FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

Please note that the following pages contain mark schemes for questions from past papers.

The standard of the mark schemes is variable, depending on what we still have – many are scanned, some are handwritten and some are typed.

The questions are available on a separate document, originally sent with this one.

[P4 January 2002 Qn 2]

Question number	· .	Marks
2. ($\frac{dv}{dt} - \frac{1}{t}v = 1 \rightarrow T.F. = e^{-5\frac{t}{t}dt} = e^{-ht} = \frac{1}{t}$	MIALAL
	$\frac{d}{dt}\left(\frac{V}{t}\right) = \frac{1}{t} \Rightarrow \frac{V}{t} = l_n t + c$	MIAI
]	$V = t(l_n t + c)$ $V = 3 + t = 2$ $V = \frac{3}{2} - l_n 2 \approx .807$	A1 (6)
(4	V=3 et t=2 so C=3 - l, 2 ov. 807	MIAI
	At $t=4$, $\frac{V}{4} = l_n 4 + \frac{3}{2} - l_n 2$ V = 8.77	M, (4)
		۸.

[P4 January 2002 Qn 6]

] · · · · · · · · · · · · · · · · · · ·	(4)	$y = \frac{1}{2} \times^{2} e^{x}$ $y' = \frac{1}{2} \times^{2} e^{x} + 2xe^{x} + 2xe^{x}$ $y'' = \frac{1}{2} \times^{2} e^{x} + 2xe^{x} + e^{x} - xe^{x} - 2xe^{x} + \frac{1}{2} \times^{2} e^{x}$ $y'' = \frac{1}{2} \times^{2} e^{x} + 2xe^{x} + e^{x} - xe^{x} - 2xe^{x} + \frac{1}{2} \times^{2} e^{x}$ $y'' = e^{x} - 2xe^{x} + ye^{x} = 1 \Rightarrow y'' - 2xe^{x} + ye^{x} = e^{x} \cdot 818$ $Auxiliary equation u^{2} - 2u + 1 = 0 \Rightarrow m = 1 \text{ reputh} Complementary function e^{x} \cdot (A + Bx) General solution y = e^{x} \cdot (A + Bx) + \frac{1}{2} \times^{2} e^{x} y' = e^{x} \cdot (A + Bx) + Be^{x} + 3e^{x} + \frac{1}{2} \times^{2} e^{x} y' = e^{x} \cdot (A + Bx) + Be^{x} + 3e^{x} + \frac{1}{2} \times^{2} e^{x} y' = 2 \text{ at } x = 0 \Rightarrow 2 = A + B \Rightarrow B = 1 Specific solution y = e^{x} \cdot (1 + x + \frac{1}{2} x^{2})$	BI BI MIAI AI F.E. BI MIAI AI F.E. (9)
---	-----	---	---

[P4 January 2002 Qn 7]

Question number	Scheme	Marks
4. 🔊	Circle Demiter 0 -> 3a on in till line Cardwid comp at 0 Symmetry on inthe Lene and 2a	B-1 B-1 B-1 (4)
(F)	$3a\cos\theta = a(1+\cos\theta) \rightarrow \cos\theta = \frac{1}{2}$ $0 = \pm \frac{\pi}{3} \tau = \frac{3a}{2} \text{at } P = \lambda Q$ $Area A_1 = \frac{1}{2} \int a^2 (1+\cos\theta)^2 d\theta$	M1 A1 (3) M1
(d)	$= \frac{1}{2}a^{2} \int [1 + 2 \cos \theta + \frac{1}{2}(1 + \cos 2\theta)] d\theta$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{2}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{2} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a^{2} \left[\frac{3\theta}{4} + \frac{1}{4} \cos \theta + \frac{1}{4} \cos \theta \right]$ $= \frac{1}{4}a$	MIAI (AI, AI, AO) MIAICAO(T) MI, BI MI AI-(4)
	= TT Q	111~0/

[P4 January 2002 Qn 8]

5.	$(x > 0)$ $2x^2 - 5x > 3$ or $2x^2 - 5x = 3$	M1
	$(2x+1)(x-3)$, critical values $-\frac{1}{2}$ and 3	A1, A1
	x > 3	A1 ft
	$x < 0 \qquad 2x^2 - 5x < 3$	M1
	Using critical value 0: $-\frac{1}{2} < x < 0$	M1, A1 ft
Alt.	$2x-5-\frac{3}{x}<0$ or $(2x-5)x^2>3x$	M1
	$\frac{(2x+1)(x-3)}{x} > 0$ or $x(2x+1)(x-3) > 0$	M1, A1
	Critical values $-\frac{1}{2}$ and 3, $x > 3$	A1, A1 ft
	Using critical value 0, $-\frac{1}{2} < x < 0$	M1, A1 ft
		(7 marks)

[P4 June 2002 Qn 4]

6.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + y \left(\frac{\sin x}{\cos x}\right) = \cos^2 x$	M1	
		Int. factor $e^{\int \tan x dx} = e^{-\ln(\cos x)} = \sec x$	M1, A1	
		Integrate: $y \sec x = \int \cos x dx$	M1, A1	
		$y \sec x = \sin x + C$	A1	
		$(y = \sin x \cos x + C \cos x)$		(6)
	(<i>b</i>)	When $y = 0$, $\cos x(\sin x + C) = 0$, $\cos x = 0$	M1	
		2 solutions for this $(x = \pi/2, 3\pi/2)$	A1	(2)
	(c)	$y = 0$ at $x = 0$: $C = 0$: $y = \sin x \cos x$	M1	
		$(y = \frac{1}{2}\sin 2x)$		
		Shape	A1	
			A1	(3)
		Scales		
			(1)	l marks)

[P4 June 2002 Qn 6]

7. (a)	$2m^2 + 7m + 3 = 0 (2m+1)(m+3) = 0$	
	$m = -\frac{1}{2}, -3$	
	C.F. is $y = Ae^{-1/2t} + Be^{-3t}$	M1, A1
	$P.I. y = at^2 + bt + c$	B1
	y' = 2at + b , y'' = 2a	
	$2(2a) + 7(2at + b) + 3(at^{2} + bt + c) \equiv 3t^{2} + 11t$	M1
	3a = 3, $a = 1$ $14 + 3b = 11$, $b = -1$	A1
	4-7+3c=0, c=1	M1, A1
	General solution: $y = Ae^{-t/2t} + Be^{-3t} + (t^2 - t + 1)$	A1 ft (8)
(b)	$y' = -\frac{1}{2}Ae^{-\frac{1}{2}t} - 3Be^{-3t} + (2t - 1)$	M1
	$t = 0, y' = 1: 1 = -1 - \frac{1}{2}A - 3B$	
	t = 0, y = 1: 1 = 1 + A + B one of	M1, A1
	these	1411, 711
	Solve: $A + B = 0$, $A + 6B = -4$	
	$A = {}^{4}/_{5}, B = - {}^{4}/_{5}$	M1
	$y = (t^2 - t + 1) + \frac{4}{5} (e^{-1/2t} - e^{-3t})$	A1 (5)
(c)	$t = 1$: $y = \frac{4}{5} (e^{-\frac{1}{2}} - e^{-3}) + 1$ (= 1.445)	B1 (1)
		(14 marks)

[P4 June 2002 Qn 7]

8.	(a)	$y = r\sin\theta = a(3\sin\theta + \sqrt{5}\sin\theta\cos\theta)$	
	. ,	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = a(3\cos\theta + \sqrt{5}\cos 2\theta)$	M1, A1
		$2\sqrt{5}\cos^2\theta + 3\cos\theta - \sqrt{5} = 0$	
		$\cos\theta = \frac{-3 \pm \sqrt{9 + 40}}{4\sqrt{5}} \cos\theta = \frac{1}{\sqrt{5}}$	M1, A1
		$\theta = \pm 1.107$	A1 ft
		r = 4a	A1 ft (6)
	(<i>b</i>)	$2r\sin\theta=20$	M1
		$8a\sin\theta = 20$, $a = \frac{20}{8\sin\theta} = 2.795$	M1, A1 (3)
	(c)	$(3+\sqrt{5}\cos\theta)^2 = 9+6\sqrt{5}\cos\theta+5\cos^2\theta$	B1
		Integrate: $9\theta + 6\sqrt{5}\sin\theta + 5\left(\frac{\sin 2\theta}{4} + \frac{\theta}{2}\right)$	M1, A1
		Limits used: $\left[\dots\right]_0^{2\pi} = 18\pi + 5\pi$ (or upper limit: $9\pi + \frac{5\pi}{2}$)	A1
		$\frac{1}{2} \int_{0}^{2\pi} r^{2} d\theta = a^{2} (23\pi) \approx 282 \text{ m}^{2}$	M1, A1 (6)
			(15 marks)

[P4 June 2002 Qn 8]

9. (a)(i)
$$|x + (y - 2)i| = 2|x + (y + i)|$$

 $\therefore x^2 + (y - 2)^2 = 4(x^2 + (y + 1)^2)$
(ii) so $3x^2 + 3y^2 + 12y = 0$ any correct from; 3 terms; isw
A1 (2)

Sketch circle
B1

Centre (0,-2)
B1

 $r = 2$ or touches axis
B1 (3)
B1

 $= 3z - 21 + 33i$
B1 (2)
(7 marks)

[P6 June 2002 Qn 3]

10.	(a)	$y\frac{d^3y}{dx^3} + \frac{dy}{dx}\frac{d^2y}{dx^2}; + 2\left(\frac{dy}{dx}\right)\frac{d^2y}{dx^2}; + \frac{dy}{dx} = 0 \text{marks can be awarded in(b)}$	M1 A1; I	31;B1
		$\frac{d^3 y}{dx^3} = \frac{-3\frac{dy}{dx}\frac{d^2 y}{dx^2} - \frac{dy}{dx}}{y}$ or sensible correct alternative	B1	(5)
	(<i>b</i>)	When $x = 0$ $\frac{d^2 y}{dx^2} = -2$, and $\frac{d^3 y}{dx^3} = 5$	M1A1, A	A1 ft
		$\therefore y = 1 + x - x^2 + \frac{5}{6}x^3 \dots$	M1, A1 f	t (5)
	(c)	Could use for $x = 0.2$ but not for $x = 50$ as	B1	
		approximation is best at values close to $x = 0$	B1	(2)
				(12 marks)

[P6 June 2002 Qn 4]

11.
$$zw = 12 \left(\cos \frac{\pi}{4} \cos \frac{2\pi}{3} - \sin \frac{\pi}{4} \sin \frac{2\pi}{3} \right) + 12i \left(\sin \frac{\pi}{4} \cos \frac{2\pi}{3} + \cos \frac{\pi}{4} \sin \frac{2\pi}{3} \right)$$

$$= 12 \left[\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right]$$

$$= 12 \left[\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right]$$
(3 marks)

[P4 January 2003 Qn 1]

12. (a)
$$\frac{1}{r+1} - \frac{1}{r+3}$$
 B1 B1 (2)
(b) $\sum_{1}^{n} \frac{1}{r+1} - \frac{1}{r+3} = \frac{1}{2} - \frac{1}{4}$ $+ \frac{1}{3} - \frac{1}{5}$ $+ \frac{1}{4} - \frac{1}{6}$ M1 $+ \frac{1}{4} - \frac{1}{6}$ $+ \frac{1}{4} - \frac{1}{4}$ $+ \frac{$

[P4 January 2003 Qn 3]

[P4 January 2003 Qn 2]

14. (a)
$$v + x \frac{dv}{dx} = (4 + v)(1 + v)$$
 M1, M1 A1 A1 A1 (4) A1 (5) A1 (C) $y = -2x - \frac{x}{\ln x + c}$ M1, M1 A1 M1, M1 A1 (10 marks)

[P4 January 2003 Qn 5]

[P4 January 2003 Qn 7]

16.	(a)	$\frac{1}{2}a^2\int 1+\cos^2\theta+2\cos\theta\ d\theta$	M1 A1co	rrect
10.	<i>(a)</i>		with limi	ts
		$= \frac{1}{2}a^2 \int 1 + \frac{\cos 2\theta + 1}{2} + 2\cos\theta d\theta$	M1 A1	
		$= 2 \times \frac{1}{2} a^2 \left[\theta + \frac{\sin 2\theta}{4} + \frac{\theta}{2} + 2\sin \theta \right]_0^{\pi}$	A1	
		$=a^2\left[\frac{3\pi}{2}\right]=\frac{3\pi a^2}{2}$	A1	(6)
	(<i>b</i>)	$x = a\cos\theta + a\cos^2\theta \qquad r\cos\theta$	M1	
		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -a\sin\theta - 2a\cos\theta\sin\theta$	A1	
		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 0 \Rightarrow \cos\theta = -\frac{1}{2}$ finding θ	M1	
		$\theta = \frac{2\pi}{3}$ or $\theta = \frac{4\pi}{3}$		
		$r = \frac{a}{2}$ or $r = \frac{a}{2}$ finding r	M1	
		$A: r = \frac{a}{2}, \ \theta = \frac{2\pi}{3}$		
		$B: r = \frac{a}{2}, \ \theta = \frac{-2\pi}{3}$ both A and B	A1	(5)
		$x = -\frac{1}{4}a$: $WX = 2a + \frac{1}{4}a = 2\frac{1}{4}a$	M1 A1	(2)
		$WXYZ = \frac{27\sqrt{3}a^2}{8}$	B1 ft	(1)
	(e)	Area = $\frac{27\sqrt{3}}{8} \times 100 - \frac{3\pi \times 100}{2} = 113.3 \text{ cm}^2$	M1 A1	(2)
			(16 m	arks)

[P4 January 2003 Qn 8]

17. (a)
$$\frac{r^2 - (r - 1)^2}{r^2 (r - 1)^2} = \frac{2r - 1}{r^2 (r - 1)^2}$$
(b)
$$\sum_{r=2}^{n} \frac{2r - 1}{r^2 (r - 1)^2} = \sum_{r=2}^{n} \frac{1}{(r - 1)^2} - \frac{1}{r^2}$$

$$= \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{3^2} + \dots + \frac{1}{(n - 1)^2} - \frac{1}{n^2}$$

$$= 1 - \frac{1}{n^2}$$
(*)
M1 A1 (2)

M1
A1 cso (3)

[P4 June 2003 Qn 1]

18.	Identifying as critical values $-\frac{1}{2}$, $\frac{2}{3}$	B1, B1
	Establishing there are no further critical values	
	Obtaining $2x^2 - 2x + 2$ or equivalent	M1
	$\Delta = 4 - 16 < 0$	A1
	Using exactly two critical values to obtain inequalities	M1
	$-\frac{1}{2} < x < \frac{2}{3}$	A1
		(6 marks)
Graphical alt.	Identifying $x = -\frac{1}{2}$ and $x = \frac{2}{3}$ as vertical asymptotes	B1, B1
	Two rectangular hyperbolae oriented correctly with respect to asymptotes in the correct half-planes.	M1
	Two correctly drawn curves with no intersections	A1
	As above	M1, A1
	$\frac{1}{2} O \frac{2}{3}$	

[P4 June 2003 QN n2]

19.	(a)	$\frac{\mathrm{d}t}{\mathrm{d}x} = 2x$	or equivalent	M1
		$I = \frac{1}{2} \int t e^{-t} dt$	complete substitution	M1
		$= -t e^{-t} dt + \frac{1}{2} \int e^{-t} dt$		M1 A1
		$= -\frac{1}{2} t e^{-t} - \frac{1}{2} e^{-t} (+c)$		A1
		$= -\frac{1}{2}x^2e^{-x^2} - \frac{1}{2}e^{-x^2} (+c)$		A1 (6)
	(<i>b</i>)	I.F. = $e^{\int \frac{3}{x} dx} = x^3$ (or multiplying equation by x^2)		B1
		$\frac{d}{dx}(x^3y) = x^3 e^{-x^2}$ or $x^3y = \int x^3 e^{-x^2} dx$		M1
			A1ft <u>A1</u>	
		$x^{3}y = -\frac{1}{2}x^{2}e^{-x^{2}} - \frac{1}{2}e^{-x^{2}} + \underline{C}$		(4)
				(10 marks)
Alts	(a)	(i) mark $t = -x^2$ similarly		M1
		(ii) $\int x^2 (xe^{-x^2}) dx$ with evidence of attempts	t at integration by parts	M1
		$= x^{2} \left(-\frac{1}{2} e^{-x^{2}}\right) + \frac{1}{2} \int 2x \cdot e^{-x^{2}} dx$		M1 A1 + A1
		$= -\frac{1}{2}x^2e^{-x^2} - \frac{1}{2}e^{-x^2} (+c)$	M1 A1	
		$=-\frac{1}{2}x$ C $-\frac{1}{2}$ C $+$ C)		(6)
		(iii) $u = e^{-x^2}$, $\frac{du}{dx} = -2xe^{-x^2}$		M1
		$x^2 = \ln u \text{ hence } I = \int \frac{1}{2} \ln u du$		M1
		$= \frac{1}{2} u \ln u - \frac{1}{2} \int u \cdot \frac{1}{u} du$		M1 A1
		$=\frac{1}{2} u \ln u - \frac{1}{2} u (+c)$		A1
		$= -\frac{1}{2} x^2 e^{-x^2} - \frac{1}{2} e^{-x^2} (+c)$		A1 (6)
		(The result $\int \ln u du = u \ln u - u$ may be quoted, gain must be completely correct.)	ing M1 A1 A1 but	

[P4 June 2003 Qn 6]

20.	(a)	A: (5a, 0) $B: (3a, 0)$ allow on a sketch	B1, B1
20.	<i>(a)</i>	A.(3u,0) $B.(3u,0)$	(2)
	(<i>b</i>)	$3 + 2\cos\theta = 5 - 2\cos\theta$	M1
		$\cos \theta = \frac{1}{2}$	M1
		$\theta = \frac{\pi}{3}, \frac{5\pi}{3} \tag{allow} - \frac{\pi}{3}$	A1
		Points are $(4a, \frac{\pi}{3}), (4a, \frac{5\pi}{3})$	A1 (4)
	(c)	$\left(\frac{1}{2}\right)\int r^2 d\theta = \left(\frac{1}{2}\right)\int (5-2\cos\theta)^2 d\theta$	
		$= \left(\frac{1}{2}\right) \int (25 - 20 \cos \theta + 4 \cos^2 \theta) d\theta$	M1
		$= (\frac{1}{2}) \int (25 - 20 \cos \theta + 2 \cos 2\theta + 2) d\theta$	M1
		$= \left(\frac{1}{2}\right) \left[27\theta - 20\sin\theta + \sin 2\theta\right]$	A1
		$\left(\frac{1}{2}\right)\int r^2 d\theta = \left(\frac{1}{2}\right)\int (3+2\cos\theta)^2 d\theta$	
		$= \left(\frac{1}{2}\right) \int (9 + 12 \cos \theta + 4 \cos^2 \theta) d\theta$	
		$= \left(\frac{1}{2}\right) \int (11 + 12 \cos \theta + 2 \cos 2\theta) d\theta$	
		$= \left(\frac{1}{2}\right) \left[11\theta + 12\sin\theta + \sin 2\theta\right]$ 2nd integration	A1
		Area = $2 \times \frac{1}{2} \int (5 - 2 \cos \theta)^2 d\theta + 2 \times \frac{1}{2} \int (3 + 2 \cos \theta)^2 d\theta$	
		(addition; condone $2/\frac{1}{2}$)	M1
		$= \dots \int_{0}^{\frac{3}{3}} \dots + \dots \int_{\frac{\pi}{3}}^{\pi} \dots $ correctly identifying limits with $\int s$	A1
		$= a^{2} \left[27 \times \frac{\pi}{3} - 10\sqrt{3} + \frac{\sqrt{3}}{2}\right] + a^{2} \left[11\left(\pi - \frac{\pi}{3}\right) - 6\sqrt{3} - \frac{\sqrt{3}}{2}\right]$	dM1
		$= a^2[49 - 48\sqrt{3}]$ (*)	A1 cso
			(8)
			(14 marks)

[P4 June 2003 Qn 7]

[P6 June 2003 Qn 4]

23. (a)
$$(\cos \theta + i \sin \theta)^5 = \cos 5\theta + i \sin 5\theta$$
 M1
 $(\cos \theta + i \sin \theta)^5 = \cos^5 \theta + 5 \cos^4 \theta (i \sin \theta) + 10 \cos^3 \theta (i \sin \theta)^2$
 $+ 10 \cos^2 \theta (i \sin \theta)^3 + 5 \cos \theta (i \sin \theta)^4 + (i \sin \theta)^5$ M1 A1
 $\cos 5\theta = \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta$ M1
 $= \cos^5 \theta - 10 \cos^3 \theta (1 - \cos^2 \theta) + 5 \cos \theta (1 - 2\cos^2 \theta + \cos^4 \theta)$ M1
 $= 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$ (*) A1 cso

(b) $\cos 5\theta = -1$ (or 1, or 0) M1
 $5\theta = (2n \pm 1)180^\circ \Rightarrow \theta = (2n \pm 1)36^\circ$ A1
 $x = \cos \theta = -1, -0.309, 0.809$ M1 A1

(4)

[P6 June 2003 Qn 5]

24.
$$\sum_{r=1}^{n} (6r^{2} + 2) = 2^{2^{r}} - 0^{3}$$
 attempt to use an identity
$$= 3^{r} - 1^{3}$$

$$A^{r} - 2^{r}$$

$$\vdots$$

$$\vdots$$

$$(n/1)^{3} - (n/2)^{3}$$

$$n^{3} - (n/2)^{3}$$

$$(n+1)^{3} - (n/1)^{3}$$

$$= (n+1)^{3} + n^{3} - 1^{3}$$
 All
$$6\sum_{r=1}^{n} r^{2} = (n+1)^{3} + n^{3} - 1 - 2n$$

$$2n \text{ or equiv.}$$
 B1
$$= 2n^{3} + 3n^{2} + n$$

$$\sum_{r=1}^{n} r^{2} = \frac{1}{6}n(2n+1)(n+1)$$
 (*) Sub. $\Sigma 2$ and \div 6 or equiv. c.s.o. M1, A1

[P4 January 2004 Qn 1]

[P4 January 2004 Qn4]

[P4 January 2004 Qn5]

27. (a)	$m^2 + 4m + 5 = 0$	M1	
	$m = \frac{-4 \pm \sqrt{-4}}{2}$		
	m = 2		
	$=-2\pm i$	A1	
	$y = e^{-2x}(A\cos x \pm B\sin x)$	M1	
	$PI = \lambda \sin 2x + \mu \cos 2x$ PI & attempt diff.	M1	
	$y' = 2\lambda \cos 2x - 2\mu \sin 2x$		
	$y'' = -4\lambda \sin 2x - 4\mu \cos 2x$	A1	
	$\therefore -4\lambda - 8\mu + 5\lambda = 65$		
	$-4\mu + 8\lambda + 5\mu = 0$ subst. in eqn. & equate	M1	
	$\lambda - 8\mu = 65$		
	$8\lambda + \mu = 0$ solving sim. eqn.	M1	
	$64\lambda + 8\mu = 0$		
	$65\lambda = 65$		
	$\lambda = 1, \mu = -8$	A1	
	$y = e^{-2x}(A\cos x + B\sin x) + \sin 2x - 8\cos 2x$ ft on their λ and μ	A1ft (9)
(b)	As $x \to \infty$, $e^{-2x} \to 0$: $y \to \sin 2x - 8 \cos 2x$	B1ft	
	$y \to R \sin(2x + \alpha)$	M1	
	$R = \sqrt{65}$		
	$\alpha = \tan^{-1} - 8 = -1.446$ or -82.9°	A1 (3))
		(12marks	;)

[P4 January 2004 Qn6]

[P4 January 2004 Qn 7]

<u> </u>		
29.	Solves $x^2 - 2 = 2x$ by valid method	M1
ı	Obtains $x = 1 \pm \sqrt{3}$ or equivalent (may only obtain relevant root if graph is used)	A1
	Solves $2 - x^2 = 2x$	M1
	Obtains $x = -1 \pm \sqrt{3}$	A1
	Rejects two of these roots and obtains (or uses graph and obtains)	dM1
	$x > 1 + \sqrt{3}, \qquad x < -1 + \sqrt{3}$	A1, A1
	Special case:	(7)
	Squares both sides to obtain quadratic in x^2 and solve to	367.41
	obtain $x^2 = 4 \pm 2\sqrt{3}$	MI AI
	Obtains $x = 1 \pm \sqrt{3}$ or $x = -1 \pm \sqrt{3}$	MIAI dMIAIAI
	Last three marks as before.	(7)

[P4 June 2004 Qn 4]

[P4 June 2004 Qn 6]

; 31.	(a)	Auxiliary equation: $m^2 + 2m + 2 = 0 \rightarrow m = -1 \pm i$ Complementary Function is $y = e^{-i}(A\cos t + B\sin t)$ Particular Integral is $y = \lambda e^{-i}$, with $y' = -\lambda e^{-i}$, and $y'' = \lambda e^{-i}$ $\therefore (\lambda - 2\lambda + 2\lambda)e^{-i} = 2e^{-i} \rightarrow \lambda = 2$	M1 M1A1 M1 A1	
		$\therefore y = e^{-t} (A\cos t + B\sin t + 2)$	B1	(6)
	(b)	Puts $1 = A+2$ and solves to obtain $A = -1$	M1,	
		$y' = e^{-t}(-A\sin t + B\cos t) - e^{-t}(A\cos t + B\sin t + 2)$	M1 A1ft	
		Puts $1 = B - A - 2$ and uses value for A to obtain B	M1 .	
		B=2	A1cso	
		$\therefore y = e^{-t}(2\sin t - \cos t + 2)$	Aleso	
				(6)
			,	
			į	

[P4 June 2004 Qn 7]

32.	(a)	$3a(1-\cos\theta) = a(1+\cos\theta)$	M1 .	
		$2a = 4a\cos\theta \rightarrow \cos\theta = \frac{1}{2}$: $\theta = \frac{\pi}{3}$ or $-\frac{\pi}{3}$	M1	
		$r = \frac{3a}{2}$	A1 A1	
		[Co-ordinates of points are $(\frac{3a}{2}, \frac{\pi}{3})$ and $(\frac{3a}{2}, -\frac{\pi}{3})$]	ALA	(4)
	(b)	$AB = 2r\sin\theta = \frac{3a\sqrt{3}}{2}$	M1A1	(2)
	(c)	$Area = \int_{-\pi}^{\frac{\pi}{2}} \frac{1}{2} r^2 d\theta$	-	
		$= \frac{1}{2} \int [a^2 (1 + \cos \theta)^2 - 9a^2 (1 - \cos \theta)^2] d\theta$	M1 M1	
		$= \frac{\sigma^2}{2} \int [1 + 2\cos\theta + \cos^2\theta - 9(1 - 2\cos\theta + \cos^2\theta)] d\theta$	A1	
		$= \frac{\sigma^2}{2} \int [-8 + 20\cos\theta - 8\cos^2\theta] d\theta$	İ .	
		$= k[-8\theta + 20\sin\theta \dots$	B1	
		$\dots -2\sin 2\theta - 4\theta$]	B1	
		Uses limits $\frac{\pi}{3}$ and $-\frac{\pi}{3}$ correctly or uses twice smaller area and uses limits $\frac{\pi}{3}$	M1	
	(d)	and 0 correctly. (Need not see 0 substituted) = $a^2[-4\pi + 10\sqrt{3} - \sqrt{3}]$ or = $a^2[-4\pi + 9\sqrt{3}]$ or $3.022 a^2$	A1	(7)
	(u)	$3a\frac{\sqrt{3}}{2} = 4.5 \rightarrow a = \sqrt{3}$	В1	(7)
		\therefore Area = $3[9\sqrt{3} - 4\pi]$, = 9.07cm^2		
			M1, A1	
				(3)

[P4 June 2004 Qn 8]

33. (a)
$$f'(x) = \sec^2 x$$
 $f''(x) = 2\sec x (\sec x \tan x)$ (or equiv.) M1 A1
 $f'''(x) = 2\sec^2 x (\sec^2 x) + 2\tan x (2\sec^2 x \tan x)$ (or equiv.) A1 (3)
 $(2\sec^2 x + 6\sec^2 x \tan^2 x)$ (or equiv.) A1 (3)
 $(2\sec^4 x + 4\sec^2 x \tan^2 x)$, $(6\sec^4 x - 4\sec^2 x)$, $(2 + 8\tan^2 x + 6\tan^4 x)$
(b) $\tan \frac{\pi}{4} = 1$ or $\sec \frac{\pi}{4} = \sqrt{2}$ (1, 2, 4, 16) B1
 $\tan x = f\left(\frac{\pi}{4}\right) + \left(x - \frac{\pi}{4}\right)f'\left(\frac{\pi}{4}\right) + \frac{1}{2}\left(x - \frac{\pi}{4}\right)^2f''\left(\frac{\pi}{4}\right) + \frac{1}{6}\left(x - \frac{\pi}{4}\right)^3f'''\left(\frac{\pi}{4}\right)$ M1
 $= 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 + \frac{8}{3}\left(x - \frac{\pi}{4}\right)^3$ (Allow equiv. fractions A1(cso) (3)
(c) $x = \frac{3\pi}{10}$, so use $\left(\frac{3\pi}{10} - \frac{\pi}{4}\right)$ $\left(=\frac{\pi}{20}\right)$ M1
 $\tan \frac{3\pi}{10} \approx 1 + \frac{\pi}{10} + \left(2 \times \frac{\pi^2}{400}\right) + \left(\frac{8}{3} \times \frac{\pi^3}{8000}\right) = 1 + \frac{\pi}{10} + \frac{\pi^2}{200} + \frac{\pi^3}{3000}$ (*) A1(cso) (2)

[P6 June 2004 Qn 2]

34. (a)
$$n = 1$$
: $\frac{d}{dx}(e^x \cos x) = e^x \cos x - e^x \sin x$ (Use of product rule) M1
$$\cos\left(x + \frac{\pi}{4}\right) = \cos x \cos\frac{\pi}{4} - \sin x \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}(\cos x - \sin x)$$
 M1
$$\frac{d}{dx}(e^x \cos x) = 2^{\frac{1}{2}}e^x \cos\left(x + \frac{\pi}{4}\right)$$
 True for $n = 1$ (cso + comment) A1
Suppose true for $n = k$.
$$\left[\frac{d^{k+1}}{dx^{k+1}}(e^x \cos x)\right] = \frac{d}{dx}\left(2^{\frac{1}{2}}e^x \cos\left(x + \frac{k\pi}{4}\right)\right)$$
 M1
$$= 2^{\frac{1}{2}^k}\left[e^x \cos\left(x + \frac{k\pi}{4}\right) - e^x \sin\left(x + \frac{k\pi}{4}\right)\right]$$
 A1
$$= 2^{\frac{1}{2}^k}e^x \sqrt{2}\cos\left(x + \frac{k\pi}{4} + \frac{\pi}{4}\right) = 2^{\frac{1}{2}(k+1)}e^x \cos\left(x + (k+1)\frac{\pi}{4}\right)$$
 M1 A1
$$\therefore \text{True for } n = k+1, \text{ so true (by induction) for all } n. \ (\ge 1)$$
 A1(cso) (8)
(b) $1 + \left(\sqrt{2}\cos\frac{\pi}{4}\right)x + \frac{1}{2}\left(2\cos\frac{\pi}{2}\right)x^2 + \frac{1}{6}\left(2\sqrt{2}\cos\frac{3\pi}{4}\right)x^3 + \frac{1}{24}(4\cos\pi)x^4$ M1
$$(1) \qquad (0) \qquad (-2) \qquad (-4)$$

$$e^x \cos x = 1 + x - \frac{1}{3}x^3 - \frac{1}{6}x^4 \qquad (\text{or equiv. fractions})$$
 A2(1,0) (3)

[P6 June 2004 Qn 4]

35. (a) $\arg z = \frac{\pi}{4}$ \Rightarrow $z = \lambda + \lambda i$ (or putting x and y equal at some stage) B1

 $w = \frac{(\lambda + 1) + \lambda i}{\lambda + (\lambda + 1)i}$, and attempt modulus of numerator or denominator.

(Could still be in terms of *x* and *y*)

$$\left|(\lambda+1)+\lambda i\right| = \left|\lambda+(\lambda+1)i\right| = \sqrt{(\lambda+1)^2+\lambda^2},$$
 $\therefore \left|w\right| = 1 (*)$ A1, A1cso (4)

(b)
$$w = \frac{z+1}{z+i}$$
 \Rightarrow $zw + wi = z+1$ \Rightarrow $z = \frac{1-wi}{w-1}$ M1

$$|z| = 1$$
 \Rightarrow $|1 - wi| = |w - 1|$ M1 A1

For
$$w = a + ib$$
, $|(1+b) - ai| = |(a-1) + ib|$ M1

$$\sqrt{(1+b)^2 + a^2} = \sqrt{(a-1)^2 + b^2}$$
 M1

$$b = -a$$
 Image is (line) $y = -x$ A1 (6)

(d)
$$z = i$$
 marked (P) on z-plane sketch. B1

$$z = i$$
 \Rightarrow $w = \frac{1+i}{2i} = \frac{i-1}{-2} = \frac{1}{2} - \frac{1}{2}i$ marked (Q) on w-plane sketch. B1 (2)

[P6 June 2004 Qn 7]

14

[FP1/P4 January 2005 Qn 1]

37. I.F. =
$$e^{\int 2 \cot 2\pi dx}$$
; = $\sin 2x$ M1A1

Multiplying throughout by IF. M1 *

 $y \times (IF) = \text{integral of candidate's RHS}$ M1

$$= \int 2 \sin^2 x \cos x dx \quad \text{or } \int -\left(\frac{\cos 3x - \cos x}{2}\right) dx \qquad \text{M1}$$

[This M gained when in position to complete integration, dep on M *]

$$= \frac{2}{3} \sin^3 x (+C) \qquad \text{or } -\frac{1}{6} \sin 3x + \frac{1}{2} \sin x + c \qquad \text{A1}$$

$$y = \frac{2 \sin^3 x}{3 \sin 2x} + \frac{C}{\sin 2x} \qquad \text{or } -\frac{\sin 3x}{6 \sin 2x} + \frac{\sin x}{2 \sin 2x} + \frac{c}{\sin 2x} \qquad \text{or equiv.} \qquad \text{A1}$$
[7]

[FP1/P4 January 2005 Qn 3]

38. (a)
$$\frac{1}{r(r+2)} = \frac{A}{r} + \frac{B}{r+2} = \frac{A(r+2) + Br}{r(r+2)}$$
 and attempt to find A and B

$$= \frac{1}{2r} - \frac{1}{2(r+2)}$$
(b) $\sum \frac{4}{r(r+2)} = 2\left[\frac{1}{r} - \frac{1}{r+2}\right]$

$$\sum_{1}^{n} \left[\frac{1}{r} - \frac{1}{r+2}\right] = \left\{1 - \frac{1}{3}\right\} + \left\{\frac{1}{2} - \frac{1}{4}\right\} + \left\{\frac{1}{3} - \frac{1}{5}\right\} + \dots$$

$$+ \left\{\frac{1}{n-1} - \frac{1}{n+1}\right\} + \left\{\frac{1}{n} - \frac{1}{n+2}\right\}$$
[If A and B incorrect, allow A1 \sqrt{n} here only, providing still differences]
$$= \frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2}$$
A1

Forming single fraction:
$$\frac{3(n+1)(n+2) - 2(n+2) - 2(n+1)}{2(n+1)(n+2)}$$
Deriving given answer
$$\frac{n(3n+5)}{(n+1)(n+2)}$$
, cso
A1 (5)

(c) Using S(100) - S(49) =
$$\frac{100 \times 305}{101 \times 102} - \frac{49 \times 152}{50 \times 51}$$

$$= 2.96059... - 2.92078...$$

$$= 0.0398 (4 d.p.)$$
A1 (3) [10]
[Allow S(100) - S(50), (\Rightarrow 0.0383) for M1]

[FP1/P4 January 2005 Qn 5]

39. (a) $\frac{dy}{dx} = x\frac{dv}{dx} + v$, $\frac{d^2y}{dx^2} = x\frac{d^2v}{dx^2} + 2\frac{dv}{dx}$ M1A1 [M1 for diff. product, A1 both correct] $\therefore x^2 \left(x \frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + 2 \frac{\mathrm{d}v}{\mathrm{d}x} \right) - 2x \left(x \frac{\mathrm{d}v}{\mathrm{d}x} + v \right) + (2 + 9x^2) vx = x^5$ M1 $x^{3} \frac{d^{2}v}{dr^{2}} + 2x^{2} \frac{dv}{dr} - 2x^{2} \frac{dv}{dr} - 2vx + 2vx + 9vx^{3} = x^{5}$ Αl $\left[x^{3}\frac{d^{2}v}{dx^{2}} + +9vx^{3} = x^{5}\right]$ Given result: $\frac{d^2v}{dr^2} + 9v = x^2$ cso A1 (5) (b) CF: $v = A\sin 3x + B\cos 3x$ (may just write it down) M1A1 Appropriate form for P1: $v = \lambda x^2 + \mu$ (or $ax^2 + bx + c$) MI Complete method to find λ and μ **M**1 $v = A\sin 3x + B\cos 3x + \frac{1}{9}x^2 - \frac{2}{91}$ M1A1√ (6) [f.t. only on wrong CF] (c): $y = Ax\sin 3x + Bx\cos 3x + \frac{1}{9}x^3 - \frac{2}{81}x$ B1√ (1) [12]

[f.t. for y = x (candidate's CF + PI), providing two arbitary constants]

[FP1/P4 January 2005 Qn 6]

[FP1/P4 January 2005 Qn 7]

1100	iiDOi			ı
41	(a)	452-1	$=\frac{1}{2r-1}-\frac{1}{2r+1}$	ß1
		\frac{1}{2 \frac{2}{4r^2-1}}	$= \frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \cdots \qquad \frac{1}{2n-1} - \frac{1}{2n+1}$ A Hempt Method of Difference	
			$= \underbrace{1 - \frac{1}{2n+1}} \textcircled{*}$	(3) Vi e'è'o'
	(6)	Sum	$= (\frac{1}{2}) \left[f(20) - f(10) \right]$ $= \frac{1}{2} - \frac{1}{2} $ $= \frac{1}{2} - \frac{1}{2} $	MI
			$= \frac{1}{2} \left[1 - \frac{1}{41} - 1 + \frac{1}{21} \right] = \frac{10}{21 \times 41} \text{ or } \frac{10}{861}$	Al cao(2)

[FP1/P4 June 2005 Qn 1]

42.	$\frac{dy}{dx} + \frac{2}{1+x} y = \frac{1}{x(x+1)}$ A Heapt $y' + Py = Q \text{ form}$	Mi
	1.F. = $e^{\int \frac{2}{1+x} dx} = e^{2\ln(1+x)}$, = $(1+x)^2$	MI, AI
	$\therefore y(1+x)^2 = \int \left(\frac{x+1}{x}\right) dx \text{or} \frac{d}{dx}\left(y(1+x)^2\right) = \frac{x+1}{x}$	MI (T LE)
	1.e. (y(1+x)2 =) x + Lnx + (C)	MLAI
	$y = \frac{x + \ln x + C}{(1+x)^2}$	Al c.a.o. 3

[FP1/P4 June 2005 Qn 3]

[FP1/P4 June 2005 Qn 6]

44. (a)	$2m^2 + 5m + 2 = 0$	Hempt aux eyn	MI	
	$\Rightarrow m = -\frac{1}{2}, -2$			
	$A_{CF} = Ae^{-2t} + Be^{-\frac{1}{2}t}$	C.F.	Aı	
	Particular Integral: 2 = pt + q	P.T.	Bı	
	$\tilde{x} = p$, $\tilde{x} = 0$ and sub.		MI	
	=> $5p + 2q + 2pt = 2t + 9 \rightarrow p = 1, q$	= 2	Αı	
	General solution $x = Ae^{-2t} + Be^{-\frac{1}{2}t} + t + 2$	_	AIJ (
:				(6)
(ს)	x=3,t=0 => 3= A+B+2 (or A+B=	i)	MI	
	$\dot{x} = -2Ae^{-2t} - \frac{1}{2}Be^{-\frac{1}{2}t} + 1$	Alteritä	MI	
	$\bar{x}=1, t=0 \Rightarrow -1=-2A - \frac{1}{2}B + 1$ (or $4A+B$	s=4) Zcorne	Ai	
	Solving $\rightarrow A=1, A=0$ and $x=e^{-2t}+t+2$		Aı	(4)
(c)	$\dot{x} = -2e^{-2t} + 1 = 0$	À=0	HI	
	=> t = ½ ln2		Αı	
	= 4e-2t >0(4t) :.M	līn	MI	
	$h_{in} \propto = e^{-\ln 2} + \frac{1}{2} \ln 2 + 2$			
	= 1 + 1 1,12 + 2			
	= 1 (5+Ln2) (F)		یوی ^ے Al	(4)
			6	(4)
:		57 Y 47 Y		ا ب

[FP1/P4 June 2005 Qn 7]

[FP1/P4 June 2005 Qn 7]

[FP3/P6 June 2005 Qn 4]

47.	(a) $z^n = e^{in\theta} = (\cos n\theta + i\sin n\theta), z^{-n} = e^{-in\theta} = (\cos n\theta - i\sin n\theta)$ Completion (needs to be convincing) $z^n - \frac{1}{z^n} = 2i\sin n\theta$ (*)AG	M1 A1 (2)
	(b) $ \left(z - \frac{1}{z}\right)^5 = z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5} $	M1A1
	$= \left(z^{5} - \frac{1}{z^{5}}\right) - 5\left(z^{3} - \frac{1}{z^{3}}\right) + 10\left(z - \frac{1}{z}\right)$	
:	$(2i\sin\theta)^5 = 32i\sin^5\theta = 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin\theta$	M1A1
	$\Rightarrow \sin^5 \theta = \frac{1}{16} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta) $ (*) AG	A1 (5)
	(c) Finding $\sin^5 \theta = \frac{1}{4} \sin \theta$	М1
	$\theta = 0, \pi$ (both)	В1
	$(\sin^4\theta = \frac{1}{4}) \implies \sin\theta = \pm \frac{1}{\sqrt{2}}$	M1
	$\theta = \frac{\pi}{4}, \frac{3\pi}{4}; \frac{5\pi}{4}, \frac{7\pi}{4}$	A1;A1 (5)
		[12]

[FP3/P6 June 2005 Qn 5]

48.	2 is a 'critical value $x^2 = 2x^2 - 4x \Rightarrow x^2$	e', e.g. used in solution, or $x = 2$ seen as an asymptote $-4x = 0$	B1	
	x = 0, x = 4	M1: two other critical values	M1 A1	
	x < 0		B1	
	2 < x < 4	M1: An inequality using the critical value 2	M1 A1	(6)
			Total 6 m	arks

[FP1/P4 January 2006 Qn 2]

[FP1/P4 January 2006 Qn 4]

50.	(a) $\frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$	B1	
	$v + x \frac{dv}{dx} = \frac{3x - 4vx}{4x + 3vx}$ (All in terms of v and x)	M1	
	$x\frac{dv}{dx} = \frac{3 - 4v - v(4 + 3v)}{4 + 3v}$ (Requires $x\frac{dv}{dx} = f(v)$, 2 terms over common denom.)	M1	
	$x\frac{dv}{dx} = -\frac{3v^2 + 8v - 3}{3v + 4} \tag{*}$	A1 cso	(4)
	(b) $\frac{3v+4}{3v^2+8v-3} dv = -\frac{1}{x} dx$ Separating variables	M1	
	$\pm \ln x$	В1	
	$\frac{1}{2}\ln(3v^2 + 8v - 3)$ M: $k\ln(3v^2 + 8v - 3)$	M1 A1	
	$\frac{1}{2}\ln\left(\frac{3y^2}{x^2} + \frac{8y}{x} - 3\right) = -\ln x + C$ Or any equivalent form	A1	(5)
	(c) $\frac{3y^2}{x^2} + \frac{8y}{x} - 3 = \frac{A}{x^2}$ Removing ln's correctly at any stage, dep. on having C.	M1	
	Using $(1, 7)$ to form an equation in A (need not be $A =$)	M1	
	$(1,7)$ \Rightarrow $3 \times 49 + 56 - 3 = A$ \Rightarrow $A = 200$ (or equiv., can still be ln)	A1	
	$3v^2 + 8vx - 3x^2 = 200$		
	(3y-x)(y+3x) = 200 (M dependent on the 2 previous M's) (*)	M1 A1 cso	(5)
		Total 14 mai	rks

[FP1/P4 January 2006 Qn 6]

51.	(a)(i) $r^2 \sin^2 \theta = a^2 \cos 2\theta \sin^2 \theta = a^2 (1 - 2\sin^2 \theta) \sin^2 \theta$	B1 (1)
	$\left(=a^2\left(\sin^2\theta-2\sin^4\theta\right)\right)$	
	(ii) $\frac{\mathrm{d}}{\mathrm{d}\theta} \left(a^2 \left(\sin^2 \theta - 2 \sin^4 \theta \right) \right) = a^2 \left(2 \sin \theta \cos \theta - 8 \sin^3 \theta \cos \theta \right), = 0$	M1 A1, M
	$2 = 8\sin^2\theta \qquad (Proceed to \ a\sin^2\theta = b)$	M1
	$\sin \theta = \frac{1}{2} \implies \theta = \frac{\pi}{6}, r = \frac{a}{\sqrt{2}}$ (*)	A1, A1 cso (6)
	(b) $\frac{a^2}{2} \int \cos 2\theta d\theta = \frac{a^2}{4} \sin 2\theta$ M: Attempt $\frac{1}{2} \int r^2 d\theta$, to get $k \sin 2\theta$	M1 A1
	$\left[\dots\right]_{\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{a^2}{4} \left[1 - \frac{\sqrt{3}}{2}\right]$ M: Using correct limits	M1 A1
	$\Delta = \frac{1}{2} \left(\frac{a}{\sqrt{2}} \cdot \frac{1}{2} \right) \times \left(\frac{a}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} \right) = \frac{\sqrt{3}a^2}{16}$ M: Full method for rectangle or triangle	M1 A1
	$R = \frac{\sqrt{3}a^2}{16} - \frac{a^2}{4} \left[1 - \frac{\sqrt{3}}{2} \right] = \frac{a^2}{16} \left(3\sqrt{3} - 4 \right)$ M: Subtracting, either way round (*)	dM1 A1 cso (8)
		Total 15 marks

[FP1/P4 January 2006 Qn 7]

52.
$$\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

$$\cos \frac{\pi}{10} + i \sin \frac{\pi}{10}$$

$$\cos \left(\frac{(4k+1)\pi}{10}\right) + i \sin \left(\frac{(4k+1)\pi}{10}\right), \ k = 2, 3, 4 \text{(or equiv.)}$$

$$\left[\cos \left(\frac{9\pi}{10}\right) + i \sin \left(\frac{9\pi}{10}\right), \cos \left(\frac{13\pi}{10}\right) + i \sin \left(\frac{13\pi}{10}\right) + i \sin \left(\frac{17\pi}{10}\right)\right]$$
[Degrees: 18, 90, 162, 234, 306]

Total 5 marks

[FP3/P6 January 2006 Qn 1]

53.	(a) Correct method for producing 2^{nd} order differential equation e.g. $\frac{d}{dx} \left\{ (1+2x) \frac{dy}{dx} \right\} = \frac{d}{dx} \left\{ x + 4y^2 \right\}$ attempted	M1	
	$(1+2x)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 1 + 8y\frac{dy}{dx} \text{ seen + conclusion AG}$	A1*	(2)
	(b) Differentiating again w.r.t. x: $ (1+2x)\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} = 8y\frac{d^2y}{dx^2} + 8\left(\frac{dy}{dx}\right)^2 - 2\frac{d^2y}{dx^2} $ or equiv.	M1A2,1,0	(3)
	[e.g. $(1+2x)\frac{d^3y}{dx^3} = 8\left(\frac{dy}{dx}\right)^2 + 4(2y-1)\frac{d^2y}{dx^2}$,
	3		···

a	
(c) $\frac{dy}{dx}$ (at $x = 0$) = 1	B1
Finding $\frac{d^2y}{dx^2}$ (at $x=0$) (= 3)	MI
Finding $\frac{d^3y}{dx^3}$, at $x = 0$; = 8 [A1 f.t. is on part (c) values only]	M1A1√
$y = \frac{1}{2} + x + \frac{3}{2}x^2 + \frac{4}{3}x^3 + \dots$	M1A1 (6)
[Alternative (c):	Total 11 marks
Polynomial for y: $y = \frac{1}{2} + ax + bx^2 + cx^3 +$	M1
In given d.e.: $(1+2x)(a+2bx+3cx^2+) = x+4(\frac{1}{2}+ax+bx^2+cx^3+)^2$	M1A1
a = 1 B1, Complete method for other coefficients M1, answer	A1

[FP3/P6 January 2006 Qn 6]

[FP3/P6 January 2006 Qn 8]

[FP1 June 2006 Qn 2]

56.	$(a) y' = 3\sin 2x + 6x\cos 2x$	M1	
	$y'' = 12\cos 2x - 12x\sin 2x$	A1	
	Substituting $12\cos 2x - 12x\sin 2x + 12x\sin 2x = k\cos 2x$	M1	
	k = 12	A1	(4)
	(b) General solution is $y = A\cos 2x + B\sin 2x + 3x\sin 2x$	B1	
	$(0,2) \Rightarrow A=2$	B1	
	$\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \implies \frac{\pi}{2} = B + \frac{3\pi}{4} \implies B = -\frac{\pi}{4}$	M1	
	$y = 2\cos 2x - \frac{\pi}{4}\sin 2x + 3x\sin 2x$ Needs $y = \dots$	A1	(4)
			[8]

[FP1 June 2006 Qn 3]

57. (a)
$$(2r+1)^3 = 8r^3 + 12r^2 + 6r + 1$$

$$(2r-1)^3 = 8r^3 - 12r^2 + 6r - 1$$

$$(2r+1)^3 - (2r-1)^3 = 24r^2 + 2$$

$$(A = 24, B = 2)$$

$$Accept $r = 0 \implies B = 2 \text{ and } r = 1 \implies A + B = 26 \implies A = 24$

$$M1 \text{ for both }$$

$$(b) \qquad \beta^{5'} - \beta^{3'} = 24 \times 1^2 + 2$$

$$\beta^{5'} - \beta^{3'} = 24 \times 2^2 + 2$$

$$M$$

$$(2n+1)^3 - (2n-1)^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3 = 24 \sum_{r=1}^n r^2 + 2n$$

$$(2n+1)^3 - 1^3$$$$

[FP1 June 2006 Qn 5]

58.	(a) $2x^2 + x - 6 = 6 - 3x$	M1	
	Leading to $x^2 + 2x - 6 = 0$		
	$(x+1)^2 = 7 \implies x = -1 \pm \sqrt{7}$ surds required	M1 A1	
	$-2x^2 - x + 6 = 6 - 3x$	M1	
	Leading to $2x^2 - 2x = 0 \implies x = 0, 1$	A1, A1	(6)
	(b) Accept if parts (a) and (b) done in reverse order Curved shape Line	B1 B1	
	At least 3 intersections	B1	(3)
	(c) Using all 4 CVs and getting all into inequalities	M1	
	$x > \sqrt{7-1}, x < -\sqrt{7-1}$ both	A1ft	
	ft their greatest positive and their least negative CVs		
	0 < x < 1	A1	(3)
			[12]

[FP1 June 2006 Qn 7]

59.	(a) $\int \frac{2}{120-t} dt = -2\ln(120-t)$	B1
	$e^{-2\ln(120-t)} = (120-t)^{-2}$	M1 A1
	$\frac{1}{(120-t)^2} \frac{dS}{dt} + \frac{2S}{(120-t)^3} = \frac{1}{4(120-t)^2}$	
	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{S}{\left(120 - t\right)^2} \right) = \frac{1}{4\left(120 - t\right)^2} \text{or integral equivalent}$	M1
	$\frac{S}{(120-t)^2} = \frac{1}{4(120-t)} (+C)$	M1 A1
	$(0,6) \implies 6 = 30 + 120^2 C \implies C = -\frac{1}{600}$	M1
	$S = \frac{120 - t}{4} - \frac{\left(120 - t\right)^2}{600} \text{accept } C = \text{awrt } -0.0017$	A1 (8)
	(b) $\frac{dS}{dt} = -\frac{1}{4} + \frac{2(120 - t)}{600}$	M1
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 0 \Rightarrow t = 45$	M1 A1
	Substituting $S = 9\frac{3}{8}$ (kg)	A1 (4)
		[12]

[FP1 June 2006 Qn 8]

60. (a)
$$f(x) = \cos 2x$$
, $f(\frac{\pi}{4}) = 0$
 $f'(x) = -2\sin 2x$, $f'(\frac{\pi}{4}) = -2$ M1
 $f''(x) = -4\cos 2x$, $f''(\frac{\pi}{4}) = 0$
 $f'''(x) = 8\sin 2x$, $f'''(\frac{\pi}{4}) = 8$ A1
 $f^{(iv)}(x) = 16\cos 2x$, $f^{(iv)}(\frac{\pi}{4}) = 0$
 $f^{(v)}(x) = -32\sin 2x$, $f^{(v)}(\frac{\pi}{4}) = -32$ A1

$$\cos 2x = f(\frac{\pi}{4}) + f'(\frac{\pi}{4})(x - \frac{\pi}{4}) + \frac{f''(\frac{\pi}{4})}{2}(x - \frac{\pi}{4})^2 + \frac{f'(\frac{\pi}{4})}{3!}(x - \frac{\pi}{4})^3 + \dots$$
Three terms are sufficient to establish method M1

$$\cos 2x = -2(x - \frac{\pi}{4}) + \frac{4}{3}(x - \frac{\pi}{4})^3 - \frac{4}{15}(x - \frac{\pi}{4})^5 + \dots$$
A1 (5)
(b) Substitute $x = 1$ $(1 - \frac{\pi}{4} \approx 0.21460)$ B1

$$\cos 2x = -2(1 - \frac{\pi}{4}) + \frac{4}{3}(1 - \frac{\pi}{4})^3 - \frac{4}{15}(1 - \frac{\pi}{4})^5 + \dots$$

$$\approx -0.416147$$
 cao M1 A1 (3)

[FP3 June 2006 Qn 2]

61.	(a) In this solution $\cos \theta = c$ and $\sin \theta = s$	
	$\cos 5\theta + i\sin 5\theta = (c + is)^5$	M1
	$\left(=c^{5}+5c^{4} i s+10 c^{3} \left(i s\right)^{2}+10 c^{2} \left(i s\right)^{3}+5 c \left(i s\right)^{4}+\left(i s\right)^{5}\right)$	
	$\Im \qquad \sin 5\theta = 5c^4s - 10c^2s^3 + s^5 \qquad \text{equate}$	M1 A1
	$=5c^{4}s-10c^{2}(1-c^{2})s+(1-c^{2})^{2}s s^{2}=1-c^{2}$	M1
	$= s\left(16c^4 - 12c^2 + 1\right) *$	A1 (5)
	(b) $\sin\theta \left(16\cos^4\theta - 12\cos^2\theta + 1\right) + 2\cos^2\theta\sin\theta = 0$	M1
	$\sin \theta = 0 \implies \theta = 0$	B1
	$16c^4 - 10c^2 + 1 = (8c^2 - 1)(2c^2 - 1) = 0$	M1
	$c = \pm \frac{1}{2\sqrt{2}}, c = \pm \frac{1}{\sqrt{2}}$ any two	A1
	$\theta \approx 1.21, 1.93; \theta = \frac{\pi}{4}, \frac{3\pi}{4}$ any two	A1
	all four	A1 (6)
	accept awrt 0.79, 1.21,1.93,2.36	[11]
	Ignore any solutions out of range.	

[FP3 June 2006 Qn 3]

62.	(a) Let $z = x + iy$	
	$(x-6)^2 + (y+3)^2 = 9[(x+2)^2 + (y-1)^2]$	M1
	Leading to $8x^2 + 8y^2 + 48x - 24y = 0$	M1 A1
	This is a circle; the coefficients of x^2 and y^2 are the same and	
	there is no xy term.	
	Allow equivalent arguments and ft their $f(x, y)$ if appropriate.	A1ft
	$(x^2 + 6x + y^2 - 3y = 0)$	
	Leading to $(x+3)^2 + (y-\frac{3}{2})^2 = \frac{45}{4}$	M1
	Centre: $\left(-3, \frac{3}{2}\right)$	A1
	Radius: $\frac{3}{2}\sqrt{5}$ or equivalent	A1 (7)
_	Circle centre in correct quadrant through origin	B1 B1 ft B1
	Line cuts $-$ ve x and $+$ ve y axes	B1
	O intersects with circle on axes	P. (5)
	and all correct	B1 (5)
	(c) Shading inside circle	B1
	and above line with all correct	B1 (2)
		[14]

[FP3 June 2006 Qn 6]

63.	Attempt to arrange in correct form $\frac{dy}{dx} + \frac{2}{x}y = \frac{\cos x}{x}$	M1
	Integrating Factor: $= e^{\int \frac{2}{x} dx}$, $[(= e^{2 \ln x} = e^{\ln x^2}) = x^2]$	M1,A1
	$\left[x^2 \frac{dy}{dx} + 2xy = x \cos x \text{ implies M1M1A1} \right]$	
	$\therefore x^2 y = \int x^2 \cdot \frac{\cos x}{x} dx \text{or equiv.}$	м1√
	[I.F. $y = \int I.F.(candidate'sRHS)dx$]	
	By Parts: $(x^2 y) = x \sin x - \int \sin x dx$	M1
	i.e. $(x^2 y) = x \sin x$, $+ \cos x (+ c)$	A1, A1cao
	$y = \frac{\sin x}{x} + \frac{\cos x}{x^2} + \frac{c}{x^2}$	A1√ [8]

[FP1 January 2007 Qn 2]

			_
64.	Working from RHS:		
	(a) Combining $\frac{1}{r} - \frac{1}{r+1}$ $\left[\frac{1}{r(r+1)} \right]$	M1	
	Forming single fraction: $\frac{r(r-1)(r+1) + (r+1) - r}{r(r+1)}$		
	$= \frac{r(r^2 - 1) + 1}{r(r + 1)} = \frac{r^3 - r + 1}{r(r + 1)}$ AG	Alcso (3)	,
	Note: For A1, must be intermediate step, as shown		
	Working from LHS:		
	(a) $\frac{r(r^2-1)+1}{r(r+1)} = \frac{r(r+1)(r-1)+1}{r(r+1)} = r-1 + \frac{1}{r(r+1)}$ M1		
	Splitting $\frac{1}{r(r+1)}$ into partial fractions M1		
	Showing = $\frac{r(r^2 - 1) + 1}{r(r + 1)} = r - 1 + \frac{1}{r} - \frac{1}{r + 1}$ no incorrect working seen A1		
	Notes:		
	In first method, second M needs all necessary terms, allowing for sign errors		
	In second method first M is for division:		
	Second method mark is for method shown (allow "cover up" rule stated)		
	If long division, allow reasonable attempt which has remainder constant or linear		
	function of r.		
	Setting $\frac{r(r^2 - 1) + 1}{r(r+1)} = \frac{A}{r} + \frac{B}{r+1}$ is M0		
	If 3 or 4 constants used in a correct initial statement,		
	M1 for finding 2 constants; M1 for complete method to find remaining constant(s)		

[FP1 Jan 2007 Qn 4]

65.	(a) $[(x > -2)]$: Attempt to solve $x^2 - 1 = 3(1-x)(x+2)$	M1	
	$[4x^2 + 3x - 7 = 0]$		
	$x = 1, or -\frac{7}{4}$	B1, A1	
	[$(x < -2)$]: Attempt to solve $x^2 - 1 = -3(1-x)(x+2)$	M1	
	Solving $x + 1 = 3x + 6$ $(2x^2 + 3x - 5 = 0)$	M1dep	
	$x = -\frac{5}{2}$	A1 (6)	
	(b) $-\frac{7}{4} < x < 1$ One part Both correct and enclosed	M1 A1	
	$x < -\frac{5}{2}$ { Must be for $x < -2$ and only one value}		

FP1 January 2007 Qn 5]

66.	(a) $y = x^{-2} \implies \frac{dy}{dt} = -2 x^{-3} \frac{dx}{dt}$ [Use of chain rule; need $\frac{dx}{dt}$]	M1
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -2 x^{-3} \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}, + 6x^{-4} \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2$	A1√, M1A1
	(÷ given d.e. by x^4) $\frac{2}{x^3} \frac{d^2 x}{dt^2} - \frac{6}{x^4} \left(\frac{dx}{dt}\right)^2 = \frac{1}{x^2} - 3$	
	becomes $(-\frac{d^2y}{dt^2} = y - 3)$ $\frac{d^2y}{dt^2} + y = 3$ AG	A1 cso (5)
	(b) Auxiliary equation: $m^2 + 1 = 0$ and produce Complementary Function $y =$	M1
	$(y) = A\cos t + B\sin t$	A1cao
	Particular integral: $y = 3$	B1
	$\therefore \text{General solution:} (y) = A\cos t + B\sin t + 3$	A1√ (4)
	$\frac{1}{x^2} = A\cos t + B\sin t + 3$	
	$x = \frac{1}{2}, \ t = 0 \implies (4 = A + 3)$ $A = 1$	B1
	Differentiating (to include $\frac{dx}{dt}$): $-2 x^{-3} \frac{dx}{dt} = -A \sin t + B \cos t$	M1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0, \ t = 0 \qquad \Longrightarrow \qquad (0 = 0 + B) \qquad B = 0$	M1
	$\therefore \frac{1}{x^2} = 3 + \cos t \qquad so \qquad x = \frac{1}{\sqrt{3 + \cos t}}$	A1 cao (4)
	(d) (Max. value of x when $\cos t = -1$) so $\max x = \frac{1}{\sqrt{2}}$ or AWRT 0.707	B1 (1) [14]

[FP1 January 2007 Qn 7]

[FP1 January 2007 Qn 8]

68.	$1\frac{1}{2}$ and 3 are 'critical values', e.g. used in solution, or both seen as asymptotes		В1	
	$(x+1)(x-3) = 2x-3 \implies$	x(x-4)=0		
	x=4, x=0	M1: attempt to find at least one other critical value	M1 A1, A1	
	$0 < x < 1\frac{1}{2}, 3 < x < 4$	M1: An inequality using $1\frac{1}{2}$ or 3	M1 A1, A1	(7)
				7

[FP1 June 2007 Qn 1]

69.	Integrating factor $e^{\int -\tan x dx} = e^{\ln(\cos x)} \left(\text{or } e^{-\ln(\sec x)} \right)$ = $\cos x \left(\text{or } \frac{1}{\sec x} \right)$	M1, A1	
	$\left(\cos x \frac{\mathrm{d}y}{\mathrm{d}x} - y \sin x = 2\sec^2 x\right)$		
	$y\cos x = \int 2\sec^2 x dx$ (or equiv.) $\left(\text{Or}: \frac{d}{dx}(y\cos x) = 2\sec^2 x\right)$	Ml Al(ft)	
	$y\cos x = 2\tan x \ (+C) \ (\text{or equiv.})$	A1	
	y = 3 at $x = 0$: $C = 3$	M1	
	$y = \frac{2 \tan x + 3}{\cos x}$ (Or equiv. in the form $y = f(x)$)	A1	(7)
			7
	1 st M: Also scored for $e^{\int \tan x dx} = e^{-\ln(\cos x)}$ (or $e^{\ln(\sec x)}$), then A0 for $\sec x$.		
	2 nd M: Attempt to use their integrating factor (requires one side of the equation 'correct' for their integrating factor).		
	2^{nd} A: The follow-through is allowed <u>only</u> in the case where the integrating factor used is $\sec x$ or $-\sec x$. $\left(y \sec x = \int 2 \sec^4 x dx\right)$		
	3^{rd} M: Using $y = 3$ at $x = 0$ to find a value for C (dependent on an integration attempt, however poor, on the RHS).		
	Alternative 1 st M: Multiply through the given equation by cos x.		
	1 st A: Achieving $\cos x \frac{dy}{dx} - y \sin x = 2 \sec^2 x$. (Allowing the possibility of integrating by inspection).		
	miegrating by hispections.		

[FP1 June 2007 Qn 2]

			-
70.	(a) $(r+1)^3 = r^3 + 3r^2 + 3r + 1$ and $(r-1)^3 = r^3 - 3r^2 + 3r - 1$	M1	
	$(r+1)^3 - (r-1)^3 = 6r^2 + 2 \tag{*}$	Alcso	(2)
	(b) $r = 1$: $2^3 - 0^3 = 6(1^2) + 2$		
	$r=2: 3^3-1^3=6(2^2)+2$		
	: : : : : : : : : : : : : : : : : : :	MI AI	
	Sum: $(n+1)^3 + n^3 - 1 = 6\sum_{n=0}^{\infty} r^2 + 2n$ M: Attempt to sum at least one side.	M1 A1	
	$(6\sum r^2 = 2n^3 + 3n^2 + n)$		
	$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$ (Intermediate steps are not required) (*)	Alcso	(5)
	(c) $\sum_{r=n}^{2n} r^2 = \sum_{r=1}^{2n} r^2 - \sum_{r=1}^{n-1} r^2$, $= \frac{1}{6} (2n)(2n+1)(4n+1) - \frac{1}{6} (n-1)n(2n-1)$	M1, A1	
	$= \frac{1}{6} n ((16n^2 + 12n + 2) - (2n^2 - 3n + 1))$	MI	
	$=\frac{1}{6}n(n+1)(14n+1)$	Al	(4)
			_11
	(b) 1st A: Requires first, last and one other term correct on both LHS and RHS (but condone 'omissions' if following work is convincing).		
	(c) 1 st M: Allow also for $\sum_{r=n}^{2n} r^2 = \sum_{r=1}^{2n} r^2 - \sum_{r=1}^{n} r^2$.		
	2^{nd} M: Taking out (at some stage) factor $\frac{1}{6}n$, and multiplying out brackets to		
	reach an expression involving n^2 terms.		

[FP1 June 2007 Qn 3]

71.	C.F. $m^2 + 3m + 2 = 0$	m = -1 and $m = -2$		M1	
	$y = Ae^{-x} + Be^{-2x}$			A1	(2)
	$P.I. \ y = cx^2 + dx + e$			В1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2cx + d, \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2c$	2c + 3(2cx + d) + 2($cx^2 + dx + e) \equiv 2x^2 + 6x$	M1	
	2c = 2	c = 1	(One correct value)	Al	
	6c + 2d = 6	d = 0			
	2c + 3d + 2e = 0	e = -1	(Other two correct values)	Ä1	
	General soln: $y = Ae^{-x} + B$	$e^{-2x} + x^2 - 1$	(Their C.F. + their P.I.)	A1ft	(5)
	x = 0, y = 1: 1 = A + B - 1		(A+B=2)	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -A\mathrm{e}^{-x} - 2B\mathrm{e}^{-2x} + 2x,$	$x = 0, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 1:$	1 = -A - 2B	M1	
	Solving simultaneously:	A = 5 and $B = -3$		Ml Al	
	Solution: $y = 5e^{-x} - 3e^{-x}$	$-2x + x^2 - 1$		A1 -	(5)
	ont -				12

[FP1 June 2007 Qn 5]

72.	Shape (closed curve, approx. symmetrical about the initial line, in all 'quadrants' and 'centred' to the right of the pole/origin). Scale (at least one correct 'intercept' r value shown on sketch or perhaps seen in a table). (Also allow awrt 3.27 or awrt 6.73).	B1 (2)
	(b) $y = r \sin \theta = 5 \sin \theta + \sqrt{3} \sin \theta \cos \theta$	M1
	$\frac{dy}{d\theta} = 5\cos\theta - \sqrt{3}\sin^2\theta + \sqrt{3}\cos^2\theta (= 5\cos\theta + \sqrt{3}\cos 2\theta)$	A1
	$5\cos\theta - \sqrt{3}(1-\cos^2\theta) + \sqrt{3}\cos^2\theta = 0$	M1
	$2\sqrt{3}\cos^{2}\theta + 5\cos\theta - \sqrt{3} = 0 (2\sqrt{3}\cos\theta - 1)(\cos\theta + \sqrt{3}) = 0 \cos\theta = \dots (0.288)$	M1
	$\theta = 1.28 \text{ and } 5.01 \text{ (awrt) (Allow } \pm 1.28 \text{ awrt)} \left(\text{Also allow } \pm \arccos \frac{1}{2\sqrt{3}} \right)$	A1
	$r = 5 + \sqrt{3} \left(\frac{1}{2\sqrt{3}} \right) = \frac{11}{2}$ (Allow awrt 5.50)	A1 (6)
	(c) $r^2 = 25 + 10\sqrt{3}\cos\theta + 3\cos^2\theta$	Ві
	$\int 25 + 10\sqrt{3}\cos\theta + 3\cos^2\theta d\theta = \frac{53\theta}{2} + 10\sqrt{3}\sin\theta + 3\left(\frac{\sin 2\theta}{4}\right)$	M1 <u>A1ft</u> <u>A1ft</u>
	(ft for integration of $(a+b\cos\theta)$ and $c\cos 2\theta$ respectively)	
	$\frac{1}{2} \left[25\theta + 10\sqrt{3}\sin\theta + \frac{3\sin 2\theta}{4} + \frac{3\theta}{2} \right]_0^{2\pi} = \dots$	M1
	$= \frac{1}{2} (50\pi + 3\pi) = \frac{53\pi}{2}$ or equiv. in terms of π .	A1 . (6
	2 2	14
	(b) 2^{nd} M: Forming a quadratic in $\cos \theta$. 3^{rd} M: Solving a 3 term quadratic to find a value of $\cos \theta$ (even if called θ).	
	Special case: Working with $r\cos\theta$ instead of $r\sin\theta$:	
	1 st M1 for $r\cos\theta = 5\cos\theta + \sqrt{3}\cos^2\theta$ 1 st A1 for derivative $-5\sin\theta - 2\sqrt{3}\sin\theta\cos\theta$, then no further marks.	
	(c) 1 st M: Attempt to integrate at least one term.	
	2^{nd} M: Requires use of the $\frac{1}{2}$, correct limits (which could be 0 to 2π , or	
	$-\pi$ to π , or 'double' 0 to π), and subtraction (which could be implied).	

[FP1 June 2007 Qn 7]

[FP3 June 2007 Qn 2]

74. (a)
$$z^{n} = (\cos\theta + i\sin\theta)^{n} = \cos n\theta + i\sin n\theta$$

 $z^{-n} = (\cos\theta + i\sin\theta)^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$ both
Adding $z^{n} + \frac{1}{z^{n}} = 2\cos n\theta + \frac{1}{z^{n}}$ A1 (2)
(b) $\left(z + \frac{1}{z}\right)^{6} = z^{6} + 6z^{4} + 15z^{2} + 20 + 15z^{-2} + 6z^{-4} + z^{-6}$ M1
 $= z^{6} + z^{-6} + 6\left(z^{4} + z^{-4}\right) + 15\left(z^{2} + z^{-2}\right) + 20$ M1
 $64\cos^{6}\theta = 2\cos 6\theta + 12\cos 4\theta + 30\cos 2\theta + 20$ M1
 $32\cos^{6}\theta = \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10$ (5)
two correct (c) $\int \cos^{6}\theta d\theta = \left(\frac{1}{32}\right) \int (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10) d\theta$
 $= \left(\frac{1}{32}\right) \left[\frac{\sin 6\theta}{6} + \frac{6\sin 4\theta}{4} + \frac{15\sin 2\theta}{2} + 10\theta\right]$ M1 A1ft
 $\left[\dots \right]_{0}^{\frac{\pi}{6}} = \frac{1}{32} \left[-\frac{3}{2} \times \frac{\sqrt{3}}{2} + \frac{15}{2} \times \frac{\sqrt{3}}{2} + \frac{10\pi}{3} \right] = \frac{5\pi}{48} + \frac{3\sqrt{3}}{32}$ or exact equivalent [11]

[FP3 June 2007 Qn 4]

75.	(a) Let $z = \lambda + \lambda i$; $w = \frac{\lambda + (\lambda + 1)i}{\lambda(1 + i)}$	M1
	$=\frac{\lambda+(\lambda+1)i}{\lambda(1+i)}\times\frac{1-i}{1-i}$	M1
	$u + i v = \frac{(2\lambda + 1) + i}{2\lambda}$	A1
	$u=1+\frac{1}{2\lambda}, v=\frac{1}{2\lambda}$	M1
	Eliminating λ gives a line with equation $v = u - 1$ or equivalent	A1 (5)
	(b) Let $z = \lambda - (\lambda + 1)i$; $w = \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i}$	M1
	$= \frac{\lambda - \lambda i}{\lambda - (\lambda + 1)i} \times \frac{\lambda + (\lambda + 1)i}{\lambda + (\lambda + 1)i}$	M1
	$u + i v = \frac{\lambda (2\lambda + 1) + \lambda i}{2\lambda^2 + 2\lambda + 1}$	A1
	$u = \frac{\lambda(2\lambda + 1)}{2\lambda^2 + 2\lambda + 1}, v = \frac{\lambda}{2\lambda^2 + 2\lambda + 1}$	M1
	$\frac{u}{v} = 2\lambda + 1$	
	$v = \frac{2\lambda}{4\lambda^2 + 4\lambda + 2} = \frac{(2\lambda + 1) - 1}{(2\lambda + 1)^2 + 1} = \frac{\frac{u}{v} - 1}{\left(\frac{u}{v}\right)^2 + 1}$	M1
	Reducing to the circle with equation $u^2 + v^2 - u + v = 0 \bigstar$ cso	M1 A1 (7)
	ft their line Circle through origin, centre in correct quadrant Intersections correctly placed	B1ft B1 B1 (3) [15]

[FP3 June 2007 Qn 8]

1 76.	Integrating factor = e^{-3x}	B1	
	Integrating factor = e^{-3x} $\therefore \frac{d}{dx}(ye^{-3x}) = xe^{-3x}$	M1	
	$\therefore (ye^{-3x}) = \int xe^{-3x} dx = -\frac{x}{3}e^{-3x} + \int \frac{1}{3}e^{-3x} dx$	M1	
	$= -\frac{x}{3}e^{-3x} - \frac{1}{9}e^{-3x}(+c)$	A 1	
	$\therefore y = -\frac{x}{3} - \frac{1}{9} + ce^{3x}$	Alft	
	3 9	[5]	

[FP1 January 2008 Qn 1]

77.(a)			
1	Consider $\frac{(x+3)(x+9)-(3x-5)(x-1)}{(x-1)}$, obtaining $\frac{-2x^2+20x+22}{(x-1)}$	M1 A1	
	Factorise to obtain $\frac{-2(x-11)(x+1)}{(x-1)}$.	MI AI	(4)
(b)	Identify $x = 1$ and their two other critical values Obtain one inequality as an answer involving at least one of their critical values To obtain $x < -1$, $1 < x < 11$	Blft Ml Al, Al	(4) [8]

[FP1 January 2008 Qn 3]

78.(a) Method to obtain partial fractions e.g.
$$5r + 4 = A(r+1)(r+2) + Br(r+2) + Cr(r+1)$$
 M1

And equating coefficients, or substituting values for x .

$$A = 2, B = 1, C = -3 \text{ or } \frac{2}{r} + \frac{1}{r+1} - \frac{3}{r+2}$$
A1 A1 A1

(4)

$$\sum_{r=1}^{n} \dots = \frac{2}{1} + \frac{1}{2} - \frac{3}{3}$$

$$+ \frac{2}{2} + \frac{1}{3} - \frac{3}{4}$$

$$+ \frac{2}{3} + \frac{1}{4} - \frac{3}{5} = 2 + \frac{3}{2}, -\frac{2}{n+1} - \frac{3}{n+2} \text{ or equivalent}$$

$$+ \dots$$

$$+ \frac{2}{n-1} + \frac{1}{n} - \frac{3}{n+1}$$

$$+ \frac{2}{n} + \frac{1}{n+1} - \frac{3}{n+2}$$

$$= \frac{7(n+1)(n+2) - 4(n+2) - 6(n+1)}{2(n+1)(n+2)} = \frac{7n^2 + 11n}{2(n+1)(n+2)} *$$
M1 A1

(5)

[FP1 January 2008 Qn 5]

79.(a)	Solve auxiliary equation $3m^2 - m - 2 = 0$ to obtain $m = -\frac{2}{3}$ or 1	M1 A1
	C.F is $Ae^{-\frac{2}{3}x} + Be^x$	A1ft
	Let PI = $\lambda x^2 + \mu x + \nu$. Find $y' = 2\lambda x + \mu$, and $y'' = 2\lambda$ and substitute into d.e. Giving $\lambda = -\frac{1}{2}$, $\mu = \frac{1}{2}$ and $\nu = -\frac{7}{4}$	M1 A1 A1A1
	$\therefore y = -\frac{1}{2}x^2 + \frac{1}{2}x - \frac{7}{4} + Ae^{-\frac{2}{3}x} + Be^x$	A1ft (8)
(b)	Use boundary conditions: $2 = -\frac{7}{4} + A + B$	MlAlft
	$y' = -x + \frac{1}{2} - \frac{2}{3}Ae^{-\frac{2}{3}x} + Be^{x}$ and $3 = \frac{1}{2} - \frac{2}{3}A + B$	Ml Ml
<u> </u>	Solve to give $A=3/4$, $B=3$ (: $y=-\frac{1}{2}x^2+\frac{1}{2}x-\frac{7}{4}+\frac{3}{4}e^{-\frac{2}{3}x}+3e^x$)	Ml A1 (6) [14]

[FP1 January 2008 Qn 7]

F		
80.(a)	$a(3+2\cos\theta) = 4a$ Solve to obtain $\cos\theta = \frac{1}{2}$ $\theta = \pm \frac{\pi}{3}$ and points are $(4a, \frac{\pi}{3})$ and $(4a, \frac{5\pi}{3})$	M1 M1 A1, A1 (4)
(b)	Use area = $\frac{1}{2} \int r^2 d\theta$ to give $\frac{1}{2} a^2 \int (3 + 2\cos\theta)^2 d\theta$ Obtain $\int (9 + 12\cos\theta + 2\cos2\theta + 2)d\theta$ Integrate to give $11\theta + 12\sin\theta + \sin2\theta$ Use limits $\frac{\pi}{3}$ and π , then double or $\frac{\pi}{3}$ and $\frac{5\pi}{3}$ or theirs Find a third area of circle $=\frac{16\pi a^2}{3}$	M1 A1 M1 A1 M1 B1 A1, A1
(c)	Obtain required area = $\frac{38\pi a^2}{3} - \frac{13\sqrt{3}a^2}{2}$	(8)
	correct shape 5a and 4a marked 2a marked and passes through O	B1 B1 B1 (3)

[FP1 January 2008 Qn 8]

81.	(a) $m^2 + 4m + 3 = 0$ $m = -1$, $m = -3$	M1 A1	
	C.F. $(x =) Ae^{-t} + Be^{-3t}$ must be function of t, not x	A1	
	P.I. $x = pt + q$ (or $x = at^2 + bt + c$)	B1	
	4p+3(pt+q)=kt+5 $3p=k$ (Form at least one eqn. in p and/or q)	M1	
	4p + 3q = 5		
	$p = \frac{k}{3},$ $q = \frac{5}{3} - \frac{4k}{9} \left(= \frac{15 - 4k}{9} \right)$	A1	
	General solution: $x = Ae^{-t} + Be^{-3t} + \frac{kt}{3} + \frac{15-4k}{9}$ must include x = and be function of t	A1 ft	(7)
	(b) When $k = 6$, $x = 2t - 1$	M1 A1cao	(2)
			9

[FP1 June 2008 Qn 4]

[FP1 June 2008 Qn 5]

83.	(a) $\frac{2}{(r+1)(r+3)} = \frac{1}{r+1} - \frac{1}{r+3}$ M: $\frac{2}{(r+1)(r+3)} = \frac{A}{r+1} + \frac{B}{r+3}$	MI A1 (2)
	(b) $r = 1$: $\left(\frac{2}{2 \times 4}\right) = \frac{1}{2} - \frac{1}{4}$	M1
	$r=2: \qquad \left(\frac{2}{3\times 5}\right) = \frac{1}{3} - \frac{1}{5}$	
	$r = n - 1$: $\left(\frac{2}{n(n+2)}\right) = \frac{1}{n} - \frac{1}{n+2}$	
	$r = n$: $\left(\frac{2}{(n+1)(n+3)}\right) = \frac{1}{n+1} - \frac{1}{n+3}$	A1 ft
	Summing: $\sum = \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3}$	M1 A1
	$=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{6(n+2)(n+3)}=\frac{n(5n+13)}{6(n+2)(n+3)}$	d M1 A1cso (6)
	(c) $\sum_{21}^{30} = \sum_{1}^{30} - \sum_{1}^{20} = \frac{30 \times 163}{6 \times 32 \times 33} - \frac{20 \times 113}{6 \times 22 \times 23}, = 0.02738$	M1A1ft,A1cso (3)
		(11)

[FP1 June 2008 Qn 6]

84. (a)
$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$
 B1

$$\left(v + x \frac{dv}{dx}\right) = \frac{x}{vx} + \frac{3vx}{x} \implies x \frac{dv}{dx} = 2v + \frac{1}{v}$$
 (*) M1 A1 (3)
(b) $\int \frac{v}{1 + 2v^2} dv = \int \frac{1}{x} dx$ M1

$$\frac{1}{4} \ln(1 + 2v^2), = \ln x \ (+C)$$
 dM1 A1, B1

$$Ax^4 = 1 + 2v^2$$
 d M1

$$Ax^4 = 1 + 2\left(\frac{y}{x}\right)^2 \text{ so } y = \sqrt{\frac{Ax^6 - x^2}{2}} \text{ or } y = x\sqrt{\frac{Ax^4 - 1}{2}} \text{ or } y = x\sqrt{\left(\frac{1}{2}e^{4\ln x + 4c} - \frac{1}{2}\right)}$$
 M1 A1 (7)
(c) $x = 1$ at $y = 3$: $3 = \sqrt{\frac{A - 1}{2}}$ $A = \dots$ M1

$$y = \sqrt{\frac{19x^6 - x^2}{2}} \text{ or } y = x\sqrt{\frac{19x^4 - 1}{2}}$$
 A1 (2) 12

[FP1 June 2008 Qn 7]

85.	(a) $r\cos\theta = 4(\cos\theta - \cos^2\theta)$ or $r\cos\theta = 4\cos\theta - 2\cos 2\theta - 2$	B1
	$\frac{d(r\cos\theta)}{d\theta} = 4(-\sin\theta + 2\cos\theta\sin\theta) \text{ or } \frac{d(r\cos\theta)}{d\theta} = 4(-\sin\theta + \sin2\theta)$	M1 A1
	$4(-\sin\theta + 2\cos\theta\sin\theta) = 0 \implies \cos\theta = \frac{1}{2} \text{ which is satisfied by } \theta = \frac{\pi}{3} \text{ and } r = 2(*)$	d M1 A1 (5)
	(b) $\frac{1}{2} \int r^2 d\theta = (8) \int (1 - 2\cos\theta + \cos^2\theta) d\theta$	M1
	$= (8) \left[\theta - 2\sin\theta + \frac{\sin 2\theta}{4} + \frac{\theta}{2} \right]$	M1 A1
	$8\left[\frac{3\theta}{2} - 2\sin\theta + \frac{\sin 2\theta}{4}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} = 8\left(\left(\frac{3\pi}{4} - 2\right) - \left(\frac{\pi}{2} - \sqrt{3} + \frac{\sqrt{3}}{8}\right)\right) = 2\pi - 16 + 7\sqrt{3}$	M1
	Triangle: $\frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2} \times 1 \times \sqrt{3} = \frac{\sqrt{3}}{2}$	M1 A1
	Total area: $(2\pi - 16 + 7\sqrt{3}) + \frac{\sqrt{3}}{2} = (2\pi - 16) + \frac{15\sqrt{3}}{2}$	(A1) A1 (8)
		13

[FP1 June 2008 Qn 8]

86. (a)
$$(x^{2} + 1)\frac{d^{3}y}{dx^{3}} + 2x\frac{d^{2}y}{dx^{2}} = 4y\frac{dy}{dx} + (1 - 2x)\frac{d^{2}y}{dx^{2}} - 2\frac{dy}{dx}$$
 M1 A1
$$(x^{2} + 1)\frac{d^{3}y}{dx^{3}} = (1 - 4x)\frac{d^{2}y}{dx^{2}} + (4y - 2)\frac{dy}{dx}$$
 (*) A1 (3)
$$(b) \quad (\frac{d^{2}y}{dx^{2}})_{0} = 3$$
 B1
$$(\frac{d^{3}y}{dx^{3}})_{0} = 5$$
 Follow through:
$$\frac{d^{3}y}{dx^{3}} = \frac{d^{2}y}{dx^{2}} + 2$$
 B1ft
$$y = 1 + x + \frac{3}{2}x^{2} + \frac{5}{6}x^{3} \dots$$
 M1 A1 (4)
$$x = -0.5, \quad y \approx 1 - 0.5 + 0.375 - 0.104166 \dots$$
 [awrt 0.77] B1 (1) (8)

[FP3 June 2008 QN 3]

[FP3 June 2008 Qn 4]

88.	(a)	$(\cos\theta + i\sin\theta)^{1} = \cos\theta + i\sin\theta \therefore \text{ true for } n = 1$	Bl
30.	()	Assume true for $n = k$, $(\cos \theta + i \sin \theta)^k = \cos k\theta + i \sin k\theta$	
		$(\cos\theta + i\sin\theta)^{k+1} = (\cos k\theta + i\sin k\theta)(\cos\theta + i\sin\theta)$	M1
		$= \cos k\theta \cos \theta - \sin k\theta \sin \theta + i(\sin k\theta \cos \theta + \cos k\theta \sin \theta)$	M1
		(Can be achieved either from the line above or the line below)	
		$= \cos(k+1)\theta + i\sin(k+1)\theta$	A1
		Requires full justification of $(\cos \theta + i \sin \theta)^{k+1} = \cos(k+1)\theta + i \sin(k+1)\theta$	
		(:.true for $n = k + 1$ if true for $n = k$) :. true for $n \in \mathbb{Z}^+$ by induction	A1cso (5)
	(b)	$\cos 5\theta = \text{Re} \left[(\cos \theta + i \sin \theta)^5 \right]$	
		$=\cos^5\theta + 10\cos^3\theta i^2\sin^2\theta + 5\cos\theta i^4\sin^4\theta$	M1 A1
		$=\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta$	M1 .
		$=\cos^5\theta - 10\cos^3\theta (1-\cos^2\theta) + 5\cos\theta (1-\cos^2\theta)^2$	M1
		$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta \tag{*}$	Alcso (5)
	(c)	$\frac{\cos 5\theta}{\cos \theta} = 0 \implies \cos 5\theta = 0$	М1
		$5\theta = \frac{\pi}{2} \qquad \theta = \frac{\pi}{10}$	A1
		$x = 2\cos\theta$, $x = 2\cos\frac{\pi}{10}$ is a root (*)	A1 (3)
			12

[FP3 June 2008 Qn 6]