Machine learning I, supervised learning: risks

Notion of risks

- ► We are ready to introduce an important notion that is specific to machine learning and optimization : the risk
- there are several types of risks and several denominations for each.
- this denomination "risk" might seem counter-intuitive at first, as there is no notion of danger involved. However, this is a classical term in optimization and ML.

Setting

We consider

- lacktriangle an input space \mathcal{X} (e.g. $\mathcal{X}=\mathbb{R}^d$)
- ightharpoonup an output space ${\cal Y}.$

In supervised learning, we predict outputs $y \in \mathcal{Y}$ from inputs $x \in \mathcal{X}$.

- ▶ classification : discrete \mathcal{Y} , e.g. $\mathcal{Y} = \{0, 1\}$, $\mathcal{Y} = \{-1, 1\}$, $\mathcal{Y} = \{0, 1, 2\}$.
- ▶ regression : continuous \mathcal{Y} , e.g. $\mathcal{Y} = \mathbb{R}$, $\mathcal{Y} = [a, b]$.

The couples (x, y) are called **samples** and are considered to be sampled from a joint random variable (X, Y).

Supervised learning

- Assumption : there exists a joint probability law ρ , such that $(X,Y)\sim \rho$. However, ρ is unknown.
- ▶ Hence there exists a map $f: \mathcal{X} \mapsto \mathcal{Y}$, such that Y = f(X).
- f is most of the time non deterministic.

Supervised Learning : from a finite dataset of samples, produce an estimate \tilde{f} of f.

Figure – Finite dataset in 1 dimension

Loss functions

A **loss function** *I* is a map that measures the discrepancy between to elements of a set.

$$I: \left\{ \begin{array}{l} \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+ \\ (y, y') \mapsto I(y, y') \end{array} \right.$$

We use it in order to evaluate the quality of our prediction $\tilde{f}(x)$, that should be close to the label y that corresponds to x.

Common loss functions

Examples: The most common loss functions are the following:

▶ "0-1" loss (for classification.)

$$I(y,z) = 1_{y \neq z} \tag{1}$$

squared loss (for regression)

$$ightharpoonup \mathcal{Y} = \mathbb{R}.$$

$$I(y,z) = (y-z)^2 \tag{2}$$

$$\mathcal{Y} = \mathbb{R}^d$$

$$I(y,z) = ||y - z||_2^2 \tag{3}$$

▶ absolute loss (for **regression**). $\mathcal{Y} = \mathbb{R}$.

$$I(y,z) = |y-z| \tag{4}$$

Prerequisite: expected value

Let Z be a real random variable. If it is correctty defined, the expected value is

▶ for a discrete random variable (that can take the values $\{z_i, i \in \mathbb{N}\}$.

$$E[Z] = \sum_{i=1}^{+\infty} z_i P(Z = z_i)$$
 (5)

for a continuous random variable

$$E[Z] = \int_{-\infty}^{+\infty} z p(z) dz \tag{6}$$

p(z) is the density of probability of Z, assumed to exist.

Expected values

Expected value of an unbiased dice game :

$$E[Z] = \frac{1}{6}[1 + 2 + 3 + 4 + 5 + 6] = 3.5 \tag{7}$$

Exepected value of a cheated dice game :

$$E[Z] = \frac{1}{100}(1+2+3+4) + \frac{48}{100}(5+6) = 5.38$$
 (8)

Risks

- lacktriangle We call "estimator" a map $\mathcal{X}\mapsto\mathcal{Y}$
- ▶ We note $D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ the dataset. From D_n , we want to estimate f.

To measure the quality of some estimator g, we consider the **risks**:

Risk / generalization error ("risque réel" in french)

$$R(g) = E_{(X,Y)\sim\rho}[I(Y,g(X))] \tag{9}$$

► Empirical risk ("risque empirique" in french)

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n I(y_i, g(x_i))$$
 (10)

Both risks depend on the loss function /!

Risks

Risk / generalization error :

$$R(g) = E_{(X,Y)\sim\rho}[I(Y,g(X))]$$
 (11)

Problem: we cannot compute R(g)!

Risks

Risk / generalization error :

$$R(g) = E_{(X,Y)\sim\rho}[I(Y,g(X))]$$
 (12)

Problem: we cannot compute R(g)! We **only** have access to the empirical risk.

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n I(y_i, g(x_i))$$
 (13)

given the finite dataset $D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Optimization problem : empirical risk minimization

- ▶ The smaller the generalization error R(g) is, the better g is.
- ▶ The situation is more tricky for $R_n(g)$: it is not obvious that as estimator that has a very small empirical risk $R_n(g)$ has a small generalization error R(g)! This is the problem of **overfitting**.

Figure – Overfitting : the green estimator has a small empirical risk, but it a large generalization.

Figure – Very simple estimator

Figure – Very simple estimator

Figure – Relevant estimator

Figure - Relevant estimator

Figure - Too complex estimator

Figure – Too complex estimator

Figure – Too complex estimator

Figure – Too complex estimator

Randomness

If the data were deterministic (Y = f(X) is determinisic), there would be no overfitting!

Randomness might come from several sources, such as :

- measurement errors
- ▶ hidden variables (not represented in *X*)

Optimization problem : empirical risk minimization

Empirical risk minimization (ERM): finding the estimator f_n that minimizes the empirical risk R_n .

This raises important questions :

- ▶ 1) does f_n have a good generalization error $R(f_n)$?
- ▶ 2) how can we have guarantees on the generalization error $R(f_n)$?
- ▶ 3) how can we find the empirical risk minimizer f_n ?
- ▶ 4) is it even interesting to strictly minimize R_n ?

Generalization error

Question 1) Does f_n have a good generalization error $R(f_n)$? This will depend on :

- the number of samples n
- ▶ the shape of f (the map such that Y = f(X)), in particular on its **regularity**
- \blacktriangleright the distribution ρ
- the dimensions of the input space and of the output space.
- ▶ the space of functions where f_n is taken from.

Statistical bounds

Questions 2) How can we have guarantees on the generalization error $R(f_n)$?

By making assumptions on the problem (learning is impossible without making assumptions), for instance assumptions on ρ .

Optimization

Question 3) how can we find the empirical risk minimizer f_n ? By using an optimization algorithm or by solving the minimization in closed-form.

Convex functions

Convex functions are easier to minimize.

Non convex functions

What is convex here?

In this context, the convexity that is involved is the dependence of R_n in g. More precisely, for instance if g depends on $\theta \in \mathbb{R}^d$, e.g. $g(x) = \langle \theta, x \rangle$, the convexity is that of

$$\theta \mapsto R_n(\theta) \tag{14}$$

Example (ordinary least squares) :

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n (\langle \theta, x_i \rangle - y_i)^2$$
 (15)

with $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.

Optimization error

Question 4) is it even interesting to strictly minimize R_n ?

Most of the time it is **not**, as we are interested in R, not in R_n , so we should not try to go to machine precision in the minimization of a quantity that is itsself an approximation!

This is linked to the **estimation error** (advanced concept) that is often of order $\mathcal{O}(1/\sqrt{n})$.

Nearest neighbors algorithms

Not all supervised learning methods consist in Empirical risk minimization (ERM).

For instance the nearest neighbors algorithm is not an ERM.

Bayes rule

$$P(A \cap B) = P(A|B)P(B) \tag{16}$$

Law of total probability

If for instance $\Omega = A \cup B \cup C$ and A, B, C are mutually exclusive, then

$$P(X) = P(X \cap A) + P(X \cap B) + P(X \cap C)$$
 (17)

Exercice 1: Consider the following random variable (X, Y).

 $X \sim B(\frac{1}{2}),$

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

With B(p) a Bernoulli law with parameter p.

• Hence $\mathcal{X} = \{0, 1\}$, $\mathcal{Y} = \{0, 1\}$.

Exercice 1: Consider the following random variable (X, Y).

 $X \sim B(\frac{1}{2}),$

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

With B(p) a Bernoulli law with parameter p.

▶ A predictor $f_1: \{0,1\} \rightarrow \{0,1\}:$

$$f_1 = \begin{cases} 1 \text{ if } x = 1 \\ 0 \text{ if } x = 0 \end{cases}$$

With the "0 - 1" loss, what is the risk (generalization error) of f_1 , $R(f_1)$?

Exercice 1: Consider the following random variable (X, Y).

 $X \sim B(\frac{1}{2}),$

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

• $f_1: \{0,1\} \to \{0,1\}:$

$$f = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x = 0 \end{cases}$$

$$R(f_1) = E[I(Y, f(X))]$$
= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X)) (18)
= P(Y \neq f(X))

$$X \sim B(\frac{1}{2}),$$

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

• $f_1: \{0,1\} \to \{0,1\}:$

$$f = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x = 0 \end{cases}$$

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$
(19)

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$

$$= P((Y \neq f(X))|X = 1)P(X = 1)$$

$$+ P((Y \neq f(X))|X = 0)P(X = 0)$$
(20)

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$

$$= P((Y \neq f(X))|X = 1)P(X = 1)$$

$$+ P((Y \neq f(X))|X = 0)P(X = 0)$$

$$= \frac{1}{2}P((Y \neq 1)|X = 1) + \frac{1}{2}P((Y \neq 0)|X = 0)$$
(21)

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$

$$= P((Y \neq f(X))|X = 1)P(X = 1)$$

$$+ P((Y \neq f(X))|X = 0)P(X = 0)$$

$$= \frac{1}{2}P((Y = 0)|X = 1) + \frac{1}{2}P((Y = 1)|X = 0)$$

$$= \frac{1}{2}(1 - p) + \frac{1}{2}q$$
(22)

Exercice 2: Now consider

$$f_2 = \begin{cases} 0 \text{ if } x = 1\\ 1 \text{ if } x = 0 \end{cases}$$

What is $R(f_2)$?

Exercice 2:

$$\forall x, f_2(x) = 1 - f_1(x)$$
 (23)

Exercice 2:

$$\forall x, f_2(x) = 1 - f_1(x)$$
 (24)

Hence

$$R(f_{2}) = P(Y \neq f_{2}(X))$$

$$= P(Y \neq (1 - f_{1}(X)))$$

$$= P(Y = f_{1}(X))$$

$$= 1 - R(f_{1})$$
(25)

Exercice 3: Third predictor:

$$\forall x, f_3(x) = 1 \tag{26}$$

What is $R(f_3)$?

Exercice 3:

$$R(f_3) = P(Y \neq f_3(X))$$

= $P(Y = 0)$ (27)

Exercice 3:

$$R(f_3) = P(Y \neq f_3(X))$$

$$= P(Y = 0)$$

$$= P(Y = 0 \cap X = 0) + P(Y = 0 \cap X = 1)$$

$$= P(Y = 0|X = 0)P(X = 0) + P(Y = 0|X = 1)P(X = 1)$$

$$= \frac{1}{2}(1 - p) + \frac{1}{2}(1 - q)$$
(28)

Exercice 4:

Now, we observe the following dataset :

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\}$$
 (29)

Compute the empirical risks $R_4(f_1)$, $R_4(f_2)$, $R_4(f_3)$.

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n I(y_i, f(x_i))$$

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\}$$
(30)

$$R_{4}(f_{1}) = \frac{1}{4} \sum_{i=1}^{4} I(f_{1}(x_{i}), y_{i})$$

$$= \frac{1}{4} \Big(I(f_{1}(0), 1) + I(f_{1}(0), 0)) + I(f_{1}(0), 0)) + I(f_{1}(1), 0)) \Big)$$

$$= \frac{1}{4} \times 2$$

$$= \frac{1}{2}$$
(31)

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\}$$
 (32)

$$R_{4}(f_{2}) = \frac{1}{4} \sum_{i=1}^{4} I(f_{2}(x_{i}), y_{i})$$

$$= \frac{1}{4} \Big(I(f_{2}(0), 1) + I(f_{2}(0), 0)) + I(f_{2}(0), 0)) + I(f_{2}(1), 0)) \Big)$$

$$= \frac{1}{4} \times 2$$

$$= \frac{1}{2}$$
(33)

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\}$$
 (34)

$$R_4(f_3) = \frac{1}{4} \sum_{i=1}^4 I(f_3(x_i), y_i)$$

$$= \frac{1}{4} \Big(I(f_3(0), 1) + I(f_3(0), 0) + I(f_3(0), 0) + I(f_3(1), 0) \Big)$$

$$= \frac{1}{4} \times 3$$

$$= \frac{3}{4}$$
(35)

Random variable

- ▶ $R_4(f)$ (empirical risk) **depends** on D_4 . If we sample another dataset, $R_4(f)$ is likely to change, it is a **random variable**.
- ▶ R(f) (generalization error) is **deterministic**, given the joint law of (X, Y).

Given a predictor f, a natural question arises : Does $R_n(f)$ have a limit when $n \to +\infty$?

Simulations

Simulations

Simulations

Convergence of empirical risk

We fix $f \in H$ (hypothesis space). We assume that the samples (X_i, Y_i) are i.i.d, with the distribution of (X, Y), noted ρ . Then, under some assumptions (for instance, if the empirical risks are bounded), we have that **in probability**:

$$\lim_{n \to +\infty} R_n(f) = R(f) \tag{36}$$

The empirical risk of a fixed f converges to its real risk. Note that the convergence of random variables is an advanced mathematical topic.

https://en.wikipedia.org/wiki/Convergence_of_random_variables