Exercícios de Matemática Discreta e Programação

2011-2012 Folha 4

Estruturas Algébricas

Para um sistema algébrico $(I, +, \times)$ considere as seguintes propriedades:

- (A1) Para todo $a, b, c \in I$, (a + b) + c = a + (b + a) (Associatividade)
- (A2) Para todo $a, b \in I$, a + b = b + a (Comutatividade)
- (A3) Existe um elemento $0 \in I$, tal que para todo $a \in I$, a + 0 = 0 + a = a (Elemento identidade)
- (A4) Para todo $a \in I$, existe um elemento em I denotado por -a e designado de simétrico de a, tal que a + (-a) = 0 (Elemento Identidade)
- (M1) Para todo $a, b, c \in I$, $(a \times b) \times c = a \times (b \times c)$ (Associatividade)
- (M2) Para todo $a, b \in I$, $a \times b = b \times a$ (Comutatividade)
- (M3) Existe um elemento $1 \in I$, tal que para todo $a \in I$, $a \times 1 = 1 \times a = a$ (Elemento identidade)
- (M4) Para todo $a \in I$, existe um elemento em I denotado por -a e designado de simétrico de a, tal que a + (-a) = 0 (Elemento Identidade)
- (D) Para todo $a,b,c \in I$, $a \times (b+c) = (a \times b) + (a \times c)$ (Distributividade) neste caso dizemos que \times é distributivo relativamente a +.
- (C) Para todo $a, b, c \in I$, e $a \neq 0$, $a \times b = a \times c \Rightarrow b = c$ (Cancelamento subtractivo)
- (1) Quais dos seguintes sistema $(I, +, \times)$ satisfazem a propriedade [A1] a [A4], [M1] a [M4], [D] e [C], quando consideramos + e \times as operações usuais?
 - (a) Todos os inteiros pares
 - (b) Todos os inteiros ímpares
 - (c) Todos os inteiros positivos
 - (d) Todos os inteiros não negativos
 - (e) $(\mathbb{Z}_6, +_6, \times_6)$
 - (f) $(\mathbb{Z}_7, +_7, \times_7)$
- (2) Mostre que se $g: A \to B$ é um homomorfismo de um sistema algébrico (A, \otimes) em (B, \triangle) , e (A_1, \otimes) é uma subalgebra de A, \otimes , então a imagem de A_1 por g é uma subalgebra de (B, \triangle) .
- (3) Mostre a intersecção de duas relações de congruência é também uma relação de congruência.
- (4) Mostre que a composição de duas relações de congruência não necessariamente uma relação de congruência.
- (5) Determine o zero dos semi-grupos $(\mathcal{P}(X), \cap)$ e $(\mathcal{P}(X), \cup)$ onde X é um conjunto e $\mathcal{P}(X)$ o conjunto das partes de X. Estas estruturas definem monoides? Em caso afirmativos, qual é a unidade?
- (6) Seja $\Sigma = \{a, b\}$ um alfabeto e A o conjunto que inclui a palavra vazia λ e todas as palavras com símbolos em Σ que começam com a. Mostre que (A, \cdot, λ) é um monóide.
- (7) Mostre que o conjunto \mathbb{N} dos números naturais é um semi-grupo para a operação $x \otimes y = \max(x, y)$. É um monóide?
- (8) Seja $S = \{a, b\}$. Mostre que (S^S, \circ) é um semi-grupo não comutativo.
- (9) Seja (S, \otimes) um semi-grupo e $z \in S$ um zero à esquerda. Mostre que para todo $x \in S$, $x \otimes z$ é também um zero à esquerda.
- (10) Um elemento $a \in S$, onde (S, \otimes) é um sem i-grupo, diz-se cancelável à esquerda se para todo $a \in S$, $a \otimes x = x \otimes a \Rightarrow x = y$. Mostre que se a e b são canceláveis à esquerda, então $a \otimes b$ é também cancelável à esquerda.

1

- (11) Mostre que todo o semi-grupo finito tem um idempotente.
- (12) Mostre que um semi-grupo com mais do que um idempotente não pode ser um grupo.
- (13) Mostre que o conjunto de todos os elementos invertíveis de um monóide forma um grupo para a mesma operação.
- (14) Mostre num monóide o conjunto dos inversos à esquerda (inversos à direita) formam um sub-monóide.
- (15) Determine uma gramática que permita gerar a linguagem $L = \{xx : x = x_1x_2...x_n \in x_i \in \{a,b\}\}.$
- (16) Consider a seguinte gramática tendo por símbolos terminais $\{a, b\}$:

$$S \rightarrow a \ S \rightarrow Sa \ S \rightarrow b \ S \rightarrow bS$$

Descreva através duma expressão regular o conjunto das palavras geradas pela gramática.

- (17) Escreva as gramáticas das seguintes linguagens
 - (a) O conjunto dos números inteiros ímpares não negativos
 - (b) O conjunto dos números inteiros pares que são escritos sem o dígito zero.
- (18) Determine uma gramática que permita gerar

$$L = \{w : w \text{ tem o mesmo número de } a \text{'s e de } b \text{'s}\}\$$

(19) Determine uma gramática que permita gerar

$$L = \{w : \text{ o número de 0's em } w \text{ \'e o dobro do números de 1's}\}$$

- (20) Apresente uma gramática regular que permita gerar cadeias de 0s e 1s tendo um número par de 0s e um número par de 1s.
- (21) Se (G, \otimes) é um grupo abeliano, então para todos $a, b \in G$ mostre que $(a \otimes b)^n = a^n \otimes b^n$.
- (22) No grupo de simetria S_3 determine todos os elementos a e b tais que
 - (a) $(a \otimes b)^2 \neq a^2 \otimes b^2$
 - (b) $a^2 = e$
 - (c) $a^3 = e$
- (23) Mostre que num grupo (G, \otimes) , se para todo $a, b \in G$, $(a \otimes b)^2 = a^2 \otimes b^2$, então (G, \otimes) é abeliano.
- (24) Mostre que quando num grupo todo o elemento é inverso de si próprio, o grupo é abeliano.
- (25) Escreva as tabelas de composição para $(\mathbb{Z}_7, +_7)$ e $(\mathbb{Z}_7 \{[0]\}, +_7)$.
- (26) Dadas as permutações de elementos de $\{1, 2, 3, 4, 5\}$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \\ \end{pmatrix} \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \\ \end{pmatrix}$$

$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \\ \end{pmatrix} \quad \delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \\ \end{pmatrix}$$

Determine $\alpha\beta$, $\beta\alpha$, α^2 , δ^{-1} , e $\alpha\beta\gamma$. Resolva a equação $\alpha x = \beta$.

(27) Para $P = \{p_1, p_2, p_3, p_4, p_5\}$ e $Q = \{q_1, q_2, q_3, q_4, q_5\}$ e os operadores \otimes e \triangle dados pelas tabelas de composição:

- (28) Mostre que o conjunto dos polinómios na variável x para a operação de adição é um grupo.
- (29) Determine todos os subgrupos de

- (a) $(\mathbb{Z}_{12}, +_{12})$
- (b) $(\mathbb{Z}_5, +_5)$
- (c) $(\mathbb{Z}_7 \{[0]\}, \times_7)$ (d) $(\mathbb{Z}_{11} \{[0]\}, \times_{11})$
- (30)~ Determine o grupo das rotações rígidas dum rectângulo, que não é quadrado. Mostre que é um subgrupo de (D_4, \diamond) .
- (31) Determine todos os subgrupos de S_4 gerados pelas permutação

$$\alpha = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{array}\right) \quad \beta = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{array}\right)$$

- (32) Mostre que o conjunto dos elementos a de um grupo (G, \otimes) tal que $a \otimes x =$ $x \otimes a$ para todo $x \in G$ é um subgrupo de G.
- (33) Determine todos os inteiros x que satisfazem $x \mod 7 = 1$, $x \mod 9 = 6$, $x \mod 11 = 5$, e $0 \le x \le 1000$.
- (34) Determine a representação residual módulo $m_1=4,\,m_2=3,\,{\rm e}\ m_3=5$ dos inteiros \mathbb{Z}_{60} .
- (35) Calcule o inverso de cada elemento de \mathbb{Z}_7 , usando o teorema de Fermat.