SURVIVAL CHEAT SHEET
http://staff.pubhealth.ku.dk/~ts/survival/survival-cheat.r

SURVIVAL ANALYSIS:

- Survival Outcomes:

- $\alpha(t)$ hazard, instantaneous risk
- $A(t) = \int_0^t \alpha(s) ds$ cumulative hazard
- S(t) = P(T > t) survival probability

Vocabulary:

• $P(T > t) = \exp(-A(t))$ survival probability

- Survival Models: I

R survival	library(survival); library(mets); data(TRACE)
Define Survival	Surv(time, status), Surv(entry, time, status)
outcome	status is 1 for events and 0 otherwise
	TRACE=transform(TRACE,status9=(status==9),dead=(status!=0))
Kaplan-Meier	$\exp(-\Lambda(t))$
	$ss=survfit(Surv(time,dead) \sim vf,data=TRACE); plot(ss); summary(ss);$
	library(timereg); kmplot(ss);
Kaplan-Meier	library(prodlim); ss=prodlim(Surv(time,dead) \sim vf,data=TRACE)
	plot(ss); summary(ss); summary(ss,time=c(1,5))
Log-rank	$survdiff(Surv(time,dead) \sim vf,data=TRACE)$
Stratified LR	$coxph(Surv(time,dead) \sim strata(vf)+chf$, $data=TRACE)$
Nelson-Aalen	library(mets); cc=phreg(Surv(time,dead) \sim strata(vf),data=TRACE); plot(cc);
	ss=survfit(Surv(time,dead) \sim vf,data=TRACE);
	plot(ss,fun="cumhaz"); kmplot(ss,fun="cumhaz");
- Cov prodictions	• TT

- Cox predictions: II

spline fitting

Interactions

Cox regression	out=coxph(Surv(time,dead) \sim vf,data=TRACE)
predictions	newdata=data.frame(vf=c(0,1)); pred=survfit(out,newdata); plot(pred);
- Cox Goodness	of fit: III
proportionality	library(mets); cc=phreg(Surv(time,dead) \sim chf+vf,data=TRACE);
	gg=gof(cc); summary(gg); plot(gg);
graphical phreg	$cox1=phreg(Surv(time,dead) \sim strata(vf)+chf,data=TRACE)$
cloglog-base	plot(cox1); plot(cox1,log="y")
functional form	$ca=gofZ.phreg(Surv(time,dead) \sim vf+wmi+age,data=TRACE)$
	summary(ca): plot(ca.type="z")

 $mf = coxph(Surv(time,dead) \sim vf + pspline(wmi,df=4),data=TRACE)$

ifit=coxph(Surv(time,dead) \sim vf+chf+wmi+vf*chf,data=TRACE)

afit=coxph(Surv(time,dead) \sim vf+chf+wmi,data=TRACE)

- Wald-test, linear combinations: IV

anova(ifit,afit)

Cox-Wald test	$ cc=coxph(Surv(time,status==0) \sim vf+chf+vf*chf,data=TRACE)$
	library(mets); estimate(cc,rbind(c(1,1,1))); estimate(cc,as.list(3))
	library(timereg); wald.test(cc,contrast=c(1,1,0)); wald.test(cc,coef.null=3)
	\cdot

termplot(mf,term=2,se=TRUE)

COMPETING RISKS

- Competing Risks

- $\alpha_1(t)$ cause specific hazard
- $\alpha_2(t)$ cause specific hazard
- $A_1(t) = \int_0^t \alpha_1(s) ds$ cumulative hazard
- $S(t) = P(T > t) = \exp(-A_1(t) A_2(t))$ survival probability
- $F_1(t) = P(T < t, \epsilon = 1)$ cumulative incidence cause 1
- $F_2(t) = P(T < t, \epsilon = 2)$ cumulative incidence cause 2

- Cumulative incidence: V

Define outcome	Surv(time, status), Surv(entry, time, status)
	library(prodlim); Hist(time, status), Hist(entry=entry, time, status)
	status is 1,2, for events and 0 for censorings
CIF	library(prodlim); cifa=prodlim(Hist(time,status) \sim vf,data=TRACE)
probability	plot(cifa,cause=9); summary(cifa,cause=9,times=0:8);
Grays Test	library(cmprsk); cifa=with(TRACE,cuminc(time,status,vf)); print(cifa); plot(cifa)

- Cumulative incidence Regression: VI

Regression CIF	library(cmprsk); cifa=with(TRACE,crr(time,status,vf,failcode=9));
predictions	summary(cifa); pred=predict(cifa,rbind(c(1,0),c(1,1))); plot(pred);
OR, logit-link	library(mets); cifa=cifreg(Event(time,status) \sim vf+chf,data=TRACE,cause=9)
predictions	nd=data.frame(vf=1,chf=c(1,0)); pcifa=predict(cifa,newdata=nd); plot(pcifa)
FG-link	cifa=cifreg(Event(time,status) \sim +vf+chf,data=TRACE,cause=9,propodds=NUL
	summary(cifa); pcifa=predict(cifa,newdata=nd); plot(pcifa)
OR, logit-link	library(timereg);
	cifa=prop.odds.subdist(Event(time,status) \sim +vf+chf,data=TRACE,cause=9)
GOF+Predictions	summary(cifa); pcifa=predict(cifa, $Z=c(1,0)$); plot(pcifa)

- Goodness of fit for Cumulative incidence Regression: VII

GOF: FG	library(crskdiag); data(tTRACE); tTRACE=dtransform(tTRACE,status=1,status==9
status=1	out=diag_crr(Crsk(time,status) \sim +vf, data=tTRACE,test="prop"); print(out);
GOF: Censoring	out = $coxph(Surv(time,status==0) \sim +vf,data=TRACE)$

- Binomial Regression Modelling: VIII

OR, logit-link | library(mets); cifat=binreg(Event(time, status) \sim vf+chf, data=TRACE, cause=9, time=5)

- Cause Specific Hazard: IX

Cox for cause	data(bmt); out8=coxph(Surv(time,cause==1) \sim tcell,data=bmt)
Log-rank	survdiff(Surv(time,cause==1) \sim tcell,data=bmt)
Regression	library(riskRegression); data(bmt); nd=data.frame(tcell=c(0,1))
Cause specific	fit=CSC(Hist(time,cause) \sim tcell,data=bmt); tt=times=seq(0,100,by=1)
Cox's	p1=predictRisk(fit,newdata=nd,cause=1,times=tt); matplot(tt,t(p1),type="s")
plot via pec	library(pec); plotPredictEventProb(fit,newdata=nd,cause=1,col=1:2)

SURVIVAL CHEAT SHEET

SURVIVAL ANALYSIS: - Plotting Cox and Kaplan-Meier: X prodlim +coxph | km1=prodlim(Surv(time,dead) \sim vf ,data=TRACE) $cox1=coxph(Surv(time,dead) \sim vf,data=TRACE);$ newdata=data.frame(vf=c(0,1)); pred=survfit(cox1,newdata); plot(pred); plot(km1,add=TRUE) survfit+phreg $km1=survfit(Surv(time,dead) \sim vf,data=TRACE)$ $cox1=phreg(Surv(time,dead) \sim vf,data=TRACE);$ pred=predict(cox1,newdata,se=0); plotkm(km1); plot(cox1,add=TRUE) - Splitting time Cox: XI $cox2=coxph(Surv(time,dead) \sim vf+chf+tt(vf),data=TRACE,$ coxph tt=function(x,t,...) x*(t>1) $fdat=survSplit(Surv(time,dead) \sim ., data=TRACE, cut=c(1), episode="timeg")$ Survsplit fdat=transform(fdat,vflate=vf*(timeg==2)); $cox3=coxph(Surv(tstart,time,dead) \sim vf+chf+vflate,data=fdat)$ TRACE=transform(TRACE,sv=time*0.5); dat=event.split(data=TRACE,cuts="sv") event-split - Cox-Splines: XII Simple spline library(mets); data(TRACE) TRACE=dspline(TRACE, \sim wmi, breaks=c(1,1.3,1.7)) $coxs = coxph(Surv(time,status == 9) \sim age+wmi+vf+chf+wmi.spline1+$ wmi.spline2+wmi.spline3,data=TRACE) nd=data.frame(age=50,vf=0,chf=0,wmi=seq(0.4,3,by=0.01)) $nd=dspline(nd, \sim wmi, breaks=c(1,1.3,1.7)); ps=predict(coxs, newdata=nd);$ with(nd,plot(wmi,ps,type="l")) - Multivariate Two-Stage Frailty: XIII library(mets); data(diabetes); MLE margph=phreg(Surv(time, status) \sim treat+cluster(id), data=diabetes) fitco1=twostageMLE(margph,data=diabetes); summary(fitco1) fit1=twostage(margph,data=diabetes); summary(fit1) Pairwise

RECURRENT EVENTS:

- Marginal Mean : XIV	
Marginal mean	library(mets); data(base1cumhaz); data(drcumhaz); rr=simRecurrent(1000,base1cumhaz,death.cumhaz=drcumhaz) xr=phreg(Surv(start,stop,status) ~ cluster(id),data=rr) dr=phreg(Surv(start,stop,death) ~ cluster(id),data=rr) out=recurrentMarginal(xr,dr); bplot(out,se=TRUE,ylab="mean")

theta.des=model.matrix(\sim -1+factor(adult),data=diabetes)

fit2=twostage(margph,data=diabetes,theta.des=theta.des); summary(fit2)

SIMUALTING EVENT HISTORY DATA

- Competing Risks Regression