短学期作业一

汪利军 3140105707

July 4, 2017

Contents

1	作业		2
	1.1	MB	2
	1.2	MDL	2
2	MB		2
	2.1	Problem 1.2	2
	2.2	Problem 1.4	5
	2.3	Problem 1.6	6
	2.4	Problem 1.7	9
	2.5	Problem 1.8	10
	2.6	Problem 1.12	10
	2.7	Problem 1.18	12
3	MDI		18
	3.1	Problem 4.13	18
	3.2	Problem 4.14	18
	3.3	Problem 4.15	18
	3.4	Chapter 3 Worksheet	18

1 作业

1.1 MB

Chapter 1: 2, 4, 6, 7, 8, 12, 18;

1.2 MDL

Chapter 4 Exercise: 4.13, 4.14, 4.15, Chapter 3 Worksheet.

2 MB

2.1 **Problem 1.2**

orings 数据集在 DAAG 包中

library(DAAG)

Loading required package: lattice

orings

##		Temperature	Erosion	Blowby	Total
##	1	53	3	2	5
##	2	57	1	0	1
##	3	58	1	0	1
##	4	63	1	0	1
##	5	66	0	0	0
##	6	67	0	0	0
##	7	67	0	0	0

##	8	67	0	0	0
##	9	68	0	0	0
##	10	69	0	0	0
##	11	70	1	0	1
##	12	70	0	0	0
##	13	70	1	0	1
##	14	70	0	0	0
##	15	72	0	0	0
##	16	73	0	0	0
##	17	75	0	0	0
##	18	75	0	2	1
##	19	76	0	0	0
##	20	76	0	0	0
##	21	78	0	0	0
##	22	79	0	0	0
##	23	81	0	0	0

Extract row 1, 2, 4, 11, 13 and 18 from orings

```
orings.part = orings[c(1,2,4,11,13,18),]
```

Plot total incidents against temperature for the new data frame

```
plot(orings.part$Temperature, orings.part$Total)
```


The similar plot for the full data set.

2.2 **Problem 1.4**

```
library(DAAG)
str(ais)
  'data.frame':
                    202 obs. of 13 variables:
    $ rcc
                   3.96 4.41 4.14 4.11 4.45 4.1 4.31 4.42 4.3 4.51 ...
##
            : num
                   7.5 8.3 5 5.3 6.8 4.4 5.3 5.7 8.9 4.4 ...
##
    $ wcc
            : num
##
    $ hc
                   37.5 38.2 36.4 37.3 41.5 37.4 39.6 39.9 41.1 41.6 ...
            : num
                   12.3 12.7 11.6 12.6 14 12.5 12.8 13.2 13.5 12.7 ...
##
    $ hg
            : num
                   60 68 21 69 29 42 73 44 41 44 ...
    $ ferr
##
            : num
                   20.6 20.7 21.9 21.9 19 ...
    $ bmi
##
            : num
    $ ssf
                   109.1 102.8 104.6 126.4 80.3 ...
##
            : num
##
    $ pcBfat: num
                  19.8 21.3 19.9 23.7 17.6 ...
    $ 1bm
                  63.3 58.5 55.4 57.2 53.2 ...
##
            : num
##
    $ ht
            : num 196 190 178 185 185 ...
##
            : num 78.9 74.4 69.1 74.9 64.6 63.7 75.2 62.3 66.5 62.9 ...
            : Factor w/ 2 levels "f", "m": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ sport : Factor w/ 10 levels "B_Ball", "Field", ...: 1 1 1 1 1 1 1 1 1 1 ...
   判断缺失值
which(is.na(ais))
```

integer(0)

也就是没有缺失值,所以每一列都无缺失值。The table that shows the numbers of males and females for each different sport is as follows.

```
table(ais$sex, ais$sport)
```

##

```
B Ball Field Gym Netball Row Swim T 400m T Sprnt Tennis W Polo
##
##
           13
                   7
                              23 22
                                         9
                                               11
                                                                7
                                                                        0
##
           12
                  12
                       0
                               0
                                  15
                                        13
                                               18
                                                        11
                                                                4
                                                                       17
```

从上表可以看出, Gym, Netball, T_Sprnt 和 W_Polo 存在 large imbalance, 前两项运动是女性居多,后两项运动是男性居多。

2.3 **Problem 1.6**

构造数据集

2.3.1 (a)

```
attach(my.Manitoba.lakes)
plot(log2(area) ~ elevation, pch=16, xlim=c(170,280))
# NB: Doubling the area increases log2(area) by 1.0
text(log2(area) ~ elevation,
    labels=rownames(my.Manitoba.lakes), pos=4)
```

```
text(log2(area) ~ elevation, labels=area, pos=2)
title("Manitoba' s Largest Lakes")
```

Warning in title("Manitoba' s Largest Lakes"): conversion failure on
'Manitoba' s Largest Lakes' in 'mbcsToSbcs': dot substituted for <e2>
Warning in title("Manitoba' s Largest Lakes"): conversion failure on
'Manitoba' s Largest Lakes' in 'mbcsToSbcs': dot substituted for <80>
Warning in title("Manitoba' s Largest Lakes"): conversion failure on
'Manitoba' s Largest Lakes' in 'mbcsToSbcs': dot substituted for <99>

Manitoba...s Largest Lakes

detach(my.Manitoba.lakes)

2.3.2 (b)

Warning in title("Manitoba' s Largest Lakes"): conversion failure on
'Manitoba' s Largest Lakes' in 'mbcsToSbcs': dot substituted for <e2>
Warning in title("Manitoba' s Largest Lakes"): conversion failure on
'Manitoba' s Largest Lakes' in 'mbcsToSbcs': dot substituted for <80>
Warning in title("Manitoba' s Largest Lakes"): conversion failure on
'Manitoba' s Largest Lakes' in 'mbcsToSbcs': dot substituted for <99>

Manitoba...s Largest Lakes

detach(my.Manitoba.lakes)

2.4 Problem 1.7

查看 dotchart 的帮助文档

?dotchart

2.4.1 (a)

```
dotchart(Manitoba.lakes$area,
    main = "Dotchart of Area (linear scale)",
    labels = rownames(Manitoba.lakes))
```

Dotchart of Area (linear scale)

2.4.2 (b)

```
dotchart(log2(Manitoba.lakes$area),
    main = "Dotchart of Area (logarithmic scale)",
    labels = rownames(Manitoba.lakes))
```

Dotchart of Area (logarithmic scale)

2.5 **Problem 1.8**

The lower bound for the area of Manitoba covered by water is

```
sum(Manitoba.lakes$area)
```

[1] 41771

2.6 **Problem 1.12**

```
cutoff.prop <- function(x, cutoff)
{
    ## coerce list to vector
    if (is.list(x))
        x = as.numeric(unlist(x))
    n = length(x)
    ne = sum(x>cutoff)
    return(ne/n)
}
```

2.6.1 (a)

```
x = c(1:100)
## 超过 90 的比例
cutoff.prop(x, 90)
## [1] 0.1
## 超过 80 的比例
cutoff.prop(x, 80)
## [1] 0.2
```

library(Devore7)

```
## Loading required package: MASS
```

##

```
## Attaching package: 'MASS'
## The following object is masked from 'package:DAAG':
##
```


hills

##

据集中未给出数据的单位,猜测为秒,则超过7分钟的比例为

```
cutoff.prop(ex01.36, 60*7)
```

[1] 0.03846154

2.7 Problem 1.18

```
library(MASS)
## 原格式
```

Rabbit

##		BPchange	Dose	Run	Treatment	Animal
##	1	0.50	6.25	C1	Control	R1
##	2	4.50	12.50	C1	Control	R1
##	3	10.00	25.00	C1	Control	R1
##	4	26.00	50.00	C1	Control	R1
##	5	37.00	100.00	C1	Control	R1
##	6	32.00	200.00	C1	Control	R1
##	7	1.00	6.25	C2	Control	R2
##	8	1.25	12.50	C2	Control	R2
##	9	4.00	25.00	C2	Control	R2
##	10	12.00	50.00	C2	Control	R2
##	11	27.00	100.00	C2	Control	R2
##	12	29.00	200.00	C2	Control	R2
##	13	0.75	6.25	СЗ	Control	R3
##	14	3.00	12.50	СЗ	Control	R3
##	15	3.00	25.00	СЗ	Control	R3
##	16	14.00	50.00	СЗ	Control	R3
##	17	22.00	100.00	СЗ	Control	R3
##	18	24.00	200.00	СЗ	Control	R3
##	19	1.25	6.25	C4	Control	R4
##	20	1.50	12.50	C4	Control	R4
##	21	6.00	25.00	C4	Control	R4
##	22	19.00	50.00	C4	Control	R4
##	23	33.00	100.00	C4	Control	R4
##	24	33.00	200.00	C4	Control	R4

##	25	1.50	6.25	C5	Control	R5
##	26	1.50	12.50	C5	Control	R5
##	27	5.00	25.00	C5	Control	R5
##	28	16.00	50.00	C5	Control	R5
##	29	20.00	100.00	C5	Control	R5
##	30	18.00	200.00	C5	Control	R5
##	31	1.25	6.25	M1	MDL	R1
##	32	0.75	12.50	M1	MDL	R1
##	33	4.00	25.00	M1	MDL	R1
##	34	9.00	50.00	M1	MDL	R1
##	35	25.00	100.00	M1	MDL	R1
##	36	37.00	200.00	M1	MDL	R1
##	37	1.40	6.25	M2	MDL	R2
##	38	1.70	12.50	M2	MDL	R2
##	39	1.00	25.00	M2	MDL	R2
##	40	2.00	50.00	M2	MDL	R2
##	41	15.00	100.00	M2	MDL	R2
##	42	28.00	200.00	M2	MDL	R2
##	43	0.75	6.25	МЗ	MDL	R3
##	44	2.30	12.50	МЗ	MDL	R3
##	45	3.00	25.00	МЗ	MDL	R3
##	46	5.00	50.00	МЗ	MDL	R3
##	47	26.00	100.00	МЗ	MDL	R3
##	48	25.00	200.00	МЗ	MDL	R3
##	49	2.60	6.25	M4	MDL	R4
##	50	1.20	12.50	M4	MDL	R4
##	51	2.00	25.00	M4	MDL	R4

```
## 52
           3.00 50.00 M4
                                    MDL
                                             R4
## 53
          11.00 100.00
                         M4
                                    \mathtt{MDL}
                                             R4
## 54
          22.00 200.00
                         M4
                                    MDL
                                             R4
## 55
           2.40
                  6.25
                         M5
                                    \mathtt{MDL}
                                             R5
## 56
           2.50
                 12.50
                                    MDL
                         M5
                                             R5
## 57
           1.50 25.00
                         M5
                                    MDL
                                             R5
## 58
           2.00 50.00
                         M5
                                    MDL
                                             R5
           9.00 100.00
## 59
                         M5
                                    MDL
                                             R5
          19.00 200.00
## 60
                         M5
                                    MDL
                                             R5
```

TA = unstack(Rabbit, Treatment~Animal)

TA

```
##
             R1
                        R2
                                  R3
                                            R4
                                                      R5
       Control Control Control Control
## 2
       Control Control Control Control
       Control Control Control Control
       Control Control Control Control
## 4
       Control Control Control Control
## 6
       Control Control Control Control
## 7
            \mathtt{MDL}
                      \mathtt{MDL}
                                 \mathtt{MDL}
                                           \mathtt{MDL}
                                                     \mathtt{MDL}
## 8
            \mathtt{MDL}
                      \mathtt{MDL}
                                 \mathtt{MDL}
                                           \mathtt{MDL}
                                                     \mathtt{MDL}
## 9
            MDL
                      MDL
                                 MDL
                                           MDL
                                                     MDL
## 10
            MDL
                      MDL
                                 MDL
                                           MDL
                                                     MDL
## 11
            \mathtt{MDL}
                      \mathtt{MDL}
                                 \mathtt{MDL}
                                           \mathtt{MDL}
                                                     \mathtt{MDL}
## 12
            MDL
                      MDL
                                 MDL
                                           MDL
                                                     MDL
```

BA = unstack(Rabbit, BPchange~Animal)

BA

```
##
         R1
               R2
                     RЗ
                           R4
                                R5
## 1
       0.50
             1.00 0.75
                         1.25
                               1.5
## 2
       4.50
             1.25
                  3.00
                         1.50
                               1.5
## 3
      10.00 4.00 3.00
                         6.00 5.0
      26.00 12.00 14.00 19.00 16.0
## 4
      37.00 27.00 22.00 33.00 20.0
## 5
## 6
      32.00 29.00 24.00 33.00 18.0
## 7
       1.25
            1.40 0.75 2.60
## 8
       0.75
             1.70 2.30
                         1.20
                               2.5
             1.00 3.00
## 9
       4.00
                         2.00
## 10
      9.00
            2.00 5.00
                         3.00
## 11 25.00 15.00 26.00 11.00 9.0
## 12 37.00 28.00 25.00 22.00 19.0
```

DA = unstack(Rabbit, Dose~Animal)

DA

R1 R2 R3 R4 R5 ## 1 6.25 6.25 6.25 6.25 6.25 ## 2 12.50 12.50 12.50 12.50 12.50 ## 3 25.00 25.00 25.00 25.00 25.00 50.00 ## 4 50.00 50.00 50.00 50.00 ## 5 100.00 100.00 100.00 100.00 100.00 200.00 200.00 200.00 200.00 200.00 ## 6 ## 7 6.25 6.25 6.25 6.25 6.25 12.50 12.50 ## 8 12.50 12.50 12.50 ## 9 25.00 25.00 25.00 25.00 25.00 ## 10 50.00 50.00 50.00 50.00 50.00

```
## 11 100.00 100.00 100.00 100.00 100.00
```

12 200.00 200.00 200.00 200.00 200.00

因 TA 和 DA 对于五种 Animal 都相同,则取一列即可

```
TA1 = TA[1]

DA1 = DA[1]

names(TA1) = "Treatment"

names(DA1) = "Dose"
```

然后进行 cbind 即可

cbind(TA1, DA1, BA)

##		Treatment	Dose	R1	R2	R3	R4	R5
##	1	Control	6.25	0.50	1.00	0.75	1.25	1.5
##	2	Control	12.50	4.50	1.25	3.00	1.50	1.5
##	3	Control	25.00	10.00	4.00	3.00	6.00	5.0
##	4	Control	50.00	26.00	12.00	14.00	19.00	16.0
##	5	Control	100.00	37.00	27.00	22.00	33.00	20.0
##	6	Control	200.00	32.00	29.00	24.00	33.00	18.0
##	7	MDL	6.25	1.25	1.40	0.75	2.60	2.4
##	8	MDL	12.50	0.75	1.70	2.30	1.20	2.5
##	9	MDL	25.00	4.00	1.00	3.00	2.00	1.5
##	10	MDL	50.00	9.00	2.00	5.00	3.00	2.0
##	11	MDL	100.00	25.00	15.00	26.00	11.00	9.0
##	12	MDL	200.00	37.00	28.00	25.00	22.00	19.0

3 MDL

3.1 **Problem 4.13**

```
seq(1.0, 2.0, by = 0.1)
## [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
```

3.2 **Problem 4.14**

```
rep(1:3, each = 2)
## [1] 1 1 2 2 3 3
```

3.3 **Problem 4.15**

```
rep(1:3,2)
```

[1] 1 2 3 1 2 3

3.4 Chapter 3 Worksheet

3.4.1 构造数据

```
Height <- c(100.0, 97.0, 95.5, 101.0, 100.0, 98.5, 103.0, 98.0, 101.5, 100.0)
df <- data.frame(Gender, ZEP, Weight, Years, Months, Height)</pre>
```

3.4.2 计算均值

```
colMeans(df[c(3,4,5)])
## Weight Years Months
## 15.69 3.30 5.20
```

3.4.3 计算 BMI

```
BMI = Weight/(Height*0.01)^2
BMI
```

[1] 16.00000 14.87937 14.80223 15.09656 16.50000 16.49102 16.02413 ## [8] 15.41025 16.50125 16.70000