Data suggests that there may be a relationship between the weekly amount of rainfall measured at WPAFB in inches (x) and the number of minutes one has to wait in line at Kroger Pickup (y).

Week #	Rainfall, in. (x)	Wait time at Kroger Pickup, min. (y)
1	0.25	1
2	1.6	4
3	0.0	12
4	2.7	61
5	4.4	92

Determine least-squares estimates for slope
$$(\beta_1)$$
 and intercept (β_0) of the simple linear regression model for Kroger Pickup wait time vs. weekly rainfall.

$$\hat{\beta}_{i} = \frac{\sum y_{i}x_{i} - \frac{(\sum y_{i})(\sum x_{i})}{n}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}} = \frac{S_{XY}}{S_{XX}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$2y_{1}x_{1} = 576.15 \oplus$$

$$S_{XY} = 576.15 - \frac{176.8.95}{5}$$

= 271.85

$$S_{XX} = 29.2725 - \frac{8.15^2}{5}$$

$$= 13.252 \quad \text{(A)}$$

$$\beta_1 = \frac{271.85}{13.252} = 20.5/(4)$$

Write the equation for the estimated regression line (\hat{y}) with your actual numbers for $\hat{\beta}_0$ and $\hat{\beta}_1$.

Write a 95% prediction interval on the mean wait time at x = 1 inch of rainfall.

$$SST = 12346 - 5.34^{2} = 6566 \text{ AD}$$

$$SSE = 6566 - 20.51.241.35 = 990.4 \text{ AD}$$

$$\frac{1}{3} = \frac{990.4}{3} = 330.1 \text{ AD}$$

$$\frac{1}{3} = 20.51.1 - 2.720 = 17.79 \text{ Min.}$$

$$\frac{1}{41} = \frac{17.79}{11} = \frac{1}{3.182} = \frac{1}{330.1} = \frac{1}{11} = \frac{1}{11}$$

Write a 95% confidence interval on the value of slope and use it to test the following hypotheses that the slope is zero. Include a unit with the C.I.

$$H_0: \hat{\beta}_1 = 0$$

$$H_1: \hat{\beta}_1 \neq 0$$

Write a 95% confidence interval on the correlation coefficient ρ , if y and x may both be considered random variables. (Ignore the fact that n \geq 30.)

$$P^{2} = 1 - \frac{990.1}{6566} = 0.8492 \text{ ft}$$

$$= 1.960 \text{ G}$$

$$P : + 4nh \left(+4nh^{-1} \sqrt{0.8492} \pm \frac{1.960}{\sqrt{2}} \right)$$

$$= 1.599$$

$$= 1.599$$

$$= 1.599$$

$$= 1.599$$

$$= 1.599$$

$$= 1.599$$

$$= 1.599$$