Министерство науки высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (Университет ИТМО)

Факультет цифровых трансформаций

Образовательная программа Искусственный интеллект в промышленности

Направление подготовки (специальность) 09.04.02 - Информационные системы и технологии

ОТЧЁТ

Лабораторная работа №2

Тема задания: Применение инструментов для логирования параметров при проведении экспериментов с обучением моделей ИИ

Обучающихся Штыкина О.С, Кузьмина А.С., группа J4151

Преподаватель: Старобыховская А.А.

СОДЕРЖАНИЕ

ЗАДАНИЕ	3
ОСНОВНЫЕ ЭТАПЫ	4
1. Анализ исходных данных	4
2. Постановка задачи	4
3. Реализация базового алгоритма	4
4. Проведение экспериментов	7
ВЫВОДЫ	10

ЗАДАНИЕ

Цель задания: Сформировать гипотезы по улучшению качества обучения модели. Освоить инструменты для логирования и визуализации обучения.

Описание предметной области: анализ параметров и метрик качества при обучении модели ИИ.

Исходные данные: датасет CIFAR-10. Ссылка: https://www.geeksforgeeks.org/cifar10-dataset-in-keras-tensorflow-for-object-recognition/

ОСНОВНЫЕ ЭТАПЫ

1. Анализ исходных данных

В качестве исходных данных был взят датасет CIFAR-10. Он содержит 60 000 цветных RGB изображений размером 32х32(1024) пикселя в 10 различных классах, таких как самолеты, автомобили, птицы, кошки, олени, собаки, лягушки, лошади, корабли и грузовики. Обучающий набор содержит 50 000 изображений, а тестовый 10 000. Изображения разделены на 10 классов, по 5000 изображений в каждом классе. Тестовый набор содержит по 1000 изображений на класс.

Рисунок 1 — Изображения из датасета

2. Постановка задачи

В качестве задачи классификации, модели необходимо было определить класс изображения.

(Mетка) -> (Класс)

- 0 -> Самолет
- 1 -> Автомобиль
- 2 -> Птиша
- $3 \rightarrow Kot$
- 4 -> Олень

- 5 -> Собака
- **6** -> Лягушка
- 7 -> Лошадь
- 8 -> Корабль
- 9 -> Грузовик

Рисунок 2 — Изображения с классификацией

3. Реализация базового алгоритма

Для решения поставленной задачи было решено реализовать простую свёрточную нейронную сеть.

Сама сеть была инициализирована со следующим набором гиперпараметров:

- Размер батча batch 64
- Количество эпох epochs 5

Значения метрик следующие:

- Average loss 0,8061
- Accuracy 72%

Для логирования параметров при обучении и удобного вывода и сравнения результатов был выбран фреймворк ClearML. Данный фреймворк

имеет ряд преимуществ по сравнению со всеми остальными аналогами, а также в нём есть возможность выполнять практически полный цикл машинного обучения. В нашей лабораторной работе мы воспользуемся такими возможностями ClearML, как логирование, сравнение экспериментов, оркестрация.

	ml <i>flow</i>	DC	CLEAR ML	TensorBoard	Weights & Biases	comet	DagsHub Logger	DagsHub Mlflow
Open Source	✓ Apache	☑ Apache	☑ Apache	✓ Apache	×	×	✓ MIT	MIT
Platform & language agnostic	~	▽	×	×	×	×	~	~
Experiment Data Access Local / Cloud								
Remote server set up for the user	×	×	~	×	V	V	~	~
Custom Visualizations	~	~	~	~	V	V	×	×
Scalable for a large number of experiments	~	×	~	×	V	V	~	~
Auto-logging	~	▽	~	×	×	~	~	~
Collaboration features	V	×	V	×	~	V	V	V
Team-based access	×	▽	~	×	▽	×	~	~

Рисунок 3 – Сравнение ClearML и аналогов

Рисунок 4 – Интерфейс фреймворка

После обучения модели было выявлено, что модель недообучается, т.к. график loss (default линия на графиках) не приходит в стабильное положение.

Test Accuracy

4. Проведение экспериментов

Для улучшения метрик классификации изображений были сформулированы три гипотезы, пытающиеся решить основные проблемы текущей модели:

I. **Недообучение модели, увеличение количества эпох:** т.к. модель слишком мало раз проходилась по всему датасету, возникла такая проблема как недообучение. Данную проблему можно решить увеличением количества эпох. В базовой модели было 5 эпох, в эксперименте количество эпох увеличено до 10.

Эксперимент по увеличению количества эпох показал такие результаты: Train set: На 10 эпохе Loss достиг значения 0,005, accuracy 98,57% Test set: Average Loss достиг значения 1,3022, accuracy 73%

Т.к. точность на тренировочных данных очень высокая, а на тестовых значительно ниже, можно сделать вывод о переобучении модели.

II. **Невысокая точность, применение Batch Normalization:** Batch Normalization нормализует активации внутри сети, что может привести к улучшению обобщающей способности модели, что приведёт к повышению точности.

Эксперимент по Batch Normalization показал такие результаты: Train set: На 5ой эпохе Loss достиг значения 0,296, ассигасу 88,83% Test set: Average Loss достиг значения 0,7654, ассигасу 75%

По сравнению с увеличением эпох Batch Normalization показал лучше результаты и не привёл к переобучению. Также можно заметить уменьшение колебаний loss, что говорит о лучшей обобщающей способности модели.

III. **Невысокая точность, применение Adam Optimizer:** В базовой модели используется SGD алгоритм оптимизации (стохастический градиентный спуск). Наша гипотеза заключается в том, чтобы использовать Adam Optimizer вместо SGD, т.к. он является более продвинутым.

Эксперимент с применением Adam Optimizer показал такие результаты:

Train set: На 5ой эпохе Loss достиг значения 0,4, ассuracy 93,83%

Test set: Average Loss достиг значения 0,8415, accuracy 74%

Применение всех гипотез в одном эксперименте показало следующие результаты:

Train set: На 10ой эпохе Loss достиг значения 0.158, а accuracy 93.49%

Test set: Average loss достиг значения 0,9429, accuracy: 74%

ВЫВОДЫ

Анализируя базовую модель были выявлены основные проблемы и были предложены гипотезы по их решению.

- 1. **Увеличение количества эпох**: данная гипотеза привела к переобучению модели, что является плохим показателем.
- 2. **Применение Batch Normalization**: в целом данная гипотеза помогла улучшить точность, но незначительно. Это может быть связано с тем, что CIFAR-10 относительно простой датасет, и BN не так критичен, как для более сложных задач.
- 3. **Применение Adam Optimizer**: Использование Adam привело к наилучшей точности на тренировочном наборе и неплохому результату на тестовом. Adam часто сходится быстрее SGD, что может объяснить более высокую точность за то же количество эпох.
- 4. Применение всех гипотез в одном эксперименте не привело к значительному улучшению модели. Вероятно, при применении Batch Normalization и Adam Optimizer без увеличения количества эпох (либо при небольшом увеличении) можно добиться результатов лучше.