

Aula: Estruturas Condicionais Introdução a Programação

Túlio Toffolo & Puca Huachi http://www.toffolo.com.br

Departamento de Computação Universidade Federal de Ouro Preto

- Fluxogramas
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 5 Exercícios

- Fluxogramas
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- Exercícios

Exemplo 1:

Faça um programa em C/C++, para calcular a área de um círculo. A área de um círculo é dada pela seguinte fórmula $a=\pi r^2$. O valor do raio rserá digitado pelo usuário.

Solução do Exemplo 1:

```
/* Programa que calcula a área de um círculo
     */
3
    #include <stdio.h>
4
5
    int main()
6
        // declaração da constante Pi
        const double PI = 3.141592;
9
10
        double raio:
11
12
        printf("Digite o raio do círculo: ");
        scanf("%lf", &raio);
13
14
        if (raio >= 0){
15
16
            // calculando e imprimindo a área
             double area = PI * raio * raio;
17
            printf("\nArea do círculo: %lf\n", area);
18
19
        return 0:
20
    }
21
```


Dúvida?

- Não existe área negativa.
- Portanto, o programa n\u00e3o pode calcular a \u00e1rea se o valor do raio for negativo.
- Como saber se o valor do raio digitado é positivo?
 - Responderemos nesta da aula...

- Operadores relacionais

Tomada de decisões

- Permite a um programa realizar uma ação alternativa, a partir de um resultado verdadeiro ou falso produzido por uma condição.
- As condições são formadas utilizando-se os operadores de igualdade e os operadores relacionais.
- Ambos operadores de igualdade têm o mesmo nível de precedência, o qual é inferior ao dos operadores relacionais, e associam-se da esquerda para a direita.

Operadores de igualdade e relacionais

Operador algébrico de igualdade ou relacional padrão	Operador de igualdade ou relacional em C++	Exemplo de condição em C++	Significado da condição em C++
Operadores relacionais			
>	>	x > y	x é maior que y
<	<	x < y	x é menor que y
2	>=	x >= y	x é maior que ou igual a y
≤	<=	x <= y	x é menor que ou igual a y
Operadores de igualdade			
=	••	x == y	x é igual a y
≠	!=	x != y	x não é igual a y

Erro Comum em Programação

- Confundir o operador de igualdade ==
- Com o operador de atribuição =

avalia a expressão (direita) e atribui o resultado à variável (esquerda)

verifica se a expressão da direita é IGUAL a expressão da esquerda (vice-versa).

- Operadores lógicos

Expressões booleanas

- No século 18, George Boole, matemático e filósofo britânico, desenvolveu um sistema algébrico lógico, que passou a ser conhecido como Álgebra de Boole.
 - Base para a lógica dos computadores digitais modernos.
 - Expressões lógicas (expressões booleanas) possuem o valor true ou false
- Em C os inteiros também são usados como valores booleanos: qualquer valor não nulo (1) representa true e 0 representa false.

Expressões booleanas compostas

- na matemática, podemos restringir uma temperatura a um intervalo fechado, 0 < temp < 100
- em C não podemos representar essa expressão por: 0 <= temp <= 100
- embora ela seja uma expressão C válida!
- por exemplo, suponha que temp = 150; (n\(\tilde{a}\)o est\(\tilde{a}\) no intervalo definido, logo esperamos que o resultado da expressão seja falso).

Expressões booleanas compostas

 os operadores relacionais são associativos a esquerda. A expressão será processada da seguinte forma:

$$\underbrace{0 <= 150}_{\text{(a)}} <= 100$$

- a expressão (a) resulta em true, que é representado em C pelo inteiro
 1 (ou outro inteiro diferente de 0).
- Assim, na segunda etapa da avaliação, a expressão resulta em:

$$1 <= 100$$

- que também é verdadeira e resulta em true.
- Entretanto, a expressão original deveria resultar falso, como na matemática.

Expressões booleanas compostas

Para solucionar esse problema, reescrevemos a desigualdade como:

$$(temp >= 0) \&\& (temp <= 100)$$

- onde && é um operador lógico.
- Utilizamos os operadores lógicos para combinar expressões booleanas formando, assim, expressões booleanas compostas.

Operadores lógicos

Operador	Expressão	Nome	Descrição
!	!p	NÃO	!p é falso, se p é verd.;
		(negação)	${f !}$ p é verd., se p é falso.
&&	р && q	Е	p && q é verdadeiro,
		(conjunção)	se ambos, p e q são verd.;
			e falso, caso contrário.
11	p II q	OU	p q é verdadeiro,
		(disjunção)	se p, q ou ambos é verd.;
			e falso, caso contrário.

Operadores lógicos - Tabela verdade

p	! p
true	false
false	true

P	q	p && q	$p \mid \mid q$
true	true	true	true
true	false	false	true
false	true	false	true
false	false	false	false

Operadores lógicos - Precedência

Operator	Priority	Associativity
!,~	highest	Right
/, *, %		Left
+, -		Left
<, >, <=, >=		Left
==, !=		Left
&		Left
^		Left
		Left
&&		Left
		Left
=, +=, *=,	lowest	Right

- Comandos de decisão

Tomada de decisão

- Permite a um programa realizar uma ação alternativa, a partir de um resultado verdadeiro ou falso produzido por uma condição.
- As condições são formadas utilizando-se os operadores de igualdade e os operadores relacionais.
- Ambos operadores de igualdade têm o mesmo nível de precedência, o qual é inferior ao dos operadores relacionais, e associam-se da esquerda para a direita.

Tomada de decisão

Comando if

- consiste de uma palavra-chave if seguida de uma expressão de teste entre parênteses. A instrução será executada apenas se a expressão de teste for verdadeira.
- O corpo de um comando if pode conter uma única instrução terminada por ponto-e-vírgula ou várias instruções entre chaves.

Tomada de decisão

Sintaxe do comando if

```
if ( <expressão_de_teste> )
    instrução_única;
```

ou

```
if ( <expressão_de_teste> )
        instrução1;
3
        instrução2;
        instrução3;
6
        . . .
```

Exemplo usando o comando if

Exemplo 1 (resolvido anteriormente):

Faça um programa em C/C++, para calcular a área de um círculo. A área de um círculo é dada pela seguinte fórmula $a=\pi r^2$. O valor do raio r será digitado pelo usuário.

 Altere o programa anterior para calcular a área somente se o valor do raio for positivo.

```
/* Programa que calcula a área de um círculo
1
     */
3
    #include <stdio.h>
4
5
    int main()
6
    {
        // declaração da constante Pi
        const double PI = 3.141592;
9
        double raio;
10
11
12
         printf("Digite o raio do círculo: ");
         scanf("%lf", &raio):
13
14
15
        // calculando e imprimindo a área do círculo
        if (raio >= 0) {
16
             double area = PI * raio * raio:
17
            printf("\nArea do círculo: %lf\n", area);
18
19
20
        return 0;
21
22
```

- Fluxogramas
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 5 Exercícios

Exercícios

Exercício 1: Maior número

Faça um programa que leia dois números inteiros e verifique qual deles é maior.

- Imprima uma mensagem informando qual deles é o maior.
- Exemplo de execução caso o usuário digite 10 e 20:

```
Digite dois números: 10 20 20 é o maior número
```