Tarea 6 Procesos Estocásticos I

Prof. Rafael Miranda Cordero

Aydte. Fernando Avitúa Varela

13 de noviembre 2023

Entrega: 21 de noviembre

- 1. Demuestre que la definición 4 de las notas implica la definición 5 (2.1.1 y 2.1.2 del libro *Stochastic Processes* (segunda edición) de Sheldon Ross)
- 2. Construcción del Proceso Poisson. Considere una sucesión $(X_n)_{n\in\mathbb{N}}$ de variables aleatorias independientes e idénticamente distribuidas con distribución común $\exp(\lambda)$ $(\lambda > 0)$. Defina $S_0 = 0$ y $S_{n+1} = S_n + X_{n+1}$ para todo $n \ge 0$. Ahora defina

$$N(t) := \max \{ n \in \mathbb{N} : S_n \le t \}$$

demuestre que $\{N(t): t \geq 0\}$ es un proceso Poisson.

- 3. Sean $N \sim \text{Poisson}(\lambda)$ y $(X_n)_{n \in \mathbb{N}}$ variables aleatorias independientes tales que $\mathbf{P}(X_i = j) = p_j$ para $j = 0, \ldots, k$ y para toda $i \in \mathbb{N}$. Definimos $N_j = |\{m \le N : X_m = j\}|$. Demuestre que las variables N_0, \ldots, N_k son independientes y que $N_j \sim \text{Poisson}(\lambda p_j)$.
- 4. Propiedad de Markov del Proceso Poisson. Sea $\{N(t): t \geq 0\}$ un proceso Poisson de media $\lambda > 0$. Sea a > 0 y para cada $t \geq 0$ definimos

$$N_a(t) := N(t+a) - N(a).$$

Demuestre que $\{N_a(t): t \geq 0\}$ es un proceso Poisson con media λ .

5. Los clientes que llegan a una agencia de autos (la cual abre de 9 a.m. a 9 p.m.) pueden ser clasificados en dos categorías: aquellos que intentan comprar un auto (tipo I) y aquellos que solo ven los autos o piden alguna información (tipo II). Suponga que

$$\mathbf{P}(\text{Un cliente es de tipo I}) = \begin{cases} 1/2 & \text{de 9 a.m. a 6 p.m.} \\ 1/4 & \text{de 6 p.m. a 9 p.m.} \end{cases}$$

independientemente para cada cliente de cualquier otro. Este fenómeno es modelado mediante un proceso Poisson de media λ por día.

(a) Calcule la varianza del numero de clientes de tipo I que llegan en un día si $\lambda = 50$.

- (b) Suponga que el promedio de ganancias por carro vendido es igual a \$1,000 y que $\lambda = 10$. Si se sabe que en un día dado al menos dos autos fueron vendidos de 9 a.m. a 6 p.m., ¿cuál es la media de ganancias para la agencia en este periodo de tiempo?
- 6. Suponga que $\{N_1(t): t \geq 0\}$ y $\{N_2(t): t \geq 0\}$ son procesos Poisson independientes con medias $\lambda_1 > 0$ y $\lambda_2 > 0$ respectivamente. Defina $N(t) := N_1(t) + N_2(t)$, demuestre que $\{N(t): t \geq 0\}$ es un proceso Poisson de media $\lambda_1 + \lambda_2$. Además, demuestre que la probabilidad de que el primer evento del proceso combinado provenga del proceso $\{N_1(t): t \geq 0\}$ es $\lambda_1/(\lambda_1 + \lambda_2)$ independientemente del tiempo en el que el evento suceda.
- 7. Supongamos que dos equipos (digamos A y B) están participando en una competencia deportiva en la que gana el equipo que acumule más puntos en la competencia. De acuerdo a la experiencia en las competiciones anteriores, los puntos del equipo A siguen un proceso Poisson $M_t: t \geq 0$ con parámetro λ y los puntos del equipo B siguen un proceso Poisson $N(t): t \geq 0$ con parámetro μ . Si los procesos $M(t): t \geq 0$ y $N(t): t \geq 0$ son independientes ¿Cual es la probabilidad de que los equipos A y B empaten en la competencia? ¿Cual es la probabilidad de que gane el equipo A? ¿Cual es la probabilidad de que gane el equipo B?
- 8. La señal del Telégrafo. Sea $\{N(t): t \geq 0\}$ un proceso Poisson de media $\lambda > 0$. Defina $X(t) = (-1)^{N(t)}$, el proceso $\{X(t): t \geq 0\}$ es conocido como la señal semi-aleatoria del telégrafo (pues X(0) = 1 por lo que el primer valor que toma siempre es determinista). Ahora sea Z una variable aleatoria independiente del proceso Poisson antes dado que toma los valores 1 y 1 con la misma probabilidad, defina $Y(t) = Z \cdot X(t)$, el proceso $\{Y(t): t \geq 0\}$ se denomina la señal aleatoria del telégrafo. Para cada uno de los dos procesos descritos encuentre
 - (a) la distribución de X(t) y la de Y(t) para cada $t \ge 0$.
 - (b) la esperanza de X(t) y Y(t)
 - (c) la covarianza de X(t+s) y X(t), y la de Y(t+s) y Y(t)