Homework 6

- 1. RSA Assumption (5+12+5). Consider RSA encryption scheme with parameters $N = 35 = 5 \times 7$.
 - (a) Compute $\varphi(N)$ and write down the set \mathbb{Z}_N^* .

Solution.

From question,
$$p, q = 5, 7$$
,
 $\varphi(N) = (p-1)(q-1)$
 $= 4 \times 6$
 $= 24$

Then, $\mathbb{Z}_N^* = \{1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34\}.$

(b) Use repeated squaring and complete the rows X, X^2, X^4 for all $X \in \mathbb{Z}_N^*$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

X	1	2	3	4	6	8	9	11	12	13	16	17
X^2	1	4	9	16	1	29	11	16	4	29	11	9
X^4	1	16	11	11	1	1	16	11	16	1	16	11

X	18	19	22	23	24	26	27	29	31	32	33	34
X^2	9	11	29	4	16	11	29	1	16	9	4	1
X^4	11	16	1	16	11	16	1	1	11	11	16	1

(c) Find the row X^5 and show that X^5 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^* . Solution.

	X	1	2	3	4	6	8	9	11	12	13	16	17
- 1	X^4					l .	l						
	X^5	1	32	33	9	6	8	4	16	17	13	11	12

X												
X^4	l		1	1			l	I	1			
X^5	23	24	22	18	19	31	27	29	26	2	3	34

2. Answer the following questions (7+7+7+7 points):

(a) (7 points) By hand, compute the three least significant (decimal) digits of 6251007¹⁹⁶⁰⁴⁰⁴. Explain your logic.

Name: Derrick Khoo

Solution.

Since we are only interested in the three least significant digits, we can apply mod~1000 to obtain it. Equivalently, this means that N=1000.

Firstly, $6251007 \equiv 7 \pmod{1000}$

Secondly, we note that gcd(7,1000) = 1. Thus, this means that:

$$7^{\varphi(1000)} \equiv 1 \ (mod \ 1000)$$

(since $x^{\varphi(N)} \equiv 1 \mod N, \, \forall x \in \mathbb{Z}_N^*$, and that $7 \in \mathbb{Z}_{1000}^*$)

Thirdly, we note that:

$$\varphi(1000) = 5^3 * 2^3 * (1 - \frac{1}{5}) * (1 - \frac{1}{2})$$

(From lecture, if exponents are present such that $N=p^3q^3,\ \varphi(N)=p^3q^3(1-\frac{1}{p})(1-\frac{1}{q}))$

400

Fourthly, taking into account the exponent,

$$1960404 \equiv 4 \pmod{400}$$

Lastly, this means that the three least significant digits are:

$$6251007^{1960404} \equiv 7^4 \pmod{1000}$$

$$\equiv 2401 \; (mod \; 1000)$$

$$\equiv 401 \; (mod \; 1000)$$

(b) (7 points) Is the following RSA signature scheme valid? (Justify your answer)

$$(r||m) = 24, \sigma = 196, N = 1165, e = 43$$

Here, m denotes the message, r denotes the randomness used to sign m, and σ denotes the signature. Moreover, (r||m) denotes the concatenation of r and m. The signature algorithm Sign(m) returns $(r||m)^d \mod N$ where d is the inverse of e modulo $\varphi(N)$. The verification algorithm $Ver(m,\sigma)$ returns $((r||m) == \sigma^e \mod N)$.

Solution.

The signature is not valid.

This is because $\sigma^e = 196^{43} \pmod{1165}$

 $\equiv 24 \pmod{1165}$ (Supposedly, assuming valid scheme).

Then, since 1165|5, $196^{43} \equiv 24 \equiv 4 \pmod{5}$.

However, the case here is that $196 \equiv 1 \pmod{5}$. Thus, $196^{43} \equiv 1^{43} \pmod{5} \equiv 1 \pmod{5}$.

Thus, the signature is not valid.

(c) (7 points) Remember that in RSA encryption and signature schemes, $N = p \times q$ where p and q are two large primes. Show that in the RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can efficiently factorize N, i.e., you can recover p and q.

Solution.

Since
$$N = pq$$
, $\varphi(N) = (p-1)(q-1)$

$$= pq - p - q + 1$$
 (Algebraic manipulation)

$$= N - (p+q) + 1.$$

Hence, we can factorise N by solving the following, since we can obtain value of $(p+q) = N - \varphi(N) + 1$ and pq = N:

$$(x-p)(x-q) = x^2 + pq - (p+q)x$$

$$= x^{2} + N - (N - \varphi(N) + 1)x$$

Thus, we can obtain p and q by solving for the roots of the above equation.

(d) (7 points) Consider an encryption scheme where $Enc(m) := m^e \mod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $Dec(c) := c^d \mod N$ where d is the inverse of e modulo $\varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_1 and the encryption of m_2 , then you can find the encryption of $(m_1 \times m_2)^5$.

Solution.

Suppose we have $(m_1)^e \equiv c_1 \mod N$ and $(m_2)^e \equiv c_2 \mod N$, then we have $((m_1)^5)^e \equiv (c_1)^5 \mod N$, and $((m_2)^5)^e \equiv (c_2)^5 \mod N$.

Thus, we ultimately have:

$$(m_1^5 m_2^5)^e \mod N = c_1^5 c_2^5 \mod N = (c_1 c_2)^5 \mod N$$

- (e) (7 points) Suppose $n = 11413 = 101 \cdot 113$, where 101 and 113 are primes. Let $e_1 = 8765$ and $e_2 = 7653$.
 - i. (2 points) Only one of the two exponents e_1, e_2 is a valid RSA encryption key, which one?

Solution.

```
\varphi(N) = (101 - 1)(113 - 1) = 11200

\gcd(8765, 11200) = 5, \gcd(7653, 11200) = 1.

Thus, e_2 is a valid RSA encryption key and not e_1.
```

ii. (3 points) For the valid encryption key, compute the corresponding decryption key d.

Solution.

Since decryption key is such that $e \cdot d \equiv 1 \mod \varphi(N)$, we can run $XGCD(e, \varphi(N))$ to obtain d such that $e \cdot d \equiv 1 \mod \varphi(N)$. Hence, we can obtain d = 9517.

iii. (2 points) Decrypt the cipher text c = 3233.

Solution.

Since the following values are: $N = 101 \times 113 = 11413$, e = 7653, d = 9517, c = 3233, and we know that $m = c^d \mod N$, we can obtain $m = 3233^{9517} \mod 11413 = 10101 \mod 11413$.

3. Euler Phi Function (30 points)

(a) (10 points) Let $N = p_1^{e_1} \cdot p_2^{e_2} \cdots p_t^{e_t}$ represent the unique prime factorization of a natural number N, where $p_1 < p_2 < \cdots < p_t$ are prime numbers and e_1, e_2, \ldots, e_t are natural numbers. Let $\mathbb{Z}_N^* = \{x \colon 0 \leqslant x < N - 1, \gcd(x, N) = 1\}$ and $\varphi(N) = |\mathbb{Z}_N^*|$. Using the inclusion exclusion principle, prove that

$$\varphi(N) = N \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_t}\right).$$

Solution.

Let A_i denote the subset of $\{1, 2, ..., n\}$ such that all of the elements in A_i are divisible by p_i . Then, the set $A := \{m | 1 \le m \le n, gcd(m, n) > 1\}$ is exactly equal to the union of all A_i .

Then, using the principle of inclusion-exclusion,

$$|A| = \sum_{i} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots$$

 \Leftrightarrow

$$= \sum_{i} N/p_{i} - \sum_{i < j} N/p_{i}p_{j} + \sum_{i < j < k} N/p_{i}p_{j}p_{k} - \dots$$

Thus, we have $\varphi(N)$:

$$\varphi(N) = N - |A| = N - \sum_{i} N/p_i - \sum_{i < j} N/p_i p_j + \sum_{i < j < k} N/p_i p_j p_k - \dots$$

 \Leftrightarrow

$$N \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_t}\right)$$

(b) (5 points) For any $x \in \mathbb{Z}_N^*$, prove that

$$x^{\varphi(N)} = 1 \mod N.$$

Hint: Consider the subgroup generated by x and its order.

Solution.

For an arbitrary value of $x \in \mathbb{Z}_N^*$, let the subgroup generated by x be denoted as: $\langle X \rangle = \{x, x^2, x^3, ..., x^k = e\} \subseteq \mathbb{Z}_p^*$ $\Rightarrow k | \varphi(N)$ since order of subgroup divides order of group). This means that $X^{\varphi(N)} = (X^k)^{\varphi(N)/k} = 1^{\varphi(N)/k} = 1$. Thus, $x^{\varphi(N)} = 1 \mod N$.

(c) Replacing $\varphi(N)$ with $\frac{\varphi(N)}{2}$ in RSA. (15 points)

In RSA, we pick the exponent e and the decryption key d from the set $\mathbb{Z}_{\varphi(N)}^*$. This problem shall show that we can choose $e, d \in \mathbb{Z}_{\varphi(N)/2}^*$ instead.

Let p, q be two distinct odd primes and define N = pq.

i. (2 points) For any $e \in \mathbb{Z}_{\varphi(N)/2}^*$, prove that $x^e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection. Solution.

Since $gcd(e, \varphi(N)/2 = 1$, this means that for any $e \in \mathbb{Z}_{\varphi(N)/2}$, there exists an inverse d in $\mathbb{Z}_{\varphi(N)/2}$ such that $e \cdot d = 1 \mod \varphi(N)/2$. Hence, $x^e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection.

ii. (7 points) Consider any $x \in \mathbb{Z}_N^*$. Prove that $x^{\frac{\varphi(N)}{2}} = 1 \mod p$ and $x^{\frac{\varphi(N)}{2}} = 1 \mod q$.

Solution.

Using result from Q3 part b, $x^{\varphi(N)} = 1 \mod N$.

Then, since N = pq, p|N and q|N, and that gcd(x, N) = 1.

This means that gcd(x, p) = 1 and gcd(x, q) = 1. Hence, $x^{\varphi(N)/2} = 1 \mod p$ and $x^{\varphi(N)/2} = 1 \mod q$.

iii. (3 points) Consider any $x \in \mathbb{Z}_N^*$. Prove that $x^{\frac{\varphi(N)}{2}} = 1 \mod N$. Solution.

Using result from Q3 part b, $x^{\varphi(N)} = 1 \mod N$.

Since $x \in \mathbb{Z}_N^*$, this means that gcd(x, N) = 1. Thus, $x^{\varphi(N)/2} = 1 \mod N$.

iv. (3 points) Suppose e, d are integers that $e \cdot d = 1 \mod \frac{\varphi(N)}{2}$. Show that $(x^e)^d = x \mod N$, for any $x \in \mathbb{Z}_N^*$.

Solution.

Since $e \cdot d = 1 \mod \frac{\varphi(N)}{2}$, this means that d is the modular inverse of e. Hence, $(x^e)^d = x \mod N$, for any $x \in \mathbb{Z}_N^*$.

Name: Derrick Khoo

4. Understanding hardness of the Discrete Logarithm Problem. (15 points) Suppose (G, \circ) is a group of order N generated by $g \in G$. Suppose there is an algorithm \mathcal{A}_{DL} that, when given input $X \in G$, it outputs $x \in \{0, 1, ..., N-1\}$ such that $g^x = X$ with probability p_X .

Think of it this way: The algorithm \mathcal{A}_{DL} solves the discrete logarithm problem; however, for different inputs $X \in G$, its success probability p_X may be different.

Let $p = \frac{(\sum_{X \in G} p_X)}{N}$ represent the average success probability of \mathcal{A}_{DL} solving the discrete logarithm problem when X is chosen uniformly at random from G.

Construct a new algorithm \mathcal{B} that takes $any \ X \in G$ as input and outputs $x \in \{0, 1, ..., N-1\}$ (by making one call to the algorithm \mathcal{A}_{DL}) such that $g^x = X$ with probability p. This new algorithm that you construct shall solve the discrete logarithm problem for $every \ X \in G$ with the same probability p.

(Remark: Intuitively, this result shows that solving the discrete logarithm problem for any $X \in G$ is no harder than solving the discrete logarithm problem for a random $X \in G$.)

Solution.

The algorithm \mathcal{B} is as follows:

Run the algorithm \mathcal{A}_{DL}). Then, if $g^x \neq X$, follow rejection sampling method.

This means that we continue to run the algorithm \mathcal{A}_{DL}), until we obtain a satisfactory answer $(g^x = X)$.

5. Concatenating a random bit string before a message. (15 points)

Let $m \in \{0,1\}^a$ be an arbitrary message. Define the set

$$S_m = \{(r||m): r \in \{0,1\}^b\}.$$

Name: Derrick Khoo

Let p be an odd prime. Recall that in the RSA encryption algorithm, we encrypted a message y chosen uniformly at random from this set S_m .

Prove the following

$$\Pr_{\substack{y \overset{\$}{\leftarrow} S_m}} [p \text{ divides } y] \leqslant 2^{-b} \cdot \left\lceil 2^b/p \right\rceil.$$

(Remark: This bound is tight as well. There exists m such that equality is achieved in the probability expression above. Intuitively, this result shows that the message y will be relatively prime to p with probability (roughly) (1-1/p).

6. Properties of x^e when e is relatively prime to $\varphi(N)$ (20 points)

In this problem, we will partially prove a result from the class that was left unproven. Suppose N=pq, where p and q are distinct prime numbers. Let e be a natural number that is relatively prime to $\varphi(N)=(p-1)(q-1)$. In the lectures, we claimed (without proof) that the function $x^e\colon \mathbb{Z}_N^*\to \mathbb{Z}_N^*$ is a bijection. The following problem is key to proving this result.

Name: Derrick Khoo

Let N = pq, where p and q are distinct prime numbers. Let e be a natural number relatively prime to (p-1)(q-1). Consider $x, y \in \mathbb{Z}_N^*$. If $x^e = y^e \mod N$, then prove that x = y.

Hint: You might find the following facts useful.

- Every $\alpha \in \mathbb{Z}_N$ can be uniquely written as (α_p, α_q) such that $\alpha = \alpha_p \mod p$ and $\alpha = \alpha_q \mod q$, using the Chinese Remainder theorem. We will write this observation succinctly as $\alpha = (\alpha_p, \alpha_q) \mod (p, q)$.
- For $\alpha, \beta \in \mathbb{Z}_N$, and $e \in \mathbb{N}$ we have $\alpha^e = \beta \mod N$ if and only if $\alpha_p^e = \beta_p \mod p$ and $\alpha_q^e = \beta_q \mod q$. We will write this succinctly as $\alpha^e = (\alpha_p^e, \alpha_q^e) \mod (p, q)$.
- From the Extended GCD algorithm, if u and v are relatively prime then, there exists integers $a, b \in \mathbb{Z}$ such that au + bv = 1.
- Fermat's little theorem states that $x^{p-1} = 1 \mod p$ if x is a natural number that is relatively prime to the prime p.

7. Challenging: Inverting exponentiation function. (20 points)

Fix N = pq, where p and q are distinct odd primes. Let e be a natural number such that $gcd(e, \varphi(N)) = 1$. Suppose there is an adversary \mathcal{A} running in time T such that

Name: Derrick Khoo

$$\Pr\left[\left[\mathcal{A}([x^e \mod N]) = x\right]\right] = 0.01$$

for x chosen uniformly at random from \mathbb{Z}_N^* . Intuitively, this algorithm successfully finds the e-th root with probability 0.01, for a random x.

For any $\varepsilon \in (0,1)$, construct an adversary $\mathcal{B}_{\varepsilon}$ (which, possibly, makes multiple calls to the adversary \mathcal{A}) such that

$$\Pr [[\mathcal{B}_{\varepsilon}([x^e \mod N]) = x]] = 1 - \varepsilon,$$

for every $x \in \mathbb{Z}_N^*$. The algorithm $\mathcal{B}_{\varepsilon}$ should have a running time polynomial in T, $\log N$, and $\log 1/\varepsilon$.

${\bf Collaborators:}$

Name: Derrick Khoo