Table 1: Comparison of DPR, BM-25, LLM Reranking and GPR-LLM (RBF kernel, $\epsilon = 0.1$) with all-MiniLM-L6-v2 encoder across four datasets (TravelDest, POINTREC, Yelp Restaurant, TripAdvisor Hotel) at varying budget of LLM labels. Underline indicates statistically significant improvements over the best-performing baseline (paired t-test, p < 0.05).

Budget	Method	P@10	Trave NDCG@10	P@30	NDCG@30	P@10	POIN NDCG@10			P@10	Yelp Re NDCG@10			P@10	TripAdvi NDCG@10		
N/A	DPR BM25	$0.360 \\ 0.234$	0.366 0.238	$0.314 \\ 0.237$	0.332 0.239	0.164	$0.179 \\ 0.032$	$0.104 \\ 0.025$	0.182 0.038	0.346	$0.362 \\ 0.327$	$0.282 \\ 0.236$	0.331 0.283	0.231	0.297 0.257	$0.166 \\ 0.153$	0.365 0.325
25	LLM Reranking GPR-LLM	0.294 0.376	0.309 0.401	0.238 0.340	0.219 0.364	0.175 0.157	0.206 0.200	$0.106 \\ 0.108$	0.158 0.177	0.324 0.360	0.374 0.402	0.237 0.273	0.260 0.340	$ {0.251} \atop {f 0.282}$	0.349 0.382	0.178 0.182	0.332 0.426
50	LLM Reranking GPR-LLM	0.356 0.432	0.371 0.445	0.248 0.362	0.281 0.389	0.196 0.236	0.234 0.262	$0.105 \\ 0.113$	0.208 0.222	0.386 0.408	0.426 0.451	0.254 0.304	0.332 0.377	0.289 0.324	0.397 0.439	0.169 0.197	0.417 0.482
100	LLM Reranking GPR-LLM	0.398 0.448	0.406	0.296 0.380	0.328 0.412	0.225 0.246	0.255 0.269	$0.124 \\ 0.130$	0.231 0.239	0.418 0.444	0.459 0.487	0.298 0.334	0.379 0.413	0.322 0.358	0.438 0.481	$0.189 \\ 0.218$	0.472 0.529

Table 2: Comparison of DPR, BM-25, LLM Reranking and GPR-LLM (RBF kernel, $\epsilon = 0.1$) with **msmarco-distilbert-base-tas-b** encoder across four datasets (TravelDest, POINTREC, Yelp Restaurant, TripAdvisor Hotel) at varying budget of LLM labels. Underline indicates statistically significant improvements over the best-performing baseline (paired t-test, p < 0.05).

Budget	Method	P@10	Trave NDCG@10	P@30	NDCG@30	P@10		TREC P@30		P@10	Yelp Re NDCG@10			P@10	TripAdvi NDCG@10		
N/A	DPR BM25	$0.358 \\ 0.234$	0.365 0.238	$0.318 \\ 0.237$	0.333 0.239	$0.143 \\ 0.025$	0.161 0.032	$0.094 \\ 0.025$	0.165 0.038	0.363	$0.385 \\ 0.327$	$0.294 \\ 0.236$	$0.351 \\ 0.283$	0.224	$0.275 \\ 0.257$	$0.165 \\ 0.153$	0.349 0.325
25	LLM Reranking GPR-LLM	$0.344 \\ 0.370$	0.379 0.402	$\substack{0.313 \\ 0.325}$	0.339 0.356	$0.154 \\ 0.159$	0.188 0.192	$\begin{array}{c} 0.094 \\ 0.098 \end{array}$	0.178 0.183	0.340 0.359	0.382 0.397	0.289 0.272	0.355 0.343	0.227 0.286	0.302 0.378	$0.165 \\ 0.177$	0.369 0.419
50	LLM Reranking GPR-LLM	0.380 0.416	0.419 0.453	0.298 0.348	0.339 0.386	$0.171 \\ 0.176$	0.215 0.217	0.098 0.103	0.193 0.197	0.368 0.376	0.410 0.414	0.282 0.286	0.355 0.361	0.251 0.325	0.336 0.423	0.166 0.199	0.389 0.470
100	LLM Reranking GPR-LLM	0.428 0.444	0.467 0.479	$\begin{array}{c} 0.323 \\ 0.344 \end{array}$	0.371 0.389	$0.214 \\ 0.215$	$0.245 \\ 0.246$	$\begin{array}{c} 0.102 \\ \underline{\textbf{0.121}} \end{array}$	$0.200 \\ 0.227$	$\begin{vmatrix} 0.391 \\ \textbf{0.430} \end{vmatrix}$	0.432 0.472	$0.285 \\ \underline{0.311}$	0.366 0.398	$\begin{vmatrix} 0.273 \\ \textbf{0.360} \end{vmatrix}$	0.366 0.476	$0.170 \\ \underline{0.225}$	0.408 0.535

Table 3: Per-query time complexity and latency (in seconds) for different retrieval methods under the following setup: R = 50, N = 100,000, using MiniLM embeddings. (N: number of passages, D: the embedding dimension, R: the LLM budget, C_{LLM} : cost of a single LLM querying.) For GPR, the time complexity includes: kernel matrix computation $\mathcal{O}(R^2D)$, matrix inversion $\mathcal{O}(R^3)$, and inference over N passages $\mathcal{O}(NRD)$. Latency values include 95% confidence intervals in $[\cdot]$.

Method	Per-query Complexity	Latency (sec)
DPR LLM Rerank		0.165 [0.161, 0.168] 0.678 [0.671, 0.685]
GPR-LLM	$O(ND + R \cdot C_{\text{LLM}} + R^2D + R^3 + NRD)$	Dot Product: 0.782 [0.769, 0.795] Cosine Similarity: 0.774 [0.762, 0.787] RBF Kernel: 0.754 [0.730, 0.780]

System specifications: CPU—Intel(R) Core(TM) i7-14700HX; GPU—NVIDIA GeForce RTX 4070 Laptop GPU; average CPU utilization during measurement: ~5%.

Figure 1: Performance comparison of different kernel functions with Greedy Sampling ($\epsilon = 0$) under varying number of passages with LLM judgments (budget of LLM labels) with TAS-B embedding.