Connected Graphs and Spanning Trees

GAINA, Daniel

Kyushu University

Describing the problem I

G = (V, E) is a graph, where

- V is a set of vertices
- E is a (multi)set of edges

Example 1

- $V = \{1, \dots, 9\}$
- $E = \{[1,2], [1,4], [2,3], [2,5], [3,6], [4,5], [4,7], [5,6], [5,8], [6,9], [7,8], [8,9]\}$

2/8

Describing the problem II

Let G = (V, E) be a connected graph.

T = (V, E') is spanning tree of G when

- T is tree, and
- \mathbf{Q} $E' \subseteq E$.

Theorem 2

Every connected graph has a spanning tree.

(Kyushu University)

Towards formalization

Specification

- Define data types to represent graphs
 - connected
- ② Define the following functions:
- nocycle
- mktree

Verification

- \bigcirc connected(G) $\Rightarrow \exists G' \subseteq G.tree(G')$
- \bigcirc connected(G) \Rightarrow connected(mktree(G)) \land nocycle(mktree(G))

Functions on graphs

- mcc(A,G) = max. connected comp. of A in G.
 mcc(6,G) = {1,2,5,6}, mcc(8,G) = {8}
- #cc(G) = no. of max. connected components#cc(G) = 3
- nocycle(G) = false

Spanning forests

In the attempt of proving the desired properties we realized is much easier to prove a more general result:

Every graph has a spanning forest!

Definition 3

A **spanning forest** of a graph is a subgraph that consists of a set of spanning trees, one for each maximal connected component of the initial graph.

We define the function mktree which returns the spanning forest of a graph.

Remark 4

The value is relative to the order chosen for the edges.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

Properties to prove

- 1 mcc(A,G)=mcc(A,mktree(G))
- #cc(G)=#cc(mktree(G))
- 3 nocycle(mktree(G))

Then we define connected(G):= (#cc(G)=1) which implies

 $connected(G) \Rightarrow connected(mktree(G)) \land nocycle(mktree(G))$

ロト 4回 ト 4 重 ト 4 重 ト 重 ・ 夕久で