

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07K 14/52, 16/24, C12N 15/19, 15/06, 5/08, 5/10, 5/20, C12P 21/02, 21/08, G01N 33/577		A1	(11) 国際公開番号 WO96/26217
(21) 国際出願番号 PCT/JP96/00374	(22) 国際出願日 1996年2月20日 (20.02.96)		(43) 国際公開日 1996年8月29日 (29.08.96)
(30) 優先権データ 特願平7/54977 1995年2月20日 (20.02.95) JP 特願平7/207508 1995年7月21日 (21.07.95) JP			島 伸行(SHIMA, Nobuyuki)[JP/JP] 〒329-04 栃木県河内郡南河内町緑4-17-5 Tochigi, (JP) 保田尚孝(YASUDA, Hisataka)[JP/JP] 〒329-04 栃木県河内郡南河内町緑2-3293-46 Tochigi, (JP) 中川信明(NAKAGAWA, Nobuaki)[JP/JP] 〒329-05 栃木県下都賀郡石橋町石橋578-15 西浦ハイツ2-4 Tochigi, (JP) 森永伴法(MORINAGA, Tomonori)[JP/JP] 〒321-02 栃木県下都賀郡壬生町幸町3-11-12 Tochigi, (JP) 上田正次(UEDA, Masatsugu)[JP/JP] 〒350-11 埼玉県川越市今福1672-1 メゾンむさし野719 Saitama, (JP) 東尾侃二(HIGASHIO, Kanji)[JP/JP] 〒350 埼玉県川越市山田1769-10 Saitama, (JP) (74) 代理人 弁理士 藤野清也, 外(FUJINO, Seiya et al.) 〒160 東京都新宿区四谷1丁目2番1号 三浜ビル8階 Tokyo, (JP)
(71) 出願人 (米国を除くすべての指定国について) 雪印乳業株式会社 (SNOW BRAND MILK PRODUCTS CO., LTD.)[JP/JP] 〒065 北海道札幌市東区苗穂町6丁目1番1号 Hokkaido, (JP)	(72) 発明者: および (75) 発明者/出願人 (米国についてのみ) 後藤雅昭(GOTO, Masaaki)[JP/JP] 〒329-05 栃木県下都賀郡石橋町下古山456-1 Tochigi, (JP) 津田英資(TSUDA, Eisuke)[JP/JP] 〒329-05 栃木県下都賀郡石橋町石橋622 マロニエハイツ201 Tochigi, (JP) 望月伸一(MOCHIZUKI, Shin'ichi)[JP/JP] 〒329-04 栃木県河内郡南河内町緑5-22-6 Tochigi, (JP) 矢野和樹(YANO, Kazuki)[JP/JP] 〒329-05 栃木県下都賀郡石橋町石橋578-15 西浦ハイツ3-1 Tochigi, (JP) 小林文枝(KOBAYASHI, Fumie)[JP/JP]	(81) 指定国 AU, CA, CN, FI, HU, JP, KR, MX, NO, NZ, RU, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	添付公開書類 国際調査報告書

(54) Title : NOVEL PROTEIN AND METHODS FOR THE PRODUCTION OF THE SAME

(54) 発明の名称 新規蛋白質及びその製造方法

(57) Abstract

A novel protein having the activity of suppressing the differentiation and/or maturation of osteoclasts and methods of the production of the same. This protein is produced from human fetal pulmonary fibroblasts and has a molecular weight of about 60 KD under reductive conditions or about 120 KD under nonreductive conditions. It can be isolated and purified from the culture medium of the above-mentioned cells. Alternatively, it can be produced by genetic engineering techniques. The invention also provides a cDNA for the genetic engineering production of the protein, an antibody showing an affinity specifically for the protein, and a method for assaying the protein with the use of this antibody.

(57) 要約

破骨細胞の分化及び／又は成熟抑制活性のある蛋白質及びその製造法。

この蛋白質は、ヒト胎児肺線維芽細胞より產生され、還元条件下約60KD、非還元条件下約120KD の分子量をもつ。この蛋白質は該細胞の培養液から単離精製することができる。また、遺伝子工学的に製造することができる。

本発明では、遺伝子工学的に製造するための cDNA、あるいはこの蛋白質と特異的親和性を示す抗体、この抗体を用いる蛋白質の測定方法も含まれる。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AL	アルバニア	DE	ドイツ	L	リヒテンシュタイン	P	ボーランド
AM	アルメニア	DK	デンマーク	LC	セントルシア	PT	ボルトガル
AT	オーストリア	EES	エストニア	LLK	スリランカ	ROU	ルーマニア
AU	オーストラリア	FIR	スペイン	LLR	シリベリア	SDE	ロシア連邦
AZ	アゼルバイジャン	FRB	フランス	LST	レソト	SE	スエーデン
BA	ボスニア・ヘルツェゴビナ	GAB	ガボン	LTV	リトアニア	SG	シンガポール
BBI	バルバドス	GABE	イギリス	MC	ルクセンブルグ	SIK	シングウェニア
BE	ベルギー	GEN	グルジア	MD	ラトヴィア	SKN	スロバキア
BFG	ブルガニア・ファソ	GENR	ギニア	MG	モナコ	SZ	セネガル
BG	ブルガリア	GHE	ギリシャ	MK	モルドバ共和国	TDD	スリランカ
BJR	ベナン	HUE	ハンガリー	ML	モグナスカル	TG	チャド
BY	ブラジル	IUL	アイルランド	MN	マケドニア旧ユーゴスラ	TJ	トーゴ
CAF	ベラルーシ	IST	イスラエル	MR	マケドニア共和国	TM	タジキスタン
CAF	カナダ	ITP	アイスランド	MW	ミャンマー	TR	トルコメニスタン
CGG	中央アフリカ共和国	KEG	イタリア	MX	モーリタニア	TT	トリニダード・トバゴ
CH	コンゴ	KGP	日本	NE	モーリシャス	TA	ウクライナ
CI	スイス	KR	ケニア	NL	モラウイ	UGS	ウガンダ
CM	コート・ジボアール	KRG	キルギスタン	NO	オランダ	UUS	アメリカ合衆国
CM	カ梅ルーン	KR	朝鮮民主主義人民共和国	NZ	ノールウェー	VN	ウズベキスタン
CNU	中国	KR	大韓民国		ニュージーランド		ヴィエトナム
CZ	キューバ	KZ	カザフスタン				
	チェコ共和国						

明細書

新規蛋白質及びその製造方法

技術分野

本発明は、破骨細胞の分化及び／又は成熟を抑制する活性を示す新規な蛋白質、即ち破骨細胞形成抑制因子 (Osteoclastogenesis Inhibitory Factor; O C I F) 及びその製造方法に関する。

従来の技術

人の骨は絶えず吸収と再形成を繰り返しているが、この過程で中心的な働きをしている細胞が、骨形成を担当する骨芽細胞と骨吸収を担当する破骨細胞である。これらの細胞が担当している、骨代謝の異常により発生する疾患の代表として、骨粗鬆症が挙げられる。この疾患は、骨芽細胞による骨形成を、破骨細胞による骨吸収が上回ることにより発生する疾患である。この疾患の発生メカニズムについては未だ完全には解明されていないが、この疾患は骨の疼痛を発生し、骨の脆弱化による骨折の原因となる疾患である。高齢人口の増加に伴い、骨折による寝たきり老人の発生の原因となるこの疾患は社会問題にもなっており、その治療薬の開発が急務となっている。このような骨代謝異常による骨量減少症は骨吸収の抑制、骨形成の促進、或いはこれらのバランスの改善により治療することが期待される。

骨形成は、骨形成を担当する細胞の増殖、分化、活性化を促進すること、或いは骨吸収を担当する細胞の増殖、分化、活性化を抑制することにより促進することが期待される。近年、このような活性を有する生理活性蛋白質（サイトカイン）への関心が高まり、精力的な研究が行われている。骨芽細胞の増殖或いは分化を促進するサイトカインとして、線維芽細胞増殖因子ファミリー (fibroblast growth factor ; FGF : Rodan S.B. et al., Endocrinology vol. 121, p1917, 1987)、インシュリン様増殖因子-I (insulin like growth factor-I ; IGF-I : Hock J.M.

et al., Endocrinology vol. 122, p254, 1988)、インシュリン様増殖因子-11 (IGF-II : McCarthy T. et al., Endocrinology vol.124, p301, 1989)、アクチビンA (Activin A ; Centrella M. et al., Mol. Cell. Biol. vol. 11, p250, 1991)、トランスフォーミング増殖因子- β (transforming growth factor- β ; Noda M., The Bone, vol. 2, p29, 1988)、バスキュロトロピン (Vasculotropin ; Varonique M. et al., Biochem. Biophys. Res. Commun. vol.199, p380, 1994) 、及び異所骨形成因子ファミリー(bone morphogenetic protein ; BMP : BMP-2 ; Yamaguchi, A et al., J. Cell Biol. vol. 113, p682, 1991, OP-1 ; Sampath T. K. et al., J. Biol. Chem. vol. 267, p20532, 1992、Knutsen R. et al., Biochem. Biophys. Res. Commun. vol.194, p1352, 1993) 等のサイトカインが報告されている。

一方、破骨細胞形成、即ち破骨細胞の分化及び／又は成熟を抑制するサイトカインとしては、トランスフォーミング増殖因子- β (transforming growth factor- β ; Chenu C. et al., Proc. Natl. Acad. Sci. USA, vol.85, p5683, 1988) やインターロイキン-4 (interleukin-4; Kasano K. et al., Bone-Miner., vol. 21, p179, 1993) 等が報告されている。又、破骨細胞による骨吸収を抑制するサイトカインとしては、カルシトニン(calcitonin ; Bone-Miner., vol.17, p347, 1992) 、マクロファージコロニー刺激因子 (macrophage colony-stimulating factor; Hattersley G. et al. J.Cell. Physiol. vol.137, p199, 1988) 、インターロイキン-4(Watanabe, K. et al., Biochem. Biophys. Res.Commun.vol. 172, p1035, 1990)、及びインターフェロン- γ (interferon- γ ; Gowen M. et al., J. Bone Miner. Res., vol. 1, p469, 1986) 等が報告されている。

これらのサイトカインは、その骨形成の促進や骨吸収の抑制作用による骨量減少症の改善剤となることが期待され、インシュリン様増殖因子-1 や異所骨形成因子ファミリーのサイトカイン等、上記のサイトカインの一部については骨代謝改善剤として臨床試験が実施されている。又、カルシトニンは、骨粗鬆症の治療薬、疼痛軽減薬として既に市販されている。

現在、骨に関わる疾患の治療及び治療期間の短縮を図る医薬品として、臨床で

は活性型ビタミンD₃、カルシトニン及びその誘導体、エストラジオール等のホルモン製剤、イブリフラボン、ビタミンK₂（メナテトレノン）又はカルシウム製剤等が使用されている。しかし、これらの薬剤を用いた治療法はその効果並びに治療結果において必ずしも満足できるものではなく、これらに代わる新しい治療薬の開発が望まれていた。前述したように、骨代謝は骨形成と骨吸収のバランスによって調節されており、破骨細胞の分化・成熟を抑制するサイトカインは、骨粗鬆症等の骨量減少症の治療薬となることが期待される。

発明の開示

本発明はこのような観点からなされたものであって、新規な破骨細胞形成抑制因子（OCIF）及びその効率的な製造方法を提供することを課題とする。

本発明者らは、このような現状に鑑み銳意探索の結果、ヒト胎児肺線維芽細胞IMR-90 (ATCC寄託-受託番号CCL186)の培養液に破骨細胞形成抑制活性、即ち破骨細胞の分化・成熟を抑制する活性を有する蛋白質OCIFを見出すべく至った。

又、細胞培養の担体としてアルミニナセラミック片を使用すると本発明の破骨細胞形成抑制因子OCIFを培地中に高濃度に蓄積せしめ、効率よく精製できることを見出した。

さらに、本発明者らは、前記培養液をイオン交換カラム、アフィニティーカラム及び逆相カラムで順次処理して吸着及び溶出をくり返すことによって前記蛋白質OCIFを効率よく精製する方法を確立した。

次に本発明者らは、得られた天然型OCIF蛋白質のアミノ酸配列の情報に基づき、この蛋白質をコードするcDNAのクローニングに成功した。さらに本発明者らは、このcDNAを用いて遺伝子工学的手法により破骨細胞の分化及び、又は成熟抑制活性のある蛋白質を生産する方法を確立するに至った。

本発明は、ヒト胎児肺線維芽細胞に由来し、還元条件下SDS-PAGEにおける分子量が約60kD、非還元条件下SDS-PAGEにおける分子量が約60kD及び約120kDであり、陽イオン交換体及びヘパリンカラムに親和性を有し、70°C、

10分間又は56°C、30分間の加熱処理により破骨細胞の分化・成熟を抑制する活性が低下し、90°C、10分間の加熱処理により破骨細胞の分化・成熟抑制活性が失われることを特徴とする蛋白質に関する。本発明の蛋白質O C I Fのアミノ酸配列は、既知の破骨細胞形成抑制因子とは明確に相違する。

また、本発明は、ヒト線維芽細胞を培養し、培養液をヘパリンカラム処理し、吸着画分を溶出し、この画分を陽イオン交換カラムにかけ吸着・溶出し、さらにアフィニティーカラム、逆相カラムによって精製して前記蛋白質を採取する、蛋白質O C I Fの製造方法に関する。本発明におけるカラム処理は、単に培養液等をヘパリンセファロースカラム等に流下させるものばかりではなく、バッチ法で培養液をヘパリンセファロース等と混合し、カラム処理した場合と同等の効果を奏するものも包含する。本発明で使用されるアフィニティーカラムは、ヘパリンカラム及びブルーカラムが挙げられる。ブルーカラムは、特に好ましくはシバクロンブルーカラムが挙げられる。このシバクロンブルーカラムの充填剤としては、親水性合成高分子を担体とし色素シバクロンブルーF 3 G Aを結合させたものが例示され、このカラムは通常ブルーカラムと呼ばれる。

さらに、本発明は、アルミナセラミック片を担体として使用して細胞培養を行なって効率よく前記蛋白質を製造する方法に関する。

本発明の蛋白質O C I Fは、ヒト線維芽細胞の培養液から効率良く且つ高収率で単離精製することができる。この原料からの本発明蛋白質O C I Fの単離、精製は、生物試料からの蛋白性物質の精製に汎用される通常の方法を用いて、目的とする蛋白質O C I Fの物理的、化学的性質を利用した各種の精製操作に従い実施することができる。この濃縮手段として限外濾過、凍結乾燥、及び塩析等の通常の生化学的処理手段が挙げられる。又、精製手段としては、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、ゲル濾過クロマトグラフィー、疎水クロマトグラフィー、逆相クロマトグラフィー、調製用電気泳動等を用いた通常の蛋白性物質の精製に利用される各種の手法を組み合わせて用いることができる。特に好ましくは、原料として用いるヒト線維芽細胞としてヒト胎児肺線維芽細胞IMR-90(ATCC-CCL 186)を用いることが望ましい。そして原料とな

るヒト胎児肺線維芽細胞IMR-90の培養は、ヒト胎児肺線維芽細胞IMR-90をアルミナセラミック片に付着させ、5%ウシ新生児血清を添加したD MEM培地を培養液として用い、ローラーボトル中で一週間から10日程度静置培養することにより得たものを使用するとよい。又、精製処理を実施する際に界面活性剤として0.1%CHAPS(3-[*(3-cholamidopropyl)-dimethylammonio*]-1-propanesulfonate)を添加して精製を行うのが望ましい。

本発明の蛋白質OCIFは、先ず培養液をヘパリンカラム(ヘパリンーセファロースCL-6B、ファルマシア社)にかけ、2M NaClを含む10mM Tris-HCl緩衝液、pH7.5で溶出させ、ヘパリン吸着性のOCIF画分を得、この画分をQ-陰イオン交換カラム(HiLoad-Q/FF、ファルマシア社)にかけ、その非吸着画分を集めることにより、ヘパリン吸着性で塩基性のOCIF画分として得ることができる。得られたOCIF活性画分はS・陽イオン交換カラム(HiLoad-S/HP、ファルマシア社)、ヘパリンカラム(ヘパリン-5PW、トーソー社)、シバクロンブルーカラム(ブルー-5PW、トーソー社)、逆相カラム(BU-300 C4、パーキンエルマー社)にかけることにより単離・精製することができ、この物質は前述した性質によって特定される。

さらに、本発明は、このようにして得られた天然型OCIF蛋白質のアミノ酸配列に基づいてこの蛋白質をコードするcDNAをクローニングし、このcDNAを用いて遺伝子工学的手法で破骨細胞の分化及び／又は成熟抑制活性のある蛋白質OCIFを得る方法に関する。

即ち、本発明の方法に従って精製したOCIF蛋白質をエンドプロテアーゼ(例えばリシルエンドペプチダーゼ)で処理後、生ずるペプチドのアミノ酸配列を決定し、得られた内部アミノ酸配列をコードし得るオリゴヌクレオチドの混合物を作製する。

次に、作製したオリゴヌクレオチド混合物をプライマーとし、PCR法(好ましくはRT-PCR法)を利用してOCIFcDNA断片を取得する。このOCIFcDNA断片をプローブとして、cDNAライブラリーよりOCIFの全長cDNAをクローニングする。得られたOCIFcDNAを発現ベクターに挿入してOCIF発現プラス

ミドを作製し、これを各種の細胞又は菌株に導入して発現させることにより、組み換え型O C I Fを製造することができる。

本発明はまた、上述の活性を有する本発明O C I F蛋白質の類縁体（バリエント）である新規蛋白質 OCIF2, OCIF3, OCIF4, OCIF5に関する。

これらの類縁体は、IMR-90細胞のポリ(A) + RNAを用いて作成したcDNAライブラリーをOCIFcDNA断片をプローブとしてハイブリダイズすることによって得られる。これらのO C I F類縁体のcDNAを発現ベクターに挿入し、そのO C I F類縁体発現ベクターを通常の宿主で発現し、常法で精製することにより、目的とする類縁体蛋白質を得ることができる。

又、本発明はO C I F変異体に関する。

これらの変異体はO C I Fの二量体形成に関与する可能性のあるCys残基をSer残基に置換したもの、又は天然型O C I Fに欠失変異を導入したものである。PCR法或いは制限酵素による切断により、OCIFcDNAに置換或いは欠失変異を導入する。このcDNAを適当な発現プロモーターを有したベクターに挿入し、哺乳動物細胞等の真核細胞にトランスフェクトし、この細胞を培養してその培養液から常法により精製することにより、目的とするO C I F変異体が得られる。

又、本発明は抗O C I Fポリクローナル抗体、及びそれを用いたO C I Fの測定方法に関する。

抗O C I Fポリクローナル抗体は、O C I Fを免疫原として常法により作製される。この時用いる抗原（免疫原）としては、IMR-90培養液より得られる天然型O C I F、及びOCIFcDNAを用いて微生物や真核細胞を宿主として生産された遺伝子組み換え型O C I F、あるいはO C I Fのアミノ酸配列に基づいて設計した合成ペプチドや、O C I Fの加水分解部分ペプチドを用いることができる。これらの抗原を用いて、また必要ならば免疫アジュバントを併用して、適当な哺乳動物を免疫し、その血清から常法により精製することにより、抗O C I Fポリクローナル抗体を得ることができる。得られた抗O C I Fポリクローナル抗体をアイソトープや酵素で標識することにより、ラジオイムノアッセイ(RIA) やエンザイムイムノアッセイ(EIA) の測定系に使用することができる。この測定系を用い

ることにより、血液や腹水などの生体試料や細胞培養液などのO C I F濃度を容易に測定することができる。

又、本発明は抗O C I Fモノクローナル抗体、及びそれを用いたO C I Fの測定方法に関する。

抗O C I Fモノクローナル抗体は、O C I Fを免疫原として、常法により作成される。抗原としては、IMR-90培養液より得られる天然型O C I F、及びO C I FcDNAを用いて微生物や真核細胞を宿主として生産された遺伝子組み換え型O C I F、或いはO C I Fのアミノ酸配列に基づいて設計した合成ペプチドや、O C I Fの加水分解部分ペプチドてもよい。これらの抗原を用いて哺乳動物を免疫するか、或いはインビトロ法により免疫した細胞を、哺乳動物の骨髄腫細胞（ミエローマ）などと融合させハイブリドーマを作製し、このハイブリドーマよりO C I Fを認識する抗体を產生するクローンを選択し、このクローンを培養することにより目的とする抗体が得られる。ハイブリドーマの作製にあたっては、哺乳動物を使用する場合、マウスやラットなどの小動物を使用した例が一般的である。免疫は、O C I Fを生理食塩水などにより適当な濃度に希釈し、この溶液を静脈内や腹腔内に投与し、これに必要に応じて免疫アジュバントを併用投与し、動物に2-20日毎に2-5回投与する。このようにして免疫された動物を、解剖し、脾臓を摘出し脾細胞を免疫細胞として使用する。

免疫細胞と細胞融合させるマウス由来のミエローマとしては、例えばP3/x63- Δ g8, p3-U1, NS-1, MPC-11, SP-2/0, P0, P3x63Ag8. 653, S194などが例示できる。また、ラット由来の細胞としてはR-210などの細胞株を例示できる。ヒト型の抗体を生産する場合にはヒトBリンパ球をインビトロ法により免疫し、ヒトミエローマ細胞やEBウイルスにより形質転換した細胞株を親株として使用することによりヒト型の抗体を生産するハイブリドーマを得ることができる。

免疫細胞とミエローマ細胞株の融合は公知の方法、例えばKoehlerとMilsteinらの方法 (Koehler, G. et al. Nature vol. 256, 495-497, 1975)、或いは電気パルス法などが挙げられる。免疫細胞とミエローマ細胞株は、細胞培養に用いられている培地 (F B S 不含) に、通常行われている細胞数の比に混合し、ポリエ

チレングリコールを添加して融合処理を行い、HAT選択培地で培養を行い融合細胞を選択することができる。

抗OCIF抗体生産株を選別するには、ELISA法、プラーク法、オクタロニー法、凝集法など、通常の抗体検出に使用されている方法を用いて選択することができる。このようにして選別されたハイブリドーマは、通常の培養方法により継代培養可能であり、必要に応じて凍結保存できる。ハイブリドーマを常法により培養するか、または哺乳動物の腹腔内に移植することにより、抗体を生産することができる。抗体は塩析、ゲル濾過やアフィニティクロマトグラフィーなどの通常の方法により精製できる。

得られた抗体はOCIFに特異的に反応し、OCIFの測定や精製に使用できる。OCIFの測定に使用する場合は、抗体をアイソトープや酵素によりラベルすることにより、ラジオイムノアッセイ(RIA) やエンザイムイムノアッセイ(EIA) の測定系に使用することができる。特に本発明により得られる抗体は、その抗原認識部位がそれぞれ異なっているので、サンドイッチイムノアッセイに使用することができるという特徴を有する。この測定系を用いることにより、血液や腹水などの生体試料や細胞培養液などのOCIF濃度を容易に測定することができる。

OCIF活性は、久米川正好らの方法(蛋白質・核酸・酵素, Vol.34, p999 (1989))及びTakahashi N. et al. の方法(Endocrinology, Vol.122, p1373 (1988))に従い測定することができる。即ち、生後約17日のマウス骨髄細胞を標的細胞として用い、活性型ビタミンD₃(Calcitriol) 存在下での破骨細胞の形成抑制を、酒石酸耐性酸性ホスファターゼ活性の誘導の抑制で試験することができる。

本発明の蛋白質である破骨細胞形成抑制因子OCIFは、骨粗鬆症等の骨量減少症、リウマチ又は変形性関節症等の骨代謝異常疾患、或いは多発性骨髄腫等の骨代謝異常疾患の治療及び改善を目的とした医薬組成物として、或いはこのような疾患の免疫学的診断を確立するための抗原として有用である。本発明の蛋白質は、製剤化して経口或いは非経口的に投与することができる。即ち、本発明の蛋

白質を含む製剤は、破骨細胞形成抑制因子 O C I F を有効成分として含む医薬組成物としてヒト及び動物に対して安全に投与されるものである。

医薬組成物の形態としては、注射用組成物、点滴用組成物、坐剤、経鼻剤、舌下剤、経皮吸収剤等が挙げられる。注射用組成物の場合は、本発明の破骨細胞形成抑制因子の薬理学的有効量及び製薬学的に許容しうる担体の混合物であり、その中にはアミノ酸、糖類、セルロース誘導体、及びその他の有機／無機化合物等の一般的に注射用組成物に添加される賦形剤／賦活剤を用いることもできる。又、本発明の破骨細胞形成抑制因子 O C I F とこれらの賦形剤／賦活剤を用い注射剤を調製する場合は、必要に応じて pH 調整剤、緩衝剤、安定化剤、可溶化剤等を添加して常法によって各種注射剤とすることができる。

図面の簡単な説明

第 1 図は、HiLoad-Q/FF 非吸着画分粗精製製品（試料 3）を HiLoad-S/HP カラムにかけた時の溶出プロファイルを示す。

第 2 図は、ヘパリン-5PW粗精製製品（試料 5）をブルー-5PWカラムにかけた時の溶出プロファイルを示す。

第 3 図は、ブルー-5PW溶出フラクション 49～50 を逆相カラムにかけた時の溶出プロファイルを示す。

第 4 図は、最終精製品の還元条件下と非還元条件下における SDS-PAGE の結果を示す。

符号の説明

レーン 1、4；分子量マーカー

レーン 2、5；ピーク 6

レーン 3、6；ピーク 7

第 5 図は、還元ピリジルエチル化後、リシリエンドプロテアーゼ処理したピーク 7 を逆相カラムにかけた時の溶出プロファイルを示す。

第 6 図は、天然(n) 及び組み換え型(r) O C I F の、非還元条件下における SDS-PAGE の結果を示す。又、(E) は 293/E B N A 細胞で生産したものを、

(C) は C H O 細胞で生産したものをそれぞれ示す。

符号の説明

レーン 1 ; 分子量マーカー

レーン 2 ; モノマー型 n O C I F

レーン 3 ; ダイマー型 n O C I F

レーン 4 ; モノマー型 r O C I F (E)

レーン 5 ; ダイマー型 r O C I F (E)

レーン 6 ; モノマー型 r O C I F (C)

レーン 7 ; ダイマー型 r O C I F (C)

第 7 図は、天然型 (n) 及び組み換え型 (r) O C I F の、還元条件下における SDS - PAGE の結果を示す。又、(E) は 293/E B N A 細胞で生産したものを、(C) C H O 細胞で生産したものをそれぞれ示す。

符号の説明

レーン 8 ; 分子量マーカー

レーン 9 ; モノマー型 n O C I F

レーン 10 ; ダイマー型 n O C I F

レーン 11 ; モノマー型 r O C I F (E)

レーン 12 ; ダイマー型 r O C I F (E)

レーン 13 ; モノマー型 r O C I F (C)

レーン 14 ; ダイマー型 r O C I F (C)

第 8 図は、N - 結合型糖鎖を除去した天然型 (n) 及び組み換え型 (r) O C I F の、還元条件下における SDS - PAGE の結果を示す。又、(E) は 293/E B N A 細胞で生産したものを、(C) は C H O 細胞で生産したものをそれぞれ示す。

符号の説明

レーン 15 ; 分子量マーカー

レーン 16 ; モノマー型 n O C I F

レーン 17 ; ダイマー型 n O C I F

レーン 18 ; モノマー型 r O C I F (E)

レーン19；ダイマー型rOCIF(E)

レーン20；モノマー型rOCIF(C)

レーン21；ダイマー型rOCIF(C)

第9図は、OCIFとOCIF2の、アミノ酸配列の比較を示す。

第10図は、OCIFとOCIF3の、アミノ酸配列の比較を示す。

第11図は、OCIFとOCIF4の、アミノ酸配列の比較を示す。

第12図は、OCIFとOCIF5の、アミノ酸配列の比較を示す。

第13図は、抗OCIFポリクローナル抗体を用いた時の、OCIFの検量線を示す。

第14図は、抗OCIFモノクローナル抗体を用いた時の、OCIFの検量線を示す。

第15図は、OCIFの骨粗鬆症に対する治療効果を示す。

発明を実施するための最良の形態

以下に実施例を挙げて本発明をさらに詳しく説明する。しかしこれらは単に例示するのみであり、本発明はこれらにより限定されるものではない。

〔実施例1〕

ヒト線維芽細胞IMR-90培養液の調製

ヒト胎児肺線維芽細胞IMR-90(ATCC-CCL186)は、ローラーボトル(490cm²、110×171mm、コーニング社)中で80gのアルミニナセラミック片(アルミニナ99.5%、東芝セラミック社)に付着させ培養した。培養には60個のローラーボトルを使用し、ローラーボトル1個当たり5%子牛血清を添加した10mM HEPES緩衝液添加D MEM培地(ギブコBRL社)500mlを用い、37℃、5%CO₂存在下で7~10日間静置培養した。培養後培養液を回収し、新たな培地を添加することにより1回の培養で301のIMR-90培養液を得た。得られた培養液を試料1とした。

〔実施例2〕

破骨細胞形成抑制活性の測定法

本発明の蛋白性破骨細胞形成抑制因子の活性測定は久米川正好らの方法（蛋白質・核酸・酵素 Vol.34 p999(1989)）及びTakahashi N. et al. の方法(Endocrinology vol.122 p1373 (1988))に従い測定した。即ち、生後約17日のマウスより分離した骨髄細胞を用い、活性型ビタミンD₃ 存在下での破骨細胞形成を酒石酸耐性酸性ホスファターゼ活性の誘導を指標として試験し、その抑制活性を測定することによって行った。即ち、96ウェルマイクロプレートに 2×10^{-8} M 活性型ビタミンD₃ 及び10%牛胎児血清を含むα-MEM培地（ギブコB R L社）で希釈したサンプル 100 μlを入れ、生後約17日のマウスから得た骨髄細胞 3×10^5 個を 100 μl の10%牛胎児血清を含むα-MEM培地に懸濁させて播種し、5%CO₂、37°C、湿度 100%にて一週間培養した。培養3日目と5日目に、培養液 160 μl を廃棄し、 1×10^{-8} M 活性型ビタミンD₃ 及び10%牛胎児血清を含むα-MEM 培地で希釈したサンプル 160 μl を添加した。培養7日後にリン酸塩緩衝生理食塩水で洗浄した後エタノール／アセトン（1：1）溶液で細胞を室温にて1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット（Acid Phosphatase, Leucocyte、カタログNo.387-A、シグマ社）を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をO C I F活性とした。

〔実施例3〕

O C I F の精製

i) ヘパリン・セファロースCL-6Bによる精製

約90lのIMR-90培養液（試料1）を、0.22 μm のフィルター（親水性ミリディスク、2,000cm²、ミリポア社）で濾過した後、3回に分けて 0.3M NaClを含む10mM Tris-HCl 緩衝液（以下、Tris-HClという）、pH7.5 で平衡化させたヘパリン・セファロースCL-6B カラム（5×4.1cm、ゲル容量80ml）にかけた。流速500ml/hrにて、10mM Tris-HCl、pH7.5 で洗浄した後、2M NaCl を含む10mM Tris-HCl、pH7.5で溶出を行い、ヘパリン・セファロースCL-6B 吸着画分900mlを得、得られた画分を試料2とした。

ii) Hi Load-Q/FFによる精製

ヘパリン・セファロース吸着画分（試料2）を 10mM Tris-HCl、pH7.5 に対し

て透析した後、0.1 %になるようにCHAPSを加え4°Cで一晩放置したものを、2回に分けて0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で平衡化した陰イオン交換カラム(HiLoad-Q/FF、2.6 ×10cm、ファルマシア社)にかけ、非吸着画分1000mlを得た。得られた画分を試料3とした。

iii) HiLoad-S/HPによる精製

HiLoad-Q非吸着画分(試料3)を、0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で平衡化した陽イオン交換カラム(HiLoad-S/HP、2.6 ×10cm、ファルマシア社)にかけた。0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で洗浄した後、100分間にNaClを1Mにする直線勾配、流速8ml/分にて溶出を行い、12ml/フラクションにて分取を行った。フラクション1～40を10フラクションづつ4つの画分にまとめ、それぞれ100μlを用いてOCIF活性を測定した。OCIF活性はフラクション11～30に認められた(図1：図中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30～80%抑制される活性を、-は活性が検出されないことをそれぞれ示す)。より比活性の高いフラクション21～30を試料4とした。

iv) アフィニティーカラム(ヘパリン-5PW)による精製

120mlの試料4を240mlの0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で希釈した後、0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で平衡化したアフィニティーカラム(ヘパリン-5PW、0.8 ×7.5 cm、トーソー社)にかけた。0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で洗浄した後、60分間にNaClを2Mにする直線勾配、流速0.5ml/分にて溶出を行い、0.5ml/フラクションにて分取を行った。各フラクション50μlを用いてOCIF活性を測定し、約0.7～1.3M NaClで溶出されるOCIF活性画分10mlを得、試料5とした。

v) アフィニティーカラム(ブルー-5PW)による精製

10mlの試料5を190mlの0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で希釈した後、0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で平衡化したアフィニティーカラム(ブルー-5PW、0.5 ×5.0cm、トーソー社)にかけた。0.1 % CHAPSを含む50mM Tris-HCl、pH7.5で洗浄した後、60分間にNaClを2Mにする直線

勾配、流速0.5ml/分にて溶出を行い、0.5ml/フラクションにて分取を行った。各フラクション25μlを用いてOCIF活性を測定し、約1.0～1.6M NaClで溶出されるOCIF活性フラクション49～70を得た（図2 図中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30～80%抑制される活性を示す）。

vi) 逆相カラムによる精製

得られたフラクション49～50mlに、10μlの25%TFA（トリフルオロ酢酸）を加えた後、0.1%TFAを含む25%アセトニトリルで平衡化した逆相カラム（BU-300、C4、2.1×220mm、パーキンエルマー社）にかけ、60分間でアセトニトリルを55%にする直線勾配、流速0.2ml/分にて溶出を行い、各ピークを分取した（図3）。各ピークフラクションの100μlを用いてOCIF活性を測定し、ピーク6及びピーク7に濃度依存的に活性を検出した。結果を表1に示す。

第1表 逆相カラムから溶出されたOCIF活性

希釈率	1/40	120	1/360	1/1080
ピーク6	++	++	+	-
ピーク7	++	+	-	-

（表中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30～80%抑制される活性を、-は活性が検出されないことを示す。）

〔実施例4〕

OCIFの分子量測定

OCIF活性の認められたピーク6及びピーク7各40μlを用い、還元条件下と非還元条件下でSDS-ポリアクリルアミドゲル電気泳動を行った。即ち、各ピークフラクション20μlづつを2本のチューブに分取し減圧濃縮した後、1mM EDTA、2.5% SDS、及び0.01%プロモフェノールブルーを含む10mM Tris-HCl、pH8 1.5μlで溶解し、それぞれを非還元条件下及び還元条件下(5% 2-メルカプトエタノール存在下)で37℃で一晩放置後、それぞれの1μlをSDS

一ポリアクリルアミドゲル電気泳動に負荷した。電気泳動は10-15%アクリルアミドのグラジエントゲル(ファルマシア社)を使用し、電気泳動装置Phast System(ファルマシア社)を用いて行った。分子量マークとして、ホスホリラーゼ b(94kD)、ウシ血清アルブミン(67kD)、オボアルブミン(43kD)、カルボニックアンヒドラーーゼ(30kD)、トリプシンインヒビター(20.0kD)、 α -ラクトアルブミン(14.4kD)を用いた。電気泳動終了後、Phast Gel Silver Stain Kit(ファルマシア社)を用いて銀染色を行った。結果を図4に示す。

その結果、ピーク6については還元条件下、非還元条件下で約60kDの蛋白質のバンドが検出された。又、ピーク7については、還元条件下で約60kD、非還元条件下で約120kDaの蛋白質のバンドが検出された。従って、ピーク7はピーク6の蛋白質のホモダイマーであると考えられる。

(実施例5)

O C I F の熱安定性試験

ブルー5 PWフラクション51~52を混合したサンプルから $20\mu l$ ずつを取り、10mMリン酸塩緩衝生理食塩水、pH7.2 $30\mu l$ を加えた後、70°C及び90°Cにて10分間、又は56°Cにて30分間熱処理を行った。このサンプルを用い、実施例2記載の方法に従いO C I F活性を測定した。結果を表2に示す。

第2表 O C I F の熱安定性

希釈率	1/300	1/900	1/2700
未処理	++	+	-
70°C 10分	+	-	-
56°C 30分	+	-	-
90°C 10分	-	-	-

(表中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30~80%抑制される活性を、-は活性が検出されないことを示す。)

BAD ORIGINAL

〔実施例 6 〕

内部アミノ酸配列の決定

ブルーー5 PW フラクション 51～70について、2 フラクションづつを混合して 1 ml とし、それぞれの試料に 10 μl の 25% TFA を加えた後、1 ml ずつ 10 回にわけて 0.1% TFA を含む 25% アセトニトリルで平衡化した逆相カラム (BU-300、C4、2.1×220mm、パーキンエルマー社) にかけ、60 分間でアセトニトリルを 55% にする直線勾配、流速 0.2 ml/分にて溶出を行い、ピーク 6 とピーク 7 を集めた。得られたピーク 6 とピーク 7 の一部について、それぞれプロテインシーケンサー (プロサイズ、494 型、パーキンエルマー社) を用い、N 末端アミノ酸配列分析を行ったが、分析不能でありこれらの蛋白質の N 末端はブロックされている可能性が示唆された。そこで、これらの蛋白質の内部アミノ酸配列を解析した。即ち、ピーク 6 とピーク 7 のそれぞれを遠心濃縮した後、それぞれに 100 μg ジチオスレイトール、10 mM EDTA、7 M 塩酸グアニジン、及び 1% CHAPS を含む 0.5 M Tris-HCl、pH 8.5 50 μl を加えて室温で 4 時間放置し還元した後、0.2 μl の 4-ビニルピリジンを加え、室温暗所で一晩放置しピリジルエチル化した。これらのサンプルに 1 μl の 25% TFA を加え、0.1% TFA を含む 20% アセトニトリルで平衡化した逆相カラム (BU-300、C4、2.1×30mm、パーキンエルマー社) にかけ、30 分間でアセトニトリル濃度を 50% にする直線勾配、流速 0.3 ml/分で溶出を行い、還元ピリジルエチル化 O C I F サンプルを得た。還元ピリジルエチル化したサンプルのそれを遠心濃縮し、8M 尿素及び 0.1% Tween80 を含む 0.1 M Tris-HCl、pH 9.25 μl で溶解した後、73 μl の 0.1 M Tris-HCl、pH 9 で希釈し、0.02 μg の AP1 (リシリエンドプロテアーゼ、和光純薬社) を加え、37°C で 15 時間反応させた。反応液に 1 μl の 25% TFA を加え、0.1% TFA で平衡化した逆相カラム (RP-300、C8、2.1×220mm、パーキンエルマー社) にかけ、70 分間でアセトニトリル濃度を 50% にする直線勾配、流速 0.2 ml/分で溶出を行い、ペプチドフラグメントを得た (図 5)。得られたペプチドフラグメント (P1～P3) について、プロテインシーケンサーを用いアミノ酸配列分析を行った。結果を配列表 配列番号 1～3 に示す。

ORIGINAL

(実施例 7)

c DNA配列の決定

i) IMR-90細胞からのポリ(A) + RNA の単離

IMR-90細胞のポリ(A) + RNA は、ファストトラックmRNAアイソレーションキット（インヴィトロージェン社）を用い、そのマニュアルに準じて単離した。この方法により 1×10^8 個のIMR-90細胞より約 $10 \mu\text{g}$ のポリ(A) + RNA を取得した。

ii) ミックスプライマーの作製

先に得られたペプチド（配列表 配列番号 2 及び 3）のアミノ酸配列をもとに、次の 2 種のミックスプライマーを合成した。即ち、ペプチド P 2（配列番号 2 のペプチド）の 6 番目(Gln) から 12 番目(Leu) までのアミノ酸配列をコードしうるすべての塩基配列を持つオリゴヌクレオチドの混合物（ミックスプライマー、No.2F）を合成した。又、ペプチド P 3（配列番号 3 のペプチド）の 6 番目(His) から 12 番目(Lys) までのアミノ酸配列をコードしうるすべての塩基配列に対する相補的オリゴヌクレオチドの混合物（ミックスプライマー、No.3R）を合成した。用いたミックスプライマーの塩基配列を、表 3 に示す。

第3表

= No.2F =

5'-CAAGAACAAA CTTTTCAATT-3'
G G G C C GC
A
G

= No.3R =

5'-TTTATACATT GTAAAAGAAT G-3'
C G C G GCTG
A C
G T

iii) OCIFcDNA断片のPCRによる增幅

実施例 7-i)で得たポリ(A) + RNA、 $1 \mu\text{g}$ を鋳型としてスーパースクリプト II c DNA合成キット（ギブコ B R L 社）を用いて、同社のプロトコールに従っ

て一本鎖 c DNA を合成し、この c DNA と実施例 7 - ii) で示したプライマーを用いて、PCRを行い、OCIFcDNA断片を取得した。以下に条件を示す。

10X Ex Taqバッファー（宝酒造社）	5	μ l
2.5 mM dNTP	4	μ l
cDNA溶液	1	μ l
Ex Taq（宝酒造社）	0.25	μ l
蒸留水	29.75	μ l
40 μ M プライマーNo.2F	5	μ l
40 μ M プライマーNo.3R	5	μ l

上記の溶液を微量遠心チューブ中で混合後、以下の条件でPCRを行った。95°Cで3分前処理後、95°C 30秒、50°C 30秒、70°C 2分の3段階の反応を30回繰り返したのち、70°C 5分保温した。反応液の一部をアガロース電気泳動し約400bpの均一なDNA断片が得られたことを確認した。

〔実施例 8〕

PCRにより増幅されたOCIFcDNA断片のクローニング及び塩基配列決定

実施例 7 - iii) で得られたOCIFcDNA断片を、Marchuk, Dらの方法(Nucleic Acid Res., Vol.19, p1154, 1991)によってプラスミドpBluescript II SK⁻ (ストラタジーン社)にDNAライゲーションキット Ver.2(宝酒造社)を用いて挿入し、大腸菌 DH5 α (ギブコ B R L 社)の形質転換を行った。得られた形質転換株を増殖させ、約 400bpのOCIFcDNA断片が挿入されたプラスミドを常法に従い精製した。このプラスミドをpBSOCIF と名付け、このプラスミドに挿入されているOCIFcDNAの塩基配列をタックダイデオキシターミネーターサイクルシークエンシングキット(Taq Dye Deoxy Terminator Cycle Sequencing kit; パーキンエルマー社)を用いて決定した。このOCIFcDNAの大きさは、397 bpであった。この塩基配列から予測される132 個のアミノ酸からなるアミノ酸配列中に、ミックスプライマーを設計するのに用いたOCIFの内部アミノ酸配列(配列表配列番号2及び3)をそれぞれN末側、C末側に見出すことができた。又、OCIFの内部アミノ酸配列(配列番号1)を、この132個のアミノ酸からなるアミノ酸配列中に

見出すことができた。以上の結果より、クローニングした397 bpのcDNAは、OCIFcDNA断片であることが確認された。

[実施例9]

DNAプローブの作製

実施例8で作成された397bpのOCIFcDNA断片が挿入されたプラスミドを鋳型にして実施例7-i)の条件でPCRを行なうことにより、このOCIFcDNA断片を増幅した。アガロース電気泳動により397bpのOCIFcDNA断片を分離後、QIAEXゲルエクストラクションキット(キヤゲン社)を用いて精製した。このDNAをメガプライムDNAラベリングキット(アマシャム社)を用いて $[\alpha-^{32}P]dCTP$ で標識し、全長のOCIFcDNAをスクリーニングするためのプローブとして用いた。

[実施例10]

cDNAライプラリーの作成

実施例7-i)で得られたポリ(A)⁺RNA、2.5 μgを鋳型としてグレートレンジスcDNA合成キット(クロントック社)を用いて同社のプロトコールに従い、oligo(dT)primerを用いてcDNAの合成、EcoRI-SalI-Not-Iアダプター付加、cDNAサイズフラクショネーションを行いエタノール沈殿の後10μlのTEバッファーに溶解した。得られたアダプター付加cDNA、0.1 μgをT4DNAリガーゼを用いてあらかじめEcoRIで切断した1 μgのλZAP エクスプレスベクター(ストラタジーン社)に挿入した。このようにして得られたcDNA組み換えファージDNA溶液をギガパックゴールドII(ストラタジーン社)を用いてインヴィトロパッケージング反応に供し、λZAP エクスプレス組み換えファージを作成した。

[実施例11]

組み換えファージのスクリーニング

実施例10で得られた組み換えファージを37°Cで15分間大腸菌XL1-Blue MRF'(ストラタジーン社)に感染させたのち、50°Cに加温した0.7%の寒天を含むNZY培地に添加し、NZY寒天培地プレートに流しこんだ。37°Cで一晩培養後、プレートの生じたプレート上にハイボンドN(アマシャム社)を約30秒密着させた。

このフィルターを常法に従いアルカリ変性の後、中和し、2XSSC 溶液に浸したのちUVクロスリンク（ストラタジーン社）によりDNA をフィルターに固定化した。得られたフィルターを100 $\mu\text{g}/\text{ml}$ のサケ精子DNA を含むハイブリダイゼーションバッファー（アマシャム社）に浸漬し65°Cで4 時間前処理した後、熱変性した上記DNA プローブ ($2\times 10^5 \text{ cpm}/\text{ml}$) を添加した上記バッファーに移し替え65°Cで一晩ハイブリダイゼーションを行った。反応後フィルターを2XSSC で2 回、0.1XSSC, 0.1% SDS溶液で2回それぞれ65°Cで10分間洗浄した。得られたいいくつかの陽性クローンを、さらに2 回スクリーニングを行うことにより純化した。それらの中から約1.6kb のインサートを持つものを以下に用いた。この純化したファージを λ OCIFと名付けた。純化した λ OCIFを λ ZAP エクスプレスクローニングキット（ストラタジーン社）のプロトコールに従い、大腸菌XL1-Blue MRF' に感染させたのち、ヘルバーファージExAssist（ストラタジーン社）で多重感染を行い、その培養上清を大腸菌XL1OR（ストラタジーン社）に感染させたのちカナマイシン耐性株を捨うことによりpBKCMV（ストラタジーン社）に上述の1.6kb のインサートが挿入されたプラスミドpBKOCIF をもつ形質転換株を得た。この形質転換株はpBK/01 F10 として、通商産業省工業技術院生命工学工業技術研究所に受託番号FERM BP-5267（平成7年10月25日にFERM P-14998の原寄託よりプラベスト条約に基づく寄託に移管）として寄託してある。このプラスミドをもつ形質転換株を増殖させ、常法によりプラスミドを精製した。

〔実施例 12〕

OCIFの全アミノ酸配列をコードするcDNAの塩基配列の決定

実施例 11で得られたOCIFcDNAの塩基配列をタックダイデオキシターミネーターサイクルシークエンシングキット（パーキンエルマー社）を用いて決定した。用いたプライマーはT3, T7 プライマー（ストラタジーン社）及びOCIFcDNAの塩基配列に基づいて設計された合成プライマーであり、その配列を配列表配列番号16～29に示す。

決定されたOCIFの塩基配列を配列番号6に、その配列から推定されるアミノ酸配列を配列番号5にそれぞれ示す。

〔実施例 1 3 〕

293/EBNA細胞による組み換え型OCIFの生産i) OCIFcDNAの発現プラスミドの作製

実施例 1 1 で得られた約1.6kb のOCIFcDNAが挿入されたプラスミドpBKOCIF を制限酵素BamHI 及びXhoIで消化し、OCIFcDNAを切り出し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット（キアゲン社）を用いて精製した。このOCIFcDNAを、あらかじめ制限酵素BamHI 及びXhoIで消化しておいた発現プラスミドpCEP4 （インヴィトロージェン社）に、ライゲーションキット Ver.2（宝酒造社）を用いて挿入し、大腸菌DH5 α （ギブコBRL社）の形質転換を行った。得られた形質転換株を増殖させ、OCIFcDNAが挿入された発現プラスミドpCEPOCIFをキアゲンカラム（キアゲン社）を用いて精製した。OCIF 発現プラスミドpCEPOCIFをエタノールによって沈殿させた後、無菌蒸留水に溶解し以下の操作に用いた。

ii) OCIFcDNAのトランジェントな発現及びその活性の測定

実施例 1 3 - i) で得られたOCIF 発現プラスミドpCEPOCIFを用いて、以下に述べる方法で組み換えOCIFを発現させ、その活性を測定した。8 × 10⁵ 個の293/EBNA細胞（インヴィトロージェン社）を6ウェルプレートの各ウェルに10%牛胎児血清（ギブコBRL社）を含むIMDM培地（ギブコBRL社）を用いて植え込み、翌日、培地を除いた後、無血清IMDM培地で細胞を洗った。トランスフェクション用試薬リポフェクタミン（ギブコBRL社）添付のプロトコールに従い、あらかじめOPTI-MEM培地（ギブコBRL社）を用いて希釈しておいたpCEPOCIFとリポフェクタミンを混合した後、この混合液を各ウェルの細胞に加えた。用いたpCEPOCIF及びリポフェクタミンの量はそれぞれ3 μ g 及び12 μ l であった。38時間後、培地を除き1mlの新しいOPTI-MEM培地を加え、さらに30時間後、培地を回収し、これをOCIF活性測定用サンプルとした。OCIFの活性測定は以下のようにして行った。生後約17日のマウス骨髄細胞からの活性型ビタミンD₃存在下での破骨細胞形成を酒石酸耐性酸性ホスファターゼ活性の誘導で試験し、その抑制活性を測定し、OCIFの活性とした。すなわ

ち、96ウェルマイクロプレートに 2×10^{-8} M活性型ビタミンD₃ 及び10%牛胎児血清を含むα-MEM培地（ギブコBRL社）で希釈したサンプル 100 μlを入れ、生後約17日のマウス骨髄細胞 3×10^5 個を 100 μl の10%牛胎児血清を含むα-MEM培地に懸濁させて播種し、5% CO₂、37°C、湿度 100%にて一週間培養した。培養3日目と5日目に、培養液 160 μl を廃棄し、 1×10^{-8} M活性型ビタミンD₃ 及び10%牛胎児血清を含むα-MEM培地で希釈したサンプル 160 μl を添加した。培養7日後にリン酸塩緩衝生理食塩水で洗浄した後エタノール／アセトン（1：1）溶液で細胞を室温にて1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット（Acid Phosphatase, Leucocyte、カタログ No.387-A、シグマ社）を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。その結果、表4に示すように、先にIMR-90の培養液から得られた天然型OCIFと同様の活性をこの培養液が有することが確認された。

第4表 293/EBNA細胞で発現させた培養液中のOCIF活性

希釈率	1/20	1/40	1/80	1/160	1/320	1/640	1/1280
OCIF							
遺伝子導入	++	++	++	++	++	+	-
ベクター導入	-	-	-	-	-	-	-
未処理	-	-	-	-	-	-	-

(表中、++は破骨細胞形成が80%以上抑制される活性を、+は破骨細胞形成が30~80%抑制される活性を、-は活性が検出されないことを示す。)

iii) 293/EBNA細胞由来組み換え型OCIFの精製

実施例13-ii)に記載した293/EBNA細胞を大量培養して得た培養液1.8Lに0.1%になるようにCHAPSを加え、0.22μmのフィルター（ステリベックGS、ミリポア社）で濾過した後、10mM Tris-HCl, pH7.5で平衡化させた50mlのヘパリン・セファロースCL-6Bカラム(2.6×10cm、ファルマシア社)にか

けた。0.1 % C H A P S を含む10mM Tris-HCl, pH7.5 で洗浄した後、100 分間で NaClを2Mにする直線勾配、流速4ml／分にて溶出を行い、8ml/フラクションにて分取を行った。各フラクション150 μ l を用いて実施例2の方法に従ってO C I F 活性を測定し、約 0.6~1.2M NaCl で溶出されるO C I F 活性画分 112mlを得た。

得られたO C I F 活性画分 112mlを0.1 % C H A P S を含む 10mM Tris-HCl, pH7.5 で1000mlに希釈した後、0.1 % C H A P S を含む 10mM Tris-HCl, pH7.5 で平衡化させたアフィニティカラム（ヘパリン -5PW, 0.8×7.5 cm、トーソー社）にかけた。0.1 % C H A P S を含む 10mM Tris-HCl, pH7.5 で洗浄した後、60分間でNaClを2Mにする直線勾配、流速0.5ml/分にて溶出を行い、0.5ml/フラクションにて分取を行った。

得られたフラクション各 4 μ l を用いて実施例4の方法に従って還元及び非還元条件下でS D S - ポリアクリルアミドゲル電気泳動を行った。その結果、フラクション30~32には還元条件下で約60kD、非還元条件下で約60kDと約 120kDのO C I F バンドのみが検出されたので、フラクション30~32を集め純化293/E B N A 細胞由来組み換え型O C I F (rOCIF(E)) 画分とした。B S Aをスタンダードとして用いたローリー法による蛋白定量の結果、535 μ g/mlのrOCIF(E)1.5ml が得られたことが明らかになった。

〔実施例14〕

C H O細胞による組み換え型O C I F の生産

i) OCIFの発現プラスミドの作製

実施例11で得られた約1.6kb のOCIFcDNAが挿入されたプラスミドpBKOCIF を制限酵素Sall及びEcoRV で消化し、約1.4kb のOCIFcDNA断片を切り出し、アガロース電気泳動によって分離後、Q I A E X ゲルエクストラクションキット（キアゲン社）を用いて精製した。又、発現ベクターpcDL-SR α 296 (Molecular and Cellular Biology, Vol.8, pp466-472, 1988) を制限酵素PstI及びKpnIで消化し、約3.4kb の発現ベクターDNA 断片をアガロース電気泳動によって分離後、Q I A E X ゲルエクストラクションキット（キアゲン社）を用いて精製した。D

NAプランティングキット（宝酒造社）を用いて、これらの精製したOCIFcDNA断片と発現ベクターDNA断片の末端を平滑化した。次に、ライゲーションキットVer.2（宝酒造社）を用いて、平滑化された発現ベクターDNA断片にOCIFcDNA断片を挿入し、大腸菌DH5 α （ギブコBRL社）の形質転換を行い、OCIF発現プラスミドpSR α OCIFをもつ形質転換株を得た。

ii) 発現プラスミドの調製

実施例13-i)で得られたOCIF発現プラスミドpSR α OCIFをもつ形質転換株及びWO92/01053号公報に示されるマウスDHF R遺伝子発現プラスミドpBAAddSVをもつ形質転換株をそれぞれ常法を用いて増殖させ、Maniatisら（Molecular cloning, 2nd edition）の方法に従いアルカリ法及びポリエチレングリコール法で処理し、塩化セシウム密度勾配遠心法により精製した。

iii) CHOdhFr $^{-}$ 細胞の蛋白質不含培地への馴化

10%牛胎児血清（ギブコBRL社）を含むIMDM培地（ギブコBRL社）で継代されていたCHOdhFr $^{-}$ 細胞(ATCC-CRL9096)は、無血清培地EX-CELL301（JRHバイオサイエンス社）で馴化後、さらに蛋白質不含培地EX-CELL PF CHO（JRHバイオサイエンス社）で馴化させた。

iv) OCIF発現プラスミド及びDHF R発現プラスミドのCHOdhFr $^{-}$ 細胞への導入

実施例14-i)で調製したOCIF発現プラスミドpSR α OCIF及びDHF R発現プラスミドpBAAddSVを用いて実施例14-iii)で調製したCHOdhFr $^{-}$ 細胞を下記に示すエレクトロポレーション法により形質転換した。pSR α OCIFプラスミド200 μ gとpBAAddSVプラスミド20 μ gを無菌的に10%牛胎児血清（ギブコBRL社）を含むIMDM培地（ギブコBRL社）0.8mlに溶解後、この0.8mlを用いて 2×10^7 個のCHOdhFr $^{-}$ 細胞を浮遊させた。この細胞浮遊液をキュベット（バイオラッド社）に入れ、ジーンバルサー（バイオラッド社）を用いて、360V、960 μ Fの条件でエレクトロポレーション法により形質転換を行った。10mlのEX-CELL PF CHO培地の入った浮遊細胞用Tフラスコ（住友ベークライト社）にエレクトロポレーション済の細胞浮遊液を移し、CO₂インキュベーター中で2日間培

養した。EX-CELL PF CHO培地を用いて5000cells/wellの濃度で96ウェルマイクロプレートにまき、約2週間培養した。EX-CELL PF CHO培地を核酸は含まず、この培地では親株のCHOdhFr⁻は増殖できないので、DHFRを発現する細胞株だけが選択されてくる。OCIF発現プラスミドをDHFR発現プラスミドの10倍量用いているので、DHFRを発現する細胞株の大部分はOCIFを発現する。得られたDHFRを発現する細胞株から培養上清中のOCIF活性の高い細胞株を、実施例2で示した測定法によってスクリーニングした。得られたOCIF高生産株につきEX-CELL PF CHO培地を用いて限界希釈法により細胞のクローニングを行い、得られたクローンについて培養上清中のOCIF活性の高い細胞株をスクリーニングし、OCIF高生産クローン5561を得た。

v) 組み換え型OCIFの生産

組み換えOCIF(rOCIF)の生産するため、EX-CELL 301培地3lに形質転換CHO細胞(5561)を 1×10^5 cells/mlとなるように接種し、スピナーフラスコを用いて37°Cで4、5日培養した。細胞の濃度が約 1×10^6 cells/mlになったところで、約2.7lの培地を回収した。約2.7lのEX-CELL 301培地を加え、培養を繰り返した。3基のスピナーフラスコを用い、約20lの培養液を採取した。

vi) CHO細胞由来組み換え型OCIFの精製

実施例14-(v)で得られた培養液1lに0.1%になるようにCHAPSを加え、0.22μmのフィルター(ステリベックスGS、ミリポア社)で濾過した後、10mM Tris-HCl, pH7.5で平衡化させた50mlのヘパリン・セファロースFFカラム(2.6×10cm、ファルマシア社)にかけた。0.1%CHAPSを含む10mM Tris-HCl, pH7.5で洗浄した後、100分間でNaClを2Mにする直線勾配、流速4ml/分にて溶出を行い、8ml/フラクションにて分取を行った。各フラクション150μlを用いて実施例2の方法に従ってOCIF活性を測定し、約0.6~1.2Mで溶出されるOCIF活性画分112mlを得た。

得られたOCIF活性画分112mlを0.1%CHAPSを含む10mM Tris-HCl, pH7.5で1200mlに希釈した後、0.1%CHAPSを含む10mM Tris-HCl, pH7.5で平衡化させたアフィニティカラム(ブルー-5PW, 0.5×5cm、トーソー社)に

かけた。0.1 % CHAPSを含む 10mM Tris-HCl, pH7.5 で洗浄した後、90分間でNaClを3Mにする直線勾配、流速0.5ml/分にて溶出を行い、0.5ml/フラクションにて分取を行った。

得られたフラクション各 4 μl を用いて実施例4の方法に従って還元及び非還元条件下で SDS-ポリアクリルアミドゲル電気泳動を行った。その結果、フラクション30~38には還元条件下で約60kD、非還元条件下で約60kDと約 120kDのOCIFバンドのみが検出されたので、フラクション30~38を集め精製CHO細胞由来組み換え型OCIF [rOCIF(C)] 画分とした。BSAをスタンダードとしたローリー法による蛋白定量の結果、113 μg/mlのrOCIF(C) 4.5 mlが得られたことが明らかになった。

[実施例15]

組み換え型OCIFのN末端構造解析

3 μg の精製rOCIF(E)及びrOCIF(C)を、プロスピン (ProSpin, パーキンエルマー社) を用いてポリビニリデンジフルオリド (PVDF) 膜に固定し、20%メタノールで洗浄した後、プロテインシーケンサー (プロサイズ、492型、パーキンエルマー社) を用いてN末端アミノ酸配列分析を行った。結果を配列表配列番号7に示す。

rOCIF(E)と rOCIF(C) のN末端アミノ酸は、配列表配列番号5に記載したアミノ酸配列の翻訳開始点 Metから22番目の Gluで、Met から Glnまでの21アミノ酸はシグナルペプチドであることが明らかになった。又、IMR-90培養液から精製し得られた天然型OCIFのN末端アミノ酸配列が分析不能であったのは、N末端のGlu が培養中又は精製中にピログルタミン酸に変換したためと考えられた。

[実施例16]

組み換え型(r)OCIF及び天然型(n)OCIFの生物活性

i) マウス骨髄細胞系での、ビタミンD₃ で誘導される破骨細胞形成の抑制

96ウェルマイクロプレートに、 2×10^{-8} M活性型ビタミンD₃ 及び10%牛胎児血清を含むα-MEM培地 (ギブコBRL社) で250ng/mlから連続的に二分の一希釈した精製rOCIF(E)及び nOCIF 100 μlを入れた。このウェルに生後約17日の

マウス骨髄細胞 3×10^5 個を $100 \mu\text{l}$ の10%牛胎児血清を含む α -MEM培地に懸濁させて播種し、5% CO₂、37°C、湿度 100%にて一週間培養した。培養7日後に、実施例2の方法に従って酸性ホスファターゼ活性測定キット(Acid Phosphatase, Leucocyte、カタログNo.387-A、シグマ社)を用いた染色を行い破骨細胞形成を検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。酸性ホスファターゼ活性陽性細胞の減少率は、染色した細胞の色素を可溶化し、その吸光度を測定することにより算出した。即ち、細胞を固定し染色した各ウェルに0.1N水酸化ナトリウム-ジメチルスルフォキシド混合液(1:1) $100 \mu\text{l}$ を加えよく振盪した。色素を十分に溶解させた後、マイクロプレートリーダー(イムノリーダーNJ-2000、インターメッド社)を用い、測定波長 590nm、対照波長 490nmにて吸光度を測定した。又、吸光度を測定する際のプランクウェルとして、ビタミンD₃未添加のウェルを用いた。結果は、OCIF未添加のウェルでの吸光度値を100とした百分率値で表し、表5に示す。

第5表 マウス骨髄細胞系でのOCIFによる
破骨細胞形成抑制(ビタミンD₃)

OCIF濃度(ng/ml)	250	125	63	31	16	0
rOCIF(E)	0	0	3	62	80	100
nOCIF	0	0	27	27	75	100

nOCIFと同様に rOCIF(E)にも、16ng/ml以上の濃度で用量依存的な破骨細胞形成抑制活性が見られた。

ii) ストローマ細胞とマウス脾臓細胞の共培養系でのビタミンD₃で誘導される破骨細胞形成の抑制

ビタミンD₃で誘導されるストローマ細胞とマウス脾臓細胞の共培養系での破骨細胞形成の試験は、宇田川らの方法(Endocrinology, Vol. 125, p1805-1813, 1989)に従って行った。即ち、96ウェルマイクロプレートに $2 \times 10^{-8}\text{M}$ 活性型ビタミンD₃、 $2 \times 10^{-7}\text{M}$ デキサメサゾン及び10%牛胎児血清を含む α -MEM培地(ギブコBRL社)で、連続的に希釈した精製 rOCIF(E)、rOCIF(C)及びnOCIF

100 μ lを入れた。このウェルにマウス骨髄由来ストローマ細胞株S T 2 細胞 (RIKEN Cell Bank-RCB0224) 5×10^3 個と生後約8週間のddyマウス脾臓細胞 1×10^5 個を 100 μ l の10%牛胎児血清を含む α -MEM培地に懸濁させて播種し、5%CO₂、37°C、湿度100%にて5日間培養した。培養5日後にリン酸塩緩衝生理食塩水で洗浄した後、エタノール／アセトン(1:1)溶液で細胞を室温にて1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosphatase, Leucocyte、カタログNo.387-A、シグマ社)を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。又、酸性ホスファターゼ活性陽性細胞数の減少率は実施例16-i)に記載した方法に従って染色された細胞の色素を溶解させて算出した。rOCIF(E)とnOCIFを用いて試験した結果を表6に、rOCIF(E)とnOCIFを用いて試験した結果を表7に、それぞれ示す。

第6表 ストローマ細胞とマウス脾臓細胞の共培養系
でのOCIFによる破骨細胞形成抑制

OCIF濃度(ng/ml)	50	25	13	6	0
rOCIF(E)	3	22	83	80	100
rOCIF(C)	13	19	70	96	100

第7表 ストローマ細胞とマウス脾臓細胞の共培養系
でのOCIFによる破骨細胞形成抑制

OCIF濃度(ng/ml)	250	63	16	0
rOCIF(E)	7	27	37	100
nOCIF	13	23	40	100

nOCIFと同様にrOCIF(E)及びrOCIF(C)についても、6～16ng/ml以上の濃度で容量依存的な破骨細胞形成抑制活性が見られた。

iii) PTHで誘導される破骨細胞形成の抑制

PTHで誘導される破骨細胞形成の試験は、高橋らの方法 (Endocrinology, Vol.122, p1373-1382, 1988)に従って行った。即ち、96ウェルマイクロプレートに 2×10^{-8} M PTH及び10%牛胎児血清を含む α -MEM培地(ギブコ社)で、125ng/mlから連続的に希釈したnOCIF及び精製rOCIF(E) 100 μ lを入れた。このウェルに生後約17日のマウス骨髄細胞 3×10^5 個を 100 μ l の10%牛胎児血清を含む α -MEM培地に懸濁させて播種し、5% CO₂、37°C、湿度100%にて5日間培養した。培養5日後にリン酸塩緩衝生理食塩水で洗浄した後エタノール／アセトン(1:1)溶液で細胞を室温にて1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosphatase, Leucocyte、カタログNo. 387-A, シグマ社)を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞の減少をOCIF活性とした。又、酸性ホスファターゼ活性陽性細胞数の減少率は実施例16-i)に記載した方法に従って染色された細胞の色素を溶解させて算出した。結果を表8に示す。

第8表 マウス骨髄細胞系でのOCIFによる破骨細胞形成抑制(PTH)

OCIF 濃度(ng/ml)	125	63	31	16	8	0
rOCIF(E)	6	58	58	53	88	100
nOCIF	18	47	53	56	91	100

nOCIFと同様にrOCIF(E)についても、16ng/ml以上の濃度で容量依存的な破骨細胞形成抑制活性が見られた。

iv) IL-11で誘導される破骨細胞形成の抑制

IL-11で誘導される破骨細胞形成の試験は、田村らの方法 (Proc. Natl. Acad. Sci. USA, Vol.90, p11924-11928, 1993)に従って行った。即ち、96ウェルマイクロプレートに 20ng/ml IL-11及び10%牛胎児血清を含む α -MEM培地(ギブコ BRL社製)で希釈したnOCIF及び精製rOCIF(E) 100 μ lを入れた。このウェルにマウス新生児頭蓋骨由来前脂肪細胞株 MC3T3-G2/PA6 細胞(RIKEN Cell Bank-

RCB1127) 5×10^3 個と生後約8週間の ddYマウス 脾臓細胞 1×10^5 個を $100 \mu l$ の10%牛胎児血清を含むα-MEM培地に懸濁させて播種し、5% CO₂、37°C、湿度100%にて5日間培養した。培養5日後にリン酸塩緩衝生理食塩水で洗浄した後エタノール／アセトン(1:1)溶液で細胞を室温にて1分間固定し、破骨細胞形成を酸性ホスファターゼ活性測定キット(Acid Phosphatase, Leucocyte、カタログ No.387-A, シグマ社)を用いた染色で検出した。酒石酸存在下での酸性ホスファターゼ活性陽性細胞数を計測し、その減少をOCIF活性とした。結果を表9に示す。

第9表 IL-11で誘導される酒石酸存在下での酸性ホスファターゼ活性陽性細胞数

濃度(ng/ml)	500	125	31	7.8	2.0	0.5	0
nOCIF	0	0	1	4	13	49	31
rOCIF(E)	0	0	1	3	10	37	31

nOCIF 及びrOCIF(E)とも、2ng/ml以上濃度で容量依存的にIL-11で誘導される破骨細胞形成を抑制する活性が見られた。

このように種々の標的細胞を用いた破骨細胞形成の試験系において、OCIFはビタミンD₃、PTH、及びIL-11等の破骨細胞形成誘導因子による破骨細胞の形成をほぼ同じ濃度で抑制することが明らかになった。従って、OCIFはこのような様々な骨吸収促進物質で誘導される異なるタイプの骨量減少症の治療に、効果的に使用出来る可能性が示唆された。

〔実施例17〕

モノマー型及びダイマー型OCIFサンプルの調製

rOCIF(E)及びrOCIF(C)それぞれ $100 \mu g$ を含むサンプルに、1/100容量の25%TFA(トリフルオロ酢酸)を加えた後、0.1%TFAを含む30%アセトニトリルで平衡化した逆相カラム(PROTEIN-RP、2.0×250mm、ワイエムシー社)にかけ、50分間でアセトニトリルを55%にする直線勾配、流速0.2ml/分にて溶出を行い、各OCIFピークを分取した。得られたピーク画分を凍結乾燥すること

により、モノマー型O C I F 及びダイマー型O C I Fを得た。

[実施例18]

組み換え型O C I Fの分子量測定

実施例3-vi) の方法で逆相カラムを用いて精製したモノマー型及びダイマー型n O C I Fと実施例17記載の方法で精製したモノマー型及びダイマー型r O C I F約 $1\mu g$ を含むサンプルを減圧濃縮した。これらのサンプルにつき、実施例4の方法でSDS処理、SDS-ポリアクリルアミド電気泳動、及び銀染色を行った。非還元条件下及び還元条件下で電気泳動した結果を、図6及び図7にそれぞれ示す。

その結果、非還元条件下では、何れのモノマー型サンプルでも60kDの蛋白質バンドが検出され、又、何れのダイマー型サンプルでも 120kDの蛋白質バンドが検出された。又、還元条件下では何れのサンプルでも約60kDの蛋白質バンドのみが検出された。従って、IMR-90細胞由来 nOCIF、293/EBNA細胞由来組み換え型O C I F、及びCHO細胞由来組み換え型O C I Fの各々のモノマー型とダイマー型の分子量はほぼ同一であることが示された。

[実施例19]

IMR-90細胞由来天然型O C I Fと組み換え型O C I FのN-結合型糖鎖の除去と分子量測定

実施例3-vi) の方法で逆相カラムを用いて精製したモノマー型及びダイマー型n O C I Fと実施例17記載の方法で精製したモノマー型及びダイマー型r O C I Fの各々を約 $5\mu g$ 含むサンプルを減圧濃縮した。これらのサンプルに100mM 2-メルカプトエタノールを加えた50mMリン塩緩衝液、pH8.6, 9.5 μl を加えて溶解させ、更に250U/ml N-グリカナーゼ溶液(生化学工業社) 0.5 μl を加え37°Cで一日放置した。これらのサンプルに2mM MEDTA、5% SDS、及び0.02%プロモフェノールブルーを含む 20mM Tris-HCl, pH8.0, 10 μl を加え、100 °Cで5分間加熱した。これらのサンプルの1 μl を実施例4の方法でSDS-ポリアクリルアミド電気泳動した後、銀染色した。結果を図8に示す。

その結果、N-グリカナーゼ処理によりN-結合糖鎖を除去したO C I F蛋白

質の還元条件下での分子量は、いずれも約40kDであることが示された。糖鎖除去の処理を行っていないIMR-90細胞由来nOCIF, 293/EBNA細胞由来rOCIF、及びCHO細胞由来rOCIFの各々の還元条件下での分子量はいずれも約60kDであることから、これらのOCIFはその分子内にN-結合糖鎖を含有する糖蛋白質であることが明らかになった。

〔実施例20〕

OCIF類縁体（バリアント）cDNAのクローニング及び塩基配列の決定

実施例10及び11で示したように、純化したいくつかの陽性ファージのひとつからpBKCMV（ストラタジーン社）にOCIFcDNAが挿入されたプラスミドpBKOCIFを持つ形質転換株を得たが、その際、他のいくつかの陽性ファージからも長さの異なるインサートが挿入されたプラスミドを持つ形質転換株が得られた。これらのプラスミドを持つ形質転換株を増殖させ、常法によりプラスミドを精製した。これらのインサートDNAの塩基配列をタックダイデオキシターミネーターサイクルシークエンシングキット（パークリンエルマー社）を用いて決定した。用いたプライマーはT3, T7プライマー（ストラタジーン社）及びOCIFcDNAの塩基配列に基づいて設計された合成プライマーを用いた。オリジナルタイプのOCIF以外に、OCIFバリアントは全部で4種類(OCIF2, 3, 4, 5)存在した。決定されたOCIF2cDNAの塩基配列を配列番号8にその配列から推定されるアミノ酸配列を配列番号9に示す。決定されたOCIF3 cDNAの塩基配列を配列番号10にその配列から推定されるアミノ酸配列を配列番号11に示す。決定されたOCIF4 cDNAの塩基配列を配列番号12にその配列から推定されるアミノ酸配列を配列番号13に示す。決定されたOCIF5 cDNAの塩基配列を配列番号14にその配列から推定されるアミノ酸配列を配列番号15に示す。これらのOCIFバリアントの構造の特徴を、図9～12及び以下の記載をもって、簡単に説明する。

OCIF2

OCIFcDNAの塩基配列（配列番号6）の265番目のグアニンから285番目のグアニンまでの21bpの欠失があり、アミノ酸配列ではOCIFのアミノ酸配列（配列表配列番号5）の68番目のグルタミン酸(Glu)から74番目のグルタミン(G

l n)までのアミノ酸の欠失がある。

O C I F 3

OCIFcDNAの塩基配列（配列番号6）の9番目のシチジンがグアニンに変換していて、アミノ酸配列ではO C I Fのアミノ酸配列（配列表配列番号5）の-19番目のアスパラギン（A s n）がリジン（L y s）に変わっている。但し、これはシグナル配列の中のアミノ酸置換であり、分泌されるO C I F 3には影響しないと思われる。

OCIFcDNAの塩基配列（配列番号6）の872番目のグアニンから989番目のグアニンまでの117bpの欠失があり、アミノ酸配列ではO C I Fのアミノ酸配列（配列表配列番号5）の270番目のスレオニン（T h r）から308番目のロイシン（L e u）までの39アミノ酸の欠失がある。

O C I F 4

OCIFcDNAの塩基配列（配列番号6）の9番目のシチジンがグアニンに変換していて、アミノ酸配列ではO C I Fのアミノ酸配列（配列表配列番号5）の-19番目のアスパラギン（A s n）がリジン（L y s）に変わっている。又、22番目のグアニンがチミジンに変換していて、アミノ酸配列ではO C I Fのアミノ酸配列（配列表配列番号5）の-14番目のアラニン（A l a）がセリン（S e r）に変わっている。但し、これらはシグナル配列の中のアミノ酸置換であり、分泌されるO C I F 4には影響しないと思われる。

OCIFcDNAの塩基配列（配列番号6）の400番目と401番目の間に約4kbのインtron 2の挿入があり、オープントリーリングフレームがその中で止まる。アミノ酸配列ではO C I Fのアミノ酸配列（配列表配列番号5）の112番目のアラニン（A l a）の後に21アミノ酸からなる新規なアミノ酸配列が付加されている。

O C I F 5

OCIFcDNAの塩基配列（配列番号6）の9番目のシチジンがグアニンに変換していて、アミノ酸配列ではO C I Fのアミノ酸配列（配列表配列番号5）の-19番目のアスパラギン（A s n）がリジン（L y s）に変わっている。但し、これはシグナル配列の中のアミノ酸置換であり、分泌されるO C I F 5には影響しない

と思われる。

OCIFcDNAの塩基配列（配列番号6）の400番目と401番目の間に約1.8 kbのイントロン2の後半部分の挿入があり、オープシリーリングフレームがその中で止まる。アミノ酸配列ではOCIFのアミノ酸配列（配列表配列番号5）の112番目のアラニン（A1a）の後に12アミノ酸からなる新規なアミノ酸配列が付加されている。

〔実施例21〕

OCIF類縁体（バリアント）の生産

i) OCIFバリアントcDNAの発現プラスミドの作製

実施例20で得られたOCIFバリアントcDNAのうち、OCIF2,3のcDNAがそれぞれ挿入されたプラスミドpBKOCIF2、pBKOCIF3を制限酵素XhoI及びBamHI（宝酒造社）で消化し、OCIF2及び3のcDNAをそれぞれ切り出し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット（キアゲン社）を用いて精製した。これらのOCIF2及び3のcDNAを、あらかじめ制限酵素XhoI及びBamHI（宝酒造社）で消化しておいた発現プラスミドpCEP4（インヴィトロージェン社）に、ライゲーションキットVer.2（宝酒造社）を用いて挿入し、大腸菌DH5 α （ギブコBRL社）の形質転換を行った。

又、実施例20で得られたOCIFバリアントcDNAのうち、OCIF4のcDNAを挿入されたプラスミドpBKOCIF4を制限酵素SpeI及びXhoI（宝酒造社）で消化し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット（キアゲン社）を用いて精製した。このOCIF4のcDNAを、あらかじめ制限酵素NheI及びXhoI（宝酒造社）で消化しておいた発現プラスミドpCEP4（インヴィトロージェン社）に、ライゲーションキットVer.2（宝酒造社）を用いて挿入し、大腸菌DH5 α （ギブコBRL社）の形質転換を行った。

又、実施例20で得られたOCIFバリアントcDNAのうち、OCIF5のcDNAを挿入されたプラスミドpBKOCIF5を制限酵素Hind III（宝酒造社）で消化し、OCIF5cDNAのコーディング領域の5'領域を切り出し、アガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット（キアゲン社）を用いて精

製した。実施例13-i)で得られたO C I F 発現プラスミドpCEPOCIFを制限酵素 Hind III(宝酒造社)で消化し、OCIFcDNAのコーディング領域の5'領域を取り除き、pCEPプラスミドとOCIFcDNAの3'領域を含んだDNA断片pCEPOCIF-3'をアガロース電気泳動によって分離後、QIAEX ゲルエクストラクションキット(キアゲン社)を用いて精製した。この OCIF5 cDNA のHind III断片をpCEPOCIF-3'にライゲーションキット Ver.2(宝酒造社)を用いて挿入し、大腸菌DH5 α (ギブコBRL社)の形質転換を行った。

得られた形質転換株を増殖させ、O C I F 2, 3, 4, 5のcDNAが挿入された発現プラスミドpCEPOCIF 2, 3, 4, 5を、キアゲンカラム(キアゲン社)を用いて精製した。O C I F バリアント発現プラスミドをエタノールによって沈澱させた後、無菌蒸留水に溶解し以下の操作に用いた。

ii) O C I F バリアント c DNA のトランジェントな発現及びその活性の測定

実施例21-i)で得られたO C I F バリアント発現プラスミドpCEPOCIF 2, 3, 4, 5を用いて、実施例13-ii)で述べた方法でO C I F バリアントをトランジェントに発現させ、それらの活性を調べた。その結果、これらのO C I F バリアントに弱い活性を認めた。

[実施例22]

O C I F 変異体の作製

i) O C I F 変異体 c DNA サブクローニング用プラスミドベクターの作製

実施例11記載のプラスミドベクター5 μ gを、制限酵素BamHI 及びXhoI(宝酒造社)で切断した。切断したDNAを調製用アガロースゲル電気泳動に供した。OCIFcDNA全長を含む約1.6キロベースペア(kb)のDNA断片を単離し、QIAEX ゲルエクストラクションキット(キアゲン社)により精製し、20 μ lの滅菌蒸留水に溶解したDNA溶液1を得た。次に、pBluescript II SK $^{+}$ (ストラータジーン社)3 μ gを制限酵素BamHI 及びXhoI(宝酒造社)で切断した。切断したDNAを調製用アガロースゲル電気泳動に供した。約3.0 kbのDNA断片を単離し、QIAEX ゲルエクストラクションキット(キアゲン社)により精製し、20 μ lの滅菌蒸留水に溶解したDNA溶液2を得た。1 μ lのDNA溶液2と4

μ l の DNA 溶液 1 を混合し、5 μ l の DNA ライゲーションキット ver.2 I 液（宝酒造社）を添加し混合後、16°Cで30分間保温し、ライゲーション反応を行った。尚、以下のライゲーション反応は全て16°C 30分の保温条件で行った。

このライゲーション反応液を用い、以下の条件で大腸菌の形質転換を行った。尚、以後大腸菌の形質転換は以下の条件で行った。このライゲーション反応液 5 μ l と大腸菌 DH 5 α コンピテント細胞（ギブコ B R L 社）100 μ l とを15ml用滅菌チューブ（岩城ガラス社）中で混合し、氷水中30分放置した。42°C 45秒保温後、250 μ l の L 培地（1 % トリプトン、0.5 % イーストエキストラクト、1 % NaCl）を添加し攪拌しながら37°Cで培養した。50 μ l の菌液を50 μ g/ml アンピシリンを含む 2 ml の L 寒天培地上にスプレッドした。37°Cで一晩培養し、生育してきたコロニー 6 種を 2 ml の L アンピシリン液体培地でさらに一晩培養し、各株が持つプラスミドの構造を調べた。pBluescript II SK⁺ のBamHI XbaI切断部位にOC IFcDNA全長を含む約1.6kb のDNA断片が挿入された構造を持つプラスミド（以後 pSK⁺-OCIF と呼ぶ）を得た。

ii) Cys を Ser に置換した変異体の作製

(1) 変異の導入

配列表配列番号 4 に記載のアミノ酸配列中、174, 181, 256, 298及び379 番の Cys 残基を Ser 残基に置換した変異体を作製した。174CysをSer に置換した変異体をOCIF-C19S、181CysをSer に置換した変異体をOCIF-C20S、256Cysを Ser に置換した変異体をOCIF-C21S、298CysをSer に置換した変異体をOCIF-C22S、379 Cysを Ser に置換した変異体をOCIF-C23S2と、それぞれ名付けた。変異体作製のためにまず、各Cys 残基をコードする塩基配列をSer 残基をコードする塩基配列に置換した。変異導入は二段階の PCR (polymerase chain reaction) により行った。以後、二段階 PCR 反応と呼ぶ。第一段階は 2 つの PCR 反応より成る (PCR 1 及び PCR 2)。

P C R 1 反応液

10X Ex Taq バッファー (宝酒造社)	1 0	μ l
2.5 mM dNTP 溶液	8	μ l
実施例 1 1 記載のプラスミドベクター (8ng/ml)	2	μ l
滅菌蒸留水	7 3. 5	μ l
20 μ M プライマー 1	5	μ l
100 μ M プライマー 2 (変異導入用)	1	μ l
Ex Taq (宝酒造社)	0. 5	μ l

P C R 2 反応液

10X Ex Taq バッファー (宝酒造社)	1 0	μ l
2.5 mM dNTP 溶液	8	μ l
実施例 1 1 記載のプラスミドベクター (8ng/ml)	2	μ l
滅菌蒸留水	7 3. 5	μ l
20 μ M プライマー 3	5	μ l
100 μ M プライマー 4 (変異導入用)	1	μ l
Ex Taq (宝酒造社)	0. 5	μ l

各変異導入時には、プライマーの種類だけを変え、他の反応組成は同一とした。各反応で用いたプライマーを表10に、その配列を配列表配列番号20、23、27、30～40に示す。P C R 1 反応液及びP C R 2 反応液をそれぞれ別の微量遠心チューブに入れ混合後、以下の条件で P C R を行った。97°Cで3分処理後、95°C 1分、55°C 1分、72°C 3分の3段階の反応を25回繰り返したのち、70°C 5分保温した。反応液の一部をアガロース電気泳動に供し、目的の長さのDNA断片が合成されていることを確認した。第一段階P C R 反応終了後、アミコンマイクロコン(アミコン社)により反応液からプライマーを除去し、滅菌蒸留水により最終液量を50 μ lに調製し、得られたDNA断片を用いさらに第2段階P C R 反応(P C R 3)を行った。

P C R 3 反応液

10X Ex Taqバッファー (宝酒造社)	1 0	μ l
2.5 mM dNTP 溶液	8	μ l
P C R 1 により得られたDNA断片	5	μ l
P C R 2 により得られたDNA断片	5	μ l
滅菌蒸留水	6 1. 5	μ l
20 μ M プライマー 1	5	μ l
20 μ M プライマー 3	5	μ l
Ex Taq (宝酒造社)	0. 5	μ l

第10表

変異体名	プライマー1	プライマー2	プライマー3	プライマー4
OCIF-C19S	IF 10	C19SR	IF 3	C19SF
OCIF-C20S	IF 10	C20SR	IF 3	C20SF
OCIF-C21S	IF 10	C21SR	IF 3	C21SF
OCIF-C22S	IF 10	C22SR	IF 14	C22SF
OCIF-C23S	IF 6	C23SR	IF 14	C23SF

上記の溶液を微量遠心チューブに入れ混合後、P C R 1、P C R 2 と同一の条件でP C Rを行った。反応液の一部をアガロース（1%或いは1.5%）電気泳動に供し、目的の長さのDNA断片が合成されていることを確認した。P C Rにより得られたDNAをエタノールにより沈殿させ、真空中で乾燥させ、40 μ l の滅菌蒸留水に溶解した。C19S変異DNA断片を含む溶液を溶液A、C20S変異DNA断片を含む溶液を溶液B、C21S変異DNA断片を含む溶液を溶液C、C22S変異DNA断片を含む溶液を溶液D、C23S変異DNA断片を含む溶液を溶液Eと名付けた。

溶液A20 μ l 中のDNA断片を制限酵素NdeI及びSphI(宝酒造社)により切断した。調製用電気泳動により約400bpのDNA断片を分離・精製し20 μ l の蒸留

水に溶解した(DNA溶液3)。次に、2μgのpSK⁺-OCIFを制限酵素NdeI及びSphI(宝酒造社)により切断し、調製用電気泳動により約4.2kbのDNA断片を分離・精製し20μlの滅菌蒸留水に溶解した(DNA溶液4)。2μlのDNA溶液3と3μlのDNA溶液4を混合し、さらにDNAライゲーションキットver.2 I液5μlを添加しライゲーション反応を行った。反応後のライゲーション溶液5μlを用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-C19Sと名付けた。

溶液B20μl中のC20S変異DNA断片を制限酵素NdeI及びSphI(宝酒造社)により切断した。調製用電気泳動により約400bpのDNA断片を分離・精製し20μlの蒸留水に溶解した(DNA溶液5)。2μlのDNA溶液5と3μlのDNA溶液4を混合し、さらにDNAライゲーションキットver.2 I液5μlを添加しライゲーション反応を行った。反応後のライゲーション溶液5μlを用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-C20Sと名付けた。

溶液C20μl中のDNA断片を制限酵素NdeI及びSphI(宝酒造社)により切断した。調製用電気泳動により約400bpのDNA断片を分離・精製し20μlの蒸留水に溶解した(DNA溶液6)。2μlのDNA溶液6と3μlのDNA溶液4を混合し、さらにDNAライゲーションキットver.2 I液5μlを添加しライゲーション反応を行った。反応後のライゲーション溶液5μlを用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-C21Sと名付けた。

溶液D 20 μ l 中のDNA断片を制限酵素NdeI及びBstPI（宝酒造社）により切断した。調製用電気泳動により約600bp のDNA断片を分離・精製し20 μ l の蒸留水に溶解した（DNA溶液7）。次に、2 μ g のpSK⁺-OCIF を制限酵素NdeI及びBstPI（宝酒造社）により切断し、調製用電気泳動により約4.0kb のDNA断片を分離・精製し20 μ l の蒸留水に溶解した（DNA溶液8）。2 μ l のDNA溶液7と3 μ l のDNA溶液8を混合し、さらにDNAライゲーションキットver.2 I液5 μ l を添加しライゲーション反応を行った。反応後のライゲーション溶液5 μ l を用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-C22Sと名付けた。

溶液E 20 μ l 中のDNA断片を制限酵素BstPI 及びEcoRV（宝酒造社）により切断した。調製用電気泳動により約120bp のDNA断片を分離・精製し20 μ l の滅菌蒸留水に溶解した（DNA溶液9）。次に、2 μ g のpSK⁺-OCIF を制限酵素BstEII及びEcoRV（宝酒造社）により切断し、調製用電気泳動により約4.5kb のDNA断片を分離・精製し20 μ l の蒸留水に溶解した（DNA溶液10）。2 μ l のDNA溶液9と3 μ l のDNA溶液10を混合し、さらにDNAライゲーションキットver.2 I液5 μ l を添加しライゲーション反応を行った。反応後のライゲーション溶液5 μ l を用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-C23Sと名付けた。

(2) 変異体発現ベクターの構築

得られた目的のプラスミドDNA（pSK-OCIF-C19S, pSK-OCIF-C20S, pSK-OCIF-C21S, pSK-OCIF-C22S, pSK-OCIF-C23S）を制限酵素BamHI 及びXhoI（宝酒造社）で切断し、OCIFcDNA全長を含む約1.6kb のDNA断片（目的の変異も含む）を分離・

精製し、滅菌蒸留水20μlに溶解した。それぞれC19SDNA溶液、C20SDNA溶液、C21SDNA溶液、C22SDNA溶液、C23SDNA溶液と名付けた。次に、発現ベクターpCEP4(インヴィトロージェン社)5μgを制限酵素BamHI及びXhoI(宝酒造社)で切断し、約10kbのDNAを分離・精製し滅菌蒸留水40μlに溶解した(pCEP4DNA溶液)。pCEP4DNA溶液1μlと各6μlのC19SDNA溶液、C20SDNA溶液、C21SDNA溶液、C22SDNA溶液、C23SDNA溶液を別々に混合し、各混合液に7μlのDNAライゲーションキットVer.2 I液を添加し、ライゲーション反応を行った。反応終了後、7μlの反応液を用い、大腸菌DH5αコンピテント細胞液100mlを形質転換した。得られたアンピシリン耐性形質転換細胞から、pCEP4のXhoI、BamHI部位に約1.6kbの各DNA断片が挿入された目的の構造のプラスミドDNAを持つ株計5種を選びだし、それぞれ、pCEP4-OCIF-C19S, pCEP4-OCIF-C20S, pCEP4-OCIF-C21S, pCEP4-OCIF-C22S, pCEP4-OCIF-C23Sと名付けた。

ii) ドメイン欠失変異体の作製

(1) ドメイン欠失変異の導入

配列番号4に記載したアミノ酸中、2番のThrから42番のAlaまで、43番のProから84番のCysまで、85番のGluから122番のLysまで、123番のArgから164番のCysまで、177番のAspから251番のGlnまで、253番のIleから326番のHisまでを、それぞれ欠失させた変異体を作製した。2番のThrから42番のAlaまでを欠失させた変異体をOCIF-DCR1、43番のProから84番のCysまでを欠失させた変異体をOCIF-DCR2、85番のGluから122番のLysまでを欠失させた変異体をOCIF-DCR3、123番のArgから164番のCysまでを欠失させた変異体をOCIF-DCR4、177番のAspから251番のGlnまでを欠失させた変異体をOCIF-DDD1、253番Ileから326番のHisまでを欠失させた変異体をOCIF-DDD2と、それぞれ名付けた。ドメイン欠失変異の導入も、実施例22-ii)に記載の二段階PCR法によって行った。各変異導入反応時に用いたプライマーを表11に、その配列を配列表配列番号19、25、40~53、及び54に示す。

第 1 表

変異体名	プライマー1	プライマー2	プライマー3	プライマー4
OCIF-DCR1	XhoI F	DCR1R	IF 2	DCR1F
OCIF-DCR2	XhoI F	DCR2R	IF 2	DCR2F
OCIF-DCR3	XhoI F	DCR3R	IF 2	DCR3F
OCIF-DCR4	XhoI F	DCR4R	IF 16	DCR4F
OCIF-DDD1	IF 8	DDD1R	IF 14	DDD1F
OCIF-DDD2	IF 8	DDD2R	IF 14	DDD2F

PCRにより得られたDNAをエタノールにより沈殿させ真空中で乾燥させ、40 μlの滅菌蒸留水に溶解した。DCR1変異DNA断片を含む溶液を溶液F、DCR2変異DNA断片を含む溶液を溶液G、DCR3変異DNA断片を含む溶液を溶液H、DCR4変異DNA断片を含む溶液を溶液I、DDD1変異DNA断片を含む溶液を溶液J、DDD2変異DNA断片を含む溶液を溶液Kと名付けた。

溶液F 20 μl 中のDNA断片を制限酵素NdeI及びXhoI（宝酒造社）により切断した。調製用電気泳動により約500bp のDNA断片を分離・精製し20 μl の滅菌蒸留水に溶解した（DNA溶液11）。次に、2 μg のpSK + -OCIF を制限酵素NdeI及びXhoI（宝酒造社）により切断し、調製用電気泳動により約4.0kb のDNA断片を分離・精製し20 μl の滅菌蒸留水に溶解した（DNA溶液12）。2 μl のDNA溶液11と3 μl のDNA溶液12を混合し、さらにDNAライゲーションキットver.2 I液5 μl を添加しライゲーション反応を行った。反応後のライゲーション溶液5 μl を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により、OCIFcDNAに目的の変異の導入されたプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-DCR1 と名付けた。溶液G 20 μl 中のDNA断片を制限酵素NdeI及びXhoI（宝酒造社）により切断した。調製用電気泳動により約500bp のDNA断片を分離・精製し20 μl の滅菌蒸留水に溶解した（DNA溶液13）。2 μl のDNA溶液13と3 μl のDNA溶液12を混合し、さらにD

DNAライゲーションキットver.2 I液を5μl 添加し、ライゲーション反応を行った。反応後のライゲーション溶液5μl を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-DCR2と名付けた。

溶液H 20μl 中のDNA断片を制限酵素NdeI及びXhoI（宝酒造社）により切断した。調製用電気泳動により約500bp のDNA断片を分離・精製し20μl の滅菌蒸留水に溶解した（DNA溶液14）。2μl のDNA溶液14と3μl のDNA溶液12を混合し、さらにDNAライゲーションキットver.2 I液を5μl 添加し、ライゲーション反応を行った。反応後のライゲーション溶液5μl を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により、OCIFcDNAに目的の変異の導入されたプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-DCR3と名付けた。

溶液I 20μl 中のDNA断片を制限酵素XhoI及びSphI（宝酒造社）により切断した。調製用電気泳動により約900bp のDNA断片を分離・精製し20μl の滅菌蒸留水に溶解した（DNA溶液15）。次に、2μg のpSK+-OCIF を制限酵素XhoI及びSphI（宝酒造社）により切断し、調製用電気泳動により約3.6kb のDNA断片を分離・精製し20μl の滅菌蒸留水に溶解した（DNA溶液16）。2μl のDNA溶液15と3μl のDNA溶液16を混合し、さらにDNAライゲーションキットver.2 I液5μl を添加し、ライゲーション反応を行った。反応後のライゲーション溶液5μl を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-DCR4と名付けた。

溶液 J 20 μl 中の DNA 断片を制限酵素 BstPI 及び NdeI (宝酒造社) により切断した。調製用電気泳動により約 400bp の DNA 断片を分離・精製し 20 μl の滅菌蒸留水に溶解した (DNA 溶液 17)。2 μl の DNA 溶液 17 と 3 μl の DNA 溶液 8 を混合し、さらに DNA ライゲーションキット ver.2 I 液を 5 μl 添加し、ライゲーション反応を行った。反応後のライゲーション溶液 5 μl を用い、大腸菌 DH 5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA 構造の解析により目的のプラスミド DNA を持つ株を選びだした。DNA 構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミド DNA を pSK-OCIF-DDD1 と名付けた。

溶液 K 20 μl 中の DNA 断片を制限酵素 BstPI 及び NdeI (宝酒造社) により切断した。調製用電気泳動により約 400 bp の DNA 断片を分離・精製し 20 μl の滅菌蒸留水に溶解した (DNA 溶液 18)。2 μl の DNA 溶液 18 と 3 μl の DNA 溶液 8 を混合し、さらに DNA ライゲーションキット ver. 2 I 液を 5 μl 添加し、ライゲーション反応を行った。反応後のライゲーション溶液 5 μl を用い、大腸菌 DH 5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA 構造の解析により目的のプラスミド DNA を持つ株を選びだした。DNA 構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミド DNA を pSK-OCIF-DDD2 と名付けた。

(2) 変異体発現ベクターの構築

得られた目的のプラスミド DNA (pSK-OCIF-DCR1, pSK-OCIF-DCR2, pSK-OCIF-XR3, pSK-OCIF-DCR4, pSK-OCIF-DDD1, pSK-OCIF-DDD2) を制限酵素 BamHI 及び XhoI (宝酒造社) で切断し OCIFcDNA 全長を含む約 1.4-1.5 kb の DNA 断片 (目的の変異も含む) を分離・精製し、滅菌蒸留水 20 μl に溶解した。それぞれを DCR1DNA 溶液、DCR2DNA 溶液、DCR3DNA 溶液、DCR4DNA 溶液、DDD1DNA 溶液、DDD2DNA 溶液と名付けた。実施例 22-i) に記載の pCEP4 DNA 溶液 1 μl と各 6 μl の DCR1 DNA 溶液、DCR2DNA 溶液、DCR3DNA 溶液、DCR4DNA 溶液、DDD1DNA 溶液、DDD2DNA 溶液を別々に混合し、各混合液に 7 μl の DNA ライゲーションバッファーを添加し、ライゲーション反応を行った。反応終了後、7 μl の反応液を用い、大腸

菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞からpCEP4 BamHI XbaI部位に各1.4-1.5kb断片が挿入された構造のプラスミドDNAを持つ株計6種を選びだした。目的の構造を持つプラスミドをそれぞれpCEP4-OCIF-DCR1、pCEP4-OCIF-DCR2、pCEP4-OCIF-DCR3、pCEP4-OCIF-DCR4、pCEP4-OCIF-DDD1、pCEP4-OCIF-DDD2と名付けた。

iii) C末端ドメイン欠失変異体の作製

(1) C末端ドメイン欠失変異の導入

配列番号4に記載したアミノ酸中、379番のCysと380番のLeu、331番のSerから380番のLeuまで、252番のAspから380番のLeuまで、177番のAspから380番のLeuまで、123番のArgから380番のLeuまで、86番のCysから380番のLeuまでを、それぞれ欠失させた変異体を作製した。379番のCysと380番のLeuを欠失させた変異体をOCIF-CL、331番のSerから380番のLeuまでを欠失させた変異体をOCIF-CC、252番のAspから380番のLeuまでを欠失させた変異体をOCIF-CDD2、177番のAspから380番のLeuまでを欠失させた変異体をOCIF-CDD1、123番のArgから380番のLeuまでを欠失させた変異体をOCIF-CCR4、86番のCysから380番のLeuまでを欠失させた変異体をOCIF-CCR3と、それぞれ名付けた。

変異体OCIF-CLの作製用の変異導入は、実施例22-ii)に記載の二段階PCR法によって行った。変異導入反応時に用いたプライマーを表12に、その塩基配列を配列表配列番号23、40、55及び56に示す。PCRにより得られたDNAをエタノールにより沈殿させ、真空中で乾燥させ、40μlの滅菌蒸留水に溶解した(溶液L)。

溶液L 20μl中のDNA断片を制限酵素BstPI及びEcoRV(宝酒造社)により切断した。調製用電気泳動により約100bpのDNA断片を分離・精製し20μlの滅菌蒸留水に溶解した(DNA溶液19)。次に、2μlのDNA溶液9と3μlの実施例22-ii)記載のDNA溶液10を混合し、さらにDNAライゲーションキットver.2 I液を5μl添加し、ライゲーション反応を行った。反応後のライゲーション溶液5μlを用い、大腸菌DH5 α を形質転換した。得られたアンピシ

リン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-CLと名付けた。変異体OCIF-CC、変異体OCIF-CDD2、変異体OCIF-CDD1、変異体OCIF-CCR4、変異体OCIF-CCR3作製用の変異導入には、一段階のPCR法を用いた。以下に反応条件を示す。

C末端ドメイン欠失変異導入用PCR 反応液

10X Ex Taq バッファー (宝酒造社)	1 0	μl
2.5 mM dNTP 溶液	8	μl
実施例11記載のプラスミドベクター (8ng/ml)	2	μl
滅菌蒸留水	7 3. 5	μl
20 μM プライマー OCIF Xho F	5	μl
100 μM 変異導入用プライマー	1	μl
Ex Taq (宝酒造社)	0. 5	μl

第12表

変異体名	プライマー1	プライマー2	プライマー3	プライマー4
OCIF-CL	IF 6	CL R	IF 14	CL F

各変異導入時には、プライマーの種類だけを変え、他の反応組成は同一とした。各反応での変異導入用プライマーを表13に、その配列を配列表配列番号57~61に示す。PCR反応液を微量遠心チューブに入れ混合後、以下の条件でPCRを行った。97°Cで3分処理後、95°C 30秒、50°C 30秒、70°C 3分の3段階の反応を25回繰り返したのち、70°C 5分保温した。反応液の一部をアガロース電気泳動に供し、目的の長さのDNA断片が合成されていることを確認した。反応液からアミコン・マイクロコンによりプライマーを除去し、DNAをエタノールにより沈殿させ

真空中で乾燥させ、40 μ l の滅菌蒸留水に溶解した。各変異DNA断片を含む溶液20 μ l 中のDNA断片を制限酵素XbaI及びBamHIによりDNAを切断した。酵素切断終了後、DNAをエタノールにより沈殿させ真空中で乾燥させ、20 μ l の滅菌蒸留水に溶解した。溶液をそれぞれCCDNA溶液、CDD2DNA溶液、CDD1DNA溶液、CCR4DNA溶液、CCR3DNA溶液と名付けた。

第13表

変異体名	変異導入用プライマー
OCIF-CC	CC R
OCIF-CDD2	CDD2 R
OCIF-CDD1	CDD1 R
OCIF-CCR4	CCR4 R
OCIF-CCR3	CCR3 R

(2) 変異体発現ベクターの構築

pSK-OCIF-CLを制限酵素BamHI及びXbaI(宝酒造社)で切断し、OCIFcDNAを含む約1.5 kbのDNA断片(目的の変異も含む)を分離・精製し、滅菌蒸留水20 μ lに溶解した(CLDNA溶液)。実施例22-ii)に記載のpCEP4 DNA溶液1 μ lと各6 μ lのCLDNA溶液、CCDNA溶液、CDD2DNA溶液、CDD1DNA溶液、CCR4DNA溶液、CCR3DNA溶液を別々に混合し、7 μ lのDNAライゲーションキットVer.2 I液を添加し、ライゲーション反応を行った。反応終了後、7 μ lの反応液を用い、大腸菌DH5 α を形質転換した。得られたアンピシリン耐性形質転換細胞から目的の変異を持つOCIFcDNA断片がpCEP4のXbaI-BamHI部位に挿入された構造のプラスミドDNAを持つ株計6種を選びだした。目的の構造を持つプラスミドをそれぞれ、pCEP4-OCIF-CL, pCEP4-OCIF-CC, pCEP4-OCIF-CDD2, pCEP4-OCIF-CDD1, pCEP4-OCIF-CCR4, pCEP4-OCIF-CCR3と名付けた。

iv) C末端欠失変異体の作製

(1) C末端欠失変異の導入

配列番号4に記載したアミノ酸中、371番Glnから380番Leuまでを欠失させLeu-Valの2残基を付加した変異体(OCIF-CBst)、298番Cysから380番Leuまでを欠失させSer-Leu-Aspの残基を付加した変異体(OCIF-CSph)、167番Asnから380番Leuまでを欠失させた変異体(OCIF-CBsp)、62番Cysから380番Leuまでを欠失させLeu-Valの2残基を付加した変異体(OCIF-CPst)を作製した。各2μgのpSK+-OCIFを制限酵素BstPI、SphI、PstI(宝酒造社)、及びBspE I(ニューイングランドバイオラボ社)で切断し、フェノール処理、エタノール沈殿によりDNAを精製し、10μlの滅菌蒸留水に溶解した。各2μlの溶液を用いDNAプランティングキット(宝酒造社)により各DNAの末端を平滑化した(最終容量5μl)。この反応液に、アンバーコドンを含むXbaIリンカー(5'-CTA GTCTAGACTAG-3')1μg(1μl)と、6μlのDNAライゲーションキットver.2 I液を添加し、ライゲーション反応を行った。反応後のライゲーション溶液6μlを用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から、DNA構造の解析により目的のプラスミドDNAを持つ株を選びだした。DNA構造は、制限酵素切断により得られる断片の長さの測定及び塩基配列の決定により解析した。得られた目的のプラスミドDNAをpSK-OCIF-CBst、pSK-OCIF-CSph、pSK-OCIF-CBsp、pSK-OCIF-CPstと名付けた。

(2) 変異体発現ベクターの構築

得られたプラスミドDNA(pSK-OCIF-CBst、pSK-OCIF-CSph、pSK-OCIF-CBsp、pSK-OCIF-CPst)を制限酵素BamHI及びXhoI(宝酒造社)で切断し、OCIFcDNA全長を含む約1.5キロベースペア(kb)のDNA断片(目的の変異も含む)を分離・精製し、滅菌蒸留水20μlに溶解した(それぞれCBstDNA溶液、CSphDNA溶液、CBspDNA溶液、CPstDNA溶液と名付けた)。実施例22-ii)に記載のpCEP4 DNA溶液1μlと各6μlのCBstDNA溶液、CSphDNA溶液、CBspDNA溶液、CPstDNA溶液を別々に混合し、各混合液に7μlのDNAライゲーションキットVer.2 I液を添加し、ライゲーション反応を行った。反応終了後、7μlの反応液を用い、大腸菌DH5αを形質転換した。得られたアンピシリン耐性形質転換細胞から目的の変異を持つOCIFcDNA断片がpCEP4のXhoI BamHI部位間に挿入された構造のア

ラスミドDNAを持つ株計5種を選びだした。目的の構造を持つプラスミドをそれぞれ、pCEP4-OCIF-CBst, pCEP4-OCIF-CSph, pCEP4-OCIF-CBsp, pCEP4-OCIF-CPstと名付けた。

v) 変異体発現ベクターの調製

変異体発現ベクターを持つ大腸菌（計21種類）を増殖させ、各種変異体発現ベクターをキアゲンカラム（キアゲン社）を用いて精製した。各発現ベクターはエタノールによって沈殿させた後、滅菌蒸留水に溶解し以下の操作に用いた。

vi) 変異体cDNAのトランジェントな発現及びその活性の測定

実施例22-v)で精製した各種OCIF変異体発現プラスミドを用い、実施例13の方法に従いOCIF変異体を発現させた。以下に変更した点のみを記する。DNA導入には24ウェルプレートを用いた。 2×10^5 個の293/EBNA細胞を10%牛胎児血清を含むIMDM培地を用いて各ウェルに植え込んだ。DNA導入の際用いた変異体発現ベクターとリボフェクタミンの量は、それぞれ1 μ g及び4 μ lであった。OPTI-MEM培地（ギブコBRL社）で希釈し最終容量を0.5mlとした。変異体発現ベクターとリボフェクタミンの混合液を細胞に添加し、24時間37°CでCO₂インキュベーター中で培養した後混合液を除去し、0.5mlのEx-cell 301培地（JSR社）を加え、さらに48時間37°CでCO₂インキュベーター中で培養した。培地を回収し、これを変異体活性測定用サンプルとした。得られた各変異体の塩基配列を配列表配列番号83～103に、その配列から推定されるアミノ酸配列を配列表配列番号62～82に、それぞれ示す。OCIFの活性測定は実施例13に従った。また、実施例24に記載のEIA法により、OCIFの抗原量を定量した。表14に未改変OCIFと比較した抗原量当たりの活性を示す。

第14表

変異体の名称	活性
未改変OCIF	++
OCIF-C19S	+
OCIF-C20S	±
OCIF-C21S	±
OCIF-C22S	+
OCIF-C23S	++
OCIF-DCR1	±
OCIF-DCR2	±
OCIF-DCR3	±
OCIF-DCR4	±
OCIF-DDD1	+
OCIF-DDD2	±
OCIF-CL	++
OCIF-CC	++
OCIF-CDD2	++
OCIF-CDD1	+
OCIF-CCR4	±
OCIF-CCR3	±
OCIF-CBst	++
OCIF-CSph	++
OCIF-CBsp	±
OCIF-CPst	±

(表中、++は抗原量当たりの活性が未改変OCIFの活性の50%を超える、+は10%~50%、±は10%未満又は抗原量が正確に測定できないことをそれぞれ示す)

vi) ウェスタンプロットティング解析

活性測定に用いたサンプルの $10\mu\text{l}$ をウェスタンプロット解析に供した。サンプル $10\mu\text{l}$ に $10\mu\text{l}$ のSDS-PAGE用サンプルバッファー(0.5M Tris-HCl、20%グリセロール、4% SDS、 $20\mu\text{g}/\text{ml}$ プロムフェノールブルー(pH 6.8))を加え、100°Cで3分煮沸し非還元状態で10% SDSポリアクリルアミド電気泳動を行った。泳動終了後、セミドライプロットティング装置(バイオラッド社)によりPVDFメンブレン(ProBlott®、パーキンエルマー社)に蛋白質をプロットティングした。そのメンブレンをブロッキング後、実施例24に記載のEIA用西洋ワサビパーオキシダーゼ標識抗OCIF抗体とともに、37°Cで2時間保温した。洗浄後ECLシステム(アマシャム社)により抗OCIF抗体に結合する蛋白質を検出した。OCIFでは、約120キロダルトン(kD)及び60kDのバンドが検出された。一方、OCIF-C23S、OCIF-CL、OCIF-CCでは、ほとんど60kDのバンドのみが検出された。また、OCIF-CDD2及びOCIF-CDD1ではそれぞれ約40-50 kD及び30-40 kDのバンドが主要なバンドとして検出された。以上の結果より、OCIFでは、配列表配列番号4のアミノ酸配列における379番目のCys残基が二量体形成に係わっていること、単量体でも活性を保持していること、及び177番Aspから380番Leuまでの残基を欠失させても活性を保持することが明らかとなった。

[実施例23]

ヒトOCIFゲノムDNAの分離

I) ヒトゲノムDNAライブラリーのスクリーニング

ヒト胎盤の染色体DNAとλFIX IIベクターを用いて作製されたゲノム・ライブラリーをストラタジーン社から購入し、これをOCIFcDNAをプローブとしてスクリーニングした。スクリーニングは、基本的にはゲノム・ライブラリーに添付されているプロトコールに従って実施したが、ファージ、大腸菌、DNAを扱う一般的方法はMolecular Cloning:A Laboratory Manualに従って行った。

購入したゲノムDNAライブラリーのタイターを検定したのち、 $1 \times 10^6 \text{ pfu}$ のファージを大腸菌XL1-Blue MRAに感染させ、20枚のプレート(9×13cm)にプレ

ート当たり 9 ml のトップ・アガロースとともに蒔いた。プレートを一夜 37°C でインキュベートしたのち、Hybond-N ナイロン膜（アマシャム社）をアガーブレート上に乗せてファージを転写した。ファージの転写したナイロン膜を 1.5M NaCl/0.5M NaOH 溶液で湿らせた濾紙上に 1 分間乗せ、その後 1M Tris-HCl (pH 7.5) と 1.5M NaCl/0.5M Tris-HCl (pH 7.5) でそれぞれ 1 分ずつ処理して中和したのち、最後に 2XSSC で湿らせた濾紙の上に移した。その後、このナイロン膜にストラタリンカーチ（ストラタジーン社）を用いて 1200 マイクロジュールの UV を照射することによってファージ DNA を膜に固定した。次に、このナイロン膜をラピッドハイブリダイゼーション・バッファー（アマシャム社）に浸漬してプレハイブリダイゼーションを行った。1 時間のプレハイブリダイゼーションの後、³²P 標識した OCIFcDNA を加え、65°C にて一夜ハイブリダイゼーションを行った。この cDNA プローブは、実施例 1 で得られた 1.6kb の OCIFcDNA を有するプラスミド pBKOCIF を、制限酵素 BamHI 及び XhoI を用いて切断し、OCIFcDNA をアガロースゲル電気泳動によって単離したのち、この OCIFcDNA をメガプライム DNA ラベリングシステム（アマシャム社）を用いて ³²P で標識することによって作製した。標識は、ラベリングシステムに添付されたプロトコールに従って行った。ハイブリダイゼーションには、ハイブリダイゼーション・バッファー 1 ml 当たりおよそ 5×10^5 cpm のプローブを使用した。ハイブリダイゼーションの後、ナイロン膜を室温にて 2XSSC で 5 分間洗浄し、その後 65°C において 0.5 XSSC/0.1% SDS で 4 回、それぞれ 20 分ずつ洗浄した。4 回目の洗浄ののちナイロン膜を乾燥させ、富士フィルム社製 X 膜フィルム、スーパー HR-H と増感スクリーンとを用いて -80°C にてオートラジオグラフィーを行った。オートラジオグラム上に 6 個のシグナルが検出されたので、それぞれのシグナルに相当するアガーブレート上の位置からトップ・アガロースを切り出し、1% のクロロホルムを添加した 0.5 ml の SM バッファーにそれぞれ浸漬して一夜放置し、ファージを抽出した。それぞれのファージ抽出液を SM バッファーで 1000 倍に希釈し、その中から 1 μl と 20 μl を取り、再び上記大腸菌に感染させ、トップ・アガロースとともに上記の方法でアガーブレートに蒔いた。ファージをナイロン膜に転写後、上記の方法でプレハイブリダイ

ゼーション、ハイブリダイゼーション、洗浄、乾燥、オートラジオグラフィーを行った。このファージ純化の操作を当初オートラジオグラフィーで検出された6個のシグナル全部について行い、アガーブレート上のすべてのファージplaquesがcDNAプローブとハイブリダイズするまで繰り返した。純化されたファージのplaquesを切り出し、1%クロロホルムを含むSMバッファー0.5mlに浸漬し、4°Cで保存した。こうして得られた6種の純化ファージを、それぞれλOIF3, λOIF8, λOIF9, λOIF11, λOIF12, λOIF17と名付けた。

II) 制限酵素消化及びササンプロット・ハイブリダイゼーションによるヒトOCIFゲノムDNAクローンの分析

純化された6種のファージのDNAを、Molecular Cloning:A Laboratory Manualに書かれた方法に従ってプレートリシス法によって精製した。これらのDNAを制限酵素によって消化し、得られたフラグメントをアガロース電気泳動によって分離した。またアガロース・ゲルで分離されたフラグメントを、一般的な方法でナイロン膜に転移させたのち、OCIFcDNAをプローブとしてササンプロット・ハイブリダイゼーションを行った。これらの分析の結果、それぞれ純化された6種のファージは異なったクローンであることが判明した。制限酵素消化によって得られたDNAフラグメントのうち、OCIFcDNAとハイブリダイズするものについては、プラスミドベクターにサブクローンした後に下記の方法で塩基配列の分析を行った。

iii) ゲノムDNAクローンから制限酵素消化によって得られたDNAフラグメントのプラスミド・ベクターへのサブクローニングと塩基配列の決定

λOIF8 DNAを制限酵素EcoRIとNotIによって消化し、生じたフラグメントを0.7%アガロースゲルに供与して分離した。5.8kbのEcoRI/NotIフラグメントをQIAEX II Gel Extraction Kit(キヤゲン社)を用いて添付されたプロトコールに従ってゲルから抽出した。このフラグメントを、前もってEcoRIとNotIによって切断しておいたpBluescriptII SK+ベクター(ストラタジーン社)とReady-To-Go T4 Ligase(ファルマシア社)を用いて添付のプロトコールに従ってライゲーションした。得られたリコンビナント・プラスミドを、コンピテントDH5α大腸菌

(アマシャム社)に導入した後、 $50\text{ }\mu\text{g/ml}$ のアンビシリソを含有するアガロースプレート上に蒔いてプラスミドを有する大腸菌を選択した。以上のようにして作製された5.8kb EcoRI/NotIフラグメントを有するリコンビナント・プラスミドを、pBSG8-5.8と命名した。次に、pBSG8-5.8を制限酵素HindIIIで消化して生ずる0.9 kbのDNAフラグメントをアガロースゲルで分離し、上記の方法にしたがって抽出した後、HindIIIで前もって切斷しておいたpBluescriptII SK-(ストラタジーン社)に挿入して、上記の方法に従ってクローニングした。この0.9kbのHind III フラグメントを有するリコンビナント・プラスミドを、pBS8H0.9と命名した。一方、λOIF11のDNAをEcoRIを用いて消化して生ずる6 kb、3.6kb、及び2.6kbのフラグメントをそれぞれ単離したのち、上記と同様の方法に従ってpBluescript II SK+ベクターに挿入してクローニングした。こうして作製した6 kb、3.6 kb、及び2.6kbのEcoRI フラグメントを有するリコンビナント・プラスミドを、それぞれpBSG11-6、pBSG11-3.6、pBSG11-2.6と命名した。さらに、pBSG11-6を制限酵素HindIIIによって消化することによって生ずる、2.2kb、1.1kb、1.05kbの3種のフラグメントをアガロースゲル電気泳動によって分離し、それぞれpBluescript II SK-のHindIII サイトに挿入してクローニングした。これら2.2kb、1.1kb、1.05 kbのHindIII フラグメントを有するリコンビナント・プラスミドを、それぞれpBS6H2.2、pBS6H1.1、pBS6H1.05と命名した。ゲノムDNAの塩基配列の分析には、ABI Dyedeoxy Terminator Cycle Sequencing Ready Reaction Kit(パーキンエルマー社)と373 DNA Sequencing System(アプライドバイオシステムズ社)を使用した。Molecular Cloning:A Laboratory Manualに書かれた方法に従ってpBSG8-5.8、pBS8H0.9、pBSG11-6、pBSG11-3.6、pBSG11-2.6、pBS6H2.2、pBS6H1.1、pBS6H1.05を調製し、塩基配列決定用の鋳型として用いた。ヒトOCT1 FゲノムDNAの塩基配列を配列表配列番号104及び105に示す。エクソン1とエクソン2の間に介在する塩基の配列は必ずしも全部は決定されておらず、配列表配列番号104及び105に示された塩基配列の間に、およそ17kbのヌクレオチドが介在することが確認されている。

〔実施例24〕

EIAによるOCIFの定量

i) ウサギ抗OCIF抗体の調製

雄性日本白色ウサギ（体重2.5～3.0kg、北山ラバース社より入手）3羽に、r OCIF 200 μg/mlをフロイント完全アジュvant（DIFCO社）と等量混合してエマルジョンとしたものを、1回1mlずつ皮下免疫した。免疫は1週間隔で合計6回行い、最終免疫後10日目に全採血を行った。分離した血清から抗体を以下のように精製した。即ち、PBSにて2倍希釈した抗血清に最終濃度40w/v %となるよう硫酸アンモニウムを添加して4℃1時間放置後、8000×gで20分間遠心分離を行い、沈殿を得た。沈殿を少量のPBSに溶解し、PBSに対して4℃で透析した後、Protein G-Sepharoseカラム（ファルマシア社）に負荷した。PBSにて洗浄後、0.1Mグリシン塩酸緩衝液(pH3.0)にて吸着した免疫グロブリンGを溶出し、直ちに1.5Mトリス塩酸緩衝液(pH8.7)で中性pHとした。溶出蛋白質画分をPBSに対して透析後、280nmにおける吸光度を測定し、その濃度を決定した（E^{1%} 13.5）。西洋ワサビパーオキシダーゼ標識した抗OCIF抗体は、マレイミド活性化パーオキシダーゼキット（ピアス社）を用いて作製した。即ち、1mgの精製抗体に80μgのN-スクシンイミド-S-アセチルチオ酢酸を添加し、室温で30分間反応させた。これに5mgのヒドロキシルアミンを添加して脱アセチル化した後、修飾された抗体をポリアクリルアミド脱塩カラムにて分画した。蛋白質画分を1mgのマレイミド活性化パーオキシダーゼと混合し、室温で1時間反応させ酵素標識抗体を得た。

ii) サンドイッチEIAによるOCIFの定量

96ウェルのマイクロタイヤープレート（MaxiSorp Immunoplate, Nunc社）の各ウェルに、100μlのウサギ抗OCIF抗体(2μg/ml、50mM炭酸緩衝液(pH 9.6))を添加し4℃にて一晩静置して、抗体を固相化した。PBSにて調製した25%ブロックエース（雪印乳業社）を300μlずつ各ウェルに添加し、37℃で1時間放置してブロッキングした後、検体(100μl/ウェル)を添加し室温で2時間反応させた。0.05% Tween20を含むPBS(PBST)にて3回洗浄した後、10000倍

希釈した西洋ワサビバーオキシダーゼ標識抗O C I F抗体を $100\mu l$ ずつ添加し室温で2時間インキュベートした。P B S Tにて3回洗浄した後、 $100\mu l$ の酵素基質溶液(T M B、ScyTek社)を加え室温で発色させた後、反応を停止した。

450nmにおける吸光度をマイクロプレートリーダー(イムノリーダーNJ2000、日本インターメッド社)を用いて測定し、精製した組み換えO C I Fを標準とした検量線から、検体のO C I F濃度を定量した。O C I Fの検量線を図13に示す。

[実施例25]

抗O C I Fモノクローナル抗体

i) ヒトO C I F抗体産生ハイブリドーマの調製

ヒト線維芽細胞I M R - 90を培養し、その培養液から実施例11記載の方法でO C I Fを精製した。精製O C I Fを $10\mu g/100\mu l$ の濃度になるようにP B Sに溶解し、この溶液を2週間おきにB A L B / cマウスに腹腔内投与し免疫した。初回及び2回目の免疫においては、等量のフロイント完全アジュバントの混合物を投与した。最終の免疫から3日目に脾臓を摘出し、Bリンパ球を分離し、マウスミエローマ細胞P3x63-AG8.653とを通常用いられているポリエチレングリコール法により細胞融合させた。ついで融合細胞を選択するためにH A T培地で培養を行うことにより、ハイブリドーマ細胞をセレクションした。次に、セレクションされた細胞がO C I F特異的抗体を産生しているか否かを確認するために、0.1M重曹溶液に溶解したO C I F溶液($10\mu g/ml$) $100\mu l$ を、96穴マイクロプレート(Nunc社)に加えて作製したソリッドフェーズE L I S Aを用いて、ハイブリドーマ培養液中のO C I F特異的抗体の測定を行った。抗体生産が認められたハイブリドーマを限界希釈法によりクローニングを3-5回繰り返し行い、その都度上記E L I S Aにより抗体産生量をチェックした。得られた抗体生産株の中から、抗体生産量の高いクローンを選別した。

ii) モノクローナル抗体の生産

実施例25-i)で得た抗体生産株を、それぞれ 1×10^6 を予めプリスタン(アルドリッヂケミカル社)を接種しておいたB A L B / c系マウスの腹腔内に移植した。移植2週間後、蓄積した腹水を採取し、本発明のモノクローナル抗体を含む

腹水を得た。この腹水より、アフィigelプロテインAセファロース（バイオラッド社製）を用いたアフィニティクロマトグラフィーにより精製抗体を得た。即ち、腹水を等量のバインディングバッファー（バイオラッド社）で希釈し、プロテインAカラムに負荷した後、充分量の同バッファーで洗浄した。IgGの溶出は、エリューションバッファー（バイオラッド社）で行った。得られた溶出液を水で透析した後、凍結乾燥を行った。得られた精製抗体をSDS-PAGEにより純度検定を行ったところ、分子量約150,000 の位置に均一なバンドを認めた。

iii) OCIFに対して高親和性を有するモノクローナル抗体の選択

実施例25-ii) で得た抗体をPBSに溶解し、ローリー法により蛋白定量を行った。ついで、各抗体を蛋白濃度が一定になるようにPBSに溶解し、この溶液を段階希釈法により希釈した。実施例25-ii) に記載のソリッドフェーズELISAを用いて、高い希釈段階までOCIFと反応するモノクローナル抗体を選別した。その結果、A1G5、E3H8、及びD2F4の3種の抗体が得られた。

iv) 抗体のサブクラスの検定

実施例25-iii) で選択した本発明の抗体のクラス及びサブクラスを、イムノグロブリンクラス及びサブクラス分析キット（アマシャム社）を用いて検定した。検定は、キットに指示されているプロトコールに従って実施した。結果を表15に示す。E3H8、A1G5、及びD2F4は、それぞれIgG₁、IgG_{2a}、及びIgG_{2b}であった。

第15表

抗体名	IgG ₁	IgG _{2a}	IgG _{2b}	IgG ₃	IgA	IgM	κ
A1G5	-	+	-	-	-	-	+
E3H8	+	-	-	-	-	-	+
D2F4	-	-	+	-	-	-	+

v) OCIFのELISAによる測定方法

実施例25-iv) で得たA1G5、E3H8、及びD2F4の3種のモノクローナル抗体を、それぞれ固相抗体と標識抗体とした。それぞれの組み合わせにより、サンドイッチELISAを構築した。抗体の標識は、マレイミド活性化バーオキシダーゼキ

ット（ピアス社）を用いて行った。各々の抗体を $10\text{ }\mu\text{g}/\text{ml}$ の濃度になるように 0.1 M 重曹溶液に溶解し、96穴イムノプレート（Nunc 社）の各ウエル当たり $100\text{ }\mu\text{l}$ づつそれぞれ分注し、室温で一晩放置した。次いで、各々のプレートを $1/2$ 濃度のブロックエース（雪印乳業社）でブロックし、 0.1 \% のTween20を含むPBS（洗浄バッファー）で3回洗浄した。各濃度のOCIFを第一次反応バッファー（ $1/2.5$ 濃度のブロックエース及び 0.1 \% Tween20を含む 0.2M トリス塩酸緩衝液、pH 7.4）で調製した。調製した各濃度のOCIF溶液 $100\text{ }\mu\text{l}$ づつ各ウエルに加え、 37°C で3時間放置し、次いで洗浄バッファーで3回洗浄した。標識抗体の希釈には、第二次反応バッファー（ $1/4$ 濃度のブロックエース及び 0.1% のTween20を含む 0.1M トリス塩酸緩衝液、pH 7.4）を用いた。各標識抗体を第2次反応バッファーで400倍に希釈し、その各々 $100\text{ }\mu\text{l}$ づつを各ウエルにそれぞれ添加した。各々のプレートを 37°C で2時間放置し、次いで3回洗浄した後、基質溶液（ $0.4\text{mg}/\text{ml}$ のオルトフェニレンジアミン塩酸、 0.006 \% 過酸化水素を含む 0.1M クエン酸-リン酸バッファー、pH 4.5） $100\text{ }\mu\text{l}$ を各ウエルに添加した。 37°C で15分間暗室に放置した後、 6 N 硫酸 $50\text{ }\mu\text{l}$ を各ウエルに添加することにより酵素反応を停止させ、イムノリーダー（NJ2000、日本インターメッド社）を用いて 492 nm の吸光度を測定した。3種の抗体をそれぞれ固相抗体或いは標識抗体としたいずれの組み合わせにおいても良好な測定結果が得られ、3種の抗体はそれぞれOCIFの異なるエピトープを認識することを認めた。代表例として、A1G5を固相抗体としE3H8を標識抗体としたときの検量線を図14に示す。

vi) ヒト血清中のOCIFの測定

健常人5名の血清中のOCIFを実施例25-(v)の図14のELISA系で測定した。即ち、A1G5を実施例25-(v)と同様にイムノプレートに固相化し、各ウエルに第1次反応バッファーを $50\text{ }\mu\text{l}$ 加え、次いで各ヒト血清 $50\text{ }\mu\text{l}$ を加えて 37°C で3時間放置した。洗浄バッファーで3回洗浄した後、第2次反応バッファーで400倍に希釈したE3H8の標識抗体 $100\text{ }\mu\text{l}$ を各ウエルに加えて、 37°C で2時間放置した。プレートを洗浄バッファーで3回洗浄後、上記基質溶液 $100\text{ }\mu\text{l}$ を各ウエルに添加し、 37°C で15分間反応させた。各ウエルに 6 N 硫酸 $50\text{ }\mu\text{l}$ づつ添加し

て酵素反応を停止させ、イムノリーダーで492nm の吸光度を測定した。既知量のOCIFを含む第1次反応バッファーについても同様に操作し、図14に示すようなOCIFの検量線を作成し、血清試料の吸光度から血清中のOCIF量を求めた。結果を表16に示す。

第16表

血清サンプル	OCIF量 (ng/ml)
1	5.0
2	2.0
3	1.0
4	3.0
5	1.5

〔実施例26〕

骨粗鬆症に対する治療効果

神経切除による不動性の骨萎縮モデルに対するOCIFの治療効果を確認した。Fischer系雄ラットを用い、6週齢（体重約120g）で左上腕神経叢を切除することにより、左前肢の不動化を惹起して骨萎縮モデルを作成した。OCIFは0.01%Tween80を含むPBS（-）で調整し、翌日から5μg/kg及び50μg/kgの用量で12時間間隔で1日2回、2週間連日静脈内投与した。正常群には偽手術を施し、対照群には0.01%Tween80を含むPBS（-）を同様に投与した。投与終了後、左上腕を摘出し骨強度を測定した。結果を図15に示す。

この結果、正常群に比べ対照群では骨強度の低下が観察されたが、OCIF 50μg/kg投与群において改善が認められた。

産業上の利用可能性

本発明により、新規な破骨細胞形成抑制活性を有する蛋白質及びその効率的な製造方法が提供される。本発明の蛋白質は破骨細胞形成抑制活性を有し、骨粗鬆症等各種の骨量減少性疾患の治療剤として或いはこれらの疾患の免疫学的診断の

ための抗原等として利用することができる。

寄託された微生物への言及

寄託機関の名称及びあて名

名 称：通商産業省工業技術院生命工学工業技術研究所

あて名：日本国茨城県つくば市東1丁目1番3号（郵便番号305）

寄託機関に寄託した日

平成7年6月21日（原寄託日）

（平成7年6月21日に寄託された微工研菌寄第P-14998号より移管、移管日

平成7年10月25日）

受託番号 F E R M BP-5267

配列表

配列番号：1

配列の長さ：6

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド (蛋白質の内部アミノ酸)

配列：

Xaa Tyr His Phe Pro Lys

1 5

配列番号：2

配列の長さ：14

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド (蛋白質の内部アミノ酸)

配列：

Xaa Gln His Ser Xaa Gln Glu Gln Thr Phe Gln Leu Xaa Lys

1 5 10

配列番号：3

配列の長さ：12

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド (蛋白質の内部アミノ酸)

配列：

Xaa Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys

1 5 10

配列番号：4

配列の長さ：380

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：蛋白質（O C I F；シグナル無し）

配列：

Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His	Tyr	Asp	Glu	Glu	Thr	Ser
1					5				10				15	
His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro	Pro	Gly	Thr	Tyr	Leu	Lys
					20				25				30	
Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr	Val	Cys	Ala	Pro	Cys	Pro
					35				40			45		
Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His	Thr	Ser	Asp	Glu	Cys	Leu
					50				55			60		
Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu	Gln	Tyr	Val	Lys	Gln	Glu
					65				70			75		
Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys	Glu	Cys	Lys	Glu	Gly	Arg
					80				85			90		
Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys	His	Arg	Ser	Cys	Pro	Pro
					95				100			105		
Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr	Pro	Glu	Arg	Asn	Thr	Val
					110				115			120		
Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe	Ser	Asn	Glu	Thr	Ser	Ser
					125				130			135		
Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn	Cys	Ser	Val	Phe	Gly	Leu
					140				145			150		
Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr	His	Asp	Asn	Ile	Cys	Ser
					155				160			165		

Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu
 170 175 180
 Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr
 185 190 195
 Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys
 200 205 210
 Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser
 215 220 225
 Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn
 230 235 240
 Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu
 245 250 255
 Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr
 260 265 270
 Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys
 275 280 285
 Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro
 290 295 300
 Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn
 305 310 315
 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His
 320 325 330
 Ser Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys
 335 340 345
 Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr
 350 355 360
 Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val
 365 370 375

Lys Ile Ser Cys Leu

380

配列番号：5

配列の長さ：401

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：蛋白質（O C I F；シグナル含む）

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser		
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1	1
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
100	105	110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe
 115 120 125
 Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
 130 135 140
 Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
 145 150 155
 His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
 160 165 170
 Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
 175 180 185
 Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
 190 195 200
 Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
 205 210 215
 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
 220 225 230
 Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
 235 240 245
 Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
 250 255 260
 Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
 265 270 275
 Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
 280 285 290
 Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Ser
 295 300 305
 Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
 310 315 320

Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr		
325	330	335
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe		
340	345	350
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly		
355	360	365
Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu		
370	375	380

配列番号：6

配列の長さ：1206

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F)

配列：

```

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGGAGTG CAATCGCACCC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
AGAAAAACACA CAAATTGCAG TGTCTTGCT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660

```

AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
 AACCGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960
 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGC CGACCAAGAC 1020
 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCAACTT TCCC AAAAC 1080
 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
 TATCAGAAAGT TATTTTTAGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTGC 1200
 TTATAA 1206

配列番号：7

配列の長さ：15

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド（蛋白質のN末端アミノ酸）

配列：

Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His	Tyr	Asp	Glu	Glu	Thr	Ser
1														
		5												
													10	
														15

配列番号：8

配列の長さ：1185

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F 2)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT 240
 CTATACTGCA GCCCCGTGTG CAAGGAGTGC AATCGCACCC ACAACCGCGT GTGCGAATGC 300
 AAGGAAGGGC GCTACCTTGA GATAGAGTTC TGCTTGAAAC ATAGGAGCTG CCCTCCTGGA 360
 TTTGGAGTGG TGCAAGCTGG AACCCCCAGAG CGAAATACAG TTTGCAAAAG ATGTCCAGAT 420
 GGGTTCTTCT CAAATGAGAC GTCACTCTAAA GCACCCGTGA GAAAACACAC AAATTGCAGT 480
 GTCTTGTC TCCTGCTAAC TCAGAAAGGA AATGCAACAC ACGACAACAT ATGTTCCCGA 540
 AACAGTGAAT CAACTCAAAA ATGTGGAATA GATGTTACCC TGTGTGAGGA GGCATTCTTC 600
 AGGTTTGCTG TTCCTACAAA GTTACGCCT AACTGGCTTA GTGTCTTGGT AGACAATTG 660
 CCTGGCACCA AAGTAAACGC AGAGAGTGTG GAGAGGATAA AACGGCAACA CAGCTCACAA 720
 GAACAGACTT TCCAGCTGCT GAAGTTATGG AAACATCAAA ACAAAAGACCA AGATATAGTC 780
 AAGAAGATCA TCCAAGATAT TGACCTCTGT GAAAACAGCG TGCAAGGGCA CATTGGACAT 840
 GCTAACCTCA CCTTCGAGCA GCTTCGTAGC TTGATGGAAA GCTTACCGGG AAAGAAAGTG 900
 GGAGCAGAAG ACATTGAAAA ACAATAAAAG GCATGCAAAC CCAGTGACCA GATCCTGAAG 960
 CTGCTCAGTT TGTGGCGAAT AAAAATGGC GACCAAGACA CCTTGAAGGG CCTAATGCAC 1020
 GCACTAAAGC ACTCAAAGAC GTACCACTTT CCCAAAATG TCACTCAGAG TCTAAAGAAG 1080
 ACCATCAGGT TCCTTCACAG CTTCACAAATG TACAAATTGT ATCAGAAGTT ATTTTAGAA 1140
 ATGATAGGTA ACCAGGTCCA ATCAGTAAAA ATAAGCTGCT TATAA 1185

配列番号：9

配列の長さ：394

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：蛋白質（O C I F 2）

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20														-10
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5														5
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10														20
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25														35
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40														50
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Cys
55														65
Asn	Arg	Thr	His	Asn	Arg	Val	Cys	Glu	Cys	Lys	Glu	Gly	Arg	Tyr
70														80
Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys	His	Arg	Ser	Cys	Pro	Pro	Gly
85														95
Phe	Gly	Val	Val	Gln	Ala	Gly	Thr	Pro	Glu	Arg	Asn	Thr	Val	Cys
100														110
Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe	Ser	Asn	Glu	Thr	Ser	Ser	Lys
115														125
Ala	Pro	Cys	Arg	Lys	His	Thr	Asn	Cys	Ser	Val	Phe	Gly	Leu	Leu
130														140
Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr	His	Asp	Asn	Ile	Cys	Ser	Gly
145														155
Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys	Gly	Ile	Asp	Val	Thr	Leu	Cys
160														170
Glu	Glu	Ala	Phe	Phe	Arg	Phe	Ala	Val	Pro	Thr	Lys	Phe	Thr	Pro
175														185

Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val
190 195 200
Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln
205 210 215
Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys
220 225 230
Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys
235 240 245
Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe
250 255 260
Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val
265 270 275
Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser
280 285 290
Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly
295 300 305
Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
310 315 320
Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys
325 330 335
Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln
340 345 350
Lys Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys
355 360 365
Ile Ser Cys Leu
370

配列番号：10

配列の長さ：1089

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F 3)

配列：

ATGAACAAAGT	TGCTGTGCTG	CGCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCCAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GAACCCCAGA	GCGAAATACA	420
TTTGCAAAA	GATGTCCAGA	TGGGTTCTTC	TCAAATGAGA	CGTCATCTAA	AGCACCCCTGT	480
AGAAAACACA	CAAATTGCAG	TGTCTTGTT	CTCCTGCTAA	CTCAGAAAGG	AAATGCAACA	540
CACGACAAACA	TATGTTCCGG	AAACAGTGAA	TCAACTCAA	AATGTGGAAT	AGATGTTACC	600
CTGTGTGAGG	AGGCATTCTT	CAGGTTTGCT	GTT CCTACAA	AGTTTACGCC	TAACTGGCTT	660
AGTGTCTTGG	TAGACAATT	GCCTGGCACC	AAAGTAAACG	CAGAGAGTGT	AGAGAGGATA	720
AAACGGCAAC	ACAGCTCACA	AGAACAGACT	TTCCAGCTGC	TGAAGTTATG	GAAACATCAA	780
AACAAAGACC	AAGATATAGT	CAAGAAGATC	ATCCAAGATA	TTGACCTCTG	TGAAAACAGC	840
GTGCAGCGGC	ACATTGGACA	TGCTAACCTC	AGTTTGTGGC	GAATAAAAAA	TGGCGACCAA	900
GACACCTTGA	AGGGCCTAAT	GCACGCACTA	AAGCACTCAA	AGACGTACCA	CTTCCCAGA	960
ACTGTCACTC	AGAGTCTAAA	GAAGACCATC	AGGTTCTTC	ACAGCTTCAC	AATGTACAAA	1020
TTGTATCAGA	AGTTATTTT	AGAAATGATA	GGTAACCAGG	TCCAATCACT	AAAAATAAGC	1080
TGCTTATAAA						1089

配列番号：11

配列の長さ：362

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質（O C I F 3）

配列：

Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser		
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
100	105	110
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe		
115	120	125

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140
Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
145 150 155
His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
250 255 260
Gly His Ala Asn Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln
265 270 275
Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr
280 285 290
Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile
295 300 305
Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
310 315 320
Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser
325 330 335

Cys Leu

340

配列番号：12

配列の長さ：465

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (OCIF4)

配列：

ATGAACAAAGT	TGCTGTGCTG	CTCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCCAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GTACGTGTCA	ATGTGCAGCA	420
AAATTAATTA	GGATCATGCA	AAGTCAGATA	GTGTGACAG	TTTAG		465

配列番号：13

配列の長さ：154

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質 (OCIF4)

配列：

Met	Asn	Lys	Leu	Leu	Cys	Cys	Ser	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20														-10
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5														5
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10														20
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25														35
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40														50
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55														65
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70														80
Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
85														95
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
100														110
Cys	Gln	Cys	Ala	Ala	Lys	Leu	Ile	Arg	Ile	Met	Gln	Ser	Gln	Ile
115														125
Val	Val	Thr	Val											
130														

配列番号：14

配列の長さ：438

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類 : c D N A (O C I F 5)

配列 :

ATGAACAAAGT	TGCTGTGCTG	CGCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCAAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GATGCAGGAG	AAGACCCAAG	420
CCACAGATAT	GTATCTGA					436

配列番号 : 15

配列の長さ : 140

配列の型 : アミノ酸

鎖の数 : 1

トポロジー : 直鎖状

配列の種類 : 蛋白質 (O C I F 5)

配列 :

Met	Asn	Lys	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20														
Ile														
	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
	-5													
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10														
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25														
					30						35			

Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40					45						50			
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55					60					65				
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70					75					80				
Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
85					90					95				
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Cys
100					105					110				
Arg	Arg	Arg	Pro	Lys	Pro	Gln	Ile	Cys	Ile					
115					120					125				

配列番号：16

配列の長さ：20

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーT3）

配列：

AATTAACCCCT CACTAAAGGG

20

配列番号：17

配列の長さ：22

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーT7）

配列：

GTAATACGAC TCACTATAGG GC

22

配列番号：18

配列の長さ：20

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF1）

配列：

ACATCAAAAC AAAGACCAAG

20

配列番号：19

配列の長さ：20

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF2）

配列：

TCTTGGTCTT TGTTTGATG

20

配列番号：20

配列の長さ：20

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF3）

配列：

TTATTCGCCA CAAACTGAGC

20

配列番号： 2 1

配列の長さ： 20

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF4）

配列：

TTGTGAAGCT GTGAAGGAAC

20

配列番号： 2 2

配列の長さ： 20

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF5）

配列：

GCTCAGTTG TGGCGAATAA

20

配列番号： 2 3

配列の長さ： 2 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF6）

配列：

GTGGGAGCAG AAGACATTGA

20

配列番号： 2 4

配列の長さ： 2 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF7）

配列：

AATGAACAAAC TTGCTGTGCT

20

配列番号： 2 5

配列の長さ： 2 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF8）

配列：

TGACAAATGT CCTCCTGGTA

20

配列番号： 2 6

配列の長さ： 2 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF9）

配列：

AGGTAGGTAC CAGGAGGACA

20

配列番号： 2 7

配列の長さ： 2 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF10）

配列：

GAGCTGCCCT CCTGGATTG

20

配列番号： 2 8

配列の長さ： 2 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF11）

配列：

CAAACGTAT TTTCGCTCTGG

20

配列番号： 29

配列の長さ： 20

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF12）

配列：

GTGTGAGGAG GCATTCTTCA

20

配列番号： 30

配列の長さ： 32

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC19SF）

配列：

GAATCAACTC AAAAAAGTGG AATAGATGTT AC

32

配列番号： 31

配列の長さ： 32

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC19SR）

配列：

GTAACATCTA TTCCACTTTT TTGAGTTGAT TC

32

配列番号：32

配列の長さ：30

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC20SF）

配列：

ATAGATGTTA CCCTGAGTGA GGAGGCATTC

30

配列番号：33

配列の長さ：30

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC20SR）

配列：

GAATGCCCTCC TCACTCAGGG TAACATCTAT

30

配列番号： 3 4

配列の長さ： 3 1

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC21SF）

配列：

CAAGATATTG ACCTCAGTGA AACACAGCGTG C

31

配列番号： 3 5

配列の長さ： 3 1

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC21SR）

配列：

GCACGCTGTT TTCACTGAGG TCAATATCTT G

31

配列番号： 3 6

配列の長さ： 3 1

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC22SF）

配列：

AAAACAATAA AGGCAAGCAA ACCCAGTGAC C

31

配列番号： 3 7

配列の長さ： 3 1

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC22SR）

配列：

GGTCACTGGG TTTGCTTGC C TTTATTGTTT T

31

配列番号： 3 8

配列の長さ： 3 1

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC23SF）

配列：

TCAGTAAAAA TAAGCAGCTT ATAAC TG GCC A

31

配列番号： 3 9

配列の長さ： 3 1

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーC23SR）

配列：

TGGCCAGTTA TAAGCTGCTT ATTTTTACTG A

31

配列番号：4 0

配列の長さ：2 2

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF 14）

配列：

TTGGGGTTTA TTGGAGGAGA TG

22

配列番号：4 1

配列の長さ：3 6

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR1F）

配列：

ACCACCCAGG AACCTTGCCC TGACCACTAC TACACA

36

配列番号：4 2

配列の長さ：3 6

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR1R）

配列：

GTCAGGGCAA GGTTCCCTGGG TGGTCCACTT AATGGA

36

配列番号：43

配列の長さ：36

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR2F）

配列：

ACCGTGTCG CCGAATGCAA GGAAGGGCGC TACCTT

36

配列番号：44

配列の長さ：36

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR2R）

配列：

TTCCTTGCAT TCGGCGCAC A CGGTCTTCCA CT TTGC

36

配列番号：45

配列の長さ：36

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR3F）

配列：

AACCGCGTGT GCAGATGTCC AGATGGGTTTC TTCTCA

36

配列番号：4 6

配列の長さ：36

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR3R）

配列：

ATCTGGACAT CTGCACACGC GGTTGTGGGT GCGATT

36

配列番号：4 7

配列の長さ：36

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR4F）

配列：

ACAGTTTGCA AATCCGGAAA CAGTGAATCA ACTCAA

36

配列番号： 4 8

配列の長さ： 36

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDCR4R）

配列：

ACTGTTCCG GATTTGCAAA CTGTATTCG CTCTGG

36

配列番号： 4 9

配列の長さ： 36

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDDD1F）

配列：

AATGTGGAAT AGATATTGAC CTCTGTGAAA ACAGCG

36

配列番号： 5 0

配列の長さ： 36

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDDD1R）

配列：

AGAGGTCAAT ATCTATTCCA CATTGGAG TTGATT

36

配列番号： 5 1

配列の長さ： 3 6

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDDD2F）

配列：

AGATCATCCA AGACCGACTA AAGCACTCAA AGACGT

36

配列番号： 5 2

配列の長さ： 3 6

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーDDD2R）

配列：

GCTTAGTGC GTCTGGATG ATCTTCTTGA CTATAT

36

配列番号： 5 3

配列の長さ： 2 9

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーXhoI F）

配列：

GGCTCGAGCG CCCAGCCGCC GCCTCCAAG

29

配列番号： 5 4

配列の長さ： 2 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーIF 16）

配列：

TTTGAGTGCT TTAGTGCCTG

20

配列番号： 5 5

配列の長さ： 3 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーCL F）

配列：

TCAGTAAAAA TAAGCTAACT GGAAATGGCC

30

配列番号： 5 6

配列の長さ： 3 0

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーCL R）

配列：

GGCCATTTCAGTTAGCTTA TTTTACTGA

30

配列番号：57

配列の長さ：29

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーCC R）

配列：

CCGGATCCTC AGTGCTTAG TGCGTGCAT

29

配列番号：58

配列の長さ：29

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：合成DNA（プライマーCCD2 R）

配列：

CCGGATCCTC ATTGGATGAT CTTCTTGAC

29

配列番号：59

配列の長さ：29

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成 D N A (プライマー-CCD1 R)

配列：

CCGGATCCTC ATATTCCACA TTTTGAGT

29

配列番号： 6 0

配列の長さ： 2 9

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成 D N A (プライマー-CCR4 R)

配列：

CCGGATCCTC ATTTGCAAAC TGTATTCG

29

配列番号： 6 1

配列の長さ： 2 9

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：合成 D N A (プライマー-CCR3 R)

配列：

CCGGATCCTC ATTGCGCACAC GCGGGTTGTG

29

配列番号：62

配列の長さ：401

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質 (O C I F - C 1 9 S)

配列：

Met Asn Asn Leu Leu Cys Cys Ala	Leu Val Phe Leu Asp Ile Ser	
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
100	105	110
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe		
115	120	125

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140
Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
145 150 155
His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Ser
160 165 170
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
250 255 260
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
265 270 275
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
280 285 290
Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
295 300 305
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
310 315 320
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
325 330 335

Val	Thr	Gln	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe	Leu	His	Ser	Phe
340							345				350			
Thr	Met	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu	Met	Ile	Gly
355							360				365			
Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser	Cys	Leu				
370							375				380			

配列番号：63

配列の長さ：401

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質（O C I F - C 2 O S）

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20								345					350	
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5											5			
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10								370					375	
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25											380			
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40								340			50			
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55											65			
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70											80			

Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
85														
														95
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
100														
														110
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
115														
														125
Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
130														
														140
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
145														
														155
His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys
160														
														170
Gly	Ile	Asp	Val	Thr	Leu	Ser	Glu	Glu	Ala	Phe	Phe	Arg	Phe	Ala
175														
														185
Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
190														
														195
														200
Asn	Leu	Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile
205														
														215
Lys	Arg	Gln	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys
220														
														225
														230
Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val	Lys	Lys	Ile
235														
														240
														245
Ile	Gln	Asp	Ile	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	Ile
250														
														255
														260
Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	Met	Glu
265														
														270
														275
Ser	Leu	Pro	Gly	Lys	Lys	Val	Gly	Ala	Glu	Asp	Ile	Glu	Lys	Thr
280														
														285
														290

Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
 295 300 305
 Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
 310 315 320
 Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
 325 330 335
 Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
 340 345 350
 Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
 355 360 365
 Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
 370 375 380

配列番号：64

配列の長さ：401

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質 (O C I F - C 2 1 S)

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser		
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His
40 45 50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu
55 60 65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys
70 75 80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys
85 90 95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr
100 105 110
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe
115 120 125
Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140
Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
145 150 155
His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245

Ile Gln Asp Ile Asp Leu Ser Glu Asn Ser Val Gln Arg His Ile		
250	255	260
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu		
265	270	275
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr		
280	285	290
Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser		
295	300	305
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu		
310	315	320
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr		
325	330	335
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe		
340	345	350
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly		
355	360	365
Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu		
370	375	380

配列番号：65

配列の長さ：401

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質 (OCIF-C22S)

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser

-20

-15

-10

Ile Lys Trp Thr Thr Gin Glu Thr Phe Pro Pro Lys Tyr Leu His
-5 -1 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro
10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr
25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Asp Ser Trp His
40 45 50

Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu
55 60 65

Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys
70 75 80

Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys
85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr
100 105 110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe
115 120 125

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
145 150 155

His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170

Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185

Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200

Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
250 255 260
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
265 270 275
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
280 285 290
Ile Lys Ala Ser Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
295 300 305
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
310 315 320
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
325 330 335
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
340 345 350
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
355 360 365
Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
370 375 380

配列番号：66

配列の長さ：401

配列の型：アミノ酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：蛋白質 (O C I F - C 2 3 S)

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20														
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5														
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10														
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25														
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40														
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55														
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70														
Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
85														
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
100														
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
115														
Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
130														
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
145														

His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
250 255 260
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
265 270 275
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
280 285 290
Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Ser
295 300 305
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
310 315 320
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
325 330 335
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
340 345 350
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
355 360 365

Asn Gln Val Gln Ser Val Lys Ile Ser Ser Leu
 370 375 380

配列番号： 6 7

配列の長さ： 3 6 0

配列の型： アミノ酸

鎖の数： 1

トポロジー： 直鎖状

配列の種類： 蛋白質 (O C I F - D C R 1)

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser			
-20	-15		-10
Ile Lys Trp Thr Thr Gln Glu Pro Cys Pro Asp His Tyr Tyr Thr			
-5	-1	1	5
Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val			
10	15		20
Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His			
25	30		35
Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu			
40	45		50
Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val			
55	60		65
Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro			
70	75		80
Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg			
85	90		95
Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys			
100	105		110

Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser
115 120 125
Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe
130 135 140
Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser
145 150 155
Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser
160 165 170
Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe
175 180 185
Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile
190 195 200
Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val
205 210 215
Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg
220 225 230
Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp
235 240 245
Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu
250 255 260
Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr
265 270 275
Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His
280 285 290
Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe
295 300 305
Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu
310 315 320

Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
 325 330 335

配列番号：68

配列の長さ：359

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質（O C I F – D C R 2）

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20													-10	
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5													5	
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10													20	
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25													35	
Val	Cys	Ala	Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe
40													50	
Cys	Leu	Lys	His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln
55													65	
Ala	Gly	Thr	Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp
70													80	
Gly	Phe	Phe	Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys
85													95	
His	Thr	Asn	Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly
100													110	

Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr
115 120 125
Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe
130 135 140
Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val
145 150 155
Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val
160 165 170
Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln
175 180 185
Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val
190 195 200
Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln
205 210 215
Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser
220 225 230
Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile
235 240 245
Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys
250 255 260
Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu
265 270 275
Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe
280 285 290
Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu
295 300 305
His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu
310 315 320

Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
 325 330 335

配列番号：69

配列の長さ：363

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質（O C I F - D C R 3）

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser		
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala		
85	90	95
Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu		
100	105	110

Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn
115 120 125
Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu
130 135 140
Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn
145 150 155
Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn
160 165 170
Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu
175 180 185
Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp
190 195 200
Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu
205 210 215
Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu
220 225 230
Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Val Gly
235 240 245
Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp
250 255 260
Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp
265 270 275
Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys
280 285 290
Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
295 300 305
Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys
310 315 320

Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile
 325 330 335
 Ser Cys Leu
 340

配列番号：70

配列の長さ：359

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質（O C I F – D C R 4）

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser			
-20	-15		-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His			
-5	-1	1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro			
10	15		20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr			
25	30		35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His			
40	45		50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu			
55	60		65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys			
70	75		80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys			
85	90		95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr
100 105 110
Pro Glu Arg Asn Thr Val Cys Lys Ser Gly Asn Ser Glu Ser Thr
115 120 125
Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe
130 135 140
Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val
145 150 155
Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val
160 165 170
Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln
175 180 185
Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val
190 195 200
Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln
205 210 215
Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser
220 225 230
Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile
235 240 245
Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys
250 255 260
Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu
265 270 275
Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe
280 285 290
Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu
295 300 305

His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu		
310	315	320
Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu		
325	330	335

配列番号 : 7 1

配列の長さ : 3 2 6

配列の型 : アミノ酸

鎖の数 : 1

トポロジー : 直鎖状

配列の種類 : 蛋白質 (O C I F - D D D 1)

配列 :

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser		
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr
100 105 110
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe
115 120 125
Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140
Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
145 150 155
His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170
Gly Ile Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
175 180 185
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
190 195 200
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
205 210 215
Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
220 225 230
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
235 240 245
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
250 255 260
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
265 270 275
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
280 285 290
Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
295 300 305

配列番号： 7 2

配列の長さ： 3 2 7

配列の型： アミノ酸

鎖の数： 1

トポロジー： 直鎖状

配列の種類： 蛋白質 (O C I F - D D D 2)

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20														
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5														
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10														
10				15					20					
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25					30					35				
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40					45					50				
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55					60					65				
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70					75					80				
Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
85					90					95				
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
100					105					110				
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
115					120					125				

Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
 130 135 140
 Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
 145 150 155
 His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
 160 165 170
 Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
 175 180 185
 Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
 190 195 200
 Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
 205 210 215
 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
 220 225 230
 Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
 235 240 245
 Ile Gln Asp Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys
 250 255 260
 Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser
 265 270 275
 Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile
 280 285 290
 Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
 295 300 305

配列番号：73

配列の長さ：399

配列の型：アミノ酸

鎖の数： 1

トポロジー：直鎖状

配列の種類：蛋白質（O C I F – C L）

配列：

Met Asn Asn Leu Leu Cys Cys Ala	Leu Val Phe Leu Asp Ile Ser	
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
100	105	110
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe		
115	120	125
Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn		
130	135	140
Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr		
145	150	155

His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
250 255 260
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
265 270 275
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
280 285 290
Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
295 300 305
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
310 315 320
Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
325 330 335
Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
340 345 350
Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
355 360 365

Asn Gln Val Gln Ser Val Lys Ile Ser

370

375

配列番号：74

配列の長さ：351

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質 (O C I F - C C)

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser		
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
100	105	110

Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe
115 120 125
Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140
Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
145 150 155
His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
250 255 260
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
265 270 275
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
280 285 290
Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Ser
295 300 305
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
310 315 320

Met His Ala Leu Lys His

325 330

配列番号 : 75

配列の長さ : 272

配列の型 : アミノ酸

鎖の数 : 1

トポロジー : 直鎖状

配列の種類 : 蛋白質 (OCIF-CDD2)

配列 :

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser		
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
100	105	110

Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys	Arg	Cys	Pro	Asp	Gly	Phe	Phe
115					120							125		
Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
130					135						140			
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
145					150					155				
His	Asp	Asn	Ile	Cys	Ser	Gly	Asn	Ser	Glu	Ser	Thr	Gln	Lys	Cys
160					165					170				
Gly	Ile	Asp	Val	Thr	Leu	Cys	Glu	Glu	Ala	Phe	Phe	Arg	Phe	Ala
175					180					185				
Val	Pro	Thr	Lys	Phe	Thr	Pro	Asn	Trp	Leu	Ser	Val	Leu	Val	Asp
190					195					200				
Asn	Leu	Pro	Gly	Thr	Lys	Val	Asn	Ala	Glu	Ser	Val	Glu	Arg	Ile
205					210					215				
Lys	Arg	Gln	His	Ser	Ser	Gln	Glu	Gln	Thr	Phe	Gln	Leu	Leu	Lys
220					225					230				
Leu	Trp	Lys	His	Gln	Asn	Lys	Asp	Gln	Asp	Ile	Val	Lys	Lys	Ile
235					240					245				
Ile	Gln													
250														

配列番号：76

配列の長さ：197

配列の型：アミノ酸

鎖の数：1

トポロジー：直鎖状

配列の種類：蛋白質（OCIF-CDD1）

配列：

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser
 -20 -15 -10
 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His
 -5 -1 1 5
 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro
 10 15 20
 Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr
 25 30 35
 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His
 40 45 50
 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu
 55 60 65
 Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys
 70 75 80
 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys
 85 90 95
 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr
 100 105 110
 Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe
 115 120 125
 Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
 130 135 140
 Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
 145 150 155
 His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
 160 165 170
 Gly Ile
 175

配列番号： 77

配列の長さ： 143

配列の型： アミノ酸

鎖の数： 1

トポロジー： 直鎖状

配列の種類： 蛋白質 (O C I F - C C R 4)

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20									-15					-10
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5					-1	1					5			
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10				15							20			
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25				30					35					
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40				45					50					
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55				60					65					
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70				75					80					
Glu	Cys	Lys	Glu	Gly	Arg	Tyr	Leu	Glu	Ile	Glu	Phe	Cys	Leu	Lys
85				90					95					
His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala	Gly	Thr
100				105					110					
Pro	Glu	Arg	Asn	Thr	Val	Cys	Lys							
115				120										

配列番号： 7 8

配列の長さ： 1 0 6

配列の型： アミノ酸

鎖の数： 1

トポロジー： 直鎖状

配列の種類： 蛋白質 (O C I F - C C R 3)

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20							-15						-10	
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5							-1	1				5		
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10							15					20		
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25							30					35		
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40							45					50		
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	Glu	Leu
55							60					65		
Gln	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys
70							75					80		
Glu														
85														

配列番号：79

配列の長さ：393

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：蛋白質 (O C I F - C B s t)

配列：

Met Asn Asn Leu Leu Cys Cys Ala	Leu Val Phe Leu Asp Ile Ser	
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
100	105	110
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe		
115	120	125
Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn		
130	135	140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
 145 150 155
 His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
 160 165 170
 Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
 175 180 185
 Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
 190 195 200
 Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
 205 210 215
 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
 220 225 230
 Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
 235 240 245
 Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
 250 255 260
 Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
 265 270 275
 Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
 280 285 290
 Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Ser
 295 300 305
 Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
 310 315 320
 Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
 325 330 335
 Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
 340 345 350

Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
 355 360 365
 Asn Leu Val
 370

配列番号 : 80

配列の長さ : 321

配列の型 : アミノ酸

トポロジー : 直鎖状

配列の種類 : 蛋白質 (O C I F - C S p h)

配列 :

Met Asn Asn Leu Leu Cys Cys Ala	Leu Val Phe Leu Asp Ile Ser	
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
10	15	20
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
25	30	35
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
40	45	50
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
55	60	65
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
70	75	80
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr
100 105 110
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe
115 120 125
Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
130 135 140
Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr
145 150 155
His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys
160 165 170
Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
175 180 185
Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
190 195 200
Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
205 210 215
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys
220 225 230
Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
235 240 245
Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
250 255 260
Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
265 270 275
Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
280 285 290
Ile Lys Ala Ser Leu Asp
295 300

配列番号： 8 1

配列の長さ： 202

配列の型： アミノ酸

トポロジー： 直鎖状

配列の種類： 蛋白質 (O C I F - C B s p)

配列：

Met Asn Asn Leu Leu Cys Cys Ala	Leu Val Phe Leu Asp Ile Ser	
-20	-15	-10
Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His		
-5	-1 1	5
10	15	20
Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro		
25	30	35
Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr		
40	45	50
Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His		
55	60	65
Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu		
70	75	80
Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys		
85	90	95
Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
100	105	110
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr		
115	120	125
Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe		
130	135	140

Ser	Asn	Glu	Thr	Ser	Ser	Lys	Ala	Pro	Cys	Arg	Lys	His	Thr	Asn
145														
Cys	Ser	Val	Phe	Gly	Leu	Leu	Leu	Thr	Gln	Lys	Gly	Asn	Ala	Thr
160														
His	Asp	Asn	Ile	Cys	Ser	Gly								
175														
							180							

配列番号：82

配列の長さ：84

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：蛋白質（O C I F - C P s t）

配列：

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20														
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5														
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10														
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25														
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40														
Thr	Ser	Asp	Glu	Cys	Leu	Tyr	Leu	Val						
55														
							60							

配列番号：83

配列の長さ：1206

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類： c D N A (O C I F - C 1 9 S)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAAACACT GTACAGCAA GTGGAAGACG 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
CTA1ACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCGT 480
AGAAAACACA CAAATTGCAG TGTCTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AAAGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAATGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCACT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCAACTT TCCCCAAACT 1080
GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTGC 1200
TTATAA 1206

配列番号： 8 4

配列の長さ： 1 2 0 6

配列の型： 核酸

鎖の数： 1

トポロジー： 直鎖状

配列の種類： c D N A (O C I F - C 2 0 S)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACCC 60
CAGGAAACGT TTCCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTIG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCCAG TGACGAGTGT 240
CTATACTGCA GCCCGGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACCC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGAGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATTG GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCAACTT TCCCAAAACT 1080
GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTAGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTGC 1200

TTATAA

1206

配列番号：85

配列の長さ：1206

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C 2 1 S)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGAC\ TCTCCATTAA GTGGACCACG 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCTGG TACCTACCTA AAACAACACT GTACAGCAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGC1 GGCACACCAAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCAC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTGCT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCAG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCACT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCAACTT TCCCCAAACT 1080

GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA CCTTCACAAT GTACAAATTG 1140
 TATCAGAACT TATTTTACA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTGC 1200
 TTATAA 1206

配列番号：86

配列の長さ：1206

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C 2 2 S)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCCGCC CTTGCCCTGA CCACTAACAC ACAGACAGCT GGACACACCAG TGACGAGTGT 240
 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCGT 480
 AGAAAACACA CAAATTGCAG TGTCTTGTT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AATGTGGAAT AGATGTTACC 600
 CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTTACGCC TAATGGCTT 660
 AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
 AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCAAGCAAA 960

CCCA GTG ACC AGAT CCT GAA GCT GCT CAG T TTGT GGC GAA TAAAAA ATGG CGAC CAAG AC 1020
AC CT TG AAG G GCCT AA TG CA CGC ACT AA AG CACT CAA AGA CGT ACC ACT T TCCC AAA ACT 1080
GTC ACT CAG A GTCT AA AGA A GACC AT CAGG TT CTT CACA GCT TCACA AT GTAC AA ATT G 1140
TAT CAG AAG T ATT TT TAG A AAT GATA GGT AACC AGGT CC AAT CAG T AAA AATA AGCT GC 1200
TTATAA 1206

配列番号：87

配列の長さ：1206

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (OCIF-C23S)

配列：

ATGA ACA ACT TGCT GTG CTG CGCG CT CGTG TTT CT GGACA TCT CCATTAA GTGG ACC ACC 60
CAGGAA AC GTT TTC CCT CAAA GTAC CCT CAT TATG AC GAAG AAAC CT CTCA TCAG CT GTTG 120
TGTG AC AAAT GT C CT CCT GG TAC CT ACCTA AAAC AAAC ACT GTAC AGC AAA GTGG AAG ACC 180
GTGT GCG CCC CTT GCC CT GA CCA CT ACT AC ACAG AC AGCT GGC AC ACC AG TGAC GAG GT 240
CTAT ACT GCA GCC CCG GTG CAAG GAG CTG CAG TAC GTCA AGC AGG AGT G CAAT CGC ACC 300
CAC A ACC CG CG TGT GCG AAT G CAAG GAAG GG CGCT ACCT TG AGA TAG AGT TT CTG TT GAAA 360
CATAG GAG CT GCC CT CCT GG ATT GGAG TG GTG CAAG CTG GAAC CC CAG A GCG AAAT ACA 420
GTTT GCA AAAA GAT GTCC AGA TGG GTT CT TC TCAA ATG AGA CGT CAT CTAA AGC ACC CT GT 480
AGAAA ACACA CAA ATT GCA G TGT CTT GGT CTC CTG CTAA CTC AGA AA AGG AA ATG CAAC A 540
CAC GACA ACA TAT GTT CC GG AA AC AGT GAA TCA ACT CAAA AAT GTG GAAT AG AT GTT ACC 600
CTGT GTG AGGG AGG CATT CTT CAG GTT TG CT GTT CCT AC TAA AGT TAC GGC TAA CT GG CT 660
AGT GTCT TGG TAG ACA AT TT GCCT GG CACC AA AGT AA AC G CAG AG AGT GT AG AG AGG ATA 720
AAAC GGG CAAC AC AG CT CACA AGA AC AG ACT TT CCAG CT GC TGA AGT TAT G GAA AC AT CAA 780
AACAA AG ACC AAG AT AT AGT CAAG AAG ATC AT CC AAG AT A TT GAC CT CTG TG AAA AC AGC 840

GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA 960
 CCCAGTGACC AGATCCTGAA GCTGCTCACT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020
 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCAACTT TCCCAAAACT 1080
 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
 TATCAGAAGT TATTTTAGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCAGC 1200
 TTATAA 1206

配列番号： 88

配列の長さ： 1083

配列の型： 核酸

鎖の数： 1

トポロジー： 直鎖状

配列の種類： cDNA (O C I F - D C R 1)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAACCTT GCCCTGACCA CTACTACACA GACAGCTGGC ACACCAGTGA CGAGTGTCTA 120
 TACTGCAGCC CCGTGTGCAA GGAGCTGCAG TACGTCAAGC AGGAGTGCCTA TCGCACCCAC 180
 AACCGCGTGT GCGAATGCAA GGAAGGGCGC TACCTTGAGA TAGAGTTCTG CTTGAAACAT 240
 AGGAGCTGCC CTCCTGGATT TGGAGTGGTG CAAGCTGGAA CCCCAGAGCG AAATACAGTT 300
 TGCAAAAGAT GTCCAGATGG GTTCTTCTCA AATGAGACGT CATCTAAAGC ACCCTGTAGA 360
 AAACACACAA ATTGCAGTGT CTTGGTCTC CTGCTAACTC AGAAAGGAAA TGCAACACAC 420
 GACAACATAT GTTCCGGAAA CAGTGAATCA ACTCAAAAT GTGGAATAGA TGTTACCCCTG 480
 TGTGAGGAGG CATTCTTCAG GTTGCTGTT CCTACAAAGT TTACGCCCTAA CTGGCTTAGT 540
 GTCTTGGTAG ACAATTGCCC TGGCACCAAA GTAAACGCAG AGAGTGTAGA GAGGATAAAA 600
 CGGCAACACA GCTCACAAGA ACAGACTTTC CAGCTGCTGA AGTTATGGAA ACATCAAAC 660
 AAAGACCAAG ATATAGTCAA GAAGATCATC CAAGATATTG ACCTCTGTGA AAACAGCGTG 720

CAGCGGCACA TTGGACATGC TAACCTCACCC TTCGAGCAGC TTCTGAGCTT GATGGAAAGC 780
 TTACCGGGAA AGAAAGTGGG AGCAGAAGAC ATTGAAAAAA CAATAAAGGC ATGCAAACCC 840
 AGTGACCAGA TCCTGAAGCT GCTCAGTTG TGCGAATAA AAAATGGCGA CCAAGACACC 900
 TTGAAGGGCC TAATGCACGC ACTAAAGCAC TCAAAGACGT ACCACTTC CAAAAGTGT 960
 ACTCAGAGTC TAAAGAAGAC CATCAGGTT CTTCACAGCT TCACAATGTA CAAATTGTAT 1020
 CAGAAGTTAT TTTAGAAAT GATAGGTAAC CAGGTCCAAT CAGTAAAAAT AAGCTGCTTA 1080
 TAA 1083

配列番号：89

配列の長さ：1080

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (OCIF-DCR2)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCGCCG AATGCAAGGA AGGGCGCTAC CTTGAGATAG AGTTCTGCTT GAAACATAGG 240
 AGCTGCCCTC CTGGATTTGG AGTGGTGCAA GCTGGAACCC CAGAGCGAAA TACAGTTGC 300
 AAAAGATGTC CAGATGGTT CTTCTCAAAT GAGACGTCAT CTAAAGCACC CTGTAGAAAA 360
 CACACAAATT GCAGTGTCTT TGGTCTCCTG CTAACTCAGA AAGGAAATGC AACACACGAC 420
 AACATATGTT CCGGAAACAG TGAATCAACT CAAAAATGTG GAATAGATGT TACCTGTGT 480
 GAGGAGGCAT TCTTCAGGTT TGCTGTTCT ACAAAAGTTA CGCCTAACTG GCTTAGTGTC 540
 TTGGTAGACA ATTTGCCTGG CACCAAAGTA AACGCAGAGA GTGTAGAGAG GATAAACCGG 600
 CAACACAGCT CACAAGAACAA GACTTTCCAG CTGCTGAAGT TATGGAAACA TCAAAACAAA 660
 GACCAAGATA TAGTCAAGAA GATCATCCAA GATATTGACC TCTGTGAAAA CAGCGTGCAG 720

CGGCACATIG GACATGCTAA CCTCACCTTC GAGCAGCTTC GTAGCTTGAT GGAAAGCTTA 780
 CCGGGAAAGA AAGTGGGAGC AGAAGACATT GAAAAAACAA TAAAGGCATG CAAACCCAGT 840
 GACCAGATCC TGAAGCTGCT CAGTTGTGG CGAATAAAA ATGGCGACCA AGACACCTTG 900
 AAGGGCCTAA TGCACGCACT AAAGCACTCA AAGACGTACC ACTTTCCCAA AACTGTCACT 960
 CAGAGTCTAA AGAAGACCAT CAGGTTCCCTT CACAGCTTCA CAATGTACAA ATTGTATCAC 1020
 AAGTTATTT TAGAAATGAT AGGTAACCAAG GTCCAATCAG TAAAAATAAG CTGCTTATAA 1080

配列番号：90

配列の長さ：1092

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - D C R 3)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACCC 180
 GTGTGCCGCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
 CTATACTGCA GCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
 CACAACCGCG TGTGCAGATG TCCAGATGGG TTCTTCTCAA ATGAGACGTC ATCTAAAGCA 360
 CCCTGTAGAA AACACACAAA TTGCAGTGTC TTTGGTCTCC TGCTAACTCA GAAAGGAAAT 420
 GCAACACACG ACAACATATG TTCCGGAAAC AGTGAATCAA CTCAAAAATG TGGAAATAGAT 480
 GTTACCCCTGT GTGAGGAGGC ATTCTTCAGG TTTGCTGTTG CTACAAAGTT TACGCCCTAAC 540
 TGGCTTAGTG TCTTGGTAGA CAATTTGCCT GGCACCAAAG TAAACGCAGA GAGTGTAGAG 600
 AGGATAAAAC GGCAACACAG CTCACAAGAA CAGACTTCC AGCTGCTGAA GTTATGGAAA 660
 CATCAAAACA AAGACCAAGA TATAGTCAG AAGATCATCC AAGATATTGA CCTCTGTGAA 720
 AACAGCGTGC AGCGGCACAT TGGACATGCT AACCTCACCT TCGAGCAGCT TCGTAGCTTG 780

ATGGAAAGCT TACCGGGAAA GAAAGTGGGA GCAGAAGACA TTGAAAAAAC AATAAAGGCA 840
TGCAAACCCA GTGACCAGAT CCTGAAGCTG CTCAGTTGT GGCGAATAAA AAATGCCGAC 900
CAAGACACCT TGAAGGGCCT AATGCACGCA CTAAGCACT CAAAGACGTA CCACTTCCC 960
AAAACTGTCA CTCAGAGTCT AAAGAAGACC ATCAGGTTCC TTCACAGCTT CACAATGTAC 1020
AAATTGTATC AGAAGTTATT TTTAGAAATG ATAGGTAACC AGGTCCAATC AGTAAAAATA 1080
AGCTGCTTAT AA 1092

配列番号：91

配列の長さ：1080

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (OCIF-DCR4)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGACACACCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAT CCGGAAACAG TGAATCAAAT CAAAAATGTG GAATAGATGT TACCCGTGT 480
GAGGAGGCAT TCTTCAGGTT TGCTGTTCCCT ACAAAAGTTA CGCCTAACTG GCTTAGTGTC 540
TTGGTAGACA ATTTGCCTGG CACCAAAGTA AACGCAGAGA GTGTAGAGAG GATAAAACGG 600
CAACACAGCT CACAAGAACCA GACTTCCAG CTGCTGAAGT TATGGAAACA TCAAAACAAA 660
GACCAAGATA TAGTCAAGAA GATCATCCAA GATATTGACC TCTGTGAAAA CAGCGTGCAG 720
CGGCACATTG GACATGCTAA CCTCACCTTC GAGCAGCTTC GTAGCTTGAT GGAAAGCTTA 780

CCGGGAAAGA AAGTGGGAGC AGAAGACATT GAAAAAACAA TAAAGGCATG CAAACCCAGT 840
 GACCAGATCC TGAAGCTGCT CAGTTGTGG CGAATAAAA ATGGCGACCA AGACACCTTG 900
 AAGGGCCTAA TGCACGCACT AAAGCACTCA AAGACGTACC ACTTTCCCA AACTGTCACT 960
 CAGAGTCTAA AGAAGACCAT CAGGTTCCCTT CACAGCTTCA CAATGTACAA ATTGTATCAG 1020
 AAGTTATTT TAGAAATGAT AGGTAACCAG GTCCAATCAG TAAAAATAAG CTGCTTATAA 1080

配列番号：92

配列の長さ：981

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - D D D 1)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGACACACCAG TGACGAGTGT 240
 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCAC 300
 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
 GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
 AGAAAAACACA CAAATTGCAG TGTCTTGTT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATATTGAC 600
 CTCTGTGAAA ACAGCGTGCA GCGGCACATT GGACATGCTA ACCTCACCTT CGAGCAGCTT 660
 CGTAGCTTGA TGGAAAGCTT ACCGGGAAAG AAAGTGGGAG CAGAAGACAT TGAAAAAACAA 720
 ATAAAGGCAT GCAAACCCAG TGACCAAGATC CTGAAGCTGC TCAGTTGTG GCGAATAAAA 780
 AATGGCGACC AAGACACCTT GAAGGGCCTA ATGCACGCAC TAAAGCACTC AAAGACGTAC 840

CACTTTCCCA AAACTGTCAC TCAGAGTCTA AAGAAGACCA TCAGGTTCT TCACAGCTTC 900
ACAATGTACA AATTGTATCA GAAGTTATTT TTAGAAATGA TAGGTAACCA GGTCCAATCA 960
GTAAAAATAA GCTGCTTATA A 981

配列番号：93

配列の長さ：984

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - D D D 2)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCCTCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGGAGTG CAATCGCAC 300
CACAAACCGCG TGTCCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCGT 480
AGAAAAACACA CAAATTGCAG TGTCTTGTT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATACT CAAGAAGATC ATCCAAGACG CACTAAAGCA CTCAAAGACG 840
TACCACTTTC CCAAAACTGT CACTCAGAGT CTAAGAAGA CCATCAGGTT CCTTCACAGC 900
TTCACAATGT ACAAAATTGTA TCAGAAGTTA TTTTAGAAA TGATAGGTAA CCAGGTCCAA 960

TCAGTAAAAA TAAGCTGCTT ATAA

984

配列番号 : 94

配列の長さ : 1200

配列の型 : 核酸

鎖の数 : 1

トポロジー : 直鎖状

配列の種類 : cDNA (O C I F - C L)

配列 :

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCCAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCAC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
AGAAAACACA CAAATTGCGAG TGTCTTGTT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCAATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020
ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080

GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCCTCAC A GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTAGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTAA 1200

配列番号：95

配列の長さ：1056

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C C)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCCTCTGG TACCTACCTA AAACAACACT GTACAGCAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGACTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCGT 480
AGAAAAACACA CAAATTGCAG TGTCTTGTT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATACT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCAATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020

GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
TATCAGAAGT TATTTTAGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTAA 1200

配列番号：95

配列の長さ：1056

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C C)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTAACAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACCC 300
CACAAACCGCC TGTGCGAATG CAAGGAAGGG CCCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACCGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCAATGCAAA 960
CCCAGTGACC AGATCCTGAA GCTGCTCACT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020

ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTGA

105C

配列番号： 9 6

配列の長さ： 8 1 9

配列の型： 核酸

鎖の数： 1

トポロジー： 直鎖状

配列の種類： c DNA (O C I F - C D D 2)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCCGCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACCC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTCCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
AGAAAACACA CAAATTGCAG TGTCTTGTT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAATGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAATGA 819

配列番号： 9 7

配列の長さ： 5 9 4

配列の型： 核酸

ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTGA

1056

配列番号：96

配列の長さ：819

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (OCIF-CDD2)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAAACGT TTCCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
 CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCAC 300
 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAN 360
 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCAGA GCGAAATACA 420
 GTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCGT 480
 AGAAAACACA CAAATTGCAG TGTCTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AATGTGGAAT AGATGTTACC 600
 CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCCTACAA AGTTTACGCC TAACTGGCTT 660
 AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
 AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAATGA 819

配列番号：97

配列の長さ：594

配列の型：核酸

CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGGAGTG CAATCGCACC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGC AAT GA 432

配列番号：99

配列の長さ：321

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C C R 3)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGGAGTG CAATCGCACC 300
CACAAACCGCG TGTGCGAATG A 321

配列番号：100

配列の長さ：1182

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C B s t)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCAC 60
 CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCCAG TGACGAGTGT 240
 CTATACTGCA GCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCAC 300
 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
 GTTIGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT 480
 AGAAAACACA CAAATTGCAG TGTCTTGCT CTCCTGCTAA CTCAGAAAGG AAATGCAACA 540
 CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AATGTGGAAT AGATGTTACC 600
 CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
 AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
 AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
 AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
 GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
 AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCAATGCAAA 960
 CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAAATGG CGACCAAGAC 1020
 ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCAACTT TCCCCAAACT 1080
 GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
 TATCAGAAGT TATTTTTAGA AATGATAGGT AACCTAGTCT AG 1182

配列番号： 1 0 1

配列の長さ： 966

配列の型：核酸

鎖の数： 1

トポロジー：直鎖状

配列の種類： cDNA (O C I F - C S p h)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
TGTGACAAAT GTCCTCTGG TACCTACCTA AAACAACACT GTACAGCAA GTGGAAGACC 180
GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAAG TGACGAGTGT 240
CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC 300
CACAAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
AGAAAAACACA CAAATTGCAG TGTCTTGGT CTCCCTGCTAA CTCAGAAAGG AAATGCAACA 540
CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAA AATGTGGAAT AGATGTTACC 600
CTGTGTGAGG AGGCATTCTT CAGGTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT 660
AGTGTCTTGG TAGACAATT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA 720
AACACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA 780
AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA 900
AGCTTACCGG GAAAGAAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCTAGTCTA 960
GACTAG 966

配列番号：102

配列の長さ：564

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C B s p)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60

CAGGAAACGT TTCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCCAG TGACGAGTGT 240
 CTATACTGCA GCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCAC 300
 CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA 360
 CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA 420
 GTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCCTGT 480
 AGAAAACACA CAAATTGCAG TGTCTTGCTAA CTCAGAAAGG AAATGCAACA 540
 CACGACAACA TATGTTCCGG CTAG 564

配列番号：103

配列の長さ：255

配列の型：核酸

鎖の数：1

トポロジー：直鎖状

配列の種類：cDNA (O C I F - C P s t)

配列：

ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 CAGGAAACGT TTCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG 120
 TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC 180
 GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCCAG TGACGAGTGT 240
 CTATACTAG TCTAG 255

配列番号：104

配列の長さ：1317

配列の型：核酸

鎖の数：2

トポロジー：直鎖状

配列の種類：g e n o m i c DNA (ヒトO C I FゲノムDNA-1)

配列：

```

CTGGAGACAT ATAAC TTGAA CACTTGGCCC TGATGGGAA GCAGCTCTGC AGGGACTTT 60
TCAGCCATCT GTAAACAATT TCAGTGGCAA CCCGCGAACT GTAATCCATG AATGGGACCA 120
CACTTACAA GTCATCAAGT CTAAC TTCTA GACCAGGGAA TTATGGGG AGACAGCGAA 180
CCCTAGAGCA AAGTGCCAAA CTTCTGTGA TAGCTTGAGG CTAGTGGAAA GACCTCGAGG 240
AGGCTACTCC AGAAGTTCAAG CGCGTAGGAA GCTCCGATAAC CAATAGCCCT TTGATGATGG 300
TGGGGTTGGT GAAGGGAAACA GTGCTCCGCA AGGTTATCCC TGCCCCAGGC AGTCCAATT 360
TCACTCTGCA GATTCTCTCT GGCTCTAACT ACCCCAGATA ACAAGGAGTG AATGCAGAAAT 420
ACCACGGGCT TTAGGGCCAA TCAGACATTA GTTAGAAAAA TTCCCTACTAC ATGGTTTATG 480
TAAACTTGAA GATGAATGAT TGCGAACTCC CCGAAAAGGG CTCAGACAAAT GCCATGCATA 540
AAGAGGGGCC CTGTAATTG AGGTTTCAGA ACCCGAAGTG AAGGGGTCAAG GCACCCGGGT 600
ACGGCGGAAA CTCACAGCCT TCGCCCAGCG AGAGGACAAA GGTCTGGGAC ACACCTAAC 660
TGCCTCCGGA TCTTGGCTGG ATCGGACTCT CAGGGTGGAG GAGACACAAG CACAGCAGCT 720
GCCCAAGCGTG TGCCCAGCCC TCCCACCGCT GGTCCCCGGCT GCCAGGAGGC TGGCCGCTGG 780
CGGGAAGGGG CGGGAAACC TCAGAGCCCC GCGGAGACAG CAGCCGCCTT GTTCCCTCAGC 840
CCGGTGGCTT TTTTTCCCC TGCTCTCCCA GGGGACAGAC ACCACCGCCC CACCCCTCAC 900
GCCCAACCTC CCTGGGGGAT CCTTCCGCC CCAGCCCTGA AAGCGTTAAT CCTGGAGCTT 960
TCTGCACACC CCCCCGACCGC TCCCAGCCAA GCTTCCTAAA AAAGAAAGGT GCAAAGTTG 1020
GTCCAGGATA GAAAAATGAC TGATCAAAGG CAGGCGATAAC TTCCCTGTTGC CGGGACGCTA 1080
TATATAACGT GATGAGCGCA CGGGCTGCGG AGACGCACCG GAGCGCTCGC CCAGCCGCCG 1140
CCTCCAAGGCC CCTGAGGTTT CGGGGGACCA CA ATG AAC AAG TTG CTG TGC TGC 1193

```

Met Asn Lys Leu Leu Cys Cys

-20

-15

GCG CTC GTG GTAAGTCCCT GGGCCAGCCG ACGGGTGCCG GGCGCCTGGG

1242

Ala Leu Val

GAGGCTGCTG CCACCTGGTC TCCCAACCTC CCAGCGGACC GGCGGGAAA AAGGCTCCAC 1302
TCGCTCCCTC CCAAG 1317

配列番号：105

配列の長さ：

配列の型：核酸

鎖の数：2

トポロジー：直鎖状

配列の種類：genomic DNA (ヒトOCT1FゲノムDNA-2)

配列：

GCTTACTTTG TGCCAAATCT CATTAGGCTT AAGGTAATAc AGGACTTTGA GTCAAATGAT	60	
ACTGTTGCAC ATAAGAACAA ACCTATTTC ATGCTAAGAT GATGCCACTG TGTTCCCTTC	120	
TCCTTCTAG TTT CTG GAC ATC TCC ATT AAG TGG ACC ACC CAG GAA ACG TTT	171	
Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe		
-10	-5	-1 +1

CCT CCA AAG TAC CTT CAT TAT GAC GAA GAA ACC TCT CAT CAG CTG TTG	219
Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu	
5 10 15	

TGT GAC AAA TGT CCT CCT GGT ACC TAC CTA AAA CAA CAC TGT ACA GCA	267
Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala	
20 25 30 35	

AAG TGG AAG ACC GTG TGC GCC CCT TGC CCT GAC CAC TAC TAC ACA GAC	315	
Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp		
40	45	50
AGC TGG CAC ACC AGT GAC GAG TGT CTA TAC TGC AGC CCC GTG TGC AAG	363	
Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys		
55	60	65
GAG CTG CAG TAC GTC AAG CAG GAG TGC AAT CGC ACC CAC AAC CGC GTC	411	
Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val		
70	75	80
TGC GAA TGC AAG GAA GGG CGC TAC CTT GAG ATA GAG TTC TGC TTG AAA	459	
Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys		
85	90	95
CAT AGG AGC TGC CCT CCT GGA TTT GGA GTG GTG CAA GCT G GTACGTGTCA	509	
His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala		
100	105	110
ATGTGCAGCA AAATTAATTAA GGATCATGCA AAGTCAGATA GTTGTGACAG TTTAGGAGAA	569	
CACTTTGTT CTGATGACAT TATAGGATAG CAAATTGCAA AGGTAATGAA ACCTGCCAGG	629	
TAGGTACTAT GTGTCTGGAG TGCTTCCAAA GGACCATTGC TCAGAGGAAT ACTTGCCAC	689	
TACAGGGCAA TTTAATGACA AATCTCAAAT GCAGCAAATT ATTCTCTCAT GAGATGCATG	749	
ATGGTTTTTT TTTTTTTTT TAAAGAAACA AACTCAAGTT GCACTATTGA TAGTTGATCT	809	
ATACCTCTAT ATTCACTTC AGCATGGACA CCTTCAAACG GCAGCACTT TTGACAAACA	869	
TCAGAAATGT TAATTTATAC CAAGAGAGTA ATTATGCTCA TATTAATGAG ACTCTGGAGT	929	
GCTAACAAATA AGCAGTTATA ATTAATTATG TAAAAAATGA GAATGGTGAG GGGAAATTGCA	989	

TTTCATTATT AAAAACAAAGG CTAGTTCTTC CTTAGCATG GGAGCTGAGT GTTGAGGG 1049
GTAAGGACTA TAGCAGAAC TCTTCAATGA GCTTATTCTT TATCTTAGAC AAAACAGATT 1109
GTCAAGCCAA GAGCAAGCAC TTGCCTATAA ACCAAGTGCT TTCTCTTTG CATTGAAAC 1169
AGCATTGGTC AGGGCTCATG TGTATTGAAT CTTTAAACC AGTAACCCAC GTTTTTTC 1229
TGCCACATTT GCGAAGCTTC AGTGCAGCCT ATAACCTTTC ATAGCTTGAG AAAATTAAGA 1289
GTATCCACTT ACTTAGATGG AAGAAGTAAT CAGTATAGAT TCTGATGACT CAGTTGAAAG 1349
CAGTGTTCCT CAACTGAAGC CCTGCTGATA TTTAAGAAA TATCTGGATT CCTAGGCTGG 1409
ACTCCTTTT GTGGGCAGCT GTCCTGCGCA TTGTAGAATT TTGGCAGCAC CCCTGGACTC 1469
TAGCCACTAG ATACCAATAG CAGTCCTTCC CCCATGTGAC AGCCAAAAAT GTCTTCAGAC 1529
ACTGTCAAAT GTCGCCAGGT GGCAAAATCA CTCCTGGTTG AGAACAGGGT CATCAATGC1 1589
AAGTATCTGT AACTATTTA ACTCTCAAAA CTTGTGATAT ACAAAAGTCTA AATTATTAGA 1649
CGACCAATAAC TTTAGGTTA AAGGCATACA AATGAAACAT TCAAAATCA AAATCTATTG 1709
TGTTTCTCAA ATAGTGAATC TTATAAAATT AATCACAGAA GATGCAAATT GCATCAGAGT 1769
CCCTTAAAT TCCTCTTCTG ATGAGTATTG GAGGGAGGAA TTGGTGATAG TTCCTACTTT 1829
CTATTGGATG GTACTTGAG ACTCAAAAGC TAAGCTAAGT TGTGTGTGTG TCAGGGTGCG 1889
GGGTGTGGAA TCCCATCAGA TAAAAGCAAA TCCATGTAAT TCATTCAAGTA AGTTGTATAT 1949
GTAGAAAAAT GAAAAGTGGG CTATGCAGCT TGGAAACTAG AGAATTGAA AAAATAATGG 2009
AAATCACAAG GATCTTCTT AAATAAGTAA GAAAATCTGT TTGTAGAATG AAGCAAGCAG 2069
GCAGCCAGAA GACTCAGAAC AAAAGTACAC ATTTTACTCT GTGTACACTG GCAGCACAGT 2129
GGGATTATT TACCTCTCCC TCCCTAAAAA CCCACACAGC GGTTCTCTT GGGAAATAAG 2189
AGGTTTCCAG CCCAAAGAGA AGGAAAGACT ATGTGGTGTT ACTCTAAAAA GTATTTATA 2249
ACCGTTTGT TGTGCTGTT GCTGTTTGA AATCAGATTG TCTCCTCTCC ATATTTATT 2309
TACTTCATTC TGTTAATTCC TGTGGAATT A CTTAGAGCAA GCATGGTGAAT TTCTCAACTG 2369
TAAAGCCAAA TTTCTCCATC ATTATAATT CACATTTGC CTGGCAGGTT ATAATTTTA 2429
TATTTCCACT GATAGTAATA AGGTAAAATC ATTACTAGA TGGATAGATC TTTTCATAA 2489
AAAGTACCAT CAGTTATAGA GGGAAAGTCAT GTTCATGTTC AGGAAGGTCA TTAGATAAAG 2549
CTTCTGAATA TATTATGAAA CATTAGTTCT GTCATTCTTA GATTCTTTT GTAAATAAC 2609
TTTAAAGCT AACCTACCTA AAAGAAATAT CTGACACATA TGAACCTCTC ATTAGGATGC 2669

AGGAGAAGAC CCAAGCCACA GATATGTATC TGAAGAACATGAC ACAAAGATTCT TAGGCCCGGC	2729
ACGGTGGCTC ACATCTGTAA TCTCAAGAGT TTGAGAGGTC AAGGCAGGGCA GATCACCTGA	2789
GGTCAGGAGT TCAAGACCAG CCTGGCCAAC ATGATGAAAC CCTGCCTCTA CTAAAAATAC	2849
AAAAATTAGC AGGGCATGGT GGTGCATGCC TGCAACCCCTA GCTACTCAGG AGGCTGAGAC	2909
AGGAGAACATCT CTTGAACCCCT CGAGGGGGAG GTTGTGGTGA GCTGAGATCC CTCTACTGCA	2969
CTCCAGCCTG GGTGACAGAG ATGAGACTCC GTCCCTGCCG CCGCCCCCGC CTTCCCCCCC	3029
AAAAAGATTCT TTCTTCATGC AGAACATAACG GCAGTCAAACA AAGGGAGACC TGGGTCCAGG	3089
TGTCCAAGTC ACTTATTCG AGTAAATTAG CAATGAAAGA ATGCCATGGA ATCCCTGCC	3149
AAATACCTCT GCTTATGATA TTGTAGAATT TGATATAGAC TTGTATCCCA TTTAAGGAGT	3209
AGGATGTAGT AGGAAAGTAC TAAAAACAAA CACACAAACA GAAAACCCCTC TTTGCTTTG	3269
AAGGTGGTTC CTAAGATAAT GTCAAGTCAA TGCTGGAAAT AATATTTAAT ATGTGAAGGT	3329
TTTAGGCTGT GTTTCCCT CCTGTTCTTT TTTCTGCCA GCCCTTGTC ATTTTGCA	3389
GTCAATGAAT CATGTAGAAA GAGACAGGAG ATGAAACTAG AACCAAGTCCA TTTGCCCT	3449
TTTTTATTCT TCTGGTTTG GTAAAAGATA CAATGAGGTA GGAGGTTGAG ATTTATAAAT	3509
GAAGTTTAAT AAGTTCTGT AGCTTGATT TTTCTTTTC ATATTGTTA TCTTGCAAA	3569
GCCAGAATTG GCCTGTAAAA TCTACATATG GATATTGAAG TCTAAATCTG TTCAACTAGC	3629
TTACACTAGA TGGAGATATT TTCATATTCA GATACACTGG AATGTATGAT CTAGCCATGC	3689
GTAATATAGT CAAGTGTTC AAGGTATTAA TTTTAATAG CGTCTTAGT TGTGGACTGG	3749
TTCAAGTTTT TCTGCCAATG ATTTCTCAA ATTTATCAA TATTTTCCA TCATGAAGTA	3809
AAATGCCCTT GCAGTCACCC TTCTGAAGT TTGAACGACT CTGCTGTTT AAACAGTTA	3869
AGCAAATGGT ATATCATCTT CCGTTACTA TGTAGCTAA CTGCAGGCTT ACGCTTTGA	3929
GTCAGCGGCC AACTTTATTG CCACCTCAA AAGTTATTAA TAATGTTGTA AATTTTACT	3989
TCTCAAGGTT AGCATACTTA GGAGTTGCTT CACAATTAGG ATTCAAGGAAA GAAAGAACCT	4049
CAGTAGGAAC TGATTGGAAT TTAATGATGC AGCATTCAAT GGGTACTAAT TTCAAAGAAT	4109
GATATTACAG CAGACACACA GCAGTTATCT TGATTTCTA GGAATAATTG TATGAAGAAT	4169
ATGGCTGACA ACACGGCCTT ACTGCCACTC AGCGGAGGCT GGACTAATGA ACACCCCTACC	4229
CTCTTTCTT TTCTCTCAC ATTCATGAG CGTTTGAG GTAACGAGAA AATTGACTTG	4289
CATTTGCATT ACAAGGAGGA GAAACTGGCA AAGGGGATGA TGGTGGAAAGT TTTGTTCTGT	4349

CTAATGAAGT GAAAAATGAA AATGCTAGAG TTTTGTGCAA CATAATAGTA GCAGTAAAAA 4409
 CCAAGTGAAA AGTCTTCGA AAACGTGTT AAGAGGGCAT CTGCTGGAA ACGATTTGAG 4469
 GAGAAGGTAC TAAATTGCTT GGTATTTCC GTAG GA ACC CCA GAG CGA AAT ACA 4523

Gly Thr Pro Glu Arg Asn Thr

115

GTT TGC AAA AGA TGT CCA GAT GGG TTC TTC TCA AAT GAG ACG TCA TCT 4571
 Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser
 120 125 130 135

AAA GCA CCC TGT AGA AAA CAC ACA AAT TGC AGT GTC TTT GGT CTC CTG 4619
 Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu
 140 145 150

CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC 4667
 Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn
 155 160 165

AGT GAA TCA ACT CAA AAA TGT GGA ATA G GTAATTACAT TCCAAAATAC 4715
 Ser Glu Ser Thr Gln Lys Cys Gly Ile
 170 175

GTCTTTGTAC GATTTGTAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC 4775
 ACATTCTTGG TCAAAACTTAC ATTTCCCTT TCTTGAATCT TAACCAGCTA AGGCTACTCT 4835
 CGATGCATTA CTGCTAAAGC TACCACTCAG AATCTCTCAA AAACTCATCT TCTCACAGAT 4895
 AACACCTCAA AGCTTGATTIT TCTCTCCTTT CACACTGAAA TCAAATCTTG CCCATAGGCA 4955
 AAGGGCAGTG TCAAGTTGC CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA 5015
 CGTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA CTAAAGTATA TATTGGCAAC 5075

TAAGAAGCAA	AGTGATATAA	ACATGATGAC	AAATTAGGCC	AGGCATGGTG	GCTTACTCCT	5135	
ATAATCCCAA	CATTTGGGG	GGCCAAGGTA	GGCAGATCAC	TTGAGGTCA	GATTTCAAGA	5195	
CCAGCCTGAC	CAACATGGTG	AAACCTGTC	TCTACTAAA	ATACAAAAAT	TAGCTGGCA	5255	
TGGTAGCAGG	CACTTCTAGT	ACCAGCTACT	CAGGGCTGAG	GCAGGAGAAT	CGCTTGAACC	5315	
CAGGAGATGG	AGGTTGCAGT	GAGCTGAGAT	TGTACCACTG	CACTCCAGTC	TGGGCAACAG	5375	
AGCAAGATT	CATCACACAC	ACACACACAC	ACACACACAC	ACACATTAGA	AATGTCTACT	5435	
TGGCTTTGTT	ACCTATGGTA	TTAGTGCATC	TATTGCATGG	AACTTCCAAG	CTACTCTGGT	5495	
TGTGTTAACG	TCTTCATTGG	GTACAGGTCA	CTAGTATTAA	GTTCAGGTTA	TTGGATGCA	5555	
TTCCACGGTA	GTGATGACAA	TTCATCAGGC	TAGTGTGTG	GTTCACCTTG	TCACTCCCAC	5615	
CACTAGACTA	ATCTCAGACC	TTCACTCAAA	GACACATTAC	ACTAAAGATG	ATTIGCTTT	5675	
TTGTGTTAA	TCAAGCAATG	GTATAAACCA	GCTTGACTCT	CCCCAAACAG	TTTTCGTAC	5735	
TACAAAGAAG	TTTATGAAGC	AGAGAAATGT	GAATTGATAT	ATATATGAGA	TTCTAACCCA	5795	
GTTCCAGCAT	TGTTTCATTG	TGTAATTGAA	ATCATAGACA	AGCCATTITA	GCCTTGCTT	5855	
TCTTATCTAA	AAAAAAA	AAAAAAATGA	AGGAAGGGT	ATTAAGGA	GTGATCAAAT	5915	
TTTAACATTC	TCTTTAATT	ATTCA	TTTACTT	TTTTCA	ATTGTGCACT	5975	
TACTATGTGG	TACTGTGCTA	TAGAGGCTTT	AACATTATA	AAAACACTGT	GAAAGTTGCT	6035	
TCAGATGAAT	ATAGGTAGTA	GAACGGCAGA	ACTAGTATT	AAAGCCAGGT	CTGATGAATC	6095	
CAAAAACAAA	CACCCATTAC	TCCCATTTC	TGGGACATAC	TTACTCTACC	CAGATGCTCT	6155	
GGGCTTGTA	ATGCCTATGT	AAATAACATA	GT	TTTATGTT	TGGTTATT	6215	
GTCTACTTAT	ATATCTGTAT	CTATCTCTG	CTTGTTCC	AAAGGTAAAC	TATGTGTCTA	6275	
AATGTGGGCA	AAAAATAACA	CACTATTCCA	AATTACTGTT	CAAATTCTT	TAAGTCAGTG	6335	
ATAATTATT	GT	TTTGACAT	TAATCATGAA	GT	TCCTGTG	GGTACTAGGT	6395
TAGAATGTTA	ATGTTGTAT	TCATTATAAG	AATTG	TTGC	TGTTACTTAT	TTACAACAA	6455
ATTCACTCT	AATTAGACAT	TTACTAAACT	TTCTCTTGA	AA	ACAATGCC	AAAAAAGAAC	6515
ATTAGAAGAC	ACGTAAGCTC	AGTTGGTCTC	TGCCACTAAG	ACCAGCCAAC	AGAAGCTTGA	6575	
TTTTATTCAA	ACTTGCA	TTAGCATATT	TTATCTTGG	AAATTCAATT	GTGTTGGTT	6635	
TTTGT	TTTGATTGA	ATAGACTCTC	AGAAATCCAA	TTGTTGAGTA	AATCTCTGG	6695	
TTTTCTAAC	CTTCTTTAG	AT	GTT ACC CTG TGT	GAG GAG GCA	TTC TTC AGG	6747	

	Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Ars	
	180	185
TTT GCT GTT CCT ACA AAG TTT ACG CCT AAC TGG CTT AGT GTC TTG GTA		6795
Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val		
190	195	200
GAC AAT TTG CCT GGC ACC AAA GTA AAC GCA GAG AGT GTA GAG AGG ATA		6843
Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile		
205	210	215
AAA CGG CAA CAC AGC TCA CAA GAA CAG ACT TTC CAG CTG CTG AAG TTA		6891
Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu		
220	225	230
235		
TGG AAA CAT CAA AAC AAA GAC CAA GAT ATA GTC AAG AAG ATC ATC CAA G		6940
Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln		
240	245	250
GTAATTACAT TCCAAAATAC GTCTTGTAC GATTTGTAG TATCATCTCT CTCTCTGAGT		7000
TGAACACAAG GCCTCCAGCC ACATTCTTGG TCAAACCTAC ATTTCCCTT TCTTGAATCT		7060
TAACCAGCTA AGGCTACTCT CGATGCATTA CTGCTAAAGC TACCACTCAG AATCTCTCAA		7120
AAACTCATCT TCTCACAGAT AACACCTCAA AGCTTGATTT TCTCTCCTT CACACTGAAA		7180
TCAAATCTTG CCCATAGGCA AAGGGCAGTG TCAAGTTGC CACTGAGATG AAATTAGGAG		7240
AGTCCAAACT GTAGAATTCA CGTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA		7300
CTAAAGTATA TATTGGCAAC TAAGAAGCAA AGTGATATAA ACATGATGAC AAATTAGGCC		7360
AGGCATGGTG GCTTACTCCT ATAATCCCAA CATTGGGG GGCCAAGGTA GGCAAGATCAC		7420
TTGAGGTCAG GATTTCAAGA CCAGCCTGAC CAACATGGTG AAACCTTGTC TCTACTAAAA		7480

ATACAAAAAT TAGCTGGCA TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG	7540
GCAGGAGAAT CGCTTGAACC CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG	7600
CACTCCAGTC TGGGCAACAG AGCAAGATT CATCACACAC ACACACACAC ACACACACAC	7660
ACACATTAGA AATGTGTACT TGGCTTGTT ACCTATGGTA TTAGTGCATC TATTGCATGG	7720
AACTTCCAAG CTACTCTGGT TGTGTTAACGC TCTTCATTGG GTACAGGTCA CTAGTATTAA	7780
GTTCAGGTTA TTCGGATGCA TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT	7840
GTCACCTTG TCACCTCCCAC CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC	7900
ACTAAAGATG ATTTGCTTT TTGTGTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT	7960
CCCCAAACAG TTTTCGTAC TACAAAGAAG TTTATGAAGC AGAGAAATGT GAATTGATAT	8020
ATATATGAGA TTCTAACCCA GTTCCAGCAT TGTTTCATTC TGTAATTGAA ATCATAGACA	8080
AGCCATTTA GCCTTGCTT TCTTATCTAA AAAAAAAA AAAAAAATGA AGGAAGGGGT	8140
ATTTAAAGGA GTGATCAAAT TTTAACATTTC TCTTTAATTAA ATTCAATTTT AATTTACTT	8200
TTTTTCATT ATTGTGCACT TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTATA	8260
AAAACACTGT GAAAGTTGCT TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATTTC	8320
AAAGCCAGGT CTGATGAATC CAAAAACAAA CACCCATTAC TCCCATTTC TGGGACATAC	8380
TTACTCTACC CAGATGCTCT GGGCTTGTA ATGCCATGT AAATAACATA GTTTTATGTT	8440
TGGTTATTAA CCTATGTAAT GTCTACTTAT ATATCTGTAT CTATCTCTG CTTTGTTC	8500
AAAGGTAAAC TATGTGTCTA AATGTGGCA AAAAATAACA CACTATTCCA AATTACTGTT	8560
CAAATTCTT TAAGTCAGTG ATAATTATTT GTTTGACAT TAATCATGAA GTTCCCTGTG	8620
GGTACTAGGT AAACCTTAA TAGAATGTTA ATGTTGTAT TCATTATAAG AATTTTGGC	8680
TGTTACTTAT TTACAACAAT ATTCACTCT AATTAGACAT TTACTAAACT TTCTCTGAA	8740
AACAATGCCA AAAAAAGAAC ATTAGAAGAC ACGTAAGCTC AGTTGGTCTC TGCCACTAAG	8800
ACCAGCCAAAC AGAAGCTTGA TTTTATTCAA ACTTTGCATT TTAGCATATT TTATCTTGG	8860
AAATTCAATT GTGTTGGTTT TTTGTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA	8920
TTGTTGAGTA AATCTTCTGG GTTTCTAAC CTTTCTTAG A1 ATT GAC CTC TGT	8974

Asp Ile Asp Leu Cys

255

GAA AAC AGC GTG CAG CGG CAC ATT GGA CAT GCT AAC CTC ACC TTC GAC			9022
Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu			
260	265	270	
CAG CTT CGT AGC TTG ATG GAA AGC TTA CCG GGA AAG AAA GTG GGA GCA			9070
Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala			
275	280	285	
GAA GAC ATT GAA AAA ACA ATA AAG GCA TGC AAA CCC AGT GAC CAG ATC			9118
Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile			
290	295	300	
CTG AAG CTG CTC AGT TTG TGG CGA ATA AAA AAT GGC GAC CAA GAC ACC			9166
Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr			
305	310	315	320
TTG AAG GGC CTA ATG CAC GCA CTA AAG CAC TCA AAG ACG TAC CAC TTT			9214
Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe			
325	330	335	
CCC AAA ACT GTC ACT CAG AGT CTA AAG AAG ACC ATC AGG TTC CTT CAC			9262
Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His			
340	345	350	
AGC TTC ACA ATG TAC AAA TTG TAT CAG AAG TTA TTT TTA GAA ATG ATA			9310
Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile			
355	360	365	

GGT AAC CAG GTC CAA TCA GTA AAA ATA AGC TGC TTA TAACTGGAAA	9356	
Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu		
370	375	380
TGGCCATTGA GCTGTTCTT CACAATTGGC GAGATCCCAT GGATGAGTAA ACTGTTCTC	9416	
AGGCACCTGA GGCTTCAGT GATATCTTC TCATTACCAAG TGACTAATT TGCCACAGGG	9476	
TACTAAAAGA AACTATGATG TGGAGAAAGG ACTAACATCT CCTCCAATAA ACCCCAAATG	9536	
GTAAATCCAA CTGTCAGATC TGGATCGTTA TCTACTGACT ATATTTCCC TTATTACTGC	9596	
TTGCAGTAAT TCAACTGGAA ATTAAAAAAA AAAAAGTAGA CTCCACTGGG CCTTACTAAA	9656	
TATGGGAATG TCTAACTTAA ATAGCTTGG GATTCCAGCT ATGCTAGAGG CTTTTATTAG	9716	
AAAGCCATAT TTTTTCTGT AAAAGTTACT AATATATCTG TAACACTATT ACAGTATTGC	9776	
TATTTATATT CATTAGATA TAAGATTTGG ACATATTATC ATCCTATAAA GAAACGGTAT	9836	
GACTTAATT TAGAAAGAAA ATTATATTCT GTTTATTATG ACAAAATGAAA GAGAAAATAT	9896	
ATATTTTAA TGGAAAGTTT GTAGCATTCT TCTAATAGGT ACTGCCATAT TTTCTGTGT	9956	
GGAGTATTCT TATAATTAA TCTGTATAAG CTGTAATATC ATTTTATAGA AAATGCATTA	10016	
TTTAGTCAAT TGTTAATGT TGGAAAACAT ATGAAATATA AATTATCTGA ATATTAGATG	10076	
CTCTGAGAAA TTGAATGTAC CTTATTTAAA AGATTTATG GTTTATAAC TATATAAATG	10136	
ACATTATTAA AGTTTCAAAT TTATTTAA TTGCTTCTC TGTGCTTT ATTT	10190	

請求の範囲

1. 次の物理化学的性質をもち、破骨細胞の分化及び／又は成熟抑制活性のある蛋白質。
 - (a) 分子量 (S D S - P A G E による) ; 約60kD (還元条件下)、約60kD及び約120 kD (非還元条件下)
 - (b) 親和性；陽イオン交換体及びヘパリンに親和性を有する。
 - (c) 熱安定性；70°C、10分間又は56°C、30分間の加熱処理により破骨細胞の分化・成熟抑制活性が低下し、90°C、10分間の加熱処理により破骨細胞の分化・成熟抑制活性が失なわれる。
 - (d) アミノ酸配列；内部アミノ酸配列として配列表 配列番号 1 ~ 3 のアミノ酸配列をもつ。
2. N末端配列が配列表 配列番号 7 のアミノ酸配列で示される、請求項 1 記載の蛋白質。
3. ヒト線維芽細胞が産生する、請求項 1 記載の蛋白質。
4. ヒト線維芽細胞を細胞培養し、培養液をイオン交換カラム、アフィニティーカラム及び逆相カラムへの吸着及び溶出を行なって精製することを特徴とする請求項 1 ~ 3 のいずれかに記載の蛋白質の製造方法。
5. アルミナセラミック片を担体として使用して細胞培養を行なう請求項 4 記載の蛋白質の製造方法。
6. 配列表 配列番号 4 のアミノ酸配列で示される蛋白質。
7. 配列表 配列番号 4 で示されるアミノ酸配列をコードする c D N A。
8. 配列表 配列番号 6 の塩基配列で示される c D N A。
9. 配列表 配列番号 6 の塩基配列で示される c D N A と比較的温和な条件下でハイブリダイズする D N A。
10. 配列表 配列番号 4 で示されるアミノ酸配列をコードする c D N A が発現された蛋白質。
11. 配列表 配列番号 4 で示されるアミノ酸配列と80%以上の相同性を有するア

23. 配列表 配列番号 1 3 で示されるアミノ酸配列をコードする c DNA。
24. 配列表 配列番号 1 4 の塩基配列で示される c DNA。
25. 配列表 配列番号 1 4 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
26. 配列表 配列番号 1 5 で示されるアミノ酸配列をコードする c DNA。
27. 配列表 配列番号 8 3 の塩基配列で示される c DNA。
28. 配列表 配列番号 8 3 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
29. 配列表 配列番号 6 2 で示されるアミノ酸配列をコードする c DNA。
30. 配列表 配列番号 8 4 の塩基配列で示される c DNA。
31. 配列表 配列番号 8 4 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
32. 配列表 配列番号 6 3 で示されるアミノ酸配列をコードする c DNA。
33. 配列表 配列番号 8 5 の塩基配列で示される c DNA。
34. 配列表 配列番号 8 5 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
35. 配列表 配列番号 6 4 で示されるアミノ酸配列をコードする c DNA。
36. 配列表 配列番号 8 6 の塩基配列で示される c DNA。
37. 配列表 配列番号 8 6 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
38. 配列表 配列番号 6 5 で示されるアミノ酸配列をコードする c DNA。
39. 配列表 配列番号 8 7 の塩基配列で示される c DNA。
40. 配列表 配列番号 8 7 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
41. 配列表 配列番号 6 6 で示されるアミノ酸配列をコードする c DNA。
42. 配列表 配列番号 8 8 の塩基配列で示される c DNA。
43. 配列表 配列番号 8 8 の塩基配列で示される c DNA を発現することにより得られる蛋白質。

44. 配列表 配列番号 6 7 で示されるアミノ酸配列をコードする c DNA。
45. 配列表 配列番号 8 9 の塩基配列で示される c DNA。
46. 配列表 配列番号 8 9 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
47. 配列表 配列番号 6 8 で示されるアミノ酸配列をコードする c DNA。
48. 配列表 配列番号 9 0 の塩基配列で示される c DNA。
49. 配列表 配列番号 9 0 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
50. 配列表 配列番号 6 9 で示されるアミノ酸配列をコードする c DNA。
51. 配列表 配列番号 9 1 の塩基配列で示される c DNA。
52. 配列表 配列番号 9 1 の塩基配列で示される c DNA を発現することにより得られる蛋白質。 .
53. 配列表 配列番号 7 0 で示されるアミノ酸配列をコードする c DNA。
54. 配列表 配列番号 9 2 の塩基配列で示される c DNA。
55. 配列表 配列番号 9 2 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
56. 配列表 配列番号 7 1 で示されるアミノ酸配列をコードする c DNA。
57. 配列表 配列番号 9 3 の塩基配列で示される c DNA。
58. 配列表 配列番号 9 3 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
59. 配列表 配列番号 7 2 で示されるアミノ酸配列をコードする c DNA。
60. 配列表 配列番号 9 4 の塩基配列で示される c DNA。
61. 配列表 配列番号 9 4 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
62. 配列表 配列番号 7 3 で示されるアミノ酸配列をコードする c DNA。
63. 配列表 配列番号 9 5 の塩基配列で示される c DNA。
64. 配列表 配列番号 9 5 の塩基配列で示される c DNA を発現することにより得られる蛋白質。

65. 配列表 配列番号 7 4 で示されるアミノ酸配列をコードする c DNA。
66. 配列表 配列番号 9 6 の塩基配列で示される c DNA。
67. 配列表 配列番号 9 6 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
68. 配列表 配列番号 7 5 で示されるアミノ酸配列をコードする c DNA。
69. 配列表 配列番号 9 7 の塩基配列で示される c DNA。
70. 配列表 配列番号 9 7 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
71. 配列表 配列番号 7 6 で示されるアミノ酸配列をコードする c DNA。
72. 配列表 配列番号 9 8 の塩基配列で示される c DNA。
73. 配列表 配列番号 9 8 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
74. 配列表 配列番号 7 7 で示されるアミノ酸配列をコードする c DNA。
75. 配列表 配列番号 9 9 の塩基配列で示される c DNA。
76. 配列表 配列番号 9 9 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
77. 配列表 配列番号 7 8 で示されるアミノ酸配列をコードする c DNA。
78. 配列表 配列番号 1 0 0 の塩基配列で示される c DNA。
79. 配列表 配列番号 1 0 0 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
80. 配列表 配列番号 7 9 で示されるアミノ酸配列をコードする c DNA。
81. 配列表 配列番号 1 0 1 の塩基配列で示される c DNA。
82. 配列表 配列番号 1 0 1 の塩基配列で示される c DNA を発現することにより得られる蛋白質。
83. 配列表 配列番号 8 0 で示されるアミノ酸配列をコードする c DNA。
84. 配列表 配列番号 1 0 2 の塩基配列で示される c DNA。
85. 配列表 配列番号 1 0 2 の塩基配列で示される c DNA を発現することにより得られる蛋白質。

86. 配列表 配列番号 81 で示されるアミノ酸配列をコードする cDNA。
87. 配列表 配列番号 103 の塩基配列で示される cDNA。
88. 配列表 配列番号 103 の塩基配列で示される cDNA を発現することにより得られる蛋白質。
89. 配列表 配列番号 82 で示されるアミノ酸配列をコードする cDNA。
90. 配列表 配列番号 4 のアミノ酸配列をコードするゲノム DNA。
91. 配列表 配列番号 104 及び 105 の塩基配列で示される、請求項 90 記載のゲノム DNA。
92. ヒト破骨細胞形成抑制因子に対し、特異的親和性を示す抗体。
93. 抗体がポリクローナル抗体である、請求項 92 記載の抗体。
94. 抗体がモノクローナル抗体である、請求項 92 記載の抗体。
95. 分子量約 150,000 、サブクラス IgG₁ 、 IgG_{2a} 或いは IgG_{2b} である、請求項 95 記載のモノクローナル抗体。
96. 請求項 92 ~ 95 記載の抗体を用いることを特徴とする、ヒト破骨細胞形成抑制因子の測定方法。

第 1 図

第 2 図

第3図

第 4 図

第5図

第 6 図

第 7 図

第 8 図

第 9 回

1

 MNNLLCCALVFLDISIKWTTQETFPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF1)

 MNNLLCCALVFLDISIKWTTQETFPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF2)

1
 61

 VCAPCPDHYYTDSWHTSDECLYCSPECHELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF1)

 VCAPCPDHYYTDSWHTSDECLYCSPECHE-----CNRTHNRVCECKEGRYLEIEFCLK (OCIF2)

121

 HRSCPPGFGVVQAGTPERNTVKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTKGNAT (OCIF1)

 HRSCPPGFGVVQAGTPERNTVKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTKGNAT (OCIF2)

114
 181

 HDNICSGNSESTQKCGIDVTLCEEAFFRAVPTKFTPWNLSVLVDNLPGTKVNAESVERI (OCIF1)

 HDNICSGNSESTQKCGIDVTLCEEAFFRAVPTKFTPWNLSVLVDNLPGTKVNAESVERI (OCIF2)

174
 241

 KRQHSSQEQTFLQLLKLWKHQNKDQDIVKKIIQDIDLCENSQRHIGHANLTFEQLRSLME (OCIF1)

 KRQHSSQEQTFLQLLKLWKHQNKDQDIVKKIIQDIDLCENSQRHIGHANLTFEQLRSLME (OCIF2)

234
 301

 SLPGKKVGAEDIKEKTIACKPSDQILKLLSLWRIKNGDQDTLKGLMHALKHSKYHFPKT (OCIF1)

 SLPGKKVGAEDIKEKTIACKPSDQILKLLSLWRIKNGDQDTLKGLMHALKHSKYHFPKT (OCIF2)

294
 361

 VTQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCIF1)

 VTQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCIF2)

354

第 1 O 四

1
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF1)

MNKLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF3)
1

61
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF1)

VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF3)
61

121
HRSCPPGFVVQAGTPERNTVKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTKGNAT (OCIF1)

HRSCPPGFVVQAGTPERNTVKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTKGNAT (OCIF3)
121

181
HDNICSGNSESTQKCGIDVTLCEEAFFRAVPTKFTPWNLSVLVDNLPGTKVNAESVERI (OCIF1)

HDNICSGNSESTQKCGIDVTLCEEAFFRAVPTKFTPWNLSVLVDNLPGTKVNAESVERI (OCIF3)
181

241
KRQHSSQEQTFLKLWKHQNKDQDIVKKIIQDIDLCENSQRHIGHANLTFEQLRSLME (OCIF1)

KRQHSSQEQTFLKLWKHQNKDQDIVKKIIQDIDLCENSQRHIGHANLS----- (OCIF3)
241

301
SLPGKKVGAEDIEKTIACKPSDQILKLLSLWRIKNGDQDTLKGLMHALKHSKYHFPKT (OCIF1)

-----LWRIKNGDQDTLKGLMHALKHSKYHFPKT (OCIF3)
292

361
VTQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCIF1)

VTQSLKKTIRFLHSFTMYKLYQKLFLEMIGNQVQSVKISCL (OCIF3)
322

第 1 1 ☒

1
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF1)

MNKLLCCSLVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF4)
1

61
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF1)

VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF4)
61

121
HRSCPPGFVVQAGTPERNTVKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTKGNAT (OCIF1)

HRSCPPGFVVQAGTCQCAAKLIRIMQSQIVVTV (OCIF4)
121

第 1 2 ☒

1
MNNLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF1)

MNKLLCCALVFLDISIKWTTQETFPPKYLHYDEETSHQLLCDKCPPGTYLKQHCTAKWKT (OCIF5)
1

61
VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF1)

VCAPCPDHYYTDSWHTSDECLYCSPVCKELQYVKQECNRTHNRVCECKEGRYLEIEFCLK (OCIF5)
61

121
HRSCPPGFVVQAGTPERNTVKRCPDGFFSNETSSKAPCRKHTNCSVFGLLLTKGNAT (OCIF1)

HRSCPPGFVVQAGCRRRPKPQICI (OCIF5)
121

第 1 3 図

第 1 4 図

第 1 5 図

A : 正常

B : 神経切除+溶媒

C : 神経切除+OCIF $10\mu\text{g}/\text{kg/day}$ D : 神経切除+OCIF $100\mu\text{g}/\text{kg/day}$

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/00374

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl⁶ C07K14/52, C07K16/24, C12N15/19, C12N15/06, C12N5/08, C12N5/10, C12N5/20, C12P21/02, C12P21/08, G01N33/577
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl⁶ C07K14/52, C07K16/24, C12N15/19, C12N15/06, C12N5/08, C12N5/10, C12N5/20, C12P21/02, C12P21/08, G01N33/577

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

BIOSIS PREVIEWS, CAS ONLINE, WPI, WPI/L

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Fawthrop, F.W. et al. "The effect of transforming growth factor beta on the plasminogen activator activity of normal human osteoblast-like cells and a human osteosarcoma cell line MG-63", J. Bone. Miner. Res. (1992) Vol. 7, No. 12, p. 1363-1371	1 - 96
A	Fenton, A.J. et al. "Long-term culture of disaggregated rat osteoclasts inhibition of bone resorption and reduction of osteoclast-like cell number by calcitonin and PTHrP107-139", J. Cell Physiol. (1993) Vol. 155, No. 1, p. 1-7	1 - 96

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

May 14, 1996 (14. 05. 96)

Date of mailing of the international search report

May 28, 1996 (28. 05. 96)

Name and mailing address of the ISA/

Japanese Patent Office

Faxsimile No.

Authorized officer

Telephone No.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl⁶ C07K 14/52, C07K 16/24, C12N 15/19, C12N 15/06, C12N 5/08, C12N 5/10, C12N 5/20, C12P 21/02, C12P 21/08, G01N 33/577

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl⁶ C07K 14/52, C07K 16/24, C12N 15/19, C12N 15/06, C12N 5/08, C12N 5/10, C12N 5/20, C12P 21/02, C12P 21/08, G01N 33/577

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

BIOSIS PREVIEWS, CAS ONLINE, WPI, WPI/L

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	Fawthrop, F. W. et al. "The effect of transforming growth factor beta on the plasminogen activator activity of normal human osteoblast-like cells and a human osteosarcoma cell line MG-63", J. Bone Miner. Res. [1992] 第7巻, 第12号, p. 1363-1371	1 - 96
A	Fenton, A. J. et al. "Long-term culture of disaggregated rat osteoclasts inhibition of bone resorption and reduction of osteoclast-like cell number by calcitonin and PTHrP107-139", J. Cell Physiol. [1993] 第155巻, 第1号, p. 1-7	1 - 96

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

14. 05. 96

国際調査報告の発送日

28.05.96

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

齊藤 真由美 印

4 B 9452

電話番号 03-3581-1101 内線 3449