

Destructive Single-Event Effects in Diodes

Megan C. Casey¹, Jean-Marie Lauenstein¹, Michael J. Campola¹, Edward P. Wilcox², Anthony M. Phan², and Kenneth A. LaBel¹

¹NASA Goddard Space Flight Center ²ASRC Federal Space and Defense, Inc. (AS&D, Inc.)

Acronyms

- DUT Device Under Test
- EDS Energy Dispersive X-Ray Spectroscopy
- ETW Electronics Technology Workshop
- GSFC Goddard Space Flight Center
- I_F Forward Current
- I_R Reverse Current

- IR infrared
- LET Linear Energy Transfer
- NEPP NASA Electronics Parts and Packaging
- RF Radio Frequency
- SBD Super Barrier Diode
- SEE Single-Event Effects
- V_R Reverse Voltage
- V_F Forward Voltage

Background and Summary of Previous Results

Introduction

- Since 2011, GSFC has been investigating destructive SEEs in Schottky diodes
 - We have recommended a 50% V_R derating for operation in heavy-ion environments
- During this investigation, several super barrier diodes were also irradiated and experienced failures identical to the Schottky diodes that were tested
 - In retrospect, this is not totally unexpected as SBDs also have a Schottky junction, but also employs an insulating layer between the metal and semiconductor material
 - However, this led us to question whether the failure mechanism is limited to diodes with Schottky junctions or if it exists in other diode types as well

Background – Observed Radiation Responses

Background – Schottky Diode Results

Background – Schottky Diode Results

75% of Reverse Voltage

50% of Reverse Voltage

By derating to 50% of the reverse voltage, all failures are eliminated for the parts tested

Current Results – Other Diode Types

Parts Tested

- 30 diodes from 10 manufacturers
- 5 diode types: avalanche, RF PiN, super barrier, switching, and Zener
- Reverse voltages range from 35 V to 200 V
- Forward currents (per diode) from 2 mA to 10 A

Test Facilities and Technique

- All parts were tested at LBNL's 88-inch cyclotron with 1233 MeV Xe (LET = 58.8 MeV-cm²/mg)
- All diodes were irradiated under reverse bias and at room temperature
- After each beam run, V_F, V_R, I_F and I_R were measured
- Because a 50% derating has been found to be sufficient for Schottky diodes, that was the initial test voltage
- A minimum of 3 DUTs per part type were tested

Diodes Tested

Diode Type	Manufacturer	Part Number	Reverse Voltage	Forward Current
Avalanche	NXP Semi	BAS29,215	90 V	200 mA
Super Barrier	Diodes Inc	SBR1U200P1-7	200 V	1 A
Super Barrier	Diodes Inc	SBR1045D1-13	45 V	10 A
Super Barrier	Diodes Inc	SBR160S23-7	60 V	900 mA
Super Barrier	Diodes Inc	SBRT10U60D1-13	60 V	10 A
Zener	Diodes Inc	BZX84C47-7-F	47 V	10 mA
Zener	NXP Semi	BZX84-B47,215	47 V	10 mA
Zener	NXP Semi	BZX84-C56,215	56 V	10 mA
Zener	NXP Semi	BZX84-C68,215	68 V	10 mA
Zener	NXP Semi	BZX84-A75,215	75 V	10 mA
Zener	On Semi	BZX84C56LT1G	56 V	10 mA
Zener	On Semi	BZX84C68LT1G	68 V	10 mA
Zener	On Semi	BZX84C75LT1G	75 V	10 mA
Zener	Vishay	BZX84C56-E3-08	56 V	2 mA

Diode Type	Manufacturer	Part Number	Reverse Voltage	Forward Current
PiN	Broadcom	HSMP-3810-TR1G	100 V	1 A
PiN	Infineon	BAR64-05 E6327	150 V	100 mA
PiN	M/A-COM	MA4P7455CK-287T	100 V	150 mA
PiN	NXP Semi	BAP64-05,215	175 V	100 mA
PiN	NXP Semi	BAT18,215	35 V	100 mA
PiN	NXP Semi	BAP50-05,215	50 V	50 mA
PiN	Skyworks	SMP1307-004LF	200 V	100 mA
Switching	Central Semi	CMPD2003 TR	200 V	200 mA
Switching	Diodes Inc	BAS21-7-F	200 V	200 mA
Switching	Fairchild	MMBD914	100 V	200 mA
Switching	Fairchild	MMBD1501A	200 V	200 mA
Switching	NXP Semi	BAS16,215	100 V	215 mA
Switching	NXP Semi	BAS21,215	200 V	200 mA
Switching	On Semi	MMBD914LT1G	100 V	200 mA
Switching	On Semi	BAS20LT1G	200 V	200 mA
Switching	Vishay	BAS21-E3-08	200 V	200 mA

Results

Results – RF Switching Diodes

Manufacturer	Part Number	Reverse Voltage	Forward Current
Fairchild	MMBD914	100 V	200 mA
NXP Semi	BAS16,215	100 V	215 mA
On Semi	MMBD914LT1G	100 V	200 mA
Diodes Inc	BAS21-7-F	200 V	200 mA
Central Semi	CMPD2003 TR	200 V	200 mA
Fairchild	MMBD1501A	200 V	200 mA
NXP Semi	BAS21,215	200 V	200 mA
On Semi	BAS20LT1G	200 V	200 mA
Vishay	BAS21-E3-08	200 V	200 mA

Results – Zener Diodes

Manufacturer	Part Number	Zener Voltage	Forward Current
Diodes Inc	BZX84C47-7-F	47 V	10 mA
NXP Semi	BZX84-B47,215	47 V	10 mA
NXP Semi	BZX84-C56,215	56 V	10 mA
On Semi	BZX84C56LT1G	56 V	10 mA
<mark>Vishay</mark>	BZX84C56-E3-08	56 V	2 mA
NXP Semi	BZX84-C68,215	68 V	10 mA
On Semi	BZX84C68LT1G	68 V	10 mA
NXP Semi	BZX84-A75,215	75 V	10 mA
On Semi	BZX84C75LT1G	75 V	10 mA

Results – Super Barrier Diodes

Manufacturer	Part Number	Reverse Voltage	Forward Current
Diodes Inc	SBR1045D1-13	45 V	10 A
Diodes Inc	SBRT10U60D1-13	60 V	10 A
Diodes Inc	SBR160S23-7	60 V	900 mA
Diodes Inc	SBR1U200P1-7	200 V	1 A
Diodes Inc	SBR20A300	300 V	10 A
Diodes Inc	SBR30300	300 V	15 A

Recap of 2016 ETW Presentation

2016 NEPP ETW

- Last year, I presented a case study of a 1N6843 from two different manufacturers being used on a flight project
 - The reverse voltage is 100 V and forward current is 10 A
 - Normal application reverse voltage is ~60 V and worst case application reverse voltage is ~82 V
 - There are currently no mission radiation requirements for diodes; so destructive SEEs requirements were used for this testing
- The irradiated parts experienced all four radiation responses
 - By conducting failure analysis on these DUTs, we are hoping to derive additional information about the failure mechanisms

Failure Analysis

Power Supply Currents

- SN5 was irradiated with 1470 MeV Pr (LET = 60 MeV-cm²/mg) in 5 V steps starting at 50 V (50% of the rated reverse voltage)
- Only charge collection was observed up to the 65-V irradiation
- When biased at 70 V, small increases in the reverse current were observed during the beam run
 - Post-irradiation electrical parameter measurements all remained within specification
 - Increases in reverse current were on the order of 100 nA
- At 95 V, the increase in reverse current was 100s of nA

Post-Irradiation Electrical Measurements

Reverse Current vs. Reverse Voltage

Forward Current vs. Forward Voltage

Part was degrading until after the 95-V run, and then I_{R} exceeded 10 μA at less than 1 V

Infrared Imaging of DUT

- Diode was examined using an IR camera and pictures were taken with a small voltage applied
 - Bright white spot just below the wirebond contact is the location of the failure
- Low-magnitude and highmagnitude optical images of the surface of the DUT did not show anything unusual at the location identified in the IR image

Optical Images of DUT

Low-Magnification

High-Magnification

Failure location is not visible in optical images

Cross-Section at Failure Location

High-Magnification Optical Image

Scanning Electron Microscope Image

Energy Dispersive X-Ray Spectroscopy

Magnification of SEM Image

Map of Ag, Ni, W, and In

Metal has clearly displaced from Schottky junction into void formed from high current

Power Supply Currents

NASA

- SN2 was irradiated with 1858 MeV Ta (LET = 79 MeV-cm²/mg) in 5 V steps starting at 50 V (50% of the rated reverse voltage)
- Only charge collection was observed up to the 55-V irradiation
- When biased at 60 V, a ~60 nA increase in I_R was observed
 - All post-irradiation parameter measurements remained within specification
- At 65 V, however, DUT experienced 100s of nA in degradation and postirradiation I_R measurement was out of specification

Post-Irradiation Electrical Measurements

Forward Current vs. Forward Voltage

No significant changes were observed in the I_F - V_F curves, but I_R exceeded specification at less than 100 V

Infrared Imaging of DUT

- Diode was examined using an IR camera and pictures were taken with a small voltage applied
 - No failure locations could be identified
- Low-magnitude and high-magnitude optical images of the surface of the DUT also did not show anything unusual
- Because no failure locations were identified, a different technique had to be used
 - A series of chemical etches were used to remove the contact pad, solder connection, and Schottky barrier metal

Optical Images of DUT

Low-Magnification

High-Magnification

After chemical etches, a few small discolored locations were identified with displaced silicon at the center

Scanning Electron Microscope Images

Displaced silicon ball was unable to be removed from surface of the diode

Cross-Section at Displaced Silicon Location

There is no damage structure visible in the damaged diode cross-section

Power Supply Currents

NASA

- SN7 was irradiated with 1858 MeV Ta (LET = 79 MeV-cm²/mg) in 5 V steps starting at 75 V
- Only charge collection was observed up to the 85-V irradiation
- When biased at 90 V, a ~140 nA increase in I_R was observed
 - All post-irradiation parameter measurements remained within specification
- At 95 V, the current reached the maximum 100 mA allowed by the power supply, and the anode and cathode were shorted together

Post-Irradiation Electrical Measurements

Reverse Current vs. Reverse Voltage

Forward Current vs. Forward Voltage

Almost no change was observed in the I_R - V_R or I_F - V_F plots until the 95-V irradiation, and then I_R exceeded 10 μA at less than 1 V

Infrared Imaging of DUT

NASA

- Diode was examined using an IR camera and pictures were taken with a small voltage applied
 - Bright white spot just below the wirebond contact is the location of the failure
- Low-magnitude and highmagnitude optical images of the surface of the DUT did not show anything unusual at the location identified in the IR image

Optical Images of DUT

Low-Magnification

High-Magnification

Unlike other part that experienced catastrophic failure, location is visible in high-magnification optical images

Surface SEMs of Failure Location

Low-Magnification SEM Image

Scanning Electron Microscope Image

Cross-Section at Failure Location

High-Magnification Optical Image

Scanning Electron Microscope Image

Energy Dispersive X-Ray Spectroscopy

SEM Cross-Section Image

Map of Al and Si

Metal has clearly displaced from Schottky junction into void formed from high current

Conclusions

Conclusions

- Only diodes with a Schottky junction appear to experience catastrophic failure under the conditions tested
- Degradation was observed in an RF switching diode and several Zener diodes
 - While all measured electrical parameters remained within specification after degradation was observed, the long-term reliability of these parts is unknown
- Degradation and failure mechanisms are not limited to power devices
- Failure analysis shows clear failure locations in parts that experience catastrophic failure when examined with an IR camera
- Parts that experience degradation do not appear to have deep internal failure structures that are observable when cross-sectioned
- When the anode and cathode short in diodes due to destructive SEEs,
 Schottky metal displaces and creates the conducting path

Backup Slides

Results – Avalanche Diode

- Only one avalanche diode type was tested
 - We were limited in our options due to packaging issues

Manufacturer	Part Number	Reverse Voltage	Forward Current
NXP Semi	BAS29,215	90 V	200 mA

Results – PiN Diodes

Manufacturer	Part Number	Reverse Voltage	Forward Current
NXP Semi	BAT18,215	35 V	100 mA
NXP Semi	BAP50-05,215	50 V	50 mA
Broadcom	HSMP-3810-TR1G	100 V	1 A
M/A-COM	MA4P7455CK-287T	100 V	150 mA
Infineon	BAR64-05 E6327	150 V	100 mA
NXP Semi	BAP64-05,215	175 V	100 mA
Skyworks	SMP1307-004LF	200 V	100 mA

Diodes, Inc. BAS21-7-F Switching Diode

- Small changes in the reverse current were observed during the runs in which these parts were biased at the full-rated 200-V reverse voltage
- Small changes in the I_R-V_R and I_F-V_F plots were observed after the runs
 - How these changes effect the long-term reliability of the parts is unknown

