chaque fois que vous écouterez au casque des enregistrements pour R 3.15 veillez à limiter le volume sonore avant l'écoute : protégez vos oreilles

R 3.15 - séance 2

Numérisation des signaux sonores

Numérisation?

audio ou vidéo

audio ou vidéo

Numérisation?

signal analogique

Information analogique <u>audio</u>

- Échantillonnage
- Quantification
- Codage
 - → numérisation réalisée, train binaire constitué : 11011...

- **Echantillonner**: prendre des valeurs (= des échantillons) du signal analogique tous les Te
- Te=période d'échantillonnage (en seconde): c'est l'intervalle de temps séparant la prise consécutive de 2 échantillons

• Pendant tous les Te:

Échantillonnage puis quantification puis codage

- Fe = fréquence d'échantillonnage = nombre d'échantillons du signal analogique pris par seconde
 - 1 échantillon ◆ →

pris en Te

? échantillons ← → →

pris en 1s

Fe = 1/Te(Hz) (s)

6/28

• Exemple: Te=100 μs

alors Fe=1/Te = 1/(100.10-6)

Fe= 10⁴ échantillons par seconde

Fe= 10⁴ Hz

• Exemple: Fe =44 100 Hz combien d'échantillons pris en 1 heure? 44 100 échantillons pris par seconde 44 100 x 3600 échantillons pris en 1h (3600 s = 1 h)

8 / 28

• En stéréo : il y a deux voies donc le nombre d'échantillons est deux fois plus grand

temps

temps

 Il faudrait pouvoir restituer dans les hauts parleurs le « meilleur » signal sonore analogique

Signal analogique

Signal échantillonné

Signal restitué

Fe élevée

Signal analogique

Signal échantillonné

Signal restitué

• Théorème de Nyquist Shannon (admis): pour échantillonner correctement un signal analogique dont le spectre est borné en valeur supérieure par Fmax il faut choisir une fréquence d'échantillonnage (au moins) égale à 2.Fmax.

si Fmax = 4000 Hz alors **Fe = 8000 Hz**

si Fmax = 24000 Hz alors **Fe = 48000 Hz**

 Quand on choisit Fe avec Adobe Audition le logiciel limite automatiquement Fmax à Fe/2 en utilisant un filtre (pour respecter le théorème de Nyquist Shannon)

Fe=8000Hz

fréquence d'échantillonnage de l'enregistrement

- Conséquence : si Fe « faible » ?
 - Enregistrement étouffé : pas assez de fréquences dans le spectre

- Conséquence : si Fe « faible » ?
 - Enregistrement étouffé : pas assez de fréquences dans le spectre

ici Fe=1 800 Hz

donc Fmax= 900 Hz

- Conséquence : si Fe « faible » ?
 - Enregistrement étouffé : pas assez de fréquences dans le spectre

ici Fe=1 800 Hz

donc Fmax= 900 Hz

Quantifier?

Objectif: transformer les échantillons en codes binaires

- Les codes binaires différents sont en nombre limité, déterminé par n la profondeur de quantification
 - n bits pour 2ⁿ codes différents possibles
- Donc nombre limité d'échantillons différents appelés valeurs quantifiées : 2ⁿ échantillons différents possibles

Quantifier?

Profondeur de quantification (bits)	Nb de codes binaires différents possibles	Nb de valeurs quantifiées différentes possibles	
8	256	256	
16	65 536	65 536	
n	2 ⁿ	2 ⁿ	

Profondeurs de quantification dans Audacity

 Objectif : remplacer les échantillons par les codes binaires

n= profondeur de quantification

n faible → bruit de quantification

 Objectif : remplacer les échantillons par les codes binaires

n= profondeur de quantification

n faible → bruit de quantification

ici n=3 bits

 Objectif : remplacer les échantillons par les codes binaires

• n= profondeur de quantification

n faible → bruit de quantification

ici n=3 bits

Objectif: remplacer les échantillons par les codes

binaires

3 bits, 8 valeurs quantifiées

PCM

Pulse Coded Modulation

Échantillonnage

+

quantification

+

codage

= format audio numérique non compressé

Formats compressés

Format compressé =

Échantillonnage + quantification + codage + compression

compression = nouveau codage

→ des informations sont retirées et n n'est plus une constante

avec pertes ou sans pertes

Poids et débits audio

 Poids : nombre d'octets d'un enregistrement sonore numérique

Unités: octets ou ses multiples Kio, Mio, Gio

- Débit d'enregistrement et de lecture de l'audio numérique :
 - nombre de bits d'une seconde d'enregistrement sonore numérique
 - nombre de bits par seconde lus par un lecteur audio pour restituer le signal analogique

Unités: bits/s ou ses multiples kbit/s, Mbit/s, Gbit/s

Poids et débits audio

Débits, en multiples du bit/s	Noms	Poids, en multiples de l'octet	Noms
1 kbit=10³ bit	1 <u>ki</u> lo bit	1 kio=1024 octet	1 <u>ki</u> bi octet
1 Mbit=10 ⁶ bit	1 <u>mé</u> ga bit	1 Mio=(1024) ² octet	1 <u>mé</u> bi octet
1 Gbit=10 ⁹ bit	1 <u>gi</u> ga bit	1 Gio=(1024) ³ octet	1 <u>gi</u> bi octet
1 Tbit=10 ¹² bit	1 <u>té</u> ra bit	1 Tio=(1024) ⁴ octet	1 <u>té</u> bi octet