Санкт-Петербургский Национальный Исследовательский Университет Информационных технологий, механики и оптики

Домашнее задание 3 Наблюдение за производительностью

Выполнил: Фисенко Максим Вячеславович Группа № К34211 Проверила: Казанова Полина Петровна

Цель работы:

Проанализировать производительность своего компьютера, а также изучить трафик в домашней сети.

Задачи:

- 1. Выявить слабые места в производительности компьютера.
- 2. С помощью сетевого анализатора изучить трафик в домашней сети.

Ход работы:

1. Наблюдение за производительностью компьютера

Первым делом перед тем, как нагружать компьютер, с помощью программы CrystalDiskInfo была зафиксированы изначальные данные о состоянии устройства при нескольких открытых вкладок браузера, а также работы программ Microsoft Word и Telegram. Как видно на рисунке 1, «статус здоровья» устройства составляет 92%, а температура равняется 36 градусам по Цельсию, что является довольно неплохими показателями.

Рисунок 1 – Изначальное состояние устройства

Затем было открыто примерно 20 новых вкладок с видео (YouTube) или прямыми трансляциями (Twitch), а также программы IntelliJ IDEA и VS Code. Как видно на рисунке 2, температура устройства после этого увеличилась, но всего на один градус. Связано это с тем, что на устройстве установлено 24 ГБ оперативной памяти. Однако охлаждение устройства стало работать значительно сильнее, что выражалось в большем шуме от устройства. Это говорит о том, что нагрузка на устройство всё же возросла, но пока охлаждение справляется со своей работой.

Good 37 °C C:						
WDC PC SN530 SDBPNPZ-256G-1014 : 256.0 GB						
Health Status	Firmware	21103900	Total Host Reads	24862 GB		
Good	Serial Number	2048EX472302	Total Host Writes	18953 GB		
92 %	Interface	NVM Express	Rotation Rate	(SSD)		
	Transfer Mode	PCIe 3.0 x4 PCIe 3.0 x4	Power On Count	4427 count		
Temperature	Drive Letter	C:	Power On Hours	1934 hours		
37 °C	Standard	NVM Express 1.4				
37 C	Features	S.M.A.R.T., TRIM, VolatileWriteCad	the			

Рисунок 2 – Состояние после открытия 20 вкладок и нескольких программ

Чтобы загрузить ЦПУ на 100%, было принято решение воспользоваться программой Aida64, в которой этот как раз и можно сделать. В программе был начат стресс-тест, который полностью загрузил процессор (рисунок 3).

Рисунок 3 – Полная загрузка процессора

После загрузки процессора на 100% температура устройства постепенно начала увеличиваться. Так, спустя примерно 10 минут она стала равняться 44 градусам (рисунок 4).

🔑 Cr	ystalDi	skinfo 9.4.	4 x64				_		×	
File	Edit	Function	Theme	Disk	Help	Language				
44	ood F°C C:									
	WDC PC SN530 SDBPNPZ-256G-1014 : 256.0 GB									
Hea	ılth Sta	tus		Fir	mware	21103900	Total Host Reads		24863 GB	
G	Good 92 %		9	Serial N	umber	2048EX472302	Total Host Writes		18954 GB	
				In	terface	NVM Express	Rotation Rate		(SSD)	
			T	ransfer	Mode	PCIe 3.0 x4 PCIe 3.0 x4	Power On Count	44	27 count	
Tem	nperatu	ire		Drive	Letter	C:	Power On Hours	19	34 hours	
	44 °C		Standard			NVM Express 1.4				
4				Fe	atures	S.M.A.R.T., TRIM, VolatileWriteCad	the			

Рисунок 4 — Максимальная достигнутая температура процессора

Таким образом, можно с уверенностью сказать, что компьютер, на котором выполнялось домашнее задание, имеет достаточные комплектующие для того, чтобы работать с нормальной температурой при большом количестве открытых вкладок и приложений. Температура начала значительно повышаться только тогда, когда процессор становился загруженным на 100%, но даже тогда устройство работало вполне быстро и на нём можно было делать всё, что было необходимо, в том числе смотреть фильмы и видео.

2. Наблюдение за сетевым трафиком с помощью сетевого анализатора

На данном этапе было необходимо проанализировать сетевой трафик на устройстве с помощью сетевого анализатора. В качестве сетевого анализатора было выбрано ПО Wireshark, так как до этого уже был опыт работы с данной программой.

После начала захвата пакетов, первое, что бросается в глаза, - ARP-запрос и ARP-ответ (рисунок 5), использующиеся для определения MAC-адреса устройства, зная его IP-адрес в локальной сети. В первом пакете от устройства с IP-адресом 192.168.111 (интерфейс Ethernet моего устройства) пытается узнать MAC-адрес устройства 192.168.0.1 (это роутер). Во втором пакете роутер сообщает свой MAC-адрес.

192.100.0.111	20.44.229.112	24 [ICE VECLAURHIREZZIOU] 00253 → 443 [LIN' HCV
CompalInform_f0:39:4b	TpLinkTechno_32:47: ARP	42 Who has 192.168.0.1? Tell 192.168.0.111
TpLinkTechno_32:47:26	CompalInform_f0:39: ARP	60 192.168.0.1 is at 18:d6:c7:32:47:26
400 400 0 444	00 44 000 440 TOD	E4 [TOD D 1 1] COPOD 443 [ETH ADD

Рисунок 5 – ARP-запрос и ARP-ответ

Далее можно заметить и DNS-пакеты. Так, когда в адресную строку браузера было вбито «www.google.com», на DNS-сервер с адресом 10.59.3.19 был отправлен запрос с просьбой сообщить IP-адрес для данного доменного имени, а после был получен ответ с необходимым IP-адресом (рисунки 6, 7).

320 50.617029	192.168.0.111	10.59.3.19	DNS	74 Standard query 0x953e A www.google.com
321 50.617374	192.168.0.111	10.59.3.19	DNS	74 Standard query 0x7742 HTTPS www.google.com

Рисунок 6 – Обращение к DNS-серверу

323 50.618479	10.59.3.19	192.168.0.111	DNS	90 Standard query response 0x953e A www.google.com A 142.250.201.164
324 50.618479	10.59.3.19	192.168.0.111	DNS	99 Standard query response 0x7742 HTTPS www.google.com HTTPS

Рисунок 7 – Ответ от DNS-сервера

Основную же часть составляли TCP- и TLSv1.3-пакеты.

Вывод:

В ходе выполнения домашнего задания было произведено наблюдение за производительностью домашнего компьютера. Было выяснено, что устройство является достаточно производительным, однако большое количество открытых программ и вкладок в браузере увеличивает нагрузку на процессор, в результате чего система охлаждения работает с усиленной мощностью. Также с помощью программы Wireshark был произведен анализ сетевого трафика устройства, в том числе были перехвачены и рассмотрены пакеты, отправленные по протоколам ARP и DNS.