

PCTWORLD INTELLECTUAL PROP
International E

WO 9606603A1

INTERNATIONAL APPLICATION PUBLISHED UNDEI

WO 96/06603

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 96/06603
A61K 31/135, 31/14, 31/16, 31/695, C07C 217/42, 217/48, 217/58, 233/36, C07F 7/10		(43) International Publication Date:	7 March 1996 (07.03.96)
(21) International Application Number:	PCT/US95/09724	(81) Designated States:	AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date:	2 August 1995 (02.08.95)	Published	<i>With international search report.</i>
(30) Priority Data:	08/296,640 26 August 1994 (26.08.94) US		
(71) Applicant:	ALCON LABORATORIES, INC. [US/US]; 6201 South Freeway, Fort Worth, TX 76134-2099 (US).		
(72) Inventors:	PARK, Joonsup; 3604 Lake Pontchartrain Drive, Arlington, TX 76016 (US). FALCETTA, Joseph, J.; 903 East Golf Road #903-1, Arlington Heights, IL 60005 (US).		
(74) Agents:	YEAGER, Sally et al.; Alcon Laboratories, Inc., 6201 South Freeway, Fort Worth, TX 76134-2099 (US).		

(54) Title: POLYALKYLENE OXIDE CONTAINING QUATERNARY AMMONIUM ANTIMICROBIAL AGENTS

(57) Abstract

Ophthalmic compositions of quaternary ammonium compounds containing a polyalkylene oxide moiety useful as antimicrobial agents are disclosed. Methods for using the compositions are also disclosed. In addition, polymers with no molecular weight distribution are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republik of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

1 Polyalkylene Oxide Containing Quaternary Ammonium Antimicrobial Agents
2
3
4
56 Background of the Invention
7
8

This invention is directed to ophthalmic compositions comprising quaternary ammonium compounds containing a polyalkylene oxide moiety. Some of the compounds are new. These polymeric compounds are useful as antimicrobial agents. The invention is also directed to exact molecular weight quaternary ammonium compounds containing a polyalkylene oxide moiety.

The antimicrobial activity of quaternary ammonium compounds is known; see for example, Petrocci, et al., *Dev. Ind. Micro.*, 20, Chapter 1 (1978); Petrocci, *Disinfection, Sterilization and Preservation*, Third Edition, Chapter 14 (1983); Hugo, et al., *Principles and Practices of Disinfection, Preservation and Sterilization*, Chapter 2 (1982). In addition, U.S. Patent No. 4,567,302 and EP 214,850 disclose quaternary ammonium compounds which contain polyalkylene oxide units; however, neither disclose the compounds of the present invention. U. S. Patent No. 4,110,263 discloses biquaternary ammonium compounds useful in cleansing compositions in combination with a detergent. The compounds are useful for shampoos, skin cleansers, baby and bubble baths. WO 91/09522 discloses ophthalmic compositions useful in the care of contact lenses. The compositions contain a quaternary ammonium substituted matrix material selected from proteinaceous materials, carbohydrate materials, or mixtures thereof. Unlike the compounds used in the present invention, the quaternary ammonium groups are substituents on a matrix material backbone rather than being part of the polyalkylene oxide polymer backbone. EP 0153 435 A1 discloses hair care compositions containing diquaternary nitrogen polyethylene glycol derivatives. CA 110(3), 23322K discloses the preparation of certain pentane diammonium debiomides as antimicrobial agents.

Polymeric disinfectants, in general, have shown weak antifungal activity although they exhibit remarkable antimicrobial activity against other organisms. This invention

1 discloses the use of particular polymeric disinfecting agents which have a broad spectrum
2 of antimicrobial activity, including antifungal activity.

3

4 **Summary of the Invention**

5

6 This invention is directed to contact lens care formulations and ophthalmic
7 formulations comprising certain quaternary ammonium compounds containing a
8 polyalkylene oxide moiety. The compounds are antimicrobials and are useful as
9 disinfecting agents and preservatives.

10

11 The invention is also directed to methods for using the compounds to disinfect
12 contact lenses and preserve contact lens care solutions and ophthalmic formulations.

13

14 **Detailed Description of Preferred Embodiments**

15

16 The ophthalmic formulations of this invention contain quaternary ammonium
17 compounds containing a polyalkylene oxide moiety of the following
18 general formula:

1 wherein:

2 $w = 0-10$;

3 $y = 0$ or 1 ;

4 R^2 and R^3 are the same, or different, and are selected from the group: C_1-C_{20} alkyl, benzyl
5 and substituted benzenes, aromatics and substituted aromatics and cycloalkyl and substituted
6 cycloalkyls; Q and E are the same, or different, and are selected from the group: H, C_1-C_{20}
7 alkyl, C_2-C_6 alkene, benzyl and substituted benzenes, aromatics and substituted aromatics,
8 cycloalkyl and substituted cycloalkyls; heteroatom containing long alkyl chain, silane and
9 siloxane; but, either Q and/or E must contain an alkyl structure of at least a C_5 alkyl, but
10 not more than a C_{20} alkyl moiety; Z has the following structure:

11 wherein:

12 R and R' are different and can be H, methyl or ethyl;

13 $n = 1-4$

14 $m = 0-4$

15 $x = 1-50$; and

16 A^- is a pharmaceutically acceptable anion, e.g. Cl^- , Br^- , I^- , $CH_3(C=O)-O^-$, etc.

17 Preferred compounds within the above defined structure have the following
18 formulas:
19
20
21

22 wherein $m = 7-17$, $n = 0-14$

The compounds are formulated into disinfecting and storage solutions for all types of contact lenses. The formulations can also be used as preserved saline solutions for rinsing and as an in the eye drop to rehydrate a lens and/or to soothe the eye. The compounds are also useful as preservatives in ophthalmic formulations other than lens care solutions, such as, ophthalmic pharmaceutical formulations. The compounds are present in the formulations at concentrations of about 0.0001 to 1.0 weight percent (wt. %), preferably 0.0001 to 0.1 wt. %, and most preferably about 0.0005 to 0.01 wt. %.

The compositions may contain other ingredients known to those skilled in the art of contact lens care solutions and/or ophthalmic pharmaceutical formulations.

The compounds of the present invention overcome some problems associated with prior antimicrobial compounds, such as benzalkonium chloride (BAC). Specifically, the use of BAC has the potential for inducing a toxic response, particularly after long term use.

Without intending to be bound by any theory it is believed that the polyalkylene oxide moieties of the quaternary ammonium compounds of the present invention are responsible for the compounds producing a relatively low toxic response in ophthalmic applications. It is also believed that the polyalkylene moieties decrease the interaction of the quaternary ammonium group of the compounds with other compounds of the ophthalmic formulations or the environment to which the ophthalmic formulation is applied. It is postulated that the electron donor properties of the polyalkylene oxide moiety interact with the quaternary ammonium group (an electron acceptor group) thereby decreasing the interaction of the quaternary ammonium group with other compounds. Furthermore, the polyalkylene oxide containing polymers have been used to reduce the interaction of polymers with biomaterials. The following data shows that the above compounds are active even in the presence of the sodium salt of polystyrene sulfonate while marked reduction in antimicrobial activity was observed from BAC under the same experimental conditions.

Survival Count of *P. aeruginosa*
in the Presence of BAC and Compound B*

Time (hr.)	BAC 0.05 %	Compound B (n=6, m=11, A=Cl) 0.05 %
0	1.2 X 10 ⁶	1.1 X 10 ⁶
1	1.2 X 10 ⁶	1.2 X 10 ⁶
6	8.0 X 10 ⁵	1.0 X 10 ⁵
24	2.7 X 10 ⁵	< 10
48	1.7 X 10 ⁵	< 10
70	1.3 X 10 ⁶	< 10
14 Days	1.5 X 10 ⁶	< 10

* The above formulations also contain the sodium salt of polystyrene sulfonate.

Two general schemes were employed to synthesize the compounds of the present invention. The monoquat compounds [A] were prepared starting from an aromatic substituted polyethylene oxide. An excellent starting compound was found to be p - nonylphenol polyethylene oxide. This compound was obtained as surfonic N-120 and N-60. The SURFONIC® N series of compounds, available from Texaco, are reaction products or adducts of nonylphenol and ethylene oxides. This was reacted with thionyl chloride and then converted to a tertiary amine and then the quaternary ammonium compound according to the following general scheme.

The diquat compounds such as [B] and [C] were prepared starting with hydroxy terminated polyalkylene oxides in the following general scheme of reactions.

Example 1**Synthesis of Compound A (n=10)**

Surfonic N-120 (6.55 g, 0.01 moles, from Texaco, Austin, TX) was reacted with 1.38 g (0.01 moles) of thionylchloride and 0.88 g (0.01 moles) of pyridine in 150 mL of toluene under reflux condition for 6 hrs. A precipitate was formed. The decanted organic layer was concentrated in vacuo and dissolved in chloroform (80 mL). This organic solvent was washed with satd. NaCl (10 mL X 3), dried over anhydrous Na₂SO₄, and evaporated to leave a liquid material (6 g). IR indicated no OH groups in the molecule.

The above chlorine compound (5 g, 0.0076 moles) was reacted with an excess amount of N,N-dimethylamine in 30 mL of dry THF (dried over LAH) under the pressure at 70°C for 24 hrs. and filtered. The filtrate was concentrated in vacuo and dissolved in chloroform (50 mL). This was washed with saturated NaCl solution and evaporated in vacuo to leave the corresponding tertiary amine (5 g, 100% yield). NMR spectrum shows singlet at 2.3 ppm for N(CH₃)₂.

The tertiary amine (2.27 g, 0.0034 mole) was then reacted with p-chlorobenzyl chloride (0.54 g, 0.0034 mole) in 20 mL of isopropanol under reflux conditions for 7 hrs. The concentrated reaction mixture was applied on a preparative C₁₈ reverse phase column with acetonitrile:H₂O (70:30) was used as an eluent. The corresponding fraction was collected and concentrated in vacuo to leave 1.5 g (51.9% yield) of the product: Elemental Analysis: Calcd. for C₄₈H₈₃Cl₁₂NO₁₂•1 1/2 H₂O: C, 59.80; H, 8.99; N, 1.45; Cl, 7.35; O, 19.91. Found: C, 59.90; H, 8.91; N, 1.61 NMR (CDCl₃) δ 7.55 and 6.75 (2d, 4, C₆H₄), 7.3-7.0 (broad, 4, C₆H₄), 5.0 (s, 2, O-CH₂), 4.1-3.4 (48, OCH₂CH₂), 3.3 (s, 6, N-CH₃) and 1.7-0.4 (19,(CH₂)₈CH₃).

Example 2**Synthesis of Compound B (n=6, m=11, A=Cl)**

By following the same procedure as described for the synthesis of A(n=10) with polyethylene oxide (molecular weight 400) 20 g (0.05 moles) was reacted with 6.6 g (0.055 moles) of thionyl chloride and 4.9 g (0.055 moles) of pyridine in 200 mL of toluene 20 g. (100% yield) of the product is obtained. No appreciable amount of hydroxyl group was detected by IR spectrum.

The above dichloro compound (4.0 g, 0.01 moles) was reacted with an excess amount of N,N-dimethyldodecyl amine at 130°C for 24 hrs with stirring to afford 7.0 g (83.9% yield) of the quat compound: Elemental Analysis: Calcd. for C₄₂H₈₆N₂O₉Cl₂ (834.05)•H₂O: C, 59.21; H, 10.41; N, 3.29. Found: C, 59.21; H, 10.70; N, 3.11. NMR (CDCl₃) δ 4.0-3.4 (broad, 40, OCH₂CH₂ and N-CH₂), 3.35 (s, 6, N-CH₃), 1.7 (broad, 4, -N-CH₂CH₂), 1.4-1.1 (app 25, 36, (CH₂)_n), and 0.8 (t, 6, -CH₂-CH₃).

Example 3**Synthesis of Compound C3 (n=6)**

The polyethylene oxide (MW 400) dichloro compound (2.45 g, 0.0061 moles) was reacted with 3.78 g (0.0127 moles) of n-(N,N-dimethylethyl)-tetradecanoyl amide (synthesized from myristoyl chloride and N,N-dimethylethylenediamine) at 125°C for 6 hrs. Purification by ethyl ether afforded 1.8 g (30% yield) of the desired product: Elemental Analysis: Calcd. for C₅₄H₁₁₂N₄O₁₀Cl₂ (1048.36)•1 H₂O C, 60.82; H, 10.79; N, 5.25. Found: C, 60.62; H, 10.83; N, 5.20. NMR (CDCl₃) δ 8.7 (broad s, 2, N-H), 3.8 (m, 44, CH₂CH₂O and N⁺-CH₂), 3.4 (d, 12, N-CH₃), 2.2 (t, 4, CH₂-C(=O)-), 1.6 (t, 4, C(=O)CH₂CH₂), 1.2 (s, 30, (CH₂)₁₀-CH₃) and 0.9 (t, 6, CH₃).

Example 4**Synthesis of Compound C2 (n=6)**

Following the same procedure as described for the synthesis of Compound C3 with 3.0 g (0.012 moles) of N-(N,N-dimethylethyl)-nonanoylamide (synthesized from nonanoyl chloride and N,N-dimethylethylene diamine) and 1.57 g (0.0038 moles) of polyethylene oxide (m.w. 400) - dichloro compounds, 2.2 g (59% yield) of the product was obtained. Elemental Analysis: Calcd. for $C_{44}H_{92}N_4O_9Cl_2$: C, 59.29; H, 10.40; N, 6.29: Found: C, 59.37; H, 10.71; N, 6.42. NMR ($CDCl_3$) δ 8.7 (broad s, 2, NH), 3.8 (m, 40, CH_2CH_2O - and N^+-CH_2); 3.4 (s, 12, N^+-CH_3), 0.9 (t, 6, CH_3), 2.3 (t, 4, C- CH_2), 1.6 (m, 4, N- CH_2CH_2), 1.3 (broad s, 24, $CH_3-(CH_2)$), 0.9 (s, 6, CH_3).

Example 5**Synthesis of Compound C1 (n=6)**

The polyethylene oxide (molecular weight 400) dichloro compound (5.1 g, 0.013 moles) was reacted with an excess amount of dimethylamine in 20 mL of tetrahydrofuran at 85°C for 16 hrs under pressure and concentrated *in vacuo* to remove the solvent. The remaining material was dissolved in ethylacetate and washed with saturated NaCl Solution. This reaction yielded 2.9 g (57%) of the desired tetramethyl-diamine compound. The structure has confirmed by NMR and IR spectra.

The above compound (2.3 g, 0.0058 moles) was reacted with (m.p.)-dimethylhexylsilylethylbenzyl chloride (3.9 g, 0.0131 moles) in 40 mL of isopropanol under reflux condition for 6 hrs. This reaction afforded 2.9 g (50.9% yield) of the desired product. Elemental Analysis: Calcd. for $C_{56}H_{106}N_2O_8Si_2Cl_2$ (1062.50)•1 H_2O :C, 62.24; H, 10.07; N, 2.59. Found: C, 62.49; H, 10.24; N, 2.67. NMR ($CDCl_3$) δ 7.4 (m, 8, - \emptyset), 5.0 (s, 4, - $\emptyset-CH_2-N^+$), 3.6 (m, 36, OCH_2CH_2) 3.4 (s, 12, N^+CH_3).

1 The degree of polymerization, represented in the above compounds by n, is an
2 expression of the number of structural units in a given polymer molecule. This number
3 actually represents the average degree of polymerization as all the molecules will not have
4 the same n. This invention is also directed to the use of polymers with an exact molecular
5 weight, that is, no distribution of molecular weight. New procedures for making the exact
6 molecular weight polymers are set forth below.

7

8 The following examples are directed to synthesis of exact molecular weight
9 compounds. Compounds B₄ and B₆ are most preferred.

10

11

Example 6

12

13

Synthesis of Exact Molecular Weight PEO Spacer Compounds

14

Compound	m	n	A
B ₁	13	2	Cl
B ₂	13	2	Br
B ₃	13	4	Cl
B ₄	13	4	Br
B ₅	13	6	Br
B ₆	11	4	Br

22

23

24

25

a) Compound B₁

26 16.00 g (82.4 mM) of tetraethylene glycol was reacted with 16.30 g (206 mM) of
27 pyridine and 24.50 g (206 mM) of thionyl chloride in dry chloroform (200 mL) at 65°C
28 for 5 hrs. The reaction was neutralized by addition of aq NaHCO₃ and the organic phase
29 washed with water (2 X 25 mL) then dried (MgSO₄). The filtrate was concentrated and
30 the residue distilled under reduced pressure (bp₁₀ 84–85°C) to provide 15.63 g (82%) of
31 tetraethylene glycol dichloride as a clear oil. 1.04 g (4.5 mM) of tetraethylene glycol
32 dichloride was reacted with 2.44 g (10.12 mM) of N,N-dimethyltetradecylamine in 0.3 g

1 of DMSO and heated at 100°C for 18 hrs. Upon cooling the solidified reaction product
2 was crystallized from ethyl acetate followed by recrystallization from ethyl acetate and
3 ethanol to give 0.9 g (28%) of **B₁** as white crystals, mp 106-108°C. ¹H NMR (200 MHz,
4 CDCl₃): δ 4.1-3.6 (broad, 20 H, OCH₂CH₂, NCH₂), 3.45 (S, 12 H, N-CH₃), 1.72 (broad, 4
5 H, NCH₂CH₂), 1.4-1.2 (broad, 44 H, (CH₂)_n), 0.88 (t, 6 H, -CH₂CH₃). Anal. Calcd. for
6 C₄₀H₈₆Cl₂N₂O₃•(1.25 H₂O): C, 65.23; H, 12.14; N, 3.92; Found: C, 65.29; H, 12.08; N,
7 3.84.

8

9 b) Compound **B₃**

10 15.00 g (53.1 mM) of hexaethylene glycol was reacted with 14.10 g (178 mM) of
11 pyridine and 20.8 g (175 mM) of thionyl chloride in dry chloroform (200 mL) at 65°C for
12 5 hrs. The reaction was neutralized by addition of aq NaHCO₃ and the organic phase
13 washed with water (2 X 25 mL) then dried (MgSO₄). The filtrate was concentrated and
14 the residue distilled under reduced pressure (bp₁₀ 147-152°C) to provide 11.63 g (69%) of
15 hexaethylene glycol dichloride as a clear oil. 4.8 g (15.0 mM) of hexaethylene glycol
16 dichloride was reacted with 8.81 g (36.5 mM) of N,N-dimethyltetradecylamine in 2 g of
17 DMSO and heated at 125°C for 15 hrs. The solidified reaction product was dissolved in
18 ethyl acetate and precipitated with hexane (X 3) to remove DMSO then crystallized from
19 ethyl acetate followed by recrystallization from ethyl acetate and ethanol to give 6.19 g
20 (51%) of **B₃** as white crystals. ¹H NMR (200 MHz, D₂O): δ 3.96-3.32 (broad, 28 H,
21 OCH₂CH₂, NCH₂), 3.13, 3.09 (2S, 12 H, N-CH₃), 1.75 (broad, 4 H, NCH₂CH₂), 1.4-1.2
22 (broad, 44 H, (CH₂)_n), and 0.86 (t, 6 H, -CH₂CH₃).

23

24 c) Compound **B₂**

25 10.48 g (53.9 mM) of tetraethylene glycol was reacted with 10.28 g (130 mM) of
26 pyridine and 27.0 g (130 mM) of thionyl bromide in dry chloroform (100 mL) at 70°C for
27 5 hrs. The reaction was neutralized by addition of aq NaHCO₃ and the organic phase
28 washed with water (2 X 25 mL) then dried (MgSO₄). The filtrate was concentrated and a
29 resulting sulfur precipitate removed by addition of chloroform and filtration through
30 Celite. The filtrate was concentrated and the residue distilled under reduced pressure (bp₁₀
31 100°C) to provide 7.71 g (45%) of tetraethylene glycol dibromide as an amber oil. 2.20 g
32 (6.88 mM) of tetraethylene glycol dibromide was reacted with 3.65 g (15.1 mM) of N,N-

1 dimethyltetradecylamine in 0.5 g of DMSO at 90°C for 15 hrs. The solidified reaction
2 product was crystallized twice from ethyl acetate to give 3.93 g (71%) of **B₂** as amber
3 crystals. ¹H NMR (200 MHz, D₂O): δ 4.0-3.4 (broad, 20 H, OCH₂CH₂, NCH₂), 3.19 (S,
4 12 H, N-CH₃), 1.8 (broad, 4 H, NCH₂CH₂), 1.4-1.2 (broad, 44 H, (CH₂)_n), and 0.86 (t, 6
5 H, -CH₂CH₃). Anal. Calcd. for C₄₀H₈₆Br₂N₂O₃•(0.5 H₂O): C, 59.17; H, 10.80; N, 3.45;
6 Found: C, 59.40; H, 10.54; N, 3.52.

7

8 d) Compound **B₄**

9 9.44 g (33.4 mM) of hexaethylene glycol was reacted with 6.38 g (80.7 mM) of
10 pyridine and 16.76 g (80.6 mM) of thionyl bromide in dry chloroform (100 mL) at 65°C
11 for 3 hrs. The reaction was neutralized by addition of water and stirred for 30 minutes
12 followed by washing of the organic phase with water until slightly acidic (2 X 25 mL, pH
13 = 4-5). The organic phase was dried (MgSO₄), the filtrate concentrated and a resulting
14 sulfur precipitate removed by addition of methanol and filtration through Celite (X 2).
15 The filtrate was concentrated and the residue was dried in vacuo to provide 8.85 g (65%)
16 of hexaethylene glycol dibromide as an amber oil. 2.26 g (5.53 mM) of hexaethylene
17 glycol dibromide was reacted with 2.94 g (12.2 mM) of N,N-dimethyltetradecylamine in
18 0.6 g of DMSO at 90°C for 15 hrs. The solidified reaction product was crystallized from
19 ethyl acetate followed by recrystallization from ethyl acetate and ethanol to give 3.17 g
20 (64%) of **B₄** as white crystals, mp 95-97°C. ¹H NMR (200 MHz, D₂O): δ 4.0-3.4 (broad,
21 28 H, OCH₂CH₂, NCH₂), 3.15 (S, 12 H, N-CH₃), 1.78 (broad, 4 H, NCH₂CH₂), 1.4-1.2
22 (broad, 44 H, (CH₂)_n), and 0.86 (t, 6 H, -CH₂CH₃). Anal. Calcd. for C₄₄H₉₄Br₂N₂O₅: C,
23 59.31; H, 10.63; N, 3.14; Found: C, 59.20; H, 10.59; N, 3.11.

24

25 e) Compound **B₅**

26 The synthesis of octaethylene glycol was performed by following the procedure
27 reported in *J. Org. Chem.*, 57, 6678, (1992) (Erik M. D. Keegstra, et al.): trityl chloride
28 was reacted with excess diethylene glycol to make a monotritylated diethylene glycol
29 intermediate (yield: 87%) followed by reaction of two equivalents of the monotritylated
30 compound with one equivalent of tetraethylene glycol di-p-tosylate to form the ditritylated
31 octaethylene glycol intermediate (yield: 95%) which was then converted to octaethylene
32 glycol by hydrogenolysis with hydrogen and palladium on charcoal catalyst (purity:

1 97.2%, by GC yield: 90%). Overall yield was 74%. 4.47 g (12.1 mM) of octaethylene
2 glycol was reacted with 2.30 g (29.1 mM) of pyridine and 6.07 g (29.2 mM) of thionyl
3 bromide in dry chloroform (100 mL) at 50°C for 5 hrs. The reaction was neutralized by
4 addition of water (25 mL) and stirred for 30 minutes followed by washing of the organic
5 phase with water until slightly acidic (3 X 20 mL, pH = 4-5). The organic phase was
6 dried ($MgSO_4$), the filtrate concentrated and the resulting sulfur precipitate removed by
7 addition of methanol and filtration through Celite (X 2). The filtrate was concentrated and
8 the residue dried in vacuo to provide 4.41 g (74%) of octaethylene glycol dibromide as an
9 amber oil. 2.91 g (5.86 mM) of octaethylene glycol dibromide was reacted with 3.12 g
10 (12.9 mM) of N,N-dimethyltetra-decylamine in 0.7 g of DMSO at 80°C for 15 hrs. The
11 solidified reaction product was crystallized from ethyl acetate followed by recrystallization
12 from ethyl acetate and ethanol to give 4.0 g (70%) of B_5 as white crystals. 1H NMR (200
13 MHz, D_2O): δ 4.0-3.35 (broad, 36 H, $OCH_2CH_2NCH_2$), 3.15 (S, 12 H, N- CH_3), 1.76
14 (broad, 4 H, NCH_2CH_2), 1.4-1.2 (broad, 44 H, $(CH_2)_n$), 0.86 (t, 6 H, - CH_2CH_3). Anal.
15 Calcd. for $C_{48}H_{102}Br_2N_2O_7$: C, 58.88; H, 10.50; N, 2.86; Found: C, 58.56; H, 10.28; N,
16 2.89.

17
18 f) Compound B_6

19 1.65 G (4.0 mM) of hexaethylene glycol dibromide was reacted with 1.90 g (8.9
20 mM) of N,N-dimethyldodecylamine in 0.44 g of DMSO and heated at 80°C for 15 hrs.
21 The solidified reaction product was crystallized from ethyl acetate followed by
22 recrystallization from ethyl acetate and ethanol to give 1.85 g (55%) of B_6 as white
23 crystals, mp 83-85°C. 1H NMR (200 MHz, D_2O): δ 4.0-3.35 (broad, 28 H, OCH_2CH_2 ,
24 NCH_2), 3.15 (S, 12 H, N- CH_3), 1.8 (broad, 4 H, NCH_2CH_2), 1.4-1.2 (broad, 36 H,
25 $(CH_2)_n$), 0.86 (t, 6 H, - CH_2CH_3). Anal. Calcd for $C_{40}H_{86}Br_2N_2O_5$: C, 57.54; H, 10.38; N,
26 3.36; Found: C, 57.68; H, 10.42; N, 3.30.

1 **Log Reduction of 0.001% Compounds***
2
3*A. fumigatus**S. marcescens*

Compound	6 hrs	24 hrs	6 hrs	24 hrs
B ₁	1.6	1.7	3.0	4.8
B ₂	1.7	2.6	2.9	4.1
B ₃	2.1	2.4	4.0	6.8
B ₄	1.4	2.7	3.2	3.9
B ₅	2.4	2.7	3.5	5.6
B ₆	2.2	3.2	2.2	3.7

11 * in 0.58% boric acid, 0.05% disodium EDTA, 0.18% sodium borate, 0.49% sodium
 12 chloride at pH 7.0
 13

16 **Example 7**17 Preserved Saline or Contact Lens Disinfecting Formulations

Ingredient	Concentration
Boric Acid	0.58%
Sodium Borate	0.18%
Sodium Chloride	0.49%
Disodium EDTA	0.10%
Compound B ₅	0.001%
Tetronic 1304	0.1%
NaOH/HCl	pH 7.4
Purified Water	q.s.

1 We claim:

2

3 1. A contact lens formulation comprising a compound having the structure:

11 wherein:

12 w = 0-10;

13 y = 0 or 1;

14 R² and R³ are the same, or different, and are selected from the group: C₁-C₂₀ alkyl, benzyl
15 and substituted benzenes, aromatics and substituted aromatics and cycloalkyl and substituted
16 cycloalkyls; Q and E are the same, or different, and are selected from the group: H, C₁-C₂₀
17 alkyl, C₂-C₆ alkene, benzyl and substituted benzenes, aromatics and substituted aromatics,
18 cycloalkyl and substituted cycloalkyls; heteroatom containing long alkyl chain, silane and
19 siloxane; but, either Q and/or E must contain an alkyl structure of at least a C₅ alkyl, but
20 not more than a C₂₀ alkyl moiety; Z has the following structure:

26 wherein:

27 R and R' are different and can be H, methyl or ethyl;

28 n = 1-4

29 m = 0-4

30 x = 1-50; and

31 A⁻ is a pharmaceutically acceptable anion.

32

33

34 2. The formulation of Claim 1 wherein the compound is selected from the group
35 consisting of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

wherein R and n are as defined below:

15

16

17

18

19

20

21

22

23

24

25

R

II

6-8

6-8

6-8

1 3. The formulation of Claim 1 wherein the compound is present at a concentration of
 2 0.0001% to 1.0%.

4 4. The formulation of Claim 3 wherein the compound is present at a concentration of
 5 0.0005% to 0.01%.

7 5. An ophthalmic formulation comprising a compound having the structure

16 wherein:

18 w = 0-10;

19 y = 0 or 1;

20 R² and R³ are the same, or different, and are selected from the group: C₁-C₂₀ alkyl, benzyl
 21 and substituted benzenes, aromatics and substituted aromatics and cycloalkyl and substituted
 22 cycloalkyls; Q and E are the same, or different, and are selected from the group: H, C₁-C₂₀
 23 alkyl, C₂-C₆ alkene, benzyl and substituted benzenes, aromatics and substituted aromatics,
 24 cycloalkyl and substituted cycloalkyls; heteroatom containing long alkyl chain, silane and
 25 siloxane; but, either Q and/or E must contain an alkyl structure of at least a C₅ alkyl, but
 26 not more than a C₂₀ alkyl moiety; Z has the following structure:

31 wherein:

32 R and R' are different and can be H, methyl or ethyl;

33 n = 1-4

34 m = 0-4

35 x = 1-50; and

36 A⁻ is a pharmaceutically acceptable anion.

1 6. The formulation of Claim 5 wherein the compound is selected from the group
 2 consisting of

6 wherein m = 7-17, n = 0-14

14 wherein R and n are as defined below:

R	n
$\text{CH}_3-(\text{CH}_2)_6-\underset{\substack{\text{CH}_3 \\ }}{\text{Si}}-\text{CH}_2\text{CH}_2-\text{C}_6\text{H}_4-\text{CH}_2-$	6-8
$\text{CH}_3-(\text{CH}_2)_{18}-\text{CONH}-\text{CH}_2\text{CH}_2-$	6-8
$\text{CH}_3-(\text{CH}_2)_{12}-\text{CONH}-\text{CH}_2\text{CH}_2-$	6-8

1 7. The formulation of Claim 5 wherein the compound is present at a concentration of
2 0.0001% to 1.0%.

3
4 8. The formulation of Claim 7 wherein the compound is present at a concentration of
5 0.0005% to 0.01%.

6
7 9. A method for disinfecting a contact lens; which comprises, applying the
8 composition of Claim 1 to the lens.

9
10 10. A method for preserving an ophthalmic formulation by adding a compound of
11 Claim 5 to the formulation.

12
13 11. A compound of the formula

18
19
20 wherein R is $\text{CH}_3-(\text{CH}_2)_6-\text{Si}(\text{CH}_3)_2-\text{CH}_2-\text{CH}_2-\text{Ar}-\text{CH}_2-$, n is an integer from 6 to 8 and A- is
21 a pharmaceutically acceptable anion.

22
23 12. A compound of the formula

28
29
30
31 wherein m is 13, n is 2 and A is Cl having a molecular weight of 714.05.

32

1 13. A compound of the formula

wherein m is 13, n is 2 and A is Br having a molecular weight of 802.95.

10

11 14. A compound of the formula

12

13

wherein m is 13, n is 4 and A is Cl having a molecular weight of 802.16.

21

22 15. A compound of the formula

23

24

wherein m is 13, n is 4 and A is Br having a molecular weight of 891.06.

31

32

1 16. A compound of the formula

wherein m is 13, n is 6 and A is Br having a molecular weight of 979.17.

17. A compound of the formula

wherein m is 11, n is 4 and A is Br having a molecular weight of 834.95.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/09724

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.
 US CL :514/616, 642, 643, 912, 915; 556/423; 564/159, 282, 286, 287, 294
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/616, 642, 643, 912, 915; 556/423; 564/159, 282, 286, 287, 294

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO, A, 91/09522 (ALLERGAN, INC.) 11 July 1991, see entire document.	1-10, 12-17
Y	US, A, 5,242,684 (MERICANOS) 07 September 1993, see entire document.	1-10, 12-17
Y	US, A, 4,567,302 (SIVARAMAKRISHNAN) 28 January 1986, see entire document.	1, 3-5, 7-10
Y	US, A, 4,110,263 (LINDEMANN ET AL.) 29 August 1978, see entire document.	1-10, 12-17

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier document published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

15 NOVEMBER 1995

28 NOV 1995

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231
 Facsimile No. (703) 305-3230

Authorized officer
 PETER G. O'SULLIVAN
 Telephone No. (703) 308-1235

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/09724

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

A61K 31/135, 31/14, 31/16, 31/695; C07C 217/42, 217/48, 217/58, 233/36; C07F 7/10