Linear_algebra/Matrix Algebra.md

2.1 Matrix Operations

Matrix multiplication

$$A(B\mathbf{x}) = (\mathbf{AB})(\mathbf{x})$$

행렬곱은 분배가 가능하고 벡터의 집합으로 볼 수 있으니 성립

Theorem 1, 2

대부분 행렬연산의 선형 연산 법칙들의 나열이다.(분배 법칙과 같은 선형성의 특징들) AB! = BA 정도만 주의하고 넘어갈 것

Transpose of a Matrix

[m*n]행렬A의전치행렬은[n*m]크기이며 A^T 로표기한다.

각 행이 열로 열이 행으로 변하는 것이며 양 대각 끄터머리를 잡고 회전시킨다고 생각하면 된다.

Treorem 3

1.
$$(A^T)^T = A$$

2.
$$(A + B)^T = A^T + B^T$$

3. 모든실수
$$r$$
에 대해, $(rA)^T = rA^T$

$$4. (AB)^T = B^T A^T$$

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j}... + a_{in}b_{nj} \ (AB)_{ij}^T = a_{j1}b_{1i} + a_{j2}b_{2i}... + a_{jn}b_{ni}$$

첫번째식 결과 행렬의 1행 2열 원소 ->i:1, j:2을 예로 생각해보자 얘는 transpose하면 2행 1열로 이동하겠지? 이건 A의 2번행과 B의 1번열의 결과이다. 즉 i, j위치만 바꿔주면 된다는 뜻

$$(BA)_{ij} = b_{i1}a_{1j} + b_{i2}a_{2j}... + b_{in}a_{nj} \ (B^TA^T)_{ij} = b_{1i}a_{j1} + b_{2i}a_{j2}... + b_{ni}a_{jn}$$

2.2 The Inverse of a Matrix

Invertible Matrix

$$CA = I \ and \ AC = I$$

[nxn] 크기의 행렬 A에 대해 위와 같은 성질을 만족하는 [nxn] 행렬 C를 A에 대해 Invertible 하다고 말한다.

Theorem 4

$$A=egin{bmatrix} a & b \ c & d \end{bmatrix}$$
 에서 $ad-bc
eq 0$ 일때 A는 invertible하다.

또한
$$A^{-1}=rac{1}{ad-bc}egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$
이다.

aib= cid =) ==== ad= bc .. ad= be were affect scalled Dogs

즉 ad-bc는 두 벡터가 독립이어야할 조건이라고 볼 수 있다.

Theorem 5

A가 invertible한 [nxn]행렬일때 행렬방정식 $A\mathbf{x}=\mathbf{b}$ 의 unique solution은 $\mathbf{x}=\mathbf{A}^{-1}\mathbf{b}$ 이다. $(A^{-1}$ 이 달 라붙는 위치 주의)

$$A\mathbf{x} = \mathbf{b}$$
 $A^{-1}A\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ $I\mathbf{x} = \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

Theorem 6

1.
$$(A^{-1})^{-1} = A$$

 $(AB)^{-1} = B^{-1}A^{-1}$ 아래와 같이 생각하면 된다.

$$B^{-1}A^{-1}*(AB) = I$$

3.
$$(A^T)^{-1} = (A^{-1})^T$$

 $(A^T)^{-1} * A^T = I$

$$(A^T)^{-1} * A^T = I$$

$$(A^{-1})^T * A^T = (AA^{-1})^T = I^T = I$$

정리 5에서 inverse matrix의 uniquness를 증명했으니 두항의 inverse는 같다->두 항이 같다

Elementary Matrices

기본행렬이라 부르는 놈인데 항등행렬(I)에 한번의 행연산을 적용한 행렬을 말한다.

$$E_1 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ -4 & 0 & 1 \end{bmatrix} E_2 = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix} E_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 5 \end{bmatrix}$$

왼쪽부터 replacement, interchange, scailing을 적용한 기본행렬이다.

$$\left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

E를 I로 만드는 E의 역행렬 E^{-1} 은 E와 반대의? 연산이다.

- [mxn] 행렬 A에 한번의 행연산 적용
- [mxm] 행렬 E에 같은 행연산 적용 후 EA 이 둘의 결과는 같다

Theorem 7

[nxn] 행렬 A가 I와 행상등하다면 A는 invertible하다. A를 I로 보내는 행연산의 집합 E_1, E_2, E_n 이 있다고 가정해보자

- 1. $(E_1, E_2, E_n)A = I_n$
- 2. $(E_1, E_2, E_n)^{-1}(E_1, E_2, E_n)A = (E_1, E_2, E_n)^{-1}I_n$
- 3. $A = (E_1, E_2, E_n)^{-1}$
- 4. $A^{-1} = ((E_1, E_2, E_n)^{-1})^{-1} = (E_1, E_2, E_n)$

첫줄의 좌항 = 마지막줄의 우항

 \therefore (E_1,E_2,E_n) 는 A를 I로 보내는 연산임과 동시에 I를 A^{-1} 로 보내는 연산이다.

2.3 Characterizations of Invertible Matrices

Theorem8 The Invertible Matrix Theorem

- a. A is an invertible matrix $CA\mathbf{x} = C\mathbf{0} = \mathbf{0}$ b. There is an $n \times n$ matrix C such that $CA = \Gamma$ c. The equation Ax = 0 has only the trivial solution ono all O column d. A has n pivot positions \nearrow e. A is row equivalent to the identity $n \times n$ matrix $AD\mathbf{b} = I\mathbf{b} = \mathbf{b}$ There is an $n \times n$ matrix D such that AD = I $\mathbf{x} = D\mathbf{b}$ g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n h. The columns of A span Rⁿ HALLES of 2 20 ? The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n j. The columns of A form a linearly independent set [C,C]k. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one *l.* A^T is an invertible matrix
- 위 모든 항은 동치이다.
- c: $A\mathbf{x} = \mathbf{0}$ 가 trivial solution을 가지지 않았다면 $CA\mathbf{x} = \mathbf{0}$, $I\mathbf{x} = \mathbf{0}$ 를 만족할 수 없다.
- d: all 0 column을 가지면 linearly dependent->nontrivial solution
- e: A^{-1} 이 존재하는가? 와 동치 저 위에 4번에서 A^{-1} 도 결국 행연산의 집합임을 알 수 있다. g랑 h는 나중에

2.4 Partitioned Matrices

좀 Trivial한 파트라 생각된다.

행렬곱 AB하려면 A의 col 수와 B의 row 수가 같아야 하는데 이를 쪼개서 연산해도 결과는 같다.

2.5 Matrix Factorization

Factorization은 두개 이상의 행렬의 곱을 뜻한다. ex)A=BC

LU Factorization

$$A = egin{bmatrix} 1 & 0 & 0 \ * & 1 & 0 \ * & * & 1 \end{bmatrix} egin{bmatrix} x & * & * & * \ 0 & x & * & 0 \ 0 & 0 & x & 0 \end{bmatrix}$$

A를 [nxn] 행렬 L과 [nxm]행렬 U로 만드는 행위를 LU 분해라고 한다.

L은 unit lower traingular matrix이고 U는 echelon form을 만족해야한다.

U를 만드는 과정만 알면 자연스레 L 구할 수 있다.

A를 replacement만을 사용해 echelon form을 만든다고 생각해보자

$$E_p...E_2E_1A = U$$

 $A=(E_p...E_2E_1)^{-1}U=LU$ 즉 L은 A를 U로 보내는 연산들의 집합이다.

echelon form을 만드는 과정에서 replacement만을 사용했으므로 E_n 의 주대각 위로는 전부0이다. 이러한 연산의 집합 역시 동일한 성질을 가지므로 L이 주대각 위로 전부0인것

2.6 Subspace of \mathbb{R}^n

아래 세가지 속성을 만족하는 set H를 \mathbb{R}^n 의 subspace라 한다.

- 1. Zero vecotr가 H에 속해있다.
- 2. H에 \mathbf{u} 와 \mathbf{v} 가 속해있을때 $\mathbf{u} + \mathbf{v}$ 역시 H에 속해있다.
- 3. H에 \mathbf{u} 가 속해있을때 scalar c에 대해 $c\mathbf{u}$ 역시 H에 속해있다.
- 2, 3번 성질을 closed under addition and scalar multiplication이라 하고 선형성을 가진다고도 한다.

Column space

행렬A의 column space는 A의 모든 columnn의 선형조합이며 colA로 표기한다.

$$A = egin{bmatrix} a_1 & ... & a_n \end{bmatrix} \ col A = Span\{a_1, ..., a_n\}$$

즉 "Ax=b에 해가 있는가"는 "b는 ColA에 속하는가"와 동일하다.

• A가 [m*n] 행렬일때 Col A는 \mathbb{R}^m 의 subspace이다.

Null space

homogenous equation Ax=0를 만족하는 모든 해를 A의 null space라 하고 Nul A로 표기한다.

• A가 [m*n] 행렬일때 Nul A는 \mathbb{R}^n 의 subspace이다.

Basis for a Subspace

 \mathbb{R}^n 차원 subspace H에 대해 선형독립인 set을 \mathbb{R}^n 에 대한 basis라 한다. 이는H의 basis는 H를 span함을 의미하기도 한다.

standard basis for \mathbb{R}^n

basis 중 identity mat의 column vector를 Standard basis라 한다.

$$\{e_1,e_2,...,e_n\}$$

Theorem 12

A의 pivot column들은 A column space의 basis이다.

2.7 Dimension and Rank

Coordinates and Coordinate Vector

$$\mathcal{B} = \{b_1,...,b_n\}$$
이 $subspace$ H 의 $basis$ 일때

H에 속한 **x**의 \mathcal{B} 에 대한 coordinate(좌표계)는 weights $c_1,...,c_n$ 이다.

$$\text{ex) } \mathbf{x} = \mathbf{c_1} \mathbf{b_1} + ... + \mathbf{c_n} \mathbf{b_n}$$

linear combination과 똑같아 보이는데 이건 좌표계로서 사용될 수 있는데 차이점이 있는듯하다.

아래와 같은 notation을 사용하는데

$$[x]_B = egin{bmatrix} c_1 \ dots \ c_p \end{bmatrix}$$

B에 대한 x의 coordinate vector 혹은 B-coordinate vector of x라 한다.

Dimension

- nonzero subspace H에 대한 dimension은 dim H로 표기한다.
- H의 basis인 벡터의 개수를 의미한다(=independent한 벡터의 수).
- zero subspace에 대한 dimension은 zero이다.

Rank

행렬 A의 rank는 rank A로 표기하며 이는 A의 column space의 dimension 즉, basis의 개수를 의미한다.

Theorem 13. The Rank Theorem

A가 n개의 column을 가지고 있다면 rank A + dim Nul A = n이다. 좌항은 A의 column space 의 basis의 개수를, 우항은 그 나머지 자유변수들의 개수를 의미하기 때문이다.