axis_tiny_fifo.v

AUTHORS

JAY CONVERTINO

DATES

2021/06/04

INFORMATION

Brief

AXIS TINY FIFO, uses combinatorial logic to provide back pressure.

License MIT

Copyright 2021 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

axis_tiny_fifo

```
module axis_tiny_fifo #(
parameter
FIFO_DEPTH
=
4,
parameter
BUS_WIDTH
=
8
) ( input aclk, input arstn, output [(BUS_WIDTH*8)-1:0] m_axis_tdata, output
```

AXIS fifo that uses a shift register to buffer data. This Adds latency to the design in the amount of the FIFO_DEPTH. Though if the destination isn't ready it will build up data to that FIFO_DEPTH and overwrite any

non-valid data inserted.

Parameters

FIFO_DEPTH Number of transactions to buffer.

parameter

BUS_WIDTH Width of the input/output bus in bytes.

parameter

Ports

aclk Clock for AXIS

arstn Negative reset for AXIS

m_axis_tvalid When active high the output data is valid

m_axis_tlast Indicates last word in stream.

 m_axis_tready When set active high the output device is ready for data.

s_axis_tdata Input data

s_axis_tvalid When set active high the input data is valid
 s_axis_tlast Is this the last word in the stream (active high).
 s_axis_tready When active high the device is ready for input data.

VARIABLES

s_axis_tready

```
assign s_axis_tready = (
   reg_valid_buffer ||
   m_axis_tready
   ) & arstn
```

If any valid is 0, we are ready for data

m_axis_tdata

```
assign m_axis_tdata = reg_data_buffer[0]
```

assign output data as soon as its ready

m_axis_tvalid

```
assign m_axis_tvalid = reg_valid_buffer[0]
```

assign output data as soon as its ready

m_axis_tlast

```
assign m_axis_tlast = reg_last_buffer[0]
```

assign output data as soon as its ready