# Traitement et analyse d'images et Système d'Information Géographique

- Unité d'Enseignement J1BE5016
- Enseignants : A. Bouter et J.C. Taveau
- Cours 3

# Traitement d'images (suite)

#### Chaîne de traitements



#### **Segmentation**:

#### **Définition**

réfère au processus de partition d'une image numérique en plusieurs régions

#### But

Simplifier et/ou changer la représentation de l'image en une représentation plus "éloquente" et plus facile à analyser

#### Utilisation

Localisation d'objets ou de limites (lignes, courbes etc) dans une image

Segmentation : exemple de segmentation





Segmentation: par seuillage (image/adjust/threshold)





Segmentation: par seuillage





#### Segmentation: automatique

Algorithmes fondés sur l'histogramme: "mixture modeling"

Séparation de l'histogramme en deux parties modélisée par deux gaussiennes



#### Chaîne de traitements



<u>Préparation de l'image</u>: outils de morphologie mathématique

- Supprimer du bruit de fond de la segmentation
- Séparer des objets accolés
- Modifier l'objet segmenté pour l'analyse (ex: squelettisation)

Morphologie mathématique : opérations booléennes

AND: vrai si A est vrai et B est vrai

OR: vrai si A est vrai ou B est vrai

XOR: vrai si A est vrai et B est faux vrai si A est faux et B est vrai faux si A est vrai et B est vrai

NOT: vrai si A est faux



Morphologie mathématique : opérations booléennes

AND: vrai si A est vrai et B est vrai (sinon faux)







Morphologie mathématique : opérations booléennes

OR: vrai si A est vrai ou B est vrai ou les deux







Morphologie mathématique : opérations booléennes

XOR: vrai si A est vrai et B est faux **exclusivement** vrai si A est faux et B est vrai **exclusivement** 







Morphologie mathématique : opérations booléennes

NOT: vrai si A est faux (= invert)





Morphologie mathématique : opérations booléennes

Noir: VRAI, blanc: FAUX





A ??? B



Morphologie mathématique : opérations booléennes

Noir: VRAI, blanc: FAUX





#### A OR B







# Applications(2) Noir: FAUX, blanc: VRAI

# Applications(2) Noir: FAUX, blanc: VRAI NOT B OR A **NOT A XOR B**

#### Morphologie mathématique :

- Érosion
- Dilatation
- Ouverture
- Fermeture

images binaires ou niveaux de gris

Morphologie mathématique : Erosion



**VRAI: Blanc** 

**FAUX: Noir** 

#### Morphologie mathématique : Erosion

fin

Image binaire

| V | V  | H |
|---|----|---|
| F | Бц | Ы |
| V | Æ  | Æ |

si kernel contient VRAI alors

central\_pixel = VRAI

sinon

central\_pixel reste le même

Image en teintes de gris

Tri\_du\_kernel min < ..... < max central\_pixel = max

Morphologie mathématique : Dilatation



#### Morphologie mathématique: Dilatation

Image binaire

| V | V | F |
|---|---|---|
| V | V | Ы |
| V | F | Æ |

Image en teintes de gris

Tri\_du\_kernel min < ..... < max central\_pixel = min

#### Morphologie mathématique :

#### Avantages/utilisation

- Méthode rapide
- Erosion utile pour séparer des structures accolées
- Erosion utile pour « séparer » le fond des structures
- Dilatation utile pour combler des pixels « manquants »
- Souvent utilisé par cycle(s) alternant érosion/dilatation

#### **Inconvénients**

• Très sensible à la forme du kernel : Les structures composant l'image sont déformées et prennent la forme du kernel (carré, octogonal, etc.)

# Morphologie mathématique : ouverture=érosion puis dilatation

Elimine pixels isolés sans intérêt, sans modifier l'aire de l'objet



Morphologie mathématique : fermeture=dilatation puis érosion



#### Morphologie mathématique : Ouverture et fermeture

- ★ Lors d'une érosion, on réduit le contour de la structure d'un pixel
- ★ Lors d'une dilatation, on augmente le contour de la structure d'un pixel

#### Utilisation

★ Cycles

nombre de cycles = rayon maximum de la structure

à faire disparaître (ou apparaître)

#### Morphologie mathématique : Squelettisation

Érosion particulière où les pixels sont supprimés à la condition qu'ils ne provoquent pas la séparation d'une région en deux.



#### Morphologie mathématique: Squelettisation

Motifs pour lesquels le pixel central peut être supprimé



Motifs pour lesquels le pixel central ne peut pas être supprimé



Morphologie mathématique : Squelettisation



Morphologie mathématique : Squelettisation



#### Morphologie mathématique : Euclidean distance map

On assigne à chaque pixel de l'image binaire, la distance du pixel au bord le plus proche.



Morphologie mathématique : Euclidean distance map

Principe



Morphologie mathématique : Euclidean distance map

Érosions successives → pixel = N°cycle



Cycle 1

Cycle 2

Cycle 3

Morphologie mathématique : Euclidean distance map

Résultat: image en teintes de gris. Valeur du pixel = distance au fond



Morphologie mathématique : Euclidean distance map







Morphologie mathématique : Ultime eroded points





<u>Morphologie mathématique</u>: Ligne de partage des eaux Watershed



Morphologie mathématique : Ligne de partage des eaux Watershed



# Analyse d'images

#### **Mesures**

- Distances
- Compter le nombre d'objets
- Aires

- Caractérisation des formes
- Caractérisation des contours

#### **Mesures**: Distance

- Distance euclidienne:

$$\sqrt{(x0-x1)^2+(y0-y1)^2}$$

- Distance nord-sud-est-ouest (*city-block* or *Manhattan*):

$$|x0 - x1| + |y0 - y1|$$

- Distance 8-directions (*chessboard*):

$$\max(|x0 - x1|, |y0-y1|)$$



Ex:Ligne (0,0) à (19,7) 
$$D_{eucl.} = \sqrt{(0-19)^2 + (0-7)^2} = 20,24$$
  
 $D_{NSEO} = 27$  pixels  $D_8 = 20$  pixels

### <u>Mesures</u>: Longueurs

Nombre de pixels => longueur



#### **Mesures**: Longueurs



D = 120 pixels Pi \* D = 376,99111848 pixels Analyze  $\rightarrow$  480 pixels / 1.273 = 377 pixels Système NSEO = 1.273 Système 8 directions = 0.900 NSEO (1.00) + diagonales ( $\sqrt{2}$ )

#### **Mesures**: Longueurs



D = 120 pixels Pi \* D = 376,99111848 pixels Analyze  $\rightarrow$  337 pixels / 0.9 = 375 pixels Système NSEO = 1.273 Système 8 directions = 0.900 NSEO (1.00) + diagonales ( $\sqrt{2}$ )

Note: Système 8 directions obtenus par squelettisation.

### Mesures: Comptage



#### Mesures: Comptage



|   | Label     | Area |
|---|-----------|------|
| 1 | Circles   | 5808 |
| 2 | Circles   | 5808 |
| 3 | Circles   | 5808 |
| 4 | Circles   | 5808 |
| 5 | Circles-2 | 5757 |
| 6 | Circles-2 | 5808 |
| 7 | Circles-2 | 5801 |
| 8 | Circles-2 | 5779 |

Mesures : Comptage

Problème des bords de l'image



Mesures: Comptage (Analyze/Analyze particles)



#### Mesures: Comptage (Analyze/Analyze particles)







#### Mesures : Périmètres

- Pix(i,j) ∈ contour
   si Pix(i,j) ∈ Objet et si au moins un voisin est à l'extérieur de l'objet
- Nombre de pixels => longueur (Npix / distance moyenne entre 2 pixels)



#### Mesures: Taille

- Diamètres de Feret= longueur entre 2 tangentes parallèles touchant les

côtés opposés de l'objet

- Cas particuliers= Largeur, hauteur





Axis-aligned bounding box

Oriented bounding box

### Mesures: Taille

- Diamètres de Feret

| Feret   | FeretX | FeretY | FeretAngle | MinFeret |
|---------|--------|--------|------------|----------|
| 247.146 | 31     | 204    | 34.070     | 111.486  |





### Mesures : Critères de forme

Circularité =  $(4.Pi . Aire)/\sqrt{(Périmètre)}$ 

Roundness = 4. aire / (Pi.Max\_diamètre<sup>2</sup>)

Facteur de forme =  $P\acute{e}rim^2/(4.Pi.aire)$ 

Rapport d'aspect = Max\_diamètre / Min\_diamètre

Compacité =  $\sqrt{4/\text{Pi} \cdot \text{Aire}} / \text{Max\_diamètre}$ 

Mesures : Critères de forme

Set Measurements > Shape Descriptors

Circularity:  $4\pi^*$  area/sqr(perimeter).

- A value of 1.0 indicates a perfect circle.
- As the value approaches 0.0, it indicates an increasingly elongated shape.
- Values may not be valid for very small particles.

### Mesures : Critères de forme



|   | Label | Area | Circ. | AR    | Round | Solidity |
|---|-------|------|-------|-------|-------|----------|
| 1 | New   | 4356 | 0.800 | 1     | 1     | 1        |
| 2 | New   | 5544 | 0.909 | 1     | 1.000 | 0.982    |
| 3 | New   | 4591 | 0.080 | 1.072 | 0.933 | 0.382    |
| 4 | New   | 5327 | 0.369 | 1.605 | 0.623 | 0.706    |

#### Mesures:

