Review of Lecture 14

• The margin

Maximizing the margin \Longrightarrow dual problem:

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \ \alpha_n \alpha_m \ \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

quadratic programming

Support vectors

 \mathbf{x}_n (or \mathbf{z}_n) with Lagrange $\alpha_n > 0$

$$\mathbb{E}[E_{ ext{out}}] \leq rac{\mathbb{E}[\# ext{ of SV's}]}{N-1}$$

(in-sample check of out-of-sample error)

Nonlinear transform

Complex h, but simple \mathcal{H}

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 15: Kernel Methods

Outline

• The kernel trick

Soft-margin SVM

Learning From Data - Lecture 15

What do we need from the \mathcal{Z} space?

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{Z}_n^{\mathsf{T}} \mathbf{Z}_m$$

Constraints:
$$\alpha_n \geq 0$$
 for $n=1,\cdots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b)$$
 need $\mathbf{z}_{n}^{\mathsf{T}}\mathbf{z}$

where
$$\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n$$

and
$$b$$
: $y_m(\mathbf{w}^{\mathsf{T}}\mathbf{z}_m + b) = 1$ need $\mathbf{z}_n^{\mathsf{T}}\mathbf{z}_m$

Generalized inner product

Given two points \mathbf{x} and $\mathbf{x}' \in \mathcal{X}$, we need $\mathbf{z}^{\mathsf{\scriptscriptstyle T}}\mathbf{z}'$

Let
$$\mathbf{z}^{\mathsf{T}}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$$
 (the kernel) "inner product" of \mathbf{x} and \mathbf{x}'

Example:
$$\mathbf{x} = (x_1, x_2) \longrightarrow 2$$
nd-order Φ

$$\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^{\mathsf{T}} \mathbf{z}' = 1 + x_1 x'_1 + x_2 x'_2 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + x_1 x'_1 x_2 x'_2$$

The trick

Can we compute $K(\mathbf{x}, \mathbf{x}')$ without transforming \mathbf{x} and \mathbf{x}' ?

Example: Consider
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\mathsf{T}} \mathbf{x}')^2 = (1 + x_1 x'_1 + x_2 x'_2)^2$$

$$= 1 + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_1' x_2 x_2'$$

This is an inner product!

$$(1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1)$$

$$(1, x_1'^2, x_2'^2, \sqrt{2}x_1', \sqrt{2}x_2', \sqrt{2}x_1'x_2')$$

5/20

The polynomial kernel

$$\mathcal{X} = \mathbb{R}^d$$
 and $\Phi: \mathcal{X} o \mathcal{Z}$ is polynomial of order Q

The "equivalent" kernel
$$K(\mathbf{x},\mathbf{x}')=(1+\mathbf{x}^{\mathsf{T}}\mathbf{x}')^Q$$

$$= (1 + x_1x'_1 + x_2x'_2 + \dots + x_dx'_d)^Q$$

Compare for d=10 and Q=100

Can adjust scale: $K(\mathbf{x}, \mathbf{x}') = (a\mathbf{x}^{\mathsf{T}}\mathbf{x}' + b)^{Q}$

We only need \mathcal{Z} to exist!

If $K(\mathbf{x},\mathbf{x}')$ is an inner product in <u>some</u> space \mathcal{Z} , we are good.

Example:
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

Infinite-dimensional ${\mathcal Z}$: take simple case

$$K(x, x') = \exp\left(-(x - x')^2\right)$$

$$= \exp\left(-x^2\right) \exp\left(-x'^2\right) \sum_{k=0}^{\infty} \frac{2^k (x)^k (x')^k}{k!}$$

$$= \exp\left(-x^2\right) \exp\left(-x'^2\right) \sum_{k=0}^{\infty} \frac{2^k (x)^k (x')^k}{k!}$$

Learning From Data - Lecture 15 7/20

This kernel in action

Slightly non-separable case:

Transforming ${\mathcal X}$ into ∞ -dimensional ${\mathcal Z}$

Overkill? Count the support vectors

Learning From Data - Lecture 15

Kernel formulation of SVM

Remember quadratic programming? The only difference now is:

$$\begin{bmatrix} y_1y_1K(\mathbf{x}_1,\mathbf{x}_1) & y_1y_2K(\mathbf{x}_1,\mathbf{x}_2) & \dots & y_1y_NK(\mathbf{x}_1,\mathbf{x}_N) \\ y_2y_1K(\mathbf{x}_2,\mathbf{x}_1) & y_2y_2K(\mathbf{x}_2,\mathbf{x}_2) & \dots & y_2y_NK(\mathbf{x}_2,\mathbf{x}_N) \\ & \dots & & \dots & & \dots \\ y_Ny_1K(\mathbf{x}_N,\mathbf{x}_1) & y_Ny_2K(\mathbf{x}_N,\mathbf{x}_2) & \dots & y_Ny_NK(\mathbf{x}_N,\mathbf{x}_N) \end{bmatrix}$$

quadratic coefficients

Everything else is the same.

The final hypothesis

Express
$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b)$$
 in terms of $K(-, -)$

$$\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n \implies g(\mathbf{x}) = \operatorname{sign} \left(\sum_{\alpha_n > 0} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b \right)$$

where
$$b=y_m-\sum_{lpha_n>0} lpha_n y_n K(\mathbf{x}_n,\mathbf{x}_m)$$

for any support vector $(\alpha_m > 0)$

How do we know that \mathcal{Z} exists ...

... for a given $K(\mathbf{x}, \mathbf{x}')$? valid kernel

Three approaches:

- 1. By construction
- 2. Math properties (Mercer's condition)
- 3. Who cares? ©

Learning From Data - Lecture 15 11/20

Design your own kernel

 $K(\mathbf{x},\mathbf{x}')$ is a valid kernel iff

1. It is symmetric and 2. The matrix:
$$\begin{bmatrix} K(\mathbf{x}_1,\mathbf{x}_1) & K(\mathbf{x}_1,\mathbf{x}_2) & \dots & K(\mathbf{x}_1,\mathbf{x}_N) \\ K(\mathbf{x}_2,\mathbf{x}_1) & K(\mathbf{x}_2,\mathbf{x}_2) & \dots & K(\mathbf{x}_2,\mathbf{x}_N) \\ & \dots & \dots & \dots & \dots \\ K(\mathbf{x}_N,\mathbf{x}_1) & K(\mathbf{x}_N,\mathbf{x}_2) & \dots & K(\mathbf{x}_N,\mathbf{x}_N) \end{bmatrix}$$

positive semi-definite

for any $\mathbf{x}_1, \cdots, \mathbf{x}_N$ (Mercer's condition)

Outline

• The kernel trick

Soft-margin SVM

Learning From Data - Lecture 15

Two types of non-separable

slightly:

seriously:

Learning From Data - Lecture 15

Error measure

Margin violation: $y_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1$ fails

Quantify:
$$y_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1 - \xi_n \qquad \xi_n \ge 0$$

Total violation
$$=\sum_{n=1}^{N} \xi_n$$

Learning From Data - Lecture 15 15/20

The new optimization

Minimize
$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{n=1}^{N} \xi_{n}$$

subject to
$$y_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1 - \xi_n$$
 for $n = 1, \dots, N$

and
$$\xi_n \ge 0$$
 for $n = 1, \dots, N$

$$\mathbf{w} \in \mathbb{R}^d$$
 , $b \in \mathbb{R}$, $\boldsymbol{\xi} \in \mathbb{R}^N$

Lagrange formulation

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{n=1}^{N} \boldsymbol{\xi}_{n} - \sum_{n=1}^{N} \alpha_{n} (y_{n} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} + b) - 1 + \boldsymbol{\xi}_{n}) - \sum_{n=1}^{N} \beta_{n} \boldsymbol{\xi}_{n}$$

Minimize w.r.t. \mathbf{w} , b, and ξ and maximize w.r.t. each $\alpha_n \geq 0$ and $\beta_n \geq 0$

$$\nabla_{\!\!\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$$

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = 0$$

$$\frac{\partial \mathcal{L}}{\partial \xi_n} = C - \alpha_n - \beta_n = 0$$

and the solution is ...

Maximize
$$\mathcal{L}(m{lpha}) = \sum_{n=1}^N lpha_n \ - \ rac{1}{2} \ \sum_{n=1}^N \sum_{m=1}^N \ y_n y_m \ lpha_n lpha_m \ \mathbf{x}_n^{\scriptscriptstyle\mathsf{T}} \mathbf{x}_m$$
 w.r.t. to $m{lpha}$

subject to
$$0 \le \alpha_n \le C$$
 for $n = 1, \cdots, N$ and $\sum_{n=1}^{\infty} \alpha_n y_n = 0$

$$\implies \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$
minimizes $\frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} + C \sum_{1}^{N} \xi_n$

Learning From Data - Lecture 15 18/20

Types of support vectors

margin support vectors $(0 < \alpha_n < C)$

$$y_n\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b\right) = 1 \qquad \left(\boldsymbol{\xi}_n = 0\right)$$

non-margin support vectors $(\alpha_n = C)$

$$y_n\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b\right) < 1 \qquad \left(\boldsymbol{\xi}_n > 0\right)$$

Learning From Data - Lecture 15 19/20

Two technical observations

1. Hard margin: What if data is not linearly separable?

"primal → dual" breaks down

2. \mathcal{Z} : What if there is w_0 ?

All goes to b and $w_0 \to 0$