University of Texas at Austin

Lecture 4

The Inverse Transformation (Simulation) Method

Proposition 4.1. Let X be a continuous random variable with the cumulative distribution function F_X and probability density function f_X .

Assume that f(x) > 0 for all positive x and zero elsewhere.

Define $Y = F_X(X)$.

Then, $Y \sim U(0,1)$.

Proof: The support of Y will be contained in [0,1]. Let $y \in (0,1)$. Then,

$$F_Y(y) = \mathbb{P}[Y \le y] = \mathbb{P}[F_X(X) \ ley].$$

By the Fundamental Theorem of Calculus

$$F_X(a) = \int_0^a f_X(x) \, dx$$

We assumed that f(x) > 0 for all positive x. So, F_X is a **strictly increasing function** on \mathbb{R}_+ . Hence, F_X is one-to-one on \mathbb{R}_+ . Thus, its inverse function F_X^{-1} exists and it is also increasing. Therefore,

$$F_Y(y) = \mathbb{P}[F_X(X) \le y] = \mathbb{P}[X \le F_X^{-1}(y)] = F_X(F_X^{-1}(y)) = y.$$

We conclude that $Y \sim U(0,1)$.

Proposition 4.2. Let $U \sim U(0,1)$ and let F be a cumulative distribution function.

Define $X = F^{-1}(U)$.

Then, the random variable X has the cumulative distribution function F.

Proof: See Section 6.1.2 in the textbook.

An Informal Implementation.

- 1. Set F to be the cdf of the distribution from which we want to simulate values. "Figure out" F^{-1} ; this can be analytic or numerical.
- 2. Draw the simulated values from the unit uniform U(0,1):

$$u_1, u_2, \ldots, u_n$$

3. Apply F^{-1} to the simulated values to obtain

$$x_1 = F^{-1}(u_1), x_2 = F^{-1}(u_2), \dots, x_n = F^{-1}(u_n)$$

The x_1, x_2, \ldots, x_n are the simulated values from your target distribution.

Example 4.3. In the exponential case $X \sim Exponential(\theta)$, we have already obtained the analytic expression for the quantile function F_X^{-1} . It is

$$F_X^{-1}(y) = -\theta \ln(1-y)$$

So, with $\{u_i, i=1,\ldots,n\}$ generated from the unit uniform, the x_i defined as

$$-\theta \ln(1-u_1)$$
 for $i=1,\ldots,n$

will be simulated values from the exponential distribution with parameter θ .