WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

C12Q 1/68, 1/70
C07C 107/00, G01N 33/566

(11) International Publication Number: WO 89/09833

(43) International Publication Date: 19 October 1989 (19.10.89)

(21) International Application Number: PCT/US89/01361

(22) International Filing Date: 31 March 1989 (31.03.89)

175,970 31 March 1988 (31.03.88) US

(71)(72) Applicant and Inventor: MILLS, Randell, L. [US/US]; R.D. 2, Cochranville, PA 19330 (US).

(74) Agents: MATZUK, Stephen, G. et al.; Weingarten, Schurgin, Gagnebin & Hayes, Ten Post Office Square, Boston, MA 02109 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), HU, IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), SU.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: LUMINIDE AND MACROLUMINIDE CLASS OF PHARMACEUTICALS

(57) Abstract

(30) Priority data:

A broad class of pharmaceutical agents which react directly with electron carriers or with reactive species produced by electron transport to release a pharmacologically active molecule to effect a therapeutic functional change in the organism by a receptor or nonreceptor mediated action.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Mali
ΑU	Australia	GA	Gabon .	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan .
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland .	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC.	Monaco	US	United States of Americ

WO 89/09833 PCT/US89/01361

- ! -

LUMINIDE AND MACROLUMINIDE CLASS OF PHARMACEUTICALS

FIELD OF THE INVENTION

The present invention relates to therapeutic pharmaceutical agents which are activated intracellularly by reaction with cellular electron carriers or free radicals to cause release of a free and active drug molecule.

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part of my co-pending U.S. Patent Application Serial No. 948,326, entitled LUMINIDE CLASS OF PHARMACEUTICALS, filed December 31, 1986.

BACKGROUND OF THE INVENTION

The effects of the preponderance of drugs result from their interaction with functional macromolecular components of the organism. Such interaction alters the function of the pertinent cellular component and thereby initiates the series of biochemical and physiological changes that are characteristic of the response to the drug. The term receptor denotes the component of the organism with which the chemical agent interacts. There are fundamental corollaries to the statement that the receptor for a drug can be any functional macromolecular component of the organism. One is that a drug is potentially capable of altering the rate at which any bodily function proceeds; a second is that, by virtue of interactions with specific receptors, drugs do not create effects

but merely modulate the rates of ongoing functions. A simple pharmacological dictum thus states that a drug cannot impart a new function to a cell. Functional changes due to a drug result from either enhancement or inhibition of the unperturbed rate. Furthermore, a drug that has no direct action can cause a functional change by competition for a binding site with another, active regulatory ligand of the receptor. Drugs are termed agonists when they cause effects as a result of direct alteration of the fundamental properties of the receptor with which they interact. Compounds that are themselves devoid intrinsic pharmacological activity but cause effects by inhibition of the action of a specific agonist (eg. by competition for agonist binding sites) are designated as antagonists.

At least from a numerical standpoint, the proteins of the cell form the most important class of drug receptors. Obvious examples are the enzymes of crucial metabolic or regulatory pathways tyrosine hydroxylase; 3-hydroxy-3-methylglutaryl -CoA reductase), but of equal interest are proteins involved in transport processes (eg. Ca²⁺ - ATPase; Na⁺ - K⁺ - ATPase) or those that are protein kinases which activate other proteins consequence of their binding a secondary messenger such as cAMP. Specific binding properties of other cellular constituents can be exploited. nucleic acids are important drug receptors, particularly for chemotherapeutic approaches to the control of malignancy, and plant lectins remarkable specificity for recognition of specific carbohydrate residues polysaccharides in glycoproteins. Small ions such as Ca2+ which can function as a regulatory ion or Fe²⁺ which can WO 89/09833

an essential enazmatic cofactor can exploited as drug receptors. And, drugs can also produce a functional change by a nonreceptor-mediated Certain drugs that are structural analogues of normal biological constituents may be incorporated into cellular components and thereby alter their a "counterfeit function. This has termed been incorporation mechanism" and has been implemented with analogues of purines and pyrimidines that can be incorporated into nucleir acids and that have utility have antiviral chemotherapy and that Also, specific constituents of pathogens activity. can be exploited as receptors. For example, electron carriers of bacterial can serve as receptors as described in my previous U.S. Patent Application Serial No. 948,326, and the replicative enzymes of viruses can be serve as receptors as described below for the virus HIV. Many compounds are known which have receptor or nonreceptor mediated in activity as appears in Handbook of Enzyme Inhibitors, Mahendra Kumor Jain, 1982, Wiley Interscience, New York, hereby incorporated by reference. However, desired percentage produce the small functional change in vivo or have a high therapeutic ratio because they are toxic in their free form; they are rapidly inactivated or excreted; or, they cannot obtain access to their target receptor or site of action because they are impermeant to cells biological barriers such as the blood brain barrier due to unfavorable energetics due, for example, the possession of polar or charge groups; or, they are toxic as a consequence of being nonselective with regards to their access to and action with receptors in one biological environment or compartment relative In these cases, compounds which another. to

- 3 -

- 4 -

demonstrate in vitro efficacy are ineffective therapeutics.

SUMMARY OF THE INVENTION

A broad class of pharmaceutical agents is disclosed herein as the Luminide class of pharmaceuicals. Luminide agents are three part or four part molecules where each part is a functionality with a defined purpose. Exemplary Luminides are A-B-C, D-A-B-C, A-D-B-C, and A-B-C

where A represents a functionality which is activatable by the environment and capable transferring energy from its own excited state to the B functionality which is an energy acceptor. Upon receiving energy from A, B achieves an excited state which relaxes through the heterolytic cleavage of the covalent bond of B with C where C is a drug moiety which is released into the intracellular compartment where activation of A occured. Released C can act locally or at a distant site. D serves as electron transfer functionality which gains (loses) electrons from (to) the environment and donates (accepts) electrons to (from) A to activate it so that the energy of excited A is transferred to B with release of C as occurs for the three functionality case.

In both cases, free C is a drug molecule. The released drug molecule effects a therapeutic functional change by a mechanism which comprises receptor mediated mechanisms including reversible or irreversible competitve agonism or antagonism including a suicide substrate or transition state analogue mechanism or a noncompetitive or

uncompetitve agonism or antagonism or the action is by a nonreceptor mediated mechanism including a "counterfeit incorporation mechanism".

The chemical and physical properties of the Luminide agents such as permeance and reactivity to different oxidoreductase enzymes, electron carriers, or different free radicals including those of oxygen are exploited to control the environment into which C is released. Permeance of the Luminide agent to the blood brain barrier or cell membranes, or affinity of the Luminide agent to plasma proteins which results in a decreased excretion rate relative to free C, or lack of reactivity of extracellular enzymes with the Luminide agent relative to free C are exemplary mechanism where by Luminides provide for the release of active free C in the proper biological compartment or in the presence of the target receptor so that the is achieved. desired therapeutic change And, the serve as therapeutic drugs. Luminides present invention, Luminides, a broad class pharmaceutical agents comprises antilipidemic drugs, contraceptive agents, anticholesterol drugs, anti-inflamatory agents, anticoagulants, antiarrhythmic agents, immuno-suppressive drugs, antineoplastic drugs, antihypertensive drugs, epinephrine blocking agents, cardiac inotropic drugs, antidepressant drugs, diuretics, antifungal agents, antibacterial drugs, anxiolytic agents, sedatives, muscle relaxants, anticonvulsants, agents for treatment of ulcer disease, agents for the treatment hypersensitivity and asthma antithroboembolic agents, agents for the treatment of muscular dystrophy, agents to effect a therapeutic abortion, agents for the treatment of anemia, agents improve allograft survival, agents for to

WO 89/09833 PCT/US89/01361

- 6 --

treatment of disorders of purine metabolism, agents for the treatment of ischemic heart disease, agents for the treatment of opiate withdrawal, agents which activate the effects of secondary messenger inositol triphosphate, agents to block spinal reflexes, and antiviral agents including a drug for the treatment of AIDS.

DETAILED DESCRIPTION OF THE INVENTION

Electron transferring and transporting elements ubiquitous and are necessary for life. eukaryotic and prokaryotic organisms depend electron transferring and transporting elements which include metal containing hemes and nonmetal containing molecules such as flavins to convert the energy stored in the chemical bonds of foodstuffs into a form utilizable for the maintenance of the highly negative entropic state of life. The chemical energy conversion process generally involves coupled series of electron carriers which is called an electron transport chain.

Free radicals of oxygen are produced during aerobic respiration in mitochondria as electrons are carried by electron carriers of the transport chain to the ultimate electron acceptor, oxygen, and superoxide and peroxide, reduction products of oxygen, are continuously produced . during cytosolic hydroxylation oxygenation reactions as well as during other reactions which involve enzymatic reduction oxygen. The cytosol as well as mitochondria aerobic cells contain high concentrations enzyme superoxide dismutase which converts superoxide into hydrogen peroxide and molecular oxygen. Oxygen radicals which include hydrogen peroxide and superoxide are found in greater concentration in the mitochondria relative to the cytosol because reduction of oxygen occurs to a greater extent in the former compartment; however, appreciable concentration are found in both compartments.

Luminides are agents which are permeant to the desired biological compartment which undergo oxidation reduction reaction with the target cell's electron carriers or react with free radicals produced as a consequence of electron transport and release a drug moiety into the desired compartment in active form to effect a greater therapeutic effect or therapeutic ratio relative to the free C agent as a consequence of altered pharmacokinetics or pharmacodynamics such as a desirable kinetics release, a resistance to inactivation or excretion, greater solubility, enhanced absorption, a diminished toxicity, or greater access to the cellular or biological compartment which is the site of action of C.

Luminide agents are three or four part molecules where each part is a functionality with a defined purpose. Exemplary Luminides are A-B-C, D-A-B-C, A-D-B-C and A-B-C

where A represents a functionality which undergoes an oxidation reduction reaction where electrons are transferred directly between A and the target cell's electron carriers or the electrons are transferred indirectly through an electron transfer functionality, D, which is described in more detail below. Alternatively, A represents a functionality which undergoes a reaction with free radicals of oxygen which are produced as a consequence of

electron transport. An excited state is produced in A as a consequence of its participation in one of these reactions. Then A undergoes intramolecular energy transfer from its own excited state to the B functionality which is an energy acceptor. receiving energy from A, B achieves an excited state which relaxes through heterolytic cleavage of the covalent bond of B with C where C is a drug moiety which is released into the environment. D serves as electron transfer functionality which (loses) electrons from (to) the environment donates (accepts) electrons to (from) A to activate it so that the energy of excited A is transferred to B with release of C as occurs for the three functionality case. In both cases, free C is a drug The released drug molecule effects molecule. therapeutic functional change by a mechanism which receptor mediated mechanisms reversible and irrereversible competitive agonism or antagonism including a molecle known as a suicide substrate or a transition state analogue mechanism or noncompetitive or uncompetitive agonism antagonism or the action is by a nonreceptor mediated mechanism including a "counterfeit incorporation mechanism".

energy donating funtionality, Α, molecule which reacts as previously described to form an excited state of high enough energy so that this subsequently transferred energy is of sufficient magnitude to break the covalent bond between the drug functionality, C, and the energy functionality, В. Chemiluminescent molecules form highly excited states of the proper magnitude of energy, can undergo oxidation reduction reactions or react with free radicals, and possess a metastable

which intramolecular energy excited state from transfer can occur; thus, they can serve as the A general, chemiluminescent functionality. In molecules relevant to this invention can be placed three categories: 1) molecules undergoing reaction involving peroxides and oxygen radicals; 2) molecules undergoing reaction involving oxidation or reduction and 3) molecules undergoing both reaction with peroxides and oxygen free radicals by an oxidation or reduction reaction. Molecules of the first category include Lophine and derivatives, acridinium esters and acridans, tetraphenylpyrrole, phthalhydrazides, acyloins, biacridinium salts, vinylcarbonyls, vinylnitriles, tetrakis (dimethylamino) ethylene, acylperoxides, active indoles, tetracarbazoles and oxalates. Molecules belonging to the second category include ruthenium chelates 2, 6-diaminopyrene, or radicals and molecules which follow a Chemically Initiated Electron Exchange Luminescence mechanism such as certain dioxetans and dioxetanones. Dioxene derivatives belong to the third category. They form a dioxetan by reation with superoxide and then produce efficient chemiluminescence by ·a CIEEL mechanism.

As an example from the first category, the chemiluminescent compound, luminol, has a chemiluminescent maximum in the region 390-400 nm in an aqueous solution. Chemiluminescence is produced by the reaction of luminol with oxygen free radicals where a large fraction of the product molecules are formed in their excited state. The nature of the excited state is electronic, and it has a mean lifetime of the order of 10^{-8} seconds which is typically ten thousand times the period of a

Emission involves a quantum molecular vibration. mechanically allowed singlet to singlet transition with energy of the order of 75 Kcal/mole. The quantum yield for forming the excited electronic state is 0.5. Because luminol undergoes chemiluminescent reaction with oxygen radicals, this compound has been used as a molecular probe for these radicals by linkage to a molecule which directs the probe to a cellular compartment. For example, when luminol is attached to carnitine, the probe transported into mitochondria and the intensity of chemiluminescence produced is proportional to the magnitude of electron transport activity which produces oxygen radicals. The chemiluminescent molecule, lucigenin, is also used as a probe for oxygen free radicals.

As for members of the second category, chemiluminescent molecules which undergo a redox reaction to produce an excited state react directly with electron carriers of the cell or undergo a redox reaction with the electron transfer functionality D.

As for the third category, a D functionality is optional. A chemiluminescent molecule of this category reacts with oxygen free radicals and forms an excited state, and chemiluminescence is produced but properties such as quantum yield or the relative ratio of singlet to triplet excited state can be altered by the transfer of electrons involving for example a D functionality. See Table 1 below for chemiluminescent molecules.

Table 1 Representative Chemiluminescent Molecules

<u>Name</u>

2, 6-diaminopyrene

Structure

Aminophthalhydrazide

Dioxene

Imidazole derivaties

$$R_1$$
 R_2
 R_3

Sulfonyloxamides

Indole derivatives

Tetrakis(dialkylamino)ethylene

2,5,7,8-tetraoxabicyclo-[4.2.6.] octane

$$R_2$$
 R_1

Dioxetan

$$R_1$$
 R_2
 R_3
 R_4

Lucigenin

WO 89/09833

- 13 -

Lophine

Acridinium esters

Active oxalate

Tris-2,2'-bipyridinedichlororuthenium (II)

$$\left(\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Dioxetanone

$$0 \longrightarrow 0$$

$$R_1$$

$$R_2$$

Dipheyl peroxide

Exemplary energy acceptor molecules include those which demonstrate photochromic behavior with electromagnetic radiation and bleaching agents. If the A functionality is chemiluminescent, then the B functionality is such that the photodissociative drug release spectrum of B overlaps the chemiluminescence spectrum of A.

Triarylmethane dyes react with cyanide to form nitriles called leucocyanides which liberate cyanide ion with a quantum yield of approximately one when irradiated with UV light in the wavelength range of 250 to 320 nm.

- 16. -

The spectrum of the photorelease reaction of cyanide ion can be extended to longer wavelengths in the case of triarylmethane dyes by substitutions of a naphthylene for an aryl group and also by using cationic polymethine dyes. The latter form nitriles, which are thermally stable, by the reaction of the carbonium ion of the dye with cyanide. The formation of the nitrile causes the colored dye to be bleached as is the case with triarylmethane dyes, and cyanide is released as the dye becomes colored upon absorption of 320-415 nm. Reversible bleaching by an agent and coloration by light is photochromic behavior.

Cationic dyes demonstrate this behavior include di and triarylmethane dyes, triarylmethane lactones and cyclic ether dyes, cationic indoles, pyronines, oxazines, phthaleins, thiazines, acridines, phenazines, and anthocyanidins, and cationic polymethine dyes and azo and diazopolymethines, styryls, cyanines, hemicyanines, dialkylaminopolyenes, and other related dyes. Table 2 below for structures for salt isomerism-type photochromic dyes. These photochromic molecules form covalent bonds with a number of agents called bleaching agents because they convert the compounds from colored to colorless form during formation. Bleaching agents are diverse and include hydroxide, cyanide, azide, bisulfide, and compounds, thiocyanate, ferrocyanide, chromate, tetraborate, acetate, nitrite, carbonate, citrate, aluminate, tungstate, molybdate, methoxide, 2-methoxyethoxide, cinnamate, and p-methoxycinnamate salts, and thiols and amines.

		TABLE II			
Dye Name or Structure; CI Name and	Name and	Nominal	Notes Referring	Visible S	Visible Spectrum
Number; Other Names	c.s	Anion ^{a, b}	to Solvent	λ _{max} (nm)	Solvent
Malachite Green	42000	CN, SO ₃ H, OH	2.2.2	622	Ethanol
				617	Water
Helvetia Green	42020	CN	del, ce		
Basic Blue 1	42025	CN, SO ₃ 11	c, h, aa	640	Ethanol
Brilliant Blue				628	Water
Setoglaucine					
Basic Green 1 3	42040	CN, SO ₃ H	c, d, g, h,	633	Ethanol
Brilliant Green			т. о. ш	622	Water
Acid Blue 1	42045	Z.J	dd, ec	628	Ethanol
Xylene Blue VS				636	Water
Patent Blue V					
Alphazurine 2G					
Acid Blue 3	42051	2.5	s, dd, ec	632	Water
Brilliant Blue V					
Patent Blue V					
Food Green 3	42053	Z.	dd, ce		
FDC Green 3					
Acid Green 6	42075	CN, SO ₃ H	dd, ce	629	Ethanol
Light Green SF Bluish	•	•		628	Water
Acid Blue 7	42080	Z.	s, dd, ec	628	Ethanol
Xylene Blue AS				633	Water
Patent Blue A					
Acid Green 3	42085	C.N. SO, II	dd hh	626	Ethanol

Acid Blue 9	42090	Z.S	s, dd, ce	626	Water
Acid Green 5	42095	CN, SO ₃ H	dd, ce, hh	634	Ethanol Water
Acid Green 9 Gricolitidana B	42100	CN, SO ₃ H	ff-hh	640	Ethanol Water
Acid Blue 147	42135	CN	dd, ve		
Xylene C yanol FF Basic Red 9 Pararosaniline	42500	CN, SO ₃ H, OH	c, d, g, h, n, o, u, ff.ii	550 543	Ethanol Water
Basic Violet 14 Fuchsin	42510	CN, SO, II	JJ-hh	545	Water
Magenta Basic Fuchsin	42510B	SOM	III	539	Wafer
Basic Violet 2 New Fuchsin	42520	CN, SO ₃ H	ff-hh	544	Water
New Magenta Hoffman Violet	42530	SO ₃ H	-	584	Water
lodine Violet Basic Violet 1 Adothyl Violet	42535	CN, SO ₃ H	c, e, g, k, u, jj, kk	588 584	Ethanol Water
Basic Violet 13	42536	SO ₃ H		585	. Water
Methyl Violet ors Basic Violet 3 Crystal Violet	42555	CN, 50 ₃ H, OH	c, d, g, h, n-p, u, g, r, r, r	595	Ethanol
Gentian Violet Iodine Green	42556	II, OS	Jf и, кк оо		

- 19 -

•										
Solvent	Water	Water	Ethanol Water	Ethanol Water		Water	Water	Water	Ethanol Water	Water
Visible Spectrum λ _{max} (nm) Solver	594, 538	119	626 614	640 634		597, 546 Water	608, 544	554	591, 548 592, 539	545
Notes Referring Solvent	aa	s, dd, ce		c, j, dd	s, dd hh	is.	dd, ce		s, dd-hh	ff-hh,
Nominal Anion ^{a, b}	CN	z	SO ₃ H	Z.	Z	CN, SO ₃ H	CN, SO ₃ H	SO ₃ H	C.N, SO ₃ II	CN, SO ₃ H
s	42563	42571	42576	42585	42590	42600	42640	42645	42650	42685
Dye Name or Structure; Cl Name and Number; Other Names	Basic Blue 8 Victoria Blue 4R	Acid Blue 13 Fast Acid Violet 10B	Acid Blue 75 Eriocyanine A	Methyl Green	Ethyl Green	Basic Violet 4 Ethyl Violet	Acid Violet 49 Wool Violet 5BN	Acid Blue 15 Brilliant Milling Blue B	Acid Violet 17 Acid Violet 6B Wool Violet 4BN Formyl Violet	Acid Violet 3155 Conc. Acid Violet 19

. .

Acid Fuchsin	200	5	.u-dd			287, 291, 305
Red Violet 5K Acid Blue 22	42690 42755	SO, II C'N, SO, II	dd, cc. hh	900	Ethanol	281, 284, 286,
Aniline Blue		-		607	Water	292, 293
Soluble Blue						:
Solvent Blue 3	42775	SO'II	1111	595	Ethanol	284
				590	Methanol	•
Acid Blue 93	42780	CN, SO, II	ff, hh	909	Ethanol	284, 287
Methyl Blue				586	Water	
Aurin	43800	CN, OII	ss, 11			306, 307
Mordant Blue 3	43820	SO,II		588	aq. OII-	281
Eriochrome Cyanine R						
Acid Green 16	44025	S.	ee, 11	638	Ethanol	303, 307, 310
Naphthalene Green V				639	Water	
Pontacyl Green NV Extra				•		
Basic Blue 11	44040	CN, SO ₃ H	c, un	615, 558	Water	280, 281
Victoria Blue R						
Basic Blue 15	44085	SO_3H		628, 568	Water	281
Night Blue).		
Acid Green 50	44090	Z.	ce, 11	628	Ethanol	303, 311
Wool Green S		-		632	Water	-
Kiton Green S Conc.	•	• .			•	
Basic Green 3		SO ₃ H, OH	hh, pp	609	9:1	284, 286
Sevron Green B			rv, ww		Methanol- Water	
Brilliant Blue F & R Extra		SOJII				281
Brilliant Green Sulfonate	·	N N				288

Dre Name or Structure: Cl Name and	Naminal	Notes Referring	Visible Spectrum	ectrum
Number; Other Names	Anion ^{a, b}	to Solvent ⁿ	λ _{max} (mm)	Solvent
Hexakis(hydroxyethyl) Pararosaniline	N.S.		009	Lthanol
(110CH ₂ CH ₂),N				
New Green	Z C		615	Ethanol
$\left((CH_3)_2 N \left\langle \right\rangle \right)_2 C' \left\langle \right\rangle OCH_3$				
Phenolphthalein	CN	x:x		
$\left(HO - \right)^{2} C' - \left(\right)^{2}$	·			
Malachite Green Ethiodide	Z			
$(CH_3)_2N$ C_0H_5 C_0H_5				

ckel CN Hydroxya(kylated Pararosanilines Hydroxyalkylated New Fuchsins 463 575 507 S S

Doebner's Violet

New Red

New Yellow

(CH3)2N---

•	10.1	Notes Referring	Visible Spectrum	pectrum
Dye Name or Structure; CI Name and Number; Other Names	Anion ^{a, b}	to Solvent ^b	λ _{max} (nm)	Solvent
Bis(hydroxyethyl) Doebner's Violet	CN		597	Ethanol
$-\left(OCH_2CH_2NH \right) + C'C_6H_5$				
" New Magenta"	CN		547	Ethanol
$\left(CH_3O - \right)_2 C^+ \left(CH_3O - N(CH_3)_2\right)$				
Tetrakis(hydroxyethyl) Doebner's Violet	CN		632	Ethanol
$\left (\text{IIOCII_2CH_2})_2^{N} N - \left(\frac{1}{2} \right)_2^{-1} C^* C_6 II_5 \right $		·		, .
Trichloro Crystal Violet	CN			
$(CH_3)_2N$				

thanol

503

574

CS

Slow Red

SOJH

SO₃H

SO₃H

$$(C_2H_3)_2N - \begin{cases} C^{\dagger} \\ C_2H_3 \end{cases}_2N - \begin{cases} C^{\dagger} \\ C_1H_3 \end{cases}_2$$

=

Dva Mana or Crucines. (1 Name and	Nominal	Notes Referring	Visible Spectrum	นมเมราง
Number; Other Names	Anion ^{a, b}	to Solvent ^b	λ _{max} (nm)	Solvent
$\left((CH_3)_2 N - \left(\begin{array}{c} \\ \\ \end{array} \right)_2 C' - \left(\begin{array}{c} \\ \\ \end{array} \right)_2 OCH_3 \right)$	SO ₃ H			
$\left((CII_3)_2 N - \left(\begin{array}{c} \\ \\ \end{array} \right)_2 C^{\frac{1}{2}} \right)$	SO ₂ H		630	
$\left((CH_{j,l})_{l}N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle_{l}C^{-} \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$	SO ₃ H		620	
$(CH_3)_2N$ $= C^{-1}$ $N(CH_3)_2$ $N(CH_3)_2$	SO ₃ H		819	
(CHI),N () C'	N(CH ₃) ₂ SO ₃ H		009	

4 Only the eyanide, bisulfite, and hydroxide ions are considered, regardless of the other anions present in the solution.

• More detailed descriptions of the compositions of photochromic materials tested are given in Macnair's review [255; tables 1A-4].

Ethanol.

4 Diethyl ether.

e 1,2-Dichloroethane.

1,1-Dichloroethane, cyclohexane-1,1-dichloroethane, or cyclohexane-1,2-dichloroethane mixtures.

Benzene.

Dimethylsulfoxide, neat and aqueous.

Acetone.

* Ethyl acetate. / Acetic acid.

Ethyl bromide.

" 2-Methoxyethanol

^o Ethanol with KC'N. " Chloroform.

P. Ethanol with KOII.

r Octadecylnitrile, tributyl phosphate, aniline, 2-(p-tert-butylphenoxy)ethanol, tetraethyleneglycol dimethyl ether, or poly(ethylene glycols). q Carboxylic acids---acetic to stearie; hydrocinnamic acid; ethyl and butyl acid phthalates.

Three-to-one solutions of cellulose acetate with any of the following five-to-one plasticizer mixtures: Polyethylene Glycol 600% butyl stearate, Amides .. formamide to stearamide; methylformamide or methylacetamide; dimethyl- or diethyl-formamide or acetamide.

Polyethylene Glycol 600-butyl acetoxystearate, Dowanol EP^{ate} butyl stearate, or Dowanol EP-butyl acetoxystearate.

" Water containing SO2.

" Water containing bisulfite and papain.

" Poly(vinyl alcohol) with dimethylsulfoxide (5:1).

* Films, containing residual solvent, cast from the following solutions: ethanol-acetone solutions of vinyl acetate-vinyl alcohol copolymer; aqueous poly(vinyl alcohol); aqueous poly(vinyl pyrrolidone); or aqueous methyl vinylether-maleic acid copolymer.

Methanol-dioxane with aqueous NH4HSO3.

² Paper impregnated with a toluene solution of poly(methyl methacrylate), stearic acid, and 2-(p-tert-butylphenoxy)ethanol, then dried.

⁴⁴ Intramicellar impregnation of cellulose with the following swelling agents: n-propylamine, n-butylamine, n-hexylamine, 2-aminoethanol, dimethylformamide, acetic acid, dimethylsulfoxide, methylacetamide, dimethylacetamide, or formamide.

be Films cast from an approximately 4:3 mixture of a 20% solution of cellulose acetate butyrate in toluene-ethyl acetate (1:1) and triallycyanurate

et Films cast from a 2: 1 mixture of a 25% solution of cellulose acetate butyrate in toluene ethyl acetate (1:1) and the titanium esters of N,N,N,

N'-tetrakis(2-hydroxypropyl) ethylenediamine.

dd Pure water.

er Films cast from aqueous gelatin or other hydrocolloids.

13 Dimethylsulfoxide with methanolic KCN

99 2-Methoxyethanol with methanolic KCN

hh Water or aqueous methanol containing bisulfite.

" Paper impregnated with m-dimethoxybenzene, acctonitrile, acetic acid, or phenyl methyl carbinol.

** Aqueous ethanol, methanol, aqueous methanol, aqueous acetone, benzene-methanol, carbon tetrachloride-methanol, cyclohexane-methanol, or chloroform-methanol.

" Films cast from 3:1 solutions of cellulose acetate and either Polyethylene Glycol 600⁰⁰ or ethylene glycol phenyl ether as plasticizer.

"" Films, containing residual solvent, cast from solutions of either cellulose acetate in 2-methoxyethanol or poly(vinyl alcohol) in aqueous

" Films, containing residual solvent, cast from solutions of either cellulose acetate butyrate in 2-methoxyethanol or poly(vinyl acetate) in methanol.

on Ethanol containing ammonia.

PP Aqueous methanol containing NH4HSO3 and urease.

⁹⁹ Aqueous methanol containing NH₄HSO₃, with or without sodium dithionite.

" Aqueous acid at pH 1.

** Aqueous ammonia containing KCN

" Paper impregnated with aqueous solutions with or without hydrocolloids.

" 2-Methoxyethanol containing HCl.

w Aqueous methanol containing NH4HSO3, and glucose oxidase.

xx Aqueous NaOH.

$$(CH_3)_2N$$

$$X = C = O$$

$$165 X = C = O$$

$$168 X = (CH_2)_{1,2}$$

$$168 X = (CH_2)_{1,2}$$

$$(C_2H_5)_2N$$
 O
 $N(C_2H_5)_2$
 CO_2R
 CO_2R
 CO_2R
 CO_3R
 CO_3

OH

OH

OH

OH

OH

$$X$$
 CO_2H
 T^{70}
 T^{70}

$$\begin{array}{c|c}
C_{2}H_{5} \\
C_{2}H_{5}
\end{array}$$

$$\begin{array}{c|c}
C_{2}H_{5} \\
\end{array}$$

$$\begin{array}{c|c}
SO_{3}H \\
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\end{array}$$

Photochromic Polymethine Dyes

α , ω -bis(p-Dimethylaminophenyl)polyenes

$$(CH_3)_2N$$
 C^+ $(CH=CH)_n$ $-CH=C$ $N(CH_3)_2$

Ar	n	
C ₆ H ₅	0, 1, 2	-
4-(CH ₃) ₂ NC ₆ H ₄	0, 1, 2	
4-(CH ₃) ₂ CHC ₆ H ₄	0, 1, 2, 3, 4	
4-CH ₃ OC ₆ H ₄	0, 1, 2	
4-C ₄ H ₉ OC ₆ H ₄	0, 1, 2	
3-CH ₃ C ₆ H ₄	1, 2	
4-t-C4H9C6H4	1, 2	
4-C ₂ H ₅ OC ₆ H ₄	1, 2	
4-C5H11C6H4	1, 2	
4-FC ₆ H ₄	1	
4-F ₃ CC ₆ H ₄	1 .	
$2-(C_6H_5)_2NC_6H_4$	1	
$3,4-H_2N(OCH_3)C_6H_3$	1	
2-Naphthyl	1, 2	
4-ClC ₆ H₄	2	
2,4-Cl ₂ C ₆ H ₃	2	
1-Naphthyl	2	

3

 α , α -bis(p-dimethylaminophenyl)polyenes

R R $-N(CH_3)_2$ -N(CH₃)₂ -CH=CH--CH=CCH₃--CH=CH-CH=CH- $-CH=N-N(C_0H_5)_2$ -N=CH-CH=CH--N(CH₃)₂ H₃C₁CH₃

-CH=CH-CH

ĊH₃

Miscellaneous polyenes

$$N-CH=CH-CH^{-1}$$
 $N-CH=CH-CH^{-1}$
 $N-CH=CH^{-1}$
 $N-CH=CH^{-$

Basic Red 13

Basic Violet 7

Basic Red 14 Basic Red 15 Basic Violet 15

400 & 630

TABLE 111
PHOTOCHAOHIC DYES*

A mak (90)

others dyes were also useable as photosensitive but non-photochromic dyes in formulations which prevented the usual reversible color formation from taking place.

813

$$(cn_{1})_{2}^{N}$$
 $=$ $-c$ $=$ $-c$ $+$ $-c$

8

- 44 -

TABLE V
PHOTOCHEOMIC FORMULATIONS OF REFRESENTATIVE
TELPHENYLYETHANE DYES

1616	los			Ellece	
Musber*	Structure	Solvene **	Additive		Comments
FC 1011R (CI 42650)		erHethyl Cellosolve	KCN In H=ON	Stight photo-	Light violate.
	1.5 - 1.5 -	730 07150	KCV In	Cood photo- chronism	Lighe violet. Hajor absorption peak 595 gy.
	() () () () () () () () () ()	Discilled	נסטווהא	Good phaco- chrunisa	Dark yfolec.
FC 1010		ernachyl Callosolve	KCN In He-OH	Good photo- chroatsa	Violet.
	(CH ₂) ₂ "(CH ₂) ₂ "	DHO	KCY In HeON	Good photo- chroatsa	Violec
	The state of the s	Otsetlled Vacer	NaH503	Good Violet. photo- Thermochtonic chronism	Violec. Thermochtomic

entechyl Callosolva is a trada nama for achylana glycol monomathyl echer. DMSO refers to Dimethyl Sulfoxide. The identification numbers are folacoat numbers and Colour Index numbers.

=

.•

TABLE V (CONC'4)
PHOTU-INCHIC FORMULATIONS OF REPRESENTATIVE
TRIFFICATIONS OF REPRESENTATIVE

Identification Musber	Loa	Structure	Solvene	Additive	Effect of U.V.	Coments
K 10131 (CI 4210)		CH ₂	Methyl Cellosolve	KCN fn MeOR	Fair photo- chronism	Light red.
			DHSO	KCN (a MeON	Good photo- chrostsm	Red. Hajer absorption peak 358 mp.
			Discilled Vater.	K.HSO.	Good photo- chrostss	Postetve the mochrastsa
PC 1024R (CI 42570)	₽ }	CH2 +3	Hechy! Callosolve	KCY In Hedh	Good photo- chroates	Pad.
		-10 / tum / C11.	95	ROW N	Good photo- chroatem	Red. Hajer absorption peaks 190, 380 mp.
			Distilled	Сосне	Good phato- chroatsm	Red. Thermo- chromic

- 46 -

TABLE V (Conc'd)
PHOTOCHEMIC FORMATIONS OF REPRESENTATIVE
• TREPHEMILATIONS OF REPRESENTATIVE

Identification	ton				The state of the s
Number	Structure	Solvene	Addictve	SITACE of U.V.	Comments
(CI 42390)		H(CH3) Hechyl	KCN In Neon	Good photo- chrosia	Violet. Major absorption peaks 613, 422 and 310 mp.
	Br- {(C2H3)(CH3)2th	94.50	HOOH	Good photo- chroates	Bright green. Major absorption peaks 625, 426 and 315 mp.
	f(CH2)2}c1-	Distilled	NaHSO ₃	Good photo- chroning	Can bleach either violer or coloriess depending upon amount of bleach
PC 1091 (CI 42735)	103Ma 103Ma 103Ma 103Ma	Machyl	KCN In HeOH	Good photo- chroates	Red. Hajor absorp- tion peaks 300 and 600 my.
		• • • • • • • • • • • • • • • • • • •	KCM In Medh	Good photo- chronism	Fink.
		Discilled	И«И5О3	Good phoco- chroatsa	Blue. Thermochtomic

TABLE V (Conc'é)
PHOTOCHADHIC FOUNDLATIONS OF REPRESENTATIVE
TELPHENTLATIONS OF REPRESENTATIVE

				Kilect	
Identification		Solvent	Additive	of U.Y.	Comsents
PC 1092		Hathyl Callosolve	HON IN	Cood	Graeb.
	C1 (CH2) 2 C1-	DH20	KCK fa Hedda	Good photo- chroad m	Green. Major absorpcion peaks 613, 420 and 108 mp.
		Discilled	Nall SO	Good photo- chronise	Green.
PC 1093 (CT 42683)	CH ₃	Methyl Cellosolve	KCM in HeOK	Fair photo- chronim	Pink
	H ₂ ² So ₃ ¹⁴ so ₁ ¹⁴	8 M 8	MON IN	Good photo- chrosise	Light red. Helot absorption peaks 350 and 290 mp.
	*r ^c os	Discilled	N.HSO ₃	Good pheto- chrest m	Red. Thermochemic

TABLE V (Cont'd)
PHOTOCHROHIG FORMULATIONS OF REFESENTATIVE
TRIPHENYLHETHANE DYES

1							_
	Comments	Light rad.	Light rad. Hajor absorption peaks 350 and 294 qu.	Red.	Light orange.	Light orange. Hajor absorption peak 360 mg.	Dye is very elighely soluble.
Lilect	6¢ U.V.	Fatr photo- chronism	Cood photo-	Good phoco-	Foor photo- chroaten	Poor photo- chrosten	Cood
	Additive	MeON in	KCW fa MeOH	Na.HSO3	KCH In KeOH	KCN tn MeOH	NAHSO ₃
- Columbia	Jovens	Methyl Cellosolve	SH 30	Distillad Vacar	Mechyl Cellosolve	DK 20	Distilled
ton		-trit.	H ₂ **()-¢		, m,	-i+()=(
Identification Mumber		CI 42500)		·	FC 1095 (CZ 42500)	<u>*</u>	

TABLE V (Comerd)
PHOTOCHACHIC FORMULATIONS OF REPRESENTATIVE
TRIPHENTMETHANE DYES

	Coments Light green.	Light green.	Green.			Green.
Rioce	Poor Phoco-	Poor photo- chronian	Good photo-	No photo- chronism	No photo- chronian	Cood photo-
Addirive	u) NOW N	E NOSE	F.HSO ₃	KCN (n MeOH	ECY In HeOM	MeHSO ₃
So Nene	Methyl Cellosolva	RESO	Discilled Vacor	Methyl Cellosolve	DHS0	Distilled Vaces
ion Itructure	C1		Sayle Sayle	-4(C2N5)PH2	0 35- (1) 2 203.60	Soja
Ideacificacion Munber	PC 1104 (CI 42100)			FC 1106 (CI 42095)		

TABLE V (Coat'd)

PHOTOCHRONIC FORMULATIONS OF REPRESENTATIVE TRIPHENYLMETHANE DYES

Identification				Elioce	
Muser.	Structure	Solvenc	Addicive	of U.V.	Comsents
CI 42085)	€ 1,000 m	Hathyl Cellosolve	KCM tn MedH	Fair photo- chroaism	Light green.
·	N _c os	88	KCV In HeOH	Good photo- chrostsa	Green. Hajor absorption peaks 435 and 430 mp.
	V	Discilled Vacor	MaHSO3	Cood photo- chroatsa	Green.
FC 1113 (CI 42300)	, m2	Hecbyl Cellosolve	KCN La HeOH	Fair photo- chrosisa	Light red.
- , 	$H_{\mathbf{z}}^{\mathbf{z}}$	ризо	KCN to MeOH	Good photo- chroatsm	Red. Hejor absorption peaks 350 and 293 mg.
	, 02.E. , 1M-(-)	Discilled Vaces	Na.H.503	Good photo- chronism	Red.

Ď.

7

.

SALT-ISOMERISM TYPE PHOTOTROPIC DYES

Night Blue

$$\mathsf{CH_3} - \mathsf{NH} - \mathsf{C} = \underbrace{\mathsf{N}(\mathsf{C}_2\mathsf{H}_5)_2}_{\mathsf{N}(\mathsf{C}_2\mathsf{H}_5)_2}$$

Victoria Blue R

$$\begin{array}{c|c} c_2H_5 \\ H \end{array} \longrightarrow \begin{array}{c|c} c_2H_3 \\ \hline \end{array} \longrightarrow \begin{array}{c|c} N(CH_3)_2 \\ \hline \end{array}$$

Brilliant Milling Blue B

Brilliant Blue F & R Ex.

Eriocyanine A

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Methyl Blue

Aniline Blue

Eriochrome Cyanine R

Methyl Tiolet 6B

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3

Iodine Green

Aniline Blue

Wool Violet 5 BN

$$C_2H_5$$
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_3H_5
 C_3H_5

Wool Violet 4 EM

$$C_2H_5$$
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

Light Green SF Yellowish

Iodine Violet

Methyl Violet

$$\begin{array}{c} \text{H} \\ \text{CH}_{3} \\ \text{N} \\ \end{array} \begin{array}{c} \text{N} \\ \text{CH}_{3} \\ \text{N} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N} \\ \text{CH}_{3} \\ \text{N} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \end{array} \begin{array}{c} \text{N} \\ \text{N}$$

Crystal Violet

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{N} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{O} \end{array} \begin{array}{c} \text{CH}_3 \\$$

Ethyl Violet

$$(C_2H_5)_2H_5$$

Acid Green L Extra

Erioviridene B

Light Green SF

Victoria Green (Malachite Green)

Red-Violet 5R

Brilliant Green "B"

Di-[4(N,N-diethylamine)phenyl]-[4-(N,N-diethyl-amine-2-methyl) phenyl] methyl carbonium

$$(C_2H_5)_2N$$
 $C = \sum_{N(C_2H_5)_2} N(C_2H_5)_2$

Tri-[4(N,N-dipropylamino)phenyl] methyl carbonium

Di-[4(N,N-diethylamino)phenyl]-[4(ethylamino)-phenyl] methyl carbonium

$$C_{2}H_{5} \longrightarrow C =$$

$$C_{2}H_{5} \longrightarrow C_{2}H_{5} \longrightarrow C_{2}H_{5$$

 $\label{eq:discrete_problem} \begin{array}{ll} \text{Di-[4(N,N-diethylamino)phenyl]-[4(N,N-diethyl-amino)naphthyl] methyl carbonium} \end{array}$

$$C_{2}H_{5} > N$$
 $C_{2}H_{5} > N$
 $C_{2}H_{5} > N$
 $C_{2}H_{5} > N$
 $C_{2}H_{5} > N$

 $\label{eq:discrete_problem} \begin{array}{ll} \text{Di-[4(N,N-dimethylamino)phenyl]-[4(hydroxy)phenyl]} \\ \text{methyl carbonium} \end{array}$

Tri-[4(N-propylamino)phenyl] methyl carbonium

$$c_3H_7$$
 N $c =$ $N < \frac{H}{C_3H_7}$ N C_3H_7

Hectolene Blue DS-1398

Hectolene Blue DS-1823

Sevron Brilliant Red 4G

Di-[4(N,N-dimethylamino)phenyl]-[4(hydroxy)phenyl] methyl carbonium

$$HO \longrightarrow C = \bigcup_{\substack{V \subset H^2 \\ CH^2}} V \subset CH^2$$

Tri-[4(N-propylamino)phenyl] methyl carbonium

Hectolene Blue DS-1398

Hectolene Blue DS-1823

Sevron Brilliant Red 4G

Genacryl Red 6B

Genacryl Pink G

Sevron Brilliant - Red B

Sevron Brilliant - Red 3B

1,5-bis-[4(N,N-dimethylamino)phenyl]-1,5-bis(phenyl)divinyl carbonium trifluoroacetate

$$\begin{array}{c|c} & & & \\ &$$

1,1,3,3-tetrakis[4(N,N-dimethylamino)phenyl] vinyl carbonium perchlorate

$$(CH_3)_2N$$
 $C = CH - C$
 $CH_3)_2N$
 $C = CH - C$
 $CH_3)_2N$
 CIO_4

1,5-bis-[4(N,N-dimentylamino)phenyl]-1,5-bis-(phenyl) divinyl carbonium p-toluenesulfonate

1,7-bis-[4(N,N-dimethylamino)phenyl]-1,7-bis(2,4-dichlorophenyl) trivinyl carbonium perchlorate

Di-[4(N,N-dimethylamino)phenyl vinyl]-[2,4-di-phenyl-6-methane thiopyran] methyl carbonium perchlorate

1,7-bis-[4-(N,N-dimethylamino)phenyl]-1,7-bis-(4-chlorophenyl) trivinyl carbonium trifluoroacetate

$$\begin{array}{c|c} & & & \\ &$$

1,1,3-tris-[4-(N,N-dimethylamino)phenyl] divinyl carbonium perchlorate

$$(CH_3)_2N$$
 $C = CH - C = O_4$
 $C = CH_3)_2N$

1,1,7,7-tetrakis-[4-(N,N-dimethylamino)phenyl]
trivinyl carbonium perchlorate

$$(CH_3)_2N$$
 $C = CH - CH = CH - CH = CH - CH$
 $CH_3)_2$
 CIO_4

1,3-bis-[4-(N,N-dimethylamino)phenyl]-1,3-bis-(phenyl) vinyl carbonium perchlorate

1,1,5,5-tetrakis-[4-(N,N-diemthylamino)phenyl] divinyl carbonium perchlorate

$$(CH_{3})_{2}N - C = CH - CH = CH - C - CH_{3})_{2} - N(CH_{3})_{2}$$

$$C = CH - CH = CH - C - CH_{3}$$

$$C = CH - CH = CH - C - CH_{3}$$

$$C = CH - CH_{3}$$

1,5-bis-[4-(N,N-dimethylamino)phenyl]-1,5-bis(phenyl) divinyl carbonium perchlorate

1,7-bis-[4-(N,N-dimethylamino)phenyl]-1,7-bis-(phenyl) trivinyl carbonium trifluoroacetate

1,1,5-tris-[4-(N,N-dimethylamino)phenyl] divinyl carbonium perchlorate

$$(CH_3)_2N$$
 $C = CH - CH = CH - CH = CH_3)_2$
 CIO_4

8

1(1,3,3-trimethyl indoline)-2-[4-(N,N-dimethyl-amino)phenyl] ethylene carbonium perchlorate

1(1,3,3-trimethyl) indoline)-4-[4-(N,N-dimethyl-amino)phenyl] butylene carbonium perchlorate

1,1,3,3-tetrakis-[4(N,N-diethylamino)phenyl]
vinyl carbonium perchlorate

$$(C_{2}H_{\frac{1}{2}2}N - C_{2}H_{\frac{1}{2}2}) = N(C_{2}H_{\frac{1}{2}2} - N(C_{2}H_{\frac{1}{2}2})$$

$$(C_{2}H_{\frac{1}{2}2}N - N(C_{2}H_{\frac{1}{2}2}) - N(C_{2}H_{\frac{1}{2}2})$$

1,1-bis-[4-(N,N-diethylamino)phenyl]-3,3-bis-[4-(N,N-dimethylamino)phenyl] vinyl carbonium perchlorate

$$(C_2H_3)_2N$$
 $C = CH - C$
 $C_2H_3)_2N$
 $C = CH - C$
 $C_2H_3)_2N$
 $C = CH - C$
 C_2H_3
 $C = CH - C$
 $C = CH$

1,1,5,5-tetrakis-[4-(N,N-diethylamino)phenyl] divinyl carbonium perchlorate

$$(C_{2}H_{3})_{2}N - C = CH - CH = CH - C$$

$$(C_{2}H_{3})_{2}N - N(C_{2}H_{3})_{2}$$

$$C_{10} - C_{10} -$$

1,1-bis-[4-(N,N-dimethylamino)phenyl]-3-[4-(amino)
phenyl]-3-methylvinyl carbonium perchlorate

$$(CH_3)_2N$$
 $C = CH - C$
 CH_3

Tris-[1,1-bis-[4(N,N-dimethylamino)phenyl]
ethylene] methyl carbonium perchlorate

$$\begin{array}{c|c} & & & \\ &$$

Tris-[1,1-bis-[4-(N,N-diethylamino)phenyl] ethylene] methyl carbonium perchlorate

$$(C_{2}H_{3})_{2}N - C = CH - C = CH - C$$

$$(C_{2}H_{3})_{2}N - C = CH$$

$$(C_{2}H_{3})_{2}N - C = CH$$

$$(C_{2}H_{3})_{2}N - C = CH$$

3

1,1,5-tris-[4-(N,N-dimethylamino)phenyl] divinyl carbonium perchlorate

$$(CH_3)_2N$$
 $C = CH - CH = CH - CH = M(CH_3)_2$
 $C = CH - CH = CH - CH = M(CH_3)_2$

N[4-(N,N-dimethylamino) cinnamylidene] auramine

$$(CH_3)_2N$$
 $C = N - CH = CH - CH = N(CH_3)_2$

1,1-bis-[4-(N,N-dimethylamino)phenyl-3,4-bis(phenyl)]-3,4-diazo butene carbonium

$$N = N - CH = C$$
 $N = N - CH = C$
 $-N(CH_3)_2$

1,1,5,5-tetrakis-[4-(N,N-dimethylamino)phenyl]-2,3-diazo pentene carbonium

$$(CH_3)_2 \dot{N} =$$
 $C - N = N - CH = C$
 $-N(CH_3)_2$
 $-N(CH_3)_2$

 $N-(N',N'-dimethylamino\ cinnamylidene)-N,N-diphenyl$ ammonium

Azo Polymethines

Dyes of the general structural type

$$(CH_{3})_{2}N - \begin{pmatrix} CH_{3} \end{pmatrix}_{2}N - \begin{pmatrix} CH_{3} \end{pmatrix}_{$$

Photochromic diazopolymethines

1,1,5,5-tetrakis-[4-(N,Np-dimethylamino)phenyl]-2,3-diazo pentene carbonium

WO 89/09833 PCT/US89/01361

- 78 -

$$N = N - CH = C$$
 $-N(CH_3)_2$
 $-N(CH_3)_2$

1,1-bis-[4-(N,N-dimethylamino)phenyl-3,4-bis(phenyl)]-3,4-diazo butene carbonium

The drug functionality, C, includes any molecule exhibits bleaching behavior with which functionality and has an increased therapeutic effect or therapeutic ratio as a consequence of its delivery as part of a Luminide agent. For example, Foscarnet, a viral reverse transcriptase inhibitor possesses both a carboxylate and phosphate group which will bleach photochromic compounds; 4-bromocrotonyl-CoA, an acetoacetyl -CoA thiolase inhibitor, possesses a thiol group which will bleach photochromic compounds; L-3-iodo-αmethyltyrosine, a tyrosine hydroxylase inhibitor, possesses a carboxylate group which will bleach photochromic compounds, and captopril, antihypertensive pharmaceutical, possesses both sulfide and carboxylate group which will photochromic compounds. Furthermore, the pharmacokinetics and/or pharmacodynamics of agents are altered via delivery to the site of action by way of a luminide agent such that the therapeutic effect or therapeutic ratio is enhanced.

Other drugs which are not inherently photochromic bleaches in that they lack nucleophilic group which will form reversible а covalent bond with the В functionality can derivatized with a known bleaching nucleophilic group such as cinnamate, sulfite, phosphate, carboxylate, thiol, or amine group to transform them bleaching agents of the B functionality such as cationic dye. See Table 3 below for the structure of a exemplary drug molecules.

Table 3. Representative Drug Molecules.

Name

Structure

Captopril

WO 89/09833

Prostaglandin
$$E_2$$

O

C=C-C-C-C-C-C-C-OH

H H H₂ H₂ H₂

C=C-C-C-C-C-C-CH₃

H H₂ H₂ $\stackrel{=}{=}$ H₂ H₂

2,3-dichloro-
$$\alpha$$
-methylbenzylamine

Sinefungin

3,5-diiodo-4-hydroxybenzoic acid

6,6'-dithiobis (9-B-D-ribofuranosylpurine)

y-aminobutyric acid

H2NCH2CH2CH2COOH

- 82 -

Gabaculine

N-(5'-phosphopyridoxy1)-4-aminobutyric acid

$$CH_{2}OP CH_{2}OH$$

$$CH_{2}NHCH_{2}CH_{2}CH_{2}COOH$$

$$CH_{3}OH$$

4-amino-hex-5-enoic acid

$$\begin{array}{c} \mathrm{CH_2}\mathbf{=}\mathrm{CHCHCH_2CH_2COOH} \\ \mathrm{NH_2} \end{array}$$

Baclofen

Adenosine

3-hydroxy-3-methylglutarate

Compactin

But-3-ynoyl-CoA

Suramin

L-3-iodotyrosine

$$\begin{array}{c} \text{I} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{C-COOH} \\ \text{NH}_{2} \\ \end{array}$$

 $L-3-iodo-\alpha-methyltyrosine$

Disodium cromoglycate

Adenosine 3',5'-cyclic monophosphate

 $D,L-B-(5-hydroxy-3-indolyl)-\alpha-hydrazinopropionic acid$

 $D,L-\alpha-hydrazino-\alpha-methyldopa$

 α -methyldopa

5-(3,4-dihydroxycinnamoyl)salicylic acid

N-(phosphonacetyl)-L-aspartate

P-glycolohydroxamate

5-(p-sulfamylphenylazo)salicylic acid

$$HO \longrightarrow N = N \longrightarrow SO_2NH_2$$

Coformycin

Formycin B

Thioinosinate

Phosphonoformate

Phosphonoacetate

Ridavirin

Sotalol

Cimetidine

Fuscaric acid

2-mercaptoethylamine

HSCH₂CH₂NH₃⁺

WO 89/09833 PCT/US89/01361

Mimosine

U-7130

Iproniazid

Trans-4-aminocrotonic acid

NSD 1055

- 91 -

Nicotinic acid

Kynurenic acid

Lentysine

Orotic acid

Polyoxin D

Cephalosporin

Penicillin

The electron transfer functionality, D, includes molecules which undergo a redox reaction which transfers electrons between the electron carriers and the A functionality where a redox reaction of A results in its activation to an excited energy state. The D functionality can be a natural electron carrier such as ubiquinone or a synthetic electron carrier such methylene blue, phenazine as methosulfate, 2,6-dichlorophenolindophenol. or Structures of electron transfer molecules below in Table 4.

Table 4. Representative Electron Transfer Molecules. $\frac{\text{Name}}{\text{Name}}$

Methylene Blue

$$(CH_3)_2N$$
 S
 \uparrow
 $N(CH_3)_2$

Ubiquinone

$$CH_3O$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

2, 6 - dichlorophenolindophenol

$$O = \bigvee_{C1} -N(CH^2)^5$$

WO 89/09833 PCT/US89/01361

- 95 -

Phenazine methosulfate

Ferricyanide

WQ 89/09833 PCT/US89/01361

- 96 -

A Representative Luminide

A representative luminide is the product of the covalent linkage of the polymethine dye with bleaching drug such as Foscarnet and with chemiluminescent reactive molecule such as luminol. This conjugate represents a molecule which releases Foscarnet in the presence of oxygen free radicals. The energy of the reaction of luminol with oxygen radicals undergoes intramolecular electronic energy transfer by radiative and nonradiative mechanisms. The dominate and include latter coulombic interactions, dipole-dipole resonance, and exchange interaction. These processes increase the quantum yield for drug release above that which would be produced by luminescence transfer alone. example, Forster, in a quantum mechanical treatment of resonance transfer, in the region of spectral overlap involving allowed transitions of two well separated molecules has only considered dipole-dipole interactions in deriving an experimentally verified formula which predicts a distance of 5-10 nm as the distance at which transfer and spontaneous decay of the excited donor are equally probable. The formula predicts the transfer probability is inversely proportional to the separation distance raised to the power. However, the donor and accepter functionalities of a Luminide are covalently linked; thus, since the separation distance is of the order of angstroms, the transfer probability is great. fact, the efficiency of transfer has been studied in certain molecules which consist of two independent chromophores separated by one or more saturated bonds. In such cases, energy transfer over large distances has been observed to be in agreement with predictions from Forster's Theory.

The Luminides can be prepared by known reactions where necessary, appropriate derivatives subunits are formed before coupling.

of appropriate Representative examples derivatization and coupling reactions are given in the following examples, illustrating the preparation of representative Luminides. These examples are not to be taken as an exhaustive listing, but only illustrative of the possibilities according to the present invention.

Representative Luminides with Outline of Synthetic Pathway.

synthesis involves the chemical Luminides joining of three or four functionalities. representative luminide of three functionalities comprises an energy donor molecule such energy acceptor chemiluminescent molecule, an molecule such as a photochromic molecule, and a luminide of four drug. A representative functionalities comprises the mentioned three electron transfer functionalities and also an functionality which can undergo an oxidation reduction reaction.

Luminde can be formed by A three group condensing a photochromic dye functionalized as an acid chloride with a chemiluminescent molecule possessing an alcoholic or amino group to form an ester or amide. The luminide pharmaceutical is then formed by addition of the drug bleaching agent. exemplary pathway of this type appears in example 1.

Alternatively, the chemiluminescent electron transfer functionality can be linked to the WO 89/09833 PCT/US89/01361

energy acceptor functionality by formation of an ester or amide where the former functionality/functionalities is/are an acid halide as demonstrated in example 15.

Also, functionalities of the electron transfer and energy donor type can be linked to the energy acceptor part by an acylation reaction demonstrated in examples 2, 3 and 8; by nucleophillic substitution as demonstrated in examples 4, 5, 6, 7, 9, 10, 12 and 17; by a carbanion mechanism as demonstrated in example 11; by a Grignard reaction as demonstrated in example 14, by a tosylate mechanism demonstrated in example 13, or by a Wittig reaction as demonstrated in example 16. Similar reaction be pathways can used chemiluminescent molecules to energy The list of examples of reaction pathways is intended to be examplary and other pathways can be devised by one skilled in the art. Furthermore, only a representative number of luminides are shown and a vast number of other novel luminides can be made by one skilled in the art following the quidelines herein disclosed.

. And, the disclosed exemplary luminides, components: chemiluminescent molecules, photochromic molecules, energy transfer molecules, and molecules to further can be modified candidate components by addition of functional groups by one skilled in the art. Representitive groups include aklyl, cycloalkl, alkoxycarbonyl, cyano, carbamoyl, heterocyclic rings containing C, O, N, S, sulfamoyl, alkoxysulfonyl, phosphono, hydroxyl, halogen, alkoxy, alkylthiol, acyloxy, aryl, alkenyl, aliphatic, acyl, carboxyl, amino, cyanoalkoxy, diazonium, carboxyalkylcarboxamido, alkenyl, thio,

. .- - - 99

cyanoalkoxycarbonyl, carbamoylalkoxycarbonyl, alkoxy cyanoalkylamino, alkoxycarbonylcarbonylamino, alkylamino, sulfoaklylamino, alkylsulfamoylaklylamino, oxido, hydroxy alkyl, carboxy alkylcarbonylcyanoalkyl, carbonyloxy, carboxyalkylthio, arylamino, heteroarylamino, alkoxycarbonyl, alkylcarboxyalkoxy, cyanoalkoxy, alkoxycarbonyloxy, carbamoylalkoxy, carbamoylalkyl carbonylalkoxy, sulfoalkoxy, nitro, alkoxyaryl, carbonyloxy, aryl, alkylaminoaryl, halogenaryl, amino tolyl, alkenylaryl, allylaryl, alkenyloxyaryl, allyloxyaryl, allyloxyaryl, cyanoaryl, carbamoylaryl, carboxyaryl, alkoxycarbonylaryl, alkylcarbonyoxyaryl, sulfoaryl, alkoxysulfoaryl, sulfamoylaryl, and nitroaryl.

EXPERIMENTAL SECTION I

Synthesis

Synthesis of MTL 7-3, and MTL J-1
Step A: Preparation of p-N,N-dimethylaminobenzoyl chloride

$$(CH_3)_2N - (CH_3)_2N - (CH_$$

In a round bottom flask fitted with a reflux condenser is placed 4 g of p-dimethylaminobenzoic acid and 8 ml of oxalylchloride. The evolution of gas starts immediately and the spontaneous reaction is run at room temperature for 15 minutes. 8 ml of toluene is added and and the mixture is heated to gentle reflux for one hour. The reaction mixture is then distilled to dryness under reduced pressure to produce a blue-green solid which is washed with ether and dried on a watch glass.

Step B: Preparation of p-dimethylaminobenzanilide

$$(CH_3)_2N - C - C1 + H_2N - C$$

$$K_2CO_3 \longrightarrow (CH_3)_2N - CHN - CHN$$

A solution of 0.95 g of aniline in 10 ml of dry ether containing 2.2 g of $K_2\text{CO}_3$ was heated to reflux temperature. To the refluxing mixture 2 g of p-dimethylaminobenzoyl chloride was added as a powder slowly through the condenser port. The reaction was refluxed for 1.5 hours and the ether distilled off. Cold water was added to the residue and the p-dimethylaminobenzanilide collected by filtration. Yield 1.51 g orange-red powder. Anilide functionality confirmed by IR.

Step C: Preparation of p-N,N dimethyl-p-N-ethyl-N-2-chloroethylbenzophenone.

$$(CH_3)_2N$$
 $C=0$
 CH_3CH_2
 $CICH_2CH_2$

1.5 g of dry, powdered p-dimethylbenzanilide, 2.4 g of N-ethyl-N-2-chloroethylaniline, and 1.3 ml of phosphorus oxychloride were mixed in a 25 ml 2-necked flask, fitted with a thermometer immersed in the reation mixture and a reflux condenser having a CaCl₂ drying tube on top. The reaction was warmed slowly until an exothermic reaction occured. temperature was maintained at less than 100°C by periodic immersion of the flask in ice water. reaction was then maintained at 95°C for one hour to yield a dark green liquid. The reaction mixture was then hydrolyzed in a 150 ml beaker with the addition of a solution of 1.36 ml of concentrated HCl to 10.4 ml of distilled H₂O. The beaker was covered with a watch glass and heated on a hot water bath for 1.5 hours to yield a green-yellow solution. 10:1 cold water was added to the hydrolyzed mixture to form a brilliant purple solution which was filtered. The filtered product was dissolved in a minimum volume of ethanol, and twice the volume of cold H₂O was added. The ketone was then extracted in an equal volume of chloroform which was removed by distillation to dryness under reduced pressure. Brilliant purple solid product. Ketone confirmed by IR and NMR.

Step D: Preparation of 1-(4-N,N-dimethylaminophenyl)-1-(4-N-ethyl-N-2-chloroethylphenyl) ethylene.

$$(CH_3)_2N$$

$$C=0$$

$$CH_3CH_2$$

$$CICH_2CH_2$$

$$CH_3MgBr$$

$$C=CH_2$$

$$CH_3CH_2$$

$$CICH_2CH_2$$

$$CICH_2CH_2$$

$$C=CH_2$$

molar etherial solution of One ml of a 3 magnesium bromide was evaporated almost to dryness under reduced pressure in a 50 ml three necked flask equipped with a thermometer and nitrogen sparger. The grey moist solution was suspended in 1.3 ml of The flask was then equipped for dry benzene. refluxing by the addition of a condenser fitted with a CaCl2 drying tube and an addition funnel. 0.017 moles of the ketone dissolved in 4.4 ml of boiling benzene was then placed in an addition funnel and added dropwise to the warmed methyl magnesium bromide-benzene slurry over a half hour period. resulting solution was refluxed for one hour. completion of the reaction was evident by the color change of the solution from brilliant purple to The reaction mixture was cooled to room temperature, and 0.785 ml of saturated NH_ACl was cautiously added. Additional NH,Cl was added until two layers were apparent with the blue alcohol product in the bottom H_2O layer. 1.7 x 10^{-3} g of p-toluenesulphonic acid was added, and the solution was boiled on a water bath with the addition of benzene until the evaporation of H2O was complete and only the benzene layer remained. The acid contained in the reaction mixture was then removed by 10^{-3} addition of 0.73 of bicarbonate. The solvent was reduced to under reduced pressure to yield light blue crystals.

Step E: Preparation of a perchlorate of 1,5-di-(p-N-2-chloroethyl-N-ethylaminophenyl)-1,5-bis-(p-N,N-dimethylaniline)-1,3-pentadiene.

+ $HC(OC_2H_5)_3$ Acetic Anhydride + $HC(OC_2H_5)_3$ + $HCIO_4$

8.7 x moles of 1-(4-N, N-dimethylaminophenyl)-1-(4-N-2-chloroethyl-N-et hylaminophe-nyl)ethylene, 0.13 ml of orthoformate, and 0.39 ml of acetic anhydride was treated with a solution of 0.035 ml of 72 percent perchloric acid and 0.35 ml of acetic acid previouly cooled to 0°C. The resulting mixture was allowed to stand at room temperature for 8 days, after which time it was treated with 0.22 ml of ether and kept an additional day at room temperature. The condensation product was washed with acetic acid, ethanol, and ether. The pale blue-green crystals were dissolved a minimum volume of warm dry ethanol. was centrifuged to pellet solution The dark blue supernatant solution was precipitate. removed distilled to dryness under and The blue crystals where placed on watch pressure. glass and placed in the dark. The structure of the condensation compound was confirmed by IR and NMR.

Step F: Preparation of 1,5-di-(p-N-2-(N-(4-aminobuty1)-N-ethyl isolminol)-N-ethylaminophenyl)-1,5-bis-(p-N,N-dimethyla niline)-1,3-pentadiene.

WO 89/09833 PCT/US89/01361

- 110 -

5 mg (1.8 x 10⁻⁵ moles) of N-(4-aminobuty1)-N-ethylisoluminol was suspended in 0.1 ml of pyridine in a small test tube. 30 mg (3.6 x 10⁻⁵ moles) of the pentadiene was dissolved in 0.5 ml of pyridine and 0.25 ml of DMSO. This latter solution was added dropwise to the former while vigorously stirring at room temperature initially then with intermittant imersion in a water bath at 35°C. The isoluminol which was only slightly soluble in pyridine went into solution as the reaction progressed. The reaction mixture was stirred and intermittantly immersed in the water bath at 35°C until the reaction was complete. This reaction and all subsequent reactions were protected from direct light.

Step G: Preparation of Luminide, MTL 7-3 (2,6-di-(p-N-2-(N-(4-aminobutyl)-N-ethylisoluminol)-N-ethylamino-phenyl)-2,6-bis-(p-N,N-dimethylanilino)-3,5-hexadinenitrile).

5 mg of solid KCN and 1 ml of distilled H₂O blue-grey solution of the were added to 1,5-di-(p-N-2-(N-(4-aminobutyl)-N-ethylisoluminol)-N-et hylaminophe-nyl)-1,5-bis-(p-N,N-dimethylanilino)-1,3-pe ntadiene in pyridine/DMSO solvent. The solution was acidified by addition of sulphuric acid and evolving HCN gas was removed by evaporating solvent to dryness under reduced pressure. green crystals were redissolved in DMSO to yield a pale green liquid. IR and NMR confirmed the structure.

Step H: Preparation of Luminide MTL J-1

(5-phosphonoformate-1,5-di-(p-N-2-(N-(4-aminobuty1)-N-ethylisoluminol)-N-ethylaminophenyl)-1,5-bis-(p-N,N-dimethylaniline)-1,3-pentadiene).

MTL J-1 was prepared by the equimolar addition of disodium phosphonoformate dissolved in ${\rm H_2O}$ to a DMSO solution of

1,5-di-(p-N-2-(N-(4-aminobutyl)-N-ethylisoluminol)
-N-ethylaminophenyl)-1,5-bis(p-N,N-dimethylaniline)-1,3

-pentadiene

such that the final solvent was 4:3 DMSO/ $\rm H_2O$. The reaction mixture was protected from light, and the colorless reaction product solution was packaged in light protecting vials and refrigerated at $\rm ^4C$.

Methods of synthesis of triphenylmethane dyes appear in Appendix I.

Methods of synthesis of polymethine dyes appear in Appendix II.

Methods of synthesis of azo and diazopolymethine dyes appear in Appendix III and IV, respectively.

Methods of synthesis of quaternary ammonium salt poly methines appear in Appendix V.

Methods of synthesis of the intermediates, tetramethylortho carbonate and substituted ethylenes appear in Appendix VI.

Methods of synthesis of indoline based dyes appear in Appendix VII.

Methods of synthesis of dyes with more than one chromophore appear in Appendix VIII.

Methods of forming a leucocyanide appear in Appendix IX.

Further Exemplary Material

Example 1.

The compound shown as formula 6 is prepared as follows:

·· - 118 -

HO

$$CH_2NH$$
 CH_3
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3

Phenolphthalein is converted to the corresponding acid chloride by treatment with oxalyl chloride. The acid chloride is reacted with chloromethylamine to form the corresponding amide which is in turn reacted with a dioxetan such as compound 4 to give adduct 5 where compound 4 is prepared from the appropriate starting dioxetene by a method described by Schaap. The adduct 5 is converted to the final product by treatment with Captopril.

- 121 - > --

Example 2.

The compound shown as formula 10 is prepared as follows:

$$(CH_3)_2N - (7) = N(CH_3)_2$$

$$(CH_3)_2N - (CH_3)_2 + (8)$$

$$(CH_3)_2N - (CH_3)_2 + (8)$$

$$(CH_3)_2N - (CH_3)_2 + (8)$$

$$(CH_3)_2N$$

$$(CH_$$

Compound 7 is acylated with an acridinium ester such as compound 8 to give adduct 9 which is treated with prostaglandin $\rm E_2$ to give the final product 10.

Example 3.

The compound shown as formula 14 is prepared as follows:

$$(CH_3)_2N$$
 $C = CH - CH = CH - C$
 $(CH_3)_2N$
 $-N(CH_3)_2$
 $+$
 (11)

$$AICl_{3}$$

$$\rightarrow$$

$$CH_{3}$$

$$CH_{3}$$

$$(12)$$

$$(CH_3)_2N$$
 $O=C$
 $C=CH-CH=CH-C$
 CH_3
 CH_3

Compound 11 is acylated with a biacridinium derivative such as 12 to give adduct 13 which is treated with 5-(p-sulfamylphenylazo) salicylic acid to give the final product 14.

Example 4.

The compound shown as product 18 is prepared as follows:

$$\begin{array}{c} \text{CICH}_2\text{CH}_2\text{CH}_3$$

Compound 15 is reacted with the carboxylate 16 to form the ester 17 where 16 is formed by linking an oxidation reduction agent such as a derivative of 2, 6-dichloro phenolindophenol with a dioxene carboxylate derivative. The ester 17 is reacted with p-glycolohydroxamate to give the final product.

Example 5.

The compound shown as formula 22 is prepared as follows:

$$(19)$$

$$\begin{array}{c} (20) \\ \text{NO}_{2} \\ \text{NO}_{3} \\ \text{NO}_{4} \\ \text{NO}_{5} \\ \text{NO}_{5} \\ \text{NO}_{6} \\ \text{NO}_{6} \\ \text{NO}_{7} \\ \text{NO}_{8} \\ \text{NO}_{10} \\ \text{NO}_{10} \\ \text{NO}_{10} \\ \text{NO}_{10} \\ \text{NO}_{2} \\ \text{NO}_{2} \\ \text{NO}_{3} \\ \text{NO}_{4} \\ \text{NO}_{5} \\ \text{NO}_{5} \\ \text{NO}_{5} \\ \text{NO}_{6} \\ \text{NO}_{6} \\ \text{NO}_{7} \\ \text{NO}_{8} \\$$

Compound 19 which is formed using an appropriately substituted aniline is reacted with adduct 20 to give adduct 21 where adduct 20 is formed by alkylation of the aromatic ring of an active oxalate derivative with a molecule which can accept electrons via electron transport. Adduct 21 is treated with Baclofen to form the product 22.

Example 6.

The compound shown as formula 26 is prepared as follows:

$$H_2N(CH_2)_1N$$
 NH
 NH
 NH
 NH
 NH
 NH
 NH

Compound 23 is prepared with the appropriately substituted ethoxy groups which is then reacted with a phthalhydrazide such as 24 to form adduct 25. The final product 26 is formed by treatment of adduct 25 with γ -aminobutyric acid.

Example 7.

The compound shown as formula 30 is prepared as follows:

$$CH_{SCH_{A}} \stackrel{H}{\wedge} V = \frac{H}{L} - \frac{H}{L} =$$

$$\frac{F}{(m_{1})^{2}} = \frac{F}{(m_{1})^{2}} = \frac{F$$

Compound 27 is reacted with adduct 28 which is formed by akylation of an active oxalate by a methylene blue derivative.

The product adduct 29 is treated with adenosine 3', 5'-cyclic monophosphate to yield the final product 30.

Example 8.

The compound shown as formula 34 is prepared as follows:

$$(CH_3)_2N = C - CH = N - NH - C - CH = N - NH$$

$$0_{2}N \xrightarrow{0_{2}N} 0_{2}N \xrightarrow{0_{2}N} 0_{2$$

Compound 31 is acylated with an active oxalate such as 32 to yield adduct 33. Adduct 33 is treated with Ridavirin to yield the final product 34.

Example 9.

The compound shown as formula 38 is prepared as follows:

Compound 35 is reacted with an alkyl halide derivatived active oxalate such as 36 to give adduct 37 which is treated with phosphonoacetate to give the final product 38.

Example 10.

The compound shown as formula 42 is prepared as follows:

C1CH₂

$$CH = CH - (CH_3)_2$$

$$CH = CH - (CH_3)_2$$

$$CH = CH - (CH_3)_2$$

$$(39)$$

$$CH_3$$
 N CH_3 CH_2NH_2

WQ 89/09833 PCT/US89/01361

- 148 -

Compound 39 is prepared using the proper chloromethyl substituted benzene and reacted with a dioxene derivative such as 40 to yield adduct 41. Adduct 41 is treated with U-7130 to give the final product 42.

Example 11.

The compound shown as formula 47 is prepared as follows:

Compound 43 is dehydrated and treated with an indole ketone derivative dioxene such as 44 to give intermediate adduct 45 which is hydrolyzed to the ketone adduct 46. Adduct 46 is treated with N-(phosphonacetyl)-L-asparate to yield the final product 47.

Example 12.

The compound shown as formula 51 is prepared as follows:

$$(CH_3)_2N - CCH = N - N(CH_3)_2 + CCH_3$$

$$(CH_3)_2N - CH_2CI$$

$$(CH_3)_2N - CH_3CI$$

$$(CH_2)_4N - CH_3CI$$

$$(CH_3)_2N - CH_3CI$$

$$(CH_3)_$$

PCT/US89/01361

Compound 48 is prepared from the proper chloromethyl naphthalene and reacted with a phthalhydrazide such as 49 to give adduct 50 which is reacted with trans-4-aminocrotonic acid to give the final product 51.

Example 13.

The compound shown as formula 56 is prepared as follows:

$$\frac{(\text{HOCH}_2\text{CH}_2)_2\text{N}}{(52)} - \frac{\dot{c}}{\text{N(CH}_2\text{CH}_2\text{OH)}_2}$$

- 158 5

Compound 52 is reacted with p-toluene sulfonyl chloride to give tosylate adduct 52 which is reacted with an active oxamide that has an alcoholic function such as 54 to give ether adduct 55. The adduct 55 is reacted with compactin to give the final product 56.

Example 14.

The compound shown as formula 62 is prepared as follows:

CICH₂ N-
$$\frac{c}{c}$$
 $\frac{d}{c}$ \frac{d}

N(CH₃)₂

WO 89/09833

- 162 -

PCT/US89/01361

Compound 57 is reacted with Mg to form the Grignard reagent 58 which is reacted with a dioxene indole derivative with an aldehyde or ketone functionality such as 59 to give the alcohol 60. Adduct 60 is reacted with 4-amino-hex-5-enoic acid, 61, to give the final product 62.

Example 15.

The compound shown as formula 67 is prepared as follows:

$$(CH_3)_2N$$
 $C=CH-CH=CH-C$
 $C=CH-CH=CH-C$
 $C=CH-CH=CH-C$
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5

PCT/US89/01361

The compound 63 is reacted with an acid halide such as 64 to give adduct 65. The acid halide 64 is prepared from the corresponding acid by reaction with oxalyl chloride. The original acid is prepared by reacting a phenazine possessing an alkyl halide and a carboxylic acid function with an indole derivative that has a amino group. The adduct amide 65 is reacted with but-3-ynoyl-CoA, 66, to give the final product 67.

Example 16.

The compound shown as formula 71 is prepared as follows:

(68)

WO 89/09833 PCT/US89/01361

The aldehyde compound 68 is reacted with a phosphonium ylid of a ubiquinone nucleus linked to a indole dioxene derivative such as 69 to form adduct ethylene 70. (The ylid 69 is formed by an acylation reaction of an indole derivative dioxene with a ubiquinone adduct followed by reaction with triphenylphosphine.) The adduct 70 is reacted with DL-2-hydrazino- α -methyldopa to form the final product 71.

Example 17.

The compound shown as formula 76 is prepared as follows:

$$C_{H_{2}} C_{H_{2}} C_{H$$

$$(H_1) \overset{h}{\wedge} V_1 \overset{h}{\wedge} V_2 \overset{h}{\wedge} V_3 \overset{h}{\wedge} V_4 \overset{h}{\wedge} V_$$

The alkylchloride 72 is reacted with alkyl amine Lophine derivate 73 to yeild adduct 74 which is reacted with disodium cromoglycate, 75, to form the final product 76.

Preparations and Routes of Administration of Luminides

Luminides can be administered orally,
intramuscularly or intraveneously.

Medicinal formulations which contain one or more Luminide compounds as the active compound can be prepared by mixing the Luminide (s) with one or more pharmacologically acceptable excipients or diluents, for example, fillers, emulsifiers, such as, lubricants, flavor correcting agents, dyestuffs or buffer substances, and converting the mixture into a such for suitable galenic formulation form, as. example, tablets, dragees, capsules or a solution or suspension suitable for parenteral administration. Examples of excipients or diluents which mentioned are tragacanth, lactose, talc, agar - agar, ethanol and water. Suspensions polyglycols, solution in water can preferably be used for parenteral administration.

Also, prepared Luminides can be as lyophilized powder to which a sterile solvent such as water or dimethylsulfoxide is added. Luminides are lyophilized prepared as a sterile deoxycholate effect а colloidal containing to dispersion of insoluble Luminide. These preparations administered injectables including are as intramuscular and intravenous administration.

Topical Luminides can be prepared as a cream, lotion, gel, and ointment.

It is also possible to administer the active compounds as such without excipients or diluents, in a suitable form, for example in capsules.

Luminides can be packaged employing the usual sorts of precautious which the pharmacist generally observes. For example, the preparations may be packaged in light protecting vials and may be refrigerated if necessary.

EXEMPLARY LUMINIDE PHARMACEUTICALS

Prostaglandins possess potent renal, hemodynamic, and other physiological effects; however, the free agents are 95% inactivated during one passage through the pulmonary circulation and are essentially eliminated in 90 seconds from intravascular injection. which Α luminide is resistant intravascular inactivation comprising functionality of prostaglandin Α_τ A₂, B_1 , E2, or an analogue which possesses a vasodilatory effect on coronary arteries and other human vascular beds is an agent for the treatment of ischemic heart disease and is a antihypertensive agent with a long halflife. luminide which is resistant intravascular inactivation comprising functionality of postaglandin E, F, A or an analogue which possesses a positive cardiac inotropic effect is an inotropic agent with a long halflife. A luminide which is resistant to intravascular inactivation comprising a C functionality of prostaglandin A, E, or an analogue prostaglandin which possesses natriuretic and diuretic activity is a diuretic agent with a long halflife. Α luminide which is resistant intravascular inactivation comprising C functionality of prostaglandin A, G, E_1 , E, or analogue such as 15(S)-15-methyl PGE_2 methylester, 16,16-dimethyl PGE2, AY-22,093, AY-22,469, AY-22,443, or 15(R)-15-methyl PGE, which inhibits gastric acid secretion is an agent for the treatment of peptic and duodenal ulcer disease with a long luminide which is resistant halflife. A intravascular inactivation comprising functionality of prostaglandin D_2 , E_1 analogue which inhibits platelet aggregation is antithromboembolic agent with a long halflife. luminide which is resistant to intravascular inactivation comprising a C functionality prostaglandin E_1 , E_2 or an analogue which causes bronchial dilatation is an agent for the treatment of asthma and allergic and hypersentivity reactions with a long halflife. A luminide which is resistant to inactivation comprising. intravascular functionality of prostaglandin F, or an analogue which causes abortion by luteolysis is an agent for therapeutic abortion with a long halflife. A luminide which is resistant to intravascular inactivation comprising a C functionality of prostaglandin A2, E₂, or an which. induces analogue E,, by stimulating the release erythropoiesis erythropoietin from the renal cortex is an agent for the treatment of anemia. A luminide which resistant to intravascular inactivation comprising a C functionality of prostaglandin E or an analogue which modulates T lymphocytes to decrease their ability to reject an allogenic graft is an agent to prolong allograft survival.

A cellular permeant luminide comprising a C functionality of cellular impermeant 2' -isopropyl -4' -(trimethylammonium chloride) -5' -methylphenyl piperidine -1-carboxylate (Amo 1618) which inhibits the cyclization of trans-geranyl-geranyl-PP to copalyl-PP during Kaurene synthesis is a fungicidal agent.

A cellular permeant luminide comprising a C functionality of cellular impermeant adenosine cyclic 3', 5'-monophosphate or an analogue which inhibits the release and formation of phlogistic mediators such as histamine and kinins is an agent for treating asthma and hypersensitivity and anaphylactic reactions.

A cellular permeant luminide comprising a C functionality of cellular impermeant 4'-sulfamylphenyl - 2-azo -7-acetamido -l-hydroxynaphthalene -3,6-disulfonate (Neoprontosil), 4'-sulfamyl -2, 4-diaminoazobenzene (Prontosil), or 5-(p-sulfamylphenylazo) salicylic acid (Lutazol) which possess potent carbonic acid anhydrase inhibition is a diuretic agent.

A cellular permeant luminide comprising a C functionality of a cellular impermeant analogue of S-adenosyl homocysteine or sinefungin is an oncostatic agent.

A cellular permeant luminide comprising a C functionality of the cellular impermeant phosphoglycolohydroxamate which inhibits Class II aldolases present in bacterial and fungi and is noninhibitory of Class I aldolases present in animals is an antibacterial and antifungal agent.

A cellular permeant luminide comprising a C functionality of a cellular impermeant inosine analogue such as formycin B which inhibits nucleotide phosphorylase during nucleotide metabolism is an agent for disorders of purine metabolism such as gout, is an agent that alters the toxicity and/or antitumor behavior of other analogue — containing nucleosides such as 6-thioguanosine or 6-mercaptopurine ribonueleoside, and is an immunosuppressive agent by disruption of purine metabolism.

cellular permeant luminide comprising a functionality of cellular impermeant phosphonoformate the (Foscarnet) which inhibits HIV reverse transcriptase enzyme is an agent for the treatment of acquired immunodeficiency syndrome. The synthesis and the results of treatment of C3H mice infected with Raucher Spleen Focus Forming Virus with MTL J-1, C luminide comprising cellular permeant of phosphonoformate, is given functionality Experimental Secions 1 and 3, respectively.

and blood-brain barrier cellular permeant luminide comprising a C functionality of cellular and blood brain-barrier impermeant y-amino-butyric acid (GABA) which is the major inhibitory neurotransmitter in the mannalian central nervous system or comprising a C functionality of a cellular and blood-brain barrier impermeant inhibitor of the GABA-degrading enzyme, GABA: 2-oxoglutarate aminotransferase such as N-(5'-phosphopyridoxyl) gabaculine, -4-aminobutyric ethanolamine -o-sulfate, y-vinyl GABA, γ-acetylenic GABA; or comprising a C functionality of a cellular and blood-brain barrier impermeant compound which enhances GABA release such as Baclofen is an anti-convulsant, muscle relaxant, sedative, and anxiolytic agent.

A cellular permeant luminide comprising a C functionality of a cellular impermeant oligonucleotide which binds to RNA or DNA and blocks transcription or translation of HIV or P-glycoprotein gene products is an agent for the treatment of AIDs and chemotherapeutic drug, resistance, respectively.

A blood-brain barrier permeant luminide comprising a C functionality of blood-brain barrier impermeant adenosine which binds to brain purinergic

receptors to suppress opiate withdrawal is an agent for the management of opiate withdrawal syndrome.

A slowly releasing peripherally acting luminide comprising a C functionality of adenosine which causes coronary vasodilatation is a long acting agent for the treatment of ischemic heart disease.

A cellular permeant luminide comprising functionality of cellular impermeant 3-hydroxy -3-methylglutarate, 3-hydroxybutyrate, 3-hydroxy -3-methylpentanoate, 4-bromocrotonyl -CoA, but-3-ynoyl -CoA, pent -3-ynoyl -CoA, dec -3-ynoyl-CoA, ML-236A, ML-236B (compactin), ML-236C, mevinolin, mevinolinic a mevalonic acid analogue which is acid, or inhibitor of 3-hydroxy -3-methylglutaryl -CoA reductase which catalyzes the rate-limiting and irreversible step of cholesterol synthesis inhibition at this step does not lead to accumulation of nonmetabolizable precursors is anticholesterol agent.

A cellular permeant luminide comprising a C functionality of cellular impermeant thioinosinate which suppresses T lymphocytes is an immunosuppressant agent.

A cellular permeant luminde comprising a C functionality of cellular impermeant Suramin, which is a powerful inhibitor of energy driven calcium uptake by the sarcoplasmic reticulum and is an intracellular inhibitor of Na^+-K^+ ATPase where both activities increase intracellular calcium concentrations with a concomitant inotropic effect is a cardiac inotropic agent.

A cellular permeant luminide comprising a C functionality of a cellular impermeant norepinephrine N-methyltransferase inhibitor such as 2,3-dichloro- α -methylbenzylamine, 2,3-dichlorobenzylamine,

2,3-dichlorobenzamidine, or 3,4-dichlorophenyl-acetamidine is a specific epinephrine action blocking agent.

A cellular permeant luminide comprising a C functionality of cellular impermeant adenosine cyclic 3',5'-monophosphate or a cAMP analogue which blocks the synthesis of fatty acids and cholesterol in the liver is an antilipidemic agent.

A cellular permeant luminide comprising a functionality of a cellular impermeant inhibitor of dihydroxyphenylalanine decarboxylase during the synthesis of epinephrine and norepinephrine such as psitectorigenin, genistein, 3',4',5,7-tetrahydroxy-8-hydroxygenistein, orbol, 8-methylisoflavone, 3',5,7-trihydroxy-4',6-dimethylisoflavone, 3',5,7-trihydroxy-4',8-dimethoxyisoflavone, D,L-B-(5-hydroxy-3indoly1)- α -hydrazinopropionic acid, D,L- α -hydra $zino-\alpha-methyldopa$, D,L-B-(3-indolyl) $-\alpha-hydrazino$ propionic acid, a derivative of phenylalanine such as α -acetamido-3,4-dimethyoxy-N-methyl-3,4-dopa, $DL-\alpha-methyl-3,4-dopa,$ α-methylcinnamic acid, methoxyphenyl)alanine, α -methyl-B-(3-hydroxy-4-3,4-dimethoxyphenylalanine, or d-catechin; D,L-B-(3indolyl)- α -methyl- α - hydrazinopropionic acid fluoropropylamine, (R)-3[3,4-dihydroxyphenyl]-1- $(S)-\alpha$ -fluoromethyl- $(S)-\alpha$ -fluoromethyldopa, 5-(3,4-dihydroxycinnamoyl) salicylic acid, tyrosine, 3-hydroxycinnamic acid, caffeic acid, 3-mercaptocinnamic acid, α-methyl-3-hydroxycinnamic α-ethyl-3- hydroxycinnamic acid, 3-hydroxy-w-3,4-dihydroxyhydrocinnamic acid, nitrostyrene, 3-hydroxybenzalacetone, 3-hydroxychalone, 3-hydroxyketone, 3-hydroxybenzal thiophenyl benzal furanyl ketone, 3',4'-dihydroxyflavone, 8-0-glucoseflavone, flavone, 3-hydroxyphenyl pyruvic acid, 3,4-dihydroxyphenylpyruvic acid phenylthiopyruvic acid, 4-hydroxyphenylpyruvic acid, dithiosalicyclic acid, 1-hydroxy2naphthoic acid, 3-hydroxy-7-sulfo-2-naphtholic acid, 3,5-dihydroxy-2-naphtholic acid, 4-chlorocinnamic 2-chlorocinnamic acid, 2,4-dichlorocinnamic acid, acid, 3-nitrocinnamic acid, 3,5-dibromo-2-hydroxycinnamic acid, 2,4,6-triiodo -3-hydroxycinnamic acid, 2-hydroxy-4'-cyanochalone, 4-(4-hydroxycinnamoyl) benzylnitrile, 2-(4-hydroxycinnamoyl) -1,4-dihydroxybenzene, quercetin-6'-sulfonic acid, 5-(2-hydroxy-3,5dibromocinnamoyl) salicylic acid or 5-(3-hydroxycinnamoyl) salicylic acid is an antihypertensive agent.

A sperm permeant luminide comprising a C functionality of sperm impermeant inhibitors of acrosin, a proteolytic enzyme located in the acrosome of sperm, such as tosyl lysine chloromethyl ketone, $N-\alpha$ -tosyl-L-arginine chloromethyl ketone, or ethyl p-guanidinobenzoate is a contraceptive agent.

A cellular permeant luminide comprising a C functionality of cellular impermeant adenosine cyclic 3',5'-monophosphate (cAMP), N^6 , O^2 -dibutyry-ladenosine cyclic 3',5'-monophosphate or an analogue which produces an inotropic response is a cardiac inotropic agent.

A cellular permeant luminide comprising a C functionality of a cellular impermeant adenosine kinase enzyme inhibitor such as 6,6'-dithiobis (9-B-D-ribofuranosylpurine) is a chemotherapeutic agent and an immunosuppressive agent.

A mitochondrial and blood-brain barrier permeant luminide comprising a C functionality of a mitochondrial and blood-brain barrier impermeant inhibitor of monoamine oxidase such as phenylhydrazine, phenylethylidenehydrazine, isopropylhydrazine, or iproniazid is an antidepressant.

A cellular and blood-brain barrier permeant luminide comprising a C functionality of a cellular blood-brain barrier impermeant inhibitor of catechol-o-methyltrasferase such as 3,5-diiodoacid, S-3'-deoxyadenosylL-4-hydroxybenzoic homocysteine, pyrogallol, R04-4602, gallic acid, 3,5-dihydroxy-4-methylbenzoic acid, 1,3-dihydroxy-1-hydroxy-2,3-dimethoxybenzene, 2-methoxybenzene, 2-hydroxy-1,3-dimethoxybenzene, 1,3-dihydroxy-4-methoxybenzene, catechol, 3,4-dihydroxybenzoic acid, caffeic acid, 5,6-dihydroxyindole, noradnamine, dopacetamide, H 22/54, quercetin, nordihydroguaiaretic acid, U-0521, arterenone, methylspinazarin, MK 486, papaveroline, isoprenaline, 7,8-dihydroxydopa, chlorpromazine, 3-hydroxy-4-pyridone, tetrahydroisoquinoline pyridoxal 5'-phosphate, iodoacetic acid, 3-mercaptotyramine, dehydrodicaffeic acid dilactone, methylspinazorin, 3',5,7-trihydroxy-4',6-dimethoxyisoflavone, 3',5,7-trihydroxy-4',8-dimeth-6,7-dihydromethylspinazarin, oxyisoflavone, S-adenosylhomocysteine, S-tubercidinylhomocysteine, 3',8-dihydroxy-4',6,7-trimethoxyisoflavone,7-0-methylspi 6-(3-hydroxybutyl)-7-0-methylspinachrome nochrome B, 3,5-diiodosalicyclic acid, pyridoxal-5'or phosphate is an antidepressant agent which increases brain levels of monoamines and is an agent to block administered metabolism of L-dopa the treatment of Parkinsonism.

cellular permeant luminide comprising a C functionality of a cellular impermeant inhibitor of adenosine deaminase which blocks the metabolism of adenosine such as coformycin, arabinosyl-6-thiopurine, 6-methylthioinosine, 6-thioinosine, 6-thioguanosine, N¹-methyladenosine, N^b-methyladenosine, 2-fluorodeoxyadenosine, 2-fluoroadenosine, inosine,

2'-deoxyinosine, deoxycoformycin, 1,6-dihydro-6-hydroxymethyl purine ribonucleoside, erythro-9-(2-hydroxy-3-nonyl)adenine, or 9-B-D-arabinofuranosyl-6-hydroxylaminopurine is a vasodilatory agent, immunosuppressive agent, a chemotherapeutic potentiating agent, and an agent to enhance recovery following ischemia. The mechanism in the first case involves the accumulation of adenosine which is a vasodilatory agent; the mechanism in the second case involves disruption of purine metabolism; the mechanism in the third case involves disruption of the degradation of purine analogue chemotherapeutic agents; the mechanism in the fourth case involves blocking the loss of catabolic products adenosine triphosphate in the form of purine nucleotides and oxypurines during ischemia. Additional luminides effective in enhancing post ischemic cardiac recovery by the latter mechanism include those with C moietics of inhibitors of adenylate 5'-nucleotidase, kinase, and adenosine as p¹,p⁵-diadenosine translocase such phosphate, a,B-methylene adenosine diphosphate, nitrobenzyl-6-thioinosine, respectively.

blood-brain barrier permeant luminide comprising a C functionality of a blood-brain barrier impermeant inhibitor of y-aminobutyric acid uptake such as D,L-2,4-diaminobutyric acid, D,L-B-hydroxy GABA, (-)-nipecotic acid, trans-4-aminocrotonic acid, cis-3-aminocyclopentane- 1-carboxylic acid, trans-3aminocyclopentane-1-carboxylic acid, B-quanidinopropionic acid, homohypotaurine, 4-aminopentanoic acid, homotaurine, B-alanine, imidazoleacetic acid, 6-aminohexanoic acid, D,L-carnitine, D,L-2,6-diaminopimelic acid, D,L-2-fluoro GABA, guanidino acid, 2-hydrazinopropionic acid, taurine, D,L-orniî

thine, or sulphanilamine potentiates the inhibitory action of GABA and is a muscle relaxant, anticonvulsant, sedative, and anxiolytic agent.

A cellular permeant luminide comprising cellular impermeant functionality of 1,4,5-triphosphate which is a major second messenger for stimulating a whole range of cellular processes such as contraction, secretion, and metabolism is an activating including agent for these processes secretion of neural transmitters to function as an agent for the treatment of mental disorders or secretion of insulin to function as a hypoglycemic agent.

A cellular permeant luminide comprising a C functionality of cellular impermeant guanosine 5' cyclic monophosphate or 8-bromo guanosine 5' cyclic monophosphate which relaxes smooth muscle is an antihypertensive and bronchodilator agent.

A cellular and blood-brain barrier permeant luminide comprising a C functionality of a cellular and blood-brain barrier impermeant inhibitor of the uptake system for glycine, the inhibitory synaptic transmitter of the spinal cord, such as hydrazinoacetic acid is an agent for spinal reflex inhibition.

A cellular permeant luminide comprising functionality of a cellular impermeant isoquinolineof protein kinase C, sulfonamide inhibitor kinase, or cGMP-dependent protein cAMP-dependant protein kinase such as N-(2-aminoethyl)- 5-isoquinois which blocks linesulfonamide an agent secretion, contraction, and metabolic events regulated by these mediators of external physiologic stimuli.

A cellular permeant luminide comprising a C functionality of cellular impermeant Ribavirin which

active against HSV-1 and 2, hepatitis, influenza viruses, or phosphonoacetic acid which is a highly specific inhibitor of Herpes Simplex virus induced polymerase and is active against HSV-1 and HSV-2, or adenine arabinoside (ara-A), cytosine arabinoside (Ara-C), ara-A 5'-monophosphate (ara-AMP), or hypoxanthine arabinoside (ara-Hx) which is active against HSV or phagicin which is active against vaccinia and HSV, or 4-fluoroimidazole, 4-fluoroimidazole-5-carboxylic acid, 4-fluoroimidazole- 5-carboxamide, 5-fluoro-l-B-D-ribofuranosylimidazole-4carboxamide, 5-amino-1-B-D-ribofuranosyl- imidazole-4carboxamide, poly (I) • poly (C), sinefungin, iododeoxyuridine, 9-(2-hydroxy-ethoxymethyl) guanine, gliotoxin, distamycin A, netropsin, congocidine, cordycepin, 1-B-D-arabinofuranosylthymine, hydroxy-5-azathymidine, pyrazofurin, toyocamycin, or tunicamycin is an antiviral agent.

A cellular permeant luminde which comprises a C functionality of a cellular impermeant inhibitor of fungal chitin synthetase such as polyoxin D, nikkomycin Z, or nikkomycin X; or which comprises a C functionality of an impermeant antifungal agent such as ezomycin A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , D_1 , or D_2 or platenocidin, septacidin, sinefungal agent.

A blood-brain barrier permeant luminide comprising a c functionality of a blood-brain barrier impermeant inhibitor of central nervous system carbonic anhydrase such as methazolamide, or 2-benzoylimino-3-methyl- Δ^4 -1,3,4-thiadiazoline-5-sulfonamide substituted at the benzolyl group with 3,4,5-trimethoxy, 2,4,6-trimethoxy, 2,4,5-trimethoxy,

ŝ

4-chloro, 4-bromo, 4-iodo, or hydrogen is an anticonvulsant agent.

A cellular and blood-brain barrier permeant luminide comprising a C functionality of a cellular impermeant inhibitor blood-brain barrier of synthesis during the dopamine-B-hydroxylase norepinephrine and epinephrine such as fuscaric acid, 5-(3'-bromoacid, 5-(3',4'-dibromobutyl)picolinic butyl) picolinic acid, 5-(3',4'-dichlorobutylpicolinic acid, YP-279, benxyloxyamine, p-hydroxybenzyloxyamine, U-21,179, U-7231, U-6324, U-0228, U-5227, U-10,631, U-6628, U-1238, U-19,963, U-19,461, U-10,157, U-20,757, U-19,440, U-15,957, U-7130, U-14,624, U-15,030, U-19,571, U-18,305,U-17,086, U-22,996, dimethyldithiocarbamate, diethyldithio-U-7726, ethyldithiocarbamate, 2-mercaptoethylcarbamate, guanidine, thiophenol, 2-mercaptoethylamine, 3-mercaptopropyl-N-methyl-3-mercaptopropylguanidine, 2-mercaptoethyl-2-mercaptoethanol, quanidine, 2-mercaptoethyl-N,N'dimethyl-N-methylguanidine, 4,4,6-trimethyl -3,4-dihydropyrimidinequanidine, N-phenyl-N'-3-(4H-1,2,4-trizolyl)thiourea, 2-thiol, methylspinazarin, 6,7-dimethylspinazarin, 7-0-methy-6-(3-hydroxybutyl)-7-0-methylspinaspinochrome B, aguayamycin, chrothiomycin, frenoclicin, chrome B, N-n-butyl-N'-3-(4H-1,2,4-trazolyl) thiourea, propylthiouracil, mimosine, mimosinamine, or mimosinic acid is an antihypertensive agent.

A cellular permeant luminide of a cellular impermeant inhibitor of histidine decarboxylation during the synthesis of histamine such as 2-hydroxy-5-carbomethoxybenzyloxyamine, 4-toluene-sulfonic acid hydrazide, 3-hydroxy benzyloxyamine, hydroxylamine, aminooxyacetic acid, 4-bromo-3-hydroxybenzyloxyamine (NSD-1055), rhodanine substituted in

the 3 position with p-chlorophenethyl, p-chlorobenzyl, p-methylthiobenzyl, p-methylbenzyl, p-fluorobenzyl, amino, 3,4-dichlorobenzyl, p-bromobenzyl, p-methoxybenzyl, p-bromoanilino, p-iodoanilino, p-chloroanilino, p-toluidino, anilino, 2,5-dichloroanilino, dimethylamino, or p-methoxyphenyl; 2-mercaptobenzimidazole-1,3-dimethylol, 4-bromo-3hydroxy -benzoic acid, 4-bromo-3-hydroxybenzyl alcohol, 4-bromo-3-hydroxy-hippuric acid, histidine, fluoromethyl- $(S)-\alpha$ -fluoromethylester, L-histidine ethyl ester, L-histidinamide, D,L-3-amino-4-(4-imidazolyl)-2-butanone, 2-bromo-3-hydroxybenzyloxyamine, 5-bromo-3- hydroxybenzyloxyamine, 4.6-dibromo-3-hydroxybenzyloxyamine, aminooxypropionic acid, benzyloxyamine, 4-bromo-3benzenesulfonyloxybenzyloxyamine, 3',5,7-trihydroxy-4',6dimethoxyisoflavone, lecanoric acid. N-(2,4-dihydroxybenzoyl)- 4-aminosalicylic acid, 3',5,7-trihydroxy-4',8- dimethoxyisoflavone is agent for the treatment of allergy, hypersensitivity, gastic ulcer, and inflamation.

Luminides also comprise C functionalities pharmaceutical molecules as appear in Physicians Desk Reference, Edward R. Barnhart, 41th ed., 1987, Medical Economics Company Inc., N.J.; USAN and the Dictionary of Drug Names, ed. by Mary C. Griffiths, The United States Pharmacopedial Convention, (1986); and Pharmacological Basis of Therapeutics, ed. by A.G. Gilman, L. Goodman, A. Gilman, 7th ed., (1985),MacMillan Publishing Co., N.Y., N.Y., (incorporated by reference) where the pharmacokinetics and/or pharmacodynamics of these agents are altered via delivery to the site of action by way of a luminide agent such that the therapeutic effect or therapeutic

ž

ratio is enhanced. Some examples follow which are not meant to be exhaustive.

A luminide with high permeance to the blood-brain barrier comprising a C functionality of a centrally acting converting enzyme inhibitor such as captopril which possesses a lesser blood-barrier permeance is an agent with increased efficacy of the central nervous system antihypertensive effect of the centrally acting converting enzyme inhibition including captopril.

A luminide with an A moiety which reacts with free radicals and electron carriers in the cytosol of bacteria to effect release of the C moiety and which possesses greater permeance or B-lactamase resistance than its C moiety of a bacterial wall synthesis inhibitor such as a penicillin, cephalosporin, or cephamycin is a more efficacious and broad spectrum antibacterial agent than the free C moiety.

possessing favorable luminide more pharmacokinetics or pharmacodynamics than its C moiety agent which blocks bacterial synthesis of tetrahydrofolate such as a sulfonamide (an analogue of p-aminobenzoic acid) including sulfanilamide, sulfadiazine, sulfamethoxazole, sulfisoxazole, inhibitor of dihydrofolate sulfacetamide or an including pyrimethamine, cycloguanil, reductace trimethoprin, isoaminopterin, 9-oxofolic acid, isofolic acid is a more efficacious antibacterial than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than it C functionality of a bactericidal agent such as nalidixic acid or oxolinic acid is a more efficacious antibacterial than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an inhibitor of bacterial protein synthesis such as vancomycin, an aminogylcoside, erythromycin, tetracyclin, or chloramphenicol is a more efficacious antibacterial agent than the free C moiety.

A luminide prossessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an inhibitor of viral DNA polymerase such as vidarabine is a more efficacious antiviral agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety which is tuberculostatic or tuberculocidal such as isoniazid or aminosalicyclic acid is a more efficacious agent for the treatment of tuberculosis than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmodynamics than its C moiety of an anthelmintic agent such as oxamniquine, piperazine, metronidazole, diethylcarbamazine, paromomycin, niclosamide, bithionol, metrifonate, hycanthone, dichlorophen, or niclosamide is a more efficacious anthelmintic agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an $\rm H_2$ -blocking agent such as cimetidine or ranitidine is a more efficacious anti-ulser agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an agent which blocks release of norepinephrine such as sotalol, guanethidine, pindolol, pronethalol, KO 592, practolol, oxprenolol, or pronethalol is an antiarrhythmic, antihypertensive and antipsychotic agent.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of a xanthine oxidase inhibitor such allopurinol, as 5,7-dihydroxypyrazolo thioinosinate, [1,5-a]pyrimidine substituted at the 3 position with hydrogen, nitro, bromo, chloro, phenyl, 3-pyridyl, p-chlorophenyl, p-acetylanilino, p-bromophenyl, p-toluly1, m-toluly1, naphthy1, or 3,4-methyl-8-(m-bromoacetamidobenzylenedioxyphenyl; 8-(m-bromoacetamidobenzylthio) hypoxanthine, thio)hypoxanthine, guanine substituted at the 9 position with phenyl, 4-chlorophenyl, 3-chlorophenyl, 4-methoxyphenyl, 3,4-dimeth-3,4-dichlorophenyl, 4-dimethylaminophenyl, 4-aminophenyl, oxyphenyl, 3-aminophenyl, 3-trifluormethylphenyl, 4-benzamido, 4-ethylphenyl, 4-carboxylphenyl, 4-methylpheyl, or 4-ethoxyphenyl; 3-methylphenyl, B-naphthyl, 4,6-dihydroxypyrazolo [3,4-d] pyrimidine, 4-trifluoromethylimidazoles substituted at the 2 position with phenyl, p-chlorophenyl, p-methoxyphenyl, p-acetylanilino, p-nitrophenyl, p-dimethylaminophenyl, p-cyanophenyl, p-fluorophenyl, p-carboxyphenyl, m-chlorophenyl, 3,4-dichlorophenyl, 4-pyridyl, 3-pyridyl, 2-quinolyl, 6-quinolyl, 4-quinolyl, 7-quinolyl, or 1-(2-pyridyl-4-trifluoromethyl-2-pyrazinyl, 5-(4-pyridyl)-1,2,4-triazoles 5-bromoimidazolyl; substituted at the 5 position with 4-pyridyl, 3-pyridyl, 2-pyridyl, phenyl, p-chlorophenyl, m-chlorophenyl, p-sulfonamidophenyl, 3,5-dichlorophenyl, 3,5-dicarboxyphenyl, 6-quinolyl, 2-furyl, 4-pyridazinyl, 2-thienyl, 2-pyrimidinyl, 4-pyrimidinyl, or 4-pyrazinyl; difunisal, 4(or 5)-(2-aminoethylthio-azo)imidazole-5(or 4)-carboxamide, 4 (or 5)-diazoimidazole-5(or 4)-carboxamide , or S-[5(or 4)-carbamoyl-4(or 5)-imidazolyl azol cysteine is a

more efficacious agent for the treatment of gout and hyperuricemic conditions than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety which inhibits DNA synthesis such as a bis-thiosemicarbazone, 3,5-diisopropylsalicyl- hydroxamic acid, 4-hydroxybenzoylhydroxamic acid, 3-methylsalicylhydroxamic acid 2,5-dihydroxybenzoylhydroxamic acid, 2-hydroxy-3,4,5-trimethoxybenzoylhydroxamic or inhibits nucleotide synthesis such as N-(phosphoacetyl)-L-aspartate which inhibits asparatate transcarbamylase during pyrimidine synthesis, or azaserine or 6-diazo-5-oxo-L-norleucine which inhibits purine synthesis at the phosphoribosyl-formyl-glycineamidine synthetase step; or which antifolate an such as methotrexate, 2,4-diamino-5-benxyl-6-(4-phenylbutyl) pyrimidine, 2,4-diamino- 5-phenyl-6-(4-phenylbutyl) pyrimidine, 2,4-diamino-5-phenyl- 6-(3-anilinopropyl) pyrimidine, 2-amino-4-hydroxy-5-phenyl-6-(3-p-aminobenzoylglutamic acid propyl) pyrimidine, N-[p-[[(2,4-diamino-6-quinazolinyl)methyl]methylamino] benzoyl]-L-glutamic N-[p-[2,4-diamino-5acid, methylquinazolinyl)methylamino]benzoyl] -L-aspartic acid. N-[p-[[(2-amino-4-hydroxy-6-quinazolinyl) methyl]methylamino] benzoyl]-L-glutamic 2,4-diaminoquinazolines: CCNSC 105952, CCNSC 112846, CCNSC 121346, CCNSC 122761, CCNSC 122870, CCNSC 529859, CCNSC 529860, or CCNSC 529861; GMP, 7-deaza-8-aza GMP, 2'-dGMP, B-D-arabinosyl GMP, pentopyranine A-G, B-ribofuranosyl-1,3-oxazine-2,4dione, pyrazofurin, 6-(p-chloroacetylanilinomethyl)-5-(p-chlorophenyl)-2,4- diaminiopyridine, 6-(p-chloracetylvinylanilinomethyl)-5-(p-chlorophenyl)-2,4-6-(p-chloroacetyldiaminopyridine, ethylanilinomethyl)-5-(p-chlorophenyl)-2,4-diamino pyridine, 6-(p-chlorophenylbutylanilinomethyl)-5-(p-chlorophenyl)-2,4- diamino pyridine, p-(2,6-diamino-1,2-dihydro-2, S-triazin-l-yl) phenylpropionyl 2-dimethylsulfanilylfluoride or variants of the propionamide acrylamido, N-ethylsulfonamido, of bridge N-ethylcaboxamido, oxyacetamido, or oxythyloxy; or which inhibits purine or pyrimidine synthesis such as xylosyladenine, 6-azauridine, 5-aminouridine, which inhibits nucleotide 5-azaorotic acid; or interconversion such as hadacidin, 6-mercaptopurine, azathioprine, nitro-dUMP, psicofuranine, decoyinine, 5-fluorouracil, 5-fluorodeoxyuridine, shadowmycin; or which inhibits nucleotide utilization such as cytosine arabinoside, arabinosyladenine; or which becomes incorporated into polynucleotides such as 8-azaguasangivamycin, nine, tubercidine, toyocamycin, formycin, 7-deazainosine, 8-azainosine, or 7-thia-7, 9-dideazainosine; or which is a glyoxalase inhibitor such as Glyo-I, or Glyo-II, is a more efficacious antineoplastic agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an agent which blocks synthesis of prostaglandin A_2 which effects platelett aggregation such as salicylic acid, pyrogallol, 5,8,11,14-eicosatetraynoic acid, α -naphthol, guaiacol, propylgallate, nordihydroguiaretic acid, N-0164, benzydamine, 9,11-azoprosta-5,13-dienoic acid, 2-isopropyl-3-nicotinylindole, is a more efficacious antithrombotic agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an agent which blocks prostaglandin synthetase such as indomethacin, sulindac, tolmetin, mefenamic acid, WO 89/09833 PCT/US89/01361

ibuprofen, naproxen, fenoprofen, fluribiprofen, meclofenamic acid, flufenamic ketoprofen, acid, niflumic acid, benzydamine, oxyphenbutazone, asprin, acetaminophen, salicylamide, 0-carboxydiphenylamine, tolectin, diclofenac, 2,7-dihydroxynaphthalene, 5-(4-chlorobenzoyl)- 1-methylpyrrole-2-acetic 5-(4-methylbenzoyl)-1,4dimethylpyrrole-2-acetic 5-(4-chlorobenzoyl)-1,4- dimethylpyrrole-2acetic acid, 5-(4-fluorobenzoyl)-1,4- dimethylpyrrole-2-acetic acid, 5-(4-chlorobenzoyl)-1,4dimethylpyrrole-2-(2-propionic acid), 5,6-dehydroarachidonate, 11,12-dehydroarachidonate, or 5,8,11,14-eicosatetraynoate; or of an agent which blocks lipoxygenase or blocks leukotriene action such BW755C, FPL 55712, or U-60,257 is a efficacious nonsteroidal anti-inflammatory agent than the frée C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an antiarrhythmic agent such as procainamide or quinidine is a more efficacious antiarrhythmic agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an inhibitor of hepatic synthesis of Vitamin K dependent clotting factors such as warfarin sodium, dicumarol, 4-hydroxycoumarin, phenprocoumon, or acenocoumarol is a more efficacious anticoagulant than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety which directly relaxes vascular smooth muscle such as hydralazine, minoxidil, or isoxsuprine is a more efficacious antihypertensive agent than the free C moiety.

2

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of a Na⁺-K⁺-ATPase inhibitor such as digtoxigenin, cymarol, periplogenin, or strophandigoxigenin, . thidiol, or ouabain glycosides, cardenolides, or basic ICI-62-655, ICI-63,605, ICI-63,632, esters, or ICI-62,838, ICI-69,654, ICI-58,622, ICI-61,374, ICI-61,411, ICI-65,199, ICI-61,424, ICI-57,267, ICI-70,900, ICI-70,901, ICI-70,899, ICI-70,898, ICI-62,936, ICI-65,210, ICI-63,116, ICI-62,966, ICI-62,276, ICI-63,056, ICI-63,978, ICI-65,551, ICI-67,134, ICI-67,875, ICI-67,167, ICI-67,135, efficacious ICI-61,558 is a more ICI-67,880, or inotropic agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety which is a calcium channel blocker such as prenylamine, gallopamil, verapamil, fendiline, cinnarizine, tiapamil, diltiazem, bencyclan, or nifedipine; or an agent which stabalizes calcium binding to cellular calcium stores and thereby inhibits the release stimuli such this calcium by contractile 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate (TMB-8) is a more efficacious vasodilatory agent than its free moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of a monoamine oxidase inhibitor such as tranylcypromine, phenylethylamine, trans-cinnamic acid, phenelzine, or isocarboxazid is a more efficacious antidepressant agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of a benzodiazepine compound such as clorazepate is a more efficacious tranquillizer than the free C moiety. WO 89/09833 PCT/US89/01361

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an antiseizure agent such as valproic acid is a more efficacious antiepileptic agent than the free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of an agent which causes repression of the synthesis HMG-CoA reductase such as $20-\alpha$ -hydroxycholesterol, 22-ketocholesterol, $22-\alpha$ -hydroxycholesterol, 25-hydroxycholesterol, 22-B-hydroxycholesterol, $7-\alpha$ -hydroxycholesterol, 7-B-hydroxycholesterol, 7-ketocholesterol, or kryptogenin; or of an agent which inhibits HMG-CoA reductase such as, lorelco; or of an agent which inhibits lipolysis such as 5-methylpyrazole -3-carboxylic acid (U-19425), nicotinic acid, uridine, inosine, 3,5-dimethylisoxazole 3,5-dimethypyrazole, prostaglandin E_2 , eritadenine, or eritadenine isoamyl ester; or of an agent which inhibits lipogenesis such as ascofuranone, (-)-hydroxycitrate, or tetrolyl-CoA; or of an agent which is hypocholesterolemic such as lentysine; or of an agent which lowers triglycerides such as lopid; or an agent which is an inhibitor of acetyl-CoA carboxylase during lipogenesis such as 2-methyl -2-[p-(1,2,3,4-tetrahydro-1-naphthyl)-phenoxy]-propionat e (SU13437), 2-(p-chlorophenoxy)-2-methylpropionate, kynurenate, xanthurenate, kynurenine, 3-hydroxyanthranilate, or 2-methyl-2-[p-(p-chlorophenyl)phenoxy] propionate; or of an agent which is inhibitor of hepatic B-lipoprotein production such as orotic acid is a more efficacious hypolipidemic agent than its free C moiety.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics than its C moiety of a vasodilater such as WS-1228A, or WS-1228B; or of an anti-inflammatory agent such as amicomacin A is a more efficacious vasodilator or anti-inflammatory agent, respectively, than the free C moiety.

A luminide with more favorable pharmacokinetics or pharmacodynamics than its C moiety which is a protease inhibitor such as leupeptin; or which is an inhibitor of pepsin such as a pepstatin, a pepstanone, or a hydroxypepstatin is a more efficacious agent for the treatment of muscular dystrophy or peptic ulcer disease, respectively, than its free C moiety.

A luminide with more favorable pharmacokinetics or pharmacodynamics than its C moiety of an inhibitor of cell surface enzymes such as bestatin, amastatin, forphenicine, ebelactone, or forphenicin is a more efficacious immunomodifier agent than its free C moiety.

A luminide with more favorable pharmacokinetics pharmacodynamics such as enhanced permeability relative to its C moiety of a phosphodiesterase inhibitor such as theophyllineacetic acid, theophylline, dyphylline, disodium cromoglycate, 6-n-butyl-2,8-dicarboxy-4,10-dioxo-1,4,7,10tetrahydro-1,7phenanthrolin, 2-chloroadenosine, dipyridamole, EG 626, AY-17,605, AY-17,611, AY-22,252, AY-22,241, oxy-cis-hinokiresinol, cis-hinokiresinol, hinokiresinol, trans-hinokiresinol, hydro-cis-2,6,4'-trihydroxy-4dehydrodicaffeic acid, methoxybenzophenone, p-hydroxyphenyl crotonic 3-(5-tetrazolyl)-thioxanthonepapaverine, 10,10-dioxide, 3-carboxythioxanthone-10,10-dioxide, MY-5445, OPC-3689, OPC-13135. HA-558, or W-7, OPC-13013, reticulo1, PDE-I, or PDE-II is a more efficacious cardiac stimulant, diuretic, vasodilator, platelett aggregation inhibitor, and an agent for the treatment of asthma and allergic reaction than its free C moiety. Such a luminide comprising a C moiety of ICI 74,917 is also a more efficacious agent for the treatment of asthma and allergic reactions.

A luminide possessing more favorable pharmacokinetics or pharmacodynamics such as enhanced cellular or blood-brain barrier permeability or resistance to inactivation by tissue dehalogenases and transaminases than its C functionality of an inhibitor of tyrosine hydroxylase, the enzyme catalyzing the rate-limiting reaction in the biosynthesis of norepinephrine, such as azadopamine, isopropylazadopamine, dimethylazadopamine; triphenolic compounds such as n-propylgallate; diphenolic benzoic acid derivatives such 3,4-dihydroxybenzoic acid; phenylcarbonyl derivatives as 3,4-dihydroxybenzaldehyde, arterenone, adrenalone; H 22/54, 3-iodo-L-tyrosine, methyl-p-tyrosine, $L-3-iodo-\alpha-methyltyrosine$, $3-bromo-\alpha-methyltyrosine$, gentistic acid, 3-chloroα-methyltyrosine, phenylalanine derivatives, 3,5-diiodo- L-tyrosine, 3,5-dibromo-L-tyrosine, 3-bromo-α-methyl-Ltyrosine, $3-fluro-\alpha-methyl-$ L-tyrosine, catechol analogues, 3,4-dihydroxyphenylethylacetamide, 3,4-dihydroxyphenyliso- proplyacetamide, 3,4-dihydroxyphenylbutylacetamide, hydroxyphenylisobutylacetamide, D,L-α-methylphenylalanine, D,L-3-iodophenylalanine, D,L-4-iodophenylalanine, D, $L-\alpha$ -methyl-3-iodophenylalanine, $D,L-\alpha-methyl-3$ bromophenylalanine, $D, L-\alpha-methyl-$ 3-chlorophenylalanine, D, L-α-methyl-3-fluorophenylalanine, mimosine, mimosinamine, mimosinic acid, 7-0-methylspinochrome B, 6-(3-hydroxybuty1)-7-0methylspinachrome B, aquayamycin, chrothiomycin, frenolicin, fuscaric acid, pentylpicolinic dopstatin, methylspinazarin, 6,7-dihydroxymethylspinazarin, $3-\text{ethyl-}\alpha-\text{methyltyrosine},$ 3-methyl-

3-isopropyl- α -methyltyrosine, α-methyltyrosine, $3-allyl-\alpha-methyltyrosine$, 3-[4-hydroxy-3-(2-methylallyl)-phenyl]-2-methylalanine, 3-[3-(2,3epoxypropyl)-4-hydroxyphenyl]-2-methylalanine, 3-methylvinyl-3-isobutyl- α -methyltyrosine, 5-methyl-6,7-diphenylα-methyltyrosine, 3-[2,3-dihydro-2,2tetrahydropterin, dimethy1-5-benzofurany1]-2-methylalanine, 3-[2,3-dihydro-2,2-dimethyl-5-benzofuranyl]-2-methylalan ine, α -methyldopa, or ethyl-3-amino-4H-pyrrolo [3,4c] isoxazole carboxylate is а more efficacious antihypertensive agent than the free C moiety.

In addition, luminides which provide controlled extracellular release of biologically substances such as drugs and proteins including herein disclosed hormones are enzymes and Luminides, each comprising macromolecular luminides. C functionality of a drug or protein such as interleuken 2, erythropoietin, interferon, insulin, atrial natriuretic factor, tissue growth hormone, plasminogen activator, an anti-inflammatory drug, an inotropic drug, antihypertensive drug. contraceptive drug, etc., are attached to a polymeric material to which an enzyme is immobilized to form a macromolecular luminide. The enzyme molecules react molecules the ambient extracellular with in proportion to environment at a rate in concentration to produce peroxide or free radicals which react with the A functionality molecules causing them to achieve a high energy electronic state which is followed by the release of the C molecules where the release of C is in proportion to the ambient concentration of the substrate of the enzyme.

For example, a macromolecular luminide which provides a release of insulin in proportion to the

WO 89/09833 PCT/US89/01361

ambient glucose concentration comprises molecules, each comprising a C functionality insulin, covalently bound to a biocompatible polymer to which the enzyme glucose oxidase is immobilized. The immobilized enzyme reacts with glucose at a rate proportional to the ambient glucose concentration to produce peroxide which reacts with the A functionality molecules of the attached luminide molecules to effect release of insulin. Because the insulin release is in proportion to the glucose concentration this macromolecular agent represents a very effective diabetic therapy.

As additional example, cardiac an results in the production and release of degradation products of purines such as xanthine. The enzyme xanthine oxidase oxidizes xanthine and directly reduces oxygen to hydrogen peroxide. Furthermore, tissue plasminogen activator (TPA) is an effective agent for the treatment of myocardial infarction because this agent effects the lysis of fibrin clots arteries coronary to establish reperfusion. Cardiac recovery is, enhanced by diminishing the delay between the occlusion event and the administration of TPA. Thus, a macromolecular luminide comprising luminide molecules, each comprising a C functionality of TPA, bound to a biocompatible polymer to which xanthine oxidase is immobilized is an agent which releases TPA in proportion to the products of cardiac ischemia. Thus, it is a highly effective agent to resolve myocardial infarctions.

In another embodiment, luminide molecules, each comprising an A functionality which achieves a high energy electronic state via a reduction reaction, are attached to a conducting polymer to which an enzyme is immobilized. The immobilized enzyme oxidizes

ં

> -- - 201 -

molecules in the ambient environment and transfers electrons to the conducting polymer which reduces the A functionality molecules directly or indirectly via the optional D functionality molecules to effect release of the C molecules.

In the latter embodiment, the conducting polymer derivatized with an enzyme, can be replaced with an electrocatalytic polymer which is reduced directly by molecules in the ambient environment and transfers the electrons to the luminide molecules to effect release of the C molecules. For example, polyvinylferrocene poly-[N-(9,10-anthroquinone)- ethylenimine conductive polymers and electrocatalytically oxidize Thus, a macromolecular luminide for glucose. treatment of diabetes comprises a conducting polymer such as polyvinylferrocene to which glucose oxidase is optionally bound and to which luminide molecules are bound where the A functionality molecules of polymer attached luminides achieve a high energy state via a reduction reaction. electronic polymer is reduced when glucose oxidase electrons from glucose and transfers them polymer. Or, the electrocatalytic polymer is reduced directly by glucose. The reduced polymer reduces the A functionality molecules directly or indirectly via the optional D functionality molecules to effect release of insulin molecules in proportion to ambient glucose concentration.

Furthermore, macromolecular luminides can be directed to a specific extracellular target site such as an anatomical or biological compartment or organ by further attaching monoclonal antibody molecules to the polymer of the macromolecular luminide which bind to a molecule at the desired target site.

WO.89/09833 PCT/US89/01361

- 202 -

In addition to pharmaceutical agents, luminides also comprise pesticides including herbicides, fungicides, miticides, nematocides, fumigants, growth regulators, repellants, defoliants, rodenticides, molluscicides, algicides, desicants, antehelmintics, and bactericides. These luminides can be obtained by skilled in the art by combining functionalities, A, B, and optionally, D, of energy energy acceptor, and electron transfer functionality, respectively, with a C moiety which possesses pesticidal activity. C moieties include in <u>Chemical Week Pesticides</u> those that appear Register, Robert P. Ovellette and John A. King, 1977, McGraw-Hill Book Company (incorporated by reference) and analogues of these agents. Enhanced pesticidal effectiveness is acheived via improved delivery of these agents to their target receptors by way of luminide molecules which possess desirable properties such as increased permeance to the cells of the organism relative the free C moieties.

- 203 -

EXPERIMENTAL 2

Release Reaction

MTL 7-3 was tested for release of the nitrile group as free cyanide during the reaction of the isoluminol group with hydrogen peroxide as follows:

 1.2×10^{-5} moles of 1. 5-di-(p-N-2--N-ethylisoluminol) (N-(4-aminobutyl) -N-ethylaminophenyl) -1,5-bis-(p,N,N-dimethylaniline) -1,3-pentadiene was reacted with an excess of cyanide in a 4/4/1 DMSO/pyridine/H₂O solvent. The solution was acidified to pH one and distilled under vacuum until gas no longer evolved. The product was split equal aliquots of approximately into six milliliter volume. A volume of .lml of lM NaOH was A volume of .05ml of added to all aliquots. hydrogen peroxide was added to 3 of the aliquots. After five minutes cyanide was assayed following the proceedure of Gunther and Blinn.

This proceedure involves the addition of acid to the sample which is heated to distill hydrocyanic acid which is captured in a basic solution to which a colorimetric reagent is added to develop a color which is compared to a standard curve. The results are as follows:

TEST ONE

<u>Sample</u>	Released	cyanide	(ug)
---------------	----------	---------	------

Blank 0 MTL 7-3 22.2

MTL $7-3/H_20_2$

26.4

- 204 -

TEST TWO

Sample Released cyanide (ug)

Blank

0

MTL 7-3

21.5

MTL 7-3/H₂O₂

27.0

TEST THREE

Sample Released cyanide (ug)

Blank

0

MTL 7-3

15.0

MTL 7-3/H₂O₂

30.5

The release reaction test was repeated as follows: 4.5×10^{-6} moles 1,5-di-(p-N-2-(N-(4-aminobuty1))-N-ethylisoluminol) -N-ethylaminophenyl) -1,5-bis-(p-N,N- dimethylaniline) -1,3-pentadiene was reacted with excess cyanide in a 1:1 $DMSO/H_2O$ solvent. The solution was acidified to ph one and was distilled for 90 minutes under reduced The volume of the solution was 4 milliliters by addition of H2O. The solution was made basic by addition of 1M NaOH and was split into two equal volume aliquots. .05 milliliters of 3% H₂O₂ was added to one aliquot. Both

- 205 -

stood for 5 minutes, and then cyanide was determined as previously described. The results are as follows:

TEST_FOUR

<u>Sample</u>	Released cyanide (ug)		
Blank	0		
MTL 7-3	73.4		

MTL 7-3/H₂O₂ 109.1

The results indicate that cyanide was released as a result of a reaction of hydrogen peroxide with the luminide compound. The release of lesser amounts of cyanide during the control experiment is consistent with the thermochromic properties of the compound at elevated temperatures as the samples were heated during the cyanide determination proceedure.

EXPERIMENTAL 3

Efficacy of Treatment of C3H Mice Infected with Raucher Spleen Focus Forming Virus with Luminide MTL J-1.

The effectiveness of MTL J-1 was tested in C3H mice against the virus RSFFV (Raucher Spleen Focus Forming Virus) which is a retrovirus and is a valid animal model for HIV infection by application to the above identified mice according to the following procedure:

Three groups of two month old C3H mice, each comprising four animals were provided as one control and two test groups; wherein, the three groups (I-III) were subjected to an infectious dose of RSFFV on day one. The first group (I) served as control and received no treatment. Group II and III were treated with 10uM total body weight concentration of the drug Foscarnet and the test compound MTL J-1, respectively which was administered each day for days 5 through 9. The animals were sacrificed on day 14, where upon the spleens where removed and weighed. The results are summarized in the following table:

TABLE 1

	I	II	III	_
Ending Weight (grams)	21.1	21.2	22.5	
Weight change (grams)	1.675	0.15	2.25	
Spleen weight Normalized (grams)	.083	.079	.068	

The tests were redone with a second control group (IA) having no infection of RSFFV and receiving no treatment with any drug, wherein groups I and IA comprise four mice each, and groups II and III comprise five mice each, providing the results summarized below:

TABLE 2

	IA	I	II	III
Ending Weight (grams)	18.5	18.6	19.6	19.2
Weight change (grams)	+1.0	+1.8	+1.6	+1.5
Spleen weight Normalized (grams)	0.046	0.060	0.061	0.049

These results indicate that MTL J-1 was nontoxic as demonstrated by an absence of weight loss and that MTL J-1 was highly effective as demonstrated by the absence of splenomegaly in the animals administered this compound.

The biologically active substances not are included in, and specifically mentioned functionally applicable as a drug in the compound of the present invention. Also, the references referred to herein or filed herewith are hereby incorporated by reference. Modifications and substitutions made by one of skilled in the art are considered to be within the scope of the present invention, which is not to be limited except by the claims.

WO 89/09833` PCT/US89/01361

- 208 -

APPENDIX I

Triphenyl Methanes

Triphenyl methane dyes have been known and used for many years. Consequently many general-type syntheses have been worked out and published. The following four synthesis methods have been used almost exclusively for the 15 triphenyl methane dyes synthesized.

Method A. Michler's Ketone Method

To equal molar quantities of а p-amino benzophenone or di-(p-amino) benzophenone (Michler's type ketones) and aromatic amines, such as anilines and naphthyl amines, sufficient toluene-phosphorous oxychloride solution is added (3-5) to dissolve the reactants at 50°C. The temperature is raised to 80°C and the solution is stirred for approximately 45 minutes or until the mass becomes very viscous. The sample is cooled and 10 ml of water added for each ml of phosphorous oxychloride used, and heated to boiling. The solution is cooled and treated with 6N sodium hydroxide solution until the pH is 8 or The sample is steam-distilled to removed the last trace of any toluene or steam volatile unreacted amine. It is cooled and the aqueous phase poured off. The organic phase is dissolved in methanol-acetic acid (1:1) solution. The sodium salt of the anion for the dye form desired is then added. The sample is cooled and ether added slowly, while stirring to effect crystallization of dye.

This method varies slightly from the known published methods, but has been found to have several

advantages for laboratory preparation of dyes of the types:

where any one of the phenyl groups may be replaced by a naphthyl group.

Method B. Michler's Hydrol Method

Part 1.

Triphenylmethane type compounds may be produced by the condensation of a diphenyl substituted secondary alcohol and an aromatic ring. The secondary alcohol is of a type called Michler's hydrol of the general type formula:

which is produced by the controlled reduction of the corresponding ketone with sodium amalgam in alcohol as a solvent. The hydrol is separated from an alcohol-water mixture, dried, and stored in a vacuum dessicator.

The hydrol is then condensed with the desired substituted benzene ring of the general-type formula:

in concentrated sulfuric acid and at a temperature below 60°C for several hours. The reaction mixture is diluted with water and the acid neutralized until the condensation product is precipitated out. The product has the general-type formula:

Part 2.

The condensation product is then oxidized with lead peroxide in an acidic-aqueous media to the general-type formula:

Any excess lead peroxide is neutralized with sodium carbonate. The lead is precipitated with sodium sulfate and filtered off. The acid is neutralized to a pH of 7 and the dye salted out as the chloride or as the zinc chloride double salt.

This method was found to be useful in preparing triphenyl methane dyes where one of the phenyl groups is to have substituents other than an amino group.

APPENDIX II

Method C. Aniline - Benzaldehyde Method

Under reflux, a two-mole quantity of an aniline and one mole of a benzaldehyde is heated with zinc chloride as a catalyst to produce the true leuco form of the desired dye.

A stoichiometric quantity of lead dioxide paste and hydrochloric acid is added to a weighed quantity of the leuco dye. This is stirred for 30 minutes and then filtered. Sodium sulfate is added to precipitate any soluble lead salts, which is then filtered and the filtrate neutralized. A neutral salt is added to salt out the dye. (The salt chosen for salting out will depend on the anion form of the dye desired.)

Method D. Alkyl Halide Method

Dyes of the type

may be reacted with alkyl iodides in an alkaline methanol solution to replace the hydrogen on each amino group with the alkyl group of the alkyl iodide to yield dyes of the type:

of the 15 triphenyl methan dyes synthesized, 6 were found to be phototropic and were previously tabulated under 3.2.6.1. For the other nine dyes, no phototropic systems have yet been developed.

Polymethines

Polymethines (refs. 13, 18, 19) may be classified generally by the degree of symmetry around the conjugated carbon chain. If we represent the polymethines by the general formula:

$$R_1$$
 $C-1 c=c 1$
 R_2

we may further classify the dyes on the basis of the identify of the various R groups. It is prerequisite to this family that at least two of the R groups be

capable of extending the conjugation of the chain by accepting a positive charge,

being such a group.

Where R_1 and R_4 meet the prerequisite of the family and either R_2 or R_3 or both are hydrogen, the dyes may be prepared by methods I and II of the four general methods given in the succeeding pages.

Where R_4 is hydrogen and R_1 , R_2 and R_3 are other than hydrogen and at least two of them meet the prerequisite of the family, the dyes may be prepared by methods I or IV.

Where none of the R's are hydrogens, the dyes may be prepared by methods II or III; the choice of method will depend on the value of n and the degree of symmetry desired. When the value of n is to exceed 1, method III cannot be used. Method III has the advantage of giving any choice of symmetry from totally unsymmetrical to totally symmetrical, but the value of n is limited to 1.

Method I. Reaction of a p-aminophenyl alkene and a p-aminophyenl alkene aldehyde

Equimolar quantities of a p-aminophenyl alkene of the class

$$\rightarrow$$
N-C=CH₂
 R_{a}

(where R_a can equal H, aryl, alkyl, or arylamine groups) and p-aminophenyl alkene aldehyde of the class

WHERE N=0,1

(where n=0,1) are allowed to react in a nonaqueous solvent with an acid catalyst such as acetic acid, or acetic anhydride, and the acid of the desired dye form. The reaction mixture is allowed to stand for 5 days at room temperature. This is poured into water and neutralized until the dye precipitates. The precipitate is filtered off, dried, and recrystallized from anhydrous alcohol. This will produce a dye of the general-type formula as depicted below:

Method II. Reaction of p-Aminophenyl alkene and an Orthoester

Method IIa.

(for compounds having 5 or more methine carbon atoms)

Two molar proportions of a p-aminophenyl alkene of the class

$$\rightarrow$$
N-C=CH₂
 R_b

(where R_O can equal H, aryl, alkyl, or arylamine group) with one mold of an orthoester of the class

(where m=0, 1, 2, or 3) are allowed to react in a nonaqueous solvent, containing an acid catalyst such as acetic anhydride and the acid to form the desired carbonium compound. The reaction mixture is allowed to stand at room temperature for several hours. Ether is added to precipitate the dye. The precipitate is filtered and washed with ether or an ether-polar solvent mixture. The precipitate is

dried in vacuum. This will produce a compound of the general-type formula as pictured below:

$$>N C=CH-CCI_N-CH=CH-CC$$
 Rb
 Rb

(where n=0, 1, 2, 3, or 4).

Method IIb.

By substituting tetramethyl ortho carbonate for the orthoester of method IIa and by increasing the p-aminophenyl alkene to a molar proportion of three, a new type of compound was prepared, having the general structure:

A nitrogen determination on

$$(C_{2}H_{9})_{2}N - C = CH - C = CH - C$$

$$(C_{2}H_{9})_{2}N - C = C$$

$$(C_{2}H_{9})_{2}N - C = C$$

$$(C_{2}H_{9})_{2}N - C = C$$

using a Coleman nitrogen analyzer found 8.58 percent nitrogen (theoretical 8.61).

A ketone of the general-type formula

is refluxed with a substituted alkene, of the general-type formula

where R is something other than hydrogen with phosphorous oxychloride as the solvent catalyst. At the end of the reflux, the reaction mixture is cooled and poured into water and treated with a salt of the acid to yield the desired anion form of the dye. The aqueous mixture is neutralized with solid sodium acetate until the dye precipitates.

This method yields a dye of the general-type formula

where R_a and R_b may be equal or different.

PCT/US89/01361

- 220 ---

Method IV. Reaction of a Ketone and a p-Aminophenyl Alkene

A ketone of the general-type formula

is refluxed for 5 hours with a substituted alkene of the general-type formula

with phosphorous oxychloride as a solvent catalyst. At the end of the 5-hour reflux time, the reaction mixture is cooled and poured into water and treated with a salt of the acid to yield the desired anion form of the dye. The aqueous mixture is neutralized with solid sodium acetate until dye precipitates.

This method yields a dye of the general-type formula:

where R_a and R_b may be equal or different.

Organic Synthesis Procedures

Method No. 1: Polymethine dyes

Example: Preparation of dye PP 2109

Step A: Preparation of p-Fluorobenzanilide

A solution of aniline, 23.7 g (0.255 mole) in 250 ml of dry ether containing 55.3 g of potassium carbonate was heated to reflux temperature. To the refluxing mixture, 50 g (0.32 mole) of p-fluorobenzoyl chloride was added over a period of one hour. The reaction mixture was refluxed for four hours and the ether distilled off. Cold water was added to the residue and the p-fluorobenzanilide collected by filtration. Yield: 64 g, metling point 196°C, white crystalline powder.

Step B: Preparation of p-N, N-Di-n-propylamin-p-fluorobenzophenone

64 g (0.3 mole) of dry, powdered p-fluorobenzanilide, 100 g (0.6 mole) of N,N-di-n-propylaniline, and 55 ml of phosphorous oxychloride were mixed in a 500 ml three-necked flask fitted with stopper, thermometer and a reflux condenser having a CaCl drying tube on top. The reaction mixture was warmed gently until the temperature reached 100°-112°C, at which point an exothermic reaction occurred and the temperature rose to 160°C. As soon as the exothermic reaction was noted, the mixture was immediately cooled by swirling the flask in ice water. cooling was continued until the temperature dropped to 100°-105°C. This temperature range was held for three hours. The reaction mixture was hydrolyzed in a three liter beaker by the addition of concentrated hydrochloric acid in The reaction mixture was allowed to stand for eight to twelve hours to complete the hydrolysis. additional 4100 ml of water was then added precipitate the ketone formed. This was filtered, washed thoroughly with cold water, reslurried and refiltered. Yield: 45 g, light green crystals, melting point 85°-87°C.

Step C: Preparation of l-(4-N,N-Di-n-propylamino-phenyl)-l-(4-fluorophenyl) ethylene

Sixty ml of a 3 molar etherial solution methyl magnesium bromide was evaporated almost to under reduced pressure in dryness three-necked flask equipped with thermometer grey moist residue The nitrogen sparger. suspended in 75 ml of dry benzene. The flask was then equipped for refluxing by the addition of a condenser fitted with a CaCl, drying tube and an addition funnel. A 0.1 mole portion of the ketone dissolved in 250 ml of boiling benzene was then placed in the addition funnel and added dropwise to the warmed methyl magnesium bromide-benzene slurry resulting reddish The over a half-hour period. The three hours. was refluxed for solution termination of the reaction was indicated by fading of the initial reddish color to yellow. The reaction mixture was then cooled to room temperature and cautiously treated with 45 ml of This mixture saturated ammonium chloride solution. was filtered and the filtrate boiled with 0.1 g of p-toluenesulphonic acid until the evolution of water was completed. The acid contained in the reaction mixture was then removed by the addition of 0.5 g of sodium bicarbonate. The volume was reduced to one half by evaporation under reduced pressure. hundred ml of dry ethanol was added to the remaining solution, which was then allowed to cool with the subsequent precipitation of the ethylene compound. The precipitate was filtered, washed with 50 ml ice cold ethanol, and the crystals dried in a vacuum Yield: 86 percent of theory: melting point 101°-102°C.

Step D: Preparation of a perchlorate of 1,5-di-(p-fluorophenyl)-1,5-bis-(p-N,N-di-n-propyl-anilino)-1,3-pentadiene

A mixture of 23.6 g (0.08 mole) of 1(4-N,N-di-npropylaminophenyl)-1-(4-fluorophenyl)ethylene, of ethyl orthoformate and 50 ml of acetic anhydride was treated with an ice-cold solution of 4 ml of 72 percent perchloric acid dissolved in 50 ml acetic anhydride. The resulting dark red solution was heated in a water bath at 85°C for one hour, after which another 12 ml of ethyl orthoformate was added. The mixture was than allowed to stand at room temperature for 18 hours to precipitate condensation product. The precipitate was collected and washed with acetic acid, ethanol and ether. 68 percent based on perchloric acid, golden brown crystals melting with decomposition at 277°C.

Method No. 2: Polymethine dyes

Example: Preparation of dye PP 2110

Step A: Preparation of

3-Amino-4-methoxy-4'-N, N-Di-methylaminobenzophenone

Fifty grams (0.2 mole) of 3-amino-4-methoxybenzanilidé, 70 g (0.58 mole) N,N-dimethylaniline and 36 g POCl, were heated on a water bath at 90°C to 95°C for 4 to 6 hours. The product was then cautiously poured into a solution of concentrated hydrochloric acid in 250 ml water. The resulting solution was warmed at 80°C until the initial reddish color disappeared, indicating that the aniline was completely hydrolyzed. A liter of water was added to precipitate the ketone, which was filtered, washed with cold water, and recrystallized from a 2:1 aqueous alcohol solution. Yield: slightly yellowish crystals, metling point 82°C.

- 226 -

Step B: Preparation of 1(4-N,N-Dimethylamino-phenyl)-1-(3-amino-4-methoxyphenyl)ethylene

Fifty ml of a 3 M ethereal solution of methyl magnesium bromide was evaporated almost to dryness under reduced pressure. Dry nitrogen was admitted to the reaction flask and the gray residue was suspended in 75 ml of dry benzene. The slurry was warmed, then 26.6 g (0.1 mole) of the ketone compound dissolved in 250 ml boiling benzene was added over a 15-minute The resulting solution was refluxed until pale yellow color faded to (45 minutes). The mixture was cooled and treated with 50 ml of a saturated NH₄Cl solution. colorless solution was filtered through a folded filter paper without applying vacuum and in absence of strong light. The filtrate was boiled with 0.1 g p-teluenesulfonic acid until the evolution of water was complete. The cooled solution was neutralized by the addition of 0.2 g dry $NaHCO_3$ and then reduced to 1/4 volume by evaporating the solvent under reduced pressure. The remaining solution was diluted with 250 ml of dry ethanol and the ethylene product allowed to precipitate over 34 percent of theory, yellow hygroscopic flakes, melting point 118°C.

Step C: Condensation Reaction Leading to Dye (A perchlorate of 1,5-di-(3-amino-4-methoxyphenyl)-1,5-bis-(p-N,N-dimethylaniline)-1,3-pentadiene.

A mixture of 26.9 g (0.1 mole) of 1(4-N,N-di-methylaminophenyl)-1-(3-amino-4-methoxyphenyl)ethylene, 15 ml of ethyl orthoformate and 45 ml acetic anhydride was treated with a solution of 4 ml of 72 percent perchloric acid and 40 ml acetic acid previously cooled to 0°C. The resulting mixture was allowed to stand at room temperature for 5 days, after which it was treated with 25 ml of ether and kept an additional day at room temperature. The precipitate formed was filtered and washed with acetic acid, ethanol, and ether, and dried in a vacuum dessicator.

Product: sandy crystals, dark brown, melting point 209°-210°C.

Note: The reaction should be run at room temperature. Condensation at elevated temperatures yields a black, insoluble polymerization product.

APPENDIX III

Azo Polymethines

Dyes of the general structural type

are prepared by condensation of p-aminophenyl alkene aldehydes or ketones with auramine-type hydrochlorides. One such dye was prepared:

1,1,5-tris-4(N,N-dimenthyamino)pheny1-2-azo, pentene carbonium chloride which showed only very slight yellow phototropy.

- 229 -

APPENDIX IV

Diazo Polymethines

A new type of dye, believed to have the general structures,

was prepared by nitrosation of auramine-type structures

with nitrous acid to yield

This is then reacted with p-aminophenyl alkenes to yield structures of Type A. Confirmation of structure is incomplete, but significant to this work is that the above series of reactons yield phototropic materials.

The position of the -N-N- group in the carbon chain may be changed to occupy the 1 and 2 positions, as well as the above shown 2 and 3 positions, by using a secondary amine in place of B in the above series of reactions. With nitrogen atoms in the 1

and 2 positions, the 1 position nitrogen becomes a quaternary ammonium atom in one of the resonance states of the molecule.

One dye of each of these types was prepared. Both were found to phototropic. They are:

1,1,5,5-tetrakis-[4-(N,N-dimethylamino)phenyl]-2,3-diazo pentene carbonium (Code PP2031)

1,1-bux-[4-(N,N-dimethylamino)phenyl-3,4-bis-(phenyl)]-

3,4-diazo butene carbonium (Code PP 2030)

APPENDIX V

Quaternary Ammonium Salt Polymethines

Three dyes of the type

were prepared and tested for phototropy.

N-(p-dimethylamino cinnamylidine)-N,N-diphenyl ammonium proved to be phototropic but broke down rapidly under ultraviolet light

N-(p-dimethylamino cinnamylidine)-N,N-diethanol ammonium, and

N-(p-dimethyl amino cinnamylidine)N,N-di-4(N,N-dimethylamino)phenyl ammonium were not phototropic. The dyes where prepared by the condensation of dimethylamino cinnamic aldehyde with the hydrochloride of secondary amines in warm, anhydrous alcohol according to the method of Brooker.

APPENDIX VI

Intermediates

Although most types of dye intermediates are available, specific compounds necessary to this work were not available on the commercial market. It was necessary to synthesize 13 such intermediates.

The syntehsis or type synthesis of these intermediates are for the most part given in standard works on synthesis dyes and dye intermediates.

The synthesis of tetramethyl orthocarbonate and ethylenes of the type are reported herein.

Synthesis of Tetramethyl Ortho Carbonates

To 500 grams of cold dry methanol under reflux, grams of metallic sodium in large pieces are (The alcohol solution has to be cooled externally with ice water to prevent loss of methanol through the reflux condenser.) Before all of the sodium has dissolved, 100 grams of chloropicrin that has been diluted with 200 ml of methanol is slowly The solution is refluxed for one hour. dropped in. The methanol is distilled off until the residue seems This is then dissolved in 600 cc of almost dry. water, and the aqueous solution is extracted with three 200-ml portions of ether. The composited ether extracts are dried over calcium chloride. The ether is fractionated from the dried solution and a little sodium methoxide in methanol is added to the residue to react with any unreached chloropicrin. allowewd to stand overnight. The solution

- 234 -

fractionated, collecting one fraction between 110°-115°C.

Synthesis of

Methyl magnesium bromide in ethyl ether is placed into a round bottom flask equpped with a condenser and an addition funnel. The ther is distilled off, and the methyl magnesium bromide then taken up with anhydrous benzene. A ketone is dissolved in anhydrous benzene and added dropwise to the Grignard reagent with continuous heating. After the addition is completed, the mixture is refluxed After cooling, sufficient for three more hours. ammonium chloride solution (saturated aqueous solution) is very carefully added in order to dissolve any free magnesium. The Grignard complex is decomposed with hydrochloric acid. decomposition of the complex is complete, the solution is allowed to come to room temperature. After making sure the solution is alkaline to phenolphthalein, the benzene solution is decanted off of the solids. The solids are washed with two 50-ml positions of ether and the washings combined with the benzene solution. The ether-benzene solution dried over anhydrous sodium sulfate.

The ether and benzene are then distilled off leaving a residue. This residue is vacuum-distilled at 2-5 mm of Hg.

APPENDIX VII

Method No. 3: Indoline base dyes

Example: Preparation of dye PP 1210

Step A: Synthesis of

 ${\tt p-[N-(2-chloroethyl)-N-ethyl]} \, {\tt aminobenzaldehyde}$

- 236 -

At 50°C 82.5 parts by weight of N-(2-hydroxyehtyl)-N-ethylaniline were added dropwise to 90 parts by weight of phosphorous oxychloride. The solution was then heated at 90°C for 6 hours. After colling to 0°C, a mixture of 150 parts by weight of N-methylformanilide, 170 parts by weight of phosphorus oxychloride, and 120 parts by weight of benzene was added to the above solution. The mixture was heated for a few hours at 30-35°C. neutralization with an aqueous solution of sodium hydroxide, the benzene solution of the aldehyde product was separated. After evaporating benzene, p-N-chloroethyl-N-ethylamino benzaldhyde remained as a slightly yellow oil which hardened on standing and could be recrystallized from ethanol. recrystallized aldehyde had a white appearance and a melting point of 283°C.

Step B: Synthesis of dye PP 2120, Chloride of 2,3,3-trimethyl-2-[p-(N-2-chloroethyl-N-ethyl)amino-B-s tyryl] indoline.

p-(N-Chloroethyl-N-ethyl)amino benzaldehyde (12.5 parts by weight) was refluxed for 6 hours at weight of 8.5 parts by 100°C with 1,3,3-trimethy1-2-methylene-indoline in 60 parts by weight of glacial acetic acid. The mixture was then poured into water and the condensation product was salted out with sodium chloride. The crude dyestuff was obtained as a dark bronze resinous liquid which hardened upon standing and could be crushed into shiny bronze particles. The pure dye was obtained by recrystallization from hot water, m.p. 167-168°C.

APPENDIX VIII

Method No. 4: Dyes with more than one chromophore

Example: Preparation of dye PP 2131

Step A: Synthesis of phenetolazobenzaldehydsulphonic

acid

One hundred grams of Chrysophenin G concentrate, which was equivalent to about 92 grams of the pure compound, was dissolved in 6 liters of boiling water. The solution was cooled to $0-5\,^{\circ}\text{C}$ by the addition of ice and then saturated with sodium chloride.

$$c_{2}H_{5}O-\bigcirc - N = N - CH = CH - N = N - Oc_{2}H_{5}$$

$$c_{2}H_{5}O-\bigcirc - N = N - Oc_{2}H_{5}$$

$$chrysophenin G - \frac{KHO_{4}}{KO_{3}}OHC-\bigcirc - N = N - Oc_{2}H_{5}$$

$$KO_{3}S - N - N - N - Oc_{2}H_{5}$$

$$(CH_{3})_{2}N - CH_{2}$$

$$(CH_{3})_{3}N - CH_{2}$$

A 3 percent solution of potassium permanganate was slowly added with vigorous agitation until a pale pink color persisted. (The quantity of permanganate required was 29 grams.) The precipitate which formed during the reaction was allowed to settle and was collected by siphoning off the supernatant liquor. The product was isolated by boiling the precipitate two or three times with one liter of water, filtering manganese dioxide and adding potassium off the water solution until chloride to the hot precipitation was complete. An additional small quantity of aldehyde was isolated by salting it out of the supernatant liquor with potassium chloride. The product precipitated from water in orange-colored microscopic needles.

Step B: Synthesis of Dye PP 2131, perchlorate of 1,1-bis-(p-N,N-dimethylamino)phenyl-3-[2-sulfonato-4-(p-ethoxyphenylazo0] phenyl propene.

Phenetoleazobenzaldehyde sulphonic acid parts by weight) was refluxed for 6 hours at 100°C weight by 1.33 parts with 1,1-bis-(4-N,N-dimethylamino)phenyl ethylene 25 glacial acetic acid. by weight of The parts condensation product was then poured into water and The dyestuff was obtained as a thick salted out. dark green liquid which hardened upon standing to a crushable solid, melting point 78-92°C. to recrystallize the dye using a variety of solvents was unsuccessful.

- 242 -

APPENDIX IX

Example 1 - Xylene Blue VS cyanide

To a solution of 25 g. of commercial Xylene Blue VS, Colour Index No. 672, in 150 ml. of water is added 4.5 g. of 95% sodium cyanide and the mixture is heated in a pressure bottle for 1 hour. Suitable precautions should be taken to avoid cuts by glass wet with sodium cyanide solution in the event of the explosion of the bottle. The solution is then cooled, allowed to stand for 1 day at 25°C. and filtered from the precipitated Xylene Blue VS cyanide disodium salt having the formula

The disodium salt is readily soluble in water to yield a colorless solution that slowly becomes blue on exposure to radiation of wave length 2537 A. The color change is much slower than with a solution of a representative basic dye cyanide, such as malachite green syanide in alcohol, and thus is useful in the actinometry of more intense radiation.

The free acid form of Xylene Blue VS cyanide, having the formula

may be prepared by treatment of a solution of 11 g. of the disodium salt in 100 ml. of water with 11.2 ml. of concentrated hydrochloric acid. After the mixture has stood at room temperature for 2 days, the colorless precipitated from acid is collected on a filter, washed with water, and air dried. It is sparingly soluble in water. A dilute, colorless, aqueous solution of the free acid color blue on ultra-violet irradiation at a speed intermediate between that of the solutions of the sodium salt and of alcoholic solutions of malachite green cyanide.

The barium salt of Xylene Blue VS cyanide having the formula

- 244 **-**

may be prepared by neutralization of a hot 1/2 of 1% aqueous solution of the free acid to pH 3.4 with N/10 barium hydroxide solution. The neutralized solution is cooled to room temperature, allowed to stand for 3 days, and filtered from the colorless, crystalline barium salt. The barium salt is less soluble in water than the free acid, but quite sufficiently soluble to give photosensitive solutions that behave on exposure to ultra-violet like solutions of the sodium salt.

References

- 1. Schuster, G.B., Schmidt, S.B., <u>Bioluminescense</u>
 and <u>Chemiluminescence</u>, edited by Marlene A.
 Deluca and William D. McElroy, (1981), pp. 23-29.
- 2. Berger, A.W., et al., Photochemistry and Photobiology, Vol. 4, (1965), pp. 1123-1127.
- 3. Philbrook, G.E., et al., Photochemistry and Photobiology, Vol. 4, (1965), pp. 1175-83.
- 4. White, E.H., et al., Photochemistry and Photobiology, Vol. 4, (1965), pp. 1129-55.
- 5. Philbrook, G.E., et al., Photochemistry and Photobiology, Vol. 4, (1965), pp. 869-76.
- 6. Rauhut, M.M., et al., Photochemistry and Photobiology, Vol. 4, (1965), pp. 1097-1110.
- 7. McCapra, F., et al., Photochemistry and Photobiology, Vol. 4, (1965), pp. 1111-1121.
- 8. McCapra, F., et al., Chemical Communications, No. 15, (1966), pp.522-23.
- 9. Gorsuch, J.D., "Studies of the Chemiluminescence of Luminol," M.I.T. Ph.D. Thesis, 1969.
- 10. Legg, K.D., "The Chemiluminescence of Lucigenin," M.I.T. Ph.D. Thesis, 1969.

- 11. Lytle, F.E., "Chemiluminescence and
 Photoluminescence of Ruthenium Chelates," M.I.T.
 Ph.D. Thesis, 1968.
- 12. Allen, R.C., <u>Chemical and Biological Generation</u>
 of the Excited State, edited by Adam Waldeman,
 1982, pp. 309-45.
- Bowen, E.J., "Chemiluminescence in Solutions," in <u>Luminescence in Chemistry</u>, Edited by E.J. Bowen, D. Van Nostrand Co. Ltd, London, (1968) pp. 183-190.
- 14. Tuemmler, W.B., and Widi, B.S., J Amer Chem Soc,
 Vol. 80, (1958), pp. 3772-75.
- 15. Mac Nair, R.N., Photochemistry and Photobiology, Vol. 6, (1967), pp. 779-97.
- 16. Chalkley, L., U.S. Patent No. 2,885,303, (1958).
- 17. Chalkley, L., U.S. Patent No. 2,936,235, (1957).
- 18. Chalkley, L., U.S. Patent No. 2,829,148, (1958).
- 19. Chalkley, L., U.S. Patent No. 2,839,542, (1958).
- 20. Chalkley, L., U.S. Patent No. 2,839,543, (1958).
- 21. Brown, Glenn, Photochromism, pp. 294-375.
- 22. Wilkinson, F., "Intramolecular Electronic Energy Transfer Between Organic Molecules," in <u>Luminescence in Chemistry</u>, Edited by E. J. Bowen, D. Van Nostrand Co. LTD., London, (1968), pp. 154-182.

Ł

- 23. Lippman, R.D., <u>Bioluminescence</u> and <u>Chemiluminescence</u>, Edited by Marlene A. Deluca and William D. McElroy, (1982), pp. 373-81.
- 24. Dreyer, J.F., "Self-Attenuating Ophthalmic Filter," Rept. WADD-TR-60-632 Feb., 1961. AD 322820.
- 25. Dreyer, J.F., Harries, R.W., MacNair, R.N., Feldman, D., "Investigation of Materials and Systems for Protection Against Flash Blindness Effects of Nuclear Detonations," Rept. 68-38-CM, AD 688692.
- 26. Polacoat, Inc., "Development of a Means to Provide Protection for Eyes Against the Dazzle Effects of Nuclear Detonations," Quart. Rept. No. 5 on Contract DA-19-129 qm-1534, April 1961, AD 446865; also AD 447113 and 298225.
- 27. Van Dyke, K., <u>Bioluminescence</u> and <u>Chemiluminescence</u>, Vol. 1, CRC Press, Inc., 1985, pp. 1-42.
- 28. Zaklike, K.A., et. al., Photochemistry and Photobiology, Vol. 30, (1979), pp. 35-44.
- 29. Schaap, A.P., Burns, P.A., and Zaklika, K.A., J. Am. Chem. Soc., 99 (1977), pp. 1270-1272.
- 30. D'Iorio, A., Mavrides, C., Canadian Journal of Biochemistry and Physiology, (1963), Vol. 41, pp. 1779-1784.

- 248 -

- 31. Vrang, L., Oberg, B., Antimicrobial Agents and Chemotherapy, (1986), 29, pp. 867-872.
- 32. Schnebli, H.P., et. al., Journal of Biological Chemistry, (1967), Vol. 242, pp. 1997-2004.
- 33. Roberts, E., Biochemical Pharmacology, (1974), Vol. 23, pp. 2637-2649.
- 34. Rando, R., Bangerter, F. W., Journal of the American Chemical Society, (1976), Vol. 98, pp. 6762-6764.
- 35. Tunnicliff, G., et. al., Experientia, (1977), Vol. 33, pp. 20-22.
- 36. Kobayashi, K., et. al., Febs Letters, (1977), Vol. 76, pp. 207-210.
- 37. Medicinal Chemistry A Biochemical Approach,
 Thomas Nogrady, (1985) Oxford University Press,
 N.Y., N.Y., pp. 193-203.
- 38. Jung, J.M., Metcalf, B.W., Biochemical and Biophysical Research Communications, (1975), 67, pp. 301-306.
- 39. Rando, R., Bangester, F.W., Biochemical and Biophysical Research Communications, (1977), Vol. 76, pp. 1276-1281.

j.

40. Buu, N.T., Van Gelder, N.M. Br. J. Pharmac, (1974), 52, pp. 401-406.

- 249 -

- 41. Enzyme Inhibitors, edited by Urs Brodbeck, (1980) pp. 85-95.
- 42. Enzyme Inhibitors, ed. by Urs Brodbeck, (1980), pp. 61-74.

ð

- 43. <u>Drug Action</u> and <u>Design</u>: <u>Mechanism Based Enzyme</u>
 <u>Inhibitors</u>, ed. by Kalman,, (1979), pp. 13-27.
- 44. Fuller, R.W., Nagarajan, R., Biochemical Pharmacology, (1978) pp. 1981-1983.
- 45. Barchardt, R.T., Wu, Y.S., Journal of Medicinal Chemistry, (1975), 18, pp. 300-303.
- 46. Enzyme Inhibitors, ed. by Urs Brodbeck, (1980), pp. 223-244.
- 47. Receptor Binding in Drug Research, ed. by Robert A. O'Brien, pp. 235-259.
- 48. Kandutsch, A.A., Chen, H.W., Journal of Biological Chemistry, (1973), 248, pp. 8408-8417.
- 49. Fimognari, G.M., Rodwell, V.W., Biochemistry, (1965) 4, pp. 2086-2090.
- 50. Bloxham, D.P., Biochem J., (1975), 147, pp. 531-539.
- 51. 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase, ed., by John R. Sabine, CRC Series in Enzyme Biology, CRC Press, Inc. Boca Raton, Florida.

- 250 -

- 52. Design of Active-Site-Directed Irreversible Enzyme Inhibitors, B.R. Baker, (1975), p. 9.
- 53. Inhibitors of DNA and RNA Polymerases,
 International Encyclopedia of Pharmacology and
 Therapeutics, Section 103, edited by Prem S.
 Sarin and Robert C. Gallo, Pergamon Press, N.Y.,
 N.Y.
- 54. Mao, J.C., Robishaw, E.E., Biochemistry, (1975), 4, pp. 5475-5479.
- 55. Layton, D., Azzi, A., Biochemical and Biophysical Research Communications, (1974) 59, pp. 322-325.
- 56. Saari, W.S., et. al., J. Am. Chem. Soc., (1967), 10, pp. 1008-1014.
- 57. Bergstrand, H., et. al., Molecular Pharmacology, (1977), 13, pp. 38-43.
- 58. Fuller, R.W., et. al., Journal of Medicinal Chemistry, (1975), 18, p. 304.
- 59. Bricker, L.A., Levey, G.S., Journal of Biological Chemistry, (1972), 247, pp. 4914-4915.
- 60. Khwaja, T.A., et. al., Biochemistry, (1975), 14, pp. 4238-4244.
- 61. Bertelli, A., et. al., Experientia, (1976), 32, p. 361-362.

¥

¥

- 62. Medicinal Chemistry A Biochemical Approach,
 Thomas Nogrady, (1985) Oxford University Press,
 N.Y., N.Y., pp. 274-285.
- 63. <u>Prostaglandin Synthetase Inhibitors: New Clinical Applications</u>, (1980) Alan R. Liss Inc., N.Y., N.Y., pp. 231-256.
- 64. The Pharmacological Basis of Therapeutics, ed. by A.G. Gilman, L. Gilman, 6th ed., (1980) MacMillan Publishing Co., N.Y., N.Y., pp 668-681.
- 65. Way, L., Durbin, R.P., Nature, (1969), 221, pp. 874-875.
- 66. Kattlove, H.E., Biochimica et. Biophysica Acta, (1974), 372, pp. 135-140.
- 67. Medicinal Chemistry A Biochemical Approach,
 Thomas Nogrady, (1985), Oxford University Press,
 N.Y., N.Y., pp 358-361.
- 68. Porter C.C., Watson, L.S., J. Am. Chem. Soc., (1967), 10, pp. 852-855.
- Sourkes, T.L., Arch. Biochem. Biophys., (1954),
 pp. 444-456.
- 70. Hartman, W.J., et. al., J. Biol. Chem., (1955), 216, pp. 507-529.
- 71. Collins, K.D., Stark, G.R., Journal of Biol. Chem. (1971), 246, pp. 6599-6605.

- 252 -

- 72. Lienhard, G.E., Science, (1973), 180, pp. 149-154.
- 73. Fall, R.R., West C.A., Journal of Biol. Chem., (1971), 246, pp. 6913-6928.
- 74. Coleman, J.E., Journal of Biol, Chem., (1968), 243, pp. 4574-4587.
- 75. Agarwal, R.P., et. al., Biochemical Pharmacology, (1975), 24, pp. 693-701.
- 76. Agarwal, R.P., et. al., Biochemical Pharmacology, (1977) 26, pp. 359-367.
- 77. Sheen, M.R., et. al., Mol. Pharmacol., (1968), 4, pp. 293-299.
- 78. Analysis of Insecticides and Acaricides, Gunther and Blinn, (1955), Interscience, N.Y., N.Y., pp. 401-404.
- 79. The Pharmacological Basis of Therapeutics, ed., by A.G. Gilman, L. Goodman, A. Gilman, 6th ed., (1980), MacMillan Publishing Co., N.Y., N. Y.
- 80. Berridge, M.J., Ann. Rev. Biochem., (1987), 56, pp. 159-93.
- 81. <u>Calcium Antagonists and Cardiovascular Disease</u>, edited by L. H. Opie, (1984), Raven Press, N. Y., pp. 165-173.

ķ

82. Johnston, G.A.R., Iversen, L.L., Journal of Neurochemistry, (1971), 18, pp. 1951-1961.

- 253 -

- 33. Chiou, C. Y., Malagodi, M. H., Br. J. Pharmac., (1975), 53, 279-285.
- 84. Inagaki, M., et. al., J of Biol. Chem., (1985), 260, pp. 2922-2925.

- 85. Inagaki, M., et. al., Biochemistry, (1984), 23, 5036.
- 86. Weinstock, M., Life Sciences, (1976), 19, pp. 1453-1466.
- 87. Hare, L.E. et. al., Journal of Medicinal Chemistry, (1974), 17, pp. 1-5.
- 88. Levitt, M., et. al., Biochemical Pharmacology, (1972), Vol. 16, pp. 1313-1321.
- 89. Nagatsu, T., et. al., Biochemical Pharmacology, (1972), Vol. 21, pp. 1945-1953.
- 90. Taylor, R.J., et. al., Biochemical Pharmacology, (1968), 17, pp. 1779-1788.
- 91. Nagatsu, T., et. al., J. Biol. Chem., (1964), 239, pp. 2910-2917.
- 92. Taylor, R.J., Ellenbogen, L., Life Sciences, (1967) 6, pp. 1463-1466.
- 93. Undenfriend, S., et. al., Biochemical Pharmacology, (1965), 14, pp. 837-845.
- 94. Weinhold, P.A., Rethy, V.B., Biochemical Pharmacology, (1969), 18, pp. 677-680.

- 254 -

95. Uretsky, N.J., et. al., The Journal of Pharm. and Exp. Therp., (1975), 193, pp. 73-87.

- 96. El Masry, M.H., et. al., Journal of Medical Chemistry., (1975), 18, pp. 16-20.
- 97. Counsell, R.E., et. al., Journal of Medical Chemistry, (1970), 13, pp. 1040-1042.
- 98. Robert, A., et. al., Life Sciences, (1974), 14, pp. 533-538.
- 99. Kollonitsch, J., et. al., Nature, (1978), 274, 906-908.
- 100. Polakoski, K.L., McRorie, R.A., Journal of Biol.
 Chemistry, (1973), 248, pp. 8183-8188.
- 101. Way, L. Durbin, R.P., Nature, (1969), 221, pp. 874-875.
- 102. Lippmann, W., Seethaler, K., Experientia, (1973),
 29, pp. 993-995.
- 103. Lippmann, W., Experientia, (1973), 29, pp. 990-991.
- 104. Chen, F.W.K., et. al., Prostaglandins, (1977),
 13, pp. 115-125.
- 105. Hidaka, H., Nautre, (1971), 231, pp. 54-55.
- 106. Hidaka, H., et. al., Mol. Pharm., (1973), 9, pp. 172-177.

- 255 -

- 107. Van Der Schoot, J.B., et. al., Journal of Pharm. Exp. Therp., (1963), 141, pp. 74-78.
- 108. Hidaka, H., et. al., Journal of Pharm. Exp. Therp., (1974), 191, pp. 384-392.

- 109. Johnson, G.A., et. al., Journal of Pharm. Exp. Therp., (1969), 168, pp. 229-234.
- 110. Nagastu, T., et. al., Experientia, (1972), 28, pp. 779-780.
- 111. Lippmann, W., Lloyd, K., Biochemical Pharmacology, (1969), 18, pp. 2507-2516.
- 112. Diliberto, E.J., et. al., Biochemical Pharmacology, (1973), 22, pp. 2961-2972.
- 113. Porter, C.C., Torchiana, M.L., Biochemical Pharmacology, (1971), 20, pp. 183-191.
- 114. Oyama, H., et. al., Biochemical Pharmacology, (1976), 25, pp. 277-280.
- 115. Catignani, G.L., Neal, R.A., Life Sciences, (1975), 16, 1915-1922.
- 116. Hashiguchi, H., Takahashi, H., Mol. Pharm., (1977), 13, pp. 362-367.
- 117. Symes, A., Sourkes, T.L., Biochemical Pharmacology, (1974), 23, pp. 2045-2056.
- 118. Tipton, K.F., Biochem. J., (1972), 128, pp. 913-919.

- 256 -

- 119. McEwen, C.M., et. al., Biochemistry, (1969), 8, pp. 3963-3972.
- 120. Baldessarini, R.J., Greiner, E., Biochemical Pharmacology, (1973), 22, pp. 249-256.
- 121. Guldberg, H.C., Marsden, C.A., Pharmacological Reviews, (1975), 27, pp. 135-206.
- 122. Olsen, R.W., et. al., Mol. Pharm., (1975), 11, pp. 558-565.
- 123. Johnson, G.A., et. al., Journal of Neurochemistry, (1976), 26, pp. 1029-1032.
- 124. Johnson, G.A., Iversen, L.L., Journal of
 Neurochemistry, (1971), 18, pp. 1939-1950.
- 125. Simon, J.R., Martin, D.L., Archives of Biochemistry and Biophysics, (1973), 157, pp. 348-355.
- 126. Springer, R.H., et. al., Journal of Med. Chem., (1967), 19, pp. 291-296.
- 127. Baker, B.R., Kozma, J., Journal of Med. Chemistry, (1967), 10, pp. 682-685.
- 128. Baker, B.R., Wood, W.F., Journal of Med. Chemistry, (1967), 10, pp. 1101-1105.
- 129. Spector, T., Johns, D.G., Journal of Biol. Chemistry, (1970), 245, pp. 5079-5085.

- 130. Baldwin, J.J., et. al., Journal of Med. Chemistry, (1975), 18, pp. 895-900.
- 131. Duggan, D.E., et. al., Journal of Med. Chemistry, (1975), 18, pp. 900-905.
- 132. Ferraccioli, G., et. al., J. Rheumatol, (1984), 11, pp. 330-332.
- 133. Iwata, H., et. al., Biochemical Pharm., (1969), 18, pp. 955-957.
- 134. Iwata, H., et. al., Biochemical Pharm., (1973),
 22, pp. 1845-1854.
- 135. Huszti, Z., Sourkes, T.L., Journal of Pharm. Exp. Therp., (1975), 192, pp. 432-440.
- 136. Leinweber, F.J., Braun, G.A., Mol. Pharm., (1970), 6, pp. 146-155.
- 137. Lorenz, W., Werle, E., Bioch. Pharm., (1969), 17, pp. 539-549.
- 138. Ellenborgen, L., et. al., Biochem. Pharm., (1973), 22, pp. 939-947.
- 139. Ellenborgen, L., et. al., Biochem. Pharm., (1969), 18, pp. 683-685.
- 140. Alston, T.A., Abeles, R.H., Biochemistry, (1987), 26, pp. 4082-4085.

PCT/US89/01361

- 141. Ellenbogen, L., et. al., Biochem. Pharm., (1969),
 18, pp. 683-685.
- 142. Lukes, J.J., Neiforth, K.A., Journal of Med. Chemistry, (1975), 18, pp. 351-354.
- 143. Collins, D., Journal of Biol, Chemistry, (1974), 249, pp. 136-142.
- 144. Kandutsch, A.A., Chen, H.W., Journal of Biol. Chemistry, (1974), 249, pp. 6057-6061.
- 145. Kandutsch, A.A., Chen, H.W., Journal of Biol. Chemistry, (1973), 248, pp. 8408-8417.
- 146. Kupiecki, F.P., Marshall, N.B., Journal of Pharm. Exp.. Therp., (1968), 160, pp. 166-170.
- 147. Kypson, J., Hait, G., Journal of Pharm. Exp. Therp., (1976), 199, pp. 565-574.
- 148. Pereira, J.N., Holland, G.F., Journal. Pharm. Exp. Therp., (1967), 157, pp. 381-387.
- 149. Dulin, W.E., et. al., Proceedings of the Society for Experimental Biology and Medicine, (1965), 118, pp. 499-501.
- 150. Dulin, W.E., Gerritsen, G.C., Proceedings of the Society for Experimental Biology and Medicine, (1966), 121, pp. 777-779.
- 151. Waldvogel, E.R.F., et. al., Mol. Pharm., (1967), 3, pp. 429-441.

- 259 -

- 152. Lowenstein, J.M., Journal of Biol. Chemistry, (1971), 246, pp. 629-632.
- 153. Maragoudakis, M.E., Journal of Biol. Chemistry, (1971), 246, pp. 4046-4052.
- 154. Maragoudakis, M.E., Hankin, H., Journal of Biol. Chemistry, (1971), 246, pp. 348-358.
- 155. Hashimoto, T., et. al., Eur, J., Biochem., (1971), 24, pp. 128-139.
- 156. Maragoudakis, M.E., Biochemistry, (1970), 9, pp. 413-417.
- 157. Brady, R.O., Biochem. Biophys. Acta, (1963), 70, pp. 467-468.
- 158. Rokujo, T., et. al., Life Sciences, (1970), 9, pp. 379-385.
- 159. Dalton, C., et. al., Prostaglandins, (1974), 7,
 pp. 319-327.
- 160. Windmueller, H.G., Levy, R.I., Journal of Biol. Chemistry, (1967), 9, pp. 2246-2254.
- 161. Roheim, P.S., et. al., Biochem. Biophys. Research. Comm., (1965), 20, pp. 416-421.

¥

162. Smith, D.A., et. al., Geriatics, (1987), 42, pp. 55-62.

- 260 -

- 163. Falcon, M.G., Jones, B.R., Journal of Gen.
 Virol., (1977), 36, pp. 199-202.
- 164. Meek, E.S., Takahashi, M., Nature, (1968), 220, p. 882.
- 165. De Clercq, E., Luczak, M., Life Sciences, (1975),
 17, pp. 187-194.
- 166. Becker, Y., Pharmac. Ther., (1980), 10, pp. 119-159.
- 167. Asano, T., Ochiai, Y., Mol. Pharm., (1977), 13, pp. 400-406.
- 168. Iwai, H., Journal of Biochem., (1974), 76, pp. 419-429.
- 169. Lippmann, W., Experientia, (1974), 30, pp. 237-239.
- 170. Nikaido, T., et. al., Planta Medica, (1981), 43, pp. 18-23.
- 171. Vigdahl, R.L., et. al., Biochem. Biophys. Research Comm., (1971), 42, pp. 1088-1094.
- 172. Tateson, J.E., Trist, D.G., Life Sciences, (1976), 18, pp. 153-162.
- 173. Evans, D.P., Thomson, D.S., Br. J. Pharmac., (1975), 53, pp. 409-418.

£

174. Simmonds, H.A., et. al., Lancet, (1978), Jan. 14, pp. 60-63.

- 261 -

- 175. Trotta, P.P., et. al., Mol. Pharm., (1978), 14, pp. 199-209.
- 176. Deibel, M.R., et. al., Biochemical Medicine, (1981), 25, pp. 288-297.

J

- 177. Humphrey, S.M., et. al., Journal of Surgical Research, (1987), 43, pp. 187-195.
- 178. Beard, N.A., et. al., Br. J. Pharmac., (1975), 54, pp. 65-74.
- 179. Chignard, M., Vargafting, B.B., Prostaglandins, (1977), 14, pp. 222-240.
- 180. Panganamala, R.V., et. al., Prostaglandins, (1977), 14, pp. 261-271.
- 181. Kulkarni, P.S., Eakins, K.E., Prostaglandins, (1976), 12, pp. 465-469.
- 182. Downing, D.T., et. al., Biochem., Biophys. Research Comm., (1970), 40, pp. 218-223.
- 183. Gorman, R.R., et. al., Biochem. Biophys. Research Comm., (1977), 79, pp. 305-313.
- 184. Cushman, D.W., Cheung, H.S., Biochem. Biophys. Acta, (1976), 424, pp. 449-459.
- 185. Taylor, R.J., Salata, J.J., Biochemical Pharmacology, (1976), 25, pp. 2479-2484.

- 262 -

- 186. Ku, E.C., et. al., Biochemical Pharmacology, (1975), 24, pp. 641-643.
- 187. Burghuber, O.C., et. al., Am. Rev. Respir. Dis., (1985), 131, pp. 778-785.
- 188. Michelot, R.J., et. al., Mol. Pharm., (1977), 13, pp. 368-373.
- 189. Kessel, D., McElhinney, R.S., Biochemical Pharmacology, (1975), 24, pp. 133-137.
- 190. Gale, G.R., et. al., J. Med. Chem., (1970), 13, pp. 571-574.
- 191. The Molecular Basis of Antibiotic Action, ed. by E.F. Gale, (1981), pp. 258-401.
- 192. Hillcoat, B.L., et. al., J. Biol. Chem., (1967), 242, pp. 4777-4781.
- 193. Carlin, S., et. al., Mol. Pharm., (1974), 10, pp. 194-203.
- 194. Johns, D.G., et. al., Biochemical Pharmacology, (1970), 19, pp. 1528-1533.
- 195. Baker, B.R., et. al., J. Med. Chem., (1967), 10,
 pp. 1134-1138.
- 196. Baker, B.R., Lourens, G.J., J. Med. Chem., (1968), 11, pp. 666-672.

Ð

J

ł

- 263 -

- 197. Nair, M.G., et. al., J. Med. Chem., (1974), 17, pp. 1268-1272.
- 198. Ferone, R., J. Biol. Chem., (1970), 245, pp. 850-854.
- 199. LaFon, S.W., et. al., J. Biol. Chem., (1985), 260, pp. 9660-9665.
- 200. Spector, T., Miller, R.L., Biochemica et. Biophysica Acta, (1976), 445, pp. 509-517.
- 201. Advances in Enzymology, ed. by Alton Meister, (1987) pp. 59-101.
- 202. Umezawa, H., Ann. Rev. Microbiol., (1982), 36, pp. 75-99.
- 203. Walsh, C.T., Ann. Rev. Biochem., (1984), 53, pp. 493-535.
- 204. Demain, A., Biochem. Soc. Symp., (1983), 48, pp. 117-132.
- 205. Suhadolnik, R.J., Progress in Nucleic Acid Research and Moleulor Biology, (1979), 22, pp. 193-291.
- 206. Free, C.A., et. al., Biochem. Pharm., (1971), 20, pp. 1421-1428.
- 207. Enzymes, Dixon, M. and Webb., E.C., Academic Press Inc., N.Y., N.Y., (1964), p. 407.

- 264 -

- 208. Kondo, T., et. al., Diabetes Care, (1982), vol. 5, Number 3, pp. 218-221.
- 209. Higgins, I.J., Hill, H.A.O., Plotkin, E.V., Eur. Pat. Appl. EP78,636.
- 210. Miller, L.L., J. Electroanal. Chem., (1981), 117, pp. 267-281.
- 211. Mills, R.L., U.S. Patent Appl. 784,243.
- 212. Gros, P., et. al., Cell, (1986), 47, pp. 371-380.
- 213. Sanchez-Pescador, R., et. al., Science, (1985), 277, pp. 484-492.
- 214. The Enzymes, ed. by Paul D. Boyer, (1975), 3rd edition, Vol. XII, Part B, Academic Press, N.Y., N.Y.
- 215. De Clercq, E., and Balzarini, J., Antiviral Research, Suppl. I, (1985), pp. 89-94.

7

1

ã,

- 265 -

CLAIMS

What is claimed is:

Ď

J

¥

1

1. A chemical compound having the formula A-B-C, where

A is an energy donor functionality activatable by an intracellular compartment environment and capable of transferring energy from its own excited state to the B functionality;

B is an energy acceptor functionality which receives energy from A to achieve an excited state; and

C is a drug moiety covalently bonded to B, wherein the relaxation of the excited state of B causes heterolytic cleavage to the covalent bond of C, releasing C to the intracellular compartment.

- 2. The chemical compound of claim 1, further including D, an energy transfer functionality covalently bonded to A, having a compound formula D-A-B-C.
- 3. The chemical compound of claim 1, further including D, an energy transfer functionality, covalently bonded to A and B, having a compound formula A-D-B-C.
- 4. The chemical compound of claim 1, further including, D, an energy transfer functionality, covalently bonded to B, having a compound formula A-B-C.

5. The chemical compound of claim 1, wherein A comprises a molecule selected from the group comprising thermal, nuclear, chemical vibrational, and chemical electronic energy donor functionalities.

Ţ

Ť

6. The chemical compound of claim 5, wherein A comprises a chemiluminescent molecule.

- 7. The chemical compound of claim 6, wherein said chemiluminescent compound comprises a compound selected from table 1.
- 8. The chemical compound of claim 1, wherein B comprises a chromophore.
- 9. The chemical compound of claim 8, wherein said chromophore comprises a molecule selected from table 2.
- 10. The compound of claim 1, wherein C effects a therapeutic functional change and comprises a molecule which bonds to a receptor including functional macromolecular components including enzymes, proteins, nucleic acids and ions or which is incorporated into cellular components.
- 11. The chemical compound of claim 10, wherein C comprises drugs selected from table 3 and the exemplary luminide pharmaceuticals section.
- 12. The chemical compound of claim 2, wherein D is a molecule comprising a member of a redox pair.
- 13. The chemical compound of claim 12, wherein D is a molecule selected from table 4.

- 267 -

- 14. The chemical compound of claim 1, wherein the excited state of the high energy functionality includes electrons derived from the electron carriers of the organism to which the compound was administered.
- 15. The chemical compound of claim 2, wherein the drug is delivered to the desired site according to one of the permeability of said hybrid molecule to the desired cellular, the biological compartment and the resistance of said hybrid molecule to degradation or elimination.
- pharmacentical composition comprising effective dosage of the compound of claim 1, combination with an acceptable form of pharmacentical carrier for the therapatic treatment at least one of disease, autoimmune disease, cancer, infectious hyperlipidemia, elevated cholesterol levels, epilepsy, transplant rejection, throboembolic disease, asthma, allergies, hypersensitivity reactions, disorders of nucleotide metabolism, anemia, heart failure, disease, depression, ulcer hypertension, ischemic heart disease, opiate withdrawal, muscular dystrophy, pregnancy prevention, hypercoagulability, arrhythmia, arthritis, therapeutic abortion, gout, and hyperuricemia.
- 17. The pharmaceutical composition of claim 16, comprising an effective amount of the compound of claim 1 selected to effect a therapeutic functional change.

- 268 -

18. The pharmaceutical composition of claim 16, wherein said pharmaceutical carrier comprises at least one of tragacanth, talc, agar-agar, lactose, polyglycols, ethanol and water.

. .

- 19. The pharmaceutical composition of claim 16, having the form of a tablet liquid, gel, cream, ointment or lotion.
- 20. A method of treatment, comprising the step: Administering an effective amount of the compound of claim 11.
- 21. The method of treatment of claim 20, wherein the step of administering comprises one of topical application, injection and oral administration.
- 22. The method of treatment of claim 20, further comprising the step of repeated application of an effective amount of the compound of claim 11.
- 23. A method for releasing in active form and for transporting an effector of a therapeutic functional change into at least one of an intracellular and a biological compartment to the vicinity of its site of action comprising the steps of:

selecting A as an energy donor functionality; selecting B as an energy acceptor functionality; selecting C as the functional modifier;

preparing a pharmaceutical chemical having the general structure A-B-C;

administering the pharmaceutical chemical to the organism having said response to said modifier when delivered in active form within said intracellular or biological compartment;

Ţ

- 269 -

activating A from the metabolic process wherein an energy transfer from A to B is produced;

releasing C from B in response to the energy transfer from A to B;

À

J

1

effecting a therapeutic functional change by the action of released C.

24. A method of effecting a therapeutic functional change, comprising the steps of:

preparing a metabolically active compound of claim 1;

administering the metabolically activated compound to an environment including said intracellular environment;

activating said metabolically activated compound by the metabolic activity of said cellular target; and

combining a portion of said metabolically activated compound with said modifiable target to effect a therapeutic functional change.

25. A system for effecting a therapeutic functional change comprising:

a hybrid molecule including a drug molecule and a reversible bond to another molecule; and

means for breaking said reversible bond, releasing said drug molecule to effect a therapeutic functional change.

26. The system of claim 25, wherein said reversible bond releases said drug molecule upon an energy transfer; and

said means for reversing said reversible bond is said energy transfer.

- 270 -

27. The system of claim 25, wherein said hybrid molecule includes a photochromic element, and

said means for reversing said reversible bond comprises a chemiluminescent compound.

E S

§

- 28. The system of claim 27, wherein said hybrid molecule comprises a luminide, wherein said luminide permeates specific desired biological or cellular compartment and is resistant to inactivation or elimination.
- 29. A method of effecting a therapeutic functional change of an organism comprising the steps of:

providing a first molecule;

reversibly bonding a second, drug molecule thereto to form a hybrid molecule;

placing the hybrid molecule intracellularly;

breaking said reversible bond causing said drug molecule to be released;

effecting a functional therapeutic change to said organism by action of said released drug molecules.

30. A luminide class chemical compound comprising:

an energy source providing a source of quantum mechanical energy transfer from localized metabolic activity;

an energy acceptor receiving said quantum mechanical energy transfer; and

a drug reversibly bonded to said energy acceptor, wherein,

said energy transfer is activated upon the metabolic production of peroxides and oxygen free radicals by cellular metabolism,

- 271 -

j

said drug, having been released from said energy acceptor, bonds to a site of action, and

the bonding of said drug to said site effects a therapeutic functional change.

31. The chemical compound of claim 30, further comprising:

receptor mediated mechanisms for providing therapeutic functional change including;

at least one of reversible and irreversible competitive agonism;

antagonism including at least one of a suicide substrate, a transition state analogue mechanism, a noncompetitive or uncompetitive agonism, an antagonism; and

- a nonreceptor mediated mechanism including a counterfeit incorporation mechanism.
- 32. The chemical compound of claim 30, wherein: said energy acceptor is responsive to a selected molecule in the ambient extracellular environment, and

said drug released in relation to said selected molecule causing a moderation of said selected molecule.

- 33. The chemical compound of claim 31, wherein: said selected molecule comprising glucose, and said drug released comprises insulin.
- 34. The chemical compound of claim 31, wherein: said selected molecule comprises degredation products of parines, and

said drug released comprises tissue plasminogen activator (TPA).

- 272 -

35. The chemical compound of claim 1, further comprising:

a polymer; and immobilized enzyme molecules.

- 36. The chemical compound of claim 35, wherein: said polymer of claim 32 is conducting.
- 37. The chemical compound of claim 35, wherein: said polymer is biocompatible.
- 38. The chemical compound of claim 35, wherein:
 enzyme of claim 32 comprises at least one of
 glucose oxidase xanthine oxidase.
- 39. The chemical compound of claims 32 which further including a monoclonal antibody molecule.
- 40. The chemical compound of claim 1, further comprising an electrocalalytic polymer.

INTERNATIONAL SEARCH REPORT International Application No. PCT/US89/0136-1 1. CLASSIFICATION OF SUBJECT MATTER til several classification symbols apply, indicate all) 6 According to international Patent Classification (IPC) or to ooth National Classification and IPC IPC(4): C12Q 1/68; C12Q 1/70; CO7C 107/00; GO1N 33/566 U.S.C1.: 435/6; 435/5; 534/573; 514/150; 514/151; 935/78 II FIELDS SEARCHED Minimum Documentation Searched 7 Classification System Classification Symbols 435/5,6; 534/573; 514/150,151; 935/78 ប.S.Cl.: Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 8 III DOCUMENTS CONSIDERED TO BE RELEVANT 9 Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. 12 Category * 1-40 US, A, 3,798,131 (ROUNDS) published 19 X March 1974, see entire document. 1-40 US, A, 4,599,303 (YABUSAKI) published 08 X July 1986, see entire document. 1-40 US, A, 4,626,501 (LANDES) published 02 X December 1986, see entire document. US, A, 4,656,127 (MUNDY) published 07 April 1 - 40X 1987, see entire document. US, A, 4,683,194 (SAIKI) published 28 July 1-40 X 1987, see entire document. 1-40 US, A, 4,716,106 (CHISWELL) published 29 X December 1987, see entire document. T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" gocument of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but "A" document member of the same patent family later than the priority date claimed IV. CERTIFICATION Date of Mailing of this International Search Report Date of the Actual Completion of the International Search

Signature of Authorized Officer
They D. HIGEL

International Searching Authority

23 JUNE 1989