The reference spectra for the 2002 IAEA intercomparison for low-level gamma-ray spectrometry.

1. Detectors and electronics

Two detectors were employed: A 33 % Canberra HPGe detector, to be denoted SMALL from this point on, and a 96.3 % Ortec HPGe detector, to be denoted BIG. A 10 cm thick, tight-fitting lead castle in all directions except the front shielded the BIG detector. The SMALL detector was not shielded at all.

The associated electronics as well as some specifications are shown in Table 1. The original datasheets and dimensional information obtained by other means are shown in Appendix A.

Table 1: Main detector specifications

	SMALL	BIG
efficiency	33 %	96.3 %
resolution at 1333 keV	1.84 keV	1.82 keV
HV	Ortec 459	Emetron EHV-6000
amplifier	Ortec 572	Ortec 571
ADC	Northern NS-623	Canberra Accuspec card

2. The spectra

Three kinds of spectra were acquired on each detector: Background spectra, calibration spectra and test spectra.

2.1. Background spectra

Since the presence of large samples shields the detector from the environment, two background spectra were acquired for the SMALL detector: One with nothing present near the detector, and one with a 500 ml Marinelli beaker filled with distilled water present. These two spectra are denoted BGSMALLPOINT and BGSMALLMARI. For the BIG detector, only one background spectrum was acquired, denoted BGBIGPOINT, because the expected count rates from the pill-box samples are much higher than from the background, and moreover originate from radionuclides not present in the background, as opposed to the natural radioactivity measurements in Marinelli beakers on the SMALL detector.

2.2. Calibration spectra

Peak-to-total spectra

Six single-nuclide point sources were measured at 10 cm distance from the BIG and the SMALL detector and at 20 cm distance from the BIG detector. The latter counting geometry had already been calibrated in the past with a variety of traceable point sources, allowing for determination of the activity of these sources. This efficiency

was verified once again with the mixed radionuclide point source described in the next subsection. The relevant data are shown in Table 2.

Table 2: Sources and spectra for peak-to-total ratio determination. The activities are stated with uncertainties due to counting statistics only.

source	activity on May 1 2001, 12:00 GMT	spectrum name
Am-241	??	Am241BIG, Am241SMALL
Cd-109	31.6 kBq ± 4 %	Cd109BIG, Cd109SMALL
Cs-137	35.5 kBq ± 1 %	Cs137BIG, Cs137SMALL
Zn-65	40.4 kBq ± 2 %	Zn65BIG, Zn65SMALL
Sn-113	79.8 kBq ± 1 %	Sn113BIG, Sn113SMALL
Mn-54	35.5 kBq ± 1 %	Mn54BIG, Mn54SMALL
Co-57	27.8 kBq ± 1 %	Co57BIG, Co57SMALL

Point-source spectra

A certified point source QCD1 was purchased from Amersham. The original specification sheet is shown in Appendix A. this source was counted at 30 cm and 20 cm from the BIG detector, as well as on the end cap, and at 20 cm and 10 cm from the SMALL detector, as well as on the end cap. The spectra are denoted as QCDBIG30, QCDBIG20, QCDBIG0, QCDSMALL30, QCDSMALL10 and QCDSMALL0.

Pillbox on BIG detector

At Analytics Inc. Oak Ridge, a pill-box was filled with 100 ml resin at a density of 1.15 g/cm3, containing certified activity levels shown in Appendix A. This pillbox was counted on the BIG detector until 1 % precision was obtained in the Cs-134 sum peak at 1174 keV. The spectrum is denoted PICBIG.

Marinelli on SMALL detector

At Analytics Inc. Oak Ridge, a 500 ml Marinelli beaker was filled with 500 ml resin at a density of 1.15 g/cm3, containing certified activity levels shown in Appendix A. This beaker was counted on the SMALL detector until 1 % precision was obtained in the Cs-134 sum peak at 1174 keV. The spectrum is denoted MARICSMALL.

2.3. Test spectra

Test samples with known activity levels were obtained from Analytics Inc., Oak Ridge, and from the IAEA. The activity levels were to be kept secret from everybody involved up to the end of the intercomparison meeting, so no specification can be given in this document.

In Seibersdorf, the IAEA mixed two reference materials and supplied two such mixtures for measurement, denoted MIX1 and MIX2. Upon receipt, the materials were placed in the same type of Marinelli beakers as used at Analytics Inc., sealed with an inner lid of 3 mm thick Lucite glued in place with acrylic kit, and counted

immediately as well as after three weeks decay time on the SMALL detector. Right after sealing, MIX1 was counted during 2 days. MIX2 was given a long counting time of 23h35 to get excellent statistics, as well as short acquisition times of 20 and 6 minutes to get poor statistics. The short acquisition times were divided in two halves, one half counted just before the long count and one immediately after, so changes in equilibrium should have a minor effect on the expected peak area ratios between excellent and poor statistics spectra.

After three weeks, more measurements were done for MIX1 and MIX2. Both were counted during 1 hour on the SMALL detector, and MIX2 was counted for an additional 3 minutes to get a "poor statistics" spectrum.

The spectra are denoted MIX1NEQLONG, MIX2NEQLONG, MIX2NEQ20, MIX2NEQ6, all before equilibrium was achieved, and MIX1EQ, MIX2EQ and MIX2EQ3, after equilibrium was achieved. The "long" MIX2 spectrum was analysed with the IRI software, knowing and using the radionuclides and peak energies involved, to get reference peak areas and energies. The results are given in MIX2NEQLONG_REF.

At Analytics Inc., a Marinelli beaker of the same dimensions and matrix density as the calibration one was prepared, and a 100 ml pillbox sample of higher density (1.6 g/ml) than the calibration one. The pillbox sample was counted on the BIG detector for the same duration as the pillbox calibration source, and also during 1 hour. The spectrum are denoted PITBIG and PITBIG60. The Marinelli beaker was counted on the SMALL detector for the same duration as the calibration source, and also during 1 hour. The spectra are denoted MARITSMALL and MARITSMALL60.

Appendix A –specification sheets

BIG detector original specsheet

BIG Destator.

QUALITY ASSURANCE DATA SHEET

GEM Series HPGe (High-Purity Germanium) Coaxial Detector System

Model and Serial Numbers	Important Reference Data
Detector Model No. GEM - 90210 - P	Ship Date <u> </u>
Cryostat Configuration HOP TOP	Serial No. <u>30 – T <i>P</i> 4 0 1 9 0 A</u>
Dewar Model	When calling Customer Service, always reference this Detector Serial No.
Cryogenic Information	
Dewar Capacity Static Holding Time	Detector Cool-Down Time 12 Hus.
Dimensions	
Crystal Diameter 75.5 mm	Absorbing Layers
Crystal Length 97.1 mm	Aluminum
End Cap to Crystal mm	Inactive GermaniumO. 7mm
Total Active Volume cc	
High Voltage Bias	
Recommended Operating Bias, POSITIVE 3500	. V
Performance Specifications*	
Warranted	Amplifier Measured Time Constant
Resolution (FWHM) at 1.33 MeV, ⁶⁰ Co 2.10 keV	1.82 keV 6 us
Peak-to-Compton Ratio, ⁶⁰ Co	<u>97. </u> μs
Relative Efficiency at 1.33 MeV, ⁶⁰ Co $\frac{90}{2.00}$ %.	<u>76.5</u> % <u>6</u> μs
Peak Shape (FWTM/FWHM), **Co Peak Shape (FWFM/FWHM), **Co	7. 07 μs 2.41 6 μs
Resolution (FWHM) at 122 keV, ⁵⁷ Co <u>1200</u> eV	964 ev
Other Capsule NUCA # 1854	
Crise PH-2 # 2332	
Data Certified By	Date 12-11-90
•	•

^{*}Measured at a nominal rate of 1000 counts/s unless otherwise specified.

BIG detector more dimensions as specified by ORTEC

Wanted specifications

1mm (1) thickness top of end_cap
1.6mm (2) thickness side of end_cap
4mm (3) distance from inside end_cap to top of crystal
0.05mm (4) thickness top of mounting-cup
1.6mm (5) thickness side of mounting-cup
1.85m (6) width of removed core
185.3 (7) height of removed core

SMALL detector original specsheet

DETECTOR SPECIFICATIONS AND PERFORMANCE DATA

	319 - 7600SI	_		erial Number		<u> 126</u>
			warranted perf		is detector are	as follow
Active volume	сс	Relative e	•	<u>33</u> %		
Resolution	,	(FWHM) at				
		(FWTM) at 1				
	.950 keV ((FWTM) at	<u>122 keV</u>			
Peak/Compton		` '	stat well diamet	er	mm Well de	pth _
Cryostat descrip	tion or Drawing	Number if s	pecial <u>Hori</u> 7600		dipstick,	type
Physical Cha	aracteristics	ì				
-			end, close	d end fa	cina win	dow
Diameter	<u>56</u>	mm	Active volume		cc	<u> </u>
Length	<u>57</u>	mm	Well depth	,	mm	
Distance from w	indow5	mm	Well diameter		mm	
Recommended l Leakage current Preamplifier test	pias voltage Vdc at recommende point voltage at	000 V (+) ed bias t recommend	dc <u>4500</u> Vd <u>.01</u> n/ led voltage /_ pF		Vdc	
Recommended to Leakage current Preamplifier test Capacitance at r	cic (+) 4 pias voltage Vdc at recommende a point voltage at ecommended bis	000 V (+) ed bias t recommend as	4500 Vd .01 n/ led voltage	A	. Vdc	
Recommended to Leakage current Preamplifier test Capacitance at r	pias voltage Vdc at recommende it point voltage at ecommended bis	000 V t (+) d bias t recommend as	4500 Vd01 n/ led voltage/ pF	A	Vdc	
Recommended to Leakage current Preamplifier test Capacitance at resolution a With amp time of Isotope	cic (+) 4 pias voltage Vdc at recommende a point voltage at ecommended bis	cd bias t recommendas	4500 Vd01 n/ led voltage/ pF	A	Vdc	
Recommended to Leakage current Preamplifier test Capacitance at resolution a With amp time constitution to Leakage Capacitance at resolution a Energy (KeV)	pias voltage Vdc at recommende it point voltage at ecommended bis	t recommendas	4500 Vd01 n/ led voltage/ pF	A	. Vdc	
Recommended I Leakage current Preamplifier test Capacitance at r Resolution a With amp time o	pias voltage Vdc at recommende t point voltage at ecommended bis and Efficience constant of	ct d bias t recommend as		A	Vdc	
Recommended to Leakage current Preamplifier test Capacitance at resolution a With amp time constitution to Leakage Capacitance at resolution a Energy (KeV)	point voltage Vdc at recommende at point voltage at ecommended bi- and Efficience constant of 57Co 122	cd bias t recommend as	4500 Vd01 n/ led voltage/ pF μs 0Co* 332	A	Vdc	
Recommended I Leakage current Preamplifier test Capacitance at r Resolution a With amp time c Isotope Energy (KeV) FWHM (keV)	pias voltage Vdc at recommende t point voltage at ecommended bis and Efficience constant of 57Co 122 .861	t recommend as	4500 Vd01 n/ led voltage/_ pF µs 0Co* 332 1.84	A	. Vdc	
Recommended I Leakage current Preamplifier test Capacitance at r Resolution a With amp time c Isotope Energy (KeV) FWHM (keV)	pias voltage Vdc at recommende t point voltage at ecommended bis and Efficience constant of 57Co 122 .861	000 V (+) ed bias t recommendas Ey 60 1 1 3 6	4500 Vd01 n/ led voltage/_ pF μs 0Co* 332 .84	A	Vdc	
Energy (KeV) FWHM (keV) FWTM (keV) Peak/Compton	pias voltage Vdc at recommende t point voltage at ecommended bis and Efficience constant of 57Co 122 .861 med following IE	000 V (+) ed bias t recommendas EY 60 1 60 33 EEEE standard ime & baseli	1 4500 Vd. 101 n/ led voltage	E std325-1986		

SMALL dimensions

QCD1 certificate

1/2001

5996

Amersham Laboratories

Continue of withinging of antique entrangentes Schoolskermand rajestaties Zolitice

ISSUED

Nycomed Amersham plc Radiation & Radioactivity Calibration Laboratory Amersham Laboratories White Lion Road Amersham Buckinghamshire HP7 9LL

ISSUED FOR:

AEA Technology plc Isotrak 329 Harwell Didcot Oxfordshire OX11 OQJ

Description

Product code:

Source number: 2821QB

This mixed radionuclide gamma-ray reference source contains the nine radionuclides listed below.

1200 GMT on 1 May 2001

and accuracy

Parent radionuclide	Gamma-ray energy (keV)	Gamma-rays per second	Combined Type A uncertainty	Combined Type B uncertainty	Expanded uncertainty	Calibration start date	Calibration finish date
Cadmium-109	88.03	734	± 0.2 %	± 3.2 %	± 6.3 %	23/10/2000	23/10/2000
Cobalt-57	122.1	663	± 0.1 %	± 0.8 %	± 1.5 %	12/12/2000	12/12/2000
Cerium-139	165.9	826	± 0.1 %	± 0.8 %	± 1.5 %	15/09/2000	15/09/2000
Mercury-203	279.2	2216	± 0.1 %	± 0.6 %	± 1.2 %	20/03/2001	20/03/2001
Tin-113	391.7	2367	± 0.3 %	± 1.6 %	± 3.3 %	23/10/2000	23/10/2000
Strontium-85	514.0	4523	± 0.1 %	± 1.4 %	± 2.7 %	23/02/2001	23/02/2001
Caesium-137	661.6	2819	± 0.1 %	± 1.0 %	± 2.1 %	05/09/2000	05/09/2000
Yttrium-88	898.0	7144	± 0.1 %	± 0.9 %	± 1.7 %	17/01/2001	19/01/2001
Cobalt-60	1173	3794	± 0.1 %	± 0.8 %	± 1.6 %	10/05/2000	10/05/2000
Cobalt-60	1333	3797	± 0.1 %	± 0.8 %	± 1.6 %	10/05/2000	10/05/2000
Yttrium-88	1836	7552	± 0.1 %	± 0.8 %	± 1.5 %	17/01/2001	19/01/2001

The calibration date is provided for added information only, and must not be confused with the reference date. It is the reference date that must be used in all calculations relating to the values of activity.

Approved Signatory

Date of

B D D Singleton

Page 1 of 2 pages

Nycomed

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to recognised national standards, and to units of measurement realised at the National Physical Luboratory or other recognised national standards laboratories. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory

6201

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

> Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

64921A-11

500 mL Solid in 500 mL Marinelli Beaker

This standard radionuclide source was prepared gravimetrically from calibrated master solutions. The Am-241 was calibrated by liquid scintillation counting. All other radionuclides were calibrated in an ion chamber that was calibrated by the National Physical Laboratory, Teddington, U.K., and is directly traceable to national standards.

Radionuclide purity and calibration were checked by germanium gamma-ray spectrometry and liquid scintillation counting. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

U.S. Patent 4,430,258; U.K. Patent GB2,149,194B; CA. Patent 1,196,776. Density of solid matrix 1.15 g/cc.

CALIBRATION DATE: November 1, 2002 12:00 EST

ISOTOPE	ACTIVITY (dps)	HALF-LIFE	TOTAL UNCERTAINTY (%)	SYSTEMATIC UNCERTAINTY (%)	RANDOM UNCERTAINTY (%)
Am-241	3353	4.322 E2 y	5.0	4.0	1.0
Cd-109	39214	462.6 d	5.0	4.7	0.3
Ce-139	1325	137.6 d	5.0	4.7	0.3
Co-57	884	271.79 d	5.0	4.7	0.3
Cs-134	5529	754.2 d	5.0	4.7	0.3
Cs-137	1106	3.007 E1 y	4.8	4.5	0.3
Hg-203	2666	46.61 d	5.0	4.7	0.3
Mn-54	1564	312.1 d	5.0	4.7	0.3
Sn-113	2391	115.1 d	5.0	4.7	0.3
Y-88	3914	106.6 d	5.0	4.7	0.3
Zn-65	3191	244.3 d	5.0	4.7	0.3

^{*99%} confidence level.

Impurities: γ-impurities <0.1%

Certificate of Calibration SRS 64921A-11

P O NUMBER BUY10281, Item 1

SOURCE PREPARED BY: M. Taskaeva, Radiochemist

Q A APPROVED:

Composition of Water-Equivalent Solid Standards

The solid standard is actually a solid polyester polymer plastic. The approximate elemental composition is: Carbon 72.1%, Hydrogen 6.0%, and Oxygen 21.9%. The hazards associated with this compound are equivalent to other plastics such as Nalgene bottles, marinelli beakers, plastic bags and gloves. The material is a hard solid which is classified not hazardous by the hazardous materials standards for flammability, reactivity, corrosivity, or combustibility.

6200

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

> Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

64922A-11

100 mL Solid in 125 mL PP Nalgene Jar

This standard radionuclide source was prepared gravimetrically from calibrated master solutions. The Am-241 was calibrated by liquid scintillation counting. All other radionuclides were calibrated in an ion chamber that was calibrated by the National Physical Laboratory, Teddington, U.K., and is directly traceable to national standards.

Radionuclide purity and calibration were checked by germanium gammaray spectrometry and liquid scintillation counting. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

U.S. Patent 4,430,258; U.K. Patent GB2,149,194B; CA. Patent 1,196,776. Density of solid matrix 1.15 g/cc.

CALIBRATION DATE: November 1, 2002 12:00 EST

ISOTOPE	ACTIVITY (dps)	HALF-LIFE	TOTAL UNCERTAINTY (%)	SYSTEMATIC UNCERTAINTY (%)	RANDOM UNCERTAINTY (%)
Am-241	5403	4.322 E2 y	5.0	4.0	1.0
Cd-109	63190	462.6 d	5.0	4.7	0.3
Ce-139	2136	137.6 d	5.0	4.7	0.3
Co-57	1424	271.79 d	5.0	4.7	0.3
Cs-134	8909	754.2 d	5.0	4.7	0.3
Cs-137	1782	3.007 E1 y	4.8	4.5	0.3
Hg-203	4297	46.61 d	5.0	4.7	0.3
Mn-54	2519	312.1 d	5.0	4.7	0.3
Sn-113	3853	115.1 d	5.0	4.7	0.3
Y-88	6306	106.6 d	5.0	4.7	0.3
Zn-65	5142	244.3 d	5.0	4.7	0.3

^{*99%} confidence level.

Impurities: γ -impurities <0.1%

Certificate of Calibration SRS 64922A-11

P O NUMBER BUY10281, Item 2

SOURCE PREPARED BY:

M. Taskaeva, Radiochemist

Q A APPROVED:

M. My 3 11-502

Composition of Water-Equivalent Solid Standards

The solid standard is actually a solid polyester polymer plastic. The approximate elemental composition is: Carbon 72.1%, Hydrogen 6.0%, and Oxygen 21.9%. The hazards associated with this compound are equivalent to other plastics such as Nalgene bottles, marinelli beakers, plastic bags and gloves. The material is a hard solid which is classified not hazardous by the hazardous materials standards for flammability, reactivity, corrosivity, or combustibility.

Page 2 of 2

0202

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

64923-11

500 mL Solid in 500 mL Marinelli Beaker

This standard radionuclide source was prepared gravimetrically from calibrated master solutions. The Eu-152 was calibrated by the Department Des Applications Et De La Metrologie Des Rayonnements Ionisants (DAMRI), Paris, France, as Number 25200. All other radionuclides were calibrated in an ion chamber that was calibrated by the National Physical Laboratory, Teddington, U.K., and is directly traceable to national standards.

Radionuclide purity and calibration were checked by germanium gammaray spectrometry and liquid scintillation counting. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

U.S. Patent 4,430,258; U.K. Patent GB2,149,194B; CA. Patent 1,196,776. Density of solid matrix 1.15 g/cc.

CALIBRATION DATE: November 1, 2002 12:00 EST

ISOTOPE	ACTIVITY (dps)	HALF-LIFE	TOTAL UNCERTAINTY (%)
Ba-133	1713	10.54 y	5.0
Co-60	1076	5.271 y	5.0
Eu-152	3739	1.352 E1 y	5.0
Cr-52	7903	27.70 d	5.0
Na-22	1073	950.4 d	5.0

*99% confidence level.

Impurities: γ-impurities <0.1%</pre>

Certificate of Calibration SRS 64923-11

P O NUMBER BUY10281, Item 3

SOURCE PREPARED BY: M. Taskaeva, Radiochemist

MM MJ 115-02

Q A APPROVED:

Composition of Water-Equivalent Solid Standards

The solid standard is actually a solid polyester polymer plastic. The approximate elemental composition is: Carbon 72.1%, Hydrogen 6.0%, and Oxygen 21.9%. The hazards associated with this compound are equivalent to other plastics such as Nalgene bottles, marinelli beakers, plastic bags and gloves. The material is a hard solid which is classified not hazardous by the hazardous materials standards for flammability, reactivity, corrosivity, or combustibility.

6199

1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 · U.S.A.

> Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

64924A-11

100 mL High Density Solid in 125 mL PP Nalgene Jar

This standard radionuclide source was prepared gravimetrically from calibrated master solutions. The Eu-152 was calibrated by the Department Des Applications Et De La Metrologie Des Rayonnements Ionisants (DAMRI), Paris, France, as Number 25200. All other radionuclides were calibrated in an ion chamber that was calibrated by the National Physical Laboratory, Teddington, U.K., and is directly traceable to national standards.

Radionuclide purity and calibration were checked by germanium gamma-ray spectrometry and liquid scintillation counting. The nuclear decay rate and assay date for this source are given below.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

Density of solid matrix 1.6 g/cc.

CALIBRATION DATE: November 1, 2002 12:00 EST

ISOTOPE	ACTIVITY (dps)	HALF-LIFE	TOTAL UNCERTAINTY (%)
Ba-133	1253	10.54 y	5.0
Co-60	799	5.271 y	5.0
Eu-152	2827	1.352 E1 y	5.0
Cr-52	7827	27.70 d	5.0
Na-22	1063	950.4 d	5.0

*99% confidence level.

Impurities: γ-impurities <0.1%

Certificate of Calibration SRS 64924A-11

P O NUMBER BUY10281, Item 4

SOURCE PREPARED BY: M. Taskaeva, Radiochemist

Q A APPROVED:

Composition of High Density Solid Standards

MMt 11-502

The solid standard is actually a solid polyester polymer plastic with calcium carbonate added. The approximate elemental composition is: Carbon 40.5%, Hydrogen 2.85%, Oxygen 35.6%, and Calcium 21%. The hazards associated with this compound are equivalent to other plastics such as Nalgene bottles, marinelli beakers, plastic bags and gloves. The material is a hard solid which is classified not hazardous by the hazardous materials standards for flammability, reactivity, corrosivity, or combustibility.

MIX1 and MIX2 certificates

ANALYTICAL QUALITY CONTROL SERVICES

AGENCY'S LABORATORIES, A 2444 SEIBERSDORF, AUSTRIA
TEL No.: + 43 1 2600 28226; FAX No.: + 43 1 2600 28222; E-MAIL: AQCS@IAEA.ORG

Seibersdorf, 2002-11-1219

Preparation of two mixed IAEA-RGU-1 and IAEA-RGTh-1 samples

Two 500g reference samples (M-1 and M-2) have been prepared by mixing appropriate amounts of the IAEA-RGU-1 and IAEA-RGTh-1 reference materials at the IAEA Seibersdorf Laboratory. Weighed aliquots of the two materials were mixed in the proportions given in the table below. The samples were blended for three hours each using a tubular mixer.

Mixed Sample Code	Mass of IAEA-RGU-1	Mass of IAEA-RTh-1			
Mixed Sample Code	[g]				
M-1	185	315			
M-3	315	185			

Samples were prepared by Zbigniew Radecki, AQCS, Chemistry Unit, Agency's Laboratories at Seibersdorf.

h w

Part II: AQCS Reference Materials / Radionuclides

1.2.4 Ores

Both, IAEA-RGU-1 and IAEA-RGTh-1 reference materials were prepared on behalf of the International Atomic Energy Agency by the Canada Centre for Mineral and Energy Technology by dilution of a uranium ore BL-5 (7.09% U) and a thorium ore OKA-2 (2.89% Th, 219 µg U/g) with floated silica powder of similar grain size distribution, respectively. No evidence for between-bottles inhomogeneity was detected after mixing and bottling. BL-5 has been certified for uranium, ²²⁶Ra and ²¹⁰Pb confirming that it is in radioactive equilibrium. The agreement between radiometric and chemical measurements of thorium and uranium in OKA-2 shows both series to be in radioactive equilibrium.

The IAEA-RGK-1 material is produced from high purity (99.8%) potassium sulphate supplied by the Merck Company. The potassium property value and its uncertainty were obtained from repeated measurements performed at the Agency's Laboratories Seibersdorf and the results confirmed the value certified by Merck. The upper limits for the uranium and thorium property values were estimated by the Agency's Laboratories Seibersdorf using fluorimetry and activation analysis, respectively.

IAEA Code	RGU-1 Ore				RGTh-1			RGK-1				
Matrix				Ore			Potassium sulphate					
Reference date		S 2				85			(±)			
Date of Release		1987				1987				1987		
Unit Size / Price	50	0g 60 US	\$		50	00g 60 US	S		1	500g 60 US \$		
Analytes	[mg/kg] ¹	95% C.I.	N	R/I	[mg/kg] ²	95% C.I.	N	R/I	[mg/kg] ³	95% C.I.	N	R/I
K	< 20	28		I	200	100 - 300	45	1	448000	445000 - 451000	20	R
Th	< 1	-		1	800	784 - 816	155	R	< 0.01	-	20	I
U	400	398 - 402	-	R	6.3	5.9 - 6.7	145	R	< 0.001	5	20	I
	7				Are E	Derived date	ta					
Radionuclides	[Bq/kg]	95% C.L.	N	RI	[Bq/kg]	95% C.I.	N	R/I	[Bq/kg]	95% C.I.	N	R/I
40K	$< 0.63^{\circ}$	0.00		1	6.34	3.1 - 9.5	45	I	14000°	13600 - 14400	20	R
^{232}Th	< 4 ^g		+	1	3250 ^F	3160 - 3340	155	R				
^{235}U	228 [§]	226 - 230		R	3.6	3.3 - 3.9	145	R				
^{258}U	4940°	4910 - 4970	-	R	785	72 - 84	145	R				
IAEA Report	П	AEA/RL/148	8			IAEA/RL/148	3			IAEA/RL/148		

- Concentration calculated from the silica to BL-5 mass dilution ratio (based on the certified uranium content of BL-5)
- Concentration calculated from the silica to OKA-2 mass dilution ratio (based on the consensus mean value for the OKA-2 ore material) Concentration based on values determined at Agency's Laboratories, Seibersdorf)
- [3] (N)
- Number of accepted results which were used to calculate the recommended or information values and their respective confidence intervals Classification assigned to the property value for analyte (Recommended/Information)
- (R/I)
- Natural radionuclide activity concentrations derived from the elemental concentrations on the basis of isotopic abundance and half-life data

Note: The standard deviation associated with the uranium concentration in IAEA-RGU-1 can be estimated from the 95% confidence interval assuming the 0.95 fractile of the Students t-distribution is equal to 1.96.

The values listed above were established on the basis of a gravimetric dilution of materials with known uranium, thorium and potassium composition. The details concerning the criteria for qualification as a recommended or information value can be found in the respective report which is available free of charge upon request. Orders for these materials should be sent to AQCS, Seibersdorf.

Pillbox and Marinelli beaker dimensions

Marinelli beaker and pillbox dimensions. The Marinelli material is LDPE, the pillbox Nalgene. The shaded area indicates a 500 ml and 100 ml volume, resp..

