Homework 5: Goal oriented and Nitsche

Exercise 1 50%

Let $\Omega = (0,1) \times (0,1)$, $f \in C^0(\overline{\Omega})$ and $q \in \mathbb{R}$ with $q \geqslant 0$. Consider the boundary value problem

$$-\Delta u + qu = f$$
 in Ω ; $u = 0$ on $\partial\Omega$.

We are interested in approximating the quantity $\alpha := \int_{\partial\Omega} \mathbf{n} \cdot \nabla u$ where \mathbf{n} is the outward unit normal of Ω .

1. The boundary problem has a weak formulation: Find $u \in \mathbb{V}$ such that

$$\forall v \in \mathbb{V}: \quad a(u,v) = L(v).$$

Identify \mathbb{V} , a(u,v) and L(v). Show that there exists a unique solution $u \in \mathbb{V}$ satisfying the above weak formulation.

2. Let $\{\mathcal{T}_h\}_{0 < h < 1}$ be a sequence of conforming shape-regular subdivisions of Ω such that $\operatorname{diam}(T) \leqslant h$, for all $T \in \mathcal{T}_h$ and define

$$\mathbb{V}_h := \left\{ v \in C^0(\overline{\Omega}) \cap \mathbb{V} \mid \forall T \in \mathcal{T}_h, \quad v|_T \text{ is linear} \right\}.$$

Write the weak formulation satisfied by the finite element approximation $u_h \in V_h$ of u. Prove that the function u_h exists and is unique.

3. Assume from now on that $u \in H^2(\Omega)$. Derive the error estimate

$$||u - u_h||_{H^1(\Omega)} \le c_1 h ||u||_{H^2(\Omega)},$$

where c_1 is a constant independent of h and u.

Hint: you can use without proof the fact that there exists a constant C independent of h such that for any $v \in H^2(\Omega)$

$$\inf_{v_h \in \mathbb{V}_h} \|v - v_h\|_{\mathbb{V}} \leqslant Ch \|v\|_{H^2(\Omega)}.$$

4. Show that for the constant function $w(\mathbf{x}) = 1$ we have

$$\alpha = a(u, w) - L(w).$$

Now let $\alpha_h := a(u_h, w) - L(w)$. Using the previous parts, show that when q > 0 there holds

$$|\alpha - \alpha_h| \leqslant c_2 h^2 ||u||_{H^2(\Omega)},$$

where c_2 is a constant independent of h and u. What can you say about $|\alpha - \alpha_h|$ when q = 0?

Exercise 2 50%

Given a quasi-uniform and shape regular sequence of triangulations $\{\mathcal{T}_h\}_{h>0}$ of a polygonal domain $\Omega \subset \mathbb{R}^2$, consider the finite element space

$$\mathbb{V}_h := \{ v \in C^0(\overline{\Omega}) \mid \forall T \in \mathcal{T}_h, v|_T \text{ is linear } \}.$$

• Show that there exists a constant C independent of h such that for every edge $e \subset \partial \Omega$ of the triangle $K \in \mathcal{T}_h$

$$\int_e \partial_\nu w_h v_h \leqslant C \left(\int_K |\nabla w_h|^2 \right)^{1/2} \left(\frac{1}{h} \int_e |v_h|^2 \right)^{1/2}.$$

Here ν denotes the outward pointing normal on $\partial\Omega$.

• Deduce that given $f \in L^2(\Omega)$, there exists a unique $u_h \in \mathbb{V}_h$ defined by

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h - \int_{\partial \Omega} \partial_{\nu} u_h v_h + \frac{\alpha}{h} \int_{\partial \Omega} u_h v_h = \int_{\Omega} f v_h, \qquad \forall v_h \in \mathbb{V}_h,$$

proovided α is large enough.