Assignment IV (20 pts)

Burak Ekici

Assigned: May the 20th, 19h00 Due: May the 27th, 19h00

Q1. (8 pts) Design Turing Machine (TM)

$$M = (\{\cdots, \text{halt, halt-reject}\}, \{a\}, \{a, b, 0, 1, \vdash, _, \#, >, +, x\}, \vdash, _, \delta, s, \text{halt, halt-reject})$$

that takes $\vdash a^m?a^n\#$, behaves as

and halts with

$$\begin{cases} \cdots \#1 \text{ if m > n} \\ \cdots \#0 \text{ otherwise} \end{cases} \text{ if input string is } \vdash \alpha^m > \alpha^n \#$$

$$\cdots \#\alpha^{m \times n} \text{ if input string is } \vdash \alpha^m \times \alpha^n \#$$

$$\cdots \#\alpha^{m+n} \text{ if input string is } \vdash \alpha^m + \alpha^n \#$$

written on its tape.

Below are a few examples to the input-output harmony of the intended TM:

Input	Output
\vdash aaaa $>$ aaaa# $_^{\omega}$	\cdots #0 $^{\omega}$
\vdash aaaaa $>$ aaaa $\#_{_}^{\omega}$	\cdots #1 $^{\omega}$
\vdash aaxaaaa# $_^\omega$	\cdots #aaaaaaaa $^\omega$
\vdash aaaaa $+$ aa $\#_^\omega$	\cdots #aaaaaaa $^\omega$
\vdash > $aaa\#_^{\omega}$	···#0_ ^ω
$\vdash aaa > \#_\omega$	\cdots #1 $^{\omega}$
⊢ aααx#_ ^ω	···#_ ^ω
\vdash xaaaaa# $_^\omega$	···#_ ^ω
$\vdash aaa + \#_\omega$	\cdots #aaa $^{\omega}$
\vdash +aaaaa# $_^\omega$	\cdots #aaaaa $^\omega$
\vdash aaata + aaaaaaa a_{-}^{ω}	reject
\vdash $aaxaaauaaa_{-}^{\omega}$	reject
<u>:</u>	:

Important. Implement the machine *M* in Morphett's TM simulator, and explain your implementation in a few comment-out lines. Note that TMs designated elsewise will be graded zero.

A1. Turing Machine

$$M = \{\{prep, backa, backm, backc, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, halt, halt-reject\}, \\ \{a\}, \{a, b, 0, 1, \vdash, _, \#\}, \vdash, _, \delta, prep, halt, halt-reject\}$$

with transition function δ available here performs as intended.

Q2. (8 pts) Design a total Turing Machine (TM)

$$M = (\{\cdots, \text{halt-accept}, \text{halt-reject}\}, \{\alpha\}, \{\alpha, b, x, 1, \vdash, , \#\}, \vdash, , \delta, s, \text{halt-accept}, \text{halt-reject}\}$$

that accepts the input $\vdash a^n$ if $n = \sum_{i=0}^{m \in \mathbb{N}} i$, and rejects otherwise.

Below are a few examples to the input-output harmony of the intended TM:

Input	Output
- _ω	accept
⊢ <i>a_</i> ^ω	accept
$\vdash aaa_^{\omega}$	accept
\vdash $aaaaaaa_^\omega$	accept
\vdash $aaaaaaaaaaa_{_}^{\omega}$	accept
\vdash $aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	accept
$\vdash aa_{-}^{\omega}$	reject
\vdash $aaaa_{-}^{\omega}$	reject
\vdash $aaaaa_^\omega$	reject
⊢ ααα <u>c_</u> ω	reject
:	:

Important. Implement the machine *M* in Morphett's TM simulator, and explain your implementation in a few comment-out lines. Note that TMs designated elsewise will be graded zero.

A2. Turing Machine

$$M = (\{\text{prep, prep1, back, 1, 2, 3, 4, halt-accept, halt-reject}\},$$

 $\{a\}, \{b, x, 1, \vdash, _, \#\}, \vdash, _, \delta, \text{prep, halt-accept, halt-reject}\}$

with transition function δ available here performs as intended.

Q3. (4 pts) Considering following context free grammar $G = (\{S, A, B, K, U, T, V, W, Y, Z\}, \{\alpha, b\}, P, S)$ with below production rules

$$S \rightarrow AV \mid AB \mid SB \mid WY \mid ZV \mid BV \mid ZB \mid BB \mid UU \mid \alpha \mid b$$

 $U \rightarrow b \quad V \rightarrow SB \quad W \rightarrow SU \quad Y \rightarrow US \quad Z \rightarrow BA \quad T \rightarrow UA \quad K \rightarrow SA$
 $A \rightarrow TK \mid TA \mid US \mid \alpha \mid b$

decide employing the Cocke Kasami Younger (CKY) algorithm whether the string "x = aabab" belongs to the language L(G).

Important. Recall that CKY algorithm functions on grammars in Chomsky Normal Form (CNF). Therefore make sure before employing the algorithm that G is already in CNF; transform G into an equivalent grammar in CNF, otherwise.

A3.

$\lambda = aabab$		
T_{02}	=	$\{X \in \{S,A,B,K,U,T,V,W,Y,Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{12}\}$
	=	$\{X \in \{S,A,B,K,U,T,V,W,Y,Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in \{S,A\} \text{ and } Z \in \{S,A\}\}$
	=	{ <i>K</i> }
x = aabab		

 $T_{13} = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{23}\}$ $= \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{S, A, U\}\}$ $= \{K, W\} = T_{35}$

x = aabab

0

 $T_{24} = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{23} \text{ and } Z \in T_{34}\}$ $= \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{S, A, U\} \text{ and } Z \in \{S, A\}\}$ $= \{K, A, T\}$

```
x = aabab
T_{03}
                                                                                                                          = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{13}\} \cup T_{01} \cup T_{02} \cup T_{03} \cup T_{03
                                                                                                                                                                  \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{02} \text{ and } Z \in T_{23}\}
                                                                                                                            = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{K, W\}\} ∪
                                                                                                                                                                    \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{K\} \text{ and } Z \in \{S, A, U\}\}
x = aabab
T_{14}
                                                                                                                            = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{24}\} \cup T_{24} \cup T_{24
                                                                                                                                                                  \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{13} \text{ and } Z \in T_{34}\}
                                                                                                                          = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{K, A, T\}\} \cup
                                                                                                                                                                    \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in \{K, W\} \text{ and } Z \in \{S, A\}\}
                                                                                                                          = {K}
x = aabab
T_{25}
                                                                                                                            = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in T_{23} \text{ and } Z \in T_{35}\} \cup T_{23} \cup T_{23
                                                                                                                                                                    \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in T_{24} \text{ and } Z \in T_{45}\}
                                                                                                                          \{X \in \{S,A,B,K,U,T,V,W,Y,Z\} \mid X \rightarrow YZ \in P \text{ with } Y \in \{K,A,Y,T\} \text{ and } Z \in \{S,A,U\}\}
                                                                                                                            = \{A\}
                                0
```

x = aabab

 $T_{04} = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{14}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{02} \text{ and } Z \in T_{24}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{03} \text{ and } Z \in T_{34}\}$ $= \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{K\}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{K\} \text{ and } Z \in \{K, A, Y, T\}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{S, A\}\}$ $= \emptyset$

x = aabab

 $T_{15} = \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{12} \text{ and } Z \in T_{25}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{13} \text{ and } Z \in T_{35}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in T_{14} \text{ and } Z \in T_{45}\}$ $= \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{A\}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{K, W\} \text{ and } Z \in \{K, W\}\} \cup \{X \in \{S, A, B, K, U, T, V, W, Y, Z\} \mid X \to YZ \in P \text{ with } Y \in \{K\} \text{ and } Z \in \{S, A, U\}\}$ $= \{K\}$

0

{S,A}	1				
{ <i>K</i> }	{S, A}	2			
Ø	{K, W}	{S,A,U}	3		
Ø	{ <i>K</i> }	$\{K, A, Y, T\}$	{S,A}	4	
	{ <i>K</i> }	{ <i>A</i> }	{K, W}	{S,A,U}	

x = aabab

 T_{05}

 $= \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in T_{01} \text{ and } Z \in T_{15}\} \cup \\ \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in T_{02} \text{ and } Z \in T_{25}\} \cup \\ \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in T_{03} \text{ and } Z \in T_{35}\} \cup \\ \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in T_{04} \text{ and } Z \in T_{45}\}$

 $= \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in \{S, A\} \text{ and } Z \in \{K\}\} \cup \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in \{K\} \text{ and } Z \in \{A\}\} \cup \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{K, W\}\} \cup \{X \in \{S, A, B, C, D, U, T, V, W\} \mid X \to YZ \in P \text{ with } Y \in \emptyset \text{ and } Z \in \{S, A, U\}\}$

 $= \emptyset$

0

U					
{ <i>S</i> , <i>A</i> }	1				
{ <i>K</i> }	{ <i>S,A</i> }	2	_		
Ø	{K, W}	{S,A,U}	3		
Ø	{ <i>K</i> }	$\{K,A,Y,T\}$	{S,A}	4	
Ø	{ <i>K</i> }	{ <i>A</i> }	{K, W}	{S,A,U}	5

 $S \notin T_{05} \implies x \notin L(G)$

Important Notice:

- Collaboration is strictly and positively prohibited; lowers your score to 0 if detected.
- Any submission after 19h00 on May the 27th will NOT be accepted. Please beware and respect the deadline!
- Submission policy:
 - 1. considering **Q1** and **Q2**, first implement TMs in Morphett's TM simulator, then copy-and-paste your code in separate text files respectively named **A1.txt** and **A2.txt**,
 - 2. as for Q3, write your answer down on a piece of paper, scan it into a PDF file named A3.pdf,
 - 3. and then submit all files **A1.txt**, **A2.txt** and **A3.pdf** in raw form. Please do not compress files!
- Make sure that your handwriting in **A3.pdf** is decent and readable.