No.	SOLUTION
1(a)	Order of $(\mathbf{AF})^{\mathrm{T}}$: $3x2$
1(b)	$3\mathbf{E} + \mathbf{P}^{T} = -2\mathbf{C}\mathbf{A}$ $3\begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} + \mathbf{P}^{T} = -2\begin{bmatrix} 2 & -3 \\ -9 & 2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 4 & -6 & -2 \\ -5 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 9 & 0 & 6 \\ 6 & 0 & -6 \\ 3 & 3 & 3 \end{bmatrix} + \mathbf{P}^{T} = \begin{bmatrix} -46 & 36 & 8 \\ 92 & -116 & -36 \\ -22 & 44 & 16 \end{bmatrix}$ $\mathbf{P}^{T} = \begin{bmatrix} -46 & 36 & 8 \\ 92 & -116 & -36 \\ -22 & 44 & 16 \end{bmatrix} - \begin{bmatrix} 9 & 0 & 6 \\ 6 & 0 & -6 \\ 3 & 3 & 3 \end{bmatrix}$ $= \begin{bmatrix} -55 & 36 & 2 \\ 86 & -116 & -30 \\ -25 & 41 & 13 \end{bmatrix}$ $\mathbf{P} = \begin{bmatrix} -55 & 86 & -25 \\ 36 & -116 & 41 \\ 2 & -30 & 13 \end{bmatrix}$
1(c)	Given that B is a symmetric matrix, y-3=6 y=9 y+2=x-4 sub $y=9$, x=15
1(d)(i)	$\mathbf{D}^{2} = \begin{bmatrix} -8 & 11 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} -8 & 11 \\ -4 & 4 \end{bmatrix} = \begin{bmatrix} 20 & -44 \\ 16 & -28 \end{bmatrix} \text{ or } 4 \begin{bmatrix} 5 & -11 \\ 4 & -7 \end{bmatrix}$
1(d)(ii)	B-C cannot be evaluated because the order/size of B is not the same as C .
1(d)(iii)	$\mathbf{FC} = \begin{bmatrix} 2 & 2 & 0 \\ -4 & 1 & 10 \\ 2 & -3 & 0 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -9 & 2 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} -14 & -2 \\ 23 & 24 \\ 31 & -12 \end{bmatrix}$

1(d)(iv)	(DC ^T E) ³ cannot be evaluated because (DC ^T E) is not a square matrix / (DC ^T E) is a 2x3 matrix which is not conformable with another 2x3 matrix. (Accept other valid reasons).
	Given that $\mathbf{EF} = k\mathbf{I}_3$, $ \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ -4 & 1 & 10 \\ 2 & -3 & 0 \end{bmatrix} = kI_3 $ $ \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} = kI_3 $ $ 10\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = kI_3 $ $ k = 10$

I(e)(ii) Given 10GF = 9E,

$$10G^{-1}GF = 9G^{-1}E$$

$$10F = 9G^{-1}E$$

$$10FE^{-1} = 9G^{-1}EE^{-1}$$

$$10FE^{-1} = 9G^{-1}$$

$$G^{-1} = \frac{10}{9}FE^{-1}$$
From part (e)(i), EF = 10I₃

$$F = 10E^{-1}$$

$$E^{-1} = \frac{1}{10}F$$

$$G^{-1} = \frac{10}{9}FE^{-1}$$

$$= \frac{10}{9}F \cdot \frac{1}{10}F$$

$$= \frac{1}{9}F \cdot \frac{1}{10}F$$

$$= \frac{1}{9}F^{2}$$

$$= \frac{1}{9}\begin{bmatrix} 2 & 2 & 0 \\ -4 & 1 & 10 \\ 2 & -3 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ -4 & 1 & 10 \\ 2 & -3 & 0 \end{bmatrix}$$

$$= \frac{1}{9}\begin{bmatrix} -4 & 6 & 20 \\ 8 & -37 & 10 \\ 16 & 1 & -30 \end{bmatrix}$$

2(a)
$$U = \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

$$A = \{2, 4, 6\}$$

$$B = \{2, 3, 5, 7\}$$

$$C = \{-2, 0, 2, 4, 6, 8\}$$
2(b)
$$B \cap \overline{C} = \{3, 5, 7\}$$

$$C \cap (A \cup B) = \{2, 4, 6\}$$
2(c)
$$U$$

$$Alternatively,$$

$$U$$

$$-3$$

$$-1$$

$$1$$

$$B$$

$$3$$

$$2$$

$$4$$

$$-2$$

$$0$$

$$8$$

$$7$$

$$6$$

$$8$$

$$2(d)(i)$$

$$P(A) = \{A, \{2, 4\}, \{2, 6\}, \{4, 6\}, \{2\}, \{4\}, \{6\}, \emptyset\}$$

$$P(B) = \{B, \{2, 3, 5\}, \{2, 3, 7\}, \{2, 5, 7\}, \{3, 5, 7\}, \{2, 3\}, \{2, 5\}, \{$$

$$\{2,7\}, \{3,5\}, \{3,7\}, \{2\}, \{3\}, \{5\}, \{7\}, \emptyset$$

$$2(d)(ii) By observing number of elements in set $P(A)$ and $P(B)$,
$$|A| = 3, |P(A)| = 8 = 2^{3}$$

$$|B| = 4, |P(B)| = 16 = 2^{4}$$

$$\therefore \text{ no. of element in set } P(X) = 2^{|X|} \text{ or } 2^{n(X)}$$$$

SINGAPORE POLYTECHNIC 2023/2024 Semester 1 Mid-Semester Test

3(a)	Integ	gral part:	
	2	712	

2	/12	
2	356	0
2	178	0
2	89	0
2	44	1

2	44	1
2	22	0
2	11	0

5

1

Fractional part:		
2x	0.525	

1.05	0.05	1
0.1	0.1	0
0.2	0.2	0

$$\therefore 712.525_{10} = 10\ 1100\ 1000.100\ \overline{0011}_2 = 2C8.8\ \overline{6}_{16}$$

3(b)
$$255_{10} = 111111111_2$$
 (1 byte)

Any integer between 0 and 255 or any fraction that can be expressed in exactly 8 bits will result in zero truncation error - the smallest truncation error is 0.

The largest truncation error is

$$= 0.0000\ 0000\ \bar{1}_2$$

$$= \mathbf{1}_{10} - 0.1111 \ 1111_2$$

$$=1-(2^{-1}+2^{-2}+2^{-3}+2^{-4}+2^{-5}+2^{-6}+2^{-7}+2^{-8})$$

$$=1-0.99609375$$

$$=0.00390625$$

SINGAPORE POLYTECHNIC 2023/2024 Semester 1 Mid-Semester Test

4(a)(ii)
$$\mathbf{C} = \mathbf{T}_{3}\mathbf{T}_{2}\mathbf{T}_{1} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -0.5 & 0 \\ -0.5 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4(a)(iii)
$$\mathbf{P'} = \mathbf{CP} = \begin{bmatrix} 0 & -0.5 & 0 \\ -0.5 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 & 0.5 \\ -1 & 0.5 & -0.5 \\ 1 & 1 & 1 \end{bmatrix}$$

4(a)(iv)
$$\mathbf{T}_{1}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
; $\mathbf{T}_{2}^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; $\mathbf{T}_{3}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

4(a)(v)
$$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1}\mathbf{T}_{2}^{-1}\mathbf{T}_{3}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4(b)(i)
$$T_a$$
: Reflection about the line $y = x$
 T_b : Shearing in the y-direction by a factor of -2
 T_c : Translation 3 units upwards

 $\mathbf{T}_{a} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \; ; \quad \mathbf{T}_{b} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \; ; \quad \mathbf{T}_{c} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$

$$\mathbf{T} = \mathbf{T}_{c} \mathbf{T}_{b} \mathbf{T}_{a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{U}' = \mathbf{T} \mathbf{U} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -2 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 (verified)