Programme n°20

MECANIQUE

M4 Approche énergétique du mouvement d'un point matériel

Cours et exercices

M5 Les oscillateurs

Cours et exercices

M6 Mouvement d'une particule chargée dans un champ électrique ou magnétique (Cours uniquement)

- Généralités Validité du modèle
 - Force de Lorentz
 - Ordre de grandeur et comparaison avec le poids
 - Puissance de la force de Lorentz
- Mouvement dans \vec{E} uniforme La vitesse initiale est parallèle au champ
 - La vitesse initiale n'est pas parallèle au champ
 - Bilan énergétique → Introduction du potentiel électrique
 - → Conservation de l'énergie mécanique
 - Application
- Mouvement dans \vec{B} uniforme Observations
 - Etude de la trajectoire
- Applications Le spectromètre de masse
 - Les accélérateurs

3. Mouvement de particules chargées dans des champs électrique et magnétique, uniformes et		
stationnaires		
Force de Lorentz exercée sur une charge	Evaluer les ordres de grandeur des forces électrique	
ponctuelle ; champs électrique et magnétique.	ou magnétique et les comparer à ceux des forces gravitationnelles.	
Puissance de la force de Lorentz.	Savoir qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.	
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur-accélération constant.	
	Effectuer un bilan énergétique pour calculer la vitesse d'une particule chargée accélérée par une différence de potentiel.	
	Citer une application.	
Mouvement circulaire d'une particule chargée dans un champ magnétostatique uniforme dans le cas où le vecteur-vitesse initial est perpendiculaire au	Déterminer le rayon de la trajectoire sans calcul en admettant que celle-ci est circulaire.	
champ magnétique.	Approche documentaire : analyser des documents scientifiques montrant les limites relativistes en s'appuyant sur les expressions fournies $E_c = (\gamma-1)mc^2$ et $p = \gamma mv$.	
	Citer une application.	

SOLUTIONS AQUEUSES

Dosages (cours et exercices d'applications)

Etude d'une cinétique du second ordre par suivi conductimètrique Dosage du coca cola