Z-Buffer Optimizations

Patrick Cozzi

Analytical Graphics, Inc.

• • Overview

Hardware: Early-Z

Software: Front-to-Back Sorting

Hardware: Double-Speed Z-Only

Software: Early-Z Pass

Software: Deferred Shading

Hardware: Buffer Compression

Hardware: Fast Clear

Hardware: Z-Cull

Future: Programmable Culling Unit

- Also called Depth Buffer
- Fragment vs Pixel
- Alternatives: Painter's, Ray Casting, etc

- o "Brute-force approach"
- "Ridiculously expensive"

 Sutherland, Sproull, and,
 Schumacker, "A Characterization of Ten Hidden-Surface Algorithms", 1974

Z-Buffer Quiz

 10 triangles cover a pixel. Rendering these in random order with a Z-buffer, what is the average number of times the pixel's z-value is written?

See Subtle Tools Slides: erich.realtimerendering.com

• • Z-Buffer Quiz

- 1st triangle writes depth
- 2nd triangle has 1/2 chance of writing depth
- o 3rd triangle has 1/3 chance of writing depth

$$01 + 1/2 + 1/3 + ... + 1/10 = 2.9289...$$

Z-Buffer Quiz

Harmonic Series

# Triangles	# Depth Writes
1	1
4	2.08
11	3.02
31	4.03
83	5
12,367	10

See Subtle Tools Slides: erich.realtimerendering.com

Z-Test in the Pipeline

• When is the Z-Test?

• • Early-Z

- Avoid expensive fragment shaders
- Reduce bandwidth to frame buffer
 - Writes not reads

- Automatically enabled on GeForce (8?) unless
 - Fragment shader discards or write depth
 - Depth writes and alpha-test are enabled
- Fine-grained as opposed to Z-Cull.
- ATI: "Top of the Pipe Z Reject"

• • Front-to-Back Sorting

- Utilize Early-Z for opaque objects
- Old hardware still has less z-buffer writes
- CPU overhead. Need efficient sorting
 - Bucket Sort
 - Octtree
- Conflicts with state sorting

0 - 0.25

0.25 - 0.5

0.5 - 0.75

- GeForce FX and later render at double speed when writing only depth or stencil
- Enabled when
 - Color writes are disabled
 - Fragment shader discards or write depth
 - Alpha-test is disabled

Early-Z Pass

- Software technique to utilize Early-Z and Double Speed Z-Only
- Two passes
 - Render depth only. "Lay down depth"
 - Double Speed Z-Only
 - Render with full shaders Early-Z (and Z-Cull)

- Similar to Early-Z Pass
 - 1st Pass: Visibility tests
 - 2nd Pass: Shading
- Different than Early-Z Pass
 - Geometry is only transformed once

o 1st Pass

Render geometry into G-Buffers:

Depth Edge Weight

Images from Tabula Rasa. See Resources.

- o 2nd Pass
 - Shading == post processing effects
 - Render full screen quads that read from G-Buffers
 - Objects are no longer needed

Light Accumulation Result

- Eliminates shading fragments that fail
 Z-Test
- Increases video memory requirement
- o How does it affect bandwidth?

- Reduce depth buffer bandwidth
- Generally does not reduce memory usage of actual depth buffer
- Same architecture applies to other buffers, e.g. color and stencil

- Tile Table: Status for nxn tile of depths, e.g. n=8
 - [state, z_{min}, z_{max}]
 - state is either compressed, uncompressed, or cleared

- Depth Buffer Write
 - Rasterizer modifies copy of uncompressed tile
 - Tile is lossless compressed (if possible) and sent to actual depth buffer
 - Update Tile Table
 - z_{min} and z_{max}
 - status: compressed or decompressed

Buffer Compression

- Depth Buffer Read
 - Tile Status
 - Uncompressed: Send tile
 - Decompress: Decompress and send tile
 - Cleared: See Fast Clear

• • Fast Clear

- Don't touch depth buffer
- o glClear sets state of each tile to cleared
- When the rasterizer reads a cleared buffer
 - A tile filled with GL_DEPTH_CLEAR_VALUE is sent
 - Depth buffer is not accessed

• • Fast Clear

- o Use glClear
 - Not full screen quads
 - No "one frame positive, one frame negative" trick
- Clear stencil together with depth

• • Z-Cull

- Cull blocks of fragments before shading
- Coarse-grained as opposed to Early-Z

- Z_{max}-Culling
 - Rasterizer fetches z_{max} for each tile it processes
 - Compute z^{triangle}_{min} for a triangle
 - Culled if z^{triangle}_{min} > z_{max}

• • Z-Cull

- Z_{min}-Culling
 - Support different depth tests
 - Avoid depth buffer reads
 - If triangle is in front of tile, depth tests for each pixel is unnecessary

- Automatically enabled on GeForce (6?) cards unless
 - glClear isn't used
 - Fragment shader writes depth (or discards?)
 - Direction of depth test is changed
- ATI recommends avoiding = and != depth compares and stencil fail and stencil depth fail operations
- Less efficient when depth varies a lot within a few pixels

• • Programmable Culling Unit

- Cull before fragment shader even if the shader writes depth or discards
- Run part of shader over an entire tile to determine lower bound z value

 Hasselgren and Akenine-Möller, "PCU: The Programmable Culling Unit," 2007

• • Summary

 What was once "ridiculously expensive" is now the primary visible surface algorithm for rasterization

Sections 7.9.2 and 18.3

www.realtimerendering.com

GeForce 8 Guide: sections 3.4.9, 3.6, and 4.8 GeForce 7 Guide: section 3.6

developer.nvidia.com/object/gpu_programming_guide.html

ATI Radeon HyperZ Technology Steve Morein

Performance Optimization Techniques for ATI Graphics Hardware with DirectX® 9.0

Guennadi Riguer

Sections 6.5 and 8

http://ati.amd.com/developer/dx9/ATI-DX9_Optimization.pdf

Chapter 28: Graphics Pipeline Performance

developer.nvidia.com/object/gpu_gems_home.html

Chapter 19: Deferred Shading in Tabula Rasa

developer.nvidia.com/object/gpu-gems-3.html