

UNIVERSIDAD TÉCNICA DE MACHALA UNIDAD ACADÉMICA DE CIENCIAS EMPRESARIALES TESCUELA DE ECONOMÍA CARRERA DE ECONOMÍA

INFORMÁTICA APLICADA

INTEGRANTES:

- o AGUILAR GABRIEL
 - CRISTHIAN OCHOA
 - SAENS CLAUDIA

CURSO:

5TO NIVEL ECONOMÍA "A"

DOCENTE:

ING. KLEBER LOAYZA

AÑO LECTIVO:

2015-2016

TERMINOLOGÍA DE NETWORKING REDES DE DATOS

Las redes de datos se desarrollaron principalmente para conectar dos o mas computadoras y de esta manera obtener una forma eficaz de intercambiar o compartir datos.

Distancia entre las CPU	Ubicación de las CPU	Nombre
0.1 m	Placa de circuito impreso/Asistente personal de datos	Motherboard Red de área personal (PAN)
1.0 m	Milímetro Mainframe	Red del sistema de la computadora
10 m	Habitación	Red de área local (LAN) Su aula
100 m	Edificio	Red de área local (LAN) Su escuela
1000 m = 1 km	Campus	Red de área local (LAN) Universidad de Stanford
100,000 m = 100 km	País	Red de área amplia (WAN) Cisco Systems, Inc.
1,000,000 m = 1,000 km	Continente	Red de área amplia (WAN) África
10,000,000 m = 10,000 km	Planeta	Wide Area Network (WAN) The Internet
100,000,000 m = 100,000 km	Earth-moon system	Red de área amplia (WAN) Tierra y satélites artificiales

R	Antes de 1900	Comunica señales de eléctrico
E	Década de 1890	Bell invent
	1901	Primera tra
	Década de 1920	Radio AM
E	1939	Radio FM
5	Década de 1940	La Seguno desarrollo
T 0	1947	Shockley, (semicond
	1948	Claude Sh
R	Década de 1950	Invención
	1957	El Departa
F	Década de 1960	Computad
	1962	Paul Barar
	1967	Larry Robe
	1992	Se organiz
M	1993	Aparece M
E	1994	Se presen
T	1996	La cantida abarca a te
L	1997	Se crea el Registry fo
S C A	Fines de la década de 1990 hasta la actualidad	La cantida (crecimien
5	1998	Cisco alca Academias
	1999	La red de

Cronograma histórico de Internet	
Antes de 1900	Comunicaciones de larga distancia a través de mensajeros, jinetes, señales de humo, palomas mensajeras, telégrafo óptico, telégrafo eléctrico
Década de 1890	Bell inventa el teléfono; el servicio telefónico se expande rápidamente.
1901	Primera transmisión inalámbrica transatlántica de Marconi
Década de 1920	Radio AM
1939	Radio FM
Década de 1940	La Segunda Guerra Mundial provoca el auge de la radio y el desarrollo de las microondas.
1947	Shockley, Barden y Brittain inventan el transistor de estado sólido (semiconductor).
1948	Claude Shannon publica "Teoría matemática de la comunicación".
Década de 1950	Invención de los circuitos integrados.
1957	El Departamento de Defensa de Estados Unidos crea ARPA.
Década de 1960	Computadoras Mainframe
1962	Paul Baran de RAND trabaja en redes de "conmutación de paquetes".
1967	Larry Roberts publica el primer informe sobre ARPANET.
1992	Se organiza la Internet Society (ISOC). La cantidad de hosts de Internet supera el millón.
1993	Aparece Mosaic, el primer navegador de Web de base gráfica.
1994	Se presenta el navegador de Web Netscape Navigator.
1996	La cantidad de hosts de Internet supera los 10 millones. La Internet abarca a todo el planeta.
1997	Se crea el Registro Americano de Números de Internet (American Registry for Internet Numbers - ARIN). Internet 2 se pone en línea.
Fines de la década de 1990 hasta la actualidad	La cantidad de usuarios de Internet se duplica cada 6 meses (crecimiento exponencial).
1998	Cisco alcanza el 70% de las ventas a través de Internet, se lanzan las Academias de Networking.
1999	La red de backbone Internet 2 implanta IPv6. Las empresas más importantes se lanzan a la convergencia entre video, voz y datos.
2001	La cantidad de hosts de Internet supera los 110 millones.

DISPOSITIVOS DE NETWORKING

El primer grupo está compuesto por los dispositivos de usuario incluyen los computadores, impresoras, escáneres, y demás dispositivos que brindan servicios directamente al usuario. El segundo grupo está formado por los dispositivos de red. Los dispositivos de red son todos aquellos que conectan entre sí a los dispositivos de usuario final, posibilitando su intercomunicación.

TOPOLOGÍA DE RED

La topología de red define la estructura de una red. Una parte de la definición topológica es la topología física, que es la disposición real de los cables o medios. La otra parte es la topología lógica, que define la forma en que los hosts acceden a los medios para enviar datos. Las topologías físicas más comúnmente usadas son las siguientes:

PROTOCOLOS DE RED

Los protocolos controlan todos los aspectos de la comunicación de datos, que incluye lo siguiente:

- · Cómo se construye la red física
- · Cómo los computadores se conectan a la red
- · Cómo se formatean los datos para su transmisión
- · Cómo se envían los datos

• Cómo se manejan los error**Osigen**Destino

L, M, N	Capas en nuestro Modelo de Comunicación de Computadoras
Msource, Mdestination	Capas de pares
	Comunicación entre pares
Protocolo de M capas	Las reglas mediante las cuales Msource se comunica con Mdestination

Medio físico

REDES DE ÁREA LOCAL (LAN)

Las LAN constan de los siguientes componentes:

- Computadores
- · Tarjetas de interfaz de red
- Dispositivos periféricos
- Medios de networking
- Dispositivos de networking

Algunas de las tecnologías comunes

de LAN son:

- Ethernet
- Token Ring
- FDDI

Las LAN se encuentran diseñadas para: Operar dentro de un área geográfica limitada Permitir el multiacceso a medios con alto ancho de banda. Controlar la red de forma privada con administración local · Proporcionar conectividad continua a los servicios locales Conectar dispositivos físicamente adyacentes Uso de: Router Puente Hub Switch Ethernet Repetidor

Redes de área local (LAN)

Las LAN constan de los siguientes componentes: Computadores

- Tarjetas de interfaz de red
 - Dispositivos periféricos
- · Medios de networking
- Dispositivos de networking

Las LAN permiten a las empresas aplicar tecnología informática para compartir localmente archivos e impresoras de manera eficiente, y posibilitar las comunicaciones internas.

Un buen ejemplo de esta tecnología es el correo electrónico.

Los que hacen es conectar los datos, las comunicaciones locales y los equipos informáticos. Algunas de las tecnologías comunes de LAN son:

- Ethernet
- Token Ring
- FDD

Redes de área amplia (WAN)

Las WAN interconectan las LAN, que a su vez proporcionan acceso a los computadores o a los servidores de archivos ubicados en otros lugares. Como las WAN conectan redes de usuarios dentro de un área geográfica extensa, permiten que las empresas se comuniquen entre sí a través de grandes distancias.

Las WAN permiten que los computadores, impresoras y otros dispositivos de una LAN compartan y sean compartidas por redes en sitios distantes. Las WAN proporcionan comunicaciones instantáneas a través de zonas geográficas extensas.

Las WAN están diseñadas para realizar lo siguiente:

- Operar entre áreas geográficas extensas y distantes
- Posibilitar capacidades de comunicación en tiempo real entre usuarios
- Brindar recursos remotos de tiempo completo, conectados a los servicios locales
- Brindar servicios de correo electrónico, World Wide Web, transferencia de archivos y comercio electrónico

Las WAN están diseñadas para:

- Operar dentro de un área geográfica extensa
- Permitir el acceso a través de interfaces seriales que operan a velocidades más bajas
- Suministrar conectividad parcial y continua
- Conectar dispositivos separados por grandes distancias, e incluso a nivel mundial.

Uso de:

Router

Servidor de comunicación

Mödem CSU/DSU TA/NT1

Redes de área metropolitana (MAN)

La MAN es una red que abarca un área metropolitana, como, por ejemplo, una ciudad o una zona suburbana. Una MAN generalmente consta de una o más LAN dentro de un área geográfica común.

Por ejemplo, un banco con varias sucursales puede utilizar una MAN. Normalmente, se utiliza un proveedor de servicios para conectar dos o más sitios LAN utilizando líneas privadas comunicación o servicios ópticos. También puede crear una MAN usando tecnologías de inalámbrico puente enviando haces de luz a través de áreas públicas.

Redes de área de almacenamiento (SAN)

Una SAN es una red dedicada, de alto rendimiento, que se utiliza para trasladar datos entre servidores y recursos de almacenamiento. Al tratarse de una red separada y dedicada, evita todo conflicto de tráfico de tráfico de la separada y dedicada.

Admin console

La tecnología SAN permite conectividad de alta velocidad, de servidor a almacenamiento, almacenamiento a almacenamiento, o servidor a servidor. Este método usa una infraestructura de red por separado, evitando así cualquier problema asociado con la conectividad de las redes existentes.

- Las SAN poseen las siguientes características:
- Rendimiento:
- Las SAN permiten el acceso concurrente de matrices de disco o cinta por dos o más servidores a alta velocidad, proporcionando un mejor rendimiento del sistema.
- Disponibilidad:
- Las SAN tienen una tolerancia incorporada a los desastres, ya que se puede hacer una copia exacta de los datos mediante una SAN hasta una distancia de 10 kilómetros (km) o 6,2 millas.
- Escalabilidad: Al igual que una LAN/WAN, puede usar una amplia gama de tecnologías. Esto permite la fácil reubicación de datos de copia de seguridad, operaciones, migración de archivos, y duplicación de datos entre sistemas.

Red privada virtual (YPN)

Una VPN es una red privada que se construye dentro de una infraestructura de red pública, como la Internet global. Con una VPN, un empleado a distancia puede acceder a la red de la sede de la empresa a través de Internet, formando un túnel seguro entre el PC del empleado y un router VPN en la sede.

 La VPN nos permitirá trabajar como si estuviésemos en la red local, es totalmente transparente para el usuario

oREDES INTERNAS

Y EXTERNAS

RED INTERNA

Es una red de ordenadores privados que utiliza tecnología Internet para compartir dentro de una organización parte de sus sistemas de información y sistemas operacionales.

están diseñadas para permitir el acceso por usuarios con privilegios de acceso a la LAN interna de la organización. Dentro de una red interna, los servidores de Web se instalan en la red. La tecnología de navegador se utiliza como interfaz común para acceder a la información, por ejemplo datos financieros o datos basados en texto y gráficos que se guardan en esos servidores.

RED EXTERNA

es un conjunto de ordenadores conectados entre sí cuya ubicación física puede estar en diferentes edificios, localidades e incluso países; a este tipo de red pertenecería internet, aunque, dada su amplitud, se la considera ya como una red global

hacen referencia a aplicaciones y servicios basados en la red interna, y utilizan un acceso extendido y seguro a usuarios o empresas externas Este acceso generalmente se logra mediante contraseñas, identificaciones de usuarios, y seguridad a nivel de las aplicaciones.

DESCRIPCION GRÁFICA DE LAS REDES INTERNAS Y EXTERNAS

ACHO DE BANDA: IMPORTANCIA

•El ancho de banda se define como la cantidad de información que puede fluir a través de una conexión de red en un período dado El ancho de banda no es gratuito. El ancho de banda es un factor clave a la hora de analizar el rendimiento de una red, diseñar nuevas redes y comprender la Internet.

El ancho de banda es finito

RAZONES

La demanda de ancho de banda no para de crecer.

EL ESCRITORIO

 El ancho de banda se define como la cantidad de información que puede fluir a través de una red en un período dado. La idea de que la información fluye, sugiere dos analogías que podrían facilitar la visualización del ancho de banda en una red. Ya que se dice que el agua y el tráfico fluyen, vea las siguientes analogías:

ANALOGÍAS

 El ancho de banda también puede compararse con la cantidad de carriles de una autopista.

• El ancho de banda también puede compararse con la cantidad de carriles de una autopista.

MEDICIÓN

- En los sistemas digitales, la unidad básica del ancho de banda es bits por segundo (bps). El ancho de banda es la medición de la cantidad de información, o bits, que puede fluir desde un lugar hacia otro en un período de tiempo determinado, o segundos.
- El ancho de banda de una red generalmente se describe en términos de miles de bits por segundo (kbps), millones de bits por segundo (Mbps), miles de millones de bits por segundo (Gbps) y billones de bits por segundo (Tbps).

TABLA DE MEDICIÓN

Bits por segundo: es una unidad de ancho de banda Por supuesto, si la comunicación se produjera a esta velocidad, 1 bit por 1segundo, sería demasiado lenta. Imagínese si tratara de enviar el código ASCII correspondiente a su nombre y dirección.

Unidad	Abreviatura	Equivalencia
Bit por segundo	bps	1 bps= unidad fundamental
Kilobit por segundo	Kbps	1Kbps= 1000 bps
Megabit por segundo	Mbps	1Mbps= 1,000,000 bps
Gigabit por segundo	Gbps	1Gbps= 1,000,000,000 bps
Terabit por segundo	Tbps	1 Tbps=1,000,000,000,000 bps

LIMITACIONES

El ancho de banda varía según el tipo de medio, además de las tecnologías LAN y WAN utilizadas. Las señales se transmiten a través de cables de cobre de par trenzado, cables coaxiales, fibras ópticas, y por el aire. Las diferencias físicas en las formas en que se transmiten las señales son las que generan las limitaciones fundamentales en la capacidad que posee un medio dado para transportar información.

 El verdadero ancho de banda de una red queda determinado por una combinación de los medios físicos y las tecnologías seleccionadas para señalizar y detectar señales de red

Medios típicos	Ancho de banda máximo teórico	Distancia máxima teórica
Cable coaxial de 50 ohmios (Ethernet 10BASE2, Thinnet)	10 Mbps	185 m
Cable coaxial de 50 ohmios (Ethernet 10BASE5, Thicknet)	10 Mbps	500 m
Cable de par trenzado no blindado de categoría 5 (UTP) (Ethernet 10BASE-T)	10 Mbps	100 m
Cable de par trenzado no blindado de categoría 5 (UTP) (Ethernet 100BASE-TX)	100 Mbps	100 m
Cable de par trenzado no blindado de categoría 5 (UTP) (Ethernet 1000BASE-TX)	1000 Mbps	100 m
Fibra Óptica Multimodo (62.5/125μm) (100BASE- FX Ethernet)	100 Mbps	2000 m
Fibra Óptica Multimodo (62.5/125µm) (1000BASE- SX Ethernet)	1000 Mbps	220 m
Fibra Óptica Multimodo(50/125µm) (1000BASE-SX Ethernet)	1000 Mbps	550 m
Fibra Óptica Monomodo (9/125µm) (1000BASE- LX Ethernet)	1000 Mbps	5000 m

La figura muestra algunos tipos comunes de medios de networking y los límites de distancia y ancho de banda al usar la tecnología de networking indicada

Servicio WAN	Usuario Típico	Ancho de Banda
Modem	Individuos	56 kbps = 0.056 Mbps
DSL	Individuos, teleconmuters, y pequeños negocios	128 kbps to 6.1 Mbps = 0.128 Mbps to 6.1 Mbps
ISDN	Teleconmuters y pequeños negocios	128 kbps = 0.128 Mbps
Frame Relay	Instituciones pequeñas (escuelas", WANs confiables	56 kbps to 44.736 Mbps (U.S.) or 34.368 Mbps (Europe) = 0.056 Mbps to 44.736 Mbps (U.S.) or 34.368 Mbps (Europe)
T1	Grandes Instituciones	1.544 Mbps
E1	Grandes Instituciones	2.048 Mbps
T3	Grandes Instituciones	44.736 Mbps
E3	Grandes Instituciones	34.368 Mbps
STS-1 (OC-1)	Compaías Telefónicas, Backbones de Compañias de Comunicación de Datos	51.840 Mbps
STM-1	Compaías Telefónicas, Backbones de Compañias de Comunicación de Datos	155.52 Mbps
STS-3 (OC-3)	Compaías Telefónicas, Backbones de Compañias de Comunicación de Datos	155.251 Mbps
STM-3	Compaías Telefónicas, Backbones de Compañias de Comunicación de Datos	466.56 Mbps
STS-48 (OC-48)	Compaías Telefónicas, Backbones de Compañias de Comunicación de Datos	2.488320 Gbps

La figura resume los servicios WAN comunes y el ancho de banda asociado con cada servicio.