- 锁相放大器
 - 实验目的
 - LIA基本原理重述
 - 噪声测量处理技术
 - LIA的具体工作原理
 - 微小电阻
 - 仪器设备
 - 实验方法设计
 - 实验步骤
 - 实验准备
 - 思考题

锁相放大器

实验目的

- 学习使用锁相放大器
- 了解用锁相放大器测量微小阻抗(或微小阻抗变化)的方法,包括四引线法、分压法、 电桥法,熟悉其中一种方法以及相应锁相放大器参数的正确设置;
- 了解交流测量中常用的接地隔离方法;
- 理解相位的物理含义,掌握电压与电流之间相位差的测量方法,学习从具体器件上分离电阻、电感、电容;
- 学习 VISA 接口协议,通过 LabVIEW 设置锁相放大器参数和进行数据采集。

LIA基本原理重述

锁相放大器(Lock-in Amplifier),对于弱毫伏量级的信号有较好的测量效果。我们主要的测量过程在锁相和噪声滤除上。下面阐述基本原理热噪声:

对于一项实验,无规的热噪声既可来自于实验对象本身,也可来自于测量系统,包括传感器和测量仪器。信噪比: 信噪比是科学与工程中常用的一种度量,用于表征相对于背景噪声的信号强度,或信号的覆盖程度。为方便在宽范围内表述,以信号强度与噪声强度之比(I_S/I_N)定义的信噪比(SNR: signal noise ratio)取常用对数,以分贝为单位

我们再定义信号改善比

$$SNIR = \frac{SNR_o}{SNR_i}$$

噪声测量处理技术

现在我们来滤除噪声,

• 简单滤波法 滤波法只适用于测量信号和噪声 $f_s = f_n$ 的小信号情况。 一个有噪的直流信号可以用低通滤波器除噪。用工频陷波器来给(50Hz_). 带通滤波适用于高频率小信号。 一般地示波器会采用这种方法。

设输入信号x(t) = s(t) + n(t),用s表示待检信号。

$$x(t) = a \cos \omega_s t + foo_a^b(other_waves)$$

我们对总体进行带通滤波(BPF), 信号为:

$$x(t) = a\cos\omega_s t(remainstill) + foo_{a-\Delta\omega/2}^{b+\Delta\omega/2}(other_w aves)$$

其中 $\Delta\omega$ 为带同宽度。其余方法如LPF同理, 锁相放大器也采用LPF. 对于LPF的实现,我们根据RLC串联电路的特性。

$$H(\omega) = \frac{1}{1 + j\omega RC}$$

调制解调技术

图 D1-8 传统振幅调制 (AM) 解调原理, 在时域的表示的主要过程。 有AM/FM之分。

• 相敏检测

图 D1-9 锁相放大器对信号频谱进行迁移的过程

- 锁相放大法 LIA 也是采用LPF,所以直流或者慢变信号对他来说需要额外处理。LIA与一般地LPF的最 大不同在于其使用了高质量的相敏检波技术
- 1. 它先将直流或者慢变信号的频谱迁移到 ω_m 处,再进行放大。
- 2. 利用相敏检测器PSD对被调制信号解调,可以同时利用频率**割**型和相角θ检测信号,因为 噪声与信号既同频又同相的概率很低
- 3. 用低通滤波器来抑制宽带外的噪声。低通滤波器的频带可以做得很窄,而且其频带宽度 不受调制频率的影响 锁相环内部的参考信号(实际与放大输入信号一起通过PSD的信 号)是和输入的外部参考信号 v_R 同频率且相位差锁定的参考信号 u_{ref} 。产生原理:

当然这个参考信号不一定都得是内部在生成的,它也可以是直接的外部参考信号,我们引入 内部的整形主要是为了保证参考信号的稳定。

LIA的具体工作原理

输入信号 $u_i(t)$ 放大 $\to A_I u_i \to PSD(A_I u_i u_{ref}) \to LPF \to u_o$

• 四引线法

$$V_{+} = IR + V_{T} + V_{C}$$

$$V_{-} = -IT + V_{T} + V_{C}$$

$$R = \frac{V_{+} - V_{-}}{2I}$$

• 分压法

$$\widetilde{V}_{out} = \frac{Z_X}{Z_S + Z_X} \widetilde{V}_{in} = \frac{r_x + j\omega L_x}{r_s + r_x + j\omega L_x} \widetilde{V}_{in}$$

$$\frac{V_{in}e^{i\omega t}}{r_s + r_x + j\omega L_x} = \frac{V_{out}e^{i(\omega t + \varphi)}}{r_x + j\omega L_x}$$

$$V_{in} \frac{r^2_x + \omega^2 L_x^2}{r_s^2 + r_x^2 + \omega^2 L_x^2} (r_s + r_x + j\omega L_x) = V_{out} (r_x \cos \varphi + \omega L_x \sin \varphi + j (r_x \sin \varphi - \omega L_x \cos \varphi))$$

$$\operatorname{Re} \{Left\} = \operatorname{Re} \{Right\}, \operatorname{Im} \{Left\} = \operatorname{Im} \{Right\}$$

$$\Longrightarrow$$

$$r_x = \frac{V_{out} (r_s \cos \varphi - \omega L_x \sin \varphi)}{V_{in} - V_{out} \cos \varphi}$$

仪器设备

表 D1-5 微小阻抗测量实验仪器用具

编号	仪器用具名称	数量	主要参数(型号,规格等)	备注
1	锁相放大器	1	OE1022	
2	配套教学实验箱	1		
3	压控电流源	1	OE4201	
4	示波器	1	RIGOL DS2202A	
5	信号发生器	1	RIGOL DG4162	
6	BNC-BNC 信号线	若干		
7	PC 机	1	LabVIEW 环境及有 VISA 接口协议	
8	精密电阻/厚膜电阻	若干	$(1.0\Omega,\ 0.1\Omega)$ / $(1.0\Omega,\ 10\Omega,\ 50\Omega)$	
9	自备电阻/电感	2	用 500mm 长的φ1.0 的电线顺绕或对折后 绕在直径 10mm 的圆管上	选
10	间距可调金属平板	1	平行板电容器	选
11	并行线、双绞线	2	0.5m~1.0m 漆包线、或其他自选线缆	选
12	变容二极管器件	1		选

实验方法设计

实验步骤

实验准备

- 1. 测量小电阻/小电感
 - **1**. 区分精密电阻和厚膜电阻,并通过实验判断用于测量电流相位的电阻(R_S ,如精密电阻或厚膜电阻)是纯电阻
 - 2. 按实验方案的示意图接好线路;
 - 3. 手动测量:
- 2. 测量小电容及其变化
 - 1. 在教学实验箱上连接待测电容,如变容二极管、或自制电容(如可调间距的平板电容、双绞线电容等);
 - 2. 按实验方案连线示意图对教学实验箱与锁相放大器接线:包括锁相放大器信号输出、输入,反偏直流电压点 DC-Vt 电位测量(查 OE1022 说明书,注意单通道与双通道锁相放大器的不同。)
 - 3. 设置参考信号频率与振幅;
 - 4. 小心缓慢调节教学实验箱上的电位器,使得变容二极管的反偏直流电压DC-Vt 从1至 7.9V 逐渐变化,变化步长为 0.2V,逐点记录 DC-Vt 和锁相放大器 R 值;
 - 5. 记录测量值,结束后利用(D1-55)式计算二极管电容,并作 DC-Vt 的曲线 关系图。

3. $C_x = \frac{V \, out}{V_{in} - V_{out}} C_0$ 如图所示,用教学实验箱给二极管加偏置电压,用OE1022提供信号源(式中的 V_{in} 为SINE OUT信号发生器输出信号,经实验箱变压器提压以及直流隔离,加载测量电路上;式中的 V_{out} 为输入锁相放大器 $signal_{in}$ 的信号,即 V_{out} 是OE1022测得值幅值R, $C_0 = 6.8nF$

思考题

- 1. 市频 50Hz 干扰通常通过电源耦合,影响仪器的测量结果;对于 997Hz 的待测信号,50Hz 干扰是噪声吗?对锁相放大器的测量会有影响吗?
- 2. 如何用锁相放大器检测到待测的直流信号或慢变信号? (图 D1-9 中的v(t)为直流或慢变信号)
- 3. 如用斩波器调制直流信号(如光强),被斩制后的信号(图 D1-9 中的*u(t)*信号)仍然 包含有直流分量(即平均值不为零),但该直流分量随交流信号输入锁相放大器不会被 锁相放大器检测,请从数学推导上说明。
- **4.** 相位以及相位差的含义是什么?锁相放大器输出的 是待测信号的相位还是待测信号与 参考信号之间的相位差?