Control for 20 - Bicycle Model Car. 20 Bicycle Model

A simple two wheel-bicycle model for car kinematics

Assumption: > wheels have no slip.

steering State of the car: (x14), 0, 8 tan 8 = L position orientation

speed of the rear wheel

Constraints:

V < V max

8< | 8max |

Dynamics of the Car Air Resistance friction > Lateral forces Gradient & the

Steering Model

&< | Smax |

Throttle / Brake

throttk control

$$S_t = K_t a$$
 acceleration

Feed back Control

PID Controller

$$x_{des-x} = \frac{x}{k}$$
 $\leftarrow \frac{8x}{3t^2} = kp \times des - kp \times \rightarrow 0$

$$\dot{x} = -(x_0 - x_{des}) \sin(\omega t) \omega$$

$$\ddot{x} = (x_{des} - x_0) \cos(\omega t) \omega^{\sim} \rightarrow 0$$

$$\frac{\dot{x}}{x} = -\omega^{2}$$

$$k\rho = \omega^{2}\cos(\omega t)$$

We need Integral term to account for biases. Imagine a extra weight put on top of a drone while controlling height.

* Some times -> windup error can course underived behaviours
* Imagine forcibly holding a drone by pulling it and
leaving at once!

Ivajectory Control Vs Position Control + Longitudinal Control velocity control => follow a velocity profile

Longitudinal Control (PID)

$$\frac{x_{des} = K_P(x_{des} - x) + K_d}{3t} \frac{d(x_{des} - x)}{3t} \\
\frac{d_{des} - x}{dt} + K_T \int_{0}^{t} (x_{des} - x) dt} \\
\frac{d_{des} - x}{dt} \frac{d_{des} - x}{dt}$$
The reference velocity

(Reaches Goal faster than PID) Feed forward Controller

If we have emperical data for the control vs output =) we may as well use a feedforward section to let PID only make small changes

Lateral Control

Geometric Steering Control

pure pursuit control

$$K = \frac{1}{R} = \frac{2 \sin \alpha}{L d} \rightarrow 1$$

curvature

$$tan S = \frac{L}{R} \rightarrow 2$$

$$8 = \tan \left(\frac{2L\sin \alpha}{La}\right)$$

One strategy:
$$\rightarrow$$
 La = kadV \rightarrow more speed \rightarrow longer merging distance \rightarrow $\delta = \tan^{-1}\left(\frac{2L\sin\alpha}{KadV}\right)$

Stanley Controller - tracking front wheel.

Reduce both error in heading and nearest point on the reference trajectory

ecte Minimizer

S = \p + tan \ \(\frac{ke_{cte}}{U} \)

Steering direction emir minimizer

S \in [Smin, Smex]