CURSO 20-21

RELACIÓN DE EJERCICIOS 1

1.1. Decidir si A = B, $A \subset B$ ó $A \in B$ en los siguientes casos:

i)
$$A = \{\emptyset\}$$
, $B = \{\{\emptyset\}\}$

ii)
$$A = {\emptyset, {\emptyset}}$$
 , $B = {\emptyset, {\emptyset, {\emptyset}}}$

iii)
$$A = \{\{\emptyset\}, \{\emptyset, \emptyset\}\}\$$
, $B = \{\{\emptyset\}\}\$

1.2. Dar por extensión los siguientes conjuntos:

a)
$$\mathcal{P}(\emptyset)$$
; b) $\mathcal{P}(\{\emptyset\})$; c) $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$

1.3. Demostrar las siguientes afirmaciones:

i)
$$\{a\} = \{b, c\}$$
 sí, y sólo sí $a = b = c$

ii) Si
$$a \neq b$$
 y $c \neq d$ entonces $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$ sí, y sólo sí $a = c$ y $b = d$

1.4. Si *A* y *B* son subconjuntos de un conjunto *E* demostrar:

i)
$$A \cap B = \emptyset \iff A \subseteq \overline{B} \iff B \subseteq \overline{A}$$

ii)
$$A \cup B = E \iff \overline{B} \subseteq A \iff \overline{A} \subseteq B$$

1.5. Sea X un conjunto y A, B, C subconjuntos de X. Demostrar que si $A \cup B \subseteq A \cup C$ y $A \cap B \subseteq A \cap C$ entonces $B \subseteq C$. Como consecuencia demostrar que si $A \cup B = A \cup C$ y $A \cap B = A \cap C$ entonces B = C.

1.6. (Leyes de De Morgan) Si *A* y *B* son subconjuntos de un conjunto *X*, demostrar:

i)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
; *ii*) $\overline{A \cup B} = \overline{A} \cap \overline{B}$

1.7. Verificar las siguientes fórmulas donde A, B y C son subconjuntos de un conjunto X y $A \setminus C = \{x \in X | x \in A \land x \notin C\}$:

i)
$$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$$

ii)
$$(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$$

iii)
$$(A \setminus C) \cap (B \setminus C) = (A \cap B) \setminus C$$

iv)
$$(A \setminus B) \setminus (A \setminus C) = A \cap (C \setminus B)$$

v)
$$(A \setminus B) \cup (A \setminus C) = A \setminus (B \cap C)$$

vi)
$$(A \setminus B) \cap (A \setminus C) = A \setminus (B \cup C)$$

1.8. Se define la diferencia simétrica de dos subconjuntos *A* y *B* de un conjunto *X* por

$$A\triangle B = (A \setminus B) \cup (B \setminus A)$$

Demostrar que $A \triangle B = (A \cup B) \setminus (A \cap B)$ y que $A \triangle B = \emptyset$ sí, y sólo sí A = B.

- **1.9.** Sean $A, B \subseteq X$. Demostrar:
- i) $A = (A \cap B) \cup (A \setminus B)$ es una representación de A como una unión disjunta.
- ii) $A \cup B = A \cup (B \setminus A)$ es una representación de $A \cup B$ como una unión disjunta.
- **1.10.** Sean $A, B \subseteq X$. Si A tiene n elementos y B tiene m elementos ¿Cuántos elementos tiene $A \cup B$?.
- **1.11.** Sean $A, B \subseteq X$. Demostrar que si $A \subseteq B$ entonces $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- **1.12.** Se consideran los subconjuntos de \mathbb{R} , A = [-1, 1] y B = [-3, 4]. Describir los siguientes subconjuntos de $\mathbb{R} \times \mathbb{R}$: $A \times B$, $B \times A$, $(A \times B) \cap (B \times A)$, $(A \times B) \setminus (B \times A)$, $(A \times B) \cup (B \times A)$.

CURSO 20-21

RELACIÓN DE EJERCICIOS 2

2.1. Construir todas las aplicaciones del conjunto $X = \{a, b, c\}$ en el conjunto $Y = \{1, 2\}$ y clasificarlas según sean inyectivas, sobreyectivas, biyectivas ó de ninguno de estos tipos.

2.2. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 5x - 3. Demostrar que existe $g: \mathbb{R} \to \mathbb{R}$ tal que $g \circ f = 1_{\mathbb{R}}$. ¿Es cierto también que $f \circ g = 1_{\mathbb{R}}$?

2.3. Sean $f: X \to Y$ una aplicación y $A \subseteq X$, $B \subseteq Y$. Demostrar:

i) $f_*(f^*(B)) \subseteq B$ y se da la igualdad si f es sobrevectiva.

ii) $A \subseteq f^*(f_*(A))$ y se da la igualdad si f es inyectiva.

2.4. Se consideran las aplicaciones

$$A \xrightarrow{f} B \xrightarrow{g} C \text{ y } X \xrightarrow{h} Y \xrightarrow{k} Z$$
.

Demostrar que f y h inducen una única aplicación $f \times h : A \times X \to B \times Y$ verificando que

$$f \circ p_1 = p_1 \circ (f \times h)$$
 y $h \circ p_2 = p_2 \circ (f \times h)$.

Demostrar que $(g \times k) \circ (f \times h) = (g \circ f) \times (k \circ h)$.

2.5. Sea $f: X \to Y$ una aplicación, $A \subseteq X$ y $B \subseteq Y$. Demostrar

$$f_*(A \cap f^*(B)) = f_*(A) \cap B$$

2.6. Dada una aplicación $f: X \to Y$ y $A \subseteq X$, se llama saturación de A al conjunto $f^*(f_*(A))$. Se dice que A es saturado si $A = f^*(f_*(A))$.

- i) Caracterizar los subconjuntos saturados de f si $X = Y = \mathbb{R}$ y f es la aplicación definida por $f(x) = x^2 + 1$.
- ii) Hallar la saturación del conjunto $\{\pi\}$ si $X=Y=\mathbb{R}$ y f es la aplicación coseno.

- **2.7.** Sea $f: X \to Y$ una aplicación. Demostrar que son equivalentes las siguientes afirmaciones:
 - i) f es inyectiva
 - ii) $\forall A, B \in P(X), f_*(A \cap B) = f_*(A) \cap f_*(B).$
- **2.8.** Sean $f:X\to Y$ y $g:Y\to Z$ dos aplicaciones y sea $h=g\circ f$ la composición de dichas aplicaciones. Demostrar:
- i) Si h es inyectiva entonces f es inyectiva.
- ii) Si h es sobreyectiva entonces g es sobreyectiva.
- iii) Si h es inyectiva y f es sobreyectiva entonces g es inyectiva.
- iv) Si h es sobreyectiva y g es inyectiva entonces f es sobreyectiva.
- **2.9.** Sean las aplicaciones $f: X \to Y$, $g: Y \to Z$ y $h: Z \to X$ tales que $h \circ g \circ f$ es inyectiva, $g \circ f \circ h$ es inyectiva y $f \circ h \circ g$ es sobreyectiva. Demostrar que las aplicaciones f, g y h son biyectivas.

CURSO 20-21

RELACIÓN DE EJERCICIOS 3

- **3.1.** Dar ejemplos de relaciones binarias en un conjunto que verifiquen una sola de las siguientes propiedades: reflexiva, simétrica, antisimétrica, transitiva.
- **3.2.** Sea $X = \{1, 2, 3\}$. Calcular todas las particiones de X.
- **3.3.** Sea $X = \{0, 1, 2, 3\}$, $Y = \{a, b, c\}$ y $f : X \to Y$ la aplicación dada por: f(0) = c; f(1) = f(2) = a; f(3) = b. Considerar la aplicación $f^* : \mathcal{P}(Y) \to \mathcal{P}(X)$ que a cada subconjunto $B \subseteq Y$ le hace corresponder su imagen inversa por f.
 - i) ¿Es f^* inyectiva, sobreyectiva o biyectiva?
 - ii) Calcular la relación \sim_{f^*} en $\mathcal{P}(Y)$ asociada a f^* y el conjunto cociente $\mathcal{P}(Y)/\sim_{f^*}$.
- iii) Hallar la descomposición canónica de f^* .
- **3.4.** Sean X e Y dos conjuntos tales que $Y \subseteq X$. En el conjunto $\mathcal{P}(X)$ se define la siguiente relación binaria:

$$A \sim B \iff A \cap Y = B \cap Y$$

Demostrar que dicha relación es de equivalencia y describir el conjunto cociente.

3.5. Si X e Y son dos conjuntos y R y S son relaciones de equivalencia en X e Y respectivamente, definir en el conjunto $X \times Y$ una relación de equivalencia T tal que exista una biyección

$$(X \times Y)/T \cong (X/R) \times (Y/S)$$

3.6. Encontrar el error en la siguiente demostración:

"Una relación binaria sobre un conjunto X que es simétrica y transitiva es reflexiva porque $\forall x_1, x_2 \in X, x_1 R x_2 \Rightarrow x_2 R x_1$ (por simetría) y de aquí, por transitividad, $x_1 R x_1$ ".

- **3.7.** Encontrar todos los órdenes parciales que se pueden definir en un conjunto de 3 elementos.
- **3.8.** Sean X e Y conjuntos ordenados y definamos en $X \times Y$ la siguiente relación binaria:

$$(x, y) \le (x', y') \Leftrightarrow x \le x' \land y \le y'$$

Demostrar que " \leq " es una relación de orden en $X \times Y$ pero que este orden no es total (incluso en el caso de que X e Y fueran totalmente ordenados) salvo en en el caso de que X ó Y consistan de un solo elemento.

- **3.9.** Sea X un conjunto no vacío e $Y \in \mathcal{P}(X)$. Definimos la aplicación $f: X \to \mathcal{P}(X)$ por $f(x) = Y \cup \{x\}$, para $x \in X$, y consideramos la la relación de equivalencia \sim_f asociada a f. Describir el conjunto cociente X/\sim_f . Si X es finito y tiene n elementos e Y tiene m elementos, calcular el cardinal (o sea, el número de elementos) de X/\sim_f .
- **3.10.** Consideremos el plano vectorial real $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ y el conjunto $X = \mathbb{R}^2 \setminus \{(0,0)\}$. Definimos la relación R en X por uRv si existe $\lambda \in \mathbb{R}$ tal que $u = \lambda v$, para $u, v \in X$. Describir el conjunto cociente $\mathbb{P}^1 = X/R$.

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 4

4.1. Si A y B son anillos conmutativos, probar que el conjunto producto cartesiano $A \times B$, con las operaciones

$$(a, a') + (b, b') = (a + b, a' + b'), (a, a')(b, b') = (ab, a'b').$$

es efectivamente un anillo conmutativo. Se llama el "anillo producto cartesiano" de A y B. Escribir las tablas de sumar y multiplicar del anillo producto $\mathbb{Z}_2 \times Z_2$.

4.2. En el conjunto \mathbb{Z} definimos las operaciones de suma \oplus y producto \otimes por

$$a \oplus b = a + b - 1$$
,

$$a \otimes b = a + b - ab$$
.

Así, por ejemplo, $2 \oplus 3 = 4$ y $2 \otimes 3 = -1$. ¿Es \mathbb{Z} un anillo conmutativo con estas operaciones?

4.3. En $\mathbb{Z} \times \mathbb{Z}$ definimos las operaciones

$$(a, a') + (b, b') = (a + b, a' + b'),$$

$$(a, a') \cdot (b, b') = (ab, ab' + a'b).$$

¿Es $\mathbb{Z} \times \mathbb{Z}$ un anillo conmutativo con estas operaciones?

- **4.4.** Escribir las tablas de sumar y multiplicar de los anillos \mathbb{Z}_5 y \mathbb{Z}_6 .
- **4.5.** Efectuar los siguientes cálculos en el anillo $\mathbb{Z}[\sqrt{3}]$:

$$(3+2\sqrt{3})+(4-5\sqrt{3}), (3+2\sqrt{3})(4-5\sqrt{3}), (2-\sqrt{3})^3.$$

- **4.6.** ¿Cuáles de los siguientes son subanillos de los anillos indicados?
 - $(i) \{a \in \mathbb{Q} \mid 3a \in \mathbb{Z}\} \subseteq \mathbb{Q},$
 - (ii) $\{m+2n\sqrt{3} \mid m,n\in\mathbb{Z}\}\subseteq\mathbb{R}$.
- **4.7.** Determinar las unidades del anillo definido por el conjunto $\mathbb{Z} \times \mathbb{Z}$, con las operaciones (a, a') + (b, b') = (a + b, a' + b') y $(a, a') \cdot (b, b') = (ab, ab' + a'b)$ (ver el Ejercicio 3).
- **4.8.** Encontrar todas las unidades de los anillos \mathbb{Z}_6 , \mathbb{Z}_7 y \mathbb{Z}_8 .

4.9. Efectuar las siguientes operaciones en el anillo $\mathbb{Z}_5[X]$

$$(3+4X+X^2+2X^3)+(3+4X+4X^4+3X^3),\\(3+4X+X^2+2X^3)(3+4X+4X^4+3X^3),\\(2-4X+X^2-2X^3)+(3-4X+4X^2-3X^3),\\(2-4X+X^2-2X^3)(3-4X+4X^2-3X^3).$$

- **4.10.** Si $p(X) \in \mathbb{Z}_5[X]$ es cualquiera de los cuatro polinomios obtenidos al realizar el ejercicio anterior, calcular p(1) y p(-1) en cada caso.
- **4.11.** Sea R un anillo y sea $a \in R$ un elemento invertible. Demostrar que la aplicación $f_a: R \to R$ dada por $f_a(x) = axa^{-1}$ es un automorfismo de R.
- **4.12.** Dado un anillo R, demostrar que existe un único homomorfismo de anillos de \mathbb{Z} en R.
- **4.13.** Demostrar que si A es un anillo de característica n, entonces existe un único homomorfismo de anillos de \mathbb{Z}_n en A que es inyectivo.
- **4.14.** Dados dos números naturales n y m, dar condiciones para que exista un homomorfismo de anillos de \mathbb{Z}_n en \mathbb{Z}_m .
- **4.15.** Dado un morfismo de anillos $f:A\longrightarrow B$, ¿la imagen directa de un subanillo de A es subanillo de B? ¿la imagen inversa de un subanillo de B es subanillo de A?
- 4.16. Razonar si las siguientes afirmaciones son verdaderas o falsas:
- i) Existe un único homomorfismo de anillos de \mathbb{Z} en $\mathbb{Z}_2 \times \mathbb{Z}_7$ que es sobreyectivo.
- ii) \mathbb{Z}_{1457} es un cuerpo.
- iii) De \mathbb{Z}_7 en \mathbb{Z}_{14} hay exactamente 7 homomorfismos de anillos.

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 5

5.1. En el anillo $\mathbb{Z}[x]$ de los polinomios con coeficientes en \mathbb{Z} , estudiar si son ideales los subconjuntos:

I formado por todos los polinomios con término independiente cero,

J formado por los polinomios con término independiente par y

K formado por los polinomios que tienen todos sus coeficientes pares.

- **5.2.** Determinar los ideales del cuerpo \mathbb{R} de los números reales.
- **5.3.** Dados I, J ideales de un anillo A tales que $I \subseteq J$, se denota $J/I = \{x + I \in A/I \mid x \in J\}$. Probar que todo ideal de A/I es de la forma J/I para algún ideal J de A tal que $I \subseteq J$.
- **5.4.** Sean I, J ideales de un anillo A tales que $I \subseteq J$. Probar que existe un isomorfismo de anillos:

 $\frac{A/I}{J/I} \cong \frac{A}{I}.$

- **5.5.** Probar que todos los ideales de \mathbb{Z} son principales. Dar condiciones para que se verifique que $n\mathbb{Z} \subseteq m\mathbb{Z}$.
- **5.6.** Describir los ideales de \mathbb{Z}_{14} enumerando los elementos de cada uno de ellos.
- **5.7.** Estudiar qué ideales de los del ejercicio 5.1 son principales.
- **5.8.** En el anillo $\mathbb{Z} \times \mathbb{Z}$ se considera el subconjunto $I = \{(x, y) \mid x, y \text{ son múltiplos de 3}\}$. Probar que I es un ideal de $\mathbb{Z} \times \mathbb{Z}$. ¿Es principal?
- **5.9.** Sea A un anillo conmutativo no trivial e I un ideal de A, $I \neq A$. Decimos que I es maximal si no existe ningún ideal J de A verificando $I \subsetneq J \subsetneq A$. Probar que I es un ideal maximal si, y sólo si, A/I es un cuerpo. Determinar los ideales maximales de \mathbb{Z}

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 6

6.1. Determinar las unidades y los divisores de cero de los anillos \mathbb{Z}_5 y \mathbb{Z}_8 .

6.2. ¿Es el anillo definido por el conjunto $\mathbb{Z} \times \mathbb{Z}$ con las operaciones (a, a') + (b, b') = (a + b, a' + b') y (a, a')(b, b') = (ab, ab' + a'b) un Dominio de Integridad?

6.3. Estudiar si los siguientes anillos son, o no, Dominios de Integridad:

$$\mathbb{Z}_8$$
, $\mathbb{Z}[\sqrt{2}]$, \mathbb{Z}_3 , $\mathbb{Z}_6[X]$, $\mathbb{Z}[i]$, $\mathbb{Z}_5[X]$.

6.4. En un anillo R un elemento a es idempotente si $a^2 = a$. Demuestra que en un dominio de integridad los únicos idempotentes son 0 y 1. Dar un ejemplo de un anillo que tenga otros idempotentes.

6.5. ¿Es 3-2i un divisor de 8-i en el anillo $\mathbb{Z}[i]$? ¿Cuáles son los divisores de 5 en $\mathbb{Z}[i]$?

6.6. Argumentar la veracidad o falsedad de las siguientes proposiciones referidas a elementos de un Dominio de Integridad

- 1. $a \mid b \land a \nmid c \Rightarrow a \nmid b + c$.
- 2. $a \nmid b \land a \nmid c \Rightarrow a \nmid b + c$.

6.7. Denotemos por $\mathbb{Q}(x)$ el cuerpo de fracciones de $\mathbb{Z}[X]$. Describir los elementos de $\mathbb{Q}(x)$ y sus operaciones. Probar que $\mathbb{Q}(x)$ es también el cuerpo de fracciones de $\mathbb{Q}[x]$

6.8. Dado el conjunto $A=\{\frac{m}{2^k}\mid m\in\mathbb{Z}, k\geq 0\}$, probar que A es un subanillo de \mathbb{Q} que no contiene a \mathbb{Z} y que el cuerpo de fracciones de A es \mathbb{Q} .

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS (

- **7.1.** En el anillo $\mathbb{Z}[i]$, calcular cociente y resto de dividir 1 + 15i entre 3 + 5i.
- **7.2.** En el anillo $\mathbb{Z}[\sqrt{-2}]$, calcular

$$mcd(2-3\sqrt{-2},1+\sqrt{-2}), mcm(2-3\sqrt{-2},1+\sqrt{-2}).$$

- **7.3.** En $\mathbb{Z}[\sqrt{3}]$, calcular $mcd(3 + \sqrt{3}, 2)$ y $mcm(3 + \sqrt{3}, 2)$.
- **7.4.** Determinar, si existe, un polinomio $p(X) \in \mathbb{Z}_3[X]$ tal que

$$(2X^2 + X + 2)p(X) = 2X^7 + X^6 + 2X^4 + 2.$$

- **7.5.** Demostrar las reglas del 2,3,5 y 11 para la división.
- **7.6.** Demuestra que si $3|a^2 + b^2$, entonces $3|a \vee 3|b$.
- **7.7.** Demuestra que para todo $n \in \mathbb{N}$:

 - a) $3^{2n} 2^n$ es divisible por 7, b) $3^{2n+1} + 2^{n+2}$ es divisible por 7,

 - c) $3^{2n+2} + 2^{6n+1}$ es divisible por 11. d) $3 \cdot 5^{2n+1} + 2^{3n+1}$ es divisible por 17.
- **7.8.** Resolver en \mathbb{Z} las ecuaciones

$$60x + 36y = 12$$
, $35x + 6y = 8$, $12x + 18y = 11$.

7.9. Calcular el máximo común divisor y el mínimo común múltiplo, en el anillo $\mathbb{R}[X]$, de los polinomios $X^3 - 2X^2 - 5X + 6$ y $X^3 - 3X^2 - X + 3$. Resolver la siguiente ecuación en el anillo $\mathbb{R}[x]$,

$$(X^3 - 2X^2 - 5X + 6)p(X) + (X^3 - 3X^2 - X + 3)g(X) = X^3 - 6X^2 + 11X - 6.$$

7.10. Calcular el máximo común divisor y el mínimo común múltiplo, en el anillo $\mathbb{Z}_3[X]$, de los polinomios $X^4 + X^3 - X - 1$ y $X^5 + X^4 - X - 1$. Encontrar todos los polinomios p(X) y g(X) en $\mathbb{Z}_3[X]$, con grado de g(X) igual a 7, tales que

$$(X^4 + X^3 - X - 1)p(X) + (X^5 + X^4 - X - 1)g(X) = X^4 + X^2 + 1.$$

7.11. Resolver la siguiente ecuación en el anillo $\mathbb{Z}[i]$, se verifique la ecuación

$$(-2+3i)x + (1+i)y = 1+11i.$$

7.12. Resolver la siguiente ecuación en el anillo $\mathbb{Z}[\sqrt{2}]$:

$$(4+\sqrt{2})x+(6+4\sqrt{2})y=\sqrt{2}.$$

7.13. En el anillo $\mathbb{Z}[\sqrt{3}]$, resolver la congruencia

$$(1+\sqrt{3})x \equiv 9-4\sqrt{3} \bmod(2\sqrt{3})$$

7.14. Determinar todos los polinomios $f(X) \in \mathbb{Z}_5[X]$ tales que

$$(X^4 + 3X^3 + 2X^2 + 3X + 1)f(X) \equiv X^4 - 2X^3 - X + 2 \mod(X^3 + 3X^2 + 4X + 2).$$

7.15. Discutir y resolver los sistemas de congruencias:

$$\begin{cases} 5x \equiv 1 \pmod{14} \\ 11x \equiv 10 \pmod{16} \end{cases}$$
$$\begin{cases} 5x \equiv 1 \pmod{14} \\ 11x \equiv 13 \pmod{16} \end{cases}$$

7.16. Calcular la menor solución positiva del sistema de congruencias

$$\begin{cases} 3x \equiv 1 \pmod{4} \\ 2x \equiv 2 \pmod{5} \\ x \equiv -1 \pmod{3} \end{cases}$$

- **7.17.** Una banda de 13 piratas se reparten N monedas de oro, pero le sobran 8. Dos mueren, las vuelven a repartir y sobran 3. Luego 3 se ahogan y sobran 5. ¿Cuál es la mínima cantidad posible N de monedas?
- **7.18.** En el anillo $\mathbb{Z}[i]$, resolver el siguiente sistema de congruencias

$$\begin{cases} x \equiv i \mod(3) \\ x \equiv 1+i \mod(3+2i) \\ x \equiv 3+2i \mod(4+i) \end{cases}$$

7.19. Determinar los polinomios $f(X) \in \mathbb{Q}[X]$ de grado menor o igual que tres que satisfacen el sistema de congruencias

$$f(X) \equiv X-1 \mod(X^2+1)$$

 $f(X) \equiv X+1 \mod(X^2+X+1)$

- **7.20.** Probar el Teorema de Ruffini: $Sif(X) \in A[X]$, para cualquier $a \in A$, f(a) es igual al resto de dividir f(X) entre (X a).
- **7.21.** Encontrar un polinomio $f(X) \in \mathbb{Q}[X]$ de grado 3 tal que: f(0) = 6, f(1) = 12 y $f(X) \equiv (3X+3) \mod(X^2+X+1)$.
- **7.22.** Determinar todos los polinomios $f(X) \in \mathbb{Z}_2[X]$ de grado menor o igual que 4, tales que: 1) el resto de dividir f(X) entre $X^2 + 1$ es X, 2) el resto de dividir Xf(X) entre $X^2 + X + 1$ es X + 1, Y + 3 Y + 4 Y + 4 es X + 1, Y + 4 Y + 5
- **7.23.** Calcular el resto de dividir 279³²³ entre 17.
- **7.24.** Calcular las dos últimas cifras de $3^{3^{100}}$.
- **7.25.** Resolver, si es posible, la congruencia $43^{51} x \equiv 2 \pmod{36}$.
- **7.26.** Estudiar si $[5]^{10077}$ es una unidad de \mathbb{Z}_{38808} . Calcular su inverso en caso de que lo tenga.

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 8

- **8.1.** En el anillo $\mathbb{Z}[i]$, factorizar -300 y 66+12i como producto de una unidad por irreducibles no asociados entre sí.
- **8.2.** Sea K un cuerpo. Dado un polinomio $f \in K[X]$ cuyo grado es 2 o 3, demostrar que f es irreducible si, y sólo si, f tiene una raíz en K.
- **8.3.** Determinar los elementos de los anillos cociente $\frac{\mathbb{Z}_2[x]}{\langle x^2+1\rangle}$ y $\frac{\mathbb{Z}_2[x]}{\langle x^2+x+1\rangle}$ y las tablas de suma y producto.
- **8.4.** Sea I el ideal de $\mathbb{Z}_3[x]$ generado por $x^2 + 2x + 2$. Demostrar que el anillo cociente $\mathbb{Z}_3[x]/I$ es un cuerpo y hallar el inverso de cada elemento no nulo.
- **8.5.** Calcular las unidades de los anillos cociente $\frac{\mathbb{Z}_5[x]}{\langle x^2+x+1\rangle}$, $\frac{\mathbb{Z}_5[x]}{\langle x^2+1\rangle}$ y $\frac{\mathbb{Z}_3[x]}{\langle x^2+2\rangle}$.
- **8.6.** Calcular el inverso de la clase del polinomio 2x + 1 en el anillo cociente $\frac{\mathbb{Q}[x]}{\langle x^3 + 2x^2 + 4x 2 \rangle}$
- **8.7.** Construir cuerpos con 4, 8 y 9 elementos.
- **8.8.** Determinar los elementos de los anillos cociente $\frac{\mathbb{Z}[i]}{\langle 2 \rangle}$ y $\frac{\mathbb{Z}[i]}{\langle 2+i \rangle}$ y las tablas de suma y producto.

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 9

Estudiar si los siguientes polinomios son reducibles ó irreducibles en $\mathbb{Z}[x]$ y en $\mathbb{Q}[x]$:

1.
$$2x^5 - 6x^3 + 9x^2 - 15$$

2.
$$x^4 + 15x^3 + 7$$

3.
$$2x^4 + 2x^3 + 6x^2 + 4$$

4.
$$2x^4 + 3x^3 + 3x^2 + 3x + 1$$

5.
$$x^4 - 22x^2 + 1$$

6.
$$x^3 + 17x + 36$$

7.
$$x^5 - x^2 + 1$$

8.
$$x^4 + 10x^3 + 5x^2 - 2x - 3$$

9.
$$x^4 + 6x^3 + 4x^2 - 15x + 1$$

10.
$$x^4 - x^2 - 2x - 1$$

11.
$$x^5 + 5x^4 + 7x^3 + x^2 - 3x - 11$$

12.
$$3x^4 + 3x^3 + 9x^2 + 6$$

13.
$$2x^5 - 2x^2 - 4x - 2$$

14.
$$x^6 - 2x^5 - x^4 - 2x^3 - 2x^2 - 2x - 1$$