- Sorting Algorithms (Bubble sort, Insertion Sort, Counting Sort, Merge Sort, Radix Sort):
 - -- How they work
 - -- Demonstration for a given array of numbers
 - -- Best case & Worst case
 - -- Running time & Memory requirement
 - -- Comparison (with reasoning) which one is better
- Computational Complexity/Asymptotic Notation
 - Statement-by-Statement Analysis of Code Segment/Function
 - Finding the form of the function for the running-time complexity
 - Finding the most appropriate notation if the expression for the function is given
 - Best case/lower bound, Worst case/upper bound and Tight bound Analysis
- Recurrence Relations
 - -- Solving given recurrence relations using backward substitution, recursion tree or master theorem
 - -- Finding the recurrence relation from a given code segment and then solve
- Partitioning, Quickselect, Quicksort
 - -- Demonstration for a given array
 - -- How the recursive calls are made on a given array
 - -- Running-time
 - -- Best/worst case
 - -- Effect of partitioning on Quicksort

- Binary Tree, BST & 2-3 tree
 - -- Construction
 - -- Insert, delete, traversal, search operation (and their complexity)
 - -- How to perform those operations for given elements
 - -- For BST: Recursive and iterative version of search operation
 - -- Tree-Sort and its running-time complexity
- ** Sample Practice Problems: Relevant example and exercise problems from the book chapter referenced at the end of each lecture and relevant Assignment Problems