

What is Machine Learning?

Alexa and Siri

- Extract vowels and consonants from the **signals**
- Recognize Words, Sentences, and Sentiment
- Act accordingly.

Time-series Forecasting

- Time-series
 - Stock Market
 - Texts, Tweets, ...
- COTA: Customer Obsession Ticket Assistant
 - Handling Uber support tickets
 - Processing tickets and proposing solutions

https://eng.uber.com/cota/

Classification

- Image Classification
 - Cat vs. dog
 - Image segmentation
- Old-fashioned Spam Detector
 - What would we do?
 - Writing rules
 - More rules
 - And more rules ...
- Better Spam Detector
 - Automatic feature extraction
 - Model training
 - Classifying new emails

Rule-based vs. Learning

Rule –based Programming

Write some rules. Evaluate them. Add some again, and again, ...

Learning

Machine programming machine with experience/data.

Two Definitions of ML

Arthur Samuel(1959):

 "Machine Learning is a field of study that gives computers, the ability to learn without explicitly being programmed."

Tom Michel(1999)

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

The Big Picture

- Supervised Learning
 - Labeled data
 - Classification
 - Regression
- Unsupervised Learning
 - Unlabeled data
 - Clustering
 - Dimensionality Reduction
- Reinforcement Learning
 - Learning by living
 - Entirely different realm
 - Not covered in this course

Supervised Learning

Income

350 300 Coffee sales 250 Cups of coffe sold Actual trend 100 10 12 Time of day (in hours)

For categorical variables

Regression

For numeric variables

Unsupervised Learning

Clustering

Dimensionality Reduction

To avoid the curse of dimensionality

Semi-supervised Learning

Clustering and Classifying

Deep Belief Networks for image classification, video recognition, ...

What is SciKit-Learn

- An open-source machine-learning library
- Built on Numpy, Scipy, and Matplotlib
- Contains many ML algorithms and models
- Good documentation and support
- Good for beginners

Data in Scikit-Learn

- Data In ML typically consists of:
 - Features
 - Labels
- Features are stored in a 2D matrix
 - Shape=(n features, n data)
- Labels are stored in a 1D <u>vector</u>
 - Shape=(n data,)

Train-Test Data

- We always split data to:
 - Train data
 - Validation data
 - Test data: We only see in production
- Cross-validation
 - Holdout
 - K-fold
- In Scikit-Learn:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size)

Some Basic Regression Model

• Using LinearRegression model

from sklearn.linear_model import LinearRegression

Constructing the model

reg = LinearRegression()

Model API In Scikit-Learn

- Train the model using .fit(X, y) method
- Transform the data using .transform(X) method
- Do the combination using .fit_transform(X, [y])
- Test the model using .predict(X) method

K-Nearest Neighbor Classifier

- For each new data:
 - Find the k-closest data
 - Take majority vote
 - Assign the label

