Copyright 2010 Pearson Education, Inc.

Ch. 3: Descriptive Statistics

$$\begin{split} &\bar{x} = \frac{\sum x}{n} \quad \text{Mean} \\ &\bar{x} = \frac{\sum f \cdot x}{\sum f} \quad \text{Mean (frequency table)} \\ &s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} \quad \text{Standard deviation} \\ &s = \sqrt{\frac{n(\sum x^2) - (\sum x)^2}{n(n - 1)}} \quad \text{Standard deviation (shortcut)} \\ &s = \sqrt{\frac{n[\sum (f \cdot x^2)] - [\sum (f \cdot x)]^2}{n(n - 1)}} \quad \text{Standard deviation (frequency table)} \end{split}$$

variance = s^2

Ch. 4: Probability

 $P(A \text{ or } B) = P(A) + P(B) \quad \text{if } A, B \text{ are mutually exclusive}$ P(A or B) = P(A) + P(B) - P(A and B) if A, B are not mutually exclusive $P(A \text{ and } B) = P(A) \cdot P(B) \quad \text{if } A, B \text{ are independent}$ $P(A \text{ and } B) = P(A) \cdot P(B|A) \quad \text{if } A, B \text{ are dependent}$ $P(\overline{A}) = 1 - P(A) \quad \text{Rule of complements}$ ${}_{n}P_{r} = \frac{n!}{(n-r)!} \quad \text{Permutations (no elements alike)}$ $\frac{n!}{n_{1}! \; n_{2}! \cdots n_{k}!} \quad \text{Permutations } (n_{1} \text{ alike}, \dots)$ ${}_{n}C_{r} = \frac{n!}{(n-r)! \; r!} \quad \text{Combinations}$

Ch. 5: Probability Distributions

$$\mu = \sum x \cdot P(x) \quad \text{Mean (prob. dist.)}$$

$$\sigma = \sqrt{\sum [x^2 \cdot P(x)]} - \mu^2 \quad \text{Standard deviation (prob. dist.)}$$

$$P(x) = \frac{n!}{(n-x)! \, x!} \cdot p^x \cdot q^{n-x} \quad \text{Binomial probability}$$

$$\mu = n \cdot p \quad \text{Mean (binomial)}$$

$$\sigma^2 = n \cdot p \cdot q \quad \text{Variance (binomial)}$$

$$\sigma = \sqrt{n \cdot p \cdot q} \quad \text{Standard deviation (binomial)}$$

$$P(x) = \frac{\mu^x \cdot e^{-\mu}}{x!} \quad \text{Poisson distribution}$$

$$\text{where } e \approx 2.71828$$

Ch. 6: Normal Distribution

$$z = \frac{x - \bar{x}}{s} \text{ or } \frac{x - \mu}{\sigma} \text{ Standard score}$$

$$\mu_{\bar{x}} = \mu \text{ Central limit theorem}$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \text{ Central limit theorem}$$
(Standard error)

Ch. 7: Confidence Intervals (one population)

$$\hat{p} - E
$$\text{where } E = z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$\overline{x} - E < \mu < \overline{x} + E \quad \text{Mean}$$

$$\text{where } E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad (\sigma \text{ known})$$

$$\text{or } E = t_{\alpha/2} \frac{s}{\sqrt{n}} \quad (\sigma \text{ unknown})$$

$$\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2} \quad \text{Variance}$$$$

Ch. 7: Sample Size Determination

$$n = \frac{\left[z_{\alpha/2}\right]^2 \cdot 0.25}{E^2} \quad \text{Proportion}$$

$$n = \frac{\left[z_{\alpha/2}\right]^2 \hat{p} \hat{q}}{E^2} \quad \text{Proportion } (\hat{p} \text{ and } \hat{q} \text{ are known})$$

$$n = \left[\frac{z_{\alpha/2}\sigma}{E}\right]^2 \quad \text{Mean}$$

Ch. 9: Confidence Intervals (two populations)

$$(\hat{p}_1 - \hat{p}_2) - E < (p_1 - p_2) < (\hat{p}_1 - \hat{p}_2) + E$$
where $E = z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$

$$(\bar{x}_1 - \bar{x}_2) - E < (\mu_1 - \mu_2) < (\bar{x}_1 - \bar{x}_2) + E \quad \text{(Indep.)}$$
where $E = t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $(\text{df = smaller of } n_1 - 1, n_2 - 1)$

where
$$E = \frac{n_{\alpha/2} \sqrt{n_1 + n_2}}{n_1 + n_2} = \frac{n_1 - 1, n_2 - 1}{n_2}$$
(σ_1 and σ_2 unknown and not assumed equal)

$$E = t_{\alpha/2} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} \quad (df = n_1 + n_2 - 2) \leftarrow$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

(σ_1 and σ_2 unknown but assumed equal)

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \longleftarrow$$

 $(\sigma_1, \sigma_2 \text{ known})$

$$\overline{d} - E < \mu_d < \overline{d} + E$$
 (Matched pairs) where $E = t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ (df = $n-1$)

Copyright 2010 Pearson Education, Inc.

Ch. 8: Test Statistics (one population)

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$
 Proportion—one population

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$
 Mean—one population (\sigma known)

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$
 Mean—one population (\sigma unknown)

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$
 Standard deviation or variance—one population

Ch. 9: Test Statistics (two populations)

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\bar{p}q}{n_1} + \frac{\bar{p}q}{n_2}}}$$
Two proportions
$$\frac{\bar{p}q}{n_1 + n_2} \leftarrow \frac{\bar{p}q}{n_1 + n_2}$$
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 df = smaller of
$$\frac{n_1 - 1, n_2 - 1}{n_1 - 1, n_2 - 1}$$

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \text{df = smaller of} \\ \uparrow \qquad \sqrt{\frac{n_1^2}{n_1} + \frac{n_2^2}{n_2}}$$

Two means—independent; σ_1 and σ_2 unknown, and not assumed equal.

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \quad (df = n_1 + n_2 - 2)$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

-Two means—independent; σ_1 and σ_2 unknown, but assumed equal.

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \quad \text{Two means—independent;} \\ \sigma_1, \sigma_2 \text{ known.}$$

$$t = \frac{\overline{d} - \mu_d}{\frac{s_d}{\sqrt{n}}}$$
 Two means—matched pairs
$$(df = n - 1)$$

$$F = \frac{s_1^2}{s_2^2}$$
 Standard deviation or variance—
two populations (where $s_1^2 \ge s_2^2$)

Ch. 11: Goodness-of-Fit and Contingency Tables

$$\chi^2 = \Sigma \frac{(O - E)^2}{E}$$
 Goodness-of-fit (df = $k - 1$)

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 Contingency table [df = $(r-1)(c-1)$]

where $E = \frac{\text{(row total)(column total)}}{\text{(grand total)}}$

$$\chi^2 = \frac{(|b-c|-1)^2}{b+c}$$
 McNemar's test for matched pairs (df = 1)

Ch. 10: Linear Correlation/Regression

Correlation
$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^2) - (\Sigma x)^2}\sqrt{n(\Sigma y^2) - (\Sigma y)^2}}$$

or
$$r = \frac{\sum (z_x z_y)}{n-1}$$
 where $z_x = z$ score for x

$$z_y = z$$
 score for y

$$b_1 = \frac{n\sum xy - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$p_1 = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$

or
$$b_1 = r \frac{s_y}{s_x}$$

y-Intercept:

$$b_0 = \bar{y} - b_1 \bar{x}$$
 or $b_0 = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2}$

 $\hat{y} = b_0 + b_1 x$ Estimated eq. of regression line

$$r^2 = \frac{\text{explained variation}}{r^2}$$

$$s_{e} = \sqrt{\frac{\sum(y - \hat{y})^{2}}{n - 2}} \text{ or } \sqrt{\frac{\sum y^{2} - b_{0}\sum y - b_{1}\sum xy}{n - 2}}$$

$$\hat{y} - E < y < \hat{y} + E$$
 Prediction interval

where
$$E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \bar{x})^2}{n(\Sigma x^2) - (\Sigma x)^2}}$$

Ch. 12: One-Way Analysis of Variance

Procedure for testing H_0 : $\mu_1 = \mu_2 = \mu_3 = \cdots$

- 1. Use software or calculator to obtain results.
- 2. Identify the *P*-value.
- 3. Form conclusion:

If *P*-value $\leq \alpha$, reject the null hypothesis of equal means.

If *P*-value $> \alpha$, fail to reject the null hypothesis of equal means.

Ch. 12: Two-Way Analysis of Variance

Procedure:

- 1. Use software or a calculator to obtain results.
- 2. Test H_0 : There is no interaction between the row factor and column factor.
- Stop if H_0 from Step 2 is rejected.

If H_0 from Step 2 is not rejected (so there does not appear to be an interaction effect), proceed with these two tests:

Test for effects from the row factor.

Test for effects from the column factor.

Copyright 2010 Pearson Education, Inc.

Ch. 13: Nonparametric Tests

$$z = \frac{(x+0.5) - (n/2)}{\sqrt{n}/2}$$
 Sign test for $n > 25$

$$z = \frac{T - n(n+1)/4}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$
 Wilcoxon signed ranks (matched pairs and $n > 30$)

$$z = \frac{R - \mu_R}{\sigma_R} = \frac{R - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}}$$
 Wilcoxon rank-sum (two independent samples)

$$H = \frac{12}{N(N+1)} \left(\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \dots + \frac{R_k^2}{n_k} \right) - 3(N+1)$$

Kruskal-Wallis (chi-square df = k - 1)

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$
 Rank correlation

$$\left(\text{critical value for } n > 30: \frac{\pm z}{\sqrt{n-1}}\right)$$

$$z = \frac{G - \mu_G}{\sigma_G} = \frac{G - \left(\frac{2n_1n_2}{n_1 + n_2} + 1\right)}{\sqrt{\frac{(2n_1n_2)(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}}$$
Runs test for $n > 20$

Ch. 14: Control Charts

R chart: Plot sample ranges

UCL: $D_4\overline{R}$

Centerline: \overline{R}

LCL: $D_3\overline{R}$

 \bar{x} chart: Plot sample means

UCL: $\bar{x} + A_2 \bar{R}$

Centerline: \bar{x}

LCL: $\overline{x} - A_2 \overline{R}$

p chart: Plot sample proportions

UCL:
$$\bar{p} + 3\sqrt{\frac{\bar{p}\bar{q}}{n}}$$

Centerline: \bar{p}

LCL:
$$\bar{p} - 3\sqrt{\frac{\bar{p}\bar{q}}{n}}$$

Table A	Pearso	Critical Values of the Pearson Correlation Coefficient <i>r</i>					
n	$\alpha = .05$	$\alpha = .01$					
4	.950	.990					
5	.878	.959					
6	.811	.939					
7	.754	.875					
8	.707	.834					
9	.666	.798					
10	.632	.765					
11	.602	.735					
12	.576	.708					
13	.553	.684					
14	.532	.661					
100	.196	.256					
15 16 17 18 19 20 25 30 35 40 45 50 60 70 80 90	.514 .497 .482 .468 .456 .444 .396 .361 .335 .312 .294 .279 .254 .236 .220 .207	.641 .623 .606 .590 .575 .561 .505 .463 .430 .402 .378 .361 .330 .305 .286 .269					

NOTE: To test H_0 : $\rho = 0$ against H_1 : $\rho \neq 0$, reject H_0 if the absolute value of r is greater than the critical value in the table.

|--|

Subgroup Size			
n	A_2	D_3	D_4
2	1.880	0.000	3.267
3	1.023	0.000	2.574
4	0.729	0.000	2.282
5	0.577	0.000	2.114
6	0.483	0.000	2.004
7	0.419	0.076	1.924

t distribution:		σ not known and normally distributed population
(or	σ not known and $n > 30$
Normal distribution:		σ known and normally distributed population
(or	σ known and $n > 30$

NEGATIVE z Scores

TABLE A	-2 Sta	ndard N	ormal (z	r) Distrib	ution: C	umulativ	e Area f	rom the	LEFT	
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.50										
and										
lower	.0001									
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052		* .0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0000	* .0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	, ,	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

NOTE: For values of z below -3.49, use 0.0001 for the area. *Use these common values that result from interpolation:

−2.575 0.0050 ←

*Use these common values that result from interpolation:

z score

1.645

2.575

Area

0.9500 🚤

0.9950

POSITIVE z Scores

Confidence Critical

Level

0.90

0.95

0.99

Value

1.645

1.96

2.575

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	* .9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3.50	.9999									
and up										

TABLE A-3	t Distribution: Critical t Values									
		Ar	ea in One Tail							
	0.005	0.01	0.025	0.05	0.10					
Degrees of		Are	ea in Two Tails							
Freedom	0.01	0.02	0.05	0.10	0.20					
1	63.657	31.821	12.706	6.314	3.078					
2	9.925	6.965	4.303	2.920	1.886					
3	5.841	4.541	3.182	2.353	1.638					
4	4.604	3.747	2.776	2.132	1.533					
5	4.032	3.365	2.571	2.015	1.476					
6	3.707	3.143	2.447	1.943	1.440					
7	3.499	2.998	2.365	1.895	1.415					
8	3.355	2.896	2.306	1.860	1.397					
9	3.250	2.821	2.262	1.833	1.383					
10	3.169	2.764	2.228	1.812	1.372					
11	3.106	2.718	2.201	1.796	1.363					
12	3.055	2.681	2.179	1.782	1.356					
13	3.012	2.650	2.160	1.771	1.350					
14	2.977	2.624	2.145	1.761	1.345					
15	2.947	2.602	2.131	1.753	1.341					
16	2.921	2.583	2.120	1.746	1.337					
17	2.898	2.567	2.110	1.740	1.333					
18	2.878	2.552	2.101	1.734	1.330					
19	2.861	2.539	2.093	1.729	1.328					
20	2.845	2.528	2.086	1.725	1.325					
21	2.831	2.518	2.080	1.721	1.323					
22	2.819	2.508	2.074	1.717	1.321					
23	2.807	2.500	2.069	1.714	1.319					
24	2.797	2.492	2.064	1.711	1.318					
25	2.787	2.485	2.060	1.708	1.316					
26	2.779	2.479	2.056	1.706	1.315					
27	2.771	2.473	2.052	1.703	1.314					
28	2.763	2.467	2.048	1.701	1.313					
29 30	2.756 2.750	2.462 2.457	2.045 2.042	1.699	1.311					
				1.697	1.310					
31 32	2.744 2.738	2.453 2.449	2.040 2.037	1.696	1.309					
33	2.733	2.449	2.037	1.694	1.309					
34	2.728	2.445	2.035	1.692 1.691	1.308 1.307					
35	2.724	2.438	2.032	1.690	1.307					
36	2.719	2.434	2.028	1.688	1.306					
37	2.715	2.434	2.026	1.687	1.305					
38	2.712	2.429	2.024	1.686	1.304					
39	2.708	2.429	2.023	1.685	1.304					
40	2.704	2.423	2.023	1.684	1.304					
45	2.690	2.412	2.014	1.679	1.301					
50	2.678	2.403	2.009	1.676	1.299					
60	2.660	2.390	2.000	1.671	1.296					
70	2.648	2.381	1.994	1.667	1.294					
80	2.639	2.374	1.990	1.664	1.292					
90	2.632	2.368	1.987	1.662	1.291					
100	2.626	2.364	1.984	1.660	1.290					
200	2.601	2.345	1.972	1.653	1.286					
300	2.592	2.339	1.968	1.650	1.284					
400	2.588	2.336	1.966	1.649	1.284					
500	2.586	2.334	1.965	1.648	1.283					
1000	2.581	2.330	1.962	1.646	1.282					
2000	2.578	2.328	1.961	1.646	1.282					
Large	2.576	2.326	1.960	1.645	1.282					

Copyright 2010 Pearson Education, Inc.

TABLE A-4	4 Chi-	Sauare	(χ^2) Dis	tributio	n					
	Area to the Right of the Critical Value									
				7 11 0 0						
Degrees of										
Freedom	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1	_	_	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.299
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

From Donald B. Owen, Handbook of Statistical Tables, © 1962 Addison-Wesley Publishing Co., Reading, MA. Reprinted with permission of the publisher.

Degrees of Freedom

n-1 for confidence intervals or hypothesis tests with a standard deviation or variance

k-1 for goodness-of-fit with k categories

(r-1)(c-1) for contingency tables with r rows and c columns

k-1 for Kruskal-Wallis test with k samples