

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Departamento de Sistemas Informáticos y Computación

Problema del Cartero Chino Técnicas de Inteligencia Artificial

Luis Cardoza Bird.

I. Introducción

El **problema del cartero chino**, a menudo denominado "**problema de la ruta del cartero**", es un reto emblemático en la teoría de grafos y la optimización combinatoria.

A diferencia de otros problemas clásicos, como el del Viajante de Comercio, el carácter distintivo del **Problema del Cartero Chino** radica en la permisividad de recorrer ciertas rutas más de una vez con el propósito de **minimizar** un **costo total**, en lugar de visitar cada punto exactamente una vez.

II. Problema

Imaginemos una ciudad cuyas calles están representadas por un grafo. Cada intersección es un vértice y cada calle es una arista. El desafío para el cartero es recorrer todas las calles, minimizando la distancia total y evitando repetir tramos innecesarios.

NODOS	Α	В	С	D
Α	-	AB	AC	AD
В	ВА	-	ВС	BD
С	СВ	СВ	-	CD
D	DB	DB	DC	-

III. Objetivos

A. General

- Desarrollar la solución más óptima utilizando técnicas de inteligencia artificial.

B. Específico

- Generación de solución con Algoritmo Genético.
- Generación de solución con Algoritmo de enfriamiento simulado.

IV. Algoritmos

1. Algoritmo Genético

a. Definición

Un algoritmo genético (AG) es un algoritmo de búsqueda heurística inspirado en el proceso de selección natural que pertenece a la clase más grande de algoritmos evolutivos. Los AGs son usados para encontrar soluciones aproximadas a problemas de optimización y búsqueda, especialmente cuando el espacio de búsqueda es grande.

Se podría definir que los algoritmos genéticos se inspiran en la naturaleza y han demostrado ser herramientas poderosas para resolver problemas difíciles en diversas áreas, desde la optimización hasta la modelización y el diseño.

b. Elementos

- **Población:** Conjunto inicial de posibles soluciones (individuos). Estas soluciones pueden codificarse de muchas formas, aunque la representación binaria es la más común.
- Selección: Mecanismo por el cual se eligen individuos de la población para ser padres. La selección suele estar basada en la calidad o adaptación de los individuos.
- Cruzamiento (Reproducción): Proceso mediante el cual dos individuos (padres) producen descendencia combinando sus características. Esto se hace a través de operadores de cruzamiento.
- Mutación: Pequeños cambios aleatorios en los individuos para mantener la diversidad en la población y evitar la convergencia prematura.
- Función de Aptitud: Evalúa qué tan "buena" es una solución dada. Es esencial para guiar la búsqueda.
- Criterio de Terminación: Define cuándo debe detenerse el algoritmo. Esto podría basarse en un número fijo de generaciones, un tiempo de ejecución o una mejora mínima en la función de aptitud.

c. Ventajas / Desventajas

VENTAJAS	DESVENTAJAS	
Adaptabilidad	No garantizado	
Generalidad	Rendimiento	
Soluciones Aproximadas	Configuración	
Paralelismo	Convergencia Prematura	

2. Algoritmo búsqueda local (Enfriamiento simulado)

a. Definición

El Enfriamiento Simulado (Simulated Annealing, SA) es una técnica de optimización basada en el proceso de enfriamiento y fortalecimiento de metales. A diferencia de la búsqueda local estándar que solo se mueve a soluciones vecinas que mejoran la función objetivo, Se permite movimientos a soluciones peores con una probabilidad que decrece con el tiempo. Esta característica le permite escapar de los óptimos locales.

b. Elementos

- **Solución Inicial:** Punto de partida en el espacio de búsqueda.
- Función de Vecindad: Define qué soluciones son "vecinas" de una solución dada.
- Función Objetivo o de Costo: Evalúa la calidad de una solución.
- Temperatura: Parámetro que controla la probabilidad de aceptar soluciones peores. Comienza alto y disminuye con el tiempo.
- Esquema de Enfriamiento: Define cómo se reduce la temperatura a lo largo del tiempo, por ejemplo, multiplicar la temperatura actual por un factor constante.
- Probabilidad de Aceptación: Dada una solución peor que la actual, define la probabilidad con la que se acepta. Es una función de la diferencia de costo entre las soluciones y la temperatura actual.
- **Criterio de Terminación:** Establece cuándo detener el algoritmo, como un número máximo de iteraciones o una temperatura mínima.

c. Ventajas / Desventajas

VENTAJAS	DESVENTAJAS	
Capacidad de evitar óptimos locales	Requiere afinación	
Aplicable a una amplia gama de problemas	Convergencia	
Soluciones Aproximadas	Tiempo de ejecución	

V. Stack

VI. Algoritmos en Ejecución

A. Resumen del proceso de optimización

Resultados Iniciales

Numero de Iteracion: 0/2000

Resultados de Algoritmo Genético

Seed: 1633124807218

o Fitness: 595.14

Número de ciudades: 77Secuencia de Genotipo:

1, 20, 3, 2, 17, 21, 28, 38, 40, 42, 45, 51, 12, 53, 58, 14, 15, 64, 50, 26, 74, 27, 34, 62, 16, 18, 46, 43, 44, 70, 22, 25, 8, 11, 9, 76, 60, 29, 32, 49, 59, 35, 68, 65, 48, 57, 36, 71, 61, 66, 10, 19, 13, 24, 4, 23, 56, 47, 69, 73, 67, 54, 72, 63, 55, 75, 41, 52, 5, 39, 6, 30, 0, 31, 37, 33, 7

Resultados de Enfriamiento Simulado

Seed: 1633124807218

Fitness: 595.14

Número de ciudades: 77Secuencia de Genotipo:

1, 20, 3, 2, 17, 21, 28, 38, 40, 42, 45, 51, 12, 53, 58, 14, 15, 64, 50, 26, 74, 27, 34, 62, 16, 18, 46, 43, 44, 70, 22, 25, 8, 11, 9, 76, 60, 29, 32, 49, 59, 35, 68, 65, 48, 57, 36, 71, 61, 66, 10, 19, 13, 24, 4, 23, 56, 47, 69, 73, 67, 54, 72, 63, 55, 75, 41, 52, 5, 39, 6, 30, 0, 31, 37, 33, 7

B. Iteración 1999/2000

Resultados de Algoritmo Genético

Seed: 1633124807218

o Fitness: 559.38

Número de ciudades: 77Secuencia de Genotipo:

1, 31, 0, 20, 18, 7, 3, 5, 39, 2, 37, 17, 30, 16, 23, 21, 33, 28, 68, 38, 52, 40, 76, 36, 72, 55, 57, 26, 75, 42, 65, 45, 59, 34, 51, 12, 53, 58, 64, 43, 60, 14, 50, 63, 15, 74, 27, 62, 29, 54, 46, 66, 44, 70, 22, 25, 8, 11, 9, 32, 49, 35, 48, 71, 61, 10, 19, 13, 24, 4, 56, 47, 41, 69, 73, 67, 6

Resultados de Enfriamiento Simulado

Seed: 1633124807218

o Fitness: 553.42

Número de ciudades: 77Secuencia de Genotipo:

1, 20, 0, 4, 3, 6, 5, 2, 39, 14, 23, 17, 31, 7, 18, 33, 27, 63, 16, 30, 21, 37, 28, 75, 38, 68, 26, 52, 34, 62, 40, 44, 41, 42, 45, 51, 29, 12, 57, 53, 71, 58, 74, 64, 60, 15, 50, 46, 43, 72, 65, 48, 76, 70, 22, 25, 8, 11, 9, 32, 69, 49, 59, 35, 36, 61, 66, 10, 19, 13, 24, 56, 55, 47, 73, 67, 54

Resultados Finales

o Seed: 1633124807218

Fitness: 559.38

Número de ciudades: 77

Secuencia de Genotipo:

1, 31, 0, 20, 18, 7, 3, 5, 39, 2, 37, 17, 30, 16, 23, 21, 33, 28, 68, 38, 52, 40, 76, 36, 72, 55, 57, 26, 75, 42, 65, 45, 59, 34, 51, 12, 53, 58, 64, 43, 60, 14, 50, 63, 15, 74, 27, 62, 29, 54, 46, 66, 44, 70, 22, 25, 8, 11, 9, 32, 49, 35, 48, 71, 61, 10, 19, 13, 24, 4, 56, 47, 41, 69, 73, 67, 6

C. Resultados Óptimos

• Fitness Calls: 18249701

Best Fitness (Enfriamiento Simulado): 559.38

• Best Fitness (Genético): 553.42

VII. Conclusiones

Como se ha podido observar, el algoritmo genético es el que aporta la mejor solución a igualdad de condiciones. Sin embargo, el coste computacional y el número de llamadas a la función fitness que realiza, lo hace demasiado lento en comparación.

Adicional, los resultados en esta iteración, al volver a realizar el proceso de evaluación se ha encontrado que en otras seeds, el mejor modelo se invierte y apunta al Enfriamiento Simulado.