\equiv

Q Course

Progress

Course is completed. The course result can no longer be changed.

Modular Arithmetics

Home / Course / Modular Arithmetics / Quiz

Read the question below and enter an answer. Then, click "Submit." What is 70 mod 10?

Correct: Nice job!

Submit You have used 1 of 1 attempt

Read the question below and select the correct answer. Then, click "Submit." Which of the following statements is correct?

- \bigcirc If $a,b\in Z^+$ and $m\in Z$, then $m\mid a-b \text{ iff } a\equiv b\pmod{m}$.
- If $a,b\in Z^+$ and $m\in Z$, then $a{-}b\mid m$ iff $a\equiv b\pmod m$.

Correct: Great job!

nit You have used 1 of 1 attempt

Read the question below and select the correct answer. Then, click "Submit." Which of the following statements is correct?

- $(ab) \ mod \ m = (a \ mod \ m) * (b \ mod \ m)$
- $(ab) \,\, mod \, m = ((a \, mod \, m) + (b \, mod \, m)) \,\, mod \, m$
- $(ab) \,\, mod \, m = (a \, mod \, m) + (b \, mod \, m)$

Correct: Nice job!

Submit You have used 1 of 1 attempt

	Find all values of x such that $ax \equiv b \pmod{m}$.
	Find all values of x from the set $\{0,1,\ldots,m-1\}$ such that $ax=b$.
	Find all values of x from the set $\{0,1,\ldots,m-1\}$ such that $ax\ mod\ m=b$.
	Find all values of x from the set $\{0,1,\ldots,m-1\}$ such that $ax\equiv b\ (mod\ m)$.
→	
Corre	ct: Great job!
	You have used 1 of 1 attempt
Poad	the question below and select all the answers that are correct. Then, click "Submit."
	ose the equation $ax\equiv b\ (mod\ m)$ is solvable. Which TWO of the following statements are correct?
	$d\mid a$, where $d=gcd$ (b,m) .
	$d\mid b$, where $d=gcd\ (a,m)$.
	The equation has d solutions, where $d=\gcd{(a,m)}.$
	The equation has $(d-1)$ solutions, where $d=\gcd{(a,m)}.$
Sub Read	the question below and select the correct answer. Then, click "Submit." of the following statements is correct?
Sub Read	You have used 1 of 1 attempt the question below and select the correct answer. Then, click "Submit."
Sub Read	the question below and select the correct answer. Then, click "Submit." of the following statements is correct?
Sub Read	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$.
Sub Read	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \pmod{m}$, where $0 < x < m$.
Sub Read	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$.
Read Which	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \pmod{m}$, where $0 < x < m$.
Read Which	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $ax \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv x \in Z^+$ such that $ax \equiv x \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv x \in Z^+$ such that $ax \equiv$
Read Which	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $ax \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv x \in Z^+$ such that $ax \equiv x \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv x \in Z^+$ such that $ax \equiv$
Read Which	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m-1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m-1 \pmod{m}$, where $x \in Z^+$ and $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$.
Read Which	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $ax \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv x \in Z^+$ such that $ax \equiv x \in Z^+$. The modular inverse of a by modulo m is an integer $ax \in Z^+$ such that $ax \equiv x \in Z^+$ such that $ax \equiv$
Read Which	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m-1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$.
Read Which Corre Sub	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m-1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$.
Read Which Correspond What 2	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m-1 \ (mod \ m)$, where $0 < x < m$. Let $a \in Z$ and $ax \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$.
Read Which Correspond What 2	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m - 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $a \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m - 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $a \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m - 1 \pmod{m}$, where $a \in Z^+$ is the modular inverse of 1594038638642337203 by modulo 5? Let $a \in Z$ by the probability of $a \in Z^+$ in the modular inverse of 1594038638642337203 by modulo 5? Let $a \in Z$ by the probability of $a \in Z^+$ in the modular inverse of 1594038638642337203 by modulo 5?
Read Which Corres Sub	the question below and select the correct answer. Then, click "Submit." of the following statements is correct? Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 0 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $a \equiv x \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $m \in Z^+$. The modular inverse of a by modulo m is an integer x such that $ax \equiv m - 1 \pmod{m}$, where $0 < x < m$. Let $a \in Z$ and $a \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$. The modular inverse of a by modulo m is an integer $x \in Z^+$.

O 1

© 2025 EPAM Systems, Inc. All Rights Reserved

Privacy Policy Privacy Notice Cookies Policy