Reasoning Causality Between Short Texts

Luo Zhiyi

Email: jessherlock@sjtu.edu.cn

Causality

- Intuitively
 - Causality represents the causal relationship.
 - One thing(event) causes another

Causality

- In NLP context
 - We use text to describe the event.
 - We focus on the causality between short texts.
 - i.e. word, phrase and sentence.

- Typically modeling causality as a (cause, effect) pair
 - (egg, chicken)
 - (chicken, egg)

Causality Reasoning

• Ability to *recognize* and *measure* the causality between short texts.

- What is the strength of causality existing between A and B?
 - Thus, it is nature to specialize the causality reasoning problem to the following task.

I knocked on my neighbor's door.

What happened as an effect?

Alternative 1: My neighbor invited me in.

Alternative 2: My neighbor left her house.

Observations of Causality in Text

- Causality is a directional relation.
- There are two tendencies of causality encoded in text. (A causes B)
 - Necessity causality
 - The effect **B** would not have occurred if its cause **A** did not occur, which means **A** is necessary for **B**.
 - Sufficiency causality
 - If A occurred then its effect B would follow which means A is sufficient for B or A implies B.

Observations of Causality in Text

- Causality is a directional relation.
- There are two tendencies of causality encoded in text. (A causes B)
 - Necessity causality
 - The effect **B** would not have occurred if its cause **A** did not occur, which means **A** is necessary for **B**.
 - Sufficiency causality
 - If A occurred then its effect B would follow which means A is sufficient for B or A implies B.
- Causality pair is stronger when encoding both sufficiency and necessity causality.

Question 1: What pairs will be extracted?

Extract causality knowledge from text corpus.

The <e1>burst</e1> has been caused by water hammer <e2>pressure</e2>.

(pressure,burst)

(hammer,burst)

(water,burst)

- Pros and Cons
 - Fast for Huge corpus
 - Sparsity and Bias

- Necessity and sufficiency causality makes the cause/effect terms co-occur in text.
- Use statistical metric to captures necessity causality and sufficiency causality
- Necessity causality pair (A,B)
 - Every time B occurs, A is necessarily occurred. We should penalize on frequent cause.
 - \circ (A, B), (A, X)
- Sufficiency causality pair (A,B)
 - Every time A occurs, B always follow to occur. We should penalize on frequent effect.
 - (A, B), (X, B)

- For causality pair (i_c, j_e)
 - the strength of i_c associate to j_e
 - the strength of j_e associate to i_c

- $rac{p(j_e|i_c)}{p^{lpha}(j_e)} \ rac{p(i_c|j_e)}{p^{lpha}(i_c|j_e)}$
- Question 2: Which one should model necessity causality?

Necessity and Sufficiency Causality

$$CS_{nec}(i_c,j_e) = rac{p(i_c,j_e)}{p^{lpha}(i_c)p(j_e)}$$

$$CS_{suf}(i_c,j_e) = rac{p(i_c,j_e)}{p^{lpha}(j_e)p(i_c)},$$

Causality

$$CS(i_c, j_e) = CS_{nec}(i_c, j_e)^{\lambda} CS_{suf}(i_c, j_e)^{1-\lambda}$$

- Parameter Tuning
 - We need to tune lambda to fit our corpus.

Causality Reasoning Tasks

- Choice of Plausible Alternatives (COPA)
- Self-construction task for phrases
- Causality Detection task

COPA Evaluation

I knocked on my neighbor's door.

What happened as an *effect*?

Alternative 1: My neighbor invited me in.

Alternative 2: My neighbor left her house.

Data Source	Methods	Accuracy(%)
Web corpus	PMI (W=5)	61.6%
_	PMI (W=10)	61.0%
	PMI (W=15)	60.4%
	PMI (W=25)	61.2%
	$CS_{\lambda=0.5}$	64.8%
Gutenberg	PMI (W=5)	58.8%
	PMI (W=25)	58.6%
LDC Gigaword	UTDHLT Bigram PMI	61.8%
	UTDHLT SVM	63.4%
ConceptNet	Fuzzy match	51.3%
1-Million Stories	PMI (W=25)	65.2%
10-Million Stories	PMI (W=25)	65.4%
CausaNet	$CS_{\lambda=1.0}$	70.2 %

Data Source	Methods	Accuracy(%)
Web corpus	$p(j_e i_c)$	58.2%
	$p(i_c j_e)$	62.8%
	$CS_{\lambda=0.5}$	64.8%
	$CS_{\lambda=0.7}$	63.4%
	$CS_{\lambda=0.9}$	63.0%
	$CS_{\lambda=1.0}$	63.0%
CausalNet	$p(j_e i_c)$	56.2%
	$p(i_c j_e)$	60.2%
	$CS_{\lambda=0.5}$	68.8%
	$CS_{\lambda=0.7}$	69.4%
	$CS_{\lambda=0.9}$	70.2%
	$CS_{\lambda=1.0}$	70.2%

Self-construction Evaluation

(exercise, sweat)

(dog,sweat)

Question 2: Which choice is more plausible?

(destroy your enemy, victory)

(destroy your enemy, cunning and planning)

These term and phrase pairs are selected from ConceptNet, which is a handcrafted commonsense knowledge base.

Methods	Accuracy(%)
$CS_{\lambda=0.5}$	78.4%
$CS_{\lambda=0.9}$	78.6%
$CS_{\lambda=1.0}$	78.6%

Causality Detection

- To qualify our causality computation model
- We select 100 causality pairs and 100 non-causality pairs from ConceptNet.

(meet a friend, happiness)

(listen to music, furniture)

Question 3: Which one is positive pair? Which one is negative pair?

positive pair

negative pair

Causality Detection

- To qualify our causality computation model
- We select 100 causality pairs and 100 non-causality pairs from ConceptNet.

Thanks for listening!