

Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Computación

Mimetización entre interlocutores

Tesis presentada para optar al título de Licenciado en Ciencias de la Computación

Juan Manuel Pérez

Director: Agustín Gravano Codirector: Ramiro Gálvez

Buenos Aires, 2015

MEDICIÓN DE LA MIMETIZACIÓN ENTRE INTERLOCUTORES UTILIZANDO SERIES DE TIEMPO

El entrainment (mimetización) es un fenómeno inconsciente que se manifiesta a través de la adaptación de posturas, forma de hablar, gestos faciales y otros comportamientos entre dos o más interactores. A su vez, la ocurrencia de esta mimetización está fuertemente emparentada con el sentimiento de empatía y compenetración entre los participantes.

En esta tesis, nos proponemos explorar una técnica algorítmica para detectar el entrainment entre variables prosódicas de dos personas. Esta técnica nos permitirá determinar si existe o no convergencia para ciertos parámetros, y ver como está ésto correlacionado con variables sociales tales como la empatía, la compenetración con la tarea, y otras.

Palabras claves: Guerra, Rebelión, Wookie, Jedi, Fuerza, Imperio (no menos de 5).

MEASURING ENTRAINMENT BETWEEN SPEAKERS USING TIME SERIES

In a galaxy far, far away, a psychopathic emperor and his most trusted servant – a former Jedi Knight known as Darth Vader – are ruling a universe with fear. They have built a horrifying weapon known as the Death Star, a giant battle station capable of annihilating a world in less than a second. When the Death Star's master plans are captured by the fledgling Rebel Alliance, Vader starts a pursuit of the ship carrying them. A young dissident Senator, Leia Organa, is aboard the ship & puts the plans into a maintenance robot named R2-D2. Although she is captured, the Death Star plans cannot be found, as R2 & his companion, a tall robot named C-3PO, have escaped to the desert world of Tatooine below. Through a series of mishaps, the robots end up in the hands of a farm boy named Luke Skywalker, who lives with his Uncle Owen & Aunt Beru. Owen & Beru are viciously murdered by the Empire's stormtroopers who are trying to recover the plans, and Luke & the robots meet with former Jedi Knight Obi-Wan Kenobi to try to return the plans to Leia Organa's home, Alderaan. After contracting a pilot named Han Solo & his Wookiee companion Chewbacca, they escape an Imperial blockade. But when they reach Alderaan's coordinates, they find it destroyed - by the Death Star. They soon find themselves caught in a tractor beam & pulled into the Death Star. Although they rescue Leia Organa from the Death Star after a series of narrow escapes, Kenobi becomes one with the Force after being killed by his former pupil - Darth Vader. They reach the Alliance's base on Yavin's fourth moon, but the Imperials are in hot pursuit with the Death Star, and plan to annihilate the Rebel base. The Rebels must quickly find a way to eliminate the Death Star before it destroys them as it did Alderaan (aprox. 200 palabras).

Keywords: War, Rebellion, Wookie, Jedi, The Force, Empire (no menos de 5).

Índice general

		ducció																													
	1.1.	Introd	luc	cc	ic	ón																									2
	1.2.	Series	$\mathrm{d}\epsilon$	e	Τ	ie	m	pc)																						3
		1.2.1.	F	21	ro	се	SC	\mathbf{s}	es	to	cá	ás	ti	cc	S																4
		1.2.2.	E	Ξ_{5}	st	ac	io	na	ri	ed	lao	d																			4
		1.2.3.	A	4:	na	áli	sis	s b	iv	aı	ia	ad	0																		4
		1.2.4.	(C	ol	ur	nb	oia	. (Зa	m	e	C	Со	rį	οu	lS														5
2	Méto	odo																													7
	2.1.	Descri	pc	ci	óı	n '	ΓΑ	lΝ	14	١.																					8
	2.2.	Selecci	- ióı	n	d	le	Ve	en	ta	na	ı .																				8

1. INTRODUCCIÓN

1.1. Introducción

Los sistemas de diálogo humano-computadora son cada vez más frecuentes, y sus aplicaciones comprenden una amplia gama de rubros: desde aplicaciones móviles, motores de búsqueda, juegos, o tecnologías de asistencia para ancianos y discapacitados.

Si bien es cierto que estos sistemas logran captar la dimensión lingüística de la comunicación humana, tienen un déficit importante a la hora de procesar y transmitir el aspecto superestructural de la comunicación, que radica en el intercambio de afecto, emociones, actitudes y otras intenciones de los participantes. La habilidad de los participantes de poder expresar, comprender, y reaccionar de acuerdo a estas señales sociales es necesaria para el entendimiento mutuo y una comunicación exitosa.

Un aspecto particular de la comunicación es el fenómeno de $entrainment(arrastre, mimetización, efecto camaleón), que comprende la adaptación inconsciente de las variables acústicas/prosódicas(a/p) (por ejemplo, el tono de la voz, la velocidad del habla, etc) de manera dinámica en el transcurso de una o varias interacciones. Este fenómeno ha sido introducido por <math>Brennan\ et\ al[1]$ en 1996, y se ha observado que la convergencia de los participantes en estas variables ocurre en conjunto con una interacción más fluída y un mayor sentimiento de simpatía por sus interlocutores [2].

Poder medir esta mimetización de los interlocutores no es una tarea fácil, sin embargo. En primer lugar, un diálogo no es una sucesión de turnos, sino que es una serie de tiempo dinámica, llena de interrupciones. Más aún, la mimetización no tiene un carácter instantáneo, sino que se sucede a lo largo de la interacción entre los participantes. Estos factores dificultan ostensiblemente poder modelar este fenómeno.

Fig. 1.1: Gráfico de serie de tiempo de la evolución del desempleo en Argentina

1.2. Series de Tiempo

Definición Informal

En términos informales, una serie de tiempo es un conjunto de datos recolectados secuencialmente en el tiempo. Este tipo de datos se dan en varios campos de estudio, mayormente en economía, ciencias de la atmósfera, y otras.

Ejemplos de series de tiempo:

- Volumen de lluvias en sucesivos días de un año
- Precio de acciones en diferentes meses
- Cantidad de habitantes de una ciudad año a año

¿Para qué queremos series de tiempo?

Hay varios motivos por los cuales uno querría efectuar un análisis de una serie de tiempo.

- 1) Descripción Usualmente, lo primero que se hace al obtener la serie de tiempo es graficarla y obtener las características más notorias de ésta. Por ejemplo, en 1.1 puede notarse que hay una tendencia decreciente del 2003 hasta el 2012. En otras (como en el volumen de lluvias) podrá observarse cierta estacionalidad en la serie.
- Si bien ésto no requiere técnicas avanzadas de análisis, es el primer paso fundamental para comprender una serie de tiempo.
- 2) Explicación Cuando analizamos dos o más series de tiempo, podemos querer ver cómo se comportan en conjunto. Una variación en una serie de tiempo puede producir un cambio en otra. Por ejemplo, podemos intentar buscar como varían en conjunto la temperatura diaria con la cantidad de mL de lluvia caídos.
- 3) Predicción Dada una serie de tiempo, podemos querer intentar predecir un valor futuro.

4) Control Dado un proceso del que se mide cierto parámetro de calidad, podemos querer ajustar variables de entrada para mantenerla en ciertos valores.

En nuestro caso, nos es de interés 1 y 2.

1.2.1. Procesos estocásticos

Definición 1. Una proceso estocástico es una colección de variables aleatorias $\{X_t\}_{t\in T}$ donde T es un conjunto de puntos de tiempo. En nuestro caso, nos interesa $T = \mathbb{N}$, de manera que el proceso será de la forma X_1, X_2, \dots

Podemos entender un proceso estocástico como un conjunto de variables ordenadas por el tiempo. Llamamos serie de tiempo a una observación de este proceso estocástico. Usualmente sólo tendremos esta instancia, a diferencia de otros problemas estadísticos donde tendremos muchas observaciones.

1.2.2. Estacionariedad

Un concepto importante en series de tiempo es el de estacionariedad. En lenguaje coloquial, una serie de tiempo estacionaria es aquella en la que no observamos cambios sistemáticos de ésta en el tiempo: si tomamos una parte de la serie, y observamos otro parte distinta de la serie, las propiedades de ésta se mantienen.

Ejemplos de series de tiempo estacionarias son las de ruido blanco, y ejemplos de no estacionarias aquellas que tienen una tendencia. (mejorar esto...)

Definición 2. Un proceso estocástico $X_i, i \in \mathbb{N}$ se dice fuertemente estacionario si, para todo conjunto de índices t_1, \ldots, t_n y para un desplazamiento $\tau \in \mathbb{N}$ tenemos que

$$F_{X_{t_1}, X_{t_2}, \dots, X_{t_n}} = F_{X_{t_1} + \tau, X_{t_2} + \tau, \dots, X_{t_n} + \tau}$$

Es decir, que la función de probabilidad se preserva por traslados.

Se derivan como propiedades que, para todo X_t y cualquier desplazamiento τ

$$E[X_t] = E[X_{t+\tau}] \tag{1.1}$$

$$Var[X_t] = Var[X_{t+\tau}] \tag{1.2}$$

$$Cov(X_s, X_t) = Cov(X_{s+\tau}, X_{t+\tau})$$
(1.3)

Las ecuaciones 1.1 y 1.2 nos dicen que tanto la media como la varianza son constantes (no dependen de t), y que la covarianza sólo depende de la diferencia |s-t|.

Definición 3. Un proceso se dice débilmente estacionario si cumple 1.1, 1.2, 1.3

A partir de aquí, cuando hablemos de series estacionarias estaremos hablando de series débilmente estacionarias

1.2.3. Análisis bivariado

Fig. 1.2: Juego del Columbia Games

1.2.4. Columbia Game Corpus

Nuestro corpus consiste en doce conversaciones diádicas (i.e., con dos participantes) entre trece personas distintas. En cada sesión, se sentó a dos participantes (quienes no se conocían previamente) en una cabina profesional de grabación, cara a cara a ambos lados de una mesa, y con una cortina opaca colgando entre ellos para evitar la comunicación visual.

Los participantes contaron con sendas computadoras portátiles conectadas entre sí, en las cuales jugaron una serie de juegos simples que requerían de comunicación verbal. Por ejemplo, en uno de tales juegos, ambas computadoras muestran un tablero con varios objetos (Figura 1), todos en la misma posición excepto por uno, el objetivo, que aparece en un lugar distinto en cada computadora.

Uno de los jugadores, para quien el objetivo aparece titilando, debe entonces describir la ubicación exacta del mismo usando los otros elementos como referencia, de modo que el otro jugador pueda mover su propia instancia del objetivo a la posición correcta. Al terminar cada juego, se otorga un puntaje según la precisión de la tarea realizada.

Las grabaciones se hicieron en 44 kHz, 16 bits con un canal separado para cada hablante; luego fueron guardadas en 16 kHz para el presente estudio. Cada sesión duró aproximadamente 45 minutos, totalizando 9 horas de diálogos, 70.259 palabras (2.037 únicas) para todo el cuerpo de datos.

2. MÉTODO

8 2. Método

2.1. Descripción TAMA

2.2. Selección de Ventana

En ?? se menciona una elección de frame step y frame length de 10s y 20s respectivamente. En el caso de nuestro corpus, quisimos buscar los parámetros que mejor se ajustaban a éste, manteniendo la superposición del 50 % entre ventanas sucesivas. Con lo que nos queda que FL=2*FS

¿Qué queremos optimizar? La métrica que elegimos para ésto es encontrar un balance entre un frame no tan grande (para no suavizar en exceso la curva) y que nos reduzca considerablemente la cantidad de indefiniciones; es decir, aquellas ventanas que tomamos en un interlocutor que no tienen ninguna interacción de su parte. Para ver ésto, graficamos la cantidad de indefiniciones en función del step tomado.

Dentro del rango de $FS \in \{5'', 6'', \dots, 15''\}$, graficamos para cada sesión, tarea y cada interlocutor las curvas de indefiniciones. A su vez, para mayor claridad, graficamos una curva que promedie todas las tareas de una sesión.

Para tener una visión general de lo que ocurría en todas las sesiones, graficamos una curva promedio de todas las sesiones. En ésta puede observarse que hasta 8'' - 10'' hay un fuerte descenso de las indefiniciones, que luego se atenúa. Dado que en general tenemos tareas cortas, preferimos tomar 8'' como step, y 16'' como largo de ventana.

OBS: podríamos cambiar ésto a un boxplot!

10 2. Método

- Selección de Ventanas
- Time plots, y autocorrelaciones

Bibliografía

- [1] Brennan: Lexical entrainment in spontaneous dialog, 1996
- [2] Chartrand, Bargh: The chameleon effect: The perception-behavior link and social interaction, 1999
- [3] De Looze, Scherer, Vaughan, Campbell: Investigating automatic measurements of prosodic accommodation and its dynamics in social interaction, 2013
- [4] Kousidis et al: Towards measuring continuous acoustic feature convergence in unconstrained spoken dialogues, 2008
- [5] Kousidis, Dorran, McDonnell & Coyle: Time Series Analysis of Acoustic Feature Convergence in Human Dialogues, 2009
- [6] Levitan, Gravano, Willson, Benus, Hirschberg & Nenkova, Acoustic-Prosodic entrainment and social behavior, 2012
- [7] Chatfield C., The analysis of time series: an introduction, Third Edition 1984