Neural networks and econometric models in forecasting stock returns

Andrew Grishin

Faculty of Economics Moscow State University

March 14, 2023

Agenda

- Introduction
 - Motivation
 - Targets
 - Tasks
- 2 Pre-experiment
 - Hypothesis
 - Data analysis
 - Method
- Ost-experiment
 - Tables of comparison
 - Discussion
- 4 References
- 6 Conclusion

Introduction

Reason

- Money around us
- Profit and utility maximization
- New methods are needed
- How to find the best model in case of different markets?

Consequence

- Data \Rightarrow Big Data
- Statistics ⇒ AI & Econometrics
- Machine Learning vs Econometrics
- Deep Learning vs Econometrics

Motivation

- **Theoretical**: Further rapid development of forecasting models.
- Practical: Much easier ⇒ much quicker "Buy, hold or sell"?
 As a result much reliable decisions ⇒ investors are happy.

Targets

- Help traders to make accurate decisions on "Buy, hold or sell"?
- Make stock deals more "secure" (low risk) and profitable.
- Make people stop being scared of stock market.

Tasks

- Provide the sequential models' comparison based on empirical data.
- Find the "best" model, according to the topology function.
- Data: 15 American and Chinese companies.

Markets: Developed (US) and developing (China).

NB! Various industries (for overall result).

Hypothesis

Essential:

• Market Efficiency [Fama, 1970] - impossible to predict anything.

In contrast:

- Market Fractality [Mandelbrot, 2006] markets have long memory.
- Market "inefficiency" [Sewell, 2011] Market Efficiency is not true (but best for today).

Trial:

 Neural Network approach is the best for developed and developing markets.

Data analysis

What: Stock prices of 15 US and China companies.

From: New York and Shanghai (not Hong-kong) stocks.

Period: IPO (different for each company) -13/12/2022.

Industries: IT (AMD), media (Netflix), sales (Ebay), taxi (Uber),

auto (Ford), sport (Nike), energy (General Electric) and so on.

Data analysis (visual insights) — Open prices and returns: US & China

Data analysis (scalogram insights) — Coca Cola

Data analysis (scalogram insights): Kweichow Moutai

Method

Econometric approach:

- EWMA
- ARIMA
- ARIMA + (FI)GARCH
- ARFIMA
- ARFIMA + (FI)GARCH
- SSA (Singular Spectrum Analysis)

Network approach:

- MLP/RNN/WN
- MSSA/EWMA + MLP/RNN/WN
- \bullet No "transformers" \leftarrow [Zeng et al., 2022]

Metrics Function:

WAPE
$$(\hat{y}, y) = \frac{\sum_{t=1}^{n} |y_t - \hat{y}_t|}{\sum_{t=1}^{n} |y_t|}$$
 (1)

Tables of comparison

content...

Discussion

content...

References

```
[Fama, 1970] Fama, E. (1970).
  Efficient capital markets, a review of theory and empirical work.
  The journal of Finance, 25(2):383-417.
[Mandelbrot, 2006] Mandelbrot, B. (2006).
  The (mis)behavior of markets, a fractal view of risk, ruin and reward.
  Journal of Economic Behavior and Organization, 61(3):513–515.
[Sewell, 2011] Sewell, M. (2011).
  History of the efficient market hypothesis.
  Rn, 11(04):04.
[Zeng et al., 2022] Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2022).
  Are transformers effective for time series forecasting?
```

arXiv preprint arXiv:2205.13504.

Conclusion

Thank you for attention!