

Dr. Jan-Willem Liebezeit Raphael Wagner SoSe 2021

20 Punkte

Übungen zu: Analysis 1 für Informatik

Blatt 08

Hinweise zur Abgabe

Abgabetermin: 21.06.21, 14:00 Uhr

Abgabeformat: Im PDF-Format via Moodle. Einzelabgaben (nicht in Gruppen). Ver-

spätete Abgaben sind ausdrücklich nicht möglich!

Sonstiges: Bitte geben Sie eine Erst- und Zweitpräferenz von jeweils einer Aufgabe zur

Korrektur an.

Aufgaben

i) Bestimmen Sie für die folgenden Beispiele von Funktionen $f: \mathbb{R} \to \mathbb{R}$, in 1. welchen Punkten bzw. Bereichen diese stetig sind. Klassifizieren Sie auch die Unstetigkeitsstellen gemäß Beispiel 3.3.6.

$$a) \quad f(x) = |\sin(x^3)| \tag{2}$$

b)
$$f(x) = \exp(24[x])$$
, wobei $[x] := \max\{k \in \mathbb{Z} : k \le x\}$ (2)

$$f(x) = \begin{cases} \frac{2x^3 - 6x^2}{x^2 - 9} & : x \in \mathbb{R} \setminus \{-3, 3\} \\ 4 & : x = -3 \end{cases}$$
 (2)

(2)

b)
$$f(x) = |\sin(x)|$$
 (2
b) $f(x) = \exp(24[x])$, wobei $[x] := \max\{k \in \mathbb{Z} : k \le x\}$ (2
c) $f(x) = \begin{cases} \frac{2x^3 - 6x^2}{x^2 - 9} & : x \in \mathbb{R} \setminus \{-3, 3\} \\ 4 & : x = -3 \\ 3 & : x = 3 \end{cases}$ (2
d) $f(x) = \begin{cases} \frac{|x|\cos(\frac{1}{x^2})}{1 + x^4} & : x \ne 0 \\ 1 & : x = 0 \end{cases}$

ii) Sei $D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$. Dann heißt f Hölderstetig der Ordnung $\alpha > 0$, (2) falls eine Konstante M > 0 existiert, sodass

$$|f(x) - f(y)| \le M|x - y|^{\alpha}$$

für alle $x, y \in D$.

Zeigen Sie, dass eine solche Hölderstetige Funktion gleichmäßig stetig ist.

i) Seien $(a,b),(c,d),-\infty \leq a < b \leq \infty,-\infty \leq c < d \leq \infty$ zwei beliebige (5) 2. Intervalle und $f:(a,b)\to(c,d)$ sei bijektiv und stetig. Zeigen Sie, dass dann auch $f^{-1}:(c,d)\to(a,b)$ stetig ist. Hinweis: Zeigen Sie zunächst mit Hilfe des Zwischenwertsatzes, dass f streng monoton ist.

ii) Zeigen Sie, dass $\ln:(0,\infty)\to\mathbb{R}$ stetig ist. (1)

iii) Sei $g:(a,b)\to\mathbb{R}, -\infty < a < b < \infty$, gleichmäßig stetig. Zeigen Sie, dass (4) g eine stetige Fortsetzung auf [a, b] besitzt, d.h. es gibt eine stetige Funktion $h: [a,b] \to \mathbb{R}$ mit h(x) = q(x) für alle $x \in (a,b)$. Hinweis: Cauchy-Kriterium

3. Wir fassen den Erdäquator als Kreis auf. Dann können wir die Temperaturverteilung zu einem beliebigen Zeitpunkt auf diesem durch eine stetige Funktion $T:[0,2\pi] \to \mathbb{R}$ modellieren bzw. beschreiben, indem wir einen Punkt x_0 auf dem Äquator/Kreis auswählen und alle weiteren Punkte auf diesem durch das Bogenmaß, also den Winkel $\vartheta \in [0,2\pi]$ beschreiben, den diese (gegen den Uhrzeigersinn) mit x_0 einschließen (siehe etwa Abbildung 3.3 im Skript).

Zeigen Sie, dass es zwei auf dem Äquator gegenüberliegende Punkte gibt, an denen die gleiche Temperatur herrscht.

Hinweis: Zwischenwertsatz

4. Wir erarbeiten in dieser Aufgabe einen zu Satz 4.1.6 bzw. Beispiel 4.1.7 alternativen Beweis zur Differenzierbarkeit der Sinus-Funktion sin.

i) Zeigen Sie, dass
$$\lim_{h\to 0}\frac{\sin(h)}{h}=1, \lim_{h\to 0}\frac{\cos(h)-1}{h}=0.$$
 (6)

ii) Zeigen Sie nun mit Hilfe von Differenzenquotienten, also Definition 4.1.1, dass (4) sin auf ganz \mathbb{R} differenzierbar ist und $\frac{d}{dx}\sin x = \cos x$.