Course Introduction & Stochastic Simulation

Howard Hao-Chun Chuang (莊皓鈞)

Professor
College of Commerce
National Chengchi University

September, 2024 Taipei, Taiwan

Something about Me

Student life at Texas

- major: operations management
- minor: statistics

- management science
- decision science
- advanced quantitative methods

- a nice...liberal but demanding(O) professor
- a fan of hiking, driving, biking, & traveling
 - Penghu, Taitung, & Kyoto are the best!
- a lover of coffee, coke, & beer
- wish to be a Texas Poker player after retirement

Dream big? Start small, think deep, & be good

Let's go over the Syllabus!

fear NOT & work HARD

Decision Science in Action

- For key performance outcome Y=f(X, Z; c)
 - analyze how two sets of variables controllable X & non-controllable Z and parameters c affect Y
 - low-dim or high-dim X? deterministic or stochastic Z?
 - need to estimate c from subjective/objective data
 - probability distributions for stochasticity/uncertainty
 - well-defined or unknown f()?
 - machine learning/deep learning for unknown f()
 - f() may be 1 or >1 equations for a problem or system
 - finally, try to optimize or improve X

Predictive modelling

Estimate the target for new observations

Explanatory modelling

 Describe the effect that a change of certain inputs has on the target

$$y = f(x)$$

Optimisation

- Find the inputs that give optimal performance
- f is known

$$y = f(x)$$

- for estimating the value of an unknown quantity using repeated random sampling
 - Ulam & Von Neumann(馮紐曼) at the Manhattan project (曼哈頓計畫) in 1940s for solitaire (接龍)

- Monte Carlo (蒙地卡羅) simulation is
 - for estimating the value of an unknown quantity using repeated random sampling
 - Ulam & Von Neumann(馮紐曼) at the Manhattan project (曼哈頓計畫) in 1940s for solitaire (接龍)
 - Experiment: Simulate a system or process with uncertain/random/stochastic outcomes for S times Every time we keep records of key metrics (e.g., cost, profit) or the occurrence of an event (E).
 As we have a sampling distribution of S observations, we can do simple calculation to obtain
 - sample average
 - P(E) (i.e., probability of E occurring)
 - sample variance

Law of Large Numbers: When S approaches infinity,
 sample estimates are close to population true values

- Toss a FAIR coin (擲銅板)
 - event, E: Head shows up
 - what is P(E)?
 - simulate the process for S times
 - S=10, 100, 10000, or...?
 - if output variability (變異度) is high, confidence (信心) in estimate will be low 氧尖的螺翼术
- A coin-tossing game (銅板賭局)
 - KoP & Han toss a coin 50 rounds, Head KoP+\$1, Tail koP-\$1, KoP begins with \$0 in his pocket
 - How likely KoP breaks even? What is E (event) here?
 - can't we just do the math? why computer simulation?
 - What is the # of rounds KoP has > \$0 in the game?
 - What is KoP's highest fortune in the game?
 - Will KoP's max cumulative earning > \$10?

HW: Sep 13

- Toss a FAIR die (擲骰子)
 - KoP & Han in turn throw a die. In each round, one of three possible outcomes – b, s, & t – may occur
 - b: KoP bigger, s: KoP smaller, t: KoP & Han tie
 - KoP & Han do this for R rounds in a game. If the # of b# of s in R rounds, KoP will be the game-winner
- Define E: KoP wins the game
 - what is the exact P(E) mathematically?

- can you use simulation to estimate P(E)?
 - show P(E)^{exact} & P(E)^{sim} for R=[5, 10, 15,..., 95, 100]
 - what's the impact of S on approximation error?

