# Relatório Trabalho Prático 2: Reconhecimento de Captcha CHAVES, Diogo Tuler

Aluno de graduação em Ciência da Computação da Universidade Federal de Minas Gerais **CAMPOS, João Marcos Tomaz Silva** 

Aluno de graduação em Ciência da Computação da Universidade Federal de Minas Gerais

## 1. Introdução

O propósito deste trabalho consistiu na implementação de dois métodos para o reconhecimento de cada um dos seis caracteres de um captcha. O primeiro método empregou a técnica de HOG, utilizando diversos classificadores, enquanto o segundo método consistiu na implementação de algumas redes neurais convolucionais (CNN), visando otimizar a taxa de reconhecimento e precisão.

#### 2. Hog

# 2.1. Pipeline

Para a implementação do HOG, inicialmente, é crucial realizar a segmentação dos dados pertinentes, seguida pela aplicação de amostragem densa e extração das características desejadas. Em seguida, os dados são organizados em um dataframe, visando facilitar a compreensão e possibilitar a realização de tratamentos necessários.

Posteriormente, submetemos os dados a uma série de modelos durante as fases de treino e validação. Esse processo permite ajustes nos parâmetros e a seleção da configuração mais adequada aos resultados almejados. Uma vez obtidos resultados significativos nas métricas, o modelo é aplicado ao conjunto de testes para uma avaliação final.

# 2.2. Implementação

Para iniciar a implementação, é essencial realizar a extração das características das features. Para alcançar esse objetivo, cada imagem de captcha é dividida em seis partes, A extração das características é conduzida em cada parte da imagem, que é convertida para tons de preto e branco. Aplica-se o cálculo dos gradientes, a execução de janelas para amostragem densa, a criação de histogramas e, por fim, a concatenação em um vetor de features. Após essa etapa, cada vetor é registrado em um data frame, onde cada linha representa uma label com as features distribuídas em 1153 colunas. Para garantir um aprendizado eficaz, é necessário tratar as labels. Cada label respectiva ao caractere é colocada e ,em seguida, é aplicado o processo de one hot encoding, que associa cada label possível a um número.

Após isso, os dados são tratados de maneira eficiente para melhor resultado. Após essa etapa, eles são submetidos a diversos modelos para avaliação, tais como KNN, SVM, MLP, Logistic Regression, Decision Tree e Random Forest. Após ajustar os parâmetros conforme necessário, o conjunto de teste é utilizado para que o modelo realize as previsões.

## 2.3. Resultados

## 2.3.1. Exemplos de saída

Escolhemos previsões com erro para uma melhor análise.Erros estão em caracteres difíceis de identificar até para um humano.



## 2.3.2. Acurácia dos modelos

Com a aplicação, os resultados variaram significativamente entre os modelos. À exceção de um modelo, todos os demais ficaram aquém dessa faixa de desempenho. Destaca-se que o modelo mais bem adaptado foi a MLP. Para sua implementação foi utilizado Adan de otimizador e a função loss de entropia cruzada.

|          | KNN  | SVM  | RF   | RL   | DT  | MLP  | SGDC |
|----------|------|------|------|------|-----|------|------|
| Acurácia | 0.68 | 0.82 | 0.73 | 0.72 | 0.5 | 0.87 | 0.72 |

# 2.3.3. Melhor taxa de reconhecimento por caracter

Conforme previsto, a rede MLP alcançou a melhor taxa de reconhecimento para seis caracteres, uma vez que obteve a mais alta acurácia nos dados de teste para um único caractere.



#### 3. CNN

#### 3.1. Pipeline

Na tarefa de classificação de imagens por meio de uma CNN, é imperativo conduzir o pré-processamento de dados e estabelecer um carregador de dados para a modelagem. Após essa etapa, introduz-se um ciclo de treinamento e avaliação da função de perda nos conjuntos de treino e validação. Posteriormente, realiza-se a experimentação de diversos modelos, variando arquitetura e hiperparâmetros, com o intuito de otimizar a classificação dos dados. Por fim, os modelos finais selecionados são testados nos dados de teste, e suas métricas (incluindo recall, precisão, F1 e acurácia, no nosso caso) são comparadas para avaliação conclusiva.

## 3.2. Implementação

Para criar uma rede precisa de reconhecimento de caracteres em captchas, inicialmente, dividimos as imagens em seis segmentos iguais. Implementamos uma classe "Dataloader" para importar dados e converter classes em valores numéricos. Em seguida, desenvolvemos classes específicas para treino e teste do modelo.

Posteriormente, implementamos um modelo de CNN simples, com poucas camadas. Durante a fase de treino, ajustamos o modelo para encontrar a quantidade ideal de camadas, a estrutura da camada totalmente conectada e os hiperparâmetros ideais. Nosso modelo final possui duas camadas convolucionais intercaladas com a função de ativação "ReLU" e uma camada de "MaxPolling" seguidas de duas camadas totalmente conectadas com "Dropout" com a taxa de 0.4 e a função "ReLU" como função de ativação.

Finalmente, implementamos uma VGG16 (<a href="https://arxiv.org/abs/1409.1556">https://arxiv.org/abs/1409.1556</a>), uma Resnet18 e uma Resnet34 (<a href="https://arxiv.org/pdf/1512.03385.pdf">https://arxiv.org/pdf/1512.03385.pdf</a>), seguindo os seus artigos originais com adaptações para o tamanho de nossos dados, para buscar acurácias maiores e possibilitar uma comparação com o modelo mais simples. Para todos os modelos o tamanho do batch foi de 64, e a função de perda foi a de entropia cruzada tendo em vista que seu bom desempenho em classificação de múltiplas classes é descrito na literatura, já a "learning rate" foi de 0.001 com o otimizador "Adam".

## 3.3. Resultados

## 3.3.1. Exemplos de saída

Escolhemos previsões com erro para uma melhor análise. Erros estão em caracteres difíceis de identificar até para um humano.



## 3.3.2. Acurácia dos modelos

Inicialmente, nossa expectativa era de que redes mais complexas, como as Resnet18 e 34, alcançariam acurácias superiores devido à sua maior profundidade. No entanto, os resultados obtidos surpreenderam, destacando a VGG como a rede com o desempenho mais elevado, aproximando-se significativamente da CNN simples, que, por sua vez, treinou de maneira consideravelmente mais rápida. Essa observação pode ser atribuída à simplicidade dos dados, compreendendo imagens simples com poucos pixels, indicando que um número reduzido de camadas já seria suficiente para a tarefa em questão.

|          | CNN Simples | VGG16 | Resnet18 | Resnet34 |
|----------|-------------|-------|----------|----------|
| Acurácia | 0.931       | 0.955 | 0.935    | 0.936    |

## 3.3.3. Melhor taxa de reconhecimento por caracter

Conforme previsto, a VGG alcançou a melhor taxa de reconhecimento para seis caracteres, uma vez que obteve a mais alta acurácia nos dados de teste para um único caractere.



Número mínimo de caracteres reconhecidos por captcha