

Universidad Simón Bolívar Decanato de Estudios Profesionales Coordinación de Ingeniería de la Computación

@títuloProyecto

 $\label{eq:Por:Alejandro Flores V.}$ Alejandro Flores V.

Realizado con la asesoría de: Emely Arraiz B.

PROYECTO DE GRADO

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero de Computación

Sartenejas, septiembre de 2014

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE INGENIERÍA DE LA COMPUTACIÓN

ACTA FINAL PROYECTO DE GRADO

@TÍTULOPROYECTO

Presentado por:

ALEJANDRO FLORES V.

Este Proyecto de G	rado ha sido aprobado por el siguiente	e jurado examinador:
		_
	Emely Arráiz B.	
	@jurado1	_
	@jurado2	_

Sartenejas, @día de @mes de @año

Resumen

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Palabras clave: @palabra1, @palabra2, @palabra3.

Agradecimientos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Índice general

Re	esum	en]
Aş	$\operatorname{grad}_{oldsymbol{\epsilon}}$	ecimie	ntos		II
Ín	dice	de Fig	uras		V
Li	sta d	e Tabl	as		VI
Ín	dice	de alg	oritmos		VII
Ad	cróni	mos y	Símbolo	\mathbf{os}	VIII
In	${ m trod}_1$	ıcción			1
1	Sele	cción	de Insta	ncias	2
т.				atos	
	1.2.			stancias	
	1.4.	1.2.1.		el Vecino Más Cercano (NN)	
		1.2.2.		ones relevantes	
	1.3.			aproximación para Selección de Instancias	
	1.0.	_		s basados en la regla NN	
				s basados en eliminación ordenada	
		1.3.3.		s basados en muestreo aleatorio	
		1.3.4.		s basados en metaheurísticas	
		1.3.5.		s de comparación	
2.	Met	aheur			11
	2.1.	Descri	pción gen	eral	. 11
	2.2.			s inspiradas en la naturaleza	
		2.2.1.	Algoritn	nos Evolutivos	. 12
			2.2.1.1.	Generational Genetic Algorithm (GGA)	13
			2.2.1.2.	Steady-State Genetic Algorithm (SGA)	. 14
			2.2.1.3.		
			2.2.1.4.		
		222	Inteliger	ocia de Enjambre	17

Índice General IV

			2.2.2.1.	Particle Swarm Optimization (PSO)	17
3.	Ada	ptació	n al pro	blema de Selección de Instancias	20
		_	_	generales	20
		3.1.1.		ntación	
		3.1.2.	_	de evaluación	
		3.1.3.		ión de soluciones iniciales	
			3.1.3.1.	Condensed Nearest Neighbor	
			3.1.3.2.	Nearest Enemy Hypersphere Selection	
			3.1.3.3.	Closest Nearest Enemy	
			3.1.3.4.	Farthest Nearest Enemy	
	3.2.	Modifi		particulares	
	0.2.	3.2.1.		ión de GGA, SGA y CHC	
		3.2.2.		ión de PBIL	
		3.2.3.	_	ión de PSO	
		0.2.0.	Haaptac	ion de 150 · · · · · · · · · · · · · · · · · · ·	21
4.	Eva	luaciór	ı Experi	mental	29
	4.1.	Diseño	Experim	${f nental}$	29
		4.1.1.		os de datos	
		4.1.2.		nes y ejecuciones	
		4.1.3.	Parámet	ros	32
	4.2.	Result	ados		33
		4.2.1.		ación entre inicializaciones	
			4.2.1.1.		
			4.2.1.2.	Inicialización usando algoritmos heurísticos	
		4.2.2.		ación entre metaheurísticas	
			4.2.2.1.	Conjuntos pequeños	
			4.2.2.2.	Conjuntos medianos	
			4.2.2.3.	Conjuntos grandes	
			4.2.2.4.	Análisis de los resultados	
			1.2.2.1.		11
Co	onclu	siones	y Recor	nendaciones	43
Α.	@no	$\mathbf{mbre} A$	$oldsymbol{\Lambda}$ pendice		51

Índice de figuras

1.1.	Diagramas de Voronoi y NN	6
	Algoritmos de Selección de Instancias	
4.1.	Tamaño vs error de validación modificando δ	34
4.2.	Tamaño y error de validación usando algoritmos heurísticos	36
4.3.	Hola	42

Índice de Tablas

4.1.	Conjuntos de datos pequeños	30
4.2.	Conjuntos de datos medianos	30
4.3.	Conjuntos de datos grandes	30
4.4.	Parámetros usados en cada metaheurística	32
4.5.	Resultados modificando la probabilidad de aparición de bit	34
4.6.	Ranking de probabilidad de bit δ según el tamaño y error de validación	35
4.7.	Resultados usando distribuciones uniforme y heurísticas	35
4.8.	Ranking de inicializaciones según el tamaño y error de validación .	36
4.9.	Resultados de metaheurísticas usando conjuntos de datos pequeños	38
4.10.	Ranking de metaheurísticas según el tamaño y error de validación	
	en conjuntos de datos pequeños	38
4.11.	Resultados de metaheurísticas usando conjuntos de datos medianos	39
4.12.	Ranking de metaheurísticas según el tamaño y error de validación	
	en conjuntos de datos medianos	39
4.13.	Resultados de metaheurísticas usando conjuntos de datos grandes .	40
4.14.	Ranking de metaheurísticas según el tamaño y error de validación	
	en conjuntos de datos grandes	40
4.15.	Comparación con resultados presentados por Cano et al	41
4.16	Parámetros usados en cada metaheurística	42

Índice de algoritmos

2.1.	Generational Genetic Algorithm	14
2.2.	Steady-State Genetic Algorithm	15
2.3.	CHC Adaptive Search Algorithm	16
2.4.	Population-Based Incremental Learning	17
2.5.	Particle Swarm Optimization	18
3.1.	Generador de vector de probabilidades inicial	23
3.2.	Condensed Nearest Neighbor	24
3.3.	Nearest Enemy Hypersphere Selection	25
3.4.	Population-Based PSO	28

Acrónimos y Símbolos

KDD Knowledge Discovery in Databases

MD Minería de Datos

SI Selección de Instancias

NN Nearest Neighbor

 \in Relación de pertenencia, «es un elemento de»

Dedicatoria

 $A @personas Importantes, \ por @razones Dedicatoria.$

Introducción

El avance de la ciencia y la tecnología durante las últimas décadas ha traido como consecuencia un aumento sin precedentes en la candidad de datos generados y recopilados por la actividad humana. El *Proyecto Genoma Humano*, el *Instituto SETI* y el *Gran Colisionador de Hadrones*, tienen algo en común: generan una enorme cantidad de datos, por lo que resulta imposible usarlos y mucho menos analizarlos de forma tradicional.

Por esta razón, nuevos cambos de estudio, como el Descubrimiento de Conocimiento en Bases de Datos (KDD) y Minería de Datos (DM), emergen para afrontar el creciente problema que se genera al intentar usar y analizar enormes cantidades de datos.

Bajar complejidad, disminuir los datos.

Capítulo 1

Selección de Instancias

Este capítulo describe el proceso de reducción de datos y sus diferentes estrategias. En particular, se hace especial énfasis en el problema de *Selección de Instancias*: se define formalmente, se describen sus principales características, y se realiza un breve análisis del estado del arte.

1.1. Reducción de Datos

Como parte del proceso de "Knowledge Discovery in Databases" (KDD), la fase de Preprocesamiento de los Datos juega un rol fundamental para la aplicación efectiva de técnicas de Minería de Datos (MD). Una de las estrategias de mayor uso durante la fase de preprocesamiento es la de Reducción de Datos.

El problema de Reducción de Datos consiste en decidir qué datos deben ser utilizados durante la aplicación de algoritmos de MD con el objetivo de construir modelos representativos de los datos originales. Dicha decisión debe basarse en la relevancia de los datos con respecto a los objetivos que se persiguen, o inclusive, por limitaciones técnicas. En términos prácticos, la importancia del problema de Reducción de Datos radica en los siguientes factores: a) Tiempo y Espacio: Mientras mayor sea el número de datos a utilizar, mayor será el espacio necesario para almacenarlos y el tiempo requerido para analizarlos. b) Sensibilidad al ruido: Al aumentar el número de instancias en el conjunto de datos, también lo hace la probabilidad de aparición de datos atípicos, inconsistentes o redundantes. Su

eliminación se vuelve necesaria para evitar un impacto negativo en los modelos de representación creados a partir de los datos.

En función de estos criterios, y basados en la definición de los datos, se han formulado diferentes estrategias para llevar a cabo la fase de reducción. En los procesos de KDD, el conjunto de datos está definido en función de un conjunto de clases Ω y un conjunto T de n observaciones de un evento, cada observación con m mediciones, donde:

Definición 1. Una instancia t_i (con i=1...n) es una observación del evento; donde $t_i=(v_{i,1},v_{i,2},\ldots,v_{i,m})$ es una tupla de m valores/mediciones (un punto en un espacio m-dimensional). Adicionalmente, cada instancia en t_i pertenece a la clase $\omega_{t_i} \in \Omega$.

Definición 2. Un **atributo** p_j (con j = 1...m) define el conjunto de mediciones «de un mismo tipo» para todas las observaciones, i.e. $p_j = \{v_{i,j} \mid i = 1...n\}$. Cada atributo puede presentarse en diferentes formatos: nominales, discretos, o continuos.

A continuación se presentan las estrategias de *Reducción de Datos* más estudiadas en la literatura:

• Selección de Instancias [BL97, LM02]

Busca la reducción del conjunto de datos mediante la selección de un subconjunto de instancias, de forma tal que dicho subconjunto conserve las capacidades de representación del conjunto original.

La sección 1.2 está dedicada a describir esta estrategia en amplitud.

■ Selección de Atributos [BL97, LM98]

Esta técnica permite eliminar atributos del conjunto de datos original, que no contribuyen (o que influyen negativamente) a la construcción de un modelo representativo.

■ Discretización de Atributos [FI93, LHTD02]

Esta estrategia busca convertir atributos *continuos* en *discretos* (cuantificando el espacio de posibles valores), o disminuir el número de valores *discretos* (combinando valores adyacentes).

1.2. Selección de Instancias

Dado un conjunto inicial de instancias $T = \{t_i \mid i = 1 \dots n\}$ donde $t_i = (v_{i,1}, v_{i,2}, \dots, v_{i,m})$ y $\omega_i \in \Omega$ (siendo Ω el conjunto de posibles clases para las instancias en T), el problema de Selección de Instancias (SI) consiste en seleccionar un $R \subseteq T$ que mantenga (o mejore) la capacidad de representación del conjunto original T.

Más aún, este problema puede ser formulado como un problema de optimización, donde se busca el $R^* \subseteq T$ de menor cardinalidad, que mantenga (o mejore) la capacidad de representación del conjunto original.

En particular, la literatura se ha enfocado en la aplicación del problema de SI para su uso en clasificadores [GK14, Tou02]. El subconjunto seleccionado se usa como conjunto de entrenamiento, en base al cuál el clasificador estima la clase $\hat{\omega}$ de instancias previamente desconocidas. En este sentido, el problema de optimización de SI busca conseguir un $R^* \subseteq T$ consistente y de cardinalidad mínima, donde:

Definición 3. Un conjunto R es **consistente** con T, si y solo si toda instancia $t \in T$ es clasificada correctamente $(e.i. \hat{\omega}_t = \omega_t)$ mediante el uso de un clasificador M y las instancias en R como conjunto de entrenamiento.

La complejidad del problema de selección ha sido estudiada por diferentes autores: Bien y Tibshirani [BT12] describen la reducción del problema de SI al problema de Conjunto de Cobertura ("Set Cover" en inglés), cuya versión de optimización es NP-Dura. Más aún, Wilfong [Wil91] y Zukhba [Zuk10] muestran que el problema de selección es NP-Duro.

En general, la literatura relacionada con el problema de SI se ha enfocado en el uso de clasificadores k-NN por su simplicidad, y sobretodo, por su capacidad de representación de modelos sin información adicional sobre la distribución de los datos. El caso particular del problema de SI para su uso con clasificadores k-NN también es conocido como Selección de Prototipos (SP). A continuación se describen los clasificadores NN.

1.2.1. Regla del Vecino Más Cercano (NN)

Inicialmente descrita por Fix y Hodges [FH51], la regla del Vecino $M\'{a}s$ Cercano ("Nearest Neighbor", NN) es una regla de inferencia basada en la idea de que instancias con atributos similares (cercanas en un espacio de m dimensiones) tienden a compartir la misma clase. La regla NN estima la clase $\hat{\omega}_x$ de un punto x en un espacio m-dimensional, dado un conjunto T de instancias de entrenamiento y una función de distancia φ entre dos puntos en dicho espacio:

$$\hat{\omega}_x = \omega_{t^*} , \ t^* = \underset{t \in T}{\operatorname{arg\,min}} \varphi(t, x)$$
 (1.1)

La generalización de la regla de inferencia NN se conoce como el clasificador k-NN: dado un $k \in \mathbb{N}$, se estima la clase $\hat{\omega}_x$ de un punto x en función a la clase de las k instancias más cercanas a x. En general, se usa la estrategia del «voto de la mayoría», asignando la clase más común entre las k instancias más cercanas. En particular, el clasificador 1-NN corresponde a la regla NN.

k-NN es un clasificador no paramétrico de aprendizaje perezoso (debido a que la etapa de aprendizaje consiste en guardar el conjunto de entrenamiento), caracterizado por su sencillez en términos de implementación. Esa simplicidad y su probada utilidad para numerosas aplicaciones, han hecho del clasificador k-NN uno de los más estudiados en la literatura.

Uno de los trabajos de mayor relevancia es el de Cover y Hart [CH67], quienes mostraron que cuando el número de instancias de entrenamiento tiende a infinito, el clasificador k-NN garantiza un error no mayor al doble de la tasa de error de Bayes: la menor tasa de error posible para un clasificador dado. Adicionalmente, probaron que para un conjunto de entrenamiento de cardinalidad finita, el clasificador 1-NN es admisible dentro de la clase de clasificadores k-NN: e.i. No existe k>1 tal que k-NN tenga menor probabilidad de error frente a 1-NN, para toda posible distribución de los datos.

Adicionalmente, algunos trabajos en geometría computacional han contribuido significativamente en la comprensión del problema. En este sentido, el clasificador 1-NN para espacios euclidianos puede definirse de forma alternativa en función de $Diagramas\ de\ Voronoi\ [Vor08]:$ una partición del espacio \mathbb{R}^m en $Celdas\ de\ Voronoi$, cada una definida por una instancia $t\in T$ donde t es el $vecino\ m\'as\ cercano\ para$

todos los puntos dentro del espacio dentro de dicha celda (ver Figura 1.1). Esto ha permitido el desarrollo de nuevos enfoques para la búsqueda de vecinos más cercanos basados en *Diagramas de Voronoi*, como el descrito por *Kolahdouzan* y *Shahabi* [KS04].

FIGURA 1.1: Diagrama de Voronoi para instancias en un espacio \mathbb{R}^2 . En amarillo la Celda de Voronoi de un punto $t \in T$, representando el espacio de puntos para los que t es su vecino más cercano.

Similarmente, esta relación ha permitido avances importantes en términos de complejidad. En particular, mediante el uso de kd-trees [Ben75] (árboles de búsqueda binaria en múltiples dimensiones) se ha logrado disminuir la complejidad en tiempo de clasificación, de $\mathcal{O}(n)$ (de un enfoque "ingenuo" revisando todas las instancias) a $\mathcal{O}(\log n)$, a costas de un aumento en el tiempo necesario para el entrenamiento del clasificador: de $\mathcal{O}(1)$ a $\mathcal{O}(n \log n)$, el tiempo necesario para la construcción del árbol.

Sin embargo, los clasificadores k-NN presentan ciertas propiedades desalentadoras; el problema de conseguir el vecino más cercano de un punto dado, requiere —en cualquiera de los casos— almacenar todas las instancias de entrenamiento: $e.i. \mathcal{O}(n)$ en espacio. Adicionalmente, trabajos más recientes [KL04] muestran que en espacios euclidianos de altas dimensiones, la búsqueda del vecino más cercano requiere $\mathcal{O}(n)$ en tiempo: un fenómeno conocido como la «maldición de la dimensionalidad» ("curse of dimensionality" en inglés). Finalmente, según Shwartz y David [SSBD14] los clasificadores NN tienden a sobre-ajustar el modelo con respecto al conjunto de entrenamiento (overfitting en inglés); efecto que puede mitigarse aumentando el k del clasificador [DGKL94, SSBD14] y eliminando instancias del conjunto de datos [GKK13].

1.2.2. Definiciones relevantes

A continuación se definen algunos conceptos relevantes para la descripción de métodos de selección de instancias. Dado un conjunto de instancias $Q \subseteq T$:

Definición 4. Los asociados en Q de una instancia t son aquellas instancias en Q para las cuales t pertenece a su conjunto de k instancias más cercanas:

$$asociados_Q(t) = \{ q \in Q \mid t \in kNN(q) \}$$
(1.2)

Definición 5. Los **enemigos** en Q de una instancia $t \in T$ son aquellas instancias en Q con una clase diferente a la clase de t:

$$enemigos_Q(t) = \{ q \in Q \mid \omega_q \neq \omega_t \}$$
 (1.3)

Definición 6. El **enemigo más cercano** (NE, nearest enemy) en Q de una instancia $t \in T$ —denotada como $NE_Q(t)$ —, es la instancia más cercana a t con diferente clase (i.e. la instancia más cercana a t perteneciente a $enemigos_Q(t)$):

$$NE_{Q}(t) = \underset{e \in enemigos_{Q}(t)}{\arg \min} \varphi(t, e)$$
(1.4)

1.3. Algorítmos de aproximación para Selección de Instancias

Debido a la complejidad del problema de SI, la literatura se ha enfocado en la definición de heurísticas para conseguir soluciones aproximadas. De nuevo, el uso de clasificadores k-NN es una práctica extendida a lo largo de estos trabajos, por lo que las características de la regla NN han servido para el desarrollo de muchos métodos de selección.

1.3.1. Métodos basados en la regla NN

■ Condensed Nearest Neighbor (CNN) [Har68] Inicialmente el conjunto R se inicializa con una instancia cualquiera. Luego se itera sobre cada instancia $t \in T$; si t no es clasificada correctamente usando R, t se agrega a R. CNN consigue un conjunto consistente, reduciendo considerablemente el conjunto de datos original. Sin embargo, no asegura un conjunto consistente mínimo, pues depende del orden en el que son revisadas las instancias en T.

- Edited Nearest Neighbor (ENN) [Wil72]
 Comienza con R = T. Luego itera sobre las instancias en R; aquellas que no sean bien clasificadas usando R son eliminadas. Tiende a eliminar instancias ruidosas o cercanas a los bordes de decisión. Sin embargo, depende del orden en que itera sobre las instancias, y presenta bajas tasas de reducción dado que mantiene puntos internos.
- Repeated Edited Nearest Neighbor (RENN) [Wil72]
 Aplica ENN al conjunto de datos R (inicialmente R = T) hasta que no ocurran cambios en R. Amplía la distancia entre clases y "suaviza" los bordes de decisión.
- Reduced Nearest Neighbor (RNN) [Gat72] RNN extiende a CNN, usándola como solución inicial $R = R_{CNN}$. Luego, itera sobre cada instancia $t \in R$: si todas las instancias en T son correctamente clasificadas usando $R \setminus \{t\}$, se elimina t de R. En caso contrario, se mantiene R y continua la iteración. La precisión de RNN puede mejorar respecto a CNN, pero es más costoso y su consistencia depende de la consistencia del conjunto resultante de CNN y del orden en que se iteren las instancias en R.

1.3.2. Métodos basados en eliminación ordenada

- Decremental Reduction Optimization Procedure 1 (DROP1) [WM97] Comienza con una solución inicial R = T. Itera sobre cada instancia $t \in R$: si todos sus asociados en R son correctamente clasificados con $R \setminus \{t\}$, t se elimina de R. Reduce considerablemente el conjunto de datos inicial, pero obtiene baja precisión de clasificación, y el subconjunto resultante depende del orden en que se iteró sobre T.
- Decremental Reduction Optimization Procedure 2 (DROP2) [WM97] Es una mejora sobre DROP1 en la cuál se elimina una instancia t cuando todos sus asociados en T son clasificadas correctamente usando $R \setminus \{t\}$. Además, DROP2 ordena las instancias con respecto a la distancia de su

enemigo más cercano, en un intento de eliminar primero instancias centrales, y luego los puntos en los bordes de decisión.

Decremental Reduction Optimization Procedure 3 (DROP3) [WM97]
Dado que el orden en que se iteran las instancias en DROP2 se ve alterado por puntos ruidosos, DROP3 filtra instancias ruidosas antes de ordenar el conjunto de entrenamiento.

1.3.3. Métodos basados en muestreo aleatorio

■ Random Mutation Hill Climbing (RMHC) [Ska94] Se selecciona un subconjunto de instancias aleatorias R de tamaño fijo. En cada iteración el algoritmo intercambia una instancia en R por una en $T \setminus R$; si el cambio mejora la precisión, se mantiene, en caso contrario se deshace.

1.3.4. Métodos basados en metaheurísticas

Las metaheurísticas son métodos de búsqueda estocástica de propósito general, usadas para encontrar soluciones óptimas o casi óptimas a problemas de optimización combinatoria. Por esta razón, muchos trabajos se han enfocado en el uso de estas técnicas para conseguir soluciones al problema de SI.

Algunos de los primeros trabajos se enfocaron en adaptar el algoritmo de $Búsqueda\ Tabú$ para solucionar el problema de SI. En particular, los estudios de $Cerver\'on\ et\ al.\ [CF01]\ y\ Zhang\ et\ al.\ [ZS02]\ describen dos enfoques diferentes de modificación del algoritmo.$

Sin embargo, la mayoría de los estudios se han enfocado en el uso de Algoritmos Evolutivos (AE), adaptándolos para la búsqueda de soluciones al problema de selección. Entre ellos destaca el trabajo realizado por Cano et al. [CHL03]; un completo estudio comparativo entre algoritmos "tradicionales" de SI y adaptaciones de Generational Genetic Algorithm (GGA), Steady-State Genetic Algorithm (SGA), CHC Adaptive Search Algorithm (CHC) y Population-Based Incremental Learning (PBIL). Con este estudio, resulta evidente la utilidad de los AE frente a los algoritmos tradicionales de SI en función de la capacidad de reducción y precisión de los conjuntos seleccionados.

Existen también otras adaptaciones y modificaciones sobre AE, entre los que destacan: Estimation of Distribution Algorithm (EDA) [SLI+01], Intelligent Genetic Algorithm (IGA) [HLL02], Steady-State Memetic Algorithm (SSMA) [GCH08] y Genetic Algorithm [GPY08] basado en Error Cuadrático Medio, Clustered Crossover y Fast Smart Mutation (GA-MSE-CC-PSM).

1.3.5. Criterios de comparación

Para comparar métodos de SI se consideran una serie de criterios usados para evaluar las ventajas y desventajas de cada algoritmo. A continuación se describen los factores más relevantes:

- Reducción: El objetivo principal de métodos de SI es el de reducir el número de instancias del conjunto de datos. Esto no solo disminuye el espacio necesario para almacenar los datos, sino que acelera el proceso de clasificación.
- Precisión: Un algoritmo exitoso debe reducir el conjunto de datos, afectando en la menor medida posible su capacidad de generalización.
- *Tiempo*: A pesar de que el proceso de preprocesamiento y aprendizaje debe realizarse solo una vez, la complejidad de los algoritmos pueden volverlos poco prácticos para su uso sobre conjuntos de datos "grandes".

Capítulo 2

Metaheurísticas

2.1. Descripción general

Las metaheurísticas son métodos estocásticos de búsqueda de propósito general sobre espacios combinatorios. Son usados generalmente para tratar problemas de optimización combinatoria, donde su complejidad hace imposible evaluar todas las soluciones factibles en un tiempo razonable. Estos algoritmos son capaces de conseguir "buenas" soluciones a un problema en un período de tiempo mucho menor. Sin embargo, para muchos problemas la complejidad de estos algoritmos sigue siendo un factor prohibitivo, debido al uso de funciones "costosas" para la evaluación de soluciones intermedias.

La idea es desarrollar algoritmos que recorran solo una fracción del espacio de soluciones, y que sean capaces de encontrar soluciones óptimas o casi óptimas al problema en cuestión. Para lograrlo, las metaheurísticas combinan procesos de diversificación e intensificación (o exploración y explotación respectivamente) [Yan08]. La fase de diversificación implica la generación de soluciones distintas con el objeto de explorar el espacio de búsqueda, mientras que la fase de intensificación se refiere al mejoramiento de soluciones (conseguir óptimos locales) mediante el uso de métodos de búsqueda local. La selección de las mejores soluciones asegura la convergencia a soluciones óptimas, mientras que la exploración aleatoria de soluciones evita que el algoritmo quede "atrapado" en óptimos locales. La combinación en el uso de ambos procesos hace posible conseguir buenas soluciones al problema, sin la necesidad de recorrer el espacio de búsqueda completo.

Cada metaheurística está caracterizada por las estrategias que usa para cada fase, así como el orden y la frecuencia en que las aplica. Esto permite clasificarlas en función de su similitud. En este sentido, a continuación se describe un conjunto de metaheurísticas caracterizadas por tener a la naturaleza como fuente de inspiración.

2.2. Metaheurísticas inspiradas en la naturaleza

La habilidad de la naturaleza para moldear soluciones a situaciones complejas mediante procesos y reglas caracterizadas por su simplicidad, la ha convertido en una fuente inagotable de inspiración para el desarrollo de algoritmos de optimización. Estos algoritmos a menudo presentan buen desempeño para aproximar soluciones a todo tipo de problemas, dado que no requieren información sobre la distribución del espacio de búsqueda. Por esta razón, existe una amplia literatura sobre enfoques bio-inspirados [BS12] para resolver gran variedad de problemas en diversas áreas de computación.

En particular, los enfoques más comunes en la literatura sobre metaheurísticas inspiradas en la naturaleza se apoyan en a) la evolución de poblaciones (Algoritmos Evolutivos) y b) el comportamiento colectivo (Inteligencia de Enjambre).

2.2.1. Algoritmos Evolutivos

Los Algoritmos Evolutivos (AE) son metaheurísticas basadas en procesos de evolución biológica con el objetivo de explorar en amplitud espacios de solución con distribución desconocida. Con el fin de replicar los procesos evolutivos, los AE mantienen un conjunto de soluciones candidatas al problema (una población de cromosomas/individuos), que modifican iterativamente apoyándose en el uso de operadores de mutación, recombinación y/o selección.

Los AE codifican cada cromosoma como una cadena de genes de tamaño l (análogo a la estructura del ADN), donde cada gen representa una parte de la solución al problema en cuestión. A partir de esta representación, los AE definen un conjunto de operadores que cumplen la función de las estrategias de exploración y explotación:

- Mutación: Modifica los genes de soluciones intermedias con la finalidad de explorar el espacio de soluciones e introducir nueva información a la población. Simula la variabilidad en las poblaciones, fenómeno clave para la aparición de nuevos genes que aumenten la posibilidad de supervivencia.
- Recombinación/Crossover: Permite el intercambio de información entre individuos de la población. Simula la reproducción entre individuos, necesaria para la transmisión de genes relevantes a las siguientes generaciones.
- Selección: Las estrategias de selección permiten definir aquellos individuos que participarán en la fase de reproducción, y por ende, los genes que pasarán a la siguiente generación. Esto simula el proceso de selección natural en el que sobreviven los individuos mejor adaptados al ambiente.

En la literatura se han desarrollado diferentes esquemas que definen el uso de estos operadores. Los AE más "tradicionales" son conocidos como Algoritmos Genéticos (AG) [Hol75], que suponen la aplicación más directa de los conceptos del proceso evolutivo. Sin embargo, dentro de la clase de AE existe otro grupo de algoritmos que aplican dichos conceptos de forma diferente. La clase de Algoritmos de Estimación de Distribución ("Estimation of Distribution Algorithm" - EDA) aplican los operadores de mutación, recombinación y selección sobre una población de soluciones implícita en un modelo de distribución probabilístico.

A continuación se describen cuatro algoritmos pertenecientes a la clase de AE: GGA, SGA y CHC, variantes del grupo de AG, y PBIL, perteneciente a los EDA.

2.2.1.1. Generational Genetic Algorithm (GGA)

GGA es el esquema "tradicional" de aplicación de los AG [Bac96, Muh91]. Mantiene una población de individuos que evolucionan durante un número de iteraciones. Su principal característica es que en cada iteración se genera una nueva población, *i.e.* un proceso de evolución *generacional*.

En cada iteración el proceso evolutivo consiste en la creación de una nueva población de tamaño pop mediante: a) la selección de los individuos para el proceso de reproducción (padres), b) la recombinación (con probabilidad cp) de pares de individuos padres usando una estrategia particular de cruce/crossover, y c) la mutación de los individuos de la nueva población (llamados descendencia), usando una probabilidad de mutación de cada gen igual a mp. Ver el algoritmo 2.1.

Algoritmo 2.1 Generational Genetic Algorithm

Input: pop tamaño de la población, cp probabilidad de cruce, mp probabilidad de mutación
Output: Una solución al problema

```
1: P \leftarrow Generar población aleatoria de pop individuos
 2: s^* \leftarrow \text{el } mejor \text{ individuo en } P
 3: while ¬ Condición de parada do
         P' \leftarrow \emptyset
 4:
         while |P'| < pop do
 5:
              p_1 \leftarrow \text{Seleccionar} un individuo en P
 6:
              p_2 \leftarrow \text{Seleccionar} un individuo en P
 7:
              c_1, c_2 \leftarrow \text{recombinar } p_1 \text{ y } p_2 \text{ con probabilidad cp}
 8:
              Mutar c_1 y c_2 con probabilidad mp
 9:
10:
              P' \leftarrow P' \cup \{c_1, c_2\}
11:
         if El mejor individuo en P es mejor que s^* then
12:
              s^* \leftarrow \text{el } mejor \text{ individuo en } P
13:
14: return s^*
```

2.2.1.2. Steady-State Genetic Algorithm (SGA)

Descrito por Whitley et al. [WK88], SGA es una modificación del esquema general de AG que sigue una estrategia reproductiva no generacional. SGA comienza con una población de tamaño pop, y en cada iteración se producen un máximo de dos nuevos individuos (no una nueva población).

En cada iteración a) se seleccionan dos individuos padres de la población actual, b) se crea su descendencia (con probabilidad cp) mediante algún metodo de cruce/recombinación, c) se agrega variabilidad mediante la mutación (con probabilidad mp) de la nueva descendencia, y d) se sigue alguna estrategia de selección para reemplazar individuos en la población por la nueva descendencia, y así mantener el tamaño de la población igual a pop. Ver el algoritmo 2.2.

2.2.1.3. CHC Adaptive Search Algorithm

CHC [Esh90] se basa en el esquema de evolución generacional aplicado por GGA: mantiene una población de individuos de tamaño fijo (pop), generando una nueva población en cada iteración. Sin embargo, en cada iteración CHC aplica una estrategia de reemplazo "elitista", donde sobreviven los mejores individuos entre la población actual y la descendencia producida.

Algoritmo 2.2 Steady-State Genetic Algorithm

Input: pop tamaño de la población, cp probabilidad de cruce, mp probabilidad de mutación

Output: Una solución al problema

- 1: $P \leftarrow$ Generar población aleatoria de pop individuos
- 2: $s^* \leftarrow \text{el } mejor \text{ individuo en } P$
- 3: **while** ¬ Condición de parada **do**
 - $p_1 \leftarrow \text{Seleccionar un individuo en } P$
- 5: $p_2 \leftarrow \text{Seleccionar un individuo en } P$
- 6: $c_1, c_2 \leftarrow \text{recombinar } p_1 \text{ y } p_2 \text{ con probabilidad cp}$
- 7: Mutar c_1 y c_2 con probabilidad mp
- 8: Seguir algún criterio de reemplazo de individuos en P por c_1 y c_2
- 9: **if** El mejor individuo en P es mejor que s^* then
- 10: $s^* \leftarrow \text{el } mejor \text{ individuo en } P$
- 11: return s^*

La fase de reproducción aplicada por CHC tiene dos particularidades. En primer lugar, implementa un operador de recombinación uniforme media llamado HUX ("Half Uniform Crossover"), que intercambia la mitad de los genes que difieren entre los dos padres de forma aleatoria. Adicionalmente, CHC emplea "prevención de incesto": antes de realizar el cruce usando HUX, calcula la distancia de Hamming entre ambos padres; si dicha distancia es mayor a cierto umbral (inicialmente l/4, donde l es la longitud de los cromosomas), se realiza el cruce. En caso de no generarse ninguna descendencia durante una iteración particular, se disminuye el umbral en 1.

Durante el proceso de evolución de CHC no se aplica el operador de mutación: cuando el umbral de prevención de incesto llega a cero se considera que la población convergió, y comienza un proceso de repoblación en el que se usa la mejor solución encontrada hasta el momento. Se modifican hasta $35\,\%$ de sus genes de forma aleatoria para generar los pop -1 individuos restantes de la nueva población, y luego continuar el proceso evolutivo.

El pseudocódigo de CHC de presenta en el algoritmo 2.3.

2.2.1.4. Population-Based Incremental Learning (PBIL)

PBIL es una metaheurística perteneciente a la clase de Algoritmos de Estimación de Distribución desarrollada por Baluja [Bal94] para su uso sobre cromosomas con representación binaria. PBIL destaca por ser más simple que los algoritmos

Algoritmo 2.3 CHC Adaptive Search Algorithm

```
Input: pop tamaño de la población
Output: Una solución al problema
 1: P \leftarrow Generar población aleatoria de pop individuos
 2: s^* \leftarrow \text{el } mejor \text{ individuo en } P
 3: \mu \leftarrow l/4

▷ Umbral de cruce

 4: while ¬ Condición de parada do
 5:
         for i \in [1 \dots pop/2] do
              p_1 \leftarrow \text{Seleccionar} un individuo en P
 6:
              p_2 \leftarrow \text{Seleccionar un individuo en } P
 7:
              if hamming(p_1, p_2) > \mu then
 8:
                  c_1, c_2 \leftarrow \text{recombinar } p_1 \text{ y } p_2 \text{ usando HUX}
 9:
                  P \leftarrow P \cup \{c_1, c_2\}
10:
         if |P| = pop then
11:
              \mu \leftarrow \mu - 1
12:
              if \mu = 0 then
13:
                  P \leftarrow \text{Generar población de pop individuos usando } s^*
14:
                  \mu \leftarrow l/4
15:
16:
         else
              P \leftarrow pop mejores individuos en P
17:
              if El mejor individuo en P es mejor que s^* then
18:
                  s^* \leftarrow \text{el } mejor \text{ individuo en } P
19:
20: return s^*
```

genéticos tradicionales y por lograr mejores soluciones para gran variedad de problemas [Bal95, BC95].

Este algoritmo mantiene una población implícita de soluciones, mediante el uso de un vector de probabilidades V de tamaño l, donde V_i (con $i \in [1...l]$) es la probabilidad que el i-esimo bit/gen de una solución en la población esté "prendido" (sea igual a 1). PBIL usa este vector de probabilidades para generar poblaciones de tamaño pop en cada iteración, y guiar el proceso evolutivo en base a las soluciones generadas.

Inicialmente $V_i = 0.5 \ \forall i \in [1...l]$. Luego en cada iteración: a) se generan pop cromosomas binarios basados en las probabilidades en V, b) se "acerca" V hacia la mejor solución generada (usando una tasa de aprendizaje lr), c) se "aleja" V de la peor solución generada (usando una tasa de aprendizaje negativa nlr), d) se sigue una estrategia de mutación sobre V en la que se aumenta o disminuye V_i en ms ($mutation\ shift$) con probabilidad de mutación mp. Ver algoritmo 2.4.

Algoritmo 2.4 Population-Based Incremental Learning

```
Input: pop tamaño de la población, mp probabilidad de mutación, ms mutation
    shift, lr learning rate, nlr negative learning rate
Output: Una solución al problema
 1: V \leftarrow \text{Vector de probabilidades de tamaño } l
 2: s^* \leftarrow \text{Una solución cualquiera}
 3: while ¬ Condición de parada do
         P \leftarrow Generar población de tamaño pop según las probabilidades en V
 4:
         b \leftarrow \text{El } mejor \text{ individuo en } P
 5:
         w \leftarrow \text{El } peor \text{ individuo en } P
 6:
         if b es mejor que s^* then
 7:
             s^* \leftarrow b
 8:
         for i \in [1 \dots l] do
                                                   ▶ Actualizar el vector de probabilidades
 9:
10:
             V_i \leftarrow V_i * (1 - 1r) + b_i * 1r
             if b_i \neq w_i then
11:
                 V_i \leftarrow V_i * (1 - \mathtt{nlr}) + b_i * \mathtt{nlr}
12:
             if Unif(0,1) < mp then
                                                            ▶ Mutación con probabilidad mp
13:
                 V_i \leftarrow V_i * (1 - ms) + \text{UnifDiscreta}(0, 1) * ms
14:
15: return s^*
```

2.2.2. Inteligencia de Enjambre

Inteligencia de Enjambre [BDT99] (IE) es un paradigma emergente entre los sistemas de cómputo bio-inspirados. Surge como una extensión de los AE, pero no se basa en la adaptación genética de poblaciones, sino en el comportamiento colectivo de grupos de organismos. Las estrategias de IE exhiben patrones de búsqueda descentralizada y auto-organizada, mediante la simulación de la inteligencia colectiva de grupos de "agentes" sencillos.

Durante la última década se han desarrollado numerosos enfoques basados en la explotación de inteligencia colectiva, inspirados en el comportamiento de colonias de hormigas, abejas, luciérnagas, etc. Uno de los más estudiados se conoce como PSO, inspirado en el vuelo de grupos de aves.

2.2.2.1. Particle Swarm Optimization (PSO)

PSO [KE95] se inspira en el comportamiento de organismos biológicos, en particular del vuelo de una bandada. Cada ave o "partícula" representa una solución que se mueve en el espacio de soluciones del problema, y modifica su "vuelo" en relación a su propia experiencia y la de sus "compañeras". Diferentes estudios [SE98, KS98]

muestran que PSO obtiene mejores resultados que los algoritmos genéticos y en menor tiempo de cómputo.

La *i*-esima partícula de PSO tiene asociado a) un vector de posición $x_i \in \mathbb{R}^l$ en un espacio euclidiano l-dimensional que representa una solución al problema, y b) un vector de velocidad $v_i \in \mathbb{R}^l$ que modifica la posición de la partícula en cada iteración. Ver algoritmo 2.5.

Algoritmo 2.5 Particle Swarm Optimization

Input: part número de partículas, vmax velocidad máxima, w peso de inercia, c1 peso del mejor local, c2 peso del mejor global

```
Output: Una solución al problema
 1: for i \in [1 \dots part] do
           \vec{X}_i \leftarrow \text{Solución inicial aleatoria} \in \mathbb{R}^l
           \vec{V_i} \leftarrow \text{Vector de velocidades aleatorias entre } [-\text{vmax}, \text{vmax}]
           p_i \leftarrow \vec{X}_i
                                                 \triangleright La mejor solución encontrada por la particula i
 5: s^* \leftarrow \text{La } mejor \text{ solución } p_i, i \in [1 \dots \text{part}]
     while ¬ Condición de parada do
           for i \in [1 \dots part] do
 7:
                \vec{X}_i \leftarrow \vec{X}_i + \vec{V}_i
 8:
                \vec{V_i} \leftarrow \mathbf{w}\vec{V_i} + \mathtt{c1} \ \mathrm{Unif}(0,1)(p_i - \vec{X_i}) + \mathtt{c2} \ \mathrm{Unif}(0,1)(s^* - \vec{X_i})
 9:
                Limitar valores en \vec{V_i} entre [-vmax, vmax]
10:
                if \vec{X}_i es mejor que p_i then
11:
                      p_i \leftarrow X_i
12:
                      if p_i es mejor que s^* then
13:
                           s^* \leftarrow p_i
14:
15: return s^*
```

El vector de velocidad se modifica en función de varios parámetros: a) el peso de inercia $\mathbf{w} \in \mathbb{R}$ que evita cambios bruscos respecto a la velocidad anterior, b) el peso del mejor local $\mathtt{c1} \in \mathbb{R}$ que indica la importancia de la mejor solución encontrada por dicha particula, y c) el peso del mejor global $\mathtt{c2} \in \mathbb{R}$ que establece la importancia de la mejor solución global encontrada hasta el momento. Estos parámetros se encargan de dar dirección a la búsqueda de cada partícula. Usualmente los valores del vector de velocidad se limitan a ciertos rangos para permitir la explotación de soluciones locales: se usa el parámetro $\mathtt{vmax} \in \mathbb{R}$ para limitar la velocidad entre $[-\mathtt{vmax}, \mathtt{vmax}]$.

A pesar de estar definido para encontrar soluciones con representación en \mathbb{R}^l , PSO puede modificarse para optimizar soluciones con representaciones variadas, definiendo apropiadamente los operadores usados para la actualización de la velocidad. Otro enfoque radica en mapear el espacio de búsqueda del problema a

un dominio continuo: en el caso de soluciones con representación binaria se puede limitar la posición de las partículas entre [0,1] y obtener soluciones redondeando dichos valores.

Capítulo 3

Adaptación al problema de Selección de Instancias

Al tratarse de métodos de búsqueda de propósito general, las metaheurísticas son capaces de encontrar soluciones a todo tipo de problemas de optimización combinatoria. Para ello debe definirse una representación que codifique las posibles soluciones al problema y una función de evaluación que permita evaluar dichas soluciones en función a los objetivos de optimización del problema.

A continuación se describen éstas y otras consideraciones generales para la aplicación de metaheurísticas al problema de *Selección de Instancias*. Adicionalmente se plantea para cada metaheurística, las estrategias a usar durante el proceso de búsqueda, así como algunas modificaciones particulares.

3.1. Consideraciones generales

3.1.1. Representación

Una solución cualquiera al problema de SI está dada por un subconjunto de instancias R del conjunto inicial T (i.e. $R \subseteq T$). Por lo tanto, para un orden dado de las instancias $t_i \in T$ (i = 1 ... n, con n = |T|), una codificación usando mapas de bits es suficiente para representar el espacio de soluciones al problema.

En este sentido, una solución particular al problema de SI está descrita por una cadena de bits s de tamaño n. Cada bit s_i ($i = 1 \dots n$) tiene valor 1/0 ("prendido"

o "apagado" respectivamente), lo que denota la pertenencia o no de la instancia correspondiente $t_i \in T$ al subconjunto seleccionado. $R_s \subseteq T$ es el subconjunto seleccionado representado por la cadena de bits s, donde:

$$R_s = \{ t_i \in T \mid i = 1 \dots n \land s_i = 1 \}$$
 (3.1)

Este conjunto R_s permite evaluar la "bondad" de la solución s en función de los objetivos de optimización del problema.

3.1.2. Función de evaluación

El objeto de la aplicación de metaheurísticas es conseguir soluciones óptimas o casi óptimas a variedad de problemas. Para ello es necesario definir una estrategia de comparación entre soluciones, *i.e.* saber cuándo una solución es «mejor» que otra, que permita seleccionar aquellas soluciones que mejor se adapten a los objetivos del problema en cuestión.

Para el caso del problema de SI, el objetivo es encontrar un subconjunto R del menor tamaño posible, que mantenga un alto porcentaje de precisión de clasificación. Cano et al. [CHL03] definen una función de evaluación que combina ambos objetivos en función de un parámetro $\alpha \in [0,1]$; a continuación se presenta una modificación de dicha función (su complemento) usada en el presente trabajo:

$$eval(R) = \alpha \ error(R) + (1 - \alpha)|R| \tag{3.2}$$

Donde error(R) es el número de instancias en T que son erróneamente clasificadas usando el conjunto $R \subseteq T$ como conjunto de entrenamiento de un clasificador 1-NN. El parámetro α combina los objetivos de la búsqueda: se usa $\alpha=0.5$ siguiendo lo descrito por [CHL03] para obtener soluciones que satisfagan ambos objetivos del problema.

Para esta definición, el objetivo de las metaheurísticas para selección de instancias es minimizar la función de evaluación descrita. Para ello, deben minimizar ambos objetivos de la función: el error de clasificación usando el subconjunto seleccionado y el tamaño de dicho subconjunto. En este sentido, dadas dos posibles soluciones a y b, a es «mejor» que b si y solo si $eval(R_a) < eval(R_b)$.

3.1.3. Generación de soluciones iniciales

Para muchos problemas con esquemas de representación binaria, la generación de soluciones iniciales usada por metaheurísticas sigue una estrategia común: en una solución aleatoria codificada como una cadena de bits, cada bit tiene $50\,\%$ de probabilidad de estar prendido ($\delta=0.5$). Esta estrategia genera soluciones con valor esperado de la mitad de los bits prendidos. Para el problema de SI esto implica soluciones con una reducción inicial del $50\,\%$ sobre el conjunto $T,\,y$ hace necesario un alto número de iteraciones para lograr obtener soluciones con reducciones significativas [CHL03]. Por esta razón, en el presente trabajo se usa una probabilidad de aparición del $5\,\%$ por cada bit ($\delta=0.05$), generando soluciones iniciales con reducciones cercanas al $95\,\%$. El rol de la función objetivo no recae en disminuir los porcentajes de reducción de las soluciones, sino en mantenerlos en niveles aceptables, permitiendo explotar el espacio de búsqueda para conseguir soluciones con mayor precisión.

Sin embargo, el punto inicial de la búsqueda en términos de precisión sigue siendo aleatorio. Una estrategia común en metaheurísticas de trayectoria es la generación de soluciones iniciales usando algoritmos de aproximación; Cerveron et al. [CF01] plantean una modificación del algoritmo de Búsqueda Tabú para el problema de SI, en la cuál usan CNN para generar la solución inicial de la búsqueda. Esta idea puede trasladarse a metaheurísticas poblacionales siguiendo un enfoque probabilístico: dada una selección inicial $R_0 \subseteq T$, los bits correspondientes a instancias en R_0 tienen mayor probabilidad de aparición que los bits de instancias en $T \setminus R_0$. Estas probabilidades constituyen un vector de probabilidades a ser usado por PBIL como vector inicial, o por los algoritmos genéticos (GGA, SGA y CHC) para generar soluciones iniciales. El algoritmo 3.1 implementa este esquema de generación; para un δ particular (que determina el número de bits prendidos en las soluciones iniciales), el vector de probabilidades V generado por el algoritmo cumple con que un máximo del 70 % de los bits prendidos en soluciones generadas usando V, pertenecen a la solución inicial R_0 . Esto contribuye a guiar la búsqueda realizada por las metaheurísticas poblacionales, manteniendo la variabilidad.

Cualquier solución generada por algoritmos de aproximación para el problema de SI (sección 1.3) sirve como "semilla" de este generador. En el presente trabajo se prueba el impacto del uso de soluciones iniciales calculadas por CNN. También se incluyen dos selecciones basadas en el orden según el enemigo más cercano (NE -

Algoritmo 3.1 Generador de vector de probabilidades inicial

```
Input: R_0 solución inicial

Output: Vector de probabilidades en base a R_0

1: high \leftarrow min(0.9, \frac{\delta|T|0.7}{|R_0|})

2: low \leftarrow \frac{\delta|T|-high|R_0|}{|T\setminus R_0|}

3: V \leftarrow Vector de probabilidades de tamaño n

4: for i \in [1...n] do

5: if t_i \in R_0 then

6: V_i \leftarrow high

7: else

8: V_i \leftarrow low

9: return V
```

"Nearest Enemy"), seleccionando las instancias con mayor distancia NE (selección por Farthest NE), o menor distancia NE (selección por Closest NE). Finalmente, se prueba un método de selección propio llamado Nearest Enemy Hypersphere Selection (NEHS). En la figura 3.2 se pueden observar los subconjuntos seleccionados por estos cuatro (4) algoritmos.

FIGURA 3.1: Subconjunto de instancias seleccionadas por CNN, NEHS, Closest NE y Farthest NE, para el conjunto de instancias BANANA. Las instancias están pintadas en amarillo y rojo según su clase en el conjunto de datos, y en azul aquellas instancias pertenecientes a la selección correspondiente.

3.1.3.1. Condensed Nearest Neighbor

En 1968 Hart [Har68] fue el primero en proponer un método de reducción de instancias a ser usadas por la regla NN; este método se conoce como Condensed $Nearest\ Neighbor\ (CNN)$. El objetivo de CNN es realizar un proceso de selección previo al entrenamiento del clasificador 1-NN, consiguiendo un conjunto $R\subseteq T$ que mantenga la efectividad del conjunto de datos original T para clasificar instancias desconocidas.

Se trata de un algoritmo incremental en el que se incluyen en R aquellas instancias en T que son mal clasificadas usando el conjunto reducido como conjunto de entrenamiento en un clasificador 1-NN. Dicho proceso se repite hasta que no se incluyan nuevas instancias en el conjunto R luego de una iteración completa sobre las instancias en T; ver algoritmo 3.2.

Algoritmo 3.2 Condensed Nearest Neighbor

```
Input: T conjunto de instancias inicial

Output: Conjunto de instancias R \subseteq T

1: R \leftarrow \{\text{Una instancia cualquiera } t \in T\}

2: repeat

3: R' \leftarrow R

4: for all t \in T do

5: if t es mal clasificada usando R con un clasificador 1-NN then

6: R \leftarrow R \cup \{t\}

7: until R = R'

8: return R
```

CNN logra una reducción considerable sobre el conjunto de datos original, y asegura un conjunto consistente con T. Sin embargo, al ser dependiente del orden de revisión de las instancias, CNN no asegura un conjunto consistente mínimo. Este algoritmo tiende a seleccionar instancias cercanas a los bordes de decisión, viéndose particularmente afectado por datos ruidosos [AR11, JG].

3.1.3.2. Nearest Enemy Hypersphere Selection

La idea tras el uso de la regla NN es que instancias "cercanas" en un espacio cualquiera (*i.e.* con atributos similares) comparten su clasificación; esto conlleva a la división de dicho espacio en regiones con instancias de igual clase. La idea

fundamental de Nearest Enemy Hypersphere Selection (NEHS) es seleccionar instancias en los centros de dichas regiones, con la finalidad de reducir la cantidad de instancias necesarias para generalizar el espacio descrito por el conjunto original.

Para esto hace uso de la distancia del enemigo más cercano: cada instancia $t \in T$ tiene un enemigo más cercano $NE(t) \in T$, cuya distancia $\varphi(t, NE(t))$ define el radio de una hiperesfera en el espacio m-dimensional de atributos con centro en t, dentro de la cual toda instancia comparte la clase ω_t .

FIGURA 3.2: a) Subconjunto de instancias seleccionadas por NEHS, e
b) Hiperesferas correspondientes a la selección de NEHS, con radio en función a la distancia del enemigo más cercano.

NEHS implementa una estrategia greedy que busca seleccionar las mayores hiperesferas que no intersecten entre sí. Realiza la selección de hiperesferas comenzando con las de mayor tamaño, con el objetivo de cubrir el mayor espacio posible (ver el algoritmo 3.3). Sin embargo, para evitar la selección de puntos cercanos a los bordes de decisión (y posiblemente ruidosos), NEHS ignora un porcentaje Δ de instancias en T con menor distancia NE, i.e. las hiperesferas de menor radio. Esto implica una selección con bordes de decisión mucho más "suaves" que los del conjunto original. El presente trabajo usa un $\Delta = 33\%$.

Algoritmo 3.3 Nearest Enemy Hypersphere Selection

```
Input: T conjunto de instancias inicial, \Delta porcentaje de instancias a excluir Output: Conjunto de instancias R \subseteq T

1: R \leftarrow \emptyset

2: for all t \in T en orden descendiente de distancia NE excluyendo las últimas \Delta |T| instancias do

3: if \neg \exists \ r \in R tal que \varphi(t,r) < \varphi(r,\mathrm{NE}(r)) + \varphi(t,\mathrm{NE}(t)) then

4: R \leftarrow R \cup \{t\}

5: return R
```

3.1.3.3. Closest Nearest Enemy

La distancia del enemigo más cercano (NE) de una instancia cualquiera $t \in T$ (i.e. $\varphi(t, \text{NE}(t))$), indica su cercanía a los bordes de decisión establecidos mediante un clasificador 1-NN. La selección por Closest NE escoge aquellas instancias con menor distancia NE entre las instancias en T, i.e. instancias pertenecientes –o cercanas– a los bordes de decisión de los datos. En el presente trabajo, Closest NE selecciona el 5 % ($\delta = 0.05$) de instancias con menor distancia NE.

$$R_{\text{ClosestNE}} = \{\delta | T | \text{ instancias con menor distancia NE} \}$$
 (3.3)

3.1.3.4. Farthest Nearest Enemy

Similar a la selección por Closest NE, Farthest NE se basa en el uso de la distancia NE para incluir instancias en el conjunto reducido $R \subseteq T$. Sin embargo, Farthest NE selecciona aquellas instancias con mayor distancia NE, i.e. instancias alejadas de los bordes de decisión y cercanas a los centros de sus respectivas regiones. Este método también usa un porcentaje de selección igual al 5 % ($\delta = 0.05$) de las instancias en T.

$$R_{\text{FarthestNE}} = \{\delta | T | \text{ instancias con mayor distancia NE} \}$$
 (3.4)

3.2. Modificaciones particulares

3.2.1. Adaptación de GGA, SGA y CHC

Para aplicar algún algoritmo genético al problema de SI, es necesario describir las estrategias de selección, recombinación, mutación y reemplazo que seguirá el algoritmo durante el proceso evolutivo.

GGA, SGA y CHC requieren de un operador que seleccione individuos de la población para participar en el proceso reproductivo. Se emplea el método de *selección por torneo* en su versión "elitista": se escoge al azar un conjunto de individuos entre la población original, y es seleccionado el más apto entre ellos. El tamaño

de dicho conjunto debe ser pequeño; generalmente se usa un "tamaño de torneo" entre 2 y 5 [MG95]. En este trabajo se usan torneos de tamaño 3.

Debido a que CHC aplica un operador de recombinación particular (HUX) y no requiere de un operador de mutación, dichos operadores deben ser definidos solo para GGA y SGA. El operador de crossover aplicado en ambos algoritmos es el de recombinación en un punto. Dados dos cromosomas "padres", se elige aleatoriamente un punto de corte en la longitud de ambos cromosomas; los cromosomas "hijos" resultan de combinar la sección izquierda del corte de un padre, con la sección derecha del corte del otro padre. El operador de mutación sigue —en ambos casos—el esquema estándar de modificación de cada bit con una cierta probabilidad.

Finalmente, es necesario describir los criterios de reemplazo. Al tratarse de estrategias evolutivas generacionales, GGA y CHC reemplazan la población de forma incondicional en favor de la descendencia. En cambio, el criterio de reemplazo usado en SGA es "elitista": se sustituyen los padres por la descendencia generada, solo si dicha descendencia es mejor.

3.2.2. Adaptación de PBIL

La estrategia evolutiva de PBIL no requiere modificaciones adicionales para su aplicación al problema de selección de instancias. PBIL está diseñado para encontrar soluciones con representación binaria, lo que permite su aplicación directa al problema. La única modificación realizada al esquema estándar de PBIL es en el método de generación del vector de probabilidades iniciales, reflejando lo descrito en la sección 3.1.3.

3.2.3. Adaptación de PSO

La adaptación de PSO al problema de SI es mayor, debido a que PSO está pensado para problemas con representación en espacios euclidianos, *i.e.* es necesario el mapeo de vectores en \mathbb{R}^l a soluciones con representación binaria. En este sentido, se adopta el esquema poblacional de PBIL en el que el genotipo de la población se representa de forma probabilística.

A esta adaptación de PSO la llamaremos Population-Based PSO (ver algoritmo 3.4), en la cuál el vector de posición $\vec{X_i}$ de cada partícula es un vector de probabilidades que representa el genotipo de una población particular. Esto permite la generación de soluciones en codificación binaria para su respectiva evaluación, en base al vector de probabilidades que describe dicha población. A diferencia del PSO tradicional, la selección de óptimos locales y globales se hace en base a las soluciones generadas mediante $\vec{X_i}$, y no en base al vector $\vec{X_i}$ por si solo. Sin embargo, la modificación de los vectores de probabilidad y velocidad ($\vec{X_i}$ y $\vec{V_i}$ respectivamente) sigue la estrategia de actualización estándar en base a la mejor solución local y la mejor solución global.

Algoritmo 3.4 Population-Based PSO

Input: pop tamaño de la población, part número de partículas, vmax velocidad máxima, w peso de inercia, c1 peso del mejor local, c2 peso del mejor global
Output: Una solución al problema

```
1: for i \in [1 \dots part] do
          X_i \leftarrow \text{Vector de probabilidades de tamaño } l
          \vec{V_i} \leftarrow \text{Vector de velocidades aleatorias entre } [-\text{vmax}, \text{vmax}]
          p_i \leftarrow \text{Generar una solución a partir de } \vec{X_i}
 5: s^* \leftarrow \text{La } mejor \text{ solución } p_i, i \in [1 \dots \text{part}]
     while ¬ Condición de parada do
          for i \in [1 \dots part] do
 7:
               \vec{X_i} \leftarrow \vec{X_i} + \vec{V_i}
 8:
               Limitar valores en \vec{X_i} entre [0,1]
 9:
               \vec{V_i} \leftarrow \mathbf{w}\vec{V_i} + \mathtt{c1} \ \mathrm{Unif}(0,1)(p_i - \vec{X_i}) + \mathtt{c2} \ \mathrm{Unif}(0,1)(s^* - \vec{X_i})
10:
               Limitar valores en \vec{V_i} entre [-vmax, vmax]
11:
               P \leftarrow \text{Generar población de tamaño pop a partir de } X_i
12:
               if El mejor individuo en P es mejor que p_i then
13:
                    p_i \leftarrow \text{El } mejor \text{ individuo en } P
14:
                    if p_i es mejor que s^* then
15:
16:
                          s^* \leftarrow p_i
17: return s^*
```

Esta versión de PSO puede clasificarse como una metaheurística de la clase de Algorítmos de Coevolución Cooperativa [DGH09] (puesto que mantiene diferentes poblaciones que evolucionan de forma colaborativa) y Algoritmos de Estimación de Distribución (debido a que adopta las ideas de representación descritas por PBIL).

Capítulo 4

Evaluación Experimental

Este capítulo consiste en la descripción de la metodología usada durante la evaluación de los métodos introducidos en los capítulos anteriores, así como el análisis de los resultados obtenidos de dicha evaluación. El objetivo de este estudio radica en la comparación empírica de cinco metaheurísticas (i.e. GGA, SGA, CHC, PBIL y PSO) adaptadas para encontrar soluciones al problema de selección de instancias. Adicionalmente, se pretende estudiar el impacto de la aplicación de estrategias alternativas de generación de soluciones iniciales: disminuyendo la probabilidad de aparición de cada bit (de 50% a 5%) y modificando dichas probabilidades en función de los subconjuntos de instancias generados por diferentes algoritmos heurísticos (i.e. CNN, NEHS, ClosestNE y FarthestNE).

4.1. Diseño Experimental

La metodología seguida durante la evaluación experimental permite establecer la efectividad de las metaheurísticas descritas en función de a) la reducción del conjunto de instancias usado para el entrenamiento del clasificador (en este caso un clasificador 1-NN), y b) la precisión de dicho clasificador —una vez entrenado— al clasificar instancias previamente desconocidas. La metodología experimental debe permitir la generalización del comportamiento de las diferentes metaheurísticas, así como las estrategias de generación de soluciones iniciales, con la finalidad de comparar los resultados obtenidos y establecer los métodos más efectivos frente al problema de selección de instancias.

4.1.1. Conjuntos de datos

Un factor esencial en la evaluación de métodos de selección de instancias es el conjunto de datos utilizado; la distribución de los datos, el número de instancias y atributos, y la cantidad de datos ruidosos, son solo algunos de los elementos que modifican el espacio de búsqueda del problema y por ende la efectividad de los algoritmos heurísticos para encontrar buenas soluciones. Los conjuntos de datos usados en este trabajo pertenecen al *UCI Machine Learning Repository* [BL13] y al *KEEL Data-Mining Software Tool* [AFL⁺10].

Los 14 conjuntos seleccionados fueron separados en 3 grupos en función del número de instancias de cada conjunto. En la tabla 4.1 se presentan 9 conjuntos con menor cantidad de instancias.

Conjunto	Conjunto Instancias		Clases
Cleveland	297	13	5
Glass	214	9	7
Iris	150	4	3
LED7Digit	500	7	10
Monk	432	6	2
Pima	768	8	2
WDBC	569	30	2
Wine	178	13	3
Wisconsin	683	9	2

Tabla 4.1: Conjuntos de datos pequeños

En la tabla 4.2 se describen dos conjuntos de datos caracterizados como de tamaño medio.

Conjunto	Instancias	Atributos	Clases	
Banana	5300	2	2	
Segmentation	2100	19	7	

Tabla 4.2: Conjuntos de datos medianos

Finalmente, los 3 conjuntos con mayor número de instancias se presentan en la tabla 4.3.

Conjunto	Instancias	Atributos	Clases
Pen-Based	10992	16	10
Satimage	6435	36	6
Thyroid	7200	21	3

Tabla 4.3: Conjuntos de datos grandes

4.1.2. Particiones y ejecuciones

Los conjuntos de datos considerados en la sección anterior son particionados usando la estrategia de validación cruzada en 10 iteraciones (10-fold cross-validation). El conjunto inicial de instancias T es dividido en 10 subconjuntos disjuntos de igual tamaño $T_1, T_2, \ldots T_{10}$. Adicionalmente, cada conjunto T_i mantiene la proporción de distribución de las clases del conjunto original T. En función de esta partición, se definen los pares de conjuntos (T_i', T_i) , con $i = 1 \ldots 10$, donde $T_i' = T \setminus T_i$.

El conjunto T'_i , también conocido como el conjunto de "entrenamiento", es usado por las metaheurísticas durante el proceso de búsqueda para evaluar soluciones intermedias; en vez de usar T, se usa el conjunto T'_i como el conjunto de instancias inicial. Las instancias restantes (pertenecientes al conjunto T_i) son usadas como conjunto de "validación", *i.e.* la mejor solución encontrada durante la ejecución, es usada para clasificar las instancias previamente desconocidas de T_i .

En base a esta estrategia, se definen los criterios de comparación empleados en el presente trabajo. Dada una solución $R \subseteq T'_i$ al problema de SI, se considera:

- Error de Entrenamiento El porcentaje de instancias en T'_i mal clasificadas usando R como conjunto de prototipos en un clasificador 1-NN.
- Error de Validación
 El porcentaje de instancias en T_i mal clasificadas usando R como conjunto de prototipos en un clasificador 1-NN.
- $Tama\~no$ El tama $\~no$ de R en función de T_i' (i.e. $\frac{100|R|}{|T_i'|}$).
- lacktriangleright Tiempo Segundos empleados por el algoritmo para encontrar R.

Cada metaheurística es evaluada usando los 10 pares de conjuntos (T_i', T_i) . Por cada par de conjunto entrenamiento-validación se realizan 3 repeticiones. *i.e.* un total de 30 ejecuciones de una metaheurística para un conjunto de datos y un tipo de inicialización particular. Las ejecuciones fueron realizadas de manera independiente en instancias c3.2xlarge de $Amazon\ EC2$, que disponen de 8 CPUs Intel Xeon E5-2680 v2 (Ivy Bridge), 15GB de memoria RAM y 80GB de disco duro

de estado sólido. Todos los experimentos se realizaron bajo el sistema operativo Amazon Linux AMI 2014.03.2 y utilizando GCC 4.8.2.

Implementacion

4.1.3. Parámetros

Cada metaheurística tiene un conjunto de parámetros que regulan el proceso de búsqueda sobre el espacio de posibles soluciones. Los valores de cada parámetro y la interacción entre ellos, determinan el comportamiento del algoritmo y su capacidad para encontrar buenas soluciones. Sin embargo, los valores que indican el buen comportamiento de una metaheurística, son altamente dependientes del problema en general, e incluso de la instancia particular que se pretenda evaluar. Esto lo convierte en un proceso complejo, que a menudo conlleva a un diseño factorial con el fin de estudiar la influencia de los parámetros y sus interacciones en asegurar la calidad de las soluciones obtenidas.

En el presente trabajo se realizó la entonación de las metaheurísticas seleccionadas en los capítulos anteriores. Los resultados obtenidos de este proceso se describen en el Apéndice A. En la tabla 4.4 se presentan los parámetros seleccionados para cada metaheurística.

Parámetros		AL	GORITM	OS	
FARAMETROS	GGA	SGA	CHC	PBIL	PSO
Iteraciones	1000	1000	1000	1000	1000
Población	50	30	30	40	5
Prob. de Cruce	0.9	1.0	-	-	-
Prob. de Mutación	0.001	0.001	-	0.001	-
Mutation Shift	-	-	-	0.01	-
Learning Rate	-	-	-	0.1	-
Neg. Learning Rate	-	-	-	0.01	-
Partículas	-	-	-	-	5
Velocidad Máxima	-	-	-	-	0.2
Inercia	-	-	-	-	0.9
c1	-	-	-	-	0.1
c2	-	-	-	-	0.1

Tabla 4.4: Parámetros usados en cada metaheurística

4.2. Resultados

En esta sección se presentan los resultados obtenidos durante la evaluación experimental. En la sección 4.2.1 se comparan diferentes estrategias de inicialización de soluciones con representación binaria, a) evaluando el impacto de disminuir la probabilidad de aparición de bits, y b) modificando la distribución de dicha probabilidad a lo largo de la cadena de bits, de una distribución uniforme a una distribución personalizada basada en los conjuntos seleccionados por algoritmos heurísticos al problema de SI. Una vez seleccionada la mejor estrategia de inicialización, en la sección 4.2.2 se comparan los resultados obtenidos por las 5 metaheurísticas descritas. Se concluye con un análisis estadístico para determinar estudio (en caso que existan) aquellas metaheurísticas que se comporten consistentemente mejor que el resto.

4.2.1. Comparación entre inicializaciones

Bajo el contexto del problema de SI, modificar la estrategia de inicialización de soluciones tiene un objetivo claro: iniciar el proceso de búsqueda en "buenas" soluciones. Una buena solución al problema de SI debe minimizar tanto la cardinalidad del conjunto R, como el error de clasificación usando R como conjunto de prototipos. En este sentido, se propone disminuir la probabilidad de aparición de bits δ para reducir la cardinalidad de soluciones iniciales, y modificar la distribución de dicha probabilidad, beneficiando a instancias seleccionadas por diferentes algoritmos heurísticos, con la intensión de reducir el error de clasificación.

Con la finalidad de comparar diferentes estrategias de inicialización, se realizaron experimentos sobre los conjuntos de datos grandes (Tabla 4.3). Los resultados obtenidos son presentados y analizados a continuación.

4.2.1.1. Probabilidad de aparición de bit

Con la finalidad de reducir la cardinalidad de las soluciones iniciales generadas, en un intento de reducir el número de iteraciones necesarias para conseguir porcentajes de reducción aceptables, este estudio propone la reducción de la probabilidad de aparición de bits δ . En esta sección se estudia el impacto de la disminución propuesta, usando 3 posibles valores: $50\,\%$, $25\,\%$ y $5\,\%$.

En la tabla 4.5 se presentan los resultados promedio de la evaluación de las 5 metaheurísticas sobre los conjuntos de datos grandes, modificando únicamente el parámetro δ (probabilidad de aparición de bit). Iteraciones en 1000

	Tiempo Tamañ		% de Error		
0 HEMFO TAMANO -	Entrenamiento	Validación			
-50%	1324.96	37.09	2.94	6.60	
25%	1193.26	19.83	4.14	6.71	
5%	893.24	4.67	6.25	7.28	

TABLA 4.5: Resultados promedio de las 5 metaheurísticas frente a los conjuntos de datos grandes, usando una probabilidad de aparición de bit δ igual a 50 %, 25 % y 5 %.

Estos datos corroboran la hipótesis de que al usar $\delta=50\,\%$, es necesario un mayor número de iteraciones para converger a soluciones con porcentajes de reducción aceptables. En la figura 4.1 resultan evidentes las diferencias en el tamaño de los subconjuntos seleccionados usando las 3 probabilidades seleccionadas; no es únicamente una diferencia promedio, la inicialización usando $\delta=5\,\%$ logra soluciones más consistentes en términos de la reducción alcanzada. Adicionalmente, el uso de una probabilidad de aparición de bit menor, conlleva a una disminución considerable en el tiempo de ejecución de los algoritmos.

FIGURA 4.1: Tamaño del conjunto vs error de validación en ejecuciones de las metaheurísticas usando δ igual a 50 %, 25 % y 5 %.

Sin embargo, la disminución del parámetro δ exhibe un aumento considerable en el error de entrenamiento.

A pesar de que las diferencias en el error de validación son significativas en favor de $\delta = 50\,\%$, el uso de una probabilidad de aparición de bit igual al $5\,\%$ supone beneficios importantes en relación al tiempo de ejecución y la reducción

Error de Validación			Tamaño			Error + Tamaño		
δ	Rank	Mejor	δ	Rank	Mejor	δ	Rank	Mejor
50 %	1.73	9	5 %	1.0	15	5%	1.0	15
25%	1.93	4	25%	2.0	0	25%	2.0	0
5%	2.33	2	50%	3.0	0	50%	3.0	0

Tabla 4.6: Ranking de inicializaciones según el tamaño y error de validación, considerando los promedios de las ejecuciones de cada algoritmo frente a los conjuntos de datos grandes. Por cada inicialización, se presenta su ranking promedio (Rank) y el número de veces que obtuvo los mejores resultados (Mejor).

alcanzada. Por esta razón, se decidió usar $\delta=5\,\%$ durante el resto de la evaluación experimental.

4.2.1.2. Inicialización usando algoritmos heurísticos

En esta sección se evalua el impacto de generar soluciones iniciales, modificando la distribución de probabilidad a lo largo la cadena de bits que representa una solución al problema de SI. El enfoque estandar emplea una distribución uniforme con probabilidad δ , *i.e.* todos los bits tienen igual probabilidad de estar "prendidos". En el presente trabajo empleamos una técnica de modificación de distribución, basada en la selección realizada por algoritmos heurísticos.

Inicialización	Тіємро	Tamaño	% de Error			
INICIALIZACION	TIEMFO	TAMANO	Entrenamiento	Validación		
Uniforme	893.24	4.67	6.25	7.28		
NEHS	958.94	4.70	$\boldsymbol{6.20}$	7.28		
CNN	921.68	5.11	6.27	7.85		
Farthest NE	932.19	4.98	6.94	7.67		
ClosestNE	932.75	5.56	7.21	8.95		

Tabla 4.7: Resultados promedio de las 5 metaheurísticas frente a los conjuntos de datos grandes, usando distribuciones de probabilidad uniforme y basadas en algoritmos heurísticos.

En la tabla 4.7 se presentan los resultados promedio del usar una distribución uniforme y distribuciones basadas en CNN, NEHS, Closest NE y Farthest NE, para la generación de soluciones iniciales en las 5 metaheuristicas descritas. Los datos en tiempo de ejecución son previsibles, debido al tiempo añadido de ejecución de los algoritmos heurísticos. Sin embargo, contrario a lo esperado, estas modificaciones no mejoran significativamente los porcentajes de error obtenidos mediante una distribución uniforme. Más aún, CNN, Closest NE y Farthest NE empeoran los resultados en todos los aspectos. Solo NEHS reporta resultados alentadores, en el

que mejora el error de entrenamiento e iguala el error de validación frente a una distribución uniforme.

La figura 4.2 confirma los aspectos señalados: el comportamiento de inicializaciones basadas en CNN, Closest NE y Farthest NE difieren significativamente del comportamiento de aquellas basadas en NEHS o una distribución uniforme. Estas últimas (NEHS y Uniforme) muestran un comportamiento similar en función de ambos objetivos del problema. Una prueba de rangos con signo de *Wilcoxon* [Wil45], con un nivel de significancia del 5 %, no encuentra diferencias significativas entre los resultados que usan distribuciones uniforme y basada en NEHS, en términos de tamaño (V = 55, p-valor = 0.804) ni error de validación (V = 64, p-valor = 0.8469).

FIGURA 4.2: Diagramas de caja del tamaño y error de validación usando distribuciones de probabilidad uniforme y basadas en algoritmos heurísticos.

Sin embargo, la tabla 4.8 sugiere que una inicialización basada en NEHS resulta conveniente en función de los dos objetivos del problema, siendo el que presenta mejor ranking promedio en base al error de validación y a la combinación lineal entre el error y el tamaño del conjunto seleccionado. En función de estos resultados, se usa NEHS como heurística de inicialización de las ejecuciones realizadas en la sección 4.2.2, cuya finalidad es determinar aquellas metaheurísticas que se comporten consistentemente mejor que las demás.

4.2.2. Comparación entre metaheurísticas

Para controlar el proceso de búsqueda, cada metaheurística emplea técnicas diversas para recorrer el espacio de posibles soluciones. Su capacidad para encontrar buenas soluciones está íntimamente ligado al problema que se desea resolver, la representación de sus soluciones, la función de objetivo, entre otros factores. La

Error de Validación			Tamaño			Error + Tamaño		
Inicialización	Rank	Mejor	Inicialización	Rank	Mejor	Inicialización	Rank	Mejor
NEHS	2.06	4	Uniforme	1.86	6	NEHS	2.00	5
Uniforme	2.40	2	NEHS	2.26	3	Uniforme	2.20	2
CNN	2.86	4	FarthestNE	2.86	4	CNN	2.93	4
Farthest NE	2.93	5	CNN	3.60	2	FarthestNE	3.06	4
ClosestNE	4.73	0	ClosestNE	4.40	0	ClosestNE	4.80	0

Tabla 4.8: Ranking de inicializaciones según el tamaño y error de validación, considerando los promedios de las ejecuciones de cada algoritmo frente a los conjuntos de datos grandes. Por cada inicialización, se presenta su ranking promedio (Rank) y el número de veces que obtuvo los mejores resultados (Mejor).

distribución del espacio de búsqueda puede alterar significativamente la efectividad de una metaheurística particular. Por esta razón, al estudiar el comportamiento de diferentes metaheurísticas frente al problema de SI, es necesario identificar aquellas metaheurísticas que exiban mejor capacidad para seleccionar subconjuntos de instancias que cumplan con los objetivos planteados por el problema.

A continuación se presenta un estudio fraccionado del comportamiento de las 5 metaheurísticas, adaptadas en función de los resultados descritos en la sección 4.2.1. Se describen los resultados obtenidos usando los conjuntos de datos caracterizados como pequeños, medianos y grandes. Finalmente, se realiza un análisis estadístico conjunto, con la finalidad de determinar si existen diferencias significativas entre las metaheurísticas.

4.2.2.1. Conjuntos pequeños

En la tabla 4.9 se presentan los resultados promedio de cada metaheurística, al ser evaluadas usando los conjuntos de datos pequeños. En función del error de clasificación en los conjuntos de entrenamiento y validación, GGA muestra mejores resultados que el resto de las metaheurísticas. Sin embargo, el error de validación alcanzado por las demás metaheurísticas, en particular los resultados de SGA y PBIL, son bastante cercanos. En términos de la reducción lograda, son PBIL y CHC los que seleccionan conjuntos de datos de menor tamaño, mientras que PSO es el que consigue los peores resultados.

Las mayores diferencias se ven reflejadas en los tiempos de ejecución, donde PSO y GGA requieren de un mayor número de segundos para concluir la búsqueda. No

obstante, cabe destacar que sobre los conjuntos de datos pequeños, los tiempos de ejecución de estas metaheurísticas no son prohivitivos.

Algoritmo	Тіємро	Tamaño	% de Error			
	TIEMITO	TAMANO	Entrenamiento	Validación		
GGA	5.51	4.66	10.94	17.89		
SGA	0.70	4.85	13.23	18.94		
CHC	1.75	3.44	14.15	19.45		
PBIL	2.95	3.36	13.32	18.64		
PSO	10.59	6.28	18.64	21.90		

Tabla 4.9: Resultados promedio de los conjuntos de datos pequeños, usando las metaheurísticas descritas.

La tabla de rankings (Tabla 4.10) ofrece otra perspectiva. PBIL domina los rankings en función del error de validación, el tamaño del conjunto seleccionado y la combinación de ambos objetivos. El ranking promedio de GGA y CHC en términos del error y el tamaño respectivamente, corroboran los resultados descritos anteriormente.

Error de Validación			Tamaño			Error + Tamaño		
Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor
PBIL	2.00	4	PBIL	1.44	5	PBIL	1.55	6
GGA	2.22	4	CHC	1.88	3	GGA	2.44	2
SGA	2.66	1	GGA	3.11	1	CHC	2.88	0
CHC	3.77	0	SGA	3.88	0	SGA	3.22	1
PSO	4.33	0	PSO	4.66	0	PSO	4.88	0

Tabla 4.10: Ranking de metaheurísticas según el tamaño y error de validación, considerando los promedios de las ejecuciones de cada algoritmo frente a los conjuntos de datos pequeños. Por cada algoritmo, se presenta su ranking promedio (Rank) y el número de veces que obtuvo los mejores resultados (Mejor).

Los datos sugieren que PBIL representa la mejor alternativa para encontrar soluciones a instancias "pequeñas" del problema de SI, ya que logra buenos resultados tanto en términos de presición de clasificación, como en términos de reducción. Sin embargo, GGA y CHC presentan resultados comparables, por lo que no deben descartarse.

4.2.2.2. Conjuntos medianos

En la tabla 4.11 se presentan los resultados obtenidos al evaluar las metaheurísticas frente a los conjuntos de datos medianos. Los tiempos de ejecución aumentan notablemente, y las diferencias en tiempo entre los diferentes algoritmos se mantienen: PSO y GGA requieren en promedio más del doble del tiempo que PBIL, y pueden tardar hasta 9 veces más que SGA y CHC. De nuevo, PBIL y GGA logran los mejores resultados en función del error de clasificación. Sin embargo, los porcentajes de error reportados (sobretodo en el conjunto de validación) no varían considerablemente entre metaheurísticas; a excepción de PSO, que exhibe los mayores errores de clasificación en ambos casos. Por último, el tamaño de los conjuntos encontrados por PBIL es menor que en el resto de algoritmos, aunque CHC también reporta una reducción considerable.

Algoritmo	Тіємро	Tamaño	% de Error			
	TIEMFO	TAMANO	Entrenamiento	Validación		
GGA	80.49	6.02	5.96	8.58		
SGA	8.67	5.80	6.76	8.92		
CHC	8.89	4.46	7.51	8.90		
PBIL	38.06	2.72	6.06	8.35		
PSO	97.98	5.55	10.66	11.83		

TABLA 4.11: Resultados promedio de los conjuntos de datos medianos, usando las metaheurísticas descritas.

Estas observaciones son ratificadas con los datos de la tabla 4.12, que muestra el dominio de los resultados dados por PBIL bajo las métricas del tamaño del conjunto seleccionado y el error de validación alcanzado. No obstante, los resultados reportados por CHC son interesantes en función del ranking conjunto, tomando en cuenta la diferencia en tiempo de ejecución existente en comparación con PBIL.

Error de Validación			Tamaño			Error + Tamaño		
Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor
PBIL	1.5	1	PBIL	1.0	2	PBIL	1.0	2
GGA	2.5	1	CHC	2.0	0	CHC	2.0	0
SGA	3.0	0	PSO	3.0	0	GGA	3.5	0
CHC	3.0	0	GGA	4.5	0	SGA	3.5	0
PSO	5.0	0	SGA	4.5	0	PSO	5.0	0

Tabla 4.12: Ranking de metaheurísticas según el tamaño y error de validación, considerando los promedios de las ejecuciones de cada algoritmo frente a los conjuntos de datos medianos. Por cada algoritmo, se presenta su ranking promedio (Rank) y el número de veces que obtuvo los mejores resultados (Mejor).

4.2.2.3. Conjuntos grandes

Los resultados de las ejecuciones usando los conjuntos de datos grandes se presentan en la tabla 4.13. El tiempo requerido por las metaheurísticas para solucionar los conjuntos grandes es notablemente mayor que el requerido para conjuntos medianos. Esto es una consecuencia directa del aumento, no solo en el número de instancias, sino en el número de atributos de los datos: el fenómeno conocido como la «maldición de la dimensionalidad». Son aumentos en el orden de 24, 22, 17, 12 y 2 veces el tiempo requerido por GGA, PSO, SGA, PBIL y CHC respectivamente, en comparación con los tiempos reportados para los conjuntos medianos.

Algoritmo	Тіемро	Tamaño	% de Error			
		TAMANO	Entrenamiento	Validación		
GGA	1938.78	5.58	6.11	7.13		
SGA	152.71	5.74	5.42	6.56		
CHC	22.37	5.00	7.35	8.08		
PBIL	472.63	2.36	4.35	$\boldsymbol{6.19}$		
PSO	2208.22	4.80	7.76	8.43		

TABLA 4.13: Resultados promedio de los conjuntos de datos grandes, usando las metaheurísticas descritas.

En función del tamaño de los conjuntos seleccionados, los resultados de PBIL dominan con creces los del resto de las metaheurísticas. Adicionalmente, los mejores resultados en términos del error de clasificación (ambos) son reportados por PBIL, conclusión respaldada por la tabla de rankings 4.14. Sin embargo, los porcentajes de error logrados por SGA y GGA son competitivos frente a PBIL, lo cual se ve reflejado en los rankings promedio del error de validación y el ranking conjunto.

Error de Validación		Tamaño			Error + Tamaño			
Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor
PBIL	1.00	3	PBIL	1.00	3	PBIL	1.00	3
SGA	2.00	0	PSO	2.00	0	SGA	2.00	0
GGA	3.00	0	CHC	3.00	0	GGA	3.33	0
CHC	4.33	0	GGA	4.33	0	CHC	4.33	0
PSO	4.66	0	SGA	4.66	0	PSO	4.33	0

Tabla 4.14: Ranking de metaheurísticas según el tamaño y error de validación, considerando los promedios de las ejecuciones de cada algoritmo frente a los conjuntos de datos grandes. Por cada algoritmo, se presenta su ranking promedio (Rank) y el número de veces que obtuvo los mejores resultados (Mejor).

En el trabajo de *Cano et al.* [CHL03] se utilizan estos conjuntos de datos (*i.e. Pen-based, Satimage* y *Thyroid*) para seleccionar instancias usando GGA, SGA,

CHC y PBIL. Esto abre la posibilidad de establecer comparaciones en términos del tamaño de los conjuntos seleccionados y el error de validación alcanzado. En la tabla 4.15 se muestran los resultados promedio obtenidos en el presente trabajo, junto con los datos publicados por *Cano et al.* para los conjuntos mencionados.

Algoritmo	Там	AÑO	Error de Validación			
	Flores et al.	Cano et al.	Flores et al.	Cano et al.		
GGA	5.58	37.47	7.13	6.15		
SGA	5.74	37.09	6.56	6.33		
CHC	5.00	0.71	8.08	$\boldsymbol{6.47}$		
PBIL	2.36	26.87	6.19	5.87		
Promedio	4.67	25.53	6.99	6.20		

Tabla 4.15: Comparación con resultados presentados por *Cano et al.* usando GGA, SGA, CHC y PBIL para los conjuntos *Pen-based*, *Satimage* y *Thyroid*.

Los datos indican que, si bien existe una diferencia menor en función del error de validación a favor de las soluciones encontradas por Cano, existen diferencias sustanciales en términos de la reducción del conjunto original. En promedio, las soluciones alcanzadas por nuestra implementación tienen un tamaño 5 veces menor que las encontradas por el trabajo de Cano. Sin embargo, deben destacarse los excelentes resultados exhibidos por CHC en dicho estudio y en contraste con los resultados obtenidos en este trabajo. Esta diferencia ha de deberse a las modificaciones realizadas sobre la generación inicial de soluciones y el menor número de iteraciones y tamaño de población asignados a la búsqueda realizada por CHC.

4.2.2.4. Análisis de los resultados

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Conjunto	GGA		SGA		CHC		PBIL		PSO	
	Error	Tam.	Error	Tam.	Error	Tam.	Error	Tam.	Error	Tam.
Banana	10.83	5.33	10.60	5.33	10.67	4.68	10.37	1.95	11.80	4.87
Cleveland	45.81	6.02	43.92	5.18	44.81	3.70	43.16	3.21	44.53	5.63
Glass	32.49	10.19	32.85	9.38	36.55	6.31	35.02	6.99	35.38	13.43
Iris	5.11	2.66	4.44	3.00	5.11	2.93	6.22	2.78	4.66	4.86
Led7digit	26.03	4.84	26.89	4.88	26.10	3.10	25.37	3.15	30.25	6.71
Monk	11.16	6.57	18.67	7.26	19.16	4.53	17.88	4.85	29.40	7.49
Pen-based	2.46	5.10	1.84	5.52	2.99	4.93	1.59	2.32	3.03	4.86
Pima	27.43	5.08	27.91	5.48	26.35	4.04	26.26	3.68	30.08	4.97
Satimage	11.80	6.49	11.21	6.40	12.92	5.18	10.58	3.04	14.00	4.77
Segmentation	6.33	6.72	7.25	6.26	7.12	4.23	6.34	3.48	11.85	6.24
Thyroid	7.15	5.16	6.63	5.29	8.34	4.90	6.40	1.71	8.26	4.76
WDBC	6.91	2.97	8.43	3.82	8.43	2.64	7.32	2.27	13.23	4.84
Wine	3.17	2.82	4.53	3.03	5.08	2.95	3.93	2.62	6.00	4.76
Wisconsin	2.88	0.81	2.83	1.66	3.46	0.75	2.63	0.68	3.60	3.86
Promedio	14.25	5.05	14.86	5.18	15.51	3.92	14.50	3.05	17.58	5.86

Tabla 4.16: Parámetros usados en cada metaheurística

Figura 4.3: Hola

Conclusiones y Recomendaciones

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut

metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

- 1. First itemtext
- 2. Second itemtext
- 3. Last itemtext
- 4. First itemtext
- 5. Second itemtext

Bibliografía

- [AFL⁺10] J Alcalá, A Fernández, J Luengo, J Derrac, S García, L Sánchez, and F Herrera. Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. *Journal of Multiple-Valued Logic and Soft Computing*, 17:255–287, 2010.
 - [AR11] MILOUD-AOUIDATE Amal and BABA-ALI Ahmed Riadh. Survey of nearest neighbor condensing techniques. 2011.
 - [Bac96] T. Back. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, USA, 1996.
 - [Bal94] Shumeet Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report, 1994.
 - [Bal95] Shumeet Baluja. An empirical comparison of seven iterative and evolutionary function optimization heuristics. Technical report, 1995.
 - [BC95] Shumeet Baluja and Rich Caruana. Removing the genetics from the standard genetic algorithm. pages 38–46. Morgan Kaufmann Publishers, 1995.
- [BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Inc., New York, NY, USA, 1999.
- [Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Commun. ACM*, 18(9):509–517, September 1975.
- [BL97] Avrim Blum and Pat Langley. Selection of relevant features and examples in machine learning. *Artif. Intell.*, 97(1-2):245–271, 1997.

- [BL13] K. Bache and M. Lichman. UCI machine learning repository, 2013.
- [BS12] S Siva Sathya Binitha S. A survey of bio inspired optimization algorithm. *International Journal of Soft Computing and Engineering*, 2(2):137–151, 2012.
- [BT12] J. Bien and R. Tibshirani. Prototype selection for interpretable classification. *ArXiv e-prints*, February 2012.
- [CF01] Vicente Cerveron and Francesc J Ferri. Another move toward the minimum consistent subset: a tabu search approach to the condensed nearest neighbor rule. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 31(3):408–413, 2001.
- [CH67] T. Cover and P. Hart. Nearest neighbor pattern classification. *IEEE Trans. Inf. Theor.*, 13(1):21–27, January 1967.
- [CHL03] José Ramón Cano, Francisco Herrera, and Manuel Lozano. Using evolutionary algorithms as instance selection for data reduction in kdd: an experimental study. *Evolutionary Computation, IEEE Transactions* on, 7(6):561–575, 2003.
- [DGH09] Joaquín Derrac, Salvador García, and Francisco Herrera. A first study on the use of coevolutionary algorithms for instance and feature selection. In *Proceedings of the 4th International Conference on Hybrid Artificial Intelligence Systems*, HAIS '09, pages 557–564, Berlin, Heidelberg, 2009. Springer-Verlag.
- [DGKL94] Luc Devroye, Laszlo Gyorfi, Adam Krzyzak, and Gábor Lugosi. On the strong universal consistency of nearest neighbor regression function estimates. *The Annals of Statistics*, pages 1371–1385, 1994.
 - [Esh90] Larry J Eshelman. The chc adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. Foundations of genetic algorithms, pages 265–283, 1990.
 - [FH51] E. Fix and J. L. Hodges. Discriminatory analysis, nonparametric discrimination: Consistency properties. *US Air Force School of Aviation Medicine*, Technical Report 4(3):477+, January 1951.

- [FI93] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Ruzena Bajcsy, editor, *IJCAI*, pages 1022–1029. Morgan Kaufmann, 1993.
- [Gat72] Geoffrey W. Gates. The reduced nearest neighbor rule (corresp.). *IEEE Transactions on Information Theory*, 18(3):431–433, 1972.
- [GCH08] Salvador García, José Ramón Cano, and Francisco Herrera. A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8):2693–2709, 2008.
 - [GK14] Lee-Ad Gottlieb and Aryeh Kontorovich. Near-optimal sample compression for nearest neighbors. CoRR, abs/1404.3368, 2014.
- [GKK13] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient classification for metric data. *CoRR*, abs/1306.2547, 2013.
- [GPY08] Roberto Gil-Pita and Xin Yao. Evolving edited k-nearest neighbor classifiers. *International Journal of Neural Systems*, 18(06):459–467, 2008.
 - [Har68] P. Hart. The condensed nearest neighbor rule (corresp.). *IEEE Trans.* Inf. Theor., 14(3):515–516, September 1968.
- [HLL02] Shinn-Ying Ho, Chia-Cheng Liu, and Soundy Liu. Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm. Pattern Recognition Letters, 23(13):1495–1503, 2002.
- [Hol75] J.H. Holland. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, 1975.
 - [JG] Norbert Jankowski and Marek Grochowski. Comparison of instances seletion algorithms i. algorithms survey.
- [KE95] J Kennedy and R Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948. IEEE, 1995.
- [KL04] Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity search. In J. Ian Munro, editor, *SODA*, pages 798–807. SIAM, 2004.

- [KS98] J Kennedy and WM Spears. Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In *Evolutionary Computation Proceedings*, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, pages 78–83. IEEE, 1998.
- [KS04] Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor search for spatial network databases. In Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB '04, pages 840–851. VLDB Endowment, 2004.
- [LHTD02] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash. Discretization: An enabling technique. *Data Min. Knowl. Discov.*, 6(4):393–423, October 2002.
 - [LM98] Huan Liu and Hiroshi Motoda. Feature Extraction, Construction and Selection: A Data Mining Perspective. Kluwer Academic Publishers, Norwell, MA, USA, 1998.
 - [LM02] Huan Liu and Hiroshi Motoda. On issues of instance selection. Data Min. Knowl. Discov., 6(2):115–130, April 2002.
 - [MG95] Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selection, and the effects of noise. *Complex Systems*, 9:193–212, 1995.
 - [Muh91] Heinz Muhlenbein. Evolution in time and space the parallel genetic algorithm. In Foundations of Genetic Algorithms, pages 316–337. Morgan Kaufmann, 1991.
 - [SE98] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, pages 69–73. IEEE, 1998.
 - [Ska94] David B. Skalak. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In William W. Cohen and Haym Hirsh, editors, *ICML*, pages 293–301. Morgan Kaufmann, 1994.
 - [SLI⁺01] Basilio Sierra, Elena Lazkano, Iñaki Inza, Marisa Merino, Pedro Larrañaga, and Jorge Quiroga. Prototype selection and feature subset

- selection by estimation of distribution algorithms. a case study in the survival of cirrhotic patients treated with tips. In *Artificial Intelligence* in *Medicine*, pages 20–29. Springer, 2001.
- [SSBD14] S. Shalev-Shwartz and S. Ben-David. *Understanding Machine Lear-ning: From Theory to Algorithms*. Cambridge University Press, 2014.
 - [Tou02] Godfried T. Toussaint. Open problems in geometric methods for instance-based learning. In Jin Akiyama and Mikio Kano, editors, JCDCG, volume 2866 of Lecture Notes in Computer Science, pages 273–283. Springer, 2002.
 - [Vor08] Georges Voronoï. Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième mémoire, recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik, 134:198–287, 1908.
 - [Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. *Biometrics bulletin*, pages 80–83, 1945.
 - [Wil72] DR Wilson. Asymptotic properties of nearest neighbor rules using edited data. Institute of Electrical and Electronic Engineers Transactions on Systems, Man and Cybernetics, 2:408–421, 1972.
 - [Wil91] Gordon Wilfong. Nearest neighbor problems. In Proceedings of the Seventh Annual Symposium on Computational Geometry, SCG '91, pages 224–233, New York, NY, USA, 1991. ACM.
 - [WK88] D. Whitley and J. Kauth. *GENITOR: A Different Genetic Algorithm*. Technical report (Colorado State University. Department of Computer Science). Colorado State University, Department of Computer Science, 1988.
 - [WM97] D. Randall Wilson and Tony R. Martinez. Instance pruning techniques. In Proceedings of the Fourteenth International Conference on Machine Learning, ICML '97, pages 403–411, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.
 - [Yan08] Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.

Bibliografía 50

[ZS02] Hongbin Zhang and Guangyu Sun. Optimal reference subset selection for nearest neighbor classification by tabu search. *Pattern Recognition*, 35(7):1481–1490, 2002.

[Zuk10] A. V. Zukhba. Np-completeness of the problem of prototype selection in the nearest neighbor method. *Pattern Recognit. Image Anal.*, 20(4):484–494, December 2010.

Apéndice A

@nombreApendice

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue,

a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.