VE281

Data Structures and Algorithms

Graphs

Learning Objectives:

- Know some basics about graph
- Know how to represent graphs in computer

Graphs

- A graph is a set of nodes $V = \{v_1, v_2, ..., v_n\}$ and edges $E = \{e_1, e_2, ..., e_m\}$ that connects pairs of nodes.
 - Nodes also known as **vertices**.
 - Edges also known as **arcs**.

• Two nodes are **directly connected** if there is an edge connecting them, e.g., v_1 and v_2 are directly connected, but not v_1 and v_3 .

Graphs

Directly connected nodes are adjacent to each other (e.g., v₁ and v₂), and one is the neighbor of the other.

• The edge directly connecting two nodes are **incident** to the nodes, and the nodes **incident** to the edge.

Simple Graphs

• Two nodes may be directly connected by more than one parallel edges, e.g., e_1 and e_2 .

 e_3

- A **simple graph** is a graph without parallel edges and self-loops.
 - Unless otherwise specified, we will work only with simple graphs in this course.

Complete Graphs

• A **complete graph** is a graph where every pair of nodes is directly connected.

• How many edges are there in a complete graph of *N* nodes?

Directed Graphs

• Directed graph (digraph): edges are directional.

- Nodes incident to an edge form an ordered pair.
 - $e = (v_1, v_2)$ means there is an edge from v_1 to v_2 . However, there is no edge from v_2 to v_1 .
- Examples: rivers and streams, one-way streets, provider-customer relationships.

Undirected Graphs

• **Undirected graph**: all edges have no orientation.

- There is no ordering of nodes on edges.
 - $e = (v_1, v_2)$ means there is an edge between v_1 and v_2 .
- Examples: friendship and two-way roads.

Paths

- A path is a series of nodes $v_1, ..., v_n$ that are connected by edges.
 - For a directed graph, if v_1, \ldots, v_n is a path, then there is an edge from v_i to v_{i+1} for each i.

• For an undirected graph, if $v_1, ..., v_n$ is a path, then there is an edge **between** v_i and v_{i+1} for each i.

 v_1, v_2, v_3 is a path. v_3, v_2, v_1 is also a path.

Simple Paths

- A **simple path** is a path with no node appearing twice
 - e.g., v_1 , v_2 , v_3 is a simple path; v_1 , v_2 , v_3 , v_4 , v_2 is not.

Connected Graphs

- A **connected graph** is a graph where a simple path exists between all pairs of nodes.
- A directed graph is **strongly connected** if there is a simple **directed path** between any pair of nodes.

Connected Graphs

• A directed graph is **weakly connected** if there is a simple path between any pair of nodes in the underlying undirected graph.

The directed graph is weakly connected, but not strongly connected.

Node Degree

• The **degree** of a node is the number of edges incident to the node, e.g., $degree(v_2) = 3$, $degree(v_3) = 2$.

- What is the relationship between the sum of degrees of all nodes and the number of edges?
 - Sum(degrees) = 2 * Number(edges)

Node Degree for Directed Graphs

- For directed graphs, we differentiate between **incoming** edges and **outgoing** edges of a node. Thus we differentiate between a node's **in-degree** and its **out-degree**.
 - in-degree: number of incoming edges of a node
 - out-degree: number of outgoing edges of a node

in-degree(v_2) = 1 out-degree(v_2) = 2

- Nodes with zero in-degree are **source** nodes, e.g., v₁.
- Nodes with zero out-degree are sink nodes, e.g., v₃.
- What is the sum of in-degrees/out-degrees of all nodes?

Cycles and Directed Acyclic Graphs

- A cycle is a path starting and finishing at the same node.
 - A self-loop is a cycle of length 1.
 - A **simple cycle** has no repeated nodes, except the first and the last node, e.g., v₁, v₂, v₃, v₁.

- A graph with no cycle is called an **acyclic graph**.
- A directed graph with no cycles is called a **directed acyclic graph**, or **DAG** for short.

Directed Acyclic Graphs (DAG)

• Are the following graphs DAGs?

Weighted Graphs

- Weighted graph: edges of a graph may have different costs or weights.
 - For example, the weights on edges represent the distance between two nodes.

Graph Size and Complexity

- The size of a graph and the complexity of a graph algorithms are usually defined in terms of
 - number of edges |E|
 - number of vertices |V|
 - or both
- **Sparse** graph: a graph with few edges.
 - $|E| \ll |V|^2$ or $|E| \approx \Theta(|V|)$
 - Example: tree
- Dense graph: a graph with many edges.
 - $|E| \approx \Theta(|V|^2)$
 - Example: complete graph

Linked Lists, Trees, and Graphs

Linked Lists, Trees, and Graphs

Graph Representation

Adjacency Matrix

- Adjacency matrix: a $|V| \times |V|$ matrix representation of a graph.
- A(i,j) = 1, if (v_i, v_j) is an edge; otherwise A(i,j) = 0.

Adjacency Matrix for Weighted Graph

• If (v_i, v_j) is an edge and its weight is w_{ij} , then $A(i, j) = w_{ij}$; otherwise $A(i, j) = \infty$.

Question: why not use 0 to represent a missing edge?

Adjacency Matrix

Properties

- Space complexity: $|V|^2$ units
 - For an undirected graph, may store only the lower or upper triangle. Thus, (|V|-1)|V|/2 units.
- What is the time complexity for finding if node v_i is adjacent to node v_i ?
 - *0*(1)
- What is the time complexity for finding <u>all</u> nodes adjacent to a given node v_i ?
 - $\bullet O(|V|)$

Graph Representation

Adjacency List

- Adjacency list: an array of |V| linked lists.
 - Each array element represents a node and its linked list represents the node's neighbors.

Graph Representation

Adjacency List

- Each edge in an undirected graph is represented twice.
 - Each edge is treated as **bidirectional**.

- Each edge in a directed graph is represented once.
- Weighted graph stores edge weight in linked-list node.

Adjacency List

Properties

- What is the space complexity? O(|E| + |V|)
- What is the **worst case** time complexity for checking if node v_i is adjacent to node v_j ? O(|V|)
- What is the **worst case** time complexity for finding all nodes adjacent to a given node v_i ? O(|V|)

Comparison of Graph Representation

- Worst case time complexity for two common operations:
- 1. Determine whether v_i is adjacent to v_j
 - Adjacency matrix: O(1); Adjacency list: O(|V|)
- 2. Determine all the nodes adjacent to v_i
 - Both adjacency matrix and adjacency list: O(|V|)
- Adjacency list often requires less space than adjacency matrix.
- Dense graphs are more efficiently represented as adjacency matrices and sparse graphs as adjacency lists.

Sample Graph Problems

- Path finding problems
 - Find if there exists a path between two given nodes.
 - Find the shortest path between two given nodes.
- Connectedness problems
 - Find if the graph is a connected graph.