GENERAL TOPOLOGY EXERCISES FOR SESSION 8 (WED 19.3)

- Exercise 1. Show that a closed subspace of a normal space is normal.
- Exercise 2. Show that every compact Hausdorff space is normal. (Hint: Theorem 3.4)
- **Exercise 3.** Show that if X is normal and $F, G \subset X$ are closed and disjoint, then there are open neighbourhoods U, V of F, G respectively such that $\bar{U} \cap \bar{V} = \emptyset$.

Exercise 4. Show that every locally compact Hausdorff space is regular. You can follow this scheme:

- Pick a closed set $F \subset X$ and $x \notin F$.
- Consider a neighbourhood V of x such that \bar{V} is compact.
- Handle the situation inside \bar{V} first.
- Then you can solve the general situation.

Exercise 5. Verify that the one-point compactification X^* defined in Definition 3.3 is actually compact.

Hint: First of all, you should prove that for every set $U \in \mathcal{T}_{\infty}$, the set $U \setminus \{\infty\} \subset X$ is actually an open set in the topology \mathcal{T} of X (here you will need that X is Hausdorff). This will make working with a cover of sets in $\mathcal{T} \cup \mathcal{T}_{\infty}$ easier.

Exercise 6. Show that the one-point compactification of \mathbb{Z}_+ is homeomorphic with the subspace $\{0\} \cup \{\frac{1}{n} : n \geq 1, n \in \mathbb{Z}\}$ of \mathbb{R} .

Exercise 7. A space X is said to be **completely normal** if every subspace of X is normal. Prove that X is completely normal if and only if for every pair of sets $A, B \subset X$ with $\overline{A} \cap B = \emptyset = A \cap \overline{B}$, there exist disjoint neighbourhoods of A and B.

Exercise 8. Are metrizable spaces completely normal?