Beach Strans

CLIPS

Studio di Fattibilità v0.4

Sommario

Analisi dei capitolati proposti e motivazioni per la scelta del progetto CLIPS

Nome del documento
Versione
Data di redazione
Redazione
Verifica

Approvazione Uso

Lista di distribuzione

Studio di Fattibilità

0.4

2016/04/04

Enrico Bellio

Luca Soldera

Viviana Alessio

Interno

prof. Tullio Vardanega

prof. Riccardo Cardin

Miriade SpA

Diario delle modifiche

Versione	Riepilogo	Autore	Ruolo	Data
	Modifica descrizione capitolato C4, aggiunta termini del glossario, aggiunta			
0.4	sezione riferimenti Fix minori: aggiunti ; e . agli	Enrico Bellio	Responsabile	2016-04-04
0.3	elenchi puntati	Enrico Bellio	Responsabile	2016-03-31
0.2	Prima verifica	Luca Soldera	Responsabile	2016-03-31
0.2	Stesura completa	Enrico Bellio	Responsabile	2016-03-25
0.1	Prima stesura	Enrico Bellio	Responsabile	2016-03-17

INDICE

Indice

1	Intr	Introduzione					
	1.1	Scopo del documento					
	1.2	Glossario					
	1.3	Riferimenti					
		1.3.1 Normativi					
		1.3.2 Informativi					
2	Car	pitolato scelto: C2 - CLIPS					
_	2.1	Descrizione					
	2.2	Studio del Dominio					
	2.2	2.2.1 Dominio Applicativo					
		2.2.2 Dominio Tecnologico					
		2.2.3 Conclusioni					
		2.2.0 Odification					
3 Alt 3.1	Alt	ri Capitolati					
	3.1	Capitolato C1 - Actorbase					
		3.1.1 Scopo del progetto					
		3.1.2 Osservazioni					
	3.2	Capitolato C3 - Internet of things					
		3.2.1 Scopo del progetto					
		3.2.2 Osservazioni					
	3.3	Capitolato C4 - MaaS					
		3.3.1 Scopo del progetto					
		3.3.2 Osservazioni					
	3.4	Capitolato C5 - Quizzipedia					
		3.4.1 Scopo del progetto					
		3.4.2 Osservazioni					
	3.5	Capitolato C6 - Sintesi vocale su dispositivi mobili					
		3.5.1 Scopo del progetto					
		3.5.2 Osservazioni					

Introduzione

Scopo del documento

Questo documento ha l'obiettivo di mettere in evidenza i ragionamenti e le motivazioni che hanno portato alla scelta del progetto CLIPS.

È presente l'analisi di tutti e sei i capitolati proposti con particolare attenzione ai casi d'uso e alle tecnologie utilizzabili per ognuno.

Glossario

Al fine di evitare ogni ambiguità nel linguaggio e massimizzare la comprensione dei documenti, i termini tecnici, gli acronimi e le abbreviazioni che necessitano di definizione sono riportati nel documento " $Glossario\ v0.0$ ".

Inoltre ogni occorrenza di un vocabolo presente nel Glossario sarà posta in corsivo e seguita da una 'g' minuscola a pedice (p.es. *Glossario*_g).

Riferimenti

Normativi

Per le norme di progetto riferirsi al documento "Norme di Progetto v0.0"

Informativi

- Capitolato C1 Actorbase: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C1.pdf
- Capitolato C2 CLIPS: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C2.pdf
- $\bullet \ \, \text{Capitolato C3-Internet of things: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C3.pdf} \\$
- Capitolato C4 MaaS: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C4.pdf
- Capitolato C5 Quizzipedia: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C5.pdf
- Capitolato C6 Sintesi vocale su dispositivi mobili: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C6.pdf

Capitolato scelto: C2 - CLIPS

Descrizione

Il progetto CLIPS consiste nel ricercare nuovi scenari per l'implementazione della navigazione indoor e in particolare un nuovo metodo di navigazione alternativo al GPS che utilizzi la tecnologia $BLE_{\rm g}$ e un dispositivo mobile. Alcuni esempi di applicazione sono i seguenti:

- Interrelazione con altri dispositivi e macchinari robotici (per esempio la programmazione di un apparecchio pilota per diversamente abili);
- Trasmissione di contenuti attraverso i beacon_g, con sviluppo di un progetti di interazione e comunicazione (per esempio broadcast all'interno di un campus universitario);
- Utilizzo dei $beacon_g$ nel social gaming (per esempio la caccia al tesoro).

Studio del Dominio

Come si evince dalla descrizione, il dominio del progetto è molto ampio, in quanto la tecnologia $BLE_{\rm g}$ può essere applicata in una moltitudine di casi molto diversi l'uno dall'altro. L'obiettivo principale è quello di trovare, se possibile, un nuovo metodo di localizzazione per la navigazione indoor e secondariamente un nuovo tipo di utilizzo.

Dominio Applicativo

Il problema principale affrontato dal capitolato è quello della navigazione indoor. I metodi di localizzazione di un dispositivo in una zona limitata (es.: una stanza all'interno di un edificio) risultano essere molto approssimativi, infatti la maggioranza dei $beacon_g$ viene utilizzata per fornire dei contenuti agli utenti che si trovano nel raggio d'azione del $beacon_g$ stesso, senza sapere la posizione esatta.

Dominio Tecnologico

Le principali conoscenze tecnologiche richieste sono:

- JAVA/Objective-C: questi sono i linguaggi di programmazioni necessari per sviluppare nativamente un'applicazione per Android e iOS. Un'alternativa è un framework come Phonegap che permette di programmare in HTML + CSS + Javascript per sviluppare un'applicazione multipiattaforma;
- **Beacon:** vista la natura del progetto è necessario essere a conoscenza di come i beacon_g interagiscono con i dispositivi a loro collegati;
- Database: qualsiasi sia l'ambiente di applicazione scelto, risulta necessario utilizzare un database per il salvataggio dei dati;
- Comunicazione tra database e beacon: è necessario conoscere dei protocolli di trasferimento dati (es: HTTP) per gestire la comunicazione tra il database e i beacon_g.

In aggiunta potrebbe essere necessario dover realizzare un portale web quindi in tal caso la conoscenza dei linguaggi HTML, CSS, Javascript e PHP risulta molto utile.

Conclusioni

Aspetti positivi:

- L'ampiezza del dominio applicativo consente di scegliere un'applicazione in cui il gruppo si trova a proprio agio a lavorare;
- Le conoscenze necessarie allo sviluppo del progetto rientrano per la maggior parte nelle conoscenze necessarie per affrontare alcuni dei corsi del percorso di laurea triennale.

Aspetti negativi:

• L'utilizzo dei beacon per la navigazione indoor potrebbe risultare fallimentare vista la quantità di ostacoli che potrebbero causare problemi con la ricezione del segnale (es.: tipo di materiale delle pareti, persone, ecc.).

Altri Capitolati

Capitolato C1 - Actorbase

Scopo del progetto

Il progetto Actorbase consiste nella progettazione di un database non relazionale che utilizzi il modello ad attori grazie all'uso delle seguenti tecnologie:

- La libreria Akka per l'implementazione del modello ad attori su JVM;
- Java o Scala come linguaggi di programmazione.

Inoltre è prevista l'implementazione di un DSL per poter interagire con il database da riga di comando.

Osservazioni

Poiché un progetto in cui viene utilizzato il modello ad attori è già stato affrontato per il progetto del corso di Programmazione Concorrente e Distribuita, il gruppo ha deciso di non intraprendere lo sviluppo di questo capitolato.

Capitolato C3 - Internet of things

Scopo del progetto

Il progetto Internet of things consiste, citando il capitolato, nella creazione di un un algoritmo predittivo in grado analizzare i dati provenienti da "oggetti", inseriti in diversi contesti, e fornire delle previsioni su possibili guasti, interazioni con nuovi utenti ed identificare dei pattern di comportamento degli utenti per prevedere le azioni degli stessi su altri oggetti o altri contesti.

L'applicativo software dovrà essere composto in tre parti:

- Una console web amministrativa per la definizione di regole di apprendimento a seconda del contesto e tipo di dati;
- Una console web di amministrazione per le singole aziende;
- Dei servizi web restful JSON interrogabili.

La piattaforma dovrà inoltre permettere la comunicazione tramite i protocolli HTTP/HTTPS standard e il protocollo MQTT.

Le tecnologie consigliate sono le seguenti:

- MongoDB e/o OrientDB per il database;
- Amazon Web Services per l'infrastruttura;
- Java e/o Scala come linguaggi di programmazione;
- Play Framework come framework di sviluppo;
- HTML5, CSS3, Javascript e il framework Bootstrap di Twitter per l'interfaccia web.

Osservazioni

La progettazione di un algoritmo predittivo è un argomento che interessa ai membri del gruppo ma la complessità dell'argomento e la mancanza delle conoscenze richieste per lo svolgimento del progetto hanno portato all'esclusione del capitolato da parte del gruppo.

Capitolato C4 - MaaS

Scopo del progetto

Il progetto MaaS consiste nella realizzazione di una piattaforma per rendere facilmente accessibile i dati contenuti in un database a coloro che non possiedono conoscenze in ambito informatico (es.: uomini d'affari). L'applicazione dovrà essere accessibile tramite un servizio web per le compagnie che ne usufruiranno e sfruttare MaaP per la rappresentazione grafica dei dati, inoltre dovrà estenderlo con le seguenti funzioni:

- SaaS: deve essere disponibile come unica istanza disponibile a più gruppi di persone, dedicando a ciascun gruppo una propria area di lavoro;
- **DSL:** deve essere possibile modificare online le definizioni del DSL, inoltre dovrebbero anche essere progettate delle azioni predefinite (es.: esporta il csv del documento) e la dashboard.

I requisiti tecnologici sono i seguenti:

- Node.js per il backend, per la precisione deve supportare la versione LTS Argon;
- MongoDB con versione non inferiore alla 3 come database;
- Il framework loopback per la gestione del sistema;
- Rendere disponibile il servizio su Heroku;
- Utilizzare github o bitbucket per il versionamento.

Osservazioni

La carenza delle conoscenze necessarie per sviluppare il progetto ha portato il gruppo a decidere di scartare il capitolato data la grande quantità di tempo necessaria per colmare le lacune.

Capitolato C5 - Quizzipedia

Scopo del progetto

Il progetto Quizzipedia consiste nella progettazione di un sistema composto da:

- Un archivio di domande;
- Un sistema di test che somministra all'utente una serie di domande relative all'argomento scelto

Le domande devono essere raccolte attraverso uno specifico linguaggio chiamato QML (Quiz Markup Language).

I requisisti minimi da soddisfare sono i seguenti:

- Archiviare i quiz in un server e suddividerli per argomento;
- Tradurre le domande archiviate da QML a HTML;
- Il QML deve poter gestire risposte vero/falso, a scelta multipla, testi ed immagini;
- Archiviare questionari contenenti le domande archiviate nel server;
- Proporre questionari preconfezionati;
- Valutare le risposte date dall'utente.

Il sistema dovrà essere utilizzato con tecnologie web quali:

• Java e server Tomcat oppure Javascript e server Node.js per la parte server;

• HTML5, CSS e Javascript per il client che dovrà essere eseguibile in un browser.

La parte destinata ai creatori di domande e quiz dovrà essere utilizzabile su PC mentre la parte destinata agli esaminandi dovrà funzionare con qualunque dispositivo.

Osservazioni

I membri del gruppo si sono trovati interessati allo sviluppo dell'applicazione visto che le conoscenze necessarie per lo sviluppo rientrano nelle conoscenze possedute dai membri stessi. Sfortunatamente non è stato possibile scegliere il capitolato in quanto non più disponibile al momento della creazione del gruppo.

Capitolato C6 - Sintesi vocale su dispositivi mobili

Scopo del progetto

Il progetto consiste nella realizzazione di un'applicazione che aggiunga nuove funzioni su smartphone e/o tablet per la sintesi vocale. L'applicazione deve usare il motore di sintesi Flexible and Adaptive Text-To-Speech e deve rispettare i seguenti requisiti obbligatori:

- Gestire i problemi causati dall'utilizzo di un servizio remoto (es.: gestire il caso in cui non si è in grado di accedere ad internet);
- Implementare un'interfaccia grafica per la configurazione dei servizi TTS.

I requisiti opzionali sono:

- Supporto multipiattaforma;
- Utilizzo e integrazione di servizi aggiuntivi (es.: l'integrazione del servizio di personalizzazione della voce nell'applicazione o l'utilizzo di risorse esterne per ottenere contenuti).

Per quanto riguarda le tecnologie da utilizzare, l'unico vincolo è quello di utilizzare il motore di sintesi Flexible and Adaptive Text-to-Speech.

Osservazioni

Il gruppo non ha riscontrato alcun interesse nello sviluppo di applicazioni riguardanti il TTS.