Programmazione lineare intera Ricerca Operativa

Giovanni Righini

Ottimizzazione nel discreto

Esistono diverse classi di problemi di ottimizzazione con variabili discrete:

- IP: integer programming
- BP: binary programming
- MIP: mixed-integer programming
- CO: combinatorial optimization

Considereremo solo modelli lineari: Integer Linear Programming (ILP).

Per ottimizzare nel discreto possiamo:

 selezionare "buone" formulazioni lineari e migliorarle fino a poterle risolvere un problema di PLI come problema di PL;

• scomporre il problema in sotto-problemi più piccoli e più facili;

eseguire una enumerazione implicita delle soluzioni.

Sormula Da brough PL; J & W

Ottimalità

Dato un problema di ottimizzazione discreta P

$$\mathbf{z}^* = \max\{\mathbf{z}(\mathbf{x}) : \mathbf{x} \in \mathbf{X} \subseteq \mathbf{Z}^n\}$$

l'ottimalità si dimostra calcolando un *upper bound* \overline{z} e un *lower bound* \underline{z} , tali che

$$\underline{z} \le z^* \le \overline{z}$$
.

- Se P è un problema di minimizzazione, z è un bound priale e z è un bound duale.
- Se P è un problema di massimizzazione, z è un bound primale e z è un bound duale.

La differenza $\overline{z} - \underline{z}$ è detta gap di ottimalità. Quando $\overline{z} - \underline{z} = 0$ si ha la garanzia di ottimalità.

Bounds primali

Un bound primale \overline{z} è dato dal valore della funzione obiettivo z(x) in una qualsiasi soluzione ammissibile $\overline{x} \in X$.

$$\overline{z} = z(\overline{x}), \quad \overline{x} \in X.$$

Bounds primali possono essere calcolati in vari modi:

- con algoritmi euristici o meta-euristici (ricerca locale, GRASP,...);
- con algoritmi di approssimazione con garanzia: in tal caso si ha anche un bound duale.

Per alcuni problemi di ottimizzazione discreta è difficile anche trovare una soluzione ammissibile (cioè calcolare un bound primale).

Bounds duali

Un bound duale è dato dal valore della funzione obiettivo z(x) in corrispondenza di una soluzione super-ottima \overline{x} . Quindi in generale \overline{x} non è ammissibile.

Ci sono due tecniche principali per calcolare un bound duale per un problema *P*:

- risolvere all'ottimo un rilassamento R di P;
- trovare una soluzione ammissibile al duale D di P.

Rilassamenti

Dato un problema

$$P = \min\{z_{P}(x) : x \in X(P)\}$$

un problema

$$R = \min\{z_R(x) : x \in X(R)\}$$

è un rilassamento di P se valgono le seguenti due condizioni:

- $X(P) \subseteq X(R)$ $z_R(x) \le z_P(x) \ \forall x \in X(P)$.

[In caso di massimizzazione, le disequazioni vanno invertite.]

Corollario: $z_R^* \leq z_P^*$.

Ci sono molti tipi diversi di rilassamento.

Un rilassamento è tanto migliore quando più il suo valore ottimo z_R^* è vicino a z_p^* .

Rilassamento lineare continuo

Quando P è un problema di ottimizzazione discreta

$$P)\min\{z(x):x\in X,x\in \mathcal{Z}_{+}^{n}\},$$

il suo rilassamento continuo C è ottenuto da P trascurando le condizioni di integralità:

C)
$$\min\{z(x): x \in X, x \in \Re^n_+\}.$$

Quando P è un problema di ottimizzazione *lineare* discreta

$$P)\min\{cx: Ax \leq b, x \in \mathcal{Z}_+^n\},\$$

il suo rilassamento continuo LP

$$LP) \min\{cx : Ax \leq b, x \in \mathbb{R}^n_+\}$$

è un problema di programmazione lineare (che sappiamo come risolvere molto efficacemente).

Se
$$x_{IP}^* \in \mathcal{Z}_+^n$$
, allora $x_P^* = x_{IP}^*$.

di esser rel di esser rel

Rilassamenti combinatori

Il rilassamento combinatorio C di un problema di ottimizzazione combinatoria P è ancora un problema di ottimizzazione combinatoria, ma tipicamente molto più facile da risolvere.

Esempio 1:

- P: il TSP asimmetrico;
- C: il problema di matching bipartito di costo minimo.

Esempio 2:

- P: il TSP simmetrico:
- C: il problema dell'1-albero ricoprente di costo minimo.

Rilassamento Lagrangeano

Il rilassamento Lagrangeano LR di un problema di ottimizzazione (lineare discreto) P si ottiene rimuovendo alcuni vincoli e aggiungendo all'obiettivo termini di penalità per la loro violazione.

$$P) \quad \min\{z(x): Ax \leq b, x \in X \subseteq \mathcal{Z}^n_+\}$$

$$LR) \quad \min\{z_{LR}(x,\lambda) = z(x) + \lambda(Ax - b): x \in X \subseteq \mathcal{Z}^n_+\}$$

$$\cot \lambda \geq 0.$$

$$\cot \lambda \geq 0.$$

Esso soddisfa entrambe le condizioni per essere un rilassamento:

- Vincoli: $\{x : Ax \le b, x \in X\} \subseteq \{x : x \in X\}$
- Obiettivo:
 - Ax b < 0 per tutte le soluzioni ammissibili per P;
 - $\lambda(Ax b) \le 0$ per tutte le soluzioni ammissibili per P;
 - Z_{LR}(x, λ) = z(x) + λ(Ax − b) ≤ z(x) per tutte le soluzioni ammissibili per P.

Rilassamento surrogato

Il rilassamento surrogato S di un problema di ottimizzazione (lineare discreto) P si ottiene sostituendo un insieme di vincoli con una loro combinazione convessa.

P)
$$\min\{z(x): Ax \leq b, x \in X \subseteq \mathcal{Z}_+^n\}$$
 pro uncolumn $\{z(x): \lambda^T Ax \leq \lambda^T b, x \in X \subseteq \mathcal{Z}_+^n\}$

con $\lambda > 0$.

Esso soddisfa le due condizioni per essere un rilassamento:

- Vincoli: $Ax \le b$ implica $\lambda^T Ax \le \lambda^T b$ (ma non viceversa).
- Obiettivo: banale, perché non cambia.

Rilassamenti e bounds

I rilassamenti lineare, Lagrangeano e surrogato possono fornire in generale bounds diversi.

In caso di minimizzazione valgono le seguenti relazioni:

$$z_{LP}^* \leq z_{LR}^* \leq z_S^* \leq z^*.$$

Con z_{LR}^* e z_S^* qui si indicano i migliori bounds ottenibili dal rilassamento Lagrangeano e surrogato, scegliendo cioè nel modo migliore i moltiplicatori λ .

Dualità

La seconda tecnica per ottenere un bound duale consiste nel calcolare una soluzione ammissibile per il problema duale di *P* o per il duale di un suo rilassamento.

Problema lineare duale:

$$P)z^* = \min\{cx : Ax \ge b, x \in \mathcal{Z}_+^n\}$$

$$D)w^* = \max\{yb : yA \le c, y \in \Re_+^m\}$$

formano una coppia primale-duale debole.

Problema duale combinatorio:

Il problema del massimo matching e il problem del *minimum vertex* cover

$$(P)z^* = \max\{1x : Ax \le 1, x \in \mathcal{B}_+^{|E|}\}$$

$$(D)w^* = \min\{1y : yA \ge 1, y \in \mathcal{B}_+^{|V|}\}$$

dove A è la matrice di incidenza di un grafo G = (V, E), formano una coppia primale-duale debole.

Esempio

Formulazioni lineari

I problemi di ottimizzazione (lineare) discreti *non* hanno una formulazione unica.

Formulazioni

Dal momento che non sono uniche, ha senso

- confrontare formulazioni,
- migliorare formulazioni.

Una formulazione migliore si traduce in un algoritmo più efficiente.

La formulazione ideale di un problema di programmazione lineare discreta è quella che consente di risolverlo come se fosse un problema di programmazione lineare nel continuo.

Formulazione ideale

La formulazione di un problema di programmazione lineare corresponde ad un *poliedro*.

Coures

I vincoli della formulazione ideale corrispondono al *guscio convesso* delle soluzioni intere.

Guscio convesso (convex hull)

Dato un insieme discreto

$$X = \{x_1, \ldots, x_t\}$$
 with $x_i \in \Re^n \ \forall i = i, \ldots, t$,

il suo guscio convesso è il poliedro

$$\textit{conv}(\textit{X}) = \{\textit{x} \in \Re^n : \textit{x} = \sum_{i=1}^t \lambda_i \textit{x}_i, \sum_{i=1}^t \lambda_i = 1, \lambda_i \geq 0 \ \forall i = 1, \ldots, t\}.$$

E' un *poliedro* i cui punti estremi sono elementi dell'insieme discreto *X*.

Data una formulazione P e l'insieme discreto X delle sue soluzioni ammissibili, vale la relazione

$$X \subseteq conv(X) \subseteq P$$
.

Polyhedral combinatorics

In generale

- non conosciamo la formulazione ideale dei problemi di ottimizzazione lineare intera;
- il numero dei vincoli del guscio convesso può crescere esponenzialmente con la dimensione dell'istanza.

Conosciamo la formulazione ideale solo per alcuni particolari problemi di ottimizzazione discreta: il problema del cammino minimo su grafo, il problema del matching bipartito di costo minimo, il problema dell'albero ricoprente di costo minimo,...

La disciplina che studia come selezionare e migliorare le formulazioni lineari dei problemi di PLI è la polyhedral combinatorics.

Scelta della formulazione: esempio

In molti problemi di ottimizzazione discreta con vincoli di capacità (Bin Packing Problem, Facility Location Problem,...), ci sono vincoli di questa forma:

$$\sum_{i \in \mathcal{N}} x_{ij} \le |\mathcal{N}| y_j \ \forall j \in \mathcal{M}, \tag{1}$$

che esprime una condizione logica che lega le variabili x e y:

me una condizione logica che lega le variabili
$$x \in y$$
:
$$\begin{cases}
\exists (i,j) \in \mathcal{N} \times \mathcal{M} : x_{ij} > 0 \Rightarrow y_j = 1 \\
\exists j \in \mathcal{M} : y_j = 0 \Rightarrow x_{ij} = 0 \forall i \in \mathcal{N}.
\end{cases}$$
a condizione può essere espressa con
$$x_{ij} \leq y_j \ \forall i \in \mathcal{N}, \forall j \in \mathcal{M}.$$
(2)

La stessa condizione può essere espressa con

$$\mathbf{x}_{ij} \leq \mathbf{y}_{j} \ \forall i \in \mathcal{N}, \forall j \in \mathcal{M}.$$
 (2)

La formulazione (1) richiede $|\mathcal{M}|$ vincoli. La formulazione (2) richeide $|\mathcal{M}||\mathcal{N}|$ vincoli.

Scelta della formulazione: esempio

Sommando tra loro i vincoli (2) per ogni $i \in \mathcal{N}$ si ottiene

$$\sum_{i \in \mathcal{N}} x_{ij} \leq \sum_{i \in \mathcal{N}} y_j \ \forall j \in \mathcal{M}$$

cioè proprio i vincoli (1): $\sum_{i \in \mathcal{N}} \mathbf{x}_{ij} \leq |\mathcal{N}| \mathbf{y}_j \ \ \forall j \in \mathcal{M}.$

(1) is in vilassomento d. (2)

Opurati (2) É
pri stringente

Quindi ogni vincolo (1) è un vincolo surrogato di alcuni vincoli (2).

I vincoli (2) implicano i vincoli (1) ma non viceversa.

Ci sono soluzioni che soddisfano (1) ma violano (2):

$$\left\{ \begin{array}{ll} \textbf{\textit{x}}_{ij} = \textbf{1} & \forall j \in \mathcal{M}, \forall i \in \mathcal{N}: i \in [\textit{k}(j-1)+1, \ldots, \textit{k}j] \\ \textbf{\textit{y}}_{j} = \textbf{1}/|\mathcal{M}| & \forall j \in \mathcal{M} \end{array} \right.$$

dove $k = |\mathcal{N}|/|\mathcal{M}|$.

I vincoli (2) generano una migliore formulazione rispetto ai vincoli (1). Il poliedro con i vincoli (2) contiene il poliedro con i vincoli (1).

Algoritmi "cutting planes"

Dato un problema di PLI

$$P^{(k)} = \max\{cx : Ax \leq b, x \in \mathcal{Z}_+^n\}$$

consideriamo il suo rilassamento continuo

$$L^{(k)} = \max\{cx : Ax \leq b, x \in \Re^n_+\}$$

e la sua soluzione ottima $x^{*(k)}$. Quindi, generiamo un insieme di disuguaglianze valide Qx < q tali che. 917

•
$$Qx \le q \ \forall x \in \mathcal{Z}_+^n : Ax \le b$$

• $Qx^{*(k)} > a$

e otteniamo così una formulazione più stretta

$$P^{(k+1)} = \max\{cx : Ax \le b, Qx \le q, x \in \mathcal{Z}_+^n\}.$$

Disuguaglianze valide: esempio

La disequazione (1) è vaida ma inutile: non "taglia" x^* .

La disequazione (2) non è valida: "taglia" alcune soluzioni ammissibili intere.

La disequazione (3) è valida e utile.

La disequazione (4) è anche facet defining.

definisce une l'faccia del policidio dia violg. + Stringente

Procedura di Chvátal-Gomory

Consideriamo un problema di PLI con insieme ammissibile

$$X = \{x \in \mathcal{Z}_+^n : Ax \le b\}$$

dove A ha m righe e n colonne.

Scegliamo un vettore $u \in \Re_+^m$:

- $\sum_{j=1}^{n} u a_j x_j \le u b$ è valida perché $ax \le b$ e $u \ge 0$.
- $\sum_{i=1}^{n} \lfloor ua_i \rfloor x_i \le ub$ è valida perché $x \ge 0$.
- $\sum_{j=1}^{n} \lfloor ua_j \rfloor x_j \leq \lfloor ub \rfloor$ è valida perché x è intero.

Ogni disuguaglianza valida può essere generata con questa procedura in un numero finito di passi.

L'efficacia della procedura dipende dalla scelta di u.

Algoritmi "cutting planes"

Gli algoritmi "cutting planes" iterativamente risolvono il rilassamento continuo L di un problema discreto P e rafforzano la sua formulazione generando ulteriori vincoli (*cutting planes*), in modo tale che la soluzione ottima del rilassamento continuo all'iterazione k diventi inammissibile all'iterazione k+1.

Pro:

- se i piani di taglio sono generati in modo efficace, l'algoritmo può garantire di trovare la soluzione ottima discreta senza fare ricorso ad altre tecniche (ad es. enumerazione implicita);
- una formulazione più stretta, anche se non ideale, può fornire bounds duali più efficaci in un algoritmo branch-and-bound.

Contro:

 è necessaria una procedura apposita per generare iterativamente disuguaglianze valide e utili: è chiamata algoritmo di separazione.
 Se il problema originale è difficile (NP-hard), anche il problema di separazione lo è.

Algoritmi "cutting planes": pseudo-codice

```
Begin
t:=0; P^{(0)}:=P; [P è il rilassamento continuo]
repeat
   Z^{*(t)}:=max{CX : X \in P^{(t)}}
   x^{*(t)}:=argmax{cx : x \in P^{(t)}}
   if x^{*(t)} \notin \mathbb{Z}^n then
      Genera una disuguaglianza valida \pi x < \pi_0 : \pi x^{*(t)} > \pi_0
      P^{(t+1)} := P^{(t)} \cap \{x : \pi x < \pi_0\}
      t := t + 1
   end if
until (x^{*(t)} \in \mathbb{Z}^n) \vee (no inequalities found)
End
```

Algoritmi "cutting planes"

Dopo ogni iterazione $z^{*(t)}$ è un bound duale valido.

Può capitare che non venga trovata nessuna disuguaglianza valida se l'algoritmo di separazione è ristretto a cercarla all'interno di specifici sottinsiemi di disuguaglianze con una struttura particolare, che non bastano per descrivere completamente il guscio convesso del problema di PLI.

Tagli di Gomory

Data una soluzione frazionaria x* del rilassamento continuo di un problema di PLI, si utilizza la procedura di Chvátal-Gomory sul vincolo associato ad una variabile frazionaria: si ottiene così una disuguaglianza valida violata da x^* .

Dato un problema di PLI

P)
$$\max\{cx : ax = b, x \geq 0, x \in \mathbb{Z}^n\}$$

ed il suo rilassamento continuo

$$LP) \max\{cx : ax = b, x \ge 0\}$$

siano
$$x^*$$
 e z^* la soluzione ottima di LP e il suo valore.
$$z^* = \overline{a}_{00} + \sum_{j \in N^*} \overline{a}_{0j} x_j^*$$

$$\begin{cases} x_{B^*i}^* + \sum_{j \in N^*} \overline{a}_{ij} x_j^* = \overline{a}_{i0} & \forall i = 1, \dots, m \\ x^* \ge 0 \end{cases}$$
(3)

dove B^* e N^* sono gli indici delle variabili in base e fuori base in x^* .

Tagli di Gomory

Se x^* non è intero, esiste almeno un vincolo \hat{i} tale che \overline{a}_{in} non è intero.

Eseguendo la procedura di Chvátal-Gomory su di esso si ottiene:

$$X_{B^*\hat{i}} + \sum_{i \in N^*} \lfloor \overline{a}_{\hat{i}j} \rfloor X_j \bigotimes \lfloor \overline{a}_{\hat{i}0} \rfloor.$$
 (1)

Sottraendo questa disuguaglianza dal vincolo di uguaglianza
$$x_{B^*\hat{i}}^* + \sum_{j \in N^*} \overline{a}_{\hat{i}j} x_j^* = \overline{a}_{\hat{i}0} \qquad (i) \qquad (i) \qquad (i) \qquad (i)$$

si ottiene il taglio di Gomory:

$$\sum_{j \in N^*} f_{ij} x_j \geqslant f_{i0} \qquad |-| \qquad R_{i \text{ remain } a \text{ di syn1 Coeff}}.$$

$$\mathsf{dove}\ f_{\hat{i}i} = \overline{a}_{\hat{i}i} - \lfloor \overline{a}_{\hat{i}i} \rfloor \ \mathsf{e}\ f_{\hat{i}0} = \overline{a}_{\hat{i}0} - \lfloor \overline{a}_{\hat{i}0} \rfloor.$$

Anche la variabile di slack/surplus associata a questa disuguaglianza è intera.

maximize
$$z=4x_1-x_2$$

$$7x_1-2x_2\leq 14$$

$$x_2\leq 3$$

$$2x_1-2x_2\leq 3$$

$$x\geq 0 \text{ (integer)}$$

Risolvendo il rilassamento continuo, si ottiene $B^* = \{1, 2, 5\}$,

$$N^* = \{3, 4\}$$
:

$$z = \frac{59}{7} \qquad -\frac{4}{7}x_3 - \frac{1}{7}x_4$$

$$x_1 \qquad +\frac{1}{7}x_3 + \frac{2}{7}x_4 \qquad = \frac{20}{7}$$

$$x_2 \qquad +x_4 \qquad = 3$$

$$-\frac{2}{7}x_3 + \frac{10}{7}x_4 + x_5 = \frac{23}{7}$$

$$x > 0$$

$$z = \frac{59}{7} - \frac{4}{7}x_3 - \frac{1}{7}x_4$$

$$x_1 + \frac{1}{7}x_3 + \frac{2}{7}x_4 = \frac{20}{7}$$

$$x_2 + x_4 = 3$$

$$-\frac{2}{7}x_3 + \frac{10}{7}x_4 + x_5 = \frac{23}{7}$$

$$x \ge 0$$

Dal primo vincolo si genera un taglio di Gomory:

$$x_1^* = \frac{20}{7} \Rightarrow \frac{1}{7}x_3 + \frac{2}{7}x_4 \ge \frac{6}{7}.$$

La sua variabile ausiliaria è

$$s_1 = -\frac{6}{7} + \frac{1}{7}x_3 + \frac{2}{7}x_4.$$

Dai vincoli

$$x_1 + \frac{1}{7}x_3 + \frac{2}{7}x_4 = \frac{20}{7}$$
$$x_2 + x_4 = 3$$

si ottiene

$$x_3 = -7x_1 + 2x_2 + 14$$

 $x_4 = -x_2 + 3$

e l'equazione del taglio di Gomory

$$\frac{1}{7}x_3 + \frac{2}{7}x_4 \ge \frac{6}{7}$$

si può riscrivere come

$$x_1 \leq 2$$
.

Ri-ottimizzando si ottiene:

$$z = \frac{15}{2} \qquad -\frac{1}{2}x_5 - 3s_1$$

$$x_1 \qquad +s_1 = 2$$

$$x_2 \qquad -\frac{1}{2}x_5 + s_1 = \frac{1}{2}$$

$$x_3 \qquad -x_5 - 5s_1 = 1$$

$$x_4 + \frac{1}{2}x_5 - s_1 = \frac{5}{2}$$

$$x, s \ge 0$$

$$z = \frac{15}{2} \qquad -\frac{1}{2}x_5 - 3s_1$$

$$x_1 \qquad +s_1 = 2$$

$$x_2 \qquad -\frac{1}{2}x_5 + s_1 = \frac{1}{2}$$

$$x_3 \qquad -x_5 - 5s_1 = 1$$

$$x_4 + \frac{1}{2}x_5 - s_1 = \frac{5}{2}$$

$$x, s \ge 0$$

Dal secondo vincolo si può generare un taglio di Gomory:

$$x_2^* = \frac{1}{2} \quad \Rightarrow \quad \frac{1}{2}x_5 \ge \frac{1}{2} \quad \Rightarrow \quad x_1 - x_2 \le 1.$$

La sua variabile ausiliaria è

$$s_2 = -\frac{1}{2} + \frac{1}{2}x_5.$$

Ri-ottimizzando ancora, si ottiene:

Ora la soluzione ottima del rilassamento continuo è intera e quindi è anche la soluzione ottima discreta.

