# 第十章 真空中稳恒电流的磁场

### § 10.2 电流的磁场

### 一、磁场 磁感应强度 $\bar{B}$

\*实验结论:  $\vec{F} = q\vec{v} \times \vec{B} \rightarrow$  洛仑兹力

### 二、毕奥-萨伐尔-拉普拉斯定律

1、毕-萨-拉定律

矢量式: 
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}_0}{r^2}$$



$$μ_0 = 4π × 10^{-7} (H/m、亨利/米)$$
真空磁导率

2. 磁场的叠加原理 
$$\begin{cases} \bar{B} = \int d\bar{B} \rightarrow \text{矢量积分(沿载流导线)} \\ \bar{B} = \sum \bar{B}_i \rightarrow \text{矢量和} \end{cases}$$

- 三、毕-萨-拉定律的应用
- 1. 求载流导线产生的磁场:

# 例1: 求通电直导线(L、I)的磁场分布

(求P点场强)

解:取电流元Idy

$$dB_P = \frac{\mu_o}{4\pi} \cdot \frac{Idy \sin \alpha}{r^2}$$
方向:  $\otimes$ 

$$\sin \alpha = \cos \beta$$

$$y = rtg\beta$$

$$dy = a \sec^2 \beta d\beta$$

$$r^2 = a^2 + y^2 = a^2 \sec^2 \beta$$

$$dB_P = \frac{\mu_o}{4\pi a} I \cos \beta d\beta$$



每个电流元在 P点产生  $d\bar{B}_p$ 方向相同

$$\therefore B_P = \int_L d\vec{B}_P = \int_{\beta_1}^{\beta_2} \frac{\mu_o I}{4\pi a} \cos \beta d\beta = \frac{\mu_o I}{4\pi a} (\sin \beta_2 - \sin \beta_1)$$

### 讨论:

\*无限长载流导线 (a << L):  $\beta_1 = -\frac{\pi}{2}$ ,  $\beta_2 = \frac{\pi}{2} \to B = \frac{\mu_0 I}{2\pi a}$ 



\*半无限长载流导线:  $\beta_1 = 0$ ,  $\beta_2 = \frac{\pi}{2} \rightarrow B = \frac{\mu_0 I}{4\pi a}$ 



\*P点在导线延长线上: 
$$Id\vec{l} \times \vec{r_0} = 0 \rightarrow \vec{B} = 0$$
  $\stackrel{P}{\underset{B=0}{\longleftarrow}} - - - \longrightarrow I$ 

\*讨论: 1) 
$$\vec{B}_P = ?$$



$$B_1 = 0$$

$$B_2 = \frac{\mu_0 I}{4\pi a}$$

$$\Rightarrow B_P = \frac{\mu_0 I}{4\pi a}$$

2) 
$$\vec{B}_0 = ?$$



$$B_{1} + B_{3} = 2 \cdot \frac{\mu_{0}I}{2\pi\sqrt{2}a} = \frac{\mu_{0}I}{\sqrt{2}\pi a}$$

$$B_{2} + B_{4} = \frac{\mu_{0}I}{\sqrt{2}\pi a}$$

$$\therefore B_0 = \frac{\mu_0 I}{\sqrt{2}\pi a} \cdot \sqrt{2} = \frac{\mu_0 I}{\pi a}$$

### 例2: 求载流圆线圈 (R、I) 轴线上的场强分布



解:取电流元 $Id\bar{l} \rightarrow P$ 点处: $d\bar{B} = \frac{\mu_0 Id\bar{l} \times \bar{r}_o}{4\pi r^2}$ 

大小: 
$$dB = \frac{\mu_0 Idl}{4\pi r^2}$$
 方向:  $\perp Id\bar{l}$ 、 $\bar{r}$ 组成平面

### 例2: 求载流圆线圈 (R、I) 轴线上的场强分布



例3: 载流长直螺线管 (solenoid), 密绕, 半径 R, 单位长度 n 匝, 每匝电流 I (P104~105)

求:管内轴线上一点P的磁场强度

解: 取 dl 宽度, 距 P点为 l匝数ndl → 电流元 dI=Indl

$$dB = \frac{\mu_0 R^2 dI}{2(l^2 + R^2)^{\frac{3}{2}}}$$

$$l = Rctg\alpha, dl = -RCsc^2\alpha d\alpha$$

$$l^2 + R^2 = R^2Csc^2\alpha$$

- 1) 无限长螺线管 (R << L):  $\alpha_1 = \pi, \alpha_2 = 0 \rightarrow B_{\perp} = \mu_0 In$
- 2) 螺线管端点:  $\alpha_1 = \pi, \alpha_2 = \frac{\pi}{2} \rightarrow B = \frac{\mu_0 In}{2}$

## 2. 求运动电荷、运动带电体产生的磁场: $q, \bar{v} \rightarrow \bar{B} = ?$

\*思路: 导线中的电流 - 大量带电粒子的定向运动

每个带电粒子(+q)产生的磁场 = 电流元产生磁场

$$Id\vec{l} \rightarrow d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}_0}{r^2}$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{qnvsd\vec{l} \times \vec{r}_0}{r^2}$$
$$= \frac{\mu_0}{4\pi} \frac{qnsdl\vec{v} \times \vec{r}_0}{r^2}$$

电流元中粒子数: dN=ndV=nsdl

$$\therefore \vec{B} = \frac{d\vec{B}}{dN} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}_0}{r^2}$$



电流元中的粒子数

### 例4: 点电荷q以 $\omega$ 绕o作半径为r的匀速圆周运动

求: 1) o点 B = ? 2) 电荷圆周运动的磁矩?

解: 1) 方法一

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}_0}{r^2} \rightarrow B_o = \frac{\mu_0 q\omega r}{4\pi r^2} = \frac{\mu_0 q\omega}{4\pi r}$$



方向: ①

方法二

$$q$$
作圆周运动——圆电流:  $I = nq = \frac{\omega}{2\pi}q$ 

圆心处: 
$$B_o = \frac{\mu_o I}{2r} = \frac{\mu_o q \omega}{4\pi r}$$
 方向:  $\odot$ 

2) 磁矩: 
$$P_m = IS = \frac{\omega}{2\pi}q\pi r^2 = \frac{q\omega r^2}{2}$$
 方向:  $\odot$ 

例5: 均匀带电圆盘 $(\sigma,R)$ , 绕中心轴以 $\omega$ 匀速转动,

求圆心处磁场强度。(习题7)

解: \*以运动电荷磁场公式解:

$$dq = \sigma ds \rightarrow dB = \frac{\mu_0}{4\pi} \frac{dq \cdot v}{r^2} \rightarrow B = \int dB$$

### \*取圆环 ─ 圆形电流 dI

$$dq = \sigma ds = \frac{q}{\pi R^2} 2\pi r dr$$

$$dI = ndq = \frac{\omega}{2\pi} dq$$

$$\rightarrow dB_0 = \frac{\mu_0 dI}{2r} \rightarrow B_0 = \int_0^R dB_0 = \frac{\mu_0 \omega q}{2\pi R}$$

圆盘磁矩? 
$$dP_m = SdI = \pi r^2 dI \rightarrow P_m = \int dP_m = \int_0^R \pi r^2 dI$$

# § 10.3 磁场的高斯定理

## ——磁场基本性质之一

#### 一、磁感应线

规定: {磁力线上每一点的切线方向为该点的磁场方向 通过垂直磁场的单位面积上的磁力线数等于该处 磁场的大小

特征: {每根磁力线都是环绕电流的闭合曲线 磁力线指向与电流方向服从右手定则

#### 二、磁通量

### 三、磁场中的高斯定理

磁感应线是闭合曲线→对闭合曲面:

穿入B线数=穿出B线数

高斯定理: 
$$\oint_S \vec{B} \cdot d\vec{S} = 0$$
 —— 磁场是无源场(涡旋场)

# § 10.4 妥培环路定律

### ——磁场基本性质之二

$$\oint_L \vec{B} \cdot d\vec{l} = \mu_0 \sum I_{\text{內}}$$
 —— 磁场是非保守力场

磁场沿任意闭合路径L的线积分(环流)等于 这个闭合路径所包围的电流强度的代数和乘以 µ<sub>0</sub>

#### \*注意:

I = I 指闭合稳恒电流或无限长电流 I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I = I I =

 $\bar{B}$  {环路上的  $\bar{B}$  是空间所有电流在该处产生磁场的矢量和  $\int_{I} \bar{B} \cdot d\bar{l}$  只与回路内所包围的电流有关

### \*利用安培环路定律求磁场分布:

- ——适用于具有特殊对称性的磁场
- 1) 对称性分析:  $\bar{B}$  线为同心圆环或平行线
- 2) 选取合适的闭合回路(过考察点)

$$\begin{cases} \oint_{L} \vec{B} \cdot d\vec{l} = \oint_{L} B \cos \theta dl \end{cases}$$
 环路某些部分  $B \setminus \theta$  是恒量  $\rightarrow B \cos \theta \int_{L_{i}} dl$  环路某些部分  $\theta = \frac{\pi}{2} \rightarrow \int_{L_{i}} B \cos \theta dl = 0$ 

回路是规则、可积的

$$\oint_{L} \vec{B} \cdot dl = \mu_0 \sum I \to B$$

例1: 求无限长圆柱形载流导体的磁场分布,圆半径 R,总电流 I,分布均匀。

解: 磁感应线是以圆柱轴线为中心的同心圆环(在 L I 的平面内) 过考察点r作闭合回路L同磁感应线 B

$$\iint \oint_{L} \vec{B} \cdot d\vec{l} = \oint_{L} B \cos 0^{\circ} dl = B \oint_{L} dl$$

$$= B \cdot 2\pi r = \mu_{0} \sum I$$

$$r > R$$
:  $\mu_o \sum I = \mu_o I \rightarrow B_{\text{sh}} = \frac{\mu_o I}{2\pi r}$ 

$$r < R$$
:  $\mu_o \sum I = \mu_o \pi r^2 i = \mu_o \pi r^2 \frac{I}{\pi R^2} \to B_{|z|} = \frac{\mu_o I r}{2\pi R^2}$ 

电流密度



### 例2: 求长直螺线管内的磁场分布 (P110)

- 1) 对称性分析:
- 2) 取平行于轴的矩形闭合回路: ABCD



$$\therefore B = \mu_0 nI = \mu_0 \frac{N}{l} I = \mu_0 i$$

\*取回路abcd:

$$\oint \vec{B} \cdot d\vec{l} = \int_{bc} \vec{B}_1 \cdot d\vec{l} + \int_{da} \vec{B}_2 \cdot d\vec{l} = B_1 \cdot \overline{bc} - B_2 \cdot \overline{da} = 0 \rightarrow B_1 = B_2$$

## 例3: 无限大通电平板 I周围B的分布

#### $y \ll a$

B线平行于电流平面 同一层面上B相等

$$\oint \vec{B} \cdot d\vec{l} = B \cdot \vec{bc} + B \cdot \vec{da} = 2Bl$$

$$= \mu_0 \sum I = \mu_0 \frac{I}{a} \cdot l \qquad \rightarrow B_P = \frac{\mu_0 I}{2a}$$

电流面密度:  $i = \frac{I}{a} \rightarrow B = \frac{\mu_0 i}{2}$ 

垂直于电流流动方向上单位长度(面积)内的电流



$$i \xrightarrow{X \times X \times X \times X} B = \frac{\mu_0 i}{2}$$

$$B = \frac{\mu_0 i}{2}$$

# § 10.5 磁场对运动电荷的作用:

#### 一、洛仑兹力

 $q, \vec{v}$ 进入 $\vec{B} \to \vec{F} = q\vec{v} \times \vec{B} \to \vec{F} \perp \vec{v} \to$ 洛仑兹力不做功

$$F = vB \sin \theta$$

$$\theta = 0, \pi \to \vec{v} // \vec{B} \to \vec{F} = 0$$

$$\theta = \frac{\pi}{2} \to \vec{v} \perp \vec{B} \to F_m = qvB \qquad \vec{F}_m = \vec{V}_0$$



 $\theta$ 任意角:  $v_1 = v_0 \sin \theta \rightarrow$ 匀速圆周运动  $v_{\parallel} = v_0 \cos \theta \rightarrow$  匀速直线运动

$$qv_{\perp}B = \frac{mv_{\perp}^{2}}{R} \begin{cases} R = \frac{mv_{\perp}}{qB} = \frac{mv_{0}\sin\theta}{qB} \\ T = \frac{2\pi R}{R} = \frac{2\pi m}{R} \end{cases} h = v_{\parallel}T = v_{0}\cos\theta \cdot \frac{2\pi m}{qB}$$





例1: 电子在均匀磁场B中作半径为R的圆周运动。

求:电子运动形成的等效圆电流I及磁矩 $P_m$ 

解: 
$$qvB = m\frac{v^2}{R}$$
 → 电子圆周运动速率:  $v = \frac{eBR}{m}$   $\rightarrow \omega = \frac{v}{R} = \frac{eB}{m}$ 

$$I = \frac{\omega}{2\pi} e = \frac{e^2 B}{2\pi m}$$
  $P_m = IS = I\pi R^2 = \frac{e^2 B R^2}{2m}$ 

## § 10.6 磁场对电流的作用: 安培力 (P122~128)

### 一、安培定律:

电流元 Idl中:



$$\therefore d\vec{F} = dN \cdot \vec{f}_m = nSdlq(\vec{v} \times \vec{B}) = qnSv(d\vec{l} \times \vec{B}) = Id\vec{l} \times \vec{B}$$

——安培力

### 二、磁场对载流导线的作用:

大量积分 大量积分 对载流导线积分 被作用的载流导线。

### 1. 一段载流导线在均匀磁场中:

a). 直线电流 L:

$$\vec{F} = \int_{L} I d\vec{l} \times \vec{B} = \left( \int_{L} I d\vec{l} \right) \times \vec{B} = I \vec{L} \times \vec{B}$$

$$F = I L B \sin \theta$$



b). 平面曲线电流 *a b*:

$$Id\vec{l} \rightarrow d\vec{F} = Id\vec{l} \times \vec{B}$$
$$dF = IdlB$$

$$\begin{cases} dF_x = -dF \sin \theta = -IBdl \sin \theta = -IBdy \\ dF_y = dF \cos \theta = IBdx \end{cases}$$

# \*结论1: 任何平面曲线电流在均匀磁场中受力, 等于对应直线电流的受力

### 2. 平面载流线圈在均匀磁场中:

$$\sum \vec{F} = 0$$

$$M = 2F_1 \frac{l_1}{2} \cos \varphi = (BIl_2)l_1 \cos \varphi = BIS \sin \theta$$

$$P_m = IS$$
  $\bar{P}_m = IS\bar{n}$   $\bar{P}_m \times \bar{B}$  方向:  $O \to O'$ 



$$M = P_m B \sin \theta$$
 
$$\begin{cases} \theta = 0: & M = 0 \rightarrow$$
 稳定平衡 
$$\theta = \pi: & M = 0 \rightarrow$$
 不稳定平衡 
$$\theta = \frac{\pi}{2}: & M_{max} = P_m B \end{cases}$$



\*结论2: 任意闭合载流线圈在均匀磁场中,所受合力 $\sum_{\bar{F}=0}$ ,在磁力矩  $\bar{M}=\bar{P}_m\times\bar{B}$ 作用下转动, $\bar{P}_m$ 趋向与外磁场方向一致。

### 3. 非均匀磁场中:

例1: 求作用在 $L_2$ 上的磁力和对于P点的磁力矩

解: 
$$d\vec{F} = Id\vec{l} \times \vec{B}$$

$$dF = IdxB = \frac{\mu_0 I}{2\pi x} Idx \rightarrow F = \int_a^{3a} dF = ?$$

$$d\vec{M} = \vec{r} \times d\vec{F} \rightarrow dM = (4a - x)dF = (4a - x)\frac{\mu_0 I^2}{2\pi} dx$$

$$M = \int_{a}^{3a} dM = \frac{\mu_0 I^2 a}{2\pi} (4 \ln 3 - 2)$$



例2: 弧形线圈 I,,另一载流长直导线 I,在圆弧中心。

求:线圈受到的磁力矩。

解:  $\bar{M} = \bar{P}_m \times \bar{B}$  ? (均匀磁场中)

圆弧段:  $d\vec{f} = I_2 d\vec{l} \times \vec{B} = 0$ 

直线段:  $df = I_2 dx B \sin \theta = I_2 \frac{\mu_0 I_1}{2\pi r} \frac{x}{r} dx$ 

$$= \frac{\mu_0 I_1 I_2}{2\pi} \frac{x dx}{x^2 + a^2}$$

$$f = \int df = 0$$

$$dM = xdf = \frac{\mu_0 I_1 I_2}{2\pi} \frac{x^2 dx}{x^2 + a^2}$$

$$\therefore M = \int_{-b}^{b} dM = \frac{\mu_0 I_1 I_2}{\pi} \left( b - atg^{-1} \frac{b}{a} \right)$$



# \*结论3: 载流导线在任意磁场中

受磁力: 
$$d\vec{F} = Id\vec{l} \times \vec{B} \rightarrow \vec{F} = \int d\vec{F}$$
磁力矩:  $d\vec{M} = \vec{r} \times d\vec{F} \rightarrow \vec{M} = \int d\vec{M}$ 

### § 10.7 磁力的功

功: 力对空间位移的积累

### 一、载流导线在均匀磁场中移动

$$\overline{ab}$$
受力:  $F = IlB$ 

$$a \rightarrow a'$$
:  $A = F \overline{aa'} = IlB \overline{aa'}$ 



$$= IBl(\overline{a'd} - \overline{ad}) = IB(S_2 - S_1)$$
$$= I(\Phi_{m_2} - \Phi_{m_1}) = I\Delta\Phi_m$$

### 二、载流线圈在均匀磁场中转动

磁力矩: 
$$\bar{M} = \bar{P}_m \times \bar{B}$$

$$M = ISB \sin \theta$$

转动
$$d\theta$$
:  $dA = -Md\theta = -ISB \sin \theta d\theta$   
=  $I \cdot d(SB \cos \theta) = Id\Phi_m$ 



# $A = \int dA = \int Id\Phi_m = I(\Phi_2 - \Phi_1) = I\Delta\Phi_m$

### \*结论:

磁力做功等于电流乘以通过回路的磁通量的增量。

$$A = I(\Phi_{m2} - \Phi_{m1}) = I\Delta\Phi_{m}$$
 
$$\begin{cases} A > 0: & \bar{n} = \bar{B} \text{ 的夹角 } \theta \bar{m} + \bar{A} > \Phi_{m} \\ A < 0: & \bar{n} = \bar{B} \text{ 的夹角 } \theta \text{ 增大}, \rightarrow \Phi_{m} \end{cases}$$

磁力方向总是指向使 Ф"增大的方向

# 第十章 小 结

### \*稳恒磁场的基本性质:

高斯定理:  $\int_{S} \bar{B} \cdot d\bar{S} = 0$  ——无源场、涡旋场

安培环路定律:  $\int_L \vec{B} \cdot d\vec{l} = \mu_0 \sum I_{\text{H}}$  ——非保守力场

### \*电流/运动电荷 → 磁场:

1) 毕-萨-拉定律求磁场分布:

电流: 
$$Idl \rightarrow d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{Idl \times \vec{r}_0}{r^2}$$
,  $I \setminus L \rightarrow \vec{B} = \int_L d\vec{B}$ 

运动电荷: 
$$dq, \bar{v} \to d\bar{B} = \frac{\mu_0}{4\pi} \cdot \frac{dq\bar{v} \times \bar{r}_0}{r^2} \to \bar{B} = \int d\bar{B}$$

(运动带电体)

圆周运动: 
$$dI = ndq = \frac{\omega}{2\pi}dq$$

圆心处: 
$$dB_0 = \frac{\mu_0 dI}{2r} \rightarrow B_0 = \int dB_0$$

磁矩: 
$$dP_m = SdI \rightarrow P_m = \int dP_m$$

### 几种常用结论:

载流直导线: 
$$B = \frac{\mu_0 I}{4\pi a} (\sin \beta_2 - \sin \beta_1)$$
 { 无限长:  $B = \frac{\mu_0 I}{2\pi a}$  \* 无限大载流平板:  $B = \frac{\mu_0 i}{2}$ 

载流圆线圈: 
$$B = \frac{\mu_0 I R^2}{2(x^2 + R^2)^{\frac{3}{2}}}$$
 圆心处:  $B_0 = \frac{\mu_0 I}{2R}$  圆弧:  $B_0 = \frac{\mu_0 I}{2R} \cdot \frac{\theta}{2\pi}$ 

长直螺线管:  $B = \mu_0 In$ 

## 2) 利用安培环路定律求电流产生的磁场 B

$$ar{B}$$
: 平行线或圆环线 过考察点选取合适的闭合回路  $\int_L ar{B} \cdot dar{l} = \oint_L B \cos \theta dl$  注意  $I$  的正负  $= B \oint_L dl = \mu_0 \sum I$ 

### \*磁场 ——运动电荷/电流:

对运动电荷: 
$$\bar{F} = q\bar{v} \times \bar{B} \rightarrow$$
 洛仑兹力

对电流: 
$$\vec{F} = \int_{L} Id\vec{l} \times \vec{B} \rightarrow$$
安培力

$$\frac{d\vec{F} = Id\vec{l} \times \vec{B} \to \vec{F} = \int_{L} d\vec{F} }{d\vec{M} = \vec{r} \times d\vec{F} \to M = \int_{L} dM}$$

### \*磁力的功:

$$A = I(\Phi_{m2} - \Phi_{m1}) = I\Delta\Phi_m$$