Correction

- $1. \qquad A\oplus C=B\oplus C \ \ \mathrm{donc} \ \ \dim A\oplus C=\dim B\oplus C \ \ \ \mathrm{d'où} \ \ \mathrm{et} \ \ \dim A+\dim C=\dim B+\dim C \ \ \mathrm{puis}$ $\dim A=\dim B \ . \ \ \mathrm{De} \ \ \mathrm{plus} \ \ A\oplus C=A+B \ \ \mathrm{donc} \ \ \dim A+\dim C=\dim A+\dim B-\dim A\cap B \ \ \mathrm{et} \ \mathrm{par} \ \mathrm{suite}$ $\dim C=\dim B-\dim A\cap B=\dim A-\dim A\cap B \ .$
- 2.a Puisque $A \neq B$ et $\dim A = \dim B$ on a nécessairement $A \not\subset B$ (car inclusion et égalité des dimensions impliquent égalité des espaces). Par suite $\exists \vec{u} \in A$ tel que $\vec{u} \not\in B$. De même pour \vec{v} .
- 2.b Si $\vec{w} = \vec{u} + \vec{v} \in A$ alors $\vec{v} = \vec{w} \vec{u} \in A$ par opérations sur les vecteurs de A. Par contraposée : $\vec{v} \notin A \Rightarrow \vec{w} \notin A$. De même $\vec{w} \notin B$ et donc $\vec{w} \notin A \cup B$.
- 2.c Soit $\vec{x} \in A \cap C$. Il existe $\lambda \in \mathbb{K}$ tel que $\vec{x} = \lambda \cdot \vec{w}$ et $\vec{x} \in A$

Si
$$\lambda \neq 0$$
 alors $\vec{w} = \frac{1}{\lambda} \vec{x} \in A$ ce qui est exclu.

Nécessairement $\lambda = 0$ et $\vec{x} = \vec{o}$. Ainsi A et C sont en somme directe.

 $\dim A \oplus C = \dim A + \dim C = (n-1)+1=n=\dim E$ et donc $A \oplus C = E$

Or $A \subset A + B$, $C \subset A + B$ (car $\vec{w} \in A + B$) donc $E = A \oplus C \subset A + B$.

Par suite $A \oplus C = A + B = E$. De même $B \oplus C = A + B$.

- 3.a Si A = B alors A + B = A = B. $C = \{\vec{o}\}$ résout le problème posé.
- 3.b $A \cap B$ est un sous-espace vectoriel de A qui est un \mathbb{K} espace vectoriel de dimension finie non nulle. Par suite $A \cap B$ possède un supplémentaire A' dans A.
- 3.c $A' \cap B' \subset A \cap B \text{ car } A' \subset A \text{ et } B' \subset B.$ Or $A' \cap (A \cap B) = \{\vec{o}\} \text{ car } A' \oplus (A \cap B) \text{ donc } A' \cap B' = \{\vec{o}\}.$ $\dim A = \dim A' + \dim A \cap B \text{ et } \dim B = \dim B' + \dim A \cap B.$

Puisque dim $A = \dim B$ on a dim $A' = \dim B'$. De plus $A', B' \neq \{\vec{o}\}$ (car sinon on aurait A = B) donc dim $A' = \dim B' = p \in \mathbb{N}^*$.

- 3.d A' et B' sont deux sous-espaces vectoriels de dimension finie $p \in \mathbb{N}^*$ donc possède des bases de la forme annoncée.
- 4.a Supposons $\lambda_1 \vec{g}_1 + \dots + \lambda_p \vec{g}_p = \vec{o}$.

On a
$$\lambda_{\mathbf{l}}\vec{e}_{\mathbf{l}}+\cdots+\lambda_{p}\vec{e}_{p}=-(\lambda_{\mathbf{l}}\vec{f}_{\mathbf{l}}+\cdots+\lambda_{p}\vec{f}_{p})$$
 or $\lambda_{\mathbf{l}}\vec{e}_{\mathbf{l}}+\cdots+\lambda_{p}\vec{e}_{p}\in A'$ et $\lambda_{\mathbf{l}}\vec{f}_{\mathbf{l}}+\cdots+\lambda_{p}\vec{f}_{p}\in B'$ avec $A'\cap B'=\{\vec{o}\}$ donc $\lambda_{\mathbf{l}}\vec{e}_{\mathbf{l}}+\cdots+\lambda_{p}\vec{e}_{p}=\lambda_{\mathbf{l}}\vec{f}_{\mathbf{l}}+\cdots+\lambda_{p}\vec{f}_{p}=\vec{o}$.

Puisque la famille \mathcal{B} est libre, on a $\lambda_1 = ... = \lambda_n = 0$ donc \mathcal{D} est libre.

- 4.b La famille $\mathcal D$ est une famille libre et génératrice de C, c'est donc une base de C. Puisqu'elle est formée de p vecteurs on a : $\dim C = p$.
- 4.c Soit $\vec{x} \in A \cap C$.

$$\vec{x} \in C \ \text{ donc on peut \'errire } \ \vec{x} = \lambda_{\text{I}} \vec{g}_{\text{I}} + \dots + \lambda_{\text{p}} \vec{g}_{\text{p}} = \vec{u} + \vec{v} \ \text{ avec } \ \vec{u} = \lambda_{\text{I}} \vec{e}_{\text{I}} + \dots + \lambda_{\text{p}} \vec{e}_{\text{p}} \in A' \ \text{ et } \\ \vec{v} = \lambda_{\text{I}} \vec{f}_{\text{I}} + \dots + \lambda_{\text{p}} \vec{f}_{\text{p}} \in B' \ .$$

On a alors $\vec{v}=\vec{x}-\vec{u}\in A$ car $\vec{x}\in A$ et $\vec{u}\in A'\subset A$. Mais $\vec{v}\in B'\subset B$ donc $\vec{v}\in A\cap B$.

Or $\vec{v} \in B'$ et $(A \cap B) \cap B' = \{\vec{o}\}$ donc $\vec{v} = \vec{o}$.

Puisque C est une base, on a $\lambda_1 = ... = \lambda_n = 0$ et par suite $\vec{u} = \vec{o}$ et donc $\vec{x} = \vec{o}$.

4.d $A \subset A + B$ et $C \subset A + B$ donc $A + C \subset A + B$.

De plus $\dim A \oplus C = \dim A + \dim C = \dim A + p = \dim A + \dim B - \dim A \cap B = \dim A + B$ donc $A \oplus C = A + B$.

De manière symétrique $A + B = B \oplus C$.