(九) 图论: 路径与圈 (Paths and Cycles)

魏恒峰

hfwei@nju.edu.cn

2021年05月06日

"to devise a walk through the city that would cross each of those bridges once and only once"

"to devise a walk through the graph that would cross each of those edges once and only once"

Definition (Graph (图))

An (undirected simple) graph is a pair G = (V, E) where

- ▶ V is a set of vertices (顶点);
- \blacktriangleright $E \subseteq \{\{x,y\} \mid x,y \in V \land x \neq y\}$ is a set of edges

Definition (Graph (图))

An (undirected simple) graph is a pair G = (V, E) where

- ightharpoonup V is a set of vertices (顶点);
- \blacktriangleright $E \subseteq \{\{x,y\} \mid x,y \in V \land x \neq y\}$ is a set of edges

Undirected Multigraph

6/11

7/11

Undirected Multigraph Permitting Loops

Given a graph G, a (finite) walk in G is a sequence of edges of the form

$$\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{m-1}, v_m\}.$$

$$(v_0 \to v_1 \to v_2 \to \cdots \to v_m)$$

Given a graph G, a (finite) walk in G is a sequence of edges of the form

$$\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{m-1}, v_m\}.$$

 $(v_0 \to v_1 \to v_2 \to \dots \to v_m)$

It is a walk from the initial vertex v_0 to the final vertex v_m .

Given a graph G, a (finite) walk in G is a sequence of edges of the form

$$\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{m-1}, v_m\}.$$

 $(v_0 \to v_1 \to v_2 \to \dots \to v_m)$

It is a walk from the initial vertex v_0 to the final vertex v_m .

Given a graph G, a (finite) walk in G is a sequence of edges of the form

$$\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{m-1}, v_m\}.$$

 $(v_0 \to v_1 \to v_2 \to \dots \to v_m)$

It is a walk from the initial vertex v_0 to the final vertex v_m .

 $D \to E \to B \to E \to F$

Definition (Trail (迹))

A trail is a walk in which all the edges are distinct.

Definition (Trail (迹))

A trail is a walk in which all the edges are distinct.

$$D \to E \to B \to E \to F$$

Definition (Path (路径))

A path is a trial in which all vertices are distinct, except possibly $v_0 = v_m$.

Definition (Path (路径))

A path is a trial in which all vertices are distinct, except possibly $v_0 = v_m$.

$$D \to E \to F$$

Definition (Closed Walk/Trail/Path)

A walk, trail, or path is closed if $v_0 = v_m$.

Definition (Closed Walk/Trail/Path)

A walk, trail, or path is closed if $v_0 = v_m$.

Definition (Closed Walk/Trail/Path)

A walk, trail, or path is closed if $v_0 = v_m$.

Definition (Cycle)

A cycle is a closed path with at least one edge.

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn