Assignment no. 2

Exercise 2 (10 points) Consider a one-dimensional classification problem with $X = \mathbb{R}$ and $Y = \{-1, 1\}$. The marginal distribution of labels is given as follows:

$$p(y = -1) = \frac{3}{4}$$
 $p(y = +1) = \frac{1}{4}$

The conditional distribution p(x | y) is given in the following way:

$$p(x \mid y = -1) = \frac{1}{2\sqrt{\pi}}e^{-\frac{(x+1)^2}{4}}$$
Gaussian with $\mu = -1$ and $\sigma^2 = 2$

$$p(x \mid y = +1) = \frac{\sqrt{2}}{\sqrt{\pi}}e^{-2(x-3)^2}$$
Gaussian with $\mu = 3$ and $\sigma^2 = \frac{1}{4}$

Visualize the marginal distribution p(x) and the conditional distributions $p(y = -1 \mid x)$ and $p(y = +1 \mid x)$. Guess from the visualization of $p(y = -1 \mid x)$ and $p(y = +1 \mid x)$ what the Bayes-optimal classifier is like (**hint:** visualize the two conditional distributions in one plot).

Exercise 3 (20 points) Consider the following one-dimensional regression task: inputs x are uniformly distributed in [-1,3] and targets y are given as

$$y = f(x) = 0.6x^4 + 2x^3 - 8x^2$$

plus independent normally distributed noise with $\mu = 0$ and $\sigma^2 = 0.09$. What are $E(y \mid x_0)$ and the unavoidable error $Var(y \mid x_0)$ in this setting?

Perform polynomial regression to illustrate the bias-variance decomposition. To this end, perform the following steps for each degree n = 1, ..., 7:

- 1. Create 200 training sets with l = 20 samples each.
- 2. For each of the training sets, train a polynomial model with degree n and compute the predicted value for $x_0 = 1.8$.
- 3. Estimate the squared bias and the variance from the 200 predicted values and compute an overall estimate for the expected prediction error for $x_0 = 1.8$.

After having followed these steps, visualize your results appropriately. Discuss how the results illustrate the bias-variance decomposition.

Submission: electronically via Moodle:

Please take the submission instructions into account! Deadline: Monday, November 20, 2017, 1:00pm.