Contents

Pa	rt I	测度	论																							
1	可测																									3
		可测集																								3
		正测度					 •	 •	 •	• •	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	4
		概率																								
2		论基础																								9
	2.1	一般定	义																							9
		2.1.1	概	率	空间	1.																				9

Part I

测度论

可测空间

1.1 可测集

定义 1.1. 集合 E 上的 σ -域 A 指的是 E 的一个子集族, 其满足下面的性质:

- 1. $E \in \mathcal{A}$;
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$;
- 3. 如果一列子集 $A_n \in \mathcal{A}$,那么 $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

A 的元素被称为**可测集**, (E,A) 被称为**可测空间**. 根据定义,我们很容易得出下面的结果:

- $\emptyset = E^c \in \mathcal{A}$.
- 如果一列子集 $A_n \in A$, 那么

$$\bigcap_{n\in\mathbb{N}} A_n = \left(\bigcup_{n\in\mathbb{N}} A_n\right)^c \in \mathcal{A}.$$

• A 对有限并和有限交也是封闭的,只需要从某一项 A_n 开始全部取空集即可.

例 1.2. 根据可测集的定义, 很容易构造出一些最简单的例子:

- 1. $A = \mathcal{P}(E)$, 当 E 是有限集或者可数集的时候我们通常会使用这样的 σ -域, 其他情况则很少使用.
- 2. $A = \{\emptyset, E\},$ 平凡 σ -域.
- 3. E 的所有至多可数的子集以及所有补集至多可数的子集构成 E 上的一个 σ -域.

为了产生更多的例子,我们注意到 E 上任意 σ-域的交集仍然是 σ-域,这导出了下面的定义.

定义 1.3. 令 \mathcal{C} 是 $\mathcal{P}(E)$ 的子集,E 上包含 \mathcal{C} 的最小的 σ -域被记为 $\sigma(\mathcal{C})$,不难看出其是所有包含 \mathcal{C} 的 σ -域的交集. 我们称 $\sigma(\mathcal{C})$ 是由 \mathcal{C} 生成的 σ -域.

定义 1.4. 设 (E,\mathcal{O}) 是拓扑空间,所有开集 \mathcal{O} 生成的 σ -域 $\sigma(\mathcal{O})$ 被称为 E 上的 Borel σ -域,记为 $\mathcal{B}(E)$.

E 上的 Borel σ -域是包含所有开集的最小的 σ -域. $\mathcal{B}(E)$ 的元素被称为 E 的 **Borel 子集**. 显然, E 中的闭集也都是 Borel 子集.

例 1.5 (\mathbb{R} 上的 Borel σ -域). 记 \mathcal{C}_1 为 \mathbb{R} 中开区间的集合:

$$C_1 = \{(a, b) \mid a, b \in \mathbb{R}, a < b\},\$$

显然有 $\mathcal{C}_1 \subseteq \mathcal{B}(\mathbb{R})$,于是 $\sigma(\mathcal{C}_1) \subseteq \mathcal{B}(\mathbb{R})$. 下面我们说明 $\mathcal{B}(\mathbb{R}) \subseteq \sigma(\mathcal{C}_1)$. 我们不加证明 地使用一个结论 (Lindelöf 定理): \mathbb{R} 的任意开子集 U 都是开区间的可数并. 那么根据 σ -域的定义,任意开区间都在 $\sigma(\mathcal{C}_1)$ 中,故 $\mathcal{B}(\mathbb{R}) \subseteq \sigma(\mathcal{C}_1)$. 这表明 $\mathcal{B}(\mathbb{R})$ 可以由所有开区间生成.

此外, 如果注意到

$$(a,b) = (-\infty,b) \cap (-\infty,a)^c$$

还可以证明 $\mathcal{B}(\mathbb{R})$ 由 \mathcal{C}_2 生成, 其中

$$C_2 = \{(-\infty, a) \mid a \in \mathbb{R}\}.$$

在后文中,每当我们考虑拓扑空间 (例如 $\mathbb R$ 或者 $\mathbb R^d$) 时,除非有特别说明,否则我们总是假设它们配备 Borel σ -域.

下一个非常重要的 σ-域是乘积 σ-域.

定义 1.6. 令 (E_1, A_1) 和 (E_2, A_2) 是可测空间, 定义 $E_1 \times E_2$ 上的 σ -域 $A_1 \otimes A_2$ 为

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(\{A_1 \times A_2 \mid A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}).$$

引理 1.7. 设 E 和 F 是可分 (有可数的稠密子集) 的拓扑空间, $E \times F$ 配备积拓扑,那 么 $\mathcal{B}(E \times F) = \mathcal{B}(E) \otimes \mathcal{B}(F)$.

1.2 正测度

定义 1.8. (E, A) 上的正测度指的是一个映射 $\mu : A \to [0, \infty]$, 其满足下面的性质:

- 1. $\mu(\emptyset) = 0$;
- 2. $(\sigma$ -可加性) 对于任意可数个不相交的可测集序列 $(A_n)_{n\in\mathbb{N}}$,有

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\sum_{n\in\mathbb{N}}\mu(A_n).$$

此时, 三元组 (E, A, μ) 被称为**测度空间.** 值 $\mu(E)$ 被称为测度 μ 的总质量.

需要注意的是, 我们允许 μ 的值为 $+\infty$, 此时级数 $\sum_{n\in\mathbb{N}}\mu(A_n)$ 作为正向级数在 $[0,\infty]$ 中总是有意义的. 根据 σ -可加性, 如果我们令 $n>n_0$ 开始 $A_n=\emptyset$, 便可以得到有限可加性.

命题 1.9 (测度的性质). 根据定义, 测度 μ 满足下面的性质:

1. 如果 $A \subseteq B$,那么 $\mu(A) \le \mu(B)$. 此外,如果还满足 $\mu(A) < \infty$,那么

$$\mu(B \setminus A) = \mu(B) - \mu(A).$$

2. 如果 $A, B \in \mathcal{A}$,那么

$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B).$$

3. 如果 $A_n \in \mathcal{A}$ 且 $A_n \subseteq A_{n+1}$,那么

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\lim_{n\to\infty}\mu(A_n).$$

4. 如果 $B_n \in \mathcal{A}$ 且 $B_{n+1} \subseteq B_n$, $\mu(B_1) < \infty$, 那么

$$\mu\Big(\bigcap_{n\in\mathbb{N}}B_n\Big)=\lim_{n\to\infty}\mu(B_n).$$

5. 如果 $A_n \in \mathcal{A}$,那么

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)\leq \sum_{n\in\mathbb{N}}\mu(A_n).$$

Proof. (1) 若 $A \subset B$, 那么 $B = A \cup (B \setminus A)$ 是无交并, 所以

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

(2) 若 $\mu(A)$, $\mu(B)$ 中有至少一个为无穷, 那么根据 (1), $\mu(A \cup B)$ 为无穷, 所以结论成立. 下面假设 $\mu(A)$, $\mu(B)$ 均有限, 记 $C = A \cap B$, 那么 $A \cup B = (A \setminus C) \cup C \cup (B \setminus C)$ 是无交并, 所以

$$\mu(A \cup B) = \mu(A \setminus C) + \mu(C) + \mu(B \setminus C) = \mu(A) + \mu(B) - \mu(C),$$

结论 (2) 成立.

(3) 令 $C_1 = A_1$, 对于 n > 2 的时候, 令

$$C_n = A_n \setminus A_{n-1}$$

那么 $A_n = \bigcup_{k \le n} C_k$ 是无交并, 所以

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big) = \mu\Big(\bigcup_{n\in\mathbb{N}}C_n\Big) = \sum_{n\in\mathbb{N}}\mu(C_n) = \lim_{n\to\infty}\sum_{k=1}^n\mu(C_k) = \lim_{n\to\infty}\mu(A_n).$$
(4)

例 1.10 (常见的测度).

1. 令 $E = \mathbb{N}$, $A = \mathcal{P}(\mathbb{N})$, 定义计数测度为

$$\mu(A) = \operatorname{card}(A)$$
.

2. 如果 $A \in E$ 的子集, 定义 A 的指示函数 $\mathbf{1}_A : E \to \{0,1\}$ 为

$$\mathbf{1}_{A}(x) = \begin{cases} 1 & x \in A, \\ 0 & x \notin A. \end{cases}$$

令 (E, A) 是可测空间,固定 $x \in E$. 对于每个 $A \in A$, 令 $\delta_x(A) = \mathbf{1}_A(x)$, 这给出了 (E, A) 上的一个测度,被称为 x **处的 Dirac 测度**.

3. 可以证明,在 $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ 上存在唯一的正测度 λ 使得: 对于每个开区间 [a,b],有 $\lambda([a,b])=b-a$. 这个测度 λ 被称为 **Lebesgue 测度**.

如果 μ 是 (E, A) 上的正测度, $C \in A$, 那么可以定义 μ 在 C 上的**限制** ν 为:

$$\nu(A) = \mu(A \cap C), \quad \forall A \in \mathcal{A}.$$

不难验证 ν 还是 (E, A) 上的正测度.

Part II

概率论

概率论基础

2.1 一般定义

2.1.1 概率空间

令 (Ω, A) 是可测空间, \mathbb{P} 是 (Ω, A) 上的概率测度, 我们说 (Ω, A, \mathbb{P}) 是**概率空间**.