SEMAINE DU 18/01 AU 22/01

1 Cours

Groupes, anneaux, corps

Notion de loi interne Définition. Associativité, commutativité. Définition d'un élément neutre, unicité sous réserve d'existence. Inversibilité, unicité de l'inverse si la loi est associative.

Groupes Définition. Sous-groupe : définition et caractérisation.

Anneaux Définition. Groupe des éléments inversibles. Règles de calcul dans les anneaux. Intégrité. Formule du binôme de Newton et formule de Bernoulli si **commutativité**. Sous-anneaux : définition et caractérisation.

Corps Définition. Tout corps est intègre. Sous-corps : définition et caractérisation.

Arithmétique

Division dans ℤ Relation de divisibilité. Opérations sur la divisibilité. Relation de congruence. Opérations sur la congruence. Division euclidienne.

Diviseurs et multiples communs PGCD : définition, existence et unicité d'un pgcd positif. Opérations sur le pgcd. Algorithme d'Euclide. Théorème de Bézout. Algorithme d'Euclide étendu.

2 Méthodes à maîtriser

- Dans un anneau, on prendra garde à se méfier des habitudes de calcul.
 - La seconde loi n'est pas toujours commutative.
 - Un produit d'éléments d'un anneau non intègre peut-être nul sans qu'aucun des facteurs soit nul.
 - Un élément d'un anneau n'est pas forcément inversible.
- Pour montrer qu'un ensemble est un groupe/anneau/corps, on peut montrer que c'est un sous-groupe/sous-anneau/sous-corps d'un groupe/anneau/corps déjà connu.
- Dans un corps, on calcule comme on en a l'habitude.
- De manière générale, divisibilité = factorisabilité.
- Montrer que deux entiers positifs sont égaux en montrant qu'ils se divisent l'un l'autre (notamment pour montrer que deux PGCD sont égaux).
- Pour montrer qu'un entier a divise un entier b, on peut montre que $b \equiv 0[a]$.
- Calculer avec des congruences (notamment lorsque $a \equiv 1[n]$, alors $a^k \equiv 1[n]$).
- Caractériser le reste d'une division euclidienne par une relation de congruence.

3 Questions de cours

Groupes \mathbb{U} et \mathbb{U}_n . Montrer que \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) puis que \mathbb{U}_n est un sous-groupe de (\mathbb{U}, \times) .

Union de sous-groupes. Soit H et K deux sous-groupes d'un groupe G. Montrer que si $H \cup K$ est un sous-groupe de G, alors $H \subset K$ ou $K \subset H$.

Somme de nilpotents. Soient $(A, +, \times)$ un anneau et $(x, y) \in A^2$. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.

Nilpotence et inversibilité. Soit $(A, +, \times)$ un anneau. Montrer que si $x \in A$ est nilpotent, alors $1_A - x$ est inversible et déterminer son inverse.

Entiers de Gauss. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de $(\mathbb{C}, +, \times)$ et déterminer ses éléments inversibles.

Sous-groupes de $(\mathbb{Z}, +)$. Soit H un sous-groupe de $(\mathbb{Z}, +)$. Montrer qu'il existe $a \in \mathbb{N}$ tel que $H = a\mathbb{Z}$.