

Soutenance du mémoire pratique rédigé à l'issue du cours de Série Temporelle Mai 2019 - Juin 2019

Youssouf BANCE Eva KEVINE

ENSAE SENEGAL

SERIE TEMPORELLE

Etude dynamique des déterminants de l'inflation en Côte d'Ivoire : Approche par les fonctions de consommations

Youssouf BANCE & Eva MAMGUIA

Sous la supervision , M. Souleymane FOFANA, Chef filière ITS

4 juillet 2019

Outline

- Généralité
- 2 Description de la série
- Modelisation univarée
- Modélisation multivariée
- 6 Conclusion

Contents

Généralité

- Introduction
- I 'inflation en CIV
- Revue de littérature
- Présentation de la base Description de la

série

- Caractéristiques
- Décomposition de la série
- Prévision

Modelisation univarée

- Les tests
- Identification du processus
- SARIMA intervention
- estimation et significativé
- Test de validité
- Modélisation multivariée
- 6 Conclusion

- La Cote d'Ivoire est située sur le continent Africain. Ses frontières lui donnent grossièrement la forme d'un carré dont le coté sud est au bord de la mer.
- Sa superficie est de $322462Km^2$ soit 1% du continent Africain. Les deux capitales du pays se trouvent dans sa partie Sud (Abidjan et Yamoussoukro).

Généralité

Données démographiques (INS-CIV)

- Population 2019 : 25.823.071
- Taux de croissance : 2,6%

Généralité

- Taux d'urbanisation : 51,6%
- Taux brut de natalité : 35,1%
- Taux de fécondité générale : 154, 7‰
- Indice synthétique de fécondité : 4,6
- Taux brut de mortalité : 10,4%
- Espérance de vie à la naissance : 56,4 ans
- Taux de mortalité infantile : 66,9%

Plus de 25 milions d'habitants

Données Economiques (INS-CIV)

- Croissance Economique (2017)
 - PIB en valeur : 22150, 8 Ms F CFA
 - PIB / Habitant : 901500 F CFA
 - Taux de croissance : + 7.7%
- Prix à la consommation (2018)
 - Taux d'inflation :0.4 %
- Production Industrielle (2017)
 - Taux de croissance : 4.3 %
- Echanges Extérieurs (2017)
 - Balance Commerciale: 510,7 Ms F
 - Taux de couverture : 107,3 %

 1^{er} producteur mondial de fèves de cacao

Données Sociaux (INS-CIV)

- Pauvreté (ENV 2015)
 - Taux de Pauvreté : 46.3 %
 - Seuil de Pauvreté : 269 075 F / An

Education

Généralité

- Taux Net de Scolarisation (2016/17) : 91,0 % Garçons : 91,90 Filles : 90,10
- Taux d'Alphabétisation MICS 2016 Hommes de 15 - 49 ans : 63,8 % Femmes de 15 - 49 ans : 47,2 %

Accès aux infrastructures (RGPH)

- Accès à l'Eau : 60.5 %
- Accès à l'Electricité : 61,9 %

1^{er} producteur mondial de fèves de cacao

ensae

Généralité

L'inflation est une hausse généralisée et durable des prix des biens et services.

Le taux d'inflation qui n'est rien d'autre que la variation relative du niveau d'inflation entre deux période et permet une apprécier très objectif de son évolution

L'instrument statistique de mesure de l'évolution du niveau général des prix en Côte d'Ivoire est l'Indice Harmonisé des Prix à la Consommation (IHPC). Ce indice harmonisé est commun au huit pays de l'UEMOA.

Les fonctions de consommation

Généralité

Tendance de l'inflation en Cote d'Ivoire

Généralité

Figure 1 – Evolution de l'inflation

Source: INS-CI, calcul des auteurs

L'inflation dans la théorie économique

L'approche Monétariste

Généralité

- Pour eux c'est la masse monétaire qui explique l'inflation
- Rappeler vous MV = PY (Théorie quantitative de la monnaie)

L'approche des classique

- la monnaie n'a pas d'influence sur l'économie réelle (Baptise Say).
- Pour eux ce sont les anticipations

L'approche de Keynes

- Keynes ne trouve pas de problème à l'inflation
- L'inflation résulte d'un désequilibre entre l'offre et la démande.

Résultats et travaux empirique

- Doé et Diarisso (1998), sur la base d'un modèle dérivé de l'équation quantitative de la monnaie, ont montré qu'à court terme comme à long terme, la politique monétaire a une influence sur le niveau des prix des biens et services en particulier en Côte d'ivoire
- Dans la même ordre d'idée les tels que Nubukpo (2003), Diop et Adoby (1997) ont montré l'influence significative du taux d'intéret dans l'explication des variations du niveau d'inflation

Résultats et travaux empirique

Généralité

- Les résultats obtenus par Diop et Adoby ont mis en évidence le caractère différencié des effets des variations de la masse monétaire et du taux d'intérêt sur les prix dans les pays de l'Union. Une hausse d'un (1) point de pourcentage de la masse monétaire entraîne à long terme une progression de l'IPC 0.45 point en Côte d'Ivoire.
- Dans une approche d'explication par la fonction de consommation, Baba NDIAYE et Yankhoba J.BADJI (2008) ont utilisée le modèle à correction d'erreur (MCE) pour expliquer les determinants de l'inflation au Sénégal.

Les méthodes utilisées

- différentes approches pour l'estimation à long terme et de l'estimation
- Ces méthodes incluent la co-intégration, la correction d'erreur vectorielle (MVEC)
- la causalité de Granger, l'auto-régression vectorielle (VAR), le Dickey-Fuller augmenté (ADF).
- le test de racine unitaire et les moindres carrés ordinaires (MCO).

Généralité

Présentation de la base de donnée

- www.opendataforafric.com : source principale est l'Institut National de Statistique Ivoirienne (INS-CI).
- Période : Mensuelle, janvier 2009 à Avril 2019.
- Variable : les indices des douze (12) fonctions de consommations en plus de l'IHPC.
- Base 2: 12 fonctions de consommations des données financières (Masse monétaire, taux d'intérêt, taux de change...) et le taux de croissance du PIB.

Généralité

- www.opendataforafric.com : source principale est l'Institut National de Statistique Ivoirienne (INS-CI).
- Période : Mensuelle, janvier 2009 à Avril 2019.
- Variable : les indices des douze (12) fonctions de consommations en plus de l'IHPC.
- Base 2 : 12 fonctions de consommations des données. financières (Masse monétaire, taux d'intérêt, taux de change...) et le taux de croissance du PIB.

♠ Plusieurs incohérences ont été notées

Problématique, objectifs de l'etude

Problématique

Généralité

- Peut-on expliquer l'IHPC-Cl par une approche par les fonction de consommation?
- Si telle est le cas quelles sont les fonctions de consommations qui impact le plus le niveau d'inflation en Côte d'ivoire?

Objectif général

Relever les fonctions de consommations les plus pertinentes dans l'explication du niveau niveau d'inflation en Côte d'ivoire.

DESCRIPTION DE LA SERIE IHPC-CIV

Contents

Généralité

- Introduction
- L'inflation en CIV
- Revue de littérature
- Présentation de la base
- Description de la série
 - Caractéristiques
 - Décomposition de la série
 - Prévision

Modelisation univarée

- Les tests
- Identification du processus
- SARIMA intervention
- estimation et significativé
- Test de validité
- Modélisation multivariée
- 6 Conclusion

Caractéristique de la série

Généralité

Période

Caractéristique de la série

Généralité

Choix du modèle : Méthode des profils

LES DROITES DE PROFILS : IHPC COTE D'IVOIRE

Généralité

Décomposition par la méthode classique

Généralité

Décomposition par l'algorithme X11()

Présentation de l'algorithme

Etape 1 :

$$\hat{T}_t^{(1)} = M_{2m} X_t$$
 et $m = 6$ et $M_{2m} = \frac{1}{2m} (X_{t-m} + 2X_{t-m+1} + \dots + X_t + \dots + X_{t+m-1} + X_{t+m})$

- Etape 2 : $X_t \hat{T}_t$
- **Etape 3** : 1^{ere} estimation de la saisonnalité $S_{+}^{(1)}$ $S_t^{(1)} = M_{3,3}(Xt - \hat{T}_t)$ avec $M_{3,3} = \frac{1}{9}(B^2 + 2B + 3B + 2B^{-1} + B^{-2})$ $S_{t}^{*} = S_{t}^{(1)} - M_{2m} S_{t}^{(1)}$ $\hat{T_t^{(2)}} = M_{13}^H(X_t - S_t^*)$ avec M_p^H pour p = 2m+1est defini par $M_n^H = \sum_{i=-m}^m \theta_i^i \beta^{-i}$

Généralité

Suite ...

les θ_i sont fixés sous les contraintes de cette méthode et doivent par définition minimiser :

$$\begin{cases} Min & \sum_{i=-m+3}^{m-3} ((1-B)^3 \theta_i)^2 \\ SC : \sum_{i=-m}^{m} \theta_i = 0 \\ SC : \sum_{i=-m}^{m} i^d \theta_i = 0 \end{cases}$$

• **Etape 4** : 2^{nd} estimation de la saisonnalité $S_t^{(2)}$

$$S_t^{(2)} = M_{3,5}(X_t - \hat{T}_t^{(2)})$$
 avec $M_{3,5} = \frac{1}{15}(B^3 + 2B^2 + 3B + 3B^{-1} + 2B^{-2} + B^{-3})$

Résultats

Généralité

decomp.x11=seas(IHPCciv2018,transform.function="none",x11="")

Prévision par lissage exponentiel : IHPC

Les méthodes de lissage exponentiel

- Le lissage exponentiel simple (LES) qui est adapté aux séries localement constantes à un bruit prêt.
- Lisage exponentiel double (LED) qui est adapté aux séries présentant une tendance localement linéaire.
- Lissage de Holt-Winters est adapté les séries saisonnières avec ou sans tendance.

Le lissage exponentiel double

Alogrithme du LED

$$Y_t = \alpha_1 + \alpha_2(t - T)$$

Ceci suggère une prévision de la forme : $\hat{X}_T(h) = \hat{a}_1(T) +$ $\hat{a}_2(T) \cdot h$

où $\hat{a}_1(T)$ et $\hat{a}_2(T)$ sont choisis de façon à minimiser :

$$Q = \sum_{j=0}^{T-1} \beta^j (X_{T-j} - a_1 + a_2 \cdot j)^2$$
 (1)

en résolvant le système suivant on obtient :

$$\begin{cases} \frac{\partial Q}{\partial a_1} = -2\sum_{j=0}^{T-1} \beta^j (X_{T-j} - a_1 + a_2 \cdot j)^{=0} \\ \frac{\partial Q}{\partial a_2} = 2\sum_{j=0}^{T-1} j\beta^j (X_{T-j} - a_1 + a_2 \cdot j) = 0 \end{cases}$$

Le lissage exponentiel double

Alogrithme du LED

On obtient la solution suivante :

$$\begin{cases} \hat{a}_1(T) = 2S_1(T) - S_2(T) \\ \hat{a}_2(T) = \frac{1-\beta}{\beta} [S_1(T) - S_2(T)] \end{cases}$$

avec
$$S_1(t) = (1 - \beta) \sum_{j=0}^{T-1} \beta^j X_{T-j}$$
 et $S_2(t) = (1 - \beta)^2 \sum_{k=0}^{T-1} k \beta^k X_{T-k} + (1 + \beta) S_1(t)$

Pour pouvoir utiliser les formules de mise à jour, il faut avoir des valeurs initialiser les suites. On prend en général $\hat{a}_1(2) = X_2$ et $\hat{a}_2(2) = X_2 - X_1$

Résultats de la LED

Généralité

Table 1 – Prévision par lissage exponentiel double

h	Janvier	Février	Mars	Avril
IHPC-CIV	116.39	116.28	116.33	117.24
IHPC-CIV1	116.39	116.28	116.33	117.12
IHPC-CIV2	116.39	116.30	116.34	116.87
Valeur réel	115.57	115.35	115.68	116.13

Prévision par Holt-Winters

Alogrithme de HW

$$X_t = (a_1(t) + a_2(t))S_t$$

Les formules de mise à jour sont :

$$\begin{cases} \hat{a}_1(T) = & (1-\alpha)\frac{X_T}{\hat{S}_{T-s}} + \alpha[\hat{a}_1(T-1) + \hat{a}_2(T-1)]; \\ \hat{a}_2(T) = & \gamma \hat{a}_2(T-1) + (1-\gamma)[\hat{a}_1(T) - \hat{a}_1(T-1)]; \\ \hat{S}_T = & \delta \hat{S}_{T-s} + (1-\delta)\frac{X_T}{\hat{a}_1(T)} \end{cases}$$

la prévision est donnée à un horizon temporel h est :

$$\begin{cases} \hat{X}_T(h) = [\hat{a}_1(T) + h\hat{a}_2(T)]\hat{S}_T + h - s , & 1 \le h \le s \\ \hat{X}_T(h) = [\hat{a}_1(T) + h\hat{a}_2(T)]\hat{S}_T + h - 2s , & s < h \le 2s \end{cases}$$

Résultats de HW

Généralité

Table 2 - Prévision par Holt-Winters

h	Janvier	Février	Mars	Avril
IHPC-CIV	116.19	116.11	116.40	117.58
IHPC-CIV1	116.31	116.32	116.66	117.82
IHPC-CIV2	116.65	116.89	117.371	118.47
Valeur réel	115.57	115.35	115.68	116.13

MODELISATION UNIVARIEE

Généralité

- Introduction
- L'inflation en CIV
- Revue de littérature
- Présentation de la base
 Description de la série
 - Caractéristiques
 - Décomposition de la série
 - Prévision

Modelisation univarée

- Les tests
- Identification du processus
- SARIMA intervention
- estimation et significativé
- Test de validité
- Modélisation multivariée
- 6 Conclusion

La méthode de Box-Jenkins

Généralité

Graphe de la série, l'ACF et PACF

Généralité

DS de l'IHPC : Le périodogramme

Généralité

Series: IHPCciv2018 Multitaper Spectral Estimate

Test de Fisher: Un double test

Test de fisher

La moyenne générale X, la moyenne de l'année i X_i et la moyenne de la période $j \ \overline{X}_i$. La variance année et la variance période sont définies respectivement par :

$$VAR_A=rac{p\sum_{i=0}^n(\overline{X}_i.-\overline{X})^2}{n-1}$$
; $VAR_P=rac{n\sum_{j=0}^p(\overline{X}_{.j}-\overline{X})^2}{p-1}$; La variance résiduelle est donnée par :

$$VAR_{R} = \frac{\sum_{i=0}^{n} \sum_{j=0}^{p} (X_{ij} - \overline{X}_{i} - \overline{X}_{j} - \overline{X})^{2}}{(n-1)(p-1)}$$
 (2)

L'équation de la variance totale : $VAR_T = VAR_A +$ $VAR_P + VAR_R = \frac{\sum_{i=0}^{n} \sum_{j=0}^{p} (X_{ij} - \overline{X})^2}{(n-1)}$

Test de Fisher: Un double test

Test de fisher

les hypothèses à tester sont les suivantes :

$$\begin{cases} H_0: & \ll \ pas \quad de \quad saisonnalite \gg \\ H_1: & \ll \ pr\'esence \quad de \quad saisonnalite \gg \end{cases}$$

Pour on compare la valeur calculée $F_0 = rac{VAR_P}{VAR_P}$ à la statistque d'une loi de de fisher F_{v_1,v_2}^{α} avec $v_1=(p-1)$ et $v_2 = (n-1)(p-1)$ degré de liberté.

- Si $F_0 > F_{v_1,v_2}^{\alpha}$, on rejette H_0 , la série est saisonnière
- Sinon on accepte l'existence d'une saisonnalité dans la chronique IHPC

Test de Fisher: Un double test

Test de fisher

 $\begin{cases} H_0: & \ll pas & de \ tendance \gg \\ H_1: & \ll pr\'{e}sence & de \ tendance \gg \end{cases}$

La statistique est donnée par $F_0 = \frac{VAR_A}{VAR_B}$ que l'on compare avec la statistique d'une loi tabulée de fisher F_{v_3,v_2}^{α} avec $v_3 = (n-1)$ et $v_2 = (n-1)(p-1)$

- Si $F_0 > F_{v_2, v_2}^{\alpha}$, on rejette H_0 , la série n'est pas affectée d'une tendance
- Sinon on accepte l'existence d'une tendance dans la chronique *IHPC*

Résultat du test de Fisher

La mise en ouvre de ce test donne : $VAR_A = 322,509$, $VAR_P = 2,525, VAR_R = 13,173 \text{ et } VAR_T = 338,209.$

Table 3 – Résultats test de Fisher

Test	Statistique	Valeur	V_0	décision
Saisonnalité	$\frac{VAR_{P}}{VAR_{R}}$	0,19	0,41	Accepte H_0
Tendance	$\frac{VAR_A}{VAR_B}$	24,48	2,05	rejet H_0

Test de non stationnarié

Les méthodes de lissage exponentiel

- Le test de Dickey-Fuller simple et augmenté conduisent à un rejet de la stationnarié
- Le test de Phillip-Perron conduit également à un rejet .
- Le test de KPSS donne également la même conclusion

La série différencié

Généralité

Test de stationnarité (1/2)

Test de Dickey-Fuller Simple

- 1 data IHPCciv2018d Dickey-Fuller = -10.272, Lag order = 0, p-value = 0.01 alternative hypothesis stationary
- 2 :

Test de Dickey-Fuller Augmenté

- 3 data IHPCciv2018d Dickey-Fuller = -8.8669, Lag order = 1, p-value = 0.01 alternative hypothesis stationary
- 4 ::

Test de stationnarité (2/2)

Test de Phillip-Perron

- 1 data IHPCciv2018d Dickey-Fuller Z(alpha) = -98.857, Truncation lag parameter = 4, p-value = 0.01 alternative hypothesis stationary
- 2 ::

Test de KPSS

- 1 data IHPCciv2018d KPSS Level = 0.068917, Truncation lag parameter = 4, p-value = 0.1
- 2:

Ordre q de la partie MA(q)

Généralité

Ordre q de la partie MA(q)

Généralité

Ordre p de la partie AR(p)

Généralité

Ordre p de la partie AR(p)

Généralité

Test de non stationnarié

Test de non stationnarité

- Les modèles qui dévrons donc être estimé sont les suivants : ARIMA(1,1,0) a cause de la nature du PACE et l'ACE de la série brute
- ARIMA(1,1,2), ARIMA(1,1,1); ARIMA(2,1,1) ARIMA(2,1,2), ARIMA(6,1,6).
- Dans le cas ou aucun processus ci-dessus ne permet de modeliser notre série nous passerons à une desaisonnalisation de la série et à une intervention avec les processus SARIMA-intervention de Box et Tiao (1975) qui permettra de prendre en compte l'effet de la geurre de 2011.

SARIMA-I

Sa formulation est la suivante :

On note $(X_t)_{t\in\mathcal{Z}}$ la suite de variables aléatoires à modéliser, perturbée par une intervention extérieure. Le modèle proposé par Box et Tiao respect :

$$X_t = \sum_{i=1}^m \frac{\omega_i(L)}{\delta_i(L)} Y_{i,t} + \eta_t$$
 (3)

avec:

Généralité

 ω_i et δ_i : Polynôme de degré respective r et m

 η_t : est supposé suivre un processus SARIMA

 $Y_{i,t}$: La variable de saut qui tient compte de l'événement

SARIMA avec intervention

SARIMA-I

prendre en compte l'influence sur X_t d'un phénomène ayant eu lieu à la date T_i uniquement, on définie $Y_{i,t}$ comme suit :

$$Y_{i,t} = \begin{cases} 0 & \text{si } t \neq T_i, \\ 1 & \text{si } t = T_i, \end{cases}$$

$$Y_{i,t} = \begin{cases} 0 & \text{si } T_i > t, \\ 1 & \text{si } T_i \le t, \end{cases}$$

Mise en ouevre

Généralité

BIC and Residual Sum of Squares

Généralité

```
Optimal (m+1)-segment partition :
Call: breakpoints.formula(formula = IHPCciv2018
Corresponding to breakdates:
m = 1 2012(6)
m = 2 2010(11) 2012(11)
m = 3 \ 2010(11) \ 2012(10) \ 2015(2)
m = 4 \ 2010(11) \ 2012(10) \ 2014(12) \ 2016(12)
m = 5 \ 2010(11) \ 2012(10) \ 2014(4) \ 2015(10) \ 2017(4)
Fit:
m 0 1 2 3 4 5
RSS 3009.1 709.2 280.7 142.9 116.4 117.0
BIC 736.7 572.9 471.2 399.8 384.8 395.0
```


Mise en ouevre

Généralité

Figure 2 – Série IHPC-CIV et intervention

Source : calcul des auteurs

Modélisation par les ARIMA

- ARIMA(1,1,1), ARIMA(1,1,0), ARIMA(2,1,2),
 ARIMA(2,1,1), ARIMA(1,1,2)
- Dans ces modèles sauf ARIMA(2,1,2) tous les paramètres était non significatifs.

```
1 Estimate Std. Error z value P.value
```

- 2 ar1 -0.10724 0.12299 -0.8720 0.3832
- 3 ar2 -0.88361 0.12464 -7.0891 1.350e-12 ***
- 4 ma1 0.18522 0.15658 1.1829 0.2368
- 5 ma2 0.79859 0.15937 5.0109 5.418e-07 ***
- 6 —

Généralité

- 7 Signif. codes 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
- 8

Modélisation multivariée

ARIMA-intervention

- ARIMA-Intervention(1,1,1) Estimate Std. Error z value P.value ar1 -0.71900 0.25641 -2.8041 0.005045 ma1 0.78525 0.22409 3.5042 0.000458 xreg 0.28494 0.10478 2.7194 0.006540
- **SARIMA-Intervention** $(1, 1, 1)(0, 1, 0)_{12}$ Estimate Std. Error z value P.value ar1 0.721104 0.116113 6.2104 5.286e-10 *** ma1 -0.982433 0.043589 -22.5387 2.2e-16 *** xreg 0.357395 0.119204 2.9982 0.002716 **

• SARIMA-Intervention $(1,1,1)(1,1,0)_{12}$ Estimate Std. Error z value P.value ar1 0.721104 0.116113 6.2104 5.286e-10 *** ma1 -0.982433 0.043589 -22.5387 j 2.2e-16 *** xreg 0.357395 0.119204 2.9982 0.002716 **

Les méthodes de lissage exponentiel

- Tout les test effectué sur la nullité de la moyenne des modèles à conduire a choix de l'hypothèse nulle selon laquelle les rusidus sont de moyenne nulle.
- Nous avons utilisé le test de Ljung et Box et de Box et Pierce. Il est ressorti ici également que tous les modèles sont non-autocorelé

BP et LB pour SARIMA (1,1,1)(0,1,0)

Généralité

Figure 3 – BP et LB pour SARIMA (1,1,1)(0,1,0)

$\overline{\mathrm{BP}}\ \mathrm{et}\ \overline{\mathrm{LB}}\ \mathrm{pour}\ \overline{\mathrm{ARIMA-I}}(1,1,1)$

Généralité

Figure 4 - BP et LB pour ARIMA-Intervention(1,1,1)

Normalité (SARIMA (1,1,1)(0,1,0))

Normalité SARIMA-I(1,1,1)(1,1,0)

Généralité

La série différencié

Critère Modèle	RMSE	AIC	BIC
SARIMA (1,1,1)(0,1,0)	0.85	293.4	304.1
SARIMA (2,1,2)(0,1,0)	0.91	310.2	323.5
SARIMA (1,1,1)(1,1,0)	0.85	310.18	304.1
SARIMA (2,1,2)(1,1,0)	0.91	310.2	323.5
ARIMA-Intervention(1,1,1)	0.81	296.5	307.7
SARIMA-Intervention(1,1,1)(0,1,0)	0.92	306.8	317.5
SARIMA-Intervention(1,1,1)(1,1,0)	0.84	290.2	303.6

Choix du modèle

 On voit que le meilleur modèle au sens des critères d'information est SARIMA-Intervention(1,1,1)(1,1,0). Il sera donc préférable de l'utilisée pour la prévision. Toutefois, les résidus n'etant pas normale il est déconseillé d'utilisé le modèle avec intervention pour la prévision. Donc nous utiliserons ARIMA(2,1,2) et SARIMA.

Prévision et comparaisons

Généralité

h	Janvier	Février	Mars	Avril
Lissage double	116.39	116.28	116.33	117.24
Holt-Winters	116.31	116.32	116.66	117.82
SARIMA	116.6	116.7	116.7	117.20
ARIMA(2,1,2)	115.90	115.84	116.03	116.06
Valeur réel	115.57	115.35	115.68	116.13

Généralité

te prevision et le

Forecasts from ARIMA(1,1,1)(1,1,0)[12]

MODELISATION MULTIVATIEE

Contents

Généralité

- Introduction
- L'inflation en CIV
- Revue de littérature
- Présentation de la base
 Description de la
 - Caractéristiques
 - Décomposition de la série
 - Prévision

Modelisation univarée

- Les tests
- Identification du processus
- SARIMA intervention
- estimation et significativé
- Test de validité
- Modélisation multivariée
- 6 Conclusion

Contents

Généralité

- Introduction
- L'inflation en CIV
- Revue de littérature
- Présentation de la base
 Description de la
 - Caractéristiques
 - Décomposition de la série
 - Prévision

Modelisation univarée

- Les tests
- Identification du processus
- SARIMA intervention
- estimation et significativé
- Test de validité
- Modélisation multivariée
- Conclusion

