

СДО Росдистант ➤ Текущий курс ➤ Сопротивление материалов 2 ➤ Материалы курса➤ Глоссарий

ГЛОССАРИЙ

Версия для печати

Список специальных терминов, сокращений, понятий, важных для истолкования и уточнения смыслов в рамках изучения курса

Обзор глоссария по алфавиту

Специальные | А | Б | В | Г | Д | Е | Ё | Ж | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Э | Ю | Я | Все

> Страница: 1 2 3 4 5 6 7 8 (Далее) Все

> > Α

Амплитуда напряжений цикла

- наибольшее отклонение напряжения цикла от величины его среднего напряжения

_			
\vdash	ЭΓ	11/	_
1)(71	IK.	$\overline{}$

– стержень, работающий на изгиб

В

Вал

- стержень, работающий на кручение

Внецентренное растяжение-сжатие

– вид деформации, возникающий при нагружении стержня силами, которые параллельны его продольной оси, но не совпадают с ней. Является частным случаем изгиба с растяжением-сжатием

Внутренние силовые факторы

- изменения сил взаимодействия между частицами вещества, возникающие в ответ на внешнее воздействие. В физике известны как силы упругости. Различают четыре вида внутренних силовых факторов: продольная сила, поперечная сила, крутящий момент и изгибающий момент

Выносливость

– способность материала сопротивляться усталостному разрушению

0

0

0

– колебания, происходящие за счёт внешней периодически изменяющейся силы 0 Γ Гибкость стержня – безразмерная геометрическая характеристика стержня, определяемая как отношение его приведённой длины к радиусу инерции поперечного сечения a Гипотеза Бернулли (гипотеза плоских сечений) – допущение относительно характера деформации, в соответствии с которым поперечные сечения стержня, плоские до нагружения, остаются плоскими и перпендикулярными оси стержня и после приложения внешних сил Главные оси – взаимно перпендикулярные оси, относительно которых центробежный момент инерции сечения равен нулю. Ось симметрии сечения и любая ось, ей перпендикулярная, всегда образуют пару главных осей 0 Главные центральные моменты инерции – моменты инерции относительно главных центральных осей сечения 0

- главные оси, проходящие через центр тяжести сечения

Главные центральные оси сечения

Вынужденные колебания

Д

Деформация

1. Изменение формы и объёма тела под действием внешних сил. Различают четыре основных (простых) вида деформации: растяжение-сжатие, сдвиг, кручение, изгиб. По механизму возникновения различают также упругие и пластические деформации. 2. Величина, характеризующая степень изменения формы нагруженного тела в заданной его точке. Различают линейные и угловые, абсолютные и относительные деформации

Динамическая нагрузка

 нагрузка, быстро изменяющаяся с течением времени по величине и (или) направлению

Допускаемое напряжение

 наибольшее значение напряжения, которое можно создать в элементе конструкции без риска его разрушения или появления пластических деформаций. Должно быть меньше, чем опасное напряжение для материала, из которого изготовлен элемент конструкции

Ж

Жёсткость

 способность элемента конструкции выдерживать внешние нагрузки без существенного изменения формы

0

Закон	Гука

- закон упругого деформирования твёрдых тел, согласно которому напряжение прямо пропорционально деформации

0

И

Изгиб

– вид деформации стержня, при котором его продольная ось искривляется. Различают изгиб чистый и поперечный, прямой и косой

Изгибающий момент

– один из внутренних силовых факторов, определяемый как момент внутренних сил, возникающих в данном сечении, относительно одной из главных центральных осей этого сечения

К

Касательное напряжение

- составляющая полного напряжения, направленная в плоскости сечения. Касательные напряжения возникают при сдвиге и кручении

Консо́льная балка

– балка, один конец которой жёстко защемлён, и не имеющая других опор

Концентрация напряжений	
– явление повышения напряжений вблизи мест резкого изменения формы детали	0
Косой изгиб	
– вид изгиба, при котором силовая линия не совпадает ни с одной из главных центральных осей сечения. Для сечений, у которых все центральные оси являются главными, косой изгиб невозможен. Это, например, круг и все правильные фигуры	0
Коэффициент динамичности	
– отношение динамического перемещения или напряжения к статическому, которовозникает при статическом приложении внешней силы	e <i>@</i>
Коэффициент запаса	
– коэффициент, показывающий, во сколько раз допускаемое напряжение меньше опасного для эксплуатации элемента конструкции	8
Коэффициент приведения длины	
– коэффициент, показывающий, какую часть длины стержня занимает одна полувосинусоиды при продольном изгибе. Зависит от условий закрепления стержня	лна
	0

Кривая усталости

– график зависимости числа циклов, которое выдерживает образец без разрушения, от максимального напряжения, создаваемого в образце, построенный для серии одинаковых образцов

Критическая сила		

– значение силы, при котором происходит потеря устойчивости элемента конструкции Крутящий момент – один из внутренних силовых факторов, определяемый как момент внутренних сил, возникающих в данном сечении, относительно оси, перпендикулярной плоскости этого сечения 0 Кручение – вид деформации стержня, при котором его сечения поворачиваются друг относительно друга вокруг продольной оси стержня. В поперечных сечениях возникает только один внутренний силовой фактор – крутящий момент 0 Μ Модуль упругости – физическая константа материала, которая является мерой его жёсткости. Различают модуль упругости первого рода (модуль Юнга), характеризующий сопротивление материала продольной деформации, и модуль упругости второго рода (модуль сдвига), характеризующий сопротивление материала деформации сдвига a Η

Напряжение

– величина, характеризующая интенсивность внутренних сил, возникающих в заданной точке заданного сечения нагруженного тела. Различают нормальные и касательные напряжения

Опасное сечение

– поперечное сечение стержня, в котором возникают наибольшие напряжения

Осевой момент инерции

- геометрическая характеристика сечения, определяемая как интеграл произведения элементарных площадей сечения на квадраты их расстояний до заданной оси. Характеризует сопротивление стержня деформации изгиба

0

Осевой момент сопротивления

- отношение осевого момента инерции сечения к расстоянию от заданной оси до наиболее удаленной точки. Характеризует сопротивление балки изгибу

П

Пластичный материал

– материал, способный выдерживать большие пластические деформации без разрушения. Опасным напряжением для пластичных материалов является предел текучести, значения которого при растяжении и сжатии одинаковы

Полярный момент инерции

– геометрическая характеристика сечения, определяемая как интеграл произведения элементарных площадей сечения на квадраты расстояний до заданной точки. Характеризует сопротивление стержня деформации кручения

Полярный момент сопротивления

– отношение полярного момента инерции сечения к его радиусу. Характеризует сопротивление вала кручению

Поперечная сила

– один из внутренних силовых факторов, определяемый как проекция главного вектора внутренних сил в данном сечении на одну из главных центральных осей это сечения. Возникает при сдвиге и поперечном изгибе)FO <i>@</i>
Поперечный изгиб	
– вид изгиба, при котором в поперечных сечениях стержня наряду с изгибающим моментом возникает поперечная сила	0
Предел выносливости – максимальное напряжение цикла, при котором еще не возникает усталостное разрушение	0
Приведённая длина – длина одной полуволны синусоиды при продольном изгибе центрально сжатого стержня. Определяется как произведение длины стержня на коэффициент приведендлины	RNH Ø
Проги́б балки – вертикальное перемещение точки, лежащей на оси балки	P

Продольная сила

– один из внутренних силовых факторов, определяемый как проекция главного вектора внутренних сил в данном сечении на ось, перпендикулярную плоскости этого сечения. Возникает при растяжении-сжатии

Продольный изгиб
– вид изгиба, возникающий при потере устойчивости сжатого стержня
Прочность
– способность элемента конструкции выдерживать внешние нагрузки без разрушения
Прямой изгиб
– вид изгиба, при котором силовая линия совпадает с одной из главных центральных осей сечения
P
Радиус инерции
– геометрическая характеристика сечения, равная квадратному корню из отношения соответствующего осевого момента инерции к площади сечения
€
Растяжение-сжатие
– вид деформации стержня, при котором происходит изменение его длины. В поперечных сечениях возникает только один внутренний силовой фактор – продольная сила
e de la companya de
Реакция опоры

Смятие

– пластическая деформация поверхностей контактирующих деталей

– наука об инженерных методах расчёта на прочность, жёсткость и устойчивость
Среднее напряжение цикла – постоянная составляющая цикла напряжений, равная полусумме его максимального и минимального напряжений
Срез – разрушение материала, возникающее в результате деформации сдвига
Статическая нагрузка – нагрузка, медленно возрастающая от нуля до заданного значения и в дальнейшем неизменяющаяся
Статический момент – геометрическая характеристика сечения, определяемая как интеграл произведения элементарных площадей на расстояния до заданной оси. Используется для определения центра тяжести составных сечений
Стержень – элемент конструкции, у которого один размер (длина) существенно превосходит два других (ширину и толщину)

Сопротивление материалов

У	Д	а	p
---	---	---	---

 взаимодействие тел, при котором их скорости резко изменяются за малый промежуток времени

0

Условие жёсткости

– условие, согласно которому максимальные перемещения или деформации ограничиваются величиной, допускаемой для данных условий эксплуатации элемента конструкции

0

Условие прочности

 условие, согласно которому максимальные напряжения, возникающие в элементе конструкции, не должны превышать величину допускаемого напряжения

Усталость

 процесс постепенного накопления повреждений в материале под действием повторно-переменных нагрузок, приводящий к возникновению трещин и разрушению элемента конструкции

Устойчивость

способность элемента конструкции сохранять под нагрузкой наперёд заданную форму упругого равновесия

Хрупкий материал

– материал, разрушающийся без образования заметных пластических деформаций. Опасным напряжением для хрупких материалов является предел прочности, значения которого при растяжении существенно меньше, чем при сжатии

Ц

Центробежный момент инерции

- геометрическая характеристика сечения, определяемая как интеграл произведения элементарных площадей сечения на расстояния до двух взаимно перпендикулярных осей x и y

Цикл напряжений

 совокупность последовательных значений напряжений, возникающих за один период их изменения при повторно-переменном нагружении

Ч

Чистый изгиб

– вид изгиба, при котором в поперечных сечениях стержня возникает только один внутренний силовой фактор – изгибающий момент

Эпю́ра

 график, показывающий изменение некоторой величины вдоль определённой оси стержня

Страница: 1 2 3 4 5 6 7 8 (Далее)

Bce

Время на сервере:

11:56

Ваше время:

15:56

Позвонить нам
8-800-222-33-08
Написать нам
student@rosdistant.ru
Перейти на сайт

rosdistant.ru

(с) 2009-2023 | Росдистант

