任务分析

- 使用微软 14-18 年股票数据集训练模型
- 模型 对比,调参 选择最优模型
- 使用模型预测 19-22 年收盘价
- 对预测结果进行可视化
- 分析预测结果

依赖导入

```
In [5]: from IPython.core.interactiveshell import InteractiveShell
    InteractiveShell.ast_node_interactivity = "all"
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn import linear_model, model_selection
    import pandas as pd
    from sklearn.model_selection import GridSearchCV
```

数据导入

```
In [6]: data = pd.read_csv('ms_14-18.csv', delimiter=',')
data.head()
```

Out[6]:

	Date	High Price	Low Price	Open Price	Close Price	Volume
0	2014-09-09 00:00:00	46.970001	46.419998	46.470001	46.759998	40302400.0
1	2014-09-10 00:00:00	46.939999	46.279999	46.820000	46.840000	27302400.0
2	2014-09-11 00:00:00	47.000000	46.470001	46.740002	47.000000	29216400.0
3	2014-09-12 00:00:00	47.020000	46.599998	46.910000	46.700001	38244700.0
4	2014-09-15 00:00:00	46.709999	46.099998	46.540001	46.240002	37667600.0

数据探索

- Date 日期
- High Price 当日最高价
- Low Price 当日最低价
- Open Price 开盘价
- Close Price 收盘价
- Volume 成交量

特征工程

• 特征选择

```
In [7]: features = [ "High Price", "Low Price", "Open Price", "Volume"]
```

• 划分特征数据集为训练集和测试集

```
In [8]: X = np.array(data[features])
y = np.array(data["Close Price"])
X_train, X_test, y_train, y_test = model_selection. train_test_split(X, y, test_size = 0.1)
```

建立模型

- 创建线性回归,岭回归,逻辑回归模型
- 用训练集训练模型

```
In [9]: lin_reg = linear_model.LinearRegression()
lin_reg.fit(X_train, y_train)

rid_reg = linear_model.Ridge()
rid_reg.fit(X_train, y_train)

log_reg = linear_model.LogisticRegression()
log_reg.fit(X_train, y_train.astype('int'))

Out[9]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
```

Out[9]: Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

Out[9]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='12', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

• 选择最优模型

```
In [10]: print('线性回归 准确率: ', lin_reg.score(X_test, y_test))
print('岭回归 准确率: ', rid_reg.score(X_test, y_test))
print('逻辑回归 准确率: ', log_reg.score(X_test, y_test.astype('int')))

线性回归 准确率: 0.9997195697970669
岭回归 准确率: 0.9997205693545149
逻辑回归 准确率: 0.06930693069306931
```

```
In [11]: | best_model = rid_reg
```

模型调参

• 使用 网格搜索 对 岭回归 进行调参

```
In [12]: param={'alpha':[1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1, 5, 10, 20, 30, 35, 40, 45, 50, 55, 100]}
grid = GridSearchCV(best_model, param, cv=5)
best_model = grid.fit(X_train, y_train).best_estimator_
grid.fit(X_train, y_train).best_estimator_
```

Out[12]: Ridge(alpha=1e-15, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

模型使用

- 载入 19 22 年股票数据选取 特征数据集
- 使用 最佳模型 对特征数据集进行预测

```
In [13]: data = pd.read_csv('ms_19-22.csv', delimiter=',')
    data.head()
    features = [ "High", "Low", "Open", "Volume"]
    X = np.array(data[features])
    y = np.array(data["Close"])

pred_y = best_model.predict(X)
```

Out[13]:

	Date	Open	High	Low	Close	Adj Close	Volume	Stock	SMA_50	T_SMA_5
0	2019- 06-03	123.849998	124.370003	119.010002	119.839996	115.725883	37983600	MSFT	NaN	False
1	2019- 06-04	121.279999	123.279999	120.650002	123.160004	118.931908	29382600	MSFT	NaN	False
2	2019- 06-05	124.949997	125.870003	124.209999	125.830002	121.510231	24926100	MSFT	NaN	False
3	2019- 06-06	126.440002	127.970001	125.599998	127.820000	123.431931	21459000	MSFT	NaN	False
4	2019- 06-07	129.190002	132.250000	128.259995	131.399994	126.889038	33885600	MSFT	NaN	False

5 rows × 29 columns

结果可视化

• 定义预测准确率函数

```
In [14]:
# 预测结果与实际值误差 < 0.01 认为准确
def judge(predict, target):
    diff = abs(predict - target) / target
    if diff < 0.01:
        return True
    else:
        return False

# 获取准确率
def get_accuracy(pred_y, y_test):
    size = len(y_test)
    count = 0
    for i in range(0, size):
        if judge(pred_y[i], y_test[i]):
            count += 1
        return count / size
```

• 预测得到准确率

```
In [15]: print('预测准确率为:', get_accuracy(pred_y, y))
```

预测准确率为: 0.8930602957906713

• 拟合结果可视化

```
In [29]: x_axis = [i for i in range(len(y))]
    plt.figure(figsize=(12, 6))
    plt.plot(x_axis, y, color='red', linewidth=1, label='close price')
    plt.plot(x_axis, pred_y, color='green', linewidth=1, label='predict close price')
    plt.legend(loc='upper right')
    plt.show()
```

Out[29]: <Figure size 864x432 with 0 Axes>

Out[29]: [<matplotlib.lines.Line2D at 0x1f1393216a0>]

Out[29]: [<matplotlib.lines.Line2D at 0x1f1392e54a8>]

Out[29]: <matplotlib.legend.Legend at 0x1f139336198>

结论分析

- 虽然预测的结果误差不大,但是无法用于实际
- 因为股价影响因素还有 经济周期,政策,情绪等