Edit Distance

1. The Edit Distance Problem

Definition of a ref-word

Given a finite set of variables $V \subseteq \text{SVars}$ we define the alphabet of ref words as: $\Gamma_V := \{x \vdash, \exists x\}$. And given an alphabet Σ such that $\Sigma \cap \Gamma_V = \emptyset$ we can define the set of ref words over Σ and V as: $\mathbf{r} \in (\Sigma \cup \Gamma_V)^*$. Next, a ref-word is valid if and only if, every occurance of a variable in the ref-word is opened exactly once and closed afterwards, exactly once.

Functions on ref-words

We can define the projection of a ref word over a set S, $r \uparrow S$, recursively as:

- 1. $r \in S \to r \uparrow S = r$
- 2. $r \notin S \to r \uparrow S = \epsilon$
- 3. $(r_1 \cdot r_2) \uparrow S = (r_1 \uparrow S) \cdot (r_2 \uparrow S)$

Vars(r) is the set of variables $x \in V$ that occurs in the ref-word:

$$Vars(r) := \left\{ x \in V \mid \exists r_x^{pre}, r_x, r_x^{post} \in (\Sigma \cup \Gamma_V)^* \text{ such that } r = r_x^{pre} \cdot x \vdash \cdot r_x \cdot \dashv x \cdot r_x^{post} \right\}$$
 (1)

tup(r) are the positions each ref-word is referencing, and is defined as:

$$tup(r) := \{x \mapsto [i_x, j_x) \mid x \in Vars(R), i_x = |r_x^{pre} \uparrow \Sigma|, j_x = i_x + |r_x \uparrow \Sigma|\}$$
(2)

Postulate:

$$\operatorname{valid}(r) \to |\operatorname{tup}(r)| = |\operatorname{Vars}(r)|$$
 (3)

Definition of ref-word tuple

Distance between two ref words

Next, given two ref words $r_1, r_2 \in (\Sigma \cup \Gamma_V)$ and a distance function $\mathbf{d} : \Sigma^* \times \Sigma^* \to \mathbb{R}$ the distance \mathbf{d}_{Γ} between r_1 and r_2 is defined as: $\mathbf{d}_{\Gamma}(r_1, r_2) = \mathbf{d}(r_1 \uparrow \Sigma, r_2 \uparrow \Sigma)$

Ref-word distance languages

Given a ref-word language reference $L_{ref} \subseteq (\Sigma \cup \Gamma_V)^*$ and a distance $k \in R$, the k-distance ref-word language reference is defined as

$$[\![L_{ref}]\!]_{ref}^k = \{r \in (\Sigma \cup \Gamma_V)^* \mid \text{valid}(\mathbf{r}), \exists r'(r' \in L_{ref} \land \mathbf{d}_{\Gamma}(r, r') \le k)\}$$
(4)

Given a document d, the k-distance ref-word language is:

$$[\![L_{ref}]\!]_d^k = \{ \operatorname{tup}(r) \mid r \uparrow \Sigma = d, \exists r' \in L_{ref}(\mathbf{d}_{\Gamma}(r, r') \le k) \}$$
(5)

Postulates

$$\left[\left[A \right]_{ref}^{k} \right]_{d}^{0} = \left[A \right]_{d}^{k} \tag{7}$$

¹In the paper (Doleschal, 2021) this operation is defined for Σ as doc(σ)