

Why Reduce Dimensionality?

- EPITA
- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

2

EPITA

- - Subset selection algorithms
- Feature extraction: Project the original x_i , i = 1,...,d dimensions to new k < d dimensions, z_j , j = 1,...,kPrincipal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)

ESLA

Principal Components Analysis (PCA)

EPITA

• Maximize Var(z) subject to | | w | | =1

$$\max_{\mathbf{w}} \mathbf{w}_{1}^{T} \Sigma \mathbf{w}_{1} - \alpha \left(\mathbf{w}_{1}^{T} \mathbf{w}_{1} - 1 \right)$$

 $\sum w_1 = \alpha w_1$ that is, w_1 is an eigenvector of \sum Choose the one with the largest eigenvalue for Var(z) to be max

• Second principal component: Max Var(z_2), s.t., $||w_2||=1$ and orthogonal to w_1

$$\max_{\mathbf{w}_{2}} \mathbf{w}_{2}^{T} \Sigma \mathbf{w}_{2} - \alpha (\mathbf{w}_{2}^{T} \mathbf{w}_{2} - 1) - \beta (\mathbf{w}_{2}^{T} \mathbf{w}_{1} - 0)$$

 $\sum w_2 = \alpha \ w_2$ that is, w_2 is another eigenvector of \sum and so on.

10

11

How to choose k?

• Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

when $\lambda_{\scriptscriptstyle f}$ are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"

EPITA

Linear Discriminant Analysis • Between-class scatter: $(m_1-m_2)^2 = (\mathbf{w}^T\mathbf{m}_1-\mathbf{w}^T\mathbf{m}_2)^2 \\ = \mathbf{w}^T(\mathbf{m}_1-\mathbf{m}_2)(\mathbf{m}_1-\mathbf{m}_2)^T\mathbf{w}$ • Within-class scattew. $^T\mathbf{S}_{\mathbf{g}}\mathbf{w}$ where $\mathbf{S}_{\mathbf{g}} = (\mathbf{m}_1-\mathbf{m}_2)(\mathbf{m}_1-\mathbf{m}_2)^T$ $s_1^2 = \sum_t (\mathbf{w}^T\mathbf{x}^t - \mathbf{m}_1)^T\mathbf{r}^t \\ = \sum_t \mathbf{w}^T(\mathbf{x}^t - \mathbf{m}_1)(\mathbf{x}^t - \mathbf{m}_1)^T\mathbf{w}\mathbf{r}^t = \mathbf{w}^T\mathbf{S}_1\mathbf{w}$ where $\mathbf{S}_1 = \sum_t (\mathbf{x}^t - \mathbf{m}_1)(\mathbf{x}^t - \mathbf{m}_1)^T\mathbf{r}^t$ $s_1^2 + s_1^2 = \mathbf{w}^T\mathbf{S}_{\mathbf{w}}\mathbf{w}$ where $\mathbf{S}_{\mathbf{w}} = \mathbf{S}_1 + \mathbf{S}_2$

Neighborhood Components Analysis

- NCA learns a Mahalanobis distance metric for the KNN classifier by maximizing the leave-one-out cross validation.

 Let p_{ij} be the probability that point x_j is selected as point x_i 's neighbour.

 The probability that points are correctly classified when x_i is used as the reference is:

$$P_i = \sum_{j \in C_i} p_{ij}$$

 $\begin{aligned} P_i &= \sum_{j \in C_i} p_{ij} \\ C_i &= \{x_j | \text{class}(x_j) = \text{class}(x_i)\} \end{aligned}$ • p_{ij} is related to the distance between x_i and x_j

$$p_{ij} = \frac{e^{-d_{ij}}}{\sum_{k \neq i} e^{-d}_{ik}} \ , p_{ii} = 0$$

- The expected number of correctly classification points: $f(A) = \sum_l P_l$

$$f(A) = \sum_{i} P_i$$

37

Neighborhood Components Analysis

- How do we define d_{ij} ?
- Limit the distance measure within Mahalanobis (quadratic) distance:

$$d(x,y) = (x - y)^T Q(x - y)$$

$$Q = A^T A$$

$$d(x,y) = (Ax - Ay)^T (Ax - Ay)$$

ullet That is to say, we project the original feature vectors x into another vector space with transformation matrix A.

Distance Learning \Leftrightarrow Finding the Best matrix A

EPITA

38

Neighborhood Components Analysis

• Subtitute d_{ij} in p_{ij}

$$p_{ij} = \frac{\exp(-\|Ax_i - Ax_j\|^2)}{\sum_{k \neq i} \exp(-\|Ax_i - Ax_k\|^2)}$$

• The objective function:

$$f(A) = \sum_{i} P_{i} = \sum_{i} \sum_{j \in C_{i}} p_{ij}$$

Stochastic Neighbor Embedding (SNE)

- "Encode" high dimensional neighborhood information as a distribution
- Intuition: Random walk between data points.
 - High probability to jump to a close point
- Find low dimensional points such that their neighborhood distribution is similar
- How do you measure distance between distributions?
 - Most common measure: KL divergence

43

Neighborhood Distributions

- Consider the neighborhood around an input data point $x_i \in \mathbb{R}^d$
- Imagine that we have a Gaussian distribution centered around x_i
- \bullet Then the probability that x_i chooses some other datapoint x_j as its neighbor is in proportion with the density under this Gaussian
- \bullet A point closer to \boldsymbol{x}_i will be more likely than one further away
- ullet $P_{j|i}$ probability (similar to NCA), is the probability that point x_i chooses x_j as its neighbor:

$$P_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

44

Neighborhood Distributions

- $P_{f|li}$ probability (similar to NCA), is the probability that point x_l chooses x_f as its neighbor: $P_{f|li} = \frac{\exp\left(-\|x_l x_f\|^2/2\sigma_l^2\right)}{\sum_{k \neq l} \exp\left(-\|x_l x_k\|^2/2\sigma_l^2\right)}$

- With $P_{i|l}=0$ The parameter a_i sets the size of the neighborhood
 Very low a_i all the probability is in the nearest neighbor.
 Very high a_i Limitorm weights.
 We set a_i differently for each data point
 Results depend heavily on a_i :
 it defines the neighborhoods we are trying to preserve.
 Final distribution over pairs is symmetrized: $P_{ij} = \frac{1}{2N} (P_{i|j} + P_{j|i})$
- Random Walk:
 Pick i uniformly and then "jump" to j according to P_{j|i}

SNE objective

- Given $x_1, x_2, \dots, x_N \in \mathbb{R}^d$, we define the distribution P_{ij}
- Goal: Find good embedding $y_1,y_2,...,y_N\in\mathbb{R}^p$ for some $p\ll d$ (normally 2 or 3 for visualization) How do we measure an embedding quality?
- For points $y_1,y_2,\dots,y_N\in\mathbb{R}^p$, we can define distribution Q similarly the same (notice no σ_i^2 and not symmetric)

$$Q_{ij} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

- Optimize Q to be close to P• Minimize KL-divergence
- The embeddings $y_1, y_2, \dots, y_N \in \mathbb{R}^p$ are the parameters we are optimizing. How do you embed a new point? No embedding function!

46

SNE objective

- Given $x_1,x_2,...,x_N\in\mathbb{R}^d$, we define the distribution P_{ij} Goal: Find good embedding $y_1,y_2,...,y_N\in\mathbb{R}^p$ for some $p\ll d$ (normally 2 or 3 for visualization)
- How do we measure an embedding quality?
- For points $y_1,y_2,\dots,y_N\in\mathbb{R}^p$, we can define distribution Q similarly the same (notice no σ_l^2 and not symmetric)

$$Q_{ij} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$
set to P

- $\begin{tabular}{ll} \bullet & {\sf Optimize} \ Q \ \ {\sf to} \ \ {\sf be} \ \ {\sf close} \ \ {\sf to} \ P \\ \bullet & {\sf Minimize} \ \ {\sf KL-divergence} \end{tabular}$
- The embeddings $y_1,y_2,...,y_N\in\mathbb{R}^p$ are the parameters we are optimizing. How do you embed a new point? No embedding function!

47

SNE algorithm

• We have P, and are looking for $y_1,y_2,...,y_N \in \mathbb{R}^p$ such that the distribution Q we infer will minimize $\mathbb{C}(Q) = \mathrm{KL}(P||Q)$ (notice Q on

$$KL(P||Q) = \sum_{ij} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}}\right) = -\sum_{ij} P_{ij} \log(Q_{ij}) + const$$

- Not a convex problem! can use multiple restarts.
- Main issue: crowding problem

Crowding Problem: Neighborhood

- In high dimension we have more room, points can have a lot of different neighbors
- In 2D a point can have a few neighbors at distance one all far from each other
 - what happens when we embed in 1D?
- Crowding problem:
 - We don't have enough room to accommodate all neighbors.
 One of the biggest problems with SNE.
- ullet t-SNE solution: Change the Gaussian in ${\it Q}$ to a heavy tailed
- \bullet if Q changes slower, we have more wiggle room to place points at.

49

T-SNE: t-Distributed Stochastic Neighbor **Embedding**

- Student-t Probability density $p(x) \propto \left(1 + \frac{x^2}{v}\right)^{\frac{v+1}{2}}$
- For v = 1we get $p(x) \propto \frac{1}{1+x^2}$ • Probability goes to zero much slower than a Gaussian

• Probability goes to zero much slower than a Gauss • We can now redefine
$$Q_{ij}$$
 as
$$Q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|y_k - y_l\|^2)^{-1}}$$
• We leave P_{ij} as is

 $\bullet \ \mbox{We leave} \ P_{ij} \ \mbox{as is} \\$

50

