LITEON LITE-ON TECHNOLOGY CORPORATION

Property of Lite-on Only

FEATURES

- 1. This specification shall be applied to photocoupler. Model No. MOC3063 as an option.
- 2. Applicable Models (Business dealing name)
 - * Dual-in-line package:

MOC3063-V: 1-channel type

* Wide lead spacing package:

MOC3063M-V: 1-channel type

* Surface mounting package:

MOC3063S-V: 1-channel type

* Tape and reel packaging:

MOC3063S TA1-V

3. The relevant models are the models Approved by VDE

according to DIN VDE 0884:1992-06

Approved Model No.: MOC3063 / MOC3063M / MOC3063S /

VDE approved No.: 094722

(According to the specification DIN VDE 0884:1992-06)

- * Operating isolation voltage V_{IORM}: 850V (Peak)
- * Transient voltage V_{TR}: 6000V (Peak)
- * Pollution: 2 (According to VDE 0110-1: 1997-04)
- * Clearances distance (Between input and output): 7.0mm (MIN.)
- * Creepage distance (Between input and output): 7.0mm (MIN.)
- * Isolation thickness between input and output: 0.4mm (MIN.)
- * Safety limit values Current (Isi): 400mA (Diode side)

Power (Psi): 700mW (Phototransistor side)

Temperature(Tsi): 175°C

In order to keep safety electric isolation of photocoupler, please set the protective circuit to keep within safety limit values when the actual application equipment troubled.

* Indication of VDE 0884 approval prints " on sleeve package.

Part No.: MOC3063-V SERIES Page: 1 of 10

7.62 ~ 9.98

Property of Lite-on Only

OUTLINE DIMENSIONS

Dual-in-line package:

Wide lead spacing package:

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked (Z: Taiwan, Y: Thailand, X: China).
- *4. Model No.: MOC3063

Part No.: MOC3063-V SERIES 2 of 10 Page:

Property of Lite-on Only

OUTLINE DIMENSIONS

Surface mounting package:

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked (Z: Taiwan, Y: Thailand, X: China).
- *4. Model MOC3063

Part No.: MOC3063-V SERIES 3 of 10 Page:

Property of Lite-on Only

TAPING DIMENSIONS

Tape and reel package (TYPE I): MOC3063S-TA1

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F	$7.5 \pm 0.1 \; (.295)$
Distance of compartment	P ₂	2 ± 0.1 (.079)
Distance of compartment to compartment	P ₁	$12 \pm 0.1 (.472)$

Part No.: MOC3063-V Page: 4 of 10

Property of Lite-on Only

ABSOLUTE MAXIMUM RATING

 $(Ta = 25^{\circ}C)$

	PARAMETER	SYMBOL	RATING	UNIT
	Forward Current	I_{F}	50	mA
INPUT	Reverse Voltage	VR	6	V
	Power Dissipation	P_{D}	120	mW
	Off-State Output Terminal Voltage	V _{DRM}	600	V
OUTPUT	Peak Repetitive Surge Current (PW=100μs, 120pps)	Ітѕм	1	A
	Collector Power Dissipation	Pc	150	mW
Total P	ower Dissipation	P _{tot}	250	mW
*1 Isolation Voltage		Viso	5,000	Vrms
Ambient Operating Temperature Range		T_{A}	-40 ~ +100	°C
Storage	e Temperature Range	Tstg	-55 ~ +150	°C
*2 Solderi	ng Temperature	$T_{\rm L}$	260	°C

*1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector, emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- *2. For 10 Seconds

Part No.: MOC3063-V SERIES 5 of 10 Page:

Property of Lite-on Only

ELECTRICAL - OPTICAL CHARACTERISTICS

 $(Ta = 25^{\circ}C)$

	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
INPUT	Forward Voltage	VF	_	1.2	1.4	V	I _F =20mA
INPUT	Reverse Current	IR	_	0.05	10	μΑ	V _R =6V
	*1 Peak Blocking Current, Either Direction	I_{DRM1}		_	500	nA	$V_{DRM} = 600V$
OUTPUT	Peak On-State Voltage, Either Direction	V_{TM}		_	3.0	V	I _{TM} =100 mA Peak
	*2 Critical rate of Rise of Off-State Voltage	Dv/dt	600	1500	_	V/µs	
COUPLED	*3 Led Trigger Current, Current Required to Latch Output, Either Direction	$ m I_{FT}$	_	_	5	mA	Main Terminal Voltage = 3V
	Holding Current, Either Direction	I_{H}	_	400	_	μΑ	
	Turn-On Time	T _{ON}	_	8	20	μs	$V_P=9V$, $I_F=20mA$ $R_L=100\Omega$
ZERO	Inhibit Voltage	V _{INH}		5	20	Volts	I _F =Rated I _{FT} , MT1-MT2 Voltage above which device will not trigger.
CROSSING	Leakage in Inhibited State	I_{DRM2}	_	_	500	μΑ	$\begin{split} &I_F = Rated \ I_{FT}, \ Rated \\ &V_{DRM}, \ Off \ State \end{split}$

^{*1} Test voltage must be applied within dv/dt rating.

Part No.: MOC3063-V SERIES Page: 6 of 10

^{*2} This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor(s) only.

^{*3} All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT}. Therefore, recommended operating I_F lies between max I_{FT} (5mA for MOC3063-V) and absolute max I_F (50mA)

Property of Lite-on Only

ISOLATION SPECIFICATION ACCORDING TO VDE 0884

Parameter		Symbol	Conditions	Rating	Unit	Remark		
Cl	Class of environmental test		-	DIN IEC68	30/100/21	-		
Po	Pollution		-	DIN VDE0110	2	-		
	Maximum Operating Isolation Voltage		V _{IORM}	-	850	V_{PEAK}		
	Partial Discharge Test Voltage Diagram 1		N.	tp=60s, qc<5pC	1275	V _{PEAK}	Refer to the	
(B	Setween Input and utput)	Diagram 2	Vpr	tp=1s, qc<5pC	1594	V_{PEAK}	Diagram 1, 2	
M	Maximum Over-voltage		V _{INITIAL}	$t_{\rm INI}=10s$	6000	V_{PEAK}		
Sa	Safety Maximum Ratings							
	1) Case Temperature		Tsi	$I_F = 0, Pc = 0$	130	°C	Refer to the	
	2) Input Current		Isi	Pc=0	55	mA	Figure 1, 3	
	3) Electric Power (Output or Total Power Issipation)		Psi	-	160	mW		
	Isolation Resistance (Test Voltage Between Input and Output : DC500V)		oltage Between R _{ISO}	Ta=Tsi	MIN.10 ⁹			
(T				Ta=Topr(MAX.)	MIN.10 ¹¹	Ω		
111				Ta=25 °C	MIN.10 ¹²			

Precautions in performing isolation test

- * Partial discharge test methods shall be the ones according to the specifications of VDE 0884:1992-06
- * Please don't carry out isolation test (Viso) over V_{INITIAL} ,This product deteriorates isolation characteristics by partial discharge due to applying high voltage (ex. V_{INITIAL}). And there is possibility that this product occurs partial discharge in operating isolation voltage (V_{IORM})

Page: 7 of 10 Part No.: MOC3063-V SERIES

PARTIAL DISCHARGE TEST METHOD

Method (A) for type testing and random testing.

$$\begin{array}{lll} \text{t1, t2} & = 1 \text{ to 10s} \\ \text{t3, t4} & = 1 \text{s} \\ \text{tp (Partial Discharge Measuring Time)} = 60 \text{s} \\ \text{tb} & = 62 \text{s} \\ \text{tini} & = 10 \text{s} \\ \end{array}$$

Method (B) for routine testing.

Page:

8 of 10

The partial discharge level shall not exceed 5 pC during the partial discharge measuring time interval t_p under the test conditions shown above.

Part No.: MOC3063-V SERIES

Property of Lite-on Only

CHARACTERISTICS CURVES

Fig.1 Forward Current vs. **Ambient Temperature**

Fig.3 Minimum Trigger Current vs. Ambient Temperature

Fig.5 On-state Voltage vs. Ambient Temperature

Fig.2 On-state Current vs. Ambient Temperature

Fig.4 Forward Current vs. Forward Voltage

Fig.6 Holding Current vs. **Ambient Temperature**

Part No.: MOC3063-V SERIES 9 of 10 Page:

Property of Lite-on Only

CHARACTERISTICS CURVES

Fig.7 Turn-on Time vs. Forward Current

Fig.8 Repetitive Peak Off-state Current vs. Temperature

Fig.9 On-state Current vs. On-state Voltage

Static dv/dt Test Circuit

RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Part No.: MOC3063-V SREIES

Page: 10 of 10