Siddhardhan

Linear Regression - intuition

Machine Learning

Data

Machine Learning model

Experience in Years	0	2	4	5	6
Salary	2,00,000	4,00,000	8,00,000	10,00,000	12,00,000

What would be the **salary** of a person with **3 years of Experience?**

~ ₹ 650000 per Year

X	1	2	3	4	5
Υ	5	7	9	11	13

Y = mX + c

X --> X value

Y --> Y value

m --> Slope

c --> Intercept

Inference: The above Line equation is a function that relates X and Y.

For a given value of X, we can find the corresponding value of Y

Equation of a Straight Line : Y = mX + c

Find the values of m and c:

Point P1 (2,7)

Point P2 (3,9)

Slope, m =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 7}{3 - 2} = 2$$

$$m = 2$$

Intercept, c:

Point (4,11)

$$Y = 2X + c$$

$$11 = 2(4) + c$$

$$c = 3$$

What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one dependent variable based on two or more independent variables.

Advantages:

- 1. Very simple to implement
- 2. Performs well on data with linear relationship

Disadvantages:

- 1. Not suitable for data having non-linear relationship
- 2. Underfitting issue
- 3. Sensitive to Outliers

