Distributed optimal SVFB cooperative control of multi-agents systems

General formulation

 Here we will focus on CPS described as multi-agents systems modeled by means of directed graphs (digraphs)

- Each node S_i of the graph is a dynamical LTI system
- Edges are used to model communication between agents

General formulation

We will consider multi-agents control problems (generically called here *synchronization* problems) where the CPS is made up of

- 1 leader node S₀
- N follower nodes S_i (i = 1, 2, ..., N)
- The agents cooperate in order to perform a task possibly dictated (to some extent) by the leader node
- In order to perform the assigned task the follower nodes exploit information shared on the communication network represented by the digraph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$
- Examples: autonomous vehicles platooning, unmanned air vehicles (UAVs) formation control, control of autonomous mobile robots team, ...

General formulation: cooperative tracking problems

- In this part we will mainly focus on *cooperative tracking problem* where the task to be performed is dictated by the leader node S_0 which generates the desired target trajectory (acting as a command generator exosystem)
- We will use the term *cooperative regulator problem* when the consensus is sought among agents in the absence of a leader node
- Assumption: the N follower agent are identical

Reference book

B5 Cooperative Control of Multi-Agent Systems, F. Lewis et al., Springer London, 2013

Agents mathematical models

• The dynamics of the **leader node** S_0 is described by

$$\dot{x}_0 = Ax_0, \ y_0 = Cx_0$$
 (1)

where $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^p$

• The dynamics of the N identical **follower nodes** S_i is described by

$$\dot{x}_i = Ax_i + Bu_i, \ y_i = Cx_i \tag{2}$$

where $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$, $y_{0i} \in \mathbb{R}^p$ and $i \in \mathcal{N} = \{1, 2, \dots, N\}$

• The triple (A, B, C) is stabilizable and detectable

Communication network modeling

- The **follower nodes** S_i share information through a communication network represented as a digraph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with N nodes $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$ and a set of edges (arcs) $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$
- The adjacency matrix associated to \mathcal{G} is $\mathcal{A} = [a_{ij}] \in \mathbb{R}^N$
- $a_{ij} > 0$ is the weight for edge (v_j, v_i) implying that node i can get information from node j (node j is a neighbor of node i)
- The neighbor set of node i is denoted as $\mathcal{N}_i = \{j | a_{ij} > 0\}$
- We assume there is no self-loop $(a_{ii} = 0, \forall i)$
- To describe connection between the leader node and the graph $\mathcal G$ of follower nodes we define the **augmented graph** $\overline{\mathcal G}=\{\overline{\mathcal V},\overline{\mathcal E}\}$ where $\overline{\mathcal V}=\{v_0,v_1,\ldots,v_N\}$, $\overline{\mathcal E}\subset\overline{\mathcal V}\times\overline{\mathcal V}$

Fundamental assumptions

- All the **state variables** of the agents are assumed to be measurable (C = I in equation (2))
- The **leader node** S_0 can only be observed by a small subset of the follower nodes
- If node i observes the leader, node i is said to be pinned to the leader. Therefore an edge (v_0, v_i) exists in the augmented graph $\overline{\mathcal{G}}$ with weight g_i (pinning gain)
- The control law of each agent can only use the local neighborhood information of that agent, according to the graph topology (fully distributed control scheme)
- There exists at least one directed path from the leader node to every follower node.

Local controller at each node

Neighborhood tracking error of node

$$\varepsilon_i = \sum_{j=1}^N a_{ij} (x_j - (x_i) + g_i(x_0 - x_i)$$
 (3)

SVFB control protocol for each node

$$u_i = cK\varepsilon_i$$
 (4

- coupling gain: c > 0
- feedback gain matrix: $K \in \mathbb{R}^{m \times n}$

Closed-loop control system

Closed-loop system of each node

$$\dot{x}_i = Ax_i + cBK\left(\sum_{j=1}^N a_{ij}(x_j - x_i) + g_i(x_0 - x_i)\right)$$
 (5)

Global closed-loop system dynamics

$$\dot{x} = (I_N \otimes A - c(L+G) \otimes BK)x + (c(L+G) \otimes BK)\underline{x}_0 \tag{6}$$

- $x = col(x_1, x_2, ..., x_N) \in \mathbb{R}^{nN}$, $\underline{x}_0 = col(x_0, x_0, ..., x_0) \in \mathbb{R}^{nN}$
- Laplacian matrix of \mathcal{G} , $L = [l_{ij}] = D \mathcal{A}$, $D = diag(d_1, d_2, \dots, d_N)$, d_i in-degree of node i
- Pinning matrix $G = diag(g_1, g_2, \dots, g_N)$, \otimes is the Kronecker product

Disagreement error

Local disagreement error at each node

$$\delta_i(t) = x_i(t) - x_0(t) \tag{7}$$

Global disagreement error and global disagreement error dynamics

$$\delta(t) = x(t) - \underline{x}_0(t) = col(\delta_1, \delta_2, \dots, \delta_N)$$
(8)

$$\dot{\delta} = \dot{x} - \underline{\dot{x}}_0 = A_c \delta \tag{9}$$

$$A_c = I_N \otimes A - c(L+G) \otimes BK \tag{10}$$

Objective and solution

Objective of the cooperative tracking problem

The cooperative tracking problem is solved if

$$\lim_{t \to \infty} \delta(t) = 0 \tag{11}$$

Cooperative tracking problem solution

The global disagreement error converges to 0 if and only if matrix

$$A_c = I_N \otimes A - c(L+G) \otimes BK \tag{12}$$

is Hurwitz (i.e., it has all the eigenvalues with strictly negative real part)

Polinomi [modifica | modifica wikitesto]

Dato un polinomio reale:

$$p(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$$

la matrice di Hurwitz corrispondente al polinomio p è la matrice quadrata di dimensione $n \times n$ data da:

$$H = \begin{pmatrix} a_1 & a_3 & a_5 & \dots & \dots & 0 & 0 & 0 \\ a_0 & a_2 & a_4 & & & \vdots & \vdots & \vdots \\ 0 & a_1 & a_3 & & \vdots & \vdots & \vdots & \vdots \\ \vdots & a_0 & a_2 & \ddots & & 0 & \vdots & \vdots \\ \vdots & \vdots & a_0 & & \ddots & a_{n-1} & 0 & \vdots \\ \vdots & \vdots & 0 & & & a_{n-2} & a_n & \vdots \\ \vdots & \vdots & \vdots & & & & a_{n-3} & a_{n-1} & 0 \\ 0 & 0 & 0 & \dots & \dots & a_{n-4} & a_{n-2} & a_n \end{pmatrix}$$

Nel 1895 Adolf Hurwitz ha stabilito (criterio di Routh-Hurwitz) che un polinomio è stabile (ovvero le radici hanno parte reale strettamente negativa) se e solo se tutti i minori principali di guida della matrice di H(p) sono positivi:

$$\begin{split} & \Delta_1(p) = |a_1| & = a_1 > 0 \\ & \Delta_2(p) = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix} & = a_2a_1 - a_0a_3 > 0 \\ & \Delta_3(p) = \begin{vmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{vmatrix} & = a_3\Delta_2 - a_1(a_1a_4 - a_0a_5) > 0 \end{split}$$

e così via. I minori $\Delta_k(p)$ sono detti <mark>determinanti di Hurwitz.</mark>

																					\Box		\top	_
																								_
																								_
																					_		_	_
																					_		4	_
																					_		_	_
																					_		_	_
																							_	_
																								_
					_																_		_	_
_		_			_																_		_	_
																					_		_	_
																					_			_
- 1	- 1	- 1		- 1	- 1											- 1	- 1		- 1	1	ند	- 1	ف	

Closed-loop CPS eigenvalues

 The following Lemma provides useful insight about the eigenvalues of the closed-loop multi-agents system

Lemma 1 (closed-loop eigenvalues

$$eig(A_c) = \bigcup_{i=1}^{N} eig(A - c\lambda_i BK)$$
(13)

where λ_i , i = 1, ..., N are the eigenvalues of the matrix L + G

• Lemma 1 can be easily proved by analyzing the structure of matrix A_c in (12)

Controller design (I)

The following crucial considerations are directly obtained from Lemma 1:

- The closed-loop dynamics of the whole multi-agents system depends both on the local controller parameters K and c and on the eigenvalues of matrix L+G accounting for the communication network effect
- Stability of the single agent dynamics does not imply stability of the multi-agents systems

$$(A - BK)$$
 Hurwitz $\not\Rightarrow A_c$ Hurwitz (14)

• The coupling parameter c is introduced to cope with the effect of λ_i on the global multi-agent system dynamics

Controller design (II)

Theorem 1 (Cooperative controller design)

Consider the local distributed control protocols given in equation (4). Design the

SVFB control gain K as

$$K = B^{-1}B'P$$
 and postive definite (15)

where P is the unique positive definite solution of the algebraic Riccati equation (ARE)

$$A'P + PA + Q - PBR^{-1}B'P = 0 (16)$$

Then

$$\lim_{t \to \infty} \delta(t) = 0 \tag{17}$$

if

$$c \ge \frac{1}{2\min_{i \in \mathcal{N}} Re(\lambda_i)} \tag{18}$$

Proof of Theorem 1: preliminary results control

Lyapunov equation

Result 1 (Stability of LTI systems)

Given an LTI systems described by the state equation

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{19}$$

the system is asymptotically stable if and only if the Lyapuonov equation

$$A * P + PA + = -Q, \ Q > 0$$
 (20)

has a solution P, symmetric and positive definite Then

$$\lim_{t \to \infty} \delta(t) = 0 \tag{21}$$

if

$$c \ge \frac{1}{2\min_{i \in \mathcal{M}} Re(\lambda_i)} \tag{22}$$

Proof of Cheacun 1 PASCIMINARY RESUCTS · LYAPUNOU BB and stability of a snagle ITD agent Green au 275 sys diserrbed by: 2 = A 2(6) + B M(t) (1) The sys is asymptotically steble (i.e. Δ is Horwids Δ \forall eig(A)25)

ATP \forall P Δ = -Q, Q \neq O(2) has a solution 2 > 0 which squaethe · Optimel lines quarkatic del of LTD sigs (DQ core) Take uto consideration: oud assure that all the state vorobles are physically measured Compute the state feedbeck gain & (b.b. u = - km)

xi hich solver the following of haise to a problem: u(6) = preguin [1/2] propriét an (6) + de (6) Ru(1) (3)

5.6

21(4) - 1 11 (4) + Ru(4) 2(4) (t) + Bu(6) of is given by the weighted sun of the 2-narm(energy) of the states and the - norm of Why are we intersted in minimiding I?

(i) be unimiding the energy of 91(6)

I shorter to awarent

Southing are that on 9 (1i) by minimating the energy of m(6) => minimate the energy from our altustors

																	_				
																	+				
															-						
																	+				
															+						
																	+				
														_							
															-						
																	+				
														_							
																		+			
																	_				