Joint & Marginal Distributions Linearity of Expectation

Joint and Marginal Distributions

- Let X₁ and X₂ be discrete r.v.'s with PMFs f₁ and f₂
- Let $f(x_1,x_2)$ be joint PMF of X_1 and X_2 $P[X_1 = x_1, X_2 = x_2] = f(x_1,x_2)$
- Can write f₁ and f₂ in terms of f:

$$f_1(x_1) = P[X_1 = x_1] = \sum_{x_2} P[X_1 = x_1, X_2 = x_2] = \sum_{x_2} f(x_1, x_2)$$

 $f_2(x_2) = P[X_2 = x_2] = \sum_{x_1} P[X_1 = x_1, X_2 = x_2] = \sum_{x_1} f(x_1, x_2)$

• When dealing with joint distribution f of (X_1, X_2) , f_1 and f_2 are sometimes referred to as the *marginal distributions* of X_1 and X_2

Linearity of Expectation

- Let X₁ and X₂ be discrete RVs and a₁ and a₂ constants
- Linearity of Expectation:

$$E[a_1X_1 + a_2X_2] = a_1E[X_1] + a_2E[X_2]$$

• Proof:

```
E[a_1X_1 + a_2X_2] = \sum_{x_1,x_2} f(x_1,x_2)(a_1x_1 + a_2x_2)
= a_1\sum_{x_1,x_2} f(x_1,x_2) x_1 + a_2\sum_{x_1,x_2} f(x_1,x_2) x_2
= a_1\sum_{x_1} f_1(x_1) x_1 + a_2\sum_{x_2} f_2(x_2)x_2
= a_1 E[X_1] + a_2 E[X_2]
```