Имя, ф	амилия 	и номе	ер групі	іы:	
1. a	b	С	d	e f	11. a b c d e f
2. a	b	\Box c	d	e f	12. a b c d e f
3a	b	c	d	\Box e \Box f	13. a b c d e f
4. a	b		d	\Box e \Box f	14. a b c d e f
5a	b	c	d	\Box e \Box f	15. a b c d e f
6. a	b	c	d	\Box e \Box f	16. a b c d e f
7. a	b	c	d		17. <u>a</u> b <u>c</u> d <u>e</u> f
8a	b	c	d		18. <u>a</u> b <u>c</u> d <u>e</u> f
9. a	b	\Box c	d		19.
10 a	Пь		\Box d	e f	20 a b c d e f

Удачи!

1. У Ани есть старый левый ботинок, у Бори — левый, у Вовы — правый. Продать можно только пару ботинок за 600 рублей. По отдельности ботинки ничего не стоят.

Выберите вектор (a,b,c) выигрышей Ани, Бори и Вовы, лежащий в ядре этой кооперативной игры.

a) (200, 200, 200)

c) (300, 300, 300)

e) (100, 100, 400)

b) (100, 100, 100)

- d) нет верного ответа
- f) (150, 150, 300)
- 2. Саша и Тоша одновременно выбирают действительные числа s и t. Полезность Тоши равна $u_T=-t^2+4st$. Саша может равновероятно быть в хорошем или плохом настроении. В хорошем настроении полезность Саши равна $u_S=-s^2+2s$, в плохом $-u_S=-s^2-2st$.

Саша чуствует своё настроение, а Тоша не чуствует настроение Саши.

Какое t выбирает Тоша в равновесии Байеса-Нэша?

a) 0.34

c) 1.01

e) 2.35

- b) нет верного ответа
- d) 1.68

- f) 0.67
- 3. Рассмотрим дерево игры с совершенной информацией. Первый игрок делает ход в двух узлах дерева, второй игрок делает ход в других двух узлах. В каждом узле у каждого игрока 7 вариантов хода. Узлы второго игрока лежат в одном информационном множестве.

Укажите сумму количества чистых стратегий первого игрока и количества чистых стратегий второго игрока.

a) 77

c) 42

e) 56

b) 70

- d) нет верного ответа
- f) 49
- 4. Рассмотрим одновременную игру двух игроков. У первого игрока 7 чистых стратегий, у второго 6 чистых стратегий.

Сколько всего есть смешанных стратегий у первого игрока?

a) 7

- с) нет верного ответа
- e) 8

b) 14

d) 6

f) 42

5. Рассмотрим одновременную игру с матрицей

$$\begin{array}{cccc}
e & f \\
a & (1,4) & (3,4) \\
b & (4,-2) & (1,4) \\
c & (3,0) & (2,2).
\end{array}$$

Найдите количество Парето-оптимальных исходов в чистых стратегиях.

a) 4

b) 5

f) нет верного ответа

е) нет верного ответа

f) 3

6.	Выберите верное утверждение о произвольной кооперативной игре в коалиционной форме для конечного числа игроков.						
	а) Ядро всегда непусто, вектор Шепли может не лежать в ядре.						
	b) Ядро всегда непусто, вектор Шепли обязан лежать в ядре.						
	с) Вектор Шепли всегда существует и единственный.						
	d) Вектор Шепли не существует, если ядро пусто.						
	е) Ядро может быть пустым, но если оно непусто, то вектор Шепли лежит в ядре.						
	f) нет верного ответа						
7.	Выберите верное утверждение про одновременную антагонистическую игру с конечным числом чистых стратегий у каждого игрока.						
	а) Все исходы являются Парето-оптимальными						
	b) Нет Парето-оптимальных исходов						
	с) Все исходы являются равновесиями Нэша						
	d) Ни один исход не является равновесием Нэша						
	е) Все Парето-оптимальные исходы являются равновесиями Нэша						
	f) нет верного ответа						
8.	. Саша выбирает действительное число s , затем Тоша выбирает действительное число t , зная Саши. Выигрыш Саши равен $u_S=-s^2+6t$, выигрыш Тоши равен $u_T=-t^2+7st$.						
Какое число выберет Саша в равновесии Нэша, совершенном в подыграх?							
	a) 5.25 c) нет верного ответа e) 14						
	b) 7 d) 10.5 f) 8.4						
9.	ассмотрим одновременную игру в которую играют 9 игроков, у каждого из которых конечное исло стратегий.						
	Что может произойти с количеством равновесий Нэша в чистых стратегиях, n_{NE} , и количеновов парето-оптимальных исходов в чистых стратегиях, n_{PO} , при увеличении выигрыша перерока на 3 во всех исходах?						
	а) n_{NE} может только вырасти, n_{PO} может только упасть						
b) n_{NE} и n_{PO} могут измениться в любую сторону							
	c) n_{NE} может только вырасти, n_{PO} не изменится						
	d) n_{NE} не изменится, n_{PO} может измениться в любую сторону						
	e) n_{NE} может измениться в любую сторону, n_{PO} может только вырасти						

c) 1

d) 2

10. У Саши три чистых стратегии, a,b и c. В единственном смешанном равновесии Нэша она выбирает a с вероятностью 0.1, b — с вероятностью 0.8.

Что можно утверждать об ожидаемых выигрышах Саши от выбора этих стратегий при фиксированных стратегиях остальных игроков?

- а) нет верного ответа
- c) u(a) < u(b)

e) u(a) > u(b)

b) u(c) < u(a)

d) u(c) > u(b)

- f) u(c) > u(a)
- 11. Выберите верное утверждение о SPNE (равновесии Нэша, совершенном в подыграх) и NE (равновесии Нэша).
 - a) Если в игре нет других подыгр, кроме игры в целом, то количество NE меньше количества SPNE.
 - b) Если в игре есть подыгры помимо игры в целом, то количество SPNE строго больше количества NE.
 - c) Если в игре нет других подыгр, кроме игры в целом, то количество NE больше количества SPNE.
 - d) нет верного ответа
 - е) Если в игре нет других подыгр, кроме игры в целом, то каждое NE является SPNE.
 - f) Если в игре есть подыгры помимо игры в целом, то количество SPNE строго меньше количества NE.
- 12. Рассмотрим бесконечно повторяемую дилемму заключенного с дисконт-фактором δ .

$$\begin{array}{ccc}
c & d \\
c & (8,8) & (4,10) \\
d & (10,4) & (5,5)
\end{array}$$

При каком наименьшем δ пара стратегий жёсткого переключения (grim trigger) будет равновесием Нэша, совершенным в подыграх?

Ответы указаны с точностью до двух знаков после запятой.

a) 0.25

c) 0.2

e) 0.17

- b) нет верного ответа
- d) 0.4

- f) 0.14
- 13. Рассмотрим дерево игры с совершенной информацией. Первый игрок делает ход в двух узлах дерева, второй игрок делает ход в других двух узлах. В каждом узле у каждого игрока 8 вариантов хода. Узлы второго игрока лежат в одном информационном множестве.

Укажите количество вероятностей, необходимых для описания поведенческой стратегии первого игрока.

«Последнюю» вероятность считать не нужно, так как она определяется ограничением на сумму вероятностей.

a) 15	c) 17	е) нет верного ответа
b) 13	d) 16	f) 14
14. Каково максимальное коли четырьмя конечными узла	_	стратегиях в динамической игре с
a) 6	с) нет верного ответа	e) 2
b) 4	d) 1	f) 8
		ает. За один ход Петя берет от 1 до оследний камень. Оба игрока хотят
Какой ход необходимо сдел	ать Пете в начале игры для своей і	победы?
a) 1	c) 4	e) 5
b) 3	d) нет верного ответа	f) 2
16. Рассмотрим одновременну	ю игру с матрицей	
	$\begin{array}{ccc} e & f \\ a & (2,5) & (4,4) \\ b & (5,2) & (2,3) \\ c & (4,0) & (3,2). \end{array}$	
Найдите множество наилу $0.3e + 0.7f$.	чших ответов первого игрока на с	мешанную стратегию второго $s_2 =$
a) $\{a, b\}$	c) {a}	e) $\{b,c\}$
b) нет верного ответа	d) $\{b\}$	f) $\{c\}$
17. Рассмотрим бесконечно по δ .	вторяемую классическую дилемму	заключенного с дисконт-фактором
Сколько существует различ	ных равновесий Нэша, совершенн	ых в подыграх, при $\delta o 1$?
а) нет верного ответа	c) 4	е) бесконечно много
b) 1	d) 2	f) 3
18. Рассмотрим одновременну	ю игру с матрицей	
	$ \begin{array}{ccc} e & f \\ a & (1,5) & (3,4) \\ b & (4,5) & (1,3) \end{array} $	

c (3,0) (2,2).

Найдите количество равновесий Нэша в чистых стратегиях.

6/7

a) 0

c) 4

е) нет верного ответа

b) 3

d) 2

f) 1

19. За день Ыуы может откопать 9 кореньев, а Уыу — 11 килограмм. Работая вместе они откопали за день 33 килограмм кореньев. Сколько килограмм должен получить Ыуы в векторе Шепли?

Ответы округлены с точностью до двух знаков после запятой.

a) 9

c) 14.85

e) 22

b) 16.15

d) 15.5

f) нет верного ответа

20. Рассмотрим одновременную игру с матрицей

$$\begin{array}{ccc} & e & f \\ a & (5,10) & (3,3) \\ b & (3,3) & (5,6) \\ c & (3,3) & (3,3). \end{array}$$

Найдите вероятность, с которой первый игрок использует стратегию «а» в смешанном равновесии Нэша.

Ответы указаны с точностью до двух знаков после запятой.

a) 0.3

c) 0.21

e) 0.27

b) 0.25

d) 0.23

f) нет верного ответа