

Trần Ngọc Khánh 20200326

Nguyễn Ngọc Toàn 20200544

Nguyễn Hoàng Tiến 20204927

Nguyễn Thế Minh Đức 20204904

Cù Duy Hiệp 20200212

CONTENTS

- 1. PROBLEM DESCRIPTION
- 2. RESEARCH METHODOLOGY
- 3. CODE IMPLEMENTATION
- 4. RESULT DISCUSSION
- 5. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

1. PROBLEM DESCRIPTION

The land rover can move in only 4 directions: forward, backward, left, right

It can go up or down with an inclination of $\theta \le 10$ ° (this value can be computed by the formula: tan(θ) = |h1 - h2|/dist(P1, P2))

2. RESEARCH METHODOLOGY

ALGORITHM

Astar, UCS, Greedy BFS

FRONTIER'S DATA STRUCTURE

Priority Queue (with heapsort) & List (with timsort)

HEURISTIC FUNCTIONS

Manhattan distance, Tie-Breaking High gcost and its variance, Tie-Breaking Low g-cost and its variance

WAYS TO FIND NEIGHBORS

Find first before run & Find while running

3. Code implementation

Difficulty when testing algorithm:

- + Many aspects affect our result.
- + Long time to choose an appropriate image that meet our expectations and requirements.
- + The image size is too big that took the long time to test the algorithm.

Our decision:

- + Consider 7 image sizes (15x15, 20x20, 25x25, 30x30, 50x50, 75x75, 100x100), for each size, we take 100 images taken from 16 different bins of standard deviation.
- + Run the algorithms with 100 random pairs of points.

4.1 Comparison of frontier definitions (steps count)

ightarrow We choose **list (with timsort)** as the frontier's data structure

4.2 Algorithm comparison (steps count)

Size	UCS	A-star	GreedyBFS
15	496.19	52.06	49.88
20	922.69	73.94	63.44
25	1641.63	93.63	82.69
30	2050.56	110.56	106.94
50	6412.50	208.13	166.87
75	12798.10	297.88	253.06
100	25046.38	443.06	346.31

CONCLUSION: GreedyBFS < Astar < UCS</pre>

4.3 Influence of standard deviation to the running time

The more variety the altitudes of points in the image is,

the larger the number of steps the land rover need to do become!

4.4 Heuristic functions

Bin	MHT	THg	v-THg	TLg	v-TLg
0.0-0.5	162	162	162	162	162
0.5-1.0	162	162	162	162	162
1.0-1.5	162	162	162	162	162
1.5-2.0	163	163	163	163	163
2.0-2.5	166	166	166	166	166
2.5-3.0	170	170	170	170	170
3.0-3.5	171	171	171	171	171
3.5-4.0	176	176	176	176	176
4.0-4.5	174	174	174	174	174
4.5-5.0	177	177	177	177	177
5.0-5.5	182	182	182	182	182
5.5-6.0	168	168	168	168	168
6.0-6.5	174	174	174	174	174
6.5-7.0	171	171	171	171	171
7.0-7.5	184	184	184	184	184
7.5-8.0	189	189	189	189	189

Table 3: Image of size 50 - Astar

Bin	$\delta = 0.01$	$\delta=0.1$	$\delta = 0.5$	$\delta = 1$
0.0-0.5	148(1.0)	148(0.9999)	148(0.9994)	148(0.9994)
0.5-1.0	148(1.0)	148 (0.9998)	148 (0.9986)	148(0.9984)
1.0-1.5	151(1.0)	151(0.9992)	150(0.9939)	150(0.9920)
1.5-2.0	152(1.0)	152(0.9984)	151(0.9936)	151(0.9919)
2.0-2.5	154(1.0)	153(0.9981)	152 (0.9903)	152(0.9889)
2.5-3.0	179(1.0)	178(0.9971)	173 (0.9826)	171(0.9779)
3.0-3.5	164(1.0)	162(0.9963)	157 (0.9809)	155(0.9759)
3.5-4.0	167(1.0)	165(0.9967)	159 (0.9734)	156(0.9676)
4.0-4.5	169(1.0)	166(0.9952)	159 (0.9711)	157 (0.9644)
4.5-5.0	161(1.0)	160(0.9961)	155(0.9753)	153(0.9675)
5.0-5.5	157(1.0)	156(0.9975)	153(0.9831)	152(0.9804)
5.5-6.0	234(1.0)	230(0.9955)	221 (0.9712)	218 (0.9638)
6.0-6.5	187(1.0)	183(0.9956)	174 (0.9673)	169(0.9585)
6.5-7.0	187(1.0)	185(0.9940)	177 (0.9687)	174 (0.9610)
7.0-7.5	192(1.0)	189 (0.9964)	181(0.9714)	178(0.9633)
7.5-8.0	184(1.0)	181(0.9955)	173 (0.9689)	171(0.9590)

Table 4: Tie-breaking High g-cost

Manhattan distance is an admissible heuristic which gives us a good result.

Tie-breaking high g-cost and its variance give a slightly better result then Manhattan distance but if we ignored the optimality a little bit, A* search would run much more faster.

[•] Tie-breaking low g-cost is the worst heuristic function as.

Variance of Tie-breaking Low g-cost improves the original heuristic function significantly.

4. RESULTS DISCUSSIONTIONS

4.5 Find neighbors comparison

- CONCLUSION: The running time is less
- if we find the neighbors first and
- run the search algorithm after

5. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

4 main factors

Future research directions

Heuristic function

Frontier's data structure

How to determine neighbor points

Image's standard deviation

 δ in Tie-breaking heuristic functions

Trade-off between the optimality and the running time of the search algorithm

