Probabilités

Chapitre 9 : Introduction au processus de branchement Processus de Galton-Watson

Lucie Le Briquer

2 décembre 2017

But. modéliser la descendance d'un individu.

- des bactéries qui se multiplient par division
- survie des noms de Lord anglais (motivation initiale)

 X_i : nombre d'individus.

 Y_i^j : nombre d'enfants du $i\text{-\`eme}$ individu de la génération j-1.

Modélisation. On se donne μ une probabilité sur $\mathbb N$ appelée "loi de reproduction" qui représente le nombre d'enfants d'un individu. On se donne $(Y_i^j)_{i\geqslant 1, j\geqslant 1}$ v.a. indépendantes de loi μ . On pose :

$$\left\{ \begin{array}{l} X_0=1 \\ X_n=Y_1^n+\ldots+Y_{X_{n-1}}^n \end{array} \right.$$

qui représente le nombre d'individus à la génération n.

Remarque. (Y_i^j) indépendants et de même loi sont des hypothèses très simplificatrices.

Remarques.

- $X_n = \sum_{i=1}^{+\infty} Y_i^n \mathbb{1}_{i \leqslant X_{n-1}}$ est bien défini.
- $\bullet \ X_n$ est défini à partir de X_{n-1} :

$$\mathbb{E}\Big[\phi(X_n) \mid \underbrace{X_{n-1}}_{\text{e.N v.a. discrète}}\Big] \stackrel{?}{=} h(X_{n-1})$$

où:

$$\begin{split} h(x) &= \mathbb{E}[\phi(X_n)|X_{n-1} = x] \\ &= \mathbb{E}\left[\phi\left(\sum_{i=1}^x Y_i^n\right) \bigg| \underbrace{X_{n-1} = x}_{\in \sigma(Y_i^k)_{i\geqslant 1, k\leqslant n-1}}\right] \quad \text{indépendance par regroupement} \\ &= \mathbb{E}\left[\phi\left(\sum_{i=1}^x Y_i^n\right)\right] \\ &= \int \phi(z) d\mu^{*x}(z) \qquad *x = \text{convolée } x \text{ fois de } \mu \end{split}$$

Donc $\mathbb{E}[\phi(X_n)|X_{n-1}] = \int \phi(z)d\mu^{*X_{n-1}}(z)$. Donc $\mathcal{L}(X_n|X_{n-1}) = \mu^{*X_{n-1}}$.

Question. La descendance est-elle finie ou infinie?

Remarque. $\mu(\{0\}) = 0 \Rightarrow \text{population croissante} \Rightarrow \text{descendance infinie}$ $\{X_n = 0\} \subseteq \{X_{n+1} = 0\} \text{ donc } A = \text{``extinction de la population''} = \bigcup_{n \geqslant 1} \uparrow \{X_n = 0\}$ Notre but est de trouver $\rho = \mathbb{P}(A) = \lim \uparrow \mathbb{P}(X_n = 0)$.

Outil. Fonction génératrice : jour le rôle de ϕ la fonction caractéristique pour les v.a. dans \mathbb{N} .

- **Définition 1** (fonction génératrice) -

Si $X \in \mathbb{N}$ p.s., sa fonction génératrice est :

$$g_X \colon \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & [0,1] \\ s & \longmapsto & g_X(s) = \mathbb{E}[s^X] = \sum_{k \geqslant 0} p_k s^k \end{array} \right.$$

où $p_k = \mathbb{P}(X_k) \geqslant 0$.

- Propriété 1 -

Si $X \in \mathbb{N}$ p.s. alors g_X est :

- 1. analytique sur [0,1]
- 2. croissante convexe (strictement convexe si $\mathbb{P}(X \ge 2) > 0$)
- 3. $g_X(1) = 1, g'_X(1^-) = \mathbb{E}[X] \ (+\infty \text{ si } X \notin \mathcal{L}^1)$

Preuve.

1. si $s \in [0, t]$ avec $t < 1 : g_X(s) = \sum_{|\cdot| \le t^k} \underbrace{s^k p_k}_{|\cdot| \le t^k}$ avec $t < 1 \Rightarrow$ convergence normale

2. $p_k \geqslant 0 \Rightarrow$ croissance. Et :

$$g_X''(s) = \sum_{k \geqslant 2} k(k-1) p_k s^{k-2} \geqslant 0 \quad > 0 \text{ si } \exists k \geqslant 2 \text{ tel que } p_k > 0$$

3.
$$g'_X(s) = \sum_{k \geqslant 1} k s^k p_k \xrightarrow[s \to 1^-]{} \sum_{k \geqslant 1} k p_k = \mathbb{E}[X]$$

Calculons g_{X_n} . $g_{X_0}(s) = s^1 = s$.

$$\begin{split} g_{X_n}(s) &= \mathbb{E}\left[s^{X_n}\right] = \mathbb{E}\left[s^{Y_1^n + \ldots + Y_{X_{n-1}}^n}\right] \\ &= \mathbb{E}\left[s^{Y_1^n + \ldots + Y_{X_{n-1}}^n} \sum_{x=0}^{+\infty} \mathbb{1}_{X_{n-1} = x}\right] \\ &\stackrel{\text{Fubini}}{=} \sum_{x=0}^{+\infty} \mathbb{E}\left[\underbrace{s^{Y_1^n}}_{\in \sigma(Y_1^n)} \dots s^{Y_x^n} \underbrace{\mathbb{1}_{X_{n-1} = x}}_{\in \sigma(Y_i^k)_{i \geqslant 1, k \leqslant n-1}}\right] \qquad \text{famille idp par regroupement} \\ &= \sum_{x=0}^{+\infty} \mathbb{E}[s^{Y_1^n}] \times \ldots \times \mathbb{E}[s^{Y_x^n}] \mathbb{P}(X_{n-1} = x) \\ &= \sum_{x=0}^{+\infty} (g_{\mu}(s))^x \mathbb{P}(X_{n-1} = x) \\ &= \sum_{x=0}^{+\infty} (g_{\mu}(s))^x \mathbb{P}(X_{n-1} = x) \\ g_{X_n}(s) &= g_{X_{n-1}}(g_{\mu}(s)) = g_{X_0}\underbrace{(g_{\mu}(g_{\mu}(\ldots(g_{\mu}(s)))))}_{n \text{ fois}} \end{split}$$

Finalement:

$$g_{X_n}(s) = g_{\mu}^{\circ n}(s)$$

(ok car $g_{\mu} \colon [0,1] \to [0,1]$)

- Propriété 2 —

Soit ρ la probabilité d'extinction, i.e. $\rho = \lim \uparrow \mathbb{P}(X_n = 0)$ est le plus petit point fixe de g_{μ} sur [0, 1].

Remarque. $g_{\mu}(1) = 1$ donc il y a des points fixes.

Preuve.

Preuve.
$$\mathbb{P}(X_n = 0) = g_{X_n}(0). \text{ Donc } \mathbb{P}(X_n = 0) = \underbrace{g_{\mu}(g_{\mu}(...(0)))}_{n \text{ fois}}.$$

$$\rho = \lim g_{\mu}(g_{\mu}(...(0))) = \underbrace{g_{\mu}(g_{\mu}(...(0)))}_{\text{continuit\'e de } g_{\mu}} g_{\mu}(\lim g_{\mu}(...(0))) = g_{\mu}(\rho)$$

Donc ρ est un point fixe.

Soit x un autre point fixe. $0 \ge x$ et g_{μ} est croissante. Alors :

$$g_{\mu}(...(g_{\mu}(0))) \leqslant g_{\mu}(...g_{\mu}(x)) = x$$

Puis passage à la limite. Donc ρ est le plus petit point fixe.

Théorème 1

Si $\mu \neq \delta_1$ alors si $m = \mathbb{E}[Y_1^1] = \int x d\mu(x)$.

- si $m \leq 1$ alors il y a extinction p.s.
- si m>1 alors $\rho<1$ survie avec une probabilité strictement positive

Remarque. On parle de "transition de phase" en m=1. D'un côté on a un arbre fini p.s. sinon $\mathbb{P}(\text{arbre infini}) > 0$.

Preuve.

 $\bullet \mbox{ si } m>1: g_{\mu}(1)=1$ et $g'_{\mu}(1)=m>1.$ Donc $\exists \varepsilon$ tel que

$$\forall 1 - \varepsilon < y < 1, \ g_{\mu}(y) < y \text{ i.e. } g_{\mu}(y) - y < 0$$

 $g_{\mu}(0) \geqslant 0$. Si $g_{\mu}(0) = 0 \Rightarrow \rho = 0$. Sinon $g_{\mu}(0) - 0 > 0$.

- Si $m < 1, g'_{\mu_1} < 1.$ g_{μ} est convexe donc reste \geqslant à sa pente $> \{y = x\} \Rightarrow$ pas d'autre point fixe. ainsi $\rho = 1$.
- $g'_{\mu}(1) = 1$, pente= $\{y = x\}$ mais si $\mathbb{P}(X \ge 2) = 0$ alors $m = 1 = 0p_0 + 1p_1 \Rightarrow p_1 = 1 \Rightarrow \mu = \delta_1$ qui est exclut. Donc $\mathbb{P}(X \ge 2) > 0 \Rightarrow g_{\mu}$ strictement convexe. $\Rightarrow g$ reste strictement au dessus de $\{y = x\}$ sauf en $1 \Rightarrow$ pas de point fixe plus petit que $\rho = 1$