

Maths 21/05/2024

2024-05-20

Lucas Duchet-Annez

LHB 2023/2024 *101* Maths Lucas Duchet-Annez

1 Exercice 53 p 460

1.1 Partie A

1.1.1

x_{i}	i	1	2	3	4	5	6	Total
p_i		$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1
p_i	x_i	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	<u>5</u>	1	$\frac{7}{2}$

x_i	1	2	3	4	5	6	7	8	9	10	11	12	Total
p_i	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	1									
$p_i x_i$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{7}{12}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{10}{12}$	$\frac{11}{12}$	1	$\frac{13}{2}$

1.1.2

$$Z = X + Y$$

Ainsi
$$E(Z)=E(X)+E(Y)=\frac{13}{2}+\frac{7}{2}=10$$

1.1.3

Les deux lancers sont indépendants car on lance deux dés différents

1.1.4

Les deux variables étant indépendantes $V(Z)=V(X)+V(Y)=\frac{35}{12}+\frac{143}{12}=\frac{89}{6}$

1.2 Partie B

1.2.1

Il y a $12 \times 6 = 72$ issues possibles et parmi elles il y a 6 avec un total supérieur à 15 (6;10), (5;11), (6;11), (4;12), (5;12), (6;12)

Ainsi la probabilité d'obtenir ce bonus est de $\frac{6}{72}=\frac{1}{12}$

1.2.2

Comme dit précédemment deux lancers sont indépendants soit B la variable aléatoire qui associe 1 si un joueur a eu le bonus, 0 s'il ne l'a pas eu, et S_n le nombre de bonus obtenus sur n lancers de deux dés alors S_n suit une loi binomiale de paramètre n=n et $p=\frac{1}{12}$ $E(S_n)=n\times \frac{1}{12}=\frac{n}{12}$

et
$$V(S_n) = n \times \frac{1}{12} \times \frac{11}{12} = \frac{11n}{24}$$

1.2.3

$$Z_n = nZ$$

$$E(Z_n+S_n) = E(Z_n) + E(S_n) = nE(Z) + \tfrac{n}{12} = 10n + \tfrac{n}{12} = \tfrac{121n}{12}$$

1 2 4

On cherche le plus petit n tel que $E(Z_n+S_n)\geq 300$

Maths Lucas Duchet-Annez

$$\frac{121n}{12} \ge 300$$

$$n \ge \frac{3600}{121} \approx 29.75$$

Ainsi le nombre moyen de lancers pour finir la partie est de 30 lancers.