Temperature

how much mercury expands between the freezing and boiling points of water defined as OC an 100°C.

$$T_{c} = C_{1} \frac{\Delta V}{V} + C_{2}$$

- Inbetween 0°C and 100°C a thermometer based on mercury and one based on Alcohol gave slightly different answers.
- For low density gas, it was found that the ratio of pressures Psteam/Pfreezing at constant volume was the same independent of the gas type. It thus gave a universal (gas independent) scale

$$A$$
 $T = T_{ref} \frac{P}{P}$ (const volume)

So we need to pick a reference temperature measure gias pressure at very low density (so Pref >0), then keeping the volume of gas fixed measure the press, at some other point. This defines the temperature using &

Temperature define by the volume expansion of mercury

$$T_{\text{Celsius}} = C_1 \Delta V / V + C_2$$

The constants are chosen so that freezing is 0 and boiling is 100.

The constant volume ideal gas thermometer

Changes in pressure in the bulb (at constant volume) defines a temperature scale:

In practice	the refe	rence ten	percuture	was the
7.00	- 1	-1		- 1
temperature water vapor	are in	equilibr	ilam the	"triple
		0	,	point"
T .	1	1 27-	61 1	1

Tref was chosen to be 273.10 K to have agreement the celsius scale

- Subsequent theory (which we will develop)

 confirmed the significance of the ideal gas

 Scale
- All other thermometers are calibrated against the ideal gas one.

For instance the resistance of platinum varies with temperature and thus knowing the resistance determines the temperature.

Platinum Resistance Thermometer \$4500

