Slope Detection and Toroidal Manifolds

Ying Hu (UNO)

Joint with Steve Boyer, Cameron Gordon June 9, 2021

CMS Summer Meeting

Background

Three properties

Y is a connected, orientable, irreducible 3-manifold.

(LO) $\pi_1(Y)$ is left-orderable.

 \exists a strict total order < on $\pi_1(Y)$ satisfying $a < b \Leftrightarrow c \cdot a < c \cdot b$ for any $a, b, c \in \pi_1(Y)$.

(CTF) Y admits a co-orientable taut foliation.

- A (co-)orientable foliation \mathcal{F} is a decomposition of Y into a disjoint union of orientable surfaces.
- \mathcal{F} is **taut**, if for any $p \in Y$, \exists a transverse loop passing p.

Three properties

Y is a connected, orientable, irreducible 3-manifold.

(LO) $\pi_1(Y)$ is left-orderable.

 \exists a strict total order < on $\pi_1(Y)$ satisfying $a < b \Leftrightarrow c \cdot a < c \cdot b$ for any $a, b, c \in \pi_1(Y)$.

(CTF) Y admits a co-orientable taut foliation.

- A (co-)orientable foliation \mathcal{F} is a decomposition of Y into a disjoint union of orientable surfaces.
- \mathcal{F} is **taut**, if for any $p \in Y$, \exists a transverse loop passing p.
- (NLS) Y is not an L-space.

Y is an L-space, if $|H_1(Y)| < \infty$ and $\widehat{HF}(Y)$ is "minimal".

The L-space conjecture

Conjecture (Boyer-Gordon-Watson, Juhász)

Y is a connected, compact, orientable, irreducible 3-manifold.

$$LO \iff CTF \iff NLS$$

Known:

- CTF ⇒ NLS (Ozsváth-Szabó; Kazez-Roberts, Bowden)
- If b₁(Y) > 0, then Y is
 CTF (Gabai);
 LO (Boyer-Rolfsen-Wiest);
 NLS by definition.

Example: If $\partial Y \neq \emptyset$ and $Y \neq B^3$, then $b_1(Y) > 0$.

Rough ideas

Y is a toroidal **Q**-homology sphere $(b_1(Y) = 0)$.

essential
$$UT^2 \subset Y$$
 $UMY \text{ open along } UT^2$
 $Y = M_1 U M_2 U \cdots U M_n$
 $2M_1 \pm \Phi = M_1 \text{ is } CT \neq LO_1, NLS$

Question:

Under what boundary conditions is Y LO, CTF or NLS?

Slopes

M is a **knot manifold** (compact, connected, orientable, irreducible, $\partial M \cong T^2$ and $M \neq D^2 \times S^1$.)

A **rational slope** on ∂M is an isotopic class of simple closed curves on $\partial M \cong T^2$.

The **longitudinal slope** λ is unique.

- $[\lambda]$ has order k > 0 in $H_1(M)$;
- k copies of λ bounds an orientable surface F in M.

Any slope μ with $|\mu \cdot \lambda| = 1$ is called a **meridional slope**.

M is a knot manifold. A rational slope α on ∂M is *-detected if the following holds

* = CTF:

 \exists a CTF \mathcal{F} on M transverse to ∂M so that $\mathcal{F} \cap \partial M$ is **Reebless** and contains **a closed leaf of slope** α .

M is a knot manifold. A **rational slope** α on ∂M is *-detected if the following holds

 $* = \mathsf{CTF}$:

 \exists a CTF \mathcal{F} on M transverse to ∂M so that $\mathcal{F} \cap \partial M$ is **Reebless** and contains **a closed leaf of slope** α .

* = L0:

 \exists a representation $\rho: \pi_1(M) \to \operatorname{Homeo}_+(\mathbb{R})$ satisfying that $\rho|_{\pi_1(\partial M)}$ has **no fixed point**, but $\rho(\alpha)$ has a fixed point.

M is a knot manifold. A **rational slope** α on ∂M is *-detected if the following holds

 $* = \mathsf{CTF}$:

 \exists a CTF \mathcal{F} on M transverse to ∂M so that $\mathcal{F} \cap \partial M$ is **Reebless** and contains **a closed leaf of slope** α .

* = L0:

 \exists a representation $\rho : \pi_1(M) \to \operatorname{Homeo}_+(\mathbb{R})$ satisfying that $\rho|_{\pi_1(\partial M)}$ has **no fixed point**, but $\rho(\alpha)$ has a fixed point.

* = NLS:

 $\alpha \notin \text{the interior of the set of the L-space slopes}.$

M is a knot manifold. A **rational slope** α on ∂M is *-detected if the following holds

```
* = \mathsf{CTF}:
```

 \exists a CTF \mathcal{F} on M transverse to ∂M so that $\mathcal{F} \cap \partial M$ is **Reebless** and contains **a closed leaf of slope** α .

```
* = L0:
```

 \exists a representation $\rho:\pi_1(M)\to \operatorname{Homeo}_+(\mathbb{R})$ satisfying that $\rho|_{\pi_1(\partial M)}$ has **no fixed point**, but $\rho(\alpha)$ has a fixed point. (Not the popular $\ast=\operatorname{NLS}$:

 $\alpha \notin \text{the interior of the set of the L-space slopes}.$

Remark: $M(\alpha)$ is $*\Rightarrow \alpha$ is *-detected.

Basic gluing properties

Theorem

 M_1 and M_2 are knot manifolds ($\neq D^2 \times S^1$). $Y = M_1 \cup_f M_2$ is irreducible. If $f(\alpha_1) = \alpha_2$ with both α_i are *-detected, then Y has property *.

- * = NLS;(Hanselman-Rasmussen-Watson, Rasmussen-Rasmussen)
- $\cdot * = LO;$ (Boyer Clay)
- * = CTF; (Boyer Gordon H.)

Conjecture

The converse of the gluing theorem holds.

Known if * = NLS (HRW, RR)

Results

Detected slopes

Theorem (Boyer-Gordon-H.)

 $M \neq D^2 \times S^1$ is an irreducible \mathbb{Z} -homology $D^2 \times S^1$. Then

- all meridional slopes are *-detected if $* \in \{LO, NLS\}$.
- all meridional slopes are CTF-detected if M is fibered.

Proof.

When * = NLS, we use Rasmussen-Rasmussen.

When
$$*=$$
 LO, $\frac{P}{I_1(M)}$ bomeo, (IR) $\frac{P}{P}$ has no fixed point but $P(M)$ has one on IR' $P(M)$ has one on IR' $P(M)$ has $P(M)$ has $P(M)$ has $P(M)$ points on $P(M)$

Detected slopes

Theorem (Boyer-Gordon-H.)

 $M \neq D^2 \times S^1$ is an irreducible \mathbb{Z} -homology $D^2 \times S^1$. Then

- all meridional slopes are *-detected if $* \in \{LO, NLS\}$.
- all meridional slopes are CTF-detected if M is fibered.

Proof.

When * = NLS, we use Rasmussen-Rasmussen.

When * = LO, we obtain a Universal circle action $\rho : \pi_1(M) \to \operatorname{Homeo}_+(S^1)$ from a finite depth foliation, satisfying that $\rho|_{\partial M}$ has a **fixed point**.

When * = CTF, one needs a laminar branched surface B in M such that ∂B carries all meridional slopes.

Toroidal \mathbb{Z} -homology sphere

Conjecture (Ozsváth-Szabó)

Y is an irreducible \mathbb{Z} -homology sphere. If Y is an L-space, then Y is either S^3 or the Poincare sphere.

Theorem (Eftekhary, Hanselman-Rasmussen-Watson)

Y is an irreducible toroidal Z-homology sphere. Then Y is not an L-space.

Theorem (Boyer-Gordon-H.)

 $Y = M_1 \cup_f M_2$ is an irreducible toroidal \mathbb{Z} -homology sphere. Then

- · Y is LO.
- Y is CTF if one of M_i is fibered.

<u>Remark:</u> Similar statements can be made if $|H_1(Y)| \le 4$.

Cyclic branched covers of toroidal knots

Conjecture (Gordon-Lidman)

The *n*-fold cyclic branched cover of S^3 over a prime satellite knot is LO, CTF and NLS for $n \ge 2$.

Theorem (Boyer-Gordon-H.)

Suppose that P(K) is a prime satellite knot with pattern P and companion K. Then the n-fold cyclic branched cover of S^3 branched cover P(K) is

- NLS and LO for $n \ge 2$;
- CTF if the companion knot K is fibered for $n \ge 2$.

An application to knot theory

Figure 1: A satellite knot

Theorem (Menasco)

A prime satellite link is not alternating.

Theorem (Boyer-Gordon-H.)

A prime satellite link is not quasi-alternating.

