Bioinformática: que bicho é este?

Alan Mitchell Durham

Departamento de Ciência da Computação da USP

aland@usp.br

Bioinformática: que bicho é este?

Áreas que utilizam Bionformática

- Agronegócio
 - Melhoramento animal e vegetal
 - Combate a pragas
- Medicina/Veterinára
 - Caracterização de patógenos
 - Diagnóstico preciso de doenças infecto-contagiosas
 - Desenvolvimento de vacinas
 - Diagnóstico precoce de doenças, incluindo as congênitas
 - Desenvolvimento de novos remédios
 - Análise de imagens diagnósticas
- Biologia em Geral
 - sequenciamento de genomas
 - Compreensão dos mecanismos de funcionamento da célula
 - Análise da arvore da vida
 - Classificação de microorganismos

Mas antes precisamos saber...

- COMO FUNCIONAM OS SERES VIVOS?
- (o dogma básico da Biologia Molecular)

Mas antes precisamos saber...

- COMO FUNCIONAM OS SERES VIVOS?
- (o dogma básico da Biologia Molecular)
- As proteínas são constituintes fundamentais de nosso corpo
 - Função estrutural
 - Controle do metabolismo
- Nossos cromossomos contém a informação essencial para formação do ser
 - Clonagem!
- Cromossomos contém o código para produção das proteínas

Dos Cromossomos às Proteínas (para computeiros)

Dos Cromossomos às Proteínas (para computeiros Cientistas da computação)

Dos Cromossomos às Proteinas (para computeiros Cientistas da computação)

Dos Cromossomos às Proteinas:

para Biólogos The Central Dogma of Molecular Biology

Dos Cromossomos às Proteinas: Transcrição

Dos Cromossomos às Proteinas: Splincing

Tradução (mRNA - Proteina)

Proteinas - estrutura

- Estrutura tridimensional importante para entender mecanismos de atuação da proteína
 - "relevo" e "cargas" explicam interações

Redes Metabólicas

- Sistemas biológicos são o produto de interações complexas entre moléculas
- Estas moléculas formam redes complexas e estímulos e repressões
- O entendimento profundo do proceso celular vem do estudo destas redes

Redes Metabólicas: exemplo (met. purinas)

Não acabou: o "mundo"do RNA

- Nas últimas décadas descobrimos que apenas as proteínas não explicavam a complexidade dos seres
- A maior parte do genoma é transcrita e os RNAs não traduzidos formam componentes importantes de nosso

Podemos olhar as áreas da Bionformática baseados no Dogma

- DNA e GENOMA:
 - Sequenciamento: descobrindo as bases
 eliminacao de contaminantes,, trimagem de primers e
 vetores, descartar sequências com baixa qualidade
 montagem de sequencias (varios pedaços, quebra
 cabeças)
- mRNA e TRANSCRIPTOMA
 - Anotação: onde estão os genes e o que fazem?
 predição de genes RNA, Proteinas
 Caracterização de grupos de genes função por semelhança
 - Caracterização de RNAs não codificantes

Podemos olhar as áreas da Bionformática baseados no Dogma

 ESTRUTURA TRI-DIMENSIONAL predição de estrutura tridimensional tRNA, ncRNA Proteinas

- ENCONTRANDO REDES METABÓLICAS: biologia de sistemas análise de dados de expressão de genes diagnóstico descobrimento de vias metabólicas Simulação
- EVOLUÇÃO DO DNA: filogenia molecular relação evolutiva entre genes ou espécies evolução no sentido darwiniano, por favor.

De onde viemos: a Bioinformática no Brasil

- Brasil: AX vs DX
 - (Antes do Projeto Xylella vs. Depois do Projeto Xylella)
- Domínio da tecnologias modernas de seqüenciamento projetos genoma análise de dados de expressão (quais RNAS mensageiros foram transcritos e quando)
- 🔃 não paramos aí
 - modelagem e dinâmica de proteínas
 - simulação de redes metabólicas
 - Biologia de sistemas
 - etc.

Qual a grande diferença?

- introdução do uso intensivo de ferramentas computacionais
 - métodos biológicos extremamente caros
 - projetos genoma propiciaram infinidade de informações e dados para análise
 - processos computacionais podem ser utilizados para análise exaustiva
- 🔃 importância da validação
 - computação é atividade meio não atividade fim
 - métodos computacionais e estatísticos são poderosos geradores de hipóteses
 - métodos biológicos, associados a análise estatística cuidadosa validam hipóteses
 - cuidado: análises nunca são melhores que a qualidade dos dados

Para onde vamos? (uma perspectiva de CC)

- 🛮 análises mais rápidas: paralelização
- novas análises:desenvolvimento de novas ferramentas de análise
- construindo análises mais rápido: plataformas de análise

Processamento paralelo

- inúmeros problemas em bioinformática sofrem de limitações computacionais:
 - alinhamento múltiplo
 - busca de similaridade
 - estrutura de proteínas
 - predição de estruturas secundárias
 - etc.

Processamento paralelo

- paralelismo muitas vezes propagado como uma solução "mágica" para o problema.
- porém, podemos usar o termo paralelismo em vários sentidos
- muitas cpus vs muitos computadores
 - multiprogramação vs. algoritmos paralelos vs processamento distribuído

Processamento paralelo

- Aplicabilidade restrita de cada um.
 - multi-programação utilizada para executar programas que rodam independentemente e podem rodar ao mesmo tempo, seja dividindo apenas uma cpu ou várias
 - processamento distribuído indicado para realizar tarefas diferentes que cooperam entre si
 - algoritmos paralelos dividem uma tarefa individual em várias tarefas que podem ser executadas simultaneamente
- Algoritmos paralelos são a tecnologia mais promissora
 - Mais em evidência com arquiteturas multi-core e com novas tecnologias de integração
 - projetos de paralelização são complexos e nem sempre viáveis
- Uso de GPUs em Bioinformática parece particularmente promissor

Novas ferramentas

- uma das áreas mais desafiadoras da bioinformática
- uma das áreas mais complexas de pesquisa
 - necessidade de interação próxima de pesquisadores de áreas complemente distintas: ciências da vida vs. ciências "exatas"
 - metodologias diferentes
 - linguagens diferentes
 - cuidados formais diferentes
 - visão diferente da questão de sigilo
 - visão diferente do que são resultados satisfatórios
- porém é a área onde os grandes saltos de qualidade podem ser alcançados
 - afirmação inclui novas ferramentas não computacionais

Novas ferramentas de bioinformática (continuação)

- Simuladores
 - modelos matemáticos e computacionais para reprodução de comportamentos interdependentes
 - simuladores paralelos de redes metabólicas
 - sistemas dinâmicos com equações diferenciais
 - •
- Análise combinatória
 - alinhamento múltiplo e análise filogenética
 - detecção automática de inversões

Novas ferramentas (continuação.)

- Otimização e Análise Numérica redução de dimensionalidade (microarrays) sistemas dinâmicos
- Bancos de dados
- Aprendizado Computacional e reconhecimento de padrões
- Biologia de sistemas

Novas ferramentas de bioinformática : bancos de dados

realidade

- Volume extremamente grande de novos dados (apenas o Genoma Humano tem 4 bilhões de pares de bases, ao menos 30.000 genes com até 100.000 variantes, sem falar de todas as possíveis redes metabólicas)
- Até projetos de sequenciamento de porte médio envolvem milhares milhões de sequências
- Número inimaginável de possíveis relações
- Grande parte dos dados ainda guardados em arquivos simples não estruturados (.txt, .doc, .xls,)
- Área extremamente promissora

Novas ferramentas: reconhecimento de Padrões

- criação de função matemática para caracterização de fenômenos
- 🛽 isso me interessa?
 - Encontrar os genes de um novo genoma
 - Quais regiões determinam a ativação de um gene?
 - Como descobrir RNAs não codificastes funcionais -
 - famílias de proteínas/genes
 - processamento de imagens (reconhecimento de características, limpeza de ruído, etc.)
- algumas tecnologias
 - gramáticas estocásticas, modelos de covariancia
 - HMMs Cadeias Ocultas de Markov
 - redes neurais
 - morfologia matemática

Aprendizado Computacional

- diferente de sistemas inteligentes
- utilizado quando conhecimento biológico não é suficiente
- Aprendizado supervisionado:
 - Conhecemos dados em categorias diferentes e queremos criar classificador:
 - Diagnóstico de câncer baseado em dados de expressão de genes
 - Caracerizaçãod eu ma família de genes
 - necessário um bom conjunto de caracterização
- Aprendizado não supervisionado (clusterização)
 - Utilizamos medidas para agrupar elementos de um universo em conjuntos

Um exemplo: gramáticas

- Gramáticas: mecanismo de descrição de uma linguagem
- Linguagem: um conjunto de frases
 - nucleotídeos são as palavras
 - seqüências são as frases

ou

- codons são as palavras
- proteínas são as frases
- Gramáticas podem ser utilizadas para
 - Reconhecimento
 - Geração
 - Aprendizado computacional

Um exemplo familiar

- Frase ::= sujeito predicado
- 🛮 sujeito ::= artigo nome
- artigo ::= a | o
- □ nome ::= cão | moça | dia
- predicado ::= verbo adjetivo
- 🖸 verbo ::= está | estava
- adjetivo ::= feliz | triste

Frase ->

Frase ->

->sujeito predicado ->

```
Frase ->
```

- ->sujeito predicado ->
- -> artigo nome predicado ->

```
Frase ->
```

- ->sujeito predicado ->
- -> artigo nome predicado ->
- -> a nome predicado

```
Frase ->
```

- ->sujeito predicado ->
- -> artigo nome predicado ->
- -> a <u>nome</u> predicado
- -> a moça predicado ->

```
Frase ->
```

- ->sujeito predicado ->
- -> artigo nome predicado ->
- -> a <u>nome</u> predicado
- -> a moça predicado ->
- ->a moça <u>verbo</u> adjetivo->

```
Frase ->
```

- ->sujeito predicado ->
- -> artigo nome predicado ->
- -> a <u>nome</u> predicado
- -> a moça predicado ->
- ->a moça <u>verbo</u> adjetivo->
- -> a moça está adjetivo ->

```
<u>Frase</u> ->
```

- ->sujeito predicado ->
- -> artigo nome predicado ->
- -> a <u>nome</u> predicado
- -> a moça predicado ->
- ->a moça <u>verbo</u> adjetivo->
- -> a moça está adjetivo ->
- -> a moça está feliz

```
Frase ->
```

- ->sujeito predicado ->
- -> artigo nome predicado ->
- -> a <u>nome</u> predicado
- -> a moça predicado ->
- ->a moça <u>verbo</u> adjetivo->
- -> a moça está adjetivo ->
- -> a moça está feliz
- -> a moça está feliz

Exemplos de fenômenos genéticos que podem ser modelados

Gramática livre de contexto

- $\square S := a S u \mid u S a \mid c S g \mid g S c \mid A$
- $\square A := A a \mid A u \mid A c \mid Ag \mid nil$

```
\underline{S} \rightarrow \underline{aSu} \rightarrow
```

- ->ac<u>Sgu</u>->
- ->acgScgu->
- ->acga<u>S</u>ucgu->
- ->acgauSaucgu ->
- ->acgauAucgu->
- ->acgauAcucgu->
- ->acgauAccucgu->
- ->acgauAuccugu->
- ->acgauuccugu

Gramática livre de contexto

 $\square S := a S u \mid u S a \mid c S g \mid g S c \mid SS$

Desenvolvimento de software

- desenvolvimento moderno de software
 - modularidade
 - abstração
 - encapsulamento
- encapsulamento
 - detalhes de implementação do software não precisam ser conhecidos nem pelos usuários, nem pelos sistemas que os utilizam
 - visão dos componentes é abstrata, apresentando um modelo em geral mais simples da realidade

Desenvolvimento de software: abstração

- modularidade
 - desenvolvimento de componentes facilmente intercambiáveis
 - ex. trocar dois programas de alinhamento sem nenhum trabalho adicional
 - interface padrão
 - e.g. motor de automóvel, caixa de câmbio,...
- 🛮 plataformas de análise
 - criação de ambientes para desenvolvimento de sistemas específicos
 - exemplo similar: programas de desenho
 - paintbrush
 - corel draw
 - autocad

Plataformas de análise

- aumento grande de produtividade para desenvolvimento de novos sistemas
 - usuário compõe soluções a partir de elementos pré definidos (triangulos, retangulos, retas)
- baixo custo de customização para necessidades específicas
 - componentes configuráveis (mudança de cor, de traço na linha, espessura de linha)
- gostaríamos de algo semelhante para processamento de dados biológicos
- poucos sistemas até agora na área de bioinformática
- amplo espectro de desenvolvimento

Desenvolvimento de plataformas: questões a tratar

- inicialmente definir escopo de atuação
- 🛮 análise das soluções atuais
- 🛮 existe boa definição das tarefas?
- soluções apresentam estrutura comum?
- podemos isolar componentes de soluções que se repetem?
- criar um modelo para integração dos componentes para, a partir deles, descrever as soluções atuais

Desenvolvimento de Plataformas: ToPS

•

Lições a lembrar

- interação interdisciplinar é essencial
- 🛮 o pesquisador de C. Computação
 - modelagem computacional flexível e fácilmente extensível
 - entendimento ao menos parcial do problema para criação de um modelo computacional que registre as características do problema
- 🛮 o pesquisador da área do domínio do problema
 - ententimento da variabilidade das soluções
 - auxílio no desenvolvimento da interface de configuração de soluções: a ferramenta precisa falar "biologuês".
 - análise critica dos resultados

Uma lição importante: uma andorinha só não faz verão

pode ser um erro grave:

 uso de ferramentas computacionais sem a devida compreensão de suas limitações

blast vs s.waterman vs. n. wunch alinhamento múltiplo e análise filogenética

 uso de técnica computacional sem a compreensão da da biologia análise filogenética e hipóteses de evolução psi-blast, matrizes de substituição predição de genes

• • •

Conclusões

- área de bioinformática tem amplo espectro
- conhecimentos nas duas áreas é importante
 - interação entre pesquisadores
 - formação multi-disciplinar
- várias abordagens
 - desenvolvimento de sistemas e/ou plataformas de análise
 - bancos de dados
 - uso de novas tecnologias aprendizado computacional

•

Conclusões

- Alguns temas não abordados
 - genética de populações
 - análise filogenética
 - modelagem e dinâmica de proteínas
 - construção automática de redes metabólicas
 - análise de expressão gênica
 - Processamento de dados médicos
 - Neurociência
- Algumas áreas não citadas mas ativas na área
 - Teoria dos grafos e Combinatória
 - Processamento de Imagens
 - Sistemas Dinâmicos

Como estudar bionformática

- Nosso departamento é um dos centros importantes de pesquisa e ensino em bionformática
 - Sede do primeiro programa de doutorado na área no Brasil (2002)
- Bionformática é parte da trilha de E-science, mas é possível atuar a partir de outras áreas
- Iniciação científica com um dos vários professores atuantes na área
 - Alair P. Do Lago, Carlos Eduardo Ferreira, <u>Alan M.</u>
 <u>Durham</u>, André Fujita, João Eduardo Ferreira, Kelly Braguetto, Roberto Hirata, Ronaldo Hashimoto

OBRIGADO!