Natural Language Processing CSE 325/425

Lecture 7:

Forward and Backard algorithm

Given: observed sentence $O=[o_1,\ldots,o_T], o_t \in V$ a fixed HMM (A,B,π)

Find: $\Pr(O|A,B,\pi) \triangleq \text{likelihood}$

Useful for evaluating the validity of a sentence.

By total probability,
$$\Pr(O|A,B,\pi) = \sum_{Q} \Pr(O,Q|A,B,\pi) \bigcirc_{Q} \bigcirc_{Q$$

The summation is over all possible hidden state sequences $\ Q = [q_1, \dots, q_T], q_t \in S$

A brute-force enumeration will have time complexity

Ot is dependent of
$$\Sigma_{t}$$
 Σ_{t} is dependent of Σ_{t-1}

Of Σ_{t}

Of Σ_{t}

Of Σ_{t}

A = N

 Σ_{t}

A = P(Σ_{t}) Σ_{t-1}

Recall: DP example

Src 0 0 0 dsn

Likelihood of a sentence

Forward algorithm: $\Rightarrow P_{r}(0 \mid A, B, \tau)$

- It is an instance of dynamic programming algorithm:
 - solves a large problem using cached solutions to sub-problems;
 - o overlapping sub-problems: can re-use solutions to sub-problems;
 - o optimal structures: optimal sub-problem solutions => optimal larger problem solutions.
- It is a specific example of belief propagation or message passing algorithm for probabilistic graphical models (PGM)
 - o more general PGM includes Bayesian networks and Markov random fields;
 - o here we focus on a linear chain (sequence);
 - later on will discuss trees in syntactic parsing;
 - see CSE326 note for more details;

Two simple identities:

• Order of product and summation can be exchanged

Sum Product
$$ax + ay + bx + by = (a+b)(x+y)$$

062/1 / - 611

$$\max(ax, ay, bx, by) = \max(a, b) \times \max(x, y)$$

Define the *forward* probability $\alpha_t(j) = P(o_1, \dots, o_t, q_t = j)$

Forward algorithm: a gentle start. Compute the following

Base
$$\alpha_{1}(i) = \Pr(0_{1}, \hat{l}_{1} = \hat{i})$$
 $\alpha_{2}(i) = \Pr(0_{1}, 0_{2}, 2n = \hat{i})$ $\alpha_{3}(i) = \sum_{j} \alpha_{1}(j) \times \alpha_{j} \times \beta_{1}(n_{2}, 2n = \hat{i})$ $\alpha_{4}(i)$ $\alpha_{2}(i) = \sum_{j} \alpha_{1}(j) \times \alpha_{j} \times \beta_{1}(n_{2}, 2n = \hat{i})$ $\alpha_{4}(i)$ α_{4}

Forward algorithm: compute the likelihood of an entire sequence

$$Pr(O) = \sum_{j} P(O, q_{T} = j) = \sum_{j} A_{T-1}(i) \times A_{ij} \times b_{i} O_{T-1}$$

$$= \sum_{j} \sum_{i} A_{T-1}(i) \times A_{ij} \times b_{i} O_{T-1}$$

$$= \sum_{j} \sum_{i} A_{T-2}(k) \times A_{kj} \times b_{k} O_{T-2} \times A_{ij} \times b_{i} O_{T-1}$$

$$\vdots$$

$$O_{1}$$

$$O_{t}$$

$$O_{t}$$

$$O_{T-1}$$

$$O_{T}$$

$$O_{T}$$

$$O_{T-1}$$

$$O_{T}$$

Forward algorithm: compute the likelihood of an entire sequence

O (N) 1. Initialize $lpha_1(i)$ for each value i of the first hidden state q_1 . $\lambda_1(i) = \pi(i)$

() 3. Return $\Pr(O) = \sum_{i} P(O, q_T = j) = \sum_{i} \alpha_T(j)$

Given: observed sentence $O = [o_1, \dots, o_T], o_t \in V$

a fixed HMM (A,B,π)

Find: $Pr(O|A,B,\pi)$

An alternative way to evaluate $\Pr(O|A,B,\pi) = \sum_{Q} \Pr(O,Q|A,B,\pi)$

Define the *backward* probability $eta_t(j) = P(o_{t+1}, \ldots, o_T | q_t = j)$

Backward algorithm:

Base
$$case: \beta_{T}(i) = Pr(O_{T+1} \mid P_{T} = i)$$

$$= Pr(\phi \mid P_{T} = i)$$

$$= Pr(\phi \mid P_{T} = i)$$

$$= Pr(O_{T+1} \mid P_{T}$$

Backward algorithm: compute the likelihood of an entire sequence

$$(\beta(\zeta))$$

$$Pr(O) = \sum_{j} P(O, q_{1} = j) \leq \sum_{j} T_{i}(j) P_{i}(O_{1} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} - O_{T} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} - O_{T} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j) P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{1} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{2} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{2} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{2} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i} P_{i}(O_{2} \mid \mathcal{L}_{2} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i}(O_{2} \mid \mathcal{L}_{2} = j)$$

$$= \sum_{j} T_{i}(j) b_{j} O_{i}(O_{2} \mid \mathcal{L}_{2} = j)$$

$$= \sum$$

$$O(N^{T}) = \sum_{i} \sum_{i} \sum_{i} \sum_{j} T(i_{i}) b_{i_{i}0_{i}} a_{i_{i}\hat{c}_{2}} b_{i_{2}0_{2}} \cdots a_{i_{T-i}\hat{v}_{T}}$$

$$b_{i_{T}0_{T}}$$

BEJ

MLE Alg

Backward algorithm: compute the likelihood of an entire sequence

- 1. Initialize $eta_T(i)$ for each value $\,i$ of the last hidden state q_T .
- 2. for $t=T-1,\ldots,1$ for $j=1,\ldots,N$ $\text{compute} \qquad \beta_t(j) = \sum_k \beta_{t+1}(k) a_{jk} b_j(o_t) \qquad \text{for } k \in \mathbb{N} \text{ for } k \in$
- 3. Return $Pr(O) = \sum_{j} P(q_1 = j) b_j(o_1) \beta_1(j)$

Summary

Given a sentence

$$O = [o_1, \dots, o_T], o_t \in V$$

and HMM parameters (A, B, π)

$$(A,B,\pi)$$

Compute $Pr(O|A, B, \pi)$

Forward algorithm

- start from the first POS tag and go forward.
- end with the last POS tag and find sentence likelihood.

Backward algorithm

- Start from the last POS tag and go backward.
- end with the first POS tag and find sentence likelihood.