Version ~

Feedback

SGSCATTER Procedure Example 1: Creating a Scatter Plot Matrix

Features:	MATRIX statement GROUP option
Sample library member:	SGSCMAT
Note:	For information about the SAS Sample Library, see About the SASHELP and the SAS Sample Library.

This example shows a scatter plot matrix with grouped data.

Output

Program

Program Description

Set the title and footnote and create the scatter plot matrix. In the MATRIX statement, the GROUP = option groups the data by the SPECIES variable.

Copyright © SAS Institute Inc. All Rights Reserved. Last updated: July 11, 2018

The UNIVARIATE Procedure

ODS Table Names

PROC UNIVARIATE assigns a name to each table that it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets.

Table 4.40: ODS Tables Produced with the PROC UNIVARIATE Statement

ODS Table Name	Description	Option
BasicIntervals	confidence intervals for mean, standard deviation,	CIBASIC
	variance	
BasicMeasures	measures of location and variability	default
ExtremeObs	extreme observations	default
ExtremeValues	extreme values	NEXTRVAL=
Frequencies	frequencies	FREQ
LocationCounts	counts used for sign test and signed rank test	LOCCOUNT
MissingValues	missing values	default, if missing values
		exist
Modes	modes	MODES
Moments	sample moments	default
Plots	line printer plots	PLOTS
Quantiles	quantiles	default
RobustScale	robust measures of scale	ROBUSTSCALE
SSPlots	line printer side-by-side box plots	PLOTS (with BY statement)
TestsForLocation	tests for location	default
TestsForNormality	tests for normality	NORMALTEST
TrimmedMeans	trimmed means	TRIMMED=
WinsorizedMeans	Winsorized means	WINSORIZED=

Table 4.41: ODS Tables Produced with the HISTOGRAM Statement

ODS Table Name	Description	Option
Bins	histogram bins	MIDPERCENTS secondary option
FitQuantiles	quantiles of fitted distribution	any distribution option
GoodnessOfFit	goodness-of-fit tests for fitted distribution	any distribution option
HistogramBins	histogram bins	MIDPERCENTS option
ParameterEstimates	parameter estimates for fitted distribution	any distribution option

Copyright © SAS Institute Inc. All rights reserved. Last updated: August 03, 2017

The UNIVARIATE Procedure

Example 4.12 Testing for Location

This example, which is a continuation of Example 4.9, illustrates how to carry out three tests for location: the Student's t test, the sign test, and the Wilcoxon signed rank test. These tests are discussed in the section Tests for Location.

The following statements demonstrate the tests for location by using the *Heights* data set introduced in Example 4.9. Because the data consists of adult female heights, the researchers are not interested in testing whether the mean of the population is equal to zero inches, which is the default μ_0 value. Instead, they are interested in testing whether the mean is equal to 66 inches. The following statements test the null hypothesis H_0 : $\mu_0 = 66$:

```
title 'Analysis of Female Height Data';
ods select TestsForLocation LocationCounts;
proc univariate data=Heights mu0=66 loccount;
  var Height;
run;
```

The ODS SELECT statement restricts the output to the "TestsForLocation" and "LocationCounts" tables; see the section ODS Table Names. The MU0= option specifies the null hypothesis value of μ_0 for the tests for location; by default, $\mu_0 = 0$. The LOCCOUNT option produces the table of the number of observations greater than, not equal to, and less than 66 inches.

<u>Output 4.12.1</u> contains the results of the tests for location. All three tests are highly significant, causing the researchers to reject the hypothesis that the mean is 66 inches.

A sample program for this example, uniex07.sas, is available in the SAS Sample Library for Base SAS software.

Output 4.12.1: Tests for Location with MU0=66 and LOCCOUNT

Analysis of Female Height Data

The UNIVARIATE Procedure Variable: Height (Height (in))

Tests for Location: Mu0=66							
Test	S	Statistic	ntistic p Va				
Student's t	t	-5.67065	Pr > t	<.0001			
Sign	М	-20	Pr >= M	<.0001			
Signed Rank	s	-849	Pr >= S	<.0001			

Location Counts: Mu0=66.00				
Count	Value			
Num Obs > Mu0	16			
Num Obs ^= Mu0	72			
Num Obs < Mu0	56			

Version ✓

Feedback

The UNIVARIATE Procedure

Example 4.7 Saving Summary Statistics in an OUT = Output Data Set

This example illustrates how to save summary statistics in an output data set. The following statements create a data set named *Belts*, which contains the breaking strengths (*Strength*) and widths (*Width*) of a sample of 50 automotive seat belts:

```
data Belts:
  label Strength = 'Breaking Strength (lb/in)'
        Width
                 = 'Width in Inches';
  input Strength Width @@;
  datalines;
1243.51 3.036 1221.95 2.995
                              1131.67
                                      2.983
                                             1129.70
1198.08 3.106 1273.31 2.947
                              1250.24
                                      3.018
                                             1225.47
                                                     2.980
1126.78 2.965 1174.62 3.033
                              1250.79
                                      2.941
                                             1216.75
                                                    3.037
1285.30 2.893 1214.14 3.035
                              1270.24
                                      2.957
                                             1249.55
                                                     2.958
1166.02 3.067 1278.85 3.037
                              1280.74 2.984
                                             1201.96 3.002
1101.73 2.961 1165.79 3.075
                              1186.19
                                      3.058
                                             1124.46 2.929
1213.62 2.984 1213.93 3.029
                              1289.59 2.956
                                             1208.27 3.029
1247.48 3.027 1284.34 3.073
                              1209.09 3.004
                                             1146.78 3.061
1224.03 2.915 1200.43 2.974 1183.42 3.033
                                             1195.66 2.995
1258.31 2.958 1136.05 3.022
                              1177.44
                                      3.090
                                             1246.13 3.022
1183.67 3.045 1206.50 3.024
                             1195.69 3.005
                                             1223.49 2.971
                              1207.28 3.065
1147.47 2.944 1171.76 3.005
                                             1131.33 2.984
1215.92 3.003 1202.17 3.058
```

The following statements produce two output data sets containing summary statistics:

When you specify an OUTPUT statement, you must also specify a VAR statement. You can use multiple OUTPUT statements with a single procedure statement. Each OUTPUT statement creates a new data set with the name specified by the OUT= option. In this example, two data sets, *Means* and *StrengthStats*, are created. See <u>Output 4.7.1</u> for a listing of *Means* and <u>Output 4.7.2</u> for a listing of *StrengthStats*.

Output 4.7.1: Listing of Output Data Set Means

Analysis of Speeding Data

Obs	StrengthMean	WidthMean
1	1205.75	3.00584

Output 4.7.2: Listing of Output Data Set StrengthStats

Analysis of Speeding Data

Obs	StrengthMean	StrengthSD	StrengthMax	StrengthMin
1	1205.75	48.3290	1289.59	1101.73

Summary statistics are saved in an output data set by specifying keyword=names after the OUT= option. In the preceding statements, the first OUTPUT statement specifies the keyword MEAN followed by the names StrengthMean and WidthMean. The second OUTPUT statement specifies the keywords MEAN, STD, MAX, and MIN, for which the names StrengthMean, StrengthSD, StrengthMax, and StrengthMin are given.

The *keyword* specifies the statistic to be saved in the output data set, and the *names* determine the names for the new variables. The first *name* listed after a keyword contains that statistic for the first variable listed in the VAR statement; the second *name* contains that statistic for the second variable in the VAR statement, and so on.

The data set *Means* contains the mean of *Strength* in a variable named *StrengthMean* and the mean of *Width* in a variable named *WidthMean*. The data set *StrengthStats* contains the mean, standard deviation, maximum value, and minimum value of *Strength* in the variables *StrengthMean*, *StrengthSD*, *StrengthMax*, and *StrengthMin*, respectively.

See the section <u>OUT= Output Data Set in the OUTPUT Statement</u> for more information about OUT= output data sets.

A sample program for this example, *uniex06.sas*, is available in the SAS Sample Library for Base SAS software.

Copyright © SAS Institute Inc. All rights reserved. Last updated: August 03, 2017

The TTEST Procedure

ODS Table Names

PROC TTEST assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in <u>Table 122.9</u>. For more information about ODS, see <u>Chapter 20</u>: <u>Using the Output Delivery System</u>.

Table 122.9: ODS Tables Produced by PROC TTEST

ODS Table Name	Description	Syntax
ConfLimits	100(1 - α)% confidence limits for means, standard deviations, and/or coefficients of variation	By default
Equality	Tests for equality of variance	<u>CLASS</u> statement or <u>VAR</u> / <u>CROSSOVER=</u>
EquivLimits	100(1 - 2 α)% confidence limits for means	PROC TTEST TOST
EquivTests	Equivalence t tests	PROC TTEST TOST
Statistics	Univariate summary statistics	By default
TTests	t tests	By default
Bootstrap	Bootstrap standard error and bias estimates and 100(1 - $lpha$)% bootstrap confidence limits	BOOTSTRAP statement

Copyright © SAS Institute Inc. All rights reserved. Last updated: December 01, 2017

Version ✓

Feedback

The TTEST Procedure

Example 122.1 Using Summary Statistics to Compare Group Means

(View the complete code for this example.)

This example, taken from Huntsberger and Billingsley (1989), compares two grazing methods using 32 steers. Half of the steers are allowed to graze continuously while the other half are subjected to controlled grazing time. The researchers want to know if these two grazing methods affect weight gain differently. The data are read by the following DATA step:

```
data graze;
   length GrazeType $ 10;
   input GrazeType $ WtGain @@;
   datalines;
controlled 45
                 controlled 62
controlled 96
                 controlled 128
controlled 120
                 controlled 99
controlled 28
                 controlled 50
controlled 109
                 controlled 115
controlled 39
                 controlled 96
controlled 87
                 controlled 100
controlled 76
                 controlled
                            80
continuous 94
                 continuous
continuous 26
                continuous
                            89
continuous 88
                 continuous
continuous 85
                continuous 130
continuous 75
                 continuous
continuous 112
                 continuous
                            69
continuous 104
                 continuous
                            95
continuous 53
                continuous
                            21
```

The variable *GrazeType* denotes the grazing method: "controlled" is controlled grazing and "continuous" is continuous grazing. The dollar sign (\$) following *GrazeType* makes it a character variable, and the trailing at signs (@@) tell the procedure that there is more than one observation per line.

If you have summary data—that is, just means and standard deviations, as computed by PROC MEANS—then you can still use PROC TTEST to perform a simple t test analysis. This example demonstrates this mode of input for PROC TTEST. Note, however, that graphics are unavailable when summary statistics are used as input.

The MEANS procedure is invoked to create a data set of summary statistics with the following statements:

```
proc sort;
   by GrazeType;
run;

proc means data=graze noprint;
   var WtGain;
   by GrazeType;
   output out=newgraze;
run;
```

The NOPRINT option eliminates all printed output from the MEANS procedure. The <u>VAR</u> statement tells PROC MEANS to compute summary statistics for the *WtGain* variable, and the <u>BY</u> statement requests a separate set of summary statistics for each level of *GrazeType*. The OUTPUT OUT= statement tells PROC MEANS to put the summary statistics into a data set called *newgraze* so that it can be used in subsequent procedures. This new data set is displayed in <u>Output 122.1.1</u> by using PROC PRINT as follows:

```
proc print data=newgraze;
run;
```

The _STAT_ variable contains the names of the statistics, and the *GrazeType* variable indicates which group the statistic is from.

Obs	GrazeType	_TYPE_	_FREQ_	_STAT_	WtGain
1	continuous	0	16	N	16.000
2	continuous	0	16	MIN	12.000
3	continuous	0	16	MAX	130.000
4	continuous	0	16	MEAN	75.188
5	continuous	0	16	STD	33.812
6	controlled	0	16	N	16.000
7	controlled	0	16	MIN	28.000
8	controlled	0	16	MAX	128.000
9	controlled	0	16	MEAN	83.125
10	controlled	0	16	STD	30.535

Output 122.1.1: Output Data Set of Summary Statistics

The following statements invoke PROC TTEST with the *newgraze* data set, as denoted by the <u>DATA=</u> option:

proc ttest data=newgraze;
 class GrazeType;
 var WtGain;
run;

The <u>CLASS</u> statement contains the variable that distinguishes between the groups being compared, in this case *GrazeType*. The summary statistics and confidence intervals are displayed first, as shown in <u>Output 122.1.2</u>.

Output 122.1.2: Summary Statistics and Confidence Limits

The TTEST Procedure

Variable: WtGain

GrazeType	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
continuous		16	75.1875	33.8117	8.4529	12.0000	130.0
controlled		16	83.1250	30.5350	7.6337	28.0000	128.0
Diff (1-2)	Pooled		-7.9375	32.2150	11.3897		
Diff (1-2)	Satterthwaite		-7.9375		11.3897		

GrazeType Method Mean 95% CL Mean Std Dev 95% CL Std	ev	
--	----	--

GrazeType	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
continuous		75.1875	57.1705	93.2045	33.8117	24.9768	52.3300
controlled		83.1250	66.8541	99.3959	30.5350	22.5563	47.2587
Diff (1-2)	Pooled	-7.9375	-31.1984	15.3234	32.2150	25.7434	43.0609
Diff (1-2)	Satterthwaite	-7.9375	-31.2085	15.3335			

In <u>Output 122.1.2</u>, The GrazeType column specifies the group for which the statistics are computed. For each class, the sample size, mean, standard deviation and standard error, and maximum and minimum values are displayed. The confidence bounds for the mean are also displayed.

Output 122.1.3 shows the results of tests for equal group means and equal variances.

Output 122.1.3: *t* Tests

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	30	-0.70	0.4912
Satterthwaite	Unequal	29.694	-0.70	0.4913

Equality of Variances					
Method Num DF Den DF F Value Pr >					
Folded F	15	15	1.23	0.6981	

A group test statistic for the equality of means is reported for both equal and unequal variances. Both tests indicate a lack of evidence for a significant difference between grazing methods (t = -0.70 and p = 0.4912 for the pooled test, t = -0.70 and p = 0.4913 for the Satterthwaite test). The equality of variances test does not indicate a significant difference in the two variances (F' = 1.23, p = 0.6981). Note that this test assumes that the observations in both data sets are normally distributed; this assumption can be checked in PROC UNIVARIATE by using the NORMAL option with the raw data.

Although the ability to use summary statistics as input is useful if you lack access to the original data, some of the output that would otherwise be produced in an analysis on the original data is unavailable. There are also limitations on the designs and distributional assumptions that can be used with summary statistics as input. For more information, see the section <u>Input Data Set of Statistics</u>.

Copyright © SAS Institute Inc. All rights reserved. Last updated: December 01, 2017

The CORR Procedure

Example 2.1 Computing Four Measures of Association

This example produces a correlation analysis with descriptive statistics and four measures of association: the Pearson product-moment correlation, the Spearman rank-order correlation, Kendall's tau-b coefficients, and Hoeffding's measure of dependence, D.

The Fitness data set created in the section <u>Getting Started: CORR Procedure</u> contains measurements from a study of physical fitness of 31 participants. The following statements request all four measures of association for the variables *Weight*, *Oxygen*, and *Runtime*:

Note that Pearson correlations are computed by default only if all three nonparametric correlations (SPEARMAN, KENDALL, and HOEFFDING) are not specified. Otherwise, you need to specify the PEARSON option explicitly to compute Pearson correlations.

The "Simple Statistics" table in <u>Output 2.1.1</u> displays univariate descriptive statistics for analysis variables. By default, observations with nonmissing values for each variable are used to derive the univariate statistics for that variable. When nonparametric measures of association are specified, the procedure displays the median instead of the sum as an additional descriptive measure.

Output 2.1.1: Simple Statistics

Measures of Association for a Physical Fitness Study

The CORR Procedure

3 Variables: Weight Oxygen RunTime

Simple Statistics						
Variable	Variable N Mean Std Dev Median Minimum M					Maximum
Weight	31	77.44452	8.32857	77.45000	59.08000	91.63000
Oxygen	29	47.22721	5.47718	46.67200	37.38800	60.05500
RunTime	29	10.67414	1.39194	10.50000	8.17000	14.03000

The "Pearson Correlation Coefficients" table in <u>Output 2.1.2</u> displays Pearson correlation statistics for pairs of analysis variables. The Pearson correlation is a parametric measure of association for two continuous random variables. When there are missing data, the number of observations used to calculate the correlation can vary.

Output 2.1.2: Pearson Correlation Coefficients

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0 Number of Observations

	rson Wexighel at		
Weight	Numbercof C		0.20072
		0.4264	0.2965
	Weight	Oxygen 29	RunTime
Oxygen	-0.15358	1.00000	-0.86843
	0.4264		<.0001
	29	29	28
RunTime	0.20072	-0.86843	1.00000
	0.2965	<.0001	
	29	28	29

The table shows that the Pearson correlation between Runtime and Oxygen is -0.86843, which is significant with a p-value less than 0.0001. This indicates a strong negative linear relationship between these two variables. As Runtime increases, Oxygen decreases linearly.

The Spearman rank-order correlation is a nonparametric measure of association based on the ranks of the data values. The "Spearman Correlation Coefficients" table in <u>Output 2.1.3</u> displays results similar to those of the "Pearson Correlation Coefficients" table in <u>Output 2.1.2</u>.

Output 2.1.3: Spearman Correlation Coefficients

Spearman Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations						
Weight Oxygen RunTime						
Weight	1.00000	-0.06824 0.7250	0.13749 0.4769			
	31	29	29			
Oxygen	-0.06824 0.7250	1.00000	-0.80131 <.0001			
	29	29	28			
RunTime	0.13749 0.4769	-0.80131 <.0001	1.00000			
	29	28	29			

Kendall's tau-b is a nonparametric measure of association based on the number of concordances and discordances in paired observations. The "Kendall Tau b Correlation Coefficients" table in <u>Output 2.1.4</u> displays results similar to those of the "Pearson Correlation Coefficients" table in <u>Output 2.1.2</u>.

Output 2.1.4: Kendall's Tau-b Correlation Coefficients

Kendall Tau b Correlation Coefficients Prob > tau under H0: Tau=0 Number of Observations						
	Weight Oxygen RunTime					
Weight	1.00000	-0.00988 0.9402	0.06675 0.6123			
	31 29 29					
Oxygen	0.00000 0000		-0.62434 <.0001			
	29	29	28			

Kendall Tau b Correlation Coefficients Prob > tau under H0: Tau=0 Number of Observations						
	Weight Oxygen RunTime					
RunTime	0.06675	-0.62434	1.00000			
	0.6123	<.0001				
29 28 29						

Hoeffding's measure of dependence, D, is a nonparametric measure of association that detects more general departures from independence. Without ties in the variables, the values of the D statistic can vary between -0.5 and 1, with 1 indicating complete dependence. Otherwise, the D statistic can result in a smaller value. The "Hoeffding Dependence Coefficients" table in <u>Output 2.1.5</u> displays Hoeffding dependence coefficients. Since ties occur in the variable <u>Weight</u>, the D statistic for the <u>Weight</u> variable is less than 1.

Output 2.1.5: Hoeffding's Dependence Coefficients

Hoeffding Dependence Coefficients Prob > D under H0: D=0 Number of Observations					
Weight Oxygen RunTime					
Weight	0.97690 <.0001	-0.00497 0.5101 29	-0.02355 1.0000 29		
Oxygen	-0.00497	1.00000	0.23449		
0.5101 < .000° 29 29 29 28					
RunTime	-0.02355	0.23449	1.00000		
	1.0000	<.0001 28	29		

When you use the PLOTS=MATRIX(HISTOGRAM) option, the CORR procedure displays a symmetric matrix plot for the analysis variables listed in the VAR statement (<u>Output 2.1.6</u>).

Output 2.1.6: Symmetric Scatter Plot Matrix

The strong negative linear relationship between Oxygen and Runtime is evident in Output 2.1.6.

Note that this graphical display is requested by enabling ODS Graphics and by specifying the PLOTS= option. For more information about ODS Graphics, see <u>Chapter 21: Statistical Graphics Using ODS</u> in *SAS/STAT 14.3 User's Guide*.

Copyright © SAS Institute Inc. All rights reserved. Last updated: August 03, 2017

The CORR Procedure

Example 2.7 Saving Correlations in an Output Data Set

The following statements compute Pearson correlations:

```
title 'Correlations for a Fitness and Exercise Study';
proc corr data=Fitness nomiss outp=CorrOutp;
  var weight oxygen runtime;
run;
```

The NOMISS option excludes observations with missing values of the VAR statement variables from the analysis—that is, the same set of 28 observations is used to compute the correlation for each pair of variables. The OUTP= option creates an output data set named *CorrOutp* that contains the Pearson correlation statistics.

The "Pearson Correlation Coefficients" table in $\underline{\text{Output 2.7.1}}$ displays the correlation and the p-value under the null hypothesis of zero correlation.

Output 2.7.1: Pearson Correlation Coefficients
Correlations for a Fitness and Exercise Study

The CORR Procedure

Pearson Correlation Coefficients, N = 28 Prob > r under H0: Rho=0						
	Weight Oxygen RunTime					
Weight	1.00000	-0.18419 0.3481	0.19505 0.3199			
Oxygen	-0.18419 0.3481	1.00000	-0.86843 <.0001			
RunTime	0.19505 0.3199	-0.86843 <.0001	1.00000			

The following statements display (in <u>Output 2.7.2</u>) the output data set:

title 'Output Data Set from PROC CORR';
proc print data=CorrOutp noobs;
run;

Output 2.7.2: OUTP= Data Set with Pearson Correlations
Output Data Set from PROC CORR

TYPE	_NAME_	Weight	Oxygen	RunTime
MEAN		77.2168	47.1327	10.6954
STD		8.4495	5.5535	1.4127
N		28.0000	28.0000	28.0000

TYPE	_NAME_	Weight	Oxygen	RunTime
CORR	Weight	1.0000	-0.1842	0.1950
CORR	Oxygen	-0.1842	1.0000	-0.8684
CORR	RunTime	0.1950	-0.8684	1.0000

The output data set has the default type CORR and can be used as an input data set for regression or other statistical procedures. For example, the following statements request a regression analysis using *CorrOutp*, without reading the original data in the REG procedure:

```
title 'Input Type CORR Data Set from PROC REG';
proc reg data=CorrOutp;
  model runtime= weight oxygen;
run;
```

The following statements generate the same results as the preceding statements:

```
proc reg data=Fitness;
  model runtime= weight oxygen;
run;
```

Copyright © SAS Institute Inc. All rights reserved. Last updated: August 03, 2017

Wilcoxon Rank Sum Test Explanation

SAS Code Example:

proc npar1way data=dataName wilcoxon; class classVariable; var variable1; ods select WilcoxonScores WilcoxonTest; run;

The **null hypothesis** is that H0: there is no difference between the two populations (or distributions). Another way to think of this is H0: the two populations have similar values.

The **two-sided alternative** is that H2: there is a difference between the two populations (or distributions). Another way to think of this is H2: the two populations do not have similar values. If the p-value is less than 0.05, then we reject the null in favor of this two sided alternative.

Look at the value of the Statistic (W) in the table "Wilcoxon Two-Sample Test". This statistic will match one of the values for the "Sum of Scores" column of the table "Wilcoxon Scores (Rank Sums)." This statistic will tell you which distribution (or population) we are focusing on. Look at the mean value (muW) for that distribution which can be found in the column "Expected Value under H0" of the table "Wilcoxon Scores (Rank Sums)." Look at the standard deviation for that distribution which can be found in the column "Std Dev under H0." The Z value is Z=W-muW/sigmaW.

SAS will show us a different **one-sided alternative** depending on the sign of the Z value. Look at the value of Z in the "Wilcoxon Two-Sample Test" table.

If Z is positive, then that means SAS will show you that the alternative hypothesis is Pr > Z. If that p-value is less than 0.05, then that means the population we focus on has much larger values than the other population. If Pr > Z is greater than 0.05, then we do not reject the null hypothesis.

V	Wilcoxon Scores (Rank Sums) for Variable Time Classified by Variable Stim						
Stim	Stim Sum of Expected Std Dev Mear Stim N Scores Under H0 Under H0 Scores						
1	13	110.50	130.0	11.004784	8.500		
2	6	79.50	60.0	11.004784	13.250		
	Average scores were used for ties.						

Wilcoxon Two-Sample Test				
Statistic	79.5000			
Normal Approximation				
Z	1.7265			
One-Sided Pr > Z	0.0421			
Two-Sided Pr > Z	0.0843			
t Approximation				
One-Sided Pr > Z	0.0507			
Two-Sided Pr > Z	0.1014			
Z includes a continuity correction of 0.5.				

For the above example, the population that we focus on is Stim 2 since the statistic that matches Stim 2's Sum of Scores is 79.5 and Z is positive. The two-sided p-value is 0.08 so in this case we would not reject the null. Hence there is not significance evidence that Stim 1 and 2 have different values. The one-sided (Pr > Z) p-value is 0.04 so in this case we would reject the null in favor of the alternative that Stim 2 has larger values than Stim 1. The box plot tells us the same thing.

If Z is negative, then that means SAS will show you that the alternative hypothesis is Pr < Z. If that p-value is less than 0.05, then that means the population we focus on has much smaller values than the other population. If Pr < Z is greater than 0.05, then we do not reject the null hypothesis.

Wilcoxon Scores (Rank Sums) for Variable saleprice Classified by Variable NEIGHBORHOOD							
NEIGHBORHOOD	Ν	Sum of Scores	Expected Under H0		Mean Score		
BAYCHESTER	106	8674.50	11289.0	446.550221	81.834906		
THROGS NECK	106	13903.50	11289.0	446.550221	131.165094		
Average scores were used for ties.							

Wilcoxon Two-Sample Test				
Statistic	8674.5000			
Normal Approximation				
Z	-5.8538			
One-Sided Pr < Z	<.0001			
Two-Sided Pr > Z	<.0001			
t Approximation				
One-Sided Pr < Z	<.0001			
Two-Sided Pr > Z	<.0001			
Z includes a continuity correction of 0.5.				

For the above example, the population that we focus on is Baychester since the statistic is 8674.5 and Z is negative. The two-sided p-value is <0.001 so in this case we would reject the null. Hence there is significance evidence that Baychester and Throgs Neck have different values. The one-sided (Pr < Z) p-value is <0.001 so in this case we would

reject the null in favor of the alternative that Baychester has same thing.	s smaller values than Throgs Neck. The box plot tells us the