Н. И. Жукова

Введение в топологию

Содержание

1	Баз	ва топологии	3
2		трическая топология Метризуемость топологических пространств	5
3	Свойства замкнутых множеств		7
	3.1	Классификация точек относительно подмножества	8
		3.1.1 Примеры weird и fancy топологий	10

Определение 1 Пусть X - множество. Топологией на X называется семейство подмножеств $\tau \in \mathcal{P}(X)$, называемых открытыми множествами (данной топологии), такое, что:

1.
$$X, \emptyset \in \tau$$

2.
$$U_1, \dots U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau$$

3. $\{U_i \mid i \in I\} \subset \tau \Rightarrow \bigcup_{i \in I} U_i \in \tau$

То есть, топологии принадлежит само множество и пустое множество, пересечение конечного числа множеств и объединение любого числа множеств из топологии.

Пример. Докажем, что открытые множества в смысле евклидовой метрики в \mathbb{R}^n - топология. Очевидно, открыто само \mathbb{R}^n , также открытои пустое множество. Открытость пересечения доказывается тем, что наименьшая эпсилон-окрестность принадлежит всем множествам, то есть лежит в их пересечении, слеовательно, оно открыто. Для объединения: для каждой точки найдется множество, в которое она входит с окрестностью.

Определение 2 Тривиальная топология -
$$\tau_t = \{X, \varnothing\}$$
 Дискретная топология - $\tau_0 = \mathcal{P}(X)$

Любая инетерсная топология содержит тривиальную и содержится в дискретной.

Пример. Множества, симметричные относительно выбранной прямой в евклидовом пространстве, образуют топологию.

Пример. Множество эпсилон-окрестностей нуля $\tau=\{D_{\varepsilon}(0)\mid \varepsilon>0\}\cup\{X,\varnothing\}$ - топология.

Пример. Топология Зарисского - топология множеств, дополнительных к конечным множествам (для конечных пространств совпадает с дискретной).

Пример. Пусть $f:X\to X$ - биекция. Докажем, что $\tau_f=\{U\subset X\mid$

1 База топологии

Определение 3 Пусть (X,τ) - топологическое пространство Семейство $\Sigma = \{W_{\beta} \subset X \mid \beta \in B\}$ - база топологии, если удовлетворяет двум условиям:

1. $\Sigma \in \tau \ \forall W_{\beta} \in \Sigma$ 2. Любое открытое подмножество X можно представить в виде объединения некоторых подмножеств из $\Sigma : \forall U \in \tau \exists W_{\alpha} \in \Sigma, \ \alpha \in A \subset B : U = \bigcup_{\alpha \in A} W_{\alpha}$

Пример. В обычной (евклидовой) топологии множество $\Sigma = \{D_r(a) \mid a \in \mathbb{R}^n, r > 0\}$ является базой топологии. Действительно, проверим аксиомы:

- 1. Открытая окрестность открыта.
- 2. По определению обычной топологии, каждая точка в открытом множестве содержится в нем с некоторой окрестностью. Значит, объединение этих окрестностей дает это множество. Более формально, $\forall u \in \tau, \forall x \in U \Rightarrow \exists D_{\varepsilon_x}(x): D_{\varepsilon_x}(x) \in U$. Очевидно доказывается. что

$$\bigcup_{x \in U} D_{\varepsilon_x}(x) = U$$

Замечание. Если к базе добавить произвольное открытое множество, то новое множество также будет базой.

Упражнение. Привести пример двух баз евклидовой топологии на плоскости, которые не пересекаются с обычной базой (открытых шаров). (Решение: например, база из открытых квадратных или звездчатых окрестностей).

Пример. Топология ираациональных точек на прямой (\mathbb{R}, τ_{im}) , $\tau_{im} = \{\varnothing, \mathbb{R}\} \cup \{U \subset \mathbb{R} \setminus \mathbb{Q}\}$. Множество иррациоанльных точек не является базой, поскольку их объединение не содержит всю прямую. Решение: добавить саму прямую. !!!!!!!!!!!

Теорема 1 (критерий базы в топологическом пространстве) Пусть (X, τ) - опологическое пространство, и семейство множеств удовлетворяет условию $\sigma \subset \tau$. Σ является базой топологии тогда и только тогда, когда $\forall u \in \tau, \forall x \in U \exists W_{\beta_0} \in \Sigma : x \in W_{\beta_0} \subset U$

Доказательство. Пусть Σ - база топологии. Тогда любое открытое множество можно представить в виде объединений множеств из базы. Значит, для $x \in U$ найдется множество из базы, в котором лежит x.

Обратно. Множесто Σ удовлетворяет первой аксиоме базы по определению. Докажем выполнение второй аксиомы. Для любой точки в открытом множестве по условию теоремы найдется окрестность из Σ , лежащая в открытом множестве. !!!!!!!!!!!!!! \square

Теорема 2 (критерий базы на множестве)

Пусть X - произвольное множесто, $\Sigma = \{W_{\beta} \subset X \mid \beta \in B\}$ - семейство подмножеств из X. ЧТобы на X существовала топология c

данной базой, необходимо и достаточно выполнения двух условий:

1.
$$X = \bigcup_{\beta \in B} W_{\beta}$$

2. Для любых множеств из базы найдется множество, лежащее в их пересечении и содержащее произвольную точку оттуда.

Доказательство. Необходимость. Пусть Σ - база некотрой топологии (X,τ) . Из акиомы базы (2) следует, что что X есть объединение множеств из Σ . значит, выполняется первое условие теоремы. Докажем второе условие. Достаточно взять пересечение двух множеств из базы. Так как это открытые множества, его также можно представить в виде объединения множеств из базы, и хотя бы в одном из которых лежит фиксированная точка (по определению объединения).

Достаточность. Докажем, что всевозможные объедения множеств из Σ является топологией. пусть это есть τ . Проверим аксиомы топологии:

1. Пустое множество принадлежит всему, чему надо. Все простарнство лежит там по условию теоремы. 3. Пусть

Лемма. Две топологии с общей базой совпадают.

Доказательство. Пусть τ, ω - две топологии на множестве X, имеющие общую базу $\Sigma = \{W_{\beta} \subset X \mid \beta \in B\}$. Для всех множеств из топологии τ они являются объединением множеств из базы, но поскольку это объединение открытых множеств, то оно открыто, и является элементом топлогии ω . Итак, $\tau \subset \omega$, аналогично и в другую сторону.

Замечание. Согласно этой лемме, база топологии однозначно определяет топологию. Следовательно, критерий базы на множестве дает способ определения новых топологий.

2 Метрическая топология

Напомним определение метрического пространства. Пусть функция $\rho \colon M \times M \to \mathbb{R}$ удовлетворяет трем условиям:

1.
$$\rho(x,y) \ge 0$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) + \rho(x,z) \leqslant \rho(y,x)$$

Тогда множество (M, ρ) называется метрическим пространством с метрикой ρ .

Определение 4 Пусть (M, ρ) - метричсекое пространство. Множество

$$D_r(a) := \{ x \in M \mid \rho(x, a) < r \}$$

называется открытым шаром радиуса r

Очевидно, центр шара принадлежит ему в любой метрике.

Определение 5 Пусть (M, ρ) - метрическое пространство. Множество весвозможных шаров с разными уентрами и радиусами являются базой Σ_{ρ} (единственной) топологии, которая называется метрической топологией.

Докажем, что множество шаров - база. Применим критерий базы на множестве.

- 1. Возьмем объединение всех шаров. Так как любой шар содержит свой центр, то все точки множества лежат в объединении шаров.
- 2. Для пересекающихся шаров возьмем минимальную радиус до границы шара.

Пример. Евклидова топология - пример метрической топологии для стандартной евклидовой метрики в \mathbb{R}^n . Дискретная топология - топология, порожденная дисретной метрикой.

Упражнение. Докажите самстоятельно, что евклидова метрика индуцирует евклидову топологию (используйте критерий базы) (вставить картинку.)

Решение. Докажем, что минимум из возможных расстояний до границы шара - искомый радиус окрестности, лежащей в пересечении шаров. Рассмторим точку в этой окретсности. Она лежит в обоих шарах. (вставить выкладку)

Замечание. Мы будем использовать обычную топологию и рисовать картинки, котоыре помогут доказывать различные теоремы, но все доказательства будут даны для произвольных метричсеких простариств.

Прмиер. Рассмотрим множество непрерывных функций на отрезке. введем следующую метрику: $\rho(f,g) = max|f(x) - g(x)|$. Оперделение корректно, посокльку на отрехзке супремум непрерыной функции достигается. Какие (картика) функции лежат в окретсности произвольной функции y = f(x)? Это - непрерывные функции, заключенные в области f(x) - r, f(x) + r

Замечание. Если Σ - база топологии τ , то τ совпадает с семейством всевозможных объединений множеств из базы.

2.1 Метризуемость топологических пространств.

Определение 6 Топологическое пространство называется метризуемым, если на множестве существует метрика, идуцирующая эту топологию.

Мы уже доказали, что обычная топология метризуема. Не все, однако, топологические пространства метризуемы.

Определение 7 Пусть X - топологическое пространство, $H \subset X$. Окрестностью подмножества в X называется подмножество, содержащее его. Окрестностью точки называется любое открытое множество, содержащее точку (обозначение: U_x)

Определение 8 Топологическое пространство называется хаусдорфовым, если любые две точки обладают непересекающимися окрестностями.

Теорема 3 Любое метризуемое топологическое пространство хаусдорфово.

Доказательство. □

3 Свойства замкнутых множеств

Теорема 4 Пусть (X, τ) - топологическое прространство, и $\mathcal{F} = \{CU \mid U \in \tau\}$ - совокупность всех замкнутых множеств. Тогда выполняются условия:

 $F1. \varnothing, X \in \mathcal{F}$

F2. Объединение любых двух замкнутых замкнуто.

F3. Пересечение любого семейства замкнутых замкнуто.

Доказательство. Применим законы де Моргана к аксиомам топологического пространства.

- 1. $X = C\varnothing$, $\varnothing = CX$
- 2. Дополнение к объединению открытых замкнуто, и есть пересечение дополнений.
- 3. Дополнение к пересечению двух открытых замкнуто, и есть объединение дополнений. \Box

Замечание. Как мы видим, замкнутые множества имеют свойства, очень

похожие на свойства топологии. На самом деле, топологию можно однозначно задать как семейство множеств, удовлетворяющих свойствам замкнутых множеств, и объявить открытыми дополнения к ним.

Замечание. Из аксиомы τ_2 по индукции вытекает, что пересечение любого конечного числа открытых множеств открыто, и объединение любого числа замкнутых множеств замкнуто.

Пример. Рассмотрим обычную топологию на прямой, и рассмотрим интервалы, верхняя граница котрых минорируется каким-то числом. Тогда в бесконечном пересечении имеем отрезкоинтервал. Пример показывает, что пересечение любого числа открытых уже не обязательно открыто.

Теорема 5 (лемма об открытом множестве)

 $\Pi y cm b (X, \tau)$ - топологическое пространство. Множество открыто в топологии тогда и только тогда, когда любая точка содержится в нем с некоторой окрестностью.

Доказательство. Возьмем любую точку $x \in U$. Положим окрестность точки само множество U; очевидно, $U \subset U$.

Обратно, пусть каждая точка входит в U вместе с какой-то окрестностью. Их объединение лежит в U, и ещё и U лежит в нем, так как окрестность каждой точки содержит её. \square

3.1 Классификация точек относительно подмножества

Пусть (X,τ) - топологическое пространство, $A\subset X$ - непустое подмножество. Серия определений:

Определение 9 Точка $x \in X$ называется внутренней точкой множества A, если существует окрестность этой точки, лежащая в A.

Определение 10 Точка $x \in X$ внешняя для множества A, если она внутренняя для его дополнения.

Определение 11 Точка $x \in X$ называется точкой прикосновения, если для любой окрестности $U \cap A \neq \emptyset$

Определение 12 Точка $x \in X$ называется предельной/точкой накопления, если в любой проколотой окрестности точки найдется точка из A.

Определение 13 Точка $x \in X$ - граничная для множества A, если в любой её окрестности лежат как точки из A, так и из $X \setminus A$.

Определение 14 (семинар) Точка $x \in A$ - изолированная, если существует окрестность, в которой нет других точек из A.

Определение 15 Возьмем любое подмножество A топологического пространства X. Объединение всех внутренних точек A называется внутренностью A (обозначается A_0 , IntA). Объединение всех точек прикосновения называтся замыканием A (обозначение: \overline{A}). Множество всех граничных точек - граница A. (обозначение: FrA, ∂A)

Переходим к теоремам.

Теорема 6 (свойства замыкания)

Замыкание множества обладает следующими свойствами:

- 1. $A \subset \overline{A}$, причем замыкание замкнуто.
- 2. Если $A \subset B$, то $\overline{A} \subset \overline{B}$.
- 3. Замыкание множество минимальное по включению замкнутое множество, содержащее A.
- 4. $\overline{A} = \bigcap F_{\sigma}$ замыкание есть пересечение всех замкнутых множеств, содержащих A.
- 5. Множество замкнуто тогда и только тогда, когда оно совпадает со своим замыканием.

Доказательство. 1. Рассмотрим $x \in A$. Найдем окрестность $x \in U_x$. Они пересекаются, и значит, $A \subset \overline{A}$. Докажем замкнутость замыкания. По лемме об открытом множестве, точка из дополнения к замыканию имеет окрестность, не пересекающуюся с A. Рассмотрев точку из этой окрестности, заметим, что она тоже не лежит в замыкании. Итак, мы показали, что дополнение к замыканию открыто, так как каждая точка лежитв нем с некоторой окрестностью.

- 2. Пусть $A \subset B$. Возьмем любую точку из замыкания. Она еть точка накопления для A и следоваельно для B (по включению), значит, она лежит в замыкании B.
- 3. Предположим, что существует замкнутое $F:A\subset F\subset \overline{A}$. Это эквивалентно тому, что существует точка из замыкания, но не лежащая в F. Она лежит в дополнении F, но лежит и в замыкании A, значит, является точкой накопления, но тогда $CF\cap F\neq\varnothing$ противоречие.
- 4. Рассмотрим пересечение всех замкнутых, содержащих множество A. Оно замкнуто по свойтсву замыкания. Также, по свойству замыкания, \overline{A} одно их них, так как замкнуто. Но также и все пересечение лежит в замыкании. Обратно, A входит в пересечение. То есть в нем лежит и замыкание. Имеем в итоге равенство.

5. Пусть множество совпадает с замыканием. Тогда оно замкнуто по первому пункту теоремы. Обратно, пусть A замкнуто. По свойству 3, замыкание - минимальное замкнутое по включению. Но это и есть A. \square

Теорема 7 (свойства внутренности)

 $\Pi y cmb \ A$ - noдноже cmbo топологического пространства.

- 1. $A_0 \subset A$, причем внутренность открыта.
- 2. A_0 максимально открытое по включению, лежащее в A.
- 3. Внутренность есть объединение всех открытых множеств, лежащих в A.
- 4. $A = A_0 \Leftrightarrow A \text{ om}\kappa p \omega m o$.

Доказательство. 1. A_0 лежит

- 2. Рассмотрим открытое множество $U \subset A$
- 3. Рассмотрим объединение множеств A_{α} . Это открытое множество, которое лежит в $A\Rightarrow$ лежит в A^0 . Есть и обратное включение: рассмтрим $x\in A^0\subset A$. Значит, сущетсвует $A_{\alpha_0}=A^0\Rightarrow A^0\subset \bigcup A_{\alpha}$. Итак, доказано равенство.
- 4. Пусть $A^0 = A$ открыто по свойству 1. Обратно, если A открыто, то $A = A^0$ по свойству 2. \square

Теорема 8 (свойства границы)

Пусть $Fr\,A$ - граница подмножества A топологического пространства $(X,\tau).$

1. $FrA = \overline{A} \cap \overline{CA}$ - замкнутое множество.

2.
$$Fr A = \overline{A} \setminus A^0$$

Доказательство. 1. В любой окрестности любой точки границы содержатся как точки из A, так и из CA. Значит, граничные точки являются точками прикосновения, то есть принадлежат замыканию A. С другой стороны, они приндлежат замыканию дополнения множества A по тем же соображениям.

2. Рассмотрим $x \in Fr A$. Это точка, которая принадлежит как замыканию множества, так и замыканию его дополнения. Значит, это не внутренняя точка. То есть $x \in Fr A \iff x \in \overline{A} \setminus A^0 \square$

3.1.1 Примеры weird и fancy топологий

Пример. Нарисем бабочку на плоскости, у которой кусок границы открыт. Значит, имеем \mathbb{R}^2 , τ_{o6} . В ней оно ни открыто, ни замкнуто. В топологии отражения относительно OY (вспоним, что в неё все открытые

множества открыто-замкнутые!). Внутренность - брюшко бабочки, замыкание - вся бабочка, граница - их разность. Топология Зарисского. Замыкание -