

Generate Collection

L2: Entry 1 of 1 File: DWPI Jul 30, 1998

DERWENT-ACC-NO: 1998-427738

DERWENT-WEEK: 200245

COPYRIGHT 2002 DERWENT INFORMATION LTD

TITLE: Simple, cheap image-receiving sheet for recording - comprises supporting sheet

and dye- or ink-receiving layer made by powder coating with resin composition

INVENTOR: ARAI, T; MATSUI, F; MITSUHATA, T; SANO, C

PATENT-ASSIGNEE:

ASSIGNEE CODE
BANDO CHEM IND LTD BAND

PRIORITY-DATA: 1997JP-0110803 (April 28, 1997), 1997JP-0015086 (January 29, 1997), 1997JP-0089681 (April 8, 1997), 1997JP-0089682 (April 8, 1997), 1997JP-0107806 (April 24, 1997), 1997JP-0108742 (April 25, 1997), 1997JP-0110802 (April 28, 1997)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
WO 9832542 A1	July 30, 1998	J	072	B05D005/04
JP 10203031 A	August 4, 1998		008	B41M005/38
JP 10278441 A	October 20, 1998		009	B41M005/38
JP 10278442 A	October 20, 1998		800	B41M005/38
JP 10297115 A	November 10, 1998		800	B41M005/38
JP 10297116 A	November 10, 1998		009	B41M005/38
JP 10297117 A	November 10, 1998		014	B41M005/38
JP 10297118 A	November 10, 1998		009	B41M005/38
JP 10297119 A	November 10, 1998		800	B41M005/38
EP 958865 A1	November 24, 1999	E	000	B05D005/04
JP 3135860 B2	February 19, 2001		800	B41M005/38
JP 3135861 B2	February 19, 2001		013	B41M005/38
US 6326055 B1	December 4, 2001		000	B05D003/02
US 6391825 B1	May 21, 2002		000	B41M005/035

DESIGNATED-STATES: US AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE DE FR GB IT NL

APPLICATION-DATA:

PU	B-NO	APPL-DATE	APPL-NO	DESCRIPTOR
WO	9832542A1	January 28, 1998	1998WO-JP00378	
JP	10203031A	January 29, 1997	1997JP-0015086	
JP	10278441A	April 8, 1997	1997JP-0089681	
JP	10278442A	April 8, 1997	1997JP-0089682	
JP	10297115A	April 24, 1997	1997JP-0107806	
JP	10297116A	April 24, 1997	1997JP-0107807	
JР	10297117A	April 25, 1997	1997JP-0108742	
JP	10297118A	April 28, 1997	1997JP-0110802	
JP	10297119A	April 28, 1997	1997JP-0110803	
ΕP	958865A1	January 28, 1998	1998EP-0901048	
ΕP	958865A1	January 28, 1998	1998WO-JP00378	
ΕP	958865A1		WO 9832542	Based on
JP	3135860B2	April 24, 1997	1997JP-0107806	
JP	3135860B2		JP 10297115	Previous Publ.
JP	3135861B2	April 25, 1997	1997JP-0108742	
JР	3135861B2		JP 10297117	Previous Publ.
US	6326055B1	January 28, 1998	1998WO-JP00378	
US	6326055B1	February 18, 1999	1999US-0155488	
US	6326055B1		WO 9832542	Based on
US	6391825B1	January 28, 1998	1998WO-JP00378	CIP of
US	6391825B1	February 18, 1999	1999US-0155488	CIP of
US	6391825B1	March 3, 2000	2000US-0517632	
US	6391825B1		US 6326055	CIP of

INT-CL (IPC): $\underline{B05}$ \underline{D} $\underline{1/04}$; $\underline{B05}$ \underline{D} $\underline{1/06}$; $\underline{B05}$ \underline{D} $\underline{3/02}$; $\underline{B05}$ \underline{D} $\underline{5/04}$; $\underline{B05}$ \underline{D} $\underline{7/24}$; $\underline{B32}$ \underline{B} $\underline{27/20}$; $\underline{B41}$ \underline{M} $\underline{5/00}$; $\underline{B41}$ \underline{M} $\underline{5/035}$; $\underline{B41}$ \underline{M} $\underline{5/26}$; $\underline{B41}$ \underline{M} $\underline{5/38}$; $\underline{B41}$ \underline{M} $\underline{5/40}$; $\underline{C08}$ \underline{J} $\underline{7/04}$; $\underline{C08}$ \underline{L} $\underline{67/00}$; $\underline{C08}$ \underline{L} $\underline{83/04}$; $\underline{C09}$ \underline{D} $\underline{5/03}$; $\underline{D21}$ \underline{H} $\underline{27/00}$; $\underline{G03}$ \underline{G} $\underline{7/00}$

ABSTRACTED-PUB-NO: US 6326055B BASIC-ABSTRACT:

An image-receiving sheet for recording comprises a substrate sheet on which there is a dye- or ink-receiving layer in the form of resin layer made with a powder coating composition-containing resin component. Also claimed are the following: (i) a process for producing the image-receiving sheet for recording with ink or dye by applying a powder coating composition-containing resin component onto a supporting sheet by electrostatic spraying in a dry manner before heating, melting and fixing; (ii) a thermal-transfer image-receiving sheet in which there are thermal-transfer sheet with ink or dye layer and thermal-transfer image-receiving sheet with a layer obtained from the resin component provided on the supporting sheet, the resin film of which is made with a powder coating composition-containing resin component with average particle diameter of 1-30 mm and its thickness is 1-100 mu m, particularly its surface roughness by JIS B 0601-1004 in terms of arithmetical mean roughness Ra being 0.1-4 and ten-pint average roughness Rz being 0.5-20, especially both surfaces of the substrate are coated with the resin composition, or on surface of the supporting sheet there is a first resin layer as the image-receiving layer together with a second non-dye- or ink-receiving resin layer at the back of the substrate; (iii) a peelable layer-containing thermal-transfer image-receiving sheet composed of a thermal-transfer sheet with dye or ink layer and a thermal-transfer image-receiving sheet in combination, in which the thermal-transfer image-receiving sheet is installed on the substrate sheet together with the image-receiving first resin layer for ink or dye combined to form the image-receiving layer on which is a thermal-transfer sheet and a second peelable resin, or a peelable layer of inorganic or organic microparticles, or a peelable layer of dried substance obtained with reactive silicone oil; (iv) a process of making thermal-transfer image-receiving sheet by electrostatic spraying the powder coating composition, heating and fixing to give the dye- or ink-receiving layer; (v) a process for producing peelable layer-containing thermal-transfer image receiving sheet by wet-coating the dye- or ink-receiving first resin as a powder

composition by electrostatic spraying the onto the substrate sheet, heating and fixing, followed by drying-coating the thermal-transfer and peelable layer on the receiving layer, with adhering particularly after hardening of the inorganic or organic particles or the reactive silicone oil; and (vi) another process for manufacturing the thermal-transfer image-receiving sheet in which a film is formed by wet-coating of a white powder coating composition comprising 70-95 wt.% a resin component, white colouring agent and 0.5-12 wt.% reactive and curable silicone oil which has a resin mixture of 50-90 wt.% a carboxyl and/or hydroxyl group-containing saturated polyester resin with acid value of 1-20 mg KOH/g, glass transition temperature of 50-70 deg. C and 50-10 wt.% styrene-acrylic copolymer.

USE - The image-receiving sheets are especially used e.g. in \underline{inkjet} and engraved printings.

ADVANTAGE - Said sheets can provide good resolution and superb images, possible for full colour prints, without degrading quality on smooth surface resin-coated papers such as art papers and offset papers.

ABSTRACTED-PUB-NO:

US 6391825B EQUIVALENT-ABSTRACTS:

An image-receiving sheet for recording comprises a substrate sheet on which there is a dye- or ink-receiving layer in the form of resin layer made with a powder coating composition-containing resin component. Also claimed are the following: (i) a process for producing the image-receiving sheet for recording with ink or dye by applying a powder coating composition-containing resin component onto a supporting sheet by electrostatic spraying in a dry manner before heating, melting and fixing; (ii) a thermal-transfer image-receiving sheet in which there are thermal-transfer sheet with ink or dye layer and thermal-transfer image-receiving sheet with a layer obtained from the resin component provided on the supporting sheet, the resin film of which is made with a powder coating composition-containing resin component with average particle diameter of 1-30 mm and its thickness is 1-100 mu m, particularly its surface roughness by JIS B 0601-1004 in terms of arithmetical mean roughness Ra being 0.1-4 and ten-pint average roughness Rz being 0.5-20, especially both surfaces of the substrate are coated with the resin composition, or on surface of the supporting sheet there is a first resin layer as the image-receiving layer together with a second non-dye- or ink-receiving resin layer at the back of the substrate; (iii) a peelable layer-containing thermal-transfer image-receiving sheet composed of a thermal-transfer sheet with dye or ink layer and a thermal-transfer image-receiving sheet in combination, in which the thermal-transfer image-receiving sheet is installed on the substrate sheet together with the image-receiving first resin layer for ink or dye combined to form the image-receiving layer on which is a thermal-transfer sheet and a second peelable resin, or a peelable layer of inorganic or organic microparticles, or a peelable layer of dried substance obtained with reactive silicone oil; (iv) a process of making thermal-transfer image-receiving sheet by electrostatic spraying the powder coating composition, heating and fixing to give the dye- or ink-receiving layer; (v) a process for producing peelable layer-containing thermal-transfer image receiving sheet by wet-coating the dye- or ink-receiving first resin as a powder composition by electrostatic spraying the onto the substrate sheet, heating and fixing, followed by drying-coating the thermal-transfer and peelable layer on the receiving layer, with adhering particularly after hardening of the inorganic or organic particles or the reactive silicone oil; and (vi) another process for manufacturing the thermal-transfer image-receiving sheet in which a film is formed by wet-coating of a white powder coating composition comprising 70-95 wt.% a resin component, white colouring agent and 0.5-12 wt.% reactive and curable silicone oil which has a resin mixture of 50-90 wt.% a carboxyl and/or hydroxyl group-containing saturated polyester resin with acid value of 1-20 mg KOH/g, glass transition temperature of 50-70 deg. C and 50-10 wt. * styrene-acrylic copolymer.

USE - The image-receiving sheets are especially used e.g. in <u>inkjet</u> and engraved printings.

ADVANTAGE - Said sheets can provide good resolution and superb images, possible for full colour prints, without degrading quality on smooth surface resin-coated papers

such as art papers and offset papers.

An image-receiving sheet for recording comprises a substrate sheet on which there is a dye- or ink-receiving layer in the form of resin layer made with a powder coating composition-containing resin component. Also claimed are the following: (i) a process for producing the image-receiving sheet for recording with ink or dye by applying a powder coating composition-containing resin component onto a supporting sheet by electrostatic spraying in a dry manner before heating, melting and fixing; (ii) a thermal-transfer image-receiving sheet in which there are thermal-transfer sheet with ink or dye layer and thermal-transfer image-receiving sheet with a layer obtained from the resin component provided on the supporting sheet, the resin film of which is made with a powder coating composition-containing resin component with average particle diameter of 1-30 mm and its thickness is 1-100 mu m, particularly its surface roughness by JIS B 0601-1004 in terms of arithmetical mean roughness Ra being 0.1-4 and ten-pint average roughness Rz being 0.5-20, especially both surfaces of the substrate are coated with the resin composition, or on surface of the supporting sheet there is a first resin layer as the image-receiving layer together with a second non-dye- or ink-receiving resin layer at the back of the substrate; (iii) a peelable layer-containing thermal-transfer image-receiving sheet composed of a thermal-transfer sheet with dye or ink layer and a thermal-transfer image-receiving sheet in combination, in which the thermal-transfer image-receiving sheet is installed on the substrate sheet together with the image-receiving first resin layer for ink or dye combined to form the image-receiving layer on which is a thermal-transfer sheet and a second peelable resin, or a peelable layer of inorganic or organic microparticles, or a peelable layer of dried substance obtained with reactive silicone oil; (iv) a process of making thermal-transfer image-receiving sheet by electrostatic spraying the powder coating composition, heating and fixing to give the dye- or ink-receiving layer; (v) a process for producing peelable layer-containing thermal-transfer image receiving sheet by wet-coating the dye- or ink-receiving first resin as a powder composition by electrostatic spraying the onto the substrate sheet, heating and fixing, followed by drying-coating the thermal-transfer and peelable layer on the receiving layer, with adhering particularly after hardening of the inorganic or organic particles or the reactive silicone oil; and (vi) another process for manufacturing the thermal-transfer image-receiving sheet in which a film is formed by wet-coating of a white powder coating composition comprising 70-95 wt.% a resin component, white colouring agent and 0.5-12 wt.% reactive and curable silicone oil which has a resin mixture of 50-90 wt.% a carboxyl and/or hydroxyl group-containing saturated polyester resin with acid value of 1-20 mg KOH/g, glass transition temperature of 50-70 deg. C and 50-10 wt.% styrene-acrylic copolymer.

USE - The image-receiving sheets are especially used e.g. in \underline{inkjet} and engraved printings.

ADVANTAGE - Said sheets can provide good resolution and superb images, possible for full colour prints, without degrading quality on smooth surface resin-coated papers such as art papers and offset papers.

WO 9832542A

CHOSEN-DRAWING: Dwg.1/1

TITLE-TERMS: SIMPLE CHEAP IMAGE RECEIVE SHEET RECORD COMPRISE SUPPORT SHEET DYE INK RECEIVE LAYER MADE POWDER COATING RESIN COMPOSITION

DERWENT-CLASS: A85 G05 P42 P73 P75 T04

CPI-CODES: A12-W07F1; G05-F01;

EPI-CODES: T04-G02E;

UNLINKED-DERWENT-REGISTRY-NUMBERS: 1694U; 1966U

ENHANCED - POLYMER - INDEXING:

Polymer Index [1.1] 018; D60 F26*R F35*R; P1978*R P0839 D01 D50 D63 F41; S9999

S1514 S1456; S9999 S1387 Polymer Index [1.2] 018; G0260*R G0022 D01 D12 D10 D26 D51 D53; R00708 G0102 G0022 D01 D02 D12 D10 D19 D18 D31 D51 D53 D58 D76 D88; H0011*R; H0022 H0011; S9999 S1514 S1456; S9999 S1387; P1741; P0088 Polymer Index [1.3] 018; P1445*R F81 Si 4A; M9999 M2175; S9999 S1376; M9999 M2073; L9999 L2391; L9999 L2073 Polymer Index [1.4] 018; P1445*R F81 Si 4A; M9999 M2039; S9999 S1376; S9999 S1514 S1456; M9999 M2073; L9999 L2391; L9999 L2073 Polymer Index [1.5] 018; N9999 N7056 N7034 N7023; N9999 N7067 N7034 N7023; N9999 N6939*R; N9999 N6177*R; K9392; Q9999 Q8822 Q8775; B9999 B5356 B5276; N9999 N6202 N6177; N9999 N6166; B9999 B5243*R B4740; B9999 B5368 B5276; B9999 B5378 B5276; B9999 B5618 B5572; B9999 B4751 B4740; N9999 N6439; N9999 N6144; ND01; ND07 Polymer Index [1.6] 018; R01966 D00 F20 Ti 4B Tr O* 6A; A999 A077*R

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1998-128991 Non-CPI Secondary Accession Numbers: N1998-333834

DATE: Sunday, December 01, 2002 Printable Copy Create Case

Set Name side by sideQuery side by sideHit Count result setSet Name result setDB=USPT,PGPB,JPAB,EPAB,DWPI,TDBD; PLUR=YES; OP=ADJ11L2Arithmetical mean roughness and ((ink jet) or inkjet or ink-jet)11L1Arthimetical mean roughness and ((ink jet) or inkjet or ink-jet)01

END OF SEARCH HISTORY

1