[Chain rule examples!

1) Evaluate
$$\frac{d}{dx} [(2x+1)^7]$$

= $7(2x+1)^6 \cdot 2$ ($\frac{d}{du} u^7 = 7u^6 \cdot \frac{d}{dx} (2x+1) = 2$)
= $14(2x+1)^6$

2) Evaluate
$$d_{x} \sec(\frac{1}{x})$$

$$= \sec(\frac{1}{x}) \tan(\frac{1}{x}) \cdot (-\frac{1}{x^{2}}) \qquad (d_{x} \sec u = \sec u \cdot \tan u)$$

$$= - \sec(\frac{1}{x}) \tan(\frac{1}{x}) / x^{2}$$

$$= - \sec(\frac{1}{x}) \tan(\frac{1}{x}) / x^{2}$$

(3) Evaluate
$$\frac{d}{dx} \tan \left(\frac{1}{x^2+1}\right)$$

$$= \sec^2\left(\frac{1}{x^2+1}\right) \cdot \frac{d}{dx}\left(\frac{1}{x^2+1}\right) \quad \left(\frac{d}{du} \sec \tan(u) = \sec^2(u)\right)$$

$$= \left[-\sec^2\left(\frac{1}{x^2+1}\right) \cdot \frac{2x}{(x^2+1)^2}\right]$$

(5) Evaluate (fog)'(2), given the following data about fig. and their derivatives.

X	0	1	2	3
f(x)	10	7	2	-5
f'(x)	(-2)	-4	-6	-8
g(x)	1	0	0	2
9'(1)	-2	-1		3

$$(f \circ g)'(2)$$

= $f'(g(2)) \cdot g'(2)$
= $f'(0) \cdot g'(2)$
= $(-2) \cdot (1) = [-2]$