Fine Tuning: tutorial

Georgy Kalashnov

What is finetuning

- ▶ Large language model is loosely speaking a **regression model** predicting the **next word**, let us call it $f_{\theta}(X)$, where X is text so far
- Large language model are fitted with gradient descent, which is numerical optimization trying to find a local optimum of logit loss.
- We can try to use it as a **starting point** and fit $Y' = g(f_{\theta}(X'))$, for our own dataset (Y', X').
- ▶ So, **finetuning** is just running a regression on text

Three ways:

- Using OpenAl API
- Using huggingface.io Python library, computing on:
 - Rented hardware at vast.ai
 - Using your own laptop (can be feasible using a small model for a small task I demonstrate)

Why a CS person may want to do it

- ▶ Condense a more complex model output to a more cheap one
- Finetune the format/sentiment of the output
- Sometimes improve on few-shot prompts

How can it be useful to an economist

- Text as output.
 - ► We can test if the texts are **different** at all between treatment and control group (Ludwig et al., 2017)
 - With a more structural approach we can say even more Modarressi et al. (2025)
- ▶ Text as a control variable: we can fit a **propensity score** model $\hat{e}(X)$ with text or do outcome **regression adjustment** with it $\hat{m}(X)$. Or combine in an AIPW approach.

Example: Failures in Contingent Reasoning

- ► This is an experiment on contingent reasoning Martínez-Marquina et al. (2019).
- ► There were two treatment groups. In the end of experiment the subjects were asked to give an advice to future subjects.
- ▶ I will try to answer if the treatment had any effect on text

	Advice length
Treatment	
Deterministic	168.2
Probabilistic	256.3

Fitting and using the model

We prepare dataset:

- X: The advice.
- ► Also useful to use include a **preamble to a prompt**, e.g. "You are a classifier. Given the following advice text, predict whether it is 'Deterministic' or 'Probabilistic'."
- ➤ Y: Either a word 'Deterministic/Probabilistic', or a binary 0/1

Then we fit and predict the model on holdout dataset Note on priming the model with labels or preamble: we need to make sure the propensity model fits to data, rather than to their prior, of what "Deterministic" is. However setting a prior may improve quality of the fit.

Result: distribution of scores

Probability of correct classification: 0.84

The use of the model

As an outcome:

On a hold out set, test if the probability of correct classification is greater than $\mathbb{P}[W]$ Ludwig et al. (2017)

If using as a propensity score model:

- It is a good idea to calibrate the model on a hold out set $\hat{E}_{holdout}[\hat{f}_{\theta}(X_i)]$: as we see, the model tend to overfit
- ▶ **Note**: if we calibrate we could use few shot prompt engineering instead, the only problem with prompt engineering is poor calibration

Examples of misclassified outputs

Some outputs, where the model was not that sure:

- "No advice, no idea what I'm doing."
- "I would always choose the lowest price because you don't want to overpay."

Further reading

- Code: https://github.com/kalashnov/text_in_econ
- Open AI fine tuning documentation and advice: https: //platform.openai.com/docs/guides/fine-tuning
- ► A comprehensive guide for fine-tuning at large scale: https://huggingface.co/spaces/nanotron/ ultrascale-playbook?section=high_level_overview

- Ludwig Jens, Mullainathan Sendhil, Spiess Jann. Machine-learning tests for effects on multiple outcomes // arXiv preprint arXiv:1707.01473. 2017.
- Martínez-Marquina Alejandro, Niederle Muriel, Vespa Emanuel. Failures in contingent reasoning: The role of uncertainty // American Economic Review. 2019. 109, 10. 3437–3474.
- Modarressi Iman, Spiess Jann, Venugopal Amar. Causal Inference on Outcomes Learned from Text // arXiv preprint arXiv:2503.00725. 2025.