# Tema 5 Adquisición de conceptos

Ciencias de la Computación e Inteligencia Artificial Universidad de Huelva

noviembre 2023

#### Índice

Introducción

Adquisición de conceptos

Espacio de versiones
List-Then-Eliminate
Find-S
Eliminación de candidatos

#### Índice

#### Introducción

Adquisición de conceptos

#### Espacio de versiones List-Then-Eliminate

List-i nen-Eliminate

Find-S

Eliminación de candidatos

#### Definición

- El aprendizaje inductivo consiste en inducir información de un concepto a partir de un conjunto de ejemplos de cosas concretas. No requiere información previa del dominio.
- Ejemplo: ese gato tiene 4 patas, POR TANTO, todos los gatos tienen 4 patas.
- Si veo 1 caso, supongo que todos los casos son iguales hasta que encuentre un nuevo caso que lo contradiga, y eso me obligue a remodelar las informaciones.

#### Introducción

#### Aprendizaje inductivo

#### Simbólico

 Utiliza una representación simbólica de los conceptos y sus relaciones (redes semánticas, reglas, programación lógica, ...)

#### Subsimbólico

- Utiliza una representación mezclada entre símbolos y números (conjuntos difusos,...)
- Habitualmente se desarrolla por medio de algoritmos de ajuste paramétrico

#### Introducción

En este curso nos vamos a centrar en las formas de aprendizaje inductivo **simbólico supervisado** 

#### Tipos:

- Si los ejemplos reflejan situaciones con múltiples objetos y relaciones
  - Adquisición de conceptos
- Si los ejemplos se refieren a conjuntos atributo-valor
  - Clasificación supervisada
- Si se pretende adquirir un modelo lógico
  - Programación Lógica Inductiva

#### Índice

Introducción

Adquisición de conceptos

Espacio de versiones
List-Then-Eliminate
Find-S
Eliminación de candidatos

#### Características generales

### Adquisición de conceptos

Para la adquisición de conceptos vamos a necesitar algunos elementos, similares a la lógica: :

- Un lenguaje de representación: Es decir, una forma de escribir nuestras Hipótesis (y modelos)
- ► Un motor (bidireccional) de razonamiento::
  - Un proceso de generalización: para incorporar ejemplos positivos al modelo (bottom-up)
  - Un proceso de especialización: para rechazar ejemplos negativos (quasi-ejemplos) con el modelo (top-down)

### Adquisición de conceptos

Para la adquisición de conceptos vamos a necesitar algunos elementos, similares a la lógica: :

- Un lenguaje de representación: Es decir, una forma de escribir nuestras Hipótesis (v modelos)
- Un motor (bidireccional) de razonamiento::
  - Un proceso de generalización: para incorporar ejemplos positivos al modelo (bottom-up)
  - Un proceso de especialización: para rechazar ejemplos

### Adquisición de conceptos

Para la adquisición de conceptos vamos a necesitar algunos elementos, similares a la lógica: :

- Un lenguaje de representación: Es decir, una forma de escribir nuestras Hipótesis (y modelos)
- Un motor (bidireccional) de razonamiento::
  - Un proceso de generalización: para incorporar ejemplos positivos al modelo (bottom-up)
  - Un proceso de especialización: para rechazar ejemplos negativos (quasi-ejemplos) con el modelo (top-down)

- Un modelo se puede ver cómo la representación o abstracción de un sistema
- En nuestro caso, de aprendizaje automático un modelo va a representar a un conjunto de datos mediante un conjunto de fórmulas.
- La utilidad es poder usar el modelo para deducir/predecir cosas, en lugar de tener que estar manejando TODOS los datos.
- Hay muchas formas de escribir modelos: redes semánticas, lógica, fórmulas matemáticas, etc ....

Características generales

# Hipótesis y Modelos

#### Como ejemplo, podemos ver la figura





Modelo

Red semántica

Más concretamente, podemos hacer las siguientes definiciones:

- Hipótesis: Posible representación de un concepto
- Modelo: Es una hipótesis que es consistente¹ con todos los datos
- ► Orden: Se puede decir que una hipótesis es más grande que otra, H<sub>1</sub> ≥<sub>g</sub> H<sub>2</sub> si y solo si tiene la posibilidad de contener a más ejemplos.
- Si  $H1 \ge_g H2$  se dice que H1 es más general que H2 Y, por tanto, H2 es más específica que H1

#### Características generales

# Hipótesis y Modelos

Más concretamente, podemos hacer las siguientes definiciones:

- **Hipótesis**: Posible representación de un concepto
- Modelo: Es una hipótesis que es consistente con todos
- Orden: Se puede decir que una hipótesis es más grande
- ▶ Si  $H1 \ge_a H2$  se dice que H1 es más general que H2Y, por tanto, H2 es más específica que H1

Más concretamente, podemos hacer las siguientes definiciones:

- Hipótesis: Posible representación de un concepto
- Modelo: Es una hipótesis que es consistente¹ con todos los datos
- ► Orden: Se puede decir que una hipótesis es más grande que otra, H<sub>1</sub> ≥<sub>g</sub> H<sub>2</sub> si y solo si tiene la posibilidad de contener a más ejemplos.
- Si  $H1 \ge_g H2$  se dice que H1 es más general que H2 Y, por tanto, H2 es más específica que H1

¹que se cumple para todos los ejemplos positivos y para ninguno de los negativos

Más concretamente, podemos hacer las siguientes definiciones:

- Hipótesis: Posible representación de un concepto
- Modelo: Es una hipótesis que es consistente¹ con todos los datos
- ▶ **Orden**: Se puede decir que una hipótesis es más grande que otra,  $H_1 \ge_g H_2$  si y solo si tiene la posibilidad de contener a más ejemplos.
- Si  $H1 \ge_g H2$  se dice que H1 es más general que H2 Y, por tanto, H2 es más específica que H1

- ► En este ejemplo podemos decir que  $h2 \ge_g h1$  y que  $h2 \ge_g h3$
- No podemos decir nada sobre h1 y h3, ya que ninguna es subconjunto de la otra
- Esto se llama Orden Parcial



Características generales

#### Razonamiento

- Para la tarea de aprendizaje necesitaremos razonar sobre los objetos y las hipótesis.
- Si una hipótesis no acepta a un ejemplo positivo o no rechaza a un negativo, tenemos que reformarla para que lo haga.
- El proceso de agrandar una hipótesis para aceptar un ejemplo positivo se llama Generalización

```
Gen:: (Modelo, Ejemplo) -> [Modelo]
```

► El proceso para evitar aceptar ejemplos negativos se llama Especificación

```
Spec:: (Modelo, Ejemplo) -> [Modelo]
```

#### Proceso de Generalización

Gen:: (Modelo, Ejemplo) -> [Modelo]

- Este proceso es, básicamente, la eliminación de restricciones para hacer el modelo más permisivo y que pueda admitir al nuevo ejemplo positivo
- Como se ve en la cabecera de la función, la generalización no es única, puede dar lugar a diferentes modelos
- El método de generalización depende mucho del tipo de datos que estemos tratando.
- ▶  $\forall B \in Gen(A), B \geq_q A$

#### Características generales

### Proceso de **Especialización**

Gen:: (Modelo, Ejemplo) -> [Modelo]

- En la especificación se trata de rechazar a ejemplos negativos que el modelo admite, por lo que, principalmente, incluiremos nuevas restricciones que dejen afuera al ejemplo negativo.
- La especificación tampoco es única y,por tanto, puede dar lugar a diferentes modelos
- Este método también depende del tipo de dato
- $ightharpoonup \forall B \in Spec(A), A \geq_a B$

### Algunos ejemplos

- Tipo de dato: Categórico
- Generalización:
  - $\blacktriangleright$  ( $\emptyset$ , value)  $\rightarrow$  [(value)]
  - ((value), value) → [(value)]
  - ((value1), value2) → [(?)]
  - ► ((?), *value*) → [(?)]
- Especificación:
  - (?, value) → [(value1), (value2)...(valuen)] Todos diferentes de value
  - $\blacktriangleright$  ((value), value)  $\rightarrow$  [( $\emptyset$ )]
  - ((value1), value2) → [(value1)]
  - $\blacktriangleright$  (( $\emptyset$ ), value)  $\rightarrow$  [( $\emptyset$ )]

### Algunos ejemplos

- ► Tipo de dato: Numérico
- Generalización:



Especificación:



Características generales

# Algunos ejemplos

- ► Tipo de dato: Complejo
- ▶ Generalización:



### Representaciones

Necesitamos una representación de los objetos y unos métodos iniciales.:

Necesitamos representar el VACÍO y el TODO:

```
1 EMPTY = "-"
2 ALL = "?"
```

Dado un dataset de n atributos, escribiremos las hipótesis sobre ellos en un objeto (tupla o lista) de n-1 componentes (1 es la clase

```
1 HIP = (EMPTY, valuei, ..., ALL, valuek)
```

#### Representaciones

Una hipótesis acepta un ejemplo (es consistente con él) cuando es consistente para todos sus atributos H consistente con e ⇔ ∀h<sub>i</sub> ∈ H consist\_at(h, e),

```
i=1,\ldots,n-1
```

```
def consistente(Hypo,example):
    for h in H:
        if !consist_at(h,e):
            return False
    return True
```

- Una componente de una hipótesis acepta un atributo, si:
  - Si el ejemplo es positivo, cumple el patrón de la hipótesis
  - Si el ejemplo es negativo, no cumple el patrón de la hipótesis

```
1 def consist_at(h, attribute):
2    if positive(attribute):
3        return holds(h, attribute)
4    else:
5        return !holds(h, attribute)
```

#### Índice

Introducción

Adquisición de conceptos

Espacio de versiones
List-Then-Eliminate
Find-S
Eliminación de candidatos

- El espacio de versiones es un framework diseñado para la tarea de aprendizaje inductivo simbólico.
  - Propuesto por Mitchell en 1982
- El objetivo es producir una descripción de un concepto a partir de un entrenamiento con ejemplos positivos y negativos.
- Es independiente de la tarea a aprender
- No se ve afectado por el orden en que se presentan los ejemplos.

- El espacio de versiones es un framework diseñado para la tarea de aprendizaje inductivo simbólico.
  - Propuesto por Mitchell en 1982
- El objetivo es producir una descripción de un concepto a partir de un entrenamiento con ejemplos positivos y negativos.
- Es independiente de la tarea a aprender
- No se ve afectado por el orden en que se presentan los ejemplos.

- Necesitamos algunas definiciones previas:
  - Espacio de hipótesis: el conjunto de todas las hipótesis que se pueden escribir en el lenguaje elegido
  - Espacio de versiones: Conjunto de todas las hipótesis consistentes con el conjunto de ejemplos.

- Necesitamos algunas definiciones previas:
  - Espacio de hipótesis: el conjunto de todas las hipótesis que se pueden escribir en el lenguaje elegido
  - Espacio de versiones: Conjunto de todas las hipótesis consistentes con el conjunto de ejemplos.

- Necesitamos algunas definiciones previas:
  - Espacio de hipótesis: el conjunto de todas las hipótesis que se pueden escribir en el lenguaje elegido
  - Espacio de versiones: Conjunto de todas las hipótesis consistentes con el conjunto de ejemplos.

- Con todo el espacio de hipótesis: List-Then-Eliminate
- Con una cota superior o inferior: Find-S y Dual-Find-S
- Con cota superior e inferior a la vez: Eliminación de candidatos

- Con todo el espacio de hipótesis: List-Then-Eliminate
- Con una cota superior o inferior: Find-S y Dual-Find-S
- Con cota superior e inferior a la vez: Eliminación de candidatos

- Con todo el espacio de hipótesis: List-Then-Eliminate
- Con una cota superior o inferior: Find-S y Dual-Find-S
- Con cota superior e inferior a la vez: Eliminación de candidatos

- Con todo el espacio de hipótesis: List-Then-Eliminate
- Con una cota superior o inferior: Find-S y Dual-Find-S
- Con cota superior e inferior a la vez: Eliminación de candidatos

#### List-Then-Eliminate

- Este es un algoritmo de fuerza bruta.
- Genera TODO el espacio de hipótesis posible. Esto en la mayoría de los casos es inabordable.
- Después analiza todos los ejemplos, uno a uno, eliminando las hipótesis que no son consistentes<sup>2</sup>

```
LTE :: DataSet -> [Hypo]

def LTE(dataset):
    vspace = []
    hspace = genera(dataset)
    for h in hspace:
        if consistent(dataset,h):
            vspace.append(h)
    return vspace
```

<sup>&</sup>lt;sup>2</sup>las que rechazan a los positivos o admiten a los negativos

#### Find-S

- En este algoritmo establecemos la hipótesis más pequeña que cubre a todos los positivos
- Partimos de la hipótesis más específica y vamos generalizando ("agrandando") con cada ejemplo positivo que no esté cubierto.

#### **Dual Find-S**

Es similar al algoritmo Find-S, pero en orden inverso

- Partimos de la hipótesis más general y especificamos por cada ejemplo negativo que sea cubierto la hipótesis.
- Partimos de la hipótesis más específica y vamos generalizando ("agrandando") con cada ejemplo positivo que no esté cubierto.

| Comenzamos con la Hip Más específica Ejemplo Positivo                                                    | $ \mid h_0 = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset) $ |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| $x_1 = \langle \text{Sunny Warm Normal Strong Warm Same} \rangle$ , +                                    | $h_1 = (Sunny, Warm, Normal, Strong, Warm, Same)$                      |
| Ejemplo Positivo  x <sub>2</sub> = <sunny high="" same="" strong="" warm="">, + Eiemplo Negativo</sunny> | h <sub>2</sub> = (Sunny,Warm,?,Strong,Warm,Same)                       |
| , ,                                                                                                      | h <sub>3</sub> = (Sunny,Warm,?,Strong,Warm,Same)                       |
| $x_4 = \langle \text{Sunny Warm High Strong Cool Change} \rangle$ , +                                    | h <sub>2</sub> = (Sunny, Warm, ?, Strong, ?, ?)                        |

| $h_0 = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$ |
|-----------------------------------------------------------------|
|                                                                 |
| $h_1 = (Sunny, Warm, Normal, Strong, Warm, Same)$               |
|                                                                 |
| h <sub>2</sub> = (Sunny, Warm,?,Strong, Warm,Same)              |
|                                                                 |
| h <sub>3</sub> = (Sunny, Warm, ?, Strong, Warm, Same)           |
|                                                                 |
| $h_2 = (Sunny, Warm, ?, Strong, ?, ?)$                          |
|                                                                 |

| Comenzamos con la Hip Más específica                                                     |                                                       |   |
|------------------------------------------------------------------------------------------|-------------------------------------------------------|---|
| Ejemplo Positivo<br>$x_1 = \langle \text{Sunny Warm Normal Strong Warm Same} \rangle, +$ | h <sub>1</sub> = (Sunny,Warm,Normal,Strong,Warm,Same) |   |
| Ejemplo Positivo                                                                         |                                                       | ı |
| $x_2 = \langle \text{Sunny Warm High Strong Warm Same} \rangle$ , +                      | $h_2 = (Sunny, Warm, ?, Strong, Warm, Same)$          | l |
| Ejemplo Negativo                                                                         |                                                       | ĺ |
| $x_3 = \langle \text{Rainy Cold High Strong Warm Change} \rangle$ ,                      |                                                       | İ |
| Ejemplo Positivo                                                                         |                                                       |   |
| $x_4 = \langle \text{Sunny Warm High Strong Cool Change} \rangle$ , +                    |                                                       |   |

| Comenzamos con la Hip Más específica                                                         | $h_0 = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$ |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Ejemplo Positivo                                                                             |                                                                 |
| x <sub>1</sub> = <sunny normal="" same="" strong="" warm="">, +<br/>Eiemplo Positivo</sunny> | $h_1 = (Sunny, Warm, Normal, Strong, Warm, Same)$               |
| $x_2 = \langle \text{Sunny Warm High Strong Warm Same} \rangle$ , +                          | h <sub>2</sub> = (Sunny,Warm,?,Strong,Warm,Same)                |
| Ejemplo Negativo                                                                             |                                                                 |
| $x_3 = \langle \text{Rainy Cold High Strong Warm Change} \rangle$ , -                        | h <sub>3</sub> = (Sunny,Warm,?,Strong,Warm,Same)                |
| Ejemplo Positivo                                                                             |                                                                 |
| $x_4 = \langle \text{Sunny Warm High Strong Cool Change} \rangle$ , +                        | $h_2 = (Sunny, Warm, ?, Strong, ?, ?)$                          |

| Comenzamos con la Hip Más específica                                                                 | $h_0 = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$ |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Ejemplo Positivo                                                                                     | 6 (Cuppy Mayor Nayoral Chrone Mayor Come)                       |
| x <sub>1</sub> = <sunny normal="" same="" strong="" warm="">, + Eiemplo Positivo</sunny>             | h <sub>1</sub> = (Sunny,Warm,Normal,Strong,Warm,Same)           |
| $x_2 = \langle \text{Sunny Warm High Strong Warm Same} \rangle$ , +                                  | h <sub>2</sub> = (Sunny,Warm,?,Strong,Warm,Same)                |
| Ejemplo Negativo                                                                                     |                                                                 |
| x <sub>3</sub> = <rainy change="" cold="" high="" strong="" warm="">, -<br/>Ejemplo Positivo</rainy> | $h_3 = (Sunny, Warm, ?, Strong, Warm, Same)$                    |
| $x_4 = \langle \text{Sunny Warm High Strong Cool Change} \rangle$ , +                                | h <sub>2</sub> = (Sunny,Warm,?,Strong,?,?)                      |

### Aspectos negativos

- Siempre se va a generar una hipótesis consistente con los ejemplos (se ignoran los negativos)
- No puede asegurar que se haya aprendido el concepto correcto, porque coge una de las hipótesis posibles.
- No soporta ruido en los ejemplos positivos

#### Eliminación de candidatos

- Las opciones anteriores son demasiado costosas.
- Debemos de tener una opción que sea más tratable.
- El algoritmo de Eliminación de Candidatos mantiene "las cotas" de hipótesis superior e inferior de todas las hipótesis consistentes con los ejemplos.
- Cada tratamiento de ejemplos generaliza y especializa el grafo de las hipótesis, para obtener un espacio final compatible.

#### Eliminación de candidatos

#### Algoritmo:

- Entrada: Conjunto de datos.
- ► Salida:
  - ► G = Hipótesis genéricas minimales
  - S = Hipótesis específicas maximales
- Las hipótesis se representan en un retículo con orden parcial

#### Eliminación de Candidatos

```
Algorithm 1: Candidate Elimination Algorithm
```

**Data:** D: a dataset of objects labeled as positive or negative Result: V: the version space of hypotheses consistent with D Initialize G to the set containing the most general hypothesis Initialize S to the set containing the most specific hypothesis for each object  $x \in D$  do

```
if x is a positive object then
      Remove from G any hypothesis inconsistent with x
      for each hypothesis s \in S that is inconsistent with x do
          Remove s from S
          Add to S all the minimal generalizations h of s such that
           h is consistent with x and for some member q of G it
           holds that q > h
          Remove from S any hypothesis that's more general than
           another hypothesis in S
      end
   end
   else
      Remove from S any hypothesis inconsistent with x
      for each hypothesis q \in G that is inconsistent with x do
          Remove a from G
          Add to G all the minimal specializations h of g such that
           h is consistent with x and for some member s of S it.
           holds that h \ge s
          Remove from G any hypothesis that's less general than
           another hypothesis in G
      end
   end
return V as V(G, S)
```

#### Eliminación de Candidatos

```
G = (ALL, ALL, ..., ALL)
                                        # Hipótesis más genérica
S = (EMPTY, EMPTY, ..., EMPTY)
                                        # Hipótesis más específica
for ejemplo in dataset:
    if positivo(ejemplo):
        G = Eliminar Incons(G, ejemplo)
        for s in S:
            if not consistente(s, ejemplo):
                S. remove(s)
                gms = Generalize(s)
                for g in gms:
                    if consistente(g,ejemplo) and exists(mas_general(G,g)):
                        S.append(q)
        for s1 in S.
            for s2 in S:
                if mas general(s2,s1):
                    S.remove(s2)
    else:
```

#### Eliminación de Candidatos

# Aplicar el algoritmo de Eliminación de candidatos al siguiente conjunto de datos

| Cielo   | Temperatura | Humedad | Viento | Agua     | Previsión | <b>Hacer Deporte</b> |
|---------|-------------|---------|--------|----------|-----------|----------------------|
| Soleado | Templada    | Normal  | Fuerte | Templada | Igual     | Sí                   |
| Soleado | Templada    | Alta    | Fuerte | Templada | Igual     | Sí                   |
| Lluvia  | Fría        | Alta    | Fuerte | Templada | Cambio    | No                   |
| Soleado | Templada    | Alta    | Fuerte | Fría     | Cambio    | Sí                   |

Paso 0: 
$$S_0=\{<\emptyset,\emptyset,\emptyset,\emptyset,\emptyset>\},~G_0=\{,?,?,?,?\}$$

#### Paso 1:

- Ejemplo **positivo**:
  - < Sol; Templ; Normal; Fuerte; Templ; Igual >
- Nada que eliminar de G<sub>0</sub>
- Generalización minimal de S<sub>0</sub>:
  - < Sol; Templ; Normal; Fuerte; Templ; Igual >
- Esta generalización es más específica que la hipótesis de G0
- Luego:
  - $ightharpoonup G1 = \{<?;?;?;?;?;?>\}$
  - $ightharpoonup S1 = \{ \langle Sol; Templ; Normal; Fuerte; Templ; Igual > \}$

#### Paso 2:

- Ejemplo positivo:
  - < Sol; Templ; Alta; Fuerte; Templ; Igual >
- Nada que eliminar de G1
- Generalización minimal de S1 :< Sol; Templ;?; Fuerte; Templ; Igual >
- Esta generalización es más específica que la hipótesis de G1
- Luego:
  - $\triangleright$  G2 = {<?;?;?;?;?;?>}
  - S2 = {< Sol; Templ; ?; Fuerte; Templ; Igual >}

#### Paso 3:

- Ejemplo negativo: < Lluvia; Fria; Alta; Fuerte; Templada; Cambio >
- Nada que eliminar de S2.
- Especializaciones minimales de G2 que son mas generales que la hipotesis de S2:

```
< Sol; ?; ?; ?; ?; >, <?; Templ; ?; ?; ?; > y
<?:?:?:?: laual >.
```

- Luego:
  - S3 = {< Sol; Templ; ?; Fuerte; Templ; Igual >}
  - ► G3 = {< Sol; ?; ?; ?; ?; >, <?; Templ; ?; ?; ?; > y <?;?;?;?; *Igual* >}

#### Paso 4:

- Ejemplo positivo:
  - < Sol; Templ; Alta; Fuerte; Fria; Cambio >
- Eliminamos de G3 la hipótesis: <?;?;?;?;?;!gual >
- Generalización minimal de S3:
  - < Sol; Templ; ?; Fuerte; ?; ? >.
- Luego:
  - S4 = {< Sol; Templ; ?; Fuerte; ?; ? >}
  - ► G4 = {< Sol; ?; ?; ?; ?; >, <?; Templ; ?; ?; ?; >}

#### **Propiedades**

Sean S y G obtenidos por eliminación de candidatos

- Si S y G son no vacíos, resultan ser respectivamente la cota específica y cota general del espacio de versiones (respecto del conjunto de entrenamiento)
- Si S = G = {h}, entonces h es la única hipótesis de H consistente con todos los ejemplos
- ▶ Si S = G =  $\emptyset$ ;, no existe  $h \in H$  consistente con los ejemplos

#### **Propiedades**

Convergencia hacia el concepto objetivo, siempre que:

- Conjunto de entrenamiento suficientemente grande
- Ejemplos sin errores (ausencia de ruido)
- ► El concepto objetivo esta en H

Eliminación de candidatos