Problem Set 2 Algebra III

Bennett Rennier bennett@brennier.com

Ex 1. Assume that K is a finite field extension of k, where n = [K : k], and a an element of K. Let $f : K \to \operatorname{End}_k(K) = \operatorname{M}_n(k)$ (the latter with respect to a fixed k-basis of K) be the canonical representation of the k-algebra K.

- a) Show that the minimal polynomial of a over k (in the sense of field theory) is equal to the minimal polynomial of the matrix f(a) (in the sense of linear algebra).
- b) Now assume additionally that K is Galois over k with Galois group $G = \{g_1, g_2, \ldots, g_n\}$, and that K = k(a). Prove that $T_{K|k}(a) = g_1(a) + \cdots + g_n(a)$ and that $N_{K|k}(a) = g_1(a) \cdots g_n(a)$.

Proof.

a) First, let $p_f(x)$ be the the minimal polynomial of a in the field theory sense and let $p_\ell(x)$ be the minimal polynomial of $f(a) = \lambda_a$ as a matrix representing left multiplication by a. Let $p_\ell(x) = \sum_{i=1}^n k_i x^i$. Then by definition we have that $p_\ell(\lambda_a) = \sum_{i=1}^n k_i \lambda_a^i = 0$. This means that if we evaluate this linear map at 1 we get

$$0 = \left(\sum_{i=1}^{n} k_i \lambda_a^i\right)(1) = \sum_{i=1}^{n} k_i \lambda_a^i(1) = \sum_{i=1}^{n} k_i a^i = p_{\ell}(a).$$

Similarly, if we have that $p_f(x) = \sum_{i=1}^m k_i x^i$, we see that for every $k' \in K$

$$p_f(\lambda_a)(k') = \left(\sum_{i=1}^m k_i \lambda_a^i\right)(k') = \sum_{i=1}^n k_i \lambda_a^i(k') = \sum_{i=1}^n k_i a^i k' = \left(\sum_{i=1}^n k_i a_i\right) k' = p_f(a) \cdot k' = 0 \cdot k' = 0$$

which proves that $p_f(\lambda_a)$ is the zero map. Since the sets $\{p \in k[x] : p(a) = 0\}$ and $\{p \in k[x] : p(\lambda_a) = 0\}$ are both ideals generated by p_f and p_ℓ respectively and we know that both polynomials belong to both of the ideals, we get that p_f divides p_ℓ and p_ℓ divides p_f . This proves that one must be some multiple of the other, but since they both have leading coeffecients of 1 by definition, we have that $p_\ell = p_f$ as desired.

b) Let p(x) be the minimal polynomial of a in K over k and let $R = \{a, r_2, \ldots, r_n\}$ be the roots of p(x). As Galois extensions are separable, we have that $p(x) = \prod_{r \in R} (x - r)$. Since the Galois group acts transitively on the roots R, we can assume without loss of generality that $g_1(a) = a$ and that $g_i(a) = r_i$. This means that $p(x) = \prod_{g_i \in G} (x - g_i(a))$. By part (a), p(x) is also the minimal polynomial of the matrix λ_a . Thus, the roots of this polynomial are eigenvalues of λ_a . Since there are n distinct roots, this means λ_a is diagonalizable with the eigenvalues $\{g_i(a)\}_{i \leq n}$ as its diagonal entries. Thus,

$$T_{K_k}(a) = \operatorname{Tr}(\lambda_a) = g_1(a) + \dots + g_n(a)$$

and

$$N_{K_k}(a) = \det(\lambda_a) = g_1(a) \cdots g_n(a)$$

as desired. \Box

Ex 2.

- a) If $f: R \to S$ is an isomorphism between two finite-dimensional k-algebras, show that $N_{R|k}(x) = N_{S|k}(f(x))$ and $T_{R|k}(x) = T_{S|k}(f(x))$ for all $x \in R$.
- b) Assume that K|k is a field extension, S is a finite-dimensional K-algebra and R is a k-algebra which is also a subring of S. Assume further that there exists a k-basis of R which is also a K-basis of S. Show that $N_{R|k}(x) = N_{S|K}(x)$ and $T_{R|k}(x) = T_{S|K}(x)$ for all $x \in R$.
- c) If R is a quaternion algebra over k (where $\operatorname{char}(k) \neq 2$), find and prove a relation between the quaternion norm N(x) and the canonical norm $N_{R|k}(x)$ for $x \in R$.

Proof.

a) Let $\{e_1, \ldots, e_n\}$ be a basis of R. Since f is an isomorphism, we know that $\{f(e_1), \ldots, f(e_n)\}$ is a basis of S. Let $x \in R$ and let $xe_j = \sum_{i=1}^n k_{ij}e_i$ for $1 \le j \le n$. Since means that with respect to the basis $\{e_1, \ldots, e_n\}$, the linear map $\lambda_x : R \to R$ has matrix form $(k_{ij})_{i,j \le n}$. We also see that

$$f(x)f(e_j) = f(xe_j) = f\left(\sum_{i=1}^n k_{ij}e_i\right) = \sum_{i=1}^n f(k_{ij})f(e_i) = \sum_{i=1}^n k_{ij}f(e_i)$$

which means that with respect to basis $\{f(e_1), \ldots, f(e_n)\}$, the linear map $\lambda_{f(x)}: S \to S$ has matrix form $(k_{ij})_{i,j \leq n}$ as well. Thus

$$N_{R|k}(x) = \det(\lambda_x) = \det(\lambda_{f(x)}) = N_{S|k}(x),$$

$$T_{R|k}(x) = \operatorname{Tr}(\lambda_x) = \operatorname{Tr}(\lambda_{f(x)}) = T_{S|k}(x)$$

as desired.

b) Let $\{e_1, \ldots, e_n\}$ be a k-basis of R that is also a K-basis of S. let $x \in R$ and let $xe_j = \sum_{i=1}^n k_{ij}e_i$ for $1 \leq j \leq n$. Thus, with respect to the basis $\{e_1, \ldots, e_n\}$, the linear map $\lambda_x : R \to R$ has matrix form $(k_{ij})_{i,j \leq n}$. We note that since R is a subring of S, we have that $x \in S$. By assumption, S has the same basis, so it is still true that $xe_j = \sum_{i=1}^n k_{ij}e_i$, this time considering $k_{ij} \in K$. This means that the map $\lambda_x : S \to S$ where x is considered an element of S can be represented by the same matrix $(k_{ij})_{i,j \leq n}$. Thus, we have that

$$N_{R|k}(x) = \det((k_{ij})_{i,j \le n}) = N_{S|K}(x),$$

 $T_{R|k}(x) = \text{Tr}((k_{ij})_{i,j < n}) = T_{S|K}(x)$

as desired.

- c) I'm not entirely sure how to do this. If R is the quaternion algebra (a,b)/k, we will probably need to consider R as a $K = k(\sqrt{a}, \sqrt{b})$ algebra with the same basis. I don't know how to relate this to the usual quaternion norm N(x) for any field k, though.
- **Ex 3.** Let V be a k-vector space with a countable infinite basis. Set $R = \operatorname{End}(V)$. As you were supposed to show in Exercise 2(c) of Homework 1, $I = \{f \in R : \operatorname{rank}(f) < \infty\}$ is a nontrivial proper two-sided ideal of R.

- a) If f is in $R \setminus I$, show that there exist elements g and h in R with $gfh = \mathrm{Id}_V$.
- b) Deduce that the quotient ring R/I is simple. Remark: R/I is an example of a simple ring which is not semi-simple.

Proof.

- a) Let $\{e_{\alpha}\}_{{\alpha}\in\mathbb{N}}$ be a basis of f(V). We know that we can use \mathbb{N} as the indexing set, as since $f\not\in I$, the image has infinite dimension, and since $f(V)\subseteq V$, f(V) must be countable as a subspace of a countable vector space. Since we can always extend bases, there is a basis $\{d_{\beta}\}_{{\beta}\in\mathbb{N}}$ of V such that $\{e_{\alpha}\}_{{\alpha}\in\mathbb{N}}\subseteq\{d_{\beta}\}_{{\beta}\in\mathbb{N}}$.
 - Now, define $g: V \to V$ by $g(e_i) = d_i$ for $i \in \mathbb{N}$ and $g(d_j) = 0$ for $d_j \notin \{e_\alpha\}_{\alpha \in \mathbb{N}}$. Thus, we have that $\operatorname{im}(g \circ f)$ contains every d_i , so $g \circ f$ is surjective. By the previous homework, every such surjective map has a left inverse, so there is an h such that $g \circ f \circ h = \operatorname{Id}_V$ as desired.
- b) Let J be a nonzero ideal of R/I and let $f+I \in J$ be a nonzero element of J. Specifically, this means that $f+I \neq I$, meaning $f \notin I$. Thus, by part (a), there are maps $g,h \in R$ such that $(g+I)(f+I)(h+I) = gfh + I = \mathrm{Id}_V + I \in J$. Since J contains the 1 in our ring R/I, it must be that J = R/I. Thus, the only ideals of R/I are $\{0\}$ and R/I itself, proving R/I is simple.
- **Ex 4.** Suppose that R is a commutative ring, that I and J are ideals of R, and that the quotients R/I and R/J are isomorphic R-modules. Prove that I = J (equal, not just isomorphic!). Point out where your argument does not work if R is not commutative and I and J are just left ideals of R.

Proof. Let $r \in \operatorname{Ann}_R(R/J)$. In particular, we have that $0+J=r\cdot (1+J)=r\cdot 1+J=r+J$. Thus $r\in J$, proving that $\operatorname{Ann}_R(R/J)\subseteq J$. Since $j\cdot (x+J)=jx+J=J=0+J$ (note, here we use that J is a right ideal), we have that $J\subseteq \operatorname{Ann}_R(R/J)$ as well. Thus, $J=\operatorname{Ann}_R(R/J)$ and by similar argument $I=\operatorname{Ann}_R(R/I)$. Let $\phi:R/I\to R/J$ be an isomorphism. Then if $r\in\operatorname{Ann}_R(R/I)$ we have

$$0 + J = \phi(0 + I) = \phi(r \cdot (x + I)) = r \cdot \phi(x + I)$$

proving that $r \in \text{Ann}_R(R/J)$. By similar argument with ϕ^{-1} , we see that the two annihilators are equal. This means that

$$I = \operatorname{Ann}_{R}(R/I) = \operatorname{Ann}_{R}(R/J) = J$$

as desired. \Box

- **Ex 5.** Let $(M_i)_{i\in I}$ be a family of submodules of an R-module M. Denote by N_i the sum of all M_j for $j \in I \setminus \{i\}$. Suppose that M is the sum of all M_i .
 - a) Show that M is the direct sum of the M_i if and only if the intersection of M_i and N_i is trivial for all $i \in I$.
 - b) Give an example where $I = \{1, 2, 3\}$, $M = M_1 + M_2 + M_3$ and $M_1 \cap M_2 = M_2 \cap M_3 = M_3 \cap M_1 = \{0\}$, but where $M \neq M_1 \oplus M_2 \oplus M_3$.

Proof.

a) \Longrightarrow) Suppose $M=\oplus_{j\in I}M_j$ and let $n\in M_i\cap N_i$ for some $i\in I$. Since $n\in N_i=\sum_{j\neq i}M_j$, this means $n=\sum_{j\neq i}m_j$, where $m_j\in M_j$. M_i , we know that $-n\in M_i$. We can denote

 $-n = m_i$ to emphasize that $m_i \in M_i$. With this, we have that

$$0 = n - n = n + (-n) = \sum_{j \neq i} m_j + m_i = \sum_{j \in I} m_j \in \bigoplus_{i \in I} M_i.$$

This means that $m_j = 0$ for all $j \in I$, and in particular that $m_i = (-n) = 0$, which means n = 0 as well. Since i was arbitrary, this proves that $M_i \cap N_i$ is trivial for all $i \in I$.

 \iff) Suppose that $\sum_{j\in I} m_j = 0$ where $m_j \in M_j$ and let i be any element of I. Then we have that $m_i \in M_i$ and that

$$m_i = -\sum_{j \neq i} m_j = \sum_{j \neq i} (-m_j) \in \sum_{j \neq i} M_j = N_i.$$

This means that $m_i \in M_i \cap N_i$. By assumption, this intersection is trivial, so it must be that $m_i = 0$. Since i was an arbitrary element of I, we have that $m_j = 0$ for all $j \in I$. This proves that $\sum_{j \in I} M_j = \bigoplus_{j \in I} M_j$ as desired.

b) Let $M = \mathbb{R}^2$ with standard basis $\{e_1, e_2\}$. Let $M_1 = \langle e_1 \rangle$, $M_2 = \langle e_2 \rangle$, and $M_3 = \langle e_1 + e_2 \rangle$ (i.e., the x-axis, the y-axis, and the line x = y respectively). Since these are all subspaces of dimension 1 and their generators are pairwise linearly independent, we have that the intersection of any two of them is trivial. However, $M \neq M_1 \oplus M_2 \oplus M_3$ as $1 \cdot e_1 + 1 \cdot e_2 + (-1) \cdot (e_1 + e_2) = 0$.

Ex 6. Let $f: N \to M$ and $f': M \to N$ be two R-module homomorphisms satisfying $f'f = \operatorname{Id}_N$. Prove that M is the direct sum of f(N) and $\ker(f')$.

Proof. Let $m \in M$. If f'(m) = 0, then we have that $m = 0 + m \in f(N) + \ker(f')$. Otherwise, $f'(m) \neq 0$. In this case, we have that

$$f'(m - f(f'(m))) = f'(m) - f'(f(f'(m))) = f'(m) - \operatorname{Id}_N(f'(m)) = f'(m) - f'(m) = 0,$$

which means $m - f(f'(m)) \in \ker(f')$. Thus, we have that $m = f(f'(m)) + (m - f(f'(m))) \in f(N) + \ker(f')$. This proves that $M = f(N) + \ker(f')$.

To prove that the sum is direct, let $m \in f(N) \cap \ker(f')$. This means that f'(m) = 0 and that there's some $n \in N$ such that m = f(n). This means that

$$n = \mathrm{Id}_N(n) = f'(f(n)) = f'(m) = 0.$$

Thus, m = f(n) = f(0) = 0. This proves that $f(N) \cap \ker(f') = \{0\}$, meaning that $M = f(N) \oplus \ker(f')$ as desired.

Ex 7. Let M be an R-module.

- a) Show M is finitely generated if and only if it is a finite sum of cyclic R-modules.
- b) Assume that M is the direct sum of a family $(M_i)_{i \in I}$ of nonzero submodules. Prove that I must be finite if M is finitely generated.

Proof.

- a) \Longrightarrow) Let M be finitely generated by the set $\{a_1,\ldots,a_n\}$. That is, there is no proper submodule of M that contains $\{a_1,\ldots,a_n\}$. We see that $\sum_{i=1}^n Ra_i$ is a finite sum of cyclic submodules. Since it is a submodule of M that contains $\{a_1,\ldots,a_n\}$, this proves that $M=\sum_{i=1}^n Ra_i$.
 - \Leftarrow) Let $M = \sum_{i=1}^n Ra_i$ for some $a_i \in M$. Thus, any element $m \in M$ can be written as $\sum_{i=1}^n r_i a_i$ for some $r_i \in R$. This means that if N is a submodule of M that contains the set $\{a_1, \ldots, a_n\}$, then N must contain m. Since $m \in M$ was arbitrary, we see that it must be that M = N and thus that M is generated by the finite set $\{a_1, \ldots, a_n\}$.
- b) If M is finitely generated, then by part (a), we know that M is a finite sum of cyclic Rmodules, so $M = \sum_{j \leq n} Rx_j$ for some elements $x_j \in M$. Since we know that $M = \bigoplus_{i \in I} M_i$,
 we can represent each x_j as $x_j = \sum_{i \in I_j} m_i$ where I_j is some finite subset of I. Thus, if we
 let $I' = \bigcup_{j \leq n} I_j$, we get that $|I'| < \infty$ and $x_j \in \bigoplus_{i \in I'} M_i$ for every $j \leq n$. Since $\bigoplus_{i \in I'} M_i$ is
 a module containing the generating set, we get that $M = \bigoplus_{i \in I'} M_i$. Suppose there were an $i_0 \in I \setminus I'$. Then we could choose a nonzero $m \in M_{i_0} \subseteq M$ (we can do this because we assumed
 every M_i was nonzero). Since $M = \bigoplus_{i \in I'} M_i$, though, that'd mean $m = \sum_{i \in I'} m_i$, disproving
 that $\bigoplus_{i \in I} M_i$ uniquely represents every element of M. Thus, it must be that I = I', and so Iis finite.