Halbaddierer, Volladdierer, Ripple-Carry-Addierer

Michel Bode

11.06.2024

Einordnung

Übergeordnetes Ziel

Berechnung beliebig komplexer Funktionen

Als bekannt vorausgesetzt:

- Logische Ausdrücke
- Logikgatter und deren Darstellung
- Wahrheitstabellen

In dieser Vorlesung:

- Addition einzelner Bits
- Kombination dieser zur Addition von Ganzzahlen (Int)

Ausblick:

■ Bit/Int-Addition ist Grundlage so gut wie aller mathematischen Berechnungen (ALU, FPU, Steuerwerk, ...)

Motivation

Schätzfrage

Wie viele Bit-Additionen werden für die Berechnung der Quadratwurzel einer Gleitkommazahl einfacher Genauigkeit (32 bit float) benötigt?

Motivation

Schätzfrage

Wie viele Bit-Additionen werden für die Berechnung der Quadratwurzel einer Gleitkommazahl einfacher Genauigkeit (32 bit float) benötigt?

Typischerweise mehr als 4000!

Addition von Binärzahlen

Addition von Binärzahlen

Addition von Binärzahlen - Halbaddierer

Als Binärziffern:

$$a + b = \overline{cs}$$

Wahrheitstabelle:

a	b	С	<i>S</i>
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition von Binärzahlen - Halbaddierer

Als Binärziffern:

$$a + b = \overline{cs}$$

Als logischer Ausdruck:

$$s = a \oplus b$$

 $c = a \wedge b$

Wahrheitstabelle:

a	b	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition von Binärzahlen – Halbaddierer

Als Binärziffern:

$$a + b = \overline{cs}$$

Als logischer Ausdruck:

$$s = a \oplus b$$

 $c = a \wedge b$

Schaltbild:

Addition von Binärzahlen - Volladdierer

Als Binärziffern:

$$a + b + c_{in} = \overline{c_{out}s}$$

Wahrheitstabelle:

_					
	a	b	Cin	Cout	S
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
L	1	1	1	1	1

Addition von Binärzahlen - Volladdierer

Als Binärziffern:

$$a + b + c_{in} = \overline{c_{out}s}$$

Als logischer Ausdruck:

$$s = a \oplus b \oplus c_{in}$$
$$c_{out} = (a \land b) \lor ((a \oplus b) \land c_{in})$$

Wahrheitstabelle:

a	annicitationic.				
	а	b	Cin	Cout	S
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1

Addition von Binärzahlen - Volladdierer

Als Binärziffern:

$$a + b + c_{in} = \overline{c_{out}s}$$

Als logischer Ausdruck:

$$s = a \oplus b \oplus c_{in}$$
$$c_{out} = (a \wedge b) \vee ((a \oplus b) \wedge c_{in})$$

Schaltbild:

Addition von Binärzahlen – Ripple-Carry-Addierer

Schaltbild:

- Zeit der Propagierung des Carry-Bits ist kritisch
- Gesamtlaufzeit skaliert linear mit Anzahl Bits

- Zeit der Propagierung des Carry-Bits ist kritisch
- Gesamtlaufzeit skaliert linear mit Anzahl Bits
- schnellere Addierwerke möglich, kosten aber mehr (Platz, Strom, Bauteile)

Aufbau des Volladdierers

Aufbau des Volladdierers

- c_{out} hängt von c_{in} und a + b ab
- c_{out} aus c_{in} und a + b nicht mit nur einem einfachen Logikgatter darstellbar
- als integrierter Schaltkreis sind Abkürzungen möglich

Alternative Schaltbilder

Was Sie mitnehmen sollten

Addierer sind die essentiellen Bausteine für die Berechnung mathematischer Funktionen auf dem Computer.

Was Sie mitnehmen sollten

Addierer sind die essentiellen Bausteine für die Berechnung mathematischer Funktionen auf dem Computer.

Die Komplexität des Addierens kommt aus der Propagierung des Carry-Bits.

Was Sie mitnehmen sollten

Addierer sind die essentiellen Bausteine für die Berechnung mathematischer Funktionen auf dem Computer.

Die Komplexität des Addierens kommt aus der Propagierung des Carry-Bits.

Es gibt keine einzelne beste Schaltung für die Addition. Neben Überlegungen zur Relevanz von Latenz und Kosten sind auch zur Verfügung stehende Bauteile zu beachten.