Homework 3

Problem 1

Decision Variables

Xij which is the quantity manufactured in *i*th manufacturing plant and supplied to *j*th retail centre in units.

The 1st, 2nd and 3rd manufacturing plants are Atlanta, Tulsa, and Seattle OR Baltimore.

The 1st and 2nd retail store are LA and NY

For example X_{22} is the quantity manufactured in Tulsa manufacturing plant and supplied to NY

Note that this problem can also be set up as "binary" ILP, however, to keep it simple, I have done Seattle and Baltimore separately.

Objective function

Minimize total cost

If Seattle is chosen:

$$8\;X_{11}+5\;X_{12}+4\;X_{21}+7\;X_{22}+5\;X_{31}+6\;X_{32}$$

If Baltimore is chosen:

$$8\ X_{11} + 5\ X_{12} + 4\ X_{21} + 7\ X_{22} + 4\ X_{31} + 6\ X_{32}$$

Subject to constraints

 $X_{11} + X_{12} \le 600$

 $X_{21} + X_{22} \le 900$

 $X_{31} + X_{32} \le 500$

 $X_{11} + X_{21} + X_{31} \ge 800$

 $X_{12} + X_{22} + X_{32} \ge 1200$

 $Xij \ge 0$

Xij is an integer

Set Up and Solution

Seattle

Scai	<u>11C</u>						
4		В	С	D			
1							
2			Atlanta	Tulsa	Seattle	Demand	
3		LA	8	4	5	800	
4		NY	5	7	6	1200	
5		Capacity	600	900	500		
6							
7		DECISION	VARIABLES	5			
8			Atlanta	Tulsa	Seattle		
9		LA				0	
10		NY				0	
11			0	0	0		
12							
13		Cost	0	MINIMIZE			
14			Atlanta	Tulsa	Seattle		
15		LA	0	0	0		
16		NY	0	0	0		
17							
18							

The minimum total cost is \$9,900

Baltimore

ltimore 4 6 500	1200
4 6	800 1200
6	1200
	2200
500	
attle	
0	800
500	1200
500	
attle	
0	
3000	
	0 500 500 attle

The minimum total cost is \$9,900

The minimum cost is same for both Seattle and Baltimore which is \$9,900. Hence, the toy manufacturer can select either of the two locations to establish the plant.

Problem 2

Decision Variables

B, C, P and T be the weights of beef, chicken, pork and turkey respectively in pounds.

Objective function

 $\begin{aligned} & \text{Minimize total cost} \\ & 0.76B + 0.82P + 0.64C + 0.58T \end{aligned}$

Subject to constraints

$$B + P + C + T = 0.125$$
 (Note that 2 ounce = 0.125 pounds)
 $32.5B + 54P + 25.6C + 6.4T \le 6$ (fat constraint)
 $210B + 205P + 220C + 172T \le 27$ (cholesterol constraint)

640B + 1055P + 780C + 528T <= 100 (calorie constraint)

 $B \ge 0.25 (B+P+C+T)$ (min percentage of beef in hotdog)

P >= 0.25 (B+P+C+T) (min percentage of pork in hotdog)

B, P, C and $T \ge 0$ (non-negativity constraint)

Set Up and Solution

4	A B	C	D	E	F	G	Н	1	J	K	L	М
1							DECISION	VARIABLE	(Pound of	meat in h	otdog of 2	ounce)
2		Cost	Calories	Fat	Cholestrol							
3	Beef	0.7	640	32.5	210		0.03125					
4	Pork	0.8	2 1055	54	205		0.03125					
5	Chick	en 0.6	4 780	25.6	220		0					
6	Turke	y 0.5	8 528	6.4	172		0.0625					
7												
8	COST	0.08562	5 MINIMIZE	TOTALCO	ST							
9												
10	3.10	3125 <=	6									
11	23.7	1875 <=	27									
12	85.96	5875 <=	100									
13	0	.125 equals	0.125									
14	0.0	3125 >=	0.03125									
15	0.0	3125 >=	0.03125									
16												

Hot dog is comprised of 0.03125 pounds of beef, 0.03125 pounds of pork and 0.0625 pounds of turkey. The final cost is \$0.0856.

Problem 3

Let $X = \{x_{ij} : i, j \in N, i \neq j\}$ represent the set of decision variables Let $S = \{s_{ij}: i, j \in N, i \neq j\}$ represent the matrix of surgical setup times.

As mentioned in the paper:

 x_{ij} – the decision variable, equals 1 if surgery i is performed immediately before surgery j, or 0 otherwise.

 s_{ij} – the setup time for surgery j when it immediately follows surgery i. Since the s_{ij} are sequence-dependent, the setup time matrix S is asymmetric $(s_{ij} \neq s_{ji})$.

$$\min \quad \sum_{i=1}^{n} \sum_{\substack{j=1\\i\neq j}}^{n} s_{ij} x_{ij} \tag{1}$$

subject to
$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j \in N$$
 (2)
$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i \in N$$
 (3)
$$x_{ij} \in \{0,1\} \quad \forall i, j \in N$$
 (4)

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall i \in \mathbb{N} \tag{3}$$

$$x_{ij} \in \{0,1\} \quad \forall i, j \in N$$
 (4)

Instance: 5 patients

Setup

⊿ A	В	c	D				н	
1								
2	sij	1	2	3	4	5		
3	1	0	20	15	8	6		
4	2	15	0	18	9	28		
5	3	24	23	0	13	13		
6	4	15	27	8	0	14		
7	5	8	17	24	15	0		
8								
9	xij	1	2	3	4	5		
10	1						0	
11	2						0	
12	3						0	
13	4						0	
14	5						0	
15		0	0	0	0	0		
16								
17	sij*xij	1	2	3	4	5		
18	1	0	0	0	0	0		
19	2	0	0	0	0	0		
20	3	0	0	0	0	0		
21	4	0	0	0	0	0		
22	5	0	0	0	0	0		
23								
24	Minimize	0						
25								

Solution

⊿ A	В	С	D	Ε	F	G	н
1							
2	sij	1	2	3	4	5	
3	1	0	20	15	8	6	
4	2	15	0	18	9	28	
5	3	24	23	0	13	13	
6	4	15	27	8	0	14	
7	5	8	17	24	15	0	
8 9							
	xij	1	2	3	4	5	
10	1	0	0	0	0	1	1
11	2	0	0	0	1	0	1
12	3	0	1	0	0	0	1
13	4	0	0	1	0	0	1
14	5	1	0	0	0	0	1
15		1	1	1	1	1	
16							
17	sij*xij	1	2	3	4	5	
18	1	0	0	0	0	6	
19	2	0	0	0	9	0	
20	3	0	23	0	0	0	
10 11 12 13 14 15 16 17 18 19 20 21 22 23	4	0	0	8	0	0	
22	5	8	0	0	0	0	
23							
24	Minimize	54					

The minimized total surgical set up time is 54

Optimal surgical schedule with minimum makespan is seen in the table below:

Xij	1	2	3	4	5
1	0	0	0	0	1
2	0	0	0	1	0
3	0	1	0	0	0
4	0	0	1	0	0
5	1	0	0	0	0

Schedules are:

2-4-3-2

1-5-1

Similar setup for other two instances.

Instance: 10 patients

The minimized total surgical set up time is 98

Optimal surgical schedule with minimum makespan is seen in the table below:

xij	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	0	1	0	0	0	0
3	0	0	0	0	0	0	0	1	0	0
4	0	1	0	0	0	0	0	0	0	0
5	0	0	0	1	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	0
8	0	0	0	0	0	0	0	0	0	1
9	1	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	1	0	0	0

Schedules are:

1-3-8-10-7-9-1

2-6-5-4-2

Instance: 15 patients

Solver has a limit of 200 decision variables. Here we have 210 decision variables. Hence unable to solve using Solver. But the process to solve is the same. We use open solver.

Set up

The minimized total surgical set up time is 111

Optimal surgical schedule with minimum makespan is seen in the table below:

xij	binary 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
12	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
14	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
15	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Schedules are:

1-10-12-4-7-3-2-8-5-15-1 6-14-6 9-11-13-9

Problem 4

Decision Variables

X1, X2 and X3 which are the number of Tiny Tanks, Tiny Trucks and Tiny Turtles produced respectively.

Goals

The question says:

The company allows no more than 40 hours a week for production (priority #1). Thus, there cannot be overutilization of labor hours. But then under priority #3 it says 'maximize available labor hour usage. Hence, minimizing of underutilization of labor hours is priority 3 and hence goal 6 below.

	Goals	Description	Rank	Weight
a	Goal 1	Minimize overutilization of	4	0.3636
		plastic		
a	Goal 2	Minimize overutilization of	2	0.1818
		rubber		
a	Goal 3	Minimize overutilization of	2	0.1818
		metal		
b	Goal 4	Minimize overutilization of	1	0.0909
		budget		
b	Goal 5	Minimize underutilization of	1	0.0909
		budget		
b	Goal 6	Maximize available hours	1	0.0909
		usage i.e. Minimize		
		underutilization.		
		Total:	11	1

Calculation: 4/11 = 0.3636 and so on...

Let Oi be the excess of right side of the goal w.r.t. the goal 'i' Let Ui be the deficit of right side of the goal w.r.t. the goal 'i' Where i = 1, 2, 3, 4, 5, 6

Objective Function

Minimize

0.3636 O1 + 0.1818 O2 + 0.1818 O3 + 0.0909 O4 + 0.0909 U5 + 0.0909 U6

Subject to Constraints

1.5 X1 + 2 X2 + X3 + U1 - O1 = 16000 (Weekly availability of plastic constraint)

 $0.5 \times 1 + 0.5 \times 2 + \times 3 + U2 - O2 = 5000$ (Weekly availability of rubber constraint)

0.3 X1 + 0.6 X2 + U3 - O3 = 9000 (Weekly availability of metal constraint)

7 X1 + 5 X2 + 4 X3 + U4 - O4 = 164000 (Budget constraint overutilization)

7 X1 + 5 X2 + 4 X3 + U5 - O5 = 164000 (Budget constraint underutilization)

2 X1 + 2 X2 + X3 + U6 - O6 = 40 (labor hour usage constraint, O6 = 0 as labor hours cannot be more than 40)

X1, X2, X3, Oi, Ui \geq 0 (Non-negativity constraints)

Problem 5

Decision Variables

Let T be the advertising expenditure for TV in thousand dollars.

Let R be the advertising expenditure for radio in thousand dollars.

Goals

Goals	Description	Rank	Weight
Goal 1	Achieve total exposures of at	5	w1 = 0.3226
	least 750,000 persons, i.e. minimize underutilization of		
C1 2	total exposures	4	2 0.2501
Goal 2	Avoid expenditures of more	4	w2 = 0.2581
	than \$100,000, i.e. minimize		
	overutilization of budget		
Goal 3	Avoid expenditures of more	3	w3 = 0.1935
	than \$70,000 for television		
	advertisements, i.e. minimize		
	overutilization of television		
	expenditures		
Goal 4	Achieve at least 1 million total	2	w4 = 0.1290
	exposures, i.e. minimize		
	underutilization of total		
	exposures		
Goal 5	Reach at least 250,000 persons	1	w5 = 0.0645
	in age group 25-30 years, i.e.		
	minimize underutilization		
Goal 6	Reach at least 250,000 persons	0.5	w6 = 0.0323
	in age group 18-21 years, i.e.		
	minimize underutilization		
	Total:	15.5	1

Note that there are other ways of assigning weights depending on the "relative importance" of the goals.

Let Oi be the excess of right side of the goal w.r.t. the goal 'i' Let Ui be the deficit of right side of the goal w.r.t. the goal 'i' Where i = 1, 2, 3, 4, 5, 6

Objective Function

Minimize

$$w1*U1 + w2*O2 + w3*O3 + w4*U4 + w5*U5 + w6*U6$$

Or,

Maximize

$$w1*O1 + w2*U2 + w3*U3 + w4*O4 + w5*O5 + w6*O6$$

Subject to Constraints

G1: 10,000 T + 7,500 R + U1 - O1 = 750,000

G2: 1,000 T + 1,000 R + U2 - O2 = 100,000

G3: 1,000 T + U3 - O3 = 70,000

G4: 10,000 T + 7,500 R + U4 - O4 = 1,000,000

G5: 3,000 T + 1,500 R + U6 - O6 = 250,000

G6: 2,500 T + 3,000 R + U5 - O5 = 250,000

Extra Credit Problem

There are 6 sensible patterns that can be used to cut the 10 ft. boards.

Patterns	3ft	4ft	5ft	Waste (in ft)
1	3	0	0	1
2	2	1	0	0
3	1	0	1	2
4	0	0	2	0
5	0	2	0	2
6	0	1	1	1

Decision variables

X1, X2, X3, X4, X5 and X6 are the number of 10 ft. boards of each of the six patterns used.

Objective Function

Minimize X1 + X2 + X3 + X4 + X5 + X6

Subject to Constraints

3 X1 + 2 X2 + X3 >= 90 (order for 3 ft. boards)

X2 + 2 X5 + X6 >= 60 (order for 4 ft. boards)

X3 + 2 X4 + X6 >= 60 (order for 5 ft. boards)

X1, X2, X3, X4, X5 and $X6 \ge 0$ and integers (non-negativity constraint)

Set up and Solution

⊿ A	В	С	D	Ε	F	G
1						
	Patterns	3ft	4ft	5ft	Decision	
2	Patterns	JII.	711	JII.	Variable	
3	1	3	0	0		
4	2	2	1	0		
5	3	1	0	1		
6	4	0	0	2		
7	5	0	2	0		
8	6	0	1	1		
9						
10				Minimize	0	
11						
12			>=	90		
13		_	>=	60		
14		0	>=	60		

The optimal number of patterns is Forty Five Pattern 2, Thirty Pattern 4 and Eight Pattern 5. Total minimum number of boards to cut is 83.