

1. Illustrate the execution of the insertion-sort algorithm on the following input sequence:

```
16, 19, 10, 13, 15, 17, 18, 12, 11, 14.
```

List the intermediate sequences after each time an element is properly inserted. For each sequence, you must put a marker on the element just been inserted and put a separator between the sorted part and the unsorted part. (8 points)

16		19	10	13	15	17	18	12	11	14
16	(19)		10	13	15	17	18	12	11	14
(10)	16	19		13	15	17	18	12	11	14
10	(13)	16	19		15	17	18	12	11	14
10	13	(15)	16	19		17	18	12	11	14
10	13	15	16	(17)	19		18	12	11	14
10	13	15	16	17	(18)	19		12	11	14
10	(12)	13	15	16	17	18	19		11	14
10	(11)	12	13	15	16	17	18	19		14
10	11	12	13	(14)	15	16	17	18	19	

(1)

2. Based on the idea of insertion sort, we keep popping elements from stack s and inserting them orderly to stack t, in order to sort the elements of s. Write a function ins_sort_stack(s, t, u) to implement this sorting algorithm stably, where (i) s contains the elements to sort, (ii) t, initially empty, stores the sorted elements in increasing order from top to bottom, and (iii) u is an auxiliary stack, possibly having other elements initially, to help insert elements to t. 10 points

def ins sort stack(s, t, u):

```
while s:
    n = 0
    x = s.pop()
    while t and t.top() <= x:
        u.push(t.pop())
        n += 1
    t.push(x)
    for i in range(n):
        t.push(u.pop())</pre>
```

(2)

- 3. To sort n elements in an array-based list, the idea of in-place stooge sort is to split n into three parts: $n_1 + n_2 + n_3 = n$ and $n_1, n_2, n_3 \ge 1$, then recursively sort (i) the first $n_1 + n_2$ elements, (ii) the last $n_2 + n_3$ elements, and (iii) the first $n_1 + n_3$ elements. The base case is when $0 \le n \le 2$, that is, n cannot be split into three parts. Usually, n_1, n_2, n_3 are approximately $\frac{n}{3}$ to be the most efficient.
 - a) Explain why this stooge sort produces the sorted elements. 7 points

Step (i) makes $a[n_1:n_1+n_2]>a[0:n_1]$, so, there are n_2 elements in $a[n_1:n]$ greater than $a[0:n_1]$.

Step (ii) moves the greatest n_2 elements to $a[n-n_2:n]$, so $a[n-n_2:n] > a[0:n_1]$. Also, $a[n-n_2:n] > a[n_1:n-n_2]$, therefore $a[n-n_2:n] > a[0:n_1+n_3]$, for $n-n_2=n_1+n_3$.

Step (iii) sorts $a[0:n_1+n_3]$, thus completes the sorting of the whole list.

 $\frac{\text{(3)}}{\text{(b) Obviously for each post taking }^n \text{ the supplies time of stoogs cost is } T(n) = 2T\binom{2n}{n} \text{ Derive}$

b) Obviously, for each part taking $\frac{n}{3}$, the running time of stooge sort is $T(n) = 3T\left(\frac{2n}{3}\right)$. Derive the time complexity of stooge sort in the Big-Oh notation. 5 points

$$T(n) = 3T\left(\frac{2n}{3}\right) = 3^2T\left(\left(\frac{2}{3}\right)^2n\right) = \dots = 3^{\log_{\frac{3}{2}}n}T(1)$$
 (2)

$$=3^{\log_3 n \times \log_{\frac{3}{2}} 3} T(1) = n^{\log_{\frac{3}{2}} 3} T(1).$$
 (2)

Since T(1) is a constant, therefore, the time complexity of stooge sort is $\mathcal{O}(n^{\log_{\frac{3}{2}}3}) \approx \mathcal{O}(n^{2.71})$. This is a very slow sorting algorithm.

C) Write the recursive function $stooge_sort(a, i, j)$ to sort the elements a[i], a[i+1], ..., a[j-1] of list a by stooge sort. Assume $0 \le i \le j \le len(a)$. (10 points)

def stooge sort(a, i, j):

if
$$j-i >= 3$$
:

 $k = (i*2+j)//3$
 $l = (i+j*2)//3$
 $stooge_sort(a, i, l)$
 $stooge_sort(a, k, j)$
 $stooge_sort(a, i, j-(l-k))$

elif $j-i == 2$:

if $a[i] > a[i+1]$:

 $a[i], a[i+1] = a[i+1], a[i]$

(s

(2)