

Fachbereich Informatik
Dr. Marco Hülsmann

Numerische Mathematik 1 Übungsblatt 14, WS 2019/20

- Musterlösungen -

Aufgabe 1 (Householder-Spiegelungen)

Sei n der Normalenvektor einer Spiegelungsebene. Die Householder-Spiegelung ist gegeben durch die Matrix $H=E_m-2nn^T$. Zeigen Sie:

- a) Die Matrix $P=E_m-nn^T$ beschreibt tatsächlich eine Projektion auf die Spiegelungsebene. Daher ist H auch tatsächlich eine Spiegelungsmatrix.
- **b)** H ist orthogonal.

Musterlösung:

a) Um den Vektor x orthogonal auf die Ebene zu projizieren, wähle $\lambda \in \mathbb{R}$ so, daß $\langle n, x - \lambda n \rangle = 0$. Dies ist wegen $\langle n, n \rangle = 1$ genau dann der Fall, wenn $\lambda = \langle n, x \rangle$. Es gilt

$$Px = (E_m - nn^T)x = x - n(n^Tx) = x - n\langle n, x \rangle = x - \lambda n$$

also ist Px tatsächlich die orthogonale Projektion von x auf die Ebene.

b) Es gilt

$$H^{T}H = (E_{m} - nn^{T})^{T}(E_{m} - nn^{T}) = E_{m}^{T}E_{m} - 2nn^{T}E_{m} - E_{m}^{T} \cdot 2nn^{T} + (2nn^{T})^{T} \cdot 2nn^{T}$$
$$= E_{m} - 4nn^{T}E_{m} + 4n\underbrace{n^{T}n}_{=1}n^{T} = E_{m}$$

Aufgabe 2 (QR-Zerlegung)

Sei $A \in \mathbb{R}^{n \times n}$ eine reguläre Matrix und LR eine Cholesky-Zerlegung von A^TA . Zeigen Sie, daß QR mit $Q = A(L^T)^{-1}$ eine QR-Zerlegung von A ist. Bestimmen Sie damit die QR-Zerlegung der Matrix

$$A = \left(\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right)$$

Musterlösung:

Es gilt

$$QR = A(L^T)^{-1}L^T = A$$

da $A^TA = LR = LL^T$, also $R = L^T$. Beachte, daß nur eine Choslesky-Zerlegung von A^TA in Betracht kommt, da diese stets positiv definit ist, und A nicht notwendigerweise.

Es gilt

$$A^T A = \left(\begin{array}{cc} 5 & 1\\ 1 & 2 \end{array}\right)$$

Die Cholesky-Zerlegung ist gegeben durch $A^TA = LL^T$ mit

$$L = \begin{pmatrix} \sqrt{5} & 0 \\ \frac{1}{\sqrt{5}} & \frac{3}{\sqrt{5}} \end{pmatrix}$$

Die QR-Zerlegung von A ist somit gegeben durch

$$R = L^T = \begin{pmatrix} \sqrt{5} & \frac{1}{\sqrt{5}} \\ 0 & \frac{3}{\sqrt{5}} \end{pmatrix}$$

und

$$Q = A(L^T)^{-1} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{1}{3\sqrt{5}} \\ 0 & \frac{1}{3}\sqrt{5} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$