Løsningsforslag eksamen TFY4107 sommer 2023

Oppgave 1:

$$20 \text{ kg/m}^2 = 20 \cdot \frac{1000 \text{ g}}{(100 \text{ cm})^2} = 20 \cdot 10^{-1} \text{ g/cm}^2 = 2.0 \text{ g/cm}^2$$

Oppgave 2:

Her er det summen av kreftene nedover langs skråplanet som avgjør. Ettersom studenten beveger seg nedover dette skråplanet med konstant hastighet må $\sum F=0$ i denne retningen. Dette kravet er kun oppfylt av alternativ D. Merk at normalkrafta har retning \perp på skråplanet og vil derfor ikke ha noen innvirkning på studentens hastighet nedover skråplanet.

Oppgave 3:

Sentripetalakselerasjonen, med retning inn mot sentrum av sirkelbanen er gitt ved:

$$a_{\perp} = \frac{v^2}{r}$$

Siden legemet glir friksjonsløst nedover banen finner vi banefarta \boldsymbol{v} ved å anvende loven om bevaring av den totale mekaniske energien.

$$mgh = \frac{1}{2}mv^2 \quad \Rightarrow \quad v^2 = 2gh = 2gr\sin\theta$$

Innsatt gir dette en sentripetalakselerasjon

$$a_{\perp} = \frac{2gr\sin\theta}{r} = 2g\sin\theta$$

Oppgave 4:

Maksimal høyde: $h_{maks} = y_0$

Bevaring av den totale mekaniske energien

$$mgy_0 = \frac{1}{2}mv_{maks}^2 + \frac{1}{2}I\omega^2$$

Dette gir videre at:

$$mgy_0 = \frac{1}{2}mv_{maks}^2 + \frac{1}{2} \cdot \frac{2}{5}mr^2 \cdot \left(\frac{v_{maks}}{r}\right)^2$$

$$\Rightarrow mgy_0 = \frac{1}{2}mv_{maks}^2 + \frac{1}{5}m \cdot v_{maks}^2 = \frac{7}{10}mv_{maks}^2$$

$$\Rightarrow v_{maks} = \sqrt{\frac{10}{7}gy_0} = 0.84 \text{ m/s}$$

Oppgave 5:

Den maksimale helningsvinkelen finnes ved endepunktene x = L, eller x = -L. Det gir at:

$$y' = \frac{4y_0x^3}{L^4} = \frac{4y_0}{L} = 0.4$$

Fra hintet:

$$y' = \tan \theta = 0.4 \Rightarrow \theta = 22^0$$

Oppgave 6:

Newtons 2.lov gir med u < 0:

$$u\frac{dm}{dt} = m\frac{dv}{dt} \implies udm = mdv \implies \frac{dm}{m} = \frac{1}{u}dv$$

Integrerer opp:

$$\int_{m_0}^{m} \frac{dm}{m} = \frac{1}{u} \int_{v_0}^{v} dv \implies \ln\left(\frac{m}{m_0}\right) = \frac{1}{u} (v - v_0) \implies m = m_0 e^{-\frac{v - v_0}{|u|}}$$

Rakettens nye hastighet er $v = 2v_0 \implies v - v_0 = 1.4 \text{ km/s}.$

Innsatt innebærer dette at rakettens gjenværende masse etter hastighetsøkningen er:

$$m = m_0 \cdot e^{-\frac{1.4 \text{ km/s}}{2.6 \text{ km/s}}} = 0.584 m_0$$

Forbruket av masse:

$$m - m_0 = 0.416 m_0 = 3.21 \cdot 10^5 \text{ kg}$$

Tiden det tar å fordoble rakettens hastighet er dermed:

$$\frac{m - m_0}{dm/dt} = 24 \text{ s}$$

Oppgave 7:

Newtons 2.lov:

$$\sum F = G - f = m \frac{dv}{dt} \implies mg - kv = m \frac{dv}{dt}$$

$$\Rightarrow \frac{dv}{mg - kv} = \frac{1}{m} dt \implies \frac{dv}{mg \left(1 - \frac{kv}{mg}\right)} = \frac{1}{m} dt \implies \frac{dv}{1 - \frac{kv}{mg}} = gdt$$

Oppgave 8:

Støtet er uelastisk ⇒ Kun systemets bevegelsesmengde er bevart.

$$Mv_{M,f} = mv_{m,e} + Mv_{M,e} \Rightarrow v_{M,e} = v_{M,f} - \frac{m}{M}v_{m.e}$$

Oppgave 9:

Elastisk støt: Både bevegelsesmengden og den totale kinetiske energien er bevart.

$$m\mathbf{v}_{m,f} = m\mathbf{v}_{m,e} + 2m\mathbf{v}_{M,e}$$
 (1)

$$mv_{m,f}^2 = mv_{m,e}^2 + 2mv_{M,e}^2$$
 (2)

Fra (1) er:

$$\mathbf{v}_{m,e} = \mathbf{v}_{m,f} - 2\mathbf{v}_{M,e}$$

Innsatt i (2) gir dette:

$$v_{m,f}^{2} = v_{m,f}^{2} - 4v_{m,f}v_{M,e} + 6v_{M,e}^{2}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$v_{M,e}(6v_{M,e} - 4v_{m,f}) = 0$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$v_{M,e} = \frac{2}{3}v_{m,f}$$

Oppgave 10:

Hjulets vinkelforflytning:

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2 = 11 \text{ rad}$$

Oppgave 11:

Sylinderens totale kinetiske energi:

$$K = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}mv^2 + \frac{1}{2}\cdot\left(\frac{1}{2}mr^2\right)\cdot\left(\frac{v}{r}\right)^2 = \frac{1}{2}mv^2 + \frac{1}{4}mv^2 = \frac{3}{4}mv^2$$

Oppgave 12:

Den statiske friksjonskrafta f som virker på hver enkelt sylinder er:

$$\tau = f \cdot r = I\alpha = I \frac{a}{r} \Rightarrow f = I \frac{a}{r^2}$$

Newtons 2.lov gir videre at:

$$G_x - f = ma$$
 $\Rightarrow mg \sin \alpha - I \frac{a}{r^2} = ma$ $\Rightarrow g \sin \alpha - \frac{1}{2} a = a$
 $\Rightarrow \frac{3}{2} a = g \sin \alpha \Rightarrow a = \frac{2}{3} g \sin \alpha$

Akselerasjonen som massemiddelpunktet til de to sylinderne erfarer, er uavhengig av både massen m og radien r. De to sylinderne kommer dermed samtidig ned til bunnen av skråplanet.

Oppgave 13:

Treghetsmomentet til legemet:

$$I = cmr^2$$

Forholdet mellom den translatoriske kinetiske energien og den tilsvarende rotasjonsenergien:

$$\frac{K_{rot}}{K_{tr}} = \frac{\frac{1}{2}I\omega^2}{\frac{1}{2}mv^2} = \frac{I\omega^2}{mv^2} = \frac{\left(cmr^2 \cdot \frac{v^2}{r^2}\right)}{mv^2} = \frac{cmv^2}{mv^2} = c$$

Oppgave 14:

Det totale treghetsmomentet til det sammensatte legemet:

$$I_{tot} = I_{pl} + 2I_{st} = \frac{1}{12}M(a^2 + L^2) + 2\left(\frac{1}{12}m \cdot 4L^2 + m\left(\frac{a}{2}\right)^2\right)$$

$$= \frac{1}{12}Ma^2 + \frac{1}{12}ML^2 + \frac{2}{3}mL^2 + \frac{1}{2}ma^2$$
$$= \left(\frac{1}{12}M + \frac{1}{2}m\right)a^2 + \left(\frac{1}{12}M + \frac{2}{3}m\right)L^2$$

Oppgave 15:

Masse-elementet dm for en liten halvsirkulær arealdel inne i legemet:

$$dm = \sigma dA = \sigma \, \pi r dr$$

Massetettheten σ :

$$\sigma = \frac{M}{A} = \frac{M}{\frac{1}{2}\pi(r_2^2 - r_1^2)}$$

Innsatt i uttrykket for dm:

$$dm = \frac{2M}{\pi(r_2^2 - r_1^2)} \cdot \pi r dr = \frac{2M}{(r_2^2 - r_1^2)} \cdot r dr$$

Legemets treghetsmoment:

$$I = \int_{r_1}^{r_2} r^2 dm = \int_{r_1}^{r_2} \frac{2M}{(r_2^2 - r_1^2)} \cdot r dr = \frac{2M}{(r_2^2 - r_1^2)} \int_{r_1}^{r_2} r^3 dr$$
$$= \frac{2M}{(r_2^2 - r_1^2)} \left[\frac{1}{4} r^4 \right]_{r_1}^{r_2} = 0.013 \text{ kgm}^2$$

Oppgave 16:

Massemiddelpunktets akselerasjon a:

$$a = r\alpha = 3.50 \text{ m/s}^2$$

Det mekaniske arbeidet W:

$$W = \tau \cdot \theta = I\alpha \cdot \theta = I \cdot \frac{a}{r} \cdot \frac{s}{r} = I \cdot \frac{as}{r^2} = \frac{2}{5}mr^2 \cdot \frac{as}{r^2} = \frac{2}{5}m \cdot as = 0,042 J$$

Oppgave 17

Den totale dreieimpulsen:

$$I = I_{trans} + I_{rot} = rmv + I\omega = rmv + \frac{2}{5}mr^2 \cdot \frac{v}{r} = \frac{7}{5}rmv = 4,78 \cdot 10^{-3} \text{ kgm}^2/\text{s}$$

Oppgave 18

Det totale dreiemomentet:

$$\Sigma \tau = I\alpha = \frac{dL_A}{dt} = \frac{d}{dt}(8mrv) = 8mr\frac{dv}{dt} = 8mra$$

Samtidig er:

$$\sum \tau = (G_{2m} - G_m) \cdot r = (2mg - mg)r = mgr$$

Sammenligner:

$$8mra = mgr \implies 8a = g \implies a = \frac{g}{8}$$

Punktmassenes hastighet etter t = 0.50 s er dermed:

$$v(0.50) = v_0 + at = at = \frac{1}{8}gt = 0.63 \text{ m/s}$$

Oppgave 19:

Bølgens forplantningshastighet:

$$v = \frac{\omega}{k} = \frac{2\pi}{T} \cdot \frac{1}{k} = 1.85 \text{ m/s}$$

Oppgave 20:

Pendelens periode er:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{mgh}} = 2\pi \sqrt{\frac{mL^2}{3mg\left(\frac{L}{2}\right)}} = 2\pi \sqrt{\frac{2L}{3g}}$$

Perioden er uavhengig av massen m. Samtidig varierer $T \sim \sqrt{L}$.

Oppgave 21:

Fra forrige oppgave:

$$T = 2\pi \sqrt{\frac{2L}{3g}}$$

Snorlengden L forkortes for å oppnå samme periode T. Det innebærer at gravitasjonsakselerasjonen på planeten må reduseres i forhold til gravitasjonsakselerasjonen på jorda.

Oppgave 22:

Svingefrekvensen til en torsjonspendel:

$$\omega = \sqrt{\frac{\kappa}{I}} = 2\pi f = \frac{2\pi}{T}$$

Treghetsmomentet til torsjonspendelen:

$$I = \kappa \left(\frac{T}{2\pi}\right)^2 = \kappa \left(\frac{\left(\frac{270 \text{ s}}{50 \text{ svingninger}}\right)}{2\pi}\right)^2 = 0.41 \text{ kgm}^2$$

Oppgave 23:

De to fjærene utøver like stor kraft og i samme retning under svingebevegelsen. Newtons 2.lov:

$$2F = -2kx = ma = m\frac{dx^2}{dt^2} \implies \frac{d^2x}{dt^2} + \frac{2k}{m}x = 0$$

Systemets frekvens *f*:

$$\omega = \sqrt{\frac{2k}{m}} \implies f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{2k}{m}}$$

Oppgave 24:

Svingningens amplitude som funksjon av tida:

$$A(t) = A_0 e^{-\frac{b}{2m}t}$$

Her er A_0 amplituden ved tiden t=0. Dempingsfaktoren b finnes ved å sette:

$$A(t) = A_0 e^{-\frac{b}{2m}t} = \frac{1}{2}A_0 \quad \Rightarrow \quad e^{\left(-\frac{b}{2m}\right)t} = \frac{1}{2}$$

$$\Rightarrow \quad -\frac{b}{2m}t = \ln\frac{1}{2} \quad \Rightarrow \quad b = -\frac{2m}{t}\ln\frac{1}{2} = 2,3 \text{ g/s}$$

Oppgave 25:

Den harmoniske vinkelfrekvensen ω_0 :

$$\omega_0 = \sqrt{\frac{k}{m}}$$

Den tilsvarende vinkelfrekvensen μ for den dempede svingningen:

$$\mu = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

Forholdet:

$$\frac{\mu}{\omega_0} = \sqrt{\left(\frac{k}{m} - \frac{b^2}{4m^2}\right) \cdot \frac{m}{k}} = \sqrt{1 - \frac{b^2}{4mk}} = 0.8$$

Oppgave 26:

Amplitudeligningen for den dempede svingningen når $A_0 = 7.0$ ved tiden t = 0:

$$A(t) = A_0 e^{-\frac{b}{2m}t} = 7.0 e^{-\frac{b}{2m}t}$$

Direkte avlesning fra grafen tilsier at

$$A(t = 4.0 \text{ s}) = 3.0 \implies 7.0 e^{-\frac{4b}{2m}} = 3.0 \implies -\frac{2b}{m} = \ln \frac{3.0}{7.0} \implies m = 30.4 \text{ kg}$$

Innsatt gir dette svingeligningen:

$$A(t) = 7.0 e^{-0.212 t}$$

Oppgave 27:

Tonens bølgetall når første overtone innebærer at $\lambda = L = 1,50 \text{ m}$:

$$k = \frac{2\pi}{\lambda} = 4{,}19 \text{ 1/m}$$

Tonens vinkelfrekvens:

$$\omega = \mathbf{v} \cdot \mathbf{k} = 1437 \,\mathrm{m/s}$$

Tonens frekvens:

$$f = \frac{\omega}{2\pi} = 229 \text{ Hz}$$

Oppgave 28:

Bølgas forplantningshastighet:

$$v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{mF}{L}} = 50.7 \text{ m/s}$$

Oppgave 29:

Effekten bølgegeneratoren må levere:

$$P = \frac{1}{2}\mu A^2 \omega^2 \, v = \frac{1}{2} \cdot \frac{m}{L} \cdot A^2 \cdot (2\pi f)^2 \cdot v = 165 \, W$$

Oppgave 30:

Grunntonen tilsvarer at en stående bølge har bølgelengde $\lambda = 2L$ der L er lengden av strengen. Bølgelengden:

$$\lambda = 2L = 1400 \text{ mm}$$

Strekk-krafta F:

$$F = \mu v^2 = \mu (\lambda f)^2 = 134 \text{ N}$$

Oppgave 31:

Lydbølgens hastighet gjennom vannet:

$$v = \sqrt{\frac{B}{\rho}} = 1483 \text{ m/s}$$

Intensiteten:

$$I = \frac{1}{2}\rho s_m^2 \omega^2 \text{ v} = \frac{1}{2}\rho s_m^2 (2\pi f)^2 \text{ v} = 1,45 \text{ W/m}^2$$

Oppgave 32:

Intensiteten i enheter av W/m²:

$$I = \frac{(\Delta P)^2}{2\rho v} = 5.04 \cdot 10^{-4} \text{ W/m}^2$$

I enheter av dB tilsvarer dette:

$$\beta = 10 \log \left(\frac{I}{I_0} \right) = 10 \log \left(\frac{5.04 \cdot 10^{-4} \text{ W/m}^2}{10^{-12} \text{ W/m}^2} \right) = 87 \text{ dB}$$

Oppgave 33:

Ettersom måsen og flaggermusen flyr mot hverandre vil frekvensen som flaggermusa hører være av størrelsesorden:

$$f' = f\left(\frac{v + v_{må}}{v - v_{fl}}\right) = 1.0 \cdot 10^5 \text{ Hz} \cdot \left(\frac{343 \text{ m/s} + 15 \text{ m/s}}{343 \text{ m/s} - 10 \text{ m/s}}\right) = 1.075 \cdot 10^5 \text{ Hz} \approx 108 \text{ kHz}$$