while (K <= A length && A[K]. l < m) { m < max (m, A[K].r) $A'[J].r \leftarrow m$ i ← K+1 J <-- J+1 Altrimenti sarcei in grado in meno di O (n log m) nel caso peggiore di decidere se un vettore contieme rispetizioni Non sipuo Consequenza 2 (m log m) caso peggiore ordinamento 10/12 Relazione 10/15 pag Non serve spiegaziae algoritmi Bisagna andere a descrivere il mostro contributo, osservazioni interessanti, grafici... Algoritmi di selezione -> imput annay e indice K restituendo l'elemento a[i] tale che è il Kesimo elemento mel vettorie oridinato Risolvere il problema in 3 modi - quick heap e median of median select 1) Implementare 3 algoritmi che siano corrretti formalmente e con complessità data Quick Select: mel caso medio lineare Heap Select: mel caso medio (m+ Klog K) Gestisco K costante upuale a 100 a secondo della rilevanta e per ognuma gemeno un grafico interessante (m+ 100 log 100)... Median of medians select: complessità lineare data l'ipotesi uniforme 2) Stima tempi medi di esecuzione ci sarramno grafici in cui vengono stimati i tempi di esecuzione dipendente da array gnatici confrontativi in scale semplice, me suche su scala loganitmica per far vederce cosa accade per valori molto grandi e molto piccoli, applicane logaritmi sia ou ordinate e su ascisse Molto interessante è studiarre la stima dei tempi per n fissato e clack con le variante si

può analizzate

l'ex misurarre il teupo di esecuzione una opzione (brutta) è foire una media di toute esecuzioni (4100 100). No mon è molto sicuro Problema -x incognita - R risoluzione - ~ ma misutazione di × x-R < ~ < x+R - E ennoue assoluto E= |x-x| - e enrone relativo e = E/x errone relativo massimo voluto (ennone relativo al più accettato) e max = 0,001 = 0,1% e = $\frac{E}{x} = \frac{x-x}{x} = \frac{R}{x}$ (errore relativo se misurassi xtilde) ripeto m volte il mio oggetto x e tutti i parametri descritti soprie ma dipendente da m ×m = ×. m $E_{m} = e_{m} = \frac{|\times m - \times m|}{\times m} = \frac{R}{\times m} = \frac{R}{\times m} = \frac{R}{\times m} = \frac{1!}{\times m} = \frac{R}{\times m} = \frac$ $\frac{R}{\times_{m}} \leftarrow \frac{1}{\times_{m}} \times \frac{R}{\times_{m}} = \frac{R}{\times_{m}} \times \frac{R}{\times_{m}} \times$ imput = generate | mput (m) execute Alg (imput) mow = clock () M = M+1} while (mow_start < R+ R) potnei trovarie in tempo medio per generiarie l'input con un ciclo che mi generia 9 come stima tempo medio di generate Imput () ottenendo 2 = x - 9 se la gene razione dell'imput è linearre nel tempo con à teupo dell'algoritmo REUDO CODICE for (i = 1 to [2 ... 100]) { J = good Measure (imizializzazione) X = algoritmo (inizializzazione) 2 = 2-9 array [i] = 2

Pez	ottemene d	ati più robusti e	calcolare va	urianze di essi	
	η= 10	10000	re quevate	l'un put prime	
			Il Puppis o	l'un put primer à bla dice di enzur me le un po si vota)	
			Chgi	Devide Cop = E.	
0					
Per ger e mel	nerrane gli momento	imput, è molto m o in cui misurio	neglio generar il tempo m	ne 1000 imput gia promti all'uso nedio, uso tali imput gia generati	
				e cli allocare tatto subito e deallocar	æ
				n mel tempo, mon ha senso variate a conversione di tipo geometrico	
				ahe segue une distribuzione tale che m(1) = mmim e	
			e in modo	Take the $m(1)$ = mmin e	
	(000) = m and x		P4	Λοοο	
	1 = 100 =			e A · B = mmax e im questa	
		i risultati desi			
		/Nomin quindi l			
e	B = exp (log N max - log N	min)	999 A - N mim B	
Quin	di ottenpo	M =			
	O				