Neural oscillations:

Insights from computational modeling

John Huguenard

Neuronal oscillations: functions

- Sleep
 - Generate activity that is independent of sensory input
 - May play roles in memory consolidation or reprioritization.
 - Spindles, delta, sharp-wave ripple complexes
- Awake behavior
 - Exploration theta
 - Sensory binding & attention gamma
 - Sensory discrimination olfaction
- Pathology
 - Epilepsy
 - Parkinson's disease

Non-linearities and oscillations

Gamma oscillations develop in cortical networks in absence of excitatory connectivity

Ring inhibitory networks

Uniform network, random initial conditions: perfect synchrony

Uniform network, random initial conditions, deep AHP: antiphase synchrony

Synchrony as a function of E-syn

E-syn = $0 : \approx \text{excitatory}$

Heterogeneous network: Gamma is common output, while coherence is not

Heterogeneous network: Gamma is common output, while coherence is not

Dependence on synaptic properties: Time constant of decay governs network frequency, and indirectly, coherence

Coherence only in gamma frequencies

Neurons as active computational devices

Dynamics of peri-threshold voltage gated ion channels

Bistable membranes

Membrane bistability from non-linearity of ion channel gating

Membrane bistability from non-linearity of ion channel gating

Membrane bistability from non-linearity of ion channel gating

Thalamic oscillators, cells and circuits

Relay neuron have state dependent firing modes

I-h, and its rhythogenic properties

Journal of Physiology (1990), **431**, pp. 291–318 With 14 figures

Printed in Great Britain

PROPERTIES OF A HYPERPOLARIZATION-ACTIVATED CATION CURRENT AND ITS ROLE IN RHYTHMIC OSCILLATION IN THALAMIC RELAY NEURONES

By DAVID A. McCORMICK* and HANS-CHRISTIAN PAPE†

From the *Section of Neuroanatomy, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA and †Abt. Neurophysiologie, Medizinische Fakultaet, Ruhr-Universitaet, D-4630 Bochum, FRG

(Received 3 April 1990)

291

I-h, a hyperpolarization activated current with interesting dynamics

Properties of I-h, steady state activation

Properties of I-h, activation/deactivation rates

Thalamic relay neurons are intrinsic oscillators: dependence on sub-threshold conductances

Basis of the burst: the low threshold spike (LTS)

T type calcium channel genes in thalamus

Paradoxical excitability in thalamic relay neurons

Isolation of I_T based on voltage clamp protocols: Hodgkin-Huxley-esque approach

I-t is significantly inactivated at rest

I-h is partner with I-t in intrinsic oscillations

I-h is modulable

Journal of Physiology (1990), **431**, pp. 319–342 With 13 figures

Printed in Great Britain

319

NORADRENERGIC AND SEROTONERGIC MODULATION OF A HYPERPOLARIZATION-ACTIVATED CATION CURRENT IN THALAMIC RELAY NEURONES

By DAVID A. McCORMICK* AND HANS-CHRISTIAN PAPE†

From the *Section of Neuroanatomy, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA and †Abt. Neurophysiologie, Medizinische Fakultaet, Ruhr-Universitaet, D-4630 Bochum, FRG

(Received 3 April 1990)

There are models available for cells with complex properties

JOURNAL OF NEUROPHYSIOLOGY Vol. 68. No. 4. October 1992. Printed in U.S.A.

A Model of the Electrophysiological Properties of Thalamocortical Relay Neurons

DAVID A. McCORMICK AND JOHN R. HUGUENARD

Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Neurology, Stanford University Medical School, Stanford, California 94305

Can systematically vary different parameters to determine, e.g. sensitivity and necessity

Too much of a good thing?

Modulation of I-h modifies network strength and structure

Post inhibitory rebound in thalamus and sleep rhythms

Summary, oscillations

- Oscillations can be generated in neural networks
 - through synaptic interactions, usually inhibitory
 - Through the intrinsic voltage dependent properties of neural elements

Summary, oscillations

- Recurrency promoted by membrane bistability
 - Between depolarized and hyperpolarized states
 - » The latter is associated with activity
 - » the former is generally associated with quiescence
 - Bistability is a result of non-linearities in the V/
 I relationship of neurons

Summary, oscillations

- Non-linearities in neural membranes
 - N-shaped I/V curves
 - » Different from passive cells with largely linear I/V curves
 - N-shaped I/V curves with more than one positive crossing of current axis will have more than one stable point
 - Interactions with synapses (e.g. inhibition) or voltage gated ion channels (H-channels) result in reentrant transitions between stable states, and ultimately, oscillations