PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-041212

(43)Date of publication of application: 08.02.2000

(51)Int.CI.

HO4N 5/85 GO6F 3/08 G11B 19/02 G11B 20/10 G11B 27/10 H04N 5/93

(21)Application number: 11-096471

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

02.04.1999

(72)Inventor: OKADA TOMOYUKI

MURASE KAORU

TSUGA KAZUHIRO

(30)Priority

Priority number: 10095661

Priority date: 08.04.1998

Priority country: JP

(54) OPTICAL DISK, RECORDING DEVICE, ITS METHOD, REPRODUCTION DEVICE AND ITS METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide the record medium, its device and its method that store data in the MPEG system, can freely revise audio data reproduced with still picture data even after recording the still picture data.

SOLUTION: An optical disk that is reproduced by a reproduction device records a 1st system stream (ST1) including still picture data of at least one picture and a 2nd system stream (ST2) that includes audio data reproduced with the still picture data. Each stream stores stamp information denoting a time required for decode processing and an output and the 2nd system stream (ST2) is recorded just after the 1st system stream (ST1).

(19)日本国特許庁 (JP)

~r,

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-41212 (P2000-41212A)

(43)公開日 平成12年2月8日(2000.2.8)

(51) Int.Cl.7	識別記号	FΙ	テーマコート ゙(参考)
H 0 4 N 5/85		H 0 4 N 5/85	Z
G06F 3/08		G06F 3/08	F
G 1 1 B 19/02	5 0 1	G 1 1 B 19/02	501C
20/10	3 0 1	20/10	3 0 1 Z
27/10		27/10	Z
	審査請求	未請求 請求項の数21	OL (全 29 頁) 最終頁に続く
(21)出願番号	特願平11-96471	(71)出願人 000005	5821
		松下電	器産業株式会社
(22)出願日	平成11年4月2日(1999.4.2)	大阪府	門真市大字門真1006番地
		(72)発明者 岡田	智之
(31)優先権主張番号	特願平10-95661	大阪府	門真市大字門真1006番地 松下電器
(32)優先日	平成10年4月8日(1998.4.8)	産業株	式会社内
(33)優先権主張国	日本(JP)	(72)発明者 村瀬	黨
		大阪府	門真市大字門真1006番地 松下電器
		産業株	式会社内
		(72)発明者 津賀	一宏
		大阪府	門真市大字門真1006番地 松下電器
		産業株	式会社内
		(74)代理人 100062	2144
		弁理士	: 青山 葆 (外1名)
		1	

(54) 【発明の名称】 光ディスク、記録装置および方法、並びに再生装置および方法

(57)【要約】

【課題】 MPEG方式でデータを持ち、静止画像データの記録後にも、静止画像データと共に再生される音声データを自由に変更可能な記録媒体及びその装置及び方法の提供する。

【解決手段】 再生装置により再生可能な光ディスクに、少なくとも1枚のピクチャの静止画像データを含む第1システムストリーム(ST1)と、静止画像データと共に再生されるオーディオデータを含む第2システムストリーム(ST2)とが記録されている。各ストリームにはデコード処理および出力に必要な時刻を示すタイムスタンプ情報が格納されており、第1システムストリーム(ST1)の直後に第2システムストリーム(ST2)を記録する。

・ 【特許請求の範囲】

【請求項1】デコーダバッファ(53,57)と、デコ ーダ(54,58)と、出力部(55,56)とを備え た再生装置により再生可能な光ディスクであって、該光 ディスクには、

少なくとも1枚のピクチャの静止画像データを含む複数 のユニットから構成されるビデオパートストリーム(S T1)と、

前記静止画像データと共に再生されるオーディオデータ を含むひとつまたは複数のユニットから構成されるオー 10 ことを特徴とする請求項4記載の光ディスク。 ディオパートストリーム(ST2)とが記録され、

前記ユニットには、デコード処理および出力に必要な時 刻を示すタイムスタンプ情報が格納され、

前記タイムスタンプ情報には、前記第1のシステムスト リームの最後の前記ユニットが前記デコーダバッファヘ (53)入力される時刻SCR2と、前記第2のシステ ムストリームの最初の前記ユニットが前記デコーダバッ ファ(57)へ入力される時刻SCR3とが含まれ、

これら時刻SCR2、SCR3の間には、次式、

 $SCR2 + Tp \leq SCR3$

SCR1 = 0

ただし、Tpは、デコーダバッファにひとつのユニット が入力開始されてから、入力終了するまでに要する時間 を示す、が成立することを特徴とする光ディスク。

【請求項2】 前記タイムスタンプ情報には、更に前記 ビデオパートストリームの最初のユニットが前記デコー ダバッファへ入力される時刻SCR1が含まれ、 これら時刻SCR1、SCR2について、次式

 $SCR2+Tp \le 27000000(27MHz)$ ただし、(27MHz)は、その前に示された数値が2 7MHzのクロックのカウント値であることを示す、が 成立することを特徴とする請求項1記載の光ディスク。

【請求項3】 前記時刻SCR3について、次式 SCR3 = 27000000 (27MHz)が成立することを特徴とする請求項2記載の光ディス ク。

【請求項4】 前記タイムスタンプ情報には、更に前記 ビデオパートストリームが前記出力部(55,56)か ら出力される時刻PTS1と、前記オーディオパートス トリームが前記デコーダ(58)から出力される時刻P 40 ッファ(57)へ入力される時刻SCR3とが含まれ、 TS3とが含まれ、

これら時刻PTS1、PTS3が同一値であることを特 徴とする請求項1から請求項3のいずれか一項に記載の 光ディスク。

【請求項5】 前記タイムスタンプ情報には、更に前記 ビデオパートストリームが前記デコーダ(53)により デコードされるデコード開始時刻DTS1が含まれ、

該時刻DTS1は、次式

DTS1 = 90000 (90kHz)

ただし、(90kHz)は、その前に示された数値が9 50 刻SCR1と、前記ビデオパートストリームが前記出力

0 k H z のクロックのカウント値であることを示す、が 成立することを特徴とする請求項1から請求項4のいず れか一項に記載の光ディスク。

【請求項6】前記時刻PTS1、PTS3は、次式 PTS1 = PTS3 = 90000 (90kH)z) + Tv

ただし、(90 k H z) は、その前に示された数値が9 0 k H z のクロックのカウント値であることを示し、T vは、ビデオデータのフレーム周期を示す、が成立する

【請求項7】光ディスクには、更に第1、オーディオバ ートストリームの管理情報 (Volume) が記録され、前記 ビデオパートストリームの管理情報中に、該静止画像デ ータと同期して再生される音声データの存在を示す識別 フラグ(Audio Flag)が格納されていること を特徴とする請求項1ないし請求項6のいずれか一項に 記載の光ディスク。

【請求項8】デコーダバッファ (53、57)と、デコ ーダ(54、58)と、出力部(55,56)を備えた 20 再生装置により再生可能な光ディスクに、静止画像デー タと、該静止画像データと共に再生されるオーディオデ ータを含むシステムストリームを記録する、光ディスク 記録装置であって、該記録装置は、

エンコーダ(1204)と、

システム制御部(1202)とを有し、

該エンコーダ(1204)は、

少なくとも1枚のピクチャの静止画像データを含む複数 のユニットから構成されるビデオパートストリーム (S T1)と、

30 前記静止画像データと共に再生されるオーディオデータ を含むひとつまたは複数のユニットから構成されるオー ディオパートストリーム(ST2)とを生成し、

該エンコーダ(1204)は、

前記ユニットに、デコード処理および出力に必要な時刻 を示すタイムスタンプ情報を格納し、

前記タイムスタンプ情報には、前記第1のシステムスト リームの最後の前記ユニットが前記デコーダバッファ (53)へ入力される時刻SCR2と、前記第2のシス テムストリームの最初の前記ユニットが前記デコーダバ これら時刻SCR2、SCR3の間には、次式、 $SCR2+Tp \leq SCR3$

ただし、Tpは、デコーダバッファにひとつのユニット が入力開始されてから、入力終了するまでに要する時間 を示す、が成立することを特徴とする光ディスク再生装

【請求項9】前記エンコーダは、前記タイムスタンプ情 報として、更に前記ビデオパートストリームの最初のユ ニットが前記デコーダバッファ(53)へ入力される時

´ 部(55,56)から出力される時刻PTSlとを格納

これら時刻SCR1、SCR2、PTS1について、次 式

SCR1=0

 $SCR2 \le 27000000 (27MHz) - Tp$ PTS1 = 90000 (90KHz) + Tvただし、(27MHz)は、その前に示された数値が2 7 M H z のクロックのカウント値であることを示し、

のクロックのカウント値であることを示し、Tpは、該 ビデオパートストリームの最後のユニットを転送するの に要する時間を示し、Tvは、ビデオデータのフレーム 周期を示す、が成立することを特徴とする請求項8記載 の光ディスク記録装置。

【請求項10】前記エンコーダは、前記タイムスタンプ 情報として、更に前記オーディオパートストリームが前 記デコーダ(58)から出力される時刻PTS3を格納

とれら時刻SCR3、PTS3について、次式 SCR3 = 27000000 (27MHz)PTS3 = 90000 (90KHz) + Tvが成立することを特徴とする請求項9記載の光ディスク 記録装置。

【請求項11】前記システム管理部は、第1、オーディ オパートストリームの管理情報を生成し、前記ビデオパ ートストリームの管理情報中に、該静止画像データと同 期して再生される音声データの存在を示す識別フラグ (Audio_Flag)を格納することを特徴とする 請求項8から請求項10のいずれか一項記載の光ディス 30

【請求項12】前記システム管理部は、前記オーディオ パートストリームの管理情報中に前記音声データの再生 時間(Cell_Playback_Time)を記録 することを特徴とする請求項8から請求項11のいずれ か一項記載の光ディスク記録装置。

【請求項13】請求項7に記載の光ディスクにを再生す る再生装置であって、

デコーダバッファ(53、57)と、

デコーダ(54、58)と、

出力部(55、56)と、

ク記録装置。

システム制御部(51)とを備え、

該システム制御部(51)は、前記識別フラグ(Aud io_Flag)のセット状態を検出した場合、前記ビ デオパートストリームの静止画像データと、前記オーデ ィオパートストリームの音声データを同期再生すること を特徴とする光ディスク再生装置。

【請求項14】前記システム制御部(51)は、識別フ ラグ(Audio_Flag)のセット状態を検出した 場合、前記デコーダ(54)により前記ビデオパートス 50 に要する時間を示し、Tvは、ビデオデータのフレーム

トリームに記録されている1枚のピクチャの静止画像デ ータを完全にデコードして出力部(55,56)に送 り、続いて前記デコーダ(58)により前記オーディオ パートストリームに記憶されている前記音声データをデ コードすると共に音声の再生をし、該音声の再生の開始 と同時に前記出力部(55,56)からの静止画像デー タの再生を開始するととを特徴とする請求項13記載の 光ディスク再生装置。

【請求項15】デコーダバッファ(53、57)と、デ (90KHz)は、その前に示された数値が90KHz 10 コーダ(54、58)と、出力部(55, 56)を備え た再生装置により再生可能な光ディスクに、静止画像デ ータと、該静止画像データと共に再生されるオーディオ データを含むシステムストリームを記録する、記録方法

> 少なくとも1枚のピクチャの静止画像データを含む複数 のユニットから構成されるビデオパートストリーム(S T1)を記録するステップと、

前記静止画像データと共に再生されるオーディオデータ を含むひとつまたは複数のユニットから構成されるオー 20 ディオパートストリーム (ST2) を記録するステップ と、

前記ユニットに、デコード処理および出力に必要な時刻 を示すタイムスタンプ情報を記録するステップとを有

前記タイムスタンプ情報として、前記第1のシステムス トリームの最後の前記ユニットが前記デコーダバッファ (53)へ入力される時刻SCR2と、前記第2のシス テムストリームの最初の前記ユニットが前記デコーダバ ッファ(57)へ入力される時刻SCR3とを生成し、 これら時刻SCR2、SCR3の間には、次式、

 $SCR2+Tp \leq SCR3$

ただし、Tpは、デコーダバッファにひとつのユニット が入力開始されてから、入力終了するまでに要する時間 を示す、が成立することを特徴とする記録方法。

【請求項16】前記タイムスタンプ情報として、更に前 記ビデオパートストリームの最初のユニットが前記デコ ーダバッファへ(53)入力される時刻SCR1と、前 記ビデオパートストリームが前記出力部(55,56) から出力される時刻 PTS 1 とを生成し、

40 これら時刻SCR1、SCR2、PTS1について、次 式

SCR1=0

 $SCR2 \le 27000000 (27MHz) - Tp$ PTS1 = 90000 (90KHz) + Tvただし、(27MHz)は、その前に示された数値が2 7MHzのクロックのカウント値であることを示し、 (90KHz)は、その前に示された数値が90KHz のクロックのカウント値であることを示し、Tpは、該 ビデオパートストリームの最後のユニットを転送するの

・ 周期を示す、が成立することを特徴とする請求項15記載の記録方法。

【請求項17】前記タイムスタンプ情報として、更に前記オーディオパートストリームが前記デコーダ(58)から出力される時刻PTS3を生成し、

これら時刻SCR3、PTS3について、次式 SCR3=27000000(27MHz) PTS3=90000(90KHz)+Tv

が成立することを特徴とする請求項16記載の記録方 法。

【請求項18】更に第1、オーディオパートストリームの管理情報を記録するステップを有し、前記ビデオパートストリームの管理情報中に、該静止画像データと同期して再生される音声データの存在を示す識別フラグ(Audio_Flag)を生成することを特徴とする請求項15から請求項17のいずれか一項記載の記録方法。

【請求項19】更に前記オーディオパートストリームの管理情報中に前記音声データの再生時間(Cell_Playback_Time)を生成することを特徴とする請求項18記載の光ディスク記録装置。

【請求項20】請求項7に記載の光ディスクに記録されたシステムストリームを再生する再生方法であって、前記1枚のピクチャの静止画像データの管理情報中に、該静止画像データと同期して再生される音声データの存在を示す識別フラグ(Audio_Flag)のセット状態を検出するステップと、

該識別フラグのセット状態の検出に応答して、前記静止 画像データと、前記音声データを同期再生するステップ を有することを特徴とする光ディスク再生方法。

【請求項21】前記同期再生するステップは、前記識別 30 フラグ (Audio_Flag)のセット状態の検出に 応答して、前記1枚のピクチャの静止画像データを完全 にデコードするステップと、

続いて前記音声データをデコードし、再生するステップ と、

該音声の再生の開始と同時に、デコードされた静止画像 データの再生を開始することを特徴とする請求項20記 載の光ディスク再生方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、静止画像データと、この静止画像データと共に再生される音声データとを格納した光ディスク、かかる光ディスクの記録装置および方法、並びにかかる光ディスクの再生装置および方法に関する。

[0002]

【従来の技術】 (ディジタルカメラの説明) 近年、JP EG (ISO/IEC 10918-1) 方式の静止画 像データを用いたディジタルスティルカメラが普及して いる。ディジタルスティルカメラが普及してきた背景の 50

1つには、パーソナルコンピュータ(PC)のAV処理機能の充実がある。ディジタルスティルカメラで撮影した画像は半導体メモリ、フロッピーディスク、赤外線通信などを通して、PCで扱えるデータとしてPC内部に取り込まれる。取り込まれた静止画像データは、プレゼンテーションソフト、ワープロソフト、インターネットコンテンツにおいて、編集素材の一つとして利用することが可能である。

【0003】近年、静止画像と共に対応する音声の取り 10 込みが可能なディジタルスティルカメラが登場してき た。静止画像に対応する音声の録音が同時に可能となっ たことで、従来のフィルム式スティルカメラに比べて更 なる差別化が可能となった。

【0004】図7は、ディジタルスティルカメラで記録された静止画像データ(JPEGデータ)とオーディオデータの関係を示す図である。

【0005】図7に示す様に、静止画像データ(JPE Gデータ) およびオーディオデータは夫々1つのファイルとして記録される。一回の撮影(且つ録画)でJPE Gデータファイルとオーディオデータファイルが夫々1ファイルずつ作成される。

【0006】静止画像データ(JPEGデータ)とオーディオデータの関係付けは大きく次の2つの方法で行われる。一つ目は、図7(a)に示すように、JPEGデータファイルとオーディオデータファイル夫々へのリンク情報を持つ方法である。二つ目は、図7(b)に示すように、JPEGデータファイルとオーディオデータファイルのボディ名(拡張子を除いたファイル名)を一致させる方法である。

1 【0007】以上説明した上記方法であれば、静止画像データに対応するオーディオデータの関連づけを静止画像データの記録時のみならず記録後にも行うことができる。

【0008】すなわち、静止画像データと共に関連づけて記録したオーディオデータが適切でないとユーザが判断した場合、PC上で記録した静止画像データに別のオーディオデータを関連づけることができる。

【0009】また、近年、動画・静止画・音声データ等のAVデータを統合的に扱うマルチメディア時代を迎 40 え、マルチメディアの中核技術(情報圧縮技術)としてMPEG(Moving Picture Experts Group)が広く使用されるようになった。

[0010]

【発明が解決しようとする課題】前述したMPEGを用いて画像や音声を記録する場合、MPEGストリームは図6(c)で示す様に、ビデオストリームとオーディオストリームをマルチプレクスして1つのシステムストリームとして扱うため、ビデオストリームに対して記録後に、自由にオーディオストリームを組み合わせることは困難である。すなわち、静止画像データに対して組み合

・ わせたオーディオデータを変更する場合は、静止画像デ ータとオーディオデータを一本のMPEGストリームと して扱う必要がある。そのためには、MPEGシステム ストリームのデコードを行い、夫々取り出した静止画像 データとオーディオデータを再度システムエンコードし 直さなければならなく、従来の技術で説明したディジタ ルスティルカメラのように、静止画像データとオーディ オデータを記録後に自由に組み合わせて使用することは 困難であるという問題を有していた。

【0011】本発明は、MPEG方式でデータを持ち、 かつ、静止画像データの記録後にも、静止画像データと 共に再生される音声データを変更可能な記録媒体及びそ の装置及び方法の提供を目的とする。

[0012]

【課題を解決するための手段】本発明の第1の観点は、 デコーダバッファ (53, 57)と、デコーダ (54, 58)と、出力部(55,56)とを備えた再生装置に より再生可能な光ディスクであって、該光ディスクに は、少なくとも1枚のピクチャの静止画像データを含む 複数のユニットから構成される第1システムストリーム 20 (ST1)と、前記静止画像データと共に再生されるオ ーディオデータを含むひとつまたは複数のユニットから 構成される第2システムストリーム(ST2)とが記録 され、前記ユニットには、デコード処理および出力に必 要な時刻を示すタイムスタンプ情報が格納され、前記タ イムスタンプ情報には、前記第1のシステムストリーム の最後の前記ユニットが前記デコーダバッファへ(5 3) 入力される時刻SCR2と、前記第2のシステムス トリームの最初の前記ユニットが前記デコーダバッファ 時刻SCR2、SCR3の間には、次式、

 $SCR2+Tp \leq SCR3$

ただし、Tpは、デコーダバッファにひとつのユニット が入力開始されてから、入力終了するまでに要する時間 を示す、が成立することを特徴とする光ディスクであ る。

【0013】これにより、音声データが格納された第2 システムストリームは、静止画像データが格納された第 1システムストリームとはマルチプレクスされることな けの書換を、容易に行うことができる。

【0014】本発明の第2の観点は、前記タイムスタン プ情報には、更に前記第1システムストリームの最初の ユニットが前記デコーダバッファへ入力される時刻SC R1が含まれ、これら時刻SCR1、SCR2につい て、次式

SCR1 = 0

 $SCR2 + Tp \le 27000000(27MHz)$ ただし、(27MHz)は、その前に示された数値が2 7MHzのクロックのカウント値であることを示す、が 50 【0024】本発明の第7の観点は、光ディスクには、

成立することを特徴とする第1の観点の光ディスクであ る。

【0015】これにより、第1システムストリーム全体 がデコーダバッファに転送される時間的長さを 1 秒また はそれ以下に設定することができる。

【0016】本発明の第3の観点は、前記時刻SCR3 について、次式

SCR3 = 27000000 (27MHz)が成立することを特徴とする第2の観点の光ディスクで 10 ある。

【0017】これにより、第2システムストリームのデ コーダバッファへの転送開始時刻を、第1システムスト リームのデコーダバッファへの転送開始時刻から1秒後 に設定することができる。

【0018】本発明の第4の観点は、前記タイムスタン プ情報には、更に前記第1システムストリームが前記出 力部 (55, 56) から出力される時刻PTS1と、前 記第2システムストリームが前記デコーダ(58)から 出力される時刻PTS3とが含まれ、これら時刻PTS 1、PTS3が同一値であることを特徴とする第1から 第3のいずれかの観点の光ディスクである。

【0019】 これにより、第1システムストリームによ る静止画像と、第2システムストリームによる音声とが 同時に、画面およびスピーカから出力される。

【0020】本発明の第5の観点は、前記タイムスタン プ情報には、更に前記第1システムストリームが前記デ コーダ(53)によりデコードされるデコード開始時刻 DTS1が含まれ、該時刻DTS1は、次式

(57) へ入力される時刻SCR3とが含まれ、これら 30 ただし、(90kHz)は、その前に示された数値が9 0 k H z のクロックのカウント値であることを示す、が 成立することを特徴とする第1から第4のいずれかの光 ディスクである。

DTS1 = 90000 (90kHz)

【0021】 これにより、第2システムストリームのデ コード開始時刻を、第1システムストリームがデコーダ バッフアに転送開始されてから1秒後に設定することが できる。

【0022】本発明の第6の観点は、前記時刻PTS 1、PTS3は、次式

く、単独で格納されるので、第2システムストリームだ 40 PTS1 = PTS3 = 90000(90kH z) + Tv

> ただし、(90kHz)は、その前に示された数値が9 0 k H z のクロックのカウント値であることを示し、 T vは、ビデオデータのフレーム周期を示す、が成立する ことを特徴とする第4の観点の光ディスクである。

> 【0023】とれにより、静止画像の画面表示および音 声の出力を、第1システムストリームがデコーダバッフ アに転送開始されてから1秒と、さらに1フレーム周期 Tvを加えた時刻に行うことができる。

更に第1、第2システムストリームの管理情報 (Volum e) が記録され、前記第1システムストリームの管理情 報中に、該静止画像データと同期して再生される音声デ ータの存在を示す識別フラグ(Audio_Flag) が格納されていることを特徴とする第1ないし第6のい ずれかの光ディスクである。

【0025】この識別フラグにより、静止画像に対し、 同時再生の音声が付随しているかどうかの判別をすると とができる。

【0026】本発明の第8の観点は、デコーダバッファ (53、57) と、デコーダ(54、58)と、出力部 (55,56)を備えた再生装置により再生可能な光デ ィスクに、静止画像データと、該静止画像データと共に 再生されるオーディオデータを含むシステムストリーム を記録する、光ディスク記録装置であって、該記録装置 は、エンコーダ(1204)と、システム制御部(12 02)とを有し、該エンコーダ(1204)は、少なく とも1枚のピクチャの静止画像データを含む複数のユニ ットから構成される第1システムストリーム(ST1) と、前記静止画像データと共に再生されるオーディオデ 20 ータを含むひとつまたは複数のユニットから構成される 第2システムストリーム(ST2)とを生成し、該シス テム制御部(1202)は、前記ユニットに、デコード 処理および出力に必要な時刻を示すタイムスタンプ情報 を格納し、前記タイムスタンプ情報には、前記第1のシ ステムストリームの最後の前記ユニットが前記デコーダ バッファ (53) へ入力される時刻SCR2と、前記第 2のシステムストリームの最初の前記ユニットが前記デ コーダバッファ (57) へ入力される時刻SCR3とが 含まれ、これら時刻SCR2、SCR3の間には、次 式、

 $SCR2+Tp \leq SCR3$

ただし、Tpは、デコーダバッファにひとつのユニット が入力開始されてから、入力終了するまでに要する時間 を示す、が成立することを特徴とする光ディスク再生装 置である。

【0027】とれにより、音声データが格納された第2 システムストリームは、静止画像データが格納された第 1システムストリームとはマルチプレクスされることな く、単独で格納されるので、第2システムストリームだ 40 けの書換を、容易に行うことができる。

【0028】本発明の第9の観点は、前記システム制御 部は、前記タイムスタンプ情報として、更に前記第1シ ステムストリームの最初のユニットが前記デコーダバッ ファへ(53)入力される時刻SCR1と、前記第1シ ステムストリームが前記出力部(55,56)から出力 される時刻PTS1とを格納し、これら時刻SCR1、 SCR2、PTS1について、次式

SCR1 = 0

 $SCR2 \le 27000000 (27MHz) - Tp$

10

PTS1 = 90000 (90KHz) + Tvただし、(27MHz)は、その前に示された数値が2 7 M H z のクロックのカウント値であることを示し、

(90KHz)は、その前に示された数値が90KHz のクロックのカウント値であることを示し、Tpは、該 第1システムストリームの最後のユニットを転送するの に要する時間を示し、Tvは、ビデオデータのフレーム 周期を示す、が成立することを特徴とする第8の観点の 光ディスク記録装置である。

【0029】これにより、第1システムストリームがデ 10 コーダバッファに転送開始される時刻を0とし、第1シ ステムストリームがデコーダバッファに転送終了される 時刻を1秒またはそれ以下とし、静止画像が表示される 時刻を、1秒と、さらに1フレーム周期Tvを加えた時 刻に設定することができる。

【0030】本発明の第6の観点は、前記システム制御 部は、前記タイムスタンプ情報として、更に前記第2シ ステムストリームが前記デコーダ(58)から出力され る時刻PTS3を格納し、これら時刻SCR3、PTS 3について、次式

SCR3 = 27000000 (27MHz)PTS3 = 90000 (90KHz) + Tvが成立することを特徴とする第9の観点の光ディスク記 録装置である。

【0031】 これにより、第2システムストリームがデ コーダバッファに転送開始される時刻を1秒とし、音声 がデコーダによりデコードされ再生される時刻を、1秒 と、さらに1フレーム周期Tvを加えた時刻に設定する ととができる。

【0032】本発明の第11の観点は、前記システム管 30 理部は、更に第1、第2システムストリームの管理情報 を生成し、前記第1システムストリームの管理情報中 に、該静止画像データと同期して再生される音声データ の存在を示す識別フラグ(Audio_Flag)を格 納することを特徴とする第8から第10のいずれかの観 点の光ディスク記録装置である。

【0033】この識別フラグにより、静止画像に対し、 同時再生の音声が付随しているかどうかの判別をすると とができる。

【0034】本発明の第12の観点は、前記システム管 理部は、更に前記第2システムストリームの管理情報中 に前記音声データの再生時間(Cell_Playba ck_Time)を記録することを特徴とする第8から 第11のいずれかの観点の光ディスク記録装置である。 【0035】これにより、音声の再生時間を設定するこ とができる。

【0036】本発明の第13の観点は、第7の観点の光 ディスクにを再生する再生装置であって、デコーダバッ ファ (53、57) と、デコーダ (54, 58) と、出 50 力部 (55、56) と、システム制御部 (51) とを備

え、該システム制御部 (51) は、前記識別フラグ (A udio_Flag)のセット状態を検出した場合、前 記第1システムストリームの静止画像データと、前記第 2システムストリームの音声データを同期再生すること を特徴とする光ディスク再生装置である。

【0037】この識別フラグのセット状態により、静止 画像の第1システムストリームと音声の第2システムス トリームの存在を予め検出することができる。

【0038】本発明の第14の観点は、前記システム制 御部(51)は、識別フラグ(Audio_Flag) のセット状態を検出した場合、前記デコーダ(54)に より前記第1システムストリームに記録されている1枚の ピクチャの静止画像データを完全にデコードして出力部 (55, 56) に送り、続いて前記デコーダ (58) に より前記第2システムストリームに記憶されている前記 音声データをデコードすると共に音声の再生をし、該音 声の再生の開始と同時に前記出力部(55,56)から の静止画像データの再生を開始することを特徴とする第 13の観点の光ディスク再生装置である。

【0039】これにより、第1システムストリームにあ 20 の記録方法である。 る静止画像データと、第2システムストリームにある音 声データとを、個別の時間帯にデコードすることが可能 となる。

【0040】本発明の第15の観点は、デコーダバッフ ァ(53、57)と、デコーダ(54、58)と、出力 部(55,56)を備えた再生装置により再生可能な光 ディスクに、静止画像データと、該静止画像データと共 に再生されるオーディオデータを含むシステムストリー ムを記録する、記録方法であって、少なくとも1枚のピ クチャの静止画像データを含む複数のユニットから構成 30 される第1システムストリーム(ST1)を記録するス テップと、前記静止画像データと共に再生されるオーデ ィオデータを含むひとつまたは複数のユニットから構成 される第2システムストリーム(ST2)を記録するス テップと、前記ユニットに、デコード処理および出力に 必要な時刻を示すタイムスタンプ情報を記録するステッ プとを有し、前記タイムスタンプ情報として、前記第1 のシステムストリームの最後の前記ユニットが前記デコ ーダバッファ(53)へ入力される時刻SCR2と、前 記第2のシステムストリームの最初の前記ユニットが前 40 記デコーダバッファ (57) へ入力される時刻SCR3 とを生成し、これら時刻SCR2、SCR3の間には、

 $SCR2 + Tp \leq SCR3$

ただし、Tpは、デコーダバッファにひとつのユニット が入力開始されてから、入力終了するまでに要する時間 を示す、が成立することを特徴とする記録方法である。 【0041】これにより、音声データが格納された第2 システムストリームは、静止画像データが格納された第 1システムストリームとはマルチプレクスされることな

く、単独で格納されるので、第2システムストリームだ けの書換を、容易に行うことができる。

【0042】本発明の第16の観点は、前記タイムスタ ンプ情報として、更に前記第1システムストリームの最 初のユニットが前記デコーダバッファへ(53)入力さ れる時刻SCR1と、前記第1システムストリームが前 記出力部(55,56)から出力される時刻PTS1と を生成し、これら時刻SCR1、SCR2、PTS1に ついて、次式

10 SCR1 = 0

 $SCR2 \le 27000000 (27MHz) - Tp$ PTS1 = 90000 (90KHz) + Tvただし、(27MHz)は、その前に示された数値が2 7MHzのクロックのカウント値であることを示し、 (90KHz)は、その前に示された数値が90KHz のクロックのカウント値であることを示し、Tpは、該 第1システムストリームの最後のユニットを転送するの に要する時間を示し、Tvは、ビデオデータのフレーム 周期を示す、が成立することを特徴とする第15の観点

【0043】これにより、第1システムストリームがデ コーダバッファに転送開始される時刻を0とし、第1シ ステムストリームがデコーダバッファに転送終了される 時刻を1秒またはそれ以下とし、静止画像が表示される 時刻を、1秒と、さらに1フレーム周期Tvを加えた時 刻に設定することができる。

【0044】本発明の第17の観点は、前記タイムスタ ンプ情報として、更に前記第2システムストリームが前 記デコーダ(58)から出力される時刻PTS3を生成 し、これら時刻SCR3、PTS3について、次式 SCR3 = 27000000 (27MHz)PTS3 = 90000 (90KHz) + Tvが成立することを特徴とする第16の観点の記録方法で ある。

【0045】これにより、第2システムストリームがデ コーダバッファに転送開始される時刻を1秒とし、音声 がデコーダによりデコードされ再生される時刻を、1秒 と、さらに1フレーム周期Tvを加えた時刻に設定する ことができる。

【0046】本発明の第18の観点は、更に第1、第2 システムストリームの管理情報を記録するステップを有 し、前記第1システムストリームの管理情報中に、該静 止画像データと同期して再生される音声データの存在を 示す識別フラグ(Audio_Flag)を生成すると とを特徴とする第15から第17のいずれかの観点の記 録方法である。

【0047】との識別フラグにより、静止画像に対し、 同時再生の音声が付随しているかどうかの判別をすると とができる。

【0048】本発明の第19の観点は、更に前記第2シ

ステムストリームの管理情報中に前記音声データの再生 時間(Cell_Playback_Time)を生成 することを特徴とする第18の観点の光ディスク記録装 置である。

【0049】これにより、音声の再生時間を設定すると とができる。

【0050】本発明の第20の観点は、第7の観点の光 ディスクに記録されたシステムストリームを再生する再 生方法であって、前記1枚のピクチャの静止画像データ の管理情報中に、該静止画像データと同期して再生され 10 る。また、図3に示すようにBピクチャが未来のⅠまた る音声データの存在を示す識別フラグ(Audio_F 1ag)のセット状態を検出するステップと、該識別フ ラグのセット状態の検出に応答して、前記静止画像デー タと、前記音声データを同期再生するステップを有する ことを特徴とする光ディスク再生方法である。

【0051】との識別フラグのセット状態により、静止 画像の第1システムストリームと音声の第2システムス トリームの存在を予め検出することができる。

【0052】本発明の第21の観点は、前記同期再生す るステップは、前記識別フラグ(Audio_Fla g)のセット状態の検出に応答して、前記1枚のピクチ ャの静止画像データを完全にデコードするステップと、 続いて前記音声データをデコードし、再生するステップ と、該音声の再生の開始と同時に、デコードされた静止 画像データの再生を開始することを特徴とする第20の 観点の光ディスク再生方法である。

【0053】 これにより、第1システムストリームにあ る静止画像データと、第2システムストリームにある音 声データとを、個別の時間帯にデコードすることが可能 となる。

[0054]

【発明の実施の形態】以下、本発明の一実施の形態とし て、MPEGストリームの記録媒体としてDVD-RA Mを用いたDVDレコーダについて詳細を説明する。

【0055】(通常のMPEGストリームの説明)最初 に通常のMPEGストリーム (AVデータ) について説 明する。通常のMPEGストリームの構成は当業者であ れば明らかであるので、本発明に関連の深い部分を中心 に説明をする。

てはMPEG(ISO/IEC13818)と呼ばれる 国際標準規格がある。

【0057】MPEGは高効率なデータ圧縮を実現する ために、主に次の2つの特徴を有している。

【0058】一つ目は、動画像データの圧縮において、 従来から行われていた1フレーム内で冗長成分を取り除 く空間周波数特性を用いた圧縮方式に加えて、フレーム 間での冗長成分を取り除く時間相関特性を用いた圧縮方 式を取り入れたことである。MPEGでは、各フレーム

ーム内符号化ピクチャ)、Pピクチャ(フレーム内符号 化と過去からの参照関係を使用したピクチャ)、Bピク チャ(フレーム内符号化と過去および未来からの参照関 係を使用したピクチャ)の3種類に分類してデータ圧縮 を行う。

【0059】図3はI, P, Bピクチャの関係を示す図 である。図3に示すように、Pピクチャは過去で一番近 いIまたはPピクチャを参照し、Bピクチャは過去およ び未来の一番近い「またはPピクチャを夫々参照してい はPピクチャを参照するため、各ピクチャの表示順番 (display order) と圧縮されたデータで のコード化順番(coding order)とが一致 しない現象が生じる。

【0060】MPEGの二つ目の特徴は、画像の複雑さ に応じた動的な符号量割り当てをピクチャ単位で行える 点である。MPEGのデコーダは入力バッファを備え、 とのデコーダバッファに予めデータを蓄積する事で、圧 縮の難しい複雑な画像に対して大量の符号量を割り当て 20 ることが可能になっている。

【0061】MPEGでは、動画と共に再生されるオー ディオデータとして、MPEG方式で定められたエンコ ードタイプであるMPEGオーディオがサポートされて いる。また、MPEGでは、上述したMPEGオーディ オに加えて、アプリケーション毎に様々なエンコードタ イブを利用することが許容されている。

【0062】本発明で使用するオーディオデータのエン コードタイプには、データ圧縮をするタイプとデータが 非圧縮なタイプがある。データ圧縮を行うタイプとして 30 は、MPEGオーディオ、ドルビーディジタル(AC-3)があり、非圧縮なタイプとしてはLPCMがある。 ドルビーディジタルとLPCMはビットレート固定であ るが、MPEGオーディオはビデオストリーム程大きく はないが、オーディオフレーム単位で数種類のサイズか ら選択することができる。

【0063】上述した動画データ及びオーディオデータ は、MPEGシステムと呼ばれる方式で一本のストリー ムに多重化(マルチプレクス)される。多重化された動 画データ及びオーディオデータはMPEGではシステム 【0056】先にも述べたがAVデータの圧縮方式とし 40 ストリームと称される。また、動画データとオーディオ データとがマルチプレクスされた状態のデータは、一般 的にAVデータと称される。

> 【0064】図4はMPEGのシステムストリームの構 成を示す図である。41はパックヘッダ、42はパケッ トヘッダ、43はペイロードである。MPEGのシステ ムストリームはバック、バケットと呼ばれる階層構造を 持っている。

> 【0065】パケットは多重化処理の際の最小単位であ り、パックは転送処理の際の最小単位である。

(MPEGではピクチャとも呼ぶ)をIピクチャ(フレ 50 【0066】パケットはパケットヘッダ42とペイロー

ド43とから構成される。AVデータは夫々先頭から適 当なサイズ毎に分割されペイロード43に格納される。 パケットヘッダ42はペイロード43に格納されるデー タのタイプを識別するための ID (stream I D) と90kHzの精度で表記したペイロード中に含ま れているデータの再生の際のタイムスタンプが格納され る。IDが示すデータのタイプには動画、音声等があ る。またタイムスタンプにはデコード時刻DTS(De coding Time Stamp) および表示時刻 PTS (Presentation Time Sta 10 mp)が記録される。なお、オーディオデータのように デコードと表示が同時に行われる場合はDTSの格納が 省略される。

【0067】パックは複数のパケットを取りまとめた単 位である。なお本実施の形態の場合は、1パケットが1 パックから構成される。パックは、パックヘッダ41と パケット (パケットヘッダ42およびペイロード43) から構成される。

【0068】パックヘッダには、このパック内のデータ がデコーダバッファに入力される時刻を27MHzの精 20 しデコードする。 度で表記したSCR (System Clock Re ference)が記録される。

【0069】次に、上述したMPEGシステムストリー ムをデコードするデコーダについて説明する。

【0070】図5はMPEGシステムデコーダのデコー ダモデル (P-STD) であるり、図1のデコーダ16 の詳細を示す。51はデコーダ内の規準時刻となるST C(System Time Clock)を備えたシ ステム制御部、52はシステムストリームのデコード、 即ち多重化を解くデマルチプレクサ、53はビデオデコ 30 ーダのビデオバッファ、54はビデオデコーダ、55は 前述したI、PピクチャとBピクチャの間で生じるデー タ順と表示順の違いを吸収するために1、Pピクチャを 一時的に格納するリオーダバッファ、56はリオーダバ ッファにあるI、PピクチャとBピクチャの出力順を調 整するスイッチ、57はオーディオデコーダの入力バッ ファ、58はオーディオデコーダである。

【0071】次にMPEGシステムデコーダによる、前 述したMPEGシステムストリームの処理動作を以下説 明する。デマルチプレクサ52には、STC51の時刻 40 とバックヘッダに記述されているSCRが一致した時 に、当該バックが入力される必要がある。なお、先頭パ ックのSCRでSTC51は初期化される。デマルチプ レクサ52は、パケットヘッダ中のストリームIDを解 読し、ペイロードのデータを夫々のストリーム毎のデコ ーダバッファに転送する。また、パケットヘッダ中のP TSおよびDTSを取り出す。ビデオデコーダ54は、 STC51の時刻とDTSが一致した時刻にビデオバッ ファ53からピクチャデータを取り出しデコード処理を 行い、Bピクチャはそのまま表示出力し、I、Pピクチ 50 同図においてPhoto#1とPhoto#2が個別にファイルとして

ャはそのまま出力せずに一時リオーダバッファ55に格 納する。

【0072】スイッチ56は、図3を用いて前述したデ コード順番と出力表示順番の異なりを修正する。すなわ ち、ビデオデコーダ54により出力されるピクチャがB ピクチャの場合は、ビデオデコーダ54側からの出力を 外部に出力するようにスイッチングし、I、Pピクチャ の場合は、リオーダバッファ55側からの出力を外部に 出力するようにスイッチングする。

【0073】なお、このデコード順序と出力順序の異な りの修正のためリオーダされるため【ピクチャはデコー ドと同時に出力することはできない。仮にBピクチャが 存在しないケースを想定した場合であっても、デコード から出力まで1ピクチャ分、すなわち1ビデオフレーム 周期分出力が遅れることになる。

【0074】オーディオデコーダ58は、ビデオデコー ダ54同様に、STC51の時刻とPTS(オーディオ の場合DTSはない)が一致した時刻にオーディオバッ ファ57から1オーディオフレーム分のデータを取り出

【0075】次に、MPEGシステムストリームの多重 化方法について図6を用いて説明する。図6(a)はビ デオフレーム、図6 (b) はビデオバッファ、図6 (c)はMPEGシステムストリーム、図6(d)はオ ーディオデータを夫々示している。横軸は各図に共通し た時間軸を示していて、各図とも同一時間軸上に描かれ ている。また、ビデオバッファの状態においては、縦軸 はバッファ占有量(ビデオバッファのデータ蓄積量)を 示し、図中の太線はバッファ占有量の時間的遷移を示し ている。また、太線の傾きはビデオのビットレートに相 当し、一定のレートでデータがバッファに入力されてい ることを示している。また、一定間隔でバッファ占有量 が削減されているのは、データがデコードされた事を示 している。また、斜め点線と時間軸の交点はビデオフレ ームのビデオバッファへのデータ転送開始時刻を示して いる。

【0076】(通常のMEPGストリームの課題)上述 した通常のMPEGストリームを利用した静止画カメラ は後述する課題により実際には製品としては存在しない と考えられる。しかしながら、課題を説明する便宜上、 これを想定し以下説明する。

【0077】想定した静止画カメラによるMPEGスト リームのデコーダによる再生動作と各タイムスタンプ (STC、PTS、DTS)の関係を、図17、図18 を用いて説明する。なお、デコーダの各構成は図5で示 した構成を参照する。

【0078】図17は静止画カメラで取り込んだデータ がPC上で再生される動作を説明する図である。図17 (a) はPCのディスプレイに表示される画面を示す。

アイコンで表示されている。Windows95等のGUI(グラッフィックユーザインターフェース)においては、表示されたファイルをポインティングデバイスであるマウス等でそれぞれクリックすることによって、ファイルの内容をPCに付随するディスプレイ装置に表示させ、その音声をPCに付随するスピーカから出力させることができる。図17(b)はPhoto#1とPhoto#2の内容がそれぞれ出力された状態を示す。

【0079】図17(b)に示すように、Photo#1のファイルがクリックされると、静止画としてStill pictur 10 e#1が画面に表示され、同時にAudio#1がPCのスピーカから出力される。また、Photo#2のファイルがクリックされると、静止画としてStillpicture#2が画面に表示され、同時にAudio#2がPCのスピーカから出力される。 【0080】図18は、Photo#1が再生される際の、想定した静止画カメラのデコーダの動作と各タイムスタンプの関係を説明する図である。

【0081】図18(a)、(b)はPhoto#1の静止画であるStill picture#1と音声であるAudio#1がそれぞれ出力される状態を示す。図18(c)、(d)はStill picture#1とAudio#1がそれぞれデコードされ出力される際のオーディオデコーダバッファ57とビデオデコーダバッファ53のバッファ占有量の推移をそれぞれ示す。図18(e)はPhoto#1がMPEGストリームであるストリーム#1としてディスクに格納される際のパック配置及びパックに格納されるそれぞれのタイムスタンプ(SCR、PTS、DTS)を示す。

【0082】なお、説明の便宜上、バック内のパケットは図示しないが、DTSとPTSはパケット内のパケットへッダに存在することは前述した通りである。また、同様に、ビデオバックを4つ、オーディオバックを2つとしたが、バックのデータ量は2KBにすぎないため、実際にはビデオバックとオーディオバックとがそれぞれ100以上の数で存在する。これらは当業者であれば明らかな事であることは言うまでもない。

【0083】想定した静止画カメラの再生動作の第1の説明として、最初に図18(e)で示すストリーム#1を構成する各パックがデマルチプレクサ52に転送される動作を説明する。

【0084】図18(e)に示すようにストリーム#1は先頭から、ビデオバックV1、ビデオバックV2、オーディオバックA1、ビデオバックV3、ビデオパックV4、オーディオバックA2の順に、各バックがマルチプレクスされた構成を有する。

【0085】前述したが各バックにはそれぞれ、デマルチプレクサ52に入力されるタイミングを示すSCR値がパックヘッダに格納される。図18に示す例の場合、ビデオバックV1のSCR#1には時刻t1が、ビデオパックV2のSCR#2には時刻t2が、オーディオパックA1のSCR#4には時刻t3が、ビデオパックV50

3のSCR#3には時刻t4が、ビデオバックV4のSCR#5には時刻t5が、オーディオバックA2のSCR#6には時刻t8がそれぞれSCR値として設定される。

【0086】また、ピクチャの先頭パックにはPTSとDTSが設定される。ビデオパックV1のPTS#1には時刻t7が、DTS#1には時刻t6が設定される。なお、ピクチャの先頭パック以外のビデオパックはPTSとDTSが同一であるため設定されない。

【0087】また各オーディオバックにはPTSが設定される。オーディオバックA1のPTS#1には時刻t7が、オーディオバックA2のPTS#2には時刻t9が設定される。なお、オーディオデータの場合、PTSとDTSは等しいためPTSのみ値が設定され、DTSは省略される。

【0088】ストリーム#1を構成する各パックは、先頭パックであるビデオパックV1のSCR#1の値である時刻t1でSTCをリセットした後、各パックのSCR値が示すタイミングでデマルチプレクサ52に入力される。

【0089】すなわち、図18(e)に示すように、最初はビデオバックV1が時刻t1でデマルチプレクサ52に入力され、次いでビデオバックV2が時刻t2で、次いでオーディオパックA1が時刻t3で、次いでビデオバックV4が時刻t5で、次いでオーディオパックA2が時刻t8で、それぞれ、デマルチプレクサ52に入力される。各パックが入力されたデマルチプレクサ52は入力パックがビデオパックであればビデオバッファ53に出力し、入力パックがオーディオバックであればオーディオバッファ57に出力する。

【0090】次に想定した静止画カメラの再生動作の第2の説明として、ビデオバッファ53に出力された各ビデオバックのデータのデコード及び出力動作を説明する

【0091】図18(c)に示すようにデマルチプレクサ52から出力された各ビデオバックは、無視できる遅れはあるが、SCRのタイミングである時刻t1、時刻t2、時刻t4、時刻t5のタイミングでビデオバッファ53に蓄積される。静止画Still picture#1はビデオパックV1からV4までで構成されるため、ビデオバックV4がビデオバッファ53に蓄積されれば静止画Still picture#1を構成する全てのデータがビデオバッファ53に蓄積されたことになる。図18(e)に示すようにビデオパックV1、V2、V3、V4から構成される静止画Still picture#1はDTS値として時刻t6を有する。このため、蓄積されたデータは時刻t6を有する。このため、蓄積されたデータは時刻t6のタイミングでビデオデコーダ54によりデコードされ、ビデオバッファのバッファ占有量が減少する。

【0092】デコードされた各ビデオバックのデータは

【0093】なお、Still picture#1の表示終了については、MPEGストリーム上のタイムスタンプとしては規定されない。次のMPEGストリームが再生開始されれば消去されるし、また、アプリケーション等の外部からのデコーダに対する制御で映像出力を終了することが一般的である。このため図18に示す例においては、音 10声出力が終了した時刻t10以降もStill picture#1が表示されていることを示している。

【0094】次に想定した静止画カメラの再生動作の第 3の説明として、オーディオバッファ57に出力された オーディオバックのデータがデコードされ出力される動 作と各タイムスタンプの関係を説明する。

【0095】図18(d)に示すようにデマルチプレクサ52から出力された各オーディオバックは時刻t3、時刻t8のタイミングでオーディオバッファ57に蓄積されオーディバッファ57の占有量がそれぞれ増加する。オーディオデータはビデオデータとは異なり、PTSが等しいため、オーディオデコーダ57で各パックのデータがデコードされると同時に音声出力がなされる。すなわち、オーディオバッファ57に蓄積されたオーディオバックA1のデータは、PTS値である時刻t7のタイミングでオーディオデコーダ57によりデコードされ音声出力が開始される。また、時刻t8のタイミングでオーディオバッファ57に蓄積されたオーディオパックA2のデータは、PTS値である時刻t9のタイミングで、オーディオデコード57によりデコードされ音声出力される。

【0096】また、MPEGではデコーダの各バッファ内にデータを蓄積できる時間が限定されている。この所定時間は動画データの場合1秒と規定されている。

【0097】このため、同時に出力されるビデオデータとオーディオデータの転送時刻の差、すなわちSCRの差は最大で1秒になる。但し、厳密に言えばビデオデータのリオーダの分だけ更にずれることもある。

【0098】(MPEGストリームの課題)本発明者は 長年の研究開発により、上述した通常のMPEGストリ 40 ームを静止画カメラで利用する際の課題を抽出し整理し た。

【0099】ビデオデータと当該ビデオデータと共に再生されるオーディオデータがマルチプレクスされて生成されるMPEGシステムストリームは、その、生成後に共に再生されるオーディオデータを他のオーディオデータに変更する編集を行う事は難しい。すなわち、静止画カメラで静止画と音声を撮影しデータをMPEGストリームとして記録媒体に格納した後は、撮影時の音声を他の音声に変更する編集を行うことは難しい。

【0100】例えば、図17に示す例であれば、Photo#1は静止画カメラで撮影時に、静止画データであるStillpicture#1とオーディオデータであるAudio#1から構成されるMPEGストリームとしてディスクに記録される。生成されたMPEGストリームは図18(e)に示すように、ビデオパックとオーディオパックとがマルチプレクスされた構成を有する。このため、ユーザが、一度撮影した後に、Photo#1のオーディオデータをAudio#1から他のオーディオデータに変更することは難しい。

【0101】撮影後に音声の組み替え編集を行う方法として以下の3つの方法が考えられる。

【0102】1) 撮影した静止画データであるビデオデータに対し予め組み合わせる可能性のあるオーディオデータを全て組み合わせたMPEGストリームを生成し、これらを全て記録媒体に格納する方法が考えられる。例えば図18で示す例であれば、図18(e)で示すストリーム#1に加えて、オーディオバックのみを変更したストリームを別途格納することが考えられる。しかし、この場合、記録媒体の記録容量には上限があるたりし、この場合、記録媒体の記録容量には上限があるため記録可能なMPEGストリームにも限界がある。また、いずれにせよ、静止画に組み合わせる可能性のある全ての音声をユーザが、その撮影時に決定することは事実上不可能である。

【0103】2) 編集時に、MPEGシステムストリームのデコードを行い静止画像データとオーディオデータとをそれぞれ取り出し、取り出した静止画データと変更するオーディオデータを再度システムエンコードし直す。しかし、この場合は、編集の度にデコードとエンコードを行わなければならず、編集に時間がかかる。また1つのシステムストリームを全てデコードした状態で格納するために大きなメモリが静止画カメラに必要とされる。

【0104】3) 予めビデオストリームとオーディオストリームの2つのストリームに分けて記録媒体に格納する。そして、再生時に組合せを決定する方法が考えられる。この方法であれば、静止画を記録媒体に記録した後で、追記されたオーディオデータを当該静止画と共に再生するオーディオデータとして利用することができる。

0 【0105】発明者は、この3)を採用した。すなわち 従来のデコーダでディスク上に別々に格納された2つの MPEGストリームをあたかも1つのストリームのごと く再生する方法と装置を実現した。

【0106】(本発明のMPEGストリーム)本発明を実現するためには、上述した様に別々に存在する静止画像データとオーディオデータの2つのMPEGストリームを従来通り1つのデコーダで再生するために、2つのMPEGストリームを1つのシステムストリームとしてデコーダに処理させることが必要である。

50 【0107】2つのMPEGストリームをあたかも1つ

のMPEGストリームとして処理するうえで一番の課題 は、2つのストリームには、それぞれ独立にタイムスタ ンプが付与されており、2つのストリームを1つのスト リームとして連続的に処理した場合、それぞれのストリ ームに付与されたタイムスタンプの間で不連続等の矛盾 が生じる点にある。

【0108】MPEGストリーム中のタイムスタンプ は、多重化処理で付けられるが、通常のMPEGストリ ームの場合、タイムスタンプの初期値(一番最初に付け られるSCR)に規格上の規定はなく、エンコーダによ 10 S1、DTS1が格納されるととを示している。また最 って固有の値をとるのが実状である。 従って、夫々異 なるエンコーダによって作成されたMPEGストリーム 間では、当然のことながらタイムスタンプ間に連続性や 相関性は存在しない。例えば、SCRの初期値をOとす るエンコーダAによりエンコードしたMPEGストリー ムをストリームA、SCRの初期値を1000とするエ ンコーダBによりエンコードしたMPEGストリームを ストリームBとする。また、ストリームAの最終パック のSCR値を2700000 (27MHz)とする。 ここで(27MHz)は、その前に示された数値が27 MHzのクロックのカウント値であることを示す。スト リームAとストリームBをあたかも1つのストリームの ように連続的にデコーダで処理したとする。この場合、 ストリームAの終端からストリームBの先頭にかけてS CRの不連続が発生し、デコーダはハングアップ等、誤 動作する可能性が極めて高くなる。

【0109】とのため、本発明の記録装置では、生成し ディスクに記録されるシステムストリームのタイムスタ ンプ (SCR、PTS、DTS) の値を所定値に制限す る。 ₩ 30

 $SCR2+Tp \leq SCR3$

【0117】 ここで、 Tpは1 パックをデコーダへ転送 するために要する時間である。すなわち、Tpは、デマ ルチプレクサ52にひとつのパックが入力開始されてか ら、入力終了するまでに要する時間である。デマルチプ レクサ52ではパックは単に振り分けられるだけである ので、Tpは、バッファ53または57にひとつのパッ クが入力開始されてから、入力終了するまでに要する時 間である。

【0118】(式1)は、SCR3の最小値を制限して 40 いる。SCR3は通常のMPEG方式であれば、0値に なるケースが多いが、本発明はこれに(式1)の制限で 求められる値とする。

【0119】 これにより、SCR2がSCR3より大き な値となることを回避し、静止画データ用システムスト リームと音声データ用システムストリームとをそれぞれ 構成する各パックのSCRが、2つのシステムストリー ムにまたがって昇順に配されることを保証する。

【0120】また、(式1)はSCR2とSCR3の差 がTp以上であることを保証する。これにより、静止画 50 オデータを1本のMPEGストリームとして扱うことが

*【0110】次に本発明のMPEGストリームのタイム コードに対する制限値を以下説明する。

【0111】図11は、静止画データ用システムストリ ームST1と音声データ用システムストリームST2の タイムスタンプを説明する図である。

【0112】図11において、(a)は静止画データ用 システムストリームST1であるビデオオブジェクト (VOB)を示す。先頭パックには、そのパックヘッダ にはSCR1が格納され、そのパケットヘッダにはPT 終パックのパックヘッダにはSCR2が格納されること が示されている。

【0113】(b) は音声データ用システムストリーム ST2であるビデオオブジェクト(VOB)を示す。先 頭パックには、そのパックヘッダにSCR3が、そのパ ケットヘッダにはPTS3が格納されることが示されて

【0114】(c)は再生時に、静止画データ用システ ムストリームST1と音声データ用システムST2とが 連続してデコーダに入力される状態を説明している。

【0115】本発明においては、静止画データ用システ ムストリームST1と音声データ用システムストリーム ST2とを、あたかも1つのシステムストリームとデコ ーダに処理させるために、静止画データを構成するシス テムストリームST1の最終パックのSCR2と、オー ディオデータを構成するシステムストリームST2の先 頭バックのSCR3に下記の式で規定値を設けて制限す る。

[0116]

(式1)

データ用システムストリームの最終パックの転送中に音 声データ用システムストリームの先頭パックの転送タイ ミングが発生することを回避する。

【0121】なお、バックの転送時間(Tp)は、シス テムストリームの転送レートを8Mbpsとした場合、 55296 (27MHz) になる。また、10.08M bpsとしたときは43885 (27MHz) になる。 【0122】次に、本発明のデコーダは静止画データを 構成するMPEGストリームがデコーダに入力された場 合は、その入力終了後に、STCをリセットせずに次の 音声ストリームの入力を行うように構成される。

【0123】とれは、通常、デコーダは1つシステムス トリーム毎にSTCがリセットされるため、静止画像デ ータの入力後にSTCがリセットされたのでは、前述し たストリームの先頭バックのSCRの制限が意味をなさ なくなるためである。

【0124】この様に設定したタイムスタンプに基づい てデコーダが処理を行うため静止画像データとオーディ

可能となる。すなわち、別々に記録した静止画ストリー ムと音声ストリームをあたかも1つのシステムストリー ムとして再生することが可能となる。

PTS1 = PTS3=所定値

【0127】これにより、音声と静止画を同じタイミン グで出力開始することができる。

【0128】所定値は、例えば、90000 (90kH z) + T v になる。 ととで (90 k H z) は、その前に 示された数値が90kHzのクロックのカウント値であ ることを示す。Tvはビデオのフレーム周期でありNT 10 SC信号であれば3003、PAL信号であれば360 0になる。

【0129】次に以下、上述した(式1)、(式2)及 び、読み出しから約1秒後(90000(90kHz) + T v) に静止画と音声が同時に出力されるケースを用 いて、図11の各種タイムスタンプを具体的に説明す

【0130】最初に静止画データ用VOBのタイムスタ ンプについて説明する。

【0131】(1)静止画データ用VOBの先頭バック 20 のSCR (SCR1)は0(27MHz)である。

【0132】(2)静止画データ用VOBの先頭パック のDTS (DTS1) は90000 (90kHz) であ る。なお、静止画データ用VOBは1枚の静止画しか含 まない。

【0133】(3)静止画データ用VOBの先頭パック のPTS (PTS1) は93003 (90kHz) であ る。但し、93003はビデオがNTSCの場合であっ て、ビデオがPALの場合は93600である。これ は、ビデオのフレーム周期(Tv)がNTSCの場合は 30 れたものであっても、本発明を適用することができる。 3003であり、ビデオがPALの場合は3600にな るためである。また、静止画データ用VOBは1枚の静 止画しか含まないため、全てのパックはPTS1が示す タイミングで同時に出力される。 Ж

> $SCR2 + Tp \leq MaxT$ SCR3 = MaxT

【0140】次に、オーディオデータ用VOBのタイム スタンプについて説明する。

【0141】(1) 先頭オーディオパックのSCR(S CR3)は2700000(27MHz)である。こ 40 述した条件の値をそのまま満たす必要はない。 れは、先行して入力された静止画データ用VOBに連続 して、(式1)を満たし最短時間でデコーダに入力する 値である。また、静止画のPTS(PTS1)を930 03(90kHz)としたために、音声を同時に出力す るためには、少なくともSCR値はこれより少ない値と することが必要になる。

【0142】(2) 先頭オーディオフレームのPTS (PTS3)は93003 (90kHz)である。但 し、93003はビデオがNTSCの場合であって、ビ デオがPALの場合は93600である。

*【0125】さらには、PTS1とPTS3は下記に示 すように所定値で等しく設定される。

[0126]

(式2)

※【0134】(4)静止画データ用VOBの最終パック のSCR (SCR2) は27000000 (27MH z)から1パックの転送時間(Tp)を減算した時刻以 下の値を有している。27000000(27MHz) は基準値と称する。

【0135】この基準値は、前述した動画データがデコ ーダバッファに入力されてからデコードされるまでの最 長時間が1秒(2700000(27MHz))であ ることを考慮して定められたものである。

【0136】すなわち、この動画データの最長蓄積時間 を静止画データでも採用した場合、静止画データ用VO Bを構成する全てのパックは1秒(2700000 (27MHz))以内にデコーダに転送完了される必要 がある。先頭のパックのSCR(SCR1)が0の場 合、このパックはデコーダに転送後、1秒(27000 000(27MHz))以内にデコードされるため、同 じ静止画データを構成する最終パックのSCR(SCR 2) は上述したように、2700000 (27MH z)から1パックの転送時間(Tp)を減算した値にな

【0137】前述したPTSの所定値と、この基準値を 定める意味は、エンコーダの互換である。すなわち、

(式1)、(式2)、所定値、基準値に従ってエンコー ドした静止画用システムストリーム、オーディオ用シス テムストリームであれば、いずれのエンコーダで生成さ 【0138】なお、本実施の形態では、基準値を1秒 (2700000(27MHz)) として説明した。 基準値をMaxTとすると以下の式が成立する。

[0139]

(式3) (式4)

【0143】もちろん、(式1)、(式2)を満たすよ うに静止画像データ用VOBおよびオーディオデータ用 VOBが夫々エンコードされていれば良く、必ずしも前

【0144】ビデオがNTSCであり、SCRの初期値 が0ではなく、1秒である2700000 (27MH z) とした場合は下記になる。

SCR1=27000000(=1秒)

 $SCR2 \le 53944704 (= SCR3 - Tp)$

SCR3=54000000 (=SCR1+1秒)

PTS1=PTS3=183003 (=DTS1+30 03)

DTS1=180000 (=1秒)

50 【0145】また、NTSCの場合でSCRの初期値を

24

```
    0、PTSを1秒とした場合は下記になる。
    SCR1=0
    SCR2≦26043804 (= SCR3-Tp)
    SCR3=26099100 (= 1秒-3003×300)
    PTS1=PTS3=90000 (= 1秒)
```

DTS1=86997 (=PTS1-3003) 【0146】また、PALの場合で、SCRの初期値を 1秒である27000000 (27MHz) とした場合

1秒である27000000(27MHz)とした場合は下記になる。 SCR1=2700000(=1秒)

 $SCR2 \le 53944704 (= SCR3-Tp)$ SCR3 = 54000000 (= SCR1+1秒)PTS1 = PTS3 = 183600 (= DTS1+3

PTS1 = PTS3 = 183600 (= DTS1 + 3600)

DTS1=180000 (=1秒)[0147]また、PALの場合で、SCRの初期値を0、PTSを1秒とした場合は下記になる。

SCR1 = 0

SCR2≦25864704 (= SCR3-Tp) SCR3=25920000 (=1秒-3600×30 0)

PTS1=PTS3=90000 (=1秒)

DTS1 = 86400 (= PTS1 - 3600)

【0148】また、伝送速度が10.08Mbpsで、 NTSCの場合は下記になる。

SCR1 = 0

 $SCR2 \le 26956115$ (= SCR3-Tp (= 4 3885))

SCR3=27000000(=1秒)

PTS1=PTS3=93003 (=DTS1+300 3)

DTS1=90000 (=1秒)

【0149】また、伝送速度が10.08Mbpsで、 PALの場合は下記になる。

SCR1=0

 $SCR2 \le 26956115 (= SCR3 - Tp (= 43885))$

SCR3=27000000 (=1秒)

PTS1=PTS3=93600 (=DTS1+360 40 送時間であり、55296 (27MHz) である。ま
0) た、ビデオデータはNTSC方式であり、PTS値で

DTS1=90000 (=1秒)

【0150】次に上述した制限の下設定されたタイムスタンプを有するMPEGストリームがデコーダで処理される動作を図19、図20を用いて説明する。なお、デコーダの各構成については図5を参照する。

【0151】図19は、前述した図18と同様に、Phot o#1が再生される際の、本発明の静止画カメラのデコーダの動作と各タイムスタンプの関係を説明する図である。

【0152】図19(a)、(b)はPhoto#1の静止画であるStill picture#1と音声であるAudio#1がそれぞれ出力される状態を示す。図19(c)、(d)はStill picture#1とAudio#1がそれぞれデコードされ出力される際のオーディオデコーダバッファ57とビデオデコーダバッファ53のバッファ占有量の推移をそれぞれ示す。図19(e)はPhoto#1がMPEGストリームであるストリーム#1とストリーム#2としてディスクに格納される際のパック配置及びパックに格納されるそれぞれの10タイムスタンプ(SCR、PTS、DTS)を示す。【0153】なお、図18と同様にパケット構造の図示等は省略している。

【0154】本発明の静止画カメラの再生動作の第1の説明として、最初に図19(e)で示すストリーム#1とストリーム#2を構成する各バックがデマルチプレクサ52に転送される動作を説明する。

【0155】図19(e)に示すようにストリーム#1は先頭から、ビデオバックV1、ビデオバックV2、ビデオバックV3、ビデオバックV4の順に、各バックが20マルチプレクスされた構成を有する。また、ストリーム#2は先頭から、オーディオバックA1、オーディオバックA2がマルチプレクスされた構成を有する。ここで着目すべき点は、ストリーム#1はビデオバックのみから構成され、ストリーム#2はオーディオバックのみから構成される点である。

【0156】また各バックにはSCRが格納される。図 19(e)に示すように、ストリーム#1のビデオバックV1のSCR#1には時刻t1が、ビデオバックV2のSCR#2には時刻t2が、ビデオバックV3のSC30 R#3には時刻t3が、ビデオバックV4のSCR#4には時刻t4がSCR値として設定される。また、先頭のビデオバックとはPTS値とDTS値が設定される。ビデオバックV1のPTS#1には時刻t8が、DTS#1には時刻t6が設定される。

【0157】本実施の形態では、先頭パックのSCR値である時刻 t1は、前述した説明での値と同じく0である。また、最終のビデオパックであるビデオパックV4のSCR値である時刻 t4は、27000000(27MHz)-Tpである。Tpは前述したようにパック転送時間であり、55296(27MHz)である。また、ビデオデータはNTSC方式であり、PTS値である時刻 t8は93003(90KHz)、DTS値である時刻 t6は90000(90KHz)になる。

【0158】ストリーム#2のオーディオバックA1の SCR#5には時刻t7が、オーディオバックA2のS CR#6には時刻t9がSCR値として設定される。ま たオーディオバックA1とオーディオバックA2にはP TS値が設定される。オーディオバックA1のPTS# 5には時刻t8が、オーディオバックA2のPTS#6 Cは時刻t10が設定される。

【0159】本実施の形態では、先頭のオーディオバッ クA 1 の S C R 値である時刻 t 7 は 2 7 0 0 0 0 0 0 (27MHz)である。またオーディオパックA1のP TS値である時刻t8は、ビデオデータのPTS値と同 じであるので93003(90KHz)である。

【0160】ストリーム#1を構成する各パックは、先 頭バックであるビデオバックVlのSCR#1の値であ る時刻t 1でSTCをリセットした後、各パックのSC R値が示すタイミングでデマルチプレクサ52に入力さ れる。

【0161】すなわち、図19(e)に示すように、最 初はビデオパックV1が時刻 t 1 でデマルチプレクサ5 2に入力され、次いでビデオパックV2が時刻 t 2で、 次いでビデオパックV3が時刻t3で、次いでビデオパ ックV4が時刻t4でそれぞれ、デマルチプレクサ52 に入力される。

$SCR#4+Tp \leq SCR#5$

【0166】このため、ストリーム#1とストリーム# 2の間でSCR値の連続性が保証され、かつ、その間隔 は少なくともバック転送時間以上であることが保証され 20 ることになり、デコーダはハングアップすることなく2 つのストリームを連続して処理することができる。

【0167】各パックが入力されたデマルチプレクサ5 2は入力パックがビデオパックであればビデオバッファ 53に出力し、入力パックがオーディオパックであれば オーディオバッファ57に出力する。

【0168】次に本発明の静止画カメラの再生動作の第 2の説明として、ビデオバッファ53に出力された各ビ デオパックのデータのデコード及び出力動作を説明す

【0169】図19(c)に示すようにデマルチプレク サ52から出力された各ビデオパックは、無視できる遅 れはあるが、SCRのタイミングである時刻t1、時刻 t 2、時刻 t 3、時刻 t 4 のタイミングでビデオバッフ ァ53に蓄積される。静止画Still picture#1はビデオ パックV1からV4までで構成されるため、ビデオパッ クV4がビデオバッファ53に蓄積されれば静止画Stil 1 picture#1を構成する全てのデータがビデオバッファ 53に蓄積されたことになる。図19(e)に示すよう にビデオパックV1、V2、V3、V4を構成するピク 40 れるが、PTS値が同じため同時に出力されることにな チャのDTS値は時刻 t 6 である。このため、蓄積され たデータは時刻 t 6 のタイミングでビデオデコーダ5 4 によりデコードされ、ビデオバッファのバッファ占有量 が減少する。

【0170】デコードされた各ビデオパックのデータは Iピクチャを構成し、これは、静止画データであるStil 1 picture#1である。デコードされた I ピクチャはリオ ーダバッファ55に格納され、PTS値である時刻t8 のタイミングで外部に出力される。

【0171】次に本発明の静止画カメラの再生動作の第 50 る。

*【0162】ととで、図18で説明した静止画カメラの デコード処理と異なる点は、ストリーム#1に次いで、 デコーダのSTCがリセットされることなく、ストリー ム#2を構成する各パックがそれぞれのSCRが示すタ イミングでデマルチプレクサ52に入力される点であ

【0163】図19に示すように、最初はオーディオパ ックA 1 が時刻 t 7 でデマルチプレクサ5 2 に入力さ れ、次いでビデオパックA2が時刻t9で、それぞれ、 10 デマルチプレクサ52に入力される。

【0164】ここで着目すべきは、最終のビデオパック V4のSCR#4と先頭のオーディオバックA1のSC R#5の間に前述した(式1)の関係が成立することで ある。すなわち、次の関係が成立する。

[0165]

(式1)

3の説明として、オーディオバッファ57に出力された オーディオパックのデータがデコードされ出力される動 作と各タイムスタンプの関係を説明する。

【0172】図19(d)に示すようにデマルチプレク サ52から出力された各オーディオパックは時刻 t7、 時刻t9のタイミングでオーディオバッファ53に蓄積 されオーディバッファ57の占有量がそれぞれ増加す る。オーディオデータはビデオデータとは異なり、PT SとDTSが等しいため、オーディオデコーダ57で各 パックのデータがデコードされると同時に音声出力がな される。すなわち、オーディオバッファ57に蓄積され たオーディオパックA1のデータは、PTS値である時 30 刻 t 8 のタイミングでオーディオデコーダ57 によりデ コードされ音声出力が開始される。また、時刻 t 9 の タ イミングでオーディオバッファ57に蓄積されたオーデ ィオパックA2のデータは、PTS値である時刻t10 のタイミングで、オーディオデコード57によりデコー ドされ音声出力される。

【0173】ととで着目すべき点は、静止画データを構 成するストリーム#1とオーディオデータを構成するス トリーム#2のPTS値が同じ点である。このためスト リーム#1とストリーム#2は別々にデコーダに入力さ

【0174】以上、前述したタイムスタンプの制限値の 下であれば、静止画データのみからなるMPEGストリ ームと音声データのみからなるMPEGストリームとが デコーダで連続的に処理され、かつ、同時に音声と映像 表示を行えることが分かる。

【0175】なお、静止画と音声のMPEGストリーム が別々にディスクに記録されるため、静止画の撮影後に 同時に出力される音声データを変更することは容易であ

【0176】例えば、図19で説明したStill Picture# 1とAudio#1が撮影時に光ディスクに記録されたデータだ とする。Still Picture#1と同時に出力する音声を変更 したい場合は、Audio#1であるMPEGストリームと同 様に(式1)、(式2)を満たすタイムスタンプを有す るMPEGストリームを別途記録すれば良い。Audio#2 を別途、MPEGストリーム#3として追加記録した例 を図20に示す。

【0177】図示していないが、Still Picture#1であ るMPEGストリームと同時に再生されるオーディオデ 10 ータ用MPEGストリームを示す管理情報がディスクに は記録されている。この管理情報を更新することによ り、Audio#1の代わりにAudio#2であるMPEGストリー ムがStill Picture#1であるMPEGストリームと同時 に再生されることになる。

【0178】(DVD-RAMの説明)次に前述したM PEGストリームを記録するのに好適な記録媒体及びそ の記録フォーマットとしてDVD-RAMを説明する。

【0179】近年、書き換え可能な光ディスクの高密度 化が進みコンピュータデータやオーディオデータの記録 20 ディアとの識別信号などが記録されている。 に留まらず、画像データの記録が可能となりつつある。 例えば、光ディスクの信号記録面には、従来から凸凹上 のガイド溝が形成されている。

【0180】従来は凸または凹にのみ信号を記録してい たが、ランド・グループ記録法により凸凹両方に信号を 記録することが可能となった。これにより約2倍の記録 密度向上が実現した。

【0181】また、記録密度を向上させるために有効な CLV方式(線速度一定記録)の制御を簡易化し実用化 を容易とするゾーンCLV方式なども考案、実用化され 30 ている。

【0182】これらの大容量化を目指す光ディスクを用 いて如何に画像データを含むAVデータを記録し、従来 のAV機器を大きく超える性能や新たな機能を実現する かが今後の大きな課題である。

【0183】このような大容量で書き換え可能な光ディ スクの出現により、AVの記録・再生も従来のテーブに 代わり光ディスクが主体となることが考えられる。テー プからディスクへの記録メディアの移行はAV機器の機 能・性能面で様々な影響を与えるものである。

【0184】ディスクへの移行において最大の特徴はラ ンダムアクセス性能の大幅な向上である。仮にテープを ランダムアクセスする場合、一巻きの巻き戻しに通常数 **分オーダーの時間が必要である。これは光ディスクメデ** ィアにおけるシーク時間(数10mg以下)に比べて桁 違いに遅い。従ってテープは実用上ランダムアクセス装 置になり得ない。

【0185】このようなランダムアクセス性能によっ て、従来のテープでは不可能であったAVデータの分散 記録が光ディスクでは可能となった。

【0186】(DVD-RAM上の論理構成)まずDV D-RAM上の論理構成について図8を用いて説明す る。図8(a)は、ファイルシステムにより示されるデ ィスク上のディレクトリ・ファイルが記録領域に保持さ れている様子を示している。

【0187】光ディスクの記録領域は複数の物理セクタ が内周から外周にかけてスパイラルに配置される。

【0188】光ディスクの物理セクタは内周から外周に かけて3つの領域をそれぞれ構成する。最内周にはリー ドイン領域があり、ついで、データ領域、最外周にはリ ードアウト領域が配置される。各セクタにはアドレス部 とデータ部があり。アドレス部には、セクタの光ディス ク上の位置を特定するためのアドレス情報と、セクタが いずれの領域に所属するかを示す識別情報が格納され る。セクタのデータ部には、それぞれディジタルデータ が格納される。

【0189】リードイン領域のセクタのデータ部には、 再生装置を初期化するための情報が格納される。典型的 にはサーボを安定させるために必要な規準信号や他のメ

【0190】データ領域のセクタのデータ部には、ディ スクに格納されるアプリケーションを構成するディジタ ルデータが記録される。

【0191】リードアウト領域は、再生装置に対し記録 領域の終了を示す領域である。

【0192】データ領域の先頭にはボリューム情報と呼 ばれるファイルシステムを構成する管理情報が記録され る。ファイルシステムはディスク上の複数のセクタをグ ループ化して管理するための目次情報である。複数のセ クタをファイルとして、複数のファイルをディレクトリ としてグループ化して管理する。本発明の実施の形態で はISO13346で規定されたファイルシステムを利 用する。

【0193】本実施の形態では、光ディスクは、図8 (a) に示すディレクトリ・ファイル構造を有する。

【0194】DVDレコーダが扱う全てのデータは、図 8(a) に示す様にROOTディレクトリ直下のVID EO_RTディレクトリ下に置かれる。

【0195】DVDレコーダが扱うファイルは大きく2 40 種類に区別され、1つの管理情報ファイルと複数(少な くとも1つ)のAVファイルである。

【0196】(管理情報ファイル)次に図9(a)を用 いて管理情報ファイルの中身について説明する。

【0197】管理情報ファイル内には、大きく分けてV OBテーブルとPGCテーブルに区分けされる。VOB (Video Object)とはMPEGのプログラ ムストリームであり、PGC (Program Cha in)はVOB内の任意の部分区間(または全区間)を 一つの論理再生単位とするCellの再生順序を定義す 50 るものである。言い換えれば、VOBはMPEGとして 出了

意味を持つ一つの単位であり、PGCはプレーヤが再生を行う一つの単位である。

【0198】VOBテーブルは、中にVOB数(Number_of_VOBs)と各VOB情報が記録され、
VOB情報は対応するAVファイル名(AV_File_Name)、ディスク内でのVOB識別子(VOB_ID)、AVファイル内でのスタートアドレス(VOB_Start_Address)、AVファイル内での終了アドレス(VOB_End_Address)、VOBの再生時間長(VOB_Playback_Tim 10e)、ストリームの属性情報(VOB_Attribute)から構成される。

【0199】PGCテーブルは、中にPGC数(Num ber_of_VOBs)と各PGC情報が記録され、 PGC情報はPGC内のCell数(Number_o f_Cells)と各Cell情報から構成され、Ce 11情報は対応するVOB__ID、VOB内での再生開 始時刻 (Cell_Start_Time)、VOB内 での再生時間 (Cell_Playback_Tim e)、VOB内での再生開始アドレス(Cell_St art_Address)、VOB内での再生終了アド レス (Cell_End_Address) と、静止画 使用時に同時に再生する音声データの存在を示すオーデ ィオフラグ (Audio_Flag) とオーディオ用に 拡張したVOB_ID、Cell_Start_Tim e、Cell_Playback_Time、Cell _Start_Address, Cell_End_A ddressから構成される。

【0200】とこで着目すべき点は、オーディオフラグ (Audio_Flag)である。オーディオフラグは 30 静止画に対し、同時に出力される音声があるか否かを示している。

【0201】(AVファイル)次に、図9(b)を用い てAVファイルについて説明する。AVファイルは複数 (少なくとも一つ)のVOBから構成され、VOBはデ ィスク上で連続的に記録され、さらに、同一のAVファ イルに所属するVOBはディスク上の配置がそれぞれ連 続する。AVファイル内のVOBは前述した管理情報フ ァイルのVOB情報で管理されている。プレーヤは、最 初に管理情報ファイルにアクセスし、VOBの開始アド 40 レスおよび終了アドレスを読み出すことで、VOBへの アクセスが可能になる。また、VOB内は論理的な再生 単位としてCellが定義される。CellはVOBの 部分再生区間(または全区間)であり、ユーザが自由に 設定が可能である。このCellによって、実際のAV データの操作を行う事無しに簡易な編集を行う事が可能 である。VOBと同様にCellへのアクセス情報は、 管理情報ファイル内のCell情報内で管理されてい る。プレーヤは、最初に管理情報ファイルにアクセス

出すことで、Се11へのアクセスが可能になる。

【0202】Cellのアドレス情報はVOBを規準とし、VOBのアドレス情報はAVファイルを規準とするため、実際には、Cellのアドレス情報にVOBのアドレス情報を加算しAVファイル内でのアドレス情報を計算して、プレーヤはAVファイルにアクセスを行う。【0203】(静止画像データとオーディオデータのリンク)次に、静止画とオーディオの同期再生を行うための仕組みについて、図10を用いて説明する。

【0204】図10(a)は、前述した管理情報ファイルの一部である。図10(a)に示す様に静止画像を対象とするCellは、静止画像データとオーディオデータ夫々用のVOBへのアクセス情報(VOB_ID、Cell_Start_Time、Cell_Playback_Time、Cell_Start_Address、Cell_End_Address)を有している。

【0205】オーディオフラグは静止画データと共に再生されるオーディオデータが存在するか否かを示す。このため、オーディオフラグが1にセットされている場合は、静止画像データと共に出力されるオーディオデータが存在することを示すと共に、オーディオデータ用のVOBのアクセス情報がCellに存在することを意味する。、また、オーディオフラグが0にリセットされている場合は、静止画像データと共に出力されるオーディオデータが存在しないことを示す。この構成によって静止画像データとオーディオデータとの関連付けが可能である。

【0206】図10(b)は、静止画像データ/オーディオデータ用AVファイルを示す図である。静止画像データ/オーディオデータ用AVファイル内は、複数のVOBが格納されているが、各VOBは静止画像データとのBが格納されている事UOBのいずれかであって、静止画像データとオーディオデータとがマルチプレクスしたVOBが格納されている事は無い。静止画像データ用VOBは、動画像データ用VOBと異なり、フレーム内圧縮がされた「ピクチャー枚のビデオフレームだけから構成され、オーディオデータ用VOBとスーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBとオーディオデータ用VOBを表々Cel情報で参照し、更にPGCで静止画Cellの再生順序を定義することで、静止画像およびオーディオデータの再生制御情報が構成される。

【0207】以上により、別々に記録した静止画像データとオーディオデータに対して、参照するCellの再生順序を定義することにより、静止画像データとオーディオデータを自由に組み合わせることが可能となる。

管理情報ファイル内のCell情報内で管理されてい 【 0 2 0 8 】尚、本実施の形態では、1 つのMPEGスる。プレーヤは、最初に管理情報ファイルにアクセス トリームであるVOBに、ビデオデータ用VOBとオーし、Cellの開始アドレスおよび終了アドレスを読み 50 ディオデータ用VOBがあるとして説明した。しかしな

がら、オーディオデータをビデオデータから分離するこ とができ、分離したオーディオデータを他のオーディオ データに置き換えることが可能であれば、データ構造は これに限られない。例えば、1つのVOBを、ビデオデ ータ (ビデオストリームパート)と、オーディオデータ (オーディオストリームパート) から構成してもよい。 この一例を図10(c)に示す。この場合、静止画像デ ータの部分 (Video Part)がVOBの先頭部分に格納さ れ、続いてオーディオデータの部分(Audio Part)が格納 される。図10(c)は、図8(b)に示すRTR_ST 10 O. VROのファイルの例が示されている。図11に示 す第1システムストリームST1と図10(c)に示す 静止画像データの部分 (Video Part)は、同じ概念のも のであり、いずれもビデオパートストリームと言う。同 様に図11に示す第2システムストリームST2と図1 O(c) に示すオーディオデータの部分 (Audio Part) は、同じ概念のものであり、いずれもオーディオパート ストリームと言う。

【0209】また、上記ファイル構成は図8(b)で示 す構成でも良い。この場合、VIDEO_RTディレク 20 が可能になる。この時の状態を示すのが図2(b)であ トリはDVD_RTRディレクトリに相当し、DVD_ RTRディレクトリ直下にはRTR.IFO、RTR_ STO.VRO, RTR_STA.VRO, RTR_MO V. VROのファイルで構成される。RTR.IFOは 管理情報ファイルに対応するファイルであり、RTR_ STO. VROとRTR_STA. VROは静止画像デ ータに関係して記録されたファイルである。RTR_S TO. VROは静止画像データ (Video Part) 及び静止 画像データと同時に記録されたオーディオデータ(Audi o Part) を記録している。RTR_STA. VROは記 30 録後に編集したオーディオデータ (Audio Part) のみを 記録しており、RTR_STA. VROのオーディオデ ータはRTR_STO. VROに記録された静止画像デ ータと関連付けられて記録される。動画像データは静止 画像データとは別にRTR_MOV. VROファイルに 記録される。

【0210】(静止画像データ用VOBとオーディオデ ータ用VOB) 図11を用いて前述したように、静止画 データ用VOBとオーディオデータ用VOBのタイムス タンプは以下のようになる。

[0211]SCR1=0

 $SCR2 \le 27000000 (27MHz) - Tp$

SCR3 = 27000000 (27MHz)

 $T_p = 55296 (27MHz)$

PTS1 = PTS3 = 90000 + Tv

DTS1 = 90000

【0212】(DVDレコーダの説明)次に、DVDレ コーダについて説明する。

【0213】図1は、DVDレコーダのドライブ装置の ブロック図である。図中の11はディスクのデータを読 50 続して2つのストリームを処理することが可能になり、

み出す光ピックアップ、12はECC(error c orrecting code) 処理部、13はトラッ クバッファ、14はトラックバッファへの入出力を切り 替えるスイッチ、15はエンコーダ部、16はデコーダ 部、17はディスクの拡大図である。

【0214】17に示す様に、DVD-RAMディスク には、1セクタ=2KBを最小単位としてデータが記録 される。また、16セクタ=1ECCブロックとして、 ECC処理部12でエラー訂正処理が施される。

【0215】13はトラックバッファである。このトラ ックバッファ13を用いることによりディスク上に離散 配置されたAVデータを途切れることなくデコーダに供 給することが可能になる。図2を用いて説明する。

【0216】図2(a)は、ディスク上のアドレス空間 を示す図である。図2(a)に示す様にAVデータが [al, a2]の連続領域と[a3, a4]の連続領域 に分かれて記録されている場合、a2からa3へシーク を行っている間、トラックバッファに蓄積してあるデー タをデコーダ部へ供給することでAVデータの連続再生

【0217】a1から読み出しを開始したAVデータ は、時刻t1からトラックバッファへの入力且つトラッ クバッファからの出力が開始され、トラックバッファへ の入力レート(Va)とトラックバッファからの出力レ ート(Vb)のレート差(Va-Vb)の分だけトラッ クバッファへはデータが蓄積されていく。この状態がa 2 (時刻 t 2) まで継続する。この間にトラックバッフ ァに蓄積されたデータ量をB(t2)とすると、a3を 読み出し開始できる時刻 t 3までの間、トラックバッフ ァに蓄積されているB(t2)を消費してデコーダへ供 給しつづけられれば良い。

【0218】言い方を変えれば、シーク前に読み出すデ ータ量([a1, a2])が一定量以上確保されていれ ば、シークが発生した場合でも、AVデータの連続供給 が可能である。

【0219】本発明においては、デコーダで連続処理さ れる静止画用システムストリームとオーディオ用システ ムストリームはディスク上に必ずしも連続して配置され 40 ない。図20に示すように静止画データ用ストリーム# 1と連続してデコーダで処理されうるオーディオデータ 用ストリームは、ストリーム#2とストリーム#3の2 つ存在する。このため、いずれかしかストリーム#1と 連続してディスク上に配置することはできず、他方は、 ストリーム#1とは不連続なディスク上の領域に配置さ れることになる。

【0220】しかしながら前述したようにDVDレコー ダは不連続に配置された2つのストリームを途切れると となくデコーダに供給できる。このため、デコーダは連

図19を用いて説明した動作を行うことができる。

【0221】尚、DVD-RAMからデータを読み出す、即ち再生の場合の例を説明したが、DVD-RAMへのデータの書き込み、即ち録画の場合も同様に考えることができる。

【0222】上述したように、DVD-RAMでは一定 量以上のデータが連続記録さえされていればディスク上 にAVデータを分散記録しても連続再生/録画が可能で ある。

【0223】図12はDVDレコーダのブロック図であ 10る。

【0224】図中、1201はユーザへの表示およびユーザからの要求を受け付けるユーザインターフェース部、1202は全体の管理および制御を司るシステム制御部、1203はカメラおよびマイクから構成される入力部、1204はビデオエンコーダ、オーディオエンコーダおよびシステムエンコーダから構成されるエンコーダ部、1205はモニタおよびスピーカから構成される出力部、1206はシステムデコーダ、オーディオデコーダおよびビデオデコーダから構成されるデコーダ部、1207はトラックバッファ、1208はドライブである。

【0225】以上の様に構成されたDVDレコーダについて、以下、フロチャートである図13、図14、図15を用いてDVDレコーダにおける記録動作について説明する。

【0226】ユーザインターフェース部1201が最初にユーザからの要求を受ける。ユーザインターフェース部1201はユーザからの要求をシステム制御部1202に伝え、システム制御部1202はユーザからの要求 30を解釈および各モジュールへ処理要求を行う。ユーザからの要求が静止画像の撮影および録音であった場合、システム制御部1202は、エンコーダ部1204にビデオフレーム1枚のエンコードと音声のエンコードを要求する。

【0227】エンコーダ部1204は入力部1203から送られるビデオフレームを1枚だけをビデオエンコードおよびシステムエンコードして、静止画像データ用VOBを生成し、トラックバッファ1207に送る。(S1301)

具体的には、次に図14に示すように、エンコーダ部1204は、各種タイムスタンプ値の初期化を行う。すなわち、SCRを0にリセットし、PTS値およびDTS値を前述した夫々の値93003(90kHz)および90000(90kHz)に初期化し設定する。(S1401)なお、PALの場合はPTS値として93600(90kHz)に初期化し設定する。

【0228】静止画像データが記録終了でなければ、エンコーダ部1204は静止画像データをパック・パケット構造に変換する。(S1404)

パック・パケット構造に変換されれば、エンコーダ部1204はSCR・DTS・PTSのタイムスタンプを算出し、パック・パケット構造に変換した静止画像データに付与する。(S1405)との際、先頭のパックにはSCR値として初期化値である0が設定される。また、PTS値、DTS値として上記初期化値である93003(90kHz)、90000(90kHz)が設定される。パックが最終パックである場合は、SCRが2700000(27MHz)から1パック転送時間(Tp)を減算した時刻よりも早い時刻を満たすように強制的にタイムスタンプを付与する。

【0229】エンコーダ部1204は静止画像データが記録終了か判断し(S1402)、記録終了であれば、システム制御部1202に静止画像データ用VOBの作成が終了したことを伝え、システム制御部1202はドライブ1208を通してトラックバッファ1207に格納されている静止画像データ用VOBをDVD-RAMディスクに記録する。(S1403)

尚、本実施の形態では全データの静止画像用VOBを生 20 成してから記録するとしたが、生成と並列的に逐次、記 録しても良い。

【0230】エンコーダ部1204は静止画像データのエンコード終了後、オーディオデータの録音があるか否かを判定し、あると判定した場合は、入力部1203から送られる音声データのオーディオエンコードを開始し、生成したオーディオデータ用VOBをトラックバッファ1207に順次転送する。(S1302、S1303)

【0231】具体的には図15に示すように、エンコーダ部1204は、SCR値を27000000(27MHz)、PTS値を93003(90kHz)に初期化する。なお、同時に再生される静止画データがPALの場合は93600(90kHz)にセットする。(S1501)

オーディオデータが記録終了でなければ、エンコーダ部 1204はオーディオデータをパック・パケット構造に 変換し(S1504)、SCR・PTSのタイムスタン プを算出し付与する。(S1505)との際、先頭のパックのSCR値は初期値である27000000(27 MHz)になり、PTS値は93003(90kHz)になる。

【0232】エンコーダ部1204は、オーディオデータが記録終了か判断し(S1502)、記録終了であればシステム制御部1202に伝え、システム制御部1202はドライブ1208を通してトラックバッファ1207に格納されているオーディオデータ用VOBをDVD-RAMディスクに記録する。(S1503)

尚、本実施の形態では、全データのオーディオデータ用 VOBを生成してから記録するとしたが、生成と並列的 50 に逐次、記録しても良い。

【0233】ユーザがストリームの記録を停止する迄、 レコーダは上述した記録方法で静止画像データとオーデ ィオデータをDVD-RAMに記録する。

【0234】ユーザからのストップ要求は、ユーザイン ターフェース部1201を通してシステム制御部120 2に伝えられ、システム制御部1202はエンコーダ部 1204に記録停止命令を送り、システム制御部120 2は、ドライブ1208を通してトラックバッファ12 07に格納されている残り全てのVOBをDVD-RA Mディスクに記録する。

【0235】一連の動作終了後、システム制御部120 2は前述したVOBテーブルおよびPGCテーブルを含 む図9(a)で示す管理情報ファイルを作成してドライ ブ1208を通してDVD-RAMディスクに記録をす る。(S1304)

との時にオーディオデータが録音された場合(S130 5) は、オーディオフラグ (Audio_Flag) を 1にセットし(S1306)、オーディオデータの録音 がない場合は0にリセットする。(S1307)

さらに、静止画像データ用およびオーディオデータ用の 20 Cell再生時間(Cell_Playback_Ti me)を共にオーディオの再生時間に合わせるように管 理情報を設定する。

【0236】上述した記録方法によりタイムスタンプを 既定値に付与して静止画像データとオーディオデータを DVD-RAMに記録していくものとする。

【0237】次に、図12及びフロチャートである図1 6を用いてDVDレコーダにおける再生装置について説 明する。

【0238】ユーザインターフェース部1201が最初 30 にユーザからの要求を受ける。ユーザインターフェース 部1201はユーザからの要求をシステム制御部120 2に伝え、システム制御部1202はユーザからの要求 を解釈および各モジュールへの処理要求を行う。ユーザ からの要求がディスクの再生であった場合、システム制 御部1202は、ドライブ1208を通して管理情報フ ァイルから再生順序を示すPGCテーブルを読み出す。

【0239】システム制御部1202は、読み出したP GCテーブルから所定のPGC情報を決定する。システ ム制御部1202は、決定したPGC情報が示す再生順 40 序に従い、該当するVOBを再生を行う。具体的にはP GC情報がセルの再生順序を示し。各セルは、VOB_ ID、VOBの開始アドレスおよび終了アドレスの情報 を有し、これら情報により静止画像データ用VOBへの アクセスが可能になる。(S1601)

【0240】システム制御部1202は、再生される静 止画像データ用Cellに対応するオーディオフラグ (Audio_Flag)を判定する。(S1602) 【0241】システム制御部1202はオーディオフラ グ(Audio_Flag)が1であると判断した場合 50 ステムストリームと出力が組み合わせられる情報であれ

は、Се11情報からオーディオ拡張用のVOB情報、 すなわちVOB_ID、VOBの開始アドレスおよび終 了アドレスを読み出すことで、静止画像データ用VOB と同期再生するオーディオデータ用VOBを読み取る。 (S1603)

【0242】Cellのアドレス情報はVOBを基準と し、VOBのアドレス情報はAVファイルを基準とする ため、実際には、Се11のアドレス情報にVOBのア ドレス情報を加算しAVファイル内でのアドレス情報を 計算して、プレーヤはDVD-RAMに記録されたAV データを読み出すことが出来る。(S1604)

【0243】尚、オーディオフラグが0の時、すなわち 静止画像データのみの再生である時は、管理情報ファイ ル内の該当Cell_Playback_Timeで示す時間分、表示を持 続させることになる。

【0244】なお、オーディオフラグが1の場合の静止 画像データ用VOBとオーディオデータ用VOBの連続 したデコーダでの処理は、具体的には以下のように処理 される。

【0245】すなわち、システム制御部1202は、静 止画像データ用VOBを先にトラックバッファ1207 に読み込み、オーディオフラグが1の場合は、オーディ オデータ用VOBがトラックバッファ1207に読み込 まれる時間を利用して静止画像データ用VOBのデコー ドをデコーダ部1206に要求する。オーディオデータ 用VOBは読み出し開始後、すぐにデコーダ部1206 にデコード要求を行う。デコーダ部1206はトラック バッファ1207に格納されているMPEGストリーム の読み出しと出力部1205ヘデコードデータを供給す る。出力部1205は送られてきたデータを規定された 再生時刻にモニタおよびスピーカに出力する。

【0246】以上により予め静止画像データを先読みし てデコードすることによりオーディオデータを読み込み 開始後に、規定された再生時刻で同期して再生すること が可能である。

【0247】このとき、重要なことは、静止画像データ 用VOBとオーディオデータ用VOBが前述した"静止 画像データ用VOBおよびオーディオデータ用VOB" の構成をとっていることによって、デコーダ部1206 は、1枚の静止画像データとオーディオデータから構成 された一つのVOBとして処理することが可能であるこ とである。

【0248】なお、本実施の形態では、DVD-RAM を例に説明をしたが、他のメディアにおいても同様の事 が言え、本発明はDVD-RAMや光ディスクにのみ制 限されるものではない。

【0249】また、本実施の形態では、静止画像用シス テムストリームと同時再生されるストリームとしてオー ディオストリームを例に説明を行ったが、静止画像用シ

【0257】また、データの表示開始時刻(PTS1) と前記音声データの表示開始時刻(PTS3)を同一値 として記録することで、静止画像データと音声データを 同期再生(同時に表示開始)することが可能となる効果

やテキストデータから構成される様な副映像データ用シ ステムストリームであっても良い。これらの典型的な用 途としては撮影した静止画にオーバラップ表示されるタ イトル名等のキャプション情報に用いられる。

ばいずれでも良い。例えば、例えばビットマップデータ

【0258】また、特に前記静止画像データの表示開始 時刻(PTS1)と前記音声データの表示開始時刻(P TS3)を

【0250】また、本実施の形態において、静止画像デ ータとオーディオデータのリンク情報をCell単位で 持たせたが、1つのVOBを1つのCellとし、VO B単位で持たせても良い。

PTS1 = PTS3 = 90000 (90kH)

【0251】また、本実施の形態において、Cell再 10 z)+Tv 生時間 (Cell_Playback_Time)情報 を静止画像データとオーディオデータ間で同一とした が、必ずしも同一値を有する必要はなく、例えば、オー ディオデータ用の情報を優先するよう規定し、プレーヤ が異なるCell再生時間(Cell_Playbac k_Time)情報を読み出したとき、静止画像データ 用の情報を無視するように振る舞えば良い。

とすることで、夫々異なるエンコーダで作成された静止 画像データおよび音声データであっても、デコーダで同 期再生することが可能となる効果が得られる。

【0252】また、本実施の形態では、静止画像データ 用VOBおよびオーディオデータ用VOBを他のVOB と分けてAVファイルに記録したが、他のVOBと同一 20 AVファイル内に記録してもよいし、本発明はAVファ イルの構成に制限を受けるものではない。

【0259】また、前記静止画像データの管理情報中に 同期して再生される音声データの存在を示す識別フラグ (Audio_Flag)を有することで、光ディスク プレーヤが音声データの有無を識別でき、前記静止画像 データと前記音声データの同期再生が可能となる効果が 得られる。

[0253]

【図面の簡単な説明】

相関図

が得られる。

【発明の効果】本発明では、少なくとも静止画像データ と音声データがパック、パケット構造を有するMPEG ストリームとして夫々独立して別領域に記録されている 光ディスクにおいて、前記静止画像データ最後のバック のデコーダバッファへの入力開始時刻(SCR2)と前 記音声データ最初のパックのデコーダバッファへの入力 開始時刻(SCR3)は、1パックを転送するのに要す 30 る時間(Tp)を用いて下式が成り立つように記録され ている。

【図1】 DVDレコーダのドライブ装置ブロック図 【図2】 ディスク上のアドレス空間とトラックバッフ

【図3】 MPEGビデオストリームにおけるピクチャ

【図4】 MPEGシステムストリームの構成図

 $[0254]SCR2+Tp \leq SCR3$

【0255】との結果、夫々独立して記録されている静 止画像データおよび音声データであっても、あたかも一 つのMPEGストリームとしてデコーダが処理すること

【図5】 MPEGシステムデコーダ (P-STD) の 構成図

【0256】また、前記静止画像データ最初のパックの デコーダバッファへの入力開始時刻(SCR1)および 前記静止画像データ最後のパックのデコーダバッファへ 40 の入力開始時刻(SCR2)を

【図6】 (a)はビデオデータを示す図

(b)はビデオバッファを示す図

ァ内データ蓄積量の関係を示す図

が可能となる効果が得られる。

(c)はMPEGシステムストリームを示す図 (d) はオーディオデータを示す図

【図7】ディジタルスティルカメラの静止画像とオーデ ィオのリンクを示す図

SCR1 = 0

【図8】 (a)はディレクトリ構造を示す図

(b) はディスク上の物理配置を示す図

(b) はストリームデータを示す図

 $SCR2+Tp \leq 27000000 (27MHz)$ として、前記音声データ最初のパックのデコーダバッフ ァへの入力開始時刻(SCR3)を

【図9】 (a)は管理情報データを示す図

【図10】 (a)は静止画像データおよびオーディオ データ用管理情報データを示す図

SCR3 = 27000000 (27MHz)

とが可能となる効果が得られる。

(b) は静止画像データおよびオーディオデータ用スト リームデータを示す図

と記録することで、夫々異なるエンコーダで作成された 静止画像データおよび音声データであっても、あたかも 一つのMPEGストリームとしてデコーダが処理すると 【図11】 (a)は静止画像データ用VOBを示す図 (b) はオーディオデータ用VOBを示す図

(c)は合成VOBを示す図

【図12】 DVDレコーダの構成図

【図13】 DVDレコーダの記録処理のフローチャー ト図

【図14】 DVDレコーダの静止画像データ用VOB 50 に対する処理のフローチャート図

【図15】 DVDレコーダのオーディオデータ用VO Bに対する処理のフローチャート図

【図16】 DVDレコーダの管理情報ファイルに対する処理のフローチャート図

【図17】 2つの静止画が保存されている状態を示す 説明図

【図18】 従来例に基づき、音声を伴う静止画が再生 される動作を示す説明図

【図19】 本発明に基づき、音声を伴う静止画が再生される動作を示す説明図

【図20】 本発明に基づき、音声を伴う静止画が再生される動作の変形例を示す説明図

【符号の説明】

- 11 光ピックアップ
- 12 ECC処理部
- 13 トラックバッファ
- 14 スイッチ
- 15 エンコーダ部
- 16 デコーダ部

*41 パックヘッダ

42 パケットヘッダ

43 ペイロード

51 STC

52 デマルチプレクサ

53 ビデオバッファ

54 ビデオデコーダ

55 リオーダバッファ

56 スイッチ

10 57 オーディオバッファ

58 オーディオデコーダ

1201 ユーザインターフェース部

1202 システム制御部

1203 入力部

1204 エンコーダ部

1205 出力部

1206 デコーダ部

1207 トラックバッファ

* 1208 ドライブ

【図1】 【図16】

【図2】

(b) トラックバッファ内データ普積量

【図3】

(b)

【図7】

【図4】

【図14】

【図5】

【図6】

【図9】

【図11】

【図12】

【図13】

【図15】

【図17】

【図18】

[図19]

【図20】

フロントページの続き

(51)Int.Cl.' H 0 4 N 5/93 識別記号

F I H O 4 N 5/93 G l l B 27/10 テーマコード(参考)

G Z