

Random Variable

Experiment (Physical Model)

- → Compose of procedure & observation
- → From observation, we get outcomes
- → From all outcomes, we get a (mathematical) probability model called "Sample space"
- \rightarrow From the model, we get P[A], A \subset S

Random Variable

From a probability model

- Ex.: 2 traffic lights, observe the seq. of light $S = \{R_1R_2, R_1G_2, G_1R_2, G_1G_2\}$
- If assign a number to each outcome in S, each number that we observe is called "Random Variable"
- Observe the number of red light

$$S_X = \{0,1,2\}$$

How about Observe more than one thing in an experiment?

3

What is Multiple Discrete RV?

- Each observation → Random Variable
- 2 observations → 2 Random Variables
- \geq 2 observations \rightarrow Multiple RVs

Joint Probability Mass Function

- For an experiment, Observe one thing
 - Model with one Random Variable
 - Describe the prob. model by using PMF
- For the same experiment, Observe 2 things
 - -2 Random Variables \rightarrow X and Y
 - Joint PMF
- $P_{X,Y}(x,y)$

Definition:

$$P_{X,Y}(x,y) = P[X=x, Y=y]$$

$$S_{X,Y} = \{(x,y) \mid P_{X,Y}(x,y) > 0 \}$$

7

Example

- Timing coordination of 2 traffic lights
 - P[the second light is the same color as the first when the first light is given] = 0.8
 - Assume 1st light is equally likely to be green or red

- Find P[The second light is green]?
- Find P[wait for at least one light]?
- Let observe
 - number of G and number of G before 1st R
 - Find the Joint PMF

9

Example

- Let
 - Count number of $G \rightarrow$ random variable X
 - Count number of G before $1^{st} R \rightarrow Y$

Let g(s) transforms each outcome \rightarrow a pair of RV (X,Y)

$$-g(G_1G_2) = (2,2)$$
 $g(G_1R_2) = (1,1)$

$$g(G_1R_2) = (1,1)$$

$$-g(R_1G_2) = (1,0)$$
 $g(R_1R_2) = (0,0)$

$$g(R_1R_2) = (0,0)$$

- For each pair of x,y
 - $-P_{X,Y}(x,y) = \text{sum of prob. that } X = x \text{ and } Y = y$
 - $-P_{X,Y}(1,0) \rightarrow P[R_1G_2]$

Example

Joint PMF can be written in 3 forms:

	0.4	x=2, y=2
	0.1	x=1, y=1
$P_{X,Y}(x,y) = $	0.1	x=1, y=0
	0.4	x=0, y=0
	0	Otherwise

$P_{X,Y}(x,y)$	y=0	y=1	y=2
x=0	0.4	0	0
x=1	0.1	0.1	0
x=2	0	0	0.4

Joint PMF properties

$$\sum_{x \in S_x} \sum_{y \in S_y} P_{X,Y}(x,y) = 1$$

$$P_{X,Y}(x,y) \ge 0$$

13

Theorem

For any subset $B \subset S$ of X-Y plane, the probability of the event $\{(X,Y) \in B\}$ is

$$P[B] = \sum_{(x,y) \in B} P_{X,Y}(x,y)$$

Marginal PMF

- In an experiment with 2 RVs, X and Y
 - Possible to consider only one (X) and ignore Y
 - $-P_X(x)$

Theorem: For random variables X and Y with joint PMF $P_{X,Y}(x,y)$:

$$P_X(x) = \sum_{y} P_{X,Y}(x,y)$$

$$P_Y(y) = \sum_{x} P_{X,Y}(x,y)$$

Example (Leon-Garcia)

- The number of bytes, N, in a message is geometric distribution with parameter (1-p)
- A maximum packet size = M bytes
- Let Q = the number of packets
- Let R = the number of left over bytes

N bytes

M bytes

R bytes

Example

Find Joint Probability Mass Function P_{Q,R}(q,r)

Solution:

- N, Q, R, and M
- N = ?

$$N = QM + R$$

• $S_N, S_Q, S_R = ?$ $S_N = \{0,1,2,3,...\}$ $S_Q = \{0,1,2,3,...\}$

 $S_R = \{0,1,2,3,...,M-1\}$

$$P_{Q,R}(q,r) = P_{N}(n)$$

$$= P[N = n]$$

$$= P[N = qM + r]$$

• N = Geometric RV with parameter (1 - p)

2.1

Note: Geometric RV

• Two version of Geometric RV

$$S_X = \{1, 2, 3, ...\}$$

$$S_Y = \{0,1,2,...\}$$

•
$$E[X] = E[Y]$$
 ???

$$E[X] = 1/p$$

$$E[Y] = (1-p)/p$$

Definition: X is a Geometric Random Variable if the PMF of X,
$$P_X(x)$$
, has the form:

$$P_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1,2,3,... \\ 0 & \text{Otherwise} \end{cases}$$
where $p = (0,1)$

$$P_{Y}(y) = \begin{cases} p(1-p)^{y} & y = 0,1,2,... \\ 0 & Otherwise \end{cases}$$

$$= P[N = n]$$

$$= P[N = qM + r]$$
• $P_N(n) = (1-p) (1-(1-p))^n$

$$= (1-p) (1-(1-p))^{qM+r}$$

$$= (1-p) p^{qM+r}$$

•
$$P_{Q,R}(q,r) = (1-p) p^{qM+r}$$

 $P_{Q,R}(q,r) = P_{N}(n)$

• Find
$$P_0(q) = ?$$

• Find
$$P_Q(q) = ?$$
• $P_Q(q) = \sum_{r=0}^{M-1} (1-p) p^{qM+r}$

$$= (1-p) p^{qM} \sum_{r=0}^{M-1} p^r$$

$$= (1-p) p^{qM} \frac{1-p^M}{1-p}$$

$$= (1-p^M) (p^M)^q \qquad q = 0,1,2,3,..._{25}$$

Example

• Find
$$P_R(r) = ?$$

• Find
$$P_R(r) = ?$$
• $P_R(r) = \sum_{q=0}^{\infty} (1-p)p^{qM+r}$

$$= (1-p)p^r \sum_{q=0}^{\infty} p^{qM}$$

$$= (1-p)p^r \frac{1}{1-p^M}$$

$$= \frac{(1-p)}{(1-p^M)} p^r \qquad r = 0,1,2,...,M-1$$
₂₆

Marginal PMF

- From $P_{X,Y}(x,y)$, we can find
 - $-P_X(x)$
 - $-P_{Y}(y)$
- From $P_X(x)$ or $P_Y(y)$, can we find $P_{X,Y}(x,y)$?
 - NO

$$S_D = \{40,60,80,120,180\}$$

$$P_{D}(d) = \sum_{(s,t):g(s,t)=d} P_{S,T}(s,t)$$

$$P_{D}(d) = \begin{cases} 0.15 & d = 40 \\ 0.1 & d = 60 \\ 0.3 & d = 80 \\ 0.15 + 0.2 & d = 120 \\ 0.1 & d = 180 \\ 0 & Otherwise \end{cases}$$

$$E[D] = \sum_{d \in S_D} dP_D(d)$$
$$= 96 \text{ sec}$$

Expected Value of g(X,Y)

Theorem: for W = g(X,Y)

$$E[W] = \sum_{x \in S_X} \sum_{y \in S_Y} g(X,Y) P_{X,Y}(x,y)$$

Expectations

- E[W]
- for W = g(X,Y)
- E[X+Y]
- Var[X+Y]
- (Variance of sum of 2 RVs)
- Cov[X,Y]
- (Covariance)
- $r_{X,Y}$
- (Correlation)
- $\bullet \ \rho_{X,Y}$
- (Correlation Coefficient)

35

For any 2 RVs

Theorem:

$$E[X + Y] = E[X] + E[Y]$$

- Find E[X] and E[Y]
 - → Marginal PMF

Var[X+Y]Definition: $Var[X] = E[(X - \mu_{x})^{2}]$ $Var[X+Y] = E[((X+Y) - \mu_{X+Y})^{2}]$ $= E[((X+Y) - (\mu_{X} + \mu_{Y}))^{2}]$ $= E[((X-\mu_{x}) + (Y-\mu_{Y}))^{2}]$ $= E[(X-\mu_{x})^{2} + 2(X-\mu_{X})(Y-\mu_{Y}) + (Y-\mu_{Y})^{2}]$ $= E[(X-\mu_{x})^{2}] + 2E[(X-\mu_{X})(Y-\mu_{Y})] + E(Y-\mu_{Y})^{2}$ Theorem: $Var[X+Y] = Var[X] + Var[Y] + 2E[(X-\mu_{X})(Y-\mu_{Y})]$ Covariance

Covariance of X and Y

Theorem: $Cov[X,Y] \in E[XY]$ - $\mu_x \mu_y$

Correlation

If
$$X = Y \rightarrow Cov[X,X] = E[XX] - \mu_x \mu_x$$

$$= E[X^2] - \mu_x^2$$

$$= E[X^2 - 2 \mu_x^2 + \mu_x^2]$$

$$= E[X^2 - 2 \mu_x X + \mu_x^2]$$

$$= E[(X - \mu_x)^2]$$

$$= Var[X]$$

If μ_x or $\mu_Y = 0 \rightarrow Cov[X,Y] = E[XY]$

39

Correlation

Definition: The correlation of X and Y is $r_{X,Y}$ $r_{X,Y} = E[XY]$

Theorem: $Cov[X,Y] = r_{X,Y} - \mu_X \mu_Y$

More Definition

Definition 1:

X and Y are **Orthogonal** if $\mathbf{r}_{X,Y} = \mathbf{0}$; $E[XY] = \mathbf{0}$

Definition 2:

X and Y are Uncorrelated if Cov[X,Y] = 0

Definition 3:

Correlation Coefficient of X and Y is

$$\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}} = [-1, 1]$$

41

Correlation Coefficient

- $\rho_{\rm X,Y}$
 - Describes the info about Y by observing X
- $\rho_{X,Y} > 0$
 - If $X \cap (relative to mean) \rightarrow Y \cap$
 - If $X \downarrow \text{ (relative to mean)} \rightarrow Y \downarrow \text{}$
- $\rho_{X,Y} < 0$
 - If $X \cap (relative to mean) \rightarrow Y \downarrow$
 - If $X \downarrow \text{(relative to mean)} \rightarrow Y \uparrow \uparrow$
- Example:
 - X = student's height, Y= student's weight $\rho_{X,Y} > 0$
 - X = cell phone distance, Y= Rx signal Strength $\rho_{X,Y} < 0$

Uncorrelated

If X and Y are Independent, then

- \rightarrow Cov[X,Y] = 0 \rightarrow $\rho_{X,Y}$ = 0
- → X and Y are Uncorrelated

Note:

If X and Y are Uncorrelated,

→ X and Y may or may not Independent

Example

$P_{S,T}(s,t)$	t = 40	t = 60
s = 1 sheet	0.15	0.1
s = 2 sheets	0.3	0.2
s = 3 sheets	0.15	0.1

Quiz 4.7 Find

- (1) E[S] and Var[S]
- (2) E[T] and Var[T]
- (3) $r_{S,T} = E[ST]$ (4) Cov[S,T]
- (5) $\rho_{S,T}$

Conditional Joint PMF
by an Event

$$P_{X,Y|B}(x,y) = \frac{P[(X=x,Y=y) \cap B]}{P[B]}$$
If $(X=x,Y=y) \in B \rightarrow (X=x,Y=y) \cap B = (X=x,Y=y)$

$$P_{X,Y|B}(x,y) = \begin{cases} P[(X=x,Y=y)] & (x,y) \in B \\ 0 & \text{Otherwise} \end{cases}$$

Conditional PMF

- Special case of Conditional Joint PMF by an Event

 → the Event is X=x or Y=y
- $P_{X,Y|B}(x,y)$ when $B = \{Y=y\}$ $\Rightarrow P_{X,Y|Y=y}(x,y) = P_{X|Y}(x|y)$

 $\textbf{Definition:} \quad P_{X|Y}(x|y) = P[X=x \mid Y=y]$

47

Conditional PMF

$$\begin{aligned} P_{X|Y}(x|y) &= P[X=x \mid Y=y] \\ &= \frac{P[X=x,Y=y]}{P[Y=y]} \\ &= \frac{P_{X,Y}(x,y)}{P_{Y}(y)} \end{aligned}$$

Theorem:

$$P_{X,Y}(x,y) = P_{X|Y}(x|y)P_Y(y) = P_{Y|X}(y|x)P_X(x)$$

$$P_{X}(x) = \begin{cases} 1/4 & x = 1\\ 1/8+1/8 & x = 2\\ 1/12+1/12+1/12 & x = 3\\ 1/16+1/16+1/16 & x = 4\\ 0 & \text{Otherwise} \end{cases}$$

$$P_{X}(x) = \begin{cases} 1/4 & x = 1\\ 1/4 & x = 2\\ 1/4 & x = 3\\ 1/4 & x = 4\\ 0 & \text{Otherwise} \end{cases}$$
50

Independent RVs

- From the independent definition A and B are independent iff P[AB] = P[A]P[B]
- X and Y are independent RVs if and only if $\{X=x\}$ and $\{Y=y\}$ are independent for all x,y in $S_{X,Y}$

 $P_{X,Y}(x,y) = P_X(x)P_Y(y)$ **Definition:**

53

Independent RVs

Theorem: If X and Y are statistically independent,

- (a) $r_{X,Y} = E[XY] = E[X]E[Y]$ (b) E[X|Y = y] = E[X]for all $y \in S_Y$
- (c) E[Y|X = x] = E[Y]for all $x \in S_X$
- (d) Var[X+Y] = Var[X] + Var[Y]
- (e) $Cov[X,Y] = \rho_{X,Y} = 0$

NANANA WARANA WA

Random variables X and Y have the joint PMF $P_{X,Y}(x,y)$, as given in Example 4.13 and repeated in the accompanying graph. Find the conditional PMF of Y given X=x for each $x\in \mathcal{S}_X$.

To apply Theorem 4.22, we first find the marginal PMF $P_X(x)$. By Theorem 4.3, $P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y)$. For a given X = x, we sum the nonzero probablities along the vertical line X = x. That is,

$$P_{X}\left(x\right) = \left\{ \begin{array}{ll} 1/4 & x = 1, \\ 1/8 + 1/8 & x = 2, \\ 1/12 + 1/12 + 1/12 & x = 3, \\ 1/16 + 1/16 + 1/16 + 1/16 & x = 4, \\ 0 & \text{otherwise,} \end{array} \right. = \left\{ \begin{array}{ll} 1/4 & x = 1, \\ 1/4 & x = 2, \\ 1/4 & x = 3, \\ 1/4 & x = 4, \\ 0 & \text{otherwise.} \end{array} \right.$$

Theorem 4.22 implies that for $x \in \{1, 2, 3, 4\}$,

$$P_{Y|X}(y|x) = \frac{P_{X,Y}(x,y)}{P_{X}(x)} = 4P_{X,Y}(x,y). \tag{4.98}$$

For each $x \in \{1, 2, 3, 4\}$, $P_{Y|X}(y|x)$ is a different PMF.

$$\begin{split} P_{Y|X}(y|1) &= \left\{ \begin{array}{l} 1 & y = 1, \\ 0 & \text{otherwise.} \end{array} \right. & P_{Y|X}(y|2) = \left\{ \begin{array}{l} 1/2 & y \in \{1,2\}, \\ 0 & \text{otherwise.} \end{array} \right. \\ P_{Y|X}(y|3) &= \left\{ \begin{array}{l} 1/3 & y \in \{1,2,3\}, \\ 0 & \text{otherwise.} \end{array} \right. & P_{Y|X}(y|4) = \left\{ \begin{array}{l} 1/4 & y \in \{1,2,3,4\}, \\ 0 & \text{otherwise.} \end{array} \right. \end{split}$$

Given X = x, the conditional PMF of Y is the discrete uniform (1, x) random variable.

$$\begin{array}{c|ccccc} P\chi, y(x, y) & y = -1 & y = 0 & y = 1 \\ x = -1 & 0 & 0.25 & 0 \\ x = 1 & 0.25 & 0.25 & 0.25 \end{array} \tag{4.140}$$

Are X and Y independent? Are X and Y uncorrelated?

For the marginal PMFs, we have $P_X(-1) = 0.25$ and $P_Y(-1) = 0.25$. Thus

$$P_X(-1) P_Y(-1) = 0.0625 \neq P_{X,Y}(-1, -1) = 0,$$
 (4.141)

and we conclude that X and Y are not independent.

To find Cov[X, Y], we calculate

$$E[X] = 0.5, E[Y] = 0, E[XY] = 0. (4.142)$$

Therefore, Theorem 4.16(a) implies

$$Cov[X, Y] = E[XY] - E[X]E[Y] = \rho_{X,Y} = 0,$$
 (4.143)

and by definition X and Y are uncorrelated.

59

Example 4.18

In Example 4.17, we derived the following conditional PMFs: $P_{Y|X}(y|1)$, $P_{Y|X}(y|2)$, $P_{Y|X}(y|3)$, and $P_{Y|X}(y|4)$. Find E[Y|X=x] for x=1,2,3,4.

Applying Theorem 4.23 with g(x, y) = x, we calculate

$$E[Y|X=1]=1,$$
 $E[Y|X=2]=1.5,$ (4.100)

$$E[Y|X=3]=2,$$
 $E[Y|X=4]=2.5.$ (4.101)

Now we consider the case in which X and Y are continuous random variables. We observe $\{Y=y\}$ and define the PDF of X given $\{Y=y\}$. We cannot use $B=\{Y=y\}$ in Definition 4.10 because P[Y=y]=0. Instead, we define a *conditional probability density function*, denoted as $f_{X|Y}(x|y)$.