Latta: Prot Alex Scott.

Real Analysis

TT 48

Zhenyhong Lien

2. Show that the equation se" + xt - 1 = 0 Las a solution & £10,1).

> x"+ x =-1 Gra polynomial >> f(sc) is continuous.

Consider 8(0) = -1. Whom consider 8(2) = 2.

Now consider the function in the closed interval [0,1]. g(0) = -1 and g(1) = 1. By the Intermediate Value Theorem, since 0 lies between -1 and 1, we can find a 3 between 0 and 1 such that 0 = g(3).

But this is exactly what we needed to prove. OED a

(> -lechnically 3 = [0,1], not (0,1), but since [0) to and f(1) to, 3 = (0,1).

3. B: [a,b] - R Las the property that fixe) > 0

Bor a socs b and f(a) = 0, f(b) = 0. If

for each se a [a,b] there exists exactly one

distinct y & [a,b] such that f(se) = f(y).

prove that f cannot be continuous on [a,b].

We prove by contradiction

18 & is continuous on [a, b], -it must obtain a maximum on the cinterval [a, b].

Let this maximum M be reached at point x.

Now consider the function on the intervals [a,x] and [x,b]. Of course, of must be continuous on both intervals; and go from [0, M] from [a,x] and [M,0] from x tob.

Consider the value of that her between 0 and M.

By the Intermediate Value Theorem, we can find a 3 between a and x such that $\lambda = \beta(\frac{3}{5})$.

But similarly, we can also find a 3 teluen so and b such that $\lambda = \beta(\frac{3}{5})$.

But that $\lambda = \beta(\frac{3}{5})$. But this contradicts our distinctness assumption, as $\frac{3}{5} > \frac{3}{5} = \frac{3}$

Suppose accedeb and Brand) - R is differentiable on (a, b). (b & (c) > 0 and b'(d) to, prove there exists } & (c,d). such that & (3) = 0.

Consider the interval (c,d). eds (c,d) is contained within (a,b) & (c,d) > R is differentiable on the interval It follows that it is continuous.

Consider the closed interval [c,d]. By continuity, it must have a maximum M.

Claimi

f(c) and f(d) are not maximum M.

Let lim B(x)-B(c) = E > 0. 76>0 s.t. V/x-c/+6,

B(x)-f(c) = E = This implies - that

> \(\frac{\(\) \cdot \(\) \

 $\beta(x) - \beta(c) > \frac{\varepsilon}{2}(x-c) > 0. \text{ Therefore, } \beta(c) \text{ cannot be a maximum.}$ Similarly.

lim B(x)-b(d) = 0, > b(d) b(x)

By a similar argument

 $\beta(d) - \beta(x) < \frac{\varepsilon}{2}(x-d) < 0$; $\beta(d)$ cannot be a max.

implies that there exists $\frac{3}{3} \in (c,d)$ s.t. $b(\frac{3}{3}) = M$.

But if 3\x (c,d) = 4. \x (\x) that \x (\x) = 0 - 0

Deduce that the image of (a, b) under &'

6. Let f. R-R be differentiable at every point and satisfy f'(x) > 0 for all values of oc. Prove that the equation f(sc) = 0 can have at most one solution.

We prove by contradiction Suppose that
evoidly
There were two solutions of \$(00) = 0, call
Them a and b. Then, by Rolle's Theorem,
There must exist a stationary point $\frac{3}{5} \in (a,b)$ s.t. $\frac{1}{5}(\frac{3}{5}) = 0$. But this gives us a contradiction
as $\frac{1}{5}(x) > 0$ Vx. Will any number of solutions
greater or equal to two (e.g. $\frac{1}{5}(a) = \frac{1}{5}(b) = \frac{1}{5}(c) = 0$),
a pplying Rolle's Theorem to any pair gives us a
contradiction. Theree, it can have at most one sola.

If L'(x) > Vx show L(x) = 0 can have at most two solutions.

The first has more than two solutions, there

must be at least two stationary points.

B'en = 0 B' = 0

I we Rolle's Meren, of he pretre

use Rolle's Meren, of he pretre

could be nother:

Let g = B'. Then g'(sc) > 0 Wx,

and we have g(x) = 0 on two occasions.

But by a similar application of Rolle's

Theorem,

g'(x) = 0

g'(x) = 0

Ahrs leads to a contradiction.

For derivatives of order n:ib $b:R \rightarrow Ris$ differentiable at every point and b:(x)>0for all x, b(x) can have at most n-1solutions.

We bound this.

Proof -- ?