Online Homework System

Assignment Worksheet 9/13/23 - 9:45:01 PM EDT

Name:	Class: MAT1320[B] Calculus I [LEC] 20239
Class #:	Section #:
<pre>Instructor: Augusto Gerolin</pre>	Assignment: Assignment 1

Question 1: (1 point)

In MapleTA, we write mathematical expressions with calculator syntax. You can check your typesetting with the preview button (looks like a magnifying glass). It is possible to use the symbolic mode to enter formulas (the button with the Σ), but this is slower, and not as reliable.

Some common rules:

- $a \times b = a * b$ (the shorthand ab is sometimes accepted);
- $e^x = e \wedge x$
- ullet $\sqrt{a}=\operatorname{sqrt}(a)$ or $a\wedge (1/2)$ (since $\sqrt{a}=a^{1/2}$) and similarly $\sqrt[3]{x}=x\wedge (1/3)$;
- |x| = abs(x).

Don't forget to use parentheses when needed!

Type formulas for the following expressions. Then use the preview button, and "How did I do?" on the right, to verify that your answers are what you wanted. Experiment!

$$\frac{e^{x} \sin(x)}{2} = \underline{\qquad \qquad }$$

$$e^{t/2} = \underline{\qquad \qquad }$$

$$\frac{1}{x^{2}/2} = \underline{\qquad \qquad }$$

$$\sqrt[5]{b} = \underline{\qquad \qquad }$$

$$|x^{2} - x + 2| = \underline{\qquad \qquad }$$

Question 2: (1 point)

MapleTA only recognizes two logarithms: $\ln(x)$ (the natural logarithm) and $\log(x)$ (which for MapleTA means the base 10 logarithm $\log_{10}(x)$).

To use any other base, you have to apply the identity

$$\log_a(b) = \frac{\ln(b)}{\ln(a)}.$$

Typeset each of the following expressions. You are encouraged to simplify where possible. Check the correctness of your answer using "How did I do?".

$$\ln(x^3) = \underline{\hspace{1cm}}$$
 $\log_{10}(300) = \underline{\hspace{1cm}}$
 $\log_2(t) = \underline{\hspace{1cm}}$

Question 3: (1 point)

We can ask for numerical answers in different ways.

- (a) Give the **exact answer** to each of the following questions.
- (i) How many radians in 60 degrees? _____ (Calculus ALWAYS uses radians!)
- (ii) What is the positive solution to $x^2-2=0$?

When asked for the exact answer, you can (and should!) use formulas like sqrt, and constants like π = pi, even when it asks for a number. Otherwise, we specify the accuracy of your decimal approximation in typically one of two ways:

- (c) Give the value of $\pi/100$, accurate to two decimal places : $\pi/100$ is approximately ______.
- (d) Express $\pi/100$ to 5 significant digits. Don't forget to round!

(Recall that 0.022, written with 3 significant digits, is 0.0220 or $2.20 imes 10^{-2} = 2.20E - 2.0$

Most questions on homework require an exact answer.

Question 4: (1 point)

Common notation for trigonometric and inverse trigonometric functions is ambiguous. Be careful! Examples:

- $\sin^{-1}(x)$ means the inverse sine function, also called $\arcsin(x)$, not $\frac{1}{\sin(x)}$. So write "arcsin(x)" in MapleTA.
- (a) The inverse function of $y = \cos(x)$ is $y = \cos^{-1}(x) =$ ______.
 - ullet The function $\dfrac{1}{\sin(x)}$ is the cosecant, abbreviated $\csc(x)$. Similarly we use $\tan(x)$ and $\sec(x)$.
- (b) $(\cot(x))^{-1} =$ _____
 - $\cos^2(x)$ means $(\cos(x))^2$, not $(\cos)^2(x)$ (which doesn't even make sense). So write $(\cos(x)) \wedge 2$ in MapleTA.
 - $\tan x$ means $\tan(x)$; always use parentheses. $\tan x$ is generally interpreted as $\tan *x$ by MapleTA (which doesn't make sense).
- (c) $\sin^{-1}(\tan^2(\sec x)) =$ _____

Question 5: (1 point)

Match each function to its graph.

Question 6: (1 point)

Match the sets that are equal.

Question 7: (1 point)

The function

$$f(x) = |3 - x| + 5x$$

can be expanded as a piecewise-defined function, in the form

$$f(x) = \left\{ egin{array}{ll} 3+4x & ext{if} \ a \geq 0 \ C & ext{if} \ b < 0 \end{array}
ight.$$

where each of the three expressions $a,\,b$ and C may depend on x.

Please fill out the missing pieces from the piecewise function above for a, b and the function C.

- a =
- b =
- C =

7 of 14

Question 8: (1 point)

Associate each function to its graph.

2023-09-13, 21:46

9 of 14

Question 9: (1 point)

Find the inverse function f^{-1} of the function

$$f\left(x\right) = \frac{4x+7}{8x+3}$$

$$f^{-1}(x) = \underline{\hspace{1cm}}$$

Question 10: (1 point)

Example: if f is a function and we want a new function g so that the graph of g is obtained from that of f by stretching it vertically by a factor of g, then we should choose g(x) = 3f(x).

Suppose we have a function f.

We want a formula for a new function g so that its graph is exactly the result of :

- ullet shifting the graph of f by 11 units downward, and
- \bullet then shifting it by $30\ \text{units}$ to the left.

What is g?

Answer g(x) =

FORMATTING: Your answer should be a formula that includes the function f.

Question 11: (1 point)

Find the value of the composed function at the given point.

If
$$f(x)=2x-1$$
 and $g(x)=4x+3$, then

$$(f\circ g)(0)=\underline{\hspace{1cm}}$$

Question 12: (1 point)

A function f is **even** if for each x in its domain, we have f(-x) = f(x).

Which of the following functions are even?

(a)
$$p(x)=xe^{\displaystyle 5|x|}$$

(b)
$$g(x) = -2x^3 + 7x - 6$$

(c)
$$h(x)=|x|+x^2$$

(d)
$$f(x) = x^4 + 5x^2 - 4$$

(e)
$$k(x) = e^{-x}$$

(f)
$$m(x) = x^4 + (x+2)^2 - 5$$

Question 13: (1 point)

Solve for \boldsymbol{x} in the equation

$$4^{x-2} = 16^{x+4}$$
.

Answer: x =

Question 14: (1 point)

Each of the expressions below represents a function of x , for x>0 . Assign to each a simplified expression which is equivalent for all x>0 .

$$\boxed{- \checkmark \ln\left(\left(e^x \ e^3\right)^2\right)} \qquad \boxed{- \checkmark \ln\left(\frac{3^x \ 6^{2x}}{2^{4x}}\right)} \qquad \boxed{- \checkmark} e^{2\ln(x+3)}$$

$$- \checkmark e^{\ln(x) + \ln(3)}$$
 $- \checkmark \ln\left(\frac{e^{x\ln(2)}}{2}\right)$

1.
$$(x+3)^2$$

- 2. 3*x*
- 3. 2(x+3)
- 4. $(x-1) \ln(2)$
- 5. $x \ln (27/4)$

Question 15: (1 point)

Let

$$f(x) = \sqrt{\ln(x+4)}.$$

a) What is the domain of f(x)?

```
[ -4,\infty ] [ ] (-4,\infty) [ ] (-3,\infty) [ ] [-3,\infty) [ ] (-\infty,4)
```

b) What is the range of f(x)?

b) what is $[-4,\infty)$ [] $[0,\infty)$ [] $(0,\infty)$ []

[]

 $(-\infty,\infty)$

[]

 $(-\infty,-4)$

[]