## **ΘΕΜΑ 4**

Ένα ξύλινο κιβώτιο μάζας  $M=1,95~{\rm kg}$  βρίσκεται ακίνητο στην άκρη κατακόρυφης χαράδρας, η οποία βρίσκεται σε ύψος  $H=45~{\rm m}$ , πάνω από την επιφάνεια της θάλασσας, όπως φαίνεται στο παρακάτω σχήμα. Βλήμα μάζας  $m=50~{\rm g}$ , που κινείται με οριζόντια ταχύτητα  $v=100~{\rm m}/{\rm s}$ , συγκρούεται με το ακίνητο κιβώτιο και σφηνώνεται σ' αυτό. Στη συνέχεια, το συσσωμάτωμα κιβώτιο-βλήμα που δημιουργείται, αμέσως μετά την κρούση εκτελεί οριζόντια βολή και καταλήγει στη θάλασσα.



Να υπολογίσετε:

**4.1.** Την ταχύτητα  $V_{\Sigma}$  του συσσωματώματος κιβώτιο-βλήμα αμέσως μετά την κρούση.

Μονάδες 6

4.2. Την απώλεια της κινητικής ενέργειας του συστήματος κιβώτιο-βλήμα λόγω της κρούσης.

## Μονάδες 7

**4.3.** Τη χρονική διάρκεια της καθόδου του συσσωματώματος, μέχρις αυτό να φτάσει στην επιφάνεια της θάλασσας.

## Μονάδες 6

**4.4.** Την οριζόντια απόσταση *s*, που θα διανύσει το συσσωμάτωμα (βεληνεκές), μέχρις ότου φτάσει στην επιφάνεια της θάλασσας.

## Μονάδες 6

Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης  $g=10~{
m m}/{
m g^2}$  και ότι κατά την κίνηση του συσσωματώματος κιβώτιο-βλήμα θεωρούμε την αντίσταση από τον αέρα μηδενική.