Kapitel 4: Rekursion och induktion

Kasper K. S. Andersen

23 september 2021

4.1 Rekursion och rekursionsekvationer

Definition 1. (a) En *rekursiv definition* är en definition som (delvis) relaterer tillbaka till sig själv.

- (b) En $talf\"{o}ljd$ $\{a_n\}_1^\infty$ är f\"{o}ljd av tal som betecknas med numrerade bokstäver $a_1, a_2, \ldots, a_n, a_{n+1}, \ldots$ Tex. kan f\"{o}ljden $2, 4, 6, 8, \ldots$ skrivs som $a_n = 2n, n \in \mathbb{Z}_+$. Detta kallas $explicit\ form$ (beror endast på n).
- (c) En rekursiv definition av en talföljd består av 1:a talet a_1 (begynnelsesvillkoret) och en regel hur man beräkna nästa tal. Tex. har talföljden $2, 4, 6, 8, \ldots$ den rekursiva definitionen $a_1 = 2$, $a_n = a_{n-1} + 2$ för $n \ge 2$.

Exempel 1. Talföjlden $a_n = 2n - 1$, $n \in \mathbb{Z}_+$ är på explicit form. Första 5 talen blir: 1, 3, 5, 7, 9.

En möjlig rekursiv definition är $a_1 = 1$, $a_n = a_{n-1} + 2$ för $n \ge 2$. Första talen blir $a_1 = 1$, $a_2 = a_1 + 2 = 1 + 2 = 3$, $a_3 = a_2 + 2 = 3 + 2 = 5$ osv.

Exempel 2. Fibonacciföljden (uppkallad efter Leonardo Pisano, född ca. 1170, död ca. 1240–1250) definieras rekursivt av

$$f_0=0, \quad f_1=1, \quad f_n=\underbrace{f_{n-1}+f_{n-2}}_{\text{två föregående}}, \ n\geq 2.$$

Första 10 talen blir: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34.

Definition 2. Att $l\ddot{o}sa$ en rekursionsekvation betyder att skriva om rekursionsformeln till explicit form.

Exempel 3. Lös rekursionsekvationen $a_1 = 1$, $a_n = a_{n-1} + 2$ (jmf. Exempel 1).

Lösning: "Backtracking" metoden:

$$a_n = a_{n-1} + 2 = (a_{n-2} + 2) + 2 = a_{n-2} + 2 \cdot 2 = (a_{n-3} + 2) + 2 \cdot 2 = a_{n-3} + 3 \cdot 2.$$

Allmänt: $a_n = a_{n-k} + k \cdot 2$. Sätt $n - k = 1 \iff k = n - 1$:

$$a_n = a_1 + (n-1) \cdot 2 = 1 + 2n - 2 = 2n - 1.$$

Testa n = 1: $a_1 = 2 \cdot 1 - 1 = 1$ sant.

Exempel 4 (Exempel 4.16, s. 88). Lös ekvationen $a_0 = 0$, $a_{n+1} = 2a_n + 1$ för $n \in \mathbb{N}$.

Lösning:

$$a_{n+1} = 2a_n + 1$$

$$= 2(2a_{n-1} + 1) + 1$$

$$= 2^2a_{n-1} + 2 + 1$$

$$= 2^2(2a_{n-2} + 1) + 2 + 1$$

$$= 2^3a_{n-2} + 2^2 + 2 + 1$$

$$= 2^3(2a_{n-3} + 1) + 2^2 + 2 + 1$$

$$= 2^4a_{n-3} + 2^3 + 2^2 + 2 + 1.$$

Allmänt: $a_{n+1} = 2^{k+1}a_{n-k} + (2^k + 2^{k-1} + \ldots + 2 + 1)$. Parentesen är en geometrisk summa:

$$2^{k} + 2^{k-1} + \ldots + 2 + 1 = 1 + 2 + \ldots + 2^{k} = 1 \cdot \frac{2^{k+1} - 1}{2 - 1} = 2^{k+1} - 1.$$

Insättning ger:

$$a_{n+1} = 2^{k+1}a_{n-k} + (2^k + 2^{k-1} + \dots + 2 + 1)$$

$$= 2^{k+1}a_{n-k} + 2^{k+1} - 1$$

$$= [Sätt \ n - k = 0 \iff k = n]$$

$$= 2^{n+1}a_0 + 2^{n+1} - 1$$

$$= 2^{n+1} \cdot 0 + 2^{n+1} - 1$$

$$= 2^{n+1} - 1$$

Vi har alltså $a_{n+1} = 2^{n+1} - 1$ varav $a_n = 2^n - 1$.

Definition 3. En rekursionsekvation på formen

$$a_n = r_1(n)a_{n-1} + r_2(n)a_{n-2} + \ldots + r_k(n)a_{n-k} + f(n)$$

kallas $linj\ddot{a}r$ av ordning k. Om $r_1(n) = r_1, \ldots, r_k(n) = r_k$ alla är konstanta kallas ekvationen $linj\ddot{a}r$ av ordning k med konstanta koefficienter. Om f(n) = 0 kallas rekursionsekvationen homogen.

Exempel 5. (a) $a_n = a_{n-1} + 2$, linjär av ordning 1 med konstanta koefficienter, inhomogen.

- (b) $a_n = 2^n a_{n-1} + 2a_{n-2}$, linjär av ordning 2, homogen.
- (c) $a_n = a_{n-1}^2 + 2a_{n-2}$, ej linjär.
- (d) $f_n = f_{n-1} + f_{n-2}$, linjär av ordning 2 med konstanta koefficienter, homogen.

Definition 4. Låt

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \ldots + r_k a_{n-k}$$
 (1)

vara en homogen linjär rekursionsekvation av ordning k med konstanta koefficienter. Ekvationen

$$x^{k} = r_{1}x^{k-1} + r_{2}x^{k-2} + \ldots + r_{k-1}x + r_{k}$$

kallas den karakteristiska ekvationen till (1).

Exempel 6. (a) Rekursionsekvationen $a_n = 3a_{n-1} + 2a_{n-2} + a_{n-3}$ har karakteristiska ekvationen $x^3 = 3x^2 + 2x + 1$.

- (b) $a_n = 3a_{n-1} 2a_{n-2}$ har karakteristiska ekvationen $x^2 = 3x 2$.
- (c) $b_n = 5b_{n-1}$ har karakteristiska ekvationen x = 5.

Sats: Låt

$$a_n = r_1 a_{n-1} + r_2 a_{n-2}$$

vara en linjär homogen rekursionekvation av ordning 2 med konstanta koefficienter, og låt λ_1, λ_2 vara rötterne till den karakteristiska ekvationen

$$x^2 = r_1 x + r_2.$$

Då gäller

- $\lambda_1 \neq \lambda_2$: $a_n = C_1 \cdot \lambda_1^n + C_2 \cdot \lambda_2^n$,
- $\lambda_1 = \lambda_2$: $a_n = (C_1 n + C_2) \cdot \lambda^n \text{ (där } \lambda = \lambda_1 = \lambda_2),$

där C_1, C_2 är konstanter som beror på begynnelsesvillkoren.

Exempel 7. Lös rekursionsekvationen $a_0 = 1$, $a_1 = 2$, $a_n = -a_{n-1} + 6a_{n-2}$ för $n \ge 2$.

Lösning: Karakteristiska ekvationen är $x^2 = -x + 6 \iff x^2 + x - 6 = 0$ som har rötterna $\lambda_1 = -3$, $\lambda_2 = 2$. Enligt satsen blir $a_n = C_1 \cdot (-3)^n + C_2 \cdot 2^n$. Vi bestämmer C_1 och C_2 med hjälp av $a_0 = 1$ och $a_1 = 2$.

$$\begin{cases} C_1 \cdot (-3)^0 + C_2 \cdot 2^0 = 1 \\ C_1 \cdot (-3)^1 + C_2 \cdot 2^1 = 2 \end{cases} \iff \begin{cases} C_1 + C_2 = 1 \\ -3C_1 + 2C_2 = 2 \end{cases}^3$$

$$\iff \begin{cases} C_1 + C_2 = 1 \\ 5C_2 = 5 \end{cases} \iff \begin{cases} C_1 = 0 \\ C_2 = 1. \end{cases}$$

Alltså gäller $a_n = 0 \cdot (-3)^n + 1 \cdot 2^n = 2^n$.

Exempel 8. Lös rekursionsekvationen $a_0 = 5$, $a_1 = 12$, $a_n = 6a_{n-1} - 9a_{n-2}$ för $n \ge 2$.

Lösning: Karakteristiska ekvationen är $x^2 = 6x - 9 \iff x^2 - 6x + 9 = 0$ som har dubbelroten $\lambda_1 = \lambda_2 = 3$. Enligt satsen blir $a_n = (C_1 n + C_2) \cdot 3^n$. Vi bestämmer C_1 och C_2 med hjälp av $a_0 = 5$ och $a_1 = 12$.

$$\begin{cases} (C_1 \cdot 0 + C_2) \cdot 3^0 &=& 5 \\ (C_1 \cdot 1 + C_2) \cdot 3^1 &=& 12 \end{cases} \iff \begin{cases} C_2 &=& 5 \\ 3C_1 & +3C_2 &=& 12 \end{cases} \iff \begin{cases} C_1 &=& -1 \\ C_2 &=& 5 \end{cases}$$

Alltså gäller $a_n = (-1 \cdot n + 5) \cdot 3^n = (5 - n) \cdot 3^n$.

Exempel 9 (Extenta). En talföljd definieras igenom $a_1 = 5$, $a_2 = -2$ och $a_n = a_{n-1} + 2a_{n-2}$ för $n \ge 3$. Bestäm en explicit formel för a_n .

Svar: $a_n = 2^{n-1} - 4 \cdot (-1)^n$ för $n \ge 1$.

• Repetera §4.2.1, s. 79–81 och §4.2.2, s. 81–83.

4.3 Matematisk induktion

Man vill bevisa att ett påstående P(n) gäller för alla möjliga värde av n. Detta används tex. vid analys av algoritmer.

Induktionsprincipen: Visa att påståendet P(n) är sant för alla $n \geq n_0$, $n \in \mathbb{Z}$.

(1) **Bassteg**: Visa att P(n) gäller i enklast möjliga fallet, $n = n_0$, dvs. visa att $P(n_0)$ är sant.

(2) **Induktionssteg**: P(p) är sant $\Longrightarrow P(p+1)$ är sant. Vi utgår från att induktionsantagandet P(p) är sant (dvs. P(n) är sant för n=p). Vi skal då bevisa att så är påståendet också sant för n=p+1, dvs. att P(p+1) också är sant.

I så fall gäller P(n) för alla $n \geq n_0, n \in \mathbb{Z}$.

Exempel 10 (Aritmetisk summa). $1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}, n \in \mathbb{Z}_+$.

Lösning: Vi använder induktion. Låt P(n) beteckna påståendet

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}.$$

- (1) **Bassteg**: $n_0 = 1$. Påståendet $P(1) : 1 = \frac{1 \cdot (1+1)}{2}$ är sant.
- (2) **Induktionssteg**: Vi utgår från att induktionsantagandet P(p) är sant, dvs. att

$$1+2+3+\ldots+p=\frac{p(p+1)}{2}$$
 $P(p)$, ok

är sant. Vi måste då bevisa att P(p+1) är sant, dvs. att

$$1+2+3+\ldots+p+(p+1)=\frac{(p+1)(p+2)}{2}$$
 $P(p+1)$?

gäller. Uträkning ger:

$$VL = 1 + 2 + 3 + \dots + p + (p + 1)$$

$$= (1 + 2 + 3 + \dots + p) + (p + 1)$$

$$\stackrel{P(p)}{=} \frac{p(p+1)}{2} + (p+1)$$

$$= (p+1) \left(\frac{p}{2} + 1\right)$$

$$= (p+1) \left(\frac{p+2}{2}\right)$$

$$= \frac{(p+1)(p+2)}{2}$$

$$= HL.$$

Alltså är P(n) är sann för alla $n \ge 1$.

Exempel 11. Visa att
$$P(n): 1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
 för $n \in \mathbb{Z}_+$.

Bevis: (1) Bassteg: $n_0 = 1$. Påståendet $P(1): 1^3 = \left(\frac{1 \cdot (1+1)}{2}\right)^2$ är sant.

(2) **Induktionssteg**: Vi utgår från att induktionsantagandet P(p) är sant, dvs. att

$$1^3 + 2^3 + \ldots + p^3 = \left(\frac{p(p+1)}{2}\right)^2$$
 $P(p)$, ok

är sant. Vi måste då bevisa att P(p+1) är sant, dvs. att

$$1^3 + 2^3 + \ldots + p^3 + (p+1)^3 = \left(\frac{(p+1)(p+2)}{2}\right)^2$$
 $P(p+1)$?

gäller. Uträkning ger:

$$VL = 1^{3} + 2^{3} + \dots + p^{3} + (p+1)^{3}$$

$$= (1^{3} + 2^{3} + \dots + p^{3}) + (p+1)^{3}$$

$$\stackrel{P(p)}{=} \left(\frac{p(p+1)}{2}\right)^{2} + (p+1)^{3}$$

$$= \frac{p^{2}(p+1)^{2}}{4} + (p+1)^{3}$$

$$= (p+1)^{2} \left(\frac{p^{2}}{4} + (p+1)\right)$$

$$= (p+1)^{2} \left(\frac{p^{2} + 4(p+1)}{4}\right)$$

$$= (p+1)^{2} \left(\frac{p^{2} + 4p + 4}{4}\right)$$

$$= (p+1)^{2} \left(\frac{(p+2)^{2}}{4}\right)$$

$$= \frac{(p+1)^{2}(p+2)^{2}}{4}$$

$$= \left(\frac{(p+1)(p+2)}{2}\right)^{2}$$

$$= HI$$

Alltså är P(p+1) sann. Induktionsprincipen ger då att P(n) är sann för alla $n \geq 1$.

• Läs Exempel 4.15, sida 87–88, Exempel 4.16, sida 88–89 och Exempel 4.18, sida 90–92.

Exempel 12 (jmf. Exempel 4.18, s. 90–92). Bevisa att $\sum_{k=1}^{n} (10 + 8k) = n \cdot (4n + 14)$.

Lösning: Använda induktion (prova själv!).

Alternativ: Summan är en aritmetisk summa:

$$\sum_{k=1}^{n} (10 + 8k) = 18 + 26 + \dots + (10 + 8n)$$
$$= n \cdot \frac{18 + (10 + 8n)}{2}$$
$$= n \cdot \frac{8n + 28}{2}$$
$$= n \cdot (4n + 14).$$

Exempel 13 (Geometrisk summa). Visa att $1 + a + a^2 + \ldots + a^n = \frac{a^{n+1}-1}{a-1}$, $a \neq 1$, för $n \in \mathbb{N}$.

Lösning: (1) **Bassteg**: $n_0 = 0$. Påståendet $P(0): 1 = \frac{a^{0+1}-1}{a-1}$ är sant.

(2) **Induktionssteg**: Vi utgår från att induktionsantagandet P(p) är sant, dvs. att

$$1 + a + a^2 + \ldots + a^p = \frac{a^{p+1} - 1}{a - 1}$$
 $P(p)$, ok

är sant. Vi måste då bevisa att P(p+1) är sant, dvs. att

$$1 + a + a^2 + \ldots + a^{p+1} = \frac{a^{p+2} - 1}{a - 1}$$
 $P(p+1)$?

gäller. Uträkning ger:

$$VL = 1 + a + a^{2} + \dots + a^{p} + a^{p+1}$$

$$= (1 + a + a^{2} + \dots + a^{p}) + a^{p+1}$$

$$\stackrel{P(p)}{=} \frac{a^{p+1} - 1}{a - 1} + a^{p+1}$$

$$= \frac{a^{p+1} - 1 + a^{p+1}(a - 1)}{a - 1}$$

$$= \frac{a^{p+1} - 1 + a^{p+2} - a^{p+1}}{a - 1}$$

$$= \frac{a^{p+2} - 1}{a - 1}$$

$$= HL.$$

Alltså är P(n) är sann för alla $n \ge 0$.

Exempel 14. Visa ved hjälp av matematisk induktion att $3 \mid n^3 - n, n \in \mathbb{N}$.

Bevis: (1) **Bassteg**: $n_0 = 0$. Påståendet P(0): $3 \mid 0^3 - 0$ är sant ty HL = 0 - 0 = 0.

(2) **Induktionssteg**: Vi utgår från att induktionsantagandet P(p) är sant, dvs. att

$$3 \mid p^3 - p$$
 $P(p)$, ok

är sant. Dette betyder att vi kan skriva p^3-p som $3\cdot m$, dvs. $p^3-p=3\cdot m$. Vi måste då bevisa att P(p+1) är sant, dvs. att

$$3 \mid (p+1)^3 - (p+1)$$
 $P(p+1)$?

gäller. Uträkning ger:

$$(p+1)^3 - (p+1) = (p^3 + 3p^2 + 3p + 1) - p - 1$$
 (Binomialformeln)
= $(p^3 - p) + 3p^2 + 3p$
= $3 \cdot m + 3 \cdot (p^2 + p)$
= $3 \cdot (m + p^2 + p)$.

Alltså gäller $3 \mid (p+1)^3 - (p+1)$, dvs. P(p+1) är sann. Induktionsprincipen ger då att P(n) är sann för alla $n \ge 0$.

4.3.4 Olikheter

• Läs Sats 4.3, sida 95.

Exempel 15. Visa att $1 + 2^n < 3^n$ för n > 2, $n \in \mathbb{Z}$.

Bevis: (1) **Bassteg**: $n_0 = 2$. Påståendet P(2): $1 + 2^2 < 3^2$. VL = 1 + 4 = 5, HL = 9, dvs. P(2) är sant.

(2) **Induktionssteg**: Vi utgår från att induktionsantagandet P(p) är sant, dvs. att

$$1 + 2^p < 3^p$$
 $P(p)$, ok

är sant. Vi måste då bevisa att P(p+1) är sant, dvs. att

$$1 + 2^{p+1} < 3^{p+1}$$
 $P(p+1)$?

gäller. Uträkning ger:

$$VL = 1 + 2^{p+1}$$

$$= 1 + 2 \cdot 2^{p}$$

$$= 1 + 2 \cdot (1 + 2^{p}) - 2$$

$$= -1 + 2 \cdot (1 + 2^{p})$$

$$< -1 + 2 \cdot 3^{p}$$

$$< 3^{p} + 2 \cdot 3^{p}$$

$$= 3 \cdot 3^{p}$$

$$= HL.$$

Alltså gäller $1 + 2^n < 3^n$ för alla $n \ge 2$.

• Läs Exempel 4.20, sida 95–96.

Exempel 16 (Hjälpsats s. 97). Visa att $2n+1 < 2^n$ för $n \ge 3$, $n \in \mathbb{Z}$.

Bevis: (1) **Bassteg**: $n_0 = 3$. Påståendet $P(3): 2\cdot 3+1 < 2^3$. VL = 6+1=7, HL = 8, dvs. P(3) är sant.

(2) **Induktionssteg**: Vi utgår från att induktionsantagandet P(p) är sant, dvs. att

$$2p+1 < 2^p$$
 $P(p)$, ok

är sant. Vi måste då bevisa att P(p+1) är sant, dvs. att

$$2(p+1)+1<2^{p+1}$$
 $P(p+1)$?

gäller. Uträkning ger att för $p \geq 3$ gäller:

$$VL = 2p + 3$$

$$= (2p + 1) + 2$$

$$< 2^{p(p)} < 2^{p} + 2$$

$$< 2^{p} + 2^{p}$$

$$= 2 \cdot 2^{p}$$

$$= HL.$$

Alltså gäller $2n+1<2^n$ för alla $n\geq 3.$

Exempel 17 (Exempel 4.21, sida 96). Visa att $n^2 < 2^n$ för $n \ge 5$, $n \in \mathbb{Z}$.

Bevis: (1) **Bassteg**: $n_0 = 5$. Påståendet $P(5): 5^2 < 2^5$. VL = 25, HL = 32, dvs. P(5) är sant.

(2) **Induktionssteg**: Vi utgår från att induktionsantagandet P(p) är sant, dvs. att

$$p^2 < 2^p P(p), ok$$

är sant. Vi måste då bevisa att P(p+1) är sant, dvs. att

$$(p+1)^2 < 2^{p+1}$$
 $P(p+1)$?

gäller. Uträkning ger at för $p \geq 5$ gäller:

$$\begin{aligned} \text{VL} &= (p+1)^2 \\ &= p^2 + (2p+1) \\ &< 2^p + (2p+1) \\ &[\text{Exempel 16, observera att } p \geq 3] \\ &< 2^p + 2^p \\ &= 2 \cdot 2^p \\ &= \text{HL.} \end{aligned}$$

Dvs. påståendet $n^2 < 2^n$ är sant för alla $n \geq 5$.