Scilab Textbook Companion for Quantum Physics Of Atoms, Molecules, Solids, Nuclei And Particles by Eisberg And R. Resnick¹

Created by
Byragoni Pranavi
BE
Electrical Engineering
Jawaharlal Nehru Tehnological University Hyderabad
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

June 7, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Quantum Physics Of Atoms, Molecules, Solids, Nuclei And Particles

Author: Eisberg And R. Resnick

Publisher: John Wiley

Edition: 2

Year: 1974

ISBN: 0-471-37673-x

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Thermal Radiation and Plancks Postulate	5
2	Photons particle like properties of radiation	7
3	De Broglies postulate wave like behaviour of particles	11
4	Bohrs Model of the Atom	14
6	Solutions of time independent schroedinge equations	17
8	Magnetic dipoles moments spin and transition rates	20
9	Multi electron atoms ground satate and xray excitation	22
10	Multi electron atoms optical excitations	25
11	Quantum statistics	27
12	Molecules	29
13	Solids Conductors and semiconductors	31
14	Solids super conductors and magnetic properties	33
15	Nuclear Models	35
16	Nuclear decay and nuclear reactions	38

17 Introduction to elementary particles	43
18 More elementary particles	46

List of Scilab Codes

Exa 1.1	Surface temperature calculation	5
Exa 1.6	Continious or dis continious energy	5
Exa 2.1	Time to absorb energy	7
Exa 2.2	Work function for sodium	7
Exa 2.3	Photons striking metal plate	8
Exa 2.4	X ray beam	8
Exa 2.5	Determine plancks constant	9
Exa 2.6	Energy and wavelength	9
Exa 3.1	Find de broglie wavelength	11
Exa 3.2	Mass of Helium and wavelength	11
Exa 3.3	Speed of the bullet	12
Exa 3.5	Fractional width and uncertainity	13
Exa 4.1	Calculating wavelength	14
Exa 4.2	Average deflection	14
Exa 4.6	Binding energy of hydrogen atom	15
Exa 4.9	Muon nucleus seperation	15
Exa 4.10	Double nucleus mass effect	16
Exa 6.1	Kinetic energy and penetration distance	17
Exa 6.2	Penetration distance	17
Exa 6.3	Probablity of neutron	18
Exa 6.4	Calculation of number	18
Exa 6.6	Value of energy	19
Exa 8.1	Energy supplied	20
Exa 8.2	Transverse deflection	20
Exa 8.3	Energy deflection	21
Exa 8.4	Deflection	21
Exa 9.5	Electric field	22
Exa 9.7	ionization energy	22

Exa 9.8	Calculating wavelength
Exa 9.9	Energy of K shell
Exa 10.1	Calculating wavelength
Exa 10.5	Displace energy
Exa 10.6	Magnetic energy
Exa 11.3	Boltzan factor
Exa 11.5	Fermi energy
Exa 12.1	Energy calculation
Exa 12.3	Calculation of energy and temperature
Exa 13.1	Electron per unit volume
Exa 13.3	Angle
Exa 14.1	Calculating wavelength and gap energy 33
Exa 14.3	Unpaired electrons
Exa 14.4	Energy and wavelength
Exa 15.2	Calculating wavelength and angle
Exa 15.4	Atomic mass
Exa 15.5	Binding energy
Exa 15.7	Blank
Exa 15.8	Density and potential
Exa 16.1	Total energy
Exa 16.2	Elapsed time
Exa 16.4	Life time
Exa 16.5	Value of beta
Exa 16.7	Value of delta and tou
Exa 16.9	Neutron produced
Exa 16.10	Events detected
Exa 16.11	Free electron
Exa 17.1	Kinetic energy
Exa 17.3	value of pi
Exa 17.5	Value of K
Eva 18.2	Variable values 46

Thermal Radiation and Plancks Postulate

Scilab code Exa 1.1 Surface temperature calculation

Scilab code Exa 1.6 Continious or dis continious energy

```
//Example 1.6, apge 39
clc
g=9.8//in m/s^2, constant
l=.1//in m
m=0.01//in kg
h=6.63*10^-34//Joule-sec
theta=0.1//in radians
v=(1/(2*%pi)*sqrt(g/1))
printf("\n Oscillation frequency of pendulam %f per sec.",v)

E=m*g*1*(1-cos(theta))
printf("\n Energy of pendulum at its maximum potential %e Joule.",E)

Delta_e=h*v
printf("\n Delta E %e Joule",Delta_e)
```

Photons particle like properties of radiation

Scilab code Exa 2.1 Time to absorb energy

```
//Example 2.1, page 47
clc
P=1//power in j/s
r=10^-10//Radius in m^2
R=(P*%pi*r^2)/(4*%pi)//Rate at which energy falls in J/sec
R_e=3.4*10^-19//in Joule, rate at energy removed
t=R_e/R
printf("\n Time required for energy to clear is %e sec",t)
```

Scilab code Exa 2.2 Work function for sodium

```
1 //Example 2.2, page 49
2 clc
3 h=6.63*10^-34//Joule-sec
```

```
4 vo=5.6*10^14
5 w=h*vo
6 printf("\npower is %e per sec",w)
7 ev=(1/(1.6*10^-19))
8 wo=w*ev
9 printf("\nEnergy is %f ev",wo)
```

Scilab code Exa 2.3 Photons striking metal plate

```
1 //Example 2.3, Page no 50
2 p=1//j/s
3 r=1//radius in m
4 h=6.63*10^-34//Joule-sec
5 c=3*10^8//m/sec
6 lambda=5.89*10^-7//m
7 R=p/(4*%pi*r^2)
8 E=(h*c)/lambda
9 Rate_R=R*(1/E)
10 printf("\nRate at which photons strike unit area of place %e photons/m^2-sec", Rate_R)
```

Scilab code Exa 2.4 X ray beam

```
1 //Example 2.4, page 57
2 clc
3 disp('Part a')
4 h=6.63*10^-34//Joule-sec
5 c=3*10^8//m/sec
6 m_o=9.11*10^-31//in kg
7
8 delta_h=(h*(1-cosd(90)))/(m_o*c)
9 printf("\n Compton shift is %e m",delta_h)
10 disp('Part b')
```

```
11 delta1=1*10^-10
12 K=(h*c*delta_h)/(delta1*(delta1+delta_h))
13 printf("\n X-ray beam is %e Joule",K)
14 delta2=1.88*10^-12
15 K=(h*c*delta_h)/(delta2*(delta2+delta_h))
16 printf("\n X-ray beam is %e Joule",K)
17 disp('Part c')
18 E1=(h*c)/delta1
19 E1_{ev} = (6.241509*10^{18})*E1
20 printf("\n X-ray energy is
                                  %f ev", E1_ev)
21 \quad E2=(h*c)/delta2
22 \quad E2_{ev} = (6.241509*10^{18})*E2
23 printf("\n X-ray energy is
                                  %f ev", E2_ev)
24 Per1=(100*.295*10^3)/E1_ev
25 \text{ Per2} = (100*378*10^3)/E2_ev
26 printf("\n Energy lost in percentage
                                             \%\mathrm{f} ",Per1)
                                             %f ", Per2)
27 printf("\n Energy lost in percentage
```

Scilab code Exa 2.5 Determine plancks constant

```
1 //Example2.5, page 61
2 clc
3 e=1.6*10^-19//in coul
4 v=4*10^4//in V
5 lambda=3*10^-11//in m
6 c=3*10^8//m/sec
7 h=(e*v*lambda)/c
8 printf("\n Plancks constant is %e Joule-sec",h)
```

Scilab code Exa 2.6 Energy and wavelength

```
1 //example 2.6, page 62
2 clc
```

```
3 e=1.6*10^-19//in coul
4 B=2*10^-1//weber/m2
5 r=2.5*10^-2//in m
6 p=e*B*r
7 printf("\n Momentum of electron %e Kg-m/sec",p)
8 x=1.5//in Mev, ie c^2*p^2
9 y=.51//in Mev
10 E_minus=sqrt(x^2+y^2)
11 E=2*E_minus//h*v
12 h=6.63*10^-34//Joule-sec
13 c=3*10^8//m/sec
14 lambda=(h*c)/(10^6*E*1.6*10^-19)
15 printf("\n Photons wavelength is %e m",lambda)
```

De Broglies postulate wave like behaviour of particles

Scilab code Exa 3.1 Find de broglie wavelength

```
1 //Example 3.1, page 74
2 clc
3 m=1//in kg
4 h=6.63*10^-34//Joule-sec
5 v=10//in m/sec
6 lambda=h/(m*v)
7 disp('part a')
8 printf("\n De broglie wavelength for v=10m/sec %e m", lambda)
9 disp('part b')
10 //For KE=100ev
11 m=9.1*10^-31
12 K=100*1.6*10^-19//in Joules
13 lambda=h/sqrt(2*m*K)
14 printf("\n De broglie wavelength is %e m", lambda)
```

Scilab code Exa 3.2 Mass of Helium and wavelength

```
1 //Example 3.2, Page 80
2 clc
3 h=6.63*10^-34//Joule-sec
4 v=1.635*10^3//m/s
5 M=4*10^-3//in kg/mole
6 No=6.02*10^23//atom/mole
7 m=M/No
8 printf("\n Mass of Helium atom is %e kg",m)
9 lambda=h/(m*v)
10 printf("\n De broglie wavelength is %e m",lambda)
```

Scilab code Exa 3.3 Speed of the bullet

```
1 //Example 3.3, Page 87
2 clc
3 //For electron
4 \text{ m1=9.1*10^--31}//\text{in kg}
5 v = 300 / / in m / s
6 h=6.6*10^{-34}/in joule-sec
7 p1=m1*v//delta v
8 delta_p1 = .0001*p1//m*delata_v in kg-m/sec
9 delta_x1=(h)/(4*\%pi*delta_p1)
10 printf("\n Position of electron %e m", delta_x1)
11
12 //For bullet
13 \text{ m}2=0.05//\text{in kg}
14 p2 = m2 * v
15 delta_p2=0.0001*p2//in kg-m/s
16 delta_x2=(h)/(4*\%pi*delta_p2)
17 printf("\n Position of bullet %e m", delta_x2)
```

Scilab code Exa 3.5 Fractional width and uncertainity

```
1 //Example 3.5, page no 94
2 clc
3 disp('part b')
4 lambda=5890*10^-8/in cm
5 c=3*10^10/in cm/s
6 v=c/lambda
7 \text{ del_v=8*10^6//per s}
8 \text{ x=del_v/v}
9 h=4.14*10^-15//in ev-sec
10 printf("\n Fractional width of either line(del_v/v)
     \%e ",x)
11 // Calculate uncertainty
12 disp('part c')
13 del_t=10^-8
14 del_e=(h)/(4*%pi*del_t)
15 printf("\n Uncertainty is %e ev ",del_e)
```

Bohrs Model of the Atom

Scilab code Exa 4.1 Calculating wavelength

```
1 //Example 4.1, Page 105
2 clc
3 disp('Part b')
4 rho=9*10^9//in nt-m2/coul2
5 e=1.6*10^-19//coul
6 r=1*10^-10//in m
7 k=(rho*e^2)/(r^3)//nt/m
8 m=9.11*10^-31//in kg
9 c=3*10^8//in m/s
10 v=(1/(2*%pi))*sqrt(k/m)
11 lambda=c/v
12 printf("\n The wavelength is %e m ",lambda)
```

Scilab code Exa 4.2 Average deflection

```
1 //Example 4.2, page 107
2 clc
3 disp('Part a')
```

```
4 N=10^4//in rad, Number of atoms tarversed
5 theta=(2*10^-2)/sqrt(N)
6 printf("\n Average deflection %e rad ",theta)
```

Scilab code Exa 4.6 Binding energy of hydrogen atom

```
1 //Example 4.6, Page 120
2 clc
3 rho=9*10^9//in nt-m2/coul2
4 m=9.11*10^-31//in kg
5 e=1.6*10^-19//coul
6 h=1.05*10^-34//in j-sec
7 E=-(rho*m*e^4)/(2*h^2)
8 printf("\n Binding energy is %e Joule ",E)
9 //Answer given in the book is wrong
```

Scilab code Exa 4.9 Muon nucleus seperation

```
1 //Example 4.9, page 124
2 clc
3 disp('Part a')
4 mu=207//207*me
5 M=1836//183*me
6 u=(mu*M)/(mu+M)
7 D=(1/u)*5.3*10^-11
8 printf("\nMuon nucleus seperation is %e m ",D)
9 disp('Part b')
10 E=-u*13.6
11 printf("\n Binding energy is %f ev ",E)
12 disp('Part c')
13 R=109737//in cm
14 lambda=(1/u)*(1/0.75)*(1/R)
15 printf("\n Wavelength is %e cm ",lambda)
```

Scilab code Exa 4.10 Double nucleus mass effect

```
1 //Example 4.10, Page 125
2 clc
3 //For Hydrogen atom
4 R_o = 109737 // in cm
5 m=1
6 M = 1836
7 \text{ RH} = (R_0)/(1+(m/M))
8 printf("\n Spectrum line for Hydrogen occur at %f /
      cm ",RH)
9 //For Deuterium atom
10 R_o = 109737 / in cm
11 \, m = 1
12 M = 2 * 1836
13 RD = (R_o)/(1+(m/M))
14 printf("\n Spectrum line for Deuterium occur at %f /
      \rm cm ",RD)
```

Solutions of time independent schroedinge equations

Scilab code Exa 6.1 Kinetic energy and penetration distance

```
1 //Example 6.1, Page 208
2 clc
3 m=4*10^-14//in kg
4 v=10^-2//in m/s
5 KE=(0.5*m*v^2)
6 h=10^-34
7 printf("\n Kinetic energy(Vo-E) at %e Joule", KE)
8 delta_x=(h)/sqrt(2*m*KE)
9 printf("\n Value of penetration distance is %e m", delta_x)
```

Scilab code Exa 6.2 Penetration distance

```
1 //Example 6.2, page 210
2 clc
3 //KE=4ev, convert to joule
```

```
4 KE=4*1.6*10^-19//in j
5 m=9*10^-31//in kg
6 h=10^-34//in j-s
7 delta_x=(h)/sqrt(2*m*KE)
8 printf("\n Value of penetration distance is %e m ", delta_x)
```

Scilab code Exa 6.3 Probablity of neutron

```
1 //Example 6.3, page 216
2 clc
3 v=50//in Mev
4 E=55//in Mev
5 x=sqrt(1-(v/E))
6 //disp(x)
7 R=((1-x)/(1+x))^2
8 printf("\n Probablity of neutron will be reflected is %f ",R)
```

Scilab code Exa 6.4 Calculation of number

```
1 //Example 6.4, page 220
2 clc
3 m=9*10^-31//in kg
4 h=10^-34//in j-s
5 V=10//in ev
6 a=1.8*10^-10//in m
7 //convert v to joule
8 Vo=V*1.6*10^-19//in Joule
9 N=(2*m*Vo*a^2)/(h^2)
10 printf("\n Numbers given is %d ",N)
```

Scilab code Exa 6.6 Value of energy

```
1 //Example 6.6, page 237
2 clc
3 h=10^{-34}/in j-s
4 m = 10^{-30} / in kg
5 a=10^-14//in m
6 c=3*10^8/in m/s
7 E=((\%pi*h)^2)/(2*m*a*a)
8 printf("\n Energy is %e J ",E)
9 //convert to ev
10 e=E/(1.6*10^-19)
11 printf("\n Energy is %e ev ",e)
12 //Answer difference is due to round off
13 E1 = (\%pi*c*h)/a
14 printf("\n Zero level Energy is %e J",E1)
15 \text{ e1=E1/(1.6*10^-19)}
16 printf("\n Zero level Energy is %e ev ",e1)
17 //Answer difference is due to round off
18 / \text{when A} = 100
19 A=100
20 r = 10^{-14} / in m
21 x=10^--10//in coul2/nt-m2
22 ec=1.6*10^-19/in c
23 Q=(-(A*ec*ec)/(x*r))*(1/ec)
24 printf("\n Typical value Energy is %e ev ",Q)
```

Magnetic dipoles moments spin and transition rates

Scilab code Exa 8.1 Energy supplied

Scilab code Exa 8.2 Transverse deflection

```
1 //Example 8.2, page 293
2 //From previous derivation of formula
3 clc
4 delb_by_delz=10//tesla/m
5 u=0.927*10^-23//amp-m2
6 x=1///in m
```

```
7 k=1.38*10^-23//j/k
8 T=400//in K
9 Z=(delb_by_delz*u*x^2)/(8*k*T)
10 printf("\n Transverse deflection that occur is + %e m or - %e m ",Z,Z)
```

Scilab code Exa 8.3 Energy deflection

```
1 //Example 8.3, page 298
2 clc
3 m=9*10^-31//in kg
4 e=1.6*10^-19//in coul
5 c=3*10^8//in m/s2
6 four_pi_epsilon=1.1*10^-34//in j-sec
7 constant=9*10^9//nt-n2/coul2
8 delta_E=(constant^4*m*e^8)/(54*c*c*(four_pi_epsilon)^4)
9 printf("\n The energy deflection is %e Joule", delta_E)
10 //Answer given in the book is wrong
```

Scilab code Exa 8.4 Deflection

```
1 //Example 8.4, page 299
2 clc
3 u_s=10^-23//amp-m2
4 u_b=10^-23//amp-m2
5 B=u_s/u_b
6 printf("\n The deflection is %d Tesla",B)
```

Multi electron atoms ground satate and xray excitation

Scilab code Exa 9.5 Electric field

```
1 //example 9.5, page 343
2 clc
3 Z=[16 8 3]
4 //Argon numbers
5
6 for n=1:1:3
7 E=(-((Z(n))/n)**2)*13.6
8 printf("\n The electric field for n=%d is %f ev",n, E)
9 disp(E)
10 end
11 //Answer difference is because of round off
```

Scilab code Exa 9.7 ionization energy

```
1 //Example 9.7, page 355
```

```
2 clc
3 Z=92
4 n=2
5 E=((Z/n)**2)*13.6//in ev
6 printf("\n The ionization energy is %e ev",E)
7 //Answer difference is because of round off
```

Scilab code Exa 9.8 Calculating wavelength

```
1 //Example 9.8, page 358
2 clc
3 //Energy of K shell
4 z=26
5 k=2
6 E_k=13.6*(z-k)^2//in ev
7 v=7.8*10^3//in V
8 //for L shell
9 l=10
10 E_l=13.6*(z-l)^2//in ev
11 h=E_k-E_l
12 R_m=1.1*10^7
13 x=R_m*(z-2)^2//x=1/lamda
14 lambda=1/x
15 printf("\n The wavelength is %e m",lambda)
```

Scilab code Exa 9.9 Energy of K shell

```
1 //example 9.9, page 360
2 //Energy of K shell
3 clc
4 z=82
5 k=2
6 E_k=13.6*(z-k)^2//in ev
```

 ${\tt printf}("\n$ The energy of K shell is ${\it \%}e$ ${\it ev",E_k)}$

Multi electron atoms optical excitations

Scilab code Exa 10.1 Calculating wavelength

```
1 //Example 10.1, page 370
2 clc
3 E3p=-3//in ev
4 E3s=-5.1//in ev
5 E = E3p - E3s
6 E_Joule=E*1.6*10^-19//in Joule
7 h=6.6*10^-34//in J-s
8 c = 3*10^8 / in m/s
9 disp('Part a')
10 lambda=(h*c)/E_Joule
11 printf("\n The wavelength is %e m",lambda)
12 // Part b
13 disp('Part b')
14 d_lambda=(h*c*E_Joule)/(E_Joule)^2
15 printf("\n The magnitude of seperation is %e m",
     d_lambda)
16 //Answer given in book for part b is wrong
```

Scilab code Exa 10.5 Displace energy

```
1 //Example 10.5, page 386
2 clc
3 a=1*(1+1)
4 x=a+a-a
5 y=2*a
6 g=1+(x/y)
7 u=9.3*10^-24//amp-m2
8 B=1/10//in Tesla
9 delta_E=u*B*g
10 printf("\n The displace energy is %e ev", delta_E)
```

Scilab code Exa 10.6 Magnetic energy

```
1 //Example 10.6, page 387
2 clc
3 h=6.6*10^-34//in J-s
4 v=1*10^10//per sec
5 ub=9.3*10^-24//in amp-m2
6 B=(h*v)/(2*ub)
7 printf("\n The Magentic energy is %e Tesla",B)
```

Quantum statistics

Scilab code Exa 11.3 Boltzan factor

```
1 //Example 11.3, page 410
2 clc
3 h=6.6*10^-34//in J-s
4 v=1*10^7//per sec
5 K=1.4*10^-23//in J-K
6 T=300//in K
7 n=exp(-((h*v)/(K*T)))
8 printf("\n The Boltzan factor is %e Tesla",1-n)
```

Scilab code Exa 11.5 Fermi energy

```
1 //Example 11.3, page 424
2 clc
3 disp('Part a')
4 A=108//in g/mole
5 M=10.5//in g/cm3
6 D=6.02*10^23//in atom/mole
7 n=(D*M)/A
```

```
8 h=6.6*10^-34
9 printf("\n The fermi energy is %e electron/cm^3",n)
10 m=9.1*10^-31//in kg
11 n=5.9*10^28//per m^2
12 x=((3*n)/(%pi))^(2/3)
13 Ef=(h^2/(8*m))*x
14 printf("\n The energy is %e J",Ef)
15 disp('part b')
16 K=1.38*10^-23//in J-K
17 T=300//in K
18 z=(n*h^3)/(2*%pi*m*K*T)^(3/2)
19 printf("\n The degeneracy term is %e ",z)
20 //Anser difference is because of round off
```

Molecules

Scilab code Exa 12.1 Energy calculation

```
1 //Example 12.1, page 435
2 clc
3 c=9*10^9
4 cm=1.6*10^-19
5 d=2.4*10^-10//in m
6 v=(c*cm*cm)/d
7 e=v/(1.6*10^-19)//in J
8 printf("\n The energy is %e ev",e)
```

Scilab code Exa 12.3 Calculation of energy and temperature

```
1 //Example 12.3, page 445
2 clc
3 h=6.63*10^-34//in J-s
4 I=(2*%pi)^2*2.66*10^-47//in kg-m2
5 m_H=1/(6.02*10^26)//in kg
6 E=(h^2)/I
7 printf("\n The energy is %e J",E)
```

Solids Conductors and semiconductors

Scilab code Exa 13.1 Electron per unit volume

```
1 //Example 13.1, Page no 471
2 clc
3 m=9.11*10^-31//in kg
4 h=6.63*10^-34//in j-s
5 ef=4.72*1.60*10^-19//in J
6 n=%pi*(((8*m)/h**2)^(3/2))*((ef**(3/2))/3)
7 printf("\n The number of electron per unit volume in lithium is %e /m^3",n)
```

Scilab code Exa 13.3 Angle

```
1 //Example 13.3, page 483
2 clc
3 m=9.11*10^-31//in kg
4 h=6.63*10^-34//in j-s
5 c=3*10^8//m/s
```

```
6 ef=4.72*1.60*10^-19//in J
7 pf=sqrt(2*m*ef)
8 tf=pf/(m*c)
9 printf("\n The angle is %e rad",tf)
```

Solids super conductors and magnetic properties

Scilab code Exa 14.1 Calculating wavelength and gap energy

```
1 //Example 14.1, page 507
2 clc
3 disp('Part a')
4 k=1.4*10^-23//in J/K
5 Te=4.2//in K
6 eg=3*k*Te
7 printf("\n The gap energy is %e J",eg)
8 h=6.63*10^-34//in j-s
9 c=3*10^8//m/s
10 disp('Part b')
11 lambda=(h*c)/eg
12
13 printf("\n The wavelength is %e m",lambda)
```

Scilab code Exa 14.3 Unpaired electrons

```
1 //Example 14.3, Page 514
2 clc
3 u=9.3*10^-24//in Tesla
4 B=1//in Tesla
5 Eb=u*B*6.24150934*10^18
6 T = 300 / / in K
7 \text{ k=8.6*10^--5//ev/k}
8 x = k * T
9 s = (Eb/x) * 100
10 disp('Part a')
11 printf("\n The percentage is %f",s)
12 disp('Part b')
13 n=2.0*10^28 // m3
14 k=1.38*10^-23//in J/k
15 uo = 4 * \%pi * 10^- - 7 / / T - m / amp
16 \quad con=(uo*n*u*u)/(k*T)
17 printf("\n The number of unpaired electrons is
                                                          %e",
      con)
```

Scilab code Exa 14.4 Energy and wavelength

```
//Example 14.4, Page 516
clc
uo=4*%pi*10^-7//T-m/amp
u=2.2*9.3*10^-24//in Tesla
x=3*10^-10//in m
E=(uo*u*u)/(2*%pi*x**3)
printf("\n The Energy required is %e Joule",E)
k=1.38*10^-23//in J/k
T=E/k
printf("\n The temperature is %f K",T)
```

Nuclear Models

Scilab code Exa 15.2 Calculating wavelength and angle

```
1 //Example 15.2, Page 533
2 clc;
3 c=3*10^8/m/s
4 k=500//Mev
5 p=(k)/(c*6.2*10^12)
6 h=6.63*10^-34//in j-s
7 lambda=h/p
8 angle=0.53//in rad
9 r=lambda/angle
10 printf("\n The wavelength is %e m",lambda)
11 printf("\n The angle is %e m",r)
```

Scilab code Exa 15.4 Atomic mass

```
1 //Example 15.4, Page 540
2 clc
3 kb=4.44//in Mev
4 ka=7.70//in Mev
```

```
5 mb=1
6 mB=17
7 ma=4
8 Q=(kb*(1+(mb/mB)))-(ka*(1-(ma/mB)))
9 disp('Part a')
10 printf("\n The value of Q is %f Mev",Q)
11 c=3*10^8//m/s
12 m=Q/(931.5)
13 printf("\n The atomic mass of Q is %e u",m)
```

Scilab code Exa 15.5 Binding energy

```
1 //Example 15.5, Page 541
2 clc
3 M_He=4.0026033//*u, Mass of helium
4 M1H1=1.00782525//*u, electron mass
5 Mon1=1.0086654//*u, neutron mass
6 Mass=(2*M1H1)+(2*Mon1)
7 delta_M=(Mass)-M_He
8 printf("\n The binding energy of helium is %f *u", delta_M)
```

Scilab code Exa 15.7 Blank

```
1 //Example 15.7, page 547
```

Scilab code Exa 15.8 Density and potential

```
1 //Example 15.8, page 550
2 clc
```

```
3 N=0.60
4 rho=(N)/((4/3))
5 printf("\n The density is %f /pi*a^3",rho)
6 h=6.63*10^-34//in j-s
7 a=1.1//F
8 M=1
9 ef=43//in Mev
10 En=7//in Mev
11 Vo=ef+En
12 printf("\n The depth of the net nuclear potential acting on neutron \n is %d Mev", Vo)
```

Nuclear decay and nuclear reactions

Scilab code Exa 16.1 Total energy

```
1 //Example 16.1, page 575
2 clc
3 r=(4**(1/3)+208**(1/3))*1.07
4 printf("\n The sum of radii is %f F",r)
5 e=1.60*10^-19//in coul
6 z=82
7 x=1.1*10^-10//coul2/nt-m2
8 Vo=(2*z*e*e)/(x*r*10^-15)
9 printf("\n The total energy is %e J",Vo)
```

Scilab code Exa 16.2 Elapsed time

```
1 //Example 6.2, Page 579
2 clc
3 x=log(exp(.827))
4 t=(log(143))/x
```

```
5 printf("\n The elapsed time is \%f *10^9 year",t)
```

Scilab code Exa 16.4 Life time

```
1 //Example 16.4, Page 589
2 clc
3 // Using formula logb(m)=n
4 //n=b^n
5 F=10^(-5.7)
6 Y=12.3 //yr
7 d=365//day/yr
8 h=24//hr/day
9 m=60//min/hr
10 s=60//sec/min
11 T=(Y*d*h*m*s)/0.693
12 printf("\n The life time is %e s",T)
```

Scilab code Exa 16.5 Value of beta

```
1 //Example 16.5, Page 591
2 clc
3 h=1.05*10^-34//j-s
4 F=1.2
5 T=10^3//in s
6 m=.91*10^-30//in kg
7 c=3*10^8//in m/s
8 M=1
9 beta_square=(2*%pi*%pi*%pi*(h^7))/(F*T*(m^5)*(c^4))
10 beta=sqrt(beta_square)
11 printf("\n The value of Beta is %e J^2*m^6",beta)
```

Scilab code Exa 16.7 Value of delta and tou

Scilab code Exa 16.9 Neutron produced

```
1 //Example 16.9, page 607
2 clc
3 Z = 0 + 1 + 4
4 A = 1 + 9 - 1
5 printf("\n The value of z is \%d",Z)
6 printf("\n The value of A is \%d", A)
7 \text{ ka} = 50
8 \text{ kb} = 48.1
9 \quad mB = 1
10 \text{ ma} = 1/9
11 \text{ mb} = 1/9
12 x = 1/9 / ma/mB
13 y = 1/9 / mb/mB
14 \text{ part1=kb*(1+x)}
15 part2=ka*(1-y)
16 part3=(2*sqrt(ka*kb*ma*mb))
17 Q=part1-part2-part3
18 printf("\n The value of Q is %f Mev",Q)
19 sq_kb_plus = (1.36 + sqrt(1.36 * *2 + (4 * 1.11 * 42.5)))
```

```
/(2*1.11)
20 sq_kb_minus=(1.36-sqrt(1.36**2+(4*1.11*42.5)))
    /(2*1.11)
21 kb_plus=(sq_kb_plus)**2
22 kb_minus=(sq_kb_minus)**2
23 printf("\n The maximum neutron produced at angle 30 degree is %f Mev",kb_plus)
```

Scilab code Exa 16.10 Events detected

```
1 //Example 16.8, page 615
2 clc
3 n=(1/10)/(54*1.66*10^-27)
4 d_ohm=10^-5/(10^-1)**2
5 d_zigma=(1.3*10^-3)*10^-31//m2/nucleus
6 P=d_zigma*n
7 //disp(P)
8 I=(10^-7)/(1.6*10^-19)
9 //disp(I)
10 dN=I*P
11 printf("\n The number of events detected per sec is s %d",dN)
12 //The answer differnce is because of round off
```

Scilab code Exa 16.11 Free electron

```
1 //Example 16.11, page 624
2 clc
3 E=200*1.6*10^-13//j/neutron
4 E=10^-11//Rounding off
5 p=E/(10^-3)
6 P=10^8//in watt
7 N=P/p
```

 $\mbox{\tt printf("\n The number of free electron present is \%e ",N)}$

Introduction to elementary particles

Scilab code Exa 17.1 Kinetic energy

```
1 //Example 17.1, Page 643
2 clc
3 h=1.05*10^-34//j-s
4 M=1.7*10^-27//in kg
5 r=2*10^-15//in m
6 K=(h**2)/(M*r*r)
7 s=K* 6.24150647996E+12//converting to Mev
8 K_total_cm=2*s
9 k_incident=2*K_total_cm
10 printf("\n The kinetic energy of incident nucleon is %d Mev", k_incident)
```

Scilab code Exa 17.3 value of pi

```
3 h=1*10^-34//j-s
4 r=2*10^-15//m
5 c=3*10^8//m/s
6 m_pi=h/(r*c)
7 printf("The value of m pi is %e kg", m_pi)
8 //Answer difference is because of round off
```

Scilab code Exa 17.5 Value of K

```
1 //Example 17.5, page no 664
2 clc;
3 \text{ Tz} = (1-1)/2
4 // For K+
5 Q = 1
6 B=0
7 S = 1
8 \text{ Tz} = 1 - 0.5
9 printf("The value of Tz for K+ is \%f \n", Tz)
10
11 // For K-
12 \quad Q = -1
13 B = 0
14 S = -1
15 \text{ Tz} = -1 + 0.5
16 printf("The value of Tz for K- is \%f\n", Tz)
17
18
19 //For Ko
20 Q=0
21 B = 0
22 S = 1
23 \text{ Tz} = -0.0.5
24 printf("The value of Tz for Ko is %f \n",Tz)
25
26
```

```
27 //For Ko_dash  
28 Tz=0+0.5  
29 printf("The value of Tz for Ko— is \%f \n",Tz)
```

More elementary particles

Scilab code Exa 18.2 Variable values

```
1 //Example 18.2, Page 694
2 clc
3 Q=(2/3)-(1/3)-(1/3)
4 B=(1/3)+(1/3)+(1/3)
5 S=0+0-1
6 T=(1/2)+(1/2)+0
7 Tz=(1/2)-(1/2)+0
8 printf("The value of Q is %f \n",Q)
9 printf("The value of B is %f \n",B)
10 printf("The value of S is %f \n",S)
11 printf("The value of T is %f \n",T)
12 printf("The value of Tz is %f \n",Tz)
```