Problem §1 Are the following subsets actually subspaces? If yes, just write yes. If no, show briefly how the subset fails to be a subspace.

- 1. Let V be any vector space. Is \emptyset a subspace of V?
- 2. Let V be any vector space. Is V a subspace of V?
- 3. Is $W = \{(\alpha, i\alpha) \mid \alpha \in \mathbb{C}\}$ a subspace of \mathbb{C}^2 ?
- 4. Is $W = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0 \lor y = 0 \lor z = 0\}$ a subspace of \mathbb{R}^3 ?
- 5. Let V be a vector space over \mathbb{F} , and let $v \in V$ be any vector in V. Is

$$W = \{av \mid a \in \mathbb{F}\}\$$

- a subspace of V?
- 6. Given $V_{\mathbb{F}}$, and $v, w \in V$, is

$$W = \{av + bw \mid a, b \in \mathbb{F}\}\$$

- a subspace of V?
- 7. Given $V_{\mathbb{F}}$, and let U, W be subspaces of V. Is

$$X = \{u + w \mid u \in U, w \in W\}$$

a subspace of V?

Solution:

- 1. No. $\mathbf{0} \notin \emptyset$.
- 2. Yes
- 3. Yes
- 4. No. Choose $(1,0,1), (0,1,0) \in W$. Then $(1,0,1) + (0,1,0) = (1,1,1) \notin W$.
- 5. Yes
- 6. Yes (for 5 and 6, aren't these just another way of describing V?)
- 7. Yes

Problem §2 Let V be the real vector space of functions $f: \mathbb{R} \to \mathbb{R}$.

- 1. Let W be the set of functions $f: \mathbb{R} \to \mathbb{R}$ that are non-decreasing (that is, $f(b) \geq f(a)$ whenever $b \geq a$). Is W a subspace of V?
- 2. Let W be the set of functions $f: \mathbb{R} \to \mathbb{R}$ that have bounded support (that is, $\exists N \in \mathbb{R}_{\geq 0}$ s.t. |x| > N implies f(x) = 0). Is W a subspace of V?
- 3. Let W be the set of functions $f: \mathbb{R} \to \mathbb{R}$ such that the range of f has exactly one element. Is W a subspace of V?
- 4. Let W be the set of functions $f: \mathbb{R} \to \mathbb{R}$ such that the range of f has exactly two elements. Is W a subspace of V?
- 5. Let W be the set of functions $f: \mathbb{R} \to \mathbb{R}$ such that the range of f has finitely many elements. Is W a subspace of V?

Solution:

- 1. No; consider $-1 \cdot f$ for some $f \in W$ (say, f(x) = x). Then if $a \le b$, $-1 \cdot f(b) \le -1 \cdot f(a)$, and so $-1 \cdot f$ is decreasing and thus not in W.
- 2. Yes
- 3. Yes
- 4. No; given two functions $f: \mathbb{R} \to \{a,b\} \subseteq \mathbb{R}, g: \mathbb{R} \to \{c,d\} \subseteq \mathbb{R}$, the range of f+g has four possible values: $\{a+c,a+d,b+c,b+d\}$.
- 5. Yes