Map-functor Factorized

Maarten Fokkinga, CWI & UT, Lambert Meertens, CWI & RUU

Febr 5, 1991

It is well known that any initial data type comes equipped with a so-called map-functor. We show that any such map-functor is the composition of two functors, one of which is —closely related to— the data type functor, and the other is —closely related to— the function μ (that for any functor F yields an initial F-algebra, if it exists).

Notation

Let K be a category, and $F: K \to K$ be an endo-functor on K. Then μF denotes "the" initial F-algebra over K, if it exists. Further, $\mathcal{F}(K)$ is the category of endo-functors on K whose morphisms are, as usual, natural transformations; and $\mathcal{F}_{\mu}(K)$ denotes the full sub-category of $\mathcal{F}(K)$ whose objects are those functors F for which μF exists.

For mono-functors F, G and bi-functor \dagger we define the composition FG by x(FG) = (xF)G, and we denote by $F \dagger G$ the mono-functor defined by $x(F \dagger G) = xF \dagger xG$. Object A when used as a functor is defined by xA = A for any object x and $fA = id_A$ for any morphism f. (An alternative notation for $A \dagger I$ is the 'section' $A \dagger$.) In the examples we assume that $\times, \mathring{\pi}, \mathring{\pi}, \Delta$ form a product, and $+, \mathring{\iota}, \mathring{\iota}, \nabla$ a co-product.

Making μ into a functor

We define a functor $_{-}^{\mu}: \mathcal{F}_{\mu}(K) \to K$ that is closely related to μ , and has therefore a closely related notation. For any $F, G \in Obj(\mathcal{F}_{\mu}(K))$ and $\varphi: F \to G$ we put

- (1) $F^{\mu} = \text{target of } \mu F$
- $(2) \hspace{0.4cm} \varphi^{\mu} \hspace{0.4cm} = \hspace{0.4cm} (\!\![\varphi^{;} \mu \mathsf{G} \!\!]_{\mathsf{F}} \hspace{0.4cm} : \hspace{0.4cm} \mathsf{F}^{\mu} \to \mathsf{G}^{\mu} \, .$

Notice that by (1) we have $\mu_F : F^{\mu}_F \to F^{\mu}$. (Some authors in the Squiggol community are used to define $(L, in) = (F^{\mu}, \mu_F)$.) The instance of φ that has to be taken in the right-hand side of (2) is $\varphi_{G^{\mu}} : G^{\mu}_F \to G^{\mu}_G$; the typing $\varphi^{\mu} : F^{\mu} \to G^{\mu}$ is then easily verified. In order to prove that $_{-}^{\mu}$ satisfies the two other functor axioms, we present a lemma first.

- (3) Lemma For $\varphi : \mathsf{F} \to \mathsf{G}$ and $\psi : A\mathsf{G} \to A$,
- $(4) \qquad (\varphi; \psi)_{\mathsf{F}} = (\varphi; \mu_{\mathsf{G}}); (\psi)_{\mathsf{G}}.$

Proof (Within this proof we use the law names and notation of Fokkinga & Meijer [1]. The reader may easily verify the steps by unfolding $f: \varphi \xrightarrow{\mathsf{F}} \psi$ into $\varphi; f = f_{\mathsf{F}}; \psi$, and using $\varphi: \mathsf{F} \to \mathsf{G} \equiv (\forall f:: f_{\mathsf{F}}; \varphi = \varphi; f_{\mathsf{G}})$.)

required equality $\Leftarrow \qquad \text{FUSION} \\
(\psi)_{\mathsf{G}} : \varphi; \mu_{\mathsf{G}} \xrightarrow{\mathsf{F}} \varphi; \psi \\
\Leftarrow \qquad \text{NTRF TO HOMO}, \ \varphi : \mathsf{F} \xrightarrow{\mathsf{G}} \mathsf{G} \\
(\psi)_{\mathsf{G}} : \mu_{\mathsf{G}} \xrightarrow{\mathsf{G}} \psi \\
\equiv \qquad \text{CATA HOMO}$

(End of proof)

true.

It is now immediate that $_^{\mu}$ distributes over composition. For $\varphi : \mathsf{F} \to \mathsf{G}$ and $\psi : \mathsf{G} \to \mathsf{H}$ we have $\varphi ; \psi : \mathsf{F} \to \mathsf{H}$ and

$$\begin{split} &= \frac{(\varphi;\psi)^{\mu}}{(\!(\varphi;\psi;\mu\mathsf{H})\!)_{\mathsf{F}}} \\ &= \qquad \text{Lemma (3), noting that } \psi;\mu\mathsf{H}:\mathsf{H}^{\mu}\mathsf{G} \to \mathsf{H}^{\mu} \\ &= \frac{(\!(\varphi;\mu\mathsf{G})\!)_{\mathsf{F}};(\!(\psi;\mu\mathsf{H})\!)_{\mathsf{G}}}{\varphi^{\mu};\psi^{\mu}.} \end{split}$$

It is also clear that $id^{\mu} = id$. Thus, $\underline{}^{\mu}$ is a functor, $\underline{}^{\mu} : \mathcal{F}_{\mu}(K) \to K$.

(5) Remark Another corollary of the lemma is this: for $\varphi : \mathsf{F} \to \mathsf{G}$ we have that $\varphi^{\mu} : f$ is a catamorphism whenever f is a catamorphism. (The typing determines that the former is an F -catamorphism, and the latter a G -catamorphism.)

Let us look at some $\varphi : \mathbf{F} \xrightarrow{\cdot} \mathbf{G}$ and see what φ^{μ} is.

Example Probably the most simple, non-trivial, choice is $F, G := I + A \times I$, I + I and $\varphi := id + \acute{\pi}$. Notice that $F^{\mu} = \text{the (set } L \text{ of) cons-lists and } \mu F = nil \nabla cons$, $G^{\mu} = \text{the (set } \mathbb{N} \text{ of) naturals and } \mu G = zero \nabla suc$. We find

$$(6) \quad \varphi^{\mu} = (id + \acute{\pi}; zero \nabla suc)_{\mathsf{F}} = size : L \to \mathbb{N}.$$

Example Another non-trivial choice is $F = G = A + \mathbb{I}$, so that $F^{\mu} = G^{\mu} = \text{the}$ (set of) non-empty binary join trees over A, and $\mu F = tip \nabla join$. Apart from the trivial $id : F \to G$, we have $\varphi := id + swap : F \to G$ where $swap = \acute{\pi} \triangle \mathring{\pi}$. We have

(7)
$$\varphi^{\mu} = (id + swap; tip \nabla join) = swap/ = reverse$$
.

2

Since $_{-}^{\mu}$ is a functor, we have a simple proof that *reverse* is its own inverse:

$$= \frac{reverse; reverse}{\varphi^{\mu}; \varphi^{\mu}}$$

$$= functor axiom$$

$$(\varphi; \varphi)^{\mu}$$

$$= easy: swap; swap = id$$

$$= \frac{id^{\mu}}{id}.$$

Notice also that by Remark (5), reverse; f is a catamorphism whenever f is.

Example Let \dagger be a bi-functor and let $F = A \dagger I$ and $G = \mathbf{1} \dagger I$. Take $\varphi = ! \dagger id : A \dagger I \rightarrow \mathbf{1} \dagger I$. Then

(8)
$$\varphi^{\mu} = (! \dagger id : \mu(\mathbf{1} \dagger I))_{A \dagger I} = shape (= !-map).$$

Factorizing map-functors

Let \dagger be any bi-functor for which $\mu(A \dagger I)$ exists for all A. Recall that the map-functor induced by \dagger , \Box^{ϖ} say, is defined by

$$\begin{array}{lcl} A^\varpi & = & \text{target of } \mu(A \dagger \mathbf{I}) \\ f^\varpi & = & \big(\!\!\big(f \dagger id; \mu(B \dagger \mathbf{I}) \big)\!\!\big)_{A \dagger \mathbf{I}} & : & A^\varpi \to B^\varpi \end{array}$$

for $f:A\to B$. We shall now define a functor $_{-}^{\dagger}:K\to \mathcal{F}_{\mu}(K)$ in such a way that composed with $_{-}^{\mu}:\mathcal{F}_{\mu}(K)\to K$ it equals the map-functor $_{-}^{\varpi}:K\to K$. To this end define

$$\begin{array}{lll} A^{\dagger} & = & A \dagger \mathbf{I} \\ f^{\dagger} & = & f \dagger id & : & A \dagger \mathbf{I} \stackrel{\cdot}{\rightarrow} B \dagger \mathbf{I} & (\text{with } (f \dagger id)_C = f \dagger id_C) \end{array}$$

for any $f:A\to B$. (That f^\dagger is a natural transformation is easily verified; it also follows from laws NTRF TRIV, NTRF ID, NTRF BI-DISTR from Fokkinga & Meijer [1].) Indeed

So $\varpi = \dagger \mu$.

Remark It can be shown that $_{-}^{\dagger}$ is just $curry(\dagger)$. (Here $curry(_{-})$ is the well-defined functor from the category $\mathbf{A} \times \mathbf{B} \to \mathbf{C}$ to the category $\mathbf{A} \to (\mathbf{B} \to \mathbf{C})$, where each arrow denotes a category of functors with natural transformations as morphisms.) Thus, given bi-functor \dagger , we can express its map-functor without further auxiliary definitions as $curry(\dagger)$ composed with $^{\mu}$.

References

[1] M.M. Fokkinga and E. Meijer. Program calculation properties of continuous algebras. December 1990. CWI, Amsterdam.