LINEAR MODELS

Sébastien Boisgérault

CONTROL ENGINEERING WITH PYTHON

- Documents (GitHub)
- C License CC BY 4.0
- Mines ParisTech, PSL University

SYMBOLS

2	Code		Worked Example
	Graph	**	Exercise
	Definition		Numerical Method
	Theorem	D0000 00 000 D000 000000 D000 000000 D00000000	Analytical Method
	Remark		Theory
	Information	Qu.	Hint
1	Warning	1	Solution

IMPORTS

```
from numpy import *
from numpy.linalg import *
from scipy.linalg import *
from matplotlib.pyplot import *
from mpl_toolkits.mplot3d import *
from scipy.integrate import solve_ivp
```

STREAMPLOT HELPER

```
def Q(f, xs, ys):
    X, Y = meshgrid(xs, ys)
    v = vectorize
    fx = v(lambda x, y: f([x, y])[0])
    fy = v(lambda x, y: f([x, y])[1])
    return X, Y, fx(X, Y), fy(X, Y)
```

PREAMBLE

NON-AUTONOMOUS SYSTEMS

Their structure is

$$\dot{x} = f(x, u)$$

where $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$, that is

$$f:\mathbb{R}^n imes\mathbb{R}^m o\mathbb{R}^n.$$

The vector-valued u is the system input.

This quantity may depend on the time t

$$u:t\in\mathbb{R}\mapsto u(t)\in\mathbb{R}^m,$$

(actually it may also depend on some state, but we will adress this later).

A solution of

$$\dot x=f(x,u),\ x(t_0)=x_0$$

is merely a solution of

$$\dot x=h(t,x),\; x(t_0)=x_0,$$

where

$$h(t,x) := f(x,u(t)).$$

We may complement the system dynamics with an equation

$$y=g(x,u)\in\mathbb{R}^p$$

The vector y refers to the **systems output**, usually the quantities that we can effectively measure in a system (the state x itself may be unknown).

LINEAR SYSTEMS

STANDARD FORM

Input $u \in \mathbb{R}^m$, state $x \in \mathbb{R}^n$, output $y \in \mathbb{R}^p$.

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

MATRIX SHAPE

$$A \in \mathbb{R}^{n imes n}$$
, $B \in \mathbb{R}^{n imes m}$, $C \in \mathbb{R}^{p imes n}$, $D \in \mathbb{R}^{p imes m}$.

$$egin{bmatrix} A & B \ \hline C & D \end{bmatrix}$$

WELL-POSEDNESS

When u=0,

$$\dot{x} = Ax =: f(x) \Rightarrow \frac{\partial f}{\partial x}(x) = A$$

The vector field f is continuously differentiable

 \Rightarrow The system is well-posed.

When u=0, since

$$\dot{x} = Ax =: f(x)$$

$$f(0) = A0 = 0$$

 \Rightarrow the origin x=0 is always an equilibrium.

(the only one in the state space if A is invertible).

WHY "LINEAR"?

Assume that:

$$\dot{x}_1 = Ax_1 + Bu_1, x_1(0) = x_{10},$$

$$\dot{x}_2 = Ax_2 + Bu_2, x_2(0) = x_{20},$$

Set

$$ullet u_3 = \lambda u_1 + \mu u_2$$
 and

•
$$x_{30} = \lambda x_{10} + \mu x_{20}$$
.

for some λ and μ .

Then, if

$$x_3 = \lambda x_1 + \mu x_2,$$

we have

$$\dot{x}_3 = Ax_3 + Bu_3, \ x_3(0) = x_{30}.$$

DYNAMICS DECOMPOSITION

The solution of

$$\dot{x} = Ax + Bu, \ x(0) = x_0$$

is the sum $x(t) = x_1(t) + x_2(t)$ where

- $x_1(t)$ is the solution to the internal dynamics and
- $x_2(t)$ is the solution to the external dynamics.

• The internal dynamics is controlled by the initial value x_0 only (there is no input, u=0).

$$\dot{x}_1 = Ax_1, \ x_1(0) = x_0,$$

• The external dynamics is controlled by the input u(t) only (the system is initially at rest, $x_0=0$).

$$\dot{x}_2 = Ax_2 + Bu, \; x_2(0) = 0.$$

These systems are actually linear and time-invariant (hence LTI) systems. Time-invariant means that when x(t) is a solution of

$$\dot{x} = Ax + Bu, \ x(0) = x_0,$$

then $x(t-t_0)$ is a solution of

$$\dot{x} = Ax + Bu(t - t_0), \ x(t_0) = x_0.$$

HEAT EQUATION

SIMPLIFIED MODEL

- Four cells numbered 1 to 4 are arranged in a row.
- The first cell has a heat source, the last one a temperature sensor.
- The heat sink/source is increasing the temperature of its cell of \boldsymbol{u} degrees by second.
- If the temperature of a cell is T and the one of a neighbor is T_n , T increases of T_n-T by second.

Given the geometric layout:

$$\bullet \ dT_1/dt = u + (T_2 - T_1)$$

$$\bullet \ dT_2/dt = (T_1-T_2)+(T_3-T_2)$$

•
$$dT_3/dt = (T_2 - T_3) + (T_4 - T_3)$$

$$\bullet \ dT_4/dt = (T_3 - T_4)$$

$$ullet y=T_4$$

Set
$$x = (T_1, T_2, T_3, T_4)$$
.

The model is linear and its standard matrices are:

$$A = egin{bmatrix} -1 & 1 & 0 & 0 \ 1 & -2 & 1 & 0 \ 0 & 1 & -2 & 1 \ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$B = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}, \ C = [0 \quad 0 \quad 0 \quad 1], \ D = [0]$$

LINEARIZATION

NONLINEAR TO LINEAR

Consider the nonlinear system

$$\dot{x} = f(x, u)$$

$$y = g(x, u)$$

Assume that x_e is an equilibrium when $u=u_e$ (cst):

$$f(x_e,u_e)=0$$

and let

$$y_e := g(x_e, u_e).$$

Define the error variables

$$ullet$$
 $\Delta x := x - x_e,$

$$ullet$$
 $\Delta u := u - u_e$ and

$$ullet$$
 $\Delta y := y - y_e.$

As long as the error variables stay small

$$f(x,u)\simeq \overbrace{f(x_e,u_e)}^0 + rac{\partial f}{\partial x}(x_e,u_e)\Delta x + rac{\partial f}{\partial u}(x_e,u_e)\Delta u$$

$$g(x,u)\simeq \overbrace{g(x_e,u_e)}^{y_e} + rac{\partial g}{\partial x}(x_e,u_e)\Delta x + rac{\partial g}{\partial u}(x_e,u_e)\Delta u$$

Hence, the error variables satisfy approximately

$$d(\Delta x)/dt = A\Delta x + B\Delta u$$

 $\Delta y = C\Delta x + D\Delta u$

with

$$egin{bmatrix} A & B \ \hline C & D \end{bmatrix} = egin{bmatrix} rac{\partial f}{\partial x} & rac{\partial f}{\partial u} \ \hline rac{\partial g}{\partial x} & rac{\partial g}{\partial u} \end{bmatrix} (x_e, u_e)$$

The system

$$egin{array}{lll} \dot{x} &=& -2x+y^3 \ \dot{y} &=& -2y+x^3 \end{array}$$

has an equilibrium at (0,0).

The corresponding error variables satisfy $\Delta x = x$ and $\Delta y = y$, thus

$$rac{d\Delta x}{dt} = \dot{x} = -2x + y^3 = -2\Delta x + (\Delta y)^3 pprox -2\Delta x$$

$$rac{d\Delta y}{dt} = \dot{y} = -2y + x^3 = -2\Delta y + (\Delta x)^3 pprox -2\Delta y$$

$$\dot{x} = -2x + y^3$$
 $\dot{y} = -2y + x^3$

 \rightarrow

$$egin{array}{lll} \dot{x} &pprox & -2x \ \dot{y} &pprox & -2y \end{array}$$

**** VECTOR FIELDS**

```
def f(xy):
    x, y = xy
    dx = -2*x + y**3
    dy = -2*y + x**3
    return array([dx, dy])
```

```
def fl(xy):
    x, y = xy
    dx = -2*x
    dy = -2*y
    return array([dx, dy])
```

STREAM PLOT

```
figure()
x = y = linspace(-1.0, 1.0, 1000)
streamplot(*Q(f, x, y), color="k")
blue_5 = "#339af0"
streamplot(*Q(f1, x, y), color=blue_5)
plot([0], [0], "k.", ms=10.0)
axis("square")
axis("off")
```


Consider

$$\dot{x}=-x^2+u,\;y=xu$$

If we set $u_e=1$, the system has an equilibrium at $x_e=1$ (and also $x_e=-1$ but we focus on the former) and the corresponding y is $y_e=x_eu_e=1$.

Around this configuration $(x_e,u_e)=(1,1)$, we have

$$rac{\partial (-x^2+u)}{\partial x}=-2x_e=-2,\;rac{\partial (-x^2+u)}{\partial u}=1,$$

and

$$rac{\partial xu}{\partial x}=u_e=1, \; rac{\partial xu}{\partial u}=x_e=1.$$

Thus, the approximate, linearized dynamics around this equilibrium is

$$d(x-1)/dt = -2(x-1) + (u-1)$$

 $y-1 = (x-1) + (u-1)$

The equilibrium 0 is locally asymptotically stable for

$$rac{d\Delta x}{dt} = A\Delta x$$

where $A=\partial f(x_e,u_e)/\partial x$.

 \Longrightarrow

The equilibrium x_e is locally asymptotically stable for

$$\dot{x}=f(x,u_e).$$

- The converse is not true : the nonlinear system may be asymptotically stable but not its linearized approximation (e.g. consider $\dot{x}=-x^3$).
- If we replace local asymptotic stability with local exponential stability, the requirement that locally

$$\|x(t) - x_e\| \le Ae^{-\sigma t} \|x(0) - x_e\|$$

for some A>0 and $\sigma>0$, then it works.

A pendulum submitted to a torque c is governed by

$$m\ell^2\ddot{ heta} + b\dot{ heta} + mg\ell\sin{ heta} = c.$$

We assume that only the angle θ is measured.

Let $x=(\theta,\dot{\theta})$, u=c and $y=\theta$.

What are the function f and g that determine the nonlinear dynamics of the pendulum?

Show that for any angle $heta_e$ there is a constant value c_e of the torque such that $x_e=(heta_e,0)$ is an equilibrium.

Compute the linearized dynamics of the pendulum around this equilibrium and put it in the standard form (compute A, B, C and D).

The 2nd-order differential equation

$$m\ell^2\ddot{ heta} + b\dot{ heta} + mg\ell\sin{ heta} = c.$$

is equivalent to the first-order differential equation

$$rac{d}{dt} egin{bmatrix} heta \ \omega \end{bmatrix} = egin{bmatrix} \omega \ -(b/m\ell^2)\omega - (g/\ell)\sin heta + c/m\ell^2 \end{bmatrix}$$

Hence, with
$$x=(\theta,\dot{\theta})$$
, $u=c$ and $y=\theta$, we have

$$egin{array}{lll} \dot{x} &=& f(x,u) \ y &=& g(x,u) \end{array}$$

with

$$egin{array}{lll} f((heta,\omega),c) &=& \left(\omega,-(b/m\ell^2)\omega-(g/\ell)\sin heta+c/m\ell^2
ight) \ g((heta,\omega),c) &=& heta. \end{array}$$

Let $heta_e$ in \mathbb{R} . If $c=c_e$, the state $x_e:=(heta_e,0)$ is an equilibrium if and only if $f((heta_e,0),c_e)=0$, that is

$$egin{bmatrix} 0 \ 0 - (g/\ell)\sin heta_e + c_e/m\ell^2 \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix}$$

which holds if and only if

$$c_e = mg\ell\sin\theta_e$$
.

3. 🔓

We have

$$A = rac{\partial f}{\partial x}(x_e, c_e) = egin{bmatrix} 0 & 1 \ -(g/\ell)\cos heta_e & -(b/m\ell^2) \end{bmatrix}$$

$$B=rac{\partial f}{\partial u}(x_e,u_e)=egin{bmatrix} 0 \ 1/m\ell^2 \end{bmatrix}$$

$$C=rac{\partial g}{\partial x_e}(x_e,u_e)=egin{bmatrix}1\0\end{bmatrix},\ D=rac{\partial g}{\partial u_e}(x_e,u_e)=0$$

Thus,

$$egin{aligned} rac{d}{dt}\Delta heta &pprox \Delta\omega \ rac{d}{dt}\Delta\omega &pprox -(g/\ell)\cos(heta_e)\Delta heta - (b/m\ell^2)\Delta\omega + \Delta c/m\ell^2 \end{aligned}$$

and obviously, as far as the output goes,

$$\Delta \theta \approx \Delta \theta$$
.