

FACULTAD DE CIENCIAS EXACTAS INGENIERÍA Y AGRIMENSURA

TECNICATURA UNIVERSITARIA EN INTELIGENCIA ARTIFICIAL 2023

PROBABILIDAD Y ESTADÍSTICA

TRABAJO PRÁCTICO

N°2

Grupo N°: 10

Alumnos: Farias, Augusto

Demarre, Lucas

Donnarumma Cesar

Vercesi, Patricio

ACTIVIDAD 1

En un proceso de producción, una de las operaciones consiste en efectuar un *corte* en una *pieza de plástico*. **Dicho corte debe tener una profundidad inferior a 7 cm**, de acuerdo a lo que está especificado en los planos. En la empresa desean saber si la operación de corte se realiza de acuerdo a lo especificado y a tal fin toman **una muestra aleatoria de 150 piezas ya cortadas** y observan la profundidad del corte en cada una de ellas.

¿Considera que los cortes cumplen con las especificaciones en relación a su profundidad? ¿Qué medidas (parámetros) serían de interés en este caso?

Realizar el análisis completo incluyendo descripción del problema, población, muestra, variables, etc. Además del análisis descriptivo e inferencial.

Descripción del problema: Conocer si la operación de corte de las piezas de plástico en el proceso de producción de la empresa se realiza de acuerdo a lo especificado (que tengan una profundidad inferior a 7 cm).

Población: Todas las piezas de plástico ya cortadas pertenecientes al proceso de producción en cuestión de la empresa.

Muestra: n = 150 (muestra aleatoria)

Unidad elemental: Cada pieza de plástico.

Variable: Profundidad del corte *(en cm)*. Variable cuantitativa continua medida en escala de razón.

Parámetros de interés: Proporción (π) de las piezas de plástico que tienen una profundidad inferior a 7 cm.

Objetivo: Estimar la proporción de piezas de plástico de la población que tienen una profundidad de corte inferior a 7 cm.

Análisis descriptivo:

Para el análisis descriptivo como la variable es cuantitativa continua se agrupó a los diferentes valores en intervalos de clase y se creó una tabla de frecuencias para analizar la misma.

Gráficos:

*	frec_absolutas ‡	frec_relativas ‡	abs_acumuladas ‡	rel_acumuladas ‡
(4.99,5.24]	2	0.01	2	0.01
(5.24,5.49]	2	0.01	4	0.02
(5.49,5.74]	7	0.05	11	0.07
(5.74,5.99]	12	0.08	23	0.15
(5.99,6.24]	17	0.11	40	0.26
(6.24,6.49]	25	0.17	65	0.43
(6.49,6.74]	23	0.15	88	0.58
(6.74,6.99]	29	0.19	117	0.77
(6.99,7.24]	16	0.11	133	0.88
(7.24,7.49]	14	0.09	147	0.97
(7.49,7.74]	1	0.01	148	0.98
(7.74,7.99]	1	0.01	149	0.99
(7.99,8.24]	1	0.01	150	1.00

Medidas resumen:

De localización:

Mínimo: 5.14 cm
 Máximo: 8.04 cm
 Promedio: 6.57 cm

- Moda (intervalo modal): (6.75; 6.99] con una frecuencia absoluta de 29.

De dispersión:

- Rango: 3.25 cm

- Desvío estándar: 0.54 cm

- Proporción (de piezas de plásticos con profundidad de corte inferior a 7 cm): 0.78

De la muestra podemos concluir:

- La presencia de dos valores atípicos. Los mismos corresponden a la profundidad de corte mínima (5.14 cm) y máxima (8.04 cm).
- La distribución es aproximadamente simétrica. Se puede observar en el boxplot.
- El 58% de las profundidades de los cortes (88 en total) miden 6.74 cm o menos.
- La mayoría de profundidades de cortes (19%) miden entre 6.74 cm y 6.99 cm (intervalo modal), seguido por los cortes que miden entre 6.24cm y 6.49cm (17%) y por los que miden entre 6.49cm y 6.74cm (15%). Esto quiere decir que el 51% de las medidas se encuentran entre 6.24 cm y 6.99cm.
- Todos los cortes están dispersos en un rango de 3.25 cm.
- En promedio los cortes tienen una profundidad de 6.57 cm.
- La distancia promedio de las profundidades de los cortes al promedio es de 0.54 cm.
- La proporción de piezas de plástico que tienen una profundidad inferior a 7 cm es de 0.78.

Todas las conclusiones mencionadas anteriormente son sobre la muestra y no pueden aplicarse sin herramientas de análisis inferencial a la población.

Análisis Inferencial:

Estimación puntual de π : $f_0 = 0.78$

Interpretación: En la muestra analizada el 78% de las piezas de plástico tienen una profundidad de corte inferior a 7 cm. Esta conclusión es preliminar debido a que se está trabajando con una muestra y no con la población.

Es necesario aplicar técnicas de inferencia estadística para generalizar los resultados a la población. Vamos a utilizar una <u>confianza del 95%.</u> Lo vamos a hacer con el software R y calcularemos el intervalo de confianza exacto basado en el modelo Binomial.

 $IC_{95\%;\pi} = (0,71;0,84)$

Conclusiones sobre la población: Podemos afirmar con una confianza del 95% que entre el 71% y el 84% de piezas de plástico tienen una profundidad de corte inferior a 7 cm.

ACTIVIDAD 2

Reconsidere el Problema 6, Material 1, pág. 6:

Un comitente desea conocer ciertas características de un tramo de ruta de 5 km ya construido. Concretamente quiere establecer **si la ruta cumple con las exigencias de calidad** en cuanto a espesor y resistencia.

- a) Se pretende que como máximo en el 5% de los puntos la resistencia a la compresión sea menor que 30 MPa y
- b) que el espesor promedio sea igual a 22 cm.
- c) También se quiere analizar la homogeneidad de la ruta, tanto en relación al espesor como en relación a la resistencia a la compresión, en los distintos sectores de ese tramo de 5 km.

Se seleccionaron aleatoriamente 100 puntos de ese tramo y en cada uno se midió espesor y resistencia.

Los datos correspondientes se encuentran en el link.

Descripción del problema: Establecer si la ruta cumple con las exigencias de calidad en cuanto a espesor (promedio igual a 22 cm) y resistencia (máximo en el 5% sea menor que 30 MPa).

Población: Todos los puntos de un tramo de ruta de 5 km ya construido.

Muestra: n = 100 (aleatoria)

Variables:

- X: Espesor del punto (en cm) (Cuantitativa continua medida en escala de razón)
- Y: Resistencia a la compresión del punto (en MPa) (Cuantitativa continua medida en escala de razón)

Parametros de interes:

- μ de X (Espesor promedio)
- π de Y (Resistencia a la compresión) menor que 30 MPa

Objetivos:

- Estimar el espesor promedio poblacional de los puntos (para ver si es igual a 22 cm).
- Estimar la proporción poblacional de puntos con una resistencia menor que 30 MPa (para ver si es menor o igual al 5%)

Análisis descriptivo:

Para el análisis descriptivo como la variable es cuantitativa continua se agrupó a los diferentes valores en intervalos de clase y se creó una tabla de frecuencias para analizar la misma.

Gráficos: Resistencia

*	frec_resist_abs	frec_resist_rel	abs_acumuladas_res 🕏	rel_acumuladas_res 💠
(28.3,28.8]	1	0.01	1	0.01
(28.8,29.3]	4	0.04	5	0.05
(29.3,29.8]	7	0.07	12	0.12
(29.8,30.2]	12	0.12	24	0.24
(30.2,30.7]	15	0.15	39	0.39
(30.7,31.2]	19	0.19	58	0.58
(31.2,31.6]	11	0.11	69	0.69
(31.6,32.1]	17	0.17	86	0.86
(32.1,32.6]	10	0.10	96	0.96
(32.6,33]	3	0.03	99	0.99

28	1 3
28	<u> 6</u>
29	0123333
29	667788999
30	11122223344
30	<u>55555556777</u> 778888999
31	000011111122334
31	<u>556666777889999</u>
32	000111122244
32	555669
33	0

<u>Espesor</u>

^	frec_espesor_abs	frec_espesor_rel ‡	abs_acumuladas_esp 🕏	rel_acumuladas_esp 💠
(13.3,15.5]	6	0.06	6	0.06
(15.5,17.7]	9	0.09	15	0.15
(17.7,19.9]	12	0.12	27	0.27
(19.9,22.1]	21	0.21	48	0.48
(22.1,24.3]	13	0.13	61	0.61
(24.3,26.5]	19	0.19	80	0.80
(26.5,28.7]	12	0.12	92	0.92
(28.7,30.9]	5	0.05	97	0.97
(30.9,33.1]	1	0.01	98	0.98
(33.1,35.3]	1	0.01	99	0.99

Medidas resumen:

De localización:

Resistencia

Mínimo: 28.34 MPaMáximo: 33.04 MPaPromedio: 30.96 MPa

- Moda (intervalo modal): (19.9; 22.1] con una frecuencia absoluta de 21.

Espesor:

Mínimo: 13.26 cmMáximo: 35.28 cmPromedio: 22.41 cm

- Moda (intervalo modal): (6.75; 6.99] con una frecuencia absoluta de 29.

De dispersión:

Resistencia

- Rango: 4.69 MPa

- Desvío estándar: 1.02 MPa

Espesor

- Rango: 22.02 cm

- Desvío estándar: 4.56 cm

De la muestra podemos concluir:

- La ausencia de valores atípicos

- La distribución es casi simétrica para espesor y resistencia. Se puede observar en los boxplots.
- El 48% de los espesores *(48 en total)* miden 22.1 cm o menos. Y el 58% de las muestras *(58 en total)* tienen una resistencia de 31.2 MPa
- La mayoría de espesores (21%) miden entre 19.9 cm y 22.1 cm (intervalo modal), y la mayoría de resistencias (19%) se encuentran entre 30.7 MPa y 31.2 MPa (intervalo modal).
- Todos los espesores están dispersos en un rango de 22.02 cm y las resistencias en un rango de 4.69 MPa.
- En promedio los espesores tienen una medida de 22.41 cm con una distancia promedio de estos al promedio de 4.56 cm.
- En promedio las resistencias tienen una medida de 30.96 MPa con una distancia promedio de estos al promedio de 1.02 MPa.

Todas las conclusiones mencionadas anteriormente son sobre la muestra y no pueden aplicarse sin herramientas de análisis inferencial a la población.

Análisis Inferencial:

a) ¿La proporción de puntos donde la resistencia a la compresión es menor a 30 MPa es menor o igual a 5%?

Partiendo de que en la muestra un 18% de los puntos tenían menos de 30 MPa de resistencia a la compresión, podemos imaginarnos que es bastante poco probable que en la población de todos los puntos haya como mucho un 5%.

```
> BinomCI(menores_a_30, n, conf.level = 0.99, method="clopper-pearson")
    est lwr.ci upr.ci
[1,] 0.18 0.09332736 0.2983509
```

$$IC_{99\%;\pi} = (0,09;0,29)$$

Como vemos luego de realizar los cálculos podemos afirmar con una confianza del 99% que los puntos del tramo de ruta que exceden los 30 MPa deben ser mayores a un 5%, más exactamente estar entre 9,33% y 29,83%.

b) ¿El espesor promedio es igual a 22 cm?

Q-Q Plot de espesores con la Normal


```
> ad.test(datos$Espesor)

Anderson-Darling normality test

data: datos$Espesor
A = 0.34251, p-value = 0.485
```

Como se puede ver, los puntos del gráfico están cerca de la recta y el p-value es 0,49, mayor a 0,1, por lo que se pueden analizar los datos como si tuviesen una distribución normal.

```
> MeanCI(datos$Espesor, method="classic", conf.level = 0.95)
    mean lwr.ci upr.ci
22.41197 21.50664 23.31730
```

Con un 95% de confianza podemos decir que el promedio se encuentra entre 21,50 y 23,31cm, por lo tanto es posible que el promedio sea 22cm, pero no es algo que podamos asegurar.

c) Análisis de la homogeneidad de la ruta, en relación al espesor y a la resistencia a la compresión.

Q-Q Plot de resistencia con la Normal

Como se puede ver, los puntos del gráfico están cerca de la recta y el p-value es 0,42, mayor a 0,1, por lo que se pueden analizar los datos como si tuvieran una distribución normal.

Con una confianza del 95%, podemos decir que la varianza de la resistencia a la compresión está entre 0,81 y 1,41 MPa² y del espesor está entre 16,05 y 28,09 cm². O en otras palabras, que el desvío estándar de la resistencia a la compresión está entre 0,9 y 1,19 MPa y del espesor está entre 4,01 y 5,3 cm