# MENG30011 Applied Solid Mechanics AY 2022/23 coursework assessment

This assessment is designed to test your attainment of the Intended Learning Outcomes for MENG30011 Applied Solid Mechanics. The assessment is a single piece of coursework which carries 20 credits. The deadline for this coursework is **12:00 noon on Thursday 15<sup>th</sup> December 2022**.

This coursework has three parts. In Part A, you will analyse a mechanical component design using FEA and report on its suitability for service. In Part B you will answer questions about finite element theory. In Part C you will answer questions about the failure of materials. The three parts contribute separately to your overall unit mark; the weighting is Part A: 40%, Part B: 20%, Part C: 40%.

You should hand in your work via Turnitin on the unit Blackboard page. There are separate page limits for each part. These must include all figures, references and appendices. If you exceed the page limit for any part, your response for that part will not be accepted. You should put your responses together and submit them as a single .pdf document without a cover sheet.

This coursework must be done individually. You may discuss the coursework with other students but all work that you hand in, and any underlying analysis, **must be entirely your own**<sup>1</sup>.

Harry Coules & Alexander Velichko, 07/10/2022

# Part A: FEA Investigation and Report

#### Introduction

Liquified Natural Gas (LNG) carriers are tanker vessels that move LNG between major ports (see Figure 1). Natural gas is an important source of energy, and its large-scale transport allows the international energy market to operate efficiently while reducing the need for intercontinental pipelines. For transport by LNG carrier, natural gas is liquified by cooling in a special plant. The cold LNG is then pumped into large tanks onboard the carrier vessel. As the vessel sails between ports, gradual warming of the stored LNG inevitably causes some of it to boil off. To prevent a build-up of boil-off gas from over-pressurising the tanks, it must be re-liquified or gradually released. Any released boil-off gas is either: a.) diverted to the ship's engines, or b.) simply burned off so that only combustion products are released into the environment, rather than the more environmentally-damaging gas itself. LNG carriers use a large Gas Combustion Unit (GCU) to burn boil-off gas that cannot be either consumed by the engines or re-liquified and returned to the tanks. GCU modules are constructed in a factory and then lifted into place during fitting-out of the LNG carrier.

You are a stress analyst on the design team of a major supplier for GCUs to the marine LNG transport industry. Your team is a part of a company project which aims to design a new low-cost type of large GCU for bulk LNG carriers and bring it to market. The new design is almost complete, and your team are now finalising the design of its lifting attachments. Other team members have suggested a design for a lifting lug to support the GCU as it is lifted into place on the ship. The lugs are used during lifting operations only: different attachments secure the GCU to the ship. The Team Leader asks you to perform stress analysis on the part and produce a written report that the team can use to justify their proposal to the Project Lead.

<sup>&</sup>lt;sup>1</sup> As in any summative assessment, all instances of suspected plagiarism will be reported to the Exam Board.



Figure 1: The Japanese-flagged Energy Innovator is an example of a modern LNG carrier. The GCU is installed in the blue exhaust stack towards the stern.

# Design details

The lifting lug design is designed to keep the GCU stable as it is lifted, while avoiding a set of hydraulic control lines and instrumentation cables on the side of the unit. The lug designed by the team is shown in Figure 2. This shape will be fabricated from S355JR structural steel of a uniform thickness and welded to the rigid sidewall of the GCU using two welds. The integrity of the welds will be considered by a separate team and does not need to be included in your analysis. The dimensions *a*, *b* and *c* shown in Figure 2 and the thickness of material used to fabricate the lifting lug are given in Table 2 below.



Figure 2: Proposed design of the GCU lifting lug. a.) Overall design showing loading and attachments to the GCU body. b.) Dimensions of the lifting lug (in mm). The values of dimensions a and b can be found in Table 2.

The lifting arrangement used to install the GCU is shown in Figure 3. The GCU is roughly cylindrical and six lifting lugs of the type shown in Figure 2 are positioned around its circumference so that the load is shared roughly equally between them. The overall mass of the GCU is 36,000 kg. It is essential that the GCU can be lifted safely during installation, and that the lifting lugs will not break. For lifting equipment of this type, a typical safety factor is:

$$\frac{Breaking\ strength\ of\ the\ component}{Safe\ working\ load}\approx 5$$

The breaking strength of a component is the maximum load that it will support (e.g. when tested to destruction). The safe working load is the load below which a component is intended to be used normally without fear of it breaking.

Table 1: Ambient-temperature mechanical properties of the structural steel which will be used for the lifting lugs (Steel, EN 10025-2 – S355JR).

| Property                    | Value                   |
|-----------------------------|-------------------------|
| Young's modulus             | 209 GPa                 |
| Poisson's ratio             | 0.3                     |
| Yield strength <sup>2</sup> | 355 MPa                 |
| Ultimate tensile strength   | 630 MPa                 |
| Elongation at failure       | 22%                     |
| Density                     | 8010 kg m <sup>-3</sup> |



Figure 3: Vertical lifting arrangement to be used for installing the GCU. Six lugs are spaced equally around the circumference of the object. It can be assumed that all cables, shackles and harnesses used in the lifting operation will be appropriate for the loads involved.

#### Report

You must produce a report on your analysis. This report will be delivered to the Project Lead, who will make the final decision on whether to go ahead with this design. In your report, you should:

- Briefly outline the problem that you are aiming to solve.
- Explain and justify any analysis methods that you have used.
- Use appropriate methods to demonstrate that your stress analysis results are valid<sup>3</sup>.
- Clearly present and interpret the results of your stress analysis.

<sup>&</sup>lt;sup>2</sup> Specifically, this refers to the minimum allowable 0.2% offset yield strength.

<sup>&</sup>lt;sup>3</sup> For example, these might include mesh sensitivity studies or comparisons to analytical solutions.

• Give a clear and well-justified recommendation on whether the lifting lug design is adequate or whether there is a potential safety hazard.

Additionally, the Team Leader has asked you to include two specific pieces of information in the report and <a href="https://nicenter.org/nicenter.org/">https://nicenter.org/nicenter.org/</a> report and <a href="https://nicenter.org/">highlight them in yellow</a>:

- The maximum vertical deflection of the end of the lifting lug (i.e. the furthest point from the GCU wall) that would be expected during the lifting operation.
- The maximum value of von Mises' stress anywhere on the lug, **excluding the contact region between the lug and lifting shackle**, that would be expected during the lifting operation.

You may use any format or structure for the report – there is no set template. However, it must not exceed <u>4 sides</u> of A4 and you must use 11-point font or larger. Any figures, tables, equations, references and appendices must be included within this limit. You can assume that the Project Lead has a good knowledge of stress analysis, FEA and mechanics of materials.

You must decide what sort of FEA to perform and what software you use. You could use Abaqus<sup>4</sup>, MATLAB<sup>5</sup>, any of the FEA packages suggested in the formative coursework information, or any other software that you want. However, in the report you must carefully explain and justify any analysis that you have performed.

## Part A report marking

Your Part A report will be marked on three criteria:

- Accuracy (30%) The numerical accuracy of the results presented.
- Credibility (50%) The overall persuasiveness of your report and its conclusions. This includes the quality of the analysis and how well-justified it is, the credibility of any arguments that you make, and how well these arguments are explained in relation to the boarder context of the work (e.g. any existing literature).
- Presentation (20%) The quality of presentation seen in the written report, including figures etc. Sensible formatting and margin sizes should be used.

Each report will be marked individually. Marking will follow the University's standard 21-point scale. Marks for each of the criteria with be weighted and then summed together. This total mark will be converted to an overall percentage for Part A.

<sup>&</sup>lt;sup>4</sup> This assessment is designed so that it can be done using the Learning Edition of Abaqus rather than the full version if necessary. However, for practical reasons this is discouraged. Although you will not be marked down for using Learning Edition, the fact that this version of Abaqus only supports a very limited number of nodes will put a severe and unnecessary limitation on your model design.

<sup>&</sup>lt;sup>5</sup> The example MATLAB functions given on the unit Blackboard can be used and/or modified as you wish.

# Part B: Theory of FEA

#### Introduction

Part B of this coursework comprises a single theory task. You should answer it using no more than **3 sides** of A4 with 11-point font or larger. You may use equations and/or figures if you want to; they are included in the page limit. You may use any layout you like for your response to Part B so long as it is clear; there is no fixed template.

#### Task

Download the Part B.zip file. Extract it and then run the enclosed .p code in MATLAB using<sup>6</sup>:

```
>> PartB(*my_student_code*)
```

replacing \* my\_student\_code\* with your own 7-digit student code. You do not need to run the contents of the folder named Mesh2d v24; these are functions that are called by PartB.p

When you run PartB.p, you will see two figures: Figure 1 shows a 2D domain which has been discretised using a mesh made up of Constant Strain Triangle elements. Figure 2 shows a particular element from that mesh. The domain in Figure 1 represents a piece of isotropic linear-elastic material. You will also see information on the material's Young's modulus, its Poisson's ratio and whether it should be considered in plane stress or plane strain.

Now answer the following questions in your Part B report:

- 1. How many: a.) elements, b.) nodes and c.) degrees-of-freedom does the mesh in Figure 1 have?
- 2. What is the stiffness matrix of the element shown in Figure 2? You do not need to show a derivation of formulae for the stiffness matrix, but you should show your working.
- 3. Consider the element in Figure 2 alone. Imagine the situation where:
  - Nodes 2 & 3 are restrained against movement in both the x and y directions. Node 1 remains unrestrained.
  - Forces  $f_{1x}$  and  $f_{1y}$  are applied at Node 1 in the x and y directions. The values of these forces per unit thickness of material are given by the MATLAB script.

What is the magnitude of the reaction force at Node 2? Show your working.

- 4. Consider the domain shown in Figure 1 again. If you knew:
  - The distribution of mass in the domain.
  - Its boundary conditions.
  - That any material damping was negligible.

describe how you could find its natural frequencies of vibration. You do not need to determine these frequencies.

# Part B marking

Your response to Part B will be marked based on:

<sup>&</sup>lt;sup>6</sup> If this doesn't work, you may need to add the unzipped folder to your MATLAB path by right clicking on it in MATLAB and selecting Add to path>Selected folders and subfolders.

- The accuracy of your answers (primary criterion).
- Your use and explanation of methods (secondary criterion). Is an appropriate method being used/proposed? Is any working clear and straightforwardly explained?
- Presentation (secondary criterion). Your response must be clear and legible.

Your responses will be marked individually. Marking will follow the University's standard 21-point scale. The mark will be converted to a percentage for Part B.

# Part C: Failure of Materials

#### Introduction

You are asked to complete two research investigations, related to the structural integrity of service systems on board the LNG carrier. To complete these tasks, you may need to perform some numerical calculations. You can use any software (for example, you can write a program in MATLAB). You do not need to show your code. However, you need to clearly describe all formulas and methods you are using. During your analysis you can use any reasonable approximations. It is important to clearly describe and justify them. You may use any layout you like for your response to Part C so long as it is clear; there is no fixed template.

### Part C questions

#### Question 1

One of the load-bearing structural components represents a large plate with rectangular cross-section. The material is aluminium and has a yield stress of 400 MPa, an elastic modulus of 70 GPa, a Poisson's ratio of 0.3 and a fracture toughness of 20 MPa  $\sqrt{m}$ . The plate is loaded by (unknown) normal stresses  $\sigma_x$  and  $\sigma_y$  as shown in Figure 4. In order to measure these stresses a test is performed. The stresses are calculated from strains, which are measured by strain gauges bonded to the plate. It is assumed that these stresses are not sufficient to cause yielding.

**Q1a.** What is the smallest number of strain measurements required to determine  $\sigma_x$  and  $\sigma_y$ ?

**Q1b.** Calculate applied stresses  $\sigma_x$  and  $\sigma_y$  from strain measurements.

- 1) Define the orientations of the necessary strain gauges.
- 2) The relevant strain values can be obtained using the MATLAB function provided.

In order to ensure the structural integrity of the component during the service an additional stress  $\sigma_p$  must be taken into account. It is assumed the magnitude of this stress  $|\sigma_p| \leq 400$  MPa and its direction is defined by the angle  $\theta_p = 30^0$  as shown in Fig.4. It is also assumed that a central crack of an arbitrary orientation can be developed due to environmental and loading conditions (see Fig. 4). The crack can be identified by ultrasonic non-destructive testing, however, the minimum detection size is 5 mm.

**Q1c.** Provide analysis of the possible component's failure mechanisms as a function of stress  $\sigma_p$  and crack orientation.

You can consider the following points:

- 1) Analyse safety factors, corresponding to different failure mechanisms.
- 2) Define the range of stress  $\sigma_p$ , which is safe for the structural integrity of the component.
- 3) Find the most dangerous orientation of the crack.
- 4) The results can be presented using diagrams, graphs, or tables.
- 5) Try to give a physical explanation of obtained results where it is possible.

In order to calculate strain gauge measurements for Q1b run the enclosed fn\_strain.p code in MATLAB using

```
>> strain = fn_strain(my_student_code,theta)
```

and replacing my\_student\_code with your own 7-digit student code. The variable *theta* is a strain gauge orientation angle  $\theta$  in degrees (see Fig.4) and can be a scalar or vector.



Figure 4: Stressed plate containing an inclined crack with a strain gauge attached.

#### Question 2

The LNG carrier has a complicated pipework which is required to support its service systems. It is very important to maintain structural integrity of the pipework, therefore, routine inspections must be performed in certain time intervals. One section of the pipework represents a steel pipe with closed ends, an outer diameter of D=200 mm and a wall thickness of t=10 mm. The pipe works in cycling loading with internal pressure varying from zero to p=40 MPa and back. Additionally, there is a possibility of a valve fault which can cause a sudden short-term increase of the maximum working pressure by a factor of 2. It is assumed that during the service a semi-circular crack can occur in a pipe weld as shown in Figure 5. The pipe is regularly inspected, and the crack can be detected with probability of detection described by the function  $P_{pod}(a)$ , where a is the crack radius (the function  $P_{pod}(a)$  corresponds to the probability that all cracks with the radius greater than a are detected).

The steel has a fracture toughness of  $K_{IC}$  = 90 MPa  $\sqrt{m}$ . The fatigue crack growth is described by Paris' law with constants  $C = 10^{-12} \frac{\text{m/cycle}}{\left(\text{MPa}\sqrt{\text{m}}\right)^m}$  and m = 4. The geometry correction factor for the semi-circular crack of radius a is given by:

$$Y = 0.728 + 0.373 \left(\frac{a}{t}\right)^2 - 0.029 \left(\frac{a}{t}\right)^4$$
,  $a \le t$ .

**Q2a.** How does the pipe's probability of failure depend on the interval between pipe inspections?

**Q2b.** Find the inspection interval, corresponding to the probability of failure equal to 0.01.

In order to calculate the probability of detection function  $P_{pod}(a)$  run the enclosed fn\_pod.p code in MATLAB using

replacing  $my\_student\_code$  with your own 7-digit student code. The variable a is a crack radius in millimetres and can be a scalar or vector.

# Tips:

- 1) Determine the failure mechanism first.
- 2) The inspection interval can be measured in terms of the number of cycles.



Figure 5: Service pipework containing a crack in the radial-circumferential plane.

# Part C marking

Your responses to Part C will be marked based on:

- The correctness of your answers.
- The understanding of the methods involved.
- Presentation. Your explanations must be clear and legible.

Your responses will be marked individually. Marking will follow the University's standard 21-point scale. The mark will be converted to a percentage for Part C.

# Appendix: Lifting lug dimensions for Part A

In Part A, each candidate will analyse a lug of unique design. The lug dimensions that should be used by each candidate are given in Table 2, ordered by student code. Use your 7-digit student code to determine the values of a, b, c and t (thickness) that you should use.

Table 2: Dimensions of the lifting lug to be considered by each candidate.

| Student code | a (mm) | b (mm) | c (mm) | thickness (mm) |
|--------------|--------|--------|--------|----------------|
| 1531251      | 70     | 40     | 30     | 30             |
| 1800708      | 70     | 40     | 30     | 32.5           |
| 1805922      | 70     | 40     | 30     | 35             |
| 1820499      | 70     | 40     | 32.5   | 30             |
| 1839288      | 70     | 40     | 32.5   | 32.5           |
| 1839815      | 70     | 40     | 32.5   | 35             |
| 1847047      | 70     | 40     | 35     | 30             |
| 1857219      | 70     | 40     | 35     | 32.5           |
| 1859176      | 70     | 40     | 35     | 35             |
| 1900444      | 70     | 45     | 30     | 30             |
| 1901327      | 70     | 45     | 30     | 32.5           |
| 1903913      | 70     | 45     | 30     | 35             |
| 1904306      | 70     | 45     | 32.5   | 30             |
| 1904894      | 70     | 45     | 32.5   | 32.5           |
| 1904930      | 70     | 45     | 32.5   | 35             |
| 1907015      | 70     | 45     | 35     | 30             |
| 1907378      | 70     | 45     | 35     | 32.5           |
| 1909131      | 70     | 45     | 35     | 35             |
| 1913974      | 70     | 50     | 30     | 30             |
| 1914413      | 70     | 50     | 30     | 32.5           |
| 1915056      | 70     | 50     | 30     | 35             |
| 1915370      | 70     | 50     | 32.5   | 30             |
| 1915577      | 70     | 50     | 32.5   | 32.5           |
| 1915585      | 70     | 50     | 32.5   | 35             |
| 1915835      | 70     | 50     | 35     | 30             |
| 1922384      | 70     | 50     | 35     | 32.5           |
| 1929936      | 70     | 50     | 35     | 35             |
| 1932179      | 70     | 55     | 30     | 30             |
| 1932286      | 70     | 55     | 30     | 32.5           |
| 1934756      | 70     | 55     | 30     | 35             |
| 1935805      | 70     | 55     | 32.5   | 30             |
| 1936285      | 70     | 55     | 32.5   | 32.5           |
| 1936453      | 70     | 55     | 32.5   | 35             |
| 1936945      | 70     | 55     | 35     | 30             |
| 1937669      | 70     | 55     | 35     | 32.5           |
| 1937850      | 70     | 55     | 35     | 35             |
| 1938848      | 75     | 40     | 30     | 30             |
| 1940730      | 75     | 40     | 30     | 32.5           |
| 1943414      | 75     | 40     | 30     | 35             |

| Student code | a (mm) | b (mm) | c (mm) | thickness (mm) |
|--------------|--------|--------|--------|----------------|
| 1944637      | 75     | 40     | 32.5   | 30             |
| 1946274      | 75     | 40     | 32.5   | 32.5           |
| 1958722      | 75     | 40     | 32.5   | 35             |
| 1972250      | 75     | 40     | 35     | 30             |
| 1973031      | 75     | 40     | 35     | 32.5           |
| 1973074      | 75     | 40     | 35     | 35             |
| 1974620      | 75     | 45     | 30     | 30             |
| 2000284      | 75     | 45     | 30     | 32.5           |
| 2000683      | 75     | 45     | 30     | 35             |
| 2000863      | 75     | 45     | 32.5   | 30             |
| 2002632      | 75     | 45     | 32.5   | 32.5           |
| 2002667      | 75     | 45     | 32.5   | 35             |
| 2002695      | 75     | 45     | 35     | 30             |
| 2002820      | 75     | 45     | 35     | 32.5           |
| 2003420      | 75     | 45     | 35     | 35             |
| 2003879      | 75     | 50     | 30     | 30             |
| 2003933      | 75     | 50     | 30     | 32.5           |
| 2005902      | 75     | 50     | 30     | 35             |
| 2006664      | 75     | 50     | 32.5   | 30             |
| 2006679      | 75     | 50     | 32.5   | 32.5           |
| 2006847      | 75     | 50     | 32.5   | 35             |
| 2007122      | 75     | 50     | 35     | 30             |
| 2007824      | 75     | 50     | 35     | 32.5           |
| 2008767      | 75     | 50     | 35     | 35             |
| 2008918      | 75     | 55     | 30     | 30             |
| 2008959      | 75     | 55     | 30     | 32.5           |
| 2009028      | 75     | 55     | 30     | 35             |
| 2010407      | 75     | 55     | 32.5   | 30             |
| 2010521      | 75     | 55     | 32.5   | 32.5           |
| 2010683      | 75     | 55     | 32.5   | 35             |
| 2011110      | 75     | 55     | 35     | 30             |
| 2011644      | 75     | 55     | 35     | 32.5           |
| 2011745      | 75     | 55     | 35     | 35             |
| 2011809      | 80     | 40     | 30     | 30             |
| 2011862      | 80     | 40     | 30     | 32.5           |
| 2012109      | 80     | 40     | 30     | 35             |
| 2012800      | 80     | 40     | 32.5   | 30             |
| 2012804      | 80     | 40     | 32.5   | 32.5           |
| 2012815      | 80     | 40     | 32.5   | 35             |
| 2013500      | 80     | 40     | 35     | 30             |
| 2013640      | 80     | 40     | 35     | 32.5           |
| 2014459      | 80     | 40     | 35     | 35             |
| 2014606      | 80     | 45     | 30     | 30             |
| 2015242      | 80     | 45     | 30     | 32.5           |
| 2015329      | 80     | 45     | 30     | 35             |

| Student code | a (mm) | b (mm) | c (mm) | thickness (mm) |
|--------------|--------|--------|--------|----------------|
| 2015454      | 80     | 45     | 32.5   | 30             |
| 2016852      | 80     | 45     | 32.5   | 32.5           |
| 2016955      | 80     | 45     | 32.5   | 35             |
| 2017124      | 80     | 45     | 35     | 30             |
| 2017408      | 80     | 45     | 35     | 32.5           |
| 2017620      | 80     | 45     | 35     | 35             |
| 2017949      | 80     | 50     | 30     | 30             |
| 2017962      | 80     | 50     | 30     | 32.5           |
| 2018122      | 80     | 50     | 30     | 35             |
| 2018717      | 80     | 50     | 32.5   | 30             |
| 2022281      | 80     | 50     | 32.5   | 32.5           |
| 2022947      | 80     | 50     | 32.5   | 35             |
| 2023463      | 80     | 50     | 35     | 30             |
| 2030919      | 80     | 50     | 35     | 32.5           |
| 2031587      | 80     | 50     | 35     | 35             |
| 2032425      | 80     | 55     | 30     | 30             |
| 2034182      | 80     | 55     | 30     | 32.5           |
| 2034223      | 80     | 55     | 30     | 35             |
| 2034933      | 80     | 55     | 32.5   | 30             |
| 2039183      | 80     | 55     | 32.5   | 32.5           |
| 2039711      | 80     | 55     | 32.5   | 35             |
| 2040966      | 80     | 55     | 35     | 30             |
| 2042634      | 80     | 55     | 35     | 32.5           |
| 2042710      | 80     | 55     | 35     | 35             |
| 2043303      | 85     | 40     | 30     | 30             |
| 2043623      | 85     | 40     | 30     | 32.5           |
| 2044316      | 85     | 40     | 30     | 35             |
| 2044449      | 85     | 40     | 32.5   | 30             |
| 2044546      | 85     | 40     | 32.5   | 32.5           |
| 2046106      | 85     | 40     | 32.5   | 35             |
| 2046826      | 85     | 40     | 35     | 30             |
| 2047448      | 85     | 40     | 35     | 32.5           |
| 2047474      | 85     | 40     | 35     | 35             |
| 2048600      | 85     | 45     | 30     | 30             |
| 2049040      | 85     | 45     | 30     | 32.5           |
| 2049155      | 85     | 45     | 30     | 35             |
| 2050825      | 85     | 45     | 32.5   | 30             |
| 2050899      | 85     | 45     | 32.5   | 32.5           |
| 2051568      | 85     | 45     | 32.5   | 35             |
| 2051713      | 85     | 45     | 35     | 30             |
| 2051796      | 85     | 45     | 35     | 32.5           |
| 2051988      | 85     | 45     | 35     | 35             |
| 2052844      | 85     | 50     | 30     | 30             |
| 2054100      | 85     | 50     | 30     | 32.5           |
| 2054379      | 85     | 50     | 30     | 35             |

| Student code | a (mm) | b (mm) | c (mm) | thickness (mm) |
|--------------|--------|--------|--------|----------------|
| 2055371      | 85     | 50     | 32.5   | 30             |
| 2055707      | 85     | 50     | 32.5   | 32.5           |
| 2055745      | 85     | 50     | 32.5   | 35             |
| 2055792      | 85     | 50     | 35     | 30             |
| 2055853      | 85     | 50     | 35     | 32.5           |
| 2059727      | 85     | 50     | 35     | 35             |
| 2059728      | 85     | 55     | 30     | 30             |
| 2059811      | 85     | 55     | 30     | 32.5           |
| 2060463      | 85     | 55     | 30     | 35             |
| 2061182      | 85     | 55     | 32.5   | 30             |
| 2062153      | 85     | 55     | 32.5   | 32.5           |
| 2063472      | 85     | 55     | 32.5   | 35             |
| 2064398      | 85     | 55     | 35     | 30             |
| 2064558      | 85     | 55     | 35     | 32.5           |
| 2064844      | 85     | 55     | 35     | 35             |
| 2065424      | 90     | 40     | 30     | 30             |
| 2065759      | 90     | 40     | 30     | 32.5           |
| 2066239      | 90     | 40     | 30     | 35             |
| 2066245      | 90     | 40     | 32.5   | 30             |
| 2067728      | 90     | 40     | 32.5   | 32.5           |
| 2068178      | 90     | 40     | 32.5   | 35             |
| 2068409      | 90     | 40     | 35     | 30             |
| 2068656      | 90     | 40     | 35     | 32.5           |
| 2071528      | 90     | 40     | 35     | 35             |
| 2074204      | 90     | 45     | 30     | 30             |
| 2074754      | 90     | 45     | 30     | 32.5           |
| 2075340      | 90     | 45     | 30     | 35             |
| 2081747      | 90     | 45     | 32.5   | 30             |
| 2087849      | 90     | 45     | 32.5   | 32.5           |
| 2090671      | 90     | 45     | 32.5   | 35             |
| 2337888      | 90     | 45     | 35     | 30             |
| 2341547      | 90     | 45     | 35     | 32.5           |
| 2342316      | 90     | 45     | 35     | 35             |
| 2343120      | 90     | 50     | 30     | 30             |
| 2343636      | 90     | 50     | 30     | 32.5           |
| 2345139      | 90     | 50     | 30     | 35             |
| 2053620      | 90     | 50     | 32.5   | 30             |