

Telecommunications Networking

- 1. Introduction
- 2. Local Area Networking
- 3. Error Control and Retransmission Protocols
- 4. Architectural Principles of the Internet
- 5. Flow Control in Internet: TCP
- 6. Routing Algorithms
- 7. Routing Protocols
- 8. The principles of ATM
- 9. Traffic Management in ATM
- 10. Scheduling
- 11. Quality of Service
- 12. Quality of Service routing
- 13. Peer-to-peer networks

Local Area Networks – Layering Architecture

Application

Presentation

Session

Transport

Network

Data Link

Physical

LL	C	IEEE 802.2 Logical Link Control						
MA	\mathbf{C} 802.3		802.5	802.6	Wire-	IEEE 802.15 PAN	ANSI X3.139 FDDI	
	Ethernet				Wifi	Blue tooth		
	DEC, Intel Xerox	General Motors	IBM			Ericsson		

Ethernet

Original drawing by Robert Metcalfe (1976)

- *Bus (Ether)*: all stations share a single communication channel (distributed access control)
- Broadcast:
 - all transceivers receive every transmission
 - host interface filters among packets those intended for the corresponding computer
- Best-effort delivery: no notification about packet receipt

ALOHANET

- First wireless packet data network, University of Hawaii, early '70s
- Served as inspiration for Metcalfe when developing Ethernet
- ALOHA means *Hello* in the Hawaiian Language. The protocol in its original form allows for packets to enter the medium without any restriction.

Ethernet: 10BASE2 network

Ethernet: 10BASE2 network

Delft University of Technology

6

Ethernet: 10BASET network

Ethernet Gigabit Switch

Multiple Access

Control modes

	Centralized	Distributed		
	control	control		
Complexity				
Robustness				
Scalability				

Ethernet Access: CSMA/CD

- Distributed access:
 - no central authority
- Carrier Sense Multiple Access (CSMA)
 - multiple machines can access the Ethernet simultaneously
 - each machine determines whether the "ether" is free by sensing carrier wave propagation
 - each transmission is limited in duration to prevent monopolization of the network
- Collision Detection (CD)
 - Collision: when two electrical waves cross, they become scrambled and meaningless.
 - Collision detection: each transceiver monitors the cable while transmitting to search for foreign signal interferences

CSMA/CD: Maximum collision detection time

Delft University of Technology

Sending Rules

• Non-persistent CSMA:

- Sensing is not continuously but repeated after random time.
- If no collisions are sensed, the station sends a packet.

Persistent CSMA:

- Continuously sensing, but sending of packet probabilistically
- p-Persistent CSMA:
 - send in current time slot with probability p and in another time slot with probability 1-p
- Binary exponential back-off policy: a sender delays a random time after the first collision, twice that time after the second and four times as long after the third collision, and so on.
- 1-Persistent CSMA: relies solely on back-off

p-persistent CSMA/CD

Delft University of Technology

Suppose: N stations, every station transmits with probability p in any given slot. (They all want to send)

Difficult to estimate optimal *p*

Expected senders in a timeslot = Np

Expect collisions at Np > 1

Instinctively choose p < 1/N

Though if $Np \ll 1$ waiting time increases

p-persistent CSMA/CD

Delft University of Technology

Suppose: N stations, every station transmits with probability p in any given slot.

Pr[S(uccess)] = Pr[exactly one station transmits in a given slot]:

$$\Pr\left[S\right] = Np \left(1 - p\right)^{N-1}$$

The maximum value of Pr[S]:

$$\frac{d \Pr[S]}{dp} = N(1-p)^{N-1} - N(N-1)p(1-p)^{N-2} = 0$$

$$\Rightarrow p = \frac{1}{N}, \quad \max \left(\Pr \left[S \right] \right) = \left(1 - \frac{1}{N} \right)^{N-1}$$

$$\lim_{N \to \infty} \left(1 - \frac{1}{N} \right)^{N-1} = \frac{1}{e} \approx 0.368$$

p-persistent CSMA/CD

Thus, for N=16 optimum lies at p = 1/N = 0.0625

With $Pr[S] \approx 0.38$

Binary exponential backoff

Delft University of Technology

After each collision j a station chooses a random time uniformly in $[0,2^{j}-1]$ timeslots:

IEEE 802.3:

• 1st: 0 or 1 equi-probable

• 2nd: 0 or 1 or 2 or 3

• 3rd: 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7

• Increase exponentially until 10th

- Then constant until 16th
- Then failure
- Balances between prevention of collisions and waiting time

Ethernet MAC summarized

Delft University of Technology

Ethernet MAC protocol:

"(1-)persistent CSMA/CD with binary exponential backoff"

- 1. Wait until channel idle
- 2. When idle: transmit (and keep listening)
- 3. When collision:
 - stop transmission
 - send jam signal
 - wait binary exponential random time
 - go to 1.

Approximate Analysis

Delft University of Technology

The efficiency of CSMA/CD is defined as

$$\eta_{\text{CSMA/CD}} = \frac{E[T]}{E[T] + E[\Delta]}$$

CSMA/CD - efficiency

Delft University of Technology

 Δ = the number of contention slots is a geometric r.v.: Pr $[\Delta = k] = p_s (1 - p_s)^k$

$$E\left[\Delta\right] = p_s \sum_{n=0}^{\infty} n (1 - p_s)^n = \frac{1}{p_s} - 1$$

$$E\left[\Delta\right] \approx 1.5 \quad \text{(with } p_s = 0.4\text{)}$$

The unit of one timeslot is 2τ

$$\eta_{\text{CSMA/CD}} = \frac{E[T]}{E[T] + E[\Delta]} = \frac{1}{1 + \frac{E[\Delta]}{E[T]}} = \frac{1}{1 + \frac{2\tau}{E[T]} \left(\frac{1}{p_s} - 1\right)}$$

$$\Rightarrow \eta_{CSMA/CD} = \frac{1}{1+3.5 a}, \text{ with } a = \frac{\tau}{E[T]}$$

From simulations:

$$\eta_{CSMA / CD} \approx \frac{1}{1 + 5a}$$

CSMA/CD - efficiency

Delft University of Technology

$$\eta_{\text{CSMA/CD}} = \frac{1}{1 + \frac{2\tau}{E[T]} \left(\frac{1}{p_s} - 1\right)}$$

$$E\left[T\right] = \frac{E\left[L\right]}{R}$$

$$\tau = \frac{D}{0.8c}$$

Practice:
$$E[T] = \frac{E[L]}{B} \qquad \tau = \frac{D}{0.8c} \qquad v = 2\left(\frac{1}{p_s} - 1\right)$$

$$\eta_{CSMA/CD} = \frac{1}{1 + f(v) \frac{BD}{E[L]}}, \text{ with } f(v) = \frac{v}{0.8c}$$

L: length of frame (bits)

B: capacity (bits/s)

D: extent of LAN (m)

c: velocity of light (vacuum)

Ethernet address

- 48-bit IEEE 802 MAC address:
 - 24-bit company/manufacturer ID
 - 24-bit extension/board ID

- Multicast address: first bit set to 1
- Broadcast address: all bits set to 1

- IEEE Extended Unique Identifier 64 (EUI-64) address:
 - 24-bit company ID / 40-bit extension ID

Example of an Ethernet:

Wireless LANs

Delft University of Technology

Master-slave

Ad-hoc network

Wireless MAC

Delft University of Technology

CSMA/CD:

carrier sensing is done by the sender

Wireless MAC IEEE 802.11: CSMA/CA (Collision Avoidance with reservation)

Sender S:

- send RTS-message (RequestToSend)
- contains length of message

Receiver R:

- replies CTS-message (ClearToSend)
- echoes length of message
- Other stations in range of S wait to not disturb CTS from R
- Other stations in range of *R* wait for a time corresponding to the length of message in CTS

Hidden & Exposed Terminal

Hidden terminal (H): potential sending node in receiver *R's* neighborhood which cannot detect the sender *S* and may disrupt the current transmission

Exposed terminal (**E**): Node *E* in neighborhood of sender *S* and does not hear receiver *R*.

Node E unnecessarily refrains from sending to a station F (another station than S) within its transmission range.

Three variations

Delft University of Technology

General Solution:

Hidden terminal: hears CTS and is mute during transmission Exposed terminal: hears RTS but no CTS, can transmit

Case A: nor hidden-, nor exposed-terminal problem is solved

Case B: only hidden-terminal problem is solved

Case C: both hidden- and exposed-terminal problem are solved

Questions Ch. 2

- Explain why, in a shared medium, we need multiple access control (MAC).
- Explain non-persistent CSMA, p-persistent CSMA, and the exponential back-off policy.
- Explain the hidden-terminal and exposed-terminal problems and their solutions.