① As respostas corretas estão ocultas.

Pontuação deste teste: 27 de 30

Enviado 8 abr em 11:25

Esta tentativa levou 40 minutos.

	va levou 40 minutos.			
	Pergunta 1	2 / 2 pts		
	Em um sistema operacional, um processo pode, em um dado instante de tempo, estar em um de três estados: em execução, pronto ou bloqueado. Considere as afirmativas abaixo sobre as possíveis transições entre estes estados que um processo pode realizar.			
	I. Do estado em execução para o estado bloqueado			
	II. Do estado em execução para o estado pronto			
	III. Do estado pronto para o estado em execução			
	IV.Do estado pronto para o estado bloqueado			
	V. Do estado bloqueado para o estado em execução			
	VI. Do estado bloqueado para o estado pronto			
Quais são as afirmativas verdadeiras?				
	O Somente as afirmativas I, II e são verdadeiras.			
	Somente as afirmativas I, II, III e VI são verdadeiras.			
	O Todas as afirmativas são verdadeiras.			
	O Somente as afirmativas I, III, IV e VI são verdadeiras.			
	O Somente as afirmativas I, III, IV e V são verdadeiras.			

Os sistemas operacionais modernos utilizam o conceito de fila circular no escalonamento de processos. O processo que está no início da fila de processos prontos é selecionado, executado por algum tempo e, ao término da fatia de tempo, retorna para o final da fila. O mecanismo apresentado permite que as aplicações sejam:

executadas apenas uma vez, pois o esquema de filas não permite que processos já selecionados possam retornar para a mesma fila.

selecionadas no meio da fila, por terem mais prioridade que os demais processos.

selecionadas conforme a sua prioridade dentro do sistema.

executadas conforme são criadas ou esgotem as suas fatias de tempo.

executadas de forma aleatória dentro da fila de processos prontos.

Pergunta 3

3 / 3 pts

Considere um sistema operacional com escalonamento por prioridades, no qual a avaliação do escalonamento é realizada em um intervalo mínimo de 5 ut. Neste sistema, os processos A e B competem por uma única UCP. Desprezando os tempos de processamento relativo às funções do sistema operacional, a tabela a seguir fornece os estados dos processos A e B ao longo do tempo, medido em intervalos de 5 ut (E = execução, P = pronto e W = espera). O processo A tem menor prioridade

Pergunta 4	2 / 2 pts
Starvation ocorre quando:	
Pelo menos um processo é continuamente postergado e não exe	cuta.

A prioridade de um processo é ajustada de acordo com o tempo total de execução do mesmo.

O processo tenta mas não consegue acessar uma variável compartilhada

Dois ou mais processos são forçados a acessar dados críticos alternando estritamente entre eles.

O Pelo menos um evento espera por outro evento que não vai ocorrer.

Pergunta 5

3 / 3 pts

Considere o seguinte programa com dois processos concorrentes. O escalonador poderá alternar entre um e outro, isto é, eles poderão ser intercalados durante sua execução. As variáveis x e y são compartilhadas pelos dois processos e inicializadas antes de sua execução.

}	
Qual é a possível saída:	
adbc ou bcad	
O dbca ou dcab	
Nenhuma das opções	
abdc ou abcd	
badc ou bacd	

3 / 3 pts

Considere a situação em que 4 processos A, B, C, D concorrem por recursos da máquina. Há 2 unidades de disco, 3 unidades de fita e 1 unidade de impressão. Os processos se encontram na seguinte situação:

- 1. O processo A está de posse de 2 unidades de disco;
- 2. O processo B está de posse de 2 fitas e requisita 1 unidade de disco;
- 3. O processo C está de posse de 1 unidade de impressão e requisita uma unidade de disco;
- 4. O processo D está de posse da outra fita;

O processo D requisita a unidade de impressão e, logo após, o processo A faz a mesma requisição. A situação acima:

não configura deadlock mesmo que A e C participem de um ciclo

não configura deadlock pois B não participa de um ciclo	
oconfigura deadlock pois A, B, C, D participam de um ciclo	
onfigura deadlock mesmo que B e D não participem de um ciclo	

3 / 3 pts

A concorrência entre processos ocorrem em diversas situações no âmbito dos sistemas operacionais e outros tipos de processos. Alguns destes problemas foram estudados e se tornaram clássicos pela sua ocorrência e aplicabilidade. Um destes é o problema do produtor consumidor, onde temos um ou mais processos "produzindo" uma informação e um ou mais processos "consumindo" a informação. Neste problema o mais importante é controlar o acesso dos processos envolvidos à porção de memória compartilhada de forma a não permitir que dois processos não "consumam" a mesma informação ou uma informação não possa ser consumida enquanto ela ainda está sendo produzida. A implementação mais segura para este cenário é com o uso de dois semáforos contadores, geralmente chamados de: Cheio e Vazio. O semáforo Cheio controla o quão cheio está o buffer de memória e o Vazio controla o tanto que o mesmo buffer está vazio e admite mais itens serem produzidos.

Considere o código abaixo que implementa a solução para o problema do produtor/consumidor:

```
void produtor ()
{
    int item;
    while (TRUE) {
        item = produzir();
        1.
```

```
2. _____
                             insere(item);
                           3. _____
                           4. _____
              }
}
void consumidor()
{
               int item;
              while(TRUE) {
                          5.____
                             item = remover();
                           7.____
                           8._____
                              consumir(item);
              }
}
Assinale a alternativa que preenche corretamente as lacunas.
    1. wait(&cheio); 2. wait(&mutex); 3. signal(&mutex); 4. signal(&vazio); 5.
    wait(&vazio); 6. wait(&mutex); 7. signal(&mutex); 8. signal(&cheio);
    1. wait(&mutex); 2. wait(&vazio); 3. signal(&cheio); 4. signal(&mutex); 5.
    wait(&mutex); 6. wait(&cheio); 7. signal(&vazio); 8. signal(&mutex);
```

1. wait(&vazio); 2. wait(&mutex); 3. signal(&mutex); 4. signal(&cheio); 5. wait(&cheio); 6. wait(&mutex); 7. signal(&mutex); 8. signal(&vazio);

1. wait(&mutex); 2. wait(&cheio); 3. signal(&vazio); 4. signal(&mutex); 5. wait(&mutex); 6. wait(&vazio); 7. signal(&cheio); 8. signal(&mutex);

Pergunta 8

3 / 3 pts

O tema "comunicação entre processos" (IPC) pode ser resumido em três partes: 1) como um processo pode passar informações para outro processo; 2) certificar que dois ou mais processos não "se atrapalhem" ao tentar gravar dados em regiões de memória compartilhada; 3) implementar a condição de espera ociosa, quando um processo depende do encerramento de outro processo.

Em relação ao tema comunicação entre processos, analise as afirmações a seguir:

- I. O termo "condições de corrida" é utilizado para descrever a tentativa de dois ou mais processos, escreverem em uma área de memória compartilhada ao mesmo tempo.
- II. Para evitar que dois ou mais processos escrevam em uma área de memória compartilhada ao mesmo tempo, o processo deve entrar na chamada "região crítica", que consiste na parte do código do programa responsável por fazer acesso a área de memória compartilhada.
- III. Semáforos binários inicializados com o valor 1 podem ser utilizados por dois ou mais processos para assegurar que apenas um deles consiga entrar em sua região crítica, em um determinado momento.

Está correto somente o que se afirma em:

O I	
ОП	
○ II e III	
○ I e III	
I, II, III	

Pergunta 9			3 / 3 pts
Considerando um esc	calonamento SJF pre	eemptivo:	
Processo	Tempo chegada	Tempo de burst	
P1	0,0	7	
P2	2,0	4	
P3	4,0	1	
P4	5,0	4	
Qual o tempo médio de espera dados os processos acima?			
O 2			
<u> </u>			
3			
O 5			
O 6			

3 / 3 pts

Considerando um escalonamento Round-Robin com quantum = 20 e overhead = 5:

Processo	Tempo de burst	
P_1	53	
P_2	17	
P_3	68	
P_4	24	

Qual a taxa de utilização da CPU, aproximadamente, dados os processos acima?

- 82
- 78
- 08
- 84
- 76

Incorreta

Pergunta 11

0 / 3 pts

Considerando um escalonamento Round-Robin com quantum = 20 e overhead = 5:

Processo Tempo de burst

 P_1

53

P.		24	
Qual o tempo méd	io de retorno dados	s os processos acir	na?
132			
O 141			
O 162			
O 125			
O 151			

Pontuação do teste: **27** de 30