×1024)	48
FOM (512×512)	28
FOM (1024×1024)	112

Render time of several typical methods

Methods	Total Render Time (ms)	Shadow Map
		Generation Time (ms)
Secondary Ray Marching	4.9464	-
(10 steps)		
Secondary Ray Marching	6.0864	-
(20 steps)		
ESM (50 steps)	4.4330	0.4122
ESM (100 steps)	4.6588	0.7492
BSM (50 steps)	4.3736	0.5836
BSM (100 steps)	4.8072	0.9598
FOM (50 steps)	4.9296	0.9182
FOM (100 steps)	5.5228	1.4678

Render time over screen resolution

Render time over cloud coverage

Conclusion

Conclusion

1. Overview of cloud

2. How to render cloud

3. Cloud self-shadowing

Secondary ray marching
 Explain the secondary ray marching

2. Exponential shadow map

3. Beer shadow map

4. Fourier opacity map

Memory usage:

4 > 3 > 2 > 1

Render time (resolution):

 $4 > 3 \approx 2$, 1 is slow at high resolution

Render time (coverage):

4 > 3 > 2, 1 is slow at high coverage rate

Challenges

Volumetric cloud challenges

- 1. Heterogeneous cloud
- 2. Large-scale cloud scenes
- 3. Cloud's occlusion and inter-reflection
- 4. Atmospheric scattering models
- 5. Cloud LODs
- 6. Cloud animations
- 7. Interaction between cloud and other objects

ThankYou