ANSHIKA SRIVASTAVA ROLL NUMBER – R2142220907 SAP ID – 500107049 LAB EXERCISE 1

Lab Exercise 01

Creating Static Host Inventory

Objective: To create a static host inventory for managing and automating infrastructure tasks efficiently across multiple servers using Ansible

Tools required: Ubuntu OS

Prerequisites: You need to have Ansible installed to proceed with this demo

Steps to be followed:

- 1. Generate SSH key pair on the main node
- 2. Copy the SSH key to the two other nodes
- 3. Update the inventory or host file with the host IP address
- 4. Establish connectivity between the hosts specified in the host file and the Ansible server

First we need to start 3 Amazon Linux machines

For all 3 machines -

Make user for all by using command - 'sudo su'

Add user by using 'adduser<username>'

Password by adding 'passwd <username>' --enterpassword

To make as root user open vi.sudo file command – 'vi.sudo'

'do ALL=(ALL) NOPASSWD:ALL'

```
GNU nano 8.3

root ALL=(ALL) ALL

## Allows members of the 'sys' group to run networking, software,
## service management apps and more.
# %sys ALL = NETWORKING, SOFTWARE, SERVICES, STORAGE, DELEGATING, PROCESSES, LOCATE, DRIVERS

## Allows people in group wheel to run all commands
%wheel ALL=(ALL) ALL

## Same thing without a password
# %wheel ALL=(ALL) NOPASSWD: ALL

## Allows members of the users group to mount and unmount the
## cdrom as root
# %users ALL=/sbin/mount /mnt/cdrom, /sbin/umount /mnt/cdrom

## Allows members of the users group to shutdown this system
# %users localhost=/sbin/shutdown -h now

## Read drop-in files from /etc/sudoers.d (the # here does not mean a comment)
## Read drop-in files from /etc/sudoers.d
do ALL =(ALL) NOPASSWD:ALL
```

Now to switch to user from root user use 'su - do'

i-0a0f5514cced5eedb (Ansible-server)

PublicIPs: 16.16.184.192 PrivateIPs: 172.31.25.249

Similarly, for node 1 -

i-0240eccb34686e1b1 (node1)

PublicIPs: 13.60.238.244 PrivateIPs: 172.31.23.82

Node 2 -

i-0dd96062212edf94b (node2)

PublicIPs: 13.61.181.231 PrivateIPs: 172.31.26.57

Now trying to ssh into node 1 from Ansible server

```
[do@ip-172-31-25-249 ~]$ ssh 172.31.23.82
The authenticity of host '172.31.23.82 (172.31.23.82)' can't be established.
ED25519 key fingerprint is SHA256:TkkvfCu/SArP2NRI4VzD68pTzSSosVpCqUM37qu+uZ8.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '172.31.23.82' (ED25519) to the list of known hosts.
do@172.31.23.82: Permission denied (publickey,gssapi-keyex,gssapi-with-mic).
[do@ip-172-31-25-249 ~]$
```

i-0a0f5514cced5eedb (Ansible-server)

PublicIPs: 16.16.184.192 PrivateIPs: 172.31.25.249

Permission denied. So, make settings in node 1 and node 2 to allow.

Go to root user of node 1 and node 2 by 'sudo su'

Navigate to 'vi /etc/ssh/sshd_config' and uncomment permit root login and comment PasswordAuthentication

Restart the service using 'service sshd restart'

```
Amazon Linux 2023
                     https://aws.amazon.com/linux/amazon-linux-2023
[ec2-user@ip-172-31-23-82 ~]$ sudo su
[root@ip-172-31-23-82 ec2-user]# adduser do
[root@ip-172-31-23-82 ec2-user]# passwd do
Changing password for user do.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[root@ip-172-31-23-82 ec2-user]# sudo visudo
[root@ip-172-31-23-82 ec2-user]# su - do
[do@ip-172-31-23-82 ~]$ sudo su
[root@ip-172-31-23-82 do]# vi /etc/ssh/sshd_config
[root@ip-172-31-23-82 do]# sudo vi /etc/ssh/sshd_config
[root@ip-172-31-23-82 do]# sudo vi /etc/ssh/sshd_config
[root@ip-172-31-23-82 do] # sudo vi /etc/ssh/sshd config
[root@ip-172-31-23-82 do]# service sshd restart
Redirecting to /bin/systemctl restart sshd.service
[root@ip-172-31-23-82 do]#
```

i-0240eccb34686e1b1 (node1)

PublicIPs: 13.60.238.244 PrivateIPs: 172.31.23.82

Repeat the process for node 2

i-0dd96062212edf94b (node2)

PublicIPs: 13.61.181.231 PrivateIPs: 172.31.26.57

Now again from Ansible server trying to 'ssh <private ip of node 1>'

i-0a0f5514cced5eedb (Ansible-server)

PublicIPs: 16.16.184.192 PrivateIPs: 172.31.25.249

Similarly 'ssh <ip node 2>'

i-0a0f5514cced5eedb (Ansible-server)

PublicIPs: 16.16.184.192 PrivateIPs: 172.31.25.249

This technique works only for 1 machine at a time, but we need parallel firing of commands for multiple machines.

Step 1: Generate SSH key pair on the main node

1.1 Use the following command to generate the SSH key on the Ansible server:

ssh-keygen

```
[do@ip-172-31-25-249 ~]$ ssh key-gen
ssh: Could not resolve hostname key-gen: Name or service not known
[do@ip-172-31-25-249 ~]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/do/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/do/.ssh/id_rsa
Your public key has been saved in /home/do/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:8mDsQmA0t/sUDTCh1tui7c/RdgKeb9rsPC5oV3TrRHc do@ip-172-31-25-249.eu-north-1.compute.internal
The key's randomart image is:
  --[RSA 3072]--
  . = 0 0
        .. o . E
     = 0.So o .
    + B B. O
    0.*.=0.
    .000B00.
    ..o+*B.
    -[SHA256]-
[do@ip-172-31-25-249 ~]$
```

i-0a0f5514cced5eedb (Ansible-server)

PublicIPs: 16.16.184.192 PrivateIPs: 172.31.25.249

Step 2: Copy the SSH key to the other two nodes

2.1 Use the following command to copy the public key to a file named **authorized_keys** in localhost:

```
cat .ssh/id_rsa.pub >> .ssh/authorized_keys
```

2.2 Run the following command to go to the .ssh directory of the Ansible server:

cd .ssh

```
[do@ip-172-31-25-249 ~]$ cat .ssh/id_rsa.pub >> .ssh/authorized_keys
[do@ip-172-31-25-249 ~]$ cd .ssh
[do@ip-172-31-25-249 .ssh]$ ls
authorized_keys id_rsa id_rsa.pub known_hosts known_hosts.old
[do@ip-172-31-25-249 .ssh]$
```

i-0a0f5514cced5eedb (Ansible-server)

PublicIPs: 16.16.184.192 PrivateIPs: 172.31.25.249

2.3 Run the following command to copy the public key to another node that will connect to the Ansible server:

ssh-copy-id username@ip -p 22

For node 1 -

```
[do@ip-172-31-25-249 .ssh]$ ssh-copy-id do@172.31.23.82 //usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/do/.ssh/id_rsa.pub" //usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed //usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to install the new keys do@172.31.23.82's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'do@172.31.23.82'" and check to make sure that only the key(s) you wanted were added.

[do@ip-172-31-25-249 .ssh]$
```

For node 2 -

```
[do@ip-172-31-25-249 .ssh]$ ssh-copy-id do@172.31.26.57
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/do/.ssh/id_rsa.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to install the new keys
do@172.31.26.57's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'do@172.31.26.57'"
and check to make sure that only the key(s) you wanted were added.

[do@ip-172-31-25-249 .ssh]$
```

Note: You must use a **username@ip** with your node and IP username, which are provided in the lab credential.

2.4 Execute the following command to exit the **.ssh** directory of the Ansible server:

cd

```
[do@ip-172-31-25-249 .ssh]$ cd
[do@ip-172-31-25-249 ~]$ su - do
Password:
Last login: Thu Apr 24 07:25:36 UTC 2025 on pts/1
```

Install Ansible on ansible server

Use commands 'sudo yum update -y' and 'sudo yum install ansible -y'

```
      (1/4): git-core-2-47.1-1.amzn2023.0.2.x86 64.rpm
      54 MB/s | 4.7 MB
      00:00

      (2/4): snshpas-1.09-6.amzn2023.0.1.x86 64.rpm
      16 MB/s | 2.5 MB
      00:00

      (3/4): ansible-e.0.3.0-1.amzn2023.0.1.noarch.rpm
      16 MB/s | 2.5 MB
      00:00

      (3/4): ansible-e.0.3.0-1.amzn2023.0.1.noarch.rpm
      75 MB/s | 40 MB
      00:00

      Total

      Running transaction check

      Transaction test succeeded.

      Running transaction test succeeded.

      Transaction test succeeded.

      Installing : shpass-1.09-6.amzn2023.0.1.x86_64
      1/1

      Installing : git-core-2.47.1-1.amzn2023.0.2.x86_64
      2/4

      Installing : ansible-e.0.1.amzn2023.0.1.noarch
      4/4

      Running scriptlet: ansible-8.3.0-1.amzn2023.0.1.noarch
      4/4

      Verifying : ansible-e.0.1.amzn2023.0.1.noarch
      4/4

      Verifying : git-core-2.47.1-1.amzn2023.0.1.x86_64
      2/4

      Verifying : git-core-2.47.1-1.amzn2023.0.1.x86_64
      3/4

      Installed: ansible-8.3.0-1.amzn2023.0.1.x86_64
      git-core-2.47.1-1.amzn2023.0.2.x86_64
      shpass-1.09-6.amzn2023.0.1.x86_64

      Installed: ansible-8.3.0-1.amzn2023.0.1.noarch ansible-core-2.15.3-1.amzn2023.0.11.x86_64
      git-core-2.47.1-1.amzn2023.0.2.x86_64
      shpass-1.09-6.amzn2023.0.1.x86_64
```

To check Ansible version use 'ansible --version'

Step 3: Update the inventory or host file with the host IP address

3.1 Use the following command to open the Ansible inventory file and add the host localhost to it:

sudo vi /etc/ansible/hosts

```
[root@ip-172-31-25-249 do]# sudo vi /etc/ansible/hosts
[root@ip-172-31-25-249 do]#
```

i-0a0f5514cced5eedb (Ansible-server)

PublicIPs: 16.16.184.192 PrivateIPs: 172.31.25.249

3.2 When the file opens, add the three lines of code below to the end of the file:

[dbbservers] localhost:22 172.31.5.76:22

[dbservers] 172.31.23.82 172.31.26.5<mark>7</mark>

Note: Press **esc**, then write **:wq** and press **enter** to save the file.

Step 4: Establish connectivity between the hosts specified in the host file and

the Ansible server

4.1 Run the following command to copy the public key to another node that will connect to the Ansible server:

ansible -m ping dbbservers

```
[root@ip-172-31-25-249 do] su - do
Last login: Thu Apr 24 08:08:31 UTC 2025 on pts/1
[do@ip-172-31-25-249 -] $ ansible - mping disservers

WARRING]: Platform linux on host 172.31.23.82 is using the discovered Python interpreter at /usr/bin/python3.9, but future installation of another Python interpreter

could change the meaning of that path. See https://docs.ansible.com/ansible-core/2.15/reference_appendices/interpreter_discovery.html for more information.

172.31.23.82 | SUCERSS => [
    "ansible_facts": [
    "discovered_interpreter_python": "/usr/bin/python3.9"
    ",
    "changed": false,
    "ping": "pong"

[WARRING]: Platform linux on host 172.31.26.57 is using the discovered Python interpreter at /usr/bin/python3.9, but future installation of another Python interpreter

could change the meaning of that path. See https://docs.ansible.com/ansible-core/2.15/reference_appendices/interpreter_discovery.html for more information.

172.31.26.57 | SUCERSS => [
    "ansible_facts": [
    "discovered_interpreter_python": "/usr/bin/python3.9"
    ",
    "changed": false,
    "ping": "pong"

[do@ip-172-31-25-249 ~]$ [

do@ip-172-31-25-249 ~]$
```

i-0a0f5514cced5eedb (Ansible-server)

_

4.2 Use the following command to check the number of hosts in the host file: ansible all --list-hosts

```
[do@ip-172-31-25-249 ~]$ ansible all --list-hosts
hosts (2):
    172.31.23.82
    172.31.26.57
[do@ip-172-31-25-249 ~]$
```

i-0a0f5514cced5eedb (Ansible-server)

By following these steps, you have successfully created a static host inventory for managing and automating infrastructure tasks efficiently across multiple servers using Ansible.