

Contact No.: +91-175-2393201

Email: info@thapar.edu

Assistant Professor, MED

Email: kishore.khanna@thapar.edu

OF ENGINEERING & TECHNOLOGY

(Deemed to be University)

Disclaimer

The content of this presentation for the course "*Mechanics*" posted by Thapar Institute of Engineering & Technology is only for the purpose of education (class teaching) & its not being used for the sale or promotion of production.

MOMENT OF INERTIA

What is Moment of inertia?

Capacity of cross section to resist bending

 also known as the Second Moment of the Area is a term used to describe the capacity of a cross-section to resist bending.

 It is a mathematical property of a section concerned with a surface area and how that area is distributed about the reference axis. The reference axis is usually a centroidal axis.

More areas at larger distance from centroidal axis

moment of first moment of the elemental area dA.

About x axis
$$y(y dA)$$

$$I_{xx} = \int y^2 dA$$

About y axis
$$x(x dA)$$

$$I_{xx} = \int \underline{y^2 dA}$$
$$I_{yy} = \int x^2 dA$$

Units----
$$\underline{m}\underline{m}^4$$
, cm^4 , m^4

Simple rectangle shape

$$dA = bdy$$

Second moment of area of this elemental strip about x-axis

$$\underline{dI_{xx}} = \underline{y^2 dA} = \underline{y^2 b dy}$$

$$I_{xx} = \int_{-h/2}^{h/2} y^2 b dy$$

$$= b \left[\frac{y^3}{3} \right]_{-h/2}^{h/2}$$

$$I_{xx} = \frac{bh^3}{12}$$

Parallel Axis Theorem

Moment of inertia about any axis in the plane of an area is equal to the sum of moment of inertia about a parallel centroidal axis and the product of area and square of the distance between the two parallel axis.

$$I_{AB} = I_{GG} + Ay^2$$

 $I_{GG} = MOI$ about centroidal axis parallel to AB

A = the area of the plane figure given and

y = the distance between the axis AB and the parallel centroidal axis GG.

MOI about axis AB

$$\underline{I_{AB}} = \underline{I_{xx}} + Ay^2 + \frac{5h^3}{12} + 5h(\frac{5}{2})^2$$

$$I_{AB} = \frac{bh^3}{12} + bh(h/2)^2$$

$$I_{AB} = \frac{bh^3}{3}$$

Moment of inertia of basic shapes

Rectangle

$$I_x=rac{1}{12}bh^3$$

$$I_x=rac{1}{12}bh^3 \ I_y=rac{1}{12}b^3h$$

Right Triangle

$$I_x=rac{1}{36}bh^3$$

$$I_y=rac{1}{36}b^3h$$

$$I_{x'}=rac{1}{12}bh^3$$

$$I_{y'}=rac{1}{12}b^3h$$

Built-up sections

- It is often advantageous to combine a number of smaller members in order to create a beam or column of greater strength.
- The moment of inertia of such a built-up section is found by adding the moments of inertia of the component parts

Moment of inertia of built-up sections

- (1) Divide the given figure into a number of simple figures.
- **(2)** Locate the centroid of each simple figure by inspection or using standard expressions.

Moment of inertia of built-up sections

- (1) Divide the given figure into a number of simple figures.
- **(2)** Locate the centroid of each simple figure by inspection or using standard expressions.
- (3) Find the moment of inertia of each simple figure about its centroidal axis. Add the term Ay^2

where *A* is the area of the simple figure and *y* is the distance of the centroid of the simple figure from the reference axis. This gives moment of inertia of the simple figure about the reference axis.

(4) Sum up moments of inertia of all simple figures to get the moment of inertia of the composite section.

Example: Find moment of inertia about centroidal axis

THAPAR INSTITUTE
OF ENGINEERING & TECHNOLOGY
(Deemed to be University)

S.No	Element	$A_i (cm^2)$	\bar{x}_i (cm)	\bar{y}_i (cm)	$A_i \bar{x}_i (cm^3)$	$A_i \overline{y}_i (cm^3)$
1.	Rectangle-(1)	$8 \times 2 = \underline{16}$	8/2 = 4	2/2 = 1	64	16
2.	Rectangle- (2)	$2 \times 8 = 16$	2/2 = 1	2 + (8/2) = 6	16	96
	Σ =	32			80	112

8 cm

$$\overline{x} = \frac{\sum A_i \overline{x}_i}{\sum A_i} = 2.5 \text{ cm} \qquad \overline{y} = \frac{\sum A_i \overline{y}_i}{\sum A_i} = 3.5 \text{ cm}$$

$$\overline{y} = \frac{\sum A_i \overline{y}_i}{\sum A_i} = 3.5 \text{ cm}$$

$$\overline{y} = \frac{\sum A_i \overline{y}_i}{\sum A_i} = 3.5 \text{ cm}$$

	THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University)
	T . TY2
	3.5cm
1	

Moments of in	nertia ca	lculations
---------------	-----------	------------

S.No	$(\bar{I}_{xx})_i cm^4$	$(\bar{I}_{yy})_i cm^4$	$A_i (\overline{y}_i - \overline{y})^2 cm^4$	$A_i (\bar{x}_i - \bar{x})^2 cm^4$
1. 2.	$(1/12) \times 8 \times 2^3 = 5.33$ $(1/12) \times 2 \times 8^3 = 85.33$	$(1/12) \times 2 \times 8^3 = 85.33$ $(1/12) \times 8 \times 2^3 = 5.33$	$16(1-3.5)^2 = 100$ $16(6-3.5)^2 = 100$	$16(4-2.5)^2 = 36$ $16(1-2.5)^2 = 36$
Σ =	90.66	90.66	200	72

$$I_{XX_{L}} = 2^{\text{nd}} \text{ MOA af the whole area about centroidal array} \\ \bar{I}_{xx} = \sum_{i} (\bar{I}_{xx})_{i} + \sum_{i} A_{i} (\bar{y}_{i} - \bar{y})^{2} \\ = 90.66 + 200 = 290.66 \text{ cm}^{4} \\ \bar{I}_{yy} = \sum_{i} (\bar{I}_{yy})_{i} + \sum_{i} A_{i} (\bar{x}_{i} - \bar{x})^{2} \\ = 90.66 + 72 = 162.66 \text{ cm}^{4}$$

Determine MOI of section about base

8 cm

2 cm

Method 1

$$I_{\text{base}} = \bar{I}_{xx} + A(d)^2$$

= 290.66 + (32) (3.5)² [Note that $d = \bar{y} = 3.5 \text{ cm}$]
= 682.66 cm⁴

Find moment of inertia about centroidal axis

S.No	Element	A_i (cm ²)	\bar{y}_i (cm)	$A_i \overline{y}_i (cm^3)$
1.	Rectangle (1)	$30 \times 2 = 60$	1	60
2.	Rectangle (2)	$30 \times 2 = 60$	17	1020
3.	Rectangle (3)	$10 \times 2 = 20$	33	660
	Σ =	140		1740

$$\overline{y} = \frac{\sum A_i \overline{y}_i}{\sum A_i} = \underline{12.43} \text{ cm}$$

$$\overline{y} = \frac{\sum A_i \overline{y}_i}{\sum A_i} = 12.43 \text{ cm}$$

$$\bar{I}_{xx} = \sum (\bar{I}_{xx})_i + \sum A_i (\bar{y}_i - \bar{y})^2$$

$$= 4526.67 + 17554.28 = 22080.95 \text{ cm}^4$$

$$\bar{I}_{yy} = \sum (\bar{I}_{yy})_i + \sum A_i (\bar{x}_i - \bar{x})^2 = 4686.67 \text{ cm}^4$$

$$I_x=rac{\pi}{4}r^4$$
 - $rac{\pi}{4}$

$$I_y=rac{\pi}{4}r^4$$
 = $rac{\Re}{64}$ d

Semicircle

$$I_x = \left(rac{\pi}{8} - rac{8}{9\pi}
ight)r^4$$
 $I_y = rac{\pi}{8}r^4$

$$I_{x'}=rac{\pi}{8}r^4$$

$$\int_{X} = \int_{X} / - A_{\gamma}$$

$$\frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= 0 1059 \% = 0.11 \%$$

Quarter Circle

$$I_{x'}=rac{\pi}{16}r^4
onumber \ I_{y'}=rac{\pi}{16}r^4
onumber$$

Find moment of inertia about centroidal axis

