Функциональный анализ

Ф. Л. Бахарев *

18 октября 2016 г.

Содержание

1	Линейное нормированное пространство	2
2	Пространства Лебега	4
3	Непрерывность. Сжимающее отображение	6
4	Линейные операторы	9
5	Пространства линейных непрерывных операторов	11
6	Корректно разрешимые задачи	12
7	Линейные непрерывные функционалы	13
8	Интегральные операторы. Часть I	15
	8.1 Интегральные операторы в пространствах Лебега	15
	8.2 Тест Шура	15
	8.3 Интегральные операторы с непрерывным ядром	17
	8.4 Операторы со слабой особенностью	18

^{*}Конспект подготовлен студентом Яскевичем С. В.

1 Линейное нормированное пространство

Определение 1.1. Линейное множество L над полем скаляров \mathbb{R} (\mathbb{C}) — множество с операциями сложения и умножения на скаляр, удовлетворяющее свойствам:

1.
$$(x + y) + z = x + (y + z) \forall x, y, z \in L$$

2.
$$x + y = y + x \ \forall x, y, z \in L$$

- 3. Существует элемент 0 такой, что $x + 0 = x \ \forall x \in L$
- 4. Для любого $x \in L$ существует обратный элемент по сложению -x такой, что -x+x=0

5.
$$\lambda(\mu x) = (\lambda \mu) x \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x \in L$$

6.
$$\lambda(x + y) = \lambda x + \lambda y \ \forall \lambda \in \mathbb{R}(\mathbb{C}), \ x, y \in L$$

7.
$$(\lambda + \mu)x = \lambda x + \mu y \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x, y \in L$$

Определение 1.2. $\phi: L \to \mathbb{R}$ называется нормой, если:

1.
$$\varphi(x+y) \leqslant \varphi(x) + \varphi(y) \ \forall x, y \in L$$

2.
$$\varphi(\lambda x) = |\lambda| \varphi(x) \ \forall x \in L, \ \lambda \in \mathbb{R}(\mathbb{C})$$

3.
$$\varphi(x) \ge 0 \ \forall x \in L$$

4.
$$\varphi(x) = 0 \iff x = 0$$

Если выполнены только первых три свойства, то ϕ называется полунормой.

Замечание 1.3.

1.
$$\rho(x,y) = \phi(x-y)$$
 — метрика.

2. Если на пространстве задана норма $\|\cdot\|$, то $X=(L,\phi)$ — нормированное пространство.

Определение 1.4. $x_n \to x$ в X, если $\|x_n - x\| \to 0$ при $n \to \infty$, то есть $\forall \epsilon > 0$ $\exists N \colon \forall n > N$ $\|x_n - x\| < \epsilon$

Определение 1.5. $\{x_n\}\subset X$ — фундаментальная последовательность (сходящаяся в себе, последовательность Коши), если $\|x_n-x_m\|\xrightarrow{m,n\to\infty} 0$, то есть $\forall \epsilon>0$ $\exists N\colon \forall m,n>N$ $\|x_m-x_m\|<\epsilon$

Замечание 1.6. $x_n \to x \implies \{x_n\}$ — фундаментальная. Обратное, вообще говоря, неверно.

Определение 1.7. Нормированное пространство X называется полным, если из фундаментальности последовательности следует существование предела.

Определение 1.8. Пусть $x_n \in X$. $\sum_{j=1}^{\infty} x_j$ сходится, если $S_n = \sum_{j=1}^n x_j$ имеет предел $\lim S_n = S$. S называется суммой ряда.

Определение 1.9. Ряд $\sum\limits_{j=1}^{\infty}x_j$ называется cxodsumuscs абсолютно, если $\sum\limits_{j=1}^{\infty}\|x_j\|$ сходится.

Замечание 1.10. Из абсолютной сходимости не следует обычная сходимость.

 S_n сходится $\iff |S_n - S_m| \to 0$. Пусть $C_n = \sum_{j=1}^n \|x\|$. C_n сходится $\iff |C_n - C_m| \to 0$. Если мы хотим, чтобы сходимость S_n была равносильна $\|S_n - S_m\| \to 0$, то нам нужна полнота пространства.

Определение 1.11. Полное линейное нормированное пространство называется банаховым пространством (в честь польского математика Стефана Банаха).

Примеры 1.12.

- Евклидово пространство: \mathbb{R}^n с нормой $\|x\| = |x| = \sqrt[n]{|x_1|^2 + \ldots + |x_n|^2}$ то же, что ℓ_n^2 с нормой $\|\cdot\|_2$;
- $\ell_n^1 = (\mathbb{R}^n, \|\cdot\|_1)$, где $\|x\|_1 = |x_1| + \ldots + |x_n|$;
- $\ell_n^\infty=(\mathbb{R}^n,\|\cdot\|_\infty)$, где $\|x\|_\infty=\max_{1\leqslant j\leqslant n}|x_j|;$
- $\ell_n^p = (\mathbb{R}^n, \|\cdot\|_p, \|x\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}, p \geqslant 1;$
- $C(\overline{\Omega})$ с нормой $\|x\|=\max_{\mathbf{t}\in\overline{\Omega}}|x(\mathbf{t})|$, где Ω область в \mathbb{R}^m . $\overline{\Omega}$ замыкание Ω . Ясно, что $\overline{\Omega}$ компакт в \mathbb{R}^m .

Упражнение 1.13. Верно ли, что $\|x\|_p \xrightarrow[p \to \infty]{} \|x\|_\infty$?

Теорема 1.14. Пространство $C(\overline{\Omega})$ полно.

Доказательство. Рассмотрим фундаментальную последовательность $\mathbf{x}_{\mathbf{n}} \in C(\overline{\Omega}).$

$$\forall \epsilon > 0 \exists N : \forall k, n > N \|x_k - x_n\| = \max_{t \in \overline{\Omega}} |x_n(t) - x_k(t)| < \epsilon$$

Возьмём $t\in\overline{\Omega}.$ $\{x_n(t)\}$ — числовая последовательность. Тогда получаем $|x_n(t)-x_k(t)|<\epsilon,$ отсюда $\{x_n(t)\}$ — фундаментальна, значит существует $\lim_{n\to\infty}x_n(t)=x(t).$

Проверим, что $\max_{t \in \overline{\Omega}} |x_n(t) - x(t)| \xrightarrow[n \to \infty]{} 0$, т. е. $x_n \stackrel{n \to \infty}{\rightrightarrows} x$ на $\overline{\Omega}$. Заметим, что $\forall k, n > N$ $|x_k(t) - x_n(t)| < \varepsilon \implies |x(t) - x_n(t)| \leqslant \varepsilon$.

Почему же x непрерывна? Потому что равномерный предел непрерывных функций непрерывен.

Пусть $[a,b] \subset \mathbb{R}$. Рассмотрим пространство дифференцируемых функций $C^1[a,b]$. Какую норму на нём выбрать?

- $\bullet \ \phi_1(x) = \max_{t \in [\mathfrak{a}, \mathfrak{b}]} |x(t)|;$
- $\varphi_2(x) = \max_{t \in [a,b]} |x'(t)|;$
- $\varphi_3(x) = \varphi_1(x) + \varphi_2(x);$
- $\bullet \ \phi_4(x) = |x(\alpha)| + \max_{t \in [\alpha, b]} |x'(t)|.$

Заметим, что ϕ_2 нормой вообще не является, а ϕ_1 не даёт полноты пространства.

Теорема 1.15. 1. Пространство $(C^1[a,b], \varphi_1)$ не полно.

2. Пространство $(C^1[\mathfrak{a},\mathfrak{b}],\phi_3)$ полно.

Доказательство. Докажем первое утверждение.

Первый аргумент. х — производная непрерывная на [a,b], негладкая. По теореме Вейерштрасса для любого $\varepsilon>0$ существует многочлен P такой, что $\max_{[a,b]}|P-x|<\varepsilon$

Второй аргумент. Пусть $[a,b]=[-1,1],\ x(t)=|t|\notin C^1[a,b],\ x^{\epsilon}(t)=|t|^{1+\epsilon}\in C^1[a,b].$ $\max|x(t)-x^{\epsilon}(t)|\xrightarrow[\epsilon\to 0]{}0.$

Для доказательства второго утверждения возьмём $x_n \in C^1[a,b]$ — последовательность, фундаментальную относительно ϕ_3 .

$$\phi_3(x_n-x_k)\xrightarrow[n,k\to\infty]{}0\implies egin{cases} \phi_1(x_n-x_k) o 0\ \phi_2(x_n-x_k) o 0 \end{cases} \implies \exists x\in C[a,b],y\in C[a,b] \ egin{cases} \phi_1(x_n-x) o 0 &\iff x_n \Rightarrow x \ \text{на}\ [a,b]\ \phi_1(x_n'-y) o 0 &\iff x_n' \Rightarrow y \ \text{нa}\ [a,b] \end{cases} \implies x\in C^1[a,b],x'=y \ \end{cases}$$
 Отсюда $\phi_3(x_n-x) o 0$

2 Пространства Лебега

Неравенство Гёльдера

Рассмотрим (T,μ) — пространство с мерой, x,y — измеримые функции, и числа p,q>0 — сопряжённые показатели, т. е. $\frac{1}{p}+\frac{1}{q}=1$. Тогда верно неравенство:

$$\int\limits_T |x(t)y(t)|\,d\mu(t) \leqslant \left(\int\limits_T |x(t)|^p\,d\mu(t)\right)^{\frac{1}{p}} \left(\int\limits_T |y(t)|^q\,d\mu(t)\right)^{\frac{1}{q}}$$

Неравенство Минковского

Если (T,μ) — пространство с мерой, x,y — измеримые функции, $p\geqslant 1$, то верно неравенство:

$$\left(\int\limits_T |x(t)|^p \ d\mu(t)\right)^{\frac{1}{p}} + \left(\int\limits_T |y(t)|^q \ d\mu(t)\right)^{\frac{1}{q}} \geqslant \int\limits_T |x(t)y(t)| d\mu(t)$$

Обозначение: $\|x\|_p = (\int\limits_T |x|^p)^{\frac{1}{p}}$.

Замечание 2.1. Частный случай — p=q=2. Тогда неравенство Гёльдера оказывается неравенством Коши-Буняковского-Шварца:

$$\int\limits_T |x(t)|\cdot |y(t)|\,d\mu(t)\leqslant \left(\int\limits_T |x(t)|^2\,d\mu(t)\right)^{\frac{1}{2}} \biggl(\int\limits_T |y(t)|^2\,d\mu(t)\biggr)^{\frac{1}{2}}$$

Замечание 2.2. Пусть $T=\mathbb{N}$, и если $M\subset\mathbb{N}$, то $\#M=\operatorname{card} M$ — количество элементов M — будет мерой. Рассмотрим функцию $x:\mathbb{N}\to k$, где k — некоторое поле скаляров. Мы помним, что функция из натуральных чисел называется последовательностью. Как можно

вычислять $\int\limits_{\mathbb{N}} x(n) \mathrm{d} \#(n)$? Ясно, что такой интеграл — это ряд $\sum\limits_{n \in \mathbb{N}} x(n)$, а суммируемые функции в этом случае будут абсолютно сходящимися рядами. Неравенство Гёльдера будет выглядеть так:

$$\sum_{n\in\mathbb{N}}|x_n||y_n|\leqslant \bigg(\sum_{n\in\mathbb{N}}|x_n|^p\bigg)^{\frac{1}{p}}\bigg(\sum_{n\in\mathbb{N}}|y_n|^p\bigg)^{\frac{1}{p}}$$

А неравенство Минковского — так:

$$\left(\sum_{\mathbf{n}\in\mathbb{N}}|x_{\mathbf{n}}|^{p}\right)^{\frac{1}{p}}+\left(\sum_{\mathbf{n}\in\mathbb{N}}|y_{\mathbf{n}}|^{p}\right)^{\frac{1}{p}}\geqslant\left(\sum_{\mathbf{n}\in\mathbb{N}}|x_{\mathbf{n}}||y_{\mathbf{n}}|\right)^{\frac{1}{p}}$$

Определение 2.3. Пространство Лебега $\mathcal{L}^p(\mathsf{T},\mu)$ — это множество $\{x \mid \int\limits_\mathsf{T} |x|^p \, \mathrm{d}\mu < \infty\}$. Оно линейно: $x,y \in \mathcal{L}^p \implies x+y \in \mathcal{L}^p$ и $\lambda y \in \mathcal{L}^p$

Заметим, что $\|x\|_p=\left(\int\limits_T|x|^pd\mu\right)^{\frac{1}{p}}-$ полунорма на $\mathcal{L}^p(T,\mu).$ Если $\|x\|_p=0$, то x=0 почти везде.

Чтобы получить норму, введём следующее отношение эквивалентности:

$$x_1 \sim x_2$$
 если $x_1 - x_2 = 0$ почти везде.

Тогда

$$\mathcal{L}^{p}(T, \mu) /_{\sim} = L^{p}(T, \mu)$$

— это настоящее пространство Лебега. В дальнейшем мы будем считать функции, отличающиеся на множестве меры нуль, одинаковыми.

Замечание 2.4. Пусть $T \subset \mathbb{R}^n$, $\mu = \lambda$ — мера Лебега. Тогда будем обозначать $L^p(T, \mu) = L^p(T)$.

Теорема 2.5. Пространство $L^p(T, \mu)$ полно при $p \geqslant 1$.

Пример 2.6. Рассмотрим $L^2(0,+\infty)$ и $L^1(0,+\infty)$. Какое из этих пространств является вложением в другое? Возьмём функцию $x(t)=\frac{1}{t+1}$.

$$\int_{0}^{\infty} \frac{1}{t+1} dt = \infty$$

$$\int\limits_{0}^{\infty}\frac{1}{(t+1)^{2}}dt<\infty$$

Отсюда видно, что $L^2(0,+\infty) \not\subset L^1(0,+\infty)$. Легко придумать и пример, доказывающий отсутствие включения в обратную сторону.

Теорема 2.7 (О вложенности пространств L^p). Пусть $1 \leqslant p_1 < p_2 \leqslant \infty$. Тогда:

- 1. $\ell^{p_1} \subset \ell^{p_2}$.
- 2. Если (T,μ) пространство с мерой, $\mu(T)<\infty$, то $L^{p_1}(T,\mu)\supset L^{p_2}(T,\mu)$

Доказательство.

1. Пусть $x=(x_1,x_2,x_3,\ldots)$. Хотим проверить, что $x\in \ell^{p_1}\implies x\in \ell^{p_2}.$

$$\sum_{j=1}^{\infty} |x_j|^{p_1} < \infty \implies \exists N \quad \forall j > N \quad |x_j| < 1 \implies |x_j|^{p_1} < |x_j|^{p_2}$$

$$\sum_{j=N+1}^{\infty}|x_j|^{p_1}>\sum_{j=N+1}^{\infty}|x_j|^{p_2}\implies\sum_{j=1}^{\infty}|x_j|^{p_2}<\infty\implies x\in\ell^{p_2}$$

2. Для доказательства второго пункта достаточно применить неравенство Гёльдера.

3 Непрерывность. Сжимающее отображение

Определение 3.1. Возьмём отображение $F: X \to Y$, где X и Y — линейные нормированные пространства. F называется непрерывным в точке x_0 , если:

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \forall x: \|x - x_0\| < \delta \quad \|F(x) - F(x_0)\| < \epsilon$$

F называется непрерывным, если оно непрерывно во всех точках X.

Пример 3.2. $X=Y=C[0,1], \ \|x\|_{C[0,1]}=\max_{t\in[0,1]}|x(t)|.$ Рассмотрим отображение $(F(x))(t)=\int\limits_0^tx(s)\,ds$ и докажем, что оно непрерывно.

$$\|F(x_1) - F(x_2)\| = \max_{t \in [0,1]} \left| \int_0^t x_1(s) \, ds - \int_0^t x_2(s) \, ds \right| \le$$

$$\leqslant \max_{\mathbf{t} \in [0,1]} \int_{0}^{\mathbf{t}} |x_{1}(s) - x_{2}(s)| \, ds \leqslant \max_{\mathbf{t} \in [0,1]} \mathbf{t} \cdot ||x_{1} - x_{2}|| = ||x_{1} - x_{2}||$$

 Δ остаточно взять $\delta = \varepsilon$ и всё доказано.

Определение 3.3. Отображение $F: X \to Y$ называется липшицевым, если существует такое C, что для всех $x_1, x_2 \in X$ выполнено $\|F(x_1) - F(X_2)\| \leqslant C \cdot \|x_1 - x_2\|$

Заметим, что из липшицевости отображения следует его непрерывность. Достаточно взять $\delta = \frac{\varepsilon}{C}$.

Определение 3.4. Отображение $F: X \to Y$ называется сжимающим, если существует такое $\gamma < 1$, что $\forall x_1, x_2 \in X$ выполнено $\|F(x_1) - F(x_2)\| \leqslant \gamma \|x_1 - x_2\|$.

Теорема 3.5 (Банаха о неподвижной точке). Если пространство X — полное, а отображение F — сжимающее, то существует единственный элемент $x_* \in X$ такой, что $F(x_*) = x_*$. Этот элемент называется неподвижной точкой.

Доказательство. Докажем существование. Возьмём траекторию точки х₁:

$$x_1,\underbrace{F(x_1)}_{x_2},\underbrace{F(F(x_1))}_{x_3},\ldots, \text{ T. e. } x_{n+1}=F(x_n)$$

$$\|x_{n+1} - x_n\| = \|F(x_n) - F(x_{n-1})\| \leqslant \gamma \|x_n - x_{n-1}\| \leqslant \gamma^2 \|x_{n-1} - x_{n-2}\| \leqslant \ldots \leqslant \gamma^{n+1} \underbrace{\|x_2 - x_1\|}_{\alpha}$$

Таким образом, при m > n:

$$\begin{split} \|x_m-x_n\| \leqslant \|x_m-x_{m-1}\| + \|x_{m-1}-x_{m-2}\| + \ldots + \|x_{n+1}-x_n\| \leqslant \alpha \gamma^{m-2} + \alpha \gamma^{m-3} + \ldots + \\ + \alpha \gamma^{n-1} \leqslant \sum_{i=n-1}^{\infty} \alpha \gamma^i = \alpha \gamma^{n-1} \frac{1}{1-\gamma} \xrightarrow[n \to \infty]{} 0 \end{split}$$

Отсюда получаем, что $\{x_n\}$ фундаментальна, а значит существует $\lim_{n\to\infty} x_n$. Обозначим его за x_* . Ясно, что это и будет неподвижная точка.

Докажем единственность. Пусть x_* и x^* — две неподвижные точки. Тогда:

$$\underbrace{\|F(x_*) - F(x^*)\|}_{\leq \gamma \|x_* - x^*\|} = \|x_* - x^*\|$$

Отсюда $||x_* - x^*|| = 0$, что и требовалось.

Теорема 3.6. Пустъ пространство X — полное, $F: X \to X$ и существует n такое, что F^n — сжимающее. Тогда существует единственная точка x_* такая, что $F(x_*) = x_*$.

Доказательство. Если F^n сжимающее, то существует (и единственна) неподвижная точка: $F^n(x_*) = x_*$. Условие теоремы подразумевает, что если F переводит точку x_* в некоторую точку x_1 , которую, в свою очередь, переводит в x_2 , то через n итераций точка x_{n-1} снова переходит в x_* . Отсюда следует, что точки x_1, \ldots, x_{n-1} — тоже неподвижные точки F^n . Но по теореме Ванаха такая точка у F^n только одна, следовательно, $x_* = x_1 = x_2 = \ldots = x_{n-1}$. \square

Пример 3.7 (Интегральное уравнение Фредгольма I рода). Пусть нам даны функции K(s,t) и a(t). Мы хотим найти функцию x(t), удовлетворяющую уравнению:

$$x(t) = a(t) + \int_{s_1}^{s_2} K(s, t)x(s) ds$$

Будем рассматривать частный случай, в котором $K \in C([0,1] \times [0,1]), \ \alpha \in C[0,1].$ Задача — найти $x \in C[0,1]$ такое, что

$$x(t) = a(t) + \int_{0}^{t} K(s, t)x(s) ds$$

Предложение 3.8. Это уравнение имеет единственное решение.

Доказательство. Рассмотрим отображение $F: C[0,1] \to C[0,1]$.

$$(F(x))(t) = a(t) + \int_{0}^{t} K(s,t)x(s) ds$$

Заметим, что оно, вообще говоря, не является сжимающим. Рассмотрим также $(F_0(x))(t) = \int\limits_0^t K(s,t)x(s)\,ds$.

Обратим внимание на несколько важных свойств:

•
$$F_0(x) - F_0(y) = F_0(x - y)$$

•
$$F(x) - F(y) = F_0(x) - F_0(y)$$

•
$$F^n(x) - F^n(y) = F(F^{n-1}(x) - F^{n-1}(y)) = F_0(F^{n-1}(x)) - F_0(F^{n-1}(y)) = F_0(F^{n-1}(x) - F^{n-1}(y)) = F_0^n(x-y)$$

$$(F_0(x-y))(t) = \int_0^t K(s_1,t)(x(s_1)-y(s_1)) ds_1$$

$$(F_0^2(x-y))(t) = \int_0^t K(s_2,t) \int_0^{s_2} K(s_1,s_2)(x(s_1)-y(s_1)) ds_1 ds_2$$

$$\cdots$$

$$(F_0^n(x-y))(t) = \int_0^t K(s_n,t) \int_0^{s_n} K(s_{n-1},s_n) \int_0^{s_{n-1}} \dots \int_0^{s_2} K(s_1,s_2)(x(s_1)-y(s_1)) ds_1 ds_2 \dots ds_n$$

Получаем:

$$\|F_0^n(x-y)\| = \max_{t \in [0,1]} |(F_0^n(x-y))(t)| \leqslant M^n \|x-y\| \max_{t \in [0,1]} \int_0^t \int_0^{s_n} \int_0^{s_{n-1}} \dots \int_0^{s_3} \int_0^{s_2} ds_1 \, ds_2 \dots \, ds_n \leqslant \frac{M^n}{n!} \|x-y\|$$

Здесь $M=\max |\mathsf{K}|$. Коэффициент $\frac{M^n}{n!}$ стремится к нулю, а это значит, что F^n_0 — сжимающее, следовательно, существует неподвижная точка.

Пример 3.9. Допустим, что мы хотим решить дифференциальное уравнение y'(t) = a(t)y(t) + b(t), $y(0) = y_0$, $a,b \in C[0,1]$ на промежутке [0,1]. Это уравнение имеет единственное решение $y \in C^1[0,1]$. Как это доказать? Рассмотрим интегральное уравнение:

$$x(t) = \int_{0}^{t} a(s)x(s) ds + B(t)$$

По предыдущей теореме существует $x \in C[0,1]$, решающее это уравнение. Для этого уравнения также верны утверждения:

•
$$x'(t) = a(t)x(t) + b(t)$$
, rae $b(t) = B'(t)$;

•
$$x(0) = B(0)$$
.

Для решения исходной задачи достаточно выбрать B такое, что B'=b и $B(0)=y_0$. Откуда взять непрерывную дифференцируемость y?

$$b \in C[0,1] \implies B \in C^{1}[0,1],$$

$$x \in C[0,1], \ a \in C[0,1] \implies \int_{0}^{t} xa \in C^{1}[0,1]$$

Таким образом всё доказано.

4 Линейные операторы

Определение 4.1. Пусть X, Y - линейные нормированные пространства над одним полем скаляров. Отображение $U: X \to Y$ называется линейным, если:

1.
$$U(x_1 + x_2) = U(x_1) + U(x_2) \ \forall x_1, x_2 \in X$$

2.
$$U(\lambda x) = \lambda U(x)$$
, где λ — скаляр, $x \in X$

Замечание 4.2. Ясно, что выполнение обоих этих свойств равносильно $U(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 U(x_1) + \lambda_2 U(x_2)$.

Замечание 4.3. В дальнейшем будем обозначать U(x) как Ux.

Предложение 4.4 (Свойства линейных отображений).

1.
$$U(0) = 0$$
;

2.
$$U(\sum_{j=1}^{n} \lambda_j x_j) = \sum_{j=1}^{n} \lambda_j U x_j;$$

- 3. Если $M \subset X$ линейное множество, то множество U(M) линейно в Y. Если $M \subset X$ выпуклое множество, то множество U(M) выпукло в Y;
- 4. Если $N \in Y$ линейное (выпуклое), то $U^{-1}(N)$ линейное (выпуклое). Частный случай: если $N = \{0\}$, то множество $U^{-1}(N) = U^{-1}(\{0\}) = \text{Ker } U$ линейное в X;
- 5. Ker $U = \{0\} \iff U$ инъективно;
- 6. Если U -линейная биекция, то U^{-1} линейное;
- 7. Пусть $U_1, U_2 : X \to Y$ линейные. Тогда $U_1 + U_2$, λU_1 тоже линейны;
- 8. Если $X \xrightarrow{U} Y \xrightarrow{V} Z$, то композиция $V \circ U$ линейна.

Определение 4.5. Множество M называется выпуклым, если для любых $x_1, x_2 \in M$ отрезок $[x_1, x_2]$ лежит в M.

Доказательство предложения. Докажем выпуклость в свойстве 3.

$$y_1, y_2 \in U(M) \implies \exists x_1, x_2 \in M : Ux_1 = y_1, Ux_2 = y_2$$

$$\lambda y_1 + (1 - \lambda)y_2 = \lambda Ux_1 + (1 - \lambda)Ux_2 = U(\underbrace{\lambda x_1 + (1 - \lambda)x_2}_{\in M}) \in U(M)$$

В свойстве 4:

$$\begin{split} x_1, x_2 \in U^{-1}(N) &\implies Ux_1, Ux_2 \in N \implies \forall \lambda_1, \lambda_2 \quad \lambda_1 Ux_1 + \lambda_2 Ux_2 \in N \implies \\ &\implies U(\lambda_1 x_1 + \lambda_2 x_2) \in N \implies \lambda_1 x_1 + \lambda_2 x_2 \in U^{-1}(N) \end{split}$$

В свойстве 6 биективность U означает, что $\forall y_1,y_2 \; \exists x_1,x_2$ такие, что $Ux_1=y_1,\; Ux_2=y_2.$ Отсюда $U^{-1}(y_1+y_2)=U^{-1}(Ux_1+Ux_2)=U^{-1}(U(x_1+x_2))=x_1+x_2=U^{-1}(x_1)+U^{-1}(x_2).$ Доказательства остальных свойств тривиальны.

Теорема 4.6 (Эквивалентные условия непрерывности линейного отображения). Пусть $U: X \to Y$ — линейный оператор. Тогда следующие утверждения эквивалентны:

- 1. U непрерывен;
- 2. Ц непрерывен в нуле;
- 3. Образ любого ограниченного множества ограничен;
- 4. Существует С такое, что $\forall x \in X$ выполняется $\|U_x\|_Y = C\|x\|_X$.

Доказательство.

- $1 \Rightarrow 2$. Тривиально.
- $4 \Rightarrow 1$. $\|Ux_1 Ux_2\| \leqslant C\|x_1 x_2\|$. Это влечёт липшицевость и, как следствие, непрерывность.
- $2\Rightarrow 3$. Непрерывность в нуле означает, что $\forall \epsilon>0$ $\exists \delta>0$ такое, что $\|x\|<\delta\implies\|Ux\|<\epsilon$. Ограниченность множества M в X означает, что $\exists R:N\subset B_R(0)=\{\|x\|\leqslant R\}$. Таким образом, $x\in M\implies\|x\|\leqslant R$. $\|\frac{\delta}{2R}x\|\leqslant\frac{\delta}{2}<\delta\implies\|U(\frac{\delta}{2R}x)\|<\epsilon$. Отсюда $\|Ux|\leqslant\frac{\epsilon\cdot 2R}{\delta}\implies Ux\in B_{\frac{\epsilon\cdot 2R}{\delta}}(0)$. То есть, U(M) ограничено.
- 3 \Rightarrow 4. $B_1(0)$ ограниченное множество. Тогда $U(B_1(0))$ ограничено, т. е. существует такое C, что $U(B_1(0)) \subset B_C(0)$. Если $\|x\| \leqslant 1$, то $\|Ux\| \leqslant C$. Теперь возьмём произвольное x. $x' = \frac{x}{\|x\|} \in B_1(0) \implies \|Ux'\| \leqslant C$. Но $\|Ux\| = \|U(\frac{x}{\|x\|})\| = \frac{1}{\|x\|} \cdot \|Ux\|$. Отсюда $\|Ux\| \leqslant C\|x\|$.

Определение 4.7. Пусть $U:X\to Y$ — линейный непрерывный оператор. Тогда нормой оператора U называется величина $\|U\|=\inf\{C\,\big|\,\|Ux\|\leqslant C\|x\|\}$.

Замечание 4.8. В формулировке определения инфимум и минимум совпадают (это можно доказать, перейдя к пределу в неравенстве $\|Ux\| \leqslant C\|x\|$).

Замечание 4.9. Выполнено неравенство $\|Ux\|_Y \leqslant \|U\| \cdot \|x\|_X$. В частности, $\frac{\|Ux\|_Y}{\|x\|_X} \leqslant \|U\|$ $\forall x \in X$, т. е. можно записать $\|U\| = \sup_{x \neq 0} \frac{\|Ux\|}{\|x\|}$.

Теорема 4.10 (Об эквивалентных способах определения нормы оператора). $\Pi y cm b \ U : X \to Y -$ линейный непрерывный оператор. Тогда:

$$\| \mathbf{U} \| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\| \mathbf{U} \mathbf{x} \|}{\| \mathbf{x} \|} = \sup_{\| \mathbf{x} \| \leqslant \mathbf{1}} \| \mathbf{U}_{\mathbf{x}} \| = \sup_{\| \mathbf{x} \| < \mathbf{1}} \| \mathbf{U}_{\mathbf{x}} \| = \sup_{\| \mathbf{x} \| = \mathbf{1}} \| \mathbf{U}_{\mathbf{x}} \|$$

Замечание 4.11. Так как замкнутость и ограниченность, вообще говоря, неравносильна компактности (за исключением конечномерных пространств), в $\sup_{\|x\| \leqslant 1} \|Ux\|$ максимум может и не достигаться.

Доказательство теоремы. Очевидно, что $B\geqslant C$ и $B\geqslant D$.

$$B=\sup_{\|x\|\leqslant 1,\, x\neq 0}\|Ux\|\leqslant \sup_{\|x\|\leqslant 1,\, x\neq 0}\frac{\|Ux\|}{\|x\|}\leqslant \sup_{x\neq 0}\frac{\|Ux\|}{\|x\|}=A$$

Докажем, что $D\geqslant A$. Возьмём $x'=\frac{x}{\|x\|}$, тогда $\|x'\|=1$ и $\|Ux\|\leqslant D$. $\|U(\frac{x}{\|x\|})\|=\frac{\|ux\|}{\|x\|}$. Итак, $\frac{\|Ux\|}{\|x\|}\leqslant D$, тогда и $\sup_{x\neq 0}\frac{\|Ux\|}{\|x\|}$. Осталось проверить, что $C\geqslant A$. Возьмём $x\neq 0$, $\varepsilon>0$.

Рассмотрим
$$x' = \frac{x}{\|x\|(1+\epsilon)}$$
. Тогда $\|x\| < 1$. Отсюда следует, что $\|Ux'\| \leqslant C \implies \frac{\|Ux\|}{\|x\|} \leqslant C \implies \frac{\|Ux\|}{\|x\|} \leqslant C$. \square

5 Пространства линейных непрерывных операторов

Определение 5.1. Пусть X, Y — линейные нормированные пространства над одним полем скаляров. Возьмём $B(X,Y)=\{U:X\to Y,\ U$ — линейно, непрерывно $\}$. Это линейное пространство.

Теорема 5.2 (О свойствах операторной нормы). $U, V \in B(X, Y)$.

- 1. $\|U\| \ge 0$, $\|U\| = 0 \iff U = 0$;
- 2. $\|\lambda \mathbf{U}\| = |\lambda| \|\mathbf{U}\| (\lambda c \kappa a s p);$
- 3. $\|U + V\| \le \|U\| + \|V\|$;
- 4. $W \in B(Y, Z)$. $WU \in B(X, Z)$, $||WU|| \le ||W|| ||U||$.

Доказательство.

- 1. Неотрицательность очевидна. Если $\|\mathbf{U}\|=0$, то $\|\mathbf{U}\mathbf{x}\|\leqslant 0\cdot \|\mathbf{x}\|\implies \|\mathbf{U}\mathbf{x}\|=0\ \forall \mathbf{x};$
- $2. \ \|\lambda U\| = \sup_{\|x\|=1} \|(\lambda U)(x)\| = \sup_{\|x\|=1} |\lambda| \|Ux\| = |\lambda| \sup_{\|x\|=1} \|U_x\| = |\lambda| \|U\|;$
- 3. $x \in X$. $\|(U + V)(x) = \|Ux + Vx\| \le \|Ux\| + \|Vx\| \le \|U\| \|x\| + \|V\| \|x\| = (\|U\| + \|V\|) \|x\|$
- 4. $x \in X$. $\|(WU)(x)\| = \|W(U(x))\| \le \|W\| \cdot \|Ux\| \le \|W\| \|U\| \|x\|$.

Теорема 5.3 (О полноте пространства операторов). Если Y полно, то B(X,Y) полно.

Доказательство. Возьмём фундаментальную последовательность линейных непрерывных отображений $U_n \in B(X,Y)$, то есть $\|U_n - U_m\| \xrightarrow[m,n \to \infty]{} 0$: $\forall \epsilon > 0 \ \exists N : \forall m,n > N \ \|U_n - U_m\| < \epsilon$. Это означает, что $\|(U_n - U_m)(x)\| \leqslant \epsilon \|x\|$. Следовательно, $\{U_n x\}$ фундаментальна в Y. Обозначим $Ux = \lim_{n \to \infty} U_n x$. Мы хотим проверить, что U непрерывно, линейно и что есть сходимость.

- 1. (Линейность U). $U(\alpha_1x_1+\alpha_2x_2)=\lim_{n\to\infty}U_n(\alpha_1x_1+\alpha_2x_2)=\alpha_1\lim U_nx_1+\alpha_2\lim U_nx_2=\alpha_1Ux_1+\alpha_2Ux_2$
- 2. (Нерерывность U). Возьмём любое $\varepsilon > 0$, N, $\forall m, n > N$, $\forall x \in X$. $\|U_n x U_m x\| \leqslant \varepsilon \|x\| \implies \|Ux U_m x\| \leqslant \varepsilon \|x\|$. $\|Ux\| = \|(Ux U_m x) + U_m x\| \leqslant \|(Ux U_m x)\| + \|U_m x\| \leqslant \varepsilon \|x\| + \|U_m\| \|x\|$. Отсюда $\|U\| \leqslant \varepsilon + \|U_m\|$.
- 3. (Сходимость U_n к U). $\forall \varepsilon > 0$ $\exists N$: $\forall m, n > N$ $\forall x \in X \ \|U_n x U_m x\| \leqslant \varepsilon \|x\|$. Устремив n к бесконечности, получим: $\forall \varepsilon > 0$ $\exists N$: $\forall m > N$ $\forall x \in X \ \|Ux U_m x\| = \|(U U_m)(x)\| \leqslant \|x\| \Longrightarrow \|U U_m\| \leqslant \varepsilon$. Итак, $\forall \varepsilon > 0$ $\exists N$: $\forall m > N$ $\|U U_m\| \leqslant \varepsilon$, π . e. $U_n \to U$ в B(X,Y).

Следует отметить важный частный случай.

Определение 5.4. $B(X, \text{поле скаляров}) = X^*$ называется *сопряжённым пространством* κ X. $f \in X^*$ называется линейным непрерывным функционалом.

Норма функционала определяется как $\|f\|=\inf\{C\ \big|\ |f(x)|\leqslant C\|x\|\}=\sup_{x\neq 0}\frac{|f(x)|}{\|x\|}=\sup_{\|x\|=1}|f(x)|.$

6 Корректно разрешимые задачи

Рассмотрим отображение $A: X \to Y$. Мы хотим решить уравнение Ax = f. f — какие-то известные данные.

В общей постановке вопроса корректная разрешимость означает три вещи:

- Решение существует для любого f.
- Решение единственно.
- Устойчивость: если $f_n \to f$, то для решений верно, что $x_n \to x$. (Здесь $Ax_n = f_n$, Ax = f.)

В частном случае, когда X и Y — линейные нормированные пространства и A — линейное отображение, вышеописанные условия равносильны тому, что $A^{-1} \in B(Y,X)$.

Замечание 6.1. Самый простой пример корректно разрешимой задачи — случай, когда оператор A тождественен.

Теорема 6.2 (Об обратимости оператора, близкого к тождественному). *Если* $B \in B(X,X)$, X - nолное $u \|B\| < 1$, то существует оператор $(I \pm B)^{-1} \in B(X,X)$. (I - mождественный оператор.)

Доказательство. Приведём два способа доказать эту теорему.

1. Возьмём уравнение (I-B)x=f. Надо доказать, что для любого $f\in X$ существует единственный $x\in X$, решающий это уравнение. Это равносильно x=f+Bx=g(x). Заметим, что x удовлетворяет уравнению тогда и только тогда, когда x — неподвижная точка отображения g. Проверим, что g — сжимающее. $\|g(x_1)-g(x_2)\|=\|(f+Bx_1)-(f+Bx_2)\|=\|Bx_1-Bx_2\|\leqslant \|B\|\cdot\|x_1-x_2\|$.

Теперь проверим устойчивость. Пусть $f_n \to f$, $(I-B)x_n = f_n$, (I-B)x = f. Нужно проверить, что $x_n \to x$. $x_n = f_n + Bx_n$, x = f + Bx.

$$\|x_n - x\| = \|f_n + Bx_n - f - Bx\| \le \|f_n - f\| + \|Bx_n - Bx\| \le \|f_n - f\| + \|B\| \cdot \|x_n - x\|$$

Отсюда

$$0 \leqslant \underbrace{(1 - \|B\|)}_{>0} \|x_n - x\| \leqslant \underbrace{\|f_n - f\|}_{\to 0} \implies \|x_n - x\| \to 0$$

2. Докажем формулу $(I-B)^{-1}=I+B+B^2+B^2+\ldots$ Необходимо проверить, что этот ряд сходится. Докажем, что он сходится абсолютно, то есть $\|I\|+\|B\|+\|B^2\|+\ldots<\infty$. Заметим, что $\|B^k\|\leqslant \|B\|^k$. Отсюда $\|I\|+\|B\|+\|B^2\|+\ldots\leqslant \|I\|+\|B\|+\|B\|^2+\ldots$ Но это — геометрическая прогрессия, она сходится. Частичные суммы: $S_n=I+B+\ldots B^{n-1}$, $(I-B)S_n=S_n(I-B)=I-B^n\xrightarrow[n\to\infty]{}I$. Мы воспользовались полнотой пространства, утверждая, что абсолютная сходимость влечёт сходимость ряда.

Теорема 6.3 (Об обратимости оператора, близкого к обратимому). Пусть $U \in B(X,Y)$ — линейное отображение и существует $B^{-1} \in B(Y,X)$. Кроме того, X или Y — полное пространство. Рассмотрим $V \in B(X,Y)$ такой, что $\|V\| < \|U^{-1}\|^{-1}$. Тогда существует $(U+V)^{-1} \in B(Y,X)$.

Доказательство. $U+V=U(I_X+U^{-1}V)$ (или $(I_Y+VU^{-1})U$). Оператор U обратим, обратный к нему оператор непрерывен. Получаем $\|U^{-1}V\| \leqslant \|U^{-1}\| \cdot \|V\| < 1$.

7 Линейные непрерывные функционалы

Вспомним, что если X — нормированное пространство, то $X^* = B(X,$ поле скаляров) называется сопряжённым к X пространством. Норма функционала определяется как $\|f\| = \inf\{C \ \big|\ |f(x)| \leqslant C\|x\|\} = \sup_{x \neq 0} \frac{|f(x)|}{\|x\|} = \sup_{\|x\| = 1} |f(x)|.$

Пример 7.1 (Функционалы в пространстве Лебега). Рассмотрим $L^p(T,\mu)$, причём 1 . Возьмём <math>q — сопряжённый показатель такой, что $\frac{1}{q} + \frac{1}{p} = 1$. Возьмём также $y_0 = L^q(T,\mu)$. Определим функционал f формулой $f(x) = \int\limits_T x(t)y_0(t)\,d\mu(t)$. Нам нужно проверить, что это действительно функционал, что он непрерывен (линейность очевидна). Чтобы этот функционал был функционалом, необходимо, чтобы подынтегральная функция была суммируемой. Для этого воспользуемся неравенством Гёльдера:

$$\begin{split} \int\limits_{T} |x(t)y_{0}(t)| \, d\mu(t) &\leqslant \left(\int\limits_{T} |x|^{p}\right)^{\frac{1}{p}} \left(\int\limits_{T} |y_{0}|^{q}\right)^{\frac{1}{q}} = \|y_{0}\|_{q} \cdot \|x\|_{p} < \infty \\ |f(x)| &\leqslant \underbrace{\|y_{0}\|_{q}}_{=C} \cdot \|x\| \implies \|f\| \leqslant \|y_{0}\|_{q} \end{split}$$

Проверим, что $||f|| \ge ||y_0||_q$.

$$\begin{split} x_0(t) &= \frac{|y_0|^q}{y_0} = |y_0|^{q-1} \frac{|y_0|}{y_0} = |y_0|^{q-1} \operatorname{sign} y_0 \implies x_0 y_0 = |y_0|^q \\ &|f(x_0)| = \left| \int\limits_T x_0 y_0 \right| = \int\limits_T |y_0|^q \end{split}$$

Но так как $\frac{1}{p} + \frac{1}{q} = 1$, то (q-1)p = q.

$$\begin{split} \|x_0\|_p &= \left(\int\limits_T |x_0|^p\right)^{\frac{1}{p}} = \left(\int\limits_T |y_0|^{(q-1)p}\right)^{\frac{1}{p}} = \left(\int\limits_T |y_0|^q\right)^{\frac{1}{p}} \\ \|f\| \geqslant \frac{|f(x_0)|}{\|x_0\|_p} = \frac{\int\limits_T |y_0|^q}{\left(\int\limits_T \right)} \cdots \end{split}$$

Таким образом, $L^q(T,\mu) \hookrightarrow L^q(T,\mu)^*$, $y_0 \mapsto f$ и $\|y_0\|_q = \|f\|$. Имеет место изометрическое вложение, и даже более того, биекция.

Пример 7.2. Рассмотрим пространство C[-1,1]. Пусть $f(x) = \int\limits_{-1}^{1} tx(t) \, dt$. Снова хотим доказать, что это функционал, что он непрерывен и линеен. Для непрерывности достаточно установить, что $|f(x)| \equiv C \|x\|$.

$$|f(x)| \leqslant \int_{-1}^{1} |t||x(t)| dt \leqslant \max |x| \int_{-1}^{1} |t| dt = ||x|| \implies ||f|| \leqslant 1$$

Непрерывность доказана. Теперь возьмём функцию $x_{\epsilon}(t)=egin{cases} 1, & t\geqslant\epsilon\\ \frac{t}{\epsilon}, & |t|\leqslant\epsilon\\ -1, & t\leqslant-\epsilon \end{cases}$

$$f(x_{\epsilon}) = \int\limits_{-1}^{1} t x_{\epsilon}(t) \, dt = \bigg(\int\limits_{-1}^{-\epsilon} + \int\limits_{\epsilon}^{1} \bigg) |t| \, dt + \int\limits_{-\epsilon}^{\epsilon} \frac{t^2}{\epsilon} \, dt = 1 + O(\epsilon)$$

Получаем, что $\|f\|\geqslant \frac{f(x_{\varepsilon}}{\|x_{\varepsilon}\|}\xrightarrow[\varepsilon\to 0]{}1.$ Теперь возьмём $y_0\in L^1(-1,1),\ f(x)=\int\limits_{-1}^1y_0(t)x(t)\,dt.$

$$|f(x)| \leqslant \int_{-1}^{1} |y_0||x| \leqslant ||x|| \int_{-1}^{1} |y_0| \leqslant ||y_0||_1 \cdot ||x||_C$$

Значит, f — линейный непрерывный функционал. $\|f\| = \|y_0\|_1$, $x_0(t) = \operatorname{sign} y_0 \notin C$.

Упражнение 7.3. Пусть $\delta(x)=x(0)$. Доказать, что $\delta\notin L^1(-1,1)$, то есть не существует $y_0\in L^1(-1,1)$ такого, что $\forall x\in C[-1,1]$ $\int\limits_{-1}^1y_0(t)x(t)\,dt=x(0)$

Теорема 7.4. $(c_0)^* = \ell^1$

Напомним, что $\ell^\infty=\{x=(x_1,x_2,\ldots),\ \|x\|_\infty=\sup_{j\geqslant 1}|x_j|<\infty\}$ и $c_0=\{x=(x_1,x_2,\ldots),\ \lim_{j\to\infty}x_j=0\},\ c_0\subset\ell^\infty.$ При этом $\|x\|_{c_0}=\|x\|_\infty.$ c_0 — полное нормированное пространство.

Рассмотрим $L_{\rm fin}\subset\ell^\infty$ такое, что $x\in L_{\rm fin}$, если у x лишь конечное число ненулевых координат. Отметим, что $L_{\rm fin}$ является линейной оболочкой векторов e_1,e_2,\ldots , где $e_k=(0,0,\ldots,0,\underbrace{1}_{L},0,\ldots)$. Также $\overline{L_{\rm fin}}=c_0$

- $x \in c_0 \implies \exists x^{(n)} \in L_{\text{fin}}: x^{(n)} \to \infty$, где $x^{(n)} = (x_1, x_2, \dots, x_n, 0, 0, \dots)$. $\|x x^{(n)}\| = \|(0, 0, \dots, 0, x_{n+1}, x_{n+2}, \dots)\|_{\infty} = \sup_{j \geqslant n+1} |x_j|$.
- c₀ замкнуто.

Доказательство.

1. Возьмём $y^{(0)} \in \ell^1$, где $y^{(0)} = (y_1^{(0)}, y_2^{(0)}, \dots)$ и $\|y^{(0)}\|_1 = \sum\limits_{j=1}^\infty |y_j^{(0)}| < \infty$. Построим по нему функционал на c_0 .

. . .

Мы построили вложение $\ell^1 \hookrightarrow (c_0)^*$, $y^{(0)} \mapsto f$.

2. Пусть нам дан функционал $f \in (c_0)^*$. Мы хотим построить по нему $y \in \ell^1$. Положим $f(e_j) = y_j$ ($y = (y_1, y_2, \ldots)$). Нам нужно проверить, что $y \in \ell^1$ и что $\forall x \ f(x) = \sum x_j y_j$. Возьмём $z^{(n)} = (\text{sign} \ y_1, \text{sign} \ y_2, \ldots, \text{sign} \ y_n, 0, 0, \ldots)$. $|f(z^{(n)}| \leqslant \|f\| \cdot \|z^{(n)}\|_{\infty} \leqslant \|f\|$. Но левая часть неравенства равна $\sum_{j=1}^{\infty} |y_j|$. Из неравенства следует, что ряд сходится, отсюда $y \in \ell^1$.

Покажем теперь, что $\forall x \ f(x) = \sum x_j y_j$. пусть $x = (x_1, x_2, \ldots) = \sum_{j=1}^{\infty} x_j e_j$.

$$f\left(\sum_{j=1}^{n} x_j e_j\right) = \sum_{j=1}^{n} x_j f(e_j) = \sum_{j=1}^{n} x_j y_j \xrightarrow[n \to \infty]{} \sum_{j=1}^{\infty} x_j y_j$$

Левая часть стремится к f(x), так как $\sum\limits_{j=1}^n = x_j e_j \xrightarrow[n \to \infty]{} x.$

8 Интегральные операторы. Часть I

Что такое интегральный оператор? Допустим, у нас есть функция двух переменных K(s,t), называемая ядром интегрального оператора (не путать с ядром оператора). Оператор действует следующим образом: он берёт функцию x(s) и преобразует её в функцию (Ux)(t) по формуле $(Ux)(t) = \int K(s,t)x(s)$ (множество интегрирования и мера определяются отдельно). Какими свойствами должна обладать функция K, чтобы этот оператор был «хорошим»?

8.1 Интегральные операторы в пространствах Лебега

Будем рассматривать переменные s на множестве S с мерой ν и t на множестве T с мерой μ , а также функцию $K:S\times T\to$ поле скаляров, притом измеримую. Пусть x — также измеримая функция на S, $(Ux)(t)=\int\limits_S K(s,t)x(s)\,d\nu(s)$. Какие условия нужно наложить на функцию K, чтобы оператор U действовал из $L^p(s,\nu)$ в $L^r(T,\mu)$ и был непрерывен?

$$\int\limits_T |(Ux)(t)|^r \leqslant \int\limits_T \left(\int\limits_S |K(s,t)||x(s)|\,ds\right)^r dt \leqslant \int\limits_T \left(\left(\int\limits_S |K(s,t)|\cdots\right)^r dt\right)^r dt$$

Таким образом, мы доказали следующую теорему.

Теорема 8.1 (О гёльдеровских условиях непрерывности). Если $\int\limits_T \left(\int\limits_S |K|^q \,ds\right)^{\frac{1}{q}} dt < \infty$, то U действует непрерывно из $L^p(s,\nu)$ в $L^r(T,\mu)$.

Пусть $p=2,\,r=2,\,$ то есть q=2. Тогда:

$$\iint\limits_{T} |K(s,t)|^2 \, ds \, dt < \infty \iff K \in L^2(S \times T, \nu \times \mu)$$

и $\|U\| \leqslant \|K\|_{L^2(S \times T, \nu \times \mu)}$. Операторы, удовлетворяющие таким условиям, называются операторами Гильберта-Шмидта, а K — ядром Гильберта-Шмидта.

Замечание 8.2. Существуют линейные непрерывные интегральные операторы, не являющиеся операторами Гильберта-Шмидта.

8.2 Тест Шура

Теорема 8.3 (Тест Шура). Пусть $(Ux)(t)=\int\limits_S K(s,t)x(s)\,d\nu(s)$. Предположим, что существуют строго положительные функции $\phi:S\to\mathbb{R}$, $\psi:T\to\mathbb{R}$ и числа $A,B\in\mathbb{R}$ такие, что:

- 1. $\int\limits_{S} |K(s,t)| \phi(s) \, d\nu(s) \leqslant A \psi(t)$ для почти всех $t \in T.$
- 2. $\int\limits_T |K(s,t)| \psi(s) \, d\mu(s) \leqslant B \phi(s)$ для почти всех $s \in S.$

Тогда U — линейный непрерывный оператор из $L^2(S,\nu)$ в $L^2(T,\mu)$.

Доказательство.

$$|(Ux)(t)|\leqslant \int\limits_{S}\sqrt{|K(s,t)|\phi(s)}\sqrt{\frac{|K(s,t)||x(s)|^2}{\phi(s)}}\,d\nu(s)\leqslant \underbrace{\left(\int\limits_{S}|K(s,t)|\phi(s)\,ds\right)^{\frac{1}{2}}}_{\leqslant A\psi(t)}\left(\int\limits_{S}\frac{|K(s,t)||x(s)|^2}{\phi(s)}\,ds\right)^{\frac{1}{2}}$$

$$\int\limits_T |(Ux)(t)|^2\,dt\leqslant \int\limits_T A\psi(t)\int\limits_S \frac{|K(s,t)||x(s)|^2}{\phi(s)}\,ds\,dt$$

Упражнение 8.4.

1. S=T=(0,1) с мерой Лебега, $K(s,t)=\frac{1}{\sqrt{|s-t|}}$. Заметим, что получается оператор, не являющийся оператором Гильберта-Шмидта, так как $\int\limits_0^1\int\limits_0^1\frac{1}{|s-t|\,\mathrm{d} s\,\mathrm{d} t}=+\infty$. Придумать тест Шура для этого случая.

- 2. $S=T=\mathbb{R},\ K(s,t)=e^{-(s+t)^2}.$ Является U оператором Гильберта-Шмидта, u, если нет, является ли он непрерывным?
- 3. $S=T=(0,+\infty)$, $K(s,t)=e^{-s\,t}$. Установить непрерывность U с помощью теста Шура.
- 4. $S=T=\mathbb{N},\ \nu=\mu=\#,\ K:\mathbb{N}\times\mathbb{N}\to\mathbb{R}.$ Torda onepamop U pasen $\sum\limits_{i=1}^{\infty}K_{ij}x_{j}.$

Теорема 8.5 (Тест Шура в дискретном случае). Пусть существуют $\phi_j>0$, $\psi_i>0$, A,B такие, что

- 1. $\sum |K_{ii}|\phi_i \leqslant A\psi_i \ \forall i \in \mathbb{N}$
- 2. $\sum |K_{ij}|\psi_i \leq B\varphi_i \ \forall j \in \mathbb{N}$

Тогда $U:\ell^2 \to \ell^2$ непрерывен $u \|U\| \leqslant \sqrt{AB}$.

Пример 8.6 (Оператор Харди). Оператор Харди H действует в пространстве $L^2(0,+\infty)$:

$$(Hx)(t) = \frac{1}{t} \int_{0}^{t} x(s) \, ds$$

Частный случай: $H:\ell^2\to\ell^2$ и $(Hx)_k=\frac{1}{k}(x_1+\ldots+x_k)$ (среднее арифметическое). Применим тест Шура.

$$\frac{1}{t} \int_{0}^{t} x(s) ds = \int_{0}^{\infty} K(s, t) x(s) ds$$

где $\mathsf{K}(s,t) = \frac{1}{t}\chi_{[0,t]}(s) = \frac{1}{t}\chi_{[s,+\infty)(t)}.$ Возьмём $\phi(s) \equiv 1.$ Тогда

$$\int_{0}^{\infty} |K(s,t)| \varphi(s) \, ds = \frac{1}{t} \int_{0}^{t} ds = 1$$

Взяв $\psi(t) \equiv 1$, получим

$$\int\limits_{0}^{\infty}|K(s,t)|\psi(t)\,dt=\int\limits_{0}^{\infty}\frac{1}{t}\,dt=\infty$$

Значит, такое ψ не подходит. Возьмём $\psi(t)=t^{-\alpha}$, где $\alpha>0$. Тогда

$$\int\limits_{0}^{\infty}|K(s,t)|\psi(t)\,dt=\int\limits_{0}^{\infty}\frac{1}{t^{\alpha+1}}\,dt=\frac{s^{-\alpha}}{\alpha}$$

В качестве $\varphi(s)$ возьмём $s^{-\alpha}$.

$$\int_{0}^{\infty} |K(s,t)| \varphi(s) ds = \frac{1}{t} \int_{0}^{t} s^{-\alpha} ds = \frac{1}{t} \frac{t^{1-\alpha}}{1-\alpha} = \frac{t^{-\alpha}}{1-\alpha}$$

Заметим, что при этом должно быть $\alpha < 1$. Кроме того,

$$\|\mathbf{H}\| \leqslant \frac{1}{\sqrt{\alpha(1-\alpha)}} \quad \forall \alpha \in (0,1) \implies \|\mathbf{H}\| \leqslant 2$$

Упражнение 8.7. Доказать, что $\|H\|=2$.

8.3 Интегральные операторы с непрерывным ядром

Вудем рассматривать ограниченную область $\Omega\subset\mathbb{R}^m$, пространство $L^2(\Omega)$ и пространство непрерывных функций $C(\overline{\Omega})$. Пусть также у нас есть функция $K:\overline{\Omega}\times\overline{\Omega}\to\mathbb{R}(\mathbb{C}),\,K\in C(\overline{\Omega}),\,\|K\|_{C(\overline{\Omega})}=M.$

Теорема 8.8. Рассмотрим оператор U такой, что $(Ux)(t)=\int\limits_{\Omega}K(s,t)x(s)\,ds.$ Верно, что $U\in B(L^2(\Omega),C(\overline{\Omega})).$

Доказательство. Докажем, что если $x \in L^2(\Omega)$, то $Ux \in C(\overline{\Omega})$. (Здесь непрерывность x не гарантируется.)

$$|Ux(t_1) - Ux(t_2)| = \left| \int\limits_{\Omega} K(s, t_1) - K(s, t_2)x(s) \, ds \right| \leq \left(\int\limits_{\Omega} |K(s, t_1) - K(s, t_2)|^2 \, ds \right)^{\frac{1}{2}} ||x||_2$$

По теореме Кантора K равномерно непрерывно на $\overline{\Omega} \times \overline{\Omega}$, то есть:

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \underbrace{|(s_1,t_1) - (s_2,t_2)|}_{\sqrt{|s_1-s_2|^2 + |t_1-t_2|^2}} < \delta \implies |K(s_1,t_1) - K(s_2,t_2)| < \epsilon$$

Если $|t_1-t_2|<\delta$, то $|\mathsf{K}(s,t_1)-\mathsf{K}(s,t_2)|<\epsilon$, отсюда $|\mathsf{U}x(t_1)-\mathsf{U}x(t_2)<\epsilon|\Omega|^{\frac{1}{2}}\cdot\|x\|_2$ Теперь докажем, что $\|\mathsf{U}x\|_{C(\overline{\Omega})}\leqslant C\|x\|_{L^2(\Omega)}.$

$$\|Ux\|_{C(\overline{\Omega})} = \max_{t \in \overline{\Omega}} \bigg| \int\limits_{\Omega} K(s,t) x(s) \, ds \bigg| \leqslant \max_{t \in \overline{\Omega}} \bigg(\int\limits_{\Omega} |K(s,t)|^2 \, ds \bigg)^{\frac{1}{2}} \|x\|_2 \leqslant (M^2 \cdot |\Omega|)^{\frac{1}{2}} \|x\|_{L^2(\Omega)}$$

Рассмотрим оператор вложения $j:C(\overline{\Omega})\to L^2(\Omega),\, x\mapsto x.$ Справедливо следствие:

Следствие 8.9. 1. $jU \in B(L^2(\Omega), L^2(\Omega))$

2.
$$Uj \in B(C(\overline{\Omega}), C(\overline{\Omega}))$$

Доказательство. Заметим, что $C(\overline{\Omega}) \subset L^2(\Omega)$.

$$\left(\int\limits_{\Omega}|x(s)|^2\,\mathrm{d}t\right)^{\frac{1}{2}}\leqslant \left(\|x\|_{C(\overline{\Omega})}^2\cdot|\Omega|\right)^{\frac{1}{2}}=|\Omega|^{\frac{1}{2}}\cdot\|x\|_{C(\overline{\Omega})}$$

Получаем

$$\|x\|_{L^2(\Omega)}\leqslant |\Omega|^{\frac{1}{2}}\cdot \|x\|_{C(\overline{\Omega})}$$

$$\|jx\|_{L^2(\Omega)} = \|x\|_{L^2(\Omega)} \leqslant C \cdot \|x\|_{C(\overline{\Omega})}$$

То есть ј непрерывен.

$$C(\overline{\Omega}) \hookrightarrow L^2(\Omega) \xrightarrow{U} C(\overline{\Omega}) \ \hookrightarrow L^2(\Omega)$$

8.4 Операторы со слабой особенностью

Рассмотрим оператор $Ux(t)=\int\limits_{\Omega}K(s,t)x(s)\,ds,$ причём K- ядро со слабой особенностью, а $\Omega\subset\mathbb{R}^m.$

Определение 8.10. К — ядро со слабой особенностью, если оно представляется в виде:

$$K(s,t) = \frac{A(s,t)}{|s-t|^{\alpha}}$$

Здесь $A \in C(\overline{\Omega} \times \overline{\Omega}), \ \alpha < m$

Пример 8.11.
$$\Omega = (0,1), \ \mathsf{K}(s,t) = \frac{1}{\sqrt{|s-t|}}$$

Замечание 8.12. Предположим, что $K(s,t)=\frac{\alpha(s,t)}{|s-t|^{\alpha}},\ \alpha< m,\ \alpha$ — ограниченная функция, непрерывная вне диагонали множества $\overline{\Omega} \times \overline{\Omega},$ то есть в точках (s,t) таких, что $s \neq t$. Тогда K — ядро со слабой особенностью. Почему? Можно записать $K(s,t)=\frac{\alpha(s,t)|s-t|^{\delta}}{|s-t|^{\alpha+\delta}},$ где $\alpha+\delta< m.$ $A(s,t)=\alpha(s,t)|s-t|^{\delta}$ непрерывно на $\overline{\Omega} \times \overline{\Omega}$

Почему особенность «слабая»? Чтобы ответить на этот вопрос, сформулируем лемму.

Лемма 8.13. Пусть у нас есть шар $B(0,\rho)\subset\mathbb{R}^m$. Тогда $\int\limits_{B(0,\rho)}\frac{dx}{|x|^\alpha}$ конечен тогда и только тогда, когда $\alpha< m$.

Доказательство. Вычислим этот интеграл.

$$\int\limits_{B(0,\rho)} \frac{dx}{|x|^{\alpha}} = \int\limits_{0}^{\rho} \int\limits_{S_{1}(0)} r^{m-1} \frac{1}{r^{\alpha}} \, d\theta \, dr = |S_{1}| \int\limits_{0}^{\rho} r^{m-\alpha-1} \, dr = |S_{1}| \frac{r^{m-\alpha}}{m-\alpha} \bigg|_{0}^{\rho} = |S_{1}| \frac{\rho^{m-\alpha}}{m-\alpha} \, dr = |S_{2}| \frac{r^{m-\alpha}}{m-\alpha} \, dr = |S_{3}| \frac{r^{m-\alpha}}{m-\alpha} \,$$

Теорема 8.14. Пусть U — оператор со слабой особенностью: $Ux(t) = \int\limits_{\Omega} K(s,t)x(s)\,ds$, $\Omega \subset \mathbb{R}^m$. Тогда $U \in B(L^2(\Omega),L^2(\Omega))$.

Доказательство. Применим тест Шура. Возьмём функцию $\phi(s) \equiv 1$.

$$\begin{split} \int\limits_{\Omega} |K(s,t)| \, ds &= \int\limits_{\Omega} \frac{|A(s,t)|}{|s-t|^{\alpha}} \, ds \leqslant M \cdot \int\limits_{\Omega} \frac{1}{|s-t|^{\alpha}} \, ds \leqslant M \cdot \int\limits_{B_d(t)} \frac{ds}{|s-t|^{\alpha}} \leqslant M \cdot \int\limits_{B_d(0)} \frac{dz}{|z|^{\alpha}} \leqslant M \cdot \int\limits_{B_d(0)} \frac{dz}{|z|^{\alpha}}$$

Здесь $A\in C(\overline{\Omega} imes\overline{\Omega})$, $\|A\|_{C(\overline{\Omega} imes\overline{\Omega})}=M$, $d=\dim\overline{\Omega}$ Получаем, что $\psi(t)=1$.

Теорема 8.15. В условиях предыдущей теоремы также верно $U \in B(C(\overline{\Omega}),C(\overline{\Omega}))$.

Доказательство. 1. $x \in C(\overline{\Omega}) \implies Ux \in C(\overline{\Omega})$

$$2. \ \| ux \|_{C(\overline{\Omega})} \leqslant C \| x \|_{C(\overline{\Omega})}$$

$$|(Ux)(t)| = \left| \int\limits_{\Omega} \frac{A(s,t)}{|s,t|^{\alpha}} x(s) \, ds \right| \leqslant M \cdot \|x\| \int\limits_{\Omega} \frac{ds}{|s-t|^{\alpha}} \leqslant \frac{M d^{m-\alpha}}{m-\alpha} \|x\|.$$