Ciência da Computação **GBC043 Sistemas de Banco de Dados**

Introdução ao Modelo Relacional

Profa. Maria Camila Nardini Barioni

camila.barioni@ufu.br

Bloco B - sala 1B137

Modelo de Dados e o Projeto de BD

Modelo Relacional

- Introduzido por Ted Codd da IBM em 1970
 - Simplicidade e base matemática
 - Base teórica na teoria de conjuntos e na lógica de predicados de primeira ordem
- Primeiras implementações: final 70's
 - Projetos: System R e Ingres
 - System R → SQL/DS, DB2, Oracle
 - Ingres → Informix, Sybase, SQLServer, Ingres

Modelo Relacional

- **♦**BD
 - representado como uma coleção de relações
- ◆ Relação
 - possui um nome único
 - é uma tabela bi-dimensional

Tabela Bi-Dimensional

- Características
 - cada coluna tem um nome distinto e representa um atributo
 - cada atributo possui um domínio de valores
 - cada domínio possui VALORES ATÔMICOS
 - por atômico entendemos que o valor é indivisível no domínio
 - todos os valores de uma coluna são valores do mesmo atributo

Tabela Bi-Dimensional

- Características
 - cada linha da tabela representa o relacionamento entre um conjunto de valores
 - cada linha é distinta e representa uma tupla
 - uma n-tupla representa uma tupla que possui n valores
 - grau da relação: número n de atributos de sua relação esquema

Exemplo: Tabela Aluno

relação esquema: Aluno (<u>nmat</u>, nome, endereço, idade)

		Home do atributo					
		nmat	nome	endereç	0	idade	
tupl		935639	Adriana Zagalo	Rua Floriano Peixoto	Intenca	o do B	D
οψ		935632	Beatriz da Silva	Rua Itambé, 124 apto	62 bloco B	22	
linh	a	933219	Carlos Alberto Bozato	Rua Sucupira, 3452 a	pto 125	19	
		938904	Antônio Nascimento	Av. Castro Alves, 57		18	
		934789	Roberto Antonione	Av. Sunab Jatab, 346		32	Ĺ
\					Extensão	do BD	
	Valor					dados	

- Relação esquema R:
 - utilizada para descrever uma relação
 - denotada por $R(A_1, A_2, ..., A_n)$
 - formada por
 - um nome de relação R
 - uma lista de atributos A₁, A₂, ..., A_n
 - para cada atributo A_i (1 ≤ i ≤ n)
 - dom(A_i): domínio de A_i
 - domínio: conjunto de valores atômicos
 - caracteriza a intenção do BD

- Exemplos de domínios para
 - Aluno (<u>nmat</u>, nome, telefone, celular, idade)
 - Números de telefone
 - Nomes de aluno
 - Idade
 - Um método comum para especificar o domínio compreende
 - Definição lógica
 - Definição do tipo de dado ou formato

- Aluno (nmat, nome, telefone, celular, idade)
 - Definição lógica
 - Números de matrícula: conjunto de dígitos válidos para matrícula de alunos
 - 2. Números de telefone: conjunto de números de telefone válido no Brasil
 - 3. Nomes de aluno: conjunto de todos os nomes possíveis para pessoas
 - 4. Idade: conjunto de idades possíveis para alunos
 - Definição do tipo de dado ou formato
 - 1. Números de matrícula: inteiro com 8 dígitos
 - 2. Números de telefone: inteiro com 10 dígitos
 - 3. Nomes de aluno: string de 60 caracteres
 - **4. Idade**: inteiro entre 15 e 100

- Exemplos de domínios para
 - Aluno (<u>nmat</u>, nome, telefone, celular, idade)
 - dom(nmat) = Números de matrícula
 - dom(nome) = Nomes de aluno
 - dom(telefone) = Números de telefone
 - dom(celular) = Números de telefone
 - dom(idade) = Idade

- Relação r da relação esquema R(A₁, A₂, ..., A_n)
 - representa a instância da relação
 - denotada por r(R)
 - formada por um conjunto de n-tuplas

$$r = \{t_1, t_2, ..., t_m\}$$

- cada n-tupla t é uma lista de n valores
 t = <v₁, v₂, ..., v_n>
- v_i (1 \leq i \leq n) é um elemento de dom(A_i) ou um valor nulo (i.e., null)
- caracteriza a extensão do BD

Exemplo de possível relação do esquema

Aluno (nmat, nome, telefone, celular, idade)

```
r(Aluno) = {<222222222, Júlia, 1134343434, 1126262626, 21>, <11111111, Pedro, 1965656565, 197777777, 18>, <99999999, Cecília, 1144443333, 1165658888, 23>}
```

Características das relações

- Ordenação de tuplas em uma relação (nível abstrato)
 - matematicamente, não há ordem entre os elementos de um conjunto
 - na implementação de um SGBDR existe uma ordem física de armazenamento das tuplas na memória externa
 - determina uma ordem na recuperação das informações
- Ordenação de tuplas em uma relação (nível lógico)
 - muitas ordens lógicas podem ser especificadas para uma relação
 - relação ALUNO pode ser ordenada pelos atributos NOME, DATANASCIMENTO, CPF, etc.

Características das relações

- Ordenação de valores dentro de uma tupla
 - uma tupla é uma lista de n valores dispostos em uma ordem determinada de acordo com a disposição dos atributos no esquema da relação
- Valores nas tuplas
 - são atômicos (monovalorados)
 - relações não permitem atributos multivalorados
 - o valor null deve ser utilizado quando um atributo não possui valor ou seu valor não é conhecido

Restrições sobre uma Relação

- Domínio
 - dentro de cada tupla, o valor de cada atributo A deve ser um valor atômico de dom(A)
- Unicidade de chave
 - Chave primária
 - identifica de forma única cada tupla da relação
- Valor nulo
 - permitido: null (padrão)
 - não permitido: not null
- Integridade de entidade
 - nenhum valor de chave primária pode ser nulo

Uma superchave de uma relação R é um conjunto de atributos S contido em R

no qual não haverá duas tuplas t₁ e t₂ cujo
 t₁[S] = t₂[S]

Uma chave K é uma superchave com a propriedade adicional de que a remoção de qualquer atributo da chave fará com que K não identifique mais unicamente cada tupla da relação

 a diferença é que uma chave tem que ser mínima

Aluno (<u>nmat</u>, nome, telefone, celular, idade)

Exemplo:

- {nmat} é uma chave de aluno
- Superchaves
 - {nmat, nome}
 - {nmat, nome, telefone}
 - {nmat, nome, telefone, celular}
 - {nmat, nome, telefone, celular, idade}

- Chave candidata:
 - se um esquema de relação tiver mais de uma chave, cada uma delas é chamada chave candidata
 - uma delas é arbitrariamente designada para ser chave primária
- Um atributo de um esquema de relação R é chamado <u>atributo primário</u> se for membro de alguma chave candidata
- Um atributo é dito <u>não primário</u> se não for um atributo primário

Aluno (<u>nmat</u>, nome, telefone, celular, idade)

Exemplo:

 {nmat} é a única chave candidata de aluno, portanto também é a chave primária

Restrições sobre uma Relação Chave Primária

Resumindo:

- chave primária para um esquema de relação R satisfaz duas restrições
 - duas tuplas distintas não podem ter valores idênticos para os atributos da chave
 - ela é uma superchave mínima

Definições

- Esquema de banco de dados S
 - conjunto de relações esquema $S = \{R_1, R_2, ..., R_m\}$
 - conjunto de restrições de integridade IC
- Estado do banco de dados DB
 - conjunto de estados da relação DB = {r₁, r₂, ..., r_m}, onde cada r_i é um estado de R_i
 - os estados de r_i devem satisfazer às restrições de integridade especificadas em IC

Esquema do BD Relacional

```
empregado (CPF empregado, nome_empregado,
             cod_supervisor, sigla_depto, data_início)
dependente (CPF empregado, nome dependente,
             sexo_dependente)
departamento (sigla depto, nome_depto,
               CPF_empregado)
projeto (nro projeto, nome_projeto)
controla (sigla depto, nro projeto)
desenvolve (CPF empregado, nro projeto,
             horas trabalhadas)
```

Restrições entre duas Relações

- Integridade referencial
 - mantém a consistência entre as tuplas nas duas relações
 - declara que uma tupla em uma relação, a qual faz referência a uma outra relação, deve se referir a uma tupla existente nessa segunda relação
 - definida entre a chave estrangeira (FK) de uma relação esquema R₁ e a chave primária (PK) de uma relação esquema R₂

Restrições entre duas Relações

- ◆ FK de R₁ é chave estrangeira de R₁, que faz referência à PK de R₂, se:
 - os atributos de FK têm os mesmos domínios que os atributos de PK
 - um valor de FK em uma tupla t_1 do estado corrente de $r_1(R_1)$
 - ocorre como um valor de PK para alguma tupla t₂ no estado corrente r₂(R₂) ou
 - tem o valor null

Integridade Referencial

```
empregado (CPF empregado, nome_empregado,
             cod_supervisor, sigla_depto, data_início)
dependente (CPF empregado, nome dependente,
             sexo_dependente)
departamento (sigla depto, nome_depto,
               CPF_empregado)
projeto (nro projeto, nome_projeto)
controla (sigla depto, nro projeto)
desenvolve (CPF empregado, nro projeto,
             horas_trabalhadas)
```

Restrições versus Operações

- Operações de modificação
 - insert → inserção
 - delete → remoção
 - update (ou modify) → atualização
- Quando estas operações são aplicadas, as restrições de integridade especificadas no esquema do banco de dados relacional não devem ser violadas

Operação Insert

- Característica
 - fornece uma lista de valores de atributos para uma nova tupla t, que é inserida em uma relação R
- Pode violar as seguintes restrições
 - domínio
 - unicidade de chave
 - integridade de entidade
 - (chave primária null)
 - integridade referencial

Solução:

- rejeitar a inserção
- enviar mensagem
 de erro ao usuário

Operação Delete

- Característica
 - remove uma ou mais tuplas
- Pode violar a integridade referencial
 - quando as tuplas removidas forem referidas por chaves estrangeiras de outras tuplas
- Soluções
 - rejeitar a remoção
 - remover em cascata
 - modificar valores dos atributos de referência

Operação Update

- Característica
 - altera valores de alguns atributos em tuplas
- Pode violar as seguintes restrições
 - domínio
 - unicidade de chave (se atributo é PK)
 - integridade de entidade (se atributo é PK)
 - integridade referencial (se atributo é FK)
- Soluções
 - idem anteriores (para insert e delete)

Exercícios

- Fazer os exercícios da lista de exercícios "Modelo Relacional" (em grupos de até três alunos)
 - Exercício 1 será discutido até o final da aula

EMPREGADO PNOME MINICIAL UNOME SSN DATANASC **ENDERECO** SEXO SALARIO SUPERSSN DNO В John Smith 123456789 1965-01-09 731 Fondren, Houston, TX M 30000 333445555 5 Т Wong Franklin 333445555 1955-12-08 638 Voss, Houston, TX M 40000 888665555 5 Zelaya 3321 Castle, Spring, TX Alicia J 999887777 1968-01-19 F 25000 987654321 4 S F Jennifer Wallace 987654321 1941-06-20 291 Berry, Bellaire, TX 43000 888665555 4 975 Fire Oak, Humble, TX Ramesh K 666884444 1962-09-15 M 38000 333445555 5 Narayan F Α 453453453 1972-07-31 5631 Rice, Houston, TX 25000 333445555 5 Joyce English V 980 Dallas, Houston, TX M Ahmad Jabbar 987987987 1969-03-29 25000 987654321 4 James E Borg 888665555 1937-11-10 450 Stone, Houston, TX M 55000 null 1

DEPT LOCALIZACOES	DEPT	LOCALIZACOES
-------------------	------	--------------

;	DNUMERO	DLOCALIZACAO
	1	Houston
	4	Stafford
	5	Bellaire
	5	Sugarland
		Houston

DEPARTAMENTO	DNOME	DNUMERO	GERSSN	GERDATAINICIO
	Pesquisa	5	333445555	1988-05-22
	Administração	4	987654321	1995-01-01
	Sede administrativa	1	888665555	1981-06-19

TRABALHA_EM	ESSN	PNO	HORAS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	null

PROJETO	PJNOME	PNUMERO	PLOCALIZACAO	DNUM
	ProdutoX	1	Bellaire	5
	ProdutoY	2	Sugarland	5
	ProdutoZ	3	Houston	5
	Automatização	10	Stafford	4
	Reorganização	20	Houston	1
	Novos Benefícios	30	Stafford	4

DEPENDENTE	<u>ESSN</u>	NOME_DEPENDENTE	SEXO	DATANASC	PARENTESCO
	333445555	Alice	F	1986-04-05	FILHA
	333445555	Theodore	М	1983-10-25	FILHO
	333445555	Joy	F	1958-05-03	CÔNJUGE
	987654321	Abner	М	1942-02-28	CÔNJUGE
	123456789	Michael	M	1988-01-04	FILHO
	123456789	Alice	F	1988-12-30	FILHA
	123456789	Flizabeth	F	1967-05-05	CÔNJUGE

Bibliografia

Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. 690-714.

Material indicado para estudo complementar

- ◆ <u>Capítulo 5</u> do livro: Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 4ª edição.
- Lista de Exercícios sobre o Modelo Relacional