M3228.000300 SLAM 101

Lecture 00 Probability

Ayoung Kim

Probability and SLAM

Bayes rule

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

Gaussian

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{(2\pi\sigma^2)}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Bayes Rule

Conditional Probability

Conditional probability

Probability that X will take vale x_i given Y will take value y_i Consider only instance for which $Y = y_i$ then the fraction of such instance for which $X = x_i$

$$p(X = x_i | Y = y_i) = \frac{p(X = x_i, Y = y_i)}{p(Y = y_i)} = \frac{p(X \cap Y)}{p(Y)}$$
$$p(X, Y) = p(X | Y)p(Y): \text{ Product rule}$$

- . Given a dice gave number 3, prob of getting H?
 - P(X=H|Y=3)
- SLAM
 - p(robot position | sensor measurement)

Bayes Theorem

Bayes theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

- Central rule in pattern recognition and machine learning
- Robotics estimation and computer vision
- Using sum rule, it becomes

$$p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{Y} p(X|Y)p(Y)}$$

Probability - Toy Example

Blue box and red box

$$Prob(Picking red box) = P(B = red) = 0.4$$

$$Prob(Picking blue box) = P(B = blue) = 0.6$$

$$P(B=red) + P(B=blue) = 1$$

Select either red or blue

$$p(F = green|B = red) =$$
 $p(F = orange|B = red) =$
 $p(F = green|B = blue) =$
 $p(F = orange|B = blue) =$

$$p(B = r|F = o)$$

Probability - Toy Example

- Q. What is p(F=orange)?
- Q. Also what is $P(B=red \mid F = orange)$?

$$p(F = orange) = p(F = o|B = r)p(B = r)$$

$$+p(F = o|B = b)p(B = b)$$

$$= \frac{3}{4} \times \frac{4}{10} + \frac{1}{4} \times \frac{6}{10}$$

$$= \frac{9}{20}$$

Overall (no matter what the box is) the probability of choosing green ball

$$p(B = r|F = o) = \frac{p(F = o|B = r)p(B = r)}{p(F = o)}$$
$$= \frac{\frac{3}{4} \times \frac{4}{10}}{\frac{9}{20}}$$
$$= \frac{2}{3}$$

If the ball you've chosen in orange, the probability that the box is red

Prior and Posterior Probability

In the previous example

likelihood

Prior probability

$$p(B = r|F = orange) = \underbrace{p(F = o|B = r)p(B = r)}_{p(F = o)}$$

Posterior probability

- Prior probability
 - Available before we observe the event
- Posterior probability
 - Probability after we observe an event that the ball is orange

posterior \propto likelihood \times prior

Probability w.r.t. Continuous Variable

- Previous example probability over discrete set
 - Probability mass function (pmf) $p(X = x_i)$
 - Probability dense function (pdf) $p(X = x_i) = 0$ or $f(X = x_i) = 0$

$$p(x \in (a,b)) = \int_a^b p(x)dx$$

Cumulative distribution function

$$P(z) = \int_{-\infty}^{z} p(x)dx$$

$$p(x) \ge 0$$

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = p(y|x)p(x)$$

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\int p(x,y)dy}$$

Expectation and Variance

Expectation of a function

$$E[f] = \sum p(x)f(x)$$
 or $E[f] = \int p(x)f(x)dx$

Conditional expectation

$$E[f|y] = \sum p(x|y)f(x)$$

- ▶ Variance of a function $var[f] = E[(f(x)^2] E[f(x)]^2$
 - Variance of a random variable

$$var[x] = E[x^2] - E[x]^2$$

Covariance of two random variables

$$cov[x, y] = E[xy] - E[x]E[y]$$

(Note: cov[x, y] = 0 if x and y are indep.)

Review Other Rules

Law of total probability

Random variable X,Y. and their conditional probability is known

$$P(X) = \sum_{i=1}^n P(X|Y=y_i) = P(X|Y=y_1) + P(X|Y=y_2) + \dots + P(X|Y=y_n)$$
 Sum over all possible Y

Marginalization

Random variable X,Y. and their joint probability is known

$$P(X = x_i) = \sum_{j=1}^{n} P(X = x_i, Y = y_j)$$

Marginal probability written as expected value

$$P(X = x) = \int_{y} P(X = x, Y = y)dy$$
$$= \int_{y} P(X = x|Y = y)P(Y = y)dy$$
$$= E[P(X = x|Y = y)]$$

YX	<i>x</i> ₁	<i>x</i> ₂	x ₃	<i>x</i> ₄	<i>p</i> _Y (y) ↓
<i>y</i> ₁	4/32	2/32	1/32	1/32	8/32
<i>y</i> ₂	3/32	6/32	3/32	3/32	15/32
y ₃	9/32	0	0	0	9/32
$p_X(x) \rightarrow$	16/32	8/32	4/32	4/32	32/32

Wikipedia

Gaussian

Gaussian Distribution

Continuous random variable

- Gaussian (Normal) distribution
- if it is governed by two parameter mean and variance and is in the following form

Gaussian Distribution

Multivariate Gaussian Distribution

For a vector x

$$\mathcal{N}(\mathbf{x}; \underline{\mu}, \underline{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\underline{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \underline{\mu})^{\top} \underline{\Sigma}^{-1} (\mathbf{x} - \underline{\mu})\right\}$$

 μ is D dimensional mean vector Σ is $D \times D$ variance matrix

Mahalanobis distance

$$D^2 = (\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu)$$

If $x \in \mathcal{R}$ (scalar) and $\Sigma = I = 1$

$$D^2 = (x - \mu)^2 \to \text{Euclidean distance}$$

If $\mu = 1$ then $D^2 = (x-1)^2$: Euclidean distance to 1

Mahalanobis distance

Mahalanobis distance

 \triangleright For general 2D matrix Σ , apply eigenvalue decomposition

$$\Sigma = U\Lambda U^{-1}$$
 and $\Sigma u_i = \lambda_i \mathbf{u}_i$

$$\Sigma = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1^\top \\ u_2^\top \end{bmatrix}$$

$$D^2 = (\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu)$$

 x_2

Mahalanobis distance

- What is the unit? How do we measure?
 - ▶ Euclidean distance 2 meters, 5 feet

$$D = \sqrt{(x - \mu_1)^{\top} \Sigma_1^{-1} (x - \mu_1)}$$

 $x_1 \sim \mathcal{N}(\mu_1, \Sigma_1)$

Mahalanobis distance

▶ Example: measurement validation

Gaussian and Linearity

- Random variable x is Gaussian $x \sim \mathcal{N}(\mu_x, \sigma_x^2)$
 - How about y?

$$\mu_y = A\mu_x$$
$$\sigma_y^2 = A\sigma_x^2 A^{\top}$$

Gaussian and Linearity

- Random variable x is Gaussian $x \sim \mathcal{N}(\mu_x, \sigma_x^2)$
 - ▶ How about y for nonlinear system?

Probability and SLAM

Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms

Hugh Durrant-Whyte, Fellow, IEEE, and Tim Bailey

- Solve for localization and mapping $P(\mathbf{x}_k, \mathbf{m} \mid \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0)$
- Motion propagation $P(\mathbf{x}_k, \mathbf{m} \mid \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k}, \mathbf{x}_0)$ $= \int P(\mathbf{x}_k \mid \mathbf{x}_{k-1}, \mathbf{u}_k) \times P(\mathbf{x}_{k-1}, \mathbf{m} \mid \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k-1}, \mathbf{x}_0) d\mathbf{x}_{k-1}$
- Measurement update $P(\mathbf{x}_k, \mathbf{m} \mid \mathbf{Z}_{0:k}, \mathbf{U}_{0:k}, \mathbf{x}_0)$ $= \frac{P(\mathbf{z}_k \mid \mathbf{x}_k, \mathbf{m}) P(\mathbf{x}_k, \mathbf{m} \mid \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k}, \mathbf{x}_0)}{P(\mathbf{z}_k \mid \mathbf{Z}_{0:k-1}, \mathbf{U}_{0:k})}$

Thank you very much !!