Abstract Algebra: Homework #6

Joel Savitz

Wednesday 1 July 2020

1 Chapter 13, Exercise A3

Suppose H is a subgroup of some group G. Furthermore, suppose $G = \mathbb{Z}_{15} \wedge H = \langle 5 \rangle$. Then, denoting $+_{15}$ as +, the following are the cosets of H:

$$H + 0 = \{0, 5, 10\}$$

 $H + 1 = \{1, 6, 11\}$
 $H + 2 = \{2, 7, 12\}$
 $H + 3 = \{3, 8, 13\}$
 $H + 4 = \{4, 9, 14\}$

2 Chapter 13, Exercise A4

Denote the elements of D_4 as:

$$R_{0} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \quad R_{\pi/2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \quad R_{\pi} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1, 3 \end{pmatrix} \quad R_{3\pi/2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$(1)$$

$$H = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2, 1 \end{pmatrix} \quad V = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4, 3 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \quad D' = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

$$(2)$$

The operation table for function composition \circ on D_4 is given in table 1 Suppose H' is a subgroup of some group G. Furthermore, suppose $G = D_4 \wedge H' = \{R_0, D'\}$

0	R_0	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	Н	V	D	D'
R_0	R ₀	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	Н	V	D	D'
$R_{\pi/2}$	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	R_0	D'	D	Н	V
R_{π}	R_{π}	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	V	Н	D'	D
$R_{3\pi/2}$	$R_{3\pi/2}$	R_0	$R_{\pi/2}$	R_{π}	D	D'	V	Н
Н	Н	D	V	D'	R_0	R_{π}	$R_{\pi/2}$	$R_{3\pi/2}$
V	V	D'	Н	D	R_{π}	R_0	$R_{3\pi/2}$	$R_{\pi/2}$
D	D	V	D'	Н	$R_{3\pi/2}$	$R_{\pi/2}$	R_0	R_{π}
D'	D'	Н	D	V	$R_{\pi/2}$	$R_{3\pi/2}$	R_{π}	R_0

Table 1: Operation table for ${\sf G}$ under \circ

Then, using multiplicative notait on for \circ , we have the following cosets of H'

$$\begin{split} H'R_0 =& \{R_0, D'\} \\ H'R_{\pi/2} =& \{R_{\pi/2}, H\} \\ H'R_{\pi} =& \{R_{\pi}, D\} \\ H'R_{3\pi/2} =& \{R_{3\pi/2}, V\} \\ H'H =& \{H, R_{\pi/2}\} \\ H'V =& \{V, R_{3\pi/2}\} \\ H'D =& \{D, R_{\pi}\} \\ H'D' =& \{D', R_0\} \end{split}$$

3 Chapter 13, Exercise B1

Suppose $H = \langle 3 \rangle$ where $3 \in \mathbb{Z}$.

Then, we can describe the three cosets of H as follows:

$$H + 0 = \{x \in \mathbb{Z} : \exists k \in \mathbb{Z} \ni x = 3k\}$$

$$H + 1 = \{x \in \mathbb{Z} : \exists k \in \mathbb{Z} \ni x = 3k + 1\}$$

$$H + 2 = \{x \in \mathbb{Z} : \exists k \in \mathbb{Z} \ni x = 3k + 2\}$$

4 Chapter 13, Exercise C2

Suppose G is some group such that $\operatorname{ord}(G) = pq$ for some prime natural p and q.

Theorem 1. G is not cyclic if any only if every $x \in G \ni x \neq e \in G$ satisfies $\operatorname{ord}(x) = p \vee \operatorname{ord}(x) = q$.

Proof. Suppose G is cyclic. Then, some $x \in G$ satisfies $\langle x \rangle = G \iff \operatorname{ord}(x) = pq$ and we have some $x \in G$ where $\operatorname{ord}(x) = p \vee \operatorname{ord}(x) = q$ does not hold.

Conversely, suppose G is not cyclic. Then, let x be some member of G where $x \neq e \in G$. By Lagrange's theorem, we must have that $\operatorname{ord}(x)$ divides $\operatorname{ord}(G)$, and so we have that $\operatorname{ord}(x)$ divides pq. Then, $\operatorname{ord}(x) \in \{1, p, q, pq\}$. We also have $(\operatorname{ord}(x) = 1 \iff x = e) \wedge \operatorname{ord}(x) \neq e \implies \operatorname{ord}(x) \neq 1$. And of course $\operatorname{ord}(x) \neq pq$, since otherwise $\langle x \rangle = G$, violating our assumption that G is not cyclic. We have deduced that $\operatorname{ord}(x) = p \vee \operatorname{ord}(x) = q$ holds.

This proves theorem 1.

5 Chapter 13, Exercise C3

Suppose G is some group where $\operatorname{ord}(G) = 4$.

Theorem 2. G is not cyclic if and only if every element of G is its own inverse.

Proof. Suppose G is cyclic. Then, we have an $x \in G$ such that $\langle x \rangle = G$. We can write G as $\{e, x, x^2, x^3\}$. By inspection we see that $x^2 \neq e$ and we have an element of G that is not its own inverse, so it is false that every element of G is its own inverse when G is cyclic.

Suppose G is not cyclic. By Lagrange's theorem, the order of every element of G must divide the order of G, so the non identity elements of G must have order 2 or order 4. Since G is not cyclic, no element has order 4, for if it did, that element would generate G and G would not be cyclic. Since every $x \in G$ satisfies $\operatorname{ord}(x) = 2$, we must have $x^2 = e$ for every $x \in G$ and then every element of G is its own inverse.

This proves theorem 3.

Theorem 3. Every group of order 4 is abelian.

Proof. Suppose G is not cyclic. Then, by theorem 2, we have that every $x \in G$ satisfies $x^{-1} = x$. Applying this identity, we find that $ab = a^{-1}b^{-1} = (ba)^{-1} = ba$ so any $a, b \in G$ commute and G is abelian.

Instead, suppose G is cyclic. Then, G has a generator x where $G = \{e, x, x^2, x^3\}$. Then, we can write any $y \in G$ as $y = x^i$ for any $i \in \{0, 1, 2, 3\}$. If $a = x^{\alpha} \in G$ and $b = x^{\beta}$ are two such sets, we observe that $ab = x^{\alpha}x^{\beta} = x^{\alpha+\beta} = x^{\beta+\alpha} = x^{\beta}x^{\alpha} = ba$ and see that any two $a, b \in G$ commute and G is abelian.

Since G is abelian if G is cyclic and G is abelian if G is not cyclic, we see by the law of the exluded middle that G is abelian and in general, every group of order 4 is abelian.

This proves theorem 3.

6 Chapter 13, Exercise D1

Suppose H and K are subgroups of a finite group G.

Theorem 4.
$$H \subseteq K \implies (G:H) = (G:K)(K:H)$$

Proof. Let $n = \operatorname{ord}(G)$ and let $h = \operatorname{ord}(H) \wedge k = \operatorname{ord}(K)$. Then, by Lagrange's theorem, we must have that $h|n \wedge k|n$ $(G:H) = \frac{\operatorname{ord}(G)}{\operatorname{ord}(H)}$ and $(G:K) = \frac{\operatorname{ord}(G)}{\operatorname{ord}(K)}$ Since H is a subgroup of G, we must have that $x \in H \implies x^{-1} \in H$ and $(\forall x, y \in H)(xy \in H)$. Then, since we have $H \subseteq K$, we must have that H is a subgroup of K, and therefore $(K:H) = \frac{\operatorname{ord}(K)}{\operatorname{ord}(H)}$ By these identities, we must have:

$$(G:H) = \frac{\operatorname{ord}(G)}{\operatorname{ord}(H)}$$
(3)

$$(G:H) = \frac{\operatorname{ord}(G)\operatorname{ord}(K)}{\operatorname{ord}(H)\operatorname{ord}(K)}$$
(4)

$$(G:H) = \frac{\operatorname{ord}(G)}{\operatorname{ord}(K)} \frac{\operatorname{ord}(K)}{\operatorname{ord}(H)}$$
(5)

$$(G:H) = (G:K)(K:H)$$
 (6)

This proves theorem 4.

7 Chapter 13, Exercise E1

Suppose H is a subgroup of some group G and let $a, b \in G$.

Theorem 5.
$$Ha = Hb \iff ab^{-1} \in H$$

Proof. Suppose Ha = Hb. Then, we have $a \in Hb$ so there is an $x \in H$ where xb = a, but then we can muliply both sides on the right by b^{-1} to see that $x = ab^{-1} \in H$.

Conversely, suppose $ab^{-1} \in H$. Then, $a \in Hb$ since $(ab^{-1})b \in Hb$, but $a \in Hb \iff Ha = Hb$.

8 Chapter 13, Exercise E3

Suppose H is a subgroup of some group G and let $a, b \in G$.

Theorem 6.
$$aH = Ha \land bH = Hb \implies (ab)H = H(ab)$$

Proof. Suppose $aH = Ha \land bH = Hb$. If $x \in H$, then we have $xa = ax \land xb = bx$ We can isolate the x in each equation by multiplication of the first on the right by a^{-1} and multiplication of the second on the right by b^{-1} to get the identities $x = axa^{-1} \land x = bxb^{-1}$ and substitute an x in the first equation with an equivalent value in the second to get $x = a(bxb^{-1})a^{-1} = (ab)x(ab)^{-1}$. But then we can just multiply on the right by (ab) to get x(ab) = (ab)x and thus $x \in H(ab) \land x \in (ab)H \iff (ab)H = H(ab)$. This proves theorem 6.

9 The affine group and her little brother

Suppose G is the affine group defined as $G = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{R}) : a \neq 0 \right\}.$

Let
$$H = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} : x \in \mathbb{R} \right\}$$
.

Theorem 7. H is a subgroup of G

Proof. Suppose $x \in H$. We see that $x_{1,1} \in \mathbb{R} \ni \alpha \neq 0$ and of course that $x_{1,2} \in \mathbb{R}$, as well as the fact that $x_{2,1} = 0 \land x_{2,2} = 1$, so we conclude that $x \in G$ and since $x \in H \implies x \in G$, we have $H \subseteq H$.

Consider an $x=\begin{bmatrix}1&p\\0&1\end{bmatrix}\in H$ and a $y=\begin{bmatrix}1&q\\0&1\end{bmatrix}\in H$ Then, $xy=\begin{bmatrix}1&q\\0&1\end{bmatrix}$

 $\begin{bmatrix} 1 & p+q \\ 0 & 1 \end{bmatrix} \in H \text{ since } p+q \in \mathbb{R} \text{ and we see that } H \text{ is closed under matrix multiplication.}$

Let
$$x = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \in H$$
. Then, $x^{-1} = \frac{1}{1 \cdot 1 - 0 \cdot \alpha} \begin{bmatrix} 1 & -\alpha \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\alpha \\ 0 & 1 \end{bmatrix}$ and

clearly $x^{-1} \in H$ since $-\alpha \in \mathbb{R}$. We also see that $xx^{-1} = x^{-1}x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in H$.

Then, since H is a subset of G closed under matrix multiplication, where every element $x \in H$ has its inverse $x^{-1} \in H$, we conclude that H is a subgroup of G. This proves theorem 7.

We can describe the right cosets of H for some $\mathfrak{a}=\begin{bmatrix} \mathfrak{a} & \mathfrak{b} \\ \mathfrak{0} & 1 \end{bmatrix} \in G$ by $H\mathfrak{a}=\Big\{k: k=\begin{bmatrix} \mathfrak{a} & \mathfrak{b}+x \\ \mathfrak{0} & 1 \end{bmatrix} \wedge k=yk \ni y=\begin{bmatrix} 1 & x \\ \mathfrak{0} & 1 \end{bmatrix} \in H\Big\}.$

10 Cosets of some permutation group

Suppose H is a sugroup of $G=A_4,$ where we can write A_4 as:

$$\{e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)\}\$$

and we let $H = \{e, (12)(34), (13)(24), (14)(23)\}.$

We can calculate $(G : H) = \frac{\operatorname{ord}(G)}{\operatorname{ord}(H)} = \frac{12}{4} = 3$.

The three cosets of H with respect to G are:

$$He = \{e, (12)(34), (13)(24), (14)(23)\}$$
(8)

$$H(123) = \{(123), (134), (243), (142)\} \tag{9}$$

$$H(132) = \{(132), (143), (234), (124)\}$$
(10)

11 A bunch of proofs

Suppose $B_1=\{1,...,k\}$ and $B_2=\{k+1,...,n\}$ where $k\in\mathbb{Z}\ni 1\leq k\leq n-1$ for some $n\in\mathbb{N}.$

Then, define the following two subgroups of S_n :

$$G_{1} = \{ f \in S_{n} : (\forall x \in B_{1} \cup B_{2})(x \in B_{1} \implies f(x) \in B_{1} \land x \in B_{2} \implies f(x) = x) \}$$

$$(11)$$

$$G_{2} = \{ f \in S_{n} : (\forall x \in B_{1} \cup B_{2})(x \in B_{2} \implies f(x) \in B_{2} \land x \in B_{1} \implies f(x) = x) \}$$

$$(12)$$

Furthermore, define $H = \{f \circ g : f \in G_1, g \in G_2\}.$

11.1 Elements of G_1 , G_2 , and H, plus $(S_5 : H)$

Consider the concrete case of S_5 . Let $B_1 = \{1, 2\}$ and let $B_2 = \{3, 4, 5\}$. Then, we can write the elements of G_1 , G_2 , and H as follows:

$$G_1 = \{e, (12)\}$$

$$G_2 = \{e, (34), (35), (45), (345), (354), \}$$

$$H = \{e, (34), (35), (45), (345), (354), \}$$

$$(12), (12)(34), (12)(35), (12)(45), (12)(345), (12)(354)\}$$

Since $\operatorname{ord}(S_5)=5!=120$ and $\operatorname{ord}(H)=12,$ we have $(S_5:H)=\frac{120}{12}=10.$

11.2 Proof of $H \leq S_n$ in general

First, I need to prove general commutativity:

Theorem 8. Any element of G_1 commutes with any element of G_2 under \circ

Proof. Let $f \in G_1$ and let $g \in G_2$. Consider some $x \in B_1 \cup B_2$. We look at the possible values of $(f \circ g)(x) = f(g(x))$. If $x \in B_1$, then g(x) = x and f(g(x)) = f(x), but if $x \in B_2$, then f(g(x)) = g(x). Alternatively, consider the possible values of $(g \circ f)(x) = g(f(x))$. If $x \in B_1$, then g(f(x)) = f(x). but if $x \in B_2$, then f(x) = x and g(f(x)) = g(x). Since $\neg(x \in B_1) \iff (x \in B_2)$, we have that $(f \circ g)(x) = (g \circ f)(x)$ for any $f \in G_1$ and $g \in G_2$. This proves theorem 8.

Now, I can prove the following theorem:

Theorem 9. H is a subgroup of S_n

Proof. Let $x,y \in H$. By definition, we can write each $a \in H$ as some $f \circ g \ni f \in G_1 \wedge g \in G_2$. As such, let $p \in G_1$ and $q \in G_2$ be such that $x = p \circ q$ and let $r \in G_2$ and $s \in G_2$ be such that $y = r \circ s$. We can compose these to identities to get $x \circ y = (p \circ q) \circ (r \circ s)$. Then by theorem 8 and the associativity of \circ , we have $x \circ y = (p \circ r) \circ (q \circ s)$, and since $(p \circ r) \in G_1$ and $(q \circ s) \in G_2$ due to the closue of \circ on subgroups G_1 and G_2 , we have that $x \circ y$ is the composition of some element of G_1 and some element of G_1 , and this is exactly the definition of $x \circ y \in H$. Then, H is closed under \circ .

If have $x = p \circ q \in H$, then we must have $x^{-1} = (p \circ q)^{-1} = (q^{-1} \circ p^{-1})$, and this is verified by $x^{-1} = (p \circ q) \circ (q^{-1} \circ q^{-1})$. Thus every $x \in H$ has its inverse $x^{-1} \in H$.

With this last fact and with the fact that H is closed under \circ , we conclude that H is a subgroup of S_n and this proves theorem 9.

11.3 Abstract counting

Theorem 10. $(S_n : H) = \frac{n!}{k!(n-k)!}$

Proof. Since G_1 contains permutations on elements of B_1 only with all points in B_2 fixed and $|B_1| = k$, we have $\operatorname{ord}(G_1) = k!$. Then, since G_2 contains permutations on elements of B_2 only with all points in B_1 fixed and $|B_2| = n - k$, we have $\operatorname{ord}(G_2) = (n - k)!$. Since we construct H by constraining the set to some k! elements of G_1 composed with (n - k)! elements of G_2 , where every composition is unique since they are on mutually exclusive intervalds of \mathbb{Z} , we have $\operatorname{ord}(G) = k!(n - k)!$. Finally because $\operatorname{ord}(S_n) = n!$, we must have by definition that $(S_n : H) = \frac{n!}{k!(n-k)!}$. This proves theorem 10. □

12 A few equivalent propositions

Suppose $a,b \in H$ where H is a subgroup, of some group G.

Theorem 11. $a \in Hb \iff ab^{-1} \iff Ha = Hb$

Proof. By theorem 5, we have $ab^{-1} \iff Ha = Hb$. Because $(Ha = Hb \iff (x \in Ha \iff x \in Hb))$, we must have $Ha = Hb \iff a \in Hb$

since clearly $a = ea \iff a \in Ha$. By transitivity and commutativity of bidirective implication, we have $a \in Hb \iff ab^{-1} \iff Ha = Hb$. This proves theorem 11.

13 Normal subgroups

Define a normal subgroup of G to be some H such that $h \in H \land a \in G \implies aha^{-1} \in H$.

Theorem 12. $((\forall a \in H)(aH = Ha)) \implies H \text{ is a normal subgroup of } G.$

Proof. Suppose that aH = Ha for any $a \in G$. Then, let h be some element of H. Following our assumption, we must have ha = ah, which when each equivalent value is multiplied on the right by a^{-1} yields $h = aha^{-1} \in H$. Thus some $h \in H$ and any $a \in G$ implies $aha^{-1} \in H$, so H is a normal subgroup of G. This proves theorem 12.

14 Index 2 subgroups are normal

Theorem 13. If H is a subgroup of some G where (G : H) = 2, then H is a normal subgroup of G.

Proof. Suppose H is a subgroup of some G where (G:H)=2 holds. Let h be some element of H and let \mathfrak{a} be some element of G. We have $\mathfrak{a}\in H\mathfrak{e}=H$ if and only if $H\mathfrak{a}=H\mathfrak{e}=H$ by theorem 11. $\mathfrak{a}\in \mathfrak{a}H\iff H\mathfrak{a}=\mathfrak{a}H$, and clearly $\mathfrak{a}\mathfrak{e}=\mathfrak{a}\in \mathfrak{a}H$, so $\mathfrak{a}H=H\mathfrak{a}$ when $\mathfrak{a}\in H$. We have $\mathfrak{a}\notin H\mathfrak{e}\iff \mathfrak{a}H\neq \mathfrak{e}H=H$ by theorem 11, and then of course $\mathfrak{a}\notin \mathfrak{e}H\iff \mathfrak{a}H\neq \mathfrak{e}H=H$. Since there are only two possible cosets of H by the fact that (G:H)=2, and by the fact that cosets of H are disjoint partitions of the group G, we must have $\mathfrak{a}H\neq H\wedge H\mathfrak{a}\neq H\iff \mathfrak{a}H=H\mathfrak{a}$, so for any $\mathfrak{a}\in G$, we have $\mathfrak{a}H=H\mathfrak{a}$. Then by theorem 12, if we have that any $\mathfrak{a}\in G$ satisfies $\mathfrak{a}H=H\mathfrak{a}$, then H is a normal subgroup of G. Since this is indeed the case with our generic subgroup H where (G:H)=2, we must have $(G:H)=2\implies H$ is a normal subgroup of G. This proves theorem 13.