Bayesian Compression for Deep Learning

Alexander Markovich

Motivation

- Billions of parameters
- Slow inference
- Limited memory devices (smartphones, robots)
- Overfitting

Variety of methods

- Individual or structural sparsification / pruning
- Quantization
- Low rank approximation for weight matrices
- ...

Individual vs Structural

- Units
- Layers
- Filters
- ...

Bayesian Inference <3

Given $\mathcal{D} = \left\{ (x_1, y_1), \dots, (x_n, y_n) \right\}$

Goal $p(y \mid x, w)$

Likelihood $p(w\mid \mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$ and then? $p(w\mid \mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$ Evidence

(Stochastic) Variance Inference

$$\log p(\mathcal{D}) = \text{ELBO} + D_{KL}(q_{\phi}(w) || p(w | \mathcal{D}))$$

ELBO =
$$\sum_{i=1}^{N} \mathbb{E}_{q_{\phi}(w)} \log p(y_i|x_i, w) - D_{KL}(q_{\phi}(w)||p(w))$$
Data term
Regularization

$$\min_{\phi} D_{KL}(q_{\phi}(w) || p(w \mid \mathcal{D})) \Leftrightarrow \max_{\phi} \text{ELBO}$$

Relation to MDL

$$L(D) = \min_{H \in \mathcal{H}} \Bigl\{ L(H) + L(D \mid H) \Bigr\}$$
 Hypothese Data

$$\begin{split} \text{ELBO} = \underbrace{\mathbb{E}_{q_{\phi}(w)} \log p(\mathcal{D}|w)}_{\text{Error cost}} + \underbrace{\mathbb{E}_{q_{\phi}(w)} \log p(w) + \mathcal{H}(q_{\phi}(w))}_{\text{Complexity cost}} \end{split}$$

$$B = (A \odot \Xi)W, \ \xi_{mi} \sim p(\xi)$$

$$A \in \mathbb{R}^{M \times I}$$

$$W \in \mathbb{R}^{I \times O}$$

$$B \in \mathbb{R}^{M \times O}$$

$$\xi_{mi} \sim \mathcal{N}(1, \alpha = \frac{p}{1-p})$$
 ———— Gaussian Dropout

$$w_{ij} = \theta_{ij}\xi_{ij} = \theta_{ij}(1 + \sqrt{\alpha}\epsilon_{ij}) \sim \mathcal{N}(w_{ij} \mid \theta_{ij}, \alpha\theta_{ij}^2)$$
$$\epsilon_{ij} \sim \mathcal{N}(0, 1)$$

What about prior?

$$p(|w|) \propto \frac{1}{|w|}$$

$$q(w \mid \theta, \alpha) = \mathcal{N}(w \mid \theta, \alpha\theta^2)$$

ELBO =
$$\sum_{i=1}^{N} \mathbb{E}_{q(w|\theta,\alpha)} \log p(y_i \mid x_i, w) - D_{KL}(q(w \mid \theta, \alpha) || p(w))$$

$$\frac{-D_{KL}(q(w_{ij} \mid \theta_{ij}, \alpha_{ij}) || p(w_{ij}))}{\frac{1}{2} \log \alpha_{ij} + \mathbb{E}_{\epsilon \sim \mathcal{N}(1, \alpha_{ij})} \log |\epsilon| + C}$$

$$\alpha_{ij} \to \infty$$

$$\theta_{ij} \to 0, \quad \alpha_{ij}\theta_{ij}^2 \to 0$$

$$\downarrow \downarrow$$

$$q(w_{ij} \mid \theta_{ij}, \alpha_{ij}) \to \mathcal{N}(w_{ij} \mid 0, 0) = \delta(w_{ij})$$

Hierarchical prior

Scale mixture of normals

$$w \sim \mathcal{N}(w \mid 0, z^2), \quad z \sim p(z)$$

Prior

$$p(w) = \int p(z) \mathcal{N}(w \mid 0, z^2) dz$$

$$p(z) \propto \frac{1}{|z|}$$
 $p(w) \propto \int \frac{1}{|z|} \mathcal{N}(w \mid 0, z^2) = \frac{1}{|w|}$ $p(z) \propto \sqrt{\det \mathcal{I}(z)}$

Group sparsity

$$p(W, z) \propto \prod_{i=1}^{A} \left[\frac{1}{|z_i|} \prod_{j=1}^{B} \mathcal{N}(w_{ij} \mid 0, z_i^2) \right]$$

$$q_{\phi}(W,z) = \prod_{i=1}^{A} \left[\mathcal{N}(z_i \mid \mu_{z_i}, \mu_{z_i}^2 \alpha_i) \prod_{j}^{B} \mathcal{N}(w_{ij} \mid z_i \mu_{ij}, z_i^2 \sigma_{ij}^2) \right]$$

Dropout rate per group

 $\log \alpha_i > \text{threshold}$

Horseshoe prior

$$p(z)=\mathcal{C}^+(0,s)=2\left(s\pi(1+(z/s)^2)
ight)^{-1}$$
 half-Caushy distribution

$$s \sim \mathcal{C}^+(0, \tau_0); \qquad \tilde{z}_i \sim \mathcal{C}^+(0, 1); \qquad \tilde{w}_{ij} \sim \mathcal{N}(0, 1); \qquad w_{ij} = \tilde{w}_{ij}\tilde{z}_i s,$$

Horseshoe prior

$$s \sim \mathcal{C}^{+}(0, \tau_{0}); \qquad \tilde{z}_{i} \sim \mathcal{C}^{+}(0, 1); \qquad \tilde{w}_{ij} \sim \mathcal{N}(0, 1); \qquad w_{ij} = \tilde{w}_{ij}\tilde{z}_{i}s,$$

$$\downarrow$$

$$s_{b} \sim \mathcal{IG}(0.5, 1); \quad s_{a} \sim \mathcal{G}(0.5, \tau_{0}^{2}); \quad \tilde{\beta}_{i} \sim \mathcal{IG}(0.5, 1); \quad \tilde{\alpha}_{i} \sim \mathcal{G}(0.5, 1); \quad \tilde{w}_{ij} \sim \mathcal{N}(0, 1)$$

$$w_{ij} = \tilde{w}_{ij}\sqrt{s_{a}s_{b}\tilde{\alpha}_{i}\tilde{\beta}_{i}}.$$

Interesting fact

 $\tilde{\alpha}_i, \tilde{\beta}_i \to 0 \Leftrightarrow \text{Normal-Jeffreys prior} = \text{Horseshoe prior}$

Compression Rate

			Compression Rates (Error %)		
Model				Fast	Maximum
Original Error %	Method	$\frac{ \mathbf{w}\neq 0 }{ \mathbf{w} }\%$	Pruning	Prediction	Compression
LeNet-300-100	DC	8.0	6 (1.6)	-	40 (1.6)
	DNS	1.8	28* (2.0)	-	_
1.6	SWS	4.3	12* (1.9)	-	64(1.9)
	Sparse VD	2.2	21(1.8)	84(1.8)	113 (1.8)
	BC-GNJ	10.8	9(1.8)	36(1.8)	58(1.8)
	BC-GHS	10.6	9(1.8)	23(1.9)	59(2.0)
LeNet-5-Caffe	DC	8.0	6*(0.7)	-	39(0.7)
	DNS	0.9	55*(0.9)	-	108(0.9)
0.9	SWS	0.5	100*(1.0)	-	162(1.0)
	Sparse VD	0.7	63(1.0)	228(1.0)	365(1.0)
	BC-GNJ	0.9	108(1.0)	361(1.0)	573(1.0)
	BC-GHS	0.6	156(1.0)	419(1.0)	771(1.0)
VGG	BC-GNJ	6.7	14(8.6)	56(8.8)	95(8.6)
8.4	BC-GHS	5.5	18(9.0)	59(9.0)	116(9.2)

Acceleration

Figure 1: **Left:** Avg. Time a batch of 8192 samples takes to pass through LeNet-5-Caffe. Numbers on top of the bars represent speed-up factor relative to the CPU implementation of the original network. **Right:** Energy consumption of the GPU of the same process (when run on GPU).