1. Rough guidelines to interpret p-values.

First of all, be sure that you know what your null hypothesis is (H_0) and the alternative (H_1) . Usually, H_0 is a statement like:

X and Y are independent

A specific parameter value is equal to 0

A normal distribution is suitable to describe my data or the more colloquial my data follows a Normal Distribution

Relatively to the commonly used significance level of $\alpha = 0.05$, the p-value is often interpreted as:

- a) p-value < 0.01, strong evidence against H_0
- b) 0.01 < p-value < 0.05, some evidence against H_0
- c) 0.05 < p-value < 0.1, weak evidence against H_0
- d) p-value> 0.1, no evidence against H_0

We never accept H_0 , we don't conclude that it is true. We know a priori that H_0 is not true and if we have no evidence against it, we fail to reject it. When we report a p-value, we're describing the probability of observing our data (or more extreme data) given the assumption that the null hypothesis is true. The convention is if this probability is low enough, we decide to reject the null and tentatively adopt the alternative.

For instance, testing independence for two variables, if we are in case d) we might say the data shows no evidence that the variables are dependent.