MATH 531 HOMEWORK 6

BRADEN HOAGLAND

Scalar Multiplication. Prove scalar multiplication is a continuous function from $\mathbb{R} \times \mathcal{V} \to \mathcal{V}$, for \mathcal{V} a normed vector space and $\mathbb{R} \times \mathcal{V}$ equipped with the product metric space structure.

Given open $U \subset \mathcal{V}$, we must show that $\cdot^{-1}(U)$ is open. Let $(k,v) \in \cdot^{-1}(U)$, i.e. $kv \in U$, then there is an $\varepsilon > 0$ such that $D(kv,\varepsilon) \subset U$. If we find δ such that $\cdot(D((k,v),\delta)) \subset D(kv,\varepsilon)$, then we are done. Since $\mathbb{R} \times \mathcal{V}$ is equipped with the product metric, if $(k',v') \in D((k,v),\delta)$, then

$$d_1((k, v), (k', v')) = |k - k'| + ||v - v'|| < \delta.$$

Since both of these terms are nonnegative, this implies $|k - k'| < \delta$ and $||v - v'|| < \delta$. Then by the triangle inequality,

$$d_2(kv, k'v') = ||kv - k'v'||$$

= $||kn - k'v + k'v - k'v'||$
 $\leq ||v|||k - k'| + |k'|||v - v'||.$

Since $|k'| = |k' - k + k| \le \delta + |k|$, this becomes

$$d_2(kv, k'v') < ||v||\delta + (\delta + |k|)\delta.$$

Surely we can let $\delta \leq 1$, since δ need not be "optimal" in any sense. Then we have

$$d_2(kv, k'v') < ||v|| + |k| + \delta.$$

So if we take $\delta = \min\{1, \varepsilon - ||v|| - |k|\}$, then $\cdot (D((k, v), \delta)) \subset D(kv, \varepsilon)$, which implies that $\cdot^{-1}(U)$ is open. Thus scalar multiplication is a continuous function on a normed vector space.

Page 182, 4.1.3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous. Show $A = \{(x, y) \in \mathbb{R}^2 \mid 0 \le f(x, y) \le 1\}$ is closed.

Since f is continuous, we know that for any closed set $F \subset \mathbb{R}$, $f^{-1}(F)$ is closed in \mathbb{R}^2 . Thus it suffices to find a closed set $B \subset \mathbb{R}$ such that $f^{-1}(B) = A$.

Let $B = \{z \in \mathbb{R} \mid 0 \le z \le 1\}$, then we claim that B is closed in \mathbb{R} and that $f^{-1}(B) = A$. Since $B^c = \{z < 0\} \cup \{z > 1\}$ is clearly open (it is the finite intersection of open sets), B is closed by definition. Also by definition, $f^{-1}(B) = \{(x,y) \mid f(x,y) \in B\} = \{(x,y) \mid 0 \le f(x,y) \le 1\} = A$.

Date: October 7, 2020.

Page 184, 4.2.4. Let $A, B \subset \mathbb{R}$, and suppose $A \times B \subset \mathbb{R}^2$ is connected.

- (1) Prove that A is connected.
- (2) Generalize to metric spaces.
- (1) Define $f: A \times B \to A$ by f((a,b)) = a. We claim that f is continuous. Let $U \subset A$ be open, then we must show $f^{-1}(U) = \{(a,b) \mid a \in U\}$ is also open. Let $(a,b) \in f^{-1}(U)$, and let $D(a,\varepsilon) \subset U$ (we know this ball exists for some $\varepsilon > 0$ since U is open). We now claim that $D((a,b),\varepsilon) \subset f^{-1}(U)$.

If $(a',b') \in D((a,b),\varepsilon)$, then since $A \times B$ is equipped with the product metric, $|a-a'|^2 \le |a-a'|^2 + |b-b'|^2 < \varepsilon^2$ This implies $a' \in D(a,\varepsilon) \subset U$, so $(a',b') \in f^{-1}(U)$. Thus $f^{-1}(U)$ is open and, subsequently, f is continuous. Since the image of a connected set under a continuous map is itself continuous, we have that A is continuous.

(2) To generalize this to metric spaces, note that the proof only uses a property of \mathbb{R}^n when defining the ε -balls around a and (a,b). Let $A \times B$ be equipped with the product metric, d_A be the metric for A, and d_B be the metric for B. Then instead of

$$|a - a'|^2 \le |a - a'|^2 + |b - b'|^2 < \varepsilon^2$$
,

we write

$$d_A(a, a') \le d_A(a, a') + d_B(b, b') < \varepsilon.$$

The rest of the proof is valid without any changes, so the result holds for general metric spaces.

Page 184, 4.2.5. Let $A, B \subset \mathbb{R}$, and suppose $A \times B \subset \mathbb{R}^2$ is open. Must A be open?

Yes. Let $a \in A$ and $b \in B$, then there is an $\varepsilon > 0$ such that $D((a,b),\varepsilon) \subset A \times B$. Consider $D(a,\varepsilon)$. For $a' \in D(a,\varepsilon)$, we have $|a'-a|+|b-b|=|a'-a|<\varepsilon$, which implies $(a',b) \in D((a,b),\varepsilon) \subset A \times B$. Thus $a' \in A$, so $D(a,\varepsilon) \subset A$, so A is open.

Page 191, 4.4.3. Let $f: K \subset \mathbb{R}^n \to \mathbb{R}$ be continuous on a compact set K and let $M = \{x \in K \mid f(x) \text{ is the maximum of } f \text{ on } K\}$. Show that M is a compact set.

Since K is compact and f is continuous, K contains all x' such that $f(x') = \sup_x f(x)$. Thus $M = f^{-1}(\{\sup f(x)\})$. The set $\{\sup f(x)\}$ is a single point in \mathbb{R} , so it is closed. Since f is continuous, M must then be closed too. Furthermore, $M \subset K$ and K is bounded (since it is compact), so M must also be bounded. Then by the Heine-Borel theorem, M is compact in \mathbb{R}^n .

Page 193, 4.5.1. What happens when you apply the method used in Example 4.5.4 to quadratic polynomials? To quintic polynomials?

Let $f(x) = x^2 + 10$ be a quadratic polynomial. It is clear that f(x) is always positive, so it need not have a real root. Thus the method from the example fails.

Let $f(x) = a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6$ for $a_1 > 0$. Then we can rewrite this as

$$f(x) = a_1 x^5 \left(1 + \frac{a_2}{a_1 x} + \frac{a_3}{a_1 x^2} + \frac{a_4}{a_1 x^3} + \frac{a_5}{a_1 x^4} + \frac{a_6}{a_1 x^5} \right).$$

The sum in parentheses tends to 1 as $x \to \infty$, so f(x) > 0 for some large and positive x. Similarly, f(x) < 0 for some large and negative x. Since \mathbb{R} is connected and f is continuous, by the intermediate value theorem we know that f has a real root.

In general, the largest exponent in a polynomial being odd guarantees that we can find points satisfying f(x) < 0 and f(x) > 0, in which case the method from the example is valid. As seen with the quadratic example, when the largest exponent is even, this is not always possible.

Page 193, 4.5.2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous. Let $\Gamma = \{(x, f(x)) \mid x \in \mathbb{R}^n\}$ be the graph of f in $\mathbb{R}^n \times \mathbb{R}^m$. Prove that Γ is closed and connected. Generalize your result to metric spaces.

 Γ is the image of the map $g: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^m$ defined by g(x) = (x, f(x)). We claim that g is continuous. Fix $x \in \mathbb{R}^n$ and $\varepsilon > 0$, then we wish to show that the preimage of $D((x, f(x)), \varepsilon)$ under g is open. Since f is continuous, for any $\varepsilon > 0$ we can find δ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon/2$. Let $\delta' = \min\{\varepsilon/2, \delta\}$, then for any $y \in D(x, \delta')$ we have

$$|x - y| + |f(x) - f(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Since $\mathbb{R}^n \times \mathbb{R}^m$ is equipped with the product metric, this shows that $D(x, \delta')$ is a subset of $g^{-1}(D((x, f(x)), \varepsilon))$. Thus g is continuous. Since g is continuous and \mathbb{R}^n is connected, Γ must also be connected.

Now we show that Γ is closed. Let $\{(x_n, f(x_n)\}_{n=1}^{\infty} \text{ converge, i.e. } (x_n, f(x_n)) \to (x, y) \text{ for some } x \in \mathbb{R}^n, y \in \mathbb{R}^m$. The map f is given to be continuous, so $\lim_{n\to\infty} f(x_n) = f(x)$. Since by assumption, $\lim_{n\to\infty} f(x_n) = y$, this implies f(x) = y. Thus our sequence converges to (x, f(x)), which clearly lies in Γ . This shows that Γ is closed.

The proof of connectedness relied on \mathbb{R}^n being connected. If we replace \mathbb{R}^n with any connected metric space, the result still holds. The proof of closedness did not rely on the structure of \mathbb{R}^n at all, so this result holds in any metric space. This gives us a more general proposition:

Let X and Y be metric spaces, and let $f: X \to X \times Y$ be continuous. Then $\Gamma = \{(x, f(x)) \mid x \in X\}$ is closed. If X is connected, then Γ is connected.

Page 193, 4.5.3. Let $f:[0,1] \to [0,1]$ be continuous. Prove that f has a fixed point.

Since [0,1] is connected and f is continuous, the intermediate value theorem holds. Define another continuous function $g:[0,1]\to[-1,1]$ by g(x)=f(x)-x, then note that $g(0)=f(0)\geq 0$ and $g(1)=f(1)-1\leq 0$. If g(0)=0, then f(0)=0 and we have a fixed point. Similarly, if g(1)=0, then f(1)=1 and we have a fixed point. So assuming that these trivial cases are false, we have g(0)<0< g(1). Then by the intermediate value theorem, there is some $z\in[0,1]$ such that g(z)=f(z)-z=0, which implies f(z)=z, so we have a fixed point.

Page 194, 4.5.4. Let $f:[a,b] \to \mathbb{R}$ be continuous. Show that the range of f is a bounded closed interval.

The interval [a, b] is compact, so f([a, b]) contains its minimum and maximum, denoted by f(c) and f(d), respectively. Then since [a, b] is also connected, by the intermediate value theorem, the image also contains all points between f(c) and f(d). Thus the image is f([a, b]) = [f(c), f(d)], a closed and bounded interval in \mathbb{R} .

Page 194, 4.5.5. Prove that there is no continuous map taking [0,1] onto (0,1).

Let $f:[0,1] \to (0,1)$ be continuous. Then since [0,1] is compact, so is $f([0,1]) \subset (0,1)$, i.e. f([0,1]) = [a,b] for some a > 0, b < 0. But since a > 0, this means a/2, which is in (0,1), is not in f([a,b]). Thus f is not onto.