10

20

WHAT IS CLAIMED IS:

1. A pattern formation material comprising:

a polymer including a first unit represented by Chemical Formula 1 and a second unit represented by Chemical Formula 2; and

an acid generator:

Chemical Formula 1:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} R_1 \\ -CH_2-C \end{array} \end{array}$$

$$\begin{array}{c} \begin{array}{c} (CH_2)_m \\ C-C-CF_3 \end{array}$$

$$\begin{array}{c} OH \end{array}$$

Chemical Formula 2:

$$-\left(-CH_2-C\right)$$
 O
 R_3

wherein R_1 and R_2 are the same or different and selected from the group consisting of an alkyl group, a 25

chlorine atom and an alkyl group including a fluorine atom; R_3 is a protecting group released by an acid; and m is an integer of 0 through 5.

2. A pattern formation material comprising:

a polymer including a first unit represented by Chemical Formula 3, a second unit represented by Chemical Formula 4 and a third unit represented by Chemical Formula 5; and

an acid generator:

Chemical Formula 3:

$$R_1$$
 $-(CH_2-C)$
 $(CH_2)_m$
 $F_3C-C-CF_3$
 OH

Chemical Formula 4:

O R₃

25

Chemical Formula 5:

5

wherein R_1 , R_2 and R_4 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 is a protecting group released by an acid; and m is an integer of 0 through 5.

3. A pattern formation material comprising:

a polymer including a first unit represented by Chemical Formula 6 and a second unit represented by Chemical Formula 7; and

an acid generator:

Chemical Formula 6:

20

Chemical Formula 7:

$$-CH_2-C$$
 $-CH_2-C$
 $-CH_2-C$
 $-CH_2-C$

5

wherein R_2 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is a protecting group released by an acid; and n is an integer of 0 through 5.

4. A pattern formation material comprising:

a polymer including a first unit represented by Chemical Formula 8 and a second unit represented by Chemical Formula 9; and

an acid generator:

Chemical Formula 8:

5

Chemical Formula 9:

20

$$-CH_2-C$$

-(CH₂-C) (CH₂)_n F₃C-C-CF₃ OR₆

wherein R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_6 is a protecting group released by an acid; and n is an integer of 0 through 5.

- 5. A pattern formation material comprising:
- a polymer including a first unit represented by 25

Formula 11 and a third unit represented by Chemical Formula 12; and 5

an acid generator:

Chemical Formula 10:

Chemical Formula 10, a second unit represented by Chemical

Chemical Formula 11:

20

10

Chemical Formula 12:

wherein R_2 , R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is a protecting group released by an acid; and n is an integer of 0 through 5.

6. A pattern formation method comprising the steps of:

forming a resist film by applying, on a substrate, a pattern formation material containing a polymer including a first unit represented by Chemical Formula 1 and a second unit represented by Chemical Formula 2, and an acid generator:

5

Chemical Formula 1:

5

10

20

$$\begin{array}{c} \begin{array}{c} R_1 \\ -CH_2-C \end{array} \\ \begin{array}{c} (CH_2)_m \\ F_3C-C-CF_3 \\ OH \end{array}$$

Chemical Formula 2:

$$-(CH_2-C)$$
 $-(CH_2-C)$
 $-(CH_2-C)$
 $-(CH_2-C)$
 $-(CH_2-C)$

wherein R_1 and R_2 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 is a protecting group released by an acid; and m is an integer of 0 through 5;

irradiating said resist film with exposing light of a 25 wavelength shorter than a 180 nm band for pattern exposure;

forming a resist pattern by developing said resist film after the pattern exposure.

- 7. The pattern formation method of Claim 6,
- wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.
 - 8. The pattern formation method of Claim 6, wherein said exposing light is soft-X rays.
 - 9. The pattern formation method of Claim 6, wherein said exposing light is hard-X rays.
 - forming a resist film by applying, on a substrate, a pattern formation material containing a polymer including a first unit represented by Chemical Formula 3, a second unit represented by Chemical Formula 4 and a third unit represented by Chemical Formula 5, and an acid generator:

10. A pattern formation method comprising the steps of:

Chemical Formula 3:

20

$$-CH_2-C$$
 $-CH_2-C$
 $-CH_2-C$
 $-CH_2$
 $-CH_2$

Chemical Formula 4:

Chemical Formula 5:

wherein R_1 , R_2 and R_4 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 is a protecting group released by an acid; and m is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film after the pattern exposure.

20

11. The pattern formation method of Claim 10, wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.

- 12. The pattern formation method of Claim 10, wherein said exposing light is soft-X rays.
 - 13. The pattern formation method of Claim 10, wherein said exposing light is hard-X rays.
- 14. A pattern formation method comprising the steps of:
 forming a resist film by applying, on a substrate, a
 pattern formation material containing a polymer including a
 first unit represented by Chemical Formula 6 and a second
 unit represented by Chemical Formula 7, and an acid
 generator:

Chemical Formula 6:

Chemical Formula 7:

$$CH_2$$
 CH_2
 CH_3
 CH_3

wherein R_2 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is a protecting group released by an acid; and n is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film after the pattern exposure.

15. The pattern formation method of Claim 14,

wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.

16. The pattern formation method of Claim 14,

25

20

5

wherein said exposing light is soft-X rays.

17. The pattern formation method of Claim 14, wherein said exposing light is hard-X rays.

18. A pattern formation method comprising the steps of:

forming a resist film by applying, on a substrate, a pattern formation material containing a polymer including a first unit represented by Chemical Formula 8 and a second unit represented by Chemical Formula 9, and an acid generator:

Chemical Formula 8:

Chemical Formula 9:

20

$$-\left(CH_2-C\right)$$

wherein R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_6 is a protecting group released by an acid; and n is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film after the pattern exposure.

- 19. The pattern formation method of Claim 18, wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.
 - 20. The pattern formation method of Claim 18, wherein said exposing light is soft-X rays.
 - 21. The pattern formation method of Claim 18, wherein said exposing light is hard-X rays.
- 22. A pattern formation method comprising the steps of:

 20 forming a resist film by applying, on a substrate, a

 pattern formation material containing a polymer including a

 first unit represented by Chemical Formula 10, a second unit

 represented by Chemical Formula 11 and a third unit

 represented by Chemical Formula 12, and an acid generator:

Chemical Formula 11:

$$-\left(CH_2 - C \right)$$
 $-\left(CH_2 - C \right)$
 $-\left(CH_2 -$

Chemical Formula 12:

20

25

5

wherein R_2 , R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is

a protecting group released by an acid; and n is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film after the pattern exposure.

23. The pattern formation method of Claim 22,

wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.

- 24. The pattern formation method of Claim 22, wherein said exposing light is soft-X rays.
- 25. The pattern formation method of Claim 22, wherein said exposing light is hard-X rays.