Deep Learning Lab 2 Report

109511207 蔡宗儒

1. Compare resnet18 with and without pretrained

ResNet18 without pretrained

ResNet18 with pretrained weight DEFAULT

ResNet18 with pretrained weight IMAGENET1K V1

根據結果可發現有 pretrained 過的 model 會有較高的 accuracy,不論是用 DEFAULT 或是 IMAGENET1K_V1,這兩個 pretrained weight 皆能讓 val acc 來到超過 95%以上,而沒有 pretrained 的 model 的 val acc 大約在 85%上下而已,有沒有 pretrained 差了 10%以上。而從 gradient 的 histogram 來看,without pretrained 的 gradient 分布較為分散、變動率較大,即便到了最後幾個 epoch 依然是稍微不均匀的。而 with pretrained 的 gradient 分布較為集中,收斂情況明顯比 without pretrained 更好。這個結果也是可以預想而知的,畢竟 pretrained 的 model 已經先用了別人 train 好的 weight,已經學會一些通用的特徵。這麼一來便可以加快收斂所需的時間,減少訓練時間,且在資料量較少的情況下,優勢會比 without pretrained 更加顯著。

2. Screenshot of task1 (>75% accuracy)

Training Accuracy: 92.3025% Training Loss: 0.2333 Validation Accuracy: 72.1212% Validation Loss: 1.4520

Training Accuracy: 91.8298% Training Loss: 0.2214 Validation Accuracy: 75.1515% Validation Loss: 1.0105

epoch: 47

Training Accuracy: 93.1803% Training Loss: 0.1954 Validation Accuracy: 79.3939% Validation Loss: 0.6112

epoch: 48

Training Accuracy: 93.7880% Training Loss: 0.1697 Validation Accuracy: 79.3939% Validation Loss: 0.5888

Training Accuracy: 94.3957% Training Loss: 0.1575 Validation Accuracy: 80.0000% Validation Loss: 0.7070

epoch: 50

Training Accuracy: 94.3957% Training Loss: 0.1546 Validation Accuracy: 80.0000% Validation Loss: 1.2040

In task2, make graphs for learning rate schedule, weights and gradients (With **Tensorboard**)

Learning rate schedule

Weights

-1.15 -1.05 -0.95 -0.85 -0.75 -0.65 -0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55

從 gradients 圖可觀察到,前面幾個 epoch, gradients 較為發散,而 training 到後面後逐漸收斂, gradient 分布非常 集中。

4. How to improve accuracy

我用 ResNet18、ResNet34、ResNet50、ResNet101 架構,batch size 設為 16,跑 100 個 epoch 得出以下結果。

架構	learning rate	learning rate decay	weight_decay	val acc	test acc
resnet18 with pretrained weight DEFAULT	0.00001	None	0.00001	96.3636%	89.714%
resnet18 with pretrained weight DEFAULT	0.00005	None	0.00001	98.7879%	89.714%
resnet18 with pretrained weight DEFAULT	0.00005	Exponential rate decay	0.00001	98.1818%	86.571%
resnet18 with pretrained weight IMAGENET1K_V1	0.00005	None	0.00001	96.9697%	87.428%
resnet18 with pretrained weight IMAGENET1K_V1	0.00005	Exponential rate decay	0.00001	98.7879%	86.857%
resnet34 with pretrained weight DEFAULT	0.00001	None	0.00001	97.5758%	88.000%
resnet34 with pretrained weight DEFAULT	0.00005	None	0.00001	97.5758%	90.285%
resnet34 with pretrained weight DEFAULT	0.00005	Exponential rate decay	0.00001	97.5758%	90.857%
resnet34 with pretrained weight IMAGENET1K_V1	0.00005	None	0.00001	98.7879%	89.428%
resnet34 with pretrained weight IMAGENET1K_V1	0.00005	Exponential rate decay	0.00001	96.9697%	84.571%
resnet50 with pretrained weight DEFAULT	0.00001	None	0.00001	98.1818%	88.571%
resnet50 with pretrained weight DEFAULT	0.00005	None	0.00001	97.5758%	91.142%
resnet50 with pretrained weight DEFAULT	0.00005	Exponential rate decay	0.00001	99.3939%	90.000%
resnet50 with pretrained weight IMAGENET1K_V2	0.00005	None	0.00001	98.7879%	91.142%
resnet50 with pretrained weight IMAGENET1K V2	0.00005	Exponential rate decay	0.00001	98.7879%	92.000%
resnet101 with pretrained weight DEFAULT	0.00005	None	0.00001	98.7879%	90.000%
resnet101 with pretrained weight DEFAULT	0.00005	Exponential rate decay	0.00001	98.7879%	91.428%
resnet101 with pretrained weight IMAGENET1K V2	0.00005	None	0.00001	96.9697%	86.571%
resnet101 with pretrained weight IMAGENET1K V2	0.00005	Exponential rate decay	0.00001	98.7879%	91.714%

可以發現這之中 resnet50 with pretrained weight IMAGENET1K_V2 有最好的效果,但可能是我超參數設置的不夠好,才讓 resnet101 沒有跑出它應有的效果。從中也可以觀察到,越複雜的架構普遍會有更高的 accuracy,而複雜的架構做 learning rate decay 看起來成效會比用在簡單一點的架構更有用。我最後採用的 model 是 swin_v2_s,lr 設為 0.00001,沒有做 learning rate decay,跑出來的 test acc 為94.857%,而我發現用這個 model 每次跑出來的結果都會不一樣,這是因為此架構有包含多層Dropout Layer,如下圖。Dropout 引入了隨機性和機率的概念,才會導致每次結果都不太一樣。

```
model
      (qkv): Linear(in_features=96, out_features=288, bias=True)
      (proj): Linear(in_features=96, out_features=96, bias=True)
      (cpb_mlp): Sequential(
        (0): Linear(in_features=2, out_features=512, bias=True)
        (1): ReLU(inplace=True)
        (2): Linear(in_features=512, out_features=3, bias=False)
      )
    (stochastic_depth): StochasticDepth(p=0.013043478260869565, mode=row)
    (norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
    (mlp): MLP(
      (0): Linear(in_features=96, out_features=384, bias=True)
      (1): GELU(approximate='none')
      (2): Dropout(p=0.0, inplace=False)
       (3): Linear(in features=384, out features=96, bias=True)
      (4): Dropout(p=0.0, inplace=False)
```

另外可以將 if accuracy > acc_best 改為 if accuracy > = acc_best,如下圖。這樣當出現相同 val acc 時,可以儲存更充分訓練後的 model,有可能可以提高準確率。

```
if accuracy >= acc_best:
acc_best = accuracy
print("model saved")
torch.save(model, "model.pth")
```

5. ResNet 架構

當網路層深度增加後,越容易發生梯度消失的問題,所以 ResNet 就在 2015 年被提出來了。 ResNet 印入了 Residual Block,能夠跳躍連接,讓訊息可以直接在網路中跳躍傳遞,將輸入特徵和輸出特徵 相加,這麼一來即便某一層發生梯度消失也不會連帶影響到其他層的 weight。

6. Reference

https://reurl.cc/Xm3eV0 https://reurl.cc/OjDXE7