Exercise 4

Claim:

For the Reservoir Sampling (Vitter, 1985) algorithm holds the following: after l elements, S has min(s, l) elements and each picked with probability $\frac{s}{l}$.

Proof:

Let $\sigma = \langle a_1, \dots, a_m \rangle$ be a data stream over [n].

Case $l \leq s$: In that case the only first l elements of the data stream are added to S and after l steps: |S| = l. Probability $\frac{s}{l}$ equals 1 for s > l. And every element in S is picked with probability 1 since every element of the first l is picked.

Case l > s: In that case s many elements are added to S and hence after l steps: |S| = s. Together with the first case we have: after l steps |S| = min(s,l). After s processed elements S consists of the first s elements of the stream. We know that there is at least a s+1-th step. In that step with probability $\frac{s}{s+1}$ an element of S is picked uniformly at random and replaced with the currently processed element. Hence an element of S gets replaced with probability $\frac{s}{s+1}$ and that means after that processing step the probability for an element to be picked and added (with replacement) to S is $\frac{s}{s+1}$. In general we can say that after l processing steps the probability for an element of the stream to be in S is $\frac{s}{l}$.