Analyse croisée

Margot Goudard

2023-2024

```
library(ggplot2)
library(dplyr)
##
## Attachement du package : 'dplyr'
## Les objets suivants sont masqués depuis 'package:stats':
##
##
       filter, lag
## Les objets suivants sont masqués depuis 'package:base':
##
       intersect, setdiff, setequal, union
library(plotly)
## Attachement du package : 'plotly'
## L'objet suivant est masqué depuis 'package:ggplot2':
##
       last_plot
##
## L'objet suivant est masqué depuis 'package:stats':
##
##
       filter
## L'objet suivant est masqué depuis 'package:graphics':
##
##
       layout
library(stringi)
library(forcats)
# Diagramme 1 - Rémunération en fonction du secteur d'activité
data1 <- read.csv("merged_database.csv") %>%
  filter(!is.na(secteur_premiere_entreprise) & secteur_premiere_entreprise != "",
```

Rémunération Premier Emploi en fonction du secteur d'activité


```
# Diagramme 2 - Rémunération en fonction de la localisation géographique
# Charger les données
data2 <- read.csv("merged database.csv") %>%
                                          !is.na(remuneration_annuelle_brute_avec_prime_premier_emploi) & remuneration_annuelle
# Standardiser les valeurs de localisation
data2$localisation_premier_emploi <- tolower(iconv(data2$localisation_premier_emploi, to = "UTF-8", sub
data2$localisation_premier_emploi <- stringi::stri_trans_general(data2$localisation_premier_emploi, "La
data2$localisation_premier_emploi <- gsub("'", " ", data2$localisation_premier_emploi)</pre>
# Remplacer les valeurs spécifiques dans la colonne 'pays_premier_emploi'
data2 <- data2 %>%
    mutate(pays_premier_emploi = ifelse(pays_premier_emploi == "Je travaillais depuis la Belgique pour un
    mutate(pays_premier_emploi = ifelse(pays_premier_emploi %in% c("Danemark", "Danemark"), "Danemark", "Danemark
# Ajouter "France" à la variable pays_premier_emploi lorsque localisation_premier_emploi est vide
data2 <- data2 %>%
    mutate(pays_premier_emploi = ifelse(localisation_premier_emploi == "en france", "France", pays_premie
# Tracer le diagramme
print(ggplot(data2, aes(x = localisation_premier_emploi, y = remuneration_annuelle_brute_avec_prime_premier_emploi
    geom_bar(stat = "identity", position = "dodge") +
    labs(title = "Rémunération Premier Emploi en fonction de la localisation géographique",
                x = "Localisation",
                y = "Rémunération moyenne") +
    theme minimal())
```

Rémunération Premier Emploi en fonction de la localisation géographique


```
# Diagramme 3 - Rémunération Premier Emploi en fonction de la Filière et de la Date de Diplôme
data3 <- read.csv("merged database.csv") %>%
 filter(!is.na(filiere) & filiere != "",
         !is.na(remuneration_annuelle_brute_avec_prime_premier_emploi) & remuneration_annuelle_brute_av
         !is.na(date_diplome) & date_diplome != "")
data3$filiere <- fct_collapse(data3$filiere,</pre>
  "Eau et Génie Civil (EGC - apprentissage)" = c("Eau et Génie Civil (EGC - apprentissage)", "Eau et GÈ
  "Génie Biologique et Agroalimentaires" = c("Génie Biologique et Agroalimentaires (GBA)", "GÈnie Biologique et Agroalimentaires"
  "Matériaux" = c("Matériaux (MAT)", "MatÈriaux (MAT)"),
  "Mécanique et Interactions" = c("Mécanique et Interactions (MI)", "MÈcanique et Interactions (MI)"),
  "Mécanique Structures Industrielles" = c("Mécanique Structures Industrielles (MSI - apprentissage)",
  "Microélectronique Et Automatique" = c("Microélectronique Et Automatique (MEA)", "MicroÈlectronique E
  "Sciences et Technologies de l'Eau" = c("Sciences et Technologies de l'Eau (STE)", "Sciences et Techn
 "Systèmes Embarqués" = c("Systèmes Embarqués (SE - apprentissage)", "Systèmes Embarquès (SE - apprent
ggplot(data3, aes(x = filiere, y = remuneration_annuelle_brute_avec_prime_premier_emploi, color = date_
  geom_point() +
 labs(title = "Rémunération Premier Emploi en fonction de la Filière et de la Date de Diplôme",
       x = "Filière",
       y = "Rémunération Annuelle Brute",
       color = "Date de Diplôme") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Rémunération Premier Emploi en fonction de la Filière et de la Date de D

Filière

```
# Charger les bibliothèques nécessaires
library(car)
## Le chargement a nécessité le package : carData
##
## Attachement du package : 'car'
## L'objet suivant est masqué depuis 'package:dplyr':
##
##
       recode
library(rstatix)
## Attachement du package : 'rstatix'
## L'objet suivant est masqué depuis 'package:stats':
##
       filter
##
# Test de Tukey pour la rémunération du premier emploi avec la localisation et le pays
tukey_test_loc_pays <- TukeyHSD(aov(remuneration_annuelle_brute_avec_prime_premier_emploi ~ localisation_
print("Test de Tukey pour la rémunération du premier emploi avec la localisation et le pays :")
## [1] "Test de Tukey pour la rémunération du premier emploi avec la localisation et le pays :"
print(tukey_test_loc_pays)
     Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
##
## Fit: aov(formula = remuneration_annuelle_brute_avec_prime_premier_emploi ~ localisation_premier_empl
## $localisation_premier_emploi
                              diff
##
                                         lwr
                                                         p adj
                                                 upr
## en france-a l etranger 467.0714 -3494.137 4428.28 0.8164551
##
## $pays_premier_emploi
##
                               diff
                                           lwr
                                                     upr
                                                              p adj
## BrÈsil-Belgique
                         -3900.0000 -36182.374 28382.374 0.9999879
                         29000.0000
                                      1042.644 56957.356 0.0354794
## Danemark-Belgique
## Espagne-Belgique
                         20000.0000 -12282.374 52282.374 0.5860689
## France-Belgique
                         20561.4286 -2318.929 43441.786 0.1167608
## HaÔti-Belgique
                          6000.0000 -26282.374 38282.374 0.9996760
## Italie -Belgique
                         11000.0000 -21282.374 43282.374 0.9781832
## Royaume-Uni-Belgique 16612.0000 -8393.819 41617.819 0.4887534
## Suisse-Belgique
                         56850.0000 28892.644 84807.356 0.0000000
## Danemark-BrÈsil
                         32900.0000
                                    4942.644 60857.356 0.0085881
## Espagne-BrÈsil
                         23900.0000 -8382.374 56182.374 0.3350226
```

```
## France-BrÈsil
                         24461.4286
                                     1581.071 47341.786 0.0261510
## HaÔti-BrÈsil
                         9900.0000 -22382.374 42182.374 0.9888783
## Italie -BrÈsil
                        14900.0000 -17382.374 47182.374 0.8784826
## Royaume-Uni-BrÈsil
                        20512.0000 -4493.819 45517.819 0.2054866
## Suisse-BrÈsil
                        60750.0000 32792.644 88707.356 0.0000000
## Espagne-Danemark
                        -9000.0000 -36957.356 18957.356 0.9847693
## France-Danemark
                        -8438.5714 -24655.009 7777.866 0.7871087
## HaÔti-Danemark
                        -23000.0000 -50957.356 4957.356 0.2022199
                        -18000.0000 -45957.356 9957.356 0.5330955
## Italie -Danemark
## Royaume-Uni-Danemark -12388.0000 -31486.510 6710.510 0.5226597
## Suisse-Danemark
                        27850.0000
                                      5022.914 50677.086 0.0053123
## France-Espagne
                           561.4286 -22318.929 23441.786 1.0000000
## HaÔti-Espagne
                        -14000.0000 -46282.374 18282.374 0.9118049
## Italie -Espagne
                        -9000.0000 -41282.374 23282.374 0.9941095
## Royaume-Uni-Espagne
                        -3388.0000 -28393.819 21617.819 0.9999705
## Suisse-Espagne
                         36850.0000
                                      8892.644 64807.356 0.0016749
## HaÔti-France
                        -14561.4286 -37441.786 8318.929 0.5492657
## Italie -France
                        -9561.4286 -32441.786 13318.929 0.9277468
## Royaume-Uni-France
                        -3949.4286 -14276.582 6377.725 0.9562079
## Suisse-France
                        36288.5714 20072.134 52505.009 0.0000000
## Italie -HaÔti
                         5000.0000 -27282.374 37282.374 0.9999179
## Royaume-Uni-HaÔti
                        10612.0000 -14393.819 35617.819 0.9214419
## Suisse-HaÔti
                        50850.0000 22892.644 78807.356 0.0000014
## Royaume-Uni-Italie
                        5612.0000 -19393.819 30617.819 0.9987104
## Suisse-Italie
                        45850.0000 17892.644 73807.356 0.0000215
## Suisse-Royaume-Uni
                        40238.0000 21139.490 59336.510 0.0000000
```

ANOVA à deux facteurs pour la rémunération du premier emploi avec le sexe et le secteur d'activité anova_sex_secteur <- aov(remuneration_annuelle_brute_avec_prime_premier_emploi ~ sexe * secteur_premier print("ANOVA à deux facteurs pour la rémunération du premier emploi avec le sexe et le secteur d'activité

[1] "ANOVA à deux facteurs pour la rémunération du premier emploi avec le sexe et le secteur d'activ

```
## Call:
      aov(formula = remuneration_annuelle_brute_avec_prime_premier_emploi ~
##
##
       sexe * secteur_premiere_entreprise, data = data1)
##
## Terms:
                           sexe secteur_premiere_entreprise
                     730413380
                                                 3262344663
## Sum of Squares
## Deg. of Freedom
                              2
                   sexe:secteur_premiere_entreprise
## Sum of Squares
                                          1114535568 19237684948
                                                  20
## Deg. of Freedom
                                                              296
## Residual standard error: 8061.773
## 34 out of 84 effects not estimable
```

print(anova_sex_secteur)

Estimated effects may be unbalanced

Régression linéaire pour la rémunération du premier emploi avec la filière et la date d'obtention du lm_model <- lm(remuneration_annuelle_brute_avec_prime_premier_emploi ~ filière + date_diplome, data = d.print("Régression linéaire pour la rémunération du premier emploi avec la filière et la date d'obtention du premier emploi avec l

[1] "Régression linéaire pour la rémunération du premier emploi avec la filière et la date d'obtenti

```
print(summary(lm_model))
```

```
##
## Call:
## lm(formula = remuneration_annuelle_brute_avec_prime_premier_emploi ~
       filiere + date_diplome, data = data3)
##
##
## Residuals:
     Min
              1Q Median
                            3Q
                                  Max
## -28719 -3895
                          3693 54799
                     37
## Coefficients:
##
                                                      Estimate Std. Error t value
## (Intercept)
                                                     -406696.4
                                                                 336735.0 -1.208
## filiereEnergétique - énergies Renouvelables (EnR)
                                                       -8232.5
                                                                   3255.5 -2.529
## filiereGénie Biologique et Agroalimentaires
                                                       -5052.8
                                                                   1598.5 -3.161
## filiereInformatique et Gestion (IG)
                                                       -1283.2
                                                                   1717.3 -0.747
## filiereMatériaux
                                                       -2428.0
                                                                   1687.4 -1.439
## filiereMécanique et Interactions
                                                       -3420.8
                                                                   1751.6 -1.953
## filiereMécanique Structures Industrielles
                                                        2278.2
                                                                   1946.7
                                                                            1.170
## filiereMicroélectronique Et Automatique
                                                                   1709.3 -2.057
                                                       -3516.1
## filiereSciences et Technologies de l'Eau
                                                                   1685.3 -4.024
                                                       -6781.2
## filiereSystèmes Embarqués
                                                        1192.1
                                                                   2114.1 0.564
## date_diplome
                                                         218.5
                                                                    166.9
                                                                            1.309
##
                                                     Pr(>|t|)
## (Intercept)
                                                      0.22756
## filiereEnergétique - énergies Renouvelables (EnR)
                                                      0.01167 *
## filiereGénie Biologique et Agroalimentaires
                                                      0.00164 **
## filiereInformatique et Gestion (IG)
                                                      0.45520
## filiereMatériaux
                                                      0.15065
## filiereMécanique et Interactions
                                                      0.05124 .
## filiereMécanique Structures Industrielles
                                                      0.24230
## filiereMicroélectronique Et Automatique
                                                      0.04007 *
## filiereSciences et Technologies de l'Eau
                                                     6.38e-05 ***
## filiereSystèmes Embarqués
                                                      0.57304
## date_diplome
                                                      0.19092
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7606 on 679 degrees of freedom
## Multiple R-squared: 0.1004, Adjusted R-squared: 0.08716
## F-statistic: 7.579 on 10 and 679 DF, p-value: 1.616e-11
```