Class 9: Structural Bioinformatics pt. 1

Woocheol Kim (PID: A16998418)

The main database for structural data is called the PDB (Protein Data Bank). Let's see what it contains:

Rad this into R:

```
pdbdb <- read.csv("Data Export Summary.csv")
pdbdb</pre>
```

	W 2 2 M	77		111.CD	36 3		0.1
	Molecular.Type	X.ray	EM	NMR	Multiple.methods	Neutron	Uther
1	Protein (only)	167,192	15,572	12,529	208	77	32
2	Protein/Oligosaccharide	9,639	2,635	34	8	2	0
3	Protein/NA	8,730	4,697	286	7	0	0
4	Nucleic acid (only)	2,869	137	1,507	14	3	1
5	Other	170	10	33	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						
1	195,610						
2	12,318						
3	13,720						
4	4,531						
5	213						
6	22						

and answer the following questions:

Download a CSV file from the PDB site (accessible from "Analyze" > "PDB Statistics" > "by Experimental Method and Molecular Type". Move this CSV file into your RStudio project and use it to answer the following questions:

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

pdbdb\$Total

```
[1] "195,610" "12,318" "13,720" "4,531" "213" "22"
```

I need to remove the comma and convert to numeric to do math:

```
as.numeric(sub(",","", pdbdb$Total))
```

```
[1] 195610 12318 13720 4531 213 22
```

I could turn this into a function to fix the whole table or any future table I read like this:

```
x <- pdbdb$Total
as.numeric(sub(",","", x))</pre>
```

[1] 195610 12318 13720 4531 213 22

```
comma2numeric <- function(x) {
  as.numeric( sub(",", "", x))
}</pre>
```

Test it

```
comma2numeric(pdbdb$X.ray)
```

[1] 167192 9639 8730 2869 170 11

```
apply(pdbdb, 2, comma2numeric)
```

Warning in FUN(newX[, i], ...): NAs introduced by coercion

	Molecular.Type	X.ray	EM	NMR	Multiple.methods	Neutron	Other	Total
[1,]	NA	167192	15572	12529	208	77	32	195610
[2,]	NA	9639	2635	34	8	2	0	12318
[3,]	NA	8730	4697	286	7	0	0	13720
[4,]	NA	2869	137	1507	14	3	1	4531
[5,]	NA	170	10	33	0	0	0	213
[6,]	NA	11	0	6	1	0	4	22

OR try a different read/import function:

```
library(readr)
pdbdb <- read_csv("Data Export Summary.csv")</pre>
Rows: 6 Columns: 8
-- Column specification -----
Delimiter: ","
chr (1): Molecular Type
dbl (3): Multiple methods, Neutron, Other
num (4): X-ray, EM, NMR, Total
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
sum(pdbdb$Total)
[1] 226414
sum(pdbdb$`X-ray`)/sum(pdbdb$Total) * 100
[1] 83.30359
sum(pdbdb$`EM`)/sum(pdbdb$Total) * 100
[1] 10.18091
     Q2: What proportion of structures in the PDB are protein?
sum(pdbdb$Total[1])/sum(pdbdb$Total) * 100
[1] 86.39483
     Q3: Type HIV in the PDB website search box on the home page and determine
     how many HIV-1 protease structures are in the current PDB?
4,553
```

Mol*

 Mol^* (pronounced "molstar") is a new web-based molecular viewer that we will need to learn the basics of here.

We will use PDB code: 1 HSG

More custom images:

Figure 1: The all important catalytic ASP25 amino acids

Figure 2: Surface display showing Merk compound in the peptide binding pocket

The Bio3D package

The bio3d package allows us to do all sorts of structural bioninformatics work in R. Let's start with how it can read these PDB files

```
pdb <- read.pdb("1hsg")</pre>
```

Note: Accessing on-line PDB file

```
Call: read.pdb(file = "1hsg")
   Total Models#: 1
     Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
   Protein sequence:
      PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
      QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
      \verb|ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP|
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
attributes(pdb)
$names
[1] "atom"
            "xyz"
                     "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
head(pdb$atom)
  type eleno elety alt resid chain resno insert
                                                     Х
                                                            У
                                                                  z o
1 ATOM
          1
                N < NA >
                         PRO
                                 Α
                                       1 <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
          2
               CA <NA>
                         PRO
                                       1 <NA> 30.307 38.663 5.319 1 40.62
                                 Α
3 ATOM
               C <NA>
                         PRO
                                      1 <NA> 29.760 38.071 4.022 1 42.64
          3
                                Α
4 ATOM
          4
               O <NA>
                         PRO
                                       1 <NA> 28.600 38.302 3.676 1 43.40
                                 Α
                         PRO
5 ATOM
          5
               CB <NA>
                                 Α
                                       1 <NA> 30.508 37.541 6.342 1 37.87
6 ATOM
          6 CG <NA>
                         PRO
                                 Α
                                       1
                                           <NA> 29.296 37.591 7.162 1 38.40
```

```
segid elesy charge
   <NA>
                   <NA>
1
              N
2
   <NA>
              C
                   <NA>
3
   <NA>
              С
                   <NA>
   <NA>
              0
                   <NA>
              С
   <NA>
                   <NA>
              С
   <NA>
                   <NA>
pdbseq(pdb)[25]
 25
"D"
     Q7: How many amino acid residues are there in this pdb object?
sum(pdb$calpha)
[1] 198
length ( pdbseq(pdb))
[1] 198
     Q8: Name one of the two non-protein residues?
\operatorname{HOH} and \operatorname{MK1}
     Q9: How many protein chains are in this structure?
2
```

unique(pdb\$atom\$chain)

[1] "A" "B"

Predicting functional motions of a single structure

Let's do a bioinformatics prediction of functional motions - i.e. the movements that one one of these molecules needs to make to do its stuff.

```
Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE
adk
 Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      \tt MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
m <- nma(adk)
                            Done in 0.016 seconds.
 Building Hessian...
 Diagonalizing Hessian...
                            Done in 0.329 seconds.
plot(m)
```

adk <- read.pdb("6s36")

Write out multi-model PDB file that we can use to make an animation of the predicted motions.

```
mktrj(m, file="adk.pdb")
```

I can open this in Mol* to play the trajectory...

Comparative analysis of protein structures

```
library(bio3d)
```

Here we will find and analyze all ADK structures in the PDB databases.

We will start with a signle database accession id: "lake_A"

```
id <- "lake_A"
aa <- get.seq(id)</pre>
```

Warning in get.seq(id): Removing existing file: seqs.fasta

Fetching... Please wait. Done.

Q10. Which of the packages above is found only on BioConductor and not CRAN?

The msa package is from Bioconductor

- Q11. Which of the above packages is not found on BioConductor or CRAN?:
- Q12. True or False? Functions from the devtools package can be used to install packages from GitHub and BitBucket?
 - Q13. How many amino acids are in this sequence, i.e. how long is this sequence?

```
$names
[1] "id" "ali" "call"

$class
[1] "fasta"

ncol(aa$call)

NULL

# Blast or hmmer search
#b <- blast.pdb(aa)

#hits <- plot(b)

#hits$pdb.id

Pre-calculated results:</pre>
```

```
hits <- NULL
hits$pdb.id <- c('1AKE_A','6S36_A','6RZE_A','3HPR_A','1E4V_A','5EJE_A','1E4Y_A','3X2S_A','6H
# Download releated PDB files
files <- get.pdb(hits$pdb.id, path="pdbs", split=TRUE, gzip=TRUE)
```

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):

pdbs/1AKE.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6S36.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6RZE.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/3HPR.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/1E4V.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/5EJE.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/1E4Y.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3X2S.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6HAP.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6HAM.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4K46.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/3GMT.pdb.gz exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4PZL.pdb.gz exists. Skipping download

Next we will use the pdbaln() function to align and also optionally fit (i.e. superpose) the identified PDB structures.

```
# Align releated PDBs
pdbs <- pdbaln(files, fit = TRUE, exefile="msa")</pre>
```

```
Reading PDB files:
pdbs/split_chain/1AKE_A.pdb
pdbs/split_chain/6S36_A.pdb
pdbs/split_chain/6RZE_A.pdb
pdbs/split_chain/3HPR_A.pdb
pdbs/split_chain/1E4V_A.pdb
```

```
pdbs/split_chain/5EJE_A.pdb
pdbs/split_chain/1E4Y_A.pdb
pdbs/split_chain/3X2S_A.pdb
pdbs/split_chain/6HAP_A.pdb
pdbs/split_chain/6HAM_A.pdb
pdbs/split_chain/4K46_A.pdb
pdbs/split_chain/3GMT_A.pdb
pdbs/split_chain/4PZL_A.pdb
PDB has ALT records, taking A
```

PDB has ALT records, taking A only, rm.alt=TRUE

Extracting sequences

```
name: pdbs/split chain/1AKE A.pdb
pdb/seq: 1
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 2
             name: pdbs/split_chain/6S36_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
             name: pdbs/split_chain/6RZE_A.pdb
pdb/seq: 3
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 4
             name: pdbs/split_chain/3HPR_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 5
             name: pdbs/split_chain/1E4V_A.pdb
             name: pdbs/split_chain/5EJE_A.pdb
pdb/seq: 6
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 7
             name: pdbs/split_chain/1E4Y_A.pdb
pdb/seq: 8
             name: pdbs/split_chain/3X2S_A.pdb
pdb/seq: 9
             name: pdbs/split_chain/6HAP_A.pdb
              name: pdbs/split_chain/6HAM_A.pdb
pdb/seq: 10
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 11
              name: pdbs/split_chain/4K46_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 12
              name: pdbs/split_chain/3GMT_A.pdb
pdb/seq: 13
              name: pdbs/split_chain/4PZL_A.pdb
```

	1											40
[Truncated_Name:1]1AKE_A.pdb				-MRII	LLGAI	PGA	GKGT	QAQI	FIM	EKYC	JIP	QIS
[Truncated_Name:2]6S36_A.pdb				-MRII	LLGAI	PGA	GKGT	QAQI	FIM	EKYC	JIP	QIS
[Truncated_Name:3]6RZE_A.pdb				-MRII	LLGA	PGA(GKGT	QAQI	FIM	EKYC	;IP(QIS
[Truncated_Name:4]3HPR_A.pdb				-MRII	LLGAI	PGA(GKGT	QAQI	FIM	EKYC	JIP	QIS
[Truncated_Name:5]1E4V_A.pdb				-MRII	LLGA	PVA	GKGT	QAQI	FIM	EKYC	;IP(QIS
[Truncated_Name:6]5EJE_A.pdb				-MRII	LLGA	PGA(GKGT	QAQI	FIM	EKYC	;IP(QIS
[Truncated_Name:7]1E4Y_A.pdb				-MRII	LLGA	LVA	GKGT	QAQI	FIM	EKYC	;IP(QIS
[Truncated_Name:8]3X2S_A.pdb				-MRII	LLGA	PGA(GKGT	QAQI	FIM	EKYC	;IP(QIS
[Truncated_Name:9]6HAP_A.pdb				-MRII	LLGA	PGA(GKGT	QAQI	FIM	EKYC	;IP(QIS
[Truncated_Name:10]6HAM_A.pdb				-MRII	LLGA	PGA(GKGT	QAQI	FIM	EKYC	;IP(QIS
[Truncated_Name:11]4K46_A.pdb				-MRII	LLGA	PGA(GKGT	QAQI	FIM.	AKFO	;IP(QIS
[Truncated_Name:12]3GMT_A.pdb				-MRLI	LLGA	PGA(GKGT	QANI	FIK	EKFO	;IP(QIS
[Truncated_Name:13]4PZL_A.pdb	TE	NLYFQ	QSN <i>I</i>	AMRII	LLGA	PGA(GKGT	QAK:	IIE	QKYI	JIA!	HIS
				^*	**	*	****	**	*	*^	*	**
	1											40
	41											80
[Truncated_Name:1]1AKE_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:2]6S36_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:3]6RZE_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:4]3HPR_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:5]1E4V_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:6]5EJE_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	CKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:7]1E4Y_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:8]3X2S_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDC	GKL	VTD:	ELV]	[AL	VKE
[Truncated_Name:9]6HAP_A.pdb	TG	DMLRA	AAV	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	ELV]	[AL	VRE
[Truncated_Name:10]6HAM_A.pdb	TG	DMLRA	AAI	KSGSE	ELGKQ	AKD:	IMDA	GKL	VTD:	EIII	[AL	VKE
[Truncated_Name:11]4K46_A.pdb	TG	DMLRA	AAIF	KAGTE	ELGKQ	AKS	VIDA	GQL	VSD:	DIII	_GL	VKE
[Truncated_Name:12]3GMT_A.pdb	TG	DMLRA	AAV	KAGTF	PLGVE	AKT'	YMDE	GKL	VPD	SLII	[GL	VKE
[Truncated_Name:13]4PZL_A.pdb	TG	DMIRE	ETI	(SGSA	LGQE	LKK	VLDA	GEL	VSD:	EFI]	[KI	VKD
	**	**^*	^*	* *^	**	*	^*	**	* *	^^	` ^,	*^^
	41			•								80
	81											120
[Truncated_Name:1]1AKE_A.pdb	RI	AQEDO	CRNO	GFLLE	GFPR	TIP	QADA	MKE	AGI	NVDY	(VL	EFD
[Truncated_Name:2]6S36_A.pdb		AQEDO										
[Truncated_Name:3]6RZE_A.pdb		AQEDO										
[Truncated_Name:4]3HPR_A.pdb	RI	AQEDO	CRNO	FLLE	GFPR:	TIP	QADA	MKE	AGI	NVDY	/VL	EFD
[Truncated_Name:5]1E4V_A.pdb	RI	AQEDO	CRNO	GFLLE	GFPR:	TIP	QADA	MKE	AGI:	NVDY	/VL	EFD

[Truncated_Name:6]5EJE_A.pdb [Truncated_Name:7]1E4Y_A.pdb [Truncated_Name:8]3X2S_A.pdb [Truncated_Name:9]6HAP_A.pdb [Truncated_Name:10]6HAM_A.pdb [Truncated_Name:11]4K46_A.pdb [Truncated_Name:12]3GMT_A.pdb [Truncated_Name:13]4PZL_A.pdb RIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFD RIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFD RIAQEDSRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFD RICQEDSRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFD RICQEDSRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFD RIAQDDCAKGFLLDGFPRTIPQADGLKEVGVVVDYVIEFD RLKEADCANGYLFDGFPRTIAQADAMKEAGVAIDYVLEID RISKNDCNNGFLLDGVPRTIPQAQELDKLGVNIDYIVEVD

121 160

[Truncated_Name:1]1AKE_A.pdb
[Truncated_Name:2]6S36_A.pdb
[Truncated_Name:3]6RZE_A.pdb
[Truncated_Name:4]3HPR_A.pdb
[Truncated_Name:5]1E4V_A.pdb
[Truncated_Name:6]5EJE_A.pdb
[Truncated_Name:7]1E4Y_A.pdb
[Truncated_Name:8]3X2S_A.pdb
[Truncated_Name:9]6HAP_A.pdb
[Truncated_Name:10]6HAM_A.pdb
[Truncated_Name:11]4K46_A.pdb
[Truncated_Name:12]3GMT_A.pdb
[Truncated_Name:12]3GMT_A.pdb

VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDAIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDAIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VPDELIVDRIVGRRVHAPSGRVYHVKFNPPKVEGKDDVTG
VADSVIVERMAGRRAHLASGRTYHNVYNPPKVEGKDDVTG
VPFSEIIERMSGRRTHPASGRTYHVKFNPPKVEGKDDVTG
VADNLLIERITGRRIHPASGRTYHTKFNPPKVADKDDVTG

161 200

[Truncated_Name:1]1AKE_A.pdb
[Truncated_Name:2]6S36_A.pdb
[Truncated_Name:3]6RZE_A.pdb
[Truncated_Name:4]3HPR_A.pdb
[Truncated_Name:5]1E4V_A.pdb
[Truncated_Name:6]5EJE_A.pdb
[Truncated_Name:7]1E4Y_A.pdb
[Truncated_Name:8]3X2S_A.pdb
[Truncated_Name:9]6HAP_A.pdb
[Truncated_Name:10]6HAM_A.pdb
[Truncated_Name:11]4K46_A.pdb
[Truncated_Name:12]3GMT_A.pdb
[Truncated_Name:13]4PZL_A.pdb

EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLCEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
EPLVQRDDKEETVLARLGVYHNQTAPLIAYYGKEAEAGN
EPLVQRDDDKEETVKKRLDVYEAQTKPLITYYGDWARRGA

* * * * * * * * * * * * *

```
201
                                                          227
[Truncated_Name:1]1AKE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:2]6S36_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:3]6RZE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:4]3HPR_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:5]1E4V_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:6]5EJE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:7]1E4Y_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:8]3X2S_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:9]6HAP_A.pdb
                                T--KYAKVDGTKPVCEVRADLEKILG-
[Truncated_Name:10]6HAM_A.pdb
                                T--KYAKVDGTKPVCEVRADLEKILG-
[Truncated_Name:11]4K46_A.pdb
                                T--QYLKFDGTKAVAEVSAELEKALA-
[Truncated_Name:12]3GMT_A.pdb
                                E----YRKISG-
                                {\tt KIPKYIKINGDQAVEKVSQDIFDQLNK}
[Truncated_Name:13]4PZL_A.pdb
                              201
                                                          227
Call:
 pdbaln(files = files, fit = TRUE, exefile = "msa")
Class:
 pdbs, fasta
Alignment dimensions:
  13 sequence rows; 227 position columns (204 non-gap, 23 gap)
+ attr: xyz, resno, b, chain, id, ali, resid, sse, call
```

161

200

Principal Component Analysis

```
pc.xray <- pca(pdbs)
plot(pc.xray)</pre>
```


To visualize the major structural variations in the ensemble the function mktrj() can be used to generate a trajectory PDB file by interpolating along a give PC (eigenvector):

```
# Visualize first principal component
pc1 <- mktrj(pc.xray, pc=1, file="pc_1.pdb")
plot(pc.xray, pc.axes = c(1,2))</pre>
```



```
uniprot <- 248838887
pdb <- 195610
pdb/uniprot * 100
```

[1] 0.0786091