华中科技大学计算机科学与技术学院 2021~2022 第一学期

"算法设计与分析"考试试卷(A卷)

单击或点击此

考试方式		闭卷	考试	日期	处输入日	处输入日期。 考试时长		150	150 分钟	
专业班级			学	号		姓	生 名			
题号	<u> </u>	=	三	四	五	六	七	总分	核对人	
分值	24	8	12	16	12	14	14	100		
得分										
分 数 评卷人								有一个或多 娅 2 分,共		
1. 以下选项	中,属	于算法五	个重要特	性是		0				
A、确定	E性	В	、有穷性		C、 ī	可行性	D,	能行性		
2、假设 <i>f(n)</i>	和 <i>g(n)</i> 是	渐近正图	函数,若不	字在正常	S数 c₁、c₂	和 <i>n</i> ₀ ,使	得对所有	`的 <i>n≥n₀</i> ₹		
$c_1g(n) \leq$	f(n)≤c25	g(n),则i	记作		0					
O, 7 .				_		$(n) = \Theta(\alpha(n))$)) D	$g(n) = \Theta(f(n))$.n	
								5(11) 0(11	/)	
3、如果 <i>d(n)</i>										
A, O(f((n)+g(n)	В	O(d(n)))+ <i>e</i> (<i>n</i>))	С, 6	$\Theta(f(n)+g(n))$)) D、($\Theta(d(n)+e(n))$	<i>)</i>))	
4、以下属于	稳定排序	亨的算法	有		_					
A、快速	E排序	В	、归并排	序	C、 ł	 	D,	冒泡排序		
5、用动态规	划策略		般要求问	题满足_			_°			
A、重叠	· 子问题·	性质 B	、最优子	结构性	C, 5	无后效性	D, j	贪心选择性	Ė	
5、以下属于	贪心算》	去的是		o						
					C、Dijk	stra 算法	D, Fl	loyd-Warsł	all 算法	
7、以下可以	使用动态		行求解的	问题是_		o				
A、最长	公共子	序列问题	B.	活动选排	圣问题					
C. 单派	舌最短!	路径间题	D.	所有结晶	点对之间的	1最短路径	、问题			

8,	以下属于启发式搜	是索算法的是	. 0	
	A、BFS	B、LC-检索	C、LIFO-检索	D、FIFO-检索
9、	设 G 是一个流网络	\mathbf{B} ,则定义在 \mathbf{G} 上的流 \mathbf{f}	应满足	o
	A、容量守恒	B、流量限制	C、容量限制	D、流量守恒
10	、关于最优二分检验	索树,以下描述正确的是	·•	
	A、最优二分检索	索树的加权平均检索次数	是最少的	
	B、相比包含相同	同结点的其它二叉树,最 ⁶	优二分检索树的高度是	是最矮的
	C、相比包含相同	同结点的其它二叉树,最 ⁶	优二分检索树的叶子约	吉点数是最少的
	D、最优二分检索	索树可以为单分支的二叉	树	
11.	. 以下可用于求解:	递归式的方法有	0	
	A、列表法	B、递归树法	C、主方法	D、代入法
12	、任何以比较为基础	础的排序算法,最坏情况	下的时间下界是	o
	A, $\Omega(\log n)$	B. $\Omega(n\log n)$	$C \cdot \Omega(n^2)$	D、无法不确定
				、
4	分 数	二、求下列递归式的渐	近繁備界(本题 8 分)

分 数	
评卷人	

二、求下列递归式的渐近紧确界(本题8分) 要求:写出计算过程。

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2\sqrt{n}$$

订线

分 数	
评卷人	

三、简答与计算(本题共2小题,每小题6分,共12分)

1、简述活动选择问题求最大兼容活动集合的贪心算法设计思想,并对以下活动集合(s_i 、 f_i 分别是活动的开始时间和结束时间)求出它的一个最大兼容活动集合,要求:写出一定的计算过程。

i	1	2	3	4	5	6	7	8	9	10
S_i	0	1	2	3	3	5	5	6	8	12
f_i	6	4	14	5	9	7	9	10	11	16

过 2、请画出下面的差分约束系统的约束图。并回答如何利用约束图求一个差分约束系统的可行解 装 或判定该系统没有可行解。

 $x_1 - x_2 \leq 1$

 x_1 - $x_3 \le -4$

 x_2 - x_4 \leq 7

 x_3 - x_2 ≤ 2

 x_4 - $x_1 \le -1$

*x*₄-*x*₃≤3

分 数	
评卷人	

四、(本题 16 分) 对给定的两个序列 X 和 Y,记 c[i,j] 为前缀序列 X_i 和 Y_j 的一个 LCS 的长度:

$$c[i,j] = \begin{cases} 0 & \text{如果} i = 0 \ \vec{xj} = 0 \\ c[i-1,j-1] + 1 & \text{如果 i,j} > 0 \ \textit{£x}_i = y_j \\ max(c[i,j-1],c[i-1,j]) & \text{如果 i,j} > 0 \ \textit{£x}_i \neq y_j \end{cases}$$

已知序列 X=< C, B, C, A, B, A, C, B>和 Y=<A, C, B, D, A, B, C>, 求 LCS(X, Y)。

	j	0	1	2	3	4	5	6	7
i		y_j	A	C	В	D	A	В	C
0	Xi								
1	C								
2	В								
3	С								
4	A								
5	В								
6	A								
7	С								
8	В								

LCS(X,Y)=	

五、(本题 12 分)数组 A[1..n]中含有 n 个互不相同的整数元素。对 A 中的元素 A[i] ($1 \le i \le n$),若有 A[i] 〈A[i-1] 并且 A[i] 〈A[i+1],则称 A[i] 为 A 的局部最小元素,即局部最小元素是比其两个相邻元素都小的元素

(注: 在边界上,即 i=1 或 i=n 时,只需考虑一侧的邻居即可)。例: 如果 $A=\{5,3,4,1,2\}$,那么 A 有二个局部最小元素 3 和 1; 而若 $A=\{1,2,3,4,5\}$,那么 A 就只有一个局部最小值元素 1。

请设计一个时间复杂度为 0 (1ogn) 的算法输出 A 中的一个局部最小元素(当有多个局部最小元素时,输出任意一个即可),给出算法的伪代码描述,并证明你的算法关于时间复杂度的结论。

分 数	
评卷人	

六、(本题 14 分)设有 n 个任务(用编号 $1\sim n$ 表示),每个任务 $j\in [1...n]$,都有一个权重(记为 W_j)、执行时间(记为 I_j),其中, $W_j\in [0,1]$ 且

 $\sum_{j=1}^{n} W_{j} = 1$,并记其完成时间为 C_{j} 。这里仅考虑任务的串行调度,即一个任务接着一个任务被调度执行,不考虑等待和空闲时间,则 C_{j} 即是串行调度至任务 j 并执行完任务 j 的总时间。

请设计一个调度算法,求出一种执行顺序,使得所有任务按顺序执行完后, $\sum_{j=1}^n W_j C_j$ 最小,并证明算法的正确性。

七、(本题 14 分)符号乘法问题: 定义在符号集 S= {a, b, c} 上的一种乘法运算规则如下表所示:

	a	b	c
a	b	b	a
b	c	b	a
c	a	c	c

如,ab=b,ba=c等。注:该乘法规则不满足结合律和交换律。

请设计一个有效的算法,对给定的 S上的符号串,如 bbbbac,判定是否可以通过适当加括号的方式,使得其"乘积"等于 a,若可以则返回 TRUE,否则返回 FALSE。如,对 bbbbac,算法返回 TRUE,因为((b(bb))(ba)c=a。