

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 05.12.77 (21) 2552906/25-27

(11) 659260

(61) М. Кл.²

В 21 Н 8/00
В 21 В 3/00

с присоединением заявки № -

(23) Приоритет -

Опубликовано 30.04.79. Бюллетень № 16

(53) УДК 621.77.04
(088.8)

Дата опубликования описания 30.04.79

(72) Авторы
изобретения

А.В.Фролов, В.Ф.Калугин, Е.И.Разуваев, Б.Н.Аксенов,
В.С.Теренин и Д.Е.Герасимов

(71) Заявитель

(54) СПОСОБ ПОЛУЧЕНИЯ ТОЛСТЫХ ЛИСТОВ ИЗ АЛЮМИНИЕВЫХ,
ЖАРОПРОЧНЫХ И ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стальных конструкций, резервуаров, корпусов морских судов, труб из алюминиевых жаропрочных и титановых сплавов, применяемых в различных отраслях народного хозяйства, таких как судостроение, энергетическое и транспортное машиностроение, самолетостроение и др.

Известен способ получения толстых листов методом горячей прокатки на гладких валках [1].

недостатком известного способа является то, что он не обеспечивает получение качественных толстых листов из-за недостаточной проработки структуры и сечения заготовки.

Известен способ получения толстых листов из алюминиевых, жаропрочных и титановых сплавов путем штамповки исходной заготовки с последующей ее прокаткой [2].

Однако недостаточные степени обжатий приводят к неравномерному зерну по сечениям и снижению механических характеристик.

Целью изобретения является повышение физико-механических свойств получаемых изделий.

Для достижения цели прокатку ведут при соотношении длины дуги захвата валков к средней геометрической толщине заготовки, равном 0,9-2,7, причем обжатие за проход составляет 30-50%.

Для определения численных значений указанного соотношения задавались различными диаметрами прокатных валков, исходными и конечными толщинами прокатываемых листов и различными степенями деформации, после чего вязали нижний и верхний пределы результатов подсчетов по формуле

$$\frac{e_0}{h_{cp}} = \frac{\sqrt{R \cdot h}}{\sqrt{h \cdot h}}$$

где R - радиус прокатного валка;
h - исходная толщина заготовки;
h - конечная толщина листа.

Для большего выравнивания скоростей течения поверхностных и серединных слоев производится подстуживание поверхности металла при входе заготовки в валки струей сжатого воздуха.

Прокатка с соотношением $\frac{e_0}{h_{cp}} = 0,9-2,7$ позволяет увеличить угол зах-

вата валков, катать заготовки практических любых толщин и давать обжатия до 30-50% за проход. Скорость вращения валков для лучшей проработки структуры и более полного прохождения процессов рекристаллизации колеблется в пределах 0,3-0,6 м/сек.

Получение более равномерного зерна требует, чтобы температура конца прокатки была достаточно высокой: для жаропрочных сплавов не ниже температуры рекристаллизации, для титановых - на 30-50°C ниже температуры рекристаллизации и для труднодеформируемых алюминиевых на 50-60°C ниже температуры начала прокатки.

В конечном итоге полученные после прокатки толстые листы подвергаются термической обработке - отжигу по стандартному режиму для каждой группы сплавов для снятия наклена после пластической деформации и выравнивания структуры по сечению.

Горячая прокатка с обжатиями в 30-50% за проход позволяет улучшить проработку структуры по сечению заготовки, получить более равномерное зерно, увеличить производительность труда из-за снижения количества пропусков. Применение обжатий ниже 30% не обеспечивает проработку структуры заготовки по глубине, а выше 50% не позволяют возможности современного оборудования.

5

10

15

20

25

30

В опытно-лабораторных условиях проводилось опробование предлагаемого способа. Проводилась прокатка толстых листов из титанового сплава ВТ6. Химический состав сплава, %: 6,1 Al; 5,0 V; 0,08 C; 0,25 Fe; 0,1 Si; 0,15 O₂; 0,03 N₂; 0,01 H; 0,25 прочих примесей, остальное титан.

Предварительно штампованный заготовка размером 40x300x600 мм нагревалась до 1050°C, после чего производилась прокатка на валках, обеспечивающих коэффициент трения между контактной поверхностью валка и толстого листа 0,5 отношением $\mu_p / \mu_{cr} = 1,1$ и обжатиями 30% за проход. Последние 2 прохода производились на гладких валках для получения качественной поверхности и выравнивания разницы по толщине. Скорость вращения валков составляла 0,5 м/с.

При входе металла в валки осуществлялось подстигивание поверхностных слоев заготовки направленной струей сжатого воздуха. Полученные после прокатки толстые листы подвергались термообработке по режиму: нагрев до 800°C, выдержка 30 мин, охлаждение с печью до 500°C, далее на воздухе.

Результаты испытания полученных толстых листов из материала ВТ6 и размеры исходной и конечной заготовок приведены в таблице.

Способ	Состояние контрольных образцов		Температура испытания, °C	Механические свойства		Размеры исходной заготовки			Размеры конечной заготовки		
	напряжение, кгс/см ²	обжатие, %		длина, мм	ширина, мм	толщина, мм	длина, мм	ширина, мм	толщина, мм		

Предлагаемый	Отожженный	20	95	8	600	300	40	1500	315	15
--------------	------------	----	----	---	-----	-----	----	------	-----	----

Известный	-	20	88	8	1200	1000	400	2900	1100	150
-----------	---	----	----	---	------	------	-----	------	------	-----

Использование способа обеспечивает по сравнению с существующими способами возможность получения толстых листов из алюминиевых, жаропрочных и титановых сплавов с проработкой структуры на всю глубину заготовки с получением равномерного зерна по всему сечению полученной заготовки, кроме того, предлагаемый способ позволяет получить физико-механические свойства выше на 3,0%.

55

60

Формула изобретения

Способ получения толстых листов из алюминиевых, жаропрочных и титановых сплавов путем штамповки исходной заготовки с последующей ее прокаткой, отличающейся тем, что, с целью повышения физико-механических свойств получаемых изделий, прокатку ведут при соотношении длины дуги захвата валков к средней геометрической толщине за-

готовки, равном 0,9-2,7, причем
обжатие за проход составляет 20-50%.
Источники информации, принятые
во внимание при экспертизе
1. Бровман М.Я., Зеличенок Б.Ю.,
Гершев А.И. Усовершенствование тех-

нологии прокатки толстых листов.
"Металлургия", М., 1969, с.22-27.
2. Заявка № 2436814/27,
кл. В 23 Р 3/00, 1977, по которой
было принято решение о выдаче ав-
торского свидетельства.

Составитель И.Ментягова
Редактор Т.Морозова Техред С.Мигай Корректор И. Муска
Заказ 2098/2 Тираж 1033 Подписьное
ЦНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, К-35, Раушская наб. 1 д. 4/5
Филиал ПИИП "Патент", г.Ужгород, ул.Проектная, 4