Training report for U-Net (2D) model (model\_training\_invLUT)

Date: 2022-12-02

Training time: 0.0hour(s) 48.0min(s) 23sec(s) Information for your materials and method:

The U-Net (2D) model was trained for 100 epochs on 2592 paired image patches (image dimensions: (768, 768), patch size: (128,128)) with a batch size of 4 and a weighted\_binary\_crossentropy loss function, using the U-Net (2D) ZeroCostDL4Mic notebook (v 1) (von Chamier & Laine et al., 2020). The model was re-trained from a pretrained model. Key python packages used include tensorflow (v 2.9.2), Keras (v reprocessing==1.1.2), numpy (v 1.21.6), cuda (v 11.2.152)

Build cuda\_11.2.r11.2/compiler.29618528\_0). The training was accelerated using a Tesla T4 GPU.

### Augmentation:

The dataset was augmented by

- rotation
- flipping
- random zoom magnification
- shifting
- image shearing

#### **Parameters**

The following parameters were used for training:

| Parameter             | Value   |
|-----------------------|---------|
| number_of_epochs      | 100     |
| patch_size            | 128x128 |
| batch_size            | 4       |
| number_of_steps       | 584     |
| percentage_validation | 10      |
| initial_learning_rate | 0.001   |
| pooling_steps         | 2       |
| min_fraction          | 0.02    |

## **Training Dataset**

**Training\_source**:/content/gdrive/MyDrive/Project LQ/ProjectDocs/Training **Training\_target**:/content/gdrive/MyDrive/Project LQ/ProjectDocs/Target

Model Path: /content/gdrive/MyDrive/Project LQ/ProjectDocs/model\_training\_invLUT

**Example Training pair** 





# References:

- ZeroCostDL4Mic: von Chamier, Lucas & Laine, Romain, et al. "Democratising deep learning for microscopy with ZeroCostDL4Mic." Nature Communications (2021).
- Unet: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

# Important:

Remember to perform the quality control step on all newly trained models
Please consider depositing your training dataset on Zenodo