الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

الشعبة: علوم تجريبية

المدة: 2 سا

اختبار تجريبي 2 في العلوم الفيزيائية

التمرين الأول: (09 نقاط)

شكلت حركة سقوط الأجسام لمدة طويلة من الزمن موضوع تساؤل واهتمام لدى الكثير من المفكرين والعلماء المتميزين من أمثال أرسطو، غاليلي ونيوتن.

يهدف التمرين إلى دراسة حركة سقوط الأجسام الصلبة في الهواء.

من أجل هذا الغرض نترك من على نفس الارتفاع كريتان (B_1) و (B_2) من نفس المادة كتلتيهما m_1 و m_2 على الترتيب، تسقطان في الهواء من على نفس الارتفاع وبدون سرعة ابتدائية.

نسب حركة الكريتان لمرجع سطحي أرضي نعتبره غاليليا مزود بمحور O(z) موجه نحو الأسفل، ومبدؤه c مرتبط بمركز عطالة الكريتان. تخضع الكريتان إلى قوى احتكاك مع الهواء ننمذج بالعبارة التالية: c بحيث c بحيث بمثل معامل الاحتكاك الذي يتعلق بأبعاد الجسم والمائع الذي تتم الدراسة فيه.

- 1. مثل القوى المؤثرة على مركز عطالة إحدى الكرتين خلال الحركة.
- 2. بتطبيق القانون الثاني لنيوتن، جد المعادلة التفاضلية المميزة لحركة إحدى الكرتين.
 - . استنتج عبارة السرعة الحدية $v_{\rm lim}$ في النظام الدائم.
- 4. بواسطة برمجية مناسبة تمكننا من رسم المنحنيات $v=f\left(t
 ight)$ و $v=f\left(t
 ight)$ الموضحين في الشكل 4. و 5.

- (d) و (B_1) ، دون استنتاجك فيما يخص قطر الكرتين (B_1) و (B_1) ، دون استنتاجك فيما يخص قطر الكرتين (B_1) . 1.4 إذا علمت أن معامل الاحتكاك (B_1) يتعلق بالمائع الذي تتم فيه الدراسة وأبعاد الجسم.
 - .4. حدد قيمة السرعة الحدية لكل من الكرتين (B_1) و (B_2) ، ثم استخرج سلم رسم منحنى الشكل. 2.4
 - .3.4 بين أن دافعة أرخميدس π مهملة خلال هذه الدراسة.
 - m_2 و m_1 و m_2 . استنتج قيمة الكتلتين

التمرين الثاني: (11 نقاط)

نتابع تطور التحول الكيميائي البطيئ الحادث بين محلول (S_1) للماء الأكسجيني H_2O_2 المحمض تركيزه

غزج عند. $C_2=0,1mol.\,L^{-1}$ ومحلول (S_2) ليود البوتاسيوم ($K^+(aq)+I^-(aq)$) تركيزه (S_2) غزج عند

: مع حجما $V_2=60m$ مع جما $V_2=60m$ مع جما $V_2=60m$ من $V_1=40m$ من $V_1=40m$ عبد التحول بالمعادلة الكيميائية التالية $H_2O_2(aq)+2I^-(aq)+2H^+(aq)=I_2(aq)+2H_2O(\ell)$

1ـ من أجل متابعة هذا التحول ، نجزء المزيج التفاعلي إلى عينات متماثلة متساوية الحجم $V_p = 5mL$ ثم نعاير كمية مادة H_2O_2 المتبقية في كل عينة عند لحظات زمنية مختلفة بواسطة محلول برمنغنات البوتاسيوم $(K^+(aq) + MnO_4^-(aq))$ في وسط حمضي تركيزه المولي $C = 0.05mol.L^{-1}$. ليكن V_E حجم محلول البرمنغنات اللازم للحصول على التكافؤ.

أ-ماهي الطرق التي تمكننا من متابعة هذا التحول ؟علل .

ب-أكتب معادلة تفاعل المعايرة التام و السريع بحيث تعطى الثنائيات (ox/red):

. $(O_2(g)/H_2O_2(aq))$ $(MnO_4^-(aq)/Mn^{2+}(aq))$

ج ـ مثل التركيب التجريبي للمعايرة.

د ـ عرف التكافؤ ثم أكتب عبارته .

2ـ أـ أعط تركيب المزيج الابتدائي ، ثم أنشئ جدول تقدم التفاعل البطيئ.

ب ـ حدد قيمة x_{max} ، و استنتج المتفاعل المحد،وأكتب عبارة التقدم x للتفاعل البطيئ بدلالة V_E

(-1-1) عند التحول مكنتنا من رسم المنحني au = f(t) وذلك باستغلال العلاقة السابقة (الشكل au = 1

- حيث x_{max} التقدم الأعظمي (t) حيث x_{max} التقدم الأعظمي .

 (S_1) محلول

ـ أ ـ بيّن إذا كان التفاعل تاما أم محدود.

 I^- ب حدّد کمیات المادة لکل من I_2 ، ، I_2 ، و I^-

. $t_1 = 10s$ المزيج التفاعلي عند اللحظة

ج-عرف زمن نصف التفاعل $t_{1/2}$ ثم بين أن $au_{1/2}= au_{1/2}$ وعين قيمته.

ـ 4 ـ أ ـ ذكّر بتعريف السرعة الحجمية للتفاعل.

 $v_{vol}=0.03.rac{d au}{dt}$: ب ـ أثبت أن السرعة الحجمية يمكن كتابتها على الشكل أثبت أن السرعة الحجمية ع

 $t_1 = 10$ s غند اللحظة عند أعط قيمتها عند اللحظة

-السرعة الحجمية نتناقص خلال الزمن ما هو العامل الحركي المسؤول عن ذلك