Lecture 6: Image & Recognition (2)

- Lecture 6 : Image & Recognition (2)
 - Motivations
 - Methods
 - PCA: Principal Component Analysis
 - - PCA Subspace Construction: **Eigenvectors** of the covariance matrix.
 - PCA Applications
 - Eigenfaces Problems
 - PCA Summary
 - LDA: Linear Discrimination Analysis
 - LDA Advantages
 - 2DPCA: Two-Dimensional Principal Component Analysis
 - 2DPCA Method
 - Disadvantage of 2DPCA
 - 2DPCA + PCA
 - 2DPCA Summary

Motivations

- 1. The large data size.
- 2. Some valuable information exists in the latent sub-space.

Methods

The key idea is to combine features using a linear transformation.

Linear combinations: simple to compute and analytically tractive.

$$y = U^T x \in \mathbb{R}^K, k << N$$

Detail:

1. PCA: Principal Component Analysis

PCA: Principal Component Analysis

- K-L transformation.
- Reduce the number of dimensions of a data set.
- Goal:
 - a. Feature extraction
 - b. Visualization
- Objective: Find basic vectors that
 - Max the variance retained projected data.
 - Give uncorrelated projected distributions.
 - Min the least square reconstruction error.
- Similar images are near each other.
- **Different** images are **far** from each other.
- PCA Subspace Construction: **Eigenvectors** of the covariance matrix.

PCA Applications

- A 256*256 pixel image => 65,536-dimensional image space.
- Reduce the dimensions.
- Find the nearest 'known' vector.

Example:

- 1. Training Set X and Test Set Y.
- 2. Total mean for every X is m_i , and $m=rac{1}{|X|}\sum m_i$.
- 3. Total scatter matrix (Covariance Matrix) $S_t = E[(X-m)(X-m)^T] = \sum p_i (\sum p_j (X_j^i m)(X_j^i m)^T)$
- 4. Compute the eigenvalue and eigenvectors of S_t . $\lambda_i \phi_i = S_t \phi_i$.
- 5. Select the most principal components or eigenvectors. $r_{\lambda}=\frac{\sum_{i=1}^{6}\lambda_{i}}{\sum_{i=1}^{6}44\lambda_{i}}>90\%$. r_{λ} is the ratio of eigenvalue sum of the selected components to the total sum.
- 6. The projection transform W is $W=(\phi_1,\phi_2,\phi_3,...,\phi_6)$. X'=(X-m)W, Y'=(Y-m)W. Result: 6 dimensions.

Eigenfaces Problems

- 1. Lighting.
- 2. Orientation.
- 3. Size.

PCA Summary

- Advantages
 - Reduce data dimensionality.
 - Satisfy the Minimal MSE Rule.
 - Eliminate the correlation of original data.
- Disadvantages
 - No distinguishing between shape and appearance.
 - No use class information.
 - Required transformation from image into a vector first.

LDA: Linear Discrimination Analysis

- 1. For X, compute within-class scatter matrix S_w and between-class scatter matrix S_b . $S_w = \sum p_i E[(X-m_i)(X-m_i)^T]$. $S_b = \sum p_i E[(m_i-m)(m_i-m)^T]$. p_i : prior probability of the i-th class. m_i : mean value of the i-th class.
- 2. Compute the eigenvectors of $S_w^{-1}S_b$.

Maximize the component axes for class-separation.

Good for classification.

LDA Advantages

Fisher criterion: not simple but very efficient **discriminative feature extraction** for the classification.

Further reduce the dimsion: rank of $S_w^{-1}S_b=c-1$.

2DPCA: Two-Dimensional Principal Component Analysis

- No need to transform into a vector.
- Covariance matrix is constructed directly using original matrices.
- Smaller size of covariance matrix.
- ullet $X\in\mathbb{R}^{M imes N}$, a unitary volumn vector $w\in\mathbb{R}^{N imes 1}$. Project X to w: y=Xw.
- ullet Remaining question: how to find a good projection vector w.

2DPCA Method

- 1. Training and testing sets.
- 2. Express X by $X^i_j, \quad i=1,2; \ j=1,...,5$ (2 classes, 5 samples for each class).
- 3. Compute the total scatter matrix $S_t=E[(X-M)^T(X-M)]=\sum p_i(\sum p_j^i(X_j^i-M)^T(X_j^i-M))$. X and M are $M\times N$ matrixes. S_t is an $N\times N$ matrix.
- 4. Eigenvalue and eigenvectors of S_t , $\lambda_i \phi_i = S_t \phi_i$.
- 5. Select the most principal eigenvectors.
- 6. $W = (\phi_1, \phi_2, ..., \phi_d)$. X' = (X M)W Y' = (Y M)W.
- 7. X' = (X-M)V $V = (\phi_1, \phi_2, ..., \phi_N)$ $X = M + X'V^T$

Disadvantage of 2DPCA

The feature dimension of 2DPCA is much higher than PCA.

2DPCA + PCA

- 1. 2DPCA: $M \times N \Rightarrow M \times d$.
- 2. PCA: $M \times d \Rightarrow d' \times 1$.

2DPCA Summary

- Simpler and more straightforward.
- Better in recognition accuracy.
- More efficient than PCA.
- More **suitablel** for small sample size problems.
- Covariance matrix more accurately.