Trabajo práctico

Etapas típicas en procesamiento digital de señales

Generación de una señal con cierta frecuencia de muestreo

1. Escriba un programa en MATLAB que grafique una función senoidal con las siguientes especificaciones:

Frecuencia: 100 Hz.

• Frecuencia de muestreo: 1000 Hz.

Tiempo inicio: 0 s.Tiempo final: 1 s.

Agregar ruido a una señal

- 2. Escriba un programa en MATLAB que permita agregar a la señal del Ejercicio 1 cierta cantidad de ruido blanco gaussiano.
 - 1. Obtenga la varianza del ruido a partir de la relación:

$$SNR = 10 \log \frac{\sigma_{signal}^2}{\sigma_{noise}^2}$$

- 2. Utilice la función randn () para simular el ruido (help randn).
- 3. El propotipo de la función debe ser signal_n = my_awgn (signal, snr). Los datos de entrada son el vector signal y el escalar snr.
- 4. La varianza de signal se puede calcular con la función var (help var).
- 5. Compare las salidas de las funciones my_awgn y awgn (help awgn).

Efecto aliasing

- 3. Ejecute el modelo de Simulink provisto, aliasing_demo.mdl. En este modelo se genera una señal de 100 Hz muestreada a 10 kHz. El bloque ZOH la vuelve a muestrear. Finalmente se grafica su respuesta en frecuencia con un analizador de espectro.
 - 1. Observe la pantalla del analizador de espectro. ¿Qué se debería ver?
 - 2. ¿A qué frecuencia está trabajando el bloque ZOH?
 - 3. ¿Qué debe modificar en el modelo para evitar el efecto de aliasing?

Acondicionamiento de señal y error de cuantización

- 4. Ejecute el modelo de Simulink provisto, adc_demo.mdl. El objetivo del ejercicio es representar la señal de entrada aguas abajo del ADC con los mismos valores de la señal original.
 - 1. ¿Observa algún error en la salida del ADC? ¿Cómo solucionaría el problema?
 - 2. Ănalice el error de cuantización. ¿Es correcto su valor? De no ser así, ¿qué solución propone?
 - 3. ¿Qué propone para disminuir este error?

4. Agregue un display que muestre la ecuación de la teoría SNR_{ADC} y compare su resultado para diferentes cantidad de bits del ADC.

Error de cuantización, aspectos teóricos

5. Suponga que tenemos un ADC de 12 bits que opera sobre un rango de ±5 V. Asuma que el ADC es ideal y que su función de transferencia está dada por la siguiente figura,

- a) ¿Cuál es el nivel de cuantización q del ADC, dado en voltios?
- b) Si se aplica una señal sinusoidal de 7 V pico a pico, ¿qué nivel de $\ ^{SNR}_{ADC}$ se puede esperar? Desarrolle la respuesta.
- 6. Un ADC de 3 bits ideal presenta una función de cuantización Q(x) como el de la siguiente figura:

Según las siguientes 4 figuras, indique qué ACD presenta problemas por 1) error de linealización, 2) error por offset, 3) Pérdidas de códigos (words), y 4) factor de escala no lineal. Justifique.

Año 2021 2

Año 2021 3