

ccattgcccc acatgaagta aaggattatg acgtcattca cccgctggat caaccattca 1980
ctgaaaaggg aggccttgct gtttattcg gtaatctagc tccggacggc gctatcatta 2040
aaacaggcgg cgtacagaat gggattacaa gacacgaagg gccggctgtc gtattcgatt 2100
ctcaggacga ggcgcttgac ggcattatca accgaaaagt aaaagaaggc gacgttgtca 2160
tcatacagata cgaagggcca aaaggcggac ctggcatgcc ggaaatgctg gcgccaacat 2220
cccaaatcgt tggaatggga ctcggccaa aagtggcatt gattacggac ggacgtttt 2280
ccggagcctc ccgtggcctc tcaatcggcc acgtatcacc tgaggccgct gagggcgggc 2340
cgcttgcctt tggaaaac ggagaccata ttatcggtga tattaaaaaa cgcatcttgg 2400
atgtacaagt gccagaagaa gagtggaaa aacgaaaagc gaactggaaa ggtttgaac 2460
cgaaagtgaa aaccggctac ctggcacgtt attctaaact tgtgacaagt gccaacaccc 2520
gcggatttat gaaaatctag acccctggcg taatagcgaa gaggcccga ccgatcgccc 2580
ttcccaacag ttgcgcagcc tgaatggcga atgagcttgc gccgtccgt caagtcagcg 2640
taatgctctg ccagtgttac aaccaattaa ccaattctga ttagaaaaac tcatacgagca 2700
tcaaataatgaa ctgcaattta ttcatatcag gattatcaat accatatttt tggaaaagcc 2760
gtttctgtaa tgaaggagaa aactcaccga ggcagttcca taggatggca agatcctgg 2820
atcggtctgc gattccgact cgtccaacat caatacaacc tattaatttc ccctcgtaa 2880
aaataaggaa atcaagttagaa aacccat gactgacgac tgaatccggt gagaatggca 2940
aaaggatgtatg catttcttc cagacttgcgtt caacaggcca gccattacgc tcgtcatcaa 3000
aatcactcgc atcaacccaaa ccgttattca ttcgtgattt cgcctgagcg agacgaaata 3060
cgcgatcgct gtaaaaggaa caattacaaa caggaatcga atgcaaccgg cgccaggaaca 3120
ctgccagcgc atcaacaata tttcacctg aatcaggata ttcttctaattt acctggaaatg 3180
ctgtttccc agggatcgca gtggtgagta accatgcattc atcaggagta cggataaaaat 3240
gcttgatggt cgaaagagggc ataaattccg tcagccagtt tagtctgacc atctcatctg 3300
taacatcatt ggcaacgcta ccttgccat gtttcagaaaa caactctggc gcatcgggct 3360
tcccatacaa tcaatagatt gtcgcacctg attgcccgcattatcgcga gcccatttat 3420
accatataaa atcagcatcc atgttggaaat ttaatcgccgg cctcgacgag caagacgttt 3480
cccggttaat atggctcata acacccttg tattactgtt tatgttaagca gacagtttt 3540
ttgttcatga tgatataattt ttatcttgatc caatgttaaca tcagagattt tgagacactc 3600
gacaagatga tcttcttgag atcggtttgg tctgcgcgtt atctcttgct ctgaaaacga 3660
aaaaaccggcc ttgcaggggcg gttttcgaa gtttctgtt gctaccaact ctttgaacc 3720
aqgttaactqa cttggaaqqqaq cqcaqtcacc aaaacttgc ctttcagttt agccttaacc 3780

ggcgcatgac ttcaagacta actcctctaa atcaattacc agtggctgct gccagtggtg 3840
cttttgcatg tctttccggg ttggactcaa gacgatacggtt accggataag gcgcagcgg 3900
cggaactgaac ggggggttcg tgcatacagt ccagcttggg gcgaactgcc taccggaaac 3960
tgttgttcag gcgtggaatg agacaaacgc ggccataaca gcggaatgac accggtaaac 4020
cgaaaaggcag gaacaggaga gcgcacgagg gagccgcccag gggaaacgcc tggttatctt 4080
atagtcctgt cgggttcgc caccactgat ttgagcgtca gatttcgtga tgcttgcgtcag 4140
ggggggccggag cctatggaaa aacggcttgc cgcggccct ctcacttccc t 4191

```
<210> 84
<211> 702
<212> DNA
<213> Bacillus subtilis
```

<220>
<221> CDS
<222> (1)..(699)

```

<400> 84
ttg tta ctg gtt atc gat gtg ggg aac acc aat act gta ctt ggt gta    48
Met Leu Leu Val Ile Asp Val Gly Asn Thr Asn Thr Val Leu Gly Val
   1           5           10          15

```

tat cat gat gga aaa tta gaa tat cac tgg cgt ata gaa aca agc agg 96
 Tyr His Asp Gly Lys Leu Glu Tyr His Trp Arg Ile Glu Thr Ser Arg
 20 25 30

cat aaa aca gaa gat gag ttt ggg atg att ttg cgc tcc tta ttt gat 144
 His Lys Thr Glu Asp Glu Phe Gly Met Ile Leu Arg Ser Leu Phe Asp
 35 40 45

```

cac tcc ggg ctt atg ttt gaa cag ata gat ggc att att att att tcg tca 192
His Ser Gly Leu Met Phe Glu Gln Ile Asp Gly Ile Ile Ile Ser Ser
      50           55           60

```

```

gta gtg ccg cca atc atg ttt gcg tta gaa aga atg tgc aca aaa tac 240
Val Val Pro Pro Ile Met Phe Ala Leu Glu Arg Met Cys Thr Lys Tyr
   65           70           75           80

```

ttt cat atc gag cct caa att gtt ggt cca ggt atg aaa acc acc ggt tta 288
Phe His Ile Glu Pro Gln Ile Val Gly Pro Gly Met Lys Thr Gly Leu
85 90 95

```

aat ata aaa tat gac aat ccg aaa gaa gta ggg gca gac aga atc gta 336
Asn Ile Lys Tyr Asp Asn Pro Lys Glu Val Gly Ala Asp Arg Ile Val
          100           105           110

```

```

aat gct gtc gct gcg ata cac ttg tac ggc aat cca tta att gtt gtc 384
Asn Ala Val Ala Ala Ile His Leu Tyr Gly Asn Pro Leu Ile Val Val
           115          120          125

```

```

gat ttc gga acc gcc aca acg tac tgc tat att gat gaa aac aaa caa 432
Asp Phe Gly Thr Ala Thr Thr Tyr Cys Tyr Ile Asp Glu Asn Lys Gln
    130           135           140

```

tac atg ggc ggg gcg att gcc cct ggg att aca att tcg aca gag gcg	480
Tyr Met Gly Gly Ala Ile Ala Pro Gly Ile Thr Ile Ser Thr Glu Ala	
145 150 155 160	
ctt tac tcg cgt gca gca aag ctt cct cgt atc gaa atc acc cgg ccc	528
Leu Tyr Ser Arg Ala Ala Lys Leu Pro Arg Ile Glu Ile Thr Arg Pro	
165 170 175	
gac aat att atc gga aaa aac act gtt agc gcg atg caa tct gga att	576
Asp Asn Ile Ile Gly Lys Asn Thr Val Ser Ala Met Gln Ser Gly Ile	
180 185 190	
tta ttt ggc tat gtc ggc caa gtg gaa gga atc gtt aag cga atg aaa	624
Leu Phe Gly Tyr Val Gly Gln Val Glu Gly Ile Val Lys Arg Met Lys	
195 200 205	
tgg cag gca aaa cag gac cca agg tca ttg cga cag gag gcc tgg cgc	672
Trp Gln Ala Lys Gln Asp Pro Arg Ser Leu Arg Gln Glu Ala Trp Arg	
210 215 220	
cgc tca ttg cga acg aat cag att gta tag	702
Arg Ser Leu Arg Thr Asn Gln Ile Val	
225 230	
<210> 85	
<211> 233	
<212> PRT	
<213> Bacillus subtilis	
<400> 85	
Met Leu Leu Val Ile Asp Val Gly Asn Thr Asn Thr Val Leu Gly Val	
1 5 10 15	
Tyr His Asp Gly Lys Leu Glu Tyr His Trp Arg Ile Glu Thr Ser Arg	
20 25 30	
His Lys Thr Glu Asp Glu Phe Gly Met Ile Leu Arg Ser Leu Phe Asp	
35 40 45	
His Ser Gly Leu Met Phe Glu Gln Ile Asp Gly Ile Ile Ser Ser	
50 55 60	
Val Val Pro Pro Ile Met Phe Ala Leu Glu Arg Met Cys Thr Lys Tyr	
65 70 75 80	
Phe His Ile Glu Pro Gln Ile Val Gly Pro Gly Met Lys Thr Gly Leu	
85 90 95	
Asn Ile Lys Tyr Asp Asn Pro Lys Glu Val Gly Ala Asp Arg Ile Val	
100 105 110	
Asn Ala Val Ala Ala Ile His Leu Tyr Gly Asn Pro Leu Ile Val Val	
115 120 125	
Asp Phe Gly Thr Ala Thr Thr Tyr Cys Tyr Ile Asp Glu Asn Lys Gln	
130 135 140	
Tyr Met Gly Gly Ala Ile Ala Pro Gly Ile Thr Ile Ser Thr Glu Ala	
145 150 155 160	