5 Fonction exponentielle (TS2)

Introduction

La fonction $\ln:]0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \ln x$ est continue et strictement croissante.

Elle admet une **bijection réciproque** de \mathbb{R} vers]0, $+\infty[$.

I - Définition et propriétés

Définition 1

On appelle fonction exponentielle, notée exp ou e, la bijection réciproque de la fonction ln.

Notation 2

exp:
$$\mathbb{R} \longrightarrow]0, +\infty[$$

 $x \longmapsto \exp(x) = e^x$

Conséquence 3 — $\forall x \in \mathbb{R}, e^x > 0$

$$- e^0 = 1$$
 et $e^1 = e$

$$-- \forall x > 0, e^{\ln x} = x$$

$$-- \forall y \in \mathbb{R}, \ln e^y = y$$

- exp est continue et dérivable sur \mathbb{R} .
- exp est bijective et strictement croissante sur \mathbb{R} . D'où :

$$- e^a = e^b \iff a = b$$

$$- e^a > e^b \iff a > b$$

Propriété 4 (fondamentale)

$$\forall a \in \mathbb{R} \text{ et } \forall b \in \mathbb{R} : \quad e^{a+b} = e^a \times e^b$$

Démonstration

$$\ln(e^{a+b}) = a+b$$

$$\ln(e^{a} \times e^{b}) = \ln(e^{a}) + \ln e^{b} = a+b$$
D'où $e^{a+b} = e^{a} \times e^{b}$

Conséquence 5 —
$$e^{-a} = \frac{1}{e^a}$$

$$- e^{a-b} = \frac{e^a}{e^b}$$

$$- (e^a)^r = e^{ra} \quad \forall r \in \mathbb{Q}$$

II - Étude et représentation graphique

Les courbes de la fonction exp et de la fonction ln sont symétriques par rapport à la première bissectrice du repère.

Limites

Aux bornes de l'ensemble de définition de la fonction exp, on obtient les limites suivantes :

Propriété 6
$$\lim_{x \to +\infty} e^x = +\infty$$

 $\lim_{x \to -\infty} e^x = 0$

Démonstration

- Soit φ la fonction définie par : $x \mapsto e^x x 1$. φ est dérivable sur $[0, +\infty[$ et $\forall x > 0$ $\varphi'(x) = e^x 1 \ge 0$. φ est donc croissante sur $[0, +\infty[$ or $\varphi(0) = 0$. Donc $\forall x \ge 0$, $\varphi(x) \ge 0$ càd $e^x \ge x + 1$. Or $\lim_{x \to +\infty} x + 1 = +\infty$ par comparaison $\lim_{x \to +\infty} e^x = +\infty$
- Pour calculer $\lim_{x \to -\infty} e^x$ posons y = -xOn a alors $\lim_{x \to -\infty} e^x = \lim_{y \to +\infty} e^{-y} = \lim_{y \to +\infty} \frac{1}{e^y} = 0$

Tableau de variations

x	$-\infty$ $+\infty$
$(e^x)'$	+
e^x	+∞ 0

Dérivée

On sait que $\forall x \in \mathbb{R}$, $\ln e^x = x$.

Dérivons les 2 membres de cette égalité.

$$\frac{\ln'(e^x) \times (e^x)' = 1}{\frac{(e^x)'}{e^x}} = 1 \iff (e^x)' = e^x$$

Propriété 7

La fonction exponentielle est dérivable sur \mathbb{R} et est égale à sa propre dérivée : $(e^x)' = e^x \quad \forall x \in \mathbb{R}$

Conséquence 8

Si u est une fonction dérivable sur un intervalle I alors la fonction $f: x \mapsto e^{u(x)}$ est dérivable sur I et $f'(x) = (\exp'(u(x))) \times u'(x) = e^{u(x)} \times u'(x) = e^{u(x)} \times u'(x)$ $e^{u(x)} = e^{u(x)} \times u'(x)$

La fonction $u'e^u$ a pour primitive sur I, toute fonction du type $e^u + C$ ($C \in \mathbb{R}$).

III - Quelques limites classiques

Propriété 9 —
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

— $\lim_{x \to -\infty} x e^x = 0$
— $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

Démonstration

— Montrons que
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Pour $x > 0$, $\ln\left(\frac{e^x}{x}\right) = \ln e^x - \ln x = x - \ln x = x\left(1 - \frac{\ln x}{x}\right)$ d'où par produit $\lim_{x \to +\infty} x\left(1 - \frac{\ln x}{x}\right) = +\infty$

- Montrons que $\lim_{x \to -\infty} x e^x = 0$ En posant X = -x, on obtient $\lim_{x \to -\infty} x e^x = \lim_{X \to +\infty} -X e^{-X} = \lim_{X \to +\infty} \frac{-X}{e^X} = 0$
- Montrons que $\lim_{x \to 0} \frac{e^x 1}{x} = 1$ Soit $\varphi(x) = e^x$. $\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{\varphi(x) - \varphi(0)}{x - 0} = \varphi'(0) = e^0 = 1$