KIG4068: Machine Learning

Week 2: End-to-End Machine Learning Project

Semester 2, Session 2023/2024

This Week's Lesson Overview

Main steps that we will walk through, to tackle a machine learning project:

- 1) Look at the big picture.
- 2) Get the data.
- Explore and visualize the data to gain insights.
- 4) Prepare the data for machine learning algorithms.
- 5) Select a model and train it.
- 6) Fine-tune the model.
- 7) Present the solution.
- 8) Launch, monitor and maintain the system.

Look at the Big Picture

Task: To build a model to predict the median housing price in any district.

Data parameters:

- Population
- Median income
- Median housing price
- Districts
- Median age
- Total rooms
- Total bedrooms

California housing prices

Frame the Problem

What is the model objectives & expectations? What the current solution looks like?

What kind of training supervision the model will need?
Is it a classification task, regression task?
Should it be a batch or online learning?

Select a Performance Measure

Mean Absolute Error (MAE)

Root Mean Square Error (RMSE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$RMSE = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Where: n is the number of observations y_i is the actual value \hat{y}_i is the predicted value

Load the Data

```
from pathlib import Path
import pandas as pd
import tarfile
import urllib.request

def load_housing_data():
    tarball_path = Path("datasets/housing.tgz")
    if not tarball_path.is_file():
        Path("datasets").mkdir(parents=True, exist_ok=True)
        url = "https://yourURLhere.com/housing.tgz"
        urllib.request.urlretrieve(url, tarball_path)
        with tarfile.open(tarball_path) as housing_tarball:
            housing_tarball.extractall(path="datasets")
    return pd.read_csv(Path("datasets/housing/housing.csv"))
housing = load_housing_data()
```

Download data from a URL, and load the data into Pandas

DataFrame

Load the data into Pandas
DataFrame from a folder on your
computer


```
from pathlib import Path
import pandas as pd
import numpy as np

def load_housing_data():
    filepath = "C:/Users/chest/OneDrive - Universiti Malaya/UM/Teaching/KIG4068 Machine Learning/Data/"
    return pd.read_csv(Path(filepath+"datasets/housing/housing.csv"))

housing = load housing data()
```

Data Structure

df.head()/ df.tail() -Displays the first/ last few rows of DataFrame
df.info() - Provides a concise summary of the DataFrame (entries, column names etc.)

df.describe() - Generates descriptive statistics of the numerical column (count, mean, std etc.)

df.hist() - Creates histograms for numerical columns in a DataFrame

Example:

housing.head()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY

Data Structure (Cont'd)

housing.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

Data Structure (Cont'd)

housing.hist(bins, figsize, etc)

Creating a Test Set

Training set

- Portion of the dataset used to train ML model.
- Consists of input data points (features) with their corresponding target labels/ outcomes.
- The model learns from the patterns and relationship present in the training data to make predictions.

Validation set

- Used to tune hyperparameters and evaluate performance during training.
- Helps in selecting best model architecture and parameter settings.
- Provides unbiased estimate because it is not used during training.

Test set

- Independent dataset that is not used during training or tuning.
- Used to assess the performance of the trained model on unseen data.
- Helps to estimate how well the model will perform in real-world scenarios.

Creating a Test Set (Cont'd)

housing, test size=0.2, stratify=housing["income_cat"], random_state=42)

Option 1 (random sampling)

strat_train_set, strat_test_set = train_test_split(

```
from sklearn.model selection import train test split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
                                                                             7000
                                                                            6000
                                                                           of districts
Option 2 (stratified sampling)
                                                                            5000
                                                                            3000
housing["income_cat"] = pd.cut(housing["median_income"],
                                                                             2000
                                 bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
                                                                             1000
                                 labels=[1, 2, 3, 4, 5])
                                                                                                3
                                                                                           Income category
housing["income_cat"].value_counts().sort_index().plot.bar(rot=0, grid=True)
plt.xlabel("Income category")
plt.ylabel("Number of districts")
plt.show()
```

Data Visualization & Exploration

```
housing.plot(kind="scatter", x="longitude", y="latitude", grid=True)
plt.show()
```


Data Visualization & Exploration (Cont'd)

Standard correlation coefficient (Pearson's r)

```
corr matrix = housing.corr(numeric only=True)
corr matrix["median_house_value"].sort_values(ascending=False)
median house value
                     1.000000
median_income
                     0.688380
total_rooms
                     0.137455
housing_median_age
                     0.102175
households
                     0.071426
total_bedrooms
                     0.054635
population
                  -0.020153
longitude
                  -0.050859
latitude
                    -0.139584
Name: median_house_value, dtype: float64
```

Data Visualization & Exploration (Cont'd)

Plotting correlation between attributes using Pandas

Standard correlation coefficient of various datasets

Data Manipulation

Experiment with attribute combinations

```
housing["rooms_per_house"] = housing["total_rooms"] / housing["households"]
housing["bedrooms_ratio"] = housing["total_bedrooms"] / housing["total_rooms"]
housing["people_per_house"] = housing["population"] / housing["households"]
corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
```


Data Cleaning

Options to work with missing values

```
Option 1 (Remove the rows of missing values)
housing.dropna(subset=["total_bedrooms"], inplace=True) # option 1
Option 2 (Remove the whole attribute or column)
housing.drop("total_bedrooms", axis=1) # option 2
Option 3 (Imputation – set missing values to some
values, e.g. zero, mean, median etc)
median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)
                  OR
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
housing_num = housing.select_dtypes(include=[np.number])
imputer.fit(housing_num)
```

X = imputer.transform(housing_num)

housing_tr = pd.DataFrame(X, columns=housing_num.columns,

index=housing_num.index)

Use scikit-learn imputation function

Data Cleaning (Cont'd)

Convert text to numbers

housing_cat = housing[["ocean_proximity"]]

```
housing cat.head(8)
       ocean proximity
13096
                NEAR BAY
14973
               <1H OCEAN
3785
                  INLAND
14689
                  INLAND
20507
             NEAR OCEAN
1286
                  INLAND
18078
               <1H OCEAN
4396
                NEAR BAY
Option 1 (Ordinal Encoder)
from sklearn.preprocessing import OrdinalEncoder
ordinal_encoder = OrdinalEncoder()
housing cat encoded = ordinal encoder.fit transform(housing cat)
housing_cat_encoded[:8]
array([[3.],
      [0.].
      [1.],
      [1.],
      [4.],
       [1.],
       [0.],
      [3.]])
```

```
ordinal_encoder.categories_
 [array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
        dtype=object)]
Option 2 (One-hot Encoder)
from sklearn.preprocessing import OneHotEncoder
cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
       [1., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0.]
       [0., 0., 0., 0., 1.].
       [1., 0., 0., 0., 0.]
       [0., 0., 0., 0., 1.]
cat_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
      dtype=object)]
```

Feature Scaling & Transformation

Options to work with different attributes scales

Option 1 (Normalization)

from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler(feature_range=(-1, 1))
housing_num_min_max_scaled = min_max_scaler.fit_transform(housing_num)

$$X_{norm} = \frac{(X - X_{min})}{(X_{max} - X_{min})}$$

Option 2 (standardization)

from sklearn.preprocessing import StandardScaler

std_scaler = StandardScaler()
housing_num_std_scaled = std_scaler.fit_transform(housing_num)

$$X_{std} = \frac{(X - mean)}{std}$$

Normalization	Standardization
Rescales values to (e.g.,-1, 1 or 0,1)	Not bounded to a certain range
Useful when data distribution is unknown or not Gaussian	Useful when data distribution is Gaussian or unknown
Sensitive to outliers	Less sensitive by outliers
Retains the shape of the original distribution	Changes the shape of the original distribution
May not preserve the relationship between data points	Preserves the relationships between data points

Feature Scaling & Transformation (Cont'd)

Pre-feature scaling transformations

Transformation Pipeline

- Machine learning pipelines are mechanism that chains multiple steps together, ensuring that the output of each step is used as input to the next step.
- In other words, a machine learning pipeline performs a sequence of steps, where the output of the first transformer becomes the input for the next transformer.

Transformation Pipeline (Cont'd)

Example: Housing data

Transformation Pipeline (Cont'd)

```
from sklearn.pipeline import make pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import FunctionTransformer
from sklearn.compose import make column selector
def ratio pipeline():
    return make pipeline(
        SimpleImputer(strategy="median"),
        FunctionTransformer(column ratio, feature names out=ratio name),
        StandardScaler())
def column ratio(X):
    return X[:, [0]] / X[:, [1]]
def ratio_name(function_transformer, feature_names_in):
    return ["ratio"] # feature names out
def log pipeline():
    return make pipeline(
        SimpleImputer(strategy="median"),
        FunctionTransformer(np.log, feature names out="one-to-one"),
       StandardScaler())
def cat_pipeline():
    return make pipeline(
        SimpleImputer(strategy="most frequent"),
        OneHotEncoder(handle_unknown="ignore"))
def default num pipeline():
    return make pipeline(
       SimpleImputer(strategy="median"),
       StandardScaler())
```

```
preprocessing = ColumnTransformer([
("bedrooms", ratio pipeline(),
 ["total_bedrooms", "total_rooms"]),
("rooms_per_house", ratio_pipeline(),
 ["total rooms", "households"]),
("people_per_house", ratio_pipeline(),
 ["population", "households"]),
("log", log pipeline(),
 ["total bedrooms", "total rooms", "population",
"households", "median_income"]),
("cat", cat_pipeline(),
 make column selector(dtype include=object)),
],remainder=default_num_pipeline())
# remaining col: housing median age
housing_prepared = preprocessing.fit_transform(housing)
housing prepared, shape
```

- **ColumnTransformer**: This allow us to apply different transformation to different columns
- FunctionTransformer: Creates a transformer from an arbitrary function (custom function)
- make_pipeline:Creates a pipeline by concentrating multiple transformers
- make_column_selector: creates a colun selector on specified criteria

Select & Train the Model

Example 1 - Linear Regression Model

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import root_mean_squared_error
lin_reg = make_pipeline(preprocessing, LinearRegression())
lin_reg.fit(housing, housing_labels)
housing_predictions = lin_reg.predict(housing)
lin_rmse = mean_squared_error(housing_labels, housing_predictions,squared=False)
RMSE = 70632
```

Example 2 - Decision Tree Model

```
from sklearn.tree import DecisionTreeRegressor
tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42))
tree_reg.fit(housing, housing_labels)
housing_predictions = tree_reg.predict(housing)
tree_rmse = mean_squared_error(housing_labels, housing_predictions,squared=False)
```

???? RMSE = 0

Example 3 – Random Forest Regressor Model

Evaluation using Cross-Validation

 A family of techniques used to measure the effectiveness of predictions, generated from machine learning models.

Some cross validation techniques:

- 1. Leave-P-Out
- 2. Leave-One-Out
- 3. K-Fold
- 4. Stratified K-Fold

Leave-one-out cross validation

Leave-p-out cross validation

Evaluation using Cross-Validation

K-fold cross validation

K-fold cross validation

Stratified K-fold cross validation

Evaluation using Cross-Validation

Cross validation examples

K-fold cross validation (Example 2 – Decision Tree Model)

```
from sklearn.model_selection import cross_val_score
tree_rmses = -cross_val_score(tree_reg, housing, housing_labels,
scoring="neg_root_mean_squared_error", cv=10)
print("Cross-validation RMSEs (Kfold):", tree_rmses.mean())
Cross-validation RMSEs (Kfold): 70042.97685272685
```

Stratified K-fold cross validation (Example 2 – Decision Tree Model)

Cross-validation RMSEs (Stratified Kfold): 69535.43080443132

Fine Tuning the Model

- Hyperparameter tuning is a process of optimizing the hyperparameters of a machine learning model to improve its performance
- Common techniques for hyperparameter tuning include:

1. Grid Search

- Method: Exhaustively explores a predefined set of hyperparameter combinations.
- Process: Evaluates each combination using cross validation.
- Outcome: Selects the combination with best performance.

2. Random Search

- Method: Randomly samples hyperparameter combinations from a specified distribution.
- Advantage: Efficient for large search spaces.
- Outcome: May not guarantee optimal combination but offers practical efficiency.

3. Bayesian Optimization

- Method: Utilizes probabilistic models to predict performance of hyperparameter configurations.
- Approach: Iteratively selects new settings based on previous performance.
- Goal: Aims for optimal configuration with fewer iterations.

Fine Tuning the Model

Hyperparameters tuning examples

```
from sklearn.pipeline import Pipeline
full_pipeline = Pipeline([
          ("preprocessing", preprocessing),
                ("random_forest", RandomForestRegressor(random_state=42)),
])
```

Some other hyperparameters:

- 1) n_estimators
- 2) max depth
- 3) min_samples_split
- 4) min_samples_leaf
- 5) bootstrap
- 6) max_samples

Option 1 – Grid Search

param grid = [

from sklearn.model_selection import GridSearchCV

```
{'random_forest__max_features': [2, 4, 6, 8, 10, 12, 14, 16]}

grid_search = GridSearchCV(full_pipeline, param_grid, cv=3, scoring='neg_root_mean_squared_error')

grid_search.fit(housing, housing_labels)
final_model = grid_search.best_estimator_
```

Option 2 - Random Search

```
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
```

```
param_distribs = {'random_forest__max_features': randint(low=2, high=20)}

rnd_search = RandomizedSearchCV(
full_pipeline, param_distributions=param_distribs, n_iter=10, cv=3,
scoring='neg_root_mean_squared_error', random_state=42)

rnd_search.fit(housing, housing_labels)
final_model2 = rnd_search.best_estimator_
```

Evaluate on the Test Set

Example 1 – Grid Search Model Evaluation

```
print("Random Forest Grid")
X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()
final_predictions = final_model.predict(X_test)
final_rmse = mean_squared_error(y_test, final_predictions, squared=False)
print(final_rmse)

Random Forest Grid
48990.45202127383
```

Example 2 – Randomized Search Model Evaluation

Random Forest Randomized

49112.12167712042

```
print("Random Forest Randomized")
X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()
final_predictions = final_model2.predict(X_test)
final_rmse = mean_squared_error(y_test, final_predictions, squared=False)
print(final_rmse)
```