Rheinische Friedrich-Wilhelms-Universität Bonn

Scalable Entity Resolution

Amrit Kaur (Matriculation Number - 3055863)

Supervisor: Dr. Hajira Jabeen

First Examiner: Prof. Dr. Jens Lehmann

Second Examiner: Dr. Kuldeep Singh

Smart Data Analytics Group • University of Bonn • August 23, 2019

Contents

Introduction

Existing Methodologies

Approach

Evaluation and Results

Conclusion and Future work

References

Introduction

Motivation

- Knowledge Graphs
- Entity Resolution task is Quadratic
- Existing approaches use Blocking Techniques for efficiency
- Need a generic approach that can perform Entity Resolution in a scalable manner in RDF data

Introduction

Problem Description

Given two different datasets:

* Find entities that point to the same real- world data

Fig 1. Entity in Dataset1

Introduction

Fig 2. Entity in Dataset2

Existing Methodologies

Existing approaches perform a two step process:-

Block Building
 Attribute based Blocking
 Attribute agnostic Blocking

Block Processing
 Non-Learning based approaches
 Learning based approaches

Blocking Pair of **Duplicates N** Entities

Fig 3. Brute Force Approach

Approach

Focus:-

- Remove block building stage
- Removing multiple iterations used for learning based approaches
- Effort of labelling data for learning based approaches

Approach - minHash LSH method (considering all attributes)

Fig 4. Spark minHash LSH method with all attributes

Challenges

- Incomplete knowledge graphs
- We do not get good results

Approach - minHash LSH method (1 or 2 attribute)

Fig 5. Spark minHash LSH method with 1 or 2 attribute

Approach - minHash LSH method (1 or 2 attribute)

Inspiration: -

Köpcke, H., Thor, A., and Rahm, E.: Learning-Based Approaches for Matching Web Data Entities. IEEE Internet Computing, pp. 23-31, July/August, 2010

Intention:-

Maximum utilisation of data in knowledge graphs for entity comparison

Idea:-

Select common attributes based on subject similarity

Step1: Find matching entities based on LSH subjects

Fig 6. Spark minHash LSH subject

12

Focus: Maximum utilisation of data

Step 2: Compare the predicates for matched entities

Similar entities matched based on subjects

Extract predicates for the similar matched entities and compare their respective predicates by jaccard similarity thresholds

Focus: Reduce False positives

Step 3: Compare the objects for intersecting predicates in matched entities

Compare the objects of only intersecting predicates by jaccard similarity threshold for object

Similar entities found!

Step1: Find matching entities based on LSH subjects

In	pu	t:-

Dataframe x

Entity	Entity_sub_tokenised
Subject1 (Ex:- Budapest)	Set(Budapest)
Subject2 (Ex:- Apple_Store)	Set(Apple, Store)

Dataframe y

Entity	Entity_sub_tokenised
Subject1 (Ex:- Apple)	Set(Apple)
Subject2 (Ex:- Budapest_City)	Set(Budapest, City)

Output :- Similar entities matched based on subjects

Entity1	Entity 2
Budapest	Budapest_City
Apple_Store	Apple

Step 2: Compare the predicates for matched entities

Entity1	Entity1_predicates	Entity2	Entity2_predicates
Budapest	Set(areaCode, rdf:type, country, timezone, populationDensity, postalCode, utcoffset, humidity)	Budapest_City	Set(areaCode, country, elevation, foundingDate, areaTotal, governingBody, populationDensity, timezone, rdf:type)
Apple_Store	Set(foundedBy, industry, keyPerson, product, parentCompany, rdf:type, subject, numberofLocations, logo, rdf:label, foaf:name)	Apple	Set (genus, rdf:type, division, source, kingdom, class, carbs, fat, fibre, sugar, rdf:label, foaf:name, calcium, phosphorus, potassium, protein)

Output: - Similar entites matched with Jaccard Similarity predicates

Entity1	Entity2	Intersecting_predicates
Budapest	Budapest_City	Set(areaCode, rdf:type, country, populationDensity, timezone)

Step3: Compare the objects for intersecting predicates in matched entities

i.e Set(areaCode, rdf:type, country, populationDensity, timezone)

Entity1	Entity1_objects	Entity2	Entity2_objects
Budapest	Set (1, City, Place, Location, PopulatedCity, Hungary, 1558465, Central_European_Time)	Budapest_City	Set(1, City, Place, Location, PopulatedCity, Hungary, 1759407, Central_European_Tlme, Central_European_SummerTime)

Output:- Similar entities found

Entity1	Entity2
Budapest	Budapest_City

Evaluation - minHash LSH method (1 or 2 attribute)

Datasets:-

Match Task		Source size (Number of entities)	
Attributes	Sources	Source1	Source2
Title Authors Venue Year	DBLP-ACM	2,616	2,294
Title Authors Venue Year	DBLP-Scholar	2,616	64.263
Name Description Manufacturer Price	Abt-Buy	1,081	1,092

Table 1. Evaluation dataset description

DBLP-ACM dataset

	1- attribute (Title)		2- attribute (Title, Authors)	
Number of attributes	State of the art	minHash LSH	State of the art	minHash LSH
Precision (%)	94.9	85.88	96.9	92.05
Recall (%)	97.3	95	87.8	93
F-measure (%)	96.1	90.21	92.1	92.52

Table 2. Evaluation Results for DBLP-ACM dataset

A threshold of 0.25 is considered for 1-attribute and 0.28 for 2-attribute

DBLP-Scholar dataset

Table 3. Evaluation Results for DBLP-Scholar dataset

A threshold of 0.15 is considered for 1-attribute and 0.42 for 2-attribute

Abt-Buy dataset

	1- attribute (Name)		2- attribute (Name,Description)	
Number of attributes	State of the art	minHash LSH method	State of the art	minHash LSH method
Precision (%)	78.4	35.80	90.6	27.63
Recall (%)	36.4	48	17.6	31
F-measure (%)	49.7	41.01	29.5	29.21

Table 4. Evaluation Results for Abt-Buy dataset

A threshold of 0.5 is considered for 1-attribute and 0.685 for 2-attribute

Execution Time (in Seconds)

Evaluation- minHash LSH subjects and jaccard similarity attributes

Table 5. Evaluation DBpedia datasets description

Dbpedia Datasets:-

For medium size dataset :-

The ground truth was constructed by considering the matches as entities with exactly same URL. Inspiration:-

G. Papadakis, E. Ioannou, C. Niederée, P. Fankhauser, Efficient entity resolution for large heterogeneous information spaces, in: WSDM, 2011, pp. 535–544.

• For large size dataset:-

The above created ground truth was considered in this case also.

Medium and Large size Datasets:-

Dataset1 - Infobox 3.0rc/Dbpedia 3.0rc and Dataset2 - Infobox 3.4			
	Jaccard Similarity Predicates	Jaccard Similarity Objects	
Precision (%)	99.75	99.86	
Recall (%)	86	85	
F-measure(%)	92.36	91.83	

Table 6. Evaluation Results for Dbpedia datasets

A threshold of 0.10 is considered for LSH subjects (the lower the better)

A Jaccard Similarity of 0.15 is considered among the predicates.

A Jaccard Similarity of 0.25 is considered among the objects.

Evaluation- minHash LSH subjects and jaccard similarity attributes

Conclusion

- Scalable
- Efficient
- Deals with heterogeneity of data
- Considers structured as well as unstructured data
- Entity Resolution An important contribution for SANSA ML upcoming release (integration task ongoing)

Future Work

- Datasets with id's as subjects instead of URL are difficult to compare with our approach.
- Creation of ground truth for larger datasets
- Extend to other data source of RDF data like Yago, Wikidata, etc.
- Perform entity resolution with different Dbpedia language datasets.

References I

- G. Papadakis, E. Ioannou, C. Niederée, P. Fankhauser, Efficient entity resolution for large heterogeneous information spaces, in: WSDM, 2011, pp. 535–544.
- Köpcke, H., Thor, A., and Rahm, E.: Learning-Based Approaches for Matching Web Data Entities. IEEE Internet Computing, pp. 23-31, July/August, 2010
- G. Papadakis, G. Papastefanatos, T. Palpanas, M. Koubarakis, Scaling entity resolution to large, heterogeneous data with enhanced meta-blocking, in: EDBT, 2016.
- O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, J. Widom, Swoosh: a generic approach to entity resolution, VLDB J. 18 (1) (2009) 255–276.
- SANSA Stack Github repository. https://github.com/SANSA-Stack/.

References II

- SANSA Stack.
 http://sansa-stack.net/fag/#what-does-SANSA-stand-for.
- Jeffrey Fisher, Peter Christen, Qing Wang, Erhard Rahm, A clustering-based framework to control block sizes for entity resolution. in: KDD, 2015.
- Köpcke, H., Thor, A., and Rahm, E.: Comparative evaluation of entity resolution approaches with FEVER. In Proc. of VLDB, 200

Thank you !!!