

Game Theory

Game (Remembering...)

- Initial State (S_0) : Where the game starts
- To-Move(s): The player whose turn it is to move at state s
- Actions: Set of legal moves
- Transition model: The effect of applying the action
- Is-Terminal(s): Returns true if the game is over
- Utility(s,p): A function that assigns a numeric value to the final state

A Simple Game

• Select a number $s_i \in [20,60]$

mber
$$s_{i} \in [20,60]$$

$$u_{i}(s_{i}, s_{-i}) = 100 - (s_{i} - \frac{3}{2}a_{-i})^{2}$$

$$2(s_{i} - \frac{3}{2}a_{-i}) = 0$$

$$s_{i} = \frac{3}{2}a_{i}$$

Another Example

Coke Wars

Dominant Strategy

A strategy $a_i \in A_i$ is strictly dominated by $\delta_i \in \Delta A_i$ if

$$V_i(\delta_i, a_{-i}) > V_i(a_i, a_{-i}), \forall a_{-i} \in A_{-i}$$

Nash Equilibrium

A joint strategy $\delta \in \Delta(A)$ is a Nash equilibrium if for every $i \in N$

$$V_i(\delta_i, \delta_{-i}) \ge V_i(a_i, \delta_{-i}), \forall a_i \in A_i$$

© 2010 Encyclopædia Britannica, Inc.

Nash Equilibrium

Prisioner Dilemma

