Questão 2

1 - Indicadores Estatísticos

Para o cálculo dos principais indicadores estatísticos sobre cada atributo de cada tabela presente na base de dados, foi utilizada uma função fornecida no material de aula pelo docente. Essa função verifica o tipo de dado de cada atributo e calcula os indicadores mais adequados para cada um deles. A função foi modificada para que retornasse indicadores mais relevantes. Para atributos de ID, por exemplo, não foi retornada a variância e o desvio padrão, que seria o padrão da função, visto que esses indicadores não fornecem informações importantes no contexto do problema.

Os valores retornados pela função são: o tipo de variável do atributo; o número de *nulls*; a cardinalidade (valores distintos); a variância e o desvio padrão (atributos numéricos).

Assim, executamos a função para cada uma das três tabelas do banco de dados - pacientes, exames, desfechos. As saídas estão mostradas abaixo:

	I nomeatrib :	⊨ tipo	‡	I≣ nulls ÷	I≣ cardinalidade ≎	I≣ variancia ÷	I≣ desviopadrao ÷
1	id_paciente	bpchar		Θ	14673	<null></null>	<null></null>
2	ic_sexo	bpchar		Θ	2	<null></null>	<null></null>
3	aa_nascimento	int4		100	91	307.3418532976582	17.531168052861116
4	cd_pais	bpchar		Θ	2	<null></null>	<null></null>
5	cd_uf	bpchar		1195	5	<null></null>	<null></null>
6	cd_municipio	text		3714	9	<null></null>	<null></null>
7	cd_cepreduzido	varchar		14642	3	<null></null>	<null></null>

Figura 1 – Resultado da função estatística na tabela Pacientes.

	■ nomeatrib ÷	I≣ tipo ÷	I≣ nulls ‡	I≣ cardinalidade ≎	I≣ variancia ÷	I≣ desviopadrao ≑
1	id_exame	int8	Θ	2952999	<null></null>	<null></null>
2	id_paciente	bpchar	Θ	14673	<null></null>	<null></null>
3	id_atendimento	bpchar	Θ	37364	<null></null>	<null></null>
4	dt_coleta	date	Θ	473	<null></null>	<null></null>
5	de_origem	varchar	Θ	113	<null></null>	<null></null>
6	de_exame	varchar	Θ	776	<null></null>	<null></null>
7	de_analito	varchar	Θ	1081	<null></null>	<null></null>
8	de_resultado	text	Θ	20440	<null></null>	<null></null>
9	cd_unidade	varchar	Θ	54	<null></null>	<null></null>
10	de_valor_referencia	varchar	0	814	<null></null>	<null></null>

Figura 2 – Resultado da função estatística na tabela Exames.

	⊪≣ nomeatrib ‡	III tipo ÷	I≣ nulls ÷	⊞ cardinalidade ‡	⊪≣ variancia ≎	∥≣ desviopadrao ≑
1	id_paciente	bpchar	0	14672	<null></null>	<null></null>
2	id_atendimento	bpchar	Θ	89937	<null></null>	<null></null>
3	dt_atendimento	date	0	475	<null></null>	<null></null>
4	de_tipo_atendimento	text	0	4	<null></null>	<null></null>
5	id_clinica	int4	0	51	<null></null>	<null></null>
6	de_clinica	text	Θ	51	<null></null>	<null></null>
7	dt_desfecho	varchar	0	476	<null></null>	<null></null>
8	de_desfecho	text	0	14	<null></null>	<null></null>

Figura 3 – Resultado da função estatística na tabela Desfechos.

Além dessas métricas principais, foram realizadas outras consultas mais específicas para cada tabela. Inicialmente a respeito da tabela de Pacientes, a primeira consulta mostra a quantidade de estrangeiros presentes na base de dados. O resultado está mostrado abaixo:

Figura 4 – Quantidade de estrangeiros cadastrados na tabela Pacientes.

Outra consulta realizada para a tabela de Pacientes mostra a quantidade de pessoas de cada estado (UF):

	II cd_uf	‡	I≣ count ÷
1	SP		12151
2	GO		12
3	MT		5
4	PA		12
5	DF		1298

Figura 5 – Quantidade de pacientes em cada estado (UF).

Na mesma linha, temos duas últimas consultas para a tabela Pacientes: a quantidade de pessoas por município registrado na tabela e a quantidade de pessoas por CEP registrado na tabela. Os resultados são:

	II cd_municipio ÷	I≣ count ÷
1	DIADEMA	5
2	SAO PAULO	9372
3	BELEM	5
4	SAO BERNARDO DO CAMPO	17
5	0SASC0	54
6	MOGI DAS CRUZES	5
7	GUARULHOS	197
8	BRASILIA	1283
9	CAMPOS DO JORDAO	21

Figura 6 – Quantidade de pacientes em cada município registrado.

	I≣ cd_cepreduzido	‡	I≣ count ÷
1	01307		5
2	01415		5
3	12460		21

Figura 7 – Quantidade de pacientes em cada CEP registrado.

Para a tabela de Exames, obtivemos a média de exames por atendimento:

Figura 8 – Média de exames por atendimento.

e a média de coletas por dia:

Figura 9 – Média de coletas por dia.

Para a tabela de Exames, ainda foi consultada a distribuição das origens dos exames:

	I≣ de_origem	‡	I≣ count ÷
1	Administração de Contratos		42
2	Administração - Itaim		39
3	Anatomia Patológica - Itaim		98
4	Anatomia Patológica - Jardins		383
5	Apoio Administrativo - Brasília II		2
6	Apoio Administrativo - Brasília III		1199
7	Apoio Administrativo e Financeiro - Brasília IV		876
8	Apoio Administrativo - Jardins		11225
9	Atendimento - Centro de Oncologia		58
10	Atendimento - Recepção / Internação		49

Figura 10 – Distribuição das origens dos exames.

Finalmente, para a tabela de Desfechos, três indicadores foram analisados: média de atendimentos por dia; a distribuição dos tipos de atendimentos; e a média de desfechos por dia. Os resultados estão mostrados abaixo.

Figura 11 – Média de atendimentos por dia.

	II de_tipo_atendimento ‡	I≣ count ÷
1	Internado	4764
2	Pronto Atendimento	19342
3	Ambulatorial	39364
4	Externo	26467

Figura 12 – Distribuição dos tipos de atendimentos.

Figura 13 – Média de desfechos por dia.

2. Tabela Pacientes

Para calcular a quantidade de pacientes presentes na base de dados, basta utilizar a tabela pacientes, e realizar um count da coluna id_pacientes. Como esta coluna é uma chave primária, não ocorrem repetições de ID's, logo o count retorna corretamente o número de pacientes na base.

Figura 14 – Número de pacientes na base de dados.

A quantidade de homens e mulheres pode ser obtida ao realizar um *count* na coluna *ic_sexo* da tabela *pacientes*, em conjunto com um *group by ic_sexo*. Assim, pacientes do sexo feminino e masculino serão contabilizados separadamente, e a *query* retornará o número de pacientes homens e mulheres.

	I ≣ sexo	\$ I≣ n_pacientes ÷
1	М	7381
2	F	7292

Figura 15 – Número de pacientes homens e mulheres.

Para obter a faixa etária por sexo, primeiro obteve-se os anos mínimo e máximo de nascimento, que, em seguida, foram subtraídos do ano atual, sendo agrupados pela coluna ic_sexo . Assim, os anos mínimo e máximo de cada um dos sexos serão selecionados separadamente, de forma que a query retorne as faixas etárias para cada um dos sexos dos pacientes atendidos.

	I≣ ic_sexo ÷	∥≣ idade_min ÷	I≣ idade_max ÷
1	M	1	91
2	F	1	91

Figura 16 – Faixa etária por sexo.

Quanto à distribuição dos quartis dentro de cada faixa etária, foi basicamente realizar um percentile_count() na coluna aa_nascimento, operação esta que retornará o ano de nascimento correspondente ao quartil pedido (por exemplo, retornará, para o primeiro quartil, o ano que é 25% maior que todos os demais anos (ordenados de forma ascendente)). Tendo essa informação, basta subtrair o ano obtido do ano atual, e assim a idade correspondente àquele quartil será obtida. Em seguida, só resta agrupar estas operações por sexo, e assim o primeiro, segundo e terceiro quartis de cada uma das faixas etárias calculadas anteriormente serão obtidos.

	I≣ sexo ÷	■ "1o_quart" ‡	■ "2o_quart" ‡	⊪≣ "3o_quart" ÷
1	F	53	41	32
2	M	56	43	33

Figura 17 – Quartis de cada faixa etária (homens e mulheres).

Por fim, para a distribuição de pacientes homens e mulheres por década de vida, primeiro calculou-se as décadas através de (aa_nascimento/10)*10, o que retorna como decada as décadas correspondentes aos anos de nascimento dos pacientes. Com isso, basta realizar um count de id_pacientes, agrupando a contagem por década e sexo. Assim, para cada década e gênero, haverá o número correspondente de pacientes que atendem à categoria.

	II ic_sexo	#	I≣ decada ÷	I≣ n_pacientes ÷
1	F		1930	219
2	F		1940	279
3	F		1950	518
4	F		1960	928
5	F		1970	1521
6	F		1980	1984
7	F		1990	1204
8	F		2000	428
9	F		2010	164
10	F		2020	6

Figura 18 – Distribuição de pacientes (mulheres) por década de vida.

3. Tabela Exames

Para obter a maior quantidade de exames solicitados para um único paciente, primeiro conta-se a quantidade de exames por paciente, através de $count(id_exame)$ agrupado por $id_paciente$. Depois de ter feito isto, bastava selecionar o maior valor obtido pelo count.

Figura 19 – Maior quantidade de exames solicitados para um único paciente.

Para calcular a média de exames pedidos para homens e mulheres foi necessário realizar inicialmente uma junção entre as tabelas *pacientes* e *exames*. Em seguida, foi feita uma

contagem do número de exames, sendo este valor agrupado por *id_paciente*. Foram feitas duas *query*'s, uma correspondente ao sexo masculino e outra ao feminino, pois a contagem era realizada separadamente para cada um dos gêneros. Ao fim da contagem, calcula-se a média do número de exames calculado por paciente.

Figura 20 – Média de exames pedidos para homens.

```
media_exames_f ÷
1 147.3826110806363138
```

Figura 21 – Média de exames pedidos para mulheres.

Com os tratamentos do Exercício 1 aplicados na base, é simples calcular quantos exames de Covid-19 foram solicitados, pois basta realizar uma contagem na coluna de_analito onde os valores correspondem a "DETECCAO COVID", "COVID 19 - ANTICORPOS IGM"ou "COVID 19 - ANTICORPOS IGG", que são os exames deste hospital em específico que são usados para detectar a doença.

Figura 22 – Número de exames de Covid-19 solicitados.

Já para contabilizar quantos dos exames acima deram resultado positivo, basta adicionar à query uma comparação relacionada à coluna de_resultado, de forma que a contagem só seja realizada nos exames cujo valor desta coluna seja "DETECTADO". Assim, somente exames de detecção de Covid-19 com resultado positivo são contabilizados.

Figura 23 – Número de exames de Covid-19 com resultado positivo.

Por fim, para mostrar para cada idade os resultados do exame de Covid-19: primeiramente, foi necessário realizar uma junção das tabelas *exames* e *pacientes*, para ser possível acessar tanto o ano de nascimento quanto o ID dos exames. Para o cálculo da idade, bastou

subtrair do ano atual o ano de nascimento do paciente. Quanto ao resultado do exame, fez-se uma contagem, agrupando-a pelo resultado o exame e pelo ano de nascimento. Dessa forma, tem-se para cada ano de nascimento duas colunas, correspondentes número de pacientes com determinado resultado (positivo, negativo ou inconclusivo) no exame.

	I≣ idade ≎	⊞ de_resultado	‡	I≣ count ÷
1	91	DETECTADO		59
2	91	INCONCLUSIVO		3
3	91	NAO DETECTADO		58
4	90	DETECTADO		7
5	90	NAO DETECTADO		10
6	89	DETECTADO		11
7	89	NAO DETECTADO		5
8	88	DETECTADO		11
9	88	NAO DETECTADO		15
10	87	DETECTADO		16

Figura 24 – Resultados dos exames de Covid-19 por idade.

4. Tabela Desfectos

Para descobrir o desfecho da maioria dos casos registrados, calculou-se a moda dos resultados da coluna de_desfechos da tabela de desfechos. Como a moda retorna o valor com a maior ocorrência, a query retornará corretamente qual a maioria dos desfechos dos casos analisados.

Figura 25 – Desfecho da maioria dos casos.

Já para descobrir a maioria dos desfechos por gênero e por década, pode-se apenas complementar o que foi feito na query acima. Entretanto, é necessário realizar a junção das tabelas pacientes e desfechos, uma vez que aquela tabela é necessária para ter acesso a idade e gênero de cada paciente. Para encontrar a maioria dos desfechos para cada gênero, basta selecionar a moda de $de_desfecho$ agrupada por gênero. Assim, será retornado separadamente a moda dos desfechos para cada gênero. Quanto à década, o procedimento é semelhante: calcula-se as décadas através de $(aa_nascimento/10)*10$, e calcula-se a moda dos desfechos, agrupando-a por década; assim, cada década terá, separadamente, qual foi a maioria dos desfechos dos pacientes que nasceram nela.

	II de_desfecho ‡	I≣ contagem ≑
1	Alta Administrativa	66908
2	Alta médica melhorado	21702
3	Desistência do atendimento	401
4	Alta a pedido	261
5	Alta médica Inalterado	227
6	Óbito após 48hs de internação sem necrópsia	172
7	Alta médica curado	129
8	Alta por abandono	65
9	Transferência Inter-Hospitalar Externa - Serviço de Ambulância	27
10	Óbito nas primeiras 48hs de internação sem necrópsia não agônico	27
11	Assistência Domiciliar	11
12	Transferência Inter-Hospitalar Externa - Transporte Próprio	4
13	Óbito nas primeiras 48hs de internação sem necrópsia agônico	2
14	Óbito após 48hs de internação com necrópsia	1

Figura 26 – Número de desfechos de cada tipo.

	III de_desfecho	II≣ contagem ÷
1	Alta Administrativa	66908
2	Alta médica melhorado	21702
3	Desistência do atendimento	401
4	Alta a pedido	261
5	Alta médica Inalterado	227
6	Óbito após 48hs de internação sem necrópsia	172
7	Alta médica curado	129
8	Alta por abandono	65
9	Óbito nas primeiras 48hs de internação sem necrópsia não agônico	27
10	Transferência Inter-Hospitalar Externa - Serviço de Ambulância	27
11	Assistência Domiciliar	11
12	Transferência Inter-Hospitalar Externa - Transporte Próprio	4
13	Óbito nas primeiras 48hs de internação sem necrópsia agônico	2
14	Óbito após 48hs de internação com necrópsia	1

Figura 27 – Número de desfechos de cada tipo - Windows functions.

	III ic_sexo ÷	I≣ desfecho_maioria	‡
1	F	Alta Administrativa	
2	М	Alta Administrativa	

Figura 28 – Maioria de desfechos por sexo.

	I≣ decada ‡	I⊞ desfecho_maioria ÷
1	1930	Alta Administrativa
2	1940	Alta Administrativa
3	1950	Alta Administrativa
4	1960	Alta Administrativa
5	1970	Alta Administrativa
6	1980	Alta Administrativa
7	1990	Alta Administrativa
8	2000	Alta Administrativa
9	2010	Alta Administrativa
10	2020	Alta Administrativa
11	<null></null>	Alta Administrativa

Figura 29 – Maioria de desfechos por década de nascimento.

	∥≣ decada ‡	I≣ desfecho_maioria ‡
1	Θ	Alta Administrativa
2	1	Alta Administrativa
3	2	Alta Administrativa
4	3	Alta Administrativa
5	4	Alta Administrativa
6	5	Alta médica melhorado
7	6	Alta Administrativa
8	7	Alta Administrativa
9	8	Alta Administrativa
10	9	Alta Administrativa

Figura 30 – Maioria de desfechos por década de vida.