Module 4 - Strain Gauges

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 2 - The Wheatstone Bridge

Topic 2 - The Wheatstone Bridge

- Resistive Gauges
- The Bridge Circuit
- Quarter, Half and Full Bridges
- Gauge Configuration Benefits

Resistive Gauges

The resistive strain gauge is bonded to the surface so that is deforms with the specimen. The change in length of the bonded gauge causes a change in resitance which is used as a measure of strain.

$$R = \rho_e L/A_c = fn(L, ...)$$

$$R = \frac{1}{R} + \Delta R$$

This is an exagerated picture so the change is very small...

Resistive Gauges

The Gauge Factor is typically used instead of the physical parameters.

$$GF \equiv rac{\delta R/R}{\delta L/L} = rac{\delta R/R}{\epsilon_a}$$

This number relates the relative change in resistance to the meausured strain.

The Bridge Circuit

A transducer converts the sensed information into a detectable signal. The signal might be mechanical, electrical, optical, or may take any other form that can be meaningfully recorded.

Tensile

loading

The Bridge Circuit

How does the bridge circuit work as a transducer?

Use KVL and the voltage divider rule find the relationship between the two voltages.

$$V_b = \left(\frac{R_3}{R_3 + R_4} - \frac{R_2}{R_1 + R_2}\right) \times V_s$$

Quarter, Half and Full Bridges

Gauge Configuration Benefits

	Arrangement	Compensation Provided	Bridge Constant κ
← □□□→	Single gauge in uniaxial stress	None	к = 1
	Two gauges sensing equal and opposite strain—typical bending arrangement	Temperature	κ = 2
<u>→</u> <u>1</u> <u>→</u>	Two gauges in uniaxial stress	Bending only	κ = 2
<u>1</u> 2 → <u>4</u> 3	Four gauges with pairs sensing equal and opposite strains	Temperature and bending	к=4
<u>1</u> 2 →	One axial gauge and one Poisson gauge		κ= 1 +ν
Shaft 6—6	Four gauges with pairs sensing equal and opposite strains—sensitive to torsion only; typical shaft arrangement.	Temperature and axial	κ = 4