ホームネットワークにおけるデータ特性を考慮した SDN による優先度 制御手法

SDN Based Priority Control Method Considering Data Attributes for Home Network

国本 典晟 / Tensei Kunimoto

1 はじめに

近年、画像や動画などの大容量データの需要が急速に拡大し、インターネットの多くの帯域を占めるようになっている。また、IoT デバイスの増加とスマートホームの技術の進歩に伴い、ホームネットワークに接続するデバイスは増加し、ホームネットワークの内部および外部のインターネットの帯域の使用が増えることが予想される。一方、現在の ISP (Internet Service Provider) は、各家庭の総帯域を契約した帯域の範囲内で制御しており、要求される帯域が契約した帯域を上回る場合、特定アプリケーションやユーザの帯域を制御することで、ネットワーク全体の品質確保に努めている。しかし、そのような帯域制御は多様なサービスやデータの特性を十分に考慮したものではないため、インターネットの需要の拡大に伴う帯域の逼迫に対応できず、ホームネットワークの通信の QoS 要件を著しく損なう可能性が危惧されている。

この問題の解決を目指して、ホームネットワークの QoS 要件を満たすよう、SDN を用いて通信制御を行うネットワークアーキテクチャの研究が行われている。しかし、限られた帯域内で全てのサービスの QoS 要件を満たすことは不可能であるため、サービスに優先度を設けて通信制御を行う必要がある。本研究では、ホームネットワークの通信のデータ特性を考慮し、サービスの優先度制御を行う手法を提案する。

2 関連研究

2.1 SDN ベースの QoS を考慮した帯域管理フレームワーク

Jang らは,

Jang らは、スマートホームのネットワークデバイスのための革新的なネットワーク管理モデルを開発する必要があるとして、SDN ベースの QoS を考慮した帯域管理フレームワークを提案した [1]. この研究では、QCI (3GPP LTE QoS Class Identifier) をスマートホーム向けのサービス用に表 1 のように再定義し、QCI サービスをパケット遅延の上限値に基づいて「高優先度クラス」「中優先度クラス」「低優先度クラス」の3つに分類することで各サービスの QoS の最適化を目指した、実験の結果、従来の ISP の帯域制御

表 1 スマートホームサービス向けに再定義された QCI

QCI	Priority	Device	Resource	Packet	Packet	Example Services
	=	type	Type	Delay	Error	-
				Budget	Loss	
1	2	Non-	GBR	100ms	10-2	Conversational
		M2M				voice
2	3	Non-	GBR	50ms	10^{-3}	Real time gam-
		M2M			_	ing
3	4	Non-	GBR	150ms	10^{-3}	Conversational
		M2M				video
4	5	Non-	GBR	300ms	10^{-6}	Non-
		M2M				conversational
						video (Buffered
_					10.6	streaming)
5	1	M2M	Non-	60ms	10^{-6}	Mission critical
			GBR			delay sensitive
_	,	N		200	10-6	data transfer
6	6	Non-	Non-	300ms	10^{-6}	Video (Buffered
		M2M	GBR			streaming)
						TCP-based
						(for example,
						www, email,
						chat, ftp, p2p and the like)
7	7	Non-	Non-	100ms	10^{-3}	Voice, Video
,	,	M2M	GBR	1001113	10	(Live stream-
		1412141	GDIC			ing), Interactive
						gaming
8	8	M2M	Non-	N/A	10^{-6}	Non mission
-			GBR		*	critical delay
						insensitive data
						transfer

手法を上回る結果を得た.

2.2 AQRA

Deng らは、Jang らが提案したスマートホーム向けに再定義した QCI を利用して、AQRA (Application-aware QoS Routing Algorithm)を提案した [2]. AQRA では、複数のQoS 要件を満たすフローの最適な経路の選択を SA アルゴリズムにより行った。また、高優先度クラスに属するアプリケーションの QoS 要件の不満足を防ぐために、QoS を考慮したアドミッション制御を提案した。実験の結果、QoSを考慮したアドミッション制御を行った AQRA は、行わなかった AQRA と比較して高優先度クラスに属するアプリケーションの QoS の適合率は向上した一方で、中優先度クラス及び低優先度クラスに属するアプリケーションの QoS の適合率は低下した。

3 提案手法

3.1 概要

これまで提案された帯域管理システムでは、QCI のリソースタイプのに応じてアプリケーションを「高優先度クラス」「中優先度クラス」の3つのク

図1 提案システムのアーキテクチャ

ラスに分類していた. 高優先度クラスに属するのはガスセ ンサや侵入者アラームなどの非リアルタイムかつ遅延の許 されないアプリケーションであり、中優先度クラスに属す るのは映像データや音声データなど, 遅延制限が厳しいリ アルタイムサービスのアプリケーションである、低優先度 クラスの属するのは遅延の許されるアプリケーションであ る. 高優先度クラスに属するアプリケーションは必要時に は十分な帯域が確保されるべきであるが、スマートホーム のユーザの使用頻度は中優先度クラス及び低優先度クラス のアプリケーションの方が高く,常に高優先度クラスのア プリケーションのために中優先度クラス及び低優先度クラ スの帯域が犠牲になるのは QoE を著しく損なう. 本研究 では, [2] で提案された QoS を考慮したアドミッション制 御の見直しを行うとともに、アプリケーションの動作状態 に応じてアドミッション制御の切り替えを行い, ユーザの アプリケーションの使用頻度を考慮した通信制御を行う.

3.2 実験環境

本研究で想定するアーキテクチャを図1に示す. 前提条件は以下の通りである.

- IoT アプリケーション・サービスはイーサネットを介 してネットワーク層に接続している。
- IoT アプリケーションは Northbound API を介して SDN コントローラにメッセージを送信できる.
- SDN スイッチ間はイーサネットで接続されている.
- SDN スイッチは Southbound API を介して SDN コントローラと通信できる。
- SDN スイッチと IoT ゲートウェイはイーサネットで接続されている.
- IoT ゲートウェイと IoT デバイスは無線通信技術で接続されている.

3.3 動作手順

動作手順を以下に示す.

1. 各 IoT アプリケーションは IoT アプリケーションサー バの IP アドレスとともに QCI を SDN コントローラ に送信する.

- 2. IoT ゲートウェイは IoT デバイスからデータフローを 受信すると、SDN コントローラに Packet In メッセー ジを送信する.
- 3. SDN コントローラは Packet In メッセージを受信する と以下の作業を実行する.
- 4. SDN コントローラは QCI に従いフローを分類する.
- 5. SDN コントローラはルーティングパスを計算しフロー エントリを設定する.
- 6. SDN コントローラは QoS を考慮したアドミッション 制御を IoT ゲートウェイに送信し、優先度の低い IoT アプリケーションのアドミッションを制御する.

4 評価

4.1 評価方法

本研究で提案する帯域管理システムは QoS が向上することを目的とするため、評価は平均転送率、平均ジッタ、平均遅延時間の測定により行う。その際、高優先度クラスのアプリケーションのサービスが必要となった時は高優先度クラスのアプリケーションの QoS 要件を保証するが、平常時はアプリケーションの使用頻度を考慮して、中優先度クラス及び低優先度クラスの QoS 要件を保証できているかを評価する。また、提案システムが膨大な数のスマートホームの管理を行った際に目的の通り QoS を保証できるかを確認するため、システムが管理するスマートホームとIoT デバイスの数が増加した場合の平均転送率、平均ジッタ、平均遅延時間の変化を評価する。

4.2 評価環境

評価環境を以下に示す.

- SDN コントローラには OpenDaylight Neon を用いる.
- エミュレータには Mininet を用いる.
- IoT デバイスは 30 台~100 台で変化させる.
- 高優先度クラスのフローは30%とする.
- 中優先度クラスのフローは 40 %とする.
- 低優先度クラスのフローは30%とする.

5 まとめと今後の課題

本研究では, [2] で提案された QoS を考慮したアドミッション制御の見直しと切り替えを行うことで, アプリケーションの使用頻度を考慮した通信制御を行い, 帯域の効率的な活用及びスマートホームのサービスの複数の QoS 要件の満足を目的とする.

今後の課題として、**QoS** を考慮したアドミッション制御の具体的な改善案や、アドミッション制御の切り替えの基準を考える必要がある.

参考文献

- [1] Hung-Chin Jang, Chi-Wei Huang and Fu-Ku Yeh. Design A Bandwidth Allocation Framework for SDN Based Smart Home. 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1-6, 2016.
- [2] Guo-Cin Deng and Kuochen Wang. An Application-aware QoS Routing Algorithm for SDN-based IoT Networking. 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 186-191, 2018.