

FEDERATED LEARNING: EMPIRICAL STUDY WITH CIFAR-100 AND SHAKESPEARE

Analyzing Communication, Data Heterogeneity and their effect on Training

Fiata Rosamaria: s329502

Galtieri Chiara: s331345

Taormina Nicolò: s331853

INTRODUCTION

Federated Learning (FL) enables multiple clients to train a model keeping their data local

BACKGROUND

FEDERATED AVERAGING ALGORITHM (FedAvg)

STATISTICAL HETEROGENEITY

Non-IID data leads to biased models.

CLIENT PARTICIPATION

Some clients may have more data than others.

OUR EXPERIMENTS DATASET

CIFAR-100

SHAKESPEARE from LEAF benchmark suite

Each client has a similar distribution.

NON-IID PARTITIONING

Clients received data from a limited subset of classes (Nc)

CLIENT PARTITIONING STRATEGIES

UNIFORM PARTICIPATION

Equal probability of being selected.

SKEWED PARTICIPATION

Clients are sampled in each round using a Dirichlet distribution.

MODEL ARCHITECTURES

CIFAR-100's model: LeNet-5

MODEL ARCHITECTURES

SHAKESPEARE's model: LSTM

CENTRALIZED TRAINING BASELINE

• Reference point: Training with centralized data.

Dataset	Accuracy (%)	Loss
CIFAR-100	49.24	2.12
Shakespeare	55.26	2.15

Table 2. Result Centralized Training

Hyperparameter tuning for optimal performance.

FEDERATED LEARNING EXPERIMENTS

- FedAvg algorithm for FL.
- 100 clients, 10%
 participate per round.
- Local training steps $J = \{4, 8, 16\}.$
- *Uniform vs. Skewed* participation.

IMPACT OF CLIENT PARTICIPATION

Dataset	Skewness (γ)	Accuracy (%)	Loss
	0.1	37.55	2.82
CIFAR-100	0.5	37.49	2.75
	1.0	39.71	2.76
Shakespeare	0.1	38.58	2.99
	0.5	39.05	2.97
	1.0	40.51	2.76

Table 3. Impact of Client Participation Strategies (Uniform vs Skewed

- Uniform participation \rightarrow Balanced updates.
- Skewed participation → Faster convergence but biased updates.

IMPACT OF LOCAL TRAINING STEPS

- More local steps → Fewer communication rounds.
- J = 8 is optimal: improves accuracy, avoids overfitting.
- J = 16 → Risk of client drift.

KEY FINDINGS

Best trade-off in FL:

 \rightarrow Uniform participation (more stable updates), J = 8(balances local training & communication), and proper client selection.

14

- *Literature*: Modifications to the algorithm to mitigate client drift.
- Our Approach: Modifications to the training pipeline, introducing an intermediate model exchange before aggregation.
- Goal: Improve generalization and mitigate client drift.

Two-Phase Training Implementation

- *Phase 1*: Local training (J/2 epochs).
- Model shuffling: Clients receive different models.
- Phase 2: Additional local training (J/2 epochs).
- Final aggregation: Standard Fed Avg.

Two-Phase Training Performance

J	Standard (%)	Two-Phase (%)	Difference
4	38.25	39.16	+0.91
8	38.15	37.48	-0.67
16	38.85	40.23	+1.38

Table 5. Two-Phase Training Results (IID Setting)

N_c	J	Standard (%)	Two-Phase (%)	Difference
1	4	38.93	40.20	+1.27
1	8	39.62	38.40	-1.22
1	16	38.23	36.88	-1.35
5	4	37.48	38.47	+0.99
5	8	39.17	40.17	+1.00
5	16	40.01	40.44	+0.43
10	4	37.80	36.15	-1.65
10	8	39.85	38.29	-1.56
10	16	39.56	40.83	+1.27
50	4	37.48	40.56	+3.08
50	8	38.80	39.07	+0.27
50	16	39.28	39.74	+0.46

Table 6. Two-Phase Training Results (Non-IID Setting)

• Improvement in accuracy: Up to +3.08% improvement in heterogeneous settings.

- Increased Communication Overhead: Two-phase training results in higher communication costs.
- Privacy Concerns: The current approach makes clients more vulnerable to various attack strategies (e.g., white-box Membership Inference Attack).

Key Takeaways

- Non-IID data negatively impacts FL models.
 - Optimal local steps (J) balance accuracy & communication.
- Two-phase training mitigates client drift but increases overhead.

THANK YOU FOR YOUR ATTENTION!

Fiata Rosamaria: s329502

Galtieri Chiara: s331345

Taormina Nicolò: s331853