UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Sannolikhet & Martingaler

Rami Abou Zahra

Contents

1. σ -algebras & Measure spaces	2
1.1. σ -algebras	2
1.2. Measures	2
1.3. Measure spaces	3
1.4. Properties of measures	4
1.5. Monoticity of measure	4
1.6. Generated σ -algebras	5
2. Probability Spaces	6
2.1. Almost sure events	6
2.2. Liminf and limsup	7
3. Random Variables	\mathfrak{g}
4. Laws & Distribution functions	13
4.1. Properties of distribution functions	13
5. Independence	13
6. Integration	17
6.1. Properties of the integral	17

1. σ -ALGEBRAS & MEASURE SPACES

1.1. σ -algebras.

Definition 1.1 σ -algebra

A collection of subsets Σ of a set S is called a σ -algebra if:

- $\varnothing \in \Sigma$
- Is an algebra:
 - Closed under complements such that for $A \in \Sigma \Rightarrow A^c = S \setminus A \in \Sigma$
 - Closed under unions such that $A, B \in \Sigma \Rightarrow A \cup B \in \Sigma$
- Closed under countably infinite unions $A_i \in \Sigma$ for $i \in \mathbb{N}$, then $\bigcup_{i=1}^{\infty} A_i \in \Sigma$

Example:

 $\Sigma = {\emptyset, S}$ is a σ -algebra on any set S.

Another example is $\mathcal{P}(S)$, which denotes the powerset.

Another example is $S = \mathbb{N}$, then $\Sigma = \{\emptyset, \mathbb{N}, \{2k : k \in \mathbb{N}\}, \{2k+1 : k \in \mathbb{N}\}\}$

Remark:

There exists many equivalent definitions of a σ -algebra. For example, instead of the first axiom of $\varnothing \in \Sigma$, an equivalent definition could be " Σ is non-empty", since then $\exists A \in \Sigma \Rightarrow A^c \in \Sigma \Rightarrow A \cup A^c = S \in \Sigma \Rightarrow (A \cup A^c)^c = \varnothing \in \Sigma$

Remark:

Closed under unions \Rightarrow closed under finite unions since $A_1, \dots, A_n \in \Sigma \Rightarrow A_1 \cup A_2 \in \Sigma, A_1 \cup A_2 \cup A_3 = \underbrace{(A_1 \cup A_2)}_{\in \Sigma} \cup A_3$, thus by induction $A_1 \cup \dots \cup A_n \in \Sigma$

This does *not* imply Σ is closed under countable unions.

Counter-example:

Consider $S = [0, 1) \subseteq \mathbb{R}$. Let Σ be all finite unions of disjoint sets on the form [a, b) such that $0 \le a \le b < 1$ (if $a = b \Rightarrow \emptyset$).

First and all algebra axioms are fulfilled, but the last one is not since we cvan consider $A_n = \left[\frac{1}{n}, 1\right]$. Then $\bigcup_{i=2}^{\infty} = (0, 1) \notin \Sigma$

An algebra Σ is an algebra in an algebraic sense.

The symmetric difference $A \triangle B = (A \backslash B) \cup (B \backslash A)$. This behaves like "+" on Σ and intersections behave like multiplication.

Just like one would expect from an algebra, the multiplication is distributive over addition, eg. $C \cap (A \triangle B) = (C \cap A) \triangle (C \cap B)$

1.2. Measures.

Let Σ be a σ -algebra on S, and let μ_0 be a function from Σ_0 to $[0,\infty] = [0,\infty) \cup \{\infty\}$, essentially a function that assigns some value to subsets of Σ .

Intuitively, a measure should increase if we measure something bigger.

Definition 1.2 Additive and σ -additive measures

A measure μ_0 is called *additive* if $\mu_0(A \cup B) = \mu_0(A) + \mu_0(B)$ where A, B are disjoint sets.

A measure μ_0 is called σ -additive if this holds for ocuntable unions, i.e if A_n are pairwise disjoint, then $\mu_0 \left(\bigcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \mu_0(A_n)$

Remark:

We say that μ_0 is a measure if μ_0 is σ -additive and $\mu_0(\varnothing) = 0$

Example:

$$S = \{1, 2, \dots, 6\}, \ \Sigma = \mathcal{P}(S) \text{ and set } \mu_0(A) = \frac{1}{6} |A|. \text{ Note here that } \mu_0(S) = 1$$

Definition 1.3 Probability measures

All measures that sum up to 1 are called probability measures

Example:

$$S = \mathbb{N}, \ \Sigma = \mathcal{P}(S)$$
 and set $\mu_0(A \in \Sigma) = |A|$. Here $\mu_0(S) = \infty$

Example:

S = N,
$$\Sigma = \mathcal{P}(S)$$
 and set $\mu_0(A \in \Sigma) = \begin{cases} 0 & \text{if } |A| < \infty \\ \infty & \text{if } |A| = \infty \end{cases}$

This is an example of an additive but not σ -additive measure, since if $A_n = \{n\}$, then $\mu_0 (\bigcup_{n=1}^{\infty} A_n) = \infty$, but $\sum_{n=1}^{\infty} \mu_0(A_n) = -1$

1.3. Measure spaces.

Definition 1.4 Measure space triplet

A measure space is a triplet (S, Σ, μ) where S is some set, Σ is a σ -algebra over S, and μ is a σ -additive function $\mu: \Sigma \to [0, \infty]$ such that $\mu(\emptyset) = 0$

Definition 1.5 Probability space

If $\mu(S) = 1$, then the triplet is called a *probability space*.

Example: (finite measure space)

Let $S = \{s_1, \dots, s_k\}$ where $k \in \mathbb{N}$ be a set of outcomes. We also associate probabilities p_1, \dots, p_k to each s_1, \dots, s_k such that $\sum_i p_i = 1$. Let $\mu(A) = \sum_{s_i \in A} p_i \ \forall A \subseteq S$. If we let $\Sigma = \mathcal{P}(S)$, then (S, Σ, μ) is a measure and a probability space.

Example: (Lebesgue measure)

Let $S = \mathbb{R}$, $\Sigma = \mathcal{B}(\mathbb{R})$ be the Borel σ -algebra (smallest σ -algebra that makes open sets measureable, note that $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$) and let μ be something measuring length on finite unions of disjoint open intervals $A = (a_1, b_1) \cup \cdots \cup (a_n, b_n)$ such that $\mu(A) = |b_1 - a_1| + \cdots + |b_n - a_n|$

This μ is called the Lebesgue measure (\mathcal{L})

Restricting S to [0,1], then we have a probability measure

$$\mu = \mathcal{L}\mid_{[0,1]}(A) = \mathcal{L}(A\cap[0,1]) \Rightarrow ([0,1],\mathcal{B}([0,1],\mathcal{L}\mid_{[0,1]})) \quad \text{is a probability measure}$$

This is a formulation of uniform random numbers in [0,1]

1.4. Properties of measures.

For a measure space, we have the following properties:

- (1) $\mu(A \cup B) \le \mu(A) + \mu(B)$

(2)
$$\mu(\bigcup A_i) \leq \sum \mu(A_i)$$

(3) $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) - \mu(A_1 \cap A_2) - \dots - \mu(A_{n-1} \cap A_n) + \mu(A_1 \cap A_2 \cap A_3) + \dots + (-1)^{n+1} \mu(A_1 \cap A_2 \cap A_n)$

Note that for the first two points, we have previously assumed that A, B were disjoint. This would be the case for "joint" sets.

Bevis 1.1

Consider
$$\mu(A) = \mu(A \setminus B \cup (A \cap B)) = \mu(A \setminus B) + \mu(A \cap B)$$
 and proceed.

Remark:

For point 4, check Math Stackexchange

The idea is if we can consider some set that is measurable, we want to be able to say something about the compositions of those measurable sets so the idea is we include their subsets in the σ -algebra (in the space we set up) as well as keeping it closed in an algebraic sense.

1.5. Monoticity of measure.

Let (A_i) be a sequence of increasing sets in Σ such that $\varnothing \subseteq A_1 \subseteq \cdots \subseteq S$. Then:

$$\mu(A_i) = \mu(A_i \setminus A_{i-1} \cup (A_i \cap A_{i-1})) = \mu(A_i \setminus A_{i-1} \cup A_{i-1}) = \mu(A_i \setminus A_{i-1}) + \mu(A_{i-1}) \ge \mu(A_{i-1})$$

Thus, by induction, $\mu(A_1) \leq \mu(A_2) \leq \cdots$ and by monotone convergence the limit $\lim_{i \to \infty} \mu(A_i)$ exists in the extended positive real line.

Writing $A = \bigcup_{i=1}^{\infty} A_i$, we have $\mu(A) = \lim_{i \to \infty} \mu(A_i)$, this because:

$$A = A_1 \cup (A_2 \backslash A_1) \cup (A_3 \backslash A_2) \cup \cdots$$

$$\mu(A) = \mu(A_1) + \mu(A_2 \backslash A_1) + \mu(A_3 \backslash A_2) + \dots = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i \backslash A_{i-1})$$

where $A_0 = \emptyset = \lim_{n \to \infty} \mu(A_n)$

A similar result holds for decreasing sets, i.e $S \supseteq A_1 \supseteq A_2 \cdots \supseteq \emptyset$

We do the limit as $A = \bigcap_{i=1}^{\infty} A_i$ and by monotone convergence $\mu(A) = \lim_{i \to \infty} \mu(A_i)$ with similar proof.

Remark:

The last set in the decreasing sets does not necessarily have to be the empty set, recall that we are dealing with intersections instead of unions.

1.6. Generated σ -algebras.

Given any collection of subsets of $\mathfrak{A} \subseteq \mathcal{P}(S)$, the σ -algebra generated by \mathfrak{A} is the smallest σ -algebra that cointains \mathfrak{A} is denoted by $\sigma(\mathfrak{A}) = \bigcap_{\Sigma: \sigma - \text{alg} \& \mathfrak{A} \subseteq \Sigma}$

This is sometimes denoted by $\langle \mathfrak{A} \rangle$

One can verify that this is indeed a σ -algbera:

- (1) \varnothing is contained in all σ -algebras, so \varnothing is contained in all of the intersections
- (2) If $A \in \sigma(\mathfrak{A})$, then $A \in \Sigma \ \forall \ \sigma$ -algebras, but then $A^c \in \Sigma \ \forall \ \sigma$ -algebras $\Rightarrow A^c \in \sigma(\mathfrak{A})$

The rest of the axioms for a σ -algebras are shown in an equivalent manner as in (2)

Example: (Borel σ -algebra)

Let $\mathcal{B}(S) = \sigma$ (open subsets of S) (here we mean open in a topological sence since we need S to have a notion of opened-ness).

Since we mean open in a topological sense (which is defined as the complement of a closed set), we could have used the complement of a closed set to denote the open set, but since the complement is in the σ -algebra we may as well had the equivalent definition using the closed set all together.

This leads us to $\mathcal{B}(\mathbb{R}) = \sigma(\{(a,b) : a < b, a, b \in \mathbb{R}\})$. Instead of \mathbb{R} , any dense set could have worked as well (such as \mathbb{Q})

Example:

Let
$$S = \{1, 2, 3 \dots, 10\}$$
, and $\mathfrak{A} = \{\{1, 2\}, \{5\}\}$.

In order to generate a σ -algebra, we just need to recursively insert things that work with the axioms. For example, we need the empty set so we chuck in the empty set. We need the complement of the empty set so we chuck in the complement to the empty set. We need the complements to all the sets in \mathfrak{A} , so we add those as well, as well as their intersections.

We should then be left with just enough to call it a σ -algebra, and nothing more, hence the smallest σ -algebra:

$$\sigma(\mathfrak{A}) = \{\emptyset, S, \{1, 2\}, \{5\}, \{1, 2, 5\}, \{3, 4, 5, 6, 7, 8, 9, 10\}, \{1, 2, 3, 4, 6, 7, 8, 9, 10\}, \{3, 4, 6, 7, 8, 9, 10\}\}$$

Definition 1.6 π -system

A π -system on a set S is a collection of subsets π such that $\emptyset \in \pi$ and if $A, B \in \pi$ then $A \cap B \in \pi$

Sats 1.1

Suppose $\mathfrak{A} \subseteq \mathcal{P}(S)$ is a π -system and suppose that μ_1, μ_2 are measures on $(S, \sigma(\mathfrak{A}))$ such that $\mu_1(A) = \mu_2(A) \ \forall A \in \mathfrak{A}$

 \Rightarrow Then $\mu_1 = \mu_2$ on $(S, \sigma(\mathfrak{A}))$

In other words, π -systems uniquely determine a measure.

Example:

Let
$$S = \mathbb{R}$$
, $\mathfrak{A} = \{[-\infty, a) : a \in \mathbb{R}\}, \ \sigma(\mathfrak{A}) = \mathcal{B}(\mathbb{R})$

 \mathfrak{A} is a π -system and have any measure is uniquely defined on \mathfrak{A} .

note that $\mu([-\infty, a))$ is nothing but the cumulative distribution function of the measure μ (in terms of a). "Measure up to a point". The following gives justification to construct measures from small collections.

Sats 1.2: Caratheodorys extension theorem

If Σ_0 is an algebra and $\mu_0: \Sigma \to [0, \infty]$ is a σ -additive, $\exists ! \quad \mu$ on $\Sigma = \sigma(\Sigma_0)$ such that $\mu(A) = \mu_0(A) \quad \forall A \in \Sigma_0$

An important consequence is that the Lebesgue measure is unique (only one notion of length on $\mathcal{B}(\mathbb{R})$) defined through sets of the form $A = (a_1, b_1) \cup \cdots \cup (a_n, b_n)$ (disjoint union of open sets)

$$\mathcal{L}(A) = |b_1 - a_1| + \dots + |b_n - a_n|$$

2. Probability Spaces

Probability spaces are normally denoted by $(\Omega, \mathcal{E}, \mathbb{P})$ where:

- Ω is the space of realisations
- \bullet \mathcal{E} is the sets of events
- \mathbb{P} is the probability measure

Example:

$$\Omega = \mathbb{R}, \ \mathcal{E} = \mathcal{B}(\mathbb{R}), \ \mathbb{P}(A = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2}) dx, \ A = (a, b)$$

This models a normally distributed real number.

2.1. Almost sure events.

We say that an event occurs almost surely if $\mathbb{P}(\mathcal{E}) = 1$ (equivalently $\mathbb{P}(\mathcal{E}^c) = 0$)

Proposition:

Let
$$E_1, \dots \in \mathcal{E}$$
 be such that $\mathbb{P}(E_i) = 1 \quad \forall i \in \mathbb{N}$
Then, $\mathbb{P}(\bigcap_{i=1}^{\infty} E_i) = 1$

Bevis 2.1

Note that since each of them have probability measure 1, their complement must have measure 0 so:

$$\mathbb{P}\left(\bigcup_{i\in\mathbb{N}} E_i^c\right) \le \sum_{i\in\mathbb{N}} \mathbb{P}(E_i^c) 0$$

However, since:

$$\begin{aligned} 0 &\leq \mathbb{P}\left(\bigcup_{i \in \mathbb{N}} E_i^c\right) \leq 0 \Rightarrow \mathbb{P}\left(\bigcup_{i \in \mathbb{N}} E_i^c\right) = 0 \\ &\Rightarrow \mathbb{P}\left(\left(\bigcup_{i \in \mathbb{N}} E_i^c\right)^c\right) = 1 \end{aligned}$$

But we have de-Morgans law, i.e $\bigcup_{i\in\mathbb{N}} E_i^c = \left(\bigcap_{i\in\mathbb{N}} E_i\right)^c$, which yields:

$$\left(\left(\bigcap_{i\in\mathbb{N}}E_i\right)^c\right)^c=\bigcap_{i\in\mathbb{N}}E_i$$

Remark:

This applies only to countable unions. If uncountable, we could consider

$$\Omega = [0, 1], \quad \Sigma = \mathcal{B}([0, 1]), \quad \mathbb{P} = \mathcal{L}\mid_{[0, 1]}$$

Then $\mathbb{P}(X=x)=0$ (where X is some randomly chosen number and x is some fixed number). Taking the complement of this event yields $\mathbb{P}(X\neq x)=1$ so $\mathbb{P}(X\neq x:x\in\mathbb{Q})=1$

2.2. Liminf and limsup.

Recall from real analysis:

 $\lim_{n\to\infty}\sup x_n=\lim_{n\to\infty}\sup_{m\geq n}x_n\\ \lim_{n\to\infty}\inf x_n=\lim_{n\to\infty}\inf_{m\geq n}x_n\\ \right\} \text{Limits exists in the extended reals and the limit exists iff limsup}=\lim_{n\to\infty}\sup_{m\to\infty}x_n$

Recall that if $\lim_{n\to\infty} \sup x_n \ge x \Leftrightarrow \exists$ a subsequence $(x_n)_k$ with $\lim_{n\to\infty} x_n \ge x \Leftrightarrow \exists$ and the opposite for $\lim_{n\to\infty} x_n \ge x \Leftrightarrow \exists$ and $\lim_{n\to\infty} x$

There exists a similar notion for sets.

Let E_1, \cdots be events (sets)

$$\lim_{n\to\infty}\inf E_n = \bigcup_{n\geq 1}\bigcap_{m\geq n}E_n$$

$$\lim_{n\to\infty}\sup E_n = \bigcap_{n>1}\bigcup_{m>n}E_n$$

Some intuition here is definitely necessary.

For the first one, we are taking intersections of less and less sets (increasing sequence of sets), then finally unions. Think of this as events that eventually will appear

For the second one, it is decreasing (because of the intersection outside), all points will occur infinitely often.

Lemma 2.1: Fatous Lemma

Let E_1, \cdots be events, then:

$$\mathbb{P}\left(\liminf_{n} E_{n}\right) \leq \lim_{n} \inf \mathbb{P}(E_{n})$$

Bevis 2.2: Fatous Lemma

Let $F_n = \bigcap_{m \geq n} E_m$, i.e $E_n = \bigcup_{n \in \mathbb{N}} F_n$. Here F_n is an increasing sequence of sets, which implies $F_n \in E_m \ \forall m \geq n$, so $\mathbb{P}(F_n) \leq \mathbb{P}(E_m)$

However, this also implies that $\mathbb{P}(F_n) \leq \inf_{m \geq n} \mathbb{P}(E_m)$

 F_n is increasing \Rightarrow probabilities are increasing $\Rightarrow \lim_{n\to\infty} \mathbb{P}(F_n)$ exists

$$\Rightarrow P\left(\bigcup_{n}^{\infty} F_{n}\right) = P\left(\liminf_{n} E_{n}\right)$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}(F_{n}) \le \lim_{n \to \infty} \inf \mathbb{P}(E_{n}) \quad \text{by } \mathbb{P}(F_{n}) \le \inf_{m \ge n} \mathbb{P}(E_{m})$$

This yields finally $\mathbb{P}(\lim_n \inf E_n) \leq \lim_n \inf \mathbb{P}(E_n)$, which is what we wanted to prove.

The reverse Fatous lemma can be proved by flipping everything (signs, inequalities, infimum to supremum etc.)

Lemma 2.2: Borel-Cantelli Lemma

Let E_1, \cdots be a sequence of events such that $\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty$

Then $\mathbb{P}(\lim_n \sup E_n) = 0 = \mathbb{P}(\text{"infinitely many } E_n \text{ occur"})$

Bevis 2.3: Borel-Cantelli Lemma

Recall what the limsup is, i.e $\lim_n \sup E_n = \bigcap_{n \in \mathbb{N}} \underbrace{\bigcup_{m \geq n} E_m}_{G_n}$

Note here that G_n is a decreasing sequence of sets, so $\lim_{n\to\infty}\sup E_n\subseteq G_n$ $\forall m\in\mathbb{N}$ and $\mathbb{P}(\lim_{n\to\infty\sup E_n})\leq \mathbb{P}(G_m)\quad \forall m\in\mathbb{N}$

In particular, this is bounded above by:

$$\sum_{k=m}^{\infty} \mathbb{P}(E_k) \le \mathbb{P}(\lim_{n \to \infty} \sup E_n)$$

But $\sum_{k=m}^{\infty} \mathbb{P}(E_k) \to 0$ as $m \to \infty$ since $\sum \mathbb{P}(E_n) < \infty$, so $\mathbb{P}(\lim_n \sup E_n) = 0$

Example: (Coin toss)

Let E_n be the event that the first n coin toss in a sequence of tosses is heads. We have $\mathbb{P}(E_n) = 2^{-n}$ (assuming a fair coin) and $\sum_{n=1}^{\infty} \mathbb{P}(E_n) = 1 < \infty$ (since $\sum_{n=1}^{\infty} 2^{-n} \to 1$) Thus, by the Borel-Cantelli lemma, $\mathbb{P}(\lim_n \sup E_n) = 0$ (finintely many values in which E_n occurs \Rightarrow the

run of heads will end almost surely)

3. Random Variables

Definition 3.7 Measurable functions

Let (S, Σ, μ) be a measure space. We say that $f: S \to \mathbb{R}$ is measurable if all pre-images of all Borel sets are in Σ :

$$f^{-1}(A) \in \Sigma \Rightarrow A \in \mathcal{B}(\mathbb{R})$$

Note:

$$f^{-1}(A) = \{ s \in S : f(s) \in A \} \in \Sigma \quad \forall A \in \mathcal{B}(\mathbb{R})$$

- $m\Sigma$ are all measurable functions with respect to Σ
- $(m\Sigma)^+$ are all non-negative measurable functions with respect to Σ
- $b\Sigma$ are all bounded measurable functions with respect to Σ

Remark:

This can be generalized as functions $f: S \to T$ where (T, Σ', ν) is a measure space.

Lemma 3.1

We have:

- (1) $f^{-1}(A^c) = (f^{-1}(A))^c$
- (2) $f^{-1}(\bigcup_{i} A_{i}) = \bigcup_{i} f^{-1}(A_{i})$ (3) $f^{-1}(\bigcap_{i} A_{i}) = \bigcap_{i} f^{-1}(A_{i})$

Bevis 3.1

We shall only prove number 2, but the rest is proved in a similar manner:

If
$$x \in f^{-1}\left(\bigcup_{i} A_{i}\right) \Leftrightarrow f(x) \in \bigcup_{i} A_{i} \Leftrightarrow \exists i \text{ s.t } f(x) \in A_{i}$$

$$\Leftrightarrow x \in f^{-1}(A_{i}) \Leftrightarrow x \in \bigcup_{i} f^{-1}(A_{i})$$

Proposition:

If $f: S \to \mathbb{R}$ is continuous then it must also be measurable with respect to the Borel σ -algebra $\mathcal{B}(\mathbb{R})$

Bevis 3.2

Follows from topology, since pre-images of any open set is open as well as some help using the following:

Proposition:

codomain

If $C \subseteq \mathcal{P}(\mathbb{R})$ is a collection such that $\sigma(C) = \mathcal{B}(\mathbb{R})$, then $f: S \to \mathbb{R}$ is measurable with respect to $\mathcal{B}(S)$ if and only if $f^{-1}(A) \in \mathcal{B}(S) \quad \forall A \in C$ domain

Examples:

In order to check whether $f: S \to \mathbb{R}$ is measurable, it suffices to check one of these:

- $f^{-1}(A) \in \Sigma$ $\forall A$ where A is an open set
- $f^{-1}((a,b)) \in \Sigma \quad \forall a < b \in \mathbb{R}$ $f^{-1}([-\infty,a)) \in \Sigma \quad \forall a \in \mathbb{R}$
- Anything that generates $\mathcal{B}(\mathbb{R})$

Lemma 3.2

If $f_1, f_2: S \to \mathbb{R}$ are measurable functions, then $f_1 + f_2$ is measurable

Bevis 3.3

We want to show that addition is measurable, we can do this by considering $(f_1 + f_2)^{-1}((x, \infty)) \in \Sigma$ given that f_1, f_2 are measurable of course.

Since they are individually measurable, this means that the pre-images of this open set is in Σ , i.e

$$f_1^{-1}((x,\infty)), f_2^{-1}((x,\infty)) \in \Sigma$$

We use the fact that $x < f_1(s) + f_2(s) \Leftrightarrow \exists q \in \mathbb{Q}$ such that $q < f_1(s)$ and $x - q < f_2(s)$ (this reminds of the construction of the Dedekind sets, which is justified since there must be a rational number between x and $f_1 + f_2$ since we can just decrease the denominator to make a DIY ε)

$$\Rightarrow (f_1 + f_2)^{-1}((x, \infty)) = \bigcup_{q \in \mathbb{Q}} \underbrace{\left(\underbrace{f_1^{-1}((q, \infty))}_{s \text{ s.t } q < f_s(s)} \cap \underbrace{f_2^{-1}((q, \infty))}_{x - q < f_2(s)}\right)}_{\in \Sigma}$$

П

Remark:

 $\underbrace{f_1 \circ f_2}_{\text{"multiplication"}}$ is measurable by a similar proof. In fact, any infinite linear combination is measurable.

Lemma 3.3

Compositions of measurable functions is measurable

Bevis 3.4

$$(f_1 \circ f_2)^{-1}(A) = \underbrace{f_2^{-1} \circ \underbrace{f_1^{-1}(A)}_{\substack{\text{measurable} \\ \in \Sigma}}}_{\substack{\text{measurable} \\ \in \Sigma}}$$

Lemma 3.4

If $f_n: S \to \mathbb{R}$ is a sequence of measurable functions $\forall n \in \mathbb{N}$, then

- $\inf_n f_n$
- $\sup f_n$
- $\lim_n \inf f_n$
- $\lim_n \sup f_n$

are measurable. Moreover, the event that it exists is measurable, i.e

$$\left\{s \in S : \lim_{n \to \infty} f_n(s) \text{ exists and is finite}\right\} \in \Sigma$$

Bevis 3.5

Note that
$$(\inf_n f_n)^{-1}([x,\infty)) = \left\{ s \in S : \underbrace{\inf_n f_n(s) \in [x,\infty)}_{\underset{\Leftrightarrow \inf_n f_n(s) \ge x}{\bigoplus}} \right\}$$

Then all events have to be $\geq x$, i.e intersection:

$$\bigcap_{n \in \mathbb{N}} \underbrace{\left\{ s \in S : f_n(s) \ge x \right\}}_{=f_n^{-1}([x,\infty)) \in \Sigma} \in \Sigma$$

This can be concluded naturally since f_n is measurable, and hence $\inf_n f_n$ is measurable. Similar reasoning shows that $\sup_n f_n$ is measurable.

Note that $\lim_{n\to\infty}\inf f_n(s)=\sup_{n\in\mathbb{N}}\inf_{m\geq n}f_n(s)$ which is just a composition of measurable functions which we have shown is measurable $\Rightarrow \lim_n\inf f_n$ is measurable. Similar reasoning shows that $\lim_n\sup f_n$ is measurable.

The last statement in Lemma 3.4 can be decomposed into the following:

$$\left\{s \in S: \lim_{n \to \infty} f_n(s) \text{ exists and is finite}\right\} \in \Sigma = \left\{s \in S: \liminf_n f_n(s) > -\infty\right\} \cap \left\{s \in S: \limsup_n f_n(s) < \infty\right\} \cap \left\{s \in S: \liminf_n f_n(s) = \limsup_n f_n(s)\right\}$$

This is measurable since all of the 3 sets are measurable (pre-images of open sets). Think of it in the following way:

- $> -\infty \Rightarrow (-\infty, \infty]$ which is an open set
- $<\infty \Rightarrow [-\infty, \infty)$ which is an open set
- \Longrightarrow {0} which is an open set

Since compositions of intersections are measurable, the proof is complete.

Definition 3.8 Random Variable

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

A measurable function $X: \mathcal{F} \to \mathbb{R}$ is called a random variable.

Example:

Let
$$\Omega = \{1, \dots, 6\}$$
, $\mathcal{F} = \mathcal{P}(\Omega)$, $\mathbb{P} = \frac{1}{6}|A|$ (rolling a die)
Define $X(\omega) = \begin{cases} 1 & \omega \in \{1, 3, 5\} \\ 0 & \omega \in \{2, 4, 6\} \end{cases}$ (even)

This is a random variable. One can verify this by checking pre-images of open sets of the range of the random variable $\{\emptyset, \{1,0\}, \{1\}, \{0\}\}\$

By taking the discrete topology (collection of all subsets of S) $\mathcal{P}(S)$, this sneaky random variable is actually a random variable.

 $Y(\omega) = \omega$ is also a random variable here since $\forall A \in \mathcal{F} = \mathcal{P}(\Omega) \subseteq \mathbb{R}$

Note that we have 2 distinct spaces, Ω could have not been a subset of \mathbb{R} , so Y would not have been a random variable since then $\mathcal{P}(\Omega) \not\subseteq \mathbb{R}$

Random variables "collapse" the space S due to their inherent injectivity. One way to measure this collapse is thinking of Borel σ -algebras in terms of this random variable. I.e, the smallest σ -algebra such that X is measurable

ensures
$$\sigma$$
-alg $\left\{\underbrace{X^{-1}(A)}_{\text{ensure measurability}}: A \in \mathcal{B}\left(\mathbb{R}\right)\right\} = \sigma(X)$

In particular, $(\Omega, \sigma(X), \mathbb{P})$ is sufficient for X to be measurable (with respect to this space).

Example:

$$X(\omega) = \begin{cases} 1 & \omega \in \{1, 3, 5\} & \text{(odd)} \\ 0 & \omega \in \{2, 4, 6\} & \text{(even)} \end{cases}$$
 $Y(\omega) = \omega$

In this example,

$$\sigma(Y) = \sigma(\left\{Y^{-1}(A) : A \in \mathcal{B}\left(\mathbb{R}\right)\right\}) = \sigma(\left\{\left\{1\right\}, \cdots, \left\{6\right\}\right\})$$

$$\sigma(X) = \{\text{pre-images of neighborhoods of } 1 \ \& \ 0\} = \{\varnothing, \Omega, \{1, 3, 5\}, \{2, 4, 6\}\}$$

The last one may be difficult to grasp, but think of it like constructing the following set

$$\{\{\text{neither } 0 \lor 1 = \varnothing\}, \{\text{both } 0 \lor 1\}, \{\text{pre-image of } 1\}, \{\text{pre-image of } 0\}\}$$

This yields the smallest σ -algebra that contains these but still is $\neq \mathcal{F}$

Knowing nothing about a measurable/probability space is not possible, we always know things such as $\mu(\Omega) = 1$ and $\mu(\emptyset) = 0$. We could say that "if we know nothing, then we know those 2 things" Conversely, if we know that $\mathcal{P}(\Omega)$ or \mathcal{F} is a σ -algebra, then we know everything (we know the probability of every event happening).

For a constant random variable X, we know nothing (pre-images is $\{\emptyset, \Omega\}$). We can encode information using this.

4. Laws & Distribution functions

Definition 4.9 Law

Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. A law $\mathcal{L}_X(A)$ captures probability of X in A, where $A \in \mathcal{B}(\mathbb{R})$

$$\mathcal{L}_X(A) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in A\})$$

Remark:

This is the pull-back measure on R. It is uniquely characterized by something known as the cumulative distribution function

$$F_X(t) = \mathbb{P}(\{X \le t\}) = \mathcal{L}_X((-\infty, t])$$

4.1. Properties of distribution functions.

- Non-decreasing, i.e $F_X(t) \ge F_X(s)$ if $t \ge s$
- $\lim_{t\to-\infty} F_X(t) = 0 \lim_{t\to\infty} F_X(t) = 1$
- Right continuous, i.e $\lim_{t \searrow a} F_X(t) = F_X(a)$

Conversally, any F satisfying the above gives rise to a probability measure \mathcal{L} such that $\mathcal{L}((\infty, \sqcup])$ is just the value at t

5. Independence

In this little mini-chapter, we fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Definition 5.10 Independence

Let $E_1, \dots, \in \mathcal{F}$ be events (finitely many or countably infinite).

We say these are *independent* if for any combination of the following:

$$\mathbb{P}(E_{i_1} \cap \dots \cap E_{i_k}) = \prod_{j=1}^k \mathbb{P}(E_{e_j}) \quad \forall i_1 < \dots < i_k \land k$$

Example:

Consider throw of die as before. Let $E_1 = \text{"number} \le 2\text{"} = \{1, 2\}.$

Here
$$\mathbb{P}(E_1) = \frac{2}{6} = \frac{1}{3}$$
. Let E_2 be "number we roll is even" = $\{2, 4, 6\}$

Here
$$\mathbb{P}(E_1) = \frac{2}{6} = \frac{1}{3}$$
. Let E_2 be "number we roll is even" $= \{2, 4, 6\}$
 $\mathbb{P}(E_2) = \frac{3}{6} = \frac{1}{2}$. Then $\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(\{2\}) = \frac{1}{6} = \frac{1}{2} \cdot \frac{1}{3} = \mathbb{P}(E_1)\mathbb{P}(E_2) \Rightarrow \text{ independence.}$

Example:

Let
$$E_3$$
 = "number" $\leq 3 = \{1, 2, 3\}, \mathbb{P}(E_3) = \frac{1}{2}$.

Then
$$\mathbb{P}(E_2 \cap E_3) = \mathbb{P}(\{2\}) = \frac{1}{6} \neq \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P}(E_2)\mathbb{P}(E_3) \Rightarrow E_2 \wedge E_3$$
 are independent.

Definition 5.11 Independent random variable

Let X_1, \cdots be finite (or countably infinite) random variables. We say that these are *independent* if all events that can happen with these random variables are independent, i.e for any choice $i_1 < \cdots < i_k$ and Borel sets $A_1, \dots, A_k \in \mathcal{B}(\mathbb{R})$

$$\mathbb{P}(\{X_{i_1} \in A_1\} \cap \{X_{i_2} \in A_2\} \cap \dots \cap \{X_{i_k} \in A_k\}) = \prod_{j=1}^k \mathbb{P}(\{X_{ij} \in A_j\})$$

A little remark may be that it looks kinda like a π -system. Can we define this using σ -algebras?

Definition 5.12

The sub σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \cdots$ (finitely many or countably infinite) are said to be independent if

$$\mathbb{P}(G_{i_1} \cap \dots \cap G_{i_k}) = \prod_{j=1}^k \mathbb{P}(G_{i_j}) \quad \forall G_{i_j} \in \mathcal{G}_{i_j}$$

Remark:

Note that independence of events and random vairables are special cases

- Let E_1, \cdots be events. We let \mathcal{G} be the trivial ones generated by an event, i.e $\mathcal{G}_{i_i} = \{\varnothing, \Omega, E_i, E_i^c\}$
- Let X_1, \cdots be random variables and let $\mathcal{G}_i = \sigma(X_i)$

Lemma 5.1

Let \mathcal{G}, \mathcal{H} be the sub σ -algebras and \mathcal{I}, \mathcal{J} be 2 π -systems (i.e invariant under intersections) such that $\sigma(\mathcal{I}) = \mathcal{G}$ and $\sigma(\mathcal{J}) = \mathcal{H}$

Thus, \mathcal{G}, \mathcal{H} are independent $\Leftrightarrow \mathbb{P}(I \cap J) = \mathbb{P}(I)\mathbb{P}(J) \quad \forall I \in \mathcal{I}, J \in \mathcal{J}$

Remark:

- $\{E_i\}$ are π -systems
- Events on the form $\{X_i \leq t\}$ are π -systems from $\sigma(X_i)$

To verify these claims, it suffices to check

$$\mathbb{P}(X_{i_1} \le x_1 \quad \& \quad X_{i_2} \le x_2 \cdots) = \prod_{j=1}^k \mathbb{P}(X_{i_j} \le x_j)$$

Sats 5.3: Second Borell-Cantelli Theorem

Assume E_1, \cdots are independent events and $\sum_{j=1}^{\infty} \mathbb{P}(E_j) = \infty$. Then

$$\mathbb{P}(\lim_{n\to\infty}\sup E_n) = \mathbb{P}(E_n \text{ happens } \infty \text{ often}) = 1$$

Bevis 5.1

Recall, $\lim_{n\to\infty} E_n = \bigcap_{n\in\mathbb{N}} \bigcup_{m\geq n} E_m$. Our strategy will be to prove that the complement is 0 (this is a good strategy whenever we want to prove that the probability of something is 1), since we can find the upper bound to be infinitely small.

By de-Morgan, complement is given by

$$\bigcup_{n\in\mathbb{N}}\bigcap_{m\geq n}E_m^c$$

Now:

$$\mathbb{P}(\bigcap_{m\geq n}^{M} E_{m}^{c}) \geq \mathbb{P}(\bigcap_{n\leq m\geq M} E_{m}^{c}) = \prod_{m=n}^{M} \mathbb{P}(E_{m}^{c})$$
$$= \prod_{m=n}^{M} 1 - \mathbb{P}(E_{m})$$

(Complements preserves independence). We approximate using exponents since

$$1 - x \le e^{-x} \Leftrightarrow \ln(t) < t - 1 \le \prod_{m=n}^{M} e^{-\mathbb{P}(E_m)} = \exp\left\{-\sum_{m=n}^{M} \mathbb{P}(E_m)\right\}$$

Since $\mathbb{P}(E_m) \to \infty$ as $M \ge n \to 0$

Taking $M \gg n$, we get

$$\mathbb{P}(\bigcap_{m>n}E_m^c)<\varepsilon\quad\forall\varepsilon>0\Rightarrow\mathbb{P}(\bigcap_{m>n}E_m^c)=0$$

$$\Rightarrow\underbrace{\bigcup_{m\geq n}E_m^c}_{\mathbb{P}=0}$$
 countable unions of something with $\mathbb{P}=0$ yields 0

 \Rightarrow Complement is 1

As long as the sum tends to 0 such that the sum diverges, it will happen infinitely often.

Example:

Let E_k = "draw card 1 on kth draw". Assuming independence, we have

$$\mathbb{P}(E_k) = \frac{1}{k} \quad \land \quad \sum_{k=1}^{\infty} \mathbb{P}(E_k) = \sum_{k=1}^{\infty} \frac{1}{k}$$

By the second Borell-Cantelli theorem, $\mathbb{P}(\text{"draw 1} \infty \text{ often"}) = 1$

Remark:

For E_1, \cdots independent events, the Borell-Cantelli theorems give the following dichotomy:

$$\mathbb{P}(\lim_{n\to\infty}\sup E_n) = \mathbb{P}(E_n \text{ happens } \infty \text{ often}) = \begin{cases} 1 & \text{if } \sum_i \mathbb{P}(E_i) = \infty \\ 0 & \text{if } \sum_i \mathbb{P}(E_i) < \infty \end{cases}$$

This is a special case of Kolmogorovs 0-1 Law:

Definition 5.13 Tail σ -algebra

Let X_1, \cdots be a sequence of random variables. Set $\mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}, \cdots)$ and $\mathcal{T} = \bigcap_{n \in \mathbb{N}} \mathcal{T}_n$ What remains is knowledge at ∞ . We say \mathcal{T} is a tail σ -algebra

Example:

Some typical events $E \in \mathcal{T}$ are $\{\lim_n X_n \text{ exists}\}$ or something like $\{\sum X_n \text{ converges}\}$. The point here is that all information is talking about what happens at ∞

Sats 5.4: Kolmogorovs 0-1 Law

Let X_1, \cdots be independent random variables. Then $\forall T \in \mathcal{T}$ (tail σ -algebras generated by X_i), we have either $\mathbb{P}(T) = 0$ or $\mathbb{P}(T) = 1$ almost surely.

Bevis 5.2: (Sketch) Kolmogorovs 0-1 Law

- (1) Define $\mathcal{X}_n = \sigma(X_1, \dots, X_n)$. From this, we can say that the \mathcal{X}_n and \mathcal{T}_n are independent (one stops at n, the other one continues at $n+1) \ \forall n \in \mathbb{N}$
- (2) $\mathcal{T} \subseteq \mathcal{T}_{\setminus} \quad \forall n, \text{ so } \mathcal{T} \text{ is independent of } \mathcal{X}_n \quad \forall n$ (3) $\mathcal{X}_{\infty} = \sigma(X_1, \cdots)$ and \mathcal{T} must be independent since \mathcal{T} is independent for all \mathcal{X}_n and $\bigcup \mathcal{X}_n$ are a π -system (which generates \mathcal{X}_{∞})
- (4) $\mathcal{T} \subseteq \mathcal{X}_{\infty}$ (knowledge in tail is contained in ∞ for \mathcal{X})

So for any event $F \in \mathcal{T}$ we know

$$\mathbb{P}(F \cap F) = \mathbb{P}(F) = \mathbb{P}(F)\mathbb{P}(F)$$

 $\Rightarrow \mathbb{P}(F)$ must solve $x = x^2$, i.e $x \in \{0, 1\}$

Corollary:

Let ξ be a \mathcal{T} measurable random variable (random thing that only depends on tail, eg. $x = \begin{cases} 1 & \text{if } \lim_{n \to \infty} \text{ exists} \\ 0 & \text{else} \end{cases}$ then $\exists C \in [-\infty, \infty]$ such that $\mathbb{P}(\xi = C) = 1$, i.e ξ is almost surely constant.

6. Integration

Let (S, Σ, μ) be a measure-space. Given some measurable function $f \in m\Sigma$ where $f: S \to \mathbb{R}$, our goal is to define the integral of this function with respect to our measure μ

We do it in 3 steps, and then the idea is to reduce integration problems to these 3 cases and proceed. Later we will develop some tools to ease in this conversion.

(1) Define integration of an indicator function

$$I_A(s) = \begin{cases} 1 & \text{if } s \in A \\ 0 & \text{else} \end{cases} \qquad \int I_A(s) d\mu = \mu(A) \quad \forall A \in \Sigma$$

(2) Define the integral for finite linear combinations of characteristic functions $f(s) = \sum_{k=1}^{n} a_k I_{A_k}(s)$ where $a_k \in \mathbb{R}$ (sometimes we say they are non-negative, but this is not always the case) and $A_k \in \Sigma$ These functions are called *step-functions*. We set the integral:

$$\int f(s)d\mu = \sum_{k=1}^{n} a_k \int I_{A_k} d\mu = \sum_{k=1}^{n} a_k \mu(A_k)$$

Note that if A_k overlap, they are double-counted. This is the desired functionality

(3) For $f \in m\Sigma^+$, we define:

$$\int f d\mu = \sup \left\{ \int g d\mu : g \le f \ f, g \text{ are non-negative step-functions} \right\}$$

(4) We extend this to all measurable functions f by defining the positive & negative parts of a functions

$$f^{+}(s) = \begin{cases} f(s) & \text{if } f(s) > 0 \\ 0 & \text{else} \end{cases}$$
$$f^{-}(s) = \begin{cases} -f(s) & \text{if } f(s) < 0 \\ 0 & \text{else} \end{cases}$$

Note here that both are non-negative and $f = f^+ - f^-$. All operations utilized preserve measurability, thus we define

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

6.1. Properties of the integral.

- (1) **Linearity:** $\int af + bgd\mu = a \int fd\mu + b \int gd\mu \quad \forall a, b \in \mathbb{R} \text{ and } f, g \in m\Sigma$
- (2) Monotonicity: If $f \leq g \quad \forall s$, then $\int f d\mu \leq \int g d\mu$ (note here that the \forall is really just a "for almost all" sign, since $\mu(\emptyset) = 0$)
- (3) Triangle-inequality:

$$\left| \int f d\mu \right| = \left| \int f^+ d\mu - \int f^- d\mu \right| \le \left| \int f^+ d\mu \right| + \left| \int f^- d\mu \right| = \int |f| d\mu$$

If μ is a Lebesgue measure on \mathbb{R} (in general in \mathbb{R}^n), then $\int d\mu$ is standard Lebesgue integration. If both the Riemann and Lebesgue integral exist (and are equal) then it is just standard Riemann integration

Let μ be the counting measure on integers. Consider $(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu)$

Then $\int f d\mu$ for any $f \in m\mathcal{B}(\mathbb{R}) = \sum_{k=1}^{\infty} f(k)\mu(\{k\}) = \sum_{k=1}^{\infty} f(k)$ Note, this sees very little of the space and does not work with Riemann integration.

We can restrict the domain just like we would with "regular integration". Let $A \in \Sigma$, then

$$\int_{A} f d\mu = \int f I_{A} d\mu$$

Definition 6.14 Integrable

We say that $f \in m\Sigma$ is integrable with respect to the measure μ if $\int f^+ d\mu$ and $\int f^- d\mu$ exist and are finite. Otherwise, we say that the integral is undefined

The class of integrable functions is denoted $L^1(S, \Sigma, \mu)$

Note: If $f(s) = \pm \infty$ and $f \in L^1$, we must have $\mu(\{s\}) = 0$: Moreoever,

$$\mu(\{s: f(s) = \pm \infty\}) = 0$$

Lemma 6.1

If f is a non-negative integrable function and $\int f d\mu = 0$, we claim that the measure of all points s such that f is positive is zero for almost every s (i.e $\mu(\{s:f(s)=\pm\infty\})=0$)

Bevis 6.1

The proof strategy here will be to dissect this using unions/intersections and their boundedness. Note that

$$\bigcup_{n\in\mathbb{N}}\left\{s:f(s)>\frac{1}{n}\right\}=\left\{s:f(s)>0\right\}$$

If $\mu(A_n) = 0 \quad \forall n$, then the function is almost surely 0

If this is not the case, then $\exists k \in \mathbb{N}$ such that $\mu(A_k) > 0$, but then we can take a function that is bounded above by f like $\frac{1}{k}I_k \leq f$.

By monotonicity,

$$\int f(s)d\mu \ge \int \frac{1}{k} I_{A_k} d\mu = \frac{1}{k} \mu(A_k) > 0$$

By assumption, $\int f d\mu = 0$ which is a contradiction, so $\mu(I_{A_k}) = 0$

One question that we shall try to explore now is what happens with limits of sequences of functions and their integrals?

Well, first we may see them as a sequence of expectation of random variables. By intution one might jump to the conclusion that

$$\lim_{n\to\infty}\int f_n d\mu = \int \lim_{n\to\infty} f_n d\mu$$

But this is not the case, for example if $f_n = I_{[n,n+1)}$ and μ is the Lebesgue measure we have

$$\int f_n(s)d\mu = \int_{[n,n+1)} (x)dx = 1$$

In particular, $\lim_{n\to\infty} \int f_n(s) d\mu = 1$

However, for a fixed x we have $\lim_{n\to\infty} f_n(x) = 0$ and

$$\int \lim_{n \to \infty} f_n d\mu = 0 d\mu = 0$$

There are circumstances where this equality holds however, and the goal is somewhat to discover *when* this is.

Sats 6.5: Monotone Conversion Theorem

Let f_n be a sequence of non-negative measurable functions $f_n \in m\Sigma^+$ such that $f_n \to f$ pointwise (i.e $f_n(x)$ is non-decreasing in n and $f_n(x) \to f(x)$ as $n \to \infty$). Then

$$\mu(f_n) \to \mu(f) \Rightarrow \lim_{n \to \infty} \int f_n d\mu \to \int f d\mu = \int \lim_{n \to \infty} f_n d\mu$$

We can always approximate measurable functions using sequences of step functions using

$$\alpha^{(r)}(x) = \begin{cases} 0 & \text{if } x = 0\\ (i-1)2^{-r} & \text{if } (i-r)2^{-r} \le x \le i2^{-r} \le r\\ r & \text{for } x > r \end{cases}$$

Note here that we do not mean $i \in \mathbb{C}$

This is basically discretisation of y = x up to r. It is non-decreasing (monotonly) in r, and always less than y = x.

By setting $f^{(r)}(x) = \alpha^{(r)}(f(x))$ $f \in m\Sigma^+$, we get a function that has all the properties that we wished for (i.e $f_n \to f$ and f_n are step functions).

We can use this to base our proofs on since we can then start to construct proofs in the following way:

- (1) Prove the property for indictor functions
- (2) Extend to linear combination of step functions (by proven linearity)
- (3) Extend to $f \in m\Sigma^+$ by monotonicity (exchange limits)
- (4) Extend to $f \in m\Sigma$ by splitting $f = f^+ f^-$

Lemma 6.2

Suppose $f, g \in L^1$ and f = g for almost all $s \in S$. Then

$$\int f d\mu = \int g d\mu$$

Bevis 6.2: (Sketch)

Consider f - g. We want to show that $\int f - g d\mu = 0$

If f, g are indictor functions, this is trivially true (since they must have the same step-functions) \Rightarrow Take finite linear combinations and consider monotonicity through step functions (step of 0 is 0) and split into f^+ and f^-

Lemma 6.3: Fatous Lemma v2

Suppose f_n is a sequence of non-negative measurable functions $(\in m\Sigma^+)$. Then

$$\mu(\lim_{n\to\infty}\inf f_n)\leq \lim_{n\to\infty}\inf \mu(f_n)$$

Bevis 6.3

Consider $g_k = \inf_{n \geq k} f_n$ (increasing). Then, $\lim_{k \to \infty} g_k$ exists and is equal to $\lim_{k \to \infty} \inf f_n$ Since g_k is monotonly increasing, we have that $g_k \to \lim_{n \to \infty} \inf f_n$, we can use the Monotone Conversion Theorem (MCT) to take the limit out

$$\mu(\lim_{k\to\infty} g_k) = \mu(\lim_{n\to\infty} \inf f_n) = \lim_{k\to\infty} \mu(g_k)$$

We have $g_k \leq f_n \quad \forall n \geq k$, we can use the monotonicity

$$\mu(g_k) \le \mu(f_n) \quad \forall n \ge k \Rightarrow \mu(g_k) \le \inf_{n \ge k} \mu(f_n)$$

Substitution yields

$$\mu(\liminf f_n) \le \lim_{k \to \infty} \inf_{n \ge k} \mu(f_n) = \lim_{n \to \infty} \inf \mu(f_n)$$

Corollary:

We can say something about \limsup suppose $f_n \leq g$ for $f_n, g \in m\Sigma^+$, then

$$\mu(\lim_{n\to\infty}\sup f_n)\geq \lim_{n\to\infty}\sup \mu(f_n)$$

Bevis 6.4

Apply Fatous lemma with some $h_n = g - f_n$. The sign flips things arround and yields what we

Sats 6.6: Dominated Convergance Theorem

Let f_n be a sequence of measurable functions & assume $|f_n| \leq g$ for some $g \in L^1$. If $f_n \to f$ pointwise, then:

- $\mu(|f_n f|) = \int |f_n f| d\mu \to 0$ $\mu(f_n) = \int f_n d\mu \to \int f d\mu = \mu(f)$