ECEE 434 Lab
 2 - Mosfet Inverter Propagation Delay

Liz MacLean & Carl Anderson

October 13, 2017

Contents

Introduction & Background	2
Procedure	3
Results	4
Verify Strength of NMOS with respect to PMOS	4
Find R_n	4
Find C_D	4
Find C_G	4
Conclusion	5

Introduction & Background

Capacitance is an inherent property in transistors that can be used to determine other properties of the transistor. The experiment performed involved simulating a CMOS inverter and measuring the output to determine the propagation delay $(t_{PHL} \text{ and } t_{PLH})$ of the circuit. This information was then used to determine the NMOS/PMOS equivalent resistance, and the Gate and Drain capacitances.

The lab required further use of Cadence Virtuoso to modify several parameters and components, build circuits, and simulate the circuits.

Procedure

This experiment consisted of four distinct but related parts.

- 1. Verifying the strength of an NMOS transistor with respect to a PMOS.
 - Simulate an inverter with matched PMOS/NMOS widths and measure the respective propagation delays.
 - ullet t_p can be found with the above propagation delays, and R_n can be calculated.
- 2. Find C_D using some cool ass techniques.

Results

Verify Strength of NMOS with respect to PMOS

 $t_{PLH} = 25.141ns - 20.001ns = 5.140ns$

 $t_{PHL} = 30.07ns - 30.001ns = 0.069ns$

Find R_n

 R_n can be found

 $t_{PLH} = 56.6188ns - 50.0015ns = 6.6173ns$

 $t_{PHL} = 103.7145ns - 100.0005ns = 3.714ns$

The value of t_p can be found by averaging the two propagation delays found above, shown as follows:

$$t_p = \frac{t_{PLH} + t_{PHL}}{2} = \frac{6.6173 + 3.714}{2} = 5.16565ns$$

 R_n can be found by algebraically manipulating the following the equation:

$$t_p = 0.69 * R_n * C$$

$$R_n = 14972.9\Omega$$

Where C is the value of the capacitor on the output of the inverter.

Find C_D

 $t_{PLH} = 50.1026ns - 50.0015ns =$

 $t_{PHL} = 100.0592ns - 100.0005ns =$

Find C_G

$$t_{PLH} = 54.3188ns - 50.0016ns =$$

$$t_{PHL} = 103.0953ns - 100.0004ns =$$

Conclusion

