Lösungsvorschläge zum Übungsblatt 1

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1 (Polarkoördinaten). Bestimmen wir ϕ . Sei $(x,y) \in M$. Wir suchen $(r,\theta) \in]0,\infty[\times]0,2\pi[$ s.d.

$$(r\cos\theta, r\sin\theta) = (x, y).$$

Den Betrag beider Seiten betrachtend, folgern wir unmittelbar, daß $r^2 = x^2 + y^2$, oder $r = \sqrt{x^2 + y^2}$. Das Problem, θ zu bestimmen, teilen wir in Fälle, wo (x, y) in einem bestimmten Quadranten liegt; hierfür wenden wir ein bißchen Trigonometrie an.

- 1. x, y > 0: $\tan \theta = \frac{y}{x} \Rightarrow \theta = \arctan(\frac{y}{x})$.
- 2. $x \le 0, y > 0$: $\tan(\theta \frac{\pi}{2}) = -\frac{x}{y} \Rightarrow \theta = \frac{\pi}{2} \arctan(\frac{x}{y})$.
- 3. $x < 0, y \le 0$: $\tan(\theta \pi) = \frac{y}{x} \Rightarrow \theta = \pi + \arctan(\frac{y}{x})$.
- 4. $x \ge 0, y < 0$: $\tan(\theta \frac{3\pi}{2}) = \frac{x}{-y} \Rightarrow \theta = \frac{3\pi}{2} \arctan(\frac{x}{y})$.

Insgesamt haben wir eine Funktion $\theta: M \to (0, 2\pi)$ definiert; folglich ist $\phi(x, y) = (\sqrt{x^2 + y^2}, \theta(x, y))$. Es läßt sich nun zeigen, daß ϕ und ϕ^{-1} Inverse von einander sind; daher ist ϕ^{-1} in der Tat bijektiv.

Die Veträglichkeit von ϕ mit der Standardkarte ist genau die Aussage, daß die Abbildungen $M \ni x \mapsto (\phi \circ \operatorname{id}^{-1})(x) = \phi(x)$ und $(0, \infty) \times (0, 2\pi) \ni (r, \theta) \mapsto \operatorname{id} \circ \phi^{-1}(r, \theta) = \phi^{-1}(r, \theta)$ glatt sind. Anstatt die Definition von ϕ zu benutzen, wenden wir das Inverse-Funktionen-Theorem an: Die Abbildung ϕ^{-1} ist offensichtlich glatt, und $\det(\operatorname{d}\phi^{-1})(r, \theta) = r > 0$, woher die Existenz einer glatten (lokalen) Umkehrfunktion folgt; ϕ^{-1} hat aber eine eindeutige (globale) Inverse wegen Bijektivität, d.h. ϕ ist glatt.

Aufgabe 2 (Alternative Karten für S^n).

(a) Zuerst die Injektivität von $\phi_{\alpha,\varepsilon}$:

$$\phi_{\alpha,\varepsilon}(x^{1},\ldots,x^{n+1}) = \phi_{\alpha,\varepsilon}(\widetilde{x}^{1},\ldots,\widetilde{x}^{n+1})$$

$$\Leftrightarrow (x^{1},\ldots,\widehat{x}^{\alpha},\ldots,x^{n+1}) = (\widetilde{x}^{1},\ldots,\widehat{\widetilde{x}}^{\alpha},\ldots,\widetilde{x}^{n+1})$$

$$\Leftrightarrow x^{i} = \widetilde{x}^{i} \ \forall i \neq \alpha.$$
(1)

Andererseits gilt $x, \tilde{x} \in U_{\alpha,\varepsilon} \subset S^n$, d.h.

$$\varepsilon x^{\alpha}, \varepsilon \widetilde{x}^{\alpha} > 0 \text{ und}$$
 (2)

$$|x|^2 = |\widetilde{x}|^2 = 1. (3)$$

Aus (1) und (3) folgt, daß $(x^{\alpha})^2 = (\widetilde{x}^{\alpha})^2 \Leftrightarrow |x^{\alpha}| = |\widetilde{x}^{\alpha}|$. Wegen (2) ist diese Bedingung äquivalent zu $\varepsilon x^{\alpha} = \varepsilon \widetilde{x}^{\alpha}$, d.h. $x^{\alpha} = \widetilde{x}^{\alpha}$.

Wir zeigen nun, daß $\phi_{\alpha,\varepsilon}$ ein im \mathbb{R}^n offenes Bild hat. Bemerke, daß $x \in U_{\alpha,\varepsilon} \Rightarrow |\phi_{\alpha,\varepsilon}(x)|^2 = \sum_{i\neq\alpha} (x^i)^2 = 1 - (x^\alpha)^2 < 1$, d.h. $\phi_{\alpha,\varepsilon}(U_{\alpha,\varepsilon}) \subset B(0,1)$. Andererseits: $\forall y = (y^1,\ldots,y^n) \in B(0,1)$ gilt $(y^1,\ldots,y^{\alpha-1},\varepsilon\sqrt{1-|y|^2},y^\alpha,\ldots,y^n) \in U_{\alpha,\varepsilon}$ und folglich $\phi_{\alpha,\varepsilon}(y^1,\ldots,y^{\alpha-1},\varepsilon\sqrt{1-|y|^2},y^\alpha,\ldots,y^n) = y$. Daher gilt $\phi_{\alpha,\varepsilon}(U_{\alpha,\varepsilon}) = B(0,1)$, und diese Menge ist ja offen. $\{\phi_{\alpha,\varepsilon}\}$ ist daher eine Karte auf S^n .

(b) Die $\{U_{\alpha,\varepsilon}\}$ überdecken S^n , denn für alle $x \in S^n$ muss es ein α geben s.d. $x^{\alpha} \neq 0$. Nun zeigen wir daß die Kartenwechsel glatt sind; expliziter: für alle $\alpha, \widetilde{\alpha} \in \{1, \ldots, n+1\}$, $\varepsilon, \widetilde{\varepsilon} \in \{\pm 1\}$ sind die Abbildungen $\phi_{\widetilde{\alpha},\widetilde{\varepsilon}} \circ \phi_{\alpha,\varepsilon}^{-1} : \phi_{\alpha,\varepsilon}(U_{\alpha,\varepsilon} \cap U_{\widetilde{\alpha},\widetilde{\varepsilon}}) \to \phi_{\widetilde{\alpha},\widetilde{\varepsilon}}(U_{\alpha,\varepsilon} \cap U_{\widetilde{\alpha},\widetilde{\varepsilon}})$ glatt. O.B.d.A. nehmen wir an, daß $\alpha < \widetilde{\alpha}$. Zuerst bestimmen wir die Definitions- und Bildbereiche der Kartenwechsel:

$$U_{\alpha,\varepsilon} \cap U_{\widetilde{\alpha},\widetilde{\varepsilon}} = \{ x \in S^n : \varepsilon x^{\alpha} > 0 \text{ und } \widetilde{\varepsilon} x^{\widetilde{\alpha}} > 0 \}$$

$$\Rightarrow \phi_{\alpha,\varepsilon} (U_{\alpha,\varepsilon} \cap U_{\widetilde{\alpha},\widetilde{\varepsilon}}) = \{ y \in B(0,1) : \widetilde{\varepsilon} y^{\widetilde{\alpha}-1} > 0 \} \text{ und }$$

$$\phi_{\widetilde{\alpha},\widetilde{\varepsilon}} (U_{\alpha,\varepsilon} \cap U_{\widetilde{\alpha},\widetilde{\varepsilon}}) = \{ y \in B(0,1) : \varepsilon y^{\alpha} > 0 \}.$$

Diese Mengen sind ja offen. Was die Glattheit betrifft:

$$(\phi_{\widetilde{\alpha},\widetilde{\varepsilon}} \circ \phi_{\alpha,\varepsilon}^{-1})(y) = (y^1, \dots, y^{\alpha-1}, \varepsilon \sqrt{1-|y|^2}, \dots, \widehat{y}^{\widetilde{\alpha}-1}, \dots, y^n)$$

Da die Projektionen $\{(y^1,\ldots,y^n)\mapsto y^i\}$ und die Abbildung $B(0,1)\ni y\mapsto \sqrt{1-|y|^2}$ glatt sind, ist $(\phi_{\widetilde{\alpha},\widetilde{\varepsilon}}\circ\phi_{\alpha,\varepsilon}^{-1})$ auch glatt.

(c) Es reicht zu zeigen, daß ϕ_S und $\phi_{\alpha,\varepsilon}$ mit einander verträglich sind. Zuerst bestimmen wir die Definitions- und Bildbereiche:

$$U_{\alpha,\varepsilon} \cap (S^n \setminus \{S\}) = \begin{cases} U_{\alpha,\varepsilon}, & (\alpha,\varepsilon) \neq (n+1,-1) \\ U_{\alpha,\varepsilon} \setminus \{S\}, & (\alpha,\varepsilon) = (n+1,-1) \end{cases}$$
$$\Rightarrow \phi_{\alpha,\varepsilon}(U_{\alpha,\varepsilon} \cap (S^n \setminus \{S\})) = \begin{cases} B(0,1), & (\alpha,\varepsilon) \neq (n+1,-1) \\ B(0,1) \setminus \{0\}, & (\alpha,\varepsilon) = (n+1,-1) \end{cases}.$$

Diese Mengen sind offensichtlich offen. Andererseits:

$$y \in \phi_S(U_{\alpha,\varepsilon} \cap (S^n \setminus \{S\})) \Leftrightarrow \varepsilon(\phi_S^{-1}(y))^{\alpha} > 0$$

$$\Leftrightarrow \begin{cases} \alpha < n+1 : & \varepsilon y^{\alpha} > 0 \\ \alpha = n+1 : & \begin{cases} |y| < 1, & \varepsilon = 1 \\ |y| > 1, & \varepsilon = -1 \end{cases} \end{cases}$$

In allen Fällen ist die Menge aller solchen y offen. Zum Schluß:

$$(\phi_S \circ \phi_{\alpha,\varepsilon}^{-1})(y) = \begin{cases} \frac{1}{1+y^n} (y^1, \dots, y^{\alpha-1}, \varepsilon \sqrt{1-|y|^2}, y^{\alpha}, \dots, y^{n-1}), & \alpha < n+1\\ \frac{1}{1+\varepsilon \sqrt{1-|y|^2}} (y^1, \dots, y^n), & \alpha = n+1 \end{cases}$$

In beiden Fällen ist |y| < 1; daher ist $\phi_S \circ \phi_{\alpha,\varepsilon}^{-1}$ glatt.

Aufgabe 3 (Zentrierte Karten). Da $\widetilde{\phi}(\widetilde{U})$ offen in der Euclidischen Topologie ist, existiert ein $\widetilde{r} > 0$ s.d. $B(\widetilde{\phi}(p), \widetilde{r}) \subset \widetilde{\phi}(\widetilde{U})$. Daher ist $\widetilde{\phi}\Big|_{\widetilde{\phi}^{-1}(B(\widetilde{\phi}(p), \widetilde{r}))} : U := \widetilde{\phi}^{-1}(B(\widetilde{\phi}(p), \widetilde{r})) \to B(\widetilde{\phi}(p), \widetilde{r})$ eine mit $\widetilde{\phi}$ verträgliche Karte. Wir verschieben und reskalieren diese nun. Definiere für $x \in U$

$$\phi(x) := \frac{r}{\tilde{r}} \left(\tilde{\phi}(x) - \tilde{\phi}(p) \right)$$

Suggestiver geschrieben, $\phi = \lambda_{\frac{r}{\tilde{r}}}\Big|_{B(0,\tilde{r})} \circ T_{\tilde{\phi}(p)}\Big|_{B(\tilde{\phi}(p),\tilde{r})} \circ \tilde{\phi}\Big|_{\tilde{\phi}^{-1}(B(\tilde{\phi}(p),\tilde{r}))}$, wobei $\lambda_{\frac{r}{\tilde{r}}}(x) = \frac{r}{\tilde{r}}$ und $T_{\tilde{\phi}(p)}(x) = x - \tilde{\phi}(p)$. Daher ist ϕ eine Abbildung $U \to B(0,r)$, verträglich mit $\tilde{\phi}$ (der Kartenwechsel ist $\lambda_{\frac{r}{\tilde{r}}} \circ T_{\tilde{\phi}(p)}\Big|_{B(\tilde{\phi}(p),\tilde{r})}$) und $\phi(p) = 0$.

Aufgabe 4 (Äquivalenz von Atlanten).

(a) Wir zeigen daß die Relation

$$\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A} \sim \{(V_{\mathfrak{K}}, \psi_{\mathfrak{K}})\}_{\mathfrak{K} \in \mathfrak{K}} \Leftrightarrow \text{ für alle } \alpha \in A, \mathfrak{K} \in \mathfrak{K} \text{ ist } (\phi_{\alpha} \circ \psi_{\mathfrak{K}}^{-1}) \colon \psi_{\mathfrak{K}}(U_{\alpha} \cap V_{\mathfrak{K}}) \to \phi_{\alpha}(U_{\alpha} \cap V_{\mathfrak{K}})$$
 ein Diffeomorphismus von offenen Mengen

eine Äquivalenzrelation ist.

Zur Reflexivität: Es gilt $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A} \sim \{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$, da diese Aussage genau die Definition eines glatten Atlas ist.

Zur Symmetrie: Es gelte $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A} \sim \{(V_{\mathbb{x}}, \psi_{\mathbb{x}})\}_{\mathbb{x} \in \mathbb{X}}$. Da für alle $\alpha \in A$, $\mathbb{x} \in \mathbb{X}$ die Abbildung $\phi_{\alpha} \circ \psi_{\mathbb{x}}^{-1}$ genau dann ein Diffeomorphismus ist, wenn ihre Inverse $\psi_{\mathbb{x}} \circ \phi_{\alpha}^{-1}$ einer ist, so gilt $\{(V_{\mathbb{x}}, \psi_{\mathbb{x}})\}_{\mathbb{x} \in \mathbb{X}} \sim \{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$.

Zur Transitivität: Es gelten $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A} \sim \{(V_{\mathfrak{R}}, \psi_{\mathfrak{R}})\}_{\mathfrak{R} \in \mathfrak{R}} \text{ und } \{(V_{\mathfrak{R}}, \psi_{\mathfrak{R}})\}_{\mathfrak{R} \in \mathfrak{R}} \sim \{(W_{\widetilde{\alpha}}, \Phi_{\widetilde{\alpha}})\}_{\widetilde{\alpha} \in \widetilde{A}}.$ Da für alle $\alpha \in A$, $\mathfrak{R} \in \mathfrak{R}$ und $\widetilde{\alpha} \in \widetilde{A}$ die Abbildungen $\psi_{\mathfrak{R}} \circ \phi_{\alpha}^{-1}$ und $\Phi_{\widetilde{\alpha}} \circ \psi_{\mathfrak{R}}^{-1}$ Diffeomorphismen von offenen Mengen sind, so ist auch ihre Verknüpfung

$$\left. \left(\Phi_{\widetilde{\alpha}} \circ \phi_{\alpha}^{-1} \right) \right|_{\phi_{\alpha}(U_{\alpha} \cap V_{\mathtt{K}}) \cap \phi_{\alpha}(U_{\alpha} \cap W_{\widetilde{\alpha}})} : \phi_{\alpha}(U_{\alpha} \cap V_{\mathtt{K}}) \cap \phi_{\alpha}(U_{\alpha} \cap W_{\widetilde{\alpha}}) \to \Phi_{\widetilde{\alpha}}(U_{\alpha} \cap V_{\mathtt{K}}) \cap \Phi_{\widetilde{\alpha}}(U_{\alpha} \cap W_{\widetilde{\alpha}})$$

oder, anders geschrieben,

$$\left. \left(\Phi_{\widetilde{\alpha}} \circ \phi_{\alpha}^{-1} \right) \right|_{\phi_{\alpha}(U_{\alpha} \cap V_{\mathtt{X}} \cap W_{\widetilde{\alpha}})} : \phi_{\alpha}(U_{\alpha} \cap V_{\mathtt{X}} \cap W_{\widetilde{\alpha}}) \to \Phi_{\widetilde{\alpha}}(U_{\alpha} \cap V_{\mathtt{X}} \cap W_{\widetilde{\alpha}})$$

ein Diffeomorphismus von offenen Mengen. Da die V_{w} M überdecken, sind

$$\phi_{\alpha}(U_{\alpha}\cap W_{\widetilde{\alpha}})=\bigcup_{\mathtt{x}\in \mathtt{X}}\phi_{\alpha}(U_{\alpha}\cap V_{\mathtt{x}}\cap W_{\widetilde{\alpha}})\ \mathrm{und}\ \Phi_{\widetilde{\alpha}}(U_{\alpha}\cap W_{\widetilde{\alpha}})=\bigcup_{\mathtt{x}\in \mathtt{X}}\Phi_{\widetilde{\alpha}}(U_{\alpha}\cap V_{\mathtt{x}}\cap W_{\widetilde{\alpha}}),$$

d.h. beide Mengen sind offen, da sie Vereinigungen offener Mengen sind. Da $\Phi_{\widetilde{\alpha}} \circ \phi_{\alpha}^{-1}$ bijektiv und ein lokaler Diffeomorphismus ist, so ist es ein Diffeomorphismus $\phi_{\alpha}(U_{\alpha} \cap W_{\widetilde{\alpha}}) \to \Phi_{\widetilde{\alpha}}(U_{\alpha} \cap W_{\widetilde{\alpha}})$. Daher gilt $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A} \sim \{(W_{\widetilde{\alpha}}, \Phi_{\widetilde{\alpha}})\}_{\widetilde{\alpha} \in \widetilde{A}}$.

Die Äquivalenzklasse $[\mathcal{A}]$ eines Atlas \mathcal{A} ist die Sammlung aller Atlanten, die mit \mathcal{A} verträglich sind; daher ist die Vereinigung $\bigcup_{\mathcal{B} \in [\mathcal{A}]} \mathcal{B}$ ein Atlas, der alle solchen Atlanten enthält, d.h. der maximale Atlas. Andererseits ist die Sammlung aller Atlanten, die in dem \mathcal{A} enthaltenden maximalen Atlas \mathcal{A}_{max} sind, gleich $[\mathcal{A}]$, da jeder Atlas $\mathcal{B} \subset \mathcal{A}_{max}$ mit \mathcal{A} veträglich ist, s.d. $\mathcal{B} \in [\mathcal{A}]$, d.h.

$$\{\mathcal{B} \subset \mathcal{A}_{\max} : \mathcal{B} \text{ ist ein Atlas}\} \subset [\mathcal{A}],$$

aber \mathcal{A}_{\max} enthält alle mit \mathcal{A} veträglichen Atlanten. d.h.

$$[A] \subset \{B \subset A_{\max} : B \text{ ist ein Atlas}\}.$$

(b) \mathbb{R} ist offen in \mathbb{R} und ψ ist die einzige Abbildung, die offensichtlich injektiv ist; daher ist $\{(\psi,\mathbb{R})\}$ ein glatter Atlas auf \mathbb{R} . Dieser Atlas ist *nicht* mit der Standard-Atlas verträglich, denn der Kartenwechsel $x \mapsto (\mathrm{id}_{\mathbb{R}} \circ \psi^{-1})(x) = x^{1/3}$ ist nicht glatt (wegen der Nichtexistenz seiner Ableitung bei 0).