

Universidade do Estado do Rio de Janeiro – UERJ Campus Regional Instituto Politécnico do Estado do Rio de Janeiro - IPRJ Curso de Graduação em Engenharia de Computação

TRABALHO DE MODELAGEM E CONTROLE DE SISTEMAS

Leonardo Simões

Professor:

Joel Sánchez Domínguez

Nova Friburgo, 27 de Novembro de 2017.

SUMÁRIO

		Página
1.	OBJETIVO	1
2.	INTRODUÇÃO	1
3.	RESULTADOS	1
	3.1. Atividade 1 – Saída do sistema	2
	3.2. Atividade 2 – Lugar das Raízes	3
	3.3. Atividade 3 – Diagrama de Bode	4
4.	CONCLUSÃO	5

REFERÊNCIAS

1. OBJETIVO

O objetivo desse trabalho foi aplicar os conceitos ensinados na disciplina de modelagem e controle de sistemas, utilizando ferramentas computacionais, principalmente o Matlab.

2. INTRODUÇÃO

As funções de transferências caracterizam sistemas de controle e transmitem várias informações acerca deste. A resposta de um sistema é dada pelo produto da função de transferência pela entrada, no domínio desejado; o lugar geométrico das raízes fornece uma representação gráfica da estabilidade e o ganho relacionado, e o diagrama de Bode trabalha no domínio da frequência fornecendo a relação da magnitude e fase (ângulo) da função de transferência em relação a frequência.

3. RESULTADOS

Parâmetros utilizados:

Parâmetro	Valor
P_1	7
P_2	12
P_3	2.4
P_4	-3
P_5	-2
P_6	-1
P_7	-4
P_8	3
P_9	-5
P_{10}	12
P_{11}	1
P_{12}	9
P_{13}	4

3.1. Atividade 1 - Saída do sistema

Dada a função de transferência:

$$G_1(s) = \frac{P_1}{P_2 s + 1} :: G_1(s) = \frac{7}{12s + 1}$$

para a entrada $X(s) = \frac{P_3}{s} = \frac{2.4}{s}$, tem-se a saída $Y(s) = G_1(s) * X(s)$

$$Y(s) = \frac{84}{5 * s * (12 * s + 1)}$$

Aplicando a transformada de Laplace para a saída:

$$y(t) = \frac{84}{5} - \frac{84 * e^{\left(-\frac{t}{12}\right)}}{5}$$

Gráfico 1 – Saída da função G1 pela entrada X em relação ao tempo

Para a entrada $X_1(s) = \frac{0.5 * P_3}{s} = \frac{1.2}{s}$, tem-se a saída $Y_1(s) = G_1(s) * X_1(s)$

$$\therefore Y_1(s) = \frac{42}{5 * s * (12 * s + 1)}$$

Aplicando a transformada de Laplace para a saída:

$$y(t) = \frac{42}{5} - \frac{42 * e^{\left(-\frac{t}{12}\right)}}{5}$$

Gráfico 2 – Saídas da função G1 pela entrada X e X1 em relação ao tempo

3.2 Atividade 2 – Lugar das Raízes

Dadas as funções de transferência:

$$G_2 = \frac{(s+P_4)(s+P_5)}{(s+P_6)(s+P_7)} :: G_2 = \frac{(s-3)(s-2)}{(s-1)(s-4)} :: G_2 = \frac{s^2-5s+6}{s^2-5s+4}$$

$$e G_3 = \frac{(s+P_8)}{s(s+P_9)} :: G_3 = \frac{(s+3)}{s(s-5)}$$

O lugar geométrico das raízes de G_2 é dado por:

Gráfico 3 — Lugar geométrico das raízes de G_2

O lugar geométrico das raízes de G_3 é dado por:

Gráfico 4 – Lugar geométrico das raízes de G_3

3.3 Atividade 3 – Diagrama de Bode

Dadas as funções de transferência:

$$G_4 = \frac{(P_{10} * s + P_{11})}{(s + P_{12})(s + P_{13})} :: G_4 = \frac{(12 * s + 1)}{(s + 9)(s + 4)} :: G_4 = \frac{12 * s + 1}{s^2 + 13s + 36}$$

O diagrama de Bode será:

Gráfico 5 — Diagrama de Bode de G_4

4. CONCLUSÃO

Após o trabalho foi comprovado a eficiência e facilidade do uso de uma ferramenta computacional, no caso o Matlab, para resolver problemas relacionados ao controle de sistemas. O Matlab gerou todos os diagramas com facilidade após ser fornecido a função de transferência e pelos gráficos foram obtidas as informações e conclusões necessárias sobre determinada propriedade e comportamento do sistema.

Através da atividade 1 foi observado como a saída do sistema é modificada apenas pela mudança de um fator na entrada. Na atividade 2 foi exibido o lugar geométrico das raízes e analisado o valor do ganho em alguns pontos. Pela atividade 3 foi gerado o diagrama de bode de uma função de transferência com fatores de primeira e segunda ordem.

ANEXO - CÓDIGO MATLAB

```
% Atividade 1 - Item 1
clear all; close all; clc;
P1 = 7:
P2 = 12;
P3 = 2.4;
syms s t
G1 = P1/(P2*s+1)
X = P3/s
Y = G1*X
y = ilaplace(Y, s, t)
t = [0:5*P2];
ezplot(v,t)
xlabel('TEMPO (t)')
vlabel('SAÍDA y(t)')
title ('GRÁFICO ATIVIDADE 1 - Item 1')
datacursormode on
% Atividade 1 - Item 2
clear all; close all; clc;
P1 = 7;
P2 = 12;
P3 = 2.4;
syms s t
G1 = P1/(P2*s+1)
X = P3/s
Y = G1*X
y = ilaplace(Y, s, t)
X1 = 0.5*P3/s
Y1 = G1*X1
v1 = ilaplace(Y1, s, t)
t=[0:.25:P2*5];
ezplot(y1,t)
set(ezplot(y1,t),'Color','green')
hold on
ezplot(y,t)
set(ezplot(y,t),'Color','red')
legend('X1(s)','X(s)')
xlabel('TEMPO (t)')
ylabel('SAÍDA y(t)')
```

```
title('GRÁFICO ATIVIDADE 1 - Item 2')
datacursormode on

% Atividade 2 - Item 1
clear all; close all; clc;
G2 = tf([1 -5 6],[1 -5 4])
rlocus(G2)

% Atividade 2 - Item 1
clear all; close all; clc;
G3 = tf([1 3],[1 -5 0])
rlocus(G3)

%Atividade 3
G4 = tf([12 1],[1 13 36])
bode(G4)
```