Homework #3

September 19, 2021

Problem 1

Part a

Denote the subset \mathcal{X} of \mathbb{R}^n such that $\mathcal{X} = \{x \in \mathbb{R}^n : x_i \geq 0 \mid i = 1, ..., n\}$. This is not a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$ since is it not closed under multiplication by a constant. In fact:

$$\forall x \in \mathcal{X}, \ \exists \alpha \in \mathbb{R}, \ \alpha < 0 \quad \text{s.t.} \quad y = \alpha x = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \text{ with } \ y_i \leq 0$$

Part b

Denote the subset \mathcal{X} of \mathbb{R}^n such that $\mathcal{X} = \{x \in \mathbb{R}^n : x_1 = 0\}$. This is a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$, since it contains the zero vector $\vec{0}$ and it satisfies the following property:

$$\forall \alpha_{1,2} \in \mathbb{R} \text{ and } \forall v^{1,2} \in \mathcal{X}, \ v = \alpha_1 v^1 + \alpha_2 v^2 \in \mathcal{X}$$
 (1)

In fact:

$$\alpha_{1}v^{1} + \alpha_{2}v^{2} = \alpha_{1} \begin{bmatrix} v_{1}^{1} \\ v_{2}^{1} \\ \vdots \\ v_{n}^{1} \end{bmatrix} + \alpha_{2} \begin{bmatrix} v_{1}^{2} \\ v_{2}^{2} \\ \vdots \\ v_{n}^{2} \end{bmatrix} = \alpha_{1} \begin{bmatrix} 0 \\ v_{2}^{1} \\ \vdots \\ v_{n}^{1} \end{bmatrix} + \alpha_{2} \begin{bmatrix} 0 \\ v_{2}^{2} \\ \vdots \\ v_{n}^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ \alpha_{1}v_{2}^{1} + \alpha_{2}v_{2}^{2} \\ \vdots \\ \alpha_{1}v_{n}^{1} + \alpha_{2}v_{n}^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix}$$

Thus $v = \alpha_1 v^1 + \alpha_2 v^2 \in \mathcal{X} : \{x \in \mathbb{R}^n : x_1 = 0\}$, implying that \mathcal{X} is a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$.

Part c

Denote the subset \mathcal{X} of \mathbb{R}^n such that $\mathcal{X} = \{x \in \mathbb{R}^n : x_1x_2 = 0 \mid n \geq 2\}$. This is not a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$, since it does not satisfy property (1). In fact, from the attribute of \mathcal{X} , we have that for $x \in \mathcal{X}$, either $x_1 = 0$, $x_2 = 0$ or $x_1 = x_2 = 0$. Thus, we have:

$$\exists \alpha_{1,2} \in \mathbb{R}, \ \alpha_{1,2} \neq 0 \text{ and } \exists v^{1,2} \in \mathcal{X}, \ v = \alpha_1 v^1 + \alpha_2 v^2 \notin \mathcal{X}$$

In fact:

$$\alpha_{1}v^{1} + \alpha_{2}v^{2} = \alpha_{1} \begin{bmatrix} v_{1}^{1} \\ v_{2}^{1} \\ \vdots \\ v_{n}^{1} \end{bmatrix} + \alpha_{2} \begin{bmatrix} v_{1}^{2} \\ v_{2}^{2} \\ \vdots \\ v_{n}^{2} \end{bmatrix} = \alpha_{1} \begin{bmatrix} 0 \\ v_{2}^{1} \\ \vdots \\ v_{n}^{1} \end{bmatrix} + \alpha_{2} \begin{bmatrix} v_{1}^{2} \\ 0 \\ \vdots \\ v_{n}^{2} \end{bmatrix} = \begin{bmatrix} \alpha_{2}v_{1}^{2} \\ \alpha_{1}v_{2}^{1} \\ \vdots \\ \alpha_{1}v_{n}^{1} + \alpha_{2}v_{n}^{2} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix}$$

Thus $v = \alpha_1 v^1 + \alpha_2 v^2 \notin \mathcal{X} : \{x \in \mathbb{R}^n : x_1 x_2 = 0 \mid n \geq 2\}$, implying that \mathcal{X} is not a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$.

Part d

Denote the subset \mathcal{X} of \mathbb{R}^n such that $\mathcal{X} = \{x \in \mathbb{R}^n : x_1 + \ldots + x_n = 0\}$. This is a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$, since it satisfies property (1) and it contains the zero vector $\vec{0}$. In fact:

$$\vec{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \ \sum_{i=0}^{n} \vec{0}_i = \vec{0}_1 + \dots + \vec{0}_n = 0$$
 (2)

We also have:

$$\alpha_1 v^1 + \alpha_2 v^2 = \alpha_1 \begin{bmatrix} v_1^1 \\ v_2^1 \\ \vdots \\ v_n^1 \end{bmatrix} + \alpha_2 \begin{bmatrix} v_1^2 \\ v_2^2 \\ \vdots \\ v_n^2 \end{bmatrix} = \begin{bmatrix} \alpha_1 v_1^1 + \alpha_2 v_1^2 \\ \alpha_1 v_2^1 + \alpha_2 v_2^2 \\ \vdots \\ \alpha_1 v_n^1 + \alpha_2 v_n^2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

Now:

$$\sum_{i=0}^{n} v_i = \sum_{i=0}^{n} \alpha_1 v_i^1 + \alpha_2 v_i^2 = (\alpha_1 v_1^1 + \alpha_2 v_1^2) + \dots + (\alpha_1 v_n^1 + \alpha_2 v_n^2)$$

$$= \alpha_1 (v_1^1 + \dots + v_n^1) + \alpha_2 (v_1^2 + \dots + v_n^2)$$

$$= \alpha_1 (0) + \alpha_2 (0)$$

$$= 0$$

Thus $v = \alpha_1 v^1 + \alpha_2 v^2 \in \mathcal{X} : \{x \in \mathbb{R}^n : x_1 + \ldots + x_n = 0\}$, implying that \mathcal{X} is a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$.

Part e

Denote the subset \mathcal{X} of \mathbb{R}^n such that $\mathcal{X} = \{x \in \mathbb{R}^n : x_1 + \ldots + x_n = 1\}$. This is not a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$, since it does not contain the zero vector $\vec{0}$ as seen in equation (2).

Part f

Denote the subset \mathcal{X} of \mathbb{R}^n such that $\mathcal{X} = \{x \in \mathbb{R}^n : Ax = b, A \neq 0, b \neq 0\}$. This is not a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$, since it does not contain the zero vector $\vec{0}$. In fact, let $A_{m,n} \in$

 $\{\mathbb{R}^{m,n}-0^{m,n}\}$ and $b^m\in\mathbb{R}^m$, we have:

$$A^{m,n}\vec{0} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}_{n,1} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}_{m,1}$$

However, since \mathcal{X} imposes that $b \neq 0$, we can then deduce that $\vec{0} \notin \mathcal{X}$ and thus \mathcal{X} is not a subspace of $\{\mathbb{R}^n, \mathbb{R}\}$.

Problem 2

Let (S_1) and (S_2) be two subsets of the vector space $(\mathcal{X}, \mathcal{F})$. To show that $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$, we must prove the following two inclusions:

$$\operatorname{span}(\mathcal{S}_1 \cup \mathcal{S}_2) \subset \operatorname{span}(\mathcal{S}_1) + \operatorname{span}(\mathcal{S}_2) \tag{3a}$$

$$\operatorname{span}(\mathcal{S}_1) + \operatorname{span}(\mathcal{S}_2) \subset \operatorname{span}(\mathcal{S}_1 \cup \mathcal{S}_2) \tag{3b}$$

We denote the spans of the respective subsets as follows:

$$\operatorname{span}(\mathcal{S}_{1}) = \{ v \in V | \exists k_{1} < \infty, v_{1}^{\mathcal{S}_{1}}, \dots, v_{k_{1}}^{\mathcal{S}_{1}} \in \mathcal{S}_{1}, \alpha_{1}, \dots, \alpha_{k_{1}} \in \mathcal{F}, v = \alpha_{1} v_{1}^{\mathcal{S}_{1}} + \dots + \alpha_{k_{1}} v_{k_{1}}^{\mathcal{S}_{1}} \}$$

$$\operatorname{span}(\mathcal{S}_{2}) = \{ v \in V | \exists k_{2} < \infty, v_{1}^{\mathcal{S}_{2}}, \dots, v_{k_{2}}^{\mathcal{S}_{2}} \in \mathcal{S}_{2}, \beta_{1}, \dots, \beta_{k_{2}} \in \mathcal{F}, v = \beta_{1} v_{1}^{\mathcal{S}_{2}} + \dots + \beta_{k_{2}} v_{k_{2}}^{\mathcal{S}_{2}} \}$$

$$\operatorname{span}(\mathcal{S}_{1} \cup \mathcal{S}_{2}) = \{ v \in V | \exists k_{1,2} < \infty, v_{1}^{\mathcal{S}_{1}}, \dots, v_{k_{1}}^{\mathcal{S}_{1}} \in \mathcal{S}_{1}, v_{1}^{\mathcal{S}_{2}}, \dots, v_{k_{2}}^{\mathcal{S}_{2}} \in \mathcal{S}_{2}, \alpha_{1}, \dots, \alpha_{k_{1}} \in \mathcal{F},$$

$$\beta_{1}, \dots, \beta_{k_{2}} \in \mathcal{F}, v = \alpha_{1} v_{1}^{\mathcal{S}_{1}} + \dots + \alpha_{k_{1}} v_{k_{1}}^{\mathcal{S}_{1}} + \beta_{1} v_{1}^{\mathcal{S}_{2}} + \dots + \beta_{k_{2}} v_{k_{2}}^{\mathcal{S}_{2}} \}$$

The union of the subsets S_1 and S_2 contains all the elements in either S_1 , S_2 or both. Thus $\operatorname{span}(S_1 \cup S_2)$ is the subset of all possible linear combinations of the vectors in S_1 and S_2 . We first prove the first inclusion (3a). Let $v \in \operatorname{span}(S_1 \cup S_2)$, thus we can write:

$$v = \alpha_1 v_1^{S_1} + \ldots + \alpha_{k_1} v_{k_1}^{S_1} + \beta_1 v_1^{S_2} + \ldots + \beta_{k_2} v_{k_2}^{S_2}$$

$$= (\alpha_1 v_1^{S_1} + \ldots + \alpha_{k_1} v_{k_1}^{S_1}) + (\beta_1 v_1^{S_2} + \ldots + \beta_{k_2} v_{k_2}^{S_2})$$

$$= s_1 + s_2$$

where $s_1 \in \text{span}(\mathcal{S}_1)$ and $s_2 \in \text{span}(\mathcal{S}_2)$. Thus we have showed that for $v \in \text{span}(\mathcal{S}_1 \cup \mathcal{S}_2)$, $v \in \text{span}(\mathcal{S}_1) + \text{span}(\mathcal{S}_2)$. This concludes the proof of the first inclusion (3a).

Proving the second inclusion (3b), we denote the vectors s_1 and s_2 mentioned in the first inclusion proof. Let $v \in \text{span}(\mathcal{S}_1) + \text{span}(\mathcal{S}_2)$, then v can be written as a linear combination of vectors in \mathcal{S}_1 and \mathcal{S}_2 . In particular:

$$v = s_1 + s_2 = (\alpha_1 v_1^{S_1} + \ldots + \alpha_{k_1} v_{k_1}^{S_1}) + (\beta_1 v_1^{S_2} + \ldots + \beta_{k_2} v_{k_2}^{S_2})$$

$$\implies v = \alpha_1 v_1^{S_1} + \ldots + \alpha_{k_1} v_{k_1}^{S_1} + \beta_1 v_1^{S_2} + \ldots + \beta_{k_2} v_{k_2}^{S_2}$$

Thus we showed that $v \in \text{span}(\mathcal{S}_1) + \text{span}(\mathcal{S}_2)$ can be written as a linear combination of vectors in $(\mathcal{S}_1 \cup \mathcal{S}_2)$. This concludes the proof of the second inclusion (3b). We conclude the following:

$$\operatorname{span}(\mathcal{S}_1 \cup \mathcal{S}_2) = \operatorname{span}(\mathcal{S}_1) + \operatorname{span}(\mathcal{S}_2)$$

Problem 3

To check whether a set of vectors \mathcal{X} is linearly independent or not, we check the following property:

$$\forall v \in \mathcal{X}, \sum_{i=1}^{n} \alpha_i v^i = 0 \implies \alpha_i = 0 \ i = 1, \dots, n < \infty$$
 (4)

Part a

Checking property (4) for the following set:

$$\mathcal{X} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\5\\9 \end{bmatrix} \right\}$$

We first write the linear combination of the vectors in \mathcal{X} and equate it to 0:

$$\alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 5 \\ 3 & 0 & 9 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = 0$$

Now we write the generated matrix A in row echelon form and we get:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = 0$$

We notice rank(A) = 2 < n = 3. Thus the vectors generated are linearly dependent. We can also check that one possible set of α_i is $\alpha_1 = 3$, $\alpha_2 = -1$, $\alpha_3 = -1$. We can also write a linear combination of the vectors as such:

$$\begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Part b

Checking property (4) for the following set:

$$\mathcal{X} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\4\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\6 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

We notice that $\mathcal{X} \subset \mathbb{R}^3$ and we know that the basis of \mathbb{R}^3 is made of 3 vectors as such:

$$basis(\mathbb{R}^3) = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

Thus the vectors in \mathcal{X} are linearly dependent since the number of vectors in \mathcal{X} is greater than the number of vectors in the basis of \mathbb{R}^3 . Following property (4), we can write a linear of combination of the vectors as such:

$$\alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 4 \\ 5 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} + \alpha_4 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0$$

Solving the set of equations we get:

$$\alpha_1 + \alpha_4 = 0
2\alpha_1 + 4\alpha_2 + \alpha_4 = 0
3\alpha_1 + 5\alpha_2 + 6\alpha_3 + \alpha_4 = 0$$
 $\Longrightarrow \alpha_1 = -8, \alpha_2 = 2, \alpha_3 = 1, \alpha_4 = 8$

We can then write a possible linear combination as such:

$$-8\begin{bmatrix}1\\2\\3\end{bmatrix} + 2\begin{bmatrix}0\\4\\5\end{bmatrix} + \begin{bmatrix}0\\0\\6\end{bmatrix} + 8\begin{bmatrix}1\\1\\1\end{bmatrix} = 0$$

Part c

Checking property (4) for the following set:

$$\mathcal{X} = \left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$$

We first write the linear combination of the vectors in \mathcal{X} and equate it to 0:

$$\alpha_1 \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = 0$$

We now write and solve the system of equations:

$$3\alpha_1 + \alpha_2 + 2\alpha_3 = 0
2\alpha_1 + \alpha_3 = 0
\alpha_1 = 0$$
 $\Rightarrow \alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 0$

We then conclude that the vectors in \mathcal{X} are linearly independent since our set is finite (n=3) and the only solution for equation (4) is obtained for $\alpha_{1,2,3}=0$.

Problem 4

Let \mathcal{X} denote a subset of matrices in $\mathbb{R}^{2\times 2}$ as follows:

$$\mathcal{X} = \left\{ \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} \right\}$$

We can write a system of linear combination of the matrices in \mathcal{X} as follows:

$$\alpha_1 \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} \alpha_1 + 2\alpha_2 + 4\alpha_3 & 2\alpha_1 + \alpha_2 - \alpha_3 \\ 2\alpha_1 + \alpha_2 - \alpha_3 & \alpha_1 + \alpha_2 + \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

We obtain the following set of equations by removing the redundant equality:

$$\left. \begin{array}{l}
 \alpha_1 + 2\alpha_2 + 4\alpha_3 = 0 \\
 2\alpha_1 + \alpha_2 - \alpha_3 = 0 \\
 \alpha_1 + \alpha_2 + \alpha_3 = 0
 \end{array} \right\} \implies \alpha_1 = 2, \alpha_2 = -3, \alpha_3 = 1$$

We can then write a possible linear combination of the matrices as such:

$$2\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} - 3\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Thus we can conclude that the matrices in the subset $\mathcal{X} \subset \mathbb{R}^{2\times 2}$ are linearly dependent.

Problem 5

To prove that for a vector space $(\mathcal{X}, \mathcal{F})$ and for a subset $\mathcal{S} \subset \mathcal{X}$, span (\mathcal{S}) is the smallest subspace of \mathcal{X} that contains \mathcal{S} , we use a proof by contradiction. Let us define a subspace \mathcal{Y} of \mathcal{X} such that $\mathcal{S} \subset \mathcal{Y}$ and $\mathcal{Y} \subset \text{span}(\mathcal{S})$, which means that \mathcal{Y} contains all of the elements in \mathcal{S} and that \mathcal{Y} is strictly smaller than span (\mathcal{S}) , respectively. Since $(\mathcal{Y}, \mathcal{F})$ is a vector space, \mathcal{Y} is closed under vector addition and scalar multiplication as such:

$$\forall \alpha_{1,2} \in \mathcal{F} \text{ and } \forall y_{1,2} \in \mathcal{Y}, \ \alpha_1 y_1 + \alpha_2 y_2 \in \mathcal{Y}$$

Since \mathcal{Y} contains all of the elements of \mathcal{S} and from the above definition, \mathcal{Y} is the set of all possible linear combinations of the vectors in \mathcal{S} . This contradicts the notion that $\mathcal{Y} \subset \operatorname{span}(\mathcal{S})$ since by definition, $\operatorname{span}(\mathcal{S})$ is the set of all possible linear combinations of vectors $v \in \mathcal{S}$. Thus by contradiction, $\mathcal{Y} = \mathcal{S}$ and $\operatorname{span}(\mathcal{Y}) = \operatorname{span}(\mathcal{S})$. We have thus proved the following claim:

If
$$\mathcal Y$$
 is a subspace of $\mathcal X$ and $\mathcal S\subset\mathcal Y$, then $\mathrm{span}(\mathcal S)\subset\mathcal Y$

Problem 6

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and \mathcal{V} and \mathcal{W} be two subspaces of \mathcal{X} , we prove the following claim:

$$\mathcal{V} \cap \mathcal{W} = \{0\} \iff \forall x \in \mathcal{V} + \mathcal{W}, \ \exists ! v \in \mathcal{V} \text{ and } \exists ! w \in \mathcal{W} \text{ s.t. } x = v + w$$

We first prove (\Leftarrow) by direct proof:

We have $\mathcal{X} = \mathcal{V} \oplus \mathcal{W} = \mathcal{V} + \mathcal{W}$. Now let us assume $\exists v \in \mathcal{V}, \exists w \in \mathcal{W} \text{ and } \exists x \in \mathcal{V} \cap \mathcal{W} \text{ such that:}$

$$\begin{cases} x = 0 + v \\ x = w + 0 \end{cases} \implies v = 0 \text{ and } w = 0, \text{ therefore } \mathcal{V} \cap \mathcal{W} = \{0\}$$

Now we prove (\Longrightarrow) by contradiction:

For all $x \in \mathcal{X}$, there exists a $v_{1,2} \in \mathcal{V}$ and $w_{1,2} \in \mathcal{W}$ such that $x = v_1 + w_1$ and $x = v_2 + w_2$. We can write the following:

$$0 = x - x$$

$$0 = v_1 + w_1 - v_2 - w_2$$

$$0 = (v_1 - v_2) + (w_1 - w_2)$$

$$(v_1 - v_2) = -(w_1 - w_2)$$

Since W is a subspace, W is closed under scalar multiplication and vector addition. Thus, $(v_1 - v_2) \in W$ since it is a linear combination of the vectors in W. We then can write that $(v_1 - v_2) \in (V \cap W)$. We also have that $V \cap W = \{0\}$, thus:

$$v_1 - v_2 = 0 \implies v_1 = v_2 \tag{5}$$

The same proof is applied for $(w_1 - w_2) \in \mathcal{V}$. Thus $(w_1 - w_2) \in (\mathcal{V} \cap \mathcal{W}) = \{0\}$, we have:

$$w_1 - w_2 = 0 \implies w_1 = w_2 \tag{6}$$

From (5) and (6), we showed that $\exists! v \in \mathcal{V}$ and $\exists! w \in \mathcal{W}$ and $\mathcal{X} = \mathcal{V} \oplus \mathcal{W}$. Finally, we have proved the following:

$$\mathcal{V} \cap \mathcal{W} = \{0\} \iff \forall x \in \mathcal{V} + \mathcal{W}, \ \exists ! v \in \mathcal{V} \text{ and } \exists ! w \in \mathcal{W} \text{ s.t. } x = v + w \}$$