Quiz 10.4 - Bond Enthalpies

Name:	Kery	
	1	

Problem 1 (4 points)

Give the approximate ΔH_{rxn} for this reaction: $N_2(g) + O_2(g) \longrightarrow 2 NO(g)$

You may need to use the following values

Average Bond Enthalples									
Co	ompound	$\Delta H_{Bond} \left(rac{kJ}{mol} ight)$	Compound	$\Delta H_{Bond} \left(\frac{kJ}{mol} \right)$	Compound	$\Delta H_{Bond} \left(\frac{kJ}{mol} \right)$			
	0=0	498	0-0	142					
	N-N	240	N=N	418	N≡N	941			
	N-O	200	N=O	607					

$$!N=N: + \ddot{Q}=\ddot{Q} \longrightarrow J \times .\dot{N}=\ddot{Q}$$

Bonds Broken
$$N \equiv N \qquad O = 0$$
Bonds Formed
$$2 \cdot N = 0$$

Problem 2 (1 point)

Briefly explain why this value is only an approximation of the true value

Bond strength is affected by the local environment, so not every N=0 bond has the same enthalpy. Values in this table are only averages taken from a slate of representative Molecules.