电子技术实验 III 实验报告

实验二 丙类谐振功率放大器与高电平调幅

实验人: 王旭东 PB22051030

李 毅 PB22051031

院 系: 信息科学技术学院

时间: 2024年11月8日

台 号: _______26

第一部分 实验目的

- 1. 了解丙类高频谐振功率放大器的构成及工作原理。
- 2. 熟悉谐振功率放大器的三种工作状态及负载特性、调制特性、放大特性和调谐特性。
- 3. 掌握谐振功率放大器的直流功率 P_E 、输出功率 P_o 和效率 η_c 的测量方法。

第二部分 实验原理

1. 谐振功放的工作状态根据晶体管集电极是否进入饱和区分为欠压、临界和过压状态。

欠压状态:输出电压小, P_O 小, η_C 小,一般用于电压放大和基极调幅。

临界状态: 动态线与临界线及 $u_{BE} = u_{BEmax}$ 静态线相交于一点, 此时 P_O 达到最大值, η_C 较高, 是功放最佳工作状态,欠压和临界状态的集电极电流波形为一正弦顶部脉冲。

过压状态:输出电压过大,以至进入饱和区。过压状态 U_{cm} 基本不变,可当做一个恒压源,另外 可实现集电极调幅。过压状态的集电极电流波形为一顶部凹陷的脉冲。

图 1: 谐振功放的三种工作状态

2. 负载特性反映 R_L 变化对放大器工作状态的影响,随 R_L 增大,放大器状态变化依次为欠压、临 界、过压状态。

集电极调制特性反映 E_C 变化对工作状态的影响,随 E_C 增大,放大器状态变化依次为过压、临 界、欠压状态。

基极调制特性反映 E_B 或 U_{bm} 变化对工作状态的影响,随着 U_{bm} 或 $-E_B$ 增大,放大器状态变化 依次为欠压、临界、过压状态。

PB22051031 李毅

2024年11月8日

调谐特性反映回路参数 L 和 C 对高频功放集电极基波电流、电源输出直流电流、集电极输出电压等指标的影响,随着 L 和 C 的变化会出现感性失谐或容性失谐,无失谐时 U_{Cm} 最大, I_{C1m} 和 I_{CO} 最小

3. 丙类谐振功放的主要技术指标

 U_{om} 为输出电压振幅, R_L 为负载电阻, P_C 为集电极耗散功率。则电源提供的直流功率 $P_E=E_C\cdot I_{C0}$,输出高频交流功率 $P_O=rac{U_{om}^2}{2R_L}$,效率 $\eta_C=rac{P_O}{P_E}=rac{P_O}{P_O+P_C}$

4. 实验电路如下图所示。

图 2: 实验电路图

第三部分 实验内容及结果

需要说明的是,由于实验时示波器显示的测量数据处于抖动状态,我们的测量方法是按 Stop 键之后读取数值作为试验记录,之后按 Run 键再将波形保存为图片,所以试验记录和图片中显示数据可能会有细微差别,报告中的计算全部按照原始数据来计算,图片仅作波形参考

(二) 前级放大器的测量

TP1 处输入信号波形如图 3 通道 1 所示,幅度 $V_{A2}=150mV$,TP4 处输出信号的波形如图 3 通道 2 所示,幅值 $V_{TP4}=2.21V$,计算得到前级放大器的放大倍数 $A_V=\frac{V_{TP4}}{V_{A2}}=14.73$ 。

图 3: 前级放大器输入输出信号波形

(三) 丙类功放调谐特性(放大特性)的测量

1. 谐振特性测试

调整 T1 使得 TP3 处输出信号的波形最大且不失真,记录峰峰值为 3.85V,调节高频功放输入信号的频率,在不同信号下 TP3 处输出信号的峰峰值电压 V_{opp} 、TP1 处输入信号的峰峰值电压 V_{ipp} 以及电压增益 A_V 如表 1 所示。

$V_{ipp}(mV)$	150	149	151	150	150	150	150	151	152
$f_1(MHz)$	10.3	10.4	10.5	10.6	10.7	10.8	10.9	11	11.1
$V_{opp}(V)$	0.61	0.78	1.08	1.58	3.85	2.77	1.46	0.94	0.69
增益 $A_V(dB)$	12.18	14.38	17.09	20.45	28.19	25.33	19.77	15.88	13.14

表 1: 谐振特性测试数据表

$2. A_V - f$ 特性曲线

图 4: 前级放大器 $A_V - f$ 特性曲线

第3页,共8页

(四) 丙类功放输出功率的测量

输入信号幅度为 200mVpp 左右,调整 T1 使得 TP3 处输出信号波形最大且不失真,增大输入信号 幅度使得 TP3 处输出信号波形最大且不失真,记录输出信号波形如图 5 所示,峰峰值 $V_{opp}=5.2V$,此 时输出负载为 100Ω 电阻, 计算输出功率为

$$P_O = V_{rmsI} = \frac{V_{rms}^2}{R} = \frac{(V_{opp}^2)}{100 \times 2.828^2} = 33.81 mW$$

图 5: 输出信号

(五) 丙类功放输入电压 u_b 对放大器工作状态的影响

改变输入信号的幅度,随激励电压增大,TP5 处 u_e 波形和 TP3 处输出 u_o 波形如图 6a 、图 6b 、 图 6c 所示。记录数据如表 2 所示。可以看出,随着输入电压 u_b 增大,放大器工作状态由欠压变为临 界再变为过压,输出功率增大,与理论相符。

表 2: иь 对丙类功放工作状态的影响测试数据表

$f_1(MHz)$	10.7				
$u_i(mVpp)$	200mV	U_{i 临界 $=300mV$	500		
u_e 峰值	0.72V	1.20V	1.87V		
u_e 凹陷深度	无	无	1.05V		
工作状态	欠压	临界	过压		
$u_{orms}(V)$	0.739	1.592	1.990		
$P_o(mW)$	5.46	25.3	39.6		

(a) $u_i = 200mV$ 时的输出波形

(b) $u_i = 300mV$ 时的输出波形

(c) $u_i = 500mV$ 时的输出波形

图 6: 不同激励电压下放大器 u_e 波形和输出 u_o 波形

(六)丙类功放集电极电压 V_{cc} 对放大器工作状态的影响

改变 W1,使用示波器观察在不同集电极电压 V_{CC} 下 TP5 处的 u_e 波形及 TP7 处输出信号的幅度 如图 7a 、图 7b 、图 7c 所示,测试数据表如表 3 所示。可以看出,随着集电极电压 V_{CC} 增大,功放由过压状态经临界状态变为欠压状态,输出电压和输出功率逐渐增加,与理论分析一致。

表 3: V_{CC} 对丙类功放工作状态的影响测试数据表

输入信号	2MHz, 200mVpp			
$V_{CC}(V)$	6	7.5	9	
u_e 峰值	0.99V	1.12V	1.19V	
u_e 凹陷深度	0.15V	无	无	
工作状态	过压	临界	欠压	
$u_{orms}(V)$	3.55	3.93	4.10	
$P_o(mW)$	12.603	15.445	16.81	

(a) $V_{CC} = 6V$ 时的输出波形

(b) $V_{CC} = 7.5V$ 时的输出波形

(c) $V_{CC} = 9V$ 时的输出波形

图 7: 不同集电极电压下放大器 u_e 波形和输出 u_o 参数

(七) 丙类功放负载特性的测试

调整负载电阻为 $3K\Omega$,调节 W1 使得功放达到临界状态,调整 W2,用示波器观察不同负载阻值 下的 u_e 波形及 TP7 处输出信号的波形如图 8a、图 8b、图 8c 所示,测试数据表如表 4 所示。可以看 出,随负载增大,功放逐渐由欠压状态经临界状态变为过压状态,理论上临界状态输出功率最大,但由 于此处操作不当, $3K\Omega$ 处并非临界状态而是有轻微过压,所以与理论分析有些出入。

输入信号	2MHz, 200mVpp			
$R_L(K\Omega)$	1	3	10	
u_e 峰值	0.75V	0.73V	0.67V	
u_e 凹陷深度	无	无	156mV	
工作状态	欠压	临界	过压	
$u_{orms}(V)$	2.46	4.10	4.55	
$P_o(mW)$	6.05	5.60	2.07	

表 4: 负载特性测试数据表

(a) $R_L = 1k\Omega$ 时的输出波形

(b) $R_L = 3k\Omega$ 时的输出波形

(c) $R_L = 10k\Omega$ 时的输出波形

图 8: 不同负载电阻下放大器 ue 波形和输出 uo 参数

第四部分 思考题

I. 如何有效提高丙类功放的效率?

答: (1) 提高负载电阻大小,随负载电阻增大,功放由欠压到临界到过压,电源电压利用系数 $\xi=rac{U_C}{V_{CC}}$ 提高,导通角 arphi 不变,效率 $\eta=rac{1}{2}rac{lpha_1(arphi)}{lpha_0(arphi)}\xi$ 提高,但在过压区增大负载会降低输出功率, 所以不能一味通过增大负载来提高效率, 临界状态效率较高, 输出功率最大, 是放大器的最佳工作 状态。

- (2) **减小导通角**, $\varphi=\arccos\frac{E_B+U_T}{U_b}$,增大 E_B , φ 减小,理想情况下 $\xi=1$,效率 $\eta=\frac{1}{2}\frac{\alpha_1(\varphi)}{\alpha_0(\varphi)}\xi$ 增大,但实际上进入过压区后 ξ 会随 E_B 增大而减小,所以效率不一定会提高。
- (3) **增大** V_{CC} , 导通角 φ 不变,在欠压区, U_C 基本不变,增大 V_{CC} 会减小 ξ 从而降低效率 η ,但 在过压区,增大 V_{CC} 会同时提高 U_C 和 V_{CC} ,所以不一定能够提高效率。

综上,功放效率与许多因素有关,提高功放的效率需要结合实际电路与功放管的性质以及电路用 途,各种提高效率的方法均有其局限性,一味提高效率并不可取。

II. 为什么说振幅调制是一种频谱线性搬移过程?

答: 振幅调制是用调制信号控制高频载波的振幅。

以普通 AM 调幅为例,时域上看,调制信号为 m(t),高频载波为 $cos(\omega_c t)$,则已调信号

$$s_{AM}(t) = [A_0 + m(t)]cos(\omega_c t)$$

从频域上看,调制信号的频谱为 $M(\omega)$, 高频载波的频谱

$$\mathcal{F}[\cos(\omega_c t)] = \pi[\delta(\omega + \omega_c) + \delta(\omega - \omega_c)]$$

已调信号的频谱

$$S_{AM}(\omega) = \frac{1}{2\pi} M(\omega) * \mathcal{F}[\cos(\omega_c t + \varphi_0)] + \pi A_0 [\delta(\omega + \omega_c) + \delta(\omega - \omega_c)]$$
$$= \frac{1}{2} [M(\omega + \omega_c) + M(\omega - \omega_c)] + \pi A_0 [\delta(\omega + \omega_c) + \delta(\omega - \omega_c)]$$

可以看出已调信号的频谱是将基带信号频谱向左和向右分别平移 ω_c 再加上一个 $\pm \omega_c$ 处的冲激, 基带信号的频谱结构并没有发生失真,只是进行简单的平移。

III. 基极调幅要求功放处于哪种工作状态, 为什么?

答:基极调幅要求功放处于欠压状态。丙类谐振功率放大器在其他参数不变的条件下,改变 $-E_B$ 时,集电极电流直流分量 I_{CO} 、一次谐波分量 I_{C1m} 在过压区可认为不变,而在欠压区 I_{CO} 、 I_{C1m} 将随 V_{CC} 变化而近似线性变化,具有调幅特性。因此基极调幅时丙类谐振功放工作应工作于欠压 状态。

IV. 集电极调幅要求功放处于哪种工作状态. 为什么?

答: 集电极调幅要求功放处于过压状态。 丙类谐振功率放大器在其他参数不变的条件下, 改变 V_{CC} 时,集电极电流直流分量 I_{CO} 、一次谐波分量 I_{C1m} 在欠压区可认为不变,而在过压区 I_{CO} 、 I_{C1m} 将随 Voc 变化而近似线性变化,具有调幅特性。因此集电极调幅时丙类谐振功放工作应工作于过 压状态。