A figura mostra uma seção transversal de oito fios condutores percorridos por igual corrente I = 2 A, com os sentidos indicados. Os fios de corrente são perpendiculares ao plano da página (ou do seu ecrã). A figura mostra também duas trajetórias fechadas (amperianas): 1 e 2. Para cada uma das trajetórias a circulação do campo magnético () quando a circulação é feita no **sentido indicado**, tem o valor:

Resposta Correta: oc. trajetoria 1: -2.5x 10⁻⁶ Tm; trajetoria 2: 0x10⁻⁶ Tm

negativo). O ponto P (à esquerda dos dois fios) dista d₂=2d₁ do fio 1. O plano da página é o plano xy.

Calcule a grandeza (em ampère e arredonde às unidades) e sentido (use: z negativo ou z positivo) da corrente no fio 1, sabendo que o campo magnético total devido às correntes é nulo no ponto P.

| [x]

Sentido [y]

Respostas Corretas para x		
Método de avallação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
🤣 Correspondência Exata	13	
Respostas Corretas para y		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
😋 Correspondência Exata	z positivo	

Um fio condutor, de comprimento L, percorrido por uma corrente de intensidade i, está imerso num campo magnético uniforme representado na figura pelas setas horizontais. A figura mostra três posições diferentes do fio (a), (b) e (c), em relação à direção do campo magnético.

 $Sendo \ F(a), F(b) \ e \ F(c) \ os \ m\'odulos \ das \ forças \ magn\'eticas \ produzidas \ no \ fio \ nas \ respetivas \ posiç\~oes, \'e \ correto \ afirmar \ que:$

Na figura estão representados dois fios retilíneos e longos, percorridos pelas correntes elétricas $t_1 = 4$ A e $t_2 = 3$ A t_1 com Na figura estão representados dois fios retilíneos e longos, percorridos pelas correntes elétricas $t_1 = 4$ A e $t_2 = 3$ A $(t_1$ com o sentido "para dentro" da página e t_2 com o sentido "para fora" da página), separados de 6 cm. O plano da página é o plano xy. O ponto P situa-se no eixo dos xx entre os dois fios e dista 2 cm do fio 1 e 4 cm do fio 2.

Considerando o meio, o vácuo, das seguintes afirmações diga se são verdadeiras (com V) ou falsas (com F).

A-No ponto P o campo magnético criado pela corrente in tem o sentido positivo do eixo dos YY [x]

B-No ponto P o campo magnético resultante tem o sentido negativo do eixo dos YY [y]

C-No ponto P o campo magnético criado pela corrente I₁ tem o sentido oposto ao do campo magnético criado pela corrente I₂ à direita dos dois fios [z]

D-No ponto P o módulo do campo magnético criado pela corrente i₁ é maior que o módulo do campo criado pela corrente i₂ [w]

Respostas Corretas para x		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
🤡 Correspondência Exata	F	
Respostas Corretas para y		
Método de avallação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
🤡 Correspondência Exata	V	
Respostas Corretas para z		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
🥶 Correspondência Exata	V	
Respostas Corretas para w		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
🤡 Correspondência Exata	V	
,		

O Grande Colisor de Hadrões (LHC), do CERN é constituído por um túnel, com forma circular e com um raio de 4300 m (ver figura). Numa determinada experiência, um protão foi acelerado até atingir 2,3 × 10⁸ m/s, mantendo este vaior de velocidade na trajetória circular no interior do túnel. Para que o protão mantenha a trajetória circular, este fica sujeito a um campo magnético com o sentido indicado na figura.

Dados: massa do protão: $1,67 \times 10^{-27}$ kg; carga do protão: $1,60 \times 10^{-19}$ C.

Não considerando efeitos relativísticos, indique as afirmações verdadeiras (com ♥) e as falsas (com F).

- A O valor da força magnética necessária para manter o protão naquela trajetória é 2×10^{-14} N [A]
- B O valor do campo magnético necessário para manter a trajetória circular do protão é $5,6 \times 10^{-4}$ T. [B]
- C A trajetória circular do protão tem sentido horário. [C]
- D A força magnética aplicada ao protão tem sentido centrífugo. [D]

Respostas Corretas para A		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
📀 Correspondência Exata	V	
Respostas Corretas para B		
Método de avallação	Resposta Correta	Diferenciação de malúsculas e minúsculas
🥶 Correspondêncis Exata	V	
Respostas Corretas para C		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
😋 Correspondência Exata	F	
Respostas Corretas para D		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
👩 Correspondência Exata	F	

Foi montado um circuito RC em SÉRIE com 18 pilhas de 9V., 10 resistências de 2kΩ e um condensador de capacidade C=14 mF.

Ligou-se o circuito e começou o processo de carga, que foi subitamente interrompido ao fim do tempo, τ (constante de tempo do circuito), passandose imediatamente à descarga.

Calcule a tensão, V_C, aos terminais do condensador no instante t=0,41x t (s), após o início do processo de descarga.

Nota: Apresente o resultado arredondado às DÉCIMAS e use a VÍGULA como separador entre as unidades e as décimas.

Dois fios longos e paralelos, distando entre si de 4.0 cm, são percorridos por correntes de 2A (fio 1) e 4 A (fio 2), percorrendo os fios na mesma direção e sentido oposto. Se F_{12}/L e F_{21}/L forem as forças de interação magnética, por unidade de comprimento, que o fio 1 exerce sobre o fio 2 e que o fio 2 exerce sobre o fio 1, respetivamente, pode dizer-se que a interação é...

No circuito da figura as resistências têm os seguintes valores: $R_1 = R_2 = R_3 = 2 \Omega$. Sendo $V_1 = 10 \text{ V}$, o valor da intensidade da corrente que atravessa a resistência R_3 é $I_3 = 2 \text{ A}$. Calcule o valor absoluto da intensidade da corrente (em ampère) que passa nas resistências R_1 e R_2 , a f.e.m. da fonte V_2 (em volt) e a diferença de potencial entre os pontos a e b (em volt).

Apresente o resultado arredondado às unidades.

/₁ [x]

/2[y]

V2 [z]

 V_{ab} [w]

Respostas Corretas para x		
Método de avallação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
🤡 Correspondência Exata	3	
Respostas Corretas para y		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
Metodo de avaliação	Resposta Correta	unerendiação de maiusculas e minusculas
😋 Correspondência Exata	1	
Respostas Corretas para z		
Método de avaliação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
🥎 Correspondência Exata	2	
Respostas Corretas para w		
Método de avallação	Resposta Correta	Diferenciação de maiúsculas e minúsculas
😋 Correspondência Exata	4	

Uma partícula com carga **q = -1.0µC**, de massa $m = 5.0x10^{-7} kg$ penetra, com uma velocidade v = 10 m/s, num campo magnético uniforme de módulo igual a 10.0 T através de um orifício existente no ponto 0 de um anteparo.

A que distância relativa ao ponto O a partícula depois de entrar na região de campo incide no anteparo.

Uma espira metálica retangular (dimensões 20cm x 50cm) é puxada (num dos lados de menor dimensão) com velocidade constante v = 10 m/s saindo de uma região onde existe um campo magnético uniforme B = 0,20 T com o sentido para "fora da folha" (ver figura).

Quando a espira se desloca (enquanto sai da região do campo), calcule.

Apresente o resultado arredondado às centésimas. Use virgula como separador decimal.

o módulo da força eletromotriz induzida (em volt) $[\mathbf{x}]$

o sentido (horário ou anti-horário) da corrente elétrica induzida na espira [y]

o valor da corrente elétrica na espira (em Λ), sabendo que a resistência da espira se mantém constante e é igual 0.8 Ω.[z]

Respostas Corretas para x		
Resposta Correta	Diferenciação de matúsculas e minúsculas	
0,40		
Resposta Correta	Diferenciação de maiúsculas e minúsculas	
anti-horário		
Resposta Correta	Diferenciação de maiúsculas e minúsculas	
0,50		
	0,40 Resposta Correta anti-horário Resposta Correta	