People care about resource distribution

Notes on Behavioural Economics

Jason Collins

STATE WORKER SALARY DATABASE

How much do California state workers get paid? Search public salaries in our database

Search our salary database to find government wages and compensation records.

Deviation from self-interest

Inequality and social comparison

Workplace and policy design

Altruism

Inequality aversion

Other social preferences

Altruism

$$U_i(x_i, x_j) = x_i + \alpha x_j$$

Altruism

$$U_i(x_i, x_j) = x_i + \alpha x_j$$

Forms:

Pure altruism

Impure altruism

Example: the public goods game - cooperation

Example: the public goods game – no cooperation

Example: the public goods game - defection

$$U_i(x_i, x_j) = x_i + 0.75x_j$$

$$U_i(x_i, x_j) = x_i + 0.75x_j$$

$$U_i$$
(contribute) = 15 + 0.75 × 15
= 26.25

$$U_i(x_i, x_j) = x_i + 0.75x_j$$

$$U_i$$
(contribute) = 15 + 0.75 × 15
= 26.25

$$U_i$$
(free ride) = 17.50 + 0.75 × 7.5
= 23.125

$$U_i(x_i, x_j) = x_i + 0.75x_j$$

$$U_i$$
(contribute) = 7.5 + 0.75 × 17.5
= 20.625

$$U_i(x_i, x_j) = x_i + 0.75x_j$$

$$U_i$$
(contribute) = 7.5 + 0.75 × 17.5
= 20.625

$$U_i$$
(free ride) = 10 + 0.75 × 10
= 17.5

Limitations of the altruism model

$$U_i(x_i, x_j) = x_i - \alpha \max\{x_j - x_i, 0\} - \beta \max\{x_i - x_j, 0\}$$

$$\alpha > 0 \quad \beta > 0$$

$$U_i(x_i, x_j) = x_i - \alpha \max\{x_j - x_i, 0\} - \beta \max\{x_i - x_j, 0\}$$

 $\alpha > 0 \quad \beta > 0$

$$u_i(x_i, x_j) = x_i - \begin{cases} \beta(x_i - x_j) & \text{if } x_i \ge x_j \\ \alpha(x_j - x_i) & \text{if } x_i < x_j \end{cases}$$

$$U_i(x_i, x_j) = x_i - 0.5 \max\{x_j - x_i, 0\} - 0.25 \max\{x_i - x_j, 0\}$$

$$U_i(x_i, x_j) = x_i - 0.5 \max\{x_j - x_i, 0\} - 0.25 \max\{x_i - x_j, 0\}$$

Rejects:

$$x_P = x_R = 0$$

$$U_i(x_i, x_j) = x_i - 0.5 \max\{x_j - x_i, 0\} - 0.25 \max\{x_i - x_j, 0\}$$

Rejects:

$$x_P = x_R = 0$$

Accepts:

$$x_P = 10 - x$$

$$x_R = x$$
.

$$U_i(x_i, x_j) = x_i - 0.5 \max\{x_j - x_i, 0\} - 0.25 \max\{x_i - x_j, 0\}$$

$$U_R(\text{accept}) > U_R(\text{reject})$$

If the offer is \$5 or greater:

$$U_R(\text{accept}) > U_R(\text{reject})$$

$$x_R - \beta(x_R - x_P) > 0$$

$$x - 0.25(x - (10 - x)) > 0$$

$$x - 0.25(2x - 10) > 0$$

If the offer is less than \$5:

$$U_R(\text{accept}) > U_R(\text{reject})$$

$$x_R - \alpha(x_P - x_R) > 0$$

$$x - 0.5(10 - x - x) > 0$$

$$x > 2.5$$

$$U_R(x_P, x_R) = x_R - \alpha \max\{x_P - x_R, 0\} - \beta \max\{x_P - x_R, 0\}$$
$$= x - 0.5 \max\{10 - 2x, 0\} - 0.25 \max\{2x - 10, 0\}$$

$$U_R(x_P, x_R) = x_R - \alpha \max\{x_P - x_R, 0\} - \beta \max\{x_P - x_R, 0\}$$
$$= x - 0.5 \max\{10 - 2x, 0\} - 0.25 \max\{2x - 10, 0\}$$

$$U_R(x) = \begin{cases} (1+2\alpha)x - 10\alpha & \text{if } x < 5\\ (1-2\beta)x + 10\beta & \text{if } x \ge 5 \end{cases}$$
$$= \begin{cases} 2x - 5 & \text{if } x < 5\\ 0.5x + 2.5 & \text{if } x \ge 5 \end{cases}$$

Dictator \longrightarrow Send x \longrightarrow (m-x, x)

$$\alpha = 0.5$$

$$U_D(0,1) = 0 - \alpha \times (1 - 0)$$
$$= -\frac{1}{2} \times 1$$
$$= -\frac{1}{2}$$

Example: the dictator game

$$U_D(0,1) = 0 - \alpha \times (1 - 0)$$

= $-\frac{1}{2} \times 1$
= $-\frac{1}{2}$
 $U_D(1,5) = 1 - \alpha \times (5 - 1)$
= $1 - \frac{1}{2} \times 2$
= -1

$$u_i(x_i, x_j) = \begin{cases} \beta x_j + (1 - \beta)x_i & \text{if} \quad x_i \ge x_j \\ -\alpha x_j + (1 + \alpha)x_i & \text{if} \quad x_i < x_j \end{cases}$$

$$u_i(x_i, x_j) = \begin{cases} \beta x_j + (1 - \beta)x_i & \text{if} \quad x_i \ge x_j \\ -\alpha x_j + (1 + \alpha)x_i & \text{if} \quad x_i < x_j \end{cases}$$

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

 $\rho > 0$ and $\sigma > 0$: altruism

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

 $\rho > 0$ and $\sigma > 0$: altruism

 $1 \ge \rho > 0 > \sigma$: inequality aversion

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

 $\rho > 0$ and $\sigma > 0$: altruism

 $1 \ge \rho \ge 0 \ge \sigma$: inequality aversion

 $0 > \rho \ge \sigma$: status-seeking

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

 $\rho > 0$ and $\sigma > 0$: altruism

 $1 \ge \rho \ge 0 \ge \sigma$: inequality aversion

 $0 \ge \rho \ge \sigma$: status-seeking

 $\rho = \sigma = 0$: the classical self-interested utility function

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

 $\rho > 0$ and $\sigma > 0$: altruism

 $1 \ge \rho \ge 0 \ge \sigma$: inequality aversion

 $0 \ge \rho \ge \sigma$: status-seeking

 $\rho = \sigma = 0$: the classical self-interested utility function

 $\rho = 1$, $\sigma = 0$: $u_i(x_i, x_j) = \min\{x_i, x_j\}$, Rawlsian preferences

$$u_i(x_i, x_j) = \begin{cases} \rho x_j + (1 - \rho)x_i & \text{if } x_i \ge x_j \\ \sigma x_j + (1 - \sigma)x_i & \text{if } x_i < x_j \end{cases}$$

 $\rho > 0$ and $\sigma > 0$: altruism

 $1 \ge \rho \ge 0 \ge \sigma$: inequality aversion

 $0 \ge \rho \ge \sigma$: status-seeking

 $\rho = \sigma = 0$: the classical self-interested utility function

 $\rho = 1$, $\sigma = 0$: $u_i(x_i, x_j) = \min\{x_i, x_j\}$, Rawlsian

 $\rho = \sigma = 1/2$: $u_i(x_i, x_j) = x_i + x_j$: utilitarian

$$U_{L}(x_{M}, x_{L}) = \begin{cases} \frac{2}{3}x_{M} + \frac{1}{3}x_{L} & \text{if} \quad x_{L} \geq x_{M} \\ \frac{1}{3}x_{M} + \frac{2}{3}x_{L} & \text{if} \quad x_{L} < x_{M} \end{cases}$$

$$U_{L}(x_{M}, x_{L}) = \begin{cases} \frac{2}{3}x_{M} + \frac{1}{3}x_{L} & \text{if} \quad x_{L} \geq x_{M} \\ \frac{1}{3}x_{M} + \frac{2}{3}x_{L} & \text{if} \quad x_{L} < x_{M} \end{cases}$$

$$U_{M}(x_{L}, x_{M}) = \begin{cases} \frac{3}{4}x_{L} + \frac{1}{4}x_{M} & \text{if } x_{M} \ge x_{L} \\ x_{M} & \text{if } x_{M} < x_{L} \end{cases}$$

$$U_M(x_L, x_M) = \begin{cases} \frac{3}{4}x_L + \frac{1}{4}x_M & \text{if } x_M \ge x_L \\ x_M & \text{if } x_M < x_L \end{cases}$$

If Linda invests, Marco's utility of each outcome is:

$$U_M(15,15) = \frac{3}{4}(15) + \frac{1}{4}(15)$$
$$= 15$$
$$U_M(0,30) = \frac{3}{4}(0) + \frac{1}{4}(30)$$

= 7.5

$$U_{L}(x_{M}, x_{L}) = \begin{cases} \frac{2}{3}x_{M} + \frac{1}{3}x_{L} & \text{if} \quad x_{L} \geq x_{M} \\ \frac{1}{3}x_{M} + \frac{2}{3}x_{L} & \text{if} \quad x_{L} < x_{M} \end{cases}$$

If Linda invests, Linda's utility from each outcome is:

$$U_L(15,15) = \frac{2}{3}(15) + \frac{1}{3}(15)$$

$$= 15$$

$$U_L(0,30) = \frac{1}{3}(30) + \frac{2}{3}(0)$$

$$= 10$$

If Linda does not invest:

$$U_L(0,10) = \frac{2}{3}(0) + \frac{1}{3}(10)$$
$$= 3.33$$
$$U_M(10,0) = 0$$

