Digital Signal Processing

Assignment 1

Amaan

1

4

7

Software Installation	1

1

CONTENTS

2 Digital Filter

3 Difference Equation 2

4 Z-transform 2

5 Impulse Response

6 DFT and FFT

7 Exercises 7

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/amaan28/EE3900/raw/main/codes/filter_codes_Sound_Noise.wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.

2.3 Write the python code for removal of out of band noise and execute the code.

1

Solution:

import soundfile as sf from scipy import signal #read .wav file input signal,fs = sf.read(' filter codes Sound Noise.wav') #sampling frequency of Input signal sampl freq=fs #order of the filter order=4 #cutoff frquency 4kHz cutoff freq=4000.0 #digital frequency Wn=2*cutoff freq/sampl freq # b and a are numerator and denominator polynomials respectively b, a = signal.butter(order, Wn, 'low') #filter the input signal with butterworth filter output signal = signal.filtfilt(b, a, input signal) $#output \ signal = signal.lfilter(b, a,$ input signal) #write the output signal into .wav file sf.write('Sound With ReducedNoise.wav', output signal, fs)

2.4 The output the python script of Problem 2.3 is the audio file in Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.+

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \begin{cases} 1, 2, 3, 4, 2, 1 \end{cases}$$
 (3.1)

Sketch x(n).

Solution: The following code to sketch x(n), i.e, Fig. 3.1.

wget https://github.com/amaan28/EE3900/blob/main/codes/Ex 3.1.py

Fig. 3.1

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/gadepall/EE1310/raw/master/filter/codes/xnyn.py

3.3 Repeat the above exercise using a C code.

Solution: The following C code yields Fig. 3.3.

 $https://github.com/amaan28/EE3900/blob/main \\/codes/Ex_3.3.c$

Fig. 3.2

Fig. 3.3

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$Z\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem 3.1.

Solution: Applying (4.1) in (3.1),

$$X(z) = \frac{1}{z} + \frac{2}{z^2} + \frac{3}{z^3} + \frac{4}{z^4} + \frac{2}{z^5} + \frac{1}{z^6}$$
 (4.7)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.8}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.9)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.10}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.11)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.12)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.13}$$

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.14}$$

and from (4.12),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.15)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.16}$$

using the formula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.17}$$

Solution: From (4.12), we have,

$$\mathcal{Z}\lbrace a^{n}u(n)\rbrace = \sum_{n=0}^{n=\infty} a^{n}z^{-n} = \frac{1}{1 - az^{-1}}$$
 (4.18)

using the formula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.19)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: The following code plots Fig. 4.6.

wget https://github.com/amaan28/EE3900/blob/main/codes/dtft.py

Using (4.10), we observe that $|H(e^{J\omega})|$ is given by

$$|H(e^{J\omega})| = \left| \frac{1 + e^{-2J\omega}}{1 + \frac{1}{2}e^{-J\omega}} \right|$$

$$= \sqrt{\frac{(1 + \cos 2\omega)^2 + (\sin 2\omega)^2}{\left(1 + \frac{1}{2}\cos \omega\right)^2 + \left(\frac{1}{2}\sin \omega\right)^2}}$$
(4.21)

$$=\sqrt{\frac{2(1+\cos 2\omega)}{\frac{5}{4}+\cos \omega}}\tag{4.22}$$

$$=\sqrt{\frac{2(2\cos^2\omega)}{\frac{5}{4}+\cos\omega}}\tag{4.23}$$

$$=\frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}}\tag{4.24}$$

Thus,

$$\left| H\left(e^{J(\omega+2\pi)}\right) \right| = \frac{4|\cos(\omega+2\pi)|}{\sqrt{5+4\cos(\omega+2\pi)}} \quad (4.25)$$

$$=\frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}}\tag{4.26}$$

$$= |H(e^{J\omega})| \tag{4.27}$$

and so its fundamental period is 2π .

(5.8)

Fig. 4.6: $|H(e^{j\omega})|$

4.7 Express h(n) in terms of $H(e^{j\omega})$.

Solution: We have,

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
 (4.28)

However,

$$\int_{-\pi}^{\pi} e^{j\omega(n-k)} d\omega = \begin{cases} 2\pi & n=k\\ 0 & \text{otherwise} \end{cases}$$
 (4.29)

and so,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \tag{4.30}$$

$$=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}\int_{-\pi}^{\pi}h(k)e^{j\omega(n-k)}d\omega \qquad (4.31)$$

$$= \frac{1}{2\pi} 2\pi h(n) = h(n) \tag{4.32}$$

which is known as the Inverse Discrete Fourier Transform. Thus,

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.33)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}} e^{j\omega n} d\omega \qquad (4.34)$$

5 IMPULSE RESPONSE

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.10).

Solution:

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

$$1 + z^{-2} = \left(1 + \frac{1}{2}z^{-1}\right) * \left(2z^{-1} - 4\right) + 5 \quad (5.3)$$

$$H(z) = \frac{\left(1 + \frac{1}{2}z^{-1}\right) * \left(2z^{-1} - 4\right) + 5}{1 + \frac{1}{2}z^{-1}}$$
 (5.4)

$$=2z^{-1}-4+\frac{5}{1+\frac{1}{2}z^{-1}}$$
 (5.5)

Now,

$$\frac{5}{1 + \frac{1}{2}z^{-1}} = 5\left(1 - \frac{z^{-1}}{2} + \frac{z^{-2}}{4} - \frac{z^{-3}}{8} + \dots\right)$$

$$= 5 - \frac{5}{2}z^{-1} + \frac{5}{4}z^{-2} - \frac{5}{8}z^{-3} + \dots$$

$$= \sum_{n=0}^{\infty} 5\left(\frac{-z^{-1}}{2}\right)^{n}$$

$$(5.8)$$

$$H(z) = 2z^{-1} - 4 + \frac{5}{1 + \frac{1}{2}z^{-1}}$$
 (5.9)

$$=2z^{-1}-4+\sum_{n=0}^{\infty}5\left(\frac{-z^{-1}}{2}\right)^{n}$$
 (5.10)

As n < 5,

$$H(z) = 2z^{-1} - 4 + \sum_{n=0}^{4} 5\left(\frac{-z^{-1}}{2}\right)^n \quad (5.11)$$

$$H(z) = 1 - \frac{1}{2}z^{-1} + \frac{5}{4}z^{-2} - \frac{5}{8}z^{-3} + \frac{5}{16}z^{-4}$$
(5.12)

$$\implies h(n) = \left(1, \frac{-1}{2}, \frac{5}{4}, \frac{-5}{8}, \frac{5}{16}\right) \tag{5.13}$$

for general n,

$$h(n) = \begin{cases} 1 & n = 0 \\ -\frac{1}{2} & n = 1 \\ \frac{5}{4} \left(-\frac{1}{2} \right)^{n-2} & n \ge 2 \end{cases}$$
 (5.14)

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.15}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.10),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.16)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.17)

using (4.17) and (4.6).

This solution is valid for the ROC,

$$|z| > \frac{1}{2} \tag{5.18}$$

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution: The following code plots Fig. 5.3.

wget https://github.com/amaan28/EE3900/blob/main/codes/hn.py

Fig. 5.3: h(n) as the inverse of H(z)

$$|u(n)| \le 1 \tag{5.19}$$

$$\left| \left(-\frac{1}{2} \right)^n \right| \le 1 \tag{5.20}$$

$$\implies \left| \left(-\frac{1}{2} \right)^n u(n) \right| \le 1 \tag{5.21}$$

Similarly,

$$\left| \left(-\frac{1}{2} \right)^{n-2} u(n-2) \right| \le 1 \tag{5.22}$$

$$\implies |h(n)| \le 2 \tag{5.23}$$

Hence, h(n) is bounded.

5.4 Convergent? Justify using the ratio test.

Solution: For n > 2,

$$h(n) = \left(-\frac{1}{2}\right)^n + \left(-\frac{1}{2}\right)^{n-2} \tag{5.24}$$

$$h(n) = 5\left(-\frac{1}{2}\right)^n \tag{5.25}$$

$$\left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} < 1 \tag{5.26}$$

Hence, h(n) is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.27}$$

Is the system defined by (3.2) stable for the impulse response in (5.15)?

Solution:

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^n u(n) + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^{n-2} u(n-2) \quad (5.28)$$

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n + \sum_{n=2}^{\infty} \left(-\frac{1}{2} \right)^{n-2}$$
 (5.29)

These are both sums of infinite geometric progressions with first terms 1 and common ratios $-\frac{1}{2}$

$$\sum_{n=-\infty}^{\infty} h(n) = \frac{1}{1 - \left(-\frac{1}{2}\right)} + \frac{1}{1 - \left(-\frac{1}{2}\right)}$$
 (5.30)
= $\frac{4}{3} < \infty$ (5.31)

Therefore, the system is stable.

5.6 Verify the above result using a python code.

Solution:

wget https://github.com/amaan28/EE3900/blob/main/codes/Ex 5.6.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.32)$$

This is the definition of h(n).

Solution:

$$h(0) = 1 \tag{5.33}$$

Now, for n = 1,

$$h(1) + \frac{1}{2}h(0) = \delta(1) + \delta(-1) = 0$$
 (5.34)

$$\implies h(1) = -\frac{1}{2}h(0) = -\frac{1}{2} \tag{5.35}$$

For n = 2,

$$h(2) + \frac{1}{2}h(1) = \delta(2) + \delta(0) = 1$$
 (5.36)

$$\implies h(2) = 1 - \frac{1}{2}h(1) = \frac{5}{4} \tag{5.37}$$

For n > 2, the right hand side of the equation is always zero. Thus,

$$h(n) = -\frac{1}{2}h(n-1) \qquad n > 2 \tag{5.38}$$

$$h(3) = \frac{5}{4} \left(-\frac{1}{2} \right) \tag{5.39}$$

$$h(4) = \frac{5}{4} \left(-\frac{1}{2} \right)^2 \tag{5.40}$$

$$h(n) = \frac{5}{4} \left(-\frac{1}{2} \right)^{n-2} \tag{5.42}$$

Therefore,

$$h(n) = \begin{cases} 1 & n = 0 \\ -\frac{1}{2} & n = 1 \\ \frac{5}{4} \left(-\frac{1}{2}\right)^{n-2} & n \ge 2 \end{cases}$$
 (5.43)

Thus, it is bounded and convergent to 0

$$\lim_{n \to \infty} h(n) = 0 \tag{5.44}$$

The following code plots Fig. 5.7. Note that this is the same as Fig. 5.3.

wget https://github.com/amaan28/EE3900/blob/main/codes/hndef.py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k) \quad (5.45)$$

Comment. The operation in (5.45) is known as *convolution*.

Solution:

$$x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.46)

$$= \sum_{k=0}^{5} x(k)h(n-k)$$
 (5.47)

The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://github.com/amaan28/EE3900/blob/main/codes/ynconv.py

5.9 Express the above convolution using a Teoplitz matrix.

Solution:

$$\mathbf{y} = \mathbf{x} \circledast \mathbf{h} \tag{5.48}$$

$$\mathbf{y} = \begin{pmatrix} h_1 & 0 & \cdot & \cdot & \cdot & 0 \\ h_2 & h_1 & \cdot & \cdot & \cdot & 0 \\ h_3 & h_2 & h_1 & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & h_3 & h_2 & h_1 \\ 0 & \cdot & \cdot & \cdot & h_2 & h_1 \\ 0 & \cdot & \cdot & \cdot & 0 & h_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 (5.49)

Fig. 5.8: y(n) from the definition of convolution

5.10 Show that

$$y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k)$$
 (5.50)

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.51)

Solution: Substitute k = n - i

$$\sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{n-i=-\infty}^{\infty} x(n-i)h(n-(n-i))$$
(5.52)

$$=\sum_{i=-\infty}^{\infty}x(n-i)h(i)$$
 (5.53)

$$=\sum_{i=-\infty}^{\infty}x(n-i)h(i) \qquad (5.54)$$

since the order of limits does not matter for a summation. Thus,

$$\sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.55)

$$\implies x(n) * h(n) = h(n) * x(n)$$
 (5.56)

Therefore, convolution is commutative.

6 DFT and FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://github.com/amaan28/EE3900/blob/main/codes/yndft.py

Fig. 6.3: y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Download the code from

wget https://github.com/amaan28/EE3900/blob/main/codes/Ex_6.4,py

Observe that Fig. (??) is the same as y(n) in Fig. (3.2).

6.5 Wherever possible, express all the above equations as matrix equations.

7 Exercises

Answer the following questions by looking at the python code in Problem 2.3.

7.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (7.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify.

- 7.2 Repeat all the exercises in the previous sections for the above a and b.
- 7.3 What is the sampling frequency of the input signal?

Solution: Sampling frequency(fs)=44.1kHZ.

7.4 What is type, order and cutoff-frequency of the above butterworth filter

Solution: The given butterworth filter is low pass with order=2 and cutoff-frequency=4kHz.

7.5 Modifying the code with different input parameters and to get the best possible output.