

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Гуров Евгений Валерьевич

«Гамильтонов формализм для задачи гарантированного синтеза управлений при геометрической неопределенности»

Выпускная квалификационная работа

Научный руководитель: академик, д.ф.-м.н., профессор А. Б. Куржанский

Содержание

Теоретическая часть	3
Задача синтеза управлений при неопределенности	3
Альтернированный интеграл Понтрягина	4
Список литературы	6

Теоретическая часть

Задача синтеза управлений при неопределенности

Рассмотрим систему

$$\dot{x} = A(t)x + B(t)u + C(t)v(t) \tag{1}$$

с непрерывными матрицами A(t), B(t), C(t). Где $x \in \mathbb{R}^n$ — вектор состояния системы; $u \in \mathbb{R}^p$ — управление, $v \in \mathbb{R}^q$ — внешнее возмущение, стесненные почти всюду по t некоторыми "геометрическимио" ограничениями

$$u(t) \in \mathcal{P}(t), \quad v(t) \in \mathcal{Q}(t),$$

где $\mathcal{P}(t)$ и $\mathcal{Q}(t)$ — заданные многозначные функции с выпуклыми компактными значениями, непрерывно зависящие от времени. Управление может быть выбрано в одном из двух классов:

- в классе U программных управлений u = u(t) измеримых по Лебегу функций со значениями в $\mathcal{P}(t)$ почти всюду.
- в классе $U_{\mathcal{P}}$ позиционных управлений, представляющих собой многозначные функции $\mathcal{U}(t,x)\subseteq \mathcal{P}(t)$. При этом выполнены условия существования и продолжаемости решения дифференциального включения

$$\dot{x} \in A(t)x + B(t)\mathcal{U}(t,x) + C(t)v(t), \quad t_0 \le t \le t_1, \tag{2}$$

для любой измеримой по Лебегу функции v(t). ¹ В этой работе речь пойдет именно про этот тип управлений.

Важно отметить, что в задачах с неопределенностью эти два типа управлений существенно не взимозаменямы. Имея позиционное управление, подстановкой его и решением задачи относительно u(t), уже нельзя однозначно найти программный аналог.

Пусть задано "целевое" множество $\mathcal{M} \in \text{comp }\mathbb{R}^n$. Задача о синтезе управления при неопределенности состоит в отыскании множества разрешимости $\mathcal{W}^*(\tau, t_1, \mathcal{M}) = \mathcal{W}^*[\tau]$ и позиционной стратегией управления $\mathcal{U}(t, x) \in \mathcal{U}_{\mathcal{P}}$ таких, что все решения (2), выпущенные из любой начальной позиции $\{\tau, x_{\tau}\}, x_{\tau} = x(\tau), x_{\tau} \in \mathcal{W}^*(\tau, t_1, \mathcal{M}), \tau \in [t_0, t_1)$, достигали бы целевого множества \mathcal{M} в момент времени t_1 при любом внешнем возмущени $v(t) \in \mathcal{Q}(t)$.

Задача имеет смысл в случае $\mathcal{W}^*(\tau, t_1, \mathcal{M}) \neq \emptyset$. Многозначная функция $\mathcal{W}[t] = \mathcal{W}(t, t_1, \mathcal{M})$ называется *трубкой разрешимости* или *мостом Красовского*, и является ключевым элементом в решении задачи. Существенным обстоятельством является возможность вычислить эту функцию при помощи некоторого многозначного инетграла — *альтернированного интеграла* \mathcal{J} . С. Понтрягина.

¹Примером класса $U_{\mathcal{P}}$ может служить класс всех непрерывных по t и полунепрерывных сверху по x многозначных отображений с выпуклыми компактными значениями. В этом случае дифференциальное включение имеет решение на всем отрезке времени для произвольного $x^0 = x(t_0)$, то есть существует абсолютно непрерывная функция x(t), удовлетворяющая дифференциальному включению почти всюду. [ссылка на доказательство леммы филлипова(например)]

Альтернированный интеграл Понтрягина

Напомним определение этого интеграла. Для этого приведем вначале систему (1) к более простому виду

$$\dot{x} = u + v \tag{3}$$

с новыми ограничениями

$$u \in \mathcal{P}_0(t), \quad v \in \mathcal{Q}_0(t),$$
 (4)

где $\mathcal{P}_0(t) = G(t_1,t)B(t)\mathcal{P}(t)$, $\mathcal{Q}_0 = G(t_1,t)C(t)\mathcal{Q}(t)$ и $G(t,t_1)$ — фундаментальная матрица однородного уравнения (1). Для этого сделаем невырожденную замену $x(t) = G(t_1,t)x(t)$. Далее вместо (1) будем рассматривать (3) с ограничениями (4), опуская индекс нуль.

Определение 1. Множеством разрешимости максиминного типа назовем множество

$$W[\tau] = W(\tau, t_1, \mathcal{M}) = \left\{ x : \max_{v} \min_{u} d^2(x(t_1), \mathcal{M}) \le 0 \mid x(\tau) = x \right\}, \tag{5}$$

 $z \partial e \ d^2(x.\mathcal{M}) = \min_z \{(x-z,x-z) \mid z \in \mathcal{M}\} \ u \ x(t_1) - \kappa$ онец в момент t_1 траектории x(t) системы $\binom{z}{0}$, выпущенной из положения $x(\tau) = x$.

Утверждение 1. Для W[t] справедливо представление:

$$W(t, t_1, \mathcal{M}) = \left(\mathcal{M} + \int_{t}^{t_1} (-\mathcal{P}(t))dt\right) - \int_{t}^{t_1} \mathcal{Q}(t)dt, \quad \tau \le t \le t_1.$$
 (6)

$$x(t_1) = x(t) + \int_{t}^{t_1} u(\tau)d\tau + \int_{t}^{t_1} v(\tau)d\tau.$$

В таком случае множество разрешимости очевидно представляется в виде

$$W(t, t_1, \mathcal{M}) = \bigcap_{v \in \mathcal{Q}} \bigcup_{u \in \mathcal{P}} \left\{ x : x = x(t_1) - \int_t^{t_1} u(\tau) d\tau - \int_t^{t_1} v(\tau) d\tau, \ x(t_1) \in \mathcal{M} \right\}$$

$$= \bigcap_{v \in \mathcal{Q}} \bigcup_{u \in \mathcal{P}} \left\{ \mathcal{M} - \int_t^{t_1} u(\tau) d\tau - \int_t^{t_1} v(\tau) d\tau \right\}$$

$$= \bigcap_{v \in \mathcal{Q}} \left\{ \mathcal{M} + \int_t^{t_1} (-\mathcal{P}(\tau)) d\tau - \int_t^{t_1} v(\tau) d\tau \right\}$$

$$= \left\{ x : x \in \left(\mathcal{M} + \int_t^{t_1} (-\mathcal{P}(\tau)) \right) - \int_t^{t_1} v(\tau) d\tau, \ \forall v(\tau) \in \mathcal{Q}(\tau) \right\}$$

$$= \left\{ x : x + \int_t^{t_1} v(\tau) d\tau \in \mathcal{M} + \int_t^{t_1} (-\mathcal{P}(\tau)) d\tau, \ \forall v(\tau) \in \mathcal{Q}(\tau) \right\}$$

Список литературы

[1] Авторов А. А. $\it Hasanue, Бином. M.: 2009.$