

Ch—05 Magnetism and Matter Daily Practice Problem 03

- **Q1.** The horizontal and vertical components of earths field at a place are 0.22 G and 0.38 G respectively. Calculate the angle of dip and resultant intensity of Earths field
- component of earth's magnetic field is $40\mu T$, experiences a torque of 1.2×10^{-3} Nm. What is the declination at that place?
- **Q2.** A ship is sailing due west according to Mariner's compass. If the declination of tye place is 15° east of north, what is true direction of the ship?
- **Q6.** A vertical wire in which current is flowing produces a neutral point with the earth's horizontal field at a distance of 5 cm from the wire in air. What is current, if $BH = 0.18 \times 10^{-4} T$?
- **Q3.** A ship is sailing due east according to Mariner's compass. If the declination of the place is 18° east of north, what is the true direction of the ship? (Ans. 18° south of east)
- **Q7.** A short bar magnet of magnetic moment $0.5 J T^{-1}$ is placed with its magnetic axis in the magnetic meridian, with its north pole pointing geographical north. A neutral point is obtained at a distance of 0.1 m from the centre of the magnet. Find the horizontal component of the earth's magnetic field.
- **Q4.** The horizontal component of earth's magnetic field is 0.2 G and total magnetic field is 0.4 G. Find angle of dip.
- **Q8.** A neutral point is found on the axis of a bar magnet at a distance of 10 cm from its one end. If the length of the magnet be 10 cm and $B_H = 0.3 G$, find the magnetic moment of the magnet.
- **Q5.** A compass needle whose magnetic moment is $60 \, Am^2$ pointing geographical north at a certain place, where the horizontal

ANSWERS

1. 60°; B=0.44~G

2. 75° west of north

3. 18° south of west

4. 60°

5. 30°

6. 4.5 *A*

7. $10^{-4} T$

8. $0.012 Am^2$