Water Quality Index

Prediction and Regression Machine Learning Project

Different types of Regression Models are trained upon different forms of same dataset.

Linear Regression

Neighbors

Gradient Boosting

Decision Tree Regression

Random Forest Regression

K - Nearest

Bayesian Ridge

Artificial Neural Network

Steps involved:

- Data Pre Processing
 Scaling & Normalization of values
 - 2) Scaling & Normalization of value
 - B) Removing Outliers
- Running the Model

```
for col in df. columns:
    df[col].replace('?',np.NaN,inplace=True)

df['location'].fillna(df['location'].mode()[0],inplace=True)

df['do'].fillna(df['do'].mode()[0],inplace=True)

df['ph'].fillna(df['ph'].mode()[0],inplace=True)

df['co'].fillna(df['co'].mode()[0],inplace=True)

df['bod'].fillna(df['bod'].mode()[0],inplace=True)

df['na'].fillna(df['na'].mode()[0],inplace=True)

df['tc'].fillna(df['tc'].mode()[0],inplace=True)
```

df['year'].fillna(df['year'].mode()[0],inplace=True)

To face the outliers present and to prevent feature domination and restricting the values between 0 and 1

```
X_{scaled} = (X - X_{min}) / (X_{max} - X_{min})
```

All missing values are filled with NaN and then replaced with mode of the respective columns

```
#Normalizing DataSet
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

# Fit the scaler to the data and transform the features
X_train_scaled = scaler.fit_transform(X_train)

# Transform the testing data using the fitted scaler
X_test_scaled = scaler.transform(X_test)
```


'Spearman' correlation matrix

The heatmap visualization helps in understanding the strength and direction of the monotonic relationships between the variables after MinMax Scaling

```
from scipy.stats import zscore
df num final norm = zscore(df new, axis=0)
def indices of greater than 3(df norm):
    df norm = pd.DataFrame(df norm)
    indices arr = []
   n col = df norm.shape[1]
    for index in range(n col):
        col index = df norm.iloc[: ,index]
        greater than 3 = df norm[col index > 3]
        greater than 3 index = greater than 3.index
        indices arr.extend(greater than 3 index)
    return indices arr
indices arr = indices of greater than 3(df num final norm)
print("Number of outliers using Z-Score method-",len(indices arr))
df new.iloc[indices arr, :]
```

Number of outliers using Z-Score method- 114

Handling outliers to remove misleading data and bias in modeling.

$$z = \frac{x - \mu}{\sigma}$$

Data points with z-scores that fall above threshold value are potential outliers

Distribution of each attribute


```
#Applying Gradient Boosting
from sklearn.ensemble import GradientBoostingRegressor
                                                                R2 = 0.8973223140053188
from sklearn.datasets import make regression
gb = GradientBoostingRegressor(n estimators=30, learning rate=0.1, max depth=6
gb.fit(X train final, y train final)
y predict = gb.predict(X test final)
                                                  from sklearn.tree import DecisionTreeRegressor
                                                  Treereg = DecisionTreeRegressor()
      R2 = 0.7602114513363876
                                                  Treereg.fit(X train final, y train final)
                                                  y pred = Treereg.predict(X test final)
from sklearn.ensemble import RandomForestRegressor
reg = RandomForestRegressor()
                                                           R2 = 0.882445986645837
reg.fit(X train final,y train final)
y pred = reg.predict(X test final)
                                                  #Performing Linear Regression
                                                  model = LinearRegression(fit intercept = True)
         print(mse)
         print(r2)
                                                  model.fit(X train n, y train n)
         1.6635807910485109e-28
                                                  y pred = model.predict(X test n)
         1.0
                                                  mse = mean squared error(y test n, y pred)
```

Accuracy Of Artificial Neural Network models

FINAL RESULTS FROM ALL MODELS USED

```
import matplotlib.pyplot as plt
labels = ['Gradient Boosting','Linear Regression','Decision Tree Regression'
values = [r2 gradb,r2 lrNorm,r2 tree,r2 forest,r2 br,r2 knn,r2 annNorm]
#colors = ['red', 'blue', 'green', 'orange', 'purple', 'yellow', 'cyan']
colors = [(1, 0, 0, 0.7), #Red]
         (0, 0, 1, 0.7), # Blue
         (0, 0.5, 0, 0.7), # Green
          (1, 0.65, 0, 0.7), # Orange
          (0.5, 0, 0.5, 0.7), # Purple
         (1, 1, 0, 0.7), # Yellow
         (0, 1, 1, 0.7)] # Cyan
plt.barh(labels, values, color=colors)
plt.xlabel('R2 Score')
plt.ylabel('Regression Models')
plt.title('Accuracy Comparison')
plt.show()
```


Thank You!

Harshvardhan Jouhary (2020B2A31623P) Aryaman Chauhan (2020B5A72006P) Devansh (2020B5A72001P)