Package 'FIREVAT'

February 19, 2019

```
Type Package
Title FIREVAT, FInding REliable Variants without ArTifacts
Description FIREVAT is a variant filtering tool for cancer sequencing data,
     which uses mutational signatures to identify sequencing artifacts and
     low-quality variants.
Version 0.1.0
Authors Andy Jinseok Lee, Hyunbin Kim
Maintainer Andy Jinseok Lee <jinseok.lee@ncc.re.kr>, Hyunbin Kim <khb7840@ncc.re.kr>
Imports data.table,
     stringi,
     bedr,
     GA,
     jsonlite,
     yaml,
     MutationalPatterns,
     deconstructSigs,
     BSgenome. Hsapiens. UCSC. hg19,
     BSgenome. Hsapiens. UCSC. hg38,
     ggpubr,
     caTools,
     ggrepel,
     gridExtra,
     ggplot2,
     rmarkdown,
     gtable
URL https://github.com/cgab-ncc/FIREVAT
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr
VignetteBuilder knitr
```

27

Index

R topics documented:

ComputeZScore
ComputeZScoreEquiValue
DecimalCeiling
EnumerateTriNucCounts
FilterVCFFromConfig
GetCOSMICMutSigs
GetCOSMICMutSigsEtiologiesColors
GetCOSMICMutSigsNames
GetOptimizedSignatures
GetPCAWGMutSigs
GetPCAWGMutSigsEtiologiesColors
GetPCAWGMutSigsNames
InitializeVCFFromConfig
MakeFilterFromConfig
MutaliskParseVCFObj
ParseConfigFile
PCAWG.All.Sequencing.Artifact.Signatures
PCAWG.Known.Sequencing.Artifact.Signatures
PCAWG.Likely.Sequencing.Artifact.Signatures
PCAWG.Possible.Sequencing.Artifact.Signatures
PCAWG.Target.Mutational.Signatures
PlotMutaliskResults
PlotMutationTypes
PlotOptimizationIterations
PlotSigsProbs
PlotTable
PlotTriNucSpectrum
PlotVCFStatsBoxPlots
PlotVCFStatsHistograms
PrepareReportDatafromConfig
PrepareReportPlotsfromConfig
ReadOptimizationIterationReport
ReadVCF
ReportFIREVATResults
RunFIREVAT
RunMutalisk
RunMutaliskHelper
TriNuc.Mutation.Type.Hex.Colors
UpdateFilterFromConfig
WriteVCF

ComputeZScore 3

ComputeZScore

ComputeZScore

Description

Returns a z-score of x given a distribution of values

Usage

```
ComputeZScore(values, x)
```

Arguments

values a numeric vector x a numeric value

Value

a numeric value corresponding to the z-score of x

ComputeZScoreEquiValue

Compute ZS core Equi Value

Description

Returns a numeric value that is equivalent to the specified z.score in the distribution of 'values'

Usage

```
ComputeZScoreEquiValue(z.score, values)
```

Arguments

z.score numeric value values numeric vector

Value

a numeric value corresponding to the specified z.score in the 'values' distribution

4 Enumerate Tri Nuc Counts

DecimalCeiling

DecimalCeiling

Description

Returns the ceiling of a decimal value e.g. value = 0.15, decimal = 0.1 returns 0.2

Usage

```
DecimalCeiling(value, decimal)
```

Arguments

value numeric value (decimal)

decimal numeric value (e.g. 0.1, 0.001)

Value

a numeric value

EnumerateTriNucCounts EnumerateTriNucCounts

Description

Returns C>A, C>G, C>T, T>A, T>C, T>G counts

Usage

EnumerateTriNucCounts(spectrum)

Arguments

spectrum a nu

a numeric vector with 96 numeric values

Details

Please note that this function assumes that 'spectrum' is sorted (i.e. 1:16 -> C>A; 17:32 -> C>G; 33:48 -> C>T; 49:64 -> T>A; 65:80 -> T>C; 81:96 -> T>G)

Value

a numeric vector of length 6 corresponding to the counts of each trinucleotide change (C>A, C>G, C>T, T>A, T>C, T>G)

FilterVCFFromConfig 5

terVCFFromConfig FilterVCFFromConfig	

Description

Filter vcf based on the filter Filtering parameters are saved in config.obj Split vcf.obj into vcf.obj.filtered & vcf.obj.artifact based on vcf.filter

Usage

```
FilterVCFFromConfig(vcf.obj, vcf.filter, config.obj, verbose = FALSE)
```

Arguments

vcf.obj	A list from ReadVCF
vcf.filter	A list from MakeMuTect2Filter
config.obj	A list from ParseConfigFile
verbose	If true, provides process detail

Value

A list with the following elements

- 1) Mutations which passed filteringvcf.obj.filtered = vcf.obj (list with data, header, genome)
- 2) Mutations which did not pass filteringvcf.obj.artifact = vcf.obj (list with data, header, genome)

GetCOSMICMutSigs	GetCOSMICMutSigs	

Description

Returns a data.frame of the COSMIC mutational signature reference file from the data directory

Usage

```
GetCOSMICMutSigs()
```

Value

a data.frame of the COSMIC reference mutational signatures

 ${\it GetCOSMICMutSigsEtiologiesColors} \\ {\it GetCOSMICMutSigsNames}$

Description

Returns all COSMIC mutational signature etiologies and colors

Usage

GetCOSMICMutSigsEtiologiesColors()

Value

data.frame with following columns: signature, group and color.

 ${\tt GetCOSMICMutSigsNames} \quad \textit{GetCOSMICMutSigsNames}$

Description

Returns all COSMIC mutational signature names

Usage

GetCOSMICMutSigsNames()

Value

a character vector

GetOptimizedSignatures

GetOptimizedSignatures

Description

This function fetches the last row from the optimization iteration log and returns the target and artifactual mutational signatures for the type of mutations ('refined' or 'artifactual')

Usage

```
GetOptimizedSignatures(data, mutations.type = "refined",
    signatures = "all")
```

GetPCAWGMutSigs 7

Arguments

data A list of main data from RunFIREVAT

mutations.type A string for type of mutations ('refined' or 'artifact')

signatures A string ('all', 'target', 'artifact')

Value

A data.frame with the columns 'signature' and 'weight'

GetPCAWGMutSigs

GetPCAWGMutSigs

Description

Returns the PCAWG mutational signatures data

Usage

```
GetPCAWGMutSigs()
```

Value

a data.frame of the PCAWG mutatioanl signatures

GetPCAWGMutSigsEtiologiesColors

GetPCAWGMutSigsEtiologiesColors

Description

Returns the PCAWG mutational signatures etiologies and colors

Usage

```
GetPCAWGMutSigsEtiologiesColors()
```

Value

```
a data.frame with the columns 'signature', 'group', 'color'
```

 ${\tt GetPCAWGMutSigsNames} \quad \textit{GetPCAWGMutSigsNames}$

Description

Returns the PCAWG mutational signatures names

Usage

```
GetPCAWGMutSigsNames()
```

Value

a character vector of the PCAWG mutational signatures names

InitializeVCFFromConfig

InitializeVCFFromConfig

Description

Initialize VCF with FIREVAT config file This functions selects point mutations and appends filter values to vcf.obj\$data

Usage

```
InitializeVCFFromConfig(vcf.obj, config.obj, verbose = TRUE)
```

Arguments

vcf.obj A list from ReadVCF

config.obj A list from ParseConfigFile verbose If true, provides process detail

Value

A list with the following elements

- vcf.obj.filteredvcf.obj (high-quality vcf)
- vcf.obj.artifactvcf.obj (low-quality vcf)

MakeFilterFromConfig

9

MakeFilterFromConfig MakeFilterFromConfig

Description

Creates a vcf filter from config.obj

Usage

```
MakeFilterFromConfig(config.obj)
```

Arguments

config.obj

A list from ParseConfigFile (any filter with "use_in_filter" value declared as FALSE is not considered)

Value

A list with the filter parameters

MutaliskParseVCFObj MutaliskParseVCFObj

Description

Parses a vcf.obj and prepares it to run Mutalisk.

Usage

```
MutaliskParseVCFObj(vcf.obj)
```

Arguments

vcf.obj

A list from ReadVCF

Value

A data.frame

ParseConfigFile

Parse Config File

Description

This function returns config.obj from JSON or YAML config file. - Check if the config file is in JSON format or YAML format - Return config.obj

Usage

```
ParseConfigFile(config.path, verbose = TRUE)
```

Arguments

config.path A string for config file path verbose If true, provides process detail

Value

```
config.obj: list of parameters
```

Examples

```
## Not run:
ParseConfigFile("example.variant.caller.json")
ParseConfigFile("example.variant.caller.json", verbose=False)
## End(Not run)
```

```
 \begin{array}{c} {\sf PCAWG.All.Sequencing.Artifact.Signatures} \\ {\it Constant} \end{array}
```

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

```
PCAWG.All.Sequencing.Artifact.Signatures
```

Format

An object of class character of length 17.

PCAWG.Known.Sequencing.Artifact.Signatures

Constant

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Known.Sequencing.Artifact.Signatures

Format

An object of class character of length 1.

PCAWG.Likely.Sequencing.Artifact.Signatures *Constant*

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Likely.Sequencing.Artifact.Signatures

Format

An object of class character of length 5.

 ${\it PCAWG.Possible.Sequencing.Artifact.Signatures} \\ {\it Constant}$

Description

PCAWG mutational signatures reported to be associated with sequencing artifacts

Usage

PCAWG.Possible.Sequencing.Artifact.Signatures

Format

An object of class character of length 11.

12 PlotMutaliskResults

```
{\tt PCAWG.Target.Mutational.Signatures} \\ {\tt Constant}
```

Description

PCAWG target mutational signatures reported to be unrelated to sequencing artifacts

Usage

```
PCAWG.Target.Mutational.Signatures
```

Format

An object of class character of length 49.

Description

Plots Mutalisk results

Usage

```
PlotMutaliskResults(mutalisk.results, signatures, trinuc.max.y,
    trinuc.min.y, mut.type.max.y, title)
```

Arguments

mutalisk.results

A list obtained from RunMutalisk

signatures A character vector of mutational signatures names

trinuc.max.y A numeric value (maximum y-axis value)
trinuc.min.y A numeric value (minimum y-axis value)

mut.type.max.y A numeric value
title A string value

Value

A ggplot object

PlotMutationTypes 13

Examples

PlotMutationTypes

PlotMutationTypes

Description

Plots a horizontal barplot of mutation types

Usage

```
PlotMutationTypes(mutation.types = c("C>A", "C>G", "C>T", "T>A", "T>C",
   "T>G"), mutation.types.values, mutation.types.colors, max.y.val, title,
   convert.to.percentage = T, show.legend = T, font.size.small = 8,
   font.size.med = 14, plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

```
mutation.types Mutation types; Default = c("C>A", "C>G", "C>T", "T>A", "T>C", "T>G")
mutation.types.values
                 Mutation count for each mutation type
mutation.types.colors
                 A color vector for indicating mutation types
                 y axis maximum value
max.y.val
                 Plot title
title
convert.to.percentage
                 if True convert y values to percentage (x 100); Default = T
show.legend
                 If True, show legend; Default = T
font.size.small
                 Small font size; Default = 8
font.size.med
                 Medium font size; Default = 14
                 Margin vector for drawing plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
plot.margin
```

Value

A ggplot object

Examples

PlotOptimizationIterations

PlotOptimizationIterations

Description

Plots multiple scatter plots into one figure

Usage

```
PlotOptimizationIterations(df, columns.to.plot, x.axis.var, x.axis.title,
    x.max, save.file, title, y.axis.title = "", y.max = 1,
    point.size = 1, connect.dots = T, plot.legend = T,
    legend.ncol = 1, font.size.med = 14, font.size.large = 16,
    plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

```
df
                  A data.frame (from reading "FIREVAT_Optimization_Logs.tsv")
columns.to.plot
                  A character vector (of column names to plot)
x.axis.var
                  x axis variable
x.axis.title
                  x axis title
                  x axis maximum value
x.max
save.file
                  Filename (including full path) to which the plot will be saved
title
                  Plot title
                  y axis title; Default = ""
y.axis.title
```

PlotSigsProbs 15

```
y axis maximum value; Default = 1
y.max
                  Point size; Default = 1
point.size
                  If True draws dots for each iteration; Default = True
connect.dots
plot.legend
                  If True write legend of plot; Default = T
legend.ncol
                  legend.n Default = 1
font.size.med
                  Medium font size; Default = 14
font.size.large
                  Large font size; Default = 16
plot.margin
                  Margin vector for plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Value

A ggplot object

gsProbs	
gsProbs	

Description

Plots a horizontal barplot of identified mutational signatures

Usage

```
PlotSigsProbs(df.identified.mut.sigs, df.ref.sigs.groups.colors, title,
  convert.to.percentage = T, font.size.small = 8, font.size.med = 14,
  plot.margin = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Arguments

```
df.identified.mut.sigs

A data.frame of identified mutational signatures

df.ref.sigs.groups.colors

A data.frame with 'signature', 'group', and 'color' columns

title

Plot title

convert.to.percentage

If true, convert y values to percentage (x 100); Default = T,

font.size.small

Small font size; Default = 8,

font.size.med

Medium font size; Default = 14,

plot.margin

Margin vector for drawing plot; Default = unit(c(0.5, 0.5, 0.5, 0.5), "cm"))
```

Value

A ggplot object

16 PlotTriNucSpectrum

Examples

PlotTable

PlotTable

Description

Plots basic statistics table

Usage

```
PlotTable(df, padding = 20, font.size = 14)
```

Arguments

df = A data frame where the first column is header and the second column is data

value

padding Padding size; Default = 20 font.size Font size; Default = 14

Value

A plot

PlotTriNucSpectrum Pi

PlotTriNucSpectrum

Description

Plots the spectrum of 96 trinucleotide distribution (C>A, C>G, C>T, T>A, T>C, T>G) Please note that this function assumes that both sub.types and spectrum are sorted in the following order: C>A, C>G, C>T, T>A, T>C, T>G

Usage

```
PlotTriNucSpectrum(sub.types, spectrum, max.y.val, min.y.val, y.axis.title,
  draw.top.strip = T, draw.x.axis.labels = T, draw.y.axis.labels = T,
  draw.y.axis.title = T, font.size.small = 8, font.size.med = 14,
  plot.margin.top = 0.5, plot.margin.bottom = 0.5,
  plot.margin.left = 0.5, plot.margin.right = 0.5, title)
```

PlotVCFStatsBoxPlots 17

Arguments

```
A character vector (types of 96 trinucleotide substitutions)
sub.types
                  A numeric vector (96 elements)
spectrum
                  y axis maximum value
max.y.val
min.y.val
                 y axis minimum value
y.axis.title
                  y axis title
draw.top.strip If True then draws top strip; Default = T
draw.x.axis.labels
                  If True then draws x axis labels; Default = T
draw.y.axis.labels
                  If True then draws y axis labels; Default = T
draw.y.axis.title
                  If True then draws y axis title; Default = T
font.size.small
                  Small font size; Default = 8
font.size.med
                 Medium font size; Default = 14
plot.margin.top
                  Top margin; Default = 0.5
plot.margin.bottom
                  Bottom margin; Default = 0.5
plot.margin.left
                 Left margin; Default = 0.5
plot.margin.right
                 Right margin; Default = 0.5
title
                  Plot title
```

Value

A ggplot object

Description

Plots multiple (original, refined, artifact vcf) boxplots for single filter parameter

Usage

```
PlotVCFStatsBoxPlots(original.vcf.stat.values, refined.vcf.stat.values,
  artifact.vcf.stat.values, xlab, axis.font.size = 10,
  label.font.size = 10, title.font.size = 12)
```

Arguments

```
original.vcf.stat.values

A numeric vector corresponding to the original vcf.obj values of single filter parameter

refined.vcf.stat.values

A numeric vector corresponding to the refined vcf.obj values of single filter parameter

artifact.vcf.stat.values

A numeric vector corresponding to the artifact vcf.obj values of single filter parameter

xlab

A string value (x-axis label)

axis.font.size

An integer value (axis font size)

title.font.size
```

Value

A ggboxplot

PlotVCFStatsHistograms

PlotVCFStatsHistograms

An integer value (title font size)

Description

Plots multiple VCF stats histograms into one figure

Usage

```
PlotVCFStatsHistograms(plot.values, x.axis.labels, stat.y.max.vals,
    stat.x.max.vals, sample.id, save.file, title, cutoff.values,
    plot.boxplot = F, plot.cutoff.line.color = "#D4012E",
    plot.cutoff.value.lines = F, bin.width = 1, ncol = 4, nrow = 3,
    font.size.med = 10, font.size.large = 12, plot.margin = unit(c(0.5,
    0.5, 0.5, 0.5), "cm"))
```

Arguments

```
plot.values A list of multiple numeric vectors x.axis.labels A character vector of x axis labels stat.y.max.vals
```

A numeric vector of max y-axis values

```
stat.x.max.vals
```

A numeric vector of max x-axis values

sample.id A string value of sample ID

save.file A string value of file to which the resulting plot will be saved

title A string value of plot title

cutoff.values A numeric vector of cutoff values plot.boxplot A boolean value (default = False)

plot.cutoff.line.color

A hex string value (default = "#D4012E")

plot.cutoff.value.lines

A boolean value (default = False)

bin.width An integer value (default = 1; histogram bin width)
ncol An integer value (default = 4; ggarrange ncol)

nrow An integer value (default = 3; ggarrange nrow)

font.size.med An integer value (default = 10)

font.size.large

An integer value (default = 12)

plot.margin A list (default = unit(c(0.5, 0.5, 0.5, 0.5, 0.5), "cm"))

Value

A list with the following elements

- f = A ggarrange object
- graphs = A list of length 3; each element is a ggplot histogram

PrepareReportDatafromConfig

PrepareReportDatafromConfig

Description

Prepares report data (table data)

Usage

PrepareReportDatafromConfig(x.solution.decimal, data)

Arguments

x.solution.decimal

A numeric vector

data A list of main data from RunFIREVAT

Value

A list with following items:

- df.parametersA data.frame of FIREVAT Genetic Algorithm (GA) Parameters
- df.filter.cutoffsA data.frame of variant filtering cutoffs
- df.resultsA data.frame of objective values
- df.mutalisk.resultsA data.frame of mutational signature analysis results from Mutalisk

PrepareReportPlotsfromConfig

PrepareReportPlotsfromConfig

Description

Prepares report plots

Usage

PrepareReportPlotsfromConfig(x.solution.decimal, data)

Arguments

x.solution.decimal

A numeric vector

data

A list of main data from RunFIREVAT

Value

A list with following items:

- optimization.iter.plotA plot for the trend of objective value during iteraction
- refined.muts.seq.art.iter.plotA plot for showing sequencing artifact weights in refined variants
- artifactual.muts.seq.art.iter.plotA plot for showing sequencing artifact types in artifactual variants
- raw.muts.mutalisk.plotsA plot for mutalisk results of original variants
- refined.muts.mutalisk.plotsA plot for mutalisk results of refined variants
- artifactual.muts.mutalisk.plotsA plot for mutalisk results of artifactual variants
- original.vcf.stats.plotsA histogram for original VCF stats
- refined.vcf.stats.plotsA histogram for refined VCF stats
- $\bullet \ artifact.vcf.stats.plots A \ histogram \ for \ artifactual \ VCF \ stats \\$
- vcf.stats.boxplotsA plot for showing comparison results among VCF stats of original, refined and artifactual VCFs

 ${\tt ReadOptimizationIterationReport}$

ReadOptimizationIterationReport

Description

Read optimization iteration report

Usage

 ${\tt ReadOptimizationIterationReport(data)}$

Arguments

data

A list of main data from RunFIREVAT

Value

A data.frame of FIREVAT optimization logs

ReadVCF

ReadVCF

Description

Reads a .vcf file

Usage

```
ReadVCF(vcf.file, genome = "hg19")
```

Arguments

vcf.file (full path of a .vcf file) genome ('hg19' or 'hg38')

Value

A list with elements 'data', 'header', 'genome'

22 RunFIREVAT

```
ReportFIREVATResults ReportFIREVATResults
```

Description

Reports FIREVAT results in html format (generated from Rmd)

Usage

```
ReportFIREVATResults(x.solution.decimal, data, verbose = T,
  report.format = "html")
```

Arguments

```
x.solution.decimal
```

A numeric vector

data A list of main data from RunFIREVAT

verbose If true, provides process detail

report. format The format of FIREVAT report. In current version, we only support "html"

RunFIREVAT RunFIREVAT

Description

Runs FIREVAT using configuration data. Filters point mutations in the specified vcf. file based on mutational signature decomposition and outputs the refined and artifact vcf as well as metadata related to the refinement process.

Usage

```
RunFIREVAT(vcf.file, vcf.file.genome, config.file, df.ref.mut.sigs,
  target.mut.sigs, sequencing.artifact.mut.sigs, num.cores, output.dir,
  pop.size = 200, max.iter = 200, run = 50, pmutation = 0.25,
  verbose = TRUE)
```

Arguments

A data.frame of the reference mutational signatures

RunMutalisk 23

target.mut.sigs

A character vector of the target mutational signatures (from reference mutational signatures)

sequencing.artifact.mut.sigs

A character vector of the sequencing artifact mutational signatures (from refer-

ence mutational signatures)

num. cores Number of cores to allocate

output.dir String value of the desired output directory

pop.size Integer value of the Genetic Algorithm 'population size' parameter

max.iter Integer value of the Genetic Algorithm 'maximum iterations' parameter

run Integer value of the Genetic Algorithm 'run' parameter

pmutation Float value of the Genetic Algorithm 'mutation probability' parameter

verbose If true, provides process detail

Value

A list with the following elements

- x.solution.decimalA numeric vector of optimized parameter values
- data

RunMutalisk RunMutalisk

Description

Identifies mutational signatures using Mutalisk

Usage

```
RunMutalisk(vcf.obj, df.ref.mut.sigs, target.mut.sigs,
  random.sampling.candidate.mut.sigs = c(), method = "random.sampling",
  n.sample = 20, n.iter = 10, verbose = T)
```

Arguments

vcf.obj A list (from firevat_vcf::ReadVCF)

df.ref.mut.sigs

A data.frame of reference mutational signatures

target.mut.sigs

A character vector of target mutational signatures names to identify from

random.sampling.candidate.mut.sigs

A character vector of mutational signatures names that gets appended to the list of candidate mutational signatures so that these are always considered.

24 RunMutaliskHelper

method	A string value (must be either 'random.sampling' or 'all'). The method 'random.sampling' samples (without replacement) 'n.sample' number of signatures 'n.iter' number of times and runs the candidate signatures one last time. The method 'all' uses all target.mut.sigs
n.sample	An integer value ('random.sampling' method parameter) Number of signatures to choose for each iteration of random sampling).
n.iter	An integer value ('random.sampling' method parameter). Number of iterations to perform random sampling.
verbose	If true, provides process details

Value

A list with the following elements

- num.point.mutationsAn integer value count of total point mutations
- sub.typesA character vector of length 96
- sub.types.spectrumA numeric vector of length 96
- num.mut.sigsAn integer value (count of unique mutational signatures identified)
- · identified.mut.sigsA character vector where each element is a mutational signature identified
- identified.mut.sigs.probsA numeric vector where each element is the weight of mutational signature identified. The ordering follows identified.mut.sigs
- identified.mut.sigs.spectrumA numeric vector of length 96
- residualsA numeric vector of length 96
- rssA numeric value (residual sum of squares)
- cos.sim.scoreA numeric value (cosine similarity score between observed mutational spectrum and reconstructed mutational signatures)
- all.models.sigsA list where each element is a model; a model is a list of signatures identified)
- all.models.sigs.probsA list where each element is a model; a model is a list of contribution probabilities
- all.models.cos.sim.scoresA list where each element is a model; a model is a list of cosine similarity socres

kHelper <i>RunMutaliskHelp</i>	r	
111111111111111111111111111111111111111	•	

Description

Helper function for RunMutalisk

Usage

RunMutaliskHelper(vcf.trinucleotide.data, df.ref.mut.sigs, target.mut.sigs)

Arguments

```
vcf.trinucleotide.data
A data.frame (from firevat_mutalisk::MutaliskParseVCFObj)

df.ref.mut.sigs
A data.frame of reference mutational signatures

target.mut.sigs
A character vector of target mutational signatures names
```

Value

A list with the following elements

- num.point.mutationsAn integer value count of total point mutations
- sub.typesA character vector of length 96
- sub.types.spectrumA numeric vector of length 96
- num.mut.sigsAn integer value (count of unique mutational signatures identified)
- identified.mut.sigsA character vector where each element is a mutational signature identified
- identified.mut.sigs.probsA numeric vector where each element is the weight of mutational signature identified. The ordering follows identified.mut.sigs
- identified.mut.sigs.spectrumA numeric vector of length 96
- · residualsA numeric vector of length 96
- rssA numeric value (residual sum of squares)
- cos.sim.scoreA numeric value (cosine similarity score between observed mutational spectrum and reconstructed mutational signatures)
- all.models.sigsA list where each element is a model; a model is a list of signatures identified)
- all.models.sigs.probsA list where each element is a model; a model is a list of contribution probabilities
- all.models.cos.sim.scoresA list where each element is a model; a model is a list of cosine similarity socres

```
TriNuc.Mutation.Type.Hex.Colors

**Constant**
```

Description

Hex codes for the mutation types (for plotting purposes)

Usage

```
TriNuc.Mutation.Type.Hex.Colors
```

Format

An object of class character of length 6.

26 WriteVCF

```
UpdateFilterFromConfig
```

UpdateFilterFromConfig

Description

Update filter based on optim parameter values

Usage

```
UpdateFilterFromConfig(vcf.filter, param.values)
```

Arguments

vcf.filter A list from MakeFilterFromConfig

param. values A numeric vector contains filtering value (same length with length(vcf.config.filter))

Value

Updated vcf.filter (list)

WriteVCF

WriteVCF

Description

Writes a vcf.obj to a .vcf file

Usage

```
WriteVCF(vcf.obj, save.file)
```

Arguments

```
vcf.obj (from the function ReadVCF) save.file (full path including filename)
```

Index

```
*Topic datasets
                                               PCAWG.Likely.Sequencing.Artifact.Signatures,
    PCAWG.All.Sequencing.Artifact.Signatures,
                                               PCAWG.Possible.Sequencing.Artifact.Signatures,
    PCAWG.Known.Sequencing.Artifact.Signatures,
                                               PCAWG. Target. Mutational. Signatures, 12
    PCAWG.Likely.Sequencing.Artifact.Signatur@sotMutaliskResults, 12
                                               PlotMutationTypes, 13
    PCAWG.Possible.Sequencing.Artifact.SignatRhetOptimizationIterations, 14
                                               PlotSigsProbs, 15
    PCAWG. Target. Mutational. Signatures,
                                               PlotTable, 16
                                               PlotTriNucSpectrum, 16
    TriNuc.Mutation.Type.Hex.Colors,
                                               PlotVCFStatsBoxPlots, 17
        25
                                               PlotVCFStatsHistograms, 18
                                               PrepareReportDatafromConfig, 19
ComputeZScore, 3
                                               PrepareReportPlotsfromConfig, 20
ComputeZScoreEquiValue, 3
                                               ReadOptimizationIterationReport, 21
DecimalCeiling, 4
                                               ReadVCF, 21
                                               ReportFIREVATResults, 22
EnumerateTriNucCounts, 4
                                               RunFIREVAT, 7, 19–22, 22
                                               RunMutalisk, 12, 23
FilterVCFFromConfig, 5
                                               RunMutaliskHelper, 24
GetCOSMICMutSigs, 5
                                               TriNuc.Mutation.Type.Hex.Colors, 25
GetCOSMICMutSigsEtiologiesColors, 6
GetCOSMICMutSigsNames, 6
                                               UpdateFilterFromConfig, 26
GetOptimizedSignatures, 6
GetPCAWGMutSigs, 7
                                               WriteVCF, 26
GetPCAWGMutSigsEtiologiesColors, 7
GetPCAWGMutSigsNames, 8
InitializeVCFFromConfig, 8
MakeFilterFromConfig, 9
MutaliskParseVCFObj, 9
ParseConfigFile, 10
PCAWG.All.Sequencing.Artifact.Signatures,
PCAWG.Known.Sequencing.Artifact.Signatures,
        11
```