Principal Component Analysis (PCA)

Data Visualization

In this project, we explored Principal Component Analysis (PCA)'s application in Dimensionality Reduction and Data Visualization. In addition, PCA can also be used in Noise Filtering, Feature Extraction, Data Compression and Anomaly Detection. It is easily one of the favorite tools for Data Analysts.

The main idea is to find a new set of uncorrelated variables called principal components (PCs) that are linear combinations of the original variables to explain the variance in the data.

The sample data used is a representation of food consumed in European countries.

Load Packages

```
In [3]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Load Sample Data

```
In [4]:
        df = pd.read_csv('food-consumption.csv',header=0)
In [5]:
         df.head(2)
Out[5]:
                        Real Instant
                                                                  Powder
                                                                            Tin
                                                                                           Froz
                                                        Biscuits
                                                                                 Potatoes
             Country
                                       Tea
                                            Sweetener
                      coffee
                               coffee
                                                                    soup soup
                          90
                                   49
                                                    19
                                                                             19
                                                                                       21
            Germany
                                        88
                                                             57
                                                                       51
                                                                                        2
          1
                 Italy
                          82
                                   10
                                        60
                                                     2
                                                             55
                                                                       41
                                                                              3
```

2 rows × 21 columns

```
In [6]: df.describe(include='all')
```

	F = 1	
()::+	- 16	
UU L	. 1 U	

Powde sou	Biscuits	Sweetener	Tea	Instant coffee	Real coffee	Country	
16.00000	16.000000	16.000000	16.000000	16.000000	16.000000	16	count
Na	NaN	NaN	NaN	NaN	NaN	16	unique
Na	NaN	NaN	NaN	NaN	NaN	Germany	top
Na	NaN	NaN	NaN	NaN	NaN	1	freq
49.00000	60.687500	18.000000	78.500000	39.250000	78.562500	NaN	mean
15.42724	19.168442	10.532489	18.540047	23.147354	23.145824	NaN	std
27.00000	22.000000	2.000000	40.000000	10.000000	27.000000	NaN	min
36.25000	56.500000	11.000000	62.500000	17.000000	71.500000	NaN	25%
47.00000	62.000000	18.500000	84.500000	39.000000	89.000000	NaN	50%
58.00000	74.500000	25.750000	92.250000	54.250000	96.000000	NaN	75%
75.00000	91.000000	35.000000	99.000000	86.000000	98.000000	NaN	max

11 rows \times 21 columns

food_array

Check if there is NULL values:

```
In [16]: df.isnull().sum()
                            0
Out[16]: Country
         Real coffee
                            0
         Instant coffee
         Tea
         Sweetener
                            0
                            0
         Biscuits
         Powder soup
                            0
         Tin soup
                            0
         Potatoes
         Frozen fish
         Frozen veggies
                            0
         Apples
         0ranges
                            0
         Tinned fruit
                            0
         Jam
         Garlic
                            0
         Butter
                            0
         Margarine
                            0
         Olive oil
                            0
         Yoghurt
                            0
         Crisp bread
         dtype: int64
In [17]: food_array = df.columns[1::].to_numpy()
```

```
Out[17]: array(['Real coffee', 'Instant coffee', 'Tea', 'Sweetener', 'Biscuits',
                'Powder soup', 'Tin soup', 'Potatoes', 'Frozen fish',
'Frozen veggies', 'Apples', 'Oranges', 'Tinned fruit', 'Jam',
                 'Garlic', 'Butter', 'Margarine', 'Olive oil', 'Yoghurt',
                 'Crisp bread'], dtype=object)
In [18]: country_array = df['Country'].to_numpy()
         country_array
Out[18]: array(['Germany', 'Italy', 'France', 'Holland', 'Belgium', 'Luxembourg',
                 'England', 'Portugal', 'Austria', 'Switzerland', 'Sweden',
                 'Denmark', 'Norway', 'Finland', 'Spain', 'Ireland'], dtype=object)
In [19]: country data = df.iloc[:, 1:].to numpy()
         country data
Out[19]: array([[90, 49, 88, 19, 57, 51, 19, 21, 27, 21, 81, 75, 44, 71, 22, 91,
                 85, 74, 30, 26],
                 [82, 10, 60, 2, 55, 41, 3, 2, 4, 2, 67, 71, 9, 46, 80, 66,
                 24, 94, 5, 18],
                 [88, 42, 63, 4, 76, 53, 11, 23, 11, 5, 87, 84, 40, 45, 88, 94,
                 47, 36, 57, 3],
                 [96, 62, 98, 32, 62, 67, 43, 7, 14, 14, 83, 89, 61, 81, 15, 31,
                 97, 13, 53, 15],
                 [94, 38, 48, 11, 74, 37, 23, 9, 13, 12, 76, 76, 42, 57, 29, 84,
                 80, 83, 20, 5],
                 [97, 61, 86, 28, 79, 73, 12, 7, 26, 23, 85, 94, 83, 20, 91, 94,
                 94, 84, 31, 24],
                 [27, 86, 99, 22, 91, 55, 76, 17, 20, 24, 76, 68, 89, 91, 11, 95,
                 94, 57, 11, 28],
                 [72, 26, 77, 2, 22, 34, 1, 5, 20, 3, 22, 51, 8, 16, 89, 65,
                 78, 92, 6, 9],
                 [55, 31, 61, 15, 29, 33, 1, 5, 15, 11, 49, 42, 14, 41, 51, 51,
                 72, 28, 13, 11],
                 [73, 72, 85, 25, 31, 69, 10, 17, 19, 15, 79, 70, 46, 61, 64, 82,
                 48, 61, 48, 30],
                 [97, 13, 93, 31, 61, 43, 43, 39, 54, 45, 56, 78, 53, 75, 9, 68,
                 32, 48, 2, 93],
                 [96, 17, 92, 35, 66, 32, 17, 11, 51, 42, 81, 72, 50, 64, 11, 92,
                 91, 30, 11, 34],
                 [92, 17, 83, 13, 62, 51, 4, 17, 30, 15, 61, 72, 34, 51, 11, 63,
                 94, 28, 2, 62],
                 [98, 12, 84, 20, 64, 27, 10, 8, 18, 12, 50, 57, 22, 37, 15, 96,
                 94, 17, 21, 64],
                 [70, 40, 40, 18, 62, 43, 2, 14, 23, 7, 59, 77, 30, 38, 86, 44,
                 51, 91, 16, 13],
                 [30, 52, 99, 11, 80, 75, 18, 2, 5, 3, 57, 52, 46, 89, 5, 97,
                 25, 31, 3, 9]])
```

In [20]: country_data.shape

Out[20]: (16, 20)

Therefore, this is a 16x20 matrix: 16 countries and 20 foods. In another word,

```
\mu = rac{1}{m} \sum x_i c = rac{1}{m} \sum (x - \mu)(x - \mu)^T
```

where m=16, and there are $16 \times features$

```
# Create PCA
       def myPCA(X, d=2):
           mean_X = np.mean(X, axis=0)
           centered_X = X - mean_X
           conv_X = np.cov(centered_X.T)
           w, v = np.linalq.eig(conv X)
           ids = np.argsort(w)[::-1]
           sort_v = v[:, ids]
           top_d_PC = (sort_v[:,:d]).real
           projected X = np.dot(centered X, top d PC)
           rebuild_X = np.dot(projected_X, top_d_PC.T) + mean_X
           return projected_X, rebuild_X, top_d_PC
In [22]: projected_X1, rebuild_X1, top_d_PC1 = myPCA(country_data, d=2)
In [25]: plt.figure(figsize=(10, 10))
       plt.scatter(projected_X1[:, 0], projected_X1[:, 1])
        plt.axvline(0, linewidth = 0.25)
        plt.axhline(0, linewidth = 0.25)
        for i in range(len(country array)):
           plt.text(projected_X1[i, 0], projected_X1[i, 1], country_array[i], ha='l
        plt.xlabel('PC-1')
        plt.ylabel('PC-2')
        plt.title('TOP 2 PCs')
        plt.show()
```


Now the data tells a very interesting story by itself - some of the countries are clustered together as they consume similar food!