Genome Annotation and Sequence Alignment

DAVID L. TABB, PH.D.

Overview

- •Hidden Markov Models find protein-coding genes. RNA-Seq confirms them.
- Sequence alignment algorithms are essential tools; substitution matrices are their "score cards."
- •Matching known sequence motifs suggests similar domains and thus shared function.

What does a gene look like?

tRNA-Phe from *S. cerevisiae*, Wikimedia Commons Yikrazuul

PROTEIN-CODING GENE

L. Sastre. *Adv. in Genomics and Genetics* (2014) 4: 15-27.

Hidden Markov Models represent different bio features as "states"

High-level depiction of Transmembrane HMM https://services.healthtech.dtu.dk/service.php?TMHMM-2.0

Each state of an HMM "emits" sequence. We move between states by "transitions."

- Transition probabilities: bio features comprise many connected states, with several possible paths.
- Emission probabilities: each state yields characteristic sequences

Key algorithms train HMMs and fit sequences to them.

- ■Baum-Welch: Train an HMM from a dataset of sequences. Finds the most likely set of state transition and emission probabilities.
- •Forward-backward: Score a new sequence against HMM by computing the best probability that this sequence would result from model.
- ■Viterbi: Associate parts of the test sequence to components of this biological feature. Where do we step from state to state in sequence?

GENSCAN HMM

- Finds positive and negative sense genes simultaneously
- Incorporates transcriptional, splicing, and translational signals in its model
- Detects multiple geneswithin long genomic contigs

How well do *in silico* methods support gene finding?

- **Ab initio HMM gene finders are prone to "from finding exons where they do not exist.
 - Similarity-based gene prediction tools depend upon closely-related orthologs.
 - Synteny (same gene ordering in closely related species) can assist gene annotation.
 - ■RNA-Seq experiments are now routinely used for gene model confirmation.

R Guigó et al. Genome Research (2000) 10:1631-1642.

Intermission

What does this gene do?

Why align sequences?

- Recognize orthologs: Having newly sequenced an organism, find genes that match known genes in other organisms.
- Recognize paralogs: Determine whether a sequenced gene is part of a gene family within this genome.
- Recognize conserved regions: Find segments of conserved sequence that may have functional or evolutionary significance.

High-level view of alignment

- •Global vs. local: Are we aligning whole sequences or finding best internal matches?
- •Optimal vs *heuristic*: Is a provably best result required, or is a great one sufficient?
- •Gaps may be penalized two different ways:
 - Penalty for opening a gap, and
 - Penalty for extending a gap.

"Affine Gap Penalties"

Smith-Waterman (local) and Needleman-Wunsch (global)

- Dynamic programming makes best alignment an O(mn) problem.
- Yields provably best result for given scoring.
- •May incorporate gap initiation and extension penalties.

DNA vs protein alignment

- •Identity-based scoring: perfect matches +1, but what about transitions / transversions?
- •Substitution matrix: using amino acid sequences requires a "score card" for each possible replacement.
- •DNA sequences can be compared for evolutionary neighbors, but proteins are needed to detect distant relationships.

Position-specific scoring matrices

- A sequence motif can be described as a PSSM.
- Each column of a PSSM defines a particular position in a biological sequence.
- Each row of a PSSM gives a score for a particular letter.
- ■A PSSM is similar to an HMM in having different emission probabilities, but there is only one series of moves through its "states."

cd14809: bZIP_AUREO-like

basic leucine zipper

Dimerization of leucine zippers creates a pair of adjacent basic regions that bind DNA and undergo conformational change.

```
Feature 1
                2 LEIKRYKNRVAARKSRAKFKOLLOHYREVAAAKSSENDRLRLLLKOMCPSLD 53
2C9L Y
                  LEIKRYKNRVAARKSRAKFKOLLOHYREVAAAKSSENDRLRLLLKOMCPSLD
2C9L Z
                  SWORRERNRLAARKCRAKKMEFIAHMOAOLDAMAARNEELRVOLVALORMYS 842
gi 300256532
              443 ARERREKNRIAARKCRAKKVAMVRGMQEELKELVAQNQEMKMQVVTWHRMFS 494
  300267855
   24943134
                  QERKRYRNRLASRRCRAKFRNQLEHFRTVAAAKTEENNRLRVLIRQMCPTLD
                  PKTRKEKNKLASRACRLKKKAQHEANKIKLHGLETEHRRLIQGISQAKHTLA 521
   332016862
                  REKYLEKNRRAARKCRLKKKAEMAADQAKYDHYVSELRATKKQLEDSRKELL
   154693802
                  KEKRKERNKLLARKSRMKLKADLENLKAKLMYLMKENESLRSQLYRVSTPPV
   242345219
                  TALERERNREHARNTRARKKEAIEKLKHDVEAWEVETRRTEERRAVKERKSE
   323450651
                  AELTRRRNRENARSTRMRRKMYIKHLQQVAETLKERHDELNSKMAAPPPDGY 121
  323452895
```

Which AA can replace another and survive natural selection?

```
58 - EFPK---CDGIIdGPPCQSWSEGGS
1DCT A
              aLYPNn-qHKILVGCAPCQ
P25265
              -KLPD---FDFFTYS#PCO
P34878
P15840
              -TLKN---IDLLTYS#PCQDLSQQGI
          70 - EMANT-eADMIVGGFPCQDYSVARS
P16668
          66 INIALtnqVDFLIASPPCQGMSVAGK
P25282
P25266
              qQLPA---HDVLVGGVPCQPW
P25262
              qQLPA---HDVLVGGVPCQ
              -GYDG---IDLLAGGVPCPPF
P31033
          78 eKFGE---IDAFT#G#PCND
ADQ20503
                        Ungapped BLOCK
   Accessions
             Gapped
```


Two probabilities make an odds ratio

- Observed probability of occurrence:
- q_{ij} = the fraction of table sum found in this cell.
- Expected probability of occurrence:
- e_{ij} = the product of the background probabilities of either residue.
- ■BLOSUM rounds values of $log_2(q_{ii}/e_{ii})$.
- •0 is expected rate, positive is more than usual.

Substitution Matrix:

BLOSUM62 is our "Score card."

	Α	R	Ν	D	С	Q	Ε	G	Н	I	L	K	M	F	Р	S	T	W	Υ	V
Α	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
Е	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
Н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3
Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

EGADAVM L S G E T H KY A G

-2+2+6+0+6+0+1+5+4+4+0+5+5+0-3+6+5+7+7+2															-2					
	Y	D	G	T	D	C	L	M	L	S	N	E	T	T	I	G	K	Y	P	I
																			W	
Α																			-3	
R		-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2

-2+2+0+0+0+1+3+4+4+0+3+3+0-3+0+3+/+/+2																				
	Y	D	G	T	D	C	L	M	L	S	N	E	T	T	I	G	K	Y	P	I
		Α	R	N	D	С	Q	E	G	Н	1	L	K	М	F	Р	S	Т	W	Υ
4		4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2
3		-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2

-1

-3

0

0

-2

8

-3

-3

-1

-2

-1

-2

-1

-2

-2

2

-3

-3

-3

-1

-3

-3

-4

-3

4

2

-3

1

0

-3

-2

-1

-3

-1

3

-2

-3

-1

0

-2

-3

-2

1

-1

5

0

-2

-1

-1

-1

-1

1

-1

-3

1

1

-2

-1

-3

-2

5

-1

-3

-1

0

-1

-3

-2

-2

-4

-1

-2

-3

-4

-3

2

4

-2

2

0

-3

-2

-1

-2

-1

-3

-3

-2

-3

-3

-3

-1

0

0

-3

0

6

-4

-2

-2

1

3

-1

-2

-1

-3

-1

-1

-2

-2

-3

-3

-1

-2

-4

7

-1

-1

-4

-3

-2

0

-1

-3

-2

-2

6

-2

-4

-4

-2

-3

-3

-2

0

-2

-2

-3

-3

-4

2

5

-2

0

-3

-3

1

-2

-3

-1

0

-1

-3

-2

-2

0

-2

-3

1

0

-2

0

-3

-2

2

-1

-3

-2

-1

-1

-3

-2

-3

-2

-2

0

-1

-1

0

-2

-1

-1

-1

-1

-2

-1

1

0

-3

-2

0

C

Q

Ε

G

Н

K

M

F

Р

S

W

6

1

-3

0

0

0

1

-3

-3

0

-2

-3

-2

1

0

-4

-2

-3

6

-3

0

2

-1

-1

-3

-4

-1

-3

-3

-1

0

-1

-4

-3

-3

-3

9

-3

-4

-3

-3

-1

-1

-3

-1

-2

-3

-1

-1

-2

-2

-1

0

-3

5

-2

0

-3

-2

1

0

-3

-1

0

-1

-2

-1

-2

-3

-3

-3

-1

-2

-2

-3

-3

3

1

-2

-1

-2

-2

0

-3

-1

-2

-3

-2

-1

-2

-3

2

-1

-1

-2

-1

3

-3

-2

-2

2

7

-1

0

-1

-1

-1

-1

-2

-2

-1

-1

-1

-1

-2

-1

1

5

-2

-2

0

0

0

0

-1

-2

-2

0

-1

-2

-1

4

-3

-2

-2

-4

-4

-2

-2

-3

-2

-2

-3

-2

-3

-1

1

-4

-3

-2

11

2

-3

Intermission

BLAST: the killer app

- 1. Find exact "seed" matches between query and DB sequences via a finite state machine.
- 2. Extend each seed to a *maximal segment pair* (MSP), allowing for approximate matches.
- 3. Sort all MSPs by alignment score, and display those that are unlikely to be random hits.

Expectation value: The number of alignments with scores at least this good that were expected to occur by chance. Lower is better.

Altschul et al. J. Mol. Biol. (1990) 215: 403-410

Karlin and Altschul. *PNAS* (1990) 87: 2264-2268

Finite State Machine for KSSGSSYPS

TLLAYNKSMAVWTAYRIIASGSPRDLHADETELYWS

Extending from a seed to a Maximal Segment Pair

PFERPEAEAMCTSFKENPT

RLVRPEVDVMCTAFHDNEE

Similar residues

BLAST can be run on each sequence or in batch.

- blastx matches mRNA to protein.
- E-values show strength of match.
- Taxonomy shown in accession suffix:

FELCA: housecat

ACIJB: cheetah

LYNPA: lynx

PANTA: tiger

Why use Multiple Sequence Alignment?

- •We use BLAST to match a query sequence in a large database. MSA seeks relationships among a usersupplied set of sequences.
- •When the sequences that are most similar to each other are closely related in evolutionary time, the MSA can recapitulate a *phylogeny*.
- •MSA helps us to learn which residues in sequences are most *conserved* over evolutionary time.

Clustal Omega MSA Orthologs

```
sp|Q9LIK0|PKP1_ARATH
sp|P00549|KPYK1_YEAST
sp|O62619|KPYK_DROME
sp|P30613|KPYR_HUMAN
sp|P53657|KPYR_MOUSE
sp|P21599|KPYK2_ECOLI
sp|P9WKE5|KPYK MYCTU
```

Pyruvate kinase [EC 2.7.1.40] sequences from plants, yeast, insects, mammals, and bacteria show high homology. They are *orthologs*, genes that have a common ancestor but that diverged through speciation.

Clustal Omega MSA Paralogs

```
sp P09087 ABDB DROME
                                        -SPGGL----RGYPSENYSSSGASGGLSVGAVGPCTPNPGLH
                                                                                  379
sp|P17482|HXB9 HUMAN
                            -----SNORPG--YGDNKICEGSEDKERPDOTNPSA
                                                                                  177
sp|P31269|HXA9 HUMAN
                                                  -KQPSEGAFSENNAENESGGDKPPIDPNNPAA
                                                                                  198
sp|P31274|HXC9 HUMAN
                                     ----PGELRDRAPQTLPSPE--ADALAGSKHKEEKADLDPSNPVA
                                                                                  184
sp|P28356|HXD9 HUMAN
                        AAATGGTGPGAGIGAATGTGGSSEPSACSDHPIPGCSLKEEEKOHSOPQOQOLDPNNPAA
                                                                                  277
sp P09087 ABDB DROME
                        EWTGQVSVRKKRKPYSKFQTLELEKEFLFNAYVSKQKRWELARNLQLTERQVKIWFQNRR
                                                                                  439
                        NWLHARSSRKKRCPYTKYQTLELEKEFLFNMYLTRDRRHEVARLLNLSERQVKIWFONRR
sp P17482 HXB9 HUMAN
                                                                                  237
sp|P31269|HXA9 HUMAN
                        NWLHARSTRKKRCPYTKHQTLELEKEFLFNMYLTRDRRYEVARLLNLTERQVKIWFONRR
                                                                                  258
sp P31274 HXC9 HUMAN
                        NWIHARSTRKKRCPYTKYQTLELEKEFLFNMYLTRDRRYEVARVLNLTERQVKIWFQNRR
                                                                                  244
sp|P28356|HXD9 HUMAN
                        NWIHARSTRKKRCPYTKYQTLELEKEFLFNMYLTRDRRYEVARILNLTERQVKIWFQNRR
                                                                                  337
```

HOX (homeobox) protein Abd-B is a single gene in drosophila, but it has duplicated twice over in humans to create *paralogs*.

"Central Dogma" of Structural Biology

- •A sequence motif is a conserved element of a protein sequence alignment that usually correlates with a particular function.
- A structural domain is an element of overall structure within a protein that is self-stabilizing and often folds independently of the rest of the protein chain.
- A protein family is a group of evolutionarily, and perhaps functionally, related proteins.

Integrating multiple methods for motifs

RegEx Profiling: PROSITE

PSSM fingerprints: PRINTS

•automated clustering: ProDom

•HMMs: Pfam, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, PANTHER, Gene3D

UniProtKB provides sequences, and InterProScan conducts searching.

Hunter et al, Nucl. Acids Res. (2009) 37: D211-D215

Takeaway messages

- •Hidden Markov Models find likely proteincoding genes in assembled contigs.
- •Aligning sequences was the original "killer app" of bioinformatics, and it continues to be critically important to molecular biology.
- Sequence similarity often implies evolutionary relationship. It often implies related structure and function.