דף תרגילים בנושא פונקציה

שאלה 1

,
$$f(n) = \frac{(-1)^n}{n^2 - 4}$$
 המוגדרת בצורה $f \colon D \to R$ (סידרה) א. גתונה פונקציה (סידרה) ה $D = \{n \in N \colon n \geq 3\}$ כאשר

- f מצא את התמונה של \bullet
- בדוק האם f מונוטונית
 - בדוק האם f חסומה \bullet

.
$$f(x) = \frac{1}{x - [x]}$$
 המוגדרת בצורה $f \colon D \to R$ ב. נתונה פונקציה

. ממשיים המספרים על ציר של אפשרי אפשרי מקסימלי תחום הגדרה לא תחום תחום לא D

- מפורשות D מפורשות
 - f מצא את התמונה של
 - חסומה f בדוק האם \bullet
- ערכית f חד-חד-ערכית
 - על f בדוק האם f
 - בדוק האם f מחזורית •
- דוגית או אי-זוגית f בדוק האם

$$f(x) = \ln(2\cos x - 1)$$
 המוגדרת בצורה $f: D \to R$ ג. נתונה פונקציה כאן f תחום הגדרה מקסימלי אפשרי של f על ציר המספרים הממשיים.

- מפורשות D מצא ורשום את \bullet
 - f מצא את התמונה של \bullet
 - בדוק האם f מחזורית
 - בדוק האם f חסומה •
- ערכית f חד-חד-ערכית
 - על f בדוק האם f
- דוגית או אי-זוגית f בדוק האם •

.
$$f(n) = \frac{n-1}{n+1}$$
 בצורה בצורה $f \colon N \to R$ (סידרה) ד. נתונה פונקציה (סידרה)

- בדוק האם f מונוטונית
 - בדוק האם f חסומה \bullet

$$f(x) = a^x + a^{-x} (a > 0)$$
 •

$$f(x) = \frac{\tan x}{x^2 + 1} \bullet$$

דף תרגילים בנושא פונקציה

שאלה 2: נתונות פונקציות:

$$g:(0,\infty)\to\mathbb{R}, \quad g(x)=\ln x \quad ,h:\mathbb{R}\to(0,\infty), \quad h(x)=2^x$$

 $f:\mathbb{R}\to\mathbb{R}, \quad f(x)=1-\sin x$

א. מצא נוסחת התאמה, תחום הגדרה ותמונה של הפונקציות הבאות:

$$h \circ g \ .7$$
 $h \cdot f \ .4$ $2h - f \ .1$ $g \circ h \ .8$ $h \circ f \ .5$ $\frac{h}{f} \ .2$ $f \circ g \ .9$ $f \circ h \ .6$ $\frac{f}{h} \ .3$

- $g\circ f$ ב. הסבר מדוע לא קיימת פונקציה
- ג. עבור כל אחת מבין הפונקציות $f,\,g\,,h$ בדוק האם היא הפיכה, ומצא פונקציה הפוכה גם עבור כל אחת מבין הפונקציות בדוק האם היא קיימת.

שאלה 3:

. (או ידוע) הפיכה
$$f\left(-1,\frac{1}{2}
ight) o\mathbb{R}$$
: $f(x)=\frac{\log_2(x+1)}{4^x}$ הפיכה נתונה פונקציה

: את הפונקציה ההפוכה של f ב- f^{-1} . חשב את

$$f^{-1}\left(\frac{1}{4}\right)=1$$
 ג. הראה כי $f^{-1}(-2)=-\frac{1}{2}$ ב. הראה כי $f^{-1}(0)=-\frac{1}{2}$

שאלה 4:

עבור כל אחת מהפונקציות הבאות

$$h: [-1,0] \to [0,1], \quad h(x) = \sqrt{1-x^2}$$
 .

$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3$...

- מצא את הפונקציה ההפוכה.
- רשום את נוסחת התאמה של פונקציה הפוכה, את תחום הגדרתה של פונקציה הפוכה, ואת הטווח של פונקציה הפוכה.

ד״ר יעקובזון פיאנה, המחלקה למתמטיקה, מכללת אורט בראודה ד״ר יעקובזון פיאנה, המחלקה לבנושא פונקציה

פתרונות ותשובות

1א. פתרון:

$$\operatorname{Im} f = \left\{ -\frac{1}{5}, -\frac{1}{21}, -\frac{1}{45}, \dots \right\} \cup \left\{ \dots, \frac{1}{32}, \frac{1}{12}, \frac{1}{3} \right\} : f$$
 של •

• הגרף של הפונקציה (לא נדרש בשאלה):

$$f(3)=-rac{1}{5}< f(4)=rac{1}{12}$$
 אינה מונוטונית, שכן $f(4)=rac{1}{12}>f(5)=-rac{1}{21}$ אבל

$$|f(n)|=\left|rac{1}{n^2-4}
ight|^{12}\leq 1$$
 שכן , שכן f •

דף תרגילים בנושא פונקציה

1ב. פתרון:

 $f(x) = \frac{1}{x - [x]}$ של של •

 $\{x\}=x-[x]$ מתאפסת בכל מספר שלם $\{x\}=x-[x]$ הראינו בהרצאה כי פונקצית הערך השברי $x\in R$ לכל $0\leq \{x\}<1$ כמו כן, מתקיים $0\leq \{x\}<1$

$$D = \left\{ x \mid x \in R \land x \notin Z \right\}$$

לכל $0 < \{x\} < 1 : f$ של $0 < \{x\} < 1 : f$

$$x \in D$$
 לכל $1 < f(x) = \frac{1}{\{x\}} \iff x \in D$

.Im f = (1, ∞) כלומר

- היא קבוצה לא (1, ∞) = $\{x \in \mathbb{R}: x > 1\}$ היא קבוצה לי הפונקציה אינה חסומה כי התמונה שלה α
 - עבורם $x_1 = -\frac{1}{2} \neq \frac{1}{2} = x_2$ הפונקציה אינה חחייע כיוון שקיימים מספרים מספרים •

$$f\left(-\frac{1}{2}\right) = \frac{1}{-\frac{1}{2} - \left[-\frac{1}{2}\right]} = \frac{1}{-\frac{1}{2} - \left(-1\right)} = 2 = \frac{1}{\frac{1}{2} - \left[\frac{1}{2}\right]} = \frac{1}{\frac{1}{2} - 0} = f\left(\frac{1}{2}\right)$$

- (התמונה אינה שווה לטווח) אינה $\mathbf{Im}\,f=(1,\infty)
 eq \mathbb{R}$ שכן שכן \mathbf{v}
- f(x)=f(x+1) לכן $\{x\}=\{x+1\}$ מתקיים $x\in R$ מתקיים סוורית שכן לכל
 - הפונקציה אינה זוגית ואינה אי-זוגית כיוון שקיימים מספרים ממשים עבורם

$$f(x) \neq -f(-x)$$
 $f(x) \neq f(-x)$

$$f\left(-\frac{1}{3}\right) = \frac{1}{-\frac{1}{3} - \left[-\frac{1}{3}\right]} = \frac{1}{-\frac{1}{3} - \left(-1\right)} = \frac{3}{2}$$
 אמשל
$$f\left(\frac{1}{3}\right) = \frac{1}{\frac{1}{3} - \left[\frac{1}{3}\right]} = \frac{1}{\frac{1}{3} - 0} = 3$$
 למשל

דף תרגילים בנושא פונקציה

 $f(x) = \ln(2\cos x - 1)$, $f: D \to \mathbb{R}$ ג. פתרון: נתונה פונקציה

f(x) <u>של הגדרה של</u>

הפונקציה f(x) מוגדרת רק בתחום $(0,\infty)$ ולכן תחום הגדרה של \ln

$$D = \left\{ x \mid 2\cos x - 1 > 0 \right\} = \left\{ x \mid \cos x > \frac{1}{2} \right\} = \bigcup_{k \in \mathbb{Z}} \left(2\pi k - \frac{\pi}{3}, 2\pi k + \frac{\pi}{3} \right)$$

$$\frac{1}{2} \int_{0}^{\infty} \frac{1}{2\pi k} \left(2\pi k - \frac{\pi}{3}, 2\pi k + \frac{\pi}{3} \right)$$

 $\ln x$ נובע וות הפונקציה $0 < 2\cos x - 1 \le 1$, ולכן $\frac{1}{2} < \cos x \le 1$ מתקיים $x \in D$ לכל $x \in D$. $\lim f = (-\infty, 0] - \infty < f(x) = \ln(2\cos x - 1) \le \ln 1 = 0$

f(x) מחזוריות של

מתקיים $k\in\mathbb{Z}$ ולכן לכל $T=2\pi$ מתקיים מחזורית עם מחזורית מ

$$f(x+2\pi k) = \ln(2\cos(x+2\pi k)-1) = \ln(2\cos(x)-1) = f(x)$$

 $T=2\pi$ בעלת מחזור בעה לסיכום: מהגדרה נובע שגם f(x)

חסימות: הפונקציה אינה חסומה כיוון שהתמונה שלה שיא קבוצה לא חסומה

$$f(x_1) = f(x_2)$$
 בך ש- $x_1, x_2 \in D$ יהיו $f(x)$ יהיע של $f(x_1) = f(x_2)$

$$f(x_1) = f(x_2) \Rightarrow \ln(2\cos x_1 + 1) = \ln(2\cos x_2 + 1) \Rightarrow 2\cos x_1 + 1 = 2\cos x_2 + 1 \Rightarrow$$
$$\Rightarrow \cos x_1 = \cos x_2$$

בשל . $x_1 = \frac{\pi}{6} \neq -\frac{\pi}{6} = x_2$ אכן, ניקח . $x_1 = x_2$ לא ניתן להסיק כי $\cos x_1 = \cos x_2$ מהשוויון

הזוגיות שכבר הוכחנו $f(x_1)=f\left(\frac{\pi}{6}\right)=f\left(-\frac{\pi}{6}\right)=f(x_2)$ ולכן הפונקציה אינה חחייע לפי ההגדרה.

f(x) פונקציה על!

אינה שווה לטווח. $\operatorname{Im} f = (-\infty,0]$ איננה על ביחס לטווח הנתון R, כיוון שהתמונה שלה f(x)

f(x) ווגיות / אי-זוגיות של

הפונקציה $x \in \mathbb{R}$ לכל $\cos(-x) = \cos x$ זוגית, כלומר $\cos x$ הפונקציה לכל $\cos(-x) = \ln(2\cos(x) - 1) = \ln(2\cos(x) - 1) = \ln(2\cos(x) - 1) = \sin(2\cos(x) - 1)$

דף תרגילים בנושא פונקציה

$$n \in N$$
; $f(n) = b_n = \frac{n-1}{n+1}$ נסמן נסמן 1.

מתקיים $n \in N$ נראה כי הסדרה מונוטונית עולה, כלומר לכל מספר טבעי .1 $: \ b_{n+1} - b_n > 0 \ , \ b_n < b_{n+1}$

$$b_{n+1}-b_n=\frac{(n+1)-1}{(n+1)+1}-\frac{n-1}{n+1}=\frac{n}{n+2}-\frac{n-1}{n+1}=\frac{n(n+1)-(n+2)(n-1)}{(n+1)(n+2)}=\frac{2}{(n+1)(n+2)}$$
 .
 מכל
$$\frac{2}{(n+1)(n+2)}>0 \qquad n\in N$$
 לכל

2. נראה כי הסדרה חסומה:

: האיבר הכללי של הסדרה ניתן להצגה שקולה

$$b_n = \frac{n-1}{n+1} = \frac{(n+1)-2}{n+1} = 1 - \frac{2}{n+1}$$

. מתקיים $n \ge 1$ כלומר הסדרה חסומה ולכן $0 \le b_n = 1 - \frac{2}{n+1} < 1$ ולכן $0 < \frac{2}{n+1} \le 1$

ב ה. פתרון:

.3 ממשי. $f(x) = a^x + a^{-x} \ (a > 0)$ מוגדרת לכל 3.

. מתקיים $f(-x) = a^{(-x)} + a^{-(-x)} = a^{-x} + a^x = f(x)$ מתקיים

.4 ממשי. $x \neq \frac{\pi}{2} + k\pi$ לכל מוגדרת לכל $f(x) = \frac{\tan x}{x^2 + 1}$

מתקיים $f(-x) = \frac{\tan(-x)}{(-x)^2 + 1} = \frac{-\tan x}{x^2 + 1} = -f(x)$ מתקיים

. הפונקציה חחייע . ($\tan x$ כאן השתמשנו באי-זוגיות הפונקציה .

דף תרגילים בנושא פונקציה

שאלה 2 – פתרון חלקי:

א. – תשובות:

$$2h-f: \mathbb{R} \to \mathbb{R}, \quad (2h-f)(x) = 2 \cdot 2^x + \sin x - 1$$
 .1.N

$$\mathbb{D} = \left\{ x \in \mathbb{R} | x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$$
 כאשר $\frac{h}{f} : \mathbb{D} \to \mathbb{R}, \quad \frac{h}{f}(x) = \frac{2^x}{1 - \sin x}$.2.%

$$\frac{f}{h}: \mathbb{R} \to \mathbb{R}, \quad \frac{f}{h}(x) = \frac{1-\sin x}{2^x} \quad .3.$$

$$h \cdot f : \mathbb{R} \to \mathbb{R}, \quad h \cdot f(x) = 2^x (1 - \sin x) .4.$$

$$h \circ f : \mathbb{R} \to \mathbb{R}, \quad h \circ f(x) = 2^{1-\sin x}$$
 .5.

$$f \circ h : \mathbb{R} \to \mathbb{R}, \quad f \circ h(x) = 1 - \sin(2^x)$$
 .6.

$$h \circ g: (0, \infty) \to \mathbb{R}, \quad h \circ g(x) = 2^{\ln x}$$
.7.

$$g \circ h : \mathbb{R} \to \mathbb{R}, \quad g \circ h(x) = \ln(2^x) = x \ln 2$$
 .8.8

$$f \circ g: (0, \infty) \rightarrow \mathbb{R}, \quad f \circ g(x) = 1 - \sin(\ln x)$$
.9.

ב. – פתרון:

f של הגדרתה xלכל הפונקציות איבר פצורה בצורה איבר בעמונה איבר בתמונה של $g\circ f\left(x\right)=g\left(f\left(x\right)\right)$ מתחום הגדרת מוגדרת לכן פונקציה g אמורה להיות מוגדרת לכל איבר בתמונה של

אינה מוגדרת בראשית. אכן לביטוי $f\left(\frac{\pi}{2}\right)=1-\sin\frac{\pi}{2}=0$ אבל

. (הוא לא מוגדר) אין משמעות "
$$g\circ f\left(\frac{\pi}{2}\right)$$
" = " $g\left(f\left(\frac{\pi}{2}\right)\right)$ " = " $\ln\left(1-\sin\frac{\pi}{2}\right)$ " = " $\ln 0$ "

ג. – תשובה:

חחייע, על ולכן הפיכה, מתקיים -
$$h:\mathbb{R} o (0,\infty), \quad h(x) = 2^x$$

$$h^{-1}:(0,\infty)\to\mathbb{R}, \quad h^{-1}(x)=\log_2 x$$

 $g^{-1}:(0,\infty)\to\mathbb{R},\quad g^{-1}(x)=e^x$ מתקיים - $g:(0,\infty)\to\mathbb{R},\quad g(x)=\ln x$

לכן לא
$$f\left(0\right)=1-\sin 0=1=1-\sin \pi=f\left(\pi\right)$$
 : לכן לא חחייע, נימוק - $f:\mathbb{R} \to \mathbb{R}$, $f\left(x\right)=1-\sin x$

הפיכה.

דף תרגילים בנושא פונקציה

שאלה 3 – פתרון

: מהגדרה של פונקציה הפוכה .
$$x=0 \Leftrightarrow \log_2(x+1)=0 \Leftrightarrow f(x)=rac{\log_2\left(x+1\right)}{4^x}=0$$
 . א . $f^{-1}(0)=0$

$$f^{-1}(-2) = -rac{1}{2}$$
 הגדרה לכן לפי ההגדרה $f\left(-rac{1}{2}
ight) = rac{\log_2\left(rac{1}{2}
ight)}{4^{-rac{1}{2}}} = rac{-1}{1/\sqrt{4}} = -2$ ב. נחשב 2.

$$f^{-1} \left(\frac{1}{4} \right) = 1$$
 לכן לפי ההגדרה $f \left(1 \right) = \frac{\log_2 \left(2 \right)}{4^1} = \left(\frac{1}{4} \right)$ ג.

שאלה 4 – פתרון חלקי

$$h^{-1}:[0,1] \to [-1,0], \quad h(x) = -\sqrt{1-x^2}$$
 א. קיימת פונקציה הפוכה

$$f:\mathbb{R} \to \mathbb{R}, \quad f(x) = \sqrt[3]{x}$$
 ב. קיימת פונקציה הפוכה