КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Фізичний факультет

Кафедра фізики функціональних матеріалів

РОБОЧА ПРОГРАМА НАВЧАЛЬНОГ ДИСЦИПЛІНИ

РАДІАЦІЙНА ФІЗИКА

для студентів

галузь знань 10: Природничі науки спеціальність 104: Фізика та астрономія

освітній рівень бакалавр

освітня програма фізичне матеріалознавство/неметалічне матеріалознавство

вид дисципліни вибіркова (ВК6.2.3)

Форма навчання	денна
Навчальний рік	2025/2026
Семестр	8
Кількість кредитів ECTS	4
Мова викладання, навчання	

та оцінювання українська

Форма заключного контролю іспит

Викладач: д. ф.-м. н. професор Микола КУЛІШ

Розробник: Куліш Микола Полікарпович, завідувач кафедри, доктор фізикоматематичних наук, професор.

	ЗАТВЕРДЖЕНО Зав. кафедри фізики функціональних матеріалів (микола КУЛІШ)
	Протокол № 10 від «23» травня 2022 р.
Схвалено науково-методичною комісією	фізичного факультету
Протокол № 11 від «10» червня 2022 року Голова науково-методичної комісії	(Олег ОЛІХ)
«»2022 року	

ЗАТВЕРДЖЕНО

- **1. Мета** дисципліни оволодіння студентами знаннями з радіаційних пошкоджень кристалічних речовин, радіаційних дефектів та їх конфігураційних профілей, кінетики відпалу радіаційних дефектів, радіаційно-стимульованих процесів, радіаційної фізики полімерів як наукової основи для сучасних радіаційних технологій модифікації функціональних матеріалів.
- 2. Попередні вимоги до опанування або вибору навчальної дисципліни:
 - 1. Знати основи загальної фізики, термодинаміки.
 - 2. Вміти застосовувати попередні знання з курсів математичного аналізу, диференціальних та інтегральних рівнянь, загальної фізики.
 - 3. Володіти елементарними навичками користування персональним комп'ютером.
- **3. Анотація навчальної дисципліни**: Спеціальна навчальна дисципліна «Радіаційна фізика» ϵ складовою частиною циклу професійної підготовки фахівців освітньо-кваліфікаційного рівня «бакалавр».
- **4.** Завдання (навчальні цілі): формування фізичного мислення у студентів в межах матеріалу, що вивчається. Оволодіння навиками творчого розв'язування фізичних задач з використанням сучасних програм і обчислювальної техніки та сприяння розвитку логічного і аналітичного мислення студентів майбутніх фізиків. Дисципліна готує студентів до сприймання матеріалу спецкурсів, передбачених програмою спеціалізації.

Інтегральних:

Здатність розв'язувати складні спеціалізовані задачі та практичні проблеми з фізики у професійній діяльності або у процесі подальшого навчання, що передбачає застосування певних теорій і методів фізики і характеризується складністю та невизначеністю умов.

Загальних:

- 3К2. Здатність застосовувати знання у практичних ситуаціях.
- ЗКЗ. Навички використання інформаційних і комунікаційних технологій.

Фахових:

- ФК2. Здатність використовувати на практиці базові знання з математики як математичного апарату фізики і астрономії при вивченні та дослідженні фізичних та астрономічних явищ і процесів.
- ФК4. Здатність працювати із науковим обладнанням та вимірювальними приладами, обробляти та аналізувати результати досліджень.
- ФК15. Здатність аналізувати світові тенденції розвитку фізики для вибору власної освітньої траєкторії.

5. Результати навчання за дисципліною:

	Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)	Форми (та/або методи і технології)	оцінювання та пороговий	Відсоток у підсумковій оцінці з дисципліни
Код	Результат навчання	викладання і навчання	критерій оцінювання (за необхідності)	
	Знати: основні характеристики взаємодії бомбардуючи частинок з речовиною, типи радіаційних пошкоджень, механізми їх міграції, опис концентраційних профілів точкових дефектів, ефективності стоків, їх отруєння домішковими атомами, кінетики радіаційних дефектів за різних умов, радіаційно-стимульованої дифузії атомів, радіаційно-стимульованої сегрегації і виділення фаз, упорядкування та спадковості в сплавах, вакансійного розпухання, радіаційного зміцнення, вплив опромінення на полімери.	практичні роботи, Самостійна робота	Модульна контрольна робота, Опитування в процесі лекції, перевірка рефератів та інших	50
	Вміти: творчо вибирати методи опису радіаційних пошкоджень функціональних матеріалів під дією різних бомбардуючих частинок та їх впливу на радіаційну модифікацію фізичних властивостей, самостійно вивчати і використовувати літературу з даної дисципліни.		форм самостійної роботи, іспит	50

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання

Результати навчання дисципліни (ВК6.2.3)	1.1	1.2
Програмні результати навчання (назва)		1.2
ПРН1. Знати, розуміти та вміти застосовувати основні положення загальної та	+	
теоретичної фізики, зокрема, класичної, релятивістської та квантової механіки,		
молекулярної фізики та термодинаміки, електромагнетизму, хвильової та квантової		
оптики, фізики атома та атомного ядра для встановлення, аналізу, тлумачення,		
пояснення й класифікації суті та механізмів різноманітних фізичних явищ і процесів		
для розв'язування складних спеціалізованих задач та практичних проблем з фізики.		
ПРНЗ. Знати і розуміти експериментальні основи фізики: аналізувати, описувати,	+	
тлумачити та пояснювати основні експериментальні підтвердження існуючих фізичних		
теорій.		
ПРН4. Вміти застосовувати базові математичні знання, які використовуються у фізиці	+	
та астрономії: з аналітичної геометрії, лінійної алгебри, математичного аналізу,		
диференціальних та інтегральних рівнянь, теорії ймовірностей та математичної		
статистики, теорії груп, методів математичної фізики, теорії функцій комплексної		
змінної, математичного моделювання.		
ПРН14. Знати і розуміти основні вимоги техніки безпеки при проведенні		+
експериментальних досліджень, зокрема правила роботи з певними видами обладнання		
та речовинами, правила захисту персоналу від дії різноманітних чинників, небезпечних		
для здоров'я людини.		
ПРН26. Знати основні сучасні фізичні теорії, що пов'язані з поясненням властивостей		+
матеріалів; вміти застосовувати їх до пояснення властивостей неметалічних систем з		
різним функціональним призначенням.		
ПРН27. Мати базові навички експериментального дослідження функціональних		+
матеріалів різноманітного призначення, вміти обирати оптимальні методи та засоби		
їхнього дослідження.		
ПРН28. Розуміти міждисциплінарні шляхи розвитку науки та мати навички		+
міждисциплінарних матеріалознавчих досліджень.		

7. Схема формування оцінки:

7.1. Форми оцінювання студентів:

- семестрове оцінювання:

- **1.** Модульна контрольна робота 1 (10 балів 20 балів). Захист реферату 1 (5 балів 10 балів).
- **2.** Модульна контрольна робота 2 (10 балів 20 балів). Захист реферату 2 (5 балів 10 балів).

Підсумкове оцінювання у формі іспиту:

_	Частина 1	Частина 2	іспит	Підсумкова оцінка
Мінімум	15	15	0	60
Максимум	30	30	40	100

Студент не допускається до іспиту, якщо під час семестру набрав менше 30 балів.

7.2. Організація оцінювання:

Контроль здійснюється за модульно-рейтинговою системою, яка складається із 2 змістових модулів. Система оцінювання знань включає поточний, модульний та семестровий контроль знань. Результати навчальної діяльності студентів оцінюються за 100-бальною шкалою. Форми поточного контролю: оцінювання домашніх робіт, письмових самостійних завдань, тестів та контрольних робіт, виконаних студентами під час практичних занять. Модульний контроль: 2 модульні контрольні роботи. Студент може отримати максимально за модульні контрольну роботу 60 балів (по 30 балів за кожну). Підсумковий семестровий контроль проводиться у формі заліку (40 балів). Заліковий білет включає 2 теоретичні питання (по 20 балів) та задачу (20 балів).

7.3. Шкала відповідності

Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно / Fail	0-59

8. Структура навчальної дисципліни, Тематичний план лекцій та практичних робіт.

0. (1	8. Структура навчальної дисципліни, Тематичний план лекцій та практичних робіт.						
No		Кількість					
л/п	Номер і назва теми	годин					
11/11			Л/Р	C/P			
	Змістовий модуль 1 Радіаційні пошкодження кристалі та радіаційн	і дефек	ТИ				
	Тема 1. Радіаційні пошкодження кристалів.						
	Взаємодія бомбардуючих частинок з атомами. Радіаційні пошкодження в						
	моделі твердих куль. Радіаційні пошкодження іонами. Радіаційні пошкодження						
	γ -квантами. Радіаційні пошкодження нейтронами. Радіаційні пошкодження						
1	електронами. Втрати енергії та глибина проникнення електронів. Швидкість	5	2	10			
1	зміщення атомів за умови бомбардування електронами. Механізм втрат енергії	3	_	10			
	бомбардуючих іонів. Втрати енергій іонів у випадку пружних зіткнень. Втрати						
	енергій за непружних зіткнень. Пробіги і розподіл іонів у твердому тілі. Каскадні						
	функції. Швидкість утворення та число атомних зміщень. Просторовий розподіл						
	радіаційних пошкоджень в каскаді зміщень.						
	ТЕМА 2. Радіаційні дефекти та їх конфігураційні профілі.						
	Нерівноважні та термічно рівноважні точкові дефекти. Конфігурація точкових						
	дефектів. Енергія утворення точкових дефектів. Механізми та енергія міграції		_				
2	точкових дефектів. Комплекси точкових дефектів з домішками. Комплекси	5	2	10			
	точкових дефектів з інертними газами. Відпал радіаційних дефектів.						
	Концентраційні профілі радіаційних дефектів у випадку опромінення легкими						
	іонами.						
	ТЕМА 3. Кінетика відпалу радіаційних дефектів.						
	Дифузійні рівняння міграції точкових дефектів. Ефективність стоків						
	точкових дефектів. Отруєння стоків домішковими атомами. Дифузія радіаційних						
3	дефектів у випадку анігіляції міжвузлових атомів на стоках. Кінетика радіаційних	6	2	10			
	дефектів у випадку анігіляції вакансій на стоках. Кінетика радіаційних дефектів за довільних температур опромінення. Кінетика відпалу вакансій за умови їх						
	взаємодії з домішками. Кінетика відпалу радіаційних дефектів за умови їх						
	взаємодії з домішками. Кінетика відпалу радіаційних дефектів за умови іх взаємодії з домішками. Кінетика радіаційних дефектів у напівпровідниках.						
	Змістовий модуль 2 Радіаційні явища та радіаційна фізика полімерів			1			
	Тема 4 Радіаційно-стимульовані процеси.						
	Дифузія атомів в кристалах. Механізми міграції атомів у напівпровідниках.						
	Радіаційно-стимульована дифузія у випадку однорідного розподілу дефектів.						
7	Радіаційно-стимульована дифузія у випадку неоднорідного розподілу дефектів.	7	2	20			
	Радіаційно-стимульована дифузія у напівпровідниках. Іонна імплантація		-				
	напівпровідників. Протонно-стимульована дифузія у напівпровідниках.						
	Вакансійне розпухання. Радіаційна повзучість за відсутності петель.						
	Тема 5 Радіаційна фізика полімерів.						
	Вплив опромінення на полімери. Фізико-хімічні перетворення полімерів за						
8	умови опромінення. Вплив надмолекулярної організації полімерів на радіаціно-	7	2	20			
	стимульовані перетворення. Радіаційна електропровідність полімерів. Радіаційна						
	повзучість і радіаційна довговічність полімерів.						
	ВСЬОГО	30	10	80			

Загальний обсяг 120 год., в тому числі:

Лекцій – **30** год., лаб. роб. 10 год.

Самостійна робота -80 год.

9. Рекомендовані джерела:

Основна:

- 1. Дамаск А, Динс Дж. Точечные дефекты в металлах. М.: Мир, 1966, 282 с.
- 2. Радиационная химия полимеров. Под ред.. В.А.Каргина. М.: Наука, 1973, 454 с.
- 3. Винецкий В.Л., Холодарь Г.А. Радиационная физика полупроводников. Киев: Наукова думка, 1979, 336 с.
- 4. Аброян И.А., Андронов А.Н., Титов А.И. Физические основы электронной и ионной технологии. М.: Высшая школа, 1984 320 с.
- 5. Ахиезер И.А., Давыдов Л.Н. Введение в теоретическую радиационную физику металлов и сплавов. Киев: Наукова думка, 1985, 144 с.
- 6. Ибрагимов Ш.Ш., Кирсанов В.В., Пятилетов Ю.С. Радиационные повреждения металлов и сплавов. М.: Энергоатомиздат, 1985, 140 с.
- 7. Фазовые превращения при облучение. Под ред. Ф.В. Нолдои. Челябинск: Металлургия, 1989. 312 с.
- 8. Джафаров Т.Д. Радиационно-стимулированная диффузия в полупроводниках. М.: Энергоатомиздат, 1991, -288 с.
- 9. Физика радиационных явлений и радиационное материаловедение. Под ред. А.М. Паршина, И.М.Неклюдова, Н.В. Камышанченко. М.- С. Пт., 1998, 378 с.
- 10. Воеводин В.Н., Неклюдов И.М. Эволюция структурно-фазового состояния и радиационная стойкость конструкционных материалов. Киев: Наукова думка, 2006, 375 с.
- 11. Булавін Л.А., Дмитренко О.П., Куліш М.П. Радіаційна фізика. ВПЦ Київський університет, 2009, 498 с.

Додаткова:

- 1. Пикаев А.К. Современная радиационная химия. М.: Наука, 1987, 448 с.
- 2. Шалаев А.М. Радиационно-стимулированные процессы в металлах. М.: Энергоатомиздат, 1988, 176 с.