Praca domowa z DUW I, część druga – dynamika

Zadania do wykonania

- 1. Zbudować w *ADAMS*-ie model, umożliwiający przeprowadzenie analizy dynamicznej mechanizmu przedstawionego na rysunku.
- 2. Napisać w *MATLAB*-ie program, pozwalający na wykonanie analizy dynamicznej tego samego mechanizmu.
- 3. Sporządzić raport z przeprowadzonych prac.

Informacje dodatkowe

- Wymiary mechanizmu są takie jak w pierwszej części pracy domowej.
- W pokazanej na rysunku chwili początkowej mechanizm nie porusza się.
- Na człony mechanizmu działaja:
 - o siły grawitacji (skierowane w dół),
 - o siły w elementach sprężysto-tłumiących (umieszczonych w siłownikach),
 - o stała siła przyłożona do członu roboczego mechanizmu.
- Nie występują wymuszenia kinematyczne (więzy kierujące).

Wymagania szczegółowe

- Należy napisać program, który na żądanie obliczy przebiegi położeń, prędkości i przyspieszeń liniowych dowolnego punktu mechanizmu, a także prędkości i przyspieszenia kątowe dowolnego członu.
- Obliczenia wykonać dla czasu od 0 do 5 s, używając następujących ustawień programu ADAMS/Solver:
 - o Integrator: GSTIFF,
 - o Formulation: I3.
 - o Error: 1.0E-6.
- Samodzielnie dobrać ustawienia procedury całkującej w *MATLAB*-ie.
- W programie należy umieścić komentarze informujące o sposobie jego obsługi i wyjaśniające wykonywane operacje.
- Dokładność spełnienia więzów powinna być kontrolowana podczas obliczeń.
- Program w *MATLAB*-ie można napisać w wersji umożliwiającej symulację tylko jednego mechanizmu lub w wersji pozwalającej na dokonanie analizy dynamicznej dowolnego mechanizmu płaskiego (ta opcja będzie wyżej oceniana).

Tryb zaliczenia

- Obie prace domowe wykonuje zespół w tym samym składzie.
- Termin zaliczenia drugiej pracy domowej jest ogłaszany na wykładzie. Przedstawienie pracy po narzuconym terminie będzie skutkowało obniżeniem oceny.
- Wykonane modele i programy oceniają osoby prowadzące zajęcia laboratoryjne.
- Przy zaliczeniu konieczna jest obecność wszystkich członków grupy.
- Każdy z członków grupy musi wykazać się znajomością modelu w *ADAMS*-ie i programu w *MATLAB*-ie.

Wskazówki

- Można wykorzystać model i program z pracy domowej poświęconej kinematyce.
- Warto zacząć od zbudowania modelu w *ADAMS*-ie, a następnie wykorzystać go do weryfikacji poprawności programu w *MATLAB*-ie.
- Istotą zadania domowego jest napisanie procedur wykonujących obliczenia i tylko te procedury będą podlegać ocenie. W przypadku pisania programu do analizy dowolnych mechanizmów wystarczy, jeśli dane dotyczące mechanizmu i zadania będą wczytywane z przygotowanego przez użytkownika pliku lub pobierane w inny, równie prosty sposób. Dodatkowe "atrakcje" w postaci okien dialogowych, interfejsu graficznego itp. są mile widziane, lecz nie wpłyną na podwyższenie oceny.

Rysunek 1. Schemat kinematyczny mechanizmu

Tabela 1. Współrzędne charakterystycznych punktów mechanizmu (w układzie globalnym)

	A	В	D	E	F	G	Н	Ι	J	K	L	М	N
<i>x</i> [m]	0	0	0.2	0	0	0.3	0.6	0.9	1.1	1.2	1.7	2	1.9
y [m]	0	0.4	0.4	0.7	0.8	1	0.6	0.6	0.7	0.9	0.2	0.4	0.7

Tabela 2. Współrzędne środków mas członów (w układzie globalnym)

	c_1	c_2	<i>C</i> 3	<i>C</i> 4	<i>C</i> 5	<i>C</i> ₆	<i>C</i> 7	C8	C 9	C ₁₀
<i>x</i> [m]	0.15	0.7	0.15	0.05	0.45	0.15	0.85	0.95	1.55	1.85
y [m]	0.7	0.85	0.3	0.1	0.55	0.45	0.55	0.7	0.8	0.45

Na rysunku pokazano konfigurację początkową mechanizmu. Dane umieszczone w tabelach 1 i 2 odpowiadają tej właśnie konfiguracji. Prędkości początkowe są zerowe.

Tabela 3. Masy i momenty bezwładności członów

Człon	1	2	3	4	5	6	7	8	9	10
m [kg]	19	6	2	2	3	3	27	14	5	13
$J [\text{kg m}^2]$	0.5	0.4	0.1	0.1	0.1	0.1	6	0.5	0.3	0.3

Tabela 4. Elementy sprężysto-tłumiące

	<i>J</i> <i>i J</i>	- 6				
	Punkty m	ocowania	Sztywność [N/m]	Tłumienie [Ns/m]		
Element 1	<i>C</i> 3	C4	70 000	1700		
Element 2	<i>C</i> ₅	<i>C</i> ₆	65 000	2000		

W chwili początkowej sprężyny nie są ugięte (mają długość swobodną).

Siła przyłożona w punkcie K ma stałą wartość $P = 700 \,\mathrm{N}$ i niezmienny kierunek (jest odchylona o kąt 330° od osi x_0 układu globalnego).