

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 081 119 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 07.03.2001 Bulletin 2001/10

(51) Int. Cl.⁷: **C04B 37/02**, E21B 10/56, B23B 27/14

(11)

(21) Application number: 00305411.1

(22) Date of filing: 28.06.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 03.09.1999 US 390074

(71) Applicant:

Camco International (UK) Limited Stonehouse, Gloucestershire GL10 3RQ (GB) (72) Inventors:

Griffin, Nigel Dennis
 Whitminster, Gloucestershire GL2 7PS (GB)

 Taylor, Malcolm Roy Gloucester GL2 0QJ (GB)

(74) Representative:

Bailey, Richard Alan A.R. Davies & Co., 27 Imperial Square

Cheltenham, Gloucestershire GL50 1RQ (GB)

(54) Cutting elements and methods of manufacture thereof

(57) A cutting element for a rotary drill bit includes at least one insert (20) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst. The insert (20) is mounted by being at least partly surrounded by a support body (21) of conventional polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from cobalt and other iron group elements or alloys thereof. The insert (20) and support body (21) may be integrally bonded to a substrate during manufacture. Either the insert (20) or support body (21) may be pre-sintered or sintered during formation of the cutting element.

25

Description

[0001] The invention relates to cutting elements and in particular to cutting elements for rotary drill bits, such as drag-type drill bits and rolling cutter drill bits. However, the invention may also be applicable to the manufacture of cutting elements for use in machine tools and the like.

1

[0002] As is well known, one common form of cutting element for a rotary drag-type drill bit is a two-layer or multi-layer cuffing element where a facing table of polycrystalline diamond is integrally bonded to a substrate of less hard material, such as tungsten carbide. The cutting element is usually in the form of a tablet, usually circular or part-circular. The substrate of the cuffing element may be brazed to a carrier, usually also of cemented tungsten carbide, which is received in a socket in the bit body, or the substrate itself may be of sufficient axial length to be mounted directly in a socket in the bit body.

[0003] As is well know, polycrystalline diamond is formed by sintering diamond powder with a suitable binder-catalyst in a high pressure, high temperature press. Hitherto, the polycrystalline diamond employed in cuffing elements for rotary drill bits has been of three basic types.

[0004] In the most common type, which will hereinafter be referred to as "conventional" polycrystalline diamond, the binder-catalyst is cobalt. In one common process for manufacturing two-layer cutting elements, diamond powder is applied to the surface of a preformed tungsten carbide substrate incorporating cobalt. The assembly is then subjected to very high temperature and pressure in a press. During this process cobalt migrates from the substrate into the diamond layer and acts as a binder-catalyst, causing the diamond particles to bond to one another with diamond-to-diamond bonding, and also causing the diamond layer to bond to the substrate.

[0005] Although cobalt is most commonly used as the binder-catalyst, any iron group element, such as cobalt, nickel or iron, or alloys thereof, may be employed.

[0006] The disadvantage with such conventional polycrystalline diamond is that the material is not thermally stable beyond about 750 C, due to the presence of the metallic binder, which causes the diamond to graphitise. Also, the difference in coefficient of thermal expansion of the diamond and cobalt may also cause deterioration of the diamond layer with increase in temperature above about 500 C.

[0007] In order to overcome these problems socalled "thermally stable" polycrystalline diamond components have been produced and are sometimes used in drag-type drill bits. In one type of thermally stable diamond the cobalt or other binder-catalyst in conventional polycrystalline diamond is leached out of the diamond after formation. While this may increase the heat-resistance of the diamond to about 1200°C, the leaching process also removes the cemented carbide substrate which leads to severe difficulties in mounting such material on a drill bit.

[0008] In an alternative form of thermally stable diamond, silicon carbide is used as the binder-catalyst Again, the thermal resistance of the diamond is improved, but again difficulties are encountered in mounting the material for use on a drag-type drill bit.

[0009] More recently, a further type of polycrystalline diamond has become available in which carbonates, such as powdery carbonates of Mg, Ca, Sr, and Ba, or two or more types of these carbonates, are used as the binder-catalyst when sintering the diamond powder. Polycrystalline diamond materials of this kind are described, for example, in Japanese Patent Laid-Open Publications Nos. 74766/1992 and 114966/1992, the contents of which are incorporated herein by reference. Polycrystalline diamond of this type has significantly greater wear-resistance and hardness than the types of polycrystalline diamond hitherto used as cuffing elements in drill bits. The material is difficult to produce on a commercial scale since much higher temperatures and pressures are required for sintering than is the case with conventional and thermally stable polycrystalline diamond. One result of this is that the bodies of polycrystalline diamond produced by this method are smaller than conventional polycrystalline diamond elements. This, together with other characteristics of the material makes it difficult to mount bodies of the material in such a way that they may be used as cuffing elements in rotary drill bits.

[0011] The present invention sets out to overcome these problems and to provide novel arrangements and methods for mounting polycrystalline diamond of this kind in a manner where the material may be used in cuffing elements for rotary drill bits.

[0012] According to the invention there is provided a cuffing element including at least one insert of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert being at least partly surrounded by a support body of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof.

[0013] The insert and support body may each be in the form of a tablet having a front surface, a rear surface and a peripheral surface. Preferably the front surface of each of the insert and support body is substantially parallel to the rear surface thereof. Preferably also a part of the peripheral surface of the insert forms a continuation of the peripheral surface of the support body.

[0014] The thickness of the insert, between the front and rear surfaces thereof, may be substantially the same as the thickness of the support body, so that the front surface of the insert is substantially co-planar with the front surface of the support body and the rear surface of the insert is substantially co-planar with the rear surface of the support body.

[0015] In an alternative embodiment said insert is totally embedded in the support body, so that no part of the insert is exposed. In this case the front surface of the insert may be inclined to the front surface of the support body.

[0016] In another embodiment there are provided a plurality of inserts embedded in a larger support body.

[0017] In any of the above arrangements according to the invention the rear surface of the support body may be bonded to a surface of a substrate of a material which is less hard than the support body.

[0018] The invention also provides a cutting element comprising at least one body of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst the body having a front surface, a rear surface and a peripheral surface, and the rear surface of the body being bonded to a surface of a substrate of a material which is less hard than the material of the body.

[0019] The invention further provides a method of forming a cutting element including at least one insert of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert being at least partly surrounded by a support body of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, the method comprising the steps of:

pre-sintering said insert in a high pressure, high temperature press,

at least partly surrounding the pre-sintered insert with a mixture including diamond powder and binder-catalyst selected from iron group elements or alloys thereof, and

subjecting the pre-sintered insert and the powder mixture to high pressure and high temperature in a press to sinter the mixture and bond it to the preformed insert.

[0020] An alternative method comprises the steps of:

pre-sintering the insert in a high pressure, high temperature press,

separately pre-sintering the support body in a high pressure, high temperature press,

combining the pre-sintered insert and support body together in an assembly where the support body at least partly surrounds the insert, and

subjecting the assembly to high pressure and temperature in a press to bond the insert to the support body.

[0021] A further alternative method comprises the steps of:

forming a first mixture including diamond powder and a powdered carbonate binder-catalyst,

forming a second mixture including diamond powder and a powdered binder-catalyst selected from iron group elements or alloys thereof,

disposing bodies of said mixtures so that the second mixture at least partly surrounds the first mixture, and

subjecting the mixtures to high pressure and high temperature in a press to sinter the first and second mixtures and bond them to one another.

[0022] A still further alternative method comprises the steps of:

pre-sintering the support body in a high pressure, high temperature press,

forming a mixture including diamond powder and a powdered carbonate binder-catalyst,

combining the mixture with the pre-sintered support body to form an assembly in which the support body at least partly surrounds the mixture, and subjecting the assembly to high pressure and temperature in a press to sinter the insert and to bond the insert to the pre-sintered support body.

[0023] Each of the above methods may include the further step of applying the insert and support body, either pre-sintered or as a mixture including diamond powder and binder-catalyst, to a preformed substrate prior to subjecting the whole assembly to high pressure and temperature in a press, so that the insert and support body are bonded to the substrate.

[0024] In methods where the support body is sintered while in contact with the substrate, as opposed to being pre-sintered, the necessary iron group binder-catalyst may be derived from the substrate instead of, or in addition to, being mixed with the diamond powder applied to the substrate.

[0025] Accordingly, the invention also provides a method comprising the steps of:

pre-sintering said insert in a high pressure, high temperature press,

preforming a substrate incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof,

forming an assembly by applying to a surface of the substrate said pre-sintered insert and a body including diamond powder in such manner that the diamond powder at least partly surrounds the insert, and

subjecting the assembly to high pressure and high temperature in a press, to cause some of said sintering binder-catalyst incorporated in the substrate to migrate from the substrate into the body of diamond powder, whereby the diamond powder is sintered and bonded to both the substrate and to the insert, and the insert is also bonded to the substrate.

55

25

30

- 16. A cutting element according to Claim 14 wherein the rear surface of the insert (20) is co-planar with the rear surface of the support body (21) and is also bonded to said surface of the substrate (19).
- 17. A cutting element comprising at least one body (20) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, the body (20) having a front surface, a rear surface and a peripheral surface, and the rear surface of the body (20) being bonded to a surface of a substrate (19) of a material which is less hard than the material of the body (20).
- 18. A method of forming a cutting element including at least one insert (20,25,31,34,40) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert (20,25,31,34,40) being at least partly surrounded by a support body (21,26,33,35,41) of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, the method comprising the steps of:

pre-sintering said insert (20,25,31,34,40) in a high pressure, high temperature press, at least partly surrounding the pre-sintered insert (20,25,31,34,40) with a mixture including diamond powder and binder-catalyst selected from iron group elements or alloys thereof, and subjecting the pre-sintered insert (20,25,31,34,40) and the powder mixture to high pressure and high temperature in a press to sinter the mixture and bond it to the pre-formed insert.

- 19. A method according to Claim 18 incorporating the further step of applying the insert (20,25,31,34,40) and mixture including diamond powder and binder-catalyst to a preformed substrate (19,27) prior to subjecting the insert (20,25,31,34,40), mixture and substrate (19,27) to high pressure and temperature in a press, so that the insert (20,25,31,34,40) and support body (21,26,33,35,41) are bonded to the substrate (19,27).
- 20. A method of forming a cutting element including at least one insert (20,25,31,34,40) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert (20,25,31,34,40) being at least partly surrounded by a support body (21,26,33,35,41) of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, the method comprising the steps of:

pre-sintering said insert (20,25,31,34,40) in a high pressure, high temperature press, preforming a substrate (19,27) incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, forming an assembly by applying to a surface of the substrate (19,27) said pre-sintered insert (20,25,31,34,40) and a body (21,26,33,35,41) including diamond powder in such manner that the diamond powder at least partly surrounds the insert (20,25,31,34,40), and subjecting the assembly to high pressure and high temperature in a press, to cause some of said sintering binder-catalyst incorporated in the substrate (19,27) to migrate from the substrate (19,27) into the body of diamond powder, whereby the diamond powder is sintered and bonded to both the substrate (19,27) and to the insert (20,25,31,34,40), and the insert is also bonded to the substrate (19,27).

21. A method of forming a cutting element including at least one insert (20,25,31,34,40) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert (20,25,31,34,40) being at least partly surrounded by a support body (21,26,33,35,41) of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, the method comprising the steps of:

pre-sintering the insert (20,25,31,34,40) in a high pressure, high temperature press, separately pre-sintering the support body (21,26,33,35,41) in a high pressure, high temperature press, combining the pre-sintered insert (20,25,31,34,40) and support body (21,26,33,35,41) together in an assembly where the support body at least partly surrounds the insert, and subjecting the assembly to high pressure and temperature in a press to bond the insert to the support body.

- 22. A method according to Claim 21 incorporating the further step of applying the pre-sintered insert and support body to a preformed substrate (19,27) prior to subjecting the insert, support body and substrate to high pressure and temperature in a press, so that the insert and support body are bonded to the substrate.
- 23. A method of forming a cutting element including at least one insert (40) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert (40) being at least partly

15

20

40

50

55

surrounded by a support body (41) of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, the method comprising the steps of:

forming a first mixture including diamond powder and a powdered carbonate binder-catalyst, forming a second mixture including diamond powder and a powdered binder-catalyst selected from iron group elements or alloys thereof,

disposing bodies of said mixtures so that the second mixture at least partly surrounds the first mixture, and

subjecting the mixtures to high pressure and high temperature in a press to sinter the first and second mixtures and bond them to one another.

- 24. A method according to Claim 23 incorporating the further step of applying the mixtures of diamond powder and binder-catalyst to a preformed substrate prior to subjecting the mixtures and substrate to high pressure and temperature in a press, so that the insert and support body formed from the mixtures are bonded to the substrate.
- 25. A method of forming a cutting element including at least one insert (20,25,31,34,40) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert being at least partly surrounded by a support body (21,26,33,35,41) of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, the method comprising the steps of:

forming a mixture including diamond powder and a powdered carbonate binder-catalyst, preforming a substrate incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof,

forming an assembly by applying to a surface of the substrate a body of said mixture and a body including diamond powder in such manner that the body including diamond powder at least partly surrounds the body of said mixture, and

subjecting the assembly to high pressure and high temperature in a press to sinter the mixture and bond it to the substrate, and to cause some of said sintering binder-catalyst incorporated in the substrate to migrate from the substrate into the body of diamond powder, whereby the diamond powder is sintered and bonded to both the substrate and to the sintered mixture.

26. A method of forming a cutting element including at least one insert (20,25,31,34,40) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, said insert being at least partly surrounded by a support body (21,26,33,35,41) of polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from iron group elements or alloys thereof, the method comprising the steps of:

pre-sintering the support body in a high/pressure, high temperature press,

forming a mixture including diamond powder and a powdered carbonate binder-catalyst, combining the mixture with the pre-sintered support body to form an assembly in which the support body at least partly surrounds the mixture, and

subjecting the assembly to high pressure and temperature in a press to sinter the insert and to bond the insert to the pre-sintered support body.

- 27. A method according to Claim 26 incorporating the further step of applying the assembly to a preformed substrate (19,27) prior to subjecting the assembly and substrate to high pressure and temperature in a press, so that the insert and support body are bonded to the substrate.
- 28. A method of forming a cutting element comprising at least one body of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, the body having a front surface, a rear surface and a peripheral surface, and the rear surface of the body being bonded to a surface of a substrate (19,27) of a material which is less hard than the material of the body, the method including the steps of:

pre-sintering the insert and preforming the substrate.

locating a surface of the insert in contact with a surface of the substrate, and

subjecting the insert and substrate to high pressure and temperature in a press to bond the insert to the substrate.

29. A method of forming a cutting element comprising at least one body of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst, the body having a front surface, a rear surface and a peripheral surface, and the rear surface of the body being bonded to a surface of a substrate of a material which is less hard than the material of the body, the method including the steps of: preforming a substrate,
placing in contact with the substrate a mixture
including diamond powder and a powdered
carbonate binder-catalyst, and
subjecting the mixture and substrate to high
pressure and temperature in a press to sinter
the mixture to form the insert, and to bond the
insert to the substrate.

EUROPEAN SEARCH REPORT

Application Number EP 00 30 5411

Category	Citation of document with Indica of relevant passages		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
X,D	DATABASE WPI Week 199222 Derwent Publications L AN 1992-179043 XP002152207 & JP 04 114966 A (KAGA KINZOKU ZAIRYO, ET AL. 15 April 1992 (1992-04	KU GIJUTSUCHO	17	C04B37/02 E21B10/56 B23B27/14
Y A	* abstract *	_	28,29 1-16, 18-27	
Y	US 4 293 618 A (A. HAR 6 October 1981 (1981-1 * claims 1,2,4; exampl	0-06)	28	
Y	GB 1 349 385 A (GENERA 3 April 1974 (1974-04- * claims 10-18 *) 29	
	***			TECHNICAL FIELDS SEARCHED (Int.Ci.7)
				CO4B
				E21B B23B
	The present search report has been	drawn up for all claims	-	
	Place of search	Date of completion of the search		Externiner
	THE HAGUE	7 November 200) Hau	ck, H
X : parti Y : parti docu	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category nological background	E : earlier patent after the filing D : document cit L : document citi	ed in the application ad for other reasons	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 30 5411

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-11-2000

Patent document cited in search report		Publication date		Patent family member(s)	Publication date .	
JP 4114	966	A	15-04-1992	JP	2839674 B	16-12-199
US 4293	518	A	06-10-1981	JP	1191333 C	29-02-1984
				JP	54149308 A	22-11-197
				JP	58023353 B	14-05-198
				DE	2919375 A	22-11-1979
				GB	2021154 A,B	28-11-1979
	·			ÜS	4442180 A	10-04-1984
GB 13493	185	A	03-04-1974	BE	765475 A	30-08-1971
				CA	974045 A	09-09-1975
				CH	554209 A	30-09-1974
				DE	2117056 A	21-10-1971
				DE	2167151 B	08-05-1980
				ES	389963 A	01-03-1974
				ES	417438 A	16-03-1976
				FR	2089415 A	07-01-1972
				GB	1466312 A	09-03-1977
				JP	1453683 C	10-08-1988
				JP	53134009 A	22-11-1978
				JP	61024360 B	10-06-1986
				JP	52012126 B	05-04-1977
				LU	62950 A	26-08-1971
				NL	7104326 A	12-10-1971
				SE	376731 B	09-06-1975

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82