Задача № 2.

Красно-коричневое бинарное соединение $\bf A$ содержит элемент $\bf X$, который проявляет в соединениях только одну степень окисления, отличную от нуля (массовая доля $\bf X$ составляет 32,53%). Данное соединение можно получить взаимодействием благородного металла $\bf M$ с сильным окислителем $\bf G$, в котором массовая доля $\bf X$ равна 31,2% (реакция 1). Вещество $\bf G$ получают взаимодействием соответствующих простых веществ в особых условиях (реакция 2). При нагревании $\bf G$ разлагается с образованием двух газов $\bf B$ и $\bf \Gamma$ (реакция 3). Газ $\bf B$ химически инертен и используется при анестезии. Вещество $\bf G$ является настолько сильным окислителем, что окисляет даже воду (реакция 4), а органические вещества разрушает полностью (реакция 5).

- 1) Определите элемент X, металл M, а также соединения A-Г.
- 2) Напишите уравнения всех указанных реакций. В качестве примера, иллюстрирующего взаимодействие вещества \mathbf{F} с органическими соединениями, напишите уравнение реакции \mathbf{F} с метаном.
 - 3) Укажите условия, при которых образуется соединение **Б**?

Решение:

Скорее всего, **X** – это фтор, поэтому **A** можно найти расчетом – AuF_5 . **Б** по расчету – KrF_2 . **B** – Kr, Γ – F_2 .

Реакции:

- 1) $2Au + 5KrF_2 = 5Kr + 2AuF_5$;
- 2) $Kr + F_2 = KrF_2$;
- 3) $KrF_2 = Kr + F_2$;
- 4) $2KrF_2 + 2H_2O = 2Kr + 4HF + O_2$;
- 5) $4KrF_2 + CH_4 = 4Kr + CF_4 + 4HF$.

KrF₂ может быть получен либо в условиях активации электрическим зарядом, либо нагреванием, либо фотохимическим методом.

Критерии:

Элемент X - 1 балл;

Вещества \mathbf{A} и \mathbf{F} – по 3 балла (без расчета – по 0,5 баллов, всего $\mathbf{6}$ баллов)

Вещества **В** и Γ – по 1 баллу (всего **2 балла**);

5 реакций – по 2 балла (без коэффициентов – по 1 баллу, всего 10 баллов)

Получение $\mathbf{F} - \mathbf{1}$ балл. <u>Всего: 20 баллов.</u>