Narrowing the Edge Folkman Number Bounds Independent Study Proposal

Christopher Wood Advisor: Professor Stanisław Radziszowski

February 24, 2013

1 BACKGROUND

Edge Folkman numbers, first introduced by Folkman in 1970 [1], are concerned with the study of graphs in which a monochromatic coloring of a particular subgraph always exists. We write $G \to (a_1, ..., a_k; p)^e$ if for ever edge coloring of an undirected simple graph G not containing K_p , there exists a monochromatic K_{a_i} in color i for some $i \in \{1, ..., k\}$. The edge Folkman number is defined as $F_e(a_1, ..., a_k) = \min\{|V(G)| : G \to (a_1, ..., a_k; p)^e\}$. In 1970 Folkman proved that for all $k > \max(s, t)$, edge- and vertex- Folkman numbers $F_e(s, t; k)$ and $F_v(s, t; k)$ exist. Prior to this, Erdos and Hajnal pose the problem of finding $F_e(3,3;4)$, which can be informally stated as the following [2]:

What is the order of the smallest K_4 -free graph for which any 2-coloring of its edges must contain at least one monochromatic triangle?

This is equivalent to finding the smallest K_4 -free graph that is not the union of two triangle-free graphs. Since the proposition of this problem, there has been a significant amount of work towards aimed at narrowing the upper and lower bounds of $F_e(3,3;4)$. Table 1.1 enumerates the work on this problem and leads us to the current state of the field.

2 PROPOSED WORK

The current lower bound for $F_e(3,3;4)$ stands at 19 (TODO: CITE). A significant step forward would be to push this bound to 20 using massive computations. Naturally, it is infeasible to

Table 1.1: History of $F_e(e, e; 4)$

Year	Bounds	Who	Ref.
1967	any?	Erdős-Hajnal	[2]
1970	exist	Folkman	[1]
1972	≥ 10	Lin	[3]
1975	$\leq 10^{10}$?	Erdős offers \$100 for proof	
1986	$\leq 8 \times 10^{11}$	Frankl-Rődl	[4]
1988	$\leq 3 \times 10^9$	Spencer	[5]
1999	≥ 16	Piwakowski et al (implicit)	[6]
2007	≥ 19	Radziszowski-Xu	[7]
2008	≤ 9697	Lu	[8]
2008	≤ 941	Dudek-Rődel	[9]
2012	≤ 786	Lange et al	TODO
2012	≤ 100?	Garaham offers \$100 for proof	

enumerate all possible graphs on 20 vertices and check to see if the arrowing property does not hold.

TODO: lower bound, pushing towards 20 using large-scale computations TODO: upper bound attacking G127, and subgraph extensions using 3-sat solvers

3 OUTCOMES AND DELIVERABLES

Publication-ready paper and more in-depth progress report for the entire project

REFERENCES

- [1] Jon Folkman. Graphs with monochromatic complete subgraphs in every edge coloring. *SIAM Journal of Applied Mathematics*. 18 (1970), 19-24.
- [2] P. Erdős, A. Hajnal. Research problem 2-5. Journal of Combinatory Theory, 2 (1967), 104.
- [3] Shen Lin. On Ramsey numbers and K_r -coloring of graphs. *Journal of Combinationial Theory, Series B*, 12:82-92, 1972.
- [4] Peter Frankl and Vojtech Rődl. Large triangle-free subgraphs in graphs with *K*₄. *Graphs and Combinatorics*, 2:135-144, 1986.
- [5] Joel Spencer. Three hunder million points suffice. *Journal of Combinational Theory, Series A*, 49(2):210-217, 1988. Also see erratum by M. Hovey in Vol. 50, p. 323.
- [6] Konrad, Piwakoswki, Stanisław P. Radziszowski, and Sebastian Urbański. Computation of the Folkman Number $F_e(3,3;5)$. *Journal of Graph Theory*, 32:41-49, 1999.

- [7] Stanisław P. Radziszowski and Xiaodong Xu. On the Most Wanted Folkman Graph. *Geocombinatiorics*, 16(4):367-381, 2007.
- [8] Linyuan Lu. Explicit Construction of Samll Folkman Graphs. *SIAM Journal on Discrete Mathematics*, 21(4):1053-1060, January 2008.
- [9] Andrzej Dudek and Vojtech Rődel. On the Folkman Number f(2,3,4). *Experimental Mathematics*, 17(1):63-67, 2008.