May 6, 2015

Solutions to Problem 1 of Homework 11 (8 points)

Name: Jason Yao Due: Wednesday, April 29

(a) (5 points) Design O(n) algorithm to test if a given undirected graph G is acyclic. Notice, the running time of your algorithm should not depend on the number of edges m! (**Hint**: Could you argue fater termination of a regular DFS tester on undirected graph?)

Solution:

(b) (3 points) Extend the above algorithm to actually print the cycle, in case G is cyclic.

Solution: ***************** INSERT YOUR SOLUTION HERE ************* □

Jason Yao, Homework 11, Problem 1, Page 1

May 6, 2015

Solutions to Problem 2 of Homework 11 (10 points)

Name: Jason Yao Due: Wednesday, April 29

Your job is to arrange n rambunctious children in a straight line, facing front, i.e., in the direction of the line. You are given a list of m statements of the form i hates j. If i hates j, then you do not want put i somewhere behind j, because then i is capable of throwing a pebble at j.

	1	3 /	1	0 1	J
(a)	(4 points) Give an algorith time.	m that orders the line, ((or says that it is	not possible) in $O(n$	n+n).
	Solution: *********	**** INSERT YOUR S	OLUTION HER	E ********	
(b)	(6 points) Suppose instead then i must be in a (strict the minimum number of respectively).	ly) lower numbered row	than j . Give an	,	
	Solution: *********	**** INSERT YOUR S	OLUTION HER	E ******	

May 6, 2015

Solutions to Problem 3 of Homework 11 (12 (+6) points)

Name: Jason Yao Due: Wednesday, April 29

Assume G is an undirected graph with weight function w, and $e_1
ldots e_m$ are the m edges of G sorted according to their weight: $w(e_1) \le w(e_2) \le \dots \le w(e_m)$. Imagine you just ran the Kruskall's algorithm of G and it output an MST T of G. Now assume that somebody changes the weight of a single edge e_i from $w(e_i)$ to some other value w'. For each of the following 4 scenarios, describe the fastest algorithm you can think of to transform the original MST T of G to a new (and correct) MST T' of G after the edge weight change. Make sure you justify your answer, and express your running time as a function of m and n.

(a)	(4 points)	Assume e_i	$\in T$ and	w' <	$w(e_i)$ (so	we decreased	an MST	edge).

Solution:

A decrease an MST edge w_2 results in:

 $w_1 \leq w_2$

MST stays the same

(b) (4 points) Assume $e_i \notin T$ and $w' < w(e_i)$ (so we decreased a non-MST edge). (**Hint**: Compute the unique shortest path in T between the two end-points of e_i .)

Solution:

decrease a non-MST edge, w_i

old MST + edge w

=; creates cycle in MSY

=¿ find edge with MAX weight on this cycle =¿ remove it

(c) (4 points) Assume $e_i \notin T$ and $w' > w(e_i)$ (so we increased a non-MST edge).

Solution:

increase a non MST edge

MST stays the same

(d) **Extra Credit:** (6 points) Assume $e_i \in T$ and $w' > w(e_i)$ (so we increased an MST edge). (**Hint**: Try to find the smallest weight edge e_i which should replace e_i under the new weight.)

May 6, 2015

Solutions to Problem 4 of Homework 11 (11 points)

Name: Jason Yao Due: Wednesday, April 29

(a) (5 points) Let e be the maximum weight edge on some cycle of a connected graph G = (V, E). Prove that there exists an MST T of $G' = (V, E \setminus \{e\})$ which is also an MST of G. Namely, some MST of G does not include e.

Solution:

if G has a cycle and w_i is the max-weight edge on this cycle =; there exists an MST of G such that w_i does not exist in the set of MST

case 1 MST(G) does not have $w_i = \xi$ proved

case 2

 $w_i = \text{fat edge on cycling}$

 w_i exists in the set of MST(G) remove $w_i = 2$ disjoint subtrees

look at cycle from u ——-; t find edge $(u_{new}, t_{new}), u_{new} \exists V_1, t_{new} \exists V_2$

=i, new MST has weight \leq old MST

 $(w_{new} \leq w_1)$

- (b) (2 points) Consider the following idea for a greedy algorithm for finding some minimal spanning tree in an undirected weighted graph G:
 - (I) find a cycle in G.
 - (II) if there is no cycle, output G and terminate;
 - (II) else, if there is a cycle,
 - * find an edge e with maximum weight on this cycle;
 - * remove e from the graph G;
 - * return to step (I).

Prove correctness of this algorithm using induction and part (a).

Solution:

(c) (4 points) Describe details of the fastest implementation you can find for the algorithm in part (b) (or write a pseudocode), and analyze its complexity as a function of n (number of vertices) and m (number of edges).

Solution: ***************** INSERT YOUR SOLUTION HERE ************* □