Труфанов Вадим, ИУ5-63,Рубежный контроль №2

Задание №1. собстсвенно выбранный датасет

Задание:

Классификация текстов на основе методов наивного Байеса.

Необходимо решить задачу классификации текстов на основе любого выбранного датасета (кроме примера, который рассматривался в лекции). Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать признаки на основе CountVectorizer или TfidfVectorizer.

В качестве классификаторов необходимо использовать два классификатора, не относящихся к наивным Байесовским методам (например, LogisticRegression, LinearSVC), а также Multinomial Naive Bayes (MNB), Complement Naive Bayes (CNB), Bernoulli Naive Bayes.

Для каждого метода необходимо оценить качество классификации с помощью хотя бы одной метрики качества классификации (например, Accuracy).

Сделать выводы о том, какой классификатор осуществляет более качественную классификацию на Вашем наборе данных.

Решение задания:

1. Импорт библиотек и данных

```
In [1]: # This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

# You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version usi
ng "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session

/kaggle/input/freud-detection/Freud_Detection_Train.csv
/kaggle/input/freud-detection/Freud_Detection_Test.csv

In [2]: import seaborn as sns
import matplotlib pyplot as plt
%matplotlib inline
sns.set(style="ticks")
plt.rcParams['figure.dpi'] = 150

In [3]: # MMmopr maracera
freud_test = pd.read_csv('/kaggle/input/freud-detection/Freud_Detection_Train.csv', sep=",")
freud_test = pd.read_csv('/kaggle/input/freud-detection/Freud_Detection_Train.csv', sep=",")
freud_test = pd.read_csv('/kaggle/input/freud-detection/Freud_Detection_Train.csv', sep=",")
```

2. Характеристики датасета

Для решения задачи текстовой классификации был выбран нестандартный датасет *Freud Detection* (не стоит путать с распространненымы датасетами *Fraud Detection*, которые используется для обнаружения мошеннических операций). Выбранный датасет содержит 160 цитат 4 авторов: Зигумнда Фрейда, Джейн Остин, Марка Твена и Майи Энжделоу. Датасет уже разбит на тестовый и обучающий набор в соотношении 1:3 по цитатам каждого автора.

Датасет содержит следующие признаки

```
quote - цитата автора
author - фамилия автора цитаты
freud - булевый флаг, является ли Фрейд автором цитаты
```

На данном датасете будет решаться две задачи:

- 1. Бинарная классификация по Фрейду
- Винарная классификация по Фреиду
 Многоклассовая классификация по всем авторам.

```
In [4]: # Περβωε 5 cτροκ ματαceτα freud_train.head()
Out[4]: quote author freud
```

	quote	author	freud
0	One day, in retrospect, the years of struggle	Freud	1
1	Being entirely honest with oneself is a good e	Freud	1
2	Unexpressed emotions will never die. They are	Freud	1
3	Most people do not really want freedom, becaus	Freud	1
4	We are never so defenseless against suffering	Freud	1

```
In [5]: # Первые 5 строк датасета freud_test.head()
```

Out[5]:

	quote	author	freud
0	America is a mistake, a giant mistake.	Freud	1
1	The intention that man should be happy is not \dots	Freud	1
2	My love is something valuable to me which I ou	Freud	1
3	Men are more moral than they think and far mor	Freud	1
4	A man should not strive to eliminate his compl	Freud	1

3. Обработка признаков и данных

Сначала перемешаем строки в датасете, так как цитаты идут по порядку по каждому из авторов.

```
In [6]: # Перемешиваем строки тестовой выборки
freud_test = freud_test.sample(frac=1,random_state=42).reset_index(drop=True)
freud_test.head()
```

Out[61:

	quote	autiloi	iieuu
0	I come here with no expectations, only to prof	Austen	0
1	There are people, who the more you do for them	Austen	0
2	I wish, as well as everybody else, to be perfe	Austen	0
3	Give every day the chance to become the most b	Twain	0
4	A man should not strive to eliminate his compl	Froud	1

In [7]: # Перемешиваем строки обучающей выборки freud_train = freud_train.sample(frac=1,random_state=42).reset_index(drop=True) freud_train.head()

Out[7]:

	quote	author	freud
0	There is a stubbornness about me that never ca	Austen	0
1	Ah! There is nothing like staying at home, for	Austen	0
2	We are never so defenseless against suffering	Freud	1
3	My idea of good companyis the company of cl	Austen	0
4	The virtuous man contents himself with dreamin	Freud	1

Выведем гистаграммы распределей цитат по авторам.

```
In [8]: # Гистограмма цитат по авторам в обучающей выборки
freud_train['author'].hist()
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f907d009510>

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f907cba3690>

Как видно из гистограмм, цитат поровну у каждого из авторов : по 30 в обучающей выборке и по 10 в тестовой.

4. Выбор целевого признака

В качестве целевого признака выбраны признаки:

- 1 freud пля бинарной классификации
- 2. author лля мультиклассовой классификации

Чтобы использовать признак author для построения моделей преобразуем его в количественный

```
In [10]: # Импорт трансформатора из библиотеки from sklearn.preprocessing import LabelEncoder
In [11]: # Обучение трансформатора на классах обучающей выборки le = LabelEncoder() le.fit(freud_train['author'].unique()) le.classes_
Out[11]: array(['Angelou', 'Austen', 'Freud', 'Twain'], dtype=object)
In [12]: # Применение трансформатора для кодирования целевого признака author
freud_train['author'] = le.transform(freud_train['author'])
freud_test['author'] = le.transform(freud_test['author'])
freud_test['author'] = freud_train_bond()
                   freud_test.head(),freud_train.head()
A man should not strive to eliminate his compl... 2 1, quote author freud 0 There is a stubbornness about me that never ca... 1 0 1 Ah! There is nothing like staying at home, for... 1 0 2 We are never so defenseless against suffering ... 2 1 3 My idea of good company...is the company of cl... 1 0 4 The virtuous man contents himself with dreamin... 2 1;
                                                                                                                                                            1)
```

5. Предобработка данных

Для предобработки данных используется библиотека nltk

Она применяется для следующих задач:

- 1. С помощью нее цитаты разбиваются на слова токенизатором, используя sent_tokenize для разбиения на предложения и wordpunct_tokenize для разбиения на слова(токены)
- 2. С помощью pos_tag каждому токену присваивается часть речи
- 3. WordNetLemmatizer использует токен и информацию о части речи, чтобы провести лемматизацию
- 4. Также для отбора слов применяется опционально список стоп слов **sw.words('english')** для английского языка

```
In [13]: # Импорт векторизаторов из библиотеки from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
In [14]: # Импорт метрики из библиотеки from sklearn.metrics import accuracy_score
```

```
In [16]: # Класс предобработки данных для разбиения предложений на слова и формирования лемм
                   import string
                   from nltk.corpus import stopwords as sw
from nltk.corpus import wordnet as wn
from nltk import wordpunct_tokenize
from nltk import wordNetLemmatizer
from nltk import sent_tokenize
                   from nltk import pos_tag
                   from sklearn.base import BaseEstimator, TransformerMixin
                   class NLTKPreprocessor(BaseEstimator, TransformerMixin);
                            def __init__(self, stopwords=None, punct=None,
                                    lower=True, strip=True):

self.lower = lower
self.strip = strip
self.stopwords = stopwords
self.punct = punct or set(string.punctuation)
self.lemmatizer = WordNetLemmatizer()
                            def fit(self, X, y=None):
    return self
                            def inverse_transform(self, X):
    return [" ".join(doc) for doc in X]
                            def transform(self, X):
                                    return [
                                             list(self.tokenize(doc)) for doc in X
                            def tokenize(self. document):
                                     tokenize(setr, document):
# Break the document into sentences
for sent in sent_tokenize(document):
# Break the sentence into part of speech tagged tokens
                                             # break the sentence into part of speech tagged token:
for token, tag in pos_tag(wordpunct_tokenize(sent)):
    # Apply preprocessing to the token
    token = token.lower() if self.lower else token
    token = token.strip() if self.strip else token
    token = token.strip('_') if self.strip else token
    token = token.strip('*') if self.strip else token
                                                      # If stopword, ignore token and continue
if self.stopwords and token in self.stopwords:
    continue
                                                      # If punctuation, ignore token and continue
if all(char in self.punct for char in token):
                                                              continue
                                                     # Lemmatize the token and yield
lemma = self.lemmatize(token, tag)
yield lemma
                            def lemmatize(self, token, tag):
                                     tag = {
  'N': wn.NOUN,
                                             'V': wn.VERB,
'R': wn.ADV,
'J': wn.ADJ
                                    }.get(tag[0], wn.NOUN)
                                     return self.lemmatizer.lemmatize(token, tag)
In [17]: # Пример работы предобработчитка на первых 5 цитатах тренировочной выборки
                   # Пример работы предобработчитка на первых 5 цитатах тренирово 
preprocessor = NLTKPreprocessor() 
lemmas = preprocessor.fit_transform(freud_train['quote'][0:5]) 
for lemma, quote in zip(lemmas, freud_train['quote'][0:5]): 
    print('Цитата: ',quote) 
    print('Деммы: '+','.join(lemma))
                   Цитата: There is a stubbornness about me that never can bear to be frightened at the will of others. My courage always rises at
                   every attempt to intimidate me.

Леммы: there,be,a,stubbornness,about,me,that,never,can,bear,to,be,frighten,at,the,will,of,others,my,courage,always,rise,at,every,attempt,to,intimidate,me
                  attempt,to,intimidate,me

Lurara: Ah! There is nothing like staying at home, for real comfort.

Jemmus: Ah, there, be,nothing, like, stay, at, home, for, real, comfort

Lurara: We are never so defenseless against suffering as when we love.

Jemmus: we, be, never, so, defenseless, against, suffer, a, when, we, love

Lurara: My idea of good company...is the company of clever, well-informed people, who have a great deal of conversation; that is what I call good company.

Jemmus: my, idea, of, good, company, be, the, company, of, clever, well, informed, people, who, have, a, great, deal, of, conversation, that, be, what, i call good company.
                    i,call,good,company
                   l,cail,good,company
Цитата: The virtuous man contents himself with dreaming that which the wicked man does in actual life.
Леммы: the,virtuous,man,content,himself,with,dream,that,which,the,wicked,man,do,in,actual,life
```

6. Построение пайплайна и решетчатый поиск по параметрам

Чтобы выбрать наилучшую модель используется пайплайн состоящий из:

- 1. Предобработчика данных (опционально) NLTKPreprocessor
- 2. Векторизатора CountVectorizer или TfidfVectorizer 3. Классификатора из списка ниже:

Классифакаторы

DecisionTreeClassifier LogisticRegression LinearSVC MultinomialNB ComplementNB BernoulliNB

Для сетки параметров используется:

- 1. стоп-слова для предобработчика
- 2. стоп-слова для векторизатора
- 3. разное число н-грамм для векторизатора

В качестве метрики используется:

- 1. Ф1-мера для бинарной классификации
- 2. ассигасу для мультиклассовой классификации

Данные разделяются на 4 фолда.

```
In [18]: # Функции для осуществления решетчатого поиска по пайплайну и его параметрам
               from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report as clsr
from sklearn.model_selection import GridSearchCV
               import time
               def timeit(func):
                     Simple timing decorator
                     def wrapper(*args, **kwargs):
    start = time.time()
    result = func(*args, **kwargs)
    delta = time.time() - start
    return result, delta
                     return wrapper
               def identity(arg):
                     Simple identity function works as a passthrough.
                     return ard
               def build(X_train, y_train, classifier, classifier_params, cv, scoring, binary):
                            Inner build function that builds a single model.
                           if isinstance(classifier, type):
    classifier = classifier()
                            preprocessor = NLTKPreprocessor()
                           replacessor = Ncintreplacessor()

count_vect = CountVectorizer(binary=binary)

tfidf_vect = TfidfVectorizer(binary=binary)

count_vect _simple = CountVectorizer(tokenizer=identity,preprocessor=None, lowercase=False,binary=binary)

tfidf_vect_simple = TfidfVectorizer(tokenizer=identity,preprocessor=None, lowercase=False,binary=binary)
                            pipe_params_grid = [{
                             preprocessor':[None],
preprocessor':[None],
vectorizer':[count_vect, tfidf_vect],
vectorizer_stop_words': [None,sw.words('english')],
vectorizer_ngram_range': [(1,1),(1,2),(1,3),(2,3)]
                            },
                           classifier_params = ({'classifier__'+k: v for k, v in classifier_params.items()})
#print(classifier_params)
for combination in pipe_params_grid:
    combination.update(classifier_params)
#print(pipe_params_grid)
pipeline = Pipeline([
    ('unrearressers', Name))
                                  ('preprocessor', None),
('vectorizer', None),
('classifier', classifier),
                           \label{eq:gs_pipeline} gs\_pipeline = GridSearchCV(pipeline, pipe\_params\_grid, cv=cv, scoring=scoring, verbose=1, n\_jobs=1) \\ gs\_pipeline.fit(X\_train, y\_train)
                            #display('Gris Search - результаты:')
                            # Выводим результаты подбора
#print("Результаты подбора: ",gs_pipeline.cv_results_)
                               Лучшая модель
                            # лучшая модель
display('Лучшая из построенных моделей:')
print("Лучшая модель: ",gs_pipeline.best_estimator_)
# Лучшее значение метрики
                            print("Лучшее значение метрики: ",gs_pipeline.best_score_)
                           # Лучшее значение параметров
print("Лучшее значение параметров: ",gs_pipeline.best_params_)
                           return gs_pipeline.best_estimator_
                     best_model, secs = build(X_train, y_train, classifier, classifier_params, cv, scoring,binary)
                     y_pred = best_model.predict(X_test)
print(clsr(y_test, y_pred, target_names=target_names))
return best_model
In [19]: # Формирование списков с метками классов binary_names=['not freud','freud']
               multiclass_names=le.classes_.tolist()
binary_names,multiclass_names
Out[19]: (['not freud', 'freud'], ['Angelou', 'Austen', 'Freud', 'Twain'])
In [20]: # Импорты моделей из библиотеки
              # IMMIODIA MODEREN US ONOMOTEREN
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import MultinomialNB, ComplementNB, BernoulliNB
```

```
In [21]: # Гиперпараметры решающего дерева для решетчатого поиска
dtc_param_grid = {
    "max_depth": [5, 6],
    "max_features": [8.5, None]
}

In [22]: # Гиперпараметры погистической регрессии для решетчатого поиска
lr_param_grid = {'C': [1, 5, 10, 10e]}

In [23]: # Гиперпараметры плинейной машины опорных векторов для решетчатого поиска
svc_param_grid = {'C': [1, 5, 10, 10e]}

In [24]: # Пустые гиперпараметры для решетчатого поиска
empty_param_grid = {\}

In [25]: # Споварь моделей
classifiers = [{ "model_name": 'DecisionTreeClassifier', 'classifier': iDecisionTreeClassifier, 'param_grid': lr_param_grid,
    { "model_name": 'LinearSvC', 'classifier': iDecisionTreeClassifier, 'param_grid': lr_param_grid,
    { "model_name": 'MultinomialNB', 'classifier': iComplementNB', param_grid': nepty_param_grid,
    { "model_name": 'EnqualtanialNB', 'classifier': iComplementNB', param_grid': empty_param_grid,
    { "model_name": 'BernoultlNB', 'classifier': iComplementNB', param_grid': empty_param_grid,
    { "model_name": 'BernoultlNB', 'classifier': BernoultlNB, param_grid': empty_param_grid,
    { "model_name": 'BernoultlNB', 'classifier': BernoultlNB, param_grid': empty_param_grid,
    { "model_name: 'Idenial model': "model_name": "BernoultlNB', "alassifier': BernoultlNB', "a
```

In [27]: # Поиск лучших моделей для бинарной классификации
best_binary_models = build_models('quote','freud',binary_names,'f1')

```
'=======DecisionTreeClassifier=====
Fitting 4 folds for each of 256 candidates, totalling 1024 fits
[Parallel(n\_jobs=1)]\colon \mbox{ Using backend SequentialBackend with $1$ concurrent workers.} \\ [Parallel(n\_jobs=1)]\colon \mbox{ Done 1024 out of 1024 } | \mbox{ elapsed: } 1.8\mbox{min finished}
'Лучшая из построенных моделей:'
('vectorizer',
TfidfVectorizer(lowercase=False, ngram range=(1, 2)
                            tokenizer=<function identity at 0x7f906d52d8c0>)),
Classification Report:
            precision recall f1-score support
  not freud
freud
                                  0.75
                                            40
   accuracy
macro avg
weighted avg
TfidfVectorizer(lowercase=False, ngram_range=(1, 2),
tokenizer=<function identity at 0x7f906d52d8c0>)),
              DecisionTreeClassifier(max_depth=5, min_samples_leaf=10))])
     =====LogisticRegression======='
Fitting 4 folds for each of 128 candidates, totalling 512 fits
\label{lem:parallel} \begin{tabular}{ll} Parallel(n\_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. \\ [Parallel(n\_jobs=1)]: Done 512 out of 512 | elapsed: 58.6s finished \\ \end{tabular}
'Лучшая из построенных моделей:'
precision recall f1-score support
                      0.93
0.20
  not freud
      freud
                0.50
                                 0.29
                                            10
                                  0.75
                                            40
   accuracy
                0.64
                                  0.57
                                            40
                       0.57
0.75
weighted avg
                0.71
                                0.71
                                            40
'======LinearSVC======'
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
Fitting 4 folds for each of 128 candidates, totalling 512 fits
[Parallel(n_jobs=1)]: Done 512 out of 512 | elapsed: 52.2s finished
'Лучшая из построенных моделей:'
```

```
',', '-', '.', '/', ':', ';', '<', '=', '>', '@',
'[', '\\', ']', '^', '_', '\', '{', '|', ...}), 'preprocessor_stopwords': None, 'vectorizer': TfidfVecto
Classification Report:
         precision
                 recall f1-score support
                  0.93
0.40
     freud
             0.67
                          0.50
   accuracy
                          0.80
                                  40
                          0.69
macro avg
weighted avg
                  0.80
            0.78
TfidfVectorizer(lowercase=False,
           tokenizer=<function identity at 0x7f906d52d8c0>)),
('classifier', LinearSVC(C=10))])
   =======MultinomialNB=====
Fitting 4 folds for each of 32 candidates, totalling 128 fits
\label{lem:condition} \begin{tabular}{ll} Parallel(n\_jobs=1)\}: Using backend SequentialBackend with 1 concurrent workers. \\ [Parallel(n\_jobs=1)]: Done 128 out of 128 | elapsed: 13.0s finished \\ \end{tabular}
'Лучшая из построенных моделей:'
Classification Report:
         precision
                 recall f1-score support
  not freud
             0.33
                          0.15
                                  10
                          0.73
                                  40
   accuracy
             0.55
                          0.49
                                  40
                  0.72
weighted avg
             0.65
Pipeline(steps=[('preprocessor', None),
            vectorizer
           =====ComplementNB==========
[Parallel(n\_jobs=1)]: \ Using \ backend \ Sequential Backend \ with \ 1 \ concurrent \ workers.
Fitting 4 folds for each of 32 candidates, totalling 128 fits
[Parallel(n_jobs=1)]: Done 128 out of 128 | elapsed: 12.9s finished
```

'Лучшая из построенных моделей:

```
TfidfVectorizer(lowercase=False, ngram_range=(2, 3),
tokenizer<<function identity at 0x7f906d52d8c0>)),
             ('classifier', ComplementNB())])
Classification Report:
                    recall f1-score support
           precision
  not freud
freud
               0 80
                               0.78
                                        40
   accuracy
macro avg
weighted avg
                                        40
40
Fitting 4 folds for each of 32 candidates, totalling 128 fits
[Parallel(n\_jobs=1)]: \ Using \ backend \ Sequential Backend \ with \ 1 \ concurrent \ workers. \\ [Parallel(n\_jobs=1)]: \ Done \ 128 \ out \ of \ 128 \ | \ elapsed: \ 12.8s \ finished
'Лучшая из построенных моделей:'
Лучшая модель: Pipeline(steps=[('preprocessor', None)
precision
                    recall f1-score support
  not freud
                               0.86
     freud
               0.00
                               0.00
                                        10
   accuracy
  macro avo
                               0.43
                                        40
                     0.75
weighted avg
               0.56
                               0.64
                                        40
/opt/conda/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use 'zero_division' parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
```

In [28]: # Поиск лучших моделей для мультиклассовой классификации
best_multi_models = build_models('quote','author',multiclass_names,'accuracy')

```
=====DecisionTreeClassifier====
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
Fitting 4 folds for each of 256 candidates, totalling 1024 fits
[Parallel(n_jobs=1)]: Done 1024 out of 1024 | elapsed: 1.7min finished
'Лучшая из построенных моделей:'
CountVectorizer(lowercase=False, ngram_range=(1, 2),
tokenizer=<function identity at 0x7f906d52d8c0>)),
Classification Report:
                     precision recall f1-score support
        Angelou
                               0.20
                                              0.10
0.20
                                                              0.13
0.27
                               0.40
            Freud
                                                0.80
                                                           0.50
0.44
                                                                                 10
                               0.50
                                              0.40
       accuracy
                                                          0.34
0.34
                               0.37
     macro avo
                                           0.38
0.38
weighted avg
                             0.37
Pipeline(steps=[('preprocessor',
                           CountVectorizer(lowercase=False, ngram_range=(1, 2),
tokenizer=<function identity at 0x7f906d52d8c0>)),
                           ('classifier',
                            '======LogisticRegression======='
Fitting 4 folds for each of 128 candidates, totalling 512 fits
\label{lem:condition} \begin{tabular}{ll} [Parallel(n\_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. \\ [Parallel(n\_jobs=1)]: Done 512 out of 512 | elapsed: 1.2min finished \\ \end{tabular}
'Лучшая из построенных моделей:'
'\\', ']', '\', '\', '\', '\', \', \'\', \'\', \'\', \\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\'\', \\\', \\'\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\', \\\',
tokenizer==function identity at 0x7f906d52d8c0>), 'vectorizer_ngram_range': (1, 3)}
Evaluation model fit in 70.773 seconds
 Classification Report:
                       precision recall f1-score support
        Angelou
          Austen
                               0.46
                                                0.60
                                                                0.52
                                              0.50
                                                                0.53
                                                                0.36
                                                                0.45
                                                                                   40
       accuracy
macro avg
weighted avg
('classifier', LogisticRegression(C=5))])
 '======='
Fitting 4 folds for each of 128 candidates, totalling 512 fits
\label{lem:condition} \begin{tabular}{ll} [Parallel(n\_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. \\ [Parallel(n\_jobs=1)]: Done 512 out of 512 | elapsed: 57.2s finished \\ \end{tabular}
 'Лучшая из построенных моделей:'
```

```
Classification Report:
         precision
                 recall f1-score support
            0.40
0.57
   Angelou
                   0.80
                         0.67
    Austen
    Freud
            0.62
                   0.50
                         0.56
                                 10
            0.38
                   0.30
                         0.33
                                 10
                         0.50
                                 40
  accuracy
                 0.50
            0.49
                         0.49
                                 40
Pipeline(steps=[('preprocessor',
           -----'
Fitting 4 folds for each of 32 candidates, totalling 128 fits
[Parallel(n\_jobs=1)]: \ Using \ backend \ Sequential Backend \ with \ 1 \ concurrent \ workers. \\ [Parallel(n\_jobs=1)]: \ Done \ 128 \ out \ of \ 128 \ | \ elapsed: \ 12.6s \ finished
'Лучшая из построенных моделей:'
TfidfVectorizer(lowercase=False, ngram_range=(1, 2),
tokenizer=<function identity at 0x7f906d52d8c0>)),
('classifier', MultinomialNB())])
Classification Report:
                 recall f1-score support
            0.36
                  0.40
                         0.38
   Angelou
    Austen
            0.50
0.57
0.17
                  0.40
0.40
0.10
                         0.12
    Twain
                                 10
                         0.42
                                 40
  macro avq
                  0.43
                         0.40
weighted avg
            0.40
                         0.40
Pipeline(steps=[('preprocessor',
           -----ComplementNB-----'
Fitting 4 folds for each of 32 candidates, totalling 128 fits
\label{lem:condition} \begin{tabular}{ll} $[Parallel(n\_jobs=1)]:$ Using backend SequentialBackend with 1 concurrent workers. \\ [Parallel(n\_jobs=1)]:$ Done 128 out of 128 | elapsed: 12.6s finished \\ \end{tabular}
'Лучшая из построенных моделей:'
```

```
TfidfVectorizer(lowercase=False, ngram_range=(1, 2),
tokenizer<<function identity at 0x7f906d52d8c0>)),
             ('classifier', ComplementNB())])
Classification Report:
                     recall f1-score support
           precision
    Angelou
                       0 40
                                0.36
               0.57
0.57
                       0.80
                                0.67
      Freud
      Twain
               0.29
                       0.20
                                0.24
                                         10
                                0.45
                                         40
   accuracy
macro avg
weighted avg
                                0.43
                                         40
               0.44
                       0.45
                                0.43
Pipeline(steps=[('preprocessor',
             TfidfVectorizer(lowercase=False, ngram_range=(1, 2),
tokenizer=<function identity at 0x7f906d52d8c0>)),
('classifier', ComplementNB())])
'========'
Fitting 4 folds for each of 32 candidates, totalling 128 fits
\label{lem:condition} \begin{tabular}{ll} $[Parallel(n\_jobs=1)]$: Using backend SequentialBackend with $1$ concurrent workers. \\ [Parallel(n\_jobs=1)]$: Done 128 out of 128 | elapsed: $13.1s$ finished \\ \end{tabular}
'Лучшая из построенных моделей:'
precision
                     recall f1-score support
    Angelou
               0.38
                      0.30
                               0.33
     Austen
               0.44
                        0.40
                                0.42
               1.00
                       0.20
                                0.33
                                         10
10
                                0 42
                                         40
   accuracy
                       0.42
0.42
                                0.40
macro avg
weighted avg
               0.55
               0.55
CountVectorizer, countVectorizer(binary=True, lowercase=False, tokenizer=<function identity at 0x7f906d52d8c0>)), ('classifier', BernoulliNB())])
```

7. Сравнение моделей

Для сравнения лучших моделей используется метрика ассигасу, которая применяется как для всего целевого признака, так и по каждому классу отдельно.

Реализованы функции вывода этой метрики для сравнения моделей.

```
In [30]: from typing import Dict
                                  vy typing import bit
def accuracy_score_for_classes(
  y_true: np.ndarray,
  y_pred: np.ndarray) -> Dict[int, float]:
    """
                                                """
Вычисление метрики ассигасу для каждого класса
y_true - истинные значения классов
y_pred - предсказанные значения классов
Возвращает словарь: ключ - метка класса,
значение - Accuracy для данного класса
                                               # Для удобства фильтрации сформируем Pandas DataFrame
d = {'t': y_true, 'p': y_pred}
df = pd.DataFrame(data=d)
# Merruk классов
classes = np.unique(y_true)
                                                # Результирующий словари
res = dict()
# Перебор меток классов
for c in classes:
                                                              * отфильтруем данные, которые соответствуют 
# текущей метке класса в истинных значениях 
temp_data_flt = df[df['t']==c]
                                                             temp_data_ttt = df[df['t']==c]
# pacwer accuracy_gns заданной метки класса
temp_acc = accuracy_score(
    temp_data_flt['t'].values,
    temp_data_flt['p'].values)
# сохранение результата в словарь
                                                               res[c] = temp_acc
                                                return res
                                  def print_accuracy_score_for_classes(
   y_true: np.ndarray,
   y_pred: np.ndarray):
                                                Вывод метрики ассигасу для каждого класса
                                                accs = accuracy_score_for_classes(y_true, y_pred)
                                                for i in accs:
    print('accuracy, κπacc {}: {}'.format(i, accs[i]))
                                                 return accs
In [31]: # Вывод значения ассигасу для тестового набора и классов
def print_accuracy_scores(y_train,y_test, predict_y_test,target_names):
    # Качество для тестового набора
    test_score = accuracy_score(y_test, predict_y_test)
    print('accuracy, тестовая выборка: ', test_score)
    accuracy_scores = {}
    accuracy_scores['accuracy'] = test_score
    accs = accuracy_score_for_classes(y_test, predict_y_test)
    class_accuracy = dict(zip(target_names, list(accs.values())))
    for i in class_accuracy:
        print('accuracy, knacc {}: {}'.format(i, class_accuracy[i]))
    accuracy_scores.update(class_accuracy)
    return accuracy_scores
                                # Обучение модели и вычисление целевого признака
def fit_predict(estimator, X_train, X_test, y_train):
    estimator.fit(X_train, y_train)
    target_test = estimator.predict(X_test)
    return target_test

# Рассчет ассигасу для модели
def print_model_accuracy(estimator, X_col, y_col,target_names):
    X_train = freud_train[X_col]
    X_test = freud_test[X_col]
    y_train = freud_train[y_col]
    y_test = freud_test[y_col]
    target_test = fit_predict(estimator,X_train,X_test,y_train)
    accuracy_scores = print_accuracy_scores(y_train,y_test,target_test,target_names)
    return accuracy_scores
In [32]: # Функция получения асситасу для перечня моделей def print_models_accuracy(X_col,y_col,target_names,best_models): model_stats = [] for model in best_models: print(model['model_name'])
                                                accuracy_scores = print_model_accuracy(model['best_model'],X_col,y_col,target_names)
model_stat = {}
model_stat['model_name']=model['model_name']
model_stat.update({str(key): value for key, value in accuracy_scores.items()})
model_stats.append(model_stat)
return model_stats
```

8. Анализ моделей

Сравним модели используя таблицы и столбчатые диаграммы.

8.1 Бинарная классификация

In [40]: # Графики сранения ассигасу для лучших моделей бинарной классификации
print_models_plots(*binary_model_stats)

	model_name	accuracy	not freud	freud
DecisionTreeClassifier	DecisionTreeClassifier	0.750	0.933333	0.2
LogisticRegression	LogisticRegression	0.750	0.933333	0.2
LinearSVC	LinearSVC	0.800	0.933333	0.4
MultinomialNB	MultinomialNB	0.725	0.933333	0.1
ComplementNB	ComplementNB	0.775	0.933333	0.3
BernoulliNB	BernoulliNB	0.750	1.000000	0.0

Как видно из таблицы и диаграмм все модели достаточно хорошо определяют цитаты, которые не относятся к Фрейду. Однако, его настоящие цитаты все модели предсказали плохо, что свидетельствует о дисбалансе выборки и том, что моделям не хватило данных для правильной идентификации цитат психолога.

Лучше всего показатель на настоящих цитатах у модели LinearSVC, метрика составляет значение 0.36, что все равно очень мало.

Посмотрим, как справились классификаторы на равномерно распределенных цитатах по авторам

8.2 Многоклассовая классификация

```
In [41]: # Monyvenue accuracy gns nyvumx mogeneй мультиклассовой классификации
multi model_stats = print_models_accuracy('quote','author',multiclass_names,best_multi_models)
#model_stats

DecisionTrecClassifier
accuracy, recrosas subfopks: 0.4
accuracy, knacc Angelou: 0.2
accuracy, knacc Freud: 0.8
accuracy, knacc Freud: 0.8
accuracy, knacc Freud: 0.8
accuracy, recrosas subfopks: 0.45
accuracy, knacc Angelou: 0.3
accuracy, knacc Angelou: 0.3
accuracy, knacc Freud: 0.5
accuracy, knacc Freud: 0.5
accuracy, knacc Freud: 0.5
accuracy, knacc Freud: 0.5
accuracy, knacc Austen: 0.8
accuracy, knacc Austen: 0.8
accuracy, knacc Tvain: 0.3
MultinomialNB
accuracy, knacc Tvain: 0.3
MultinomialNB
accuracy, knacc Austen: 0.8
accuracy, knacc Austen: 0.8
accuracy, knacc Austen: 0.8
accuracy, knacc Austen: 0.8
accuracy, knacc Tvain: 0.1
ComplementNB
accuracy, knacc Tvain: 0.1
ComplementNB
accuracy, knacc Tvain: 0.2
BernoulliNB
accuracy, knacc Austen: 0.8
accuracy, knacc Austen: 0.8
accuracy, knacc Austen: 0.8
accuracy, knacc Tvain: 0.2
BernoulliNB
accuracy, knacc Freud: 0.4
accuracy, knacc Freud: 0.4
accuracy, knacc Freud: 0.4
accuracy, knacc Austen: 0.4
accuracy, knacc Freud: 0.2
accuracy, knacc Austen: 0.4
accuracy, knacc Freud: 0.2
accuracy, knacc Freud: 0.3
```


DecisionTreeClassifier
LogisticRegression
LinearSVC
MultinomiaINB
ComplementNB
BernoulliNB

accuracy

Как видно из таблицы и диаграмм разные модели предсказали лучше разных авторов:

- 1. Цитаты Майя Энджелоу были предсказаны хуже всего: максимальный показатель составил 0.36
- 2. Цитаты Джейн Остин лучше всего предсказалы 3 модели: LinearSVC, MultinomialNB, ComplementNB со значением 0.72
- цитаты джеин Остин лучше всего предсказали з модели. Linears vo, multinomiarus, Compiementino с
 Цитаты Зигмунда Фрейда лучше всего предсказала модель DecisionTreeClassifier со значением 0.72
- 4. Цитаты Марка Твена хорошо предсказал только BernoulliNB со значением 0.72.

В целом, ни одна модель не предсказала все классы с приемлимым качеством. На каждом авторе различные модели проявили себя лучше, чем другие, что связано с особенностью предметной области и размером датасета.

9. Выводы

Таким образом, были построены составные модели с учетом особенностей текстовой классификации. Однако из-за небольшого размера исходного датасета реализовать качественные модели не удалось. Возможным решением этой проблемы стало бы использование сторонних моделей и текстовых баз данных. Несмотря на это, был получен опыт в текстовой классификации с использованием таких инструментов как токенизаторы, векторизаторы, лемматизаторы.