Lec15 Note of Complex Analysis

Xuxuayame

日期: 2023年4月23日

讲解部分期中考试题。

1、设E连通,证明 \overline{E} 连通。

证明. 假设 \overline{E} 不连通,则存在非空不交集 $E_1, E_2 s.t.$ $\overline{E} = E_1 \cup E_2$ 且 $\overline{E_1} \cap E_2 = \emptyset$, $E_1 \cap \overline{E_2} = \emptyset$ 。

那么 $E = E \cap \overline{E} = (E \cap E_1) \cup (E \cap E_2)$,而 $\overline{E \cap E_1} \cap (E \cap E_2) \subset \overline{E_1} \cap E_2 = \emptyset$, $E \cap E_1 \cap \overline{E \cap E_2} \subset E_1 \cap \overline{E_2} = \emptyset$ 。

不妨设 $E \cap E_2 = \varnothing$,则 $E \subset E_1$, $\overline{E} \subset \overline{E_1}$, $E_2 \subset \overline{E} \cap E_2 \subset \overline{E_1} \cap E_2 = \varnothing$,矛盾。 \square

2、 $f: D \to \mathbb{C}$ 连续, f 恒不为零, 若 f^2 全纯, 证明 f 全纯。

证明.
$$\forall z_0 \in D, \ \frac{f^2(z) - f^2(z_0)}{z - z_0} = (f(z) + f(z_0)) \frac{f(z) - f(z_0)}{z - z_0} \circ$$

3、 $p(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_1z-1,\ a_1,\cdots,a_{n-1}\in\mathbb{R},\ p(z)$ 在 |z|<1 中无零点,求 P(1)。

证明. 设 P(z) 的根 z_1, z_2, \dots, z_n ,则 $(-1)^n z_1 \dots z_n = -1$,于是 $|z_j| \ge 1 \Rightarrow |z_j| = 1$ $(1 \le j \le n)$,由 $P: \mathbb{R} \to \mathbb{R}$ 为连续函数,P(0) = -1, $P(+\infty)$,P(z) 在 $(0, +\infty)$ 中有零点,只能是 1,即 P(1) = 0。

4、 $u: \mathbb{C} \to \mathbb{R}$ 调和函数且对 $\forall z \in \mathbb{C}, \ u(z) \leq 2|\log|z||+1$, 证明 u 为常数。

证明. \mathbb{C} 单连通, $\exists v \ s.t. \ f(z) = u + iv$ 全纯。

当 $n \geq 3$ 时,令 $r \to +\infty$,得 $F^{(n)}(0) = 0$ 。那么 $F(z) = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} z^n$ 为多项式,而 $F(z) = e^{f(z)}$ 恒不为零,由代数学基本定理,F(z) 只能是常数。

回到正文。

定理 4.3. Rouché: 设 $f,g \in H(D)$, $\gamma \not\in D$ 中可求长简单闭曲线, γ 的内部位于 D 中,如果当 $z \in \gamma$ 时

$$|f(z) - g(z)| < |f(z)|.$$

则 f 与 g 在 γ 的内部零点个数相等。

证明. (From Stein) 令 $F_t(z) = f(z) + t \cdot (g(z) - f(z)), \ 0 \le t \le 1, \ F_0(t) = f(z), F_1(z) = g(z)$ 。 当 $z \in \gamma$ 时 $|f(z) - g(z)| < |f(z)| \Rightarrow t \cdot |f(z) - g(z)| < |f(z)| \ (0 \le t \le 1) \Rightarrow F_t(z) \ne 0, \ \forall \ z \in \gamma$ 。

于是 F_t 在 γ 中零点个数 $N_{f_t} = \frac{1}{2\pi i} \int_{\gamma} \frac{F_t'(z)}{F_t(z)} \, \mathrm{d}\,z$,由于 $\frac{F_t'(z)}{F_t(z)}$ 关于 t 连续,故 N_{f_t} 关于 t 连续。由于 N_{f_t} 只取整数,故 N_{f_t} 为常数。

例 4.3. 求方程 $z^4 - 6z + 3 = 0$ 在圆环 1 < |z| < 2 中的根的个数。

解. (1) 在 |z| = 1 上,取 f(z) = -6z, $g(z) = z^4 - 6z + 3$,那么 $|f(z) - g(z)| = |z^4 + 3| \le 4 < |f(z)|$

⇒ 方程在 |z| < 1 中有一个根。

$$|f(z) - g(z)| = |-6z + 3| \le 15 < |f(z)|$$

 \Rightarrow 方程在 |z| < 2 中有 4 个根。

(3) 当 |z| = 1 时, $|z^4 - 6z + 3| \ge 2$ ⇒ 方程在 |z| = 1 上无根。 综上,方程在 1 < |z| < 2 中有 3 个根。

例 4.4. 设 $a_1, a_2, \dots, a_n \in B(0,1), f(z) = \prod_{k=1}^n \frac{a_k - z}{1 - \overline{a_k z}},$ 证明: 若 |b| < 1,则 f(z) - b 在 B(0,1) 中恰有 n 个根。

证明. 当 |z| = 1 时,|f(z) - b - f(z)| = |b| < 1 = |f(z)|,于是 f(z) - b 在 |z| < 1 中零 点个数 = f(z) 在 |z| < 1 中零点个数 = n。

例 4.5. 设 f 在域 D 上全纯, γ 为 D 中的简单闭曲线, γ 的内部位于 D 中,若 f 在 γ 上 只取实数,证明 f 为常数。

证明. 任取 $z_0 = a + ib$ (b > 0),取 $g(z) = f(z) - z_0$,当 $z \in \gamma$ 时,Img(z) < 0,若 $g \circ \gamma$ 绕原点的圈数 = 0,由辐角原理,g(z) 在 γ 内部无零点,即对 $\forall z \in int(\gamma), f(z) \neq z_0$ 。

同理对 $\tilde{z_0} = a + ib \ (b < 0), \ f(z) \neq \tilde{z_0}, \ \forall \ z \in \operatorname{int}(\gamma), \$ 故 $\operatorname{Im} f(z) = 0, \ z \in \operatorname{int}(\gamma), \$ 于 是由 C-R 方程,f 在 $\operatorname{int}(\gamma)$ 上为常数,进而由唯一性定理,f 在 D 上为常数。

例 4.6. 证明: $z^4 + 2z^3 - 2z + 10 = 0$ 在每个象限各有 1 个根。

证明. 设 $P(z) = z^4 + 2z^3 - 2z + 10$ 。我们如图取一个扇形围道。

当 $z \in \gamma_1$ 时,z = x > 0, $P(x) = (x^2 - 1)(x + 1)^2 + 11$,当 x > 1 时 P(x) > 11,当 0 < x < 1 时 $P(x) \ge -2 + 11 = 0$,故 P(z) 在 γ_1 上无零点。

当 $R \gg 1$, $z \in \gamma_2$ 时无零点。 $z \in \gamma_3$ 时, $P(iy) = y^4 + 10 - 2iy(y+1) \neq 0$ 。

而实系数多项式的根共轭出现,于是第四象限有一个根。进而第二、第三象限也各有一个根。