Алгосы, часть іі

Денис Осипов, Иван Ермошин, Alexander Grothendieck

14 августа 2020 г.

Введение

Этот проект – коллективный **конспект** по второй части курса «Математические основы алгоритмов», впервые прочитанного первокурсникам МКН СПбГУ в первой половине іі семестра 2020 года Эдуардом Алексеевичем Гиршем.

Актуальные исходники: https://www.overleaf.com/read/hnbkrkyknbpk и https://github.com/gogochushij/algosi-hirsch

Если вы хотите принять участие в написании билетов, или же сообщить об ошибке, напишите http://vk.com/gogochushij. Предполагается, что каждый автор напишет около 4 билетов, но мы будем рады любой посильной помощи. Здесь можно посмотреть, с какими билетами вы можете помочь проекту.

Последнее обновление публичной версии конспекта: 14 августа 2020 г.

Содержание

1	Параллельные алгоритмы – і (Осипов Д.)	3
	1.1 Булевы схемы как модель параллельного алгоритма	3
	1.2 Принцип Брента	
	1.3 Параллельное умножение булевых матриц	
	1.4 Параллельная достижимость в графе	
2	Параллельные алгоритмы – іі (Осипов Д.)	5
	2.1 Параллельное вычисление всех префиксных сумм	5
	2.2 Параллельное сложение чисел	
	2.3 Параллельное умножение чисел	
3	Параллельные алгоритмы – iii (Осипов Д., Grothendieck A.)	7
	3.1 (В РАЗРАБОТКЕ) Параллельное вычисление всех расстояний до конца списка	7
	3.2 (В РАЗРАБОТКЕ) Параллельное вычисление всех глубин дерева	
4	Приближенный алгоритм для задачи о рюкзаке (Осипов Д.)	8
5	Set Cover - i (Осипов Д.)	9
	5.1 Сведение к задаче линейного программирования	9
	5.2 Следствие для задачи вершинного покрытия (Vertex Cover)	
	5.3 Двойственная задача	
	5.4 Прямо-двойственный метод	
6	Set Cover – ii (Осипов Д.)	14
	6.1 Жадный приближенный алгоритм	14

7	(WIP)Транспортные сети. Задача о максимальном потоке. Разрез. Теорема о	
	максимальном потоке и минимальном разрезе. Алгоритм Форда-Фалкерсона	
	(Grothendieck A.)	15
	7.1 Транспортные сети. Задача о максимальном потоке	
	7.2 Разрез. Теорема о максимальном потоке и минимальном разрезе	
	7.3 Алгоритм Форда-Фалкерсона	
	7.4 Применение к паросочетаниям	19
8	(WIP)Алгоритм Эдмондса-Карпа (Grothendieck A.)	20
9	(WIP)Алгоритм проталкивания предпотока (Grothendieck A.)	21
	9.1 Интуитивные соображения	21
	9.2 Операция проталкивания	
	9.3 Операция подъема	
	9.4 Начальный предпоток	
	9.5 Алгоритм. Его корректность	
10	Вероятностные алгоритмы с односторонней ограниченной вероятностью ошиб- ки. Алгоритм Фрейвальдса для проверки умножения матриц. (Ермошин И.)	24
11	1 Слабоэкспоненциальные детерминированные алгоритмы SAT для 3-КН Φ (Оси-	
	пов Д.)	24
	11.1 Начальные сведения	
	11.2 Метод расщепления: $O(1.92^n)$, $O(1.84^n)$	
	11.3 Метод локального поиска: $O(1.74^n)$	25
12	2 Алгоритм Шоннинга для 3-SAT, использующий случайное блуждание (Осипов Д.)	26

1 Параллельные алгоритмы – і (Осипов Д.)

Параллельный алгоритм – предназначенный для исполнения на нескольких процессах.

1.1 Булевы схемы как модель параллельного алгоритма

Определение. Булева схема – ориентированный граф без циклов, где:

- вершины без входящих ребер соответствуют входным данным,
- вершины с входящими ребрами («гейты») соответствуют процессорам, которые выполняют операцию с данными, поступающими в вершину по входящим ребрам,
- вершины без выходящих ребер соответствуют выходным данным.

Сумма массива «бинарным деревом» за O(log n)

Вычисление формулы (a ^ b) v ¬(c v d) за три шага

«Высота» схемы, т.е. длина наибольшего пути от вершины выходных данных — количество параллельных шагов алгоритма. Еще можно заметить, что если каждому гейту присвоить число — «номер этажа» так, что каждый переход осуществляется с «верхнего» этажа на «нижний», то максимальное число процессоров на одном этаже — достаточное количество процессоров для исполнения всего алгоритма. Так, в левом примере достаточно взять четыре процессора, а в правом — лва.

Суммирование массива за $O(\log n)$ параллельных шагов в примере слева – уже хороший пример параллельного алгоритма. Хотя он интуитивно понятен, опишем его формально.

Задача. Пусть дано п чисел. Вычислить их сумму.

Решение за $O(\log n)$. Считаем, что n – степень двойки (если нет, дополним нулями). Разобъем все числа на n/2 пар и поручим каждому процессору одну пару, чтобы он вычислил ее сумму. Получившиеся n/2 чисел разобъем на n/4 пар и так же вычислим суммы этих пар. Повторяем до тех пор, пока не останется одно число. Ясно, что всего будет выполнено $\log_2 n = O(\log n)$ параллельных шагов. \blacksquare

При проектировании параллельных алгоритмов в качестве меры их эффективности возникает аж три параметра: количество параллельных шагов (время работы), количество используемых процессоров и общая работа (определение дано далее). К счастью, об одном из них – количестве процессоров – можно не задумываться, о чем говорит нам следующее утверждение.

1.2 Принцип Брента

Теорема (принцип Брента). Рассмотрим параллельный алгоритм, выполняющий t параллельных шагов, где на i-том шаге задействовано w_i процессоров (т.е. выполняется w_i операций). Обозначим $W = \sum_{i=1}^t w_i$ и назовем эту величину общей работой алгоритма. Тогда алго-

ритм можно перепрограммировать так, чтобы на P процессорах он работал не более, чем за $\frac{W}{P}+t$ параллельных шагов.

Доказательство. Перераспределим все W операций на P процессорах наиболее равномерно. Тогда i-тый шаг изначального алгоритма можно выполнить за $\left\lceil \frac{w_i}{P} \right\rceil$ новых шагов. Оценим общее число шагов нового алгоритма:

$$t' = \sum_{i=1}^{t} \left\lceil \frac{w_i}{P} \right\rceil \le \sum_{i=1}^{t} \left(\frac{w_i}{P} + 1 \right) = \sum_{i=1}^{t} \frac{w_i}{P} + t = \frac{W}{P} + t$$

Таким образом, получили алгоритм с искомым временем работы.

NB: Принцип Брента позволяет при проектировании параллельных алгоритмов **не думать**, на скольких процессорах будет работать алгоритм. Именно: пусть был создан алгоритм, работающий на неизвестном (лень считать) числе процессоров $P_0(n)$ и совершающий общую работу W(n) за t(n) параллельных шагов. Тогда его можно перепроектировать на любое число процессоров P(n) такое, что

$$\frac{W(n)}{P(n)} = O(t(n)),$$

и асимптотически не потерять во времени, так как тогда новое время работы все еще $t'(n) \leq \frac{W(n)}{P(n)} + t(n) = O(t(n))$. Поэтому в дальнейшем при изучении параллельных алгоритмов считаем, что у нас **сколь угодно много процессоров**, а затем количество нужных процессоров будем вычислять по принципу Брента.

1.3 Параллельное умножение булевых матриц

NB: булевые – только чтобы арифметика с числами была O(1).

Задача. Даны две матрицы A и B размера $n \times n$ над \mathbb{F}_2 . Вычислить их произведение, то есть числа $C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}$ для всех i, j = 1..n (всего n^2 чисел).

Непараллельное решение. Вычислить все n^2 чисел C_{ij} , каждое считается за O(n), значит общая сложность $O(n^3)$.

Несмотря на то, что в прошлом разделе мы условились не думать о количестве процессоров, конкретно здесь на всякий случай приведем два решения. Второе решение – просто пример того, как работает принцип Брента.

Решение за $O(\log n)$ времени на n^3 процессорах. Занумеруем все n^3 процессоров тройками чисел (i,k,j), где i,k,j=1..n. Сначала на каждом процессоре (i,k,j) посчитаем $A_{ik}B_{kj}$. Теперь хотим получить число $C_{ij} = \sum_{k=1}^{n} (i,k,j)$, Сделаем это за $\log n$ шагов (суммирование бинарным деревом). Задача решена за $1 + \log n = O(\log n)$ шагов на n^3 процессорах. ■

NB: Сложить 1 1 чисел быстрее, чем за $\log n$ шагов, нельзя. В самом деле, если можно, то булева схема такого алгоритма как граф-дерево имеет высоту $h \leq \log_2 n - 1$. Но каждый гейт принимает на вход не больше двух чисел, т.е. входная степень каждой вершины не больше 2. Значит верхних входных гейтов не может быть более $2^h \leq n/2$ чисел, а надо n.

 $\frac{B_{Mecmo}\ второго\ решения,}{numb оптимально\ возможное количество\ процессоров, на которое это решение можно перепроектировать. Общая работа этого решения <math>W(n)=O(n^3)$. Действительно, ведь данное решение просто считает n^2 сумм $C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}$, переставив слагаемые в другом порядке, таким образом, n^2 раз совершено n действий сложения. Тогда количество процессоров P вычисляется из $\frac{W(n)}{P(n)}=O(t(n)) \implies P(n)=\frac{W(n)}{t(n)}=O\left(\frac{n^3}{\log n}\right)$

¹Имея в распоряжении только «+»-гейты, принимающие ровно два числа

Решение за $O(\log n)$ времени на $O\left(\frac{n^3}{\log n}\right)$ процессорах. Модифицируем алгоритм выше. На первом шаге вычислить все числа $A_{ik}B_{kj}$ получится не за 1, а за $O(\log n)$ шагов: за каждый шаг просто посчитаются очередные $\frac{n^3}{\log n}$ чисел $A_{ik}B_{kj}$. Получать из них C_{ij} за $O(\log n)$ мы уже умеем. Итоговая сложность $O(\log n) + O(\log n) = O(\log n)$. ■

1.4 Параллельная достижимость в графе

Задача. Дан граф, заданный матрицей смежности $\{a_{ij}\}$. Построить его матрицу достижимости

Решение за $O(\log^2 n)$ времени Будем булево умножать матрицы: вместо · возьмем ∧, вместо + возьмем ∨. Из формулы перемножения матриц несложно видеть, что A^k – матрица k – шаговой достижимости. Тогда матрица достижимости – любая матрица A^k , где $k \ge n$. Умеем возводить матрицу в квадрат за $O(\log n)$. Для получения матрицы достижимости A^n . возведем матрицу A в квадрат $\log n$ раз. Итоговая сложность $O(\log n) \cdot O(\log n) = O(\log^2 n)$. Общая работа $W(n) = O(n^3 \log n)$, так как $\log n$ раз перемножили матрицы за $O(n^3)$ работы. Число процессоров: $P(n) = O(\frac{n^3 \log n}{\log^2 n}) = O(\frac{n^3}{\log n})$. ■

2 Параллельные алгоритмы – іі (Осипов Д.)

2.1 Параллельное вычисление всех префиксных сумм

Задача. Дан массив A[0..n-1]. Вычислить все его префиксные суммы

Решение за $O(\log n)$ Рекурсивный алгоритм. Предположим, что умеем считать префиксные суммы массивов меньшего размера.

Заведем вспомогательный массив $B[0..\frac{n}{2}-1]$, в котором положим B[i]=A[2i]+A[2i+1] (один параллельный шаг). Посчитаем (по предположению) все префиксные суммы B и заменим ими сам массив B. После этой операции для всякого $0 \le k \le \frac{n}{2}-1$ верно $B[k]=\sum_{j=0}^{2k+1}A[j]$.

Теперь делаем на месте A массив префиксных сумм A следующим образом. Если i>0 четное, то полагаем $A[i]=B[\frac{i}{2}-1]+A[i]$ (проверьте подстановкой, что $=\sum_{j=0}^i A[j]$). Если же i>0 нечетное, то просто полагаем $A[i]=B[\frac{i-1}{2}]$ (снова проверьте, что $=\sum_{j=0}^i A[j]$). Эта операция – снова один параллельный шаг. Таким образом, на месте массива A был построен массив префиксных сумм A. Описание алгоритма закончено.

Соответствующий псевдокод:

```
function PrefixSum ( & A[0..n-1]): if n > 1:

B = [0] * (\frac{n}{2} - 1)
parallel for i = 0 to \frac{n}{2} - 1:
B[i] = A[2i] + A[2i+1]
PrefixSum (B)

parallel for i = 0 to n-1:
if i > 0:
if i\%2 == 0:
A[i] = B[\frac{i}{2} - 1] + A[i]
else:
A[i] = B[\frac{i-1}{2}]
```

Время работы оценивается просто: из кода следует соотношение T(n) = T(n/2) + C, и далее можно написать $= T(n/4) + 2C = T(n/8) + 3C = \dots = C \cdot \log n = O(\log n)$. Общая работа:

W(n)=W(n/2)+O(n), откуда по мастер-теореме W(n)=O(n). По принципу Брента количество процессоров можно взять $P(n)=\frac{W(n)}{T(n)}=O(\frac{n}{\log n})$.

2.2 Параллельное сложение чисел

Задача. Даны два (длинных) двоичных числа в виде $a = \sum_{i=0}^n a_i 2^i$ и $b = \sum_{i=0}^n b_i 2^i$. Вычислить их сумму в виде $c = \sum_{i=0}^n c_i 2^i$.

Решение за O(?????). Для удобства считаем $a_n = b_n = 0$, остальные $a_i, b_i = 0$ или 1

Формализуем алгоритм сложения столбиком. Через z_i обозначим число (0 или 1), которое при сложении столбиком переносится из i-того разряда в (i+1)-тый. Если бы мы знали все переносы z_i , то c_i можно бы было вычислить по формуле² $c_i = (a_i + b_i + z_{i-1})\%2$.

Положим:

- $g_i = a_i \wedge b_i$ «<u>г</u>енератор переноса»,
- $p_i = a_i \vee b_i$ «<u>п</u>родолжатор переноса».

Перебирая все возможные случаи, когда в i—том разряде может возникнуть перенос, получаем формулу для z_i (опустим знак \land для наглядности):

$$z_i = g_i \vee p_i z_{i-1}$$

Обратите внимание, что это похоже на «линейную рекурренту» на z_i . Распишем дальше z_{i-1} :

$$z_i = g_i \vee p_i(g_{i-1} \vee p_{i-1}z_{i-2})$$

$$= g_i \vee p_i g_{i-1} \vee p_i p_{i-1} z_{i-2}$$

Итак, при одной «итерации» «свободный член» g_i заменился на $g_i \vee p_i g_{i-1}$, а «коэффициент» p_i – на $p_i p_{i-1}$. Определим операцию на парах битов:

$$(a,b)\odot(a',b')=(a'\vee b'a,\ b'b)$$

Поверим **(нужно уметь проверять!)**, что эта операция ассоциативна. Тогда если умеем вычислять вектора

$$(v_{k1}, v_{k2}) = (0, 0) \odot (q_1, p_1) \odot (q_2, p_2) \odot ... \odot (q_k, p_k)$$
 для всех $k = 1..n$,

то имеем $z_k = v_{k1} \lor v_{k2} z_{-1} = v_{k1}$. Но вектора (v_{k1}, v_{k2}) суть просто префиксные «суммы» последовательности $(0,0), (g_1,p_1), ..., (g_n,p_n)$ относительно ассоциативной операции \odot . К ним применим алгоритм нахождения префиксных сумм за $O(\log n)$ выше.

Время и работа алгоритма: сначала посчитали g_i и p_i за время O(1) и работу O(n), потом префиксы за $O(\log n)$ и работу O(n), наконец вычислили z_i и c_i за время O(1) и работу O(n). Итоговое время $O(\log n)$, итоговая работа O(n), процессоров $O(\frac{n}{\log n})$.

2.3 Параллельное умножение чисел

Задача. Даны два (длинных) двоичных числа в виде $a = \sum_{i=0}^{n} a_i 2^i$ и $b = \sum_{i=0}^{n} b_i 2^i$. Вычислить их произведение в виде $c = \sum_{i=0}^{2n} c_i 2^i$.

Решение за $O(\log n)$. Ясно, что $ab = \sum_{i=0}^n ab_i 2^i = \sum_{i:\,b_i=1} a2^i$. Таким образом мы свели умножение двух чисел с сложению не более чем n чисел. Но на этом не все.

 $^{^2}$ Полагая $z_{-1}=0$ по определению

Трюк «Два по цене трёх». Пусть нам даны три числа x, y, z. Как за O(1) времени сделать из них два числа с той же суммой? Для каждого i число $x_i + y_i + z_i$ есть некоторое двубитовое число $2p_i + q_i$. Составим числа p, q из таких p_i, q_i . Тогда верно x + y + z = 2p + q. Итак, мы свели сложение трех чисел к сложению двух чисел за O(1) времени³ и O(n) работы.

Итак, как быстро складывать много чисел? Разбиваем их на тройки (возможные лишние 1-2 числа игнорируем), применяем к каждой тройке трюк. Делаем так, пока не останется одно или два числа (в последнем случае просто сложим их).

Оценим время и работу. Один трюк требует O(1) времени и O(n) работы. На каждом параллельном шаге трюк применяется $\sim n/3 = O(n)$ раз, т.е. общая работа на одном параллельном шаге $O(n^2)$. На каждом шаге количество чисел уменьшается в 3/2 раза, откуда $T(n) = T(\frac{n}{3/2}) + O(1)$ и $W(n) = W(\frac{n}{3/2}) + O(n^2)$. По мастер-теореме получаем $T(n) = O(\log_{3/2} n) = O(\log n)$ и $W(n) = O(n^2)$. Процессоров можно брать $O(\frac{n^2}{\log n})$.

3 Параллельные алгоритмы – iii (Осипов Д., Grothendieck A.)

3.1 (В РАЗРАБОТКЕ) Параллельное вычисление всех расстояний до конца списка

Задача. Дан список $a_1, ..., a_n$ в следующем формате. Про каждый элемент a_i известно, какой элемент за ним следует. Обозначим его номер за next[i]. Если за элементом ничего не следует, считаем next[i] == nil. Предположим, что указатели next[i] действительно образуют список. Найти расстояние до конца списка для каждого элемента.

Решение за $O(\log n)$.

Каждому элементу a_i сопоставим процессор p_i . Заведем массив d_i , проинициализируем его следующим образом. На первом параллельном шаге для концевого i (next[i] == nil) положим $d_i = 0$, для всех остальных положим $d_i = 1$. В дальнейшем указатели будут изменяться (таким образом, структура списка будет нарушаться), и тогда d_i будет означать расстояние между a_i и $a_{next[i]}$ в исходном списке.

Далее на каждом параллельном шаге происходит пересчет расстояний. Именно, каждый процессор i, для которого $next[i] \neq nil$, делает следующее (порядок важен!): запоминает d[i], затем увеличивает d[i] на запомненное значение. После этого (снова порядок важен!) процессор i запоминает next[i], затем присваивает это значение k next[i]. Алгоритм останавливается, когда все next[i] = nil. Описание алгоритма закончено.

Алгоритм корректно находит ответ. Действительно, только что описанный цикл сохраняет инвариант « d_i – расстояние между a_i и $a_{next[i]}$ в исходном списке», а в конце алгоритма все next[i] == nil.

Про корректность обращений к памяти читайте Cormen'a, я нифига не понимаю, наверное это и не нужно?????

Время работы алгоритма $O(\log n)$. Это следует из того, что начальная инициализация и каждая итерация цикла проходят за O(1) времени, а сам цикл выполняется $\log n$ раз: все значения, для которых ?????. \blacksquare .

 $^{^3}$ Именно O(1), так как мы разобрались с каждым из n битов по отдельности. Ни о каких «переносах» и сложении длинных чисел здесь речи не идет.

 $^{^4}$ Оценка из «Computational Complexity» Пападимитроу $W(n) = O(n^2 \log n)$ тоже верна, но грубее.

3.2 (В РАЗРАБОТКЕ) Параллельное вычисление всех глубин дерева

Задача. Дано подвешенное неориентированное дерево на n вершинах, занумерованных $\{0,...,n-1\}$ в следующем формате. Имеются три массива left[0..n-1], right[0..n-1], parent[0..n-1], для каждого i left[i], right[i] и parent[i] суть номера левого потомка, правого потомка, родителя вершины i (при отсутствии какого-то из параметров присвоено nil). Предположим, что эти массивы действительно задают дерево. Вычислить глубины всех вершин относительно корня.

Решение за $O(\log n)$ **независимо от высоты дерева.** Сопоставим каждой вершине i три процессора A_i, B_i, C_i . Перестроим дерево в ориентированный граф, вершины которого будут этими процессорами. Именно, проведем ребро:

- $A_i \to A_{left[i]}$, либо $A_i \to B_i$, если left[i] == nil;
- $B_i \to A_{right[i]}$, либо $B_i \to C_i$, если right[i] == nil;
- $C_i \rightarrow ...$
 - $-\ ...B_{parent[i]},$ если i левый потомок,
 - $-...C_{parent[i]}$, если i правый потомок,
 - либо ...nil, если parent[i] == nil (i корень) (можно, наверное, считать, что у корневой вершины нет процессора C).

Можно проверить 5 , что у этого графа существует эйлеров обход, начинающийся в A корня и заканчивающийся в C корня.

?????

4 Приближенный алгоритм для задачи о рюкзаке (Осипов Д.)

Напомним сначала классическое, точное решение задачи о рюкзаке методом динамического программирования.

 ${\it Sadaчa}$ (о рюкзаке с повторениями). Пусть есть n видов вещей, i—тая вещь имеет вес w_i и стоимость v_i . Количество каждого вида вещей неограничено. Пусть W — максимальный вес, который выдерживает рюкзак. Найти максимальную стоимость по всем наборам вещей, суммарный вес которого не превышает W.

Точное решение за $O(n \sum v_i = nV)$. Динамическое программирование. Пусть K[v] – минимальный вес набора стоимостью ровно v. Тогда K[0] = 0, $K[v] = \min_{i=0}^n \{K[v-v_i] + w_i\}$. Ответ на задачу: $\max\{v: K[v] < W\}$.

Таким образом заполняется массив длины V+1, на каждый поиск минимума уходит O(n) времени, на поиск ответа O(n), всего O(nV).

Теперь рассмотрим решение, которое может выдавать решение с заданной точностью. Именно, для всякого $0 < \varepsilon < 1$ это решение будет работать за $O(\frac{n^3}{\varepsilon})$ времени, а ценность найденного набора будет отличаться от оптимальной на множитель, не превышающий $(1 - \varepsilon)$.

Приближенное $rac{1}{1-arepsilon}$ -оптимальное решение за $O(rac{n^3}{arepsilon})$.

Зафиксируем параметр $\varepsilon > 0$. Заменим все v_i на:

$$\hat{v_i} = \left[\frac{n}{\varepsilon} \cdot \frac{v_i}{v_{max}}\right]$$

⁵Например, вспомнить критерий полуэйлеровости: для всех вершин v, кроме двух, in(v) = out(v), а для особых двух вершин $in(v_1) = out(v_1) + 1$ и $in(v_2) = out(v_2) - 1$.

Запустим на новом наборе алгоритм ДП выше. Описание алгоритма закончено.

Оценим время работы. $V = \sum v_i \le n \cdot \frac{n}{\varepsilon} = \frac{n^2}{\varepsilon}$. Поэтому время $O\left(n \cdot \frac{n^2}{\varepsilon}\right) = O\left(\frac{n^3}{\varepsilon}\right)$.

Теперь точность.

Пусть оптимальное решение исходной задачи – набор S, его стоимость с точки зрения старой задачи $K^* = \sum_{i \in S} v_i$.

С точки зрения новой задачи сумма этого набора оценивается как:

$$\sum_{i \in S} \hat{v}_i = \sum_{i \in S} \left[\frac{v_i n}{\varepsilon v_{max}} \right] \ge \sum_{i \in S} \left(v_i \cdot \frac{n}{\varepsilon v_{max}} - 1 \right) \ge K^* \frac{n}{\varepsilon v_{max}} - n$$

С точки зрения новой задачи набор S необязательно оптимален. То есть, если \hat{S} – оптимальный с точки зрения новой задачи набор, то имеем

$$\sum_{i \in \hat{S}} \hat{v_i} \ge \sum_{i \in S} \hat{v_i} \ge K^* \frac{n}{\varepsilon v_{max}} - n$$

Нужно оценить, насколько стоимости наборов S и \hat{S} отличаются с точки зрения старой задачи, т.е. сравнить величины $\sum_{i \in S} v_i = K^*$ и $\sum_{i \in \hat{S}} v_i$. Что же, так как $\hat{v_i} \leq \frac{v_i n}{\varepsilon v_{max}}$,

$$\sum_{i \in \hat{S}} v_i \ge \sum_{i \in \hat{S}} \hat{v}_i \frac{\varepsilon v_{max}}{n} \ge \left(K^* \frac{n}{\varepsilon v_{max}} - n \right) \frac{\varepsilon v_{max}}{n} = K^* - \varepsilon v_{max} \ge K^* - \varepsilon K^* = K^* (1 - \varepsilon)$$

Таким образом, полученное решение хуже оптимального не более, чем в $\frac{1}{1-\varepsilon}$ раз.

5 Set Cover - і (Осипов Д.)

Задача (о покрытии множесствами, Set Cover). Пусть дано множесство $\{e_1, ..., e_n\} = E$ и несколько подмножеств $S_1, ..., S_m \subseteq E$, каждому S_j присвоен неотрицательный вес w_j . Необходимо выбрать из $S_1, ..., S_m$ набор, полностью покрывающий E, с минимальным суммарным весом. Более формально: требуется найти такое $I \subseteq \{1, ..., m\}$, что:

$$\bigcup_{j \in I} = E \ u \ \sum_{j \in I} S_j \ минимально.$$

В этом билете представляются различные подходы к приближенным решениям этой задачи.

5.1 Сведение к задаче линейного программирования

Определение. Задача линейного программирования — задача минимизации (максимизации) некоторой линейной функции $h=h(x_1,...,x_n)$ при ограничениях вида $g_k \wedge b_k$, где \wedge есть один из знаков \leq,\geq , а $g_k=g_k(x_1,...,x_n)$ — линейные функции; b_k — числа. Функция h называется *целевой* функцией.

Далее в тексте сокращение $Л\Pi$ -задача будет означать задача линейного программирования.

Обозначим за f_j количество множеств среди $S_1, ..., S_m$, в которые входит элемент e_j . Положим $f = \max_{i=1..n} f_j$. Оказывается, что эти параметры играют решающую роль в следующем решении.

Переформулируем задачу Set Cover. Каждому множеству S_j сопоставим переменную x_j , принимающую значение 1, если S_j взято в набор I, и 0 – иначе. Столбец $x = (x_1, ..., x_m)^T$ взаимно

однозначно кодирует любой набор индексов I. Тогда целевая функция – суммарный вес покрытия – выглядит как $\sum_{j=1}^m w_j x_j$. Ограничение на то, что набор I – покрытие, записывается так: каждый элемент e_i покрыт хотя бы одним элементом I, или же что условие $\sum_{j:e_i \in S_j} x_j \geq 1$ выполнено для всех i=1..n. Итак, формулировка задачи:

$$\begin{split} \sum_{j=1}^m w_j x_j &\to \min, \\ \sum_{j:\, e_i \in S_j} x_j &\ge 1, \quad i=1..n, \\ x_j &\in \{0,1\}, \quad j=1..m \end{split}$$

Это <u>почти</u> ЛП-задача. Если бы умели решать такие задачи точно, решили бы и нашу – это просто ее переформулировка. «Ослабим» задачу до настоящей ЛП-задачи:

$$\sum_{j=1}^{m} w_j x_j \to \min,$$

$$\sum_{j: e_i \in S_j} x_j \ge 1, \quad i = 1..n,$$

$$x_j \ge 0 \quad j = 1..m$$

Мы перестали требовать, что x_j обязательно должен быть целым и не превышать единицы. Отметим, что если обозначить минимум Ц Φ в исходной задаче за OPT, а в ослабленной – за Z^* , то будет справедлива оценка

$$Z < OPT$$
.

так как фактически вторая задача – следствие первой.

Приближенное f-оптимальное решение (методом прямой ЛП-задачи, primal).

Считаем, что ослабленную ЛП-задачу мы решать умеем. Пусть $x^* = (x_1^*, ..., x_m^*)^T$ – оптимальное решение ослабленной ЛП-задачи, т.е. $Z = \sum_{j=1}^m w_j x_j^*$. Сконструируем из нее решение исходной задачи (и задачи Set Cover) следующим образом:

$$x_j = 1 (j \in I) \iff x_j^* \ge 1/f;$$

Итак, алгоритм заключается в следующем: мы находим минимум x_j^* ослабленной ЛП-задачи, а далее в покрытие берем все S_j , для которых получилось $x_j^* \ge 1/f$. Теперь докажем его корректность и точность.

Найденный набор S-ок действительно покрывает всё E.

Именно, докажем, что каждый элемент $e_i \in E$ покрыт какой-то S—кой. Найденное решение x^* удовлетворяет ослабленной ЛП-задаче, то есть для данного e_i имеем $\sum_{j:e_i \in S_j} x_j^* \geq 1$. В этой сумме по определению $f_i = |\{j: e_i \in S_j\}| \leq f$ членов, значит, хотя бы один из них $x_k^* \geq 1/f$. Значит, соответствующий $x_k = 1$, что доказывает то, что e_i покрыт S_k .

Теперь докажем f-оптимальность.

Обозначим (снова) минимальное значение целевой функции исходной почти-ЛП задачи за OPT, а ослабленной ЛП-задачи за $Z \leq OPT$. (То есть, в обозначениях x^* имеем $Z = \sum_{i=1}^m w_i x_i^*$). Для

всякого $j \in I$ имеем $x_j^* \ge 1/f$, или же $x_j^* \cdot f \ge 1$. Тогда значение целевой функции в найденном решении исходной почти-ЛП задачи оценивается как:

$$\sum_{j=1}^{m} w_j x_j = \sum_{j \in I} w_j \le f \sum_{j \in I} w_j x_j^* \le f \sum_{j=1}^{m} w_j x_j^* = f Z^* \le f \cdot OPT.$$

Таким образом, найденное решение хуже оптимального не более, чем в f раз.

5.2 Следствие для задачи вершинного покрытия (Vertex Cover)

Задача (о вершинном покрытии, Vertex Cover). Пусть дан неориентированный граф G = (V, E), каждой вершине i которого сопоставлен неотрицательный вес w_i . Найти минимальный по весу набор вершин $C \subseteq V$ такой, что всякое ребро графа хотя бы одним из двух концов лежит в C.

Приближенное 2-оптимальное решение. Это частный случай задачи Set Cover: основное множество – множество ребер графа E, а каждой вершине $i \in V$ сопоставляется множество S_i веса w_i , состоящее из ребер, смежных с i. Причем в обозначениях предыдущего раздела каждое ребро (i,j) содержится ровно в двух множествах: S_i, S_j , поэтому f=2, а значит, алгоритм становится 2-оптимальным.

5.3 Двойственная задача

От автора: к сожалению, получился не очень приятный для чтения параграф. Автор не смог вникнуть в «экономический смысл» двойственной ЛП-задачи, поэтому все рассуждения построены на противной формалистике с матрицами и суммами. Возможно, вы лучше поймете эту тему, прочитав ее здесь ("1.4 Rounding a dual solution")

Задачи линейного программирования можно записывать в матричном виде. Вспомним нашу ослабленную ЛП-задачу:

$$\sum_{j=1}^{m} w_j x_j \to \min,$$

$$\sum_{j: e_i \in S_j} x_j \ge 1, \quad i = 1..n,$$

$$x_j \ge 0 \quad j = 1..m$$

Положим $w = (w_1, ..., w_m)^T$ – столбец весов, тогда, очевидно, первое условие переписывается как:

$$w^T x \to \min$$

Со вторым условием разберемся так. Введем матрицу \mathcal{E} размера $n \times m$:

$$\mathcal{E}_{ij} = \begin{cases} 1, & \text{если } e_i \in S_j \\ 0, & \text{иначе} \end{cases}$$

Тогда для фиксированного $1 \le i \le n$ условие $\sum_{j:e_i \in S_j} x_j \ge 1$ переписывается как $\mathcal{E}_{i*}x \ge 1$. Ясно, что все такие n условий можно заменить одним матричным:

$$\mathcal{E} x > \mathbb{I}_n$$

где за \mathbb{I}_n обозначен столбец из единиц высоты n.

Наконец, третье условие, очевидно, просто заменяется на

$$x \geq \mathbb{O}_m$$
,

где за \mathbb{O}_m обозначен столбец из нулей высоты m.

Итак, мы получили задачу $w^T x \to \min$, $\mathcal{E} x \geq \mathbb{I}_n$, $x \geq \mathbb{O}_m$.

Определение. Пусть дана ЛП-задача вида $c^Tx \to \min$ с ограничениями $Ax \ge b$, $x \ge \mathbb{O}$. Двойственная κ ней ЛП-задача ставится следующим образом: $b^Ty \to \max$ при ограничениях $A^Ty \le c$, $y \ge \mathbb{O}$.

В обозначениях определения имеем $c=w,\ A=\mathcal{E},\ b=\mathbb{I}_n.$ Поэтому двойственная к нашей ЛПзадаче такова:

$$\mathbb{I}_n^T y \to \max,$$

$$\mathcal{E}^T y \le w,$$

$$y \ge \mathbb{O}_m$$

Использование этой двойственной задачи на самом деле приведет нас к алгоритму той же эффективности, но далее в билете она пригодится лучше.

«Разворачиваем» матричные обозначения. Перепишем первое ограничение:

$$(\mathcal{E}^T y)_i = \sum_{j=1}^n \mathcal{E}_{ij}^T y_j = \sum_j j = 1^n \mathcal{E}_{ji} y_j = \sum_{j=1}^n [e_j \in S_i] y_j = \sum_{j: e_j \in S_i} y_j, \quad i = 1..m$$

Разверните ЦФ и второе ограничение самостоятельно и убедитесь, что вы получили:

$$\sum_{j=1}^{n} y_j \to \max,$$

$$\sum_{i:e_i \in S_j} y_i \le w_j, \ j = 1..m,$$

$$y_i > 0, \ i = 1..n$$

Мы наконец-то готовы к созданию приближенного алгоритма на основе двойственной задачи.

Π риближенное f-оптимальное решение (методом двойственной $\Pi\Pi$ -задачи, dual).

Аналогично первому разделу, считаем, что эту задачу мы решать умеем. Пусть $y^* = (y_1^*, ..., y_n^*)^T$ – оптимальное решение двойственной ЛП-задачи. Сконструируем из нее решение I' исходной задачи (и задачи Set Cover) следующим образом:

$$j \in I' \iff \sum_{i: e_i \in S_i} y_i^* = w_j,$$

т.е. берем только те S_j , для которых первое ограничение ЛП-задачи обращается в равенство. Описание алгоритма закончено.

Найденный набор S-ок действительно покрывает все E.

Действительно, пусть какое-то e_k оказалось не покрытым. Тогда в I' не взяты все j такие, что S_j содержит e_k , т.е. для всех $S_j \ni e_k$ справедливо

$$\sum_{i: e_i \in S_i} y_i^* < w_j.$$

Обозначим $\varepsilon = \min_{j: e_k \in S_j} (w_j - \sum_{i: e_i \in S_j} y_i^*) > 0$. Определим столбец y' следующим образом: $y'_k = y_k^* + \varepsilon$, а все остальные $y'_j = y_j^*$. Покажем, что это решение подходит в нашу ЛП-задачу.

- 1. Для всякого $S_j \ni e_k$ имеем $\sum_{i:e_i \in S_j} y_i' = \varepsilon + \sum_{i:e_i \in S_j} y_i^* \stackrel{\text{def } \varepsilon}{\leq} \left(w_j \sum_{i:e_i \in S_j} y_i^* \right) + \sum_{i:e_i \in S_j} y_i^* = w_j$
- 2. А для всякого $S_j \not\ni e_k$ имеем просто $\sum_{i:e_i \in S_j} y_i' = \sum_{i:e_i \in S_j} y_i^* \le w_j$.

Таким образом, проверено первое ограничение задачи. Второе ограничение $y_i \ge 0$ тривиально, тем самым, y' – решение ЛП-задачи. При этом решении значение ЦФ оказывается лучшим, чем при y^* : $\sum_{j=1}^n y_j' = \varepsilon + \sum_{j=1}^n y_j^* > \sum_{j=1}^n y_j^*$, но мы предполагали, что y^* – оптимальное решение. Противоречие.

Теперь докажем f-оптимальность. Распишем суммарный вес найденного набора I':

$$\sum_{j \in I'} w_j = \sum_{j \in I'} \sum_{i: e_i \in S_j} y_i^* = \sum_{j=1}^m \sum_{i=1}^m i = 1^n [j \in I'] [e_i \in S_j] y_i^* = \sum_{i=1}^n i = 1^n |\{j \in I': e_i \in S_j\}| \cdot y_i^*$$

Оценим сверху в терминах $f_i = |\{j: e_i \in S_j\}|$ и $f = \max_{i=1..n} f_i$:

$$\leq \sum_{i=1}^{n} f_i y_i^* \leq f \sum_{i=1}^{n} y_i^*$$

Последняя сумма равна оптимальному значению Ц Φ двойственной задачи. Воспользуемся без доказательства следующим фактом:

Теорема (о сильной двойственности). Рассмотрим ЛП-задачу и двойственную к ней. Если хотя бы у одной из двух задач есть оптимальное решение, то оно есть и у второй задачи, причем оптимальные значения целевых функций совпадают.

Значит, $\sum_{i=1}^{n} y_{i}^{*}$, будучи равной оптимальному значению прямой ЛП-задачи, не превосходит OPT. Таким образом,

$$\sum_{j \in I'} w_j \le f \cdot OPT \blacksquare$$

5.4 Прямо-двойственный метод

Алгоритмы, которые решают задачи ЛП, довольно быстры. Но мы хотим еще быстрее.

 Π риближенное f-оптимальное решение (прямо-двойственный метод, primal-dual).

Вспомним, как мы из решения двойственной ЛП-задачи построили приближенное решение исходной, и как мы доказали, что это решение. Идея доказательства — если данное I не покрытие, то можем увеличить переменную, отвечающую за непокрытый элемент, — порождает следующий алгоритм:

```
function PrimalDual (E = \{e_1, ..., e_n\}, S_1, ..., S_m): y = [0] * n I = [] while \exists e_i \notin \bigcup_{j \in I} S_j: l = \text{all indices such that } e_i \in S_l \text{ and } \varepsilon = \left(w_l - \sum_{k:e_k \in S_l} y_k\right) \text{ is minimal } y_i += \varepsilon I. \operatorname{append}(l)
```

Итераций внешнего цикла **while** не более n штук, так как каждый раз в I добавляем не менее одного элемента. Ясно (из раздела про двойственную задачу), что это корректный f-оптимальный алгоритм. \blacksquare

6 Set Cover – ii (Осипов Д.)

6.1 Жадный приближенный алгоритм

Условие задачи все еще в том билете.

Сейчас окажется, что обычный жадный подход часто дает результат лучше, чем все подходы к Set Cover, описанные до этого. Именно, если обозначить $H_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$, то получим:

$\mathbf{\Pi}$ риближенное H_n -оптимальное решение.

Вот вполне интуитивный «жадник»:

function Greedy
$$(E = [e_1, ..., e_n], S = [S_1, ..., S_m], w = [w_1, ..., w_m])$$
: I = [] $\hat{S}_1, ..., \hat{S}_m = S_1, ..., S_m$ while I is not a set cover:
$$l = \text{any index j such that } \hat{S}_j \neq \emptyset \text{ and } \frac{w_j}{|\hat{S}_j|} \text{ is minimal I.append}(l)$$
 for $j = 1..m$: $\hat{S}_i = \hat{S}_i \setminus S_l$

Ясно, что этот алгоритм действительно дает покрытие всего Е. Нужно доказать точность.

Доказываем H_n -оптимальность. Пусть алгоритм сделал l итераций. За n_k обозначим количество непокрытых элементов E перед k-той итерацией (полагаем по определению $n_{l+1}=0$). Так, $n=n_1>...>n_{l+1}=0$.

Пока поверим, что если на k-той итерации выбрано множество S_i , то справедливо неравенство:

$$w_i \le \frac{n_k - n_{k+1}}{n_k} OPT$$

По модулю этого факта доказываем H_n -оптимальность. Пусть I – множество индексов, найденное жадным алгоритмом. Тогда суммарный вес всех выбранных множеств оценивается как:

$$\sum_{j \in I} w_j \le \sum_{k=1}^l \frac{n_k - n_{k+1}}{n_k} OPT$$

$$= OPT \cdot \sum_{k=1}^l \left(\frac{1}{n_k} + \dots + \frac{1}{n_k} \right)$$

$$\le OPT \cdot \sum_{k=1}^l \left(\frac{1}{n_k} + \frac{1}{n_k - 1} + \dots + \frac{1}{n_{k+1} + 1} \right)$$

$$= OPT \cdot \sum_{k=1}^n \frac{1}{k} = OPT \cdot H_n$$

Это и требовалось. Теперь доказываем неравенство $w_i \leq \frac{n_k - n_{k+1}}{n_k} OPT$.

Для данной итерации k и выбранного на ней элемента S_i обозначим I_k – множество индексов, выбранных на итерациях 1,...,k-1, а для всякого j=1...m положим $\hat{S}_j=S_j\setminus\bigcup_{p\in I_k}S_p$ –

множество элементов из S_j , которые были покрыты на k-той итерации. Заметьте, что получается ровно те \hat{S}_j , которые фигурируют в псевдокоде. По смыслу алгоритма получается

$$\frac{w_i}{|\hat{S}_i|} = \min_{j: \, \hat{S}_j \neq \emptyset} \frac{w_j}{|\hat{S}_j|}.$$

Обозначим за O множество индексов в оптимальном решении (т.е. соответствующее суммарному весу OPT). Ясно, что $j \in O \implies \hat{S}_i \neq \emptyset$, так что:

$$\min_{j:\,\hat{S}_j \neq \emptyset} \frac{w_j}{|\hat{S}_j|} \le \min_{j \in O} \frac{w_j}{|\hat{S}_j|}$$

Вспомним такое неравенство из курса анализа. $\Pi y cmb \ a_1,...,a_q,b_1,...,b_q$ – nonoжительные числа. Тогда

$$\min_{j=1..q} \frac{a_j}{b_j} \le \frac{\sum_{j=1..q} a_j}{\sum_{j=1..q} b_j} \le \max_{j=1..q} \frac{a_j}{b_j}$$

Применим его первую часть для чисел $w_j, |\hat{S}_j|,$ где $j \in O,$ получим:

$$\min_{j \in O} \frac{w_j}{|\hat{S}_j|} \le \frac{\sum_{j \in O} w_j}{\sum_{j \in O} |\hat{S}_j|}$$

Числитель просто равен OPT по определению, а знаменатель не меньше $n_k = |\bigcup_{j \in O} \hat{S}_j|$ (это просто количество оставшихся непокрытых элементов!). Резюмируя, имеем:

$$\frac{w_i}{|\hat{S}_i|} \le \frac{OPT}{n_k}$$

А так как на k-той итерации покрываем $|\hat{S}_i| = n_k - n_{k+1}$, получаем наконец:

$$w_i \le \frac{|\hat{S}_i| \cdot OPT}{n_k} = \frac{(n_k - n_{k+1}) \cdot OPT}{n_k} \blacksquare$$

7 (WIP) Транспортные сети. Задача о максимальном потоке. Разрез. Теорема о максимальном потоке и минимальном разрезе. Алгоритм Форда-Фалкерсона (Grothendieck A.)

Фактически эта глава — просто пересказ параграфов из кормена в правильном порядке. Начнем, с того, что это вообще такое. Итак,

7.1 Транспортные сети. Задача о максимальном потоке

Определение 7.1. Транспортной сетью называется ориентированный граф $G = \langle V, E \rangle$ с функцией $c \colon V \times V \to \mathbb{N}$, которая называется пропускной способностью, причем $c(u,v) = 0 \iff (u,v) \not\in E$, а также двумя выделенными вершинами — источником s и стоком t.

Внимание! В источник могут входить ребра, а из стока выходить.

Для удобства предполагается, что любая вершина находится на некотором пути от источника к стоку (то есть граф связный).

Определение 7.2. Потоком называется функция $f: V \times V \to \mathbb{R}$, для которой выполняются следующие свойства:

- 1. $\forall (u, v) \in V \times V : f(u, v) \leq c(u, v)$
- 2. $\forall (u, v) \in V \times V : f(u, v) = -f(v, u)$
- 3. $\forall u \in V \setminus \{s, t\} : \sum_{v \in V} f(u, v) = 0$

Величиной потока называется число $|f| \stackrel{\text{def}}{=} \sum_{v \in V} f(s, v)$.

Одна из возможных интерпретаций этого – электрическая цепь. Тогда все свойства потоков превращаются в правила Кирхгофа.

Обратите внимание, что если есть ребро (u, v) и с потоком $f(u, v) \neq 0$, но нет ребра (v, u), то тем не менее $f(v, u) = -f(u, v) \neq 0$. Подумайте, почему если между вершинами нет ребра ни в каком направлении, то поток между ними нулевой⁶.

Задача 7.1. (о максимальном потоке) Дана транспортная сеть. Нужно найти в ней поток максимальной величины.

Базовая идея: взять какой-нибудь (например, тривиальный) поток и увеличивать его, пока можно. Осталось только научиться все это делать.

Чтобы правильно увеличивать членб, нужно еще несколько определений.

Определение 7.3. Для сети G и потока f остаточной пропускной способностью ребра (u,v) называется величина $c_f(u,v)=c(u,v)-f(u,v)$. Остаточной сетью $G_f=\langle V,E_f\rangle$ называется сеть на вершинах графа G с множеством ребер $E_f=\{(u,v)\in V\times V|c_f(u,v)>0\}$ с пропускной способностью c_f и теми же источником и стоком.

Обратите внимание, что если в G есть ребро (u,v), но нет ребра (v,u) (то есть его пропускная способность 0), то остаточная пропускная способность $c_f(v,u) = c(v,u) - f(v,u) = f(u,v)$, то есть если между вершинами есть одно из ребер с ненулевым потоком, то в остаточную сеть попадут оба. Получается, что $|E_f| \leq 2|E|$.

Лемма 7.1. Пусть $\langle G, c \rangle$ — транспортная сеть, f — поток в ней, G_f — остаточная сеть u в ней задан поток f'. Тогда f+f' — поток в G, а его величина |f+f'|=|f|+|f'|.

Доказательство. Проверим условия на потоки:

1.
$$(f+f')(u,v) = f(u,v) + f'(u,v) < f(u,v) + (c(u,v) - f(u,v)) = c(u,v)$$

2.
$$(f+f')(u,v) = f(u,v) + f'(u,v) = -f(v,u) - f'(v,u) = -(f+f')(v,u)$$

3.
$$\sum_{v \in V} (f + f')(u, v) = \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) = 0$$

Поэтому это поток.

С величиной все понятно:

$$|f + f'| = \sum_{v \in V} (f + f')(s, v) = \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v) = |f| + |f'|$$

Определение 7.4. Увеличивающим путем называется простой путь между $s\ u\ t\ s\ G_f.$

⁶потому что
$$0 = c(u, v) > f(u, v) = -f(v, u) > -c(v, u) = 0$$

16

Лемма 7.2. G, c, s, t — сеть c потоком f, p — увеличивающий путь в G_f . Определим $f_p \colon V \times V \to \mathbb{R}$.

$$f_p(u,v) = \begin{cases} c_f(p), & (u,v) \in p, \\ -c_f(p), & (v,u) \in p, \\ 0, & \text{otherwise} \end{cases}$$

 $\operatorname{г}\!\operatorname{d}\!\operatorname{e}\, c_f(p) = \min\{c_f(u,v)|(u,v)\in p\}.$ Тогда f_p — поток в G с величиной $c_f(p)>0.$

Доказательство.

1.

$$f_p(u, v) \le c_f(p) \le c_f(u, v) = c(u, v) - f(u, v) \le c(u, v)$$

если $f(u, v) \ge 0$. Остальные случаи тривиальны.

- 2. ...
- 3. Заметим, что для любой вершины v (не источника и не стока) в путь входит ровно одно ребро (u,v) и ровно одно ребро (v,w), то есть у всех остальных ребер потоки будут нулевые, а у этих они отличаются знаком, поэтому сумма потоков $\sum_{v \in V} f_p(u,v) = 0$.

Из лемм 7.1 и 7.2 следует, что поток на каждом ребре пути может быть увеличен на величину $c_f(p)$ (которая называется **пропускной способностью пути**), чтобы не нарушить условия на сумму потоков и ограничение пропускной способности.

Теперь осталось научиться определять, чем максимальный поток отличается от немаксимального. Для этого нужно еще несколько определений и важная теорема, а именно

7.2 Разрез. Теорема о максимальном потоке и минимальном разрезе

Определение 7.5. Разрезом сети G называется разбиение $V = S \sqcup T$, что $s \in S, t \in T$. Чистым потоком потока f через разрез (S,T) называется $f(S,T) \stackrel{\text{def}}{=} \sum_{x \in S} \sum_{y \in T} f(x,y)$. Пропускной способностью разреза называется $c(S,T) \stackrel{\text{def}}{=} \sum_{x \in S} \sum_{y \in T} c(x,y)$. Минимальный разрез — это тот, у которого пропускная способность минимальна.

Лемма 7.3. Чистый поток через любой разрез равен величине потока.

Доказательство. Заметим, что $\sum_{x \in S} \sum_{y \in S} f(x, y) = 0$.

$$\sum_{x \in S} \sum_{y \in T} f(x, y) = \sum_{x \in S} \sum_{y \in V} f(x, y) - \sum_{x \in S} \sum_{y \in S} f(x, y) = \sum_{x \in S} \sum_{y \in V} f(x, y) = \sum_{y \in V} f(x, y) + \sum_{x \in S \setminus \{s\}} \sum_{y \in V} f(x, y) = \sum_{y \in V} f(s, y) = |f|$$

Лемма 7.4. Величина любого потока не превышает пропускную способность любого разреза.

Доказательство.

$$|f| = \sum_{x \in S} \sum_{y \in T} f(x, y) \le \sum_{x \in S} \sum_{y \in T} c(x, y) = c(S, T)$$

Теорема 7.1. (О максимальном потоке и минимальном разрезе) G, c, s, t — транспортная сеть с потоком f. Следующие утверждения эквивалентны:

- 1. f максимальный поток в G.
- 2. Остаточная сеть G_f не содержит увеличивающих путей.
- 3. |f| = c(S,T) для некоторого разреза (S,T).

Доказательство.

- $1\Rightarrow 2$ Если есть увеличивающий путь, то по лемме 7.2 можно построить поток со строго большей величиной, то есть f не максимальный.
- $2\Rightarrow 3$ Предположим, что нет увеличивающего пути. Определим $S=\{v\in V|\exists p\colon s\to v \text{ in }G_f\}, T=V\smallsetminus S$. Понятно, что это разрез. В нем для любой пары $(u,v)\in S\times T$ выполняется f(u,v)=c(u,v), потому что иначе бы ребро (u,v) попало бы в E_f (напомню, что там находятся только те ребра, у которых положительная остаточная пропускная способность) а значит существовал бы путь из s в v, это противоречит $v\in T$.

$$|f| = \sum_{x \in S} \sum_{y \in T} f(x, y) = \sum_{x \in S} \sum_{y \in T} c(x, y)$$

 $3\Rightarrow 1$ Из леммы 7.4 следует, что $|f|\leq c(S,T)$. Поэтому если достигается равенство, то f — максимальный.

Теперь мы умеем все доказывать, чтобы описать алгоритм из базовой идеи, который называется

7.3 Алгоритм Форда-Фалкерсона

```
\begin{array}{ll} \text{function FFA}(\langle G = \langle V, E \rangle, c, s, t \rangle) : \\ & \text{for each } (u, v) \in E : \\ & f(u, v) := 0 \\ & f(v, u) := 0 \\ & \text{while } \exists p \colon s \to t \text{ in } G_f : \\ & c_f(p) := \min\{c_f(u, v) | (u, v) \in p\} \\ & \text{for each } (u, v) \in p : \\ & f(u, v) \; + = \; c_f(p) \\ & f(v, u) := \; -f(u, v) \end{array}
```

На практике, понятно, он возникает в основном только с целыми числами. Проблема этого алгортима в том, что не указано, как именно нужно искать увеличивающий путь. Если искать его неудачно 7 , то алгоритм может и зависнуть.

В предположении, что числа рациональные (их можно свести к целым) и при использовании поиска в глубину или поиска в ширину для нахождения увеличивающего, время его работы составляет $O(|E||f^*|)$, где f^* — максимальный поток (в случае использования поиска в ширину этот алгоритм называется **алгоритмом Эдмондса-Карпа**, для него в секции 8 мы докажем более точную оценку).

 $^{^{7}}$ а еще если значения пропускных способностей иррациональные, пример можно найти в англоязычной википелии

Проанализируем время работы. Первый цикл выполняется за время $\Theta(|E|)$, второй цикл выполняется не более $|f^*|$ раз (потому что величина потока в каждую итерацию увеличивается хотя бы на 1).

Время работы поиска O(|V| + |E|) = O(|E|) (так как наш граф связный, а в нем $|E| \ge |V| - 1$, поэтому весь цикл выполняется за время $O(|E||f^*|)$.

Пример 7.2. Алгоритм работает плохо, если найдется неудачный увеличивающий путь:

Поиском в глубину находится путь $s \to a \to b \to t$, поэтому за одну итерацию поток увеличивается всего лишь на единицу.

В следующей итерации может найтись путь $s \to b \to a \to t$ (так как остаточная пропускная способность $b \to a$ теперь 0 - (-1) = 1) и он опять уменьшится всего лишь на 1, поэтому нужный поток найдется за 100500 итераций.

7.4 Применение к паросочетаниям

Этим алгоритмом можно пользоваться, чтобы найти в двудольном графе $G=\langle V,E\rangle$ максимальное паросочетание. Для этого нам нужно теперь построить транспортную сеть и научиться сопоставлять потокам паросочетания.

Напомню, что мощностью паросочетания называется количество ребер в нем.

Дан двудольный граф $G = \langle V = L \sqcup R, E \rangle$, L, R - доли. Добавим еще две выделенные вершины s,t (источник и приемник) и построим сеть $G' = \langle V' = V \cup \{s,t\}, E' \rangle$, где $E' = \{(s,u)|u \in L\} \cup \{(u,v)|(u,v) \in E\} \cup \{(v,t)|v \in R\}$. У каждого ребра единичная пропускная способность.

Определение 7.6. Поток называется **целочисленным**, если $\forall (u,v) \in V \times V : f(u,v) \in \mathbb{Z}$.

Лемма 7.5. Каждому паросочетанию в G взаимно однозначно соответствует целочисленный поток f в G' мощности |f| = |M|.

Доказательство. Для начала построим поток по паросочетанию: если $(u,v) \in M$, то f(s,u) = f(u,v) = f(v,t) = 1, f(t,v) = f(v,u) = f(v,s) = -1, для всех остальных (u,v) f(u,v) = 0. Понятно, что это поток, и так как чистый поток через разрез $(L \cup \{s\}, R \cup \{t\})$ равен M, то и величина всего потока равна |M|.

Пусть теперь f – поток в G'. Определим

$$M = \{(u, v) | u \in L, v \in R, f(u, v) > 0\}$$

Поскольку пропускная способность каждого ребра равна 1, в вершину $u \in L$ входит не больше одной единицы потока. Так как она обязана куда-то выходить и поток целочисленный, она выходит по одному ребру. Так что единица положительного потока входит в u, согда существует

единственная вершина $v \in R$, в которую эта единица входит. То же самое можно сказать про любую вершину $v \in R$, поэтому это паросочетание. Понятно, что величина этого потока равна |M|: по построению нашей сети $f(s,v) = 0 \forall v \in R \cup \{s,t\}$, поэтому

$$|f| = \sum_{v \in V' \setminus \{s\}} f(s, v) = \sum_{v \in L} f(s, v) = |M|$$

Понятно, что максимальному паросочетанию M соотвествтует максимальный поток (поскольку иначе существует паросочетание M', для которого |M'| = |f'| > |f| = |M|).

Чтобы применять условия этой леммы, нужно убедиться, что

Пемма 7.6. Алгоритм Форда-Фалкерсона в сети с целочисленной пропускной способностью действительно строит целочисленный поток.

Доказательство. Индукция по количеству итераций цикла.

8 (WIP) Алгоритм Эдмондса-Карпа (Grothendieck A.)

Вариант реализации алгоритма Форда-Фалкерсона, где в качестве алгоритма поиска пути используется поиск в ширину (предполагается, что у всех ребер единичная длина), называется алгоритмом Эдмондса-Карпа. Для него есть хорошая оценка времени работы $O(|V||E|^2)$. Она хорошая, потому что не зависит от величины максимального потока.

Обозначим как $\delta_f(u,v)$ кратчайшее расстояние между вершинами u и v в остаточной сети G_f .

Пемма 8.1. Для всех вершин $v \in V \setminus \{s,t\}$ длина кратчайшего пути $\delta_f(s,v)$ в остаточной сети G_f монотонно возрастает при выполнении алгоритма.

Доказательство. Будем доказывать от обратного. Предположим, что существует такое увеличение потока, которое приводит к уменьшению длины кратчайшего пути из s к некоторой вершине v. f – поток перед этим увеличением по пути, f' – поток после этого увеличения. Выберем v, чтобы $\delta_{f'}(s,v)$ было минимальным. Тогда $\delta_{f'}(s,v) < \delta_f(s,v)$. Пусть u – вершина перед v в этом пути в $G_{f'}$, то есть $\delta_{f'}(s,u) = \delta_{f'}(s,v) - 1$. По выбору v $\delta_{f'}(s,u) \ge \delta_f(s,u)$ (иначе противоречие с минимальностью).

Теперь предположим, что $(u, v) \in E_f$. Но тогда

$$\delta_{f'}(s, v) = \delta_{f'}(s, u) + 1 \ge \delta_f(s, u) + 1 = \delta_f(s, v)$$

Теперь рассмотрим случай, когда $(u,v) \notin E_f$ (но $(u,v) \in E_{f'}$). Заметим, что такое может произойти только в том случае, когда поток на ребре f'(u,v) < f(u,v) ($c_{f'}(u,v) > 0 = c_f(u,v)$), а значит, поток на ребре (v,u) увеличился. Алгоритм увеличивает поток только вдоль кратчайших путей, а это значит, что в G_f кратчайший путь $s \to u$ содержит ребро (v,u). Поэтому

$$\delta_f(s, v) = \delta_f(s, u) - 1 \le \delta_{f'}(s, u) - 1 = \delta_{f'}(s, v) - 1 - 1$$

Опять получили противоречие с условием $\delta_{f'}(s,v) < \delta_f(s,v)$.

Теперь мы можем посчитать ограничение на количество итераций основного цикла (того, в котором проводятся увеличения пути) алгоритма.

Определение 8.1. Критическим назовем ребро (u,v) в пути p, для которого выполняется $c_f(u,v)=c_f(p)$ (ребро c наименьшей пропускной способностью из леммы 7.2).

Лемма 8.2. Количество итераций основного цикла – O(|V||E|).

Доказательство. Понятно, что в каждом увеличивающем пути есть критическое ребро, поэтому нам нужно посчитать, сколько раз каждое ребро может побывать критическим. Докажем, что не больше $\frac{|V|}{2}-1$ раз.

Пусть $(u,v) \in E$ — критическое ребро. Так как увеличение проходит по кратчайшему пути, $\delta_f(s,v) = \delta_f(s,u) + 1$. После этого это ребро пропадет из остаточной сети и появится обратно, только если (v,u) появится в увеличивающем пути. Если f' — это такой новый поток, то $\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1$. По лемме $8.1, \, \delta_f(s,v) \leq \delta_{f'}(s,v)$, а значит

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1 \ge \delta_f(s, v) + 1 = \delta_f(s, u) + 2$$

Так что между случаями, когда ребро становится критическим, расстояние от источника вырастает как минимум на 2. Промежуточными вершинами на пути от s к u не могут быть s, u, и t. А это значит, что пока вершина u станет недостижимой из источника, расстояние до нее не превысит |V|-2. Поэтому ребро (u,v) станет критическим не более $\frac{|V|-2}{2}$ раз (делим на 2, потому что половину случаев ребро (v,u) становится критическим). Так как всего ребер в остаточной сети может быть O(|E|) (обоснование есть на странице 16), количество критических ребер будет O(|E||V|).

Так как внутренность цикла выполняется за время O(|E|), то общее время работы алгортма Эдмондса-Карпа — $O(|V||E|^2)$.

9 (WIP) Алгоритм проталкивания предпотока (Grothendieck A.)

Этот алгоритм также находит максимальный поток, но отличается от предыдущих описанных алгоритмов тем, что не является вариантом алгоитма Форда-Фалкерсона, а также другой оценкой времени работы.

Определение 9.1. Предпотоком называется функция $f \colon V \times V \to \mathbb{R}$ на вершинах транспортной сети $G = \langle V, E \rangle, s, t$, для которой выполняются следующие свойства:

- 1. $\forall (u, v) \in V \times V : f(u, v) \leq c(u, v)$
- 2. $\forall (u,v) \in V \times V : f(u,v) = -f(v,u)$
- 3. $\forall u \in V \setminus \{s\}: \sum_{v \in V} f(v, u) \ge 0$

 $e(u) = \sum_{v \in V} f(v, u)$ называется **избыточным потоком**.

Вершина $u \in V$ называется **переполненной**, если e(u) > 0.

Определение 9.2. Функция $h: V \to \mathbb{N}$ называется **функцией высоты**, если выполняются следующие свойства:

- 1. h(s) = |V|
- 2. h(t) = 0
- 3. $\forall (u, v) \in E_f : h(u) \le h(v) + 1$

9.1 Интуитивные соображения

Представим, что наша сеть – это система из резервуаров V, соединенных трубами E и находящихся на разной высоте h. Предпоток – это жидкость, которая течет по трубам, но где-то

ее втекает больше, чем вытекает, и она остается в резервуаре (мы предполагаем, что они бесконечные). Можно "перелить" (операция проталкивания) жидкость из резервуара в соединенные трубой резервуары (увеличить значение предпотока на смежных трубах, если выполняются соответствующие интуитивные условия: высота резервуара u, из которого переливают, должна быть на единицу больше высоты резервуара v, в который переливают, и $c_f(u,v)>0$), находящиеся на меньшей высоте или, если таких не найдется, "поднять" (операция поднятия) резервуар на высоту на единицу большую, чем самый нижний из смежных резервуаров.

Почти очевидно, что в таком случае предпоток превратится в поток. Как будет показано, он будет и максимальным.

9.2 Операция проталкивания

```
\begin{array}{ll} \mathrm{function} \  \, \mathrm{push}\,(u,v\in V\,) : \\ & \mathrm{if} \  \, e(u)>0 \  \, \mathrm{and} \  \, c_f(u,v)>0 \  \, \mathrm{and} \  \, h(u)-h(v)=1 : \\ & d:=\min(e(u),c_f(u,v)) \\ & f(u,v) \, +\!\!\!= d \\ & f(v,u):=-f(u,v) \\ & e(u) \, -\!\!\!= d \\ & e(v) \, +\!\!\!= d \end{array}
```

Условие h(u) - h(v) = 1 нужно, так как из отрицания пункта 3 условия на функцию высоты следует, что если высоты различаются больше чем на единицу, остаточных ребер просто нет, поэтому проталкивать что-либо бессмысленно.

Проталкивание называется **насыщающим**, если после него $c_f(u,v)=0$ (ребро, соответственно, становится **насыщенным**). Понятно, что после ненасыщающего проталкивания вершина u перестает быть переполненной (мы так выбираем $d=\min(e(u),c_f(u,v))$, что зануляется либо переполненность, либо остаточная пропускная способность).

Пемма 9.1. После проталкивания функция высоты остается функцией высоты (не нарушаются ее свойства).

Доказательство. Так как высоты не меняются, нужно только проверить, что сохраняется условие 3. Операция может удалить ребро (u,v) из E_f (если $c_f(u,v) < e(u)$) или добавить ребро (v,u), если его не было (так как если $e(u) < c_f(u)$, то $f_{\text{new}}(v,u) = (v,u) + f_{\text{new}}(u,v) > 0 = c_f(v,u)$). В первом случае удаление ребра делает неактуальным ограничение. Во втором случае выполняется h(v) = h(u) + 1, поэтому $h(v) \le h(u) + 1$. Поэтому h остается функцией высоты.

9.3 Операция подъема

```
\begin{array}{ll} \text{function relabel}(u \in V) : \\ & \text{if } e(u) > 0 \text{ and } \forall (u,v) \in E_f \colon h(u) \leq h(v) \colon \\ & h(u) \ += \ 1 + \min_{(u,v) \in E_f} \{h(v)\} \end{array}
```

Пемма 9.2. После подъема функция высоты остается функцией высоты (не нарушаются ее свойства).

Доказательство. Докажем, что эта функция назначает наибольшую возможную высоту, удовлетворяющую условиям высоты. Так как вершина u переполнена (e(u)>0), то существует вершина v, для которой f(v,u)>0, значит, $c_f(u,v)=c(u,v)-f(u,v)=c(u,v)+f(v,u)>0$, а значит, $(u,v)\in E_f$. Поэтому $\min_{(u,v)\in E_f}\{h(v)\}$ определено и это наибольшее возможное значение, удовлетворяющее условию 3.

Понятно, что источник и сток выше поднять нельзя, рассмотрим другую вершину к u и входящее в него ребро (u,v). Поскольку высота строго увеличивается $(h(u) \le h(v)$ для всех $(u,v) \in E_f$ до

поднятия, а значит, $h(u) < 1 + h(v) = h_{\text{new}}(u)$ для такого смежного v, что h(v) минимально), выполняется $h(w) \le h(u) + 1 \le h_n ew(u) + 1$

9.4 Начальный предпоток

Начальный предпоток определяется так:

$$f(u,v) = \begin{cases} c(u,v), & u = s, \\ -c(u,v), & v = s, \\ 0, & \text{otherwise} \end{cases}$$

Начальный поток определяется так:

$$h(u) = \begin{cases} |V|, & u = s, \\ 0, & \text{otherwise} \end{cases}$$

Это действительно корректно определенная функция высоты, поскольку единственные ребра, для которых не выполняется условие 3 – это ребра, выходящие из источника, но так как для них значение предпотока равно значению пропускной способности, их нет в E_f .

```
\begin{array}{ll} \text{function init\_preflow} \, (G = \langle V, E \rangle, s \,) \colon \\ & \quad \text{for each} \  \, v \in V \smallsetminus \{s\} \colon \\ & \quad h(u) \colon = 0 \\ & \quad e(u) \colon = 0 \\ & \quad \text{for each} \  \, (u,v) \in E \colon \\ & \quad f(u,v) \colon = 0 \\ & \quad f(v,u) \colon = 0 \\ & \quad h(s) \colon = |V| \\ & \quad \text{for each} \  \, (s,u) \in E \colon \\ & \quad f(s,u) \  \, \colon = \  \, c(s,u) \\ & \quad f(u,s) \  \, \colon = \  \, -c(s,u) \\ & \quad e(u) \  \, \colon = \  \, c(s,u) \\ & \quad e(s) \  \, - = \  \, c(s,u) \end{array}
```

9.5 Алгоритм. Его корректность.

Для начала нужно доказать лемму:

Лемма 9.3. Пусть G, s, t – транспортная сеть с предпотоком f и какой-то функцией высоты h. Тогда κ любой переполненной вершине можно применить либо проталкивание, либо подъем.

```
Доказательство. Для (u,v) \in E_f выполняется h(u) \leq h(v) + 1 (по условию на высоту). Если h(u) - h(v) = 1 для какой-то вершины v, то выполняется операция проталкивания, а иначе h(u) < h(v) + 1 \Rightarrow h(u) \leq h(v) \; \forall (u,v) \in E_f, а значит, выполнима операция подъема.
```

Понятно, что они не могут быть выполнены одновременно.

Теперь мы можем написать алгоритм:

```
\begin{array}{c} \text{function PPA}(G,s,t) \colon \\ & \text{init\_preflow}\left(G,s\right) \\ & \text{while } \exists u \colon \left(\exists v \in V \colon \text{Pushable}(u,v)\right) \land \text{Relabelable}(u) \colon \\ & \text{if Pushable}(u,v) \colon \\ & \text{push}\left(u,v\right) \\ & \text{else} \colon \text{relabel}\left(u\right) \end{array}
```

10 Вероятностные алгоритмы с односторонней ограниченной вероятностью ошибки. Алгоритм Фрейвальдса для проверки умножения матриц. (Ермошин И.)

Вероятностные алгоритмы с односторонней ограниченной вероятностью ошибки. Нам надо что-то проверить. Придумываем алгоритм, который это проверяет, но может ошибиться. Более точно: при истинном успехе алгоритм всегда сообщает об успехе, но при истинной неудаче алгоритм может ошибиться — сообщить об успехе с вероятностью p. Повторив его 10 раз, получим вероятность ошибки p^{10} , что, вероятно(ha ha), гораздо меньше.

Алгоритм Фрейвальдса для проверки умножения матриц. Есть три матрицы: $A_{m,n}$, $B_{n,k}$ и $C_{m,k}$, хотим узнать $A \times B = C$ или нет.

Решение за $O\left(\frac{mnk}{\min(m,n,k)}\right)$ с вероятностью ошибки $\leq \frac{1}{2}.$

NB: Если все матрицы A, B, C квадратные, то мы проверим за $O(n^2)$, а если бы проверяли умножением матриц - это $O(n^{2.8})$ (алгоритм Штрассена)

Сгенерируем случайный столбец r длины k из нулей и единиц (все равновероятно). Давайте проверять равенство $AB \times r = C \times r$; если умножать так: $A \times (B \times r)$, получится время $O(nk+mn+mk) = O\left(\frac{mnk}{\min(m,n,k)}\right)$, где каждое слагаемое есть время перемножения матриц $B \times r$, $A \times Br$ и $C \times r$.

Убедимся в том, что у алгоритма все хорошо

Очевидно, если $A \times B = C$, алгоритм так и сообщит.

Посчитаем вероятность ошибки, т.е. когда при $A \times B \neq C$ для случайно выбранного вектора r окажется $AB \times r = C \times r$.

Перепишем ABr = Cr как Xr = 0, X = AB - C. Посмотрим на какой-нибудь ненулевой элемент x_{kl} . Имеем:

$$\sum_{i=1, i \neq l}^{n} x_{ki} r_i + x_{kl} r_l = 0$$

Из этого выражения однозначно определяется r_l . Это означает, что уже векторов r, удовлетворяющих Xr=0, не более 2^{k-1} , а шанс выбрать такой вектор не превосходит $\frac{2^{k-1}}{2^k}=\frac{1}{2}$. Таким образом, вероятность ошибки $\leq \frac{1}{2}$.

11 Слабоэкспоненциальные детерминированные алгоритмы SAT для 3-КНФ (Осипов Д.)

11.1 Начальные сведения

Задача (SAT) Для данной пропозициональной формулы от п переменных определить, выполнима ли она.

Решение за $O(2^n)$. Переберем все 2^n возможных наборов значений переменных.

Факт. Задача SAT NP-трудна: любую задачу из NP можно свести к SAT. Научимся решать SAT за полином \implies научимся решать любую NP-задачу за полином и получим P = NP. Докажем, что SAT не решается за полином \implies автоматически $P \neq NP$.

Факт. SAT сводится к 3-SAT.

Задача (3-SAT) Пусть дана пропозициональная формула от п переменных в 3-КНФ (каждый конъюнкт содержит не более трех слагаемых). Определить, выполнима ли она.

11.2 Метод расщепления: $O(1.92^n)$, $O(1.84^n)$

Решение за $O((\sqrt[3]{7})^n) = O(1.92^n)$ (метод расщепления-1).

Рекурсивный алгоритм. Выделим один из конъюнктов

$$\dots \wedge (x_1^{\sigma_1} \vee x_2^{\sigma_2} \vee x_3^{\sigma_3}) \wedge \dots$$

Из всех восьми возможных наборов значений x_1, x_2, x_3 конкретно под этот конъюнкт подходят только семь – все, кроме $(x_1, x_2, x_3) = (\bar{\sigma}_1, \bar{\sigma}_2, \bar{\sigma}_3)$.

Для каждого из семи наборов значений делаем следующее: подставляем его в формулу и запускаем алгоритм рекурсивно на получившейся формуле от n-3 переменных.

Время работы определяется соотношением T(n) = 7T(n-3) + O(1), откуда немедленно $T(n) = O(7^{n/3})$.

Здесь нужна картинка

Решение за $\sim O(1.84^n)$ (метод расщепления-2).

Снова рекурсивный алгоритм. Выделим один из конъюнктов

$$\dots \wedge (x_1^{\sigma_1} \vee x_2^{\sigma_2} \vee x_3^{\sigma_3}) \wedge \dots$$

Рекурсивно рассмотрим три случая, когда этот конъюнкт может быть истинен:

- 1. либо $x_1 = \sigma_1$,
- 2. либо $x_1 = \neg \sigma_1$ и $x_2 = \sigma_2$,
- 3. либо $x_1 = \neg \sigma_1, \, x_2 = \neg \sigma_2$ и $x_3 = \sigma_3$

Для каждого из этих случаев сделаем подстановку и рекурсивно решим подзадачи: для формул от n-1, n-2 и n-3 переменных соответственно.

Время работы описывается соотношением T(n) = T(n-1) + T(n-2) + T(n-3) + O(1). $T(n) = O(1.84^n)$ – его приближенное решение.

Здесь нужна картинка

11.3 Метод локального поиска: $O(1.74^n)$

Следующее решение основано на методе «локального поиска». Зададим на множестве векторов $\{0,1\}^n$ метрику d(x,y)= количество позиций, в которых x и y различны. Для данного вектора x и натурального r определим шар H(x,r) — множество векторов, отличающихся от x не более, чем в r позициях.

Нам понадобится следующая вспомогательная задача.

Вспомогательная задача. Дан вектор $x \in \{0,1\}^n$ и натуральный радиус r. Проверить, есть ли в шаре H(x,r) выполняющий набор для данной 3-КНФ формулы.

Решение вспомогательной задачи за $O(3^r)$. Рекурсивный алгоритм. Сначала проверим формулу на наборе x. Если в нем формула не выполнена, выделим в ней любой ложный конъюнкт $(x_a^{\sigma_a} \lor x_b^{\sigma_b} \lor x_c^{\sigma_c})$. Если в H(x,r) присутствует выполняющий набор x^* , то x^* не совпадает с x хотя бы в одной из позиций a,b,c. Рассмотрим три набора $x^{(a)},x^{(b)},x^{(c)}$, каждый из которых получается из x инвертированием a-той, b-той и c-той переменной соответственно. Хотя бы

один из наборов $x^{(a)}, x^{(b)}, x^{(c)}$ будет на единицу ближе к x^* (ведь изменилась всего одна переменная). Запустим от каждого из них этот алгоритм рекурсивно. Тогда на глубине рекурсии, не превосходящей r, набор x^* найдется, если он есть в H(x,r). Очевидно, решение работает за $O(3^r)$

Теперь мы готовы решать нашу задачу 3 - SAT.

Решение за $O(\sqrt{3}^n) = O(1.74^n)$ (локальный поиск).

Обозначим $\mathbf{0}=(0,...,0)$ и $\mathbf{1}=(1,...,1)$ – вектора в $\{0,1\}^n$. Заметим, что всё пространство $\{0,1\}^n$ покрывается двумя шарами $H(\mathbf{0},n/2)$ и $H(\mathbf{1},n/2)$. Действительно, каждый вектор длины n имеет либо хотя бы n/2 единиц, либо хотя бы n/2 нулей, откуда следует требуемое. Значит, достаточно за $O(3^{n/2})$ поискать выполняющий набор в каждом из двух шаров. Итоговое время работы $O(3^{n/2})+O(3^{n/2})=O(3^{n/2})$.

12 Алгоритм Шоннинга для 3-SAT, использующий случайное блуждание (Осипов Д.)

Условие задачи все еще в том билете.

Мы предъявим вероятностное решение c односторонней ограниченной вероятностью ошибки (такое было здесь).

Вероятностное решение (Schöning, 1999), время $O(n^2(4/3)^n)$, шанс ошибки $\leq 1/2$

Алгоритм описывается даже проще, чем предыдущие. В начале мы берем случайный $x \in \{0,1\}^n$. Повторим не более n раз следующее: если x не выполняет формулу, то возьмем в ней случайный ложный конъюнкт, случайно выберем **одну** переменную в нем и изменим ее значение. Описание алгоритма закончено.

Оценим снизу вероятность того, что этот алгоритм найдет выполняющий набор x^* . Не уменьшая общности, предположим, что выполняющий набор x^* существует и единственный. Заметим тогда (по рассуждению из билета 20), что при каждой итерации цикла x становится ближе к x^* с вероятностью $\geq 1/3$ и дальше от x^* с вероятностью $\leq 2/3$. Поэтому, не уменьшая общности, еще предположим, что вероятности приближения и отдаления — ровно 1/3 и 2/3 соответственно.

Итак, вероятность того, что x совпадет с x^* , моделируется следующей задачей на случайное блуждание по отрезку [0,N]. x начинает свой путь в некоторой точке этого отрезка, делает шаг влево с вероятностью 1/3, вправо – с 2/3 (и все время остается в отрезке [0,N]), и необходимо оценить вероятность того, что в течение n шагов он когда-нибудь посетит 0.

Не уменьшая общности, для того, чтобы x посетил 0 в течение n шагов, **достаточно** (конечно, не необходимо) два условия:

- 1. Случайно выбранный в начале алгоритма x оказался x^* на расстоянии n/3 от x^*
- 2. За n шагов из точки n/3 он придет в 0, совершив 2n/3 шагов влево и n/3 шагов вправо, не выходя при этом за границу отрезка 0.

Сейчас мы посчитаем вероятности этих двух событий, их произведение и будет оценкой снизу на вероятность того, что алгоритм найдет выполняющий набор.

Вероятность первого события равна $P_1 = \frac{\binom{n}{n/3}}{2^n}$ так как из 2^n равновероятных наборов $\in \{0,1\}^n$ мы должны выбрать тот, у которого ровно n/3 позиций, в которых он и x^* различаются.

Для подсчета вероятности второго события воспользуемся следующей задачей.

Теорема (задача о пъянице и канаве). Сколько существует путей из точки S = P - Q > 0 в точку 0, состоящих ровно из P шагов влево, Q шагов вправо и не выходящих за точку 0? Ответ: $\frac{P-Q}{P+Q}\binom{P+Q}{P}$.

Доказательство задачи можно найти здесь.

В нашем случае количество шагов влево P=2n/3, вправо Q=n/3, так что всего таких путей $\frac{1}{3}\binom{n}{n/3}$. Для фиксированного пути с P шагами влево и Q шагами вправо вероятность, что x пройдет именно его, равна $(1/3)^P(2/3)^Q=(1/3)^{2n/3}(2/3)^{n/3}$, так что:

$$P_2 = \frac{1}{3} \binom{n}{n/3} (1/3)^{2n/3} (2/3)^{n/3}$$

Символом $\stackrel{c}{\sim}$ будем обозначать «эквивалентность с точностью до константы», т.е:

$$[f \stackrel{c}{\sim} g] \iff [\exists C > 0: f \sim Cg]$$

С помощью формулы Стирлинга $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \stackrel{\text{c}}{\sim} \sqrt{n} \left(\frac{n}{e}\right)^n$ можно убедиться, что:

$$P_1 \stackrel{\text{c}}{\sim} \frac{1}{\sqrt{n}} \left(\frac{3}{2^{5/3}}\right)^n$$

$$P_2 \stackrel{\text{c}}{\sim} \frac{1}{\sqrt{n}} \left(\frac{1}{2^{1/3}}\right)^n$$

И поэтому вероятность успеха асимптотически хотя бы

$$P \ge P_1 \cdot P_2 \stackrel{\text{c}}{\sim} \frac{1}{\sqrt{n}} \left(\frac{3}{2^{5/3}} \right)^n \cdot \frac{1}{\sqrt{n}} \left(\frac{1}{2^{1/3}} \right)^n = \frac{1}{n} \left(\frac{3}{4} \right)^n$$

Однако этот алгоритм работает за O(n) времени! Его можно повторить много раз, увеличивая шансы на успех. В частности, если повторить его $n\left(\frac{4}{3}\right)^n = L$ раз, то имеем вероятность неудачи:

$$\left(1 - \frac{1}{L}\right)^L \le \frac{1}{e} \le \frac{1}{2}$$

Что и приводит нас к требуемому результату.

NB: А если повторить в q раз больше, то есть qn $\left(\frac{4}{3}\right)^n$ раз, то вероятность неудачи $\leq \left(\frac{1}{2}\right)^q$ можно выбрать сколь нужно малой.