

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Академия базовой подготовки Кафедра «Физика» им. П.Н. Лебедева

Институт, группа	К работе допущен	
		(дата, подпись преподавателя)
Студент	Работа выполнена	
		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
	<u> </u>	(дата, подпись преподавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 304

Изучение дифракции света	
на дифракционной решетке	

1. Запишите цель проводимого эксперимента:
2. Дайте определения следующих понятий:
дифракция —
дифракционная решетка (ДР) —
период ДР —
3. Запишите условия: - главных максимумов:
- главных минимумов:
- добавочных минимумов:
4. Как изменяется интенсивность излучения в главных максимумах по мере увеличени номера максимума (порядка дифракции, порядка спектра)?
5. Если на решетку падает немонохроматический свет, то в результате дифракции максимумах первого и следующих порядков фиолетовые лучи отклоняются на меньши или большие углы, чем красные? Обоснуйте ответ.
6. Перечислите названия приборов на оптической скамье:
1-
2 - 3 -
4 -

5 -	
6 -	

7. Запишите формулу для расчета постоянной дифракционной решетки:

8. Заполните таблицы измерений в лаборатории.

 $\begin{tabular}{l} \it Tаблица\ 1 \\ \it Измерения\ при\ нормальном\ падении\ света\ на\ решетку \end{tabular}$

m	X_m , MM	χ_{mcp} , MM	tgφ _{maxm}	$\sin \varphi_{\max m}$	<i>d</i> , м	dср, М
+1						
-1						
+2						
-2						
+3						
-3						
+4						
-4						
$\lambda = 0,6328 \text{ MKM}$		L =		d = 1/100 mm =		

Измерения при косом падении света на решетку

Таблица 2

$\beta_1 = 30^o$				$\cos \beta_1 =$		
m	χ_{meta} , MM	$X_m\beta$ cp, MM	tgφ _{maxβm}	$\sin \varphi_{\max \beta m}$	$d_{eta 1}$, M	d _{β1ср} , м
+1						
-1						
+2						
-2						
+3						
-3						
$\beta_2 = 45^{\circ}$				$\cos \beta_2 =$		
m	$x_{m\beta}$, MM	$x_{m\beta cp}$, MM	$tg\phi_{\max\beta m}$	$\sin \varphi_{\max \beta m}$	d $_{eta 2}$, м	$d_{ m eta2cp}$, м
+1						
-1						
+2						
-2						

Подпись преподавателя		Дата	
-----------------------	--	------	--

Обработка результатов измерений

1. Вычислите значения x_{mcp} и $x_{m\beta cp}$ для каждого значения m по формулам и занесите данные в таблицы 1 и 2:

$$x_{mcp} = \frac{x_{m\pi pab} + x_{m\pi eb}}{2} =$$

$$x_{m\beta cp} = \frac{x_{m\beta прав} + x_{m\beta лев}}{2} =$$

2. Вычислите тангенсы углов дифракции по формулам и занесите данные в таблицы 1 и 2:

$$tg\phi_{\max m} = \frac{x_{mcp}}{L} =$$

$$tg\phi_{\max\beta m} = \frac{x_{m\beta cp}}{L} =$$

- 3. Для малых углов дифракции их тангенсы и синусы можно считать равными, поэтому продублируйте в таблицах 1 и 2 столбцы со значениями тангенсов и синусов углов дифракции для главных максимумов.
- 4. Для заданных значений m рассчитайте период решетки d по формуле ниже (раскройте расчет для одного значения периода при m=1 в случае нормального падения, а остальные рассчитанные значения внесите в таблицы 1 и 2):

$$d_1 = \frac{m\lambda}{\sin \varphi_m} =$$

По полученным значениям найдите d_{cp} и внесите результат в таблицу 1:

$$d_{cp} = \frac{d_1 + d_2 + d_3 + d_4}{4} =$$

Эффективные периоды решетки $d_{\beta 1 \text{cp}}$ и $d_{\beta 1 \text{cp}}$ для случая косого падения рассчитайте по аналогии и внесите результаты в таблицу 2.

- 5. Для случая нормального падения света:
 - 5.1. Вычислите относительную погрешность определения постоянной дифракционной решетки d_{cp} :

$$\delta d = \frac{\Delta d}{d_{cp}} = \frac{\Delta \lambda}{\lambda} + \frac{\Delta L}{L} + \frac{\Delta x_m}{x_{mcp}} =$$

Здесь $\Delta \lambda \approx 0$, ΔL и Δx_m — приборные погрешности измерения этих величин, равные цене деления измерительных шкал, а для $x_{\text{m cp}}$ взять минимальное значение (m=1).

5.2. Вычислите абсолютную погрешность определения d:

$$\Delta d = \delta d \cdot d_{cp} =$$

5.3. Запишите результат расчета в виде:

$$d = d_{cp} \pm \Delta d =$$

Сравните полученное значение постоянной решетки со значением на приборе:

4

d = 1/100 MM =

6	Π_{na}	c muuaa	1000000	nadouna	cooma.
o.	ДЛЯ	случая	косого	падения	света:

6.1. Вычислите теоретическое значение эффективного периода решетки для β_1 и β_2 по формуле:

$$d_{\beta 1} = d \cos \beta_1 =$$

$$d_{\beta 2} = d \cos \beta_2 =$$

- 7. Сравните полученные значения с экспериментальными значениями эффективного периода решетки.
- 8. Сформулируйте выводы по проделанной работе. Как меняется дифракционная картина при увеличении угла падения света на решетку?

Подпись студента ______ Дата _____