- **3.** Use a proof by cases to show that 100 is not the cube of a positive integer. [*Hint*: Consider two cases: (i) $1 \le x \le 4$, (ii) $x \ge 5$.]
- 5. Prove that if x and y are real numbers, then $\max(x, y) + \min(x, y) = x + y$. [Hint: Use a proof by cases, with the two cases corresponding to $x \ge y$ and x < y, respectively.]
- **19.** Suppose that a and b are odd integers with $a \neq b$. Show there is a unique integer c such that |a c| = |b c|.
- **23.** Prove that given a real number x there exist unique numbers n and ϵ such that $x = n \epsilon$, n is an integer, and $0 \le \epsilon < 1$.
- **31.** Prove that there is no positive integer n such that $n^2 + n^3 = 100$.