Boğazda Yapay Öğrenme İsmail Arı Yaz Okulu 2018

Sıralama Öğrenme ile Sağkalım Tahminleme

Öznur Taştan

Mühendislik ve Doğa Bilimleri Fakültesi Bilgisayar Bilimi ve Mühendisliği

Moleküler Biyoloji, Genetik ve Biyomühendislik

Omiks Çağı

Kanser Genom Atlası Projesi

Weinstein et al., Nature Genetics, 2013.

Hasta Sağkalımını Tahminleme

$$x_i \in \mathbf{R}^d$$

Omics characterizations

Sağ kalım süresi ile omik verileri arasındaki ilişkiyi özetleyen bir fonksiyon öğren f Bu fonksiyonu kullanarak yeni gelen hastalanın omik verisi ile, x_i, ne kadar hayatta kalacağını tahminle

$$T_i^* = f(x_i)$$

Weinstein et al., Nature Genetics, 2013.

- Sağkalım süresi, belirli bir başlangıç zamanından ilgilenilen bir son noktaya kadar geçen süreyi ölçen değişkeni ifade eder.
 - Ölüme kadar geçen süre
 - Hastalığın nüksüne kadar geçen süre
 - Bir makinanın bozulmasına kadar geçen süre

Sansürlü Veri

Sansürlü Veri

Assessing the clinical utility of cancer genomic and proteomic data across tumor types

Yuan Yuan^{1,2,14}, Eliezer M Van Allen^{3,4,14}, Larsson Omberg^{5,14}, Nikhil Wagle^{3,4}, Ali Amin-Mansour⁴, Artem Sokolov⁶, Lauren A Byers⁷, Yanxun Xu⁸, Kenneth R Hess⁹, Lixia Diao², Leng Han², Xuelin Huang⁹, Michael S Lawrence⁴, John N Weinstein^{2,10}, Josh M Stuart⁶, Gordon B Mills¹⁰, Levi A Garraway^{3,4,11,15}, Adam A Margolin^{5,13,15}, Gad Getz^{4,11,12,15} & Han Liang^{1,2,15}

Yuan ve ark. Nature Biotechnology 32, 644–652 (2014)

Cox Dr., J. R. Stat. Soc. Ser. B, 34, 187-220, 1972. Iswaharan ve ark. The Annals of Applied Statistics, 2008.

Assessing the clinical utility of cancer genomic and proteomic data across tumor types

Yuan Yuan^{1,2,14}, Eliezer M Van Allen^{3,4,14}, Larsson Omberg^{5,14}, Nikhil Wagle^{3,4}, Ali Amin-Mansour⁴, Artem Sokolov⁶, Lauren A Byers⁷, Yanxun Xu⁸, Kenneth R Hess⁹, Lixia Diao², Leng Han², Xuelin Huang⁹, Michael S Lawrence⁴, John N Weinstein^{2,10}, Josh M Stuart⁶, Gordon B Mills¹⁰, Levi A Garraway^{3,4,11,15}, Adam A Margolin^{5,13,15}, Gad Getz^{4,11,12,15} & Han Liang^{1,2,15}

Uyum indeksi

Cox Dr., J. R. Stat. Soc. Ser. B, 34, 187-220, 1972. Iswaharan ve ark. The Annals of Applied Statistics, 2008.

- Sağkalım tahminlemede kullanılan standart performans ölçütü
- Gerçekte var olan hasta sağkalım sıralaması ile tahmin edilen hasta sağkalım sıralaması arasındaki uyum

Tahmini çift sıralamaları

Sıralama Problemi – Webde Arama

Uygunluk skoruna(S) göre sıralanmış *n* boyutlu bir örneklem listesi, *n*(*n*-1) çift sıralamalar ile gösterilebilir.

Uygunluk skoruna(S) göre sıralanmış n boyutlu bir örneklem listesi, n(n-1) çift sıralamalar ile gösterilebilir.

Uygunluk skoruna(S) göre sıralanmış *n* boyutlu bir örneklem listesi, *n*(*n*-1) çift sıralamalar ile gösterilebilir.

Negatif örnekler

Uygunluk skoruna(S) göre sıralanmış *n* boyutlu bir örneklem listesi, *n*(*n*-1) çift sıralamalar ile gösterilebilir.

$$S(x_3) - S(x_2) < 0$$

 $S(x_4) - S(x_2) < 0$
 $S(x_4) - S(x_3) < 0$

Negatif örnekler

örnekler
$$S(x_1) - S(x_2) > 0$$

$$S(\mathbf{x}_1) - S(\mathbf{x}_3) > 0$$

$$S(x_1) - S(x_4) > 0$$

Uygunluk skoruna(S) göre sıralanmış n boyutlu bir örneklem listesi, n(n-1) çift sıralamalar ile gösterilebilir.

Negatif örnekler

Destek Vektör Makinesi – Sınıflandırma

Cortes, C and Vapnik, V. Machine learning, 20(3), 273–297,1995.

SVM – Sınıflandırma

C. Cortes and V. Vapnik, Machine learning, 20(3), 273–297,1995.

Figure from: https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

SVM – Sınıflandırma

C. Cortes and V. Vapnik, Machine learning, 20(3), pp. 273–297,1995.

RankSVM - Sıralama

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_{i,j}$$

s.t.
$$\{\forall (i,j) \mid S(x_i) > S(x_j) :$$

$$\mathbf{w}.(\mathbf{x_i} - \mathbf{x_j}) \ge 1 - \xi_{i,j}$$

$$\mathbf{w}.(\mathbf{x_i} - \mathbf{x_j}) \ge 1 - \xi_{i,j}$$

$$\forall (i,j) \quad \xi_{i,j} \geq 0$$

RsurVM – Kısıtları Modifiye Et

Hasta çiftlerinin yaşam sürelerine göre kısıtlar ekle ve siniflandirma problemini coz

$$S(\mathbf{x}_i) > S(\mathbf{x}_j) \Rightarrow \mathbf{w}.(\mathbf{x}_i - \mathbf{x}_j) > 0$$

Deneysel Düzenek

100 kez rastgele eğitim ve test kümesi ayır

RsurVM kullanılan moleküler veri tipinden bağımsız olarak, şu an kullanılan en geçerli yöntemlerden daha iyi tahminliyor.

35

Koyu renk Öznitelik filtresi olmaksızın.

Açık renk: Uni-cox filtresi

Mustafa Büyüközkan Önceden, Bilkent Üniversitesi Şimdi PhD Helmholtz Zentrum München

Kompleks Hastalıklarda Hasta Alt-Gruplarının Tanımlamaya Yönelik Makine Öğrenme Tekniklerinin Geliştirilmesi

- Kompleks hastalıklar hetorejendir
- Tedavi ve tanı için alt grupların keşfi

Yarı-Gözetimli Öbekleme ile Hasta Gruplarınını Bulmak

Figure kaynağı http://www.pancreaticcancer.net.au/ground-breaking-nature/

Duygu Ozcelik Bilkent Üniversitesi Şimdi, Havelsan

Yarı-Gözetimli Öbekleme ile Hasta Gruplarınını Bulmak

Figure kaynağı http://www.pancreaticcancer.net.au/ground-breaking-nature/

Yarı-Gözetimli Öbekleme ile Hasta Gruplarınını Bulmak

Figure kaynağı http://www.pancreaticcancer.net.au/ground-breaking-nature/

Yarı-Gözetilimli Öbekleme ile Hasta Altgruplarının Bulunması

Kanser Hasta Altgruplarını Çizge Çekirdekleri ile Keşfi

 Hasta benzerliklerini hücreye dair işlevsel bilgileri göz önünde bulundurarak değerlendirmek

TCGA. Nature Genetics 45, 11-1120, 2013.

KEGG P53 Sinyal Yolağı

Hasta Benzerliklerini Yolak Çizge Çekirdekleri ile Hesaplama

Önceden, Bilkent Üniversitesi

Şimdi, PhD, Tubingen Üniversitesi

Düğümler gen Renk hastadaki değişim (mutasyon, ifade değişikliği)

Birden çok yolak, birden çok veri tipi

Çekirdekli Çok Yönlü Kümele

Çizgeler ve değişimler üzerinden hesaplanmış matris

Çok Yönlü Çekirdekli Kümele

İlaç yan etkilerinin derin öğrenme ile tahmini

Gen ifadeleri

Onurcan Üner Dr. Gokberk Cinbis

Dr. Ercüment Çiçek

Fosforilasyon bölgesinden bağlanan kinazı tahmin etme

Bağlanma bölgesi sayısı

APRTGPVLP

Sıfır vuruşla derin ağla öğrenme

İman Deznaby

Dr. Mehmet Koyutürk

SPADIS: Genom Boyu İlişikilendirme Çalışmalarında Çeşitleyici ve Açıklayıcı SNP küme seçimi

Bir fenotiple ilişkili bir SNP setini seçmek Makine öğrenme bağlamında özellik alt kümesi seçim problemi

Zorluklar:

- SNP'ler tek tek fenotip ile ilişkili değildir
- Birden çok SNP'nin ortak etkisi
- Düşük örnek büyüklüğü (10² 10⁴ kişi)
- Yüksek boyut (10⁵ 10⁷ SNP)

Yaklaşım:

 Bir ön bilgi ile oluşturulmuş SNP-SNP ağı kullanarak işlevsel etkileşimleri hesaba katmak.

Serhan Yılmaz

Dr. Ercüment Çiçek

- SNPs adjacent on the sequence

- SNPs adjacent on the sequence
- SNPs near the same gene
- SNPs near interacting genes

Gene Membership (GM)

- SNPs adjacent on the sequence
- SNPs near the same gene

Gene Sequence 3D (GS-HICN)

- SNPs adjacent on the sequence
- SNPs significantly close in 3D

SPADIS

Yakın SNPler tekrarlayan bilgi getirir.

Uzak SNPlerin farklı biyolojik işlevleri etkileme ihtimali daha fazla.

SPADIS

Yakın SNPler tekrarlayan bilgi getirir.

Uzak SNPlerin farklı biyolojik işlevleri etkileme ihtimali daha fazla.

RNA Etkileşimlerinin Çekirdekli Testler ile Tespiti

Gulden Olgun Bilkent Üniversitesi

Teşekkürler!

TUBİTAK

• 117E140'nolu araştırma projesi

Bilim Akademisi Genç Bilim İnsanları Ödül Programı (2014-2016)

E-mail: otastan@sabanciuniv.edu