Graphes et structures de données pour les graphes

Graphes

- Un graphe est une paire (S,A), où
 - S est un ensemble de noeuds appelés sommets
 - A est un multi-ensemble de paires de sommets appelées arêtes
 - On peut voir les sommets et les arêtes comme des positions gardant des objets en mémoire

Exemple:

- □ Chaque sommet représente un aéroport et garde en mémoire le code de 3 lettres représentant cet aéroport
- □ Chaque arête représente une route aérienne entre deux villes et garde en mémoire le longueur de cette route

Types d'arêtes

- Arête orientée
 - □ Une paire ordonnée de sommets (u,v)
 - Le premier sommet u est appelé l'origine
 - Le deuxième sommet v est appelé la destination
 - Exemple: Un vol d'avion

- YUL AC 787 ORD
- YUL VOI ORD

1041

KM

- Arête non-orientée
 - □ Une paire non-ordonnée de sommets (u,v)
 - Une route aérienne
- Graphe orienté
 - Graphe dans lequel toutes les arêtes sont orientées
 - Réseau routier urbain (sens unique...)
- Graphe non-orienté
 - □ Graphe dans lequel toutes les arêtes sont non-orientées
 - Réseau des routes aériennes

Terminologie

- Extrémités d'une arête
 - Les sommets U et V sont les extrémités de l'arête a
- Arêtes incidentes à un sommet
 - Les arêtes a, b et d sont incidentes au sommet ∨
- Sommets adjacents
 - □ Deux sommets sont adjacents s'ils sont reliés par une arête. Ex: les sommets U et V sont adjacents
- ODegré d'un sommet
 - Le degré d'un sommet est le nombre d'arêtes adjacentes à ce sommet. Ex: le degré du sommet V est 3.

- OArêtes multiples: h et i
- Boucle
 - Une boucle est une arête ayant deux fois le même sommet comme extrémité. Ex: j est une boucle
 - □ Lorsqu'on compte le degré d'un sommet une boucle compte pour 2

Terminologie (suite)

Chemin

- Séquence alternante de sommets et d'arêtes
- □ Commence dans un sommet
- Se termine dans un sommet
- Dans le séquence, chaque arête se trouve entre ses extrémités

Chemin simple

Chemin dans lequel tous les sommets et toutes les arêtes visités sont différents

Exemples:

- \square $P_1 = (V,b,X,h,Z)$ est un chemin simple
- \blacksquare P₂=(U,c,W,e,X,g,Y,f,W,d,V) n'est pas un chemin simple

Terminologie (suite)

- Cycle
 - Un cycle est un chemin commençant et se terminant dans le même sommet
- Cycle simple
 - □ Cycle dans lequel tous les sommets et toutes les arêtes visités sont différents
- Exemples:
 - $\square C_1 = (V,b,X,g,Y,f,W,c,U,a,V)$ est un cycle simple
 - \square $C_2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)$ n'est pas un cycle simple

Quelques propriétés

Propriété 1:

$$\sum_{s \in S} deg(s) = 2m$$

Preuve: chaque arête est comptée deux fois

Notations:

n nombre de sommets

m nombre d'arêtes

deg(s) degré du sommet s

Propriété 2:

Dans un graphe non-orienté n'ayant aucune boucle ou arête multiple, on a

$$m \leq \frac{n(n-1)}{2}$$

Preuve: chaque sommet a un degré d'au plus n-1

Exemple

$$n = 4$$

$$_{\rm V} \ \, m = 6$$

$$_{v}$$
 deg(v) = 3

Opérations principales du TAD graphe

Les sommets et les arêtes

- v sont des positions
- y garde en mémoire des éléments

Opérations

- extrémités(e): une liste des extrémité de e
- opposé(v, e): l'extrémité de e différente de v
- sontAdjacente(v, w): vrai ssi v et w sont adjacentes
- v remplace(v, x): remplace l'élément du sommet v par x
- remplace(e, x):remplace l'élément de l'arête e avec x

Opérations de mise à jour

- insérerSommet(o): insère un sommet isolé contenant l'élément o
- InsérerArête(v, w, o): insère une arête (v,w) gardant en mémoire l'élément o
- enlèveSommet(v): enlève le sommet v (et les arêtes adjacentes)
- v enlèveArête(e): enlève l'arête e

Opérations retournant un itérateur

- incidentes(v): retourne un itérateur des arêtes incidentes au sommet v
- sommets(): retourne un itérateur des sommets du graphe
- arêtes(): retourne un itérateur des arêtes du graphe

Graphes: Intro

Structures de données pour les graphes

1. Liste d'arêtes

- oun noeud S pour chaque sommet contenant
 - élément gardé en mémoire par le noeud
 - Pointeur vers la position du noeud dans la séquence de noeuds

- oun noeud A pour chaque arête contenant
 - élément gardé en mémoire par l'arête
 - □ pointeur vers le noeud S contenant l'origine de l'arête
 - pointeur vers le noeud S contenant la destination de l'arête
 - pointeur vers la position du noeud dans la séquence de noeud A

Structures de données pour les graphes (suite)

2. Liste d'adjacence

- généralise la structure liste d'arête dans le sens suivant:
 - On a une nouvelle séquence, la séquence d'indidence et chaque noeud S a maitenant un pointeur vers les arêtes incidentes
 - chaque noeud A a maintenant des pointeurs vers les positions de ses extrémités dans la séquence d'adjacence

Structures de données pour les graphes (suite)

3. Matrice d'adjacence

- généralise la structure liste d'arête dans le sens suivant:
 - Chaque noeud S garde en mémoire un entier désignant la position du sommet dans la séquence
 - Matrice d'adjacence. En (i,j) pointeur vers l'arête reliant les sommets i et j ou Ø si les sommets ne sont pas adjacents

Performance

n sommets, m arêtes aucune arête-multiple aucune boucle	Liste Arêtes	Liste d'adjacence	Matrice d'adjacence
Espace	n+m	n + m	n ²
incidences(v)	m	$\deg(v)$	n
sontAdjacent(v,w)	m	$\min(\deg(v), \deg(w))$	1
insèreSommet(o)	1	1	n ²
insèreArête(v, w, o)	1	1	1
enlèveSommet(v)	m	$\deg(v)$	n^2
enlèveArête(e)	1	1	1

Graphes: Intro