Policy Gradient Algorithms

Ashwin Rao

ICME, Stanford University

Overview

- Motivation and Intuition
- 2 Definitions and Notation
- 3 Policy Gradient Theorem and Proof
- Policy Gradient Algorithms
- 5 Compatible Function Approximation Theorem and Proof
- 6 Natural Policy Gradient

Why do we care about Policy Gradient (PG)?

- Let us review how we got here
- We started with Markov Decision Processes and Bellman Equations
- Next we studied several variants of DP and RL algorithms
- We noted that the idea of Generalized Policy Iteration (GPI) is key
- Policy Improvement step: $\pi(s, a)$ derived from $\operatorname{argmax}_a Q(s, a)$
- How do we do argmax when action space is large or continuous?
- Idea: Do Policy Improvement step with a Gradient Ascent instead

"Policy Improvement with a Gradient Ascent??"

- We want to find the Policy that fetches the "Best Expected Returns"
- Gradient Ascent on "Expected Returns" w.r.t params of Policy func
- ullet So we need a func approx for (stochastic) Policy Func: $\pi(s,a;oldsymbol{ heta})$
- In addition to the usual func approx for Action Value Func: Q(s, a; w)
- $\pi(s, a; \theta)$ called *Actor* and $Q(s, a; \mathbf{w})$ called *Critic*
- Critic parameters \boldsymbol{w} are optimized w.r.t $Q(s, a; \boldsymbol{w})$ loss function min
- ullet Actor parameters ullet are optimized w.r.t Expected Returns max
- We need to formally define "Expected Returns"
- But we already see that this idea is appealing for continuous actions
- GPI with Policy Improvement done as Policy Gradient (Ascent)

Value Function-based and Policy-based RL

- Value Function-based
 - Learn Value Function (with a function approximation)
 - Policy is implicit readily derived from Value Function (eg: ϵ -greedy)
- Policy-based
 - Learn Policy (with a function approximation)
 - No need to learn a Value Function
- Actor-Critic
 - Learn Policy (Actor)
 - Learn Value Function (Critic)

Advantages and Disadvantages of Policy Gradient approach

Advantages:

- Finds the best *Stochastic* Policy (Optimal Deterministic Policy, produced by other RL algorithms, can be unsuitable for POMDPs)
- Naturally explores due to Stochastic Policy representation
- Effective in high-dimensional or continuous action spaces
- Small changes in $\theta \Rightarrow$ small changes in π , and in state distribution
- This avoids the convergence issues seen in argmax-based algorithms

Disadvantages:

- Typically converge to a local optimum rather than a global optimum
- Policy Evaluation is typically inefficient and has high variance
- ullet Policy Improvement happens in small steps \Rightarrow slow convergence

Notation

- \bullet Assume episodic with 0 $\leq \gamma \leq 1$ or non-episodic with 0 $\leq \gamma < 1$
- Usual notation of discrete-time, countable-spaces, stationary MDPs
- ullet We lighten $\mathcal{P}(s,a,s')$ notation to $\mathcal{P}^a_{s,s'}$ and $\mathcal{R}(s,a)$ notation to \mathcal{R}^a_s
- ullet Initial State Probability Distribution denoted as $p_0: \mathcal{N}
 ightarrow [0,1]$
- Policy Function Approximation $\pi(s, a; \theta) = \mathbb{P}[A_t = a | S_t = s; \theta]$

PG coverage is quite similar for non-discounted non-episodic, by considering average-reward objective (we won't cover it)

"Expected Returns" Objective

Now we formalize the "Expected Returns" Objective $J(\theta)$

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} \cdot R_{t+1}]$$

Value Function $V^{\pi}(s)$ and Action Value function $Q^{\pi}(s, a)$ defined as:

$$V^{\pi}(s) = \mathbb{E}_{\pi}[\sum_{k=t}^{\infty} \gamma^{k-t} \cdot R_{k+1} | S_t = s]$$
 for all $t = 0, 1, 2, \dots$

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[\sum_{k=t}^{\infty} \gamma^{k-t} \cdot R_{k+1} | S_t = s, A_t = a] \text{ for all } t = 0, 1, 2, \dots$$

Advantage Function
$$A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$$

Also, $p(s \to s', t, \pi)$ will be a key function for us - it denotes the probability of going from state s to s' in t steps by following policy π

Discounted-Aggregate State-Visitation Measure

$$J(\theta) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \cdot R_{t+1} \right] = \sum_{t=0}^{\infty} \gamma^{t} \cdot \mathbb{E}_{\pi} [R_{t+1}]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \cdot \sum_{s \in \mathcal{N}} \left(\sum_{S_{0} \in \mathcal{N}} \rho_{0}(S_{0}) \cdot p(S_{0} \to s, t, \pi) \right) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot \mathcal{R}_{s}^{a}$$

$$= \sum_{s \in \mathcal{N}} \left(\sum_{S_{0} \in \mathcal{N}} \sum_{t=0}^{\infty} \gamma^{t} \cdot \rho_{0}(S_{0}) \cdot p(S_{0} \to s, t, \pi) \right) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot \mathcal{R}_{s}^{a}$$

Definition

$$J(\boldsymbol{\theta}) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \boldsymbol{\theta}) \cdot \mathcal{R}_{s}^{a}$$

where $\rho^{\pi}(s) = \sum_{S_0 \in \mathcal{N}} \sum_{t=0}^{\infty} \gamma^t \cdot p_0(S_0) \cdot p(S_0 \to s, t, \pi)$ is the key function (for PG) we'll refer to as *Discounted-Aggregate State-Visitation Measure*.

Policy Gradient Theorem (PGT)

Theorem

$$abla_{m{ heta}} J(m{ heta}) = \sum_{m{s} \in \mathcal{N}}
ho^{\pi}(m{s}) \cdot \sum_{m{a} \in \mathcal{A}}
abla_{m{ heta}} \pi(m{s}, m{a}; m{ heta}) \cdot Q^{\pi}(m{s}, m{a})$$

- Note: $\rho^{\pi}(s)$ depends on θ , but there's no $\nabla_{\theta}\rho^{\pi}(s)$ term in $\nabla_{\theta}J(\theta)$
- Note: $\nabla_{\boldsymbol{\theta}} \pi(s, a; \boldsymbol{\theta}) = \pi(s, a; \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta})$
- So we can simply generate sampling traces, and at each time step, calculate $(\nabla_{\theta} \log \pi(s, a; \theta)) \cdot Q^{\pi}(s, a)$ (probabilities implicit in paths)
- Note: $\nabla_{\theta} \log \pi(s, a; \theta)$ is Score function (Gradient of log-likelihood)
- ullet We will estimate $Q^{\pi}(s,a)$ with a function approximation $Q(s,a;oldsymbol{w})$
- We will later show how to avoid the estimate bias of $Q(s, a; \mathbf{w})$
- ullet This numerical estimate of $abla_{m{ heta}} J(m{ heta})$ enables **Policy Gradient Ascent**
- Let us look at the score function of some canonical $\pi(s, a; \theta)$

Canonical $\pi(s, a; \theta)$ for finite action spaces

- For finite action spaces, we often use Softmax Policy
- θ is an *m*-vector $(\theta_1, \ldots, \theta_m)$
- Features vector $\phi(s,a) = (\phi_1(s,a), \ldots, \phi_m(s,a))$ for all $s \in \mathcal{N}, a \in \mathcal{A}$
- Weight actions using linear combinations of features: $\phi(s, a)^T \cdot \theta$
- Action probabilities proportional to exponentiated weights:

$$\pi(s, a; \theta) = \frac{e^{\phi(s, a)^T \cdot \theta}}{\sum_{b \in \mathcal{A}} e^{\phi(s, b)^T \cdot \theta}} \text{ for all } s \in \mathcal{N}, a \in \mathcal{A}$$

• The score function is:

$$\nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta}) = \phi(s, a) - \sum_{b \in A} \pi(s, b; \boldsymbol{\theta}) \cdot \phi(s, b) = \phi(s, a) - \mathbb{E}_{\pi}[\phi(s, \cdot)]$$

Canonical $\pi(s, a; \theta)$ for continuous action spaces

- For continuous action spaces, we often use Gaussian Policy
- θ is an *m*-vector $(\theta_1, \ldots, \theta_m)$
- State features vector $\phi(s) = (\phi_1(s), \dots, \phi_m(s))$ for all $s \in \mathcal{N}$
- ullet Gaussian Mean is a linear combination of state features $\phi(s)^T \cdot oldsymbol{ heta}$
- Variance may be fixed σ^2 , or can also be parameterized
- Policy is Gaussian, $a \sim \mathcal{N}(\phi(s)^T \cdot \theta, \sigma^2)$ for all $s \in \mathcal{N}$
- The score function is:

$$\nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta}) = \frac{(a - \phi(s)^T \cdot \boldsymbol{\theta}) \cdot \phi(s)}{\sigma^2}$$

We begin the proof by noting that:

$$J(\theta) = \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot V^{\pi}(S_0) = \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \theta) \cdot Q^{\pi}(S_0, A_0)$$

Calculate $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ by parts $\pi(S_0, A_0; \boldsymbol{\theta})$ and $Q^{\pi}(S_0, A_0)$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0)$$

$$+ \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{\theta}} Q^{\pi}(S_0, A_0)$$

Now expand $Q^{\pi}(S_0, A_0)$ as:

$$\mathcal{R}_{S_0}^{A_0} + \sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot V^{\pi}(S_1)$$
 (Bellman Policy Equation)

$$\begin{split} &= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\theta} \pi(S_0, A_0; \theta) \cdot Q^{\pi}(S_0, A_0) + \\ &\sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \theta) \cdot \nabla_{\theta} (\mathcal{R}_{S_0}^{A_0} + \sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot V^{\pi}(S_1)) \end{split}$$

Note: $abla_{ heta}\mathcal{R}_{S_0}^{A_0}=0$, so remove that term

$$= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \\ \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \nabla_{\boldsymbol{\theta}} (\sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot V^{\pi}(S_1))$$

Now bring the ∇_{θ} inside the $\sum_{S_1 \in \mathcal{N}}$ to apply only on $V^{\pi}(S_1)$

$$\begin{split} &= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\theta} \pi(S_0, A_0; \theta) \cdot Q^{\pi}(S_0, A_0) + \\ &\sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \theta) \cdot \sum_{S_1 \in \mathcal{N}} \gamma \cdot \mathcal{P}_{S_0, S_1}^{A_0} \cdot \nabla_{\theta} V^{\pi}(S_1) \end{split}$$

Now bring $\sum_{\mathcal{S}_0 \in \mathcal{N}}$ and $\sum_{A_0 \in \mathcal{A}}$ inside the $\sum_{\mathcal{S}_1 \in \mathcal{N}}$

$$= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) +$$

$$\sum_{S_1 \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \gamma \cdot p_0(S_0) \cdot (\sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \mathcal{P}_{S_0, S_1}^{A_0}) \cdot \nabla_{\boldsymbol{\theta}} V^{\pi}(S_1)$$

Policy Gradient Theorem

Note that
$$\sum_{A_0 \in \mathcal{A}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot \mathcal{P}_{S_0, S_1}^{A_0} = p(S_0 \to S_1, 1, \pi)$$

$$= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_1 \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \gamma \cdot p_0(S_0) \cdot p(S_0 \to S_1, 1, \pi) \cdot \nabla_{\boldsymbol{\theta}} V^{\pi}(S_1)$$

$$= \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A_0; \boldsymbol{\theta}) + \sum_{S_0 \in \mathcal{N}} p_0(S_0, A$$

 $S_1 \in \mathcal{N} S_0 \in \mathcal{N}$

 $\sum \sum \gamma \cdot p_0(S_0) \cdot p(S_0 \to S_1, 1, \pi) \cdot \nabla_{\boldsymbol{\theta}} (\sum \pi(S_1, A_1; \boldsymbol{\theta}) \cdot Q^{\pi}(S_1, A_1))$

We are now back to when we started calculating gradient of $\sum_a \pi \cdot Q^{\pi}$. Follow the same process of splitting $\pi \cdot Q^{\pi}$, then Bellman-expanding Q^{π} (to calculate its gradient), and iterate.

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{S_0 \in \mathcal{N}} p_0(S_0) \cdot \sum_{A_0 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_0, A_0; \boldsymbol{\theta}) \cdot Q^{\pi}(S_0, A_0) +$$

$$\sum_{S_1 \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \gamma \cdot p_0(S_0) \cdot p(S_0 \to S_1, 1, \pi) \cdot (\sum_{A_1 \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(S_1, A_1; \boldsymbol{\theta}) \cdot Q^{\pi}(S_1, A_1) + \ldots)$$

This iterative process leads us to:

$$=\sum_{t=0}^{\infty}\sum_{S_{t}\in\mathcal{N}}\sum_{S_{0}\in\mathcal{N}}\gamma^{t}\cdot p_{0}(S_{0})\cdot p(S_{0}\to S_{t},t,\pi)\cdot \sum_{A_{t}\in\mathcal{A}}\nabla_{\boldsymbol{\theta}}\pi(S_{t},A_{t};\boldsymbol{\theta})\cdot Q^{\pi}(S_{t},A_{t})$$

Bring
$$\sum_{t=0}^{\infty}$$
 inside $\sum_{S_t \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}}$ and note that

$$\sum_{A_t \in \mathcal{A}}
abla_{m{ heta}} \pi(S_t, A_t; m{ heta}) \cdot Q^{\pi}(S_t, A_t)$$
 is independent of t

$$= \sum_{s \in \mathcal{N}} \sum_{S_0 \in \mathcal{N}} \sum_{t=0}^{S_0} \gamma^t \cdot p_0(S_0) \cdot p(S_0 \to s, t, \pi) \cdot \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(s, a; \theta) \cdot Q^{\pi}(s, a)$$

Reminder that
$$\sum_{S_0 \in \mathcal{N}} \sum_{t=0}^{\infty} \gamma^t \cdot p_0(S_0) \cdot p(S_0 \to s, t, \pi) \stackrel{\text{def}}{=} \rho^{\pi}(s)$$
. So,

$$abla_{m{ heta}} J(m{ heta}) = \sum_{m{s} \in \mathcal{N}}
ho^{\pi}(m{s}) \cdot \sum_{m{a} \in \mathcal{A}}
abla_{m{ heta}} \pi(m{s}, m{a}; m{ heta}) \cdot Q^{\pi}(m{s}, m{a})$$
 $abla_{m{s}} \mathbb{D}_{m{s}} \mathbb{D}_{m{s}}$

Monte-Carlo Policy Gradient (REINFORCE Algorithm)

- ullet Update $oldsymbol{ heta}$ by stochastic gradient ascent using PGT
- Using $G_t = \sum_{k=t}^{T} \gamma^{k-t} \cdot R_{k+1}$ as an unbiased sample of $Q^{\pi}(S_t, A_t)$

$$\Delta \theta = \alpha \cdot \gamma^t \cdot \nabla_{\theta} \log \pi(S_t, A_t; \theta) \cdot G_t$$

Algorithm 4.1: REINFORCE(\cdot)

Initialize heta arbitrarily

for each episode
$$\{S_0, A_0, R_1, S_1, \dots, S_{T-1}, A_{T-1}, R_T, S_T\} \sim \pi(\cdot, \cdot; \boldsymbol{\theta})$$

$$\mathbf{do} \ \begin{cases} \mathbf{for} \ t \leftarrow 0 \ \mathbf{to} \ T \\ \mathbf{do} \ \begin{cases} G \leftarrow \sum_{k=t}^{T} \gamma^{k-t} \cdot R_{k+1} \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \gamma^{t} \cdot \nabla_{\boldsymbol{\theta}} \log \pi(S_{t}, A_{t}; \boldsymbol{\theta}) \cdot G \end{cases}$$

Reducing Variance using a Critic

- Monte Carlo Policy Gradient has high variance
- We use a Critic $Q(s, a; \mathbf{w})$ to estimate $Q^{\pi}(s, a)$
- Actor-Critic algorithms maintain two sets of parameters:
 - ullet Critic updates parameters $oldsymbol{w}$ to approximate Q-function for policy π
 - Critic could use any of the algorithms we learnt earlier:
 - Monte Carlo policy evaluation
 - Temporal-Difference Learning
 - $TD(\lambda)$ based on Eligibility Traces
 - Could even use LSTD (if critic function approximation is linear)
 - ullet Actor updates policy parameters $oldsymbol{ heta}$ in direction suggested by Critic
 - This is Approximate Policy Gradient due to Bias of Critic

$$abla_{m{ heta}} J(m{ heta}) pprox \sum_{m{s} \in \mathcal{N}}
ho^{\pi}(m{s}) \cdot \sum_{m{s} \in \mathcal{A}}
abla_{m{ heta}} \pi(m{s}, m{s}; m{ heta}) \cdot Q(m{s}, m{s}; m{w})$$

So what does the algorithm look like?

- Generate a sufficient set of sampling traces $S_0, A_0, R_1, S_1, A_1, R_2, S_2 \dots$
- S_0 is sampled from the distribution $p_0(\cdot)$
- A_t is sampled from $\pi(S_t, \cdot; \theta)$
- Receive atomic experience (R_{t+1}, S_{t+1}) from the environment
- At each time step t, update \boldsymbol{w} proportional to gradient of appropriate (MC or TD-based) loss function of $Q(s, a; \boldsymbol{w})$
- Sum $\gamma^t \cdot (\nabla_{\theta} \log \pi(S_t, A_t; \theta)) \cdot Q(S_t, A_t; w)$ over t and over paths
- ullet Update $oldsymbol{ heta}$ using this (biased) estimate of $abla_{oldsymbol{ heta}} J(oldsymbol{ heta})$
- Iterate with a new set of sampling traces ...

Reducing Variance with a Baseline

- We can reduce variance by subtracting a baseline function B(s) from $Q(s, a; \mathbf{w})$ in the Policy Gradient estimate
- This means at each time step, we replace $\gamma^t \cdot \nabla_{\theta} \log \pi(S_t, A_t; \theta) \cdot Q(S_t, A_t; \mathbf{w})$ with $\gamma^t \cdot \nabla_{\theta} \log \pi(S_t, A_t; \theta) \cdot (Q(S_t, A_t; \mathbf{w}) B(S_t))$
- Note that Baseline function B(s) is only a function of s (and not a)
- This ensures that subtracting Baseline B(s) does not add bias

$$\sum_{s \in \mathcal{N}} \rho^{\pi}(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(s, a; \theta) \cdot B(s)$$

$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot B(s) \cdot \nabla_{\theta} (\sum_{a \in \mathcal{A}} \pi(s, a; \theta))$$

$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot B(s) \cdot \nabla_{\theta} 1$$

$$= 0$$

Using State Value function as Baseline

- A good baseline B(s) is state value function $V(s; \mathbf{v})$
- Rewrite Policy Gradient algorithm using advantage function estimate

$$A(s, a; \boldsymbol{w}, \boldsymbol{v}) = Q(s, a; \boldsymbol{w}) - V(s; \boldsymbol{v})$$

• Now the estimate of $\nabla_{\theta} J(\theta)$ is given by:

$$\sum_{\boldsymbol{s} \in \mathcal{N}} \rho^{\pi}(\boldsymbol{s}) \cdot \sum_{\boldsymbol{a} \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{\theta}) \cdot A(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w}, \boldsymbol{v})$$

ullet At each time step, we update both sets of parameters $oldsymbol{w}$ and $oldsymbol{v}$

TD Error as estimate of Advantage Function

• Consider TD error δ^{π} for the *true* Value Function $V^{\pi}(s)$

$$\delta^{\pi} = r + \gamma \cdot V^{\pi}(s') - V^{\pi}(s)$$

• δ^{π} is an unbiased estimate of Advantage function $A^{\pi}(s,a)$

$$\mathbb{E}_{\pi}[\delta^{\pi}|s,a] = \mathbb{E}_{\pi}[r+\gamma\cdot V^{\pi}(s')|s,a] - V^{\pi}(s) = Q^{\pi}(s,a) - V^{\pi}(s) = A^{\pi}(s,a)$$

ullet So we can write Policy Gradient in terms of $\mathbb{E}_{\pi}[\delta^{\pi}|s,a]$

$$abla_{m{ heta}} J(m{ heta}) = \sum_{m{s} \in \mathcal{N}}
ho^{\pi}(m{s}) \cdot \sum_{m{a} \in \mathcal{A}}
abla_{m{ heta}} \pi(m{s}, m{a}; m{ heta}) \cdot \mathbb{E}_{\pi}[\delta^{\pi} | m{s}, m{a}]$$

• In practice, we can use func approx for TD error (and sample):

$$\delta(s, r, s'; \mathbf{v}) = r + \gamma \cdot V(s'; \mathbf{v}) - V(s; \mathbf{v})$$

ullet This approach requires only one set of critic parameters $oldsymbol{v}$

TD Error can be used by both Actor and Critic

Algorithm 4.2: ACTOR-CRITIC-TD-ERROR(\cdot)

Initialize Policy params ${\pmb{\theta}}$ and State VF params ${\pmb{v}}$ arbitrarily for each episode

$$\mathbf{do} \begin{cases} \text{Initialize } s \text{ (first state of episode)} \\ P \leftarrow 1 \\ \mathbf{while } s \text{ is not terminal} \\ \begin{cases} a \sim \pi(s,\cdot;\boldsymbol{\theta}) \\ \text{Take action } a, \text{ receive } r,s' \text{ from the environment} \\ \delta \leftarrow r + \gamma \cdot V(s';\boldsymbol{v}) - V(s;\boldsymbol{v}) \\ \boldsymbol{v} \leftarrow \boldsymbol{v} + \alpha_{\boldsymbol{v}} \cdot \delta \cdot \nabla_{\boldsymbol{v}} V(s;\boldsymbol{v}) \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha_{\boldsymbol{\theta}} \cdot P \cdot \delta \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s,a;\boldsymbol{\theta}) \\ P \leftarrow \gamma \cdot P \\ s \leftarrow s' \end{cases}$$

Using Eligibility Traces for both Actor and Critic

Algorithm 4.3: ACTOR-CRITIC-ELIGIBILITY-TRACES(⋅)

Initialize Policy params ${\pmb{\theta}}$ and State VF params ${\pmb{v}}$ arbitrarily ${\pmb{\text{for}}}$ each episode

$$\begin{aligned} & \text{do} \\ & \begin{cases} & \text{Initialize } s \text{ (first state of episode)} \\ & \textbf{z}_{\theta}, \textbf{z}_{\textbf{v}} \leftarrow 0 \text{ (eligibility traces for } \theta \text{ and } \textbf{v}) \\ & P \leftarrow 1 \\ & \text{while } s \text{ is not terminal} \end{cases} \\ & \begin{cases} & a \sim \pi(s,\cdot;\theta) \\ & \text{Take action } a, \text{ observe } r,s' \\ & \delta \leftarrow r + \gamma \cdot V(s';\textbf{v}) - V(s;\textbf{v}) \\ & \textbf{z}_{\textbf{v}} \leftarrow \gamma \cdot \lambda_{\textbf{v}} \cdot \textbf{z}_{\textbf{v}} + \nabla_{\textbf{v}} V(s;\textbf{v}) \\ & \textbf{z}_{\theta} \leftarrow \gamma \cdot \lambda_{\theta} \cdot \textbf{z}_{\theta} + P \cdot \nabla_{\theta} \log \pi(s,a;\theta) \\ & \textbf{v} \leftarrow \textbf{v} + \alpha_{\textbf{v}} \cdot \delta \cdot \textbf{z}_{\textbf{v}} \\ & \theta \leftarrow \theta + \alpha_{\theta} \cdot \delta \cdot \textbf{z}_{\theta} \\ & P \leftarrow \gamma \cdot P, s \leftarrow s' \end{cases} \end{aligned}$$

Overcoming Bias

- We've learnt a few ways of how to reduce variance
- But we haven't discussed how to overcome bias
- All of the following substitutes for $Q^{\pi}(s, a)$ in PG have bias:
 - $Q(s, a; \mathbf{w})$
 - $A(s, a; \mathbf{w}, \mathbf{v})$
 - $\delta(s, s', r; \mathbf{v})$
- Turns out there is indeed a way to overcome bias
- It is called the Compatible Function Approximation Theorem

Compatible Function Approximation Theorem

Theorem

If the following two conditions are satisfied:

• Critic gradient is compatible with the Actor score function

$$\nabla_{\boldsymbol{w}} Q(s, a; \boldsymbol{w}) = \nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta})$$

② Critic parameters **w** minimize the following mean-squared error:

$$\epsilon = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot (Q^{\pi}(s, a) - Q(s, a; w))^{2}$$

Then the Policy Gradient using critic $Q(s, a; \mathbf{w})$ is exact:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{\boldsymbol{s} \in \mathcal{N}} \rho^{\pi}(\boldsymbol{s}) \cdot \sum_{\boldsymbol{a} \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{\theta}) \cdot Q(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})$$

Proof of Compatible Function Approximation Theorem

For w that minimizes

$$\epsilon = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot (Q^{\pi}(s, a) - Q(s, a; w))^{2},$$

$$\sum_{\boldsymbol{s} \in \mathcal{N}} \rho^{\pi}(\boldsymbol{s}) \cdot \sum_{\boldsymbol{a} \in \mathcal{A}} \pi(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{\theta}) \cdot (Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) - Q(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})) \cdot \nabla_{\boldsymbol{w}} Q(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w}) = 0$$

But since $\nabla_{\pmb{w}} Q(s,a;\pmb{w}) = \nabla_{\pmb{\theta}} \log \pi(s,a;\pmb{\theta})$, we have:

$$\sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot (Q^{\pi}(s, a) - Q(s, a; w)) \cdot \nabla_{\theta} \log \pi(s, a; \theta) = 0$$

Therefore,
$$\sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot Q^{\pi}(s, a) \cdot \nabla_{\theta} \log \pi(s, a; \theta)$$
$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot Q(s, a; \mathbf{w}) \cdot \nabla_{\theta} \log \pi(s, a; \theta)$$

Proof of Compatible Function Approximation Theorem

But
$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot Q^{\pi}(s, a) \cdot \nabla_{\theta} \log \pi(s, a; \theta)$$

So,
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \boldsymbol{\theta}) \cdot Q(s, a; \boldsymbol{w}) \cdot \nabla_{\boldsymbol{\theta}} \log \pi(s, a; \boldsymbol{\theta})$$

$$= \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \nabla_{\boldsymbol{\theta}} \pi(s, a; \boldsymbol{\theta}) \cdot Q(s, a; \boldsymbol{w})$$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

This means with conditions (1) and (2) of Compatible Function Approximation Theorem, we can use the critic func approx Q(s, a; w) and still have the exact Policy Gradient.

How to enable Compatible Function Approximation

A simple way to enable Compatible Function Approximation $\frac{\partial Q(s,a;w)}{\partial w_i} = \frac{\partial \log \pi(s,a;\theta)}{\partial \theta_i}, \forall i \text{ is to set } Q(s,a;w) \text{ to be linear in its features.}$

$$Q(s, a; \mathbf{w}) = \sum_{i=1}^{m} \phi_i(s, a) \cdot w_i = \sum_{i=1}^{m} \frac{\partial \log \pi(s, a; \boldsymbol{\theta})}{\partial \theta_i} \cdot w_i$$

We note below that a compatible $Q(s, a; \mathbf{w})$ serves as an approximation of the advantage function.

$$\sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot Q(s, a; \mathbf{w}) = \sum_{a \in \mathcal{A}} \pi(s, a; \theta) \cdot \left(\sum_{i=1}^{m} \frac{\partial \log \pi(s, a; \theta)}{\partial \theta_{i}} \cdot w_{i}\right)$$

$$= \sum_{a \in \mathcal{A}} \left(\sum_{i=1}^{m} \frac{\partial \pi(s, a; \theta)}{\partial \theta_{i}} \cdot w_{i}\right) = \sum_{i=1}^{m} \left(\sum_{a \in \mathcal{A}} \frac{\partial \pi(s, a; \theta)}{\partial \theta_{i}}\right) \cdot w_{i}$$

$$= \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{i}} \left(\sum_{a \in \mathcal{A}} \pi(s, a; \theta)\right) \cdot w_{i} = \sum_{i=1}^{m} \frac{\partial 1}{\partial \theta_{i}} \cdot w_{i} = 0$$

Fisher Information Matrix

Denoting $[\frac{\partial \log \pi(s,a;\theta)}{\partial \theta_i}]$, $i=1,\ldots,m$ as the score column vector $SC(s,a;\theta)$ and assuming compatible linear-approximation critic:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{s \in \mathcal{N}} \rho^{\pi}(s) \cdot \sum_{a \in \mathcal{A}} \pi(s, a; \boldsymbol{\theta}) \cdot (\boldsymbol{SC}(s, a; \boldsymbol{\theta}) \cdot \boldsymbol{SC}(s, a; \boldsymbol{\theta})^{T} \cdot \boldsymbol{w})$$

$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi} [\boldsymbol{SC}(s, a; \boldsymbol{\theta}) \cdot \boldsymbol{SC}(s, a; \boldsymbol{\theta})^{T}] \cdot \boldsymbol{w}$$

$$= FIM_{\rho^{\pi}, \pi}(\boldsymbol{\theta}) \cdot \boldsymbol{w}$$

where $FIM_{\rho_{\pi},\pi}(\theta)$ is the Fisher Information Matrix w.r.t. $s \sim \rho^{\pi}, a \sim \pi$.

Natural Policy Gradient

- Recall the idea of Natural Gradient from Numerical Optimization
- ullet Natural gradient $abla^{nat}_{m{ heta}} J(m{ heta})$ is the direction of optimal $m{ heta}$ movement
- In terms of the KL-divergence metric (versus plain Euclidean norm)
- Natural gradient yields better convergence (we won't cover proof)

Formally defined as:
$$\nabla_{\theta} J(\theta) = FIM_{\rho_{\pi},\pi}(\theta) \cdot \nabla_{\theta}^{nat} J(\theta)$$

Therefore,
$$abla_{m{ heta}}^{\mathit{nat}} J(m{ heta}) = m{w}$$

This compact result is great for our algorithm:

• Update Critic params \mathbf{w} with the critic loss gradient (at step t) as:

$$\gamma^{t} \cdot (R_{t+1} + \gamma \cdot SC(S_{t+1}, A_{t+1}; \theta)^{T} \cdot w - SC(S_{t}, A_{t}; \theta)^{T} \cdot w) \cdot SC(S_{t}, A_{t}; \theta)$$

• Update Actor params θ in the direction equal to value of ${\it w}$