

Lecture 7 Vector Spaces and Subspaces

Dr. Ralph Chikhany

If M and N $\in \mathbb{R}^{SrS}$. MN = N. Then M = I (X)

- S=1. m. $n \in \mathbb{R}$ m. $n = n \rightarrow m=1$ this is wrong because n can be zero.

- General S, If N = all zero matrix. Hen M can be any matrix

If N have an inverse matrix N^{-1} $M \underbrace{N \underbrace{N^{-1}}_{I}}_{I} = \underbrace{N \underbrace{N^{-1}}_{I}}_{I} \Rightarrow M = I.$

what will hoppen if N don't have an inverse?

what is all possible M. MN = N MN - N = 0 $MN - I \cdot N = (M - I) \cdot N$

X. N = 0 and what is all X Today!

Vector Subspace!

Strang Sections 3.1 – Spaces of Vectors

Course notes adapted from *Introduction to Linear Algebra* by Strang (5th ed), N. Hammoud's NYU lecture notes, and *Interactive Linear Algebra* by Margalit and Rabinoff, in addition to our text

Clased in operation -> all the linear combination! Strategie V is a vector space if Vi. Vn eV

then Civi + Convin eV

A vector space V defined over a field \mathbb{F} (\mathbb{R} in our case) consists of a set on which addition and scalar multiplication are defined so that for each pair of elements v and w in V, there is a unique element $v + w \in V$, and for each element $c \in \mathbb{R}$ and $v \in V$, there is a unique element $cv \in V$, s.t. the following conditions hold:

(VS1) For all
$$v, w \in V$$
, $v + w = w + v$. Communicative (VS2) For all $u, v, w \in V$, $(u + v) + w = u + (v + w)$. As a sociative (VS3) There exists an element in V denoted by 0 , s.t. $v + 0 = v$ for each $v \in V$. (VS4) For each element $v \in V$, there exists an element $w \in V$, s.t. $v + w = 0$.

We see the element $v \in V$ is a vector space $v \in V$.

A vector space V defined over a field \mathbb{F} (\mathbb{R} in our case) consists of a set on which addition and scalar multiplication are defined so that for each pair of elements v and w in V, there is a unique element $v + w \in V$, and for each element $c \in \mathbb{R}$ and $v \in V$, there is a unique element $c \in V$, s.t. the following conditions hold:

- (VS5) For each element $v \in V$, 1v = v.
- (VS6) For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (cd)v = c(dv).
- (VS7) For each element $c \in \mathbb{R}$, and each pair $v, w \in V$, c(v+w) = cv + cw.
- (VS8) For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (c+d)v = cv + dv.

distributive law

(VS1) For all
$$v, w \in V$$
, $v + w = w + v$.

(VS2) For all
$$u, v, w \in V$$
, $(u + v) + w = u + (v + w)$.

(VS3) There exists an element in V denoted by 0, s.t.
$$v + 0 = v$$
 for each $v \in V$.

(VS4) For each element
$$v \in V$$
, there exists an element $w \in V$, s.t. $v + w = 0$.

(VS5) For each element
$$v \in V$$
, $1v = v$.

(VS6) For each pair of elements
$$c, d \in \mathbb{R}$$
, and each $v \in V$, $(cd)v = c(dv)$.

(VS7) For each element
$$c \in \mathbb{R}$$
, and each pair $v, w \in V$, $c(v + w) = cv + cw$.

(VS8) For each pair of elements
$$c, d \in \mathbb{R}$$
, and each $v \in V$, $(c+d)v = cv + dv$.

Note: All elements in the field \mathbb{R} are called scalars and all elements in the vector space V are called vectors.

Let S be a non-empty set, and let $\mathcal{F}(S,\mathbb{R})$ denote the set of all functions from S to \mathbb{R} . Two functions $f, g \in \mathcal{F}$ are called equal if f(s) = g(s) for all $s \in S$.

all functions. will provide a vertor space.

Show that the set
$$\mathcal{F}(S,\mathbb{R})$$
 is a vector space with the operations of addition and scalar multiplication defined for $f,g\in\mathcal{F}$ and $c\in\mathbb{R}$ by
$$\underbrace{(f+g)(s)}_{f(s)}=f(s)+g(s) \quad \text{and} \quad \underbrace{(cf)(s)}_{f(s)}=c[f(s)]$$

for all $s \in S$. Function $A \leftarrow \text{function } g$

vs1 f+g = g+ f

127

scalar c × function f

$$\frac{VS^{2}}{(f+8)+k} = \frac{g+f}{(f+8)(s)} = \frac{f(s)+g}{(f+8)(s)}$$

Similar !!

Zero function.

$$f+0=f$$
. for any f , $O(S)=0$, $(f+0)(S)=f(G)+O(G)$

$$= +(a) + 0(i)$$

$$= +(a) + 0(i)$$

$$\frac{VS}{4}$$
 there exist & s.t. $f + g = 0$

there exist g s.t.
$$f+g=0$$
:

define my g for any s. $f(s)=-f(s)$, $(f+g)(s)=f(s)+g(s)$

$$=f(s)+b=f(s)$$

$$=f(s)+b=f(s)$$

$$=f(s)+b=f(s)$$

$$=f(s)+b=f(s)$$

$$=f(s)+b=f(s)$$

Let S be a non-empty set, and let $\mathcal{F}(S,\mathbb{R})$ denote the set of all functions from

Let S be a non-empty set, and let
$$\mathcal{F}(S,\mathbb{R})$$
 denote the set of all functions from S to \mathbb{R} . Two functions $f,g\in\mathcal{F}$ are called equal if $f(s)=g(s)$ for all $s\in S$.

Show that the set $\mathcal{F}(S,\mathbb{R})$ is a vector space with the operations of addition and scalar multiplication defined for $f, g \in \mathcal{F}$ and $c \in \mathbb{R}$ by

alar multiplication defined for
$$f,g\in\mathcal{F}$$
 and $c\in\mathbb{R}$ by $(f+g)(s)=f(s)+g(s)$ and $(cf)(s)=c[f(s)]$

for all
$$s \in S$$
.

Vector

Frame 1) $S \cup A = 0$ 3 is a vector space A is

is not a vertor space!

$$v \mid A v = b \quad b \neq 0$$

if
$$V_1, V_2 \in V$$
, \Rightarrow $C_1V_1 + G_1V_2 \in V$

Example 1) $\left\{ \begin{array}{c|c} 0 & Av = 0 \end{array} \right\}$ is a vector space A is a matrix A is not a vector space!

2) $\left\{ \begin{array}{c|c} 0 & Av = b \end{array} \right\}$ $\left\{ \begin{array}{c|c} 0 & b \neq 0 \end{array} \right\}$

1) $V_1 \cdot V_2 \in V$ means $AV_1 = 0$. $AV_2 = 0$ who tur $C_1V_1 + C_2 V_2 \in V$ C_2 asking: whether $A(C_1V_1 + C_2 V_2) = 0$ is true $A(C_1V_1 + C_2 V_2) = C_1 AV_1 + C_2 AV_2 = C_1 B + C_2 B = 0$ CIPC, F)

$$=c[f(s)]$$

Subspaces

Solving Systems of Equations

A set $W \subset V$ is a subspace of a vector space V if for all vectors $v, w \in W$ and $c \in \mathbb{R}$ if

- $(1) v + w \in W$
- (2) $cv \in W$
- (3) $0 \in W$

Consider the vector space $\mathbb{M}_{2\times 2}(\mathbb{R})$. Show that U (the set of all upper triangular matrices) and D (the set of all diagonal matrices) are subspaces of $\mathbb{M}_{2\times 2}(\mathbb{R})$.

2x2 Matrix (a b)
$$C_1(a_1 b_1) + C_2(a_2 b_2) = \begin{pmatrix} C_1a_1 + C_2a_2 & C_1b_1 + \cdots \\ C_1 & d_1 \end{pmatrix} = \begin{pmatrix} C_1a_1 + C_2a_2 & C_1b_1 + \cdots \\ C_2 & d_1 \end{pmatrix} = \begin{pmatrix} C_1a_1 + C_2a_2 & C_1b_1 + \cdots \\ C_2 & d_1 \end{pmatrix}$$
all the 3x2 metrix is a vector space

Consider the vector space $\mathbb{M}_{2\times 2}(\mathbb{R})$. Show that U (the set of all upper triangular matrices) and D (the set of all diagonal matrices) are subspaces of $\mathbb{M}_{2\times 2}(\mathbb{R})$.

 $\underbrace{E_{k}}_{1} \quad A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad V_{k} = \begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix} \quad A \cdot V_{2} \quad V_{1} + 2 V_{2} \\
V_{1} = \begin{bmatrix} V_{1} \\ V_{1} \end{bmatrix} \quad V_{1} + 2 V_{2} = 0$

2) | V: ["] | V: +2V2=6 3 5 # 0

Vertor space Means "line /plane" go through the origin !! (by definition. DeV) 1 & 2V

Vi ... Vn eV

> (1 V1 + 1 + Ch Vn € V

Null space! iii {x | Ax=0} is a verter space

{x | Ax = b], b≠o is not a vector space

{Ax |x GR n} is a vector space

Col (A) = span { ai. . an } . A= [ai - an]

Column Space

Column Space

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, such that $A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n]$, where $\vec{a}_i \in \mathbb{R}^m \ (1 \le i \le n)$. The column space of A consists of all possible linear combinations of the columns of A. That is, Span (qi, an) = {Ax x e IR'} To solve $A\vec{x} = \vec{b}$, you must express \vec{b} as a linear combination of the columns of A. Thus, \vec{b} has to be in the column space of A, otherwise we won't be able to find a solution for the system $A\vec{x} = \vec{b}$. $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ A $\vec{x} = x_1 \vec{a}_1 + \cdots + x_n \vec{a}_n$ all lineary comb of vector => means divi + divi & spen (qi - qu)

Column Space

The column space of A is a subspace of \mathbb{R}^m .

for linear system
$$Ax = b$$
 have Solution (\Rightarrow) b lies in the Glumn space $A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n] = \begin{bmatrix} \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} \dots \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$ be all (A)

Therefore,
$$\operatorname{Col} A = \operatorname{span} \left\{ \left(\begin{array}{c} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{array} \right), \left(\begin{array}{c} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{array} \right), \ldots, \left(\begin{array}{c} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{array} \right) \right\} \subset \mathbb{R}^m.$$

Example – Describe the Column Space of A

Frample
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -6 \end{bmatrix}$$

$$C_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad C_2 = \begin{pmatrix} -5 \\ -6 \end{pmatrix} \qquad C_3 = 30 \end{pmatrix}$$

$$Span \{C_1, C_2\} = Span \{\begin{pmatrix} 1 \\ 2 \end{pmatrix}\}, (= \begin{pmatrix} 1 \\ 2 \times \end{pmatrix}, | x \in \mathbb{R}^n \}$$

Example – Describe the Column Space of A

A=
$$\begin{bmatrix} 1 & 3 & + & 0 \\ 0 & 2 & + & -4 \\ 0 & 0 & 3 \end{bmatrix}$$
 "upper trainglar Form"

Span $\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{3}{2} \\ \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{0}{-4} \end{pmatrix} \} = IR^3$

These are three pivots!!

What is the Gluons space of A (?)

 $\Rightarrow \text{Col}(A) = IR^3$

$$A = \begin{bmatrix} 0 & 3 & -1 & 0 \\ 0 & 2 & -1 & -4 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{2}} \text{ Span all possible Values!}$$

$$Col(A) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \middle| x_1, x_2 \in \mathbb{R}^2 \right\} \xrightarrow{\text{In Quit } 2} \xrightarrow{\text{He Ax}} \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \middle| x_2, x_3 \in \mathbb{R}^2 \right\}$$

$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \middle| x_3 \in \mathbb{R}^2 \right\} \xrightarrow{\text{No}} \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \middle| x_4 \in \mathbb{R}^2 \right\}$$

a solution.