Shusen Wang

vector riderine (SVII)

Question: how to project **z** to the hyperplane?

Solution: find **x** on the hyperplane such that $\left|\left|\mathbf{z} - \mathbf{x}\right|\right|_{2}^{2}$ is minimized.

• $\min_{\mathbf{z}} |\mathbf{z} - \mathbf{x}||_2^2$; s.t. $\mathbf{w}^T \mathbf{x} + b = 0$

distance = $||\mathbf{z} - \mathbf{x}||_2$

Hyperplane
$$\mathbf{w}^T \mathbf{x} + b = 0$$

Question: how to project z to the hyperplane?

Solution: find **x** on the hyperplane such that $\left| \left| \mathbf{z} - \mathbf{x} \right| \right|_{2}^{2}$ is minimized.

Hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$

- $\min ||\mathbf{z} \mathbf{x}||_2^2$; s.t. $\mathbf{w}^T \mathbf{x} + b = 0$
- Solve the problem using the KKT condition:

$$\begin{cases} \frac{\partial \left| \left| \mathbf{z} - \mathbf{x} \right| \right|_{2}^{2}}{\partial \mathbf{x}} + \lambda \frac{\partial \left(\mathbf{w}^{T} \mathbf{x} + b \right)}{\partial \mathbf{x}} = 0; \\ \mathbf{w}^{T} \mathbf{x} + b = 0. \end{cases}$$

• Solution:
$$\mathbf{x} = \mathbf{z} - \frac{\mathbf{w}^T \mathbf{z} + b}{||\mathbf{w}||^2} \mathbf{w}$$

Question: how to project z to the hyperplane?

Solution: find **x** on the hyperplane such that $\left|\left|\mathbf{z} - \mathbf{x}\right|\right|_{2}^{2}$ is minimized.

Hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$

- Solution: $\mathbf{x} = \mathbf{z} \frac{\mathbf{w}^T \mathbf{z} + b}{||\mathbf{w}||_2^2} \mathbf{w}$
- The \(\ell_2\) distance between \(\mathbf{z}\) and the hyperplane is

$$\left|\left|\mathbf{z} - \mathbf{x}\right|\right|_2 = \frac{\left|\mathbf{w}^T\mathbf{z} + b\right|}{\left|\left|\mathbf{w}\right|\right|_2}.$$

Support Vector Machine

Separate data by a hyperplane (assume the data are separable)

The figure is from the book "Foundations of Machine Learning"

Separate data by a hyperplane (assume the data are separable)

The figure is from the book "Foundations of Machine Learning"

Separate data by a hyperplane (assume the data are separable)

 The distance between any x and the hyperplane is

$$\frac{\left|\mathbf{w}^T\mathbf{x}+b\right|}{\left|\left|\mathbf{w}\right|\right|_2}.$$

The margin is

$$\min_{j} \frac{|\mathbf{w}^{T}\mathbf{x}_{j}+b|}{||\mathbf{w}||_{2}} = \min_{j} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j}+b)}{||\mathbf{w}||_{2}}.$$

The figure is from the book "Foundations of Machine Learning"

Margin = $\min_{i} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j}+b)}{||\mathbf{w}||_{\perp}}$; we want to maximize the margin.

Support Vector Machine (SVM): $\max_{\mathbf{w},b} \min_{j} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j}+b)}{||\mathbf{w}||_{2}}$

Support Vector Machine (SVM): $\max_{\mathbf{w},b} \min_{j} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j}+b)}{||\mathbf{w}||_{2}}$

Support Vector Machine (SVM): $\max_{\mathbf{w},b} \min_{j} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j}+b)}{||\mathbf{w}||_{2}}$

$$\max_{\mathbf{w},b} \min_{j} \frac{y_{j}(\mathbf{w}^{T}\mathbf{x}_{j} + b)}{||\mathbf{w}||_{2}} = \max_{\mathbf{w},b} \frac{\min_{j} y_{j}(\mathbf{w}^{T}\mathbf{x}_{j} + b)}{||\mathbf{w}||_{2}}$$

$$= \max_{\mathbf{w},b} \frac{1}{||\mathbf{w}||_{2}}, \quad \text{s.t.} \quad \min_{j} y_{j}(\mathbf{w}^{T}\mathbf{x}_{j} + b) = 1$$

$$= \min_{\mathbf{w},b} ||\mathbf{w}||_{2}, \quad \text{s.t.} \quad \min_{j} y_{j}(\mathbf{w}^{T}\mathbf{x}_{j} + b) = 1$$

$$= \min_{\mathbf{w},b} ||\mathbf{w}||_{2}, \quad \text{s.t.} \quad y_{j}(\mathbf{w}^{T}\mathbf{x}_{j} + b) \geq 1 \text{ for all } j$$

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2, \quad \text{s.t.} \quad 1 - y_j(\mathbf{w}^T \mathbf{x}_j + b) \le 0 \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2, \quad \text{s.t.} \quad 1 - y_j(\mathbf{w}^T \mathbf{x}_j + b) \le 0 \text{ for all } j \in \{1, \dots, n\}.$$

$$\min_{\mathbf{w},b} ||\mathbf{w}||_{2}, \quad \text{s.t.} \quad 1 - y_{j}(\mathbf{w}^{T}\mathbf{x}_{j} + b) \leq \mathbf{0} \text{ for all } j \in \{1, \dots, n\}.$$


```
\min_{\mathbf{w},b,\xi_j} ||\mathbf{w}||_2 + \lambda \sum_j [\xi_j]_+, \quad \text{s.t.} \quad 1 - y_j (\mathbf{w}^T \mathbf{x}_j + b) = \xi_j \text{ for all } j \in \{1, \dots, n\}.
```

- $\left[\xi_{j}\right]_{+} = \max\left\{\xi_{j}, 0\right\}$
- $\xi_i \leq 0$ means the constraint $1 y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 0$ is satisfied
 - → no penalty!
- $\xi_i > 0$ means the constraint is violated (because the data is inseparable)
 - \rightarrow penalize the violation ξ_i .

$$\min_{\mathbf{w},b} ||\mathbf{w}||_{2}, \quad \text{s.t.} \quad 1 - y_{j}(\mathbf{w}^{T}\mathbf{x}_{j} + b) \leq \mathbf{0} \text{ for all } j \in \{1, \dots, n\}.$$

Relax

$$\min_{\mathbf{w},b,\xi_j} ||\mathbf{w}||_2 + \lambda \sum_j [\xi_j]_+, \quad \text{s.t.} \quad 1 - y_j (\mathbf{w}^T \mathbf{x}_j + b) = \xi_j \text{ for all } j \in \{1, \dots, n\}.$$

Equivalent

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j [1 - y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+.$$

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j [1 - y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+.$$

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j [1 - y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+.$$

SVM: $\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j g(y_j(\mathbf{w}^T \mathbf{x}_j + b))$. Hinge loss: $g(z) = [1 - z]_+$.

Comparisons

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j [1 - y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+.$$

SVM:
$$\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j g(y_j(\mathbf{w}^T \mathbf{x}_j + b))$$
. Hinge loss: $g(z) = [1 - z]_+$.

Hard thresholding: $h(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{if } z \ge 0. \end{cases}$

Comparisons

$$\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j [1 - y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+.$$

SVM:
$$\min_{\mathbf{w},b} ||\mathbf{w}||_2 + \lambda \sum_j g(y_j(\mathbf{w}^T \mathbf{x}_j + b))$$
. Hinge loss: $g(z) = [1 - z]_+$.

Hard thresholding: $h(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{if } z \ge 0. \end{cases}$

Logistic loss: $l(z) = log(1 + e^{-z})$.

Comparisons

- Convexity
 - Hinge loss and logistic loss are convex.
 - Global optimal can be efficiently found.
- Smoothness
 - Hinge loss is non-smooth.
 - Logistic loss is smooth.
- Logistic regression is easier to solve than SVM.
 - GD for logistic regression has linear convergence.
 - Algorithms for SVM have sub-linear convergence.