

王石嵘

October 4, 2019

Contents

3	The	he Hartree-Fock Approximation		
	3.1	The HF Equations		2
		3.1.1	The Coulomb and Exchange Operators	2
		3.1.2	The Fock Operator	2
			Ex 3.1	2
	3.2	Deriva	ation of the HF Equations	2
		3.2.1	Functional Variation	2
		3.2.2	Minimization of the Energy of a Single Determinant	2
			Ex 3.2	2
			Ex 3.3	2
			The Canonical HF Equations	
	3.3	Interp	retation of Solutions to the HF Equations	3
		3.3.1	Orbital Energies and Koopmans' Theorem	3
			Ex 3.4	3

3 The Hartree-Fock Approximation

3.1 The HF Equations

3.1.1 The Coulomb and Exchange Operators

3.1.2 The Fock Operator

Ex 3.1

$$\left\langle \chi_{i} \left| \hat{f} \left| \chi_{j} \right\rangle = \left\langle \chi_{i}(1) \left| h(1) + \sum_{b} \left[\mathscr{J}_{b}(1) - \mathscr{K}_{b}(1) \right] \right| \chi_{j}(1) \right\rangle$$

$$= \left[i | h | j \right] + \sum_{b \neq j} \left[\left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(2) \chi_{j}(1) \right\rangle - \left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(1) \chi_{j}(2) \right\rangle \right] \right]$$

$$= \left[i | h | j \right] + \sum_{b \neq j} \left(\left[i j | b b \right] - \left[i b | b j \right] \right)$$

$$(3.1.1)$$

Since

$$[ij|jj] - [ij|jj] = 0 (3.1.2)$$

we have

$$\left\langle \chi_{i} \middle| \hat{f} \middle| \chi_{j} \right\rangle = \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left(\left\langle ib \middle| jb \right\rangle - \left\langle ib \middle| bj \right\rangle \right)$$

$$= \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left\langle ib \middle\| jb \right\rangle$$
(3.1.3)

3.2 Derivation of the HF Equations

3.2.1 Functional Variation

3.2.2 Minimization of the Energy of a Single Determinant

Ex 3.2 Take the complex conjugate of

$$\mathscr{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab})$$
(3.2.1)

we have

$$\mathcal{L}[\{\chi_{\alpha}\}]^* = E_0[\{\chi_{\alpha}\}]^* - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([a|b]^* - \delta_{ab}^*)$$
(3.2.2)

i.e.

$$\mathcal{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([b|a] - \delta_{ab})$$
(3.2.3)

thus

$$\sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab}) = \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^{*}([b|a] - \delta_{ab}) = \sum_{b}^{N} \sum_{a}^{N} \varepsilon_{ab}^{*}([a|b] - \delta_{ba})$$
(3.2.4)

٠.

$$\varepsilon_{ba} = \varepsilon_{ab}^* \tag{3.2.5}$$

Ex 3.3 ::

$$[\delta \chi_a | h | \chi_a] = [\chi_a | h | \delta \chi_a]^* \tag{3.2.6}$$

$$[\chi_a \delta \chi_a | \chi_b \chi_b] = [\delta \chi_a \chi_a | \chi_b \chi_b]^*$$
(3.2.7)

$$[\chi_a \chi_a | \chi_b \delta \chi_b] = [\chi_a \chi_a | \delta \chi_b \chi_b]^* \tag{3.2.8}$$

$$[\chi_a \chi_b | \chi_b \delta \chi_a] = [\chi_b \delta \chi_a | \chi_a \chi_b] = [\delta \chi_a \chi_b | \chi_b \chi_a]^*$$
(3.2.9)

$$[\chi_a \chi_b | \delta \chi_b \chi_a] = [\delta \chi_b \chi_a | \chi_a \chi_b] = [\chi_a \delta \chi_b | \chi_b \chi_a]^*$$
(3.2.10)

٠.

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] + [\chi_a \chi_a | \delta \chi_b \chi_b])$$

$$- \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_b | \chi_b \chi_a] + [\chi_a \chi_b | \delta \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.11)

while

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_a | \delta \chi_b \chi_b] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_b | \delta \chi_a \chi_a] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_a | \chi_b \chi_b]$$
(3.2.12)

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_b | \delta \chi_b \chi_a] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_a | \delta \chi_a \chi_b] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_b | \chi_b \chi_a]$$
(3.2.13)

thus

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] - [\delta \chi_a \chi_b | \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.14)

3.2.3 The Canonical HF Equations

3.3 Interpretation of Solutions to the HF Equations

3.3.1 Orbital Energies and Koopmans' Theorem

Ex 3.4

$$f_{ij} = \langle \chi_i \mid f \mid \chi_j \rangle = \langle i \mid h \mid j \rangle + \sum_b \langle ib \parallel jb \rangle$$
 (3.3.1)

$$f_{ji}^{*} = \langle \chi_{j} | f | \chi_{i} \rangle^{*} = \langle j | h | i \rangle^{*} + \sum_{b} \langle jb \| ib \rangle^{*}$$

$$= \langle i | h | j \rangle + \sum_{b} \langle ib \| jb \rangle$$

$$= f_{ij}$$
(3.3.2)

thus the Fock operator is Hermitian.