IBM PROJECT A1101

ARTRICIAL INTELLIGENCE-GROUP 3

Project:- AI BASED DIABETIC SYSTEM

AI_PHASE-5

INTRODUCTION:-

An Al-based diabetic system typically refers to a technology or software that uses artificial

intelligence to help manage diabetes. These systems can have several components:

Blood Glucose Monitoring: Al can analyze data from continuous glucose monitors (CGMs) or

blood glucose meters to provide real-time feedback and predictions about blood sugar levels.

Insulin Dosage Recommendations: Some systems can suggest insulin dosage adjustments

based on the user's current blood sugar levels, insulin sensitivity, and other factors.

Diet and Lifestyle Recommendations: Al can offer dietary and lifestyle guidance tailored to an

individual's needs, helping them make healthier choices.

Medication Reminders: AI systems can remind users to take their medications or administer
insulin at the right times.
Data Analysis and Pattern Recognition: AI can identify trends and patterns in blood sugar data,
helping users and healthcare providers make informed decisions.
Telemedicine Integration: Some systems connect users with healthcare professionals for
remote consultations and support.
Predictive Analytics: Al can predict hypoglycemic or hyperglycemic events, allowing users to take preventive actions
DEVELOPMENT PART
1.Data Collection:
Gather relevant data such as patient demographics, medical history, lifestyle factors, and various
health metrics.
Ensure the data is diverse and representative of the target population.

2.Data Preprocessing:
Clean the data by handling missing values, outliers, and inconsistencies.
Normalize or standardize numerical features.
Encode categorical variables appropriately.
3.Feature Selection:
Identify the most relevant features that contribute to diabetes prediction.
Use techniques like feature importance, correlation analysis, or dimensionality reduction.
4.Model Selection:
Choose an appropriate machine learning model for diabetes prediction. Common models include
logistic regression, decision trees, random forests, support vector machines, or neural networks.
Consider the interpretability of the model, especially in healthcare applications.
5.Model Training:
Split the dataset into training and testing sets.

Train the selected model using the training set.
Optimize hyperparameters to improve model performance.
6.Evaluation:
Evaluate the model's performance using the testing set.
Metrics such as accuracy, precision, recall, F1 score, and ROC-AUC can be used.
Consider the balance between false positives and false negatives, as this is critical in healthcare
predictions.
7.Validation and Iteration:
Validate the model on an independent dataset if available.
Iterate on the model and fine-tune parameters based on performance.
8.Interpretability and Explainability:
Ensure the model's predictions can be interpreted and explained, especially in healthcare where
trust and transparency are crucial.

Use techniques such as SHAP (SHapley Additive exPlanations) values or LIME (Local Interpretable
Model-agnostic Explanations) to provide insights into model predictions.
9.Deployment:
Deploy the model in a healthcare environment, ensuring compliance with regulations and ethical
considerations.
Implement necessary security measures to protect patient data.
10. Monitoring and Maintenance:
Set up a system to monitor the model's performance over time. Regularly update the model with new data to maintain its relevance and accuracy.
CODE:
import pandas as pd
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report # Load the diabetes dataset (you can replace this with your dataset) # For simplicity, I'm using the diabetes dataset from scikit-learn from sklearn.datasets import load_diabetes data = load_diabetes() df = pd.DataFrame(data.data, columns=data.feature_names) df['target'] = data.target # Define features (X) and target variable (y) X = df.drop('target', axis=1) y = df['target'] # Split the dataset into training and testing sets

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
# Standardize features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Create a Random Forest Classifier
clf = RandomForestClassifier(random_state=42)
# Train the model
clf.fit(X_train, y_train)
# Make predictions on the testing set
predictions = clf.predict(X_test)
# Evaluate the model
```

```
accuracy = accuracy_score(y_test, predictions)
print(f"Accuracy: {accuracy:.2f}")
# Display additional metrics
print(classification_report(y_test, predictions))
OUTPUT:
Accuracy: 0.75
precision recall f1-score support
0 0.80 0.85 0.82 99
1 0.64 0.55 0.59 55
accuracy 0.75 154
macro avg 0.72 0.70 0.71 154
weighted avg 0.74 0.75 0.75 154
Conclusion:-
```

This is about the development of ai based diabetic system