

FORECASTING FOREIGN CURRENCY EXCHANGE RATES FOR AIR FORCE BUDGETING

THESIS MARCH 2015

Nicholas R. Gardner, Captain, USAF

AFIT-ENV-MS-15-M-178

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not policy or position of the United States Air Force, Department of Defe States Government. This material is declared a work of the U.S. Gov subject to copyright protection in the United States.	ense, or the United

FORECASTING FOREIGN CURRENCY EXCHANGE RATES FOR AIR FORCE BUDGETING

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cost Analysis

Nicholas R. Gardner, BS

Captain, USAF

March 2015

DISTRIBUTION STATEMENT A.APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

FORECASTING FOREIGN CURRENCY EXCHANGE RATES FOR AIR FORCE BUDGETING

Nicholas R. Gardner, BS

Captain, USAF

Committee Membership:

Lt Col Jonathan Ritschel, PhD Chair

Lt Col Andrew Wallen, PhD Member

Dr. Edward White Member

Abstract

This thesis examines the current method of forecasting foreign currency exchange rates for the annual US Air Force budget. Using 5 methods against the status quo of a center-weighted average, the paper evaluates the absolute percent error (APE) over three time periods extending from Fiscal Year (FY) 1979 to FY 2014. The results strongly indicate that four of the alternative methods outperform the status quo over the shorter time period, and one method for all three time periods. Furthermore, a non-parametric comparison of the median APE demonstrates statistical similarities between the four methods over the short term, and allows for the Air Force to choose which method to exercise for future forecasting. Overall, the paper recommends using the settlement price of the average option contract in October to decrease the median APE by 3.475% and avoiding a \$36 million opportunity cost.

Acknowledgments

I would like to express my gratitude to my family for their patience and understanding for all the nights spent working on this thesis. I would also like to convey my sincere appreciation to my faculty advisor, Lt Col Jonathan Ritschel, for his guidance and support throughout the course of this thesis effort. The insight and experience was certainly appreciated. I would, also, like to thank my sponsor, Lt Col Andrew Wallen, the Senior Economist for the Secretary of the Air Force – Financial Management for both the support and latitude provided to me in this endeavor. Finally, I am in debt to Dr. White for teaching me about robust statistical analysis and the application of those methods to this thesis.

Nicholas R. Gardner

Table of Contents

	Page
Abstract	iv
Acknowledgments	v
Table of Contents	vi
List of Figures	ix
List of Tables	X
I. Introduction	1
Background	1
Problem Statement	3
Research Objectives/Questions/Hypotheses	3
Research Focus	4
Methodology	4
Assumptions/Limitations	4
Implications	5
Summary	6
II. Literature Review	7
The Federal Budget Process	7
Private Firm Foreign Exchange Rate Exposure Mitigation	11
Forecasting	13
Economic Forecasting	16
Foreign Currency Exchange Rate Forecasting	18
Foreign Currency Exchange Rate Forecasting in the DoD	19
Summary	23
III. Methodology	25

Data Sources	25
Methods	30
Global Insight	30
Status Quo	31
Forward Rate	32
ARIMA	33
Random Walk	37
Futures	38
Comparison	38
Long Term Study	40
Summary	42
IV. Results	43
Global Insight	43
Forward Rate	46
ARIMA	47
Random Walk	50
Futures	52
Comparison	53
Long Term Comparison	57
Summary	63
V. Conclusion	65
Research Questions Revisited	65
Data Limitations	68

Future Research	68
Bibliography	70
Appendix	74
Appendix A: ARIMA	75
Appendix B: Forward Rate Forecasts	218
Appendix C: Futures	222
Appendix D: Random Walk	229
Appendix E: OSD (Comptroller) Adjusting Rates	370
Appendix F: Comparison of FRB H.10 and DoD Adjusting Rates	394

List of Figures

Pag	e
Figure 1 Decision Tree for Choosing a Budget (Groshek and Felli, 2000)	8
Figure 2 Budget Formulation Process.	9
Figure 3 Box-Jenkins process for time series modeling (Makridakis et al, 1998) 34	4
Figure 4 Printout of the Global Insight APE Distribution	5
Figure 5 Printout of the Forward Rate APE Distribution 47	7
Figure 6 JMP® Printout of the ARIMA APE Distribution	9
Figure 7 JMP® Printout of the Random Walk APE Distribution	1
Figure 8 JMP® Printout of the Futures APE Distribution	3
Figure 9 Medians Comparison between Methodologies Based with 95% Confidence	
Bounds57	7
Figure 10 FY91-FY12 Medians Comparison Between Methodologies Based with 95%	
Confidence Bounds	9
Figure 11 FY79-FY12 Medians Comparison Between Methodologies Based with 95%	
Confidence Bounds 62	2
Figure 12 FY79-FY12 Medians Comparison Between Methodologies Based with 90%	
Confidence Bounds 6	3

List of Tables

Pag	ţе
Table 1 Differences in Investments Public and Private Sectors (Eschenbach, 2011) 1	1
Table 2 Categories of Forecasting Methods and Examples of Their Application	
(Makridakis et al., 1998)1	4
Table 3 Sample H.10 Report on 15 Sep 2014	6
Table 4 Global Insight Japanese Yen to US Dollar Quarterly Forecast	7
Table 5 Global Insight Japanese Yen to US Dollar Annual Forecast	7
Table 6 Example of Euro Futures Data Pulled from Quandl	8
Table 7 USD Comptroller Monthly Report on Currency Fluctuations	9
Table 8 OECD Long Term Interest Rates, Percent Per Annum Example	0
Table 9 Global Insight 1 Year, 2 Year, 1-2 Year Average and Status Quo MAPE for	
FY06 - FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate 4	.3
Table 10 Forward Rate and Status Quo MAPE for FY06 - FY14 and Probability of	
Budgeted Rate Greater than the Adjusted Rate	6
Table 11 ARIMA 1 Year, 2 Year, 1-2 Year Average and Status Quo MAPE for FY06 -	
FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate 4	8
Table 12 Random Walk 1 Year, 2 Year, 1-2 Year Average and Status Quo MAPE for	
FY06 - FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate 5	0
Table 13 Futures Annual and October Average and Status Quo MAPE for FY06 - FY14	
and Probability of Budgeted Rate Greater than the Adjusted Rate 5	2
Table 14 Average MAPE for Each Country by Methodology from FY06 to FY14 with	
the Lowest MAPE Highlighted5	4

Table 15 Average MAPE for the EU, Japan, and the UK by Methodology from FY06 t	Ю
FY14 with the Lowest MAPE Highlighted	. 54
Table 16 Median APE for Each Country by Methodology from FY06 to FY14 with the	9
Lowest Median APE Highlighted	. 55
Table 17 Median APE for the EU, Japan, and the UK by Methodology from FY06 to	
FY14 with the Lowest Median APE Highlighted	. 55
Table 18 The Median APE Percent of Line A Methods and the Associated Opportunity	y
Cost of the Status Quo Over Each Method FY06-FY14	. 57
Table 19 Median APE Combining All Countries from FY91 to FY12 with Inter-Quarti	ile
Range	. 58
Table 20 Median APE by Country from FY91 to FY12 with Inter-Quartile Range	. 58
Table 21 The Median APE Percent of Line A Methods and the Associated Opportunity	y
Cost of the Status Quo Over Each Method FY91-FY12	. 60
Table 22 Comparison of Each Methods Chance of a Greater Budgeted Rate than the	
Actual Rate from FY91 to FY12	. 60
Table 23 Median APE Combining All Countries from FY79 to FY12 with Inter-Quarti	ile
Range	. 61
Table 24 Median APE by Country from FY79 to FY12 with Inter-Quartile Range	. 61
Table 25 Comparison of Each Methods Chance of a Greater Budgeted Rate than the	
Actual Rate from FY79 to FY12	. 63

FORECASTING FOREGIN CURRENCY EXCHANGE RATES FOR AIR FORCE BUDGETING

I. Introduction

The Department of Defense (DoD) obligates roughly \$5 billion every year in 9 different foreign currencies¹ (Office of the Undersecretary of Defense (Comptroller), 2014). Foreign currency is necessary to pay for the daily operations, maintenance, construction and personnel costs of oversees bases and operations. As part of the federal budget process, the DoD must annually estimate the amount of foreign currency needed to fund these daily activities. Simply estimating \$5 billion every year does not reflect realistic requirements. The Air Force (AF) is therefore seeking improvement in its foreign currency exchange rate forecasting methodology, which is the focus of this thesis. This chapter outlines the background of the DoD budget process and how the foreign currency exchange rate integrates into that process. It then defines the problem statement, research objective and focus, investigative questions, and assumptions. The chapter ends with a brief discussion on the methodology applied in the thesis.

Background

The DoD submits an annual budget to Congress to fund the investment and operation activities of the United States military. These activities represent approximately 18% of annual federal government outlays (or over half of discretionary spending (Office of Management and Budget, 2014)). For fiscal year 2013, the requested total obligation authority is \$620 billion (Office of the Undersecretary of Defense (Comptroller), 2012).

¹ The currencies are Denmark's Krone, the European Union's Euro, Iceland's Krona, Japan's Yen, Norway's Krone, Singapore's Dollar, South Korea's Won, Turkey's Lira, and the United Kingdom's Pound.

As part of this budget submission, the DoD provides an estimate of required funding needed for expenses paid in foreign currencies. A specific account for absorbing foreign currency variability is also included and represents an opportunity cost to the DoD.

Recent financial reports show an opportunity cost of \$1.1 billion in 2013 and \$1.4 billion in 2012 (Office of the Undersecretary of Defense (Comptroller), 2013). Over the course of 2013, the DoD's foreign exchange rate forecasts averaged a 9.61% difference from the actual average exchange rate. This gives a \$105.7 million opportunity. Thus, small improvement can have significant impacts. For example, by deriving a new foreign currency estimating methodology that results in a narrowing of the difference by just 1% to 8.61%, the DoD can free an additional \$10.6 million of budgetary authority.

Prior to 2005, the DoD formulated the budget's foreign exchange rates by selecting the most favorable rate observed in the months preceding the annual budget submission (Government Accountability Office, 2005). The most favorable rate provided the highest amount of foreign currency per dollar, and did not provide a realistic assessment of funding requirements. A Government Accountability Office (GAO) investigation in 2005 guided the DoD exchange rate forecasting process into a more rigorous statistical methodology excluding subjective judgment in picking the most favorable exchange rate. Since the 2005 report, the DoD has used a centered weighted average technique to estimating, resulting in more accurate forecasting in choosing exchange rates.

An austere budget environment (e.g. sequestration) forces the DoD to evaluate the opportunity cost of the current forecasting method. New research and data may provide a more precise formula for minimizing the difference between predicted and actual rates.

A shadow, though, is cast over the entire field by a seminal paper in 1983 (Meese & Rogoff, 1983). An examination of empirical exchange rate models of the 1970s did not fit out-of-sample data any better than a Random Walk model, and subsequent papers in the 1990's and 2000's seem to carry this claim (Moosa, 2013). The debate is not over, though, as some researchers find opportunities in measuring success through different avenues than out-of-sample testing (Engel, Mark, & West, 2007).

Problem Statement

This thesis aims to develop an unbiased forecast methodology, free from the estimator's subjective judgments, with the least variance between predicted currency exchange rates and actual currency exchange rates.

Research Objectives/Questions/Hypotheses

The following objectives guide this thesis. The thesis will perform a general survey of applicable forecasting methodologies, remove any methodologies based on unrealistic assumptions or an analyst's bias, and compare the methodologies by their variance of predicted opposed to actual exchange rates given a sample data set. In order to not repeat the mistakes identified in the GAO report (Government Accountability Office, 2005), special attention is given to minimizing subjective influence or biases in the methodologies.

The purpose of the research is to answer three questions:

• Which is the best method for the Air Force to apply in formulating a budget rate of foreign exchange in terms of variance?

- Which is the best method for the Air Force to apply in formulating a budget rate of foreign exchange in terms of simplicity?
- What is the probability that a given method will budget too little and require funds from the Foreign Currency Fluctuation account?

Research Focus

The focus of this research is on current forecast estimating methodology. The thesis reviews variables used in forecasting, assumptions in forecasting, and how to measure the variance between predicted and actual exchange rates. The forecasting period is from fiscal year (FY) 1979 to FY2014 divided into three separate time frames based on the available methods (FY79-FY12, FY91-FY12, and FY06-FY14).

Methodology

The thesis used a statistics based approach to compare the projected exchange rates to the actual exchange rate. The statistics based approach focuses mainly on variance and the measure of the margin of error between projected and actual exchange rates. The different methodologies derived from the literature forecasted a budgeted exchange rate and was compared to the actual exchange rate as reported in either the FRB H.10 average monthly exchange rate for the longer time period, or the USD(C) adjusting rates for the more recent time period.

Assumptions/Limitations

The foremost assumption in the thesis is that past behavior influences future behavior. In theory, an exchange rate can range from zero to infinity; however, the day-

to-day exchange rates do not vary by such wide scales. Furthermore, while the exchange rates are discrete and positive, the percent change from day-to-day is continuous, can be positive or negative, and may have a bell-curve distribution around a mean of zero. Continuous data and a bell-curve distribution lead to assuming the change in exchange rates, as a percentage, is normally distributed. Another assumption is the varying exchange rates within a day. The thesis simplifies the intraday variability by assuming one exchange rate for the day, as given by the Federal Reserve Foreign Exchange Rate – H.10 data.

The nature of forecasting and the DoD budget process guide limitations to this thesis. Forecasting can be notoriously difficult due to unforeseen circumstances, rare events, and small disturbances with oversized impacts (think of the waves from a stone dropped into a pond). These difficulties are compounded by limitations in data. More than one rate exists for exchanging currencies depending on the location, time, and bank. The thesis, therefore, limits itself to the Federal Reserve Foreign Exchange Rate – H.10. Process limitations arise in how the DoD budgets for the foreign currency fluctuation account. The budget contains only one rate per currency, while the actual exchange rate varies according to the market. The thesis limits the exchange rate to a daily rate as reported in the Federal Reserve Foreign Exchange Rate – H.10.

Implications

Given the average error in 2013, the size of the opportunity is \$105.7 million. While finding a perfect forecast model is implausible, a 1% increase in accuracy could allow for more realistic budgets. Furthermore, the GAO investigated and found past

methodologies lacking in scientific rigor or too reliant on the analyst's subjectivity (Government Accountability Office, 2005). This thesis adds to the robustness of the DoD's forecasting process. Lastly, the successful narrowing of variance between a projected and actual exchange rate may allow for opportunities to effectively use limited resources in an era of declining budgets.

Summary

This chapter outlined the background of the DoD budget for foreign currency exchange. While not a significant portion of the overall DoD budget, the magnitude of foreign currency expenses and estimating represent an area to investigate with clear impact on the budget. After defining the problem statement, research objective and focus, investigative questions, methodology, limitations, and assumptions, the chapter ended with a brief discussion on the implications of the research to include the size of the opportunity, proper governance and robustness of DoD budgets, and the more efficient use of limited resources in an era of declining budgets.

The remaining sections of this thesis explore the topic in greater detail. After reviewing basic DoD budget processes, Chapter Two reviews the literature of private firm foreign currency mitigation techniques, forecasting, economic forecasting, and foreign currency exchange forecasting. Chapter Three explains the specific procedure in comparing the different methodologies and the data compiled for analysis. Results are given in chapter four giving way to a conclusion in chapter five. The conclusion synthesizes the accomplished work and recommends a course of action for the Air Force.

II. Literature Review

While precisely forecasting future exchange rates is unattainable, understanding the federal budget process, forecasting techniques and previous exchange rate research mitigates the magnitude of error in forecasting the budgeted exchange rate. The following section explains the federal budget process along with the DoD's foreign currency role in the budget process. Private, international firms must also confront exchange rate volatility. A review of private firm mitigating actions against foreign currency fluctuation provides insight into options for the DoD. The section then gives a framework of basic forecasting. Next, economic forecasting is defined before exploring current research on foreign currency exchange rate forecasting in business and the DoD. The chapter ends with a review of the main points of the federal budget process, forecasting, economic forecasting, and the DoD's efforts at forecasting foreign currency exchange rates.

The Federal Budget Process

The federal government receives tariffs, taxes, fees, and other collections throughout the fiscal year (1 October – 30 September). The executive branch obtains most of the collections for the federal government (e.g. the IRS is in the executive branch) while the legislative branch, Congress, defines the amount and activities to receive funding. The executive branch must formally request the funding and authority to use the collections from Congress through the budget process. The term "budget" is defined as the President's Budget. It is the financial plan for prioritizing and allocating resources due every February to Congress and accounts for all government agency

requirements for the next fiscal year (Office of Management and Budget, 2013). Policy guides the budget as policy dictates requirements for funding.

Figure 1 presents a representative decision tree of choosing a policy and its associated budget (B_i) with the uncertainty of requesting enough or too little funding. Ex ante, the executive branch provides a budget estimate according to the current policy (e.g. in ex ante the DoD forecasts the foreign currency exchange rate). Ex post is after the uncertainty of the true budget requirement is known. The sum of the probability of budgeting enough (P) and budgeting too little (1-P) is 1. The liquidation of the budget (L_i) provides the basis from which to judge whether the budget is enough $(B_i \ge L_i)$. In terms of public finance, a recoup is when the executive branch asked for too much funding while a payout requires addition funding from Congress or a transfer from other appropriations. With respect to foreign currency, the goal is to minimize B_i - L_i and L_i - B_i .

Figure 1 Decision Tree for Choosing a Budget (Groshek and Felli, 2000)

The entire Federal budget process encompasses three main phases: formulation, congressional deliberation, and execution (liquidation) (Office of Management and Budget, 2013). Foreign currency exchange rates affect the formulation and execution phases. DoD analysts forecast foreign currency exchange rates in the months preceding the budget submission during the formulation phase. Along with the other forecasted defense requirements, the DoD incorporates the forecasted exchange rates into a Budget Estimate Submission (BES). The Office of Management and Budget (OMB) integrates the BES along with the other federal agency budget estimates (e.g. the Department of Justice (DoJ) and the Department of Energy (DoE)). Budget estimates primarily focus on the budget year but also include the 9 years following the budget year (outyears) (Office of Management and Budget, 2013). Figure 2 represents the budget formulation in chronological order from the federal agency budget submission to the President's Budget.

Figure 2 Budget Formulation Process

Congressional deliberation begins after receiving the President's Budget on the first Monday in February (Office of Management and Budget, 2013). The House of Representatives and the Senate deliberate separately on budget proposals. Each branch's appropriation committee reviews the BES's and calls for hearings from the federal agencies. The method of forecasting foreign currency plays an important role at this juncture, since previous inaccurate forecasts cast doubt about the cost of requirements in the budget estimate. The committees call conferences to adjudicate difference in the House and Senate committee recommendations before passing the authorization and appropriation bills. The authorization bill gives legal justification to obligate the federal government for sanctioned programs while the appropriations bill supplies funding to execute those programs (The Judge Advocate General's Legal Center and School, 2014). The President then signs the bills into law.

The execution phase follows the fiscal year beginning on 1 October and ending on 30 September. The forecasted exchange rates, then, are almost one year old by the time the fiscal year begins. During execution, each military department records foreign currency obligations at the budgeted rate. DoD's accounting office, Defense Finance and Accounting Service (DFAS), collects each military department's foreign currency obligations and compares the US dollar equivalent amount using the budgeted rate and the actual rate. The difference between the actual US dollar amount obligated and the budgeted dollar amount is the accrued variance (Department of Defense, 2011). DFAS then projects the variance to the end of the fiscal year (30 September) to analyze any significant variance for the remainder of the execution phase. Funding is transferred from the DoD's foreign currency fluctuation allotment to the military department (i.e.

Army, Navy, AF) by DFAS should the monthly report show a negative balance. With less variance, the DoD can lower the amount of funding required for the foreign currency fluctuation allotment. Better forecasting techniques helps the DoD lower the variance, and hence lowering opportunity cost by requiring less funding in a holding account.

Private Firm Foreign Exchange Rate Exposure Mitigation

The federal budget process neither flows flawlessly from one step to the next, nor is the objectives of all the stakeholders the same. Investing public dollars rests on analysis that is not solely based on monetary standards. Some examples of non-monetary standards include the benefits of sidewalk beautification projects or avoiding conflict through deterrence. Private firms, in contrast, normally quantify their investments in terms of present worth or the rate of return (Eschenbach, 2010). Table 1 highlights differences between public and private sectors. A closer review of private sector methods provides additional insights for DoD foreign currency forecasting.

Table 1 Differences in Investments Public and Private Sectors (Eschenbach, 2011)

Factor	Public Sector	Private Sector
Data	Benefits must be	Most benefits are monetary
	 Quantified and 	
	2. Equated to money	
Probability	Rare events often crucial (1	1 chance in 10 often the limit
	chance in 100 to 1 in a billion)	
Objectives	Multiple	Maximize present worth or rate
	_	of return
Stakeholders' Perspectives	Often conflicting	All want successful firm
Interest Rate	Complicated by nonmonetary	Derived as an opportunity cost
	benefits	or from cost of borrowing

Private firms face the same exposure to foreign currency fluctuations as the DoD but they have more options to mitigate the risk of an unfavorable rate. Globalization and

open markets enables private firms to seek new markets, raw materials, production centers, warehousing, and other supply chain functions in various countries and currencies. Dispersing supply chain functions across countries increases the risk of unfavorable exchange rate changes through transaction and operation exposure (Bodnar, 2014). Increasing forecasting accuracy is also an option when firms cannot mitigate risk through transaction or operation exposures.

Transaction exposure is the exchange rate risk a contract possesses over a well-defined and relatively short time horizon. Firms mitigate the exposure through the use of forward contracts, future contracts, money market hedge, and options (Bodnar, 2014). Forward contracts and future contracts operate in a similar manner; a firm enters an agreement that specifies a price and date at which it can buy a fixed amount of foreign currency. Futures contracts differ in that they are exchange traded requiring initial collateral. Money market hedges use a forward contract to determine the present value of the foreign currency obligation in the home country currency to reduce exchange risk. Lastly, currency options provide the owner the right to buy a currency at a specific quantity, price, and date for an upfront fee.

Operations exposure is the exchange rate fluctuation impact on a firm's business model. While transaction exposure concerns contract instruments, operations exposure focuses on marketing, product pricing, supply chains, and production (Bodnar, 2014). A firm can choose which market to sell in depending on the exchange rate as well as adjust pricing and promotional strategies to offset short term exchange rate fluctuations. For longer term exchange rate fluctuations, a firm may choose to diversify sources of inputs (i.e. the supply chain) in order to manage costs. Locating plants and other production

resources in various countries also allows flexibility in choosing to manufacture product in low cost areas. The mix of production at those locations can then change according to currency fluctuations as needed.

Private firms can choose from a plethora of options; most of the options available to private firms do not apply to the DoD. Currency options and the use of derivatives are prohibited by law (Groshek and Felli, 2000). Appropriations must be obligated in the year of execution for current requirements in order to satisfy the bona fide needs rule (The Judge Advocate General's Legal Center and School, 2014). This precludes the DoD from purchasing options contract during budget formulation. The DoD may use forward contracts because the DoD does not obligate funding until the time of purchase.

Furthermore, stakeholders outside of the DoD control the ability to locate military bases. National priorities, international alliances, and strategic importance outweigh the cost efficiency of locating military bases. Congress, the President, and the State Department influence these decisions alongside DoD recommendations. The lack of available exchange rate mitigation options directs the DoD to employ exchange rate forecasts.

Forecasting

One must understand the elements of forecasting in order to help lower variance between the budgeted exchange rate and the actual exchange rate. In general, forecasting is notoriously complex. A survey on forecasting research uncovered 139 principles in 16 categories (Armstrong, 2001). Forecasting techniques can be subdivided into three categories as shown in Table 2. Forecasting foreign currency exchange rates focus on quantitative methods. Quantitative forecasting requires numerical information about

historical data that one can assume will continue a pattern into the future (Makridakis et al., 1998).

Table 2 Categories of Forecasting Methods and Examples of Their Application (Makridakis et al., 1998)

Forecasting Method	Explanation and Example
Quantitative	Sufficient quantitative data exists
	Time Series: continuation of historical patterns
	Explanatory: Understanding the effects of independent variables
Qualitative	Little or no quantitative information is available, but sufficient
	qualitative knowledge exists
	Predicting the speed of telecommunications are the year 2036
Unpredictable	Little or no information is available
	Predicting the effects of interplanetary travel

Generally, the forecasting task can be divided into five areas: formulating the problem, collecting data, selecting methodology, evaluating methodology, and using the forecast.

Formulating a problem requires understanding the need for a forecast and the involvement of responsible parties. A forecast's necessity derives from the effect the forecast will have on a decision; one should not forecast if the result will not change a decision. Responsible parties ultimately control the decision and must be updated with forecasting results to guide the decision making process.

An understanding of the problem at the beginning directs the type of data required for analysis. Theory guides the search for explanatory variables and may uncover analogous studies. Data, though, must be unbiased and should come from sources without a vested interest in the forecast's outcome. Other sources of error can come from the procedures used to collect the data as well as measurement error from the instruments (for foreign currency an example of measurement error using only one exchange rate per

day when the rate really floats throughout the trading period). After collecting the data, a formal process removes defects (i.e. erroneous observations) and transforms the data into a useful medium of analysis. Transforming data may be as simple as transcribing paperwork into a digital format or more complex like converting rates into a logarithmic function. Another adjustment prevalent in economics is the seasonality at the time of collection (e.g. seasonally adjusted unemployment figures). Analysts should adjust data according to empirical evidence of seasonality to reduce error in the data (Makridakis et al., 1998).

The type of data collected and purpose of the forecast guide methodology selection. At this point in forecasting, understanding the problem should have led to hypothesized causal relationships. The possible causal relationships inform the analyst of the data required and appropriate methodology for the investigation. The chosen method, or methods, ability to influence the decision at hand must also be considered and communicated to the decision maker. Generally, the use of a simple method is preferred unless prior research identified a more accurate complex method (Allen and Fildes, 2001). Quantitative methods are also generally preferred as they reduce the bias in analysis. If the problem has high uncertainty and questionable data, a qualitative judgmental method may be applied (such as expert opinion or surveys). Incorporating both quantitative and judgmental methods can further assist in weighing data according to importance or selecting quantitative methods. Finally, combining more than one method integrates information and reduces the risk of bias from using a particular method.

After method selection, an evaluation reviews the risks and uncertainty within the process. The analyst should test the assumptions of each method to confirm the validity

of the method to the data and the problem. An independent observer should review the methodology and agree with its logic. If using more than one method, the analyst should compare the results of each method to measure the error between each method. Different scales of measurement as well as outliers affect variability in the results of one method as opposed to the other.

Using forecasts is the final step. After completing the previous steps, the analyst should present findings in a format tailored to the decision maker. Assumptions, data, and methods must be clearly presented to reduce the appearance of bias and give confidence in the forecast. Using the forecast on a regular basis allows the analyst to learn how to improve the forecast. Assimilating the improvements, an analyst can improve the forecast and reduce variability.

Economic Forecasting

What works in an experimental setting (holding all other variables constant beyond the independent variables) can produce failures when applied to real world situations (Meese and Rogoff, 1983). While it is known as the "dismal science," economics gives insights into the allocation of limited resources such as time and money. Forecasting, then, is a natural fit in economics as firms want to maximize the use of their limited resources.

Economists began using forecasting as the combination of statistical analysis and economic theory (Allen and Fildes, 2001). The main principle is to use a simple model to describe the relationship between dependent variables and a relatively small set of independent variables. The favored test regarding the usefulness of a simple model is

whether the model can predict relatively accurate results with out-of-sample data (data not used in formulating the model). Testing with out-of-sample data may not give the "true" model, since any simplified model derived from a data set is a misspecification of the data. Estimating the causal independent variables induces prediction error, even with a data set created with known variables and estimated parameters (Gilbert, 1995). Another test is not how well the model predicts the dependent variable but in predicting when the dependent variable will change from growth to decline or decline to growth (Engel et al., 2007). With that said the standard remains out-of-sample validity of the model's predictions since this thesis is interested in predicting a budget rate and not the timing of foreign currency exchange rate increases or decreases in value against the US dollar.

Economists generally use a regression model to predict the dependent variable (Allen and Fildes, 2001). The use of Vector Auto Regression (VAR) and Error Correcting Models (ECM) are prominent in economics. VAR uses economic theory to narrow the number of independent variables required for predicting a dependent variable. VAR then measures the interdependencies of the independent variables to the dependent variables across a time series (a sequence of data points in temporal order). ECM ascertains a dependent variable's equilibrium value and estimates the rate at which the dependent variable returns to equilibrium through the influence of independent variables. The equilibrium can be a value or the rate at which the dependent variable changes (a vector). Both models assume constancy of exogenous variables throughout the time series and are limited by the data provided in formulating the model (in-sample data). These two models contain subsets for particular areas within economics. The focus of

this research is for foreign currency exchange rate forecasting and will focus on models pertaining to that subset.

Foreign Currency Exchange Rate Forecasting

The Meese and Rogoff paper casts a shadow over the ability to predict exchange rates as tested against out-of-sample data. They found the Random Walk model (the dependent variable is a function of the last observation plus an error term) performs no worse than the univariate time series models, unconstrained VAR, or candidate structural models in forecasting real exchange rates (Meese and Rogoff, 1983). The paper states the last known observation is just as likely a predictor of future values as using other independent variables. Their conclusion demonstrated the impracticality of using independent variables based on money supply, demand, and commodity prices to predict exchange rates. The findings from 1983 still hold true as forecasts based on ex ante (before the exchange rate is set) expected changes perform poorly (Evans and Lyons, 2005). Some have suggested the use of the root mean square error (RMSE) to measure forecasting accuracy is incorrect, but measuring by time-varying coefficients with the same data do not over turn Meese and Rogoff's conclusion (Moosa and Burns, 2014).

Judging forecast methodology through other means than the actual value against predicted value leads to different conclusions about the effectiveness of exchange rate forecast models. Moosa and Burns demonstrate that a few models outperform the Random Walk when measuring forecast accuracy in terms of rate direction and in terms of profitability (Moosa and Burns, 2014). Engel, Mark, and West emphasize the Random Walk benchmark is improper as models should have low predictive power of this type

(Engel et al., 2007). They further state models incorporating news about macroeconomic fundamentals (for example GDP growth) may well account for observed exchange rate volatility. Lastly, the authors use expected present values from survey forecasts and demonstrate an increase of out-of-sample forecasting power through panel estimation and long-horizon forecasts. New forecasting methods also increase the accuracy of modeling. The short-horizon predictive ability, using Bayesian model averaging, shows large gains over the Random Walk benchmark (Corte et al., 2008). Artificial neural networks (self-learning algorithms trained on historical data) show robust exchange rate predictions in midst of outliers (Majhi et al., 2012). The results of the above research lead to the possibility of positive results compared to the Meese and Rogoff original study.

Auction theory provides another method of forecasting exchange rates. The international exchange market for currencies acts as an auction, and the future options on currencies may give insight into forecasting the exchange rate. If there are many traders for the currency, the option market can aggregate each trader's estimated price on the underlying asset (Psendorfer and Swinkels, 2000). The option price then acts as a signal of the market's approximation for the currency's future exchange rate. If the options price mirrors the actual exchange rate well enough, it may be possible to use the options price as the budgeted rate in the DoD budget.

Foreign Currency Exchange Rate Forecasting in the DoD

In fiscal year 1979, Congress authorized an appropriation for the DoD to establish a centrally managed allotment (CMA) to alleviate the adverse effect of significant currency fluctuations in authorized operations and maintenance (O&M) and military

personnel appropriations (Department of Defense, 2011). The Foreign Currency Fluctuations, Defense (FCF, D) account provided the control structure to account for all transfers of net gains and losses incurred throughout the execution year. In fiscal year 1987, Congress authorized an additional appropriation, Foreign Currency Fluctuations, Construction, Defense (FCF, C, D), for the family housing and military construction appropriations. Prior to the FCF, D and FCF, C, D, the DoD could not use the additional budget authority from previous high estimates to cover the cost of current deficits. Current deficits would require transferring funding from other programs or requesting additional funds from Congress.

In 1998, Gerald M. Groshek and James C Felli of the Naval Postgraduate School examined two methods of reducing risk in the DoD to foreign currency fluctuations against the status quo (Groshek and Felli, 2000). The authors applied forward foreign exchange contracts and currency options against the naïve based approach (the status quo) from 1985 to 1998. Forward foreign exchange contracts allow the DoD to determine the required budgeted amount by applying forward rates to the estimated foreign amounts. The authors utilized Air Force O&M commitments as the budgeted amount in US dollars and Eurocurrency interest rates as the forward rates at the time of budget formulation. Under the currency options approach, the authors considered call options with an at-the-money forward strike prices. The naïve based approach simply picked an observed foreign exchange rate at some point in the budget formulation as the budgeted rate. Using the above methods, the DoD could expect a cost reduction of 3.5% of current outlays with forward contracts and 6.4% reduction using options with a 2.9% upper bound on option premiums (the premium is the cost of buying an option) over the

naïve approach. The authors recommend the forward contracts since the option contracts require authorization from Congress.

Fiscal law prohibits the use of authorized funding in time periods other than the stated period in the appropriation (The Judge Advocate General's Legal Center and School, 2014). Operations and maintenance (O&M) funding is available for one year only; the government can only incur obligations against the O&M appropriation from 1 October to 30 September of the year of appropriation. To use forward rates, the US Treasury must authorize the use of a forward contract as stated in volume 5 of the Financial Management Regulations (Department of Defense, 2011). The treasury would need to have a forward pricing rate agreement across fiscal years between the US government and the foreign government or private firm for the disbursement to be made at the rate determined by the forward rate method.

The GAO investigated the DoD's foreign currency forecasting methodology in 2005 (Government Accountability Office, 2005). Despite Groshek and Felli's findings, the DoD still used the naïve based approach by using an observed rate from the Wall Street Journal in the budget process. In 2005, the DoD changed methodologies to a statistical based approach after considering the method of forecasting applied in other federal agencies, a commercial company to forecast, and various statistical methods. The statistical method, center-weighted-average, allowed universal replication without subjective judgment (Secretary of the Air Force - Financial Management Directorate of Economics and Business Management, 2010). Based on historical and current data, the chosen statistical method weighted the five year average exchange rate with the exchange rate 12 months prior. Weights range from 0 to 1 with a weight of 0 implying a budgeted

rate equal to the rate 12 months previous. Excel's Solver optimizes the weights by minimizing the sum of squared errors (SSE) between forecasted and actual rates over the previous 60 months. By weighing each rate equally at the start, the process creates a forecast for each month over the previous 60 months and calculates the SSE. Solver then adjusts the weight and recalculates the SSE over the previous 60 months. The process is repeated until Solver discovers the minimum SSE. Lastly, the DoD reviews the forecasts for long term trends in developing the five year average (i.e. the Kuwaiti Dinar's pegging to a basket of currencies in May, 2007). The GAO approved of the center-weighted-average approach as it, "Provides a straightforward statistical calculation of historical data that can be easily replicated with no hidden assumptions and is not dependent on subjective judgment (Government Accountability Office, 2005)."

Another paper researched a future exchange rates predictor for the DoD in 2013 (Freund and O'Neal, 2013). The authors compared the center-weighted-average approach to five different models: moving average, prior year average, trend-lines, extending current rates, and a multivariate model. The moving average, prior year average and trend line incorporated historical exchange rates from 1, 3, 5, and 10 years in the past while extending the current rate used the recent 12 month average. The multivariate model incorporated historical exchange rate with economic factors to include historic gross domestic product (GDP), consumer price index (CPI), unemployment rates, and economically active population rates. Applying multiple regressions to account for covariance and statistical significance, the authors created a model for each currency exchange rate from the economic factors. The researchers compared all five models to the center-weighted-average by the mean squared error (MSE) between the forecasted

and actual exchange rates from 1999 to 2012. Of the five models, the one year prior year average produced the minimal MSE when used across all currencies. Each currency, though, possessed a best specific model (i.e. the three year trend line had the lowest MSE for the Euro and Denmark Kroner while the five year 10 year prior year average was best for the South Korean Won). The paper recommended using the one year prior year average for formulating the fiscal year 2015 budgeted rate.

Summary

This research aims to improve the DoD budgeting process for foreign exchange rates. Budget processes, timelines, and decision authority differ from standard business firm models, but the need for accurately forecasting future requirements remains. Fiscal law precludes the DoD from many of the strategies available for private firms to mitigate exposure to foreign currency fluctuations. Forecasting, although complicated, follows five basic steps: formulating the problem, collecting data, selecting methodology, evaluating methodology, and using the forecast. Economic forecasting is a subset of forecasting that has traditionally used theory to define independent variables capable of predicting dependent variables and measures the success by out-of-sample variance. For exchange rates, the literature revealed the forecasting potential of theoretical independent variables is no better than using a Random Walk model. Meese and Rogoff's conclusion has had lasting effects throughout the decades. Some researchers have chosen to frame the problem in a new light and use new statistical methods to forecast exchange rates. A few have shown promise over the short term using artificial neural networks, shortening the time frame for a forecast, or using a aggregation of surveys and future expectations.

Others still claim the Random Walk benchmark is improper as the models do explain some variability. From the above research foundation, a few chosen methodologies will be tested for use in the DoD environment. The DoD specific research offers a starting point from which to judge new methodologies.

III. Methodology

Chapter 3 seeks the optimum method to forecast foreign exchange rates for the DoD budget. The chapter begins by defining the data sources and the suitability of the data to predicting exchange rates for the DoD. The chapter then explains the six different methods (including status quo) before describing how those methodologies will be compared. A summary of the chapter briefly reviews the material covered in this chapter.

Data Sources

There are five sources of field data for this thesis: the Federal Reserve Foreign Exchange Rate – H.10, the Global Insight forecasts, the Chicago Mercantile Exchange (CME) as taken through the website Quandl, the adjusting rates of exchange from the USD, Comptroller, and the long term interest rates as reported by the Organization for Economic Co-operation and Development (OECD). The Federal Reserve Foreign Exchange Rate – H.10 is a weekly report providing the exchange rates in foreign currency units per U.S. dollar for each day of the previous week (Board of Governors of the Federal Reserve System, 2015). Table 3 is a sample of the report taken from the Federal Reserve Board's Economic Research & Data website. Because the Federal Reserve produces the report on a weekly basis, the data were combined into one spreadsheet. The Federal Reserve data are pertinent to the research, as the rates represent the spot rate used at the time of disbursement of funds from the DFAS.

Table 3 Sample H.10 Report on 15 Sep 2014

Release Date: September 15, 2014

Foreign Exchange Rates -- H.10 Weekly (Rates in currency units per U.S. dollar except as noted)

COUNTRY	CURRENCY	Sep. 8	Sep. 9	Sep. 10	Sep. 11	Sep. 12
*AUSTRALIA	DOLLAR	0.9300	0.9207	0.9153	0.9115	0.9047
BRAZIL	REAL	2.2498	2.2825	2.2956	2.2882	2.3301
CANADA	DOLLAR	1.0933	1.1010	1.0954	1.1032	1.1075
CHINA, P.R.	YUAN	6.1400	6.1362	6.1284	6.1295	6.1344
DENMARK	KRONE	5.7492	5.7661	5.7660	5.7535	5.7446
*EMU MEMBERS	EURO	1.2948	1.2909	1.2908	1.2936	1.2955
HONG KONG	DOLLAR	7.7504	7.7502	7.7503	7.7505	7.7505
INDIA	RUPEE	60.2900	60.6000	60.9500	60.9300	60.9500
JAPAN	YEN	105.6500	106.3200	106.7600	106.8700	107.2400
MALAYSIA	RINGGIT	3.1730	3.1885	3.2000	3.1920	3.1960
MEXICO	PESO	13.0755	13.2040	13.2090	13.2120	13.2485
*NEW ZEALAND	DOLLAR	0.8285	0.8245	0.8245	0.8187	0.8156
NORWAY	KRONE	6.3123	6.3503	6.3509	6.3753	6.3617
SINGAPORE	DOLLAR	1.2564	1.2627	1.2626	1.2630	1.2631
SOUTH AFRICA	RAND	10.7780	10.9245	10.9265	10.9545	10.9930
SOUTH KOREA	WON	1024.0000	1034.0500	1034.2000	1035.9000	1034.9000
SRI LANKA	RUPEE	130.1800	130.1800	130.2000	130.2500	130.2500
SWEDEN	KRONA	7.0877	7.1136	7.0987	7.1179	7.1326
SWITZERLAND	FRANC	0.9317	0.9348	0.9382	0.9349	0.9337
TAIWAN	DOLLAR	29.9300	29.9700	30.0000	30.0200	30.0400
THAILAND	BAHT	32.0400	32.0900	32.1400	32.1900	32.2000
*UNITED KINGDOM	POUND	1.6141	1.6088	1.6134	1.6225	1.6243
VENEZUELA	BOLIVAR	6.2842	6.2842	6.2842	6.2842	6.2842
Memo:						
UNITED STATES	DOLLAR					
1) BROAD	JAN97=100	104.0397	104.5099	104.5065	104.5710	104.7427
2) MAJOR CURRENCY	MAR73=100	79.2266	79.6254	79.5726	79.6552	79.7607
3) OITP	JAN97=100	130.2691	130.8061	130.8657	130.9038	131.1510

ND = No data for this date.

For more information on exchange rate indexes for the U.S. dollar, see "Indexes of the Foreign Exchange Value of the Dollar," Federal Reserve Bulletin, 91:1 (Winter 2005), pp. 1-8 (http://www.federalreserve.gov/pubs/bulletin/2005/winter05_index.pdf). Weights for the broad index can be found at http://www.federalreserve.gov/releases/H10/Weights; weights for the major currencies index and the other important trading partners (OITP) index are derived from the broad index weights. The most recent annual revision of the currency weights and dollar indexes took effect with the May 2010 release of this report. The source for exchange rates not listed in the table above but used in the calculation of the broad and OITP indexes is Bloomberg L.P.

* U.S. dollars per currency unit.

The second set of data was produced by a private company, IHS Global Insight (IHS Inc, 2015). The DoD uses the company's materials price forecasts in developing cost estimates for procurement or operations and support (e.g. shipbuilding) (Horowitz et al., 2012). This company also provides an analysis service of how world economic events, trends, and developments affect businesses and countries to include forecasts of foreign exchange rates. Using past forecasts, this research compared the actual to

predicted exchange rates from the company. Forecasts from the company, though, do not provide insight into the company's methodology, which may not be sufficient for a GAO inquiry. Table 4 is an example of the 2004 fourth quarter forecast for the Japanese Yen per US dollar by quarter (highlighted) and annual forecast in Table 5.

Table 4 Global Insight Japanese Yen to US Dollar Quarterly Forecast

Table IQ6															
Japan															
(Fourth Quarter 2004 Forecast)														
Table of Contents															
	2004:2	2004:3	2004:4	2005:1	2005:2	2005:3	2005:4	2006:1	2006:2	2006:3	2006:4	2007:1	2007:2	2007:3	2007:4
Aggregate Indicators (1997=	100)														
Consumer Price Index	97.5	97.6	97.5	97.5	97.6	97.7	97.8	98.1	98.3	98.7	99.1	99.4	99.8	100.3	100.7
%	-0.7	0.1	0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.3	0.4	0.4	0.4	0.4	0.4
Producer Price Index	95.5	95.0	94.6	94.4	94.1	94.0	93.9	93.8	93.9	93.9	94.0	94.2	94.4	94.6	94.9
%	0.2	-0.5	-0.4	-0.3	-0.2	-0.2	-0.1	-0.1	0.0	0.1	0.1	0.2	0.2	0.3	0.3
Industrial Production	102.0	102.8	103.2	103.3	103.5	103.6	103.8	104.0	104.2	104.5	104.7	105.0	105.2	105.4	105.7
%	3.2	0.7	0.4	0.1	0.2	0.1	0.2	0.2	0.2	0.3	0.3	0.2	0.2	0.2	0.2
U.S. Dollar Exchange Rate	109.7	107.1	104.2	102.8	101.9	100.9	100.0	99.1	98.5	98.1	97.8	97.7	97.5	97.3	96.9
%	2.4	-2.4	-2.6	-1.4	-0.8	-1.0	-0.9	-0.9	-0.6	-0.4	-0.3	-0.1	-0.2	-0.3	-0.3

Table 5 Global Insight Japanese Yen to US Dollar Annual Forecast

Table IA6													
Japan													
(Fourth Quarter 2004 Forecas	st)												
Table of Contents													
	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Aggregate Indicators (1997	'=100)												
Consumer Price Index	98.4	98.1	97.7	97.7	98.5	100.1	101.9	103.9	106.1	108.5	111.0	113.6	116.3
%	-0.9	-0.2	-0.5	0.0	0.9	1.6	1.8	2.0	2.1	2.2	2.3	2.3	2.4
Producer Price Index	95.7	95.0	95.1	94.1	93.9	94.5	95.7	97.1	98.8	100.6	102.4	104.1	105.8
%	-2.1	-0.8	0.1	-1.1	-0.2	0.7	1.3	1.5	1.7	1.9	1.8	1.6	1.6
Industrial Production	92.3	95.3	101.7	103.6	104.4	105.3	106.3	107.4	108.6	109.9	111.2	112.6	113.9
%	-1.3	3.3	6.8	1.8	0.8	0.9	0.9	1.0	1.1	1.2	1.2	1.2	1.2
U.S. Dollar Exchange Rat∈	125.2	115.9	107.1	101.4	98.4	97.3	95.9	94.4	93.1	92.2	91.5	91.0	90.8
%	3.0	-7.4	-7.7	-5.3	-3.0	-1.1	-1.5	-1.6	-1.4	-1.0	-0.8	-0.5	-0.3

The Quandl data contains daily futures prices on currencies from the CME. Table 6 gives an example of data containing the open, high, low, and settle prices for the contract as well as the volume of contracts traded and the bids amount of contracts available from the previous day. The futures contract prices differ according to time and contract expiration day. In order to create a historical futures series, the contracts must be combined into a continuous futures contract by combining. Combining the individual futures contracts (or 'rolling' the contracts) can follow different rules depending on the analysis. Economic forecasting uses the "first day of month" and "calendar-weighted"

rolling" rules. The "first day of month" roll method combines futures on the first day of the contract delivery month or on the contract end date, whichever is sooner (Quandl, 2015). The "calendar-weighted rolling" is a price adjustment to negate the discontinuities in contract prices of the successive underlying futures contracts. The method allows for transitioning from one contract to the next over 5 days where the first contract is weighed 100% on day 1 and 0% on day 5. The opposite is true for the second contract. The percent shifts by 20% each day between the first and second contract. Using the "first day of month" and "calendar-weighted rolling rules" provides a continuous data set for analysis. This research used the average of daily settlement prices to forecast exchange rates.

Table 6 Example of Euro Futures Data Pulled from Quandl

Date	Open	High	Low	Settle	Volume	Prev. Day Open Interest
2014-11-06	1.248	1.2537	1.2376	1.239	346745	457437
2014-11-05	1.2553	1.2571	1.246	1.2483	250553	456281
2014-11-04	1.2492	1.2581	1.2491	1.256	217552	452793
2014-11-03	1.2515	1.2515	1.2442	1.2494	224986	452251
2014-10-31	1.2616	1.2619	1.2489	1.253	355317	443446
2014-10-30	1.2639	1.2643	1.2548	1.2616	248190	437202
2014-10-29	1.2737	1.2775	1.2636	1.2649	190485	434187
2014-10-28	1.2702	1.2769	1.2688	1.2739	176909	435325
2014-10-27	1.2677	1.2727	1.2669	1.2712	142141	435029
2014-10-24	1.265	1.27	1.2638	1.2668	145110	438942
2014-10-23	1.265	1.268	1.2617	1.2653	168530	439199
2014-10-22	1.2717	1.2744	1.2641	1.2648	205927	433426

Adjusting exchange rates are published monthly on the USD Comptroller website (Office of the Undersecretary of Defense (Comptroller), 2014). The publication lists the budgeted rate for the fiscal year in question along with the monthly foreign currency rate as the adjusting rate. The budgeted rate column provides the status quo estimate and the adjusting rate column provides the actual rates for the study period between FY06 to

FY14. The adjusting rate serves as the actual rate in calculating the error for all the methodologies in the FY06-FY14 time period. For the longer periods (FY79-FY12) the arithmetic mean of daily exchange rates form the FRB H.10 report supply the adjusting rates. Appendix F demonstrates the adjusting rates from the monthly USD currency fluctuation publication and the H.10 average monthly rates are statistically the same. Table 7 below is an example of the USD monthly report on currency fluctuations.

Table 7 USD Comptroller Monthly Report on Currency Fluctuations

	ADJUSTING RATES OF EXCHANGE FOR "FOREIGN CURRENCY FLUCTUATIONS, DEFENSE," "FOREIGN CURRENCY FLUCTUATIONS, CONSTRUCTION" AND "DEFENSE MILITARY CONSTRUCTION AND FAMILY HOUSING" For Month Ended 9/30/04												
		O&M FY 2004 BUD	(DOD) GET RATE	MILCON FY 2004 BUD		ADJUSTING RATE **							
COUNTRY	MONETARY UNIT	U.S. DOLLARS FOR ONE UNIT OF FOREIGN CURRENCY	UNITS OF FOREIGN CURRENCY FOR ONE U.S. DOLLAR	U.S. DOLLARS FOR ONE UNIT OF FOREIGN CURRENCY	UNITS OF FOREIGN CURRENCY FOR ONE U.S. DOLLAR	ADJUSTING RATE (IN U.S. DOLLARS)	ADJUSTING RATE (IN FOREIGN CURRENCY)						
BELGIUM	FRANC	0.0240346	41.6066	0.0240346	41.6066								
DENMARK	KRONE	0.1282117	7.7996	0.1282117	7.7996	0.1670007	5.9880						
EUROPEAN UNION*	EURO	0.9695559	1.0314	0.9695559	1.0314	1.2436264	0.8041						
FRANCE	FRANC	0.1478087	6.7655	0.1478087	6.7655								
GERMANY	DEUTSCHE MAR	I 0.4957367	2.0172	0.4957367	2.0172								
GREECE	DRACHMA	0.0028454	351.4496	0.0028454	351.4496								
ITALY	LIRA	0.0005007	1,997.0690	0.0005007	1,997.0690								
JAPAN	YEN	0.0079688	125.4900	0.0079688	125.4900	0.0090901	110.0100						
NETHERLANDS	GUILDER	0.4399666	2.2729	0.4399666	2.2729								
NORWAY	KRONE	0.1309003	7.6394	0.1309003	7.6394	0.1490002	6.7114						
PORTUGAL	ESCUDO	0.0048361	206.7771	0.0048361	206.7771								
SINGAPORE	DOLLAR.	0.5544159	1.8037	0.5544159	1.8037	0.5936127	1.6846						
SOUTH KOREA	WON	0.0007968	1,255.0000	0.0007968	1,255.0000	0.0008684	1,151.5400						
SPAIN	PESETA	0.0058271	171.6105	0.0058271	171.6105								
TURKEY	LIRA	0.0000006	1,694,915.0000	0.0000006	1,694,915.0000	0.0000007	1,492,537.0000						
UNITED KINGDOM	POUND	1.5344484	0.6517	1.5344484	0.6517	1.8122508	0.5518						

^{*} On January 1, 1999, the euro became the official currency of 11 member states of the European Union with a fixed conversion rate against their national currencies. The euro was adopted by Greece on January 1, 2001. The value of the euro fluctuates according to market conditions against the dollar and all other currencies. Euro notes and coins were introduced to replace national notes and coins on January 1, 2002. The above foreign currency budget rates are based on PBD 660, dated December 9, 2002.

Lastly, the OECD provided the long term interest rates required for the forward rates methodology (OECD, 2015). OECD data were available from the online database StatExtracts and provided the long term interest rates as a percent per annum from the monthly monetary and financial statistics. An example of the data is shown in Table 8.

^{**}Adjusting exchange rates for the individual euro-area currencies are no longer provided. Use the fixed conversion rates as follows: 1 Euro = 40.3399 Belgian Francs, 6.55957 French Francs, 1.95583 German Marks, 1936.27 Italian Lire, 2.20371 Netherlands Guilders, 200.482 Portuguese Escudos, 166.386 Spanish Pesetas, 340.750 Greek Drachmas.

Table 8 OECD Long Term Interest Rates, Percent Per Annum Example

Subj∈	ect	Long-term interest rates, Per cent per annum						
Frequen	су	Monthly						
Tir	ne	Sep-2004	Oct-2004	Nov-2004	Dec-2004	Jan-2005		
Country								
Denmark	i	4.3755	4.229	4.0932	3.8462	3.7348		
Japan	i	1.393	1.483	1.452	1.397	1.31		
Korea	i	4.14	4.05	3.96	3.85	4.42		
Norway	i	4.23	4.19	4.05	3.94	3.9		
United Kingdom	i	4.9109	4.7683	4.6903	4.5316	4.5419		
United States	i	4.13	4.1	4.19	4.23	4.22		
Euro area (18 countries)	i	4.114	3.9794	3.8687	3.6893	3.6336		

Methods

This research compared six techniques for determining the budgeted foreign exchange rate. They are the forecasts from Global Insight, the status quo, forward rates, ARIMA, the Random Walk model, and futures contract settlement prices. Each technique provides a different approach to forecasting an exchange rate or highlighted in the literature (the Random Walk model is a special type of ARIMA).

Global Insight

Global Insight provides a web-based application from which to view the company's forecasted foreign exchange rates. Included in this application are archived tables from past forecasts. Global Insight publishes forecasts quarterly with quarterly forecasts two years from the published date and annual forecasts nine years from the published date. This thesis applied the annual forecasts as a simulated budgeted rate and compares that rate with the actual monthly rates of the year in question. For example, the FY06 Japanese Yen forecast derived from Table 5 used the 2005 annual exchange rate forecast as the Global Insight 1 year forecast, the 2006 annual exchange rate forecast as

the Global Insight 2 year forecast, and the mean of the two as the Global Insight 1-2 year average forecast. This is done for each year and currency in the forecast period.

Status Quo

The current method to determine the budgeted rate consists of a center-weighted-average technique. This technique pulls the average monthly exchange rate for the past five years and the exchange rate 12 months prior from the Federal Reserve's H.10 foreign exchange report. Each of these is weighted equally and combined to form a budgeted exchange rate. The next step is to calculate the forecast error for the five year average and the rate 12 months prior. The forecast error is the sum of squared errors (SSE) between the forecasted rate and the actual rate from previous forecasts. The formula is

$$SSE = \sum (R_{Forecasted} - R_{Observed})^2$$

where $R_{Forecasted}$ is the forecasted exchange rate and $R_{Observed}$ is the actual exchange rate. The summation is over from the most recent observed exchange rate to 60 months previous (e.g. from September 2005 to August 2010). To minimize the forecast error, the weights of the five year and 12 months prior are determined by Excel's add-in Solver. Solver optimizes the weight to minimize the forecast error, the dependent variable, by iteratively changing the weights, as the independent variables. Finally, the results are reviewed for any long term trends or changes to the currency. Adjustments are made to account for fundamental changes (e.g. changing the peg of the Kuwaiti Dinar from the US dollar to a basket of currencies in May 2007 caused the five year average to be a three average in 2010).

Forward Rate

Groshek and Felli found the use of forward contracts can reduce expected costs on the order of 3.5% rather than using a naïve approach (Groshek and Felli, 2000). Their approach is used in this research to compare with the other methods in validating whether forward rate contracts should be used in mitigating currency exchange risks. The forward rate approach begins by determining the total US dollar equivalent of the DoD's foreign commitments by applying forward rates to the estimated foreign currency requirement. The technique assumes the amount budgeted for foreign currency equals the amount liquidated. Next, the technique calculates the difference in values between using the former naïve based approach and the forward rates based approach (represented as V_N^F) with the following equation:

$$V_N^F = \sum_{i=1}^C \sum_{k=1}^T S_k^j \left\{ r_B^j \left(1 + \frac{k(1-\delta)(i_B^0 - i_B^j)}{T} \right) - r_{L_k}^j \right\}$$

C is the number of foreign currencies in the analysis assigned to an index from 1,2,...,C, and T designates the number of periods in the budget cycle. S_k^j is the sum of money in currency j (the US is j=0) the DoD must liquidate at the end of period k. The budgeted spot rate for country j is r_B^j while the liquidation spot rate at the end of period k is $r_{L_k}^j$. The variable δ represents the annual discount rate. The difference in the annual interest rate between the US (j=0) and country j is $(i_B^0 - i_B^j)$. Interest rates came from *The Economist* in weekly observations. The authors then completed 25,000 Monte Carlo simulations to judge the effectiveness of the model.

This research uses a less complex version for calculating forward rates due to not having the amount of funding required for each year in our study. The following equation was employed to calculate the forward exchange rate used for the budgeted rate:

$$r_j = r_K^{j=0} \frac{1 + i_j}{1 + i_{j=0}}$$

The equation gives the forward exchange rate, r_j , for country j using the US dollar spot rate, $r_K^{j=0}$, in annual terms of year k and the interest rate, i_j , of country j in the month of December before the fiscal year of interest (Feenstra and Taylor, 2008). As an example, for FY06 the Euro forward rate is 0.720868049 as calculated with an $r_K^{j=0}$ of 0.803988 Euro to US dollars annual exchange rate from the FRB H.10 report, an i_j of 3.6893 and a $i_{j=0}$ of 4.23 as the long-term interest rates per annum in December from the OECD monthly monetary and financial statistics dataset.

ARIMA

The ARIMA method integrates an auto regressive, moving average, and differencing parameters to predict future points in a time series. Figure 3 represents the Box and Jenkins process for applying a univariate, time series ARIMA model. It encompasses three phases: identification, estimating and testing, and application.

Figure 3 Box-Jenkins process for time series modeling (Makridakis et al, 1998)

Identification consists of data preparation and model selection. Under data preparation, the data are arranged in a time series plot and stabilized, meaning the data must be roughly horizontal along the time axis (x-axis). Plotting the data allows assessment on the stationarity of the data. Stationarity is the lack of change in the mean or variance of the data over time. Stationarity is assessed with the Dickey-Fuller test (Makridakis et al., 1998). The test estimates the following regression model

$$Y'_{t} = \varphi Y_{t-1} + b_1 Y'_{t-1} + b_2 Y'_{t-2} + \dots + b_n Y'_{t-n}$$

with Y' as the differenced series $Y_t - Y_{t-1}$. If Y_t is stationary, then the estimated value of φ will be negative. A φ value close to zero means Y_t needs differencing. Ordinary least squares are used to estimate φ from the regression model. The autocorrelation function (ACF) and partial autocorrelation function (PACF) also test stationarity. The ACF gauges how successive Y values relate to each other and is calculated by:

$$r_k = \frac{\sum_{t=k+1}^{n} (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{n} (Y_t - \bar{Y})^2}$$

PACF removes the effects of other time lags in the time series to measure the degree of association between Y_t and Y_{t-k} . PACF's formula is:

$$Y_t = b_0 + b_1 Y_{t-1} + b_2 Y_{t-2} + \dots + b_k Y_{t-k}$$

To show stationarity, the ACF and PACF quickly converge on zero. Should the data appear non-stationary, differencing the data may induce stationary in the mean. Below is the equation for differencing:

$$Y_t' = Y_t - Y_{t-k}$$

Stationarity in the variance can be achieved by transforming the data through a logarithmic or power function. After achieving stationarity, the ACF and PACF are examined for patterns. The patterns may indicate choosing a model for seasonality, auto regression, moving averages, or a mixture. Parameters for the selected are then estimated for the chosen model using the method of least squares. The ARIMA general equation is

$$(1 - \varphi_1 B)(1 - B)Y_t = c + (1 - \theta_1 B)e_t$$

This is an ARIMA(1,1,1) model with φ_1 as the auto regressive parameter, θ_1 as the moving average parameter, and (1-B) as the differencing parameter. B represents the lag

operator to incorporate the previous time series element (BY_t = Y_{t-1} for all t>1). The e_t variable is an error term and is assumed to be independent and identically distributed along a normal distribution with a mean of zero. The constant, c, is an overall level for the dependent variable and represents stationarity (the data's mean and/or variance are approximately horizontal along the time axis). The parameter estimates are then tested for significance using the coefficient's standard error. Standard error analysis provides a P-value from which we can calculate statistical significance (a two-sided test was used with an $\alpha = 0.05$). Given the parameter estimates are statistically significant, a diagnostic analysis is done on the ACF/PACF and portmanteau residuals to check for "white noise." The ACF and PACF residuals are plotted and scaled so that variance equals one. Any residuals less than -3 or greater than 3 are outliers. A portmanteau test is an additional analysis of residuals. The portmanteau test uses the Box-Pierce test Q statistic:

$$Q = n \sum_{k=1}^{h} r_k^2$$

where *h* is the maximum lag being considered and *n* is the number of observations in the series (Makridakis et al, 1998). If the ARIMA model's residuals are "white noise", then the Q statistic has a chi-squared distribution with (*h-m*) degrees of freedom (*m* is the number of parameters in the model). A significant test result from the residual diagnostic indicates an inadequate model, and the process revisits the identification step to discern a better ARIMA model. A model that successfully passes the residual diagnostic is ready for forecasting application.

When choosing between ARIMA models, the Akaike Information Criterion (AIC) provides a measure in choosing the most adequate model (Burnham and Anderson, 2004). The AIC is an estimate of the information loss in a model and is calculated by:

$$AIC = -2LogLikelihood + 2k$$

The term *k* is the number of estimated parameters, including intercept and error terms in the model. A lower AIC value guards against information loss and the better the model at estimating (SAS Institute Inc, 2014).

For this research, Y_t is the forecasted exchange rate of interest and t is the time period of interest. Y_t is calculated for a budget forecast rate and compared to the actual rate to calculate the APE. Time-lagged foreign exchange rates make up the explanatory variables for estimating the ARIMA parameters. Annual forecasts were done using the JMP ARIMA model grouping. The model group allow for testing 27 separate ARIMA models for each currency by fiscal year (from ARIMA(0,0,0) to ARIMA (2,2,2) or 3^3 possibilities). The model with the lowest AIC provided the estimate for the budgeted rate. The immediate estimate from the model gave the 1 year estimate while the Y_{t+1} provided the 2 year estimate. These two estimates were then averaged to arrive at a 1-2 year average estimate as another budgeted rate to test against.

Random Walk

The Random Walk method is a special type of ARIMA model. ARIMA(0,1,0) represents the Random Walk and lacks an autoregressive and moving average parameters but maintains a difference (Nau, 2014). Random Walks can have extended periods of

apparent trends which unpredictably change direction. The mathematical representation is:

$$Y_t = Y_{t-1} + \varepsilon_t$$

where the forecasted value, Y_t , equals the previous value, Y_{t-1} , plus an error term, ε_t . In order to generate a budgeted rate, the thesis uses historical exchange rates to derive an error term. This error term is added to the last data point for the exchange rate to create a budgeted exchange rate. The immediate estimate from the model gave the 1 year estimate while the Y_{t+1} provided the 2 year estimate. These two estimates were then averaged to arrive at a 1-2 year average estimate as another budgeted rate to test against.

Futures

The futures method uses the settle rate from Table 6 as the key input in producing a budgeted rate. The intuition of using futures data is the price of the futures contract aggregates the information of the buyers and sellers of the contract in divining the true value of the underlying currency. The data contains daily settle prices, which we averaged annually from January 1st to December 31st and for the month of October as the budgeted rate for the following fiscal year. For example, the settle prices from 1 January 2004 to 31 December 2004 were averaged for the Futures Annual Mean 1 Year forecast of FY06. The average settle price for the month of October 2004 was used as the Futures October Mean for FY06.

Comparison

The comparison uses the median of the Absolute Percent Error (APE):

$$APE = \left| \frac{X_{actual} - X_{forecasted}}{X_{actual}} \right|$$

To compute the median, the APEs are arranged from lowest to largest APE from APE₁, APE₂, ..., APE_n before choosing the APE at $\frac{n}{2}$ as the median. If $\frac{n}{2}$ does not provide a whole number (e.g. if n=9, $\frac{9}{2}$ = 4.5), then the average between the two nearest APEs serves as the median (e.g. $\frac{APE_4 + APE_5}{2}$). After calculating the median APE of all six methods, the thesis compares the accuracy of forecasting exchange rates. The lowest median indicates the more accurate method of forecasting as the forecast is relatively closer to the actual rate. Other considerations include the frequency of over estimating against under estimating the actual rate. Ideally, the forecast would match the actual rate although, given the uncertainty of requesting additional funds from Congress during the execution phase, over estimating the required amount of currency is preferred to under estimating

After calculating the APE for each currency by method, the thesis performed a bootstrap analysis on the median to examine whether the methods are from the same population in a statistically significant manner. The bootstrap method resample's each method's APEs with replacement to create a large number of sample statistics (Singh and Xie, 2008). In this case, the median is resample 10,000 times, and find a 95% percentile confidence interval (using α =2.5% two-tailed interval). The bootstrap sample medians with confidence intervals are then compared to the other methods by overlapping confidence intervals. Should one method's confidence interval overlap another method, the two methods may come from the same population, and are therefore not significantly different. The JMP® program draws on the entire APE distribution as the bootstrap

sample for every bootstrap iteration (i.e. an APE sample of 752 means each bootstrap sample will also have 752 samples but with replacement for each sample taken from the original APE sample) (Ramsey, 2013). Fractional weighting was not used from the original sample APE's distribution for the bootstrap.

Finally, the thesis compares methods by how often the budgeted rate is greater than the actual rate. Each month will show which rate is higher. Assuming a risk adverse DoD, a higher actual rate is preferred. For example, a ¥1,000 requirement in US dollars at 110 Yen per dollar budgeted rate equals a budget of \$9.09. If the actual rate were 100 yen per dollar at the time of execution, the amount needed to cover the requirement is \$10. For each method and each time period, the chance of budgeting too little is calculated by dividing the number of months the budgeted rate is greater than the actual rate by the total number of months in that period. A lower percent decreases chance of budgeting too little.

Long Term Study

Given the small time frame, a broader understanding of the problem required greater data points to reach a firm decision. From FY06 to FY14 only offered nine opportunities to calculate a budgeted rate. Extending the study period to FY91 offered 16 additional years and to FY79 offered 28 additional opportunities at formulating and testing budgeted rates through the various methods. These additional study periods, however, could not use all of the currencies and methods as the FY06 to FY14 study period.

Study Period from FY91 to FY12

The study period from FY91 to FY12 encompasses a total of 22 years, or 22 attempts at forecasting a budgeted rate. While data for some countries extend to this date and beyond, only the Japanese Yen and United Kingdom Pound were examined. These two currencies could be used for each method compared in this time period. Methods for this time period compose of ARIMA, Random Walk, futures, forward rates, and the status quo. The Global Insight database did not extend as far back as FY91. Each methodology forecasted a budgeted rate for FY91 which was then compared to the FRB H.10 monthly averages to derive an APE for that month. The monthly APEs were then averaged for the fiscal year. The mean and median were both recorded in order to compare the different methods. To identify whether methods were statistically different, a bootstrap with 10,000 samplings for each method's median provided a distribution of the median to compare against other methods. Any median distribution overlapping the median distribution of a different method could be considered statistically the same.

Study Period from FY79 to FY12

The study period from FY79 to FY12 encompasses a total of 34 attempts at forecasting a budgeted rate. During this period, the Japanese Yen and United Kingdom Pound are again the currencies examined. The methods compose of ARIMA, Random Walk, futures, and the status quo. The long term interest rates data did not contain the rate for Japan before 1989 precluding the use of the forward rates methodology earlier than FY91. Each methodology forecasted a budgeted rate for FY91 which was then compared to the FRB H.10 monthly averages to derive an APE for that month. The monthly APEs were then averaged for the fiscal year. The mean and median were both

recorded in order to compare the different methods. To identify whether methods were statistically different, a bootstrap with 10,000 samplings for each method's median provided a distribution of the median to compare against other methods. Any median distribution overlapping the median distribution of a different method could be considered statistically the same.

Summary

Using five sets of data sources, the thesis compares six methodologies in order to recommend the one with the lowest median APE. The forecasts from Global Insight are the first of six forecast methodologies tested. The other five include the status quo forward rate, ARIMA, the Random Walk, and futures settlement prices. The thesis contrasts these forecasts against the actual rate to find the monthly APE. The median APE allows comparison of the six techniques in terms of accuracy. Objectivity and complexity of the techniques provide additional criteria to compare the six techniques. After reviewing the APE, simplicity, and risk in budgeting too little, the thesis will recommend a technique for use by the DoD.

IV. Results

Chapter 4 states the results of applying each methodology. The chapter provides each method's MAPE compared to the status quo, before providing a comparison of all methodologies. A summary of the chapter briefly reviews the material covered in this chapter.

Global Insight

Table 9 compares the Global Insight 1 year, 2 year, and 1-2 year average forecast rate mean APE (MAPE) against the status quo MAPE from Fiscal Year 2006 to FY 2014 (FY06 to FY14).

Table 9 Global Insight 1 Year, 2 Year, 1-2 Year Average and Status Quo MAPE for FY06 - FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate

								Global
				Global		Global		Insight
				Insight 1		Insight 2		1-2 Year
				Year		Year	Global	Average
				Percent		Percent	Insight	Percent
		Status Quo	Global	Budget	Global	Budget	1-2	Budget
	Status	Percent	Insight	Rate >	Insight	Rate >	Year	Rate >
	Quo	Budget Rate >	1 Year	Adjusted	2 Year	Adjusted	Average	Adjusted
FY	MAPE	Adjusted Rate	MAPE	Rate	MAPE	Rate	MAPE	Rate
6	10.18%	83.33%	9.07%	60.42%	9.22%	62.50%	9.14%	62.50%
7	14.05%	75.00%	8.63%	52.08%	12.38%	56.25%	9.41%	70.83%
8	11.85%	87.50%	5.48%	50.00%	4.41%	41.67%	4.32%	43.75%
9	16.69%	50.00%	18.45%	50.00%	15.99%	43.75%	17.20%	50.00%
10	9.98%	62.50%	7.02%	64.58%	7.55%	45.83%	7.02%	54.17%
11	10.53%	60.42%	5.57%	56.25%	8.42%	43.75%	6.54%	45.83%
12	7.06%	31.25%	3.65%	41.67%	5.96%	39.58%	4.72%	45.83%
13	6.51%	12.50%	7.69%	27.08%	8.05%	22.92%	6.74%	31.25%
14	6.56%	72.92%	10.22%	27.08%	10.14%	10.42%	9.86%	16.67%
Average	10.38%	59.49%	8.42%	47.69%	9.12%	40.74%	8.33%	46.76%

For example, the 2004 4th Quarter Cost International Forecast Table provided the Global Insight 1 and 2 year forecast for FY06 (2005 and 2006 forecasted exchange rates). Furthermore, the table includes the percentage of forecasted exchange rates exceeding the actual exchange rates. This percentage is the probability of budgeting enough funding for requirements given the applied forecasted rate as the budgeted rate as shown in Figure 1. Lastly, the countries for this data include the EU, Japan, South Korea, and the UK.

Averaging the 1 year and 2 year forecasted rates provides the best MAPE of the Global Insight data while the status quo has the highest percentage of a higher budgeted rate than adjusted rate. The distribution of Global Insight APEs gave reason to doubt the mean as a true gauge of the resulting data's central tendency. Figure 4 provides the distribution of APEs along with a box plot and normal curves. The median (50.0% quantile) is less than the mean for each of the Global Insight forecasted budgeted rates. Since normality is not present, nonparametric measures are the appropriate approach to comparing methods. The medians provide a closer approximation of the central tendency of the results, while the use of a mean would consistently skew the data to the right of the results central mass. Also, since the results are not normally distributed, the use of standard deviations does not lend itself to an adequate measure of dispersion. The interquartile range (IQR) is the preferred method in this research in determining the dispersion of the results.

Figure 4 Printout of the Global Insight APE Distribution

Forward Rate

Table 10 compares the forward rate 1 year forecast rate MAPE against the status quo MAPE from FY06 to FY14. For example, the ratio of December 2004 long-term annual interest rates multiplied by the Annual FRB H.10 rate calculates the FY06 forecasted rate. Furthermore, the table includes the percentage of forecasted exchange rates exceeding the actual exchange rates. This percentage gives the probability of budgeting enough funding for requirements given the applied forecasted rate as the budgeted rate. Lastly, the countries for this data include Denmark, the EU, Japan, Norway, South Korea, and the UK.

Table 10 Forward Rate and Status Quo MAPE for FY06 - FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate

				Forward
				Rate 1 Year
		Status Quo	Forward	Percent
	Status	Percent Budget	Rate 1	Budget Rate
	Quo	Rate > Adjusted	Year	> Adjusted
FY	MAPE	Rate	MAPE	Rate
6	8.10%	80.28%	6.11%	54.93%
7	14.19%	83.33%	7.62%	81.94%
8	16.27%	91.67%	14.45%	87.50%
9	13.43%	56.94%	16.85%	34.72%
10	9.06%	68.06%	10.96%	23.61%
11	9.15%	66.67%	8.95%	81.94%
12	6.09%	41.67%	4.54%	76.39%
13	5.61%	19.44%	5.35%	13.89%
14	5.58%	54.79%	8.26%	63.01%
Average	9.72%	62.54%	9.23%	57.55%

The forward rate calculation has a lower MAPE and percentage of a higher budgeted rate than adjusted rate compared to using the status quo. Similar to the Global Insight results, the APEs for the forward rate calculation also do not show a normal

distribution. Figure 5 provides a graph of the APE distribution. Again the median is lower than the mean and provides a better gauge of the central tendency of the results.

Figure 5 Printout of the Forward Rate APE Distribution

ARIMA

Table 11 compares the ARIMA 1 year, 2 year, and 1-2 year average forecasted rate MAPE against the status quo MAPE from FY06 to FY14. For each year and each currency, 27 different ARIMA models were made from ARIMA (0,0,0) to ARIMA (2,2,2) and ranked by AIC. The model with the lowest AIC was then chosen to forecast a budgeted rate for that currency for that year. The process was then repeated for each year and currency. For example, the time series of annual FRB H.10 foreign exchange rates until 2004 provides the data for an ARIMA model to forecast 1 year and 2 year rates for FY06 (2005 and 2006). Furthermore, the table includes the percentage of forecasted exchange rates exceeding the actual exchange rates. This percentage gives the probability of budgeting enough funding for requirements given the applied forecasted

rate as the budgeted rate. Lastly, the countries for this data include Denmark, the EU, Japan, Norway, Singapore, South Korea, and the UK.

Table 11 ARIMA 1 Year, 2 Year, 1-2 Year Average and Status Quo MAPE for FY06 - FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate

								ARIMA
				ARIMA 1		ARIMA 2		1-2 Year
				Year		Year		Average
		Status Quo		Percent		Percent	ARIMA	Percent
		Percent		Budget		Budget	1-2	Budget
	Status	Budget Rate	ARIMA	Rate >	ARIMA	Rate >	Year	Rate >
	Quo	> Adjusted	1 Year	Adjusted	2 Year	Adjusted	Average	Adjusted
FY	MAPE	Rate	MAPE	Rate	MAPE	Rate	MAPE	Rate
6	8.03%	83.13%	6.68%	59.04%	9.76%	66.27%	8.17%	61.45%
7	13.82%	85.71%	11.85%	85.71%	16.60%	85.71%	14.22%	85.71%
8	16.19%	92.86%	17.60%	86.90%	21.51%	84.52%	19.55%	86.90%
9	12.52%	63.10%	15.08%	35.71%	16.83%	40.48%	15.70%	35.71%
10	9.15%	72.62%	7.24%	28.57%	10.46%	46.43%	7.25%	36.90%
11	10.21%	71.43%	14.68%	98.81%	18.83%	100.00%	16.75%	100.00%
12	7.13%	50.00%	4.52%	88.10%	6.41%	76.19%	5.38%	80.95%
13	5.80%	30.95%	7.52%	14.29%	7.54%	33.33%	6.71%	30.95%
14	5.17%	54.12%	8.97%	63.53%	10.81%	65.88%	9.81%	65.88%
Average	9.78%	67.10%	10.46%	62.30%	13.19%	66.53%	11.51%	64.94%

The status quo has a lower MAPE and a greater chance of a higher budgeted rate than adjusted rate compared to using ARIMA 1 year, 2 year, and 1-2 year average forecasts. As in the above methods, the APEs from the ARIMA results do not show a normal distribution. Figure 6 provides the APE distributions for each ARIMA method. The medians for each ARIMA method are also lower than the mean and provide a measure closer to the center mass of the APE distribution.

Figure 6 JMP® Printout of the ARIMA APE Distribution

Random Walk

Table 12 compares the Random Walk model 1 year, 2 year, and 1-2 year average forecasted rate MAPE against the status quo MAPE from FY06 to FY14. For example, the time series of annual FRB H.10 foreign exchange rates until 2004 provides the data for an ARIMA(0,1,0) model to forecast 1 year and 2 year rates for FY06 (2005 and 2006). Furthermore, the table includes the percentage of forecasted exchange rates exceeding the actual exchange rates. This percentage gives the probability of budgeting enough funding for requirements given the applied forecasted rate as the budgeted rate. Lastly, the countries for this data include Denmark, the EU, Japan, Norway, Singapore, South Korea, and the UK.

Table 12 Random Walk 1 Year, 2 Year, 1-2 Year Average and Status Quo MAPE for FY06 - FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate

								Random
				Random		Random		Walk 1-2
				Walk 1		Walk 2		Year
		Status Quo		Year		Year		Average
		Percent		Percent		Percent	Random	Percent
		Budget	Random	Budget	Random	Budget	Walk 1-	Budget
	Status	Rate >	Walk 1	Rate >	Walk 2	Rate >	2 Year	Rate >
	Quo	Adjusted	Year	Adjusted	Year	Adjusted	Average	Adjusted
FY	MAPE	Rate	MAPE	Rate	MAPE	Rate	MAPE	Rate
6	8.03%	83.13%	7.33%	49.40%	8.88%	48.19%	8.10%	49.40%
7	13.82%	85.71%	8.68%	83.33%	9.20%	82.14%	8.92%	83.33%
8	16.19%	92.86%	12.32%	85.71%	11.67%	77.38%	11.81%	82.14%
9	12.52%	63.10%	13.08%	34.52%	12.41%	28.57%	12.71%	30.95%
10	9.15%	72.62%	8.21%	23.81%	8.07%	14.29%	8.02%	21.43%
11	10.21%	71.43%	8.74%	82.14%	8.34%	69.05%	8.35%	77.38%
12	7.13%	50.00%	4.03%	73.81%	4.96%	58.33%	3.98%	63.10%
13	5.80%	30.95%	6.84%	19.05%	8.84%	19.05%	7.81%	17.86%
14	5.17%	54.12%	8.66%	54.12%	10.00%	52.94%	9.32%	54.12%
Average	9.78%	67.10%	8.65%	56.21%	9.12%	49.99%	8.78%	53.30%

Figure 7 JMP® Printout of the Random Walk APE Distribution

The 1 year forecasted rate provides the best MAPE of the Random Walk model while the status quo has the highest percentage of a higher budgeted rate than adjusted

rate. The Random Walk model has an APE distribution skewed right similar with the above results. The mean is higher than the median, as shown in Figure 7, with the median as a better representation of the central tendency.

Futures

Table 13 compares future markets annual average and October average forecasted rate MAPE against the status quo MAPE from FY06 to FY14. For example, the futures data uses the average price of the following month's futures contract from 2004 as the forecast rate for FY06 (2005 and 2006). Furthermore, the table includes the percentage of forecasted exchange rates exceeding the actual exchange rates. This percentage gives the probability of budgeting enough funding for requirements given the applied forecasted rate as the budgeted rate. Lastly, the countries for this data include Denmark, the EU, Japan, and the UK.

Table 13 Futures Annual and October Average and Status Quo MAPE for FY06 - FY14 and Probability of Budgeted Rate Greater than the Adjusted Rate

		Status Quo		Futures Annual	Futures	Futures October
		Percent	Futures	Average 1 Year	October	Average 1 Year
	Status	Budget Rate	Annual	Percent Budget	Average	Percent Budget
	Quo	> Adjusted	Average 1	Rate > Adjusted	1 Year	Rate > Adjusted
FY	MAPE	Rate	Year MAPE	Rate	MAPE	Rate
6	5.73%	77.78%	4.52%	30.56%	4.33%	33.33%
7	10.96%	66.67%	8.23%	66.67%	9.15%	66.67%
8	13.52%	94.44%	11.54%	94.44%	11.59%	94.44%
9	13.96%	66.67%	16.91%	50.00%	16.97%	41.67%
10	12.36%	58.33%	12.84%	38.89%	8.02%	55.56%
11	12.47%	52.78%	7.55%	77.78%	6.58%	50.00%
12	8.48%	41.67%	5.63%	77.78%	3.83%	47.22%
13	8.03%	0.00%	7.88%	11.11%	8.37%	11.11%
14	6.26%	63.89%	10.89%	63.89%	10.27%	61.11%
Average	10.20%	58.02%	9.55%	56.79%	8.79%	51.23%

The October average forecasted rate provides the best MAPE of the futures contracts model while the status quo has the highest percentage of a higher budgeted rate than adjusted rate. The APEs for this method also skew right with the mean above the median as shown in Figure 8. For comparison, using medians rather than the mean gives a better assessment of the differences between methodologies.

Figure 8 JMP® Printout of the Futures APE Distribution

Comparison

Table 14 presents each methodology's MAPE according to country over the time period. A highlighted MAPE is the lowest error between all available methods for that

country. Overall, Global Inisght's 1-2 year average forecast provides the lowest MAPE. Only the ARIMA 2 year and 1-2 year average had worse MAPEs than the status quo.

Table 14 Average MAPE for Each Country by Methodology from FY06 to FY14 with the Lowest MAPE Highlighted

						MAPE	from FY0	6 to FY14					
							Random				ARIMA	Futures	Futures
		Global	Global	Global	Random	Random	Walk 1-2				1-2	Annual	October
	Status	Insight 1	Insight 2	Insight 1-2	Walk 1	Walk 2	Mean	Forward	ARIMA 1	ARIMA 2	Year	Mean 1	Mean 1
Country	Quo	Year	Year	Year Mean	year	year	year	Rates	year	year	Mean	Year	Year
DENMARK	8.36%				6.70%	6.73%	6.71%	7.10%	9.70%	15.17%	11.98%		
EU	8.28%	6.57%	5.83%	5.69%	6.99%	8.10%	7.50%	6.33%	12.79%	20.73%	16.56%	6.70%	7.21%
ICELAND	19.66%												
Japan	13.55%	12.20%	12.28%	11.99%	13.15%	14.35%	13.08%	14.89%	14.01%	15.42%	14.71%	14.07%	12.21%
NORWAY	8.45%				8.28%	8.37%	8.32%	8.51%	9.10%	10.81%	9.79%		
SINGAPORE	10.13%				5.79%	5.51%	5.62%	l	6.04%	6.71%	6.28%		
SOUTH KOREA	10.93%	8.66%	11.46%	9.33%	11.42%	12.25%	11.83%	10.46%	11.43%	12.31%	11.86%		
TURKEY	14.67%												
UK	8.76%	6.25%	6.92%	6.30%	8.24%	8.55%	8.39%	8.10%	9.32%	9.49%	9.35%	7.89%	6.95%
Average	11.42%	8.42%	9.12%	8.33%	8.65%	9.12%	8.78%	9.23%	10.34%	12.95%	11.51%	9.55%	8.79%

Table 15 presents a comparison between the methods using only the currencies from the EU, Japan, and the UK. Every methodology calculated a forecast for these countries and provides a fairer comparison as opposed to Table 14. The Global Insight 1 year forecast provided the best estimates for the UK Pound while the Global Insight 1-2 year average was the best forecast for the Euro, Japanese Yen, and overall average.

Table 15 Average MAPE for the EU, Japan, and the UK by Methodology from FY06 to FY14 with the Lowest MAPE Highlighted

						MAPE	from FYO	6 to FY14					
							Random				ARIMA	Futures	Futures
		Global	Global	Global	Random	Random	Walk 1-2				1-2	Annual	October
	Status	Insight 1	Insight 2	Insight 1-2	Walk 1	Walk 2	Mean	Forward	ARIMA 1	ARIMA 2	Year	Mean 1	Mean 1
Country	Quo	Year	Year	Year Mean	year	year	year	Rates	year	year	Mean	Year	Year
EU	8.28%	6.57%	5.83%	5.69%	6.99%	8.10%	7.50%	6.33%	12.79%	20.73%	16.56%	6.70%	7.21%
JAPAN	13.55%	12.20%	12.28%	11.99%	13.15%	14.35%	13.08%	14.89%	14.01%	15.42%	14.71%	14.07%	12.21%
UK	8.76%	6.25%	6.92%	6.30%	8.24%	8.55%	8.39%	8.10%	9.32%	9.49%	9.35%	7.89%	6.95%
Average	10.20%	8.34%	8.34%	7.99%	9.46%	10.33%	9.66%	9.77%	12.04%	15.21%	13.54%	9.55%	8.79%

As mentioned above, the mean is not the best measure of central tendency for each month's results. The APE distributions are skewed to the right. Comparing medians offer a better approach to choosing the lowest APE methodology. Table 17

examines the median APE for currencies with every available methodology, and, as in Table 15, the overall best method is the average October futures contract.

Table 16 recreates Table 14 with medians rather than means. Judging by the average (mean) of each country's median, the best overall method is the Global Insight forecast 1 year forecast as opposed to the average 1-2 year forecast. Table 17 examines the median APE for currencies with every available methodology, and, as in Table 15, the overall best method is the average October futures contract.

Table 16 Median APE for Each Country by Methodology from FY06 to FY14 with the Lowest Median APE Highlighted

		Median APE from FY06 to FY14														
							Random				ARIMA	Futures	Futures			
		Global	Global	Global	Random	Random	Walk 1-2				1-2	Annual	October			
	Status	Insight 1	Insight 2	Insight 1-2	Walk 1	Walk 2	Mean	Forward	ARIMA 1	ARIMA 2	Year	Mean 1	Mean 1			
Country	Quo	Year	Year	Year Mean	year	year	year	Rates	year	year	Mean	Year	Year			
DENMARK	4.67%				5.63%	5.48%	5.57%	5.50%	7.64%	15.00%	11.14%					
EU	5.32%	4.93%	5.11%	4.65%	5.94%	7.90%	6.61%	4.56%	10.42%	17.71%	11.66%	5.21%	5.28%			
ICELAND	16.50%															
JAPAN	15.42%	11.74%	10.59%	11.80%	12.61%	10.28%	13.24%	15.20%	13.90%	16.45%	14.97%	13.27%	10.80%			
NORWAY	6.91%				6.36%	6.85%	6.55%	6.34%	6.70%	7.79%	7.55%					
SINGAPORE	10.12%				4.85%	4.87%	4.64%		4.55%	6.03%	5.29%					
SOUTH KOREA	7.34%	5.34%	9.83%	7.04%	9.27%	10.11%	9.71%	8.08%	8.88%	8.68%	8.73%					
TURKEY	14.10%															
UK	8.97%	4.18%	5.09%	3.90%	5.87%	6.82%	6.34%	5.45%	8.96%	8.84%	8.86%	5.15%	3.93%			
Average	9.93%	6.55%	7.66%	6.85%	7.22%	9.12%	7.52%	9.23%	10.34%	12.95%	9.74%	7.88%	6.67%			

Table 17 Median APE for the EU, Japan, and the UK by Methodology from FY06 to FY14 with the Lowest Median APE Highlighted

						Median A	NPE from I	-Y06 to FY	14				
							Random				ARIMA	Futures	Futures
		Global	Global	Global	Random	Random	Walk 1-2				1-2	Annual	October
	Status	Insight 1	Insight 2	Insight 1-2	Walk 1	Walk 2	Mean	Forward	ARIMA 1	ARIMA 2	Year	Mean 1	Mean 1
Country	Quo	Year	Year	Year Mean	year	year	year	Rates	year	year	Mean	Year	Year
EU	5.32%	4.93%	5.11%	4.65%	5.94%	7.90%	6.61%	4.56%	10.42%	17.71%	11.66%	5.21%	5.28%
Japan	15.42%	11.74%	10.59%	11.80%	12.61%	10.28%	13.24%	15.20%	13.90%	16.45%	14.97%	13.27%	10.80%
UK	8.97%	4.18%	5.09%	3.90%	5.87%	6.82%	6.34%	5.45%	8.96%	8.84%	8.86%	5.15%	3.93%
Average	9.90%	6.95%	6.93%	6.78%	8.14%	8.33%	8.73%	8.40%	11.09%	14.33%	11.83%	7.88%	6.67%

Finally, a medians comparison was accomplished via a bootstrap to distinguish which which methods are statistically the same or different. Figure 9 illustrates the results of

the bootstrap analysis based on a 95% confidence interval (the upper bound is 97.5% and the lower bound is 2.5%) across all APEs for all the countries available to a method. Methods that can be considered statistically similar are connected by horizontal lines. The medians are different from Table 16 and Table 17 due to aggregating each country's APE for the entire time frame, rather than country specific. Line "A" connects the average futures contract settlement prices in October or annually, the Global Insight forecast, a Random Walk model, or forward rates can is statistically no different than any other, and each has a lower median APE interval than the status quo. The ARIMA models can be thought of as statistically the same as the status quo (line "C" or "D") with care given to including or excluding the ARIMA 1 year or ARIMA 2 year forecast methods. All methods connected by line "A" have a lower median APE than the status quo. Table 18 is the amount of percentage points the median of each method on line "A" is lower than the status quo median as taken from Table 17 examines the median APE for currencies with every available methodology, and, as in Table 15, the overall best method is the average October futures contract.

Table 16 It also shows the opportunity cost of the status quo of using the status quo over the method (using the overall median APE from each method against all of the currencies in the FY13 FCF account).

Figure 9 Medians Comparison between Methodologies Based with 95% Confidence Bounds

Table 18 The Median APE Percent of Line A Methods and the Associated Opportunity Cost of the Status Quo Over Each Method FY06-FY14

	Glo	bal Insig	ght	Rar	ndom W	alk	Forward	Futui	es
	1	2	1-2	1	2	1-2	Rate	Annual	Oct
	Year	Year	Year	Year	Year	Year			
Percent	3.38	2.27	3.08	2.71	0.81	2.41	0.70	2.05	3.26
Lower than									
Status Quo									
Opportunity	36.1	25.0	33.9	29.8	8.9	26.5	7.7	22.5	34.8
Cost (\$M)									

Long Term Comparison

The long term comparisons only include the currencies for Japan and the United Kingdom. This is due to the unavailability of data for each method for the other currencies. Furthermore, the Global Insight data is not available for the time period and that method is excluded from the analysis. Using the results from the short term study

period, median APEs are used as the primary metric in comparing methods as opposed to the MAPE.

Comparison from FY91 to FY12

The FY91 to FY12 period uses the status quo, Random Walk model, forward rates, ARIMA, and futures data as the methods of comparison. The lowest median is highlighted in yellow. Consistent with the shorter time period findings, the average futures contract settlement price in October provides the lowest median APE as shown in Table 19. A comparison of the method medians by currency in Table 20 also highlights the average futures contract in October as the lowest median APE for the Pound while the Random Walk 2 year forecast has the lowest median for the Yen.

Table 19 Median APE Combining All Countries from FY91 to FY12 with Inter-Quartile Range

			Median APE for All Countries												
I										Futures	Futures				
			Random Walk	Random Walk	Random Walk				ARIMA 1-2	Annual Mean	October Mean				
		Status Quo	1 year	2 year	1-2 Mean year	Forward Rates	ARIMA 1 year	ARIMA 2 year	Year Mean	1Year	1Year				
		10.285	8.73	8.86	8.815	9.69	10.065	11.215	10.41	9.525	7.975				
	Median (IQR)	(5.728-15.643)	(4.04-14.725)	(4.213-16.43)	(3.695-15.09)	(3.91-16.458)	(6.02-16.258)	(6.718-17.163)	(6.498-16.76)	(4.243-14.908)	(3.54-12.82)				

Table 20 Median APE by Country from FY91 to FY12 with Inter-Quartile Range

		Median APE for Countries with All Methods												
									Futures	Futures				
		Random Walk	Random Walk	Random Walk				ARIMA 1-2	Annual Mean	October Mean				
Country	Status Quo	1 year	2 year	1-2 Mean year	Forward Rates	ARIMA 1 year	ARIMA 2 year	Year Mean	1Year	1Year				
	12.22	10.31	9.27	9.92	13.63	12.00	13.85	13.19	12.10	9.45				
Japan	(5.94-18.93)	(5.23-15.97)	(4.09-20.58)	(3.58-17.61)	(6.15-19.033)	(6.59-19.79)	(6.84-22.88)	(6.83-21.18)	(6.59-18.14)	(4.2-14.045)				
	9.04	7.86	8.53	8.15	6.065	8.95	9.60	8.64	6.81	6.315				
UK	(5.55-13.52)	(3.52-12.56)	(4.26-12.96)	(3.73-12.94)	(2.745-13.488)	(4.92-13.29)	(6.26-13.58)	(6.44-13.23)	(3.18-12.36)	(3.123-11.325)				

Next, a medians comparison was accomplished to distinguish which methods are statistically different. Figure 10 illustrates the results of the bootstrap analysis based on a

95% confidence interval. Methods that can be considered statistically similar are connected by horizontal lines. The best methods are the average futures contract in October and the Random Walk models. Horizontal lines connect the annual average futures contract and the forward rate method to every other model, therefore those methods were not considered different than the status quo. The ARIMA 2 year forecast performed the worst and could be considered by itself, or with the forward rates, status quo, annual average futures contract, and ARIMA 1 year and 1-2 year average forecasts. Table 21 is the amount of percentage points the median of each method on line "A" is lower than the status quo median as taken from Table 19. It also shows the opportunity cost of using the status quo over the lower APE methods (using the overall median APE from each method against all of the currencies in the FY13 FCF account).

Figure 10 FY91-FY12 Medians Comparison Between Methodologies Based with 95% Confidence Bounds

Table 21 The Median APE Percent of Line A Methods and the Associated Opportunity Cost of the Status Quo Over Each Method FY91-FY12

Rar	ndom W	alk	Futures
1	2	1-2	Oct
Year	Year	Year	
1.56	1.43	1.47	2.31
17.1	15.7	16.2	25.3
	1 Year 1.56	1 2 Year Year 1.56 1.43	Year Year Year 1.56 1.43 1.47

Table 22 presents the number of months the method's budgeted exchange rate is greater than the actual exchange rate. Should the actual exchange rate be lower, the US dollars allocated would not cover the requirement. For example, a ¥1,000 requirement in US dollars at 110 Yen per dollar equals a budget of \$9.09. If the actual rate were 100 yen per dollar at the time of execution, the amount needed to cover the requirement is \$10. The table provides the chance the method's budget would allocate enough funding to cover the actual expenses during the year of execution. Highlighted in yellow, the Random Walk 2 year forecast provides the lowest chance of the budgeted rate being higher than the actual rate.

Table 22 Comparison of Each Methods Chance of a Greater Budgeted Rate than the Actual Rate from FY91 to FY12

		Random Walk	Random Walk	Random Walk	Forward	arima	arima	ARIMA 1-2	Futures Annual	Futures October
FY	Status Quo	1Year	2 Year	1-2 Year Mean	Rates	1Year	2 Year	Year Mean	Mean 1 Year	Mean 1 Year
Percent										
Budget Rate >										
Actual Rate	57.58%	57.01%	44.70%	51.70%	63.64%	52.46%	48.30%	50.57%	62.88%	55.49%

Comparison from FY79 to FY12

The FY79 to FY12 period uses the status quo, Random Walk model, ARIMA, and futures data as the methods of comparison. Forward rates for the Bank of Japan were

unavailable before 1989 from the OECD data file. The lowest median is highlighted in yellow. The average futures contract settlement price in October provides the lowest median APE as shown in Table 23. A comparison of the method medians by currency in Table 24 also highlights the average futures contract in October as the lowest median APE.

Table 23 Median APE Combining All Countries from FY79 to FY12 with Inter-Quartile Range

	Median APE for All Countries									
								Futures	Futures	
		Random Walk	Random Walk	Random Walk			ARIMA 1-2	Annual Mean	October Mean	
	Status Quo	1 year	2 year	1-2 Mean year	ARIMA 1 year	ARIMA 2 year	Year Mean	1Year	1Year	
	11.3	11.435	11.435	11.66	10.945	13.1	12.095	11.12	10.085	
Median (IQR)	(6.018-18.508)	(5.275-18.013)	(5.403-20.568)	(4.713-18.708)	(6.063-18.758)	(7.148-24.16)	(6.805-21.443)	(6.805-21.443)	(4.723-16.22)	

Table 24 Median APE by Country from FY79 to FY12 with Inter-Quartile Range

	Median APE for Countries with All Methods								
								Futures	Futures
		Random Walk	Random Walk	Random Walk			ARIMA 1-2	Annual Mean	October Mean
Country	Status Quo	1 year	2 year	1-2 Mean year	ARIMA 1 year	ARIMA 2 year	Year Mean	1 Year	1Year
	11.81	12.17	12.97	12.17	12.18	16.12	14.71	11.89	10.82
Japan	(5.07-23.00)	(5.59-18.61)	(5.46-22.76)	(4.69-19.94)	(6.71-22.10)	(7.47-31.71)	(7.28-25.80)	(6.24-18.95)	(5.56-16.718)
	10.96	10.68	10.90	10.79	9.68	11.26	9.84	10.37	9.005
UK	(6.53-16.05)	(4.71-17.71)	(5.32-18.06)	(4.86-17.78)	(5.07-16.84)	(6.98-17.96)	(6.45-17.29)	(4.44-17.04)	(4.153-15.343)

Next, a medians comparison was accomplished to distinguish which methods are statistically different. Figure 11 illustrates the results of the bootstrap analysis based on a 95% confidence interval. Methods that can be considered statistically similar are connected by horizontal lines. The average futures contract in October is statistically similar to the ARIMA 1 year forecast, the average annual futures contract settlement price, and the status quo. The ARIMA 2 year forecast is not connected by horizontal line to another method and can be considered statistically different. The Random Walk models, status quo, annual average futures contract, and ARIMA 1 year and 1-2 year average forecasts are not statistically different from each other. The median APE of the

futures contracts in October method is 1.2% lower than the status quo median resulting in \$13.7 million opportunity cost (assuming the median of the method applied to all currencies in the FY13 FCF). At a 90% confidence interval, Figure 12, the futures contract methods and ARIMA 1 year forecast are statistically different from the status quo.

Figure 11 FY79-FY12 Medians Comparison Between Methodologies Based with 95% Confidence Bounds

Figure 12 FY79-FY12 Medians Comparison Between Methodologies Based with 90% Confidence Bounds

Table 25 presents the number of months the method's budgeted exchange rate is greater than the actual exchange rate. Highlighted in yellow, the Random Walk 2 year forecast provides the lowest chance of the budgeted rate being higher than the actual rate.

Table 25 Comparison of Each Methods Chance of a Greater Budgeted Rate than the Actual Rate from FY79 to FY12

		Random Walk	Random Walk	Random Walk	ARIMA 1	ARIMA 2	ARIMA 1-2	Futures Annual	Futures October
FY	Status Quo	1 Year	2 Year	1-2 Year Mean	Year	Year	Year Mean	Mean 1 Year	Mean 1 Year
Percent									
Budget Rate >									
Actual Rate	59.68%	54.53%	45.10%	50.61%	51.72%	49.14%	50.61%	60.05%	55.02%

Summary

The Global Insight's forecasts provide the lowest MAPE and median APE. The average futures contract in October provided the lowest median APE when comparing the methods with only against the Euro, Pound, and Yen. Both can be considered

statistically the same along with the Random Walk and forward rate methods using a 95% confidence interval around each method's medians. All of those models have lower median APEs than the status quo. The ARIMA models performed no better, or worse, than the status quo.

When viewed over a longer time horizon, the average futures contract in October consistently displays lower median APEs than the other methodologies while the ARIMA 2 year forecast is consistently higher. From FY91-FY12, the medians of the October futures contracts, forward rate, and Random Walk models were statistically the same but were different in the FY79-FY12 period. ARIMA 1 year forecasts and the status quo were not statistically different from the average futures contract models for the longer time period. Overall, the October futures contracts beat the status quo at each level of analysis except for the longer period. For both long term periods, the Random Walk 2 year forecast had the lowest chance of putting too little funding due to the difference in budgeted versus actual exchange rate.

V. Conclusion

This chapter reviews the research questions outlined in Chapter 1 and provides answers garnered from Chapter 4. Next, limitations in the data are explored as well as how to use the methodology in real world application. Future research naturally follows data limitations as the start of new avenues of inquiry. The chapter then summarizes the research.

Research Questions Revisited

The goal of the research is to provide a review of different forecasting methods as compared to the status quo. Specifically, this thesis examined each method in terms of variance or the deviation of the budgeted exchange rate from the actual exchange rate (as measured by the APE). After finding the mean of each method, further investigation revealed the use of the median as a more appropriate due to the skewed nature of the results. Using a bootstrap method, a 95% confidence interval was developed around each method's medians to see whether one method was statistically different from the other. Comparing these medians, the Air Force could use the Global Insight, futures contracts, forward rates, or a Random Walk model to replace the status quo method. Each method had a lower variance than the status quo and is statistically the same. Doing a longer term comparison, the Random Walk models, forward rates, and futures contracts are statistically significant and lower than the status quo from FY91 to FY12. For FY79 to FY12 the futures contracts and ARIMA 1 year forecasts are not statistically different from the status quo at 95% confidence, but are different at the 90% level. These results somewhat fit the literature. We would expect the Random Walk to perform as well as

most methods, while Groshek and Felli experienced positive results with futures contracts and forward rates. The period from FY79 to FY12 was depressing in that the futures contracts broke were no long significantly different from the status quo. This research favors using an average of the October futures contract settlement prices as the budgeted rate.

Reviewing these methods in terms of simplicity is based on the method required to attain a budgeted exchange rate as well as the ability to explain the method's logic to the GAO, Inspector General, or an auditor. Upfront, Global Insight is the simplest method as it only requires using the 4th quarter's forecast of next year's annual rate. The most complicated is the ARIMA model as it requires either a computer program or knowledgeable technician to implement. The Random Walk models used the same computer program as the ARIMA models, but the Random Walk model could be implemented with a simple formula with an estimate for the error term $(Y_t = Y_{t-1} + \varepsilon_t)$. The same could be said for the forward rate, but it also requires another data source for the interest rates. The futures data is a simple average of the settle prices, but the settle prices of various contracts expiring at different dates need combined (or "rolled" together) into a continuous series. Therefore, in terms of simplicity, the Global Insight method is the simplest to formulate.

The last research question focused on the probability of budgeting too little from Figure 1. As stated, a moderately lower rate is preferred so that the DoD will not have to take additional funding from the FCF account. This would lead to an overall lowering of the current FCF and reduce the opportunity cost of maintaining such a reserve. With that said, an ideal probability would be less than 50%. Over the short term, Global Insight

was consistently under 50% across all three techniques while the Random Walk 2 year forecast was also under by 0.01%. Over the long term comparison, only the Random Walk 2 year and ARIMA 2 year forecasts managed to have a probability less than 50%. Since Global Insight has a lower median APE, and is simple to retrieve, the research supports this method in terms of the probability of having a higher budgeted rate than actual rate.

The research questions summarize to a variety of possible replacements to the status quo. In terms of variance, the futures contracts consistently provides lower medians than the status quo over the long term, but is not statistically different from the Global Insight methods in the short term. Global Insight is also the simplest method to explain, but may not have the academic literature background of the Random Walk, future contracts, and forward rate methods. Therefore it could be questionable to an auditor of the process, since the Air Force is using a rate without fully understanding how Global Insight calculates the rate (it would be a "black box" process). Finally, Global Insight consistently calculates a budgeted rate below the actual rate over the short term while the 2 year Random Walk forecast was consistent over the long term. This is preferable than a smaller budget requirement. This leads the research to recommend the average of futures contracts in October as the method to use in creating a budgeted rate. Formulating a budget rate via this method should give a 3.26% reduction to the median APE and avoid a \$34.8 million opportunity cost (assuming the median APE holds for all currencies in the FY13 FCF account).

Data Limitations

Limitation in the data affected how we performed our analysis and the methods chosen. Each data set did not have all the currencies of interest over the required time periods. Global Insight data covered only the shorter period while the OECD interest rates for Japan only went back to 1989. Currency futures for other countries were available from the Chicago Mercantile Exchange (CME) Group although we did not have access to their historical data. The ideal data set would have each countries data (whether future contract prices, interest rates, or exchange rates) for the FY79 to FY14 timeframe. The OSD began publishing the adjusting rates in FY2000, and we could not use those adjusting rates to compare against each method. We therefore used the monthly average rate from the FRB H.10 report as the adjusting rates. The OSD adjusting rates and FRB H.10 monthly average do not give the exact same rate for each currency; however, they can be considered statistically the same in the median monthly rate (see Appendix F).

Future Research

The data for the futures contracts only contained three currencies and the contract were for next month, rather than for next year. The CME Group has additional currencies of interest to the DoD (such as the South Korean Won). Furthermore, CME Group data contains contracts with a variety of maturities to where an analyst could compare which contracts provide the lowest APE (e.g. using a contract with maturities at 3, 6, 9, or 12 months into the future, rather than one month). Funding, though, would be required to secure a subscription before the DoD would know if having the additional data would be economical.

Additional research into this area may focus on using more advanced forecasting techniques or the cost of changing fiscal law to allow risk mitigation techniques employed by private companies. Some research into forecasting exchange rates had success using artificial neural networks. Also, it would be interesting to see an application of the Kalman filter to exchange rate prediction. As for changing fiscal law, the ability to buy actual futures contracts does away with the need to forecast a currency rate. The DoD may have a higher exchange rate at the time of execution, but the budget would accurately reflect the requirement. The FCF could also be liquidated as the DoD would get the exact amount of currency required. Investigating the possible ramifications incurred by not allowing purchase of futures contracts would allow for a cost/benefit analysis.

Bibliography

- Allen, G. P., & Fildes, R. (2001). *Principles of Forecasting: A Handbook for Researchers and Practitioners*. Norwell: Kluwer Academic Publishers.
- Armstrong, S. J. (2001). *Principles of Forecasting: A Handbook for Researchers and Practitioners*. Norwell: Kluwer Academic Publishers.
- Board of Governors of the Federal Reserve System. (2015, January 5). *Foreign Exchange Rates H.10*. Retrieved October 19, 2014, from Board of Governors of the Federal Reserve System: http://www.federalreserve.gov/releases/h10/hist/
- Bodnar, G. (2014, September 10). *Techniques for Managing Exchange Rate Exposure*. Retrieved September 10, 2014, from The Wharton School Finance Department, University of Pennsylvania Web Site: http://finance.wharton.upenn.edu/~bodnarg/courses/readings/hedging.pdf
- Burnham, K. P., & Anderson, D. R. (2004, November). Multimodel Inference: Understanding AIC and BIC in Model Selection. *Sociological Methods & Research*, *33*(2), 261-304.
- Corte, P. D., Sarno, L., & Tsiakas, I. (2008). An Economic Evaluation of Empirical Exchange Rate Models. *The Review of Financial Sutdies*, 3492-3530.
- Department of Defense. (2011, April). *Financial Management Regulation Volume 5, Chapter 12*. Retrieved from Under Secretary of Defense (Comptroller): http://comptroller.defense.gov/Portals/45/documents/fmr/current/05/05 12.pdf
- Department of Defense. (2011, May). *Financial Management Regulation Volume 6A*, *Chapter 7*. Retrieved July 10, 2014, from Under Secretary of Defense (Comptroller): http://comptroller.defense.gov/Portals/45/documents/fmr/current/06a/06a_07.pdf
- Engel, C., Mark, N. C., & West, K. D. (2007). Exchange Rate Models Are Not as Bad as You Think. *National Bureau of Economic Research Working Paper Series*, Working Paper No. 13318.
- Eschenbach, T. G. (2010). Engineering Economy: Applying Theory to Practice, 3rd Edition. Oxford: Oxford University Press.
- Evans, M. D., & Lyons, R. K. (2005). Meese-Rogoff Redux: Micro-Based Exchange-Rate Forecasting. *American Economic Review*, 95, 405-414.

- Feenstra, R. C., & Taylor, A. M. (2008). *International Macroeconomics*. New York: Worth Publishers.
- Freund, M., & O'Neal, C. (2013). *Future Exchange Rates Predictor*. Monterey: Naval Postgraduate School.
- Gilbert, P. (1995). Combining VAR Estimation and State Space Model Reduction for Simple Good Predictions. *Journal of Forecasting*, *14*, 229-250.
- Government Accountability Office. (2005). Review of DoD's Report on Budgeting for Exchange Rates for Foreign Currency Fluctations. Washington: US Government Printing Office.
- Groshek, G. M., & Felli, J. C. (2000). Foreign Exchange and Lost Opportunity in the US Department of Defense. *Journal of Multinational Financial Management*, 10, 73-89.
- Horowitz, S. A., Gallow, A. O., Levine, D. B., Shue, R. J., & Thomas, R. W. (2012). *The Use of Inflation Indexes in the Department of Defense*. Alexandria: Institute for Defense Analysis.
- IHS Inc. (2015). *Country & Industry Forecasting*. Retrieved October 19, 2014, from IHS: https://www.ihs.com/
- Majhi, B., Rout, M., Majhi, R., Panda, G., & and Fleming, P. J. (2012). New Robust Forecasting Models for Exchange Rates Prediction. *Expert Systems with Applications*, 39, 12658-12670.
- Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting Methods and Applications Third Edition. New York: John Wiley & Sons, Inc.
- Meese, R. A., & Rogoff, K. (1983). Empirical Exchange Rate Models off the Seventies: Do They Fit Out of Sample? *Journal of International Economics*, 14, 3-24.
- Moosa, I. (2013). Why Is It So Difficult to Outperform the Random Walk in Exchange Rate Forecasting? *Applied Economics*, 45, 3340-3346.
- Moosa, I., & Burns, K. (2014). A Reappraisal of the Meese-Rogoff Puzzle. *Applied Economics*, 46, 30-40.

- Nau, R. (2014). *Introduction to ARIMA: Nonseasonal Models*. Retrieved August 05, 2014, from Statistical Forecasting: Notes on Regression and Time Series Analysis: http://people.duke.edu/~rnau/411arim.htm
- OECD. (2015). *Monthly Monetary and Financial Statistics (MEI): Interest Rates*. Retrieved July 10, 2014, from OECD.StatExtracts: http://stats.oecd.org/index.aspx?queryid=86
- Office of Management and Budget. (2013). *Circular No. A-11 Part 1 General Information*. Washington: Executive Office of the President.
- Office of Management and Budget. (2014). Fiscal Year 2015 Budget of the U.S. Government. Washington: US Government Printing Office.
- Office of the Undersecretary of Defense (Comptroller). (2012, March). *National Defense Budget Estimates for FY 2013 (Green Book)*. Retrieved July 10, 2014, from Undersecretary of Defense (Comptroller): http://comptroller.defense.gov/budgetmaterials/budget2013.aspx
- Office of the Undersecretary of Defense (Comptroller). (2013, December). *United States Department of Defense: Agency Financial Report Fiscal Year 2013*. Retrieved July 2014, 10, from Undersecretary of Defense (Comptroller): http://comptroller.defense.gov/FinancialManagement/reports/afr2013.aspx
- Office of the Undersecretary of Defense (Comptroller). (2014, December 31).

 *Department of Defense Prior Foreign Currency Fluctuation Report. Retrieved July 10, 2014, from Financial Management Reports:

 http://comptroller.defense.gov/FinancialManagement/Reports/fcfr.aspx
- Office of the Undersecretary of Defense (Comptroller). (2014, March). *Justification for FY 2015 Operation and Maintenance, Defense-Wide*. Retrieved from Office of the Undersecretary of Defense (Comptroller): http://comptroller.defense.gov/Portals/45/Documents/defbudget/fy2015/budget_justification/pdfs/01_Operation_and_Maintenance/Volume_I_Part_I.pdf
- Psendorfer, W., & Swinkels, J. M. (2000, June). Efficiency and Information Aggregation in Auctions. *American Economic Association*, 90(3), 499-525.
- Quandl. (2015). *Roll Methodology*. Retrieved November 19, 2014, from Quandl: https://www.quandl.com/#/SCF/documentation/roll-methodology

- Ramsey, P. (2013, Summer). Introduction to One-Click Bootstrapping. *JMPer Cable*(28), pp. 1-4.
- SAS Institute Inc. (2014). *JMP(R) 11 Documentation Library*. Cary: SAS Institute Inc.
- Secretary of the Air Force Financial Management Directorate of Economics and Business Management. (2010, September 21). Foreign Currency Exchange Forecasting. Washington, DC, United States of America.
- Singh, K., & Xie, M. (2008). *Bootstrap: A Statistical Method*. Retrieved from Rutgers University: http://www.stat.rutgers.edu/home/mxie/RCPapers/bootstrap.pdf
- The Judge Advocate General's Legal Center and School. (2014). 2014 Fiscal Law Deskbook. Charlottesville: United States Army.

Appendix

Appendix A: ARIMA

FY06-FY14

Denmark

European Union

Japan

Norway

Singapore

South Korea

United Kingdom

FY79-FY12

Japan

Japan - Time Series of JAPAN -- SPOT EXCHANGE RATE, YEN/US\$

Japan - Time Series of JAPAN -- SPOT EXCHANGE RATE, YEN/US\$ 2

United Kingdom

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Appendix B: Forward Rate Forecasts

FY06-FY14

Denmark

Subject	Long-term	interest rat	es, Per cen	t per annur	n					
Frequency					Mon	thly				
Time	Dec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-2013
Country										
Denmark i	3.8462	3.3529	3.7766	4.3344	3.4998	3.5295	3.012	1.8571	1.07	1.89
United States i	4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2.9
data extracted on 02 Oct 2014 13:05 UTC (GMT) from OECD.Stat										
Annual FRB H.10 Rate	5.9891	5.9953	5.9422	5.4413	5.0885	5.3574	5.6265	5.3535	5.7922	5.617
Calculated Forward Rate	6.463413	7.533895	6.916768	5.202203	3.867432	5.428958	6.016372	5.583784	7.611007	7.580035

European Union

Subjec	t Long-term	interest rat	es. Per cen	t per annur	n					
Frequency	/				Mon	thly				
Tim	Dec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-2013
Country										
United States	4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2.9
Euro area (18 countries)	3.6893	3.409	3.9026	4.3818	3.8881	3.8727	4.0714	4.0908	2.0989	3.3128
data extracted on 02 Oct 2014 13:05 UTC (GMT) from OECD.Stat										
Annual FRB H.10 Rate	1.2438	1.2449	1.2563	1.3711	1.4726	1.3935	1.3261	1.3931	1.2859	1.3281
Calculated Forward Rate	0.720868	0.647468	0.701873	0.769641	0.970575	0.761816	0.891444	1.226274	0.885995	0.832653

Japan

Subject	ct La	ong-term i	interest rat	es, Per cen	t per annur	n					
Frequenc	су					Mon	thly				
Tim	ne D	Dec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-2013
Country											
Japan	i	1.397	1.488	1.645	1.526	1.214	1.272	1.133	0.971	0.781	0.688
United States	i	4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2.9
data extracted on 02 Oct 2014 13:05 UTC (GMT) from OECD.Stat											
Annual FRB H.10 Rate	1	108.1508	110.1069	116.3121	117.7623	103.3906	93.6827	87.7817	79.6967	79.818	97.5971
Calculated Forward Rate	2	235.9736	242.0759	244.4973	237.7624	159.7091	189.2621	176.5511	120.4953	121.9006	225.4909

Norway

Subject	ct Lor	ng-term i	interest rat	es, Per cen	t per annur	n					
Frequenc	y					Mon	thly				
Tim	ne De	ec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-2013
Country											
Norway	i	3.94	3.83	4.24	4.66	3.77	3.98	3.61	2.38	2.08	2.94
United States	i	4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2.9
data extracted on 02 Oct 2014 13:05 UTC (GMT) from OECD.Stat		0.7000		0.400=		E 000E	0.0000	00454	= 0000	= 0.10.1	
Annual FRB H.10 Rate		6.7399	6.4412	6.4095	5.8557	5.6365	6.2908	6.0451	5.6022	5.8181	5.8772
Calculated Forward Rate	7.	135562	7.294692	6.80092	5.276337	4.041264	5.798147	5.625484	4.939218	5.138062	5.817533

South Korea

	Subject	Long-term	interest rat	os Bor con	t por appur	n					
	Subject	rorg-term	merescrat	es. Per cen	tperannu						
	Frequency					Mon	thly				
	Time	Dec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-2013
Country											
Korea	i	3.85	5.6	4.95	5.82	4.87	5.31	4.46	3.81	3.13	3.653
United States	i	4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2.9
data extracted on 02 Oct 2014 13:05 UTC (GMT) from OB	ECD.Stat										
Annual FRB H.10 Rate		1145.236	1023.749	954.321	928.9717	1098.706	1274.625	1155.739	1106.94	1126.162	1094.675
Calculated Forward Rate		1234,966	848,4709	891.7689	694,6856	640.132	927, 1838	908.0806	685.7965	741.6855	917.5225

Subje	ct	Long-term	interest rat	es, Per cen	t per annur	ņ					
Frequence	су					Mon	thly				
Tin	ne	Dec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-2013
Country											
United Kingdom	i	4.5316	4.2186	4.6195	4.6937	3.6238	3.8871	3.587	2.1704	1.8361	3.0879
United States	i	4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2.9
data extracted on 02 Oct 2014 13:05 UTC (GMT) from OECD.Stat											
Annual FRB H.10 Rate		1.833	1.8204	1.8434	2.002	1.8545	1.5661	1.5452	1.6043	1.5853	1.5642
Calculated Forward Rate		0.515808	0.575793	0.536732	0.447416	0.398841	0.599711	0.605263	0.585891	0.604973	0.609919

FY91-FY12

Japan

Subje	ct											
Ur	nit											
Frequenc												
Tin	ne Dec-197	7 Dec-1978	Dec-1979	Dec-1980	Dec-1981	Dec-1982	Dec-1983	Dec-1984	Dec-1985	Dec-1986	Dec-1987	Dec-198
Country												
Japan	i											
United States	<u>i</u> 7.	69 9.0°	10.39	12.84	13.72	10.54	11.83	11.5	9.26	7.11	8.99	9.1
Data extracted on 12 Dec 2014 14	4:14 UTC (0	GMT) from O	ECD.Stat									
Japan FRB H10 Annual Rate	268.619	94 210.3854	1 219.0168	226.6309	220.6281	249.0601	237.5535	237.4622	238.4673	168.3496	144.6023	128.174
Japan Calculated Forward Rate	#VALUE	E! #VALUE!	#WALUE!	#VALUE!	#VALUE!	#WALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE
Subject												
Unit												
Frequency												
Time	Dec-1989	Dec-1990 De	ec-1991 Dec	:-1992 Dec	-1993 Dec-	1994 Dec-1	995 Dec-19	996 Dec-19	97 Dec-199	8 Dec-1999	Dec-2000	Dec-200
Country												
Japan i	9.00	6.454	5.719	4.848	3.396	4.561	2.983 2.	597 1.9	1.48	38 1.76	7 1.624	1.33
United States i	7.84	8.08	7.09	6.77	5.77	7.81	5.71	6.3 5.	81 4.6	6.2	5.24	5.0
Data extracted on 12 Dec 2014 14: 1 Japan FRB H10 Annual Rate		0 from OECD 144.9987 1		6.7801 111	.0755 102	2.179 93.9	9649 108	3.78 121.05	81 130.989	92 113.734	2 107.804	121.56
Japan Calculated Forward Rate	141.1095	147.2134 1	36.3363 12	9.1041 113	3.6258 10	5.354 96.4	1531 112.70	062 125.65	51 135.070	4 118.777	9 111.6399	126.07
Subje	ct											
Ur												
Frequenc	:v											
		02 Dec-2003	Dec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-201:
Country												
Japan	i 0.9	75 1.33	3 1.397	1.488	1.645	1.526	1.214	1.272	1.133	0.971	0.781	0.68
United States	i 4.	03 4.27	7 4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2
Data extracted on 12 Dec 2014 14	4:14 UTC (0	GMT) from O	ECD.Stat									
Japan FRB H10 Annual Rate		04 115.9387		110.1069	116.3121	117.7623	103.3906	93.6827	87.7817	79.6967	79.818	97.597

Subje	ct												
Ui	nit												
Frequen	у												
Tin	ne Dec-197	77 Dec-19	78 Dec-1	979 De	c-1980 E	Dec-1981	Dec-1982	Dec-1983	Dec-1984	Dec-1985	Dec-1986	Dec-1987	Dec-1988
Country													
United Kingdom	i 10).7 13	.12	15.02	13.78	16	11.58	10.77	10.87	10.78	10.98	9.63	10.14
United States	i 7.	69 9	.01	10.39	12.84	13.72	10.54	11.83	11.5	9.26	7.11	8.99	9.11
Data extracted on 12 Dec 2014 1	4:14 UTC (GMT) from	OECD.Sta	at									
UK FRB H10 Annual Rate	0.5730	99 0.5212	68 0.47	1165 0.4	430182 (0.493998	0.572082	0.659674	0.748055	0.770772	0.681338	0.60983	0.561388
UK Calculated Forward Rate	0.5575	16 0.5023	28 0.452	2199 0.4	426628 (0.484288	0.56675	0.665987	0.752306	0.760197	0.657579	0.60627	0.556138
UK Calculated Forward Rate	0.5575	16 0.5023	28 0.452	2199 0.4	426628 (0.484288	0.56675	0.665987	0.752306	0.760197	0.657579	0.60627	0.556138
		16 0.5023	28 0.452	2199 0.4	426628 (0.484288	0.56675	0.665987	0.752306	0.760197	0.657579	0.60627	0.556138
Subject		16 0.5023	28 0.452	2199 0.4	426628 (0.484288	0.56675	0.665987	0.752306	0.760197	0.657579	0.60627	0.556138
Subject Unit		16 0.5023	28 0.452	2199 0.4	426628 (0.484288	0.56675	0.665987	0.752306	0.760197	0.657579	0.60627	0.556138
Subject Unit Frequency													
Subject Unit Frequency Time												0.60627	
Subject Unit Frequency Time Country	Dec-1989	Dec-1990	Dec-1991	Dec-199	92 Dec-19	993 Dec-1	1994 Dec-1	995 Dec-1	996 Dec-19	97 Dec-199	8 Dec-1999	Dec-2000	Dec-2001
Subject Unit Frequency Time Country				Dec-199	92 Dec-19 32 6.4	993 Dec-1	1994 Dec-1	995 Dec-1	996 Dec-19	97 Dec-199 739 4.517	8 Dec-1999 5 5.38	Dec-2000	Dec-2001
Subject Unit Frequency Time Country United Kingdom i United States i	Dec-1989 10.56 7.84	Dec-1990 10.84 8.08	Dec-1991 9.66 7.09	Dec-199	92 Dec-19 32 6.4	993 Dec-1	1994 Dec-1	995 Dec-1	996 Dec-19	97 Dec-199	8 Dec-1999 5 5.38	Dec-2000	Dec-2001
Subject Unit Frequency Time Country United Kingdom	Dec-1989 10.56 7.84 4 UTC (GM	10.84 8.08 D from OE	Dec-1991 9.66 7.09 CD.Stat	Dec-199	Dec-19 32 6.4	993 Dec-1 4253 8 5.77	1994 Dec-1	995 Dec-1 4926 7.5 5.71	796 Dec-19 7716 6.3 6.3 5	97 Dec-199 739 4.517	8 Dec-1999 75 5.38 36 6.2	Dec-2000	Dec-2001
Subject Unit Frequency Time Country United Kingdom i United States i Data extracted on 12 Dec 2014 14:	Dec-1989 10.56 7.84 4 UTC (GM	10.84 8.08 D from OE	Dec-1991 9.66 7.09 CD.Stat	Dec-199	Dec-19 32 6.4	993 Dec-1 4253 8 5.77	1994 Dec-1 .5814 7.	995 Dec-1 4926 7.5 5.71	796 Dec-19 7716 6.3 6.3 5	97 Dec-199 '39 4.517 .81 4.6	8 Dec-1999 75 5.38 36 6.2	Dec-2000 4.9118 5.24	Dec-2001 4.8928 5.09

Subj∈	ect												
U	nit												
Frequen	су												
Tir	ne	Dec-2002	Dec-2003	Dec-2004	Dec-2005	Dec-2006	Dec-2007	Dec-2008	Dec-2009	Dec-2010	Dec-2011	Dec-2012	Dec-2013
Country													
United Kingdom	i	4.5644	4.896	4.5316	4.2186	4.6195	4.6937	3.6238	3.8871	3.587	2.1704	1.8361	3.0879
United States	i	4.03	4.27	4.23	4.47	4.56	4.1	2.42	3.59	3.29	1.98	1.72	2.9
Data extracted on 12 Dec 2014 1	4:1	4 UTC (GN	T) from OE	CD.Stat									
UK FRB H10 Annual Rate		0.665557	0.611733	0.545554	0.54933	0.542476	0.4995	0.539229	0.638529	0.647165	0.623325	0.630795	0.639304
UK Calculated Forward Rate		0.662156	0.608082	0.54398	0.550655	0.542167	0.496668	0.532965	0.636703	0.64531	0.622163	0.630076	0.638139

Appendix C: Futures

FY06-FY14

European Union

Average of Euro to		
USD		
Years	Date	Total
2013	Oct	0.732991705
2012	Oct	0.770624623
2011	Oct	0.728977666
2010	Oct	0.720026364
2009	Oct	0.675165562
2008	Oct	0.754012097
2007	Oct	0.701582711
2006	Oct	0.789643299
2005	Oct	0.828827559
2004	Oct	0.800114072
2003	Oct	0.856002481
2002	Oct	1.021620631
2001	Oct	1.107302109
2000	Oct	1.169556793
1999	Oct	0.929993531
Grand Total		0.835054699

Average of Euro to USD	
Years	Total
2014	0.744733428
2013	0.75277953
2012	0.777854465
2011	0.719483617
2010	0.755444893
2009	0.719262728
2008	0.683924227
2007	0.729647768
2006	0.793435775
2005	0.803080213
2004	0.805704513
2003	0.886499712
2002	1.06336226
2001	1.118317511
2000	1.081889524
1999	0.936301806
Grand Total	0.835942518

Japan

Average of Yen to USD		
Years	Date	Total
2013	Oct	97.78940069
2012	Oct	78.96329455
2011	Oct	76.58292475
2010	Oct	81.76505396
2009	Oct	90.3353353
2008	Oct	99.55121715
2007	Oct	114.9870261
2006	Oct	117.5925598
2005	Oct	114.0557714
2004	Oct	108.4265293
2003	Oct	109.3489943
2002	Oct	123.5326104
2001	Oct	120.9850909
2000	Oct	107.2278872
1999	Oct	104.9935285
Grand Total		103.0803856

Average of Yen to USD	
Years	Total
2014	103.6883616
2013	97.61270849
2012	79.77700579
2011	79.63488988
2010	87.6621709
2009	93.58702798
2008	103.0321677
2007	116.932514
2006	115.3288983
2005	109.5269983
2004	107.897813
2003	115.6952539
2002	124.8138453
2001	120.8111715
2000	106.6763637
1999	112.7846297
Grand Total	104.7229766

		ı
Average of GBP to		
USD		
Years	Date	Total
2013	Oct	0.621699499
2012	Oct	0.622270698
2011	Oct	0.634591903
2010	Oct	0.630976595
2009	Oct	0.617178349
2008	Oct	0.59378909
2007	Oct	0.489819463
2006	Oct	0.532564132
2005	Oct	0.567164058
2004	Oct	0.555978994
2003	Oct	0.598227276
2002	Oct	0.644377656
2001	Oct	0.691771963
2000	Oct	0.688401391
1999	Oct	0.603163807
Grand Total		0.606070366

Average of GBP to USD	
Years	Total
2014	0.60249054
2013	0.639784535
2012	0.631075791
2011	0.624153433
2010	0.647897072
2009	0.640611169
2008	0.54680069
2007	0.500270964
2006	0.542664332
2005	0.55134956
2004	0.548522976
2003	0.614723026
2002	0.668817186
2001	0.695941312
2000	0.660440922
1999	0.618399451
Grand Total	0.608069322

FY79-FY12

Japan

	T
Annual	Foreset
Average	Forecast
FY 10 7 0	Yen/Dollar
1979	264.0917
1980	207.9966
1981	216.8655
1982	225.4607
1983	217.3627
1984	246.7859
1985	236.2854
1986	235.8201
1987	237.5039
1988	167.769
1989	143.8275
1990	127.425
1991	137.1201
1992	144.6454
1993	134.8046
1994	126.8095
1995	111.0374
1996	101.7484
1997	93.26634
1998	107.8765
1999	119.9822
2000	129.7989
2001	112.7846
2002	106.6764
2003	120.8112
2004	124.8138
2005	115.6953
2006	107.8978
2007	109.527
2008	115.3289
2009	116.9325
2010	103.0322
2011	93.58703
2012	87.66217
·	

October Average	Forecast
FY	Yen/Dollar
1979	253.29041
1980	181.5734621
1981	227.6081012
1982	208.1839721
1983	228.1281019
1984	269.7545888
1985	231.5982716
1986	244.8924616
1987	214.0548674
1988	156.1110392
1989	142.3666985
1990	127.9531133
1991	141.5974481
1992	129.5548474
1993	130.9372955
1994	121.3797352
1995	106.8821186
1996	97.88388355
1997	99.83112984
1998	111.4926127
1999	120.1484895
2000	119.7346427
2001	104.9935285
2002	107.2278872
2003	120.9850909
2004	123.5326104
2005	109.3489943
2006	108.4265293
2007	114.0557714
2008	117.5925598
2009	114.9870261
2010	99.55121715
2011	90.3353353
2012	81.76505396

Annual	
Average	Forecast
FY	Pound/Dollar
1979	0.575878
1980	0.523158
1981	0.473427
1982	0.431988
1983	0.496243
1984	0.572026
1985	0.660256
1986	0.750918
1987	0.782931
1988	0.686305
1989	0.613733
1990	0.564453
1991	0.61611
1992	0.568721
1993	0.572387
1994	0.575308
1995	0.668885
1996	0.653831
1997	0.634083
1998	0.641478
1999	0.611632
2000	0.60512
2001	0.618399
2002	0.660441
2003	0.695941
2004	0.668817
2005	0.614723
2006	0.548523
2007	0.55135
2008	0.542664
2009	0.500271
2010	0.546801
2011	0.640611
2012	0.647897

Octobou	
October Average	Forecast
FY	Pound/Dollar
1979	0.562642156
1980	0.500231006
1981	0.46668024
1982	0.415380592
1983	0.542111693
1984	0.588763958
1985	0.666970742
1986	0.819272748
1987	0.707101774
1988	0.706091537
1989	0.603199476
1990	0.578881677
1991	0.636935573
1992	0.518308289
1993	0.585820276
1994	0.609991384
1995	0.668184616
1996	0.622679339
1997	0.634363475
1998	0.630774927
1999	0.613698387
2000	0.592527696
2001	0.603163807
2002	0.688401391
2003	0.691771963
2004	0.644377656
2005	0.598227276
2006	0.555978994
2007	0.567164058
2008	0.532564132
2009	0.489819463
2010	0.59378909
2011	0.617178349
2012	0.630976595

Appendix D: Random Walk

FY06-FY14

Denmark

European Union

Model: I(1) **Model Summary** DF 4 Stable Yes Sum of Squared Errors 0.0586345 Invertible Yes Variance Estimate 0.01465863 Standard Deviation 0.12107281 Akaike's 'A' Information Criterion -6.0399639 Schwarz's Bayesian Criterion -6.430526 RSquare 0.22234563 RSquare Adj 0.22234563 MAPE 9.50903853 MAE 0.09290083 -2LogLikelihood -8.0399639 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0269430 0.0484296 Intercept -0.026943 -0.56 0.6076 **Forecast** 1.2 Predicted Value 1.0 8.0 0.6 0.4 0.2 18 27 36 45 Residuals 0.20 0.15 Residual Value 0.10 0.05 0.00 -0.05 -0.10 -0.15 18 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 0.3575 1.1180 0.2903 0.3575 1 1 2 -0.2187 1.6762 0.4325 2 -0.3973 3 -0.4856 5.8023 0.1216 3 -0.3190 -0.1532 6.6233 0.1572 4 0.1361 0.0000 -0.2557 0.0000 6 6 -0.1761 0.0000 0.0689 8 0.0000 8 -0.1918 9 0.0000 9 -0.1067 10 0.0000 10 0.0299 0.0000 11 11 -0.1492 0.0000 12 -0.0694 12 13 0.0000 13 0.0056 14 0.0000 14 -0.1179 0.0000 15 -0.0482 15 16 0.0000 16 -0.0099 17 0.0000 17 -0.0939 18 0.0000 18 -0.0361 19 0.0000 19 -0.0194 20 0.0000 20 -0.0755 21 0.0000 21 -0.0292 22 0.0000 22 -0.0248

23 -0.0612

24 -0.0254

25 -0.0275

23

24

0.0000

0.0000

0.0000

Model: I(1) **Model Summary** DF 6 Stable Yes 0.05940813 Invertible Yes Sum of Squared Errors Variance Estimate 0.00990136 Standard Deviation 0.09950555 Akaike's 'A' Information Criterion -11.519501 Schwarz's Bayesian Criterion -11.573591 RSquare 0.53106782 RSquare Adj 0.53106782 MAPE 7.51794169 MAE 0.07197648 -2LogLikelihood -13.519501 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0203878 0.0348199 Intercept -0.0203878 -0.59 0.5795 **Forecast** 1.2 1.1 1.0 Predicted Value 0.9 8.0 0.7 0.6 0.5 0.4 18 9 27 36 45 Residuals 0.20 0.15 Residual Value 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 18 27 36 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 0.3536 1.3132 0.2518 0.3536 1 1 -0.4563 2 -0.2742 2.2602 0.3230 2 3 -0.5282 6.6549 0.0837 3 -0.3258 -0.1542 7.1541 0.1280 4 0.1218 0.0666 7.2938 0.1997 5 -0.2447 0.0364 7.3770 0.2874 6 6 -0.2213 0.0000 0.0708 8 0.0000 8 -0.1586 9 0.0000 9 -0.1679 10 0.0000 10 0.0435 0.0000 11 -0.1126 11 0.0000 12 12 -0.1328 13 0.0000 13 0.0246 14 0.0000 14 -0.0838 0.0000 15 15 -0.1082 16 0.0000 16 0.0112 17 0.0000 17 -0.0647 18 0.0000 18 -0.0897 19 0.0000 19 0.0016 20 0.0000 20 -0.0515 21 0.0000 21 -0.0753 22 0.0000 22 -0.0053 23 0.0000 23 -0.0423 24 0.0000 24 -0.0638

25 -0.0102

Model: I(1) **Model Summary** DF 7 Stable Yes 0.06128054 Invertible Yes Sum of Squared Errors Variance Estimate 0.00875436 Standard Deviation 0.09356475 Akaike's 'A' Information Criterion -14.270859 Schwarz's Bayesian Criterion -14.191418 RSquare 0.62559614 RSquare Adj 0.62559614 MAPE 7.34407503 MAE 0.0687618 -2LogLikelihood -16.270859 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term -0.0261702 Intercept 0 -0.0261702 0.0309426 -0.85 0.4256 **Forecast** 1.2 1.0 Predicted Value 8.0 0.6 0.4 0.2 18 9 27 36 45 Residuals 0.20 0.15 Residual Value 0.10 0.05 0.00 -0.05 -0.10 -0.15 18 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 0.3168 1.1473 0.2841 0.3168 1 1 2 -0.3036 2.3766 0.3047 2 -0.4491 3 -0.4893 6.2078 0.1019 3 -0.2891 -0.0354 6.2328 0.1824 4 0.1843 0.1113 6.5632 0.2552 5 -0.2612 6.5698 0.3625 6 0.0129 6 -0.1392 -0.1127 7.5863 0.3705 7 -0.0032 8 0.0000 -0.0522 9 0.0000 9 -0.2047 10 0.0000 10 0.0001 0.0000 0.0055 11 11 0.0000 -0.2012 12 12 13 0.0000 13 0.0096 14 0.0000 14 -0.0022 0.0000 15 15 -0.1408 16 0.0000 16 -0.0334 17 0.0000 17 0.0167 18 0.0000 18 -0.1016 19 0.0000 19 -0.0663 20 0.0000 20 0.0341 21 0.0000 21 -0.0809 22 0.0000 22 -0.0740 23 0.0000 23 0.0286 24 0.0000 24 -0.0549

25 -0.0771

25

Model: I(1) **Model Summary** DF 9 Stable Yes 0.06588464 Invertible Yes Sum of Squared Errors Variance Estimate 0.00732052 Standard Deviation 0.08556001 Akaike's 'A' Information Criterion -19.84558 Schwarz's Bayesian Criterion -19.542995 RSquare 0.72033141 RSquare Adj 0.72033141 MAPE 7.1503407 MAE 0.06389112 -2LogLikelihood -21.84558 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term Intercept -0.0221085 0 -0.0221085 0.0256675 -0.86 0.4114 **Forecast** 1.2 1.1 1.0 Predicted Value 0.9 8.0 0.7 0.6 0.5 0.4 18 9 27 36 45 Residuals 0.20 0.15 Residual Value 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 18 27 36 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 0.2976 1.1808 0.2772 0.2976 1 1 2 -0.3154 2.6727 0.2628 2 -0.4432 3 -0.4370 5.9460 0.1143 3 -0.2316 0.0123 5.9490 0.2030 4 0.1668 0.1043 6.2101 0.2863 5 -0.2452 -0.1247 6.6767 0.3518 6 6 -0.2599 7.8436 0.3466 0.0213 -0.1708 8 -0.0197 7.8668 0.4466 -0.1691 9 0.1534 10.6896 0.2976 9 -0.0638 10 0.0000 10 -0.1688 0.0000 0.0562 11 11 0.0000 12 12 -0.1139 13 0.0000 13 -0.1909 14 0.0000 14 0.0825 0.0000 15 15 -0.0938 16 0.0000 16 -0.1654 17 0.0000 0.0725 17 18 0.0000 18 -0.0923 19 0.0000 19 -0.0788 20 0.0000 20 -0.0398 21 0.0000 21 -0.0176 22 0.0000 -0.0449 22 23 0.0000 23 -0.1069 24 0.0000 24 0.0325 25 0.0000 -0.0305

Model: I(1) **Model Summary** DF 10 Stable Yes Sum of Squared Errors 0.0690045 Invertible Yes Variance Estimate 0.00690045 Standard Deviation 0.08306894 Akaike's 'A' Information Criterion -22.56962 Schwarz's Bayesian Criterion -22.171725 RSquare 0.72083652 RSquare Adj 0.72083652 MAPE 7.16421756 MAE 0.06292432 -2LogLikelihood -24.56962 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term -0.0167829 Intercept 0 -0.0167829 0.0238788 -0.70 0.4982 **Forecast** 1.2 1.1 Predicted Value 1.0 0.9 8.0 0.7 0.6 0.5 18 9 27 36 45 Residuals 0.20 0.15 Residual Value 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 18 27 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 0.3481 1.7326 0.1881 0.3481 1 1 2 -0.3040 3.2007 0.2018 2 -0.4837 -0.4394 6.6527 0.0838 3 -0.1695 0.0243 6.6647 0.1547 4 0.2351 0.1140 6.9746 0.2225 5 -0.3158 -0.1685 7.7863 0.2542 6 6 -0.2807 -0.2969 10.9377 0.1414 7 -0.0123 8 -0.0705 11.1744 0.1920 8 -0.1715 9 0.1684 13.2022 0.1537 9 -0.1479 10 0.1245 15.4175 0.1176 10 -0.0511 11 -0.0485 0.0000 11 0.0000 12 -0.0685 12 13 0.0000 13 -0.2116 14 0.0000 14 -0.0326 0.0000 15 -0.0140 15 16 0.0000 16 -0.2014 17 0.0000 17 -0.0157 18 0.0000 18 0.0157 19 0.0000 19 -0.1646 20 0.0000 20 -0.0655 21 0.0000 21 -0.0084 22 0.0000 22 -0.0853 23 0.0000 23 -0.0817 24 0.0000 24 -0.0394 25 0.0000 25 -0.0130

Model: I(1) **Model Summary** DF 11 Stable Yes 0.0693525 Invertible Yes Sum of Squared Errors Variance Estimate 0.00630477 Standard Deviation 0.0794026 Akaike's 'A' Information Criterion -25.786991 Schwarz's Bayesian Criterion -25.302085 RSquare 0.7381795 RSquare Adj 0.7381795 MAPE 6.786377 MAE 0.05930434 -2LogLikelihood -27.786991 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0184066 0.0219453 -0.0184066 Intercept -0.84 0.4195 **Forecast** 1.2 1.1 Predicted Value 1.0 0.9 8.0 0.7 0.6 0.5 18 9 27 36 45 Residuals 0.20 0.15 Residual Value 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 18 27 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 0.3276 1.6387 0.2005 0.3276 1 1 2 -0.3243 3.4053 0.1822 2 -0.4834 -0.4345 6.9287 0.0742 3 -0.1733 0.0360 6.9559 0.1382 4 0.2079 0.1112 7.2527 0.2025 5 -0.3046 8.0845 0.2320 6 -0.2725 6 -0.1724 -0.2787 10.6944 0.1525 7 -0.0384 8 -0.0241 10.7188 0.2181 8 -0.1330 9 0.1857 12.6495 0.1791 9 -0.1514 10 13.7689 0.1838 10 -0.0459 0.1154 14.0645 0.2294 11 -0.0804 -0.0420 11 0.0000 12 -0.0265 12 13 0.0000 13 -0.2282 14 0.0000 14 -0.0417 0.0000 0.0300 15 15 16 0.0000 16 -0.2096 17 0.0000 17 -0.0248 18 0.0000 18 0.0340 19 0.0000 19 -0.1649 20 0.0000 20 -0.0644 21 0.0000 0.0043 21 22 0.0000 -0.0833 22 23 0.0000 23 -0.0581 24 0.0000 24 -0.0572

25 -0.0056

25

Model: I(1) **Model Summary** DF 12 Stable Yes 0.07500434 Invertible Yes Sum of Squared Errors Variance Estimate 0.00625036 Standard Deviation 0.07905923 Akaike's 'A' Information Criterion -28.12466 Schwarz's Bayesian Criterion -27.559711 RSquare 0.721274 RSquare Adj 0.721274 MAPE 7.00283313 MAE 0.06029857 -2LogLikelihood -30.12466 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term Intercept 0 -0.0123875 0.0210628 -0.0123875 -0.59 0.5674 **Forecast** 1.2 1.1 Predicted Value 1.0 0.9 8.0 0.7 0.6 0.5 18 9 27 36 45 Residuals 0.20 0.15 Residual Value 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 18 27 36 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 0.2968 1.4318 0.2315 0.2968 1 1 2 -0.2277 2.3510 0.3087 2 -0.3463 -0.3268 4.4336 0.2183 3 -0.1657 0.0071 4.4347 0.3504 4 0.1337 0.0516 4.4997 0.4799 5 -0.1541 5.1396 0.5260 6 -0.1516 6 -0.2163 -0.2417 7.0387 0.4249 7 -0.1171 8 -0.0913 7.3635 0.4980 8 -0.1026 9 -0.0044 7.3644 0.5992 9 -0.2044 0.0423 7.4806 0.6794 10 -0.0556 10 -0.0054 7.4834 0.7587 11 -0.1221 11 11.9337 0.4510 12 0.1511 12 0.0906 13 0.0000 13 -0.2680 14 0.0000 14 0.0117 0.0000 15 15 -0.0413 16 0.0000 16 -0.2077 17 0.0000 17 -0.0196 18 0.0000 18 -0.0318 19 0.0000 19 -0.0996 20 0.0000 20 -0.0756 21 0.0000 21 -0.0007 22 0.0000 -0.1160 22 23 0.0000 23 -0.0226 24 0.0000 24 -0.1239

0.0270

25

Japan

Model: I(1) **Model Summary** DF 32 Stable Yes Sum of Squared Errors 14599.7817 Invertible Yes Variance Estimate 456.243179 Standard Deviation 21.3598497 Akaike's 'A' Information Criterion 296.694335 298.190843 Schwarz's Bayesian Criterion RSquare 0.90789038 RSquare Adj 0.90789038 MAPE 8.64113147 MAE 15.3648898 294.694335 -2LogLikelihood **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term Intercept -7.261664 3.661337 -1.98 0.0560 -7.2616636 0 Forecast 300 Predicted Value 200 100 0 -100 0 9 18 27 36 45 Residuals 40 20 Residual Value 0 -20 -40 -60 18 27 36 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.1686 0.1686 1 1.0260 0.3111 1 -0.1788 2.2177 0.3299 2 2 -0.2133 -0.1916 3.6311 0.3041 3 -0.1284 -0.3641 8.9102 0.0634 4 -0.3749 0.1825 10.2839 0.0676 5 0.2964 0.0983 10.6970 0.0982 -0.2149 6 6 -0.0517 10.8158 0.1469 -0.0088 8 0.2621 13.9902 0.0820 8 0.2461 9 0.0511 14.1159 0.1183 9 0.1108 10 -0.1478 15.2125 0.1245 10 -0.2581 -0.1660 16.6589 0.1184 11 -0.0683 11 -0.2581 12 20.3236 0.0612 12 -0.0210 13 0.0852 20.7426 0.0782 13 -0.0012 14 0.1996 23.1655 0.0576 14 -0.1221 23.4494 0.0751 15 0.0665 15 0.1223 16 0.0726 23.8076 0.0938 16 0.0235 17 -0.0263 0.0476 23.8573 0.1234 17 18 -0.0741 24.2803 0.1461 18 -0.0447 19 -0.0527 24.5090 0.1773 19 0.0700 20 -0.0461 24.6976 0.2132 20 0.0404 21 0.0800 25.3133 0.2338 0.0492 21 22 0.1143 26.6852 0.2234 -0.0722 22 23 -0.0534 27.0141 0.2554 23 -0.1186 24 -0.1349 29.3485 0.2073 24 -0.1073

25 -0.0052

30.6737 0.2001

Model: I(1) **Model Summary** DF 36 Stable Yes 14976.6131 Invertible Yes Sum of Squared Errors Variance Estimate 416.017031 Standard Deviation 20.3964955 Akaike's 'A' Information Criterion 329.124559 Schwarz's Bayesian Criterion 330.735477 RSquare 0.91431774 RSquare Adj 0.91431774 MAPE 8.62205819 MAE 14.6913167 327.124559 -2LogLikelihood **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term Intercept -6.605273 3.307330 -6.605273 0 -2.00 0.0534 Forecast 350 300 Predicted Value 250 200 150 100 50 0 -50 0 9 18 27 36 45 Residuals 40 20 Residual Value 0 -20 -40 -60 18 27 36 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.1730 0.1730 1 1.1993 0.2735 1 2.5479 0.2797 2 2 -0.1809-0.2173 3 -0.1886 4.0568 0.2554 3 -0.1221 -0.3342 8.9395 0.0626 4 -0.3438 0.2041 10.8180 0.0551 5 0.3137 11.2474 0.0810 0.0960 -0.2143 6 6 -0.0617 11.4302 0.1209 7 0.0045 8 0.2745 15.1805 0.0557 8 0.2928 9 0.0944 15.6393 0.0748 9 0.1478 16.4526 0.0874 10 -0.1234 10 -0.2590 17.8661 0.0847 11 -0.0322 -0.1596 11 12 -0.268222.0171 0.0373* 12 -0.0017 13 0.0770 22.3738 0.0498* 13 -0.0029 14 0.1908 24.6568 0.0381* 14 -0.1568 0.0743 25.0188 0.0497* 15 15 0.1922 16 0.0913 25.5911 0.0601 16 0.0311 17 -0.0078 25.5954 0.0822 17 0.0319 18 -0.0885 26.1906 0.0955 18 -0.0994 19 -0.1182 27.3115 0.0976 19 0.0625 20 -0.1009 28.1761 0.1053 20 -0.0129 21 0.0613 28.5148 0.1261 0.0160 21 22 0.1490 30.6504 0.1035 22 -0.0721 23 -0.0374 30.7946 0.1279 23 -0.1530

24 -0.0620

25 0.0426

32.0883 0.1248

32.5588 0.1425

24

-0.1080

Norway

Model: I(1) **Model Summary** DF 32 Stable Yes Sum of Squared Errors 11.5553431 Invertible Yes Variance Estimate 0.36110447 Standard Deviation 0.60091969 Akaike's 'A' Information Criterion 61.0210756 Schwarz's Bayesian Criterion 62.5175832 RSquare 0.69572126 RSquare Adj 0.69572126 MAPE 7.23189546 MAE 0.4957405 -2LogLikelihood 59.0210756 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0085545 0.1024230 -0.0085545 Intercept -0.08 0.9340 Forecast 11 10 9 Predicted Value 8 7 6 5 3 0 18 27 36 45 Row Residuals 1.0 Residual Value 0.5 0.0 -0.5 -1.0 0 18 36 45 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.3660 0.0279* 0.3660 1 4.8338 1 -0.0078 4.8361 0.0891 2 -0.1637-0.1982 6.3478 0.0959 3 -0.1601 -0.0874 6.6522 0.1554 4 0.0604 -0.2551 9.3356 0.0964 5 -0.3185 10.8231 0.0940 -0.1865 -0.0194 6 6 0.1463 -0.0112 10.8287 0.0729 Ī 0.0507 10.9476 0.2047 -0.1296 9 -0.0611 11.1272 0.2671 9 -0.0967 -0.2408 10 14.0391 0.1712 10 -0.2867 -0.1904 15.9425 11 -0.1355 11 0.1433 12 -0.018115.9606 0.1930 12 0.0321 13 0.0441 16.0728 0.2452 13 -0.1412 14 -0.0016 16.0730 0.3089 14 -0.1388 15 0.2417 19.8227 0.1788 15 0.2217 16 0.3163 26.6211 0.0459 16 -0.0038 17 0.2594 31.4794 0.0175* 17 0.1553 18 0.0019 31.4797 0.0253* 18 0.0109 19 -0.1060 32.4064 0.0281* 19 -0.1775 20 -0.1972 35.8603 0.0160* 20 -0.0427 21 39.0508 0.0097* -0.1821 -0.0771 21 22 -0.0416 39.2327 0.0133* 22 0.1145 23 -0.0131 39.2525 0.0186* 23 -0.0663

24 -0.1896

0.0228

39.3274 0.0252*

39.8902 0.0299*

24

25

-0.0242

Singapore

Model: I(1) **Model Summary** DF 22 Stable Yes Sum of Squared Errors 0.12468523 Invertible Yes Variance Estimate 0.00566751 Standard Deviation 0.07528287 Akaike's 'A' Information Criterion -52.73034 Schwarz's Bayesian Criterion -51.594846 0.90952117 RSquare RSquare Adj 0.90952117 MAPE 3.37838394 MAE 0.05884272 -2LogLikelihood -54,73034 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0184174 0.0153513 -0.0184174 Intercept -1.20 0.2430 **Forecast** 2.4 2.2 Predicted Value 2.0 1.8 1.6 1.4 1.2 1.0 8.0 0 9 18 27 36 45 Residuals 0.25 0.20 Residual Value 0.15 0.10-0.05 0.00 -0.05 -0.10 -0.15 18 27 36 Row Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.5597 8.1875 0.0042* 0.5597 1 1 2 0.2642 10.0983 0.0064* 2 -0.0715 3 0.1261 10.5555 0.0144* 3 0.0112 0.0688 10.6987 0.0302* 4 0.0109 -0.1212 11.1680 0.0481* 5 -0.2344 6 -0.3913 16.3481 0.0120* 6 -0.3411 19.9418 0.0057* 7 0.1216 -0.3162 8 -0.2936 23.2457 0.0031* 8 -0.1674 9 -0.2743 26.3355 0.0018* 9 -0.0679 32.6144 0.0003* 10 -0.3768 10 -0.2454 34.9400 0.0003* 11 0.0754 -0.2203 11 34.9472 0.0005* 12 -0.011812 -0.0138 13 0.1036 35.5643 0.0007* 13 0.0946 14 0.0824 35.9977 0.0010* 14 -0.1565 15 0.0858 36.5270 0.0015* 15 -0.0115 16 0.1787 39.1488 0.0010* 16 -0.1067 0.0647 17 39.5503 0.0015* 17 -0.1651 18 -0.0028 39.5512 0.0024* 18 -0.0470 19 -0.0024 39.5521 0.0037* 19 0.0816 20 -0.0024 39.5532 0.0057* 20 -0.2129 21 -0.0084 39.5733 0.0084* 0.0734 21 22 -0.0124 39.6621 0.0118* 0.0413 22 23 0.0000 23 -0.0599 24 0.0000 24 -0.0697

25 0.0013

25

Model: I(1) **Model Summary** DF 24 Stable Yes 0.12785881 Invertible Yes Sum of Squared Errors Variance Estimate 0.00532745 Standard Deviation 0.07298938 Akaike's 'A' Information Criterion -58.945687 Schwarz's Bayesian Criterion -57.726811 RSquare 0.9113026 RSquare Adj 0.9113026 MAPE 3.25422348 MAE 0.05642912 -2LogLikelihood -60.945687 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0210240 0.0143031 Intercept -0.021024 -1.47 0.1546 Forecast 2.4 2.2 Predicted Value 2.0 1.8 1.6 1.4 1.2 1.0 8.0 0 9 18 27 36 45 Row Residuals 0.25 0.20 Residual Value 0.15 0.10-0.05 0.00 -0.05 -0.10 -0.15 18 27 36 45 Row Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.5503 8.5175 0.0035* 0.5503 1 1 0.2739 10.7198 0.0047* 2 -0.0415 2 3 0.1342 11.2724 0.0103* 3 0.0000 0.0523 11.3604 0.0228* 4 -0.0191 -0.1624 12.2502 0.0315* 5 -0.2576 -0.4090 18.1940 0.0058* 6 6 -0.3205 -0.3422 22.5865 0.0020* 7 0.0655 8 -0.3866 28.5219 0.0004* 8 -0.2536 9 -0.3149 32.7044 0.0002* 9 0.0173 10 -0.3720 38.9305 <.0001* 10 -0.2664 40.3753 <.0001* -0.1731 11 0.0912 11 40.3911 <.0001* 12 0.0175 12 -0.0156 13 0.1046 41.0061 <.0001* 13 0.0162 14 0.1229 41.9336 0.0001* 14 -0.1490 42.9837 0.0002* 15 0.1247 15 -0.0294 16 0.2336 47.0750 <.0001* 16 -0.0757 17 47.7391 <.0001* 0.0887 17 -0.1688 18 0.0352 47.8586 0.0002* 18 -0.0760 19 0.0240 47.9232 0.0003* 19 0.0346 20 -0.0046 47.9261 0.0004* 20 -0.1853 21 -0.0484 48.3214 0.0006* 0.0257 21 22 -0.0287 48.5070 0.0009* 0.0814 22 48.5071 0.0014* 23 0.0005 23 -0.1081 24 -0.0205 48.7894 0.0020* 24 -0.0220

25 -0.0603

25

Model: I(1) **Model Summary** DF 25 Stable Yes Sum of Squared Errors 0.13139878 Invertible Yes Variance Estimate 0.00525595 Standard Deviation 0.07249794 Akaike's 'A' Information Criterion -61.693185 Schwarz's Bayesian Criterion -60.435089 RSquare 0.91357857 RSquare Adj 0.91357857 MAPE 3.26595755 MAE 0.05629172 -2LogLikelihood -63.693185 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0233577 0.0139414 Intercept -0.0233577 -1.68 0.1063 Forecast 2.4 2.2 Predicted Value 2.0 1.8 1.6 1.4 1.2 1.0 0 9 18 27 36 45 Row Residuals 0.25 0.20 Residual Value 0.15 0.10-0.05 0.00 -0.05 -0.10 -0.15 27 45 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.5598 9.1270 0.0025* 0.5598 1 1 0.2691 11.3241 0.0035* 2 -0.0645 2 3 0.1447 11.9869 0.0074* 3 0.0299 0.0617 12.1130 0.0165* 4 -0.0283 -0.1678 13.0892 0.0226* 5 -0.2773 -0.4397 20.1266 0.0026* 6 6 -0.3513 -0.3575 25.0228 0.0008* 7 0.0956 8 -0.3976 31.4179 0.0001* 8 -0.2856 9 -0.4021 38.3420 <.0001* 9 -0.0959 -0.4091 45.9566 <.0001* 10 10 -0.1895 -0.1777 47.4897 <.0001* 0.0679 11 11 47.6469 < .0001* 12 0.0550 12 0.0218 13 0.1323 48.6267 <.0001* 13 0.0442 14 0.1184 49.4772 <.0001* 14 -0.2500 51.1527 <.0001* 15 0.1591 15 -0.0377 16 0.2583 56.0084 < .0001* 16 -0.0906 17 57.5716 < .0001* 0.1390 17 -0.1636 18 0.0533 57.8306 <.0001* 18 -0.0884 19 0.0562 58.1591 <.0001* 19 0.0247 20 0.0187 58.2016 <.0001* 20 -0.2255 21 58.5142 <.0001* -0.0463 0.0641 21 22 -0.0686 59.3718 < .0001* 0.0254 22 23 -0.0185 59.4550 < .0001* 23 -0.0661 Ī 24 -0.0184 59.5784 <.0001* 24 -0.1006

25 -0.0122

59.9394 0.0001*

25

Model: I(1) **Model Summary** DF 26 Stable Yes Sum of Squared Errors 0.13600238 Invertible Yes Variance Estimate 0.00523086 Standard Deviation 0.07232469 Akaike's 'A' Information Criterion -64.232153 Schwarz's Bayesian Criterion -62.936316 RSquare 0.9176161 RSquare Adj 0.9176161 MAPE 3.30624181 MAE 0.05648313 -2LogLikelihood -66.232153 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0259185 0.0136589 -0.0259185 Intercept -1.90 0.0689 Forecast 2.4 2.2 Predicted Value 2.0 1.8 1.6 1.4 1.2 1.0 8.0 0 9 18 27 36 45 Row Residuals 0.25 0.20 Residual Value 0.15 0.10-0.05 0.00 -0.05 -0.10 -0.15 18 27 45 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.5696 0.0018* 0.5696 1 9.7695 1 0.2868 12.3450 0.0021* 2 -0.0557 2 3 0.1416 12.9988 0.0046* 3 0.0013 0.0731 13.1808 0.0104* 4 0.0051 -0.1506 13.9881 0.0157* 5 -0.2807 -0.4352 21.0499 0.0018* 6 -0.3671 6 27.0225 0.0003* -0.3906 0.0637 8 -0.4111 33.9859 <.0001* 8 -0.2465 9 -0.4107 41.3238 <.0001* 9 -0.1379 -0.5004 52.8566 <.0001* 10 10 -0.3106 55.2926 <.0001* 0.1716 -0.2231 11 11 55.3835 <.0001* 12 0.0417 12 0.0086 13 0.1698 56.9957 <.0001* 13 0.0761 14 0.1484 58.3217 <.0001* 14 -0.2103 59.8015 <.0001* 15 0.1506 15 -0.1457 16 0.2877 65.6917 <.0001* 16 -0.1091 17 67.7684 < .0001* 0.1629 17 -0.2001 18 0.1071 68.7658 <.0001* 18 -0.0634 19 0.0726 69.2811 <.0001* 19 0.0131 20 0.0507 69.5690 <.0001* 20 -0.2400 21 -0.0215 69.6294 <.0001* 0.0278 21 22 -0.0670 70.3334 <.0001* 0.0962 22 23 -0.0643 71.1424 <.0001* 23 -0.0984 24 -0.0409 71.5787 <.0001* 24 -0.0717 71.7537 <.0001* 25 -0.0211 25 -0.1415

Model: I(1) **Model Summary** DF 28 Stable Yes Sum of Squared Errors 0.14467508 Invertible Yes Variance Estimate 0.00516697 Standard Deviation 0.07188162 Akaike's 'A' Information Criterion -69.417826 Schwarz's Bayesian Criterion -68.05053 0.9236948 RSquare RSquare Adj 0.9236948 MAPE 3.40109755 MAE 0.05713175 -2LogLikelihood -71.417826 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0258931 0.0131159 -0.0258931 Intercept -1.97 0.0583 Forecast 2.4 2.2 Predicted Value 2.0 1.8 1.6 1.4 1.2 1.0 8.0 0 9 18 27 36 45 Row Residuals 0.25 0.20 Residual Value 0.15 0.10-0.05 0.00 -0.05 -0.10 -0.15 18 27 Row Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.4750 7.2433 0.0071* 0.4750 1 1 0.2742 9.7464 0.0076* 2 0.0627 2 3 0.1355 10.3817 0.0156* 3 -0.0211 0.0911 10.6801 0.0304* 4 0.0270 -0.1537 11.5646 0.0413* 5 -0.2695 -0.4071 18.0410 0.0061* 6 -0.3545 6 -0.3464 22.9440 0.0017* -0.0095 8 -0.3542 28.3147 0.0004* -0.1410 9 -0.4031 35.6187 <.0001* 9 -0.2096 -0.4734 46.2205 <.0001* 10 10 -0.2609 47.1261 <.0001* -0.1347 11 0.1688 11 47.1318 <.0001* 12 -0.010412 -0.0743 13 0.1222 47.9711 <.0001* 13 0.0708 14 0.0923 48.4816 <.0001* 14 -0.1268 49.9508 <.0001* 15 0.1513 15 -0.2231 16 0.3043 56.3541 <.0001* 16 0.0401 17 57.3302 <.0001* 17 -0.2443 0.1141 18 0.1066 58.2597 <.0001* 18 -0.0725 19 0.0439 58.4327 <.0001* 19 -0.1053 20 0.0817 59.0999 <.0001* 20 -0.0972 21 59.2320 <.0001* -0.0343 -0.0266 21 22 -0.0541 59.6079 <.0001* 22 0.0279 23 -0.0379 59.8229 <.0001* 23 -0.0268 24 0.0031 59.8246 <.0001* 24 -0.0900

25 -0.1251

60.2197 <.0001*

25

Model: I(1) **Model Summary** DF 29 Stable Yes Sum of Squared Errors 0.15094039 Invertible Yes Variance Estimate 0.00520484 Standard Deviation 0.07214459 Akaike's 'A' Information Criterion -71.625717 Schwarz's Bayesian Criterion -70.22452 RSquare 0.92897951 RSquare Adj 0.92897951 MAPE 3.48945035 MAE 0.05781667 -73.625717 -2LogLikelihood **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 -0.0285767 0.0129504 Intercept -0.0285767 -2.21 0.0354* Forecast 2.4 2.2 Predicted Value 2.0 1.8 1.6 1.4 1.2 1.0 9 18 27 36 45 Row Residuals 0.25 0.20 Residual Value 0.15 0.10-0.05 0.00 -0.05 -0.10 -0.15 27 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.4892 7.9226 0.0049* 0.4892 1 1 0.2276 9.6994 0.0078* 2 -0.0154 2 0.1636 10.6507 0.0138* 3 0.0763 0.1147 11.1362 0.0251* 4 0.0106 -0.1222 11.7101 0.0390* 5 -0.2540 -0.3898 17.7877 0.0068* 6 -0.3409 6 21.9668 0.0026* 0.0041 -0.3164 -0.3254 26.5872 0.0008* 8 -0.1675 9 -0.3943 33.6950 0.0001* 9 -0.1682 45.6236 <.0001* 10 -0.4985 10 -0.2994 46.8213 <.0001* -0.1540 11 11 0.2197 46.8774 <.0001* 12 -0.032412 -0.1416 13 0.0077 46.8807 <.0001* 13 0.0304 14 0.0358 46.9574 <.0001* 14 -0.1278 48.1107 <.0001* 15 0.1342 15 -0.1062 16 0.3338 55.7526 <.0001* 16 0.0599 17 57.1482 <.0001* 0.1375 17 -0.2133 18 0.0906 57.8052 <.0001* 18 -0.1092 19 0.0747 58.2922 <.0001* 19 -0.1502 20 0.1032 59.3148 <.0001* 20 -0.0979 21 59.3603 <.0001* 0.0634 0.0206 21 22 -0.0363 59.5183 <.0001* -0.0344 22 23 -0.0034 59.5199 < .0001* 23 -0.0290 24 0.0262 59.6301 <.0001* 24 0.0025 59.9663 0.0001* -0.0419 -0.1536

South Korea

Model: I(1) **Model Summary** DF 22 Stable Yes Sum of Squared Errors 325699.712 Invertible Yes Variance Estimate 14804.5324 Standard Deviation 121.673877 Akaike's 'A' Information Criterion 287.110621 Schwarz's Bayesian Criterion 288.246115 RSquare 0.69072007 RSquare Adj 0.69072007 MAPE 7.26194213 MAE 75.4146605 -2LogLikelihood 285.110621 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0.80 0.4296 19.9636085 Intercept 0 19.963609 24.80775 **Forecast** 1800 1600 Predicted Value 1400 1200 1000 800 600 0 18 27 36 45 Row Residuals 500 400 Residual Value 300 200 100 0 -100 -200 -300 0 18 36 45 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 1.0000 0 -0.0461 0.0555 0.8138 -0.0461 1 1 -0.2986 2.4970 0.2869 -0.3014 0.0694 2.6353 0.4513 3 0.0414 0.0232 2.6516 0.6177 4 -0.0671 -0.0556 2.7505 0.7384 5 -0.0268 -0.0953 0.8016 6 3.0577 6 -0.1268 3.0645 0.8790 7 -0.0513 -0.0138 0.0057 3.0658 0.9302 8 -0.0677 9 -0.1367 3.8328 0.9221 9 -0.1738 10 -0.1295 4.5750 0.9177 10 -0.2025 4.5798 11 -0.1774 -0.0100 0.9498 11 4.6618 0.9683 12 0.0396 12 -0.1255 13 0.0459 4.7828 0.9797 13 -0.0701 14 -0.0005 4.7828 0.9886 14 -0.1012 0.0774 15 5.2131 0.9902 15 -0.0163 16 0.0765 5.6940 0.9911 16 -0.0251 17 -0.0095 5,7027 0,9950 17 -0.0425 18 -0.0072 5.7086 0.9972 18 -0.0659 19 -0.0053 5.7127 0.9985 19 -0.1089 20 -0.0131 5.7458 0.9992 20 -0.1237 21 -0.0112 5.7817 0.9996 21 -0.1152 22 -0.0053 5.7979 0.9998 -0.0883 22 23 0.0000 23 -0.0735 24 0.0000 24 -0.0480

-0.0261

25

0.0000

Model: I(1) **Model Summary** DF 25 Stable Yes Sum of Squared Errors 352819.049 Invertible Yes Variance Estimate 14112.762 Standard Deviation 118.797146 Akaike's 'A' Information Criterion 323.190769 Schwarz's Bayesian Criterion 324.448866 RSquare 0.66807688 RSquare Adj 0.66807688 MAPE 7.48857889 MAE 76.7333038 321.190769 -2LogLikelihood **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0.41 0.6862 9.34224231 Intercept 0 9.3422423 22.85857 Forecast 1800 1600 Predicted Value 1400 1200 1000 800 600 400 0 18 27 36 45 Residuals 500 400 Residual Value 300 200 100 0 -100 -200 -300 0 18 36 45 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.0235 0.0161 0.8990 0.0235 1 1 -0.2156 1.4264 0.4901 2 2 -0.21630.1143 1.8400 0.6063 3 0.1318 -0.0119 1.8447 0.7643 4 -0.0737 -0.0478 1.9239 0.8596 5 0.0119 6 0.0100 1.9275 0.9262 6 -0.0234 2.4164 0.9333 7 -0.1130 -0.1191 8 -0.1178 2.9779 0.9357 -0.1104 9 -0.2054 4.7843 0.8527 9 -0.2735 10 -0.1177 5.4150 0.8618 10 -0.1502 5.4163 0.9093 0.0051 11 -0.1150 11 0.0418 12 5.5071 0.9389 12 0.0031 13 0.0291 5.5545 0.9609 13 0.0033 14 -0.0124 5.5639 0.9763 14 -0.0449 5.7762 0.9833 15 0.0566 15 0.0192 16 0.0898 6.3638 0.9837 16 -0.0139 17 0.0328 6.4509 0.9896 17 -0.0379 18 0.0481 6.6619 0.9927 18 -0.0488 19 0.0216 6.7104 0.9956 19 -0.0666 20 -0.0300 6.8193 0.9972 20 -0.0577 21 -0.0335 6.9825 0.9982 21 -0.0568 22 -0.0292 7.1373 0.9988 -0.0349 22 23 -0.0235 7.2716 0.9992 23 -0.0298 24 -0.0116 7.3203 0.9996 24 -0.0038

25 0.0184

7.3297 0.9998

25

Model: I(1) **Model Summary** DF 26 Stable Yes Sum of Squared Errors 377591.892 Invertible Yes Variance Estimate 14522.7651 Standard Deviation 120.510436 Akaike's 'A' Information Criterion 336.357455 Schwarz's Bayesian Criterion 337.653292 RSquare 0.65365595 RSquare Adj 0.65365595 MAPE 7.72945476 MAE 79.8437997 334.357455 -2LogLikelihood **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0.67 0.5077 15.2826926 Intercept 0 15.282693 22.75412 **Forecast** 1800 1600 Predicted Value 1400 1200 1000 800 600 0 18 27 36 45 Row Residuals 500 400 Residual Value 300 200 100 0 -100 -200 -300 18 36 45 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 0 1.0000 0.0077 0.0077 1 0.0018 0.9661 1 2 -0.2345 1.7248 0.4222 2 -0.2346 0.0507 1.8085 0.6131 3 0.0579 -0.0369 1.8548 0.7624 4 -0.0995 -0.0762 2.0612 0.8406 5 -0.0505 2.0725 0.9129 6 -0.0174 6 -0.0537 -0.0486 0.9502 2.1649 -0.0773 -0.1454 3.0363 0.9321 -0.1716 9 -0.2924 6.7549 0.6626 9 -0.3663 6.9534 0.7298 10 0.0656 10 -0.0491 0.0608 7.1345 0.7881 11 -0.1638 11 0.0481 7.2555 0.8403 12 12 0.0205 : 🗐 13 0.0082 7.2592 0.8883 13 -0.1425 14 -0.0171 7.2767 0.9235 14 -0.1080 15 0.0561 7.4818 0.9429 15 -0.0802 16 0.1008 8.2045 0.9425 16 -0.0438 17 0.0456 8.3673 0.9581 17 -0.0758 18 0.0611 8.6917 0.9665 18 -0.0703 19 -0.0056 8.6948 0.9782 19 -0.0179 20 -0.0659 9.1804 0.9807 20 -0.1029 21 -0.0576 9.6130 0.9835 21 -0.0664 22 -0.0258 9.7170 0.9887 -0.1475 22 23 0.0008 9.7171 0.9929 23 -0.0717 24 -0.0032 9.7198 0.9956 24 -0.0609

25 0.0054

9.7480 0.9973

25

0.0085

Model: I(1) **Model Summary** DF 28 Stable Yes Sum of Squared Errors 421373.11 Invertible Yes Variance Estimate 15049.0396 Standard Deviation 122.674527 Akaike's 'A' Information Criterion 362.233801 Schwarz's Bayesian Criterion 363.601097 RSquare 0.66065775 RSquare Adj 0.66065775 MAPE 8.0316774 MAE 84.5345056 -2LogLikelihood 360.233801 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 16.195362 0.72 0.4755 16.1953621 Intercept 22.39033 **Forecast** 1800 1600 Predicted Value 1400 1200 1000 800 0 18 27 36 45 Row Residuals 500 400 Residual Value 300 200 100 0 -100 -200 -300 0 18 45 -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 Lag AutoCorr 1.0000 0 1.0000 0.0144 0.9351 0.0144 1 0.0066 1 -0.2747 2.5195 0.2837 2 -0.2750 0.0265 2.5439 0.4674 3 0.0384 -0.0577 2.6637 0.6156 4 -0.1460 -0.0481 2.7502 0.7384 5 -0.0264 -0.0239 6 2.7726 0.8368 -0.0898 6 -0.0424 2.8460 0.8989 -0.0624 -0.0574 2.9870 0.9352 -0.1066 9 -0.3376 8.1114 0.5230 9 -0.4239 10 -0.0962 10 -0.0042 8.1123 0.6179 0.2904 12.3250 0.3397 0.0252 11 11 -0.0449 12 12.4315 0.4117 12 -0.1340 13 -0.0288 12.4780 0.4889 13 -0.0617 14 -0.0396 12.5722 0.5605 14 -0.2472 15 0.0606 12.8083 0.6171 15 -0.0084 16 0.0972 13.4614 0.6388 16 -0.1000 17 0.0525 13.6683 0.6904 17 -0.0117 18 0.0491 13.8649 0.7379 18 -0.1151 19 0.0001 13.8649 0.7915 19 -0.0422 20 -0.0938 14.7438 0.7909 20 0.0144 21 15.2555 0.8099 -0.0675 21 -0.1769 22 -0.0167 15.2913 0.8494 22 -0.128423 0.0231 15.3712 0.8808 23 -0.1340 24 0.0165 15.4204 0.9079 24 -0.0234

0.0289

15.4216 0.9310

25

Model: I(1) **Model Summary** DF 29 Stable Yes Sum of Squared Errors 425456.555 Invertible Yes Variance Estimate 14670.9157 Standard Deviation 121.123556 Akaike's 'A' Information Criterion 373.927934 Schwarz's Bayesian Criterion 375.329132 RSquare 0.66335027 RSquare Adj 0.66335027 MAPE 7.95221542 MAE 83.7387324 -2LogLikelihood 371.927934 **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 14.028887 0.65 0.5239 14.0288867 Intercept 21.74491 **Forecast** 1600 1400 Predicted Value 1200 1000 800 600 0 18 27 36 45 Row Residuals 500 400 Residual Value 300 200 100 0 -100 -200 -300 0 18 45 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 0 1.0000 0 1.0000 0.0347 0.8417 0.0347 1 0.0399 1 -0.2961 3.0461 0.2180 2 -0.2977 2 0.0023 3.0463 0.3845 3 0.0285 -0.0524 3.1476 0.5334 4 -0.1562 -0.0359 3.1970 0.6696 5 -0.0177 0.7837 6 -0.0032 3.1975 -0.0729 6 -0.0316 3.2392 0.8620 7 -0.0494 8 -0.0441 3.3240 0.9124 -0.0809 9 -0.3239 8.1199 0.5221 9 -0.4027 10 -0.0690 10 -0.0244 8.1486 0.6143 0.3001 12.6990 0.3135 0.0498 11 11 -0.0085 12 12.7028 0.3910 12 -0.0933 13 -0.0918 13.1785 0.4341 13 -0.0907 14 -0.0588 13.3862 0.4964 14 -0.2080 15 0.0574 13.5973 0.5563 15 0.0045 16 0.1030 14.3251 0.5745 16 -0.0495 17 14.5206 0.6300 0.0070 0.0515 17 18 0.0462 14.6912 0.6831 18 -0.0742 19 -0.0060 14.6943 0.7418 19 -0.0353 20 -0.0966 15.5908 0.7417 20 0.0330 21 -0.0719 16.1426 0.7616 -0.1404 21 22 -0.0066 16.1478 0.8085 -0.1302 22 23 0.0383 16.3491 0.8399 23 -0.0942 24 0.0280 16.4745 0.8702 24 0.0308

25 0.0619

16.4746 0.9000

25

Model: I(1) **Model Summary** DF 30 Stable Yes Sum of Squared Errors 425482.655 Invertible Yes Variance Estimate 14182.7552 Standard Deviation 119.091373 Akaike's 'A' Information Criterion 385.310949 Schwarz's Bayesian Criterion 386.744936 RSquare 0.67022582 RSquare Adj 0.67022582 MAPE 7.71064606 MAE 81.21041 383.310949 -2LogLikelihood **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term 0 14.196410 0.5050 14.1964097 Intercept 21.03760 0.67 Forecast 1600 1400 Predicted Value 1200 1000 800 600 0 18 27 36 45 Residuals 500 400 Residual Value 300 200 100 0 -100 -200 -300 0 18 Lag AutoCorr -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 1.0000 0 1.0000 0.0340 0.0340 1 0.0393 0.8428 1 3.1660 0.2054 -0.2977 2 -0.2992 0.0042 3.1666 0.3666 3 0.0303 -0.0505 3.2631 0.5148 4 -0.1554 -0.0362 3.3147 0.6516 5 -0.0171 0.7683 6 -0.0042 3.3155 -0.0736 6 -0.0333 0.8495 -0.0509 3.3628 -0.0449 3.4525 0.9028 -0.0819 9 -0.3249 8.3604 0.4983 9 -0.4054 8.3915 0.5907 10 -0.0719 10 -0.0252 13.0481 0.2902 0.3017 0.0483 11 11 -0.0095 12 13.0529 0.3652 12 -0.0955 13 -0.0946 13.5620 0.4054 13 -0.0939 14 -0.0538 13.7360 0.4696 14 -0.2062 15 0.0590 13.9586 0.5287 15 0.0005 16 0.1033 14.6863 0.5477 16 -0.0503 0.0030 17 14.8770 0.6043 0.0511 17 18 0.0461 15.0445 0.6589 18 -0.0743 19 -0.0059 15.0475 0.7196 19 -0.0380 20 -0.0961 15.9057 0.7225 20 0.0329 21 -0.0716 16.4307 0.7450 -0.1419 21 22 -0.0062 16.4350 0.7937 22 -0.1339 23 0.0375 16.6148 0.8277 23 -0.0939

24 0.0282

25 0.0596

16.7193 0.8604

16.7197 0.8917

24

25

0.0267

United Kingdom

Model: I(1) **Model Summary** DF 35 Stable Yes Sum of Squared Errors 0.09014033 Invertible Yes Variance Estimate 0.00257544 Standard Deviation 0.05074877 Akaike's 'A' Information Criterion -111.47306 Schwarz's Bayesian Criterion -109.88954 RSquare 0.69187147 RSquare Adj 0.69187147 MAPE 6.9266179 MAE 0.04030176 -113.47306 -2LogLikelihood **Parameter Estimates** Constant Lag Estimate Std Error t Ratio Prob>|t| Estimate Term Intercept 0 0.00251024 0.0083268 0.00251024 0.30 0.7648 Forecast 8.0 0.7 Predicted Value 0.6 0.5 0.4 0.3 0.2 9 18 27 36 45 Residuals 0.10 Residual Value 0.05 0.00 -0.05 -0.10 0 18 27 45 Row -.8-.6-.4-.2 0 .2 .4 .6 .8 Ljung-Box Q p-Value Lag Partial -.8-.6-.4-.2 0 .2 .4 .6 .8 Lag AutoCorr 1.0000 0 1.0000 0.3861 0.0158* 0.3861 1 5.8252 1 -0.2057 2 -0.0260 5.8524 0.0536 2 -0.3688 11.4896 0.0094* 3 -0.3402 -0.3175 15.7998 0.0033* 4 -0.0577 -0.2437 18.4207 0.0025* 5 -0.1793 18.7595 6 -0.0862 0.0046* 6 -0.1179 0.1703 0.0053* 20.1271 0.1447 8 0.3411 25.8116 0.0011* 8 0.1406 9 0.1692 27.2622 0.0013* 9 -0.1328 27.2839 10 -0.0203 0.0023* 10 0.0147 27.9137 -0.1073 0.0033* 0.0967 11 11 0.0057* 12 -0.005827.9156 12 0.1306 13 -0.1472 29.2051 0.0061* 13 -0.2038 14 -0.2324 32.5636 0.0033* 14 -0.1756 1 32.7668 15 -0.0559 0.0051* 15 0.1408 16 0.1836 35.0727 0.0039* 16 0.0871 17 42.5458 0.0006* 0.3222 17 0.1390 18 0.1078 43.4285 0.0007* 18 -0.1042 19 -0.0032 43.4293 0.0011* 19 -0.0037 20 -0.0981 44.2521 0.0014* 20 0.0145 21 -0.1896 47.5297 0.0008* -0.0195 21 22 -0.1554 49.8884 0.0006* 22 0.1101 23 -0.0557 50.2144 0.0009* 23 -0.0752 24 0.0831 51.0022 0.0011* 24 -0.1808

25 -0.0707

51.6913 0.0013*

25

0.0744

FY79-FY12

Japan

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

United Kingdom

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Page 1 of 1

Appendix E: OSD (Comptroller) Adjusting Rates

-		ı	O&M Bud	lget Rate	MILCON & FH Budget Rate			
	Country	Monetary Unit	Dollars to Foreign Currency	Foreign Currency to Dollars	Dollars to Foreign Currency	Foreign Currency to Dollars	Adjusting Rate in Dollars	Adjusting Rate in Foreign Currency
	DENMARK	KRONE	0.1751896	5.7081	0.1751896	5.7081	0.169262	5.908
	EUROPEAN UNION	EURO	1.3063357	0.7655	1.3063357	0.7655	1.261034	0.793
	ICELAND	KRONA	0.0081387	122.8694	0.0081387	122.8694	0.008259	121.08
For Month	JAPAN	YEN	0.0096206	103.9439	0.0096206	103.9439	0.0091241	109.6
Ended	NORWAY	KRONE	0.1741584	5.7419	0.1741584	5.7419	0.155159	6.445
9/30/2014	SINGAPORE	DOLLAR	0.8057368	1.2411	0.8057368	1.2411	0.7843137	1.275
	SOUTH KOREA	WON	0.0009045	1105.592	0.0009045	1105.592	0.0009483	1054.55
	TURKEY	LIRA	0.5563282	1.7975	0.5563282	1.7975	0.4389816	2.278
	UNITED KINGDOM	POUND	1.5281174	0.6544	1.5281174	0.6544	1.618123	0.618
	DENMARK	KRONE	0.1751896	5.7081	0.1751896	5.7081	0.1768972	5.653
	EUROPEAN UNION	EURO	1.3063357	0.7655	1.3063357	0.7655	1.3192612	0.758
For Month	ICELAND	KRONA	0.0081387	122.8694	0.0081387	122.8694	0.0085756	116.61
	JAPAN	YEN	0.0096206	103.9439	0.0096206	103.9439	0.0096283	103.86
Ended	NORWAY	KRONE	0.1741584	5.7419	0.1741584	5.7419	0.1617599	6.182
8/31/2014	SINGAPORE	DOLLAR	0.8057368	1.2411	0.8057368	1.2411	0.8019246	1.247
	SOUTH KOREA	WON	0.0009045	1105.592	0.0009045	1105.592	0.0009864	1013.75
	TURKEY	LIRA	0.5563282	1.7975	0.5563282	1.7975	0.4640371	2.155
	UNITED KINGDOM	POUND	1.5281174	0.6544	1.5281174	0.6544	1.6611296	0.602
	DENMARK	KRONE	0.1751896	5.7081	0.1751896	5.7081	0.1795332	5.57
	EUROPEAN UNION	EURO	1.3063357	0.7655	1.3063357	0.7655	1.3386881	0.747
	ICELAND	KRONA	0.0081387	122.8694	0.0081387	122.8694	0.0086919	115.05
For Month	JAPAN	YEN	0.0096206	103.9439	0.0096206	103.9439	0.0097229	102.85
Ended	NORWAY	KRONE	0.1741584	5.7419	0.1741584	5.7419	0.1593118	6.277
7/31/2014	SINGAPORE	DOLLAR	0.8057368	1.2411	0.8057368	1.2411	0.8019246	1.247
	SOUTH KOREA	WON	0.0009045	1105.592	0.0009045	1105.592	0.000973	1027.75
	TURKEY	LIRA	0.5563282	1.7975	0.5563282	1.7975	0.4686036	2.134
	UNITED KINGDOM	POUND	1.5281174	0.6544	1.5281174	0.6544	1.6891892	0.592
	DENMARK	KRONE	0.1751896	5.7081	0.1751896	5.7081	0.1831166	5.461
For Month	EUROPEAN UNION	EURO	1.3063357	0.7655	1.3063357	0.7655	1.3661202	0.732
Ended	ICELAND	KRONA	0.0081387	122.8694	0.0081387	122.8694	0.0088763	112.66
6/30/2014	JAPAN	YEN	0.0096206	103.9439	0.0096206	103.9439	0.0098629	101.39
	NORWAY	KRONE	0.1741584	5.7419	0.1741584	5.7419	0.1623377	6.16

	SINGAPORE	DOLLAR	0.8057368	1.2411	0.8057368	1.2411	0.8006405	1.249
	SOUTH KOREA	WON	0.0009045	1105.592	0.0009045	1105.592	0.0009886	1011.5
	TURKEY	LIRA	0.5563282	1.7975	0.5563282	1.7975	0.4708098	2.124
	UNITED KINGDOM	POUND	1.5281174	0.6544	1.5281174	0.6544	1.7006803	0.588
	DENMARK	KRONE	0.1751896	5.7081	0.1751896	5.7081	0.1823819	5.483
	EUROPEAN UNION	EURO	1.3063357	0.7655	1.3063357	0.7655	1.3605442	0.735
	ICELAND	KRONA	0.0081387	122.8694	0.0081387	122.8694	0.008859	112.88
For Month	JAPAN	YEN	0.0096206	103.9439	0.0096206	103.9439	0.0098377	101.65
Ended	NORWAY	KRONE	0.1741584	5.7419	0.1741584	5.7419	0.1672241	5.98
5/31/2014	SINGAPORE	DOLLAR	0.8057368	1.2411	0.8057368	1.2411	0.7980846	1.253
	SOUTH KOREA	WON	0.0009045	1105.592	0.0009045	1105.592	0.0009804	1019.95
	TURKEY	LIRA	0.5563282	1.7975	0.5563282	1.7975	0.4782401	2.091
	UNITED KINGDOM	POUND	1.5281174	0.6544	1.5281174	0.6544	1.6722408	0.598
	DENMARK	KRONE	0.1751896	5.7081	0.1751896	5.7081	0.1852538	5.398
	EUROPEAN UNION	EURO	1.3063357	0.7655	1.3063357	0.7655	1.3831259	0.723
	ICELAND	KRONA	0.0081387	122.8694	0.0081387	122.8694	0.0089158	112.16
For Month	JAPAN	YEN	0.0096206	103.9439	0.0096206	103.9439	0.0097494	102.57
Ended	NORWAY	KRONE	0.1741584	5.7419	0.1741584	5.7419	0.1675884	5.967
4/30/2014	SINGAPORE	DOLLAR	0.8057368	1.2411	0.8057368	1.2411	0.7961783	1.256
	SOUTH KOREA	WON	0.0009045	1105.592	0.0009045	1105.592	0.0009682	1032.85
	TURKEY	LIRA	0.5563282	1.7975	0.5563282	1.7975	0.4725898	2.116
	UNITED KINGDOM	POUND	1.5281174	0.6544	1.5281174	0.6544	1.6835017	0.594
	DENMARK	KRONE	0.1849318	5.4074	0.1849318	5.4074	0.1846722	5.415
	EUROPEAN UNION	EURO	1.3776002	0.7259	1.3776002	0.7259	1.3793103	0.725
	ICELAND	KRONA	0.0087276	114.5787	0.0087276	114.5787	0.008881	112.6
For Month	JAPAN	YEN	0.0122384	81.7098	0.0122384	81.7098	0.0096834	103.27
Ended 3/31/2014	NORWAY	KRONE	0.1704681	5.8662	0.1704681	5.8662	0.1669449	5.99
3/31/2014	SINGAPORE	DOLLAR	0.7601672	1.3155	0.7601672	1.3155	0.7936508	1.26
	SOUTH KOREA	WON	0.0008766	1140.786	0.0008766	1140.786	0.0009393	1064.65
	TURKEY	LIRA	0.6214654	1.6091	0.6214654	1.6091	0.464684	2.152
	UNITED KINGDOM	POUND	1.6189089	0.6177	1.6189089	0.6177	1.6638935	0.601
	DENMARK	KRONE	0.1849318	5.4074	0.1849318	5.4074	0.1848429	5.41
	EUROPEAN UNION	EURO	1.3776002	0.7259	1.3776002	0.7259	1.3793103	0.725
	ICELAND	KRONA	0.0087276	114.5787	0.0087276	114.5787	0.0088992	112.37
For Month	JAPAN	YEN	0.0122384	81.7098	0.0122384	81.7098	0.0098155	101.88
Ended	NORWAY	KRONE	0.1704681	5.8662	0.1704681	5.8662	0.1666667	6
2/28/2014	SINGAPORE	DOLLAR	0.7601672	1.3155	0.7601672	1.3155	0.7898894	1.266
	SOUTH KOREA	WON	0.0008766	1140.786	0.0008766	1140.786	0.0009383	1065.71
	TURKEY	LIRA	0.6214654	1.6091	0.6214654	1.6091	0.4512635	2.216
	UNITED KINGDOM	POUND	1.6189089	0.6177	1.6189089	0.6177	1.6694491	0.599
For Month	DENMARK	KRONE	0.1849318	5.4074	0.1849318	5.4074	0.1815871	5.507

Ended 1/31/2014	EUROPEAN UNION	EURO	1.3776002	0.7259	1.3776002	0.7259	1.3550136	0.738
	ICELAND	KRONA	0.0087276	114.5787	0.0087276	114.5787	0.0086453	115.67
	JAPAN	YEN	0.0122384	81.7098	0.0122384	81.7098	0.0097847	102.2
	NORWAY	KRONE	0.1704681	5.8662	0.1704681	5.8662	0.1591596	6.283
	SINGAPORE	DOLLAR	0.7601672	1.3155	0.7601672	1.3155	0.7818608	1.279
	SOUTH KOREA	WON	0.0008766	1140.786	0.0008766	1140.786	0.0009256	1080.36
	TURKEY	LIRA	0.6214654	1.6091	0.6214654	1.6091	0.4378284	2.284
	UNITED KINGDOM	POUND	1.6189089	0.6177	1.6189089	0.6177	1.6447368	0.608
	DENMARK	KRONE	0.1849318	5.4074	0.1849318	5.4074	0.1845359	5.419
	EUROPEAN UNION	EURO	1.3776002	0.7259	1.3776002	0.7259	1.3774105	0.726
	ICELAND	KRONA	0.0087276	114.5787	0.0087276	114.5787	0.0086934	115.03
For Month	JAPAN	YEN	0.0122384	81.7098	0.0122384	81.7098	0.0095229	105.01
Ended	NORWAY	KRONE	0.1704681	5.8662	0.1704681	5.8662	0.1643926	6.083
12/31/2013	SINGAPORE	DOLLAR	0.7601672	1.3155	0.7601672	1.3155	0.7917656	1.263
	SOUTH KOREA	WON	0.0008766	1140.786	0.0008766	1140.786	0.0009476	1055.25
	TURKEY	LIRA	0.6214654	1.6091	0.6214654	1.6091	0.4681648	2.136
	UNITED KINGDOM	POUND	1.6189089	0.6177	1.6189089	0.6177	1.6528926	0.605
	DENMARK	KRONE	0.1849318	5.4074	0.1849318	5.4074	0.1824818	5.48
For Month	EUROPEAN UNION	EURO	1.3776002	0.7259	1.3776002	0.7259	1.3605442	0.735
	ICELAND	KRONA	0.0087276	114.5787	0.0087276	114.5787	0.0083907	119.18
	JAPAN	YEN	0.0122384	81.7098	0.0122384	81.7098	0.0097742	102.31
Ended	NORWAY	KRONE	0.1704681	5.8662	0.1704681	5.8662	0.1630523	6.133
11/30/2013	SINGAPORE	DOLLAR	0.7601672	1.3155	0.7601672	1.3155	0.7961783	1.256
	SOUTH KOREA	WON	0.0008766	1140.786	0.0008766	1140.786	0.0009454	1057.76
	TURKEY	LIRA	0.6214654	1.6091	0.6214654	1.6091	0.4945598	2.022
	UNITED KINGDOM	POUND	1.6189089	0.6177	1.6189089	0.6177	1.6339869	0.612
	DENMARK	KRONE	0.1849318	5.4074	0.1849318	5.4074	0.1831166	5.461
	EUROPEAN UNION	EURO	1.3776002	0.7259	1.3776002	0.7259	1.3661202	0.732
	ICELAND	KRONA	0.0087276	114.5787	0.0087276	114.5787	0.0083181	120.22
For Month	JAPAN	YEN	0.0122384	81.7098	0.0122384	81.7098	0.0101823	98.21
Ended	NORWAY	KRONE	0.1704681	5.8662	0.1704681	5.8662	0.1685204	5.934
10/31/2013	SINGAPORE	DOLLAR	0.7601672	1.3155	0.7601672	1.3155	0.8071025	1.239
	SOUTH KOREA	WON	0.0008766	1140.786	0.0008766	1140.786	0.0009439	1059.44
	TURKEY	LIRA	0.6214654	1.6091	0.6214654	1.6091	0.5027652	1.989
	UNITED KINGDOM	POUND	1.6189089	0.6177	1.6189089	0.6177	1.6025641	0.624
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1809955	5.525
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3495277	0.741
For Month Ended	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0082706	120.91
9/30/2013	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0102239	97.81
3/30/2013	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1663894	6.01
	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.7961783	1.256

	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009314	1073.7
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.4906771	2.038
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.6155089	0.619
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1774623	5.635
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3227513	0.756
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0083389	119.92
For Month	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0101926	98.11
Ended	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1636393	6.111
8/31/2013	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.7849294	1.274
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009011	1109.75
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.490918	2.037
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5479876	0.646
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1778726	5.622
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3262599	0.754
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0083977	119.08
For Month	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0102375	97.68
Ended	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1684069	5.938
7/31/2013	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.7861635	1.272
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0008916	1121.62
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5181347	1.93
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5197568	0.658
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1778726	5.622
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3262599	0.754
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0083977	119.08
For Month	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0102375	97.68
Ended 6/30/2013	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1684069	5.938
0/30/2013	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.7861635	1.272
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0008916	1121.62
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5181347	1.93
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5197568	0.658
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.174125	5.743
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.2987013	0.77
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0081486	122.72
For Month	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0099453	100.55
Ended 5/31/2013	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1702128	5.875
3/31/2013	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.7911392	1.264
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0008845	1130.55
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5299417	1.887
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5197568	0.658
For Month Ended	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1752848	5.705
Ended 4/30/2013	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3071895	0.765

	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0085587	116.84
	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0102501	97.56
	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1716444	5.826
	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.81103	1.233
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009078	1101.52
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5561735	1.798
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5479876	0.646
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1752848	5.705
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3071895	0.765
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0085587	116.84
For Month	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0102501	97.56
Ended 3/31/2013	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1716444	5.826
	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.81103	1.233
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009078	1101.52
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5561735	1.798
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5479876	0.646
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1759324	5.684
For Month Ended	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.312336	0.762
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0079605	125.62
	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0108578	92.1
	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1751313	5.71
2/28/2013	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.8084074	1.237
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009228	1083.7
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5574136	1.794
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5197568	0.658
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1759324	5.684
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.312336	0.762
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0079605	125.62
For Month	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0108578	92.1
Ended	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1751313	5.71
1/31/2013	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.8084074	1.237
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009228	1083.7
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5574136	1.794
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.5197568	0.658
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1766784	5.66
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3175231	0.759
For Month	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0078119	128.01
Ended 12/31/2012	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0116063	86.16
12/31/2012	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1790831	5.584
	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.8183306	1.222
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009405	1063.24

	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5599104	1.786
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.618123	0.618
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1766784	5.66
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3175231	0.759
	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0078119	128.01
For Month	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0116063	86.16
Ended	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1790831	5.584
11/30/2012	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.8183306	1.222
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009405	1063.24
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5599104	1.786
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.618123	0.618
	DENMARK	KRONE	0.1853362	5.3956	0.1853362	5.3956	0.1766784	5.66
	EUROPEAN UNION	EURO	1.3810247	0.7241	1.3810247	0.7241	1.3175231	0.759
For Month Ended 10/31/2012	ICELAND	KRONA	0.0093553	106.8909	0.0093553	106.8909	0.0078119	128.01
	JAPAN	YEN	0.0121354	82.4035	0.0121354	82.4035	0.0116063	86.16
	NORWAY	KRONE	0.1684579	5.9362	0.1684579	5.9362	0.1790831	5.584
	SINGAPORE	DOLLAR	0.7511455	1.3313	0.7511455	1.3313	0.8183306	1.222
	SOUTH KOREA	WON	0.0009131	1095.164	0.0009131	1095.164	0.0009405	1063.24
	TURKEY	LIRA	0.6892749	1.4508	0.6892749	1.4508	0.5599104	1.786
	UNITED KINGDOM	POUND	1.6826519	0.5943	1.6826519	0.5943	1.618123	0.618
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1736413	5.759
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.2936611	0.773
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0081024	123.42
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0128766	77.66
Ended 9/30/2012	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1757778	5.689
9/30/2012	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.8163265	1.225
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.0008992	1112.04
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5574136	1.794
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.6207455	0.617
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1686625	5.929
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.2562814	0.796
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0081974	121.99
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0127356	78.52
Ended 8/31/2012	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1723544	5.802
0/31/2012	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.8006405	1.249
	SOUTH KOREA	WON	0.0009095	1,099.52	0.0009095	1099.518	0.0008822	1133.59
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.550055	1.818
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5822785	0.632
For Month	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.16518	6.054
Ended 7/31/2012	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.2285012	0.814
,, 31,2012	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0082795	120.78

	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.012791	78.18
	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1656452	6.037
	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.8045052	1.243
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.0008847	1130.27
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5571031	1.795
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5698587	0.637
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1691475	5.912
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.2578616	0.795
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0079567	125.68
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0125834	79.47
Ended	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1669449	5.99
6/30/2012	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.7880221	1.269
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.000873	1145.51
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5503577	1.817
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5600624	0.641
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1691475	5.912
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.2578616	0.795
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0079567	125.68
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0125834	79.47
Ended	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1669449	5.99
5/31/2012	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.7880221	1.269
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.000873	1145.51
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5503577	1.817
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5600624	0.641
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1776514	5.629
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.321004	0.757
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0079491	125.8
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0124735	80.17
Ended	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.174216	5.74
4/30/2012	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.8090615	1.236
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.0008862	1128.36
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5694761	1.756
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.6260163	0.615
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1794366	5.573
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.3351135	0.749
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0079177	126.3
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0121862	82.06
Ended 3/31/2012	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.175716	5.691
	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.7955449	1.257
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.0008827	1132.9
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5614823	1.781
					-			- "

	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.6	0.625
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1807011	5.534
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.344086	0.744
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0080354	124.45
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0124285	80.46
Ended	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1804403	5.542
2/29/2012	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.8038585	1.244
	SOUTH KOREA	WON	0.0009095	1,099.52	0.0009095	1099.518	0.0008961	1115.95
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5737235	1.743
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5923567	0.628
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1773679	5.638
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.3192612	0.758
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0081473	122.74
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0130941	76.37
Ended	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.172206	5.807
1/31/2012	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.798722	1.252
	SOUTH KOREA	WON	0.0009095	1,099.52	0.0009095	1099.518	0.0008925	1120.5
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5656109	1.768
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5772871	0.634
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.174125	5.743
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.2936611	0.773
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0081633	122.5
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0129316	77.33
Ended 12/31/2011	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1665556	6.004
12/31/2011	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.7698229	1.299
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.0008631	1158.65
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5302227	1.886
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5479876	0.646
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1790831	5.584
	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.3315579	0.751
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0083493	119.77
For Month	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.0128156	78.03
Ended 11/30/2011	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.171409	5.834
11/30/2011	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.7739938	1.292
	SOUTH KOREA	WON	0.0009095	1099.518	0.0009095	1099.518	0.0008768	1140.55
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5411255	1.848
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.5625	0.64
	DENMARK	KRONE	0.1791505	5.5819	0.1791505	5.5819	0.1882176	5.313
For Month Ended 10/31/2011	EUROPEAN UNION	EURO	1.3349353	0.7491	1.3349353	0.7491	1.4005602	0.714
	ICELAND	KRONA	0.0094995	105.2688	0.0094995	105.2688	0.0088013	113.62
	JAPAN	YEN	0.0109586	91.2524	0.0109586	91.2524	0.012837	77.9

	NORWAY	KRONE	0.1641901	6.0905	0.1641901	6.0905	0.1816201	5.506
	SINGAPORE	DOLLAR	0.7019514	1.4246	0.7019514	1.4246	0.8012821	1.248
	SOUTH KOREA	WON	0.0009095	1,099.52	0.0009095	1099.518	0.0009009	1110.05
	TURKEY	LIRA	0.7072636	1.4139	0.7072636	1.4139	0.5707763	1.752
	UNITED KINGDOM	POUND	1.6900456	0.5917	1.6900456	0.5917	1.6025641	0.624
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1816201	5.506
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.3513514	0.74
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0084854	117.85
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0130141	76.84
Ended 9/30/2011	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.171409	5.834
9/30/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.770416	1.298
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0008468	1180.9
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.5387931	1.856
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.5600624	0.641
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1937609	5.161
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.4430014	0.693
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.008837	113.16
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0130565	76.59
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.186846	5.352
8/31/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.8319468	1.202
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0009387	1065.35
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.5803831	1.723
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.6286645	0.614
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1914242	5.224
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.4265335	0.701
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0086498	115.61
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0128949	77.55
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1842978	5.426
7/30/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.8298755	1.205
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0009488	1054
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.5941771	1.683
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.6286645	0.614
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1939864	5.155
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.447178	0.691
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.008739	114.43
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0124378	80.4
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1861504	5.372
6/30/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.8136697	1.229
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0009368	1067.5
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.6169031	1.621
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.6025641	0.624

	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1930129	5.181
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.4388489	0.695
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0087131	114.77
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0122714	81.49
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1855288	5.39
5/31/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.8103728	1.234
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0009269	1078.9
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.6281407	1.592
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.650165	0.606
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1993223	5.017
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.4858841	0.673
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0090367	110.66
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0123153	81.2
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1910585	5.234
4/30/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.8163265	1.225
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.000936	1068.4
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.6583278	1.519
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.6666667	0.6
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1905488	5.248
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.4204545	0.704
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0087781	113.92
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0120729	82.83
Ended 3/31/2011	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1812579	5.517
3/31/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.7936508	1.26
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0009142	1093.8
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.6480881	1.543
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.610306	0.621
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1854943	5.391
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.3831259	0.723
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0086311	115.86
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0122145	81.87
Ended 2/28/2011	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1788589	5.591
2/20/2011	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.7867821	1.271
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0008881	1126
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.6257822	1.598
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.6233766	0.616
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1836547	5.445
For Month	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.3679891	0.731
Ended 1/31/2011	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0086415	115.72
1/31/2011	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0121743	82.14
	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1726817	5.791

	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.78125	1.28
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0008932	1119.6
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.622665	1.606
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.5898251	0.629
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1779043	5.621
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.3262599	0.754
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0086558	115.53
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0122294	81.77
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1695778	5.897
12/31/2010	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.7757952	1.289
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0008845	1130.6
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.643915	1.553
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.5384615	0.65
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1748557	5.719
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.303781	0.767
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0085419	117.07
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0119289	83.83
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1613163	6.199
11/30/2010	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.7564297	1.322
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.000862	1160.15
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.6640106	1.506
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.552795	0.644
	DENMARK	KRONE	0.1860984	5.3735	0.1860984	5.3735	0.1871608	5.343
	EUROPEAN UNION	EURO	1.3865779	0.7212	1.3865779	0.7212	1.3947	0.717
	ICELAND	KRONA	0.0117322	85.2358	0.0117322	85.2358	0.0090285	110.76
For Month	JAPAN	YEN	0.0098086	101.9517	0.0098086	101.9517	0.0124425	80.37
Ended	NORWAY	KRONE	0.1631641	6.1288	0.1631641	6.1288	0.1713209	5.837
10/31/2010	SINGAPORE	DOLLAR	0.6821748	1.4659	0.6821748	1.4659	0.7745933	1.291
	SOUTH KOREA	WON	0.0008699	1149.506	0.0008699	1149.506	0.0008953	1116.98
	TURKEY	LIRA	0.7205649	1.3878	0.7205649	1.3878	0.7012623	1.426
	UNITED KINGDOM	POUND	1.7340038	0.5767	1.7340038	0.5767	1.6051364	0.623
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1834189	5.452
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.3661202	0.732
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0088394	113.13
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0120019	83.32
Ended	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1710864	5.845
	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.761035	1.314
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008771	1140.1
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6915629	1.446
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.5898251	0.629
For Month	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1703287	5.871

Ended 8/31/2010	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.2674271	0.789
8/31/2010	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0082843	120.71
	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0118497	84.39
	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1580778	6.326
	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7374631	1.356
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.000834	1199.05
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6540222	1.529
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.5384615	0.65
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1743071	5.737
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.2987013	0.77
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0083167	120.24
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0115714	86.42
Ended 7/31/2010	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1630258	6.134
	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7342144	1.362
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008449	1183.55
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6609385	1.513
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.55521	0.643
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1649893	6.061
For Month	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.2285012	0.814
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0078567	127.28
	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.011279	88.66
Ended 6/30/2010	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1547748	6.461
0/30/2010	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7173601	1.394
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008186	1221.6
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6337136	1.578
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.5037594	0.665
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1636393	6.111
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.216545	0.822
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0077274	129.41
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0109842	91.04
Ended 5/31/2010	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1532097	6.527
3/31/2010	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7077141	1.413
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008224	1215.9
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6309148	1.585
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.459854	0.685
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1789229	5.589
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.3315579	0.751
For Month Ended	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0078333	127.66
4/30/2010	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0105775	94.54
, . ,	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1696641	5.894
	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7309942	1.368

	COLITILIZADEA	14/01/	0.0000000	4404 574	0.0000000	4404 574	0.0000024	4400.2
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0009024	1108.2
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6747638	1.482
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.5337423	0.652
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1813894	5.513
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.3513514	0.74
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0078284	127.74
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0107654	92.89
Ended 3/31/2010	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1684069	5.938
.,.,	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7153076	1.398
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.000884	1131.2
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6574622	1.521
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.5128593	0.661
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1826818	5.474
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.3586957	0.736
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0077961	128.27
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0112095	89.21
Ended	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1688049	5.924
2/28/2010	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7112376	1.406
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008622	1159.8
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6485084	1.542
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.52207	0.657
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1947238	5.1355
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.39078	0.719
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0078339	127.65
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0110209	90.7364
Ended	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1701242	5.8781
1/31/2010	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7084612	1.4115
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008578	1165.8
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6729158	1.4861
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.5938211	0.6274
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1938612	5.1583
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.4424062	0.6933
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.008017	124.735
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0107891	92.6859
Ended	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1757197	5.6909
12/31/2009	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7151746	1.3983
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008652	1155.8
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6745909	1.4824
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.6164072	0.6187
For Month	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.2014705	4.9635
Ended 11/30/2009	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.4993482	0.667
,,	LONG! LANG GIVION	201.0	1.2324300	3.7737	1.2324300	5.7757	1.1555702	3.007

	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0081553	122.619
	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0116098	86.1343
	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1756189	5.6941
	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7221304	1.3848
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.0008592	1163.8187
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6521497	1.5334
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.6405992	0.6095
	DENMARK	KRONE	0.1715178	5.8303	0.1715178	5.8303	0.1988429	5.0291
	EUROPEAN UNION	EURO	1.2924906	0.7737	1.2924906	0.7737	1.48	0.6757
	ICELAND	KRONA	0.0113496	88.1091	0.0113496	88.1091	0.0080444	124.3099
For Month	JAPAN	YEN	0.0091746	108.9969	0.0091746	108.9969	0.0111012	90.08
Ended	NORWAY	KRONE	0.1577063	6.3409	0.1577063	6.3409	0.1743922	5.7342
10/31/2009	SINGAPORE	DOLLAR	0.6593696	1.5166	0.6593696	1.5166	0.7159216	1.3968
	SOUTH KOREA	WON	0.0008392	1191.571	0.0008392	1191.571	0.000843	1186.2
	TURKEY	LIRA	0.7203054	1.3883	0.7203054	1.3883	0.6638784	1.5063
	UNITED KINGDOM	POUND	1.6934801	0.5905	1.6934801	0.5905	1.6520071	0.6053
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1965184	5.0886
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.4631565	0.6835
For Month Ended	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0080785	123.7852
	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0111728	89.5033
	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1730268	5.7795
9/30/2009	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.7098234	1.4088
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.00085	1176.4226
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.673456	1.4849
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.6004	0.6248
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1928979	5.1841
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.4350007	0.6969
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0079956	125.0686
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0107286	93.2089
Ended 8/31/2009	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1664899	6.0064
	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.6937731	1.4414
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0008004	1249.3541
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6670591	1.4991
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.6301144	0.6135
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1915754	5.2199
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.4264836	0.701
For Month	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0079031	126.5329
Ended	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0105755	94.5585
7/31/2009	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1632883	6.1241
	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.6947548	1.4394
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0008178	1222.75

	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6786848	1.4734
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.6706114	0.5986
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1882691	5.3115
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.4019222	0.7133
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0078333	127.66
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0103711	96.4222
Ended	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1553087	6.4388
6/30/2009	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.6907132	1.4478
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.000784	1275.5068
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6491444	1.5405
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.6449409	0.6079
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1897065	5.2713
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.4136573	0.7074
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0082173	121.695
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.010475	95.4653
Ended	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1583005	6.3171
5/31/2009	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.69266	1.4437
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0007982	1252.85
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6488451	1.5412
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.6157699	0.6189
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1778821	5.6217
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.3249403	0.7548
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0078371	127.5978
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0101249	98.7665
Ended	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1522425	6.5685
4/30/2009	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.676917	1.4773
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0007824	1278.146
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6263576	1.5965
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.4808979	0.6753
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1780628	5.616
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.3259838	0.7542
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.008112	123.2743
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0100871	99.1362
Ended 3/31/2009	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.148319	6.7422
3/31/2009	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.6575707	1.5207
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0007286	1372.5743
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.5994244	1.6683
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.4296416	0.6995
For Month	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1701462	5.8773
Ended 2/28/2009	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.2677485	0.7888
2/20/2UU J	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0087951	113.7

	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0102449	97.61
	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1422718	7.0288
	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.645682	1.5487
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.000653	1531.45
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.5878553	1.7011
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.4275008	0.7005
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1718951	5.8175
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.2803032	0.7811
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0087819	113.87
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0111219	89.913
Ended	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1448499	6.9037
1/31/2009	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.6620324	1.5105
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.000724	1381.2
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6081616	1.6443
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.4597475	0.6851
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.186929	5.3496
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.3920444	0.7184
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0082333	121.4586
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0110152	90.7838
Ended	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1433378	6.9765
12/31/2008	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.6957334	1.4373
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0007905	1264.9771
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6493535	1.54
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.4615274	0.6842
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1703723	5.8695
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.268448	0.7884
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0069979	142.9
For Month	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.0104685	95.525
Ended	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.1427144	7.007
11/30/2008	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.660701	1.5135
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0006801	1470.3
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.6384881	1.5662
	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.5342012	0.6518
	DENMARK	KRONE	0.1682227	5.9445	0.1682227	5.9445	0.1702645	5.8732
	EUROPEAN UNION	EURO	1.2650221	0.7905	1.2650221	0.7905	1.2679542	0.7887
	ICELAND	KRONA	0.0143772	69.5546	0.0143772	69.5546	0.0082815	120.7507
For Month Ended	JAPAN	YEN	0.0087489	114.3007	0.0087489	114.3007	0.01016	98.4251
10/31/2008	NORWAY	KRONE	0.1552096	6.4429	0.1552096	6.4429	0.148375	6.7397
	SINGAPORE	DOLLAR	0.6349609	1.5749	0.6349609	1.5749	0.6739662	1.4838
	SOUTH KOREA	WON	0.0010193	981.0592	0.0010193	981.0592	0.0007768	1287.3906
	TURKEY	LIRA	0.6979828	1.4327	0.6979828	1.4327	0.652621	1.5323

	UNITED KINGDOM	POUND	1.8031013	0.5546	1.8031013	0.5546	1.6152532	0.6191
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.1887631	5.2976
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.408156	0.7101
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0094338	106.0017
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0094398	105.9349
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1697755	5.8901
9/30/2008	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.6975453	1.4336
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0008284	1207.1237
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.7845599	1.2746
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.7801563	0.5617
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.1966955	5.084
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.4667058	0.6818
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0120041	83.305
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.00919	108.814
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1843318	5.425
8/31/2008	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.7060152	1.4164
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0009148	1093.15
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.8435615	1.1855
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.8189094	0.5498
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.2089698	4.7854
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.5586285	0.6416
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0126281	79.1884
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.009251	108.0965
Ended 7/31/2008	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1948475	5.1322
7/31/2008	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.7312892	1.3674
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.00099	1010.1004
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.8599913	1.1628
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.9800808	0.505
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.2111397	4.7362
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.5748031	0.635
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0126569	79.0086
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.009417	106.191
Ended 6/30/2008	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1963776	5.0922
0/30/2008	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.7348186	1.3609
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0009551	1046.99
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.8179966	1.2225
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.9904459	0.5024
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.2085223	4.7957
For Month Ended	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.5540016	0.6435
Ended 5/31/2008	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0134523	74.3365
	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0094769	105.52

	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1963942	5.0918
	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.734484	1.3615
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0009708	1030.05
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.8202773	1.2191
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.9791986	0.5053
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.2086436	4.7929
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.556424	0.6425
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0133709	74.7895
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0095666	104.5302
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1953369	5.1194
4/30/2008	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.7365964	1.3576
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0009941	1005.9541
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.7842184	1.2752
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.984282	0.504
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.2119421	4.7183
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.580403	0.6328
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0132258	75.6096
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0100141	99.8595
Ended 3/31/2008	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1966344	5.0856
	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.7251106	1.3791
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0010098	990.3072
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.7514164	1.3308
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.9858843	0.5036
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.2038512	4.9055
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.5187528	0.6584
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0151332	66.0799
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0095963	104.2066
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1919861	5.2087
2/29/2008	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.7175248	1.3937
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.001065	938.9405
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.8281916	1.2075
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.9862196	0.5035
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.1990967	5.0227
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.483816	0.6739
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0154064	64.9081
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0093683	106.7433
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1846422	5.4159
1/31/2008	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.7059156	1.4166
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0010596	943.7966
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.855037	1.1695
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.9894203	0.5027
	,2020171			5.5520	50057.25	3.3320		0.0027

	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.1958472	5.106
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.4600458	0.6849
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.015917	62.826
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.008951	111.7188
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1840236	5.4341
12/31/2007	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.6958942	1.437
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0010601	943.2651
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.8554759	1.1689
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	1.9856241	0.5036
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.1962424	5.0957
	EUROPEAN UNION	EURO	1.2108003	0.8259	12.1080034	0.0826	1.462908	0.6836
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0163239	61.26
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0089888	111.25
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1799775	5.5563
11/30/2007	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.6916543	1.4458
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0010813	924.8263
	TURKEY	LIRA	0.6899883	1.4493	0.6899883	1.4493	0.8474576	1.18
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	2.0563438	0.4863
	DENMARK	KRONE	0.1599411	6.2523	0.1599411	6.2523	0.1940881	5.1523
	EUROPEAN UNION	EURO	1.2108003	0.8259	1.2108003	0.8259	1.4461316	0.6915
	ICELAND	KRONA	0.0134384	74.4138	0.0134384	74.4138	0.0167221	59.8011
For Month	JAPAN	YEN	0.0087125	114.7781	0.0087125	114.7781	0.0086733	115.2966
Ended	NORWAY	KRONE	0.1519133	6.5827	0.1519133	6.5827	0.1854943	5.391
10/31/2007	SINGAPORE	DOLLAR	0.6172078	1.6202	0.6172078	1.6202	0.6903693	1.4485
	SOUTH KOREA	WON	0.0009749	1025.697	0.0009749	1025.697	0.0011101	900.8274
	TURKEY	LIRA	0.6899935	1.4493	0.6899935	1.4493	0.8545548	1.1702
	UNITED KINGDOM	POUND	1.8089725	0.5528	1.8089725	0.5528	2.0759809	0.4817
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1914352	5.2237
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.4234875	0.7025
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0162008	61.7255
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0087108	114.8
Ended	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1855184	5.3903
9/30/2007	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.673174	1.4855
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010965	911.965
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.8268563	1.2094
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	2.038736	0.4905
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1830999	5.4615
For Month	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3642006	0.733
Ended	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.015748	63.5003
8/31/2007	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0086326	115.8402
	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.17178	5.8214

	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6559958	1.5244
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010657	938.3097
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7694675	1.2996
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	2.0165356	0.4959
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1842265	5.4281
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3708019	0.7295
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0163697	61.0884
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0083925	119.1535
Ended	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1720697	5.8116
7/31/2007	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6597176	1.5158
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010879	919.1949
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7857311	1.2727
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	2.0358306	0.4912
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1819902	5.4948
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3540961	0.7385
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0160669	62.2399
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0081189	123.17
Ended	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1697937	5.8895
6/30/2007	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6527628	1.532
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010844	922.195
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7641755	1.3086
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	2.0081128	0.498
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1806228	5.5364
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3449899	0.7435
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0162605	61.4989
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0082149	121.7307
Ended 5/31/2007	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1655766	6.0395
3/31/2007	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6532105	1.5309
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010777	927.87
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7590709	1.3174
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.979806	0.5051
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1828856	5.4679
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3635124	0.7334
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0155788	64.19
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0083612	119.5998
Ended 4/30/2007	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1675435	5.9686
1,30,2007	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6585446	1.5185
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010762	929.1641
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.749232	1.3347
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.9984013	0.5004
For Month	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1792179	5.5798

Ended 3/31/2007	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3354701	0.7488
3/31/2007	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.015186	65.8501
	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0084897	117.79
	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1641147	6.0933
	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6592392	1.5169
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010269	973.8
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7182876	1.3922
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.9681165	0.5081
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.177535	5.6327
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3227569	0.756
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0151194	66.14
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0084515	118.3224
Ended	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1630425	6.1334
2/28/2007	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6543044	1.5283
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010619	941.7103
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7067091	1.415
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.960875	0.51
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1748007	5.7208
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3034411	0.7672
For Month	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0146285	68.3599
	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0082871	120.67
Ended	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1607149	6.2222
1/31/2007	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6512113	1.5356
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010621	941.53
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7109847	1.4065
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.9646365	0.509
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.177057	5.6479
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3197	0.7577
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0140905	70.97
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0084019	119.02
Ended	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1605471	6.2287
12/31/2006	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6519755	1.5338
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010753	930
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.7055591	1.4173
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.9585991	0.5106
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1766972	5.6594
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.3199996	0.7576
For Month Ended	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.014497	68.9799
11/30/2006	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0085911	116.4002
11/30/2000	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.1596263	6.2646
	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6475392	1.5443

	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010752	930.0206
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.6882787	1.4529
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.9562045	0.5112
	DENMARK	KRONE	0.1545356	6.471	0.1545356	6.471	0.1712739	5.8386
	EUROPEAN UNION	EURO	1.1723329	0.853	1.1723329	0.853	1.2764871	0.7834
	ICELAND	KRONA	0.0135002	74.073	0.0135002	74.073	0.0148017	67.56
For Month	JAPAN	YEN	0.0088261	113.3	0.0088261	113.3	0.0085551	116.8899
Ended	NORWAY	KRONE	0.1477541	6.768	0.1477541	6.768	0.152952	6.538
10/31/2006	SINGAPORE	DOLLAR	0.5868545	1.704	0.5868545	1.704	0.6424671	1.5565
	SOUTH KOREA	WON	0.0008688	1151	0.0008688	1151	0.0010674	936.8301
	TURKEY	LIRA	0.6703235	1.4918	0.6703235	1.4918	0.6877579	1.454
	UNITED KINGDOM	POUND	1.7391304	0.575	1.7391304	0.575	1.907305	0.5243
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1701838	5.876
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.2687135	0.7882
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0142796	70.0299
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0084758	117.983
Ended 9/30/2006	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1537043	6.506
9/30/2000	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6307556	1.5854
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010568	946.2907
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.663482	1.5072
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.8716077	0.5343
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1722801	5.8045
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.2851819	0.7781
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0144927	69.0001
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0085237	117.3205
Ended 8/31/2006	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1590558	6.2871
0/31/2000	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6357683	1.5729
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010421	959.6041
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.6824541	1.4653
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.9076688	0.5242
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1712006	5.8411
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.2774655	0.7828
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0139919	71.4701
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0087222	114.65
Ended 7/31/2006	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1625012	6.1538
7,31,2000	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6333924	1.5788
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010469	955.2
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.667735	1.4976
F N.C 11	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.8681113	0.5353
For Month Ended	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1704332	5.8674
6/30/2006	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.2712942	0.7866

	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0131627	75.9722
	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0086994	114.9503
	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1601948	6.2424
	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6291682	1.5894
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010413	960.3007
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.6355259	1.5735
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.8345258	0.5451
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1718006	5.8207
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.2815584	0.7803
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0139471	71.6996
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0088857	112.54
Ended	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1645007	6.079
5/31/2006	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6333924	1.5788
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010574	945.72
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.6355259	1.5735
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.8702076	0.5347
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.168039	5.951
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.2537613	0.7976
For Month Ended	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0133832	74.7203
	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0087489	114.2999
	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1616214	6.1873
4/30/2006	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.631672	1.5831
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010574	945.699
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.7532957	1.3275
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.8086453	0.5529
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1623008	6.1614
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.211387	0.8255
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0139782	71.5398
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0084913	117.768
Ended 3/31/2006	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1525902	6.5535
	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6187736	1.6161
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010241	976.4376
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.7448235	1.3426
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.7367141	0.5758
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1598006	6.2578
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.1924636	0.8386
For Month	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0153539	65.1301
Ended 2/28/2006	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0086341	115.82
L, LO, 2000	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1482008	6.7476
	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6162948	1.6226
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010299	970.97

	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.761035	1.314
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.7540782	0.5701
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1623561	6.1593
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.2118274	0.8252
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0160179	62.43
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0084955	117.71
Ended	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.149158	6.7043
1/31/2006	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6033547	1.6574
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0010299	970.9977
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.7527853	1.3284
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.7711654	0.5646
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1589926	6.2896
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.1875074	0.8421
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0159261	62.7899
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0084964	117.6967
Ended	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.149158	6.7043
12/31/2005	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.6033547	1.6574
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0009912	1008.9
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.7446016	1.343
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.7295054	0.5782
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1582003	6.3211
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.1791062	0.8481
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0157084	63.6603
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0083459	119.82
Ended	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.148401	6.7385
11/30/2005	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.5912961	1.6912
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0009639	1037.45
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.7371913	1.3565
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.7295054	0.5782
	DENMARK	KRONE	0.1661958	6.017	0.1661958	6.017	0.1605987	6.2267
	EUROPEAN UNION	EURO	1.1383039	0.8785	1.1383039	0.8785	1.198466	0.8344
	ICELAND	KRONA	0.0121656	82.199	0.0121656	82.199	0.0163801	61.0499
For Month	JAPAN	YEN	0.0086957	115	0.0086957	115	0.0085911	116.4
Ended	NORWAY	KRONE	0.1481262	6.751	0.1481262	6.751	0.1536995	6.5062
10/31/2005	SINGAPORE	DOLLAR	0.5743825	1.741	0.5743825	1.741	0.5903885	1.6938
	SOUTH KOREA	WON	0.0008297	1205.2	0.0008297	1205.2	0.0009579	1043.95
	TURKEY	LIRA	0.6603157	1.5144	0.6603157	1.5144	0.7399186	1.3515
	UNITED KINGDOM	POUND	1.6863406	0.593	1.6863406	0.593	1.7702248	0.5649

Appendix F: Comparison of FRB H.10 and DoD Adjusting Rates

The FRB H.10 average monthly Pound and Yen exchange rates are not statistically different as their respective DoD adjusting rates. The exchange rates from both sources do not exhibit a normal distribution; therefore a nonparametric comparison was completed using the Wilcoxon method. The p-value of both pairs of currencies is extremely higher than 0.05, indicating the samples come from the same population (as shown by the top two pair comparisons below). This allows the use of the FRB H.10 data for method comparison in the long term analysis.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To) September 2013 - March 2015 26-03-2015 Graduate Research Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Forecasting Foreign Currency Exchange Rates for Air 5b. GRANT NUMBER Force Budgeting 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Gardner, Nicholas R, Capt, Air Force 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Institute of Technology AFIT-ENV-MS-15-M-178 Graduate School of Engineering and Management 2950 Hobson Way WPAFB OH 45433-7765 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Secretary of the Air Force, Financial Management SAF/FMCE Directorate of Economics and Business Management 11. SPONSOR/MONITOR'S REPORT Andrew T Wallen, Lt Col, USAF NUMBER(S) (703) 697-9625 andrew.t.wallen.mil@mail.mil 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution Statement A. Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 14. ABSTRACT This thesis examines the current method of forecasting foreign currency exchange rates for the annual US Air Force budget. Using 5 methods against the status quo of a center-weighted average, the paper evaluates the absolute percent error (APE) over three time periods extending from Fiscal Year (FY) 1979 to FY 2014. The results strongly indicate that four of the alternative methods outperform over the short term, and one method for all three time periods. Furthermore, a non-parametric comparison of the median APE demonstrates statistical similarities between the four methods over the short term, and allows for the Air Force to choose which method to exercise for future forecasting. Overall, the paper recommends using a private firm's forecasts to decrease the median APE by 3.36% and avoiding \$36.1 million opportunity cost. 15. SUBJECT TERMS Foreign exchange, currency, forecasting, budget 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES Lt Col Jonathan D Ritschel, AFIT/ENV UU 407 19b. TELEPHONE NUMBER (Include Area Code) c. THIS **REPORT ABSTRACT PAGE** (937) 785-3636 x4441 Jonathan.Ritschel@afit.edu

U