Homework 10

Problem 1. Show that, for constant $p \in (0,1)$, almost no graph in $\mathcal{G}(n,p)$ has a separating complete subgraph.

[Hint]

- 1. Recall the property $P_{i,j}$ from the slides
- 2. You may need to recall the definitions:
 - **Separating subgraph**: Given G = (V, E), and some $X \subseteq V \cup E$, we call X a separating subgraph if there exists two vertices $u, v \in V(G X)$ such that u, v are in the some component of G, while u, v lie in two disconnected components of G X (i.e., X separates u and v).
 - **Separating complete subgraph**: If the above subgraph *X* is also a complete graph.

Problem 2. Consider G(n, p) with $p = \frac{1}{3n}$.

Use the second moment method to show that with high probability there exists a simple path of length 10.

Problem 3. Prove that 'the disappearance of isolated vertices in G(n, p)' has a sharp threshold of $\frac{\ln n}{n}$.

[Hint: John's book, theorem 8.6]

Problem 4. (Optional)

- 1. Prove that the threshold for the existence of cycles in $\mathcal{G}(n,p)$ is $p=\frac{1}{n}$.
- 2. Search the World Wide Web to find some real world graphs in machine readable form or data bases that could automatically be converted to graphs.
 - (a) Plot the degree distribution of each graph.
 - (b) Compute the average degree of each graph.
 - (c) Count the number of connected components of each size in each graph.
 - (d) Describe what you find.
- 3. Create a simulation (an animation) to show the evolution of the $\mathcal{G}(n,p)$ (Erdös-Rényi) random graph as its density p is gradually increased. Observe the phase transitions for trees of increasing orders, followed by the emergence of the giant component, etc.