Ferienkurs Experimentalphysik 4 2009

Übung 5

1 Matrixelement

Man zeige durch ausrechnen, dass das Dipolmatrixelement $\int \psi_i^* \vec{r} \psi_k d\tau$ für den Übergang $1s \to 2s$ im H-Atom Null ist.

2 Linienbreite

Wie groß sind Übergangswahrscheinlichkeit und natürliche Linienbreite des Übergangs $3s \to 2p$ im H-Atom, wenn die Lebensdauern der Zustände $\tau(3s) = 23ns$ und $\tau(2p) = 2,1\mu s$ betragen? Vergleichen Sie dies mit der Dopplerbreite dieses Übergangs bei T=300K.

3 Absorption

Metastabile $He(2^1S_0)$ - Atome in einer Gasentladungszelle bei T=1000K absorbieren Licht auf dem Übergang $2^1S_0 \to 3^1P_1$. Die Termwerte der Niveaus sind $166272cm^{-1}$ und $186204cm^{-1}$, die Lebensdauern $\tau(3^1P_1)=1,4ns,\,\tau(2^1S_0)=1ms$

- (a) Bei welcher Wellenlänge liegt die entsprechende Resonanzlinie?
- (b) Wie groß ist ihre natürliche Linienbreite?
- (c) Wie groß ist die Dopplerbreite?

4 Chlorwasserstoff

Flüssiger Chlorwasserstoff kann neben Wasser auch mit schwerem Wasser (D) hergestellt werden. Nehmen Sie den Gleichgewichtsabstand r_0 für beide Moleküle gleich mit $r_0 = 1, 4 \cdot 10^{-10} m$ an und zeigen Sie, dass damit ein Frequenzunterschied für den Übergang zwischen den Rotationszuständen mit j=1 und j=0 folgt. Die Moleküle dürfen als starre Rotoren gesehen werden.