Ouração: 90 minutos 1º Teste de	e Análise Matemática EE Nr.:	Curso:
Em cada uma das perguntas seg		correta no quadrado
1. A curva descrita por $\vec{r}(t) = (3\sin(\frac{\pi}{2} - t))$	$3\cos(\frac{\pi}{2}-t)) \text{com } t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$	é da forma:
	3	$\frac{\mathbb{Z}\left(\overline{\mathbb{Z}}\right) = (0,3)}{\mathbb{Z}\left(\frac{3\pi}{2}\right) = (-3)}$
-3	-3	$R^{2}\left(\frac{3\pi}{2}\right)=\left(\frac{3\pi}{2}\right)$
;	M 3	
3		
;	-3	t2-170 nt +0(=) Ré: ts-1 vt>7
2. O domínio da função $\vec{f}(t) = (\frac{t^2+4}{t}, \sqrt{t^2})$	-1 , $t \exp(t-1)$) definida em \mathbb{I}	Ré: ts-1 vt>7
	$[1, +\infty[; \qquad \qquad [1, +\infty[;$	$ [-1, +\infty[\setminus\{0\}]].$
3. A representação gráfica do domínio da	função real $f(x,y) = \frac{\ln(y-x)}{y-x^2}$	definida em \mathbb{R}^2 é:
$[-1,1] \setminus \{0\};$ $[-\infty,-1] \cup [-1,1] \setminus \{0\};$ 3. A representação gráfica do domínio da		4>x 14=
	Y	
; ;		1 ;
4. As curvas de nível do gráfico da função	o real $f(x,y) = \frac{x^2 + (y-1)^2}{2}$ de	efinida em \mathbb{R}^2 são da forma:
	2	2+(y-1)=le
		$\frac{2 + (y-1)^{2}}{2^{2} + (y-1)^{2}}$ $\frac{1}{2} = 10$ $\frac{2}{2} + (y-1)^{2}$ $\frac{1}{2} = 10$ $\frac{2}{2} + (y-1)^{2}$ $\frac{1}{2} = 10$ $\frac{2}{2} + (y-1)^{2}$ $\frac{1}{2} = 10$ $\frac{2}{2} = 10$ $\frac{2}{$
		Paio 2
		(c(0,1)

5. Qual das seguintes equações descreve a curva representada na figura, percorrida no sentido direto?

 $\vec{r}(t) = (t^2, 1+t), t \in [-2, 1];$ $\vec{r}(t) = (-(1-t)^2, t), t \in [0,3];$

 $\vec{r}(t) = (t, \frac{1}{4}t(t+1)), t \in [-4, -1].$

6. Considere o $\lim_{(x,y)\to(0,0)} \left(\frac{x}{x+y}\right)$. Qual das seguintes afirmações é verdadeira? $\lim_{x\to 0} \left(\frac{x}{y\to 0}\right) = \lim_{x\to 0} \frac{x}{x+y}$ O limite não existe porque os limites iterados dão valores diferentes;

O limite não existe porque o valor do limite depende da parábola $x=ky^2,\ k\in\mathbb{R},$ pelo qual é calculado;

O limite existe e é igual a zero;

Nenhuma das afirmações anteriores é verdadeira.

 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ onde f é uma função real definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica definida em \mathbb{R}^2 e (x_0,y_0) é um ponto pertendica de (x_0,y_0) é un ponto pertendica de (x_0,y_0) e (x_0,y_0) é un ponto pertendica de (x_0,y_0) e (x_0,y_0) e un ponto pertendica de (x_0,y_0) e (x_0,y_0) e (x_0,y_0) e (x_0,y_0) e (x_0,y_0) e (x_0,y_0) e $(x_0,$ cente ao seu domínio. Qual das seguintes afirmações é verdadeira?

Se $\lim_{x \to x_0} \left(\lim_{y \to y_0} f(x, y) \right) = \lim_{y \to y_0} \left(\lim_{x \to x_0} f(x, y) \right)$ então existe limite $\lim_{(x, y) \to (x_0, y_0)} f(x, y)$.

Se o valor do limite calculado por uma curva \mathcal{C} contida no domínio que passe por (x_0, y_0) for zero então $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 0.$

 \boxtimes Se existir limite então o seu valor será o valor do limite calculado por qualquer curva $\mathcal C$ contida no domínio que passe por (x_0, y_0) .

Nenhuma das afirmações anteriores é verdadeira.

8. Qual das seguintes funções é contínua em (0,1)?

$$\Box f(x,y) = \begin{cases} x^2 + y^2 & \text{se } x^2 + y^2 \le 1 \\ 0 & \text{se } x^2 + y^2 > 1 \end{cases} \qquad \Box f(x,y) = \begin{cases} 2x^2 + y & \text{se } (x,y) \ne (0,1) \\ 0 & \text{se } (x,y) = (0,1) \end{cases}$$

$$\Box f(x,y) = \begin{cases} x^2 + 2y & \text{se } (x,y) \ne (0,1) \\ 0 & \text{se } (x,y) = (0,1) \end{cases} \qquad \Box f(x,y) = \begin{cases} 3xy & \text{se } (x,y) \ne (0,1) \\ 0 & \text{se } (x,y) = (0,1) \end{cases}$$

GRUPO II

Em cada uma das perguntas seguintes, responda sem apresentar cálculos.

1. Considere a função vetorial $\vec{r}(t) = \vec{u}_1 + t \cdot \vec{u}_2 + \sin(t^2 + 1) \cdot \vec{u}_3 + t \cdot \ln(t^2) \cdot \vec{u}_4$, onde $\vec{u}_1 = \vec{e}_1 - \vec{e}_2$, $\vec{u}_2 = -\vec{e}_1 - 2\vec{e}_2$, $\vec{u}_3 = \vec{e}_1 + \vec{e}_2$ e $\vec{u}_4 = -\vec{e}_1 + 2\vec{e}_2$, $(\vec{e}_1$ e \vec{e}_2 são os vectores da base canónica de \mathbb{R}^2).

(a) Escreva a função vetorial nas suas componentes R(t) = (1,-1)+t(-1,-2)+sen(t+1)(1,1)+tlnt2(-1,2) R(t) = (1-t + sen(t2+1)-tlnt2, -1-zt + sen(t2+1)+2tlnt2)

(b) Escreva a função $\vec{r}'(t)$.

Apresente todos os cálculos efetuados.

- 1. Considere a função vetorial $\vec{r}(t) = \begin{cases} x = \exp(t^2 t) \\ y = t. \exp(3t) \end{cases}$, com $t \ge 0$, que descreve o movimento de uma partícula no plano XOY.
 - (a) Determine o vetor velocidade da partícula no instante t = 1.

O vector vebriedade detereune-se o pertir de derivado de
$$R(t)$$
 : $R'(t) = ((2t-1)e^{t^2-t}, e^{3t}+3te^{3t}) = -((2t-1)e^{t}, (1+3t)e^{3t})$

No anstente
$$t=9$$
 $R'(9)=(e^0, e^3+3e^3)=(1, 4e^3)$

- (b) Determine uma equação da reta tangente à curva $\vec{r}(t)$ no ponto $(e^2, 2e^6)$.

 Premiero, e preciso determina o instente t consispandente so parto $(e^2, 2e^6)$. $\vec{R}(t) = (e^2, 2e^6)$ (=) $t^2 + 1 = e^2$ $t^2 +$
- R)(2) = (3e2,7e6) -) veder tengente à cenuo no instente t=2 (2,y)=(2,26)+k(32,726), kEIR > Recte protecte
 - (c) Determine em que instante e em que ponto da curva, a reta tangente à curva é vertical. E qual é

A recte tengente é métreal quado a meter tengente dado par R'(t) = ((2t1) e , (4+3t) e 3t) é mente ad . Este marte de mentre. quando à 1º coordenado é mulo, esto é, (2t-1) et²-t=0 (2t-1)=

Instente t = 1/2 -1/4 $\frac{3}{2}$ Poste $R(1/2) = (2^{-1}/4, \frac{3}{2})$ Rocte tergente e n=e1/4

2. Uma partícula move-se no espaço e no instante t=1 está na posição associada ao vetor $\vec{r}(1)=(e^2,0,0)$. Sabendo que o vetor velocidade é, em cada instante t, dado por $\vec{v}(t) = (2.\exp(2t), t - t^3, 4)$, determine a função vetorial $\vec{r}(t)$ que descreve o movimento da partícula no espaço e a sua posição inicial.

Se RI(t)= (202+ ++3,4) enter R(t)= (2+10, +2-t4+102, 4+103 Com C1, C2, C3 constertes a deterence à

Como R(1) = (2,0,0) = (2+C1) = 1+C2, (4+C3) terre I

e1 =0 pez=-14, 1e3=-4 Assume R(t) = (2t, +2-t4-1, 4t-4)

e R(0) = (1, -1, -4) posição uneed

3. Considere a função real definida em \mathbb{R}^2 , $f(x,y) = \begin{cases} \frac{x-2y}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$. Determine $\frac{\partial f}{\partial x}(0,0)$, se

$$\frac{\partial f(0,0)}{\partial n} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h}{h^2} = 0$$

$$\log_0 \frac{\partial f(0,0)}{\partial n} = \lim_{h \to 0} \frac{1}{h^2} = 0$$

$$\log_0 \frac{\partial f(0,0)}{\partial n} = \lim_{h \to 0} \frac{1}{h^2} = 0$$

4. Verifique se a função $f(x,y) = 4\cos(xy^2)$ é solução da equação diferencial $\frac{1}{x}f'_y - 2xy^3 \cdot f - f''_{xy} = 0$ para

Mensien se a éguddode é herdodeire:

$$\frac{1}{2}f_{y}^{1}-2xy^{3}\cdot f_{-}f_{xy}^{11}=\frac{1}{2}\left(-8xy\cdot sen(xyz)\right)-2xy^{3}\left(4\cos(xyz)\right)+8y\sin(xyz)+8xy^{3}\cdot e^{-8y}\sin(xyz)+8xy^{3}\cdot e^{-8y}\sin(xyz)+8xy^{3}\cdot e^{-8y}\sin(xyz)+8xy^{3}\cdot e^{-8y}\sin(xyz)=$$