

Instituto Tecnológico de Aeronáutica Mestrado Profissional em Engenharia Aeronáutica

AP-701 Fundamentos do Projeto de Aeronaves

Aula 1 – Categorias de aeronave; Geometria da aeronave

Cap. Ney Sêcco

Aeronaves são meios de transporte

Métricas de interesse:

- carga paga
- alcance
- autonomia
- velocidade
- custo do obtenção
- custo de operação
- impactos ambientais

Aeronaves "encurtaram as distâncias"

Aeronaves "encurtaram as distâncias"

Aeronaves são veículos de transporte pelo ar

Aeronaves

Asa fixa

Aviação Av Geral Exe

Aviação Executiva

Aviação Comercial

Aviação Militar

Asa fixa e asa rotativa

Sikorsky X2 460 km/h

SR-71 3500 km/h

Asa fixa e asa rotativa

Propulsão elétrica permite novos conceitos

eveairmobility.com

Lilium Jet

EVE

Aeronaves são veículos de transporte pelo ar

Aeronaves

Asa fixa

Aviação Av Geral Exe

Aviação Executiva

Aviação Comercial

Aviação Militar

Aviação Geral

Recreação

C-172

Aviação Esportiva

Extra 300

DG-1000

Planadorismo

Homebuilt

Long-EZ

Aviação Militar

Ataque

A-10

R-99

Reconhecimento

Caça

wikipedia.org

Transporte

KC-390

F-15

Aviação Comercial

Regional

B777

E175

Widebody

Single Aisle

wikipedia.org

Transporte

An-225

A320

Aviação Executiva

Legacy 650

G650

gulfstream.com

wikipedia.org

wikipedia.org

wikipedia.org

Parâmetros adimensionais

- "A envergadura do avião é de 20 metros."
 - Será que isso é grande ou pequeno?
 - Qual o tamanho do avião?
 - ??????

Parâmetros adimensionais

- "A envergadura do avião é de 20 metros."
 - Será que isso é grande ou pequeno?
 - Qual o tamanho do avião?
 - ??????

- "O alongamento da asa é 12."
 - Boa eficiência aerodinâmica
 - Estrutura será bastante solicitada
 - Asa será flexível
 - Cuidado com o flutter

Intuição para parâmetros adimensionais valem para diferentes escalas

Precisamos correlacionar parâmetros adimensionais e parâmetros dimensionais

Bons para estimar

Necessários para desenhar

Parâmetros da fuselagem

- Diâmetro da cabine principal
- Comprimento da cabine principal
- Comprimento do nariz/Diâmetro
- Comprimento da cauda/Diâmetro

FIGURE 12-2 A schematic of a pressure tube fuselage, showing typical lengths of the forward and aft sections in terms of the fuselage diameter.

Gudmundsson

Parâmetros da fuselagem

Table 4.1 Passenger aircraft - fuselage length proportions

Class of aircraft	Nose length to diameter	Tail length to diameter ratio	Cabin to overall length ratio		Cabin to parallel
	ratio		Basic	Stretched	section ratio
Small commuter	1.5 to 2.0	2.5 to 3.0	0.4	-	0.8
Executive	1.2 to 1.8	2.5 to 3.0	0.35	-	0.7
Smaller narrow body	1.1 to 1.6	2.5 to 3.0	0.5	0.65	1.0
Larger narrow body	1.2 to 1.6	2.5 to 3.0	0.65	0.7	1.1
Single deck wide body	1.2 to 1.6	2.5 to 3.0	0.65	-	1.2
Multiple deck wide body	1.2 to 1.6	3.0 to 3.5	0.7	-	1.5
Supersonic	4	6 to 7	0.55		1.1

Parâmetros de superfícies sustentadoras

- Área
- Alongamento
- Afilamento
- Enflechamento
- Diedro

Alongamentos típicos

Table 4.1 Aspect Ratio

Equivalent aspect ratio = wing span squared/(wing and canard areas)

	Equivalent aspect ratio	
Sailplane	0.19 (best L/D) ^{1.3}	
Propeller aircraft	Equivalent aspect ratio	
Homebuilt	6.0	
General aviation—single engine	7.6	
General aviation—twin engine	7.8	
Agricultural aircraft	7.5	
Twin turboprop	9.2	
Flying boat	8.0	

	Equivalent aspect ratio = aM_{max}^{C}		
Jet aircraft	а	C	
Jet trainer	4.737	-0.979	
Jet fighter (dogfighter)	5.416	-0.622	
Jet fighter (other)	4.110	-0.622	
Military cargo/bomber	5.570	-1.075	
Jet transport	7.50 to 10	0	

Raymer

Parâmetros de empenagens

- Alavanca adimensional
 - L/cma para EH
 - L/b para EV
- Coeficiente de volume

$$C_{HT} = \frac{L_{HT} \cdot S_{HT}}{S_w \cdot c_w}$$

$$C_{VT} = \frac{L_{VT} \cdot S_{VT}}{S_w \cdot b_w}$$

Os coeficientes de volume variam conforme o tipo de aeronave

Table 6.4 Tail Volume Coefficient

	Typical values		
	Horizontal c _{HT}	Vertical c _{VT}	
Sailplane	0.50	0.02	
Homebuilt	0.50	0.04	
General aviation—single engine	0.70	0.04	
General aviation—twin engine	0.80	0.07	
Agricultural	0.50	0.04	
Twin turboprop	0.90	0.08	
Flying boat	0.70	0.06	
Jet trainer	0.70	0.06	
Jet fighter	0.40	0.07-0.12*	
Military cargo/bomber	1.00	0.08	
Jet transport	1.00	0.09	

^{*}Long fuselage with high wing loading needs larger value.

Parâmetros adimensionais das empenagens também devem ser selecionados

Table 4.3 Tail Aspect Ratio and Taper Ratio

	Horizontal tail		Vertical tail	
	A	λ	A	λ
Fighter	3-4	0.2-0.4	0.6-1.4	0.2-0.4
Sailplane	6-10	0.3-0.5	1.5-2.0	0.4-0.6
Others	3-5	0.3-0.6	1.3-2.0	0.3-0.6
T-tail	-	-	0.7-1.2	0.6-1.0

Tarefa 01

- Levantar características de aeronaves já existentes que tenham missão próxima aos requisitos
- Preencher a planilha disponibilizada no FTP
- Busque três vistas da aeronave para tirar dimensões.
- Site para tirar dimensões de figuras: https://apps.automeris.io/wpd/
- Representante do grupo: Enviar planilha preenchida para ney@ita.br até o dia 10/08/2021, 23h59. Usar "AP-701 HW01" como assunto do e-mail.
- Cada aluno: Quiz até o dia 10/08/2021, 23h59: https://forms.gle/ZR1miDpZ4qcagsWt8