

COMPUTER TECHNOLOGY

Dr. Amr Elkholy

Lecture 9: Databases and Decision Making (Part1)

- ✓ Ch1: Intro to Computer Fundamentals
- ✓ Ch2: Operating System
- √ Ch3: Computer Networking
- √ Ch4: Programming Language

√ Ch5: Databases and Decision Making

CH5: DATABASES AND DECISION MAKING (PART1)

FILE SYSTEM

- □In the early days, database applications were built on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Data isolation multiple files and formats
 - Integrity problems
 - Integrity constraints (e.g. account balance > 0) become part of program code
 - Hard to add new constraints or change existing ones

A database is a collection of related, logically coherent data which can be used alone or combined to provide answers to the user's question.

StudentNr	StudentName
101	Ann Jones
102	John Smith
103	John Smith

CourseCode	CourseTitle
CS100	Introduction to Computer Science
CS102	Programming Basics
CS200	Operating Systems
CS400	MetaInformatics

StudentNr	CourseCode	Grade
101	CS100	Α
101	CS102	Α
101	CS200	В
102	CS100	

DATABASE

■ Database Applications:

- Banking: all transactions
- Airlines: reservations, schedules
- Universities: registration, grades
- Sales: customers, products, purchases
- Manufacturing: production, inventory, orders, supply chain
- Human resources: employee records, salaries, tax deductions

DATABASE

- Database Advantage:
 - Less Redundancy
 - Inconsistency avoidance
 - Efficiency
 - Data Integrity
 - Confidentiality

StudentNr	StudentName
101	Ann Jones
102	John Smith
103	John Smith

CourseCode	CourseTitle
CS100	Introduction to Computer Science
CS102	Programming Basics
CS200	Operating Systems
CS400	MetaInformatics

StudentNr	CourseCode	Grade
101	CS100	Α
101	CS102	Α
101	CS200	В
102	CS100	

DBMS

A DBMS is a combination of five components:

Hardware

• The physical computer system that allows access t

Software

Actual program that allows users to access, maintain, and update data.

Data

Schema, subschema, table, attribute

Users

- Data administrator & database administrator
- Database designer: logical & physical
- Application programmer
- End-user: naive & sophisticated

Procedure

• The set of rules that should be clearly defined and followed by the users of the database.

DATABASE ARCHITECTURE

External level

User 3

User n

Interacts directly with the user.

User 1

Defined the logical view of the data (i.e., data model, queries).

Determines where the data is actually stored on the storage devices.

User 2

- ✓ Defines the logical design of the data
- Describes the relationships between different parts of the data.

■ Database Models:

- Hierarchal database model
- Network database model
- Relational database model

☐ Hierarchal database model

- ✓ Data is organized as an upside-down tree
- ✓ Each entity has only one parent
- ✓ At the top, there is one entity (Root)

- ☐ Network database model
 - ✓ Entities are organized in a graph
 - ✓ Some entities can be accessed through several paths.

- ☐ Relational database model
 - ✓ Data is organized in two-dimensional tables called "Relations"
 - ✓ Tables are related to each other.

Employee_ID	First_Name	Last_Name	Hire_Date	Manager	Department_ID
37	Frances	Newton	14-SEP-2005		
1234	Donald	Newton	24-SEP-2006	28	10
7895	Matthew	Michaels	16-MAY-2007	28	10
	DEPAR	RTMENT			→ (M)
	DEPAR		Name		4 / / / / / / / / / / / / / / / / / / /
	DEPAR	RTMENT			4 // //
	DEPAR Depar	RTMENT	Name		4 // //

☐ Distributed database model

- ✓ It is based on the relational model.
- ✓ The data are stored on several computers that communicate through the Internet or some private Network.
 - > Fragmented distributed databases
 - Replicated distributed databases

Object Oriented database model

- ✓ Data as a structure.
- ✓ Tries to keep the adv. Of the relational model and allows applications to access structured data.
- ✓ Objects and their relations are defined, and each object can have attributes.

Customers			
ID	SName	FName	
1	Karl	Meier	4
Addresses			
ID	City	CID	
1	Berlin	1	\blacksquare
2	Leipzig	1	Ш
BankAccounts			
D	AccNo	CID	
1	395382	1	
2	824432	1	

NEXT

✓ Ch5: Databases and Decision Making (Part1)

- File Systems
- Database
- DBMS
- DB Architecture
- DB Models

✓ Ch5: Databases and Decision Making (Part2)

COMPUTER TECHNOLOGY

Dr. Amr Elkholy

Lecture 9: Databases and Decision Making (Part2)

- ✓ Ch5: Databases and Decision Making (Part1)
 - File Systems
 - Database
 - DBMS
 - DB Architecture
 - DB Models

- ✓ Ch5: Databases and Decision Making (Part2)
 - Relational Database Model
 - SQL
 - Decision Making

CH5: DATABASES AND DECISION MAKING (PART2)

RELATIONAL DATABASE MODEL

In **Relational DataBase Management System** (RDBMS), the data is represented as a set of **relations**.

Relation is a two-dimensional table.

RELATION

■A relation in an RDBMS has the following features:

Name

• Each relation has a name that is unique.

Attributes

Each column in a relation is called an attribute.

•Tuples

• Each row in a relation is called a tuple.

OPERATIONS ON RELATIONS

- We can define several operations that can be applied to relations.
 - Insert
 - Delete
 - Update
 - Select
 - Project
 - Join
 - Union
 - Intersect
 - Difference

Each operation is described as defined in the database query language

SQL (Structured Query Language)

SQL

□SQL is a standard language that can be used on relational databases.

□ It is a declarative rather than procedural language.

SQL

1. Insert Operation

- This operation inserts a new tuple into the relations.
- It is a unary operation (i.e., it is applied to a single relation)

Insert into **RELATION-NAME**Values (....)

1. Insert Operation

Insert into Courses Values ("CIS52", "Programming", 6)

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	2
CIS19	UNIX	4
CIS51	Networking	5

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	2
CIS19	UNIX	4
CIS51	Networking	5
CIS52	Programming	6

SQL

2. Delete Operation

- This operation deletes a tuple defined by a criterion from the relations.
- It is a unary operation (i.e., it is applied to a single relation)

Delete from **RELATION-NAME**Where **Criteria**

2. Delete Operation

Delete from Courses Values ID = "CIS52"

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	2
CIS19	UNIX	4
CIS51	Networking	5
CIS52	Programming	6

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	2
CIS19	UNIX	4
CIS51	Networking	5

SQL

3. Update Operation

- This operation changes the value of some attributes of a tuple.
- It is a unary operation (i.e., it is applied to a single relation)

Update RELATION-NAME
Set attribute1 = value1,
attribute2 = value2, ...
Where Criteria

3. Update Operation

Update Courses

Set Credit_Hours = 3

Where ID = "CIS52"

ID	Course_Name	Credit_Hours	
CIS15	Intro to C	3	
CIS17	Intro to Java	2	I
CIS19	UNIX	4	
CIS51	Networking	5	
CIS52	Programming	6	

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	2
CIS19	UNIX	4
CIS51	Networking	5
CIS52	Programming	3

4. Select Operation

- This tuples in the resulting relation are a subset of the tuples in the original relation.
- It is a unary operation (i.e., it is applied to a single relation)

Select *
From RELATION-NAME
Where Criteria

4. Select Operation

Select *
From Courses
Where Credit_Hours = 3

ID	Course_Name	Credit_Hours	
CIS15	Intro to C	3	
CIS17	Intro to Java	3	
CIS19	UNIX	4	
CIS51	Networking	5	
CIS52	Programming	6	

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	3

SQL

5. Project Operation

- The attributes (columns) in the resulting relation are a subset of the attributes in the original relation.
- It is a unary operation and creates another relation.

Select Attribute-List From RELATION-NAME

5. Project Operation

Select ID, Course_Name From Courses

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	3
CIS19	UNIX	4
CIS51	Networking	5
CIS52	Programming	6

ID	Course_Name
CIS15	Intro to C
CIS17	Intro to Java
CIS19	UNIX
CIS51	Networking
CIS52	Programming

SQL

6. Join Operation

It is a binary operation that combines two relations on common attributes.

Select Attribute-List From RELATION1, RELATION2 Where Criteria

6. Join Operation

Courses

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	3
CIS19	UNIX	4
CIS51	Networking	5

Professors

ID	Professor	Course_ID
1	Ahmed	CIS19
2	Mohamed	CIS17
3	Mostafa	CIS51
4	Amin	CIS15

Select Course_Name, Professor

From Courses, Professors

Where Courses.ID = Professors.Course_ID

Professor
Amin
Mohamed
Ahmed
Mostafa

7. Union Operation

Union operation takes two relations with the same set of attributes.

Select *
From RELATION1
Union
Select *

From **RELATION2**

7. Union Operation

Courses 1

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	3

Courses2

ID	Course_Name	Credit_Hours
CIS19	UNIX	4
CIS51	Networking	5

From Courses 1

Union

Select *

From Courses2

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	3
CIS19	UNIX	4
CIS51	Networking	5

8. Intersection Operation

 Intersection operation takes two relations and creates a new relation which is the intersection of the two.

Select *
From RELATION1
Intersection
Select *
From RELATION2

8. Intersection Operation

Select *

From Courses 1

Union

Select *

From Courses2

Courses 1

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	3
CIS51	Networking	5

Courses 2

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS19	UNIX	4
CIS51	Networking	5

	ID	Course_Name	Credit_Hours
Intersection	CIS15	Intro to C	3
	CIS51	Networking	5

9. Difference Operation

- Difference operation is applied to two relations with the same attributes.
- The tuples in the resulting relation are those that are in the first relation but not in the second.

Select *

From **RELATION1**

Minus

Select *

From **RELATION2**

Difference Operation

Courses 1

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS17	Intro to Java	3
CIS51	Networking	5

Courses2

ID	Course_Name	Credit_Hours
CIS15	Intro to C	3
CIS19	UNIX	4
CIS51	Networking	5

From Courses 1

Minus

Select *

From Courses 2

	ID	Course_Name	Credit_Hours
Difference	CIS17	Intro to Java	3

DECISION MAKING

What can the computer offer to the users and how can it support their work when dealing with decision-making problems?

Decision Making

DECISION MAKING

Decision making is usually defined as a mental process, which involves judging multiple options or alternatives, in order to select one, so as to best achieve the goals.

There are two main components involved in decision making:

- The set of alternatives.
- The goals to be satisfied with the choice of one alternative.

DECISION MAKING

☐ The output of this process can be an action or an opinion of choice.

Decision making is a process, involving several activities, such as:

- ✓ Identification of the decision problem.
- Collecting and verifying relevant information.
- Identifying decision alternatives.
- Anticipating the consequences of decisions.
- Making the decision.

DECISION MAKING

When decisions are made in a computer program, they are simply the result of a computation in which the final result is either TRUE or FALSE.

Examples of Decision making programming statemsmnets.

- ✓ If statement
- Switch statement
- ? Conditional operator system
- ✓ Goto statement

NEXT

✓ Ch5: Databases and Decision Making (Part2)

✓ Ch6: Computer Graphics and Multimedia

