## AN INTUITIVE NARRATIVE FOR OPEN QUANTUM SYSTEMS?

TOWARDS A NARRATIVE TO MAKE QUANTUM MEASUREMENTS AND OPEN SYSTEM DYNAMICS INTUITIVE

Drafting a Quantum Intuition that minimizes unjustified assumptions

BY Xabier Oyanguren Asua



Winter 2021-2022

## An Intuitive Narrative for Open Quantum Systems?

by Xabier Oyanguren Asua

### ${\bf Contents}$

| Part A: The Axioms                                                | 1 |
|-------------------------------------------------------------------|---|
| 1. The State of the Universe                                      | 1 |
| 1.1 Configuration Space - the Measurable One                      | 1 |
| 1.2. A Fluid of Universes                                         | 1 |
| 1.3. Our Universe and the Single Measurement Axiom                | 1 |
| 2. The Dynamics of the Universe                                   | 2 |
| 2.1. The Quantum Action Principle                                 | 2 |
| 2.2. The Dynamics of the Density of Universes                     | 2 |
| 2.3. The Dynamics of the Action Density                           | 2 |
| 2.4. The Dynamics of The Wavefunction                             | 2 |
| 3. The State of a Partition of the Universe                       | 3 |
| 3.1. An Effective Wavefunction                                    | 3 |
| 3.2. The Conditional Wavefunction                                 | 3 |
| Part B: The Measurement                                           | 6 |
| 1. The Von Neumann Chain and Perturbing the System                | 6 |
| 2. The Apparently Collapsing Measurement                          | 6 |
| 2.1. Discrete Spectrum Measurement                                | 6 |
| 2.2. Continuous Spectrum Measurement                              | 6 |
| 3. The Generalized Measurement                                    | 6 |
| 3.1 A Strong Measurement                                          | 6 |
| 3.2. A Weak Measurement                                           | 6 |
| 4. Properties of the Wavefunction vs Properties of the Trajectory | 6 |
| 4.1. The Weak Values                                              | 6 |
| Part C: The Density Matrix                                        | 9 |
| 1. The Way to Keep Track of Parallel Realities                    | 9 |
| 2. The Reduced Density Matrix                                     | 9 |
| 3. The Unconditional Measurement and the Choice of Basis          | 9 |
| 4. Pure Unravellings                                              | 9 |

| 5. Complete Positive Maps: Any Quantum Operation is a Measurement                       | 9         |
|-----------------------------------------------------------------------------------------|-----------|
| 6. Noise, Decoherence and the Environment                                               | 9         |
| Part D: Markovianity and Master Equations                                               | <b>12</b> |
| 1. Some Possible Quantum Markovianity Definitions                                       | 12        |
| 1.1. Past-Future Independence                                                           | 12        |
| 1.2. Etc                                                                                | 12        |
| 2. Continuous Measurements: Introduction to Master and Stochastic Schrödinger Equations | 12        |
| 3. The Most General Markovian Master Equations: the Lindblad Equations                  | 12        |
| 4. Markovian Stochastic Schrödinger Equations: Pure Unravellings                        | 12        |
| 5. The Most General non-Markovian Master Equation: the Nakajima-Zwanzig Equation        | 12        |
| 6. Non-Markovian Stochastic Schrödinger Equations: the Conditional Wavefunction         | 12        |
| 6.1. Non-Markovian Stochastic Schrödinger Equations: the Conditional Wavefunction       | 12        |
| 6.2. Ours                                                                               | 12        |
| References                                                                              | 13        |

Abstract

Objectives

Guideline

# Part A The Axioms

### A.1. The State of the Universe

- A.1.1. Configuration Space and the Measurable space
- A.1.2. A Fluid of Universes
- A.1.3. Our Universe and the Single Measurement Axiom

### A.2. The Dynamics of the Universe

- A.2.1. The Quantum Action Principle
- A.2.2. The Dynamics of the Density of Universes
- A.2.3. The Dynamics of the Action Density
- A.2.4. The Dynamics of The Wavefuntion

### A.3. The State of a Partition of the Universe

- A.3.1. An Effective Wavefunction
- A.3.2. The Conditional Wavefunction

## Part B The Measurement

"Measuring a Quantum System means knowing the state of the system after the measurement, with probabilities due to the state before the measurement."

#### B.1. The Von Neumann Chain and Perturbing the System

- B.2. The Apparently Collapsing Measurement
- **B.2.1.** Discrete Spectrum Measurement
- **B.2.2.** Continuous Spectrum Measurement
- B.3. The Generalized Measurement
- **B.3.1.** A Strong Measurement
- B.3.2. A Weak Measurement
- B.4. Properties of the Wavefunction vs Properties of the Trajectory
- B.4.1 The In Position Weak Values as Trajectory Properties

# Part C The Density Matrix

- C.1. The Way to Keep Track of Parallel Realities
- C.2. The Reduced Density Matrix
- C.3. The Unconditional Measurement and the Choice of Basis
- C.4. Pure Unravellings
- C.5. Complete Positive Maps: Any Quantum Operation is a Measurement
- C.6. Noise, Decoherence and the Environment

### Part D

Markovianity and Master Equations

#### D.1. Some Possible Quantum Markovianity Definitions

D.1.1. Past-Future Independence

D.1.2. Etc.

D.2. Continuous Measurements:

Introduction to Master and Stochastic Schrödinger Equations

D.3. The Most General Markovian Master Equations:

The Lindblad Equations

D.4. Markovian Stochastic Schrödinger Equations:

Pure Unravellings

D.5. The Most General non-Markovian Master Equation:

The Nakajima-Zwanzig Equation

D.6. Non-Markovian Stochastic Schrödinger Equations:

the Conditional Wavefunction

D.6.1 Wiseman's

**D.6.2** Ours

#### References

- [1] Oriols X, Mompart J, Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology Pan Stanford, Singapore (2012)
- [2] Wyatt R. E., Quantum Dynamics with Trajectories (Springer, Berlin, 2006)
- [3] Knupp, P. & Steinberg, S.. The Fundamentals of Grid Generation. (1993) https://www.researchgate.net/publication/265361548\_The\_Fundamentals\_of\_Grid\_Generation
- [4] Norsen, T., Marian, D. & Oriols, X. Can the wave function in configuration space be replaced by single-particle wave functions in physical space? Synthese 192, 3125–3151 (2015). https://doi.org/10.1007/s11229-014-0577-0
- [5] Norsen T., Bohmian Conditional Wave Functions (and the status of the quantum state), 2016 J. Phys.: Conf. Ser. 701 012003
- [6] Oriols X. 2007 Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron interactions Phys. Rev. Lett. 98 066803
- The[7] Oyanguren X., QuantumManyBodyProblem, Bachelor's The-(2020)the Nanoscience Nanotechnology Degree (UAB).  $\sin$ for and https://github.com/Oiangu9/The\_Quantum\_Many\_Body\_Problem\_-Bachellors\_Thesis-/blob/master/TheQuantumManyBodyProblem\_BachelorsThesis\_XabierOyangurenAsua.pdf