Undecidability CSCI 338

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_1 on input $\langle x \rangle$:
 - 1. accept.
- 2. Construct TM M_2 on input $\langle y \rangle$:
 - 1. Run N on ω and accept if N does.
- 3. Run H on $\langle M_1, M_2 \rangle$.
- 4. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , then M_1 and M_2 have the same language (Σ^*). If N does not accept ω , then they have different languages. Thus S decides A_{TM} . (bad!)


```
Claim: EQ_{TM}=\{\langle M,N\rangle:M,N \text{ are TMs and }L(M)=L(N)\} is undecidable. Proof: Suppose EQ_{TM} is decidable and let TM H be its decider. Build a TM S that decides E_{TM}: S=\text{ on input }\langle P\rangle 1.
```

To show EQ_{TM} is undecidable, use it to decide E_{TM} .

Claim: $EQ_{TM}=\{\langle M,N\rangle:M,N \text{ are TMs and }L(M)=L(N)\}$ is undecidable. Proof: Suppose EQ_{TM} is decidable and let TM H be its decider. Build a TM S that decides E_{TM} : $S=\text{on input }\langle P\rangle$ 1.

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's language is empty?

Plan: ?

Claim: $EQ_{TM}=\{\langle M,N\rangle:M,N \text{ are TMs and }L(M)=L(N)\}$ is undecidable. Proof: Suppose EQ_{TM} is decidable and let TM H be its decider. Build a TM S that decides E_{TM} : $S=\text{on input }\langle P\rangle$ 1.

We have a way (H) to test if two TMs have the same language. How could we use that to test if a TM's language is empty? Plan: Make a TM with an empty language and use H to compare it to input to E_{TM} .

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = \text{on input } \langle P \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

1. reject.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = \text{on input } \langle P \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$: $L(M_2) =$? 1. reject.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = \text{on input } \langle P \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$: $L(M_2) = \emptyset$ 1. reject.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

```
S = \text{on input } \langle P \rangle
```

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. ?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle P \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

```
S = \text{on input } \langle P \rangle
```

- 1. Construct TM M_2 on input $\langle x \rangle$: 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, ___? __. If *H* rejects, ___? __.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle P \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

```
S = \text{on input } \langle P \rangle
```

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If...?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

$$S = \text{on input } \langle P \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If
$$L(P) = \emptyset$$
, ...?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = \text{on input } \langle P \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and...?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = \text{on input } \langle P \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, ...?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and...?

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

 $S = \text{on input } \langle P \rangle$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and S will reject.

Claim: $EQ_{TM} = \{\langle M, N \rangle : M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Proof: Suppose EQ_{TM} is decidable and let TM H be its decider.

Build a TM S that decides E_{TM} :

$$S = \text{on input } \langle P \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:
 - 1. reject.
- 2. Run H on $\langle P, M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If $L(P) = \emptyset$, M_2 and P will have the same language (since $L(M_2) = \emptyset$) and S will accept. If $L(P) \neq \emptyset$, M_2 and P will not have the same language and S will reject. Therefore, S is a decider for E_{TM} , which is a contradiction, so EQ_{TM} is undecidable.

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof:

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

```
Claim: REGULAR_{TM}=\{\langle M\rangle: M \text{ is a TM and } L(M) \text{ is regular}\} is undecidable. 
 Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider. 
 Build a TM S that decides A_{TM}: S=\text{ on input } \langle N,\omega\rangle
```

To show $REGULAR_{TM}$ is undecidable, use it to decide A_{TM} .

```
Claim: REGULAR_{TM}=\{\langle M\rangle: M \text{ is a TM and }L(M) \text{ is regular}\} is undecidable. 
 Proof: Suppose REGULAR_{TM} is decidable and let TM H be its decider. 
 Build a TM S that decides A_{TM}: S=\text{on input }\langle N,\omega\rangle 1.
```

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω .

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

$$L(M_2)$$
 is regular \mathbb{Q}
 \mathbb{Q}
 N accepts ω

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω .

Claim: $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

```
Build a TM S that decides A_{TM}: S = \text{on input } \langle N, \omega \rangle
1. Construct TM M_2 on input \langle x \rangle: 1. \text{ If } x \in \{ ??? \}, \text{ accept.}
2. \text{ If } x \notin \{ ??? \}, \text{ run } N \text{ on } \omega \text{ and } \text{ accept if } N \text{ does.}
```

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω .

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

1. Construct TM M_2 on input $\langle x \rangle$:

1. If
$$x \in \{0^n 1^n : n \ge 0\}$$
, accept

1. If $x \in \{0^n 1^n : n \ge 0\}$, accept.

1. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.

$$L(M_2)$$
 is regular \mathbb{Q}
 \mathbb{Q}
 N accepts ω

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω .

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω .

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

 $L(M_2) = 0^n 1^n \text{ or } \Sigma^*$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.

Plan: Build a TM whose language is regular if N accepts ω and not regular if N does not accept ω .

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.
- 2. ?

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, accept. If H rejects, reject.

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, accept. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular).

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If H accepts, accept. If H rejects, reject.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular). If N does not accept ω , $L(M_2) =$ $\{0^n 1^n : n \ge 0\}$ (not regular).

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular). If N does not accept ω , $L(M_2) =$ $\{0^n1^n: n \geq 0\}$ (not regular). So, deciding if $L(M_2)$ is regular will determine if N accepts ω .

Claim: $REGULAR_{TM} = \{\langle M \rangle: M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof: Suppose $REGULAR_{TM}$ is decidable and let TM H be its decider.

Build a TM S that decides A_{TM} :

$$S = \text{on input } \langle N, \omega \rangle$$

- 1. Construct TM M_2 on input $\langle x \rangle$:

 - 1. If $x \in \{0^n 1^n : n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n : n \ge 0\}$, run N on ω and accept if N does.
- 2. Run H on $\langle M_2 \rangle$.
- 3. If *H* accepts, <u>accept</u>. If *H* rejects, <u>reject</u>.

If N accepts ω , $L(M_2) = \Sigma^*$ (regular). If N does not accept ω , $L(M_2) =$ $\{0^n1^n: n \geq 0\}$ (not regular). So, deciding if $L(M_2)$ is regular will determine if N accepts ω . Therefore, S is a decider for A_{TM} , so $REGULAR_{TM}$ is undecidable.

When in doubt use $A_{TM}!!!$

Claim: A language is decidable ⇔ it and its complement are Turing-recognizable.

Proof:

Claim: A language is decidable ⇔ it and its complement are Turing-recognizable.

Proof: \Longrightarrow If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

Given decider T for A, make decider for \overline{A} :

 $M = on input \omega$

- 1. Run T on ω .
- 2. If *T* accepts, <u>reject</u>. If *T* rejects, <u>accept</u>.

Claim: A language is decidable ⇔ it and its complement are Turing-recognizable.

Proof: \Longrightarrow If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

 \Leftarrow If A and \bar{A} are both Turing-recognizable, let M_1 and M_2 be recognizers for A and \bar{A} .

Claim: A language is decidable ⇔ it and its complement are Turing-recognizable.

Proof: \Longrightarrow If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

 \Leftarrow If A and \overline{A} are both Turing-recognizable, let M_1 and M_2 be recognizers for A and \overline{A} . Consider the following TM:

 $M = on input \omega$

- 1. Run both M_1 and M_2 on ω in parallel (alternate instructions).
- 2. If M₁ accepts, <u>accept</u>. If M₂ accepts, <u>reject</u>.

Claim: A language is decidable ⇔ it and its complement are Turing-recognizable.

Proof: \Longrightarrow If a language is decidable, its complement is also decidable (just reverse accept/reject conditions) and decidable languages are recognizable.

 \Leftarrow If A and \overline{A} are both Turing-recognizable, let M_1 and M_2 be recognizers for A and \overline{A} . Consider the following TM:

 $M = on input \omega$

- 1. Run both M_1 and M_2 on ω in parallel (alternate instructions).
- 2. If M₁ accepts, <u>accept</u>. If M₂ accepts, <u>reject</u>.

Since $\omega \in A$ or \overline{A} , M_1 or M_2 must accept (halts on input). Thus, M_1 is a decider for A.

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof:

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{HALT_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., ????).

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does <u>not</u> halt on some input).

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does <u>not</u> halt on some input). Consider S on $\langle M, \omega \rangle$:

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: Suppose $\overline{HALT_{TM}}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does \underline{not} halt on some input).

- 1. Run N on ω .
- 2. accept.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \text{ is }$ not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does **not** halt on some input).

Consider S on $\langle N, \omega \rangle$:

1. Run N on ω .

2. accent.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \text{ is }$ not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does **not** halt on some input).

Consider S on $\langle N, \omega \rangle$:

1. Run N on ω .

HALT_{TM} recognizer!

- 2. accept.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \text{ is }$ not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does <u>not</u> halt on some input).

Consider S on $\langle N, \omega \rangle$:

1. Run N on ω .

HALT_{TM} recognizer!

- 2. accept.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \text{ is}$ not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does **not** halt on some input).

Consider S on $\langle N, \omega \rangle$:

1. Run N on ω .

HALT_{TM} recognizer!

Consider V on $\langle N, \omega \rangle$:

1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \text{ is}$ not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:

1. Run N on ω .

HALT_{TM} recognizer!

- 2. accept.

- 1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel.
- 2. If T accepts, reject. If S accepts, accept.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \text{ is}$ not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:

1. Run N on ω .

HALT_{TM} recognizer!

- 2. accept.

- 1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel. 2. If T accepts, <u>reject</u>. If S accepts, <u>accept</u>.

Claim: $HALT_{TM} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \} \text{ is }$ not Turing-recognizable.

Proof: Suppose $HALT_{TM}$ was Turing-recognizable. Let T be its recognizer (i.e., T will accept if a TM does not halt on some input).

Consider S on $\langle N, \omega \rangle$:

1. Run N on ω .

HALT_{TM} recognizer!

- 2. accept.

- 1. Run T on $\langle N, \omega \rangle$ and run S on $\langle N, \omega \rangle$ in parallel. 2. If T accepts, reject. If S accepts, accept. decider!

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof:

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: $HALT_{TM}$ is not decidable

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: $HALT_{TM}$ is not decidable $\Longrightarrow HALT_{TM}$ and $HALT_{TM}$ cannot both be Turing-recognizable (otherwise $HALT_{TM}$ would be decidable).

Claim: $\overline{HALT_{TM}} = \{\langle M, \omega \rangle : M \text{ is a TM and } M \text{ does not halt on } \omega \}$ is not Turing-recognizable.

Proof: $HALT_{TM}$ is not decidable $\Longrightarrow HALT_{TM}$ and $HALT_{TM}$ cannot both be Turing-recognizable (otherwise $HALT_{TM}$ would be decidable). Since $HALT_{TM}$ is Turing-recognizable, $\overline{HALT_{TM}}$ cannot be Turing-recognizable.

What if $HALT_{TM}$ were "decidable"?

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to n, reject.
- 3. Increment n and loop to step 1.

```
public boolean G() {
  int i = 2;
  while (true) {
     boolean found = false;
     for (int n = 1; n < i; n++) {
       for (int m = 1; m < i; m++) {
         if (isPrime(n) && isPrime(m) && m + n = i) {
            found = true;
    if (!found) {
       return false;
    i++;
```

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to n, reject.
- 3. Increment n and loop to step 1.

What does it mean if G halts? What does it mean if G does not halt?

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to n, reject.
- 3. Increment *n* and loop to step 1.

What does it mean if G halts? Goldbach's conjecture is false! What does it mean if G does not halt? Goldbach's conjecture is true!

What if $HALT_{TM}$ were "decidable"?

Goldbach's Conjecture:

- 280-year-old open problem.
- Every integer ≥ 2 is sum of two primes.

Consider G on $\langle x \rangle$:

- 1. For n = 2, check each pair of prime number < n.
- 2. If no pair sums to n, reject.
- 3. Increment n and loop to step 1.

What does it mean if G halts? Goldbach's conjecture is false! What does it mean if G does not halt? Goldbach's conjecture is true!

Turns out you can do this for lots of open problems over natural numbers (twin prime conjecture,...)