Master Thesis Defense

Ensemble Machine Learning to Predict Family Consent for Organ Donation

Ehsan Khan

Department of Systems Science and Industrial Engineering

April 20, 2018

Thomas J. Watson School of Engineering and Applied Science

Outline

- Introduction
 - Research Objectives and Questions
 - Significance of this Research
- 2 Literature Review
- Oata Description and Preprocessing
- Methodology
- Experimental Results and Model Validation
- Conclusion and Future Work

Introduction

- Increasing demand for organ transplantation
 - Increased incidence of vital organ failure [Cohen et al. (2017)]
 - Substantial disparity between organ demand and supply [OPTN]

114,686	34,770	20	Avg. W	ait Time
Waiting List as on April 19, 2018	Organs Transplanted in 2017	Die each day from Waiting List	5 years Kidney	2 years Pancreas
			11 months	4 months
			Liver	Heart & Lung

- Measures taken to bridge the gap:
 - Aggressive organ utilization
 - Increasing family consent for Organ Donation (OD)

3/49

Research Motivation

- Early Interaction (EI) project
 - Valuable comments during quarterly review meeting
 - On-site visit to Lincoln Hospital
 - Staff cooperation
 - Team effort in data validation and correction
- No literature on Early Support to family
- Limited literature emphasize the application of modeling techniques to predict family consent

Research Objectives

- Build a family consent prediction model
 - Evaluate effect of EI on CR
 - Identify significant factors of CR
- Develop real-time consent prediction before approach
- Propose staff dispatch algorithm
 - Identify top 3 approachers for each pending case

Research Questions

- Does EI with family have impact on CR?
- What are significant factors of CR for 2016-2018 LiveOnNY data?
- How accurately can we predict consent before approach?
- Are there any evidences if a particular approacher is more likely to get consent over others?

Research Concepts and Contributions

Studied Concepts

Research Contribution

CR Factors - Literature Review

19 literature reviewed in U.S. setting

0% 10% 20% 30% 40% 50% 60% 70% 80% Importance Rate

Methodology Literature Review

Data Summary (Jan. 2016 - Mar. 2018)

	Total	2016	2017	Jan Mar. 2018	2018 Annualized*
Referral		4,011	4,354	1,329	5,390
Approaches	2,081	847	974	260	1,055
Donor	653	271	296	86	349
Consent Not Recovered (CNR)	214	96	99	19	77
No Authorization	1,214	480	579	155	629

^{*}As on 04/19/2018

10 / 49

E. Khan Thesis

Data Description

- LiveOnNY data for all approaches (Jan. 2016 Mar. 2018)
- Sample size: N = 2,079 (Approaches)
- 29 factors grouped under
 - Donor (6)
 - Next-of-kin (2)
 - Hospital (4)
 - OPO related (17)
- Family consent to organ donation (Yes/No)

CR Factors for Prediction Model

Deceased donor factors:

- Age, gender
- Race, religion
- FPA, COD

Next-of-kin factors:

- Gender, relationship

Hospital factors:

- Unit, county, system
- Timely referral

OPO factors:

- Number of conversation with family by OPO staff before formal approach
- Number of staff involved per case before formal approach
- Initial mention to family about OD
- Title, team, CTB, involve hospital
- Discuss benefits, private setting
- Referral to first staff on-site & formal approach
- Referral to BD declaration
- BD declaration to formal approach
- Donation mention prior to death, arrival, referral, OPO speak with family

Donor Factors Summary

Admission to Formal Approach Timeline

Timing	Avg. Hours			
Timing	Consented	Declined		
Admission to Clinical Trigger	15.5	18.4		
Clinical Trigger to Referral	8.0	9.8		
Referral to First Staff Onsite	2.6	2.7		
First Staff Onsite to Early Interaction	41.6	39.8		
Early Interaction to Formal Approach	0.1	0.1		

Timing Analysis

		Approaches	CR (%)	P-Value	
Admission to Referral	0-24 hrs.	886	47.7	< 0.05	
Admission to Referral	>24 hrs.	1,149	36.8	<0.05	
	<0 hrs.	351	51.3		
Clinical Trigger to Referral	0-1 hrs.	170	45.3	< 0.05	
Clinical Higger to Referral	1.1-7 hrs.	419	53.7	<0.03	
	>7 hrs.	759	44.8		
Formal Approach	Before BD (22.9 hrs.)	245	82.0	< 0.05	
Formai Approacti	After BD (10.9 hrs.)	758	51.7	<0.03	
Referral to First Staff Onsite	0-4 hrs.	1,457	57 44.3		
Releffal to First Staff Offsite	>4 hrs.	289	35.9	< 0.05	
First Staff Onsite to Formal Approach	0-24 hrs.	621	41.6	< 0.05	
riisi staii Ofisite to Formai Approacti	>24 hrs.	1,041	46.8	<0.03	
	No Conversation	456	37.5		
# Conversation before Formal Approach	1	590	44.9	< 0.05	
	>1	355	59.3		

Factor labels with higher CR

	Donor	CNR	No Authorization
Average # Conversation before Formal Approach	2	1	1
Average # Staff Involved per case before Formal Approach	5	4	4

Factor	Level	CR(%)
Donor Gender	Male	43.4
Donor Gender	Female	39.3
EDA	Yes	85.7
FPA	No	36.0
NOV C1	Male	68.5
NOK Gender	Female	66.8

NOK Relationship to Donor

Early Interaction

- Early Interaction
 - At least one conversation with family before formal approach
- Data Entry Errors
 - Initial Contact with AP date after Formal Approach date

Early Interaction Progress

• Work In Progress: Data Collection for EI PDSA

6-Step Model Building Process

Step 1: Data Partition

han Thesis Defense April 20, 2018 20 / 49

Step 2: Data Preprocessing

- 5 factors removed (such as donation mentioned prior to death)
 - 50% missing values
- Factor transformation (Example: Hospital Team)

	Label Encoding	Normalization
С	1	0.2
L	2	0.4
N	3	0.5

• Linear Discriminant Analysis (LDA): compress information retained in all factors

Step 3: Model Training

- Ensemble Machine Learning:
 - Combine many models to improve prediction power
- How does the machine learn itself?

• Bagging & Boosting

Bagging Technique (Bootstrap Aggregation)

Boosting Technique

Building Decision Tree

Machine Learning Models

- Bagging (Parallel Opinion Model)
 - Random Forest (Ho, 1995)
 - Extra Tree (Geurts et al., 2006)
- Boosting (Sequential Opinion Model)
 - AdaBoost (Freund and Schapire, 1995)
 - Weak learners combined into a weighted sum
 - Gradient Boosting (Breiman, 1997)
 - Weak learn performance is improved by iteratively shifting focus towards incorrect prediction
 - eXtreme Gradient Boosting (Chen, 2016)
 - Regularized objective function for better model performance

Step 4: Model Testing

• Model results with test data (N = 316, Sept. - Dec. 2017)

Table 5.1: Final Prediction Test AUC

Ensem. Techniq.	Model	Without Preprocessing	Normalization + LDA	Parameter Tuning
	XGB	0.8197	0.8415	0.8946
Boosting	GB	0.8228	0.8348	0.8705
	AB	0.8078	0.7985	0.8038
Pagging	ETree	0.8124	0.8029	0.8465
Bagging	RF	0.7458	0.8403	0.8325

han Thesis Defense April 20, 2018 27 / 49

Step 5: Model Validation

• Training: Jan. 2016 - Aug. 2017

• Prediction: Jan. - Mar. 2018

Case	Actual Outcome (Consent)	Predicted Outcome from Model (Consent)	Probability of Consent
1	Yes	Yes	0.7824
2	No	Yes	0.5236
3	Yes	Yes	0.7028
4	Yes	Yes	0.7361
5	Yes	Yes	0.8830
6	No	Yes	0.5825
7	Yes	Yes	0.6089
8	Yes	Yes	0.7702
9	Yes	Yes	0.8009
10	Yes	Yes	0.9008

258	Yes	No	0.4125

• 223/258 cases correctly predicted (Accuracy: 92.8%!!!)

Important Factors by XGB Model

Factors at Referral and before Formal Approach

Available Factors at Referral (AFDR)	As Information entered in iTx
Donor Age	Referral to First Staff Onsite (hrs.)
Donor Gender	Staff who is Onsite
Donor Race	Referral to BD Declaration (hrs.)
Donor Religion	Early Approach
FPA	NOK Relationship to Donor
COD	NOK Gender
Hospital Team	Initial Mention of Donation to Family
Hospital County	CTB
Health System	# Conversation before Formal Approach
Admission to Clinical Trigger (hrs.)	
Clinical Trigger to Referral (hrs.)	

n Thesis Defense April 20, 2018 30 / 49

Model Performance as Factors are added after Referral

Step 6: Model Application

 Calculated probability of family consent if different staff approach the same case

Case	Actual Approacher	A1	A2	A3	A4	A5	Model Recommendation
1	0.6772	0.7772	0.6772	0.5772	0.7672	0.7792	A5
2	0.7761	0.7561	0.7861	0.7161	0.7261	0.7061	A2
3	0.6268	0.5737	0.5875	0.5146	0.7046	0.6768	A4
4	0.8780	0.6773	0.7780	0.8880	0.7278	0.7599	A3
5	0.1053	0.3022	0.4053	0.4853	0.2105	0.3505	A3

Model Recommendation

• 10 pending cases on April 16, 2018

 Table 5.2: Probability of Family Consent

Case	A1	A2	A3	A4	A 5	Who should Approach Family?
1	0.2086	0.2768	0.2906	0.2551	0.2551	A3
2	0.3682	0.5394	0.5394	0.4262	0.4262	A2, A3
3	0.2263	0.3703	0.3703	0.3188	0.3188	A2, A3
4	0.1273	0.3577	0.3577	0.2951	0.2951	A2, A3
5	0.6250	0.6230	0.6230	0.5680	0.5680	A1
6	0.3845	0.6807	0.6807	0.6158	0.6158	A2, A3
7	0.2292	0.3269	0.3428	0.2816	0.2816	A3
8	0.5254	0.6429	0.6429	0.6479	0.6479	A4,A5
9	0.3403	0.5124	0.5124	0.4413	0.4413	A2,A3
10	0.2027	0.3712	0.3712	0.3196	0.3196	A2,A3

A1, A2, A3, A4, and A5 are FSCs who are on schedule for next three days

Conclusion

- Highlighted Early Interaction importance
- Boosting (Sequential Opinion Model) gave best result
- Application of dynamic modeling approach
- Significant factors are identified using XGB model
- Recommendation from approacher dispatch model

Future Work

- Make dispatch model more efficient
- Fully automated consent prediction dashboard
- Complete documentation of important variables in iTx

Acknowledgements

- Dr. Sang Won Yoon (Advisor)
- Dr. Mohammad Khasawneh (Director of Graduate Studies of ISE)
- LiveOnNY
 - Helen Irving (President and CEO)
 - Amy L. Friedman M.D. (CMO and Exec. VP)
 - Kristin Delli Carpini (Director, Performance Improvement)
 - Emmanuel Marquez (Clinical Data Analyst) Mentor
 - Pradeep Bagavan (Systems Data Analyst) Mentor
 - Natalie Benavides (VP, Ext. Affairs and Strat.Dev., Hosp. Services)
 - Lizbeth Waddell (Director, Hospital and Family Services)
 - Walesca Marmolejos (Assistant Director, Family Services)
 - Jeff Lewis (VP, Clinical Operations)
 - Kervens Louissaint (Director, Clinical Services)
 - Richard Budke (Asisstant Director, Clinical Services)
 - Jennifer Dillon (Asisstant Director, Hospital Services)

Questions?

37 / 49

Chan Thesis Defense April 20, 2018

References I

- Chandler, J. A., M. Connors, G. Holland, and S. D. Shemie (2017). âĂIJeffectiveâĂİ requesting: A scoping review of the literature on asking families to consent to organ and tissue donation. *Transplantation* 101(5S), S1–S16.
- Ghorbani, F., H. Khoddami-Vishteh, O. Ghobadi, S. Shafaghi, A. R. Louyeh, and K. Najafizadeh (2011). Causes of family refusal for organ donation. In *Transplantation Proceedings*, Volume 43, pp. 405–406. Elsevier.
- Godin, G., A. Bélanger-Gravel, C. Gagné, and D. Blondeau (2008). Factors predictive of signed consent for posthumous organ donation. *Progress in Transplantation* 18(2), 109–117.

References II

- Goldberg, D. S., S. D. Halpern, and P. P. Reese (2013). Deceased organ donation consent rates among racial and ethnic minorities and older potential donors. *Critical Care Medicine* 41(2), 496.
- Hong, J. C., H. Yersiz, P. Kositamongkol, V. W. Xia, F. M. Kaldas, H. Petrowsky, D. G. Farmer, G. Lipshutz, D. Markovic, J. R. Hiatt, et al. (2011). Liver transplantation using organ donation after cardiac death: A clinical predictive index for graft failure–free survival. *Archives of surgery* 146(9), 1017–1023.
- Irving, M. J., A. Tong, S. Jan, A. Cass, J. Rose, S. Chadban, R. D. Allen, J. C. Craig, G. Wong, and K. Howard (2011). Factors that influence the decision to be an organ donor: a systematic review of the qualitative literature. *Nephrology Dialysis Transplantation* 27(6), 2526–2533.

References III

- Mostafa, M. (2008). Profiling organ donors in egypt using intelligent modeling techniques. *Marketing Intelligence & Planning* 26(2), 166–188.
- Rabinstein, A. A., A. H. Yee, J. Mandrekar, J. E. Fugate, Y. J. de Groot, E. J. Kompanje, L. A. Shutter, W. D. Freeman, M. A. Rubin, and E. F. Wijdicks (2012). Prediction of potential for organ donation after cardiac death in patients in neurocritical state: a prospective observational study. *The Lancet Neurology* 11(5), 414–419.
- Robbins, M. L., D. A. Levesque, C. A. Redding, J. L. Johnson, J. O. Prochaska, M. S. Rohr, and T. G. Peters (2001). Assessing family membersâĂŹ motivational readiness and decision making for consenting to cadaveric organ donation. *Journal of Health Psychology* 6(5), 523–535.

References IV

- Rodrigue, J. R., D. L. Cornell, and R. J. Howard (2006). Organ donation decision: comparison of donor and nondonor families. American *Journal of Transplantation 6(1), 190–198.*
- Schleich, B. R., S. S. Lam, S. W. Yoon, W. Tajik, M. J. Goldstein, and H. Irving (2013). A neural network-based approach for predicting organ donation potential. In IIE Annual Conference. Proceedings, pp. 1532. Institute of Industrial and Systems Engineers (IISE).
- Shah, M. B., V. Vilchez, A. Goble, M. F. Daily, J. C. Berger, R. Gedaly, and D. A. DuBay (2018). Socioeconomic factors as predictors of organ donation. Journal of Surgical Research 221, 88–94.
- Siminoff, L. A., N. Gordon, J. Hewlett, and R. M. Arnold (2001). Factors influencing families' consent for donation of solid organs for transplantation. Jama 286(1), 71–77.

Thesis Defense

References V

- Simpkin, A. L., L. C. Robertson, V. S. Barber, and J. D. Young (2009). Modifiable factors influencing relativesâĂŹ decision to offer organ donation: systematic review. *Bmj* 338, b991.
- Walker, W., A. Broderick, and M. Sque (2013). Factors influencing bereaved familiesâĂŹ decisions about organ donation: an integrative literature review. *Western Journal of Nursing Research* 35(10), 1339–1359.
- Webb, G., N. Phillips, S. Reddiford, and J. Neuberger (2015). Factors affecting the decision to grant consent for organ donation: a survey of adults in england. *Transplantation* 99(7), 1396–1402.

Publication List

Khan, M.E., Choudhury, Friedman, A., Won, D. (2018) "Decision Support System for Renal Transplantation." IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE), 2018

Halawa, F., Lee, I.G., Shen, W., Khan, M.E. (2017) "The Implementation of Hybrid MTS/MTO as a Promoter to Lean-Agile: A Simulation Case Study for Miba Sinter Slovakia." IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE), 2017

Literature Review

Year	Publications
2018	Shah et al. (2018)
2017	Chandler et al. (2017)
2015	Webb et al. (2015)
2014	DuBay et al. (2014)
2013	Goldberg et al. (2013), Schleich et al. (2013), Walker et al. (2013)
2012	Andrews et al. (2012), Quick et al. (2012), Rabinstein et al. (2012), Resnicow et al. (2012)
2011	Ghorbani et al. (2011), Irving et al. (2011)
2009	Simpkin et al. (2009)
2008	Mostafa (2008)
2006	Rodrigue et al. (2006)
2002	Minniefield et al. (2002)
2001	Robbins et al. (2001), Siminoff et al. (2001)

Model Building Process Flow

CR Factors from Literature (1 of 2)

Factors	Publications
Ago	Rodrigue et al. (2006), Padela et al.(2011),
Age	Goldberg et al. (2013), Webb et al. (2015)
Gender	Rodrigue et al. (2006), Webb et al. (2015)
	Rodrigue et al. (2006), Padela et al. (2011),
Ethnicity	Goldberg et al. (2013), Webb et al. (2015),
	Chandler et al. (2017)
Policion	Ghorbani et al. (2011), Irving et al. (2011),
Religion	Webb et al. (2015), Chandler et al. (2017)
Marital Status	Rodrigue et al. (2006), Webb et al. (2015)
Education	Rodrigue et al. (2006)
Have Children	Webb et al. (2015)
Amount of Time Spent	Padela et al. (2011)
Place of Request	Rodrigue et al. (2006), Simpkin et al. (2009)

CR Factors from Literature (2 of 2)

Factors	Publications
Employment Status	Rodrigue et al. (2006)
Insurance	Padela et al. (2011)
Cause of Death	Rodrigue et al. (2006), Padela et al. (2011)
First Mention of Donation	Rodrigue et al. (2006)
Donation Requester	Rodrigue et al. (2006), Simpkin et al. (2009),
Donation Requester	Padela et al. (2011), Chandler et al. (2017)
Timing of Initial Donation Discussion	Simpkin et al. (2009), Chandler et al. (2017)
Overall Satisifaction of Healthcare Team	Rodrigue et al. (2006), Simpkin et al. (2009),
Overali Sausifaction of Healthcare Tealif	Irving et al. (2011), Chandler et al. (2017)
Given Enough Time to make decision	Simpkin et al. (2009), Rodrigue et al. (2006)

Methodologies in Literature

Methods	Publications
	Simpkin et al. (2009), Hong et al. (2011),
Statistical Tests	Goldberg et al. (2013), Webb et al. (2015),
	Chandler et al. (2017)
	Siminoff et al. (2001), Rodrigue et al. (2006),
	Ghorbani et al. (2011), Irving et al. (2011),
Logistic Regression (LR)	Godin et al. (2008), Walker et al. (2013),
	Rabinstein et al. (2012), Webb et al. (2015),
	Shah et al. (2018)
Principal Component Analysis (PCA)	Robbins et al. (2001)
Linear Discriminant Analysis (LDA)	Mostafa (2008)
Artificial Neural Network (ANN)	Mostafa (2008), Schleich et al. (2013)

Automated Machine Learning Tool: TPOT

- Tree-Based Pipeline Optimization (TPOT), uses genetic algorithms
- Test AUC after 100 generations: 0.8789

Figure 5.1: An example of machine learning pipeline