# INTRODUCTORY APPLIED MACHINE LEARNING

#### Yan-Fu Kuo

Dept. of Biomechatronics Engineering National Taiwan University

#### Today:

- Types of data
- Data visualization

## About Your Project...

UCI machine learning repository:

https://archive.ics.uci.edu/ml/index.php

## **Outline**

- Goal of the lecture
- Types of data
- Data preprocessing
- Measures of similarity
- The Iris data set
- Descriptive statistics
- Visualization

## Goals

- After this, you should be able to:
  - Understand data types and data acronyms
  - Calculate similarity between data points
  - Use basic descriptive statistics
  - Visualize data

#### What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
  - Examples: eye color of a person, temperature, etc.
  - Attribute is also known as variable or feature
- A collection of attributes describe an object
  - Object is also known as case, sample, entity, or instance



#### **Attribute Values**

- Attribute values are numbers or symbols assigned to an attribute
- Discrete attribute
  - Has only a finite or countably infinite set of values
  - Examples: zip codes or counts
  - Often represented as integer variables
- Continuous attribute
  - Has real numbers as attribute values
  - Examples: temperature, height, or weight
  - Typically represented as floating-point variables

## Types of Data Sets

- Record
  - Data matrix
  - Document data
  - Transaction data
- Graph
  - World wide web
  - Molecular structures
- Ordered
  - Spatial data
  - Temporal data
  - Sequential data
  - Genetic sequence data

### **Record Data**

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

## Record Data in High Dimension

 If data objects have the same fixed set of numeric attributes, the data objects can be thought of as points in a multi-dimensional space



## **Graph Data**

Examples: Generic graph and chemical structure (C<sub>6</sub>H<sub>6</sub>)



#### **Ordered Data**

Sequences of transactions

Items/Events

the sequence



# Data Preprocessing – Sampling

- Sampling is the main technique employed for data selection
- It is often used for both the preliminary investigation of the data and the final data analysis
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming
- Sampling is used in machine learning because processing the entire set of data of interest is too expensive or time consuming

## Measures of Similarity

• The Euclidean distance between two data points  $\mathbf{p} = [p_k]$  and  $\mathbf{q} = [q_k]$  is defined as

$$d(\boldsymbol{p},\boldsymbol{q}) = \sqrt{\sum_{k=1}^{M} (p_k - q_k)^2} \in \Re$$

where  $M \in \aleph$  is the number of dimensions (attributes) and  $p_k$  and  $q_k$  are, respectively, the kth attributes (components) of data objects p and q

## **Examples of Euclidean Distance**



| point     | X | ${f y}$ |
|-----------|---|---------|
| <b>p1</b> | 0 | 2       |
| <b>p2</b> | 2 | 0       |
| р3        | 3 | 1       |
| p4        | 5 | 1       |

#### **Distance Matrix**

|           | p1    | <b>p2</b> | р3    | p4    |
|-----------|-------|-----------|-------|-------|
| <b>p1</b> | 0     | 2.828     | 3.162 | 5.099 |
| p2        | 2.828 | 0         | 1.414 | 3.162 |
| р3        | 3.162 | 1.414     | 0     | 2     |
| p4        | 5.099 | 3.162     | 2     | 0     |

#### Minkowski Distance

Minkowski distance is a generalization of Euclidean distance

$$d(\boldsymbol{p}, \boldsymbol{q}) = \left(\sum_{k=1}^{M} |p_k - q_k|^r\right)^{\frac{1}{r}} \in \Re$$

where  $r \in \aleph$  is a parameter, M is the number of dimensions (attributes), and  $p_k$  and  $q_k$  are, respectively, the kth attributes (components) data objects p and q

#### Common Minkowski Distance

- r = 1: City block ( $L_1$  norm)
- r = 2: Euclidean distance ( $L_2$  norm)
- $r \to \infty$ : "supremum" ( $L_{\infty}$  norm)

# **Examples of Minkowski Distance**



| point | X | y |
|-------|---|---|
| p1    | 0 | 2 |
| p2    | 2 | 0 |
| р3    | 3 | 1 |
| p4    | 5 | 1 |

#### **Distance Matrix**

| L1 | p1 | p2 | р3 | p4 |
|----|----|----|----|----|
| p1 | 0  | 4  | 4  | 6  |
| p2 | 4  | 0  | 2  | 4  |
| р3 | 4  | 2  | 0  | 2  |
| p4 | 6  | 4  | 2  | 0  |

| L2 | p1    | p2    | р3    | p4    |
|----|-------|-------|-------|-------|
| p1 | 0     | 2.828 | 3.162 | 5.099 |
| p2 | 2.828 | 0     | 1.414 | 3.162 |
| р3 | 3.162 | 1.414 | 0     | 2     |
| p4 | 5.099 | 3.162 | 2     | 0     |

| $L_{\infty}$ | p1 | p2 | р3 | p4 |
|--------------|----|----|----|----|
| p1           | 0  | 2  | 3  | 5  |
| p2           | 2  | 0  | 1  | 3  |
| р3           | 3  | 1  | 0  | 2  |
| p4           | 5  | 3  | 2  | 0  |

# Common Properties of a Distance

- Positive definiteness:  $d(p,q) \ge 0$  for all p and q and d(p,q) = 0 only if p = q
- Symmetry: d(p,q) = d(q,p) for all p and q
- Triangle inequality:  $d(p,t) \le d(p,q) + d(q,t)$  for all points p, q, and t, where d(p,q) is the distance (dissimilarity) between points p and q
- A distance that satisfies these properties is a metric

## Statistical Methodologies



Numerical and graphical methods to look for patterns, to summarize the information in a data set

#### The Iris Data Set

- Can be obtained from the UCI Machine Learning Repository <a href="http://www.ics.uci.edu/~mlearn/MLRepository.html">http://www.ics.uci.edu/~mlearn/MLRepository.html</a>
- Matlab command:
  >load fishering.mat
- From the statistician Douglas
  Fisher
- Three flower types (classes):
  Setosa, Virginica, Versicolour
- Four (non-class) attributes:
  Sepal width and length,
  Petal width and length





## Mean, Median, and Variance

 The mean is the most common measure of the location of a set of points, though it is very sensitive to outliers

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The median is also commonly used

$$median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i. e., } m = 2r + 1\\ \frac{1}{2} (x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i. e., } m = 2r \end{cases}$$

 The variance is the most common measure of the spread of a set of points

$$Var(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

#### Visualization

- Humans have a well developed ability to analyze large amounts of information that is presented visually
- Can detect general patterns and trends
- Can detect outliers and unusual patterns



#### The Powerfulness of Visualization



## Visualization Techniques: Box Plots

- Invented by J. Tukey
- A way of displaying the distribution of data
- Following figure shows the basic part of a box plot



## Example of Box Plots

Box plots can be used to compare attributes



## Visualization Techniques: Matrix Plots

- Display three variables on a 2D plot
- This can be useful when objects are sorted according to class



## Visualization Techniques: Parallel Coordinates

- Used to plot the attribute values of high-dimensional data
- The attribute values of each object are plotted as a point on each corresponding coordinate axis and the points are connected by a line



# Summary

- For many machine-learning applications, a first step is identifying data type
- Norm is a metric to measure distance between data points
- Data visualization makes data analytics more effective

#### References

 P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining