ЛАБОРАТОРНАЯ РАБОТА №33 ЗАКОН БИО — САВАРА

Поляков Даниил, 19.Б23-фз

Цель работы: исследовать магнитную индукцию, создаваемую проводниками правильной формы в разных точках пространства, тем самым убедиться в выполнении закона Био — Савара — Лапласа.

Оборудование

- источник постоянного тока;
- датчик с элементом Холла;
- компьютер с CASSY Lab;
- прямой проводник в виде круглой стальной спицы диаметром 4 мм и длиной 40 см;
- проводник из алюминиевой проволоки в форме кольца радиусом 4 см;
- катушка из 30 витков толстой медной проволоки с радиусом намотки 82 мм;
- кольца Гельмгольца, состоящие из двух одинаковых катушек. Количество витков в каждой катушке 320 шт; внутренний радиус намотки 62 мм, внешний 72 мм, длина равна 18 мм.

Расчётные формулы

Магнитная индукция длинного прямого проводника:

$$B = \frac{\mu_0 I}{2\pi r}$$

 μ_0 — магнитная постоянная;

I — ток через проводник;

r — расстояние до оси проводника.

Магнитная индукция на оси проводящего кольца:

$$B = \frac{\mu_0 I R^2}{2(z^2 + R^2)^{3/2}}$$

 μ_0 — магнитная постоянная;

I — ток через проводник;

R — радиус кольца;

z — расстояние до центра кольца.

Магнитная индукция на оси катушки:

$$B = \mu_0 I \, N \! \left(\frac{1}{\sqrt{(2z+L)^2 + 4R^2}} \! \left(\frac{z}{L} + \frac{1}{2} \right) - \right. \\ \left. \frac{\mu_0 - \text{магнитная постоянная;}}{I - \text{ток через катушку;}} \\ \left. - \frac{1}{\sqrt{(2z-L)^2 + 4R^2}} \! \left(\frac{z}{L} - \frac{1}{2} \right) \right) \\ \left. \frac{R - \text{радиус катушки;}}{L - \text{длина катушки;}} \right.$$

z — расстояние до центра катушки.

Магнитная индукция на оси колец Гельмгольца (при малой толщине колец):

$$B = \frac{\mu_0 I N R^2}{2} \left(\frac{1}{\left((z-R/2)^2 + R^2\right)^{3/2}} + \begin{array}{c} \mu_0 - \text{магнитная постоянная;} \\ I - \text{ток через катушку;} \\ N - \text{количество витков колец;} \\ R - \text{средний радиус колец;} \\ z - \text{расстояние до середины между} \end{array} \right)$$

N — количество витков колец;

Порядок измерений

- 1. Устанавливаем прямой проводник и датчик для измерения поперечной магнитной индукции на рельс так, чтобы датчик был направлен вдоль рельса, а проводник перпендикулярно, при этом они находились на одной высоте. Устанавливаем датчик на расстоянии $r=4\,\mathrm{mm}$ от центра проводника. Устанавливаем нулевое значение магнитной индукции B на датчике в данный момент. Настраиваем CASSY Lab так, чтобы снимаемые значения магнитной индукции являлись усреднением за 1 секунду. Подключаем источник тока к проводнику и включаем его. Устанавливаем силу тока через проводник I равной 15.0 А. Снимаем значение индукции B. Отодвигая датчик от проводника с шагом 1 мм, снимаем показания датчика B. Всего выполняем 20 измерений при различном расстоянии r.
- 2. Заменяем прямой проводник на проводящее кольцо с радиусом $R=4~{\rm cm}$, а датчик на датчик для измерений продольной магнитной индукции. Располагаем датчик вдоль центральной оси кольца. Измерения проводим при той же силе тока I, равной 15.0 А. Устанавливаем датчик на расстоянии $z=-5~{\rm cm}$ от центра кольца. Сдвигая датчик вдоль оси кольца в направлении кольца с шагом 0.5 см, снимаем соответствующие значения магнитной индукции, пока датчик не пересечёт кольцо и не достигнет расстояния $z=5~{\rm cm}$ с другой стороны от кольца.
- 3. Измерим магнитное поле внутри катушки. Устанавливаем датчик для измерений продольной магнитной индукции внутрь катушки вдоль её оси. По катушке пускаем ток I равный 15.0 А. Проводим измерения при различной длине катушки L (10, 20, 30, 40 см). Изменяя расстояние от центра катушки до датчика z от -15 до 15 см с шагом 1.0 см, снимаем значения магнитной индукции.
- 4. Устанавливаем кольца Гельмгольца на рельсу. Юстируем кольца так, чтобы они находились на одной оси, т. е. выравниваем их по горизонтали и по вертикали. Располагаем их на расстоянии их среднего радиуса друг от друга, т. е. $R=67\,\mathrm{mm}$. Устанавливаем датчик вдоль оси колец так, чтобы он находился как можно ровнее посередине между кольцами. Принимаем данное положение за 0. Проводим измерения при различных значениях силы тока I через катушки (0.8, 1.2, 1.6 A). Изменяя расстояние z от середины между кольцами до датчика от -12 до $12\,\mathrm{cm}$ с шагом $1.0\,\mathrm{cm}$, снимаем значения магнитной индукции B.

Результаты

При измерении расстояний x использовалась либо шкала рельса, либо линейка. Оба эти инструмента имеют цену измерения, равную 1 мм, соответственно их погрешность Δ_x принимаем равной 1 мм.

Для сравнения магнитной индукции рассчитаем значения B_{reon} ПО приближенным формулам. На всех представленных графиках точками обозначены экспериментальные значения, сплошными a линиями теоретические кривые.

1. Магнитное поле прямого проводника

Сила тока через проводник $I = 15.0 \pm 0.1 \; A.$

Таблица 1.
Зависимость магнитной индукции от расстояния до оси прямого проводника

r, mm	$B_{$ эксп $}$, мТл	$B_{ m reop}$, м ${ m T}{ m Л}$
4	0.710	0.750
5	0.597	0.600
6	0.494	0.500
7	0.422	0.429
8	0.375	0.375
9	0.341	0.333
10	0.318	0.300
11	0.294	0.273
12	0.276	0.250
13	0.260	0.231
14	0.245	0.214
15	0.234	0.200
16	0.227	0.188
17	0.218	0.176
18	0.210	0.167
19	0.203	0.158
20	0.197	0.150
21	0.192	0.143
22	0.185	0.136
23	0.182	0.130

График 1. Зависимость магнитной индукции от расстояния до оси прямого проводника

По общему виду экспериментальная зависимость совпадает с теоретической, хотя наблюдается небольшое отклонение.

2. Магнитное поле на оси проводящего кольца

Сила тока через кольцо $I=15.0\pm0.1~{\rm A}.$

Таблица 2. Зависимость магнитной индукции от расстояния до центра проводящего кольца

r, MM	$B_{\text{эксп}}$, м T л	$B_{ m reop}$, м ${ m T}{ m Л}$
-5.0	0.026	0.057
-4.5	0.033	0.069
-4.0	0.045	0.083
-3.5	0.060	0.100
-3.0	0.077	0.121
-2.5	0.098	0.144
-2.0	0.116	0.169
-1.5	0.141	0.193
-1.0	0.158	0.215
-0.5	0.170	0.230
0.0	0.188	0.236
0.5	0.180	0.230
1.0	0.171	0.215
1.5	0.150	0.193
2.0	0.129	0.169
2.5	0.107	0.144
3.0	0.086	0.121
3.5	0.068	0.100
4.0	0.054	0.083
4.5	0.040	0.069
5.0	0.031	0.057

График 2. Зависимость магнитной индукции от расстояния до центра проводящего кольца

По общему виду экспериментальная зависимость совпадает с теоретической, но теоретическая кривая расположена выше экспериментальных точек.

3. Магнитное поле на оси катушки

Сила тока через катушку $I = 15.0 \pm 0.1 \; {\rm A}.$

Таблица 3. Зависимость магнитной индукции от расстояния до центра катушки при различной длине катушки

	L = 10 cm		L = 20 cm		L = 30 cm		L = 40 cm	
z, cm	Bэксп,	$B_{ m reop}$,	$B_{{}_{{}_{{}_{{}_{{}}}}{}_{{}_{{}}}{}_{{}_{{}}}{}_{{}_{{}}}}},$	$B_{ m reop}$,	$B_{{}_{{}_{{}_{{}_{{}}}}}{}_{{}_{{}_{{}}}}{}_{{}_{{}_{{}}}}},$	$B_{ m reop}$,	Bэксп,	$B_{ m reop}$,
	мТл	мТл	мТл	мТл	мТл	мТл	мТл	мТл
-15.0	0.16	0.43	0.36	0.61	0.81	0.91	1.00	1.06
-14.0	0.18	0.51	0.54	0.72	0.88	1.02	1.05	1.10
-13.0	0.26	0.60	0.68	0.85	1.04	1.13	1.08	1.14
-12.0	0.35	0.71	0.83	0.99	1.18	1.23	1.11	1.18
-11.0	0.45	0.85	1.08	1.15	1.27	1.31	1.13	1.21
-10.0	0.60	1.01	1.37	1.31	1.38	1.39	1.18	1.23
-9.0	0.84	1.20	1.52	1.47	1.45	1.45	1.21	1.25
-8.0	1.09	1.42	1.67	1.62	1.52	1.50	1.22	1.26
-7.0	1.38	1.66	1.77	1.76	1.60	1.54	1.24	1.27
-6.0	1.77	1.92	1.87	1.88	1.66	1.57	1.30	1.28
-5.0	2.24	2.19	1.97	1.98	1.71	1.60	1.24	1.29
-4.0	2.70	2.43	2.07	2.05	1.74	1.62	1.26	1.30
-3.0	3.13	2.64	2.15	2.11	1.74	1.64	1.23	1.30
-2.0	3.43	2.81	2.20	2.15	1.73	1.65	1.22	1.31
-1.0	3.71	2.91	2.25	2.18	1.72	1.65	1.21	1.31
0.0	3.77	2.94	2.27	2.19	1.71	1.65	1.22	1.31
1.0	3.74	2.91	2.25	2.18	1.76	1.65	1.18	1.31
2.0	3.53	2.81	2.26	2.15	1.77	1.65	1.20	1.31
3.0	3.14	2.64	2.20	2.11	1.78	1.64	1.23	1.30
4.0	2.67	2.43	2.14	2.05	1.77	1.62	1.25	1.30
5.0	2.29	2.19	2.07	1.98	1.73	1.60	1.26	1.29
6.0	1.83	1.92	1.95	1.88	1.67	1.57	1.26	1.28
7.0	1.40	1.66	1.85	1.76	1.58	1.54	1.27	1.27
8.0	1.02	1.42	1.68	1.62	1.51	1.50	1.26	1.26
9.0	0.77	1.20	1.46	1.47	1.39	1.45	1.24	1.25
10.0	0.57	1.01	1.29	1.31	1.29	1.39	1.24	1.23
11.0	0.45	0.85	1.04	1.15	1.19	1.31	1.20	1.21
12.0	0.34	0.71	0.81	0.99	1.03	1.23	1.17	1.18
13.0	0.29	0.60	0.60	0.85	0.96	1.13	1.13	1.14
14.0	0.24	0.51	0.49	0.72	0.73	1.02	1.11	1.10
15.0	0.22	0.43	0.34	0.61	0.70	0.91	1.05	1.06

График 3. Зависимость магнитной индукции от расстояния до центра катушки при различной длине катушки

По общему виду экспериментальные зависимости совпадают с теоретическими. Наибольшее отклонение наблюдается при $L=10~{\rm cm}$, что связано со сложностью точной установки длины катушки, особенно при малых L.

4. Магнитное поле на оси колец Гельмгольца

Расстояние между кольцами равно среднему радиусу колец: R = 67 мм.

Таблица 4. Зависимость магнитной индукции от расстояния до середины между кольцами при различной силе тока

z, cm	I = 0.8 A		<i>I</i> = 1.2 A		<i>I</i> = 1.6 A	
	$B_{{}_{ЭКСП}}$, м $\mathrm{T}_{Л}$	$B_{ ext{reop}}$, м $ ext{T}$ л	$B_{ m ext{ m >KCH}}$, м ${ m T}{ m /}$	$B_{ ext{reop}}$, м $ ext{T}$ л	$B_{ m imes KC\Pi}$, м ${ m T}{ m Л}$	$B_{ ext{reop}}$, м $ ext{T}$ л
-12.0	0.78	0.70	1.22	1.06	1.53	1.41
-11.0	0.97	0.87	1.49	1.30	1.91	1.74
-10.0	1.22	1.08	1.84	1.61	2.36	2.15
-9.0	1.48	1.33	2.27	2.00	2.87	2.67
-8.0	1.83	1.65	2.79	2.47	3.57	3.29
-7.0	2.18	2.01	3.33	3.02	4.28	4.02
-6.0	2.49	2.40	3.84	3.61	4.91	4.81
-5.0	2.76	2.79	4.24	4.18	5.45	5.57
-4.0	2.92	3.10	4.44	4.65	5.73	6.20
-3.0	2.92	3.31	4.54	4.96	5.81	6.62
-2.0	2.92	3.41	4.47	5.11	5.74	6.81
-1.0	2.85	3.43	4.39	5.15	5.65	6.87
0.0	2.84	3.44	4.33	5.15	5.60	6.87
1.0	2.86	3.43	4.37	5.15	5.65	6.87
2.0	2.87	3.41	4.46	5.11	5.73	6.81
3.0	2.91	3.31	4.50	4.96	5.82	6.62
4.0	2.86	3.10	4.42	4.65	5.70	6.20
5.0	2.66	2.79	4.20	4.18	5.37	5.57
6.0	2.45	2.40	3.76	3.61	4.79	4.81
7.0	2.11	2.01	3.25	3.02	4.13	4.02
8.0	1.77	1.65	2.70	2.47	3.46	3.29
9.0	1.45	1.33	2.22	2.00	2.82	2.67
10.0	1.15	1.08	1.77	1.61	2.25	2.15
11.0	0.89	0.87	1.44	1.30	1.81	1.74
12.0	0.73	0.70	1.14	1.06	1.43	1.41

График 4. Зависимость магнитной индукции от расстояния до середины между кольцами при различной силе тока

По общему виду экспериментальные зависимости совпадают с теоретическими. Экспериментальные зависимости имеют небольшую впадину на промежутке, на котором теоретические зависимости имеют постоянные значения, что может быть связано с недостаточной ровностью расположения колец и присутствием ощутимых размеров у колец, которыми при теоретических расчётах пренебрегалось.

Выводы

Во всех частях работы экспериментальные зависимости по форме совпали с теоретическими — таким образом мы убедились в справедливости закона Био — Савара — Лапласа. Тем не менее, наблюдались ощутимые отклонения полученных зависимостей от теоретических, что может быть связано с:

- ошибочной калибровкой датчика;
- наличием внешних полей;
- неровным расположением датчика и проводников;
- несоответствием исследованных установок идеальным, для которых получены теоретические формулы.

Экспериментально измеренная магнитная индукция между кольцами Гельмгольца достаточно однородна, хотя и имеет небольшую впадину, которая могла образоваться из-за недостаточно ровного расположения колец и присутствия ощутимых размеров у колец, которыми при теоретических расчётах пренебрегалось.