Project 2

Abraham Jacob Reines May 5, 2022

1 Project 4: Chaos in Newton's Method

1.1 Applying Newton's Method for 'Part a'

The task is to apply Newton's Method to

$$f(x) = x(x-1)(x+\frac{1}{2})$$
(1)

for many initial guesses on (-2,2), and plot the zero it converges to as a function of the initial point. This is accomplished using 'AChaoticNewton.m' function and on lines 1 through 29 of 'Project2.m' algorithm. The figure below illustrates even as you make the interval smaller, the jumpiness of the solution looks similar. This means we have a self-similar, or chaotic behavior.

The solution procedure accesses the Newton function written to find roots. The algorithm plots the 'Number found' v. 'Estimates' for Equation (1).

(a) (b)

1.2 Applying Newton's Method for 'Part b'

The task is to apply Newton's Method to

$$f(x) = x^3 - 1 \tag{2}$$

with initial guess a selection of complex numbers with real and imaginary parts varying from -2 to 2. After accomplishing this in lines 31 to 57 of 'Project2.m' we plotted; the plot is colored based upon which of the three roots you converge to.

The solution procedure for this function requires a nested loop to compute the real and imaginary parts. We plot the 'real' v. 'imaginary' results in a colorful figure. See figure on next page...

1.3 Applying Newton's Method for 'Part c'

The task is to make a selection of pictures zooming in so the figure has more detail, and verify that the detail continues as you zoom in - it is a fractal. This is accomplished in lines 59 to 111 of 'Project2.m'.

(a) (b)

(c)

2 Matlab Code

2.1 AChaoticNewton.m

```
1 function num = AChaoticNewton(f,x,df,total)
_{2} M = 100; h = 1;
  err = @(xa, xr) abs(xa-xr);
  if (nargin < 3)
       df = @(x) (f(x+h)-f(x-h))/(2*h);
  end
  y(1) = f(x(1)); p(1) = df(x(1)); r(1) = x(1)-y(1)/p(1);
  error(1) = Inf;
  j = 2;
12
  while (error(end)>total) && (j \le M)
13
      x(j) = r(j-1); y(j) = f(x(j));
      p(j) = df(x(j)); 	 r(j) = x(j)-y(j)/p(j);
15
       error(j) = err(x(j), r(j));
       j = j+1;
17
  end
18
19
  if (j >= M)
20
       fprintf ("There is some dubious error in your code that
          will take you hours to find: HA!",M)
  end
_{23} num = r(end);
24 end
```

2.2 Project2.m

```
1 clear all, close all, clc, format long, format compact
  total = 10^-10; n = 203947;
_{4} \text{ fA} = @(x)x.*(x-1).*(x + 1/2);
  dfA = @(x)3*x.^2-x-0.5;
  A = -2; B = 2; x = linspace(A, B, n);
  for j = 1:n
      num(j) = AChaoticNewton(fA, x(j), dfA, total);
  end
10
11
  plot (x, num, '. ', 'color', 'r')
  xlabel('Estimates'), ylabel('Number found')
  NewMeth = sprintf('Newton'')'s method for our function:\nf(x)
     = x(x-1)(x+1/2);
  title (NewMeth), grid on
  saveas (gcf, 'fig0.pdf')
  ylim([-1,1.5]), xticks(linspace(A,B,23))
17
  A = -0.3; B = -0.2; x = linspace(A, B, n);
19
20
  for j = 1:n
21
      num(j) = AChaoticNewton(fA, x(j), dfA, total);
  end
23
^{24}
  figure
  plot(x, num, '.', 'color', 'r'), xlabel('Estimates'), ylabel('
     num')
  NewMeth = sprintf('Newton'')'s method for our function:\nf(x)
     = x(x-1)(x+1/2);
  title (NewMeth), grid on
  saveas (gcf, 'fig1.pdf')
  y \lim ([-1, 1.5]), x \lim ([A,B])
  xticks(linspace(A,B,21))
  fB = @(x)x.^3-1; dfB = @(x)3*x.^2; n = 50; total = 1E-5;
```

```
r1=1; r2=(-1-sqrt(-3))/2; r3=(-1+sqrt(-3))/2;
  A = -2; B = 2; x = linspace(A,B,n); y = linspace(A,B,n)*sqrt
      (-1);
  q = ones(1, n*n); e = 1;
36
37
  for i=1:n
38
       for j=1:n
39
           num(e) = AChaoticNewton(fB, x(i)+y(j), dfB, total);
40
           re(e) = x(i);
41
           im(e) = imag(y(j));
           if abs(num(e)-r2)<0.001
43
                q(e) = 2;
            elseif (abs(num(e)-r3)<0.001)
45
                q(e) = 3;
46
           end
47
           e = e + 1;
48
       end
49
  end
50
51
  figure, hold on
  plot (re (q==1), im (q==1), '*', 'color', 'B')
  plot (re (q==2), im (q==2), '*', 'color', 'G')
  plot(re(q==3), im(q==3), '*', 'color', 'r')
  xlabel('Real parts')
  ylabel ('Imaginary parts')
  saveas (gcf, 'fig2.pdf')
  NewMeth = sprintf('Newton'')'s method applied to nf(x)=x^3-1'
   title (NewMeth)
60
61
  A = -1; B = 1; x = linspace(A,B,n); y = linspace(A,B,n)*sqrt
     (-1);
  q = ones(1, n*n); e = 1;
64
  for i=1:n
65
       for j=1:n
66
           num(e) = AChaoticNewton(fB, x(i)+y(j), dfB, total);
67
           re(e) = x(i);
68
```

```
im(e) = imag(y(j));
69
            if (abs(num(e)-r2)<0.001)
70
                 q(e) = 2;
71
             elseif (abs(num(e)-r3)<0.001)
72
                 q(e) = 3;
73
            end
74
            e = e + 1;
75
        end
76
   end
77
   figure, x \lim ([A,B]), y \lim ([A,B])
   hold on
   plot (re (q==1), im (q==1), '*', 'color', 'B')
   plot (re(q==2),im(q==2), '*', 'color', 'g')
   plot (re (q==3), im (q==3), '*', 'color', 'r')
   xlabel ('Real part of the initial estimate')
   ylabel ('Imaginary part of the initial estimate')
   saveas (gcf, 'fig3.pdf')
   NewMeth = sprintf('Newton'') s method for: \nf(x)=x^3-1';
   title (NewMeth)
88
89
   A = -0.1; B = 0.1; x = linspace(A,B,n); y = linspace(A,B,n)*
      \operatorname{sqrt}(-1);
   q = ones(1, n*n); e = 1;
91
92
   for i=1:n
93
        for j=1:n
94
            num(e) = AChaoticNewton(fB, x(i)+y(j), dfB, total);
95
            re(e) = x(i);
            im(e) = imag(y(j));
97
            if (abs(num(e)-r2)<0.001)
                 q(e) = 2;
99
            elseif (abs(num(e)-r3)<0.001)
100
                 q(e) = 3;
101
            end
102
            e = e + 1;
103
        end
104
105 end
```

```
figure , xlim([A,B]) , ylim([A,B]) hold on plot(re(q==1),im(q==1),'*','color','B') plot(re(q==2),im(q==2),'*','color','g') plot(re(q==3),im(q==3),'*','color','r') xlabel('Real parts of the estimates') ylabel('Imaginary parts') saveas(gcf,'fig4.pdf') NewMeth=sprintf('Newton''s method for:\nf(x)=x^3-1'); title(NewMeth)
```

3 Discussion of results and conclusions

3.1 Results

The results of this analysis is Equation (2) is what we define to be a 'fractal' - a complex geometric shape commonly exemplifying fractional dimensions.

3.2 Conclusions

These algorithms work properly: Project2.m uses the AChaoticsNewton function to find the roots of Equation (1) as well as Equation (2). The imaginary and real parts for Equation (2) form a fractal illustrated in Subsection 1.3.