# Run 4 Analysis

Michael Murray

#### MTA Lifetime Histograms

Histogram binning can be 1.25ns or 40ns

The CAEN TDC has a 40ns external clock period, but this is subdivided into 1.25ns bins.

However, MuCap found that the interpolator is non-linear, which can inflate the Chi^2 of the fit.

Thus, 40ns bins or a multiple should be used.





### Residual Cyclotron RF

We see a residual component of the cyclotron RF in the electron background.

The frequency seen in the 40ns binned histograms is close to 1500ns. In the 1.25ns bins, the frequency is ~51MHz.



#### Mu+ Lifetime Scans

Mu+ does show stability with the geometric scans.

For all of these studies, I used the Mini pulse template fitter, and the basic clustering tracking algorithm (explained later).

#### Standard cuts are

- Track length >= 3 pads
- Track S-Energy > 450 keV (or 300 ch)
- Track stop is in fiducial volume (exclude border pads, 15mm < Y < 55mm)</li>
- Impact parameter < 90mm</li>

Fit start time 160ns, stop time 24000ns







# Mu+ fitting: Lifetime vs Stop X



# Mu+ fitting: Lifetime vs. Stop Z



# Mu+ fitting Lifetime vs Stop Y

Changing omega\_musr showed us that we mounted the magnet incorrectly in Run 4.

















# Mu+ fitting: Lifetime vs Gondola

Fixed omega and Tmusr, unlike the other fits.

Individual gondolas have 100 s^-1 error bars

What's going on with gond11?





# Mu+ fitting: Start time scan

Is early bad chi^2 due to oscillation effect <1us?



















If the electron interferes with the muon stop threshold, we see a "gondola effect", where the lifetime is enhanced for horizontal electrons and suppressed for up- or downgoing electrons.







If we use a later start time, the effect is confined to downward-going electrons.

Start time 2000ns (gondolas 6-11)







However, Xiao looked at MC data with the electron energy deposition turned off and on, comparing the lifetime shift.

These shifts could matter for mu-, but not so much for the 30 s^-1 error bar on mu+.

(Xiao uses run6 data for this, so the Senergy gain is different)

| S cut (ch) | WI Lambda (Hz) | Chi2/NDF | error (Hz) | WO Lambda (Hz) | Chi2/NDF | error (Hz) | delta lambda<br>(Hz) | error(Hz) |
|------------|----------------|----------|------------|----------------|----------|------------|----------------------|-----------|
| 2000       | 454605.5       | 165.4    | 1.098      | 454606.2       | 164.8    | 1.100      | -0.6                 | 13.5      |
| 3000       | 454614.6       | 165.2    | 1.103      | 454611.2       | 165.2    | 1.105      | 3.4                  | 0.7       |
| 4000       | 454617.6       | 166.3    | 1.113      | 454610.9       | 166.3    | 1.117      | 6.7                  | 0.7       |
| 5000       | 454595.5       | 168.0    | 1.094      | 454586.3       | 168.0    | 1.097      | 9.3                  | 1.1       |
| 6000       | 454618.4       | 170.3    | 1.088      | 454582.7       | 170.3    | 1.091      | 35.7                 | 2.2       |
| 6250       | 454778.1       | 173.4    | 1.096      | 454626.5       | 173.3    | 1.101      | 151.6                | 2.9       |
| 6500       | 455176.0       | 182.3    | 1.065      | 454758.5       | 182.4    | 1.076      | 417.6                | 4.7       |
| 7000       | 457346.6       | 263.8    | 1.123      | 455338.0       | 265.4    | 1.122      | 2008.6               | 29.7      |
| 7500       | 463553.0       | 763.7    | 1.148      | 458938.9       | 779.3    | 1.143      | 4614.1               | 155.1     |
| 8000       | 480382.1       | 382.3    | 0.813      | 473339.1       | 402.2    | 0.801      | <b>7043.0</b> 12     | 1248.0    |

#### Summary

- S-Energy cut scan can "turn on" the gondola effect from electron interference
- With mu+, the shifts are undetectable for all but the highest cuts, indicating that the electron interference is small. (For mu+ error bars of 30-100 sec^-1 per gondola bin)
- This is only considering the energy of the track. In principle, electrons could extend tracks to pass other cuts (eg. length) with higher probability.
- Xiao's studies indicate that the effect is small but not necessarily negligible. A more in-depth study is warranted.

#### Mu-Lifetime Scans

Mu+ does **not** show stability with the geometric scans.

Mini pulse template fitter, and the basic clustering tracking algorithm (explained in a few slides).

#### Standard cuts are

- Track length >= 3 pads
- Track S-Energy > 450 keV (or 300 ch)
- Track stop is in fiducial volume (exclude border pads, 15mm < Y < 55mm)
- Impact parameter < 90mm</li>

Fit start time 160ns, stop time 24000ns

## Mu-fitting: Lifetime vs Stop X



Stop X (padX)

Stop X (padX)

## Mu-fitting: Lifetime vs Stop Y









## Mu-fitting: Lifetime vs Stop Z



## Mu-fitting: Lifetime vs Gondola



#### Mu-fitting: Start time scan









#### **TPC Basic Cluster Tracking**

- Form **clusters** from TTPCMiniPulses (or other pulses)
  - Distance to nearby pulses
    - <sub>□</sub>ΔX ≤ 1 pad
    - $\Box \Delta Z \le 2$  pads (one gap allowed)
    - $\Box \Delta Y \le 2\mu s (= 1cm)$
  - S-Energy > 440 keV
  - Length >= 3 pads













#### TPC Muon Stop

- Stops are a more fluid definition. Currently:
- $\Box$ A cluster with (Length in Z) > 2 is defined as a muon stop.



# □Muon Stop = Length in Z > 2



#### □Muon Stop = Length in Z > 2



#### TPC Fiducial Volume

The **fiducial volume** cut is given by the border pads in X and Z.



#### TPC Fiducial Volume

Drift times between 2us and 12us (10mm and 61mm) are the fiducial volume Y-cut

This cut is much easier to scan, since our resolution is better.



# Alternate tracking: TPC Road Tracking

#### Form **clusters** from TPC Pulses (TTPCTOTPulse)

- Distance to nearby pulses
  - <sub>□</sub>ΔX ≤ 1 pad
  - $\Box \Delta Z \le 2$  pads (one gap allowed)
  - $\Box \Delta Y \le 1 \mu s$  (edge-matching)
- S-Energy > 440keV
- Length >= 3 pads
- Edge-matching: the leading (trailing) edge must be <1us from the trailing (leading) edge of the neighboring pulse.

Two Road tracks, one with the fusion threshold (blue pad), one without the fusion threshold.



### Motivation: Proton migrates one way

A proton can go forward or backward to confuse the stopZ.

The road tracker makes the stop Z determined from these situations identical (4<sup>th</sup> row in the diagram)

By managing the populations of events, we can balance the number of stops that migrate in and out of the fid. vol.



Two tracks with a p-t, triggering threshold, but with different stop Z. Proton in red, muon in orange.





#### Road Track: Fusion Energy threshold



- The "fusion" energy threshold is chosen to be larger than the largest possible E0 for mu+.
- Ideally, only events with fusion products hit this threshold.
- In practice, pileup might sneak in, and fusion products might alter E0 but stay under threshold.



#### Road tracking: Projection for Y coord.

Project the upstream pads into the fusion row to get the Y coordinate. The pulses on the "fusion" row are ignored, and only the "road;



#### Variant: Use projection for all tracks, not just fusions

To treat events without the fusion threshold in a similar manner to the fusion events, use the projection method for all tracks. This decreases Y resolution, of course.



#### E1 vs E0 for Basic and Road Tracks

2000

1018330 835.8

606.2

647.2

129.3

8000 Fusion + E<sub>0</sub> (keV

6000

4000



#### TPC Muon Stop: The future

- Analyze full data set with Road tracker, compare to Basic tracker. (MU pass ongoing on Lonestar, half-way done 12 Aug 2014)
- (Also incorporates new TOT pulse finder)
- For Road tracker, try different "fusion" thresholds
- Try projection variants, as discussed. Also variants for Stop X.
- Study the migration of events using MC



# Backup

#### Rebinning an oscillatory signal

#### The data has a periodic additive component



#### This is sampled by an ADC



#### What happens to the period when we rebin the ADC samples?

Properties of our signal, f(t).

$$f(t+T) = f(t)$$

$$\int_{t'}^{t'+T} dt f(t) = 0$$

where T is the period. Rebinning to a bin width B (in ns), where B > T, we accumulate an extra bit of the signal,  $\Delta t$ .



Since the integral of the oscillatory signal is zero over one period, only the portion  $\Delta t$  contributes to the new bin content. The period of these new bins is set by how many  $\Delta t$  pieces it takes to get to a whole new period, T.



#### Rebinning an oscillatory signal



#### Calculating the new period

Remember that T and B are times in ns.  $\Delta t$  is given by  $\Delta t = B \mod T$ 

And the rebinned signal reaches zero after N bins, where

$$N = \frac{T}{\Delta t} = \frac{T}{B \bmod T}$$

This translates to a period,  $T_B$  in ns of

$$T_B = NB = \frac{BT}{B \mod T}$$

This works even if T is not an integer multiple of  $\Delta t$ .

#### Some numbers for MuSun

Assume the cyclotron RF determining the correlation of electron background counts to the muon has a period of T=19.7 ns, which is close to the real value.

Our CAEN TDC samples times at 1.25ns, so we can only rebin such that B is an integer multiple of this. For now, consider B=40ns, B=50ns, and B=100ns

T=19.7ns B=40.0ns Δt = B mod T = 0.6ns N = T/(B mod T) = 32.8 T<sub>R</sub> = NB = 1310ns

T=19.7ns B=50.0ns  $\Delta t = B \mod T = 10.6$ ns N = T/(B mod T) = 1.81 T<sub>B</sub> = NB = 90.5ns T=19.7ns B=100.0ns  $\Delta t = B \mod T = 1.5 \text{ ns}$   $N = T/(B \mod T) = 13.1$  $T_B = NB = 1310 \text{ns}$ 

Notice that for B=40.0ns and B=100.0ns, we get the same  $T_B$ . This is a general property for bin sizes  $B_1$  and  $B_2$  as long as  $B_1 \mod T = (B_1 / B_2) * B_2 \mod T$ . This will be the case when  $(B_1 \mod T)$  and  $(B_2 \mod T)$  are small compared to T.