Learning Objectives

In this tutorial, you will practice doing calculations and proofs related to linear transformations and change-of-basis.

Before attending the tutorial, you should be able to write a complete mathematical definition of the following key words and concepts:

- The \mathcal{B} -coordinates of a vector $v \in V$, given a finite-dimensional vector space V and an ordered basis \mathcal{B} of V, and the coordinate isomorphism $\gamma_{\mathcal{B}}: V \to F^{\dim V}$.
- The change of basis matrix $[I]_{\mathcal{A}}^{\mathcal{B}}$ given two bases \mathcal{A}, \mathcal{B} of V.
- The matrix $[T]_{\mathcal{A}}^{\mathcal{B}}$ of a linear transformation $T: V \to W$, given a basis \mathcal{A} of V and a basis \mathcal{B} of W.

The relevant definitions can be found in the textbook Damiano and Little, Chapter 2.7.

Problems

1. Let $A = \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}$, and consider the bases

$$\mathcal{E} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \quad \text{and} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\}$$

of the vector space $M_{2\times2}$ of 2×2 matrices. ¹

- (a) Find $[I_2]_{\mathcal{E}}$ and $[A]_{\mathcal{E}}$. (Recall, for example, $[I_2]_{\mathcal{E}}$ is the coordinate vector of I_2 relative to the ordered basis \mathcal{E} for $M_{2\times 2}$.)
- (b) Find $[I_2]_{\mathcal{B}}$ and $[A]_{\mathcal{B}}$.
- (c) Find a basis \mathcal{C} of $M_{2\times 2}$ such that $[A]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.
- (d) Find a matrix C such that $C[B]_{\mathcal{B}} = [B]_{\mathcal{C}}$ for all B in $M_{2\times 2}$.
- (e) Find a matrix D such that $D[B]_{\mathcal{C}} = [B]_{\mathcal{E}}$ for all B in $M_{2\times 2}$.
- (f) Find a matrix F such that $F[B]_{\mathcal{B}} = [B]_{\mathcal{E}}$ for all B in $M_{2\times 2}$.
- (g) Draw a diagram relating the linear transformations corresponding to the matrices F, C and D.
- 2. Consider the bases $\mathcal{E}=(\vec{e}_1,\vec{e}_2)$ and $\mathcal{B}=(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\1\end{bmatrix})$ of \mathbb{R}^2 . Suppose $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation defined by $T[v]_{\mathcal{E}}=\begin{bmatrix}1&2\\0&-1\end{bmatrix}[v]_{\mathcal{E}}$.

¹Part of this problem appeared on Tutorial 4 already, you may use your results from the previous tutorial.

- (a) Find the change of basis matrices $C_1 = [I]_{\mathcal{B}}^{\mathcal{E}}$ and $C_2 = [I]_{\mathcal{E}}^{\mathcal{B}}$. Explain how they are related.
- (b) Use composition of maps to construct a linear transformation that takes in $[\vec{v}]_{\mathcal{B}}$ as input and gives $[T\vec{v}]_{\mathcal{B}}$ as output.
- (c) Compute a matrix for $[T]_{\mathcal{B}}^{\mathcal{B}}$ using your answer in previous part.
- (d) Compare your answer in the previous part to the matrix

$$\left[[T(\begin{bmatrix} 1 \\ 1 \end{bmatrix})]_{\mathcal{B}}, [T(\begin{bmatrix} -1 \\ 1 \end{bmatrix})]_{\mathcal{B}} \right].$$

- 3. Let V and W be n and m dimensional F-vector spaces and let \mathcal{B} and \mathcal{A} be bases for V and W respectively. Let $\gamma_{\mathcal{B}}: V \to F^n$ and $\gamma_{\mathcal{A}}: W \to F^m$ denote the coordinate isomorphisms. Let $S: V \to W$ be a linear transformation.
 - (a) Prove that $\gamma_{\mathcal{B}}$ maps $\operatorname{Ker} S$ onto $\operatorname{null}[S]_{\mathcal{B}}^{\mathcal{A}}$ and $\gamma_{\mathcal{A}}$ maps $\operatorname{im} S$ onto $\operatorname{col}[S]_{\mathcal{B}}^{\mathcal{A}}$.
 - (b) Conclude that $\operatorname{null}[S]_{\mathcal{B}}^{\mathcal{A}} \cong (\ker S)$ and $\operatorname{col}[S]_{\mathcal{B}}^{\mathcal{A}} \cong \operatorname{im} S$ are isomorphisms.
 - (c) Write a statement that connects rank and nullity of $[S]_{\mathcal{B}}^{\mathcal{A}}$ to the kernel and image of S.

²Recall the definitions of nullspace and the column space of a matrix from MAT 223.

coordinates back to a matrix in Mexico using C.

Mexico Description Report Company C. (Q2. (a) To find the change of basis matrix from \mathcal{E} to \mathcal{B} , $e_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1$ ez=[1]==[1]+=[-1]==b,+=b2 C, = [te] le] = [=] = [=] which to the change of basis from b, = [1] = [0] + [1] = e, + e2. b. = [+] = - [+] + [] = -e, + ez C2 = [[b,] & [b] JE] = [|] which is the charge of basis from C, and C2 are inverse matrix which. cb)·[3]_B = ->[3]_E · /:/K2 ->/R2 · [77]2 - C1>[77]B Therefore, the lin. trans. S=C1. T.C2. (c) To final. ITIB, we need to compute I applied to each back vector of B TU,) = TU[;]) = []]. T(b2) = T([]])= [-1]. \overline{L} T(b2) $\overline{L}_B = \overline{L}_1 = \overline{L}_1$ (d) We have [T(b)] IB= [-1]. [T(b)] IB=[-1]. Therefore [ITI]]B, ITI[,']]B] = [-2-,], which confirm to answer for (c).

