

2. Problem Characteristics of NNs

Philipp Holzinger

Content

- 1. Algorithmic Description
- 2. Possible Optimizations

Pseudocode Description

Fully connected layer

```
for (b = 0 to B-1) // batch
for (n = 0 to N-1) // neuron
for (i = 0 to I-1) // input
```


Working with Filters

2D Example

1	4	4
2	3	1
4	3	2

Part of Input

*

Filter Kernel

Output

Input

Pseudocode Description

Convolutional layer

```
for (b = 0 to B-1) // batch for (k = 0 to K-1) // output channels for (c = 0 to C-1) // input channels for (x = 0 to X-1) // input columns for (y = 0 to Y-1) // input rows for (fx = 0 to FX-1) // filter columns for (fy = 0 to FY-1) // filter rows
```


Processing

- What data is used in one cycle?
- What data is used in consecutive cycles?

Weights

Outputs

Things can be Optimized

Fully connected layer

```
for (b = 0 to B-1) // batch
for (n = 0 to N-1) // neuron
for (i = 0 to I-1) // input
```


Convolutional layer

```
for (b = 0 to B-1) // batch for (k = 0 to K-1) // output channels for (c = 0 to C-1) // input channels for (x = 0 to X-1) // input columns for (y = 0 to Y-1) // input rows for (fx = 0 to FX-1) // filter columns for (fy = 0 to FY-1) // filter rows
```


Data stationarity

Data Parallelism

Input Parallel	Weight Parallel	Output Parallel
Reduce input bandwidth	Reduce weight bandwidth	Reduce output bandwidth

Data Stationarity

Input Stationarity

Data Stationarity

Weight Stationarity

Keep weights in memory for later use

