TENSORES

SEMINARIO 2

Jose Ramos

Universidad del Valle de Guatemala

OBJETIVOS

- 1. Presentar la definción de los tensores (1,s) y (0,s).
- 2. Generalizar el concepto utilizando tensores (r,s).
- 3. Presentar ejemplos conocidos de tensores (1,s) y (0,s).

Recordemos:

 $\{\frac{\partial}{\partial x_i}, i \leq n\}$ es una base para $T_p M$

Notación:

 $(\times A)^n = A \times A \times ... \times A$ n veces.

DEFINICIÓN

Tensor covariante de grado s (0,s)-tensor en p: [1]

Es un mapa multineal $A_p: T_pM \times T_pM \times ... \times T_pM = (\times T_pM)^s \to R$. La base para el espacio vectorial de (0,s) tensores consiste de los elementos: $(dx_{j1} \otimes ... \otimes dx_{js})$ que se definen por $(dx_{j1} \otimes ... \otimes dx_{js}) := (dx_{j1} \otimes ... \otimes dx_{js})(\frac{\partial}{\partial x_{l1}}, ..., \frac{\partial}{\partial x_{ls}}) = \delta_{j1}^{l1} \cdots \delta_{js}^{ls}$ donde lk < n, jk < n

(1,s)-tensor en p:

Es un mapa multineal $A_p: T_pM \times T_pM \times ... \times T_pM = (\times T_pM)^s \to T_pM$ donde los elementos de la base son de la forma $(dx_{j1} \otimes ... \otimes dx_{js}) \frac{\partial}{\partial x_j}$

3

EJEMPLOS

CAMPOS VECTORIALES

Def:

Un mapeo diferenciable es $X: M \to T_p M$, $X_p = \sum_i c_i(p) \frac{\partial}{\partial x_i}|_p$, es un (1,0) tensor.

1-FORMAS

Las uno formas tienen la forma siguiente:

$$w(p) = \sum_i w_i(p) dx_i|_p$$
, $w : T_p M \to R$ por lo que son (0,1) tensores.

FUNCIONES ESCALARES

Son funciones $f: M \to R$ entonces son tensores (0,0).

MÉTRICAS RIEMMANIANAS

Recordemos que las métricas Riemmanianas tienen la forma $g_p = \sum_{ij} g_{ij}(p) dx_i|_p \otimes dx_j|_p$, y estas pertenecen a los tensores (0,2).

GENERALIZANDO

Un tensor s-covariante y r-contravariante en p ((r,s)-tensor) tiene la forma siguiente:

$$A_p: (\times T_pM^*)^r \times (\times T_pM)^s \to R$$

Entonces

$$A_p(dx_{k1},...,\frac{\partial}{\partial_{ls}})=(\frac{\partial}{\partial x_{i1}}\otimes...\otimes\frac{\partial}{\partial x_{ir}}\otimes dx_{j1}\otimes...\otimes dx_{js})(dx_{k1},...,\frac{\partial}{\partial_{ls}})$$

REFERENCIAS

Wolfgang Kühnel.

Differential geometry, volume 77.

American Mathematical Soc., 2015.