Домашнее задание по предмету «Архитектура вычислительных систем» №1

Выполнила Шелемех Е.В, группа БПИ206

1. Описание полученного задания

Номер варианта – 226 -> условие задачи – 2, номер функции – 17

Условие задачи:

2. Плоская	1. Круг	Цвет фигуры	Вычисление
геометрическая	(целочисленные	(перечислимый тип) =	периметра фигуры
фигура,	координата центра	{красный,	(действительное
размещаемая в	окружности, радиус)	оранжевый,	число)
координатной	2. Прямоугольник	желтый, зеленый,	
сетке	(целочисленные	голубой, синий,	
	координаты левого	фиолетовый}	
	верхнего и правого		
	нижнего углов)		
	3. Треугольник		
	(целочисленные		
	координаты трех		
	углов)		

Функция обработки данных в контейнере:

17. Упорядочить элементы контейнера по убыванию используя сортировку с помощью разделения (Quick Sort). В качестве ключей для сортировки и других действий используются результаты функции, общей для всех альтернатив.

Описание работы программы

Запуск программы осуществляется из командной строки, в которой указываются: имя запускаемой программы; имя файла с исходными данными; имя файла с выходными данными. В файле с исходными данными в первой строке должен находится тип ввода данных: "random" или "file". Если тип ввода - "random", то во второй строке должно быть положительное число менее 10000, т.е кол-во генерируемых фигур. Если тип ввода - "file", то в последующих строках вводится информация о фигурах в формате:

- 1. тип фигуры (целое число от 1 до 3 включительно)
- 2. данные о фигуре
 - 2.1 если треугольник: цвет a_x a_y b_x b_y c_x c_y
 - 2.2 если прямоугольник: цвет а хау b х b у
 - 2.3 если круг: цвет center_x center_y radius
- 3. может быть пустая строка между вводом разных фигур, но не обязательно

цвет – целое от 0 до 6; a_x, a_y, b_x, b_y, c_x, c_y, center_x, center_y, radius – целые числа;

Результат работы программы, т.е вывод элементов контейнера до сортировки и вывод элементов контейнера после сортировки, помещается в выходной файл, указанный пользователем в качестве аргумента при запуске программы.

2. Архитектура

Используемые структуры, переменные и их типы

int	4	
double	8	
Struct rectangle	20	
a_x: int	4[0]	
a_y: int	4[4]	
b_x: int	4[8]	
b_y: int	4[12]	
col: int	4[16]	
Struct triangle	28	
a_x: int	4[0]	
a_y: int	4[4]	
b_x: int	4[8]	
b_y: int	4[12]	
c_x: int	4[16]	
c_y: int	4[20]	
col: int	4[24]	

Struct circle	16	
center_x: int	4[0]	
center_y: int	4[4]	
radius: int	4[8]	
col: int	4[12]	
Struct shape	32	
k: key	4[0]	
union		
{ r: rectangle	20[4]	
t: triangle	28[4]	
c: circle}	16[4]	
Struct container		
length: int	4[0]	
enum max_len	4[0]	
shape*cont[max_len=100	8*10000+4+	
00]	4 = 80008	

Глобальная память

В глобальной памяти нет переменных, следовательно, она пуста.

Локальная память

1. main()		
input_stream: FILE*	8[0]	
cont: container	80008[8]	
stream_out: FILE*	8[80016]	
number_of_figures: int	4[80024]	
input_type: char*	4[80028]	
str: char[250]	250[80032]	
2. Perimeter()		
из triangle.cpp		
triang: triangle	28[0]	
ab: double	8[28]	
ac: double	8[36]	
bc: double	8[44]	

3. swap()		
из container.cpp		
a: shape*	4[0]	
b: shape*	4[4]	
t: shape	32[8]	
4. partition()		
из container.cpp		
cont: container	80008[0]	
low: int	4[80008]	
high: int	4[80012]	
basis: shape	32[80016]	
basis_number: double	8[80048]	
i: int	4[80056]	

Куча

В куче хранятся элементы массива container: shape*[max_size] – указатели типа shape, так как они были созданы динамически с помощью new. Каждый элемент занимает 8 байт.

Стек вызовов

1. Данные вводятся из файла

3. Характеристики

Количество заголовочных файлов = 6

Количество модулей реализации = 6

Общий размер исходных текстов программы = 19.6 Кб

Размер исполняемого файла = 148 Кб

Время выполнения программы(на приложенных тестовых наборах):

Входной файл	Тип ввода	Описание	Выходной файл	Время
	данных	тестового		выполнения
		набора		
tests\test1.txt	Из файла	8 элементов	tests\output_test1.txt	9мс
tests\test2.txt	Из файла	11 элементов	tests\output_test2.txt	5мс
tests\test3.txt	рандом	66 ранд.	tests\output_test3.txt	7мс
		элементов		
tests\test4.txt	рандом	Некорректное	tests\output_test4.txt	Змс
		число		
		элементов		
tests\test5.txt	Некорректный	- -	tests\output_test5.txt	1мс
	тип ввода			
tests\test6.txt	рандом	1000 ранд.	tests\output_test6.txt	15мс
		элементов		