Ĭ.	Divide-Conquer-Combine Electronic Structure
<i>></i> .	Calculation 7/11/03
	7711705
	Bottomline: Processor = domain equivalence.
	The physical system is covered with nonoverlapping.
	rectangular domains Ω_{00} ; $\Omega = \bigcup \Omega_{00}$, $\Omega_{0} \cap \Omega_{0}' = \emptyset$.
	2. Each domain is augmented with a buffer layer To of
	thickness dbuf, and the augmented, overlapping domain
	Ω_{α} is defined as
	$\Omega_{\alpha} = \Omega_{0\alpha} \cup \Gamma_{\alpha} \tag{1}$
	∂_{buf} Ω_{∞}
	Obut
	lá
in multiple <- lomains/processor	3. The domains are sequentially indexed as $C = 0, 1,, P-1$, where
iomorna y proceduo	P is the number of processors.
	4. In this topology - preserving domain decomposition approach,
	the list $l_{NN}^{(\alpha)} = (\alpha_1, \alpha_2,, \alpha_6)$ stores the ID of the nearest-neighbor
\	> NN (6)
	domains, $d_i \in \{0, 1,, P-1\} \cup \{NIL\} \ (i=1(x-low), 2(x-high),$
	3 (Y-low), 4 (Y-high), 5 (Z-low), 6 (Z-high)), and NIL denotes that
	Da is at the edge of the physical system thus has no
	neighbor domain.
,	5. Periodic boundary condition is transparent in this
	"self-centric parallelization" scheme.

Overlapping domain-decomposition support function $\sum_{\alpha=0}^{p-1} P^{\alpha}(ir) = 1$ (2) $P^{\alpha}(ir) = 0 \quad (ir \notin \Omega_{\alpha})$ (3)Specifically, let's consider the rectanglar domain core Da with size Lx X Ly X Lz. Then, let's define $P_{ox}(x)$ $f(x) = 3x^{2} - 2x^{3}$ $= x^{2}(3-2x)$ -dbuf Lxtdbuf $3\left(\frac{t}{d_{buf}}+1\right)^2-2\left(\frac{t}{d_{buf}}+1\right)^3$ (-dbuf $\leq t < 0$) Pou(t) = (4) (m=x, y, z) $P_0(ir) = P_{0x}(x) P_{0y}(y) P_{0z}(z)$ (5) $P_{\alpha}^{d}(ir) = P_{\alpha}(ir - D_{\alpha})$ (6) where Ox is the origin (low-x, low-4, low-z corner) of the domain core Dox. Now the support function is Po (Ir) Pd+1(1r) Pot1(ir) Pa(Ir) Da In the self-centric parallelization, Pa(1r) can be constructed with

up to 26 non-NIL neighbors' Po(Ir). (Need NN caching.)

⊋. ⊋.						3	
0 _	Density	decomposition					
	'	1		$\stackrel{\alpha}{=} \rho^{\alpha}(1r) = \sum_{\alpha}$	P ^Q (1r)	(8)	
	The document	, Doo! time . D. O	La aunzassa d	11 11 04			
			$\frac{2}{2}$	"exactly" as $\beta \to 0$		(9)	
			2	global" chemical	potential.		
	The one-	electron Han	miltonian ir	the screened	d-pseudopot	ential	
	case is						
	Ĥ = -	$\frac{1}{2}\nabla^2 + V_{loc}$	(ir)			(10)	
	V _{loc} (1r) :	= \Sum V_I(Ir-	-RII)			(11)	
	where RI is the position of the Ith atom, and we use						
	the atomi	c unit sud	h that the l	ength and one	igy units ar	7e	
P2 +2			≥ = 0.529173				
$\frac{e^2}{\alpha} = \frac{\hbar^2}{ma^2}$	lemengy:	Eau = me4/h	$r^2 = 27.2116$	eV = 2Ry			
$\frac{e^2}{a} = e^2 \cdot \frac{me^2}{h^2}$							
	For hex	agonal CdS	Se,				
	<i>V</i> _I (r) =	$= \int \frac{d\theta}{(2\pi)^3} \mathcal{V}_{\mathbf{I}} (8)$	8) e i II. Ir			(12)	
	V _I (8)	a11 (82-1	a _{≥I}) 3³) + 1			(13)	
	APD	1(4-)					
			Q2 (a.u.)	Q3 (a.u.)	04 (a.u.)		
	Cd	• 193	0 ₂ (a.u.) .936 4.40	• 196	1.68		
	Se	0291	4.40	-1.20	.318		
	3 APF	2 (4)					
	111						

I. We represent the screened local potentials on a one-dimensional numerical mesh with cut-off radius $r_{\rm CI}$ (I=Cd or Se).

2. In the self-centric parallelization, the positions of atoms $\{R_{\rm I}\}$ within a skin of depth $r_{\rm CI}$ must be cacled from the neighbor domains to calculate global $V_{\rm loc}(r)$, which we will use. ($r_{\rm CI}$ could be larger than dipuf, i.e., $r_{\rm CI} \rightleftharpoons r_{\rm CI}$)

The chemical potential in Eq.(9) is determined by solving $Nel = \int dir P(ir) = \int dir \left(ir \left| \frac{2}{exp[\beta(\hat{H}-\mu)] + 1} \right| 1ir \right)$ (14)

7.		
0 _	Divide-conquer-combine algorithm	
	1. Divide the space Ω into nonoverlapping domains $\Omega = U\Omega_0$ $\Omega_{0\alpha} \cap \Omega_{0\alpha'} = \emptyset$; augment each domain core $\Omega_{0\alpha}$ with a	101_
	buffer layer $\Omega_{\alpha} = \Omega_{0\alpha} + \Gamma_{\alpha}$.	
	2. Conquer: Solve the sub-domain eigenvalue problems independentlin each 200	4
	$\widehat{H}^{\alpha} m^{\alpha}\rangle = \in_{m}^{\alpha} m^{\alpha}\rangle (m=1,,Norbmax) $ (16	()
	3. $\rho^{\alpha}(ir) = \sum_{m} \rho^{\alpha}(ir) \frac{2}{\exp\left[\beta(\epsilon_{m}^{\alpha}-\mu)\right]+1} \left \psi_{m}^{\alpha}(ir)\right ^{2} \left \log to be\right $ (1)	7)
	Loop to be Loop to be consistent	
	$N_{el} = \sum_{\alpha} \int d\mathbf{r} \rho^{\alpha}(\mathbf{r}) \tag{18}$	3)
	5. Combine: Use inner solutions $\{\psi_n^{\alpha'}(\mathbf{r}) \in \Omega_{0\alpha'}\}\$ of neighbor domains, $\alpha' \in L_{NN}$, as boundary conditions at the outer surface S_{α} of Ω_{α} to perturb Im^{α} .	
	6. Compute $P(ir) = \sum_{\alpha} P^{\alpha}(ir)$ etc.	

		Z			
0 -	Computation of physical quantities (Density)				
	$P(1r) = \sum_{\alpha} P^{\alpha}(1r)$	(19)			
	Note that $P^{\alpha}(\mathbf{r}) \simeq \sum_{m} \frac{2}{\exp[\beta(\mathbf{e}_{m}^{\alpha}-\mu)]+1} \frac{ \mathbf{q}_{m}^{\alpha}(\mathbf{r}) ^{2} \cdot P^{\alpha}(\mathbf{r})}{\exp[\beta(\mathbf{e}_{m}^{\alpha}-\mu)]+1}$				
	$\frac{2}{100000000000000000000000000000000000$	(20)			
	$P^{\alpha'}(Ir)$ is computed locally on each Ω_{α} ; to compute $P(Ir)$, neighbor $P^{\alpha'}(Ir)$ ($\alpha' \in L_{NN}^{(\alpha')}$) need be cached via 6-step copy operations.				
	(Energy) $E = tr \frac{2}{\exp[\beta(\hat{H}-\mu)]+1} \hat{H}$				
	$= \int_{\Omega} \frac{dir}{m} \frac{\sum_{\text{exp[}\beta(\in_{m}-\mu)]+1} \in_{m} \langle m ir \rangle}{\exp[\beta(\in_{m}-\mu)]+1}$				
	$= \int_{\Omega} d\mathbf{r} \sum_{m} \frac{\mathbf{S}}{\exp[\beta(\varepsilon_{m} - \mu)] + 1} \varepsilon_{m} \psi_{m}(\mathbf{i}\mathbf{r}) ^{2}$ $(\odot \sum_{n} P^{n}(\mathbf{i}\mathbf{r}) = 1)$				
	$=\sum_{\alpha}\int_{\Omega} d\mathbf{r} \sum_{m} \frac{2}{\exp[\beta(\mathbf{c}_{m}-\mu)]+1} \in_{m} \mathcal{X}_{m}(\mathbf{r}) ^{2} p^{\alpha}(\mathbf{r})$				
	$\frac{2}{2} \int_{\Omega_{\alpha}} d\mathbf{r} \frac{\mathbf{r}}{\mathbf{r}} \frac{\mathbf{r}}{\mathbf{r}} \frac{\mathbf{r}}{\mathbf{r}} \left[\mathbf{r} \left(\mathbf{r} \right) \right] + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $				
	Thus in the divide-&-conquer approximation, $E = \sum_{\alpha} E^{\alpha}$ occ (m, \alpha) earb (m, \alpha) thorb (m, \alpha)	(21)			
	$E = \sum_{\alpha} E^{\alpha}$ $= \sum_{m} \sum_{\alpha} \sum_{m} \frac{\sum_{\alpha} \sum_{m} $	(22)			

Solving local eigenvalue problems Solve $\left[\frac{1}{2}\nabla^2 + V_{loc}(r)\right] \psi_n^{\alpha}(r) = \varepsilon_n^{\alpha} \psi_n^{\alpha}(r) \quad (n=1,...,N_{orbmax}) \quad (23)$ with orthonormal constraints $\int dir \psi_m^{a*}(ir) \psi_n^{a}(ir) = \delta_{mn}$ (24)(Boundary condition) During the divide-4-conquer phase, we try two boundary conditions: (I) Rigid-wall boundary condition $Y_m^{\alpha}(ir) = 0 \quad (ir \in S_{\alpha})$ (25)(I) Wigner-Seitz boundary condition $\partial \psi_{m}^{d}/\partial n_{s} = 0$ (IFES,) (26)In the combine phase, inner solutions from neighbor domains will be cached and used to specify the boundary condition $\frac{1}{m}(\mathbf{r}) = \begin{bmatrix}
\frac{1}{m} - \mathbf{c}_n^{\beta} | -\frac{3}{3} \\
\frac{1}{m} - \mathbf{c}_n^{\beta} | -\frac{3}{3} \\
\frac{1}{m} + \mathbf{c}_n^{\beta} | -\frac{3}{3} \\$

xact DCC

dout