Séquence 3 : Nombres décimaux I] Notion de fraction partage

Définition

Lorsqu'on partage une unité en parts égales et qu'on prend une ou plusieurs de ces parts, on obtient une fraction de l'unité.

Exemples

La bande rouge ci-dessous représente une unité.

• Elle est partagée en cinq parts de mêmes dimensions.

Chaque part représente un cinquième de la bande. On le note $\frac{1}{5}$.

• Si l'on colorie trois parts, on obtient trois cinquièmes, que l'on note $\frac{3}{5}$

XEntraine-toi avec Fractions: Représentation géométrique X

Définition

Une fraction s'écrit sous la forme suivante :

a ____ numérateur (nombre de parts dans la fraction)

b dénominateur (nombre de parts dans l'unité)

où a et b désignent deux nombres entiers, b est différent de zéro.

▶ Exemples

- 2/3 se lit « deux tiers » : on a partagé une unité en 3 parts égales et on a pris 2 parts.
- $\frac{8}{5}$ se lit « huit cinquièmes » : on a partagé une unité en 5 parts égales et on a pris 8 parts.

- Recopier et compléter les phrases suivantes. a. Le dénominateur de la fraction $\frac{3}{4}$ est b. 3 est le ... de la fraction $\frac{3}{5}$.
- c. Dans la fraction $\frac{4}{11}$, 4 est le ... et 11 est le

Solution

- **a.** Le dénominateur de la fraction $\frac{3}{4}$ est 4.
- **b.** 3 est le numérateur de la fraction $\frac{3}{5}$.
- c. Dans la fraction $\frac{4}{11}$, 4 est le numérateur et 11 est le dénominateur.

Propriété

- Si le numérateur d'une fraction est inférieur à son dénominateur, alors cette fraction est inférieure à l'unité.
- Si le numérateur d'une fraction est supérieur à son dénominateur, alors cette fraction est supérieure à l'unité.
- Si le numérateur d'une fraction est égal à son dénominateur, alors cette fraction est égale à l'unité.

Exemples

- Si on partage une unité en 3 parts égales et qu'on prend 2 parts, on obtient une fraction inférieure à l'unité (on peut noter $\frac{2}{3}$ < 1).
- Si on partage une unité en 2 parts égales et qu'on prend 5 parts, on obtient une fraction supérieure à l'unité (on peut noter $\frac{5}{2} > 1$).
- Si on partage une unité en 4 parts égales et qu'on prend 4 parts, on obtient une fraction égale à l'unité (on peut noter $\frac{4}{4}$ = 1).

Parmi les fractions suivantes, citer celles qui sont supérieures à l'unité.

$$\frac{2}{3}$$
 • $\frac{9}{4}$ • $\frac{8}{5}$ • $\frac{1}{2}$ • $\frac{13}{6}$ • $\frac{17}{21}$

Solution

Les fractions supérieures à l'unité sont celles dont le numérateur est supérieur au dénominateur.

Les fractions supérieures à l'unité sont :

$$\frac{9}{4} \cdot \frac{8}{5} \cdot \frac{13}{6}$$

✗Retour en arrière : Les éco-gestes du quotidien ✗

II] Utiliser des fractions décimales

Act. 2

Définitions

- Lorsque l'on partage l'unité en dix parts égales, on obtient dix dixièmes.
- Lorsque l'on partage chaque dixième de l'unité en dix parts égales, l'unité est partagée en cent parts égales, et on obtient cent centièmes.
- En poursuivant ainsi les partages en dix, on obtient des millièmes, des dix-millièmes, ...
- Une fraction dont le dénominateur est 10, 100, 1 000... est appelée une fraction décimale.

Recopier et compléter les égalités suivantes. a. $\frac{3}{10} = \frac{\dots}{100}$ b. $\frac{7}{10} = \frac{\dots}{1000}$ c. $\frac{80}{100} = \frac{\dots}{10}$

a. $\frac{3}{10} = \frac{30}{100}$ **b.** $\frac{7}{10} = \frac{700}{1000}$ **c.** $\frac{80}{100} = \frac{8}{10}$

Solution

3 dixièmes?

- Dans une unité, il y a 100 centièmes donc dans
 7 unités, il y a 700 centièmes.
- Dans un dixième, il y a 10 centièmes donc dans 3 dixièmes, il y a 30 centièmes.

Donc dans 7 unités et 3 dixièmes, il y a 73 centièmes.

Combien y a-t-il de centièmes dans 7 unités et

XEntraine-toi avec Fractions: Vocabulaire et sens X

Propriété

Toute fraction décimale peut s'écrire comme la somme d'un nombre entier et d'une fraction décimale inférieure à 1. Une fraction décimale peut se décomposer en unités, dixièmes, centièmes, millièmes...

Exemple
$$\frac{25381}{1000} = \frac{25000}{1000} + \frac{381}{1000} = 25 + \frac{300}{1000} + \frac{80}{1000} + \frac{1}{1000} = 25 + \frac{3}{10} + \frac{8}{100} + \frac{1}{1000}$$
 est égal à 25 unités, 3 dixièmes, 8 centièmes et 1 millième.

Écrire la fraction décimale $\frac{514871}{1000}$ sous la

forme d'une somme d'un nombre entier, de dixièmes, de centièmes et de millièmes.

Solution
$$\frac{514\,871}{1\,000} = \frac{514\,000}{1\,000} + \frac{871}{1\,000} = 514 + \frac{871}{1\,000}$$

$$\frac{514\,871}{1\,000} = 514 + \frac{800}{1\,000} + \frac{70}{1\,000} + \frac{1}{1\,000}$$

$$\frac{514\,871}{1\,000} = 514 + \frac{8}{10} + \frac{7}{100} + \frac{1}{1\,000}$$

Performances énergétiques des maisons et appartements

III] Comprendre et utiliser des nombres décimaux

Définitions

- On appelle **nombre décimal** un nombre qui peut s'écrire sous la forme d'une fraction décimale.
- Tout nombre décimal peut donc s'écrire comme la somme d'un nombre entier, appelé sa partie entière, et d'une fraction décimale inférieure à 1, appelée sa partie décimale.
- L'écriture d'un nombre décimal avec une virgule est appelée une écriture décimale.

Exemple 25,381 =
$$\frac{25381}{1000}$$
 = $\frac{25000}{1000}$ + $\frac{381}{1000}$ = 25 + 0,381 25,381 peut s'écrire $\frac{25381}{1000}$, c'est bien un nombre décimal.

Un nombre entier est un nombre décimal! Sa partie décimale est égale à zéro.

Sa partie entière est 25, sa partie décimale est 0,381.

Propriété

Dans une écriture décimale, la valeur d'un chiffre dépend de sa position dans le nombre.

Exemple

On considère le nombre 25,381.

 dizaines	unités	dixièmes	centièmes	millièmes	
2	5,	3	8	1	

 $3\ est\ le\ chiffre\ des\ dixièmes, 8\ est\ le\ chiffre\ des\ centièmes\ et\ 1\ est\ le\ chiffre\ des\ millièmes\ :$

25,381 = 25 + 0,3 + 0,08 + 0,001

1. Décomposer 9,803 en unités, dixièmes, centièmes et millièmes.

2. Justifier que 9,803 est un nombre décimal.

Solution

1.	unités	dixièmes	centièmes	millièmes
	9,	8	0	3

9,803 est égal à 9 unités, 8 dixièmes, 0 centième et 3 millièmes.

2. 9,803 = $\frac{9803}{1000}$. 9,803 peut s'écrire comme une

fraction décimale, donc c'est un nombre décimal.

XEntraine-toi avec Fractions, décimaux et comparaison (1 à 4) X

IV] Comparer des nombres décimaux

Act. 3

Définitions

- Une demi-droite graduée est une demi-droite sur laquelle on a choisi une unité de longueur, que l'on reporte régulièrement à partir de l'origine.
- L'abscisse d'un point d'une demi-droite graduée est la distance entre l'origine de la demi-droite et ce point.

Exemple

Le point A a pour abscisse $3 + \frac{4}{10}$ ou 3,4.

- 2. Encadrer chacun de ces nombres au dixième.
- **3.** Donner l'arrondi au dixième des abscisses des points M et A.

Solution

1. Les abscisses des points M, A, R et S sont :

3.
$$4,12 \approx 4,1$$
 $4,19 \approx 4,2$

Définition

Comparer deux nombres, c'est trouver le plus grand (ou le plus petit) ou dire s'ils sont égaux.

Propriété

Lorsque l'on parcourt une demi-droite graduée dans le sens de la flèche, le plus petit de deux nombres est celui que l'on rencontre en premier.

Exemple

On dit que 2,46 est inférieur à 2,7 et on note 2,46 < 2,7.

On dit également que 2,7 est supérieur à 2,46 et on note 2,7 > 2,46.

Attention! 7 est plus petit que 46 mais 2,7 est plus grand que 2,46.

Solution

On compare d'abord les parties entières puis, si elles sont égales, les parties décimales.

a.
$$12,4=12+\frac{4}{10}=12+\frac{40}{100}$$
 donc $12,4=12,40$.
b. La partie entière de 31,6 est inférieure à celle de 35,28 donc 31,6 < 35,28.
c. $13,32=13+\frac{32}{100}$ et $13,27=13+\frac{27}{100}$
Les parties entières sont égales donc on compare les parties décimales. $\frac{32}{100}>\frac{27}{100}$ donc $13,32>13,27$.

Définitions

- Encadrer un nombre, c'est trouver un nombre plus petit et un nombre plus grand.
- Ranger des nombres dans l'ordre croissant (ou décroissant), c'est les ranger du plus petit au plus grand (ou du plus grand au plus petit).
- Intercaler un nombre entre deux nombres donnés, c'est trouver un nombre qui soit compris entre ces deux nombres.

Exemples

• Encadrement de 3,18 à l'unité :

3 < 3.18 < 4

Ranger les nombres suivants dans l'ordre croissant.

17,29 • 8,302 • 174/10 • 31,88 • 8,57

Solution

On compare d'abord les parties entières puis, si elles sont égales, les parties décimales.

$$\frac{174}{10} = \frac{170}{10} + \frac{4}{10} = 17 + \frac{4}{10} = 17,4$$

- Les parties entières de ces nombres sont 17 ; 8 et 31. Le plus petit a donc pour partie entière 8.
- On compare 8,302 et 8,57 : 8,302 < 8,57.
- On compare ensuite 17,29 et 17,4: 17,29 < 17,4
- On range enfin les nombres dans l'ordre croissant :

$$8,302 < 8,57 < 17,29 < \frac{174}{10} < 31,88$$

Intercaler un nombre entre 16,2 et 16,3.

Solution

On peut décomposer les deux nombres à l'aide de fractions décimales.

$$16,2 = 16 + \frac{2}{10} = 16 + \frac{20}{100}$$

$$16,3 = 16 + \frac{3}{10} = 16 + \frac{30}{100}$$

On peut donc intercaler par exemple

$$16 + \frac{22}{100}$$
, soit $16,22 : 16,2 < 16,22 < 16,3$.

XEntraine-toi avec Fractions, décimaux et comparaison (à partir de 5) X

Méthode

Une demi-droite graduée permet de déterminer des valeurs approchées et l'arrondi d'un nombre.

Exemples

• 2,437 est compris entre 2,4 et 2,5 : on dit que 2,4 et 2,5 sont des valeurs approchées au dixième de 2,437. 2,437 est plus proche de 2,4 que de 2,5 : on dit que 2,4 est l'arrondi au dixième de 2,437.

• De même, 2,43 et 2,44 sont des valeurs approchées au centième de 2,437. 2,44 est l'arrondi au centième de 2,437.