	Probability axioms:		le additivity axiom:		i inequality:	De Moi	rgan's Law:	Combi	nation:	
Mutually exclusive	 P(A)≥0 	IfA ₁ ,A ₂ , Is	A ₂ Is an infinite sequence		$P(A_{1} \cap A_{2}) \ge P(A_{1}) + P(A_{2}) - 1$ General form: $P(A_{2} \cap A_{2}) = P(A_{2}) + P(A_{2}) + P(A_{2}) + P(A_{2}) = P(A_{2} \cap A_{2}) = P(A$		$\binom{n}{k} = no$	no of k – elements subsets from a given n – element set/Binomial coefficient ∇^n		
 Collectively exhaustive 	P(Ω)=1P(AUB)=P(A)+P(B)	countable se	'	P(A₁∩A₂∩A	$_{n})\geq P(A_{1})+P(A_{2})++P(A_{n})-(n-1)$	(On		n!	$\sum_{\mathbf{k}=0}$	$\binom{n}{k} = 2^n$
	if A and B are disjoint	Union Bo	pund :P(AUB)≤P(A)+P(B)	Reliabilit	tv:	Series:	Parallel:	n ₁ !*n ₂ !**n	$\frac{1}{ x }$ = Dividing a n – element set into r partition	n each with n _i distinct elements/multinomial coefficient
$ \begin{array}{c} \textit{Inclusion-exclusion formula:} \\ P(U^n_{k=1}A_k) = \sum_{i}P(A_i) - \sum_{i_1 < i_2}P(A_{i_1} \cap A_{i_2}) + \sum_{i_1 < i_2 < i_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3}) + (-1)^{n-1} * P(\Omega^n_{k=1}A_k) \\ \end{array} $		Given n con	ponents and probability	P(System is up)=p ⁿ			Properties of expectation which is ■ If X≥0,then E[X]≥0	s true for both continuous and discrete r.v.:		
Conditional Probability for EVENTS: Conditional PMF, gi		jiven an	Probability Mass Probability D		Probability Density		If a≤X≤b then a≤E[X]≤b			
$P(A B) = \frac{P(A \cap B)}{P(B)} \text{ where } P(B) > 0$			Function(PMF)(discrete r.v.) function(PDF)(continuous r.v.)		.)	 E(a)=a where a is a constant. E[a*X+b]=a*E[X]+b where a and b are constants 				
Conditional probabilities share same properties like ordinary $p(X A)(x) = P(X = x A)$			$P_X(x) = P(X = x)$ = $P(\{\omega \in \Omega \text{ such that } X(\omega) = x\})$ $P(a \le X \le b) = \int_a^b f_X(x) dx$ For small integral δ .			 E[X+Y]=E[X]+E[Y] more generally E[X1+X2++Xn]=E[X1]+E[X2]++E[Xn] (this is applicable even if the variables are not independent) 				
probabilities (follow probability axioms)			- I ((west such that N(o	0) — K))	For small interval δ : $P(a \le X \le a + \delta) \approx f_X(a) * \delta$		(this is applicable even if the variation of the variatio			
$P(A \cap B) = P(A) * P(B A) = P(B) * P(A B)$			PDF are not p		PDF are not probabilities but probabilitie	es per	Discrete r.v.:E[g(X)]= $\sum_{x} g(x) * P_X(x)$			
General form: $P(A_1 \cap A_2 \cap A_n) = P(A_1) * \prod_{i=2}^{n} P(A_i)$	P(A,IA, n A, n n A, ,)		Total Probability theorem $P(X)=\sum_{i} P(A_{i}) * P(X A_{i})$:	Properties:		unit length i.e. densities Properties:		• Continuous r.v: $E[g(x)] = \int_x g(x)$	
Total Probability theorem:	(14 1112		Expectation:		$\bullet \qquad P_{X}(x) \geq 0$		• $f_X(x) \ge 0$		"	ear function(g(X)=a*X+b) then only $E[g(X)]=g(E[X])$
$P(B)=\sum_{i} P(A_{i}) * P(B A_{i})$ Independence:			$\sum_{x} g(x) * p_{(X A)}(x)$		$ \sum_{x} P_{X}(x) = 1 $				 When the PMF is symmetric ab 	pout a pint then that point is the expected value of the PMF
P(B A)=P(B) occurrence of A		n about B	$\widehat{E[X]} = \sum_{i} P(A_i) * E(X A_i)$				 P(X=x)=0 since area at point is zero 	ero	 When the PMF is not symmetri PMF 	ic the expected value is interpreted as center of gravity of the
P(A∩B)=P(A)*P(B) then A and			Independence: $p_{X A}(x) = p_{(X)}(x)$ for all	x			 P(a≤X≤b)=P(a<x<b)< li=""> </x<b)<>			ative integer value $E[X] = \sum_{x=1}^{\infty} P(X \ge x)$
	endent then A and B^c are ind endent then A^c and B^c are in		$P(X=x \text{ and } A)=P(X=x)^*$		Cumulative distribution fund		Cumulative distribution function:			egative integer value $E[X] = \int_0^\infty 1 - F_X(x) dx = \int_0^\infty P(X \ge x)$
	endent then A° and B° are indendent then B and A ^C are indendent		Conditional PDF, g	iven an	$F_X(x) = P(X \le x) = \sum_{k \le x} P_X(x)$	(k)	$F_X(x) = P(X \le x) = \int_{-\infty}^{\infty} f_X(x) dx$		x) <i>dx</i>	
Pairwise independence :	and A are ind	epenuent	event:		The graph of $F_X(x)$ is a step(s	staircase)	J -∞		•	ue for both continuous and discrete r.v.:
A,B and C are pairwise independent $P(A \cap B) = P(A) * P(B)$	endent means:		$\begin{pmatrix} 0 & if \\ f(x) \end{pmatrix}$	$x \notin A$	function $P[X=x]=F_{x}(x+1)-F_{x}(x)(S)$	Size of the	$\frac{dF_X(x)}{dx} = f_X(x)$ this derivative might be a difficult to evaluate at edge points where		$\bullet V(aX+b)=a^2*V(X)$	
$P(B \cap C) = P(B) * P(C)$			$f_{(X A)}(x) = \begin{cases} \frac{f_X(x)}{P(A)} & \text{if } x \end{cases}$	$x \in A$	jump or increase in height of		is not differientiable	C 1X(X)	V(X)≥0 (ALWAYS) If Y and Y are independent that	n V(X+Y)=V(X)+V(Y) or else it is V(X+Y)=V(X)+V(Y)+2*Cov(X,Y)
$P(A \cap C) = P(A) \cdot P(C)$ It does not imply A,B and C a	are independent i e ·		For small interval δ:		Expectation/mean:		Expectation/mean:			in $V(X+Y)=V(X)+V(Y)$ or else it is $V(X+Y)=V(X)+V(Y)+2^nCoV(X,Y)$ $V(X_i) + \sum_{i\neq j} Cov(X_i, X_j)$ (there are n^2 -n where $i\neq j$
$P(A \cap B \cap C) = P(A) * P(B) * P(C)$	are independent i.e		$f_{(X A)}(x) * \delta$ $\approx P(x \le X \le x + \delta A)^{\alpha}$	where P(A)	$E[X] = \sum_{x} x * P_{X}(x)$		$E[X] = \int_{X} x * f_{X}(x)$			r both continuous and discrete r.v.:
General form: $P(A_1 \cap A_2 \cap A_n) = P(A_1) * P(A_2) *$	* *P(A _n) then A ₁ A ₂ A _n are		> 0		exists only when $\sum x *$	$P_X(x) < \infty$	exists only when $\int x * f_X(x) < \infty$		 It's always a monotonically incr 	reasing function i.e: $y\ge x$ then $F_X(y)\ge F_X(x)$
Independent	1 (All) then A1,72,All the		$\int f_{(X A)}(x)dx = 1$		Variance :		Variance:		• $F_X(x)$ tends to 1 as $x \to \infty$ i. e:	
Conditional Independ			Total Probability theorem		$Var(X)=V(X)=E[(X-\mu)^2]$		$Var(X)=V(X)=E[(X-\mu)^2]=E[X^2]-[E[X]]^2$		• $F_X(x)$ tends to 0 as $x \to -\infty$ i. e: $F_X(-\infty) = 0$	
$P(A \cap B C) = P(A C) * P(B C)$ If A and B are independent if		ndependence	$f_X(x) = \sum_i P(A_i) * f_{X A_i}(x)$ Expectation:)	$Var(X) = E[X^2] - [E[X]]^2$		Standard deviation= $\sigma_x = \sqrt{Var(X)}$		• F(x) is right-continuous; that is, for every number x_0 , $\lim_{x\to x_0+} F(x) = F(x_0)$	
BAYES THEOREM:			$E(X A) = \int x * f_{(X A)}(x)$	x)dx	Standard deviation= $\sigma_x = \sqrt{Va}$	r(X)		Ī	Mixed distribution:	Indicator r.v:
J		$E[g(X) A] = \int g(x) * f(X A)$		Joint PMF:		Joint PDF:		X={ Y with probability p Z with probability 1 - p	If X is the indicator of an event A X=I _A X=1 iff A occur E[IA]=P(A)	
$\sum_{j} P(A_{j}) P(B A_{j})$)		$E[X] = \sum_{i} P(A_i) * E(X A_i)$		$p_{X,Y}(x,y) = P(X = x \text{ and}$	dY = y	$P(a \le X \le a + \delta, c \le Y \le C + \delta) \approx f_{X,Y}(x, y) * \delta^2$ Joint PDF are not probabilities but		where Y is discrete i.v. and Z is a continuous Random Variable:	
Conditional PMF:		Conditional	DDE:				probabilities per unit area		r.v. X is neither continuous nor discrete it is a	A function from Ω to the real numbers
			$\sum \sum_{n} (x, y) = 1$		[mixed r.v.	Sum of a random number of independent		
$p_{(X Y)}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} \text{ where } p_Y(y) > 0 \qquad \qquad f_{(X Y)}(x y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \text{ where } f_Y(y) > 0$			()		$p_{X,Y}(x,y)=1$		$\int_{X,Y}(x,y)axay=1$			le u ·
$p_{(X Y)}(x y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} wl$	here $p_{Y}(y) > 0$ $f_{(}$	$f(X Y)(x y) = \frac{f_{\lambda}}{f(X Y)}$	$\frac{f_Y(x,y)}{f_Y(y)}$ where $f_Y(y) > 0$		$-\sum_{x}\sum_{y}p_{x,y}(x,y) = 1$ $p_{x,y}(x,y) > 0$		$\int_{-\infty} \int_{-\infty} f_{X,Y}(x,y) dx dy = 1$ $f_{X,Y}(x,y) \ge 0$		$F_X(x) = p * F_Y(x) + (1 - p) * F_Z(x)$ E[X] = p * E[Y] + (1-p) * E[Z]	r.v.: $Y=X_1+X_2++X_N$, where N is a non-negative integer r.v., X_i 's
	Fo	or small interval	ίδ,ε:		$p_{X,Y}(x,y) \ge 0$		$f_{X,Y}(x,y) \ge 0$		$F_X(x) = p * F_Y(x) + (1 - p) * F_Z(x)$ E[X] = p * E[Y] + (1-p) * E[Z]	$Y=X_1+X_2++X_N$, where N is a non-negative integer r.v., X_i 's are i.i.d and independent of N
$p_{(X Y)}(x y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)} \text{ wh}$ $\sum_{x} p_{(X Y)}(x y) = 1$	Fo P(or small interval (a≤X≤a+δ c≤Y≤0	δ,ε: C+ E)≈ <i>f_{X,Y}(x,y</i>) *δ		$\frac{p_{X,Y}(x,y) \ge 0}{p_X(x) = \sum_{y} p_{X,Y}(x,y)}$		$f_{X,Y}(x,y) \ge 0$ $f_{X}(x) = \int_{f} f_{X,Y}(x,y) dy$			$Y=X_1+X_2++X_N$, where N is a non-negative integer r.v., X_i 's
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$	Fc P(Th	or small interval (a≤X≤a+δ c≤Y≤0 he conditional F	δ, \mathcal{E} : C+ \mathcal{E}) $\approx f_{X,Y}(x,y) * \delta$ PDF is slice of joint PDF		$p_{X,Y}(x,y) \ge 0$		$f_{X,Y}(x,y) \ge 0$		E[X]= p*E[Y] + (1-p)*E[Z]	$\begin{split} Y = & X_1 + X_2 + + X_N \text{ , where N is a non-negative integer r.v., } X's \\ \text{are i.i.d and independent of N} \\ E[Y] = E[N] * E[X] & Var(Y) = E[N] * Var(X) + (E[X])^2 * Var(N) \end{split}$
	FC P(or small interval (a≤X≤a+δ c≤Y≤0 he conditional F otal Probability	δ, ε : C+ ε) $\approx f_{X,Y}(x,y) * \delta$ PDF is slice of joint PDF theorem:		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{X,Y}(x,y) \\ & p_Y(y) = \sum_x p_{X,Y}(x,y) \\ & \text{Expected value rule:} \end{aligned}$		$\begin{aligned} &\int_{-\infty}^{J_{-\infty}} \int_{-\infty}^{J_{-\infty}} \\ &f_{X,Y}(x,y) \geq 0 \\ &f_{X}(x) = \int_{Y} f_{X,Y}(x,y) dy \\ &f_{Y}(y) = \int_{X} f_{X,Y}(x,y) dx \end{aligned}$ Expected value rule:		E[X]= p*E[Y] + (1-p)*E[Z]	$\begin{split} Y = & X_1 + X_2 + + X_N \text{ , where N is a non-negative integer r.v., } X's \\ \text{are i.i.d and independent of N} \\ E[Y] = E[N] * E[X] & Var(Y) = E[N] * Var(X) + (E[X])^2 * Var(N) \end{split}$
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ Total Probability theorem: $p_X(\mathbf{x}) = \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbf{p}_{(X Y)}(\mathbf{x} \mathbf{y})$	Fc P(Ti Ti Ti Ti Ti Ti Ti T	or small interval $\{a \le X \le a + \delta \mid c \le Y \le t\}$ the conditional F otal Probability $f(x) = \int_{y} f_{Y}(y)^{-s}$	δ, \mathcal{E} : C+ \mathcal{E}) $\approx f_{X,Y}(x,y) * \delta$ PDF is slice of joint PDF		$p_{X,Y}(x,y) \ge 0$ $p_X(x) = \sum_{y} p_{X,Y}(x,y)$ $p_Y(y) = \sum_{x} p_{X,Y}(x,y)$	$\gamma_{\mathcal{X}}(x,y)$	$f_{X,Y}(x,y) \ge 0$ $f_X(x) = \int_Y f_{X,Y}(x,y) dy$ $f_Y(y) = \int_X f_{X,Y}(x,y) dx$		E[X]= p*E[Y] + (1-p)*E[Z] Derived distribution-the discrete	$\begin{split} Y = & X_1 + X_2 + + X_N \text{ , where N is a non-negative integer r.v., } X's \\ \text{are i.i.d and independent of N} \\ E[Y] = E[N] * E[X] & Var(Y) = E[N] * Var(X) + (E[X])^2 * Var(N) \end{split}$
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ Total Probability theorem: $p_X(x) = \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbf{p}_{(X Y)}(\mathbf{x} \mathbf{y})$ Expectation:	Fc P(Tt Tt Tt Tt Tt Tt Tt T	or small interval $(a \le X \le a + \delta \mid c \le Y \le c$ the conditional F otal Probability $f(x) = \int_{\mathcal{Y}} f_Y(y) dy$ expectation:	δ, ε : $C+\varepsilon$) $\approx f_{X,Y}(x,y) * \delta$ DF is slice of joint PDF theorem: *f(X Y)(x y) dy		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_{y} p_{X,Y}(x,y) \\ & \cdot p_Y(y) = \sum_{x} p_{X,Y}(x,y) \\ & \text{Expected value rule:} \\ & \text{E}[g(\mathbf{X},\mathbf{Y})] = \sum_{x} \sum_{y} g(x,y) * p_X \end{aligned}$	$_{\mathbb{T}^{Y}}(x,y)$	$\begin{aligned} &\int_{-\infty}^{J_{-\infty}} \int_{-\infty}^{J_{-\infty}} \\ &f_{X,Y}(x,y) \geq 0 \\ &f_{X}(x) = \int_{Y} f_{X,Y}(x,y) dy \\ &f_{Y}(y) = \int_{X} f_{X,Y}(x,y) dx \end{aligned}$ Expected value rule:		E[X]= p*E[Y] + (1-p)*E[Z] Derived distribution-the discrete case:	Y=X ₁ +X ₂ ++X _N , where N is a non-negative integer r.v., X's are i.i.d and independent of N E[Y]= E[N]*E[X] Var(Y)= E[N]*Var(X) + (E[X]) ² *Var(N) Derived distribution-the continuous case: Y=g(X) Two step procedure:
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ $\boxed{ \begin{aligned} & & & & \\ & & & & \\ & & & & \\ & & & &$	$\begin{array}{c} Fc \\ P(p) \\ Ti \\ Ti \\ Ti \\ f_X \\ E \\ E \end{array}$	or small interval $(a \le X \le a + \delta) c \le Y \le \alpha$ the conditional F otal Probability $f(x) = \int_{y} f_{Y}(y)$ expectation: f(x) = f(x)	$\begin{cases} \delta, \varepsilon : \\ c+\varepsilon = f_{X,Y}(x,y) * \delta \\ \text{DPF is slice of joint PDF} \end{cases}$ theorem: $* f_{(X Y)}(x y) dy$ $\int_{X} x * f_{X Y}(x y) dx$		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{X,Y}(x,y) \\ & p_Y(y) = \sum_x p_{X,Y}(x,y) \\ & \text{Expected value rule:} \end{aligned}$	$_{i,y}\left(x,y ight)$	$\begin{aligned} &\int_{-\infty}^{J_{-\infty}} \int_{-\infty}^{J_{-\infty}} \\ &f_{X,Y}(x,y) \geq 0 \\ &f_{X}(x) = \int_{Y} f_{X,Y}(x,y) dy \\ &f_{Y}(y) = \int_{X} f_{X,Y}(x,y) dx \end{aligned}$ Expected value rule:		Derived distribution-the discrete case: Y=g(X)	Y=X ₁ +X ₂ ++X _N , where N is a non-negative integer r.v., X/s are i.i.d and independent of N E[Y] = E[N]*E[X] Var(Y) = E[N]*Var(X) + (E[X]) ² *Var(N) Derived distribution-the continuous case: Y=g(X) Two step procedure: • Find CDF of Y=P(Y≤y)=P(a(X)≤y)
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ $\boxed{ \begin{aligned} & & & & \\ & & & & \\ & & & & \\ & & & &$	FC P(P(P(P(P(P(P(P	or small interval $(a \le X \le a + \delta \mid c \le Y \le t)$ he conditional F otal Probability $f(x) = \int_{y} f(y)$ expectation: $f(x) = \int_{y} f(y) dy$ is $f(x) = \int_{y} f(y) dy$.	$\begin{cases} \delta, \varepsilon : \\ c+\varepsilon = f_{X,Y}(x,y) * \delta \\ \text{DPF is slice of joint PDF} \end{cases}$ theorem: $* f_{(X Y)}(x y) dy$ $\int_{x} x * f_{X Y}(x y) dx$ $* f_{X Y}(x y) dx$		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{X,Y}(x,y) \\ & p_Y(y) = \sum_x p_{X,Y}(x,y) \\ & \text{Expected value rule:} \\ & \text{E}[g(X,Y)] = \sum_x \sum_y g(x,y) * p_X \end{aligned}$		$\int_{x_{X}}^{J-\infty} \int_{x_{X}}^{J-\infty} \int_{x_{X}} (x,y) \ge 0$ $f_{X}(x) = \int_{y} f_{X,Y}(x,y) dy$ $f_{Y}(y) = \int_{x} f_{X,Y}(x,y) dx$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$	(x, v)	$E[X] = p^* E[Y] + (1-p)^* E[Z]$ $Derived \ distribution-the \ discrete$ $case:$ $Y = g(X)$ $p_Y(y) = \sum_{x:g(x)=y} p_X(x)$	Y=X ₁ +X ₂ ++X _N , where N is a non-negative integer r.v., X's are i.i.d and independent of N E[Y]= E[N]*E[X] Var(Y)= E[N]*Var(X) + (E[X]) ² *Var(N) Derived distribution-the continuous case: Y=g(X) Two step procedure:
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ $\boxed{ \text{Total Probability theorem:} \\ p_X(x) = \sum_{\mathbf{y}} p_Y(\mathbf{y}) * p_{(X Y)}(\mathbf{x} \mathbf{y}) }$ $\boxed{ \text{Expectation:} \\ E(X Y) = \sum_{\mathbf{x}} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y}) }$ $E[g(X) Y] = \sum_{\mathbf{x}} g(\mathbf{x}) * p_{(X Y)}(\mathbf{y} \mathbf{y}) }$	$\begin{array}{c} & \begin{array}{c} Fc \\ P(\\ Tl \end{array} \\ & \begin{array}{c} Tt \\ fx \end{array} \\ \\ y) & \begin{array}{c} E \\ E \end{array} \\ \\ X Y)^{(x y)} & \begin{array}{c} E \\ E \end{array} \\ \end{array}$	or small interval $(a \le X \le a + \delta) c \le Y \le \alpha$ the conditional F otal Probability $f(x) = \int_{y} f_{Y}(y)$ expectation: f(x) = f(x)	$\begin{cases} \delta, \varepsilon : \\ c+\varepsilon = f_{X,Y}(x,y) * \delta \\ \text{DPF is slice of joint PDF} \end{cases}$ theorem: $* f_{(X Y)}(x y) dy$ $\int_{x} x * f_{X Y}(x y) dx$ $* f_{X Y}(x y) dx$		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{X,Y}(x,y) \\ & p_Y(y) = \sum_x p_{X,Y}(x,y) \\ & \text{Expected value rule:} \\ & \text{E}[g(X,Y)] = \sum_x \sum_y g(x,y) * p_X \end{aligned}$		$\begin{aligned} &\int_{-\infty}^{J_{-\infty}} \int_{-\infty}^{J_{-\infty}} \\ &f_{X,Y}(x,y) \geq 0 \\ &f_{X}(x) = \int_{Y} f_{X,Y}(x,y) dy \\ &f_{Y}(y) = \int_{X} f_{X,Y}(x,y) dx \end{aligned}$ Expected value rule:	(x,y)	$E[X] = p*E[Y] + (1-p)*E[Z]$ $Derived \ distribution-the \ discrete \ case:$ $Y = g(X) \ p_Y(y) = \sum_{x:g(x)=y} p_X(x)$ $Y = a*X+b$	$\begin{aligned} & \text{Y=}X_1 + X_2 + + X_N, \text{where N is a non-negative integer r.v., } X' \text{s} \\ & \text{are i.i.d and independent of N} \\ & \text{E}[Y] = \text{E}[N]^* \text{E}[X] & \text{Var}(Y) = \text{E}[N]^* \text{Var}(X) + (\text{E}[X])^2 * \text{Var}(N) \end{aligned}$ $\begin{aligned} & \textbf{Derived distribution-the continuous case :} \\ & \textbf{Y=g(X)} \\ & \text{Two step procedure:} \\ & & \text{Find CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ & & \text{of } f_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b}$
$\sum_{x} p_{(X Y)}(x y) = 1$ $\boxed{ \begin{aligned} & & & & \\ & & & & \\ & & & & \\ & & & &$	$\begin{array}{c} & \begin{array}{c} Fc \\ P(\\ Tl \end{array} \\ & \begin{array}{c} Tt \\ fx \end{array} \\ \\ y) & \begin{array}{c} E \\ E \end{array} \\ \\ X Y)^{(x y)} & \begin{array}{c} E \\ E \end{array} \\ \end{array}$	or small interval $(a \le X \le a + \delta \mid c \le Y \le t)$ he conditional F otal Probability $f(x) = \int_{y} f(y)$ expectation: $f(x) = \int_{y} f(y) dy$ is $f(x) = \int_{y} f(y) dy$.	$\begin{cases} \delta, \varepsilon : \\ c+\varepsilon = f_{X,Y}(x,y) * \delta \\ \text{DPF is slice of joint PDF} \end{cases}$ theorem: $* f_{(X Y)}(x y) dy$ $\int_{x} x * f_{X Y}(x y) dx$ $* f_{X Y}(x y) dx$		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{X,Y}(x,y) \\ & p_Y(y) = \sum_x p_{X,Y}(x,y) \\ & \text{Expected value rule:} \\ & \text{E}[g(X,Y)] = \sum_x \sum_y g(x,y) * p_X \\ & \textit{Joint CDF:} \\ & F_{X,Y}(x,y) dx dy = P(X \leq \\ & \textit{Covariance:} \end{aligned}$	$(x, Y \le y) = \int_{y}^{\infty} (x, Y \le y) = \int_{y}^{$	$\begin{aligned} \int_{x,Y}^{J=\infty}(x,y) &\geq 0 \\ f_X(x) &= \int_{y} f_{X,Y}(x,y) dy \\ f_Y(y) &= \int_{x} f_{X,Y}(x,y) dx \end{aligned}$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{x} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) &= \frac{\partial^2 F_{X,Y}}{\partial x \partial y} \end{aligned}$ Correlation coefficient:	(x,y)	$E[X] = p^* E[Y] + (1-p)^* E[Z]$ $Derived \ distribution-the \ discrete$ $case:$ $Y = g(X)$ $p_Y(y) = \sum_{x:g(x)=y} p_X(x)$	$\begin{aligned} & \text{Y=}X_1 + X_2 + + X_N, \text{where N is a non-negative integer r.v., } X_i's \\ & \text{are i.i.d and independent of N} \\ & \text{E}[Y] = \text{E}[N]^* \text{E}[X] & \text{Var}(Y) = \text{E}[N]^* \text{Var}(X) + (\text{E}[X])^2 * \text{Var}(N) \end{aligned}$ $\begin{aligned} & \textbf{Derived distribution-the continuous case:} \\ & \textbf{Y=g(X)} \\ & \text{Two step procedure:} \\ & & \text{Find CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ & & \text{f}_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$
$\begin{split} \sum_{x} p_{(X Y)}(\mathbf{x} \mathbf{y}) &= 1 \\ \hline \text{Total Probability theorem:} \\ p_{X}(x) &= \sum_{y} p_{Y}(y) * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ \hline \text{Expectation:} \\ &\mathbb{E}(\mathbf{X} Y) &= \sum_{x} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ &\mathbb{E}[g(X) Y] &= \sum_{x} \mathbf{g}(\mathbf{x}) * p_{(X Y)}(\mathbf{y}) \\ &\mathbb{E}[X] &= \sum_{y} p_{Y}(y) * \mathbb{E}(\mathbf{x} Y) &= y) \\ \hline \text{Independence:} \end{split}$	FC P(T1 T1 T1 T2 T2 T3 T4 T4 T4 T4 T4 T4 T4	or small interval (a $\leq X \leq a + \delta$) c $\leq Y \leq t$ the conditional F total Probability $f_{x}(x) = \int_{y} f_{y}(y) dy$ **Expectation: $G(X Y = y) = \int_{x} g(x) dy$ $G[g(X) Y] = \int_{x} g(x) dy$ **Independence:	$\begin{cases} \delta, \varepsilon : \\ c + \varepsilon s f_{X,Y}(x,y) * \delta \\ \text{DPE is slice of joint PDF} \end{cases}$ theorem: $f(X Y)(x y)dy$ $\begin{cases} x * f_{X Y}(x y)dx \\ x * f_{X Y}(x y)dx \end{cases}$ $(X Y Y X Y) = y dy$		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{X,Y}(x,y) \\ & p_Y(y) = \sum_x p_{X,Y}(x,y) \\ & \text{Expected value rule:} \\ & \text{E}[g(X,Y)] = \sum_x \sum_y g(x,y) * p_X \\ & \\ & \textit{Joint CDF:} \\ & F_{X,Y}(x,y) dx dy = P(X \leq X, Y) \end{aligned}$	$(x, Y \le y) = \int_{y}^{\infty} (x, Y \le y) = \int_{y}^{$	$\begin{aligned} \int_{x,Y}^{J=\infty}(x,y) &\geq 0 \\ f_X(x) &= \int_{y} f_{X,Y}(x,y) dy \\ f_Y(y) &= \int_{x} f_{X,Y}(x,y) dx \end{aligned}$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{x} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) &= \frac{\partial^2 F_{X,Y}}{\partial x \partial y} \end{aligned}$ Correlation coefficient:	(x,y)	$\begin{split} & \mathbb{E}[\mathbf{X}] = \mathbf{p}^* \mathbb{E}[\mathbf{Y}] + (1 - \mathbf{p})^* \mathbb{E}[\mathbf{Z}] \\ & \textbf{Derived distribution-the discrete } \\ & \textbf{case:} \\ & \mathbf{Y} = \mathbf{g}(\mathbf{X}) \\ & p_Y(\mathbf{y}) = \sum_{x:g(\mathbf{x}) = y} p_X(\mathbf{x}) \\ & \\ & \mathbf{Y} = \mathbf{a}^* \mathbf{X} + \mathbf{b} \\ & p_Y(\mathbf{y}) = p_X \left(\frac{y - b}{a}\right) \\ & \mathbf{For g}(\mathbf{X}) \text{ being strictly increasing or decreasing} \end{split}$	$\begin{aligned} &\text{Y=}X_1 + X_2 + \ldots + X_N, \text{where N is a non-negative integer r.v., } X's \\ &\text{are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]}^* \text{E[X]} & \text{Var(Y)=} \text{E[N]}^* \text{Var(X)} + (\text{E[X]})^{2*} \text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & \text{Find CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ &\bullet & f_Y(y) = \frac{d^2 Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \end{aligned}$
$\sum_{x} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ Total Probability theorem: $p_{X}(x) = \sum_{y} p_{Y}(y) * p_{(X Y)}(\mathbf{x} \mathbf{y})$ Expectation: $E(\mathbf{X} \mathbf{Y}) = \sum_{x} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y})$ $E[g(X) Y] = \sum_{x} g(\mathbf{x}) * p_{(X Y)}(\mathbf{y} \mathbf{y})$ $E[X = \sum_{y} p_{Y}(y) * E(X Y = y)$ Independence: $p_{X Y}(x) = p_{X}(\mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y}$	$ \begin{array}{c} & \begin{array}{c} Fc \\ P(\\ Tl \end{array} \\ \hline Tt \\ fx \end{array} $	or small interval (a $\leq X \leq a + \delta$) c $\leq Y \leq t$ he conditional Probability ($t(X) = \int_{Y} f_{Y}(Y) dY$) expectation: $E(X Y = Y) = \int_{X} g(X) dY = \int_{Y} f_{Y}(Y) E[X] dY$ independence: $E(X Y = Y) = \int_{X} f_{Y}(Y) dY$ independence: $E(X Y = Y) = \int_{X} f_{Y}(Y) dY$	$\begin{cases} \delta, \varepsilon : \\ c + \varepsilon F_{X,Y}(x,y) * \delta \\ c + \varepsilon F_{X,Y}(x,y) * \delta \end{cases}$ $\Rightarrow \text{DPE is slice of joint PDF}$ theorem: $* f(X Y)(x y) dy$ $\begin{cases} \int_{x} x * f_{X Y}(x y) dx \\ x * f_{X Y}(x y) dx \end{cases}$ $* f_{X Y}(x y) dx$ $* f_{X Y}(x y) dx$ $* f_{X Y}(x y) dx$ $* f_{Y}(y) \text{ for all } x, y$		$\begin{aligned} & p_{X,Y}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{X,Y}(x,y) \\ & p_Y(y) = \sum_x p_{X,Y}(x,y) \\ & \text{Expected value rule:} \\ & \text{E}[g(X,Y)] = \sum_x \sum_y g(x,y) * p_X \\ & \\ & \textit{Joint CDF:} \\ & F_{X,Y}(x,y) dx dy = P(X \leq \\ & \textit{Covariance:} \\ & \text{It tells us if X and Y are mo same directions or not } \\ & \text{Cov}(X,Y) = \text{E}[(X - \text{E}[X])^*(Y - \text{E}[Y])^*] \end{aligned}$	$ (x, Y \le y) = \int_{y} (x, Y \le y)$	$\int_{X_{X}}^{J-\infty} \int_{X_{X}}^{J-\infty} \int_{X_{X}}^{J$]	$E[X] = p^*E[Y] + (1-p)^*E[Z]$ $Derived \ distribution-the \ discrete$ $case:$ $Y = g(X)$ $p_Y(y) = \sum_{x:g(x)=y} p_X(x)$ $Y = a^*X + b$ $p_Y(y) = p_X\left(\frac{y-b}{a}\right)$ For g(X) being strictly increasing or decreasing $Y = g(x)$	$\begin{aligned} &\text{Y=}X_1 + X_2 + \ldots + X_N, \text{where N is a non-negative integer r.v., } X's \\ &\text{are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]}^* \text{E[X]} & \text{Var(Y)=} \text{E[N]}^* \text{Var(X)} + (\text{E[X]})^{2*} \text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & \text{Find CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ &\bullet & f_Y(y) = \frac{d^2 Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \end{aligned}$
$\begin{split} \sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) &= 1 \\ \hline \mathbf{Total Probability theorem:} \\ p_X(x) &= \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbf{p}_{(X Y)}(\mathbf{x} \mathbf{y}) \\ \hline \mathbf{Expectation:} \\ \mathbf{E}(\mathbf{X} \mathbf{Y}) &= \sum_{\mathbf{x}} \mathbf{x} * \mathbf{p}_{(X Y)}(\mathbf{x} \mathbf{y}) \\ \mathbf{E}[g(X) Y] &= \sum_{\mathbf{x}} \mathbf{g}(\mathbf{x}) * \mathbf{p}_{(X)} \\ \mathbf{E}[\mathbf{x}] &= \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbf{E}(\mathbf{x} \mathbf{Y} = \mathbf{y}) \\ \hline \mathbf{Independence:} \\ p_{X Y}(x,y) &= p_X(x) \text{ for all } \mathbf{x}, \mathbf{y} \\ p_{X,Y}(x,y) &= p_X(x) * p_Y(y) \mathbf{f}_{\mathbf{y}} \\ \mathbf{f}(\mathbf{X}, \mathbf{y}) &= \mathbf{p}_{\mathbf{x}}(\mathbf{x}) * \mathbf{p}_{\mathbf{y}}(\mathbf{y}) \\ \mathbf{f}(\mathbf{y}, \mathbf{y}) &= \mathbf{p}_{\mathbf{x}}(\mathbf{x}) * \mathbf{p}_{\mathbf{y}}(\mathbf{y}) \end{split}$	Fr	or small interval (asXsa+ δ) csYs(he conditional F to the Conditional	$\begin{cases} \delta, \dot{\epsilon}: \\ c+\delta s_{X,Y}(x,y) * \delta \\ c+\delta s_{X,Y}(x,y) * \delta \end{cases}$ PDF is slice of joint PDF theorem: $\begin{cases} f(X Y)(x y)dy \\ x & f_{X Y}(x y)dx \\ y & f_{X Y}(x y)dx \\ f(X Y)(x x)(x x) \\ f(X Y)(x x) \\ f(X $		$\begin{aligned} &p_{X,Y}(x,y) \geq 0 \\ &p_X(x) = \sum_y p_{X,Y}(x,y) \\ &p_Y(y) = \sum_x p_{X,Y}(x,y) \\ &\text{Expected value rule:} \\ &\text{E[g(X,Y)]} = \sum_x \sum_y g(x,y) * p_X \\ & \\ & & $	$(x, Y \le y) = \int_{y} f(x, $	$\int_{X_{X}}^{J-\infty} \int_{X_{X}}^{J-\infty} \int_{X_{X}} (x,y) \geq 0$ $f_{X}(x) = \int_{Y} f_{X,Y}(x,y) dy$ $f_{Y}(y) = \int_{X} f_{X,Y}(x,y) dx$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{X} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) = \frac{\partial^{2} F_{X,Y}}{\partial x \partial y}$ Correlation coefficient: $\rho(X,Y) = E\left[\left(\frac{X - E[X]}{\sigma_{X}}\right) * \left(\frac{Y - E[Y]}{\sigma_{Y}}\right)\right]$ $= \frac{Cov(X,Y)}{\sigma_{X} * \sigma_{Y}}$]	$\begin{split} & E[X] = p^* E[Y] + (1 \text{-} p)^* E[Z] \\ & \qquad \qquad$	$\begin{aligned} &\text{Y=}X_1 + X_2 + \ldots + X_N, \text{where N is a non-negative integer r.v., } X's \\ &\text{are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]}^* \text{E[X]} & \text{Var(Y)=} \text{E[N]}^* \text{Var(X)} + (\text{E[X]})^{2*} \text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & \text{Find CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ &\bullet & f_Y(y) = \frac{d^2 Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \end{aligned}$
$\begin{split} \sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) &= 1 \\ \hline \text{Total Probability theorem:} \\ p_X(x) &= \sum_{\mathbf{y}} p_Y(\mathbf{y}) * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ \hline \text{Expectation:} \\ &\mathbb{E}(\mathbf{X} \mathbf{Y}) = \sum_{\mathbf{x}} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ &\mathbb{E}[g(X) Y] = \sum_{\mathbf{x}} g(\mathbf{x}) * p_{(X Y)}(\mathbf{y} \mathbf{y}) \\ &\mathbb{E}[X] &= \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbb{E}(\mathbf{x} \mathbf{y} = \mathbf{y}) \\ \hline & \text{Independence:} \\ p_{X Y}(x) &= p_X(\mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y} \\ p_{XX}(\mathbf{x}, \mathbf{y}) &= p_X(\mathbf{x}) * p_Y(\mathbf{y}) \mathbf{f} \\ \text{if } X, Y \text{ are independent then independent and:} \end{split}$	FC P(T1 T1 T1 T2 T2 T3 T4 T4 T4 T4 T5 T5 T5 T5	or small interval (asXsa+ δ) csYs(he conditional F total Probability $_{c}(x) = \int_{y} f_{v}(y)$ expectation: $ (3(X Y=y) = \frac{1}{2} (g(X) Y] = \int_{x} g(x) (X Y] = \int_{y} f_{v}(y) E[X] (X Y) = f_{x}(y) (X Y) = f_{x}(x) (X Y) = f_$	$\delta, \dot{\epsilon}$: $c+\epsilon s_{X,Y}(x,y)*\delta$ $c+\epsilon s_{X,Y}(x,y)*\delta$ $c+\epsilon s$ slice of joint PDF theorem: f(x y)(x y)dy $\int_{x} x * f_{X Y}(x y)dx$ $\int_{x} x * f_{X Y}(x y)dx$ $f(y) * f_{X Y}(x y)dx$ f(y) = y]dy $f(y) for all x, y = f_{X}(x)$ $f(x) * F_{Y}(x)$ $f(x) * F_{Y}(x)$ $f(x) * F_{Y}(x)$ f(x) * f(x) f(x) * f	also	$\begin{aligned} &p_{X,Y}(x,y) \geq 0 \\ &p_X(x) = \sum_{x} p_{X,Y}(x,y) \\ &p_Y(y) = \sum_{x} p_{X,Y}(x,y) \\ &\text{Expected value rule:} \\ &\text{E[g(X,Y)]} = \sum_{x} \sum_{y} g(x,y) * p_X \\ & \\ & $	$(x, Y \le y) = \int_{y}^{\infty} (x, Y \le y) = \int_{y}^{$	$\int_{x,Y}^{J-\infty} \int_{x,Y}^{J-\infty} dx = 0$ $f_{X}(x) = \int_{y} f_{X,Y}(x,y) dy$ $f_{Y}(y) = \int_{x} f_{X,Y}(x,y) dx$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{x} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) = \frac{\partial^{2} F_{X,Y}}{\partial x \partial y}$ Correlation coefficient: $\rho(X,Y) = E\left[\left(\frac{X-E[X]}{\sigma_{X}}\right) * \left(\frac{Y-E[Y]}{\sigma_{Y}}\right)\right]$ $= \frac{Cov(X,Y)}{\sigma_{X}} * \sigma_{Y}$ Properties:]	$\begin{split} & E[X] = p^* E[Y] + (1 \text{-} p)^* E[Z] \\ & \textbf{\textit{Derived distribution-the discrete } \\ & \textbf{\textit{case:}} \\ & \\ & \mathbf{Y} \text{-} \mathbf{g}(\mathbf{X}) \\ & p_Y(y) = \sum_{x:g(x) = y} p_X(x) \\ \\ & \\ & \mathbf{Y} \text{-} \mathbf{a}^* \mathbf{X} \text{+} \mathbf{b} \\ & p_Y(y) = p_X \left(\frac{y - b}{a} \right) \\ & \\ & For \ g(X) \ being strictly increasing or decreasing \\ & Y \text{-} \mathbf{g}(X) \\ & X \text{-} \mathbf{g}^{-1}(Y) \text{-} \mathbf{h}(Y) \\ & f_Y(y) = \frac{\mathrm{dh}(y)}{\mathrm{dy}} * f_X(\mathbf{h}(y)) \end{split}$	$\begin{aligned} & \text{Y=X}_1 + X_2 + \ldots + X_N, \text{where N is a non-negative integer r.v., } X' \text{s are i.i.d and independent of N} \\ & \text{E[Y]=E[N]*E[X]} & \text{Var(Y)=E[N]*Var(X) + (E[X])}^2 + \text{Var(N)} \end{aligned}$ $\begin{aligned} & \textbf{Derived distribution-the continuous case:} \\ & \textbf{Y=g(X)} \\ & \text{Two step procedure:} \\ & \bullet & \text{Find CDF of Y=P(Y \le y)=P(g(X) \le y)} \\ & \bullet & \text{f}_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $& \textbf{Y=a^*X+b} \\ & f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \\ \text{3 we get:} \end{aligned}$
$\begin{split} \sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) &= 1 \\ \hline \text{Total Probability theorem:} \\ p_X(x) &= \sum_{\mathbf{y}} p_Y(\mathbf{y}) * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ \hline \text{Expectation:} \\ & \mathbf{E}(\mathbf{X} \mathbf{Y}) &= \sum_{\mathbf{x}} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ & \mathbf{E}[g(X) Y] &= \sum_{\mathbf{x}} g(\mathbf{x}) * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ & \mathbf{E}[\mathbf{x}] &= \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbf{E}(\mathbf{x} \mathbf{Y} = \mathbf{y}) \\ & \mathbf{Independence:} \\ p_{X Y}(x) &= p_X(\mathbf{x}) * \mathbf{for all } \mathbf{x}, \mathbf{y} \\ p_{X,Y}(x,y) &= p_X(\mathbf{x}) * p_Y(\mathbf{y}) f \\ & \mathbf{f}(\mathbf{x},\mathbf{Y}) &= \mathbf{f}(\mathbf{x}) * \mathbf{f}(\mathbf{y}) \\ & \mathbf{E}[\mathbf{x}] &= \mathbf{E}[\mathbf{y}] * \mathbf{E}[\mathbf{y}] \\ & \mathbf{E}[\mathbf{g}(\mathbf{x}) * \mathbf{h}(\mathbf{y})] &= \mathbf{E}[\mathbf{g}(\mathbf{x})] * \mathbf{E}[\mathbf{h}(\mathbf{y})] \end{aligned}$	Fr	or small interval (as Xsa+ δ csYs(he conditional F he conditional F he conditional F $_{\alpha}(x) = \int_{y} f_{\gamma}(y) dx$ expectation: $f(x) = \int_{y} f_{\gamma}(y) dx$ expectation: $f(x) = \int_{y} f_{\gamma}(y) f(y) dy$ $f(x) = \int_{y} f_{\gamma}(y) f(y) f(y) f(y) dy$ $f(x) = \int_{y} f_{\gamma}(y) f(y) f(y) f(y) f(y) dy$ $f(x) = \int_{y} f_{\gamma}(y) f(y) f(y) f(y) f(y) dy$ $f(x) = \int_{y} f_{\gamma}(y) f(y) f(y) f(y) f(y) f(y) f(y) f(y) f$	$ \begin{cases} \delta, \varepsilon \\ \varepsilon + \varepsilon \} = f_{X,Y}(x,y) * \delta \\ \varepsilon + \varepsilon \} = f_{X,Y}(x,y) * \delta \\ \varepsilon + \varepsilon \} = \delta =$	also	$\begin{aligned} &p_{X,Y}(x,y) \geq 0 \\ &p_X(x) = \sum_y p_{X,Y}(x,y) \\ &p_Y(y) = \sum_x p_{X,Y}(x,y) \\ &\text{Expected value rule:} \\ &\text{E[g[X,Y]]} = \sum_x \sum_y g(x,y) * p_X \\ & \\ & & $	$(x, Y \le y) = \int_{y}^{y} (x, Y \le y) = \int_{y}^{$	$\int_{X_{X}}^{J-\infty} \int_{X_{X}}^{J-\infty} \int_{X_{X}} (x,y) \geq 0$ $f_{X}(x) = \int_{Y} f_{X,Y}(x,y) dy$ $f_{Y}(y) = \int_{X} f_{X,Y}(x,y) dx$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{X} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) = \frac{\partial^{2} F_{X,Y}}{\partial x \partial y}$ Correlation coefficient: $\rho(X,Y) = E\left[\left(\frac{X - E[X]}{\sigma_{X}}\right) * \left(\frac{Y - E[Y]}{\sigma_{Y}}\right)\right]$ $= \frac{Cov(X,Y)}{\sigma_{X} * \sigma_{Y}}$	<u> </u>	$\begin{split} & E[X] = p^* E[Y] + (1-p)^* E[Z] \\ & \textbf{Derived distribution-the discrete case:} \\ & \mathbf{Y} = \mathbf{g}(\mathbf{X}) \\ & p_Y(y) = \sum_{x:g(x) = y} p_X(x) \\ & \mathbf{Y} = \mathbf{a}^* \mathbf{X} + \mathbf{b} \\ & p_Y(y) = p_X \left(\frac{y-b}{a}\right) \\ & For \ \mathbf{g}(\mathbf{X}) \ \text{being strictly increasing or decreasing } \\ & \mathbf{Y} = \mathbf{g}(\mathbf{X}) \\ & \mathbf{X} = \mathbf{g}^{-1}(Y) = \mathbf{h}(Y) \\ & \mathbf{f}_Y(y) = \frac{\mathbf{dh}(y)}{\mathbf{dy}} * \mathbf{f}_X(\mathbf{h}(y)) \\ & \textbf{Derived distribution of multiple r.} \end{split}$	$\begin{aligned} &\text{Y=}X_1 + X_2 + \ldots + X_N, \text{where N is a non-negative integer r.v., } X's \\ &\text{are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]*E[X]} & &\text{Var(Y)=} \text{E[N]*Var(X)} + (\text{E[X]})^2 * \text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & &\text{Find CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ &\bullet & &f_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \\ &\text{3 we get:} \end{aligned}$
$\sum_{x} p_{(X Y)}(x y) = 1$ Total Probability theorem: $p_X(x) = \sum_{y} p_Y(y) * p_{(X Y)}(x y)$ Expectation: $E(X Y) = \sum_{x} x * p_{(X Y)}(x y)$ $E[g(X) Y] = \sum_{x} g(x) * p_{(X Y)}(x y)$ $E[X] = \sum_{x} p_Y(y) * E(X Y = y)$ Independence: $p_{X Y}(x) = p_X(x) \text{ for all } x, y$ $p_{X,Y}(x,y) = p_X(x) * p_Y(y) \text{ fi}$ If X, Y are independent then independent and: $E[XY] = E[X] * E[Y]$	Fr P(Ti Ti Ti Ti Ti Ti Ti T	or small interval (asXsa+ δ) csYs(he conditional F to total Probability $_{\mathcal{C}}(x) = \int_{y} f_{\mathbf{Y}}(y)$ expectation: $_{\mathcal{C}}(\mathbf{X} \mathbf{Y}=\mathbf{y}) = [g(\mathbf{X}) \mathbf{Y}] = \int_{x} g(x)[\mathbf{X}] = \int_{y} f_{\mathbf{Y}}(y) E[\mathbf{X}] \mathbf{x}$ independence: $_{\mathbf{X}}(\mathbf{X},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{X})$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{X})$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{X})$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{Y},\mathbf{y})$ independent and $_{\mathbf{X}}(\mathbf{Y}) = \mathbf{E}[\mathbf{X}]$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ independent and $_{\mathbf{X}}(\mathbf{Y}) = \mathbf{E}[\mathbf{X}]$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ independent and $_{\mathbf{X}}(\mathbf{Y}) = \mathbf{E}[\mathbf{X}]$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ independent and $_{\mathbf{X}}(\mathbf{Y}) = \mathbf{E}[\mathbf{X}]$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ independent and $_{\mathbf{X}}(\mathbf{Y}) = \mathbf{E}[\mathbf{X}]$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ in $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ in $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ is $_{\mathbf{X}}(\mathbf{Y},\mathbf{y}) = \mathbf{E}[\mathbf{X}]$ in $_{\mathbf{X}}(\mathbf{Y},y$	$ \begin{cases} \delta, \varepsilon \\ \varepsilon + \varepsilon \} = f_{X,Y}(x,y) * \delta \\ \varepsilon + \varepsilon \} = f_{X,Y}(x,y) * \delta \\ \varepsilon + \varepsilon \} = \delta =$		$\begin{aligned} &p_{X,Y}(x,y) \geq 0 \\ &p_X(x) = \sum_{x} p_{X,Y}(x,y) \\ &p_Y(y) = \sum_{x} p_{X,Y}(x,y) \\ &\text{Expected value rule:} \\ &\text{E[g(X,Y)]} = \sum_{x} \sum_{y} g(x,y) * p_X \\ & \\ & $	$(x, Y \le y) = \int_{y}^{y} (x, Y \le y) = \int_{y}^{$	$\begin{aligned} \int_{f_{X,Y}}^{J-\infty} J_{-\infty} & \int_{f_{X,Y}} (x,y) \geq 0 \\ f_X(x) &= \int_{y} f_{X,Y}(x,y) dy \\ f_Y(y) &= \int_{x} f_{X,Y}(x,y) dx \\ & \text{Expected value rule:} \\ & \mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy \\ \\ \int_{x} f_{X,Y}(x,y) dx dy & f_{X,Y}(x,y) &= \frac{\partial^2 F_{X,Y}}{\partial x \partial y} \\ \\ & \text{Correlation coefficient:} \\ & \rho(X,Y) &= E\left[\left(\frac{X-E[X]}{\sigma_X}\right) * \left(\frac{Y-E[Y]}{\sigma_Y}\right)\right] \\ & = \frac{Cov(X,Y)}{\sigma_X * \sigma_Y} \\ & \text{Properties:} \\ & -1 \leq p \leq 1 \ i.e. \ p \leq 1 \\ & \text{ if X,Y are independent then p = 0 is to converse is not true} \end{aligned}$	<u>)</u> true	$\begin{split} & E[X] = p * E[Y] + (1 \text{-} p) * E[Z] \\ & \textbf{\textit{Derived distribution-the discrete } \\ & \textbf{\textit{case:}} \\ & \mathbf{Y=g(X)} \\ & p_{Y}(y) = \sum_{x:g(x) = y} p_{X}(x) \\ & \mathbf{Y=a^{+X+b}} \\ & p_{Y}(y) = p_{X} \left(\frac{y-b}{a}\right) \\ & For g(X) being strictly increasing or decreasing \\ & Y=g(X) \\ & X=g^{-1(Y) = h(y)} \\ & f_{Y}(y) = \frac{\mathrm{dh}(y)}{\mathrm{dy}} * f_{X}(h(y)) \\ & \textbf{\textit{Derived distribution of multiple r.} \\ & \mathbf{Z=g(X,Y) = X+Y} \\ & \mathbf{Discrete case:} \end{split}$	$\begin{aligned} & \text{Y=}X_1 + X_2 + + X_N \text{, where N is a non-negative integer r.v., } X'\text{s} \\ & \text{are i.i.d and independent of N} \\ & \text{E[Y]=} \text{E[N]}^* \text{E[X]} & \text{Var(Y)=} \text{E[N]}^* \text{Var(X)} + (\text{E[X]})^{2*} \text{Var(N)} \end{aligned}$ $\begin{aligned} & \textbf{Derived distribution-the continuous case:} \\ & \textbf{Y=g(X)} \\ & \text{Two step procedure:} \\ & \textbf{Pind CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ & \textbf{f}_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $\begin{aligned} & \textbf{Y=a^*X+b} \\ & f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \\ & \text{3. we get:} \end{aligned}$ $\textbf{Z=g(X,Y)=X+Y} \\ & \textbf{Continuous case:} \end{aligned}$
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ $\text{Total Probability theorem:} \\ p_X(x) = \sum_{\mathbf{y}} p_Y(\mathbf{y}) * p_{(X Y)}(\mathbf{x} \mathbf{y})$ $\text{Expectation:} \\ \mathbf{E}(\mathbf{X} \mathbf{Y}) = \sum_{\mathbf{x}} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y})$ $E[g(X) Y] = \sum_{\mathbf{x}} \mathbf{g}(\mathbf{x}) * p_{(X Y)}(\mathbf{y} \mathbf{y})$ $\mathbf{E}[X] = \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbf{E}(\mathbf{x} \mathbf{Y} = \mathbf{y})$ $\mathbf{Independence:} \\ p_{X Y}(\mathbf{x}) = p_X(\mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y}$ $p_{XX}(\mathbf{x}, \mathbf{y}) = p_X(\mathbf{x}) * p_Y(\mathbf{y}) \text{ fif } X, \mathbf{y} \text{ are independent then independent and:} \\ \mathbf{E}[XY] = \mathbf{E}[X] * \mathbf{E}[Y] \\ \mathbf{E}[g(X) * h(Y)] = \mathbf{E}[g(X)] * \mathbf{E}[h(\mathbf{y})] * \mathbf{E}[h(\mathbf$	FC P(P T1 TT TT TT TT TT TT T	or small interval (asXsa)+ δ csYs(he conditional F) total Probability (x) = $\int_{y} f_{y}(y)$. expectation: $E(X Y=y) = \frac{1}{y} g(x)$ $E(X Y) = \frac{1}{y} g(x)$	$\begin{cases} \delta, \varepsilon : \\ c + \varepsilon F_{X,Y}(x,y) * \delta \\ c + \varepsilon F_{X,Y}(x,y) * \delta \end{cases}$ $\Rightarrow \text{DF is slice of joint PDF}$ theorem: $* f_{(X Y)}(x y) dy$ $\begin{cases} \int_{X} x * f_{X Y}(x y) dx \\ * f_{X Y}(x y) dx \end{cases}$ $* f_{X Y}(x y) dx$ $2 Y = y dy$ $0 * f_{Y}(y) \text{ for all } x, y \\ = f_{X}(x) \\ \varepsilon * F_{Y}(x) \\ oldent then g(X) and h(y) are all size open dent then V(X+Y)=V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+$	V(Y)	$\begin{aligned} &p_{X,Y}(x,y) \geq 0 \\ &p_X(x) = \sum_y p_{X,Y}(x,y) \\ &p_Y(y) = \sum_x p_{X,Y}(x,y) \\ &\text{Expected value rule:} \\ &\text{E[g[X,Y]]} = \sum_x \sum_y g(x,y) * p_X \\ & \\ & & $	$\{x,Y \leq y\} = \int_{y} \text{ eving in }$ $\{x,Y \leq y\} = \int_{y} \text{ eving in }$ $\{y\} \} = \text{ eving in }$ $\{y\} = eving$	$\begin{aligned} \int_{x,Y}^{J-\infty} J_{-\infty} & = 0 \\ f_{X,Y}(x,y) & \geq 0 \end{aligned}$ $f_{X}(x) & = \int_{Y} f_{X,Y}(x,y) dy$ $f_{Y}(y) & = \int_{X} f_{X,Y}(x,y) dx$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{X} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) & = \frac{\partial^{2} F_{X,Y}}{\partial x \partial y} \cdot \underbrace{\begin{pmatrix} Y - E[Y] \\ \sigma_{Y} \end{pmatrix}}_{= \frac{Cov(X,Y)}{\sigma_{X}} * \sigma_{Y}}$ Properties: $-1 \leq \rho \leq 1 \ i.e. \ p \leq 1$ $ f(X,Y) = \int f(X,Y) dx dx dx dx$ $ f(X,Y) = \int f(X,Y) dx dx dx dx$ $ f(X,Y) = \int f(X,Y) dx dx dx dx$ $ f(X,Y) = \int f(X,Y) dx $	<u>)</u> true	$E[X] = p^*E[Y] + (1-p)^*E[Z]$ $Derived \ distribution-the \ discrete$ $case:$ $Y = g(X)$ $p_Y(y) = \sum_{x:g(x) = y} p_X(x)$ $Y = a^*X + b$ $p_Y(y) = p_X\left(\frac{y - b}{a}\right)$ For g(X) being strictly increasing or decreasing Y=g(X) $X = g^{-1}(Y) = h(Y)$ $f_Y(y) = \frac{dh(y)}{dy} * f_X(h(y))$ $Derived \ distribution \ of \ multiple \ r.$ $z = g(X, Y) = X + Y$	$\begin{aligned} &\text{Y=}X_1 + X_2 + \ldots + X_N \text{, where N is a non-negative integer r.v., } X'\text{ s are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]}^* \text{E[X]} & \text{Var(Y)} = \text{E[N]}^* \text{Var(X)} + (\text{E[X]})^{2*} \text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & \text{Find CDF of Y=P(Y \le y)} = P(g(X) \le y) \\ &\bullet & f_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \\ \text{g we get:} \end{aligned}$ $\textbf{V.'s::} \\ &\textbf{Z=g(X,Y)=X+Y} \\ &\text{Continuous case:} \\ &\text{Same two step procedure: Find CDF of Z and then} \end{aligned}$
$\begin{split} \sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) &= 1 \\ \hline & \mathbf{Total Probability theorem:} \\ p_X(x) &= \sum_{\mathbf{y}} p_Y(\mathbf{y}) * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ \hline & \mathbf{Expectation:} \\ & \mathbf{E}(\mathbf{X} \mathbf{Y}) &= \sum_{\mathbf{x}} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y}) \\ & E[g(X) Y] &= \sum_{\mathbf{x}} g(\mathbf{x}) * p_{(X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y$	FC P(P T1 TT TT TT TT TT TT T	or small interval (asXsa)+ δ csYs(he conditional F) total Probability (x) = $\int_{y} f_{y}(y)$. expectation: $E(X Y=y) = \frac{1}{y} g(x)$ $E(X Y) = \frac{1}{y} g(x)$	$\begin{cases} \delta, \varepsilon : \\ c + \varepsilon F_{X,Y}(x,y) * \delta \\ c + \varepsilon F_{X,Y}(x,y) * \delta \end{cases}$ $\Rightarrow \text{DF is slice of joint PDF}$ theorem: $* f_{(X Y)}(x y) dy$ $\begin{cases} \int_{X} x * f_{X Y}(x y) dx \\ * f_{X Y}(x y) dx \end{cases}$ $* f_{X Y}(x y) dx$ $2 Y = y dy$ $0 * f_{Y}(y) \text{ for all } x, y \\ = f_{X}(x) \\ \varepsilon * F_{Y}(x) \\ oldent then g(X) and h(y) are all size open dent then V(X+Y)=V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+$	V(Y)	$\begin{aligned} &p_{X,Y}(x,y) \geq 0 \\ &p_X(x) = \sum_{x} p_{X,Y}(x,y) \\ &p_Y(y) = \sum_{x} p_{X,Y}(x,y) \\ &\text{Expected value rule:} \\ &\text{E[g(X,Y)]} = \sum_{x} \sum_{y} g(x,y) * p_X \\ & \\ & $	$\{x, Y \le y\} = \int_{y}^{y} y dy$ by by the properties of the prope	$\begin{aligned} \int_{x,Y}^{J-\infty} J_{\infty} &= 0 \\ f_{X,Y}(x,y) \geq 0 \end{aligned}$ $f_{X}(x) = \int_{y} f_{X,Y}(x,y) dy$ $f_{Y}(y) = \int_{x} f_{X,Y}(x,y) dx$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{x} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) = \frac{\partial^{2} F_{X,Y}}{\partial x \partial y}$ Correlation coefficient: $\rho(X,Y) = E\left[\left(\frac{X-E[X]}{\sigma_{X}}\right) * \left(\frac{Y-E[Y]}{\sigma_{Y}}\right)\right] = \frac{Cov(X,Y)}{\sigma_{X} * \sigma_{Y}}$ Properties: $-1 \leq \rho \leq 1 \ i.e. \ p \leq 1$ $ f(X,Y) = f(x) = f(x) = f(x) = f(x)$ $ f(X,Y) = f(x) = f(x$	true	$\begin{split} & E[X] = p * E[Y] + (1 \text{-} p) * E[Z] \\ & \textbf{\textit{Derived distribution-the discrete } \\ & \textbf{\textit{case:}} \\ & \mathbf{Y=g(X)} \\ & p_{Y}(y) = \sum_{x:g(x) = y} p_{X}(x) \\ & \mathbf{Y=a^{+X+b}} \\ & p_{Y}(y) = p_{X} \left(\frac{y-b}{a}\right) \\ & For g(X) being strictly increasing or decreasing \\ & Y=g(X) \\ & X=g^{-1(Y) = h(y)} \\ & f_{Y}(y) = \frac{\mathrm{dh}(y)}{\mathrm{dy}} * f_{X}(h(y)) \\ & \textbf{\textit{Derived distribution of multiple r.} \\ & \mathbf{Z=g(X,Y) = X+Y} \\ & \mathbf{Discrete case:} \end{split}$	$\begin{aligned} &\text{Y=}X_1+X_2++X_N, \text{where N is a non-negative integer r.v., } X'\text{s} \\ &\text{are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]*E[X]} & \text{Var(Y)=} \text{E[N]*Var(X)} + (\text{E[X]})^2*\text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & \text{Find CDF of } Y=P(Y\leq y)=P(g(X)\leq y) \\ &\bullet & f_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \\ \text{3 we get:} \end{aligned}$ $\textbf{v.'s:} \end{aligned}$ $\textbf{Z=g(X,Y)=X+Y} \\ \textbf{Continuous case:} \\ \text{Same two step procedure: Find CDF of Z and then differentiate} \end{aligned}$
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ $\text{Total Probability theorem:} \\ p_X(x) = \sum_{\mathbf{y}} p_Y(\mathbf{y}) * p_{(X Y)}(\mathbf{x} \mathbf{y})$ $\text{Expectation:} \\ \mathbf{E}(\mathbf{X} \mathbf{Y}) = \sum_{\mathbf{x}} \mathbf{x} * p_{(X Y)}(\mathbf{x} \mathbf{y})$ $E[g(X) Y] = \sum_{\mathbf{x}} \mathbf{g}(\mathbf{x}) * p_{(X Y)}(\mathbf{y} \mathbf{y})$ $\mathbf{E}[X] = \sum_{\mathbf{y}} p_Y(\mathbf{y}) * \mathbf{E}(\mathbf{x} \mathbf{Y} = \mathbf{y})$ $\mathbf{Independence:} \\ p_{X Y}(\mathbf{x}) = p_X(\mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y}$ $p_{XX}(\mathbf{x}, \mathbf{y}) = p_X(\mathbf{x}) * p_Y(\mathbf{y}) \text{ fif } X, \mathbf{y} \text{ are independent then independent and:} \\ \mathbf{E}[XY] = \mathbf{E}[X] * \mathbf{E}[Y] \\ \mathbf{E}[g(X) * h(Y)] = \mathbf{E}[g(X)] * \mathbf{E}[h(\mathbf{y})] * \mathbf{E}[h(\mathbf$	Fr P(Th Tr Fr P(Th Tr Fr Fr P(Th Tr Fr Fr Fr P(Th Tr Fr Fr Fr Fr Fr Fr Fr	or small interval (asXsa)+ δ csYs(he conditional F) total Probability (x) = $\int_{y} f_{y}(y)$. expectation: $E(X Y=y) = \frac{1}{y} g(x)$ $E(X Y) = \frac{1}{y} g(x)$	$\begin{cases} \delta, \varepsilon : \\ c + \varepsilon F_{X,Y}(x,y) * \delta \\ c + \varepsilon F_{X,Y}(x,y) * \delta \end{cases}$ $\Rightarrow \text{DF is slice of joint PDF}$ theorem: $* f_{(X Y)}(x y) dy$ $\begin{cases} \int_{X} x * f_{X Y}(x y) dx \\ * f_{X Y}(x y) dx \end{cases}$ $* f_{X Y}(x y) dx$ $2 Y = y dy$ $0 * f_{Y}(y) \text{ for all } x, y \\ = f_{X}(x) \\ \varepsilon * F_{Y}(x) \\ oldent then g(X) and h(y) are all size open dent then V(X+Y)=V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+V(X)+$	V(Y)	$\begin{aligned} & p_{XY}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{XY}(x,y) \\ & \cdot p_Y(y) = \sum_x p_{XY}(x,y) \\ & \cdot p_Y(y) = \sum_x p_X(x,y) * p_X \\ & \cdot p_X(y) = \sum_x \sum_y g(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x \sum_y g(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) \\ & \cdot p_X(x,y) = \sum_$	$\{x, Y \le y\} = \int_{y}^{y} y dy$ by by the properties of the prope	$\begin{aligned} \int_{x,Y}^{J-\infty} J_{\infty} &= \int_{y,Y} (x,y) dy \\ f_{X}(x) &= \int_{y} f_{X,Y}(x,y) dy \\ f_{Y}(y) &= \int_{x} f_{X,Y}(x,y) dx \end{aligned}$ $\begin{aligned} & \text{Expected value rule:} \\ & \text{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy \end{aligned}$ $\int_{x} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) = \frac{\partial^{2} F_{X,Y}}{\partial x \partial y} \cdot \underbrace{\begin{pmatrix} Y - E[Y] \\ \sigma_{Y} \end{pmatrix}}_{= \frac{Cov(X,Y)}{\sigma_{X}} * \sigma_{Y}} $ $\text{Properties:} \qquad \bullet -1 \leq \rho \leq 1 \ i.e. \ p \leq 1 $ $\bullet f_{X,Y} = \inf_{x \in [x]} \int_{x \in [x]} \int_{x \in [x]} \int_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \int_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \int_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \int_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dy$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} \frac{f(x,y)}{\sigma_{X}} dx dx$ $\bullet f_{X,Y} = \inf_{x \in [x]} f(x,y)$	true ((X and Y Y)	$E[X] = p*E[Y] + (1-p)*E[Z]$ $Derived \ distribution-the \ discrete \ case:$ $Y=g(X) \ p_Y(y) = \sum_{x:g(x)=y} p_X(x)$ $Y=a*X+b \ p_Y(y) = p_X\left(\frac{y-b}{a}\right)$ For g(X) being strictly increasing or decreasing Y=g(X) \ X=g^1(Y)=h(Y) \ f_Y(y) = \frac{dh(y)}{dy} *f_X(h(y)) $Derived \ distribution \ of \ multiple \ r.$ $Z=g(X,Y)=X+Y \ Discrete \ case: \ p_Z(z) = \sum_x p_X(x)*p_Y(z-x)$	$\begin{aligned} &\text{Y=}X_1 + X_2 + \ldots + X_N \text{, where N is a non-negative integer r.v., } X'\text{ s are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]}^* \text{E[X]} & \text{Var(Y)=} \text{E[N]}^* \text{Var(X)} + (\text{E[X]})^{2*} \text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & \text{Find CDF of } Y = P(Y \le y) = P(g(X) \le y) \\ &\bullet & f_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \\ \text{g we get:} \end{aligned}$ $\textbf{Z=g(X,Y)=X+Y} \\ &\text{Continuous case:} \\ &\text{Same two step procedure: Find CDF of Z and then differentiate} \\ &f_Z(z) = \int_X f_X(x) * f_Y(z-x) dx \end{aligned}$
$\sum_{\mathbf{x}} p_{(X Y)}(\mathbf{x} \mathbf{y}) = 1$ $\text{Total Probability theorem:} \\ p_{X}(x) = \sum_{\mathbf{y}} p_{Y}(\mathbf{y}) * \mathbf{p}_{(X Y)}(\mathbf{x} \mathbf{y})$ $\text{Expectation:} \\ \mathbf{E}(\mathbf{X} \mathbf{Y}) = \sum_{\mathbf{x}} \mathbf{x} * \mathbf{p}_{(X Y)}(\mathbf{x} \mathbf{y})$ $\mathbf{E}[\mathbf{g}(\mathbf{X}) Y] = \sum_{\mathbf{x}} \mathbf{g}(\mathbf{x}) * \mathbf{p}_{(X Y)}(\mathbf{y} \mathbf{y})$ $\mathbf{E}[\mathbf{x}] = \sum_{\mathbf{y}} p_{Y}(\mathbf{y}) * \mathbf{E}(\mathbf{x} \mathbf{Y} = \mathbf{y})$ $\mathbf{Independence:} \\ p_{X Y}(\mathbf{x}) = p_{X}(\mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y} \\ p_{X,Y}(\mathbf{x}, \mathbf{y}) = p_{X}(\mathbf{x}) * p_{Y}(\mathbf{y}) \text{ fif } \mathbf{X}, \mathbf{Y} \text{ are independent then independent and:} \\ \mathbf{E}[\mathbf{x}] = \mathbf{E}[\mathbf{x}] * \mathbf{E}[\mathbf{y}] \\ \mathbf{E}[\mathbf{g}(\mathbf{x}) * \mathbf{h}(\mathbf{y})] = \mathbf{E}[\mathbf{g}(\mathbf{x})] * \mathbf{E}[\mathbf{h}(\mathbf{y})] \\ \mathbf{f}[\mathbf{x}] \text{ and } \mathbf{Y} are independent then indep$	$\begin{aligned} & & & & & & & & & & & & & & & & & & &$	or small interval (asXsa+ δ) csYs(he conditional Fotal Probability $_{c}(x) = \int_{y} f_{v}(y)$ - xpectation: $ (3(X Y=y) = \int_{y} g(x)(X Y) = \int_{y} g(x)(X Y) = \int_{x} g(x)(X Y$	$\delta, \dot{\epsilon}$: $(+\xi) \in f_{x,Y}(x,y) * \delta$ $(+\xi) \in f_{x,Y}(x,y) * \delta$ $(+\xi) \in f_{x,Y}(x,y) + \delta$ $(+\xi) $	V(Y)	$\begin{aligned} & p_{XY}(x,y) \geq 0 \\ & p_X(x) = \sum_y p_{XY}(x,y) \\ & \cdot p_Y(y) = \sum_x p_{XY}(x,y) \\ & \cdot p_Y(y) = \sum_x p_X(x,y) * p_X \\ & \cdot p_X(y) = \sum_x \sum_y g(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x \sum_y g(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) * p_X \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) = p_X(x,y) \\ & \cdot p_X(x,y) = \sum_x p_X(x,y) \\ & \cdot p_X(x,y) = \sum_$	$\{x, Y \le y\} = \int_{y}^{y} y dy$ by by the properties of the prope	$\begin{aligned} \int_{x,Y}^{J-\infty} J_{\infty} & = 0 \\ f_{X,Y}(x,y) & \geq 0 \end{aligned}$ $f_{X}(x) & = \int_{y} f_{X,Y}(x,y) dy$ $f_{Y}(y) & = \int_{x} f_{X,Y}(x,y) dx$ Expected value rule: $\mathbb{E}[g(X,Y)] = \int \int g(x,y) * f_{X,Y}(x,y) dx dy$ $\int_{x} f_{X,Y}(x,y) dx dy \qquad f_{X,Y}(x,y) & = \frac{\partial^{2} F_{X,Y}}{\partial x \partial y}$ Correlation coefficient: $\rho(X,Y) & = E\left[\left(\frac{X-E[X]}{\sigma_{X}}\right) * \left(\frac{Y-E[Y]}{\sigma_{Y}}\right) \right] \\ & = \frac{Cov(X,Y)}{\sigma_{X} * \sigma_{Y}}$ Properties: $\bullet -1 \leq \rho \leq 1 \ i.e. \ p \leq 1$ $\bullet f(X,Y) = independent \ then \ \rho = 0 \ is \ i.e. \ p \leq 1 $ $\bullet f(X,Y) = independent \ then \ \rho = 0 \ is \ i.e. \ p \leq 1 \end{aligned}$ $\bullet f(X,Y) = independent \ then \ \rho = 0 \ is \ i.e. \ p \leq 1$ $\bullet f(X,Y) = independent \ then \ \rho = 0 \ is \ i.e. \ p \leq 1 $ $\bullet f(X,Y) = independent \ then \ \rho = 0 \ is \ i.e. \ p \leq 1 $ $\bullet f(X,Y) = independent \ then \ \rho = 0 \ is \ i.e. \ p \leq 1 $ $\bullet f(X,Y) = independent \ then \ \rho = 0 \ is \ i.e. \ p \leq 1 $ $\bullet f(X,Y) = independent \ f(X,Y) = inde$	true O(X and Y Y) d Y have a	$E[X] = p*E[Y] + (1-p)*E[Z]$ $Derived \ distribution-the \ discrete \ case:$ $Y=g(X) \ p_Y(y) = \sum_{x:g(x)=y} p_X(x)$ $Y=a*X+b \ p_Y(y) = p_X\left(\frac{y-b}{a}\right)$ For g(X) being strictly increasing or decreasing Y=g(X) \ X=g^1(Y)=h(Y) \ f_Y(y) = \frac{dh(y)}{dy} *f_X(h(y)) $Derived \ distribution \ of \ multiple \ r.$ $Z=g(X,Y)=X+Y \ Discrete \ case: \ p_Z(z) = \sum_x p_X(x)*p_Y(z-x)$	$\begin{aligned} &\text{Y=}X_1+X_2++X_N, \text{where N is a non-negative integer r.v., } X'\text{s} \\ &\text{are i.i.d and independent of N} \\ &\text{E[Y]=} \text{E[N]*E[X]} & \text{Var(Y)=} \text{E[N]*Var(X)} + (\text{E[X]})^2*\text{Var(N)} \end{aligned}$ $\begin{aligned} &\textbf{Derived distribution-the continuous case:} \\ &\textbf{Y=g(X)} \\ &\text{Two step procedure:} \\ &\bullet & \text{Find CDF of } Y=P(Y\leq y)=P(g(X)\leq y) \\ &\bullet & f_Y(y) = \frac{dF_Y(y)}{dy} \end{aligned}$ $\textbf{Y=a^*X+b} \\ &f_Y(y) = \frac{1}{ a } * f_X\left(\frac{y-b}{a}\right) \\ \text{3 we get:} \end{aligned}$ $\textbf{v.'s:} \end{aligned}$ $\textbf{Z=g(X,Y)=X+Y} \\ \textbf{Continuous case:} \\ \text{Same two step procedure: Find CDF of Z and then differentiate} \end{aligned}$

Bayes rule one discrete and continuous r.v: K:Discrete r.v. Y:Continuous r.v. Parklet (rure) (vik)		Prior Distribution	Conditional Distribution		Posterior Distribution
$p_{K Y}(k y) = \frac{p_{K}(k) \cdot f(Y K)^{(y K)}}{f(Y X)}$ Where $f_{Y}(y) = \sum_{k'} P_{K}(k') * f(Y K)^{(y K')}$		$\pi(p) \sim Beta(a,b)$ where $pe(0,1)$ $\pi(p) = p^{a-1} * (1-p)^{b-1}$	$L_n(X_1, X_2,, \lambda L_n(X_1, X_2,, \lambda L_n(X_1, X_2,, \lambda L_n(X_1, X_2,, \lambda L_n)) = p^{\sum_{i=1}^n X_i} * (1$	$(x_n p) - Ber(p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$ $(x_n p)$	$\pi(p X_1, X_2, X_n) \sim Beta\left(a = a + \sum_{i=1}^{n} X_i, b\right)$ $= b + n - \sum_{i=1}^{n} X_i$
$f_{(Y K)}(y \mathbf{k}) = \frac{f_{Y(y)*p_{K Y}(k y)}}{p_{K(k)}}$ Where $p_{K}(k) = \int f_{Y'}(y') * p_{K Y'}(k y')dy'$					$\pi(p X_1, X_2, X_n) \propto p^{a + \sum_{i=1}^n X_i - 1} * (1 - p)^{b + a - \sum_{i=1}^n X_i - 1}$
Frequentist	Bayesian	$\pi(p) \sim U(0,1)$ where $p \in (0,1)$ $\pi(p) = 1$	$L_n(X_1, X_2, X_n)$ $L_n(X_1, X_2, X_n)$	${n \choose n} p\rangle \sim Ber(p)$ ${n \choose n} p\rangle$ ${n \choose n} p\rangle \sim \sum_i X_i$	$\pi(p X_1, X_2, X_n) \sim Beta\left(a = 1 + \sum_{i=1}^{n} X_i, b\right)$
Parameter is not a r.v. but a fixed value	Paremeter is a r.v. with certain prior distribution		$= p^{\sum_{i} X_i} * (1$	$(-p)^{n-\sum_{i}x_{i}}$	$= 1 + n - \sum_{i=1}^{n} X_{i} $ $\pi(p X_{1}, X_{2}, X_{n}) \propto p^{(\sum_{i=1}^{n} X_{i}+1)-1} * (1-p)^{(n-\sum_{i=1}^{n} X_{i}+1)-1}$
$P(a < \theta < b) = 0$ or 1 depending upon if the true parameter lies in the interval		$\pi(\lambda)\text{-}Expo(a)\text{where }\lambda\varepsilon(0,\infty)$ $\pi(\lambda)=a*e^{-a\cdot\lambda}$	$L_n(X_1, X_2, \lambda L_n(X_1, X_2, \lambda $	$\sum_{n} \lambda\rangle \sim Poi(\lambda)$ $\sum_{n} \lambda\rangle \propto \lambda^{\sum_{n} X_{1}} * e^{-n \cdot \lambda}$	$\pi(\lambda X_1,X_2,X_n) - Gamma\left(\alpha = 1 + \sum_{i=1}^n X_i, \beta = n + \alpha\right)$ $\pi(\lambda X_1,X_2,X_n) \propto \lambda^{2(2^n,X_n+1)-1} * e^{-2c(n+\alpha)}$
	Prior distribution (π_{θ})	Improper: $\pi(\theta) \propto 1 \text{ where } \theta \in \mathbb{R}$	$L_n(X_1, X_2,, X_n)$ $L_n(X_1, X_2,, X_n)$	$f_n(\theta) \sim \mathcal{N}(\theta, 1)$ $f_n(\theta) \propto e^{\left[\frac{-1}{2}\sum_{i}(X_i - \theta)^2\right]}$	$\begin{split} \pi(\theta X_1, X_2,X_n) \sim & N(\mu = \overline{X}, \sigma^2 = 1/n) \\ \pi(\lambda X_1, X_2,X_n) \propto & e^{\frac{1}{2}\sum_{n,n} (\theta - \overline{X})^2} \end{split}$
2. Observation X:Model($L_n(X_1,X_2,X_n \theta)$) 3. Posterior distribution: $(\pi(\theta X_1,X_2,X_n))$ $\pi(\theta X_1,X_2,X_n) \propto \pi_{\theta}L_n(X_1,X_2,X_n \theta)$		$\pi(\lambda) \sim Expo(\alpha)$ where $\lambda \epsilon(0, \infty)$ $\pi(\lambda) = \alpha * e^{-\alpha \cdot \lambda}$	$L_n(X_1, X_2, \lambda L_n(X_1, X_2, \lambda $	$\chi_{n}(\lambda) - Expo(\lambda)$ $\chi_{n}(\lambda) = \lambda^{n} * e^{-\lambda * \sum_{i=1}^{n} X_{i}}$	$\begin{split} \pi(\lambda X_1,X_2,X_n) \sim & Gamma\left(k=n+1,\theta=\frac{1}{\sum_{k=1}^n X_k+a}\right) \\ \pi(\lambda X_1,X_2,X_n) \propto & \lambda^{(n+1)-1} + e^{-\lambda\cdot C \sum_k X_k+a} \end{split}$
Conditional probability of error: $P(\hat{\theta} \neq \theta X = x)$		$\pi(\lambda) \sim Gamma(a, b)$ where $\lambda \varepsilon (0, \infty)$ $\pi(\lambda) \propto \lambda^{a-1} * e^{-\frac{\lambda}{2}}$	$L_n(X_1, X_2, \lambda L_n(X_1, X_2, \lambda$	${}_{n}^{r} \lambda\rangle \sim Expo(\lambda)$ ${}_{n}^{r} \lambda\rangle = \lambda^{n} * e^{-\lambda * \sum_{i=1}^{n} X_{i}}$	$\pi(\lambda X_1,X_2X_n) \sim Gamma\left(k=n+a,\theta=\frac{1}{\sum_{i=1}^n X_i+\frac{1}{b}}\right)$
Overall probability of error: (Depending upon Θ and X been discrete or continous replace the formula with summation or					$\pi(\lambda X_1, X_2, X_n) \propto \lambda^{(n+a)-1} * e^{-\lambda \cdot (\sum_{i=1}^n X_i + \frac{1}{2})}$
integration) $P(\hat{\theta} \neq \theta) = \int P(\hat{\theta} \neq \theta X = x) f_X(x) dx$		Improper: $\pi(\lambda) \propto 1$ where $\lambda \varepsilon(0, \infty)$	$L_n(X_1, X_2, \lambda L_n(X_1, X_2, \lambda$	${}'_{n} \lambda\rangle \sim Expo(\lambda)$ ${}'_{n} \lambda\rangle = \lambda^{n} * e^{-\lambda \cdot \sum_{i=1}^{n} \lambda_{i}}$	$\begin{split} \pi(\lambda X_1,X_2,X_n) \sim Γ\left(k=n+1,\theta=\frac{1}{\sum_{l=1}^n X_l}\right) \\ \pi(\lambda X_1,X_2,X_n) \propto \lambda^{(n+1)-1} + e^{-\lambda \cdot (\sum_{l=1}^n X_l)} \end{split}$
Or $P(\widehat{\theta} \neq \Theta) = \sum_{\theta} P(\widehat{\theta} \neq \theta)$		Jeffreys Prior:	$L_n(X_1, X_2, X_n)$	$I_n \theta\rangle \sim N(0,\theta)$	$n = \sum_{i=1}^{n} X_i^2$
Maximum a posterior Probability (MAP): $p_{\theta X}(\theta^* X) = \max_{\alpha} p_{\theta X}(\theta X)$		$\pi(\theta) \propto \frac{1}{\theta} \text{ where } \theta e(0, \infty)$	$L_n(X_1, X_2, \lambda$	$\eta_n(\theta) \sim H(0, \theta)$ $\eta_n(\theta) \propto \theta^{-\frac{n}{2}} e^{\left(\frac{-\sum_{i=1}^n Z_i^2}{2-i\theta}\right)}$	$\begin{array}{l} \pi(X_1,X_2,X_n) - InverseGamma\left(\alpha = \frac{n}{2},\beta = \frac{\sum_{i=1}^n X_i^2}{2}\right) \\ \pi(\theta X_1,X_2,X_n) \propto \theta^{\frac{n}{2}-1} e^{\left\{\frac{\sum_{i=1}^n X_i^2}{2}\right\}} \end{array}$
$f_{\theta X}(\theta^* X) = \max_{\theta} f_{\theta X}(\theta X)$ MAP rule achieves smallest c	onditional probability of error as	$\pi(p) = 1$ where $pe(0,1)$	$L_n(X_1, X_2,, X_n)$	$X_2X_n p) \sim U(0,p)$ $X_n p) = \frac{1}{p^n}I(X_{(n)} < p)$	$ \begin{aligned} &\pi(p X_1,X_2,X_n) - Pareto(b = \max(X_i), k = n-1) \\ &\mathbb{E}(p X_1,X_2,X_n) = (k*b)/(k-1) \end{aligned} $
well as overall probability or Least mean Squares(LMS)		Improper Prior:			
$\hat{\theta}$ =E[θ X=x] MSE= Var(θ $X=x$)(Conditional MSE)		When your prior dist it called as an improp	er Prior		rate to 1 over its domain then
MSE=E[$Var(\Theta X = x)$] (Over Properties of LMS:	all MSE)	Example: $\pi(\lambda) \propto 1$ where $\lambda \in (0, \infty)$ Jeffreys Prior:			
Error: $\tilde{\theta} = \hat{\theta} - \theta$ $E[\tilde{\theta} X] = 0$		$\pi_J(\theta) \propto \sqrt{\det\left(I(\theta)\right)}$)		
$Cov(\tilde{\theta},\hat{\theta})=0$				Dairean C	
$Var(\theta)=Var(\tilde{\theta})+Var(\hat{\theta})$					OCESS: λ is arrival rate, τ is length α is in interval of duration τ
Linear Least Mean Square(LL	MS):				is in interval of duration ι ivals in disjoint time intervals are inc
$\hat{\theta}$ =E[θ X=x]=a*X+b Where a = $\frac{Cov(\theta,X)}{Var(X)}$ b=E[θ]-a*E[X]				$P(k,\tau)=P(N_{\tau}=$	$=k$) =Prob. of k arrivals in interval $(-\lambda \delta)$ if $k=0$

		$ij \ \kappa = 0$
$P(k,\tau) = \langle$	λδ	if k = 1
		if $k > 1$
Assumption	ıs: Indei	pendence.Time-homogenity

$$\begin{split} P(k,\tau) &= P(N_{\tau} = k) = \frac{\sqrt{N_{\tau}}}{k!} \quad k = 0,1, \dots \text{E}[N_{\tau}] = \lambda \\ \text{Var}[N_{\tau}] &= \lambda \tau \quad \lambda = \frac{\text{E}[N_{\tau}]}{\tau} \end{split}$$

E[X_i],Var[X_i],p(X₁, X₂,....),p(X_i).It is also interpreted as set of infinite sequence of 0's and 1's Bernoulli Process: A sequence of independent Bernoulli trials (Xi). Each trial has

P(Success)=p.It is simplest stochastic process

Assumptions: Independence, Time-homogenity

Fresh-start after a random time N: as long as N is determined causally

Probability

variable has cetain

about chances and

distribution and taking

We already know that the

expectations(deterministic)

Stochastic Process: Infinite sequence of r.v. where we are interested in

Statistics

C Lafter the

done (Random)

 $E(\widehat{\theta_{LLMS}} - \theta) = (1 - \rho^2) * Var(\theta)$

Includes estimating

naramters deriving

experiment has been

The process X_{N+1} , X_{N+2} ...is: a bernoulli process, is independent of N, X_1 , X_2 ,... X_N

Geometric :	Pascal distribution Time of the k th success
X:Time untill 1 st success	$Y_k = T_1 + T_2 + \ldots + T_k$
$P[X = x] = (1 - p)^{x-1} * p x=1,2,$	$P[Y_k = t] = {t-1 \choose k-1} (1-p)^{t-k} * p^k$
E[X] = 1/p	E[X] = k/p
$V[X] = \frac{(1-p)}{p^2}$	$V[X] = \frac{k * (1-p)}{p^2}$

Merging of bernoulli process: when we are merging two independent bernoulli process the resulting process is a bernoulli process and we can compute its P(Success)=p using the two process and each trails are also independent of each other.

Splitting of bernoulli process: Splitting success of a Bernoulli into two streams using independent flips of a coin with bias q then the resulting process gives two bernoulli process which are dependent on each other and one has P(Success)=p*q and the other process had P(Success)=p*(1-q)

ndependent of duration au

E[X|Y]

It is a function of Y E[X|Y]=g(Y)

distribution mean variance

i.e. E[X|Y=y] is not a random

E[g(Y)X|Y]=g(Y)*E[X|Y]

E[X|Y]=E[X|h(Y)]

a*X+b it called linear regression

Y | X=x follows some distribution

it can be represented as:

exponential family

Coniuaate:

of interval, N_{τ}

 $E[Y]=b'(\theta) Var(Y)=b''(\theta) \phi$

Generalized linear model:

If h is an invertible function then

 $f_{\theta}(y) = \exp\left[\sum_{i=1}^{k} \eta_{i}(\theta) T_{i}(y) - B(\theta)\right] h(y)$

One-parameter exponential family:

 $f_{\theta}(y) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right) g(\mu) = (b')^{-1}(\mu)$

E[Y|X=x] is often refered as regression function and when it is of the form

Regression function : $g(\mu(x)) = x^T \beta$ where g is called link function it must be

Exponential family: A distribution is said to belong to exponential family if

φ is called dispersion parameter if it is known then it is called one parameter

exponential family and θ is canonical parameter or else it is two parameter

When the Prior and posterior have same family distribution then the prior

nonotone increasing(Strictly) and differentiable and range all over real line

variable but a number/constant

It takes a value(number) when Y=y

It is a random variable

It has its own

Law of iterated expectations:

E[X]=E[EX|Y]

Properties:

 $P(k,\tau) = P(N_{\tau} = k) = \frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!} k = 0,1, \dots E[N_{\tau}] = \lambda \tau$

Fresh-start and memoryless: Even if we start wayching at time t we see Poisson

process had $\lambda_2 = \lambda^*(1-q)$

process,independent of history until time t Time T₁ until the first arrival : Exponential (λ) $f(x) = \lambda e^{-\lambda x}$

Memorylessness: Conditioned on T₁>t the pdf of T₁ -t is again

Time Y_k of the k^{th} arrival: Erlang distribution of order k $f_{Y_k}(y) =$ $\frac{\lambda^k y^{k-1} e^{-\lambda y}}{^{(k-1)!}} \; y \geq 0 \; \operatorname{E}[Y_k] = \mathsf{k}/\lambda \; \operatorname{Var}[Y_k] = \mathsf{k}/\lambda^2$

 $T_k=Y_k-Y_{k-1}$ follows $Exp(\lambda)$ for $k\geq 2$

Merging of independent Poisson process: If two Poisson process with rates λ_1 and λ_2 are merged then the resulting process will be a Poisson process with rate $\lambda_1 + \lambda_2$ Also, from the merging process if we had to trace back to one of

the two orginial process then the probability is $\lambda_1/\lambda_1+\lambda_2$ if we trace it to first similarly it would be $\lambda_2/\lambda_1 + \lambda_2$ for second Splitting of Poisson process: Splitting arrivals of a Poisson into two streams using independent flips of a coin with bias q then the resulting process gives two Poisson process which are

independent on each other and one has $\lambda_1 = \lambda^* q$ and the other Backward Running Poisson process: Poisson process in reverse time is same as the initial Poisson process

Renewal Process: The interarrival are independent and identically distributed but they have a general distribution

Discrete-time infinite state Markov chain:

Var(X|Y)

It is a function of Y

It is a random variable

It takes a value(number)

when Y=y i.e. Var[X|Y=y]

is not a random variable

but a number/constant

Var[X|Y]=g(Y)

Law of total variance:

sections)

Var(X)=E[Var(X|Y)]+Var(E[X|Y])

sections)+(variability within

Var(X)=(average variability within

X_n:state after n transitions $p_{ij}=P(X_1=j \mid X_0=i)=P(X_{n+1}=j \mid X_n=i)$

Markov property:

"Given current stae,the past doesn't matter"

 $p_{ij} = P(X_{n+1} = j \mid X_n = i) = P(X_{n+1} = j \mid X_n = i, X_{n-1}.., X_0)$ n-step transition probabilites: $r_{ii}(n)$)=P(going from sate I to j in n steps)= =P(X_n =j| X_0 =i)=

 $P(X_{n+s}=j \mid X_s=i)$

 $\sum_{i=1}^{n} r_{ii}(n) = 1$ $r_{ij}(0) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

 $r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1) p_{kj}$

 $r_{ij}(n) = \sum_{k=1}^{m} p_{ik} r_{kj}(n-1)$

 $P(X_n=j) = \sum_{i=1}^m P(X_0=i) * r_{i,i}(n)$ Recurrent states: state I is recurrent if starting from I and from

wherever you can go there is a way of returning to I Transient sate: If a stater is not recurrent then its transient. Reccurent Class: Acollection of recurrent sate is called a class if

within a class all recurrent states have a way to communicate to each other but there is not communication between recurrent states of different classes Periodic states in recurrent class: The states in a recurrent class

are periodic if they can be grouped into d>1 groups so that all transitions from one group lead to the next group Golden rule: If we have a self transition then Markov chain is aperiodic

Steady state probabilities:

Golden rule: Recurrent states are all in a single classs and this single recurrent class is not periodic $r_{ij} \xrightarrow{n \to \infty} \pi_i$

$$\pi_j = \sum_k \pi_k \, p_{kj} \, \sum_{j=1}^m \pi_j = 1$$

Assumptions:Ran(X)=p, \mathcal{E}_i are i.i.d, $\mathcal{E} \sim \mathcal{N}_n(0, \sigma^2 I_n)$ where $\sigma^2 > 0$ (Homoscedastic) **Significance test:** To test β_i is significant where γ_i is the j-th diagonal coefficient of X^TX H_0 : $\beta_i = 0$ vs H_1 : $\beta_j \neq 0$ $T_n = \frac{\widehat{\beta_j}}{\sqrt{\sigma^2 \nu_i}} \sim t_{n-p}$

Y=a*X+b+ where (a,b)=argmin $E[(Y - a - bX)^2]$

Y|X=x is gaussian with mean $\mu(x)=x^T\beta$ (Linear)

 $Y_i = X_i^T \beta + \mathcal{E}_i$ where $\beta = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - X_i^T \beta)^2$

 $\mathsf{b} = \frac{\mathit{Cov}(\mathsf{X},\mathsf{Y})}{\mathit{var}(\mathsf{X})} = \frac{\overline{\mathsf{X}}\overline{\mathsf{Y}} - \bar{\mathsf{X}}\bar{\mathsf{Y}}}{\overline{\mathsf{X}}^2 - \overline{\mathsf{X}}^2} \, \mathsf{a} = \mathsf{E}[\mathsf{y}] - \mathsf{b} * \mathsf{E}[\mathsf{X}] = \overline{\mathsf{Y}} - b * \bar{\mathsf{X}}$

Simple Linear regression:

Noise:E[E]=0 and Cov(X, E)=0

Multivariate regression:

Y is a nx1,X is nxp,E is nx1, β is px1

Inequalities	Required Conditions:
Hoeffding's Inequality: for all $\epsilon > 0$ $P(X_n - \mu \ge \epsilon) \le 2 * e^{\frac{-2n\epsilon^2}{(b-a)^2}}$	X_1, X_2, X_n be i.i.d r.v. such that $E[X] = \mu$ and $X \in [a, b]$ n need not be large

Markov inequality X≥0 with mean μ > 0 and any number t>0 If $X \ge 0$ and $\mu = E[X]$ is small, then X is unlikely applicable only to non-negative r.v. to be very large $P(X \ge t) \le \frac{\mu}{t}$ Chebyshev inequality X has finite mean μ and variance σ^2 and for any number "If the variance is small, then X is unlikely to be too far from the mean" Relation: When we substitute $(X - \mu)^2$ in Markov inequality we obtained Chebyshey $P(|X - \mu| \ge t) \le \frac{\sigma^2}{\epsilon^2}$ PRO: When t is larger Chebyshev bound is smaller than

Concave and convex Functions:

A function twice differentiable function h is said to be

 $\beta = (X^TX)^{-1}X^TY \quad X\hat{\beta}$ is orthogonal projection of Y onto the subspace spanned by the columns

LSE = MLE

 $(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-p}.$

▶ Distribution of $\hat{\beta}$: $\hat{\beta} \sim N_p \left(\beta^*, \sigma^2(X^TX)^{-1}\right)$.

• Quadratic risk of $\hat{\beta}$: $\mathbb{E}\left[\|\hat{\beta} - \beta^*\|_2^2\right] = \sigma^2 \operatorname{tr}\left((\mathbb{X}^\top \mathbb{X})^{-1}\right)$

Prediction error: $\mathbb{E}\left[\|\mathbf{Y} - \mathbb{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}\right] = \sigma^{2}(n-p).$

▶ Unbiased estimator of σ^2 : $\hat{\sigma}^2 = \frac{1}{n-n} \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2$.

concave if: $h''(\theta) \le 0$. Its said to be strictly concave if Almost surely convergence (a.s.): A sequence Yn converges to a nx. Y almost surely iff $P[\{\omega: Y_n(\omega) \xrightarrow[n \to \infty]{} Y(\omega)\}] = 1$

 $X_n \xrightarrow{(a.s)} a Y_n \xrightarrow{(a.s)} b \text{ then: } X_n + Y_n \xrightarrow{(a.s)} a + b$ $X_n \xrightarrow{(a.s)} a Y_n \xrightarrow{(a.s)} b \text{ then: } X_n + Y_n \xrightarrow{(a.s)} a + b$

Jensen inequality:

 $E[g(X)] \ge g(E[X])$

For any convex function g we have

If $T_n \xrightarrow{(a.s)} T$ then $T_n \xrightarrow{(P)} T$

If b≠0 and $X_n \xrightarrow{(a.s)} a Y_n \xrightarrow{(a.s)} b$ then: $Xn/Y_n \xrightarrow{(a.s)} a/b$ **Convergence in probability (P):** A sequence Yn converges in probability to a r.v. if for any $\varepsilon >$ $0 \lim P(|Y_n - Y| \ge \varepsilon) = 0$

Properties $X_n \xrightarrow{(\mathbb{P})} Y_n \xrightarrow{(\mathbb{P})} b$ then: $X_n + Y_n \xrightarrow{(\mathbb{P})} a + b$ $X \xrightarrow{(\mathbb{P})} A \xrightarrow{Y \xrightarrow{(\mathbb{P})}} b \text{ then: } Xn^*Y \xrightarrow{(\mathbb{P})} a^*b$ If $b\neq 0$ and $X_n \xrightarrow{(\mathbb{P})} a Y_n \xrightarrow{(\mathbb{P})} b$ then: $X_n/Y_n \xrightarrow{(\mathbb{P})} a/b$

If g is continous then $g(X_n) \xrightarrow{(P)} g(a)$ If $X_n \xrightarrow{(P)}$ a does not imply $E[X_n] \rightarrow a$

Convergence in probablity does not imply convergence of expectation

Convergence in mean square implies convergence in probability Convergence in probability implies convergence in distribution

Convergence in distribution(d): A sequence Yn converges to a number a in distribution iff

 $E[f(Y_n)] \xrightarrow{n} E[f(a)]$ where f is continous and boundedProperties: Convergence in distribution implies convergence of probabilites if the limit has a density

 $X_n \xrightarrow{(d)} X Y_n \xrightarrow{(P)} y$ then: Xn+ $Y_n \xrightarrow{(d)} X+y$ (Slutsky 's theorem)

 $X_n \xrightarrow{(d)} X_n \xrightarrow{(P)} y$ then: $Xn^*Y_n \xrightarrow{(d)} X^*y$ (Slutsky 's theorem)

If $y\neq 0$ and $X_n \xrightarrow{(d)} X Y_n \xrightarrow{(P)} y$ then: $Xn/Y_n \xrightarrow{(d)} X/y$ (Slutsky 's theorem) Continous Mapping theorem:

If f is a continous function then: $X_0 \xrightarrow{(a.s.)/(\mathbb{P})/(d)} X$ implies $f(X_0) \xrightarrow{(a.s.)/(\mathbb{P})/(d)} f(X)$

Central Limit Theorem (CLT): n≥30

 $X_1, X_2, ... X_n$ be i.i.d r.v. having finite mean μ and variance σ^2 $\sqrt{n} \underbrace{\overline{X_n} - \mu}_{-} \overset{(d)}{\longrightarrow} \mathcal{N}(0,1) \text{ or } \sqrt{n} \left(\overline{X_n} - \mu\right) \overset{(d)}{\longrightarrow} \mathcal{N}(0,\sigma^2)$

 $\sqrt{n} \xrightarrow{\sigma} \mathcal{N}(0,1)$ of $\sqrt{n}(x_n - \mu) \rightarrow \mathcal{N}(0,0)$ When using CLT to approximate probabilities of binomial use the ½ correction rule:

 $P(S_n=x)=P(x-1/2 < S_n < x+1/2) P(S_n < x)=P(S_n < x-/2)$

Delta Method:

 $\sqrt{n}\,(\overline{Z_n}-\theta)\overset{(d)}{\longrightarrow}\mathcal{N}(0,\sigma^2)\text{ for some }\theta\in\mathbb{R}\text{ and }\sigma^2>0\text{ let g be continously differentiable at point }\theta\text{ then }$ $\sqrt{n} \left(g(\overline{Z_n}) - g(\theta) \right) \xrightarrow{(d)} \mathcal{N} \left(0, (g'(\theta))^2 * \sigma^2 \right)$

Weak Law of large numbers

Strong law of large numbers X_1, X_2, \ldots, X_n be i.i.d. r.v. $\mu = \mathbb{E}[\mathbb{X}]$ and $\sigma^2 =$ $X_1, X_2, ..., X_n$ be i.i.d. r.v. $\mu = E[X]$ and $\sigma^2 =$ Var[X] as $n \rightarrow \infty$ Var[X] as $n \rightarrow \infty$

Statistical Model:

 $(E.(P_a)_{a\in A})$ where E is sample space which does not depend upon the parameter θ , $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ is a family of probability measures on E and θ is any set called parameter set

Parametric	Nonparametric	
When $\theta \subseteq \mathbb{R}^d$ for	When $ heta$ has infinite dimensions	
some d≥1 and finite	orbelongs to multiple family of	
dimensions	distributions	
Seminarametric: Mixture of finite dimensions parameters a		

infinite dimension parameters

Identifiability:

The parameter θ is called identifiable iff map $\theta \in \Theta \mapsto \mathbb{P}_{\theta}$ is injective: $\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$ or $\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$

Estimation:

Estimate	Estimator
It is a number	It is a r.v Any statistic whose expression does not depend upon parameter
$\hat{\theta} = g(x)$	$\widehat{\Theta} = g(X)$
14/	

Weakly Consistent estimator: (n indiactes parameter depends on sample)

An estimator $\hat{\theta}$ of θ is weakly consistent if:

$$\hat{\theta}_{n} \stackrel{(\mathbb{P})}{\longrightarrow} \theta(\text{w.r.t } \mathbb{P}_{\theta})$$

Strongly Consistent estimator: An estimator $\hat{\theta}$ of θ is weakly consistent if:

 $\hat{\theta}_n \xrightarrow{(a.s.)} \theta(w.r.t \mathbb{P}_a)$

Bias $(\hat{\theta}_n)$ =E $[\hat{\theta}_n]$ - θ if bais =0 then we say $\hat{\theta}_n$ is an unbiased estimator Variance of an estimator:

$$\operatorname{Var}(\hat{\theta}_n) = E\left[\hat{\theta}_n^2\right] - (E[\hat{\theta}_n])^2$$

Quadratic risk:

 $R(\hat{\theta}_n) = E[|\hat{\theta}_n - \theta||^2 = Var(\hat{\theta}_n) + Bias(\hat{\theta}_n)$ Low quadratic risk means both bias and variance are small

Methods of estimation:

Kullback-Leibler(KL) divergence

Total variation distance

Divergence between two probablility distribution
Discrete: $(p_{\theta}(x))$
$KL(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \sum_{x \in E} p_{\theta}(x) \log \left(\frac{p_{\theta}(x)}{p_{\theta'}(x)} \right) =$
$E_{\theta} \left[\log \left(\frac{p_{\theta}(x)}{p_{\theta'}(x)} \right) \right]$
for continous replace submission
by integration
Properties:
Not Symmetric
• $0 \le KL(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'})$
Definite
No Triangle inequality

$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) \leq$ Statistic:

Any measurable function of the sample e,g: sample mean, sample variance

Robust statistic: When estimators change due to change in sample data it is know as Robust statistic

Steps of calculatina MLE and Fishers Information:

- Write the pdf/pmf
- Mulitply it n-times(Ln)

 $TV(\mathbb{P}_{\theta}, \mathbb{P}_{\theta''}) + TV(\mathbb{P}_{\theta''}, \mathbb{P}_{\theta'})$

- Take log of this multiplication and differentiation w.r.t to parameters(logLn)
- Equate first derivative to zero to get the MLE estimate For fishers information directly take log of pdf/pmf and then use the formula

Maximum likelihood : Best method out of the three

Maximum likehood is derived from KL where we maximize $\max \prod_{i=1}^n p_{\theta}(X_i) = L(x_1, x_2, ..., x_n, \theta)$ and minimizing KL-divergence $L_n(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n, \mathbf{\theta}) = P_{\theta}[\mathbf{X}_1 = \mathbf{x}_1, \mathbf{X}_2 = \mathbf{x}_2, ..., \mathbf{X}_n = \mathbf{x}_n]$ $\hat{\theta}_{\mathrm{n}}^{\mathrm{MLE}} = \operatorname*{argmax} \mathrm{log} L_{n}(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}, \theta)$

Properties: Under the conditions: Parameter is idetifiable

- E(sample space) does not depend upon θ
- θ^* is not on the boundary of Θ
- 4. $I(\theta)$ is invertible in neighbourhood of θ^*

And few more conditions MIE estimators satisfy: as n→∞

- $\hat{\theta}_n^{MLE} \xrightarrow{\mathbb{P}} \theta^*$ (Consistent estimator)
- $\sqrt{\overline{n}}(\hat{\theta}_n^{MLE} \theta^*) \xrightarrow{(d)} \mathcal{N}(0, I(\theta)^{-1})$ Fishers Information:

It tells you on average how curved the function $\theta \rightarrow \ln[L(x_1, \theta)]$ is

 $l(\theta) = \log L_1(X, \theta) \mid (\theta) = var[l'(\theta)] = -E[l''(\theta)]$ **Confidence Invterval (C.I.) of level 1-\alpha**: Any

random interval In (depending only on sample) whose

Asymptotic level 1- α : $\lim \mathbb{P}_{\theta}[I_n \ni \theta] \ge 1 - \alpha \ \forall \theta \in \Theta$

Remember C.I. are stil random varaibles as they depend on

parameters and sample in order to get a interval with numeric

Conservative bound: Here we plug in those value of

estimator which maximizes the width of the interval

Solving we solve the C.I. for the parameter then plug in

Plug-in: Directly substitute the estimator for parameter

in the variane of parameter and compute the interval

 $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ independent of Z, where

 $f(x) = \pi \cdot \frac{1}{\sigma_1 \sqrt{2\pi}} e^{\frac{-(x-\mu_1)^2}{2\sigma_1^2}} + (1-\pi) \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} e^{\frac{-(x-\mu_2)^2}{2\sigma_2^2}}$

 $L_n(x_1, ..., x_n; \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \pi^*) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \left[\frac{\pi^*}{\sigma_1} \exp \left(-\frac{(x_i - \mu_i)^2}{2\sigma_1^2} \right) + \frac{1 - \pi^*}{\sigma_2} \exp \left(-\frac{(x_i - \mu_1)^2}{2\sigma_1^2} \right) \right]$

 $\hat{\mu}_1 \leftarrow \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}, \qquad \hat{\mu}_2 \leftarrow \frac{\sum_{i=1}^n (1 - w_i) X_i}{\sum_{i=1}^n (1 - w_i)}$

Cochran's theorem: If $X_1,\dots,X_n \stackrel{iid}{\sim} \mathcal{N}(\mu,\sigma^2)$, then $\blacktriangleright \frac{(n-1)S_n^2}{\sigma^2} = \sum_i \left(\frac{X_i - \bar{X}_n}{\sigma}\right)^2 \sim \chi_{n-1}^2.$

Student's T:If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_k^2$ then $t_k =$

 $\frac{z}{\sqrt{y/h}}$ is students t with k degrees of freedom

The likehood ratio test is not anlicable on uiform distribution

The walds test and Likelihood ratio would behave in the same way

The t-test is non asymptotic and works only when parameter of

Always be careful when computing p-values take in considertion if

\(\bar{X}_n\) and \(S_n^2\) are independent r.v.;

interest will follow normal distribution

the hypothesis is two-sided or one

ChiSquare: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 (\text{Expo. Family})$ If $Z_1, Z_2, ... Z_d \sim \mathcal{N}(0,1)$ then $V = Z_1^2 + Z_2^2 + ... + Z_d^2 \sim \chi_d^2$ D is degree of freedomE[V]=d Var[V]=2d

 $\mathbb{P}_{\theta}[I_n \ni \theta] \ge 1 - \alpha \quad \forall \theta \in \Theta$

boundaries do not depend upon θ such that:

the roots of quadratic equation

Mixture of Gaussian:

Moment generating function: $M_X(t) = ZM_{X_a}(t) + (1 - Z)M_{X_a}(t)$

Update centers(M-step):

Z~Bernoulli(π)

 $X=ZX_1 + (1-Z)X_2$

EM algorithm: • Initialize $\widehat{\mu_1}$, $\widehat{\mu_2}$

When $\chi_2^2 \sim \text{Expo}(1/2)$

Cochran's theorem:

Goodness of fit-test:

function

Method of moments:

Compare the moments of original distribution which are function of

paramters with computed moments from sample and solve for

parameter $m_k(\theta) = \widehat{m_k}$ where $m_k(\theta)$ is population moment

M-estimator: No statistical model needs to be assumed Making a function $\rho: E \times \mathcal{M} \to \mathbb{R}$ where E is our sample space \mathcal{M} is

set of all possible values of the unknown parameters such

 $\rho(x, \mu) = (x - \mu)^2$ is minimum at $\mu = E[X]$

 $\rho(x,\mu) = C_{\alpha}(x-\mu)$ is minimum at $\mu = \alpha$ quantile of \mathbb{P} where $C_{\alpha}(x) = \begin{cases} -(1-\alpha)x & \text{if } x < 0 \end{cases}$

that: $Q(\theta) = E[\rho(X_1, \theta)]$ we are interested in minimum of this

 $\rho(x,\mu) = |x - \mu|$ is minimum at $\mu = median \ of \ X$

 $\rho(x,\mu) = -log L_1(x,\theta)$ is minimum at $\theta = \hat{\theta}_n^{MLE}$ MLE is

 $\alpha x \text{ if } x \geq 0$

special case of m-eestimators

Reorder the sample $X_{(1)} \le X_{(2)} \le ... X_{(n)}$

H ₀ :F=F ₀	Test statistic:
H ₀ :F≠F ₀	Test statistic: $T_n = \max_{i=1,2,\dots n} \left\{ \max \left(\left \frac{i-1}{n} - F^0(X_{(i)}) \right , \left \frac{i}{n} - F^0(X_{(i)}) \right \right) \right\}$
	$\sqrt{n}T_n \stackrel{(d)}{ ightarrow} Z$
0.0-1-	And the second s

Expo(1)

Q-Qplot:Compare the plots of data with normal distribution

Hypothesis testing:

H ₀ :null hypothesis H1:alternative	Both should be subset of parameter
hypothesis	space and non
пуроппезіз	overlapping
	 Asymmetrical
Simple:θ=k(k=constant)	Composite:θ>k(k=constant)
One sided:θ <k or="" θ="">k</k>	Two sided:θ≠k
One-sample: When we	Two-sample: When we have two
have only one	parameter to test in hypothesis
parameter to test for	
Test: $\psi = \mathbb{I}\{T_n > c\}$ (T_n is	s some statistic and threshold c ∈ ℝ)

A test is a statistics $\psi \in \{0,1\}$ that does not depend on any unknown

quantities(parameters).

 $\psi = 0 H_0$ is rejected $\psi = 1 H_0$ is accepted

Rejection Region: $\mathcal{R}_{\psi} = \{T_n > c\}$ (T_n is some statistic)= $\{x \in E^n : \psi(x) = 1\}$ $\psi = \mathbb{I}\{\mathcal{R}\}$ where \mathcal{R} is an event called rejection region. It is subset of E(sample space)

Type1:P(Rejecting $H_0 \mid H_0$ is true)= α_{ψ} = $P_{\theta \in \Theta_0} [\psi = 1]$ Type2: P(Failing to Reject $H_0 | H_1$ is true)= $\beta_{tb} = P_{\theta \in \Theta_1} [\psi = 0]$ Power of test: $\pi_{\psi} = \inf_{\theta \in \Theta} (1 - \beta_{\psi}(\theta)) = P(\text{Reject } H_0 \mid H_1 \text{ is true})$

A test ψ has level α if $\alpha_{\psi}(\theta) \leq \alpha \forall \theta \in \Theta_0$

A test ψ has asymptotic level α if $\lim_{n \to \infty} \alpha_{\psi}(\theta) \le \alpha \, \forall \theta \in \Theta_0$

p-value: The (asymptotic) p-value of a test ψ_{α} is the smallest (asymptotic) level α at which we ψ_{α} reject H_0 . It is random, it depends on the sample.

p-value $\leq \alpha \iff H_0$ rejected by ψ_{α} at the (asymptotic) level α The smaller the p-value ,the more confident one can reject H_0

Two

sample

C.I. for hypothesis testina:

 $P_{\theta}(\theta \in [A, B]) \ge 1 - \alpha$ where [A, B] is C.I. **Test**: $\psi = \mathbb{I}\{\theta_0 \notin [A, B]\}$

Level of test: $P_{\theta \in \Theta_0}[\; \psi = 1\;]$ = α

Expo(-1)

T-test

1) heavy fails	2) Kight Skews	3) left skund	4) 1/19
i	*		

	Do not reject Ho	Reject H₀		
H ₀ is	No	Type 1		
true	discover	error=V		
H ₁ is true	Type 2 error	Discovery=D		
FWER(Family wise error				

rate): The probability of making at

least one false discovery or type 1 error.FWER≤α

FDR(False Discovery

rate): Number OF false discoveries/Total discoveries=V/V+D

Bonferroni Correction: If you are performing the test m times instead of using α level of significance for each of the test use α/m

Correction: Arranged all thep-values that p-value of the kth

test		
Test Statistics:	$T_n = \frac{\hat{\theta} - \theta_0}{\sqrt{var(\hat{\theta})}}$ $= \sqrt{nI(\hat{\theta}^{MLE})}$ $* (\hat{\theta}^{MLE} - \theta_0)$ (d) $\rightarrow \mathcal{N}(0.1)$ only guarantees asymptotic level of significance	$T_n = rac{\sqrt{n}(\overline{X_n}}{S_n}$ Applied even v and the param is normally dist

Parametric | Walds test

Hypothesis:

 $H_1: \mu > \mu_0$

 $H_0: \theta \ge \theta_0$

 $H_1: \theta < \theta_1$

 $H_0: \mu \ge \mu_0$

 $T < -q_{\alpha}^{t_{n-1}}$

	И
T_n	Т,
$=\frac{\sqrt{n}(\overline{X_n}-\mu)}{S_n}\sim t_{n-1}$	=
Applied even when n is small	
and the parameter for testing	١
is normally distributed	(d
	wh
	X_r

Asymptotic p-

 $\mathbb{P}(Z < W^{obs})$

$N = \frac{N}{\frac{S_d^4}{n^2(n-1)} + \frac{N}{m^2}}$	Nald test		
-n -m	$= \frac{\widehat{\theta} - \theta_0}{\sqrt{\widehat{\sigma_X^2} + \widehat{\sigma_Y^2}}}$ $\xrightarrow{(d)} \mathcal{N}(0,1)$	where	$N = \frac{\left(S_d^2/n + S_c^2\right)}{S_d^4}$

Likelihood Ratio test

Unif(0,1)(S-shape)

Two sample t-test

Benjamini-Hochberg

of m test in increasing order find k such test≤(k*α)/m.Then reject all the H₀till the k-th test

			value:
$H_0: \theta = \theta_0$	$ W >q_{\underline{\alpha}}$	$\mathbb{P}(W > W^{obs})$	$\mathbb{P}(Z > W^{obs})$
$H_1: \theta \neq \theta_0$	2		
$H_0: \mu = \mu_0$	$ T >q_{\underline{\alpha}}^{t_{n-1}}$	$\mathbb{P}(T > T^{obs})$	
$H_1: \mu \neq \mu_0$	12 1- 44	,	
$H_0: \theta \leq \theta_0$	W>q <u>«</u>	$\mathbb{P}(W > W^{obs})$	$\mathbb{P}(Z > W^{obs})$
$H_1: \theta > \theta_1$	2	$\mathbb{P}(T > T^{obs})$	
$H_0 \cdot \mu < \mu_0$	tn_1		

 $\mathbb{P}(W < W^{obs})$

 $\mathbb{P}(T < T^{obs})$

p-value

normality conditions of MLE $H_0: \theta = \theta_0$ $H_1: \theta = \theta_1$ $: \psi = 1 \left\{ \frac{L_n(x_1, x_2, \dots, x_n, \theta_1)}{L_n(x_1, x_2, \dots, x_n, \theta_0)} > c \right\}$ $T_n = 2(L_n(\widehat{\theta_n}^{MLE}) - L_n(\widehat{\theta_n}^C))$ Where $\widehat{\theta_n}^{\mathcal{C}}$ is the constrained MLE $L_n\left(\widehat{\theta_n}^{MLE}\right) \geq L_n\left(\widehat{\theta_n}^{\mathcal{C}}\right)$

d-r are the number of know parameters

Applied only when parameter to test satisfies the asymptotic

Discrete uniform	Uniform	Bernoulli(Expo. Family)	Binomial(Expo. Family)	Poisson(Expo. Family)	Exponential(Expo. Family)	Normal(Expo. Family)
Domain/Sample space: $x \in \{a, a+1,, b\}$	Domain/Sample space: $x \in [a,b]$	$\begin{tabular}{ll} \hline \textbf{Domain/Sample space:} \\ \textbf{X:Occurrence of success} \\ \textbf{x} \in \{0,1\} \end{tabular}$		Domain/Sample space: $x \in \{0,1,\}$ (natural numbers starting from zero)	$\label{eq:Domain/Sample space:} $	Domain/Sample space: $x \in \mathbb{R}$
Parameters: $a,b \in \mathbb{Z} \ with \ b \geq a$ $or \ n=b-a+1$	Parameters: $a,b \in \mathbb{R},\ b > a$	Parameters: $0 \le p \le 1$	Parameters: $n \in \{0,1,\ldots,\}, p \in [0,1]$	Parameters: $\lambda \in (0, \infty)$	Parameters: $\lambda \in (0, \infty)$	Parameters: $\mu \in \mathbb{R} , \sigma^2 > 0$
PMF: $P[X=x] = \frac{1}{b-a+1} \text{ or } \frac{1}{n}$ where $n=b-a+1$	PDF: $f(x) = \frac{1}{b-a}$	PMF: $P[X = x] = \begin{cases} q = 1 - p & \text{if } x = 0 \\ p & \text{if } x = 1 \end{cases}$ DIFFERENT FORMS: $f(x, p) = p^x * (1 - p)^{1 - x}$ $f(x, p) = px + (1 - p)(1 - x)$	PMF: $P[X=x] = \binom{n}{x} p^x (1-p)^{n-x}$ or $P[X=x] = \binom{n}{x} p^x q^n - x$ $where \ q = 1-p$	PMF: $P[X = x] = \frac{\lambda^x e^{-\lambda}}{x!}$	PDF: $f(x) = \lambda e^{-\lambda x}$	PDF: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ $f(x) = c * e^{-(\alpha x^2 + \beta x + \gamma)} \text{ where } \alpha > 0 \text{ Mean} = \frac{-\beta}{2\alpha} \text{ and }$ $\text{variance} = \frac{1}{2\alpha}$
CDF: $F[X] = \begin{cases} 0 & for \ x < a \\ \frac{x - a + 1}{b - a + 1} & for \ a \le x < b \\ 1 & for \ x \ge b \end{cases}$	CDF: $F[X] = \begin{cases} 0 & for \ x < a \\ \frac{x-a}{b-a} & for \ a \le x < b \\ 1 & for \ x \ge b \end{cases}$	CDF: $F[X] = \begin{cases} 0 & \text{if } x < 0 \\ q = 1 - p & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases}$			CDF: $ F[X] = \begin{cases} 1 - e^{-\lambda x} & 0 & for \ x < 0 \\ for \ x \in [0, \infty) \end{cases} $	CDF: $\Phi(z) = P[Z \le z] = P[-Z \ge -z] = 1 - \Phi(-z)$ $\Phi(1.644854) = 0.95$ $\Phi(1.959964) = 0.975$ $\Phi(1.281552) = 0.90$
Mean E[X]: $E[X] = \frac{a+b}{2}$	Mean E[X]: $E[X] = \frac{a+b}{2}$	$\begin{array}{l} \textbf{Mean E[X]:} \\ E[X] = p \end{array}$	Mean E[X]: $E[X] = np$	Mean E[X]: $E[X] = \lambda$	Mean E[X]: $E[X] = \frac{1}{\lambda}$	$\begin{array}{c} \text{Mean E[X]:} \\ E[X] = \mu \end{array}$
Variance V[X]: $V[X] = \frac{(b-a)(b-a+2)}{12}$	Variance V[X]: $V[X] = \frac{(b-a)^2}{12}$	Variance V[X]: $V[X] = p(1-p)$	Variance V[X]: $V[X] = np(1-p) = npq$	Variance V[X]: $V[X] = \lambda$	Variance V[X]: $V[X] = \frac{1}{\lambda^2}$	$ \begin{aligned} & \textbf{Variance V[X]:} \\ & V[X] = \sigma^2 \end{aligned} $
	MLE: $X_{l} \sim U(0,b) \ then$ $L_{n}(x_{1},x_{2},\ldots,x_{n},b) = \frac{1}{b^{n}} \prod_{i=1}^{n} (\max{(x_{i} \leq b)})$ $\overrightarrow{b_{MLE}} = X_{(n)}$ where $X_{(n)}$ is the nth order statistic	MLE: $ L_n(x_1, x_2, \dots, x_n, p) = p^{\sum_{i=1}^n X_i} * (1-p)^{\sum_{i=1}^n X_i} $ $ p_{\widehat{MLE}} = \sum_{i=1}^n X_i / n = \overline{X_n} $ $ (p) = 1/p(1-p) $		$\begin{aligned} & \textbf{MLE:} \\ & L_n(x_1, x_2, \dots, x_n, \lambda) = \frac{\lambda^{\sum_{i=1}^n X_i} e^{-n\lambda}}{\prod_{i=1}^n X_i!} \\ & \lambda_{\overline{MLE}} = \sum_{i=1}^n X_i / n = \overline{X_n} \\ & (\lambda) = 1/\lambda \end{aligned}$	MLE: $L_n(x_1,x_2,\ldots,x_n,\lambda)=\lambda^n e^{-\lambda\sum_{i=1}^n x_i}$ $\overline{\lambda_{MLE}}=n/\sum_{i=1}^n X_i=1/\overline{X_n}$ $ (\lambda)=1/\lambda^2$	$\begin{array}{l} \textbf{MLE:} \\ L_n(x_1, x_2, \dots, x_n, \mu, \sigma^2) = \frac{1}{(\sigma \sqrt{2\pi})^n} e^{\frac{n}{2(\pi^2 - (x - \mu)^2)}} \\ \mu_{\widehat{MLE}} = \sum_{i=1}^n X_i / n = \overline{X_n} \\ \sigma^2_{MLE} = \sum_{i=1}^n (X_i - \bar{X})^2 / n \\ \mu = 1 / \sigma^2 \\ \sigma^2 = 1 / 2 \sigma^4 \end{array}$
MGF(Moment Generating Function): $M_X(t) = \frac{e^{at} - e^{(b+1)t}}{n(1-e^t)}$	$\begin{aligned} & \text{MGF(Moment Generating Function):} \\ & M_X(t) = \frac{e^{bt} - e^{at}}{t(b-a)} \\ & \text{Higher Moments and Cumulants:} \\ & E[X^k] = \frac{b^{k+1} - a^{k+1}}{(k+1)(b-a)} \text{ where } k \in \mathbb{N} \end{aligned}$	$\begin{aligned} & \text{MGF(Moment Generating Function):} \\ & M_{\chi}(t) = q + pe^t \\ & \text{Higher Moments and Cumulants:} \\ & E[X^k] = p \\ & E\left[\left(X - E(X)\right)^k\right] = \mu_k = (1-p)(-p)^k + p(1-p)^k \\ & \text{where } k \in \mathbb{N} \end{aligned}$	MGF(Moment Generating Function): $M_{\chi}(t) = (q + pe^t)^a$	MGF(Moment Generating Function): $M_X(t) = e^{\lambda(e^t-1)}$	$\begin{aligned} & \text{MGF(Moment Generating Function):} \\ & M_X(t) = \frac{\lambda}{\lambda - t} \\ & \text{Higher Moments and Cumulants:} \\ & E\left[X^k\right] = \frac{k!}{\lambda^k} \ where \ k \in \mathbb{N} \end{aligned}$	$\begin{aligned} & \text{MGF(Moment Generating Function):} \\ & M_X(t) = e^{\left(\mu t \cdot \frac{\sigma^2 t^2}{2}\right)} \\ & \text{Higher Moments and Cumulants:} \\ & \text{Higher Moments and Cumulants:} \\ & E[(X - \mu)^k] = \begin{cases} \sigma^2(p - 1)!! & \text{in k is odd} \\ \sigma^2(p - 1)!! & \text{in k is even} \\ \text{up here the } !! & \text{stands for double factorial} \end{cases} \\ & \text{where $k \in \mathbb{N}$} \end{aligned}$
		CLT: $\sqrt{n} \frac{(\overline{X_n} - p)}{\sqrt{p*(1-p)}} {\sim} \mathcal{N}(0,\!1)$		CLT: $\sqrt{n} \frac{(\overline{X_n} - \lambda)}{\sqrt{\lambda}} \sim \mathcal{N}(0, 1)$	CLT:	CLT: $n\frac{(\overline{X_n}-\mu)}{\sigma}\!\sim\!\mathcal{N}(0,\!1)$
					$\sqrt{n} \frac{(\overline{N_n} - \frac{1}{\lambda})}{\lambda} \sim \mathcal{N}(0,1)$	
		$\begin{aligned} & \textbf{C.l.:} \hat{p} - q_{\frac{\alpha}{2}} \sqrt{\frac{p^*(1-p)}{n}}$		$\begin{array}{c} \text{C.I.: } \lambda - q_{\frac{\alpha}{2}} \sqrt{\frac{\lambda}{n}} < \lambda < \lambda + q_{\frac{\alpha}{2}} \sqrt{\frac{\lambda}{n}} \\ \text{Conservative: } [-\infty, \omega] \\ \text{Quadratic: } \lambda^2 - \left(2\overline{X_n} + \frac{q_{\frac{\alpha}{2}}}{n}\right) \lambda + \overline{X_n}^2 = 0 \\ \text{Plug-in: } [\overline{X_n} - q_{\frac{\alpha}{2}} \sqrt{\frac{\lambda_n}{n}}, \overline{X_n} + q_{\frac{\alpha}{2}} \sqrt{\frac{\lambda_n}{n}}] \end{array}$	$\begin{split} & \sqrt{n} \frac{(\overline{x_n} - \frac{\lambda}{n})}{\lambda} \sim \mathcal{N}(0, 1) \\ & \mathbf{C.I.: } \hat{\lambda} - q_{\frac{n}{n}} \frac{\lambda}{\sqrt{n}} < \lambda < \hat{\lambda} + q_{\frac{n}{2}} \frac{\lambda}{\sqrt{n}} \\ & \text{Conservative:} [-\infty, \infty] \\ & \text{Quadratic: } [\frac{1}{x_n} \left(1 + \frac{q_{\frac{n}{2}}}{\sqrt{n}}\right)^{-1}, \frac{1}{x_n} \left(1 - \frac{q_{\frac{n}{2}}}{\sqrt{n}}\right)^{-1}] \\ & \text{Plug-in: } [\frac{1}{x_n} \left(1 - \frac{q_{\frac{n}{2}}}{\sqrt{n}}\right)^{-1}, \frac{1}{x_n} \left(1 + \frac{q_{\frac{n}{2}}}{\sqrt{n}}\right)] \end{split}$	$\begin{array}{c} \textbf{C.l.:}\ \hat{\mu}-q_{\frac{\alpha}{2}\frac{\sigma}{n}}<\mu<\hat{\mu}+q_{\frac{\alpha}{2}\frac{\sigma}{n}}\\ \text{Conservative:}\ [-\infty,\infty\]\\ \text{Quadratic: same as plug in}\\ \text{Plug-in:}\ [\overline{X_n}-q_{\frac{\alpha}{2}\frac{\sigma}{n}}\ ,\ \overline{X_n}+q_{\frac{\alpha}{2}\frac{\sigma}{n}}] \end{array}$
		$\begin{aligned} & \text{C.l.: } \hat{p} - q_{\frac{\alpha}{2}} \sqrt{\frac{p \cdot (1-p)}{n}}$	Transformations: If $X\sim B(n,p)$ and $Y\sim B(m,p)$ are independent binomial variables with same probability p then $X+Y\sim B(n+m,p)$ $\frac{X\sim np}{\sqrt{np(1-p)}} \stackrel{n\to\infty}{\sim} N(0,1)$ $\frac{n\to\infty}{n\to\infty} \times B(n,p) \stackrel{p\to0}{\sim} Pois(\lambda)$ $np=\lambda$	Quadratic: $\lambda^2 - \left(2\overline{X_n} + \frac{q_{\frac{\alpha}{2}}}{n}\right)\lambda + \overline{X_n}^2 = 0$	$\sqrt{n} \frac{(N_m - \frac{\lambda}{2})}{\lambda} \sim \mathcal{N}(0, 1)$ $\mathbf{C.l.: } \hat{\lambda} - q_{\frac{m}{2}} \frac{\lambda}{\sqrt{n}} < \lambda < \hat{\lambda} + q_{\frac{m}{2}} \frac{\lambda}{\sqrt{n}}$ $\text{Conservative: } -\infty, \infty 0 $	Conservative:[−∞, ∞]
		$ \begin{split} & \text{Conservative:} [\overline{X_n} - \frac{q_n}{2 + n} - \frac{q_n}{N_n} + \frac{q_n}{2 + n} \frac{q_n}{2 + n} \\ & \text{Quadratic:} \left(1 + \frac{q_n}{n} \right) p^2 - \left(2 \overline{X_n} + \frac{q_n}{n} \right) p + \overline{X_n}^2 = 0 \\ & \text{Plug-in:} [\overline{X_n} - q_n \sqrt{\frac{\overline{X_n} \cdot (1 + \overline{X_n})}{n}}, \ \overline{X_n} + q_n \sqrt{\frac{\overline{X_n} \cdot (1 - \overline{X_n})}{n}} \] \\ & \textbf{Transformations:} \\ & \text{if X_1, X_2, \dots, X_n-$Bernollit$}(p) then \end{split} $	$\begin{array}{l} \text{ If } X^{\sim} B(n,p) \text{ and } Y ^{\sim} B(m,p) \text{ are independent} \\ \text{ binomial variables with same probability p} \\ \text{ then } X+^{\sim} B(n+m,p) \\ \hline \frac{X-np}{\sqrt{np(1-p)}} n \xrightarrow{\sim} N(0,1) \\ n \xrightarrow{\rightarrow} \infty \\ X^{\sim} B(n,p) \stackrel{p}{\sim} 0 \\ \end{array} \\ \times B(n,p) \stackrel{p}{\sim} 0 \\ \end{array}$	Quadratic: $\lambda^2 - \left(2\overline{X_n} + \frac{q_2}{n}\right)\lambda + \overline{X_n}^2 = 0$ Plug-in: $[\overline{X_n} - q_2\sqrt{\frac{X_n}{n}}, \overline{X_n} + q_2\sqrt{\frac{X_n}{n}}]$ Transformations: If $forX_i^n Poil(\lambda_i^n) = 1, 2,, a$ are independent then $\sum_{n=1}^{\infty} X_n^n Poil(X_n^n, \lambda_i)$	$\begin{split} &\sqrt{n}\frac{(\overline{Nn}-\overline{p})}{\lambda} \sim \mathcal{N}(0,1) \\ &\mathbf{CI.: } \hat{\lambda} - q_{\frac{m}{2}}\frac{\lambda}{\sqrt{n}} < \lambda < \hat{\lambda} + q_{\frac{m}{2}}\frac{\lambda}{\sqrt{n}} \\ &\text{Conservative:}[-\omega, \omega] \\ &\text{Quadratic:} [\frac{1}{x_n}\left(1 + \frac{q_{\frac{m}{2}}}{\sqrt{n}}\right)^{-1}, \frac{1}{x_n}\left(1 - \frac{q_{\frac{m}{2}}}{\sqrt{n}}\right)^{-1}] \\ &\text{Plug-in:} [\frac{1}{x_n}\left(1 - \frac{q_{\frac{m}{2}}}{\sqrt{n}}\right)^{-1}, \frac{1}{x_n}\left(1 + \frac{q_{\frac{m}{2}}}{\sqrt{n}}\right)] \\ &\mathbf{Transformations:} \\ &\text{Sum of independent exponential r.v. is not exponential} \end{split}$	Conservative: $[-\infty, \infty]$ Quadratic: same as plug in Plug-in: $[\overline{X_n} - q \frac{\sigma}{2^n}, \overline{X_n} + q \frac{\sigma}{2^n}]$ Transformations: If $forX_i \sim N(\mu_i, \sigma_i^2) = 1, 2, \dots$ are independent then $\sum_{l=1}^n X_l \sim N(\sum_{l=1}^n \mu_l, \sum_{l=1}^n \sigma_l^2)$ If $forX_i \sim N(\mu_l, \sigma_l^2) = 1, 2, \dots$ are independent then $\sum_{n=1}^n X_i \sim N(n\mu_l, \sigma_l^2) = 1, 2, \dots$ are independent then $\sum_{n=1}^n X_i \sim N(n\mu_l, \sigma_l^2) = 1, 2, \dots$ are independent then $\sum_{n=1}^n X_i \sim N(n\mu_l, \sigma_l^2) = 1, 2, \dots$ are independent then $\sum_{n=1}^n X_i \sim N(n\mu_l, \sigma_l^2) = 1, 2, \dots$ are independent then