⑲ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭62-149793

@Int_CI_4

識別記号

厅内整理番号

❸公開 昭和62年(1987)7月3日

C 10 L 1/32 B 01 F 17/48 C-6683-4H 8317-4G

審査請求 未請求 発明の数 1 (全4頁)

の発明の名称 固体燃料ー水スラリー組成物

②特 願 昭60-291676

纽出 願 昭60(1985)12月24日

②発明者 田 口

準

準 高槻市東上牧3-6-24

②発 明 者

母 里

浩 一

姫路市鍵町12

⑪出 願 人 ダイセル化学工業株式

堺市鉄砲町1番地

会社

⑪代 理 人 弁理士 越 場 隆

明細會

1. 発明の名称

固体燃料ー水スラリー組成物

2. 特許請求の範囲

カルボキシメチルヒドロキシエチルセルロースを添加することを特徴とする固体燃料ー水スラリー組成物。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、固体燃料ー水スラリー組成物に 係るものである。

さらに詳しくは粉末状固体燃料を水に分散させ、ポンプ輸送、タンク貯蔵、燃焼工程などにおいて、あたかも石油などの流体燃料と 同様の取扱いが可能である固体燃料ー水スラリー組成物を提供するものである。

(従来技術および問題点)

近年、石油資源の枯渇が問題にされ、石油 にかわる石炭、脱灰石炭、石炭コークス、石油コークス、石油ピッチ、木質炭などの固体 燃料の利用が検討されている。しかしながら、これら固体燃料は、固体であるが故に、その取扱いにおいて石油など流体燃料にくらべ、著しく不便であり、また粉塵による汚れ、また時として粉塵 爆発、自然発火などの恐れなきにしもあらずであ

本発明は、固体燃料の持つこれらの問題を解決し、石油など流体燃料と同様な取扱いを可能とする流動性、安定性を持つ固体燃料ー水スラリー組成物である。

固体燃料ー水スラリーの検討は種々行なわれているが、問題点が二つあるとされている。一つはスラリーの流動性で、他の一つは安定性である。 流動性とは固体燃料ー水スラリーをポンプ輸送する場合、 該スラリーの粘度が高くなると流動が悪くなり、 輸送が困難になるため、できるだけ流動性を良くする必要がある。

また、安定性とは固体燃料粒子の抗降性である。 燃焼効率を上げるためには固体燃料の濃度を出来 るだけ高くする必要があるが、この場合著しい粘 **歴上昇が起り、ポンプ輸送が困難となる。**

一方、安定性についても固体燃料機関を上げる ことによって固体燃料の沈輝が大きくなる傾向に あり、スムーズな輸送が出来なくなる。これらの 間頃点を解決するために検討がなされている。 従来より界面活性剤を添加する方法(特開昭54 - 3 3 8 0 3)、水裕性高分子を添加する方法(好開昭 5 5 - 9 6 9 5)などが試みられており、 若干の効果は眺められるものの、固体燃料礙底が (問題点を解決するための手段) 低い場合、あるいは高い場合には問題を残してお り、消足な流動性、安定性を持つスラリー組成物で は得られていない。しかしながら、固体燃料ー水 スラリー組成物の流動性、安定性の向上のために は天然品、合成品を問わず、水器性高分子の最加 は必須采件であると考えられるが、個々の水解性 高分子には、それぞれ個々の特性があり、例えば **運動増粘効果を重視するとチクソトロピー性が大** さくなり、スラリー耐送が困難になるとか、増粘 効果が大きいので、少量使用すると安定性が低下 するなどの問題を抱えている。

ルコース単位当りに付加されたエチレンオキサイ ドの平均モル数 (以下 M S と略す)が 1.0 ~ 7.0 の範囲のものが好ましい。

CM基のDSが 0.01以下では、添加した固体 燃料ー水スラリーのチクソトロピー性の改良が十 分に行われず、2.0以上のものではスラリー中に 多価金属イオンが多い場合、チクソトロピー性が 大きくなりすぎ、流動性が低下する。また、HE 基のMSが1.0以下では流動性が悪く、7.0以上 のものは製造が困難であり、実用性に乏しい。

本発明のСMHECの粘度は、1%水溶液の25 (作 でにおける粘度が 1~2000cps、好ましくは 2 ~1000cps の範囲のものが適当である。また、 CMHECの添加は、固体燃料-水スラリーに対 し、0.001~3重量%、好ましくは0.005~1 重量%添加することにより、優れた効果を発揮す

本発明において固体燃料は石炭、脱灰石炭、石 炭コークス、石油コークス、石油ピッチ、本質炭 など各種の粉末状固体燃料を用いることができる。

発明者らは適度の増粘効果によりスラリーの 流動性を高め、かつ適度のチクソトロピー性に よりスラリーの安定性の向上に役立つ水溶性高 分子を鋭意研究の結果、カルポキシメチルヒド ロキシエチルセルロース(以下CMHECと略 す)が、この両性能を兼ね備えていることを見 い出し、この知見に基づいて本発明をなすに至 った。

本発明は、カルポキシメチルヒドロキシエチ ルセルロースを添加することを特徴とする固体 燃料ー水スラリー組成物である。

CMHECは、セルロースを原料として製造 されるが、その分子内にカルポキシメチル基(以下CM基と略す)と、ヒドロキシエチル基(以下HE基と略す)を共有する混合セルロース エーテルに属するものである。

本発明において用いられるCMHECは、無 水グルコース単位当りのCM基の置換度(以下 DSと略す)が0.01~2.0の範囲で、無水グ

スラリー中の固体燃料の含有率は高いほど燃料 効率は向上するが、流動性が悪化する。

CMHECを添加する本発明の固体燃料ー水 スラリーにあっては、65~15重量%の高濃 度でも流動性と安定性が保たれている。

なお、一般に固体燃料ー水スラリー組成物に は、いわゆる界面活性剤を使用する場合が多い が、本発明の固体燃料ー水スラリー組成物に、 CMHECと界面活性剤とを併用することをさ またげるものではない。

用)

本発明の固体燃料ー水スラリー中のCMHEC の作用は次の如く考えられる。

固体燃料ー水スラリー中の固体燃料は、多か れ少なかれ、いわゆる灰分を含んでおり、この 灰分は主として無機質の金属化合物である。 CMHECは分子内にCM基とHE基の両方を 持つが、このCM基が灰分中の多価金属と結合 してСMHECの網目構造をつくり、チクソト ロビー性を向上させ、静止状態では高い粘度を

示してスラリーの安定性を改良し、流動状態では低い粘度を持ち、スラリーの流動性を改良することができる。

しかし、CM 基のみを有するカルボキシメチルセルロース(CMC)では、そのCM 基と多価金属との反応で水不溶性の塩となって沈殿したり、粘性を失ったりすることがあるが、CM HECでは、分子内にHE基が共存するため、CM 透が多価金属と結合してもHE 基の親水性のため、固体燃料ー水スラリーとして適度の粘性が保持される。

(発明の効果)

本発明の固体燃料・水スラリー組成物は、広 範囲の固体燃料を原料とすることができ、高い 固体燃料含有量において、優れた流動性と安定 性を有している。従って、ポンプ輸送、タンク 貯蔵、燃焼工程などにおいて液体燃料と同様の 取扱いが可能となる。

◎ … … 早く流出

○……ゆっくり流出 ×…… 旅出せず

安 定 性: スラリーを 1 & のメスシリ ンダーに深さ 3 0 cm 充填し、 2 ケ月間室内に放置したの

ち、スラリー表面より1cm および底部より1cmの所か らスラリーを採取し、固体 燃料含有率を測定し、放置

前後の変動で判定する。 ◎……2ヶ月間の変動±1.5%以内

O..... # ± 3%以内

x ······ // ± 3%以上

E 密 適 化: 安定性試験における2ヶ月 間室内放置後の1 ℓ のメス シリンダー中のスラリーに

> ガラス棒をメスシリンダー の底部まで静かに挿入して

> 圧密固化部の有無を判定し

(寒 施 例)

以下に本発明の実施例を記載する。実施例中の%は重量%を示す。

試験方法は下記の通りである。

試験方法

CMHECの粘度: 1%水溶液をB型粘度計を

用い、60回転、25℃で

測定した。

スラリー粘度: B型粘度計を用い、60回

転、25℃で測定した。

チクソトロピー性: B型粘度計の6回転での測

定粘度を、60回転での測

定粘度で除した数値。

疏 動 性: 500 ml ピーカーにスラリ

ーを 5 0 0 8 採取し、 2 ケ 月間室内に放置後、ガラス 棒で 1 0 回軽く撹拌したの ち、ピーカーを転倒させ、 スラリーが自然流出するか

どうかを判定する。

た。

実施例1~9、比較例1~5.

200メッシュに粉砕した固体燃料とCM基のDS、HE基のMSおよび粘度の異なる各種のCMHEC(ダイセル化学工業㈱製)を用いて、表1に示した組成の固体燃料ー水スラリーを調製し、上記の試験方法で性能を評価した。 結果を表1に示す。

比較のためCMHECを添加しない固体燃料
一水スラリーについても同様の試験を行った結果も表1に併記する。

表1からCMHECの添加により、固体燃料 ~水スラリーの流動性、安定性が著しく改善されることがわかる。

表 I

		断体》	然料	終ス	<i>5</i>	組成	См	HECの	<i>ትው</i> ሂታ.		放スタ	, 1)	- 物 性	<u> </u>
L	$\overline{}$	相 却	以 分	固体於料	リグニンスハフォン 欧ソーダ	CMHEC	CM₩	HEAG	粘度	粘度	チクリトロ ピー性	疏勒性	安定性	压密固化
	1	石 娽	1 0.5	% 6 5. 3	0. 3	0.01	DS 0.02	MS 3.8	cps 160	сря 1,500	4. 5	(Ö)	0	無
夹	2	,	1 1.8	7 3.0	_	0.15	0.18	2. 7	8 5	2,380	5. 1	0	(0)	,
	3	脱灰石炭	5. 2	6 4.8	0. 3	0.08	0.05	4.1	250	1,880	4.7	U	0	,
1	4	,	3.0	6 8. 0	0.3	0.10	0.18	2. 2	180	1,760	4.5	Ó	0	п
249	5	*	2.1	7 0.3	-	0.18	0.25	1. 8	190	2,100	5. 1	(0)	0	,,
	6	,	0.9	7 3.5	0. 3	0.23	1.8	1. 1	230	2,780	5. 3	0	0	
	7	石炭コークス	1 0.3	7 0.0	0, 3	0.15	0.22	2.0	240	2,360	5. 1	0	©	,
(F)	8	石油コークス	0. 2	7 1.2	•	0.15	1. 0	2.3	250	2,400	5. 2	0	(U	
	9	木質炭	3.2	720		0.15	0.35	L9	250	2,580	5. 3	0	U	,
比	1	石 炭	1 0,8	6 8.1	0. 3	0		-	_	>20,000	仰定不能	×	×	相
	2	脱灰石炭	3.0	6 7.5	•	0	-	. –	-	•	•	×	×	"
蚁	3	石炭コークス	1 0.3	6 9. 0	•	0	-	-	-	•	,	×	×	
151)	4	たい的コークス	0.3	68.5	•	0	-	-	-	,	•	×	×	
	5	木質炭	3.1	7 0.1	,	0			-	_ "	,	×	×	

L3: Entry 2 of 11

File: DWPI

Jul 3, 1987

DERWENT-ACC-NO: 1987-224942

DERWENT-WEEK: 198732

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Solid fuel water slurry compsn. - with good fluidity and stability, contains

carboxymethyl-hydroxyethyl-cellulose

PATENT-ASSIGNEE:

ASSIGNEE CODE
DAICEL CHEM IND LTD DAIL

PRIORITY-DATA: 1985JP-0291676 (December 24, 1985)

Search Selected		***************************************
······································	CONTRACTOR OF THE PROPERTY OF	
······a cattorii va cita cita cita cita cita cita cita cit		
	-00000000000000000000000000000000000000	

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
JP 62149793 A	July 3, 1987		004	
JP 93046877 B	July 15, 1993		004	C10L001/32

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
JP 62149793A	December 24, 1985	1985JP-0291676	
JP 93046877B	December 24, 1985	1985JP-0291676	
JP 93046877B		JP 62149793	Based on

INT-CL (IPC): B01F 17/48; C10L 1/32

ABSTRACTED-PUB-NO: JP 62149793A

BASIC-ABSTRACT:

A new solid fuel-water slurry compsn. is prepd. by adding $\underline{\text{carboxymethyl hydroxyethyl}}$ cellulos (CMHEC).

USE/ADVANTAGE - With good fluidity (viscosity, 1,500-2780cps. compared to more than 20,000 fo reference samples) and stability (stable after two-month standing) in concns. as high as 65-75%, the compsn. is capable of handling similarly as with liq. fuels in pipe transformation, tank storage, and combustion processes.

In an example, the <u>CMHEC</u> pref. has a degree of substitution per anhydrous glucose unit of <u>carboxymethyl</u> gp. of 0.01-2.0, and average mole number of added ethylene oxide per anhydrous glucose unit is 1.0-7.0; and a <u>viscosity</u> of 1% aq. soln. at 25 deg.C of 2-1,000cps. Its blend ratio is pref. 0.005-1 wt.%. Available solid fuels are various powder curls including deashed coal, coal and petroleum coke, petroleum pitch, and charcoal. Surfactants may opt. by used.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: SOLID FUEL WATER SLURRY COMPOSITION FLUID STABILISED CONTAIN CARBOXYMETHYL HYDROXYETHYL CELLULOSE

ADDL-INDEXING-TERMS: