## Ejercicio 4 - Entrega 11:

Se considera la función  $f(x) = x^6 - 48x^2 + 3$ 

- 1. Demostrar que f tiene exactamente una raíz en el intervalo  $(2, +\infty)$ .
- 2. Sea r dicha raíz. Demostrar que el método de Newton-Raphson converge si se toma como valor inicial un  $x_0 > r$ .
- 3. Generalizar el ítem anterior para un  $x_0$  que sea mayor a 2.

La duda que surgió es si podemos justificar la convergencia aplicando el Teorema 4.12 del apunte de la materia (página 76), o alguna variante.

El gráfico de la función f es, aproximadamente, el siguiente:



- Se puede ver, como en la resolución del ejercicio, que si empezamos la iteración con  $x_0 \in (-\infty, -2)$  el método converge, pero lo hace a la raíz  $r_1$  (tarea).
- Tenemos  $f''(x) = 6(5x^4 16)$  y por lo tanto  $f''\left(\frac{2}{\sqrt[4]{5}}\right) = f''\left(-\frac{2}{\sqrt[4]{5}}\right) = 0$ . ¿Qué pasa si empezamos en el intervalo  $\left(\frac{2}{\sqrt[4]{5}}, +\infty\right)$ , donde f'' > 0? Notemos que si empezamos con  $x_0 = \frac{3}{2} \in \left(\frac{2}{\sqrt[4]{5}}, 2\right)$ , entonces

$$f''(x_1) = f''\left(x_0 - \frac{f(x_0)}{f'(x_0)}\right) = 6\left(5\left(x_0 - \frac{f(x_0)}{f'(x_0)}\right)^4 - 16\right)$$
$$= 6\left(5\left(1.5 - \frac{-93.609375}{-98.4375}\right)^4 - 16\right) \sim -93.273777 < 0.$$

Es decir,  $x_1 \notin \left(\frac{2}{\sqrt[4]{5}}, +\infty\right)$ .



¿Converge el método a partir de  $x_1$ ? Si converge, ¿hacia dónde lo hace?