```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

df = pd.read_csv("/heart.csv")
```

df

\Rightarrow		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	E
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1	
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0	
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0	
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0	
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0	
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0	

303 rows × 14 columns

Next steps:

View recommended plots

df.head(10)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1	11.
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1	
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1	
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1	1	
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2	1	
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3	1	
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3	1	
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2	1	

Next steps:

View recommended plots

df.target.value_counts()

target 1 165 0 138

Name: count, dtype: int64

 $\label{eq:countplot} $$sns.countplot(x="target", data=df, palette="bwr")$ plt.show()$

<ipython-input-11-64d5be856ef3>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.countplot(x="target", data=df, palette="bwr")

```
160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

0
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.countplot(x='sex',data=df,palette="mako_r")

Percentage of Female Patients: 31.68% Percentage of Male Patients: 68.32%

df.groupby('target').mean()

 age
 sex
 cp
 trestbps
 chol
 fbs
 restecg
 thalach
 exang
 oldpeak
 slope
 ca

 target

 0
 56.601449
 0.826087
 0.478261
 134.398551
 251.086957
 0.159420
 0.449275
 139.101449
 0.550725
 1.585507
 1.166667
 1.166667
 2.5

```
pd.crosstab(df.age,df.target).plot(kind="bar",figsize=(20,6))
plt.title("Heart Disease Frequency for Ages")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.savefig("HeartDiseasesAndAges.png")
plt.show()
```



```
pd.crosstab(df.sex,df.target).plot(kind="bar",figsize=(15,6),color=["#1CA53B","#AA1111"])
plt.title("Heart Disease Frequency for Sex")
plt.xlabel("Sex( (0=Female, 1=Male)")
plt.xticks(rotation=0)
plt.legend(["Haven't Disease","Have Disease"])
plt.ylabel("Frequency")
plt.show()
```



```
plt.scatter(x=df.age[df.target==1], y=df.thalach[(df.target==1)], c="red")
plt.scatter(x=df.age[df.target==0], y=df.thalach[(df.target==0)])
plt.legend(["Disease", "Not Disease"])
plt.xlabel("Age")
plt.ylabel("Maximum Heart Rate")
plt.show()
```



```
pd.crosstab(df.slope,df.target).plot(kind="bar",figsize=(15,6),color=['#DAF7A6','#FF5733' ])
plt.title('Heart Disease Frequency for Slope')
plt.xlabel('The Slope of The Peak Exercise ST Segment ')
plt.xticks(rotation = 0)
plt.ylabel('Frequency')
plt.show()
```



```
pd.crosstab(df.fbs,df.target).plot(kind="bar",figsize=(15,6),color=['#FFC300','#581845' ])
plt.title('Heart Disease Frequency According To FBS')
plt.xlabel('FBS - (Fasting Blood Sugar > 120 mg/dl) (1 = true; 0 = false)')
plt.xticks(rotation = 0)
plt.legend(["Haven't Disease", "Have Disease"])
plt.ylabel('Frequency of Disease or Not')
plt.show()
```


pd.crosstab(df.cp,df.target).plot(kind="bar",figsize=(15,6),color=['#11A5AA','#AA1190'])
plt.title('Heart Disease Frequency According To Chest Pain Type')
plt.xlabel('Chest Pain Type')
plt.xticks(rotation = 0)
plt.ylabel('Frequency of Disease or Not')
plt.show()

