Steiner Tree & annealing

Resolver el problema del Steiner Tree con Simulated annealing

Felipe Urrutia Vargas, Camilo Carvajal Reyes

Departamento de Ingeniería Matemática, Universidad de Chile

Simulación Estocástica: Teoría y Laboratorio

Steiner Tree & Simulated annealing

Introduc

Definición

Formulación

Simulated anneali

Jillalatea ailitean

Estados

transiciones

Implementació

Implementacio variantes

esultado:

Data-te

Gridsearc

Discusi

Llegada al óptin Conclusiones

Bibliografia

- 1 Introducción
 - Definición
 - Formulación
 - Simulated annealing
- 2 Algoritmo
 - Estados y transiciones
 - Pseudo-algoritmo
 - Implementación y variantes
- 3 Resultados
 - Data-test
 - Validación
 - Gridsearch
- 4 Discusión
 - Llegada al óptimo
 - Conclusiones

Steiner Tree & Simulated annealing

1 Introducción

Definición

Formulación

Simulated annealing

2 Algoritmo

Estados y transiciones

Pseudo-algoritmo

■ Implementación y variantes

3 Resultados

Data-test

Validación

Gridsearch

4 Discusión

Llegada al óptimo

Conclusiones

Introdu

Definición

Simulated and

Algoritmo

transicion

Implementaci

variantes

Resultado

Gridsear

Llegada al

Bibliografía

Introducción: Definición del problema

Steiner Tree & Simulated annealing

Introducció

Definición

Simulated annealin

Estados y transiciones Pseudo-algoritmo

Implementación y variantes

Data-test Validación Gridsearch

Llegada al óp

Ribliografía

Definición (Steiner tree)

Para un grafo G = (V, E), vertices terminales $S \subset V$ y pesos $w : E \to \mathbb{R}_+$, se desea encontrar un arbol T de peso minimo que contenga a lo menos los vertices en S, donde el peso del arbol T es la suma de los pesos de cada una de sus aristas.

Introducción: Formulación clásica

Steiner Tree & Simulated annealing

Introducció Definición

Formulación

Simulated annea

Algoritmo

Estados y transicior

Pseudo-algorit

Implementación

Resultar

Validaciór

Discus

Llegada al óptir

Bibliografía

Problema (Steiner tree)

(P)
$$\begin{cases} minimizar & w(T) = \sum \{w(e) : e \in E[T]\} \\ s.a. & T \text{ es \'arbol y } S \subseteq V[T] \end{cases}$$

Desafios

Conjunto factible

Métodos clásicos

Programación lineal mixta

Introducción: Simulated annealing

Steiner Tree & Simulated annealing

Introducció

Definición

Simulated annealing

Simulated anneali

Estados

transiciones

Pseudo-algori

Implement variantes

Resultados

Data-test

Validació Gridsearc

Discus

Llegada al ópti Conclusiones

Bibliografía

Tecnica (Simulated annealing)

$$(A) \begin{cases} minimizar & H(x) \\ s.a. & x \in \Lambda \end{cases}$$

Consideraciones

|Λ| es demasiado grande

Estados y transiciones

$$x, y \in \Lambda$$
, $x \sim y \Leftrightarrow x$ es vecino de y

Esquema

$$\pi_x \propto e^{-\beta H(x)}$$
, $R(x, y) = e^{-\beta (H(y) - H(x))}$

Steiner Tree & Simulated annealing

Introduce

Definición

Formulació

ormulacion

Algoritmo

Estados

Pseudo-algorit

Implementación

Pocultado

Data-te

Validació

Discusi

Llegada al óptim

Bibliografía

- 1 Introducción
 - Definiciór
 - Formulación
 - Simulated annealing
- 2 Algoritmo
 - Estados y transiciones
 - Pseudo-algoritmo
 - Implementación y variantes
- 3 Resultados
 - Data-test
 - Validación
 - Cridenarch
- 4 Discusión
 - Llegada al óptimo
 - Conclusiones

Algoritmo: Estados y transiciones

Steiner Tree &

Estados y

Estados

$$x \in \Lambda \Leftrightarrow x$$
 es arbol y $S \subseteq V[x]$

Transiciones

Steiner Tree & Simulated annealing

Introducc

Definition

Simulated anneali

Algoritmo

Estados y transiciones

Pseudo-algoritmo Implementación y

Implementación variantes

Validación

Discusión

Llegada al optim Conclusiones

Referencia

C. Schiemangk

Design, analysis and implementation of thermodynamically motivated simulation for optimization of subgraphs

Springer, Berlin, Heidelberg: 91, 851-820; 1986.

DOI: 10.1007/BFb0043908

Steiner Tree & Simulated annealing

Introduce

Definición

Formulación

Simulated annealing

.. .

Fetados

transicion

Pseudo-algoritmo

Implementación y variantes

Resultado

Data-te

Crideoprel

Discusión

Llegada al óptim

Bibliografía

Elegir y remover una arista al azar

Steiner Tree & Simulated annealing

Introduce

Definición

Formulacion

Simulated anneali

Estados

Pseudo-algoritmo

Implementación y variantes

Resultado

Data-t

Validacion

Discusión

Conclusiones

Bibliografía

Encontrar y agregar un camino conector

Steiner Tree &

Pseudo-algoritmo

Podar ciclos y ramas

Algoritmo: Implementación y variantes

Steiner Tree &

Implementación v

Encontrar un camino conector

- Cola, Breadth-first search (BFS)
- □ Pila, *Depth-first search* (DFS)
- Conjunto, Random
- * Variante greedy, elegir aristas según el peso

Elegir y remover más de una arista

Eliminación de vertices no terminales de grado 2 (c/r al árbol factible)

Poda de ciclos y ramas

- Algoritmo Kruskal, encuentra el arbol de peso minimo
- Podar sub-ramas con hojas no terminales

Steiner Tree & annealing

- 3 Resultados
 - Data-test
 - Validación
 - Gridsearch
- 4 Discusión

Resultados: Data-test

Steiner Tree & Simulated annealing

Introducción

Definición Formulación

Simulated annealing Algoritmo

transiciones
Pseudo-algoritm

Resultados

Data-test

Validaciór Gridsearch

Llegada al ó

Conclusiones

Bibliografía

Testset 1080:

Grafos dispersos generados de manera aleatoria. Todos poseen 80 vértices.

Id	V	E	T	DC	tiempo	Opt
i080-001	80	120	6	Р	S	1787
i080-011	80	350	6	Р	S	1479
i080-021	80	3160	6	Р	S	1175
i080-031	80	160	6	Р	S	1570
i080-041	80	632	6	Р	S	1276
i080-101	80	120	8	Р	S	2608
i080-111	80	350	8	NP	S	2051
i080-121	80	3160	8	Р	S	3158
i080-131	80	160	8	Р	S	2284
i080-141	80	632	8	Р	S	1788
i080-201	80	120	16	Р	S	4760
i080-231	80	160	16	Р	S	4354
i080-301	80	120	20	Р	S	5519

Resultados: Validacion

Steiner Tree & Simulated annealing

Introducción

Formulación

Simulated anneali

Estados y

Pseudo-algoriti

Implementacio

Resultado

Validación

Gridseard

Llegada al óptir

Bibliografí

Evaluación preliminar: evolución del peso encontrado para distintas implementaciones y variantes

Introducción

Formulación

Simulated annealir

Estados y transiciones

Pseudo-algoritm

Resultado

Validación Gridsearch

Discusion

Conclusiones

Bibliografi

Metodología

Consideramos una sucesión β de la siguiente forma:

$$\beta_n = an^b$$
, parametros $a > 0$ y $b \ge 0$

a controla la "facilidad para aceptar" nuevos estados
 En la práctica a se escala por la mediana de los pesos del grafo.
 Para un grafo G esto es:

$$a = a_0 \cdot \left(\frac{1}{mediana(\{w(i) : i \in E(G)\})} \right)$$

b controla la tasa de "enfriamiento"

Resultados: Gridsearch

Gridsearch

Metodología

Tomamos los siguientes valores para la función β

$$a_0 \in \{0.5, 0.875, 1.25, 1.625, 2.0\}$$

$$b \in \{0.0, 0.25, 0.5, 0.75, 1.0\}$$

Otras especificaciones:

- Uniformes:
 - Se utilizan 10 conjuntos de uniformes distintas
 - Las mismas 10 son usadas sistemáticamente para todas las simulaciones
- Implementaciones:
 - Eliminación de un nodo
 - Depth first search (DFS)
- Número de iteraciones: 3000 pasos

Resultados: Gridsearch

Steiner Tree & Simulated annealing

Introduc

Definición

Formulacion

Simulated anneali

Jeoritmo

Estados y

Pseudo-algoritn

Implementación variantes

esultado

Data-test

Gridsearch

Discusión

Llegada al óptimo

ibliografía

Se muestra el error (peso encontrado menos peso promedio) normalizado para la grilla de parámetros. Se itera sobre el conjunto de grafos considerados.

Resultados: Gridsearch

Steiner Tree & Simulated annealing

Introducción

Introduccion

Demineron

Simulated a

Algoritmo

E-b-d---

transiciones

Implementaci

Popultador

. . . .

Validación Gridsearch

Discus

Llegada al óptir

Ribliografía

Tomando todos los grafos y todas las uniformes, este es el promedio de errores para la grilla

Resultados: Resumen

Steiner Tree & Simulated annealing A modo de comparación, se comparan los tiempos de llegada al óptimo con un algoritmo de programación lineal mixta

Id dens. iter (N°) tiempo (s) h a min total PLM 001 0.038 0.75 75.25 0.601 4.925 0.725021 0.25 253.5 7.007 20.55 6.659 0.051 0.5 0.25 48.6 4.534 0.31 0.3930.1670410.2 0.75 40 0.486 10.232 1.239 0.038 0.5 0.25 111.9 8.672 0.191 101 1.57 111 0.111 0.75 0.5 30 0.331 5.773 16.074 121 0.250.5 215 6.508 21.243 199.644 131 0.051 0.75 0.5 15 0.156 6.72 0.352 0.2 0.25 0.5 136 2.543 12.072 38.082 141 201 0.038 0.5 116.3 2.007 12.643 2.713 0.25 0.25 367.5 735.292 231 0.051 8.238 13.311 301 0.038 0.75 102 1.861 8.405 110.059

Introducción
Definición
Formulación
Simulated anneali

Estados y transiciones Pseudo-algoritm Implementación variantes

Data-test Validación Gridsearch

Discusió

Llegada al óptin Conclusiones

Dibliograf

Steiner Tree & Simulated annealing

Introduce

Definición

Formulació

Formulación

Simulated annealii

2 Algoritm

Estado

Estados y transicione

Pseudo-algoritmo

Implementación y variantes

3 Resultados

Data-test

■ Validación

Gridsearch

4 Discusión

Llegada al óptimo

Conclusiones

Resultado

Data-te

Validació Gridsear

Discusi

Llegada al óptin Conclusiones

Bibliografi

Discusión: llegada al óptimo

Steiner Tree & Simulated annealing

Introducción Definición Formulación

Simulated annealing

Estados y transiciones Pseudo-algoritmo Implementación y

Resultados Data-test

Validación Gridsearch

Llegada al óptimo

Bibliogra

- Ciertas combinaciones de hiper-parámetros consiguen el valor optimal al explorar libremente los posibles estados.
- Por otro lado, hiper-parámetros más conservadores descienden a buenos mínimos locales

Conclusiones

Steiner Tree & Simulated annealing

Introducción Definición Formulación

Simulated anneali Algoritmo

transiciones
Pseudo-algoritmo
Implementación y
variantes

Data-test Validación

Discusión

Llegada al óptimo

ibliografía

Aspectos positivos

- Se descubre una manera efectiva de usar annealing entre diversas opciones, en un contexto altamente no-convexo.
- El algoritmo ofrece, en muchos casos, ventajas de tiempo con respecto a algorimos deterministas.

Aspectos a considerar

- No hay puntos de la grilla que funcionen bien para todos los grafos
- La elección de hiper-parámetros debe hacerse de manera contextualizada.

Bibliografía

Steiner Tree & Simulated annealing

Introduccio

Definición

Simulated annealing

Algoritmo

Estados y transiciones Pseudo-algorito

Implementación y variantes

Resultad

Data-test Validació

Gridsearc

Llegada al óptio

Llegada al óptim Conclusiones

Bibliografía

C. Schiemangk

Design, analysis and implementation of thermodynamically motivated simulation for optimization of subgraphs

DOI: 10.1007/BFb0043908

C. Duin

Steiner Problems in Graphs

University of Amsterdam; 1993

URL: http://steinlib.zib.de