Influence-Based Fair Selection for Sample-Discriminative Backdoor Attacks

Qi Wei¹, Shuo He¹, Jiahan Zhang³, Lei Feng², Bo An^{1,4}

- ¹Nanyang Technological University
- ²Singapore University of Technology and Design
- ³Johns Hopkins University, ⁴Skywork Al

Contributions

- > A meaningful observation. We reveal that the unfair backdoor sample selection leads to significant performance degradation on ASR under a small value of the manipulation strength.
- > A novel selection strategy for backdoor attacks. We propose a novel backdoor attack method based on influence-based fair selection that provides data-efficient influence computation and fair backdoor sample selection.
- **Superior performances**. We conduct comprehensive experiments on four benchmarks to validate the superiority of the proposed attack method.

Observation and Motivations

An example of different manipulation strength ϵ in backdoor attack

A smaller value of ϵ is preferred since it enhances stealth!

Experimental Observation on variance of class-level ASR

As the value of ϵ decreases, the number of selected samples in each category becomes more imbalanced, leading to a greater variance in class-level ASR.

Preliminaries

Influence Functions:

 z_i : A training point

 z_i : A test point sampled from Q

$$egin{aligned} \phi_{ij} &= \phi(oldsymbol{z}_i, oldsymbol{z}_j \sim Q) \ & riangleq rac{d\ell_j(\hat{ heta}_\delta)}{d\delta} \Big|_{\delta=0} = -
abla_{ heta}\ell(oldsymbol{z}_j, \hat{ heta})^ op H_{\hat{ heta}}^{-1}
abla_{ heta}\ell(oldsymbol{z}_i, \hat{ heta}) \ & H_{\hat{ heta}} &= rac{1}{n} \sum_{i=1}^n
abla_{ heta}^2 \ell(oldsymbol{z}_i, \hat{ heta}) \end{aligned}$$

Calculating the impact of training samples with a trigger on the backdoored test risk contributes to find the backdoor samples.

A Toy Model

Settings: binary classification task (5000 positive and negative points); each sample is with 768 dimension; three-layer fully-connected network; construct backdoor sample with setting last 20 dimensions to zero;

Computing influence score of backdoor sample on the test (backdoor) risk

Backdooring the sample in *Group 1* (the group closest to the class prototype) probably causes a bigger value of influence, contributing to reduce the backdoored test risk.

Infecting samples closed to class prototype achieves better ASR!

Methodology

Framework: Influence-based Fair poison sample Selection (IFS)

Step1: Data-efficient influence computation

$$egin{aligned} \phi_{i,D_{ ext{val}}'} &pprox -rac{1}{U} \sum
olimits_{u=1}^{U}
abla_{ heta} \ell(oldsymbol{z}_{u}',\hat{ heta})^{ op} H_{\hat{ heta}}^{-1}
abla_{ heta} \ell(oldsymbol{z}_{i},\hat{ heta}) \end{aligned} \ &= - \Big[
abla_{ heta} rac{1}{U} \sum
olimits_{u=1}^{U} \ell(oldsymbol{z}_{u}',\hat{ heta}) \Big]^{ op} H_{\hat{ heta}}^{-1}
abla_{ heta} \ell(oldsymbol{z}_{i},\hat{ heta}) \end{aligned}$$

A subset D'_{val} is calculated for efficient influence computation.

Step2: Influence-based fair sample selection

 $D_M \leftarrow \{(\boldsymbol{x}_i, \boldsymbol{y}_i) | \phi_i > \tau^c\}_{i \in ||G_1^c||}, \, \forall \, c \in [C]$

Select same number of backdoor samples across varying classes.

Step3: Model retraining until covergence

Experiments

Quantitative Results

1) Different manipulation strengths ϵ

2) Different backdoor rates r

Our proposed backdoor sample selection strategy is superior.

More Analyses

Great performance on varying blackbox settings.

Well solve the issue of variance on ASR.