

ARJUNA NEET BATCH

TRIGONOMETRY

LECTURE - 01

M.R. Six PhD in Physics C.S.IR J.R.f (AIR-135)

- Delhi-University entrance
 (AIR-04)
 - EXP-8 years

- · Shresth Vashistha

 AIR-27 [NEET-17]
- · Varun Mandakumar A11ms-42
- · Rishabh Vaishnav AIR-71 NEET-19

TO DAY'S GOAL

- * Basic Concept of Trigonometry
- * Basic algebra
- * Binominal Theorem
- & G/P Series

ANGLE

$$Sim\theta = \frac{P}{11}$$

$$\cos \theta = \frac{B}{H}$$

$$\tan \theta = \frac{P}{R}$$

Simp =
$$\frac{P}{H}$$

Coso = $\frac{B}{H}$

tamp = $\frac{P}{B}$

UNIT OF ANGLE

Convert angle from rad to degree.

(i)
$$\frac{\pi}{2}$$
 rad

(ii)
$$\frac{\pi}{4}$$
 rad

(iv)
$$\frac{5\pi}{6}$$
 rad

(v)
$$\frac{2\pi}{3}$$
 rad

$$\sqrt{\frac{30}{10}} \frac{\pi}{2}$$
 and $=\frac{180}{2} = 90$

(iii)
$$\frac{\pi}{3}$$
 rad

(vi)
$$\left(\frac{4\pi}{3}\text{rad}\right) = 240^{\circ}$$

$$(y) \frac{2\pi}{3} \text{ rad} = \frac{2}{3} \times 100 = 120$$

Convert Angle from degree to rad

(i)
$$30^{\circ} = 30 \times 1^{\circ} = 30 \times \frac{\pi \times n}{100}$$
 (mardini)

(ii) $180^{\circ} = \pi \times n$

(iv) $240^{\circ} = 240^{\circ} \times \frac{\pi \times n}{100}$

(iii) $180^{\circ} = \pi \times n$

(v) $45^{\circ} = \pi \times n \times n$

$$|iv\rangle 90° = 90× mad - m$$

(iv)
$$240^{\circ} = 240^{\circ} \times \frac{1890}{180} + \frac{13}{3}$$

97 0 increas from 0° to 90° then sino 1°

9F DT from 0° togi then GID 1

	0°	30°	45°	60°	90°	120°	135°	150°	180°
sin θ	0	12	1 52	J3 2	1	53	1/2	12	0
cos θ	1	<u>\sqrt2</u>	150	12	0'	- 1 2	-1-12	$-\frac{\sqrt{3}}{2}$	-1
tan θ	O	153	1	53	0	- \sqrt{3}	-1	-73	0

 $\leq \sin \theta \leq$ $+ \cos \theta = \frac{\sin \theta}{\cos \theta}$

ARJUNA

 $\leq \cos \theta \leq$

MRX

≤tan θ≤

If $\tan \theta = 2$ then find $\sin \theta$ and $\cos \theta$.

$$\frac{P}{B} = \frac{2}{1}$$

$$-1 \leq \text{Simo} \leq 1$$

$$\text{OScillate}$$

$$6/\omega - 1 + 0 + 1$$

$$-1 \leq \text{Coso} \leq +1$$

If $\sin \theta = 3/5$ then find $\cos \theta$, $\tan \theta$.

$$9f \quad \sin \theta = \frac{3}{5}$$

$$\frac{301}{5}$$
 Sind= $\frac{p}{h}=\frac{3}{5}$

Find:

tan53;= 4 Sin53;= 3 X=3

If
$$y = \frac{\sin \theta}{\theta}$$
 then find value of y if $\theta = 30^{\circ}$.

$$\frac{1}{2} = \frac{(\sin 0)}{2} = \frac{\sin 30}{30}$$

$$\frac{1}{2} = \frac{3}{1} = \frac{3}{1}$$

$$\frac{1}{2} = \frac{3}{1} = \frac{3}{1}$$

$$\frac{1}{2} = \frac{3}{1}$$

$$\frac{1}{2} = \frac{3}{1}$$

$$\frac{1}{2} = \frac{3}{1}$$

SMALL ANGLE APPROXIMATION

$$H=R(let)$$

$$B=R$$

temo = Sino Coso tan0 = 0 = sin0Fro Small angle Smar Angle 0:1° +05°

Find value:

(ii)
$$\tan 3^\circ = 3^\circ \frac{\pi}{180} = \frac{\pi}{60}$$
 (iii) $\cos 3^\circ = 1$
(v) $\sin (89^\circ) = 1$

(iv)
$$\sin(88.5^{\circ}) = 1$$
 (v)

(v)
$$\sin (89^{\circ}) = 1$$

$$(P^2 + B^2 = H^2)$$
If divided by P² both size.

divided by H2 on both side

Find value:

(i)
$$\sin(A + B) =$$

(ii)
$$\sin(A-B) =$$

(iii)
$$cos(A + B) =$$

(iv)
$$\cos(A-B) =$$

(v)
$$tan(A + B) =$$

$$(os(A+B) = (osA - (osB) - sinB)$$

If
$$A = B$$
 then $sin(A + A) =$

$$9FA=B=0$$
 $Sin(20) = Sin0.650 + Sin0.650$

Find value of:

(i) sin (75°)

(ii) sin (105°)

(iii) cos (120°)

$$Sin(75)' = Sin(45°+36) =$$

$$Sin(105') = Sin(60+45')$$

TRIGONOMETRY FUNCTION CHARGE

$$\sin(90-\theta) =$$

$$\cos (90 - \theta) =$$

$$\sin(90+\theta) =$$

$$\cos (90 + \theta) =$$

$$\sin (180 - \theta) =$$

$$\cos (180 - \theta) =$$

Find value of:

(i) sin (-30°)

(ii) cos (-60°)

(iii) sin (120°)

(iv) sin (390°)

(v) $\sin(20\pi/3)$

If $y = A \sin \theta + B \cos \theta$ then find maximum value of y.

If $y = 3 \sin \theta + 4 \cos \theta$ then find maximum value of y.

If
$$\frac{A_1}{A_2} = \frac{7}{3}$$
 then find $\frac{A_1 + A_2}{A_1 - A_2}$

If
$$\frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}} = \frac{5}{3}$$
 then find $\frac{I_1}{I_2}$.

BINOMIAL APPROXIMATION

$$(1+x)^2 =$$

$$(1+x)^n =$$

G.P. SERIES

$$a + ar + ar^2 + ar^3 + \dots$$

$$Sum = ??$$

Find sum of 100 term.

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

thanks for watching

