The single most comprehensive and unified source of information about mathematical functions.

lm

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Imaginary part

Traditional notation

Im(z)

Mathematica StandardForm notation

 $\operatorname{Im}[z]$

Primary definition

 $\operatorname{Im}(z)$ gives the imaginary part of the number z.

Specific values

Specialized values

$$12.04.03.0001.01$$

$$Im(x) = 0 /; x \in \mathbb{R}$$

$$12.04.03.0002.01$$

$$Im(i x) = x /; x \in \mathbb{R}$$

$$12.04.03.0003.01$$

$$Im(x + i y) = y /; x \in \mathbb{R} \land y \in \mathbb{R}$$

Values at fixed points

```
12.04.03.0004.01
Im(0) == 0
12.04.03.0005.01
Im(1) == 0
12.04.03.0006.01
Im(-1) == 0
12.04.03.0007.01
Im(i) == 1
```

12.04.03.0008.01

 $\operatorname{Im}(-i) = -1$

12.04.03.0020.01

Im(1+i) = 1

12.04.03.0021.01

Im(-1+i) == 1

12.04.03.0022.01

 $\operatorname{Im}(-1-i) = -1$

12.04.03.0023.01

Im(1-i) = -1

12.04.03.0024.01

 $\operatorname{Im}(\sqrt{3} + i) = 1$

12.04.03.0025.01

 $\operatorname{Im}(1+i\sqrt{3}) = \sqrt{3}$

12.04.03.0026.01

 $\operatorname{Im}(-1+i\sqrt{3})==\sqrt{3}$

12.04.03.0027.01

 $\operatorname{Im}(-\sqrt{3} + i) == 1$

12.04.03.0028.01

 $\operatorname{Im}\left(-\sqrt{3}-i\right) = -1$

12.04.03.0029.01

 $\operatorname{Im}(-1-i\sqrt{3}) = -\sqrt{3}$

12.04.03.0030.01

 $\operatorname{Im}(1-i\sqrt{3}) = \sqrt{3}$

12.04.03.0031.01

 $\operatorname{Im}(\sqrt{3} - i) == -1$

12.04.03.0009.01

Im(2) = 0

12.04.03.0010.01

Im(-2) = 0

12.04.03.0011.01

 $Im(\pi) = 0$

12.04.03.0012.01

Im(3 i) = 3

12.04.03.0013.01

Im(-2 i) = -2

12.04.03.0014.01

Im(2+i) == 1

Values at infinities

```
12.04.03.0015.01
Im(\infty) == 0
12.04.03.0016.01
Im(-\infty) == 0
12.04.03.0017.01
Im(i \infty) == \infty
12.04.03.0018.01
Im(-i \infty) == -\infty
12.04.03.0019.01
Im(\tilde{\infty}) == \tilde{\zeta}
```

General characteristics

Domain and analyticity

Im(z) is a nonanalytical function; it is a real-analytic function of the variable z.

```
12.04.04.0001.01
z \longrightarrow \operatorname{Im}(z) :: \mathbb{C} \longrightarrow \mathbb{R}
```

Symmetries and periodicities

Parity

Im(z) is an odd function.

```
12.04.04.0002.01 Im(-z) = -Im(z)
```

Mirror symmetry

```
Im(\bar{z}) = -\overline{Im(z)}
```

Periodicity

No periodicity

Homogeneity

```
12.04.04.0004.01
Im(a z) = a Im(z) /; a \in \mathbb{R}
```

Transformations

Transformations and argument simplifications

Argument involving basic arithmetic operations

$$\operatorname{Im}(-z) = -\operatorname{Im}(z)$$

$$\operatorname{Im}(a z) = a \operatorname{Im}(z) /; a \in \mathbb{R}$$

12.04.16.0003.01

$$\operatorname{Im}(i x) = x /; x \in \mathbb{R}$$

$$\operatorname{Im}(i z) = \operatorname{Re}(z)$$

$$\operatorname{Im}(-i z) = -\operatorname{Re}(z)$$

12.04.16.0006.01

$$\operatorname{Im}\left(\frac{1}{z}\right) = -\frac{\operatorname{Im}(z)}{|z|^2}$$

Addition formulas

$$\operatorname{Im}(x+i\,y) == y\,/;\, x \in \mathbb{R}\, \bigwedge y \in \mathbb{R}$$

$$\operatorname{Im}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Im}(z_{k})$$

$$Im(z_1 + z_2) = Im(z_1) + Im(z_2)$$

Multiple arguments

12.04.16.0010.01

$$\operatorname{Im}(a\,z) = a\operatorname{Im}(z)\,/;\, a \in \mathbb{R}$$

$$\operatorname{Im}(i x) = x /; x \in \mathbb{R}$$

$$\operatorname{Im}(i z) = \operatorname{Re}(z)$$

$$\operatorname{Im}(-i\,z) = -\operatorname{Re}(z)$$

$$Im(z_1 z_2) = Im(z_2) Re(z_1) + Im(z_1) Re(z_2)$$

Ratio of arguments

$$\operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right) = \frac{\operatorname{Im}(z_{1})\operatorname{Re}(z_{2}) - \operatorname{Re}(z_{1})\operatorname{Im}(z_{2})}{\left|z_{2}\right|^{2}}$$

Power of arguments

$$\begin{aligned} & 12.04.16.0015.01 \\ & \operatorname{Im}(x^a) = x^{\operatorname{Re}(a)} \sin(\operatorname{Im}(a) \log(x)) \, / ; \, x \in \mathbb{R} \wedge x > 0 \\ & 12.04.16.0016.01 \\ & \operatorname{Im}(z^a) = |z|^a \sin(a \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z))) \, / ; \, a \in \mathbb{R} \\ & 12.04.16.0017.01 \\ & \operatorname{Im}(z^a) = |z|^a \sin(a \arg(z)) \, / ; \, a \in \mathbb{R} \\ & 12.04.16.0018.01 \\ & \operatorname{Im}(z^n) = \sum_{j=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (-1)^j \binom{n}{2j+1} \operatorname{Im}(z)^{2j+1} \operatorname{Re}(z)^{n-2j-1} \, / ; \, n \in \mathbb{N}^+ \\ & 12.04.16.0019.01 \\ & \operatorname{Im}(z^a) = |z|^{\operatorname{Re}(a)} e^{-\operatorname{Im}(a) \arg(z)} \sin(\operatorname{Im}(a) \log(|z|) + \arg(z) \operatorname{Re}(a)) \\ & 12.04.16.0020.01 \\ & \operatorname{Im}(z^a) = \exp(-\operatorname{Im}(a) \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z))) \, |z|^{\operatorname{Re}(a)} \sin(\operatorname{Im}(a) \log(|z|) + \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z)) \operatorname{Re}(a)) \end{aligned}$$

Exponent of arguments

$$12.04.16.0023.01$$

$$Re(e^{x+iy}) == e^x \cos(y)$$

$$12.04.16.0024.01$$

$$Im(e^z) == e^{Re(z)} \sin(Im(z))$$

$$12.04.16.0025.01$$

$$Im(e^{iz}) == e^{-Im(z)} \sin(Re(z))$$

Products, sums, and powers of the direct function

Sums of the direct function

$$12.04.16.0021.01$$

$$Im(z_1) + Im(z_2) = Im(z_1 + z_2)$$

Complex characteristics

Real part

12.04.19.0001.01
Re(Im(
$$x + iy$$
)) == y
12.04.19.0002.01
Re(Im(z)) == Im(z)

Imaginary part

$$12.04.19.0003.01$$

$$Im(Im(x + i y)) == 0$$

$$12.04.19.0004.01$$

$$Im(Im(z)) == 0$$

Absolute value

$$|Im(x + i y)| = \sqrt{y^2}$$

$$|Im(z)| = \sqrt{Im(z)^2}$$

$$|Im(z)| = \sqrt{Im(z)^2}$$

Argument

12.04.19.0006.01

$$\arg(\operatorname{Im}(x+iy)) = \tan^{-1}(y,0)$$
12.04.19.0010.01

$$\arg(\operatorname{Im}(x+iy)) = (1-\theta(y))\pi$$
12.04.19.0011.01

$$\arg(\operatorname{Im}(z)) = \tan^{-1}(\operatorname{Im}(z),0)$$
12.04.19.0012.01

$$\arg(\operatorname{Im}(z)) = (1-\theta(\operatorname{Im}(z)))\pi$$

Conjugate value

$$\frac{12.04.19.0007.01}{\overline{\text{Im}(x+iy)}} = y$$

$$\frac{12.04.19.0008.01}{\overline{\text{Im}(z)}} = \text{Im}(z)$$

Signum value

$$12.04.19.0013.01$$

$$sgn(Im(x + i y)) = sgn(y)$$

$$12.04.19.0014.01$$

$$sgn(Im(x + i y)) = \frac{y}{\sqrt{y^2}}$$

$$12.04.19.0015.01$$

$$sgn(Im(z)) = \frac{Im(z)}{\sqrt{Im(z)^2}}$$

Differentiation

Low-order differentiation

In a distributional sense for $x \in \mathbb{R}$.

$$\frac{\partial \operatorname{Im}(x)}{\partial x} = 0$$

Representations through equivalent functions

With related functions

With Re

$$12.04.27.0002.01$$

$$Im(z) = -Re(i z)$$

$$Im(z) = i (Re(z) - z)$$

$$\operatorname{Im}(i z) = \operatorname{Re}(z)$$

With Abs

12.04.27.0008.01

$$\operatorname{Im}(z) = \frac{i\left(|z|^2 - z^2\right)}{2z}$$

With Arg

$$Im(z) = \frac{1}{2} i e^{-2 i \arg(z)} \left(1 - e^{2 i \arg(z)} \right) z$$

12.04.27.0001.01

$$\operatorname{Im}(z) = |z| \sin(\arg(z))$$

With Conjugate

$$\operatorname{Im}(z) = \frac{z - \bar{z}}{2 \, i}$$

$$\operatorname{Im}(z) = i \left(\bar{z} - \operatorname{Re}(z) \right)$$

With Sign

$$Im(z) = \frac{i z \left(1 - sgn(z)^2\right)}{2 sgn(z)^2}$$

$$Im(z) = \frac{z \sin(\arg(z))}{\operatorname{sgn}(z)} /; z \neq 0$$

Inequalities

12.04.29.0001.01

$$|\mathrm{Im}(z)| \le |z|$$

Zeros

12.04.30.0001.01

 $\operatorname{Im}(z) = 0 \ /; \ z \in \mathbb{R}$

History

The function Im is encountered often in mathematics and the natural sciences.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.