

ON protein - protein search, using sw model	Gercore version 5.1.4-P5-4578					
Run on:	May 16, 2003, 10:12:16 ; Search time 35 Seconds (without alignments)					
	167.515 Million cell updates/sec					
Title:	SEQ1-4EDITS					
Perfect score:	197					
Sequence:	1 ANSTFLXXLRggSLRXCIXX.....XXAXXIFedVDDTLAFWSKH 44					
Scoring table:	BLOSUM62					
	Gapop 10.0 , Gapext 0.5					
Searched:	908470 seqs, 133250620 residues					
Total number of hits satisfying chosen parameters:	908470					
Minimum DB seq length:	0					
Maximum DB seq length:	2000000000					
Post-processing:	Minimum Match 0% Maximum Match 100% Listing first 45 summaries					
Database :	<p>A_Geneseq_101002:*</p> <p>1: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1980.DAT:*</p> <p>2: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1981.DAT:*</p> <p>3: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:*</p> <p>4: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1983.DAT:*</p> <p>5: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1984.DAT:*</p> <p>6: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1985.DAT:*</p> <p>7: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1986.DAT:*</p> <p>8: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1987.DAT:*</p> <p>9: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1988.DAT:*</p> <p>10: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1990.DAT:*</p> <p>11: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1991.DAT:*</p> <p>12: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:*</p> <p>13: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1993.DAT:*</p> <p>14: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1994.DAT:*</p> <p>15: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:*</p> <p>16: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1996.DAT:*</p> <p>17: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1997.DAT:*</p> <p>18: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1998.DAT:*</p> <p>19: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1999.DAT:*</p> <p>20: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:*</p> <p>21: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA2001.DAT:*</p> <p>22: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:*</p>					
RESULT 1	AYY18300					
ID	AYY18300 standard; peptide; 44 AA.					
XX						
AC	AYY18300;					
XX						
DT	17-AUG-1999 (first entry)					
DE	Modified GLA domain of vitamin K-dependent protein.					
XX						
GLA domain; mutein; vitamin K-dependent protein; clotting disorder; therapy.						
KW						
XX						
OS	Homo sapiens.					
OS	Synthetic.					
OS	Location/Qualifiers					
FT	Misc-difference 1..44 /note= "Xaa" gamma-carboxyglutamic acid, or glutamic acid					
FT						
XX						
PN	W09920767-A1.					
XX						
PD	29-APR-1999.					
XX						
PF	20-OCT-1998; 98NO-US22152.					
XX						
PR	23-OCT-1997; 97US-0955636.					
XX						
PA	(MINU) UNIV MINNESOTA.					
XX						
PI	Nelestuen GL;					
XX						
11	173	87.8	44	20	AYV18298	Modified GLA domain
12	170	86.3	44	20	AYV18299	Modified GLA domain
13	168	85.3	44	20	AYV18307	Modified GLA domain
14	168	85.3	44	20	AYV18297	Modified GLA domain
15	160	81.2	44	20	AYV18309	Modified GLA domain
16	160	81.2	44	20	AYV18303	Human protein C GL
17	160	81.2	44	22	AAB36402	Human protein C ga
18	160	81.2	45	19	AYW15710	Partial human prot
19	160	81.2	415	21	AYV56803	Truncated human pr
20	160	81.2	419	14	AAR35760	Protein C (PC). H
21	160	81.2	419	19	AANW12753	Primary structure
22	160	81.2	419	22	AAB08625	Human mature wild
23	160	81.2	419	22	AAB82573	wild-type human pr
24	160	81.2	419	22	AAB36894	Human protein C de
25	160	81.2	419	22	AAB36896	Human protein C de
26	160	81.2	419	22	AAB36897	Human protein C de
27	160	81.2	419	22	AAB36898	Human protein C de
28	160	81.2	419	23	AAB08602	Human protein C zy
29	160	81.2	419	23	AAD99003	Human protein C zy
30	160	81.2	419	23	AAD99004	Human protein C zy
31	160	81.2	419	23	AAD99005	Human protein C zy
32	160	81.2	419	23	AAD99006	Human protein C zy
33	160	81.2	419	23	AAD99007	Human protein C zy
34	160	81.2	419	23	AAD99008	Human protein C zy
35	160	81.2	419	23	AAD99009	Human protein C zy
36	160	81.2	419	23	AAD99010	Human protein C zy
37	160	81.2	419	23	AAD99011	Human protein C zy
38	160	81.2	419	23	AAD99012	Human protein C zy
39	160	81.2	419	23	AAD99013	Human protein C zy
40	160	81.2	419	23	AAD99014	Human protein C zy
41	160	81.2	419	23	AAD99015	Human protein C zy
42	160	81.2	419	23	AAD99016	Human protein C zy
43	160	81.2	419	23	AAD99017	Human protein C zy
44	160	81.2	419	23	AAD99018	Human protein C zy
45	160	81.2	419	23	AAD99019	Human protein C zy
ALIGNMENTS						
SUMMARIES						
Result No.	Query Match Length DB ID Description					
1	179 90.9 44 20 AAV18300 Modified GLA domain					
2	179 90.9 419 22 AAE08630 Human protein C de					
3	179 90.9 419 22 AAB82677 Human protein C de					
4	179 90.9 419 22 AAB82678 Human protein C de					
5	176 89.3 44 20 AAY18301 Modified GLA domain					
6	174 88.3 419 22 AAB08627 Human protein C de					
7	174 88.3 419 22 AAE08638 Human protein C de					
8	174 88.3 419 22 AAE08629 Human protein C de					
9	174 88.3 419 22 AAB82675 Human protein C de					
10	174 88.3 419 22 AAB82676 Human protein C de					

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

DR WPI; 1999-288309/24.

XX Vitamin K-dependent polypeptide with modified gamma-carboxyglutamic
PT acid domain, useful for treating clotting disorders

XX Claim 9; Page 79; 86pp; English.

CC this sequence represents a modified GLA (gamma-carboxyglutamic acid)
CC domain. The invention relates to a vitamin K-dependent polypeptide
CC comprising a modified GLA domain containing an amino acid substitution
CC which enhances membrane binding of the modified polypeptide as compared
CC to the native polypeptide. The polypeptide is used to treat a clotting
CC disorder by decreasing or increasing clot formation. Modification of the
CC GLA domain results in a protein which has enhanced membrane binding
CC affinity as compared to the native protein.

XX Sequence 44 AA;

Query Match

90.9%; Score 179; DB 20; Length 44;

Best Local Similarity 100.0%; Pred. No. 1.3e-22;

Matches 44; Conservative 0; Mismatches 0; Indels 0; Caps 0;

OY 1 ANSFLXXLROGSILXRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44

Db 1 ANSFLXXLROGSILXRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44

RESULT 2

AAE0830 AAE0830 standard; Protein: 419 AA.

XX AAE0830;

XX AC

DT 01-NOV-2001 (first entry)

XX DE Human protein C derivative #4.

XX KW Human; protein C derivative; anticoagulation activity; thrombosis;

KW serpin inactivation; acute coronary syndrome; myocardial infarction;

KW vascular occlusive disorder; hypercoagulable state; angina; sepsis;

KW disseminated intravascular coagulation; DIC; burn; transplantation;

KW sickle cell disease; viral haemorrhagic fever; protein C deficiency;

KW haemolytic uremic syndrome; acute arterial thrombotic occlusion;

KW thromboembolism; prothrombotic disorder; gene therapy; thalassaemia.

XX OS Homo sapiens.

XX PN WO20159084-A1.

XX PD 16-AUG-2001.

XX PP 02-FBB-2001; 2001WO-US01221.

XX PR 11-FEB-2000; 2000US-0181948.

PR 14-MAR-2000; 2000US-018199.

XX PA (ELIL) LILLY & CO ELL.

XX PI Gerlitz BE, Grinnell BW, Jones BE;

XX DR WPI; 2001-514662/56.

DR N-PSDB; AAD15228.

PT Protein C derivative for treating acute coronary syndromes, vascular
PT occlusive disorders, thrombotic disorders and sepsis, comprises
PT substitutions at specified amino acid positions

XX Claim 6; Page 50-51; 59pp; English.

CC The invention relates to human protein C derivatives and nucleic acid
CC molecules encoding such derivatives. These derivatives have increased
CC anticoagulation activity, resistance to serpin inactivation and
CC increased sensitivity to thrombin activation compared to wild type

CC protein C, and retains the biological activity of the wild type human
CC protein C. Protein C derivatives are useful in the manufacture of a
CC medicament for the treatment of acute coronary syndromes e.g. myocardial
CC infarction and unstable angina; and disease states predisposing to
CC thrombosis; vascular occlusive disorders and hypercoagulable states e.g.
CC disseminated intravascular coagulation (DIC), burns, transplants,
CC thalassaemia, sickle cell disease, viral haemorrhagic fever and
CC haemolytic uremic syndrome; sepsis in combination with bacterial
CC permeability increasing protein; thrombotic disorders in combination
CC with an anti-platelet agent; protein C deficiency; acute arterial
CC or peripheral arteries or in vascular grafts in combination with a
CC thrombolytic agent. Nucleic acid molecules of the invention are useful
CC for treating humans with genetically predisposed prothrombotic disorders
CC by gene therapy. The present sequence is human protein C derivative.

RESULT 3

AAB82677 AAB82677 standard; Protein: 419 AA.

XX AAB82677;

XX AC

DT 15-OCT-2001 (first entry).

XX DE Human protein C derivative (H1Q/S11G/Q32E/N33D/L194S).

XX KW Protein C; human; coronary syndrome; thrombosis; angina;

KW myocardial infarction; vascular occlusive disorder;

KW hypercoagulation; sepsis; protein C deficiency; occlusion;

KW thromboembolism; stenosis; antibacterial; immunosuppressive;

KW thrombolytic; cardiotonic; antiangiinal; anticoagulant; therapy;

KW mutant; mutein.

XX OS Homo sapiens.

XX OS Synthetic.

XX PN WO20159084-A1.

XX PD 16-AUG-2001.

XX PP 02-FBB-2001; 2001WO-US01221.

XX PR 11-FEB-2000; 2000US-0181948.

PR 14-MAR-2000; 2000US-018199.

XX PA (ELIL) LILLY & CO ELL.

XX PI Gerlitz BE, Grinnell BW, Jones BE;

XX DR WPI; 2001-514662/56.

DR N-PSDB; AAD15228.

PT Protein C derivative for treating acute coronary syndromes, vascular
PT occlusive disorders, thrombotic disorders and sepsis, comprises
PT substitutions at specified amino acid positions

XX Claim 6; Page 50-51; 59pp; English.

CC The invention relates to human protein C derivatives and nucleic acid
CC molecules encoding such derivatives. These derivatives have increased
CC anticoagulation activity, resistance to serpin inactivation and
CC increased sensitivity to thrombin activation compared to wild type

CC /note= "cleavage makes a 2-chain inactive
CC precursor (155-amino acid light chain
CC attached via a disulfide bond to a

FT	Modified-site	20	/note= "gamma-carboxylated"	RESULT 5
FT	/note= "gamma-carboxylated"	25	/note= "gamma-carboxylated"	AY10301
FT	Modified-site	26	/note= "gamma-carboxylated"	ID AAY18301 standard; peptide: 44 AA.
FT	158...169	27	/note= "gamma-carboxylated"	XX
FT	Peptide	28	/note= "activation peptide; removal activates the	AC AAY18301;
FT	2-chain zymogen"	29	/note= "thrombin cleavage site"	XX
FT	Cleavage-site	169...170	/note= "thrombin cleavage site"	DT 17-AUG-1999 { first entry}
FT	Modified-site	29	/note= "N-glycosylated"	XX
FT	Modified-site	248	/note= "N-glycosylated"	DE Modified GLA domain of vitamin K-dependent protein.
FT	Modified-site	313	/note= "N-glycosylated"	XX GLA domain; murein; vitamin K-dependent protein; clotting disorder;
FT	Modified-site	329	/note= "N-glycosylated"	KW therapy.
FT	Modified-site	329	/note= "N-glycosylated"	OS Homo sapiens.
FT	Modified-site	329	/note= "N-glycosylated"	OS Synthetic.
FT	Modified-site	329	/note= "N-glycosylated"	XX
XX	W0200157193-A2.	XX	Key	Location/Qualifiers
XX	09-AUG-2001.	XX	Misc-difference 1.4	/note= "aa= gamma-carboxyglutamic acid, or glutamic
XX	09-AUG-2001.	XX	PD	acid"
XX	PR 19-JAN-2001; 2001WO-US00020.	XX	FT	W0920767-A1.
XX	PR 02-FEB-2000; 2000US-0179801.	XX	FT	29-APR-1999.
XX	PR 14-MAR-2000; 2000US-0189197.	XX	PR	20-OCT-1998; 98WO-US22152.
XX	(ELIL) LILLY & CO ELI.	XX	PR	23-OCT-1997; 97US-0955636.
XX	XX	XX	PA	(MINO) UNIV MINNESOTA.
XX	Gerlitz BE, Jones BE;	XX	PI	XX
XX	XX	XX	DR	XX
XX	DR 09-AUG-2001.	XX	WPI; 1999-288309/24.	XX
XX	WPI; 2001-496919/54.	XX	PS	XX
PS	Claim 6; Page 56-57; 63pp; English.	XX	Claim 9; Page 82; 86pp; English.	PS
PS	Novel human protein C derivative for treating, e.g., myocardial	XX	Claim 9; Page 82; 86pp; English.	XX
PS	infarction, unstable angina, sepsis, thrombotic disorders, acute	XX	Vitamin K-dependent polypeptide with modified gamma-carboxyglutamic	XX
PS	arterial thrombotic occlusion, and thromboembolism -	XX	acid domain, useful for treating clotting disorders	PS
PS	XX	XX	XX	XX
PS	The present sequence is that of a claimed human protein C derivative	CC	This sequence represents a modified GLA (gamma-carboxyglutamic acid)	CC
PS	in which His at position 10 of the wild-type protein C sequence (see	CC	domain. The invention relates to a vitamin K-dependent polypeptide	CC
PS	ABB2673) is substituted with Gln. Ser at position 11 with Gly. Gln	CC	comprising a modified GLA domain containing an amino acid substitution	CC
PS	at position 32 with Glu. Asn at position 33 with Asp. Leu at position	CC	which enhances membrane binding of the modified polypeptide as compared	CC
PS	194 with Ser, and Thr at position 254 with Ser. It is an example of	CC	to the native polypeptide. The polypeptide is used to treat a clotting	CC
PS	protein C derivatives of the invention that have at least 2 amino acid	CC	disorder by decreasing or increasing clot formation. Modification of the	CC
PS	substitutions, but which have increased anticoagulant activity and	CC	GLA domain results in a protein which has enhanced membrane binding	CC
PS	resistance to inactivation by serpins compared with the wild-type	CC	affinity as compared to the native protein.	CC
PS	protein, while retaining the biological activity of the wild-type	XX	XX	XX
PS	A method of producing the derivatives using recombinant	XX	Sequence 44 AA;	SQ
PS	DNA methods is claimed. The protein C derivatives are useful for	XX	Query Match 89.3%; Score 176; DB 20; Length 44;	XX
PS	treating coronary syndromes and disease states predisposing to	XX	Best Local Similarity 97.7%; Pred. No. 4.1e-22; Length 44;	XX
PS	vascular occlusive disorders and hypercoagulable states, sepsis (in	XX	Matches 43; Conservative 1; Mismatches 0; Indels 0; Gaps	XX
PS	combination with bactericidal permeability increasing protein or	XX	QY 1 ANSFLXXLRLQGSLLXRXCIXXICDFXXAKXKFEDVDDTLAFWSKH 44	QY
PS	CC with tissue factor pathway inhibitor), thrombotic disorders (in	XX	Db 1 ANSFLXXLRLQGSLLXRXCIXXICDFXXAKXKFEDVDDTLAFWSKH 44	Db
PS	combination with an anti-platelet agent or by local delivery through	XX	cerebral or peripheral occlusion, thromboembolism, or stenosis in coronary	XX
PS	an intracoronary catheter), protein C deficiency, acute arterial	XX	patients with genetically predisposed prothrombotic disorders may	XX
PS	thrombosis, thromboembolism, or stenosis in coronary	XX	be treated by gene therapy (all claimed).	XX
PS	CC	XX	RESULT 6	XX
PS	Sequence 419 AA;	XX	AAE08627	AAE08627
PS	Query Match 90.9%; Score 179; DB 22; Length 419;	XX	ID AAE08627 standard; Protein; 419 AA.	XX
PS	Best Local Similarity 79.5%; Pred. No. 1.4e-21;	XX	AC AAE08627;	AC
PS	Matches 35; Conservative 0; Mismatches 9; Indels 0; Gaps 0;	XX	DT 01-NOV-2001 { first entry}	DT
QY	1 ANSFLXXLRLQGSLLXRXCIXXICDFXXAKXKFEDVDDTLAFWSKH 44	XX	DE Human protein C derivative #1.	DE
Db	1 ANSFLXXLRLQGSLLXRXCIXXICDFXXAKXKFEDVDDTLAFWSKH 44	XX	KW Human; protein C derivative; anticoagulation activity; thrombosis;	KW

KW serpin inactivation; acute coronary syndrome; myocardial infarction;
 KW vascular occlusive disorder; hypercoagulable state; angina; sepsis;
 KW disseminated intravascular coagulation; DIC; burn; transplantation;
 KW sickle cell disease; viral haemorrhagic fever; protein C deficiency;
 KW haemolytic uraemic syndrome; acute arterial thrombotic occlusion;
 KW thromboembolism; prothrombotic disorder; gene therapy; thalassaemia.
 XX OS Homo sapiens.
 XX Homo sapiens.
 PN WO200159084-A1.
 XX
 PD 16-AUG-2001.
 XX
 PF 02-FEB-2001; 2001WO-US01221.
 XX
 PR 11-FEB-2000; 2000US-0181948.
 PR 14-MAR-2000; 2000US-0189199.
 XX
 PA (ELIL) LILLY & CO ELT.
 XX
 PI Gerlitz BE, Grinnell BW, Jones BE;
 XX
 DR WPI; 2001-514662/56.
 N-PSDB: AAD15225.
 XX
 PT Protein C derivative for treating acute coronary syndromes, vascular
 PT occlusive disorders, thrombotic disorders and sepsis, comprises
 PT substitutions at specified amino acid positions.
 XX
 PS Claim 3; Page 46-47; 59pp; English.
 XX
 CC The invention relates to human protein C derivatives and nucleic acid
 CC molecules encoding such derivatives. These derivatives have increased
 CC anticoagulation activity, resistance to serpin inactivation and
 CC increased sensitivity to thrombin activation compared to wild type
 CC protein C, and retains the biological activity of the wild type human
 CC protein C. Protein C derivatives are useful in the manufacture of a
 CC medicament for the treatment of acute coronary syndromes e.g. myocardial
 CC infarction and unstable angina, and disease states predisposing to
 CC thrombosis; vascular occlusive disorders and hypercoagulable states e.g.
 CC disseminated intravascular coagulation (DIC), burns, transplants,
 CC thalassaemia, sickle cell disease, viral haemorrhagic fever and
 CC haemolytic uraemic syndrome; sepsis in combination with bacterial
 CC permeability increasing protein; thrombotic disorders in combination
 CC with an anti-platelet agent; protein C deficiency; acute arterial
 CC thrombotic occlusion, thromboembolism or stenosis in coronary, cerebral
 CC or peripheral arteries or in vascular grafts in combination with a
 CC thrombolytic agent. Nucleic acid molecules of the invention are useful
 CC for treating humans with genetically predisposed prothrombotic disorders
 CC by gene therapy. The present sequence is human protein C derivative.
 XX
 SQ Sequence 419 AA;
 Query Match 88.3%; Score 174; DB 22; Length 419;
 Best Local Similarity 77.3%; Pred. No. 1e-20;
 Matches 34; Conservative 0; Mismatches 10; Indels 0; Gaps 0;
 Oy 1 ANSFLXXLROSSLXRXCIXXICDFXXAKXIFDDVDTLAFWSKH 44
 Db 1 ANSFLERLRRHSSLERECIEECDFFEEAKKEFEDVDTLAFWSKH 44

KW serpin inactivation; acute coronary syndrome; myocardial infarction;
 KW vascular occlusive disorder; hypercoagulable state; angina; sepsis;
 KW disseminated intravascular coagulation; DIC; burn; transplantation;
 KW sickle cell disease; viral haemorrhagic fever; protein C deficiency;
 KW haemolytic uraemic syndrome; acute arterial thrombotic occlusion;
 KW thromboembolism; prothrombotic disorder; gene therapy; thalassaemia.
 XX OS Homo sapiens.
 XX Homo sapiens.
 PN WO200159084-A1.
 XX
 PD 16-AUG-2001.
 XX
 PF 02-FEB-2001; 2001WO-US01221.
 XX
 PR 11-FEB-2000; 2000US-0181948.
 PR 14-MAR-2000; 2000US-0189199.
 XX
 PA (ELIL) LILLY & CO ELT.
 XX
 PI Gerlitz BE, Grinnell BW, Jones BE;
 XX
 DR WPI; 2001-514662/56.
 N-PSDB: AAD15225.
 XX
 PT Protein C derivative for treating acute coronary syndromes, vascular
 PT occlusive disorders, thrombotic disorders and sepsis, comprises
 PT substitutions at specified amino acid positions.
 XX
 PS Claim 4; Page 47-48; 59pp; English.
 XX
 CC The invention relates to human protein C derivatives and nucleic acid
 CC molecules encoding such derivatives. These derivatives have increased
 CC anticoagulation activity, resistance to serpin inactivation and
 CC increased sensitivity to thrombin activation compared to wild type
 CC protein C, and retains the biological activity of the wild type human
 CC protein C. Protein C derivatives are useful in the manufacture of a
 CC medicament for the treatment of acute coronary syndromes e.g. myocardial
 CC infarction and unstable angina, and disease states predisposing to
 CC thrombosis; vascular occlusive disorders and hypercoagulable states e.g.
 CC disseminated intravascular coagulation (DIC), burns, transplants,
 CC thalassaemia, sickle cell disease, viral haemorrhagic fever and
 CC haemolytic uraemic syndrome; sepsis in combination with bacterial
 CC permeability increasing protein; thrombotic disorders in combination
 CC with an anti-platelet agent; protein C deficiency; acute arterial
 CC thrombotic occlusion, thromboembolism or stenosis in coronary, cerebral
 CC or peripheral arteries or in vascular grafts in combination with a
 CC thrombolytic agent. Nucleic acid molecules of the invention are useful
 CC for treating humans with genetically predisposed prothrombotic disorders
 CC by gene therapy. The present sequence is human protein C derivative.
 XX
 SQ Sequence 419 AA;
 Query Match 88.3%; Score 174; DB 22; Length 419;
 Best Local Similarity 77.3%; Pred. No. 1e-20;
 Matches 34; Conservative 0; Mismatches 10; Indels 0; Gaps 0;
 Oy 1 ANSFLXXLROSSLXRXCIXXICDFXXAKXIFDDVDTLAFWSKH 44
 Db 1 ANSFLERLRRHSSLERECIEECDFFEEAKKEFEDVDTLAFWSKH 44

RESULT 7
 AAE08628 AAE08628 standard; Protein: 419 AA.
 XX
 AC AAE08628;
 XX
 DT 01-NOV-2001 (first entry)
 XX
 DE Human protein C derivative #2.
 XX
 KW Human; protein C derivative; anticoagulation activity; thrombosis;

KW serpin inactivation; acute coronary syndrome; myocardial infarction;
 KW vascular occlusive disorder; hypercoagulable state; angina; sepsis;
 KW disseminated intravascular coagulation; DIC; burn; transplantation;
 KW sickle cell disease; viral haemorrhagic fever; protein C deficiency;
 KW haemolytic uremic syndrome; acute arterial thrombotic occlusion;
 KW thromboembolism; prothrombotic disorder; gene therapy; thalassaemia.
 KW OS Homo sapiens.
 XX
 FH
 FT Misc-difference 10 Location/qualifiers
 FT /note= "Encoded by CAA"
 XX
 PN WO200159084-A1.
 XX
 PD 16-AUG-2001.
 XX
 PP 02-FEB-2001; 2001WO-US01221.
 XX
 PR 11-FEB-2000; 2000US-018194B.
 PR 14-MAR-2000; 2000US-0189199.
 XX
 PA (ELIL) LILLY & CO ELI.
 XX
 PI Gerlitz BE, Grinnell BW, Jones BE;
 XX
 DR WPI; 2001514662/56.
 DR N-PSDB; AAD15227.
 XX
 PT protein C derivative for treating acute coronary syndromes; vascular
 PT occlusive disorders, thrombotic disorders and sepsis, comprises
 PT substitutions at specified amino acid positions
 XX
 PS Claim 5; Page 48-49; 59pp; English.
 XX
 CC The invention relates to human protein C derivatives and nucleic acid
 CC molecules encoding such derivatives. These derivatives have increased
 CC anticoagulation activity, resistance to serpin inactivation and
 CC increased sensitivity to thrombin activation compared to wild type
 CC protein C, and retains the biological activity of the wild type human
 CC protein C. Protein C derivatives are useful in the manufacture of a
 CC medicament for the treatment of acute coronary syndromes e.g. myocardial
 CC infarction and unstable angina; and disease states predisposing to
 CC thrombosis; vascular occlusive disorders and hypercoagulable states e.g.
 CC disseminated intravascular coagulation (DIC), burns, transplants, thalassaemia, sickle cell disease, viral haemorrhagic fever and
 CC haemolytic uremic syndrome; sepsis in combination with bacterial
 CC permeability increasing protein; thrombotic disorders in combination
 CC with an anti-platelet agent; protein C deficiency; acute arterial
 CC thrombotic occlusion, thromboembolism or stenosis in coronary, cerebral
 CC or peripheral arteries or in vascular grafts in combination with a
 CC thrombotic agent. Nucleic acid molecules of the invention are useful
 CC for treating humans with genetically predisposed prothrombotic disorders
 XX
 SQ Sequence 419 AA;
 SQ Query Match 88.3%; Score 174; DB 22; Length 419;
 Best Local Similarity 77.3%; Pred. NO. 1e-20; Indels 0; Gaps 0;
 Matches 34; Conservative 0; Mismatches 10;
 QY 1 ANSPFLXXLRQGSXRXCIXICPFXXKIFEDVDTLAFWSKH 44
 QY 1 |||||
 XX
 DE Human protein C derivative (SLIG/Q32E/N33D/L194S).
 XX
 KW Protein C; human; coronary syndrome; thrombosis; angina;
 KW myocardial infarction; vascular occlusive disorder;
 KW hypercoagulation; sepsis; protein C deficiency; occlusion;
 KW thromboembolism; stenosis; antibacterial; immunosuppressive;
 KW thrombolytic; cardiant; antianginal; anticoagulant; therapy;
 KW mutant; mutein.
 XX
 OS Homo sapiens.
 XX
 OS Synthetic.
 XX
 FH
 FT Key' Location/qualifiers
 FT Misc-difference 11
 FT /note= "Ser in wild-type protein"
 FT
 FT Misc-difference 32 Location/qualifiers
 FT Misc-difference 33
 FT /note= "Asn in wild-type protein"
 FT
 FT Misc-difference 194
 FT /note= "Leu in wild-type protein"
 FT Domain 1..45
 FT /note= "G1a domain"
 FT Disulfide-bond 50..69
 FT Disulfide-bond 59..64
 FT Disulfide-bond 80..89
 FT Disulfide-bond 98..109
 FT Disulfide-bond 141..277
 FT Disulfide-bond 196..212
 FT Disulfide-bond 120..133
 FT Disulfide-bond 331..345
 FT Disulfide-bond 356..384
 FT Cleavage-site 156..157
 FT /note= "cleavage makes a 2-chain inactive precursor attached via a disulfide bond to a 262-amino acid heavy chain"
 FT Modified-site 6
 FT /note= "gamma-carboxylated"
 FT Modified-site 7
 FT /note= "gamma-carboxylated"
 FT Modified-site 14
 FT /note= "gamma-carboxylated"
 FT Modified-site 16
 FT /note= "gamma-carboxylated"
 FT Modified-site 19
 FT /note= "gamma-carboxylated"
 FT Modified-site 20
 FT /note= "gamma-carboxylated"
 FT Modified-site 25
 FT /note= "gamma-carboxylated"
 FT Modified-site 26
 FT /note= "gamma-carboxylated"
 FT Peptide 158..169
 FT /note= "activation peptide; removal activates the 2-chain zymogen"
 FT Cleavage-site 169..170
 FT /note= "thrombin cleavage site"
 FT Modified-site 29
 FT /note= "N-glycosylated"
 FT Modified-site 248
 FT /note= "N-glycosylated"
 FT Modified-site 313
 FT /note= "N-glycosylated"
 FT Modified-site 329
 FT /note= "N-glycosylated"
 FT
 XX
 PN WO200157193-A2.
 XX
 PD 09-AUG-2001.
 XX
 PF 19-JAN-2001; 2001WO-US00020.
 XX
 ID AAB82675
 AC AAB82675;
 XX
 DR 15-OCT-2001 (first entry)

FT Misc-difference /note- "Ser in wild-type protein"
 PR FT Misc-difference 32 /note- "Gln in wild-type protein"
 XX FT Misc-difference 33 /note- "Asn in wild-type protein".
 PA (ELIL) LILLY & CO ELI.
 XX FT Misc-difference 194 /note- "Leu in wild-type protein"
 PI Gerlitz BE, Jones BE;
 XX FT Misc-difference 234 /note- "Thr in wild-type protein"
 DR WPI: 2001-496919/54.
 N-PSDB; AAH26363.
 XX Novel human protein C derivative for treating, e.g., myocardial
 PT infarction, unstable angina, sepsis, thrombotic disorders, acute
 arterial thrombotic occlusion, and thromboembolism.
 XX
 RS Claim 3; Page 52-53; 63pp; English.
 XX
 The present sequence is that of a claimed human protein C
 derivative in which Ser at amino acid position 11 of the mature
 wild-type protein C sequence (see AAC82673) is substituted with
 CC Gly. Asn at position 32 with Glu. Asn at position 33 with Asp, and
 Leu at position 194 with Ser. The protein is an example of protein
 C derivatives of the invention that have at least 2 amino acid
 CC substitutions, but which have increased anticoagulant activity and
 resistance to inactivation by serpins compared with the wild-type
 CC protein, while retaining the biological activity of the wild-type
 protein. A method of producing the derivatives using recombinant
 CC DNA methods is claimed. The protein C derivatives are useful for
 treating coronary syndromes and disease states predisposing to
 CC thrombosis (e.g. myocardial infarction and unstable angina),
 CC vascular occlusive disorders and hypercoagulable states, sepsis (in
 combination with bactericidal permeability increasing protein or
 CC with tissue factor pathway inhibitor), thrombotic disorders (in
 combination with an anti-platelet agent or by local delivery through
 CC an intracoronary catheter), protein C deficiency, acute arterial
 CC thrombotic occlusion, thromboembolism, or stenosis in coronary,
 CC cerebral or peripheral arteries or in vascular grafts. Human
 CC patients with genetically predisposed prothrombotic disorders may
 CC be treated by gene therapy (all claimed).
 XX
 SQ Sequence 419 AA:
 Query Match 88.3%; Score 174; DB 22; Length 419;
 Best Local Similarity 77.3%; Pred. No. 1e-20; Matches 34; Conservativeness 0; Mismatches 10; Indels 0; Gaps 0;
 Matches 34; Conservative 0; Mismatches 10; Indels 0; Gaps 0;
 OY 1 ANSFLXXRQGSLXRXCXKICDFXXAKXIFEDVDTLAFWSKH 44
 Db 1 ANSFLEELRLRHSLERECIEICDFEEAKEIFEDVDTLAFWSKH 44
 RESULT 10
 AAB82675 ID AAB82676 standard: Protein; 419 AA.
 XX AAB82676:
 AC
 DT 15-OCT-2001 (first entry)
 DE Human protein C derivative (S11G/Q32E/N33D/L194S/T254S).
 XX Protein C; human; coronary syndrome; thrombosis; angina;
 KW myocardial infarction; vascular occlusive disorder;
 KW hypercoagulation; sepsis; protein C deficiency; occlusion;
 KW thromboembolism; stenosis; antibacterial; immunosuppressive;
 KW thrombolytic; cardiotonic; antianginal; anticoagulant; therapy;
 KW mutant; mutein.
 XX Homo sapiens.
 OS Synthetic.
 XX
 Key Misc-difference 11
 FT
 FT Misc-difference /note- "Ser in wild-type protein"
 FT Misc-difference 32 /note- "Gln in wild-type protein"
 FT Misc-difference 33 /note- "Asn in wild-type protein".
 FT Misc-difference 194 /note- "Leu in wild-type protein"
 FT Misc-difference 234 /note- "Thr in wild-type protein"
 FT Domain 1..45 /note- "Gla domain"
 FT Disulfide-bond 50..69
 FT Disulfide-bond 55..64
 FT Disulfide-bond 80..89
 FT Disulfide-bond 98..109
 FT Disulfide-bond 120..133
 FT Disulfide-bond 141..277
 FT Disulfide-bond 196..212
 FT Disulfide-bond 331..345
 FT Disulfide-bond 356..384
 FT Cleavage-site 156..157 /note- "cleavage makes a 2-chain inactive chain precursor (155-amino acid light chain) attached via a disulfide bond to a 262-amino acid heavy chain"
 FT Modified-site 6 /note- "gamma-carboxylated"
 FT Modified-site 7 /note- "gamma-carboxylated"
 FT Modified-site 14 /note- "gamma-carboxylated"
 FT Modified-site 16 /note- "gamma-carboxylated"
 FT Modified-site 19 /note- "gamma-carboxylated"
 FT Modified-site 20 /note- "gamma-carboxylated"
 FT Modified-site 25 /note- "gamma-carboxylated"
 FT Modified-site 26 /note- "gamma-carboxylated"
 FT Peptide 158..169 /note- "gamma-carboxylated"
 FT Cleavage-site 169..170 /note- "thrombin cleavage site"
 FT Modified-site 29 /note- "N-glycosylated"
 FT Modified-site 248 /note- "N-glycosylated"
 FT Modified-site 313 /note- "N-glycosylated"
 FT Modified-site 329 /note- "N-glycosylated"
 FT
 XX WO200157193-A2.
 XX
 PF 19-JAN-2001; 2001WO-US00020.
 XX
 PR 02-FEB-2000; 2000US-0179801.
 PR 14-MAR-2000; 2000US-0189197.
 XX (ELIL) LILLY & CO ELI.
 PA
 XX
 PI Gerlitz BE, Jones BE;
 XX
 DR WPI: 2001-496919/54.
 DR N-PSDB; AAH26364.
 XX
 PT Novel human protein C derivative for treating, e.g., myocardial
 infarction, unstable angina, sepsis, thrombotic disorders, acute

PT arterial thrombotic occlusion, and thromboembolism
 XX
 PS Claim 4; Page 53-54; 63pp; English.
 XX
 CC The present sequence is that of a claimed human protein C derivative in which Ser at position 11 of the mature wild-type protein C sequence (see AB082673) is substituted with GLY, Gln at position 32 with Glu, Asn at position 33 with Asp, Leu at position 194 with Ser, and Thr at position 254 with Ser. It is an example of protein C derivatives of the invention that have at least 2 amino acid substitutions, but which have increased anticoagulant activity and resistance to inactivation by serpins compared with the wild-type protein. A method of producing the derivatives using recombinant DNA methods is claimed. The protein C derivatives are useful for treating coronary syndromes and disease states predisposing to vascular occlusive disorders and hypercoagulable states, sepsis (in combination with bacterial permeability increasing protein or with tissue factor pathway inhibitor), thrombotic disorders (in combination with an anti-platelet agent or by local delivery through an intracoronary catheter), protein C deficiency, acute arterial thrombotic occlusion, thromboembolism, or stenosis in coronary, cerebral or peripheral arteries or in vascular grafts. Human CC patients with genetically predisposed prothrombotic disorders may CC be treated by gene therapy (all claimed).
 XX
 Sequence 419 AA;
 SQ

Query Match 88.3%; Score 174; DB 22; Length 419;
 Best Local Similarity 77.3%; Pred. No. 1e-20; Matches 34; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

Qy 1 ANSFLXXLROSSLXRCIXXICDFXXAKXIFEDVDTLAFWSKH 44
 Db 1 ANSFLXXLROSSLXRCIXXICDFXXAKXIFEDVDTLAFWSKH 44

RESULT 11
 AAY18298
 ID AAY18298 standard; peptide; 44 AA.
 XX
 AC AAY18298;
 XX
 DT 17-AUG-1999 (first entry)
 DE Modified GLA domain of vitamin K-dependent protein.
 XX
 KW GLA domain; mutein; vitamin K-dependent protein; clotting disorder; therapy.
 XX
 OS Homo sapiens.
 OS Synthetic.
 XX
 FH Key Location/Qualifiers
 FT Misc-difference 1.44
 FT /note= "Xaa= gamma-carboxyglutamic acid, or glutamic
 XX
 PN WO920767-A1.
 XX
 PD 29-APR-1999.
 FT 20-OCT-1998; 98WO-US22152.
 XX
 PR 23-OCT-1997; 97US-095636.
 XX
 PA (MINN) UNIV MINNESOTA.
 XX
 PI Nelsstuen GL;
 XX
 DR Vitamin K-dependent polypeptide with modified gamma-carboxyglutamic
 PT acid domain, useful for treating clotting disorders
 XX
 PS Claim 8; Page 78; 86pp; English.
 XX
 CC This sequence represents a modified GLA (gamma-carboxyglutamic acid) domain. The invention relates to a vitamin K-dependent polypeptide comprising a modified GLA domain containing an amino acid substitution which enhances membrane binding of the modified polypeptide as compared to the native polypeptide. The polypeptide is used to treat a clotting disorder by decreasing or increasing clot formation. Modification of the GLA domain results in a protein which has enhanced membrane binding affinity as compared to the native protein.
 CC

PT Vitamin K-dependent polypeptide with modified gamma-carboxyglutamic
 PR acid domain, useful for treating clotting disorders
 XX
 PS Claim 7; Page 78; 86pp; English.
 XX
 CC This sequence represents a modified GLA (gamma-carboxyglutamic acid) domain. The invention relates to a vitamin K-dependent polypeptide comprising a modified GLA domain containing an amino acid substitution which enhances membrane binding of the modified polypeptide as compared to the native polypeptide. The polypeptide is used to treat a clotting disorder by decreasing or increasing clot formation. Modification of the GLA domain results in a protein which has enhanced membrane binding affinity as compared to the native protein.
 CC

Sequence 44 AA;
 SQ

Query Match 87.8%; Score 173; DB 20; Length 44;
 Best Local Similarity 97.7%; Pred. No. 1.3e-21; Matches 43; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

Qy 1 ANSFLXXLROSSLXRCIXXICDFXXAKXIFEDVDTLAFWSKH 44
 Db 1 ANSFLXXLROSSLXRCIXXICDFXXAKXIFEDVDTLAFWSKH 44

RESULT 12
 AAY18299
 ID AAY18299 standard; peptide; 44 AA.
 XX
 AC AAY18299;
 XX
 DT 17-AUG-1999 (first entry)
 DE Modified GLA domain of vitamin K-dependent protein.
 XX
 KW GLA domain; mutein; vitamin K-dependent protein; clotting disorder; therapy.
 XX
 OS Homo sapiens.
 OS Synthetic.
 XX
 FH Key Location/Qualifiers
 FT Misc-difference 1.44
 FT /note= "Xaa= gamma-carboxyglutamic acid, or glutamic
 XX
 PN WO920767-A1.
 XX
 PD 29-APR-1999.
 FT 20-OCT-1998; 98WO-US22152.
 XX
 PR 23-OCT-1997; 97US-095636.
 XX
 PA (MINN) UNIV MINNESOTA.
 XX
 PI Nelsstuen GL;
 XX
 DR Vitamin K-dependent polypeptide with modified gamma-carboxyglutamic
 PT acid domain, useful for treating clotting disorders
 XX
 PS Claim 8; Page 78; 86pp; English.
 XX
 CC This sequence represents a modified GLA (gamma-carboxyglutamic acid) domain. The invention relates to a vitamin K-dependent polypeptide comprising a modified GLA domain containing an amino acid substitution which enhances membrane binding of the modified polypeptide as compared to the native polypeptide. The polypeptide is used to treat a clotting disorder by decreasing or increasing clot formation. Modification of the GLA domain results in a protein which has enhanced membrane binding affinity as compared to the native protein.
 CC

XK sequence 44 AA;
SQ AAY18297
Query Match 86.3%; **Score** 170; **DB** 20; **Length** 44;
Best Local Similarity 95.5%; **Pred. No.** 4.2e-21; **Mismatches** 1; **Indels** 0; **Gaps** 0;
Matches 42; **Conservative** 0; **Mismatches** 1; **Indels** 0; **Gaps** 0;
DB 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
OY 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
Db 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44

RESULT 13
ID AAY18307
ID AAY18307 standard; peptide: 44 AA.
XX
AC AAY18307;
XX
DT 17-AUG-1999 (first entry)
DE Modified GLA domain of vitamin K-dependent protein.
XX
KW GLA domain; mutein; vitamin K-dependent protein; clotting disorder;
KW therapy.
XX
OS Homo sapiens.
OS Synthetic.
XX
FH
FT Key/ Location/Qualifiers
FT Misc-difference 1..44
FT /note= "Xaa= gamma-carboxyglutamic acid, or glutamic
FT acid"
XX
PN WO920767-A1.
XX
PD 29-APR-1999.
XX
PF 20-OCT-1998; 98WO-US22152.
XX
PR 23-OCT-1997; 97US-0955636.
XX
PA (MINN) UNIV MINNESOTA.
XX
PI Nesestuen GL;
DR XX
XX
PT Vitamin K-dependent polypeptide with modified gamma-carboxyglutamic
PT acid domain, useful for treating clotting disorders
XX
PS Claim 6: Page 78; 86pp; English.
XX
CC This sequence represents a modified GLA (gamma-carboxyglutamic acid)
CC domain. The invention relates to a vitamin K-dependent polypeptide
CC comprising a modified GLA domain containing an amino acid substitution
CC which enhances membrane binding of the modified polypeptide as compared
CC to the native polypeptide. The polypeptide is used to treat a clotting
CC disorder by decreasing or increasing clot formation. Modification of the
CC GLA domain results in a protein which has enhanced membrane binding
CC affinity as compared to the native protein.
XX
SQ Sequence 44 AA;
Query Match 85.3%; **Score** 168; **DB** 20; **Length** 44;
Best Local Similarity 95.5%; **Pred. No.** 9.1e-21; **Mismatches** 2; **Indels** 0; **Gaps** 0;
Matches 42; **Conservative** 0; **Mismatches** 2; **Indels** 0; **Gaps** 0;
DB 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
OY 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
Db 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44

RESULT 15
ID AAY18309
ID AAY18309 standard; peptide: 44 AA.
XX
AC AAY18309;
XX
DT 17-AUG-1999 (first entry)
XX
DE Modified GLA domain of vitamin K-dependent protein.
XX
KW GLA domain; mutein; vitamin K-dependent protein; clotting disorder;
KW therapy.
XX
OS Homo sapiens.

RESULT 14

OS Synthetic.
 XX
 KEY Location/Qualifiers
 FH
 FT Misc-difference 1..44
 FT /note= "Xaa" gamma-carboxyglutamic acid, or glutamic
 acid
 XX
 PN WO9920767-A1.
 XX
 PD 29-APR-1999.
 XX
 PF 20-OCT-1998; 98WO-US22152.
 XX
 PR 23-OCT-1997; 97US-0955636.
 XX
 PA (MINU) UNIV MINNESOTA.
 XX
 PI Nelsestuen GL;
 XX
 DR WPI; 1999-288309/24.
 XX
 PT Vitamin K-dependent polypeptide with modified gamma-carboxyglutamic
 acid domain, useful for treating clotting disorders
 XX
 PS Disclosure: Page 79-80; 86pp; English.
 XX
 CC This sequence represents a modified GLA (gamma-carboxyglutamic acid)
 domain. The invention relates to a vitamin K-dependent polypeptide
 comprising a modified GLA domain containing an amino acid substitution
 which enhances membrane binding of the modified polypeptide as compared
 to the native polypeptide. The polypeptide is used to treat a clotting
 disorder by decreasing or increasing clot formation. Modification of the
 GLA domain results in a protein which has enhanced membrane binding
 affinity as compared to the native protein.
 XX
 Sequence 44 AA;
 SQ

Query Match 81.2%; Score 160; DB 20; Length 44;

Best Local Similarity 93.2%; Pred. No. 2e-19; Matches 41; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ANSFIXXLRQGSIXRXCTIXICDFXKAKIFEDVDTLAFWSKH 44

Db 1 ANSFLXXLRHSSLRXCTIXICDFXKAKIFEDVDTLAFWSKH 44

Search completed: May 16, 2003, 10:14:32
 Job time : 36 secs

Copyright (c) 1993 - 2003 Compugen Ltd.	GenCore version 5.1.4-p5, 4578				
OM protein - protein search, using SW model					
Run on:	May 16, 2003, 10:12:44 ; Search time 18 Seconds (without alignments) (234.995 Million cell updates/sec)				
Title:	SS01-4EDITS				
Perfect score:	197				
Sequence:	1 ANSFLXXLRRGSSLXRXCIXX.....XXAKKXTFedVDDTAFWSKH 44				
Scoring table:	BLOSUM62				
	gapop 10.0 , Gapext 0.5				
Searched:	283224 seqs, 96134422 residues				
Total number of hits satisfying chosen parameters:	283224				
Minimum DB seq length:	0				
Maximum DB seq length:	200000000				
Post-processing:	Minimum Match 0% Maximum Match 100% Listing first 45 summaries				
Database :	PIR-73:*				
	1: PIR1:*				
	2: PIR2:*				
	3: PIR3:*				
	4: PIR4:*				
pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.					
SUMMARIES					
8					
Result No.	Score	Query	Match Length	DB ID	Description
1	160	81.2	461	1	KXHU
2	140	71.1	461	1	JX0210
3	139	70.6	461	1	S18994
4	122	61.9	456	1	KXBO
5	115	58.4	482	1	EXRT
6	114	57.9	492	1	EXBO
7	110	55.8	488	1	EXHU
8	101	51.3	443	2	I46932
9	99	50.3	466	1	KFHU7
10	86.5	43.9	617	2	S10511
11	86.5	43.9	618	2	A35827
12	86	43.7	475	1	EXCH
13	85	43.1	407	1	KFB07
14	85	43.1	642	2	S53434
15	85	43.1	676	1	KXHUS
16	84	42.6	622	1	TBHU
17	81	41.1	646	2	S38819
18	80	40.6	452	1	A30351
19	80	40.6	459	1	JQ0419
20	80	40.6	461	1	KFHU
21	80	40.6	675	1	KXBO5
22	78	39.6	642	2	S53433
23	78	39.6	675	1	KXRTS
24	73	37.1	416	1	KFB0
25	72	36.5	625	1	TBBO
26	71	36.0	675	1	KXMS5
27	69.5	35.3	396	1	KXBO2
28	65.5	33.2	422	1	KXHU2
29	33.0	673	2	A48089	

ALIGNMENTS

RESULT 1

KXHU
protein C (activated) (EC 3.4.21.69) precursor - human
N;Alternate names: autoprothrombin IIa; plasma protein C
C;Species: Homo sapiens (man)
C;Date: 17-Mar-1987 #sequence_revision 17-Mar-1987 #text_change 16-Jul-1999
C;Accession: A22331; A25426; A27081; A23789; A00927
R;Foster, D.C.; Yoshihata, S.; Davie, E.W.
Proc. Natl. Acad. Sci. U.S.A., 82, 4673-4677, 1985
A;Title: The nucleotide sequence of the gene for human protein C.
A;Reference number: A22331; MUID:85270390; PMID:2991887
A;Accession: A22331
A;Molecule type: DNA
A;Residues: 1-461 <FO31>
R;Plutzky, J.; Hoskins, J.A.; Long, G.L.; Crabtree, G.R.
Proc. Natl. Acad. Sci. U.S.A., 83, 5465-550, 1986
A;Title: Evolution and organization of the human protein C gene.
A;Reference number: A25426; MUID:86120978; PMID:3511471
A;Accession: A25426
A;Molecule type:
A;Residues: 1-445, 'L', 446-461 <PLB>
A;Cross-references: GB:MI2712; NID:9190330; PIDN:AAA60165.1; PID:9190332
R;Foster, D.; Davie, E.W.
Proc. Natl. Acad. Sci. U.S.A., 81, 4765-4770, 1984
A;Title: Characterization of a cDNA coding for human protein C.
A;Reference number: A21781; MUID:8427214; PMID:6589623
A;Accession: A21781
A;Molecule type: mRNA
A;Residues: 0, '1', 107-461 <FO32>
A;Cross-references: GB:MI2059; NID:9190322; PIDN:AAA60164.1; PID:9190323
R;Beckmann, R.J.; Schmidt, R.R.J.; Santerre, R.F.; Plutzky, J.; Crabtree, G.R.; Long, G.J.;
Nucleic Acids Res., 2, 5233-5247, 1985
A;Title: The structure and evolution of a 461 amino acid human protein C precursor
A;Reference number: A23789; MUID:85269639; PMID:2991859
A;Molecule type: mRNA
A;Residues: 1-461 <BEC>
A;Cross-references: GB:MI2750; NID:935689; PIDN:CAA26528.1; PID:9763120
R;Miletich, J.P.; Broze Jr., G.J.
J. Biol. Chem., 265, 11397-11404, 1990
A;Title: Beta Protein C is not glycosylated at asparagine 329. The rate of translation
A;Reference number: A44605; MUID:90293094; PMID:1694179
A;Contents: annotation; carbohydrate binding sites; activation peptide
A;Note: the alpha form of protein C is glycosylated at Asn-329, and the beta form is
R;Harris, R.J.; Ling, V.T.; Spellman, M.W.
J. Biol. Chem., 267, 5102-5107, 1992
A;Title: O-linked fucose is present in the first epidermal growth factor domain of fibronectin
A;Reference number: A44606; MUID:92184750; PMID:1544694
A;Contents: annotation; beta-hydroxyaspartic acid
C;Comment: Protein C is the zymogen of the vitamin K-dependent serine proteinase that
growth arrest-spec

C;Comment: Protein C is synthesized in the liver as a single chain precursor, which is cleaved by trypsin to a dodecapeptide from the amino end of the heavy chain; this reaction is catalyzed by coagulation factor X; EGF homology; Glu domain homology; trypsin homology	Query Match 71.1%; Score 140; DB 1; Length 461;
C;Genetics: A;Map position: 2411; 79/3; 88/1; 134/1; 179/1; 226/3; 266/1; 27-86/Domain: Glu domain homology <GLA>	Best Local Similarity 59.1%; Prcd. No. 1.5e-14; Matches 26; Conservative 7; Mismatches 11; Indels 0; Gaps 0;
C;Keywords: anticoagulant; beta-hydroxyaspartic acid; blood coagulation; calcium binding	
F;1-32/Domain: signal sequence #status predicted <SIG>	
F;33-42/Domain: propeptide #status predicted <PRO>	
F;43-197/Domain: protein C light chain #status predicted <LC>	
F;192-131/Domain: EGF homology <EG1>	
F;140-175/Domain: EGF homology <EG2>	
F;200-461/Product: protein C heavy chain #status predicted <HCH>	
F;200-211/Domain: activation peptide #status experimental <APT>	
F;212-45/Domain: trypsin homology <TRY>	
F;48,49,56,58,61,62,67,68,71/Modified site: gamma-carboxyglutamic acid (Glu) #status experimental	
F;159-64,92-105,101-120,112-131,140-151,147-160,162-175,183-319,238-254,373-387,398-426/Disulfide bonds: #status predicted	
F;110/Binding site: carbohydrate (Thr) (covalent) #status absent	
F;113/Modified site: erythro-beta-hydroxyaspartic acid (Asp) #status experimental	
F;139-290,355/Binding site: carbohydrate (Asn) (covalent) #status experimental	
F;211-212/Cleavage site: Arg-Lys (thrombin) #status experimental	
F;371/Binding site: carbohydrate (Asn) (covalent) (partial) #status atypical	
Query Match 81.2%; Score 160; DB 1; Length 461;	
Best Local Similarity 70.5%; Pred. No. 8.8e-18; Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;	
Qy 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44	
Db 43 ANSFLEELRHSSLRECIEICDFEEAKEIFQNVDDTLAFWSKH 86	
RESULT 2	
JX0210 protein C (activated) (EC 3.4.21.69) precursor - mouse	
N;Alternate names: vitamin K-dependent serine proteinase	
C;Species: Mus musculus (house mouse)	
C;Date: 10-sep-1999 #sequence_revision 10-Sep-1999 #text_change 16-Jun-2000	
C;Accession: JX0210	
N;Tada, N.; Sato, M.; Tsujimura, A.; Iwase, R.; Hashimoto-Gotoh, T.	
J; Biochem. 111, 491-495, 1992	
A;Title: Isolation and characterization of a mouse protein C cDNA.	
A;Reference number: JX0210; MUID:92316897; PMID:1618739	
A;Accession: JX0210	
A;Molecule type: mRNA	
A;Residues: 1-461 <TAD>	
A;Cross-references: GB:D10445; NID:9220385; PIDN:BA01235.1; PID:9220386	
A;Experimental source: liver	
A;Comment: Protein C is the zymogen of the vitamin K-dependent serine proteinase that regulates coagulation factor X; EGF homology; Glu domain homology; trypsin homology	
C;Keywords: beta-hydroxyaspartic acid; blood coagulation; calcium binding; carboxyglutamate; signal sequence #status predicted <SIG>	
F;1-33/Domain: signal sequence #status predicted <SIG>	
F;27-85/Domain: Glu domain homology <GLA>	
F;34-41/Domain: propeptide #status predicted <PRO>	
F;42-196/Domain: light chain #status predicted <PLC>	
F;91-130/Domain: EGF homology <EG1>	
F;139-174/Domain: EGF homology <EG2>	
F;199-461/Domain: heavy chain #status predicted <PCH>	
F;199-211/Domain: activation peptide #status predicted <APT>	
F;212-461/Product: vitamin K-dependent serine proteinase #status predicted <ACT>	
F;212-445/Domain: trypsin homology <TRY>	
F;47,48,55,57,60,61,66,67,70-76/Modified site: gamma-carboxyglutamic acid (Glu) #status predicted	
F;12-130,139-150,146-157,161-174,182-320,239-255,373-387,398-426/Disulfide bonds: #status predicted	
F;254,300,402/Active site: His, Asp, Ser #status predicted	
Query Match 70.6%; Score 139; DB 1; Length 461;	
Best Local Similarity 59.1%; Pred. No. 2.1e-14; Matches 26; Conservative 7; Mismatches 11; Indels 0; Gaps 0;	
Qy 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44	
Db 42 ANSFLEEVRAASLSERBCMEEICDFEEAKEIFQNVDDTLAFWSKH 85	
RESULT 4	
KX0 Protein C (activated) (EC 3.4.21.69) precursor - bovine (fragment)	
N;Alternate names: autoprothrombin IIa; Plasma protein C	
C;Species: Bos primigenius taurus (cattle)	
C;Date: 30-Nov-1980 #sequence_revision 17-Mar-1987 #text_change 16-Jul-1999	
C;Accession: A26250; A18385; A18386; A00928	
R;Long, G.L.; Baladzaj, R.M.; MacGillivray, R.T.A.	
Proc. Natl. Acad. Sci. U.S.A. 81, 5653-5656, 1984	
A;Title: Cloning and sequence of liver cDNA coding for bovine protein C.	
A;Reference number: A26250; MUID:85014826; PMID:6091100	
A;Accession: A26250	
A;Molecule type: mRNA	
A;Residues: 1-456 <LON>	
R;Fenlund, P.; Steinbo, J.	

J. Biol. Chem. 257, 12170-12179, 1982
 A: Title: Amino acid sequence of the light chain of bovine protein C.
 A: Reference number: A18385; MUID:83007325; PMID:6896876
 A: Accession: A18385
 A: Molecule type: protein
 A: Residues: 40-194 <FTR>
 A: Note: 82-Lys was also found
 R: Drakenbergs, T.; Fernlund, P.; Roepstorff, P.; Stenflo, J.
 Proc. Natl. Acad. Sci. U.S.A. 80, 1802-1806, 1983
 A: Title: beta-Hydroxyaspartic acid in vitamin K-dependent protein C.
 A: Reference number: A19316; MUID:83169769; PMID:6572939
 A: Contents: annotation; revision to residue 110
 R: Stenflo, J.; Fernlund, P.
 J. Biol. Chem. 257, 12180-12190, 1982
 A: Title: Amino acid sequence of the heavy chain of bovine protein C.
 A: Reference number: A18386; MUID:83007326; PMID:6896877
 A: Accession: A18386
 A: Molecule type: protein
 A: Residues: 197-454, 'Pv' <STE>
 R: Esmon, N.L.; DeBault, L.E.; Esmon, C.T.
 J. Biol. Chem. 258, 5548-5553, 1983
 A: Title: Proteolytic formation and properties of gamma-carboxyglutamic acid-domainless F
 A: Reference number: A17541; MUID:8323513; PMID:6300092
 A: Contents: annotation; activation; calcium binding; calcium binding
 R: Johnson, A.E.; Esmon, N.L.; Lue, T.M.; Esmon, C.T.
 J. Biol. Chem. 258, 5548-5553, 1983
 A: Title: Structural changes required for activation of protein C are induced by Ca2+ binding
 A: Reference number: A17542; MUID:8323514; PMID:6406503
 A: Contents: annotation; activation; calcium binding
 C: Comment: Protein C is the zymogen of the vitamin K-dependent serine proteinase that re
 s
 C: Comment: Protein C is synthesized in the liver as a single chain precursor, which is cleaved, which cleaves a tetradecapeptide from the amino end of the heavy chain; this reaction
 C: Comment: Calcium binds to the gamma-carboxyglutamic acid (Gla) residues and, with structural
 C: Comment: The thrombin-thrombomodulin complex.
 C: Superfamily: coagulation factor X; EGF homology; Gla domain homology; trypsin homology
 C: Keywords: anticoagulant; beta-hydroxyaspartic acid; blood coagulation; calcium binding
 F: 1-29/Domain: signal sequence (fragment) #status predicted <SIG>
 F: 24-33/Domain: Gla domain homology <GLA>
 F: 30-39/Domain: propeptide #status predicted <PRO>
 F: 40-194/Product: protein C light chain #status experimental <LC>
 F: 1-98-128/Domain: EGF homology <EG1>
 F: 137-172/Domain: EGF homology <EG2>
 F: 197-456/Product: protein C heavy chain #status experimental <HCH>
 F: 197-210/Domain: activation peptide #status experimental <AP>
 F: 211-440/Domain: trypsin homology <TRI>
 F: 45-53, 55, 58, 59, 62, 64, 65, 68, 74/Modified site: gamma-carboxyglutamic acid (Glu) #stat
 F: 110/Modified site: erythro-beta-hydroxyaspartic acid (Asp) #status experimental
 F: 119-128, 137-148, 144-157, 159-172, 180-318-237-253, 368-382, 393-421/Disulfide bonds: #stat
 F: 136, 289-307/Binding site: carbohydrate (Asn) (covalent) #status predicted
 F: 252, 298, 97/Active site: His, Asp, Ser #status predicted
 F: 366/Binding site: carbohydrate (Asn) (covalent) #status predicted
 Query Match 61.9%: Score 122; DB 1; Length 456;
 Best Local Similarity 50.0%; Pred. No. 1.2e-11; Matches 21; Conservative 9; Mismatches 12; Indels 0; Gaps 0;
 Db 40 ANSFLEELRPGVVERECSEEVEAREIFQNTEDTMWFNS 81

RESULT 5

ERYT

coagulation factor Xa (EC 3.4.21.6) precursor - rat
 C:Species: Rattus norvegicus (Norway rat)
 C:Date: 31-Jan-1995 #sequence_revision 07-Feb-1997 #text_change 08-Dec-2000
 C:Accession: S49075; JJC4670; PS0191; PS0190; 162745
 R: Stanton, C.; Ross, P.; Hutson, S.; Wallin, R.
 Thromb. Res. 80, 63-73, 1995
 A:Title: Evidence for competition between vitamin K-dependent clotting factors for intra
 A: Reference number: A588498; MUID:96093366; PMID:8578539

A: Accession: S49075
 A: Molecule type: mRNA
 A: Residues: 1-482 <ST1>
 A: Cross-references: EMBL:X79807; NID:9506600; PIDN:CAA56202.1; PID:9506601
 A: Note: submitted to the EMBL Data Library, June 1994
 R: Stanton, C.; Ross, R.P.; Hutson, S.; Wallin, R.
 Gene 109, 269-273, 1995
 A: Title: Processing and expression of rat and human clotting factor-X-encoding cDNAs.
 A: Reference number: JC4670; MUID:96194815; PMID:8647460
 A: Accession: JC4670
 A: Molecule type: mRNA
 A: Residues: 1-482 <ST2>
 A: Cross-references: EMBL:X79807; NID:9506600; PIDN:CAA56202.1; PID:9506601
 A: Experimental source: Cos-1 cell
 R: Enjyoji, K.; Miyazaki, K.; Kato, H.
 J. Biochem. 109, 890-898, 1991
 A: Title: Characterization of rat factors X and Xa: demonstration of factor Xa in rat
 A: Reference number: PS0190; MUID:92041742; PMID:1718949
 A: Accession: PS0190
 A: Molecule type: protein
 A: Residues: 4158 'X', 60-65 <ENJ1>
 A: Accession: PS0190
 A: Molecule type: protein
 A: Residues: 183-186, 'X', 188-207 <ENJ2>
 R: Murakawa, M.; Okamura, T.; Kamura, T.; Kuroiwa, M.; Harada, M.; Niho, Y.
 Eur. J. Haematol. 52, 162-168, 1994
 A: Title: Analysis of the partial nucleotide sequences and deduced primary structures
 A: Reference number: 146196; MUID:94222160; PMID:8168596
 A: Accession: 146196
 A: Status: preliminary; translated from GB/EMBL/DDBJ
 A: Molecule type: DNA
 A: Residues: 295-383 'G', 385-455 <MR>
 A: Cross-references: GB:D21215; NID:9415309; PIDN:BA04756.1; PID:9455396
 C: Function:
 A: Description: catalyzes the proteolytic activation of prothrombin to thrombin in the
 A: Pathway: blood coagulation
 C: Superfamily: coagulation factor X; EGF homology; Gla domain homology; trypsin homolog
 C: Keywords: beta-hydroxyaspartic acid; blood coagulation; calcium binding; carboxygl
 F: 1-23/Domain: signal sequence #status predicted <SIG>
 F: 24-40/Domain: propeptide #status predicted <PRO>
 F: 25-84/Domain: Gla domain homology <GLA>
 F: 41-179/Product: coagulation factor X light chain #status predicted <LC>
 F: 90-121/Domain: EGF homology <EG1>
 F: 129-164/Domain: EGF homology <EG2>
 F: 183-412/Product: coagulation factor X heavy chain #status predicted <HCH>
 F: 183-231/Domain: activation peptide #status predicted <AP>
 F: 232-412/Product: coagulation factor Xa heavy chain #status predicted <ACT>
 F: 232-410/Domain: trypsin homology <TRI>
 F: 46, 47, 54, 56, 59, 60, 65, 66, 69, 72, 73/Modified site: gamma-carboxyglutamic acid (Glu) #
 F: 57-62, 95-110, 112-121, 128-140, 136-149, 151-164, 172-340, 238-43, 259-275, 388-407
 F: 103/Modified site: erythro-beta-hydroxyaspartic acid (Asp) #status predicted
 F: 187/Binding site: carbohydrate (Asn) (covalent) #status predicted
 F: 278/Binding site: carbohydrate (Thr) (covalent) #status predicted
 F: 218/Binding site: carbohydrate (Asn) (covalent) #status predicted
 F: 231-232/Cleavage site: Arg-Asp coagulation factor IXa, coagulation factor VIIa) #
 F: 274, 320, 417/Active site: His, Asp, Ser #status predicted
 Query Match 58.4%: Score 115; DB 1; Length 492;
 Best Local Similarity 43.2%; Pred. No. 1.7e-10; Matches 19; Conservative 10; Mismatches 15; Indels 0; Gaps 0;
 Db 41 ANSFEEERKKGNNLERECVEEICSEEARFVFDNEKTTFWNKY 84

RESULT 6

EXBO

coagulation factor Xa (EC 3.4.21.6) precursor - bovine
 N: Alternative names: Stuart factor
 C:Species: Bos primigenius taurus (cattle)
 C:Date: 24-Apr-1984 #sequence_revision 17-Mar-1987 #text_change 16-Jul-1999

C;Accession: A22867; AI4997; AI02030; A34412; S39414; A0925
 R;Fung, M.R.; Campbell, R.M.; Macgillivray, T.A.
 Nucleic Acids Res. 12, 4481-4492, 1984
 A;Title: Blood coagulation factor X mRNA encodes a single polypeptide chain containing a
 A;Reference number: A22867; MUID:84247315; PMID:6330671
 A;Molecule type: mRNA
 A;Residues: 1-487 <PRT>
 A;Cross-references: GB:x00673; NID:9192; PIDN:CAA25286.1; PID:9193
 R;Enfield, D.L.; Ericsson, L.H.; Fujikawa, K.A.; Neurath, H.; Titani, K.
 Biochem. Biophys. Res. Commun. 19, 659-667, 1980
 A;Title: Amino acid sequence of the light chain of bovine factor X-1 (Stuart factor).
 A;Accession: A14997; MUID:80130563; PMID:6766735
 A;Molecule type: protein
 A;Residues: 41-102, 'N', 104-180 <PRT>
 R;McMullen, B.A.; Fujikawa, K.; Kistel, W. 1983
 Biochem. Biophys. Res. Commun. 115, 8-14, 1983
 A;Title: The occurrence of beta-hydroxyaspartic acid in the vitamin K-dependent blood coagulation factor X-1 (Stuart factor).
 A;Reference number: A20214; MUID:8308813; PMID:6688526
 A;Contents: annotation; revision to residue 103
 R;Titani, K.; Fujikawa, K.; Enfield, D.L.; Ericsson, L.H.; Walsh, K.A.; Neurath, H.
 Proc. Natl. Acad. Sci. U.S.A. 72, 3082-3086, 1975
 A;Title: Bovine factor X-1 (Stuart factor): amino-acid sequence of heavy chain.
 A;Accession: A12030; MUID:76053059; PMID:105993
 A;Molecule type: protein
 A;Residues: 85-126 <PRT>
 A;Note: beta-hydroxyaspartic acid site
 R;Inoue, K.; Morita, T. 1993
 Eur. J. Biochem. 218, 155-163, 1993
 A;Title: Identification of O-linked oligosaccharide chains in the activation peptides of
 A;Reference number: S39414; MUID:94062825; PMID:8243461
 A;Accession: S39414
 A;Molecule type: protein
 A;Residues: 183-196-199-209-216-233 <INO>
 A;Note: carbohydrate binding sites
 R;Titani, K.; Hermanson, M.A.; Ericsson, L.H.; Walsh, K.A.; Neurath, H.; Enfield, D.L.;
 Biochemistry 11, 4899-4903, 1972
 A;Title: Bovine factor X-1a (activated Stuart factor). Evidence of homology with mammalian
 A;Reference number: A12453; MUID:7053314; PMID:4264286
 A;Reference number: A12453; MUID:7053314; PMID:4264286
 A;Contents: annotation; active site
 R;Fujikawa, K.; Titani, K.; Davie, E.W.
 Proc. Natl. Acad. Sci. U.S.A. 72, 3359-3363, 1975
 A;Title: Activation of bovine factor X (Stuart factor): conversion of factor Xalpha to
 A;Reference number: A13504; MUID:76053121; PMID:1059122
 A;Contents: annotation; activation
 R;Sugio, T.; Bjork, I.; Holmgren, A.; Stenflo, J.
 J. Biol. Chem. 259, 5705-5710, 1984
 A;Title: Calcium-binding properties of bovine factor X lacking the gamma-carboxyglutamic acid residue
 A;Reference number: A38024; MUID:8418516; PMID:6546030
 A;Contents: annotation; calcium binding
 R;Morita, T.; Jackson, C.M.
 J. Biol. Chem. 261, 4008-4014, 1986
 A;Reference number: A38025; MUID:86140210; PMID:3949800
 A;Contents: annotation; sulfate binding
 C;Comment: Factor Xa converts prothrombin to thrombin during blood clotting.
 C;Comment: The two chains are formed from a single-chain precursor by the excision of two activation peptides.
 C;Comment: Calcium binds to the gamma-carboxyglutamic acid (Gla) residues and, with strong activation.
 C;Comment: The gamma-carboxyglutamic acid residues arise by a posttranslational, vitamin C;genetics
 A;Gene: F10
 A;Map position: 13q34

C;Function: catalyzes the proteolytic activation of prothrombin to thrombin in the blood coagulation pathway
 A;Description: coagulation factor X; EGF homology; Gla domain homology; trypsin homolog
 C;Superfamily: coagulation factor X; EGF homology; Gla domain homology; trypsin homolog
 C;Keywords: beta-hydroxyaspartic acid; blood coagulation; calcium binding; carboxyglutamic acid; signal sequence
 F;11-15/Domain: signal sequence #status predicted <SIG>
 F;16-40/Domain: propeptide #status predicted <PRO>
 F;25-84/Domain: Gla domain homology <GLA>
 F;41-180/Domain: coagulation factor X light chain #status experimental <LCX>
 F;90-121/Domain: EGF homology <EG1>
 F;129-164/Domain: EGF homology <EG2>
 F;183-492/Product: coagulation factor X heavy chain #status experimental <HCH>
 F;234-492/Product: coagulation factor Xa heavy chain #status experimental <APT>
 F;234-461/Domain: trypsin homology <TRY>
 F;46-47, 54-56, 59-60, 65, 66, 69-71, 72-75, 79/Modified site: gamma-carboxyglutamic acid (Asp) #status experimental
 F;103/Modified site: erythro-beta-hydroxyaspartic acid (Asp) #status experimental
 F;200/Binding site: sulfate (Tyr) (covalent) (partial) #status experimental
 F;218/Binding site: carbohydrate (Thr) (covalent) #status experimental
 F;233-234/Cleavage site: Arg-Tle (coagulation factor IXa, coagulation factor VIIa) #s
 F;240-260-276, 389-403/Disulfide bonds: #status experimental
 F;275, 321, 418/Active site: His, Asp, Ser #status predicted
 F;200/Binding site: sulfate (Tyr) (covalent) (partial) #status experimental
 F;218/Binding site: carbohydrate (Thr) (covalent) #status experimental
 F;233-234/Cleavage site: Arg-Tle (coagulation factor IXa, coagulation factor VIIa) #s
 F;275, 321, 418/Active site: His, Asp, Ser #status predicted
 EXHU
 Query Match 57.9%; Score 114; DB 1; Length 492;
 Best Local Similarity 45.5%; Pred. No. 2.5e10;
 Matches 20; Conservative 8; Mismatches 16; Indels 0; Gaps 0;
 R;Y 1 ANSFLIXLRLQSSLXRCIXXICDFXXAKXIFEDVDTLAWWSK 44
 Db 41 ANSFLIEVKQGNLERECLBACSLBEEVFEFADBOTDEFWSKY 84

RESULT 7

Coagulation factor Xa (EC 3.4.21.6) precursor [validated] - human

N;Alternate names: Stuart factor

C;Species: Homo sapiens (man)

C;Date: 15-Nov-1984 #sequence_revision 02-May-1994 #text_change 08-Dec-2000

C;Accession: A24478; J0017; A42485; A2208; A21284; A20362; S39415; 154051;

R;Leytus, S.P.; Foster, D.C.; Kurachi, K.; Davie, E.W.
 Biochemistry 25, 5088-5102, 1986

A;Title: Gene for human factor X: a blood coagulation factor whose gene organization
 A;Reference number: A24478; MUID:87026600; PMID:3768336

A;Accession: A24478

A;Molecule type: DNA

A;Residues: 1-488 <PRT>

A;Cross-references: GB:129433; GB:141327; NID:9459809; PIDN:AAA52764.1; PID:9182831
 R;Messier, T.L.; Pritchard, D.O.; Long, G.L.; Kaufman, R.J.; Church, W.R.
 Gene 99, 291-294, 1991

A;Title: Cloning and expression in COS-1 cells of a full-length cDNA encoding human factor Xa
 A;Reference number: J00917; MUID:91216473; PMID:1902434

A;Accession: J00917

A;Molecule type: mRNA

A;Residues: 1-488 <MES>

A;Cross-references: GB:M57285; NID:9182389; PIDN:AAA52421.1; PID:9182390
 R;Miao, C.H.; Leytus, S.P.; Chung, D.W.; Davie, E.W.
 J. Biol. Chem. 267, 7393-7401, 1992

A;Title: Liver-specific expression of the gene coding for human factor X, a blood coagulation factor Xa
 A;Reference number: A42485; MUID:92218390; PMID:1313796

A;Accession: A42485

A;Molecule type: DNA

A;Residues: 1-15 <MA>

A;Experimental source: liver

A;Note: sequence extracted from NCBI backbone (NCBIN:93780, NCBIPI:93787)

R;Kilb, R.K.; Hildebrand, B.; Roberts, S.; Jagadeeswaran, P.
 Gene 41, 311-314, 1986

A;Title: Isolation and characterization of human blood-coagulation factor X cDNA.
 A;Reference number: A25853; MUID:86221713; PMID:3011603

A;Accession: A25853

A;Molecule type: mRNA

A;Residues: 19-284, 'E', 289-488 <KAU>

A; Cross-references: GB: M22613; NID: 9180335; PIDN: AAA51984.1; PID: 9180336
 R; Fung, M.R.; Hay, C.W.; MacGillivray, R.T.A.
 Proc. Natl. Acad. Sci. U.S.A. 82, 3591-3595, 1985
 A; Title: Characterization of an almost full-length cDNA coding for human blood coagulation factor X
 A; Reference number: A22208; MUID: 85216545; PMID: 2582420
 A; Accession: A22208
 A; Molecule type: mRNA
 A; Residues: 13-284; 'E', 289-488 <LE2>
 A; Cross-references: GB: K01886
 R; McMullen, B.A.; Fujikawa, K.; Kisiel, W.; Sasagawa, T.; Howard, W.N.; Kwa, E.Y.; Weins, Biochemistry 22, 2875-2884, 1983
 A; Title: Complete amino acid sequence of the light chain of human blood coagulation factor X
 A; Reference number: A20362; MUID: 83257207; PMID: 6871167
 A; Accession: A20362
 A; Molecule type: protein
 A; Residues: 41-179 <KCM>
 R; Inoue, K.; Morita, T.
 Eur. J. Biochem. 218, 153-163, 1993
 A; Title: Identification and characterization of beta-hydroxyaspartic acid residues in the activation peptides of
 A; Reference number: S39414; MUID: 94062825; PMID: 8243461
 A; Accession: S39415
 A; Molecule type: protein
 A; Residues: 183-234 <INO>
 A; Note: glycosylation sites
 A; Note: identification and characterization of beta-hydroxyaspartic acid
 R; Jagadeeswaran, P.; Reddy, S.V.; Rao, K.J.; Hamsabhuhanam, K.; Lyman, G.
 Gene 84, 517-519, 1989
 A; Title: Cloning and characterization of the 5' end (exon 1) of the gene encoding human
 A; Reference number: 154051; MUID: 90128299; PMID: 2612918
 A; Accession: 154051
 A; Status: translation not shown; translated from GB/EMBL/DDBJ
 A; Molecule type: DNA
 A; Residues: 1-23 <RES>
 A; Cross-references: GB: M33297; NID: 9183860; PIDN: AAA52636.1; PID: 9553330
 R; Padmanabhan, K.; Padmanabhan, K.P.; Tulinsky, A.; Park, C.H.; Bode, W.; Huber, R.; Bla
 J. Mol. Biol. 222, 947-966, 1993
 A; Title: Structure of human des1-45) factor Xa at 2.2 angstroms resolution.
 A; Contents: X-ray crystallography, 2.2 angstroms
 C; Comment: The two chains held together by one disulfide bond are formed from a single-chain
 C; Genet1s: The activation peptide is cleaved by factor IXa (in the intrinsic pathway) or
 C; Gene: GDB: F10
 A; Cross-references: GDB: 119890; OMIM: 227600
 A; Map position: 13q34-13q34
 A; Introns: 24/1; 77/3; 86/1; 124/1; 150/3; 249/3; 289/1
 A; Note: deficiency of this factor causes Stuart disease
 C; Function: catalyzes the proteolytic activation of prothrombin to thrombin in the
 A; Description: pathway: blood coagulation
 C; Superfamily: coagulation factor X; EGF homology; Gla domain homology; trypsin homology
 C; Keywords: coagulation factor X; EGF homology; Gla domain homology; trypsin homology
 F; 1-23/Domain: signal sequence #status predicted <PRO>
 F; 24-40/Domain: propeptide #status predicted <PRO>
 F; 25-84/Domain: Gla domain homology <GLA>
 F; 41-179/Product: coagulation factor X light chain #status experimental <LCH>
 F; 90-121/Domain: EGF homology <EGF>
 F; 129-164/Domain: EGF homology <EGF>
 F; 183-488/Product: coagulation factor X heavy chain #status experimental <HCH>
 F; 183-234/Domain: activation peptide #status experimental <ACT>
 F; 235-488/Product: coagulation factor Xa heavy chain #status experimental <ACT>
 F; 235-462/Domain: trypsin homology <TRY>
 F; 46-47, 54-65, 59-60, 65, 66, 69-72, 79/Product: site: gamma-carboxyglutamic acid (Glu) #stat
 F; 57-62/Disulfide bonds: #status predicted
 F; 90-101, 95-110, 112-121, 129-140, 136-149, 151-164, 172-342, 241-246, 261-277, 390-404, 415-443/A

F; 103/Modified site: erythro-beta-hydroxyaspartic acid (Asp) #status experimental
 F; 199, 211/Binding site: carbohydrate (Thr) (covalent) #status experimental
 F; 221, 231/Binding site: carbohydrate (Asn) (covalent) #status experimental
 F; 234-235/Cleavage site: Arg-Tle (coagulation factor IXa, coagulation factor VIIa) #s
 F; 276, 322, 419/Active site: His, Asp, Ser #status experimental
 Query Match 55.8%; Score 110; DB 1; Length 488;
 Best Local Similarity 43.2%; Pred. No. 1.1e-09;
 Matches 19; Conservative 9; Mismatches 16; Indels 0; Gaps 0;
 A; Molecule type: protein
 Qy 1 ANSFLXXKLRQSLXKXKXICDFXXKXIFEDVDTLAFWKH 44
 Db 41 ANSFLEEMKKHLERECWEECSYEEARREVFDSDKTNEFWNKY 84

RESULT 8
 146932 coagulation factor VII - rabbit
 C; Species: Oryctolagus cuniculus (domestic rabbit)
 C; Date: 04-Sep-1997 #sequence_revision 04-Sep-1997 #text_change 12-Feb-1999
 C; Accession: 146932
 R; Brothers, A.B.; Clarke, B.J.; Sheffield, W.P.; Blajchman, M.A.
 Thromb. Res. 69, 231-238, 1993
 A; Title: Complete nucleotide sequence of the cDNA encoding rabbit coagulation factor
 A; Reference number: 146932; MUID: 93190306; PMID: 8383365
 A; Accession: 146932
 A; Status: preliminary; translated from GB/EMBL/DDBJ
 A; Molecule type: mRNA
 A; Residues: 1-443 <BRO>
 A; Cross-references: GB: S56300; NID: 9266294; PMID: 9266295
 C; Superfamily: coagulation factor X; EGF homology; Gla domain homology; trypsin homology
 F; 24-83/Domain: Gla domain homology <GLA>
 F; 89-120/Domain: EGF homology <EG1>
 F; 130-166/Domain: EGF homology <EG2>
 F; 192-425/Domain: trypsin homology <TRY>

Query Match 51.3%; Score 101; DB 2; Length 443;
 Best Local Similarity 46.3%; Pred. No. 2.8e-08;
 Matches 19; Conservative 5; Mismatches 17; Indels 0; Gaps 0;
 Qy 1 ANSFLXXKLRQSLXKXKXICDFXXKXIFEDVDTLAFWKH 41
 Db 40 ANSFLEEMKKHLERECWEECSYEEARREVFDSDKTNEFWNKY 80

RESULT 9
 K8U7 coagulation factor VIIa (EC 3.4.21.21) precursor [validated] - human
 C; Species: Homo sapiens (man)
 C; Date: 19-May-1989 #sequence_revision 19-May-1994 #text_change 08-Dec-2000
 C; Accession: A28322; A23819; A31186; B31186; S63524
 R; O'Hara, P.J.; Grant, F.J.; Haldeman, B.A.; Gray, C.L.; Insley, M.Y.; Hagen, F.S.; Hart, Proc. Natl. Acad. Sci. U.S.A. 84, 5158-5162, 1987
 A; Title: Nucleotide sequence of the gene coding for human factor VII, a vitamin K-dependent protein
 A; Reference number: A28322; MUID: 87260948; PMID: 3037537
 A; Accession: A28322
 A; Molecule type: DNA
 A; Residues: 1-466 <OHA>
 A; Cross-references: GB: J02933; NID: 9180333; PIDN: AAA51983.1; PID: 9180334
 R; Hagen, F.S.; Gray, C.L.; O'Hara, P.; Grant, F.J.; Saari, G.C.; Woodbury, R.G.; Hart, Proc. Natl. Acad. Sci. U.S.A. 83, 2412-2416, 1986
 A; Title: Characterization of a cDNA coding for human factor VII.
 A; Reference number: A23819; MUID: 86205965; PMID: 3486420
 A; Accession: A23819
 A; Molecule type: mRNA
 A; Residues: 1-466 <HAG>
 A; Cross-references: GB: M1232; NID: 9182799; PIDN: AAA8800.1; PID: 9182801
 R; Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, Biochemistry 27, 7785-7793, 1988
 A; Title: Amino acid sequence and posttranslational modifications of human factor VII.
 A; Reference number: A90539; MUID: 8908153; PMID: 3264725
 A; Accession: A31186
 A; Molecule type: protein

F:211-207/Domain: EGF homology <EG3>	A;Title: Human protein S cDNA encodes Phe-16 and Tyr-222 in consensus sequences for tyrosine phosphorylation.
F:281-633/Domain: sex hormone-binding globulin homology <SHB>	A;Reference number: S02424; MUID:88005138; PMID:2820795
F:291-444/Domain: laminin G repeat homology <LGR>	A;Accession: S02424
	A;Molecule type: mRNA
	A;Residues: 1-676 <PL2>
	A;Cross-references: EMBL:Y00692; NID:936578; PID:936579
	A;Genes: GDB:PRO1; PROS
	A;Cross-references: GDB:120721; OMIM:176880
	A;Map position: 3p11.1-3q11.2
	A;Introns: 26/1; 78/3; 116/1; 157/1; 201/1; 243/1; 283/3; 322/2; 385/3; 441/3;
	C;Complex: in plasma forms a complex with C4b binding protein
	C;Function: a cofactor for activated protein C (EC 3.4.21.69); thrombin cleavage domain
	C;Superfamily: plasma protein S; EGF homology; Gla domain homology; laminin G repeat
	C;Keywords: beta-hydroxyasparagine; beta-hydroxyaspartic acid; blood coagulation; carbohydrate
	F:1-24/Domain: signal sequence #status predicted <SIG>
	F:25-41/Domain: propeptide #status predicted <PRO>
	F:42-85/Domain: Gla domain homology <GLA>
	F:42-67/Domain: plasma protein S #status predicted <MAT>
	F:121-154/Domain: EGF homology <EG1>
	F:161-199/Domain: EGF homology <EG2>
	F:205-241/Domain: EGF homology <EG3>
	F:247-282/Domain: EGF homology <EG4>
	F:315-467/Domain: sex hormone-binding globulin homology <SHB>
	F:47-48; 55-57; 60-61; 66-67; 70-73; 77/Modified site: gamma-carboxyglutamic acid (Glu) #status predicted
	F:58-63; 88-113; 211-134; 126-143; 145-154; 161-175; 171-184; 186-199; 205-217; 212-226; 228-244
	F:111-112/Cleavage site: Arg-Ser (thrombin) #status predicted
	F:136/Modified site: erythro-beta-hydroxyaspartic acid (Asp) #status predicted
	F:177-219; 258/Modified site: erythro-beta-hydroxyasparagine (Asn) #status predicted
	F:499-509; 530/Binding site: carbohydrate (Asn) (covalent) #status predicted
	Query Match Best Local Similarity 43.1%; Score 85; DB 1; Length 676;
	Matches 17; Conservative 38.6%; Pred. No. 1 6e-05; Mismatches 17; Indels 0; Gaps 0;
	Search completed: May 16, 2003, 10:15:51
	Job time : 20 secs
QY 1 ANSFLXXLRLQGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44	
DB 42 ANSLLETFKQGNLERCIEELCNKEEAREVFENDPETYFVPKY 85	
	A;Title: Human protein S cDNA encodes Phe-16 and Tyr-222 in consensus sequences for tyrosine phosphorylation.
	A;Reference number: A00903; MUID:88178564; PMID:2895503
	A;Accession: A00903
	A;Molecule type: mRNA
	A;Residues: 351-676 <PL2>
	A;Cross-references: GB:J02919
	R;Ploos van Amstel, J.K.; van der Zanden, A.L.; Bakker, E.; Reitsma, P.H.; Bertina, R.M.
	Proc. Natl. Acad. Sci. U.S.A., 83, 6716-6720, 1986
	A;Title: Isolation and sequencing of the cDNA for human protein S, a regulator of blood coagulation.
	A;Reference number: A25891; MUID:86313649; PMID:2944113
	A;Accession: A25891
	A;Molecule type: mRNA
	R;Lundwall, A.; Dachowski, W.; Cohen, E.; Shaffer, M.; Mahr, A.; Dahiback, B.; Stenflo, O.
	Proc. Natl. Acad. Sci. U.S.A., 83, 7161-7170, 1986
	A;Title: Cloning and characterization of human liver cDNA encoding a protein S precursor
	A;Reference number: A26157; MUID:87092407; PMID:3467362
	A;Accession: A26157
	A;Molecule type: mRNA
	R;Hoskins, J.; Norman, D.K.; Beckmann, R.J.; Long, G.L.
	Proc. Natl. Acad. Sci. U.S.A., 84, 349-353, 1987
	A;Title: Cloning and characterization of human liver cDNA encoding a protein S precursor
	A;Reference number: A26157; MUID:87092407; PMID:3467362
	A;Accession: A26157
	A;Cross-references: GB:J02918
	R;Edenbrandt, C.M.; Lundwall, A.; Wydro, R.; Stenflo, J.
	Proc. Natl. Acad. Sci. U.S.A., 83, 7161-7170, 1986
	A;Title: Molecular analysis of the gene for vitamin K dependent protein S and its pseudogene.
	A;Reference number: A35612; MUID:91084446; PMID:2148112
	A;Accession: A35612
	A;Status: not compared with conceptual translation
	A;Molecule type: DNA
	A;Residues: 1-10; 'P', 12-25, 'L', 27-676 <ROS>
	A;Cross-references: GB:MI5036; NID:9190288; PIDN:AAA36479.1; PID:9190289
	R;Lundwall, A.; Dachowski, W.; Cohen, E.; Shaffer, M.; Mahr, A.; Dahiback, B.; Stenflo, O.
	Proc. Natl. Acad. Sci. U.S.A., 83, 6716-6720, 1986
	A;Title: Cloning and sequencing of the cDNA for human protein S, a regulator of blood coagulation.
	A;Reference number: A25891; MUID:86313649; PMID:2944113
	A;Accession: A25891
	A;Molecule type: mRNA
	R;Edenbrandt, C.M.; Lundwall, A.; Wydro, R.; Stenflo, J.
	Proc. Natl. Acad. Sci. U.S.A., 83, 7161-7170, 1986
	A;Title: Cloning and characterization of human liver cDNA encoding a protein S precursor
	A;Reference number: A25891; MUID:86313649; PMID:2944113
	A;Accession: A25891
	A;Cross-references: GB:MI4338; NID:9190448; PIDN:AAA60181.1; PID:9190449
	R;Thromb. Haemost. 58, 902-987, 1987
	A;Title: Two genes homologous with human protein S cDNA are located on chromosome 3.
	A;Reference number: A60903; MUID:88178564; PMID:2895503
	A;Accession: A60903
	A;Molecule type: mRNA
	A;Residues: 351-676 <PL2>
	A;Cross-references: GB:J02919
	R;Ploos van Amstel, J.K.; van der Zanden, A.L.; Bakker, E.; Reitsma, P.H.; Bertina, R.M.
	Proc. Natl. Acad. Sci. U.S.A., 83, 6716-6720, 1986
	A;Title: Two genes homologous with human protein S cDNA are located on chromosome 3.
	A;Reference number: A60903; MUID:88178564; PMID:2895503
	A;Accession: A60903
	A;Molecule type: mRNA
	A;Residues: 351-676 <PL2>
	A;Cross-references: GB:J02919
	R;Ploos van Amstel, J.K.; van der Zanden, A.L.; Bakker, E.; Reitsma, P.H.; Bertina, R.M.
	Proc. Natl. Acad. Sci. U.S.A., 83, 6716-6720, 1986
	A;Title: Two genes homologous with human protein S cDNA are located on chromosome 3.
	A;Reference number: A60903; MUID:88178564; PMID:2895503
	A;Accession: A60903

1	SEQ1-4EDITS	GenCore version 5.1.4-PS-4578
2	Perfect score: 197	Copyright (c) 1993 - 2003 Compugen Ltd.
3	Sequence: 1 ANSIFLXXLReqSLRXCIXX.....XXAKXIFedvDDTLAFWSKH 44	OM protein - protein search, using SW model
4	Scoring table: BLOSUM62	Run on: May 16, 2003, 10:12:18 ; Search time 11 Seconds
5	Gapop 10.0 , Gapext 0.5	(without alignments) 165.905 Million cell updates/sec
6	Post-processing: Minimum Match 0%	Minimum DB seq length: 0
7	Maximum Match 100%	Maximum DB seq length: 2000000000
8	Database : Swissprot_40:*	Post-processing: Listing first 45 summaries
9	Pred. No. 19 is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.	
10	SUMMARIES	
11	Result No.	Score
12	Query	Match Length
13	DB	ID
14	Description	
15	[2]	
16	SEQUENCE FROM N.A.	
17	MEDLINE-85265639; PubMed-2991859;	
18	Beckmann R.J., Schmidt R.J., Santerre R.F., Plutzky J., Crabtree G.R.,	
19	Long G.L.; The structure and evolution of a 461 amino acid human protein C	
20	RT precursor and its messenger RNA, based upon the DNA sequence of	
21	RT cloned human liver cDNAs"; Nucleic Acids Res. 13:5233-5247(1985).	
22	RN Foster D.C., Yoshitake S., Davie E.W.; "The nucleotide sequence of the gene for human protein C"; Proc. Natl. Acad. Sci. U.S.A. 82:4673-4677(1985).	
23	RN [3]	
24	RN SEQUENCE FROM N.A.	
25	RN MEDLINE-86123978; PubMed-3511471;	
26	RN Plutzky J., Hoskins J.A., Long G.L., Crabtree G.R.; "Evolution and organization of the human protein C gene"; Proc. Natl. Acad. Sci. U.S.A. 83:5456-550(1986).	
27	RN [4]	
28	RN SEQUENCE FROM N.A.	
29	RN Rieder M.J., Carrington D.P., Chung M.-W., Lee K.L., Poel C.L., YI Q.,	
30	RN Nickerson D.A.; "Characterization of a cDNA coding for human protein C. "; Submitted (JUN-2001) to the EMBL/GenBank/DBJ databases.	
31	RN [5]	
32	RN SEQUENCE OF 106-461 FROM N.A.	
33	RN MEDLINE-84272714; PubMed-6599623;	
34	RN Foster D.C., Davie E.W., "Characterization of a cDNA coding for human protein C. "; Proc. Natl. Acad. Sci. U.S.A. 81:4766-4770(1984).	
35	RN [6]	
36	RN CARBOHYDRATE-LINKAGE SITE ASN-371.	
37	RN MEDLINE-90293094; PubMed-1654179;	
38	RN Miletich J., Broze G.J. Jr.; "Characterization of a protein C is not glycosylated at asparagine 329. The rate of translation may influence the frequency of usage at asparagine-X-cysteine sites"; J. Biol. Chem. 265:11397-11404(1990).	
39	RN [7]	
40	ALIGMENTS	
41	P22891 homo sapien	
42	O14669 homo sapien	
43	P41068 canidae alb	
44	Q9TWW2 toxoplasma	
45	P35917 mus musculus	
46	Q93398 schizosaccharomyces pombe	
47	Q26721 trypanosoma brucei	
48	P35916 homo sapien	
49	P03390 escherichia coli	
50	P37450 salmonella enterica	
51	P08775 rattus norvegicus	
52	P52583 coturnix coqui	

RP HYDROXYLATION.

RX MEDLINE=92184750; PubMed=1544894;

RA "A novel homozygous missense mutation in the protein C (PROC) gene

RT causing recurrent venous thrombosis.";

RT "O-linked fucose is present in the first epidermal growth factor

RT domain of factor XII but not protein C.";

RL J. Biol. Chem. 267:5102-5107(1992).

RN [8] 3D-STRUCTURE MODELING OF 175-450.

RX 3D-STRUCTURE MODELING OF 175-450.

RA MEDLINE=94272342; PubMed=8003977;

RA Fisher C.L., Greenard J.S., Griffin J.H.;

RT "Models of the serine protease domain of the human antithrombotic

RT plasma factor activated protein C and its zymogen.";

RL Protein Sci. 3:588-599(1994).

RL RN [9] X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 84-461.

RX X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 84-461.

RA MEDLINE=97157472; PubMed=9003157;

RA Mother T., Oganesyan V., Hof P., Huber R., Foundling S., Esmon C.,

RA Bode W.;

RT "The 2.8 Å crystal structure of Gla-domainless activated protein C.";

RL EMBO J. 15:6822-6831(1996).

RN [10] REVIEW ON PROC VARIANTS.

RX MEDLINE=93190290; PubMed=8445940;

RA Reitsma P.H., Poort S.R., Bernardi F., Gandrille S., Long G.L.,

RA Sala N., Cooper D.N.;

RT "Protein C deficiency: a database of mutations. For the Protein C & S

RT Subcommittee of the Scientific and Standardization Committee of the

RT International Society on Thrombosis and Haemostasis.";

RL Thromb. Haemost. 69:77-84(1993).

RN [11] VARIANT CYS-444.

RX MEDLINE=87204221; PubMed=2437584;

RA Romeo G., Hassan H.J., Staempfli S., Roncuzzi L., Cianetti L.,

RA Leonardi A., Vicente V., Mannucci P.M., Bertina R.M., Peschle C.,

RA Cortese R.;

RT "Hereditary thrombophilia: identification of nonsense and missense

RT mutations in the protein C gene.";

RL Proc. Natl. Acad. Sci. U.S.A. 84:2829-2832(1987).

RN [12] VARIANT TRP-211 (LONDON-1).

RX MEDLINE=9009806; PubMed=2602169;

RA Grundy C.B., Chitolie A., Talbot S., Bevan D., Kakkar V.V.,

RA Cooper D.N.;

RT "Protein C London 1: recurrent mutation at Arg-169 (CGG-->GGG) in

RT the protein C gene causing thrombosis.";

RL Nucleic Acids Res. 17:10513-10513(1989).

RN [13] VARIANT CYS-272.

RX MEDLINE=91329835; PubMed=1868249;

RA Reitsma P.H., Poort S.R., Allaart C.F., Briet E., Bertina R.M.;

RT "The spectrum of genetic defects in a panel of 40 Dutch families with

RT symptomatic protein C deficiency type I: heterogeneity and founder

RT effects.";

RL Blood 78:8890-8894(1991).

RN [14] VARIANT ALA-62 (VERMONT-1) AND MET-76.

RX MEDLINE=92190481; PubMed=1347706;

RA Boivill E.G., Tomczak J.A., Grant B., Bhushan F., Pillemer E.,

RA Rainville I.R., Long G.L.;

RT "Protein C Vermont: symptomatic type II protein C deficiency

RT associated with two GLA domain mutations.";

RL Blood 79:1456-1465(1992).

RN [15] VARIANT ASP-418 (HONG KONG-2).

RX MEDLINE=92305321; PubMed=1611081;

RA Sugahara Y., Miura O., Yuen P., Aoki N.;

RT "Protein C deficiency Hong Kong 1 and 2: hereditary protein C

RT deficiency caused by two mutant alleles, a 5-nucleotide deletion and

RT a missense mutation.";

RL Blood 80:126-133(1992).

RN [16] VARIANT LEU-289.

RX MEDLINE=92380660; PubMed=1511988;

RA Grundy C.B., Chisholm M., Kakkar V.V., Cooper D.N.;

RT "A novel homozygous missense mutation in the protein C (PROC) gene

RT causing recurrent venous thrombosis.";

RT "O-linked fucose is present in the first epidermal growth factor

RT domain of factor XII but not protein C.";

RL Hum. Genet. 89:683-684(1992).

RN [17] VARIANT SGIN-220 AND TRP-220.

RX MEDLINE=92380661; PubMed=1511989;

RA Grundy C.B., Schulman S., Tengborn L., Kakkar V.V., Cooper D.N.;

RT "Two different missense mutations at Arg 178 of the protein C (PROC)

RT gene causing recurrent venous thrombosis.";

RL Hum. Genet. 89:685-686(1992).

RN [18] VARIANT GIN-220.

RX MEDLINE=93250852; PubMed=1301959;

RA Gandrille S., Vidaud M., Alach M., Alhenc-Gelas M., Fischer A.M.,

RA Gouault-Heilmann M., Toulon P., Fissinger J.N., Goossens M.;

RT "Two novel mutations responsible for hereditary type I protein C

RT deficiency: characterization by denaturing gradient gel

RT electrophoresis.";

RL Hum. Mutat. 1:491-500(1992).

RN [19] VARIANT SER-334.

RX MEDLINE=92276939; PubMed=1593215;

RA Yamamoto K., Matsushita T., Sugiura I., Takamatsu J., Iwasaki E.,

RA Wada H., Deguchi K., Shirakawa S., Saito H.;

RT "Homozygous protein C deficiency: identification of a novel missense

RT mutation that causes impaired secretion of the mutant protein C.";

RL J. Lab. Clin. Med. 119:682-689(1992).

RN [20] VARIANT TRP-38; CYS-42; HIS-42; GLN-271 AND ASN-294.

RX MEDLINE=9313102; PubMed=8324221;

RA Gandrille S., Alhenc-Gelas M., Gaussem P., Allaard M.-F., Dupuy E.,

RA Juhan-Vague I., Alach M.;

RT "Five novel mutations located in exons III and IX of the protein C

RT gene in patients presenting with defective protein C anticoagulant

RT activity.";

RL Blood 82:159-168(1993).

RN [21] VARIANT G-14; Q-211; Y-244; Q-253; L-321; C-328; I-385; T-388 AND

RX V-388.

RA MEDLINE=932271391; PubMed=8499565;

RA Poort S.R., Rabinger-Fasching I., Mannhalter C., Reitsma P.H.,

RA Bertina R.M.;

RT "Twelve novel and two recurrent mutations in 14 Austrian families

RT with hereditary protein C deficiency.";

RL Blood Coagul. Fibrinolysis 4:273-280(1993).

RN [22] VARIANT TRP-57.

RX MEDLINE=92271396; PubMed=8499568;

RA Millar D.-S., Grundy C.B., Bignell P., Moffat E.H., Martin R.,

RA Kakkar V.V., Cooper D.N.;

RT "A Glu domain mutation (Arg 15-->Trp) in the protein C (PROC) gene

RT causing type 2 protein C deficiency and recurrent venous

RT thrombosis.";

RL Blood Coagul. Fibrinolysis 4:345-347(1993).

RN [23] VARIANT R-145; L-211; T-243; I-321; M-340 AND Y-426.

RX MEDLINE=9412229; PubMed=8292730;

RA Tsay W., Greenard J.S., Montgomery R.R., McPherson R.A., Fucci J.C.,

RA Kooper M.A., Coughlin J., Griffin J.H.;

RT "Genetic mutations in ten unrelated American patients with

RT symptomatic type I protein C deficiency.";

RL Blood Coagul. Fibrinolysis 4:791-796(1993).

RN [24] VARIANT SER-423.

RX MEDLINE=9400106; PubMed=8398832;

RA Marchetti G., Patrachini P., Gemmati D., Castaman G., Rodeghiero F.,

RA Wacey A., Cooper D.N., Tuddenham E.G., Bernardi F.;

RT "Symptomatic type II protein C deficiency caused by a missense

RT mutation (Gly 381-->Ser) in the substrate-binding pocket.";

RL Br. J. Haematol. 84:285-289(1993).

RN [25] SEQUENCE OF 43-64 FROM N.A., AND VARIANT GLY-57 (YONAGO).

Query Match 81.2%; Score 160; DB 1; Length 461;
 Best Local Similarity 70.5%; Pred. No. 9.1e-20;
 Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;
 CC 0; DR 0; EMBL: D10445; BAA01235.1; -;
 CC 0; DR 0; EMBL: AF034569; AAC33795.1; -;
 CC 0; DR 0; EMBL: D43755; BAA01812.1; -;
 CC 0; DR 0; PIR: JX0210; JX0210;
 DR 0; HSSP: P04070; 1PCU;
 DR 0; MEROPS: S01.21.8; -;
 DR 0; MGII-97771; Proc.
 DR 0; InterPro; IPR00152; AST_hydroxyl.
 DR 0; InterPro; IPR001314; Chymotrypsin.
 DR 0; InterPro; IPR000561; EGF-like.
 DR 0; InterPro; IPR011881; EGF-Ca.
 DR 0; InterPro; IPR002383; GLA_blood.
 DR 0; InterPro; IPR001254; Ser_protease_Try.
 DR 0; InterPro; IPR000294; VICK_dep_GLA.
 DR 0; Pfam; PF00008; EGF; 2.
 DR 0; Pfam; PF00089; trypsin; 1.
 DR 0; Pfam; PF0054; gla; 1.
 DR 0; PRINS; PR00001; GLAB100.
 DR 0; SMART; SM00179; EGF_Ca; 1.
 DR 0; SMART; SM00001; EGF_like; 1.
 DR 0; SMART; SM00069; GLA; 1.
 DR 0; PROSITE; PS00010; ASX_HDROXYL; 1.
 DR 0; PROSITE; PS00022; EGF_1; 1.
 DR 0; PROSITE; PS01186; EGF_2; 2.
 DR 0; PROSITE; PS01187; EGF_Ca; 1.
 DR 0; PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 DR 0; PROSITE; PS00240; TRYPSIN_DOM; 1.
 DR 0; PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR 0; PROSITE; PS00135; TRYPSIN_SER; 1.
 DR 0; KW 0; Blood coagulation; Glycoprotein; Serine protease;
 KW 0; Gamma-carboxyglutamic acid; Calcium-binding; Vitamin K; Hydroxylation;
 KW 0; EGF-like domain; Repeat; Endothelial cell; Hydrolase; Signal.
 FT 0; SIGNAL 1; 33; BY SIMILARITY.
 FT 0; PROTEP 34; 41; BY SIMILARITY.
 FT 0; CHAIN 42; 196; PROTEIN C LIGHT CHAIN (BY SIMILARITY).
 FT 0; CHAIN 42; 196; PROTEIN C HEAVY CHAIN (BY SIMILARITY).
 FT 0; PEPTIDE 199; 212; ACTIVATION PEPTIDE (BY SIMILARITY).
 FT 0; PEPTIDE 199; 212; CLEAVAGE (BY THROMBIN) (BY SIMILARITY).
 FT 0; DOMAIN 212; 213; EGF-LIKE 1.
 FT 0; DOMAIN 96; 131; PROTEIN C LIGHT CHAIN (BY SIMILARITY).
 FT 0; DOMAIN 135; 175; PROTEIN C HEAVY CHAIN (BY SIMILARITY).
 FT 0; DOMAIN 213; 217; ACTIVATION PEPTIDE (BY SIMILARITY).
 FT 0; DOMAIN 213; 217; CLEAVAGE (BY THROMBIN) (BY SIMILARITY).
 FT 0; DOMAIN 213; 217; EGF-LIKE 2.
 FT 0; DOMAIN 213; 217; SERINE PROTEASE.
 FT 0; DOMAIN 47; 47; GAMMA-CARBOXYGLUTAMIC ACID
 FT 0; DOMAIN 47; 47; (BY SIMILARITY).
 CC 0; -1 - FUNCTION: PROTEIN C IS A VITAMIN K-DEPENDENT SERINE PROTEASE THAT
 CC 0; -1 - REGULATES BLOOD COAGULATION BY INACTIVATING FACTORS VA AND VITIA
 CC 0; -1 - IN THE PRESENCE OF CALCIUM IONS AND PHOSPHOLIPIDS.
 CC 0; -1 - CATALYTIC ACTIVITY: Degradation of blood coagulation factors Va
 CC 0; -1 - and VIIa.
 CC 0; -1 - SUBUNIT: SYNTHESIZED AS A SINGLE CHAIN PRECURSOR, WHICH IS CLEAVED
 CC 0; -1 - INTO A LIGHT CHAIN AND A HEAVY CHAIN HELD TOGETHER BY A DISULFIDE
 CC 0; -1 - BOND. THE ENZYME IS THEN ACTIVATED BY THROMBIN, WHICH CLEAVES A
 CC 0; -1 - TETRADECAPETIDE FROM THE AMINO END OF THE HEAVY CHAIN; THIS
 CC 0; -1 - REACTION, WHICH OCCURS AT THE SURFACE OF ENDOTHELIAL CELLS, IS
 CC 0; -1 - STRONGLY PROMOTED BY THROMBOMODULIN.
 CC 0; -1 - TISSUE SPECIFICITY: PLASMA; SYNTHESIZED IN THE LIVER.
 CC 0; -1 - PTM: THE VITAMIN K-DEPENDENT ENZYMATIC CARBOXYLATION OF SOME
 CC 0; -1 - GLU RESIDUES ALLOWS THE MODIFIED PROTEIN TO BIND CALCIUM.
 CC 0; -1 - MISCELLANEOUS: CALCIUM ALSO BINDS, WITH STRONGER AFFINITY TO
 CC 0; -1 - ANOTHER SITE, BEYOND THE GLA DOMAIN. THIS GLA-INDEPENDENT BINDING
 CC 0; -1 - SITE IS NECESSARY FOR THE RECOGNITION OF THE
 CC 0; -1 - THROMBIN-THROMBOMODULIN COMPLEX.
 CC 0; -1 - SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1.
 CC 0; -1 - SIMILARITY: CONTAINS 2 EGF-LIKE DOMAINS.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its

use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement. See <http://www.1sb-sib.ch/announce/> or send an email to license@1sb-sib.ch).

CC 0; DR 0; EMBL: AF034569; AAC33795.1; -;
 CC 0; DR 0; EMBL: D43755; BAA01812.1; -;
 CC 0; DR 0; PIR: JX0210; JX0210;
 DR 0; HSSP: P04070; 1PCU;
 DR 0; MEROPS: S01.21.8; -;
 DR 0; MGII-97771; Proc.
 DR 0; InterPro; IPR00152; AST_hydroxyl.
 DR 0; InterPro; IPR001314; Chymotrypsin.
 DR 0; InterPro; IPR000561; EGF-like.
 DR 0; InterPro; IPR011881; EGF-Ca.
 DR 0; InterPro; IPR002383; GLA_blood.
 DR 0; InterPro; IPR001254; Ser_protease_Try.
 DR 0; InterPro; IPR000294; VICK_dep_GLA.
 DR 0; Pfam; PF00008; EGF; 2.
 DR 0; Pfam; PF00089; trypsin; 1.
 DR 0; Pfam; PF0054; gla; 1.
 DR 0; PRINS; PR00001; GLAB100.
 DR 0; SMART; SM00179; EGF_Ca; 1.
 DR 0; SMART; SM00001; EGF_like; 1.
 DR 0; SMART; SM00069; GLA; 1.
 DR 0; PROSITE; PS00010; ASX_HDROXYL; 1.
 DR 0; PROSITE; PS00022; EGF_1; 1.
 DR 0; PROSITE; PS01186; EGF_2; 2.
 DR 0; PROSITE; PS01187; EGF_Ca; 1.
 DR 0; PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 DR 0; PROSITE; PS00240; TRYPSIN_DOM; 1.
 DR 0; PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR 0; PROSITE; PS00135; TRYPSIN_SER; 1.
 DR 0; KW 0; Blood coagulation; Glycoprotein; Serine protease;
 KW 0; Gamma-carboxyglutamic acid; Calcium-binding; Vitamin K; Hydroxylation;
 KW 0; EGF-like domain; Repeat; Endothelial cell; Hydrolase; Signal.
 FT 0; SIGNAL 1; 33; BY SIMILARITY.
 FT 0; PROTEP 34; 41; BY SIMILARITY.
 FT 0; CHAIN 42; 196; PROTEIN C LIGHT CHAIN (BY SIMILARITY).
 FT 0; CHAIN 42; 196; PROTEIN C HEAVY CHAIN (BY SIMILARITY).
 FT 0; PEPTIDE 199; 212; ACTIVATION PEPTIDE (BY SIMILARITY).
 FT 0; PEPTIDE 199; 212; CLEAVAGE (BY THROMBIN) (BY SIMILARITY).
 FT 0; DOMAIN 212; 213; EGF-LIKE 1.
 FT 0; DOMAIN 96; 131; PROTEIN C LIGHT CHAIN (BY SIMILARITY).
 FT 0; DOMAIN 135; 175; PROTEIN C HEAVY CHAIN (BY SIMILARITY).
 FT 0; DOMAIN 213; 217; ACTIVATION PEPTIDE (BY SIMILARITY).
 FT 0; DOMAIN 213; 217; CLEAVAGE (BY THROMBIN) (BY SIMILARITY).
 FT 0; DOMAIN 213; 217; EGF-LIKE 2.
 FT 0; DOMAIN 47; 47; SERINE PROTEASE.
 FT 0; DOMAIN 47; 47; GAMMA-CARBOXYGLUTAMIC ACID
 FT 0; DOMAIN 47; 47; (BY SIMILARITY).
 CC 0; -1 - FUNCTION: PROTEIN C IS A VITAMIN K-DEPENDENT SERINE PROTEASE THAT
 CC 0; -1 - REGULATES BLOOD COAGULATION BY INACTIVATING FACTORS VA AND VITIA
 CC 0; -1 - IN THE PRESENCE OF CALCIUM IONS AND PHOSPHOLIPIDS.
 CC 0; -1 - CATALYTIC ACTIVITY: Degradation of blood coagulation factors Va
 CC 0; -1 - and VIIa.
 CC 0; -1 - SUBUNIT: SYNTHESIZED AS A SINGLE CHAIN PRECURSOR, WHICH IS CLEAVED
 CC 0; -1 - INTO A LIGHT CHAIN AND A HEAVY CHAIN HELD TOGETHER BY A DISULFIDE
 CC 0; -1 - BOND. THE ENZYME IS THEN ACTIVATED BY THROMBIN, WHICH CLEAVES A
 CC 0; -1 - TETRADECAPETIDE FROM THE AMINO END OF THE HEAVY CHAIN; THIS
 CC 0; -1 - REACTION, WHICH OCCURS AT THE SURFACE OF ENDOTHELIAL CELLS, IS
 CC 0; -1 - STRONGLY PROMOTED BY THROMBOMODULIN.
 CC 0; -1 - TISSUE SPECIFICITY: PLASMA; SYNTHESIZED IN THE LIVER.
 CC 0; -1 - PTM: THE VITAMIN K-DEPENDENT ENZYMATIC CARBOXYLATION OF SOME
 CC 0; -1 - GLU RESIDUES ALLOWS THE MODIFIED PROTEIN TO BIND CALCIUM.
 CC 0; -1 - MISCELLANEOUS: CALCIUM ALSO BINDS, WITH STRONGER AFFINITY TO
 CC 0; -1 - ANOTHER SITE, BEYOND THE GLA DOMAIN. THIS GLA-INDEPENDENT BINDING
 CC 0; -1 - SITE IS NECESSARY FOR THE RECOGNITION OF THE
 CC 0; -1 - THROMBIN-THROMBOMODULIN COMPLEX.
 CC 0; -1 - SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1.
 CC 0; -1 - SIMILARITY: CONTAINS 2 EGF-LIKE DOMAINS.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its

PT DISULFID 161 174 BY SIMILARITY.
 PT DISULFID 182 320 INTERCHAIN (BY SIMILARITY).
 PT DISULFID 239 255 BY SIMILARITY.
 PT DISULFID 373 387 BY SIMILARITY.
 PT DISULFID 398 426 BY SIMILARITY.
 PT CARBOHYD 215 291 N-LINKED (GLCNAC. . .) (POTENTIAL).
 PT CARBOHYD 355 355 N-LINKED (GLCNAC. . .) (POTENTIAL).
 SQ 461 AA; 51912 MW; 8A4C93664EDACD5 CRC64;

Query Match 70.6%; Score 139; DB 1; Length 461;
 Best Local Similarity 59.1%; Pred. No. 3.9e-16;
 Matches 26; Conservative 7; Mismatches 11; Indels 0; Gaps 0; DR InterPro; IPR001081; EGF_Ca.
 PRTC_RABBIT DR InterPro; IPR001254; Ser_protease_Try.
 ID PRTC_RABBIT DR InterPro; IPR00294; VitK_dep_GLA.
 AC Q28661; DR Pfam; PR00008; EGF; 2.
 DT 15-DEC-1998 (Rel. 37, Created) DR Pfam; PR00059; trypsin; 1.
 DT 15-DEC-1998 (Rel. 37, Last sequence update) DR Pfam; PR00594; gla; 1.
 DT 15-JUN-2002 (Rel. 41, Last annotation update) DR SMART; SM00181; EGF; 2.
 DE PRTC_RABBIT DR SMART; SM00069; GLA; 1.
 DE PRTC_RABBIT DR SMART; SM00020; TRY_SPc; 1.
 Oy 1 ANSFLXXLRLQDSLXKXIXDFFXXAKKIFPDYDPLAFNSKH 44 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 Db 42 ANSFLLEEVRAGSLEREEMEICDFEEAQEIIFQVNEDTAFWIKY 85 DR PROSITE; PS00022; EGF; 1.
 DR PROSITE; PS01186; EGF; 2.
 DR PROSITE; PS01187; EGF_Ca; 1.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 DR PROSITE; PS00240; TRYSSIN_DOM; 1.
 DR PROSITE; PS00134; TRYSSIN_HIS; 1.
 DR PROSITE; PS00135; TRYSSIN_SBR; 1.
 KW Blood coagulation; Glycoprotein; Serine protease; KW Gamma-carboxyglutamic acid; Calcium-binding; Vitamin K; Hydroxylation;
 KW EGF-like domain; Repeat; Endothelial cell; Hydrolase; Signal. KW Gamma-carboxyglutamic acid; Calcium-binding; Vitamin K; Hydroxylation;
 FT NON_TER 1 1 BY SIMILARITY.
 FT SIGNAL <1 27 BY SIMILARITY.
 FT PROPEP 28 36 BY SIMILARITY.
 FT CHAIN 37 458 BY SIMILARITY.
 FT CHAIN 37 192 VITAMIN K-DEPENDENT PROTEIN C.
 FT CHAIN 195 458 PROTEIN C LIGHT CHAIN (BY SIMILARITY).
 FT PEPTIDE 195 209 PROTEIN C HEAVY CHAIN (BY SIMILARITY).
 FT SITE 209 210 ACTIVATION PEPTIDE (BY SIMILARITY).
 FT DOMAIN 91 126 CLEAVAGE (BY THROMBIN) (BY SIMILARITY).
 FT DOMAIN 130 170 EGF-LIKE 1.
 FT DOMAIN 210 458 SERINE PROTEASE.
 FT MOD_RES 42 42 GAMMA-CARBOXYGLUTAMIC ACID
 FT MOD_RES 50 50 (BY SIMILARITY).
 FT MOD_RES 52 52 GAMMA-CARBOXYGLUTAMIC ACID
 FT MOD_RES 55 55 (BY SIMILARITY).
 FT MOD_RES 56 56 GAMMA-CARBOXYGLUTAMIC ACID
 FT MOD_RES 56 56 (BY SIMILARITY).
 FT MOD_RES 61 61 GAMMA-CARBOXYGLUTAMIC ACID
 FT MOD_RES 62 62 (BY SIMILARITY).
 FT MOD_RES 65 65 GAMMA-CARBOXYGLUTAMIC ACID
 FT MOD_RES 107 107 (BY SIMILARITY).
 FT ACT_SITE 250 250 HYDROXYLATION (BY SIMILARITY).
 FT ACT_SITE 296 296 CHARGE RELAY SYSTEM.
 FT ACT_SITE 399 399 CHARGE RELAY SYSTEM.
 FT DISULFID 53 58 BY SIMILARITY.
 FT DISULFID 86 105 BY SIMILARITY.
 FT DISULFID 95 100 BY SIMILARITY.
 FT DISULFID 99 114 BY SIMILARITY.
 FT DISULFID 116 125 BY SIMILARITY.
 FT DISULFID 134 145 BY SIMILARITY.
 FT DISULFID 141 154 BY SIMILARITY.
 FT DISULFID 156 169 BY SIMILARITY.
 FT DISULFID 177 316 INTERCHAIN (BY SIMILARITY).
 FT DISULFID 235 251 BY SIMILARITY.
 FT DISULFID 370 384 BY SIMILARITY.
 FT DISULFID 395 423 BY SIMILARITY.
 FT CARBOHYD 133 133 N-LINKED (GLCNAC. . .) (POTENTIAL).
 FT CARBOHYD 287 287 N-LINKED (GLCNAC. . .) (POTENTIAL).
 FT CARBOHYD 352 352 N-LINKED (GLCNAC. . .) (POTENTIAL).
 SQ 458 AA; 51087 MW; D5A5F990CBF29D7 CRC64;

Query Match 70.1%; Score 138; DB 1; Length 458;
 Best Local Similarity 59.1%; Pred. No. 5.7e-16;
 Matches 26; Conservative 4; Mismatches 14; Indels 0; Gaps 0; DR InterPro; IPR000561; EGF-like.
 DR InterPro; IPR000561; EGF-like.

FT DISULFIDE 159 172 BY SIMILARITY.
 FT DISULFIDE 180 318 INTERCHAIN.
 FT DISULFIDE 237 253 RN [6]
 FT DISULFIDE 368 382 RP ACTIVE SITE.
 FT DISULFIDE 393 421 RX MEDLINE-73053314; PubMed=4264286;
 FT CARBOHYD 136 136 N-LINKED (GLCNAC. . .).
 FT CARBOHYD 289 289 N-LINKED (GLCNAC. . .).
 FT CARBOHYD 350 350 N-LINKED (GLCNAC. . .).
 FT VARIANT 366 366 N-LINKED (GLCNAC. . .).
 FT CONFLICT 82 82 F -> K.
 SEQUENCE 455 456 AA: 51407 MW: CAAF6833FB94C209 CR664; VP -> PV. (IN REF. 4).
 Query Match 61.9%; Score 122; DB 1; Length 456;
 Best Local Similarity 50.0%; Pred. No. 3 3e-13;
 Matches 21; Conservative 9; Mismatches 12; RT
 QY 1 ANSFLAXLROSSLXRXCIXXICDFXXAKXIFDDVDTLAFWS 42
 DB 40 ANSFLELRLPGNWERECEEEVCEFEAREIQTONTEDIMAFWS 81
 RESULT 7
 FA10_BOVIN STANDARD; PRT; 492 AA.
 AC P00743; PRT; 492 AA.
 DT 21-JUL-1986 (Rel. 01, Created)
 DT 13-Aug-1987 (Rel. 05, last sequence update)
 DT 15-JUN-2002 (Rel. 41, last annotation update)
 DE Coagulation factor X precursor (EC 3.4.21.6) (Stuart factor).
 GN F10.
 OS Bos taurus (Bovine).
 OC Bovidae; Metzooa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
 OC Bovidae; Bovine; Bos.
 NCBI_TAXID=9913;
 RN [1] SEQUENCE OF 1-487 FROM N A.
 RP MEDLINE-84247315; PubMed=6330671;
 RX MEDLINE-6330671; PubMed=6330671;
 RA Fung M.R., Campbell R.M., McGillivray R.T.A.;
 RT "Blood coagulation factor X mRNA encodes a single polypeptide chain
 containing a propro leader sequence.";
 RL Nucleic Acids Res. 12:481-492(1984).
 RN [2] SEQUENCE OF 41-180.
 RP MEDLINE-80130563; PubMed=67666735;
 RX MEDLINE-67666735; PubMed=67666735;
 RA Enfield D.L., Ericsson L.H., Fujikawa K., Walsh K.A., Neurath H.,
 RT Titani K.;
 RA "Amino acid sequence of the light chain of bovine factor XI (Stuart
 factor).";
 RL Biochemistry 19:659-667(1980).
 RN [3] REVISION TO 103.
 RP MEDLINE=03308813; PubMed=6688526;
 RX McMullen B.A., Fujikawa K., Kisiel W.;
 RT "The occurrence of beta-hydroxyaspartic acid in the vitamin
 K-dependent blood coagulation zymogens";
 RL Biochem. Biophys. Res. Commun. 115:8-14(1983).
 RN [4] SEQUENCE OF 183-492, CARBOHYDRATE-LINKAGE SITES, AND DISULFIDE BONDS.
 RP MEDLINE=16053069; PubMed=1039093;
 RX Titani K., Fujikawa K., Enfield D.L., Ericsson L.H., Walsh K.A.,
 RA Neurath H.;
 RT "Bovine factor XI (Stuart factor): amino-acid sequence of heavy
 chain.";
 RL Proc. Natl. Acad. Sci. U.S.A. 72:3082-3086(1975).
 RN [5] SEQUENCE OF 183-233, AND CARBOHYDRATE-LINKAGE SITES.
 RP MEDLINE=94062825; PubMed=8243461;
 RX Inoue K., Morita T.;
 RT "Identification of O-linked oligosaccharide chains in the activation
 peptides of blood coagulation factor X. The role of the carbohydrate
 moieties in the activation of factor X.";
 RT BY THE EXCISION OF TWO ARG RESIDUES AND ARE HELD TOGETHER BY 1 OR
 CC RL Eur. J. Biochem. 218:153-163(1993).
 CC RN [6]
 CC RT ACTIVE SITE.
 CC RX MEDLINE-73053314; PubMed=4264286;
 CC RA Titani K., Hermoson M.A., Fujikawa K., Ericsson L.H., Walsh K.A.,
 RA Neurath H., Davie E.W.;
 CC RT "Bovine factor X la (activated Stuart factor). Evidence of homology
 with mammalian serine proteases.";
 CC RL Biochemistry 11:4899-4903(1972).
 CC RN [7]
 CC RP PROCESSING.
 CC RX MEDLINE-7603121; PubMed=1059122;
 CC RA Fujikawa K., Titani K., Davie E.W.;
 CC RT "Activation of bovine factor X (Stuart factor): conversion of factor
 X-alpha to factor Xa-beta.";
 CC RL Proc. Natl. Acad. Sci. U.S.A. 72:3359-3363(1975).
 CC RX MEDLINE=84185716; PubMed=6546930;
 CC RA Sugo T., Broer T., Holmgren A., Stenflo J.;
 CC RT "Calcium-binding properties of bovine factor X lacking the gamma-
 carboxyglutamic acid-containing region.";
 CC RL J. Biol. Chem. 259:5705-5710(1984).
 CC RN [9]
 CC RP SULFATION.
 CC RX MEDLINE=86140210; PubMed=3949800;
 CC RA Morita T., Jackson C.M.;
 CC RT "Localization of the structural difference between bovine blood
 coagulation factors X1 and X2 to tyrosine 18 in the activation
 peptide.";
 CC RL J. Biol. Chem. 261:4008-4014(1986).
 CC RN [10]
 CC RP STRUCTURE BY NMR OF 85-126.
 CC RX MEDLINE=91084483; PubMed=2261466;
 CC RA Selander M., Persson E., Stenflo J., Drakenberg T.;
 CC RT "1H NMR assignment and secondary structure of the Ca2(+)-free form of
 the amino-terminal epidermal growth factor like domain in coagulation
 factor X.";
 CC RL Biochemistry 29:8111-8118(1990).
 CC RN [11]
 CC RT STRUCTURE BY NMR OF 85-126.
 CC RX MEDLINE=92329412; PubMed=1627540;
 CC RA Ulmer M., Selander M., Persson E., Stenflo J., Drakenberg T.,
 CC RL Teleman O.;
 CC RT "The three-dimensional structure of the apo form of the N-terminal
 EGF-like module of blood coagulation factor X as determined by NMR
 spectroscopy and simulated folding.";
 CC RL Biochemistry 31:5974-5983(1992).
 CC RN [12]
 CC RP STRUCTURE BY NMR OF 85-126.
 CC RX MEDLINE=92406522; PubMed=1527084;
 CC RA Selander-Sunnerhagen M., Ulmer M., Persson E., Teleman O.,
 CC RT Stenflo J., Drakenberg T.;
 CC RT "How an epidemic growth factor (EGF)-like domain binds calcium. High
 resolution NMR structure of the calcium form of the NH2-terminal EGF-
 like domain in coagulation factor X.";
 CC RL J. Biol. Chem. 267:19642-19649(1992).
 CC RN [13]
 CC RP STRUCTURE BY NMR OF 41-126.
 CC RX MEDLINE=96387194; PubMed=8747474;
 CC RA Sunnerhagen M., Olah G.A., Stenflo J., Forssen S., Drakenberg T.,
 CC RA Treurneck J.;
 CC RT "The relative orientation of Gla and EGF domains in coagulation
 factor X is altered by Ca2+ binding to the first EGF domain. A
 combined NMR-small angle X-ray scattering study.";
 CC RL Biochemistry 35:11547-11559(1996).
 CC -1- FUNCTION: Factor Xa is a vitamin K-dependent glycoprotein that
 converts prothrombin to thrombin in the presence of factor Va,
 CC calcium and phospholipid during blood clotting.
 CC -1- CATALYTIC ACTIVITY: Preferential cleavage: Arg-1-Thr and then
 CC Arg-1-Tle bonds in prothrombin to form thrombin.
 CC -1- SUBUNIT: THE TWO CHAINS ARE FORMED FROM A SINGLE-CHAIN PRECURSOR OR

CC MORE DISULFIDE BONDS.

CC -1- PPM: THE VITAMIN K-DEPENDENT, ENZYMIC CARBOXYLATION OF SCME

CC GLUTAMIC ACID RESIDUES ALLOWS THE MODIFIED PROTEIN TO BIND

CC CALCIUM.

CC -1- PTM: N- AND O-GLYCOSYLATED.

CC -1- PTM: THE ACTIVATION PEPTIDE IS CLEAVED BY FACTOR VIIA (IN THE EXTRINSIC PATHWAY), OR BY FACTOR VIIA (IN THE INTRINSIC PATHWAY).

CC -1- MISCELLANEOUS: CALCIUM ALSO BOUNDS, WITH STRONGER AFFINITY TO ANOTHER SITE, BEYOND THE GLA DOMAIN.

CC -1- SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1.

CC -1- SIMILARITY: CONTAINS 2 EGF-LIKE DOMAINS.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.ebi.ac.uk/announce/> or send an email to license@ebi.ac.uk).

CC EMBL: X00673; CAA2286.1; -

CC PIR: A0025; EXPO.

CC PDB: 1APO; 31-JAN-94.

CC PDB: 1CCF; 31-MAY-94.

CC PDB: 1HHE; 15-MAY-97.

CC PDB: 1WHE; 15-MAY-97.

CC MEROPS: S01; 216; -

CC DR GLYCOSUITEDB; P00743; -

CC DR Glycosidase; AxS, hydroxyl.

CC DR InterPro; IPR00152; Chymotrypsin.

CC DR InterPro; IPR00561; EGF-like.

CC DR InterPro; IPR00742; EGF-2.

CC DR InterPro; IPR00181; EGF-Ca.

CC DR InterPro; IPR0233; GLA-blood.

CC DR InterPro; IPR01254; Ser-protease_Try.

CC DR InterPro; IPR00294; VitK_dep_GLA.

CC Pfam: PF00008; EGF; 2.

CC DR Pfam: PF00089; trypsin; 1.

CC DR Pfam: PF00594; gta; 1.

CC DR PRINTS: PR0072; CHMOTRYPsin.

CC DR PRINTS: PR00001; GLA-BLOOD.

CC DR SMART: SM00179; EGF-CA; 1.

CC DR SMART: SM00001; EGF-LIKE; 1.

CC DR SMART: SM00069; GLA; 1.

CC DR SMART: SM00020; TRYSP_C; 1.

CC DR PROSITE: PS00010; ASX_HYDROXYL; 1.

CC DR PROSITE: PS00022; EGF-1; 1.

CC DR PROSITE: PS01186; EGF-2; 2.

CC DR PROSITE: PS01187; EGF-CA; 1.

CC DR PROSITE: PS00011; GLU_CARBOXYLATION; 1.

CC DR PROSITE: PS00240; TRYPSIN-DOM; 1.

CC DR PROSITE: PS00134; TRYPSIN-HIS; 1.

CC DR PROSITE: PS00135; TRYPSIN-SER; 1.

CC KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation; Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K; Signal; zymogen; EGF-like domain; Repeat; Sulfation; 3D-structure.

FT SIGNAL 1 23 POTENTIAL.

FT PROPEP 24 40 FACTOR X LIGHT CHAIN.

FT CHAIN 41 180 FACTOR X HEAVY CHAIN.

FT PROPEP 183 233 ACTIVATION PEPTIDE.

FT CHAIN 234 492 ACTIVATED FACTOR XA, HEAVY CHAIN.

FT PROPEP 476 492 MAY BE REMOVED BUT IS NOT NECESSARY FOR ACTIVATION.

FT DOMAIN 86 122 EGF-LIKE 1, CALCIUM-BINDING (POTENTIAL).

FT DOMAIN 125 155 EGF-LIKE 2.

FT DOMAIN 234 492 SERINE PROTEASE.

FT ACT SITE 275 275 CHARGE RELAY SYSTEM.

FT ACT SITE 321 321 CHARGE RELAY SYSTEM.

FT ACT SITE 418 418 CHARGE RELAY SYSTEM.

FT MOD RES 46 46 GAMMA-CARBOXYGLUTAMIC ACID.

FT MOD RES 47 47 GAMMA-CARBOXYGLUTAMIC ACID.

FT MOD RES 54 54 GAMMA-CARBOXYGLUTAMIC ACID.

FT MOD_RES 56 55 GAMMA-CARBOXYGLUTAMIC ACID.

FT MOD_RES 59 59 GAMMA-CARBOXYGLUTAMIC ACID.

FT MOD_RES 60 60 GAMMA-CARBOXYGLUTAMIC ACID.

FT MOD_RES 65 65 GAMMA-CARBOXYGLUTAMIC ACID.

FT MOD_RES 66 66 GAMMA-CARBOXYGLUTAMIC ACID.

QY 1 ANSFLXXIIRQGSIXRCIXXICDFXXAKXKIFDVDDTLAFWSRK 57.9%; Score 114; DB 1; Length 492; Best Local Similarity 45.5%; Pred. No. 8; 66-12; Mismatches 16; Indels 0; Gaps 0

Db 41 ANSFLVEEKGQNLEREECLEASLSEAREVFEAQDEFADQTFDWSKY 57.9%; Score 114; DB 1; Length 492; Best Local Similarity 45.5%; Pred. No. 8; 66-12; Mismatches 16; Indels 0; Gaps 0

RESULT 8

FA10_HUMAN

ID FA10_HUMAN STANDARD; PRT; 488 AA.

AC P00742; 014340; 21-JUL-1986 (Rel. 01, Created)

DT 01-OCT-1988 (Rel. 12, Last sequence update)

DT 15-JUN-2002 (Rel. 41, Last annotation update)

DE Coagulation factor X precursor (EC 3.4.21.6) (Stuart factor).

GN FI0.

OS Homo sapiens (Human)

OC Eukaryota; Metazoa; Chordata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominoidea; Homo.

OX NCBI_TaxID=9606;

RN [1]

SEQUENCE FROM N.A.

RX MEDLINE:91216473; PubMed=1902434;

RX Messier T.L., Pittman D.D., Kaufman R.J., Church W.R.; RT "Cloning and expression in COS-1 cells of a full-length cDNA encoding human coagulation factor X.",

RT Gene 99:291-294(1991).

RN [2]

RP SEQUENCE FROM N.A.

RX MEDLINE:87026600; PubMed=3768336;

RX Lextus S.P., Foster D.C., Kurachi K., Davie E.W.; RT "Gene for human factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and protein C";

RT Biochemistry 25:5098-5102(1986).

RN [3]

RP SEQUENCE OF 13-488 FROM N.A.

RX MEDLINE:85216545; PubMed=25212420;

RX Fung M.R., Hay C.W., McMillivray R.T.A.; RT "Characterization of an almost full-length cDNA coding for human blood coagulation factor X";

RT Proc. Natl. Acad. Sci. U.S.A. 82:3591-3595(1985).

RN [4]

RP SEQUENCE OF 19-488 FROM N.A.

RX MEDLINE:86221713; PubMed=3011603;

RX TISSUE=Liver;

RX Kaul R.K., Hildebrand B., Roberts S., Jagadeeswaran P.; RT "Isolation and characterization of human blood-coagulation factor X

RT CDNA. ";

RN Gene 41:311-314(1986).

RN [5]

RP SEQUENCE OF 41-179.

RX MEDLINE:8325207; PubMed=6871167;

RX McMullen B.A., Fujikawa K., Kisiel W., Sasagawa T., Howald W.N., RA Kwa E.Y., Weinstein B.;

RT "Complete amino acid sequence of the light chain of human blood RT coagulation factor X: evidence for identification of residue 63 as beta-hydroxyaspartic acid.;"

RT Biochemistry 22:2875-2884(1993).

RN [6]

RP SEQUENCE OF 115-488 FROM N.A., AND TISSUE SPECIFICITY.

RC TISSUE=Liver;

RX MEDLINE:84222026; PubMed=6587384;

RX LEYVIS S.P., Chung D.W., Kisiel W., Kurachi K., Davie E.W.; RT "Characterization of a cDNA coding for human factor X;"

DR Proc. Natl. Acad. Sci. U.S.A. 81:3699-3702(1984).
 RN [7] SEQUENCE OF 183-234, AND CARBOHYDRATE-LINKAGE SITES.
 RP MEDLINE=94052825; PubMed=8243461;
 RA Inoue K.; Morita T.;
 RT Identification of O-linked oligosaccharide chains in the activation
 moieties in the activation of factor X. The role of the carbohydrate
 Eur. J. Biochem. 218:153-163(1993).
 RN [8] SEQUENCE OF 1-23 FROM N.A.
 RP MEDLINE=90128295; PubMed=1612918;
 RA Jagadeeswaran P.; Reddy S.V.; Rao K.J.;
 RT "Cloning and characterization of the 5' end (exon 1) of the gene
 encoding human factor X.";
 RL Gene 84:517-519(1989).
 RN [9] X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 86-179 AND 235-278.
 RP MEDLINE=93362077; PubMed=8355279;
 RA Padmanabhan K.; Padmanabhan K.P.; Tulinsky A.; Park C.H.; Bode W.;
 RA Huber R.; Blankenship D.T.; Cardin A.D.; Kisiel W.;
 RT "Structure of human des(1-45) factor Xa at 2.2-A resolution.";
 RL J. Mol. Biol. 232:947-966(1993).
 RN [10] X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 86-179 AND 235-278.
 RX MEDLINE=98283982; PubMed=9618463;
 RA Kamata K.; Kawamoto H.; Honma T.; Iwama T.; Kim S.H.;
 RT "Structural basis for chemical inhibition of human blood coagulation
 factor Xa";
 RL Proc. Natl. Acad. Sci. U.S.A. 95:6630-6635(1998).
 CC -I- FUNCTION: Factor Xa is a vitamin K-dependent glycoprotein that
 converts prothrombin to thrombin in the presence of factor Va,
 calcium and phospholipid during blood clotting.
 -I- CATALYTIC ACTIVITY: Preferential cleavage: Arg-|-Thr and then
 Arg-|-Ile bonds in prothrombin to form thrombin.
 -I- SUBUNIT: THE TWO CHAINS ARE FORMED FROM A SINGLE-CHAIN PRECURSOR
 BY THE EXCISION OF TWO ARG RESIDUES AND ARE HELD TOGETHER BY 1 OR
 CC MORE DISULFIDE BONDS.
 CC -I- TISSUE SPECIFICITY: Plasma; synthesized in the liver.
 CC -I- PTM: THE VITAMIN K-DEPENDENT, ENZYMATIC CARBOXYLATION OF SOME
 GLUTAMIC ACID RESIDUES ALLOWS THE MODIFIED PROTEIN TO BIND
 CALCIUM.
 CC -I- PTM: N- AND O-GLYCOSYLATED.
 CC -I- PTM: THE ACTIVATION PEPTIDE IS CLEAVED BY FACTOR IXA (IN THE
 INTRINSIC PATHWAY) OR BY FACTOR VIIA (IN THE EXTRINSIC PATHWAY).
 CC -I- SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1.
 CC -I- SIMILARITY: CONTAINS 2 EGF-LIKE DOMAINS.
 CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 between the Swiss Institute of Bioinformatics and the EMBL outstation -
 the European Bioinformatics Institute. There are no restrictions on its
 use by non profit institutions as long as its content is in no way
 modified and this statement is not removed. Usage by and for commercial
 entities requires a license agreement (See <http://www.isb-sib.ch/announce/>
 or send an email to license@isb-sib.ch).
 CC
 DR EMBL; K03194; AAA52490; -;
 DR EMBL; M57285; AAA52421; -;
 DR EMBL; L29433; AAA52764; -;
 DR EMBL; L00390; AAA52764; -;
 DR EMBL; L00391; AAA52764; -;
 DR EMBL; L00392; AAA52764; -;
 DR EMBL; L00393; AAA52764; -;
 DR EMBL; L00394; AAA52764; -;
 DR EMBL; L00395; AAA52764; -;
 DR EMBL; L00396; AAA52764; -;
 DR EMBL; M22613; AAA51984; -;
 DR EMBL; K01886; AAA52486; -;
 DR EMBL; M33297; AAA52636; -;
 DR PIR; A00924; EXH0;
 DR A25853; A22853;
 PIR; A24478; A24478;
 DR PDB; 1HCG; 08-MAY-95.

DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_Ca; 1.
 DR SMART; SM00020; TRYPSIN; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; 1.
 DR PROSITE; PS00022; EGF_1; 1.
 DR PROSITE; PS00001; PROSITE.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 KW Glycoprotein; Hydrolase; Serine protease; Plasma; Blood coagulation;
 KW Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K;
 KW Signal; Zymogen; EGF-like domain; Repeat; 3D-structure.
 FT SIGNAL; 31
 FT PROPEP; 40
 FT CHAIN; 41
 FT CHAIN; 179
 FT PROPEP; 488
 FT CHAIN; 183
 FT DOMAIN; 234
 FT DOMAIN; 235
 FT DOMAIN; 125
 FT DOMAIN; 165
 FT DOMAIN; 46
 FT MOD_RES; 47
 FT MOD_RES; 54
 FT MOD_RES; 56
 FT MOD_RES; 59
 FT MOD_RES; 60
 FT MOD_RES; 65
 FT MOD_RES; 66
 FT MOD_RES; 69
 FT MOD_RES; 72
 FT MOD_RES; 79
 FT MOD_RES; 103
 FT CARBOHYD; 199
 FT CARBOHYD; 211
 FT CARBOHYD; 221
 FT CARBOHYD; 221
 FT CARBOHYD; 231
 FT CARBOHYD; 231
 FT ACT_SITE; 276
 FT ACT_SITE; 322
 FT ACT_SITE; 419
 FT ACT_SITE; 90
 FT DISULFID; 95
 FT DISULFID; 110
 FT DISULFID; 121
 FT DISULFID; 129
 DR PDB; 1FAX; 29-OCT-97.
 DR PDB; 1FXY; 17-JUN-98.
 DR PDB; 1XKA; 23-MAR-99.
 DR MEDOPS; S01216; -.
 DR GlycosulitedB; P00742; -.
 DR Genew; HGNC; 3528; F10.
 DR MIN; 134530; -.
 DR 227600; -.
 DR InterPro; IPR000152; AxS_hydroxyl.
 DR InterPro; IPR000314; Chymotrypsin.
 DR InterPro; IPR000561; EGF_2.
 DR InterPro; IPR000742; EGF_2.
 DR InterPro; IPR001881; EGF_Ca.
 DR InterPro; IPR02383; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR SMART; SM00001; EGF_Like; 1.
 DR SMART; SM00008; EGF; 2.
 DR Pfam; PF00089; trypsin; 1.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO022; CHYMOTRYPSIN.
 DR PRINTS; PRO0001; GLABLOOD.

KW	Gamma-carboxyglutamic acid; Hydroxylation; Calcium-binding; Vitamin K; Signal; zymogen; EGF-like domain; Repeat.	GN	F7.
FT	PROPEP	21	20
FT	POTENTIAL	40	POTENTIAL.
FT	BY SIMILARITY.		
FT	FACTOR X LIGHT CHAIN.		
FT	CHAIN	41	180
FT	FACTOR X HEAVY CHAIN.		
FT	PROPEP	184	232
FT	ACTIVATION PEPTIDE.		
FT	CHAIN	233	490
FT	DOMAIN	125	165
FT	DOMAIN	233	490
FT	MOD-RES	46	46
FT	ACTIVATED FACTOR XA, HEAVY CHAIN.		
FT	EGF-LIKE 1, CALCIUM-BINDING (POTENTIAL).		
FT	EGF-LIKE 2.		
FT	SERINE PROTEASE.		
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	47	47
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	54	54
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	56	56
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	59	59
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	60	60
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	65	65
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	66	66
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	69	69
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	72	72
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	75	75
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	79	79
FT	GAMMA-CARBOXYGLUTAMIC ACID (BY SIMILARITY).		
FT	MOD-RES	103	103
FT	ACT-SITE	274	274
FT	CHARGE RELAY SYSTEM.		
FT	CHARGE RELAY SYSTEM.		
FT	DISUFDID	90	101
FT	BY SIMILARITY.		
FT	DISUFDID	95	110
FT	BY SIMILARITY.		
FT	DISUFDID	112	121
FT	BY SIMILARITY.		
FT	DISUFDID	129	140
FT	BY SIMILARITY.		
FT	DISUFDID	149	149
FT	BY SIMILARITY.		
FT	DISUFDID	151	164
FT	BY SIMILARITY.		
FT	DISUFDID	172	340
FT	INTERCHAIN (BY SIMILARITY).		
FT	DISUFDID	239	244
FT	BY SIMILARITY.		
FT	DISUFDID	259	275
FT	BY SIMILARITY.		
FT	DISUFDID	388	402
FT	BY SIMILARITY.		
FT	DISUFDID	413	441
FT	BY SIMILARITY.		
FT	CARBONYD	61	61
FT	N-LINKED (GlcNAc. .) (POTENTIAL).		
FT	CARBONYD	187	187
FT	N-LINKED (GlcNAc. .) (POTENTIAL).		
FT	CARBONYD	205	205
FT	N-LINKED (GlcNAc. .) (POTENTIAL).		
FT	SEQUENCE	490	AA;
FT	53965 MW;		
FT	3A39FAB5AF2A6D11 CRC64;		
FT	Query Match	52	38;
FT	Score	103;	DB 1;
FT	Length	490;	
FT	Best Local Similarity	43.28;	Pred. No. 6. 8e-10;
FT	Matches	19;	Conservative 9;
FT	Mismatches	16;	Indels 0;
FT	Gaps	0;	
FT	RESULT 11		
FT	RABBIT		
ID	FA7_RABBIT; STANDARD;	PRT;	444 AA.
AC	P98139; P79224;		
DT	01-FEB-1996 (Rel. 33, Created)		
DT	15-JUL-1998 (Rel. 36, Last sequence update)		
DT	15-JUN-2002 (Rel. 41, Last annotation update)		
DE	Coagulation Factor VII precursor (EC 3.4.21.21) (Serum prothrombin conversion accelerator).		
KW	Hydrolase; Serine protease; Blood coagulation; Zymogen; Glycoprotein;		
FT	SEQUENCE FROM N.A.		
FT	TISSUE-Liver;		
FT	MEDLINE-93190306; PubMed=8383365;		
FT	Brothers, A.B.; Clarke, B.J.; Shefield, W.P.; Blajchman, M.A.;		
FT	"Complete nucleotide sequence of the cDNA encoding rabbit coagulation factor VII"; Res. Suppl. 69:231-238 (1993).		
FT	[2]		
FT	REVISION TO 395.		
FT	TISSUE-Liver;		
FT	Ruiz, S.R.; Blajchman, M.A.; Clarke, B.J.;		
FT	Submitted (NOV-1996) to the EMBL/GenBank/DBJ databases.		
FT	CC		
FT	CONVERTED TO FACTOR VIIA BY FACTOR XA, FACTOR XIA, OR		
FT	THROMBIN BY MINOR PROTEOLYSIS. IN THE PRESENCE OF TISSUE FACTOR AND CALCIUM IONS, FACTOR VIIA THEN CONVERTS FACTOR X TO FACTOR XA BY LIMITED PROTEOLYSIS. FACTOR VIIA WILL ALSO CONVERT FACTOR IX TO		
FT	FACTOR IXA IN THE PRESENCE OF TISSUE FACTOR AND CALCIUM (BY SIMILARITY).		
FT	CC		
FT	-!- CATALYTIC ACTIVITY: Hydrolyzes one Arg-Lys bond in factor X to form factor Xa.		
FT	CC		
FT	-!- SUBUNIT: HETERO-DIMER OF A LIGHT CHAIN AND A HEAVY CHAIN LINKED BY A DISULFIDE BOND (BY SIMILARITY).		
FT	CC		
FT	-!- TISSUE SPECIFICITY: PLASMA.		
FT	CC		
FT	-!- PIM: THE VITAMIN K-DEPENDENT, ENZYMATIC CARBOXYLATION OF SOME GLUTAMIC ACID RESIDUES ALLOWS THE MODIFIED PROTEIN TO BIND CALCIUM (BY SIMILARITY).		
FT	CC		
FT	-!- SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1.		
FT	CC		
FT	-!- SIMILARITY: CONTAINS 2 EGF-LIKE DOMAINS.		
FT	CC		
FT	This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation in the European Bioinformatics Institute. There are no restrictions on use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announcements or send an email to licensees@isb-sib.ch).		
FT	CC		
FT	EMBL: U77477; AAB3726.1; -.		
FT	HSSP: P0809; IFAK.		
FT	MEROPS: S01.215; -.		
FT	InterPro: IPR000152; Asx_hydroxyl.		
FT	InterPro: IPR001314; Chymotrypsin.		
FT	InterPro: IPR000561; EGF-like.		
FT	InterPro: IPR000742; EGF_2.		
FT	InterPro: IPR001881; EGF_Ca.		
FT	InterPro: IPR002383; GLA_blood.		
FT	InterPro: IPR001254; ser_protease_try.		
FT	InterPro: IPR000294; Vitk_dep_GLA.		
FT	InterPro: IPR00008; EGF_2.		
FT	Pfam: PF00008; trypsin; 1.		
FT	Pfam: PF00594; gta; 1.		
FT	PRINTS: PR00072; CHMOTRYPsin.		
FT	PRINTS: PR00001; GLABLOOD.		
FT	SMART: SM00179; EGF_Ca; 1.		
FT	SMART: SM00001; EGF-like; 1.		
FT	SMART: SM00069; GLA; 1.		
FT	SMART: SM00020; TRYPC; 1.		
FT	PROSITE: PS00010; ASX_HYDROXYL; 1.		
FT	PROSITE: PS00022; EGF_1; 1.		
FT	PROSITE: PS00186; EGF_2; 1.		
FT	PROSITE: PS00117; EGF_Ca; 1.		
FT	PROSITE: PS00011; GLU_CARBOXYLATION; 1.		
FT	PROSITE: PS50340; TRYPSIN_DOM; 1.		
FT	PROSITE: PS00134; TRYPSIN_HIS; 1.		
FT	PROSITE: PS00135; TRYPSIN_SER; 1.		

KW	LIVER; PLASMA; Vitamin K; Calcium-binding; Gamma-carboxyglutamic acid; EGF-like domain; Repeat; Signal; Signal; Hydroxylation.	RA	Davie E.W.;
FT	SIGNAL	1	Characterization of a cDNA coding for human factor VII.;
FT	PROPEP	21	Proc. Natl. Acad. Sci. U.S.A. 83:2412-2416(1986).
FT	POTENTIAL	39	RT
FT	POTENTIAL.		RT
FT	CHAIN	40	Proc. Natl. Acad. Sci. U.S.A. 83:2412-2416(1986).
FT	FACTOR VII LIGHT CHAIN.	191	RT
FT	FACTOR VII HEAVY CHAIN.	444	RN
FT	GLA-RICH.	192	[2]
FT	GLA-RICH 1, CALCIUM-BINDING (POTENTIAL).	45	SEQUENCE FROM N.A.
FT	SERINE PROTEASE.	74	RX
FT	CLEAVAGE (BY FACTOR XA, FACTOR XIA, FACTOR IXA, OR THROMBIN) (BY SIMILARITY).	85	RX
FT	ACT-SITE	121	O'Hara P.J., Grant F.J., Haldeman B.A., Gray C.L., Insley M.Y., Hagen F.S., Murray M.J.;
FT	ACT-SITE	167	"Nucleotide sequence of the gene coding for human factor VII, a vitamin K-dependent protein participating in blood coagulation.;"
FT	BINDING	192	Proc. Natl. Acad. Sci. U.S.A. 84:5158-5162(1987).
FT	DOMAIN	444	RN
FT	DOMAIN	192	[3]
FT	SITE	192	SEQUENCE FROM N.A., AND VARIANTS THR-352; GLN-413 AND LYS-445.
FT	ACT-SITE	192	Rieder M.J., Arnel T.Z., Carrington D.P., Chung M.-W., Lee K.L., Poel C.L., Toth E.J., Yi O., Nickerson D.A.;
FT	BINDING	192	Submitted (JAN-2002) to the EMBL/GenBank/DBJ databases.
FT	DISULFID	56	RN
FT	DISULFID	61	SEQUENCE OF 61-466, AND POST-TRANSLATIONAL MODIFICATIONS.
FT	DISULFID	89	RX
FT	DISULFID	100	MEDLINE-89088153; PubMed-3264725;
FT	DISULFID	109	Thim L., Bjoern S., Christensen M., Nicolaisen E.M., Lund-Hansen T., Riede M.J., Arnel T.Z., Carrington D.P., Chung M.-W., Lee K.L., Poel C.L., Toth E.J., Yi O., Nickerson D.A.;
FT	DISULFID	120	RA
FT	DISULFID	141	"Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells.;"
FT	DISULFID	137	RA
FT	DISULFID	151	RN
FT	DISULFID	153	RT
FT	DISULFID	166	RT
FT	DISULFID	174	RT
FT	DISULFID	194	RT
FT	DISULFID	203	RT
FT	DISULFID	217	RT
FT	DISULFID	233	RT
FT	DISULFID	349	RT
FT	DISULFID	379	RT
FT	DISULFID	407	RT
FT	MOD-RES	45	RT
FT	MOD-RES	46	RT
FT	MOD-RES	53	RT
FT	MOD-RES	55	RT
FT	MOD-RES	58	RT
FT	MOD-RES	59	RT
FT	MOD-RES	64	RT
FT	MOD-RES	65	RT
FT	MOD-RES	68	RT
FT	MOD-RES	74	RT
FT	MOD-RES	102	RT
FT	CARBONID	211	RT
FT	CARBONID	242	RT
FT	CARBONID	306	RT
FT	SEQUENCE	444	RT
FT	AA:	4901 MW;	RT
FT		0481ABC4FE5427FB CRC64;	RN
FT		17)	RN
RESULT	12	Query Match	STRUCTURE OF CARBOHYDRATE ON SER-112.
AC	FA7_HUMAN	51.3%	MEDLINE-91250411; PubMed-1904059;
AC	FA7_HUMAN	Score 101; DB 1; length 444;	RA
AC	FA7_HUMAN	Best Local Similarity 46.3%; Pred. No. 1.3c-09;	RX
DT	01-JAN-1988 (Rel. 06, Last sequence update)	Matches 19; Conservative 5; Mismatches 17; Indels 0; Gaps 0;	RA
DT	01-JUN-2002 (Rel. 41, Last annotation update)		RN
DE	Coagulation factor VII precursor (EC 3.4.21.21) (Serum prothrombin conversion accelerator) (Eptacog alfa).		RT
DE	F7.		RT
DE	Human sapiens (Human).		RT
GN		"A new trisaccharide sugar chain linked to a serine residue in the first EGF-like domain of clotting factors VII and IX and protein Z.;"	RT
OS		first EGF-like domain of human factors VII and IX and protein Z and bovine protein Z."	RT
OC	Mammalia; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.	Adv. Exp. Med. Biol. 281:121-131(1990).	RT
OX	NCBI_TAXID=9606;	X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF FVIIA IN COMPLEX WITH TF.	RT
RN	[1]	MEDLINE-96175641; PubMed-8598903;	RT
RN	TISSUE=Liver;	X-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS) OF FVIIA IN COMPLEX WITH TF.	RT
RN	MEDLINE-86205965; PubMed-3486420;	MEDLINE-99126538; PubMed-9925787;	RT
RN	Hagen F.S., Gray C.L., O'Hara P.J., Grant F.J., Saari G.C., Woodbury R.G., Hart C.E., Insley M.Y., Kisiel W., Kurachi K.,	Zhang E., St Charles R., Tulinsky A.; "Structure of extracellular tissue factor complexed with factor VII inhibited with a BPTI mutant.;" J. Mol. Biol. 285:2059-2104(1999).	RT
RN	SEQUENCE FROM N.A.	"The crystal structure of the complex of blood coagulation factor VII with soluble tissue factor.;" Nature 380:41-46(1996).	RT
RN		STRUCTURE BY NMR OF 105-145.	RT
RN		MEDLINE-98167502; PubMed-9692950;	RT
RN		Muranyi A., Finn B.E., Gippert G.P., Forssen S., Stenflo J., Drakenberg T.; "Solution structure of the N-terminal EGF-like domain from human factor VII." J. Biol. Chem. 271:10605-10615(1998).	RT

RP	VARIANT GLN-364;	RN
RX	MEDLINE=91300046; PubMed=2070047;	RN
RA	O'Brien D.P., Gale K.M., Anderson J.S., McVey J.H., Miller G.J.,	RN
RA	Meade T.W., Tuddenham E.G.D.;	RX
RT	"Purification and characterization of factor VII 304-Gln: a variant molecule with reduced activity isolated from a clinically unaffected male.";	RA
RL	Blood 78:132-140(1991).	RA
RL	[12]	RA
RP	VARIANT GLN-364 AND PHE-370;	RA
RX	MEDLINE=92340074; PubMed=1634227;	RA
RA	Marchetti G., Patracchini P., Gemmati D., Derosa V., Pinotti M.,	RA
RA	Rodorigo G., Casonato A., Girolami A., Bernardi F.;	RA
RT	"Detection of two missense mutations and characterization of a repeat polymorphism in the human coagulation factor VII gene (F7).";	RA
RL	Hum. Genet. 89:497-502(1992).	RA
RN	[13]	RA
RP	VARIANT TYR-238;	RA
RX	MEDLINE=93372811; PubMed=8364544;	RA
RA	Marchetti G., Ferrari M., Patracchini P., Redaelli R., Bernardi F.;	RA
RT	"Two new missense mutations (p134T and A24V) in the coagulation factor VII gene";	RA
RT	"Detection of two missense mutations (F7).";	RA
RL	Hum. Mol. Genet. 2:1055-1056(1993).	RA
RN	[14]	RA
RP	VARIANTYS;	RA
RX	MEDLINE=94061028; PubMed=8242057;	RA
RA	Takamatsu O., Kemball-Cook G., Marin D.M.A., Cooper D.N.,	RA
RA	won Felten A., Meili E., Hahn I., Prangnell D.R., Lumley H.,	RA
RA	Tuddenham E.G.D., McVey J.H.;	RA
RT	"Detection of missense mutations by single-strand conformational polymorphism (SSCP) analysis in five dysfunctional variants of coagulation factor VII.";	RA
RT	Hum. Mol. Genet. 2:1355-1359(1993).	RA
RN	[15]	RA
RP	VARIANTYS CHARLOTTE GLN-139 AND GLN-212.	RA
RX	MEDLINE=94204305; PubMed=8204879;	RA
RA	Chang S., Clarke B., Sridhara S., Chu K., Friedman P., Vandusen W.,	RA
RA	Roberts H.R., Blodchman M., Monroe D.M., High K.A.;	RA
RT	"Severe factor VII deficiency caused by mutations abolishing the cleavage site for activation and altering binding to tissue factor.";	RA
RL	Blood 83:3524-3535(1994).	RA
RN	[16]	RA
RP	VARIANT VAL-354.	RA
RX	MEDLINE=95072589; PubMed=7981691;	RA
RA	Bernardi F., Castaman G., Redaelli R., Pinotti M., Lunghi B.,	RA
RA	Rodeghiero F., Marchetti G.;	RA
RT	"Topologically equivalent mutations causing dysfunctional coagulation factors VII (2941a->val) and X (334Ser->Pro).";	RA
RT	"Hum. Mol. Genet. 3:1175-1177(1994)."	RA
RL	[17]	RA
RP	VARIANT MIE HIS-307.	RA
RX	MEDLINE=95084662; PubMed=7974346;	RA
RA	Ohiwa M., Hayashi T., Wada H., Minamikawa K., Shirakawa S., Suzuki K.;	RA
RA	"Factor VII Mie: homozygous asymptomatic type I deficiency caused by an amino acid substitution of His (CAC) for Arg(247) (CGC) in the catalytic domain.";	RA
RT	Thromb. Haemost. 71:773-777(1994).	RA
RN	[18]	RA
RP	VARIANT MET-419.	RA
RX	MEDLINE=96247510; PubMed=8052821;	RA
RA	Arbini A.M., Mannucci P.M., Bauer K.A.;	RA
RT	"A Thr359Met mutation in factor VII of a patient with a hereditary deficiency causes defective secretion of the molecule.";	RA
RT	Blood 87:5085-5094(1996).	RA
RN	[19]	RA
RP	VARIANTYS W-283; K-325; V-358; Q-364; E-402 AND Q-413.	RA
RX	MEDLINE=97001216; PubMed=8844208;	RA
RA	Bernardi F., Castaman G., Pinotti M., Ferraresi P., di Iasio M.G., Lunghi B., Rodeghiero F., Marchetti G.;	RA
RA	"Mutation pattern in clinically asymptomatic coagulation factor VII deficiency";	RA
RT	[20]	RA
RP	VARIANT VAL-304.	RA
RX	MEDLINE=91037613; PubMed=8883260;	RA
RA	Tamary H., Fromovich Y., Shalomon L., Reich Z., Dym O., Lanir N., Brenner B., Paz M., Luder A.S., Blau O., Korostishhevsky M., Zaizov R., Seligsohn U.;	RA
RA	"Ala24Val is a common, probably ancient mutation causing factor VII deficiency in Moroccan and Iranian Jews.";	RA
RL	Thromb. Haemost. 76:283-291(1996).	RA
RN	[21]	RA
RP	VARIANTYS MALTA THR-194 AND VAL-304.	RA
RX	MEDLINE=98112461; PubMed=9452032;	RA
RA	Alshinawi C., Scerri C., Galdies R., Aquilina A., Felice A.E., "Two new missense mutations (p134T and A24V) in the coagulation factor VII gene";	RA
RT	Hum. Mutat. Suppl. 1:1819-S1911(1998).	RA
RL	[22]	RA
CC	-1- FUNCTION: CIRCULATES IN THE BLOOD IN A ZYMOGEN FORM. FACTOR VII IS CONVERTED TO FACTOR VIIA BY FACTOR XA. FACTOR XIA, OR THROMBIN BY MINOR PROTEOLYSIS. IN THE PRESENCE OF TISSUE FACTOR AND CALCIUM IONS, FACTOR VIIA THEN CONVERTS FACTOR X TO FACTOR XA BY LIMITED PROTEOLYSIS. FACTOR VIIA WILL ALSO CONVERT FACTOR IX TO FACTOR IXA IN THE PRESENCE OF TISSUE FACTOR AND CALCIUM.	CC
CC	-1- CATALYTIC ACTIVITY: Hydrolyzes one Arg-1-Tie bond in factor X to form factor Xa.	CC
CC	-1- SUBUNIT: HETERO-DIMER OF A LIGHT CHAIN AND A HEAVY CHAIN LINKED BY A DISULFIDE BOND.	CC
CC	-1- ALTERNATIVE PRODUCTS: 2 isoforms: A (shown here) and B; are produced by alternative splicing.	CC
CC	-1- TISSUE SPECIFICITY: PLASMA.	CC
CC	-1- PTM: THE VITAMIN K-DEPENDENT, ENZYMATIC CARBOXYLATION OF SOME GLUTAMIC ACID RESIDUES ALLOWS THE MODIFIED PROTEIN TO BIND CALCIUM.	CC
CC	-1- DISEASES: DEFECTS IN F7 CAN CAUSE COAGULOPATHY.	CC
CC	-1- PHARMACEUTICAL: Available under the names Niastase or Novoseven (Novo Nordisk). Used for the treatment of bleeding episodes in (Novo Nordisk).	CC
Query	1 ANSFEXLXRQLGLSLXRXCIXXICDFXXAKXKLFEDVDTLAFW 41	DB
DB	61 ANAFLEELRQLSLERCKEBCQSFEEAREIFKDAERTKLFW 101	DB
Result 13		
TMGL-HUMAN		
ID-TMGL-HUMAN		
STANDARD:		
PRT:	218 AA.	
ID		
AC	014688;	
DT	15-JUN-2002 (Rel. 41, Created)	
DT	15-JUN-2002 (Rel. 41, Last sequence update)	
DE	15-JUN-2002 (Rel. 41, Last annotation update)	
DE	Transmembrane gamma-carboxyglutamic acid protein 1 precursor (Proline-rich Gla protein 1) (Proline-rich gamma-carboxyglutamic acid protein 1)	
DE	Homo sapiens (Human)	
DE	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarhini; Hominidae; Homo.	
OC		
OS		
OC		
NCBI-TaxID=9606;		
OX		
RN	[1]	
RP	SEQUENCE FROM N.A.	
RX	MEDLINE=91404347; PubMed=9256434;	
RA	Kulman J.D., Harris J.E., Haldeman B.A., Davie E.W.;	
RT	"Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins";	
RT	Proc. Natl. Acad. Sci. U.S.A. 94:9058-9062(1997).	
RL	-1- TISSUE SPECIFICITY: Highly expressed in the spinal cord.	
CC	CC	
CC	-1- PFM: Gla residues are produced after subsequent posttranslational modifications of glutamic acid by a vitamin K-dependent gamma-carboxylase.	
CC		

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 CC the European Bioinformatics Institute. There are no restrictions on its
 CC use by non-profit institutions as long as its content is in no way
 CC modified and this statement is not removed. Usage by and for commercial
 CC entities requires a license agreement (see <http://www.isb-sib.ch/announce/>
 CC or send an email to license@isb-sib.ch).
 CC

DR Inter-Pro; IPR002383; GLA; blood.
 DR InterPro; IPR000294; VitK_dep,GLA.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00069; GLA; 1.
 DR PROSITE; PS00011; GLU CARBOXYLATION; 1.
 KW Gamma-carboxyglutamic acid; Vitamin K; Transmembrane.
 FT PROPEP 1 20 POTENTIAL.
 FT CHAIN 21 218 TRANSMEMBRANE GAMMA-CARBOXYGLUTAMIC ACID
 FT DOMAIN 21 83 PROTEIN 1.
 FT TRANSMEM 84 106 EXTRACELLULAR (POTENTIAL).
 FT DOMAIN 107 218 CYTOPLASMIC (POTENTIAL).
 FT DOMAIN 24 61 GLA-RICH.
 FT DOMAIN 131 135 POLY-PRO.
 SQ SEQUENCE 218 AA; 24947 MW; 26538461AB0AE98 CRC64;
 Query Match 46.7%; Score 92;; DB 1; Length 218;
 Best Local Similarity 38.6%; Pred. No. 2.1e-08; Indels 0; Gaps 0;
 Matches 17; Conservative 7; Mismatches 20; Indels 0; Gaps 0;
 CC

QY 1 ANSEFLAXRQGSLXRACIXXICDFXXAKXIFEDVDTLAFWSKH 44
 Db 21 ANGFFEBIQQNIEERKEEETTFERAREAEENNEKTEKEWVSTY 64

RESULT 14

THR_RAT ID THRB_RAT STANDARD; PRT; 617 AA.
 AC P18292; DT 01-NOV-1990 (Rel. 16, Created)
 DT 01-NOV-1990 (Rel. 16, Last sequence update)
 DT 15-JUN-2002 (Rel. 41, Last annotation update)
 DE Prothrombin precursor (EC 3.4.21.5).
 GN Rattus norvegicus (Rat).
 OC Eukaryota: Metazoa: Chordata: Craniata: Vertebrata: Euteleostomi;
 OC Mammalia: Eutheria: Rodentia: Sciurognathi: Muridae: Murinae; Rattus.
 RX [1] NCBI_TaxID=10116;
 RC SEQUENCE FROM N_A.
 STRAIN-Sprague-Dawley; TISSUE=Liver;
 RX MEDLINE=9032426; PubMed=2377469;
 RA Dianrich M.; Monard D.;
 RT "cDNA sequence of rat prothrombin".
 RL Nucleic Acids Res. 18:4251-4251(1990).
 RN [12]
 RP SEQUENCE OF 383-617 FROM N_A.
 RC TISSUE=Liver;
 RX MEDLINE=9212913; PubMed=1557383;
 RA Banfield D.K.; Macgillivray R.T.;
 RT "Partial characterization of vertebrate prothrombin cDNAs: amplification and sequence analysis of the B chain of thrombin from nine different species.";
 RT PROC. NATL. ACAD. SCI. U.S.A. 89:2779-2783(1992).
 CC -I- FUNCTION: THROMBIN, WHICH CLEAVES BONDS AFTER ARG & LYS, CONVERTS FIBRINOGEN TO FIBRIN AND ACTIVATES FACTORS V, VII, VIII, XII, AND, IN COMPLEX WITH THROMBOMODULIN, PROTEIN C.
 CC -I- CATALYTIC ACTIVITY: Preferential cleavage Arg-1-Gly; activates fibrinogen to fibrin and releases fibrinopeptide A and B.
 CC -I- PTM: THE GAMMA-CARBOXYGLUTAMYL RESIDUES, WHICH BIND CALCIUM IONS,

CC RESULT FROM THE CARBOXYLATION OF GLUTAMYL RESIDUES BY A MICROSOMAL ENZYME, THE VITAMIN K-DEPENDENT CARBOXYLASE. THE MODIFIED RESIDUES ARE NECESSARY FOR THE CA-DEPENDENT INTERACTION WITH A NEGATIVELY CHARGED PHOSPHOLIPID SURFACE, WHICH IS ESSENTIAL FOR THE CONVERSION OF PROTHROMBIN TO THROMBIN.
 CC -I- MISCELLANEOUS: PROTHROMBIN IS ACTIVATED ON THE SURFACE OF A PHOSPHOLIPID MEMBRANE THAT BINDS THE AMINO END OF PROTHROMBIN & FACTORS VA & XA IN CA-DEPENDENT INTERACTIONS; FACTOR XA REMOVES THE ACTIVATION PEPTIDE & CLEAVES THE REMAINING PART INTO LIGHT & HEAVY CHAINS. THE ACTIVATION PROCESS STARTS SLOWLY BECAUSE FACTOR V ITSELF HAS TO BE ACTIVATED BY THE INITIAL, SMALL AMOUNTS OF THROMBIN.
 CC -I- MISCELLANEOUS: THROMBIN CAN ITSELF CLEAVE THE AMINO TERMINAL FRAGMENT (FRAGMENT 1) OF THE PROTHROMBIN, PRIOR TO ITS ACTIVATION BY FACTOR XA.
 CC -I- SIMILARITY: BELONGS TO PEPTIDE FAMILY S1.
 CC -I- SIMILARITY: CONTAINS 2 KRINGLE DOMAINS.
 CC

CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).
 CC

DR InterPro; IPR002383; CA37017.1; -
 DR EMBL; M81397; S10511.
 DR PIR; S10511; S10511.
 DR HSSP; P0774; IUVS.
 DR MEROPS; S01_217; -
 DR InterPro; IPR001314; Chymotrypsin.
 DR InterPro; IPR000294; VitK_dep,GLA.
 DR InterPro; IPR000001; Kringle.
 DR InterPro; IPR003966; Prothrombin.
 DR SMART; SM00069; GLA; 1.
 DR SMART; SM00130; KR; 2.
 DR SMART; SM00202; TRYSP; 1.
 DR PROSITE; PS00011; GLU CARBOXYLATION; 1.
 DR PROSITE; PS00021; KRINGLE_1; 2.
 DR PROSITE; PS00070; KRINGLE_2; 2.
 DR PROSITE; PS00240; TRYPSIN_DOM; 1.
 DR PROSITE; PS00134; TRYPSIN_HIS; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 DR PROSITE; PS00011; GLU CARBOXYLATION; 1.
 KW Vitamin K; Zymogen; Gamma-carboxyglutamic acid; Acute phase; liver; KW Hydrolase; Serine protease; Kringle; Signal.
 FT SIGNAL 1 24 POTENTIAL.
 FT PROPEP 25 43
 FT CHAIN 44 617 PROTHROMBIN.
 FT PEPTIDE 44 200 ACTIVATION PEPTIDE (FRAGMENT 1).
 FT PEPTIDE 201 323 ACTIVATION PEPTIDE (FRAGMENT 2).
 FT CHAIN 324 359 THROMBIN LIGHT CHAIN (A).
 FT DOMAIN 360 617 THROMBIN HEAVY CHAIN (B).
 FT DOMAIN 109 187 KRINGLE 1.
 FT DOMAIN 215 292 KRINGLE 2.
 FT DOMAIN 360 617 SERINE PROTEASE.
 FT SITE 200 201 CLEAVAGE (BY THROMBIN).
 FT SITE 323 324 CLEAVAGE (BY FACTOR XA).
 FT SITE 359 360 CLEAVAGE (BY FACTOR XA).
 FT ACT_SITE 402 402 CHARGE RELAY SYSTEM (BY SIMILARITY).
 FT ACT_SITE 458 458 CHARGE RELAY SYSTEM (BY SIMILARITY).
 FT ACT_SITE 564 564 CHARGE RELAY SYSTEM (BY SIMILARITY).

PT ACT_SITE 459 459 CHARGE RELAY SYSTEM (BY SIMILARITY).
 PT ACT_SITE 565 565 CHARGE RELAY SYSTEM (BY SIMILARITY).
 PT MOD_RES 50 50 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 51 51 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 58 58 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 60 60 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 63 63 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 64 64 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 69 69 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 70 70 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 73 73 GAMMA-CARBOXYGLUTAMIC ACID.
 PT MOD_RES 76 76 GAMMA-CARBOXYGLUTAMIC ACID.
 PT DISULFID 61 66 BY SIMILARITY.
 PT DISULFID 91 104 BY SIMILARITY.
 PT DISULFID 109 187 BY SIMILARITY.
 PT DISULFID 130 170 BY SIMILARITY.
 PT DISULFID 158 182 BY SIMILARITY.
 PT DISULFID 215 293 BY SIMILARITY.
 PT DISULFID 236 276 BY SIMILARITY.
 PT DISULFID 264 288 BY SIMILARITY.
 PT DISULFID 333 479 INTERCHAIN (BY SIMILARITY).
 PT DISULFID 388 404 BY SIMILARITY.
 PT DISULFID 533 547 BY SIMILARITY.
 PT DISULFID 561 591 BY SIMILARITY.
 PT CARBOHYD 122 122 N-LINKED (GLCNAC. . .).
 PT CARBOHYD 144 144 N-LINKED (GLCNAC. . .).
 PT CARBOHYD 413 413 N-LINKED (GLCNAC. . .).
 PT CARBOHYD 553 553 N-LINKED (GLCNAC. . .).
 SQ SEQUENCE 618 AA; 70268 MW; B89F719AARD601E0 CRC64;

Query Match 43.9%; score 86.5; DB 1; length 618;
 Best Local Similarity 42.2%; pred. No. 6.2e-07;
 Matches 19; Conservative 6; Mismatches 19; Indels 1; Gaps 1;

Qy 1 ANS-FLXXLROGSSLXXCIXICDFXXAKKIFFDVTDTLAFWSKH 44
 Db 44 ANSGFLEELRKGNLERCVCVEQCSVEAEFALESPQDTDVFWAKY 88

Search completed: May 16, 2003, 10:14:50
 Job time : 12 secs

THIS PAGE BLANK (USPTO)

GenCore version 5.1.4_bp5_4578
 Copyright (c) 1993 - 2003 Compugen Ltd.

Om protein - protein search, using sw model

Run on: May 16, 2003, 10:12:19 ; Search time 29 Seconds
 (without alignments)
 312.623 million cell updates/sec

Title: S8Q1-4BDITS

Perfect score: 197
 Sequence: 1 ANSFLLXLrgSLXRCIXX..... XXAKXIFedVDDTLAFWSKH 44

Scoring table: BLOSUM62
 Gapop 10.0 , Gapext 0.5

Searched: 671580 seqs, 206047115 residues

Total number of hits satisfying chosen parameters: 671580

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : SPTREMBL 21: *

1: sp_archeal:*

2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp_mammal:*

7: sp_mhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rabbit:*

12: sp_virus:*

13: sp_vertebrate:*

14: sp_unclassified:*

15: sp_rvirus:*

16: sp_bacteriophage:*

17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	151	76.6	456	6 Q9TRR0
2	140	71.1	460	11 Q91WN8
3	134	68.0	460	11 Q99PC6
4	115	58.4	482	11 063207
5	101	51.3	481	11 057470
6	101	51.3	481	11 099132
7	101	51.3	481	11 088947
8	99	50.3	701	4 Q96PQ8
9	95	48.2	469	6 Q9GMQ9
10	85	43.1	650	4 Q9NSD0
11	85	43.1	650	4 Q16519
12	84	42.6	100	4 Q15253
13	82.5	41.9	542	5 Q8T6T3
14	80	40.6	446	11 Q61109
15	80	40.6	456	4 Q14316
16	80	40.6	461	6 Q95ND7

ALIGNMENTS

RESULT 1

ID	Q9TRR0	PRELIMINARY	PRT	456 AA.
AC	Q9TRR0;			
DT	01-MAY-2000	TREMBREL. 13, Created)		
DT	01-MAY-2000	TREMBREL. 13, Last sequence update)		
DT	01-MAR-2002	(TREMBREL. 20, Last annotation update)		
DE	Protein C precursor.			
GN	Canis familiaris (Dog)			
OS	Canis familiaris			
OC	Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi;			
OC	Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis.			
OX	NCBI_TAXID=9615;			
RN	[1]			
RP	SEQUENCE FROM N.A.			
RA	Leeb T., Kopf T., Deppe A., Breen M., Matis U., Brunnberg L.,			
RA	Brenig B.;			
RT	"Molecular characterization and chromosomal assignment of the canine			
RT	protein C gene."			
RL	Canis. Genome 10:135-139(1999).			
RN	[2]			
RP	SEQUENCE FROM N.A.			
RX	MEDLINE-9371952; PubMed=10443005;			
RA	Leeb T., Pfeiffer T., Kopf T., Deppe A., Brenig B.;			
RT	"Analysis of canine protein C gene polymorphisms.";			
RL	Anim. Genet. 30:237-239(1999)			
CC	-1 SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1; ALSO KNOWN AS THE TRYPSIN FAMILY.			
DR	TRB13; AJ001979; CAA05126.1; -.			
DR	HSPB; P04070; 1PCU.			
DR	MEROPS; S01_2118.			
DR	INTERPRO; IPR00152; Ax _x -hydroxyl.			
DR	INTERPRO; IPR001314; chymotrypsin.			
DR	INTERPRO; IPR000561; ESP-like.			
DR	INTERPRO; IPR011881; EGF_Ca.			
DR	INTERPRO; IPR002383; GLA_blood.			
DR	INTERPRO; IPR001254; Ser_protease_Try.			
DR	INTERPRO; IPR00294; VITK_dep_GL.			
Pfam; PF00008; EGF; 2.				

DR EMBL; BC003877; MAH03877.1; -.
 DR HSSP; P00742; IxKA.
 DR AF087644; AAC36345.1; -.
 DR AF211347; AAF22980.1; -.
 DR MGI; MGI:103107; F10.
 DR IPR0001152; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR001418; EGF_T1.
 DR IPR002383; GLA_blood.
 DR IPR001254; Ser_protease_Try.
 DR IPR000294; VitK_dep_GLA.
 DR PF00008; EGF; 2.
 DR IPR000294; VitK_dep_GLA.
 DR PF0008; EGF; 2.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR000294; VitK_dep_GLA.
 DR SMART; SM0001; EGF_like; 2.
 DR SMART; SM00059; GLA; 1.
 DR SMART; SM00020; TRYSPC; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; UNKNOWN_1.
 DR PROSITE; PS0002; GLABLOOD.
 DR SMART; SM00181; EGF; 2.
 DR SMART; SM00001; EGF_like; 2.
 DR SMART; SM00069; GLA; 1.
 DR PRINTS; PRO0010; EGFLOOD.
 DR SMART; SM00186; EGF_2; 2.
 DR PROSITE; PS01187; EGF_CA; 1.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 DR PROSITE; PS00240; TRYPSIN_DOM; 1.
 DR PROSITE; PS00134; TRYPSIN_HIS; UNKNOWN_1.
 DR PROSITE; PS00135; TRYPSIN_SER; 1.
 DR KW Calcium-binding; EGF-like domain; Glycoprotein; Hydrolase; Repeat; Serine Protease.
 DR SEQUENCE 481 AA; 54004 MW; BD88E9C8A0B/E7F CRC64; SQ

Query Match 51.3%; Score 101; DB 11; Length 481;
 Best Local Similarity 38.6%; Pred. No. 7.4e-09;
 Matches 17; Conservative 10; Mismatches 17; Indels 0; Gaps 0; KW

Qy 1 ANSFLEXXLROGSLSXMCIXXICDFXXAKXIFEDVDTLAFWSKH 44
 Db 41 ANSFEEFKKGNLRECMEICSYEVREIFEDDEBKTKKEYWTY 84

RESULT 7
 088947 PRELIMINARY; PRT; 481 AA.
 ID 088947; PRELIMINARY; PRT; 481 AA.
 AC 088947; PRELIMINARY; PRT; 481 AA.
 DT 01-NOV-1998 (TREMBrel. 08, Created)
 DT 01-MAR-2002 (TREMBrel. 20, Last annotation update)
 DE Coagulation factor X precursor.
 GN F10.
 OS MUS musculus (Mouse).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinidae; Mus.
 OX NCBI_TaxId=10090;
 RX [1] SEQUENCE FROM N.A.
 RC STRAIN=CC7BL6_X_CBA; TISSUE=LIVER;
 RC MEDLINE=98347933; PubMed=9684791;
 RA Liang Z.; Cooper A.; DeFord M.E.; Carmeliet P.; Collen D.,
 RA Castellino F.J.; Rosen E.D.;
 RT "Cloning and characterization of a cDNA encoding murine coagulation factor X";
 RT Thromb. Haemost. 80:87-91(1998).
 RN [2] SEQUENCE FROM N.A.
 RP STRAIN=29S; STRAIN=29SJ;
 RA Cooper A.; Liang Z.; Castellino F.J.; Rosen E.D.;
 RT "Cloning and Characterization of the Murine Factor X Gene";
 RL Thromb. Haemost. 80:0-0(2000).
 CC -!- SIMILARITY: BELONGS TO PROTEASE FAMILY S1; ALSO KNOWN AS THE

RESULT 8
 096P08 PRELIMINARY; PRT; 701 AA.
 ID 096P08; PRELIMINARY; PRT; 701 AA.
 AC 096P08;
 DT 01-DEC-2001 (TREMBrel. 19, Created)
 DT 01-DEC-2001 (TREMBrel. 19, Last sequence update)
 DT 01-MAR-2002 (TREMBrel. 20, Last annotation update)
 DE Factor VII active site mutant immunoconjugate.
 OS Homo sapiens (Human);
 OC Bukiyama; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OX NCBI_TaxId=9605;
 RN [1] SEQUENCE FROM N.A.
 RP MEDLINE=21477148; PubMed=11593034;
 RX Hu Z.; Garen A.;
 RT "Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer";
 RL Proc. Natl. Acad. Sci. U.S.A. 98:12180-12185(2001).
 DR EMBL; AF272774; AAC58685.1; -
 DR IPR000152; Asx_hydroxyl.
 DR IPR000561; EGF-like.
 DR IPR000561; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR003006; 19_MHC.
 DR IPR001254; Ser_protease_Try.
 DR IPR000294; VitK_dep_GLA.

CC TRAPSIN FAMILY.
 DR EMBL; AF087644; AAC36345.1; -.
 DR EMBL; AF211347; AAF22980.1; -.
 DR HSSP; P00742; IxKA.
 DR MGI; MGI:103107; F10.
 DR IPR0001152; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001254; Ser_protease_Try.
 DR IPR000294; VitK_dep_GLA.
 DR PF0008; EGF; 2.
 DR IPR000294; VitK_dep_GLA.
 DR PF0008; EGF; 2.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-like.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000561; EGF-2.
 DR IPR000742; EGF-2.
 DR IPR001881; EGF_Ca.
 DR IPR002383; GLA_blood.
 DR IPR001252; Asx_hydroxyl.
 DR IPR001314; Chymotrypsin.
 DR IPR000

DR Pfam; PRO0009; EGF; 2.
 DR Pfam; PRO00594; gla; 1.
 DR Pfam; PRO0047; Ig; 2.
 DR Pfam; PRO0089; trypsin; 1.
 DR SMART; SM00181; EGF; 2.
 DR SMART; SM00101; ASX_HYDROXYL; UNKNOWN_1.
 DR PROSITE; PS00010; ASX_HYDROXYL; UNKNOWN_1.
 DR SMART; SM00181; EGF; 2.
 DR SMART; SM00179; EGF_CA; 1.
 DR SMART; SM00011; EGF_LIKE; 2.
 DR SMART; SM0069; GLA; 1.
 DR SMART; SM0020; TRYPC; 1.
 DR PROSITE; PS00010; ASX_HYDROXYL; UNKNOWN_1.
 DR PROSITE; PS00186; EGF; 2.
 DR PROSITE; PS01187; EGF_CA; UNKNOWN_1.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; UNKNOWN_1.
 DR PROSITE; PS00290; Ig_MHC; UNKNOWN_1.
 DR PROSITE; PS00134; TRYPSIN_DOM; 1.
 DR PROSITE; PS00135; TRYPSIN_SER; UNKNOWN_1.
 KW Hydrolase; Serine protease.
 SQ SEQUENCE 701 AA; 77826 MW; 94AC6C6B42CC992F CRC64;

RESULT 9

Query Match	Best local Similarity	Score	DB	Length
20; Conservative	48.8%	99	4	701
Matches	4	Mismatches	117	Indels
			0	Gaps

DR Q9GMD9 PRELIMINARY; PRT; 469 AA.
 AC Q9GMD9;
 DT 01-MAR-2001 (TREMBrel 16, 'Created)
 DT 01-MAR-2001 (TREMBrel 16, 'Last sequence update);
 DT 01-JUN-2002 (TREMBrel 21, 'Last annotation update);
 DS Coagulation factor X.
 OC Ornithorhynchus anatinus (Duckbill platypus).
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Monotremata; Ornithorhynchidae; Ornithorhynchus.
 OX NCBI_TaxID=9258;
 RN [1]
 RP SEQUENCE FROM N.A.
 RX MEDLINE-21015017; PubMed-11132153;
 RA Poorafshar M., Aveskagh M., Munday B., Hellman L.;
 RT "Identification and structural analysis of four serine proteases in a monotreme, the platypus, Ornithorhynchus anatinus.";
 RL Immunogenetics 52:19-28(2000).
 CC -1- SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1; ALSO KNOWN AS THE TRYPSIN FAMILY.
 EMBL; AR275654; HAG00453.1; -.
 HSSP; P00742; 1XBK.
 MEROPS; S01_216; -.
 DR InterPro; IPR00152; ASX_hydroxyl.
 DR InterPro; IPR001314; Chymotrypsin.
 DR InterPro; IPR00561; EGF-like.
 DR InterPro; IPR00742; EGF-2.
 DR InterPro; IPR01881; EGF_Ca.
 DR InterPro; IPR00283; GLA_blood.
 DR InterPro; IPR001254; Ser_protease_TRY.
 DR InterPro; IPR000294; VITK_dep_GLA.
 DR Pfam; PRO00594; gla; 1.
 DR Pfam; PRO0054; laminin_G; 1.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_CA; 3.
 DR SMART; SM00069; GLA; 1.
 DR SMART; SM00282; Lang; 2.
 DR PROSITE; PS00010; ASX_HYDROXYL; 3.
 DR PROSITE; PS00022; EGF_1; UNKNOWN_1.
 DR PROSITE; PS01187; EGF_CA; 2.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; Glycoprotein; Hydroxylation; Repeat; Calcium-binding; EGF-like domain; Glycoprotein; Hydroxylation; Repeat; KW Signal.
 FT SIGNAL 1 15 POTENTIAL.
 FT CHAIN 16 650 POTENTIAL.
 SQ SEQUENCE 650 AA; 72480 MW; C67345BCE8645174 CRC64;

RESULT 10

Query Match	Best local Similarity	Score	DB	Length
17; Conservative	48.2%	95	6	469
Matches	17	Mismatches	18	Indels
			0	Gaps

DR Q9NSD0 PRELIMINARY; PRT; 650 AA.
 AC Q9NSD0;
 DT 01-OCT-2000 (TREMBrel 15, 'Created)
 DT 01-OCT-2000 (TREMBrel 15, 'Last sequence update);
 DT 01-JUN-2002 (TREMBrel 21, 'Last annotation update);
 DE Protein S precursor.
 OS Homo sapiens (Human).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OX NCBI_TaxID=9006;
 RN [1]
 RP SEQUENCE FROM N.A.
 RC TISSUE=LIVER;
 RA Wydro R., Cohen E., Dackowski W., Stenflo J., Lundwall A., Dahiback B.;
 RL Submitted (FEB-1992) to the EMBL/GenBank/DBJ databases.
 EMBL; X2899; CAA13831.;
 HSSP; P00740; ICFH.
 DR InterPro; IPR00152; ASX_hydroxyl.
 DR InterPro; IPR00561; EGF-like.
 DR InterPro; IPR01881; EGF_Ca.
 DR InterPro; IPR002383; GLA_blood.
 DR InterPro; IPR001791; Laminin_G.
 DR InterPro; IPR000294; VITK_dep_GLA.
 DR Pfam; PRO00594; gla; 1.
 DR Pfam; PRO0054; laminin_G; 1.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00179; EGF_CA; 3.
 DR SMART; SM00069; GLA; 1.
 DR SMART; SM00282; Lang; 2.
 DR PROSITE; PS00010; ASX_HYDROXYL; 3.
 DR PROSITE; PS00022; EGF_1; UNKNOWN_1.
 DR PROSITE; PS01187; EGF_CA; 2.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; Glycoprotein; Hydroxylation; Repeat; Calcium-binding; EGF-like domain; Glycoprotein; Hydroxylation; Repeat; KW Signal.
 FT SIGNAL 1 15 POTENTIAL.
 FT CHAIN 16 650 POTENTIAL.
 SQ SEQUENCE 650 AA; 72480 MW; C67345BCE8645174 CRC64;

RESULT 11

Query Match	Best local Similarity	Score	DB	Length
10; Conservative	43.1%	85	4	650
Matches	17	Mismatches	17	Indels
			0	Gaps

DR Q9Y191 PRELIMINARY; PRT; 650 AA.
 AC Q9Y191;
 DT 01-NOV-1996 (TREMBrel. 01, 'Created)

DR 01-NOV-1996 (TRIMBLrel. 01, Last sequence update)
 DT 01-DEC-2001 (TRIMBLrel. 19, Last annotation update)
 DE Protein S precursor (Fragment).
 GN PROS1
 OS Homo sapiens (Human)
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OC NCBI_TaxID=9606;
 RN [1] SEQUENCE FROM N.A.
 RP MEDLINE=8613649; PubMed=2944113;
 RA Stenfio J., Wydro R.;
 RT "Isolation and sequence of the cDNA for human protein S, a regulator
 of blood coagulation",
 RL Proc. Natl. Acad. Sci. U.S.A. 83:6716-6720(1986).
 DR EMBL: M14338; AAA60218.1; -.
 DR HSSP: P00740; ICFH.
 DR InterPro; IPR00152; ASX_hydroxyl.
 DR InterPro; IPR000561; EGF-like.
 DR InterPro; IPR0018; EGF_Ca.
 DR InterPro; IPR002383; GLA_blood.
 DR InterPro; IPR001791; Laminin_G.
 DR InterPro; IPR002294; VitK_dep,GLA.
 DR Pfam; PF00008; EGF; 4.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00069; GLA; 1.
 DR SMART; SM00282; lamG; 2.
 DR PROSITE; PS00022; ASX_HYDROXYL; 3.
 DR PROSITE; PS01186; EGF_2; 3.
 DR PROSITE; PS01187; EGF_Ca; 2.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 KW Calcium-binding; EGF-like domain; Glycoprotein; Hydroxylation; Repeat;
 KW PROSITE; PS00022; ASX_HYDROXYL; 3.
 FT SIGNAL <1 15 POTENTIAL.
 FT CHAIN 16 650 PROTEIN_S.
 SQ SEQUENCE 650 AA; 72462 MW; 9A8C044C503BF474 CRC64;
 QY 1 ANSFLLXLRQGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44
 DB 16 ANSLLEETKOGNLERECIEELCKNEEAREVFENDPDTFYFPKY 59

RESULT 12

Q15253 PRELIMINARY; PRT; 100 AA.
 ID 015253
 AC 015253
 DT 01-NOV-1996 (TRIMBLrel. 01, created)
 DT 01-NOV-1996 (TRIMBLrel. 01, last sequence update)
 DT 01-DEC-2001 (TRIMBLrel. 19, last annotation update)
 DE Thrombin precursor (Fragment).
 GN F2
 OS Homo sapiens (Human)
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 OC NCBI_TaxID=9606;
 RN [1] SEQUENCE FROM N.A.
 RP SEQUENCE FROM N.A.
 RX MEDLINE=87182874; PubMed=3471151;
 RA MacGillivray R.T., Irwin D.M., Guinto E.R., Stone J.C.;
 RT "Recombinant genetic approaches to functional mapping of thrombin.",
 RL Ann. N. Y. Acad. Sci. 465:73-79(1986).
 DR EMBL: M33031; AAA60220.1; -.
 DR HSSP; P00735; 2PFL.

DR InterPro; IPR002383; GLA_blood.
 DR InterPro; IPR002294; VitK_dep,GLA.
 DR Pfam; PF00594; gla; 1.
 DR PRINTS; PRO0001; GLABLOOD.
 DR SMART; SM00069; GLA; 1.
 DR PROSITE; PS00011; GLU_CARBOXYLATION; 1.
 DR Signal; 1 43 POTENTIAL.
 FT SIGNAL >100 POTENTIAL.
 FT CHAIN 100 100
 DR SEQUENCE 100 AA; 11302 MW; FDE05D0174E1F6FE CRC64;

RESULT 13

Q8T6I3 PRELIMINARY; PRT; 542 AA.
 ID Q8T6I3
 AC 08T6I3
 DT 01-JUN-2002 (TRIMBLrel. 21, Created)
 DT 01-JUN-2002 (TRIMBLrel. 21, Last sequence update)
 DT 01-JUN-2002 (TRIMBLrel. 21, Last annotation update)
 DE Gla-like protein.
 OS Halocynthia roretzi (Sea squirt).
 OC Eukaryota; Metazoa; Chordata; Urochordata; Ascidiae;
 OC Stolidobranchia; Pyuridae; Halocynthia.
 RN NCBI_TaxID=7729;
 RN [1] SEQUENCE FROM N.A.
 RA Wang, C. P., Stafford, D.W.;
 RT "Halocynthia roretzi gla-like protein partial genomic DNA sequence.",
 RL Submitted (APR 2002) to the EMBL/GenBank/DBJ databases.
 DR EMBL; AF466701; AAL74247.2; -.
 SQ SEQUENCE 542 AA; 62090 MW; EB9BF13FE42B32FE CRC64;
 QY 3 SFLXXLRQGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44
 DB 33 SHFEELQGNGLERECEELCSFEEAREVFETINQDNEFWKY 75

Query Match 41.9%; Score 82.5; DB 5; Length 542;
 Best Local Similarity 34.9%; Pred. No. 1.3e-05; Matches 15; Conservative 10; Mismatches 17; Indels 1; Gaps 1;
 Signal 16 650 PROTEIN_S.

Query Match 41.9%; Score 82.5; DB 5; Length 542;
 Best Local Similarity 34.9%; Pred. No. 1.3e-05; Matches 15; Conservative 10; Mismatches 17; Indels 1; Gaps 1;
 Signal 16 650 PROTEIN_S.

RESULT 14

Q61109 PRELIMINARY; PRT; 446 AA.
 ID Q61109
 AC 061109
 DT 01-NOV-1996 (TRIMBLrel. 01, Created)
 DT 01-NOV-1996 (TRIMBLrel. 01, Last sequence update)
 DT 01-JUN-2002 (TRIMBLrel. 21, Last annotation update)
 DE Coagulation factor VII.
 FN F7 OR FVII.
 OS Mus musculus (Mouse).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 OC Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 RN NCBI_TaxID=10990;
 RP SEQUENCE FROM N.A.
 RC TISSUE=LIVER;
 RX MEDLINE=92276538; PubMed=8701412;
 RA Idusogie E., Rosen E., Geng J.P., Carmeliet P., Collet D.,
 RA Castellino F.J.;
 RT "Characterization of a cDNA encoding murine coagulation factor VII.",
 RL Ann. N. Y. Acad. Sci. 73:481-487(1996).
 DR EMBL: M33031; AAA60220.1; -.
 DR HSSP; P00735; 2PFL.

CC -1 SIMILARITY: BELONGS TO PEPTIDE FAMILY S1; ALSO KNOWN AS THE TRIPSIN FAMILY.

DR EMBL: U44795; AAC52570.1; -.

DR HSSP: P08799; ICFK.

DR MEROPS: S01.215; -.

DR MCD; MGI: 109325; F7.

DR InterPro; IPR0202086; Aldehyde_dehydr.

DR InterPro; IPR00152; Asx_hydroxyl.

DR InterPro; IPR01314; Chymotrypsin.

DR InterPro; IPR01064; Crystallin.

DR InterPro; IPR00561; EGF-like.

DR InterPro; IPR01881; EGF_Ca.

DR InterPro; IPR02183; GLA_blood.

DR InterPro; IPR01254; Ser_protease_TRY.

DR InterPro; IPR00294; VitK_dep_GLA.

DR Pfam; PF00088; EGF; 2.

DR Pfam; PF00594; gla; 1.

DR Pfam; PF00089; trypsin; 1.

DR PRINTS; PRO0722; CHYMOTRYPSIN.

DR PRINTS; PRO0001; GLABLOOD.

DR SMART; SM00179; EGF_Ca; 1.

DR SMART; SM00001; EGF_like; 1.

DR SMART; SM00069; GLA; 1.

DR SMART; SM00202; TRY_PPC; 1.

DR PROSITE; PS00070; ALDREHYDE_DEHYDRO_CYS; UNKNOWN_1.

DR PROSITE; PS0010; ASX_HYDROXYL; UNKNOWN_1.

DR PROSITE; PS00225; CRYSTALLIN_BETA-GAMMA; UNKNOWN_1.

DR PROSITE; PS00187; EGF_Ca; 1.

DR PROSITE; PS0011; GLU_CARBOXYLATION; 1.

DR PROSITE; PS0240; TRYPSIN_DOM; 1.

DR PROSITE; PS00134; TRYPSIN_HIS; UNKNOWN_1.

DR PROSITE; PS00135; TRYPSIN_SER; 1.

KW Calcium-binding; EGF-like domain; Glycoprotein; Hydrolase; Repeat; Sequence

SQ 446 AA; 50318 MW; 482FD09BEFDA6870 CRC64;

RESULT 15

Query Match 40.6%; Score 80; DB 11; Length 446; Best Local Similarity 43.9%; Pred. No. 2.9e-05; Mismatches 18; Conservative 3; Indels 0; Gaps 0; Matches 18; Last sequence update

AC 014316; PRELIMINARY; PRM; 456 AA;

DT 01-NOV-1996 (TREMBREL. 01, Created)

DT 01-AUG-1999 (TREMBREL. 11, Last sequence update)

DT 01-JUN-2002 (TREMBREL. 21, Last annotation update)

DE F9 (Coagulation factor IX (Plasma THROMBOPLASTIC component, chris

DE disease_HAEMOPHILIA_B) (Factor IX).

GN F9 OR FACTOR IX.

OS Homo sapiens (Human).

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominoidea; Homo.

OC NCBI_TAXID=9606;

RN [1]

RP SEQUENCE FROM N.A.

RA Bird C.;

RL Submitted (Nov-1998) to the EMBL/GenBank/DBJ databases.

RN [2]

RP SEQUENCE OF 3-19 FROM N.A.

RX MEDLINE=88327116; PubMed=3416069;

RA Reitsma P.A., Bertina R.M., Ploos van Amstel J.K., Riemens A., Brieft E.;

RT Blood 72:1074-1076 (1988)

CC -I- SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1; ALSO KNOWN AS THE TRIPSIN FAMILY.

CC EMBL; AL03340; CAA21954.1; -.

CC EMBL; X538245.2; -.

DR *The putative factor IX gene promoter in hemophilia B Leyden. ;

DR Blood 72:1074-1076 (1988)

DR InterPro; IPR00152; Asx_hydroxyl.

DR InterPro; IPR01314; Chymotrypsin.

DR InterPro; IPR00561; EGF-like.

DR InterPro; IPR00742; EGF 2.

DR InterPro; IPR01881; EGF_Ca.

DR InterPro; IPR002383; GLA_blood.

DR InterPro; IPR01254; Ser_protease_TRY.

DR InterPro; IPR000294; VitK_dep_GLA.

DR Pfam; PF00594; gla; 1.

DR Pfam; PF00089; trypsin; 1.

DR PRINTS; PRO0722; CHYMOTRYPSIN.

DR PRINTS; PRO0001; GLABLOOD.

DR SMART; SM00179; EGF_Ca; 1.

DR SMART; SM00069; GLA; 1.

DR SMART; SM00020; TRY_PPC; 1.

DR PROSITE; PS00022; ASX_HYDROXYL; UNKNOWN_1.

DR PROSITE; PS01187; EGF_Ca; 2.

DR PROSITE; PS00011; GLU_CARBOXYLATION; 1.

DR PROSITE; PS00240; TRYPSIN_DOM; 1.

DR PROSITE; PS00134; TRYPSIN_HIS; UNKNOWN_1.

DR PROSITE; PS00135; TRYPSIN_SER; 1.

KW Calcium-binding; EGF-like domain; Glycoprotein; Hydrolase; Repeat; Sequence

SQ 456 AA; 51149 MW; 54E20A1B3964E234 CRC64;

Query Match 40.6%; Score 80; DB 4; Length 456; Best Local Similarity 37.1%; Pred. No. 3e-05; Mismatches 13; Conservative 8; Indels 0; Gaps 0; Matches 13; Last sequence update

QY 10 QGSLXRXCIXXICDFXXAKXIFEDVDDTLAFWSK 44

Db 52 QGNLERECMEKCSFEEREVENTERTTEFWKQY 86

Search completed: May 16, 2003, 10:15:27

Job time : 31 secs

THIS PAGE BLANK (USPTO)

Om protein - protein search, using sw model

Run on: May 16, 2003, 10:14:04 ; Search time 14 Seconds
(without alignments)
92.472 Million cell updates/sec

Title: SEQ1-4EDITS

Perfect score: 197

Sequence: 1 ANSFLXXLRQGSLSRXCIXX.....XXAKX1FedVDDTLAFWSKH 44

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 262574 seqs, 29422922 residues

Total number of hits satisfying chosen parameters: 262574

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Issued Patents AA:*

1: /cgn2_6/ptodata/1/1aa5a_comb.pep:*

2: /cgn2_6/ptodata/1/1aa5b_comb.pep:*

3: /cgn2_6/ptodata/1/1aa5a_comb.pep:*

4: /cgn2_6/ptodata/1/1aa5b_comb.pep:*

5: /cgn2_6/ptodata/1/1aa5c_comb.pep:*

6: /cgn2_6/ptodata/1/1aa5backfile1.pep:*

Pred. No. 19 is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Length	DB	ID	Description
1	179	90.9	44	3	US-08-955-636-24	Sequence 24, Appl
2	176	89.3	44	3	US-08-955-636-35	Sequence 35, Appl
3	173	87.8	44	3	US-08-955-636-20	Sequence 20, Appl
4	170	86.3	44	3	US-08-955-636-21	Sequence 21, Appl
5	168	85.3	44	3	US-08-955-636-19	Sequence 19, Appl
6	168	85.3	44	3	US-08-955-636-22	Sequence 22, Appl
7	160	81.2	44	3	US-08-955-636-01	Sequence 1, Appl
8	160	81.2	44	3	US-08-955-636-25	Sequence 23, Appl
9	160	81.2	45	2	US-08-955-833-2	RESULT 2
10	160	81.2	419	1	US-08-295-411-1	Sequence 1, Appl
11	160	81.2	419	2	US-08-955-471-1	Sequence 1, Appl
12	160	81.2	419	4	US-09-667-570A-3	Sequence 3, Appl
13	160	81.2	419	5	PCN-US92-10242-1	Sequence 1, Appl
14	160	81.2	460	2	US-08-736-506-2	Sequence 2, Appl
15	160	81.2	460	2	US-08-756-506-4	Sequence 4, Appl
16	160	81.2	460	6	5270178-13	Patent No. 5270178
17	160	81.2	460	6	5270178-14	Patent No. 5270178
18	160	81.2	460	6	5270178-15	Patent No. 5270178
19	160	81.2	460	6	5270178-16	Patent No. 5270178
20	160	81.2	461	6	5225537-2	Patent No. 5225537
21	160	81.2	461	6	5270178-17	Patent No. 5270178
22	160	81.2	461	6	5270178-18	Patent No. 5270178
23	160	81.2	461	6	5460953-3	Patent No. 5460953
24	147	74.6	42	2	US-08-745-254A-2	Sequence 2, Appl
25	147	74.6	461	6	5270178-2	Patent No. 5270178
26	143	72.6	41	1	US-08-228-280-5	Sequence 5, Appl
27	65.5	409	4	US-09-667-570A-2	Sequence 2, Appl	

ALIGNMENTS

RESULT 1

US-08-955-636-24

Sequence 24, Application US/08955636A

Patent No. 6017882

GENERAL INFORMATION:

APPLICANT: Neissestuen, Gary

TITLE OF INVENTION: MODIFIED VITAMIN K-DEPENDENT POLYPEPTIDES

FILE REFERENCE: 0931/002201

CURRENT APPLICATION NUMBER: US/08/955, 636A

CURRENT FILING DATE: 1997-10-23

NUMBER OF SEQ ID NOS: 35

SOFTWARE: FastSEQ for Windows Version 3.0

SEQ ID NO 24

LENGTH: 44

TYPE: PRT

ORGANISM: Homo sapiens

FEATURE:

NAME/KEY: MOD,RES

LOCATION: (0)-(0)

OTHER INFORMATION: xaa-gamma carboxyglutamic acid or glutamic acid

US-08-955-636-24

Query Match 90.9%; Score 179; DB 3; Length 44;

Best Local Similarity 100.0%; Pred. No. 1.2e-23;

Matches 44; Conservativeness 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 ANSFLXXLRQGSLSRXCIXXICDFXXKXKIFEDVDDTLAFWSKH 44

Db 1 ANSFLXXLRQGSLSRXCIXXICDFXXKXKIFEDVDDTLAFWSKH 44

APPLICANT: Neissestuen, Gary

TITLE OF INVENTION: MODIFIED VITAMIN K-DEPENDENT POLYPEPTIDES

FILE REFERENCE: 0931/002201

CURRENT APPLICATION NUMBER: US/08/955, 636A

CURRENT FILING DATE: 1997-10-23

NUMBER OF SEQ ID NOS: 35

SOFTWARE: FastSEQ for Windows Version 3.0

SEQ ID NO 35

LENGTH: 44

TYPE: PRT

ORGANISM: Homo sapiens

FEATURE:

```

; NAME/KEY: MOD_RES
; LOCATION: (0)..(0)
; OTHER INFORMATION: xaa=gamma carboxyglutamic acid or glutamic acid
; US-08-955-636-35

Query Match 89.3%; Score 176; DB 3; Length 44;
Best Local Similarity 97.7%; Pred. No. 3.8e-23; Mismatches 0; Indels 0; Gaps 0;
Matches 43; Conservative 1; Mismatches 0; Indels 0; Gaps 0;
; Sequence 20, Application US/08955636A
; Patent No. 6017882
QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44
Db 1 ANSFLXXLREGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44

RESULT 3
US-08-955-636-20
; Sequence 20, Application US/08955636A
; Patent No. 6017882
; GENERAL INFORMATION:
; APPLICANT: Nelsethuen, Gary
; TITLE OF INVENTION: MODIFIED VITAMIN K-DEPENDENT
; TITLE OF INVENTION: POLYPEPTIDES
; FILE REFERENCE: 09531/002001
; CURRENT APPLICATION NUMBER: US/08/955,636A
; CURRENT FILING DATE: 1997-10-23
; CURRENT FILING DATE: 1997-10-23
; NUMBER OF SEQ ID NOS: 35
; SEQ ID NO 20
; SOFTWARE: FastSEQ for Windows Version 3.0
; SOFTWARE: FastSEQ for Windows Version 3.0
; LENGTH: 44
; LENGTH: 44
; NAME/KEY: MOD_RES
; ORGANISM: Homo sapiens
; FEATURE:
; LOCATION: (0)..(0)
; OTHER INFORMATION: xaa=gamma carboxyglutamic acid or glutamic acid
; US-08-955-636-20

Query Match 87.8%; Score 173; DB 3; Length 44;
Best Local Similarity 97.7%; Pred. No. 1.2e-22; Mismatches 0; Indels 1; Gaps 0;
Matches 43; Conservative 0; Mismatches 1; Indels 1; Gaps 0;
; Sequence 20, Application US/08955636A
; Patent No. 6017882
QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44
Db 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44

RESULT 4
US-08-955-636-21
; Sequence 21, Application US/08955636A
; Patent No. 6017882
; GENERAL INFORMATION:
; APPLICANT: Nelsethuen, Gary
; TITLE OF INVENTION: MODIFIED VITAMIN K-DEPENDENT
; TITLE OF INVENTION: POLYPEPTIDES
; FILE REFERENCE: 09531/002001
; CURRENT APPLICATION NUMBER: US/08/955,636A
; CURRENT FILING DATE: 1997-10-23
; CURRENT FILING DATE: 1997-10-23
; NUMBER OF SEQ ID NOS: 35
; SEQ ID NO 21
; SOFTWARE: FastSEQ for Windows Version 3.0
; SOFTWARE: FastSEQ for Windows Version 3.0
; LENGTH: 44
; LENGTH: 44
; NAME/KEY: MOD_RES
; ORGANISM: Homo sapiens
; FEATURE:
; LOCATION: (0)..(0)
; OTHER INFORMATION: xaa=gamma carboxyglutamic acid or glutamic acid
; US-08-955-636-21

Query Match 86.3%; Score 170; DB 3; Length 44;
Best Local Similarity 95.5%; Pred. No. 4e-22; Mismatches 1; Indels 1; Gaps 0;
Matches 42; Conservative 1; Mismatches 1; Indels 1; Gaps 0;
; Sequence 1, Application US/08955636A
; Patent No. 6017882
QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44
Db 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44

RESULT 5
US-08-955-636-19
; Sequence 19, Application US/08955636A
; Patent No. 6017882
; GENERAL INFORMATION:
; APPLICANT: Nelsethuen, Gary
; TITLE OF INVENTION: MODIFIED VITAMIN K-DEPENDENT
; TITLE OF INVENTION: POLYPEPTIDES
; FILE REFERENCE: 09531/002001
; CURRENT APPLICATION NUMBER: US/08/955,636A
; CURRENT FILING DATE: 1997-10-23
; CURRENT FILING DATE: 1997-10-23
; NUMBER OF SEQ ID NOS: 35
; SEQ ID NO 19
; SOFTWARE: FastSEQ for Windows Version 3.0
; SOFTWARE: FastSEQ for Windows Version 3.0
; LENGTH: 44
; LENGTH: 44
; NAME/KEY: MOD_RES
; ORGANISM: Homo sapiens
; FEATURE:
; LOCATION: (0)..(0)
; OTHER INFORMATION: xaa=gamma carboxyglutamic acid or glutamic acid
; US-08-955-636-19

Query Match 85.3%; Score 168; DB 3; Length 44;
Best Local Similarity 95.5%; Pred. No. 8.9e-22; Mismatches 2; Indels 0; Gaps 0;
Matches 42; Conservative 0; Mismatches 2; Indels 0; Gaps 0;
; Sequence 1, Application US/08955636A
; Patent No. 6017882
QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44
Db 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDTLAFWSKH 44

RESULT 7
US-08-955-636-1
; Sequence 7, Application US/08955636A
; Patent No. 6017882

```

GENERAL INFORMATION:
 APPLICANT: Nelestuen, Gary
 TITLE OF INVENTION: MODIFIED VITAMIN K-DEPENDENT
 FILE REFERENCE: 05531/020201
 CURRENT APPLICATION NUMBER: US/08/955, 635A
 CURRENT FILING DATE: 1997-10-23
 NUMBER OF SEQ ID NOS: 35
 SOFTWARE: FASTSEQ for Windows Version 3.0
 SEQ ID NO 1
 LENGTH: 44
 TYPE: PRT
 ORGANISM: Homo sapiens
 FEATURE: MOD_RES
 LOCATION: (0)...(0)
 OTHER INFORMATION: xaa=gamma carboxyglutamic acid or glutamic acid

US-08-955-635-1
 Query Match 81.2%; Score 160; DB 3; Length 44;
 Best Local Similarity 90.9%; Pred. No. 2e-20;
 Matches 40; Conservative 2; Mismatches 2; Indels 0; Gaps 0;
 OTHER INFORMATION: Xaa=gamma carboxyglutamic acid or glutamic acid

QY 1 ANSFLXXLROQSLXRCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
 Db 1 ANSFLXXLROQSLXRCIXXICDFXXAKXIFQVNDDTLAFWSKH 44

RESULT 8
 US-08-955-635-25
 Sequence 25, Application US/08955636A
 PATENT NO. 601882
 GENERAL INFORMATION:
 APPLICANT: Nelestuen, Gary
 TITLE OF INVENTION: MODIFIED VITAMIN K-DEPENDENT
 FILE REFERENCE: 05531/020201
 CURRENT APPLICATION NUMBER: US/08/955, 636A
 CURRENT FILING DATE: 1997-10-23
 NUMBER OF SEQ ID NOS: 35
 SOFTWARE: FASTSEQ for Windows Version 3.0
 SEQ ID NO 25
 LENGTH: 44
 TYPE: PRT
 ORGANISM: Homo sapiens
 FEATURE: MOD_RES
 LOCATION: (0)...(0)
 OTHER INFORMATION: Xaa=gamma carboxyglutamic acid or glutamic acid

US-08-955-636-25
 Query Match 81.2%; Score 160; DB 3; Length 44;
 Best Local Similarity 93.2%; Pred. No. 2e-20;
 Matches 41; Conservative 0; Mismatches 3; Indels 0; Gaps 0;
 OTHER INFORMATION: Xaa=gamma carboxyglutamic acid or glutamic acid

QY 1 ANSFLXXLROQSLXRCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
 Db 1 ANSFLXXLROQSLXRCIXXICDFXXAKXIFQVNDDTLAFWSKH 44

RESULT 9
 US-08-965-832-2
 Sequence 2, Application US/08965832
 PATENT NO. 5847085
 GENERAL INFORMATION:
 APPLICANT: CHARLES T. ESMON AND MIKHAIL D. SMIRNOV
 TITLE OF INVENTION: Modified Protein C
 NUMBER OF SEQUENCES: 4
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Parrea L. Pabst
 STREET: 2800 One Atlantic Center, 1201 West Peachtree Street
 CITY: Atlanta

GENERAL INFORMATION:
 STATE: GA
 COUNTRY: USA
 ZIP: 30309-3450
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patentin Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/965, 832
 FILING DATE: 7-NOV-1997
 CLASSIFICATION: 530
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: 08/745, 254
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: 60/053, 768
 FILING DATE: 25-JUL-1997
 ATTORNEY/AGENT INFORMATION:
 NAME: Paust, Patrea L.
 FILING DATE: 8-NOV-1996
 REGISTRATION NUMBER: 31, 284
 REFERENCE/DOCKET NUMBER: OMRF 165/167
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (404)-873-8794
 TELEFAX: (404)-873-8795
 INFORMATION FOR SEQ ID NO: 2:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 45 amino acids
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: peptide
 FEATURE:
 NAME/KEY:
 LOCATION: 6, 7, 14, 16, 19, 20, 25, 26, 29
 OTHER INFORMATION: /note= "where Xaa means gamma carboxyglutamic acid"
 FEATURE:
 NAME/KEY:
 LOCATION:
 OTHER INFORMATION: /note= "partial sequence of human protein C"
 US-08-965-832-2
 Query Match 81.2%; Score 160; DB 2; Length 45;
 Best Local Similarity 90.9%; Pred. No. 2.1e-20;
 Matches 40; Conservative 2; Mismatches 2; Indels 0; Gaps 0;
 OTHER INFORMATION: /note= "partial sequence of human protein C"
 QY 1 ANSFLXXLROQSLXRCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
 Db 1 ANSFLXXLROQSLXRCIXXICDFXXAKXIFQVNDDTLAFWSKH 44

RESULT 10
 US-08-235-411-1
 Sequence 1, Application US/082395411
 PATENT NO. 5679339
 GENERAL INFORMATION:
 APPLICANT: Griffin, John H.
 APPLICANT: Masters, Roy M.
 TITLE OF INVENTION: Serine Protease-Derived Polypeptides and Anti-peptide Antibodies, Systems and Therapeutic Methods
 TITLE OF INVENTION: Anti-peptide Antibodies, Systems and Therapeutic Methods
 NUMBER OF SEQUENCES: 10
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Office of Patent Counsel, The Scripps Research Institute
 STREET: 10666 No. 5679639th Torrey Pines Road, TPC 8
 CITY: La Jolla
 STATE: CA
 COUNTRY: USA
 ZIP: 92037
 COMPUTER READABLE FORM: MEDIUM TYPE: Floppy disk

COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS DOS
 SOFTWARE: Patentin Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/955,471
 FILING DATE: 22-AUG-1994
 CLASSIFICATION: 530

PRIOR APPLICATION DATA:
 APPLICATION NUMBER: 08/295,411
 FILING DATE: 18-NOV-1991
 CLASSIFICATION: 530

ATTORNEY/AGENT INFORMATION:
 NAME: Fitting, Thomas
 REGISTRATION NUMBER: 34,163
 REFERENCE/DOCKET NUMBER: TSR1263.0C1
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 619-554-2937
 TELEFAX: 619-554-6312

INFORMATION FOR SEQ ID NO: 1:

SEQUENCE CHARACTERISTICS:
 LENGTH: 419 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 HYPOTHETICAL: NO
 ANTI-SENSE: NO
 FEATURE:
 NAME/KEY: Region
 LOCATION: 1..157
 OTHER INFORMATION: /note= "Protein C Light Chain"

FEATURE:
 NAME/KEY: Region
 LOCATION: 158..169
 OTHER INFORMATION: /note= "Protein C Activation"
 OTHER INFORMATION: peptide

FEATURE:
 NAME/KEY: Region
 LOCATION: 170..419
 OTHER INFORMATION: /note= "Protein C Heavy Chain"

US-08-295-411-1

Query Match, 81.2%; Score 160; DB 1; Length 419;
 Best Local Similarity 70.5%; Pred. No. 2.7e-19;
 Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;

QY 1 ANSFLLXLRQGSLRXCTAXICDFXXAKXIFEDVDDTLAFWSKH 44
 ||||| ||| | | ||| ||| ||| ||| :||||| |||
 Db 1 ANSFLEELRHSLSRECIEICDFEEAKEIFQVNDDTLAFWSKH 44

RESULT 11
 US-08-955-471-1

Query Match, 81.2%; Score 160; DB 2; Length 419;
 Best Local Similarity 70.5%; Pred. No. 2.7e-19;
 Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;

QY 1 ANSFLLXLRQGSLRXCTAXICDFXXAKXIFEDVDDTLAFWSKH 44
 ||||| ||| | | ||| ||| ||| ||| ||| :||||| |||
 Db 1 ANSFLEELRHSLSRECIEICDFEEAKEIFQVNDDTLAFWSKH 44

RESULT 12
 US-09-667-570A-3

Sequence 1, Application US/09667570A
 Patent No. 6436597
 GENERAL INFORMATION:
 APPLICANT: Baker, Jeffrey C
 APPLICANT: Carlson, Andrew D
 APPLICANT: Huang, Lihua
 APPLICANT: Shelling, Theodore A
 TITLE OF INVENTION: Improved Methods for Processing Activated Protein C
 FILE REFERENCE: X-17796A
 CURRENT APPLICATION NUMBER: US/09/667,570A
 CURRENT FILING DATE: 2000-09-21
 PRIOR APPLICATION NUMBER: 60/045,255
 PRIOR FILING DATE: 1997-04-28
 NUMBER OF SEQ ID NOS: 3
 SOFTWARE: Patentin version 3.1
 SEQ ID NO 3
 LENGTH: 419
 TYPE: PRT
 ORGANISM: Homo sapiens

Query Match, 81.2%; Score 160; DB 4; Length 419;
 Best Local Similarity 70.5%; Pred. No. 2.7e-19;
 US-09-667-570A-3

STREET: 1201 Eastlake Avenue East

CITY: Seattle

STATE: WA

COUNTRY: USA

ZIP: 98102

COMPUTER READABLE FORM:

MEDIUM TYPE: Floppy disk

COMPUTER: IBM PC compatible

OPERATING SYSTEM: PC-DOS/MS-DOS

SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/756,506

FILING DATE:

CLASSIFICATION: 800

ATTORNEY/AGENT INFORMATION:

NAME: Savislak, Deborah A

REGISTRATION NUMBER: 37,438

REFERENCE/DOCKET NUMBER: 95-28

TELECOMMUNICATION INFORMATION:

TELEPHONE: 206-442-6672

TELEFAX: 206-442-6678

INFORMATION FOR SEQ ID NO: 4:

SEQUENCE CHARACTERISTICS:

LENGTH: 460 amino acids

TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: protein

US-08-756-506-4

Query Match 81.2%; Score 160; DB 2; Length 460;

Best Local Similarity 70.5%; Pred. No. 3 1e-19; Length 460;

Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;

Qy 1 ANSFLAXLROGSILXRXCIXXICDFXXAKKIFEDVDTLAFWSKH 44

Db 43 ANSFBLERHSSLERCIEEICDFEEAKEIIFQNVDDTLAFWSKH 86

Search completed: May 16, 2003, 10:16:12
Job time : 15 secs

GenCore version 5.1.4-P5_4578
 Copyright (c) 1993 - 2003 Compugen Ltd.

OM protein - protein search, using SW model

Run on: May 16, 2003, 10:15:34 ; Search time 55 seconds
 (without alignments)
 77.161 Million cell updates/sec

Title: SEQ1-4EDITS

Perfect score: 197
 Sequence: 1 ANSFLXXLRQGSIXX... XXAKXIFEdVDDTLAFWSKH 44

Scoring table: BLOSUM62
 Gappen 10.0 , Gapext 0.5

Searched: 362588 seqs, 96150795 residues

Total number of hits satisfying chosen parameters: 362588

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : Published_Applications_AA:*

1: /cgn2_6/ptodata/1/pubbaa/US08_NEW_PUB_pep: *
 2: /cgn2_6/ptodata/1/pubbaa/PCN_NEW_PUB_pep: *
 3: /cgn2_6/ptodata/1/pubbaa/US06_NEW_PUB_pep: *
 4: /cgn2_6/ptodata/1/pubbaa/US06_PUBCOMB_pep: *
 5: /cgn2_6/ptodata/1/pubbaa/US07_NEW_PUB_pep: *
 6: /cgn2_6/ptodata/1/pubbaa/US07_PUBCOMB_pep: *
 7: /cgn2_6/ptodata/1/pubbaa/PCNUS_PUBCOMB_pep: *
 8: /cgn2_6/ptodata/1/pubbaa/US08_PUBCOMB_pep: *
 9: /cgn2_6/ptodata/1/pubbaa/US09_NEW_PUB_pep: *
 10: /cgn2_6/ptodata/1/pubbaa/US09_PUBCOMB_pep: *
 11: /cgn2_6/ptodata/1/pubbaa/US10_NEW_PUB_pep: *
 12: /cgn2_6/ptodata/1/pubbaa/US10_PUBCOMB_pep: *
 13: /cgn2_6/ptodata/1/pubbaa/US60_NEW_PUB_pep: *
 14: /cgn2_6/ptodata/1/pubbaa/US60_PUBCOMB_pep: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	179	90.9	419	9 US-10-182-263-5
2	174	88.3	419	9 US-10-182-263-3
3	174	88.3	419	9 US-10-182-263-4
4	174	88.3	419	9 US-10-182-263-5
5	160	81.2	419	9 US-10-182-263-1
6	160	81.2	419	9 US-09-917A-4
7	160	81.2	461	9 US-09-182-263-2
8	160	81.2	461	9 US-09-917A-2
9	99	50.3	466	9 US-10-011-122-2
10	84.5	48.7	406	9 US-10-108-498-1
11	84.5	42.9	96	9 US-09-759-130B-313
12	84.5	42.9	96	9 US-10-189-123-43
13	84.5	42.9	209	9 US-09-759-130B-312
14	84.5	42.9	429	9 US-10-189-123-42
15	84.5	42.9	226	9 US-09-759-130B-310
16	84.5	42.9	226	9 US-10-189-123-40
17	80	415	10	US-09-188-748-2
18	80	461	9	US-10-132-829-5
19	461	10	US-09-884-901-3	

RESULT 1
 US-10-182-263-6
 ; Sequence 6, Application US10182263
 ; Publication No. US20030022354A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Gerlitz, Bruce E
 ; APPLICANT: Jones, Bryan E
 ; TITLE OF INVENTION: PROTEIN C DERIVATIVES
 ; FILE REFERENCE: X-13611
 ; CURRENT APPLICATION NUMBER: US/10/182,263
 ; CURRENT FILING DATE: 2002-07-22
 ; PRIOR APPLICATION NUMBER: 60/181948
 ; PRIOR FILING DATE: 2002-02-11
 ; PRIOR APPLICATION NUMBER: 60/189199
 ; PRIOR FILING DATE: 2000-03-14
 ; NUMBER OF SEQ ID NOS: 12
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 6
 ; LENGTH: 419
 ; TYPE: PRT
 ; ORGANISM: Homo sapiens
 ; US-10-182-263-6

Query Match 90.9%; Score 179; DB 9; Length 419;
 Best Local Similarity 79.5%; Pred. No. 5.4e-22;
 Matches 35; Conservative 0; Mismatches 9; Indels 0; Gaps 0;

QY 1 ANSFLXXLRQGSIXX... XXAKXIFEdVDDTLAFWSKH 44
 Db 1 ANSFLEELRQGSLERECIEBICDFEEAKEIFEdVDDTLAFWSKH 44

RESULT 2
 US-10-182-263-3
 ; Sequence 3, Application US10182263
 ; Publication No. US20030022354A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Gerlitz, Bruce E
 ; APPLICANT: Jones, Bryan E
 ; APPLICANT: Grinnell, Brian W
 ; TITLE OF INVENTION: PROTEIN C DERIVATIVES
 ; FILE REFERENCE: X-13611
 ; CURRENT APPLICATION NUMBER: US/10/182,263
 ; CURRENT FILING DATE: 2002-07-22
 ; PRIOR APPLICATION NUMBER: 60/181948
 ; PRIOR FILING DATE: 2002-02-11
 ; PRIOR APPLICATION NUMBER: 60/189199
 ; PRIOR FILING DATE: 2000-03-14
 ; NUMBER OF SEQ ID NOS: 12
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 6
 ; LENGTH: 419
 ; TYPE: PRT
 ; ORGANISM: Homo sapiens
 ; US-10-182-263-6

Sequence 355, App
 Sequence 86, App
 Sequence 355, App
 Sequence 85, App
 Sequence 353, App
 Sequence 19, App
 Sequence 18, App
 Sequence 33, App
 Sequence 2, App
 Sequence 12, App
 Sequence 12, App
 Sequence 5, App
 Sequence 5, App
 Sequence 5, App
 Sequence 2, App
 Sequence 2, App
 Sequence 6, App
 Sequence 7, App
 Sequence 2, App
 Sequence 2, App
 Sequence 6, App
 Sequence 6, App
 Sequence 34, App
 Sequence 2179, App

ALIGNMENTS

FILE REFERENCE: X-13611
 CURRENT APPLICATION NUMBER: US/10/182,263
 CURRENT FILING DATE: 2002-07-22
 PRIORITY APPLICATION NUMBER: 60/181948
 PRIORITY FILING DATE: 2002-02-11
 PRIORITY APPLICATION NUMBER: 60/189199
 NUMBER OF SEQ ID NOS: 12
 SOFTWARE: Patentin version 3.1
 SEQ ID NO 3
 LENGTH: 419
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-10-182-263-3

Query Match 88.3%; Score 174; DB 9; Length 419;
 Best Local Similarity 77.3%; Pred. No. 3.8e-21;
 Matches 34; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
 Db 1 ANSFLEELRHSSLERECIEICDFEEAKEIFEDVDDTLAFWSKH 44

RESULT 3
 US-10-182-263-4
 Sequence 4, Application US/10182263
 Publication No. US20030022354A1
 GENERAL INFORMATION:
 APPLICANT: Gerlitz, Bruce E
 APPLICANT: Jones, Bryan E
 APPLICANT: Grinnell, Brian W
 TITLE OF INVENTION: PROTEIN C DERIVATIVES
 FILE REFERENCE: X-13611
 CURRENT APPLICATION NUMBER: US/10/182,263
 CURRENT FILING DATE: 2002-07-22
 PRIORITY APPLICATION NUMBER: 60/181948
 PRIORITY FILING DATE: 2002-02-11
 PRIORITY APPLICATION NUMBER: 60/189199
 PRIORITY FILING DATE: 2000-03-14
 NUMBER OF SEQ ID NOS: 12
 SOFTWARE: Patentin version 3.1
 SEQ ID NO 4
 LENGTH: 419
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-10-182-263-4

Query Match 88.3%; Score 174; DB 9; Length 419;
 Best Local Similarity 77.3%; Pred. No. 3.8e-21; Indels 0;
 Matches 34; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
 Db 1 ANSFLEELRHSSLERECIEICDFEEAKEIFEDVDDTLAFWSKH 44

RESULT 5
 US-10-182-263-1
 Sequence 1, Application US/10182263
 Publication No. US20030022354A1
 GENERAL INFORMATION:
 APPLICANT: Gerlitz, Bruce E
 APPLICANT: Jones, Bryan E
 APPLICANT: Grinnell, Brian W
 TITLE OF INVENTION: PROTEIN C DERIVATIVES
 FILE REFERENCE: X-13611
 CURRENT APPLICATION NUMBER: US/10/182,263
 CURRENT FILING DATE: 2002-07-22
 PRIORITY APPLICATION NUMBER: 60/181948
 PRIORITY FILING DATE: 2002-02-11
 PRIORITY APPLICATION NUMBER: 60/189199
 PRIORITY FILING DATE: 2000-03-14
 NUMBER OF SEQ ID NOS: 12
 SOFTWARE: Patentin version 3.1
 SEQ ID NO 1
 LENGTH: 419
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-10-182-263-1

Query Match 88.3%; Score 174; DB 9; Length 419;
 Best Local Similarity 77.3%; Pred. No. 3.8e-21; Indels 0;
 Matches 34; Conservative 0; Mismatches 10; Indels 0; Gaps 0;

QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44
 Db 1 ANSFLEELRHSSLERECIEICDFEEAKEIFEDVDDTLAFWSKH 44

RESULT 6
 US-09-978-917A-4
 Sequence 4, Application US/09978917A
 Publication No. US2003002729A1
 GENERAL INFORMATION:
 APPLICANT: Maxygen Abs; Maxygen Holdings
 TITLE OF INVENTION: Protein C or activated protein C-like molecules
 FILE REFERENCE: 0219us10 - protein C
 CURRENT APPLICATION NUMBER: US/09/978,917A
 CURRENT FILING DATE: 2001-10-17
 NUMBER OF SEQ ID NOS: 48
 SOFTWARE: Patentin Ver. 2.1
 SEQ ID NO 4
 LENGTH: 419
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-09-978-917A-4

Query Match 81.2%; Score 160; DB 9; Length 419;
 Best Local Similarity 70.5%; Pred. No. 8.6e-19;
 Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;

QY 1 ANSFLXXLROGSLSRXCIXXICDFXXAKXIFEDVDDTLAFWSKH 44

```

; Publication No. US20030081244A1
; GENERAL INFORMATION:
; APPLICANT: McCarthy, Jeanette
; TITLE OF INVENTION: DIAGNOSIS AND TREATMENT OF VASCULAR DISEASE
; FILE REFERENCE: MM1-007
; CURRENT APPLICATION NUMBER: US/10/017,122
; CURRENT FILING DATE: 2001-12-14
; PRIOR APPLICATION NUMBER: 60/327,487
; PRIOR FILING DATE: 2001-10-09
; NUMBER OF SEQ ID NOS: 4
; SOFTWARE: Patentin Ver. 2.0
; SEQ ID NO: 2
; LENGTH: 466
; TYPE: PRT
; ORGANISM: Homo sapiens
; US-10-182-263-2

Query Match 81.2%; Score 160; DB 9; Length 461;
Best Local Similarity 70.5%; Pred. No. 9.5e-19;
Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;
OY 1 ANSFLXXLROGSLSRXCIXICDFXXAKVIFEDVDDTLAFW$KH 44
Db 43 ANSFLEELRHSLSRECEBICDFEEAKEIIFQNVDDTLAFW$KH 86

RESULT 8
US-09-978-917A-2
; Sequence 2, Application US/09978917A
; Publication No. US2003002729A1
; GENERAL INFORMATION:
; APPLICANT: Maxygen ApS; Maxygen Holdings
; TITLE OF INVENTION: Protein C or activated protein C-like molecules
; FILE REFERENCE: 02190310 - protein C
; CURRENT APPLICATION NUMBER: US/09/978,917A
; CURRENT FILING DATE: 2001-10-17
; NUMBER OF SEQ ID NOS: 48
; SOFTWARE: Patentin Ver. 2.1
; SEQ ID NO: 2
; LENGTH: 461
; TYPE: PRT
; ORGANISM: Homo sapiens
; FEATURE:
; NAME/KEY: SIGNAL
; LOCATION: (1)..(42)
; FEATURE:
; NAME/KEY: CHAIN
; LOCATION: (43)..(461)
; US-09-978-917A-2

Query Match 81.2%; Score 160; DB 9; Length 461;
Best Local Similarity 70.5%; Pred. No. 9.5e-19;
Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;
OY 1 ANSFLXXLROGSLSRXCIXICDFXXAKVIFEDVDDTLAFW$KH 44
Db 43 ANSFLEELRHSLSRECEBICDFEEAKEIIFQNVDDTLAFW$KH 86

RESULT 9
US-10-017-122-2
; Sequence 1, Application US/10017122
; Publication No. US2003002235A1
; GENERAL INFORMATION:
; APPLICANT: Gerlitz, Bruce E
; APPLICANT: Jones, Bryan E
; APPLICANT: Grinnell, Brian W
; TITLE OF INVENTION: PROTEIN C DERIVATIVES
; FILE REFERENCE: X-13611
; CURRENT APPLICATION NUMBER: US/10/182,263
; CURRENT FILING DATE: 2002-07-22
; PRIOR APPLICATION NUMBER: 60/181948
; PRIOR FILING DATE: 2002-02-11
; NUMBER OF SEQ ID NOS: 12
; SOFTWARE: Patentin version 3.1
; SEQ ID NO: 2
; LENGTH: 461
; TYPE: PRT
; ORGANISM: Homo sapiens
; US-10-182-263-2

Query Match 81.2%; Score 160; DB 9; Length 461;
Best Local Similarity 70.5%; Pred. No. 9.5e-19;
Matches 31; Conservative 2; Mismatches 11; Indels 0; Gaps 0;
OY 1 ANSFLXXLROGSLSRXCIXICDFXXAKVIFEDVDDTLAFW$KH 44
Db 43 ANSFLEELRHSLSRECEBICDFEEAKEIIFQNVDDTLAFW$KH 86

RESULT 10
US-10-109-498-1
; Sequence 1, Application US/10109498
; Publication No. US20030041908A1
; GENERAL INFORMATION:
; APPLICANT: Person, Egon
; TITLE OF INVENTION: Coagulation Factor VII Derivatives
; FILE REFERENCE: 6286 200-US
; CURRENT APPLICATION NUMBER: US/10/109,498
; CURRENT FILING DATE: 2002-03-22
; PRIOR APPLICATION NUMBER: 60/281,261
; PRIOR FILING DATE: 2001-04-03
; NUMBER OF SEQ ID NOS: 20
; SOFTWARE: FASTSEQ for Windows Version 4.0
; SEQ ID NO: 1
; LENGTH: 406
; TYPE: PRT
; ORGANISM: Homo sapiens
; FEATURE:
; NAME/KEY: VARIANT
; LOCATION: (1)..(406)
; OTHER INFORMATION: Xaa = Any Amino Acid
; US-10-109-498-1

Query Match 48.7%; Score 96; DB 9; Length 406;
Best Local Similarity 70.7%; Pred. No. 5e-08;
Matches 29; Conservative 3; Mismatches 9; Indels 0; Gaps 0;
OY 1 ANSFLXXLROGSLSRXCIXICDFXXAKVIFEDVDDTLAFW$KH 44
Db 1 ANAFLXXLROGSLSRXCIXICDFXXAKVIFEDVDDTLAFW$KH 41

RESULT 11
US-09-759-130B-313
; Sequence 313, Application US/09759130B
; Publication No. US20030022279A1
; GENERAL INFORMATION:
; APPLICANT: Milennium Pharmaceuticals, Inc.
; APPLICANT: McCarthy, Sean A
; APPLICANT: Fraser, Christopher C
; APPLICANT: Sharp, John D
; APPLICANT: Barnes, Thomas S
; APPLICANT: Kirst, Susan J
; APPLICANT: Mackay, Charles R

```

APPLICANT: Myers, Paul S
 APPLICANT: Leiby, Kevin R
 APPLICANT: Wrighton, Nicolas
 APPLICANT: Goodearl, Andrew
 APPLICANT: Holtzman, Douglas A
 TITLE OF INVENTION: NOVEL GENES ENCODING PROTEINS HAVING PROGNOSTIC, DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER TITLE OF INVENTION: USES
 FILE REFERENCE: MP100-5350MIM
 CURRENT APPLICATION NUMBER: US/09/759,130B
 CURRENT FILING DATE: 2002-09-16
 PRIOR APPLICATION NUMBER: US 09/479,249
 PRIOR FILING DATE: 2000-01-07
 PRIOR APPLICATION NUMBER: US 09/559,497
 PRIOR FILING DATE: 2000-04-27
 PRIOR APPLICATION NUMBER: US 09/578,063
 PRIOR FILING DATE: 2000-05-24
 PRIOR APPLICATION NUMBER: US 09/333,159
 PRIOR FILING DATE: 1999-05-14
 PRIOR APPLICATION NUMBER: US 09/596,194
 PRIOR FILING DATE: 2000-07-14
 PRIOR APPLICATION NUMBER: US 09/342,364
 PRIOR FILING DATE: 1999-06-29
 PRIOR APPLICATION NUMBER: US 09/608,452
 PRIOR FILING DATE: 2000-06-30
 PRIOR APPLICATION NUMBER: US 09/393,996
 PRIOR FILING DATE: 1999-09-10
 PRIOR APPLICATION NUMBER: US 09/602,871
 PRIOR FILING DATE: 2000-06-23
 PRIOR APPLICATION NUMBER: US 09/420,707
 PRIOR FILING DATE: 1999-10-19
 NUMBER OF SEQ ID NOS: 460
 SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO: 313
 LENGTH: 96
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-09-759-130B-313

RESULT 13
 US-09-759-130B-312
 ; Sequence 312, Application US/09/759130B
 ; Publication No. US20030022279A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Millennium Pharmaceuticals, Inc.
 ; APPLICANT: Fraser, Christopher C
 ; APPLICANT: Sharp, John D
 ; APPLICANT: Barnes, Thomas S
 ; APPLICANT: Kirst, Susan J
 ; APPLICANT: Mackay, Charles R
 ; APPLICANT: Myers, Paul S
 ; APPLICANT: Leiby, Kevin R
 ; APPLICANT: Wrighton, Nicolas
 ; APPLICANT: Goodearl, Andrew
 ; APPLICANT: Holtzman, Douglas A
 TITLE OF INVENTION: NOVEL GENES ENCODING PROTEINS HAVING PROGNOSTIC, DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER TITLE OF INVENTION: USES
 FILE REFERENCE: MP100-5350MIM
 CURRENT APPLICATION NUMBER: US/09/759,130B
 CURRENT FILING DATE: 2002-09-16
 PRIOR APPLICATION NUMBER: US 09/479,249
 PRIOR FILING DATE: 2000-01-07
 PRIOR APPLICATION NUMBER: US 09/559,497
 PRIOR FILING DATE: 2000-04-27
 PRIOR APPLICATION NUMBER: US 09/578,063
 PRIOR FILING DATE: 2000-05-24
 PRIOR APPLICATION NUMBER: US 09/333,159
 PRIOR FILING DATE: 1999-05-14
 PRIOR APPLICATION NUMBER: US 09/596,194
 PRIOR FILING DATE: 2000-07-14
 PRIOR APPLICATION NUMBER: US 09/342,364
 PRIOR FILING DATE: 1999-06-29
 PRIOR APPLICATION NUMBER: US 09/608,452
 PRIOR FILING DATE: 2000-06-30
 PRIOR APPLICATION NUMBER: US 09/393,996
 PRIOR FILING DATE: 1999-09-10
 PRIOR APPLICATION NUMBER: US 09/602,871
 PRIOR FILING DATE: 2000-06-23
 PRIOR APPLICATION NUMBER: US 09/420,707
 PRIOR FILING DATE: 1999-10-19
 NUMBER OF SEQ ID NOS: 460
 SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO: 312
 LENGTH: 96
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-09-759-130B-312

RESULT 14
 US-09-759-130B-312
 ; Sequence 312, Application US/09/759130B
 ; Publication No. US20030022279A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Millennium Pharmaceuticals, Inc.
 ; APPLICANT: Fraser, Christopher C
 ; APPLICANT: Sharp, John D
 ; APPLICANT: Barnes, Thomas S
 ; APPLICANT: Kirst, Susan J
 ; APPLICANT: Mackay, Charles R
 ; APPLICANT: Myers, Paul S
 ; APPLICANT: Leiby, Kevin R
 ; APPLICANT: Wrighton, Nicolas
 ; APPLICANT: Goodearl, Andrew
 ; APPLICANT: Holtzman, Douglas A
 TITLE OF INVENTION: NOVEL GENES ENCODING PROTEINS HAVING PROGNOSTIC, DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER TITLE OF INVENTION: USES
 FILE REFERENCE: MP100-5350MIM
 CURRENT APPLICATION NUMBER: US/09/759,130B
 CURRENT FILING DATE: 2002-09-16
 PRIOR APPLICATION NUMBER: US 09/479,249
 PRIOR FILING DATE: 2000-01-07
 PRIOR APPLICATION NUMBER: US 09/559,497
 PRIOR FILING DATE: 2000-04-27
 PRIOR APPLICATION NUMBER: US 09/578,063
 PRIOR FILING DATE: 2000-05-24
 PRIOR APPLICATION NUMBER: US 09/333,159
 PRIOR FILING DATE: 1999-05-14
 PRIOR APPLICATION NUMBER: US 09/596,194
 PRIOR FILING DATE: 2000-07-14
 PRIOR APPLICATION NUMBER: US 09/342,364
 PRIOR FILING DATE: 1999-06-29
 PRIOR APPLICATION NUMBER: US 09/608,452
 PRIOR FILING DATE: 2000-06-30
 PRIOR APPLICATION NUMBER: US 09/393,996
 PRIOR FILING DATE: 1999-09-10
 PRIOR APPLICATION NUMBER: US 09/602,871
 PRIOR FILING DATE: 2000-06-23
 PRIOR APPLICATION NUMBER: US 09/420,707
 PRIOR FILING DATE: 1999-10-19
 NUMBER OF SEQ ID NOS: 460
 SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO: 312
 LENGTH: 96
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-09-759-130B-312

Query Match 42.9%; Score 84.5; DB 9; Length 96;
 Best Local Similarity 38.6%; Pred. No. 9e-07; Mismatches 18; Indels 1; Gaps 1;

Qy 2 NSF-LXXLROGSILXRXCIXXICDFXXAKX.FEDVDDILAFWSKH 44
 Db 36 NRFDLELFPTPGNLERCCNEELCNYEEAREIFVDEDKTIAFWOEY 79

Query Match 42.9%; Score 84.5; DB 9; Length 209;
 Best Local Similarity 38.6%; Pred. No. 2.1e-06; Mismatches 8; Indels 1; Gaps 1;

Qy 2 NSF-LXXLROGSILXRXCIXXICDFXXAKX.FEDVDDILAFWSKH 44
 Db 36 NRFDLELFPTPGNLERCCNEELCNYEEAREIFVDEDKTIAFWOEY 79

Publication No. US20030082586A1
GENERAL INFORMATION:
APPLICANT: KIRST, Susan J.
APPLICANT: HOLTZMAN, Douglas A.
APPLICANT: FRASER, Christopher C.
APPLICANT: SHARP, John D.
APPLICANT: BARNES, Thomas S.
TITLE OF INVENTION: ANTIBODIES HAVING DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER CURRENT APPLICATION NUMBER: US10/189,123
CURRENT FILING DATE: 2003-07-02
PRIOR APPLICATION NUMBER: US 09/596,194
PRIOR FILING DATE: 2000-06-16
PRIOR APPLICATION NUMBER: US 09/342,364
PRIOR FILING DATE: 1999-06-29
NUMBER OF SEQ ID NOS: 100
SOFTWARE: PatentIn version 3.1
SEQ ID NO 42
LENGTH: 209
TYPE: PRT
ORGANISM: Homo sapiens
US-10-189-123-42

PRIOR APPLICATION NUMBER: US 09/420,707
PRIOR FILING DATE: 1999-10-19
NUMBER OF SEQ ID NOS: 460
SOFTWARE: FastSEQ for Windows Version 4.0
SEQ ID NO 310
LENGTH: 226
TYPE: PRT
ORGANISM: Homo sapiens
US-09-159-10B-310

Query	Match	Score	DB	Length
Best Local Similarity:	42.9%	84.5;	DB 9;	Length 209;
Matches	38.6%	Pred. No. 2.1e-06;		
17;	Conservative	8;	Mismatches	18;
Qy			Indels	1;
2	NSF-LXXLRQGLSLXRCIXKICDFXXAKKIXEDDVDPFLAFNSKH	44		
Db	36	NRFDELFTGNGLERNECLNVEARAEFVDEDKTAIFNMQ	79	

US-09-759-130B-310

GENERAL INFORMATION:
APPLICANT: Millennium Pharmaceuticals, Inc.

APPLICANT: Sharp, John D

APPLICANT: Mackay, Charles R
; APPLICANT: Myers, Paul S

APPLICANT: Goodearl, Andrew
AMERICAN: Hallmark Cards

REFLAGGED; RUSTICATION; DONG HAS A
TITLE OF INVENTION: NOVEL GENES ENCODING PROTEINS, HAVING
TITLE OF INVENTION: PROGNOSTIC, DIAGNOSTIC, PREVENTIVE, THERAPEUTIC, AND OTHER
TITLE OF INVENTION: USES

CURRENT APPLICATION NUMBER: US/09/759,1
CURRENT FILING DATE: 2002-09-16
PCT/US2002/004763

PRIOR FILING DATE: 2000-01-07
PRIOR APPLICATION NUMBER: US 09/559,497
PRIOR FILING DATE: 2000-04-27

PRIOR FILING DATE: 2000-05-24
PRIOR APPLICATION NUMBER: US 09/333,159

PRIOR APPLICATION NUMBER: US 09/596,194
PRIOR FILING DATE: 2000-07-14
PRIOR APPLICATION NUMBER: US 09/342,364

PRIOR APPLICATION NUMBER: US 09/608,452
; PRIOR FILING DATE: 2000-06-30
; PRIOR ALLOWANCE NUMBER: US 6,033,005

PRIOR FILING DATE: 1999-09-10
PRIOR APPLICATION NUMBER: US 09/602,871
PRIOR FILING DATE: 2000-06-23

THIS PAGE BLANK (up to)