Lab -6

PRML AY 2020-21 Trimester - III Linear Regression

[3 Marks]

Name: Akshaykumar Kanani(B19EE008) Question:

1 I had the dataset and do exploratory data analysis

٠.	Edda the dataset and do exploratory data analysis.	[O Marko]
2.	Plot correlation between different variables and analyze whether	there is a
	correlation between any pairs of variables or not.	[3 marks]
3.	Plot the distribution of the dependent variable and check for skewnes	ss (right or
	left skewed) in the distribution.	[3 marks]
4.	Convert this distribution into normal by applying natural log and plo	ot it. (If the
	distribution is normal then skip this).	[3 marks]
5.	Convert categorical data into numbers. (You may choose one hot e	ncoding or
	label encoding for that).	[3 marks]
6.	Split the data into training and testing sets with ratio 0.3.	[2 marks]
7.	Build a model using linear regression equation $\theta = (X^TX)^{-1}X^Ty$. (First ad	d a feature
	X_0 =1 to the original dataset).	[5 marks]
8.	Build a linear regression model using the sklearn library. (No need to	add $X_0 = 1$,
	sklearn will take care of it.)	[3 marks]
9.	Get the parameters of the models you built in step 7 and 8, compare	them, and
	print comparisons in a tabular form. If the parameters do not match, a	analyze the
	reason(s) for this (they should match in the ideal case).	[5 marks]
10	Get predictions from both the models (step 7 and step 8).	[5 marks]
11	. Perform evaluation using the MSE of both models (step 7 and step	8). (Write
	down the MSE equation for the model in step 7 and use the inbuilt M	ISE for the
	model in step 8).	[5 marks]

Ans:

1. We load the data and the basic information is given as:

dependent and independent variables. (for both the models)

12. Plot the actual and the predicted values to check the relationship between the

From describe method:

C→			bmi	children	ahausaa
_		age	DM1	Cnildren	charges
	count	1338.000000	1338.000000	1338.000000	1338.000000
	mean	39.207025	30.663397	1.094918	13270.422265
	std	14.049960	6.098187	1.205493	12110.011237
	min	18.000000	15.960000	0.000000	1121.873900
	25%	27.000000	26.296250	0.000000	4740.287150
	50%	39.000000	30.400000	1.000000	9382.033000
	75%	51.000000	34.693750	2.000000	16639.912515
	max	64.000000	53.130000	5.000000	63770.428010

From info method

2. correlation:

₽		age	bmi	children	charges
	age	1.000000	0.109272	0.042469	0.299008
	bmi	0.109272	1.000000	0.012759	0.198341
	children	0.042469	0.012759	1.000000	0.067998
	charges	0.299008	0.198341	0.067998	1.000000

And graphically:

From above we can clearly say that there is <u>NO</u> correlation between and features and the max correlation we get is 0.3 from charges and age

3. Skewness:

From the distribution graph, we can clearly see that the graph is RIGHT SKEW

4. so to nullify this skewness we have to normalize our data.

After normalisation we get:

5. We did <u>label encoding</u> to change the categorical data into integer data in the code file.

6. And we slit the data using the sklearn library into 70 and 30 %

7. We build the model using linear regression equation $\theta = (X^TX)^{-1}X^Ty$. And we got our theta as:

	All_thetas	feachers	theta
0	theta-0	intersect:x_0=1	7.057936
1	theta-1	age	0.034390
2	theta-2	sex	-0.087236
3	theta-3	bmi	0.011996
4	theta-4	children	0.108142
5	theta-5	smoker	1.551346
6	theta-6	region	-0.047787

8. We use sklearn to build our model and we get:

	All_thetas	feachers	theta	sk_theta
0	theta-0	intersect:x_0=1	7.057936	7.057936
1	theta-1	age	0.034390	0.034390
2	theta-2	sex	-0.087236	-0.087236
3	theta-3	bmi	0.011996	0.011996
4	theta-4	children	0.108142	0.108142
5	theta-5	smoker	1.551346	1.551346
6	theta-6	region	-0.047787	-0.047787

9. From the above table we can clearly see the two columns or THETA and SK_THETA And by comparing we can see that both are **exactly the same.**

10. We got the predicted values for both the model in code file.

11.

For the first model:

The Mean Square Error(MSE) or J(theta) is: 0.19924245957248024

Fro the second model:

The Mean Square Error(MSE) or J(theta) is: 0.1992424595724774

We can clearly see that both mean Square errors are equal and that's what we expect.

12. From first model we get:

And from the second model(sklearn):

We can clearly see that both the plots are exactly the same so both the models are the same.