第25章 CoreSight

25.1 概要

CoreSight サブシステムは、ARM 社の各種デバッグモジュールをサブシステム化したもので<u>ASIC-PFに準</u>拠した Cortex 系 CPU サブシステムと組み合わせることでトレースを含むデバッグ機能を実現します。

25.1.1 特徴

1

テクノロジ______: 非依存

準拠規格_____: ARM Debug Interface v5.1 (ADIv5.1)
デバッグ・インタフェース____: JTAG__SWD <u>*</u>1

<u>注 1</u> JL-086A では Serial Wire 接続は使用できません(制限事項)

以下に表に JL-086A に搭載している CoreSight のコンフィギュレーションを記載します。

表**25-1_**CoreSightコンフィギュレーション

カテゴリ	コンフィギュレー	ション項目	設定値	備考			
Cortex 系 CPU の接続	CPU0		TYPE-R4				
	CPU1		なし				
	CPU2		なし				
		Cortex-M 使用時		Cortex-M 系を使用時は、トレース機能 (ATB バスの口数)を指定してください。			
CPU-SS	旧 ARM 系 CPU の接続		なし	On Chip JTAG インタフェースの利用を			
旧 ARM 系				指定します。			
AHB-AP	AHB インタフェースの利用		あり	システムの AHB バスにアクセスする機能 を利用するか指定します。			
Debug ROM	パーツナンバー		000Н	デバッガが、本サブシステムが搭載された SOC を識別するために用いるパーツナン バーです。 識別が不要の場合には 000H を指定してく ださい。 本項目で設定した値は、DAP のペリフェラ ルID レジスタ、および TARGETID レジス タに反映されます。			
ソフトウェア	ITM		なし	ITM の有無			
トレース	SWO ポート			SWO 機能を利用するには ITM が必要です			
ハードウェア	TPIU		なし	TPIU の有無			
トレース	ETB		あり	ETB の有無			
	RAM 容量(kB)		4	ETB の RAM 容量			

削除:,

削除: . .

削除:

削除: . .

削除:,

書式変更: フォントの色 : 赤, 上付き

削除: トレース・インタフェース: **,** トレース・ポート、シリアルワイヤ出力 **.**

書式変更: フォント : 9 pt

表の書式変更

書式変更: フォント : 9 pt

書式変更: フォント : 9 pt

削除:

削除:,

削除:,

削除:,

25.1.2 ブロック概要

Page 1232

書式変更: フォント : Times New Roman

書式変更: 本文

(1) CTI

デバッグに関わるトリガを相互にやり取りするための ARM 社 CTI(Cross Trigger Interface)モジュールです。

(2) DAP

ARM 社 DAP (Debug Access Port) モジュールです。DAP は、デバッグのために、CoreSight components にアクセスするための手段を提供します。ADI v5.1 に準拠した JTAG デバッグ・インタフェースまたは SWD インタフェース 生 を持つデバッガを接続することができます。デバッガとの接続については、25.1.1 を参照してください。

<u>注 1</u> JL-086A では Serial Wire 接続は使用できません(制限事項)

(3) ETB

ARM 社 ETB(Embedded Trace Buffer)モジュールです。ATB 経由のトレース・データを内部専用 RAM に格納するための制御機能を提供します。

削除:,

削除:,

削除:, 削除: 25.

書式変更: フォント : 太字, フォント の色 : 赤, 上付き

変更されたフィールド コード

削除: 0

削除: .

削除: <#>ITM ...

ARM 社 ITM (Instrumentation Trace Macrocell)モジュールです。ITM は printf()形式のデバッグをサポートするアプリケーション駆動型トレース・ソースです。.

<#>\$WO .

ARM 社 SWO(Serial Wire Output)は、ITM が生成するトレース・データを 1 ビット・シリアル・データに変換しチップ外部に出力します。 .

<#>TPIU .

ARM 社がライセンスする TPIU(Trace Port Interface Unit)モジュールです。トレース・データをトレース・ポートに出力します。.

削除: <#>コンフィギュレーション コンフィギュレーションと各インタフェー スの関係は、表 25-2の通りです。

<#>コンフィギュレーションとインタフェースの関係。

表 **25-2** . コンフィギュレーションによるインタフェース有無の影響範囲. コンフィギュレーション.

書式変更: 本文

25.2 端子機能

25.2.1 端子表

表25-2、CoreSight 端子一覧

端子名	I/O	説明	Active_Level	未使用時端子処置	
TCK	1	<u>CPU</u> JTAG <mark>クロック<u>入九</u></mark>	<u>H</u>	<u>OPEN</u>	-
<u>TRSTZ</u>	Ī	CPU JTAG 回路リセット入力	<u>L</u>	<u>OPEN</u>	4
<u>TMS</u>	Ī	CPU JTAG TAP モード選択	<u>H</u>	<u>OPEN</u>	•
<u>TDI</u>	Ī	<u>CPU JTAG シリアル入力</u>	<u>H</u>	<u>OPEN</u>	•
TDO	0	CPU JTAG シリアル出力	<u>H</u>	<u>OPEN</u>	4

<u>注1</u> JL-086A では Serial Wire 接続は使用できません(制限事項)

削除: —…当該のコンフィグ項目の影響を 受けません。

o...当該のコンフィグ項目によりインタフェースが存在します.

×…当該のコンフィグ項目によりインタフェースは存在しません。

削除: <#>シンポル図 .

削除: <#>クロック・リセット関連端子

| 削除: 3

削除: クロック

表の書式変更

削除: .

削除: HCLK

書式変更: 両端揃え

削除: ∟

書式変更:中央揃え

書式変更: 両端揃え

削除: テスト・

削除: または,SW クロック

削除: -

書式変更:中央揃え

書式変更: 両端揃え

書式変更: 中央揃え 書式変更: 両端揃え

書式変更: 中央揃え

書式変更: 両端揃え

書式変更:中央揃え

書式変更: 両端揃え

書式変更: 中央揃え 書式変更: 両端揃え

書式変更: 中央揃え

書式変更: 両端揃え

書式変更: 中央揃え 書式変更: 両端揃え

書式変更:中央揃え

書式変更: 両端揃え

書式変更: 中央揃え

削除: TRACECLKIN

表の書式変更

書式変更

削除: 表25-4 リセット端子一覧

25.2.2 AMBA インタフェース

表**25-3**、 AHB マスタ・インタフェース信号一覧

	端子グループ	バス幅	同期クロック	端子グループの説明	AHB タイプ
1	MH*	32bit	HCLK	AHB-AP	Lite

表**25-4** AHB-Lite マスタ バースト/サイズ

端子グループ	バースト・タイプ MHBURST[2:0]							転送サイズ (bit) MHSIZE[2:0]								
	000	001	010	011	100	101	110	111	000	001	010	011	100	101	110	111
	SINGLE	NCR	WRAP4	INCR4	WRAP8	INCR8	WRAP16	INCR16	8	16	32	64	128	256	512	1024
AHB マスタ (AHB-AP)	0	×	×	×	×	×	×	×	0	0	0	×	×	×	×	×

- 対応した転送が発生します。
- ×対応した転送は発生しません。

表**25-<u>5</u>** AHB-Lite マスタ その他転送

	Endian			EBT	プロテクション MHPROT[3:0]					
端子グループ	I.E	BE32	BE8	早期バースト終了アクセス	オペコード/データ	ユーザ/特権	バッファ 可/ 不可	キャッシュ可/不可	アンアラインド転送	エラー応答の反応
AHB マスタ (AHB-AP)	0	×	×	×	•	•	•	•	×	バースト転送を 行わないため対象外

- 対応 / 生成する
- × 非対応 / 生成しない
- 両状態が起こりえます。

削除: 32

削除: 30

削除: 31

削除: .

.

.

•

.

25.3 メモリ・マップ

25.3.1 デバッグ APB アクセス

各 CoreSight コンポーネントを制御するデバッグ・レジスタは、デバッグ APB バスに配置されます。CoreSight コンポーネントの配置情報を収めた ROM テーブル、CPU のデバッグ・レジスタ、および CTI の制御レジスタが配置されています。

25.3.1.1 システム・バスからのアクセス

システム APB インタフェース経由で、システム・バスからデバッグ APB 領域にアクセスすることができます。 この場合のアドレスマップは、図 25-2(α)を参照してください。

システム・バスからデバッグ・レジスタにアクセスした場合。ロック機構により書き込み無効・制限読み出し可能な状態に制限されています。各デバッグ・コンポーネントに存在するロック・アクセス・レジスタを操作する事により。ロックを解除しフル・アクセスが可能になります。

デバッグ APB 領域は、表 25-6 に示す領域サイズの境界にアラインさせて配置してください。また配置アドレスを、CPU サブシステムの DBGROMADDR 端子に設定してください。 $\frac{\textbf{k}}{\textbf{1}}$

<u>注1</u> JL-086A では、DBGROMADDR[31:12]=0xE_FF40 に固定されています。

25.3.1.2 デバッガからのアクセス

デバッガからのアクセスは、JTAG/SWD <u>**</u>経由で行います。この場合のアドレスマップは、<u>図 25-2(b)</u> を参照してください。デバッガからアクセスした場合、デバッグ APB 領域は OH 番地、および 80000000H 番地にミラー配置されているように見えます。

アドレスの MSB がハイの領域にアクセスした場合、ロック機構が無効化されフル・アクセスが可能です。 アドレスの MSB がローの領域にアクセスした場合、ロック機構が有効となり、システム APB バス経由のアクセスをエミュレートする事が可能です。

図25-2、システム・バス、ICE から見えるデバッグ APB の配置<u>²³</u>

<u> 主 2</u> <u>JL-086A では、Serial Wire 接続は使用できません(制限事項)</u>

<u>主3</u> <u>システムパス経由アクセス時のアドレスは、DBGROMADDR を足しこんだアドレス(EFF4_0000H)</u>

削除:,

削除:,

削除:,

削除:,

削除: 25-3

削除:

書式変更: フォント: (日) MS ゴシック, 太字

書式変更: フォント : (日) MS ゴシック, スペル チェックと文章校正を行う

削除: 図 25-3

削除:

削除:,

削除:

書式変更: フォント: (日) MS ゴシック 大字

書式変更: フォント : (日) MS ゴシック、スペル チェックと文章校正を行う

削除: 表 25-33

削除: 25-33

削除:

書式変更: フォント : 太字, フォント の色 : 赤, 上付き

削除:。

削除:

書式変更: フォントの色 : 赤, 上付き

書式変更: フォント : (日) MS ゴシッ ク, 太字

書式変更: フォント : (日) MS ゴシッ ク, スペル チェックと文章校正を行う

削除: 図 25-3

削除: 25-3

削除:,

削除:,

削除: アドレスの MSB がハイの領域にアクセスした場合、ロック機構が無効化されフル・アクセスが可能です。

アドレスの MSB がローの領域にアクセス した場合、ロック機構が有効となり、シス テム APB バス経由のアクセスをエミュレ ートする事が可能です。

書式変更: 間隔 段落前 : 0 pt, 段落後

削除: 3

削除:

書式変更: フォント : 太字, フォント の色 : 赤, 上付き

削除: .

25.3.2 デバッグ APB 領域のアドレスマップ

図 25-3 にデバッグ APB 領域のアドレスマップを示します。

デバッグ APB インタフェース 0 に接続した CPU サブシステムは 08000H から 0BFFFH の範囲にデバッグ APB インタフェース 1 に接続した CPU サブシステムは 0C000H から 0FFFFH の範囲に配置されます。デバッグ APB インタフェース 2 に接続した CPU サブシステム 10000H はから 13FFFH の範囲に配置されます。 $\stackrel{\textbf{*}_{1}}{=}$

注 1 JL-086A では、デパッグ APB インタフェース 0 には、CPU-SS(TYPE-R4F)が接続されます。 デパッグ APB インタフェース 1/2 は未使用のため、未使用領域となります。

デバッグ APBO 領域内、デバッグ APB1 領域内、デバッグ APB2 領域内のアドレスマップは接続する CPU サブシステムに依存します。

図 25-4 に示す CSSYS 領域を除きコンフィギュレーションにより未使用とした領域および N/A 領域にアクセスした場合、書き込み無視、0 読み出しが行われます。PSLVERR は発生しません。図 25-5 に示す CSSYS 領域内でコンフィギュレーションによりコンポーネントが存在しない領域にアクセスした場合、PSLVERR が発生します。コンポーネントが存在する領域および N/A 領域へのアクセスは PSLVERR を発生しません。

図**25-3_デ**バッグ APB 内アドレスマップ例<u>準2</u>

注 2 デパッグ APB1/2 は未使用のため、18'h0_C000~18'h0_3FFF は未使用領域となります。

削除: .

削除: 図 25-4

削除: 25-4

書式変更: フォント : (日) MS ゴシック, 太字

書式変更: フォント: (日) MS ゴシック, スペル チェックと文章校正を行う

削除

書式変更: フォント: 太字, フォント の色: 赤, 上付き

表の書式変更

書式変更: フォント: 太字

削除:,

削除:,

削除: デバッグ APB インタフェース 2 は、 Cortex-M 接続時はありません。DAPBUS exported interface 経由でアクセスしま

削除:,

削除:,

削除:

書式変更: 間隔 段落前 : 0 pt, 段落後 : 0 pt

削除: 4

削除:

書式変更: フォント : 太字, 上付き

書式変更: 本文, インデント : 左 0 字 , 最初の行 : 0 字

書式変更: フォント : Times New Roman

書式変更: 本文, インデント : 左 0 字 , 最初の行 : 0 字

表25-6 Cortex 系 CPU 接続数による必要領域

Cortex 系 CPU	領域サイズ
CPU0 使用時	64KB

図25-4、本サブシステム内に存在する CoreSight コンポーネントのアドレスマップ

注1 JL-086A では、コンフィギュレーションにより、以下の領域が存在しません。

SWO (4KByte)

ITM (4KByte) TPIU (4KByte)

> CPU-SS (TYPE-R4) #n Offset + 14'h3FFF ▲ 4KByte N/A Offset + 14'h3000 4KByte ETM (option) Offset + 14'h2000 CTI 4KByte Offset + 14'h1000

> > Offset + 14'h0000

図25-5___CPU-SS のアドレスマップ例<2

注2 図中の Offset は EFF4 8000H です。

よって、CPU-SS(TYPE-R4F)領域は、EFF4_8000H~EFF4_BFFFHとなります。

表25-<u>7.</u> ___デバッグ APB アドレス内アドレスマップ

DBGSELFADDR指定值	領域	サイズ	用途	١ ٠
20'h00008	0x00008000 - 0x0000BFFF	16KB	CPU- <u>SS(TYPE-R4F)</u> 接続用	١.
		<u> </u>		

4KByte

CPU

削除: 33

表の書式変更

削除: もしくは CPU0,CPU1

削除: CPU2 使用時

書式変更: 間隔 段落前: 0 pt. 段落後: 0 pt. 罫線: 右: (細線, 自動, 0.5 pt. 線幅)

書式変更: インデント : 左 : 0 mm, ぶら下げインデント : 4.96 字, 最初の行 : -4.96 字

削除: 5

削除:

書式変更: フォント : 太字, フォント の色 : 赤, 上付き

書式変更:本文、インデント:最初の行

表の書式変更

書式変更: フォント : Times New Roman 書式変更:本文、インデント : 最初の行

書式変更: 間隔 段落前: 0 pt, 段落後

CPU-SS(TYPE-A5 ETM

Offset + 14'h3FFF (option) Offset + 14'h3000 CTI Offset + 14'h2000 PMU Offset + 14'h1000 CPU Offset + 14'h0000

XOffset/

DBGSELFADDR

TERRITOR

TER 削除:

書式変更: インデント : ぶら下げインデント : 5.38 字, 左 0 字, 最初の行 : -5.38 字

削除: 6

削除: .

削除:

書式変更: フォント : 太字, フォント の色 : 赤, 上付き

書式変更: フォント : Times **New** Roman, 太字(なし), フォントの色 : 自動, 上 付き/下付き(なし)

表の書式変更

書式変更: フォント : Times New Roman

書式変更: 本文, インデント: 左 0 字 , 最初の行: 0 字

削除: 34

削除: ..

表の書式変更

書式変更: インデント: 左: 0 mm

削除: SSO

削除: デバッグAPB 1

25.4 機能詳細

25.4.1 デバッグ・インタフェース

本 DAP モジュールは、デバッガとの JTAG 接続、Serial Wire Debug(SWD)接続に対応します。

リセット解除直後。DAP は JTAG 接続モードにあり、デバッガからの初期化シーケンスにより SWD 接続モー ドに切り替わります。。

25.4.1.1 SWD インタフェース接続<mark>生</mark>1

Serial Wire Interface を使用するときは、下図のような接続およびデータ・フローになります。

TDI は任意値に固定し。nTRST にはパワーオン・リセットを供給してください。JTAG 接続機能を使用しない場 合には、未使用時端子処置(ロー・クランプ)に従い処置してください。

図25-6_SWD インタフェース接続達2

JL-086A では、Serial Wire 接続は使用できません(制限事項)

JL-086A では、図 25-6 中の外部端子 TMS/SWDIO、TCK/SWCLK の端子名称は以下になります。 注2

TMS/SWDIO: TMS TCK/SWCLK: TCK **削除: 【**注】 デバッグ APB インタフェー ス2は、Cortex-M接続時はありません。 DAPBUS exported interface 経由でアク セスします。.

削除: .

削除: . 注 1

書式変更: 本文, インデント: 左mm, 最初の行: 0字

書式変更: フォント : Times New Roman

削除: <#>....システム構成例.

下記に、CPU サブシステムとの接続構成例 を記載します。

本サブシステムと CPU サブシステムの組 合せによる接続構成が、使用するデバッガ で対応可能かどうかはICEベンダに確認す る必要があります。

<#>. Cortex-A,R 系 CPU サブシステムの デバッグ・システム接続例 .

図 25-725-7に Cortex-A,R 系の CPU サブ システムのデバッグ・システム接続例を示 します。.

削除:,

削除:,

削除:,

削除:, 削除: ^{注1}

書式変更: フォント : 太字, フォント の色 : 赤, 上付き

書式変更: フォントの色 : 赤, 上付き

削除:,

削除:,

削除:, 削除: 9

削除: ..

書式変更: フォント: 太字, 上付き

表の書式変更

削除: 注 2

削除: JL-086A では、図 25-7 中の外部端子 TMS/SWDIO、TCK/SWCLK の端子名(****)

書式変更: 本文, インデント: 左 0 字 , 最初の行: 0 字

書式変更: フォント : Times New Roman

25.4.1.2 JTAG インタフェース(ADIv5)

JTAG インタフェースを使用する場合は、下図のような接続およびデータ・フローになります。

図**25-<u>7</u>_**JTAG インタフェース端子接続<mark>生</mark>1

<u>注 1</u>
JL-086A では、図 25-7 中の外部端子 TMS/SWDIO、TCK/SWCLK の端子名称は以下になります。
TMS/SWDIO:TMS
TCK/SWCLK:TCK

削除: 10

削除:,

削除: .

書式変更: フォント : 太字, フォント の色 : 赤, 上付き

書式変更: 本文, インデント: 左 0 字 , 最初の行: 0 字

表の書式変更

書式変更: フォント : Times New Roman

書式変更: 本文, インデント: 左 0 字 , 最初の行: 0 字

25.4.2 JRSTZ 入力タイミング

デバッガが供給する。JRSTZおよび、JCK、こついて、下記制限が守られていることを確認してください。

__TRSTZ_解除(**Low**→**Hi**)と <u>JCK_</u>の立ち上がりに関して<u>。</u>セットアップ・ホールド制約が守られていることを確認 してください。

また、JRSTZを使用しない場合には、デバッガが Test-Logic-Reset ステートへの遷移を用いた TAP リセットを行えることを確認してください。

図**25-<u>8</u>、**JRST<u>7、</u>JCK 間タイミング

なおパワーオン・リセット信号についても、JCKとの間に同様のタイミング制約が存在しますが、リセット解除時にはデバッガとの通信が行われておらず、JCKは発振していないため、制限としておりません。

削除: <#>トレース・アナライザとの接続 トレースとのトレースポートインタフェー ス及び SWV インタフェース接続時におけ るクロック及びデータのフローを示します。 黒い矢印はクロック、赤い矢印はデータの 流れを示します。

<#>トレースポートインタフェース接続...

削除: n

削除: SWCLKTCK(

削除:)

削除:,

削除: n

削除: SWCLKTCK

削除: , 削除: n

削除:,

削除: .

1331434-

削除: 17

削除:

削除: n 削除:,

削除: SWCLK

削除: nPOTRST

削除: SWCLK

削除:,

削除: SWCLK

削除:,