System Verification

EOD 044 E 000 W 'C' ('	-	04 : 661	-	A	1
EGR 314 Team 306 Verification	Table (Hoge,	, Striffier,	Turner,	, ventura)	Г

	3.3V Regulator	Micro- controller PIC18F166		Temperature Sensor	Motor	Motor Driver	DAC (LED)		Key	
3.3V Regulator	v (CT 4/21/23)	v (CT 4/21/23)	v (CT 4/21/23)	v (CT 4/21/23)	u	v (CT 4/21/23)	Х	U	unverified connection/subsystem	
Micro- controller PIC18F16Q41		v (CT 4/21/23)	u (i2c)	u (i2c)	nc	u (SPI)	u (DO)	x	connection verified by you	
Humidity Sensor			u	nc	nc	nc	nc		YZconnection verified by 23/¥tstructors (INITIALS, date)	
Temperature Sensor				u	nc	nc	nc	(xy	z)serial protocol	
Motor					nc	nc	nc	n	No Connection	
Motor Driver					u	u	nc			
DAC (LED)						u	u			
0							nc			

Lessons Learned

- 1. We learned a lot about vias and their limitations in overall PCB design.
- 2. We learned about many important parts of the design layout of the switching regulator and TI application parts.
- 3. We learned the importance of trying to keep things as simple as possible for both functionality and assembly of the PCB.
- 4. Cadence has many advantages and very specific disadvantages that we learned to facilitate more efficient work through the project.
- 5. We had to familiarize ourselves with the proper usage of flyback diodes when implementing them in our motor driver system.
- 6. Size matters on everything, the smaller the component the more trouble you're going to have, and going slightly larger on traces may be a saving grace.
- 7. We learned through failure how to properly avoid pcb manufacturing troubles within the actual tolerances, dimensions, and layout.
- 8. A large, yet simple thing we became aware of was the importance of distance to the ground and how that can affect the systems on a PCB.
- 9. We learned the importance of understanding the necessary components for I2C communication and how they will affect coding.
- 10. We had to develop our understanding of the Thonny interface and how to make it accept new code when working with the ESP32.

Future Recommendations

- 1. Try to mess with Cadence in one's free time early into the course in order to try and gain a better base comprehension for future use.
- 2. Take time and research footprints of surface mount parts early into the course to understand the issues that must be addressed in the final design.
- 3. Focus on trying to have everyone work together on each subsystem as multiple pairs of eyes save a lot of mistakes and revisions.
- 4. Note the physical dimensioning of everything from electronic parts to the board to the motor to make the final project outcome go together more seamlessly.
- 5. Read all feedback and actively change the submissions as feedback is received. It allows for more forward progress on the project.