Table S1. List of atom types and parameters of MedusaScore.

Name	Description	VDW parai	meters	EEF1 Para	meters							
	•	E σ(Å)		Vol (Å ³)	ΔG^{free}	λ(Å)	r (Å)					
		(kcal/mol)	` '	, í	(kcal/mol)	, ,	` '					
	Hydrogen											
_H*	Hydrogen	0.00000	0.00000	0.00	0.00	0.00	0					
Carbon												
\mathbb{C}^*	Carbonyl carbon	0.12000	3.74177	14.70	0.00	3.50	2.100					
_CR*	Carbon with no hydrogens	0.12000	3.74177	8.30	-1.40	3.50	2.100					
_CH1E*	Extended aliphatic carbon with 1 H	0.04860	4.21395	14.70	0.00	3.50	2.490					
_CH2E*	Extended aliphatic carbon with 2 H	0.11420	3.98232	22.40	0.52	3.50	2.235					
_CH3E*	Extended aliphatic carbon with 3 H	0.18110	3.85759	30.00	1.50	3.50	2.165					
_CR1E*	Extended aromatic carbon with 1 H	0.12000	3.74177	18.40	0.08	3.50	2.100					
Oxygen bonded to one heavy atom												
_OC*	Carboxyl oxygen	0.21000	2.85088	10.80	-10.00	6.00	1.6					
_O*	Carbonyl oxygen	0.15910	2.85088	10.80	-5.85	3.50	1.6					
_OH1*	Hydroxyl oxygen	0.15910	2.85088	10.80	-6.70	3.50	1.6					
_OPO	Oxygen in phosphate	0.21000	2.85088	10.80	-10.00	6.00	1.6					
_ONO	Oxygen in O-N-O bond	0.15910	2.85088	10.80	-3	3.50	1.6					
_ON	Oxygen bonded to a nitrogen atom, other cases	0.15910	2.85088	10.80	-3.000	3.50	1.6					
_ONH	Oxygen bonded to a nitrogen atom with 1 H	0.15910	2.85088	10.80	-3.000	3.50	1.6					
_OS	Oxygen in sulfone group	0.21000	2.85088	10.80	-10.00	6.00	1.6					
Oxygen bonded to two heavy atoms												
_OCC	Ether oxygen	0.15910	2.85088	4.467	-4.0	3.5	1.6					
_OCP	Phosphoric acid ester O	0.15910	2.85088	4.467	-4.0	3.5	1.6					
_OCN	Oxygen in C-O-N group	0.15910	2.85088	4.467	-4.0	3.5	1.6					
		rogen bonde	ed to one he	eavy atom								
_NC	Nitrile nitrogen	0.23840	2.85088	11.20	-5	3.5	1.6					
_NC2*	Guanidinium nitrogen	0.23840	2.85088	11.20	-10.00	6.00	1.6					
_NH2*	Nitrogen bonded to 2 H	0.23840	2.85088	11.20	-7.80	3.50	1.6					
_NH3*	Nitrogen bonded to 3 H	0.23840	2.85088	11.20	-20.00	6.00	1.6					
_NNH2	Nitrogen bonded to a nitrogen and 2 H	0.23840	2.85088	11.20	-6.00	3.5	1.6					
_NS	Nitrogen bonded to S	0.23840	2.85088	4.4	-4.00	3.50	1.6					
	Nit	rogen bonde	d to two he	avy atoms								
_NH1*	Amide nitrogen	0.23840	2.85088	4.4	-8.90	3.50	1.6					
_NR*	Aromatic nitrogen with no H	0.23840	2.85088	4.4	-4.00	3.50	1.6					
_NCCH2	Quaternary ammonium nitrogen with 2 H	0.23840	2.85088	4.4	-6.00	3.50	1.6					
_NCN	Nitrogen bonded to a carbon and a nitrogen	0.23840	2.85088	4.4	-4	3.5	1.6					
_NCNH	Nitrogen bonded to a carbon and a nitrogen with 1 H	0.23840	2.85088	4.4	-4	3.5	1.6					
_NNN	Nitrogen bonded to a two nitrogens	0.23840	2.85088	4.4	0	3.5	1.6					
_NXO	Nitrogen bonded to oxygen	0.23840	2.85088	4.4	-4	3.5	1.6					
_NXSO	Nitrogen in sulfamide group	0.23840	2.85088	4.4	-10	6	1.6					
_NXPO	Nitrogen in Phosphoramidite group	0.23840	2.85088	4.4	-10	6	1.6					

Yin et al. MedusaScore: An Accurate Force-Field Based Scoring Function for Virtual Drug Screening

Nitrogen bonded to three heavy atoms												
_N*	Proline nitrogen	0.23840	2.85088	0	-1.55	3.50	1.6					
_NOOO	Nitrogen bonded to 3 O	0.23840	2.85088	0	0	3.5	1.6					
_NCCCH	Quaternary ammonium nitrogen with 1 H	0.23840	2.85088	0	-5	3.5	1.6					
_NXX-	Other amine nitrogen	0.23840	2.85088	0	0	3.5	1.6					
_NXX-H	Other quaternary ammonium nitrogen with 1 H	0.23840	2.85088	0	0	3.5	1.6					
_NXXSO	Nitrogen in sulfamide group	0.23840	2.85088	0	-10	6	1.6					
_NXXPO	Nitrogen in Phosphoramidite group	0.23840	2.85088	0	-10	6	1.6					
Nitrogen bonded to four heavy atoms												
_NXXXX	Other quaternary ammonium nitrogen	0.23840	2.85088	0	0	3.5	1.6					
		S	ulphur									
_SC	Sulphur in S=C group	0.04300	3.36760	14.70	-3	3.50	1.89					
_SH1E [*]	Extended sulfur with 1 H	0.04300	3.36760	21.40	-2.70	3.50	1.89					
_S*	Sulfur in disulphide bond	0.04300	3.36760	14.70	-4.10	3.50	1.89					
_SOXX	Sulphur in sulfinyl group	0.04300	3.36760	7.77	-8	3.5	1.89					
_SXXXX	Other sulfur attached to 4 heavy atoms	0.04300	3.36760	7.77	0	3.5	1.89					
		Pho	sphorous									
_PXXXX	All phosphorous attached to 4 heavy atoms	0.314	3.6	0	0	3.5	2.02					
		Halo	gen atoms									
_FX	Fluorine	0.109	2.94	6.07	0	3.5	1.65					
_ClX	Chlorine	0.314	3.5	18.1	0	3.5	1.96					
_BrX	Bromine	0.434	3.7	26	0	3.5	2.07					
_IX	Iodine	0.623	3.96	30.2	0	3.5	2.22					
* Original EE	F1 types. The parameter	s are from the	e original El	EF1 model (Lazaridis and	Karplus 1	999).					

 Table S2.
 MedusaScore calculation results using PDBBind core set.

PDBID	n	n _c	pk _d	О	riginal Structu	re	Energy Minimized Structure				
				Total Score	VDWR term	VDWR	Total Score	VDWR term	VDWR		
						excluded			excluded		
						Score			Score		
10gs	33	11	6.40	-22.9113	6. 23369	-28. 3645	-24. 3789	4. 73336	-28. 5196		
1a07	34	5	6.40	-13. 2234	5. 62081	-18. 1405	-17. 4475	3. 48621	-20. 4972		
1a08	41	11	5.62	-25. 8617	5. 1007	-30. 3238	-26. 0411	5. 66988	-31. 0011		
1a30	26	10	4.30	-14. 211	6. 29866	-19. 7211	-14. 1736	6. 20064	-19. 5979		
1a69	19	8	5.30	-13.8989	6. 27714	-19. 3901	-13. 9696	5. 58126	-18. 8521		
1a94	60	19	7.85	-42.8708	14. 5851	-55. 6298	-43. 072	14. 2683	-55. 5539		
1abf	11	7	5.42	-15. 9868	3. 1755	-18. 7647	-16. 7407	2. 90768	-19. 2843		
1ai5	13	4	3.72	-12. 7813	6. 73285	-18.6712	-12. 7962	6. 57268	-18. 546		
1ajp	12	5	2.23	-2. 37437	12.6899	-13.4755	-2.9719	11. 3353	-12.888		
1ajq	9	3	4.31	-6. 14428	6. 44885	-11. 7857	-5. 48733	6. 77782	-11. 4166		
1apw	35	9	8.00	-39. 2021	4. 75028	-43. 3576	-39. 6527	4. 79643	-43. 8486		
1avn	8	2	3.90	-1.81941	0. 698694	-2. 43063	-1.88149	0. 705845	-2. 49896		
1ax0	15	6	3.13	-13. 2804	5. 79579	-18. 3506	-14. 3394	4. 40865	-18. 1961		

Yin et al. MedusaScore: An Accurate Force-Field Based Scoring Function for Virtual Drug Screening

1b11	33	7	7.39	-25. 4803	3. 55969	-28. 5943	-25. 5714	3. 39406	-28. 5405
1b42	11	6	4.01	1. 7187	11. 5678	-8. 40081	-2.41557	7. 32621	-8. 82454
1b7h	27	12	8.02	-28. 1344	6.89242	-34. 1639	-28. 7627	6. 99306	-34. 8802
1b9j	27	10	5.96	-28. 4242	4. 5654	-32. 418	-28. 8635	4. 24219	-32. 5746
1bhf	45	11	4.38	-21. 1725	6. 79376	-27. 1157	-20.0714	6. 32552	-25. 605
1bky	9	6	3.84	-3. 11589	6. 07293	-8. 42849	-4. 53491	4. 92029	-8. 83918
1bma	37	10	4.59	-29. 6849	14. 5912	-42. 4493	-31. 2638	12. 4524	-42. 1572
1bra	9	5	1.82	-7. 32919	3. 10638	-10. 0467	-7. 21598	3. 08076	-9. 91103
1bxo	44	13	10.00	-42. 3088	8. 36573	-49. 6271	-42. 9142	7. 86705	-49. 7963
1c5o	9	4	3.49	-10. 7403	1. 8478	-12. 3568	-10. 7524	1. 77345	-12. 3038
1c6y	45	15	9.51	-34. 7688	21. 0309	-53. 1666	-34. 4322	20. 2192	-52. 12
1d7j	6	2	3.30	-10. 4357	2. 564	-12. 6787	-10. 8866	2. 15202	-12. 7692
1det	24	6	4.30	-20. 8348	2. 06311	-22. 6396	-20. 3358	2. 38985	-22. 4264
1dhi	33	6	7.26	-26. 8817	2. 8613	-29. 3848	-27. 3311	2. 49618	-29. 5148
1dhj	33	7	6.55	-29. 1356	2. 08833	-30. 9625	-29. 5053	1. 68751	-30. 9815
1drj	10	8	7.40	-18. 8381	6. 34247	-24. 3865	-19. 7398	5. 97102	-24. 9632
1drk	10	9	6.82	-19. 9835	6. 9482	-26.0618	-21. 4855	5. 2896	-26. 1128
1e1v	18	5	4.92	-12. 8342	9. 97303	-21. 5586	-12. 2417	10. 1846	-21. 1512
1e2k	18	6	4.94	-19. 6487	11. 5399	-29. 7438	-20. 4001	11. 4662	-30. 4307
1e2l	18	6	4.29	-20. 7804	9. 81847	-29. 3696	-21. 4932	8. 64472	-29. 0556
1e2p	15	8	4.57	-20. 7917	4. 55935	-24. 7802	-20. 6857	4. 81473	-24. 8976
1e3v	28	3	4.34	-21. 1855	5. 36672	-25. 8803	-22. 0201	4. 2953	-25. 7776
1e4h	12	3	8.41	-22. 8977	3. 10868	-25. 6172	-23. 8444	2. 29366	-25. 8509
1e5a	10	2	7.64	-18. 115	4. 05319	-21. 6607	-17. 8288	3. 36173	-20. 7696
1e66	21	7	9.89	-31. 5818	10. 9755	-41. 1832	-33. 4369	9. 05167	-41. 3553
1e6q	14	9	3.15	-14. 9177	8. 09191	-41. 1832 -21. 9965	-13. 8602	8. 72395	-41. 3555 -21. 4919
1e6s	13	10	3.22	-4. 00972	13. 0092	-21. 9903 -15. 3902	-4. 40066	12. 0833	-14. 9711
1e70	11	6	3.05	-4. 00 <i>9</i> 72	12. 6201	-13. 3902 -17. 6067	-6. 54459	12. 2818	-17. 2887
1eed	45	12	4.79	-32. 8573	10. 8996	-42. 3923	-32. 6213	10. 6186	-41. 9105
1ela	32	6	6.36	-32. 8373 -31. 8415	5. 52013	-42. 3923 -36. 6705	-32. 0213 -30. 2224	5. 19274	
1elb	33	14	7.15	-31. 8415 -13. 0827	19. 2842	-30. 6705 -29. 9525		18. 5621	-34. 765 -29. 3775
	22	12	6.89	-0.660312	31. 4696	-29. 9525 -28. 1899	-13. 1394 -7. 66156	26. 5683	
1epv 1ets	37	11	8.22					1	-30. 9035
1ets	30	8	5.89	-32. 7926 -10. 0700	10. 1392	-41. 6624 -20. 5003	-33. 6358 -20. 0102	8. 6949	-41. 2421 -20. 0005
1f3e	14	4	6.70	-19. 9799	10.883	-29. 5003	-20. 0192 -19. 4213	10. 3696	-29. 0905
113e 1f4e	18	6	2.96	-18.8504	1. 22294	-19. 9202		0. 753037	-20. 0801
114e 1f4f	29	7	4.62	-10. 2333 7. 26225	4. 60259	-14. 2596	-11. 5384 7. 02001	2. 92885	-14. 1006
		8		-7. 36325	8. 17637	-14. 5159	-7. 93091	7. 36125	-14. 3705
1f4g	34		6.48	-13.9983	8. 99717	-21.869	-15. 2508	7. 5033	-21. 8147
1f5k	9	3	3.74	-11. 5466	1. 98979	-13. 2873	-11. 5774	1. 98244	-13. 3116
1fcx	29	6	7.19	-46. 0942	8. 58078	-53. 6007	-46. 9729	7. 75144	-53. 7539
1fcz	27	6	9.22	-43. 2333	8. 81217	-50. 9422	-44. 7126	7. 88582	-51. 6111
1fd0	30	6	8.40	-46. 1768	9. 65782	-54. 6255	-46. 8002	8. 65705	-54. 3734
1fh7	18	9	5.24	-20.8123	8. 50225	-28. 2501	-20. 0142	8. 80695	-27. 7185
1fh8	17	6	6.89	-22.8642	5. 11895	-27. 3423	-22. 4124	4. 77792	-26. 5921
1fh9	20	13	6.43	-20. 6357	9. 62528	-29. 0559	-19.6101	9. 82132	-28. 2018
1fkb	65	7	9.70	-43. 2397	4. 15745	-46. 8766	-43. 9743	3. 69656	-47. 2081
1fki	31	6	7.00	-30. 944	3. 33363	-33. 8603	-31. 7386	2. 67892	-34. 0821
1fo0	70	25	5.59	-60.0605	22. 7777	-79. 9864	-66. 9518	20. 0419	-84. 4845

Yin et al. MedusaScore: An Accurate Force-Field Based Scoring Function for Virtual Drug Screening

1ftm	13	8	7.61	-18.8941	4. 23066	-22. 5951	-19. 3138	3. 69963	-22.5502
1fzk	68	13	8.40	-53. 1741	10.8055	-62. 6268	-55. 0908	10. 3529	-64. 1475
1fzm	68	19	7.70	-60. 2877	8. 8434	-68. 0239	-63. 632	8. 16893	-70. 7782
1g85	9	2	5.48	-19. 7552	2. 99211	-22. 3727	-19. 1276	3. 27621	-21. 9936
1ghz	19	5	4.80	-18.6604	0.869449	-19. 421	-17. 6991	0. 607765	-18. 2308
1gni	20	4	8.07	-33. 3466	7. 91667	-40. 2721	-34. 1276	8.00605	-41. 1313
1gpk	18	5	5.37	-23. 9615	4. 21682	-27. 6504	-23. 419	5. 21047	-27. 9771
1gt1	15	4	6.00	-13. 4866	15. 6336	-27. 1629	-12. 3453	16. 1322	-26. 4577
1gz9	33	8	3.57	-17. 2258	7. 58717	-23. 8631	-19. 5574	6. 29697	-25. 066
1gzc	23	7	3.28	-6. 83293	8. 56511	-14. 3257	-9. 04124	7. 95077	-15. 9966
1h23	36	8	8.35	-46. 5509	9. 89606	-55. 208	-48.8404	7. 5735	-55. 4657
1ha2	23	3	5.54	-14. 4526	13. 873	-26. 5887	-11.668	16. 0914	-25. 7448
1hi3	27	5	4.19	-9. 61489	2. 86326	-12. 1197	-11. 1412	2. 38862	-13. 2308
1hi4	27	12	4.49	-3. 69047	13. 0809	-15. 1336	-6. 11979	11. 2158	-15. 9314
1hi5	27	9	4.04	-10. 8019	3. 72532	-14. 0608	-13. 2119	2. 98004	-15. 8188
1hk4	24	8	5.31	-12.8951	18. 3521	-28. 9495	-15. 72	14. 7776	-28. 6474
1hmr	20	3	6.55	-33. 0268	2. 70236	-35. 3908	-33. 4005	2. 72513	-35. 7844
1hms	20	3	6.37	-32. 9952	1. 92716	-34. 6811	-33. 316	1. 90576	-34. 9832
1hmt	20	3	5.79	-34. 6804	1. 63042	-36. 1067	-35.844	1. 23694	-36. 9261
1hn2	15	3	6.00	-15. 5722	13. 3219	-27. 2262	-14. 4333	13. 9815	-26. 6643
1hsh	45	7	8.61	-48. 153	10. 5067	-57. 3443	-49. 3211	9. 12475	-57. 3034
1i80	10	7	6.41	-15. 1546	3. 98773	-18. 6431	-14. 9855	3. 86243	-18. 3644
1igj	37	9	10.00	-27. 3782	6. 4241	-32. 998	-26. 9948	6. 68328	-32. 8413
1is0	47	11	7.00	-24. 3881	9. 04984	-32. 3049	-23. 0695	9. 28604	-31. 1929
1ivp	59	18	7.52	-30. 3407	29. 3773	-56. 04	-32. 2949	26. 3639	-55. 358
1izi	50	13	6.59	-45. 9258	13. 3516	-57. 6058	-46. 5284	12. 9741	-57. 8781
1j07	36	7	7.68	-23.8082	5. 47476	-28. 5975	-23. 8752	5. 41835	-28. 6152
1j17	34	12	5.22	-24. 4732	15. 8557	-38. 3438	-25. 3442	13. 9504	-37. 548
1j8v	23	11	3.61	-16. 4665	11.961	-26. 93	-14. 8111	12. 3942	-25. 6535
1jq9	47	15	8.45	23. 1564	60. 6111	-29.8662	23. 9281	58. 7145	-27. 4353
1jqd	26	8	5.16	-12.2498	5. 9302	-17. 4375	-11.7208	6. 79916	-17.6687
1jqe	28	11	6.44	-21.4092	27. 6621	-45. 608	-26. 2048	22. 1633	-45. 5933
1jys	10	4	3.52	-5. 75427	2.8097	-8. 2122	-5. 89351	2. 57121	-8. 1428
1k9s	20	6	6.52	-20.8448	2.77402	-23. 2715	-20. 7727	2. 9305	-23. 3363
1kpm	31	9	5.80	-26. 4194	23. 4761	-46. 9563	-27. 171	22. 6268	-46. 9649
1kv5	9	8	4.22	-5. 84976	4. 88779	-10. 1256	-5. 35225	5. 25377	-9. 94825
112s	19	5	4.59	-10.4645	4. 03179	-13. 9915	-10. 2817	4. 03915	-13. 8151
1183	6	1	3.40	-6. 57812	6. 66523	-12. 4089	-6. 58554	6. 38569	-12. 1717
11af	12	7	7.85	-15.8596	3. 67607	-19. 0754	-16. 4985	3. 08901	-19. 2008
11ag	11	7	6.30	-8. 1105	6. 30465	-13. 6258	-9. 0564	5. 5402	-13. 903
11ah	9	4	7.52	-12.6728	2. 62236	-14. 9668	-13. 3635	2. 05133	-15. 158
11i3	8	3	4.25	-13. 1258	4. 63147	-17. 1774	-12.9	4. 84937	-17. 1422
11kk	46	9	6.85	-29.909	4. 90532	-34. 2002	-34. 7528	4. 22099	-38. 4453
1lkl	42	12	5.81	-24. 765	4. 77524	-28. 9424	-25. 4584	4. 35846	-29. 2712
1loq	21	10	3.70	-25. 5124	5. 07239	-29. 9497	-26. 4679	4. 95587	-30. 8033
1los	21	9	7.19	-20. 5412	4. 82697	-24. 7638	-22. 4657	4. 20846	-26. 1473
11zq	50	18	8.39	-30. 1619	28. 1906	-54. 823	-32. 0394	24. 9062	-53. 8273
1m0n	25	15	2.22	-19. 4047	15. 7242	-33. 1602	-19. 1165	15. 3026	-32. 5032
				i			1		

Yin et al. MedusaScore: An Accurate Force-Field Based Scoring Function for Virtual Drug Screening

1m0o	24	15	2.31	-23.645	12. 5274	-34. 604	-24. 674	11. 0342	-34. 3267
1m0q	22	12	2.96	-22. 2907	8. 75	-29. 9452	-25. 1879	6. 92345	-31. 2445
1m2q	20	6	6.10	-13.4983	11. 9092	-23. 9165	-14. 2252	10. 3183	-23. 2516
1m2r	20	10	6.46	-15. 5909	8. 59354	-23. 1085	-15. 2846	8. 54944	-22. 7637
1m7i	56	12	5.40	-33. 5486	6. 87656	-39. 5642	-32.6093	7. 95116	-39. 565
1m9n	24	18	6.92	-19.6244	16. 0441	-33. 6598	-21. 2015	15. 3069	-34. 592
1mh5	33	10	9.21	-27. 3665	10. 4652	-36. 5215	-29. 476	9. 21285	-37. 5354
1mj7	33	11	8.35	-28. 57	12. 723	-39. 7001	-29. 864	11. 9491	-40. 3171
1mjj	33	9	8.74	-34. 669	9. 137	-42.662	-34. 7361	8. 73804	-42. 3801
1mq6	36	12	11.15	-36. 3215	9. 20848	-44. 3771	-36. 9655	8. 65823	-44. 5397
1n2v	15	2	4.08	-18. 0303	2. 20193	-19. 9565	-18. 3354	1. 95427	-20. 045
1n3i	19	8	8.89	-29. 9523	4. 43087	-33. 8284	-32. 1041	4. 16673	-35. 7492
1n5r	31	4	5.66	-22.8384	4. 45069	-26. 7319	-22. 7731	4. 27128	-26. 5096
1nc1	20	9	6.12	-15. 7237	14. 9665	-28. 8164	-17. 1558	13. 6725	-29. 1165
1ndj	16	10	12.16	-24. 7663	9. 14932	-32. 7701	-23. 2876	10. 4112	-32. 3953
1ndw	19	6	5.23	-10.6629	15. 5447	-24. 2614	-12. 1462	14. 6185	-24. 9345
1ndy	23	8	6.17	-18. 1968	17. 0066	-33. 0742	-18. 0953	16. 4025	-32. 4442
1nfy	30	11	8.89	-20. 6833	9. 40482	-28. 9106	-19. 2412	9. 96097	-27. 9551
1niu	22	11	7.10	-9. 36241	18. 6392	-25. 668	-13.4984	15. 9383	-27. 4412
1nja	20	9	6.31	-13. 5732	1. 87074	-15. 2097	-13. 4689	2. 58224	-15. 7278
1nje	20	10	3.80	-14. 3779	5. 95415	-19. 5866	-16. 5004	4. 29155	-20. 2546
1nvq	36	11	8.25	-38. 9031	9. 29421	-47. 0337	-39. 3909	8. 62271	-46. 934
1nwl	31	8	2.39	-4. 41217	14. 2281	-16. 8589	-4. 99646	13. 14	-16. 4913
1o0h	27	13	5.92	-15. 5219	6. 08295	-20. 8433	-17. 2084	5. 69835	-22. 1933
1o0n	21	7	4.09	-16. 6475	1. 05054	-17. 5665	-17. 1212	1. 1712	-18. 1458
101s	35	12	7.31	-27. 2636	18. 2072	-43. 1913	-30. 8899	16. 4349	-45. 2672
1o3p	25	9	6.66	-13.6877	7. 09367	-19. 8932	-15. 1118	6. 22115	-20. 5541
105r	33	8	8.12	-26. 4407	13. 4333	-38. 1922	-26. 9284	13. 005	-38. 3052
1ocq	21	12	5.19	-22. 3076	3. 94804	-25. 7613	-22. 8752	3.82079	-26. 2176
logg	43	10	5.19	-40. 4216	8. 94615	-48. 2477	-40. 5653	9. 28865	-48. 691
1ogx	20	4	6.09	-25. 5561	4. 08157	-29. 1267	-26. 7625	2. 59076	-29. 0289
1oif	10	6	7.72	-14. 4279	7. 10912	-20.647	-14. 4186	6. 68426	-20. 266
1oim	11	6	5.32	-13. 3478	8. 06878	-20. 4064	-13. 7487	7. 90684	-20.6656
1om1	22	7	6.77	-10.6086	17. 5577	-25. 9681	-10.328	18. 3426	-26. 3741
1oz0	57	19	7.70	-22.019	19.066	-38. 6979	-23.7133	16. 9079	-38. 5043
1p1q	13	8	4.89	-9. 11332	13. 4208	-20. 8538	-10. 7685	10. 73	-20. 1551
1pb9	7	5	3.62	-4.80116	9. 40914	-13. 0323	-8. 96267	7. 04253	-15. 1235
1pbq	16	6	6.27	-20.0773	8. 12184	-27. 1823	-19. 3465	8. 26984	-26. 581
1ppm	42	15	5.80	-37.8207	6. 50594	-43. 5121	-38. 1117	6. 31049	-43. 6321
1pr5	19	8	3.92	-8. 91641	6. 40576	-14. 5202	-8. 23188	6. 37096	-13. 8052
1pro	43	10	11.30	-46. 4809	13. 4943	-58. 2857	-45. 9574	13. 3493	-57. 6354
1pxh	48	14	8.74	-35. 3169	11. 9012	-45. 7281	-37. 7991	11. 1035	-47. 5124
1pxo	14	6	8.70	-9.80974	7. 38571	-16. 2708	-9. 91626	6. 93692	-15. 9847
1pyn	43	14	5.49	-33. 874	7. 90639	-40. 7905	-33. 2901	7. 72762	-40. 0502
1q65	20	7	5.46	-23. 9362	5. 67133	-28. 8975	-24. 8785	4. 93726	-29. 1976
1q7a	24	7	7.19	-13.835	14. 9331	-26. 8985	-14. 4363	13. 764	-26. 477
1q84	50	14	11.05	-62. 3226	16. 6002	-76. 8445	-63. 2863	15. 8018	-77. 1097
1q8t	18	7	4.76	-15. 3579	7. 27581	-21. 7228	-15. 2968	6. 97055	-21. 3946
	l		ı	l	1	1	I	1	I

Yin et al. MedusaScore: An Accurate Force-Field Based Scoring Function for Virtual Drug Screening

1qbq	20	5	8.30	-22.7492	6. 36998	-28. 3217	-22. 2164	6. 63408	-28.0199
1qi0	23	11	2.35	-10.9977	6. 45103	-16.6411	-12. 184	6. 24132	-17.6439
1re8	35	10	9.52	-34. 2181	11. 4155	-44. 2044	-34. 2433	11. 5327	-44. 3321
1rle	32	11	5.80	-11.8142	4. 78869	-16. 0033	-16. 4715	4. 55844	-20. 4592
1rnt	24	7	5.19	-17. 9386	6. 94637	-24. 0153	-17. 5112	6. 83216	-23. 488
1sgx	24	7	5.80	-17.6506	2. 18542	-19. 5624	-18. 1485	2. 10978	-19. 9941
1sl3	37	14	11.85	-43. 0779	10. 4015	-52. 1771	-42. 507	10. 7168	-51. 8821
1slg	59	9	3.90	-38. 5997	5. 5726	-43. 4746	-38. 4847	5. 24534	-43. 0733
1sqa	31	9	9.21	-21. 4594	6. 15714	-26. 8457	-21. 1741	6. 22856	-26. 6228
1swr	16	10	6.92	-18. 5875	9. 14413	-26. 5868	-24. 2318	9. 38488	-32. 4417
1syh	17	11	6.31	-26. 0202	6. 19589	-31. 4404	-26. 2952	5. 30186	-30. 9333
1t79	67	6	6.04	-23. 4659	10. 4965	-32. 6482	-24. 1592	10. 1309	-33. 0217
1t7f	66	6	5.74	-18. 0124	12. 439	-28.894	-20. 9823	8. 85356	-28. 7274
1thz	33	10	5.15	-4. 78119	13. 1672	-16. 2999	-4. 83305	12. 8712	-16. 0928
1tnk	10	4	1.49	-6. 59189	6. 40876	-12. 1983	-6. 37927	6. 34305	-11. 9282
1toi	11	4	4.05	-14. 4239	3. 06663	-17. 1066	-14. 4124	2. 55107	-16. 6441
1toj	11	4	3.39	-13. 4624	4. 44681	-17. 3525	-13. 776	3. 7724	-17. 0761
1tok	8	4	2.47	-14. 6233	1. 21808	-15. 6889	-14. 5347	1. 0967	-15. 4941
1trd	10	7	5.40	-10. 7045	5. 32003	-15. 3585	-11. 0573	4. 93042	-15. 3704
1tsy	20	11	4.96	-17. 9473	4. 84265	-22. 1837	-18. 9414	4. 03348	-22. 4699
1tyr	22	5	7.00	-6. 50396	14. 2584	-18. 9772	-6. 69381	13. 3367	-18. 3608
1u1b	51	13	7.80	-23. 9981	9. 07369	-31. 9358	-22.78	8. 67861	-30. 372
1u2y	13	3	1.74	-7. 09845	0. 555182	-7. 58412	-6. 96608	0. 439318	-7. 3504
1u33	36	15	4.60	-21. 2549	15. 3606	-34. 6924	-21. 184	14. 7176	-34. 059
1ugx	27	4	5.91	-16. 8515	3. 27657	-19. 7178	-17. 1109	2. 76467	-19. 5294
1ur8	29	10	4.35	-31. 6586	5. 13049	-36. 1468	-30. 1639	6. 21613	-35. 6018
1ur9	39	12	5.77	-42. 0788	6. 8317	-48. 0552	-42. 0889	7. 72199	-48. 8441
1utj	8	1	3.84	-8. 92148	1. 59364	-10. 3156	-8. 92238	1. 59364	-10. 3165
1utl	10	5	2.47	-4. 15417	4. 99405	-8. 52296	-3. 94758	5. 01991	-8. 339
1utm	9	2	3.01	-7. 6763	0. 237814	-7. 88434	-7. 64272	0. 239747	-7. 85245
1uvt	27	7	7.64	-23. 9945	9. 70948	-32. 4884	-24. 3407	8. 90207	-32. 1282
1v0k	18	6	5.10	-9. 40564	13. 8868	-21. 5538	-9. 39864	12. 2069	-20. 0772
1v01	17	8	7.55	-10. 7607	11. 347	-20. 6871	-10. 6587	10. 9573	-20. 2441
1v0n	17	7	7.55	-11. 5278	10. 6655	-20.858	-10.8186	10. 7272	-20. 2028
1v48	22	9	7.80	-24. 3068	2. 91122	-26. 8535	-27. 7256	2. 50099	-29. 9135
1vfn	10	5	5.60	-10.6627	2. 35917	-12. 7265	-11. 5244	2. 11357	-13. 3734
1vjj	28	9	5.77	-13. 097	4. 14859	-16. 7262	-14. 0853	4. 69298	-18. 1907
1w2g	17	8	4.57	-21. 185	5. 82601	-26. 2816	-21. 6723	4. 80063	-25. 8719
1w3j	10	6	6.32	-9. 85076	7. 32687	-16. 2603	-11.6392	6. 52464	-17. 347
1w31	32	15	6.28	-9. 32432	21. 6842	-28. 2937	-9. 96259	19. 3457	-26. 8862
1w6y	20	5	5.36	-20. 5423	5. 00588	-24. 9214	-21. 5216	3. 78996	-24. 8371
1ws4	13	5	3.00	-10. 1612	7. 495	-16. 7178	-9. 9821	7. 33081	-16. 3951
1ws5	13	7	3.03	-8. 85021	7. 7315	-15. 6137	-8. 41086	8. 03883	-15. 4432
1x1z	22	11	11.06	-32. 9518	5. 95967	-38. 1653	-32. 9445	5. 53276	-37. 7846
1x38	20	13	8.77	-11. 1182	15. 9264	-25. 0506	-11. 7227	14. 7083	-24. 5895
1x39	22	13	9.22	-13. 8797	14. 1717	-26. 2771	-14. 3253	13. 2638	-25. 9285
1xd1	66	23	7.92	-32. 536	14. 2508	-45. 0026	-33. 9124	13. 5958	-45. 806
1xgi	21	6	4.85	-5. 41481	8. 21676	-12. 6028	-5. 64656	7. 94405	-12. 596
1751	21	Ŭ	1.05	0. 41401	0.21010	14.0040	0.04000	1.71100	14.000

Yin et al. MedusaScore: An Accurate Force-Field Based Scoring Function for Virtual Drug Screening

1xgj	22	7	6.00	-0. 464472	9. 5418	-8. 81164	-0.03731	9. 65183	-8. 48073
1xqk	22	10	2.68	-16. 4014	13. 2146	-27. 9615	-19.072	10. 7142	-28. 4448
1y1m	9	5	1.82	-11. 7877	3. 54369	-14. 8877	-13. 2967	2. 67929	-15. 6405
1y6q	20	7	11.70	-31. 1921	4. 36299	-35. 0088	-31. 1466	4. 51766	-35. 0986
1ydt	27	6	7.32	-24. 9762	12. 3461	-35. 7766	-25. 1803	11. 593	-35. 3219
1z95	29	9	4.30	-30.0284	10. 9855	-39. 6385	-29. 2862	11. 3287	-39. 1965
2201	6	3	3.00	-5. 57722	7.50092	-12. 139	-5. 3638	7. 36366	-11.8055
2aou	25	9	7.73	-27.0183	16. 6317	-41. 5677	-29.0024	14. 2386	-41. 4583
2baj	27	5	8.40	-41.8663	8. 7929	-49. 5583	-42. 2476	7. 73945	-49. 0181
2bak	43	10	7.43	-46. 9608	13.6114	-58. 8681	-45. 8325	14. 2515	-58. 2997
2bal	28	4	6.31	-33. 7598	2. 62458	-36. 0558	-33. 6685	2. 62458	-35. 9645
2bok	29	8	6.55	-30.0738	7. 53499	-36. 6654	-28.8292	8. 52369	-36. 2857
2brb	25	4	4.86	-19.3508	8. 18848	-26. 5141	-19. 411	7. 88999	-26. 3132
2brm	25	6	5.89	-17.0304	9. 33609	-25. 1976	-17. 148	8. 90413	-24. 9373
2cgr	29	10	7.28	-27. 598	6.88645	-33. 6223	-28. 9186	8. 03996	-35. 952
2drc	33	8	9.89	-28. 9697	2. 43539	-31. 1002	-29. 2703	2. 20409	-31. 1984
2dri	10	10	6.89	-21. 156	6.87502	-27. 1703	-22. 5358	5. 56797	-27. 4067
2gss	19	3	4.94	-18. 3587	1.65903	-19.81	-18.8977	1.0968	-19.8572
2qwb	21	9	2.74	-10.4914	2. 75683	-12. 9031	-11.8135	1. 28636	-12. 9388
2qwd	20	8	4.85	-11.9083	4. 90668	-16. 2007	-13. 1757	3. 54323	-16. 2753
2qwe	23	11	7.48	-18. 1504	5. 34845	-22.8292	-16. 0214	5. 75595	-21.0567
2rkm	19	7	3.90	-14.6704	1.71692	-16. 1724	-15. 2119	1.41426	-16. 4491
2std	20	4	9.85	-36. 573	6. 68392	-42. 4201	-36. 2349	6. 52642	-41. 9442
3er3	57	16	7.09	-43. 5035	9.67093	-51. 9636	-43. 0353	9. 74909	-51. 5638
3gss	39	13	5.82	-29. 4209	7. 70201	-36. 1586	-31. 704	6. 40692	-37. 3088
3mag	11	6	4.07	-1. 72653	7. 03735	-7. 8828	-4.89603	4. 16982	-8. 54379
3std	28	4	11.11	-35. 4292	10. 6141	-44. 7144	-35. 4451	10. 5272	-44. 6543
4apr	47	14	6.70	-36. 1573	10. 1754	-45. 0587	-37. 7698	9. 07533	-45. 7089
4er2	48	10	9.30	-42. 1761	4. 34821	-45. 9799	-41. 4755	4. 97019	-45. 8234
4fiv	58	19	6.52	-53. 9064	19. 0465	-70. 5683	-56. 9801	16. 3896	-71. 3177
4tim	11	7	2.16	-1. 79786	7. 32705	-8. 20756	-1. 20511	7. 72945	-7. 96683
5abp	12	8	6.64	-14. 7004	4. 1803	-18. 3573	-15. 6185	3. 45383	-18. 6399
6apr	48	15	7.77	-39. 2912	11. 4985	-49. 3501	-39. 1035	11. 9446	-49. 5526
6fiv	33	10	8.08	-23.03	5. 74706	-28. 0575	-23. 053	5. 60992	-27. 9606
6rnt	23	8	2.37	-9. 84233	3. 90351	-13. 2571	-11. 3317	3. 58447	-14. 4674
6std	21	4	8.64	-32.4014	6. 7383	-38. 2961	-32. 5686	6. 43172	-38. 1951
6upj	22	5	6.32	-26.6046	3. 50085	-29.6671	-26. 9543	3. 40518	-29. 9332
8abp	12	7	8.00	-19.0497	3. 32242	-21. 9562	-19.0594	3. 80549	-22. 3884