

Seminário da Disciplina: Redes Neurais e Aprendizado em Profundidade

YOLOv3: An Incremental Improvement (Uma melhoria Incremental)

Joseph Redmon e Ali Farhadi (2018) University of Washington

Halliday Gauss Costa dos Santos Vinicius de Paula Silva

Ouro Preto (Outubro-2022)

Organização do Trabalho

01 Introdução

05 Referências

- 02 Desenvolvimento
- 03 Ideias que não funcionaram
- 04 Conclusão

Introdução - Conceitos - YOLO

Introdução - Conceitos - YOLO

Introdução - Conceitos - YOLO

Funcionamento

Dividir a imagem em um grid de S x S células.

Cada célula prediz várias caixas delimitadoras retornando o valor de confiança que tenha um objeto.

Cada caixa faz a previsão Considera apenas as de uma classe. É retornado caixas cuja pontuação o valor da probabilidade (combinação entre confiança da caixa e predição de um objeto específico).

final seja maior que um limiar.

Introdução - Conceitos - Yolo

Introdução - Conceitos -Outros Modelos

Modelos citados:

RetinaNet (ResNet e ResNext).

SSD (ResNet).

Introdução - Conceitos - Métricas

Precisão Média Média (mAP)

- Importante para avaliar o desempenho dos modelos de detecção de objetos
- Baseadas em: Matriz de confusão, Intersecção sobre União (IoU), Recall e Precisão.

Introdução - Conceitos - Métricas

Calculando o mAP:

O mAP é calculado encontrando a Precisão média (AP) para cada classe e, em seguida, a média de várias classes.

$$\text{mAP} = \frac{1}{N} \sum_{i=1}^{N} \text{AP}_i$$

Introdução - Conceitos - Métricas

- Gere as pontuações de previsão usando o modelo.
- Converta as pontuações de previsão em rótulos de classe.
- Calcule a matriz de confusão TP, FP, TN, FN.
- Calcule as métricas de precisão e recall.
- Calcule a área sob a curva de precisão-recall.

Meça a precisão média.

Introdução - Conceitos - Notações

AP: AP com loU de 50%, 95% e 5%.

APS: AP para objetos pequenos.

AP50: AP com loU de 50%.

APM: AP para objetos de tamanho médio.

AP75: AP com loU de 75%.

APL: AP para objetos grandes.

Introdução - Objetivo

Obter melhorias no YOLO.

Desenvolvimento - Predição da caixa delimitadora

É previsto a largura e a altura da caixa como deslocamentos dos centróides do cluster. É predito as coordenadas do centro da caixa em relação ao local de aplicação do filtro usando uma função sigmóide.

Desenvolvimento - Predição de classe

- Dentro de cada caixa delimitadora será predito as classes que podem aparecer usando classificação multirrótulo.
- Ao invés de usar softmax foi utilizado classificadores logísticos independentes, para ganhar desempenho.
- A loss utilizado no treinamento foi: binary cross-entropy

Desenvolvimento - Predições utilizando escalas

YOLOv3 prevê caixas em 3 escalas diferentes.

O sistema extrai características dessas escalas usando um conceito similar para caracterizar redes de pirâmide.

Desenvolvimento - Extrator de Características

- Criada uma nova rede baseda na mistura da Darknet-19 da YOLOv2, com diversas camadas convolucionais de 3X3 e 1X1 em sequência.
- Rede mais larga com 53 camadas convolução, chamada de Darknet-53.

Desenvolvimento - Extrator de Características

	Type	Filters Size		Output		
	Convolutional	32	3 x 3	256 x 256		
	Convolutional	64		128 × 128		
	Convolutional	32	1 x 1	120 % 120		
1x	Convolutional	64	3 x 3			
10	Residual	0-1	0 ^ 0	128 × 128		
ı	Convolutional	128	3 x 3 / 2	64 × 64		
ı	Convolutional	64	1 x 1			
2×	Convolutional	128	3 x 3			
2.0	Residual	120	3 x 3	64 × 64		
l		050	2 2 / 2			
	Convolutional	256	3×3/2	32 × 32		
	Convolutional	128	1 × 1			
8×	Convolutional	256	3×3			
	Residual			32 × 32		
	Convolutional	512	$3 \times 3 / 2$	16 x 16		
	Convolutional	256	1 x 1			
8×	Convolutional	512	3×3			
	Residual			16 × 16		
'	Convolutional	1024	3×3/2	8 × 8		
	Convolutional	512	1 x 1			
4×	Convolutional	1024	3×3			
	Residual			8 × 8		
	Avgpool		Global	•		
	Connected		1000			
	Softmax		W - W - W -			

Backbone	Top-1	Top-5	Bn Ops	BFLOP/s	FPS
Darknet-19 [15]	74.1	91.8	7.29	1246	171
ResNet-101[5]	77.1	93.7	19.7	1039	53
ResNet-152 [5]	77.6	93.8	29.4	1090	37
Darknet-53	77.2	93.8	18.7	1457	78

Desenvolvimento - Resultados

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [5]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [8]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [6]	Inception-ResNet-v2 [21]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [20]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [15]	DarkNet-19 [15]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [11, 3]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [3]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [9]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [9]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608 × 608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

Desenvolvimento - Resultados

Desenvolvimento - Resultados - Comparação

Ideias que não funcionaram

- Anchor box x, y, para previsões de descolocamento:
 - Prever deslocamento x,y como múltiplo da altura e largura da caixa usando uma ativação linear.
 - Diminuiu a estabilidade do modelo.

Ideias que não funcionaram

Diminuiu o mAP.

Ideias que não funcionaram

- Aprimoramento da Cross-Entropy Loss e é introduzida para lidar com o problema de desequilíbrio de classe com modelos de detecção de objeto de estágio único.
- Usada na RetinaNet.
- Diminiu em 2 pontos o mAP.

Conclusão

- Versão do YOLO: YOLOv3 ainda rápida e mais precisa.
- Em 320X320 é executado em 22 ms a 28,2 mAP, tão preciso quanto o SSD, mas três vezes mais rápido
- Considerando a métrica mAP de .5 IOU, YOLOv3 é muito boa, atingindo 57,9 AP50 em 51 ms em uma Titan X, comparado a 57,5 AP50 em 198 ms por uma RetinaNet, desempenho semelhante, mas 3,8 vezes mais rápido.
- Não tão boa entre 0,5 e 0,95 de IOU.

Referências

Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).

ALVES, G. Detecção de Objetos com YOLO — Uma abordagem moderna. Disponível em: https://iaexpert.academy/2020/10/13/deteccao-de-objetos-com-yolo-uma-abordagem-moderna/. Acesso em: 18 out. 2022.

SHAH, D. Mean Average Precision (mAP) explained: Everything you need to know. V7labs.comV7, , 7 out. 2022. Disponível em: https://www.v7labs.com/blog/mean-average-precision>. Acesso em: 18 out. 2022

REDMON, J. YOLO: Real-time object detection. Disponível em: https://pjreddie.com/darknet/yolo/. Acesso em: 18 out. 2022.

HUI, J. Understanding Feature Pyramid Networks for object detection (FPN). Disponível em: https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c. Acesso em: 18 oct. 2022.

How RetinaNet works? Disponível em: https://developers.arcgis.com/python/guide/how-retinanet-works/. Acesso em: 18 oct. 2022.

Obrigado!

.