Sensor and measurement pratice

Practice report – week 1 – group 8

NGUYỄN TIẾN NHẬT

Mssv:1613133

Chapter 8: V/F AND F/V CONVERTERS

I) EXPERIMENTS AND RECORDS

1)VFC converter

DO the experiment with VFC circuit modules KL-64010 and then complete the providing data table and caculate the output linearity.

Answer

1) Set DC power supply out put to 50m/. Adjust R2 (OFFSFT ADJ) to Set the output frequency.

VO25-1 = 25HZ. This Step Sets the minimum output frequency.

formin = 25 HZ

2) Set DC power Supply output to lov. Adjust Rg (GAIN ADJ) to Set Vo25-1 = 5 KHz. This Step Sets the maximum output frequency.

fo max = 5KHz

31 Complete table

table 8-1

Vin (V)	0,05	0,1	0,5	1	2	3	5	7	8	g	10	
V025-1 (KHz)	0,025	0,02	0,23	0,49	0,99	1,48	2,47	3,52	4,02	4157	5	
V025-2 (KHZ)	0,05	0,04	0,46	0,97	1,98	2,96	4,95	7,04	8,04	9,14	10	

4. Calculate the output linearity.
- Comment: From the data of table 8.L., we can see the proportion of output frequency class recorded at Vo25-2 was linearity two times as higher that of data when recorded at Vo25-1

Sensor and measurement practice

Practice report- Week 2-Group 8

NGUYỄN TIẾN NHẬT

MSSV:1613133

CHAPTER 9: CHARACTERISTICS OF CDS EXPERIMENT

I)EXPERIMENT AND RECORDS

CDS light controlled circuit

Answer 1) Used DMM measuring the CDS on the normal lighting, the resistance is: 4,5 K.C.

2) when used the hand covered cos, the resistance of cos is increase, in the same time the cos

Resistance is approximately 6,3 K.IZ

3) Get a LED from a mobile phone lighting to CDS, the resistance of CDS is reduce, in the same time the COS Resistance is approximately at 1,25 ksz

41 Can we use the cos design a sample automatic lighting Circuit? Yes, we can.

Connect the power Supply to the input of module KL - 6409. Choose Lange 200 on DMM

6) Adjusting the Rd, make the LED just on the lighting position. Used the voltmeter for measuring the V61, V62, V623, 3 points voltage value and second on the table 9-1.

STATUS	VB1	VB2	V023	LED 1 STATUS
COS lighting	0,665 V	4,19V	2,949	ON
No-lighting	0,389	5,211	0,02V	OPF

⁷⁾ Used the hand covered the lighting of cps received, even the cos didn't received lighting but in this time the LED is turn OFF.

⁸¹ If COS and R1, R2 change the position, then when the COS received the lighting, the LED1 is Still turn OFF.

sensor and measurement practice

practice report - week 3 -group 8

NGUYỄN TIẾN NHẬT

MSSV:1613133

CHAPTER 10: LEVEL CONTROLLER

I)EXPERIMENTS AND RECORDS

Level controller

Measuring NOR GATE output (No.4pin) is O level

31 Put the probe B to top floor reservoir, its mean the under water tank are reached B level, is the motor hunning? Yes, it does Measuring Not GATE output (No. Apin) is 1 level - Measuring NOR GATE outputs (No.3pin) is 1 level, (No.4pin) is 6 level 4) put the probe C to top floor reservoir, its mean the under water tank are reached Clevel is the motor running? - Measuring MOR GATE input (No. 2pin) is I level; (No. 1pin) is 1 level - Measing NOR GATE output (No. spin) is o level 5) Take away the probe (from the tank is the motor running? No, it does not running - Measuring NORGATE inputs (Ho. 2pin) is 1 level; (No. 2pin) is 0 level - Measiring NOR GATE outputs (No. 3pin) is O level. 6) Take civily the probe & from the tank, is the motor running? Yes, it does - Measuring NOT GATE output (No. 15 pin) is # 1 level - Measuring RIOR GATE autputs (No. 4 pin) is 0 level; (No. 3 pin) is 1 level 7 1 Take away the probe & from the tank, is the meter sunning? No, it does not sunning - put the Phobe & from the tank, is the motor running ? yes, it does. 81 Repeat the Step 3 to 6, observe the motion Status: -> It still happens the same way.

THỰC HÀNH CẢM BIẾN & ĐO LƯỜNG BÁO CÁO THỰC HÀNH TUẦN 4 – NHÓM 8

NGUYỄN TIẾN NHẬT

MSSV: 1613133

BÀI 1: VOLT KẾ MỘT CHIỀU

1)Tóm lược quá trình thí nghiệm

Đầu tiên xác định nội trở khung quay bằng một trong 3 cách: Phương pháp biến trở, phương pháp phân thế, phương pháp điện trở shunt.

Phương pháp biến trở

- -Đầu tiên đặt giá trị điện trở 50K Ω cực đại và nguồn DC cực tiểu.
- -Tiếp theo, tăng dần nguồn DC tới 1 volt.
- Đóng khóa S rồi giảm từ từ biến trở để kim chỉ thị đạt độ lệch toàn khung.
- -Tắt nguồn đi, tháo biến trở ra khỏi mạch rồi đo giá trị điện trở này và ghi lại kết quả.

- -sau đó, làm lại các bước trên nhưng khi giảm biến trở, lần này chỉ để kim chỉ thị đạt độ lệch nửa khung.
- Tiếp tục tắt nguồn, tháo biến trở rồi ghi lại giá trị biến trở lúc này.
- -Tính giá trị nội trở khung bằng công thức: $R_{m1} = R_2-2R_1$
 - Phương pháp phân thế

- -Đầu tiên đặt giá trị điện trở $50 \text{k}\Omega$ cực đại và nguồn DC cực tiểu.
- -Tăng từ từ nguồn DC tới giá trị E=1V.
- -Đóng khóa S rồi giảm từ từ biến trở cho đến khi kim chỉ thị đạt độ lệch toàn khung.
- -Tính giá trị nội trở khung quay R_{m2} từ các giá trị dòng và áp.
 - Phương pháp điện trở shunt

- -Thay đổi biến trở $100 \text{K}\Omega$ đến khi kim lệch toàn khung.
- -Đóng khóa S, thay đổi biến trở 50 K Ω từ từ đến khi kim lệch đúng một nửa.
- -Tháo hai biến trở ra khỏi mạch, dùng máy đo giá trị của nó và ghi vào bảng trị số

$$R3 = (R_{50K}/R_{100K})*(E/I_{FS})$$

- -Trong quá trình làm thí nghiệm thực hiện đồng thời việc xác định nội trở khung bằng 3 cách, sau đó tính giá trị trung bình của 3 lần thực hiện để cho ra một giá trị R_{mTB}.
- -Với 3 tầm đo 1V,5V,10V thực hiện vẽ mạch điển trở thang đo độc lập, điện trở thang đo chung.
- -Tiếp theo, tính toán trị số các điện trở thang đo cho volt kế DC bằng công thức:

$$R_N = (E_N/I_{FS}) - R_{mTB}$$

- -Lắp ráp volt kế DC theo mạch thiết kế trên với các điện trở đã có (giá trị điện trở được điều chỉnh bằng biến trở sao cho có được giá trị phù hợp).
- -Nối nguồn DC volt kế ở từng tầm đo. Điều chỉnh điện áp nguồn sao cho kim khung quay lệch toàn khung, ghi vào bảng số liệu trị số E2 (là điện áp được đo bằng volt kế vừa lắp ráp: Đọc Từ góc lệch của kim với thang đo tương ứng), đồng thời dùng volt kế số đo lại giá trị và ghi vào bảng trị số E1.
- -Tính sai số của mỗi thang đo theo công thức: ε% =((E1-E2)/E1) * 100%

2)Các bẳng số liệu thu được

	Philong Phap	Philang ph Phan th	of le	Phu	ing phap hunt	Khi	to the
	RI=7KI	E(mV) = 1	48	R50K =	1232	-	0 ' 0
	Ra = 16,78 K.C.	I(uA) = 1	(00	Rtook =	1,9 KQ	Rn	TB=1,42KS
	RmL = 2,78KQ	Rm2 = 1	1485	Rm3 =	64752		
						-	
Bai	ng. 12 Tinh	ioan điện trù	y'than	g to va s	ai so		
Bai				g do va s	ai 80 É2		E %
Bai	Tain to	Dian And Rs	E				E % 10%
Bai			E	L	EZ		

3) Giải thích cách tính điện trở Rm1, Rm2, Rm3

4) Giải thích cách tính các điện trở thang đo (multiplier resistor) cho volt kế DC.

THỰC HÀNH CẢM BIẾN & ĐO LƯỜNG BÁO CÁO THỰC HÀNH TUẦN 5 – NHÓM 8

NGUYỄN TIẾN NHẬT

MSSV:161313

BÀI 2: KHẢO SÁT ĐÁP ỨNG TUẦN SỐ CỦA VOLT KẾ XOAY CHIỀU

1. Xác định tần số f_H và f_L thu nhận được của từng volt kế

	f _L (HZ)	f _H (kHz)
Volt kế 1	2	616
Volt kế 2	Không xác định	7,84

2. Điều chỉnh tần số máy phát rồi ghi lại giá trị điện áp của từng volt kế ở từng tần số.

añ 80 (Hz/	Dao ctory ky (VENS)	Volt kê 1 (Vans)	Volt ke 2 (VRMs)
15	1,428	4,3978	1,3960
0	1,428	1,3990	1,3998
0	44.28	1,3960	1,3970
00	1,41	1, 3924	11391
00	1,4,20	1,3837	1,386
000	441	1,3781	11381
000	1, 410	1,3714	1,215
0000	1,57542	1:3682	0,870
0000	11375 3,92	1,3610	0,526
00000	1,37 3792	1,36 58	0,297

1,1838

0,3813

0,00176

0,00118

1,37 3792

1,33 3784

1,21 3,84

1,19 3/68

01287

0,215

0,069

0	000	1/4	1/9437	11596		35.743
1	0000	1,4	119433	1,137		
					-	
ins 1						
2						
2 18 16 14 2 2 3 3 6 6 6 6 7	0 0	0 0		7		
72 +			*	* *	TT TT	
				1	*	IL
25 50		500 1000	4	50000 100000 500	000 Tay So (HZ)	20000
	Dan dong	Ký vol	t ke 1 vol	H 16 2		
777.400						

41 Si'dung Sing vusing lading cue , bien do 2v toi cae tan 58 100, 1000, 2000 va 10000 HZ, soootte bang số lucu song vusing luong cue, bien do 2V

Tan 80 (H21	Day dong by	Volk Kê J (VRMS)	volt le 2 (VRMS)
100	1,410	1,9485	1,945
1000	100 14L	1,9488	1,900
2000	444	1,9473	1,848
5000	1,41	1,9410	1,598
10000	41	119421	1,152

Tan so (HZ)	Man dang ty	Volt KE L	Volt Ke 2 (VEMS)
100	44	1,9488	1/949
1000	1,4	119491	1,900
2000	1,4	1,9465	1,846
5000	1/4	1,9457	1,596
10000	1,4	119433	1,137

THỰC HÀNH CẢM BIẾN & ĐO LƯỜNG BÁO CÁO THỰC HÀNH TUẦN 6 – NHÓM 8

NGUYỄN TIẾN NHẬT

MSSV:1613133

BÀI 3: DAO ĐỘNG KÝ ĐIỆN TỬ MẠCH CỘNG HƯỞNG R, L, C

1) Đo điện trở Rx

-Mắc mạch như hình vẽ, trên màn xuất hiện một đoạn thẳng cố định, thay đổi Ro để trên màn là đường thẳng nghiêng 45° , khi đó R_X =Ro. Thực hiện phép đo với các tần số khác nhau từ máy phát.

Bảng số liệu ứng với các tần số khác nhau

Lair do	f (H2)	Po(IZ)	Rx	DR
1	1000	1470	1470	15,2
2	2000	1471	1471	24,1
3	10000	1475	1475	18,5
			Rx = 1472	Rx= 19,06
482/2	$R_{\times} = \tilde{R}$	x ± ARx = 14	†98/ 6	
1922:	=	1472 ± 1976		A D
the 2:	f(HZ)	1472 ± 19 R6 RdTL)	\$98, 6	ΔR
	=	1472 ± 1976		ΔR 2,1
Lân to	f(HZ)	1472 ± 19 R6 RdTL)	R _×	
Lân to	f(Hz) 500	1472 ± 1986 ROLL) 2050	Rx 2050	2, 1

2) Đo dung kháng Zc của tụ Cx

Vì dòng điện qua tụ Cx sớm pha hơn hiệu điện thế $\pi/2$ nên trên màn xuất hiện elip vuông. Nếu Uc=UR0. Thì elip là đường tròn, khi đó $Zc=1/(\omega Cx)=R0 \rightarrow Cx=1/(2\pi fRo)$. Thực hiện phép đo với các tần số khác nhau từ máy phát:

Bảng số liệu cho từng tụ điện khác nhau

Lan do	f(HZ)	Zc= Ro(12)	$C_X = \frac{1}{2\pi f R_0} (F)$	1 ACX
1	36	1470	3.10-6	0,02
2	18	2930	3,02.10-6	0,04
3	10	5000	3,18-10-6	0,05*
			Cx = 3,067-10-6	ICx = 0,03
	$C_X = \tilde{C}$	x ± 50x = 3,0	067·106 ± 0,03	,7
Tu điện 2				
Lân do	fettz	$Z_{c} = R_{o}(\Omega)$	(x = 1 (f)	∆Cx
1	800	1700	1,17.10-7	0,01
2	1200	950	1,39.10-7	0,05
3	1600	880	1,13.107	0,03
			Cx = 1,23.107	ΔEx= 0,03
	Cx =	Cx + DCx = 11	23-10-7 ± 0,03	
Tụ đến3				
Law do	f (Hz)	Zc = 60(94)	$(x = \frac{1}{2\pi f R_0})$	DQ.
1	700	650	3,5-10-7	0,2
2	1300	405	3,02.107	0,08
3	1900	290	2,89.107	
			$C_{x} = 3_{1}137157$	SCx = 0,11
TO STATE OF THE ST		Tx ± 50x = 3	127 10-7+ 0	11

THỰC HÀNH CẢM BIẾN & ĐO LƯỜNG BÁO CÁO THỰC HÀNH TUẦN 6 – NHÓM 8

NGUYỄN TIẾN NHẬT MSSV:161313

BÀI 4: CẢM BIẾN HALL

1)Đo sự phụ thuộc giữa I và UH

1(mA)	1/3	14	1,5	116	1,7	138	1,9	2,0
UH (m)) 39	418	4515	48,2	54,7	55	58	60
				•	-			
,								

2)Đo sự phụ thuộc giữa U_H và độ dài L ứng với I =1.5mA

35,5 17,1 10 6,3 4 2,6 bied dien so phu thuse qui UH và độ dai L	UH (MV) 48.8 35.5 17.1 10 6.3 4 2.6 Bied do bied dien so phy thuse gus UH và de dai L
bied deir su phu thuse gue UH và độ dai L	Bied do bied dien su phu thuse gue Vy và độ dài L

SENSOR AND MEASUREMENT – PRACTICE

PRACTICE REPORT WEEK 8 - GROUP 8

NGUYỄN TIẾN NHẬT

MSSV:1613133

CHAPTER 7: PT-100 TEMPERATURE SENSOR

I)R vs. T characteristic of PT-100

1) The resistance of the PT-100 is proportional to the temperature

$$R_{+} = R_{0}(4 + \alpha t) = 100(1 + 0,00392T)$$

2. Using the above equation to calculate and record the resistance Rt for each temperature setting on Table 7-1:

Table 7-L					-						
T(°C)	0	10	20	30	40	50	60	70	80	90	100
R(IL)	100	103,92	107.84	11176	115,68	119 16	123,52	127,44	134,36	135,28	139,2

3. Adjust the thermostat to PT-100 by temperature regulator. Measure and record the resistance and temperature several times during the temperature rising, and then complete Table 7-2:

emperature (°C)	35	40	45	50	55	60
PT-100(-S2-)	112,1	115	117,7	120,5	121	123

- 4) Compare the data in Table 7-1 with those in Table 7-2:
 - ❖ Comment: we can see that from the table (7-1 and 7-2), resistance value recorded during the temperature rising, approximately with the proportion of those calculated in sections 1 and 2.

II) TRANSDUCTION CIRCUIT

1) Adjust the thermostat to PT-100 by temperature regulator. Measure and record the output voltage of PT-100 at Vo27 for each temperature setting on Table 7-3:

temperature (9c)	35	40	45	50	55	60
V027(V/	3,355	4,05	4,62	5,35	5,96	6,4

2) Plot a V vs. T characteristic curve of the PT-100 transducer using data from the above table:

3) Observe the curve in step 2, calculate and record the transuction ratio:

 \approx 146 (mV)