CHAP.3 – LA PHOTOSYNTHESE LES EVENEMENTS THERMOCHIMIQUES

- 1. LES PLANTES EN C3
- 2. LES PLANTES EN C4
- 3. LES PLANTES CAM
- 4. LA PHOTORESPIRATION
- 5. EFFETS DE L'AUGMENTATION DES GES

- 1. LES PLANTES EN C3
- 1.1. La fixation du CO₂
- 1.2. L'incorporation du CO₂
- 1.3. Le cycle de Calvin
- 1.3.1. Régénération du ribulose 1,5-diphosphate
- 1.3.2. Voie des hexoses
- 1.4. Bilan chimique et énergétique

- 1. LES PLANTES EN C3
- 1.1. La fixation du CO₂
- 1.2. L'incorporation du CO₂
- 1.3. Le cycle de Calvin
- 1.3.1. Régénération du ribulose 1,5-diphosphate
- 1.3.2. Voie des hexoses
- 1.4. Bilan chimique et énergétique

La fixation du CO₂

CH2-0-P

Ribubse 1,5-biphosphate

Ribulose 1,5-bi®

isomérisation du ribulose amo une forme énol hydratie Ac. Brétonique composé internédiaire trè instable

H20

Ac. 3-phospho objectique 2 molécules

synthe tises

La fixation du CO₂

- 1. LES PLANTES EN C3
- 1.1. La fixation du CO₂
- 1.2. L'incorporation du CO₂
- 1.3. Le cycle de Calvin
- 1.3.1. Régénération du ribulose 1,5-diphosphate
- 1.3.2. Voie des hexoses
- 1.4. Bilan chimique et énergétique

L'incorporation du CO₂

ac. 1,3-diphosphorique

- 1. LES PLANTES EN C3
- 1.1. La fixation du CO₂
- 1.2. L'incorporation du CO₂
- 1.3. Le cycle de Calvin
- 1.3.1. Régénération du ribulose 1,5-diP
- 1.3.2. Voie des hexoses
- 1.4. Bilan chimique et énergétique

Le cycle de Calvin

- 1. LES PLANTES EN C3
- 1.1. La fixation du CO₂
- 1.2. L'incorporation du CO₂
- 1.3. Le cycle de Calvin
- 1.3.1. Régénération du ribulose 1,5-diphosphate
- 1.3.2. Voie des hexoses
- 1.4. Bilan chimique et énergétique

La voie des hexoses

- 1. LES PLANTES EN C3
- 1.1. La fixation du CO₂
- 1.2. L'incorporation du CO₂
- 1.3. Le cycle de Calvin
- 1.3.1. Régénération du ribulose 1,5-diphosphate
- 1.3.2. Voie des hexoses
- 1.4. Bilan chimique et énergétique

RuDP carboxylase = RuBP carboxylase = RubisCO

Les 6 molécules à 3 C se transforment en PGAL. Un sort du cycle et les 5 autres continuent dans le cycle. Ils serviront à former 3 molécules de RuDP à 5 C

Bilan chimique et énergétique des C3

2. LES PLANTES EN C4

2.1. Particularités morpho-anatomiques

- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.3.1. Transport
- 2.3.2. Incorporation
- 2.4. Bilan chimique et énergétique

Coupes de feuilles chez les plantes en C₃ et en C₄

- Les cellules du mésophylle n'ont pas les enzymes du cycle de Calvin (pas de RubisCO).
- Ces enzymes sont dans les cellules de la gaine fasciculaire.

- 2. LES PLANTES EN C4
- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.3.1. Transport
- 2.3.2. Incorporation
- 2.4. Bilan chimique et énergetique

- 2. LES PLANTES EN C4
- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.3.1. Transport
- 2.3.2. Incorporation
- 2.4. Bilan chimique et énergétique

- 2. LES PLANTES EN C4
- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.3.1. Transport
- 2.3.2. Incorporation
- 2.4. Bilan chimique et énergétique

Régénération du substrat

ac. pyruvique

ac. phospho-énol-pyruvique

- 2. LES PLANTES EN C4
- 2.1. Particularités morpho-anatomiques
- 2.2. La fixation du CO₂
- 2.3. Transport et incorporation du CO₂
- 2.3.1. Transport
- 2.3.2. Incorporation
- 2.4. Bilan chimique et énergétique

Chez les plantes C₄ la photosynthèse se déroule à deux endroits différents de la feuille.

Le métabolisme C4 est une adaptation à l'aridité :

→ emmagasiner un maximum de CO₂ pendant que les stomates sont ouverts

→ « répartition spatiale des taches »

Chez les plantes C₄ la photosynthèse se déroule à deux endroits différents de la feuille.

Le métabolisme C4 est une adaptation à l'aridité.

~ 95% des 260 000 espèces connues de plantes = C₃

$$\sim 5\% = C_4$$

Pourquoi les plantes en C₄ ne sont-elles pas plus répandues ?

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$$

- C₃: II faut 18 ATP pour produire un glucose (3 ATP par CO2)
- C₄: Il faut 30 ATP pour produire un glucose (5 ATP par CO2)

3. LES PLANTES CAM

CAM = Crassulacean Acid Metabolism

 métabolisme découvert chez des plantes appartenant à la famille des Crassulaceae (= plantes grasses ou pl. succulentes).

Ce type de métabolisme est aussi présent dans de nombreuses autres familles de plantes (~ 20 familles).

Ex.: Cactus, Ananas, Orchidées

Plus répandu que le métabolisme C₄

La nuit:

- Ouverture des stomates
- Absorption de CO₂
- CO₂ réagit avec un composé à 3 C (acide phosphoénol pyruvique) pour former un composé acide à 4C (acide malique).

$$CO_2 + C3 \longrightarrow C4$$
 (acide malique)

 L'acide malique s'accumule dans les cellules foliaires (vacuole) au cours de la nuit.

Le jour :

- Les stomates se ferment (limitation des pertes en eau).
- L'acide malique est converti en un composé à 3C et en CO₂ → Cycle de Calvin dans le chloroplaste.

Chez les plantes CAM, la photosynthèse se déroule à deux moments différents.

Le métabolisme CAM est également une adaptation à l'aridité.

→ emmagasiner un maximum de CO₂ pendant que les stomates sont ouverts

→ « répartition temporelle des taches »

4. LA PHOTORESPIRATION

- 4.1. Conditions de réalisation, définition, mise en évidence
- 4.2. Réactions mises en jeu
- 4.3. Rôle dans la cellule

La fonction oxygénase de la RuBisCO:

- A la lumière, double affinité de la RuBisCO :
- \rightarrow pour le CO_2
- \rightarrow pour l'O₂
- affinité plus grande pour le CO₂
- Chez les plantes en C3, la RuBisCO n'est pas saturée par le CO₂ pour les concentrations atmosphérique (0,037%)
 - => compétition avec l'O₂ en concentration bien plus élevée dans l'air (21%)

La photorespiration ou cycle de TOLBERT :

- Fixation de l'O₂ sur le ribulose 1,5-di phosphate par la RuBisCO, à la place du CO₂
- Permet la synthèse d'une molécule d'APG qui peut ainsi servir au cycle de Calvin et la formation d'une molécule de phosphoglycolate

La respiration:

- a lieu dans les mitochondries
- mécanisme de la chaine respiratoire
 - = ré-oxydation des co-enzymes NADH et des ubiquinones CoQ réduits au cours du cycle de Krebs ; ré-oxydation avec création d'un gradient transmembranaire de protons => synthèse d'ATP
 - = la phosphorylation oxydative (théorie chimiosmotique de Mitchell)
- émission de CO₂, indépendante de la lumière
- « dark respiration »

Mise en évidence de la photorespiration :

- L'émission de CO₂ augmente à la lumière
- La respiration mitochondriale ou « dark respiration » se réalise à la lumière comme à l'obscurité, avec la même intensité
- => La plante possède une autre respiration dépendante de la lumière = la PHOTORESPIRATION qui concurrence la photosynthèse / RuBisco
- Si le rapport O₂/CO₂ < 2% pas de PR
 Si le rapport O₂/CO₂ > 20% PR très active

4. LA PHOTORESPIRATION

- 4.1. Conditions de réalisation, définition, mise en évidence
- 4.2. Réactions mises en jeu
- 4.3. Rôle dans la cellule

Les réactions se déroulent dans 3 compartiments cellulaires :

- chloroplaste
- peroxysome
- mitochondrie

Pas de fixation du carbone, pas de formation de glucides. La photorespiration diminue le rendement de la photosynthèse. Pourquoi ce "défaut" de la RuDP carboxylase?

= probablement un vestige de l'époque où l'atmosphère de la planète était pauvre en O₂ et riche en CO₂

4. LA PHOTORESPIRATION

- 4.1. Conditions de réalisation, définition, mise en évidence
- 4.2. Réactions mises en jeu
- 4.3. Rôle dans la cellule

Bilan

Dark respiration

- Perte de 40 à 50% de la photosynthèse journalière d'une plante = 40 à 50% du CO₂ assimilé
- Processus indispensable=> perte normale

Photorespiration

- Perte de 30% de la photosynthèse journalière d'une plante = 30% du CO₂ assimilé
- Gaspillage énergétique ?

- Synthèse d'acides aminés : sérine
- Photo-protection

5. EFFETS DE L'AUGMENTATION DES GES

- 5.1. Mécanisme de l'effet de serre
- 5.2. Effets de l'augmentation du CO₂ atmosphérique

L'effet de serre : définition

Phénomène thermique naturel à l'origine de la température à la surface d'une planète comme la Terre.

Il permet d'avoir une température moyenne sur Terre de 15° c contre - 18°c si cet effet n'existait pas.

Il est indispensable à la vie sur Terre.

Le rayonnement du soleil vient frapper la surface du sol.

Réchauffé, le sol émet alors un rayonnement infrarouge ; le sol s'échauffe.

L'atmosphère absorbe et réfléchit ce rayonnement IR en raison de la présence des gaz atmosphériques qui la composent, dont principalement la vapeur d'eau et le CO₂. L'atmosphère modifie ainsi l'équilibre thermique; elle isole la Terre du vide spatial comme une serre isole les plantes de l'air extérieur et provoque ainsi un réchauffement général de la surface de la Terre.

Emissions de gaz à effet de serre

Le CO₂ gaz à effet de serre est naturellement peu abondant dans l'atmosphère mais du fait de l'activité humaine, la concentration de ce gaz s'est sensiblement modifiée.

La température moyenne du globe a augmenté de 0,6°C depuis 1880.

d'après ENERGIE ET ECOSYSTEMES J-F Castell INA PG - INRA

La concentration de CO₂ a augmenté de 30% depuis une centaine d'années.

Emissions de gaz à effet de serre

Augmentation des concentrations en GES :

- => augmentation de la température moyenne du globe de 1 à 4°C d'ici 100 ans
- => le cycle de l'eau risque d'être perturbé par ces changements
- => impact sur le climat terrestre

- 5. EFFETS DE L'AUGMENTATION DES GES
- 5.1. Mécanisme de l'effet de serre
- 5.2. Effets de l'augmentation du CO₂ atmosphérique

Effets de l'augmentation du CO₂ atmosphérique

 $[\mu mol(CO_2) m^{-2} s^{-1}]$

Effets de l'augmentation du CO₂ atmosphérique

Impact sur la photosynthèse du Hêtre

Effets de l'augmentation du CO₂ atmosphérique

- Photosynthèse des espèces en C3 plus fortement stimulée
- Photosynthèse des espèces en C4 peu modifiée
- La stimulation décroît au cours du temps (sans doute de façon différente selon les espèces et les conditions de milieu)

Les plantes en C3 semblent les plus aptes à bénéficier d'une stimulation prolongée de la photosynthèse

Accroissement de la compétition (C3/C4)