- Observations/experiments <-> dynamical variables (theory)
- Equations of motion solve for dynamical variables.

Motion of classical particles

In classical muchanics: 1D motion (non relativistic Nexc)

$$|x|t$$
 $|x|$
 $|x|t$ $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x|t$
 $|x$

Motion of classical particles

Theory: Newton's 2nd law
$$F = m\alpha = -\frac{\partial V}{\partial x}$$
 (consultable system)

$$V = \text{ potential oney function}$$

$$\Rightarrow \boxed{m \frac{d^2x}{dt^2} = -\frac{\partial V}{\partial x}}$$

If we know the initial conditions, e.g. $x(t=0)$, or $(t=0)$

$$\Rightarrow x(t)$$

$$V = \frac{1}{2}kx^2 \Rightarrow \frac{\partial V}{\partial x} = kx$$

Motion of classical particles

e.g. clashe potential energy:

$$V = \frac{1}{2} k \chi^{2} \implies \frac{2V}{2\chi} = k \chi$$
Solution is:

$$\Rightarrow M \ddot{\chi} = -k \chi$$

$$\Rightarrow M \ddot{\chi} + k \chi = 0$$

$$\Rightarrow \omega = \sqrt{\frac{k}{m}} \quad \text{(Angular frequency)}$$

How do we do quantum mechanics?

Motion in quantum mechanics:

The equation of motion is Schrödinger's equation:

$$i \frac{\partial y}{\partial t} = \hat{H} y$$
 Schrödingen's equation.
Ly Hamiltonian, linear operation.
 $\hat{H} = \hat{T} + \hat{V}$
 $\hat{J} = \hat{J} + \hat{V}$
 $\hat{J} = \hat{J} + \hat{J}$

How do we do quantum mechanics?

Schrödinger's equation:

$$\dot{I} = \sqrt{-1}$$

$$\dot{I} = Planck's constant = \frac{h}{2\pi} = 1.054573 \times 10^{-34} \text{ J.s}$$

- QM is linear, so in some sense it is simpler than CM.
- We can scale solutions, and add/combine solutions to create superpositions, which become new solutions.

The necessity of complex numbers

Why do we need complex numbers?

Complex numbers:
$$\chi^2 = 1 \Rightarrow \chi = \sqrt{-1}$$

$$i = \sqrt{-1}$$

$$Z = \alpha + ib$$
; $\alpha, b \in \mathbb{R}$

$$Z \in \mathbb{C}$$

$$ke(z) = \alpha$$

$$Im(z) = b$$

$$\alpha$$

The necessity of complex numbers

Why do we need complex numbers?

Complex conjugate of
$$Z$$
:

 $Z^* = a - ib$ (\overline{Z} , \hat{Z})

Norm of a complex $\#: \in \mathbb{R}$
 $|Z| = \sqrt{a^2 + b^2}$, $|Z|^2 = a^2 + b^2 = ZZ^*$

Summation:

 $(a+bi) + (c+di) = (a+c) + (b+d)i$

Multiplication

 $(a+bi) (c+di) = (ac-bd) + (bc+ad)i$

The necessity of complex numbers

Why do we need complex numbers?

In polar coordinates!

$$a = 121 \cos \hat{\theta}$$
 $b = 121 \sin \hat{\theta}$
 $b = 121 \sin \hat{\theta}$
 $\Rightarrow z = 121(\cos \hat{\theta} + i \sin \hat{\theta}) = 121e^{i\theta}$

Identity: $e^{i\hat{\theta}} = \cos \hat{\theta} + i \sin \hat{\theta}$ (Euler Journala)

In QM: $y \in \mathbb{C}$
 $e^{i\theta} = \cos \hat{\theta} - i \sin \hat{\theta}$

We need \mathbb{C} numbers.

• The wave function, Ψ , has to be a complex number to satisfy Schrödinger equation.