Національний технічний університет України «Київський політехнічний інститут» Фізико технічний інститут

Кафедра математичних методів захисту інформації

МЕТОДИ КРИПТОАНАЛІЗУ 2 КОМП'ЮТЕРНИЙ ПРАКТИКУМ №1

Алгебраїчна атака на фільтрувальний генератор гами

Виконали: студенти групи ФІ-12мн Морозюк Анастасія Гетьман Дмитро

Перевірив: Курінний О.В.

Мета роботи:

Практична реалізація алгебраїчної атаки на фільтрувальний генератор гами; набуття навичок роботи з системами комп'ютерної алгебри.

Постановка задачі:

- 1) Знайти функції мінімального степеня ідеалів $\langle f \oplus 1 \rangle$ та $\langle f \rangle$ за допомогою побудови базису Грьобнера. Якщо побудова базису для одного з ідеалів $\langle f \oplus 1 \rangle$ або $\langle f \rangle \rangle$ є занадто трудомісткою з точки зору обчислювальних ресурсів, то дозволяється будувати лише один базис за умови, що цього буде достатньо для проведення атаки.
- 2) Визначити кількість рівнянь, необхідних для відновлення початкового стану. Побудувати систему рівнянь меншого степеня відносно початкового стану генератора.
- 3) Знайти розв'язки отриманої системи рівнянь. Зауважимо, що початковий стан за умовою комп'ютерного практикуму ϵ ненульовим вектором.
- 4) Перевірити, що початковий стан відновлено правильно, згенерувавши відрізок гами відповідної довжини й порівнявши його з вхідними даними. Для побудови базису Грьобнера та розв'язання системи рівнянь можна користуватись будь-якими системами комп'ютерної алгебри, а також наявними імплементаціями.

Варіант: 14

Хід роботи:

Потужність побудованих базисів Грьобнера

Для $\langle f \rangle$: 1604 Polynomials in 29 Variables

Для $\langle f \oplus 1 \rangle$: 1604 Polynomials in 29 Variables

Всі знайдені функції мінімального степеня

Для
$$\langle f \rangle$$
: $x_{37}*x_9 + x_{37}$, степінь 2
Для $\langle f \oplus 1 \rangle$: $x_{37}*x_9 + x_9 + x_{37} + 1$, степінь 2

Кількість рівнянь у побудованій системі: 1000

Перші 10 рівнянь:

 $x_{38}*x_{10} + x_{38}$ $x_{39}*x_{11} + x_{11} + x_{39} + 1$ $x_{40}*x_{12} + x_{12} + x_{40} + 1$ $x_{41}*x_{13} + x_{13} + x_{41} + 1$ $x_{42}*x_{14} + x_{14} + x_{42} + 1$ $x_{43}*x_{15} + x_{43}$ $x_{44}*x_{16} + x_{16} + x_{44} + 1$ $x_{45}*x_{17} + x_{45}$ $x_{46}*x_{18} + x_{18} + x_{46} + 1$ $x_{47}*x_{19} + x_{19} + x_{47} + 1$

Всі розв'язки системи:

 x_0 $x_1 + 1$ $x_2 + 1$ $x_3 + 1$ $x_4 + 1$ x_5 $x_6 + 1$ $x_7 + 1$ x_8 $x_9 + 1$ x_{10}

 $x_{11} + 1$ $x_{12} + 1$ X13

X14

 $x_{15} + 1$

 $x_{16} + 1$

 $x_{17} + 1$

X18

 $x_{19} + 1$

X20

 x_{21}

X22

 $x_{23} + 1$

 $x_{24} + 1$

 $x_{25} + 1$

X26

 $x_{27} + 1$

X28

 $x_{29} + 1$

X30

 $x_{31} + 1$

 $x_{32} + 1$

 $x_{33} + 1$

 $x_{34} + 1$

X35

X36

X37

X38

X39

X40

 $x_{41} + 1$

 $x_{42} + 1$

 $x_{43} + 1$

 $x_{44} + 1$

 $x_{45} + 1$

 $x_{46} + 1$

X47

X48

 $x_{49} + 1$

 $x_{50} + 1$

 $x_{51} + 1$

X52

X53

X54

X55

 $\begin{array}{l}x_{56}\\x_{57}+1\end{array}$

X58

```
x_{59} + 1
```

 $x_{60} + 1$

X61

 $x_{62} + 1$

 $x_{63} + 1$

Час виконання кожної операції:

- 1) Час пошуку базису Грьобнера для $\langle f \rangle$: 387.0853052139282
- 2) Час пошуку базису Грьобнера для ($f \oplus 1$): 808.2178425788879
- 3) Час пошуку розв'язку: 132.80726838111877

Знайдений початковий стан генератора гами

```
(0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1)
```

Програмний код можна знайти за посиланням: https://github.com/AnastasiiaMoroziuk/MC2

Висновок:

В даній роботі було практично реалізовано алгераїчну атаку на фільтрувальний генератор гами. Успішно відновлено початковий стан генератора гами. Для реалізації було локально встановлено SageMath.