Mag 2019: Consensus Partition and similarity clustering

- The problem of consensus partition
- Mismatch (Mirkin's) distance between partitions
- Consensus matrix
- Mismatch distance consensus partition
- Muchnik test and failure of the mismatch distance consensus
- Regression distance between partitions
- Regression distance consensus partition
- -Relation to k-Means clustering

Consensus partitioning

7

Consensus partition operationally

Given an entity set I, and m partitions of it, R1, R2, ..., Rm, Define consensus partition S of I:

 $Min_S \sum_{t=1}^m d(S, Rt)$

with d(R,S), predefined distance over partitions of I

Mismatch (Mirkin's) distance between partitions, 1

Given partition $R = \{R_1, R_2, ..., R_K\}$ on I, define $N \times N$ matrix $r = (r_{ij})$, N = #I:

$$r_{ij} = \begin{cases} 1, & \text{if } i, j \in R_k \text{ for some } k = 1, 2, ..., K \\ 0, & \text{otherwise} \end{cases}$$

Mismatch distance between partitions, 2

A binary NxN matrix to correspond to any partition:

```
R = \{1-2-3, 4-5-6\}, S = \{1-3, 2-4-5-6\}, T = \{1-4, 2-5, 3-6\}
  1 23 456
                    1 234 56
                                      1 234 5 6
  111000
                 101000
                                 100100
 111000
                010111
                                010010
 111000
                101000
                                001001
 000111
                010111
                                100100
                010111
 000111
                                010010
 000111
                010111
                                001001
```

Mismatch distance between partitions, 3

Given partitions $R = \{R_1, ..., R_K\}$, $S = \{S_1, ..., S_L\}$ of I, and binary $N \times N$ matrices $r = (r_{ij})$, $s = (s_{ij})$, representing them:

$$d(R,S) = \sum_{i,j=1}^{N} |r_{ij} - s_{ij}| = \sum_{i,j=1}^{N} (r_{ij} - s_{ij})^2$$
 (definition)

$$d(R,S) = \sum_{i,j=1}^{N} (r_{ij} + s_{ij} - 2 r_{ij} s_{ij})$$
 (derivation: note, no exponent 2)

$$d(R,S) = \sum_{k=1}^{K} N_k^2 + \sum_{l=1}^{L} N_l^2 - 2 \sum_{k=1}^{K} \sum_{l=1}^{L} N_{kl}^2$$

This expresses distance d through the contingency table between R and S

Quiz: what is the maximum distance between partitions on I

■ Tip: N(N-1) where N=#1. That is the mismatch distance between trivial partition 0 consisting of N singletons, and the universal partition consisting of just one part, the set I itself.

Example of Mismatch distance

```
R = \{1-2-3, 4-5-6\}, S = \{1-3, 2-4-5-6\}, T = \{1-4, 2-5, 3-6\}
    1 234 56
                     1 234 56
                                      1 234 5 6
    111000
                   101000
                                 100100
   111000
                  010111 010010
   111000
                  101000 001001
   000111
                  010111 100100
   000111
                  010111 010010
   000111
                  010111
                           001001
Compute d(R/S) = |R| + |S| - 2|RS| = (3^2 + 3^2) + (2^2 + 4^2) - 2(2^2 + 1^2 + 3^2) = 18 + 20 - 28 = 10, since RS = \{1 - 3\}
2, 4-5-6}.
Relative distance is \delta(R,S) = d(R,S)/[N(N-1)] = 10/30 = 0.33.
```

Quiz: Compute d(R,T), d(S,T).

Mismatch distance between partitions, 4

- Here all the ordered pairs (i,j) are considered in R_k , S_l , and $R_k \cap S_l$.
- Frequently, only unordered pairs {i,j} are considered only; their number is the binomial coefficient. Then

$$d(R,S) = \sum_{k=1}^{K} {N_k \choose 2} + \sum_{l=1}^{L} {N_l \choose 2} - 2 \sum_{k=1}^{K} \sum_{l=1}^{L} {N_{kl} \choose 2}$$
where ${n \choose 2} = n(n-1)/2$.

This you will see in literature.

Given partitions R^1 , R^2 ,..., R^m , of I, find $S=\{S_1,...,S_I\}$ to minimize:

$$\sum_{t=1}^{m} d(R^t, S) = \sum_{t=1}^{m} \sum_{i,j=1}^{N} (r_{ij}^t + s_{ij} - 2r_{ij}^t s_{ij})$$

since

$$d(R^t, S) = \sum_{i,j=1}^{N} |r_{ij}^t - s_{ij}| = \sum_{i,j=1}^{N} (r_{ij}^t - s_{ij})^2$$

Note, once again r and s with no exponent! Because they are binary: $1^2=1$ and $0^2=0$.

Define consensus matrix: given partitions R^t with $N \times N$ matrices r^t (t=1,...,m), **Consensus**

matrix $A=(a_{ij})$:

so that

$$A = \sum_{t=1}^{m} r^t$$

$$a_{ij} = \sum_{t=1}^{m} r_{ij}^t$$

 \blacksquare a_{ij} is the number of partitions R^t in which i,j belong in the same part

Given partitions R^1 , R^2 ,..., R^m , of I, find $S = \{S_1, ..., S_I\}$ to minimize:

$$\sum_{t=1}^{m} d(R^{t}, S) = \sum_{t=1}^{m} \sum_{i,j=1}^{N} (r_{ij}^{t} + s_{ij} - 2r_{ij}^{t} s_{ij}) = \sum_{i,j=1}^{N} (a_{ij} + m s_{ij} - 2a_{ij} s_{ij})$$

$$\sum_{t=1}^{m} d(R^{t}, S) = const - 2 \sum_{i,j=1}^{N} (a_{ij} - \frac{m}{2}) s_{ij}$$

Given partitions R^1 , R^2 ,..., R^m , of I, find consensus $S = \{S_1, ..., S_L\}$ to minimize

$$\sum_{t=1}^{m} d(R^t, S) = const - 2 \sum_{i,j=1}^{N} (a_{ij} - \frac{m}{2}) s_{ij}$$

that is, find $S = \{S_1, S_2, ..., S_K\}$ maximizing

$$f(S) = \sum_{i,j=1}^{N} (a_{ij} - \frac{m}{2}) s_{ij} = \sum_{k=1}^{K} \sum_{i,j \in S_k} (a_{ij} - \frac{m}{2})$$

This is the within-cluster summary criterion with shift value m/2 subtracted

Example: m=11 partitions of the Ten Digits

Parts in R6, R7; 3 parts in the 9 others

Digit	R ^R 1	R2	R3	R4	R5	R6	R7	R8	R9	R10
1	11	1	1	2	1	1	1	1	1	2
2 3	22	2	2	2	3	3	3	2	2	3
4	33	3	3	2	3	3	4	3	3	2
5	13	1	1	3	3	1	1	1	3	2
7	33	3	3	1	2	2	2	3	3	1
8	22	2	2	1	2	2	2	2	2	1
Ó	2 gDaraAnalysis_20	019_7	1	2	1	3	1	1	1	2
	22	2	2	3	3	4	3	2	2	3

Example: Consensus matrix for m=11 partitions of the

	Pic			7 1116661			P 41111		<u> </u>
Ten [01	2	3	4	5 6	7	8	9
	1	₀ 11	1 1	2	7	0	0	10	0
	2 3	31	1011	3	1	0	6	2	9
	23456	92	23	11	4	6	0	3	1
	5	4 ⁷	1 1	4	11	2	0	6	2
		60	0 0	6	2	11	5	0	0
	890	00	006	0	0	5	11	0	6
	Ó	110	1 2	3	6	0	0	11	0
M		30	109	1	2	0	6	0	11
		<u>1</u> 0	် <u>သိ</u>	9	4	6	0	1	3

Example: Consensus matrix for m=11 partitions of the Ten Digits, with m/2=5.5 subtracted and diagonal zeroed

	9	1	0	2	3	4		5	6	7	8
1	5	50	-4.5	4.5	-3.5	1.5	-5.5	-5.5	4.5	-5.5	-
3	7	4.5	4 5	0	-2.5	-4.5			-3.5		
4	3	3.5	-37	2.5	0	-1.	5 0	. 5 -5	.5 -2 0.5	.5 -	4.5
5	1	55	_4	.5	-1.5	0	-3.5	-5.5	0.5	-3.5	-
7	0	5 .5	-5-	5.5	0.5	-3.5		0 -0	.5 -5	.5 -	5.5
89	5	5 .5	0.9	.5	0.5	-5.5	-0.5	0	-5.5	0.5	-
Ó	4	L 5	-4.3	.5	-2.5	0.5	-5.5	-5.5	0	-5.5	-
			4		-4.5	-3.5	-5.5	0.5	-5.5	0	-

Example: Consensus matrix for m=11 partitions of the Ten

However, consensus partition for mismatch distance fails the Muchnik test.

Muchnik test

- Take a partition $R = \{R_1, R_2, ..., R_K\}$ of I in K≥2 parts R_k .
- Create a set of K two-part partitions $Rk = \{R_k, I R_k\}$, k = 1,2,...,K.
- Find a consensus partition S for the K two-part partitions Rk, k=1,2,...,K.
- + If S==R, the test is passed; if not, the test is failed.

Muchnik test for mismatch distance

19

- Take a partition $R = \{R_1, R_2, ..., R_K\}$ of I in $K \ge 2$ parts R_k .
- Create a set of K two-part partitions $Rk = \{R_k, I R_k\}, k = 1, 2, ..., K$.
- Find consensus matrix for set of $Rk = \{R_k, I R_k\}, k = 1, 2, ..., K$.
- $a_{ij} = \begin{cases} K & \text{if } i, j \in R_k \text{ for some } k \\ K 2, \text{ if } i \in R_k, j \in R_l \text{ and } k \neq l \end{cases}$
- Since shift K/2 < K-2 at $K \ge 5$, the maximum f(S) is reached at the universal partition $S = \{I\}$: the test fails at $K \ge 5$.

Therefore, Mismatch distance fails Muchnik test and is not that good, overall.

Luckily, a similar distance can be defined to pass the Muchnik test: the regression distance.

Regression distance between

partitions, 1Siven partitions $R = \{R_1, ..., R_K\}$, $S = \{S_1, ..., S_L\}$ of I, define binary $N \times K$ and $N \times L$ incidence matrices $X = (x_{ik})$ and $Y = (y_{il})$:

$$x_{ik} = \begin{cases} 1, & \text{if } i \in R_k \ (k = 1, 2, ..., K) \\ 0, & \text{otherwise} \end{cases}$$

$$y_{il} = \begin{cases} 1, & \text{if } i \in S_l \ (l = 1, 2, ..., L) \\ 0, & \text{otherwise} \end{cases}$$

- Define orthogonal projector $P_X = X(X^TX)^{-1}X^T$.
- In P_{χ} : (i,j)-th entry is 0, except for the case at which both $i,j \in R_k$ for some k-i in this case that is $1/N_k$ where $N_k = \#R_k$.

Regression distance between partitions,2

22 ven partitions $R = \{R_1, ..., R_K\}$, $S = \{S_1, ..., S_L\}$ of I, define binary $N \times K$ and $N \times L$ incidence matrices $X = (x_{ik})$ and $Y = (y_{il})$:

- $y_{il} = \begin{cases} 1, & \text{if } i \in S_l \ (l = 1, 2, ..., L) \\ 0, & \text{otherwise} \end{cases}$
- Define mean $(Y) = (p_1, ..., p_L)$, vector of relative frequencies
- Define Y'=Y mean(Y) (subtracting mean(Y) from every row of Y)
- Define orthogonal projector $P_X = X(X^TX)^{-1}X^T$.
- **Regression** distance: the summary squared difference between Y' and P_XY' :

$$Rd(R,S) = ||Y' - P_X Y'||^2$$

Meaning: How well is span(X) for reproducing Y'?

Regression distance Rd between partitions,3

23'en partitions $R = \{R_1, ..., R_K\}$, $S = \{S_1, ..., S_L\}$ of I, define binary $N \times K$ and $N \times L$ incidence matrices $X = (x_{ik})$ and $Y = (y_{il})$:

- $y_{il} = \begin{cases} 1, & \text{if } i \in S_l \ (l = 1, 2, ..., L) \\ 0, & \text{otherwise} \end{cases}$ Define Y'=Y mean(Y)
- **Regression distance:** the summary squared difference between Y' and P_XY' :

$$Rd(R,S) = ||Y' - P_X Y'||^2$$

Rd consensus:

Given partitions R^1 , R^2 ,..., R^m , of I, find $S=\{S_1,...,S_L\}$ to minimize:

$$\sum_{t=1}^{m} Rd(S, R^{t})$$

Regression distance consensus, 1

- Give 24 partitions $R = \{R_1, ..., R_K\}$, $S = \{S_1, ..., S_L\}$ of I, define binary $N \times K$ and $N \times L$ incidence matrices $X = (x_{ik})$ and $Y = (y_{il})$.
- Regression distance: the summary squared difference between Y' and P_XY' :

$$Rd(R,S) = ||Y' - P_X Y'||^2$$

Rd consensus: Given partitions R^1 , R^2 ,..., R^m , of I, find $S = \{S_1, ..., S_L\}$ to minimize $\sum_{t=1}^m Rd(S, R^t)$.

Theorem 1. Rd consensus S maximizes the semiaverage criterion

$$G(S) = \sum_{k=1}^{K} \frac{1}{N_k} \sum_{i,j \in S_k} a_{ij}$$

where $A = (a_{ij})$ is the consensus matrix.

Regression distance consensus,2

Give 25 partitions $R = \{R_1, ..., R_K\}$, $S = \{S_1, ..., S_L\}$ of I, define binary $N \times K$ and $N \times L$ incidence matrices $X = (x_{ik})$ and $Y = (y_{il})$.

Regression distance: the summary squared difference between Y' and P_XY' :

$$Rd(R,S) = ||Y' - P_X Y'||^2$$

Rd consensus: Given partitions R^1 , R^2 ,..., R^m , of I, find $S = \{S_1, ..., S_L\}$ to minimize $\sum_{t=1}^m Rd(S, R^t)$.

Theorem 2. Rd consensus passes Muchnik test.

Experimental observation

- ISSUE: At multiple runs of K-Means, the output is a set of partitions of the entity set. Which one of them to choose?
- Strategy 1. Choose the partition \$1, that is the best over K-Means criterion W(\$,c), that is, minimizes W(\$,c).
- Strategy 2. Build a consensus partition \$2.
- At synthetic data (K Gaussian clusters generated with various degree of noise), \$2 usually is worse than \$1 over W(\$,c), but better than \$1 in recovering the generated clusters.

Relation to K-Means clustering

27

K-Means: Maximize the anomalous clusters criterion

$$F(S,c) = \sum_{k=1}^{K} N_k < c_k, c_k >$$
 (*)

Put
$$c_{kv} = \sum_{i \in S_k} y_{iv} / N_k$$

in (*) to obtain the semi-average criterion, with no c_k

$$F(S) = \sum_{k=1}^{K} \frac{1}{N_k} \sum_{i,j \in S_k} \langle y_i, y_j \rangle$$
 (**)

where N_k – the number of elements in S_k , and y_i , i-th entity (row of data matrix)

Calterion inherited from k-means Kernel trick

Maximize semi-average criterion

$$F(S) = \sum_{k=1}^{K} \frac{1}{N_k} \sum_{i,j \in S_k} \langle y_i, y_j \rangle$$

Kernel
$$K(x,y) = \langle \psi(x), \psi(y) \rangle$$
 is the inner product in ψ -space

$$F_{\Psi}(S) = \sum_{k=1}^{K} \frac{1}{N_k} \sum_{i,j \in S_k} < \psi(y_i), \psi(y_j) > 0$$

Kernel trick

Given a semi-definite positive similarity matrix $A=(a_{ij})$, i,j=1,...,n,

Maximize semi-average criterion

$$G(S) = \sum_{k=1}^{K} \frac{1}{N_k} \sum_{i,j \in S_k} a_{ij}$$
 (***)

G(S), out of many

One cluster by one

Agglomeration

Agglomeration to maximize semi-average G(S)

Deriote

$$A(I_1, I_2) = \sum_{i \in I_1} \sum_{j \in I_2} a_{ij}$$

At merging S_k and S_j:

$$\Delta(k,l) = G(S) - G(S(k,l)) =$$

$$= [N_k A(S_1,S_1)/N_1 + N_1 A(S_k,S_k)/N_k - 2A(S_k,S_1)]/(N_k + N_1)$$

Agglomeration:

- 1. Start at N-singleton S={ {1}, {2}, ..., {N}}
- 2. Find k^* , l^* maximizing $\Delta(k,l)$
- 3. If $\Delta(k^*,l^*) > 0$, merge together S_{k^*} and S_{l^*} , add row l^* to row k^* , then add column l^* to column k^* and remove both row and column l^* . Go to 2. Else, stop and output S.

Example: Digits 0, 1, 2,..., 9 confusion data (symmetrized)

32

† i				Resp	onse	•				
m U I U S	1	2	3	4	5	6	7	8	3	9 0
	877	11	18	86	9	20	165	6	15	11
	11	782	38	13	31	31	9	29	18	11
	18	38	681	6	31	4	31	29	132	11
	86	13	6	732	9	11	26	13	44	6
	9	31	31	9	669	88	7	13	104	11
	20	31	4	11	88	633	2	113	11	31
	165	9	31	26	7	2	667	6	13	16
	6	29	29	13	13	113	6	577	75	122
	15	18	132	44	104	11	13	75	550	32
	1 1 1 1 1 1 1 1	_9 11	11	6	11	31	16	122	32	818

Agglomerative tree for confusion between digits

MDA_9

MDA 9

Semi-average clustering results at betweendigit confusion with zeroed diagonal

Consensus partition: No kernel trick

Just represent the given partitions as a single 0/1 object-to-cluster matrix

Lecture contents

- Statement of the problem of consensus partition
- Introduction to Mismatch (Mirkin's) distance between partitions
- Consensus matrix
- Mismatch distance consensus partition as a maximizer of the within cluster summary consensus similarity
- Muchnik test and failure of the mismatch distance consensus
- Regression distance between partitions
- Regression distance consensus partition as a maximizer of the semi-average consensus similarity
- Relation to k-Means clustering