Teoria grafów

by a fish

21.03.2137

Contents

1	Structural properties1.1 Basic definitions1.2 Hall's Marriage Theorem1.3 Menger's Theorem1.4 Menger's Theorem (so edgy)	5 9
2	External problems12.1 Complete subgraphs12.2 Complete bipartite subgraphs12.3 Arbitrary subgraphs1	15
3	Ramsey Theory 1 3.1 Ramsey theorem 1 3.2 Ramsey but no restrictions on colorzzz 1	

1 Structural properties

1.1 Basic definitions

Graph - an ordered pair G = (V, E):

For an edge vw, $v \neq w$ we say that v, w are its endpoints and that it is incident to v (or w).

Dla krawedzi vw, v ≠ w mowimy, ze v, w sa jej koncami i ze jest krawedzia padajaca na v (lub w).

Graphs G and H are isomorfic (G \simeq H) if there exists f : V(G) $\xrightarrow{1-1}$ onV(H) such that

 $(\forall v, w \in V(G)) \ vw \in E(G) \iff f(v)f(w) \in E(H)$

Meaning that edges are like an operation on a group of vertices

G is a subgraph of H [G \leq H] if V(G) \subseteq V(H) and E(G) \subseteq E(H).

If G is H-free if it is has no subgraphs isomorfphic to H.

Grafy G i G sa izomorficzne, jezeli istnieje f : V(G) $\xrightarrow[1-1]{na}$ V(H) takie ze

 $(\forall v, w \in V(G)) \ vw \in E(G) \iff f(v)f(w) \in E(H)$

G jest podgrafem H [G \leq H] jezeli V(G) \subseteq V(H) oraz E(G) \subseteq E(H).

G jest H-free (wolny od H?), jezeli nie ma podgrafow izomorficznych z H.

A cycle of length $n \ge 3$ [C_n] is a graph with vertices

 $V(C_n) = [n]$

and edges:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

A path of length n - 1 [P_{n-1}] is a graph with vertices

$$V(P_{n-1}) = [n]$$

and edges

$$E(P_{n-1}) = \{i(i+1) : 1 \le i \le n-1\}.$$

Cykl dlugosci $n \ge 3$ [C_n] to graf z wierzcholkami

$$V(C_n) = [n]$$

i krawiedziami:

$$E(C_n) = \{i(i+1) : i \le i \le n-1\} \cup \{1n\}.$$

Sciezka dlugosci n – 1 $[P_{n-1}]$ to graf z wierzcholkami

$$V(P_{n-1}) = [n]$$

i krawedziami

$$E(P_{n-1}) = \{i(i+1) : 1 \le i \le n-1\}.$$

An induced by $A \subseteq V(G)$ subgraph of G is $G[A] = (A, E_A)$

A connected component of G is a subgraph $G[W] \le G$ where $W \subseteq V$ is an equivalence class under \approx given by

 $v \approx w \iff exists a path v...w in G$

A graph is connected if $v \approx w$ for every $v, w \in V$ (G has at most one connected component).

If v is a vertex in graph G, we say that its neighbourhood is $N_G(v) = \{w \in G : vw \in E(G)\}$. Furthermore, the degree of v is $|N_G(v)|$.

If $A \subseteq V$, then $N(A) := \bigcup_{v \in A} N(v)$.

We define:

 \hookrightarrow minimal degree $\delta(G) = \min_{v \in G} d(v)$

 \hookrightarrow maximal degree $\Delta(G) = \max_{v \in G} d(v)$

 \hookrightarrow average degree d(G) = $\frac{\sum d(v)}{|G|}$.

If there exists an r > 0 such that

$$\delta(G) = \Delta(G) = d(G) = r$$

then we say that the graph is r-regular or, more generally, it is regular for some r.

Handshaking Lemma: for any graph G we have e(G) = $\frac{1}{2} \sum d(v) = \frac{|G|}{2} d(G)$

1.2 Hall's Marriage Theorem

Graph G is bipartite with vertex classes U and W if $V = U \cup W$ so that every edge has form uw for some $u \in U$ and $w \in W$.

G is bipartite iff it has no cycles of odd length.

Graf G jest dwudzielny z klasami wierzcholkow U i W, jesli $V = U \cup W$ takimi, ze kazda krawedz jest formy uw dla pewnych $u \in U$ oraz $w \in W$.

G jest dwudzielny wtw kiedy nie ma cykli o nieparzystej dlugosci.

==

Let U, W be the vertex classes and $v_1, v_2, ..., v_n, v_1$ be a cycle in G. WLG suppose that $v_1 \in U$. Then $v_2 \in W$ etc. Specifically we have $v_i \in U$ if i is odd and $v_i \in W$ if i is even. Then, we have $v_n v_i$, so n must be even.

=

Suppose G has no cycles of odd length. WLOG, assume that $V(G) \neq \emptyset$ and that G is connected, because G will be bipartite if all its connected components are bipartite. Fix $v \in G$ and for all other $w \in G$ define distance dist(v, w) as the smallest $n \geq 0$ such that there exists a path v...w in G of length n.

Now, let $V_n := \{w \in G : dist(v, w) = n\}$ and set

$$U = V_0 \cup V_2 \cup V_4 \cup ...$$

$$W = V_1 \cup V_3 \cup V_5 \cup ...$$

We want to show that there are no edges in G of the form v'v'' where $v', v'' \in U$ or $v', v'' \in W$.

Suppose that $v'v'' \in E(G)$ with $v' \in V_m, v'' \in V_n$ and $m \le n$. Then, we have a path

$$v...v'v''\in \mathsf{G}$$

of length m + 1, implying that

$$n \in \{m, m + 1\}.$$

Supose that n = m. Let $v_0'v_1'...v_m'$ and $v_0''v_1''...v_m''$ be paths in G with $v = v_0' = v_0''$, $v' = v_m'$ and $v'' = v_m''$. Note that $v_i', v_i'' \in V_i$ for $0 \le i \le m$. Let $k \ge 0$ be largest such that

$$v'_k = v''_k$$

and note that k < m - 1 as $v' \neq v''$. Then

$$v'_k v'_{k+1} ... v'_m v''_m v''_{m-1} ... v''_k$$

is a cycle of odd length, which is a contradiction.

Therefore, we can only have n = m + 1 and then exactly one of n, m is even meaning that exactly one of v' and v'' is in U as required for G to be bipartite.

[=]

=>

Niech U, W beda klasami wierzcholkow oraz niech $v_1, v_2, ..., v_n, v_1$ niech bedzie cyklem w G. BSO zalozmy, ze $v_1 \in U$. W takim razie, $v_2 \in W$ etc. W szczegolnosci, mamy $v_i \in U$ jezeli i jest nieparzyste oraz $v_i \in W$ jezeli i jest parzyste. W takim razie, skoro $v_n v_1$, to n musi byc parzyste.

Zalozmy, ze G nie ma cykli o nieparzystej dlugosci. BSO zalozmy, ze V(G) $\neq \emptyset$ i ze G jest spojny, poniewaz G bedzie dwudzielny, wtw gdy wszystkie jego składowe spojne (????) beda dwudzielne. Ustalmy $v \in G$ i dla kazdego innego $w \in G$ zdefiniujmy dystans dist(v, w) jako najmniejsze $n \ge 0$ takie, ze istnieje sciezka v...w w G o dlugosci n.

Niech $V_n := \{w \in G : dist(v, w) = n\} i zbiory$

$$U = V_0 \cup V_2 \cup V_4 \cup ...$$
$$V = V_1 \cup V_3 \cup V_5 \cup ...$$

Chcemy pokazac, ze nie istnieja w G krawedzie postaci v'v'', gdzie $v',v'' \in U$ lub $v',v'' \in W$.

Zalozmy, ze $v'v'' \in E(G)$ z $v' \in V_m, v'' \in V_n$ oraz $m \le n$. Wtedy istnieje sciezka

$$v...v'v'' \in G$$

dlugosci m + 1, co implikuje, ze

$$n \in \{m, m + 1\}.$$

Zalozmy, ze n = m. Niech $v_0'v_1'...v_m'$ oraz $v_0''v_1''...v_m''$ sa sciezkami w G takimi, ze $v = v_0'v_0'', v' = v_m'$ oraz $v'' = v_m''$. Zauwazmy, ze $v_i', v_i'' \in V_i$ dla $0 \le i \le m$. Niech $k \ge 0$ bedzie najwiksze takie, ze

$$v'_k = v''_k$$

i zauwazmy, ze k \leq m – 1 poniewaz v' \neq v". Wtedy

$$v'_k v'_{k+1} ... v'_m v''_m v''_{m-1} ... v''_k$$

jest cyklem o nieparzystej dlugosci, co daje nam sprzecznosc.

W takim raize, mozemy miec tylko n = m + 1 i wtedy dokladnie jedno z n, m moze byc parzystem, co daje nam dokladnie jedno z v' i v" w U tak, jak jest wymagane zeby to byl graf dwudzielny.

If G is a bipartite graph with $V = W \cup M$ and $W' \subseteq W$, a Jesli G jest grafem dwudzielnym z $V = W \cup M$ oraz $W' \subseteq W$, partial matching in G from W' to M is

$$\{wv_w : w \in W'\} \subseteq E(G)$$

for some $v_w \in M$ such that $w \neq w' \implies v_w \neq v_{w'}$. A partial matching from W to M is called a matching.

Sufficient condition:

$$|N(A)| \geq |A|$$
 ($\stackrel{\square}{=}$)

for every $A \subseteq W$

wtedy czesciowe skojarzenie w G z W' do M to

$$\{wv_w : w \in W'\} \subseteq E(G)$$

dla pewnych $v_w \in M$ takich, ze $w \neq w' \implies v_w \neq v_{w'}$. Czesciowe kojarzenie z W do M jest nazywane kojarzeniem.

Wystarczajacy warunek:

$$|N(A)| \geq |A|$$
 ($\stackrel{\square}{\Longrightarrow}$)

dla kazdego $A \subseteq W$

A bipartite graf G contains a matching from W to M iff (G, W) satisfies Hall's condition (\(\subseteq\)).

Dwudzielny graf G zawiera kojarzeniem iff gdy (G, W) zadowala warunek Halla (#).

[🚟] [💳]

[💥]

Trivial.

Using induction on |W|. For |W| = 0, 1 it is trivial.

We gonna break it into parts: |N(A)| > |A| and |N(A)| = |A|

Suppose that |N(A)| > |A| for every non-empty subset $A \subseteq W$. Take any $w \in W$ and $v \in N(w)$ and construct a new graph

$$G_0 = G - \{w, v\}.$$

For any non-empty $B \subseteq W - \{w\}$ we have

$$N_{G_0}(B) = N_G(B) - \{v\}$$

and therefore

$$|N_{G_0}(B)| \ge |N_G(B)| - 1 \ge |B|$$

and so $(G_0, W - \{w\})$ satisfies Hall's condition. From induction we have a matching P in G_0 from W – $\{w\}$ to M – $\{v\}$ and so $P \cup \{wv\}$ is a matching from W to M.

Now, suppose that |N(A)| = |A| for some non-empty subset $A \subseteq W$. Let

$$G_1 = G[A \cup N(A)]$$

and

$$g_2 = G[(W - A) \cup (M - N(A))].$$

We will show that both those graphs satisfy Hall's condition.

Let us take any $B \subseteq A$ in G_1 . We have

$$N_{\mathsf{G}}(\mathsf{B})\subseteq N_{\mathsf{G}}(\mathsf{A})\subseteq \mathsf{V}(\mathsf{G}_1)$$

$$|\mathsf{N}_{\mathsf{G}_1}(\mathsf{B})| = |\mathsf{N}_{\mathsf{G}}(\mathsf{B})| \geq |\mathsf{B}|$$

and so graph G₁ satisfies Hall's condition.

Now, let us take any $B \subseteq W$ – A in G_2 . We know that $N_{G_2}(B) \subseteq M$ – N(A) so

$$N_{G_2}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \ge |N_G(A \cup B)| - |N_G(A)| \ge |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

Therefore, graph G₂ also satisfies Hall's condition.

Using inductive hypothesis, we have that there exists a matching P_1 in G_1 and a matching P_2 in G_2 . The first one is from A to $N_G(A)$ while the second is from W – A to M – $N_G(A)$, so they are disjoint. Therefore, $P_1 \cup P_2$ is a matching in G from W to M.

 \Rightarrow

Trywialne.

⇐=

Uzyjemy indukcji na |W|. Dla |W| = 0, 1 jest trywialne.

Podzielimy dowod na dwie czesci: |N(A)| > |A| oraz |N(A)| = |A|.

Zalozmy, że |N(A)| > |A| dla kazdego niepustego podzbioru $A \subsetneq W$. Wezmy dowolne $w \in W$ oraz $v \in N(w)$ i skonstruujmy nowy graf

$$G_0 = G - \{w, v\}.$$

Dla kazdego niepustego B \subseteq W – {w} mamy

$$N_{G_0}(B) = N_G(B) - \{v\}$$

i w takim razie

$$|N_{G_0}(B)| \ge |N_G(B)| - 1 \ge |B|,$$

czyli (G_0 , W – {w}) spelnia warunek Halla. Z zalozenia indukcyjnego istnieje kojarzenie P w G_0 z W – {w} do M – {v}, w takim razie P \cup {wv} jest kojarzeniem z W do M.

Zalozmy teraz, ze |N(A) = A| dla pewnego niepustego podzbioru $A \subseteq W$. Niech

$$G_1 = G[A \cup N(A)]$$

oraz

$$g_2 = G[(W - A) \cup (M - N(A))].$$

Pokazemy, ze oba te grafy zaspokajaja warunek Halla.

Wezmy dowolny $B \subseteq A \text{ w } G_1$. Mamy

$$N_{G}(B) \subseteq N_{G}(A) \subseteq V(G_{1})$$

$$|N_{\mathsf{G}_1}(\mathsf{B})| = |N_{\mathsf{G}}(\mathsf{B})| \geq |\mathsf{B}|$$

a wiec graf G₁ zaspokaja warunek Halla.

Teraz, wezmy dowolny $B \subseteq W$ – A w G_2 . Wiemy, ze $N_{G_2}(B) \subseteq M$ – N(A), a wiec

$$N_{G_7}(B) = N_G(B) - N_G(A) = N_G(A \cup B) - N_G(A)$$

$$|N_{G_2}(B)| = |N_G(A \cup B) - N_G(A)| \geq |N_G(A \cup B)| - |N_G(A)| \geq |A \cup B| - |A| = |A| + |B| - |A| = |B|$$

W takim razie G₂ spelnia warunek Halla.

Z zalozenia indukcyjnego wiemy, ze istnieje kojarzenie P_1 w G_1 oraz P_2 w G_2 . Pierwsze jest z A do $N_G(A)$, natomiast drugie jest z W – A do M – $N_G(A)$, czyli sa rozlaczne. W takim razie $P_1 \cup P_2$ jest kojarzeniem w G z W do M.

.....

Let G be a finite group and let $H \leq G$ be a subgroup with $\frac{|G|}{|H|}$ = k, then $g_1H \cup ... \cup g_kH$ = G = $Hg_1 \cup ... \cup Hg_k$

Niech G bedzie skonczona grupa i niech H \leq G bedzie podgrupa z $\stackrel{[G]}{|H|}$ = k, wtedy $g_1H \cup ... \cup g_kH$ = G = $Hg_1 \cup ... \cup Hg_k$ fdla pewnych $g_1,...,g_k \in$ G.

[💥]

I WILL GET TO IT SOMEDAY

for some $g_1, ..., g_k \in G$.

[-]

Oznaczmy

L =
$$\{a_1H, ..., a_kH\}$$

R = $\{Hb_1, ..., Hb_k\}$

jako zbiory odpowiednio lewych i prawych wrastw H w G. Niech K bedzie grafem dwudzielnym z klasami wierzcholkow L i R. Wprowadzmy na K relacje rownowaznosci

$$a_i H \sim Hb_i \iff a_i H \cap Hb_i \neq \emptyset \text{ w G.}$$

Dla dowolnego podzbioru A ⊂ L zachodzi

$$|\bigcup_{\mathsf{U}\in\mathsf{A}}\mathsf{U}|=|\mathsf{A}|\cdot|\mathsf{H}|$$

jako podzbiorow G. Chodzi o to, ze kazda warstwa ma moc |H|, a mamy ich |A| sztuk w zbiorze |A|. Wiec jak bedziemy je dodawac, to one sa rozlaczne, wiec smiga.

Dla kazdego $V \in R$ mamy |V| = |H| bo kazda warstwa ma te sama moc co H, a wiec $\bigcup_{U \in A} U$ tnie sie niepusto z co najmniej |A| elementami z R. Z tego wynika, ze

$$|N_K(A)| \ge |A|$$
,

wiec istnieje kojarzenie P w K z L do R. Wezmy wiec dowolny g_i w $a_iH \cap Hb_j \neq \emptyset$. Wtedy jest czescia krawedzi $(a_iH)(Hb_j)$ w P dla $1 \leq i \leq k$. Mamy wiec $a_iH = g_iH$ oraz $Hb_i = Hg_i$.

......

Hall's Missing Soulmate Theorem

Let G be a bipartite graph with vertex classes W and M, and let $d \geq 1$.

Then G contains a partial matching from W' to M for some W' \subseteq W with $|W'| \ge |W| - d$ iff $|N(A)| \ge |A| - d$ for every $A \subseteq W$.

Twierdzenie Halla o brakujacym mezu(????)

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i niech d $\geq 1. \label{eq:controller}$

Wtedy G zaiwera kojarzenie z W' do M dla pewnego W' \subseteq W z $|W'| \ge |W| - d$ iff $|N(A)| \ge |A| - d$ dla kazdego $A \subseteq W$.

I WILL GET TO IT SOMEDAY

[=]

=⇒

Trywialne:3

=

Zapoznajmy panie z d wyobrazonymi idealnymi dla kazdej pani kawalerami. Wtedy twierdzenie Halla jest spelnione, wiec mozemy ozenic kazda kobiete do odpowiedniego, prawdziwego czy wyobrazonego, meza. W prawdziwym zyciu, co najwyzej d kobiet jest niezameznych.

......

Hall's Polygamous Marriage Theorem

Let G be a bipartite graph with vertex classes W and M, and let $d \ge 1$.

Then G contains a subgraph H with $W \subseteq V(H)$ in which each $w \in W$ has degree d and each $v \in M \cap V(H)$ has degree 1 iff $|N(A)| \ge d|A|$ for every $A \subseteq W$

Twierdzenie Halla o polimalzenstwach

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i niech d $\geq 1. \label{eq:control}$

Wtedy G zaiwera podgraf H z W \subseteq V(H) w ktorym kazdy w \in W ma stopien d i kazdy v \in M \cap V(H) ma stopien 1 iff $|N(A)| \ge d|A|$ dla kazdego A \subseteq W.

I WILL GET TO IT SOMEDAY

=⇒

Trywialne:3

=

Sklonujmy kazda kobiete d – 1 razy. Wtedy warunek Halla jest zaspokojony, wiec mozemy kazda z nich ozenic (klony i oryginaly) do odpowiednich mezow. Teraz scisnijmy klony z oryginalami do jednej osoby. Koniec!

1.3 Menger's Theorem

Cut vertex v is a vertex in a connected graph G such that G – {v} is not connected.

Graph G is a k-connected graph if for any $A \subseteq V(G)$, |A| < k, G - A is connected.

Complete graph has all vertices connected by an edge, that is for all $v, w \in G$ $v \neq w$ we have $vw \in G$.

Tnacy wierzcholek v jest wierzcholkiem w spojnym grafie G takim, ze G – {v} jest niespojny.

Graf G jest k-spojnym grafem, jezeli dla kazdego A \subseteq V(G), |A| < k, G – A jest spojny.

Graf pelny ma wszystkie wierzcholki polaczone krawedzia, to znaczy dla kazdego v, $w \in G$, $v \neq w$ mamy $vw \in G$.

(A, B)-path is a path in G for some A, B \subseteq V of the form a...b for some $a \in A$ and $b \in B$.

(A, B)-cut in G is C \subseteq V such that G – C contains no (A – C, B – C)-paths.

If we take vertices $a, v \in V$ we call an ($\{a\}, \{b\}$)-path an (a, b)-path. Given a collection of (a, b)-paths

$$P^{(1)},...,P^{(k)}$$

we say such a collection is independent if $P^{(i)} - \{a, b\}$ and $P^{(i)} - \{a, b\}$ have no common vertices for $i \neq j$.

Given A, B, C \subseteq V(G) and if A \subseteq C or B \subseteq C, then C is an (A, B)-cut and if C is an (A, B)-cut then A \cap B \subseteq C.

Let G be a graph, A, B \subseteq V(G) and k \ge 0. Suppose that for every (A, B)-cut C in G we have |C| > k.

Then G contains a collection of k vertex-disjoint (A, B)-paths.

(A, B)-sciezka to sciezka w G dla pewnych A, B \subseteq V postaci a...b dla jakis $a \in A$ i $b \in B$.

(A, B)-ciecie w G to C \subseteq V takie, ze G – C nie zawiera zadnych (A – C, B – C)-sciezek.

Jesli wezmiemy wierzcholki a, $v \in V$, to ({a}, {b})-sciezke nazywamy (a, b)-sciezka. Jesli dana jest kolekcja (a, b)-sciezek

$$P^{(1)},...,P^{(k)}$$

mowimy, ze ta kolekcja jest niezalezna, jezeli $P^{(i)}$ – {a, b} i $P^{(j)}$ – {a, b} nie maja wspolnych wierzcholkow dla i \neq j.

Dla danych A, B, C \subseteq V(G), jezeli A \subseteq C albo B \subseteq C, to C jest (A, B)-cieciem i jesli C jest (A, B)-cieciem, to A \cap B \subseteq C.

Niech G bedzie grafem, A, B \subseteq V(G) i k \geq 0. Zalozmy, ze dla kazdego (A, B)-ciecia C w G jest |C| \geq k.

Wtedy G zawiera zbior k rozlacznych wierzcholkami (A, B)-sciezek.

[🚟] [🚾]

WILL GET TO IT SOMEDAY

Uzyjemy indukcji na e(G) [definicja dla debila].

Jako przypadek bazowy mamy e(G) = 0, wtedy A \cap B jest (A, B)-cieciem i w takim razie k \leq |A \cap B|, ale kazdy wierzcholek A \cap B jest (A, B)-sciezka dlugosci 0 i wszystkie z nich sa rozlaczne, tak jak wymagamy.

Zalozmy, ze $e(G) \ge 1$, wybiezmy krawedz $e \in E(G)$ i niech $H = G - \{e\}$.

Jesli dla kazde (A, B)-ciecie w H ma stopien co najmniej k, to przez hipoteze indukcyjna sa one k wierzcholkowo rozlacznymi (A, B)-sciezkami w H i w takim razie w G, wiec koniec.

Zalozmy teraz, bez starty ogolnosci, ze w H istnieje co najmniej jedno (A, B)-ciecie C takie, ze |C| < k. W takim razie C nie jest (A, B)-cieciem w G, wiec G – C zawiera co najmniej jedna (A, B)-sciezke postaci

dla pewnych $a \in A$, $b \in B$, gdzie $v, w \in G$ sa koncami e. Co wiecej, kazda (A, B)-sciezka $w \in G$ zawiera wierzcholek v, co implikuje ze

$$C' = C \cup \{v\}$$

jest (A, B)-cieciem w G. Co wiecej, $|C'| = |C| + 1 \ge k$. Poniewaz a...vw...b bylo jedyna sciezka ktora blokowala C przed zostaniem (A, B)-cieciem w G, ale juz |C'| nim jest, to |C| = k - 1 i mozemy przyjac, ze

$$C = \{c_1, ..., c_{k-1}.$$

Teraz, poniewaz $v \in C'$, to kazde (A, C')-ciecie D w H jest takze (A, C')-cieciem w G. Poniewaz kazda (A, B)-sciezka w G zawiera wierzcholek C', to D jest takze (A, B)-cieciem w G i dlatego $|D| \ge k$. Korzystajac wiec z hipotezy indukcyjnej, wiemy, ze istnieja rozlaczne wierzcholkami (A, C')-sciezki

$$P^{(1)}, \dots, P^{(k-1)}, P^{(k)}$$

w H konczace sie odpowiednio w $c_1, ..., c_{k-1}, v$. Niech $C'' = C \cup \{w\}$. Wtedy analogicznie, mamy takie (C'', B)-sciezki

$$Q^{(1)},...,Q^{(k-1)},Q^{(k)}$$

w H zaczynajace sie od odpowiednio wierzcholkow $c_1,...,c_{k-1},v$. Co wiecej, poniewaz C' jest (A, B)-cieciem w G, to $P^{(i)}$ oraz $Q^{(j)}$ nie moga miec wspolnego wierzcholka u poza przypadkiem i = j \leq k - 1 i u = c_i . To sugeruje, ze

$$P^{(1)}Q^{(1)},...,P^{(k-1)}Q^{(k-1)},P^{(k)}eQ^{(k)}$$

sa k rozlacznymi wzgledem wierzcholkow (A, B)-sciezkami w G. Koniec.

Hall's Marriage Theorem may be deduced from this lemma: Let G be a bipartite graph with vertex classes W and M and suppose that (G, W) satisfies Hall's condition. Let C be a

 $N(W - C) \subset M \cap C$

and therefore

(W, M)-cut in G. Then

 $|C| = |W \cap c| + |M \cap C| \ge$ $|W \cap C| + |N(W - C)| \ge$ $|W \cap C| + |W - C| = |W|$

thus |W| contains vertex-disjoint (W, M)-paths, each of length 1 implying that such a collection of paths is a matching.

Twierdzenie Halla o malzenstwach moze byc wyprowadzone z tego lematu:

Niech G bedzie grafem dwudzielnym z klasami wierzcholkow W i M i zalozmy, ze (G, W) zadowala warunek Halla. Niech C bedzie (W, M)-cieciem w G. Wtedy

$$N(W - C) \subseteq M \cap C$$

i z tego

$$|C| = |W \cap C| + |M \cap C| \ge$$

 $|W \cap C| + |N(W - C)| \ge$
 $|W \cap C| + |W - C| = |W|$

a wiec |W| zawiera rozlaczne wzgledem wierzcholkow (W, M)-sciezki, kazda o dlugosci 1, implikujac ze taki zbior sciezek jest kojarzeniem.

Menger's Theorem

Let G be an incomplete graph and let $k \geq 0$. Then G is k-connected iff for every $a,b \in G$ with $a \neq b$, there exists a collection of k independent (a,b)-paths in G.

Twierdzenie Mengera

Niech G bedze niepelnym grafem i niech $k \ge 0$. Wtedy G jest k-spojne iff dla kazdego a, $b \in G$ z a $\ne b$ istnieje zbior k niezaleznych (a, b)-sciezek w G.

I WILL GET TO IT SOMEDAY

=⇒

Niech $C \subseteq V(G)$ i zalozmy, ze G - C jest niespojny. Wybierzmy dowolne a, $b \in G - C$ nalezace do roznych skladowych spojnosci G – C. Na mocy tego zalozenia, G zawiera k niezaleznych (a, b)-sciezek. Kazda z tych sciezek musi miec wierzcholek w C, ale zadne dwie sciezki nie maja wspolnego wierzcholka poza a i b. Z tego wynika, ze $|C| \ge k$, tak jak wymagamy.

Bedziemy robic indukcje po k.

Przypadek bazowy dla k = 0 jest trywialny.

Niech wiec k > 1 i niech a, $b \in G$ beda rozne.

Zalozmy najpierw, ze a \checkmark b. Niech A = N(a) oraz B = N(b). Grafy G - A i G - B sa niespojne, bo nie maja ani jednej sciezki a...b. Daje to $|A| \ge k$ oraz $|B| \ge k$. Jezeli C jest (A, B)-cieciem w G, to G – C rowniez nie ma sciezem miedzy elementami A – C oraz B – C. Dlatego, albo A \subset C albo B \subset C, albo G – C jest niespojne. W kazdym razie, mamy |C| > k wiec z lematu wyzej, G ma k rozlacznych wzgledem wierzcholkow (A, B)-sciezek:

$$a_1...b_1, ..., a_k...b_k$$

Wtedy,

$$aa_1...b_1b, ..., aa_k...b_kb$$

sa k niezaleznymi sciezkami (a, b) tak jak wymagamy.

Zalozmy teraz, ze a \sim b i niech H = G - {ab}. Pokazemy najpiew, ze H jest (k - 1)-spojne.

Zalozmy, ze tak nie jest. Niech $C \subseteq V(H)$ bedzie takim podzbiorem, ze |C| < k - 1 i niech H - C bedzie niespojne. Poniewaz G jest k-spojne, to G - C jest spojne i nie ma wierzcholkow tnacych (cut vertices), co implikuje ze H - C dokladnie dwie skladowe spojne, kazda zawierajaca jeden z wierzcholkow a lub b. Ale wtedy $|G| = |H| = 2 + |C| \le k$, wiec G jest grafem k-spojnym z $|G| \le k$, co daje sprzecznosc z tym, ze G nie jest pelne.

W takim raize, H musi byc (k – 1)-spojne. Z hipotezy indukcyjnej zawiera wiec k – 1 niezaleznych (a, b)-sciezem. Razem z krawedzie ab te sciezki tworza zbior k niezaleznych (a, b) sciezek w G, co konczy dowod.

1.4 Menger's Theorem (so edgy)

Graph G is k-edge-connected for $k \ge 0$ if for every $F \subseteq E(G)$, Graf G jest k-spojny krawedziowo dla $k \ge 0$ jesli dla |F| < k, G - F is connected.

Line graph of graph G $[L_G]$ is a graph with $V(L_G) = E(G)$ and for $e, f \in L_G$ with $e \neq f$ we have

 $e \sim f$ in $L_G \iff e, f$ common endpoint in G

kazdego $F \subseteq E(G)$, |F| < k, G - F jest spojny.

Graf krawedziowy grafu G [L_G] jest grafem z $V(L_G) = E(G) i$ dla e, $f \in L_G$ z e $\neq f$ mamy

 $e \sim f w L_G \iff e, f wspolny koniec w G$

Menger's Theorem edge version

Let G be a graph and let $k \ge 0$.

Then G is k-edge-connected iff for every a, $b \in G$ with a $\neq b$, there exists a collection of k edge-disjoint (a, b)-paths in G.

Twierdzenie Megera wersja krawedzie

Niech G bedzie grafem i niech $k \ge 0$.

Wtedy G jest k-spojny krawedziowo z a ≠ b, wtedy istnieje zbior k rozlacznych krawedziami (a, b)-krawedzi w G.

[🚟] [💳]

SOMEBONY ONCE TOLD ME THE WORLD IS GONNA ROLL ME

Niech L_G bedzie grafem krawedziowym grafu G. Wezmy a, b \in G takie, ze a \neq b. Niech

$$A = \{av \in E(G) : v \in N_G(a)\}$$

i niech

$$B=\{bv\in E(G)\ :\ v\in N_G(b)\}.$$

Oznaczmy przez C (A, B)-ciecie w L_G, wiec

$$C \subseteq E(G)$$
.

Wtedy nie istnieje (a, b)-sciezka w G – C, co implikuje, ze $|C| \ge k$. W takim razie, na mocy lematu z poprzedniego podrozdzialu, istnieje k rozlaczna wzgledem wierzcholkow (A, B)-sciezka w L_G i z tego powodu jest k rozlaczna wzgledem krawedzi (a, b)-sciezka w G.

Mozemy wyprowadzic te implikacje z twierdzenia "max-flow min-cut" przez zamienianie kazdej krawedzi vw przez pare skierowanych krawedzi v o w i w o v. Ale my nie znamy tego twierdzenia, wiec nie chce mi sie pisac dalej :v

=

Niech $f \subseteq E(G)$ i zalozmy, ze G - F jest niespojny. Wybierzmy $a, b \in G - F$ nalezacy do roznych skladowych spojnosci G - F. Zgodnie z zalozeniem, G zawiera k rozlaczne wzgledem krawedzi G0, sciezki i kazda z tych sciezek musi miec krawedzie w G1, G2 tego tez powodu G3 tak jak chcielismy.

How large can we make some parameter of G before it is forced to have a certain property?

2.1 Complete subgraphs

Complete graph of order $r[K_r]$ is a graph with $V(K_r) = [r]$ and $E(K_r) = \{ij : 1 \le i < j \le r\}$.

K₃ is called a triangle.

r-partite graph G with vertex classes $V_1,...,V_r$ has every edge of form vw where $v \in V_i$ and $w \in V_j$ and $i \neq j$. Such a graph is called complete r-partite if for every i, j, i \neq j we have $v \in V_i$, $w \in V_j$ \Longrightarrow $vw \in E(G)$.

A complete bipartite graph with vertex classes of orders $|V_1| = m$ and $|V_2| = n$ is denoted $K_{m,n}$

Graf pelny stopnia r [K_r] to graf z V(K_r) = [r] i E(K_r) = {ij : $1 \le i \le j \le r$ }.

K₃ jest nazywany trojkatem?

r-dzielny graf G z klasami wierzcholkow $V_1,...,V_r$ ma kazdy wierzcholek postaci vw, gdzie $v \in V_i$ i $w \in V_j$ dla i $\neq j$. Taki graf jest dodatkowo nazywany pelnym grafem r-dzielnym, jezeli dla kazdego i, j, i $\neq j$ jest $v \in V_i$, $w \in V_j \implies vw \in E(G)$.

Pelny graf dwudzielny z klasami wierzchoklow o mocy $|V_1| = m$ i $|V_2| = n$ jest oznaczany jako $K_{m,n}$.

We now want to check how big must e(G) be in order to force K_r to be G subgraph.

- \hookrightarrow given $r \ge 2$ we can see that for G to be K_r -free we need G to be (r-1)-partite
- \hookrightarrow given $n \ge r 1$ out of all (r 1)-partite graphs with n vertices the one with most edges is a complete (r 1)-partite graph
- \hookrightarrow if G is a complete (r 1)-partite graph with vertex classes

 $V_1, ..., V_{r-4},$

if $|V_i| \ge |V_j| + 2$ for some $i \ne j$, then we may choose $v \in V_j$ and consider a new graph obtained by removing edges vv_i for $v_i \in V_i$ and adding vv_j for every $v_j \in V_j - \{v\}$. This new graph is (r - 1)-partite and |G'| = |G| and

$$e(G') = e(G) - |V_i| + |V_i| - 1 > e(G)$$

 \hookrightarrow so the (r – 1) partite graph with n vertices and the most edges will have vertes classes "as equal in size as possible"

Teraz chcemy sprawdzic jak duze musi byc e(G), zeby zmusic K_Γ do bycia podgrafem G

- \hookrightarrow majac dane $r \ge 2$ mozemy zauwazyc, ze aby G bylo K_r -wolne, musi byc (r 1)-dzielne
- \hookrightarrow majac dane n \ge r 1 i wszystkie (r 1)-dzielne grafy z n wierzcholkammi ten, ktory ma najwiecej krawedzi jest pelnym (r 1)-dzielnym grafem

 $V_1, ..., V_{r-1},$

to jesli $|V_i| \geq |V_j| + 2$ dla pewnych i $\neq j$, wtedy mozemy wybrac $v \in V_j$ i rozwazyc nowy graf otrzymany poprzez usuniecie krawedzi vv_i dla $v_i \in V_i$ oraz dodanie vv_j dla kazdego $v_j \in V_j - \{v\}$. Taki nowy graf jest (r – 1)-dzielny i |G'| = |G| oraz

$$e(G') = e(G) - |V_i| + |V_i| - 1 > e(G)$$

→ wiec (r – 1)-dzielny graf z n wierzchoklami i najwieksza liczba krawedzi bedzie mial klasy wierzcholkow tak bliskie rozmiarem jak mozliwe

Turán graph $T_r(n)$ for $n \geq r \geq 1$ is a complete r-partite graph of order n with all vertex classes of size $\lfloor \frac{n}{r} \rfloor$ or $\lceil \frac{n}{r} \rceil$. We denote $e(T_r(n))$ as $t_r(n)$.

Graf Turána $T_r(n)$ dla $n \geq r \geq 1$ to pelny r-dzielny graf stopnia n ze wszystkimi klasami wierzcholkow roozmiaru $\lfloor \frac{n}{r} \rfloor$ lub $\lceil \frac{n}{r} \rceil$. Oznaczamy $e(T_r(n))$ jako $t_r(n)$.

Some observations:

 \hookrightarrow If $T_r(n)\simeq G$ – {e} for some $e\in E(G),$ then G is not $K_{r+1}\text{-}\mathsf{free}.$

 \hookrightarrow If r divides n, then we have

$$\delta(\mathsf{T}_r(\mathsf{n})) = \mathsf{d}(\mathsf{T}_r(\mathsf{n})) = \Delta(\mathsf{T}_r(\mathsf{n})) = \mathsf{n} - \frac{\mathsf{n}}{\mathsf{r}},$$

otherwise vertices in large classes have minimal degree, $\delta(T_r(n)) = n - \lceil \frac{n}{r} \rceil$, and vertices in small classes have maximal degree, $\Delta(T_r(n)) = n - \lfloor \frac{n}{r} \rfloor$. This implies that always

$$\delta(T_r(n)) = |d(T_r(n))|$$

$$\Delta(\mathsf{T}_r(\mathsf{n})) = \lceil \mathsf{d}(\mathsf{T}_r(\mathsf{n})) \rceil$$

 $\hookrightarrow T_r(n-1) \simeq T_r(n) - \{v\} \text{ where } v \in T_r(n) \text{ is a vertex of minimal degree (any if } r|n \text{ or one of the vertices in large classes)}.$

$$\hookrightarrow$$
 t_r(n - 1) = t_r(n) - δ (T_r(n))

 \hookrightarrow Let us say that we want to create a K_{r+1} -free graph G by adding a vertex v to $T_r(n-1)$ and m edges with m being as large as posiible. We know that v cannot be adjavent to a vertex in every class so we have

$$m=d_G(v)\leq n-1-\lfloor\frac{n-1}{r}\rfloor=n-\lceil\frac{n}{r}\rceil,$$

with equality iff G is complete r-partite (obtained by adding v anywhere if r|(n-1) or to one of the small classes.)

Kilka obserwacji:

 \hookrightarrow Jesli $T_r(n) \simeq G$ – {e} dla pewnego e]inE(G), wtedy G nie jest K_{r+1} -free????.

$$\delta(\mathsf{T}_r(\mathsf{n})) = \mathsf{d}(\mathsf{T}_r(\mathsf{n})) = \Delta(\mathsf{T}_r(\mathsf{n})) = \mathsf{n} - \frac{\mathsf{n}}{\mathsf{r}},$$

w przeciwnym wypadku wierzcholki w duzych klasach maja najmniejszy stopien, $\delta(T_r(n)) = n - \lceil \frac{n}{r} \rceil$, i wierzcholki w malych klasach maja najwiekszy stopien, $\Delta(T_r(n)) = n - \lfloor \frac{n}{r} \rfloor$. To implikuje, ze zawsze

$$\delta(T_r(n)) = |d(T_r(n))|$$

$$\Delta(T_r(n)) = \lceil d(T_r(n)) \rceil$$

 \hookrightarrow $T_r(n-1) \simeq T_r(n) - \{v\}$ gdzie $v \in T_r(n)$ jest wierzcholkiem najmniejszego stopnia (kazdy jesli r|n, wpp jeden z wierzcholkow w duzych klasach).

$$\hookrightarrow$$
 t_r(n - 1) = t_r(n) - δ (T_r(n))

 \hookrightarrow Powiedzmy, ze chcemy stworzyc K_{r+1} -free graf G poprzez dodanie wierzcholka v do $T_r(n-1)$ i m krawedzi, gdzie m jest najwieksze mozliwe. Wiemy, ze v nie moze byc obok wierzcholkow w kazdej klasie, wiec

$$m=d_G(v)\leq n-1-\lfloor\frac{n-1}{r}\rfloor=n-\lceil\frac{n}{r}\rceil,$$

z rownoscia iff G jest pelnym grafem r-dzielnym (otrzymanym przez dodanie v gdziekolwiek jesli r|(n-1)| lub do jednej z malych klas).

Turán's Theorem

Let $n \ge r \ge 1$ and let G be a K_{r+1} -free graph with |G| = n and $e(G) \ge t_r(n)$. Then $G \simeq T_r(n)$.

Twierdzenie Turána

Niech $n \ge r \ge 1$ i niech G bedzie K_{r+1} -wolnym grafem z |G|=n i $e(G) \ge t_r(n)$. Wtedy $G \simeq T_r(n)$.

[🗯] [💳]

[💥]

Maybe later, dunno

Uzyjemy indukcji na n.

Jesli n = r, to $T_r(n) \simeq K_r$ i mamy

$$\binom{n}{2}$$
 = $t_r(n) \le e(G) \le \binom{n}{2}$

i z tego $T_r(n) \simeq G$.

Niech teraz n > r. Wybierzmy podzbior $E' \subseteq E(G)$ taki, ze $|E'| = e(G) - t_r(n)$ i niech H = G - E', czyli $e(H) = t_r(n)$. Wtedy mamy

$$d(H) = \frac{2e(H)}{n} = \frac{2t_r(n)}{n} = d(T_r(n)).$$

Wtedy

$$\delta(H) \leq |d(H)| = |d(T_r(n))| = \delta(T_r(n))$$

gdzie ostatnia rownosc wynika z obserwacji.

Wybierzmy teraz $v \in H$ taki, ze $d(v) = \delta(H)$ i niech

$$K = H - \{v\}.$$

Wtedy K jest K_{r+1} -wolne. |K| = n - 1 i

$$e(K) = e(H) - d_H(v) = t_r(n) - \delta(H) \ge t_r(n) - \delta(T_r(n)) = t_r(n-1),$$

qdzie ostatnia rownosc wynika z obserwacji. W takim razie, poprzez hipoteze indukcyjna, wiemy, ze

$$K \simeq T_r(n-1)$$
.

W szczegolnosci, z tego wynika, ze

$$e(K) = t_r(n - 1)$$

i w takim razie

$$d_H(v) = \delta(T_r(n))$$

wiec z kolejnej obserwacji mamy, ze $H \simeq T_r(n)$.

W koncu, poniewaz V(H) = V(G) oraz E(H) = E(G) - E' \subseteq E(G) i G jest K_{r+1} -wolne, to z obserwacji mamy |E'| = 0 i

$$G \simeq H \simeq T_r(n)$$
.

2.2 Complete bipartite subgraphs

Jensen's Inequality: a < b $\in \mathbb{R}$ and f : [a, b] $\to \mathbb{R}$ is convex. Then

$$\frac{1}{n}\sum_{i=1}^n f(x_1) \geq f(\frac{1}{n}\sum_{i=1}^n x_i)$$

 $\text{ for all } x_1,...,x_n \in [a,b].$

A particular case of Jensen's Inequality is

$$b_t(x) = \begin{cases} \binom{x}{t} = \frac{1}{t!}x(x-1)...(x-t+1) & x \ge t-1 \\ 0 & \end{cases}$$

Nierówność Jensena: a < b $\in \mathbb{R}$ i f : [a, b] $\rightarrow \mathbb{R}$ jest wypukła. Wtedy

$$\frac{1}{n}\sum_{i=1}^n f(x_1) \geq f(\frac{1}{n}\sum_{i=1}^n x_i)$$

dla wszystkich $x_1,...,x_n \in [a,b]$.

Specjalnym przypadkiem nierówności Jensena jest

$$b_t(x) = \begin{cases} \binom{x}{t} = \frac{1}{t!}x(x-1)...(x-t+1) & x \ge t-1 \\ 0 & \end{cases}$$

t-fan is a graph H such that H \simeq K_{1,t}. For any t \geq 2, there exists a function f = f_t: $\mathbb{N} \to (0,\infty)$ with f(n) = O(n^{2- $\frac{1}{t}$}), such that if G is a K_{t,t}-free graph with |G| = n then e(G) \leq f(n).

t-wachlarzem jest graf H taki, ze H \simeq K_{1,t}. Dla dowolnego t \geq 2 istnieje funkcja f = f_t : $\mathbb{N} \to (0,\infty)$ z f(n) = O(n^{2- $\frac{1}{t}$}), taka, ze jesli G jest K_{t,t}-wolnym grafem z |G| = n, to e(G) < f(n).

[🚟] [💳]

[💥]

DUNNO

Niech G bedzie $K_{t,t}$ -wolnym grafem z $|G| = n \ge 1$ i niech e(G) = m. Niech k bedzie iloscia t-wachlarzy w G.

 $\text{Każdy wierzchołek } v \in G \text{ jest wierzchołkiem stopnia } t \text{ dla dokładnie } \binom{d(v)}{t} = b_t(d(v)) \text{ t-grafów } w \text{ G, implikując, że } t \text{ dla dokładnie } \binom{d(v)}{t} = b_t(d(v)) \text{ t-grafów } w \text{ G, implikując, że } t \text{ dla dokładnie } t \text{ dla do$

$$k = \sum_{v \in G} b_t(d(v)) \geq n \cdot b_t(\frac{1}{n} \sum_{v \in G} d(v)) = n \cdot b_t\Big(\frac{2m}{n}\Big),$$

gdzie środkowa nierówność wynika z nierówności Jensena, a następująca po niej równość - z handshaking lemma. Z drugiej strony, ponieważ G jest $K_{t,t}$ -wolnym grafem, dowolny zbiór t wierzchołków w G jest wierzchołkiem stopnia 1 w co najwyżej (t – 1) t-wachlarzach w G. To implikuje, że

$$k \leq \binom{n}{t}(t-1) \leq \frac{n^t}{t!}t.$$

Ponieważ tn = $O(n^{2-\frac{1}{t}})$, to bez straty ogólności możemy założyć, że m \geq tn i z tego dostajemy

$$\frac{2m}{n} \geq \frac{m}{n} + y \geq t.$$

Z nierówności Jensena dostajemy

$$k \geq n \binom{\frac{2m}{n}}{t} \geq \frac{n \binom{2m}{n} - t + 1}{t!}^t > \frac{n}{t!} \binom{m}{n}^t = \frac{m^t}{n^{t-1}t!}.$$

To w połączeniu z przykładem 2.4. ze skryptu, którego nie chce mi się przepisywać, daje $m^t \le n^{2t-1}t$, czyli

$$m \leq \sqrt[t]{t} n^{2-\frac{1}{t}}$$
.

Czyli funkcja

$$f_t(n) = \max(tn, \sqrt[t]{t}n^{2-\frac{1}{t}})$$

spełnia warunki twierdzenia.

Theorem above is similar to the Zarankiewicz problem, which, given $n \geq t \geq 2$, asks about the smallest number $z_t(n)$ such that any $K_{t,t}\text{-free}$ graph G with n vertices in each class has $e(G) \leq z_t(n)$. We call $z_t(n)$ Zarankiewicz numbers and the theorem above implies that

$$z_t(n) \le f_t(2n) = O(n^{2-\frac{1}{t}})$$

Twierdzenie powyżej jest podobne do problemu Zarankiewicza, który, mając dane $n \geq t \geq 2$, pyta o najmniejszą liczbę $z_t(n)$ taką, że dowolny $K_{t,t}$ -wolny graf G z n wierzchołkami w każdej klasie ma e(G) $\leq z_t(n)$. Liczby $z_t(n)$ nazywamy liczbami liczbami Zarankiewicza i twierdzenie wyżej implikuje, że

$$z_t(n) \le f_t(2n) = O(n^{2-\frac{1}{t}})$$

2.3 Arbitrary subgraphs

Forbidden subgraph problem: given a graph H, how many edges can a H-free graph of order n have?

$$ex(n; H) = max\{e(G) : G - H-free graph with |G| = n\}.$$

From previous theorems we know that:

$$\label{eq:condition} \begin{split} &\hookrightarrow \mathsf{ex}(\mathsf{n};\mathsf{K}_{\mathsf{r}+1}) = \mathsf{t_r}(\mathsf{n}) \text{ and } \mathsf{ex}(\mathsf{n};\mathsf{K}_{\mathsf{r}+1}) \sim \frac{\mathsf{n}^2}{2}(1-\frac{1}{\mathsf{r}}) \\ &\hookrightarrow \mathsf{ex}(\mathsf{n};\mathsf{K}_{\mathsf{t},\mathsf{t}}) = \mathsf{O}(\mathsf{n}^{2-\frac{1}{\mathsf{t}}}) \end{split}$$

Let us write

$$e(H) = \lim_{n \to \infty} \frac{ex(n; H)}{\binom{n}{2}}$$

and proof that for $n \ge 2$ the sequence

$$\left(\frac{ex(n;H)}{\binom{n}{2}}\right)_{n=2}^{\infty}$$

converges.

[🗯] [💳]

DUNNO

[💳]

Problem zakazanego podgrafu: mając dany graph H, ile krawędzi może mieć H-wolny graf rzędu n?

$$ex(n; H) = max\{e(G) : G - H-wolny graf z |G| = n\}.$$

Z poprzednich twierdzeń wiemy, że:

$$\hookrightarrow \text{ex}(n; K_{r+1}) = t_r(n) \text{ oraz ex}(n; K_{r+1}) \sim \frac{n^2}{2} (1 - \frac{1}{r})$$

$$\hookrightarrow \text{ex}(n; K_{t+1}) = O(n^{2 - \frac{1}{t}})$$

Oznaczmy

$$e(H) = \lim_{n \to \infty} \frac{ex(n; H)}{\binom{n}{2}}$$

i udowodnijmy, że dla n \geq 4, ciąg

$$\left(\frac{\text{ex}(n;H)}{\binom{n}{2}}\right)_{n=2}^{\infty}$$

jest zbieżny.

Ciąg $(x_n)_{n=2}^{\infty}$ jest ograniczony od dołu przez 0, więc wystarczy pokazać, że nie jest to ciąg rosnący. Niech $n \geq 3$ i niech G będzie H-wolnym grafem z |G| = n oraz e(G) = ex(n; H). Wtedy dla dowolnego $v \in G$ graf $G - \{v\}$ jest H-wolny i ma rząd n - 1, implikując, że

$$e(G - \{v\}) \le ex(n - 1, H).$$

Z drugiej strony, dowolna krawędź uw \in E(G) jest używa t dokładnie n – 2 grafach G – {v} dla v \in G (w tych, gdzie v \notin {u, w}). To z kolei implikuje, że

$$(n-2)e(G) = \sum_{v \in G} e(G - \{v\})$$

i z tego mamy

$$x_n = \frac{ex(n;H)}{\binom{n}{2}} = \frac{2e(G)}{n(n-1)} = \sum_{v \in G} \frac{2e(G-\{v\})}{n(n-1)(n-2)} \leq \frac{2ex(n-1;H)}{(n-1)(n-2)}$$

Chromatic number of a graph H [χ (H)] is the smallest integer $r \ge 1$ such that H is r – partite.

Erdös-Stone Theorem

Let k,r be integers with k - 1 \geq r \geq 1 and let ε > 0. Then there exists an integer N such that for all n \geq N, if G is a graph with |G| = n and e(G) \geq (1 - $\frac{1}{r}$ + ε)($\frac{n}{2}$), then $T_{r+1}(k) \leq$ G.

No proof for your stupid arse.

Let H be a graph with $e(H) \ge 1$. Then $ex(H) = 1 - \frac{1}{v(H)-1}$

Liczba chromatyczna grafu H [χ (H)] to najmniejsza liczba całkowita r \geq 1 taka, że H jest r-dzielny.

Twierdzenie Erdösa-Stone'a

Niech k, R będą liczbami całkowitymi z k – $1 \geq r \geq 1$ i niech $\varepsilon > 0$. Wtedy istnieje liczba całkowita N taka, że dla każdego N \geq N, jeżeli G jest grafem z |G| = n i e(G) $\geq (1-\frac{1}{r}+\varepsilon)\binom{n}{2}$, wtedy $T_{r+1}(k) \leq G$.

Nie ma dowodu dla twojej głupiej dupy.

Niech H będzie grafem z e(H) ≥ 1 . Wtedy ex(H) = $1 - \frac{1}{\chi(H) - 1}$.

[💥]

DUNNO

 $[\blacksquare]$

Niech $r\chi(H)$ – 1, wybierzmy k takie, że $H \leq T_{r+1}(k)$ (na przykład możemy wziąć k = (r+1)|H|) i niech ε > 0. Oznaczmy przez N liczbę całkowitą z twierdzenia Erdösa-Stone'a. Wtedy dla dowolnego $n \geq N$ i dowolnego H-wolnego grafu G z |G| = n0 wiemy, że n2 jest również n3 rego powodu

$$e(G) < (1 - \frac{1}{r} + \varepsilon) \binom{n}{2}.$$

Z tego wiemy, że ex(n; H) < $(1 - \frac{1}{r} + \varepsilon)\binom{n}{2}$ dla wszystkich N \geq N, a więc

$$ex(H) \le 1 - \frac{1}{r} + \varepsilon$$
.

Ale ponieważ ε > 0 był z dowolnie mały, to mamy

$$ex(H) \le 1 - \frac{1}{r}.$$

Z drugiej strony dla dowolnego $n \ge r$ graf $T_r(n)$ jest H-wolny, bo H nie jest r-dzielny i mamy $t_r(n) \sim (1-\frac{1}{r})\binom{n}{2}$, implikując że $ex(H) \ge 1-\frac{1}{r}$.

Upper density [ud(G)] of an infinite graph G is defined as:

$$ud(G) = lim \sup_{n \to \infty} 1 \max \Big\{ \frac{e(H)}{\binom{n}{2}} \ : \ H \le G, \ |H| = n \Big\}$$

In an infinite graph G we have either ud(G) = 1 or ud(G) = $1 - \frac{1}{r}$ for some $r \ge 1$.

Górna gęstość [ud(G)] nieskończonego grafu G jest zdefiniowana jako:

$$ud(G) = \lim \sup_{n \to \infty} 1 \max \left\{ \frac{e(H)}{\binom{n}{2}} \ : \ H \le G, \ |H| = n \right\}$$

Dla nieskończonego grafu G następuje albo ud(G) = 1 albo ud(G) = $1 - \frac{1}{r}$ dla pewnego $r \ge 1$.

DUNNO

[-1]

Niech x_n będzie ciągiem takim, że

$$x_n = \max \Big\{ \frac{e(H)}{\binom{n}{2}} \ : \ H \le G, |H| = n \Big\}.$$

Wystarczy pokazać, że dla każdego r \geq 1, jeśli ud(G) > 1 – $\frac{1}{r}$, wtedy tak naprawdę ud(G) \geq 1 – $\frac{1}{r+1}$.

Załóżmy, że ud(G) > 1 – $\frac{1}{r}$ i wybierzmy ε > 0 taki, że

$$ud(G) = \lim_{n \to \infty} \sup(x_n > 1 - \frac{1}{r} + \varepsilon).$$

Wtedy możemy znaleźć ciąg $(H_l)_{l=1}^{\infty}$ podgrafów G takich, że

$$e(H_l) \ge (1 - \frac{1}{r} + \varepsilon) \frac{|H_l|}{2}$$

dla wszystkich l oraz $|H_l| \to \infty$ razem z $l \to infty$. Z twierdzenia Erdösa-Stone'a mamy, że $T_{r+1}(n) \le G$ dla wszystkich $n \ge r+1$. To z kolei pociąga fakt, że

$$x_n \geq \frac{t_{r+1}(n)}{\binom{n}{2}}$$

dla wszystkich n \geq r + 1. Z tego wynika, że

$$ud(G) = \lim_{n \to \infty} \sup x_n \geq \lim_{n \to \infty} \frac{t_{r+1}(n)}{\binom{n}{2}} = 1 - \frac{1}{r+1}$$

tak jak chcieliśmy.

3 Ramsey Theory

3.1 Ramsey theorem

In graph G we define a k-edge-coloring for $k \geq 2$ is a function

$$c: E(G) \rightarrow [k]$$

A subgraph $H \leq G$ is monochromatic if $c|_{E(H)}$ has a constant value.

The question in this chapter is weather or not we can find a monochromatic graph K_r given a k-edge coloring of K_n ?

W grafie G definiujemy k-kolorowanie krawędzi dla k ≥ 2 jako funkcję

$$c: E(G) \rightarrow [k]$$

Podzbiór $H \leq G$ jest monochromatyczny, jeżeli c $|_{E(H)}$ ma stałą wartość.

Pytanie jakie ten rozdział stawia to czy możemy znaleźć monochromatyczny graf K_r mając dane k-kolorowanie K_n?

Ramsey number R(s,t) is the smallest n (if it exists) such that any red/blue edge coloring of K_n has a red K_s or a blue K_t .

Ramsey's theorem - let s, $t \ge 2$, then R(s, t) exists. Moreover, is s, t > 2 then R(s, t) \le R(s - 1, t) + R(s, t - 1).

Liczba Ramseya R(s, t) to najmniejsze takie n (pod warunkiem, że istnieje) takie, że dla dowolnego kolorowania na czerwono i niebiesko k_n posiada czerwone K_s albo niebieskie K_t .

Twierdzenie Ramseya - niech s, $t \ge 2$, wtedy R(s,t) istnieje. Co więcej, jeżeli s, t > 2, to R(s,t) \le R(s - 1,t) + R(s,t - 1).

By induction on s + t. The base cases is when s = 2 or t = 2.

When s = 2 we have R(s, t) = t because either have a red edge of color red or we have the whole K_t is blue. When t = 2 similarly.

Now, when s, t > 2, let n = R(s - 1, t) + R(s, t - 1) and let us color a K_n . Let us take any $v \in K_n$. Then there are

$$R(s - 1, t) + R(s, t - 1) - 1$$

edges incident to v. Therefore, either R(s-1,t) of them are red or R(s,t-1) are blue. Without loss of generality, let us assume that there are R(s-1,t) edges

$$\{vw : w \in A\}$$

are red, where $A \subseteq V(K_n)$, |A| = R(s - 1, t). Then we have either a red K_{s-1} inside A to which we add the red edges to v to get a red K_s , or we have a blue K_t . Analogous proof for the other number.

[-]

Indukcja na s + t. Przypadek bazowy jest kiedy s = 2 lub t = 2.

Jeśli s = 2, to mamy R(s,t) = t, bo albo znajdziemy czerwoną krawędź, albo całość jest niebieska. Analogicznie dla t = 2.

Teraz, kiedy s, t > 2, niech n = R(s - 1, t) + R(s, t - 1) i pokolorujmy K_n . Weźmy dowolny $v \in K_n$. Wtedy mamy

$$R(s - 1, t) + R(s, t - 1) - 1$$

krawędzi wychodzących z v. W takim razie albo R(s-1,t) z nich jest czerwonych albo R(s,t-1) jest niebieskich. Bez starty ogólności załóżmy, że mamy R(s-1,t) krawędzi

$$\{vw : w \in A\}$$

czerwonych, gdzie $A \subseteq V(K_n)$, |A| = R(s-1,t). Wtedy mamy albo czerwone K_{s-1} wewnątrz A, do którego dodajemy wszystkie czerwone krawędzi do v żeby dostać czerwone K_s , albo mamy niebieskie K_t . Analogiczny dowód dla drugiego przypadku.

3.2 Ramsey but no restrictions on colorzzz

Let $k, s_1, ..., s_k \ge 2$. The Ramsey number $R(s_1, ..., s_k)$ is the smallest number n such that any k-edge coloring on graph K_n contains at least one of $K_{s_1}, ..., K_{s_k}$ monochromatic graphs.

Similar argument: $R(s,t,u) \le R(s,t,u-1) + R(s,t-1,u) + R(s-1,t,u)$ and so on for more colors.

Multicolor Ramsey Theorem - let k, $s_1, ..., s_k \ge 2$. Then $R(s_1, ..., s_k)$ exists and if k > 2 we have

$$R(s_1,...,s_k) \leq R(s_1,...,s_{k-2},R(s_{k-1},s_{k-2})).$$

```
[ 😹 ] [ 🚾 ]
[ 💥 ]
```

Induction on k. If k = 2, then we have the standard Ramsey theorem.

Now we have k > 2. Let $n = R(s_1, ..., s_{k-2}, R(s_{k-1}, s_k))$. We will be coloring K_n . Let s_{k-1} be light blue and s_{k-2} be dark blue, while the remaining colors be non-blue. We will "merge" blue colors. Then we get a k-1 coloring. We know that in K_n contains a K_{s_i} coloring for $i \in [k-2]$ and a blue $K_{R(s_{k-2},s_k)}$. By the definition of Ramsey numbers, then if we want to choose in the latter one two colors, we will always find a s_{k-2} light blue coloring or a s_k dark blue coloring. Which is the end, my fellow kidz.