SESSION 2003 PSIM105

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 1

Durée: 4 heures

Les calculatrices sont autorisées.

N.B. Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Dans tout ce problème, on désigne par μ une application continue 2π - périodique de ${\bf R}$ dans ${\bf R}$ et on considère l'équation différentielle :

$$(E_{\mu}) \qquad y'' + y = \mu(t)$$

On désigne par φ_{μ} la solution sur \mathbf{R} de $\left(E_{\mu}\right)$ qui vérifie en outre les relations $\varphi_{\mu}(0) = \varphi'_{\mu}(0) = 0$. Pour $x \in \mathbf{R}$, on note :

$$G_{\mu}(x) = \int_0^x \mu(t) \cos t \ dt$$
 et $H_{\mu}(x) = \int_0^x \mu(t) \sin t \ dt$

Dans la partie I, on étudie quelques propriétés de la fonction φ_{μ} . Dans la partie II et la partie III, on étudie un exemple explicite.

PARTIE I

On désigne par F_{μ} la fonction définie sur **R** par $F_{\mu}(x) = (\sin x) G_{\mu}(x) - (\cos x) H_{\mu}(x)$.

Pour simplifier les notations, on écrira F, G, H, φ pour désigner les fonctions F_{μ} , G_{μ} , H_{μ} , φ_{μ} .

- **I.1** Justifier la dérivabilité de G, H et donc F. Préciser F(0) et F'(0).
- **I.2** Montrer que F est de classe C ² sur **R** et exprimer F''(x) + F(x) en fonction de $\mu(x)$.
- **I.3** Justifier l'affirmation $F = \varphi$.
- I.4 Etude du caractère 2π périodique de φ .
 - **I.4.1** Calculer la dérivée de $G(x+2\pi)-G(x)$ et $H(x+2\pi)-H(x)$.
 - **I.4.2** Exprimer $G(x + 2\pi) G(x)$ en fonction de $G(2\pi)$ et $H(x + 2\pi) H(x)$ en fonction de $H(2\pi)$.
 - **I.4.3** Exprimer $\varphi(x+2\pi)-\varphi(x)$ en fonction de $\sin x$, $\cos x$, $G(2\pi)$, $H(2\pi)$.
 - **I.4.4** A quelle condition nécessaire et suffisante portant sur $G(2\pi)$ et $H(2\pi)$ la fonction φ est-elle 2π périodique ?
 - **I.4.5** La fonction φ est-elle 2π périodique lorsque $\mu(t) = \sin t$? (resp. lorsque $\mu(t) = \cos t$?)
 - **I.4.6** La fonction φ est-elle bornée lorsque $\mu(t) = \sin t$? (resp. lorsque $\mu(t) = \cos t$?)
 - **I.4.7** Montrer que la fonction φ est 2π périodique lorsque $\mu(t) = |\sin t|$.
 - **I.4.8** Les fonctions φ , φ' , et φ'' sont-elles bornées lorsque $\mu(t) = |\sin t|$?

Dans toute la suite du problème, on suppose que $\mu(t) = |\sin t|$.

PARTIE II

Calcul de
$$\int_{\mathbf{R}^+} e^{-t} \varphi(t) dt$$

- **II.1** Justifier l'intégrabilité sur \mathbf{R}_+ de la fonction $t \mapsto e^{-t} |\sin t|$.
- **II.2** Pour $n \in \mathbb{N}$, on note $v_n = \int_{n\pi}^{(n+1)\pi} e^{-t} |\sin t| dt$.
 - **II.2.1** Calculer v_0 .

II.2.2 Montrer qu'il existe un nombre réel ρ (que l'on explicitera) tel que pour tout $n \in \mathbb{N}$, on ait $v_n = \rho^n v_0$.

II.2.3 En déduire la convergence de la série $\sum_{n\geq 0} v_n$ et expliciter sa somme $\sum_{n=0}^{+\infty} v_n$.

II.2.4 En déduire la valeur de l'intégrale $\int_{\mathbf{R}^+} e^{-t} |\sin t| dt$.

II.3

II.3.1 Déduire des résultats obtenus dans la partie I (en particulier de **I.4.8**) que les fonctions $t\mapsto e^{-t}\varphi(t),\ t\mapsto e^{-t}\varphi'(t)$ et $t\mapsto e^{-t}\varphi''(t)$ sont intégrables sur \mathbf{R}_+ .

II.3.2 Etablir une relation entre $\int_{\mathbf{R}^+} e^{-t} \mu(t) dt$ et $\int_{\mathbf{R}^+} e^{-t} \varphi(t) dt$. En déduire $\int_{\mathbf{R}^+} e^{-t} \varphi(t) dt$.

PARTIE III

Développement de Fourier des fonctions μ et φ .

Si f est une application continue 2π - périodique de **R** dans **R**, on désigne par $a_n(f)$ et $b_n(f)$ les coefficients de Fourier réels de f:

$$a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$$
 et $b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(nt) dt$ pour $n \in \mathbb{N}$.

Lorsqu'elle converge, on désigne par $SF_f(t)$ la somme de la série de Fourier :

$$SF_f(t) = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} a_n(f) \cos(nt) + b_n(f) \sin(nt).$$

III.1

III.1.1 Justifier la convergence de la série de Fourier de la fonction μ (rappel : $\mu(t) = |\sin t|$).

III.1.2 Justifier la convergence de la série de Fourier de la fonction φ (rappel: $\varphi''(t) + \varphi(t) = |\sin t|$, $\varphi(0) = \varphi'(0) = 0$).

III.2 Série de Fourier de la fonction μ .

- **III.2.1** Calculer les coefficients $a_n(\mu)$ pour $n \in \mathbb{N}$. Quelle est la valeur des coefficients $b_n(\mu)$ pour $n \in \mathbb{N}^*$?
 - III.2.2 Etablir la convergence de la série $\sum_{p\geq 1} \frac{1}{(4p^2-1)}$ et expliciter sa somme $\sum_{p=1}^{+\infty} \frac{1}{4p^2-1}$.

4

III.2.3 Etablir la convergence de la série $\sum_{p\geq 1}\frac{1}{\left(4p^2-1\right)^2}$ et calculer sa somme $\sum_{p=1}^{+\infty}\frac{1}{\left(4p^2-1\right)^2}.$

III.3 Série de Fourier de la fonction φ .

- **III.3.1** Etudier la parité des fonctions G, H puis celle de la fonction φ . Quelle est la valeur des coefficients $b_n(\varphi)$ pour $n \in \mathbb{N}^*$?
 - **III.3.2** Etablir une relation entre $a_n(\varphi'')$ et $a_n(\varphi)$ pour $n \in \mathbb{N}$.
 - **III.3.3** En déduire la valeur de $a_n(\varphi)$ pour $n \neq 1$.
 - **III.3.4** Calculer $a_1(\varphi)$.
- III.4 On considère la série $\sum_{p\geq 1} \frac{1}{\left(4p^2-1\right)\left(16p^4-1\right)}$. Justifier la convergence de cette série et expliciter sa somme $\sum_{p=1}^{+\infty} \frac{1}{\left(4p^2-1\right)\left(16p^4-1\right)}$ en calculant l'intégrale du II par un autre procédé qu'on justifiera soigneusement.

III.5 On considère dans cette question l'application ϕ de classe C^2 de $\mathbf R$ dans $\mathbf R$ vérifiant :

$$\phi''(t) + \phi(t) = \varphi(t) \text{ pour tout } t \in \mathbf{R}$$

et
$$\phi(0) = \phi'(0) = 0.$$

- **III.5.1** La fonction ϕ est-elle 2π périodique ?
- **III.5.2** La fonction ϕ est-elle bornée sur **R**?
- **III.5.3** La fonction $t \mapsto e^{-t}\phi(t)$ est-elle intégrable sur \mathbb{R}_+ ?

Fin de l'énoncé.