Homework - ICS 2020 Problem Sheet #7

Problem 7.1

A Boolean function ϕ is defined using the following sum of minterms:

 $\phi(A, B, C, D, E) = m_0 + m_2 + m_4 + m_6 + m_9 + m_{10} + m_{13} + m_{14} + m_{15} + m_{16} + m_{17} + m_{21} + m_{26} + m_{28} + m_{30} + m_{31}$

literals	minterm	pattern	used	minterms	pattern	used	minterms	pattern	used
1L	m_0	00000	√	m _{0.2}	000-0	√	m _{0,2,4,6}	000	√
	m_2	00010	✓	$m_{0,4}$	00-00	✓	m _{0,4,2,6}	000	
	m_4	00100	✓	$m_{0,16}$	-0000		.,,,,		✓
	m ₁₆	10000	✓						
2L	m_6	00110	✓	$m_{2,6}$	00-10	✓	m _{2,6,10,14}	010	√
	m ₉	01001	✓	m _{2,10}	0-010	✓			
	m_{10}	01010	✓	$m_{4,6}$	001-0	✓	m _{2,10,6,14}	010	
	m_{17}	10001	✓	$m_{16,17}$	1000-				✓
3L	m ₁₃	01101	✓	m _{6,14}	0-110	√	$m_{10,26,14,30}$	-1-10	✓
	m_{14}	01110	✓	<mark>m_{9,13}</mark>	<mark>01-01</mark>				✓
	m_{21}	10101	✓	m _{10,14}	01-10	✓	m _{10,14,26,30}	-1-10	
	m ₂₆	11010	✓	$m_{10,26}$	-1010	✓			
	m_{28}	11100	✓	$m_{21,17}$	10-01				✓
4L	m ₁₅	01111	\	$m_{13,15}$	011-1				✓
	m ₃₀	11110	✓	m _{14,15}	0111-	✓	m _{14,15,30,31}	-111-	✓
				$m_{14,30}$	-1110	✓	m _{14,30,15,31}	-111-	
				$m_{26,30}$	11-10	✓			
				m _{28,30}	<mark>111-0</mark>				✓
5L	m ₃₁	11111	✓	m _{15,31}	-1111	\			
				m _{30,31}	1111-	✓			

- a) Calculate the prime implicants of ϕ .
 - $m_{0,2,4,6} = 00 0 = \neg A \land \neg B \land \neg E$
 - $m_{2,6,10,14} = 0 10 = \neg A \land D \land \neg E$
 - $m_{10,26,14,30} = -1-10 = B \land D \land \neg E$
 - $m_{14,15,30,31} = -111 = B \wedge C \wedge D$
 - $m_{0.16} = -0000 = \neg B \land \neg C \land \neg D \land \neg E$
 - $m_{16,17} = 1000 = A \land \neg B \land \neg C \land \neg D \land \neg E$
 - $m_{9,13} = 01-01 = \neg A \land B \land \neg D \land E$
 - $m_{21,17} = 10-01 = A \land \neg B \land \neg D \land E$
 - $m_{13.15} = 011-1 = \neg A \land B \land C \land E$
 - $m_{28,30} = 111-0 = A \wedge B \wedge C \wedge \neg E$

b) Construct the prime implicant chart and identify the essential prime implicants.

	m_0	m_2	m ₄	m_6	m ₉	m_{10}	m ₁₃	m ₁₄	m ₁₅	m ₁₆	m ₁₇	m_{21}	m ₂₆	m ₂₈	m ₃₀	m ₃₁
$m_{0,2,4,6}$	✓	√	✓	>												
m _{2,6,10,14}		√	√			√		√								
m _{10,26,14,30}						✓		✓					>		>	
$m_{14,15,30,31}$								✓	/						>	✓
$m_{0,16}$	✓									√						
m _{16,17}										✓	✓					
$m_{9,13}$					>		>									
m _{21,17}											✓	>				
m _{13,15}							>		✓							
$m_{28,30}$														✓	✓	
E.P.I.C	\	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	<

From the table, we can see there are 6 essential prime implicants:

- $m_{0,2,4,6} = 00 0 = \neg A \land \neg B \land \neg E$ (only one that covers m_6)
- $m_{10,26,14,30} = -1-10 = B \land D \land \neg E$ (only one that covers m_{26})
- $m_{14,15,30,31} = -111 = B \wedge C \wedge D$ (only one that covers m_{31})
- $m_{9,13} = 01-01 = \neg A \land B \land \neg D \land E$ (only one that covers m_9)
- $m_{21,17} = 10-01 = A \land \neg B \land \neg D \land E$ (only one that covers m_{21})
- $m_{28,30} = 111-0 = A \wedge B \wedge C \wedge \neg E$ (only one that covers m_{28})

We also take $m_{0,16}$ or $m_{16,17}$ as essential prime implicants as they're the only ones covering m_{16} .

- $m_{0.16} = -0000 = \neg B \land \neg C \land \neg D \land \neg E$ (let's take this one for the expression)
- $m_{16.17} = 1000 = A \land \neg B \land \neg C \land \neg D \land \neg E$
- c) Write out all minimal boolean expressions defining ϕ using the mathematical logic notation.

The resulting minimal expressions defining $\phi(A, B, C, D)$ linked in mathematical logic notation:

or