Overview of the DE analysis

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

Review the dataset/question

Overview of the DE analysis

DESeq2 workflow: Model

DESeq2 workflow: Design formula

sample [‡]	strain [‡]	date [‡]	cage [‡]	treatment [‡]	replicate [‡]	sex [‡]
B1	BALB/cJ	20180515	1	yes	1	М
B2	C57BL/6J	20180515	2	yes	1	М
В3	BALB/cJ	20180515	3	no	1	М
B4	C57BL/6J	20180515	1	no	1	F
B5	BALB/cJ	20180515	2	yes	2	F
В6	C57BL/6J	20180515	3	yes	2	М
B7	BALB/cJ	20180515	1	no	2	М
B8	C57BL/6J	20180515	2	no	2	М
В9	BALB/cJ	20180515	3	yes	3	F
B10	C57BL/6J	20180307	1	yes	3	F
B11	BALB/cJ	20180307	2	no	3	М
B12	C57BL/6J	20180307	3	no	3	М

```
# Design formula
~ strain + sex + treatment
```


DESeq2 workflow: Design formula

sample [‡]	strain [‡]	date [‡]	cage [‡]	treatment [‡]	replicate [‡]	sex [‡]
B1	BALB/cJ	20180515	1	yes	1	М
B2	C57BL/6J	20180515	2	yes	1	М
В3	BALB/cJ	20180515	3	no	1	М
B4	C57BL/6J	20180515	1	no	1	F
B5	BALB/cJ	20180515	2	yes	2	F
В6	C57BL/6J	20180515	3	yes	2	М
B7	BALB/cJ	20180515	1	no	2	М
B8	C57BL/6J	20180515	2	no	2	М
В9	BALB/cJ	20180515	3	yes	3	F
B10	C57BL/6J	20180307	1	yes	3	F
B11	BALB/cJ	20180307	2	no	3	М
B12	C57BL/6J	20180307	3	no	3	М

```
# Design formula
~ strain + sex + treatment + sex:treatment
```

DESeq2 workflow: Running

```
# Run analysis
dds_wt <- DESeq(dds_wt)</pre>
```

using pre-existing size factors estimating dispersions gene-wise dispersion estimates mean-dispersion relationship final dispersion estimates fitting model and testing

Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

DESeq2 model

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

DESeq2 model

Expression level for Gene A

$$Log2 \frac{treatment mean}{control mean} \approx 0$$

DESeq2 model - mean-variance relationship

```
# Syntax for apply()
apply(data, rows/columns, function_to_apply)

# Calculating mean for each gene (each row)
mean_counts <- apply(wt_rawcounts[, 1:3], 1, mean)

# Calculating variance for each gene (each row)
variance_counts <- apply(wt_rawcounts[, 1:3], 1, var)</pre>
```

Plotting relationship between mean and variance:

```
# Creating data frame with mean and variance for every gene
df <- data.frame(mean_counts, variance_counts)</pre>
ggplot(df) +
        geom_point(aes(x=mean_counts, y=variance_counts)) +
        scale_y_log10() +
        scale_x_log10() +
        xlab("Mean counts per gene") +
        ylab("Variance per gene")
```


Var: variance

 μ : mean

 α : dispersion

Dispersion formula: $Var = \mu + \alpha * \mu^2$

Relationship between mean, variance and dispersion:

 $\uparrow variance \Rightarrow \uparrow dispersion$

 $\uparrow mean \Rightarrow \downarrow dispersion$

```
# Plot dispersion estimates
plotDispEsts(dds_wt)
```


Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

DESeq2 model - contrasts

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

DESEq2 workflow

DESeq2 workflow

```
# Run analysis
dds_wt <- DESeq(dds_wt)</pre>
```

```
using pre-existing size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
```

DESeq2 Negative Binomial Model

DESeq2 Negative Binomial Model

normalized counts for gene i, sample j

log2 fold change between conditions

DESeq2 contrasts

```
results(wt_dds, alpha = 0.05)
```

```
log2 fold change (MLE): condition normal vs fibrosis
Wald test p-value: condition normal vs fibrosis
DataFrame with 47729 rows and 6 columns
                                                                      lfcSE
                                          log2FoldChange
                             baseMean
                            <numeric>
                                               <numeric>
                                                                  <numeric>
ENSMUSG00000102693
                                                       NA
                                                                         NA
ENSMUSG00000064842
                                                       NA
                                                                         NA
                                        -4.1291703663434 0.815892075046039
ENSMUSG00000051951
                    19.5084656230804
ENSMUSG00000102851
                                                       NA
                                                                         NA
ENSMUSG00000103377
                                                       NA
                                                                          NA
```


DESeq2 contrasts

The syntax is:

DESeq2 contrasts

wt_res

```
log2 fold change (MLE): condition fibrosis vs normal Wald test p-value: condition fibrosis vs normal DataFrame with 47729 rows and 6 columns
```

	baseMean	log2FoldChange	lfcSE
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSMUSG00000102693	0	NA	NA
ENSMUSG00000064842	0	NA	NA
ENSMUSG00000051951	19.5084656230804	4.1291703663434	0.815892075046039
ENSMUSG00000102851	0	NA	NA
ENSMUSG00000103377	0	NA	NA

DESeq2 LFC shrinkage

plotMA(wt_res, ylim=c(-8,8))

LFC shrinkage

LFC shrinkage

Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

DESeq2 results

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

DESeq2 results table

```
mcols(wt_res)
DataFrame with 6 rows and 2 columns
                                                          description
          type
   <character>
                                                          <character>
                          mean of normalized counts for all samples
1 intermediate
       results log2 fold change (MAP): condition fibrosis vs normal
3
                       standard error: condition fibrosis vs normal
       results
                       Wald statistic: condition fibrosis vs normal
       results
                    Wald test p-value: condition fibrosis vs normal
       results
       results
                                                BH adjusted p-values
```

head(wt_res, n=10)

```
log2 fold change (MAP): condition fibrosis vs normal
Wald test p-value: condition fibrosis vs normal
data frame with 6 rows and 6 columns
                                     log2FoldChange
                           baseMean
                                                                  lfcSE
                                                                                     stat
                          <numeric>
                                           <numeric>
                                                              <numeric>
                                                                               <numeric>
ENSMUSG00000102693
                                                                                       NA
                                  0
ENSMUSG00000064842
ENSMUSG00000051951 19.5084656230804 3.55089043143673 0.648400500074659 4.66871842838828
ENSMUSG00000102851
                                                   NA
                                                                     NA
                                                                                       NA
                                  0
ENSMUSG00000103377
                                                   NA
                                                                     NA
                                                                                       NA
ENSMUSG00000104017
                                                   NA
                                                                     NA
                                                                                       NA
                                  0
                                 pvalue
                                                         padj
                              <numeric>
                                                    <numeric>
ENSMUSG00000102693
                                      NA
                                                           NA
ENSMUSG00000064842
                                      NA
                                                           NA
ENSMUSG00000051951 3.03084428526558e-06 1.93776447202312e-05
ENSMUSG00000102851
                                      NA
ENSMUSG00000103377
                                      NA
                                                           NA
ENSMUSG00000104017
                                      NA
                                                           NA
```


Significant DE genes - summary

summary(wt_res)

```
out of 29866 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up) : 5413, 18\%
LFC < 0 (down) : 5235, 18%
outliers [1] : 47, 0.16%
low counts [2] : 8412, 28%
(mean count < 2)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

Significant DE genes - fold-change threshold

Significant DE genes - summary

summary(wt_res)

```
out of 29866 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up) : 3376, 11%
LFC < 0 (down) : 3071, 10%
outliers [1] : 47, 0.16%
low counts [2] : 7851, 26%
(mean count < 1)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

Results - annotate

```
library(annotables)
```

grcm38

```
# A tibble: 53,728 x 9
                      entrez symbol chr
                                              start
                                                           end strand biotype
                                                                                     description
   ensgene
   <chr>
                      <int> <chr> <chr>
                                                               <int> <chr>
                                              <int>
                                                         <int>
                                                                                     <chr>
 1 ENSMUSG00000000001 14679 Gnai3
                                          108107280 108146146
                                                                   -1 protein_coding quanine nucleotide binding protein (G p...
 2 ENSMUSG00000000000 54192 Pbsn
                                                                   -1 protein_coding probasin [Source:MGI Symbol;Acc:MGI:186...
                                           77837901
                                                    77853623
 3 ENSMUSG00000000028
                       12544 Cdc45
                                                                   -1 protein_coding cell division cycle 45 [Source:MGI Symb...
                                           18780447
                                                     18811987
 4 ENSMUSG00000000031
                          NA H19
                                                                                     H19, imprinted maternally expressed tra...
                                          142575529 142578143
                                                                   -1 lincRNA
 5 ENSMUSG00000000037 107815 Scml2
                                          161117193 161258213
                                                                    1 protein_coding sex comb on midleg-like 2 (Drosophila) ...
 6 ENSMUSG00000000049
                       11818 Apoh
                                                                    1 protein_coding apolipoprotein H [Source:MGI Symbol;Acc...
                                          108343354 108414396
  ENSMUSG000000000056
                      67608 Narf
                                          121237253 121255856
                                                                    1 protein_coding nuclear prelamin A recognition factor [...
 8 ENSMUSG00000000058
                       12390 Cav2
                                                                    1 protein_coding caveolin 2 [Source:MGI Symbol;Acc:MGI:1...
                                           17281185 17289115
9 ENSMUSG00000000078
                                            5861482
                                                      5870394
                                                                    1 protein_coding Kruppel-like factor 6 [Source:MGI Symbo...
                       23849 Klf6
                       29871 Scmh1 4
                                                                    1 protein_coding sex comb on midleg homolog 1 [Source:MG...
10 ENSMUSG00000000085
                                          120405281 120530186
# ... with 53,718 more rows
```


Results - extract

ensgene [‡]	baseMean [‡]	log2FoldChange [‡]	IfcSE [‡]	stat [‡]	pvalue [‡]	padj [‡]	symbol	description
ENSMUSG00000053113	1318.1717	4.875042	0.16021506	28.35016	8.330958e-177	1.830145e-172	Socs3	suppressor of cytokine signaling 3 [Source:M
ENSMUSG00000005087	2943.7403	6.121134	0.20721978	27.89891	2.750356e-171	3.020991e-167	Cd44	CD44 antigen [Source:MGI Symbol;Acc:MGI:8
ENSMUSG00000036887	3899.5135	3.866162	0.12740248	27.83465	1.652344e-170	1.209957e-166	C1qa	complement component 1, q subcomponent,
ENSMUSG00000026822	8870.1712	6.466148	0.23782361	25.82294	4.901029e-147	2.691645e-143	Lcn2	lipocalin 2 [Source:MGI Symbol;Acc:MGI:96757]
ENSMUSG00000036905	3237.6046	3.835279	0.13773926	25.52164	1.134018e-143	4.982421e-140	C1qb	complement component 1, q subcomponent,
ENSMUSG00000027962	9298.5984	5.781446	0.21949603	24.88019	1.219153e-136	4.463724e-133	Vcam1	vascular cell adhesion molecule 1 [Source:MG
ENSMUSG00000018008	1278.6520	3.202855	0.11631046	24.77939	1.495690e-135	4.693902e-132	Cyth4	cytohesin 4 [Source:MGI Symbol;Acc:MGI:244
ENSMUSG00000051439	4144.4097	3.743987	0.14014630	24.43589	7.109040e-132	1.952142e-128	Cd14	CD14 antigen [Source:MGI Symbol;Acc:MGI:8
ENSMUSG00000019122	1022.6759	6.119309	0.23466958	24.38950	2.210634e-131	5.395911e-128	Ccl9	chemokine (C-C motif) ligand 9 [Source:MGI
ENSMUSG00000049103	1459.2660	4.429691	0.17109476	23.99096	3.455388e-127	7.590796e-124	Ccr2	chemokine (C–C motif) receptor 2 [Source:M
ENSMUSG00000024164	28248.5968	6.095037	0.24563004	23.52525	2.250267e-122	4.493989e-119	C3	complement component 3 [Source:MGI Symb
ENSMUSG00000022037	50990.1309	3.187649	0.12200514	23.51432	2.911008e-122	5.329085e-119	Clu	clusterin [Source:MGI Symbol;Acc:MGI:88423]
ENSMUSG00000024349	951.8453	3.327356	0.13816314	21.75630	6.021862e-105	1.017602e-101	Tmem173	transmembrane protein 173 [Source:MGI Sym

Significant DE genes - arrange

ensgene [‡]	baseMean [‡]	log2FoldChange [‡]	IfcSE [‡]	stat [‡]	pvalue [‡]	padj [‡]	symbol	description
ENSMUSG00000053113	1318.1717	4.875042	0.16021506	28.35016	8.330958e-177	1.830145e-172	Socs3	suppressor of cytokine signaling 3 [Source:M
ENSMUSG00000005087	2943.7403	6.121134	0.20721978	27.89891	2.750356e-171	3.020991e-167	Cd44	CD44 antigen [Source:MGI Symbol;Acc:MGI:8
ENSMUSG00000036887	3899.5135	3.866162	0.12740248	27.83465	1.652344e-170	1.209957e-166	C1qa	complement component 1, q subcomponent,
ENSMUSG00000026822	8870.1712	6.466148	0.23782361	25.82294	4.901029e-147	2.691645e-143	Lcn2	lipocalin 2 [Source:MGI Symbol;Acc:MGI:96757]
ENSMUSG00000036905	3237.6046	3.835279	0.13773926	25.52164	1.134018e-143	4.982421e-140	C1qb	complement component 1, q subcomponent,
ENSMUSG00000027962	9298.5984	5.781446	0.21949603	24.88019	1.219153e-136	4.463724e-133	Vcam1	vascular cell adhesion molecule 1 [Source:MG
ENSMUSG00000018008	1278.6520	3.202855	0.11631046	24.77939	1.495690e-135	4.693902e-132	Cyth4	cytohesin 4 [Source:MGI Symbol;Acc:MGI:244
ENSMUSG00000051439	4144.4097	3.743987	0.14014630	24.43589	7.109040e-132	1.952142e-128	Cd14	CD14 antigen [Source:MGI Symbol;Acc:MGI:8
ENSMUSG00000019122	1022.6759	6.119309	0.23466958	24.38950	2.210634e-131	5.395911e-128	Ccl9	chemokine (C-C motif) ligand 9 [Source:MGI
ENSMUSG00000049103	1459.2660	4.429691	0.17109476	23.99096	3.455388e-127	7.590796e-124	Ccr2	chemokine (C-C motif) receptor 2 [Source:M
ENSMUSG00000024164	28248.5968	6.095037	0.24563004	23.52525	2.250267e-122	4.493989e-119	C3	complement component 3 [Source:MGI Symb
ENSMUSG00000022037	50990.1309	3.187649	0.12200514	23.51432	2.911008e-122	5.329085e-119	Clu	clusterin [Source:MGI Symbol;Acc:MGI:88423]
ENSMUSG00000024349	951.8453	3.327356	0.13816314	21.75630	6.021862e-105	1.017602e-101	Tmem173	transmembrane protein 173 [Source:MGI Sym

Oncogene (2006) 25, 2520-2530
© 2006 Nature Publishing Group All rights reserved 0950-9232/06 \$30.00

www.rature.com/onc

ORIGINAL ARTICLE

Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF- β 1 production

H Ogata^{1,2}, T Chinen¹, T Yoshida^{1,3}, I Kinjyo¹, G Takaesu¹, H Shiraishi¹, M Iida², T Kobayashi¹ and A Yoshimura¹

J Clin Invest. 2010 Nov;120(11):4065-76. doi: 10.1172/JCI42004.

Lipocalin 2 is essential for chronic kidney disease progression in mice and humans.

Viau A¹, El Karoui K, Laouari D, Burtin M, Nguyen C, Mori K, Pillebout E, Berger T, Mak TW, Knebelmann B, Friedlander G, Barasch J, Terzi F.

Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

