Vietnam National University Ho Chi Minh City, University of Science Department of Information Technology

Topic 2: Symmetric Cipher

Assoc. Prof. Trần Minh Triết PhD. Trương Toàn Thịnh

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Introduction

d decryption
e key.
/character

Symmetric cipher

Shift cipher

☐ Shift Cipher:

- ☐ One of the oldest methods used for encryption
- \Box The message is encrypted by rotating each character by k places in the alphabet
- \square The case with k = 3 is called the Caesar encryption method.
- □ Let $P = C = K = Z_n$. For each $k \in K$ we have:
 - $\square e_k(x) = x + k \mod n$ and $d_k(y) = y k \mod n$, for $x, y \in Z_n$
 - \square E = { e_k , $k \in K$ } and D = { d_k , $k \in K$ }
- Properties:
 - ☐ Simple
 - Encryption and decryption processing is done quickly
 - \square Key-space $K = \{0, 1, 2, ..., n 1\} = Z_n$
 - Easily broken by trying every possible key

Shift cipher

- Example: to encrypte a message represented by the letters A to Z (26 letters), we use Z_{26} .
 - \Box Encrypted messages are not secure and can be easily decrypted by trying one after another, 26 *keys*.
 - \square On average, an encrypted message can be decrypted in about 26/2 = 13 tries.
- ☐ Ciphertexts: JBCRCLQRWCRVNBJENBWRWN
- \square Try $k = 0, 1, 2, \dots 25$

k = 0	jbcrclqrwcrvnbjenbwrwn	k = 5	ewxmxglmrxmqiweziwrmri
k = 1	iabqbkpqvbqumaidmavqvm	k = 6	dvwlwfklqwlphvdyhvqlqh
k = 2	hzapajopuaptlzhclzupul	k = 7	cuvkvejkpvkogucxgupkpg
k = 3	gyzozinotzoskygbkytotk	k = 8	btujudijoujnftbwftojof
k = 4	fxynyhmnsynrjxfajxsnsj	k = 9	astitchintimesavesnine

Substitution cipher

Overcoming the limitation of the Shift-Cipher method: It is impossible

to attack by exhausting the key values $k \in K$

Substitution cipher

AO VCO JO IBU RIBU

A0 VCO JO TO Attacks based

on the occurrence of

2A H2A 2A

characters in the language

MA HOA VA UNG DUNG

Substitution cipher

L FDPH L VDZ L FRQTXHUHG

L FDPH L VDZ L FRQTXHUHG

i ?a?e i ?a? i ?????e?e?

i came i saw i conquered

- ☐ Frequency analysis
 - \square Character: E > T > R > N > I > O > A > S
 - \square Digraph: TH > HE > IN > ER > RE > ON > AN > EN
 - ☐ Trigraph: THE > AND > TIO > ATI > FOR > THA > TER > RES

Affine cipher

- Let $P = C = Z_n$, $K = \{(a, b) \in Z_n \times Z_n : gcd(a, n) = 1\}$. For each key $k = (a, b) \in K$, define:
 - \square $e_k(x) = (ax + b) \mod n$ and $d_k(y) = a^{-1}(y b) \mod n$, for $x, y \in Z_n$
 - \square E = { e_k , $k \in K$ } and D = { d_k , $k \in K$ }
- \square For correct decrypt then e_k must be a bijection $\Rightarrow gcd(a, n) = 1$

Affine cipher

- Let $\psi(n)$ be a number of elements in Z_n and coprime with n
- If $n = \text{Where } p_i^{e_i}$ and distinct prime not plans and $e_i^{e_i} \in \mathbb{Z}_n^+$ and $e_i^{e_i} \in \mathbb{Z}_n^+$ when $\varphi(n) = \prod_{i=1}^m p_i^{e_i} p_i^{e_i-1}$
- ☐ We have
 - $\square m$ ways of discosing b
 - $\Box \varphi(n)$ ways of choosing a
 - $\square m \times \varphi(n)$ ways of choosing key k = (a, b)

Euclide algorithm

- \square Consider 2 prime numbers a and b (a > b) we have:
 - $\Box a = q_0 b + r_0 (0 < r_0 < b)$

 - $\Gamma_0 = q_2 r_1 + r_2 (0 < r_2 < r_1)$

 - □ ...

 - $\Gamma_{m-1} = q_m r_m (0 = r_{m+1} < r_m)$
- Easily see:
 - \square $gcd(a, b) = gcd(b, r_0) = gcd(r_0, r_1) = \dots = gcd(r_{m-1}, r_m) = r_m.$
 - \square Example: gcd(1071, 462) = gcd(462, 147) = gcd(147, 21) = 21

Extended Euclide algorithm

 \square Consider 2 prime numbers a and b, let's build

$$\square$$
 $r_0 = a$

$$r_1 = b$$

$$\square$$
 $S_0 = 1$

$$S_1 = 0$$

$$\Box t_0 = 0$$

$$t_1 = 1$$

 \square So, we have:

$$\square r_2 = r_0 - q_0 r_1$$

$$\square s_2 = s_0 - q_0 s_1$$

$$\square t_2 = t_0 - q_0 t_1$$

$$\Box r_{i+1} = r_{i-1} - q_i r_i \ (i \ge 1)$$

$$\square S_{i+1} = S_{i-1} - q_i S_i$$

$$\Box t_{i+1} = t_{i+1} - q_i t_i$$

Algorithm stops when $r_{k+1} = 0 \& r_k = gcd(a, b) = as_k + bt_k$

Extended Euclide algorithm

 \Box Example $a = r_0 = 240$ and $b = r_1 = 46$

i	$oldsymbol{q}_{ ext{i-1}}$	$r_{ m i}$	S _i	$t_{\rm i}$
0		240	1	0
1		46	0	1
2	240 / 46 = 5	$240 - 5 \times 46 = 10$	$1 - 5 \times 0 = 1$	$0-5\times 1=-5$
3	46 / 10 = 4	$46 - 4 \times 10 = 6$	$0-4\times 1=-4$	$1-4\times -5=21$
4	10 / 6 = 1	$10 - 1 \times 6 = 4$	$1-1\times-4=5$	$-5 - 1 \times 21 = -26$
5	6 / 4 = 1	$6-1\times 4=2$	$-4-1\times 5=-9$	$21 - 1 \times -26 = 47$
6	4/2=2	$4-2\times 2=0$	$5-2\times-9=23$	$-26 - 2 \times 47 = -120$

- \square Line 6 finds stop-condition $r_6 = 0$
- \square Result: $gcd(240, 46) = 2 = -9 \times 240 + 47 \times 46$
- \square Note: $gcd(a, b) = 1 = as + bt (a \perp b)$

Vigenere cipher

- \square Choose a positive integer m. Let $P = C = K = (Z_n)^m$.
 - \square K = { $(k_1, k_2, ..., k_m) \in (Z_n)^m$ }
 - □ For each key $k = (k_1, k_2, ..., k_m) \in K$ and $\forall x, y \in (Z_n)^m$, define:
 - $\Box e_{k}(x_{1}, x_{2}, ..., x_{m}) = ((x_{1} + k_{1}) \bmod n, (x_{2} + k_{2}) \bmod n, ..., (x_{m} + k_{m}) \bmod n)$
- Subtitution cipher: for each key k, plain-text $x \in P$ is mapped to only one $y \in C$.
- \square Vigenere cipher uses key with length m.
 - □ Named after Blaise de Vigenere (Century 16)
 - \Box The Vigenere cipher can be viewed as consisting of m displacement ciphers that are applied alternately on a periodic basis.
 - \square Key-space K of Vigenere cipher is n^m
 - For example: n = 26, m = 5 then key-space has $\sim 1.1 \times 10^7$ keys

Vigenere cipher

- \square Example: m = 6 and keyword CIPHER
- \square Then, key k = (2, 8, 15, 7, 4, 17)
- Let plaintexts: **thiscryptosystemisnotsecure**

t	h	i	S	C	r
19	7	8	18	2	17
2	8	15	7	4	17
21	15	23	25	6	8

y	p	t	0	S	y
24	15	19	14	18	24
2	8	15	7	4	17
0	23	8	21	22	15

5	ι	е	111	1	5
18	19	4	12	8	18
2	8	15	7	4	17
20	1	19	19	12	9

n	0	t	S	e	C
13	14	19	18	4	2
2	8	15	7	4	17
15	22	8	25	8	19

Hill cipher

- □ Hill cipher (1929), author: Lester S. Hill
- Main idea: use m linear-combinations of m characters in plaintext to produce m characters in ciphertext
- Example:

$$(y_1, y_2) = (x_1, x_2) \times (y_1, y_2) \times (y_1, y_2) = (x_1, x_2) \times (y_1, y_2) \times (y_1, y_2) \times (y_1, y_2) = (x_1, x_2) \times (y_1, y_2) \times (y_$$

$$(x_1, x_2) = (y_1, y_2) \times \begin{pmatrix} \frac{7}{53} & \frac{-8}{53} \\ \frac{-3}{53} & \frac{11}{53} \end{pmatrix} \Rightarrow \begin{cases} x_1 = \frac{7}{53}y_1 + \frac{-3}{53}y_2 \\ x_2 = \frac{-8}{53}y_1 + \frac{11}{53}y_2 \end{cases}$$

Hill cipher

Choose a positive integer m. Define

- \square K is assembly inverse invarisces matrixes for each larger for \in K. k =

$$\square e_{\mathbf{k}}(x) = xk = (x_1, x_2, \dots, x_{\mathbf{m}}) \times \begin{pmatrix} k_{1,1} & \cdots & k_{1,m} \\ \vdots & \ddots & \vdots \\ k_{m,1} & \cdots & k_{m,m} \end{pmatrix} \text{ where } x = (x_1, x_2, \dots, x_{\mathbf{m}}) \in \mathcal{F}$$

- $\square d_k(y) = yk^{-1}$ where $y \in \mathcal{T}$.
- \square All arithmetic operations are performed on Z_n

Inverse matrix

- \square Lett inverse matrix K, define K^{-1}
- Steps:
 - \Box Convert from matrix $(K | I_n)$ to $(I_{n_1} | K^1)$
 - Hementary transformations:
 - Multiphy1 line by 1 a number ≠ 0
 - \blacksquare Replace 11 line by using that line adding/subtracting α times to/from other lines

Permutation cipher

- The idea of the presented methods: replace each character in the source message with another character to form the encrypted message.
- The main idea of the Permutation Cipher method is to keep the characters in the source message the same, but only change the position of the characters.
- Choose a positive integer m. Let

 - \square Kisia seteofop quenonatations so forme le leveneurs $\{1,12,2,...,mn\}$. For o e acale la deserve $n \in \mathbb{R}$ de fide fine:
 - $= ((x_1, x_2, \dots, x_n)) = ((x_{n(1)}, x_{n(2)}, \dots, x_{n(n)}))$
 - $\square d_n(y_1,y_2,\dots,y_m)_{\overline{m}}(x,y_n)$, $= (y_n)_{,1}$ where $\pi^{\pm 1}(is)_{,1}$ an inverse permutation of π

Permutation cipher

The permutation encryption method is a special case of Hill cipher.

Example: choose $m \equiv 3$, so $\pi \equiv \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} & \pi^{-1} \equiv \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ Let plain-text = EAT = (4, 0, 19)Let plain-text = EAT = (4, 0, 19)

Compute $(y_1, y_2, y_3) = (x_{(1x_1, 2x_2, 3)} \times \pi = (4, 0, 19) \times (19, 40) = (19, 4, 0) = (19,$

 $\frac{1}{10}$ To decrypt to plain text, we need an inverse matrix π^{-1} =

Compute $(x_1, x_2, x_3) = (y_1, y_2, y_3) \times \pi^{-1} = (19, 4, 0) \times = (4, 0, 19) = \text{EAT}$ To decrypt to plain-text, we need an inverse matrix $\pi^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Compute $(x_1, x_2, x_3) = (y_1, y_2, y_3) \times \pi^{-1} = (19, 4, 0) \times \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = (4, 0, 19) = (4, 0, 19)$

Permutation cipher

 \square Example: choose m = 6

$$\frac{1}{2}$$
 & π^{-1} =

1	2	3	4	5	6
3	6	1	5	2	4

Assume plain-texts = shesellsseashellsbytheseashore

S	h	e	S	е	I
е	е	S	I	S	h

I	S	S	е	а	S
S	а	Ι	S	е	S

h	e	I	Ι	S	b
Ι	S	h	b	I	е

У	t	h	е	S	е
h	S	у	е	е	t