DEFINITION	
	Bonferroni's Inequality
	Fundamentals of Probability
DEFINITION	
	Bayes' Rule
	Fundamentals of Probability
DEFINITION	
	Constinite on I Constitute
	Sensitivity and Specificity
	Fundamentals of Probability

$$P(A,B) \ge P(A) + P(B) - 1$$

This is useful if you are asked to give the minimum of P(A,B)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Sensitivity=
$$P(T = 1|D = 1)$$

Specificity=P(T=0|D=0)

EQUATION	
	Change of Variable
	Fundamentals of Probability
EQUATION	
I I	Moment Generating Function
	Fundamentals of Probability
EQUATION	
EQUATION	
	Location-Scale shift
	Fundamentals of Probability

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(g) \right|$$

Note that this only works for 1-1 monotonic functions

$$E[e^{xt}] = \int_x e^{xt} f(x) dx$$

Then evaluate the derivative for each moment at t = 0. For example, the second moment would be the second derivative of the mgf evaluated at t = 0.

$$f_X(x) = \frac{1}{\sigma} f_Z\left(\frac{x-\mu}{\sigma}\right)$$

Basically, multiply the pdf by $\frac{1}{\sigma}$ and replace z with $\frac{x-\mu}{\sigma}$

FORM	
	Exponential Family
	Fundamentals of Probability
Pro Tip	
	Mgf when $X \perp Y$
	Fundamentals of Probability
EQUATION	
	Bivariate Transformations
	Error or a part of the control of th
	Fundamentals of Probability

$$f(x|\theta) = h(x)c(\theta) \exp\left\{\sum_{i=1}^{k} w_i(\theta)t_i(x)\right\}$$

If a family is exponential and there is a non-empty parameter space, it is considered "complete". Therefore t(x) is MSS.

$$Mgf(x + y) = Mgf(x)Mgf(y)$$

This is cool because it shows that if $X \perp Y$ and $X \sim N(\mu_x, \sigma_x^2)$ and $Y \sim N(\mu_y, \sigma_y^2)$, then $X + Y \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

$$f_{u,v}(u,v) = f_{x,y}(h_1(u,v), h_2(u,v))|J|$$

This is for continuous. DON'T FORGET THE JACOBIAN. or Jacob

Marley will come after you.

EQUATION	
	Iterative Expectations
	Tool doller Dapeet dations
	D D
	Fundamentals of Probability
Egyamios	
EQUATION	
	Iterative Variance
	Fundamentals of Probability
DEFINITION	
	Covariance
	5 5 . 5522525 5
	Davis D
	Fundamentals of Probability

$$Var[Y] = E_X[Var[Y|X]] + Var_X[E[Y|X]]$$

$$cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$
$$= E[XY] - \mu_X \mu_Y$$

Correlation
Fundamentals of Probability
Chebyshev's Inequality
Fundamentals of Probability
Jensen's Inequality

$$corr(X,Y) = \frac{cov(X,Y)}{\sigma_x \sigma_y}$$

$$P(g(X) \ge r) \le \frac{E(g(X))}{r}$$

$$P(|X - \mu| \ge t\sigma) \le \frac{1}{t^2}$$

$$E(g(x)) \ge g(E(x))$$

This holds if g(x) is a convex function. That means it has a positive 2nd derivative, like a smile. I have high expectations!

DEFINITION	
	Holder's Inequality
	Troider 5 inequality
	Fundamentals of Probability
Proof	
	Correlation is Bounded by -1 and 1
	Fundamentals of Probability
EQUATION	
	Order Statistics PDF
	_
	Fundamentals of Probability

$$\begin{split} |E(XY)| & \leq E|XY| \leq (E(|X|^p))^{1/p} (E(|Y|^q))^{1/q} \\ & \frac{1}{p} + \frac{1}{q} = 1 \end{split}$$

Cauchy-Schwartz is a special case where p=q=2. Can use to show correlation is bounded by -1 and 1.

$$\begin{aligned} \left| cov(X,Y) \right| &= \left| E[(X - \mu_x)(Y - \mu_y)] \right| \\ &\leq (E|X - \mu_x|^2)^{1/2} (E|Y - \mu_y|^2)^{1/2} \leq \sqrt{\sigma_x^2} \sqrt{\sigma_y^2} \\ &\leq \sigma_x \sigma_y \\ \left| corr(X,Y) \right| &= \left| \rho \right| = \left| \frac{cov(X,Y)}{\sigma_x \sigma_y} \right| = \frac{\left| cov(X,Y) \right|}{\sigma_x \sigma_y} \leq \frac{\sigma_x \sigma_y}{\sigma_x \sigma_y} = 1 \end{aligned}$$

$$\frac{n!}{(j-1)!(n-j)!}f(x)[F(x)]^{j-1}[1-F(x)]^{n-j}$$

EQUATION	
	Order Statistics CDF
	Fundamentals of Probability
	T CINDAMENTALS OF T HOBABILITY
Г	
EQUATION	
Loint	PDF of Order Statistics
JOHN	TDF of Order Statistics
	Fundamentals of Probability
Pro Tip	
If $X_i \stackrel{iid}{\sim} Unif(0,$	1) the pdf of the kth order statistic
	, •
	Fundamentals of Probability

$$\sum_{i=j}^{n} \binom{n}{i} F(x)^{i} [1 - F(x)]^{n-i}$$

$$\frac{n!}{(l-1)!(m-l-1)!(n-m)!}$$
$$F(x_l)^{l-1}f(x_l)f(x_m)[F(x_m)-F(x_l)]^{m-l-1}[1-F(x_m)]^{n-m}$$

soo
oo its so long it can't fit on one line...
but this is all one equation.
memorize it foo
oooool.

$$Beta(k, n - k + 1)$$

Proof	
	Convergence in Probability
	convergence in 1 resusting
	Fundamentals of Probability
DEFINITION	
	Convergence Almost Surely
	Fundamentals of Probability
Dannaga	
DEFINITION	
	Convergence in Distribution
	Fundamentals of Probability

Convergence in probability means that the estimator is consistent. We can prove something converges in probability using Chebychev's. Also, the Weak Law of Large Numbers is that $\bar{X} \stackrel{p}{\to} \mu$.

$$P(|\bar{X}_n - X| \ge \epsilon) \le \frac{E[(\bar{X}_n - \mu)^2]}{\epsilon^2}$$

$$\le \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

$$\lim_{n \to \infty} P(|\bar{X}_n - X| \ge \epsilon) \le \lim_{n \to \infty} \frac{\sigma^2}{n\epsilon^2}$$

$$\lim_{n \to \infty} \frac{\sigma^2}{n\epsilon^2} = 0$$

$$\lim_{n \to \infty} P(|\bar{X}_n - X| \ge \epsilon) = 0$$

$$P(\lim_{n\to\infty}|\bar{X}_n - X| \ge \epsilon) = 0$$

Convergence almost surely implies convergence in probability which implies convergence in distribution.

$$X_n \stackrel{d}{\to} X \iff \lim_{n \to \infty} F_{x_n}(x) = F_x(x)$$
 for all x where $F_x(x)$ is continuous

The CLT is convergence in distribution. Coming to a flashcard near you proof of the CLT using MGFs. Yeah. You can't wait.

DEFINITION	
	Slutsky's
	Fundamentals of Probability
DEFINITION	
	Delta Method
	Fundamentals of Probability
	FUNDAMENTALS OF TROBABILITY
DEFINITION	
	Accept-Reject $Algorithm$
	Fundamentals of Probability

If
$$X_n \stackrel{d}{\to} X$$
 and $Y_n \stackrel{p}{\to} a$ then:
 $Y_n X_n \stackrel{d}{\to} a X$
and $Y_n + X_n \stackrel{d}{\to} a + X$

$$\frac{\sqrt{n}(\bar{X} - \mu)}{S_n} = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \frac{\sigma}{S_n} \stackrel{d}{\to} N(0, 1)$$

because

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \xrightarrow{d} N(0, 1)$$
$$\frac{\sigma}{S_n} \xrightarrow{p} 1$$

1st order:

$$\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{d} N(0, g'(\theta)^2 var(X_n))$$

2nd order:

$$n(g(X_n) - g(\theta)) \xrightarrow{d} \frac{Var(X_n)}{2} g''(\theta) \chi_1^2$$

To generate Y from f(y):

- 1. Generate v from a known distribution, f(v), with support that contains the support of Y.
- 2. Calculate $M = \sup_y \frac{f_Y(y)}{f_V(y)}$ (the supremum of Y in V)
- 3. Generate $U \sim Unif(0,1)$ if $U \leq \frac{1}{M} \frac{f_Y(v)}{f_V(v)}$ then accept, otherwise reject.

DISTRIBUTION	
	Bernoulli
	Fundamentals of Probability
DISTRIBUTION	
	Binomial
	Fundamentals of Probability
DISTRIBUTION	
	Geometric
	Fundamentals of Probability

$$X \sim Bin(1, p)$$

$$f(x) = p^{x}(1-p)^{1-x} \text{ for } x = 0, 1$$

$$E(x) = p$$

$$Var(x) = p(1-p)$$

$$X \sim Bin(n, p)$$

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$E(x) = np$$

$$Var(x) = np(1-p)$$

$$X \sim Geometric(p) \text{ or } X \sim NegBinom(1,p)$$

$$f(x) = p(1-p)^{x-1} \text{ for } x{=}1,...$$

$$E(x) = \frac{1}{p}$$

$$Var(x) = \frac{1-p}{p^2}$$

DISTRIBUTION	
	Negative Binomial
	Negative Dinomial
	Fundamentals of Probability
D	
DISTRIBUTION	
	Hypergeometric
	<i>v</i> 1
	Fundamentals of Probability
	1 UNDAMENTALS OF 1 ROBABILITY
DISTRIBUTION	
	Discrete Uniform
	Discrete Ulilloriii
	Fundamentals of Probability

$$X \sim NegBinom(r, p)$$

$$f(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r} \text{ for x=r,r+1,...}$$

$$E(x) = \frac{r}{p}$$

$$Var(x) = \frac{r(1-p)}{p^2}$$

where x is the number of experiments needed to get r successes

N=# of balls, K=# selected M=# of successes X=# of successes in your sample

$$\begin{split} f(x) &= \frac{\binom{M}{X}\binom{N-M}{K-X}}{\binom{N}{K}} \\ E(x) &= \frac{KM}{N} \\ Var(x) &= \frac{KM}{N} \left(\frac{N-M}{N}\right) \left(\frac{N-K}{N-1}\right) \end{split}$$

$$X \sim DUnif(a,b)$$

$$f(x) = \frac{1}{b-a+1} \text{ for x=a,...,b}$$

$$E(x) = \frac{a+b}{2}$$

$$Var(x) = \frac{(b-a+1)^2 - 1}{12}$$

DISTRIBUTION	
	Poisson
	Fundamentals of Probability
DISTRIBUTION	
DISTRIBUTION	
	Uniform
	Cimorni
	Fundamentals of Probability
Drampipiymov	
DISTRIBUTION	
	Gamma
	Gamma
	Fundamentals of Probability
	F UNDAMENTALS OF FROBABILITY

$$X \sim Pois(\lambda)$$

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!} \text{ for x=0,1,2...}$$

$$E(x) = \lambda$$

$$Var(x) = \lambda$$

$$X \sim Unif(a, b)$$

$$f(x) = \frac{1}{b-a} \text{ a < x < b}$$

$$E(x) = \frac{a+b}{2}$$

$$Var(x) = \frac{(b-a)^2}{12}$$

$$X \sim Gamma(\alpha, \beta)$$

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} \text{ for } x > 0, \, \alpha > 0, \, \beta > 0$$

$$E(x) = \alpha\beta$$

$$Var(x) = \alpha\beta^2$$

Distribution	
Chi-square	
Fundamentals of Probability	
Distribution	
Exponential	
Fundamentals of Probability	
Distribution	
Normal	
Fundamentals of Probability	

$$X \sim \chi^2(p)$$

$$f(x) = \frac{1}{\Gamma(p/2)2^{p/2}} x^{p/2-1} e^{-x/2}$$

$$E(x) = p$$

$$Var(x) = 2p$$

special case of Gamma where $\alpha = p/2$ and $\beta = 2$.

$$X \sim Exp(\beta)$$

$$f(x) = \beta e^{-x\beta} \text{ for } x > 0, \ \beta > 0$$

$$E(x) = \frac{1}{\beta}$$

$$Var(x) = \frac{1}{\beta^2}$$

Special case of Gamma where $\alpha=1$

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} \text{ for } -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

$$E(x) = \mu$$

$$Var(x) = \sigma^2$$

DISTRIBUTION	
	Beta
	D D
	Fundamentals of Probability
DISTRIBUTION	
	C1
	Cauchy
	Fundamentals of Probability
Pro Tip	
I NO IIF	
	e^t
	Fundamentals of Probability

$$X \sim Beta(\alpha, \beta)$$

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \text{ for } 0 < x < 1, \alpha > 0, \beta > 0$$

$$E(x) = \frac{\alpha}{\alpha + \beta}$$

$$Var(x) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

$$X \sim Cauchy(\theta)$$

$$f(x) = \frac{1}{\pi(1 + (x - \theta)^2)} \text{ for } -\infty < x < \infty, \ -\infty < \theta < \infty$$

$$\lim_{n \to \infty} \left(1 + \frac{t}{n} \right)^n$$

Pro Tip	
	Binomial Series
	Fundamentals of Probability
Pro Tip	
	Geometric Series
	Fundamentals of Probability
	1 01.21.112.1112.001 1 1002.12.1111
Definition	
	Positive Predictive Value
	Statistical Inference

$$\sum_{v=0}^{u} \frac{u!}{(u-v)!v!} \theta^{u-v} \lambda^{v} = (\theta + \lambda)^{u}$$

$$\sum_{i=1}^{n} q^{i-1} = \frac{1 - q^n}{1 - q}$$

$$P(D^{+}|T^{+}) = \left[1 + \frac{P(T^{+}|D^{-})}{P(T^{+}|D^{+})} \frac{P(D^{-})}{P(D^{+})}\right]^{-1}$$

DEFINITION	
	Kullback-Leibler Divergence
	Statistical Inference
DEFINITION	
	Hellinger Distance
	Statistical Inference
Proof	
	LR is bounded by $1/k$
	Statistical Inference

$$KLD(g, f) = E_g \left[\log \frac{g(X)}{f(X)} \right] \ge 0$$

Measures how much information you lose by using the worse distribution.

$$KLD(g, f) \ge 2[H(f, g)]^2$$

Lower bound for the KLD

$$P_g\left(\frac{\prod f(x_i)}{\prod g(x_i)} > k\right) \le \frac{E_g\left[\frac{\prod f(x_i)}{\prod g(x_i)}\right]}{k} = \frac{1}{k}$$

$$E_g\left[\frac{\prod f(x_i)}{\prod g(x_i)}\right] = \int \frac{\prod f(x_i)}{\prod g(x_i)} \prod g(x_i) dx$$
$$= \int \prod f(x_i) dx = \int P_f(X_1, ..., X_n) dx = 1$$

Proof by Markov's inequality. This bound holds if we look at the data as it accumulates.

Proof	
	Asymptotic behavior of LR
	STATISTICAL INFERENCE
Proof	
	Convergence of the posterior
	Statistical Inference
DEFINITION	
	Rational for Maximum Likelihood
	Teavionai 101 Maximum Dikemi000
	Statistical Inference

As evidence accumulates, the LR converges to 0

$$LR_n = \exp\left\{\log \prod \frac{f(x_i)}{g(x_i)}\right\} = \exp\left\{\sum \log f(x_i) - \sum \log g(x_i)\right\}$$

$$= \exp\left\{n\left[\frac{1}{n}\sum \log f(x_i) - \frac{1}{n}\sum \log g(x_i)\right]\right\}$$
From the LLN:
$$\frac{1}{n}\sum \log \frac{f(x_i)}{g(x_i)} \to E_g\left[\log \frac{f(x_i)}{g(x_i)}\right] \le \log E_g\left[\frac{f(x_i)}{g(x_i)}\right] \text{ by Jensen's }$$

$$\log E_g\left[\frac{f(x_i)}{g(x_i)}\right] = \log(1) = 0$$

Therefore this portion some negative number, call it -c

$$\prod \frac{f(x_i)}{g(x_i)} \to \lim_{n \to \infty} e^{n[-c]} = 0$$

Due to the LR convergence properties, the posterior converges as well. (Note this proof is in the discrete case).

$$X_1, ..., X_n \overset{iid}{\sim} f(X; \theta_0)$$

$$P(\theta = \theta_0 | \underline{\mathbf{X}}) = \left[1 + \sum_{\theta \neq \theta_0} \frac{P(\underline{\mathbf{X}} | \theta)}{P(\underline{\mathbf{X}} | \theta_0)} \frac{P(\theta)}{P(\theta_0)} \right]^{-1}$$

$$\frac{P(\underline{\mathbf{X}} | \theta)}{P(\underline{\mathbf{X}} | \theta_0)} \to 0 \text{ By LR convergence principle}$$

$$\frac{P(\underline{\mathbf{X}} | \theta)}{P(\underline{\mathbf{X}} | \theta_0)} \frac{P(\theta)}{P(\theta_0)} \to 0 \text{ as } n \to \infty \text{ therefore } \sum_{\theta \neq \theta_0} \frac{P(\underline{\mathbf{X}} | \theta)}{P(\underline{\mathbf{X}} | \theta_0)} \frac{P(\theta)}{P(\theta_0)} \to 0$$

$$P(H_0 | \underline{\mathbf{X}}) \to 1 \text{ as } n \to \infty$$

Because $\hat{\theta}$ maximizes the likelihood function, it is the parameter value that is best supported by the data by the Law of Likelihood.

DEFINITION		
Invariance of the MLE		
	STATISTICAL INFERENCE	
DEFINITION		
	Bias	
	Statistical Inference	
DEFINITION		
	Variance	
	Statistical Inference	

If $\hat{\theta}$ is the MLE for θ then $g(\hat{\theta})$ is the MLE for $g(\theta)$ as long as $g(\theta)$ is a 1-1 function of θ .

$$E[\hat{\theta} - \theta] = b(\hat{\theta})$$

$$E[(\hat{\theta} - E[\hat{\theta}])^2]$$

DEFINITION		
	MSE	
		G
		STATISTICAL INFERENCE
DEFINITION		
	Consistency	
		Statistical Inference
		STATISTICAL INFERENCE
DEFINITION		
	D: 43475	
	Biases of MLEs	
		Statistical Inference

$$E[(\hat{\theta} - \theta)^2]$$
$$= Var[\hat{\theta}] + b^2(\hat{\theta})$$

 $\hat{\theta} \rightarrow \theta$ as $n \rightarrow \infty$ in probability, a.s., etc.

This implies that the limiting bias is 0.

 MLEs are often biased. For example:

- The MLE of the variance in the Normal case has a slight **negative** bias $-\frac{\sigma^2}{n}$. This goes to 0 in large samples
- Poisson mean inverse the bias is undefined! zabert alert!

DEFINITION	
	Bayes Estimator
	Statistical Inference
Proof	
	Consistency of MLEs
	Statistical Inference
PRO TIP	
	When will the MLE not be consistent?
	Statistical Inference

Trade some bias for a reduction in variance.

$$f(\theta|\underline{\mathbf{x}}) = \frac{f(\underline{\mathbf{X}}|\theta)f(\theta)}{\int_{\Theta} f(\underline{\mathbf{X}}|\theta)f(\theta)d\theta}$$

Here, a posterior mean is achieved by shrinking the sample mean towards the prior mean.

To show consistency:

$$\hat{\theta}_n \stackrel{p}{\to} \theta$$
 as $n \to \infty$
In other words $\hat{\theta}_n - \theta = o_p(1)$

Method 1
$$P(|\hat{\theta}_n - \theta) \ge \epsilon) \to 0$$

Method 2 quadratic mean $MSE(\hat{\theta}_n) = Var(\hat{\theta}_n) + b^2(\hat{\theta}_n) \to 0$

If you can show that bias $\to 0$ and var $\to 0$ then $\hat{\theta}_n \stackrel{qm}{\to} \theta$ which implies $\hat{\theta}_n \stackrel{p}{\to} \theta$.

When the number of parameters is increasing as $n \to \infty$. Here is an example where the MLE is not consistent from Neyman-Scott:

$$\begin{split} Y_{11},Y_{12} &\sim N(\mu_1,\sigma^2) \\ Y_{21},Y_{22} &\sim N(\mu_2,\sigma^2) \\ & \cdot \sim \cdot \\ & \cdot \sim \cdot \\ Y_{n1},Y_{n2} &\sim N(\mu_n,\sigma^2) \\ \hat{\sigma^2} &= \sum_{i=1}^n \sum_{j=1}^n j = 1^2 \frac{(Y_{ij} - \bar{Y}_i)^2}{2n} \\ \hat{\sigma}^2 &\stackrel{p}{\rightarrow} \frac{\sigma^2}{2} \end{split}$$

DEFINITION	
	Continuous Mapping Theorem
	STATISTICAL INFERENCE
D	
DEFINITION	
	Conditions for MLE consistency
	Statistical Inference
DEFINITION	
	Score Function
	эсоге ғинсион
	STATISTICAL INFERENCE

This is basically the best theorem out there.

$$X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$$

$$X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X)$$

$$X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$$

Obviously the function has to be continuous for this to work.

- 1. Identifiability
- 2. Compactness of the parameter space (it is sufficient to assume concavity of the log LF and MLE cannot be at the boundary of the parameter space)
- 3. Continuity of $L(\theta)$ in θ to ensure smoothness and existence of derivatives
- 4. Dominance: $|\log f(x;\theta)| < D(x) \ \forall \theta \in \Theta$

- First derivative of the log-likelihood function
- Unbiased estimator of zero

DEFINITION		
	Fisher's Information	
	Statistical Inference	
DEFINITION		
	Bartlett's Second Identity	
	Statistical Inference	
Proof		
	Asymptotic Normality of MLE	
	Statistical Inference	

Information is the variance of the score function.

$$\mathcal{I}(\theta) = Var(S_i) = E[S_i^2]$$

$$\mathcal{I}_n(\theta) = Var\left(\sum S_i\right) = n\mathcal{I}(\theta)$$

It can be estimated by:

$$\frac{\sum S_i^2}{n} = \frac{1}{n} \sum_i \left(\frac{\partial \log f(x_i; \theta)}{\partial \theta} \right)^2$$

Under the correct model:

$$Var(S_i) = E[S_i^2] = -E[S_i']$$

$$l_i = log f(x_i; \theta)$$

By Taylor Series Expansion:

$$0 = l'_n(\hat{\theta}_n) \approx l'_n(\theta) + (\hat{\theta}_n - theta)l''_n(\theta) + R_n$$
$$(\hat{\theta}_n - \theta) \approx \frac{l'_n(\theta)}{-l''_n(\theta)} \Rightarrow \sqrt{n}(\hat{\theta}_n - \theta) \approx \frac{\frac{1}{\sqrt{n}}l'_n(\theta)}{-\frac{1}{n}l''_n(\theta)}$$
$$\sqrt{n}\frac{1}{n}\sum l'_i(\theta) \stackrel{d}{\to} N(0, \mathcal{I}(\theta)) \text{ by CLT and } -\frac{1}{n}l''_n(\theta) \stackrel{p}{\to} \mathcal{I}(\theta) \text{by LLN}$$

By Slutsky's $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\rightarrow} N(0, \frac{1}{\mathcal{I}(\theta)})$

$$\sqrt{n\mathcal{I}(\hat{\theta}_n)}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, 1)$$

	_
DEFINITION	
What happens to the MLE when the working model fails?	
Statistical Inference	Е
Definition	
Asymptotic Normality of the MLE under Model Failure	
Contractive Lymph by a	
Statistical Inference	Е
	_
Equation	
Making a likelihood robust	
Maxing a inclinood lobust	
Statistical Inference	Е

The MLE $\hat{\theta}_n$ converges to θ_g where:

$$\hat{\theta}_n = \underset{\theta \in \Theta}{\operatorname{argmax}} \frac{\sum_i \log f(x_i; \theta)}{n} \to \underset{\theta \in \Theta}{\operatorname{argmax}} E_g[\log f(x_i; \theta)] = \theta_g$$

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, a^{-1}ba^{-1}) \text{ as } n \to \infty$$

$$\sqrt{\frac{\hat{a}^2 n}{\hat{b}}}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, 1)$$

You can make a likelihood robust by:

$$L_R(\theta) = L(\theta)^{\hat{a}/\hat{b}}$$

$$L_R(\theta) = L(\theta)^{\hat{a}/\hat{b}}$$

$$\hat{a} = -\frac{1}{n} \sum_{i} \frac{\partial^2 \log f(x_i; \hat{\theta}_n)}{\partial \theta^2}$$

$$\hat{b} = \frac{1}{n} \sum_{i} \left(\frac{\partial \log f(x_i; \hat{\theta}_n)}{\partial \theta} \right)^2$$

DEFINITION	
	Unbiased Estimating Equation
	Statistical Inference
DEFINITION	
	Standardized
	Statistical Inference
Examples	
	Natural Estimating Equations
	Travarar Estimating Equations
	STATISTICAL INFERENCE

$$E[g(\underline{\mathbf{X}};\theta)] = 0 \ \forall \theta \in \Theta$$

$$g_s(\underline{X}; \theta) = \frac{g(\underline{X}; \theta)}{E\left[\frac{\partial g(\underline{X}; \theta)}{\partial \theta}\right]} \ \forall \theta \in \Theta$$

- ullet score functions
- $\bullet\,$ equations from MOM estimation

Theorem
Optimality of the Score Function
Statistical Inference
DEPAMPION
DEFINITION
Variance of the Standardized Score Function
Statistical Inference
DEFINITION
TT71 / C 1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /
What form does the estimating equation have to be to achieve
the variance lower bound?
one randice to not bound.
Statistical Inference

This is literally the Godambe Theorem of 1960. NOT A JOKE (but what an awesome name!)

1. The variance of a standardized estimating equation is bounded below by $1/\mathcal{I}_n(\theta)$,

$$Var[g_s(\underline{\mathbf{X}};\theta)] = \frac{E_{\theta}[g^2]}{\left\{E_{\theta}\left[\frac{\partial g}{\partial \theta}\right]\right\}^2} \ge \frac{1}{E_{\theta}\left[\left(\frac{\partial \log f}{\partial \theta}\right)^2\right]}$$

2. It follows that $\forall g \in G$,

$$\frac{E_{\theta}[g^2]}{\left\{E_{\theta}\left[\frac{\partial g}{\partial \theta}\right]\right\}^2} \ge \frac{E_{\theta}[(g^*)^2]}{\left\{E_{\theta}\left[\frac{\partial g^*}{\partial \theta}\right]\right\}^2}$$

$$\frac{1}{\mathcal{I}_n(\theta)}$$

$$g(\underline{\mathbf{X}}; \theta) = a(\theta) \left\{ T(\underline{\mathbf{X}}) - \underbrace{E_{\theta}[T(\underline{\mathbf{X}})]}_{h(\theta)} \right\}$$

This implies that $T(\underline{X})$ is the best unbiased estimator for $h(\theta)$. This achieves the CRLB.

DEFINITION	
	Cramer-Rao Lower Bound
	Statistical Inference
DEFINITION	
	Sufficient Statistic
	Statistical Inference
Pro Tip	
	The most famous MSS (oh yeahhh!)
	Statistical Inference

$$Var[T(\underline{X})] \ge \frac{\{h'(\theta)\}^2}{\mathcal{I}_n(\theta)}$$

This is the smallest possible variance for any unbiased estimator of $h(\theta)$

$$f_{\underline{\mathbf{X}}}(\underline{\mathbf{X}};\theta) = g(T(\underline{\mathbf{X}});\theta)h(\underline{\mathbf{X}})$$

If the pdf can be factorized as above, then $T(\underline{X})$ is a sufficient statistic for θ

The likelihood function. le duh, whose class is this any ways?

DEFINITION	
	Minimal Sufficient Statistic
	Statistical Inference
Pro Tip	
	Technique to find the MSS
	Statistical Inference
DEFINITION	
	Rao-Blackwellization
	Statistical Inference

A sufficient statistic is minimally sufficient if it is a function of every other sufficient statistic.

$$\frac{f(\underline{\mathbf{x}};\theta)}{f(\underline{\mathbf{y}};\theta)} = c(\underline{\mathbf{x}},\underline{\mathbf{y}})$$

Here $(\underline{x},\underline{y})$ is free of θ . So you find a way to set these equal to cross all of the θ s out.

Conditioning on a sufficient statistic always yields a better estimator, with a variance less than or equal to that of the first estimator.

Ancillary Statistic	
Timemary Statistic	
	STATISTICAL INFERENCE
Completeness	
	STATISTICAL INFERENCE
Basu's Theorem	
	Ancillary Statistic Completeness Basu's Theorem

A family is complete if

$$E_{\theta}(g(t)) = 0 \ \forall \theta \Rightarrow P_{\theta}(g(t) = 0) = 1 \ \forall \theta$$

Exponential families with non-empty parameter space are complete.

If $T(\underline{X})$ is complete and a minimally sufficient statistic, then $T(\underline{X})$ is independent of every ancillary statistic.

DEFINITION	
	MSS/CSS Lemma
	Wissy Css Lemma
	Statistical Inference
DEFINITION	
	Lehmann-Scheffe Theorem
	Statistical Inference
DEFINITION	
	Checking for completeness
	Statistical Inference

If a MSS exists, than any CSS is also the MSS. If $T(\underline{X})$ is a CSS (and therefore a MSS), then any statistic $h[T(\underline{X})]$ with fine variance is the MVUE of its expectation $E[h[T(\underline{X})]]$. In other words if an estimator is a function of a CSS, then it has the smallest variance among all estimators of its expected value.

- $1.\ \,$ Exponential families are complete as longs as the interior of the parameter space is non-empty
- 2. A sufficient statistic $T(\underline{\mathbf{X}})$ are complete if no function is first order ancillary.

Proof	
	Lehmann-Scheffe Theorem
	Lenmann-Schene Theorem
	STATISTICAL INFERENCE
Proof	
PROOF	
	Uniqueness of the MVUE
	o inquesions of the fit ()
	Statistical Inference
Pro Tip	
	Conditionality Principle
	STATISTICAL INFERENCE

Proof by contradiction. Suppose $h[T(\underline{X})]$ is unbiased for γ and $h[T(\underline{X})]$ is not the MVUE of γ . Then there exists another estimator, say $W(\underline{X})$ such that $E[W(\underline{X})] = \gamma$ and $Var[W(\underline{X})] < Var[h[T(\underline{X})]]$

Using Rao-Blackwellization, we can create a new estimator $r[T(\underline{X})] = E[W(\underline{X})|T(\underline{X})]$ such that $E[r[T(\underline{X})]] = \gamma$ and

$$Var[r[T(\underline{\mathbf{X}})]] < Var[W(\underline{\mathbf{X}})] < Var[h[T(\underline{\mathbf{X}})]]$$

Notice both $r[T(\underline{X})]$ and $h[T(\underline{X})]$ are unbiased for γ , so $E[r[T(\underline{X})] - h[T(\underline{X})]] = 0 \ \forall \gamma$

But completeness implies that $r[T(\underline{X})] = h[T(\underline{X})]$ with probability 1, so we must have

$$Var[r[T(\underline{\mathbf{X}})]] = Var[h[T(\underline{\mathbf{X}})]]$$

Which contradicts the previous inequality. This completes the proof that an unbiased function of the CSS is the MVUE.

If $T(\underline{X})$ and $S(\underline{X})$ are MVUE for γ then $E[T(\underline{X})] = E[S(\underline{X})] = E\left[\frac{T(\underline{X}) + S(\underline{X})}{2}\right]$. It follows that $Var[T(\underline{X})] = Var[S(\underline{X})]$ but

$$\begin{aligned} Var\left[\frac{T(\underline{\mathbf{X}}) + S(\underline{\mathbf{X}})}{2}\right] &= \frac{1}{4}\left[Var[T(\underline{\mathbf{X}})] + Var[S(\underline{\mathbf{X}})] + 2Cov[T(\underline{\mathbf{X}}), S(\underline{\mathbf{X}})]\right] \\ &= \frac{1}{4}\left[2Var[S(\underline{\mathbf{X}})] + 2\rho Var[S(\underline{\mathbf{X}})]\right] = Var[S(\underline{\mathbf{X}})]\left(\frac{1+\rho}{2}\right) \end{aligned}$$

This implies that $Var\left[\frac{T(\underline{X})+S(\underline{X})}{2}\right] \leq Var[S(\underline{X})]$. Because $S(\underline{X})$ is the MVUE, this must be an equality and $Var\left[\frac{T(\underline{X})+S(\underline{X})}{2}\right] = Var[S(\underline{X})]$. By **Cauchy-Schwartz inequality**, this equality only holds when $S(\underline{X}) = aT(\underline{X}) + b$. We know that $E[T(\underline{X})] = E[S(\underline{X})]$ so a = 1 and b = 0, therefore P(T(X)=S(X))=1

Always condition on Ancillary Statistics!

Pro Tip	
	Likelihood Prinicple
	Statistical Inference
Department	
DEFINITION	
	Criteria for Confidence Intervals
	Statistical Inference
Proof	
	Overtile Commence
	Quantile Convergence
	Statistical Inference

If two experiments yield likelihood functions that are proportional, then those two sets of data are equivalent as statistical evidence. If likelihoods are the same, evidence should be the same. Inferences can of course be different.

- 1. Consistent estimator of the parameter: $\hat{\theta}_n \stackrel{p}{\to} \theta$
- 2. Asymptotic Normality: $\sqrt{\mathcal{I}_n(\theta)}(\hat{\theta}_n \theta) \stackrel{d}{\to} N(0, 1)$
- 3. Consistent estimator of the information: $\frac{\mathcal{I}_n(\hat{\theta}_n)}{\mathcal{I}_n(\theta)} \stackrel{p}{\to} 1$
- 4. (also) Expected Length
- 5. Unbiasedness
- 6. Selectivity

Proof by contradiction. Assume that $C_n \not\to Z$ the either

1.
$$\exists \delta$$
 s.t. $\forall n \exists n' > n \Rightarrow C_{n'} > Z + \delta$

2.
$$\exists \delta$$
 s.t. $\forall n \exists n' > n \Rightarrow C_{n'} < Z - \delta$

If 1, then $\forall n \ \exists n' > n \ \text{s.t.} \ F_{n'}(C_{n'}) \geq F_{n'}(Z + \delta)$ and $\therefore \lim_{n' \to \infty} F_{n'}(C_{n'}) \geq \lim_{n' \to \infty} F_{n'}(Z + \delta) = F(Z + \delta) > F(Z)$

If 2, then
$$\lim_{n'\to\infty} F_{n'}(C_{n'}) \le F(Z-\delta) < F(Z)$$

However, we know that $F_n(C_n) = \alpha \ \forall n$ (by definition) and $F(Z) = \alpha$. So both cases lead to a contradiction therefore

$$Y_n \stackrel{d}{\to} Y \Rightarrow C_n \to Z$$

For the approximate large-sample CI for the MLE:

$$\sqrt{n\mathcal{I}(\hat{\theta}_n)}(\hat{\theta}_n - \theta) = \underbrace{\sqrt{n\mathcal{I}(\theta)}(\hat{\theta}_n - \theta)}_{\stackrel{d}{\to} N(0,1)} \underbrace{\sqrt{\frac{\mathcal{I}(\hat{\theta}_n)}{\mathcal{I}(\theta)}}}_{\stackrel{P}{\to} 1} \xrightarrow{d} N(0,1)$$

This is a consequence of asymptotic normality of the MLE, Slutsky's and CMT (because $\mathcal{I}(\hat{\theta}_n)$ is a continuous function of θ so if $\hat{\theta}_n \stackrel{p}{\to} \theta$ then $\mathcal{I}(\hat{\theta}_n) \stackrel{p}{\to} \mathcal{I}(\theta)$.)

$$\gamma(\hat{\theta}_n) = \gamma(\theta) + \gamma'(\hat{\theta})(\hat{\theta}_n - \theta)$$

This is helpful because you can rearrange to be:

$$\sqrt{n}(\gamma(\hat{\theta}_n) - \gamma(\theta)) = \gamma'(\widetilde{\theta})\sqrt{n}(\hat{\theta}_n - \theta)$$

Which allows you to show asymptotic normality of MLE

$$\frac{\sqrt{n}(\bar{X}_n - \theta)}{s} = \underbrace{\frac{\sqrt{n}(\bar{X}_n - \theta)}{\sigma}}_{\stackrel{d}{\longrightarrow} N(0,1)} \underbrace{\frac{\sigma}{s}}_{\stackrel{p}{\longrightarrow} 1} \xrightarrow{d} N(0,1) \text{ as } n \to \infty$$

Pro Tip
When is the t-interval exact?
STATISTICAL INFERENCE
Proof
t-interval is robust to non-normality in large samples because
Statistical Inference
EQUATION
Robust variance estimator of Normal Linear Regression
Statistical Inference

The t-interval is exact when $X_i \sim Normal$ because the pivot $\sqrt{n}(\bar{X}_n - \theta)/s$ is exactly t^{n-1} . It is approximately correct in large samples when the normality assumption fails because $t_{\alpha/2}^{n-1} \to Z_{\alpha/2}$ by the quantile convergence.

$$P\left(\frac{\sqrt{n}|\bar{X}_n - \theta|}{s} \le t_{\alpha/2}^{n-1}\right) = P\left(\underbrace{\frac{\sqrt{n}|\bar{X}_n - \theta|}{\sigma}}_{\stackrel{d}{\to} N(0,1)} \underbrace{\frac{\sigma}{s}}_{\stackrel{p}{\to} 1} \underbrace{\frac{Z_{\alpha/2}}{t_{\alpha/2}^{n-1}}}_{\stackrel{p}{\to} 1} \le Z_{\alpha/2}\right) \to 1 - \alpha$$

$$\hat{\Lambda} = n(X'W^{-1}X)^{-1}X'W^{-1}diag\{r_i^2\}W^{-1}X(X'W^{-1}X)^{-1}$$

Weighted least squares is just least squares after scaling the data by the variance.

DEFINITION
Robust Large Sample Intervals
Statistical Inference
Pro Tip
Why does the robust large sample interval work?
Statistical Inference
STATISTICAL IN BREACE
DEFINITION
One parameter exponential family general case of robust large sample intervals
Statistical Inference

Basically, the same as before, just raise to the b/a in other words our new variance is just b/a^2 . To estimate this:

$$\hat{\lambda} = \frac{n \sum \left(\frac{\partial l_i(\hat{\theta}_n)}{\partial \theta}\right)^2}{[\mathcal{I}_n(\hat{\theta}_n)]^2}$$

Here this $\mathcal{I}_n(\hat{\theta}_n)$ is the observed information: $-\sum \frac{\partial^2 \log f(y_i; \hat{\theta}_n)}{\partial \theta^2}$

$$P\left(\underbrace{\frac{\sqrt{n}|\hat{\theta}_n - \theta_0|}{\sqrt{\lambda}}}_{\stackrel{d}{\to} N(0,1)}\underbrace{\frac{\sqrt{\lambda}}{\sqrt{\hat{\lambda}}}}_{\stackrel{p}{\to} 1} \le Z_{\alpha/2}\right) \to 1 - \alpha$$

$$\begin{split} l_i(\theta;Y_i) &= a(\theta)b(Y_i) + c(\theta) \\ \text{Where: } \sum l_i(\hat{\theta}_n;Y_i) &= 0 \text{ and } \sum b(Y_i) = -n\frac{\partial c(\hat{\theta}_n)}{\partial \theta} \left(\frac{\partial a(\hat{\theta}_n)}{\partial \theta}\right)^{-1} \\ \text{Here: } \frac{n}{\mathcal{I}_n(\hat{\theta}_n)} &= -\left\{\frac{\partial^2 a(\hat{\theta}_n)}{\partial \theta^2} \frac{\sum b(Y_i)}{n} + \frac{\partial^2 c(\hat{\theta}_n)}{\partial \theta^2}\right\}^{-1} \\ \text{therefore: } \hat{\lambda} &= \frac{n[a(\hat{\theta}_n)]^2 \sum \left[b(Y_i) - \frac{\sum b(Y_i)}{n}\right]^2}{[\mathcal{I}_n(\hat{\theta}_n)]^2} \end{split}$$

$$Y \sim MVN(X, \underline{\beta}, \sigma^2 W)$$
 and $W = diag\{w_i\} = \begin{bmatrix} w_i & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & w_n \end{bmatrix}$

The weighted least squares estimate of $\underline{\beta}$ is

$$\hat{\beta}_{wls} = X'W^{-1}X)^{-1}X'W^{-1}Y$$

This is a **consistent** estimator of $\underline{\beta}$ ever if the Ys are not normal and the covariance matrix is not proportional to W. BUT if W is misspecified that the variance-covariance matrix is not estimated by n/\mathcal{I} . So you need the robust variance estimator:

$$\hat{\Lambda} = n(X'W^{-1}X)^{-1}X'W^{-1}diag\{r_i^2\}W^{-1}X(X'W^{-1}X)^{-1}$$

$$AZ \sim MVN(A\underline{\mu}, A\Sigma A')$$

$$(\underline{\mathbf{Z}} - \underline{\mu})' \Sigma^{-1} (\underline{\mathbf{Z}} - \underline{\mu}) \sim \chi_k^2$$

This is only when Σ is full rank.

$$\Sigma = \sigma^2 \underline{\mathcal{I}}$$

$$(\underline{Z} - \underline{\mu})' \Sigma^{-1} (\underline{Z} - \underline{\mu}) = \Sigma (Z_i - \mu_i)^2 / \sigma^2$$

$$f_{\underline{Z}}(Z) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left\{ -\frac{1}{2} (Z - \underline{\mu})' \Sigma^{-1} (Z - \underline{\mu}) \right\}$$

DEFINITION	
	Size of a test
	Statistical Inference
DEFINITION	
	Power
	Statistical Inference
Pro Tip	
	Comment Cotom for single and manner
	General Setup for size and power
	Commonway Ivor
	Statistical Inference

$$P(\text{Choose } H_1 \text{ when } H_0 \text{ is true}) = P(\underline{\mathbf{X}} \in C_{\delta} | H_0) = P_0(\underline{\mathbf{X}} \in C_{\delta})$$

$$= P_0(\delta(\underline{\mathbf{X}}) = 1)$$

$$= E_0[\delta(\underline{\mathbf{X}})] = E[\delta(\underline{\mathbf{X}}) | H_0]$$

$$= \int_{C_{\delta}} f(\underline{\mathbf{X}}; \theta_0) d\underline{\mathbf{X}}$$

$$= \alpha$$

$$1 - P(\text{Choose } H_0 \text{ when } H_1 \text{ is true}) = P(\text{Choose } H_1 \text{ when } H_1 \text{ is true})$$

$$= P_1(\underline{X} \in C_\delta) = P_1(\delta(\underline{X}) = 1)$$

$$= E_1[\delta(\underline{X})]$$

$$= \int_{C_\delta} f(\underline{X}; \theta_1) d\underline{X}$$

$$= 1 - \beta$$

$$\begin{split} X_1, ..., X_n &\overset{iid}{\sim} N(0,1) \\ H_0: \theta = 0 \text{ and } H_1: \theta = 1 \\ \text{Test Stat: } \delta(\underline{\mathbf{X}}) = \begin{cases} 1 & \bar{X}_n > c \\ 0 & \bar{X}_n \leq c \end{cases} \\ \text{Critical Region: } C_\delta = \{\underline{\mathbf{X}}: \bar{X}_n > c\} \\ \alpha = P_0(\bar{X}_n > c) = P(\sqrt{n}\bar{X}_n > \sqrt{n}c) = 1 - \Phi[\sqrt{n}c] \\ \beta = P_1(\bar{X}_n \leq c) = P_1\left(\sqrt{n}\frac{(\bar{X}_n - \mu_1)}{\sigma} \leq \sqrt{n}\frac{(c - \mu_1)}{\sigma}\right) \\ = \Phi\left[\sqrt{n}\frac{(c - \mu_1)}{\sigma}\right] \end{split}$$

Definition Significance Testing Statistical Inference Definition The Power Function Statistical Inference	DEFINITION		
Definition Significance Testing Statistical Inference Definition The Power Function			
Definition Significance Testing Statistical Inference Definition The Power Function			
Definition Significance Testing Statistical Inference The Power Function		Neyman-Pearson Lemi	ma
Definition Significance Testing Statistical Inference The Power Function			
Definition Significance Testing Statistical Inference The Power Function			
Significance Testing STATISTICAL INFERENCE DEFINITION The Power Function			STATISTICAL INFERENCE
Definition The Power Function	DEFINITION		
Definition The Power Function			
Definition The Power Function			
Definition The Power Function		Significance Testing	
Definition The Power Function			
Definition The Power Function			
The Power Function			STATISTICAL INFERENCE
	DEFINITION		
Statistical Inference		The Power Function	1
Statistical Inference			
Statistical Inference			
			STATISTICAL INFERENCE

Using the LR will yield a most powerful test of size α

- Statistical procedure for measuring the strength of evidence against the null hypothesis R.A. Fisher
- takes a test stat $T(\underline{\mathbf{X}})$ where
 - 1. Larger values of $T(\underline{X})$ represents strong evidence of departure from H_0 .
 - 2. Distribution of $T(\underline{X})$ under H_0 is known
 - 3. For given observations $\underline{\mathbf{x}}$, the p-value is

$$p - value = P(T(\underline{X}) \ge T(\underline{x})|H_0)$$

- there are no rejection regions or alternative hypotheses.
- p-value are always in the tails of the null distribution
- answers "How do I interpret these observations as evidence"

The power function is the probability of rejecting H_0 (defined over $\Theta = \Theta_0 \cup \Theta_1$)

$$1 - \beta(\theta) = E_{\theta}[\delta(\underline{X})] \text{ for } \theta \in \Theta$$

DEFINITION		
	Uniformly Most Powerful	test
		STATISTICAL INFERENCE
DEFINITION		
	Unbiasedness of test	
		Statistical Inference
DEFINITION		
	Composite Hypothesis Power	Function
		STATISTICAL INFERENCE

When $\delta(\underline{X})$ is free of the alternative hypothesis, if N-P holds, then $\delta(\underline{X})$ is UMP.

As long as the power \geq size of the test, it is unbiased. In fancy speak: a size α test of $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1$ is unbiased if

$$\inf_{\theta \in \Theta_1} 1 - \beta(\theta) \ge \alpha$$

 UMP tests are unbiased. If a UMP test does not exist (like in 2-sided case) you can use UMPU - among unbiased tests, the UMP.

$$P_{\theta}(Reject H_0) = 1 - \beta(\theta) = E_{\theta}[\delta(\underline{X})] \text{ for } \theta \in \Theta$$

DEFINITION	
	Composite Hypothesis Size
	Composite Trypothesis Size
	Statistical Inference
DEFINITION	
	Composite Hypothesis Consistency
	Composite Hypothesis Consistency
	Statistical Inference
DEFINITION	
	Generalized Likelihood Ratio Test
	Statistical Inference

$$\alpha = \sup_{\theta \in \Theta_0} 1 - \beta(\theta) = \sup_{\theta \in \Theta_0} E_{\theta}[\delta(\underline{\mathbf{X}})]$$

A series of tests $\delta_1,...,\delta_n$ is consistent versus the alternative if $1-\beta_{\delta_n}(\theta)1\to 1$ as $n\to\infty$

Reject H_0 if

$$\lambda(\underline{\mathbf{X}}) = \frac{\sup_{\theta \in \Theta_0} f(\underline{\mathbf{X}}; \theta)}{\sup_{\theta \in \Theta} f(\underline{\mathbf{X}}; \theta)} = \inf_{\theta \in \Theta} \sup_{\theta \in \Theta_0} f(\underline{\mathbf{X}}; \theta)$$

is too small.

Specifically, reject $H_0: \theta \in \Theta_0$ if $\lambda(\underline{X}) \leq \lambda_0$ where $\alpha = \sup_{\theta \in \Theta_0} P_{\theta}(\lambda(\underline{X}) \leq \lambda_0)$.

Pro Tip	
	Interpreting GLRT
	Interpreting GERT
	STATISTICAL INFERENCE
DEFINITION	
DEFINITION	
	Monotone Likelihood Ratio Property
	Statistical Inference
DEFINITION	
	Karlin-Rubin Theorem

Do not interpret test as "evidence" for or against a composite hypothesis. It is just saying you can find one simple alternative that is better supported than each null hypothesis. It does not mean that the alternative as a set is better than the set of null hypothesis.

A family of pdfs or pmfs with univariable random variable t and a parameter θ has a MLR if

 $\forall \theta_2 > \theta_1$ we have that $g(t|\theta_2)/g(t|\theta_1)$ is a monotone (\uparrow or \downarrow) function of t.

Let $T(\underline{X})$ be a sufficient statistic for θ . If $\{g(t|\theta); \theta \in \Theta\}$ has the MLR property, then for any t_0 the test of $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$ rejects if $T(\underline{X})$ is a UMP test of size $\alpha = P_{\theta_0}(T(\underline{X}) > t_0)$

PRO TIP		
	Exponential Family Mi	LRs
		STATISTICAL INFERENCE
Pro Tip		
FRO TIP		
	GLRT distribution	
		STATISTICAL INFERENCE
DEFINITION		
	Wald Test	
		STATISTICAL INFERENCE

In the exponential family, we have $h(\underline{\mathbf{X}})c(\theta)\exp\{w(\theta)T(\underline{\mathbf{X}})\}$. If $w(\theta)$ is increasing, by Karlin-Rubin test:

$$\delta(\underline{\mathbf{X}}) = \begin{cases} 1 & T(\underline{\mathbf{X}}) > t_0 \\ 0 & T(\underline{\mathbf{X}}) < t_0 \\ \gamma & T(\underline{\mathbf{X}}) = t_0 \end{cases}$$

is UMP with size $\alpha = P_{\theta_0}(T(\underline{X}) > t_0)$ for testing $(\theta_1 > \theta_0)$

$$\frac{f(\underline{\mathbf{X}};\theta_1)}{f(\underline{\mathbf{X}};\theta_0)} > k \iff \frac{c(\theta_1)\exp\{w(\theta_1)T(\underline{\mathbf{X}})\}}{c(\theta_0)\exp\{w(\theta_0)T(\underline{\mathbf{X}})\}} > k \iff T(\underline{\mathbf{X}})[w(\theta_1) - w(\theta_0)] > k^*$$

In a large sample...

$$-2\log\lambda(\underline{\mathbf{X}}) \stackrel{d}{\to} \chi^2_{d-d_0}$$

where $\dim\Theta = d$ and $\dim\theta_0 = d_0$

Wald tests are based on an estimate of the information that is consistent under either the null or alternative hypothesis. A Wald test for the MLE is based on the asymptotic normality of the MLE.

$$\frac{(\hat{\theta}_n - \theta_0)}{\sqrt{Var(\hat{\theta}_n)}} \sim N(0, 1)$$
$$\frac{(\hat{\theta}_n - \theta_0)^2}{Var(\hat{\theta}_n)} \sim \chi_1^2$$

Not invariant to transformations of the parameter space. Do not work well when the true parameter is near the edge of the parameter space because the normal approximation often fails.

Definition	
Score test statisti	ic
	STATISTICAL INFERENCE
Definition	
How is regression GLRT distributed wh	nen using $\hat{\sigma}$ instead of σ
	STATISTICAL INFERENCE
Definition	
FDR from 2x2 tab	ole

$$\begin{split} \frac{S_n(\theta_0)}{\sqrt{\mathcal{I}_n(\theta_0)}} &\sim N(0,1) \\ \frac{[S_n(\theta_0)]^2}{\mathcal{I}_n(\theta_0)} &\sim \chi_1^2 \end{split}$$

This holds in s large samples under H_0 because of AN of score function. Notice the information is calculated under the null hypothesis. Examples:

- Cochran-Mantel-Haenzel test
- Log-Rank test

Most powerful test for 'small' deviations from H_0 by N-P lemma.

You can estimate σ^2 with $\hat{\sigma}^2$

$$-2\log \lambda(X) \approx \frac{[RSS(x_1) - RSS(x_1, x_2)]/(p_l - p_s)}{RSS(x_1, x_2)/(n - p_l)} \sim F_{p_l - p_s, n - p_l}$$

where p_i is the number of parameters in model i

Note
$$F_{1,n-3} \to \chi_1^2$$
 as $n \to \infty$

	H_0 Accepted	H_0 Rejected	Total
H_0 True	U	V	M_0
H_0 False	Т	S	M_1
Total	M-R	R	M

$$FDP_0 = V/R$$

$$FDR = E[FDP_0] = E\left[\frac{V}{R}|R>0\right]P(R>0)$$

DEFINITION		
	Bootstrap	
		STATISTICAL INFERENCE
DEFINITION		
	Law of the Iterated Logar	rithm
		C
		STATISTICAL INFERENCE
DEFINITION		
	7. · 1 T · 1 1· 1	,
	Marginal Likelihood	
		g .
		STATISTICAL INFERENCE

The bootstrap algorithm:

- 1. Draw bootstrap sample
- 2. Compute a statistic
- 3. Repeat B times to get a new statistic each time
- 4. Compute:

$$V_{Boot} = \frac{1}{B} \left(T_{n,i}^* - \frac{1}{n} \sum T_{n,j}^* \right)^2$$

- 5. Use V_{Boot} as an approximation to the variance of the test statistic
- 6. Generate CI using: Normal Interval, Percentile Interval, Pivotal Interval, Bias-Corrected Interval

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n \log \log n}} = \sqrt{2} \text{ almost surely}$$

Here limsup is the limiting supremum.

$$L_m(\theta; \underline{\mathbf{x}}) = f(\underline{\mathbf{x}}; \theta) = \int_{\Gamma} f(\underline{\mathbf{x}}; \theta, \gamma) g(\gamma) d\gamma$$

 $g(\gamma)$ is the pdf

DEFINITION	
	Estimated Likelihood
	Statistical Inference
DEFINITION	
	Profile Likelihood
	Statistical Inference
DEFINITION	
	Conditional Likelihood
	Statistical Inference

$$L_e(\theta; x) = L_e(\theta, \hat{y}l\underline{x})$$

where $\hat{\gamma}$ is an estimator of γ based on the data. This is just a fixed estimate, versus the profile likelihood which finds the best guess conditional on the parameter value.

$$L_p(\theta; \underline{\mathbf{x}}) = \sup_{\gamma \in \Gamma} L(\theta, \gamma; \underline{\mathbf{x}}) = L(\theta, \hat{\gamma}(\theta); \underline{\mathbf{x}})$$

 $\hat{\gamma}(\theta)$ is the MLE of γ given θ .

$$L_c(\theta; \underline{\mathbf{x}}) = f(\underline{\mathbf{x}}|\theta, S(\underline{\mathbf{x}}))$$

 $S(\underline{\mathbf{x}})$ is a special statistic and conditioning on it makes the likelihood free of $\gamma.$

Pro Tip	
	Quasi-log-likelihood regression example
	Statistical Inference
DEFINITION	
	Limiting Expectation
	Statistical Inference
DEFINITION	Asymptotic Expectation
	Statistical Inference

$$l(\beta|\underline{\mathbf{y}},\underline{\mathbf{z}}) = \frac{1}{\sigma^2} \sum y_i (\beta_0 + \beta_1 z_i) - e^{(\beta_0 + \beta_1 z_i)} - \log y_i!$$

$$\lim_{n\to\infty} E[X_n]$$

$$E[\lim_{n\to\infty} X_n]$$

Bayes Factor	
Bayes Factor	
Bayes Factor	
Bayes Factor	
Dayes Factor	
	STATISTICAL INFERENCE
Definition	
DEFINITION	
Confidence Interval with Indiffer	rence Zone
	STATISTICAL INFERENCE
Pro Tip	
When is t-interval CI val	lid
	Statistical Inference

A likelihood ratio that is a ratio of marginal likelihoods is called a Bayes factor:

$$BF_{0,1} \frac{P(\underline{X}|H_0)}{P(\underline{X}|H_1)} = \frac{\int_{\Theta_0} f(x;\theta) g_0(\theta;\gamma_0) d\theta}{\int_{\Theta_1} f(x;\theta) g_1(\theta;\gamma_1) d\theta} = \frac{f(X;\theta_0)}{f(X;\theta_1)} = \frac{L_n(\theta_0)}{L_n(\theta_1)}$$
$$BF_{0,1} = \frac{P(H_0|X=x) P(H_1)}{P(H_1|X=x) P(H_0)}$$

$$P(\Delta \cap I(\underline{X}) = \emptyset) = 2\Phi[-(\delta\sqrt{n} + Z_{\alpha/2})]$$

This is good because

$$P(\Delta \cap I(\underline{X}) = \emptyset) \to 0 \text{ as } n \to \infty \ \forall \delta \neq 0$$

and

$$P(\Delta \cap I(\underline{X}) = \emptyset) = \alpha \text{ when } \delta = 0$$

$$\bar{X}_n - \bar{Y}_m \pm t_{\alpha/2}^{n+m-2} \sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}$$

This CI is valid - in other words has exactly $100(1-\alpha)\%$ coverage probability when

- 1. The population distribution of each group is normal
- 2. The groups have a common variance

However in a large sample, the equal-variance t-interval is a valid approximate large sample CI that is robust to non-normality. Either the variances need to be equal OR the sample size of the groups needs to be equal.

DEFINITION	
DEFINITION	
	Randomized Test
	STATISTICAL INFERENCE
DEFINITION	
DEFINITION	
	N-P Randomized Test
	1 1 Italia omizea 1650
	STATISTICAL INFERENCE
DEFINITION	
DEFINITION	
S	Strength of Evidence from a Hypothesis test
N	but of Directive from a Hypothesis test
	Statistical Inference
	Statistical Inference

A randomized test randomly chooses between the competing hypotheses in certain situations:

$$\delta(\underline{X}) = \begin{cases} 1 & \text{Choose } H_1 \\ 0 & \text{Choose } H_0 \\ \gamma & \text{Choose } H_1 \text{with probability } \gamma \end{cases}$$

This is generally done to increase power.

N-P LRT:

$$\delta(\underline{X}) = \begin{cases} 1 \text{ (Choose } H_1) & \frac{f_1(X)}{f_0(X)} > k \\ \gamma \text{ (Choose ?)} & \frac{f_1(X)}{f_0(X)} = k \\ 0 \text{ (Choose } H_0) & \frac{f_1(X)}{f_0(X)} < k \end{cases}$$

By randomizing on the decision boundary we can increase power and maintain a test of certain size

Support of H_1 over H_0 by the factor:

$$\frac{P(\delta(\underline{\mathbf{x}}) = 1|H_1)}{P(\delta(\underline{\mathbf{x}}) = 1|H_0)} = \frac{1 - \beta}{\alpha}$$

D. T.
Pro Tip
If the outcome only of the test is reported what size study
If the outcome only of the test is reported, what size study
provides more evidence in support of H_1 over H_0 ?
α
Statistical Inference
Pro Tip
TKU TIP
If the p-value is reported, what size study provides more
evidence in support of H_1 over H_0 ?
Statistical Inference
D
Pro Tip
Post-hoc power calculations
1 ost not power caremations
Statistical Inference

The larger study provides more evidence
The larger study provides more evidence
The smaller study provides more evidence
<u> </u>
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.
The observed power of a test is a simple 1-to-1 function of the p-value.

The $100(1-\alpha)\%$ confidence interval!

$$\frac{\inf_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in \Theta_1} L(\theta)} \le BF_{0,1} \le \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\inf_{\theta \in \Theta_1} L(\theta)}$$

$$T^2 \sim F_{k-2,n-k}$$

Pro Tip	
	F-test robustness
	Statistical Inference
Pro Tip	
	Working Model is Correct
	O
	STATISTICAL INFERENCE
Pro Tip	
	Working Model is Incorrect
	Statistical Inference

The F-test for means is robust to departures from normality (but sensitive to equal variance assumption or equal n in each group), BUT the F-test for variances is not! LALALa.

- $\hat{\theta}_n$ (the MLE of θ) is consistent for θ_0 as $n \to \infty$
- As $n \to \infty \xrightarrow{L_n(\theta)} \xrightarrow{a.s.} 0$
- The probability of observing misleading evidence:

$$\begin{split} P\left(\frac{L_n(\theta)}{L_n(\theta_0)} \geq k\right) &\to 0 \\ P\left(\frac{L_n(\theta_n)}{L_n(\theta_0)} \geq k\right) &\to \Phi\left[-\frac{\log k}{|c|} - \frac{|c|}{2}\right] \end{split}$$
 Where: $\theta_n = \theta_0 + c/\sqrt{n}$

• The asymptotic behavior of the likelihood ratio is:

$$\log \left\{ \frac{\mathbf{L}_n(\theta_n)}{L_n(\theta_0)} \right\} \xrightarrow{d} N\left(\frac{-c^2}{2}, c^2\right)$$

• The maximum probability of observing misleading evidence is:

$$\max P\left(\frac{L_n(\theta)}{L_n(\theta_0)} \ge k\right) \to \Phi\left[-\sqrt{2\log k}\right]$$

- $\hat{\theta}_n$ is the MLE and $\hat{\theta}_n \to \theta_g$ as $n \to \infty$ and $\theta_g = argmax E_g[\log f(x_i; \theta)]$
- As $n \to \infty$: $\frac{L_n(\theta)}{L_n(\theta_g)} \stackrel{a.s}{\longrightarrow} 0$
- The probability of observing misleading evidence:

$$P\left(\frac{L_n(\theta)}{L_n(\theta_0)} \ge k\right) \to 0$$

$$P\left(\frac{L_n(\theta_n)}{L_n(\theta_0)} \ge k\right) \to \Phi\left[-\frac{\log k}{|c|\sqrt{b}} - \frac{|c|a}{2\sqrt{b}}\right] \text{ Where: } \theta_n = \theta_0 + c/\sqrt{n}$$

• The asymptotic behavior of the likelihood ratio is:

$$\log \left\{ \frac{\mathbf{L}_n(\theta_n)}{L_n(\theta_0)} \right\} \stackrel{d}{\longrightarrow} N\left(\frac{-c^2 a}{2}, c^2 b \right)$$

• The maximum probability of observing misleading evidence is:

$$\max P\left(\frac{L_n(\theta)}{L_n(\theta_0)} \ge k\right) \to \Phi\left[-\sqrt{2\log k}\sqrt{\frac{a}{b}}\right]$$

- $\hat{\theta}_n$ is the MLE and $\hat{\theta}_n \to \theta_g$ as $n \to \infty$ and $\theta_g = argmax E_g[\log f(x_i; \theta)]$
- As $n \to \infty$: $\frac{L_n(\theta)}{L_n(\theta_q)} \xrightarrow{a.s} 0$
- The probability of observing misleading evidence:

$$\begin{split} P\left(\frac{L_n(\theta)}{L_n(\theta_0)} \geq k\right) &\to 0 \\ P\left(\frac{L_n(\theta_n)}{L_n(\theta_0)} \geq k\right) &\to \Phi\left[-\frac{\log k\sqrt{b}}{|c|a} - \frac{|c|a}{2\sqrt{b}}\right] \text{Where: } \theta_n = \theta_0 + c/\sqrt{n} \end{split}$$

• The asymptotic behavior of the likelihood ratio is:

$$\frac{\hat{a}}{\hat{b}} \log \left\{ \frac{\mathbf{L}_n(\theta_n)}{L_n(\theta_0)} \right\} \stackrel{d}{\longrightarrow} N\left(\frac{-c^2 a^2}{2b}, \frac{c^2 a^2}{b} \right)$$

• The maximum probability of observing misleading evidence is:

$$\max P\left(\frac{L_n(\theta)}{L_n(\theta_0)} \ge k\right) \to \Phi\left[-\sqrt{2\log k}\right]$$

1. Start with the score-function:

$$\sum \frac{Y_i - E[Y_i]}{Var[Y_i]}$$

- 2. Set score function equal to 0 and get solve for θ to get a quasi-MLE
- 3. Then you also get a quasi-information in order to better estimate the variance
- 4. If you want to get the quasi log likelihood, you integrate the quasi-score function

JUST ADD AND SUBTRACT $E[\hat{\theta}]$ WHAT? yeah. that was a comp question. PLEASE GIVE US THAT AGIAN!

$$E[(\hat{\theta}_n - \theta)^2] = E[(\hat{\theta}_n - E[\hat{\theta}] + E[\hat{\theta}] - \theta)2]$$
$$= E[(\hat{\theta}_n - E[\hat{\theta}_n])^2] + (E[\hat{\theta}] - \theta)^2$$
$$= Var[\hat{\theta}] + b^2(\hat{\theta})$$

Pro Tip	
	Variance of X^2 in Normal Distribution
	Statistical Inference
Dro Tro	
Pro Tip	
	Fisher's Information for Normal
	STATISTICAL INFERENCE
Pro Tip	
	Find the median of a distribution
	i ma one median of a distribution
	Statistical Inference
	DIALISTICAL INFERENCE

$$Var(X_2) = E[X^4] - (E[X^2])^2$$

$$= \mu^4 + 6\mu^2\sigma^2 + 3\sigma^2 - (\sigma^2 + \mu^2)^2$$

$$= \mu^4 + 6\mu^2\sigma^2 + 3\sigma^2 - \sigma^4 - 2\sigma^2\mu^2 - \mu^4$$

$$= 4\mu^2\sigma^2 + 3\sigma^2 - \sigma^4$$

$$\begin{bmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{bmatrix}$$

Set the cdf= $\frac{1}{2}$

$$Mgf_x(t) = Mgf_{\sigma z + \mu}(t) = e^{\mu t} Mgf_z(\sigma t)$$

$$\Lambda(\beta_0 + \beta_1 X) = \frac{\exp\{\beta_0 + \beta_1 X\}}{1 + \exp\{\beta_0 + \beta_1 X\}}$$

$$P(Y=1|X) = \Phi(\beta_0 + \beta_1 X)$$

Pro Tip	
1110 111	
	Show Asymptotic Bias
	Show They improve Blass
	Statistical Inference
D T	
Pro Tip	
	Exact Binomial Distribution, McNemars
	Statistical Inference
Proof	
	Goodness of Fit Classic Chi-Square Formula
	•
	Statistical Inference
	DIATIOTICAL INFERENCE

Arrange what you are interested in to see where it goes in the limit (multiply by \sqrt{n}) If there is any bias, then that is the asymptotic bias.

$$Binomial(b+c, 0.5) \rightarrow N((b+c)(0.5), (b+c)(0.5)^2)$$

Then compare this to b:

$$\frac{b - \left(\frac{b+c}{2}\right)}{\frac{\sqrt{b+c}}{2}} \sim N(0, 1)$$
$$\frac{b-c}{\sqrt{b+c}} \sim N(0, 1)$$
$$\frac{(b-c)^2}{b+c} \sim \chi_1^2$$

$$\underline{\mathbf{X}} \sim Mult(n,\underline{\theta}) \quad \lambda(\underline{\mathbf{X}}) = \prod_{i=1}^m \left(\frac{\gamma_i}{\hat{\theta}_i}\right)^{x_i}$$

 $n\gamma_i$ =expected cell count and $X_i = n\hat{\theta}_i$

$$-2\log(\lambda(\underline{X})) = -2\sum n\hat{\theta}_i \log\left(\frac{\gamma_i}{\hat{\theta}_i}\right)$$

By Taylor Series Expansion: $x \log \left(\frac{x}{x_0}\right) \approx (x - x_0) + \frac{(x - x_0)^2}{2x_0}...$

$$= n2\sum(\hat{\theta}_i - \gamma_i) + \frac{2n\sum(\hat{\theta}_i - \gamma_i)^2}{2\gamma_i}$$

$$\sum \hat{\theta}_i = \sum_{i=1}^m \gamma_i = 1$$
$$= \sum_{i=1}^m \frac{(x_i - n\gamma_i)^2}{n\gamma_i}$$

$$E(z_1|z_2) = E(z_1) + \frac{Cov(z_1, z_2)}{Var(z_2)}(z_2 - E(z_2))$$
$$Var(z_1|z_2) = Var(z_1) - \frac{Cov^2(z_1, z_2)}{Var(z_2)}$$

$$\mu | x_1, ..., x_n \sim N \left(\frac{\sigma_0^2}{\sigma^2 + n\sigma_0^2} \bar{x} + \frac{\sigma^2}{\sigma^2 + n\sigma_0^2} \mu_0, \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \right)^{-1} \right)$$

$$(1-p)^x(1-p)^{w-x}$$

This is sometimes useful if you are trying to recreate a binomial distribution and you have $(something)^w$

ENCE
ENCE
THUE
ENCE
E

$$\begin{split} P(Y \leq y) &= P\left(V \leq y \middle| U \leq \frac{1}{M} \frac{f_y(v)}{f_v(v)}\right) \\ &= \frac{P\left(V \leq y, U \leq \frac{1}{M} \frac{f_y(v)}{f_v(v)}\right)}{P\left(U \leq \frac{1}{M} \frac{f_y(v)}{f_v(v)}\right)} \\ &= \frac{\int_{-\infty}^y \int_0^{\frac{1}{M} \frac{f_y(v)}{f_v(v)}} 1 du f_v(v) dv}{\int_{-\infty}^\infty \int_0^{\frac{1}{M} \frac{f_y(v)}{f_v(v)}} 1 du f_v(v) dv} \\ &= \frac{\int_{-\infty}^y \frac{1}{M} \frac{f_y(v)}{f_v(v)} f_v(v) dv}{\int_{-\infty}^\infty \frac{1}{M} \frac{f_y(v)}{f_v(v)} f_v(v) dv} \\ &= \frac{\int_{-\infty}^y f_y(v) dv}{\int_{-\infty}^\infty f_y(v) dv} = \frac{F_Y(y)}{1} = F_Y(y) \end{split}$$

$$\begin{split} \hat{\theta}_n &= \operatorname*{argmax}_{\theta \in \Theta} \frac{1}{n} \sum_i \log f(X_i; \theta) \\ &= \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_i \log \frac{1}{f(X_i; \theta)} \\ &= \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_i \log \frac{1}{f(X_i; \theta)} + \frac{1}{n} \log \hat{g}(x_i) \\ &= \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_i \log \frac{\hat{g}(x_i)}{f(X_i; \theta)} \end{split}$$

Assume t > s

$$P(X > t | X > s) = P(X > t - s)$$

$$P(X > t | X > s) = \frac{P(X > t, X > s)}{P(X > s)}$$

$$= \frac{P(X > t)}{P(X > s)} = \frac{1 - F(t)}{1 - F(s)}$$

$$= \frac{1 - (1 - e^{-t\beta})}{1 - (1 - e^{-s\beta})}$$

$$= e^{-\beta(t - s)}$$

$$= 1 - F(t - s)$$

$$= P(X > t - s)$$

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 = \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 + \underbrace{\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2}_{W}$$

$$U \sim \chi^2(n) \quad W \sim \chi^2(1)$$

$$V = \frac{(n-1)S^2}{\sigma^2}$$

$$tV \perp W \text{ because } \bar{X} \perp S^2 \text{ therefore:}$$

$$M_u(t) = M_V(t)M_W(t)$$

$$\frac{1}{(1-2t)^{n/2}} = M_V(t)\frac{1}{(1-2t)^{1/2}}$$

$$M_V(t) = \frac{1}{(1-2t)^{(n-1)/2}}$$

$$V \sim \chi^2(n-1)$$

$$E[X^n] = \frac{\Gamma(\alpha + n)\Gamma(\alpha + \beta)}{\Gamma(\alpha + \beta + n)\Gamma(\alpha)}$$

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} = \frac{1}{\sqrt{n}} \sum_{z} Z_i \ M_{\frac{1}{\sqrt{n}}} \sum_{z} Z_i(t) = \left(M_y \left(\frac{t}{\sqrt{n}}\right)\right)^n$$
Taylor series: $M_z \left(\frac{t}{\sqrt{n}}\right) = M_z(0) + M_z'(0) \left(\frac{t}{\sqrt{n}} - 0\right) + \frac{M_z''(0) \left(\frac{t}{\sqrt{n}} - 0\right)^2}{2!} + \dots$

$$M_z'(0) = E(Z) = E\left(\frac{x - \mu}{\sigma}\right) = \frac{E(X) - \mu}{\sigma} = 0$$

$$M_z''(0) = Var(Z) + (E(Z))^2 = Var\left(\frac{x - \mu}{\sigma}\right) = \frac{1}{\sigma^2} Var(X) = \frac{\sigma^2}{\sigma^2} = 1$$

$$M_z(0) = E(e^{0z}) = 1$$

$$M_z \left(\frac{t}{\sqrt{n}}\right) = 1 + 0 + \frac{t^2}{2n} \Rightarrow \left(M_z \left(\frac{t}{\sqrt{n}}\right)\right)^n \approx \left(1 + \frac{\frac{t^2}{2}}{n}\right)^n$$

$$\Rightarrow \lim_{n \to \infty} \left(1 + \frac{\frac{t^2}{2}}{n}\right)^n = e^{t^2/2}$$

$$E_g \left[\log \frac{g(x)}{f(x)} \right] = E_g \left[-\log \frac{f(x)}{g(x)} \right]$$

$$E_g \left[-\log \frac{f(x)}{g(x)} \right] \ge -\log E_g \left[\frac{f(x)}{g(x)} \right]$$

$$\ge -\log(1)$$

$$\ge 0$$

$$E(Y|X = x) = a + bx$$

$$= \mu_y - \rho_{xy} \frac{\sigma_y}{\sigma_x} \mu_x + \rho_{xy} \frac{\sigma_y}{\sigma_x} x$$

Normal model with known mean, unknown variance.

$$\sigma^{2} \sim IG(\alpha_{0}, \beta_{0})$$

$$\underline{X} \sim N(\mu, \sigma^{2})$$

$$Posterior = IG\left(\alpha_{0} + \frac{n}{2}, \beta_{0} + \frac{\sum_{i=1}^{n} (y_{i} - \mu)^{2}}{2}\right)$$

$$E[e^{tx}] = \sum_{x=0}^{\infty} e^{tx} \frac{\lambda^x e^{-\lambda}}{x!}$$
$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(e^t \lambda)^x}{x!}$$
$$= e^{-\lambda + \lambda e^t}$$
$$= e^{\lambda (e^t - 1)}$$

$$1 = \sum_{x=0}^{\infty} \frac{\lambda^x e^{-\lambda}}{x!}$$
$$e^{-\lambda} = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$$

DELTA METHOD

Pro Tip		
	Credible Interval	
		STATISTICAL INFERENCE
Pro Tip		
	Geometric Series	
		STATISTICAL INFERENCE
PRO TIP		
PRO TIP		
	Geometric MFG	
	Geometric MrG	
		STATISTICAL INFERENCE
		51ATISTICAL INFERENCE

$$LB = F_{\alpha/2}^{-1}$$

$$UB = F_{1-\alpha/2}^{-1}$$

$$\sum_{x=1}^{\infty} r^x = \frac{r}{1-r}$$
$$\sum_{x=0}^{\infty} r^x = \frac{1}{1-r}$$

$$\frac{pe^t}{1 - (1 - p)e^t}$$

Test
T P'C'T'
1 E 3 1
16.37
McNemar's Test
_
Principles of Modern Biostatistics
Test
Wilcoxon Sign Rank Test
Wheelieff Sign Team Test
Principles of Modern Biostatistics
Confidence Interval
Confidence Interval Relative Risk

McNemar's uses the normal approximation to the Binomial. This requires large sample to be valid.

$$\chi_1^2 = \frac{(b-c)^2}{b+c}$$

To get a p-value:

$$b \sim Binomial(b+c,.5)$$

$$p-value = P(b > b_{obs}|n = b+c, \theta = 1/2)$$

$$P(X \ge x|n, \theta) = \sum_{i=x}^{n} \binom{n}{i}.5^{n}$$

two sided would be this p-value multiplies by 2.

Tests difference in distribution. For a one sided test, the test statistic is the sum of the ranks. For example if you are testing if group 2 is greater than group 1, then you order all of the estimates and rank them and then take out all of group 2's ranks and add them together!

$$p-value = P(W_2 \ge w_1)$$

CI for Relative Risk:

$$\exp\left\{\log\left(\frac{a/(a+b)}{c/(c+d)}\right) \pm Z_{\alpha/2}\sqrt{\frac{b/a}{b+a} + \frac{d/c}{d+c}}\right\}$$

Confidence Interval	
Risk Differer	nce
Dawara	rna on Monnya Droamawanaa
PRINCIP	LES OF MODERN BIOSTATISTICS
Confidence Interval	
Odds Ratio	
Odds Ham	
7	
Princip	LES OF MODERN BIOSTATISTICS
Pro Tip	
Citi-1	
Semi-partial corr	elation
Princip	LES OF MODERN BIOSTATISTICS

CI for Risk Difference:

$$p_{1} = \frac{a}{a+b}$$

$$n_{1} = a+b$$

$$p_{2} = \frac{c}{c+d}$$

$$n_{2} = c+d$$

$$p_{1} - p_{2} \pm Z_{\alpha/2} \sqrt{\frac{p_{1}(1-p_{1})}{n_{1}} + \frac{p_{2}(1-p_{2})}{n_{2}}}$$

CI for Odds Ratio:

$$\log\left(\frac{ad}{bc}\right) \pm Z_{\alpha/2}\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

Regress X_1 with all the other covariates

$$X_1 \sim X_2 + X_3 + X_4$$

get the errors, e_1

Get the correlation of e_1 and Y

Pro Tip	
	Partial correlation
	PRINCIPLES OF MODERN BIOSTATISTICS
D	
DEFINITION	
	95% Confidence Interval
	95% Confidence intervar
	Principles of Modern Biostatistics
Definition	
	95% Support Interval
	PRINCIPLES OF MODERN BIOSTATISTICS

Regress X_1 with all the other covariates

$$X_1 \sim X_2 + X_3 + X_4$$

get the errors, e_1

Regress Y with all the remaining covariates

$$Y \sim X_2 + X_3 + X_4$$
 get the errors, e_Y

Get the correlation of e_1 and e_Y

The procedure will capture the true parameter 95% of the time. The values come from a procedure that tends to capture the true value μ

This is the interval that the data supports at the 1/k level.

0507 C . 1:11. I 1
95% Credible Interval
Principles of Modern Biostatistics
THINGH EED OF WIODERN DIOSTATISTICS
Logistic Regression
Principles of Modern Biostatistics
Be a Logistic Regression
βs a Logistic Regression

 μ is treated as random, the probability that μ is within these intervals is 95%

- The outcome needs to be binary
- Correct specification of the model
- The error terms need to be independent

Let's say we have a model $logit(p) = \beta_0 + \beta_1 * female$

 β_1 is the log odds ratio for the between the female group and the male group. β_0 is the log odds for males.

If it were a continuous model, say $logit(p) = \beta_0 + \beta_1 * testscore$

Then β_1 would be the difference in the log odds, in other words, for a oneunit increase in test score, the expected change in log odds is β_1 . If you exponentiate it, then e^{β_1} is the odds. So for example, If it was 1.18, then you would expect to see an 18% increase in odds of being in group 1.

If there are two predictors, $logit(p) = \beta_0 + \beta_1 * female + \beta_2 * testscore$ Then holding test score constant, the odds of Y=1 for females over the odds of Y=1 for males is e^{β_1} .

 β_2 is Holding female constant we will see a X% $(1-e^{\beta_2})$ increase in the odds of Y=1 for a one-unit increase in test score.

Interpretation
β in a Linear Regression
Principles of Modern Biostatistics
Pro Tip
Why would you want to center variables in regression
Principles of Modern Biostatistics
PRINCIPLES OF MODERN BIOSTATISTICS
EQUATION
SXX, sum of squares for the xs
orar, bain or oquares for the ws
Principles of Modern Biostatistics

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$
- β_0 is the value you would predict for Y when all Xs are at the reference group.
- β_1 is the difference in the predicted value of Y for each one-unit difference in X1 if X2 remains constant.

- Centering variables so that the predictors have a mean of 0 make the intercept term interpreted as the expected value of Y_i when the predictor values are set to their means. Otherwise the intercept is interpreted as the expected value of Y_i when the predictors are set to 0, which may not be realistic.
- The sample covariance matrix of a matrix of values centered by their sample means is just X'X.
- If a univariate random variable is mean centered, then $var(X) = E(X^2)$ and the variance can be estimated from a sample by looking at the sample mean of squares of the observed values

$$\sum (x_i - \bar{x})^2$$

EQUATION	
	2 - 0 2
	SD_x^2 Sample variance of xs
	Principles of Modern Biostatistics
	TRINOIL ELEG OF MODELLIN BIOGRAPHOTICS
Darrimran	
EQUATION	
	SXY, sum of the cross-products
	, 1
	Principles of Modern Biostatistics
EQUATION	
	C !
	s_{xy} Sample covariance
	Principles of Modern Biostatistics
	TRINGIT BED OF INTODERIN DIODIATION

EQUATION	
	r_{xy} Sample correlation
	Principles of Modern Biostatistics
EQUATION	
E & OMITON	
	\hat{e}_i , the residual
	D 14 D
	Principles of Modern Biostatistics
EQUATION	
	$\hat{\beta}_1$
	$ uarrow_1$
	Principles of Modern Biostatistics

 $s_{xy}/(SD_xSD_y)$

$$\hat{e}_i = y_i - \hat{E}(Y|X = x_i)$$

$$= y_i - \hat{y}$$

$$= y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

$$\hat{\beta}_1 = \frac{SXY}{SXX}$$

$$= r_{xy} \frac{SD_y}{SD_x}$$

$$= r_{xy} \left(\frac{SYY}{SXX}\right)^{1/2}$$

EQUATION	
	â
	\hat{eta}_{0}
	Principles of Modern Biostatistics
-	
EQUATION	
	RSS, residual sum of squares
	1655, Testadai Sain of Squares
	Principles of Modern Biostatistics
Eografian	
EQUATION	
	R^2
	±v
	Principles of Modern Biostatistics

$$\bar{y} - \hat{\beta}_1 \bar{x}$$

$$RSS = SYY - \hat{\beta}_1^2 SXX$$

$$R^{2} = \frac{SSReg}{SYY}$$

$$= \frac{(SXY)^{2}}{SXXSYY}$$

$$= r_{xy}$$

$$SSReg = SSY - RSS$$

EQUATION	
	χ^2 Expected cells
	X Expected tens
	Principles of Modern Biostatistics
EQUATION	
	Chi-square test statistic
	Principles of Modern Biostatistics
EQUATION	
2401111011	
	95% CI
	Drivers of Manager Bases
1	Principles of Modern Biostatistics

$$\frac{row\; sum \times column\; sum}{N}$$

$$\frac{N}{a+b+c+d}$$
 for example for the top left cell

$$\chi^{2}_{(r-1)(c-1)} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$= \frac{N(ad - bc)^{2}}{(a+b)(a+c)(b+d)(c+d)}$$

$$\bar{X}_n \pm Z_{\alpha/2} \hat{SE}(\bar{X}_n)$$

For one sided, reject if:

$$\frac{\bar{X}_n - \mu_0}{\hat{SE}(\bar{X}_n)} > 1.64$$

DEFINITION	
	Mantel-Haenszel test
	Principles of Modern Biostatistics
DEFINITION	
	Fisher's Exact test
	Principles of Modern Biostatistics
Pro Tip	
	Interpret Root MSE
	Principles of Modern Biostatistics
	I IGNOR DES OF MODERN DIOSIALISTICS

This is an alternative to pooling data from multiple 2x2 tables - it helps avoid Simpson's paradox.

- the odds ratio for the ith strata is: $OR_i = \frac{a_i d_i}{b_i c_i}$
- The summary OR is $OR_{pooled} = \frac{\sum a_i \sum d_i}{\sum b_i \sum c_i}$
- The MH is $O_{MH} = \sum w_i OR_i / \sum w_i$ where $w_i = b_i c_i / N$
- $H_0: OR_{MH} = 1$ test statistic

$$\frac{\binom{a+c}{a}\binom{b+d}{b}}{\binom{n}{a+b}}$$

- The sample standard deviation of the differences between predicted and observed values.
- Measure of accuracy

D
Pro Tip
$I \leftarrow D^2$
Interpret R^2
Driverning on Monany Drock-weeker
Principles of Modern Biostatistics

• The amount of variability the model explains of the response data around its mean
• How close the data are to the fitted regression
$\bullet \ \frac{SXY^2}{SXXSYY}$