Minería de Datos y el proceso de KDD

Vamos a trabajar en la preparación de los datos para obtener la "vista minable"

Fase de Preparación de los Datos

- □ La información almacenada siempre tiene
 - Datos faltantes
 - Valores extremos
 - Inconsistencias
 - Ruido
- □ Tareas a realizar
 - □ Limpieza (ej: resolver outliers e inconsistencias)
 - Transformación (ej:discretización)

Limpieza de los datos

- En primer lugar, debe tenerse en cuenta que hay distintos tipos de variables o atributos.
- ✓ Para cada tipo se deberá realizar un análisis de sus valores.
 - Luego, se procederá a limpiarlos
 - Detectar los valores atípicos
 - Definir qué hacer con los valores faltantes.
 - Eliminar inconsistencias

Limpieza – Valores atípicos

- Las variables con ruido tendrán valores que caen fuera del rango de sus valores esperados llamados outliers.
- □ Por qué se originan?
 - Error humano en la carga de datos (ej: una persona puede aparecer con una altura de 5 metros).
 - Determinados cambios operacionales no han sido registrados en el proceso.

Usaremos "Diagramas de caja y bigotes" como herramienta para detectar valores atípicos

Diagrama de caja simple

 El diagrama de caja simple permite analizar la dispersión de los valores de un atributo numérico.

Flores de Iris

ld	sepallength	sepalwidth	petallength	petalwidth	class
1	5,1	3,5	1,4	0,2	lris-setosa
2	4,9	3,0	1,4	0,2	lris-setosa
	•••	•••	•••	•••	•••
95	5,6	2,7	4,2	1,3	Iris-versicolor
96	5,7	3,0	4,2	1,2	Iris-versicolor
97	5,7	2,9	4,2	1,3	Iris-versicolor
	•••	•••	•••	•••	•••
149	6,2	3,4	5,4	2,3	Iris-virginica
150	5,9	3,0	5,1	1,8	lris-virginica

Flores de Iris

	sepallength	sepalwidth	petallength	petalwidth
Media	5.84	3.05	3.76	1.20
Desvío	0.83	0.43	1.76	0.76
Mínimo	4.3	2	1	0.1
Q1	5.1	2.8	1.6	0.3
Q2	5.8	3	4.35	1.3
Q3	6.4	3.3	5.1	1.8
Máximo	7.9	4.4	6.9	2.5
RIC	1.3	0.5	3.5	1.5
Rango	3.6	2.4	5.9	2.4

Flores de Iris

ld	sepallength	sepalwidth	petallength	petalwidth	class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
		•••	•••		•••
95	5,6	2,7	4,2	1,3	lris-versicolor
96	5,7	3,0	4,2	1,2	lris-versicolor
97	5,7	2,9	4,2	1,3	lris-versicolor
•••					
149	6,2	3,4	5,4	2,3	Iris-virginica
150	5,9	3,0	5,1	1,8	lris-virginica

Cuartiles y RIC del atributo ACCELERATION

 Una vez identificados los cuartiles, puede calcularse el rango intercuartil (RIC)

$$RIC = Q_3 - Q_1 = 172.25 - 137 = 35.25$$

Diagrama de caja simple

Atributo ACCELERATION

Minimo	80
Q1	137
Q2	155
Q3	172.25
Maximo	950

RIC	Q3 - Q1 = $172.25 - 137 = 35.25$
Lim.Inf	Q1 - 1.5*RIC = 137-1.5*35.25 =84.125
Lim.Sup	Q3 + 1.5*RIC =172.25+1.5*35.25 = 225.125

¿Hay valores atípicos?

Diagrama de caja simple

Atributo ACCELERATION

Minimo	80	17:7:	П							
Q1	137									
Q2	155		Ш							
Q3	172.25	Atípicos Leves								
Maximo	950	100	200	300	400	500	600	700	800	900

RIC	Q3 - Q1 = $172.25 - 137 = 35.25$
Lim.Inf	Q1 - 1.5*RIC = 137-1.5*35.25 =84.125
Lim.Sup	Q3 + 1.5*RIC =172.25+1.5*35.25 = 225.125

¿Hay valores atípicos?

Valor atípico o fuera de rango

 Los valores de la muestra que pertenezcan a alguno de estos intervalos

[Q1-3*RIC; Q1 - 1.5*RIC) o (Q3 + 1.5*RIC; Q3 +
$$3*RIC$$
]

serán considerados valores atípicos leves.

- Los valores de la muestra inferiores a
 - Q1 3*RIC o superiores a Q3 + 3*RIC serán considerados valores atípicos extremos.

Diagrama de caja de Tukey

Minimo	80
Q1	137
Q2	155
Q3	172.25
Maximo	950
RIC	35.25
Q1-3*RIC	31.25
Q1-1.5*RIC	84.125
Q3+1.5*RIC	225.125
Q3+3*RIC	278

Los bigotes quedan determinados por los valores del atributo más extremos comprendidos en el intervalo

[Q1 - 1.5 * RIC ; Q3 + 1.5 * RIC] = [84.125 ; 225.125]

700

El valor del bigote inferior es el menor valor del atributo que supere Q1-1.5*RIC

400

500

600

Observando los valores del atributo vemos que el 1er. valor que supera 84.125 es 85

900

800

0

Diagrama de caja de Tukey

Minimo	80
Q1	137
Q2	155
Q3	172.25
Maximo	950
RIC	35.25
Q1-3*RIC	31.25
Q1-1.5*RIC	84.125
Q3+1.5*RIC	225.125
Q3+3*RIC	278

Los bigotes quedan determinados por los valores del atributo más extremos comprendidos en el intervalo

[Q1 - 1.5 * RIC ; Q3 + 1.5 * RIC] = [84.125 ; 225.125]

700

El valor del bigote superior es el mayor valor del atributo que no supere Q3+1.5*RIC

400

500

600

Observando los valores del atributo vemos que el valor más cercano a 225.125 que no lo supera es 222

0

Diagrama de caja de Tukey

Minimo	80
Q1	137
Q2	155
Q3	172.25
Maximo	950
RIC	35.25
Q1-3*RIC	31.25
Q1-1.5*RIC	84.125
Q3+1.5*RIC	225.125
Q3+3*RIC	278

- Los valores de ACCELERATION que pertenezcan a [31.25; 84.125)
 o (225.125; 278] se considerarán atípicos leves.
- Los valores del atributo ACCELERATION inferiores a 31.25 o superiores a 278 se considerarán atípicos extremos.

Histograma y diagrama de caja simple

(Atributo ACCELERATION archivo autos-mpg.csv)

acceleration

Maximum: 950

Upper quartile: 172.25

Median: 155

Lower quartile: 137

Minimum: 80

Histograma y diagrama de caja de Tukey

(Atributo ACCELERATION archivo autos-mpg.csv)

acceleration

Maximum: 950

Upper quartile: 172.25

Median: 155

Lower quartile: 137

Minimum: 80

Limpieza - Valores faltantes

- Qué hacer con los valores nulos?
 - □ Ignorar la tupla.
 - Rellenar la tupla manualmente.
 - Usar una constante global para rellenar el valor nulo.
 - Utilizar el valor de la media u otra medida de centralidad para rellenar el valor.
 - Utilizar el valor de la media u otra medida de centralidad de los objetos que pertenecen la misma clase.
 - Utilizar alguna herramienta de Minería de Datos para calcular el valor más probable.

Reemplazando los valores faltantes

- Es una de las etapas más importantes porque de ella depende el éxito del proceso.
- Los atributos serán transformados según las necesidades del algoritmo a aplicar.
- Es probable que deban derivarse variables nuevas.
- También es posible que se reduzcan variables convirtiéndolas en información más significativa.

- Según el algoritmo a aplicar, las transformaciones más habituales son:
 - Reducción de dimensionalidad
 - Aumento de dimensionalidad
 - Discretización de atributos numéricos
 - Numerización de atributos nominales
 - Normalización de atributos

- Reducción de dimensionalidad
 - Cambia el espacio de entrada por otro que tiene menor dimensión.
 - Se busca mejorar la relación entre la cantidad de ejemplos y la cantidad de atributos.
 - Ejemplos
 - Análisis de componentes principales (PCA)
 - Red SOM (self-organizing maps)

- Aumento de la dimensionalidad a través de la creación de características
 - <u>Atributos numéricos</u>: se utiliza suma, resta, producto, división, máximo, mínimo, media, cuadrado, raíz cuadrada, seno, coseno, etc.
 - Fechas: brindan poca información si se las usa directamente.

- Aumento de la dimensionalidad a través de la creación de características
 - Atributos nominales:
 - Se utilizan las operaciones lógicas, igualdad o desigualdad, condiciones M-de-N (TRUE si al menos M de las N condiciones son verdaderas).
 - Se puede generar un valor numérico a partir de valores nominales, por ejemplo, las variables X-de-N (retorna el entero X de las N condiciones que son ciertas)

Ejemplo de creación de atributos

Atributo derivado	Fórmula
Indice de obesidad	Altura ² / peso
Hombre familiar	Casado, varón e (hijos > 0)
Síntomas SARS	3-de-5 (fiebre alta, vómitos, tos, diarrea, dolor de cabeza)
Riesgo de póliza	X-de-N (edad<25, varón, años que conduce<2, vehículo deportivo)
Beneficios Brutos	Ingresos – Gastos
Beneficios netos	Ingresos – Gastos – Impuestos
Desplazamiento	Pasajeros * kilómetro
Duración media	Segundos de llamada / número de llamadas
Densidad	Población / Area
Retardo compra	Fecha compra — Fecha campaña

Ejercicio

- □ Genere un nuevo atributo **DECADA** cuyo valor será "70s" si

 el **modelo** del auto es <80 y

 "80s" si no.
- Grafique este nuevo atributo utilizando un diagrama de barras.

Generando un nuevo atributo

Generemos un nuevo atributo utilizando el componente Generate Attributes

Generando un nuevo atributo

Operador Generate Attributes

Generación de un nuevo atributo

Generación de un nuevo atributo

Diagrama de barras del atributo generado

Transformación de atributos

DISCRETIZACION

Algunos algoritmos de minería de datos sólo operan con atributos cualitativos. La discretización convierte los atributos numéricos en ordinales.

NUMERIZACION

Es el proceso contrario a la discretización. Convierte atributos cualitativos en numéricos.

NORMALIZACION

Permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto.

Discretización

- Convierte un valor numérico en un nominal ordenado (que representa un intervalo o "bin")
- □ **Ejemplo:** Podemos transformar
 - □ la edad de la persona en categorías: [0,12] niño, (12-21) joven, [21,65] adulto y >65 anciano.
 - La calificación de un alumno en: [4,10] aprobado o [0,4) desaprobado

Discretización

- Puede discretizarse en un número fijo de intervalos. El ancho del intervalo se calcula
 - Dividiendo el rango en partes iguales
 - Dividiendo la cantidad de ejemplos en partes iguales (igual frecuencia)
 - Indicando los límites de cada intervalo en forma manual.

Averigüe por otras variantes de discretización

- El objetivo es dividir el rango del atributo (intervalo entre el máximo y el mínimo) en una cierta cantidad k de partes iguales.
- Los valores comprendidos en una misma parte serán asociados al mismo valor ordinal.
- □ Ejemplo: k=4

- Ejemplo: Discretizar el atributo WEIGHT en 4 intervalos de igual longitud
 - WEIGHT toma valores entre 1613 y 5140 libras. Si dividimos el rango en 4 partes iguales, cada una tendría una longitud de (5140-1613)/4 = 881,75

 Ejemplo: Discretizar el atributo WEIGHT en 4 intervalos de igual longitud

Valor	Intervalo	Frecuencia
range1	$(-\infty - 2494.750]$	147
range2	(2494.750 - 3376.500]	128
range3	(3376.500 - 4258.250]	90
range4	$(4258.250 - \infty]$	41

WEIGHT discretizado en 4 intervalos de igual longitud

WEIGHT discretizado en 4 intervalos de igual longitud

Discretización por frecuencia

- El objetivo es dividir los valores del atributo numérico en k partes con la misma cantidad de valores en cada una de ellas.
- Nótese que el atributo debe tener al menos k valores diferentes.
- Ejemplo: Discretizar WEIGHT en 4 intervalos de igual frecuencia

Valor	Intervalo	Frecuencia
range1	$(-\infty - 2224.50]$	101
range2	(2224.50 - 2822.50]	102
range3	(2822.50 - 3616.50]	101
range4	$(3616.50 - \infty]$	102

Discretización por frecuencia

□ WEIGHT discretizado en 4 intervalos de igual frecuencia

Discretización por frecuencia

□ WEIGHT discretizado en 4 intervalos de igual frecuencia

Se indican los umbrales a utilizar en forma manual

Operador Discretize by User Specification

Se selecciona el atributo WEIGHT

Operador Discretize by User Specification

Aquí se indican los intervalos

Operador Discretize by User Specification

Valor	Intervalo	Frecuencia
LIVIANO	$(-\infty - 2300]$	147
NORMAL	(2300 - 3700]	128
PESADO	$(3700 - \infty)$	90

Numerización

- En ocasiones los atributos nominales u ordinales deben convertirse en números.
- Para los nominales suele utilizarse una representación binaria y para los ordinales suele utilizarse una representación entera.
- Es importante considerar que si se numeran en forma correlativa los valores de un atributo nominal se agrega un orden que originalmente no está presente en la información disponible.

Numerizando un atributo ordinal

 Asignaremos a cada valor del atributo ordinal CYLINDERS su correspondiente valor numérico usando el operador MAP

□ Ejecute y verifique que el atributo continua siendo cualitativo

Operador Parse Numbers

□ Ejecute y verifique que el atributo es numérico

Numerización Binaria (dummy)

- La numerización binaria reemplaza al atributo nominal por tantos atributos numéricos binarios como valores distintos pueda tomar.
- Las denominaciones de estos nuevos atributos surgen de igualar el nombre original con cada uno de los posibles valores.
- Para un mismo ejemplo sólo uno de estos nuevos atributos tendrá valor
 1 y el resto 0.

Atributo ORIGIN

Read CSV – data set meta data information

Read CSV – data set meta data information

Atributo ORIGIN

1 - USA

2 - Europe

3 - Japan

Puede usarse el operador MAP para asignar las nuevas etiquetas

Atributo ORIGIN

Atributo GENRE1

Atributo GENRE1

Atributo ORIGIN

Numerización Binaria de ORIGIN

Row No.	origin = USA	origin = Europe	origin = Japan	mpg	cylinders	displacement	horsepowe
21	0	0	1	24	cuatro	1130	95
22	1	0	0	22	seis	1980	95
23	1	0	0	18	seis	1990	97
24	1	0	0	21	seis	2000	85
25	0	0	1	27	cuatro	9700	88
26	0	1	0	26	cuatro	9700	46
27	0	1	0	25	cuatro	1100	87
28	0	1	0	24	cuatro	1070	90
29	0	1	0	25	cuatro	1040	95
30	0	1	0	26	cuatro	1210	113

Transformación de atributos

DISCRETIZACION

 Algunos algoritmos de minería de datos sólo operan con atributos cualitativos. La discretización convierte los atributos numéricos en ordinales.

NUMERIZACION

Es el proceso contrario a la discretización. Convierte atributos cualitativos en numéricos.

■ NORMALIZACION ←

Permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto.

Normalización

- □ Se aplica según el modelo que se va a construir.
- □ La más común es la normalización lineal uniforme

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

□ Es muy sensible a valores fuera de rango (outliers).

Normalización

 Existen otras transformaciones. Por ejemplo, si los datos tienen distribución normal se pueden tipificar

$$X' = \frac{X - media(X)}{desviacion(X)}$$

 De esta forma los datos se distribuyen normalmente alrededor de 0 con desviación 1.

Normalización – Operador Normalize

Normalización del atributo HORSEPOWER

Indique similitudes y diferencias entre los histogramas

Comparación de atributos numéricos

Valores originales

#	mpg	displacement	horsepower	weight	acceleration	model_year
1	18	3070	130	3504	120	70
2	15	3500	165	3693	115	70
3	18	3180	150	3436	110	70
•••	•••	•••	•••	•••	•••	•••
123	15	3500	145	4082	130	73
124	16	4000	230	4278	950	73
125	29	6800	49	1867	195	73
•••	•••	•••	•••	•••	•••	•••
404	32	1350	84	2295	116	82
405	28	1200	79	2625	186	82
406	31	1190	82	2720	194	82

Comparación de atributos numéricos

Valores normalizados linealmente entre 0 y 1

#	mpg	displacement	horsepower	weight	acceleration	model_year
1	0.239	0.235	0.457	0.536	0.046	0
2	0.160	0.284	0.647	0.590	0.040	0
3	0.239	0.248	0.565	0.517	0.034	0
•••	•••	•••	•••	•••	•••	•••
123	0.160	0.284	0.538	0.700	0.057	0.250
124	0.186	0.341	1.000	0.756	1.000	0.250
125	0.532	0.659	0.016	0.072	0.132	0.250
•••	•••	•••	•••	•••	•••	•••
404	0.612	0.040	0.207	0.193	0.041	1
405	0.505	0.023	0.179	0.287	0.122	1
406	0.585	0.022	0.196	0.314	0.131	1

Comparación de atributos numéricos

Valores normalizados utilizando media y desvío

#	mpg	displacement	horsepower	weight	acceleration	model_year
1	-0.713	-0.275	0.648	0.619	-0.772	-1.580
2	-1.100	-0.133	1.557	0.842	-0.876	-1.580
3	-0.713	-0.239	1.167	0.539	-0.979	-1.580
•••	•••	•••	•••	•••	•••	•••
123	-1.100	-0.133	1.037	1.302	-0.565	-0.779
124	-0.971	0.032	3.246	1.533	16.414	-0.779
125	0.709	0.954	-1.457	-1.313	0.781	-0.779
•••	•••	•••	•••	•••	•••	•••
404	1.097	-0.841	-0.548	-0.808	-0.855	1.622
405	0.580	-0.891	-0.678	-0.418	0.594	1.622
406	0.967	-0.894	-0.600	-0.306	0.760	1.622

Semillas de trigo

- El archivo SEMILLAS.csv contiene información de granos que pertenecen a tres variedades diferentes de trigo: Kama, Rosa y Canadiense.
 - □ área A,
 - perímetro P,
 - \square compacidad $C = 4 * pi * A / P ^ 2,$
 - longitud del núcleo,
 - ancho del núcleo,
 - coeficiente de asimetría
 - longitud del surco del núcleo

Analice estos datos y explique las relaciones encontradas

Resumen

PREPARACION DE LOS DATOS

- Detección de valores atípicos (diagramas de caja y bigotes)
- Completar datos faltantes
- Operador MAP
- Generación de características o atributos nuevos
- Transformaciones
 - Discretización por rango, por frecuencia e indicada por el usuario
 - Numerización: codificación entera y codificación binaria
 - Normalización: Lineal y Estandarización (o tipificación)