Решение задач. Асимптотические оценки.

Упорядочите функции по возрастанию скорости роста (сверху — медленнее всего растущая функция, снизу — быстрее всего растущая).

- 1) $\log_2 \log_2 n$
- $2) \sqrt{\log_4 n}$
- 3) $\log_3 n$
- 4) $(\log_2 n)^2$
- 5) \sqrt{n}
- 6) $\frac{n}{\log_5 n}$
- 7) $\log_2(n!)$
- 8) $3^{\log_2 n}$
- 9) n^2
- 10) $7^{\log_2 n}$
- $11) (\log_2 n)^{\log_2 n}$
- 12) $n^{\log_2 n}$
- 13) $n^{\sqrt{n}}$
- 14) 2^n
- 15) 4^n
- 16) 2^{3n}
- 17) n!
- 18) 2^{2^n}

Пояснения:

Функцию 2^{2^n} можно представить как: $e^{2^n \cdot \ln 2}$, а функцию n! как: $e^{\ln n!}$, где $\ln n! \approx n \cdot \ln n - n$. Видно, что $n \cdot \ln n - n$ растет медленнее, чем $2^n \cdot \ln 2$, а значит и n! растет медленнее, чем 2^{2^n} .

При этом n! растет быстрее, чем 2^{3n} ; 4^n ; 2^n , так как факториал растет быстрее любой показательной функции. 2^n ; 4^n ; 2^{3n} расположены по порядку возрастания скорости роста так, как $2 < 4 < 2^3$.

Теперь возьмем функции 2^n ; $n^{\sqrt{n}}$; $n^{\log_2 n}$ и представим их так: $e^{n\cdot \ln 2}$; $e^{\sqrt{n}\cdot \ln n}$; $e^{\log_2(n)\cdot \ln n}$. Видно, что n растет быстрее, чем $\sqrt{n}\cdot \ln n$ (так как $\ln n$ растет с меньшей скоростью, чем \sqrt{n}). Значит 2^n будет расти быстрее, чем $n^{\sqrt{n}}$. А $n^{\log_2 n}$ будет расти медленнее, чем $n^{\sqrt{n}}$ (так как $\log_2 n$ растет медленнее \sqrt{n}).

 $(\log_2 n)^{\log_2 n} = o(n^{\log_2 n})$, так как $\log_2 n = o(n)$. $7^{\log_2 n} = o((\log_2 n)^{\log_2 n})$, так как $7 = o(\log_2 n)$.

 $n^2=o(7^{\log_2 n})$, представим эти функции так: $(e^2)^{\ln n}$; $(e^{\frac{\ln 7}{\ln 2}})^{\ln n}$. Последняя возрастает быстрее, так как $e^{\frac{\ln 7}{\ln 2}}>e^2$. Но $3^{\log_2 n}=o(n^2)$, так как $e^{\frac{\ln 3}{\ln 2}}< e^2$.

 $\log_2(n!) = o(3^{\log_2 n})$, представим эти функции так: $\frac{n \cdot \ln n - n}{\ln 2}$; $n^{\log_2 3}$. Видно, что $n^{\log_2 3}$ возрастает быстрее, чем $n^{1,5}$, которая возрастает быстрее функции $n \cdot \ln n$. Значит $\frac{n \cdot \ln n - n}{\ln 2} = o(n^{\log_2 3})$.

 $\frac{n}{\log_5 n} = o(\log_2(n!))$, представим эти функции так: $e^{\ln n - \ln\log_5 n}$; $e^{\frac{n \cdot \ln n - n}{\ln 2}}$. Видно, что $\ln n - \ln\log_5 n = o(n \cdot \ln n - n)$.

 $\sqrt{n}=o(\frac{n}{\log_5 n})$, представим эти функции так: $(e^{\frac{1}{2}})^{\ln n}$; $e^{\frac{n\cdot \ln n-n}{\ln 2}}$. Видно, что $\ln n=o(n\cdot \ln n)$. Значит оценка правильная.

 $(\log_2 n)^2 = o(\sqrt{n})$, представим эти функции так: $e^{2 \cdot \ln \log_2 n}$; $e^{\frac{1}{2} \cdot \ln n}$. Видно, что $2 \cdot \ln \log_2 n = o(\frac{1}{2} \cdot \ln n)$. Значит оценка правильная.

 $\log_3 n = o((\log_2 n)^2)^2$, представим эти функции так: $e^{\ln\log_3 n}$; $e^{2\cdot \ln\log_2 n}$. Видно, что $e^2 > e$. Значит вторая функция растет быстрее, чем первая. Далее порядок сортировки функций по возрастанию очевиден.