Lagrangian density
$-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\gamma}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\gamma}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\gamma} \partial_{\gamma}h_{\alpha$
$\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\beta} h^{\chi}_{\chi} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}^{\beta} + \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} -$
$\frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{11}{2} a_1 \partial^{\alpha} \Gamma^{\chi\delta}{}_{\delta} \partial_{\beta} \Gamma_{\chi\alpha}{}^{\beta} + \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\chi\alpha}{}^{\beta} \partial_{\beta} \Gamma^{\chi\delta}{}_{\delta} -$
$19 a_1 \partial^{\alpha} \Gamma^{\chi \delta}_{\chi} \partial_{\beta} \Gamma_{\delta \alpha}^{\beta} + \frac{1}{4} a_0 h^{\alpha \beta} \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} - \frac{1}{8} a_0 \partial_{\beta} h^{\chi}_{\chi} \partial^{\beta} h^{\alpha}_{\alpha} +$
$\frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\chi} h_{\beta}^{\chi} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\chi} h_{\beta}^{\chi} + \frac{37}{4} a_1 \partial_{\beta} \partial_{\alpha} h^{\delta}_{\delta} \partial_{\chi} \Gamma^{\alpha\beta\chi} +$
$\frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\chi} \partial_{\alpha} h^{\delta}_{\delta} - \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} \partial_{\beta} h^{\chi}_{\alpha} + \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial_{\beta} h^{\beta\chi} +$
$\frac{1}{4} a_0 h^{\alpha\beta} \partial_{\chi} \partial^{\chi} h_{\alpha\beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{1}{8} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} +$
$\frac{1}{2} a_0 h_{\beta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\delta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} +$
$\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta}^{\ \delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha}^{\beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta\delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha}^{\beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta\delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha}^{\beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta\beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta\beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\alpha} \partial^{\chi} \Gamma_{\alpha}^{\gamma} \partial^{\chi} \Gamma_$
$\frac{3}{4} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha}_{ \alpha}{}^{\beta} - \frac{11}{2} a_1 \partial_{\beta} \Gamma^{ \delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \alpha} + \frac{19}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{ \chi \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \alpha} +$
$\frac{11}{2} a_1 \partial_{\chi} \Gamma_{\beta}^{\ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} - \frac{1}{2} a_1 \partial_{\chi} \Gamma^{\delta}_{\ \beta\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} - \frac{37}{4} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} +$
$a_{1} \partial_{\alpha} \Gamma_{\chi \delta}^{\delta} \partial^{\chi} \Gamma_{\beta}^{\alpha\beta} - a_{1} \partial_{\chi} \Gamma_{\alpha \delta}^{\delta} \partial^{\chi} \Gamma_{\beta}^{\alpha\beta} - \frac{9}{2} a_{1} \partial_{\chi} \partial_{\beta} h_{\delta}^{\delta} \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} +$
$\frac{17}{8} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\ \delta} \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} - \frac{1}{2} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\beta}^{\ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\chi}^{\ \delta} -$
$\frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha \chi}^{\delta} + \frac{19}{2} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{\delta} + a_1 \partial^{\chi} \Gamma_{\alpha}^{\alpha\beta} \partial_{\delta} \Gamma_{\beta \chi}^{\delta} +$
$\frac{1}{2} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma_{\chi\beta}{}^{\delta} + \frac{1}{2} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma_{\chi\beta}{}^{\delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi}_{\alpha} \partial_{\delta} \Gamma_{\chi}{}^{\delta}_{\alpha} +$ $\frac{1}{2} a_2 \partial^{\chi} \Gamma^{\beta}_{\alpha}{}^{\beta} \partial_{\alpha} \Gamma^{\delta\alpha}_{\chi\beta}{}^{\delta} + \frac{1}{2} a_2 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha}{}^{\delta} \partial_{\alpha} \Gamma^{\delta\alpha}_{\chi\beta}{}^{\delta} \partial_{\alpha} \Gamma^{\delta\alpha}_{\chi\alpha}{}^{\delta} +$
$\frac{1}{2} a_1 \partial^{\chi} \Gamma_{\beta \alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta \alpha} + a_1 \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\chi \delta} +$ $2 - \alpha \beta 2 - \gamma \delta \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\lambda \beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\lambda \delta} +$
$a_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma^{\chi\delta}_{\chi} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\beta}{}^{\delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\alpha} \partial_{\alpha} h_{\beta}{}^{\delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\alpha} \partial_{\alpha} h_{\beta}{}^{\delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\alpha} \partial_{\alpha} h_{\beta}{}^{\delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\gamma} \partial_{\alpha} \partial_{\alpha} h_{\beta}{}^{\delta} - \frac{37}$
$\frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\chi}^{\delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\delta} + \frac{3}{8} a_1 \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\delta} +$
$\frac{37}{8} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} -$
$\frac{3}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\ \delta} + \frac{13}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\ \delta} - \frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\chi} h_{\alpha}^{\ \delta} -$
$\frac{43}{8} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} + \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\ \delta} +$
$\frac{77}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} - \frac{29}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + a_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} -$
$a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{ \alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} - \frac{1}{2} a_1 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}_{ \alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} +$
$\frac{37}{4} a_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \partial^\delta h_{\alpha\beta} + \frac{17}{8} a_1 \partial_\chi \partial^\chi h^{\alpha\beta} \partial_\delta \partial^\delta h_{\alpha\beta} + \frac{3}{4} a_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \partial^\delta h_{\alpha\chi} +$
$\frac{1}{4} a_1 \partial_\alpha \partial^\chi h^{\alpha\beta} \partial_\delta \partial^\delta h_{\beta\chi} - \frac{3}{4} a_1 \partial^\chi \Gamma^\alpha_{\ \alpha}{}^\beta \partial_\delta \partial^\delta h_{\beta\chi} - \frac{37}{4} a_1 \partial^\chi \Gamma^{\alpha\beta}_{\ \alpha} \partial_\delta \partial^\delta h_{\beta\chi} -$
$\frac{73}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} + \frac{17}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - a_1 \partial_{\beta} \Gamma^{\alpha}_{\ \alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h^{\chi}_{\ \chi} +$
$a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} - \frac{1}{2} a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} + \frac{1}{2} a_1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$
$a_1 \partial_\alpha \Gamma_{\beta \delta \chi} \partial^\delta \Gamma^{\alpha \beta \chi} + a_1 \partial_\alpha \Gamma_{\chi \beta \delta} \partial^\delta \Gamma^{\alpha \beta \chi} + \frac{1}{2} a_1 \partial_\alpha \Gamma_{\chi \delta \beta} \partial^\delta \Gamma^{\alpha \beta \chi} +$
$a_1 \partial_{\alpha} \Gamma_{\delta\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} + a_1 \partial_{\alpha} \Gamma_{\delta\chi\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_2 \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_3 \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_{\beta} \Gamma_{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_{\beta} \Gamma^{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_{\beta} \Gamma^{\alpha\delta\chi} \partial^{\delta} \Gamma^{\alpha\delta\chi} - $
$\frac{1}{2} a_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + a_1 \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$a_1 \partial_{\delta} \Gamma_{\alpha\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - a_1 \partial_{\delta} \Gamma_{\alpha\chi\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_{\delta} \Gamma_{\beta\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_2 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_3 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_4 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_5 \partial_{\delta} \Gamma_{\alpha\chi\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} \partial_{\delta} \Gamma_{\alpha\chi\beta} \partial^{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma_{\alpha\gamma} \partial^{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma_{\alpha\gamma} \partial^{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta}$
$\frac{1}{2} a_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} a_1 \partial_{\delta} \partial_{\beta} h_{\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{3}{2} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} -$
$\frac{11}{2} a_1 \partial_{\beta} \Gamma_{\delta\alpha}^{\ \beta} \partial^{\delta} \Gamma^{\alpha \chi}_{\ \chi} - \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\delta\alpha}^{\ \beta} \partial^{\delta} \Gamma_{\beta \ \chi}^{\ \chi} + \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\delta\alpha}^{\ \beta} \partial^{\delta} \Gamma^{\chi \alpha}_{\ \chi} -$
$\frac{3}{4} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta}$

${\mathcal T}_{1^{ ext{-}}lpha}^{\#1}$	0	0	0	0	0	0	0	0	0	0
$\Delta_{1^{-}}^{\#6}\alpha$	0	0	0	0	$\frac{50 \sqrt{\frac{2}{3}} a_1 k^2}{a_0^2 - 33 a_0 a_1 k^2}$	$-\frac{a_0-28a_1k^2}{6a_0^2-198a_0a_1k^2}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	0
$\Delta_{1^{-}\alpha}^{\#5}$	0	0	0	0	$\frac{10a_1 k^2 (-11a_0 + 118a_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33a_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 a_1 k^2 + 2560 a_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 a_1 k^2)}$	$\frac{\sqrt{\frac{5}{2}} (a_0-82 a_1 k^2)}{6 a_0 (a_0-33 a_1 k^2)}$	$\frac{17a_0^2 - 236a_0a_1 k^2 + 1280a_1^2 k^4}{6a_0^2 (a_0 - 33a_1 k^2)}$	$-\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	0
$\Delta_{1^-}^{\#4}{}_{\alpha}$	0	0	0	0	$-\frac{5\sqrt{\frac{10}{3}}a_1k^2}{a_0^2-33a_0a_1k^2}$	$\frac{\sqrt{5} (5a_0 - 164a_1 k^2)}{12 a_0 (a_0 - 33 a_1 k^2)}$	$\frac{1}{12a_0-396a_1k^2}$	$\frac{\sqrt{\frac{5}{2}} (a_0-82 a_1 k^2)}{6 a_0 (a_0-33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	0
$\Delta_{1^-}^{\#3}{}_{\alpha}$	0	0	0	0	$\frac{5\sqrt{\frac{2}{3}}a_1k^2(7a_0-236a_1k^2)}{a_0^2(a_0-33a_1k^2)}$	$\frac{-19a_0^2 + 472a_0a_1k^2 + 5120a_1^2k^4}{12a_0^2(a_0 - 33a_1k^2)}$	$\frac{\sqrt{5} (5 a_0 - 164 a_1 k^2)}{12 a_0 (a_0 - 33 a_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 a_1 k^2 + 2560 a_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 a_1 k^2)}$	$-\frac{a_0 - 28a_1k^2}{6a_0^2 - 198a_0a_1k^2}$	0
$\Delta_{1^{-}lpha}^{\#2}$	0	0	0	<u>2 م/2</u> ه	$\frac{2(a_0^2 - 30a_0a_1k^2 + 401a_1^2k^4)}{a_0^2(a_0 - 33a_1k^2)}$	$\frac{5\sqrt{\frac{2}{3}}a_1k^2(7a_0-236a_1k^2)}{a_0^2(a_0-33a_1k^2)}$	$-\frac{5\sqrt{\frac{10}{3}}a_1k^2}{a_0^{2-33}a_0a_1k^2}$	$\frac{10 a_1 k^2 (-11 a_0 + 118 a_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33 a_1 k^2)}$	$50 \sqrt{\frac{2}{3}} a_1 k^2$ $a_0^2 - 33 a_0 a_1 k^2$	0
$\Delta_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0 0		0
$\Delta_{1}^{\#3}_{\alpha\beta}$	0	$\frac{40\sqrt{2}a_1k^2}{a_0^2-29a_0a_1k^2}$	$\frac{4}{a_0 - 29 a_1 k^2}$	0	0	0	0	0	0	0
	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2 \left(a_0^2 - 14 a_0 a_1 k^2 - 35 a_1^2 k^4\right)}{a_0^2 \left(a_0 - 29 a_1 k^2\right)}$	$\frac{40\sqrt{2} a_1 k^2}{a_0^{2-29} a_0 a_1 k^2}$	0	0	0	0	0	0	0
$\Delta_1^{\#1}_+ _{\alpha\beta}$	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$\Delta_{1}^{\#1} +^{lphaeta}$	$\Delta_{1+}^{\#2} +^{\alpha \beta}$	$\Delta_{1}^{\#3} + ^{\alpha\beta}$	$\Delta_1^{\#_1} \dagger^\alpha$	$\Delta_1^{\#2} +^{\alpha}$	$\Delta_1^{\#3} +^{lpha}$	$\Delta_{1}^{\#4} +^{lpha}$	$\Delta_1^{\#5} +^{lpha}$	$\Delta_1^{\#6} \dagger^{lpha}$	${\mathcal T}_{1}^{\#1} {\dagger}^{\alpha}$

Г	$\Gamma_{3^{-} \alpha\beta\chi}^{\#1} + \alpha^{\beta\chi} \frac{1}{2} (-a_0 - 7 a_1 k^2)$						$\Delta_{3^{-1} \alpha\beta\chi}^{\#1} + \alpha\beta\chi - \frac{2}{a_0 + 7 a_1 k^2}$				
	$h_{1}^{\#1}$	0	0	0	0	0	0	0	0	0	0
	$\Gamma_{1^{-}\alpha}^{\#6}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} (-a_0 + 20 a_1 k^2)$	$\left -\frac{1}{6} \sqrt{5} \left(a_0 - 5 a_1 k^2 \right) \right $	$\frac{a_0+40a_1k^2}{6\sqrt{2}}$	$\frac{5}{12} (a_0 - 17 a_1 k^2)$	0
	$\Gamma_{1^{-}\alpha}^{\#5}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} \left(a_0 + 16 a_1 k^2 \right)$	ع <u>0</u> 7	$\frac{a_0 + 40a_1 k^2}{6 \sqrt{2}}$	0
	$\Gamma_{1}^{\#4}$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	0	$\frac{1}{6}\sqrt{5} (a_0 - 8a_1k^2)$	$\frac{1}{3}(a_0 + 7a_1k^2)$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16a_1k^2)$	$-\frac{1}{6} \sqrt{5} (a_0 - 5 a_1 k^2)$	0
	$\Gamma_{1^{-}\alpha}^{\#3}$	0	0	0	$\frac{5}{2}\sqrt{3}a_1k^2$	0	- <u>40</u>	$\frac{1}{6}\sqrt{5}(a_0-8a_1k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} (-a_0 + 20 a_1 k^2)$	0
	$\Gamma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
	$\Gamma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} a_1 k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	0
	$\Gamma_{1}^{\#3}{}_{\alpha\beta}$	$5a_1k^2$	0	$\frac{1}{4} (a_0 - 29 a_1 k^2)$	0	0	0	0	0	0	0
	$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
	$\Gamma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{4} \left(-a_0 - 15 a_1 k^2 \right)$	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0
		$\Gamma_1^{#1} + \alpha \beta$	$\Gamma_{1}^{#2} + \alpha \beta$	$\Gamma_1^{#3} + \alpha \beta$	$\lceil r_1^{\#1} +^{\alpha} \rceil$	$\Gamma_{1}^{#2} +^{\alpha}$	$\Gamma_{1}^{#3} +^{\alpha}$	$\Gamma_1^{\#4} + ^{lpha}$	$\Gamma_{1}^{\#5} +^{lpha}$	$\Gamma_{1^{\text{-}}}^{\#6} +^{\alpha}$	$h_{1}^{\#1} +^{\alpha}$

Γ₀^{#3} †

Γ₀^{#4} †

 $h_{0}^{\#2}$ †

 $10 \sqrt{\frac{2}{3}} a_1 k^2$

 $-\frac{a_0}{2\sqrt{2}} - \frac{3a_0 + 46a_1k^2}{6\sqrt{2}}$

0

Source constraints	SO(3) irreps	$T_0^{\#2} == 0$	$\Delta_{0}^{\#3} + 2 \Delta_{0}^{\#4} + 3 \Delta_{0}^{\#2} = 0$	$\mathcal{T}_{1}^{\#1}{}^{\alpha} == 0$	$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$	Total #:						
$\Delta_{2^{-}}^{#1} \alpha \beta_{\chi} \Delta_{2^{-}}^{#2} \alpha \beta_{\chi}$		0		0	C)	0		0	$\frac{4}{a_0-5a_1k^2}$		
$\Delta_{2^{-}}^{\#1}\alpha\beta\chi$		0		0 0		0		$\frac{4}{a_0 - a_1 k^2}$	0			
${\cal T}^{\#1}_{2^+lphaeta}$		$-\frac{44\bar{\imath}\sqrt{2}a_1k}{a_0^2}$	7 - 2 : 00	$\sqrt{3} a_0^2$	$80 i \sqrt{\frac{2}{3}} a_1 k$	ı	$-\frac{8(a_0+11a_1k^2)}{a_2^2 b_2^2}$	v 07	0	0		
$\Delta_{2}^{\#3}$		$-\frac{80 a_1 k^2}{\sqrt{3} a_0^2}$	2, 5, 5	$\frac{2 \sqrt{2} a_1 k^2}{3 a_0^2}$	4(3a0-a1k ²)	3 a 0 ²	$80 i \sqrt{\frac{2}{3}} a_1 k$	a_0^2	0	0		
$\Delta_{2}^{\#2}$		$-\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_2^2}$	7,2, 2,2,	$-\frac{2(3a_0+a_1k^-)}{3a_0^2}$	$2\sqrt{2} a_1 k^2$	3 a 0 2	$\frac{80 i a_1 k}{\sqrt{3} a_0 2}$	0 # 0	0	0		
$\Delta_{2}^{\#1}{}_{\alpha\beta}$		$\frac{4(a_0-11a_1k^2)}{a_0^2}$	1	$-\frac{40\sqrt{3}}{a_0^2}$			$44 i \sqrt{2} a_1 k$		0	0		
		$\Delta_{2}^{#1} + \alpha \beta$		$\Delta_2^{#2} + \alpha^{\beta}$	ν#3 +αβ	- + ²	$\mathcal{T}_{2}^{\#1} +^{\alpha\beta}$		$\Delta_{2}^{#1} +^{\alpha eta \chi}$	$\Delta_{2}^{#2} +^{\alpha\beta\chi}$		
		Γ# ₀	4 +				h ₀ ^{#1}		h	#2) ⁺	Γ ₀ -	

 $-\frac{25 \, i \, a_1 \, k^3}{2 \, \sqrt{2}}$

 $-\frac{10 i a_1 k^3}{\sqrt{3}}$

 $5\,i\,\sqrt{\tfrac{2}{3}}\,a_1\,k^3$

 $\left| \frac{1}{4} k^2 \left(a_0 + 25 a_1 k^2 \right) \right| 0$

 $0 \frac{1}{2} (-a_0 + a_1 k^2)$

 $-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$

 $\frac{1}{6} (3 a_0 + 23 a_1 k^2)$

 $-5 i \sqrt{\frac{2}{3}} a_1 k^3$

0

8 3 1 1 #

 $0 \\ \frac{1}{4} (a_0 - 5 a_1 k^2)$

$\Delta_{0}^{\#1}$	0	0	0	0	0	0	$-\frac{2}{a_0 - a_1 k^2}$
$\mathcal{T}_{0}^{\#2}$	0	0	0	0	0	0	0
${\mathcal T}_{0}^{\#1}$	$-\frac{50i\sqrt{2}a_1k}{a_0^2}$	$\frac{20i\sqrt{3}a_1k}{a_0^2}$	$-\frac{20ia_1k}{\sqrt{3}a_0^2}$	$-\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_{0}^{#4}$	$-\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$-\frac{a_0-23a_1k^2}{2\sqrt{2}a_0^2}$	$-\frac{3a_0+23a_1k^2}{6\sqrt{2}a_0^2}$	$\frac{3a_0 - 23a_1 k^2}{6a_0^2}$	$\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	0	0
$\Delta_{0}^{#3}$	$\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{9a_0+23a_1k^2}{12a_0^2}$	$-\frac{3a_0 + 23a_1 k^2}{6 \sqrt{2} a_0^2}$	$\frac{20ia_1k}{\sqrt{3}a_0^2}$	0	0
$\Delta_{0}^{\#2}$	$\frac{10\sqrt{6}a_1k^2}{a_0^2}$	$-\frac{3(a_0+23a_1k^2)}{4a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{a_0 - 23 a_1 k^2}{2 \sqrt{2} a_0^2}$	$\frac{20i\sqrt{3}a_1k}{a_0^2}$	0	0
$\Delta_{0}^{\#1}$	$-\frac{2(a_0+25a_1k^2)}{a_0^2}$		$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$\frac{50i\sqrt{2}a_1k}{a_0^2}$	0	0
	$\Delta_{0}^{#1}$ †	Δ#2 +	Δ#3+	$\Delta_{0}^{\#4}$ †	${\cal T}_{0}^{\#1}$ †	$\mathcal{T}_{0}^{\#2}$ †	$\Delta_{0}^{\#1}$ †