

软件分析

可满足性模理论 Satisfiability Modulo Theories

熊英飞 北京大学

提醒:项目1时间节点

- 代码提交(本周日11月29日)
 - Readme.pdf: A4两页以内,描述算法的主要设计思想, 小组成员姓名、学号和分工
 - Code目录:项目源代码
 - analyzer.jar: 编译好的jar文件
- 现场报告(下周二12月1日)
 - 各组交流所采用的算法,每组报告6分钟,提问2分钟

从SAT到SMT

- SAT问题回答某个命题逻辑公式的可满足性,如:
 - $A \wedge B \vee \neg C$
- 但实际中的公式却往往是这样的:
 - $a + b < c \land f(b) > c \lor c > 0$
- 如何判断这样公式的可满足性?
- 从逻辑学角度来看,a+b < c或者f(b) > c都是逻辑系统中不包含的符号,无法对他们进行推导
- 理论(Theory):
 - 理论=一组公理
- 可满足性模理论Satisfiability Modulo Theories:
 - 给定一组理论,根据给定逻辑,求在该组理论解释下公式的可满足性
 - 现有理论通常针对一阶理论,即公理都是一阶的

常见理论举例: EUF

- Equality with Uninterpreted Functions
- 公理:
 - $a_i = b_i \Longrightarrow f(a_1 \dots a_n) = f(b_1 \dots b_n)$
 - $a = b \Leftrightarrow \neg(a \neq b)$
 - 等式的自反、对称和传递性
- 如: $a*(f(b)+f(c))=d \land b*(f(a)+f(c))\neq d \land a=b$
 - f,*和+都看做是未定义的函数
- •可直接推出矛盾

常见理论举例

- 算术
 - a+10<b
 - 2x+3y+4z=10
- •数组
 - read(write(a, i, v), i)=v
- 位向量Bit Vectors
 - $a[0] = b[1] \land a = c \land b[1] \neq c[0]$

SMT历史

- 70、80年代:出现了基本算法混合不同理论,但求解能力有限
- 2000年前后: SAT速度大幅提升, 转为以SAT为中心的方法
 - 1999-: Eager方法, 将SMT问题编码成SAT问题
 - 2000-: Lazy方法,交互调用SAT求解器和各种专用求解器

Eager方法

- 将SMT问题编码成SAT问 题
- 例:将EUF编码成SAT
 - f(a) = c $\land f(b) \neq c \land a \neq b$
- 引入符号替代函数调用
 - A替代 f(a), B替代 f(b)
 - 原式变为
 - $A = c \land B \neq c \land a \neq b$
 - 同时根据公理添加约束
 - $a = b \rightarrow A = B$

- 引入布尔变量替代等式
 - $P_{A=c} \wedge \neg P_{B=c} \wedge \neg P_{a=b}$
 - $P_{a=b} \rightarrow P_{A=B}$
- 同时为传递性添加约束

•
$$P_{A=c} \wedge P_{B=c} \rightarrow P_{A=B}$$

•
$$P_{A=B} \wedge P_{B=c} \rightarrow P_{A=c}$$

•
$$P_{A=B} \wedge P_{A=C} \rightarrow P_{B=C}$$

•

Eager方法的问题

- 很多理论存在专门的求解算法,如
 - EUF可以用一个不动点算法不断合并等价类求解
 - 线性方程组存在专门算法求解
- 编码成SAT之后,SAT求解器无法利用这些算法
- 模块化程度不高
 - 每种理论都要设计单独的编码方法
 - 不同理论混合使用时要保证编码方法兼容

Lazy方法

• 黑盒混合SAT求解器和各种理论求解器

- 理论求解器:
 - 输入: 属于特定理论的公式组, 组内公式属于合取关系
 - EUF公式组:
 - f(a) = c
 - $f(b) \neq c$
 - $a \neq b$
 - 线性方程组:
 - a+b=10
 - a-b=4
 - 输出: SAT或者UNSAT

Lazy方法示例

$$\underline{g(a) = c} \land (\underline{f(g(a)) \neq f(c)} \lor \underline{g(a) = d}) \land \underline{c \neq d}$$

- 生成如下公式到SAT求解器
 - {1}, {-2, 3}, {-4}
- SAT求解器返回SAT和赋值{1,-2,-4}
- 生成如下公式组到EUF求解器
 - g(a) = c
 - $f(g(a)) \neq f(c)$
 - $c \neq d$
- EUF求解器返回UNSAT
- 生成如下公式到SAT求解器: {1}, {-2, 3}, {-4}, {-1, 2, 4}
- SAT求解器返回SAT和赋值{1, 2, 3, -4}
- EUF求解器返回UNSAT
- SAT求解器发现{1}, {-2, 3}, {-4}, {-1, 2, 4}, {-1, -2, -3, 4}不可满足

Lazy方法优点

- 同时利用SAT求解器和理论求解器的优势
- 模块化
 - 新的理论只需要实现公共接口就可以集成到SMT求解 器中

• 目前主流SMT求解器中普遍采用Lazy方法

Lazy方法问题

• 考虑如下公式:

$$\underbrace{a = b \land \left(f(g(a)) \neq f(c) \lor g(a) = d\right) \land b \neq a}_{1} \land \underbrace{b \neq a}_{-4}$$

SAT	EUF
{1, -2, 3, -4}	UNSAT
{1, -2, -3, -4}	UNSAT
{1, 2, 3, -4}	UNSAT
UNSAT	

- 事实上,只要存在1和-4,该公式就不可能被满足
- 但EUF求解器无法将这一信息告诉SAT求解器
- 如何将定理信息传给SAT求解器?

复习: CDCL算法


```
cdcl() {
assign=空赋值;
while (true) {
 赋值推导(assign);
 if (推导结果有冲突) {
  if (assign为空) return false;
  添加新约束;
  撤销赋值;
 } else {
  if (推导结果是完整的) return true;
  选择一个未尝试的赋值x=1或者x=0;
添加该赋值到assign;
}}}
```

- 红色部分是CDCL区别于穷举之处
- 能否加上理论指引?

给理论求解器添加接口函数

- propagate
 - 输入:
 - 属于当前理论的公式
 - 已知为真或为假的公式
 - 输出:新推出的公式和其前提条件
- 例如:
 - 输入:
 - 所有公式: a = b, f(a) = f(b)
 - 已知公式: *a* = *b*
 - 输出:
 - $a = b \Rightarrow f(a) = f(b)$

给理论求解器添加接口函数

get_unsatisfiable_core

• 输入: 一组公式, 已知冲突

• 输出:该公式(尽可能小的)子集,仍然冲突

• 例如:

• 输入:

•
$$a = b$$
, $f(a) \neq f(b)$, $b = c$

• 输出:

•
$$a = b$$
, $f(a) \neq f(b)$

DPLL(T)算法

打破SAT黑盒,以CDCL算法为中心集成理论求解器

```
dpll_t() {
  assign=空赋值;
  while (true) {
  if (!赋值推导和冲突检查(assign)) {
    if (assign为空) return false;
    添加新约束();
  撤销赋值;
  } else {
  if (推导结果是完整的) return true;
  选择一个未尝试的赋值x=1或者0;
  添加该赋值到assign;
}}}
```

```
赋值推导和冲突检查(assign) {
do {
 命题逻辑推导(assign);
 if(推导发现冲突) return false;
 if(T求解器发现不可满足) return false;
 用T求解器推导(assign);
 if(推导发现冲突) return false;
} while(推导出新赋值)
return true;
添加新约束() {
if(推导发现冲突) 矛盾集=冲突项的前驱;
else 矛盾集=T求解器.get unsatisfiable core();
添加约束(矛盾集取反);
```

DPLL(T)例子1

$$\underbrace{a = b \land \left(f(g(a)) \neq f(c) \lor g(a) = d\right) \land b \neq a}_{1} \land \underbrace{b \neq a}_{-4}$$

赋值	推导出的赋值	推导
{}	{1}	Unit Propagation
{}	{1, 4}	T-Propagation
{}	{1, 4, -4}	Unit Propgation
	矛盾	

DPLL(T)例子2

$$g(a) = c \wedge (f(g(a)) \neq f(c) \vee g(a) = d) \wedge (c \neq d \vee d = e)$$
1 -2 3 -4 5

赋值	推导出的赋值	推导
{}	{1}	Unit Propagation
{}	{1, 2}	T-Propagation
{}	{1, 2, 3}	Unit Propgation
{-4}	添加约束{-1, -3, 4}, 撤销赋值	T求解器返回UNSAT, 矛盾集{1,3,-4}
{}	{1, 2, 3, 4, 5}	Unit Propagation

DPLL(T)特点

- 理论求解器指导SAT搜索,效率有大幅提高
- 依然模块化
 - 理论求解器只需要多实现两个方法
 - 甚至不实现也可以,最多可能损失效率
 - propagate默认直接返回空
 - get_unsatisfiable_core默认直接返回原公式集合

混合多个理论

- DPLL(T)算法可以处理混合的多个理论,前提是不同理论的公式之间没有共享变量
 - $f(a) = f(b) \land a = b \land x + 1 = y 1$
 - 简单对不同部分调用不同的理论求解器即可
- 但不能处理混合的情况
 - $f(a) \neq f(b) \land a + 1 = 2 + b 1$
 - f(a+1) = f(1+a) 1
- 如何混合多个理论形成单一的理论求解器?

手动推导

部分命题左边两边 都能理解,称为接 口属性

解决方案

• 通过变形让不同理论位于不同的文字

$$f(a+1) = f(1+a) - 1$$

$$e_1 = a + 1$$
 $e_3 = f(e_1)$
 $e_2 = 1 + a$ $e_4 = f(e_2)$
 $e_3 = e_4 - 1$

解决方案

- 不同理论之间通过接口属性交换信息
 - 接口属性: 两种理论 T_1 和 T_2 都包含的命题集合
- 每种理论的求解器试图推导出所有接口属性

$$e_1 = a + 1$$

 $e_2 = 1 + a$
 $e_3 = e_4 - 1$

1.
$$e_1 = e_2$$
 接口属性 2. $e_3 = e_4$

$$3. e_3 \neq e_4 - 1$$

$$e_3 = f(e_1)$$
$$e_4 = f(e_2)$$

- 如果任意一边推出矛盾,则不可满足
- 如果遍历所有的接口属性都没有矛盾,则可以满足

Nelson-Oppen方法

- 如果理论满足如下性质
 - 两个理论除了等号没有公共函数或谓词
 - 理论具备stably infinite属性
 - 即公理至少在某种无限域上成立
 - 公理: $\forall x. x = 1$ 只在 $\{1\}$ 的有限域上成立
 - 正常理论都具备该属性
 - 理论是凸包,即
 - 如果 $F \Rightarrow x_1 = y_1 \lor \dots \lor x_n = y_n$,则有 $\exists i. F \Rightarrow x_i = y_i$
 - EUF和线性方程组都是凸包
 - 线性整数不等式不是凸包
 - $0 \le x \le 1 \Rightarrow x = 0 \lor x = 1$

有限,可遍历

- 则接口属性只需要考虑变量之间的等价关系
- 由Nelson, Oppen等人在79、80的两篇论文中证明

Nelson-Oppen方法

- 给理论求解器添加接口方法: infer_equalities
 - 输入:
 - 一组公式F
 - 一组变量V
 - 输出:
 - 对于V变量所有可以推出的等价关系
- 比如:
 - 输入公式: a = b, f(a) = x, f(b) = y
 - 输入变量: *a,b,x,y*
 - 输出: x = y, a = b
- 实现:
 - 遍历V中的变量对x,y,然后求解 $F \land x \neq y$,如果UNSAT说明x=y 成立
 - 具体理论通常有高效的实现方式

第一步: 变形约束

$$f(f(x) - f(y)) = a$$

$$f(0) = a + 2$$

$$x = y$$

• 反复按AST将其他理论的子树用变量代替

EUF

$$f(f(x) - f(y)) = a$$
$$f(0) = a + 2$$
$$x = y$$

第一步: 变形约束

$$f(f(x) - f(y)) = a$$

$$f(0) = a + 2$$

$$x = y$$

• 反复按AST将其他理论的子树用变量代替

EUF

$$f(e_1) = a$$
$$f(e_2) = e_3$$
$$x = y$$

$$e_1 = f(x) - f(y)$$
$$e_2 = 0$$
$$e_3 = a + 2$$

第一步: 变形约束

$$f(f(x) - f(y)) = a$$

$$f(0) = a + 2$$

$$x = y$$

• 反复按AST将其他理论的子树用变量代替

EUF

$$f(e_1) = a$$

$$f(e_2) = e_3$$

$$x = y$$

$$f(x) = e_4$$

$$f(y) = e_5$$

$$e_1 = e_4 - e_5$$

 $e_2 = 0$
 $e_3 = a + 2$

EUF

$$f(e_1) = a$$

$$f(e_2) = e_3$$

$$x = y$$

$$f(x) = e_4$$

$$f(y) = e_5$$

$$e_1 = e_4 - e_5$$

$$e_2 = 0$$

$$e_3 = a + 2$$

- 左右共享变量包括 $V = \{e_1, e_2, e_3, e_4, e_5, a\}$
- 全部接口属性包括 $P = \{x = y \mid x, y \in V\}$

 $f(e_1) = a$ $f(e_2) = e_3$ x = y $f(x) = e_4$ $f(y) = e_5$

$$e_1 = e_4 - e_5$$

 $e_2 = 0$
 $e_3 = a + 2$

- EUF求解器返回SAT
- 线性求解器返回SAT
- EUF求解器推出 $e_4=e_5$

EUF

$$f(e_1) = a$$

$$f(e_2) = e_3$$

$$x = y$$

$$f(x) = e_4$$

$$f(y) = e_5$$

$$e_1 = e_4 - e_5$$
 $e_2 = 0$
 $e_3 = a + 2$
 $e_4 = e_5$

- 线性求解器返回SAT
- 线性求解器推出 $e_1 = e_2$

$$f(e_1) = a$$

$$f(e_2) = e_3$$

$$x = y$$

$$f(x) = e_4$$

$$f(y) = e_5$$

$$e_1 = e_2$$

- EUF求解器返回SAT
- EUF求解器推出 $e_3 = a$

$$e_1 = e_4 - e_5$$
 $e_2 = 0$
 $e_3 = a + 2$
 $e_4 = e_5$

 $f(e_1) = a$ $f(e_2) = e_3$ x = y $f(x) = e_4$ $f(y) = e_5$ $e_1 = e_2$

$$e_1 = e_4 - e_5$$

$$e_2 = 0$$

$$e_3 = a + 2$$

$$e_4 = e_5$$

$$e_3 = a$$

- 线性求解器返回UNSAT
- 整体UNSAT

- 非凸包的情况只用另外考虑等价关系的析取
- 任何时候遇到一个等价关系的析取式,依次尝试 每个等价关系
 - 如果任意一个得出SAT, 即整体SAT
 - 如果全部UNSAT,即整体UNSAT

$$1 \le x \le 2$$

$$f(1) = a$$

$$f(x) = b$$

$$a = b+2$$

$$f(2) = f(1)+3$$

变形得到

Arithmetic		EU	EUF		
1	\leq	X	$f(e_1)$	=	a
X	\leq	2	f(x)	=	b
e_1	=	1	$f(e_2)$	=	e_3
a	=	b+2	$f(e_1)$	=	e_4
e_2	=	2			
e_3	=	$e_4 + 3$			

Arithmetic

$$\begin{array}{rclcrcl}
 1 & \leq & x & f(e_1) & = & a \\
 x & \leq & 2 & f(x) & = & b \\
 e_1 & = & 1 & f(e_2) & = & e_3 \\
 a & = & b+2 & f(e_1) & = & e_4 \\
 e_2 & = & 2 & & & \\
 e_3 & = & e_4+3 & & & & & \\
 \end{array}$$

EUF

$$f(e_1) = a$$

$$f(x) = b$$

$$f(e_2) = e_3$$

$$f(e_1) = e_4$$

- 算术求解器返回SAT
- EUF求解器返回SAT
- EUF求解器推出 $a = e_{4}$

Arithmetic		EUF			
1	\leq	X	$f(e_1)$	=	a
X	\leq	2	f(x)	=	b
e_1	=	1	$f(e_2)$	=	e_3
a	=	b+2	$f(e_1)$	=	e_4
e_2	=	2			
e_3	=	$e_4 + 3$			
a	=	e_4			

- 算术求解器返回SAT
- 算术求解器推出 $x = e_1 \lor x = e_2$

Arithmetic EUF $1 \le x$ $f(e_1) = a$ $x \le 2$ f(x) = b $e_1 = 1$ $f(e_2) = e_3$ a = b+2 $f(e_1) = e_4$ $e_2 = 2$ $x = e_1$ $e_3 = e_4 + 3$

- 首先尝试 $x = e_1$
- 添加 $x = e_1$ 到左右两边的公式组(为什么?)
- EUF求解器返回SAT
- EUF求解器推导出a = b
- 算数求解器返回UNSAT

Arithmetic

$$\begin{array}{rclcrcl}
 1 & \leq & x & f(e_1) & = & a \\
 x & \leq & 2 & f(x) & = & b \\
 e_1 & = & 1 & f(e_2) & = & e_3 \\
 a & = & b+2 & f(e_1) & = & e_4 \\
 e_2 & = & 2 & x & = & e_2 \\
 e_3 & = & e_4+3 & & & & \\
 a & = & e_4 & & & & \\
 x & = & e_2 & & & & & & \\
 \end{array}$$

EUF

$$f(e_1) = a$$

$$f(x) = b$$

$$f(e_2) = e_3$$

$$f(e_1) = e_4$$

$$x = e_2$$

- 然后尝试 $x = e_2$
- EUF求解器返回SAT
- EUF求解器推导出 $b = e_3$
- 算数求解器返回UNSAT
- 整体UNSAT

SMT Solver的使用

- SMT-LIB
 - 标准的SMT输入格式
 - 被几乎所有的SMT Solver支持
 - 用于每年的SMT比赛中

SMT-LIB by Example

- > (declare-fun x () Int)
- > (declare-fun y () Int)
- > (assert (= (+ x (* 2 y)) 20))
- > (assert (= (-xy) 2))
- > (check-sat)
- sat
- > (get-value (x y))
- ((x 8)(y 6))
- > (exit)

Scope

- > (declare-fun x () Int) > (pop 1)
- > (declare-fun y () Int) > (push 1)
- > (assert (= (+ x (* 2 y)) > (assert (= (- x y) 3)) 20))
- > (push 1)
- > (assert (= (-xy) 2))
- > (check-sat)
- sat

- > (check-sat)
- unsat
- > (pop 1)
- > (exit)

Defining a new type

- > (declare-sort A 0)
- > (declare-fun a () A)
- > (declare-fun b () A)
- > (declare-fun c () A)
- > (declare-fun d () A)
- > (declare-fun e () A)
- > (assert (or (= c a)(= c b))) > (check-sat)
- > (assert (or (= d a)(= d b))) unsat
- > (assert (or (= e a)(= e b))) > (pop 1)
- > (push 1)

• > (exit)

• > (distinct c d)

> (check-sat)

sat

• > (pop 1)

• > (push 1)

> (distinct c d e)

常见的SMT Solver

- Z3
 - 微软开发
 - 目前使用最广稳定性最好

Yices

- Z3之前使用最广稳定性最好的Solver
- 由Z3的作者在加入微软之前撰写
- 支持所有平台, 开源

课后作业

- 下载安装任意SMT Solver
- 发邮件给助教,回答如下问题:
 - 该SMT Solver的名字
 - 该SMT Solver支持的Theory
 - 构造该SMT Solver无法求解的约束,将运行结果截屏 附在邮件中
 - 解释该SMT Solver为什么不能求解这个约束

参考资料

- Decision Procedures: An Algorithmic Point of View
 - Daniel Kroening and Ofer Strichman
 - Springer, 2008
- SMT-LIB
 - http://smtlib.cs.uiowa.edu/
- Z3教学网站
 - https://www.rise4fun.com/z3/tutorial