Reproducible Research with R

Matthew K. Lau

June 7, 14 and 21 (Total = 4.5 hrs)

Why make your work reproducible and why R?

Science is driven by the exchange of information and knowledge. A recent study demonstrated that only 26% of studies published in the journal *Science* could be reproduced (see Stodden *et al.* 2018). This was even more striking given that the study was conducted after *Science* had instituted its open data policy. Luckily, advances in open-source computer languages, such as **R**, provide a way to produce computations that can more easily document scientific research in a transparent, easily shared way.

In this course, we will cover how to conduct **reproducible** scientific research using the **R** programming language and supporting software that will enable researchers to more clearly and easily document projects. Participants will gain experience coding in **R** using the *RStudio* IDE and using other software for reproducible research, such as the *git* version control system.

Course Outline

The course will be a mix of demos, discussions and activities:

Day 1

- Reproducibility Framework (10 min)
- RStudio tour (10 min)
- ACTIVITY: Example Project (15 min)
- Getting help with R (5 min)
- BREAK (10 min)
- Basic plotting and function anatomy (10 min)
- ACTIVITY: Write your own plot code (10 min)
- Q/A and tips

Day 2

- Project Architecture (10 min)
- ACTIVITY: Ecological data project (20 min)
- BREAK (10 min)
- Data wrangling and testing (15 min)
- ACTIVITY: Test those data (20 min)
- Q/A and tips

Day 3

- Style: Best Practices (5 min)
- "Backing Up" Version Control (20 min)

- ACTIVITY: Initiate git for your project (30 min)
- Linear models (5 min)
- ACTIVITY: Add a linear model and version your code (30 min)
- BREAK (10 min)
- Dependencies: R Packages, CRAN and packrat (10 min)
- ACTIVITY: Use packrat
- Q/A and tips

Before Class (15-20 min)

Download and install:

- 1. **R** https://cran.r-project.org/
- 2. RStudio https://www.rstudio.com/products/rstudio/download/#download/

The course notes can be found in the docs directory of my course repo: https://github.com/MKLau/reprosci/archive/master.zip

I also highly recommend the following cheat sheets for reference: https://www.rstudio.com/resources/cheatsheets/

Also, review the code of conduct.

Code of Conduct (aka. how to be a good community member)

Like science, open-source software development is empowered by community. Everyone participating in this course will follow the Code of Conduct outline by the folks at ROpenSci (https://ropensci.org/coc).

Be considerate and respectiful of each other in speech and actions

Contribute a safe and effective learning experience for everyone

We all get out of this class what we put into it

Advanced Topic Discussions via Slack (Depending on Interests)

RMarkdown, dplyr, ggplot, github, Shiny Apps, R packages, Code performance with profVis, Data Provenance in R

References

Stodden, V, Seiler, J and Z, Ma (2018) An empirical analysis of journal policy effectiveness for computational reproducibility. PNAS 115: 2584–2589. http://www.pnas.org/content/115/11/2584