2020-2021

Exercice 1 : Cryptographie asymétrique – Chiffrement de Paillier

Soient p et q deux nombres premiers impairs tels que $p \nmid q-1$ et $q \nmid p-1$ et N=pq.

- **1.a**] Soient x et y deux entiers premiers avec N. Montrer que $x \equiv y \mod N$ si et seulement si $x^N \equiv y^N \mod N^2$.
- **1.b**] Soit k un nombre entier tel que $\operatorname{pgcd}(k,N)=1$ et soit g=1+kN. Montrer que g est d'ordre N dans $(\mathbb{Z}/N^2\mathbb{Z})^*$.
- **1.c**] Montrer que tout élément $g \in (\mathbb{Z}/N^2\mathbb{Z})^*$ d'ordre N s'écrit g = 1 + kN avec k un nombre entier tel que $\operatorname{pgcd}(k, N) = 1$.
- **1.d**] Soit k un nombre entier tel que $\operatorname{pgcd}(k,N)=1$ et soit g=1+kN. Donner un algorithme polynomial pour résoudre le problème du logarithme discret dans $\langle g \rangle \subset (\mathbb{Z}/N^2\mathbb{Z})^*$ le sous-groupe engendré par g. L'algorithme prendra en entrée N,g et $y\in \langle g \rangle$ et devra retourner en $O(\log(N)^c)$ opérations dans le groupe (pour une constante c indépendante de N à déterminer), la valeur $x\in\{0,1,\ldots,N-1\}$ telle que $y=g^x \mod N^2$.

Nous considérons le cryptosystème suivant (appelé chiffrement de Paillier) :

- **Génération de clés :** L'utilisateur tire uniformément aléatoirement p et q deux nombres premiers impairs tels que $p \nmid q-1$ et $q \nmid p-1$ et poser N=pq. Soit k un nombre entier tel que $p\gcd(k,N)=1$ et soit g=1+kN. La clé publique de l'utilisateur est (N,g) et la clé secrète est le couple (λ,μ) où $\lambda=ppcm(p-1,q-1)$ et $\mu=(k\lambda)^{-1}$ mod N.
- **Chiffrement :** Étant donnée la clé publique (N, g), pour chiffrer un message m de l'ensemble $\{0, \ldots, N-1\}$, on tire uniformément aléatoirement un entier r dans $\{1, \ldots, N-1\}$ et on retourne le chiffré $c = q^m r^N \mod N^2$.
- **Déchiffrement :** Étant donnés un chiffré $c \in (\mathbb{Z}/N^2\mathbb{Z})^*$ et la clé secrète (λ, μ) , le message clair associé à c est égal à $(\mu \cdot \frac{c^{\lambda}-1}{N} \mod N)$.
- **1.e** Montrer que le déchiffrement d'un chiffré d'un message m redonne bien la valeur m.
- **1.f**] Expliquer pourquoi la valeur r utilisée lors du chiffrement est tirée dans $\{1, \ldots, N-1\}$ et non pas dans $\{1, \ldots, N^2-1\}$.
- **1.g**] Donner des arguments appuyant la sécurité de ce cryptosystème (on pourra notamment discuter la difficulté de retrouver la clé secrète à partir de la clé publique et celle de retrouver le message clair à partir d'un chiffré).
- **1.h**] Montrer comment calculer le chiffré du message (m_1+m_2) mod N étant donnés les chiffrés de $m_1 \in \{0, \ldots, N-1\}$ et $m_2 \in \{0, \ldots, N-1\}$ (mais pas les valeurs m_1 et m_2 elles-mêmes). En déduire que le cryptosystème considéré n'est pas résistant à une attaque à chiffrés choisis adaptative.