# MARKED-UP VERSION OF ENGLISH TRANSLATION OF INTERNATIONAL APPLICATION AS ORIGINALLY FILED

### **DESCRIPTION**

## Attorney Docket No. 36856.1446

### MANUFACTURING METHOD OF ELECTRONIC COMPONENT

### Technical BACKGROUND OF THE INVENTION

### 1. Field of the Invention

Background Art

\_\_\_\_\_\_The present invention relates to a method of manufacturing method of an electronic component using a lamination chip size package (CSP), which is a type of CSP, in which a resin film is buried by performing heat pressing on an electronic functional element such as a surface acoustic wave (SAW) element bonded to a substrate.

# 2. Description of the Related Art

In the related art, in order to attain a compact and low profile package of a surface acoustic wave (SAW) filter, chip size packages (CSPs) with various kinds of structures have been developed. It is required for the CSP of the SAW filter to be sealed with a resin with a space formed around the vibration partportion of the filter to allow for unhindered vibration of the SAW element.

[0003] ——As for a method of manufacturing such a resinsealed package, a heat pressing process is known. Patent

Application Publication No. 2003-17979 and Japanese

Unexamined Patent Application Publication No. 2003-32061

disclose a sealing technology that uses the heat pressing process. In these publications, a SAW element is mounted on a packaging substrate by flip-chip bonding so that a vibration space is formed between the packaging substrate and the SAW element attached to the packaging substrate, and the mounted SAW element is then subjected to resin sealing by the heat pressing process.

Patent Document 1: Japanese Unexamined Patent
Application Publication No. 2003-17979

Patent Document 2: Japanese Unexamined Patent
Application Publication No. 2003-32061

Disclosure of Invention

\_\_\_\_\_However, during the sealing by the heat pressing process, voids due to air bubble entrainmententrapment tend to occur, thus causing the sealed state to be unstable. For example, there has been a tendency that, due to degradation of thermal stability during reflowing of solder, or moisture absorption withover time, degradation of characteristics withover time of the sealed SAW element, occurred. Moreover, when sealing was implemented in a vacuum, it was possible to prevent voids from occurring, however, a large-scale apparatus for placing

the entire system in a vacuum has been required.

The object

### SUMMARY OF THE INVENTION

[0005] In order to overcome the problems described above, preferred embodiments of the present invention is to provide a method of manufacturing an electronic component which can be manufactured by means of using a simple apparatus, and in which voids and degradation of characteristics with over time negligibly occurare prevented from occurring.

[0006] — In order to address the above mentioned problems, the A method of manufacturing an electronic component according to a preferred embodiment of the present invention is characterized as including: aincludes mounting step for mounting on a collective mounting substrate a plurality of electronic functional elements, each having a substrate and an electronic functional partportion provided on the substrate, on a collective mounting substrate; an arranging step for arranging a resin film on the electronic functional elements mounted on the collective mounting substrate  $\div_{\underline{I}}$  a reduced-pressure packing step for putting the electronic functional elements and the resin film mounted on the collective packing substrate in a bag with a gas-barrier property, and depressurizing the inside of the bag to seal the contents inside; a sealing step for, sealing the electronic functional elements with a

sealing resin part originatingmember formed from the resin film by causing the resin film to infiltrate between the electronic functional elements mounted on the reduced-pressure-packed collective mounting substrate. and a dividing step for dividing the collective mounting substrate having the resin-sealed electronic functional elements into individual electronic functional elements.

[0007] ——According to the above-described method, since electronic functional elements are sealed within a bag under reduced pressure, by means of the sealing resin part originating member formed from the resin film, it is possible to reduce the occurrence of voids due to inclusion of air in the sealing resin, and to suppressprevent durability degradation such as strength degradation withover time or degradation of characteristics due to moisture absorption. [0008] ——Moreover, in the above-described method, since only the inside of the bag should be depressurized, the bag can be depressurized by use of a simple depressurizing apparatus. Accordingly, it is possible to eliminate the use of a known large-scale apparatus for depressurizing the entire system, thus, enabling cost reduction to be achieved. [0009] ——In the above-described manufacturing method, the sealing step may include a curing step for causing the resin film to infiltrate between electronic functional elements and then heating the electronic functional elements

and the collective mounting substrate individually covered with a sealing resin part—precursor formed from the resin film so that the sealing resin part—precursor is cured intoto form the sealing resin partmember, and the curing step may have a step for performing heating in a pressure-controlled hermetically sealed space.

[0010] ——According to the above-described method, the infiltration amount of the sealing resin can be controlled by implementing the curing step for curing by means of performing heating in the pressure-controlled hermetically sealed space, thus, enabling the infiltration amount to be adjustable.

[0011] ——In the above-described manufacturing method, the electronic functional element may be a surface acoustic wave element having a vibration partportion as the electronic functional partelement preferably disposed on a piezoelectric substrate. In the manufacturing method, it is preferable, in the mounting step, for the vibration partportion to have a space between itself and the collective packaging surface, and to be arranged so as to face the collective packaging surface.

\_\_\_\_\_The above-described method can ensure the existence of the space required between a part toportion which the vibration part faces the vibration portion and the vibration part portion by adjusting the infiltration amount

of the sealing resin, thus. As a result, the above-described method being is suitable for manufacturing a surface acoustic device.

it is preferable that the resin film contains includes filler, in which the maximum particle size of the particle distribution of the filler is preferably larger than the gap between the electronic functional elements and the collective mounting substrate, and the occupancy of the filler preferably having particle sizes larger than the gap between the electronic functional elements and the packaging collective substrate is about 5 wt % or more with respect to the total amount of the filler.

\_\_\_\_\_According to the above-described method, the infiltration amount of the sealing resin can be adjusted by setting the characteristics of the filler as mentioned above, for example, the existence of the space required between the part to which portion facing the vibration part faces portion and the vibration part portion, can be ensured, thus enabling suitability of the method for manufacturing the surface acoustic device.

[0015] ——In the above-described manufacturing method, the sealing step may further <a href="have\_include">have\_include</a> a thermo-compression bonding step for heating the resin film to cure the resin film and for applying pressure to the resin film

by means of via a roller or a press machine or other suitable pressure applying element. According to the above-described method, applying pressure to the resin film by means of via the roller or pressure applying element enables sealing by the resin film to be more rapid.

\_\_\_\_\_According to the above\_described method, the parting sheet is arranged by heating during softening of the resin film or curing of the sealing resin formed from the resin film in such a way that adherence of the sealing resin and the bag can be avoided, thus enabling the manufacturing to be easier.

\_\_\_\_\_\_In the above-described manufacturing method, it is desirable for the surface roughness of the resin film side of the parting sheet to be in the range of about 0.01  $\mu$ m to about 10  $\mu$ m, for example. According to the above-described method, by causing the surface roughness of the resin film side of the parting sheet to be in the range of about 0.01  $\mu$ m to about 10 $\mu$ m, the surface roughness of the

the bag should have a multi-layered structure having a thermoplastic resin layer as an innermost layer and a heat-resistant resin layer with a higher heat resistance and a gas-barrier property <a href="https://discrete-burger-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-night-ni

\_\_\_\_\_\_As described above, the method of manufacturing an electronic component according to various preferred embodiments of the present invention is a method including:preferably includes a reduced-pressure packing step for putting electronic functional elements mounted on a collective mounting substrate and a resin film in a bag with a gas-barrier property to seal the contents inside; and a sealing step for sealing the electronic functional elements with a sealing resin partmember formed from the resin film

by causing the resin film to infiltrate between the electronic functional elements mounted on the reduced-pressure-packed collective mounting substrate by utilizing the pressure difference between the inside and the outside of the bag.

method, the occurrence of voids can be reducedminimized due to the fact that the infiltration occurs under reduced pressure, and the durability degradation such as strength degradation withover time or degradation of characteristics due to moisture adsorption can be suppressed prevented, and since only the inside of the bag should be under reduced pressure, the above-described method can achieve the reduced-pressure state by means of a simple depressurizing apparatus, eliminating the known large-scale apparatus for depressurizing the entire system, thus, resulting in cost reduction.

Other features, elements, steps, characteristics

and advantages of the present invention will become more

apparent from the following detailed description of

preferred embodiments thereof with reference to the attached drawings.

Brief Description of the Drawings
BRIEF DESCRIPTION OF THE DRAWINGS

[0024] ——FIGs. 1 (a) to (e) are views showing steps

of a method of manufacturing an electronic component according to one preferred embodiment of the present invention. [0025] — ——FIG. 2 is a sectional view of a SAW device as an electronic component used in thea preferred embodiment of the present invention. [0026] ——FIG. 3 is a schematic constitution view showing a vacuum packing step in thea preferred embodiment of the present invention. [0027] ——FIG. 4 is a schematic constitution view showing a curing step in thea preferred embodiment of the present invention. [0028] ——FIG. 5 is a sectional view showing a step of the manufacturing method according to another preferred embodiment of the present invention. [0029] ——FIG. 6 is a graph showing the relationship between the surface roughness of the top of the sealed resin of a SAW device as an electronic component used in onea preferred embodiment of the present invention and the recognition rate for the laser printing on the top. [0030] ———FIG. 7 is a sectional view showing another example of the electronic component used in a preferred embodiment of the present invention. [0031] ——FIG. 8 is a schematic constitution view showing another example of the infiltrating step according

| to <u>a preferred embodiment of</u> the present invention.              |
|-------------------------------------------------------------------------|
| [0032] ——FIG. 9 is a schematic constitution view                        |
| showing still another example of the infiltrating step                  |
| according to another preferred embodiment of the present                |
| invention.                                                              |
| [0033] ——FIG. 10 is a view showing the change of the                    |
| infiltration amount in the space between the vibration                  |
| <pre>partportion of the sealing resin and the packaging substrate</pre> |
| when the occupancy of filler particles of a size larger than            |
| the gap between the SAW element and the collective mounting             |
| substrate with respect to the total amount of filler is                 |
| changed.                                                                |
| Reference Numerals                                                      |
| 1 packaging substrate                                                   |
| 2 SAW element (electronic component)                                    |
| - 3 bump electrode                                                      |
| 4 sealing resin part                                                    |
| —— 4a sealing resin precursor                                           |
| 9 virtual scission line                                                 |
| ——————————————————————————————————————                                  |
| —— 12 resin film                                                        |
| ——————————————————————————————————————                                  |
| Best Mode for Carrying Out the Invention                                |

[0034] Hereinafter, based on FIGs. 1 to 9, the <u>preferred</u> embodiments of the present invention will be described on the basis of FIGs. 1 to 9.

First, in a SAW element CSP manufactured according to a method of manufacturing an electronic component of a preferred embodiment of the present invention, a SAW element (electronic functional element) 2 is mounted on a packaging substrate 1 by flip-chip bonding. In this case, in order not to disturb the vibration of the SAW element, the SAW element is mounted so as to ensure the existence of a space 5.

The above packaging substrate 1 is composed preferably made of a material with an electric insulation property, for example, alumina, glass-epoxy etc., ceramics, resin, or the like other suitable material. The packaging substrate 1 is provided with lands 1a, or electrodes, for connection to the SAW element 2, on the surface facing the SAW element 2; via-holes 1b penetrating through the packaging substrate 1 in the thickness direction; and external terminals 1c each electrically connected to the corresponding land 1a through the corresponding via-hole 1b.

\_\_\_\_\_\_The SAW element 2 has at least one comb electrode partportion as an electronic functional partportion, or a vibration partportion 2b, disposed on a

piezoelectric substrate 2a. The vibration partportion 2b in the SAW element 2 is a region through which surface acoustic waves propagate. As for bonding of bump electrodes 3 formedlocated on the packaging substrate 1 and the SAW element 2, or the land 1a, Au-Au bonding, solder bonding, plating bump bonding, or the likeother suitable bonding method are listed as being suitable.

Moreover, the vibration partportion 2b having a comb electrode partportion is formed on a surface of the SAW element 2 facing the packaging substrate 1. The vibration partportion 2b faces the space 5 formed according to the height of the bump electrode 3. Accordingly, due to the presence of the space 5, the excitation and propagation of the surface acoustic waves in the vibration partportion 2b are not disturbed.

ap between the SAW element 2 and the packaging substrate 1 is preferably set to be of the order of about 19 μm, for example. As for the gap, it should be set as required, and should not be interpreted as being specifically limited, however, it is preferable to be about 5 μm or more in this preferred embodiment of the present invention. If it—the gap is less than about 5 μm, the surface of the SAW element 2 and the packaging substrate 1 may come into contact with each other due to warping or unevenness, etc. of the

packaging substrate 1.

Moreover, as mentioned above, the bump electrodes 3 electrically connect the SAW element 2 and the packaging substrate 1, however, in addition to the bump electrodes 3, a bump electrode for simply mechanically fixing the SAW element 2 to the packaging substrate 1 may be provided. Further, a bump electrode for maintaining the gap between the packaging substrate 1 and the SAW element 2 may be provided.

is covered with the sealing resin partmember 4. As for a material of the sealing resin partmember 4, it is not specifically limited as long as it has a sealing property and an adhesion property, however. However, for example, thermosetting or thermoplastic resin such as an epoxy-based, polyimide-based, polyolefin-based, silicon-based, or phenol-based one can be used. In this preferred embodiment, epoxy-based resin is preferably used. The curing temperature of the above epoxy-based resin is about 150°C, however, when the resin is epoxy-based one, its curing temperature is approximately 80°C to 200°C, for example.

Further, the material constituting the sealing resin partmember 4 may containinclude filler. As
for the filler, it is not specifically limited, however, suitable inorganic fillers commonly used for resin

composition can be used. As for such inorganic fillers, metallic oxide powder such as silica, alumina, magnesia, or calcium oxide, are <a href="listed as being">listed as being</a>—suitable, for example. The shape of the filler particles may be either spherical or amorphous.

within the above specified preferable range, the space 5, between the vibration partportion 2b and the packaging substrate 1, especially in a region facing the vibration partportion 2b, is protected from the infiltration of the sealing resin part 4, namely 4, such that control of the filler ensures the existence of a gap. Accordingly, the propagation of the surface acoustic waves is ensured in the vibration partportion 2b on the piezoelectric substrate 2a. Referring to FIG. 10 and Table 1, this will be described on the basis of specific experimental results. FIG. 10 and

Table 1 show the change of the infiltration amount of the sealing resin partmember 4 into the space 5 between the vibration partportion 5 and the packaging substrate 1, especially into the region facing the vibration region, when the occupancy of filler with a particle size larger than the gap is changed in manufacturing of the surface acoustic wave device of this preferred embodiment. In addition, in FIG. 10, the infiltration amount is represented by relative infiltration amount (%). The infiltration amount rate of the sealing resin partmember 4 in the space 5 is defined as 100-% if the occupancy amount of filler with a particle size larger than the gap is zero wt %, the relative infiltration amount (%) of the infiltration amount is intended to denote the resin infiltration amount rate of 100% in the space 5.

| able                         |                       |  |
|------------------------------|-----------------------|--|
| occupancy of filler having a | relative infiltration |  |
| particle size larger than    | amount (%)            |  |
| gap (wt %)                   |                       |  |
| 0                            | 100                   |  |
| 3                            | 47                    |  |
| 5                            | 20                    |  |
| 10                           | 22                    |  |
| 20                           | 19                    |  |

[0045] —————As is clear from FIG. 10 and Table 1, if

the <del>occupancy</del>amount of the filler with a particle size larger than the gap is set to about 5 wt % or more with respect to the total amount of filler, it is known that the infiltration amount of the sealing resin partmember 4 that infiltrates into the space 5 can be suppressed minimized. [0046] ———The particle size is defined by the size of the sieve openings when the filler is passed through a sieve with sieve openings. The particle size may be defined by a classifier (the difference in scattering due to air, or sedimentation velocity) other than the sieve. [0047] ———Next, the method of manufacturing the surface acoustic wave device (electronic component) according to this preferred embodiment will be described with reference to FIGs. 1(a) to (e), and FIGs. 2 to 4. First, the manufacturing method is a method that includes at least a mounting step, an arranging step, a vacuum (reducedpressure) packing step, a sealing step, and a dividing step, and the steps being implemented in this order. [0048] ——First, in the manufacturing method, a step for forming the vibration part-portion 2b, an electrode pad (not shown), or a wiring pattern to electrically connect both of the parts on the piezoelectric substrate 2a by a lithography process using conductive metal, for example, aluminum, to obtain the SAW element 2, is provided as a pre-

step.

\_\_\_\_\_\_After the pre-step, the mounting step is implemented. As shown in FIG. 1(a), the mounting step is a step for bonding a plurality of SAW elements 2 on the collective mounting substrate 11 with an external terminal 1c (see; FIG. 2) by flip-chip bonding. In the mounting step, depending on the chip size of the SAW element 2, several hundreds to several thousands of SAW elements 2 are mounted in a grid on the collective mounting substrate 11 of ahaving an approximate size, for example, 10 cm × 10 cm. In this preferred embodiment, the gap between the mounted neighboringadjacent SAW elements 2 is set topreferably about 300 μm in a smaller area, and about 800 μm in a larger area. The gap can be changed as necessary.

Next, in the arranging step, a resin film 12 is arranged on the SAW elements 2 mounted on the collective mounting substrate 11. In this preferred embodiment, the thickness of the resin film 12 is set topreferably about 250  $\mu$ m.

Next, in the vacuum packing step, the collective mounting substrate 11, the mounted SAW elements 2, and the resin film 12 are put in a bag 13 for vacuum packaging, and the inside of the bag 13 is deaerated under reduced pressure, for example, at about 500 Pa or less to be hermetically sealed by heat sealing. As for the shape of the bag 13, a bag is listed as being suitable, which has a

substantially rectangular shape and an opening formed at one end thereof, the thickness of the bag 13  $\pm s$  being of the order of preferably about 80  $\mu m$ .

\_\_\_\_\_\_As for the bag 13, it should be a bag that has at least flexibility, a gas-barrier property, and a heat sealing property, and can contain the collective mounting substrate 11 or the like. For example, a bag having a multi-layered structure is listed as being suitable, especially one that is formed of a polyester film with an excellent gas-barrier property and heat resistance withstanding the temperature during heat sealing or curing, for example about 180°C to about 250°C, as an outer layer, and a polyethylene film with heat sealing property as an inner layer (sealant layer).

Thus, the temperature of the heater 15 for heat sealing to be hereinafter described should exceed the fusing temperature of the inner layer, and therefore, in this preferred embodiment, is set to be the order of preferably about 150°C to about 200°C. In addition, it may be a bag that can maintain a sealing or hermetically sealing property, instead of the heat sealing property, by means of fixing with clips or the like.

\_\_\_\_\_Moreover, in the multi-layered structure, in order to improve the gas-barrier property, an aluminum layer should be provided as an intermediate layer. As

another example of the material for an exterior bag, polyimide and polyamide with excellent heat resistance are listed as being suitable. As another example of the material for an interior bag, polypropylene-based materials with a heat sealing property are listed as being suitable. [0055] ————As shown in FIG. 3, during the hermitical sealing, the bag 13 into which the collective mounting substrate 11, the SAW elements 2, and the resin film 12 have been placed, is placed on a placing bed 14 within a hermetically sealed container 10. The inside of the bag 13 is deaerated by a vacuum pump so that the inside of the container 10 enters a vacuum state (for example, about 500 Pa or less), and the surrounding area of the opening of the bag 13 is fused by a fusing heater (heat sealer) 15 from the both sides to close the opening. As for the vacuum state (under reduced pressure), it should be of a pressure smaller than a pressure present in a pressurized state or a reduced pressure in the curing step to be hereinafter described, however, it is preferable to be about 500 Pa or less. [0056] — When the closed bag 13 is taken out into the atmospheric pressure from the hermetically sealed container 10, as shown in FIG. 1(b), the bag 13 enters a state in which the bag 13 contacts the outsides of the collective mounting substrate 11, the SAW elements 2, and the resin film 12 due to the pressure difference.

In addition, as for a process other than the hermetically sealing process, a process is listed as being suitable that deaerates the inside of the bag 13 by inserting a metal pipe connected to a vacuum pump into the opening of the bag 13 in an air-tight manner. In this case, the partsportions of the opening facing each other also closely contact each other, and the opening should be closed by fusing the surrounding area of the opening by a heat fusing heater (heat sealer) 15 while pulling out the metal pipe in this state.

Subsequently, the sealing step is implemented, which includes an infiltrating step and a curing step. As shown in FIG. 1(c), in the infiltrating step, the resin film 12 is softened by being heated together with the bag to a temperature, for example, below the curing temperature of the resin film 12, in this preferred embodiment below about 150°C, or about 100°C to about 140°C.

[0059] \_\_\_\_\_\_\_Thereby, the softened resin film 12 is caused to infiltrate between the individual SAW elements 2 mounted on the collective mounting substrate 11 vacuum packed inside the bag 13 by means of via the pressing force due to the pressure difference between the inside and the outside of the bag 13. As a result, the SAW elements 2 are covered with the sealing resin precursor 4a formed from the resin film 12 and sealed.

is kept substantially parallel with the collective mounting substrate 11 due to the tensile force of the bag 13, and becomes almost planar when the infiltration is completed.

[0061] ——Next, in the curing step, the SAW elements 2 and the collective mounting substrate 11 are further heated to the curing temperature of the sealing resin precursor 4a formed from the resin film 12, about 150°C in this preferred embodiment, and the sealing resin precursor 4a is cured. As the result, as shown in FIG. 1(d), the sealing resin partmember 4 covering the SAW elements, is formed.

\_\_\_\_\_\_\_As shown in FIG. 4, in the curing step, the collective mounting substrate 11, the SAW elements 2, and the sealing resin precursor 4a, vacuum packed inside the bag 13, are placed within an inner space 16a of a hermetically sealed container 16. Here, it is preferable to apply a pressure to the bag 13 in the inner space 16a by means of via a pressurized medium 17 whose pressure is controlled by a pressure control partunit 18 via the phenomenon of equal pressure application. As for the pressurized medium, air, water, oil, and the like are listed as being suitable.may be used. The pressure control may be implemented by any process, as long as a suitable pressure can be applied to the bag 13 under vacuum. The pressure regulation may be

either pressurization that causes the pressure to be higher than atmospheric pressure, or depressurization that causes the pressure to be lower than atmospheric pressure.

\_\_\_\_\_According to the curing step, if the space 5 is adequately formed below the SAW elements 2, or if, using a high-viscosity resin, the sealing resin <a href="mailto:partmember">partmember</a> 4 is also intended to be infiltrated between the SAW element 2 and the collective mounting substrate 11, the pressure applied on the sealing resin precursor 4a through the bag 13 should be controlled by regulating the surrounding pressure during curing. Since such a pressure control can be implemented, the tolerance level with respect to the aspect or shape of the sealing resin <a href="mailto:partmember">partmember</a> 4 becomes wider. The shape or size of the space 5 can also be easily controlled.

In the sealing resin partmember 4 cured by such a curing step, a concave portion with a depth of the order of several µm occurs at the border line part between the neighboringadjacent SAW elements. However, the concave portion does not cause any special problem during the dividing step to be described hereinafter. In order to avoid the occurrence of the concave portion, the thickness of the resin film 12 to be used preferably should be larger.

[0065] \_\_\_\_\_\_\_ Thereafter, in the above mentioned dividing step, the SAW elements 2 resin-sealed by the sealing resin

partmember 4 are taken out from the bag 13, and as shown in
FIG. 1(e), the collective mounting substrate 11 is divided
into individual SAW elements 2 along virtual seissioncut
lines 9 by a suitable process, for example, a dicing process,
cutting/breaking, or the like.

\_\_\_\_\_\_As mentioned above, in the manufacturing method of a preferred embodiment of the present invention, the SAW elements 2 are sealed by superposing the SAW elements 2, the collective mounting substrate 11, and the resin film 12 on each other, and subjecting them to vacuum packing by means of via the bag 13, and then, the softened resin film 12 is cured. Thereby, since the air within the bag 13 is discharged, a lamination CSP-type SAW device in which voids do not occur, can be obtained.

[0068] ——In addition, when a resin film having filler with a small particle size and a resin with low elasticity are used to form the resin film 12, the resin can also be caused to infiltrate the gap between the SAW element 2 and the collective mounting substrate 11.

Moreover, if, as in a SAW device including a SAW filter, a vibration space is required between the collective mounting substrate 11 and the SAW element 2, it is preferable to use a resin film 12 having fillers with a maximum particle size larger than the gap between the collective mounting substrate 11 and the SAW element 2, and high elasticity during softening. Thereby, it is possible to adequately form a space 5 between the collective mounting substrate 11 and the SAW element 2. In addition, by suitably setting the thickness of the resin film 12 to be used, the production thickness of the obtained SAW device can be controlled.

\_\_\_\_\_Hereinafter, the effects of the manufacturing method according to this the present preferred embodiment will be described.

[0072] ———Further, in the manufacturing method, it is

not required to form many holes for vacuuming, thus enabling to be of a compact size, and the sealing resin precursor 4a formed from the resin film 12 is pushed slowly between the SAW elements by atmospheric pressure, thus the SAW elements to be products are not subjected to temperature or pressure that is greater than required. Therefore, it is possible to prevent pyroelectric breakdown among SAW elements, conductive <del>defect of parts</del>defects of portions of the bump electrodes 3, chips among SAW elements, or the like. [0073] — Moreover, in the manufacturing method, the allentire surfaces of the SAW elements can be covered with the sealing resin partmember 4, thus enabling a sufficient sealing thickness. Accordingly, in the manufacturing method, sealing property can be improved as compared with the case using a thin film, and, at the same time, the surface areas of the packaging substrate 1 and the top of the sealing resin partmember 4 can be caused to be substantially equal to each other. Thus, it is easy to ensure the mountability of the obtained SAW device.

Next, another <u>preferred</u> embodiment according to the present invention will be described. In the arranging step, the entire surface of one side of the resin film 12, the entire outer surface, may be adhered with a parting sheet 19. As for the material of the parting sheet 19, a material should be used that has heat resistance

equal to that of the outer layer of the bag 13 or more, and small affinity, or adhesiveness, to the inner layer of the bag 13 or the sealing resin partmember 4. For example, PET (polyethylene phthalate) or the like can be listed as beingis suitable.

In this case, as shown in FIG. 5, after forming the sealing resin partmember 4 by softening and curing the resin film 12, the parting film 19 is released. Accordingly, adhesion of contaminants such as dirt adhering to the surface of the sealing resin partmember 4 or occurrence of unevenness during the curing procedure can be prevented, and even if heated to the curing temperature, it is possible to prevent the inner layer of the bag 13 and the sealing resin partmember 4 from adhering to each other, thus, enabling the manufacturing steps to be simplified.

Moreover, since the surface roughness of the parting film 19 at the resin film 12 side is transferred to the surface of the sealing resin <a href="mailto:partmember">partmember</a> 4 formed from the resin film 12, a package top of the sealing resin <a href="mailto:partmember">partmember</a> 4 with a good surface condition can be obtained, thus, enabling good laser printing to the package top without a preliminary treatment.

[0077] ——In addition, when the relationship between the surface roughness  $(\mu m)$  of the package top of the sealing resin partmember 4 and the recognition rate in the laser

printing (%) was investigated by variously changing the surface roughness, results as shown in FIG. 6 were obtained. In addition, the value of the surface roughness is a value measured using a non-contact three dimensional surface roughness measuring machine. Thereby, it is understood that it is preferable for the surface roughness of the resin film 12 side of the parting sheet 19 to be within a range of about 0.01  $\mu m$  to about 10  $\mu m$ , for example.

[0078] ——On the other hand, there is a situation in which an electronic component such as the SAW element 2 or a semiconductor element 22 is bonded on the packaging substrate or a package by facedown bonding, and the surroundings are sealed with the sealing resin part. member. In such a situation, after being cured, when a lot number or a mark of the product is printed on the sealing resin partmember 4, the printing can not be implemented clearly due to the unevenness or the presence of contaminants on the surface of the sealing resin partmember 4. In the related art, as a countermeasure, a process in which after further coating a printing resin with a color developing property on the sealing resin partmember, the laser printing was implemented, has been used. As a result, there has been a problem that the additional steps resulted in an increase in cost.

[0079] ———In order to address such problems, the SAW

elements 2 bonded on the collective mounting substrate 11 by face down bonding should be covered with the resin film 12, and, further the parting sheet 19 should be placed on the resin film 12 to soften and cure the resin film 12. Thereby, the unevenness and contamination of the surface (top) of the sealing resin <a href="mailto:partmember">partmember</a> 4 formed from the resin film 12 can be prevented from occurring during curing.

\_\_\_\_\_\_Thereby, it is possible to directly implement laser printing on the sealing resin <a href="mailto:partmember">partmember</a> 4 without subjecting the sealing resin <a href="mailto:partmember">partmember</a> 4 to a special processing, thus, enabling cost reduction while ensuring impressability.

however, as shown in FIG. 8, heating and pressing rollers  $26_{7}$ 26 may be used. Thus, the infiltrating step is intended to be implemented by placing the resin film 12 on the SAW elements 2 mounted on the collective mounting substrate 11 through the bump electrodes 3, placing the contents contained within the bag 13 on a flat plate 24, and transferring the bag 13 together with the flat plate 24 between the two heating and pressing rollers 26, 26. [0083] ——Moreover, as shown in FIG. 9, pressurization by inserting the bag 13 in a press frame 28c of a press machine 28 may also be used. The infiltrating step using the above-described pressurization is a process in which the bag 13 containing the collective mounting substrate 11, the SAW elements 2, and the resin film 12, are placed on the lower bed 28b of the press machine 28, and the resin film 12 is buried by pressing the bag using a tool such as the press frame 28c attached to the rear surface of the upper press 28a, while the resin film 12 is heated from above by processing the upper press 28a, to form the sealing resin <del>part</del>member 4 from the resin film 12. [0084] ———Further, during the vacuum packing step, in

order to deaerate air effectively from the gap between the resin film 12 and the collective mounting substrate 11, a spacer should be placed so as to form a gap between the surroundings of the collective mounting substrate 11 and the

bag 13 that is an adhesive film, to provide an air hole (air path).

[0085] ------Moreover, a <del>part</del>portion of the collective mounting substrate 11 or a partportion of the thermally softened adhesive resin film 12 may be provided with the air hole. In order to ensure the adhesiveness by means of via atmospheric pressure after vacuum packing step, the air hole should be opened anywhere of the space formed between the resin film 12 and the collective mounting substrate 11. [0086] — Moreover, in the vacuum packing step, after replacing the contents of the bag 13 with inert gas such as dry nitrogen, deaeration may be implemented further. Moreover, as for the process for hermetically sealing the bag 13, thermal fusioning is preferable, however, any process that can block entry of the surrounding air, such as adhesion or contact bonding using a tool may be used. [0087] — Moreover, if a space 5 is formed under the SAW element 2, in order to minimize the infiltration amount of the sealing resin partmember 4, sealing should be implemented with suitable residual air left by regulating the degree of vacuum during vacuuming. As for the degree of vacuum at this time, it differs depending on the volume of the space 5 to be formed or the shape of the product, however, it is preferable to be about 100 Pa to about 500 Pa, for example.

In this manner, by causing the residual air to be left, namely, by controlling the air amount during dearation of the inside of the bag 13, an effecteffects similar to those of the disclosed preferred embodiments can be attained, and a repulsive force occurs within the space 5 during sealing, thus causing the space 5 to be formed easily.

[0089] While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.