

1 1. An In-Circuit Emulation system, comprising:
2 a microcontroller having a microcontroller clock;
3 a virtual microcontroller running in lock-step synchronization with the
4 microcontroller;
5 a gatekeeper circuit coupled to the virtual microcontroller and the
6 microcontroller; and
7 a host computer running In-Circuit Emulation debug software, the host
8 computer being in communication with the gatekeeper circuit so that halt
9 commands requests for data from the virtual microcontroller are passed through
10 and regulated by the gatekeeper circuit.

11

12 2. The apparatus according to claim 1, further comprising a gatekeeper clock
13 running independent of the microcontroller clock to clock operations carried out in
14 the gatekeeper circuit.

15

16 3. The apparatus according to claim 1, wherein the gatekeeper circuit
17 comprises means for determining that the microcontroller is in a sleep state.

18

19 4. The apparatus according to claim 3, wherein the gatekeeper circuit
20 determines that the microcontroller is in the sleep state by determining if the
21 microcontroller clock is operating.

22

23 5. The apparatus according to claim 3, wherein the gatekeeper circuit
24 determines that the microcontroller is in the sleep state by determining if the
25 microcontroller clock is operating and a data line from the microcontroller is in a
26 prescribed logic state.

27

28 6. The apparatus according to claim 3, wherein the gatekeeper circuit further
29 comprises means for notifying the host computer of the microcontroller's state in
30 the event the microcontroller is in the sleep state.

1 7. The apparatus according to claim 1, wherein the gatekeeper further
2 comprises means for receiving a halt command from the host computer, and for
3 queueing a break to the microcontroller and the virtual microcontroller in response
4 thereto.

5
6 8. The apparatus according to claim 7, wherein the gatekeeper further
7 comprises means for detecting that a break has occurred in the microcontroller and
8 the virtual microcontroller and for notifying the host computer that the break has
9 occurred.

10
11 9. The apparatus according to claim 7, wherein the halt command comprises
12 one of a programmed breakpoint and a user initiated manual halt command.

13
14 10. The apparatus according to claim 7, wherein the halt command is issued by
15 a breakpoint controller in response to detection of a programmed breakpoint.

16
17 11. The apparatus according to claim 1, wherein the gatekeeper further
18 comprises means for permitting access to registers and memory locations in the
19 virtual microcontroller when the microcontroller and the virtual microcontroller are
20 in a halted state.

21
22 12. The apparatus according to claim 1, wherein the halt command comprises
23 a user initiated manual halt command.

1 13. A method of regulating a host computer's access to a virtual microcontroller
2 operating in lock-step synchronization with a real microcontroller using a
3 gatekeeper function, comprising:

4 receiving a halt command;

5 queueing a break command to the microcontroller and the virtual
6 microcontroller in response to the halt command; and

7 upon execution of the break command, permitting the host computer to have
8 access to registers and memory locations in the virtual microcontroller.

9

10 14. The method according to claim 13, wherein the halt command is received
11 as a user initiated manual halt command from the host computer.

12

13 15. The method according to claim 13, wherein the halt command is received
14 from breakpoint controller to initiate a programmed breakpoint.

15

16 16. The method according to claim 13, further comprising determining if the
17 microcontroller and the virtual microcontroller are in a sleep state upon receipt of
18 the halt command.

19

20 17. The method according to claim 16, wherein determines that the
21 microcontroller is in the sleep state is carried out by determining if a microcontroller
22 clock is operating.

23

24 18. The method according to claim 17, wherein determining that the
25 microcontroller is in the sleep state is carried out by determining if a microcontroller
26 clock is operating and a data line from the microcontroller is in a prescribed logic
27 state.

28

1 19. The apparatus according to claim 16, further comprising notifying the host
2 computer of the microcontroller's state in the event the microcontroller is in the
3 sleep state.

4
5 20. The method according to claim 13, further comprising notifying the host
6 computer when the microcontroller and the virtual microcontroller are halted.
7
8

1 21. A method of regulating a host computer's access to a virtual microcontroller
2 operating in lock-step synchronization with a real microcontroller using a
3 gatekeeper function, comprising:

4 receiving a halt command as one of a user initiated manual halt command
5 from the host computer and a breakpoint controller initiated halt command for a
6 programmed breakpoint;

7 determining that the microcontroller is in the sleep state is carried out by
8 determining if a microcontroller clock is operating and a data line from the
9 microcontroller is in a prescribed logic state;

10 notifying the host computer of the microcontroller's state in the event the
11 microcontroller is in the sleep state;

12 queueing a break command to the microcontroller and the virtual
13 microcontroller in response to the halt command;

14 notifying the host computer when the microcontroller and the virtual
15 microcontroller are halted; and

16 upon execution of the break command, permitting the host computer to have
17 access to registers and memory locations in the virtual microcontroller.