U.S.S.N. 10/678,872

IN THE CLAIMS:

Please cancel claims 1-24, and add new claims 25-44.

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-24. (canceled)

25. (new) A compound represented by the following structural formula:

or a pharmaceutically acceptable salt thereof, wherein:

Ring A is an optionally substituted monocyclic aromatic ring;

R is $-X_1-R^1$;

Rx is -X2-R4, and R3 is an optionally substituted aromatic group; or

-NR*R³, taken together, is an optionally substituted non-aromatic nitrogen containing heterocyclic group;

X is
$$-C(O)$$
- or $-C(R^2)_2$ -;

X₁ and X₂ are each independently a bond, S(O), S(O)₂, C(O) or C(O)NH;

R¹ is H or an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

provided that when X₁ is a bond, SO or SO₂, then R¹ is not H;

each R² is independently H, -X₄-R⁸ or an optionally substituted, aliphatic group,

cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

 R^4 is H, $-X_6$ - R^{10} or an optionally substituted, aliphatic group, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

provided that when X₂ is a bond, SO or SO₂, then R⁴ is not H;

 X_4 and X_6 are each independently a straight or branched hydrocarbyl group optionally substituted with one or more groups selected from the group consisting of halo, -OH, =O, C_1 - C_3 alkoxy, nitro and cyano;

R⁵ and R⁶ are each independently H or C₁-C₃ alkyl; and

U.S.S.N. 10/678,872

R⁸ and R¹⁰ are each independently H, -C(O)OR' or an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

where,

the optional substituents on the aliphatic group, the cycloaliphatic group or the non-aromatic heterocyclic group are one to three groups each independently selected from the group consisting of halo, R^{11} , =0, =S, =NNHR*, =NN(R*)₂, =NNHC(O)R*, =NNHCO₂(alkyl), =NNHSO₂ (alkyl) and =NR*;

the optional substituents on unsaturated carbon atoms of the aromatic group is R¹¹; the optional substituents on a nitrogen atom of the aromatic group or the nitrogen atom of the non-aromatic nitrogen containing heterocyclic group are one to three groups each independently selected from the group consisting of R⁺, -N(R⁺)₂, -C(O)R⁺, -CO₂ R⁺, -C(O)C(O)R⁺, -C(O)CH₂C(O)R⁺, -

 $SO_2 R^+$, $-SO_2 N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$ and $-NR^+ SO_2 R^+$;

 R^{11} is one to four substituents each independently selected from the group consisting of halo, R° , -OH, $-OR^{\circ}$, -SH, $-SR^{\circ}$, 1,2-methylenedioxy, 1,2-ethylenedioxy, protected -OH, phenyl, $[R^{12}]$ -phenyl, -O(phenyl), $-O([R^{12}]$ -phenyl), $-CH_2(phenyl)$, $-CH_2([R^{12}]$ -phenyl), $-CH_2CH_2(phenyl)$, $-CH_2CH_2([R^{12}]$ -phenyl), $-NO_2$, -CN, $-N(R^{\circ})_2$, $-NR^{\circ}CO_2R^{\circ}$, $-NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}NR^{\circ}C(O)R^{\circ}$, $-NR^{\circ}NR^{\circ}C(O)R^{\circ}$, $-C(O)C(O)R^{\circ}$, $-C(O)CH_2C(O)R^{\circ}$

R ' is H, $R^{\circ},$ -CO2R°, -SO2R° or -C(O)R°;

y is 0-6;

V is C₁-C₆ alkylene;

each R* is independently H, an aliphatic group or an aliphatic group substituted with R¹²; R⁺ is H, phenyl, [R¹²]-phenyl, -O(phenyl), -O([R¹²]-phenyl), - CH₂(phenyl), -

 $CH_2([R^{12}]$ -phenyl), a heteroaryl group, a non-aromatic heterocyclic group, an aliphatic group or an aliphatic group substituted with R^{12} ;

R° is an aliphatic group, a cycloaliphatic group, an aromatic group, an aralkyl group or a non-aromatic heterocyclic group, each group being optionally substituted with R¹²;

 R^{12} is one to four substituents each independently selected from the group consisting of halo, C_1 - C_6 alkyl, $(halo)_rC_1$ - C_6 alkyl, C_3 - C_8 cycloalkyl, $(halo)_rC_3$ - C_8 cycloalkyl, $(-CN, -CF_3, -CHF_2, -CH_2F, -OCF_3, -OCHF_2, -OCH_2F, -OR', -OR^{13}C(O)R', -C(O)OR', -C(O)N(R^{16})_2, -N(R^{16})_2, -NO_2, -NR^{16}C(O)R', -NR^{16}C(O)OR', -NR^{16}C(O)N(R^{16})_2, -NR^{16}SO_2R^{17}, -S(O)_qR^{17}, -R^{13}NR^{16}C(O)R', -R^{13}C(O)R', -R^{13}NR^{16}C(O)OR', tetrazolyl, imidazolyl or oxadiazolyl;$

R¹³ is C₁-C₆ alkyl or C₃-C₈ cycloalkyl;

U.S.S.N. 10/678,872

each R¹⁶ is independently R' or benzyl; R¹⁷ is R¹³ or -CF₃; q is 0-2; and r is 1-3;

provided that the compound is not 2-methyl-N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(2-methyl-1-oxobutyl)-4-quinolinyl]-butamide; N-(1-Acetyl-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-phenyl-heptamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxo-3phenylpropyl)-4-quinolinyl]- benzenepropanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(3-nitrobenzoyl)-4-quinolinyl]- hexanamide; N-[1,1'-biphenyl]-3-yl-N-[1,2,3,4-tetrahydro-1-(4methoxybenzoyl)-2-methyl-4-quinolinyl]-acetamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-(4-nitrophenyl)- heptanamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-(4-methoxyphenyl)-2-methyl- propanamide; N-[1-(4-fluorobenzoyl)-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- butanamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(3methoxybenzoyl)-2-methyl-4-quinolinyl]-pentanamide; 2-ethyl-N-[1-(2-ethyl-1-oxobutyl)-1,2,3,4tetrahydro-2,8-dimethyl-4-quinolinyl]-N-(2-methylphenyl)-butanamide; N-[1-[(4fluorophenyl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- propanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(4-nitrobenzoyl)-4-quinolinyl]-octanamide; N-cyclohexyl-4-[(cyclohexylamino)carbonyl]phenylamino]-3,4-dihydro-2-methyl-1(2H)-quinolinecarboxamide; N-[1-(4-ethylbenzoyl)-1,2,3,4-tetrahydro-2,8-dimethyl-4-quinolinyl]-N-(2-methylphenyl)-3-(4nitrophenyl)- 2-propenamide; 3-(4-methoxyphenyl)-N-phenyl-N-[1,2,3,4-tetrahydro-1-[3-(4methoxyphenyl)-1-oxo-2-propenyl]-2-methyl-4-quinolinyl]-2-propenamide; 4-[(ethoxyoxoacetyl)phenylamino]-3,4-dihydro-2-methyl-∀-oxo-ethyl ester-1(2H)-quinolineacetic acid; N-[1-(3-cyclohexyl-1-oxopropyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylcyclohexanepropanamide; 4-(acetylphenylamino)-3,4-dihydro-2-methyl-gamma-oxo-1(2H)quinolinepentanoic acid; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-2,2-dimethyl-Nphenyl- propanamide; N-(1-benzoyl-6-bromo-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenylpentanamide; N-[1-(2-furanylcarbonyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylacetamide; 2-methyl-N-phenyl-N-[1,2,3,4-tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4quinolinyl]- propanamide; N-[1-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-acetamide; 2,2,2-trifluoro-N-phenyl-N-[1,2,3,4tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4-quinolinyl]- acetamide; 2-ethyl-N-[1-(2-ethyl-1oxobutyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- butanamide; N-(1-benzoyl-1,2,3,4tetrahydro-2-methyl-4-quinolinyl)-N-(3-methoxyphenyl)- acetamide; N-phenyl-N-[1,2,3,4tetrahydro-2-methyl-1-(1-oxohexyl)-4-quinolinyl]- acetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2methyl-4-quinolinyl)-N-phenyl-2-thiophenecarboxamide; N-[1-(2-fluorobenzoyl)-1,2,3,4-

U.S.S.N. 10/678,872

tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- hexanamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(4methoxybenzoyl)-2-methyl-4-quinolinyl]- hexanamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(4methoxybenzoyl)-2-methyl-4-quinolinyl]- hexanamide; N-[1-(cyclopropylcarbonyl)-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- cyclopropanecarboxamide; N-(1-benzoyl-1,2,3,4tetrahydro-2-methyl-4-quinolinyl)-N-(4-methylphenyl)- acetamide; 2-methyl-N-phenyl-N-[1,2,3,4tetrahydro-2-methyl-1-(2-methyl-1-oxopropyl)-4-quinolinyl]- propanamide; N-phenyl-N-[1,2,3,4tetrahydro-1-(4-methoxybenzoyl)-2-methyl-4-quinolinyl]-2-thiophenecarboxamide; 1-(3,5dinitrobenzoyl)-N-formyl-1,2,3,4-tetrahydro-2-methyl-N-phenyl-4-quinolinamine; N-[1-(4-chloro-3-nitrobenzoyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(3-nitrobenzoyl)-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4-quinolinyl]- hexanamide; N-[1-(2-furanylcarbonyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-2-furancarboxamide; N-phenyl-N-[1,2,3,4tetrahydro-2-methyl-1-(1-oxopropyl)-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-[3-(4-methoxyphenyl)-1-oxo-2-propenyl]-2-methyl-4-quinolinyl]-acetamide; 3-(2-furanyl)-N-[1-[3-(2-furanyl)-1-oxo-2-propenyl]-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-2propenamide; N-[1-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3-phenylpropyl]-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-octanamide; N-[1-(3-chlorobenzoyl)-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-acetamide; Relative stereochemistry N-phenyl-N-[(2R,4S)-1,2,3,4-tetrahydro-2-methyl-1-(1-oxopropyl)-4-quinolinyl]- acetamide; Relative stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-2-methyl-Nphenyl-propanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-hexanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4tetrahydro-2-methyl-4-quinolinyll-N-phenyl-propanamide; Relative stereochemistry N-[(2R.4S)-1acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-heptanamide; Relative stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-2,2-dimethyl-N-phenylpropanamide; N-[1-(3-fluorobenzoyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylacetamide; N-[1-[4-(1,1-dimethylethyl)benzoyl]-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-Nphenyl- acetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-2-methyl-N-phenylpropanamide; 2,2,2-trifluoro-N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(trifluoroacetyl)-4quinolinyl]- acetamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-2,2-dimethyl-N-phenyl-propanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-butanamide; Relative stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-acetamide; Relative stereochemistry N-phenyl-N-[(2R,4S)-1,2,3,4-tetrahydro-2-methyl-1-(1-oxoheptyl)-4-quinolinyl]acetamide; Relative stereochemistry N-phenyl-N-[(2R,4S)-1,2,3,4-tetrahydro-2-methyl-1-(1-

U.S.S.N. 10/678,872

oxohexyl)-4-quinolinyl]-acetamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-pentanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2methyl-1-(1-oxo-3-phenyl-2-propenyl)-4-quinolinyl]-acetamide; Relative stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-heptanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylacetamide; Relative stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4quinolinyl]-N-phenyl-pentanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(tricyclo[3.3.1.13,7]dec-1-ylcarbonyl)-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2methyl-1-(1-oxopropyl)-4-quinolinyl]- propanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(2-thienylcarbonyl)-4-quinolinyl]- acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(4methoxybenzoyl)-2-methyl-4-quinolinyl]- 2-furancarboxamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(4-methoxybenzoyl)-2-methyl-4-quinolinyl]- acetamide; N-[1-(3,5-dinitrobenzoyl)-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(4-nitrobenzoyl)-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(2-iodobenzoyl)-2methyl-4-quinolinyll-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(2-methyl-1oxopropyl)-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-[(4methylphenyl)sulfonyl]-4-quinolinyl]- acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-[(4nitrophenyl)methyl]-4-quinolinyl]- acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(3methoxybenzoyl)-2-methyl-4-quinolinyl]- acetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-phenyl- butanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxobutyl)-4quinolinyl]- acetamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenylhexanamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-pentanamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-propanamide; 1-benzoyl-1,2,3,4tetrahydro-4-(N-phenylacetamido)quinaldine; N-(1-acetyl-6-bromo-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-phenyl-acetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-6-nitro-4-quinolyl)acetanilide; N-(1-acetyl-6-chloro-1,2,3,4-tetrahydro-2-methyl-4-quinolyl)-acetanilide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-acetamide; N-(1-benzoyl-6-bromo-1,2,3,4tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-acetamide; N-(1-benzoyl-6-chloro-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-acetamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-phenyl- butanamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(3-fluorobenzoyl)-2-methyl-4-quinolinyl]-hexanamide; N-[1-(3-chloro-benzoyl)-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-Nphenyl-acetamide; N-[1-(4-fluoro-benzoyl)-2-methyl-6-nitro-1,2,3,4-tetrahydro-quinolin-4-yl]-Nphenyl-acetamide; pentanoic acid (1-benzoyl-6-bromo-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)phenyl-amide; N-(1-benzoyl-6-chloro-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-N-phenylacetamide; N-[6-chloro-1-(4-fluoro-benzoyl)-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-N-phenyl-

U.S.S.N. 10/678,872

acetamide; N-[6-bromo-1-(4-fluoro-benzoyl)-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-N-phenyl-acetamide; N-(1-benzoyl-6-nitro-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-N-phenyl-acetamide; N-(1-benzoyl-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-N-phenyl-butyramide; or N-[1-(3-methoxy-benzoyl)-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-2,2-dimethyl-N-phenyl-propionamide.

26. (new) The compound of Claim 25 wherein:

X is -CHR²-:

R² is H, methyl or ethyl;

R³ is an optionally substituted aromatic group; and

R⁵ and R⁶ are each H.

27. (new) The compound of Claim 26 wherein the compound is represented by the following structural formula:

$$\begin{array}{c|c}
R^3 & R^4 \\
\hline
A & R^2 \\
\hline
R^1 & O
\end{array}$$

- 28. (new) The compound of Claim 27 wherein R¹ is optionally substituted phenyl.
- 29. (new) The compound of claim 27, wherein R⁴ is methyl, ethyl, propyl, *iso*-propyl, *n*-butyl, *sec*-butyl, *tert*-butyl, -CH₂OCH₃ or -CH₂OCH₂CH₃.
- 30. (new) The compound of claim 29 wherein:

 R^3 is $[R^{11}]$ -phenyl, where R^{11} is Br, Cl, -CH₃, -N(R')₂, -NHC(O)OR', -S(O)₂CH₃, -

 $S(O)_2N(R')_2$ or $-(CH_2)_vC(O)N(R')_2$; and

R4 is methyl, ethyl or -CH2OCH3.

- 31. (new) The compound of Claim 30 wherein R¹¹ is one substituent at the para position.
- 32. (new) The compound of Claim 27 wherein:

(Page 7 of 21)

U.S.S.N. 10/678,872

R¹ is H or an optionally substituted, cycloalkyl group, aromatic group or non-aromatic heterocyclic group;

R³ is phenyl or [R¹¹]-phenyl;

R⁴ is H, -CH₂C(O)R¹⁴, -CH₂R¹⁵, -CH₂OR¹⁴ or an optionally substituted, C₁-C₃ alkyl group, cycloalkyl group, aromatic group or non-aromatic heterocyclic group;

R¹⁴ is H or an optionally substituted, alkyl group, aromatic group, cycloalkyl group or non-aromatic heterocyclic group; and

R¹⁵ is an optionally substituted, aromatic group, cycloalkyl group or non-aromatic heterocyclic group.

33. (new) The compound of Claim 27 wherein:

Ring A is phenyl or $[R^{11}]$ -phenyl, where R^{11} is at the five, six, seven and/or eight position; R^{1} is R^{18} :

 R^4 is R^{18} , C_1 - C_4 alkyl, -CH₂OH, -CH₂OCH₃, -CH₂OCH₂CH₃, -CH₂CH₂OCH₃ or -CH₂CH₂OCH₂CH₃; and

R¹⁸ is an optionally substituted, phenyl, pyridyl, furanyl, thiophenyl, isoxazolyl, imidazolyl, pyrazolyl, pyrrolyl, benzofuranyl, tetrazolyl, thiazolyl, benzyl, benzothiazolyl, benzothiazolyl, benzoimidazolyl, benzotriazolyl, benzomorpholinyl, benzopyrazolyl, indolyl, -CH₂-(N-pyridyl), -CH₂-furanyl, -CH₂-thiophienyl, -CH₂-isoxazolyl, -CH₂-imidazolyl, -CH₂-pyrazolyl, -CH₂-pyrollyl, -CH₂-benzofuranyl, -CH₂-tetrazolyl, -CH₂-thiazolyl, -CH₂-tetrazolyl, -CH₂-benzothiazolyl, -CH₂-benzimidazolyl, -CH₂-O-phenyl, -CH₂C(O)-phenyl, naphthalimidyl, tetrahydrofuranyl, cyclohexyl, cyclopentyl or cyclopropyl group.

34. (new) The compound of Claim 33 wherein:

Ring A is phenyl or $[R^{11}]$ -phenyl, where R^{11} is at the six and/or seven position;

R¹ is phenyl, thiophenyl, furanyl, pyridyl, pyrmidinyl, oxazolyl, isoxazolyl, benzotriazolyl or benzomorpholinyl, each group being optionally substituted with R¹¹;

R³ is [R¹¹]-phenyl; and

 R^4 is methyl, ethyl, propyl, *iso*-propyl, *n*-butyl, *sec*-butyl, *tert*-butyl, -CH₂OCH₃ or -CH₂OCH₂CH₃.

35. (new) The compound of Claim 27 wherein:

 R^1 is thiophenyl, $[R^{11}]$ -thiophenyl, isoxazolyl, $[R^{11}]$ -isoxazolyl, pyridinyl, $[R^{11}]$ -pyridinyl, benzotriazolyl, $[R^{11}]$ -benzotriazolyl, benzomorpholinyl or $[R^{11}]$ -benzomorpholinyl or $[R^{11}]$ -phenyl, where R^{11} is halo, $-OR^0$, $-N(R^1)_2$, oxazolyl or

(Page 8 of 21)

U.S.S.N. 10/678,872

 R^3 is $[R^{11}]$ -phenyl, where R^{11} is Br, Cl, -CH₃, -N(R')₂, -NHC(O)OR', -S(O)₂CH₃, -S(O)₂N(R')₂ or -(CH₂)_yC(O)N(R')₂; and R^4 is methyl, ethyl or -CH₂OCH₃.

- 36. (new) The compound of Claim 35 wherein R^3 is $[R^{11}]$ -phenyl, where R^{11} is one substituent at the para position.
- 37. (new) The compound of Claim 25 wherein:

X is -CHR2; and

R² and NR^xR³ are in a cis configuration relative to one another.

38. (new) The compound of Claim 37 where the cis configuration is 2S,4R or 2R,4S:

39. (new) The compound of claim 25 which is represented by a structural formula selected from the group consisting of:

U.S.S.N. 10/678,872

SITICILIE
COSTIN

(Page 10 of 21)

U.S.S.N. 10/678,872

	C
CI OMe	
CI OIME	
OF.	
CI N.	
	CI CI NO

(Page 11 of 21)

U.S.S.N. 10/678,872

Succident	MINISTRICULO IN MANAGEMENT
B. ()	
CI CI N	

Practitioner's Docket No. $\underline{MPI02-110P1RNM}$

U.S.S.N. 10/678,872

Siricille	SUGUE
CI VI	
	HO NO
4	"Qi Qi Qi, nou

(Page 13 of 21)

U.S.S.N. 10/678,872

WILLIE STITE OF THE STITE OF TH	Shiricure Shiricure	
	+44	

or a pharmaceutically acceptable salt thereof.

40. (new) The compound of claim 25 wherein:

X is -CHR2; and

 R^2 and NR^xR^3 are in a *cis* configuration relative to one another, wherein the *cis* configuration is 2S,4R:

(Page 14 of 21)

U.S.S.N. 10/678,872

$$\begin{array}{c}
R^3 \\
N \\
\hline
A
\end{array}$$

$$\begin{array}{c}
A \\
2 \\
N \\
R
\end{array}$$

$$\begin{array}{c}
A \\
2 \\
R
\end{array}$$

$$\begin{array}{c}
A \\
R^2
\end{array}$$

$$\begin{array}{c}
A \\
R
\end{array}$$

41. (new) The compound of Claim 40 wherein:

R is -C(O)R¹, wherein R¹ is optionally substituted phenyl;

R² is H, methyl, or ethyl;

R³ is phenyl or [R¹¹]-phenyl;

R' is -C(O)R4; wherein R4 is methyl, ethyl, propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl,

-CH2OCH3 or -CH2OCH2CH3; and

Ring A is phenyl or $[R^{11}]$ -phenyl, where R^{11} is at the six and/or seven position.

42. (new) The compound of claim 40 wherein:

 R^3 is $[R^{11}]$ -phenyl, where R^{11} is Br, Cl, -CH₃, -N(R')₂, -NHC(O)OR', -S(O)₂CH₃, -

 $S(O)_2N(R')_2$ or $-(CH_2)_yC(O)N(R')_2$; and

R⁴ is methyl, ethyl or -CH₂OCH₃.

- 43. (new) The compound of Claim 42 wherein R¹¹ is one substituent at the para position.
- 44 (new) A pharmaceutical composition comprising the compound of Claim 25 and a pharmaceutically acceptable diluent, excipient or carrier.