SK Machine Learning Course

1. Random Forest

1.1. Source : 별도 첨부

1.2. Training

1.3. 변수 중요도

1.3.1. V11,V12 변수가 중요한 변수로 알려짐

1.4. Test

1.4.1. 약 83%의 정확성을 보임

> err_rate test err RF (m=8) 0.1746032

2. Boosting

2.1. Source : 별도 첨부

2.2. Training

2.2.1. Best Iteration

2.3. Test

2.3.1. 100% 확률로 분류

```
| 3 | 1.402271 | 1.602368 | 2.604336 | 3717170 | 1.606238 | 1.273315 | 1.503300 | 1.603754 | 1.403905 | 1.207306 | 1.507406 | 1.506306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.506435 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.376306 | 1.3763
```

```
3. SVM
    3.1. Source : 별도 첨부
    3.2. Training
           Call:
           svm(formula = V61 ~ ., data = train.sonar)
           Parameters:
              SVM-Type: C-classification
            SVM-Kernel: radial
                  cost: 1
                 gamma: 0.01666667
           Number of Support Vectors: 117
            (56 61)
           Number of Classes: 2
           Levels:
            M R
    3.3. Test
       3.3.1. 약 83%의 정확성을 보임
> table(obs = test.sonar$V61,pred=pred.svm)
  pred
obs M R
 M 19 9
> length(which(pred.svm != test.sonar$V61))/nrow(test.sonar)
[1] 0.1746032
```

4. DNN

- 4.1. Source
- 4.2. Train
 - 4.2.1. Input & Hidden Layer
 - 4.2.1.1. Activation Function: Relu
 - 4.2.2. Output Layer
 - 4.2.2.1. Activation Function: softmax
 - 4.2.3.Complie
 - 4.2.3.1. Loss Function: use
 - 4.2.3.2. Optimizer: adam
 - 4.2.3.3. metric: accuracy
 - 4.2.4. Fitting
 - 4.2.4.1. Epoch: 100
 - 4.2.4.2. Batch Size: 10
- 4.3. Test
 - 4.3.1. HiddenLayer(10*10) : 약 82%의 정확성을 보임
 - 4.3.2. HiddenLayer(20*20) : 약 80%의 정확성을 보임

```
5.1 Source : 별도 첨부
5.2 Training
5.2.1. best lambda search : lam =cv.out$lambda.min lam = 0.0198393
5.3 Test
5.3.1 : 약 76%의 정확도를 보임.

> table(obs = test.sonar$V61,pred= ifelse(pred_lasso ==1,"M","R"))
pred
obs M R
M 17 11
R 4 31
> 1- sum(ifelse(ifelse(pred_lasso==1,"R","M")==test.sonar$V61,1,0)) /nrow(test.sonar)
[1] 0.7619048
```

* 종합 결과

* 해당 데이터는 Boosting 알고리즘이 정확도가 가장 높다.

모델	정확도
Random Forest	83%
Boosting	100%
SVM	83%
DNN (10*10)	82%
DNN (20*20)	80%
LASSO	76%