第2节矩阵的相似对角化

安徽财经大学

统计与应用数学学院

目录

- 1 相似矩阵的基本概念
- ② 矩阵的相似对角化

- 1 相似矩阵的基本概念
- 矩阵的相似对角化

矩阵的相似

在习题 1.3 的第 13 题中,我们已经知道,如果已知可逆矩阵 P,且 $P^{-1}AP=\Lambda$ (对角矩阵) = $\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$,则 $A=P\Lambda P^{-1}$,且

$$A^k = PA^kP^{-1} = P\begin{pmatrix} \lambda_1^k & \\ & \lambda_2^k \end{pmatrix}P^{-1}.$$

对于同阶方阵 A, B, 如果存在可逆矩阵 P, 使得 $P^{-1}AP = B$, 那么对于 A = B 之间的这种关系,我们给出如下定义:

定义 (4.2.1)

对于 n 阶矩阵 A,B, 若存在可逆矩阵 P, 使 $P^{-1}AP=B$, 则称 A 与 B 相似, 记为 $A\sim B$.

矩阵的相似

在习题 1.3 的第 13 题中,我们已经知道,如果已知可逆矩阵 P,且 $P^{-1}AP=\Lambda$ (对角矩阵) = $\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$,则 $A=P\Lambda P^{-1}$,且

$$m{A}^k = m{P}m{\Lambda}^km{P}^{-1} = m{P}igg(egin{array}{cc} \lambda_1^k & \ & \lambda_2^k \ \end{array}igg)m{P}^{-1}.$$

对于同阶方阵 A, B, 如果存在可逆矩阵 P, 使得 $P^{-1}AP = B$, 那么对于 A 与 B 之间的这种关系,我们给出如下定义:

定义 (4.2.1)

对于 n 阶矩阵 A, B, 若存在可逆矩阵 P, 使 $P^{-1}AP = B$, 则称 A 与 B 相似, 记为 $A \sim B$.

矩阵的相似

在习题 1.3 的第 13 题中,我们已经知道,如果已知可逆矩阵 P,且 $P^{-1}AP = \Lambda$ (对角矩阵) $= \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$,则 $A = P\Lambda P^{-1}$,且

$$m{A}^k = m{P}m{\Lambda}^km{P}^{-1} = m{P}igg(egin{array}{cc} \lambda_1^k & \ & \lambda_2^k \ \end{array}igg)m{P}^{-1}.$$

对于同阶方阵 A, B, 如果存在可逆矩阵 P, 使得 $P^{-1}AP = B$, 那么对于 A 与 B 之间的这种关系,我们给出如下定义:

定义 (4.2.1)

对于 n 阶矩阵 A, B, 若存在可逆矩阵 P, 使 $P^{-1}AP = B$, 则称 A 与 B 相似, 记为 $A \sim B$.

- 1° 反身性: $A \sim A$;
- 2° 对称性: 若 $A \sim B$, 则 $B \sim A$;
- 3° 传递性: 若 $A \sim B$ 且 $B \sim C$, 则 $A \sim C$.

1° 和 2° 的证明是很显然的. 3° 的证明如下:

证明

设 $A \sim B$, 则存在可逆矩阵 P, 使得 $P^{-1}AP = B$, 又 $B \sim C$, 则存在可逆矩阵 Q, 使 $Q^{-1}BQ = C$. 所以

$$Q^{-1}P^{-1}APQ = (PQ)^{-1}A(PQ) = C,$$

记 R=PQ,则 R 可逆,且 $R^{-1}AR=C$.故 $A\sim C$.

- 1° 反身性: $A \sim A$;
- 2° 对称性: 若 $A \sim B$, 则 $B \sim A$;
- 3° 传递性: 若 $A \sim B$ 且 $B \sim C$, 则 $A \sim C$.
- 1°和 2°的证明是很显然的. 3°的证明如下:

证明.

设 $A\sim B$, 则存在可逆矩阵 P, 使得 $P^{-1}AP=B$, 又 $B\sim C$, 则存在可逆矩阵 Q, 使 $Q^{-1}BQ=C$. 所以

$$Q^{-1}P^{-1}APQ = (PQ)^{-1}A(PQ) = C,$$

记 R=PQ, 则 R 可逆, 且 $R^{-1}AR=C$. 故 $A\sim C$.

- 1° 反身性: $A \sim A$;
- 2° 对称性: 若 $A \sim B$, 则 $B \sim A$;
- 3° 传递性: 若 $A \sim B$ 且 $B \sim C$, 则 $A \sim C$.
- 1°和 2°的证明是很显然的. 3°的证明如下:

证明.

设 $A\sim B$, 则存在可逆矩阵 P, 使得 $P^{-1}AP=B$, 又 $B\sim C$, 则存在可逆矩阵 Q, 使 $Q^{-1}BQ=C$. 所以

$$Q^{-1}P^{-1}APQ = (PQ)^{-1}A(PQ) = C,$$

记 R=PQ,则 R 可逆,且 $R^{-1}AR=C$.故 $A\sim C$

- 1° 反身性: $A \sim A$;
- 2° 对称性: 若 $A \sim B$, 则 $B \sim A$;
- 3° 传递性: 若 $A \sim B$ 且 $B \sim C$, 则 $A \sim C$.
- 1°和 2°的证明是很显然的. 3°的证明如下:

证明.

设 $A\sim B$, 则存在可逆矩阵 P, 使得 $P^{-1}AP=B$, 又 $B\sim C$, 则存在可逆矩阵 Q, 使 $Q^{-1}BQ=C$. 所以

$$Q^{-1}P^{-1}APQ = (PQ)^{-1}A(PQ) = C,$$

记 R=PQ,则 R 可逆,且 $R^{-1}AR=C$.故 $A\sim C$.

相似矩阵的特征值相同.

证明

设 $A \sim B$, 则存在可逆矩阵 P, 使

$$B = P^{-1}AP,$$

$$\det(\lambda I - B) = \det(\lambda I - P^{-1}AP) = \det[P^{-1}(\lambda I - A)P]$$
$$= \det P^{-1}\det(\lambda I - A)\det P = \det(\lambda I - A),$$

A 与 B 的特征多项式相同, 因此 A 与 B 的特征值相同.

相似矩阵的特征值相同.

证明.

设 $A \sim B$, 则存在可逆矩阵 P, 使

$$B = P^{-1}AP,$$

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \det(\lambda \mathbf{I} - \mathbf{P}^{-1} A \mathbf{P}) = \det[\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}]$$
$$= \det \mathbf{P}^{-1} \det(\lambda \mathbf{I} - \mathbf{A}) \det \mathbf{P} = \det(\lambda \mathbf{I} - \mathbf{A}),$$

A 与 B 的特征多项式相同, 因此 A 与 B 的特征值相同

相似矩阵的特征值相同.

证明.

设 $A \sim B$, 则存在可逆矩阵 P, 使

$$\boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P},$$

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \det(\lambda \mathbf{I} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}) = \det[\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}]$$
$$= \det \mathbf{P}^{-1} \det(\lambda \mathbf{I} - \mathbf{A}) \det \mathbf{P} = \det(\lambda \mathbf{I} - \mathbf{A}),$$

A 与 B 的特征多项式相同, 因此 A 与 B 的特征值相同

相似矩阵的特征值相同.

证明.

设 $A \sim B$, 则存在可逆矩阵 P, 使

$$\boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P},$$

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \det(\lambda \mathbf{I} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}) = \det[\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}]$$
$$= \det \mathbf{P}^{-1} \det(\lambda \mathbf{I} - \mathbf{A}) \det \mathbf{P} = \det(\lambda \mathbf{I} - \mathbf{A}),$$

A 与 B 的特征多项式相同, 因此 A 与 B 的特征值相同

相似矩阵的特征值相同.

证明.

设 $A \sim B$, 则存在可逆矩阵 P, 使

$$\boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P},$$

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \det(\lambda \mathbf{I} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}) = \det[\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}]$$
$$= \det \mathbf{P}^{-1} \det(\lambda \mathbf{I} - \mathbf{A}) \det \mathbf{P} = \det(\lambda \mathbf{I} - \mathbf{A}),$$

A 与 B 的特征多项式相同, 因此 A 与 B 的特征值相同.

相似矩阵有以下性质

定理(相似矩阵的性质)

若矩阵 A 与 B 相似, 则

- (1) $A^k 与 B^k$ 相似, 其中 k 为正整数.
- (2) A与B的行列式相等.
- (3) A 与 B有相同的可逆性, 当 A, B可逆时, A^{-1} 与 B^{-1} 也相似.
- (4) A与B有相同的特征多项式和特征值.
- (5) A 与 B 的 秩相等.
- (6) A 与 B 的迹相同.

由 $A \sim B$ 可知, 存在可逆矩阵 P, 使得 $P^{-1}AP = B$.

(1) 由于

$$B^{k} = (P^{-1}AP)^{k}$$

$$= \underbrace{(P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP)(P^{-1}AP)}_{k\uparrow}$$

$$= P^{-1}A(PP^{-1})A(PP^{-1})\cdots(PP^{-1})A(PP^{-1})AP$$

$$= P^{-1}A^{k}P,$$

故 $m{A}^k \sim m{B}^k$

 $|B| = |P^{-1}AP| = |P^{-1}||A||P| = |A|$, 即 A 与 B 的行列式相等.

由 $A \sim B$ 可知, 存在可逆矩阵 P, 使得 $P^{-1}AP = B$.

(1) 由于

$$B^{k} = (P^{-1}AP)^{k}$$

$$= \underbrace{(P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP)(P^{-1}AP)}_{k\uparrow\uparrow}$$

$$= P^{-1}A(PP^{-1})A(PP^{-1})\cdots(PP^{-1})A(PP^{-1})AP$$

$$= P^{-1}A^{k}P,$$

故 $\boldsymbol{A}^k \sim \boldsymbol{B}^k$.

 $(2) |B| = |P^{-1}AP| = |P^{-1}||A||P| = |A|$, 即 A 与 B 的行列式相等.

由 $A \sim B$ 可知, 存在可逆矩阵 P, 使得 $P^{-1}AP = B$. (1) 由于

$$B^{k} = (P^{-1}AP)^{k}$$

$$= \underbrace{(P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP)(P^{-1}AP)}_{k\uparrow\uparrow}$$

$$= P^{-1}A(PP^{-1})A(PP^{-1})\cdots(PP^{-1})A(PP^{-1})AP$$

$$= P^{-1}A^{k}P,$$

故 $\boldsymbol{A}^k \sim \boldsymbol{B}^k$.

(2)
$$|B| = |P^{-1}AP| = |P^{-1}||A||P| = |A|$$
, 即 A 与 B 的行列式相等.

(3) 由 (2) 可知 |A| = |B|, 所以 |A| = |B| 同时为零或不为零, 因此 A与 B同时可逆或不可逆, 即有相同的可逆性. 当 A与 B可逆时, 由于 $P^{-1}AP = B$, 则

$$B^{-1} = P^{-1}A^{-1}(P^{-1})^{-1} = P^{-1}A^{-1}P,$$

即 $A^{-1} \sim B^{-1}$.

(4) 由于

$$|\lambda I - B| = |\lambda I - P^{-1}AP| = |P^{-1}(\lambda I)P - P^{-1}AP|$$
$$= |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P|$$
$$= |\lambda I - A|.$$

所以, A 与 B 有相同的特征多项式, 从而 A 与 B 有相同的特征值.

- (5) 由于 $P^{-1}AP = B$, 则 A = B 等价, 从而 A = B 的秩相等
- (6) 由 (4) 可推出 A 与 B 的迹相同, 即 tr(A) = tr(B)

(3) 由 (2) 可知 |A| = |B|, 所以 |A| = |B| 同时为零或不为零,因此 A与 B 同时可逆或不可逆,即有相同的可逆性。 当 A与 B可逆时,由于 $P^{-1}AP = B$,则

$$B^{-1} = P^{-1}A^{-1}(P^{-1})^{-1} = P^{-1}A^{-1}P,$$

即 $A^{-1} \sim B^{-1}$.

(4) 由于

$$|\lambda \mathbf{I} - \mathbf{B}| = |\lambda \mathbf{I} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}| = |\mathbf{P}^{-1} (\lambda \mathbf{I}) \mathbf{P} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}|$$
$$= |\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}| = |\mathbf{P}^{-1}| \cdot |\lambda \mathbf{I} - \mathbf{A}| \cdot |\mathbf{P}|$$
$$= |\lambda \mathbf{I} - \mathbf{A}|.$$

所以, A 与 B 有相同的特征多项式, 从而 A 与 B 有相同的特征值.

(5) 由于 $P^{-1}AP = B$, 则 $A \subseteq B$ 等价, 从而 $A \subseteq B$ 的秩相等

(6) 田 (4) り雅出 A 与 B 的迹相同, 即 tr(A) = tr(B).

(3) 由 (2) 可知 |A| = |B|, 所以 |A| = |B| 同时为零或不为零, 因此 A与 B同时可逆或不可逆, 即有相同的可逆性. 当 A与 B可逆时, 由于 $P^{-1}AP = B$, 则

$$B^{-1} = P^{-1}A^{-1}(P^{-1})^{-1} = P^{-1}A^{-1}P,$$

即 $A^{-1} \sim B^{-1}$.

(4) 由于

$$|\lambda \mathbf{I} - \mathbf{B}| = |\lambda \mathbf{I} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}| = |\mathbf{P}^{-1} (\lambda \mathbf{I}) \mathbf{P} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}|$$
$$= |\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}| = |\mathbf{P}^{-1}| \cdot |\lambda \mathbf{I} - \mathbf{A}| \cdot |\mathbf{P}|$$
$$= |\lambda \mathbf{I} - \mathbf{A}|.$$

所以, $A \subseteq B$ 有相同的特征多项式, 从而 $A \subseteq B$ 有相同的特征值. (5) 由于 $P^{-1}AP = B$, 则 $A \subseteq B$ 等价, 从而 $A \subseteq B$ 的秩相等.

(3) 由 (2) 可知 |A| = |B|, 所以 |A| = |B| 同时为零或不为零, 因此 A与 B同时可逆或不可逆, 即有相同的可逆性. 当 A与 B可逆时, 由于 $P^{-1}AP = B$, 则

$$B^{-1} = P^{-1}A^{-1}(P^{-1})^{-1} = P^{-1}A^{-1}P,$$

即 $A^{-1} \sim B^{-1}$.

(4) 由于

$$|\lambda \mathbf{I} - \mathbf{B}| = |\lambda \mathbf{I} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}| = |\mathbf{P}^{-1} (\lambda \mathbf{I}) \mathbf{P} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}|$$
$$= |\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}| = |\mathbf{P}^{-1}| \cdot |\lambda \mathbf{I} - \mathbf{A}| \cdot |\mathbf{P}|$$
$$= |\lambda \mathbf{I} - \mathbf{A}|.$$

所以, A 与 B 有相同的特征多项式, 从而 A 与 B 有相同的特征值.

- (5) 由于 $P^{-1}AP = B$, 则 $A \subseteq B$ 等价, 从而 $A \subseteq B$ 的秩相等.
- (6) 由 (4) 可推出 A 与 B 的迹相同, 即 tr(A) = tr(B).

例 (4.2.1)

解 因为 $A \sim \Lambda$, 所以存在可逆方阵 P, 使 $P^{-1}AP = \Lambda$, $A = P\Lambda P^{-1}$,

$$egin{aligned} oldsymbol{A}^k &= ig(oldsymbol{P}oldsymbol{\Lambda}oldsymbol{P}^{-1}ig) ig(oldsymbol{P}oldsymbol{\Lambda}oldsymbol{P}^{-1}ig) &= oldsymbol{P}oldsymbol{\Lambda}^koldsymbol{P}^{-1} \ &= oldsymbol{P}igg(egin{aligned} \lambda_1^k \ & \lambda_2^k \ & & \ddots \ \end{pmatrix} oldsymbol{P}^{-1}, \end{aligned}$$

只需求出 P^{-1} , 再计算出 $P\Lambda^kP^{-1}$ 就行了. 当 k 比较大时, 这比直接计算 A^k 要方便得多.

例 (4.2.1)

设
$$n$$
 阶方阵 $m{A} \sim m{\Lambda} = \left(egin{array}{cccc} \lambda_1 & & & & & \\ & & \lambda_2 & & & \\ & & & \ddots & \\ & & & & \lambda_n \end{array}
ight)$,求 $m{A}^k$ $(k$ 为正整数).

 $oldsymbol{H}$ 因为 $oldsymbol{A}\simoldsymbol{\Lambda}$,所以存在可逆方阵 $oldsymbol{P}$,使 $oldsymbol{P}^{-1}oldsymbol{A}oldsymbol{P}=oldsymbol{\Lambda},oldsymbol{A}=oldsymbol{P}oldsymbol{\Lambda}oldsymbol{P}^{-1}$,故

$$egin{aligned} egin{aligned} egin{aligned} & egin{aligned} egin{aligned} eta & egin{aligned} eta & eta^k egin{aligned} eta^k egin{aligned} \lambda_1^k & & & \ \lambda_2^k & & & \ & \ddots & & \ & & \lambda_n^k \end{aligned} \end{pmatrix} oldsymbol{P}^{-1}, \end{aligned}$$

只需求出 P^{-1} , 再计算出 PA^kP^{-1} 就行了. 当 k 比较大时, 这比直接计算 A^k 要方便得多.

例 (4.2.1)

设
$$n$$
 阶方阵 $m{A} \sim m{\Lambda} = \left(egin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{array}
ight)$,求 $m{A}^k$ $(k$ 为正整数).

 $m{H}$ 因为 $m{A}\sim m{\Lambda}$,所以存在可逆方阵 $m{P}$,使 $m{P}^{-1}m{A}m{P}=m{\Lambda}, m{A}=m{P}m{\Lambda}m{P}^{-1}$,故

$$egin{aligned} oldsymbol{A}^k &= \left(oldsymbol{P}oldsymbol{\Lambda}oldsymbol{P}^{-1}
ight)\left(oldsymbol{P}oldsymbol{\Lambda}oldsymbol{P}^{-1}
ight) \cdot \cdot \cdot \left(oldsymbol{P}oldsymbol{\Lambda}oldsymbol{P}^{-1}
ight) &= oldsymbol{P}oldsymbol{\Lambda}^koldsymbol{P}^{-1} \ & \ddots \ & \lambda_n^k \end{array} egin{align*} oldsymbol{P}^{-1}, \ & \ddots \ & \lambda_n^k \end{array}$$

只需求出 P^{-1} , 再计算出 $P\Lambda^kP^{-1}$ 就行了. 当 k 比较大时, 这比直接计算 A^k 要方便得多.

我们自然要提出的问题是:

- 什么样的矩阵 A 可以与对角矩阵相似?
- 或者说, 对于给定的矩阵 A, 在什么条件下存在对角矩阵 Λ 与可逆矩阵 P, 使 $P^{-1}AP = \Lambda$?
- 如果这样的矩阵 Λ 与 P 存在, 那么又应该怎样求出?

下面就讨论这些问题.

- 1 相似矩阵的基本概念
- ② 矩阵的相似对角化

定理 (4.2.2)

若
$$n$$
 阶矩阵 A 与对角矩阵 $\Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$ 相似,则

 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是 **A** 的全部特征值.

因为
$$m{A} \sim m{\Lambda} = \left(egin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{array}
ight)$$
,所以 $m{A}$ 与 $m{\Lambda}$ 的!

$$\det(\lambda \mathbf{I} - \mathbf{\Lambda}) = (\lambda - \lambda_1) (\lambda - \lambda_2) \cdots (\lambda - \lambda_n),$$

所以 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 Λ 的全部特征值, 也就是 Λ 的全部特征值.

定理 (4.2.2)

若
$$n$$
 阶矩阵 A 与对角矩阵 $\Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & \lambda_n \end{pmatrix}$ 相似,则 $\lambda_1, \lambda_2, \cdots \lambda_n$ 是 A 的全部特征值.

证明.

因为
$$m{A} \sim m{\Lambda} = \left(egin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{array} \right)$$
, 所以 $m{A}$ 与 $m{\Lambda}$ 的特征值相同, 又

 $\det(\lambda \mathbf{I} - \mathbf{\Lambda}) = (\lambda - \lambda_1) (\lambda - \lambda_2) \cdots (\lambda - \lambda_n),$

所以 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 Λ 的全部特征值, 也就是 Λ 的全部特征值

定理 (4.2.2)

若
$$n$$
阶矩阵 A 与对角矩阵 $\Lambda=\left(egin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{array}
ight)$ 相似,则

 $\lambda_1, \lambda_2, \cdots \lambda_n$ 是 A 的全部特征值.

证明.

因为
$$m{A} \sim m{\Lambda} = \left(egin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{array}\right)$$
, 所以 $m{A}$ 与 $m{\Lambda}$ 的特征值相同, 又

$$\det(\lambda \mathbf{I} - \mathbf{\Lambda}) = (\lambda - \lambda_1) (\lambda - \lambda_2) \cdots (\lambda - \lambda_n),$$

所以 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是 Λ 的全部特征值, 也就是 Λ 的全部特征值.

定理 2 指出,若 A 与对角矩阵 A 相似,则 A 的主对角线上的元就是 A 的全部特征值,那么,使 $P^{-1}AP=A$ 的矩阵 P 又是怎样构成的呢?

及 $oldsymbol{P}=\left(oldsymbol{p}_1,oldsymbol{p}_2,\cdots,oldsymbol{p}_n
ight),oldsymbol{p}_1,oldsymbol{p}_2,\cdots,oldsymbol{p}_n$ 是 $oldsymbol{P}$ 的列向量组, 则

$$P^{-1}AP = \Lambda$$
, $AP = P\Lambda$,

即
$$m{A}\left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight)=\left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight)\left(egin{array}{cccc} \lambda_1 & & & & & \\ & \lambda_2 & & & & \\ & & & \ddots & & \\ & & & & \lambda_n \end{array}
ight)$$

 $(\boldsymbol{A}\boldsymbol{p}_1, \boldsymbol{A}\boldsymbol{p}_2, \cdots, \boldsymbol{A}\boldsymbol{p}_n) = (\lambda_1\boldsymbol{p}_1, \lambda_2\boldsymbol{p}_2, \cdots, \lambda_n\boldsymbol{p}_n),$ $\boldsymbol{A}\boldsymbol{p}_i = \lambda_i\boldsymbol{p}_i \quad (i = 1, 2, \cdots, n).$

因为 P 可逆, 所以 $p_i \neq 0$ $(i=1,2,\cdots,n)$, 于是, p_1,p_2,\cdots,p_n 是 n 个线性无关的特征向量.

定理 2 指出, 若 A 与对角矩阵 A 相似, 则 A 的主对角线上的元就是 A的全部特征值, 那么, 使 $P^{-1}AP = \Lambda$ 的矩阵 P 又是怎样构成的呢? 设 $P = (p_1, p_2, \dots, p_n), p_1, p_2, \dots, p_n$ 是 P 的列向量组, 则

$$P^{-1}AP = \Lambda, \quad AP = P\Lambda,$$

ET
$$m{A}\left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight)=\left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight)\left(egin{array}{ccc} \lambda_1 & & & & & \\ & \lambda_2 & & & & \\ & & & \ddots & & \\ & & & & \lambda_n \end{array}
ight)$$

$$(\boldsymbol{A}\boldsymbol{p}_1, \boldsymbol{A}\boldsymbol{p}_2, \cdots, \boldsymbol{A}\boldsymbol{p}_n) = (\lambda_1\boldsymbol{p}_1, \lambda_2\boldsymbol{p}_2, \cdots, \lambda_n\boldsymbol{p}_n),$$

 $\boldsymbol{A}\boldsymbol{p}_i = \lambda_i\boldsymbol{p}_i \quad (i = 1, 2, \cdots, n).$

定理 2 指出, 若 A 与对角矩阵 A 相似, 则 A 的主对角线上的元就是 A 的全部特征值, 那么, 使 $P^{-1}AP=A$ 的矩阵 P 又是怎样构成的呢? 设 $P=(p_1,p_2,\cdots,p_n)$, p_1,p_2,\cdots,p_n 是 P 的列向量组, 则

$$P^{-1}AP = \Lambda, \quad AP = P\Lambda,$$

即
$$m{A}\left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight) = \left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight) \left(egin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & \\ & & & \lambda_n \end{array}
ight),$$

$$(\boldsymbol{A}\boldsymbol{p}_1, \boldsymbol{A}\boldsymbol{p}_2, \cdots, \boldsymbol{A}\boldsymbol{p}_n) = (\lambda_1\boldsymbol{p}_1, \lambda_2\boldsymbol{p}_2, \cdots, \lambda_n\boldsymbol{p}_n),$$

 $\boldsymbol{A}\boldsymbol{p}_i = \lambda_i\boldsymbol{p}_i \quad (i = 1, 2, \cdots, n).$

因为 $m{P}$ 可逆, 所以 $m{p}_i
eq m{0} \; (i=1,2,\cdots,n)$, 于是, $m{p}_1,m{p}_2,\cdots,m{p}_n$ 是 . n 个线性无关的特征向量.

定理 2 指出, 若 A 与对角矩阵 A 相似, 则 A 的主对角线上的元就是 A 的全部特征值, 那么, 使 $P^{-1}AP = A$ 的矩阵 P 又是怎样构成的呢? 设 $P = (p_1, p_2, \cdots, p_n)$, p_1, p_2, \cdots, p_n 是 P 的列向量组, 则

$$P^{-1}AP = \Lambda, \quad AP = P\Lambda,$$

即
$$m{A}\left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight) = \left(m{p}_1,m{p}_2,\cdots,m{p}_n
ight) \left(egin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & \\ & & & \lambda_n \end{array}
ight),$$

$$(\boldsymbol{A}\boldsymbol{p}_1, \boldsymbol{A}\boldsymbol{p}_2, \cdots, \boldsymbol{A}\boldsymbol{p}_n) = (\lambda_1\boldsymbol{p}_1, \lambda_2\boldsymbol{p}_2, \cdots, \lambda_n\boldsymbol{p}_n),$$

$$\boldsymbol{A}\boldsymbol{p}_i = \lambda_i\boldsymbol{p}_i \quad (i = 1, 2, \cdots, n).$$

因为 P 可逆, 所以 $p_i \neq 0$ $(i = 1, 2, \dots, n)$, 于是, p_1, p_2, \dots, p_n 是 A_n 个线性无关的特征向量.

< □ > < □ > <

反之, 若 A 有 n 个线性无关的特征向量 p_1, p_2, \cdots, p_n , 即

 $Ap_i = \lambda_i p_i (i = 1, 2, \cdots, n)$, 设 $P = (p_1, p_2, \cdots, p_n)$, 则 P 可逆, 且

$$egin{aligned} m{A}m{P} &= (m{A}m{p}_1, m{A}m{p}_2, \cdots, m{A}m{p}_n) = (\lambda_1m{p}_1, \lambda_2m{p}_2, \cdots, \lambda_nm{p}_n) \ &= (m{p}_1, m{p}_2, \cdots, m{p}_n) \left(egin{array}{ccc} \lambda_1 & & & & & \ & \lambda_2 & & & & \ & & \ddots & & & \ & & & \lambda_n \end{array}
ight) = m{P}m{\Lambda}, \end{aligned}$$

所以 $P^{-1}AP = \Lambda$, 即 A 与对角矩阵 Λ 相似. 由以上讨论可得

定理 (4.2.3)

n 阶矩阵 A 能与对角矩阵 A 相似的充要条件是 A 有 n 个线性无关的特征向量.

13/33

反之, 若 A 有 n 个线性无关的特征向量 p_1, p_2, \cdots, p_n , 即 $Ap_i = \lambda_i p_i (i = 1, 2, \dots, n)$, 设 $P = (p_1, p_2, \dots, p_n)$, 则 P 可逆, 且

$$egin{aligned} oldsymbol{AP} &= (oldsymbol{Ap}_1, oldsymbol{Ap}_2, \cdots, oldsymbol{Ap}_n) = (\lambda_1 oldsymbol{p}_1, \lambda_2 oldsymbol{p}_2, \cdots, \lambda_n oldsymbol{p}_n) \ &= (oldsymbol{p}_1, oldsymbol{p}_2, \cdots, oldsymbol{p}_n) \ & \lambda_2 \ & \ddots \ & \lambda_n \ \end{pmatrix} = oldsymbol{P}oldsymbol{\Lambda}, \end{aligned}$$

所以 $P^{-1}AP = \Lambda$, 即 A 与对角矩阵 Λ 相似. 由以上讨论可得

反之, 若 A 有 n 个线性无关的特征向量 p_1, p_2, \cdots, p_n , 即 $Ap_i = \lambda_i p_i (i = 1, 2, \dots, n)$, 设 $P = (p_1, p_2, \dots, p_n)$, 则 P 可逆. 且

$$egin{aligned} m{A}m{P} &= (m{A}m{p}_1, m{A}m{p}_2, \cdots, m{A}m{p}_n) = (\lambda_1m{p}_1, \lambda_2m{p}_2, \cdots, \lambda_nm{p}_n) \ &= (m{p}_1, m{p}_2, \cdots, m{p}_n) \left(egin{array}{ccc} \lambda_1 & & & & & \ & \lambda_2 & & & & \ & & \ddots & & \ & & & \lambda_n \end{array}
ight) = m{P}m{\Lambda}, \end{aligned}$$

所以 $P^{-1}AP = \Lambda$, 即 A 与对角矩阵 Λ 相似. 由以上讨论可得

定理 (4.2.3)

n 阶矩阵 A 能与对角矩阵 A 相似的充要条件是 A 有 n 个线性无关的 特征向量.

13/33

由此定理可知, 若 n 阶矩阵 A 有 n 个线性无关的特征向量

$$Ap_i = \lambda_i p_i \quad (i = 1, 2, \cdots, n),$$

今 <math>P $= (p_1, p_2, \cdots, p_n),$ 则

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的全部特征值.

个 (重根按重数计算), 所以, 若不计 λ_i 的排列顺序, 则 Λ 是惟一确定

安徽财经大学

由此定理可知,若 n 阶矩阵 A 有 n 个线性无关的特征向量

$$Ap_i = \lambda_i p_i \quad (i = 1, 2, \cdots, n),$$

今 <math>P $= (p_1, p_2, \cdots, p_n)$, 则

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的全部特征值.

 $\mathbf{\dot{p}}$: \mathbf{P} 中列向量 $\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_n$ 的顺序要与 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 的顺序一致. 由于 p_i 是 $(\lambda_i I - A) X = 0$ 的基础解系中的解向量, 故 p_i 的取法不是 惟一的, 因此 P 也不是惟一的. 而 $f_A(\lambda) = \det(\lambda I - A) = 0$ 的根只有 n个 (重根按重数计算), 所以, 若不计 λ_i 的排列顺序, 则 Λ 是惟一确定的

安徽财经大学

例 (4.2.2)

设
$$\mathbf{A} = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}$$
, 求 \mathbf{A}^{10} .

鹏

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 4 & -6 & 0 \\ 3 & \lambda + 5 & 0 \\ 3 & 6 & \lambda - 1 \end{vmatrix} = (\lambda + 2)(\lambda - 1)^2$$

A 的特征值为 $\lambda_1 = -2, \lambda_2 = 1(2 \ \mathbf{1})$.

例 (4.2.2)

设
$$\mathbf{A} = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}$$
, 求 \mathbf{A}^{10} .

解

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 4 & -6 & 0 \\ 3 & \lambda + 5 & 0 \\ 3 & 6 & \lambda - 1 \end{vmatrix} = (\lambda + 2)(\lambda - 1)^2,$$

A 的特征值为 $\lambda_1 = -2, \lambda_2 = 1(2 \ \mathbf{\underline{f}}).$

对于 $\lambda_1 = -2$, $(\lambda_1 \mathbf{I} - \mathbf{A}) \mathbf{X} = \mathbf{0}$ 的系数矩阵为

$$\left(\begin{array}{ccc}
-6 & -6 & 0 \\
3 & 3 & 0 \\
3 & 6 & -3
\end{array}\right) \to \left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{array}\right) \to \left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right),$$

对应的齐次线性方程组为 $\left\{ egin{array}{ll} x_1=-x_3, \\ x_2=x_3, \end{array}
ight.$ 其基础解系为 $m{lpha}_1=(-1,1,1)^{\mathrm{T}}.$

对于 $\lambda_2=1$, $(\lambda_2 I-A)$ X=0 的系数矩阵为

$$\left(\begin{array}{ccc} -3 & -6 & 0 \\ 3 & 6 & 0 \\ 3 & 6 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right),$$

对应的齐次线性方程组为 $x_1 = -2x_2 + 0x_3$, 其基础解系为

$$\alpha_2 = \begin{pmatrix} -2\\1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0\\0 \end{pmatrix}.$$

对于 $\lambda_1 = -2$, $(\lambda_1 \mathbf{I} - \mathbf{A}) \mathbf{X} = \mathbf{0}$ 的系数矩阵为

$$\begin{pmatrix} -6 & -6 & 0 \\ 3 & 3 & 0 \\ 3 & 6 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix},$$

对应的齐次线性方程组为 $\left\{ egin{array}{ll} x_1=-x_3, \\ x_2=x_3, \end{array}
ight.$ 其基础解系为 $m{lpha}_1=(-1,1,1)^{\mathrm{T}}.$

对于 $\lambda_2 = 1$, $(\lambda_2 \mathbf{I} - \mathbf{A}) \mathbf{X} = \mathbf{0}$ 的系数矩阵为

$$\begin{pmatrix} -3 & -6 & 0 \\ 3 & 6 & 0 \\ 3 & 6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

对应的齐次线性方程组为 $x_1 = -2x_2 + 0x_3$, 其基础解系为

$$\boldsymbol{\alpha}_2 = \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

线性代数

16/33

$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} -1 & -2 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

易见, P 是可逆矩阵, 且

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -2 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \quad \mathbf{A} = \mathbf{P} \begin{pmatrix} -2 & & \\ & 1 & \\ & & 1 \end{pmatrix} \mathbf{P}^{-1},$$

$$\mathbf{P}^{-1} = \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & -1 & 0 \\ -1 & -2 & 1 \end{array}\right),$$

所以

$$\mathbf{A}^{10} = \mathbf{P} \begin{pmatrix} (-2)^{10} \\ 1 \\ 1 \end{pmatrix} \mathbf{P}^{-1}$$

$$= \begin{pmatrix} -1 & -2 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1024 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 0 \\ -1 & -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1022 & -2046 & 0 \\ 1023 & 2047 & 0 \\ 1023 & 2046 & 1 \end{pmatrix}.$$

设 $A \neq O, A^k = O(k)$ 为正整数), 证明 A 不能与对角矩阵相似.

$$A = P\Lambda P^{-1}, \tag{4.1}$$

$$m{A}^k = m{P}m{\Lambda}^km{P}^{-1} = m{P} \left(egin{array}{ccc} \lambda_1^k & & & & \ & \lambda_2^k & & & \ & & \ddots & & \ & & & \lambda_n^k \end{array}
ight)m{P}^{-1} = m{O}$$

设 $A \neq O, A^k = O(k)$ 为正整数), 证明 A 不能与对角矩阵相似.

证明.

设 \pmb{A} 能与对角矩阵 $\pmb{\Lambda}=\mathrm{diag}\left(\lambda_1,\lambda_2,\cdots,\lambda_n\right)$ 相似, 则存在可逆矩阵 \pmb{P} , 使

$$A = P\Lambda P^{-1}, \tag{4.1}$$

$$m{A}^k = m{P}m{\Lambda}^km{P}^{-1} = m{P} \left(egin{array}{ccc} \lambda_1^k & & & & \ & \lambda_2^k & & & \ & & \ddots & & \ & & & \lambda_n^k \end{array}
ight)m{P}^{-1} = m{O}$$

于是可得 $\operatorname{diag}\left(\lambda_1^k,\lambda_2^k,\cdots,\lambda_n^k\right)=\mathbf{0}$. 从而, $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, 即有 $\mathbf{A}=\mathbf{0}$. 由式 (4.1) 可得 $\mathbf{A}=\mathbf{0}$, 与题设 $\mathbf{A}\neq\mathbf{0}$ 矛盾. 故 \mathbf{A} 不能与对角矩阵相似.

设 $A \neq O, A^k = O(k)$ 为正整数), 证明 A 不能与对角矩阵相似.

证明.

设 \pmb{A} 能与对角矩阵 $\pmb{\Lambda}=\mathrm{diag}\left(\lambda_1,\lambda_2,\cdots,\lambda_n\right)$ 相似, 则存在可逆矩阵 \pmb{P} , 使

$$A = P\Lambda P^{-1}, \tag{4.1}$$

$$oldsymbol{A}^k = oldsymbol{P}oldsymbol{A}^koldsymbol{P}^{-1} = oldsymbol{P} \left(egin{array}{ccc} \lambda_1^k & & & & \ & \lambda_2^k & & & \ & & \ddots & & \ & & & \lambda_n^k \end{array}
ight)oldsymbol{P}^{-1} = oldsymbol{O},$$

于是可得 $\operatorname{diag}\left(\lambda_1^k,\lambda_2^k,\cdots,\lambda_n^k\right)=\mathbf{0}$. 从而, $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, 即有 $\mathbf{A}=\mathbf{0}$. 由式 (4.1) 可得 $\mathbf{A}=\mathbf{0}$, 与题设 $\mathbf{A}\neq\mathbf{0}$ 矛盾. 故 \mathbf{A} 不能与对角矩阵相似.

设 $A \neq O, A^k = O(k)$ 为正整数), 证明 A 不能与对角矩阵相似.

证明.

设 \pmb{A} 能与对角矩阵 $\pmb{\Lambda}=\mathrm{diag}\left(\lambda_1,\lambda_2,\cdots,\lambda_n\right)$ 相似, 则存在可逆矩阵 \pmb{P} , 使

$$A = P\Lambda P^{-1}, \tag{4.1}$$

$$oldsymbol{A}^k = oldsymbol{P}oldsymbol{A}^koldsymbol{P}^{-1} = oldsymbol{P} \left(egin{array}{ccc} \lambda_1^k & & & & \ & \lambda_2^k & & & \ & & \ddots & & \ & & & \lambda_n^k \end{array}
ight)oldsymbol{P}^{-1} = oldsymbol{O},$$

于是可得 $\operatorname{diag}\left(\lambda_1^k,\lambda_2^k,\cdots,\lambda_n^k\right)=\mathbf{0}$. 从而, $\lambda_1=\lambda_2=\cdots=\lambda_n=0$,即有 $\mathbf{A}=\mathbf{0}$. 由式 (4.1) 可得 $\mathbf{A}=\mathbf{0}$,与题设 $\mathbf{A}\neq\mathbf{0}$ 矛盾. 故 \mathbf{A} 不能与对角矩阵相似.

定理 3 给出了 n 阶矩阵与对角矩阵相似的充要条件, 但是对于一个具体 的 n 阶矩阵, 要直接判断它是否有 n 个线性无关的特征向量一般是很困 难的, 下面我们进一步讨论什么样的 n 阶矩阵能与对角矩阵相似.

定理 (4.2.4)

设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 是矩阵 A 的互异特征值, $\alpha_1, \alpha_2, \dots, \alpha_m$ 是 A 分别 对应于这些特征值的特征向量,则 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关.

定理 3 给出了 n 阶矩阵与对角矩阵相似的充要条件, 但是对于一个具体 的 n 阶矩阵, 要直接判断它是否有 n 个线性无关的特征向量一般是很困 难的,下面我们进一步讨论什么样的 n 阶矩阵能与对角矩阵相似。

定理 (4.2.4)

设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 是矩阵 A 的互异特征值, $\alpha_1, \alpha_2, \dots, \alpha_m$ 是 A 分别 对应于这些特征值的特征向量,则 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关.

证明.

用数学归纳法证明.

当 m=1 时, 结论显然成立. 因为特征向量 $\alpha_1 \neq 0$, 所以一个非零向量 是线性无关的.

假设对 m-1 个互异特征值结论成立.

安徽财经大学

对 m 个互异特征值 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 以及它们所对应的特征向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$, 设

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m = \mathbf{0}, \tag{4.2}$$

用 A 左乘式 (4.2) 两端得

$$k_1(\mathbf{A}\alpha_1) + k_2(\mathbf{A}\alpha_2) + \cdots + k_m(\mathbf{A}\alpha_m) = \mathbf{0},$$

$$k_1(\lambda_1\alpha_1) + k_2(\lambda_2\alpha_2) + \dots + k_m(\lambda_m\alpha_m) = \mathbf{0}. \tag{4.3}$$

用 λ_m 乘式 (4.2) 两端得

$$k_1(\lambda_m \alpha_1) + k_2(\lambda_m \alpha_2) + \dots + k_m(\lambda_m \alpha_m) = \mathbf{0}, \tag{4.4}$$

式 (4.3) 与式 (4.4) 两端相减可得

 $k_1 (\lambda_1 - \lambda_m) \alpha_1 + k_2 (\lambda_2 - \lambda_m) \alpha_2 + \dots + k_{m-1} (\lambda_{m-1} - \lambda_m) \alpha_{m-1} = 0$

对 m 个互异特征值 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 以及它们所对应的特征向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$, 设

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = \mathbf{0}, \tag{4.2}$$

用 A 左乘式 (4.2) 两端得

$$k_1(\mathbf{A}\alpha_1) + k_2(\mathbf{A}\alpha_2) + \cdots + k_m(\mathbf{A}\alpha_m) = \mathbf{0},$$

$$k_1(\lambda_1 \boldsymbol{\alpha}_1) + k_2(\lambda_2 \boldsymbol{\alpha}_2) + \dots + k_m(\lambda_m \boldsymbol{\alpha}_m) = \mathbf{0}.$$
 (4.3)

用 λ_m 乘式 (4.2) 两端得

$$k_1(\lambda_m \alpha_1) + k_2(\lambda_m \alpha_2) + \dots + k_m(\lambda_m \alpha_m) = \mathbf{0}, \tag{4.4}$$

式 (4.3) 与式 (4.4) 两端相减可得

 $k_1(\lambda_1 - \lambda_m)\alpha_1 + k_2(\lambda_2 - \lambda_m)\alpha_2 + \cdots + k_{m-1}(\lambda_{m-1} - \lambda_m)\alpha_{m-1} = \mathbf{0},$

对 m 个互异特征值 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 以及它们所对应的特征向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$, 设

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m = \mathbf{0}, \tag{4.2}$$

用 A 左乘式 (4.2) 两端得

$$k_1(\boldsymbol{A}\boldsymbol{\alpha}_1) + k_2(\boldsymbol{A}\boldsymbol{\alpha}_2) + \cdots + k_m(\boldsymbol{A}\boldsymbol{\alpha}_m) = \mathbf{0},$$

$$k_1(\lambda_1 \boldsymbol{\alpha}_1) + k_2(\lambda_2 \boldsymbol{\alpha}_2) + \dots + k_m(\lambda_m \boldsymbol{\alpha}_m) = \mathbf{0}.$$
 (4.3)

用 λ_m 乘式 (4.2) 两端得

$$k_1(\lambda_m \boldsymbol{\alpha}_1) + k_2(\lambda_m \boldsymbol{\alpha}_2) + \dots + k_m(\lambda_m \boldsymbol{\alpha}_m) = \mathbf{0},$$
 (4.4)

式 (4.3) 与式 (4.4) 两端相减可得

 $k_1(\lambda_1 - \lambda_m)\alpha_1 + k_2(\lambda_2 - \lambda_m)\alpha_2 + \dots + k_{m-1}(\lambda_{m-1} - \lambda_m)\alpha_{m-1} = 0,$

对 m 个互异特征值 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 以及它们所对应的特征向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$, 设

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m = \mathbf{0}, \tag{4.2}$$

用 A 左乘式 (4.2) 两端得

$$k_1(\mathbf{A}\alpha_1) + k_2(\mathbf{A}\alpha_2) + \cdots + k_m(\mathbf{A}\alpha_m) = \mathbf{0},$$

$$k_1(\lambda_1 \boldsymbol{\alpha}_1) + k_2(\lambda_2 \boldsymbol{\alpha}_2) + \dots + k_m(\lambda_m \boldsymbol{\alpha}_m) = \mathbf{0}.$$
 (4.3)

用 λ_m 乘式 (4.2) 两端得

$$k_1(\lambda_m \alpha_1) + k_2(\lambda_m \alpha_2) + \dots + k_m(\lambda_m \alpha_m) = \mathbf{0},$$
 (4.4)

式 (4.3) 与式 (4.4) 两端相减可得

$$k_1(\lambda_1 - \lambda_m) \boldsymbol{\alpha}_1 + k_2(\lambda_2 - \lambda_m) \boldsymbol{\alpha}_2 + \dots + k_{m-1}(\lambda_{m-1} - \lambda_m) \boldsymbol{\alpha}_{m-1} = \mathbf{0},$$

式 (4.3) 与式 (4.4) 两端相减可得

$$k_1(\lambda_1 - \lambda_m) \boldsymbol{\alpha}_1 + k_2(\lambda_2 - \lambda_m) \boldsymbol{\alpha}_2 + \dots + k_{m-1}(\lambda_{m-1} - \lambda_m) \boldsymbol{\alpha}_{m-1} = \mathbf{0},$$

由归纳假设 $\alpha_1, \alpha_2, \cdots, \alpha_{m-1}$ 线性无关, 故

$$k_1 (\lambda_1 - \lambda_m) = k_2 (\lambda_2 - \lambda_m) = \dots = k_{m-1} (\lambda_{m-1} - \lambda_m) = 0.$$

又因为 $\lambda_i - \lambda_m \neq 0$ $(i = 1, 2, \cdots, m - 1)$, 所以只有 $k_1 = k_2 = \cdots = k_{m-1} = 0$, 代入式 (4.2) 得 $k_m \alpha_m = 0$, 由 $\alpha_m \neq 0$ 可得 $k_m = 0$, 于是 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关.

式 (4.3) 与式 (4.4) 两端相减可得

$$k_1(\lambda_1 - \lambda_m) \boldsymbol{\alpha}_1 + k_2(\lambda_2 - \lambda_m) \boldsymbol{\alpha}_2 + \dots + k_{m-1}(\lambda_{m-1} - \lambda_m) \boldsymbol{\alpha}_{m-1} = \mathbf{0},$$

由归纳假设 $\alpha_1, \alpha_2, \cdots, \alpha_{m-1}$ 线性无关, 故

$$k_1(\lambda_1 - \lambda_m) = k_2(\lambda_2 - \lambda_m) = \dots = k_{m-1}(\lambda_{m-1} - \lambda_m) = 0.$$

又因为 $\lambda_i - \lambda_m \neq 0$ $(i = 1, 2, \cdots, m-1)$, 所以只有 $k_1 = k_2 = \cdots = k_{m-1} = 0$, 代入式 (4.2) 得 $k_m \boldsymbol{\alpha}_m = \boldsymbol{0}$, 由 $\boldsymbol{\alpha}_m \neq \boldsymbol{0}$ 可得 $k_m = 0$, 于是 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m$ 线性无关.

第四章 特征值与特征向量

推论 (4.2.1)

设 n 阶矩阵 A 的特征值都是单特征根,则 A 能与对角矩阵相似.

证明

因为 A 的特征值都是 $\det(\lambda I - A) = 0$ 的单根, 所以 A 有 n 个互异特征值. 互异特征值对应的特征向量是线性无关的, 故 A 有 n 个线性无关的特征向量, 因而 A 能与对角矩阵相似.

与定理 4 的证明类似,我们可以得到下面的推论:

推论 (4.2.1)

设 n 阶矩阵 A 的特征值都是单特征根,则 A 能与对角矩阵相似.

证明.

因为 A 的特征值都是 $\det(\lambda I - A) = 0$ 的单根, 所以 A 有 n 个互异特征值. 互异特征值对应的特征向量是线性无关的, 故 A 有 n 个线性无关的特征向量, 因而 A 能与对角矩阵相似.

与定理 4 的证明类似, 我们可以得到下面的推论:

推论 (4.2.2)

设 $\lambda_1, \lambda_2, \dots, \lambda_k$ 是矩阵 A 的互异特征值, $\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ir_i}$ 是对应于特征值 λ_i 的线性无关的特征向量, 则 $\alpha_{11}, \dots, \alpha_{1r_1}, \dots, \alpha_{k1}, \dots, \alpha_{kr_k}$ 也线性无关.

设 $\lambda_1, \lambda_2, \cdots, \lambda_r$ 是 n 阶矩阵 A 的全部互异特征值, λ_i 是 A 的 k_i 重特征值 $(k_i \geqslant 1)$, 则 $k_1 + k_2 + \cdots + k_r = n$. 若对每一个特征值 $\lambda_i (i=1,2,\cdots,r)$, $(\lambda_i I-A)$ X=0 的基础解系由 k_i 个解向量组成, 即 λ_i 恰有 k_i 个线性无关的特征向量,则由推论 2 可知, A 有 n 个线性无关的特征向量. 而 $(\lambda_i I-A)$ X=0 的基础解系所含解向量个数不大于 k_i , 故可得下面的定理:

推论 (4.2.2)

设 $\lambda_1, \lambda_2, \dots, \lambda_k$ 是矩阵 A 的互异特征值, $\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ir}$ 是对应于特 征值 λ_i 的线性无关的特征向量, 则 $\alpha_{11}, \dots, \alpha_{1r_1}, \dots, \alpha_{k1}, \dots, \alpha_{kr_k}$ 也 线性无关.

设 $\lambda_1, \lambda_2, \dots, \lambda_r$ 是 n 阶矩阵 A 的全部互异特征值, λ_i 是 A 的 k_i 重特 征值 $(k_i \ge 1)$, 则 $k_1 + k_2 + \cdots + k_r = n$. 若对每一个特征值 $\lambda_i(i=1,2,\cdots,r), (\lambda_i I - A) X = 0$ 的基础解系由 k_i 个解向量组成, 即 λ_i 恰有 k_i 个线性无关的特征向量, 则由推论 2 可知, A 有 n 个线性无关 的特征向量. 而 $(\lambda_i I - A) X = 0$ 的基础解系所含解向量个数不大于 k_i 故可得下面的定理:

定理 (4.2.5)

n 阶矩阵 A 与对角矩阵相似的充要条件是对于 A 的每一个 k_i 重特征根 λ_i , 齐次线性方程组 $(\lambda_i I - A) X = 0$ 的基础解系由 k_i 个解向量组成.

定理 (4.2.5)

n 阶矩阵 A 与对角矩阵相似的充要条件是对于 A 的每一个 k_i 重特征根 λ_i . 齐次线性方程组 $(\lambda_i I - A) X = 0$ 的基础解系由 k_i 个解向量组成.

 $\lambda_i I - A$ 是齐次线性方程组 $(\lambda_i I - A) X = 0$ 的系数矩阵, 由系数矩阵的 秩与基础解系所含解向量的个数的关系可以得到定理 5 的一个推论.

推论 (4.2.3)

n 阶矩阵 A 与对角矩阵相似的充要条件是对于每一个 k_i 重特征根 λ_i . $R(\lambda_i \mathbf{I} - \mathbf{A}) = n - k_i.$

例 (4.2.4)

下列矩阵能否与对角矩阵相似?

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix}, C = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}.$$

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & 2 \\ 2 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)(\lambda + 1)(\lambda - 3),$$

A 的特征值都是单根, 故 A 能与对角矩阵相似.

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \begin{vmatrix} \lambda - 3 & 1 & 2 \\ -2 & \lambda & 2 \\ -2 & 1 & \lambda + 1 \end{vmatrix} \equiv \lambda(\lambda - 1)^2$$

对于 2 重特征根 $\lambda_2 = 1$,

$$\lambda_2 \mathbf{I} - \mathbf{B} = \begin{pmatrix} -2 & 1 & 2 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{pmatrix}, R(\lambda_2 \mathbf{I} - \mathbf{B}) = 1,$$

所以 B 能与对角矩阵相似

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & 2 \\ 2 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)(\lambda + 1)(\lambda - 3),$$

A 的特征值都是单根, 故 A 能与对角矩阵相似.

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \begin{vmatrix} \lambda - 3 & 1 & 2 \\ -2 & \lambda & 2 \\ -2 & 1 & \lambda + 1 \end{vmatrix} \equiv \lambda(\lambda - 1)^2,$$

对于 2 重特征根 $\lambda_2 = 1$,

$$\lambda_2 \mathbf{I} - \mathbf{B} = \begin{pmatrix} -2 & 1 & 2 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{pmatrix}, R(\lambda_2 \mathbf{I} - \mathbf{B}) = 1,$$

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & 2 \\ 2 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)(\lambda + 1)(\lambda - 3),$$

A 的特征值都是单根, 故 A 能与对角矩阵相似.

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \begin{vmatrix} \lambda - 3 & 1 & 2 \\ -2 & \lambda & 2 \\ -2 & 1 & \lambda + 1 \end{vmatrix} \equiv \lambda(\lambda - 1)^2,$$

对于 2 重特征根 $\lambda_2 = 1$,

$$\lambda_2 \mathbf{I} - \mathbf{B} = \begin{pmatrix} -2 & 1 & 2 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{pmatrix}, R(\lambda_2 \mathbf{I} - \mathbf{B}) = 1,$$

所以 B 能与对角矩阵相似.

$$|\lambda \mathbf{I} - \mathbf{C}| = \begin{vmatrix} \lambda - 3 & -1 & 0 \\ 4 & \lambda + 1 & 0 \\ -4 & 8 & \lambda + 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2),$$

对于 2 重特征根 $\lambda_1 = 1$,

$$\lambda_1 \mathbf{I} - \mathbf{C} = \begin{pmatrix} -2 & -1 & 0 \\ 4 & 2 & 0 \\ -4 & 8 & 3 \end{pmatrix}, R(\lambda_1 \mathbf{I} - \mathbf{C}) = 2$$

所以 C 不能与对角矩阵相似。

$$|\lambda \mathbf{I} - \mathbf{C}| = \begin{vmatrix} \lambda - 3 & -1 & 0 \\ 4 & \lambda + 1 & 0 \\ -4 & 8 & \lambda + 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2),$$

对于 2 重特征根 $\lambda_1 = 1$,

$$\lambda_1 \mathbf{I} - \mathbf{C} = \begin{pmatrix} -2 & -1 & 0 \\ 4 & 2 & 0 \\ -4 & 8 & 3 \end{pmatrix}, R(\lambda_1 \mathbf{I} - \mathbf{C}) = 2,$$

所以 C 不能与对角矩阵相似.

例 (4.2.5)

已知
$$\alpha = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 是矩阵 $\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的特征向量, 试确

定 a, b 的值与 α 所对应的特征值, 并讨论 A 能否与对角矩阵相似.

解

设 lpha 所对应的特征值为 λ , 则

$$(\lambda \mathbf{I} - \mathbf{A})\alpha = \begin{pmatrix} \lambda - 2 & 1 & -2 \\ -5 & \lambda - a & -3 \\ 1 & -b & \lambda + 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \mathbf{0}$$

解得 a = -3, b = 0, $\lambda = -1$. 于是

例 (4.2.5)

已知
$$\alpha = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的特征向量, 试确

定 a, b 的值与 α 所对应的特征值, 并讨论 A 能否与对角矩阵相似.

解

设 α 所对应的特征值为 λ , 则

$$(\lambda \mathbf{I} - \mathbf{A})\boldsymbol{\alpha} = \begin{pmatrix} \lambda - 2 & 1 & -2 \\ -5 & \lambda - a & -3 \\ 1 & -b & \lambda + 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \mathbf{0},$$

解得 a = -3, b = 0, $\lambda = -1$. 于是

于是

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{array} \right),$$

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & 1 & -2 \\ -5 & \lambda + 3 & -3 \\ 1 & 0 & \lambda + 2 \end{vmatrix} = (\lambda + 1)^3.$$

故 $\lambda = -1$ 是 \boldsymbol{A} 的 3 重特征根.

$$R(-I - A) = R\left(\begin{pmatrix} -3 & 1 & -2 \\ -5 & 2 & -3 \\ 1 & 0 & 1 \end{pmatrix}\right) = 2$$

所以 A 不能与对角矩阵相似

干是

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix},$$

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & 1 & -2 \\ -5 & \lambda + 3 & -3 \\ 1 & 0 & \lambda + 2 \end{vmatrix} = (\lambda + 1)^3.$$

故 $\lambda = -1$ 是 A 的 3 重特征根.

$$R(-I - A) = R\left(\begin{pmatrix} -3 & 1 & -2 \\ -5 & 2 & -3 \\ 1 & 0 & 1 \end{pmatrix}\right) = 2,$$

所以 A 不能与对角矩阵相似.

30/33

小结 (I)

- 相似矩阵的基本概念: 对于 n 阶矩阵 A, B, 若存在可逆矩阵 P, 使 $P^{-1}AP = B$, 则称 $A \subseteq B$ 相似, 记为 $A \sim B$.
- 矩阵之间的相似关系是一种等价关系,具有反身性,对称性,传递性.
- 相似矩阵的性质: 若矩阵 A 与 B 相似, 则
 - (1) A与B有相同的特征多项式和特征值.
 - (2) A 与 B 的行列式相等.
 - (3) A 与 B 的迹相同.
 - (4) A 与 B 的 秩相等.
 - (5) $A^k 与 B^k$ 相似, 其中 k 为正整数. $f(A) \sim f(B)$.
 - (6) A与 B有相同的可逆性, 当 A, B可逆时, A^{-1} 与 B^{-1} 也相似.
- 矩阵的相似对角化: 若 n 阶矩阵 A 与 $A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ 相 似,则 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的全部特征值.
- 若 A 与对角矩阵 A 相似, 则 A 的主对元就是 A 的全部特征值

小结 (II)

- 矩阵的相似对角化: n 阶矩阵 A 能与对角矩阵 A 相似的充要条件 是 A 有 n 个线性无关的特征向量.
- 设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 是矩阵 A 的互异特征值, $\alpha_1, \alpha_2, \dots, \alpha_m$ 是 A 分别对应于这些特征值的特征向量, 则 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关.
- 0 n 阶矩阵 A 的特征值都是单特征根, 则 A 能与对角矩阵相似.
- 设 $\lambda_1, \lambda_2, \dots, \lambda_k$ 是矩阵 A 的互异特征值, $\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ir}$ 是对应 于特征值 λ_i 的线性无关的特征向量, 则 $\alpha_{11}, \cdots, \alpha_{1r_1}$, $\cdots, \alpha_{k1}, \cdots, \alpha_{kr_k}$ 也线性无关.
- n 阶矩阵 A 与对角矩阵相似的充要条件是对于 A 的每一个 k_i 重特 征根 λ_i , $(\lambda_i I - A) X = 0$ 的基础解系由 k_i 个解向量组成.
- n 阶矩阵 A 与对角矩阵相似的充要条件是对于每一个 k_i 重特征根 λ_i , $R(\lambda_i \mathbf{I} - \mathbf{A}) = n - k_i$.

小结 (Ⅲ)

- n 阶矩阵 A 对角化的一般步骤:
- (1) 写出 n阶矩阵 A 的特征多项式 $|\lambda I A|$, 求出 A 的全部特征值.
- (2) 若 $\lambda_1, \lambda_2, \dots, \lambda_m$ 是 A 的全部不同的特征值. 对每个 λ_i ($i=1,2,\dots,m$) 设其重数为 k_i ($k_1+k_2+\dots+k_m=n$), 求解齐次方程组 ($\lambda_i I A$) X = 0, 得到一个基础解系为 $\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{is_i}$. 若 $s_i = k_i$ ($i=1,2,\dots,m$), 则 A 可对角化, 否则 A 不可以对角化.
- (3) 若 A 可以对角化,用已求出的全部基础解系的解向量(所有解向量的个数必为 n)作为矩阵 P的列向量。则 P可逆,且 $P^{-1}AP = \Lambda$,其中 Λ 是对角矩阵,其主对角线上的元素为 A 的全部特征值。

