Chapter 2: Introduction to Relational Model

Relational Algebra

- Procedural language
- Six basic operators
 - select
 - project
 - union
 - set difference
 - Cartesian product
 - rename
- The operators take one or more relations as inputs and give a new relation as a result.

Select Operation – Example

• Relation *r*

Α	В	С	D
а	а	1	7
а	β	5	7
β	β	12	3
β	β	23	10

•
$$\sigma_{A=B \land D > 5}$$
 (r)

Α	В	С	D
а	а	1	7
β	β	23	10

Project Operation – Example

• Relation *r*:

Α	В	С
а	10	1
а	20	1
β	30	1
β	40	2

• $\prod_{A,C} (r)$

Α	С		Α	С
а	1		а	1
а	1	=	β	1
β	1		β	2
β	2			

Union Operation – Example

• Relations *r*, *s*:

Α	В	
а	1	
а	2	
β	1	
r		

Α	В	
а	2	
β	3	
S		

 $r \cup s$:

Α	В
а	1
а	2
β	1
β	3

Set Difference Operation – Example

• Relations *r*, *s*:

Α	В	
а	1	
а	2	
β	1	
r		

r − *s*:

Cartesian-Product Operation-Example

Relations *r*, *s*:

С	D	Ε
а	10	а
β	10	а
β	20	b
γ	10	b
	S	

r x s:

A	В	С	D	Ε
а	1	а	10	а
а	1	β	10	а
а	1	β	20	b
а	1	γ	10	b
β	2	а	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.
 Example:

$$\rho_{x}(E)$$

returns the expression E under the name XIf a relational-algebra expression E has arity n, then

$$\rho_{X (A1, A2, ..., An)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A1, A2, ..., An.

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

Set-Intersection Operation - Example

• Relation r, s:

Α	В
α	1
α	2
β	1

A B
α 2
β 3

r

• $r \cap s$

Α	В
α	2

S

Natural-Join Operation

- Notation: r⋈ s
- Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s
- Example:

$$R = (A, B, C, D)$$

 $S = (E, B, D)$

- Result schema = (A, B, C, D, E)
- r s is defined as:

$$\bowtie_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B} \land_{r.D = s.D} (r \times s))$$

Natural Join Operation – Example

• Relations r, s:

Α	В	С	D
а	1	а	а
β	2	γ	а
γ	4	β	b
а	1	γ	а
δ	2	β	b
r			

В	D	Ε
1	а	а
3	а	β
1	а	β γ δ
2 3	b	δ
3	b	€
S		

 $r\bowtie s$

Α	В	С	D	Ε
а	1	а	а	а
а	1	а	а	γ
а	1	γ	а	а
а	1	γ	а	γ
δ	2	β	b	δ

Division Operation

$$r \div s$$

- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where

•
$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

•
$$S = (B_1, ..., B_n)$$

The result of $r \div s$ is a relation on schema

$$R - S = (A_1, ..., A_m)$$

$$r \div s = \{ t \mid t \in \prod_{R - S}(r) \land \forall u \in s (tu \in r) \}$$

Division Operation – Example

Relations *r*, *s*:

Α	В
а	1 2
a a	3
β	1 1
δ	1
δ δ	3 4
∈	6 1
β	2

1 2 s

 $r \div s$:

α β r

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

$$temp1 \leftarrow \prod_{R-S} (r)$$

 $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$
 $result = temp1 - temp2$

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- May use variable in subsequent expressions.

Extended Relational-Algebra-Operations

- Generalized Projection
- Outer Join
- Aggregate Functions

Generalized Projection

 Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{\mathsf{F1},\mathsf{F2},\ldots,\mathsf{Fn}} (E)$$

- E is any relational-algebra expression
- Each of $F_1, F_2, ..., F_n$ are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation credit-info(customer-name, limit, credit-balance),
 find how much more each person can spend:

 $\bigcap_{\text{customer-name, limit - credit-balance}} (\text{credit-info})$

Result of $\Pi_{customer-name, (limit - credit-balance)}$ as credit-available (credit-info).

customer-name	credit-available
Curry	250
Jones	5300
Smith	1600
Hayes	0

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a single value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate operation in relational algebra

- E is any relational-algebra expression
- $G_1, G_2, ..., G_n$ is a list of attributes on which to group (can be empty)
- Each F_i is an aggregate function
- Each A_i is an attribute name

Aggregate Operation – Example

• Relation *r*:

Α	В	С
а	а	7
а	β	7
β	β	3
β	β	10

$$g_{\text{sum(c)}}(r)$$

Aggregate Operation – Example

Relation account grouped by branch-name:

branch-name	account-number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

$$branch-name g_{sum(balance)}(account)$$

branch-name	balance
Perryridge	1300
Brighton	1500
Redwood	700

Outer Join – Example

• Relation loan

loan-number
L-170
L-230
L-260

amount
3000
4000
1700

Relation borrower

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

Outer Join – Example

Inner Join

loan ⋈ *Borrower*

loan-number L-170 L-230

branch-name
Downtown
Redwood

amount 3000 4000 customer-name
Jones
Smith

Left Outer Join

loan <u></u> ⊠ *Borrower*

loan-number L-170 L-230 L-260

branch-name
Downtown
Redwood
Perryridge

3000 4000 1700 Jones
Smith

Outer Join – Example

Right Outer Join

loan \sqrt borrower

loan-number L-170 L-230 L-155

branch-name
Downtown
Redwood
null

amount 3000 4000 null customer-name
Jones
Smith
Hayes

Full Outer Join

loan \sqrtborrower

loan-number L-170 L-230 L-260 L-155

branch-name
Downtown
Redwood
Perryridge
null

amount 3000 4000 1700 null customer-name
Jones
Smith
null
Hayes

Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null.
- Aggregate functions simply ignore null values
 - Is an arbitrary decision. Could have returned null as result instead.
 - We follow the semantics of SQL in its handling of null values
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same
 - Alternative: assume each null is different from each other
 - Both are arbitrary decisions, so we simply follow SQL

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

Ioan (Ioan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Example Queries

Find all loans of over \$1200

$$\sigma_{amount > 1200}$$
 (loan)

 Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan-number} (\sigma_{amount > 1200} (loan))$$

Result of $\sigma_{branch-name = "Perryridge"}$ (loan)

loan-number	branch-name	amount
L-15	Perryridge	1500
L-16	Perryridge	1300

Result of $\Pi_{customer-name}$

customer-name

Adams Hayes

Loan Number and the Amount of the Loan

 $\prod_{account-number, balance}$ (account)

loan-number	amount
L-11	900
L-14	1500
L-15	1500
L-16	1300
L-17	1000
L-23	2000
L-93	500

Names of All Customers Who Have Either a Loan or an Account

 $\bigcap_{customer-name} (depositor) \cup \bigcap_{customer-name} (borrower)$

customer-name Adams Curry Hayes Jackson Jones Smith Williams Lindsay Johnson Turner

Result of borrower × loan

	1	loan.		
	borrower. loan-number	loan. loan-number	branch-name	
customer-name				amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	L-14	Downtown	1500
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Adams	L-16	L-17	Downtown	1000
Adams	L-16	L-23	Redwood	2000
Adams	L-16	L-93	Mianus	500
Curry	L-93	L-11	Round Hill	900
Curry	L-93	L-14	Downtown	1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	L-93	L-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	L-11		900
Hayes	L-15	L-14		1500
Hayes	L-15	L-15		1500
Hayes	L-15	L-16		1300
Hayes	L-15	L-17		1000
Hayes	L-15	L-23		2000
Hayes	L-15	L-93		500
	• • •	• • • •	***	
***			•••	•••
		•••		•••
Smith	L-23	L-11	Round Hill	900
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Smith	L-23	L-17	Downtown	1000
Smith	L-23	L-23	Redwood	2000
Smith	L-23	L-93	Mianus	500
Williams	L-17	L-11	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300
Williams	L-17	L-17	Downtown	1000
Williams	L-17	L-23	Redwood	2000
Williams	L-17	L-93	Mianus	500
No.		0		<u> </u>

Result of $\sigma_{branch-name = "Perryridge"}$ (borrower × loan)

	borrower.	loan.		
customer-name	loan-number	loan-number	branch-name	amount
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Hayes	L-15	L-15	Perryridge	1500
Hayes	L-15	L-16	Perryridge	1300
Jackson	L-14	L-15	Perryridge	1500
Jackson	L-14	L-16	Perryridge	1300
Jones	L-17	L-15	Perryridge	1500
Jones	L-17	L-16	Perryridge	1300
Smith	L-11	L-15	Perryridge	1500
Smith	L-11	L-16	Perryridge	1300
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300

Example Queries

Find the largest account balance

- Rename account relation as d
- The query is:

$$\prod_{balance} (account) - \prod_{account.balance} (\sigma_{account.balance} < d.balance (account x ρ_d (account)))$$

Largest Account Balance in the Bank

Result of П customer-name, loan-number, amount (borryower loan)

customer-name	loan-number	amount
Adams	L-16	1300
Curry	L-93	500
Hayes	L-15	1500
Jackson	L-14	1500
Jones	L-17	1000
Smith	L-23	2000
Smith	L-11	900
Williams	L-17	1000

Result of $\Pi_{branch-name}(\sigma_{customer-city} = \text{"Harrison"}(customer) account \bowtie depositor))$

branch-name

Brighton Perryridge

Result of $\Pi_{branch-name}$ ($\sigma_{branch-city} =$ "Brooklyn" (branch))

branch-name

Brighton Downtown

Result of $\Pi_{customer-name, branch-name}$ (deposito → account)

customer-name	branch-name
Hayes	Perryridge
Johnson	Downtown
Johnson	Brighton
Jones	Brighton
Lindsay	Redwood
Smith	Mianus
Turner	Round Hill

The credit-info Relation

customer-name	branch-name
Hayes	Perryridge
Johnson	Downtown
Johnson	Brighton
Jones	Brighton
Lindsay	Redwood
Smith	Mianus
Turner	Round Hill

Result of $\Pi_{customer-name, (limit - credit-balance)}$ as credit-available (credit-info).

customer-name	credit-available
Curry	250
Jones	5300
Smith	1600
Hayes	0

The pt-works Relation

employee-name	branch-name	salary
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Rao	Austin	1500
Sato	Austin	1600

The pt-works Relation After Grouping

employee-name	branch-name	salary
Rao	Austin	1500
Sato	Austin	1600
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300

Result of branch-name ς sum(salary) (pt-works)

branch-name	sum of salary
Austin	3100
Downtown	5300
Perryridge	8100

Result of branch-name sum salary, max(salary) as max-salary (pt-works)

branch-name	sum-salary	max-salary
Austin	3100	1600
Downtown	5300	2500
Perryridge	8100	5300

The employee and ft-works Relations

employee-name	street	city
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

employee-name	branch-name	salary
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

The Result of *employee* ⋈ *ft-works*

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500

The Result of employee ft-works

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null

Result of employee ft-works

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Gates	null	null	Redmond	5300

Result of employee ft-works

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null
Gates	null	null	Redmond	5300

End of Chapter 2