Introduction to Quantum Machine Learning

leva Čepaitė

Machine Learning

- Learning: finding patterns in previous experience which help us to deal with an unknown situation.
- "Art and science of making computers learn from data how to solve problems instead of being explicitly programmed."

	Supervised	Unsupervised
Discrete	Classification, Categorisation	Clustering
Continuous	Regression	Dimensionality Reduction

Generative models
vs.
Classifiers

Machine Learning

TRAINING DATA:

 Information we have that can help us reach the correct solution

MODEL:

• Spits out solutions: generator, classifier, etc.

PARAMETERS

METRIC

 How close is the model to behaving in a way that we want it to?

TRAINING

Reframing: Quantum Information

- New context for ML algorithms: QC is a MODEL.
- What can we do to the quantum state? (Algorithms)

- Hamiltonians, Unitary transformations
- What information can we extract from it?
 - Measurement: which observables?

Quantum vs. Classical

- CC: Tensor Networks, Quantum-inspired ML algorithms
- QC: ML aided processing of Quantum data
- CQ: Quantum algorithms for processing classical data sources: basically ML with a quantum 'touch'.
- **QQ**: 'Quantum' data (measurement outcomes OR states) fed into another quantum system.

Variational Quantum Algorithms

METRIC

Variational Quantum Eigensolver: An Example

Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator

Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos
Phys. Rev. X 8, 031022 – Published 24 July 2018

A Qumode Example:

A Qumode Example:

Questions?

References and further reading material:

Biamonte, Jacob et al. "Quantum Machine Learning." Nature 549.7671 (2017): 195–202.

Killoran, Nathan et al. "Continuous-Variable Quantum Neural Networks." Physical Review Research 1.3 (2019)

Hempel, Cornelius et al. "Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator." Physical Review X 8.3 (2018)

Schuld, Maria & Petruccione, Francesco "Supervised Learning with Quantum Computers" Springer (2018)

Schuld, Maria et al. "Evaluating Analytic Gradients on Quantum Hardware." Physical Review A 99.3 (2019)

Liu, Jin-Guo, and Lei Wang. "Differentiable Learning of Quantum Circuit Born Machines." Physical Review A 98.6 (2018)

... and many, MANY more.