Série N°6

a) Soit l'instruction qui se trouve à l'adresse 300 :
 LOAD 200,IMM
 Expliquer les différentes phases d'exécution à l'aide d'un schéma.
 Donner les contenus des différents registres mis en jeu.

 b) Donner le contenu de l'Accumulateur après l'exécution de chacune des instructions suivantes : LOAD 200,IND

LOAD 200,XRI (XRI registred'index)

Nous avons:

Adresse	Contenu
100	a
101	d
200	100
202	b
XRI	2

a) Soit l'instruction qui se trouve à l'adresse 300 :

LOAD 200,IMM

Expliquer les différentes phases d'exécution à l'aide d'un schéma.

Donner les contenus des différents registres mis en jeu.

b) Donner le contenu de l'Accumulateur après l'exécution de chacune des instructions suivantes :

LOAD 200,IND

LOAD 200,XRI (XRI registred'index)

Nous avons:

Adresse	Contenu
100	a
101	d
200	100
202	b
XRI	2

b) Donner le contenu de l'Accumulateur après l'exécution de chacune

des instructions suivantes :

LOAD 200, IND

ACC ← ((200))

LOAD 200, XRI (XRI registre d'index)

Adresse	Contenu
100	a
101	d
200	100
202	b
XRI	2

acc a

b) Donner le contenu de l'Accumulateur après l'exécution de chacune des instructions suivantes :

LOAD 200, IND LOAD 200, XRI (XRI registre d'index)

Adresse	Contenu
100	a
101	d
200	100
202	b
XRI	2

ACC b

- a) Donner le contenu de l'Accumulateur après l'exécution de chacune de chaque instruction.
- **b)** Que fait ce programme ?
- c) Quelle est la valeur stockée dans F?

LOAD 101,D
MUL 201,IND
MUL 102,D
STORE Y,D
LOAD 303,IND
MUL 202, D
SUB Y, D
STORE F,D

Adresse	Contenu
101	A
102	4
201	302
202	В
302	С
303	202

 a) Donner le contenu de l'Accumulateur après l'exécution de chacu instruction.

LOAD 101, D	ACC ← (101)	ACC: A
MUL 201, IND	ACC ← ACC * ((201))	ACC :A*C
MUL 102, D	ACC ← ACC * (102)	ACC :A*C*4
STORE Y, D	Y ← (ACC)	Y:A*C*4

Adresse	Contenu
101	Α
102	4
201	302
202	В
302	С
303	202
••••	
Υ	Y: A*C*4
F	F:B*B-A*C*4

LOAD 303, IND
MUL 202, D
SUB Y, D
STORE F, D

ACC ← ((303)) ACC : B

ACC ← ACC * (202) ACC :B*B

 $ACC \leftarrow ACC - Y$

ACC : B*B - A*C*4

 $F \leftarrow ACC$

F : B*B - A*C*4

a) Donner le contenu de l'Accumulateur après l'exécution de chacuinstruction.

LOAD 101, D	ACC ← (101)	ACC: A
MUL 201, IND	ACC ← ACC * ((201))	ACC :A*C
MUL 102, D	ACC ← ACC * (102)	ACC :A*C*4
STORE Y, D	Y ← (ACC)	Y:A*C*4

Adresse	Contenu
101	А
102	4
201	302
202	В
302	С
303	202
••••	
Υ	Y: A*C*4
F	F: B*B - A*C*4

LOAD 303, IND MUL 202, D ... SUB Y, D b) Ce I STORE F, D second $ACC \leftarrow ((303))$ ACC : B

- b) Ce programme calcule le discriminent **DELTA** (Δ) d'une équation du second degré
- c) La valeur stockée dans F est **B**² **4AC**

Etant donnés les contenus des registres et des mémoires suivants : (XR1)=1 ; (XR2)=2 ; (1000)=0 ;(1001)=1 ; (2000)=2 ; (2001)=3 ; (3000)=4 ; (3001)=5 ; (0)=1000 XR1 et XR2 sont des registres d'index Les valeurs entre parenthèses représentent les adresses mémoire.

a) Indiquer le contenu de l'Accumulateur après chacune des opérations suivantes :

LOAD 3000, XRI

LOAD 999, XR2

LOAD 1000, IND

LOAD 2, IMM

LOAD 1000, D

a - Indiquer le contenu de l'Accumulateur après chacune des opérations suivantes :

LOAD 3000, XR1 LOAD 999, XR2 LOAD 1000, IND LOAD 2, IMM LOAD 1000, D Acc ← 5
Acc ← 1
Acc ← 1000
Acc ← 2
Acc ← 0

Adresse	Contenu
0	1000
1000	0
1001	1
2000	2
2001	3
3000	4
3001	5
XR1	1
XR2	2

b) Quelle est la valeur de F après l'exécution du programme ci-dessous :

LOAD 3000, D

ADD 2000, XRI

SUB 5,IMM

MUL 3001, D

DIV 2000, D

ADD 1000, D

SUB 0, IMM

STORE F, D

b - Quelle est la valeur de F après l'exécution du programme ci-dessous :

LOAD 3000, D
ADD 2000, XR1
SUB 5, IMM
MUL 3001, D
DIV 2000, D
ADD 1000, D
SUB 0, IMM
STORE F, D

Acc
$$\leftarrow$$
 4
Acc \leftarrow 7 (4+3)
Acc \leftarrow 2 (7-5)
Acc \leftarrow 10 (2*5)
Acc \leftarrow 5 (10/2)
Acc \leftarrow 5 (5+0)
Acc \leftarrow 5 (5-0)
F \leftarrow 5

Adresse	Contenu
0	1000
1000	0
1001	1
2000	2
2001	3
3000	4
3001	5
XR1	1
XR2	2
F	5

Etant donné une machine dont l'architecture est donnée par la figure suivante :

Réaliser les instructions suivantes à l'aide seulement des opérations étudiées en cours.
 Utiliser l'adressage direct.

a) 1/ lire A; b) 1/lire A; 2/lire B; 2/lire B; 3/C := A-B; 3/A := A² + A*B + B²; 4/R := (A+B)- C; 4/écrire A. 5/ écrire R.

```
1/ lire A;
2/ lire B;
3/C := A-B;
4/R := (A+B)-C;
5/ Ecrire R.
```

- 1) READ STORE A, D
- 2) READ STORE B, D
- 3) LOAD A, D SUB B, D STORE C, D
- 4) LOAD A, D
 ADD B, D
 SUB C, D
 STORE R, D
- 5) LOAD R,D WRITE.

Etant donné une machine dont l'architecture est donnée par la figure suivante :

Réaliser les instructions suivantes à l'aide seulement des opérations étudiées en cours.
 Utiliser l'adressage direct.

a) 1/ lire A; b) 1/lire A; 2/lire B; 2/lire B; 3/C := A-B; 3/A := A² + A*B + B²; 4/R := (A+B)- C; 4/écrire A. 5/ écrire R.

```
1/ lire a;
2/ lire b;
3/A := A^2 + A*B + B^2;
4/ Ecrire A.
```

100	READ	Acc A
101	STORE A, D	A := A
102	READ	Acc B
103	STORE B, D	B :=B
104	MUL B, D	Acc B*B
105	STORE X, D	X:= B ²
106	LOAD A, D	Acc A
107	MUL B, D	Acc A*B
108	ADD X, D	$Acc A*B + B^2$
109	STORE X, D	$X := AB + B^2$
110	LOAD A, D	Acc A
111	MUL A, D	Acc A*A
112	ADD X, D	$Acc A^2+AB+B^2$
113	STORE A, D	$A:=A^2+AB+B^2$
114	WRITE	
1		

```
1/ lire a;
2/ lire b;
3/A := A^2 + A*B + B^2;
4/ Ecrire A.
```

```
1)
       READ
                                          (10)
                            Acc A
                                          (A:=10)
       STORE A, D
                            A := A
2)
       READ
                                          (5)
                            Acc B
                                          (B:=5)
       STORE B, D
                            B :=B
3)
                            Acc B*B
                                          (5*5)
       MUL B, D
                            X := B^2
                                          (X := 25)
       STORE X, D
                                          (10)
       LOAD A, D
                            Acc A
       MUL B, D
                            Acc A*B
                                          (10*5)
                            Acc A*B + B^2 (50 + 25)
       ADD X, D
                            X := AB + B^2
                                          (X:=75)
       STORE X, D
       LOAD A, D
                                          (10)
                            Acc A
       MULA, D
                            Acc A*A
                                          (100)
                            Acc A^2 + AB + B^2 (175)
       ADD X, D
       STORE A, D
                            A:= 175
4)
       WRITE
```

La figure ci –après représente un carré de côté C surmonté d'un demi-cercle :

Donner la formule qui calcule la surface de cette figure.

Ecrire le Programme Assembleur correspondant

La valeur de PI (3.14) se trouve en mémoire centrale,

La valeur de C se trouve dans le périphérique d'entrée.

N'utiliser aucune variable autre que PI et C.

Surface = Surface carré + Surface demi-cercle

Surface carré = C*C

Surface demi-cercle = PI*R*R/2 (R=C/2) = ((PI*C*C)/4)/2 = PI*C*C/8

Surface = C*C + (C*C*PI)/8 = C*C(1+PI/8)

Surface = Surface carré + Surface demi-cercle
Surface =
$$C*C + (C*C*PI)/8 = C*C(1+PI/8)$$

```
1- READ
2- STORE C,D
3- MUL C, D
4- STORE C, D
5- MUL PI, D
6- DIV 8,IMM
```

7- ADD C, D

```
1- Acc ← valC
2- C ← valC
2- Acc ← (ACC)*C (valC*valC)
3- C ← (ACC) (valC*valC)
4- Acc ← (ACC)*PI (valC*valC*PI)
5- Acc ← (ACC)/8 (valC*valC*PI/8)
6- Acc ← (ACC) + C (valC*valC*PI/8 + Cval*Cval)
```

Surface = Surface carré + Surface demi-cercle
Surface =
$$C*C + (C*C*PI)/8 = C*C(1+PI/8)$$

- 1- READ
- 2- STORE C
- 3- MULC, D
- 4- STORE C, D
- 5- LOAD PI, D
- 6- DIV 2,IMM
- 7- ADD 1, IMM
- 8- MUL C,D

- $1-Acc \leftarrow C$
- 2- C← C
- 2- Acc ← C*C
- 3- C ← C*C
- 4- Acc ← PI
- 5- Acc ← PI/8
- 6- Acc \leftarrow PI/8 + 1
- 7- Acc \leftarrow C*C*(PI/2 + 1)

Surface = Surface carré + Surface demi-cercle
Surface =
$$C*C + (C*C*PI)/8 = C*C(1+PI/8)$$

- 1- READ
- 2- STORE C
- 2- MULC, D
- 3- STORE C, D
- 4- LOAD PI, D
- 5- DIV 2,IMM
- 6- ADD 1, IMM
- 7- MUL C,D

- 1- Acc ← 10
- 2- C← 10
- 2- Acc ← 10 * 10
- 3- C ← 10*10
- 4- Acc ← 3.14
- 5- Acc ← 3.14/8
- $6 Acc \leftarrow 3.14/8 + 1$
- 7- Acc \leftarrow (3.14/8+1)*10*10

ACC 3.14/8+1

C 10*10