Tutorial 1b - Probability Mass Distributions

Question 1

1. There are 30 candy covered chocolates in a bag M&M's. There is a .1 probability that that the candy is red. If X is the number of red M&M's in the bag.

i Give the binomial probability mass function for X.

ANSWER:

$$Pr(k) = \begin{pmatrix} 30 \\ k \end{pmatrix} (0.1)^k (0.9)^{30-k}, \quad k = 0, 1, 2, ...30,$$

where k is the number of red M & Ms.

ii Find the probability of less than 2 red M&Ms in the bag.

ANSWER:

```
n<-30
k<-1
MandM<-0:n # Number of Games
Pr_Red<-0.1 # Probability of Success
Pr_Reds<-c(dbinom(0:n,n,Pr_Red)) # Binomial Probability
Q1ii<-c(dbinom(0:k,n,Pr_Red))
E_X<- n*Pr_Red # Expected Value
Var_X<-10*Pr_Red*(1-Pr_Red) # Variance</pre>
```

$$Pr(0) = \begin{pmatrix} 30 \\ 0 \end{pmatrix} (0.1)^{0} (0.9)^{30-0} = 0.0423912$$

$$Pr(1) = \begin{pmatrix} 30 \\ 1 \end{pmatrix} (0.1)^{1} (0.9)^{30-1} = 0.1413039$$

$$Pr(<2) = Pr(0) + Pr(1) = 0.0423912 + 0.1413039 = 0.183695,$$

As it is a Binomial Distribution we can state that the expected number of Red is

$$E[k] = 30 \times 0.1 = 3,$$

the variance of the distribution is

$$Var[k] = 30 \times 0.1 \times (1 - 0.1) = 0.9.$$

The plot below shows the Binomial Distribution M & Ms:

```
df <- data.frame(MandM,Pr_Reds)
## Plot
binomial.p_dist<-ggplot(df, aes(x=MandM,y=Pr_Reds)) + geom_col(width = 0.1)+
    xlab("Number of Red M and Ms out of 30")+
    ylab("Pr of Red")+ggtitle("Binomial Distribution")+</pre>
```

Binomial Distribution

Question 2

2. A baby wakes on average 0.25 times every hour.

i If X is the number of times a baby wakes in an hour, give the poisson probability mass function for X. **ANSWER:**

The distribution is described by the average, $\lambda = 0.25$,

$$\Pr(k) = \frac{0.25^k e^{-0.25}}{k!}, \quad k = 0, 1, 2, \dots$$

where k is the number of times the baby wakes every hour.

The expected value of the Poisson Distribution is

$$E[k] = 0.25,$$

with the variance

$$Var[k] = 0.25.$$

The plot below shows the Poisson Distribution for $\lambda = 0.25$ average number of times a baby wakes in an hour:

Poisson Distribution

ii If X is the number of times a baby wakes in eight hour, give the poisson probability mass function for X.

ANSWER:

The distribution is described by the average, $\lambda = 0.25 \times 8 = 2$,

$$\Pr(k) = \frac{2^k e^{-2}}{k!}, \quad k = 0, 1, 2, \dots$$

where k is the number of times the baby wakes every 8 hours.

The expected value of the Poisson Distribution is

$$E[k] = 2,$$

with the variance

$$Var[k] = 2.$$

The plot below shows the Poisson Distribution for $\lambda = 2$ average number of times a baby wakes in eight hours:

Poisson Distribution


```
ggsave("Q2i.png",dpi=300, width = 4, height = 2)
```

iii What is the probability that the baby does not wake during the 8 hours.

ANSWER:

```
Baby_wakes<-0.25*8 # Lambda
Pr_wakes_zero<-dpois(0,Baby_wakes) #
```

$$\Pr(0) = \frac{0.25^0 e^{-0.25}}{0!} = 0.1353353.$$

Question 3

3. Give the features of a

i Geometric Experiment.

ANSWER:

• Bernoulli Trial • Goes until you "win" • E[X]=1/p, $VAR[X]=q/p^2$ ii Binomial Experiment.

ANSWER:

• Bernoulli Trial • Play a specific number of times • E[x]=np, VAR[X]=npq iii Poisson Experiment.

ANSWER:

• Well known mean • Number of "wins" • E[X]=lambda, VAR[X]=lambda

Question 4

- 4. Every day a production line makes 100 computers of which 10% are defective. If X is the number of defective computers in a day.
- a) Give the binomial probability mass function for X.

ANSWER:

$$Pr(k) = {100 \choose k} (0.1)^k (0.9)^{30-k}, \quad k = 0, 1, 2, \dots 100,$$

where k is the number of defective computers.

b) Find the probability that there is more than 2 computers defective in a day.

ANSWER:

```
n<-100
k<-2
Computers<-0:n # Number of Games
Pr_Def<-0.1 # Probability of Success
Pr_Defs<-c(dbinom(0:n,n,Pr_Def)) # Binomial Probability
Q4ii<-c(dbinom(0:k,n,Pr_Def))
E_X<- n*Pr_Def # Expected Value
Var_X<-10*Pr_Def*(1-Pr_Def) # Variance</pre>
```

$$\Pr(0) = \begin{pmatrix} 100 \\ 0 \end{pmatrix} (0.1)^0 (0.9)^{100-0} = 2.6561399 \times 10^{-5},$$

$$\Pr(1) = \begin{pmatrix} 100 \\ 1 \end{pmatrix} (0.1)^1 (0.9)^{100-1} = 2.9512665 \times 10^{-4},$$

$$\Pr(2) = \begin{pmatrix} 100 \\ 2 \end{pmatrix} (0.1)^2 (0.9)^{100-2} = 0.0016232.$$

$$Pr(>2) = 1 - Pr(\le 2) = 1 - (Pr(0) + Pr(1) + Pr(2)) = 1 - 2.6561399 \times 10^{-5} + 2.9512665 \times 10^{-4} + 0.0016232 = 0.9980551$$

The plot below shows the Binomial Distribution for defective computers:

Binomial Distribution


```
ggsave("Q4.png",dpi=300, width = 4, height = 2)
```

Question 5

- 5. A phone center receives 15 calls every 30 minutes.
- a) If X is the number of phone calls in 30 minutes, give the Poisson probability mass function for X.

ANSWER:

The distribution is described by the average, $\lambda = 15$,

$$Pr(k) = \frac{15^k e^{-15}}{k!}, \quad k = 0, 1, 2, \dots$$

where k is the number of phone calls per half hour.

The expected value of the Poisson Distribution is

$$E[k] = 15,$$

with the variance

$$Var[k] = 15.$$

The plot below shows the Poisson Distribution for $\lambda = 15$ average number of calls per half-hour:

Poisson Distribution

b) What is the probability that there will be exactly 10 phone calls in the first 30 minutes and exactly 20 phone calls in the second 30 minutes.

ANSWER:

```
No_of_Calls<-15 # Lambda
Pr_Calls_10<-dpois(10,No_of_Calls) # 10 Calls Poisson Probability
Pr_Calls_20<-dpois(20,No_of_Calls) # 20 Calls Poisson Probability
Pr_Calls_10_then_20 <- Pr_Calls_10*Pr_Calls_20
```

Probability of 10 calls in the first half-hour:

$$\Pr(10) = \frac{15^1 0e^{-15}}{10!} = 0.0486108.$$

Probability of 20 calls in the first half-hour:

$$\Pr(20) = \frac{15^2 0e^{-15}}{20!} = 0.0418103.$$

The combination of both:

$$Pr(10) \times Pr(20) = 0.0020324.$$