Hands-on

Features shown during the demo

- Kubernetes plugin install
- CloudNativePG operator install
- Postgres cluster install
- Insert data in the cluster
- Failover
- Backup
- Recovery
- Scale out/down
- Fencing
- Hibernation
- Monitoring
- Rolling updates (minor and major)

Deployment

Administration

Backup and Recovery

High Availability

Monitoring

Last CloudNativePG tested version is 1.25

This demo is in

https://github.com/sergioenterprisedb/kubecon2022-demo

VMs IP Addresses

vm	vm ip	public ip
vm1		
vm2		
vm3		
vm4		
vm5		
vm6		
vm7		
vm8		
vm9		

vm	vm ip	public ip
vm10		
vm11		
vm12		
vm13		
vm14		
vm15		
vm16		
vm17		
vm18		

Setup the demo env

Step 1: Connect to your demo environment

- Connect to the terminal 1:
 - Run in the browser https://<your vm ip address>
 - Connect to the terminal as user workshop with the password workshop
 - Connect to the terminal 2:
 - Open the new browser tab.
 - Run https://<your vm ip address>
 - Connect to the terminal as user workshop with the password workshop

Step 2: Create k3d cluster

- In the terminal 1:
 - Go to the directory /home/workshop/workshop/cnp_demo:
 cd /home/workshop/workshop/cnp_demo
 - Create the k3d cluster run the script:./00_start_infra.sh
 - Check the cluster: kubectl get nodes kubectl get pods

Step 3: Run Minio server

- In the terminal 1:
 - Go to the directory /home/workshop/workshop/cnp_demo:
 cd /home/workshop/workshop/cnp_demo
 - o Start MinIO:

./start_minio_docker_server.sh &

Install the operator

Step 4: Install CNPG Operator and CNPG plugin

- In the terminal 1:
 - o Install CNPG plugin:

```
./01_install_plugin.sh
```

o Install CNPG operator:

```
./02_install_operator.sh
```

• Check the installation of the operator (try several times):

./03_check_operator_installed.sh

Create the postgres cluster

Step 5: Install Postgres cluster

- In the terminal 1:
 - o Create the yaml file:
 - ./04_get_cluster_config_file.sh
 - Create the postgres cluster:
 - ./05 install cluster.sh
- In the terminal 2:
 - Go to the directory /home/workshop/workshop/cnp_demo:
 cd /home/workshop/workshop/cnp_demo
 - Check the Postgres cluster status:
 - ./06_show_status.sh

Step 6: Create table test with 1000 rows

- In the terminal 1:
 - o Run the script:

./07_insert_data.sh

o Check the data in the table test:

./check_table_test.sh

Upgrade the postgres cluster

Step 7: Connect to the MinIO server

- In the browser open the new tab and go to
 - o http://<vm ip>:9001
 - Connect as user admin with the password: password
- The page will appear:

Step 8: Check the cluster status

- In the terminal 1:
 - Run the command
 kubectl -cnpg status cluster-example
 - o In the output
 - check Postgres version: "PostgreSQL Image: ghcr.io/cloudnative-pg/postgresql:16.1"
 - check "Continuous Backup status": "Not configured"

Step 9: Run the script 09_upgrade.sh

- With this step we will:
 - Run the postgres minor update from the version 16.1 to 16.4
 - We will configure the WAL files backup to the MinIO storage
- In the terminal 1:
 - Run the script:
 - ./09_upgrade.sh
- In the terminal 2:
 - Check the upgrade status:
 - ./06_show_status.sh

Step 10: Check the WAL backup on the MinIO server:

- In the browser tab MinIO server
 - o Press "refresh" button:

Backup & Restore

Step 11: Create the full backup

- With this step we will:
 - Create the full backup of the postgres cluster in the MinIO storage:
- In the terminal 1:
 - o Run the script:

./10_backup_cluster.sh

Check the backup status:

./11_backup_describe.sh

Check the backup in the MinIO GUI

Step 12: Restore the database from the backup

- With this step we will:
 - Create the new cluster cluster-restore.
 - Restore the full backup created in the previous step in the new cluster:
- In the terminal 1:
 - Run the script:
 - ./12_restore_cluster.sh
 - o Check the creation status:
 - kubectl get pods -w # after creation stop the execution with <ctrl>+c
 - Check the table test in the cluster-restore, run the script:
 - ./check_restore_table_test.sh

Failover

Step 13: Run failover test

- With this step we will:
 - Delete the primary database of the cluster cluster-example
 - Check the cluster status in the another terminal window.
- In the terminal 1:
 - o Run the script:

./13_failover.sh

- In the terminal 2:
 - Check the failover cluster status:

./06_show_status.sh

Scale-out and scale-down

Step 14: Scale-out the postgres cluster

- With this step we will:
 - Add the 1 standby to the cluster
- In the terminal 1:
 - Run the script:

./14_scale_out.sh

- In the terminal 2:
 - o Check the cluster status:

./06_show_status.sh

Step 15: Scale-down the postgres cluster

- With this step we will:
 - Remove 2 standby pods from the cluster
- In the terminal 1:
 - Run the script:

./15_scale_down.sh

- In the terminal 2:
 - Check the cluster status:

./06_show_status.sh

Fencing

Step 16: Stop postgres process on the pod

- In the terminal 1:
 - Run the script:

```
./30_fencing_on.sh
```

- In the terminal 2:
 - o Check the cluster status:

```
./06_show_status.sh
```


Step 17: Start the postgres process on the pod

- In the terminal 1:
 - o Run the script:

```
./31_fencing_off.sh
```

- In the terminal 2:
 - o Check the cluster status:

```
./06_show_status.sh
```


Hibernation

Step 18: Stop the postgres cluster

- In the terminal 1:
 - o Run the script:

./32_hibernation_on.sh

- In the terminal 2:
 - o Check the cluster status:

./06_show_status.sh

Step 19: Start the postgres cluster

- In the terminal 1:
 - o Run the script:

./33_hibernation_off.sh

- In the terminal 2:
 - o Check the cluster status:

./06_show_status.sh

Major Upgrade

Step 20: Create the Postgres 16 Cluster

- In the terminal 1:
 - Change directory to /home/workshop/workshop/cnp-demo/major_upgrade_demo
 cd /home/workshop/workshop/cnp-demo/major_upgrade_demo
 - o Create the cluster v16::
 - ./04_create_cluster_v16.sh
 - o Check the cluster status:
 - ./05_show_status_v16.sh
 - o Insert the data:
 - ./06_insert_data_cluster_v16.sh
 - Verify the inserted data::
 - ./07_verify_data_inserted.sh

Step 21: Create the Postgres 17 Cluster and import data from PG 16

• Create the cluster postgres v17 and import the data from the postgres v16:

```
./08_upgrade_v16_to_v17.sh
```

o Check the cluster status:

```
./09_show_status_v17.sh
```

• Verify the data in the postgres v17:

```
./10_verify_data_migrated_16_17.sh
```


Monitoring

Setup monitoring

- In the terminal 1:
 - Run the command: kubectl get pods
 - Change the directory::
 cd /home/workshop/workshop/cnp-demo/monitoring
 - Install the prometheus rules:
 - ./01_prometheus_rules.sh
 - Start port forwarding for prometheus and grafana:
 - ./02_port_forwarding_prometheus_grafana.sh
- Download the Grafana Dashboard to your laptop:
 - https://github.com/cloudnative-pg/grafana-dashboards/blob/main/charts/cluster/grafana-dashboard.json
 <a href="https://github.com/cloudnative-pg/grafana-dashboards/blob/main/charts/cluster/g

Explore Prometheus

- In the browser open the new tab and go to
 - http://<vm ip>:9090
- The prometheus page will appear search for "cnpg" metrics:

Access the Grafana page

- In the browser open the new tab and go to
 - o http://<vm ip>:3000
 - Connect as user admin with the password: prom-operator
- The grafana page will appear

Configure Grafana

Go to Dashboards

Press "New", then "Import":

Configure Grafana - continued

Upload the Dashboard json file:

- Upload grafana-dashboard.json file
- Select Prometheus as the data source:

Explore CNPG Dashboard- continued

Explore the CNPG Dashboard:

THANK YOU

