

Prova de etapa 2 **EM IME-ITA 1**

Nome: Turma: EM IME-ITA 1

Professor: Gabriel Braun Unidade: Tijuca II Data: junho de 2023

Instruções:

• Faça sua avaliação à caneta.

• Resoluções a lápis não serão corrigidas.

• Questões discursivas sem desenvolvimento não serão consideradas.

• Não serão fornecidas folhas para rascunho.

Nota:

QUÍMICA

Dados

Constante de Avogadro, $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$

Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$

Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2\,\mathrm{kg}\,\mathrm{s}^{-1}$

Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$

- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- Constante de Rydberg, $\Re = 1.1 \cdot 10^7 \, \text{m}^{-1}$
- Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \text{ m s}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

• $\sqrt{2} = 1.4$ • $\sqrt{3} = 1.7$ • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$ • $\ln 10 = 2.3$

Tabela Periódica

1 H 1,01	6 C 12,01	7 N 14,01	8 0 16,00	9 F 19,00	11 Na 22,99	12 Mg 24,31	15 P 30,97	16 S 32,06	17 Cl 35,45	19 K 39,10	21 SC 44,96
Fe 55,84	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	33 As 74,92	35 Br 79,90	47 Ag 107,87	Te 127,60	53 126,90	54 Xe 131,29	56 Ba 137,33
74 W 183,84	82 Pb 207,20	83 Bi 208,98									

Apresente a fórmula molecular dos compostos iônicos.

- a. Fosfito de cobalto(II)
- b. Brometo de magnésio
- c. Sulfeto de cromo(III)
- d. Cloreto de níquel(II) dihidratado
- e. Hidreto de sódio

Questão 2

Apresente a configuração eletrônica pra cada íon:

- a. Ag⁺
- b. Fe³⁺
- c. Bi³⁺
- d. Co²⁺

Apresente a estrutura de Lewis para as moléculas.

- a. BrF₅
- b. ICl₂-
- c. XeOF₂
- d. XeF₄
- e. XeOF₄.

Questão 4

Determine a geometria em torno do átomo central para as moléculas.

- a. SF₄
- b. ICl₃
- c. IF_4^-
- d. XeO₃

Classifique cada molécula como polar ou apolar.

- $a. \ H_2S$
- b. PF₅
- c. CO_2
- d. NF₃

Questão 6

Deseja-se preparar 50 mL de uma solução 0,125 mol $\rm L^{-1}$ de ácido oxálico, $\rm C_2H_2O_4$.

Determine a massa de ácido oxálico necessária para preparar a solução.

Questão 7

 $\label{eq:local_equation} Uma\ solução\ aquosa\ de\ nitrato\ de\ zinco,\ Zn(NO_3)_2,\ tem\ molalidade\ 0,643\ mol\ L^{-1}\ e\ molalidade\ 0,653\ mol\ kg^{-1}.$

Determine a densidade da solução.

Uma solução aquosa 0,778 mol $\rm L^{-1}$ em Na $_2\rm CO_3$ deve ser diluída até 150 mL com água para reduzir sua concentração a 0,0234 mol $\rm L^{-1}$ de Na $_2\rm CO_3$.

Determine o volume da solução original que deve ser usado para preparar a solução desejada.

Questão 9

Apresente a equação iônica simplificada de precipitação que ocorre quando as soluções aquosas contendo os solutos a seguir são misturadas:

- a. $Ca(NO_3)_2(aq)$ e $Na_2CO_3(aq)$.
- b. NiSO₄(aq) e CuCl₂(aq).
- c. Na₃PO₄(aq) e BaCl₂(aq).
- d. NaCl(aq) e K₂S(aq).

Questão 10

 $\label{eq:main_equation} Uma alíquota de 25 mL de uma solução do ácido oxálico, $H_2C_2O_4$, foi titulada com 30 mL de NaOH 0,3 mol L^{-1}.$

- a. **Apresente** a equação balanceada pra a reação de titulação.
- b. **Determine** a concentração da solução de ácido oxálico.