

Author: Valentine Tobechi Kalu

Project Title: Empowering Creatives: An Online Platform for Music Business Education and

Opportunities **Date**: July 2025

1. Introduction

The creative industry—especially music—is filled with talent that lacks business knowledge, structured skill development, and access to opportunities. Our platform aims to solve this by offering:

- Music business education
- Skill acquisition tracks
- Gig and opportunity matching

To make this system smarter, **Hidden Markov Models (HMMs)** will be used to understand user behavior, predict learning outcomes, and optimize gig recommendations.

2. What is a Hidden Markov Model (HMM)?

A Hidden Markov Model is a statistical model that represents systems where the **states are hidden**, but **outputs (observations)** are visible. It's often used in **sequence prediction**, **behavioral modeling**, and **recommendation systems**.

It consists of:

• **Hidden States** (e.g., learner's skill level or career growth stage)

- **Observations** (e.g., quiz results, course completions, gig preferences)
- Transition Probabilities (likelihood of moving between skill levels)
- Emission Probabilities (likelihood of certain behaviors from a state)

3. Use Cases for HMM in the Platform

3.1 Learner Progress Tracking

Problem: It's hard to know a user's true skill level just from their quiz or course results.

Solution: Use HMMs to estimate a user's *hidden learning state* over time.

- States: Beginner, Intermediate, Advanced
- Observations: Quiz scores, video completion, assignment performance
- Use: Dynamically recommend content based on inferred skill level

3.2 Career Path Modeling

Problem: Creatives progress differently—some focus on business, others on production.

Solution: HMMs can model the *career trajectory* of users based on past behavior.

- **States**: Hustler → Emerging Talent → Gigging Artist → Professional
- **Observations**: Course selections, gig applications, portfolio updates
- **Use**: Predict next best action (e.g., suggest mentorship or advanced business module)

3.3 Gig and Opportunity Matching

Problem: Matching users to gigs requires more than just keywords.

Solution: HMM can model user preference and performance history to recommend better gigs.

• **States**: High availability/low skill, high skill/low visibility, etc.

- Observations: Gigs applied to, responses, ratings
- **Use**: Predict and recommend higher-fit opportunities over time

4. HMM Implementation Pipeline

Step 1: Data Collection

- Log user interactions (quizzes, time on site, course completions, gig clicks)
- Label possible observable variables

Step 2: Define States and Observations

- Define hidden states like "Engaged Beginner" or "Advanced Musician"
- Use clustering (e.g., K-Means) to pre-group behaviors

Step 3: Train HMM

- Use algorithms like Baum-Welch to estimate HMM parameters
- Use Viterbi Algorithm to decode user's most probable state sequence

Step 4: Integrate Predictions

- Adjust course recommendations dynamically
- Highlight suitable gigs based on trajectory
- Provide analytics to users ("You're 80% likely to land a sync licensing deal if you finish X module")

5. Tools & Technologies

- Python Libraries: hmmlearn, pomegranate, scikit-learn, pandas
- **Database**: Firebase/SQL for tracking user events
- Frontend: React + Django (for dashboard and dynamic recommendations)
- Cloud: Google Cloud or AWS for scalability

6. Benefits of Using HMM

Benefit	Explanation
Personalized Learning	Recommends modules based on hidden user states
Smart Career Guidance	Predicts career stages to offer timely resources
Better Gig Matching	Predicts which creatives are most likely to succeed in a gig
Behavior Insights	Helps platform designers understand what patterns lead to success

7. Challenges & Considerations

- Data Requirements: HMMs need a lot of sequential data
- Model Complexity: Hard to interpret sometimes
- Cold Start Problem: New users have little data to start modeling

Mitigation: Combine HMM with collaborative filtering or knowledge-based rules for early users.

8. Conclusion

Hidden Markov Models offer a powerful and scalable way to personalize learning, guide careers, and recommend gigs in our platform. By modeling hidden states like skill level or motivation, we can build a smarter, more impactful educational experience for creatives.

9. References

- Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition.
- hmmlearn Documentation: https://hmmlearn.readthedocs.io/
- Pomegranate: https://pomegranate.readthedocs.io/en/latest/