RDF* - Advanced Metadata Modeling

What is RDF?

- ▶ Resource Description Framework (RDF): A framework to represent data in the Semantic Web.
- ➤ **Structure**: Data is structured in *triples* (subject, predicate, object): :KarlMarx :author :DasKapital
- ▶ Use Cases: Knowledge graphs, data integration, and enabling semantic interoperability
- ▶ Limitations:
 - Cannot easily express metadata about relationships
 - Leads to complexity when representing context, source, or certainty of statements

Why Do We Need RDF*?

- Metadata Challenges in RDF:
 - RDF cannot natively add context to statements (e.g., source, date, certainty)
 - ▶ **Reification**: Standard RDF workaround, but it requires multiple extra triples, increasing complexity
- Goal of RDF*:
 - Introduces a way to add metadata directly to triples
 - Provides a more efficient, intuitive solution for metadata and contextual information

What is RDF*?

- ▶ RDF-star (RDF*): An extension of RDF for easier metadata representation
- Core Idea: Allows triples to be treated as subjects/objects in other triples
- Example:
 - Standard RDF: :KarlMarx :author :DasKapital
 - ▶ RDF*: <<:KarlMarx :author :DasKapital>> :year 1867

Technical Aspects of RDF*

- Triple Embedding:
 - ► In RDF*, triples can be embedded in other triples using <<subject predicate object>>
- ► SPARQL*:
 - Extension of SPARQL to query RDF* data

Example Query:

```
sparq1
SELECT ?s ?p ?o ?certainty WHERE {
  << ?s ?p ?o >> :year ?year .
}
```

Advantages of RDF*

- Simplified Data Modeling:
 - Directly express metadata on statements
- ► Increased Performance:
 - Avoids the need for complex reification structures, reducing triple count
- ► Improved Querying:
 - Queries for metadata become more straightforward and easier to interpret
- ► Growing Tool Support:
 - ▶ RDF* is e.g. supported by GraphDB and Blazegraph

Applications of RDF*

Provenance Tracking:

Track metadata like source, author, or timestamp of data statements

Data Confidence & Uncertainty:

 Represent certainty levels, useful in research, finance, and knowledge graphs

Data Integration:

 Useful in healthcare, open data, government records, where provenance and context are key

Knowledge Graphs:

 RDF* simplifies complex relationship representation in large datasets

Challenges and Considerations

- Compatibility:
 - Not all RDF and SPARQL tools support RDF*, limiting interoperability
- Standardization:
 - ► RDF* is evolving; W3C standardization is still in progress
- ► Tooling Requirements:
 - Support depends on triple stores and query engines implementing RDF* standards

Summary

- RDF* Overview:
 - ► RDF* extends RDF by allowing metadata directly on triples
- Key Advantages:
 - Simplifies modeling and querying, especially for metadata-rich use cases
- Applications:
 - Useful in provenance tracking, uncertainty representation, and knowledge graphs
- Future of RDF*:
 - Increased adoption and tool support as RDF* moves toward W3C standardization
- Consider RDF*:
 - When building applications with complex, metadata-driven data needs

Sources

- 1. RDF-star Working Group Charter, W3C
- 2. RDF Working Group Wiki, W3C
- 3. "What is RDF-star?" Ontotext
- "The Pros and Cons of RDF-star and SPARQL-star," Data Science Central