

FAST CMOS OCTAL BUFFER/LINE DRIVER

IDT54/74FCT244/A/C

FEATURES:

- IDT54/74FCT244A equivalent to FAST™ speed and drive
- IDT54/74FCT244A 25% faster than FAST
- IDT54/74FCT244C up to 55% faster than FAST
- IOL = 64mA (commercial) and 48mA (military)
- CMOS power levels (1mW typ. static)
- Military product compliant to MIL-STD-883, Class B
- Meets or exceeds JEDEC Standard 18 specifications
- Available in the following packages:
 - Commercial: SOIC
 - Military: CERDIP, LCC, CERPACK

DESCRIPTION:

The IDT octal buffer/line drivers are built using an advanced dual metal CMOS technology. The FCT244 is designed to be employed as a memory and address driver, clock driver, and bus-oriented transmitter/receiver which provides improved board density.

FUNCTIONAL BLOCK DIAGRAM

MILITARY AND COMMERCIAL TEMPERATURE RANGES

JUNE 2000

PIN CONFIGURATION

DIP/ SOIC/ CERPACK TOP VIEW

LCC TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
V _{TERM} (2)	Terminal Voltage with Respect to GND	-0.5 to +7	-0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc	-0.5 to Vcc	V
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-55 to +125	-65 to +150	°C
PT	Power Dissipation	0.5	0.5	W
Іоит	DC Output Current	120	120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +.5V unless otherwise noted.
- 2. Input and Vcc terminals only.
- 3. Outputs and I/O terminals only.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output	Vout = 0V	8	12	pF
	Capacitance				8-link

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE (1)

Inputs			
ŌĒA	ОЕв	D	Outputs
L	L	L	L
L	L	Н	Н
Н	Н	Х	Z

NOTE:

8-link

1. H = High Voltage Level

X = Don't Care

L = Low Voltage Level

Z = HIGH Impedance

PIN DESCRIPTION

Pin Names	Description
ŌĒA, ŌĒB	3-State Output Enable Inputs (Active LOW)
Dxx	Inputs
Охх	Outputs

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: VLC = 0.2V; VHC = VCC - 0.2V

Commercial: $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%$; Military: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$

Symbol	Parameter	Tes	Test Conditions ⁽¹⁾			Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH	Guaranteed Logic HIGH Level			_	V
VIL	Input LOW Level	Guaranteed Logic LOW	/ Level	_	_	0.8	V
lін	Input HIGH Current	Vcc = Max.	VI = VCC	_	_	5	μA
			VI = 2.7V	_	_	5 ⁽⁴⁾	
İL	Input LOW Current		VI = 0.5V	_	_	-5 ⁽⁴⁾	
			VI = GND	_	_	-5	
lozн	Off State (High Impedance)	Vcc = Max.	Vo = Vcc	_	_	10	μA
	Output Current		Vo = 2.7V	_	_	10 ⁽⁴⁾	
lozl			Vo = 0.5V	_	_	-10 ⁽⁴⁾	
			Vo = GND	_	_	-10	
Vik	Clamp Diode Voltage	Vcc = Min., In = -18mA	VCC = Min., IN = -18mA		-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max. ⁽³⁾ , Vo = GN	$VCC = Max.^{(3)}, VO = GND$			_	mA
Vон	Output HIGH Voltage	Vcc = 3V, VIN = VLC or	$VCC = 3V$, $VIN = VLC$ or VHC , $IOH = -32\mu A$		Vcc	_	V
		Vcc = Min.	Ioh = -300µA	VHC	Vcc	_	
		VIN = VIH or VIL	IOH = -12mA MIL.	2.4	4.3	_	
			IOH = -15mA COM'L.		4.3	_	
VoL	Output LOW Voltage	Vcc = 3V, Vin = VLc or	VCC = 3V, VIN = VLC or VHC, IOL = 300µ A		GND	VLC	V
		Vcc = Min.	IoL = 300μA	_	GND	VLC ⁽⁴⁾	
		VIN = VIH or VIL	IOL = 48mA MIL.	_	0.3	0.55	
			IOL = 64mA COM'L.	_	0.3	0.55	

NOTES

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- 4. This parameter is guaranteed but not tested.

8-link

POWER SUPPLY CHARACTERISTICS

 $V_{LC} = 0.2V$; $V_{HC} = V_{CC} - 0.2V$

Symbol	Parameter	Test (Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
Icc	Quiescent Power Supply Current	Vcc = Max.	Vcc = Max.		0.2	1.5	mA
		$Vin \ge Vhc; Vin \le Vlc$					
Δlcc	Quiescent Power Supply Current	Vcc = Max.		-	0.5	2	mA
	TTL Inputs HIGH	$VIN = 3.4V^{(3)}$					
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max.	$VIN \ge VHC$	_	0.15	0.25	mA/
		Outputs Open	$VIN \leq VLC$				MHz
		$\overline{OE}A = \overline{OE}B = GND$					
		One Input Toggling					
		50% Duty Cycle					
Ic	Total Power Supply Current (6)	Vcc = Max.	$VIN \ge VHC$	_	1.7	4	mA
		Outputs Open	$VIN \leq VLC$				
		fi = 10MHz	(FCT)				
		50% Duty Cycle					
		$\overline{OE}A = \overline{OE}B = GND$	VIN = 3.4V	_	2	5	
		One Bit Toggling	VIN = GND				
		Vcc = Max.	VIN ≥ VHC	_	3.2	6.5 ⁽⁵⁾	
		Outputs Open	VIN ≤ VLC				
		fi = 2.5MHz	(FCT)				
		50% Duty Cycle					
		$\overline{OE}A = \overline{OE}B = GND$	VIN = 3.4V	_	5.2	14.5 ⁽⁵⁾	
		Eight Bits Toggling	V _{IN} = GND				

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $Ic = Icc + \Delta Icc DhNt + Icco (fcp/2 + fiNi)$

Icc = Quiescent Current

 Δ ICC = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

Icco = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

Ni = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (1,2)

			54/74F0		54/74FCT244			54/74FCT244A			54/74FCT244C				
			Co	m'l.	M	il.	Co	m'l.	IV	il.	Co	m'l.	IV	lil.	
Symbol	Parameter	Condition	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tplh tphl	Propagation Delay DN to ON	$C_L = 50pF$ $R_L = 500\Omega$	1.5	6.5	1.5	7	1.5	4.8	1.5	5.1	1.5	4.1	1.5	4.6	ns
tpzh tpzl	Output Enable Time		1.5	8	1.5	8.5	1.5	6.2	1.5	6.5	1.5	5.8	1.5	6.5	ns
tphz tplz	Output Disable Time		1.5	7	1.5	7.5	1.5	5.6	1.5	5.9	1.5	5.2	1.5	5.7	ns

NOTES:

- 1. See test circuit and wave forms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.

TEST CIRCUITS AND WAVEFORMS

TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

Test	Switch
Open Drain	
Disable Low	Closed
Enable Low	
All Other Tests	Open
	8-link

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

NOTES:

- Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; Zo \leq 50 Ω ; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*