GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering - SEMESTER - 2 (NEW) - EXAMINATION - Summer-2024

Subject Code: 4320002 Date: 26-06-2024

Subject Name: Engineering Mathematics

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.
- Q.1 Fill in the blanks using appropriate choice from the given options. (યોગ્ય 14 વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો.)
 - (1) Order of the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 3 & 4 \end{bmatrix}$ is _____.

(શ્રેણિક
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 3 & 4 \end{bmatrix}$$
 ની કક્ષા _____ છે.)

- (a) 2×3 (b) 3×2 (c) 2×2 (d) noneof these (આ પૈકી કોઇ પણ નહીં)
- (2) $\operatorname{If}(\operatorname{Vec}) A = \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$ then (કોય તો) $A^{-1} = \underline{\hspace{1cm}}$
 - (a) A (b) O (c) I (d) A^T
- $(3) \quad \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix} \times \begin{bmatrix} -1 & 6 \\ 2 & 1 \end{bmatrix} = \underline{\hspace{1cm}}$
 - (a) $\begin{bmatrix} 3 & 8 \\ -5 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 8 \\ -5 & 30 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 12 \\ 10 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}$
- (4) If(%) $A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ then (કોય તો) $A^T =$ ____
 - (a) $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ (b) $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (c) $\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$ (d) $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
- $(5)\frac{d}{dx}(4^x) = \underline{\hspace{1cm}}$
 - (a) $4^x \log_e 4$ (b) $4^x \log_4 e$ (c) $4^x \log_e x$ (d) $\log_e 4$
- $(6)\frac{d}{dx}(\sin^2 x + \cos^2 x) = \underline{\hspace{1cm}}$

- (a) 1 (b) 0 (c) -1 (d) none of these (આ પૈકી કોઇ પણ નહીં)
- (7) If $(\Re) x = \sin \theta$, $y = \cos \theta$ then (§ੀਪ ਰੀ) $\frac{dy}{dx} =$ ______
 - (a) $cot\theta$ (b) $tan\theta$ (c) $-tan\theta$ (d) $-cot\theta$
- (8) $\int x^7 dx = ___+ c$
 - (a) x^8 (b) $7x^6$ (c) $\frac{x^8}{8}$ (d) x^6
- (9) $\int_{-2}^{2} x^5 dx = ___+ c$
 - (a) 128 (b) 0 (c) 64 (d) 32
- $(10) \int \frac{\cos x}{\sin x} dx = \underline{\qquad} +c$
 - (a) tanx (b) log|x| (c) $-cosec^2x$ (d) log|sinx|
- (11) The order of the differential equation $\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0$ is _____

વિકલ સમીકરણ
$$\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0$$
 ની કક્ષા _____ છે.

- (a) 3 (b) 1 (c) 4 (d) 2
- (12) An integrating factor of the differential equation $\frac{dy}{dx} + y = 3x$ is ______ વિકલ સમીકરણ $\frac{dy}{dx} + y = 3x$ નો સંકલકારક અવયવ _____ છે.
 - (a) 1 (b) 2 (c) e^x (d) $\log x$
- (13) $i^7 =$ _____
 - (a) 1 (b) -i (c) i (d) -1
- (14) arg (1+i) = _____. (a) π (b) 2π (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$
- Q.2 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)
 - (1) If $A = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix}$ then prove that $(A + B)^T = A^T + B^T$ જો $A = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}$ અને $B = \begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix}$ હોય તો સાબિત કરો કે $(A + B)^T = A^T + B^T$
 - (2) If $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ then show that $A \cdot A^{-1} = I$.

જો
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
 હોય તો બતાવો કે $A \cdot A^{-1} = I$.

(3) solve the differential equation (વિકલ સમીકરણ ઉકેલો) $x \, dy + y \, dx = 0$

Page 2 of 4

06

- (B) Attempt any two (કોઇપણ બે ના જવાબ આપો)
 - (1) If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ then show that $A^2 5A + 7I = 0$.

જો
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 હોય તો બતાવો કે $A^2 - 5A + 7I = 0$

(2) If
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 then prove that adj $A = A$.

જો
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 હોય તો સાબિત કરો કે adj $A = A$.

(3) solve the following system of linear equations using matrix (શ્રેણિક ની મદદથી નીયેની સમીકરણ સંહતી નો ઉકેલ શોધો) :

$$3x + 2y = 5$$
, $2x - y = 1$

Q.3 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)

(1) Using definition of differentiation find the derivative of x^5 with repect to x. વિકલનની વ્યાખ્યાની મદદથી x^5 નુ x સાપેક્ષ વિકલિત શોધો.

(2) Find
$$\frac{dy}{dx}$$
 if $y = \frac{x^2 - 1}{x^2 + 1}$
% $y = \frac{x^2 - 1}{x^2 + 1}$ કોય તો $\frac{dy}{dx}$ શોધો.

(3)Evaluate the integral (સંકલિત મેળવો) $\int \frac{x^2+5x+6}{x^2+2x} dx$

(B) Attempt any two (કોઇપણ બે ના જવાબ આપો)

(1) If $y = \log(\sec x + \tan x)$ then find $\frac{dy}{dx}$.

જો
$$y = \log(\sec x + \tan x)$$
 હોય તો $\frac{dy}{dx}$ શોધો.

(2) If
$$y = 2e^{3x} + 3e^{-2x}$$
 then prove that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$.

જો
$$y = 2e^{3x} + 3e^{-2x}$$
 હોય તો સાબિત કરો કે $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$

(3) Find the maximum and minimum value of function $f(x) = x^3 - 3x + 11$.

વિધેય $f(x) = x^3 - 3x + 11$ માટે મહત્તમ અને ન્યૂનત્તમ કિંમત શોધો.

Q.4 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)

06

08

06

08

- (1) Evaluate the integral (સંકલિત મેળવો) $\int \frac{\cos(\log x)}{x} dx$
- (2) Evaluate the integral (સંકલિત મેળવો) ſ x sinx dx
- (3) If (2x y) + 2y i = 6 + 4i then find x and y. (2x - y) + 2y i = 6 + 4i હોય તો x અને y શોધો.
- (B) Attempt any two (કોઇપણ બે ના જવાબ આપો)

- 08
- (1) Find the area of the region bounded by the curve $y=x^2$, lines x=1, x=2 and X-axis. (વક $y=x^2$, રેખાઓ x=1, x=2 અને X અક્ષથી ધેરાયેલા પ્રદેશનું ક્ષેત્રફળ શોધો.)
- (2) Evaluate the definite integral (નિયત સંકલિત મેળવો) : $\int_0^{\pi/2} \frac{secx}{secx+cosec\ x}\ dx$
- (3) If $\alpha + i\beta = \frac{1}{a+ib}$ then prove that $(\alpha^2 + \beta^2)(a^2 + b^2) = 1$. જો $\alpha + i\beta = \frac{1}{a+ib}$ હોય તો સાબિત કરો કે $(\alpha^2 + \beta^2)(a^2 + b^2) = 1$.
- Q.5 (A) Attempt any two (કોઇપણ બે ના જવાબ આપો)

06

- (1) Find conjugate and modulus of complex number $\frac{2+3i}{3+2i}$. સંકર સં ખ્યા $\frac{2+3i}{3+2i}$ ની અનુ બધ્દ્ર સંકર સંખ્યા અને માનાંક શોધો.
- (2) Simplify (સાદુરુપ આપો) : $\frac{(\cos 3\theta + i \sin 3\theta)^{-4} (\cos \theta i \sin \theta)^{-5}}{(\cos 2\theta i \sin 2\theta)^7}$
- (3) Express Complex number $1+\sqrt{3}i$ into polar form. સંકર સંખ્યા $1+\sqrt{3}i$ ને ધ્રુવિય સ્વરૂપમાં દર્શાવો.
- (B) Attempt any two (કોઇપણ બે ના જવાબ આપો)

08

- (1) Solve (उडेबी) : $\tan y \, dx + \tan x \, \sec^2 y \, dy = 0$
- (2) Solve (िडेबी) : $x \frac{dy}{dx} y = x^2$
- (3) Solve (ઉકેલી): $\frac{dy}{dx} + \frac{y}{x} = e^x$, y(0) = 3
