

yathartha.regmi@ttu.edu

(Sign out)

Home My Assignments
Grades Communication

Calendar

My eBooks

← PHYS 2401, section 201, Summer 2 2022

Capacitance and Dielectrics (Homework)

Keith West
Texas Tech
University

QUESTION 1 2 3 4 5 6

POINTS -/1 -/4 -/5 -/5 -/1 -/2

TOTAL SCORE-/18 0.0%

Due Date

THU, AUG 4, 2022

11:58 PM CDT

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

MY NOTES

Your last submission is used for your score.

1. [-/1 Points] DETAILS SERPSE10 25.2.P.003.
MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER
When a potential difference of 174 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 26.0 nC/cm². What is the spacing between the plates?
2. [-/4 Points] DETAILS SERPSE10 25.2.OP.005.MI.

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm², separated by a distance of 2.20 mm. A 25.0-V potential difference is applied to these plates.

PRACTICE ANOTHER

(a) Calculate the electric field between the plates. kV/m
(b) Calculate the surface charge density. nC/m²
(c) Calculate the capacitance. pF
(d) Calculate the charge on each plate.

ASK YOUR TEACHER

Need Help? Read It Master It

рС

3. [-/5 Points]	DETAILS	SERPSE1	0 25.3.OP.007.
MY NOTES	ASK YOUR TEACHER		PRACTICE ANOTHER

Two capacitors, $C_1 = 6.00 \, \mu F$ and $C_2 = 15.0 \, \mu F$, are connected in parallel, and the resulting combination is connected to a 9.00-V battery.

 $\underline{\mbox{(a)}}$ Find the equivalent capacitance of the combination.

uF
μι

(b) Find the potential difference across each capacitor.

(c) Find the charge stored on each capacitor.

$$Q_1 = \mu C$$
 $Q_2 = \mu C$

Nood Holm?		
меец пегр?	Read It	Watch It

Four capacitors are connected as shown in the figure below. (Let $C = 18.0 \mu F$.)

(a) Find the equivalent capacitance between points \boldsymbol{a} and \boldsymbol{b} .

μF

(b) Calculate the charge on each capacitor, taking $\Delta V_{\rm ab}$ = 11.0 V.

20.0 μ F capacitor μ C
6.00 μ F capacitor μ C
3.00 μ F capacitor μ C
capacitor μ C

Need Help? Read It Master It

A professor connects an 18.0 V battery to a capacitor of unknown capacitance. The result is that 48.2 μ C of charge is stored on the capacitor. How much energy (in J) is stored in the capacitor?

J

Need Help? Read It

6. [-/2 Points] DETAILS SERPSE10 25.5.P.025.				
MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER				
(a) Determine the capacitance of a Teflon-filled parallel-plate capacitor having a plate area of 1.85 cm ² and a plate separation of 0.030 0 mm. pF (b) Determine the maximum potential difference that can be applied to a Teflon-filled parallel-plate capacitor having a plate area of 1.85 cm ² and a plate separation of 0.030 0 mm.				
Need Help? Read It Watch It				
Submit Assignment Save Assignment Progress				
Home My Assignments				

Copyright © 1998 - 2022 Cengage Learning, Inc. All Rights Reserved

TERMS OF USE PRIVACY