EXERCICE 1.

Soient $P \in \mathbb{K}[X]$ et $a, b \in \mathbb{K}$ avec $a \neq b$.

- **1.** Déterminer le reste de la division euclidienne de P par le polynôme X a.
- **2.** Déterminer le reste de la division euclidienne de P par le polynôme $(X a)^2$.
- 3. Déterminer le reste de la division euclidienne de P par le polynôme (X a)(X b).

EXERCICE 2.

Soient

$$A = X^{100} - X^4 + X - 1$$
 et $B = X^3 + X^2 + X + 1$.

Trouver le reste de la division euclidienne de A par le polynôme B.

Exercice 3.★

Soient $a,b\in\mathbb{R}$ et $n\geqslant 1$. Trouver une condition nécessaire et suffisante pour que $(X-1)^2$ divise

$$aX^{n+1} + bX^n + 1$$
.

Calculer alors le quotient.

Exercice 4.★

Soit $n \ge 2$. On pose $P_n = (X - 3)^{2n} + (X - 2)^n - 2$.

- **1.** Déterminer le reste de P_n dans la division euclidienne par X-3.
- 2. Déterminer le reste de P_n dans la division euclidienne par $(X-2)^2$.
- 3. Déterminer le reste de P_n dans la division euclidienne par $(X-2)^2(X-3)^2$.

EXERCICE 5.

Soient A et B deux polynômes de $\mathbb{R}[X]$ tels que B divise A dans $\mathbb{C}[X]$.

- **1.** Justifier que B divise A dans $\mathbb{R}[X]$.
- **2.** Quels sont les entiers naturels n tels que le polynôme $X^2 + X + 1$ divise $X^{2n} + X^n + 1$?
- **3.** Pour tout entier naturel n, on pose

$$P_n = (1 + X^4)^n - X^4$$
.

Déterminer l'ensemble \mathcal{E} des entiers naturels n tels que $X^2 + X + 1$ divise P_n .

EXERCICE 6.

Soit $\theta \in \mathbb{R}$. Calculer le reste de la division euclidienne de $(\cos \theta + X \sin \theta)^n$ par $X^2 + 1$.

Exercice 7.

Pour tout $n \in \mathbb{N}$, on pose

$$P_n = nX^{n+1} - (n+1)X^n + 1.$$

Déterminer le reste de la division euclidienne de P_n par $(X-1)^3$.

EXERCICE 8.

Soit $P \in \mathbb{R}[X]$. On suppose que le reste de la division euclidienne de P par X+1 est égal à 7 et que le reste de la division euclidienne de P par X+5 est égal à 3. Peut-on déterminer le reste de la division euclidienne de P par X^2+6X+5 ?

Exercice 9.

Soit $n \in \mathbb{N}^*$. Déterminer le reste dans la division euclidienne de

$$P_n = \prod_{k=1}^n \left(\sin(k\pi/n)X + \cos(k\pi/n) \right)$$

par $X^2 + 1$.

EXERCICE 10.

Pour quelles valeurs de $m \in \mathbb{N}$ le polynôme $P_m = (X+1)^m - X^m - 1$ est il divisible par $Q = X^2 + X + 1$?

Exercice 11.

- 1. Le polynôme $(X+1)^{2009} + X^{2009} + 1$ est-il divisible par le polynôme $X^2 + X + 1$?
- 2. Pour quelles valeurs de $n \in \mathbb{N}$ le polynôme $X^2 + X + 1$ divise-t-il le polynôme $(X+1)^n + X^n + 1$?

Exercice 12.

On pose $E = \mathbb{R}_4[X]$. Soit $A = X^2 + 1$ et $F = \{P \in E \mid A \text{ divise } P\}$.

- 1. Montrer que F est un sous-espace vectoriel de E.
- **2.** Montrer que $E = F \oplus \mathbb{R}_1[X]$.
- 3. Déterminer une base de F.

EXERCICE 13.

Soit $A \in \mathbb{K}[X]$ tel que deg $A \geqslant 1$. On pose $d = \deg A$. On note D l'application qui à un polynôme $P \in \mathbb{K}[X]$ associe le reste de la division euclidienne de P par A.

- **1.** Montrer que D est un endomorphisme de $\mathbb{K}[X]$.
- **2.** Montrer que D est un projecteur de $\mathbb{K}[X]$.
- **3.** Montrer que Im $D = \mathbb{K}_{d-1}[X]$.
- 4. On note $A\mathbb{K}[X]$ l'ensemble des polynômes de $\mathbb{K}[X]$ multiples de A. Déduire de la question précédente que

$$\mathbb{K}[X] = A\mathbb{K}[X] \oplus \mathbb{K}_{d-1}[X]$$

Exercice 14.

Soient p un nombre premier et $P_n=\alpha_nX^n+\dots+\alpha_1X+\alpha_0\in\mathbb{Z}[X]$ avec $n\geqslant 1.$ On suppose que

$$p \not | a_n, \forall 0 \leq k \leq n-1, p | a_k \text{ et } p^2 \not | a_0.$$

Montrer que P_n est irréductible dans $\mathbb{Q}[X]$.

EXERCICE 15.

Soit $n \in \mathbb{N}$. Montrer qu'il existe un polynôme P tel que X^n divise $1 + X - P^2$.

EXERCICE 16.

Soient P et Q des polynômes de la forme $\sum_{n\in\mathbb{N}} (-1)^n a_n X^n$ avec (a_n) une suite presque nulle de réels positifs. Montrer que PQ est également de cette forme.

Exercice 17.

Calculer pour $n \in \mathbb{N}$, $\sum_{k=0}^{n} (-1)^k {n \choose k}^2$.

EXERCICE 18.

- **1.** Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{R}) \subset \mathbb{R}$.
- **2.** Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{U}) \subset \mathbb{U}$.
- 3. Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{Q}) \subset \mathbb{Q}$.

EXERCICE 19.

Existe-t-il $P \in \mathbb{R}[X]$ tel que $\forall x \in [0, 1], P(x) = \cos x$?

Exercice 20.

Existe-t-il un polynôme $P \in \mathbb{C}[X]$ tel que

$$\forall z \in \mathbb{C}, \ P(z) = \overline{z}$$
?

Exercice 21.★

On pose, pour $n \in \mathbb{N}^*$, $P_n(X) = \sum_{k=0}^{n-1} X^{2k}$.

1. Montrer que la décomposition en produit de facteurs irréductibles sur $\mathbb R$ de P_n s'écrit

$$P_n(X) = \prod_{k=1}^{n-1} (X^2 - 2\cos(k\pi/n)X + 1).$$

2. En déduire que

$$\prod_{k=1}^{n-1} \sin(k\pi/(2n)) = \frac{\sqrt{n}}{2^{n-1}}.$$

3. Calculer la valeur de

$$\prod_{k=1}^{n-1}\cos(k\pi/n).$$

Exercice 22.

Décomposer sur $\mathbb R$ les polynômes suivants :

1.
$$A = X^3 + 1$$
;

2.
$$B = X^4 + 1$$
;

3.
$$C = X^4 + X^2 + 1$$
;

4.
$$D = X^6 + 1$$
;

5.
$$E = X^8 + 1$$
;

6.
$$F = X^8 + X^4 + 1$$
;

7.
$$G = X^4 - X^2 - 12$$
;

8.
$$H = X^6 - 1$$
.

Exercice 23.★

Soit $n \ge 1$. Décomposer $X^n + 1$ sur $\mathbb C$ puis sur $\mathbb R$.

Exercice 24.★

Soit P le polynôme suivant,

$$X^6 + X^5 + 3X^4 + 2X^3 + 3X^2 + X + 1$$
.

- 1. Vérifier que i est racine multiple de P.
- **2.** En déduire la décomposition de P sur \mathbb{R} .

Exercice 25.★

Factoriser en produits de facteurs irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$ les polynômes :

1.
$$X^{2n+1}-1$$
;

3.
$$1 + X^3 + X^6 + X^9$$
;

2.
$$\sum_{k=0}^{2n} X^k$$
;

Exercice 26.

Soit
$$P = X^4 - 9X^3 + 30X^2 - 44X + 24$$
.

- 1. Vérifier que 2 est une racine multiple de P.
- 2. Déterminer toutes les racines de P.
- **3.** Décomposer P sur \mathbb{R} .

Exercice 27.

Soit le polynôme $P = X^8 + 2X^6 + 3X^4 + 2X^2 + 1$.

- 1. Montrer que j est racine de ce polynôme. Déterminer son ordre de multiplicité.
- 2. Quelle conséquence peut-on tirer de la parité de P?
- **3.** Décomposer P en facteurs irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

EXERCICE 28.

Soit $a \in \mathbb{R}$.

- 1. Donner sous forme trigonométrique les racines cubiques de $e^{i\alpha}$.
- **2.** Résoudre dans \mathbb{C} l'équation (E) d'inconnue z suivante : $z^6 2z^3 \cos \alpha + 1 = 0$.
- **3.** Dans cette question, on suppose que $a = \frac{\pi}{2}$.
 - a. Représenter graphiquement les solutions de l'équation (E) (unité : 4cm).
 - **b.** Factoriser $z^6 + 1$ sous la forme d'un produit de trois trinômes du second degré à coefficients réels.

EXERCICE 29.

On considère les polynômes $P=3X^4-9X^3+7X^2-3X+2$ et $Q=X^4-3X^3+3X^2-3X+2$.

- **1.** Décomposez P et Q en facteurs irréductibles sur $\mathbb{R}[X]$, puis sur $\mathbb{C}[X]$ (on pourra calculer les valeurs de P et Q en 1 et 2).
- 2. Déterminer le PPCM et le PGCD des polynômes P et Q.

EXERCICE 30.

Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Décomposez en produit de polynômes irréductibles dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$ le polynôme :

$$P = X^{2n} - 2X^n \cos(n\theta) + 1$$

Exercice 31.

Soit \mathcal{E} l'équation $2z^3 - (7+2i)z^2 + (11+i)z - 4 = 0$.

- 1. Montrer que $\mathcal E$ admet une racine réelle que l'on calculera.
- **2.** Résoudre \mathcal{E} sur \mathbb{C} .

Exercice 32.

Soit $n \in \mathbb{N}$. Le polynôme

$$P_n = \sum_{k=0}^n \frac{X^k}{k!}$$

possède-t-il une racine multiple?

EXERCICE 33.

- 1. Soit $n\in\mathbb{N}^*.$ Factoriser sur \mathbb{C} le polynôme $P_n=X^{n-1}+X^{n-2}+\cdots+X+1.$
- 2. En déduire une expression simple de $A_n = \prod_{k=1}^{n-1} \sin \frac{k\pi}{n}.$
- 3. Donner une expression simple de $B_n = \prod_{k=0}^{n-1} \sin\left(\frac{k\pi}{n} + \theta\right)$.
- 4. On pose $\omega=e^{\frac{2\mathrm{i}\pi}{n}}.$ Calculer $C_n=\prod_{\begin{subarray}{c}0\leqslant k,l\leqslant n-1\\k\neq l\end{subarray}}(\omega^k-\omega^l).$

Exercice 34.

- 1. Montrer que le polynôme $R = X^3 + X + 1$ admet trois racines complexes distinctes notées a,b,c.
- **2.** Montrer que a, b, c, -a, -b, -c sont six complexes distincts.
- 3. Soit $P \in \mathbb{C}[X]$. Montrer qu'il existe un unique polynôme Q tel que $Q(X^2) = P(X)P(-X)$.
- 4. En déduire un polynôme de degré 3 ayant pour seules racines $\mathfrak{a}^2,\mathfrak{b}^2,\mathfrak{c}^2.$

EXERCICE 35.

On cherche les polynômes $P \in \mathbb{C}[X]$ de la forme $(X-\mathfrak{a})(X-\mathfrak{b})$ tels que P divise $P(X^3)$.

- **1.** Déterminer les polynômes P dans le cas où a = b.
- **2.** Montrer que si $a \neq b$ et $a^3 \neq b^3$, il existe 6 tels polynômes P dont 4 dans $\mathbb{R}[X]$.
- **3.** Déterminer les polynômes P dans le cas où $a \neq b$ et $a^3 = b^3$.
- **4.** En déduire que 13 polynômes en tout conviennent dont 7 dans $\mathbb{R}[X]$.

Exercice 36.★

Soit $n \in \mathbb{N}$. On pose $T_n = X^n - X + 1$.

- **1.** Déterminer le nombre de racines réelles de T_n .
- **2.** Montrer que T_n est scindé à racines simples sur $\mathbb{C}[X]$.

Exercice 37.★

Résoudre dans $\mathbb C$ le système suivant :

$$\begin{cases} |x| = |y| = |z| = 1\\ x + y + z = 1\\ xyz = 1 \end{cases}$$

Exercice 38.★

Résoudre dans $\mathbb C$ le système suivant :

$$\begin{cases} x + y + z = 1 \\ x^2 + y^2 + z^2 = 9 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \end{cases}$$

Exercice 39.★

Pour $n \ge 2$, on pose $P_n = (X + i)^n - (X - i)^n$.

- 1. Déterminer les racines complexes de P_n .
- 2. En déduire les valeurs de

$$A_n = \sum_{k=1}^{n-1} \cot(k\pi/n) \text{ et } B_n = \prod_{k=1}^{n-1} \cot(k\pi/n).$$

Exercice 40.★

Soient a, b et c les racines complexes du polynôme $P = X^3 - 2X + 5$.

- **1.** Calculer $S = a^4 + b^4 + c^4$.
- 2. Trouver un polynôme de degré trois à coefficients entiers dont a^2 , b^2 et c^2 sont les racines.

Exercice 41.

Soient x, y, z trois complexes non nuls tels que x + y + z = 0 et $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$. Montrer que |x| = |y| = |z|.

Exercice 42.

Soient $n, p \in \mathbb{N}^*$. Déterminer le pgcd de $X^n - 1$ et $X^p - 1$.

Exercice 43.

 $\text{Pour } n \in \mathbb{N} \text{, on considère la fonction } f_n: \left\{ \begin{array}{cc}]0,\pi[& \longrightarrow & \mathbb{R} \\ \theta & \longmapsto & \frac{\sin(n+1)\theta}{\sin\theta} \end{array} \right..$

- **1.** Montrer que la fonction f_n est prolongeable par continuité en 0 et π . On notera encore f_n ce prolongement. Que valent alors $f_n(0)$ et $f_n(\pi)$?
- 2. Montrer que pour tout $n \in \mathbb{N}$, il existe un unique polynôme P_n tel que $\forall x \in [-1,1]$, $P_n(x) = f_n(\arccos x)$. On déterminera le degré et la parité de P_n en fonction de n.
- 3. Déterminer les valeurs de $P_n(1)$, $P_n(-1)$, $P_n(0)$, $P'_n(0)$.
- **4.** Montrer que $|P_n(x)| \le n+1$ pour tout $x \in [-1, 1]$.
- 5. Etablir que les polynômes P_n vérifient la relation de récurrence : $P_{n+1} + P_{n-1} = 2XP_n$.
- 6. Justifier que f_n est de classe \mathcal{C}^∞ sur $[0,\pi]$. En dérivant deux fois l'identité $\sin\theta\,f_n(\theta)=\sin(n+1)\theta$, déterminer une équation différentielle linéaire homogène que vérifie f_n .
- 7. En déduire une équation différentielle linéaire homogène que vérifie $\mathsf{P}_{\mathsf{n}}.$
- 8. On note $P_n = \sum_{k=0}^n \alpha_k X^k$. Déduire de la question précédente une relation de récurrence entre α_{k+2} et α_k . Expliciter les α_k (on pourra distinguer le cas n pair et le cas n impair).

Exercice 44.

- **1.** Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique P_n tel que $P_n(X+1)+P_n(X)=2X^n$.
- **2.** Trouver une relation entre P'_n et P_{n-1} .
- 3. Montrer que $(P_k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$ et décomposer $P_n(X+1)$ sur cette base.
- **4.** Montrer que $P_n(1-X) = (-1)^n P_n(X)$.

Exercice 45.★★

Soient $n \in \mathbb{N}$ et Δ l'application définie sur $\mathbb{R}[X]$ par

$$P \longmapsto P(X+1) - P(X)$$
.

On pose $\Gamma_0 = 1$ et, pour tout entier $k \ge 1$,

$$\Gamma_k(X) = X(X-1)\dots(X-k+1).$$

On note Δ_n la restriction de Δ à $\mathbb{R}_n[X]$.

- **1.** Vérifier que $\Delta_n \in \mathcal{L}(\mathbb{R}_n[X])$.
- **2.** Montrer que $\mathcal{B}_n = (\Gamma_0, \dots, \Gamma_n)$ est une base de $\mathbb{R}_n[X]$.
- 3. Exprimer, pour tout $k\leqslant n$, $\Delta_n(\Gamma_k)$ dans la base \mathfrak{B}_n . En déduire $\text{Im}(\Delta_n)$ et $\text{Ker}(\Delta_n)$.
- **4.** Calculer, pour tout $\ell \in \mathbb{N}$, $(\Delta_n)^{\ell}$. En déduire que Δ_n est nilpotent d'indice n+1.
- **5.** Prouver que $\forall Q \in \mathbb{R}[X]$, il existe $P \in \mathbb{R}[X]$ tel que

$$P(X + 1) - P(X) = Q(X)$$
.

Y-a-t-il unicité de P?

6. Déterminer trois polynômes P_i , $i \in \{1, 2, 3\}$, tels que

$$\forall i, P_i(X+1) - P_i(X) = X^i.$$

7. En déduire la valeur des sommes suivantes,

$$S_n = 1 + ... + n$$
, $T_n = 1^2 + ... + n^2$ et $U_n = 1^3 + ... + n^3$.

Exercice 46.

On considère la suite de polynômes $(P_n)_{n\geqslant 0}$ définie par $P_0=1,\,P_1=X,$ et

$$\forall n \geqslant 1 \quad P_{n+1} = 2XP_n - P_{n-1}$$
.

- 1. Calculer P₂, P₃ et P₄.
- 2. Montrer que $P_n(-X)=(-1)^nP_n(X)$ pour tout $n\geqslant 0$. En déduire que P_n est pair si n est pair, et impair sinon.
- 3. Montrer que deg $P_n = n$, et déterminer le coefficient dominant de P_n .
- **4. a.** Vérifier que pour tout $n \in \mathbb{N}$ et pour tout réel x, on a $\cos(nx) = P_n(\cos(x))$.
 - **b.** En déduire que P_n admet les n racines distinctes suivantes : $\{\cos(\frac{(2k+1)\pi}{2n}), 0 \leqslant k \leqslant n-1\}.$

Exercice 47.

On considère la suite de polynômes $(P_n)_{n\geqslant 1}$ définie par $P_1=X$, $P_2=X^2-2$, et

$$\forall n \geqslant 2 \quad P_{n+1} = XP_n - P_{n-1}$$
.

- 1. Calculer P₃ et P₄.
- 2. Montrer que P_n est de même parité que n.
- 3. Montrer que deg $P_n = n$, et déterminer le coefficient dominant de P_n .
- **4.** Calculer $P_n(0)$ (on distinguera selon la parité de n).
- **5.** Vérifier que pour tout $n \in \mathbb{N}^*$, on a

$$X^{n} + \frac{1}{X^{n}} = P_{n} \left(X + \frac{1}{X} \right).$$

- **6.** Grâce à ce qui précède, factoriser dans $\mathbb{R}[X]$ les polynômes suivants :
 - a) $Q_1 = X^4 3X^3 + 4X^2 3X + 1$.
 - b) $Q_2 = X^6 + X^5 9X^4 + 2X^3 9X^2 + X + 1$.

Exercice 48.★

Pour tout $n \in \mathbb{N}^*$, on pose $P_n = (1 + X)^n - (1 - X)^n$.

- **1.** Calculer P₁, P₂, P₃, P₄.
- **2.** Montrer que P_n est impair.
- 3. Quel est le coefficient de X^n dans P_n ? Même question avec X^{n-1} . En déduire que le degré de P_n est égal à n (respectivement n-1) lorsque n est impair (respectivement pair).
- **4.** Montrer que P_n est divisible par X.
- **5. a.** Montrer que $z \in \mathbb{C}$ est racine de P_n si et seulement si $\left(\frac{1+z}{1-z}\right)^n = 1$.
 - **b.** Résoudre dans \mathbb{C} l'équation $\left(\frac{1+z}{1-z}\right)^n=1$, et en déduire les racines complexes de P_n (on distinguera les cas n pair et n impair). Combien de ses racines sont réelles ?
- **6.** Factoriser P_n dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$ (on distinguera à nouveau les cas n pair et n impair).

Exercice 49.★★

Soient $n \in \mathbb{N}$ et a_0, a_1, \ldots, a_n des nombres réels deux à deux distincts. Soit ψ l'application de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} définie par

$$P \longmapsto (P(a_0), \dots, P(a_n)).$$

- 1. Prouver que ψ est un isomorphisme.
- 2. En déduire qu'il existe une unique famille de polynômes (L_0,\dots,L_n) de $\mathbb{R}_n[X]$ telle que

$$\forall \, 0 \leqslant j, i \leqslant n \ , \ L_j(\alpha_i) = \delta_{i,j}.$$

- 3. Justifier que $\mathcal{B}=(L_0,L_1,\ldots,L_n)$ est une base de $\mathbb{R}_n[X]$. Quelles sont les coordonnées de $P\in\mathbb{R}_n[X]$ dans la base \mathcal{B} ? Justifier la présence du mot *interpolateur* dans le titre de l'exercice.
- **4.** Expliciter les polynômes (L_0, L_1, \dots, L_n) sous forme de produits.

EXERCICE 50.

Soit $n\in\mathbb{N}$. Soient x_0,\dots,x_n n réels distincts. On définit pour $0\leqslant i\leqslant n$ les polynômes

$$L_{i} = \prod_{j \neq i} \frac{X - x_{j}}{x_{i} - x_{j}}$$

- **1.** Montrer que (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$.
- 2. Soit $k \in [0, n]$. Calculer $P = \sum_{i=0}^{n} x_i^k L_i$.

Exercice 51.

Pour tout $n \in \mathbb{N}$, on note $Q_n = (X^2 - 1)^n$ et $P_n = \frac{1}{2^n n!} Q_n^{(n)}$. On pourra confondre polynôme et fonction polynomiale associée.

- **1.** Calculer P₀, P₁, P₂ et P₃.
- 2. Quel est le degré de P_n ?
- 3. Montrer que P_n a la parité de n. En déduire $P_n(0)$ pour n impair et $P_n'(0)$ pour n pair.
- **4.** En utilisant la formule du binôme de Newton, calculer $P_n(0)$ pour n pair et $P'_n(0)$ pour n impair. On exprimera les résultats à l'aide de factorielles.
- 5. a. Vérifier que

$$\forall n \in \mathbb{N}, (X^2 - 1)Q'_n = 2nXQ_n$$

b. En dérivant n + 1 fois cette relation, montrer que

$$\forall n \in \mathbb{N}, (X^2 - 1)P''_n + 2XP'_n = n(n+1)P_n$$

- **6. a.** Montrer que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$ pour tout $k \in [0, n-1]$.
 - **b.** En appliquant le théorème de Rolle et à l'aide d'une récurrence, montrer que P_n admet exactement n racines réelles distinctes dans]-1,1[.

EXERCICE 52.

Soient $a,b\in\mathbb{K}$ avec $a\neq b$. Montrer que la famille $\left((X-a)^k(X-b)^{n-k}\right)_{0\leqslant k\leqslant n}$ est une base de $\mathbb{K}_n[X]$.

Exercice 53.★

Soient $n \ge 0$ et f définie sur $E = \mathbb{K}_n[X]$ par f(P) = P - P'. Prouver que $f \in GL(E)$ et expliciter f^{-1} .

Exercice 54.★

Soient $n \in \mathbb{N}$ et φ l'application définie sur l'espace vectoriel $E_n = \mathbb{R}_n[X]$ par

$$\phi: P \longmapsto \phi(P) = (X+1)P(X) - XP(X+1).$$

- **1.** ϕ définit-il un endomorphisme de E_n ?
- **2.** Déterminer le noyau de φ.
- 3. ϕ est-il surjectif?

EXERCICE 55.

On note $U_0=1,\ U_p=\frac{X(X-1)...(X-p+1)}{p!}$ pour $p\geqslant 1$ et $\Delta:\mathbb{K}[X]\longrightarrow \mathbb{K}[X]$. $P\longmapsto P(X+1)-P(X)$

- **1.** Montrer que $(U_p)_{p\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.
- **2.** Calculer $\Delta^n(U_p)$ pour $n \in \mathbb{N}$.
- 3. En déduire que tout $P \in \mathbb{K}[X]$ de degré n peut s'écrire

$$P = P(0) + (\Delta P)(0)U_1 + \cdots + (\Delta^n P)(0)U_n$$

- **4.** Montrer que, pour $P \in \mathbb{K}[X]$, $P(\mathbb{Z}) \subset \mathbb{Z}$ si et seulement si les coordonnées de P dans la base $(U_p)_{p \in \mathbb{N}}$ sont entières.
- **5.** Soit $f: \mathbb{Z} \to \mathbb{Z}$. Montrer que f est polynomiale si et seulement si $\exists n \in \mathbb{N}, \Delta^n f = 0$.

EXERCICE 56.

Soient $n\geqslant 3$, $E_n=\mathbb{R}_n[X]$, $\alpha\in\mathbb{R}$ et ϕ_n l'application définie sur E_n par,

$$\varphi_{n}(P) = (X - \alpha)(P'(X) + P'(\alpha)) - 2(P(X) - P(\alpha)).$$

- **1.** Vérifier que $\varphi_n \in \mathcal{L}(E_n)$.
- 2. On pose $P_k=(X-\alpha)^k$ pour tout $k\in [\![0,n]\!]$. Justifier que la famille (P_0,\ldots,P_n) est une base de E_n .
- 3. Calculer $\phi_n(P_k)$ pour $0 \leqslant k \leqslant n$. On distinguera les cas $k \leqslant 2$ et $k \geqslant 3$.
- **4.** En déduire les sous-espaces $Im(\phi_n)$ et $Ker(\phi_n)$. Quel est le rang de ϕ_n ?
- **5.** Prouver que $E_n = Ker(\phi_n) \oplus Im(\phi_n)$.
- 6. Pour quelles valeurs de $n\geqslant 3$ l'endomorphisme ϕ_n est-il un projecteur de E_n ?

Exercice 57.★

Soit φ l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ définie par

$$\forall P \in \mathbb{R}[X], \ \phi(P) = \frac{P(X+1) + P(X)}{2}$$

- **1.** Soit $k \in \mathbb{N}$. Déterminer le degré et le coefficient dominant de $\varphi(X^k)$.
- **2.** Établir que φ est un endomorphisme de $\mathbb{R}[X]$.
- 3. Déduire de ce qui précède que φ est un automorphisme de $\mathbb{R}[X]$.
- 4. a. Justifier l'existence et l'unicité d'un polynôme U_n tel que $U_n(X+1)+U_n(X)=\frac{2X^n}{n!}$.
 - **b.** Démontrer que

$$U_0=1 \quad \forall n \in \mathbb{N}^*, \ U_n(0)+U_n(1)=0 \quad \forall n \in \mathbb{N}^*, \ U_n'=U_{n-1}$$

c. On pose $V_n(X)=(-1)^nU_n(1-X).$ Calculer $\phi(V_n).$ En déduire que $U_n(1-X)=(-1)^nU_n(X).$

Exercice 58.★

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$P(X^2) = (X^2 + 1)P(X).$$

Exercice 59.★

Déterminer les polynômes P de $\mathbb{K}[X]$ vérifiant P(X+1) = P(X).

Exercice 60.

Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que

$$(P')^2 = 4P.$$

Exercice 61.

On cherche les polynômes $P \in \mathbb{C}[X]$ qui vérifient l'équation

$$P(X^2) = XP(X)$$
.

- **1.** On suppose que $P \neq 0$.
 - a. Quel est le degré de P?
 - **b.** Quelle est la seule racine possible pour P?
- 2. Conclure.

Exercice 62.

Résoudre l'équation P'P'' = 18P où $P \in \mathbb{R}[X]$.

Exercice 63.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique P_n tel que $P_n(X+1)+P_n(X)=2X^n$.
- **2.** Trouver une relation entre P'_n et P_{n-1} .
- 3. Montrer que $(P_k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$ et décomposer $P_n(X+1)$ sur cette base.
- **4.** Montrer que $P_n(1-X) = (-1)^n P_n(X)$.

Exercice 64.

Trouver les polynômes $P \in \mathbb{R}[X]$ tels que (X+4)P(X) = XP(X+1).

EXERCICE 65.

Soit P un polynôme de $\mathbb{C}[X]$ non nul tel que $P(X^2) = P(X+1)P(X)$.

- 1. Montrer que si $\alpha\in\mathbb{C}$ est une racine de P, alors pour tout $n\in\mathbb{N},$ α^{2^n} est une racine P.
- 2. Soit $\alpha \in \mathbb{C}$ une racine non nulle de P (s'il en existe). Montrer que α est une racine de l'unité.
- 3. Les racines de P sont-elles toutes nécessairement des racines de l'unité ?
- **4.** En raisonnant par l'absurde, montrer que la seule racine non nulle possible pour P est 1.
- 5. Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X+1)P(X)$.

Exercice 66.

Soit $P \in \mathbb{C}[X]$ non nul tel que $P(X^2) = P(X)P(X-1)$.

- 1. Montrer par l'absurde que 0 n'est pas racine de P.
- 2. Montrer que les racines de P sont de module 1.
- 3. En déduire tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X)P(X-1)$.

Exercice 67.

Déterminer les polynômes $P \in \mathbb{K}[X]$ tels que $6P = X^2P''$.

Exercice 68.

On identifiera les polynômes et leurs fonctions polynomiales associées. Soit $P\in\mathbb{C}[X]$ non nul vérifiant la relation

(*)
$$P(X^2 - 1) = P(X - 1)P(X + 1)$$

- **1.** Soit $\alpha \in \mathbb{C}$. On définit une suite $(a_n) \in \mathbb{C}^{\mathbb{N}}$ par $a_0 = \alpha$ et $a_{n+1} = a_n^2 + 2a_n$ pour tout $n \in \mathbb{N}$.
 - **a.** Montrer que si α est racine de P, a_n est racine de P pour tout $n \in \mathbb{N}$.
 - **b.** On suppose $\alpha \in \mathbb{R}_+^*$. (α_n) est alors une suite de réels. Montrer que (α_n) est strictement monotone.
 - **c.** En déduire que P n'admet aucune racine strictement positive.
- **2. a.** Montrer que -1 n'est pas racine de P.
 - **b.** Pour tout $n \in \mathbb{N}$, exprimer $a_n + 1$ en fonction de α et n.
 - **c.** Pour $n \in \mathbb{N}$, on pose $r_n = |a_n + 1|$. A quelle condition nécessaire et suffisante portant sur α la suite (r_n) est-elle strictement monotone ?
 - **d.** En déduire que si α est racine de P, alors $|\alpha + 1| = 1$.
 - **e.** Montrer que si α est racine de P, alors $|\alpha 1| = 1$.
- **3.** Montrer que si P est non constant, alors P admet 0 pour unique racine.
- **4.** Déterminer tous les polynômes $P \in \mathbb{C}[X]$ vérifiant la relation (*).