TP 9 - Études de convergences numériques

On étudie trois méthodes pour approximer la constante $\sqrt{2}$.

À chaque fois, on constuit une suite (u_n) telle que $\lim_{n \to \infty} (u_n) = \sqrt{2}$.

L'objectif est de comparer numériquement les trois méthodes.

On modélisera les erreurs de ces approximations par : $\epsilon_n = |u_n^2 - 2| \to 0$.

Exercice 1 (Méthode de dichotomie)

1. Programmer la méthode de dichotomie pour la fonction : $p(x) = x^2 - 2$. On choisira pour u_n , l'approximation par défaut.

La convergence de (u_n) vers $\sqrt{2}$ est géométrique de raison $\frac{1}{2}$.

Exercice 2 (Développement en fraction continue)

- **1.** Montrer que : $(\sqrt{2} 1) \cdot (\sqrt{2} + 1) = 1$.
- **2.** En déduire l'écriture : $\sqrt{2} = 1 + \frac{1}{1+\sqrt{2}}$.

Le nombre $\sqrt{2}$ est donc un point fixe de la fonction $f: x \mapsto 1 + \frac{1}{1+x}$.

On admet : $\sqrt{2} = \lim(u_n)$, avec la suite (u_n) définie par : $u_0 = 1$,

 $\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n).$

3. Montrer, pour p,q > 0, l'écriture : $f(\frac{p}{q}) = \frac{p+2q}{p+q}$.

Ainsi, la suite (u_n) ci-dessus s'écrit : $u_n = \frac{p_n}{q_n}$, avec : $\forall n \in \mathbb{N} \rightarrow p_{n+1} = p_n + 2q_n$,

$$\qquad \qquad q_{n+1} = p_n + q_n,$$

•
$$p_0 = q_0 = 1$$
.

4. Programmer le calcul des suites (p_n) , (q_n) .

Vérifier, pour $n \in \mathbb{N}$, l'équation de Pell-Fermat : $p_n^2 - 2 \cdot q_n^2 = \pm 1$.

5. Vérifier que, pour : $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, on a, pour $n \in \mathbb{N}$: $A \cdot \begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} p_{n+1} \\ q_{n+1} \end{pmatrix}$.

 $(d'où: \binom{p_n}{q_n} = A^n \cdot \binom{1}{1}$. On vérifie aussi que: $A^{n+1} = \begin{bmatrix} p_n & 2q_n \\ q_n & p_n \end{bmatrix}$.)

6. Trouver les valeurs propres de A.

On en déduit que la convergence de (u_n) vers $\sqrt{2}$ est géométrique de raison : $\frac{1-\sqrt{2}}{1+\sqrt{2}}$.

(Un peu meilleure que la dichotomie.)

Exercice 3 (Méthode de Newton)

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que

- f' ne s'annule pas
- f s'annule une seule fois, en α .

Soit $x_0 \in \mathbb{R}$, on note \mathcal{T}_0 la tangente en x_0 .

Si $x_0 \simeq \alpha$, alors x_1 est une estimation encore meilleure.

La **méthode de Newton** définit une suite (x_n) par $\forall n \ge 0, x_{n+1} = g(x_n)$.

2. Trouver les points fixes de g. En déduire que si (x_n) converge, c'est vers α .

Pour la fonction définie par : $p(x) = x^2 - 2$ la fonction g est définie par : $g(x) = \frac{1}{2} \cdot \left(x + \frac{2}{x}\right)$. **Exercice 4**

1. Programmer la suite définie par : $u_0 = 1$,

$$\forall n \in \mathbb{N}, \quad u_{n+1} = g(u_n) = \frac{1}{2} \cdot \left(u_n + \frac{2}{u_n}\right).$$

2. Montrer, pour p,q > 0, l'écriture : $g(\frac{p}{q}) = \frac{p^2 + 2q^2}{2 \cdot p \cdot q}$.

Ainsi, la suite (u_n) ci-dessus s'écrit : $u_n = \frac{p_n}{q_n}$, avec : $\forall n \in \mathbb{N} \rightarrow p_{n+1} = p_n^2 + 2q_n^2$,

$$q_{n+1} = p_n^2 + q_n^2,$$

•
$$p_0 = q_0 = 1$$
.

- 3. Programmer le calcul des suites (p_n) , (q_n) . Vérifier, pour $n \in \mathbb{N}$, l'équation de Pell-Fermat : $p_n^2 - 2 \cdot q_n^2 = \pm 1$.
- **4.** Vérifier que, pour : $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, on a, pour $n \in \mathbb{N}$: $A^{2^n} = \begin{bmatrix} p_n & 2q_n \\ q_n & p_n \end{bmatrix}$.
- **5.** Trouver les valeurs propres de A.

On en déduit que la convergence de (u_n) vers $\sqrt{2}$ est en : $\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^{2^n}$.