Задание 1в. Отображения

Если каждому элементу множества A поставлен в соответствие ровно один элемент множества B, то говорят, что задана функция (отображение) на множестве A со значениями в множестве B (также: функция из A в B). Обозначение $f:A\to B$ (читается: f функция из A в B). Элемент сопоставляемый элементу $x\in A$ называется образом x при отображении f и обозначается f(x); также пишут $x \mapsto y$, если y = f(x). Если $x \mapsto y$, то y называется образом x или значением f в точке x, а x называется прообразом y.

Отображение $f: A \to B$ называется *инъективным*, если у каждого $y \in B$ не более одного прообраза. Отображение f:A o B называется *сюрьективным*, если у каждого $y\in B$ не менее одного прообраза. Отображение f:A o Bназывается биективным или взаимно однозначным, если у каждого $y \in B$ ровно один прообраз.

Отображения $f,g:A\to B$ являются равными, если их значения на каждом элементе A совпадают, иными словами f = g тогда и только тогда, когда $\forall x \in A \ f(x) = g(x)$.

Отображение может быть задано

- явно, перечислением образов элементов. Пример: $f:\{1,2\} \to \{100,200\}, 1 \mapsto 200, 2 \mapsto 100;$
- формулой. Пример: $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$;

 ${f 3}$ адача ${f 1}$. Выпишите (задавая явно) все отображения между следующими конечными множествами A и B и определите их количество. Определите среди них инъективные, сюрьективные и биективные, а также их количество.

- (1) $A = \{1, 2\}, B = \{\diamondsuit, \blacktriangle\};$
- $(4) \quad A = \{ \ \ \, \},$ $B = \{ \bullet, \heartsuit, \odot, \{1, 4, 5, 6\}, \{1, 2\} \};$
- (7) $A = \{1, 2, 3\}, B = \{\diamondsuit, \blacktriangle\};$
- $(2) \quad A=\{\diamondsuit, \blacktriangle, \odot, \{1\}, \{1,2\}\}, B=\{\blacktriangle\}; \qquad (5) \quad A=\varnothing, \ B=\{\diamondsuit, \blacktriangle\};$
- (8) $A = \{1, 2\}, B = \{\diamondsuit, \blacktriangle, 100\};$

- (3) $A = \{ \diamondsuit, \blacktriangle \}, B = A;$
- (6) $A = \{ \diamondsuit, \blacktriangle \}, B = \varnothing;$
- (9) $A = \{1, 2, 3\}, B = A;$

Задача 2. Среди этих отображений найдите инъективные, сюрьективные, биективные:

- (1) $f: \mathbb{R} \to \mathbb{R}, f(x) = x$;
- (4) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$;
- (7) $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x;$

- (2) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = -x;$
- (5) $f: \mathbb{R} \to \{x \in \mathbb{R} | x \geqslant 0\}, f(x) = x^2;$ (8) $f: \mathbb{Q} \to \mathbb{N}, x$ переходит в знаме
 - натель записи x в виде несократимой дроби;

- (3) $f: \mathbb{N} \to \mathbb{O}, f(x) = x$;
- (6) $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$;
- Если $f:A \to B$, а $g:B \to C$ для некоторых множеств A,B и C, то определена операция композиции $g \circ f:A \to C$, которая задана следующим образом: $g \circ f(x) = g(f(x))$.

Задача 3. Пусть Country — множество стран, City — множество городов. $f: \text{Country} \to \text{City}$ ставит в соответствие каждой стране столицу этой страны. $q: \mathrm{City} \to \mathrm{Country}$ ставит в соответствие каждому городу ту страну, в которой он находится. Определить, какие выражения корректны и вычислить их значения:

(1) f(Дрезден)

(4) $q(\Phi$ ранция)

(7) $q \circ f(\text{Солт Лейк Сити})$

(2) q(Hoвocuбирск)

(5) $f \circ q($ Колумбия)

(8) $q \circ f(Венгрия)$

(3) f(Россия)

(6) $f \circ q(\text{Мумбай})$

(9) $q \circ f \circ q(Actaha)$

Задача 4. Докажите, что композьция инъективных инъективна, композиция сюрьективных сюрьективна, композиция биективных биетивна. Если $g \circ f$ инъективно, верно ли, что а) f инъективно? б) g инъективно? Если $g \circ f$ сюрьективно, верно ли, что а) f сюрьективно? б) g сюрьективно?

Если A множество, то отображение $id_A:A\to A$, задаваемое формулой $id_A(x)=x$ называется тождественным отображением множества A. Если $f:A\to B$, то отображение $g:B\to A$ называется обратным f, если $g\circ f=id_A$ и $f \circ g = id_B$.

Задача 5. а) Докажите, что обратные отображения имеются только у взаимно однозначных функций. б) Для каждого из биективных отображений задачи 1 найдите обратное. в) Выразите обратное композиции $f\circ g$ через обратные к f и g.

Если существует взаимно однозначное отображение между множествами A и B, то такие множества называются равномощными, запись: |A| = |B|.

Задача 6. Докажите, что если |A| = |B| и |B| = |C|, то |A| = |C|.

Задача 7. Докажите (находя взаимно однозначное отображение) равномощность следующих множеств:

(1) $\{1, 2, 3\}$ и $\{\diamondsuit, ⊙, \blacktriangle\}$;

(7) [0,1] и [0,1) ([0,1) — это полуинтервал, то есть множество $\{x \in \mathbb{R} | 0 \leqslant x < 1\}$);

(2) \mathbb{Z} \mathbb{Z} \mathbb{Z} ;

(8) [0,1) и $[0,\infty)$;

(3) \mathbb{Z} и $\{x \in \mathbb{Z} | x > 1\}$;

(9) [0,1] и \mathbb{R} ;

(4) \mathbb{Z} и $2\mathbb{Z} = \{2x | x \in \mathbb{Z}\};$

- (10) любые два отрезка на плоскости;
- (5) [0,1] и [0,2] ([0,1] это отрезок, то есть множество
- (11) отрезок и окружность;
- $\{x \in \mathbb{R} | 0 \leqslant x \leqslant 1\});$
- (12) множество всех подмножеств \mathbb{N} и множество всех бесконечных последовательностей 0 и 1;

- (6) [0,1] μ [-1,1];
- ${f 3}$ адача ${f 8}$ (Теорема Кантора). Множество всех подмножеств множества A обозначается через 2^A . Рассматривая для отображения $f: A \to 2^A$ множество $\{x \in A | x \notin f(x)\}$ докажите, что A не может быть равномощно 2^A .