Yifan Zhu

Regression and ANOVA

Advanced inference for multiple regression. The F test statistic

Multiple Regression and ANOVA (Ch. 9.2)

Yifan 7hu

Iowa State University

Outline

Multiple Regression and ANOVA (Ch. 9.2)

Yifan Zhu

Multiple Regression and ANOVA

Sums of squares
Advanced inference
for multiple regressio
The F test statistic
and R²

Multiple Regression and ANOVA

Sums of squares Advanced inference for multiple regression The F test statistic and \mathbb{R}^2

- Analysis of variance (ANOVA): the use of sums of squares to construct a test statistic for comparing nested models.
- ▶ **Nested models**: a pair of models such that one contains all the parameters of the other.
 - Examples:
 - ► Full model: $Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$ with the reduced model: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$.
 - ▶ Full model: $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i$ with the reduced model: $Y_i = \beta_0 + \varepsilon_i$

Total sum of squares (SST): the total amount of variation in the response.

$$SST = \sum_{i} (y_i - \overline{y})^2$$

▶ Regression sum of squares (SSR): the amount of variation in response explained by the model.

$$SSR = \sum_{i} (\widehat{y}_i - \overline{y})^2$$

► Error sum of squares (SSE): the amount of variation in the response *not* explained by the model.

$$SSE = \sum_{i} (y_i - \widehat{y}_i)^2$$

$$SST = SSR + SSE$$

 \triangleright We can use them to calculate R^2 :

$$R^2 = \frac{SST - SSE}{SST} = \frac{SSR}{SST}$$

► We can calculate the mean squared error (MSE):

$$MSE = \frac{1}{n-p}SSE$$

which satisfies:

$$E(MSE) = \sigma^2$$

 $\mathit{MSE} = \mathit{s}_{\mathit{LF}}^2$ for simple linear regression and $\mathit{s}_{\mathit{SF}}^2$ for multiple regression.

► The regression mean square (MSR) is:

$$MSR = \frac{1}{p-1}SSR$$

Multiple Regression and ANOVA (Ch. 9.2)

Yifan Zhu

Multiple
Regression and

Sums of squares
Advanced inference
for multiple regression
The F test statistic

Suppose I have the full model:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

► And an intercept-only reduced model:

$$Y_i = \beta_0 + \varepsilon_i$$

- I want to do a hypothesis test to decide if the full model works better than the reduced model.
 - ▶ Does the full model explain significantly more variation in the response than the reduced model?
 - This is a job for the sums of squares.

Yifan Zhu

- Multiple Regression and ANOVA
- Advanced inference for multiple regression

 The F test statistic and R²

- 1. $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$
 - H_a : not all of the β_i 's = 0 ($i=1,2,\ldots,p-1$)
- 2. α is some sensible value (< 0.1).
- 3. The test statistic is:

$$F = \frac{SSR/(p-1)}{SSE/(n-p)} = \frac{MSR}{MSE} \sim F_{p-1, n-p}$$

Assume:

- $ightharpoonup H_0$ is true.
- ▶ The full model is valid with the ε_i 's iid N(0, σ^2)
- 4. Reject H_0 if observed $F > F_{p-1,n-p,1-\alpha}$. Or use the p-value: $P(F_{p-1,n-p} > observedF)$; reject H_0 when p-value is small.

- Consider a chemical plant that makes nitric acid from ammonia.
- We want to predict stack loss (y, 10 times the % ammonia that escapes from the absorption column) using:
 - \triangleright x_1 : air flow, the rate of operation of the plant
 - \triangleright x_2 , inlet temperature of the cooling water
 - x_3 : (% circulating acid 50%)×10

i,		x_{2i} ,	x_{3i} ,	
Observation	x_{1i} ,	Cooling Water	Acid	y_i ,
Number	Air Flow	Inlet Temperature	Concentration	Stack Loss
1	80	27	88	37
2	62	22	87	18
3	62	23	87	18
4	62	24	93	19
5	62	24	93	20
6	58	23	87	15
7	58	18	80	14
8	58	18	89	14
9	58	17	88	13
10	58	18	82	11
11	58	19	93	12
12	50	18	89	8
13	50	18	86	7
14	50	19	72	8
15	50	19	79	8
16	50	20	80	9
17	56	20	82	15

Yifan Zhu

Multiple Regression ANOVA

Sums of squares Advanced inference for multiple regression The F₋test statistic and R²

- Given:
 - n = 17
 - ▶ *y*: stack loss of nitrogen from the chemical plant.
 - \triangleright x_1 : air flow, the rate of operation of the plant
 - $ightharpoonup x_2$, inlet temperature of the cooling water
 - ► x_3 : (% circulating acid 50%)×10
- ▶ We'll test the full model:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \varepsilon_i$$

against the reduced model:

$$Y_i = \beta_0 + \varepsilon_i$$

at $\alpha = 0.05$.

- 1. $H_0 : \beta_1 = \beta_2 = \beta_3 = 0$
 - ▶ Not all of the β_i 's are 0, i = 1, 2, 3.
- 2. $\alpha = 0.05$
- 3. The test statistic is:

$$F = \frac{SSR/(p-1)}{SSE/(n-p)} = \frac{MSR}{MSE} \sim F_{p-1, n-p}$$

Assume:

- $ightharpoonup H_0$ is true.
- ▶ The full model is valid with the ε_i 's iid $N(0,\sigma^2)$

Reject H_0 if $F > F_{p-1, n-p, 1-\alpha} = F_{4-1, 17-4, 1-0.05} = F_{3,13,0.95} = 3.41$.

4. In JMP, fit the full model and look at the ANOVA table:

Analys	is of	Variance	÷	
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	3	795.83449	265.278	169.0432
Error	13	20.40080	1.569	Prob > F
C. Total	16	816.23529		<.0001

by reading directly from the table, we can see:

$$p-1=3$$
. $n-p=13$. $n-1=16$

$$MSR = SSR/(p-1) = 795.83/3 = 265.28$$

•
$$MSE = SSE/(n-p) = 20.4/13 = 1.57$$

•
$$observedF = MSR/MSE = 265.78/1.57 = 169.04$$

Prob>F gives the p-value,
$$P(F_{3,13} > observedF) < 0.0001.$$

- 5. With F = 169.04 > 3.41, we reject H_0 and conclude H_a .
- There is overwhelming evidence that at least one of air flow, inlet temperature, and % circulating acid is important in explaining the variation in stack loss.

Multiple Regression and ANOVA (Ch. 9.2)

Yifan Zhu

Multiple Regression and ANOVA

Sums of squares Advanced inference for multiple regression The F test statistic and R²

Yifan Zhu

Multiple Regression and ANOVA

Advanced inference for multiple regression The F_test statistic and R²

- 1. $H_0: \beta_{l_1} = \beta_{l_2} = \cdots = \beta_{l_k} = 0$
 - $\blacktriangleright \ \ \textit{H_a}: \ \text{not all of} \ \beta_{\textit{l_1}}, \beta_{\textit{l_2}}, \cdots, \beta_{\textit{l_k}} \ \text{are} \ \textbf{0}.$
 - ► (For example, $H_0: \beta_2 = \beta_3 = 0$ vs $H_a:$ either β_2 or $\beta_3 \neq 0$ or both. The model is $Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + \varepsilon_i$, and k = 2)
- 2. α is some sensible value.
- 3. The test statistic is:

$$F = \frac{(SSR_f - SSR_r)/k}{SSE_f/(n-p)} \sim F_{k, n-p}$$

- SSR_r is for the reduced model and SSR_f is for the full model.
- ▶ Of course, we assume H_0 is true and the full model is valid with the ε_i 's iid $N(0, \sigma^2)$.

What if I want to compare different nested models?

4. We can construct a combined ANOVA table:

Source	SS	df	MS	F
Reg (full)	SSR_f	p-1		
Reg (reduced)	SSR_r	p - k - 1		
$Reg\;(full\; \;red)$	$SSR_f - SSR_r$	k	$\frac{SSR_f - SSR_r}{k}$	$\frac{MSR_{f r}}{MSE_f}$
Error	SSE_f	n-p	$\frac{SSE_f}{n-p}$	
Total	SST	n-1		

5. Reject H_0 if observed $F > F_{p-1,n-p,1-\alpha}$. Or use the p-value: $P(F_{p-1,n-p} > observedF)$; reject H_0 when p-value is small.

Multiple Regression and ANOVA (Ch. 9.2)

Yifan Zhu

Multiple Regression and ANOVA

Advanced inference for multiple regression

The F test statistic and R²

- 1. $H_0 : \beta_2 = \beta_3 = 0$
 - H_a : either $\beta_2 \neq 0$ or $\beta_3 \neq 0$
- 2. $\alpha = 0.05$
- 3. The test statistic is:

$$F = \frac{(SSR_f - SSR_r)/k}{SSE_f/(n-p)} = \frac{(SSR_f - SSR_r)/2}{SSE_f/(17-4)}$$
$$= \frac{(SSR_f - SSR_r)/2}{SSE_f/13}$$

- Assume H_0 is true and the full model is valid with the ε_i 's iid $N(0, \sigma^2)$.
- ▶ Then, $F \sim F_{k, n-p} = F_{2,13}$.
- ▶ I will reject H_0 if $F > F_{2,13,0.95} = 3.81$.

Yifan Zhu

Multiple Regression and ANOVA

Advanced inference for multiple regression

The F test statistic and R²

4. Look at the ANOVA tables in JMP for both the full model $(Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \varepsilon_i)$:

Analys	is of	Variance)	
		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	3	795.83449	265.278	169.043
Error	13	20.40080	1.569	Prob > I
C. Total	16	816.23529		<.0001

and the reduced model $(Y_i = \beta_0 + \beta_1 x_{1,i} + \varepsilon_i)$:

▼ Analysis of Variance						
Source	DF	Sum of	Mean Square	E Patio		
Model	1	775.48219		285.4318		
Error	15	40.75311		Prob > F		
C. Total	16	816.23529		<.0001*		

I construct a different ANOVA table for this test:

Source	SS	df	MS	F
Reg (full)	795.83	4		
Reg (reduced)	775.48	2		
Reg (full red)	20.35	2	10.18	6.48
Error	20.4	13	1.57	
Total	SST	16		

- 5. With observed F = 6.48 > 3.81, I reject H_0 and conclude H_a .
- There is enough evidence to conclude that at least one of inlet temperature and % circulating acid is associated with stack loss.

Yifan Zhu

Multiple Regression and ANOVA

Advanced inference for multiple regression The F test statistic and \mathbb{R}^2

▶ Attempt to eliminate inlet temperature (x_2) from the model at $\alpha = 0.05$. Here is the ANOVA table for the full model:

Analys	is of	Variance		
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	3	795.83449	265.278	169.0432
Error	13	20.40080	1.569	Prob > F
C. Total	16	816.23529		<.0001*

and for the reduced model:

▼ Analysis of Variance						
Source	DF	Sum of	Mean Square	F Ratio		
Model		776.84496		138.0520		
Error C. Total	14 16	39.39033 816.23529	2.814	Prob > F <.0001*		

- 1. $H_0: \beta_2 = 0, H_a: \beta_2 \neq 0$
- 2. $\alpha = 0.05$
- 3. The test statistic is:

$$F = \frac{(SSR_f - SSR_r)/k}{SSE_f/(n-p)} = \frac{SSR_f - SSR_r}{SSE_f/(17-4)}$$
$$= \frac{SSR_f - SSR_r}{SSE_f/13}$$

- Assume H_0 is true and the full model is valid with the ε_i 's iid $N(0, \sigma^2)$.
- ▶ Then, $F \sim F_{k, n-p} = F_{1,13}$.
- ▶ I will reject H_0 if $F > F_{1,13,0.95} = 4.67$.

4. I construct a different ANOVA table for this test:

Source	SS	df	MS	F
Reg (full)	795.83	4		
Reg (reduced)	776.84	3		
Reg (full red)	18.99	1	18.99	12.10
Error	20.4	13	1.57	
Total	SST	16		

- 5. With *observedF* = 12.10 > 4.67, we reject H_0 .
- 6. There is enough evidence to conclude that stack loss varies with inlet temperature.

► The *F* test for eliminating one parameter is analogous to the *t* test from before:

▼ Param	eter Estii	mates		
Term	Estimate	Std Error	t Ratio	Prob>ltl
Intercept	-37.65246	4.732051	-7.96	<.0001*
x1	0.7976856	0.067439	11.83	<.0001*
x2	0.5773405	0.165969	3.48	0.0041*
x3	-0.06706	0.061603	-1.09	0.2961

- ▶ The t statistic for H_0 : $\beta_2 = 0$ vs. H_0 : $\beta_2 \neq 0$ is 3.48.
- ► But 3.48² = 12.1, which is our *F* statistic from the ANVOA test!
- ► Fun fact:

$$F_{1, \nu}=t_{\nu}^2$$

If F is the test statistic from a test of $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$ vs. $H_a:$ not all of $\beta_1, \beta_2, \ldots, \beta_{p-1}$ are 0, then F can be expressed in terms of the coefficient of determination of the full model:

$$F = \frac{R^2/(p-1)}{(1-R^2)/(n-p)}$$

For the stack loss example, the full model's $R^2 = 0.975$, and so:

$$F = \frac{0.975/(4-1)}{(1-0.975)/(17-4)} = 169$$

The F test statistic and R^2

▼ Summary of Fit

RSquare	0.975006
RSquare Adj	0.969238
Root Mean Square Error	1.252714
Mean of Response	14.47059
Observations (or Sum Wgts)	17

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	3	795.83449	265.278	169.0432
Error	13	20.40080	1.569	Prob > F
C. Total	16	816.23529		<.0001*

Multiple Regression and ANOVA (Ch. 9.2)

Yifan Zhu

Multiple Regression and ANOVA

Advanced inference for multiple regression

The F test statistic and R²

Multiple Regression and ANOVA

Advanced inference for multiple regression The F test statistic and R²

► For
$$H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$$
 vs. $H_a:$ not all of $\beta_1, \beta_2, \dots, \beta_{p-1},$

$$F = \frac{SSR \frac{1}{p-1}}{SSE \frac{1}{n-p}} = \frac{\frac{SSR}{SST} \frac{1}{p-1}}{\frac{SSE}{SST} \frac{1}{n-p}} = \frac{\frac{SSR}{SST} \frac{1}{p-1}}{\frac{SST - SSR}{SST} \frac{1}{n-p}} = \frac{\frac{SSR}{SST} \frac{1}{p-1}}{\left(1 - \frac{SSR}{SST}\right) \frac{1}{n-p}}$$
$$= \frac{R^2 \frac{1}{p-1}}{(1 - R^2) \frac{1}{n-p}}$$

If F is the test statistic from a test of $H_0: \beta_{l_1} = \beta_{l_2} = \cdots = \beta_{l_k} = 0$ vs. $H_a:$ not all of $\beta_{l_1}, \beta_{l_2}, \ldots, \beta_{l_k}$ are 0, then F can be expressed in terms of the coefficient of determination of the full model (R_F^2) and that of the reduced model (R_F^2) :

$$F = \frac{(R_f^2 - R_r^2)/k}{(1 - R_f^2)/(n - p)}$$

For the stack loss example when we tested $H_0: \beta_2 = \beta_3 = 0$, $R_f^2 = 0.975$ and $R_r^2 = 0.95$.

$$F = \frac{(0.975 - 0.95)/2}{(1 - 0.975)/(17 - 4)} = 6.50$$

which is close to the test statistic of 6.48 that we calculated before.

Multiple Regression and ANOVA (Ch. 9.2)

Yifan Zhu

Multiple Regression and ANOVA

Advanced inference for multiple regression The F test statistic and R² ▶ When we tested H_0 : $\beta_2 = 0$, R_r^2 was 0.9517, so:

$$F = \frac{(0.975 - 0.9517)/1}{(1 - 0.975)/(17 - 4)} = 12.117$$

which is close to the test statistic of 12.10 that was calculated directly from the ANOVA table.

Advanced inference for multiple regression

The F test statistic and R²

$$F = \frac{(SSR_f - SSR_r)\frac{1}{k}}{SSE_f \frac{1}{n-p}} = \frac{\frac{SSR_f - SSR_r}{SST}\frac{1}{k}}{\frac{SSE_f}{SST}\frac{1}{n-p}} = \frac{\left(\frac{SSR_f}{SST} - \frac{SSR_r}{SST}\right)\frac{1}{k}}{\frac{SST - SSR_f}{SST}\frac{1}{n-p}}$$
$$= \frac{\left(\frac{SSR_f}{SST} - \frac{SSR_r}{SST}\right)\frac{1}{k}}{\left(1 - \frac{SSR_f}{SST}\right)\frac{1}{k}} = \frac{\left(R_f^2 - R_r^2\right)\frac{1}{k}}{(1 - R_f^2)\frac{1}{n-p}}$$