Chapter 4

Week4

4.1. Monday for MAT3040

4.1.1. Quotient Spaces

Now we aim to divide a big **vector space** into many pieces of slices.

 For example, the Cartesian plane can be expressed as union of set of vertical lines as follows:

$$\mathbb{R}^2 = \bigcup_{m \in \mathbb{R}} \left\{ \begin{pmatrix} m \\ 0 \end{pmatrix} + \operatorname{span}\{(0,1)\} \right\}$$

 Another example is that the set of integers can be expressed as union of three sets:

$$\mathbb{Z}=Z_1\cup Z_2\cup Z_3,$$

where Z_i is the set of integers z such that $z \mod 3 = i$.

Definition 4.1 [Coset] Let V be a vector space and $W \leq V$. For any element $v \in V$, the (right) coset determined by v is the set

$$\boldsymbol{v} + W := \{ \boldsymbol{v} + \boldsymbol{w} \mid \boldsymbol{w} \in W \}$$

For example, consider $V = \mathbb{R}^3$ and $W = \text{span}\{(1,2,0)\}$. Then the coset determined

by $\mathbf{v} = (5, 6, -3)$ can be written as

$$\mathbf{v} + W = \{ (5 + t, 6 + 2t, -3) \mid t \in \mathbb{R} \}$$

It's interesting that the coset determined by $\mathbf{v}' = \{(4,4,-3)\}$ is exactly the same as the coset shown above:

$$v' + W = \{(4 + t, 4 + 2t, -3) \mid t \in \mathbb{R}\} = v + W.$$

Therefore, write the exact expression of v + W may sometimes become tedious and hard to check the equivalence. We say v is a **representative** of a coset v + W.

Proposition 4.1 Two cosets are the same iff the subtraction for the corresponding representatives is in W, i.e.,

$$\boldsymbol{v}_1 + W = \boldsymbol{v}_2 + W \iff \boldsymbol{v}_1 - \boldsymbol{v}_2 \in W$$

Proof. Necessity. Suppose that $v_1 + W = v_2 + W$, then $v_1 + w_1 = v_2 + w_2$ for some $w_1, w_2 \in W$, which implies

$$v_1 - v_2 = w_2 - w_1 \in W$$

Sufficiency. Suppose that $v_1 - v_2 = w \in W$. It suffices to show $v_1 + W \subseteq v_2 + W$. For any $v_1 + w' \in v_1 + W$, this element can be expressed as

$$oldsymbol{v}_1 + oldsymbol{w}' = (oldsymbol{v}_2 + oldsymbol{w}) + oldsymbol{w}' = oldsymbol{v}_2 + \underbrace{oldsymbol{w} + oldsymbol{w}'}_{ ext{belong to }W} \in oldsymbol{v}_2 + W.$$

Therefore, $v_1 + W \subseteq v_2 + W$. Similarly we can show that $v_2 + W \subseteq v_1 + W$.

Exercise: Two cosets with representatives v_1, v_2 have no intersection iff $v_1 - v_2 \notin W$.

Definition 4.2 [Quotient Space] The **quotient space** of V by the subspace W, is the collection of all cosets v + W, denoted by $V \setminus W$.

To make the quotient space a vector space structure, we define the addition and scalar

multiplication on $V \setminus W$ by:

$$(\boldsymbol{v}_1 + W) + (\boldsymbol{v}_2 + W) := (\boldsymbol{v}_1 + \boldsymbol{v}_2) + W$$

$$\alpha \cdot (\boldsymbol{v} + W) := (\alpha \cdot \boldsymbol{v}) + W$$

For example, consider $V = \mathbb{R}^2$ and $W = \text{span}\{(0,1)\}$. Then note that

$$\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} + W \right) + \left(\begin{pmatrix} 2 \\ 0 \end{pmatrix} + W \right) = \left(\begin{pmatrix} 3 \\ 0 \end{pmatrix} + W \right)$$
$$\pi \cdot \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} + W \right) = \left(\begin{pmatrix} \pi \\ 0 \end{pmatrix} + W \right)$$

Proposition 4.2 The addition and scalar multiplication is well-defined.

Proof. 1. Suppose that

$$\begin{cases}
\boldsymbol{v}_1 + W = \boldsymbol{v}_1' + W \\
\boldsymbol{v}_2 + W = \boldsymbol{v}_2' + W
\end{cases} (4.1)$$

and we need to show that $(\boldsymbol{v}_1 + \boldsymbol{v}_2) + W = (\boldsymbol{v}_1' + \boldsymbol{v}_2') + W$.

From (4.1) and proposition (4.1), we imply

$$v_1 - v_1' \in W, \quad v_2 - v_2' \in W$$

which implies

$$(\boldsymbol{v}_1 - \boldsymbol{v}_1') + (\boldsymbol{v}_2 - \boldsymbol{v}_2') = (\boldsymbol{v}_1 + \boldsymbol{v}_2) - (\boldsymbol{v}_1' + \boldsymbol{v}_2') \in W$$

By proposition (4.1) again we imply $(\mathbf{v}_1 + \mathbf{v}_2) + W = (\mathbf{v}'_1 + \mathbf{v}'_2) + W$

2. For scalar multiplication, similarly, we can show that $\mathbf{v}_1 + W = \mathbf{v}_1' + W$ implies $\alpha \mathbf{v}_1 + W = \alpha \mathbf{v}_1' + W$ for all $\alpha \in \mathbb{F}$.

Proposition 4.3 The canonical projection mapping

$$\pi_W: V \to V \setminus W,$$
 $oldsymbol{v} \mapsto oldsymbol{v} + W,$

is a **surjective linear transformation** with $ker(\pi_W) = W$.

Proof. 1. First we show that $ker(\pi_W) = W$:

$$\pi_W(\boldsymbol{v}) = 0 \implies \boldsymbol{v} + W = \boldsymbol{0}_{V \setminus W} \implies \boldsymbol{v} + W = \boldsymbol{0} + W \implies \boldsymbol{v} = (\boldsymbol{v} - \boldsymbol{0}) \in W$$

Here note that the zero element in the quotient space $V \setminus W$ is the coset with representative **0**.

- 2. For any $v_0 + W \in V \setminus W$, we can construct $v_0 \in V$ such that $\pi_W(v_0) = v_0 + W$. Therefore the mapping π_W is surjective.
- 3. To show the mapping π_W is a linear transformation, note that

$$\pi_{W}(\alpha \boldsymbol{v}_{1} + \beta \boldsymbol{v}_{2}) = (\alpha \boldsymbol{v}_{1} + \beta \boldsymbol{v}_{2}) + W$$

$$= (\alpha \boldsymbol{v}_{1} + W) + (\beta \boldsymbol{v}_{2} + W)$$

$$= \alpha (\boldsymbol{v}_{1} + W) + \beta (\boldsymbol{v}_{2} + W)$$

$$= \alpha \pi_{W}(\boldsymbol{v}_{1}) + \beta \pi_{W}(\boldsymbol{v}_{2})$$

4.1.2. First Isomorphism Theorem

The key of linear algebra is to solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$. The general step for solving this linear system is as follows:

- 1. Find the solution set for Ax = 0, i.e., the set ker(A)
- 2. Find a particular solution \mathbf{x}_0 such that $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$.

Then the general solution set to this linear system is $x_0 + \ker(A)$, which is a coset in

the space $\mathbb{R}^n \setminus \ker(\mathbf{A})$. Therefore, to solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ suffices to study the quotient space $\mathbb{R}^n \setminus \ker(\mathbf{A})$:

Proposition 4.4 Suppose that $T: V \to W$ is a linear transformation, and that $V' \le \ker(T)$. Then the mapping

$$\tilde{T}: V \setminus V' \to W$$
 $\boldsymbol{v} + V' \mapsto T(\boldsymbol{v})$

is a well-defined linear transformation. As a result, the diagram below commutes:

In other words, we have $T = \tilde{T} \circ \pi_W$.

Proof. First we show the well-definedness. Suppose that $\mathbf{v}_1 + V' = \mathbf{v}_2 + V'$ and suffices to show $\tilde{T}(\mathbf{v}_1 + V') = \tilde{T}(\mathbf{v}_2 + V')$, i.e., $T(\mathbf{v}_1) = T(\mathbf{v}_2)$. By proposition (4.1), we imply

$$\boldsymbol{v}_1 - \boldsymbol{v}_2 \in V' \leq \ker(T) \implies T(\boldsymbol{v}_1 - \boldsymbol{v}_2) = \boldsymbol{0} \implies T(\boldsymbol{v}_1) - T(\boldsymbol{v}_2) = \boldsymbol{0}.$$

Then we show \tilde{T} is a linear transformation:

$$\begin{split} \tilde{T}(\alpha(\boldsymbol{v}_1 + V') + \beta(\boldsymbol{v}_2 + V')) &= \tilde{T}((\alpha \boldsymbol{v}_1 + \beta \boldsymbol{v}_2) + V') \\ &= T(\alpha \boldsymbol{v}_1 + \beta \boldsymbol{v}_2) \\ &= \alpha T(\boldsymbol{v}_1) + \beta T(\boldsymbol{v}_2) \\ &= \alpha \tilde{T}(\boldsymbol{v}_1 + V') + \beta \tilde{T}(\boldsymbol{v}_2 + V') \end{split}$$

Actually, if we let $V' = \ker(T)$, the mapping $\tilde{T}: V \setminus V' \to T(V)$ forms an isomorphism, In particular, if further T is surjective, then T(V) = W, i.e., the mapping $\tilde{T}: V \setminus V' \to W$ forms an isomorphism.

Theorem 4.1 — **First Isomorphism Theorem.** Let $T:V\to W$ be a surjective linear transformation. Then the mapping

$$\tilde{T}: V \setminus \ker(T) \to W$$

$$\boldsymbol{v} + \ker(T) \mapsto T(\boldsymbol{v})$$

is an isomorphism.

Proof. Injectivity. Suppose that $\tilde{T}(\boldsymbol{v}_1 + \ker(T)) = \tilde{T}(\boldsymbol{v}_2 + \ker(T))$, then we imply

$$T(\boldsymbol{v}_1) = T(\boldsymbol{v}_2) \implies T(\boldsymbol{v}_1 - \boldsymbol{v}_2) = \boldsymbol{0}_W \implies \boldsymbol{v}_1 - \boldsymbol{v}_2 \in \ker(T),$$

i.e., $v_1 + \ker(T) = v_2 + \ker(T)$.

Surjectivity. For $\mathbf{w} \in W$, due to the surjectivity of T, we can find a \mathbf{v}_0 such that $T(\mathbf{v}_0) = \mathbf{w}$. Therefore, we can construct a set $\mathbf{v}_0 + \ker(T)$ such that

$$\tilde{T}(\boldsymbol{v}_0 + \ker(T)) = \boldsymbol{w}.$$

116