Лекции по дифференциальным уравнениям

1 Список литературы

- 1. Филиппов Лекции по обыкновенным ОДУ.
- 2. Филиппов Сборник задач по дифференциальным уравнениям
- 3. Петровский Лекции по ОДУ
- 4. Самойленко, Кривошея, Перестрюк. ДУ. Примеры и задачи.
- 5. Антидемидович

2 ДУ первого порядка

$$f(x, y(x), y'(x)) = 0.$$

- 1. х независимая переменная
- 2. y(x) неизвестная функция
- 3. y'(x) ее производная

Решить ДУ – найти y(x)

3 Примеры

- 1. y'(x) = y(x)
- 2. Найти $y(x) \ y'(x) = f(x)$

4 ДУ п-го порядка

$$f(x, y, y', \dots, y^{(n)}).$$

5 Ду разрешимое относительно производных

$$y' = f(x, y).$$

Будем заниматься только такими уравнениями

6 Модель экспонециального роста (эпидемий)

$$x(t)$$
 — число бактерий.
$$\dot{x}(t) \ x(t).$$

$$\dot{x} = kx.$$

$$x = Ce^{kt}, C \in \mathbb{R}.$$

Модель роста с учетом эффекта насыщения называется логистической моделью. Пусть N — максмимальное количество особей.

$$\dot{x} = kx(N - x).$$

 \dot{x} максимальная, при $x=\frac{N}{2}.$

7 Интегрируемые дифференциальные уравнения перво порядка

Знакомимся с уравнениями, которые можем решить в явном виде.

7.1 Общие определения

Определение 1. ДУ 1 порядка, разрешенным относительно производной называется уравнение вида

$$y' = f(x, y).$$

где x независимая переменная, y(x) искомая функция. Решить ДУ $1 \iff$ найти y(x). Будем считать $f: G \to \mathbb{R}, G \subset \mathbb{R}^2$, G - связное и открытое множество B этой глае f будет элементарной (школьной) функцией. Так же считается, что G область опредления уравненияю

Определение 2. Функция $y = \phi(x)$ называется решением ДУ 1 на промежутку < a, b>, если выполнены 3 условия

- $I. \ \phi \in C^1(< a,b>)$ дифференцируема один раз на < a,b>
- 2. $\Gamma pa\phi \phi := \{(x, (\phi(x)) \mid x \in \langle a, b \rangle\} \subset G$
- 3. $\phi'(x) \equiv f(x, \phi(x)) \text{ } \mu a < a, b > a$

Определение 3. График решения называют интегральной кривой $\mathcal{Д} Y(1)$.

7.1.1 Самый простой пример

$$y' = f(x).$$

$$y = \int_{x_0}^{x} f(s)ds + C, C \in \mathbb{R}.$$

Решений бесконечно много. Общее решение ДУ(1) имеет вид

$$y = \phi(x, C), C \in \mathbb{R}.$$

7.1.2 Задача Коши

Задано начальное значение решения.

Определение 4. Задача Коши – называется задача следущего вида

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases} \tag{1}$$

где, $(x_0, y_0) \in G$ Надо найти решения, которые удовлетворяют данному условию. Начальное условие означает, что график решения проходит через (x_0, y_0)

Определение 5. Говорят, что задача Коши 4 имеет единственное решение или (x_0, y_0) есть точка единственности, если существует окрестность $(x_0, y_0) \in U$, такая что для любых двух интегральных кривых Γ_1, Γ_2 , проходящих через точку (x_0, y_0) выполняется $\Gamma_1 \cap U = \Gamma_2 \cap U$ (все интегральные кривые, проходящие (x_0, y_0) совпадают в окрестности U). На языке епсилон-дельта

$$\exists (x_0 - \delta, x_0 + \delta) \forall \phi_1, \phi_2$$
 Решения 4 $\phi_1 \equiv \phi_2$ на $(x_1 - \delta, x_0 + \delta)$.

Если имеет не единственное решение то $\forall U$ открестности найдутся 2 интегральные кривые различаются в окрестности.

В дифференицальных уравнениях единственность понимаемся в локальном смысле.

7.1.3 Пример Пеано

$$\begin{cases} y' = 3y^{\frac{2}{3}} \\ y(0) = 0 \end{cases}.$$

Преверяем 2 решения

$$\phi_1(x) = 0.$$

$$\phi_2(x) = x^3.$$

В любой окрестности $\phi_1 \neq \phi_2$

7.2 Уравнения с разделяющимся переменными

Определение 6. УРП - уравнение вида y' = f(x)g(y). Всегда предполагаем, что

1.
$$f \in C < a, b >$$

2.
$$g \in C < \alpha, \beta >$$

$$G = \langle a, b \rangle \times \langle \alpha, \beta \rangle$$
.

Как это решать придумал Якоб Бернулли.

7.2.1 Неформальный рецепт

$$\frac{dy}{dx} = f(x)g(y).$$

$$\frac{dy}{g(y)} = f(x)dx.$$

$$\int \frac{dy}{g(y)} = \int f(x)dx + C.$$

7.2.2 Нормальное доказательство

Теорема 1.

$$f \in C(\langle a, b \rangle).$$

 $g \in C(\langle \alpha, \beta \rangle).$
 $g(y) \neq 0 \forall y \in \langle \alpha, \beta \rangle.$

- $1. \ \ H(y)$ первообразная $\frac{1}{g(y)}$
- 2. F(x) первообразная f(x)
- 1. Тогда формула из неформального рецепта задает общее решение и только его

2. $G = < a, b > \times < \alpha, \beta > -$ область существоавания и единственности, для любой точки $(x_0, y_0) \in G$ задача задача Коши имеет единственное решение. И это решение задается формулами.

$$H(x) = F(x) + H(y_0) - F(x_0).$$

Proof. Заметим, что $H'(y) = \frac{1}{g(y)} \neq 0 \implies \exists H^{-1}$ Тогда получаем

$$y = H^{-1}(F(x) + C).$$

Формула 2 задает функции вида y=y(x)

1. Пусть y=y(x) есть решение уравнения. Покажем, что оно вкладывается в формулу. $\exists C_0: H(y(x)) - F(x) + C_0$

$$\frac{d}{dx}(H(y(x)) - F(x)) \equiv 0.$$

$$H'(y(x))y'(x) - F'(x) = 0.$$

$$\frac{1}{g(y(x))} * f(x)g(y(x)) - f(x) \equiv 0.$$

2. Теперь обратно

$$H(y(x)) \equiv F(x) + C.$$

Продифференцировали

$$H'(y(x)) * y'(x) \equiv F'(x).$$

Берем произвольную точку из области $(x_0, y_0) \in G$

$$C \equiv H(y(x)) - F(x).$$

Подставим начальные условия из задачи коши

$$C = H(y(x_0)) - F(x_0) = H(y_0) - F(x_0).$$

Тоесть для любой точки из G можно определить единственным образом

Ответ писать, надо даже если обратная функция не выражается в элементарных вроде $H(y) = y + \arctan(y)$, эта хрень считается ответом

$$H(y) - F(x) = C.$$

$$U(x,y) = H(y) - F(x).$$

U – интеграл ДУ

Определение 7. U(x,y) называется интегралом ДУ, если выполняются следущие аксиомы (свойства)

- 1. $U \in C^1$
- 2. $U'_y \neq 0$ (производная по у не ноль)
- 3. U обращается в константу при подставлении решения ДУ.

Все свойства выполняются для U(x, y)

Определение 8 (Линия уровня).

$$U^{-1}(c) = \{(x, y) \mid U(x, y) = c\}.$$

Теперь рассмотрим случай, когда g(y)=0 Пусть $g(a)=0 \implies$ стационарное решение

$$a' \equiv f(x)(g(a)).$$

Теорема 2. Пусть $f \in C(< a, b>), g \in C^1(< \alpha, \beta>)$ Тогда все решения уравнения задаются совокупностью

$$H(y) = F(x) + c.$$

g(y)=0 совокупность всех стационарных решений.

Эту хрень не доказываем, так как будет следовать из теоремы Пикара.

1. Пример Пеано

$$y' = 3y^{\frac{2}{3}}.$$
$$y = 0.$$

решение

$$\int \frac{y'dy}{3y^{\frac{2}{3}}} = \frac{1}{3} * x^{1/3} * 3 + c = x^{\frac{1}{3}} + c.$$

$$y^{\frac{1}{3}} = x + c.$$

$$y = (x+c)^{3}.$$

$$\begin{cases} y = 0 \\ y = (x+c)^{3} \end{cases}$$

В точках y=0 нарушается единственность, решения можно склеивать, получать новые, не из совокупности

$$y = \begin{cases} (x - c_1)^3, x < c_1 \\ 0, c_1 \le x \le c_2 \\ (x - c_2) < x > c_2 \end{cases}.$$

g(y) не дифф в 0, условия теоремы 2 не выполняются.

2.

$$y' = y$$
.

y = 0 решение

$$\int \frac{y'}{y} dy = \ln y + c.$$

$$\ln (|y|) = x + c.$$

$$|y| = e^{x+c}.$$

$$\begin{bmatrix} y = 0 \\ y = \pm c^x y e^c \\ c_1 = \pm e^c. \end{bmatrix}$$

$$\begin{bmatrix} y = 0 \\ y = C_1 e^x, \forall c_1 \neq 0 \end{bmatrix}$$

единственность не нарушена