Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Systems Software & Architecture Lab.

Seoul National University

Jan. 11 - 15, 2021

Python for Data Analytics

NumPy I

Outline

- What is NumPy?
- Creating Arrays
- Manipulating Arrays
- Array Broadcasting
- Statistical Operations
- Matrix Operations

What is "NumPy" Module?

- The "NumPy" (Numeric Python) package provides basic routines for manipulating large arrays and matrices of numeric data
- The "SciPy" (Scientific Python) package extends the functionality of NumPy with a substantial collection of useful algorithms
 - Minimization, Fourier transformation, regression, and other applied math techniques
- NumPy and SciPy are open source add-on modules (not Python Standard Library)
- More than functionalities of commercial packages like MatLab
- To catch up functionalities of R
- >>> import numpy as np

NumPy History

- Numeric (ancestor of Numpy)
 - Released in 1995 by Jim Hugunin by generalizing Jim Fulton's matrix package
- Numarray
 - A more flexible replacement for Numeric
 - Faster for large arrays, slower than Numeric on small arrays
- SciPy module
 - Created by Travis Oliphant et al. in 2001
 - Provides scientific and technical operations
 - NumPy I.0 released (as part of SciPy) in 2006 by porting Numarray's features to Numeric
- NumPy module separated from SciPy as a stand-alone package

numpy.ndarray: The N-dimensional Array

- A multidimensional container of items of the same type and size
 - shape: a tuple of N non-negative integers that specify the sizes of each dimension
 - data-type object (dtype): the type of items in the array
- ID numpy.ndarray object
 - Example: array([3,6]) array([3.5,6.4,7.2])
- 2D numpy.ndarray object
 - Example: array([[1,0,2], [3,5,2]])
- 3D numpy.ndarray object
 - Example: array([[[0,0,1],[1,2,3]], [[1,0,2],[2,3,4]], [[3,5,2],[1,1,1]]])

Array Example

```
>>> import numpy as np
>>> x = np.array([[1, 2, 3], [4, 5, 6]], int)
>>> print(x)
[[1 2 3]
 [4 5 6]]
>>> type(x)
<class 'numpy.ndarray'>
>>> x.shape
                       # (number of rows, number of columns)
(2, 3)
>>> x.dtype
dtype('int64')
```

List vs. Array.array vs. Numpy.ndarray

Lists

- Simple
- Can't constrain the type of elements stored in a list

Array.array

- All elements of the array must be of the same numeric type
- May be used to interface with C code

Numpy.ndarray

 Supports various computations on arrays and matrices

```
>>> a = [[0]*3 for i in range(3)]
>>> a
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> b = [1, 3.5, 'hello']
```

```
>>> import array
>>> a = array.array('i', [1, 2, 3])
>>> a
array('i', [1, 2, 3])
```

```
>>> import numpy
>>> a = numpy.array([1, 2, 3], float)
>>> a
array([1., 2., 3.])
```

Creating Arrays

array()

- np.array (object, dtype=None, ...)
 - object: usually a list
 - dtype: the desired data type
 - If omitted, the type will be determined as the minimum type required to hold the objects

```
>>> l = [1, 2, 3, 4, 5]
>>> np.array(l)
>>> np.array(l, int)
>>> np.array(l, dtype='i')
>>> np.array(l, dtype=np.uint8)
>>> np.array(l, dtype='f')
>>> np.array(l, float)
```

Data types		Type code
Boolean	bool	?
Integers	<pre>int8 int16 int32 int64 (int)</pre>	i1, b i2, h i4, i i8, l, q
Unsigned integers	uint8 uint16 uint32 uint64	u1, B u2, H u4, I u8, L, Q,
Floating points	float16 float32 float64 (float) float128	f2 f4, f f8, d f16, g
Complex	<pre>complex64 complex128 (complex) complex256</pre>	c8, F c16, D c32, G
Unicode string	unicode	U

np.inf and np.nan

- np.inf (infinity)
 - Too large to be represented
 - e.g., n / 0, np.inf * np.inf, np.inf + np.inf,...
- np.nan (not-a-number)
 - A value that is undefined or unrepresentable
 - e.g., 0 / 0, np.inf / np.inf, np.inf * 0, np.inf - np.inf, ...

```
>>> np.inf
inf

>>> a = array([3, 2, 5])
>>> a / 0
array([inf, inf, inf])
```

```
>>> np.nan
nan
>>> np.log(-1)
nan
>>> np.log([-1, 1, 2])
array([ nan, 0. , 0.69314718])
```

full() and empty()

- np.full(shape, value[, dtype][, order])
 - Return a new array of given shape and type, filled with value
- np.full_like(a, value, ...)

- np.empty (shape[, dtype][, order])
 - Return a new array of given shape and type, without initializing entries
 - Faster than others
- np.empty_like(a, ...)

zeros() and ones()

- np.zeros (shape[, dtype][, order])
 - Return a new array of given shape and type, filled with zeros
 - order: 'C' = row-major (C-style),
 'F' = column-major (Fortran-style)
- np.ones (shape, [, dtype][, order])
 - Return a new array of given shape and type, filled with ones

zeros_like() and ones_like()

- np.zeros_like(a[, dtype], ...)
 - Return an array of zeros with the same shape and type as a given array

- np.ones_like(a[, dtype], ...)
 - Return an array of ones with the same shape and type as a given array

identity() and eye()

- np.identity(n[, dtype])
 - Return the identity array (a square array with ones on the main diagonal)
 - n: number of rows (and columns)

- np.eye(N[, M][, k][, dtype][, order])
 - Return a 2D array with ones on the diagonal and zeros elsewhere
 - M: number of columns (default N)
 - k: index of the diagonal (default 0)

arange()

- np.arange([start,]stop[, step][, dtype])
 - Return an array with evenly spaced values within a given interval: [start, stop)
 - When using a non-integer step, it may produce unexpected results
 - → Use np.linspace() instead

```
>>> np.arange(10, 30, 5)
array([10 15 20 25])
>>> np.arange(0, 2, 0.3)
array([0.  0.3 0.6 0.9 1.2 1.5 1.8])
>>> np.arange(0, -1, -0.1)
array([ 0. , -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9])
>>> np.arange(8.0, 8.4, 0.05)
array([8. , 8.05, 8.1 , 8.15, 8.2 , 8.25, 8.3 , 8.35, 8.4])
```

linspace()

- np.linspace(start, stop[, num][, endpoint]...)
 - Return an array with evenly spaced numbers over a specified interval: [start, stop]
 - num: the number of evenly spaced samples (default 50)
 - endpoint: if False, the endpoint of the interval is excluded (default True)

logspace()

- np.logspace(start, stop[, num][, endpoint][, base], ...)
 - Return num numbers spaced evenly on a log scale
 - In linear space, the sequence starts at basestart and ends with basestop
 - base: the base of the log space (default: 10.0)

geomspace()

- np.geomspace(start, stop[, num][, endpoint], ...)
 - Return *num* numbers spaced evenly on a log scale (a geometric progression)
 - Each output sample is a constant multiple of the previous

```
>>> import math
>>> [ math.exp(i) for i in np.linspace(math.log(1), math.log(1000), 4) ]
>>> np.geomspace(1, 1000, 4)
      1., 10., 100., 1000.])
>>> np.geomspace(-1000, -1, num=4)
array([-1000., -100., -10., -1.])
>>> np.geomspace(1, 256, 9)
      1., 2., 4., 8., 16., 32., 64., 128., 256.])
```

meshgrid()

- np.meshgrid(x1, x2, ..., xn, ...)
 - Return coordinate matrices from coordinate vectors

```
\Rightarrow x = np.linspace(0, 2, 3)
>>> X
array([0., 1., 2.])
>>> y = np.linspace(0, 1, 3)
>>> V
array([0., 0.5, 1.])
>>> xv, yv = np.meshgrid(x, y)
```

```
>>> XV
array([[0., 1., 2.],
       [0., 1., 2.],
       [0., 1., 2.]
>>> yv
array([[0., 0., 0.],
       [0.5, 0.5, 0.5],
       [1., 1., 1.]])
```

meshgrid()


```
>>> import matplotlib.pyplot as plt
>>> plt.scatter(xv, yv)
>>> plt.grid(True)
>>> plt.show()
>>> mg = [list(zip(x,y)) for x, y \]
         in zip(xv, yv)]
>>> mg
[[(0.0, 0.0), (1.0, 0.0), (2.0, 0.0)],
[(0.0, 0.5), (1.0, 0.5), (2.0, 0.5)],
[(0.0, 1.0), (1.0, 1.0), (2.0, 1.0)]
```

meshgrid() Example

random.random() and random.randint()

- numpy.random submodule provides various random number generators
- np.random.random(size)
 - Return random floats in the interval [0.0, 1.0)
 - size: integer or tuple of integers for output array shape
- np.random.randint(low[, high]
 [, size],...)
 - Return random integers in the interval [low, high)
 - If high is omitted, results are from [0, low)

```
>>> np.random.randint(100)
91
>>> np.random.randint(10, size=5)
array([6, 5, 9, 5, 1])
```

random.rand() and random.randn()

- np.random.rand(d0,d1,...,dn)
 - Return random floats in the interval [0.0, 1.0)
 - d0, d1, ..., dn: the dimensions of the output array (not tuple)

- np.random.randn(d0, d1, ..., dn)
 - Return samples from the "standard normal" distribution N(0, 1)
 - For random samples from $N(\mu, \sigma^2)$, use σ^* np.random.randn() + μ

random.uniform()

- np.random.uniform([low=0.0], [high=1.0], [size])
 - Draw samples from a uniform distribution
 - Samples are uniformly distributed over the interval [low, high)

```
>>> np.random.uniform(1.0, 2.0)
1,6937903416817646
>>> np.random.uniform(1.0, 2.0, 5)
array([1.1922301 , 1.72618062, 1.82763685, 1.32765954, 1.45356649])
>>> import math
>>> np.random.uniform(0, math.pi, (3,4))
array([[0.53309063, 1.56158409, 2.34588318, 2.40615273],
       [0.28675017, 0.37922173, 1.24792002, 0.05974539],
       [2.02903176, 0.98991193, 0.61068395, 2.40537881]])
```

random.normal()

- np.random.normal([loc=0.0], [scale=1.0], [size])
 - Draw samples from a normal (Gaussian) distribution
 - loc: mean of the distribution, scale: standard deviation of the distribution
 - random.normal(loc, scale) == loc + scale*random.normal()

Uniform vs. Normal

```
values = np.random.uniform(size=1000000)
plt.hist(values, 1000)
plt.hist(5+0.5*values, 1000)
plt.show()
```


Manipulating Arrays

Array Shape

2D array

1D array

shape: (4,)

shape: (2, 3)

3D array

shape: (4, 3, 2)

Iteration

Use the for loop

```
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> for i in a:
    print(i)
0
```

```
>>> b = np.arange(6).reshape(2,3)
>>> b
array([[0, 1, 2],
       [3, 4, 5]])
>>> for x in b:
       print(x)
[0 1 2]
[3 4 5]
```

Iteration (cont'd)

One "for" loop for each dimension

```
>>> a =
np.arange(18).reshape(3,2,-1)
>>> a
array([[[ 0, 1, 2],
        [3, 4, 5]],
       [[ 6, 7, 8],
        [ 9, 10, 11]],
       [[12, 13, 14],
        [15, 16, 17]]])
```

```
>>> for x in a:
   print(x)
   print('-'*10)
[[0 1 2]
 [3 4 5]]
 [ 9 10 11]]
[[12 13 14]
 [15 16 17]]
```

```
>>> for x in a:
\dots for y in x:
        print(y)
        print('-'*10)
[0 1 2]
[3 4 5]
[6 7 8]
[ 9 10 11]
[12 13 14]
[15 16 17]
```

Reshaping

- a.reshape(shape)
 - Return an array containing the same data with a new shape

- a.resize(shape)
 - Change shape and size of array in-place
 - Same as:a.shape = shape

- a.flatten()
 - Return a flattened array

```
>>> a=np.arange(6)
>>> a.shape
(6,)
>>> a.reshape(2,3)
array([[0, 1, 2],
       [3, 4, 5]]
>>> a.resize(2,3)
>>> a
array([[0, 1, 2],
       [3, 4, 5]])
>>> a.flatten()
array([0, 1, 2, 3, 4, 5])
>>> a.shape = (1, 6)
                        # 555
```

Reshaping (cont'd)

- One dimension can be -I in a.reshape()
 - The value is inferred from the length of the array and remaining dimensions

```
>>> a = np.arange(12)
>>> a.reshape(3, -1)
array([[ 0, 1, 2, 3],
      [4, 5, 6, 7],
      [ 8, 9, 10, 11]])
>>> a.reshape(-1, 3)
array([[ 0, 1, 2],
      [ 3, 4, 5],
      [6, 7, 8],
      [ 9, 10, 11]])
```

```
>>> a.reshape(2, 2, -1)
array([[[ 0, 1, 2],
       [ 3, 4, 5]],
      [[ 6, 7, 8],
      [ 9, 10, 11]]])
>>> a.reshape(-1, 2, 3)
array([[[ 0, 1, 2],
       [ 3, 4, 5]],
      [[ 6, 7, 8],
       [ 9, 10, 11]]])
```

Transposing

a.transpose(axes)

- Return a view of the array with axes transposed
- For a I-D array, no effect
- For a 2-D array, this is a standard matrix transpose
- For an n-D array and axes are given, their order indicates how the axes are permuted. Otherwise, shapes are reversed

```
- x.shape = (1, 2, 3)

\rightarrow x.transpose(1, 2, 0).shape = (2, 3, 1)
```

```
>>> a = np.arange(6)
>>> a.transpose()
array([0, 1, 2, 3, 4, 5])
>>> b = a.reshape(3,2)
>>> b
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> b.transpose()
array([[0, 2, 4],
       [1, 3, 5]])
>>> c = np.arange(6).reshape(1,2,3)
>>> c.transpose().shape
(3, 2, 1)
```

Indexing

Single element indexing

- Similar to Python lists
- Negative indices for indexing from the end of the array

Multidimensional indexing

- Used for multidimensional arrays
- If you use fewer indices than dimensions, you get a subdimensional array
- x[0,2] == x[0][2]: x[0][2] is more inefficient as a new temporary array is created

```
>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8
```

```
>>> x.shape = (2, 5)
>>> x[0]
array([0, 1, 2, 3, 4])
>>> x[1, 3]
8
>>> x[0][2]
2
```

Slicing

```
>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4])
>>> x[:-7]
array([0, 1, 2])
>>> x[1:7:2]
array([1, 3, 5])
>>> x[::-1]
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
```

```
\Rightarrow y = np.arange(35).reshape(5,7)
>>> y[2,:]
array([14, 15, 16, 17, 18, 19, 20])
>>> y[:,2]
array([ 2, 9, 16, 23, 30])
>>> y[1:5:2,::3]
array([[ 7, 10, 13],
       [21, 24, 27]])
>>> y[-1:,-2:]
array([[33, 34]])
```

Views

 Slices of arrays do not copy the internal array data, but only produce new "views" of the original data

```
>>> x = np.arange(6).reshape(2, 3)
>>> y = x[:,1]
>>> Y
array([1, 4])
>>> y[0] = 9
>>> Y
array([9, 4])
>>> X
array([[0, 9, 2],
       [3, 4, 5]]
```

Index Arrays

NumPy arrays can be indexed with other arrays or lists

```
>>> x = np.arange(8, 0, -1)
>>> X
array([8, 7, 6, 5, 4, 3, 2, 1])
>>> x[np.array([3, 3, 1, 6])]
array([5, 5, 7, 2])
>>> x[[3, 3, -1, 6]]
array([5, 5, 1, 2])
>>> x[np.array([[1,1],[2,3]])]
array([[7, 7],
       [6, 5]]
```

```
\Rightarrow y = np.arange(35).reshape(5,7)
>>> y[np.array([0,2,4]),np.array([0,1,2])]
array([ 0, 15, 30])
>>> y[np.array([0,2,4]), 1]
array([ 1, 15, 29])
>>> y[np.array([0,2,4])]
array([[ 0, 1, 2, 3, 4, 5, 6],
       [14, 15, 16, 17, 18, 19, 20],
       [28, 29, 30, 31, 32, 33, 34]])
>>> y[:, np.array([0, 2])] # ???
```

Boolean Index Arrays

Only choose the elements that satisfy the Boolean expression

```
\Rightarrow\Rightarrow a = np.arange(1,7)
>>> a
array([1, 2, 3, 4, 5, 6])
>>> b = [True, True, False, False,
True, False]
>>> a[b]
array([1, 2, 5])
>>> c = [1, 1, 0, 0, 1, 0]
>>> a[c]
array([2, 2, 1, 1, 2, 1])
```

```
>>> x = np.arange(9).reshape(3,3)
>>> y = (x \% 2 == 0)
>>> y
array([[ True, False, True],
       [False, True, False],
       [ True, False, True]])
>>> x[v]
array([0, 2, 4, 6, 8])
>>> x[x % 2 == 0]
array([0, 2, 4, 6, 8])
```

Arithmetic Operations

- Shape of both operands must be same!
- One operand can be a constant

```
>>> a = np.array([1, 2, 3], float)
>>> b = np.array([4, 5, 6], float)
\Rightarrow \Rightarrow a + b
array([5., 7., 9.])
>>> a - b
array([-3., -3., -3.])
>>> a * b
array([ 4., 10., 18.])
>>> b / a
array([4., 2.5, 2.])
```

```
>>> b % a
array([0., 1., 0.])
>>> b**a
array([ 4., 25., 216.])
\Rightarrow \Rightarrow a * 0.5
array([0.5, 1., 1.5])
\Rightarrow \Rightarrow h \Rightarrow 5
array([False, False, True])
>>> a + b == 5
array([ True, False, False])
```

Operations: Python List vs. NumPy Array

Operator *

- List * n: repetition of the whole list
- Array * n: multiply n to every element in the array

```
>>> L = [1, 2, 3]
>>> A = np.array([1, 2, 3])
>>> L * 2
[1, 2, 3, 1, 2, 3]
>>> A * 2
array([2, 4, 6])
```

Operator +

- List I + List 2: concatenation of two lists
- Array I + Array 2: Element-wise addition

```
>>> L + L
[1, 2, 3, 1, 2, 3]
>>> A + A
array([2, 4, 6])
```

Concatenating

- np.concatenate((a1, a2, ..., an), axis)
 - Join a sequence of arrays along an existing axis
 - a1, a2, ..., an: sequence of arrays
 - axis: the axis along which the arrays will be joined. If axis is None, arrays are flattened before use. (default 0)

```
>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.concatenate((a, b))
array([1, 2, 3, 4, 5, 6])
```

Stacking

- np.hstack(tup)
 - Stack arrays in sequence horizontally (column wise)
 - *tup*: tuple of arrays

- np.vstack(tup)
 - Stack arrays in sequence vertically (row wise)
 - *tup*: tuple of arrays


```
>>> a=np.arange(6).reshape(2,3)
>>> b=np.arange(6,12).reshape(2,3)
>>> np.hstack((a,b))
array([[ 0, 1, 2, 6, 7, 8],
      [ 3, 4, 5, 9, 10, 11]])
>>> np.vstack((a,b))
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8],
       [ 9, 10, 11]])
```

np.r_[]

- np.r_[axes, ...]
 - Stack arrays along their first axis in the string

```
>>> a= np.array([0,1,2])
>>> b= np.array([3,4,5])
                   axis to stack
>>> np.r ['0', [a], [b]]
array([[0, 1, 2],
       [3, 4, 5]]
>>> np.r_['1', [a], [b]]
array([[0, 1, 2, 4, 5, 6]])
```

```
if necessary
>>> np.r_['0,2', a, b]
>>> np.r_['1,2', a, b]
array([[0, 1, 2, 3, 4, 5]])
>>> np.r_['1,2,0', a, b]
array([[0, 3], force to 2D shape (3, 1)
        [2, 5]]), 1, 2, 3, 4, 5]])
# np.r_['1', a.reshape(3,1), b.reshape(3,1)]
```

force to 2D shape (1, 3)

np.c_[]

```
np.c_[...] stack on last axis
Short-hand for np.r_['-1,2,0', ...]
```

```
>>> np.c_[[0,1,2], [3,4,5]]
array([[0, 3],
       [1, 4],
       [2, 5]]
>>> np.c_[[[0,1,2]], [[3,4,5]]]
array([[0, 1, 2, 3, 4, 5]])
```

```
# Already in 3D
# Just stack on last axis
>>> np.c_[[[[0,1,2]]], [[[3,4,5]]]]
array([[[0, 1, 2, 3, 4, 5]]])
```

Summary: For 2D Arrays

Stacking horizontally

Stacking vertically

```
>>> a = np.arange(6).reshape(2,3)
\Rightarrow b = np.arange(10,16).reshape(2,3)
>>> np.concatenate((a, b), axis=1)
>>> np.hstack((a, b))
                 array([[ 0, 1, 2, 10, 11, 12],
                      [ 3, 4, 5, 13, 14, 15]])
>>> np.c_[a, b]
>>> np.r ['1', a, b]
```

```
array([[ 0, 1, 2],
                          [ 3, 4, 5],
                          [10, 11, 12],
                          [13, 14, 15]])
>>> np.concatenate((a, b))
>>> np.concatenate((a, b), axis=0)
>>> np.vstack((a, b))
>>> np.r [a, b]
>>> np.r ['0', a, b]
```

Tiling

- np.tile(A, reps)
 - Construct an array by repeating A the number of times given by reps

```
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([0, 1, 2, 0, 1, 2],
       [0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (3,1,2))
array([[[0, 1, 2, 0, 1, 2]],
       [[0, 1, 2, 0, 1, 2]],
       [[0, 1, 2, 0, 1, 2]]]
```

```
>>> b = np.array([[1, 2], [3, 4]))
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
       [3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
       [3, 4],
       [1, 2],
       [3, 4]])
```

Array Broadcasting

Broadcasting

 Allows arithmetic operations on arrays with different shapes

 The smaller array is "broadcast" across the larger array so that they have compatible shapes

Broadcasting Rule

 The size of the trailing axes for both arrays in an operation must either be the same size or one of them must be one

```
(3d array)
                256 x 256 x
Image
     (1d array)
Scale
Result (3d array) 256 x
                        256 x
       (4d array)
                 8 x 1 x 6 x
       (3d array)
В
                       7 x
                             1 x
                                   5
       (4d array)
                   8 x 7 x 6 x
                                   5
Result
```

Broadcasting Example (I)

```
>>> a = np.array([1, 2, 3])
>>> b = 2
>>> a * b
array([2, 4, 6])
>>> a = np.array([[ 0.0, 0.0, 0.0],
                  [10.0, 10.0, 10.0],
                 [20.0, 20.0, 20.0],
                 [30.0, 30.0, 30.0]])
>>> b = array([1.0, 2.0, 3.0])
>>> a + b
array([[ 1., 2., 3.],
       [ 11., 12., 13.],
       [ 21., 22., 23.],
       [ 31., 32., 33.]])
```

```
a: 3
b: 1
result: 3
```

```
a: 4 x 3
b: 3
result: 4 x 3
```

Broadcasting Example (2)

```
>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[ 1., 2.,
                                        Increase a
       [ 11., 12., 13.],
                                        dimension:
                                        (4,) \to (4, 1)
       [ 21., 22., 23.],
       [ 31., 32., 33.]])
>>> a = np.arange(12).reshape(4, 3)
>>> b = np.array([1, 2, 3, 4])
\Rightarrow \Rightarrow a + b
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast
together with shapes (4,3) (4,)
```

```
a: 4 x 1
b: 3
result: 4 x 3
```

