We found previously thatif X1,..., Xn Wormal (4,00) (9)
the maximum likelihood estimators are

$$\hat{G}^{2ME} = \overline{X}$$

$$\hat{G}^{2ME} = \overline{X} \left(X_i - \overline{X} \right)^2$$

Previous results: $\bar{X} \sim Normal(\mu, \frac{\sigma^2}{n})$

$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

- . What are the bias variance and MSE of jumle?
- . If $Y \sim \chi_d^2$ then E(Y) = d and Var(Y) = 2d.
- 1) . What are the bias, vanance, and MSE of FIME?
- 2) off I define a new estimator of a NEW = C. OZMLE
 - (a) What value of a should I pick so that & new is unbissed?

(c) Does any of this matter if n is large?

$$1) E(n \cdot \hat{\sigma}^{2 \text{MLG}}) = n - 1$$

$$= \sqrt{2} E(\hat{G}^{2MLE}) = N-1$$

$$= \sum_{n=1}^{\infty} E(\hat{G}^{2MLE}) = \frac{N-1}{N}.G^{2}$$

$$|Vor(n.\frac{e^{2}ple}{e^{2}}) = (n-1)2$$

$$=)(\frac{n^{2}}{e^{2}})^{2} \cdot Vor(e^{2}me) = 2n-2$$

$$=) Vor(e^{2}me) = 2(e^{2}(n-1))$$

$$=) \sqrt{n^{2}}$$

If
$$C = \frac{n}{n-1}$$
, $\hat{G}^2 NEW$ is unbroad. This is $\frac{n}{n-1} \cdot \frac{1}{n} \sum (x_i - \overline{x})^2$

$$= \frac{1}{n-1} \sum (x_i - \overline{x})^2$$

Bres (
$$\hat{\sigma}^{2}$$
 MGE) = $E[\hat{\sigma}^{2}$ MCE) - σ^{2}
= $\frac{n-1}{n}\sigma^{2} - \sigma^{2}$
= $-\frac{1}{n}\sigma^{2}$

$$MSE(\hat{\sigma}^{2}MLE) = (\frac{1}{n^{2}})^{2} + 2(\sigma^{2})^{2} \frac{(n-1)}{n^{2}}$$

$$= \frac{\sigma^{4} + 2\sigma^{4}(n-1)}{n^{2}}$$

$$E(c.\hat{\sigma}^{2MLE}) = c.E(\hat{\sigma}^{2MLE}) = c.\frac{n-1}{n}\sigma^{2}$$
=) Bias ($\hat{\sigma}^{2MEM}$) = $c.\frac{n-1}{n}\sigma^{2} - \sigma^{2} = \sigma^{2}(c.\frac{n-1}{n} - 1)$

$$Var(c.\hat{\sigma}^{2MLE}) = c^{2}.Var(\hat{\sigma}^{2MLE}) = c^{2}.2(\sigma^{2})^{2}(n-1)$$
=) $MSE(c.\hat{\sigma}^{2MLE}) = \sigma^{4}(c.\frac{n-1}{n} - 1)^{2} + c^{2}.\frac{2\sigma^{4}(n-1)}{n^{2}}$

$$\frac{d}{dc}MSE = 2\sigma^{4}(c.\frac{n-1}{n} - 1).\frac{n-1}{n} + 2c^{2}\frac{2\sigma^{4}(n-1)}{n^{2}} = 0$$
=) $2c + c.(n-1) = 1$ =) $2c + nc - c = n$

=7 C = n /(n+1)

Among all estimators of the form $C, \hat{G}^{2}MSE = \frac{1}{n+1} \cdot \frac{n}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n+1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$ has lowest MSE

This is our first example of a shrinkage estimator: we "shrank" the estimate of or toward () (divide by not instead of n-1) (divide by not instead of n-1) Introduces bics but reduces variance enough to result in an overell goin in terms of MSE,