CSE251: ASSIGNMENT-2

Full Marks: 60

1. [CO3]

- a) **Design** a circuit using OP-Amp that follows the VTC shown in Figure 01.
- b) Draw the waveform of V_0 when $V_{in} = 2\sin(\omega t)$

2. [CO2]

a.

b.

Determine R₁ for the circuit shown above

Determine V₀ for the circuit shown above

3. [CO2]

Consider the circuit shown in Figure 02 Determine the diode current I_D and diode voltage V_D for

a)
$$V_{Do} = 0.6v$$

b)
$$V_{Do} = 0.3v$$

Figure 02

4. [CO2]

Analyze the circuit shown in figure-03 to Find I_{D1}

and I_{D2} for

a) R = $100K\Omega$ and

b) R = 0.02 KΩ

Use CVD model with $V_{Do} = 0.7v$.

[Validate assumptions]

Figure 03

5. [CO2]

Figure 04

The saturation voltages of the diode are given as $V_s^+ = 10V$ and $V_s^- = -10V$. Assume $V_{DO} = 0.7V$

- a) Determine the operating state of the diode. You must validate your assumption.
- b) Calculate the value of V_a and V_o .

6. [CO1] **Draw** the I-V characteristics of a diode for Ideal, CVD and CVD+R model and show equivalent circuit for each model.