$$-\mu\Delta u + \underline{\beta}\cdot\nabla u = f(\underline{x}) \quad \underline{x}\in\Omega$$

BCs
$$\underline{x} \in \partial \Omega$$

 $\forall \mu, \underline{\beta}$

 $u_h(\underline{x}) \approx u(\underline{x})$

 \underline{x} , $(\mu, \underline{\beta})$

 $\{(\mu_i, \underline{\beta}_i)\}_{i=1}^N$

 $u_{red}(\underline{x}, \mu, \underline{\beta})$

 $u_h(\underline{x})$

 a_1, a_2, a_3

 w_1, w_2, w_3

 $tanh(\sum_{i=1}^{3}a_{i}w_{i})$

tanh

f

 x_1

 x_2

 $u(\underline{x})$

 $L(\underline{w})$

 $\underline{w}_{opt} = \underset{\underline{w}}{\operatorname{argmin}} \ L(\underline{w})$

 $\underline{w}_{n+1} = \underline{w}_n - \eta \nabla L(\underline{w}_n)$

$$x_1$$
 x_2
 μ
 $u(\underline{x}, \mu)$

$$L(\underline{w}) = \alpha_1 L_{Fit}(\underline{w}) + \alpha_2 L_{PDE}(\underline{w}) + \alpha_3 L_{BC}(\underline{w})$$
 $L_{Fit}(\underline{w})$
 $L_{PDE}(\underline{w})$
 $L_{BC}(\underline{w})$