Programación Microcontrolador Arduino

C3.4 Entradas analógica y salida digital

Arduino, entrada análoga, salida digital y uso de función serial a través de un potenciómetro, una resistencia y led.

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema, desarrollar lo que se indica dentro del apartado siguiente.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C2.3_NombreAlumno_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo readme.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o enlaces a sus documentos .md, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
 blog
  | C3.1_TituloActividad.md
 C3.2 TituloActividad.md
  | C3.3_TituloActividad.md
  C3.4_TituloActividad.md
  img
 docs
 | A3.1_TituloActividad.md
```


1. Basado en el siguiente circuito, y utilizando uno de los simuladores propuestos, ensamblar lo que observa.

2. Analice y escriba el programa que se muestra a continuación.

File Edit Sketch Tools Help

```
AnalogInput
    modified 30 Aug 2011
22
23
    By Tom Igoe
24
25
    This example code is in the public domain.
26
27
    http://www.arduino.cc/en/Tutorial/AnalogInput
28 */
29
30 int sensorPin = A0; // select the input pin for the potentiometer
31 int ledPin = 13;
                      // select the pin for the LED
32 int sensorValue = 0; // variable to store the value coming from the sensor
33
34 void setup() {
   // declare the ledPin as an OUTPUT:
35
   pinMode (ledPin, OUTPUT);
36
37 }
38
39 void loop() {
    // read the value from the sensor:
40
41
    sensorValue = analogRead(sensorPin);
42
    // turn the ledPin on
43
    digitalWrite (ledPin, HIGH);
44
    // stop the program for <sensorValue> milliseconds:
45
    delay(sensorValue);
46
    // turn the ledPin off:
47
    digitalWrite (ledPin, LOW);
48
    // stop the program for for <sensorValue> milliseconds:
49
    delay (sensorValue);
50 }
```

3. Inserte aquí las imágenes que considere como evidencias para demostrar el resultado obtenido.

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

Repositorio en GitHub