DMA: Asymptotic growth of functions

Laura Mančinska, Institut for Matematiske Fag

UNIVERSITY OF COPENHAGEN

Plan for today

- Asymptotic growth of functions
 - g grows at least as fast as f (big-O)
 - g grows faster than f (little-o)
 - g and f have the same order of growth (big- Θ)

Reading for today

- Section 2.1. in Notes for Week 3
- [CLRS] Chapter 3
- Warning: The asymptotic notation is tricky. Expect this to be challenging. But we can do this! Read at least twice!

Asymptotic analysis: Motivation

- Functions represent running times of algorithms
- The faster a function grows, the worse our algorithm

How should we measure running time?

```
ADDALL(A,n)

sum ← 0

For i = 0 thru n-1

sum ← sum + A[i]

return sum
```

- T(n) = # of "steps" performed by ADDALL (A, n)
- T(n) = 2n + 2 (linear time algorithm)

Actual constants will depend on the software and hardware we execute this on!

How should we measure running time?

```
FIND2 (A, n)

For i = 0 to n-1

if A[i]=2 then

return TRUE

return FALSE
```

- T(n) = # of "steps" taken by FIND2 (A, n)
- T(n) = ?

Running time can depend on the specific input (and not only its size)

So we often focus on the worst-case running time.

Worst-case running time

```
FIND2 (A, n)

For i = 0 to n-1

   if A[i]=2 then

      return TRUE

return FALSE
```

- $T(n) = \max \# \text{ of "steps" taken by } FIND2(A, n) \text{ over all lists } A \text{ of size } n$
- T(n) = 2n + 1

Worst-case running time is a function of (only) n Depending on the algorithm, running-time might or might not be a function of just the input size n.

Analysis of algorithms

Starting point: identity a function T(n) describing

• The (worst-case) running time of your algorithm

Goals of asymptotic notation

- Analyze the growth of T(n) in a hardware and software independent manner
- Focus on the large n regime
- Simplify analysis by dropping inessential information (e.g. say that 3n + 5 and 2n + 100 are the same asymptotically)

Asymptotic analysis allows to classify and compare the efficiency of algorithms more easily

(e.g. linear is better than quadratic; quadratic is better than exponential etc.)

Asymptotic analysis: Formalism

Asymptotically positive functions

Def. We say that a function $f: \mathbb{R}^+ \to \mathbb{R}$ is asymptotically positive if there exists $x_0 \in \mathbb{R}^+$ such that 0 < f(x)

for all $x \ge x_0$.

- Examples: 5, 2^x , $x^2 6x$ are all asymptotically positive
- $100 x^3$ is not asymptotically positive

Big-O notation: f is O(g)

Def. (**Big-O**) Let $f, g: \mathbb{R}^+ \to \mathbb{R}$ be asymptotically positive. We say that f is O(g) if there exists c > 0 and $x_0 > 0$ such that for all $x \ge x_0$ we have:

 $f(x) \le cg(x)$

Intuition:

g grows at least as fast as f (informally think: " $f \le g$ ")

Big-O notation: f is O(g)

Def. (**Big-O**) Let $f, g: \mathbb{R}^+ \to \mathbb{R}$ be asymptotically positive. We say that f is O(g) if there exists c > 0 and $x_0 > 0$ such that

$$f(x) \le cg(x)$$

for all $x \geq x_0$.

Notes

- We write " $f \in O(g)$ " or "f = O(g)"
- Same definition applies for $f, g: \mathbb{Z}^+ \to \mathbb{R}$
- Different texts define big-0 slightly differently

Big-O notation: f is O(g)

Def. (**Big-O**) Let $f, g: \mathbb{R}^+ \to \mathbb{R}$ be asymptotically positive. We say that f is O(g) if there exists c > 0 and $x_0 > 0$ such that

for all
$$x \ge x_0$$
.

Intuition:

g grows at least as fast as f (informally think: " $f \leq g$ ")

Q: Suppose f is O(g) for some functions f and g. Does it follow that $f(x) \le g(x)$ for large values of x?

g grows faster than f

- Recall: Functions represent running times
- So the algorithm whose running time is f is better than the one described by g

Asymptotic growth: little-o notation

Def. (Little-o) Let $f, g: \mathbb{R}^+ \to \mathbb{R}$ be asymptotically positive. We say that f is o(g) if for any c > 0 there exists $x_0 > 0$ such that

$$f(x) < cg(x)$$

for all $x \geq x_0$.

Intuition: g grows faster than f (think: "f < g")

Notes

• Write " $f \in o(g)$ " or "f = o(g)"

g and f grow at the same rate asymptotically

Asymptotic growth: **big-0**

Def. (**Big-O**) Let $f, g: \mathbb{R}^+ \to \mathbb{R}$ be asymptotically positive. We say that f is $\Theta(g)$ if f = O(g) and g = O(f).

Recall:

- f = O(g): g grows at least as fast as f
- g = O(f): f grows at least as fast as g

Intuition of "f is \Theta(g)": f and g grow at the same rate asymptotically (think: "f = g")

Q: Suppose f is $\Theta(g)$. Does this mean that g is $\Theta(f)$?

Asymptotic growth: Summary

Def. (**Big-**0) Let $f, g: \mathbb{R}^+ \to \mathbb{R}$ be asymptotically positive. We say that f is O(g) if there exists c > 0 and $x_0 > 0$ such that

$$f(x) \le cg(x)$$

for all $x \ge x_0$.

Intuition

- f = O(g): g grows at least as fast as f
- f = o(g): g grows faster than f
- $f = \Theta(g)$: g and f grow at the same rate

Informally (!)

" $f \leq g$ "

"f < g"

"f = g"

Careful: Analogy only goes so far. For example, there are functions such that $f \neq O(g)$ and $g \neq O(f)$.

Asymptotic growth: further remarks

little-o implies Big-O

Thm. If f(x) is o(g(x)) then

- f(x) is O(g(x)) and
- g(x) is not O(f(x))

Intuition(!) behind the thm

If g grows faster than f then

- g grows at least as fast as f
- f does not grow at least as fast as g

Classes of functions

- Polynomials
- Exponentials
- Logarithms

Polynomials

Def. Polynomials are functions of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- $a_n, ..., a_0 \in \mathbb{R}$ (or \mathbb{Q} or \mathbb{Z}) are called coefficients.
- $n \in \{0,1,2,...\}$. If $a_n \neq 0$, then n is the degree of p(x). Write: deg(p) = n
- Examples: $p_1(x) = \frac{1}{2}x^2 5$, $p_2(x) = 20x + \pi$

More general powers: x^r where $r \in \mathbb{R}$.

Exponentials and logarithms

Def. Exponentials are functions of the form

$$f(y) = b^y$$

where b > 0 is a constant (called the base).

- y can be any real number
- Examples: 2^y , e^y , $(\frac{1}{2})^y$, $(1.25)^y$
- Q: Fix some base b > 0. Is b^y an increasing function?

Base-b logarithm:

$$\log_b x \stackrel{\text{def}}{=} y$$
 such that $b^y = x$

• We will assume that x > 0 and focus on b > 1.

Logarithms : Example

Properties of logarithms

Thm. For all $b, b', x, x_1, x_2 > 0$ and all $r \in \mathbb{R}$ we have

$$\log_b x^r = r \log_b x$$

$$\log_b(x_1x_2) = \log_b x_1 + \log_b x_2$$

$$\log_b(x) = \left(\frac{1}{\log_{b'} b}\right) \log_{b'} x$$

where none of the logarithm bases are 1.

Order the following functions from slowest to fastest growing

- 3ⁿ
- $\log_2(n)$
- 200
- n^2
- n^{3}
- 2ⁿ
- $\log_3(n)$

Asymptotic growth: Rules

Asymptotic notation: Classes of functions

R4: const< log: any c > 0 is $o(\log_a(x))$ for all a > 1.

R5: log<power: $\log_a(x)$ is $o(x^b)$ for all a > 1, b > 0.

R6: power<exp x^a is $o(b^x)$ for all a and all b > 1.

Informally:

Constants < Logarithms < Powers (polynomials) < Exponentials

• Since f = o(g) implies that f = O(g), the above rules hold for big-O as well.

Classes of functions and orders (memorize)

Classes of functions arranged from slower to faster growth

Constants, Logarithms, Positive powers, Exponentials
$$(b>1)$$
 1.25 $\log_5(n)$ $n^{3.7}$ 2^n

Ordering within a class:

Which of the two functions grow faster or are they of the same order?

- Constants 0.0001 1000
- Logarithms $\log_5(n)$ $\log_2(n)$
- Powers n^{200} n^2
- Exponentials 2^n 5^n

Classes of functions and orders (memorize)

Classes of functions arranged from slower to faster growth

Constants, Logarithms, Positive powers, Exponentials
$$(b>1)$$
 1.25 $\log_5(n)$ $n^{3.7}$ 2^n

Ordering within a class:

Which of the two functions grow faster or are they of the same order?

•	Constants	0.0001	1000	All grow at the same rate
•	Logarithms	$\log_5(n)$	$\log_2(n)$	All grow at the same rate
•	Powers	n^{200}	n^2	Larger power ⇒ faster growth
•	Exponentials	2^n	5 ⁿ	Larger base ⇒ faster growth

Simplification rules

R1: Overall constants can be ignored:

cf(x) is $\Theta(f(x))$ for any constant c > 0

R2: Only the highest-order term matters: polynomials p(x) is $\Theta(x^d)$ where p(x) is a polynomial of degree d

R3: Only the highest-order term matters:

If f(x) = o(g(x)) then $c_1g(x) + c_2f(x)$ is $\Theta(g(x))$ for any constants $c_1 > 0$ and $c_2 \in \mathbb{R}$

Intuition: think of f(x) = o(g(x)) as "f is negligible in comparison to g"