

MECH366: Modeling of Mechatronic Systems

L18: Frequency response

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

a place of mind

Today's topic & class schedule

- L18: Nov 15 (Fri): Frequency response
- L19: Nov 18 (Mon): Bode diagram (Lab 4 report content, report due Nov 25, 6pm)
- L20: Nov 22 (Fri): Simulink, overdamped system
- L21: Nov 25 (Mon): Stability, course summary

G(s)	$\frac{K}{Ts+1}$	$\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
Step response t	(L16) t	(L17) underdamped (L20) overdamped t
Frequency response (L18)	(L19)	(L19)

What is frequency response?

- We would like to analyze a system property by applying a *sinusoidal input r(t)* and observing a response y(t).
- Steady state response yss(t) (after transient dies out) of a system to sinusoidal inputs is called frequency response.

4

RC circuit

- Input a sinusoidal voltage r(t)
- What is the output voltage *y(t)*?

$$G(s) = \frac{1}{s+1}$$

• *r*(*t*)=*sin*(*t*)

At steady-state, *r*(*t*) and *y*(*t*) has same frequency, but different amplitude and phase!

An example (cont'd)

7

• Derivation of y(t)

$$Y(s) = G(s)R(s) = \frac{1}{s+1} \cdot \frac{1}{s^2+1} = \frac{1}{2} \left(\frac{1}{s+1} + \frac{-s+1}{s^2+1} \right)$$

Inverse Laplace

Partial fraction expansion

$$y(t) = \frac{1}{2} \left(e^{-t} - \cos t + \sin t \right)$$

0 as t goes to infinity.

$$y_{ss}(t) = \frac{1}{2}(-\cos t + \sin t) = \frac{1}{\sqrt{2}}\sin(t - 45^{\circ})$$

(Derivation for general G(s) is given at the end of lecture slide.)

Response to sinusoidal input

 What is the steady state output of a stable linear system when the input is sinusoidal?

- Steady state output $y_{ss}(t) = A |G(j\omega)| \sin(\omega t + \angle G(j\omega))$
 - ullet Frequency is same as the input frequency ω
 - Amplitude is that of input (A) multiplied by $|G(j\omega)|$
 - Phase shifts $\angle G(j\omega)$

Gain

Phase shift

9

$$\frac{T_{shift}}{T_{period}} = \frac{-\angle G(j\omega)}{360^{\circ}} \longrightarrow \angle G(j\omega) = -\frac{T_{shift}}{T_{period}} \times 360^{\circ}$$

What is the steady state output?

What is the steady state output?

a place of mind

Frequency response function

- For a stable system G(s), $G(j\omega)$ (ω is positive) is called *frequency response function (FRF)*.
- For each ω , FRF takes a complex number $G(j\omega)$, which has a gain and a phase.
- First order example

$$G(s) = \frac{1}{s+1} \implies G(j\omega) = \frac{1}{j\omega+1}$$

$$\begin{cases} |G(j\omega)| = \frac{1}{\sqrt{1+\omega^2}} \\ \angle G(j\omega) = \angle (1) - \angle (j\omega+1) = -\tan^{-1}\omega \end{cases}$$
MECH 366

12

• FRF
$$G(j\omega) = \frac{1}{j\omega + 1}$$

frequency	gain	phase
$\underline{\hspace{1cm}}$	$ G(j\omega) $	$\angle G(j\omega)$
0	1	0°
0.5	0.894	-26.6°
1.0	0.707	-45°
ŧ	:	i
∞	0	-90°

- Two graphs representing FRF
 - Bode diagram/plot
 - Nyquist diagram/plot (to be covered in MECH467)

Bode plot (Bode diagram) of $G(j\omega)$

Bode diagram consists of gain plot & phase plot

Remarks on Bode diagram

- Bode diagram shows gain and phase shift of a system output for sinusoidal inputs with various frequencies.
- Bode diagram is very useful and important in analysis and design of mechatronics systems.
- It can also be used for system identification. (Given FRF experimental data, obtain a transfer function that matches the data.)

System identification

- Sweep frequencies of sinusoidal signals and obtain FRF data (i.e., gain and phase).
- Select G(s) so that $G(j\omega)$ fits the FRF data.

Agilent Technologies: FFT Dynamic Signal Analyzer

Summary

- Frequency response
 - For a linear stable system, a sinusoidal input generates a sinusoidal output with same frequency but different amplitude and phase.
- Bode plot is a graphical representation of frequency response function. (MATLAB command "bode.m")
- Next, we learn how to sketch Bode plots.
- Project: Fridays Nov 22, 29 (presentation)
- Homework 7: Due Nov 18 (Monday), 3pm
- Lab 4 report: Due Nov 25 (Monday), 6pm

Appendix Complex numbers (review)

- Representation
 - Cartesian form

$$c = a + bj$$

Polar form

$$c = re^{j\theta}$$

Multiplication & division in the polar form

$$c_{1} = r_{1}e^{j\theta_{1}}$$

$$c_{2} = r_{2}e^{j\theta_{2}}$$

$$c_{1}c_{2} = r_{1}r_{2}e^{j(\theta_{1}+\theta_{2})}$$

$$c_{1}c_{2} = r_{1}r_{2}e^{j(\theta_{1}+\theta_{2})}$$

$$c_{1}c_{2} = r_{1}r_{2}e^{j(\theta_{1}-\theta_{2})}$$

Appendix

Derivation of frequency response

$$Y(s) = G(s)R(s) = G(s)\frac{A\omega}{s^2 + \omega^2} = \frac{k_1}{s + j\omega} + \frac{k_2}{s - j\omega} + C_g(s)$$

Term having denominator of stable G(s)

$$\begin{cases} k_1 = \lim_{s \to -j\omega} (s+j\omega)G(s) \frac{A\omega}{s^2 + \omega^2} = G(-j\omega) \frac{A\omega}{-2j\omega} = -\frac{AG(-j\omega)}{2j} \\ k_2 = \lim_{s \to j\omega} (s-j\omega)G(s) \frac{A\omega}{s^2 + \omega^2} = G(j\omega) \frac{A\omega}{2j\omega} = \frac{AG(j\omega)}{2j} \end{cases}$$

 $y(t) = k_1 e^{-j\omega t} + k_2 e^{j\omega t} + \mathcal{L}^{-1}\{C_g(s)\}$ 0 as t goes to infinity.

$$y_{ss}(t) = A|G(j\omega)| \frac{e^{j(\omega t + \angle G(j\omega))} - e^{-j(\omega t + \angle G(j\omega))}}{2j}$$

MECH 366
$$\sin(\omega t + \angle G(j\omega))$$

Appendix Why deg(den)>=deg(num)?

• All the transfer functions we encountered so far have the property $deg(den) \ge deg(num)$

Ex:
$$\frac{1}{Ms^2 + Bs + K}$$
 $\frac{K}{Ts + 1}$

- What if deg(num) is larger than deg(den)?
 - Then, $|G(j\omega)| \to \infty \text{ as } \omega \to \infty$
 - However, there is no such system in reality that has increasing gain as input frequency increases to infinity.
- That is why all the transfer function needs to meet

$$\deg(den) \ge \deg(num)$$