WHAT IS CLAIMED IS:

1	1. A mass spectrometry ionization method comprising:
2	delivering electrospray droplets from an electrospray nozzle, wherein the electrospray
3	droplets contain solvent and analytes; and
4	exposing the electrospray droplets to an ion beam thereby increasing the unbalanced
5	charge of the electrospray droplets.
1	2. A mass spectrometry ionization method comprising:
2	directing an ion beam at a solid sample matrix containing analyte thereby adding
3	unbalanced charge to the analyte and sample matrix; and
4	desorbing the charged analyte with a desorption laser.
1	3. A mass spectrometry ionization method comprising:
2	directing an ion beam at a liquid or solid sample matrix containing analyte thereby
3	ionizing and adding unbalanced charge to the analyte.
i	4. The method of claim 3 further comprising directing the charged analyte
2	through the interface of the mass spectrometer in synchrony with the duty cycle of the ion
3	detector.
1	5. The method of claim 3 or 4 wherein the analyte is deposited upon discrete
2	apices of the sample surface.
1	6. The method of claims 3 to 5 wherein the sample comprises bacteria, viruses or
2	cells.
-	
1	7. The method of claims 1 to 6 wherein the ion beam consists of protons
2	whereby the analyte is protonated.
l	8. The method of claims 1 to 6 wherein the ion beam consists of anions or
2	electrons whereby the analyte is deprotonated.
l	9. The method of claim 1 wherein the sample is injected directly into the
2	focusing quadrapoles.
	40
l	10. The method of claim 7 wherein the analyte comprises organic compounds

having nitrogen, oxygen, or sulfur heteroatoms.

2

1 11. The method of claims 1 to 10 wherein the ion beam flux is from about 1 mA/cm² to about 17 mA/cm². 2 **12**. The method of claims 1 to 11 wherein the ion beam energy is from about 5 to 1 2 about 50 electron volts. **13**. The method of claim 12 wherein the ion beam energy from about 5 to about 1 2 10 electron volts. 14. The method of claim 1 wherein the electrospray flow rate is from about 0.025 1 2 μ L/min to about 0.5 μ L/min. 1 **15**. The method of claims 1 to 7 and 9 to 14 wherein the positive ions comprise 2 protons, lithium ions, or cesium ions. 1 **16**. The method of claim 8 where the anions comprise NH₂ or H₃Si. 1 **17**. The method of claim 2 wherein the sample matrix comprises a material of 2 Table 2. A mass spectroscopy system comprising: 1 **18**. 2 an analyte ion source; . 3 an ion beam; 4 a mass analyzer; and 5 an ion detector. 1 **19**. A mass spectroscopy system comprising: 2 an analyte sample;

an ion beam;

an ion detector.

a mass analyzer; and

3

4 5