CAN102 Electromagnetism and Electromechanics

2023/24-S2

Lecture 13 Magnetic Circuits

Jingchen Wang
SAT
jingchen.wang@xjtlu.edu.cn

Module information

Module teacher: Jingchen Wang

Email: <u>Jingchen.wang@xjtlu.edu.cn</u>

Location: EE226

Office hour: Thursday 13:00-15:00

Friday 13:00-15:00

Reference book:

Electric Machinery Fundamentals 5 th, by Stephen J. Chapman

Materials:

Lecture slides and recorded videos
Self-practice questions and solutions
Useful resources from external links

Motivation

- Powering everything from industrial machinery to household appliances, such as electric motors
- Converting mechanical energy into electrical energy, such as generators
- Understanding the interplay of electrical and mechanical systems
- Design and analyzing electromechanical systems, such as robotic actuators and control systems

Module Syllabus

Week 8-12 Electromechanics (40%)

Consider a coil with N turns, wound onto a core carries a current I

It will generate magnetomotive force (mmf/ T)

$$F = NI$$
 SI Unit: Ampere-turns

If *l* represents the length of steel path, according to Ampere's law (Lecture 9 page 24),

$$F = Hl = NI$$

Where *H* is magnetic field intensity

Ampere's circuital law (Ampere's Law):

The line integral of the magnetic field intensity \vec{H} around a closed path equals the current enclosed.

Since magnetic flux density **B** is defined as

$$B = \mu H = \mu_r \mu_0 H$$

Where μ_r is the relative permeability of material

$$\mu_0 = 4\pi \times 10^{-7} \ H / m$$

The total flux Φ in a given area A is provided as $\Phi = BA$

$$F = Hl = \frac{B}{\mu_r \mu_0} l = \frac{\Phi}{\mu_r \mu_0 A} l = \Phi \frac{l}{\mu_r \mu_0 A} = \Phi \Re$$

Where \Re is the reluctance of the magnetic circuit

Reluctance of the magnetic circuit

$$\Re = \frac{l}{\mu_r \mu_0 A}$$

SI unit: A · turns/Wb

l is the mean path length

 μ_r is the relative permeability of material

A is the perpendicular area to flux density

Comparison between electric and magnetic circuit

Electric Circuit

$I = \frac{V}{R}$

Magnetic Circuit

Magnetic field intensity

Voltage Current

(V) (A) mmfFlux

(A-t)

 (Ω)

Reluctance

Flux density

Permeability

(Wb)

Resistance Electric field intensity

(V/m)

 (H^{-1})

Current density

 (A/m^2)

(A-t/m)

Conductivity

(S/m)

(T) (H/m)

V = IR

 $J = \sigma E$

 $\mathcal{F} = \phi \mathcal{R}$ $B = \mu H$

permeance

$$R = \frac{\ell}{\sigma A} = \frac{1}{G}$$

$$\Re = \frac{\ell}{\mu A} = \frac{1}{\Re}$$

Conductance

Example

Consider a square-shaped core of cross-sectional area $5 \times 10^{-4} \text{ m}^2$ and length 0.5m, made of steel with relative permeability of 3,500. It is wound with a coil of 250 turns that carries 2 amps. Find the flux in the core.

Example

Consider a square-shaped core of cross-sectional area 5 x 10⁻⁴ m² and length 0.5m, made of steel with relative permeability of 3,500. It is wound with a coil of 250 turns that carries 2 amps. Find the flux in the core.

Solution using first principles:

Ampere's Law:
$$H \cdot l = N \cdot I$$

$$H = \frac{250 \times 2}{0.5} = 1000$$
 A/m

$$B = \mu_0 \mu_r H = 4\pi \times 10^{-7} \times 3500 \times 1000$$

= 4.4 Wb/m²

So the flux in the circuit is

$$\Phi = B \times A = 4.4 \times 5 \times 10^{-4}$$

= 2.2×10⁻³ Wb

Example

Consider a square-shaped core of cross-sectional area 5 x 10⁻⁴ m² and length 0.5m, made of steel with relative permeability of 3,500. It is wound with a coil of 250 turns that carries 2 amps. Find the flux in the core.

Solution using circuit reluctance

$$F=NI=250 \times 2 = 500$$
 ampere-turns

$$\Re = \frac{l}{\mu_0 \mu_r A}$$

$$\frac{0.5}{4\pi \times 10^{-7} \times 3500 \times 5 \times 10^{-4}} = 2.3 \times 10^{5} \text{ A · turns/Wb}$$

So the flux in the circuit:

$$\Phi = \frac{F}{\Re} = \frac{500}{2.3 \times 10^5} = 2.2 \times 10^{-3}$$
 Wb

Solution using first principles:

Ampere's Law: $H \cdot I = N \cdot I$

The reluctance of the circuit:
$$\Re = \frac{l}{\mu_0 \mu_r A}$$

$$H = \frac{250 \times 2}{0.5} = 1000 \quad \text{A/m}$$

$$R = \mu_0 \mu_0 H = 4\pi \times 10^{-7} \times 3500$$

$$B = \mu_0 \mu_r H = 4\pi \times 10^{-7} \times 3500 \times 1000$$

= 4.4 Wb/m²

So the flux in the circuit is

$$\Phi = B \times A = 4.4 \times 5 \times 10^{-4}$$

= 2.2×10⁻³ Wb

Magnetic Circuit with Air Gap

air gap: $H_{g_i}B_{g_i}\Re_{g_i}l_{g_i}A_{g_i}$

core: H_{c} , B_{c} , \Re_{c} , l_{c} , A_{c}

The field in the gap: $H_g = B_g/\mu_0$

The field in the core: $H_c = B_c / \mu = B_c / (\mu_n \mu_0)$

If fringing is considered as neglected and

the flux in core and air gap are same $\Phi = BA$

By continuity of the magnetic flux density:

 $B_c = B_g = B$ with assuming of the gap being small, So:

$$H_c = \frac{B}{\mu} = \frac{B}{\mu_r \mu_0} = \frac{H_g}{\mu_r} \implies \frac{H_g}{H_c} = \mu_r$$

Fringing fields

Magnetic Circuit with Air Gap

Let a narrow air gap of thickness g be cut in the core.

Magnetic Circuital Laws

By Ampere's law

$$F = NI = H_c l_c + H_g l_g$$

where
$$H_c l_c = \frac{B_c}{\mu_c} l_c = \frac{\Phi_c}{\mu_c A_c} l_c = \Phi_c \Re_c$$

and
$$H_g l_g = \frac{B_g}{\mu_0} l_g = \frac{\Phi_g}{\mu_0 A_g} l_g = \Phi_g \Re_g$$

According to Gauss's law in magnetics:

$$\oint_{S} \mathbf{B} \bullet d\mathbf{A} = 0$$

We have: $\Phi_c = \Phi_g = \Phi$

Therefore $F = (\Re_c + \Re_g)\Phi$

Magnetic Circuital Laws

The magnetic circuit with an air gap is analogous to a series electric circuit.

$$F = (\mathfrak{R}_c + \mathfrak{R}_g)\Phi$$

In an electric circuit, a voltage drives a current *I* through each resistor.

In a magnetic circuit, the magnetomotive force drives a flux through each reluctance.

The equivalent total reluctance of a number of reluctances in series is just the sum of the individual reluctance:

$$\mathfrak{R}_{eq} = \mathfrak{R}_1 + \mathfrak{R}_2 + \ldots + \mathfrak{R}_n = \sum_{i=1}^n \mathfrak{R}_i$$

Dimensions:

$$A_c = A_g = 9 \text{ cm}^2$$
, $g = 0.05 \text{cm}$

$$l_c = 30 \text{ cm}, N = 500 \text{ turns}$$

 μ_r = 70,000 for the core and 1 for the gas. The circuit is operating with B_c = 1.0 T

Find:

- (a) reluctances in the core and in the gap
- (b) the flux, and
- (c) the current I

(a) The reluctances:
$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} = \frac{0.3}{70000(4\pi \times 10^{-7})(9 \times 10^{-4})} = 3.79 \times 10^3 \text{ A} \cdot \text{turns/Wb}$$

$$\Re_g = \frac{l_g}{\mu_r \mu_0 A_c} = \frac{5 \times 10^{-4}}{1(4\pi \times 10^{-7})(9 \times 10^{-4})} = 4.42 \times 10^5 \text{ A} \cdot \text{turns/Wb}$$

(b) The magnetic flux:
$$\Phi = B_c A_c = 1.0(9 \times 10^{-4}) = 9 \times 10^{-4}$$
 Wb

(c) The current:
$$I = \frac{F}{N} = \frac{\Phi(\Re_c + \Re_g)}{N} = \frac{(9 \times 10^{-4})(4.46 \times 10^5)}{500} = 0.8028 \text{ A} \approx 0.80 \text{ A}$$

$$\Re_c = 3.79 \times 10^3 \text{ A} \cdot \text{turns/Wb}$$
 $\frac{\Re_c}{\Re_g} = 4.42 \times 10^5 \text{ A} \cdot \text{turns/Wb}$ $\frac{\Re_c}{\Re_g} = 0.00857$

If the reluctance in the core is negligible, then the current

$$I = \frac{F}{N} = \frac{\Phi(\Re_{c} + \Re_{g})}{N} \approx \frac{\Phi \Re_{g}}{N} = \frac{(9 \times 10^{-4})(4.42 \times 10^{5})}{500} = 0.7956 \text{ A} \approx 0.80 \text{ A}$$

$$AI = \frac{0.8028 - 0.7956}{N} \times 100\% - 0.87\%$$

$$\Delta I = \frac{0.8028 - 0.7956}{0.8028} \times 100\% = 0.87\%$$

Reluctance in Series

If $\Re_c << \Re_g$, then the reluctance of the core can be neglected. The flux or magnetic filed density B can be obtained from

$$F = (\mathfrak{R}_c + \mathfrak{R}_g)\Phi \approx \mathfrak{R}_g\Phi$$

high material permeability small core reluctance

Not always ture!

 $\stackrel{(+)}{=}_{F}$ $\stackrel{\otimes}{\Longrightarrow}_{\mathcal{R}_{g}}$

low material permeability (2000~6000 times of air)

large core reluctance

$$F = (\mathfrak{R}_c + \mathfrak{R}_g)\Phi$$

Magnetic Circuital Laws

Reluctance in Series Example 2

The cross-sectional area of each air gap (including fringing is 14 cm²) and the iron of the core has a relative permeability of 2000.

If the current in the wire is adjusted to be 1 A, what will the resulting flux density in the air gaps be?

$$B_g = \Phi/A_g$$
 $A_g = 14 \text{ cm}^2$
 $\Phi = F / \Re$

The reluctance of the stator:

$$\Re_s = \frac{l_s}{\mu_r \mu_0 A_s} = \frac{0.5}{(2000)(4\pi \times 10^{-7})(0.0012)} = 166000 \text{ A} \cdot \text{turns/Wb}$$

Stator

The reluctance of the rotor:

$$\Re_r = \frac{l_r}{\mu_r \mu_0 A_r} = \frac{0.05}{(2000)(4\pi \times 10^{-7})(0.0012)} = 16600 \text{ A} \cdot \text{turns/Wb}$$

The reluctance of the air gap:

$$\Re_g = \frac{l_g}{\mu_r \mu_0 A_g} = \frac{0.0005}{(1)(4\pi \times 10^{-7})(0.0014)} = 284000 \text{ A} \cdot \text{turns/Wb}$$

Proper units

The total reluctance of the motor:

$$\Re_{total} = \Re_s + \Re_{g1} + \Re_r + \Re_{g2} = 166000 + 284000 + 16600 + 284000 = 751000 \text{ A} \cdot \text{turns/Wb}$$

Magnetic Circuital Laws

Reluctance in Series Example 2

The total reluctance:

$$\Re_{total} = 751000 \text{ A} \cdot \text{turns/Wb}$$

The net magnetomotive force applied to the core:

$$F = NI = (200)(1.0) = 200$$
 (A·turns)

The total flux:

$$\Phi = \frac{F}{\Re_{total}} = \frac{200}{751000} = 0.00266 \text{ Wb}$$

Then the magnetic flux density in the gap:
$$B = \frac{\Phi}{A_g} = \frac{0.00266}{0.0014} = 0.19$$
 T (Wb/m²)

$$\frac{\Re_s}{\Re_g} = \frac{166000}{284000} = 0.5845$$

$$\Rightarrow \Re_s(\Re_r) \text{ not } << \Re_g$$

$$\frac{\Re_r}{\Re_g} = \frac{16600}{284000} = 0.05845$$

especially \Re_s

The core has a relative permeability of 2000.

Two reasons:

- 1. μ_r not big enough
- 2. Length of core is much longer than that of gap

Magnetic Circuital Laws - Reluctance in Parallel

The magnetic circuits with two or more flux paths, neglecting leakage flux, are classified as parallel magnetic circuits.

1) If the permeability of material is infinite

Magnetic Circuital Laws - Reluctance in Parallel

2) If the permeability of material is not infinite, the reluctance of core is not considered as negligible.

$$\Phi = \Phi_1 + \Phi_2$$

$$\frac{1}{\mathfrak{R}_{eq}} = \frac{1}{\mathfrak{R}_1} + \frac{1}{\mathfrak{R}_2}$$

Magnetic Circuit with Two Windings

In this case, the MMF acting on the magnetic circuit is given by the total ampere-turns acting on the circuit. For the current directions shown by the Fig, the flux produced by the two windings is in the same direction. The total MMF:

$$F = N_1 i_1 + N_2 i_2$$

The total resultant core flux produced by the total magnetomotive force of the two windings with assumption of $A_c = A_g$:

$$\Phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_c}{g} \quad \text{if} \quad \mu_r \text{ is large}$$

Summary

magnetomotive force 磁动势 F = NI

$$F = Hl = \frac{B}{\mu_r \mu_0} l = \frac{\Phi}{A \mu_r \mu_0} l$$

Flux density **B**

磁通密度

Flux Φ

磁通量

Magnetic field intensity H

磁场强度

Magnetic reluctance R

磁阻

relative permeability μ_r

相对磁导率

Mean path length of the core/air gap *l*

平均路径长度

Cross-sectional area A

横截面积

$$F = \Phi \Re = BA\Re = \mu_r \mu_0 H\Re$$

$$\Re = \frac{l}{\mu_r \mu_0 A}$$

Summary

Assumptions:

- •Constant magnetic permeability: linear relationship between B-H– gives results of acceptable engineering accuracy
- No leakage
- •Air gap is small and the fringing can be ignored: $A_c = A_g$

Under the conditions provided, the magnetic circuit model introduced is true.

$$\mathfrak{R}_{eq} = \mathfrak{R}_1 + \mathfrak{R}_2 + \ldots + \mathfrak{R}_n = \sum_{i=1}^n \mathfrak{R}_i$$

$$\frac{1}{\Re_{eq}} = \frac{1}{\Re_1} + \frac{1}{\Re_2} + \dots + \frac{1}{\Re_n} = \sum_{i=1}^n \frac{1}{\Re_i}$$

Next

Transformers

Thanks for your attention

