Uma Introdução aos Sistemas Dinâmicos Discretos

Agenor Gonçalves Neto ^a São Paulo, 2020

^aGraduando em Bacharelado em Matemática (IME-USP), orientado pelo Prof. Salvador Addas Zanata (IME-USP).

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Definição

Um sistema dinâmico é função $f:X\to X$, onde X é um espaço métrico.

Dado $x \in X$, nosso objetivo é estudar as propriedades da sequência definida recursivamente por

$$f^{0}(x) = x$$
 e $f^{k}(x) = f(f^{k-1}(x))$

para todo k > 1

Definição

Um sistema dinâmico é função $f:X\to X$, onde X é um espaço métrico.

Dado $x \in X$, nosso objetivo é estudar as propriedades da sequência definida recursivamente por

$$f^{0}(x) = x$$
 e $f^{k}(x) = f(f^{k-1}(x))$

para todo $k \geq 1$.

Definição

- 1. Se $p \in X$ e f(p) = p, então p é um ponto fixo de f.
- 2. Se $p \in X$ e $f^n(p) = p$ para algum $n \ge 1$, então p é um ponto periódico de f de período n.
- 3. Se $p \in X$, $f^n(p) = p$ para algum $n \ge 1$ e $f^k(p) \ne p$ para todo $1 \le k < n$, então p é um ponto periódico f de período primo n.

O conjunto dos pontos periódicos de f será denotado por Per(f). O conjunto dos pontos periódicos de f de período primo n será denotado por $Per_n(f)$.

Definição

- 1. Se $p \in X$ e f(p) = p, então p é um ponto fixo de f.
- 2. Se $p \in X$ e $f^n(p) = p$ para algum $n \ge 1$, então p é um ponto periódico de f de período n.
- 3. Se $p \in X$, $f^n(p) = p$ para algum $n \ge 1$ e $f^k(p) \ne p$ para todo $1 \le k < n$, então p é um ponto periódico f de período primo n.

O conjunto dos pontos periódicos de f será denotado por Per(f). O conjunto dos pontos periódicos de f de período primo n será denotado por $Per_n(f)$.

Definição

- 1. Se $x \in X$, então $\mathcal{O}(x) = \{f^k(x) : k \ge 0\}$ é a órbita de x.
- 2. Se $p \in \operatorname{Per}_n(f)$, então

$$\mathcal{B}(p) = \{ x \in X : \lim_{k \to \infty} f^{kn}(x) = p \}$$

é o conjunto estável de p.

Além disso, dizemos que

$$\mathcal{B}(\infty) = \{ x \in X : \lim_{k \to \infty} |f^k(x)| = \infty \}$$

é o conjunto estável do infinito.

Definição

- 1. Se $x \in X$, então $\mathcal{O}(x) = \{f^k(x) : k \ge 0\}$ é a órbita de x.
- 2. Se $p \in \operatorname{Per}_n(f)$, então

$$\mathcal{B}(p) = \{x \in X : \lim_{k \to \infty} f^{kn}(x) = p\}$$

é o conjunto estável de p.

Além disso, dizemos que

$$\mathcal{B}(\infty) = \{ x \in X : \lim_{k \to \infty} |f^k(x)| = \infty \}$$

é o conjunto estável do infinito.

Proposição

Seja $f : [a, b] \to \mathbb{R}$ uma função contínua. Se $f([a, b]) \subset [a, b]$ ou $f([a, b]) \supset [a, b]$, então f possui ponto fixo.

Teorema

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^1 e $p \in \operatorname{Per}_n(f)$.

- 1. Se $|Df^n(p)| < 1$, então existe uma vizinhança de p contida em $\mathcal{B}(p)$.
 - 2. Se $|Df^n(p)| > 1$, então existe uma vizinhança V de p com a seguinte propriedade: se $x \in V \setminus \{p\}$, então $f^{kn}(x) \notin V$ para algum $k \ge 1$.

Definição

Sejam $f : \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in \operatorname{Per}_n(f)$.

- 1. Se $|Df^n(p)| < 1$, então p é um ponto atrator.
- 2. Se $|Df^n(p)| > 1$, então p é um ponto repulsor.

A definição anterior pode ser estendida para órbitas de pontos periódicos. De fato, se um ponto é atrator, então todos os pontos de sua órbita também são atratores e, nesse caso, dizemos que a órbita é atratora.

Definição

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in \operatorname{Per}_n(f)$.

- 1. Se $|Df^n(p)| < 1$, então p é um ponto atrator.
- 2. Se $|Df^n(p)| > 1$, então p é um ponto repulsor.

A definição anterior pode ser estendida para órbitas de pontos periódicos. De fato, se um ponto é atrator, então todos os pontos de sua órbita também são atratores e, nesse caso, dizemos que a órbita é atratora.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática

Nessa seção, consideraremos a família de funções $h:\mathbb{R} o \mathbb{R}$ dadas por

$$h(x) = \mu x(1-x),$$

onde $\mu>1$ é um parâmetro real. Essa família de funções é conhecia como família quadrática.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Estudo Inicial

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Conjuntos de Cantor

Conceitos Elementares

Família Quadrática

Estudo Inicia

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Caos

Conceitos Elementares

Família Quadrática

Estudo Inicia

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Conjugação Topológica

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Dinâmica Simbólica

•

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Matriz de Transição

Conceitos Elementares

Família Quadrática

Estudo Inicia

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Bifurcação

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Teorema de Sharkovsky

Definição

Ordenação de Sharkovsky

 $3 \rhd 5 \rhd \cdots \rhd 2 \cdot 3 \rhd 2 \cdot 5 \rhd \cdots \rhd 2^2 \cdot 3 \rhd 2^2 \cdot 5 \rhd \cdots \rhd 2^k \cdot 3 \rhd 2^k \cdot 5 \rhd \cdots \rhd 2^2 \rhd 2 \rhd 1$

Teorema (Sharkovsky)

Se $\operatorname{Per}_n(f) \neq \emptyset$, então $\operatorname{Per}_m(f) \neq \emptyset$ para todo $n \triangleright m$

Teorema de Sharkovsky

Definição

Ordenação de Sharkovsky

 $3 \triangleright 5 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright \cdots \triangleright 2^k \cdot 3 \triangleright 2^k \cdot 5 \triangleright \cdots \triangleright 2^2 \triangleright 2 \triangleright 1$

Teorema (Sharkovsky)

Se $\operatorname{Per}_n(f) \neq \emptyset$, então $\operatorname{Per}_m(f) \neq \emptyset$ para todo $n \triangleright m$.

Teorema de Sharkovsky

Teorema

Se $n \ge 1$, então existe uma função f com as seguintes propriedades:

- 1. $\operatorname{Per}_n(f) \neq \emptyset$.
 - 2. $\operatorname{Per}_m(f) = \emptyset$ para todo $m \triangleright n$.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Matriz de Transição

Bifurcação

Teorema de Sharkovsky

Referências

Burns, K. e Hasselblatt, B. (2011). The Sharkovsky Theorem: a Natural Direct Proof. The American Mathematical Monthly, 118(3):229–244.

Devaney, R. L. (1989).

An Introduction to Chaotic Dynamical Systems.

Perseus Books.

Holmgren, R. A. (1996).

A First Course in Discrete Dynamical Systems.

Springer-Verlag New York.