Lehrstuhl für INFORMATIONS-	Regelungssysteme 2	WS
TECHNISCHE REGELUNG	Übung 6	2014/15
Technische Universität München		
Prof. DrIng. Sandra Hirche		
www.itr.ei.tum.de		

1. Aufgabe: Verstärkung von MIMO-Systemen

Gegeben sei das MIMO-System y = Gu mit:

$$\mathbf{G} = \begin{bmatrix} 23 & -36 \\ 36 & -2 \end{bmatrix}$$

1.1 Berechnen Sie Ausgangswerte und Verstärkung (2-Norm) für die Eingänge:

$$oldsymbol{u}_1 = egin{pmatrix} 1 \ 0 \end{pmatrix} \quad oldsymbol{u}_2 = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

1.2 Bestimmen Sie die minimale und maximale Verstärkung des Systems mit den zugehörigen Richtungen.

2. Aufgabe: Performanzspezifikationen

Für einen einachsigen Satelliten soll eine Lageregelung entworfen werden. Die Dynamik des Satelliten kann durch ein doppelt integrierendes Verhalten beschrieben werden. Für die Regelung wird ein PD-Glied K(s) verwendet.

- 1. Berechnen sie die Sensitivität S sowie den Amplitudenverlauf $|S(j\omega)|$ und die komplementäre Sensitivität T.
- 2. Geben sie im allgemeinen Beispiele für große (≈ 1) sowie kleine (≈ 0) S und T bezüglich der Regelgüte. Wie wird ein trade-off erreicht?
- 3. Berechnen sie die Sensitivitätsbandbreite ω_B der Sensitivität in Abhängigkeit der gegebenen Konstanten K_d und K_p .

Sei nun $K_p = 2, K_d = \frac{\sqrt{2}}{2}$.

4. Skizzieren sie $|S(j\omega)|$ in Abbildung 1.

3. Aufgabe: Schrankenfunktionen

Gegeben sei die offene Übertragungsfunktion einer Strecke mit Regler

$$G_{ol}(s) = \frac{3s^2 + 4s + 4}{s(s+4)}$$

- 1. Berechnen sie S und $|S(j\omega)|$.
- 2. Skizzieren sie $|S(j\omega)|$ in Abbildung 2.
- 3. Bestimmen sie eine Schrankenfunktion $W_y(s)$ für S, so dass $|S(s)| \le |W_y(s)|$. Sie soll folgende Eigenschaften aufweisen:
 - a) Maximale Verstärkung ($\omega \to \infty$): 40%
 - b) Minimale Verstärkung ($\omega = 0$):
 - c) Verstärkung bei $\omega = 0.05 \text{rad/s}$: ≈ 0.0975
- 4. Skizzieren sie $|W_y(j\omega)|$ zu $|S(j\omega)|$.
- 5. Werden die Performanzspezifikationen eingehalten? Begründen sie ihre Antwort.

Abbildung 1: zu Aufgabe 2.4

Abbildung 2: zu Aufgabe 3.2