Ogólne uwagi

Informacje o programie.

Implementacja

Wszystkie metody implementują klasę ISolver. Gwarantuje one podstawowe metody odpowiedzialne za wyświetlanie danych i ich obliczanie. Realną różnice stanowi tak naprawdę implementacja metody ,_method(self, i, results, linspace)' odpowiedzialnej za obliczanie x[i+1] argumentu.

Zaimplementowane zostały 4 metody:

- Metoda Eulera
- Metoda Midpoint
- Metoda Rungego-Kutta rzędu 4
- Metoda Taylora rzędu n (w przykładzie n = 3)

Kod dostępny jest także na github - link:

https://github.com/psp515/DifferentalEquations

Za optymalne rozwiązanie przyjęte zostało rozwiazanie funkcji odeint z biblioteki scipy.integrate.

Kod klasy ISolver

```
≜ Łukasz Kolber

  @property
  def solution(self):
       return self._solution

≜ Łukasz Kolber

  @property
  def optimal_solution(self):
       return self._optimal_solution
    self.solution.results,
    self.solution.chart_color
plt.show()
```

```
def draw_global_error(self, round_digits=5):
      if round_digits < 0:</pre>
             round_digits = 0
       if self.solution == None:
             print('Please solve solution first.')
       print(f'Global Error: {round(self._get_global_error(), round_digits)}')
def draw_frame(self):
                      'Optimal': self.optimal_solution.results, f'{self.name}': self.solution.results}
     <u>:param linspace</u>: Space of function arguments.

<u>:return</u>: Result of calculations.
± Łukasz Kolber
def _get_global_error(self):
± Łukasz Kolber
def _get_optimal_solution(self, x0, a, b, n):
     Returns solution of calculations with 

;param x8: Starting value 

;param a: Compartment start. 

;param b: Compartment end. 

;param n: Number of intervals. 

:return: Solution class with results.
     if type(self.functions) == list:
    return OdeintSolver(self.functions[0]).solve(x0, a, b, n)
```

Użyte funkcje, ich pochodne i parametry

Każda metoda została podzielona na 2 podpunkty **A** oraz **B** w obu została użyta 1 funkcja **F** oraz jej pochodne, podpunkty różnią się jedynie argumentami wywołania.

```
F: -2*x + exp(t)
F1: 4*x - exp(t)
F2: -8*x + 3*exp(t)
```

Funkcje F1 oraz F2 zostały obliczone z pomocą następującego kodu

```
from sympy import *
x = Symbol('x')
t = Symbol('t')
def f(t.x):
    return -2*x + exp(t)
def f_t(t.x):
   return diff(f(t,x), t)
def f_x(t,x):
    return diff(f(t,x), x)
def f_tx(t,x):
    return diff(f(t,x), t, 1, x, 1)
def f_tt(t,x):
    return diff(f(t,x), t, 2)
def f_xx(t,x):
    return diff(f(t,x), x, 2)
def f1(t,x):
    return f_t(t_x)+f(t_x)*f_x(t_x)
def f2(t, x):
   return f_-tt(t_x x) + 2 * f(t_x x) * f_-tx(t_x x) + f_-t(t_x x) * f_-x(t_x x) + f(t_x x) * (f_-x(t_x x)) * * 2 * f(t_x x)) * * 2 * f_-xx(t_x x)
if __name__ == '__main__':
    print('Program Start')
    print("F:", f(t,x))
```

Α

We wszystkich przykładach do metody "solve(...)" zostały podane następujące argumenty:

```
    x0 = 1 (wartość początkowa)
    a = 0 (początek przedziału)
    b = 1 (koniec przedziału)
    n = 10 (liczba podziałów)
```

В

We wszystkich przykładach do metody ,solve(...)' zostały podane następujące argumenty:

```
    x0 = 1 (wartość początkowa)
    a = 0 (początek przedziału)
    b = 1 (koniec przedziału)
    n = 40 (liczba podziałów)
```

Wywołanie kodu

Funkcje użyte w obliczeniach:

```
def f(x,t):
    return -2*x + np.exp(t)
    new*
def f1(x,t):
    return 4*x - np.exp(t)
    new*
def f2(x,t):
    return -8*x + 3 * np.exp(t)
```

Kod dzięki któremu uzyskano wyniki:

```
if __name__ == '__main__':
   print('Program starts')
   solutions = []
   methods = [EulerSolver(f, chart_color='red'),
               MidpointSolver(f, chart_color='green'),
               RungeKutt4Solver(f, chart_color='yellow'),
               TaylorSolver([f, f1, f2], chart_color='blue')]
   for method in methods:
       method.solve(init, a, b, n)
       method.draw_plot(True)
       method.draw_frame()
       method.draw_global_error()
   print('Initializing data...')
   init, a, b, n = 1, 0, 1, 40
   for method in methods:
       method.solve(init, a, b, n)
       method.draw_plot(True)
       method.draw_frame()
       method.draw_global_error()
   print('Program Finished')
```

Metoda Eulera

Podstawowa metoda numeryczna.

Wygląd metody obliczającej x[i+1] element (wymagana do implementacji przez klasę ISolver).

```
def _method(self, i, results, linspace):
    return results[i] + (linspace[i+1] - linspace[i]) * self.functions(results[i], linspace[i])
```

Α

Wykres porównujący wartość oczekiwaną i uzyskaną


```
t
             Optimal
                        Euler
  0.000000
            1.000000
                     1.000000
  0.111111 0.906331
                     0.888889
  0.222222 0.843737 0.815527
3
  0.333333 0.807482 0.773060
  0.444444 0.793949
                     0.756337
  0.555556 0.800432
                     0.761553
  0.666667 0.824976 0.785976
7
  0.777778 0.866258 0.827729
  0.888889 0.923484
                     0.885637
9 1.000000 0.996317 0.959099
```

Błąd Globalny

Name: Euler Global Error: 0.039

Wnioski

Wywołanie metody Eulera dla małego n dało słabe rezultaty, błąd globalny jest dość duży. Zwiększenie n powinno dać znacznie lepsze rezultaty.

Wykres porównujący wartość oczekiwaną i uzyskaną

Błąd Globalny

Name: Euler

Global Error: 0.00854

	t	Optimal	Euler
Θ	0.000000	1.000000	1.000000
1	0.025641	0.975331	0.974359
2	0.051282	0.952553	0.950699
3	0.076923	0.931589	0.928935
4	0.102564	0.912365	0.908989
5	0.128205	0.894812	0.890785
6	0.153846	0.878865	0.874252
7	0.179487	0.864463	0.859324
8	0.205128	0.851548	0.845938
9	0.230769	0.840065	0.834035
10	0.256410	0.829964	0.823561
11	0.282051	0.821196	0.814463
12	0.307692	0.813716	0.806691
13	0.333333	0.807482	0.800202
14	0.358974	0.802455	0.794951
15	0.384615	0.798596	0.790898
16	0.410256	0.795872	0.788007
17	0.435897	0.794250	0.786243
18	0.461538	0.793701	0.785573
19	0.487179	0.794196	0.785967
20	0.512821	0.795709	0.787397
21	0.538462	0.798218	0.789838
22	0.564103	0.801699	0.793266
23	0.589744	0.806133	0.797659
24	0.615385	0.811501	0.802998
25	0.641026	0.817787	0.809264
26	0.666667	0.824976	0.816441
27	0.692308	0.833054	0.824514
28	0.717949	0.842009	0.833470
29	0.743590	0.851830	0.843298
30	0.769231	0.862509	0.853987
31	0.794872	0.874038	0.865529
32	0.820513	0.886409	0.877916
33	0.846154	0.899618	
34	0.871795	0.913661	0.905204
35	0.897436	0.928534	0.920096
36	0.923077	0.944236	0.935817
37	0.948718	0.960767	0.952365
38	0.974359	0.978127	0.969741
39	1.000000	0.996317	0.987946

Wnioski

Zwiększenie n, poprawiło dokładność kilkukrotnie, wnioskiem można powiedzieć jest, że używanie metody Eulera dla bardzo dużego n da nam realne rezultaty.

Metoda Midpoint

Modyfikacja metody Eulera.

Wygląd metody obliczającej x[i+1] element (wymagana do implementacji przez klasę ISolver).

```
def _method(self, i, results, linspace):
    diff = linspace[i + 1] - linspace[i]
    first = self.functions(results[i], linspace[i])
    second = self.functions(results[i] + first * diff / 2., linspace[i] + diff / 2.)
    return results[i] + second * diff
```

Α

Wykres porównujący wartość oczekiwaną i uzyskaną


```
Optimal
                       Midpoint
                       1.000000
   0.000000
             1.000000
1
   0.111111
             0.906331
                       0.907582
2
   0.222222
             0.843737
                       0.845772
3
   0.333333
             0.807482
                       0.809976
4
   0.444444
             0.793949
                       0.796678
5
   0.555556
             0.800432
                       0.803246
                       0.827783
6
   0.666667
             0.824976
  0.777778
            0.866258
                       0.869002
                       0.926139
8
   0.888889
             0.923484
   1.000000
             0.996317
                       0.998878
```

Błąd Globalny

Name: Midpoint

Global Error: 0.00281

Wnioski

Lekka modyfikacja metody Eulera na start powoduje już znaczy wzrost dokładności obliczeń.

В

Wykres porównujący wartość oczekiwaną i uzyskaną

Błąd Globalny

Name: Midpoint

Global Error: 0.00281

	t	Optimal	·
0	0.000000		
1	0.025641	0.975331	0.975347
2	0.051282	0.952553	0.952584
3	0.076923		
4	0.102564		
5	0.128205	0.894812	
6	0.153846	0.878865	
7	0.179487	0.864463	
8	0.205128	0.851548	0.851639
9	0.230769	0.840065	0.840163
10	0.256410	0.829964	0.830068
11	0.282051	0.821196	0.821305
12	0.307692	0.813716	0.813830
13	0.333333	0.807482	0.807600
14	0.358974	0.802455	0.802575
15	0.384615	0.798596	0.798720
16	0.410256	0.795872	0.795998
17	0.435897	0.794250	0.794378
18	0.461538	0.793701	0.793831
19	0.487179	0.794196	0.794327
20	0.512821	0.795709	0.795841
21	0.538462	0.798218	0.798350
22	0.564103	0.801699	0.801832
23	0.589744	0.806133	0.806266
24	0.615385	0.811501	0.811635
25	0.641026	0.817787	0.817920
26	0.666667	0.824976	0.825109
27	0.692308	0.833054	0.833186
28	0.717949	0.842009	0.842141
29	0.743590	0.851830	0.851962
30	0.769231	0.862509	0.862640
31	0.794872	0.874038	0.874167
32	0.820513	0.886409	0.886538
33	0.846154	0.899618	0.899746
34	0.871795	0.913661	0.913787
35	0.897436	0.928534	0.928660
36	0.923077	0.944236	0.944361
37	0.948718	0.960767	0.960891
38	0.974359	0.978127	0.978250
39	1.000000	0.996317	0.996440

Wnioski

Tak samo jak w metodzie Eulera zwiększenie liczby podziałów zwiększyło dokładność, ale także trzeba zaznaczyć, że nakład pracy na stworzenie metody midpoint nie jest tak duży, a efekty jakie można uzyskać są dobre.

Metoda Rungego-Kuttego 4

Implementacja na bazie metody rzędu 4.

Wygląd metody obliczającej x[i+1] element (wymagana do implementacji przez klasę ISolver).

```
def _method(self, i, results, linspace):
    diff = linspace[i + 1] - linspace[i]

first = self.functions(results[i], linspace[i])
    second = self.functions(results[i] + first * diff / 2., linspace[i] + diff / 2.)
    third = self.functions(results[i] + second * diff / 2., linspace[i] + diff / 2.)
    fourth = self.functions(results[i] + third * diff, linspace[i] + diff)

return results[i] + (diff / 6.) * (first + 2*second + 2*third + fourth)
```

Α

Wykres porównujący wartość oczekiwaną i uzyskaną

	t	0ptimal	Runge-Kutt-4
Θ	0.000000	1.000000	1.000000
1	0.111111	0.906331	0.906335
2	0.222222	0.843737	0.843742
3	0.333333	0.807482	0.807489
4	0.444444	0.793949	0.793957
5	0.555556	0.800432	0.800440
6	0.666667	0.824976	0.824985
7	0.777778	0.866258	0.866267
8	0.888889	0.923484	0.923493
9	1.000000	0.996317	0.996327

Błąd Globalny

Name: Runge-Kutt-4 Global Error: 1e-05

Wnioski

Metoda Rungego-Kutta4 daje bardzo dobre wyniki już dla niewielkich n, więc na pewno warto jej używać do tego typu obliczeń.

В

Wykres porównujący wartość oczekiwaną i uzyskaną

Błąd Globalny

Name: Runge-Kutt-4

Global Error: 0.0

	+	Ontimal	Dungo-Vu++-/
	t	Optimal	
0	0.000000	1.000000	1.000000
1	0.025641	0.975331	0.975331
2	0.051282	0.952553	0.952553
3	0.076923	0.931589	0.931589
4	0.102564	0.912365	0.912365
5	0.128205		0.894812
6	0.153846		0.878865
7	0.179487	0.864463	0.864463
8	0.205128	0.851548	0.851548
9	0.230769	0.840065	0.840065
10	0.256410	0.829964	0.829964
11	0.282051	0.821196	0.821196
12	0.307692	0.813716	0.813716
13	0.333333	0.807482	0.807482
14	0.358974	0.802455	0.802455
15	0.384615	0.798596	0.798596
16	0.410256	0.795872	0.795872
17	0.435897	0.794250	0.794250
18	0.461538	0.793701	0.793701
19	0.487179	0.794196	0.794196
20	0.512821	0.795709	0.795709
21	0.538462	0.798218	0.798218
22	0.564103	0.801699	0.801699
23	0.589744	0.806133	0.806133
24	0.615385	0.811501	0.811501
25	0.641026	0.817787	0.817787
26	0.666667	0.824976	0.824976
27	0.692308	0.833054	0.833054
28	0.717949	0.842009	0.842009
29	0.743590	0.851830	0.851830
30	0.769231	0.862509	0.862509
31	0.794872	0.874038	0.874038
32	0.820513	0.886409	0.886409
33	0.846154	0.899618	0.899618
34	0.871795	0.913661	0.913661
35	0.897436	0.928534	0.928534
36	0.923077	0.944236	0.944236
37	0.948718	0.960767	0.960767
38	0.974359	0.978127	0.978127
39	1.000000	0.996317	0.996317

Wnioski

Przy zwiększonym n ta metoda jest praktycznie nie odróżnialna od rozwiązania przyjętego przez nas jako wzorcowe. Potwierdza to że ta metoda jest niebywale dobra do obliczeń tego typu.

Metoda Taylora

Implementacja dozwalająca na wprowadzenie n pochodnych.

Wygląd metody obliczającej x[i+1] element (wymagana do implementacji przez klasę ISolver).

```
def _method(self, i, results, linspace):
    diff = linspace[i+1] - linspace[i]
    f_count = len(self.functions)
    result = results[i]
    x, t = results[i], linspace[i]
    sil = 1
    for j in range(f_count):
        sil = sil / (j + 1)
        k = self.functions[j](x, t)
        result += sil * k * (diff**(j+1))
```

A
Wykres porównujący wartość oczekiwaną i uzyskaną

	t	0ptimal	Taylor
0	0.000000	1.000000	1.000000
1	0.111111	0.906331	0.906264
2	0.222222	0.843737	0.843629
3	0.333333	0.807482	0.807351
4	0.444444	0.793949	0.793808
5	0.555556	0.800432	0.800289
6	0.666667	0.824976	0.824837
7	0.777778	0.866258	0.866125
8	0.888889	0.923484	0.923359
9	1.000000	0.996317	0.996201

Błąd Globalny

Name: Taylor

Global Error: 0.00014

Wnioski

Metoda Taylora rzędu 3 również ma bardzo dobra dokładność jest niewiele gorsza od rozwiązania wcześniejszego jednakże potrzebny nadała pracy jest znacznie większy, trzeba dodatkowo wyznaczyć pochodne funkcji.

В

Wykres porównujący wartość oczekiwaną i uzyskaną

Błąd Globalny

Name: Taylor

Global Error: 0.0

	t	0ptimal	Taylor
0	0.000000	1.000000	1.000000
1	0.025641	0.975331	0.975331
2	0.051282	0.952553	0.952553
3	0.076923	0.931589	0.931588
4	0.102564	0.912365	0.912364
5	0.128205	0.894812	0.894811
6	0.153846	0.878865	0.878864
7	0.179487	0.864463	0.864462
8	0.205128	0.851548	0.851546
9	0.230769	0.840065	0.840064
10	0.256410	0.829964	0.829963
11	0.282051	0.821196	0.821195
12	0.307692	0.813716	0.813715
13	0.333333	0.807482	0.807481
14	0.358974	0.802455	0.802453
15	0.384615	0.798596	0.798595
16	0.410256	0.795872	0.795870
17	0.435897	0.794250	0.794249
18	0.461538	0.793701	0.793699
19	0.487179	0.794196	0.794194
20	0.512821	0.795709	0.795708
21	0.538462	0.798218	0.798216
22	0.564103	0.801699	0.801697
23	0.589744	0.806133	0.806131
24	0.615385	0.811501	0.811500
25	0.641026	0.817787	0.817786
26	0.666667	0.824976	0.824975
27	0.692308	0.833054	0.833052
28	0.717949	0.842009	0.842007
29	0.743590	0.851830	0.851829
30	0.769231	0.862509	0.862508
31	0.794872	0.874038	0.874036
32	0.820513	0.886409	0.886408
33	0.846154	0.899618	0.899617
34	0.871795	0.913661	0.913659
35	0.897436	0.928534	0.928533
36	0.923077	0.944236	0.944235
37	0.948718	0.960767	0.960766
38	0.974359	0.978127	0.978126
39	1.000000	0.996317	0.996316

Wnioski

Przy zwiększonym n metoda Taylora jest tak samo dokładna jak metoda Rungego-Kutta 4.

Ogólnie wnioski

Na powyższych wykresach widzimy, że istnieje kilka czynników prowadzących do poprawy wyników obliczeń.

Głównym według mnie jest liczba przedziałów, widzimy znaczy wzrost dokładności przy zwiększeniu liczby podziałów.

Kolejnym bardzo istotnym czynnikiem jest metoda jak widzimy niektóre metody już dla małych n mogą dawać dość dokładne wyniki, kolejnym faktem przemawiającym za stosowaniem odpowiedniej metody jest "energooszczędność" np porównując metodę Eulera B do Rungego-Kutta 4 A nawet przy małej liczbie n (dla drugiej motody) uzyskujemy znacznie lepsze wyniki (od pierwszej metody).

Warto też zaznaczyć, iż większa liczba podziałów prowadzi do "zaokraglenia" wykresów (wykres lepiej wyglada).