Search Algorithms

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

March 15, 2019

```
function BT(\tau, X, D, C)
//\tau: current assignment
//X: vars ; D: domains; C: constraints
    x_i := \mathtt{Select}(X)
    if x_i = \text{nil} then return \tau
    for each a \in d_i do
         if Consistent(\tau, C, x_i, a)) then
              \sigma := \mathrm{BT}(\tau \circ (x_i \mapsto a), X, D[d_i \to \{a\}], C)
              if \sigma \neq nil then return \sigma
    return nil
function Consistent(\tau, C, x_i, a):
    for each c \in C s.t. scope(c) \not\subseteq vars(\tau) \land scope(c) \subseteq vars(\tau) \cup \{x_i\}
         if \neg c(\tau \circ (x_i \mapsto a)) then return false
    return true
```

Improvements on Backtracking

- We say a (partial) assignment is good if it can be extended to a solution, nogood otherwise
- We say BT makes a mistake when it moves from a good assignment to a nogood one
- We say BT recovers from a mistake when it backtracks from a nogood assignment to a good one
- Shortcomings of BT (which are related to each other):
 - ◆ BT detects very late when a mistake has been made (⇒ Look-ahead)

					Q						
		\overline{Q}		X	X	X					
Q	X	X	X		X		X				
X	X	X		X	X			X	Q		
X	X	X			X	Q		X	X	X	
X		X	X		X	X	X	Q	X	X	X
X		X		X	X	X	X	X	X		X
X		X	X		X	X		X	X	X	
X		X		X	X	X		X	X	X	X
X	X	X	X	X	X	X	X	X	X	X	X

					Q						
		Q		X	X	X					
Q	X	X	X		X		X				
X	X	X		X	X			X	Q		
X	X	X			X	Q		X	X	X	
X		X	X		X	X	X	Q	X	X	X
X	Q	X		X	X	X	X	X	X		X
X		X	X	Q	X	X		X	X	X	
X		X		X	X	X	Q	X	X	X	X
X	X	X	X	X	X	X	X	X	X	X	X

Improvements on Backtracking

- We say a (partial) assignment is good if it can be extended to a solution, nogood otherwise
- We say BT makes a mistake when it moves from a good assignment to a nogood one
- We say BT recovers from a mistake when it backtracks from a nogood assignment to a good one
- Shortcomings of BT (which are related to each other):
 - ◆ BT detects very late when a mistake has been made (⇒ Look-ahead)
 - ◆ BT may make again and again the same mistakes
 (⇒ Nogood recording)

					Q						
		\overline{Q}		X	X	X					
Q	X	X	X		X		X				
X	X	X		X	X			X	\overline{Q}		
X	X	X			X	Q		X	X	X	
X		X	X		X	X	X	Q	X	X	X
X		X		X	X	X	X	X	X		X
X		X	X		X	X		X	X	X	
X		X		X	X	X		X	X	X	X
X	X	X	X	X	X	X	X	X	X	X	X

Improvements on Backtracking

- We say a (partial) assignment is good if it can be extended to a solution, nogood otherwise
- We say BT makes a mistake when it moves from a good assignment to a nogood one
- We say BT recovers from a mistake when it backtracks from a nogood assignment to a good one
- Shortcomings of BT (which are related to each other):
 - ◆ BT detects very late when a mistake has been made (⇒ Look-ahead)
 - ◆ BT may make again and again the same mistakes
 (→ Nogood recording)
 - ◆ BT is very weak recovering from mistakes
 (⇒ Backjumping)

											Q
										X	X
					Q				X		X
		Q		X	X	X		X			X
Q	X	X	X		X		X				X
X	X	X		X	X	X		X	Q		X
X	X	X			X	Q		X	X	X	X
X		X	X	X	X	X	X	Q	X	X	X
X	•	X	X	X	X	X	X	X	X	•	X
X	•	X	X	•	X	X	•	X	X	X	X
X	X	X	•	X	X	X	•	X	X	X	X
X	X	X	X	X	X	X	X	X	X	X	X

Improvements on Backtracking

- A (partial) assignment is good if it can be extended to a solution, nogood otherwise
- BT makes a mistake when it moves from a good assignment to a nogood one
- BT recovers from a mistake when it backtracks from a nogood assignment to a good one
- Shortcomings of BT (which are related to each other):
 - ◆ BT detects very late when a mistake has been made (⇒ Look-ahead)
 - ◆ BT may make again and again the same mistakes
 (⇒ Nogood recording)
 - ◆ BT is very weak recovering from mistakes
 (⇒ Backjumping)

Look Ahead

- At each step BT checks consistency wrt. past decisions
- This is why BT is called a look-back algorithm
- Look-ahead algorithms use domain filtering / propagation: they identify domain values of unassigned variables that are not compatible with the current assignment, and prune them
- When some domain becomes empty we can backtrack (as current assignment is incompatible with any value)
- One of the most common look-ahead algorithms: Forward Checking (FC)
- Forward checking guarantees that all the constraints between already assigned variables and one yet unassigned variable are arc consistent

Forward Checking

```
function FC(\tau, X, D, C)
//\tau: current assignment
//X: vars; D: domains; C: constraints
     x_i := \mathtt{Select}(X)
     if x_i = \text{nil} then return \tau
     for each a \in d_i do
          // \tau \circ (x_i \mapsto a) consistent
          D' := \mathtt{LookAhead}(	au \circ (x_i \mapsto a), X, D[d_i \to \{a\}], C)
          if \forall_{d_i' \in D'} d_i' \neq \emptyset then
               \sigma := FC(\tau \circ (x_i \mapsto a), X, D', C)
               if \sigma \neq nil then return \sigma
     return nil
function LookAhead(\tau, X, D, C)
     for each x_i \in X - \text{vars}(\tau) do
          for each c \in C s.t. scope(c) \not\subseteq vars(\tau) \land scope(c) \subseteq vars(\tau) \cup \{x_i\}
               for each b \in d_i do
                    if \neg c(\tau \circ (x_i \mapsto b)) then remove b from d_i
     return D
                                                                                                       15 / 50
```

Other Look-Ahead Algorithms

In general:

```
function DFS+Propagation(X,D,C)
// X: vars; D: domains; C: constraints
x_i := \operatorname{Select}(X,D,C)
if x_i = \operatorname{nil} then return solution
for each a \in d_i do
D' := \operatorname{Propagation}(x_i,X,D[d_i \to \{a\}],C)
if \forall_{d_i' \in D'} \ d_i' \neq \emptyset then
\sigma := \operatorname{DFS+Propagation}(X,D',C)
if \sigma \neq \operatorname{nil} then return \sigma
return \sigma
```

Other Look-Ahead Algorithms

Many options for function Propagation:

- Full AC (results in the algorithm Maintaining Arc Consistency, MAC)
- Full Look-Ahead (binary CSP's):

```
function \operatorname{FL}(x_i, X, D, C)

//\ldots, x_{i-1}: already assigned; x_i: last assigned; x_{i+1}, \ldots: unassigned for each j=i+1\ldots n do // Forward checking Revise(x_j, c_{ij}) for each j=i+1\ldots n, k=i+1\ldots n, j\neq k do Revise(x_j, c_{jk})
```

■ Partial Look-Ahead (binary CSP's):

```
function \operatorname{PL}(x_i, X, D, C)

//\ldots, x_{i-1}: already assigned; x_i: last assigned; x_{i+1}, \ldots: unassigned for each j=i+1\ldots n do // Forward checking Revise(x_j, c_{ij}) for each j=i+1\ldots n, k=j+1\ldots n do Revise(x_j, c_{jk})
```

Variable/Value Selection Heuristics

```
function DFS+Propagation(X,D,C)
// X: vars; D: domains; C: constraints
x_i := \operatorname{Select}(X,D,C) // variable selection is done here
if x_i = \operatorname{nil} then return solution
for each a \in d_i do // value selection is done here
D' := \operatorname{Propagation}(X,D[d_i \to \{a\}],C)
if \forall_{d_i' \in D'} \ d_i' \neq \emptyset then
\sigma := \operatorname{DFS+Propagation}(X,D',C)
if \sigma \neq \operatorname{nil} then return \sigma
return \sigma
```

- Variable Selection: the next variable to branch on
- Value Selection: how the domain of the chosen variable is to be explored
- Choices at the top of the search tree have a huge impact on efficiency

Variable/Value Selection Heuristics

- Goal:
 - Minimize no. of nodes of the search space visited by the algorithm
- The heuristics can be:
 - ◆ Deterministic vs. randomized
 - ◆ Static vs. dynamic
 - Local vs. shared
 - ◆ General-purpose vs. application-dependent

Variable Selection Heuristics

- lacktriangle Observation: given a partial assignment au
 - (1) If there is a solution extending τ , then any variable is OK
 - (2) If there is no solution extending τ , we should choose a variable that discovers that asap
- \blacksquare The most common situation in the search is (2)
- First-fail principle: choose the variable that leads to a conflict the fastest

- Deterministic dynamic local heuristics
 - **♦** ...
 - ◆ INT_VAR_SIZE_MIN(): smallest domain size
 - ◆ INT_VAR_DEGREE_MAX(): largest degree
- degree of a variable = number of constraints where it appears

- Deterministic dynamic shared heuristics
 - **♦** ...
 - ◆ INT_VAR_AFC_MAX(afc, t): largest AFC
- Accumulated failure count (AFC) of a constraint counts how often domains of variables in its scope became empty while propagating the constraint
- AFC of a variable is the sum of AFCs of all constraints where the variable appears

More precisely:

- After constraint propagation, the AFCs of all constraints are updated:
 - If some domain becomes empty while propagating p, afc(p) is incremented by 1
 - For all other constraints q, afc(q) is updated by a decay-factor d $(0 < d \le 1)$: $afc(q) := d \cdot afc(q)$
- The AFC afc(x) of a variable x is then defined as: $afc(x) = afc(p_1) + \cdots + afc(p_n)$, where the p_i are the constraints that depend on x.
- The AFC afc(p) of a constraint p is initialized to 1. So the AFC of a variable x is initialized to its degree.

- Deterministic dynamic shared heuristics
 - **♦** ...
 - ◆ INT_VAR_ACTION_MAX(a, t): highest action
- The action of a variable captures how often its domain has been reduced during constraint propagation

More precisely:

- After constraint propagation, the actions of all variables are updated:
 - If some value has been removed from the domain of x, act(x) is incremented by 1: act(x) := act(x) + 1
 - Otherwise, $\operatorname{act}(x)$ is updated by a decay-factor d $(0 < d \le 1)$: $\operatorname{act}(x) := d \operatorname{act}(x)$
 - lacktriangle The action of a variable x is initially 1

Value Selection Heuristics

- lacktriangle Observation: given a partial assignment au and a var x
 - (1) If there is no solution extending τ , we can choose any value for x
 - (2) If there is a solution extending τ , then value chosen for x should belong to a solution
- First-success principle: choose the value that has the most chances of being part in a solution

Branching Strategies

- Branching tells how to extend nodes in search tree. Let:
 - lacktriangle x be a var chosen by the variable selection heuristic
 - lacktriangle v be a value chosen by the value selection heuristic

A node can be extended according to different strategies:

- lacktriangle Enumeration: a branch x=v for each value $v\in d_x$
- lacktriangle Binary Choice Points: two branches, one with x=v and the other with $x\neq v$
- lacktriangle Domain Splitting: two branches, one with $x \leq v$ and the other with x > v (or one with x < v and the other with $x \geq v$)
- The constraints that label the new edges (e.g., x = v) are called branching constraints

Branching in Gecode

[enumeration]

- INT_VALUES_MIN(): all values starting from smallest
- INT_VALUES_MAX(): all values starting from largest

[domain splitting]

- INT_VAL_SPLIT_MIN(): values not greater than $\frac{min+max}{2}$
- INT_VAL_SPLIT_MAX(): values greater than $\frac{min+max}{2}$

Branching in Gecode

[binary choice points]

- INT_VAL_RND(r): random value
- INT_VAL_MIN(): smallest value
- INT_VAL_MED(): greatest value not greater than the median
- INT_VAL_MAX(): largest value
- **.**.

Improvements on Backtracking

- A (partial) assignment is good if it can be extended to a solution, nogood otherwise
- BT makes a mistake when it moves from a good assignment to a nogood one
- BT recovers from a mistake when it backtracks from a nogood assignment to a good one
- Shortcomings of BT (which are related to each other):
 - ◆ BT detects very late when a mistake has been made (⇒ Look-ahead)
 - ◆ BT may make again and again the same mistakes
 (⇒ Nogood recording)
 - ◆ BT is very weak recovering from mistakes
 (⇒ Backjumping)

Nogood Recording

- We can add redundant constraints recording past mistakes to avoid repeating them in the future
- This can reduce the search tree significantly
- A deadend in the search tree is a node that does not lead to a solution
- A nogood is a set of branching constraints inconsistent with any solution
- In backtracking search, each deadend gives a nogood
- Adding a constraint forbidding this nogood is too late for this node, but may be useful for pruning in the future
- Nogood recording is a form of caching/memoization: store computations & reuse them instead of recomputing

Nogood Recording

										Q	
									X	X	X
					Q			X		X	
		\overline{Q}		X	X	X	X			X	
\overline{Q}	X	X	X		X	X	X			X	
X	X	X		X	X			X	Q	X	
X	X	X		X	X	Q		X	X	X	
X		X	X		X	X	X	Q	X	X	X
X	\overline{Q}	X		X	X	X	X	X	X	X	X
X	X	X	X	Q	X	X		X	X	X	
X	X	X	X	X	X	X	\overline{Q}	X	X	X	X
X	X	X	X	X	X	X	X	X	X	X	X

$$c_1 = 11$$
, $c_3 = 6$, $c_4 = 3$, $c_5 = 1$, $c_6 = 10$, $c_7 = 7$, $c_8 = 9$, $c_9 = 2$, $c_{10} = 5$, $c_{11} = 8$,

is a nogood

Nogood Recording

					Q						
		Q		X	X	X					
\overline{Q}	X	X	X		X		X				
X	X	X		X	X			X	Q		
X	X	X			X	\overline{Q}		X	X	X	
X		X	X		X	X	X	\overline{Q}	X	X	X
X		X		X	X	X	X	X	X		X
X		X	X		X	X		X	X	X	
X		X		X	X	X		X	X	X	X
X	X	X	X	X	X	X	X	X	X	X	X

$$c_3 = 6$$
, $c_4 = 3$, $c_5 = 1$, $c_6 = 10$, $c_7 = 7$, $c_8 = 9$

is a nogood too (it is the actual reason for the conflict!)

$$\neg(c_3 = 6 \land c_4 = 3 \land c_5 = 1 \land c_6 = 10 \land c_7 = 7 \land c_8 = 9)$$
 can be added

Discovering Nogoods

- Assume that constraint propagation records, for each a removed from the domain of a var x at node $p = \{b_1, \ldots, b_j\}$, an explanation $\exp(x \neq a) \subseteq p$ s.t. $\exp(x \neq a) \cup \{x = a\}$ is a nogood (i.e., $\exp(x \neq a)$ implies $x \neq a$)
- $\exp(x \neq a)$ accounts for the removal of a from the domain of x

\overline{Q}				
1	1	Q		
1	2	12	2	
12		2	1	2
1		2		1

- $\exp(c_3 \neq 1)$ is $\{c_1 = 1\}$ $\exp(c_3 \neq 4)$ is $\{c_2 = 3\}$ $\exp(c_3 \neq 3)$ can be $\{c_1 = 1\}$ or $\{c_2 = 3\}$

Discovering Nogoods

- Let $p = \{b_1, \dots, b_j\}$ be a deadend node in the search tree. The jumpback nogood for p, denoted J(p), is defined as:
 - lacklosh If p is a leaf node and x is a variable whose domain has become empty, let D be its original domain. Then

$$J(p) := \bigcup_{a \in D} \exp(x \neq a)$$

Discovering Nogoods

- Let $p = \{b_1, \dots, b_j\}$ be a deadend node in the search tree. The jumpback nogood for p, denoted J(p), is defined as:
 - lack If p is not a leaf node, let:
 - \blacksquare x be the selected variable,
 - a_1, \ldots, a_k all the possible values of x attempted by the branching strategy, each of which has failed
 - \blacksquare a'_1, \ldots, a'_l the pruned values of x by propagation

(so the domain of x is $\{a_1,\ldots,a_k,a'_1,\ldots,a'_l\}$). Then

$$J(p) := \bigcup_{i=1}^{k} \left(J(p \cup \{x = a_i\}) - \{x = a_i\} \right) \cup \bigcup_{j=1}^{l} \exp(x \neq a'_j)$$

The constraint

$$\neg \bigwedge_{c \in J(p)} c$$

forbids the nogood

Nogood Database Management

- If the nogood database becomes too large and too expensive to query, the search reduction may not pay off
- Idea: keep only nogoods that are most likely to be useful
- E.g., clean up the nogood database after every M decisions, discarding a nogood if it has not been active enough (for instance, measured with the accumulated failure count)

Improvements on Backtracking

- A (partial) assignment is good if it can be extended to a solution, nogood otherwise
- BT makes a mistake when it moves from a good assignment to a nogood one
- BT recovers from a mistake when it backtracks from a nogood assignment to a good one
- Shortcomings of BT (which are related to each other):
 - ◆ BT detects very late when a mistake has been made (⇒ Look-ahead)
 - ◆ BT may make again and again the same mistakes
 (⇒ Nogood recording)
 - ◆ BT is very weak recovering from mistakes
 (⇒ Backjumping)

Backjumping

- BT very weak recovering from mistakes as it backtracks chronologically (back to previously instantiated variable)
- However, the reason for the conflict may not be the last assigned variable, but earlier!
- Backjumping: backtrack to last choice with responsibility in the conflict
- Backjumping may jump more than one tree-level, without missing solutions

Backjumping

					Q				
		Q		X	X	X			
Q	X	X	X		X		X		
X	X	X		X	X			X	Q
X	X	X			X	Q		X	X
X		X	X		X	X	X	Q	X
X	Q	X		X	X	X	X	X	X
X	X	X	X	Q	X	X		X	X
X	X	X	X	X	X	X	Q	X	X
X	\overline{X}	X	X	X	X	X	X	X	X

 $c_1=6, c_2=3, c_3=1, c_4=10, c_5=7, c_6=9, c_7=2, c_8=5, c_9=8$ is a nogood

Backjumping

					Q				
		Q		X	X	X			
\overline{Q}	X	X	X		X		X		
X	X	X		X	X			X	Q
X	X	X			X	Q		X	X
X		X	X		X	X	X	Q	X
X		X		X	X	X	X	X	X
X		X	X		X	X		X	X
X		X		X	X	X		X	X
X	X	X	X	X	X	X	X	X	X

 $c_1 = 6, c_2 = 3, c_3 = 1, c_4 = 10, c_5 = 7, c_6 = 9$ is the reason for the conflict! Retract $c_6 = 9, c_7 = 2, c_8 = 5, c_9 = 8$

Conflict-Directed Backjumping

- lacksquare Assume node $p=\{b_1,\ldots,b_j\}$ of search tree is a deadend
- \blacksquare We must backtrack: retract a branching constraint from p
- \blacksquare Chronological backtracking would choose b_i
- Conflict-Directed Backjumping (CBJ) chooses the largest i $(1 \le i \le j)$ such that $b_i \in J(p)$, where J(p) is the jumpback nogood for p
- CBJ jumps back in search tree up to b_i : retracts b_i and all branching constraints after b_i

Randomization and Restarts

- Backtracking algorithms can be very sensitive to variable/value heuristics
- Early mistakes in the search tree have dramatic effects
- Idea:
 - ◆ Add randomization to the backtracking algorithm
 - ◆ Each run of the algorithm terminates either when:
 - a solution has been found; or
 - current run is too long, so search must be restarted
 - After each restart, a new run is executed that hopefully behaves better

Randomizing Heuristics

- Variable/value selection heuristics can be randomized by
 - ◆ Taking a random variable/value for breaking ties
 - Ranking variables/values with the chosen heuristic and randomly taking one of those "close" to the best
 - ◆ Randomly picking among a set of existing selection heuristics

When to Restart

- A restart strategy $S = \{t_1, t_2, \ldots\}$ is an infinite sequence where each t_i is either a positive integer or ∞
- Randomized backtracking algorithm is run for t_1 "steps". If no solution is found so far, a restart is applied, and the algorithm is run again for t_2 steps, and so on.
- In a fixed cutoff strategy, all t_i are equal
- What is a "step" of computation?
 Several possibilities:
 - Number of backtracks
 - Number of visited nodes
- What are good restart strategies?

Restart Strategies: Luby Sequence

- Luby showed that, given full knowledge of the runtime distribution, the optimal strategy is given by $S_{t^*} = (t^*, t^*, \ldots)$, for some fixed cutoff t^*
- For the (mostly common) case in which there is no knowledge of the runtime distribution, Luby shows that any universal strategy of the form $S_u = (l_0, l_1, l_2, \ldots)$ where

$$l_i = \left\{ \begin{array}{ll} N \cdot 2^{k-1} & \text{if } \exists k \text{ with } i = 2^k - 1 \\ l_{i-2^{k-1}+1} & \text{if } \exists k \text{ with } 2^{k-1} \leq i < 2^k - 1 \end{array} \right.$$

for a fixed constant N>0 has a behaviour that is "close" to that of the optimal strategy $S_{t^{st}}$

Restart Strategies: Luby Sequence

For N = 1 Luby sequence is:

$$(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, \ldots)$$

For N = 512:

Restart Strategies: Geometric Seq.

- Walsh proposes a universal strategy $S_g = (1, r, r^2, ...)$ where the restart values are geometrically increasing
- Works well in practice (1 < r < 2), but comes with no formal guarantees of its worst-case performance
- It can be shown that the expected runtime of the geometric strategy can be arbitrarily worse than that of the optimal strategy

- Often CSP's have, in addition to the constraints to be satisfied, an objective function f that must be optimized (maximized/minimized).
 A CSP with an objective function is called a constraint optimization problem (COP).
- Wlog, let us assume there is a constraint c = f(X), where c is a variable, and the goal is to minimize f
- A COP is solved by solving a sequence of CSP's:
 - lacktriangle Initially an algorithm for solving CSP's is used to find a solution S that satisfies the constraints
 - lacktriangle A constraint of the form c < f(S) is then added, which excludes solutions that are not better than solution S
 - ◆ The process is repeated until the resulting CSP has no solution: the last solution that was found is optimal

- Let us write this procedure in pseudo-code
- lacktriangle Assume that $\min(f) \in \mathsf{dom}(c)$

```
\begin{array}{l} u = \max(\mathsf{dom}(c)); \; // \; u \; \text{is an upper bound on } \min(f) \\ S = \mathsf{solve}(C \land c \leq u - 1); \\ \textbf{while} \; (S \neq \bot) \; \{ \qquad // \; \bot \; \text{means "no solution"} \\ u = f(S); \\ S = \mathsf{solve}(C \land c \leq u - 1); \; // \; \text{equivalent to solve}(C \land c < f(S)) \\ \} \; // \; \text{on exit } \min(f) \; \text{is } u \end{array}
```

It is a linear search for $\min(f)$ in the domain of c from the largest value in $\operatorname{dom}(c)$ to the smallest one (until a solution is no longer found):

Another approach is to do a linear search from the smallest value in dom(c) to the largest one (until a solution is found):

```
\begin{array}{l} l = \min(\mathsf{dom}(c)); \; // \; l \; \text{ is a lower bound on } \min(f) \\ S = \mathsf{solve}(C \land c \leq l); \\ \textbf{while} \; (S == \bot) \; \{ \\ l = l+1; \\ S = \mathsf{solve}(C \land c \leq l); \\ \} \; // \; \text{on } \; \mathsf{exit} \; \min(f) \; \mathsf{is} \; l \end{array}
```

Yet another approach is to do a binary search:

```
\begin{array}{l} l = \min(\mathsf{dom}(c)); \ \ // \ \ l \ \ \text{is a lower bound on } \min(f) \\ u = \max(\mathsf{dom}(c)); \ \ // \ \ u \ \ \text{is an upper bound on } \min(f) \\ \text{while } (l \neq u) \ \{ \\ m = (l+u)/2; \\ S = \mathsf{solve}(C \land c \leq m); \\ \text{if } (S == \bot) \ \ l = m+1; \\ \text{else } u = f(S); \ \ // \ \ f(S) \leq m \\ \} \\ // \ \ \text{on exit } \min(f) \ \ \text{is } \ l \end{array}
```

■ Which approach is the best?

Yet another approach is to do a binary search:

```
\begin{array}{l} l = \min(\mathsf{dom}(c)); \ \ // \ \ l \ \ \text{is a lower bound on } \min(f) \\ u = \max(\mathsf{dom}(c)); \ \ // \ \ u \ \ \text{is an upper bound on } \min(f) \\ \text{while } (l \neq u) \ \{ \\ m = (l+u)/2; \\ S = \mathsf{solve}(C \land c \leq m); \\ \text{if } (S == \bot) \ \ l = m+1; \\ \text{else } u = f(S); \ \ // \ \ f(S) \leq m \\ \} \\ // \ \ \text{on exit } \min(f) \ \ \text{is } \ l \end{array}
```

- Which approach is the best?
- It depends on the problem.

Binary search is likely to perform less calls to solve, but unfeasible CSP's may be more difficult to solve.