Lecture 19 – Intro to Network

University of Illinois ECE 422/CS 461

Announcement

MP3 due today, submit on GitHub

- Final Exam Dates:
 - May 12, 1:30 4:30 pm, 100 Noyes Laboratory
 - We likely won't use all 3 hours
 - Same policy as midterm
 - Similar format and difficulty, proportional in length

Goals of this Lecture

- By the end of this lecture you should...
 - Be familiar with the general workflow of network
 - Identify the different layers of the network stack
 - Know the purpose and function of each layer
 - Understand the security model of network

What is the Internet?

What is the Internet?

- To the layperson: useful services
 - Web, email, video, voice
- Technically: a global system that lets hosts communicate

- Packet: a structured sequence of bytes
 - Header: metadata used by network
 - Payload: data to be transported

 Packets are forwarded by a sequence of routers from sender to destination

Routers

- Receive outgoing packets from local hosts and attempt to deliver them to destination
- Deliver incoming packets to local hosts

Protocol Layering

- A network isn't defined by one protocol, but a stack of protocols!
 - Lower layers provide services to layers above
 - Higher layers use services of layers below

 A layer (largely) doesn't care how lower layers are implemented or what higher layers do

Layering of Protocols

- <u>Physical Layer</u>: Transmits raw bits over a physical data link
- <u>Link Layer</u>: Transmits packets between two hosts in the same network (i.e., physically connected)
- <u>Network Layer</u>: Transmits packets between two hosts in different networks (i.e., <u>internet</u>working)
- <u>Transport Layer</u>: Transmits packets between two processes on two hosts
- Application Layer: Transmits packets between end-user software

- <u>Physical Layer</u>: Transmits raw bits over a physical data link
- <u>Link Layer</u>: Transmits packets between two hosts in the same network (i.e., physically connected)
- <u>Network Layer</u>: Transmits packets between two hosts in different networks (i.e., <u>internet</u>working)
- <u>Transport Layer</u>: Transmits packets between two processes on two hosts
- Application Layer: Transmits packets between end-user software

- <u>Physical Layer</u>: Transmits raw bits over a physical data link
- <u>Link Layer</u>: Transmits packets between two hosts in the same network (i.e., physically connected)
- <u>Network Layer</u>: Transmits packets between two hosts in different networks (i.e., internetworking)
- <u>Transport Layer</u>: Transmits packets between two processes on two hosts
- Application Layer: Transmits packets between end-user software

What is a Network?

- Over the years, its meaning has expanded ...
- But originally, a network means a collection of physically connected devices

What is a Network?

- Over the years, its meaning has expanded ...
- But originally, a network means a collection of physically connected devices
 - A more modern view: a switch replaces the single telephone line

What is a Network?

- These physically connected devices (in the same network) communicate via a link-layer protocol
- How do they talk to outside devices?
 - Rely on the gateway router and internetworking

<u>Internet</u>work

- Connects multiple "networks"
- Over the years, one such internetwork got really big, now called the Internet
- Network layer uses the Internet Protocol (IP)

- <u>Physical Layer</u>: Transmits raw bits over a physical data link
- <u>Link Layer</u>: Transmits packets between two hosts in the same network (i.e., physically connected)
- <u>Network Layer</u>: Transmits packets between two hosts in different networks (i.e., <u>internet</u>working)
- <u>Transport Layer</u>: Transmits packets between two processes on two hosts
- Application Layer: Transmits packets between end-user software

Comparing Layers

- Network layer (IP)
 - IP addresses
 - 192.138.1.52
 - Out-of-order delivery
 - Unreliable (best-effort)

- Link layer
 - MAC addresses
 - 2C:54:91:88:C9:E3
 - Out-of-order delivery
 - Unreliable (best-effort)

- Transport layer
 - (IP address, port)
 - TCP ensures in-order and reliable delivery, and adds flow control, congestion control, ...
 - UDP does not do any of these

Packet Encapsulation

 A packet P2 of a higher level protocol is encapsulated into a packet P1 of a lower level protocol

Internet Packet Encapsulation

- Technically, only the network layer use "packets"
 - Transport Layer Data Unit: Segments
 - Network Layer Data Unit: Packets
 - Link Layer Data Unit: Frames
 - Physical Layer Data Unit: just bits

But we will just call all of them packets

Internet Packet Encapsulation

Layering of Protocols

Implications of the Internet's Hourglass Shape?

- Easy to roll out new application protocols (new process)
- Possible, but harder, to roll out new transport protocols
- Easy to deploy new network architectures
 (e.g., 5G) and new physical media (e.g., fiber)
- A universally agreed upon protocol (IP) for connecting networks together

How does your laptop access the Internet?

Step 0: Join a local network

- Establish a physical connection
- Get from a DHCP server:
 - IP address for your laptop and lease duration
 - IP address of gateway router
 - IP address of DNS server

Step 1: DNS Lookup

- You type a URL example.com into the browser
- Browser queries DNS (Domain Name System) server for the IP address of example.com

Step 1: DNS Lookup

- DNS is an application-layer protocol
 - Which uses UDP at transport-layer, which uses IP at network-layer, which uses link-layer ...
 - Laptop → gateway router → router → ... → router
 DNS server

Step 2: TCP Connection

- Set up a TCP connection with example.com
- TCP is a transport-layer protocol
 - IP at network-layer, link-layer, ...
 - Laptop → gateway router → router → ... → router
 → example.com web server

Step 3: Start Communicating

- HTTP request and response
 - Using the TCP connection, IP, link-layer, ...
 - Laptop → gateway router → router → ... → router
 → example.com web server

(Lay) Security Properties

- Availability:
 no one can deny me access to services
- Confidentiality:
 no one can "see" my private information
- Integrity:
 no one can "mess with" my data
- Authenticity:
 no can pretend to be someone else

- Availability: attacker can't prevent communication
- Confidentiality: attacker can't learn protected information
- Integrity: attacker can't modify communications
- Authenticity: attacker can't forge communications

Network Security Threat Model

- Different attacker models:
 - Passive vs. active attackers
 - Off-path vs. on-path attackers

Network Attacker Models

- Passive (on-path) attacker: can see all packets but cannot (or will not) modify them
- Scenario?

Network Attacker Models

 Active off-path attacker: can inject packets into the network, but cannot see traffic between hosts

Network Attacker Models

- Active on-path (man-in-the-middle) attacker: can see, modify, inject, and drop all packets
- Scenario?

 Which properties may each type of attacker compromise?

	Passive	Off-Path	MitM
Availability			
Confidentiality			
Integrity			
Authenticity			

• MitM attacker can see, modify, inject, block traffic

	Passive	Off-Path	MitM
Availability			?
Confidentiality			?
Integrity			?
Authenticity			?

- MitM attacker can see, modify, inject, block traffic
- A passive attacker cannot modify or inject packets

	Passive	Off-Path	MitM
Availability	_		?
Confidentiality	?		?
Integrity	_		?
Authenticity	_		?

- MitM attacker can see, modify, inject, block traffic
- A passive attacker cannot modify or inject packets
- An off-path attacker cannot see or modify packets (since packets do not go through them by defn)

	Passive	Off-Path	MitM
Availability	_	?	?
Confidentiality	?	_	?
Integrity	_	_	?
Authenticity	_	?	?

- MitM attacker can see, modify, inject, block traffic
- A passive attacker cannot modify or inject packets
- An off-path attacker cannot see or modify packets (since packets do not go through them by defn)
 - But ... may become on-path in poorly designed systems

	Passive	Off-Path	MitM
Availability	_	?	?
Confidentiality	?	— or ?	?
Integrity	_	— or ?	?
Authenticity	_	?	?

Roadmap for Network Security

- April 10 (today): Overview
- April 29 & May 1: DoS, anonymity

- April 24: DNS Security
- April 15 & 17: Transport-layer security

April 22: Link- and Network-layer security