Week2 Set7

TANISHA BISHT RA1911003010259

Q1

Data protection has become one of the most crucial task in the internet. An application uses Caesar cipher for this purpose, which works as following:

The encryption can be represented using modular arithmetic by first transforming the letters into numbers, according to the scheme, $A \rightarrow 0$, $B \rightarrow 1$, ..., $Z \rightarrow 25$. Encryption of a letter x by a shift n can be described mathematically as,

$En(x) = (x+n) \mod 26$

Write a subroutine "encrypt(msg, n)" that takes 'msg' and 'n' as parameters and returns encrypted text using Caesar cipher.

EXAMPLE:

Text: ATTACKATONCE

Shift: 4

Cipher: EXXEGOEXSRGI

```
In [25]: shift = lambda a,n : (a+n)%26

text = input('Enter the text to be encripted: ')
n = int(input('Enter the number by which the letters should shift: '))

newString = ''
for ch in text:
    newString += chr(((ord(ch)-65+n)%26)+65)

print(newString)
```

Enter the text to be encripted: ATTACKATONCE Enter the number by which the letters should shift: 4 EXXEGOEXSRGI

Q2

Develop an application called "Feedback analyzer". The application has sets of words for the feedback -'Positive', 'Negative'.

```
Positive - (good, excellent, super, great, fantastic)
Negative - (bad, worse, worst, pathetic, poor)
```

Your task is to store the bag of words in a tuple. Given a feedback sentence, find out if it is a positive or negative feedback.

EXAMPLE:

Input: The watch is good

Output: Positive

Input: The watch is pathetic

Output: Negative

```
In [28]: positive = ('good', 'excellent', 'super', 'great', 'fantastic')
    negative = ('bad', 'worse', 'worst', 'pathetic', 'poor')

feedback = input('Enter the feedback sentence: ')
    feedbackList = feedback.split(' ')

for word in feedbackList:
    if word in positive:
        print('Positive')
        break
    elif word in negative:
        print('Negative')
        break
```

Enter the feedback sentence: This was a very good service. Positive

O3

Image encryption plays a major role in the transmission of multimedia data. The greyscale value of a pixel is in the ranges of [0,255]. The following method is used for encrypting a pixel value for a given key, which is in the range [0,255] too.

$temp_pixel = pixel (xor) ((key+5)%256)$

Write a lambda function in python to perform the above task. For increasing the strength of the cipher the encryption must be repeated 5 times

```
In [6]: cipher = lambda pixel,key : pixel ^ ((key+5)%256)

pixelVal = int(input('Enter the value of pixel i.e. should range between 0 to 255: '))
keyVal = int(input('Enter key value that also ranges between 0 to 255'))

for i in range(5):
    pixelVal = cipher(pixelVal, keyVal)

print('The final encripted value of the pixel is: ' + str(pixelVal))
```

Enter the value of pixel i.e. should range between 0 to 255: 155 Enter key value that also ranges between 0 to 25580 The final encripted value of the pixel is: 206

Q4

Write 2 lambda functions in python to calculate the volume and area of a sphere using the formulas.

```
V = 4\pi r^3/3
A = 4\pi r^2
```

```
In [2]: volume = lambda r : (4*3.14*(r**3))/3
    area = lambda r : 4*3.14*(r**2)

print("Volume of a sphere with radius 10 is: ", volume(10))
    print("Surface area of a sphere with radius 10 is: ", area(10))
```

Q5

An application has to be created for storing the register number and Xth board exam marks of the students. Your task is to create a dictionary in python to store the pair {register_no: marks} for 5 students. For a given, register number, display the corresponding marks.

```
In [4]: studentsMarks = {}

for i in range(5):
    regNo = int(input('Registration number is: '))
    marks = float(input('Marks scored is: '))
    studentsMarks[regNo] = marks

givenRegNo = int(input('Regestration number whose marks we need to displa
    y is: '))

if givenRegNo in studentsMarks:
    print('The marks of registration number ' + str(givenRegNo) + ' is '
    + str(studentsMarks[givenRegNo]))
    else:
        print('The registration number present does not exist')

Registration number is: 258
Marks scored is: 87
```

```
Registration number is: 259
Marks scored is: 98
Registration number is: 266
Marks scored is: 90
Registration number is: 256
Marks scored is: 86
Registration number is: 232
Marks scored is: 100
Regestration number whose marks we need to display is: 259
The marks of registration number 259 is 98.0
```