HOMEWORK 7 415G 001 COMBINATORICS AND GRAPH THEORY

DUE MONDAY 11/09

Exercises

- 1. Suppose all vertices of a graph G have degree p, where p is an odd number. Show that the number of edges in G is a multiple of p.
- **2.** A graph G is *critical planar* if G is not planar but any subgraph obtained by removing a vertex is planar.
 - (a) Are K_5 , $K_{3,3}$ and the Petersen graph P critical planar?.
 - (b) Prove that critical planar graphs must be connected and cannot have a vertex whose removal disconnects the graph.
- 3. Show that $K_{3,3}$ and K_5 can be drawn on the surface of a doughnut (torus) without crossing edges
- **4.** If a planar graph with n vertices all of degree 4 have 10 regions, determine n.
- **5.** Suppose G is a graph whose vertices have degree at least k. Show that G contains a path of length at least k.
- **6.** How many hamiltonian cycles are there in the complete graph K_n , $n \geq 3$?
- 7. For what values of n can we visit all the squares of an $n \times n$ chessboard in a cycle (the only square that is repeated is the first-last square) if we are only allowed to move to adjacent squares (front, back, left and right moves)? For those possible values of n exhibit such a cycle.
- **8.** Show that the following graph is not hamiltonian.

9. Exercise 3.14.

Suggested exercises

From the book. 4.1, 4.2(a), 4.3(a)