Einführung in Kryptographie und Datensicherheit Übung 2

Tilman Bender Matrikelnummer: 108011247244 $29.\ {\rm Oktober}\ 2011$

Aufgabe 3

a)

Siehe 1

Tabelle 1: Stubstitutionstabelle für $k=10\,$

Klartext	Position	Neue Position	Geheimtext		
a	0	$0+10 \equiv 10 \mod 26$	K		
b	1	$1+10 \equiv 11 \mod 26$	L		
С	2	$2+10 \equiv 12 \mod 26$	M		
d	3	$3+10 \equiv 13 \mod 26$	N		
e	4	$4+10 \equiv 14 \mod 26$	О		
f	5	$5+10 \equiv 15 \mod 26$	Р		
g	6	$6+10 \equiv 16 \mod 26$	Q		
h	7	$7 + 10 \equiv 17 \mod 26$	R		
i	8	$8+10 \equiv 18 \mod 26$	S		
j	9	$9+10 \equiv 19 \mod 26$	Т		
k	10	$10 + 10 \equiv 20 \mod 26$	U		
1	11	$11 + 10 \equiv 21 \mod 26$	V		
m	12	$12 + 10 \equiv 22 \mod 26$	W		
n	13	$13 + 10 \equiv 23 \mod 26$	X		
О	14	$14 + 10 \equiv 24 \mod 26$	Y		
p	15	$15 + 10 \equiv 25 \mod 26$	Z		
q	16	$16 + 10 \equiv 0 \mod 26$	A		
r	17	$17 + 10 \equiv 1 \mod 26$	В		
s	18	$18 + 10 \equiv 2 \mod 26$	С		
t	19	$19 + 10 \equiv 3 \mod 26$	D		
u	20	$20 + 10 \equiv 4 \mod 26$	E		
V	21	$21 + 10 \equiv 5 \mod 26$	F		
W	22	$22 + 10 \equiv 6 \mod 26$	G		
X	23	$23 + 10 \equiv 7 \mod 26$	Н		
У	24	$24 + 10 \equiv 8 \mod 26$	I		
Z	25	$25 + 10 \equiv 9 \mod 26$	J		

b)

Siehe 2.

Tabelle 2: Shift-Chiffre mit k=10 angewendet

							c							
Ν	K	D	О	X	С	S	M	R	О	В	R	О	S	D

c)

Die Shift-Chiffre ist lediglich ein Spezialfall der Substitionschiffre bei dem die Substitutionsregeln nach einem bestimmten Schema generiert wurden. Damit ist die Shift-Chiffre auch für Frequenzanalyse anfällig. Streng genommen könnte man sogar behaupten, dass die Shift-Chiffre bei großen Alphabeten etwas unsicherer ist, da ein Angreifer der die Substitutionsregeln für mehrere im Alphabet aufeinander folgende Buchstaben kennt daraus auf die allgemeine Regel (den Shift-Offset) schließen könnte.

\mathbf{d}

Ja das erhöhen des Offsets mit jedem Buchstaben erhöht die Sicherheit gegenüber der Frequenzanalyse. Diese beruht darauf, dass zwei Vorkommen eines Buchstabens des Klartext-Alphabets immer mit dem selben Buchstaben des Chiffre-Alphabets ersetzt werden und so die statistischen Eigenschafen des Klartexts auf den Chiffretext übergehen. Durch das Verschieben des Offsets erhält der Chiffre-Text eine andere Häufigkeitsverteilung als der Klartext.