Definition 1 (ucp-Metrik). Sei \mathcal{D} die Menge aller adaptierten càdlàg Prozesse von $\Omega \times \mathbb{R}_+$ nach \mathbb{R} . Wir definieren die Metrik $d_{ucp} \colon \mathcal{D} \times \mathcal{D} \to [0, \infty)$ durch

$$(X,Y) \mapsto \sum_{n \in \mathbb{N}} 2^{-n} E[(X-Y)_n^* \wedge 1],$$
 (1)

wobei $X_n^* := \sup_{s \le n} |X_s|$. Ebenso definiert d_{ucp} eine Metrik auf dem Raum aller adaptierten càglàd Prozesse.

Aufgabe 1 (3 Punkte). Zeigen Sie folgende Aussagen:

i) Für Zufallsvariablen X,X^1,X^2,\ldots gilt stochastische Konvergenz $X^m\to X$ genau dann, wenn $E[|X^m-X|\wedge 1]\to 0.$

Das ist Lemma 17 aus dem Skript zur Wahrscheinlichkeitstheorie. Es gelte zunächst $X^m \xrightarrow{P} X$ und sei $0 < \varepsilon < 1$ beliebig. Dann gilt

$$\begin{split} \lim_{n \to \infty} E[|X^m - X| \wedge 1] &= \lim_{n \to \infty} \left(E[|X^m - X| \wedge 1] \mathbbm{1}_{\{|X^m - X| > \varepsilon\}} \right. \\ &+ E[|X^m - X|] \mathbbm{1}_{\{|X^m - X| \le \varepsilon\}} \right) \\ &\leq \lim_{n \to \infty} \left(\mathbbm{1}_{\{|X^m - X| > \varepsilon\}} + \varepsilon \right) = \varepsilon \,, \end{split}$$

denn X^m konvergiert stochastisch gegen X. Gilt umgekehrt $0 < \varepsilon \le 1$ und $E[|X^m - X| \wedge 1] \to 0$, so gilt $P(|X^m - X| > \varepsilon) \le \frac{E[|X^m - X| \wedge 1]}{\varepsilon} \to 0$ nach Anwendung der Markov-Ungleichung.

Definition 2.

- i) Eine adaptierte Zerlegung ist eine Folge $\tau = (T_n)_{n \in \mathbb{N}_0}$ von Stoppzeiten mit $T_0 = 0$, $\sup_{n \in \mathbb{N}} T_n = \infty$ und $T_n < T_{n+1}$ auf $\{T_n < \infty\}$ für alle $n \in \mathbb{N}_0$.
- ii) Es seien $X \in \mathcal{S}$ ein Semimartingal, H ein adaptierter Prozess und $\tau = (T_n)_{n \in \mathbb{N}_0}$ eine adaptierte Zerlegung. Dann nennen wir den Prozess $\tau(H \cdot X)$ definiert durch

$$\tau(H \cdot X)_t := \sum_{m \in \mathbb{N}_0} H_{T_m} (X_{T_{m+1} \wedge t} - X_{T_m \wedge t}), \quad t \in \mathbb{R}_+$$

die τ -Riemann'sche Approximation von $H \cdot X$.

iii) Eine Folge $(\tau_n)_{n\in\mathbb{N}}$ von adaptierten Zerlegungen $\tau_n=(T_{n,m})_{m\in\mathbb{N}_0}$ heißt eine Riemann'sche Zerlegungsfolge, falls für alle $t\in\mathbb{R}_+$

$$\sup_{m \in \mathbb{N}_0} |T_{n,m+1} \wedge t - T_{n,m} \wedge t| \to 0 \quad \text{für } n \to \infty.$$

Aufgabe 3 (3 Punkte). Sei $X \in \mathscr{S}$ ein Semimartingal, H ein càg Prozess. Weiter sei $(\tau_n)_{n \in \mathbb{N}}$ eine Riemann'sche Zerlegungsfolge.

i) Geben Sie den einfachen previsiblen Prozess H^n an, sodass $\tau_n(H \cdot X)_t = H^n \cdot X$. Dieser darf hier auch als Reihe dargestellt werden.

Das ist Proposition 4.44 in [JS13]. Es gilt

$$H^n = \sum_{m \in \mathbb{N}} H_{T_{n,m}} \mathbb{1}_{[T_{n,m},T_{n,m+1}]}.$$

ii) Zeigen Sie, dass H^n punktweise gegen H konvergiert.

Das folgt, da H càg ist.

iii) Folgern Sie, dass die τ_n -Riemann'schen Approximationen $\tau_n(H \cdot X)_t$ gegen $H \cdot X$ in ucp konvergieren.

Sei $K_t = \sup_{s \leq t} |H_s|$, dann ist K adaptiert, càg, lokal beschränkt und es gilt $|H^n| \leq K$. Außerdem gilt nach (i) $\tau_n(H \cdot X) = H^n \cdot X$. Die Behauptung folgt mit Theorem 123 und Aufgabe 2.

Aufgabe 5 (4 Punkte). Es sei $X \in \mathcal{H}^2_{loc}$ beliebig. Dann liegt jeder lokal beschränkte, previsible Prozess in $L^2_{loc}(X)$.

Zunächst einmal gilt für $X \in \mathscr{H}^2_{loc}$, dass $\langle X, X \rangle \in \mathscr{V}$. Es gilt sogar, dass $\langle X, X \rangle \in \mathscr{A}^+_{loc}$, wobei das noch gezeigt werden sollte. Somit reicht es zu zeigen, dass für $X \in \mathscr{A}^+_{loc}$ und H lokal beschränkt und previsibel gilt, dass $H \cdot X \in \mathscr{A}^+_{loc}$. Seien H und X entsprechend gewählt, dann existiert eine Folge von Stoppzeiten T_n mit $T_n \uparrow \infty$, sodass $X^{T_n} \in \mathscr{V}$ und $E[(X^{T_n})_{\infty}] < \infty$. Nach Theorem 93 gilt auch $H \cdot X^{T_n} \in \mathscr{V}$. Hier müsste noch gefolgert werden, dass es auch eine Folge $S_n \uparrow \infty$ von Stoppzeiten gibt, sodass $(H \cdot X)^{S_n} \in \mathscr{V}$. Da $H \mapsto H \cdot X$ linear ist, ist außerdem $E[(H \cdot X)^{S_n}] < \infty$. Somit ist $H \cdot X \in \mathscr{A}^+_{loc}$.

References

[JS13] JACOD, Jean; SHIRYAEV, Albert: Limit theorems for stochastic processes. Bd. 288. Springer Science & Business Media, 2013