

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION FOR LETTERS PATENT

00027333-1000-0000

* * * *

**Capacitor Forming Methods and Capacitor
Constructions**

* * * *

INVENTORS

Vishnu K. Agarwal

F. Daniel Gealy

ATTORNEY'S DOCKET NO. MI22-1568

EL844098950

Capacitor Forming Methods and Capacitor Constructions

RELATED PATENT DATA

Guth B1

This patent resulted from a continuation-in-part application of U.S. Patent Application Serial No. 09/710,546, filed on November 8, 2000 which application is a continuation application of U.S. Patent No. 6,165,833, issued on December 26, 2000, each of which are herein incorporated by reference.

TECHNICAL FIELD

The aspects of the invention relate to capacitor forming methods including forming barrier layers to threshold voltage shift inducing material and capacitor constructions having such barrier layers.

BACKGROUND OF THE INVENTION

Capacitors are common devices used in electronics, such as integrated circuits, and particularly semiconductor-based technologies. One factor to consider when selecting materials and/or structure for a capacitor may be the capacitance per unit area. A high K factor (also known as relative dielectric constant or "κ") dielectric material may assist in enhancing capacitance. In the context of this document, "high K factor" is defined as a K factor higher than that of typical DRAM oxynitride dielectric or at least about 7. Ta_2O_5 can be one example of a high K factor dielectric, but is known to degrade performance of electronic devices when used in a capacitor. One example of impacted electronic devices includes a

transistor. A shift in threshold voltage (V_t) may occur as well as changes in drift current (I_{DS}), device transconductance parameter for a load transistor (K_L), and other device characteristics.

Even though high K dielectrics are desirable in capacitors, V_t shift and other effects on device characteristics can be unacceptable in particular applications. Accordingly, methods of using high K dielectrics without substantially degrading device characteristics are needed.

SUMMARY OF THE INVENTION

In one aspect of the invention, a capacitor forming method includes forming an insulation layer over a substrate, the substrate including an electronic device. A barrier layer to threshold voltage (V_t) shift inducing material can be formed over the substrate and an opening can be formed in the insulation layer. A high K capacitor dielectric layer may be formed within the opening and V_t shift inducing material provided over the barrier layer. The barrier layer can retard movement of the V_t shift inducing material into the electronic device. As an example, the barrier layer can include a silicon nitride. The opening can be formed completely through the insulation layer. Also, a congruent opening can be formed through the barrier layer. For example, the dielectric layer can include a tantalum oxide. The providing V_t shift inducing material can include oxide annealing with N_2O .

In another aspect of the invention, the barrier layer to V_t shift inducing material can be formed over the insulation layer and the opening can be formed through the barrier layer and into the insulation layer. In

yet another aspect of the invention, the barrier layer to V_t shift inducing material can be formed over the substrate and the insulation layer formed over the barrier layer. The opening can be formed into at least the insulation layer. In a further aspect of the invention, a first insulation layer may be formed over the substrate, the barrier layer may be formed over the first insulation layer, and a second insulation layer may be formed over the barrier layer. The opening can be formed into at least the second insulation layer.

According to a still further aspect of the invention, a capacitor forming method includes forming an insulation layer over a substrate, the substrate including an electronic device. An opening having a sidewall can be formed into the insulation layer and a capacitor electrode formed at least within the opening and over the sidewall. After forming the capacitor electrode, a barrier layer to V_t shift inducing material can be formed at least over the insulation layer. A high K capacitor dielectric layer can be formed over the capacitor electrode after forming the barrier layer. V_t shift inducing material can be provided over the barrier layer which retards movement of the V_t shift inducing material into the electronic device. Forming the barrier layer can include chemical vapor depositing at a step coverage of less than about 25%. For example, the barrier layer can have a thickness over the sidewall from about 0 to about 300 Angstroms. In another aspect of the invention, the barrier layer to V_t shift inducing material may instead be formed after forming a high K dielectric layer at least over the capacitor electrode.

In a further aspect of the invention, a capacitor construction includes an insulation layer over a substrate, the substrate including an electronic device. A Si_3N_4 barrier layer can be over the substrate, retarding movement of V_t shift inducing material into the electronic device. An opening can be at least into the insulation layer and an inner capacitor electrode comprising silicon can be at least within the opening. A high K capacitor dielectric layer can be at least within the opening and over the inner capacitor electrode. An outer capacitor electrode can be over the dielectric layer. In a further aspect, the invention provides a semiconductor die including a capacitor construction described above.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

Fig. 1 is an enlarged diagrammatic section view of a semiconductor wafer fragment at one processing step in accordance with an aspect of the invention.

Fig. 2 is a view of the Fig. 1 wafer fragment at a processing step subsequent to that depicted by Fig. 1.

Fig. 3 is a view of the Fig. 2 wafer fragment at a processing step subsequent to that depicted by Fig. 2.

Fig. 4 is a view of the Fig. 3 wafer fragment at a processing step subsequent to that depicted by Fig. 3.

Fig. 5 is a view of the Fig. 4 wafer fragment at a processing step subsequent to that depicted by Fig. 4.

Fig. 6 is an enlarged diagrammatic sectional view of a semiconductor wafer fragment at one processing step in accordance with an alternative aspect of the invention.

Fig. 7 is a view of the Fig. 6 wafer fragment at a processing step subsequent to that depicted by Fig. 6.

Fig. 8 is a view of the Fig. 7 wafer fragment at a processing step subsequent to that depicted by Fig. 7.

Fig. 9 is a view of the Fig. 8 wafer fragment at a processing step subsequent to that depicted by Fig. 8.

Fig. 10 is an enlarged diagrammatic sectional view of the Fig. 2 semiconductor wafer fragment at a processing step subsequent to that depicted by Fig. 2 in accordance with another alternative aspect of the invention.

Fig. 11 is a view of the Fig. 10 wafer fragment at a processing step subsequent to that depicted by Fig. 10.

Fig. 12 is an enlarged diagrammatic sectional view of the Fig. 2 semiconductor wafer fragment at a processing step subsequent to that depicted by Fig. 2 in accordance with yet another alternative aspect of the invention.

Fig. 13 is a view of the Fig. 12 wafer fragment at a processing step subsequent to that depicted by Fig. 12.

Fig. 14 is an enlarged diagrammatic sectional view of the Fig. 2 semiconductor wafer fragment at a processing step subsequent to that depicted by Fig. 2 in accordance with a further alternative aspect of the invention.

Fig. 15 is a view of the Fig. 14 wafer fragment at a processing step subsequent to that depicted by Fig. 14.

Fig. 16 is a view of the Fig. 15 wafer fragment at a processing step subsequent to that depicted by Fig. 15.

Fig. 17 is an enlarged diagrammatic sectional view of the Fig. 2 semiconductor wafer fragment at a processing step subsequent to that depicted by Fig. 2 in accordance with a still further alternative aspect of the invention.

Fig. 18 is a view of the Fig. 17 wafer fragment at a processing step subsequent to that depicted by Fig. 17.

Fig. 19 is a view of the Fig. 18 wafer fragment at a processing step subsequent to that depicted by Fig. 18.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws "to promote the progress of science and useful arts" (Article 1, Section 8).

In the context of this document, the term "semiconductor substrate" or "semiconductive substrate" is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon) and semiconductive material layers (either alone or in assemblies comprising other materials). The term "substrate" refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.

A variety of contexts arise wherein methods of forming capacitors or other processing methods produce changes in the performance of electronic devices. One example of an electronic device is a transistor. Observation indicates that use of a high K dielectric material in a capacitor forming part of dynamic random access memory (DRAM) can produce a shift in threshold voltage (V_t) of associated transistors. Little is known regarding the specific causes of V_t shift or chemical species that contribute to V_t shift. However, observation and trial has produced an indication that barrier layers can be effective in controlling V_t shift.

One possible explanation for the success of barrier layers can be exemplified by reference to use of Ta_2O_5 as a capacitor dielectric. Nevertheless, the various aspects of the invention described herein are considered applicable to use of other high K dielectric materials, and other types of semiconductor processes. Examples of suitable capacitor dielectrics include Al_2O_3 , HfO_2 , $HfSiO_4$, ZrO_2 , $ZrSiO_4$, and combinations thereof with or without Ta_2O_5 . As a capacitor dielectric, Ta_2O_5 can potentially exhibit a K factor of at least about 10, for example, as high as 40. However, achieving the theoretical K factor for Ta_2O_5 is commonly performed by post-deposition oxide annealing. Such oxide annealing can also be performed as a crystallization anneal to transform Ta_2O_5 from an as-deposited amorphous material. Observation indicates that N_2O performs well as an oxidizing species. Oxide annealing is believed to fill oxygen vacancies in as-deposited Ta_2O_5 . Experience and trial indicate that N_2O appears to work best among a variety of possible oxidizers, and even among other nitrogen-containing oxides. One possible reason, although not

verified, is that N₂O is believed to produce active oxygen species, one example being NO-.

While active oxygen species provide benefits in oxide annealing, such materials might also induce a V_t shift. Commonly used insulation materials over electronic devices are often amorphous and can thus be porous to V_t shift inducing materials, for example, active oxygen species and particularly NO-. Diffusion of impurities and other materials, for example, carbon, nitrogen, hydrogen, etc., are also suspects in inducing V_t shift. V_t shift inducing materials can potentially exist in deposited layers rather than as precursor or processing components as in the case of annealing with nitrogen-containing oxides. Nevertheless, the various aspects of the present invention described herein provide protection from V_t shift inducing materials by using barrier layers between electronic devices and a potential source of V_t shift inducing materials. The various aspects of the invention can also prevent changes in other transistor characteristics, such as drift current (I_{DS}), device transconductance parameter for a load transistor (K_L), etc.

In one aspect of the invention, a capacitor forming method includes forming an insulation layer over a substrate and forming a barrier layer to V_t shift inducing material over the substrate. The substrate can include an electronic device. An opening can be formed at least into the insulation layer and a high K capacitor dielectric layer formed at least within the opening. V_t shift inducing material can be provided over the barrier layer. However, the barrier layer retards movement of the V_t shift inducing material into the electronic device.

The capacitor forming method can be conducted in a variety of ways.

For example, the opening can be formed completely through the insulation layer. Also, forming an opening can further include forming a congruent opening through the barrier layer. The barrier layer opening and insulation layer opening can be formed as part of a single etch process or separately. The method can further include forming a capacitor electrode at least within the opening before forming the dielectric layer. Alternatively, the capacitor electrode can be comprised by the underlying substrate. Preferably, the dielectric layer exhibits a K factor of at least about 10. Preferably, the dielectric layer includes a tantalum oxide.

Providing a V_t shift inducing material can also occur in a variety of ways. Providing at least one impurity comprising layer over the barrier layer is one possibility. Another possibility is annealing the dielectric layer. As previously discussed annealing can include oxide annealing. Preferably, annealing includes heating the dielectric to at least about 600 °C in the presence of a nitrogen-containing oxide provided at a partial pressure of at least about 200 milliTorr. More preferably, annealing includes heating to at least about 700 °C at a partial pressure of at least about 400 milliTorr.

A variety of barrier layers having a variety of properties and placed in a variety of positions can accomplish the purposes of the present aspects of the invention. For example, the barrier layer can be formed over the insulation layer, as well as in other positions described below. Such barrier layer can consist essentially of a globally planar barrier layer. That is, the barrier layer can exist essentially in one plane over a

particular substrate, semiconductor die, or bulk semiconductor wafer. Understandably, deviations less than the thickness of the barrier layer from perfect planarity can occur while still considering the barrier layer as consisting essentially of a globally planar barrier layer.

Preferably, barrier layers act as a barrier to active oxygen species, such as oxygen radicals, oxygen, etc. as well as other V_t shift inducing materials. Barrier layer thickness can vary from about 30 Angstroms to about 800 Angstroms, but preferably from about 50 to about 300 Angstroms. A silicon nitride, such as Si_3N_4 , can form a suitable barrier layer. Other suitable materials can include a silicon oxynitride, an aluminum oxide, etc. The silicon-containing nitrides are typically considered most suitable, however, aluminum-containing oxides are generally the next most suitable compared to other oxides. A non-conductive barrier layer can be typically preferred, however, a conductive barrier layer might be suitable if in a position so as not to substantially interfere with the function of electronic devices. For example, a conductive barrier layer formed on a conductive component might not effect the operation of such conductive component. Regardless of the position or component materials, barrier layers are advantageously as thin as possible while still providing effective reduction of V_t shift and other forms of electronic device degradation.

A Si_3N_4 barrier layer deposited by plasma enhanced chemical vapor deposition can be about 60 Angstroms. If deposited by low pressure chemical vapor deposition, the barrier layer might need more thickness to achieve equal effectiveness since Si_3N_4 formed by such method can be less dense than when formed by a plasma enhanced method. Other chemical

vapor deposition methods, atomic layer deposition methods and other methods known to those skilled in the art or yet to be developed can be suitable for forming a barrier layer according to the aspects of the invention herein.

Consideration should be given to possible impacts that barrier layers of the present invention may have on other parts of semiconductor processing. Often, alloying processes are used to diffuse hydrogen or other materials through insulation material as a near-final process to occupy dangling bonds in gate oxide and also to prevent V_t shift. Possibly, a barrier layer according to an aspect of the present invention could frustrate alloying in the conventional manner. Accordingly, backside alloying through an opposite side of a bulk semiconductor wafer can be performed in the alternative according to the knowledge of those skilled in the art.

Turning to Fig. 1, a wafer construction 26 is shown at a preliminary process step including a semiconductor substrate 2 having wordlines 4 formed thereon. Spacers 6 are formed on sidewalls of wordlines 4. Diffusion regions 12 are formed in semiconductor substrate 2 and insulation layer 24 is formed over wordlines 4, spacer 6, diffusion regions 12, and semiconductor substrate 2. Wafer construction 26 can be further processed as shown in Fig. 2 by forming an opening through insulation layer 24 to one of diffusion regions 12 and forming contact 28 in the opening. Contact 28 can include a doped polysilicon plug, as well as other materials and structures. Wafer construction 26 can be further processed as shown in Fig. 3 by forming insulation layer 30 on the structure shown in Fig. 2 and forming a V_t shift barrier layer 14a on insulation layer 30.

Fig. 4 shows forming an opening 32 completely through barrier layer 14a and insulation layer 30 to contact 28 and insulation layer 24. Further processing can produce wafer construction 26 as shown in Fig. 5 by forming an electrode 34 in opening 32, forming a dielectric layer 36 on electrode 34 and forming an electrode 38 on dielectric layer 36. As seen from Fig. 5, barrier layer 14a can reduce movement of V_t shift inducing material from over barrier layer 14a into wordlines 4, diffusion regions 12, and semiconductor substrate 2. Because opening 32 is formed through barrier layer 14a, V_t shift inducing materials could potentially pass under barrier layer 14a through opening 32. However, the materials forming electrodes 34, 38 and dielectric layer 36, as well as other alternative capacitor structures not shown, can also retard movement of V_t shift inducing material. As an example, electrode 34 can be formed from polysilicon, such as rough polysilicon, which will react with active oxygen species to form silicon oxides. Accordingly, diffusion of active oxygen species provided during oxygen annealing of dielectric layer 36 can be reduced with electrode 34. A variety of methods known to those skilled in the art or yet to be developed can be used to prevent oxidation of electrode 34 by oxygen potentially contained in dielectric layer 36. One example is rapid thermal nitridation of a polysilicon electrode to form a silicon nitride layer prior to formation of a dielectric layer. Whether or not such methods are used, the combination of barrier layer 14a and other materials forming part of the capacitor stack, including, but not limited to, electrodes 34, 38 and dielectric 36 can retard movement of V_t shift inducing materials.

According to an aspect of the invention, a capacitor forming method includes forming an insulation layer over a substrate, the substrate including an electronic device. A barrier layer to V_t shift inducing material can be formed over the insulation layer. An opening can be formed through the barrier layer and into the insulation layer. A high K capacitor dielectric layer can be formed at least within the opening. The barrier layer may retard movement of V_t shift inducing material provided over the barrier layer. Figs. 1-5 provide one example of a barrier layer formed over an insulation layer. The opening in Fig. 4 is formed completely through the insulation layer. The dielectric layer of Fig. 5 is formed within the opening as well as partially outside the opening and elevationally above the insulation layer.

Turning to Fig. 6, a wafer construction 10 at a preliminary process step is shown having an insulation layer 8 formed over wordlines 4, spacers 6, diffusion regions 12, and semiconductor substrate 2 at a greater insulation layer thickness than shown in Fig. 1. However, a similar method to that discussed above regarding Figs. 1-5 can be used to process wafer construction 10. In Fig. 7, V_t shift barrier layer 14b is formed over insulation layer 8. In Fig. 8, an opening 16 is formed through barrier layer 14b and insulation layer 8 to expose diffusion region 12. Opening 16 is formed completely through insulation layer 8. In Fig. 9, an electrode 18 is formed in opening 16, a dielectric layer 20 is formed on electrode 18, and an electrode 22 is formed on dielectric layer 20.

Comparing wafer construction 10 of Fig. 9 to wafer construction 26 of Fig. 5, insulation layer 8 is seen as continuous from diffusion region 12

to barrier layer 14b and no contact 28 is used to electrically link the capacitor stack to diffusion region 12. Otherwise, barrier layer 14b is positioned in a similar fashion to that shown for barrier layer 14a. In the remaining Figs. 10-19, an insulation layer structure and capacitor structure analogous to that shown in Fig. 5 is repeated. However, it is conceivable that the alternative insulation layer and capacitor structure of Fig. 9 may be used in the alternative in performing the methods exemplified by Figs. 10-19.

It can be advantageous to form a V_t shift barrier layer over an insulation layer, such as shown in Figs. 5 and 9, since the underlying insulation layer can be easily planarized by chemical mechanical polishing (CMP) or another suitable method. Thus, the barrier layer can be formed as a globally planar barrier layer. Formation of a barrier layer of uniform thickness can occur more readily on a planar substrate compared to a nonplanar substrate. Further, formation of a barrier layer of uniform thickness can occur more readily on a substrate of a uniform composition compared to a substrate of varying composition. Accordingly, barrier layers 14a and 14b can be formed at substantially uniform thicknesses as exemplified by Figs. 3 and 7. The effectiveness of a barrier layer depends in part on its thickness. Accordingly, a uniform thickness can be desirable.

Consideration should be given that barrier layers 14a, 14b may be exposed to CMP as a polish stop layer during removal of excess material used to form electrode 34 of Fig. 5 and to form electrode 18 of Fig. 9. Accordingly, it may be desirable to provide barrier layers 14a, 14b as

deposited at a somewhat greater thickness than desired to account for some loss during CMP of other material.

In another aspect of the invention, a capacitor forming method includes forming a barrier layer to V_t shift inducing material over a substrate. An insulation layer can be formed over the barrier layer and an opening can be formed into at least the insulation layer. A high K capacitor dielectric layer can be formed at least within the opening and V_t shift inducing material provided over the barrier layer. The barrier layer retards movement of the V_t shift inducing materials into an electronic device comprised by the substrate.

Turning to Fig. 10, a wafer construction 40 is shown including wafer construction 26 of Fig. 2 except that a V_t shift barrier layer 14c is formed over insulation layer 24 and an insulation layer 42 is formed over barrier layer 14c. Notably, although not shown, barrier layer 14c could be formed directly on wordlines 4, spacers 6, and diffusion regions 12 with insulation layer 42 formed on barrier layer 14c, thus eliminating insulation layer 24. Fig. 11 shows wafer construction 40 after forming an opening completely through insulation layer 42 and barrier layer 14c exposing contact 28. An electrode 44, a dielectric layer 46, and an electrode 48 are then formed at least within such opening as shown in Fig. 11.

In a further aspect of the invention, a capacitor forming method includes forming a first insulation layer over a substrate, forming a barrier layer to V_t shift inducing materials over the first insulation layer, and forming a second insulation layer over the barrier layer. An opening can be formed into at least the second insulation layer and a high K capacitor

dielectric layer formed at least within the opening. V_t shift inducing material provided over the barrier layer can be thus retarded in movement into an electronic device comprised by the substrate.

Fig. 12 shows a wafer construction 50 including wafer construction 26 shown in Fig. 2 except that a lower insulation layer 52, a V_t shift barrier layer 14d, and an upper insulation layer 53 are formed over insulation layer 24 as shown in Fig. 12. Fig. 13 shows wafer construction 50 after formation of an opening completely through upper insulation layer 53, barrier layer 14d, and lower insulation layer 52 to expose contact 28. An electrode 54, a dielectric layer 56, and an electrode 58 are shown formed at least within such opening. Notably, lower insulation layer 52 could be formed directly on wordlines 4, spacers 6, and diffusion regions 12 such that separate insulation layer 24 is eliminated.

One potential advantage of wafer construction 50 and wafer construction 40 is that respective barrier layers 14d and 14c would not be exposed to CMP of materials used to form capacitor structures. Accordingly, consideration need not be given to forming barrier layers 14c, 14d at a greater thickness than desired to account for CMP losses.

In a further aspect of the invention, a capacitor forming method includes forming an insulation layer over a substrate and forming an opening into the insulation layer, the opening having a sidewall. A capacitor electrode may be formed at least within the opening and over the sidewall followed by forming a barrier layer to V_t shift inducing material at least over the insulation layer. After forming the barrier layer, a high K capacitor dielectric layer can be formed at least over the capacitor

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

electrode and V_t shift inducing material can be provided over the barrier layer. The barrier layer retards movement of the V_t shift inducing material into an electronic device comprised by the substrate. Because the electrode can be already formed in the above described method, it might be desirable to form the barrier layer over the insulation layer while avoiding formation of the barrier layer over the capacitor electrode or removing the barrier layer from the capacitor electrode when formed thereon. To avoid a need for etch removal of the barrier from over the capacitor electrode, a deposition method with intentionally poor step coverage can be used in forming the barrier layer. As an example, the forming the barrier layer can include chemical vapor depositing (CVD) at a step coverage of less than about 25%. Preferably, step coverage is less than about 10%. Also, the barrier layer can have a thickness over the sidewall from about 0 to about 300 Angstroms.

In Fig. 14, wafer construction 60 includes wafer construction 26 shown in Fig. 2 except that an insulation layer 62 is formed on insulation layer 24, an opening is formed completely through insulation layer 62, and a capacitor electrode 64 is formed entirely within the opening. In Fig. 15, a barrier layer 14e is formed over insulation layer 62 as well as over parts of electrode 64. Such a structure can result from a deposition process wherein step coverage is intentionally poor. Accordingly, little or no barrier layer forms over the sidewalls of electrode 64. Depending on the processing conditions and the aspect ratio of capacitor electrode 64, little or no barrier layer 14e may form at the bottom of the electrode 64. For high aspect ratio openings, step coverage can be poor enough that

essentially barrier layer 14e forms at the bottom of electrode 64. At lower aspect ratios, it is more likely that a small amount of barrier layer 14e might form at the bottom as shown in Fig. 15.

Fig. 16 shows a dielectric layer 66 and an electrode 68 formed over electrode 64 as well as over part of insulation layer 62 and barrier layer 14e. Depending on the material selected for barrier layer 14e, the portion of barrier layer 14e formed at the bottom of electrode 64 can produce area loss in the resulting capacitor. However, the area loss can be small, depending on the step coverage. Also, such area loss may be acceptable given the improvement in reducing V_t shift inducing material, I_{DS} shift, K_L shift, etc. As indicated, barrier layer 14e is formed after electrode 64 but before dielectric 66. Accordingly barrier layer 14e can retard movement of V_t shift inducing materials present during annealing of dielectric layer 66 as well as impurities in material formed over barrier layer 14e.

In a still further aspect of the invention, a capacitor forming method includes forming an insulation layer over a substrate and forming an opening in the insulation layer, the opening having a sidewall. A capacitor electrode can be formed at least within the opening and over the sidewall and a high K capacitor dielectric layer can be formed at least over the capacitor electrode. After forming the dielectric layer, a barrier layer to V_t shift inducing material can be formed over the insulation layer and retard movement of V_t shift inducing material provided over the barrier layer. As described above, step coverage can be less than about 25% and the barrier layer thickness over the sidewall can be from about 0 to about 300 Angstroms. Also, the barrier layer can be formed before annealing the

dielectric layer even though the barrier layer can be formed after forming the capacitor dielectric layer. In this manner, the barrier layer can retard movement of V_t shift inducing material provided during annealing. The barrier layer can be formed after annealing, but might be less advantageous.

In Fig. 17, wafer construction 70 includes wafer construction 26 shown in Fig. 2 except that an insulation layer 62 is formed over insulation layer 64. Also, an opening is formed completely through insulation layer 62 and an electrode 64 is formed completely within the opening. Further, a dielectric layer 72 is formed on electrode 64 as well as over a part of insulation layer 62. Fig. 18 shows a barrier layer 14f formed over insulation layer 62 as well as over part of dielectric layer 72 but not over the sidewall of dielectric layer 72. In Fig. 19, an electrode 78 is formed over dielectric layer 76 as well as over part of insulation layer 62 and barrier layer 14f.

A variety of deposition methods are suitable for forming a barrier layer in the various aspects of the invention. When forming a silicon nitride containing a barrier layer, plasma enhanced CVD (PECVD) with silane/ammonia or dichlorosilane/ammonia reactant pairs may be suitable. If poor step coverage is desired, the amount of the silicon source (dichlorosilane, silane, etc) can be reduced and/or the bias setting for the plasma can be increased. Increasing the bias can make the deposition more directional. Low pressure CVD (LPCVD) can also be used to form a silicon nitride containing barrier layer using silane/ammonia,

dichlorosilane/ammonia, or TCS (trichlorosilane, tetrachlorosilane, or both)/ammonia reactant pairs.

In forming barrier layers, it is generally desired to reduce stress in the barrier layers and to reduce the prevalence of pinholes. For silicon nitride containing barrier layers, annealing in the presence of ammonia, nitrogen, hydrogen/nitrogen, ammonia/nitrogen, etc. can assist in relieving stress and filling pinholes.

In keeping with additional aspects of the present invention, a variety of advantageous capacitor constructions can result from the above described methods. In one aspect, a capacitor construction includes an insulation layer over a substrate, the substrate including an electronic device. A Si_3N_4 barrier layer can be over the substrate and retard movement of V_t shift inducing material into the electronic device. An opening can be at least into the insulation layer and an inner capacitor electrode can be at least within the opening. The inner capacitor electrode can comprise silicon. A capacitor dielectric layer can be at least within the opening and over the inner capacitor electrode. An outer capacitor electrode can be over the dielectric layer. In the capacitor construction, the barrier layer can be over the insulation layer. Alternatively, the barrier layer can be under an inner surface of the insulation layer and over the substrate. Further, the barrier layer can be under an inner surface of the insulation layer and over an outer surface of another insulation layer. The various capacitor constructions described above can be comprised by a semiconductor die.

In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892<br