

MATEMÁTICAS

FUNDAMENTOS DE MATEMÁTICAS

Correción Parcial 3

Alexander Mendoza June 12, 2023

Contents

1	\mathbf{Co}	rreción Parcial 3	2
	1.1	Defina los siguientes términos	2
	1.2	Sea n un número entero. Pruebe que $30 n$ si y solo si $5 n$ y $6 n$.	2
	1.3	Sea $n \in \mathbb{N}$ y $c \in \mathbb{R}$ un número real. Demuestre que: $(\cos x +$	
		$(\sin x)^n = \cos nx + i\sin nx$	3

Chapter 1

Correción Parcial 3

1.1 Defina los siguientes términos

- 1. **Divisibilidad**: Se dice que un número b es divisible por un número a si existe $n \in \mathbb{Z}$ tal que an = b.
- 2. Cortadura de Dedekind: Una cortadura α en el conjunto de los núemros racionales es un subconjunto de \mathbb{Q} que cumple las siguientes condiciones:
 - $\alpha \neq \emptyset$ y $\alpha \neq \mathbb{Q}$.
 - Si $a \in \alpha$ y b < q, entonces $p \in \alpha$.
 - \bullet α no contiene un número racional máximo.
- 3. *Conjunto numerable*: Un conjunto se define como numerable si es finito o si existe una función biyectiva entre los naturales y el conjunto.
- 4. Forma exponencial de un número complejo: Sea w un número complejo, su forma exponencial sería $z = re^{i\theta}$.

1.2 Sea n un número entero. Pruebe que 30|n si y solo si 5|n y 6|n

- Si 30|n entonces 5|n y 6|n: 30 se puede expresar como 5 · 6, luego 5 · 6|n así 5|n y 6|n.
- Si 5|n y 6|n entonces 30|n: n = 5a y n = 6b para algunos enteros a y b. Como 5 y 6 son relativamente primos, se puede reescribir 30 como $5 \cdot 6$. Luego n es divisible por $5 \cdot 6 = 30$. Por lo tanto 30|n.

1.3 Sea $n \in \mathbb{N}$ y $c \in \mathbb{R}$ un número real. Demuestre que: $(\cos x + i \sin x)^n = \cos nx + i \sin nx$

Procederemos por inducción en n. Empezaremos con el caso base n = 1:

$$(\cos x + i\sin x)^{1} = \cos x + i\sin x = \cos 1x + i\sin 1x$$

Para nuestra hipótesis de inducción supongamos que $(\cos x + i \sin x)^n = \cos nx + i \sin nx$. Y en base a esta hipótesis vamos a demostrar que la propiedad se cumple para n+1. Además debemos tener en cuenta la fórmula de la suma de ángulos $(\cos(a+b) = \cos a \cos b - \sin a \sin b y \sin(a+b) = \sin a \cos b + \cos a \sin b)$.

```
(\cos x + i \sin x)^{n+1} = (\cos x + i \sin x)^n (\cos x + i \sin x)
(\cos x + i \sin x)^{n+1} = (\cos nx + i \sin nx) \cdot (\cos x + i \sin x)
(\cos x + i \sin x)^{n+1} = \cos(nx) \cos x - \sin(nx) \sin x + i(\sin(nx) \cos x + \cos(nx) \sin x)
(\cos x + i \sin x)^{n+1} = \cos(nx + x) + i \sin(nx + x)
(\cos x + i \sin x)^{n+1} = (\cos(nx + x) + i \sin(nx + x))
```

De esta manera, hemos demostrado que $(\cos x + i \sin x)^n = \cos(nx) + i \sin(nx)$ para todo número natural n.