第一章 张量的定义及表示

对偶基, 度量 1.1

1.1.1 对偶基

R"空间中的基可分为两类: 指标写在下面的基

$$\left\{\boldsymbol{g}_{i}\right\}_{i=1}^{m}\subset\mathbb{R}^{m}$$

称为协变基, 指标写在上面的基

$$\left\{ \boldsymbol{g}^{i}\right\} _{i=1}^{m}\subset\mathbb{R}^{m}$$

称为逆变基. 它们满足对偶关系:

$$(\mathbf{g}^i, \mathbf{g}_j)_{\mathbb{R}^m} = \delta^i_j = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$$
 (1.1)

这里的 δ^i_j 是 Kronecker δ 函数.

1.1.2 度量

下面引入度量的概念. 其定义为

$$\begin{cases} g_{ij} \triangleq (\mathbf{g}_i, \mathbf{g}_j)_{\mathbb{R}^m}, \\ g^{ij} \triangleq (\mathbf{g}^i, \mathbf{g}^j)_{\mathbb{R}^m}. \end{cases}$$
(1.2-a)

$$g^{ij} \triangleq (g^i, g^j)_{\mathbb{R}^m}. \tag{1.2-b}$$

下面证明

$$g_{ik}g^{kj} = \delta_i^j. (1.3)$$

它也可以写成矩阵的形式:

$$[g_{ik}][g^{kj}] = [\delta_i^j] = \mathbf{I}_m, \tag{1.4}$$

其中的 I_m 是 m 阶单位阵.

证明:

$$g_{ik}g^{kj} = (\mathbf{g}_i, \mathbf{g}_k)_{\mathbb{R}^m}g^{kj} = (\mathbf{g}_i, g^{kj}\mathbf{g}_k)_{\mathbb{R}^m}$$

$$(1.5)$$

后文将说明 $g^{kj}g_k = g^j$, 因此可得

$$g_{ik} g^{kj} = \left(\mathbf{g}_i, \mathbf{g}^j\right)_{\mathbb{R}^m} = \delta_i^j. \tag{1.6}$$

要注意的是,这里的指标 k 是哑标。根据 **Einstein 求和约定**,重复指标并且一上一下时,就表 示对它求和. 后文除非特殊说明, 也均是如此.

现在澄清基向量转换关系. 第i个协变基向量 g_i 既然是向量,就必然可以用协变基或逆变基来 表示. 根据对偶关系式 (1.1) 和度量的定义式 (1.2-a)、(1.2-b), 可知

$$\begin{cases} \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}_{k})_{\mathbb{R}^{m}} \mathbf{g}^{k} = g_{ik} \mathbf{g}^{k}, \\ \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}^{k})_{\mathbb{R}^{m}} \mathbf{g}_{k} = \delta_{i}^{k} \mathbf{g}_{k} \end{cases}$$
(1.7-a)

$$\int \mathbf{g}_i = (\mathbf{g}_i, \mathbf{g}^k)_{\mathbb{R}^m} \mathbf{g}_k = \delta_i^k \mathbf{g}_k \tag{1.7-b}$$

以及

$$\begin{cases}
\mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}_{k})_{\mathbb{R}^{m}} \mathbf{g}^{k} = \delta_{k}^{i} \mathbf{g}^{k}, \\
\mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}^{k})_{\mathbb{R}^{m}} \mathbf{g}_{k} = \mathbf{g}^{ik} \mathbf{g}_{k}.
\end{cases} (1.8-a)$$
(1.8-b)

$$\int \mathbf{g}^i = (\mathbf{g}^i, \mathbf{g}^k)_{\mathbf{p}_m} \mathbf{g}_k = \mathbf{g}^{ik} \mathbf{g}_k. \tag{1.8-b}$$

这四个式子中,式 (1.7-b)和 (1.8-a)是平凡的,而式 (1.7-a)和 (1.8-b)则通过度量建立起了协变基与 逆变基之间的关系. 这就称为基向量转换关系, 也可以叫做"指标升降游戏".

1.1.3 向量的分量

对于任意的向量 $\xi \in \mathbb{R}^m$,它可以用协变基表示:

$$\boldsymbol{\xi} = (\boldsymbol{\xi}, \, \boldsymbol{g}^k)_{\mathbb{R}^m} \, \boldsymbol{g}_k = \boldsymbol{\xi}^k \, \boldsymbol{g}_k \,, \tag{1.9-a}$$

也可以用逆变基表示:

$$\boldsymbol{\xi} = (\boldsymbol{\xi}, \, \boldsymbol{g}_k)_{\text{lim}} \, \boldsymbol{g}^k = \boldsymbol{\xi}_k \boldsymbol{g}^k. \tag{1.9-b}$$

式中, ξ^k 是 ξ 与第 k 个逆变基做内积的结果, 称为 ξ 的第 k 个逆变分量; 而 ξ_k 是 ξ 与第 k 个协变 基做内积的结果, 称为 ξ 的第k个协变分量.

以后凡是指标在下的(下标),均称为协变某某;指标在上的(上标),称为逆变某某.

张量的表示 1.2

张量的表示与简单张量 1.2.1

所谓张量,即多重线性函数.

首先用三阶张量举个例子. 考虑任意的 $\Phi \in \mathcal{F}^3(\mathbb{R}^m)$, 其中的 $\mathcal{F}^3(\mathbb{R}^m)$ 表示以 \mathbb{R}^m 为底空间的三 阶张量全体. 所谓三阶(或三重)线性函数,指"吃掉"三个向量之后变成实数,并且"吃法"具 有线性性.

一般地,r阶张量的定义如下:

$$\boldsymbol{\Phi}: \underbrace{\mathbb{R}^{m} \times \mathbb{R}^{m} \times \cdots \times \mathbb{R}^{m}}_{r \uparrow \mathbb{R}^{m}} \ni \left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}\right\} \mapsto \boldsymbol{\Phi}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}\right) \in \mathbb{R}, \tag{1.10}$$

式中的 Φ 满足

$$\forall \alpha, \beta \in \mathbb{R}, \quad \Phi(u_1, \dots, \alpha \tilde{u}_i + \beta \hat{u}_i, \dots, u_r)$$

$$= \alpha \Phi(u_1, \dots, \tilde{u}_i, \dots, u_r) + \beta \Phi(u_1, \dots, \hat{u}_i, \dots, u_r), \qquad (1.11)$$

即所谓"对第i个变元的线性性". 这里的i可取 $1, 2, \dots, r$.

在张量空间 ℱ'(ℝ"') 上,我们引入线性结构:

$$\forall \alpha, \beta \in \mathbb{R}, \boldsymbol{\Phi}, \boldsymbol{\Psi} \in \mathcal{T}^r(\mathbb{R}^m), \quad (\alpha \boldsymbol{\Phi} + \beta \boldsymbol{\Psi}) (\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_r)$$

$$\triangleq \alpha \boldsymbol{\Phi} (\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_r) + \beta \boldsymbol{\Psi} (\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_r), \quad (1.12)$$

于是

$$\alpha \, \boldsymbol{\Phi} + \beta \, \boldsymbol{\Psi} \in \mathcal{T}^r(\mathbb{R}^m). \tag{1.13}$$

下面我们要获得 Φ 的表示. 根据之前任意向量用协变基或逆变基的表示, 有

$$\forall u, v, w \in \mathbb{R}^m, \quad \Phi(u, v, w)$$
$$= \Phi(u^i g_i, v_i g^i, w^k g_k)$$

考虑到 Φ 对第一变元的线性性, 可得

$$= u^i \mathbf{\Phi} (\mathbf{g}_i, v_j \mathbf{g}^j, w^k \mathbf{g}_k)$$

同理,

$$= u^i v_i w^k \Phi(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k). \tag{1.14}$$

注意这里自然需要满足 Einstein 求和约定.

上式中的 $\Phi(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k)$ 是一个数. 它是张量 Φ "吃掉"三个基向量的结果. 至于 $u^i v_j w^k$ 部分,三项分别是 u 的第 i 个逆变分量、v 的第 j 个协变分量和 w 的第 k 个逆变分量. 根据向量分量的定义,可知

$$u^{i}v_{j}w^{k} = (\boldsymbol{u}, \boldsymbol{g}^{i})_{\mathbb{R}^{m}} \cdot (\boldsymbol{v}, \boldsymbol{g}_{j})_{\mathbb{R}^{m}} \cdot (\boldsymbol{w}, \boldsymbol{g}^{k})_{\mathbb{R}^{m}}. \tag{1.15}$$

暂时中断一下思路, 先给出简单张量的定义.

$$\forall u, v, w \in \mathbb{R}^m, \quad \xi \otimes \eta \otimes \zeta(u, v, w) \triangleq (\xi, u)_{\mathbb{R}^m} \cdot (\eta, v)_{\mathbb{R}^m} \cdot (\zeta, w)_{\mathbb{R}^m} \in \mathbb{R}, \tag{1.16}$$

式中 ξ , η , $\zeta \in \mathbb{R}^m$, 而暂时把 $\xi \otimes \eta \otimes \zeta$ 理解为一种记号. 简单张量作为一个映照,组成它的三个向量分别与它们"吃掉"的第一、二、三个变元做内积并相乘,结果为一个实数.

考虑到内积的线性性,便有(以第二个变元为例)

$$\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta}(\boldsymbol{u}, \, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}}, \, \boldsymbol{w}) \triangleq (\boldsymbol{\xi}, \, \boldsymbol{u})_{\mathbb{R}^m} \cdot (\boldsymbol{\eta}, \, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}})_{\mathbb{R}^m} \cdot (\boldsymbol{\zeta}, \, \boldsymbol{w})_{\mathbb{R}^m} \in \mathbb{R}$$

注意到 $(\boldsymbol{\eta}, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}})_{\mathbb{R}^m} = \alpha(\boldsymbol{\eta}, \tilde{\boldsymbol{v}})_{\mathbb{R}^m} + \beta(\boldsymbol{\eta}, \hat{\boldsymbol{v}})_{\mathbb{R}^m}$,同时再次利用简单张量的定义,可得

$$= \alpha \xi \otimes \eta \otimes \zeta(u, \tilde{v}, w) + \beta \xi \otimes \eta \otimes \zeta(u, \hat{v}, w). \tag{1.17}$$

类似地,对第一变元和第三变元,同样具有线性性.因此,可以知道

$$\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta} \in \mathcal{T}^3(\mathbb{R}^m). \tag{1.18}$$

可见,"简单张量"的名字是名副其实的,它的确是一个特殊的张量.

回过头来看 (1.15) 式. 很明显,它可以用简单张量来表示. 要注意,由于内积的对称性,可以有两种[®]表示方法:

$$\mathbf{g}^{i} \otimes \mathbf{g}_{i} \otimes \mathbf{g}^{k}(\mathbf{u}, \mathbf{v}, \mathbf{w}) \tag{1.19-a}$$

或者

$$\boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w}(\boldsymbol{g}^i, \boldsymbol{g}_i, \boldsymbol{g}^k),$$
 (1.19-b)

我们这里取上面一种. 代入式 (1.14), 得

$$\Phi(u, v, w)$$

$$= \Phi(g_i, g^j, g_k) \cdot g^i \otimes g_i \otimes g^k(u, v, w)$$

由于 $\Phi(g_i, g^j, g_k) \in \mathbb{R}^m$, 因此

$$= \left[\boldsymbol{\Phi} (\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k) \mathbf{g}^i \otimes \mathbf{g}_j \otimes \mathbf{g}^k \right] (\mathbf{u}, \mathbf{v}, \mathbf{w}). \tag{1.20}$$

方括号里的部分,就是根据 Einstein 求和约定,用 $\Phi(g_i, g^i, g_k)$ 对 $g^i \otimes g_j \otimes g^k$ 进行线性组合. 由于 u, v, w 选取的任意性,可以引入如下记号:

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k) \, \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k =: \boldsymbol{\Phi}_{i,k}^{\ j} \, \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k, \tag{1.21}$$

即

$$\boldsymbol{\Phi}_{i\,k}^{\,j} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_i, \, \boldsymbol{g}^j, \, \boldsymbol{g}_k), \tag{1.22}$$

这称为张量的分量. 它说明一个张量可以用张量分量和基向量组成的简单张量来表示.

指标 i、j、k 的上下是任意的. 这里,它有赖于式 (1.14) 中基向量的选取.实际上,对于这里的三阶张量,指标的上下一共有 8 种可能.指标全部在下面的,称为**协变分量**:

$$\boldsymbol{\Phi}_{ijk} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_i, \, \boldsymbol{g}_j, \, \boldsymbol{g}_k); \tag{1.23}$$

指标全部在上面的, 称为逆变分量:

$$\boldsymbol{\Phi}^{ijk} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}^i, \boldsymbol{g}^j, \boldsymbol{g}^k); \tag{1.24}$$

其余 6 种,称为**混合分量**. 对于一个 r 阶张量,显然共有 2' 种分量表示,其中协变分量与逆变分量 各一种,混合分量 2'-2 种.

1.2.2 张量分量之间的关系

我们已经知道,对于任意一个向量 $\xi \in \mathbb{R}^m$,它可以用协变基或逆变基表示:

$$\xi = \begin{cases} \xi^i \mathbf{g}_i, \\ \xi_i \mathbf{g}^i. \end{cases} \tag{1.25}$$

① 这里只考虑把 \mathbf{u} 、 \mathbf{v} 、 \mathbf{w} 和 \mathbf{g}^i 、 \mathbf{g}_i 、 \mathbf{g}^k 分别放在一起的情况.

式中, 协变分量与逆变分量满足坐标转换关系:

$$\begin{cases} \boldsymbol{\xi}^{i} = \left(\boldsymbol{\xi}, \, \boldsymbol{g}^{i}\right)_{\mathbb{R}^{m}} = \left(\boldsymbol{\xi}, \, g^{ik} \boldsymbol{g}_{k}\right)_{\mathbb{R}^{m}} = g^{ik} \left(\boldsymbol{\xi}, \, \boldsymbol{g}_{k}\right)_{\mathbb{R}^{m}} = g^{ik} \boldsymbol{\xi}_{k}, \\ \boldsymbol{\xi}_{i} = \left(\boldsymbol{\xi}, \, \boldsymbol{g}_{i}\right)_{\mathbb{R}^{m}} = \left(\boldsymbol{\xi}, \, g_{ik} \boldsymbol{g}^{k}\right)_{\mathbb{R}^{m}} = g_{ik} \left(\boldsymbol{\xi}, \, \boldsymbol{g}^{k}\right)_{\mathbb{R}^{m}} = g_{ik} \boldsymbol{\xi}^{k}. \end{cases}$$

$$(1.26-a)$$

$$(1.26-b)$$

$$\left(\xi_{i} = (\boldsymbol{\xi}, \, \boldsymbol{g}_{i})_{\mathbb{R}^{m}} = (\boldsymbol{\xi}, \, g_{ik} \boldsymbol{g}^{k})_{\mathbb{R}^{m}} = g_{ik} (\boldsymbol{\xi}, \, \boldsymbol{g}^{k})_{\mathbb{R}^{m}} = g_{ik} \boldsymbol{\xi}^{k}.$$

$$(1.26-b)$$

每一式的第二个等号都用到了基向量转换关系,见式 (1.7-a) 和 (1.8-b).

现在再来考虑张量的分量. 仍以上文中的张量 $\boldsymbol{\Phi}_{i,k}^{j} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_{i},\boldsymbol{g}^{j},\boldsymbol{g}_{k})$ 为例,我们想要知道它与张 量 $\Phi_q^{p,r} \coloneqq \Phi(g^p, g_a, g^r)$ 之间的关系. 利用基向量转换关系,可有

$$\begin{aligned} \boldsymbol{\Phi}_{i \ k}^{j} &\coloneqq \boldsymbol{\Phi} \big(\boldsymbol{g}_{i}, \, \boldsymbol{g}^{j}, \, \boldsymbol{g}_{k} \big) \\ &= \boldsymbol{\Phi} \big(g_{ip} \boldsymbol{g}^{p}, \, g^{jq} \boldsymbol{g}_{q}, \, g_{kr} \boldsymbol{g}^{r} \big) \end{aligned}$$

又利用张量的线性性,得

$$= g_{ip}g^{jq}g_{kr}\boldsymbol{\Phi}(\boldsymbol{g}^{p},\boldsymbol{g}_{q},\boldsymbol{g}^{r})$$

$$= g_{ip}g^{jq}g_{kr}\boldsymbol{\Phi}_{q}^{p}. \tag{1.27}$$

可见, 张量的分量与向量的分量类似, 其指标升降可通过度量来实现. 用同样的手法, 还可以得到 诸如 $\Phi^{ijk} = g^{jp}\Phi^{ik}_{p}$ 、 $\Phi^{ik}_{j} = g_{ip}g^{kq}\Phi^{ip}_{k}$ 这样的关系式.

1.2.3 相对不同基的张量分量之间的关系

 \mathbb{R}^m 空间中,除了 $\{g_i\}_{i=1}^m$ 和相应的对偶基 $\{g^i\}_{i=1}^m$ 之外,当然还可以有其他的基,比如带括号 的 $\{g_{(i)}\}_{i=1}^m$ 以及对应的对偶基 $\{g^{(i)}\}_{i=1}^m$. 前者对应形如 $\boldsymbol{\Phi}_j^{i,k} \coloneqq \boldsymbol{\Phi}(g^i,g_j,g^k)$ 的张量,后者则对应带 括号的张量,如 $\boldsymbol{\Phi}^{(p)}_{(q)} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}^{(p)}, \boldsymbol{g}_{(q)}, \boldsymbol{g}^{(r)})$.下面我们来探讨这两个张量的关系.

首先来建立基之间的关系. 带括号的第i个基向量 $g_{(i)}$,作为 \mathbb{R}^m 空间中的一个向量,自然可以 用另一组基来表示:

$$\mathbf{g}_{(i)} = \begin{cases} \left(\mathbf{g}_{(i)}, \mathbf{g}_{k}\right)_{\mathbb{R}^{m}} \mathbf{g}^{k}, \\ \left(\mathbf{g}_{(i)}, \mathbf{g}^{k}\right)_{\mathbb{R}^{m}} \mathbf{g}_{k}. \end{cases}$$
(1.28)

同理,自然还有它的对偶基:

$$\mathbf{g}^{(i)} = \begin{cases} \left(\mathbf{g}^{(i)}, \mathbf{g}_{k}\right)_{\mathbb{R}^{m}} \mathbf{g}^{k}, \\ \left(\mathbf{g}^{(i)}, \mathbf{g}^{k}\right)_{\mathbb{R}^{m}} \mathbf{g}_{k}. \end{cases}$$
(1.29)

引入记号 $c_{(i)}^k \coloneqq (\mathbf{g}_{(i)}, \mathbf{g}^k)_{\mathbb{D}^m}$ 和 $c_k^{(i)} \coloneqq (\mathbf{g}^{(i)}, \mathbf{g}_k)_{\mathbb{D}^m}$,那么有

$$\begin{cases} \mathbf{g}_{(i)} = c_{(i)}^k \mathbf{g}_k, & (1.30-a) \\ \mathbf{g}^{(i)} = c_k^{(i)} \mathbf{g}^k. & (1.30-b) \end{cases}$$

$$g^{(i)} = c_{\iota}^{(i)} g^{k}. \tag{1.30-b}$$

容易看出,这两个系数具有如下性质:

$$c_k^{(i)}c_{(j)}^k = \delta_j^i. (1.31)$$

写成矩阵形式¹,为

$$\left[c_k^{(i)}\right]\left[c_{(j)}^k\right] = \left[\delta_i^j\right] = \boldsymbol{I}_m. \tag{1.32}$$

换句话说,两个系数矩阵是互逆的.

① 通常我们约定上面的标号作为行号,下面的标号作为列号.

证明:

$$c_k^{(i)}c_{(i)}^k = (\boldsymbol{g}^{(i)}, \boldsymbol{g}_k)_{\mathbb{R}^m}c_{(i)}^k$$

利用内积的线性性,有

$$= \left(\mathbf{g}^{(i)}, \, c_{(j)}^k \mathbf{g}_k \right)_{\mathbb{R}^m}$$

根据 $c_{(i)}^k$ 的定义,得到

$$= \left(\mathbf{g}^{(i)}, \, \mathbf{g}_{(j)}\right)_{\mathbb{R}^m}.\tag{1.33}$$

带括号的基同样满足对偶关系 (1.1) 式, 于是得证.

上面我们用不带括号的基表示了带括号的基. 反之也是可以的:

$$\begin{cases} \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}^{(k)})_{\mathbb{R}^{m}} \mathbb{R}^{m} \mathbf{g}_{(k)} = c_{i}^{(k)} \mathbf{g}_{(k)}, \\ \mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}_{(k)})_{\mathbb{R}^{m}} \mathbb{R}^{m} \mathbf{g}^{(k)} = c_{(k)}^{i} \mathbf{g}^{(k)}. \end{cases}$$
(1.34-a)

这样一来,就建立起了不同基之间的转换关系.

现在我们回到张量. 根据张量分量的定义,

$$\boldsymbol{\Phi}_{j}^{i,k} \coloneqq \boldsymbol{\Phi} \big(\boldsymbol{g}^{i}, \, \boldsymbol{g}_{j}, \, \boldsymbol{g}^{k} \big)$$

利用之前推导的不同基向量之间的转换关系,得

$$= \boldsymbol{\Phi} \Big(c_{(p)}^{i} \boldsymbol{g}^{(p)}, \, c_{j}^{(q)} \boldsymbol{g}_{(q)}, \, c_{(r)}^{k} \boldsymbol{g}^{(r)} \Big)$$

由张量的线性性,提出系数:

$$= c_{(p)}^{i} c_{j}^{(q)} c_{(r)}^{k} \Phi(\mathbf{g}^{(p)}, \mathbf{g}_{(q)}, \mathbf{g}^{(r)})$$

$$= c_{(p)}^{i} c_{j}^{(q)} c_{(r)}^{k} \Phi_{(q)}^{(p)}.$$
(1.35)

完全类似,还可以有

$$\boldsymbol{\Phi}_{(j)}^{(i)}{}^{(k)} = c_p^{(i)} c_{(j)}^g c_r^{(k)} \boldsymbol{\Phi}_q^{p r}. \tag{1.36}$$

总结一下这两小节得到的结果.对于同一组基下的张量分量,其指标升降通过度量来实现;对于不同基下的张量分量,其指标转换则通过不同基之间的转换系数来完成.

第二章 张量的运算性质

2.1 张量积

张量积也叫**张量并**,用符号"⊗"表示.在 1.2.1 小节给出简单张量的定义时,实际上就用到了张量积. 张量积的定义为:

$$\forall \boldsymbol{\Phi} \in \mathcal{T}^{p}(\mathbb{R}^{m}), \, \boldsymbol{\Psi} \in \mathcal{T}^{q}(\mathbb{R}^{m}), \quad \boldsymbol{\Phi} \otimes \boldsymbol{\Psi} \in \mathcal{T}^{p+q}(\mathbb{R}^{m}) \\
= \left(\boldsymbol{\Phi}^{i_{1} \cdots i_{p}} \, \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p}}\right) \otimes \left(\boldsymbol{\Psi}_{j_{1} \cdots j_{q}} \, \boldsymbol{g}^{j_{1}} \otimes \cdots \otimes \boldsymbol{g}^{j_{q}}\right) \\
\triangleq \boldsymbol{\Phi}^{i_{1} \cdots i_{p}} \boldsymbol{\Psi}_{j_{1} \cdots j_{p}} \left(\boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p}}\right) \otimes \left(\boldsymbol{g}^{j_{1}} \otimes \cdots \otimes \boldsymbol{g}^{j_{q}}\right). \tag{2.1}$$

由该定义可以知道,关于简单张量 $\left(\mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p}\right) \otimes \left(\mathbf{g}^{j_1} \otimes \cdots \otimes \mathbf{g}^{j_q}\right)$,相应的张量分量为

$$\left(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}\right)^{i_1 \cdots i_p}_{j_1 \cdots j_a}.\tag{2.2}$$

2.2 e 点积

张量的 e **点积**可以用符号 " $\binom{e}{\cdot}$ "表示. 从这个符号可以看出 e 点积的作用:前 e 个指标缩并,后面的点乘.

对于任意的 $\Phi \in \mathcal{F}^p(\mathbb{R}^m)$, $\Psi \in \mathcal{F}^q(\mathbb{R}^m)$, $e \leq \min\{p, q\} \in \mathbb{N}^*$, e 点积是这样定义的:

$$\begin{split} \boldsymbol{\Phi} & \begin{pmatrix} e \\ . \end{pmatrix} \boldsymbol{\Psi} \\ &= \left(\boldsymbol{\Phi}^{i_1 \cdots i_{p-e} i_{p-e+1} \cdots i_p} \, \boldsymbol{g}_{i_1} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-e}} \otimes \begin{array}{|c|c|c|c|c|} \boldsymbol{g}_{i_{p-e+1}} \otimes \cdots \otimes \boldsymbol{g}_{i_p} \end{array} \right) \\ & \begin{pmatrix} e \\ . \end{pmatrix} \left(\boldsymbol{\Psi}^{j_1 \cdots j_e j_{e+1} \cdots j_q} \, \begin{array}{|c|c|c|c|c|} \boldsymbol{g}_{j_1} \otimes \cdots \otimes \boldsymbol{g}_{j_e} \end{array} \otimes \boldsymbol{g}_{j_{e+1}} \otimes \cdots \otimes \boldsymbol{g}_{j_q} \right) \end{split}$$

把高亮的部分做内积,得到度量:

$$\triangleq \varPhi^{i_1\cdots i_{p-e}i_{p-e+1}\cdots i_p}\varPsi^{j_1\cdots j_ej_{e+1}\cdots j_q}$$

$$\cdot \mathbf{g}_{i_{p-e+1}j_1} \cdots \mathbf{g}_{i_pj_e} \Big(\mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_{p-e}} \Big) \otimes \Big(\mathbf{g}_{j_{e+1}} \otimes \cdots \otimes \mathbf{g}_{j_q} \Big)$$

玩一下"指标升降游戏"(注意有两种结合方式:与 ϕ 或 Ψ),可得

$$= \left\{ \begin{array}{l} \boldsymbol{\Phi}^{i_{1}\cdots i_{p-e}} & \boldsymbol{\Psi}^{j_{1}\cdots j_{e}} \boldsymbol{j}_{e+1}\cdots j_{q} \\ \boldsymbol{\Phi}^{i_{1}\cdots i_{p-e}} & \boldsymbol{i}_{p-e+1}\cdots \boldsymbol{i}_{p} \end{array} \right\} \left(\boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-e}} \right) \otimes \left(\boldsymbol{g}_{j_{e+1}} \otimes \cdots \otimes \boldsymbol{g}_{j_{q}} \right). \tag{2.3}$$

最后一步的花括号中,高亮的 $j_1 \cdots j_e$ 和 $i_{p-e+1} \cdots i_p$ 都是哑标,可以通过求和求掉。因此有

$$\boldsymbol{\Phi}\begin{pmatrix} e \\ . \end{pmatrix} \boldsymbol{\Psi} \in \mathcal{T}^{p+q-2e}(\mathbb{R}^m). \tag{2.4}$$

换句话说, e 点积的作用就是将指标哑标化.

作为一个特殊的应用,接下来我们介绍**全点积**,用符号" \odot "表示. 对于任意的 Φ , $\Psi \in \mathcal{F}^p(\mathbb{R}^n)$, 有

$$\Phi \odot \Psi \triangleq \Phi \begin{pmatrix} p \\ \cdot \end{pmatrix} \Psi
= \left(\Phi^{i_1 \cdots i_p} \mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p}\right) \begin{pmatrix} p \\ \cdot \end{pmatrix} \left(\Psi^{j_1 \cdots j_p} \mathbf{g}_{j_1} \otimes \cdots \otimes \mathbf{g}_{j_p}\right)
= \Phi^{i_1 \cdots i_p} \Psi^{j_1 \cdots j_p} \mathbf{g}_{i_1 j_1} \cdots \mathbf{g}_{i_p j_p}
= \begin{cases} \Phi_{j_1 \cdots j_p} \Psi^{j_1 \cdots j_p} \\ \Phi^{i_1 \cdots i_p} \Psi_{i_1 \cdots i_p} \end{cases} \in \mathbb{R}.$$
(2.5)

可见,全点积将全部指标哑标化.

张量自身和自身的全点积, 定义为它的范数:

$$\boldsymbol{\Phi} \odot \boldsymbol{\Phi} = \boldsymbol{\Phi}^{i_1 \cdots i_p} \boldsymbol{\Phi}_{i_1 \cdots i_p} =: |\boldsymbol{\Phi}|^2_{\mathcal{F}^p(\mathbb{R}^m)}. \tag{2.6}$$

2.3 叉乘

张量的**叉乘**要求底空间为 \mathbb{R}^3 . 对于任意的 $\Phi \in \mathcal{F}^p(\mathbb{R}^3)$, $\Psi \in \mathcal{F}^q(\mathbb{R}^3)$, 叉乘的定义如下:

$$\Phi \times \Psi$$

$$= \left(\boldsymbol{\Phi}^{i_{1}\cdots i_{p-1}i_{p}} \, \mathbf{g}_{i_{1}} \otimes \cdots \otimes \mathbf{g}_{i_{p-1}} \otimes \mathbf{g}_{i_{p}} \right) \times \left(\boldsymbol{\Psi}_{j_{1}j_{2}\cdots j_{q}} \, \mathbf{g}^{j_{1}} \otimes \mathbf{g}^{j_{2}} \cdots \otimes \mathbf{g}^{j_{q}} \right)$$

$$\triangleq \boldsymbol{\Phi}^{i_{1}\cdots i_{p}} \boldsymbol{\Psi}_{j_{1}\cdots j_{p}} \, \mathbf{g}_{i_{1}} \otimes \cdots \otimes \mathbf{g}_{i_{p-1}} \otimes \left(\mathbf{g}_{i_{p}} \times \mathbf{g}^{j_{1}} \right) \otimes \mathbf{g}^{j_{2}} \cdots \otimes \mathbf{g}^{j_{q}} \in \mathcal{T}^{p+q-1} (\mathbb{R}^{3}). \tag{2.7}$$

注意到,此时简单张量的维数已经降了一阶.

利用 Levi-Civita 记号,可以进一步展开上式.

$$\mathbf{g}_{i_p} \times \mathbf{g}^{j_1} = \epsilon_{i_p}^{j_1} {}_s \mathbf{g}^s, \tag{2.8}$$

式中的

$$\epsilon_{i_p}^{j_1} = \det \left[\mathbf{g}_{i_p}, \mathbf{g}^{j_1}, \mathbf{g}_{s} \right]. \tag{2.9}$$

于是

$$\boldsymbol{\Phi} \times \boldsymbol{\Psi} = \epsilon_{i_p \ s}^{\ j_1} \boldsymbol{\Phi}^{i_1 \cdots i_p} \boldsymbol{\Psi}_{j_1 \cdots j_p} \boldsymbol{g}_{i_1} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-1}} \otimes \boldsymbol{g}^s \otimes \boldsymbol{g}^{j_2} \cdots \otimes \boldsymbol{g}^{j_q}. \tag{2.10}$$

下面我们再来类比地定义一种混合积 " $\binom{\times}{\cdot}$ ". 对于任意的 $\boldsymbol{\Phi}, \boldsymbol{\Psi} \in \mathcal{F}^{3}(\mathbb{R}^{m})$, 定义

$$\boldsymbol{\Phi} \begin{pmatrix} \mathbf{x} \\ \cdot \end{pmatrix} \boldsymbol{\Psi} = \left(\boldsymbol{\Phi}^{ijk} \, \mathbf{g}_i \otimes \mathbf{g}_j \otimes \mathbf{g}_k \right) \begin{pmatrix} \mathbf{x} \\ \cdot \end{pmatrix} \left(\boldsymbol{\Psi}_{pqr} \, \mathbf{g}^p \otimes \mathbf{g}^q \otimes \mathbf{g}^r \right)$$

$$\triangleq \boldsymbol{\Phi}^{ijk} \, \boldsymbol{\Psi}_{pqr} \, \delta_i^q \, \mathbf{g}_i \otimes \left(\mathbf{g}_k \times \mathbf{g}^p \right) \otimes \mathbf{g}^r$$

缩并掉 Kronecker δ,同时利用 Levi-Civita 记号展开叉乘项,可有

$$= \epsilon_{ks}^{p} \Phi^{ijk} \Psi_{pir} \mathbf{g}_{i} \otimes \mathbf{g}^{s} \otimes \mathbf{g}^{r}, \qquad (2.11)$$

式中的

$$\epsilon_{k,s}^{p} = \det\left[\mathbf{g}_{k}, \mathbf{g}^{p}, \mathbf{g}_{s}\right]. \tag{2.12}$$

对于这种混合积,并没有一般的约定.不同的研究者往往会采用不同的写法及表示.

2.4 置换(一)

本节主要介绍置换运算的定义及相关概念,这将使我们暂时离开张量运算的主线.

置换运算实际上是一种交换位置或者改变次序的运算.之后我们还将引入针对张量的置换算子,它是外积运算和外微分运算的基础.这些运算是现代张量分析与微分几何的支柱.

2.4.1 置换的定义

我们从一个例子开始. 下面是一个2×7的"矩阵":

$$\sigma = \begin{bmatrix} 0 & 2 & 3 & 4 & 5 & 6 & 0 \\ 0 & 4 & 5 & 0 & 6 & 2 & 3 \end{bmatrix}. \tag{2.13}$$

矩阵里面的每一个数字表示一个位置.可以想象成7把椅子,先是按第一行的顺序依次排列,再按照第二行的顺序打乱,重新排列.于是这就成为一个7阶置换.这个定义等价于

$$\sigma = \begin{pmatrix} 4 & 9 & 2 & 7 & 5 & 8 & 3 \\ 3 & 7 & 5 & 4 & 8 & 9 & 2 \end{pmatrix},\tag{2.14-a}$$

自然也等价于

$$\sigma = \begin{pmatrix} \bullet & \heartsuit & \diamond & \bullet & \diamondsuit & \Psi & \bullet \\ \bullet & \bullet & \diamondsuit & \bullet & \Psi & \heartsuit & \diamondsuit \end{pmatrix}, \tag{2.14-b}$$

当然,换用任何元素也都是可以的.

通常我们用方括号表示置换的**序号定义**,即标号的排列轮换;用圆括号表示**元素定义**,即标号对应元素的轮换.

2.4.2 置换的符号

接着来定义置换的符号 $sgn \sigma$. 这里我们把每次交换两个数字称为一次"操作". 如果经过偶数次"操作",可以把经置换后的序列恢复为原来的顺序,那么该置换的符号 $sgn \sigma = 1$; 而如果经过 奇数次"操作"才可以复原,则 $sgn \sigma = -1$. 若用一个式子表示,则为

$$\operatorname{sgn} \boldsymbol{\sigma} = (-1)^n, \tag{2.15}$$

其中的n是恢复原本顺序所需"操作"的次数.

下面我们以式 (2.13) 所定义的 σ 为例,演示求置换符号的过程. 这里的关键是通过两两交换,按如下步骤把式 (2.14-b) 的第二行变换成第一行:

一共进行了 6 次两两交换, 因此 $sgn \sigma = 1$.

2.4.3 置换的复合

再定义一个置换

$$\boldsymbol{\tau} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 7 & 3 & 6 & 4 & 2 \end{bmatrix}. \tag{2.16}$$

注意这里用了方括号,因此它是一个序号定义.方便起见,以后的序号我们都只用不带圈的普通数字表示.考虑之前定义的置换

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 4 & 5 & 1 & 6 & 2 & 3 \end{bmatrix},\tag{2.17}$$

则 τ 与 σ 的复合

与函数、线性变换等的复合类似,这里也用小圆圈 "。"表示置换的复合.

假设经过置换 σ 、 τ 作用后得到的序列,分别需要 p 次和 q 次两两交换才能复原为原来的序列.那么很显然,经过复合置换 τ 。 σ 作用后的序列,经过 q+p 次两两交换也一定可以复原.因此,复合置换的符号

$$\operatorname{sgn}(\boldsymbol{\tau} \circ \boldsymbol{\sigma}) = (-1)^{q+p} = (-1)^q \cdot (-1)^p = \operatorname{sgn} \boldsymbol{\tau} \cdot \operatorname{sgn} \boldsymbol{\sigma}. \tag{2.19}$$

2.4.4 逆置换

逆置换 σ^{-1} 的定义为

$$\sigma^{-1} \circ \sigma = \mathbf{Id}, \tag{2.20}$$

其中的"Id"是恒等映照.

仍然使用式 (2.14-b):

$$\sigma = \begin{pmatrix} \spadesuit & \heartsuit & \diamondsuit & \clubsuit & \diamondsuit & \Psi & \blacklozenge \\ \spadesuit & \clubsuit & \diamondsuit & \spadesuit & \Psi & \heartsuit & \diamondsuit \end{pmatrix}, \tag{2.21}$$

那么自然有

$$\sigma^{-1} = \begin{pmatrix} \bullet & \bullet & \diamondsuit & \bullet & \nabla & \diamondsuit \\ \bullet & \heartsuit & \diamondsuit & \bullet & \diamondsuit & \nabla & \bullet \end{pmatrix}. \tag{2.22}$$

显然, 我们有 $\sigma^{-1} \circ \sigma = Id$.

回忆一下逆矩阵的定义. 矩阵 A 的逆 A^{-1} 既要满足 $A^{-1}A=I$,又要满足 $AA^{-1}=I$. 对于置换也是如此,因此我们需要检查 $\sigma \circ \sigma^{-1}$: ①

$$\sigma \circ \sigma^{-1} = \begin{pmatrix} \bullet & \bullet & \bullet & \bullet & \nabla & \Diamond \\ \bullet_1 & \nabla_2 & \Diamond_3 & \bullet_4 & \Diamond_5 & \bullet_6 & \bullet_7 \\ \bullet_7 & \bullet_4 & \Diamond_5 & \bullet_1 & \bullet_6 & \nabla_2 & \Diamond_3 \end{pmatrix} \leftarrow \sigma^{-1}$$

$$(2.23)$$

可见的确有 $\sigma \circ \sigma^{-1} = \mathbf{Id}$.

另外,由于恒等映照 Id 作用后序列不发生变化,复原所需的交换次数为 0,因此

$$\operatorname{sgn} \mathbf{Id} = (-1)^0 = 1. \tag{2.24}$$

而根据定义,

$$\mathbf{Id} = \boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}, \tag{2.25}$$

故有

$$\operatorname{sgn} \boldsymbol{\sigma} \cdot \operatorname{sgn} \boldsymbol{\sigma}^{-1} = 1. \tag{2.26}$$

由此,可以推知

$$\operatorname{sgn} \boldsymbol{\sigma} = \operatorname{sgn} \boldsymbol{\sigma}^{-1}, \tag{2.27}$$

即置换与它的逆具有相同的符号.

2.5 置换(二)

本节将介绍置换运算的基本性质.

① 该式中的数字角标用来澄清原始序号.

2.5.1 置换的穷尽

先要做一点铺垫. 设有序数组

$$\{i_1, i_2, \cdots, i_r\}$$

经置换 σ 作用后成为

$$\{\boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r)\},\$$

则根据之前的元素定义(圆括号),可以把 σ 记为

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ \sigma(i_1) & \sigma(i_2) & \cdots & \sigma(i_r) \end{pmatrix}. \tag{2.28}$$

每次置换都将得到一个有序数组. 把它们组合到一起, 就可以得到集合

$$\left\{ \left(\boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma} \in \mathscr{P}_r \right\}. \tag{2.29}$$

其中的 \mathcal{P} , 表示 r 阶置换的全体. 根据排列组合原理, r 阶置换的总数等于 r 个元素的全排列数. 即该集合共有 r! 个元素.

下面我们要证明

$$\begin{split} &\left\{ \left(\boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma} \in \mathscr{P}_r \right\} \\ &= \left\{ \left(\boldsymbol{\tau} \circ \boldsymbol{\sigma}(i_1), \, \boldsymbol{\tau} \circ \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\tau} \circ \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma}, \, \boldsymbol{\tau} \in \mathscr{P}_r \right\} \\ &= \left\{ \left(\boldsymbol{\sigma} \circ \boldsymbol{\tau}(i_1), \, \boldsymbol{\sigma} \circ \boldsymbol{\tau}(i_2), \, \cdots, \, \boldsymbol{\sigma} \circ \boldsymbol{\tau}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma}, \, \boldsymbol{\tau} \in \mathscr{P}_r \right\} \end{split} \tag{2.30-a}$$

$$= \left\{ \left(\boldsymbol{\sigma}^{-1}(i_1), \, \boldsymbol{\sigma}^{-1}(i_2), \, \cdots, \, \boldsymbol{\sigma}^{-1}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma} \in \mathcal{P}_r \right\}. \tag{2.30-c}$$

所谓"穷尽",就是将 \mathcal{P}_r 中的所有置换 σ 全部枚举出来.关于 σ 的求和就是一个例子.以上这条性质说明,置换 σ 如果作为一个广义上的"哑标",那么穷尽的结果与用 $\tau \circ \sigma \setminus \sigma \circ \tau$ 或 σ^{-1} 代替该"哑标"的结果是一样的.

这说明置换构成了置换群.?

证明: 证明的思路是说明集合互相包含.

对于式 (2.30-a),右边的 $\tau \circ \sigma$ 也是一个 r 阶置换,自然符合左边集合的定义,因此 右边 C 左边.由于这一步是相当显然的,以下的几个证明我们将略去该步.另一方面,左边的 σ 可以表示成

$$\sigma = \operatorname{Id} \circ \sigma = \left(\tau \circ \tau^{-1}\right) \circ \sigma = \tau \circ \left(\tau^{-1} \circ \sigma\right), \tag{2.31}$$

这就是右边集合的定义,因此左边 ⊂右边.故可证得等式成立.

对于式 (2.30-b), 我们有

$$\sigma = \sigma \circ \mathbf{Id} = \sigma \circ (\tau^{-1} \circ \tau) = (\sigma \circ \tau^{-1}) \circ \tau, \tag{2.32}$$

它符合了右边集合的定义,因此左边 c 右边. 于是等式成立.

对于式 (2.30-c), 我们有

$$\boldsymbol{\sigma} = \left(\boldsymbol{\sigma}^{-1}\right)^{-1},\tag{2.33}$$

它符合了右边集合的定义,因此左边 c 右边. 于是等式成立.

2.5.2 数组元素的乘积

设有序数组 $\{i_1, i_2, \dots, i_r\}$ 、 $\{j_1, j_2, \dots, j_r\}$ 和 $\{k_1, k_2, \dots, k_r\}$ 经 r 阶置换 σ 作用后分别成为 $\{\sigma(i_1), \sigma(i_2), \dots, \sigma(i_r)\}$ 、 $\{\sigma(j_1), \sigma(j_2), \dots, \sigma(j_r)\}$ 和 $\{\sigma(k_1), \sigma(k_2), \dots, \sigma(k_r)\}$,也就是说

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ \sigma(i_1) & \sigma(i_2) & \cdots & \sigma(i_r) \end{pmatrix} = \begin{pmatrix} j_1 & j_2 & \cdots & j_r \\ \sigma(j_1) & \sigma(j_2) & \cdots & \sigma(j_r) \end{pmatrix} = \begin{pmatrix} k_1 & k_2 & \cdots & k_r \\ \sigma(k_1) & \sigma(k_2) & \cdots & \sigma(k_r) \end{pmatrix}. \tag{2.34}$$

我们有如下结论:

$$\forall \sigma \in \mathscr{P}_r, \quad A_{i_1j_1k_1}A_{i_2j_2k_2}\cdots A_{i_rj_rk_r} = A_{\sigma(i_1)\sigma(j_1)\sigma(k_1)}A_{\sigma(i_2)\sigma(j_2)\sigma(k_2)}\cdots A_{\sigma(i_r)\sigma(j_r)\sigma(k_r)}, \tag{2.35}$$

式中的 A_{ijk} 表示三维数组 A 的一个元素,其指标为 ijk.

下面通过一个例子来说明这一条性质. 还是用式 (2.14-a) 和 (2.14-b) 所定义的置换 σ :

$$\sigma = \begin{pmatrix} 4 & 9 & 2 & 7 & 5 & 8 & 3 \\ 3 & 7 & 5 & 4 & 8 & 9 & 2 \end{pmatrix} = \begin{pmatrix} \spadesuit & \heartsuit & \diamondsuit & \clubsuit & \diamondsuit & \Psi & \diamondsuit \\ \spadesuit & \spadesuit & \spadesuit & \Psi & \heartsuit & \diamondsuit \end{pmatrix}. \tag{2.36}$$

随意写出一个数组元素乘积:

$$A_{379}A_{264}A_{157}A_{483}A_{698}A_{\Diamond \bullet \bullet \heartsuit}A_{\bullet \Diamond \bullet \bullet}. \tag{2.37}$$

三组下标分别为

$$\begin{cases} 3, 2, 1, 4, 6, \diamond, \diamond; \\ 7, 6, 5, 8, 9, \clubsuit, \varphi; \\ 9, 4, 7, 3, 8, \heartsuit, •. \end{cases}$$
 (2.38)

考虑 σ 的序号定义式 (2.13):

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 4 & 5 & 1 & 6 & 2 & 3 \end{bmatrix}. \tag{2.39}$$

所谓序号只是位置的抽象表示,而不代表任何真实的元素.请记住:置换始终是位置的变换,而非元素的变换,不要被式 (2.36) 给迷惑了. 把 σ 作用在这三组下标上,可得

于是之前的数组元素乘积就变成了

$$A_{\bullet \triangle \bullet} A_{483} A_{698} A_{379} A_{\triangle \bullet \bigcirc} A_{264} A_{157}. \tag{2.41}$$

比对一下各元素,可见与式(2.37)的确是完全一样的.

2.5.3 哑标的穷尽

考虑如下集合:

$$\{(i_1, i_2, \cdots, i_r) \mid \{i_1, i_2, \cdots, i_r\} \exists x 1, 2, \cdots, m\}.$$
 (2.42)

每个 i_k 都有m种取法,而 i_k 又有r个,因此该集合一共有m"元素. 我们有

$$\begin{split} \forall \, \sigma \in \mathscr{P}_r, \quad & \Big\{ \left(i_1, i_2, \cdots, i_r \right) \, \Big| \, \Big\{ i_1, i_2, \cdots, i_r \Big\} \, \, \overline{\square} \, \mathbb{R} \, 1, \, 2, \cdots, \, m \Big\} \\ & = \Big\{ \left(\sigma(i_1), \, \sigma(i_2), \cdots, \, \sigma(i_r) \right) \, \Big| \, \Big\{ i_1, i_2, \cdots, i_r \Big\} \, \, \overline{\square} \, \mathbb{R} \, 1, \, 2, \cdots, \, m \Big\} \\ & = \Big\{ \left(\sigma^{-1}(i_1), \, \sigma^{-1}(i_2), \cdots, \, \sigma^{-1}(i_r) \right) \, \Big| \, \Big\{ i_1, i_2, \cdots, i_r \Big\} \, \, \overline{\square} \, \mathbb{R} \, 1, \, 2, \cdots, \, m \Big\}. \end{split} \tag{2.43-a}$$

这里, i_k 起的就是哑标的作用.

证明: 无论怎样置换, $\sigma(i_k)$ 都是 1, 2, ..., m 中的数. 因此, 对于 $\forall \sigma \in \mathcal{P}_r$,

$$\left(\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_r)\right) \in \left\{\left(i_1, i_2, \cdots, i_r\right) \mid \left\{i_1, i_2, \cdots, i_r\right\} \ \text{II} \ \mathbb{R} \ 1, 2, \cdots, m\right\}, \tag{2.44}$$

即

$$\left\{ \left(\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_r) \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \ \overline{\square} \ \mathbb{R} \ 1, 2, \cdots, m \right\}$$

$$\subset \left\{ \left(i_1, i_2, \cdots, i_r \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \ \overline{\square} \ \mathbb{R} \ 1, 2, \cdots, m \right\}. \tag{2.45}$$

另一方面,由于 $Id = \sigma^{-1} \circ \sigma$,即

$$(i_1, i_2, \cdots, i_r) = (\boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}(i_r)),$$
(2.46)

而进行一次逆置换仍然使得元素不离开原有的范围, 也就是说

$$(i_1, i_2, \cdots, i_r) \in \left\{ \left(\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_r) \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \text{ } \exists \text{ } \exists \text{ } 1, 2, \cdots, m \right\}, \tag{2.47}$$

即

$$\left\{ \left(i_{1}, i_{2}, \cdots, i_{r} \right) \mid \left\{ i_{1}, i_{2}, \cdots, i_{r} \right\} \overrightarrow{\Pi} \cancel{\mathbb{R}} 1, 2, \cdots, m \right\}$$

$$\subset \left\{ \left(\sigma(i_{1}), \sigma(i_{2}), \cdots, \sigma(i_{r}) \right) \mid \left\{ i_{1}, i_{2}, \cdots, i_{r} \right\} \overrightarrow{\Pi} \cancel{\mathbb{R}} 1, 2, \cdots, m \right\}. \tag{2.48}$$

两个集合互相包含,也就证得了式 (2.43-a).

用相同的方法也可证得关于逆置换的 (2.43-b) 式,此处从略.

2.6 置换(三)

本节将给出置换运算在线性代数中的一些应用.

2.6.1 行列式

2.7 置换(四)

本节将重回张量运算的主线,引入置换算子.

2.7.1 置换算子:对称张量与反对称张量

对于任意的置换 $\sigma \in \mathcal{P}$, 定义置换算子

$$I_{\sigma}: \mathcal{T}^{r}(\mathbb{R}^{m}) \ni \boldsymbol{\Phi} \mapsto I_{\sigma}(\boldsymbol{\Phi}) \in \mathcal{T}^{r}(\mathbb{R}^{m}),$$
 (2.49)

式中

$$I_{\sigma}(\boldsymbol{\Phi})(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}) \triangleq \boldsymbol{\Phi}(\boldsymbol{u}_{\sigma(1)}, \boldsymbol{u}_{\sigma(2)}, \cdots, \boldsymbol{u}_{\sigma(r)}) \in \mathbb{R}. \tag{2.50}$$

这里的"…∈ℝ"是根据张量的定义:多重线性函数.

如果我们的置换

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ \sigma(i_1) & \sigma(i_1) & \cdots & \sigma(i_1) \end{pmatrix}, \tag{2.51}$$

那么对应的置换算子将满足

$$I_{\sigma}(\boldsymbol{\Phi})(\boldsymbol{u}_{i_1}, \boldsymbol{u}_{i_2}, \cdots, \boldsymbol{u}_{i_r}) \triangleq \boldsymbol{\Phi}(\boldsymbol{u}_{\sigma(i_1)}, \boldsymbol{u}_{\sigma(i_2)}, \cdots, \boldsymbol{u}_{\sigma(i_r)}). \tag{2.52}$$

根据张量的线性性,容易知道置换算子也具有线性性:

$$\forall \boldsymbol{\Phi}, \boldsymbol{\Psi} \in \mathcal{F}^r(\mathbb{R}^m) \ \ \ \ \ \ \ \ \mathcal{L}_{\sigma}(\boldsymbol{\alpha}\boldsymbol{\Phi} + \boldsymbol{\beta}\boldsymbol{\Psi}) = \alpha I_{\sigma}(\boldsymbol{\Phi}) + \boldsymbol{\beta}\alpha I_{\sigma}(\boldsymbol{\Psi}). \tag{2.53}$$

证明:

$$\begin{split} I_{\sigma}(\alpha \boldsymbol{\Phi} + \beta \boldsymbol{\Psi}) \big(\boldsymbol{u}_{1}, \, \cdots, \, \boldsymbol{u}_{r} \big) &= (\alpha \, \boldsymbol{\Phi} + \beta \, \boldsymbol{\Psi}) \big(\boldsymbol{u}_{\sigma(1)}, \, \cdots, \, \boldsymbol{u}_{\sigma(r)} \big) \\ &= \alpha \, \boldsymbol{\Phi} \big(\boldsymbol{u}_{\sigma(1)}, \, \cdots, \, \boldsymbol{u}_{\sigma(r)} \big) + \beta \, \boldsymbol{\Psi} \big(\boldsymbol{u}_{\sigma(1)}, \, \cdots, \, \boldsymbol{u}_{\sigma(r)} \big) \\ &= \alpha I_{\sigma}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{1}, \, \cdots, \, \boldsymbol{u}_{r} \big) + \beta I_{\sigma}(\boldsymbol{\Psi}) \big(\boldsymbol{u}_{1}, \, \cdots, \, \boldsymbol{u}_{r} \big) \\ &= \big[\alpha I_{\sigma}(\boldsymbol{\Phi}) + \beta I_{\sigma}(\boldsymbol{\Psi}) \big] \big(\boldsymbol{u}_{1}, \, \cdots, \, \boldsymbol{u}_{r} \big). \end{split} \tag{2.54}$$

两个置换算子复合的结果也是很显然的:

$$\forall \sigma, \tau \in \mathscr{P}_r, \quad I_{\sigma} \circ I_{\tau} = I_{\sigma \circ \tau}. \tag{2.55}$$

证明:

$$\begin{split} I_{\sigma} \circ I_{\tau}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{i_{1}}, \, \cdots, \, \boldsymbol{u}_{i_{r}} \big) &= I_{\sigma}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{\tau(1)}, \, \cdots, \, \boldsymbol{u}_{\tau(r)} \big) \\ &= \boldsymbol{\Phi} \big(\boldsymbol{u}_{\sigma \circ \tau(1)}, \, \cdots, \, \boldsymbol{u}_{\sigma \circ \tau(r)} \big) \\ &= I_{\sigma \circ \tau}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{i_{1}}, \, \cdots, \, \boldsymbol{u}_{i_{r}} \big). \end{split} \tag{2.56}$$

有了置换算子,我们就可以来定义**对称张量**和**反对称张量**. 对称张量的全体记为 Sym,反对称张量的全体记为 Skw. 如果以 \mathbb{R}^m 为底空间,又分别可以记为 $S'(\mathbb{R}^m)$ 和 $\Lambda'(\mathbb{R}^m)$.

对于任意的 $\Phi \in \mathcal{T}^r(\mathbb{R}^m)$,如果

$$I_{\sigma}(\mathbf{\Phi}) = \mathbf{\Phi}, \tag{2.57}$$

则称 Φ 为对称张量,即 $\Phi \in Sym$ 或 $S^r(\mathbb{R}^m)$;如果

$$I_{\sigma}(\mathbf{\Phi}) = \operatorname{sgn} \mathbf{\sigma} \cdot \mathbf{\Phi}, \tag{2.58}$$

则称 Φ 为反对称张量, 即 $\Phi \in Skw$ 或 $\Lambda'(\mathbb{R}^m)$.

有些书中采用分量形式来定义(反)对称张量.这与此处的定义是等价的:

$$I_{\sigma}(\boldsymbol{\Phi}) = \boldsymbol{\Phi} \iff \boldsymbol{\Phi}_{\sigma(i_1)\cdots\sigma(i_r)} = \boldsymbol{\Phi}_{i_1\cdots i_r},\tag{2.59-a}$$

$$I_{\sigma}(\boldsymbol{\Phi}) = \operatorname{sgn} \boldsymbol{\sigma} \cdot \boldsymbol{\Phi} \iff \boldsymbol{\Phi}_{\sigma(i_1)\cdots\sigma(i_p)} = \operatorname{sgn} \boldsymbol{\sigma} \cdot \boldsymbol{\Phi}_{i_1\cdots i_p}. \tag{2.59-b}$$

反对称张量与我们熟知的行列式有些类似:交换两列(对于张量就是两个分量),符号相反.全部分量两两交换一遍,前面的系数自然是置换的符号.而如果无论怎么交换分量(当然需要全部两两交换一遍),符号都不变,那这样的张量就是对称张量.

一个二阶张量的协变(或逆变)分量,可以用一个矩阵表示. 如果这个张量是一个反对称张量,交换任意两个分量要添加负号;对于矩阵而言,这就意味着交换两行(或两列)……

2.7.2 置换算子的表示

根据上文给出的定义,我们有

$$I_{\sigma}(\boldsymbol{\Phi})(\boldsymbol{u}_{i_1}, \cdots, \boldsymbol{u}_{i_r}) \triangleq \boldsymbol{\Phi}(\boldsymbol{u}_{\sigma(i_1)}, \cdots, \boldsymbol{u}_{\sigma(i_r)}). \tag{2.60}$$

首先回忆一下 1.2.1 小节中张量的表示: 选一组基(协变、逆变均可), 然后把张量用这组基表示. 于是

$$I_{\sigma}(\boldsymbol{\Phi})(\boldsymbol{u}_{i_1}, \dots, \boldsymbol{u}_{i_r}) = \boldsymbol{\Phi}(\boldsymbol{u}_{\sigma(i_1)}, \dots, \boldsymbol{u}_{\sigma(i_r)})$$

把向量用协变基表示:

$$= \boldsymbol{\Phi} \Big(u_{\sigma(i_1)}^{i_1} \boldsymbol{g}_{i_1}, \cdots, u_{\sigma(i_r)}^{i_r} \boldsymbol{g}_{i_r} \Big)$$

根据张量的线性性, 提出系数:

$$= \boldsymbol{\Phi} \big(\boldsymbol{g}_{i_1}, \, \cdots, \, \boldsymbol{g}_{i_r} \big) \cdot \Big(\boldsymbol{u}_{\sigma(i_1)}^{i_1} \cdots \boldsymbol{u}_{\sigma(i_r)}^{i_r} \Big)$$

前半部分可以用张量分量表示; 而后半部分是一组逆变分量, 可以写成内积的形式

$$= \boldsymbol{\varPhi}_{i_1 \cdots i_p} \left[\left(\boldsymbol{u}_{\sigma(i_1)}, \, \boldsymbol{g}^{i_1} \right)_{\mathbb{R}^m} \cdots \left(\boldsymbol{u}_{\sigma(i_r)}, \, \boldsymbol{g}^{i_r} \right)_{\mathbb{R}^m} \right] \tag{2.61*}$$

注意到方括号中的其实是简单张量的定义,这就有

$$= \boldsymbol{\varPhi}_{i_1 \cdots i_n} \boldsymbol{g}^{i_1} \otimes \cdots \otimes \boldsymbol{g}^{i_r} (\boldsymbol{u}_{\sigma(i_1)}, \cdots, \boldsymbol{u}_{\sigma(i_r)}). \tag{2.61}$$

最后一步仍然没能回到 $(u_{i_1}, \dots, u_{i_r})$,因此以上推导只是简单地展开了 Φ ,并没有获得实质性的结果.

然而,只要稍作改动,情况就会大不相同.考虑一下 2.5.2 小节中置换运算有关数组元素乘积的性质:

$$\forall \tau \in \mathscr{P}_r, \quad A_{i_1 j_1} \cdots A_{i_r j_r} = A_{\tau(i_1)\tau(j_1)} \cdots A_{\tau(i_r)\tau(j_r)}, \tag{2.62}$$

中

$$\boldsymbol{\tau} = \begin{pmatrix} i_1 & \cdots & i_r \\ \boldsymbol{\tau}(i_1) & \cdots & \boldsymbol{\tau}(i_r) \end{pmatrix} = \begin{pmatrix} j_1 & \cdots & j_r \\ \boldsymbol{\tau}(j_1) & \cdots & \boldsymbol{\tau}(j_r) \end{pmatrix}. \tag{2.63}$$

由此可以看出,式 (2.61*) 方括号中的部分其实是由 $\sigma(i_k)$ 和 i_k 两套指标确定的一组数:

$$A_{\sigma(i_k)i_k} = \left(\mathbf{u}_{\sigma(i_k)}, \mathbf{g}^{i_k}\right)_{\mathbb{D}^m};\tag{2.64}$$

另一方面,显然有 $\sigma^{-1} \in \mathcal{P}_r$. 于是

$$\begin{split} &I_{\sigma}(\boldsymbol{\Phi}) \left(\boldsymbol{u}_{i_1}, \, \cdots, \, \boldsymbol{u}_{i_r} \right) \\ &= \boldsymbol{\Phi}_{i_1 \cdots i_r} \left[\left(\boldsymbol{u}_{\sigma(i_1)}, \, \boldsymbol{g}^{i_1} \right)_{\mathbb{R}^m} \cdots \left(\boldsymbol{u}_{\sigma(i_r)}, \, \boldsymbol{g}^{i_r} \right)_{\mathbb{R}^m} \right] \end{split}$$

应用置换的性质 (2.62) 式:

$$\begin{split} &= \boldsymbol{\varPhi}_{i_1 \cdots i_r} \bigg[\bigg(\boldsymbol{u}_{\sigma^{-1} \circ \sigma(i_1)}, \, \boldsymbol{g}^{\sigma^{-1}(i_1)} \bigg)_{\mathbb{R}^m} \cdots \bigg(\boldsymbol{u}_{\sigma^{-1} \circ \sigma(i_r)}, \, \boldsymbol{g}^{\sigma^{-1}(i_r)} \bigg)_{\mathbb{R}^m} \bigg] \\ &= \boldsymbol{\varPhi}_{i_1 \cdots i_r} \bigg[\bigg(\boldsymbol{u}_{i_1}, \, \boldsymbol{g}^{\sigma^{-1}(i_1)} \bigg)_{\mathbb{R}^m} \cdots \bigg(\boldsymbol{u}_{i_2}, \, \boldsymbol{g}^{\sigma^{-1}(i_r)} \bigg)_{\mathbb{R}^m} \bigg] \end{split}$$

同样,用简单张量表示,可得

$$= \Phi_{i_1 \cdots i_r} g^{\sigma^{-1}(i_1)} \otimes \cdots \otimes g^{\sigma^{-1}(i_r)} (u_{i_1}, \cdots, u_{i_r}). \tag{2.65}$$

这样,我们就得到了置换算子的一种表示:

$$I_{\sigma}(\boldsymbol{\Phi}) = I_{\sigma} \left(\boldsymbol{\Phi}_{i_{1} \cdots i_{r}} \mathbf{g}^{i_{1}} \otimes \cdots \otimes \mathbf{g}^{i_{r}} \right)$$

$$= \boldsymbol{\Phi}_{i_{1} \cdots i_{r}} \mathbf{g}^{\sigma^{-1}(i_{1})} \otimes \cdots \otimes \mathbf{g}^{\sigma^{-1}(i_{r})}. \tag{2.66}$$

在式 (2.66) 中, i_1 , …, i_r 都是哑标,要被求和求掉. 张量 Φ 的底空间是 \mathbb{R}^m ,所以每个 i_k 都有 m 个取值. 考虑一下 2.5.3 小节中置换运算有关哑标穷尽的性质,有

$$\forall \boldsymbol{\sigma} \in \mathcal{P}_r, \quad \left\{ \left(i_1, i_2, \cdots, i_r \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \; \overline{\Pi} \, \mathbb{R} \; 1, \, 2, \, \cdots, \, m \right\} \\
= \left\{ \left(\boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}(i_2), \cdots, \, \boldsymbol{\sigma}(i_r) \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \; \overline{\Pi} \, \mathbb{R} \; 1, \, 2, \, \cdots, \, m \right\}. \tag{2.67}$$

因此,我们可以把式 (2.66) 中的指标 i_k 换成 $\sigma(i_k)$:

$$\begin{split} I_{\sigma}(\boldsymbol{\Phi}) &= \boldsymbol{\Phi}_{i_{1} \cdots i_{r}} \boldsymbol{g}^{\sigma^{-1}(i_{1})} \otimes \cdots \otimes \boldsymbol{g}^{\sigma^{-1}(i_{r})} \\ &= \boldsymbol{\Phi}_{\sigma(i_{1}) \cdots \sigma(i_{r})} \boldsymbol{g}^{\sigma^{-1} \circ \sigma(i_{1})} \otimes \cdots \otimes \boldsymbol{g}^{\sigma^{-1} \circ \sigma(i_{r})} \\ &= \boldsymbol{\Phi}_{\sigma(i_{1}) \cdots \sigma(i_{r})} \boldsymbol{g}^{i_{1}} \otimes \cdots \otimes \boldsymbol{g}^{i_{r}}. \end{split} \tag{2.68}$$

这是置换算子的另一种表示.

综上,要获得置换算子的表示,若是对张量分量进行操作,就直接使用对分量指标使用置换; 若是对简单张量进行操作,则要对其指标使用逆置换: ^①

$$\begin{split} I_{\sigma}(\boldsymbol{\Phi}) &= I_{\sigma} \left(\boldsymbol{\Phi}^{i_{1} \cdots i_{r}} \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{r}} \right) \\ &= \boldsymbol{\Phi}^{\sigma(i_{1}) \cdots \sigma(i_{r})} \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{r}} \\ &= \boldsymbol{\Phi}^{i_{1} \cdots i_{r}} \boldsymbol{g}_{\sigma^{-1}(i_{1})} \otimes \cdots \otimes \boldsymbol{g}_{\sigma^{-1}(i_{1})}. \end{split} \tag{2.69-a}$$

① 这里稍有改动,用了张量的逆变分量,不过实质都是一样的. 使用协变分量还是逆变分量,这个嘛,悉听尊便.

2.8 对称化算子与反对称化算子

2.8.1 定义

对称化算子 ♂ 和反对称化算子 ♂ 的定义分别为

$$\mathcal{S}(\boldsymbol{\Phi}) \triangleq \frac{1}{r!} \sum_{\boldsymbol{\sigma} \in \mathcal{P}} I_{\boldsymbol{\sigma}}(\boldsymbol{\Phi}) \tag{2.70}$$

和

$$\mathscr{A}(\boldsymbol{\Phi}) \triangleq \frac{1}{r!} \sum_{\sigma \in \mathscr{P}_r} \operatorname{sgn} \sigma \cdot I_{\sigma}(\boldsymbol{\Phi}). \tag{2.71}$$

根据置换算子的线性性,很容易知道对称化算子与反对称化算子也具有线性性.

对于任意的 $\Phi \in \mathcal{T}'(\mathbb{R}^m)$, 我们有

$$\begin{cases} \mathcal{S}(\boldsymbol{\Phi}) \in \operatorname{Sym}, & (2.72-a) \\ \mathcal{A}(\boldsymbol{\Phi}) \in \operatorname{Skw}. & (2.72-b) \end{cases}$$

这说明任意一个张量,对它作用对称化算子之后,将变为对称张量;反之,作用反对称算子之后,将变为反对称张量.^①

证明: 要判断 $\mathcal{S}(\mathbf{\Phi})$ 是不是对称张量,首先需要在其上作用一个置换算子 I_{τ} :

$$I_{\tau} \big[\mathcal{S}(\mathbf{\Phi}) \big] = I_{\tau} \left[\frac{1}{r!} \sum_{\sigma \in \mathcal{P}} I_{\sigma}(\mathbf{\Phi}) \right]$$

根据置换算子的线性性 (2.53) 式,可有

$$=\frac{1}{r!}\sum_{\sigma\in\mathcal{D}}I_{\tau}\circ I_{\sigma}(\boldsymbol{\varPhi})$$

再用一下 (2.54) 式,得到

$$=\frac{1}{r!}\sum_{\sigma\in\mathcal{P}_{\!\!\scriptscriptstyle{\bullet}}}I_{\tau\circ\sigma}(\boldsymbol{\varPhi})$$

这里求和的作用就是把置换 σ 穷尽了. 根据 2.5.1 小节中的内容,再在 σ 上复合一个置换 τ ,结果将保持不变:

$$= \frac{1}{r!} \sum_{\sigma \in \mathscr{P}_r} I_{\sigma}(\boldsymbol{\Phi}) = \mathscr{S}(\boldsymbol{\Phi}). \tag{2.73}$$

对照一下对称张量的定义 (2.57) 式,可见的确有 $\mathcal{S}(\boldsymbol{\Phi}) \in Sym$. 类似地,

$$I_{\tau}[\mathscr{A}(\boldsymbol{\Phi})] = I_{\tau}\left[\frac{1}{r!}\sum_{\boldsymbol{\sigma}\in\mathscr{P}_{\tau}}\operatorname{sgn}\boldsymbol{\sigma}\cdot I_{\boldsymbol{\sigma}}(\boldsymbol{\Phi})\right]$$

① 换一个角度,(反)对称张量实际上可以用(反)对称化算子来定义.

$$\begin{split} &= \frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot \left[I_{\tau} \circ I_{\sigma}(\boldsymbol{\Phi}) \right] \\ &= \frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot I_{\tau \circ \sigma}(\boldsymbol{\Phi}) \end{split}$$

根据式 (2.19), $\operatorname{sgn} \tau \cdot \operatorname{sgn} \sigma = \operatorname{sgn}(\tau \circ \sigma)$, 于是

$$=\frac{1}{r!}\sum_{\boldsymbol{\sigma}\in\mathscr{D}}\frac{\operatorname{sgn}(\boldsymbol{\tau}\circ\boldsymbol{\sigma})}{\operatorname{sgn}\boldsymbol{\tau}}\cdot\boldsymbol{I}_{\boldsymbol{\tau}\circ\boldsymbol{\sigma}}(\boldsymbol{\Phi})$$

注意到始终成立 $\operatorname{sgn} \tau \cdot \operatorname{sgn} \tau = 1$ (因为 $\operatorname{sgn} \tau = \pm 1$), 又有

利用置换的穷尽, $\tau \circ \sigma$ 与 σ 相比, 结果将保持不变:

$$=\operatorname{sgn}\tau\cdot\left[\frac{1}{r!}\sum_{\boldsymbol{\sigma}\in\mathscr{P}_{r}}\operatorname{sgn}\boldsymbol{\sigma}\cdot\boldsymbol{I}_{\boldsymbol{\sigma}}(\boldsymbol{\Phi})\right]=\operatorname{sgn}\tau\cdot\mathscr{A}(\boldsymbol{\Phi}).\tag{2.74}$$

与反对称张量的定义 (2.58) 式相比,可见的确有 $\mathcal{S}(\boldsymbol{\Phi}) \in Skw$.

这里的操作直接对张量本身进行,没有采用涉及到张量"自变量"(向量)的繁琐计算,因而显得更加干净利落. □

2.8.2 反对称化算子的性质

上文已经定义了反对称化算子 ⋈:

$$\forall \boldsymbol{\Phi} \in \mathcal{F}^r(\mathbb{R}^m), \quad \mathcal{A}(\boldsymbol{\Phi}) \triangleq \frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot I_{\sigma}(\boldsymbol{\Phi}) \in \operatorname{Skw} \ \vec{\boxtimes} \ \Lambda^r(\mathbb{R}^m). \tag{2.75}$$

即任意一个r阶张量,作用反对称化算子后就变成了r阶反对称张量.r阶反对称张量也称为r-form (r-形式).

下面列出反对称化算子的几条性质.

反对称化算子重复作用, 仅相当于一次作用:

$$\mathcal{A}^2 \coloneqq \mathcal{A} \circ \mathcal{A} = \mathcal{A}. \tag{2.76}$$

根据数学归纳法,显然有

$$\forall p \in \mathbb{N}^*, \quad \mathcal{A}^p \coloneqq \underbrace{\mathcal{A} \circ \cdots \circ \mathcal{A}}_{p \uparrow \mathcal{A}} = \mathcal{A}. \tag{2.77}$$

证明:

$$\begin{split} \mathcal{A}^2 &= \mathcal{A} \left[\mathcal{A}(\mathbf{\Phi}) \right] \\ &\triangleq \mathcal{A} \left[\frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot I_{\sigma}(\mathbf{\Phi}) \right] \\ &\triangleq \frac{1}{r!} \sum_{\tau \in \mathcal{P}_r} \operatorname{sgn} \tau \cdot I_{\tau} \left[\frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot I_{\sigma}(\mathbf{\Phi}) \right] \end{split}$$

根据线性性,可有

$$= \frac{1}{(r!)^2} \sum_{\tau \in \mathcal{P}} \sum_{\sigma \in \mathcal{P}} \operatorname{sgn} \tau \operatorname{sgn} \sigma \cdot I_{\tau} \circ I_{\sigma}(\boldsymbol{\Phi})$$

根据式 (2.19) 和式 (2.54), 有

$$\begin{split} &= \frac{1}{(r!)^2} \sum_{\tau \in \mathcal{P}_r} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn}(\tau \circ \sigma) \cdot I_{\tau \circ \sigma}(\boldsymbol{\Phi}) \\ &= \frac{1}{(r!)^2} \sum_{\tau \in \mathcal{P}_r} \left[\sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn}(\tau \circ \sigma) \cdot I_{\tau \circ \sigma}(\boldsymbol{\Phi}) \right] \end{split}$$

注意到方括号中的部分穷尽了置换 σ ,因此可以用 σ 取代"指标" $\tau \circ \sigma$:

$$= \frac{1}{(r!)^2} \sum_{\tau \in \mathcal{P}_{\sigma}} \left[\sum_{\sigma \in \mathcal{P}_{\sigma}} \operatorname{sgn} \sigma \cdot I_{\sigma}(\boldsymbol{\Phi}) \right]$$

回到定义,有

$$= \frac{1}{r!} \sum_{\tau \in \mathscr{P}_r} \mathscr{A}(\boldsymbol{\Phi}) = \frac{1}{r!} \cdot r! \, \mathscr{A}(\boldsymbol{\Phi}) = \mathscr{A}(\boldsymbol{\Phi}). \tag{2.78}$$

对任意两个张量 $\Phi \in \mathcal{F}^p(\mathbb{R}^m)$ 和 $\Psi \in \mathcal{F}^q(\mathbb{R}^m)$ 的并作用反对称化算子,可以得到如下结果:

$$\mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) = \mathcal{A}[\mathcal{A}(\boldsymbol{\Phi}) \otimes \boldsymbol{\Psi}] = \mathcal{A}[\boldsymbol{\Phi} \otimes \mathcal{A}(\boldsymbol{\Psi})] = \mathcal{A}[\mathcal{A}(\boldsymbol{\Phi}) \otimes \mathcal{A}(\boldsymbol{\Psi})]. \tag{2.79}$$

反对称化算子具有所谓反导性:

$$\forall \boldsymbol{\Phi} \in \mathcal{F}(\mathbb{R}^m) \boldsymbol{\Psi} \in \mathcal{F}^q(\mathbb{R}^m), \quad \mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) = (-1)^{pq} \mathcal{A}(\boldsymbol{\Psi} \otimes \boldsymbol{\Phi}). \tag{2.80}$$