A characterization result for the alternation-free fragment of the modal μ -calculus

Alessandro Facchini, Yde Venema, Fabio Zanasi

LICS 2013

Motivation

Motivation

Monadic Second-Order Logic (MSO)

Motivation

Monadic Second-Order Logic (MSO)

The Modal μ -Calculus (MC)

MSO ≉ MC ≈

Janin-Walukiewicz Theorem

$$MC \equiv MSO/ \cong$$

(over transition systems)

The question

Structure (C)	\mathcal{L}	\mathcal{M}	Reference
	FO	ML	J. van Benthem 1977
TSs	MSO	MC	D. Janin, I. Walukiewicz 1996
	?	AFMC	_
binary trees	WMSO	AFMC	A. Arnold, D. Niwinski 1992

The question

$$\mathcal{L}/\stackrel{\leftrightarrow}{=} \mathbb{Z} \mathcal{M} \quad (\text{over } \mathcal{C})$$

Structure (C)	\mathcal{L}	\mathcal{M}	Reference
	FO	ML	J. van Benthem 1977
TSs	MSO	MC	D. Janin, I. Walukiewicz 1996
	?	AFMC	-
binary trees	WMSO	AFMC	A. Arnold, D. Niwinski 1992

The alternation-free modal μ -calculus (AFMC)

$$MSO \equiv \left| \begin{array}{c} MSO \\ Automata \end{array} \right|$$

 $\begin{bmatrix} MC \\ Automata \end{bmatrix} \equiv MC$

Intuition

An MSO-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} = \langle A, a_0, \Delta, \Omega \rangle$$

Intuition

An *MSO*-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} = \langle A, a_0, \Delta, \mathbf{\Omega} : A \to \mathbb{N} \rangle$$

Intuition

An *MSO*-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} = \langle A, a_0, \Delta, \Omega : A \to \mathbb{N} \rangle$$

Automaton

Input Tree

Intuition

An *MSO*-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} = \langle A, a_0, \Delta, \Omega : A \to \mathbb{N} \rangle$$

Input Tree

Intuition

An *MSO*-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} = \langle A, a_0, \Delta, \Omega : A \to \mathbb{N} \rangle$$
Automaton
$$\begin{array}{|c|c|c|c|c|c|}\hline
& a_0 & a_1 & a_2 \\\hline
& & & & \\\hline
& & & & &$$

Intuition

An MSO-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

Intuition

An *MSO*-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} = \langle A, a_0, \Delta, \Omega : A \to \mathbb{N} \rangle$$

Intuition

An MSO-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} = \langle A, a_0, \Delta, \Omega : A \to \mathbb{N} \rangle$$

Acceptance conditions are determined by a **parity game**.

Parities encountered in the match:

$$\Omega(a_0)=2,\,\Omega(a_1)=3,\,\ldots.$$

Intuition

An *MSO*-automaton is a 'kind of' alternating automaton working on (possibly infinite) trees.

$$\mathbb{A} \; = \; \big\langle A, a_0, \Delta, \Omega : A \to \mathbb{N} \big\rangle$$

Acceptance conditions are determined by a **parity game**.

Parities encountered in the match:

$$\Omega(a_0)=2,\,\Omega(a_1)=3,\,\ldots.$$

Eloise (Abelard) wins the match if the smallest parity occurring infinitely often is even (odd).

Weak MSO-automata

Weak MSO-automata

An MSO-automaton is weak if in each strongly connected component all states have the same parity.

Condition: $\Omega(a_1) = \Omega(a_2)$

Exactly one parity occur infinitely often in infinite matches.

In which sense weak *MSO*-automata are weak?

Input tree

Parities visited during matches

In which sense weak *MSO*-automata are weak?

Parities visited during matches

The key intuition

The amount of 'complex' information that a weak *MSO*-automaton can process is limited on the **vertical dimension** of trees.

Example

The language of trees where on each path there are only finitely many nodes labeled with p is not recognized by any weak MSO-automaton.

Well-founded monadic second-order logic (WFMSO)

 $\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$ in a well-founded subtree of \$\mathbb{T}\$.

Well-founded monadic second-order logic (WFMSO)

$$\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$$
 in a well-founded subtree of \mathbb{T} .

Characterization Theorem

Well-founded monadic second-order logic (WFMSO)

$$\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$$
 in a well-founded subtree of \mathbb{T} .

Characterization Theorem

Simulation Theorem

Well-founded monadic second-order logic (WFMSO)

$$\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$$
 in a well-founded subtree of \$\mathbb{T}\$.

Characterization Theorem

Simulation Theorem

Well-founded monadic second-order logic (WFMSO)

$$\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$$
 in a well-founded subtree of \mathbb{T} .

Characterization Theorem

Simulation Theorem

Well-founded monadic second-order logic (WFMSO)

 $\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$ in a well-founded subtree of \$\mathbb{T}\$.

Characterization Theorem

Well-founded monadic second-order logic (WFMSO)

 $\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$ in a well-founded subtree of \$\mathbb{T}\$.

Characterization Theorem

$$WFMSO/ \cong AFMC$$

Comparing with WMSO

Weak monadic second order logic (WMSO)

$$\mathbb{T} \models \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \models \phi \text{ for some set } S \text{ of nodes}$$
 in a finite subtree of \mathbb{T} .

On finitely branching trees

$$WMSO/ \stackrel{\longleftrightarrow}{=} AFMC$$

Comparing with WMSO

Weak monadic second order logic (WMSO)

$$\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$$
 in a finite subtree of \mathbb{T} .

On finitely branching trees

$$WMSO/ \stackrel{\longleftrightarrow}{=} AFMC$$

On finitely branching trees

$$WMSO \equiv WFMSO$$

Comparing with WMSO

Weak monadic second order logic (WMSO)

$$\mathbb{T} \vDash \exists X. \phi \quad \textit{iff} \quad \mathbb{T}[X \mapsto S] \vDash \phi \text{ for some set } S \text{ of nodes}$$
 in a finite subtree of \mathbb{T} .

On finitely branching trees

$$WMSO/ \stackrel{\longleftrightarrow}{=} AFMC$$

On finitely branching trees

$$WMSO \equiv WFMSO$$

Different ways of being weak

WFMSO bound on the vertical dimension of trees

WMSO bound on the horizontal and vertical dimension of trees

The overall picture

On trees: WMSO || WFMSO

The overall picture

Conjecture: $WMSO/ \Leftrightarrow \subsetneq AFMC$