

Convolutional neuronal networks

Till Korten

With Material from

Johannes Müller, Robert Haase: PoL

Alex Krull, Uwe Schmidt: MPI CBG

Martin Weigert: EPFL Lausanne

Ignacio Arganda-Carreras: Universidad del Pais Vasco

December 2022

Neural networks are a form of machine learning

Neural networks are composed of individual artificial "neurons"

Neural networks are a form of machine learning

- Neural network: multiple layers of artificial "neurons"
- Deep neural network (DNN): neural network with more than one layer between input and output

An artificial "neuron" is a mathematical function

Single neuron output calculation

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b = w^T x + b$$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x,x)$

For image data, the values $x_1, x_2,...$ would be

Pixel intensities

Pixel coordinates

tanh

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

Network layers can have different architectures

Pooling layer

Convolutional layers perform convolution with learned kernels

Convolutional layer

Previously:

Defined filter kernels

1/16	1/8	1/16	
1/8	1/4	1/8	
1/16	1/8	1/16	

Now:

Learned filter kernels

W ₁₁	W ₁₂	W ₁₃	
W ₂₁	W ₂₂	W ₂₃	
W ₃₁	W ₃₂	W ₃₃	

Input

Output

Pooling layers reduce the layer size

Maximal values

3	15	1	13		15	13
9	7	0	10		11	9
11	5	5	3		verage 8.5	values 6.0
1	8	9	6		6.3	5.8

The network learns by minimizing a loss function

- Learning is an optimization problem
- Step 0: Initialize the network randomly
 - Weights
 - Bias
- Step 1: Forward pass the input through the network, get an initial prediction (Images 0...M)
- Step 2: Compare the output with the ground truth, computer the error (loss function)
 - The loss function can be freely defined.
 - Mean squared error:

$$\mathcal{L}(y, \hat{y}) = \frac{1}{M} \sum_{i=1}^{M} (\hat{y}_i - y_i)^2$$

Step 3: Update weights

Ground truth *y*

Back-propagation: Minimize loss backwards from output data

The loss function can be expanded from

$$\mathcal{L}(y, \hat{y}) = \frac{1}{M} \sum_{i=1}^{M} (\hat{y}_i - y_i)^2$$

as the prediction depends on inputs x weights w and bias b

$$\mathcal{L}(\hat{y}, x, w) = \frac{1}{M} \sum_{i=1}^{M} ((w^{T} x_{i} + b) - y_{i})^{2}$$

We can calculate derivatives with respect to w and b to find their optimal values

→ Derivatives tell us how to change w & b in order to improve the prediction (i.e. minimize the loss function

Repeat this for each layer, update weights w

Prediction \hat{y}

Ground truth y

What you need to train your own network

Popular frameworks:

https://www.tensorflow.org/

https://www.pytorch.org/

Hardware requirements: Nvidia (CUDA-capable) graphics card (GPU)

Memory: The more GPU memory the better

Validation: Keep part of the data for testing and validation

Before you start training:

- Split data into three groups:
 - Training set
 - Testing set
 - Validation set

During training:

- Apply network to training set:
 - Measure performance ("loss") of network, update weights
- Apply network to testing set:
 - Measure performance of updated network, keep weights unchanged
- Improve network architecture (optimize "hyperparameters")

During validation:

• Measure performance in unseen validation dataset

Overfitting:

- → Network is learning things "by heart"
- → Hint at this happening: Updated weights from training fail to perform well in test

U-net: Image segmentation

- The **U-net** is the most used network architecture in biological image processing using CNNs.
 - Encoder: Increase the "What", decrease the "Where"
 - Decoder: Use the "What", to identify the "Where"

Stardist: Nucleus segmentation

Pol Physics of Life TU Dresden Radial Distances

Strategy:

- → Add additional information to prediction
- → Member pixels of objects (nuclei) can be reached via a straight line from the center

Object probabilities

Dense Polygon Prediction (e.g. U-Net, ResNet)

Polygon Selection (Non-Maximum Suppression NMS)

Noisy images + Crowded cells = Common source of segmentation errors

Dense Segmentation (e.g. U-Net)

Bounding box based methods (e.g. Mask-RCNN)

@TillKorten

Stardist: Nucleus segmentation

Object probabilities

Radial Distances

© Schmid et al., MICCAI (2018)

Non-maximum-suppression (NMS):

 Intersection over Union (IoU) threshold τ determines "conservativeness":
High τ: Objects tend to be considered as separate objects

Low τ : Objects tend to be considered as the same objects

Problem:

- → Multiple candidate points for nucleus center
- → Overlapping instance predictions

Before NMS

After NMS

Stardist: Nucleus segmentation

Object probabilities

Radial Distances

© Schmid et al., MICCAI (2018)

Non-maximum-suppression (NMS):

- → Object probabilities: Probability that pixel belongs to class "nucleus"
- → Multiple maxima lead to multiple possible polygons for the same nucleus

Algorithm:

- → Select polygon with highest object probability inside: \
- \rightarrow Look at other polygons: Is the overlap of \bigcirc with \bigcirc larger than threshold τ ?
 - → Yes: and ◇ are actually the same object, drop ◇
 - → No: and ◇ are separate nuclei
- \rightarrow Setting τ very high leads to many false positives!

Non-maximum suppression

© Schmid et al., MICCAI (2018)

CARE: Improving resolution and denoising

- CARE: content-aware restoration
- Image acquisition of pairs of images: A high-quality and a low-quality image.
- Caveats:
 - Reconstructs shot noise present in high quality training images
 - Trained model only applicable to image data of the same conditions (biological sample, microscope, etc)

5 example validation patches top row: input (source), middle row: target (ground truth), bottom row: predicted from source

© MPI-CBG, Dresden. All rights reserved.

Noise to void: Image denoising

© Cameron Nowell

Strategy:

- → Try to predict intensity of pixel y from surrounding pixels x
- → CNN fails to predict noise component → N2V can only reproduce signal from the surroundings of **y**

Beware:

→ Only **random** noise can be removed, otherwise artifacts occur

Caveats: GPU memory limits image size

- → Images are tiled
- →limited "receptive field of the network"

Receptive field:

→Objects must be smaller than receptive field to be detectable

Unbalanced training data leads to biased results

Unbalanced training data:

- →Some labels appear more often in training data than others
- →Rare events will not be learned because missing them doesn't harm accuracy much
- → Weighted data sampling
- → Biased results!!

Is the iPhone racist? Chinese users claim iPhoneX face recognition can't tell them apart

APPLE has come under fire following numerous complaints from Chinese users who claim the iPhone X face recognition can't tell them apart.

https://www.news.com.au/technology/gadgets/mobile-phones/is-the-iphone-racist-chinese-users-claim-iphonex-face-recognition-cant-tell-them-apart/news-story/13814540e8c82ad466aca687e12af64c

When the input data does not fit to the training data

What happened here?

Receptive field too small

I used a different resolution than during training

Overfitting

Takeaways

- With great power comes great responsibility: Validate your models well!
- Better data more important than better model
- Often performs fantastic but you don't know why
- Generative neural networks (like CARE) can dream up data to a hammer everything looks like a nail!