ENDURO3

Course **enduro** solidaire

Lycée Saint-André

Etablissement organisateur de la course

I.C.S.S.A.

Institut Catholique Supérieur Saint-André

Cahier des charges

29 septembre 2021

Version 1.0

Table des matières

Table des matières

<u> 1 - Situation du projet dans son environnemer</u>	n
---	---

- 1.1 Généralités
- 1.2 Contexte de réalisation
- 1.3 Autres projets de la section
- 1.4 Domaines d'activités professionnelles
- 1.5 Champs technologiques couverts

2 - Présentation du projet

- 2.1 Contexte
- 2.2 Objectifs
- 2.3 Description de l'existant
- 2.4 Critères d'acceptabilité du produit

3 - Expression du besoin

- 3.1 Le besoin
- 3.2 Du besoin aux fonctions
- 3.3 Spécifications non fonctionnelles
- 3.4 Découpage en packages

4 - Moyens mis à disposition, contraintes et livrables

- 4.1 Movens mis à disposition
- 4.2 Contraintes
 - 4.2.1 Financières
 - 4.2.2 Temporelles
 - 4.2.3 Matérielles et logicielles
 - 4.2.4 Données personnelles
 - 4.2.5 Qualité
- 4.3 Livrables

5 - Les tâches professionnelles

- 5.0 Groupe
- 5.1 Etudiant #1
- 5.2 Etudiant #2
- 5.3 Etudiant #3
- 5.4 Etudiant #4

6 - Exploitation pédagogique

- 7 Planification temporelle prévisionnelle
- 8 Avis de la commission

ICSSA:: STS SN(IR):: Projet ENDURO3:: CDC("p1/24")

1 - Situation du projet dans son environnement

1.1 - Généralités

Groupement académique : Poitiers

Session: 2021/2022

Lycée ou centre de formation : I.C.S.S.A.

Ville: Niort

Nom du projet : ENDURO3

1.2 - Contexte de réalisation

Projet proposé et suivi par :	M. ARNAULT Emmanuel (enseignant physique appliquée) Mme CANDILLIER Sanae (enseignant informatique & réseau) M. DEVIJVER Yves (organisateur de la course) Mme ROCHE Karine (organisatrice de la course) M. SALLÉ David (enseignant informatique & réseau)	
Statut des étudiants	Candidats : en temps plein (oui) - en alternance (non)	
Projet développé	Au lycée (oui) - En entreprise (non)	
Informations complémentaires :	Constitution de l'équipe de développement : • Étudiant #1 : MAGNERON Hugo • Étudiant #2 : GONCALVES Mathéo • Étudiant #3 : ALLAIRE Pierre • Étudiant #4 : MEGANCK Etienne Donneur d'ordre : Lycée Saint-André Origine du projet : • idée : Lycée Saint-André • cahier des charges : Lycée Saint-André/ICSSA	
Budget alloué	Montant : 0 euros A la charge de : Lycée Saint-André	

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p2/24")

1.3 - Autres projets de la section

Récapitulatif des projets	Nombre d'étudiants
Projet #1 : GEAUTISME (référencement sites autism friendly)	4
Projet #2 : WALK2 (challenges marche à pieds)	3
Projet #3 : ENDURO3 (gestion course Enduro)	4
Projet #4 : EMBARQUAI2 (suivi course de bateaux)	3

1.4 - Domaines d'activités professionnelles

Domaines d'activités professionnelles abordées et développées avec le projet :

Télécommunications, téléphonie et réseaux téléphoniques	
Informatique, réseaux et infrastructures	Х
Multimédia, son et image, radio et télédiffusion	
Mobilité et systèmes embarqués	
Electronique et informatique médicale	
Mesure, instrumentation et microsystèmes	
Automatique et robotique	

1.5 - Champs technologiques couverts

Liste des champs technologiques couverts :

- Lecteur code-barre
- Technologie MQTT
- Raspberry PI3
- Base de données, langage SQL
- Interface web dynamique, langage PHP et jQuery
- Protocole HTTP, données JSON
- Langages web HTML5, CSS3, Bootstrap
- Réseau Wifi
- Conteneur Docker sur VPS

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p3/24")

2 - Présentation du projet

2.1 - Contexte

Le lycée Saint-André organise tous les ans dans le cadre de la semaine des solidarités une course enduro. Ces journées des solidarités sont organisées parallèlement à la semaine de la solidarité internationale. Au cours de ce temps fort, l'ensemble de la communauté éducative s'implique pour sensibiliser les élèves à toutes les formes de solidarité : locales, nationales, internationales, intergénérationnelles, sociales, économiques, culturelles, ... Des conférences, des ateliers, des expositions, des stands, des sorties et des rencontres avec des partenaires locaux, des actions concrètes menées par les élèves, des repas solidaires au restaurant scolaire ... sont proposés à l'ensemble de la communauté.

La course enduro fait partie des manifestations. Près d'un millier de personnes (élèves, enseignants, personnels...) participent à l'événement. Chaque coureur doit se faire parrainer, c'est à dire récolter une certaine somme d'argent en fonction de la distance qu'il parcourra (ex: 1€/km). Le parcours est une boucle autour du lycée d'environ 1km.

Données des éditions précédentes :

Année	Dons	Tours	Participants
2016	~7000€	~6500	816
2017	8189€	6596	899
2018	8748€	6883	927

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p4/24")

2.2 - Objectifs

Le système à développer doit permettre de comptabiliser précisément la distance parcourue par chaque coureur. Le temps est aussi une donnée intéressante dans une perspective course à pied.

A partir de ces données il devrait être possible d'afficher pendant et après la course, différentes informations collectives et/ou individuelles :

- distance parcourue
- argent récolté
- temps de passage (meilleur, écart, moyen)

2.3 - Description de l'existant

Version 2016 et avant

Dans les premières éditions, le comptage des passages de chaque coureurs s'effectuait manuellement sur des feuilles de papier dédiées. Cela mobilisait beaucoup de personnes avec au final pas mal d'erreurs de comptage.

Version 2017

Puis le comptage des tours de chaque coureur ainsi que le chronométrage s'est amélioré grâce à des lecteurs code-barre. En effet les participants disposent tous d'un badge "cantine" avec un code-barre pour le référencer. Chaque passage était écrit automatiquement dans un fichier tableur CSV. Il y avait plusieurs lecteurs reliés à plusieurs raspberry PI pour pouvoir gérer le flux de coureurs.

Inconvénients de cette solution :

- il faut fusionner tous les fichiers tableurs en fin de course (complexe et long)
- pas d'affichage pendant la course (distance parcourue/argent récolté, meilleur temps...)
- impossible de visionner les données individuelles et collectives a posteriori (distance parcourue, argent récolté, temps de passage...)
- synchronisation temporelle des lecteurs imprécise
- les coureurs ne peuvent pas savoir si les passages ont bien été comptabilisés.
 Certains le sont plusieurs fois, d'autres pas du tout

Version 2018

Lors de la dernière édition (2018), les fichiers CSV ont été remplacés par une base de données MySQL intégrée à une architecture MQTT. Une IHM locale sur les Raspberry Pi en Python/Tkinter permet que chaque coureur puisse voir ses statistiques de passages

et une IHM web en Flask/Python permet de visualiser l'ensemble des résultats sur un pc portable. Ce dernier devait être relié à un vidéoprojecteur, mais la configuration des lieux n'a pas permis de le faire. Tout ce travail a été réalisé par une équipe de 3 étudiants de STS SNIR.

Avec cette solution le comptage se trouve grandement facilité, plus fiable et plus précis. Les coureurs peuvent suivre leurs avancées durant la course et a posteriori. Cependant le système peut encore être amélioré.

Inconvénients de la solution et améliorations souhaitées :

- 1. le système semble accumuler une certaine latence entre le badgeage et l'affichage sur les écrans, de sorte qu'il a fallu redémarrer plusieurs fois l'ensemble des raspberry pi. L'architecture MQTT ne semble pas en cause, même si cela est à vérifier. Le problème viendrait plutôt d'une part de l'IHM en Tkinter qu'il faudrait refaire avec une autre librairie, et d'autre part du serveur MQTT qu'il faudrait réécrire avec des threads
- 2. sur le pc portable de supervision, un message "MySQL pool exhausted" bloquait la mise à jour de l'affichage des données sur l'IHM web sans toutefois que les données de passage soient perdues.
- 3. la sauvegarde des données MySQL après la course est complexe car il faut passer par mysqldump. L'utilisation de SQlite3 pourrait faciliter les choses et corriger le bug 2 également. Une migration s'impose donc.
- 4. l'écran du pc portable étant relativement petit, le public ne peux pas voir l'écran. Les organisateurs aimeraient que l'IHM de suivi de la course soit diffusée sur tous les écrans d'information du lycée, voire sur les smartphones de tout un chacun si le serveur tient la charge
- 5. l'inscription (nom, prénom, classe, parrainage s'effectue encore avec la solution "papier". Cette solution lourde et complexe pourrait avantageusement être remplacée par un formulaire en ligne.
- 6. certains coureurs viennent le jour de la course sans leur badge "cantine". Il faut leur en prêter un. Ils courent alors sous un faux nom et il faut corriger les résultats manuellement après la course
- 7. les organisateurs souhaiteraient également pouvoir afficher en plus des données de courses un diaporama dynamique de photos prises par les organisateurs ainsi qu'une galerie de photo après la course
- 8. les résultats compilés dans un fichier PDF n'étaient pas facilement exploitables. Une solution web semblerait plus adaptée
- 9. un simulateur de passages paramétrable permettrait de valider l'ensemble des choix technologiques effectués

Comme il est difficile d'intervenir sur l'infrastructure du lycée, l'affichage sur les écrans d'informations semble de prime abord complexe. Il semble opportun d'utiliser un serveur externe à l'établissement comme un VPS associé à l'utilisation du protocole HTTP pour passer facilement le pare-feu de l'établissement.

En outre, cette solution permettrait à la fois de gérer l'inscription et les résultats en ligne.

Synoptique de l'existant et de l'évolution possible :

En 2019/2020, une équipe d'étudiants avait travaillé sur ce cahier des charges. Mais le confinement dû à la COVID19 n'avait permis de produire de solutions suffisamment avancées pour être retenues.

2.4 - Critères d'acceptabilité du produit

Le système sera validé par une course test à l'ICSSA avec quelques volontaires.

3 - Expression du besoin

3.1 - Le besoin

Ci-dessous le diagramme de cas d'utilisation :

Détails des acteurs :

Acteur	Description	
Coureur	Personne participant à la course et équipé d'un badge "cantine" ave un code barre imprimé dessus	
Public	Personne ne participant pas à la course mais souhaitant être informée des résultats, distance, temps, statistiques, photos	
Organisateur	Personne qui organise la course, configure le système	

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p8/24")

Détails des cas d'utilisation :

Cas d'utilisation	Description
S'inscrire	Les coureurs peuvent s'inscrire en ligne en précisant leur nom, prénom, classe et parrainage (par tour + forfait). Il est possible de leur attribuer un badge de remplacement en cas d'oubli de leur badge personnel
Enregistrer et horodater les passages	Chaque passage d'un coureur doit être enregistré et horodaté pour être exploité par la suite
Envoyer et gérer photos	Les organisateurs peuvent prendre et envoyer des photos durant la course depuis leur smartphone. Ils peuvent ensuite les envoyer au serveur qui les utilisera pour construire une galerie photo automatiquement. Un système de sécurité sera prévu pour éviter d'afficher n'importe quelle photo
Visualiser passages, statistiques et photos	Utilise les données produites par les cas d'utilisation précédents pour afficher pendant et après la course différentes informations (distance parcourue, argent récolté, temps de passage, record, coureur) ainsi qu'une galerie photos
Organiser la course	Consiste à ajouter la liste des coureurs (badge=nom), synchroniser l'heure, lancer/arrêter la course

3.2 - Du besoin aux fonctions

Ci-dessous la décomposition fonctionnelle du projet (norme NF X50 151) avec en italique les fonctionnalités de la version 2018 pouvant être ré-exploitées :

FS/ FC	Description	Critère	Flexi- bilité
FS1	Lire et enregistrer les passages des coureurs	Chaque passage d'un coureur est lu à l'aide de son badge, et enregistré dans un fichier CSV	F0
FS2	Transmettre les passages à une entité centrale	Les données sont bien transmises sur le serveur central et horodatées	F0

ICSSA:: STS SN(IR):: Projet ENDURO3:: CDC("p9/24")

FS3	Enregistrer les passages dans une base de données locale	Les données sont bien enregistrées et disponibles pour une exploitation ultérieure	F0
FS4	Afficher pour chaque lecteur les informations liées au passage (nom/prénom, classe, dernier/meilleur temps, distance, argent récolté)	Les informations sont correctement affichées sur un écran proche du lecteur. Le coureur peut ainsi à chaque fois qu'il badge avoir un compte rendu sur sa course	F0
FS5	Transmettre et enregistrer les données de passages sur le serveur VPS externe	La base de données du serveur VPS est exactement la même que la base de données locale	F0
FS6	Afficher sur les écrans d'informations du lycée les données de la course en continu (passages des coureurs, distance totale, argent récolté, records)	Les informations sont correctement affichées sur les 3 écrans d'informations (accueil, cafétéria, profs) et suffisamment lisible pour le public	F1
FS7	Afficher les résultats de la course ainsi que les statistiques (coureur plus rapide/endurant, classe plus rapide/endurante/participante) et rechercher les résultats individuels de chacun	Le site web permet de facilement retrouver et afficher les informations et statistiques de la course a posteriori	F1
FS8	Inscrire les coureurs à l'aide d'un formulaire en ligne. En cas d'oubli un badge de remplacement peut facilement être associé	Les coureurs peuvent s'inscrire facilement à la course Enduro	F0
FS9	Envoyer des photos et les intégrer dans un diaporama automatique avec les données de la course en temps réel	Les photos prises durant la course "tournent" bien dans un diaporama automatique. Les photos sont accessibles dans une galerie après la course	F1
FS1 0	Simuler les passages de coureurs	La simulation des passages de coureurs est paramétrable et les passages crédibles	F2

ICSSA :: STS SN(IR) :: Projet **ENDURO3** :: CDC("p10/24")

3.3 - Spécifications non fonctionnelles

Liste des spécifications non fonctionnelles associées au fonctions de service et de contrainte précédentes :

FS/FC	Description
FS1.1	Une IHM permettra au gestionnaire de savoir si le passage a effectivement été pris en compte. Une information visuelle permettra au coureur d'être informé également que son passage est bien comptabilisé
FS1.2	Une sécurité permettra de ne pas lire 2 fois consécutivement le même badge (délai de garde=120s)
FS1.3	Une sauvegarde locale dans un fichier CSV permettra de conserver les données des passages au cas où un problème surviendrait
FS1.4	L'horodatage se fera sur le pc portable car c'est le lieu où sont centralisés tous les passages. Ils auront donc la même référence temporelle.
FS2.1	Le protocole MQTT sera mis en oeuvre afin de permettre une bonne évolutivité du système (ex: changer les badge code-barre par des badges RFID ou ajouter de nouveaux lecteurs)
FS2.2	Une sauvegarde locale dans un fichier CSV permettra de conserver les données des passages au cas où un problème surviendrait
FS3.1	Une base de données relationnelles sera mise en oeuvre, par exemple SQlite3
FS4.1	L'IHM est parfaitement lisible et réactive (<1s)
FS5.1	L'utilisation du protocole HTTP et de l'encodage JSON devrait permettre de passer sans complication le pare-feu de l'établissement
FS5.2	L'envoi se fera de manière sécurisée (token ?) afin d'éviter que de faux passages soient injectés pendant la course
FS6.1	L'IHM est parfaitement lisible, complète et réactive. On vise une mise à jour automatique toutes les secondes environ
FS7.1	Le site sera "responsive design", accessible depuis internet (hébergement sur le serveur VPS). Un formulaire "autocomplete" permettra de facilement retrouver un coureur
FS8.1	L'IHM d'inscription sera ergonomique. Afin d'éviter les erreurs de saisie mais aussi parce que les numéros de badge ne doivent pas être connus, le formulaire proposera directement les noms, prénoms et classe dans un formulaire AJAX "autocomplete"

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p11/24")

F8.2	Une relance par courriel utilisant les adresses électroniques internes à l'établissement (prenom.nom@ensemblescolaire-niort.com) permettra d'informer tous les coureurs potentiels
FS9.1	L'envoi des photos se fera de manière sécurisée et une modération permettra de vérifier les photos intégrées au diaporama automatique
FS9.2	L'IHM sera prévue pour des smartphones

3.4 - Découpage en packages

Ci-dessous le diagramme de packages :

Package	Description	
DATA	Gestion des données de la course (passages, temps, statistiques)	
ORGA	Gestion des inscriptions des coureurs et de la course	
РНОТО	Gestion des photos	
BDD	Gestion de la base de données de la course	

ICSSA :: STS SN(IR) :: Projet **ENDURO3** :: CDC("p12/24")

4 - Moyens mis à disposition, contraintes et livrables

4.1 - Moyens mis à disposition

Ci-dessous la liste des documentations technologiques mises à disposition :

Documents	Langues
Manuel d'utilisation des lecteurs code-barre	FR

Ci-dessous la liste des ressources matérielles utilisées pour le développement (hors PC de développement) :

Référence	Description	Origine
RPI3	Mini-ordinateur (avec alimentation, carte SD, câbles)	École
LCB	Lecteurs code-barre USB	Client
TV	Télévision	Client
VPS	Serveur VPS utilisant Docker	Ecole

Ci-dessous la liste des ressources logicielles utilisées pour le développement :

Référence	Description	Origine
SRC2018	Code source du projet 2018	Ecole
Raspbian	Système d'exploitation pour Raspberry PI	Internet
mosquitto	Architecture MQTT	Internet
Qt5	Framework de développement C++	Internet
jQuery + M	Framework de développement web en langage Javascript	Internet
Bootstrap	Framework HTML5/CSS3	Internet
Docker	Conteneur Docker à choisir	Internet

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p13/24")

4.2 - Contraintes

4.2.1 - Financières

Le client a déjà fait l'acquisition de la plupart des matériels nécessaires à ce projet. Il faudra cependant chiffrer la solution.

4.2.2 - Temporelles

Concernant la planification du projet voir chapitre 7.

4.2.3 - Matérielles et logicielles

Au niveau matériel il faudra utiliser les mini-ordinateurs **Raspberry PI 3** car le client en possède déjà et souhaite les réutiliser. Le système d'exploitation souvent associé à ces machines est **Raspbian**.

Au niveau logiciel, il serait souhaitable d'utiliser le langage Python et notamment les librairies suivantes.

- wxPython pour les IHM locales (performance + facilité maintenance)
- flask/jQuery/Bootstrap pour l'IHM écran d'information (facilité maintenance)
- **flask** pour le site web (facilité maintenance)
- mosquitto pour MQTT (besoin d'évolutivité)
- sqlite3 (facilité d'utilisation)
- docker (le serveur VPS utilise des conteneurs Docker)

4.2.4 - Données personnelles

Comme le système manipule et stocke des données personnelles, il faudra faire en sorte que le projet soit compatible avec le RGPD (a minima, la démarche).

4.2.5 - Qualité

Les exigences qualité à respecter, relativement au développement sont :

- la modélisation du système informatique doit être réalisée avec SysML/UML
- la conception sera modulaire, typiquement orientée objet
- le codage doit respecter le standard de codage en cours dans la section

Les exigences qualité à respecter, relativement aux documents, sont :

- sur la forme : respect de normes et de standards de représentation, maniabilité, homogénéité, lisibilité, maintenabilité.
- sur le fond : complétude, cohérence, précision.

Et plus généralement...

Critère	Description
Couplage	Capacité de liaison avec un autre logiciel
Efficacité	Les ressources du système sont utilisées au mieux
Robustesse	Le fonctionnement normal du système est assuré, y compris lors d'événements non prévus ou non souhaités
Maintenabilité	Les défauts, les pannes sont facilement localisables, pour être facilement corrigées
Sécurité	Seules les personnes autorisées doivent pouvoir accéder au système et/ou à l'application logicielle
Evolutivité	Le produit peut facilement évoluer en cas de modification, d'ajouts de nouvelles fonctionnalités
Portabilité	Le produit peut être facilement porté d'une architecture ou système d'exploitation à un autre
Ergonomie	L'interface homme/machine est conviviale et simple d'utilisation

4.3 - Livrables

Les produits livrables du projet sont :

- le prototype fonctionnel
- la documentation (voir détails ci-dessous)
- les codes sources et exécutables de l'application

La documentation livrable du projet doit être composée :

- d'un dossier technique (40 pages maximum)
- d'annexes techniques (documents constructeurs, plans...)
- code source documenté avec Doxygen par exemple
- d'un manuel d'installation et de mise en oeuvre (15 pages maximum)
- d'un manuel d'utilisation (10 pages maximum)

Tous les produits livrables doivent être livrés sur support autonome (clef USB).

À des fins d'évaluation lors de la soutenance du projet, chaque étudiant doit indiquer explicitement les parties qu'il a personnellement réalisées dans les différents documents

5 - Les tâches professionnelles

5.0 - Groupe

Tâches professionnelles communes :

Repère	Tâche professionnelle	Objectif/critère de réussite
T3.1.0	Lire et comprendre le cahier des charges	Le besoin du client est compris
T2.1.0	Rédiger le dossier de suivi de projet	Les différentes tâches professionnelles sont renseignées et documentées
T1.3	Rédiger le dossier technique du projet	Le dossier technique est rédigé
T1.4	Préparer les revues de projet	Les revues de projet permettent de situer l'avancement du projet (ce qui a été fait, ce qui reste à faire)
T2.3.0	Planifier et suivre l'avancement du projet	Le découpage en tâches est réalisé et suffisamment précis pour permettre un suivi efficace. Un diagramme de Gantt synthétise tout ce travail
T2.5.0	Organiser le travail en équipe	Des réunions de travail sont organisées régulièrement. Les outils de travail collaboratifs sont mis en oeuvre
T3.6.0	Rechercher solutions existantes	Un mini état de l'art est réalisé (projets similaires, produits existants, librairies, IHM,)
T3.3.0	Définir l'architecture globale de la solution	L'architecture matérielle/logicielle de la solution est définie (composants, responsabilités, liaisons,)
T3.5.0	Rédiger le cahier de recette	Le cahier de recette est rédigé

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p16/24")

5.1 - Etudiant #1

Etudiant #1	MAGNERON Hugo	
Projet	ENDURO3 (gestion d'une course à pieds)	
Sous-système(s)	DATA	
Fonctionnalités	FS4 + FS4.1 + FS10	
Connaissances spécifiques	Raspberry PI3. Langage Python. Librairie wxPython et unitest. Technologie MQTT. Code-barre. Réseau Wifi. Liaison USB	

Tâches professionnelles personnelles :

Repère	Tâche professionnelle	Objectif/critère de réussite
T4.1.1	Installer et câbler le raspberry Pl avec les lecteurs code-barre	Le module est matériellement fonctionnel
T4.2.1	Configurer le raspberry PI (OS, réseau, utilisateur) et les lecteurs code-barre	Le RPi est pleinement fonctionnel ainsi que les lecteurs
T4.3.1	Installer l'environnement de développement Python	L'environnement de développement est fonctionnel
T4.4.1	Développer le module d'affichage des données de course. Développer le module de simulation de course	La nouvelle IHM est plus réactive que la version 2018 (<1s) tout en étant aussi complète et lisible Le simulateur permet de simuler une course complète. Il est paramétrable
T4.5.1	Tester les modules d'affichage et de simulation	Les tests unitaires et les recettes permettent de valider les modules
T4.6.1	Intégrer le module d'affichage avec l'étudiant #2 et le simulateur avec tout le monde.	L'intégration avec les autres modules du projet est fonctionnelle
T4.7.1	Documenter les 2 modules	Une documentation technique sera réalisée à l'aide du logiciel Doxygen. En outre des commentaires précis et pertinents faciliteront la compréhension du code source

ICSSA :: STS SN(IR) :: Projet **ENDURO3** :: CDC("p17/24")

5.2 - Etudiant #2

Etudiant #2	GONCALVES Mathéo	
Projet	ENDURO3 (gestion d'une course à pieds)	
Sous-système(s)	DATA, BDD	
Fonctionnalités	FS3 + FS3.1 + FS5 + FS5.1 + (FS6)	
Connaissances spécifiques	Raspberry PI3. Langage Python. Technologie MQTT. Framework Flask. Docker. Langage SQL. HTTP/JSON	

Tâches professionnelles personnelles :

Repère	Tâche professionnelle	Objectif/critère de réussite
T4.1.2	Installer et câbler le raspberry PI	Le module est matériellement fonctionnel
T4.2.2	Configurer le raspberry PI (OS, réseau)	Le module est pleinement fonctionnel
T4.3.2	Installer l'environnement de développement Python	L'environnement de développement est fonctionnel
T4.4.2	Développer le module de d'envoi/enregistrement des données de passages au VPS. Développer le module d'affichage de la course (direct)	Les passages sont bien envoyés au VPS et enregistrés dans la base de données. L'affichage sur les écrans est lisible et mis à jour.
T4.5.2	Tester les modules d'envoi/enregistrement et d'affichage	Les tests unitaires et les recettes permettent de valider les modules
T4.6.2	Intégrer le module d'envoi/enregistrement avec l'étudiant #3 et le module d'affichage avec les autres étudiants	L'intégration avec les autres modules du projet est fonctionnelle
T4.7.2	Documenter les modules	Une documentation technique sera réalisée à l'aide du logiciel Doxygen. En outre des commentaires précis et pertinents faciliteront la compréhension du code source

ICSSA :: STS SN(IR) :: Projet **ENDURO3** :: CDC("p18/24")

5.3 - Etudiant #3

Etudiant #3	MEGANCK Etienne
Projet	ENDURO3 (gestion d'une course à pieds)
Sous-système(s)	ORGA
Fonctionnalités	FS8 + FS8.1 + FS8.2 + FS7 + FS7.1
Connaissances spécifiques	Base de données. Langage SQL. Langages web HTML5, CSS3 et Javascript. Langage Python/Flask. Format CSV. Docker

Tâches professionnelles personnelles :

Repère	Tâche professionnelle	Objectif/critère de réussite
T4.1.3	Installer et câbler un serveur web de développement	Le serveur est matériellement fonctionnel
T4.2.3	Configurer le serveur web et/ou l'espace d'hébergement web.	L'environnement web est pleinement fonctionnel
T4.3.3	Installer l'environnement de développement web	L'environnement de développement est fonctionnel
T4.4.3	Développer le module de configuration de la course Développer le module d'inscription Développer le module d'affichage des résultats	L'organisateur peut configurer la course en important l'ensemble des badges CSV Les coureurs peuvent s'inscrire facilement en ligne (y compris ceux ayant oubliés leurs badges) Les résultats globaux sont complets et une recherche individuelle possible
T4.5.3	Tester les modules de configuration, d'inscription et d'affichage	Les tests unitaires et les recettes permettent de valider les modules
T4.6.3	Intégrer les modules avec les autres étudiants	L'intégration avec les autres modules du projet est fonctionnelle
T4.7.3	Documenter les modules et l'API	Une documentation technique sera réalisée à l'aide du logiciel Doxygen. En outre des commentaires précis et pertinents faciliteront la compréhension du code source

ICSSA :: STS SN(IR) :: Projet **ENDURO3** :: CDC("p19/24")

5.4 - Etudiant #4

Etudiant #4	ALLAIRE Pierre	
Projet	ENDURO3 (gestion d'une course à pieds)	
Sous-système(s)	РНОТО	
Fonctionnalités	FS9 + FS9.1 + FS9.2 + (FS6)	
Connaissances spécifiques	Langage Python. Framework Flask. Librairie jQueryMobile. SQL. Docker. Photographie numérique. Smartphone	

Tâches professionnelles personnelles :

Repère	Tâche professionnelle	Objectif/critère de réussite
T4.1.4	Installer et câbler un smartphone de développement	Le smartphone est matériellement fonctionnel
T4.2.4	Configurer le smartphone (accès réseau.	L'environnement mobile est pleinement fonctionnel
T4.3.4	Installer l'environnement de développement web mobile	L'environnement de développement est fonctionnel
T4.4.4	Développer le module d'envoi de photos Développer le module d'affichage du diaporama photos	Les organisateurs peuvent envoyer les photos depuis leurs smartphones. Ces dernières sont intégrées à un diaporama automatique en parallèle des données de course sur les écrans
T4.5.4	Tester le module d'envoi et d'affichage des photos	Les tests unitaires et les recettes permettent de valider le module
T4.6.4	Intégrer le module d'affichage des photos avec l'étudiant #2	L'intégration avec les autres modules du projet est fonctionnelle
T4.7.4	Documenter le module	Une documentation technique sera réalisée à l'aide du logiciel Doxygen. En outre des commentaires précis et pertinents faciliteront la compréhension du code source

ICSSA :: STS SN(IR) :: Projet **ENDURO3** :: CDC("p20/24")

6 - Exploitation pédagogique

Les compétences terminales à valider pour la spécialité IR (Informatique et Réseaux) :

Compétences terminales à valider	E1	E2	E 3	E4
ORGANISER				
C2.1 - Maintenir les informations	T2.1.0	T2.1.0	T2.1.0	
C2.2 - Formaliser l'expression d'un besoin	T2.2.0	T2.2.0	T2.2.0	
C2.3 - Organiser et/ou respecter la planification d'un projet	T2.3.0	T2.3.0	T2.3.0	
C2.4 - Assumer le rôle total ou partiel de chef de projet	T2.4.0	T2.4.0	T2.4.0	
C2.5 - Travailler en équipe	T2.5.0	T2.5.0	T2.5.0	
CONCEVOIR				
C3.1 - Analyser un cahier des charges	T3.1.0	T3.1.0	T3.1.0	
C3.3 - Définir l'architecture globale d'un prototype ou d'un système	T3.3.0	T3.3.0	T3.3.0	
C3.5 - Contribuer à la définition des éléments de recette au regard des contraintes du cahier des charges	T3.5.0	T3.5.0	T3.5.0	
C3.6 - Recenser les solutions existantes répondant au cahier des charges	T3.6.0	T3.6.0	T3.6.0	
RÉALISER				
C4.1 - Câbler et/ou intégrer un matériel	T4.1.1	T4.1.2	T.4.1.3	
C4.2 - Adapter et/ou configurer un matériel	T4.2.1	T4.2.2	T4.2.3	
C4.3 - Installer et configurer une chaîne de développement	T4.3.1	T4.3.2	T4.3.3	
C4.4 - Développer un module logiciel	T4.4.1	T4.4.2	T4.4.3	
C4.5 - Tester et valider un module logiciel	T4.5.1	T4.5.2	T4.5.3	
C4.6 - Intégrer un module logiciel	T4.6.1	T4.6.2	T4.6.3	
C4.7 - Documenter une réalisation matérielle/logicielle	T4.7.1	T4.7.2	T4.7.3	

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p21/24")

7 - Planification temporelle prévisionnelle

L'identification des tâches détaillées ainsi que leur planification devront être mise en oeuvre dès le début de l'étude par l'équipe d'étudiants chargés du développement.

Ils pourront évidemment formuler des choix de développement. Le point d'entrée dans le projet est défini par l'ensemble des cas d'utilisation fournis.

La planification ci-dessous reste très générale. Elle est donnée à titre purement indicatif. Charge aux étudiants de reprendre et reformuler leur propre planning prévisionnel et de tenir à jour le planning réel et/ou un journal de bord.

E1	E2	E 3	E4	Repère tâche	Description	Semaine
х	х	х	Х		Début du projet	5
х	х	х	х	T2.X	Tâches professionnelles d'organisation	
Х	х	х	х		Revue de projet #1	8
х	х	х	х	T3.X	Tâches professionnelles de conception	
х	х	х	Х		Revue de projet #2	14
х	х	х	х	T4.X	Tâches professionnelles de réalisation	
Х	х	х	х		Revue de projet #3	21
х	х	х	Х	T4.X	Tâches professionnelles de réalisation	
Х	х	х	х		Epreuve E6.2 (soutenance)	mi-juin

ICSSA :: STS SN(IR) :: Projet ENDURO3 :: CDC("p22/24")

8 - Avis de la commission

•	Les	concepts	et	les	outils	mis	en	œuvre	par	le	candidat	(1-2-3-4-5)
	corre	espondent	au r	nivea	u des e	xigen	ces	techniqu	es at	ten	du pour cet	tte formation
	:											

oui / à reprendre pour le candidat (1-2-3-4-5)

• L'énoncé des tâches à réaliser par le candidat (1-2-3-4-5)... est suffisamment complet et précis :

oui / à reprendre pour le candidat (1-2-3-4-5)

 Les compétences requises pour la réalisation ou les tâches confiées au candidat (1-2-3-4-5) sont en adéquation avec les savoirs et savoir-faire exigés par le référentiel:

oui / à reprendre pour le candidat (1-2-3-4-5)

• Le nombre d'étudiants est adapté aux tâches énumérées :

oui / trop / insuffisant

Commentaires:

Date: Le président de la commission