ZEPELLIN GEWERBESCHULE KONSTANZ

Titel

Thema

Autor Leonard Röpcke Klasse TG-J2b

Datum October 10, 2025

Contents

1	Orga 1.1 Themen für die KA	2 2
2	Schwingungen	2
3	Gedämpfte Schwingungen	2

Orga 1

Themen für die KA 1.1

- Federschwingungen
- Holzquaderschwingungen im Wasser
- Schwingungen am Fadenpendel
- U Rohrschwingungen
- Elektrische Schwingungen
- Elektro Magnetische Schwingungen

s Die Formeln sind in der Formelsammlung auf Seite 22 und 32 zu finden.

Schwingungen $\mathbf{2}$

Gedämpfte Schwingungen 3

Wir haben ein Gewicht mit der Masse m, welches an einer Feder mit der Federkonstante k hängt. Das gewicht hängt in der Flüßigkeit Wasser mit einer Dichte von ρ .

Beschleunigunskraft: $\vec{F}_b = m * \vec{a}(t)$

Federkraft: $\vec{F}_F = k * \vec{s}(t)$

Reibungskraft: $\vec{F}_R = \vec{b} * \vec{v}(t)$ Kräftebilanz: $\vec{F}_b = -\vec{F}_F - \vec{F}_R = m * \vec{a}(t) = -k * \vec{s}(t) - b * \vec{v}(t)$

Differential gleichung: $m * \vec{a}(t) + k * \vec{v}(t) + k * \vec{s}(t) = 0$

Figure 1: Zeitlicher Verlauf der wirkenden Kräfte

Es gibt verschiedene arten der Dämpfung: z.B. Konstante Dämpfung oder eine die von der Geschwindigkeit abhängig sind.

Figure 2: Vergleich verschiedener Dämpfungsarten