Воронежский государственный университет

Факультет прикладной математики, информатики и механики

Конспект лекций по уравнениям математической физики

6 семестр

Лектор

Ляхов Л. Н.

Конспект подготовили

Оглавление

Ι	Уравнения математической физики				
	I.1	17.02.2015	7		
		Понятие задачи Штурма-Лиувилля	7		
		Двухточечная задача	7		
		Понятие сопряженного дифференциального уравнения в $L^2(\Omega)$	8		
	I.2	24.02.2015	10		
		Приведение уравнения Бесселя к самосопряженному виду .	10		
		Собственные числа и собственные функции задачи Штурма-			
		Лиувилля	11		
		Основные уравнения математической физики	13		
Π	0	бобщенные функции	15		
		17.02.2015	17		
		δ-функция Дирака	17		
		Пространство основных функций D	18		
	II.4	24.02.2015	18		
		Пример основной функции	18		
		Основная функция, равная 1 на области	19		

4 ОГЛАВЛЕНИЕ

Часть I

Уравнения математической физики

17.02.2015

Понятие задачи Штурма-Лиувилля

Рассмотрим линейное однородное дифференциальное уравнение второго порядка

$$Ly(x) = P_0(x)y''(x) + P_1(x)y'(x) + P_2(x)y(x) = 0,$$
 (I.1.1)

где $P_0(x) \neq 0$ для $\forall x \in [a,b]$. Разделив уравнение на $P_0(x)$, получаем

$$y''(x) + c(x)y'(x) + d(x)y(x) = 0.$$

Будем рассматривать случай, когда c(x) = c, d(x) = d — константы. Найдем решение полученного уравнения. Для этого запишем характеристическое уравнение, затем выпишем общее решение.

$$k^{2} + ck + d = 0;$$

$$y_{c}(x) = \begin{cases}
C_{1}e^{k_{1}x} + C_{2}e^{k_{2}x}, k = k_{1} \neq k_{2}; \\
C_{1}e^{kx} + C_{2}xe^{kx}, k = k_{1} = k_{2}; \\
e^{\alpha x}(C_{1}\cos\beta x + C_{2}\sin\beta x), k = \alpha \pm i\beta.
\end{cases}$$

Пусть $y_1(x)$ и $y_2(x)$ образуют фундаментальную систему решений. Тогда любое решение y(x) представимо в виде

$$y(x) = C_1 y_1(x) + C_2 y_2(x).$$

Вспомним, что решением ЛНДУ 2-го порядка Ly(x) = f(x) является $y(x) = y_c(x) + y_p(x)$, где $y_c(x)$ — общее решение однородного уравнения, а $y_p(x)$ — частное решение неоднородного уравнения.

Двухточечная задача

Пример І.1.1.

$$y'' + \lambda y = 0,$$
 $y(0) = 0,$ $y(l) = 0.$

Найдем решение данной задачи.

$$k^2 + \lambda = 0;$$

$$k = \pm i\sqrt{\lambda}.$$

8 17.02.2015

Рассмотрим случай, когда $\lambda > 0$. Тогда общее решение будет иметь вид $y_c(x) = C_1 \cos \sqrt{\lambda} \, x + C_2 \sin \sqrt{\lambda} \, x$. Подставим граничные условия:

$$y_c(0) = C_1 = 0 \Longrightarrow C_1 = 0;$$

 $y_c(l) = C_2 \sin \sqrt{\lambda} l = 0.$

Пусть $C_2 \neq 0$, тогда $l\sqrt{\lambda} = \pi n$, отсюда $\lambda = \frac{\pi^2 n^2}{l^2}, n \in \mathbb{N}.$

Понятие сопряженного дифференциального уравнения в $L^2(\Omega)$

Пусть $\Omega = \{x \in \mathbb{R} : a < x < b\}$. Будем рассматривать пространство

$$L^{2}(\Omega) = \left\{ f \colon (L) \int_{\Omega} |f(x)|^{2} dx < \infty, x \in \Omega, f \colon \Omega \to \mathbb{R} \right\}.$$

Скалярное произведение и норма вводятся в этом пространстве следующим образом

$$(u,v) = \int_{\Omega} u(x)\overline{v(x)} dx, \quad \forall u, v \in L^{2}(\Omega),$$

$$||u||_{L^2} = \sqrt{(u, u)} = \left(\int_{\Omega} |u(x)|^2 dx\right)^{\frac{1}{2}}.$$

Положим $H\subseteq L^2(\Omega)$. Задан оператор $A\colon H\to H$. A^* — сопряженный к A в H, т.е. $(Au,v)=(u,A^*v)$. Возьмем $A=\frac{\mathrm{d}}{\mathrm{d}x}$ и проверим, является ли он самосопряженным. Будем предполагать, что функции u и/или v имеют конечный носитель в Ω .

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}u,v\right) = \int_{\Omega} \frac{\mathrm{d}}{\mathrm{d}x}u(x)v(x)\,\mathrm{d}x = \underbrace{u(x)v(x)|_a^b}_{0} - \int_a^b u(x)v'(x)\,\mathrm{d}x =$$
$$= -\int_a^b u(x)\frac{\mathrm{d}}{\mathrm{d}x}v(x)\,\mathrm{d}x = \left(u, -\frac{\mathrm{d}}{\mathrm{d}x}v\right).$$

Таким образом получаем, что $A^* = -\frac{\mathrm{d}}{\mathrm{d}x} \neq A$.

Замечание. Оператор $\frac{\mathrm{d}^2}{\mathrm{d}x^2}$ — является самосопряженным оператором

в $L^2(\Omega)$ при условии, что функция и её производная имеет конечный носитель на множестве интегрирования. Другой пример самосопряженного оператора — умножение на бесконечно непрерывно-дифференцируемую функцию.

Рассмотрим следующий дифференциальный оператор:

$$L = \frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} \right].$$

Проверим, является ли он самосопряженным в $L^2(\Omega)$ (при условии, сказанном в замечании):

$$(Lu, v) = \int_{\Omega} \frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} u(x) \right] v(x) \, \mathrm{d}x =$$

$$= \underbrace{v(x) \varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} u(x) \Big|_{a}^{b}}_{0} - \int_{a}^{b} \varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} u(x) v'(x) \, \mathrm{d}x =$$

$$= -\underbrace{u(x) \varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} v(x) \Big|_{a}^{b}}_{0} + \int_{a}^{b} u(x) \frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} v(x) \right] \, \mathrm{d}x = (u, Lv).$$

Получаем, что L — самосопряженный оператор. В $L^2(\Omega)$ это общий вид самосопряженного оператора. Отвечающее ему уравнение записывается в виде

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\varphi(x) \frac{\mathrm{d}}{\mathrm{d}x} y \right] - q(x)y = 0.$$

Рассмотрим общий способ приведения уравнения второго порядка к самосопряженному виду. Домножим обе части уравнения (I.1.1) на функцию $\rho(x)$, которая не обращается в нуль:

$$\rho(x)P_0(x)y'' + \rho(x)P_1(x)y' + \rho(x)P_2(x)y = 0.$$

Самосопряженное уравнение имеет вид

$$\varphi(x)y'' + \varphi'(x)y' - q(x)y = 0.$$

Тогда, приравнивая множители при соответствующих производных функции y, получаем:

$$\varphi(x) = \rho(x)P_0(x)$$

10 24.02.2015

$$\varphi'(x) = \rho(x)P_1(x) = \rho'(x)P_0(x) + \rho(x)P_0'(x).$$

В результате имеем дифференциальное уравнение первого порядка относительно ρ :

 $P_0(x)\rho'(x) = \rho(x)(P_1(x) - P_0'(x)).$

Разделив переменные и проинтегрировав, получим

$$\rho(x) = \frac{C}{P_0(x)} \exp\left\{ \int \frac{P_1(x)}{P_0(x)} dx \right\}. \tag{I.1.2}$$

24.02.2015

Приведение уравнения Бесселя к самосопряженному виду

Рассмотрим уравнение Бесселя, имеющее вид

$$x^2y'' + xy' + (x^2 - p^2)y = 0.$$

Подставляя коэффициенты уравнения в выражение І.1.2, получаем

$$\rho(x) = \frac{1}{x^2} e^{\int \frac{1}{x} dx} = \frac{1}{x}.$$

Тогда поделим уравнение Бесселя на х:

$$xy'' + y' + \left(x - \frac{p^2}{x}\right)y = 0,$$

или иначе

$$(xy')' + \left(x - \frac{p^2}{x}\right)y = 0.$$

Это уравнение Бесселя в самосопряженной форме.

Расмотрим сингулярный оператор Бесселя:

$$B_{\gamma} = \frac{1}{x^{\gamma}} \frac{\mathrm{d}}{\mathrm{d}x} \left[x^{\gamma} \frac{\mathrm{d}}{\mathrm{d}x} \right], \quad \gamma > 0.$$

Такой оператор является самосопряженным в пространстве $L^2_{\gamma}(\Omega)$ —

квадратично-суммируемых с весом γ функций:

$$L_{\gamma}^{2} = \left\{ f \colon \Omega \to \mathbb{R} \colon \int_{\Omega} |f(x)|^{2} x^{\gamma} dx < \infty \right\},$$

скалярное произведение в котором определяется равенством

$$(u,v)_{\gamma} = \int_{\Omega} u(x)v(x)x^{\gamma} dx.$$

В самом деле, пусть $u,v\in C_0^2(\Omega)$ — дважды непрерывно дифференцируемые функции с конечным носителем. Тогда

$$(B_{\gamma}u, v)_{\gamma} = \int \frac{1}{x^{\gamma}} \frac{\mathrm{d}}{\mathrm{d}x} \left[x^{\gamma} \frac{\mathrm{d}u}{\mathrm{d}x} \right] v(x) x^{\gamma} \, \mathrm{d}x = -\int x^{\gamma} \frac{\mathrm{d}u}{\mathrm{d}x} \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x$$
$$= \int \frac{1}{x^{\gamma}} \frac{\mathrm{d}}{\mathrm{d}x} \left[x^{\gamma} \frac{\mathrm{d}v}{\mathrm{d}x} \right] u(x) x^{\gamma} \, \mathrm{d}x = (u, B_{\gamma}v)_{\gamma}.$$

Собственные числа и собственные функции задачи Штурма-Лиувилля

Рассмотрим уравнение Штурма-Лиувилля

$$[\varphi(x)y']' - q(x)y + \lambda \rho(x)y = 0$$
(I.2.1)

с граничными условиями вида

$$\begin{cases} \alpha_1 y(a) + \alpha_2 y'(a) = 0, \\ \beta_1 y(b) + \beta_2 y'(b) = 0, \end{cases}$$
 (I.2.2)

где $|\alpha_1|+|\alpha_2|\neq 0$ и $|\alpha_1|+|\alpha_2|\neq 0$, а функции φ и ρ положительны на отрезке [a,b].

Уравнение (I.2.1) вместе с граничными условиями (I.2.2) называются задачей Штурма-Лиувилля (Ш.-Л.).

Значения $\lambda \in \mathbb{R}$, для которых задача Ш.-Л. имеет ненулевое решение, называются собственными числами задачи Ш.-Л. Сами же ненулевые решения — собственными функциями задачи Ш.-Л., соответствующими собственному числу λ .

Теорема І.2.1. Пусть u_1 и u_2 — собственные функции, соответствующие собственному числу λ . Тогда они линейно зависимы, т. е. $u_1 = cu_2$,

12 24.02.2015

 $c \neq 0$.

Доказательство. Предположим противное: пусть u_1 и u_2 линейно независимы. Тогда, поскольку они оба удовлетворяют ЛДУ II порядка, их определитель Вронского не обращается в нуль ни в одной точке (см. курс ОДУ):

$$W(u_1(x), u_2(x)) = \begin{vmatrix} u_1(x) & u_2(x) \\ u'_1(x) & u'_2(x) \end{vmatrix} \neq 0.$$

Но в точке x = a, в соответствии с условиями (I.2.2) получаем

$$\begin{cases} \alpha_1 u_1(a) + \alpha_2 u_1'(a) = 0, \\ \alpha_1 u_2(a) + \alpha_2 u_2'(a) = 0. \end{cases}$$

Поскольку α_1 и α_2 одновременно не обращаются в нуль, получаем, что система имеет ненулевое решение относительно переменных α_1 и α_2 , а значит её определитель равен нулю:

$$\begin{vmatrix} u_1(a) & u_2(a) \\ u'_1(a) & u'_2(a) \end{vmatrix} = 0.$$

Получили противоречие.

Определение I.2.1. Функции u и v называются *ортогональными* c eecom ρ на отрезке [a,b], если

П

$$\int_{a}^{b} u(x)v(x)\rho(x) \, \mathrm{d}x = 0.$$

Теорема І.2.2. Пусть u_1 и u_2 — собственные функции задачи Ш.-Л. (І.2.1, І.2.2), отвечающие различным собственным числам λ_1 и λ_2 соответственно. Тогда они ортогональны с весом ρ на отрезке [a,b].

Доказательство. Поскольку u_1 и u_2 решения, имеем:

$$[\varphi u_1']' - qu_1 + \lambda_1 \rho(x) u_1 = 0, [\varphi u_2']' - qu_2 + \lambda_2 \rho(x) u_2 = 0.$$

Домножим первое уравнение на u_2 , а второе на u_1 :

$$u_2[\varphi u_1']' - qu_1u_2 + \lambda_1 \rho(x)u_1u_2 = 0,$$

$$u_1[\varphi u_2']' - qu_1u_2 + \lambda_2 \rho(x)u_1u_2 = 0.$$

Вычитая первое из второго, получаем:

$$u_1[\varphi u_2']' - u_2[\varphi u_1']' = (\lambda_1 - \lambda_2)u_1u_2\rho(x).$$

Левая часть этого равенства преобразуется к виду

$$u_1[\varphi u_2']' - u_2[\varphi u_1']' = [\varphi(u_1u_2' - u_2u_1')]' = [\varphi W(u_1(x), u_2(x))]',$$

(это проверяется непосредственно). Тогда

$$(\lambda_1 - \lambda_2)u_1u_2\rho(x) = [\varphi W(u_1(x), u_2(x))]'.$$

Проинтегрируем обе части равенства по отрезку [a,b] и используем формулу Ньютона-Лейбница:

$$(\lambda_1 - \lambda_2) \int_a^b u_1(x) u_2(x) \rho(x) dx = \int_a^b [\varphi(x) W(u_1(x), u_2(x))]' dx =$$

$$= \varphi(x) W(u_1(x), u_2(x))|_a^b = \varphi(b) W(u_1(b), u_2(b)) - \varphi(a) W(u_1(a), u_2(a)) = 0,$$

где $W(u_1(a), u_2(a)) = W(u_1(b), u_2(b)) = 0$ в силу граничных условий (I.2.2) (аналогично предыдущей теореме).

Основные уравнения математической физики

Волновое уравнение

TODO

14 24.02.2015

Часть II Обобщенные функции

17.02.2015

δ -функция Дирака

Дирак ввел эту функцию для описания плотностей (масс, зарядов и др.) в столь малом объеме, что его можно принять за точку.

Исходя из того, что если $\delta(x)$ — плотность распределения массы заряда $x=(x_1,x_2,x_3)\in\mathbb{R}^3.$

$$\int \delta(x) dx = 1, \qquad \delta(x) = 0, \qquad x \neq 0;$$

$$\int_{\mathbb{R}^3} \delta(x) dx = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \delta(x) dx.$$

Пусть f(x) — непрерывная в окрестности 0 функция. Рассмотрим

$$\delta_{\varepsilon}(x) = \begin{cases} \frac{1}{2\varepsilon}, & |x| > \varepsilon, \\ 0, & |x| \leqslant \varepsilon; \end{cases} \quad x \in \mathbb{R};$$

$$\int_{\mathbb{R}} \delta_{\varepsilon}(x) f(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \delta_{\varepsilon}(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{1}{2\varepsilon} f(x) \, \mathrm{d}x.$$

Поскольку δ — неотрицательная функция, можно воспользоваться І-ой теоремой о среднем и вынести значение в некоторой средней точке за знак интеграла.

$$\lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{1}{2\varepsilon} f(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} f(\xi_{\varepsilon}) \int_{-\varepsilon}^{\varepsilon} \, \mathrm{d}x = \lim_{\varepsilon \to 0} f(\xi_{\varepsilon}) = f(0);$$

Т.о. δ -функция Дирака оказалась функционалом, который на каждой, непрерывной в окрестности 0 функции действует по правилу.

Учитывая, что действие этого функционала прослеживается через предельный переход в интегральных операциях от δ -образной последовательности, это действие записывается следующим образом

$$(\delta, \varphi) = \varphi(0);$$

$$\int_{\mathbb{R}^n} \delta(x)\varphi(x) \, \mathrm{d}x = \varphi(0).$$

Задача. Привести примеры δ -образных последовательностей в $\mathbb{R}^2, \mathbb{R}^3$.

При этом использовать не только функции с разрывом 1-го рода, но и бесконечно дифференцируемые.

П

Решение. Comming soon.

Пространство основных функций D

 $D=D(\mathbb{R}^n)$ — функции, имеющие конечный носитель в \mathbb{R}^n , бесконечно дифференцируемые. В этом множестве вводится топология следующим образом. Последовательность функций $\varphi_k \to \varphi$ входит в D, если:

- 1) $\exists R$, supp $\varphi_k \subset B_R$.
- 2) $\alpha = (\alpha_1, \dots, \alpha_n)$ мультииндекс. $D^{\alpha} \varphi_k \rightrightarrows D^{\alpha} \varphi$ в B_R . $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$, где $|\alpha| = \sum_{i=1}^n \alpha_i, \ \alpha_i \in \mathbb{Z}^+.$

Задача. Доказать, что дифференциальные операторы непрерывны в топологии D.

Решение. Comming soon.

Задача. Доказать, что линейная замена переменных y = Ax + b (A - bневырожденная матрица и $b \in \mathbb{R}^n$) — непрерывная операция в топологии D.

Решение. Comming soon.

Задача. Доказать, что операция умножения на бесконечно дифференцируемую функцию непрерывна в D.

Решение. Comming soon.

24.02.2015

Пример основной функции

Рассмотрим семейство функций вида

$$\omega_{\varepsilon}(x) = \begin{cases} c_{n,\varepsilon} e^{-\frac{\varepsilon^2}{\varepsilon^2 - |x|^2}}, & |x| \leqslant \varepsilon, \\ 0, & |x| > \varepsilon, \end{cases}$$

где $c_{n,\varepsilon}$ выбираются таким образом, чтобы $\int\limits_{\mathbb{R}^n}\omega_{\varepsilon}(x)\,\mathrm{d}x=1.$

Задача. Доказать, что ω_{ε} — бесконечно непрерывно дифференцируема.

Решение. Comming soon.

Элемент объема dx можно представить в сферических координатах в виде

$$\mathrm{d}x = r^{n-1} \, \mathrm{d}r \, \mathrm{d}S,$$

где dS — элемент n-1-мерной единичной сферы, при этом

$$\int_{|x|=1} \mathrm{d}S = \frac{2\pi^{n/2}}{\Gamma(n/2)}.$$

Тогда для любой функции f(|x|) справедливо равенство

$$\int_{|x| \le R} f(|x|) \, \mathrm{d}x = \int_{0}^{R} f(r) r^{n-1} \, \mathrm{d}r \int_{|x|=1} \, \mathrm{d}S.$$

Отсюда легко получить условия нормировки для параметров $c_{n,\varepsilon}$.

Основная функция, равная 1 на области

Лемма II.4.1. Для любой области $\Omega \subset \mathbb{R}^n$ найдётся такая бесконечно непрерывно дифференцируемая функция η , что выполняются следующие три условия:

- $1) \ 0 \leqslant \eta(x) \leqslant 1,$
- 2) $\eta(x)=1$ для всех $x\in\Omega_{arepsilon}$, где $\Omega_{arepsilon}$ arepsilon-окрестность области $\Omega,$
- 3) $\eta(x)=0$ для всех x не принадлежащих 3ε -окрестности области Ω .

Доказательство. См. Владимиров-Жаринов (2004), с. 69.