§6.1: Absolute Extrema Absolute Minimum and Maximum Let I be a function defined on some intoval. Let C be a number in the (i) the absolute maximum of f on the intoval if f(c) >f(x), the onthe intoval (2) the absolute minimum of f on the intoval if fly & flc) = flos, tx - We may refor to these collectively as absolute extremum alos mex relative abs mis Extrema Extreme Value Theorem abs Min A function, f, that is continuous on a closed metral [a,6] will have both an absolute max and an absolute Min, on the intered. Finding Absolute Extrema To find absolute extrema for a function, f, continuous on a closed interal labs (1) Find all critical H's For f in (a,6) 2) Evaluate of for all critical numbers in (a,6) (3) Evaluate of at the endpoints a, b of [a, b] (i.e. find f(a), f(b)), (4). The largest value found in Stp 2 or S is the absolute man for of on [a,b]

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader.®

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader® e.g. find the absolute extrema of the function

(A) $f(x) = 5x^{2/3} + 2x^{5/3}$ on [-2,1] First, find the derivative and get critical points: $f'(x) = \left(\frac{2}{3} \cdot 5\right) x''^3 + \left(\frac{5}{3} \cdot 2\right) x''^3 = \frac{10}{3} x''^3 \left(1 + x\right) = \frac{10(1 + x)}{3(x'')^3}$ So f'(x) is 0 or undefined when $x_c = \S - 1, 0\S$ Now we must evaluate at each x_c and ow endpoints \S $f(-2) = 5(-2)^{2/3} + 2(-2)^{5/3} \approx 1.587$ f(0) = 6 min abs. max g(0,0) f(1) = 5 + 2 = 7 max g(0,0)f(-1) = 5 - 2 = 3(B) $f(x) = 3x^4 - 4x^3 = 12x^2 + 2$ on $(-\infty, \infty)$ Take the derivative, find critical points $f'(x) = 12x^3 - 12x^2 - 24x = 12x(x^2 - x - 2) = 12x(x+1)(x-2)$ => X= \ 50,-1,2\ and we also must check endpoints ?

 $f''(x) = 12x^{3} - 12x^{2} - 24x^{2}$ $= 2x^{2} - 2x^{2}$ $= 2x^{2} - 2x^{2$

endres (must use limits since unbounded)

 $\begin{cases}
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} 3x^4 - 4x^3 - 12x^2 + 2 = \lim_{x \to \infty} 3x^4 = \infty & \text{So NO} \\
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} 3x^4 - 4x^3 - 12x^2 + 2 = \lim_{x \to \infty} 3x^4 = \infty & \text{absolute}
\end{cases}$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 3x^4 - 4x^3 - 12x^2 + 2 = \lim_{x \to -\infty} 3x^4 = \infty & \text{max} = \infty$

abs min @ (2,-30)

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader® Critical Point Theorem Suppose a function of is continuous on an interval I, and that I has exactly one critical number on the intoval I, located at X=C -If I has a relative max at X=C, then this relative max Is the absolute Max of fon the intoval - If I has a relative Minimum at K=C, then this relative Minimum is the absolute minimum of forthe interval T 86.2: Applications of Extrema Strategy for Solving Applied Extrema Problem - Sketch or are often helpful (i.e. diagrams)
- immediately find the variable to be minimized or Maximized - beware of domains (don't look for extrema in non-realistic ranges) - We look for critical points (numbers) in the maximized variable as a function of Some single, ofler voiable. Foints to find max/min

If the domain has open endpoints, apply the critical point theorem, if only one critical #

Software, evaluate all critical #'s and evaluate endpoint limits

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader® e.g. (a) Find two non-negative #'s, X and Y, for which 2x+ Y = 30 and Xy is maximized. What's Maximized? Set Xy2=M Constraint? 2x+y=30 => X=15- = Sub this value into M in order to get M as a tundron of I workable $M(y)=(15-\frac{1}{2})y^2=15y^2-\frac{1}{2}$; Now find critical #s $M'(y) = 30y - \frac{3}{2}y^2 = 0 \Rightarrow 3/(6-\frac{1}{2}) \Rightarrow 3y = 0 \text{ or } 10-\frac{1}{2} = 0$ => /e=30,20} What is Domain? Must have XZO, SO X=15- 220 => 2 = 15 => y=30, This means y=30 and y=0 are endpoints of ow domain: Now we check all endpoints and critical values: M(8) = 0 $M(70) = 15(70)^{7} - \frac{70^{3}}{2} = 6000 - \frac{8000}{2} = 7000$ $M(70) = 15(70)^{7} - \frac{70^{3}}{2} = 6000 - \frac{8000}{2} = 7000$ $M(30) = 15(30)^2 - 32^3 = 13500 - 13500 = 0$ So Y=20 moximizes M=Xy? What is X?, use ow constraint o

X=15-5=15-20=5

=) (5,20) Maximines M=X/2 given X=15-2 (ie 2x4y=30)

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader.®

(B	1- open 60	x is to be made. Zin proof me	by cathing a square corner from a tal gard Hen folding up the sides
	- what sidele maximize	ength (square)	Should be cut trante corners to
Pictures			What dow we maximize? Volume of box
		12-2x	HOO H=X; L=W=12-ZX
		W X	$= \sqrt{2(6-x)^2} = \times (2(6-x)^2)^2$ $= 4x (x^2 - 12x + 36)$
L			
_/	bu we mus Volume, (of maximize)(x), so face	adetrative.
	V1(x) = 4	(3x²-24x+36	$\sqrt{2} = Z(x^{2}-8x+ Z) = Z(x-6)(x-2) $
	=> Xc=	{ 2,6 }	can't have negative width of $2 \times 2 = 12 = 12 \times 2 $
_	Bomain 5 X	≥0, but also ?	$2x \leq (2 \Rightarrow) \chi \leq 6$
,		ust Check the $[2-2x)^2 = 4x(6)$	
	•		
	((z) = (1-2)($(6-2)^2 = 8(4^2)$	= (6.8 = 100 max
	V(6) = 4(6) (He colume of He box to 128m3
	-) X= ZIV	V MOXIMUZES,	te volume of report to 100m
0			

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader® (C) A comperound owner has 1400m of fencing. He wants to enclose a rectangular field bordering a river w/ wo fencing needed along the river. Let X represent the width of the field. 1400-ZX First we weed the length of the field: /= 1400-2x Kbw, we went to maximize Area, so we Need a function to represent the area of the field $A(x) = Lw = X(1400-2x) = 1400x-2x^2$ Lets Maximize ? AU(x) = 1400 - 4x = 4(350 - X)so one critical @ Value Xe=350 Is Hamax? f (349) = 4(350-349) > 0 => relative max ? f (351) = 4(350-351) < 0 Domain? X=0 to 1400-2x30 => X = 1400 = 700 Cheskendots

A(0) = 0 A(700) = 700 (1400 - 2-700) = 0

Thus X=350 m leads to the maximum area of A(350)=245,000 m²

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader® \$6.4: Implicit Difformation There are implicit functions and explicit functions ... For an explicit function, Y, as a variable of K, we know the formula for Y, directly in toms of X: e.g. y(x)=3x2+4x+7; y(x)=-x3+2 what if we don't know the formula for ", in toms of x" eg. What is x in the equation. Y5+8y3+6y2x2+2x73+6=0? Here y is said (se) in implicitly in terms of X"

Implicit Diffortiation:

To find \$ (= y'(x)) for an equation containing X and Y (1) Differentiate both sides with repeat to X, Keeping in Mind Y=Y(x) (i.e clain rule)

(2) By the power of algebra, solve for of

eg. (8x2-10xx+3x2=26; Find V/dx Take the derivative of both sides but are time we have a y tem we must multiply by dydx

=> 16x-10 (0y+x dx] + 6x [dx] = dx[26] =0

= (-10x + 6y) = 10y - 16x

 $\frac{1}{3} = \frac{10y - 16x}{6y - 10x} = \frac{-7(-5y + 8x)}{-2(-3y + 5x)} = \frac{8x - 5y}{5x - 3y}$

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader.® $e_{9}/45x - 85y = 6y^{3/2}$; Find f_{x} Again, take the derivative of both Sides: $4(3x^{-1/2})-8(2x^{-1/2})dx=6(3x^{-1/2})dx$ Tearange 9/2 4algebra? $\frac{2}{\sqrt{1}} = \frac{2}{\sqrt{1/2}} = \frac{2}{\sqrt{1/2}}$ eq. (exy = 5x+4y+2; Find d/dx Take $\int (x^2y)^2 dx + 2xy = 5 + 4 dx$ $= \frac{2}{x^2} + \frac{2}{4} = \frac{2}{4} = \frac{5 - 2xye}{4} = \frac{5$ e.g. //nx + 2 = x / 5/2 5 Find dy/dx take drivatives 1 + dx | nx = x = x = x | 2 dx + 3 x | 5/2 = x | 5/2 dx + 3 x | 5/2 = x | 5/2 dx + 3 x | 5/2 = x | 5/2 | 6/2 | $= \left[\ln x - \frac{5}{2} \right]_{X}^{3/2} = \frac{3}{2} \left[\frac{1}{2} \right]_{X}^{4/2} = \frac{3}{2} \left[\frac{1}{2} \right]_{X}^{4/2} = \frac{5}{2} \left[\frac{1}{2} \right]_{X}^{4/2} = \frac{3}{2} \left[\frac{1}{2} \right]_{X}^{4/2} = \frac{3}$ algebra $\frac{dy}{dx} = \frac{1}{2x} \left[\frac{3x^{3/2}}{5/2} - \frac{3}{2y} \right] = \frac{3x^{3/2}}{2y} \frac{5/2}{2y} = \frac{2y}{2y}$ $\frac{3x^{3/2}}{5/2} \frac{5/2}{2y} = \frac{3x^{3/2}}{2y} \frac{5/2}{2y} = \frac{2y}{2y}$ $\frac{3x^{3/2}}{5/2} \frac{5/2}{2y} = \frac{2y}{2y} = \frac{3x^{3/2}}{2y} \frac{5/2}{2y} = \frac{2y}{2y}$

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader® egg Can of tangest line at (1,1) for the equation 8x2-10xy+3y2=26 Previously we found the Slope of the tangent line, of = M $y'(x,y) = \frac{3x-5y}{5x-3y}$ Now Plug in x=1, y=1 to find the 5x-3y $M = \frac{1}{(1,1)} = \frac{8(1) - 5(1)}{5(1) - 3(1)} = \frac{8 - 5}{5 - 3} = \frac{3}{2}$ Now we point slope form to find the equation of the tangent line: Y-Y=M(X-X) $Y - 1 = \frac{3}{7}(X - 1) = \frac{3}{7}X - \frac{3}{7}$ = $y = \frac{3}{2}x - \frac{3}{2} + \frac{7}{2}$

 $=) \left(\frac{3}{2} \times -\frac{1}{2} \right)$

	S 6.5: Related Rates
-	-Here consider two functions (dependent variables) varying with time, i.e. $X(E)$ and $Y(E)$ (so $X'(E) = dX$ and $Y'(E) = dX$)
	- If x and y are constrained by an equation, then so too will their definatives (rates)
	First let's consider purely algebraic examples:
e.g.	For each assume X and X are functions of £ (X4), y4) Use implicit differentiation to find the
) Evaluate $d\xi$ when $X=3$, $Y=-1$ and $dX=2$ given the equation
	$Sy^3 + \chi^2 = 1$
	First take the derivative of both sides of the equation with respect
	$8(3y^2 dx) + 2x(dx) = 0 ; Now Solve for dx$
	$\frac{dx}{dt} = \frac{-2x(\frac{dx}{dt})}{(6-3)y^2}$ Now remember $\frac{dx}{dt} = \frac{y'k(x, y, \frac{dx}{dt})}{(y')}$ (y' is a function of x, y, and $\frac{dx}{dt}$)
1	Plug in each of these values:
	$y'(x=3, y=-1, dx=z) = \frac{-2(3)(2)}{(8-3)(-1)^2} = \frac{-4}{8} = \frac{1}{2}$

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe[®] Reader.[®]

	To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe [®] Reader. [®]
(8)	Evaluate at when $X=1$, $Y=0$, and $dX=5$ given the equation
	$y \ln x + xe^{y} = 1$
	First take the definative with respect to t of each sid of the equation (we need the product rule)
\Rightarrow	$Y(\frac{1}{x} \cdot \frac{dx}{dt}) + (1 \cdot \frac{dx}{dt})\ln x + x(e^{y} \frac{dy}{dt}) + (1 \cdot \frac{dx}{dt})e^{y} = 0$
Cattonge	$\frac{dy}{dt}\left(\ln x + xe^{y}\right) = \left(\frac{-y}{x} - e^{y}\right)\frac{dx}{dt}$
	Now Solve for of
	$\frac{dY}{dt} = \frac{(-Y - e^{\gamma}) \frac{dX}{dt}}{\ln X + X e^{\gamma}} = Again $
	Finally, plug in these values to find of at this given point
	$\gamma'(x=1, \gamma=0, dx=5) = \frac{(-0-e^{\circ})(5)}{(\ln 1) + (1e^{\circ})} = \frac{(0-1)5}{0+1(0)} = -5 = -6$
	No and the same to a del examples
	Kbw, we consider some real-world examples of the application of related rates.
	Solving Related Rates Problems
_	1. Identify all given quantities and Make a sketch if possible
	2. Write an equation relating the variables
0	3. Use implicit differentiation to solve for the unknown rate of charge in toms of the given quantities.

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe[®] Reader.[®]

e.g. A 50-ft ladder leans against a large building. The base of
e.g. A 50-ft ladder leans against a large building. The base of the ladder rests upon an oil slick, and it slips out at a rate of
occupant of the top of the ladder would full of the instant
3ft per Minute. Find the speed that an unfortunate occupant at the top of the laddo would fall at the instant the ladder's base is 30ft from the edge of the building.
3) / pt + distance of from 1 address / 11 address / 11
denoted yft. The speed the ladder is
and the height of the ladder against the building be denoted yft. The speed the ladder is falling, will be the rate of change of the height fix(t) = ght First we need an equation relating X x and 1/2 leventh of the ladder.
First we need an equation relating X, Y and the length of the ladder.
X, Y and the length of the ladder. (Pythagorus 7)
$= \sum_{x=0}^{\infty} \frac{1}{x^2} = \frac{1}{2} $
If (i.e. take the derivative of both sides of the egn wit. (.)
$2x dx + 2y dx = dx \left[x^2 \right] = 0$
Solve for dx $dx = -2x(\frac{dx}{dt}) = -x(\frac{dx}{dt})$
27
Now we need to consider the problem to find values for X, Y, and It
we are finding of when the ladder is 30ft from the base of the building
· X=30

	click here to get the latest version of Adobe® Reader®
	We also know the lose of the ladder is slipping at a rate of 3A pr minute
	$=$ $\frac{dx}{dt} = 3$ f/min
	Finally, we need y = height of the ladder. Use our first equation o
	$(x^{2}+y^{2}=50^{2})$ $30^{3}+y^{2}=50^{2}$
	$\Rightarrow y^2 = 50^2 \cdot 30^2 = 2500 - 900 = 1600$
	$\Rightarrow y = 40ft$
	Plug these in to the equation we found for $dx = y'(x, y, dx) = \frac{x}{y}(x, y, dx)$
	$y'(x=30, y=40, gx=3) = \frac{-36}{40}(s) = \frac{-3}{4}(s) = \frac{-9}{4} = -24 \text{ fl/min}$
	,
C.g	I a cone shaped iciche is dripping from the roof.
·	The sadius of the icide is decreasing at a sate
2	I come shaped icicle is dripping from the roof. The radius of the icicle is decreasing at a rate of 42cm per how; while the length is increasing by 1 cm/hr If the icide is currently 4cm in radius and 20cm long, is the volume of the icide increasing or decreasing and at what
	If the icide is currently 4cm in redius and 20cm long,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	is the volume of the icide increasing or decreasing and at what
	1 av .
	The Volume of a core is $V=3117h$, (askerdisplayed)
	Hore, T=T(t) and, h=h(t), and V=V(t) where t=timeInhis
	Use implicit differentiation to find of
	$\frac{dV}{dt} = \frac{1}{3} \pi \left[2r \cdot \frac{dr}{dt} \right] h + r^2 \left(1 \cdot \frac{dr}{dt} \right)$
0	
L.	

To hear and view this Pencast PDF on your computer,

To hear and view this Pencast PDF on your computer, click here to get the latest version of Adobe® Reader® Now the radius is decreasing by at 1/2 cm/hr and length is inseasing at 1 cm/hr

We are introssed in the rate of change when r=4 cm/h=20cm

The same introssed in the rate of change when r=4 cm/h=20cm Now all we have to do is plug in these values to find the change in volume at this time: dl = 1 1 2 (4 cm) 2 (1 cm/hr) [20cm) + (4cm) (1 cm/hr)] = 1 -64cm3/hr ~ 67.62 cm3/hr So volume is decreasing, (as expected)