Beweren en Bewijzen Leertaak 6

18 maart 2017

Opgave 1

- a) Er zijn 128 rijen nodig, want er zijn 7 proposities die allemaal waar of onwaar kunnen zijn (2^7) . En er zijn 8 kolommen nodig, want de proposities nemen er allemaal 1 in beslag en de waarheidsstelling ook 1 (7 * 1 + 1 = 8).
- b) De regel \wedge_R ziet er in deze notatie zo uit:

c) Ik heb het volgende tegenvoorbeeld gevonden:

atomaire proposities	v
boxl_in	True
boxl_mono	True
boxr_in	True
boxr_mono	True
cdsp_lol	True
$\operatorname{cdsp_lor}$	False
cdsp_mono	True

- d) Ik heb 23 stappen nodig gehad om tot dit tegenvoorbeeld te komen. Vanaf het topsequent namelijk: $\land_L, \land_L, \land_L, \land_L, unfold, unfo$
- e) Dit is inderdaad een tegenvoorbeeld, want als

Opgave 2

a) Een duidelijkere specificatie in natuurlijke taal van Opberger is:

Als op tijdstip t een willekeurige auto a in de entreeruimte staat, dan staat die auto op tijdstip t+1 in de berging en wordt op tijdstip t+2 een signaal verstuurd dat de auto is opgeborgen.

b) De specificatie van het geheel in natuurlijke taal is wel/niet te bewijzen uit de specificaties van de onderdelen, want

Opgave 3

a) Dit zijn de specificaties die ik heb aangepast of toegevoegd:

```
Definition Betaalautomaat :=

forall t:T,
    forall a:A,
    forall d:T,
        pasUitgegeven t a /\ geldBetaald (t+ tijdIsGeld d) d
    ->
        isBetaaldBericht (t+ tijdIsGeld d) a
.

Definition Uitvoerplatform :=

forall t:T,
    forall a:A,
        isBetaaldBericht t a /\ uitBerging t a
    ->
        autoUitgeleverd t a
.
```

b) Sommige onderdelen waren tijdens het college niet behandeld dus die moesten sowieso worden toegevoegd. Verder . . .