Векторы и скалярное произведение

Линейность скалярного произведения. Для любых векторов $\vec{u}, \vec{v}, \vec{w}$ и любого $\alpha \in \mathbb{R}$ выполнено равенство

$$(\vec{u}, \vec{v} + \alpha \vec{w}) = (\vec{u}, \vec{v}) + \alpha(\vec{u}, \vec{w}).$$

В частности, это позволяет считать квадрат длины отрезка:

$$|\vec{u}|^2 = (\vec{u}, \vec{u}) = (\vec{v} + \vec{w}, \vec{v} + \vec{w}) = |\vec{v}|^2 + 2(\vec{v}, \vec{w}) + |\vec{w}|^2.$$

Важный факт. Если $(\vec{u}, \vec{v}) = 0$, то либо векторы \vec{u} и \vec{v} перпендикулярны, либо один из них равен $\vec{0}$.

Совет. Если вы решаете задачу с помощью векторов, то часто бывает удобно выразить все векторы через векторы с началом в одной точке. В этом случае для краткости можно сократить обозначения: вместо \overrightarrow{OA} писать просто \overrightarrow{A} .

- 1. Дан прямоугольник ABCD и точка P. Докажите, что $\overrightarrow{PA} \cdot \overrightarrow{PC} = \overrightarrow{PB} \cdot \overrightarrow{PD}$.
- **2.** Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Докажите, что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно.
- **3.** В остроугольном треугольнике ABC через вершину A проведена прямая ℓ , перпендикулярная медиане AM. Продолжения высот из вершин B и C пересекают прямую ℓ в точках X и Y. Докажите, что AX = AY.
- **4.** Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке. Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.
- 5. (а) Пусть H и O ортоцентр и центр описанной окружности треугольника ABC. Докажите, что

$$\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
.

- (б) Докажите, что $OH^2 = 9R^2 (AB^2 + AC^2 + BC^2)$, где R радиус окружности (ABC).
- (в) Дан вписанный четырёхугольник ABCD. Точка H_a ортоцентр треугольника BCD, точки H_b , H_c , H_d определяются аналогично. Докажите, что прямые AH_a , BH_b , CH_c , DH_d пересекаются в одной точке.

- **6.** Докажите, что сумма квадратов расстояний от точки X до вершин треугольника минимальна, если X точка пересечения медиан треугольника.
- 7. Выпуклый четырёхугольник разделён диагоналями на четыре треугольника. Докажите, что прямая, проходящая через точки пересечения медиан двух противоположных треугольников, перпендикулярна прямой, проходящей через точки пересечения высот двух других треугольников.
- **8.** Дан выпуклый восьмиугольник $A_1 A_2 \dots A_8$ такой, что

$$\angle A_1 A_4 A_5 = \angle A_2 A_5 A_6 = \dots = \angle A_7 A_2 A_3 = \angle A_8 A_3 A_4 = 90^{\circ}.$$

Докажите, что восьмиугольник можно вписать в окружность.

- **9.** Пусть O центр окружности, описанной около равнобедренного треугольника ABC (AB=AC), D середина стороны AB, а E точка пересечения медиан треугольника ACD. Докажите, что $OE \perp CD$.
- 10. Дано множество точек O, A_1, A_2, \ldots, A_n на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы \vec{u} и \vec{v} , что для любой точки A_i выполняется равенство $\overrightarrow{OA}_i = m\vec{u} + n\vec{v}$, где m и n некоторые целые числа.