On the Mutual Relation between SLAM and Image Enhancement in Underwater Environments

Monika Roznere and Alberto Quattrini Li

Underwater Exploration

- Low-cost ROVs and AUVs
 - Monocular camera
 - Noisy, low-frequency IMU
- SLAM uncertainty
- Poor underwater perception

Color Degradation Over Depth

ORB-SLAM

System Overview

Revised Underwater Image Formation Model

$$I_c = J_c \cdot e^{-\beta_c^D \cdot z} + B_c^{\infty} \cdot (1 - e^{-\beta_c^B \cdot z})$$

- Physics-based method
- Estimate veiling light
 - Average background color
- Estimate attenuation values

D. Akkaynak and T. Treibitz, "A revised underwater image formation model," in Proc. CVPR, 2018, pp. 6723–6732.

Estimating Attenuation Values

$$I_c = J_c e^{-\beta_c^D(\mathbf{v}_D)z} + B_c^\infty (1 - e^{-\beta_c^B(\mathbf{v}_B)z})$$

Over Depth

Raw Corrected

Over Viewing Distance

Raw

Corrected

0.98 m

ORB-SLAM Implementation

ORB-SLAM Implementation

Raw Corrected

Integration of Echo Sounder

Propagate Depth Adjustments

Initialization and Calibration

- Color Chart for collecting attenuation values
- 3D structure with known irregularities to match echo sounder readings to tracked ORB-SLAM features

Future Work

- Integrate the echo sounder readings into the experiments
- Quantify the improvement in monocular SLAM and image color correction
- Extend experiments to account for different underwater environments
- Apply method to the BlueROV2 and a surface vehicle