Fisiología de la digestión en mamíferos herbívoros

Consigna:

Trabajando en grupo, analice la diversidad de adaptaciones morfo-fisiológicas a la herbivoria en mamíferos, utilizando el material provisto y respondiendo a las preguntas y ejercicios planteados.

Que problemas fisiológicos plantea la herbívora (particularmente el consumo de "pastos")?

Cuales son las características del estomago de rumiantes?

Que ventajas ofrece la simbiosis con microrganismos del tracto digestivo? Que ventaja adaptativa aporta la diversidad de la flora del rumen?

Que productos generan las baterías del rumen? Que significancia ambiental tienen los gases que emanan?

Que ocurre con los lípidos en el rumen? Que implicancia tiene con la transferencia trófica de energía?

Cuales son los tipos de fermentadores?

Cuales son los tipos de rumiantes?

Cuales son las etapas de la digestión en rumiantes?

Que tan grande puede ser un herbívoro?

Correlación entre el contenido de materia seca en las heces y el tamaño corporal en rumiantes selectivos y no-selectivos.

Correlación entre la masa del retículo y rumen (expresada como % de la masa corporal) y la masa corporal en rumiantes selectivos y no-selectivos.

Table 5 The diameter of the small intestine in different hindgut fermenters

	Species	Small intestine diameter (cm)				
Frewein et al. (1999)	Horse	5–7				
Garrod (1873)	Sumatran rhino	5–6				
Kiefer (2002)	White rhino	5–6				
Owen (1862)	Indian rhino	5–8				
Sikes (1971)	Elephant	13-20				

Diámetro del intestino delgado de algunos fermentadores intestinales.

Source	8	b	b	¢	d	0	8	f	8	8	h	i	j	k	k	8	1	m	п	
	Pony	Am. tapir	Malay	an tapir	Horse		Ze bra	Sumatran rhino	Javan rhino	Black	rhino		White rhino	Indian	rhino	Eleph	ant			_
Stomach	0.2	_	_	0.5	(0.25)	(0.25)	0.2	_	_	0.9	1.2	0.8	(1)	1.2	0.8	1.1	1.2	1.0	1.2	_
Small intestine	7.9	-	-	21.0	22.5	26.7	11.4	11.0-16.6	8	12.0	8.0	11.6	13.8	19.8	15.2	13.8	20.0	10.0	11.0	
Caec um	0.7	_	_	0.3	1.0	1.0	0.8	0.8 - 0.9	0.4 - 0.6	0.7	1.1	_	0.8	0.9	0.6	0.8	0.5	0.5	1.0	<
Colon total + rec tum	4.2	-	-	5.9	7.5	7.0	4.7	-	-	4.9	2.9	-	7.2	9.1	6.4	8.5	5.8	6.0	6.0	
DFC total	3.0	_	_	_	4.5	4.5	3.4	_	_	3.7	_	_	_	_	_	6.1	_	_	_	
Total GIT	13.1	16.8	27.4	27.8	31.3	35.0	17.2	_	_	18.5	13.2	16.9	22.8	31.1	23.1	24.2	27.5	17.5	19.0	

Largo del tracto gastrointestinal (en metros, DFC = cámara de fermentación distal = ciego + colon ascendente)

^a Stevens and Hume (1995), measured from the graph, ^b Anon. (1872), ^c Home (1821), ^d Bourdelle and Lavocat (1955), ^c Frewein et al. (1999), ^f Home (1821) and Garrod (1873), ^g Garrod (1877) and Beddard (1887), ^h De Bouveignes (1953), ⁱ Wilson and Edwards (1965), ^j Kiefer (2002), ^k Owen (1862), ^h Mullen (1682), ^m Frade and Vanfie y (1955), ⁿ Sikes (1971)

Microrganismos del rumen

Species	Bacteria/g Fluid Digesta	Protozoa/g Fluid digesta	References
Cattle and sheep	10 ¹⁰ 10 ¹¹	10 ⁴ - 10 ⁵	Phillipson 1987; Allison 1984
Camel	10 ⁶ - 10 ¹¹	10 ³ - 10 ⁶	Hungate et al. 1959; Williams 1963
Collared peccary	-	19 ⁶	Carl & Brown 1983; Lochmiller et al. 1989
Eastern grey kangaroo		10 ⁴	Dellow & Hume 1982; Dellow et al. 1988
Swamp wallaby	10 ¹¹	10 ⁴	Dellow et al. 1988
Quokka	10 ¹⁰	10 ⁶	Moir 1965; 1968
Tammer wallaby	10 ¹¹	10 ⁴	Dellow et al. 1988
Three-toed sloth		0	Britton 1941; Denis et al. 1967
Colobus monkey	10 ⁶ - 10 ⁸	0	Kuhn 1964; Ohwaki et al. 1974
Langur monkey	1010	0	Bauchop & Matucci 1968
Gray whale	10 ⁷ - 10 ⁸	-	Herwig et al. 1984
Bowhead whale	10 ⁸ -10 ¹⁰	HELENWICH CEMERATURE	Herwig et al. 1984
Minke whale	10 ¹⁰	-	Mathieson et al. 1990; Olsen et al. 1994
Hoatzin	10 ⁹	10 ⁴	Grajal et al. 1989; Dominguez-Bello 1993

Densidad de microorganismos en el digestivo anterior de diversos animales.

Ordene a los herbívoros de las figuras según las categorías del cuadro

Fe	Fermentadores					
No rumiantes	Rumi	intestinales				
	Selectivos (browsers)	No selectivos (grazers)				

Tener en cuenta los esquemas de tracto digestivo

Compare los dos estrategias morfo-fisiológicas de fermentación de plantas en mamíferos

	Fermentadores gástricos	Fermentadores intestinales
Rumiantes		
Calidad de pastura requerida		
Maceración mecánica del alimento		
Recibe material bien digerido		
Aprovechamiento del Nitrógeno		
Aprovechamiento de nutrientes lábiles		
Tiempo de digestión		
Coprofagia		
Neutralización de sustancias toxicas vegetales		

Compare los dos tipos de rumiantes

	Rumiantes selectivos	Rumiantes no selectivos
Dieta		
Apertura bucal y labios		
Lengua		
Producción de saliva		
Desarrollo de la musculatura del estomago		
Tamaño del hígado		
Rumen		

Connochaetes taurinus

Phascolarctos cinereus

Colobus abyssinicus

Ovis aries

Madoqua guentheri

Cavia porcellus

Lama glama

Hippopotamus amphibius

Bradypus tridactylus

Bibliografía:

- Sun, X.Q., Gibbs, S.J. 2012. Diurnal variation in fatty acid profiles in rumen digesta from dairy cows grazing high-quality pasture. Animal Feed Science and Technology 177:152–160
- Seymour, W.M., Campbell, D.R., Johnson, Z.B. 2005. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: a literature study. Animal Feed Science and Technology 119:155–169
- Hackmann, T. J., Spain, J. N. 2010. Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production.
 J. Dairy Sci. 93:1320–1334
- Kuntz, R., Kubalek, C., Ruf, T., Tataruch, F. Arnold, W. 2006. Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (*Equus ferus przewalskii*). The Journal of Experimental Biology 209, 4557-4565
- Sakaguchi, E. 2003. Digestive strategies of small hindgut fermenters. Animal Science Journal 74, 327–337
- Clauss, M., Frey, R., Kiefer, B., Lechner-Doll, M., Loehlein, W., Polster, C., Rssner, C.E., Streich, W.J. 2003. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 36:14–27
- Kohl, K.D., Denise Dearing, M. 2011. Induced and constitutive responses of digestive enzymes to plant toxins in an
- herbivorous mammal. The Journal of Experimental Biology 214, 4133-4140
- Hofmann, R.R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 78:443-457
- Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., OBircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., Gordon, J.L. 2008. Evolution of Mammals and Their Gut Microbes. Science 320: 1647-1651