Launch Vehicles

Space System Design, MAE 342, Princeton University Robert Stengel

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Launch Goals

- Deliver payload to desired position and velocity, safely, reliably, and on time
 - Low earth orbit: ~24,000 ft/s = ~7.3 km/s
 - Escape: >36,000 ft/s = ~11 km/s
- Minimize launch cost and propellant use
- Minimize hazard to infrastructure and damage to environment

Launch Vehicle Systems

- Propulsion and Power
 - -Main engines
 - -Attitude-control thrusters
 - -Retro-rockets
 - -Ullage rockets
 - -Turbo-pumps
 - -Batteries, fuel cells
 - -Pressurizing bottles
 - -Escape/destruct systems
- Electronics
 - -Guidance and control computers
 - -Sensors and actuators
 - -Radio transmitters and receivers
 - -Radar transponders
 - -Antennas

- Structure
 - -Skin, frames, ribs, stringers, bulkheads
 - -Propellant tanks
 - -Fins, control surfaces
 - -Inter-stage adapters, fairings
 - -Heat shields, insulation
- Reusable launchers/ orbiters
 - -Wings, parachutes
 - -Landing gear
 - Orbital maneuvering units
 - -Robot arms
 - -Life support systems (manned vehicle)

3

Initial and final masses of a single-stage rocket

$$m_i = m_{payload} + m_{structure/engine} + m_{propellant}$$
 $m_f = m_{payload} + m_{structure/engine}$

Launch Vehicle Configuration Design Goals

- Minimum weight -> sphere
- Minimum drag -> slender body
- Minimum axial load -> low thrust
- Minimum lateral load -> sphere
- Minimum gravity loss -> high thrust

5

Configuration Design Goals

- Maximum payload -> lightweight structure, high mass ratio, multiple stages, high specific impulse
- Perceived simplicity, improved range safety -> single stage
- Minimum cost -> low-cost materials, economies of scale
- Minimum environmental impact-> non-toxic propellant

https://en.wikipedia.org/wiki/Comparison_of_orbital_launch_systems

The Rocket Equation

Ideal velocity increment of a rocket stage, ΔV_i (gravity and aerodynamic effects neglected)

$$(V_f - V_i) \equiv \Delta V_I = I_{sp} g_o \ln \left(\frac{m_i}{m_f}\right) \equiv I_{sp} g_o \ln \mu$$

$$m_{i} = m_{payload} + m_{structure/engine} + m_{propellant}$$
 $m_{f} = m_{payload} + m_{structure/engine}$

$$\mu \triangleq \frac{m_i}{m_f}$$
: Mass Ratio

$$\Delta V_I = I_{sp} g_o \ln \left(\frac{m_i}{m_f} \right) = I_{sp} g_o \ln \frac{m_f + m_{propellant}}{m_f}$$

7

Ideal Velocity Increment for Single Stage with Various Specific Impulses

Ideal Velocity Increment, km/s

Mass Ratio	Isp = 220 s	= 275	s = 400	s = 500 s	= 850 s
2	1.50	1.90	2.70	3.40	5.78
3	2.40	3.00	4.30	5.30	9.16
4	3.00	3.80	5.40	6.80	11.56
5	3.50	4.30	6.30	7.90	13.42

Single stage to orbit with payload ($\Delta V_1 \sim 7.3$ km/s)?

$$\mu_{required} = e^{\Delta V_I / I_{sp} g_0}$$

8

Required Mass Ratio for Various Velocity Increments

$$\mu_{required} = e^{\Delta V_I / I_{sp} g_0}$$

Ideal Velocity	Required Ma	ass Ratio
Increment, km/s	lsp = 240 s	= 400 s
7	19.6	6.0
8	29.9	7.7
9	45.7	9.9
10	69.9	12.8
11	106.9	16.5
12	163.5	21.3

... and there are velocity losses due to gravity and aerodynamic drag

Ratios Characterizing a Rocket Stage

Payload is what's left after propellant and structure are subtracted

Ideal Velocity Increment for a Two-Stage Rocket

For each stage

$$\Delta V_{I_j} = I_{sp_j} g_o \ln \frac{m_{pay_j} + m_{s/e_j} + m_{prop_j}}{m_{pay_j} + m_{s/e_j}}, \quad j = 1, 2$$

For both stages

$$\begin{split} \Delta V_I &= \Delta V_{I_1} + \Delta V_{I_2} \\ &= I_{sp_1} g_o \ln \frac{m_{pay_1} + \left(m_{s/e_1} + m_{prop_1}\right)}{m_{pay_1} + m_{s/e_1}} + I_{sp_2} g_o \ln \frac{m_{pay_2} + m_{s/e_2} + m_{prop_2}}{m_{pay_2} + m_{s/e_2}} \\ &= I_{sp_1} g_o \ln \frac{m_{init_2} + \left(m_{s/e_1} + m_{prop_1}\right)}{m_{init_2} + m_{s/e_1}} + I_{sp_2} g_o \ln \frac{\left(m_{pay_2} + m_{s/e_2} + m_{prop_2}\right)}{m_{pay_2} + m_{s/e_2}} \\ &= g_o \left[I_{sp_1} \ln \mu_1 + I_{sp_2} \ln \mu_2\right] \end{split}$$

Ideal Velocity Increment for a Multiple-Stage Rocket

 Ideal velocity increment of an nstage rocket

$$\Delta V_I = g_o \sum_{j=1}^n I_{sp_j} \ln \mu_j$$

With equal specific impulses

$$\Delta V_I = I_{sp} g_o \ln(\mu_1 \bullet \mu_2 \bullet \dots \mu_n) \equiv I_{sp} g_o \ln(\mu_{overall})$$
$$= I_{sp} g_o \ln \mu^n$$

Required Mass Ratios for Multiple-Stage Rockets

- Staging reduces <u>individual mass ratios</u> to achievable values
- With equal specific impulses for each stage

Required Individual Mass Ratio

13

Ideal Velocity Increment	Single Stag	ge		Two Stages	3		Three Stage	es	
km/s	sp = 240 s	= 400 s	= 850 s	Isp = 240 s	= 400 s	= 850 s	Isp = 240 s	= 400 s	= 850 s
7	19.55	5.95	2.32	4.42	2.44	1.52	2.69	1.81	1.32
8	29.90	7.68	2.61	5.47	2.77	1.62	3.10	1.97	1.38
9	45.72	9.91	2.94	6.76	3.15	1.72	3.58	2.15	1.43
10	69.92	12.79	3.32	8.36	3.58	1.82	4.12	2.34	1.49
11	106.92	16.50	3.74	10.34	4.06	1.93	4.75	2.55	1.55
12	163.50	21.29	4.22	12.79	4.61	2.05	5.47	2.77	1.62

https://en.wikipedia.org/wiki/Multistage_rocket

Mass-Ratio Effect on Final Load Factor

Thrust-to-weight ratio = load factor

$$\begin{split} \frac{Thrust}{Weight} &= n \; (load \; factor) = \frac{Thrust}{mg_o} \\ n_{initial} &= \frac{Thrust}{m_{initial}g_o}; \quad n_{final} = \frac{Thrust}{m_{final}g_o} \end{split}$$

If thrust is constant

$$\frac{n_{final}}{n_{inital}} = \frac{m_{initial}}{m_{final}} = \mu$$

 If thrust is reduced, limit load factor can be enforced

Overall Payload Ratio of a Multiple-Stage Rocket

$$\begin{split} \lambda_{overall} &= \frac{\left(m_{payload}\right)_n}{\left(m_{initial}\right)_1} = \frac{\left(m_{payload}\right)_n}{\left(m_{initial}\right)_n} \bullet \frac{\left(m_{payload}\right)_{n-1}}{\left(m_{initial}\right)_{n-1}} \bullet \dots \frac{\left(m_{payload}\right)_1}{\left(m_{initial}\right)_1} \\ &= \lambda_1 \bullet \lambda_2 \bullet \dots \lambda_n \end{split}$$

Feasible design goal: Choose stage mass ratios to maximize overall payload ratio

15

Payload Ratios of a Two-Stage Rocket

For equal specific impulses

$$\Delta V_I = I_{sp} g_o \left[\ln \mu_1 + \ln \mu_2 \right]$$
$$= I_{sp} g_o \left[\ln \mu_1 \mu_2 \right] = I_{sp} g_o \left[\ln \mu_{overall} \right]$$

Payload ratios for different structural ratios

$$\lambda_1 = \frac{1}{\mu_1} - \eta_1 = \frac{1 - \mu_1 \eta_1}{\mu_1}$$
 $\lambda_2 = \frac{1 - \mu_2 \eta_2}{\mu_2}$

$$\lambda_2 = \frac{1 - \mu_2 \eta_2}{\mu_2}$$

Maximum Payload Ratio of a Two-Stage Rocket

Overall payload ratio

$$\lambda_{overall} = \lambda_1 \lambda_2 = \frac{(1 - \mu_1 \eta_1)(1 - \mu_2 \eta_2)}{\mu_{overall}}$$

Condition for a maximum with respect to first stage mass ratio

$$\frac{\partial \lambda_{overall}}{\partial \mu_{1}} = \frac{\left(-\eta_{1} + \frac{\mu_{overall}\eta_{2}}{\mu_{1}^{2}}\right)}{\mu_{overall}} = 0$$

17

Maximum Payload Ratio of a Two-Stage Rocket

Optimal stage mass ratios

$$\mu_1 = \sqrt{\mu_{overall} \frac{\eta_2}{\eta_1}}; \quad \mu_2 = \sqrt{\mu_{overall} \frac{\eta_1}{\eta_2}}$$

Optimal payload ratio

$$\lambda_{overall} = \frac{1}{\mu_{overall}} - 2\sqrt{\frac{\eta_1 \eta_2}{\mu_{overall}}} + \eta_1 \eta_2$$

Also see

http://www.princeton.edu/~stengel/Prop.pdf

Scout Launch Vehicle (1961-1994)

- Liftoff mass = 16,450 kg
- 4 solid-rocket stages
- Overall mass ratio = 34
- Overall payload ratio = 0.00425= 0.425% (67-kg payload)

Typical Figures for Scout

	lsp, s, vac		Payload	Structural	Impact
Stage	(SL)	Mass Ratio	Ratio	Ratio	Range, km
1 (Algol)	284 (238)	2.08	0.358	0.123	~60
2 (Castor)	262 (232)	2.33	0.277	0.152	~250
3 (Antares)	295	2.53	0.207	0.189	~2500
4 (Altair)	280	2.77	0.207	0.154	Orbit

4" Stage
3" Stage
2" Stage

Scout

19

Launch Abort System (LAS) Orion Capsule Service Module Fairing Stage Adapter DCSS RL10B-2 Engine Interstage Boosters

Strap-On Boosters

- High volumetric specific impulse is desirable for first stage of multi-stage rocket
- Strap-on solid rocket boosters are a cost-effective way to increase mass and payload ratios

Expendable vs. Reusable Launch Vehicles

- Expendable Vehicle
 - Low cost per vehicle
 - New vehicle for each launch
 - Low structural ratio
 - Continued production
 - Launch preparation
 - Upgrade in production

- Reusable Vehicle
 - High initial cost
 - High structural ratio
 - Maintenance and repair
 - Non-reusable parts and supplies
 - Launch preparation
 - Return to launch site
 - Upgrade
 - Replacement cost

21

Heavy-Lift "Big Dumb Boosters" c. 1963

Objective: 450,000 kg to low earth orbit

Douglas Single-Stage-to-Orbit

- Plug nozzle
- Nozzle = Reentry Heat Shield
- Fully recoverable

General Dynamics, Martin, and Douglas Concepts

- · 1-1/2 stage, fully recoverable
- Recovery at sea
- Ducted rocket

22

Vertical Takeoff, Horizontal Landing Vehicles

Martin Astro-Rocket

Heat shield-to-heat shield

General Dynamics Triamese

Three "identical" parallel stages

23

Horizontal vs. Vertical Launch

- Feasibility of "airline-like" operations?
- Use of high I_{sp} air-breathing engines
- Rocket stages lifted above the sensible atmosphere
- Flexible launch parameters AVIATION WE

Pegasus Air-Launched Rocket

The state of the s

Initial mass: 18,000 to

23,000 kg

Payload mass: 440 kg

- Orbital-ATK
- Three solid-rocket stages launched from an aircraft
- Aerodynamic lift used to rotate vehicle for climb

25

Virgin Galactic LauncherOne and Vulcan Aerospace Stratolauncher

Specific Energy Contributed in Boost Phase

Total Energy = Kinetic plus Potential Energy (relative to flat earth)

$$\mathbb{E} = \frac{mV^2}{2} + mgh$$

Specific Total Energy = Energy per unit weight = Energy Height (km)

$$\boxed{\mathbb{E}' = \frac{V^2}{2g} + h}$$

27

Specific Energy Contributed in Boost Phase

Specific Energy contributed by first stage of launch vehicle

Less remaining drag loss (typical)
Plus Earth's rotation speed (typical)

			Earth-	Remaining				
		Mach	RelativeVelocity,	Drag Loss,	Earth Rotation	Specific Kinetic	Total Specific	Percent
	Altitude, km	Number	km/s	km/s	Speed, km/s	Energy, km	Energy, km	of Goal
Scout 1st-Stage								
Burnout	22	4	1.2	0.05	0.4	123.42	145.42	3.93%
Subsonic								
Horizontal Launch	12	8.0	0.235	0.15	0.4	12.05	24.05	0.65%
Supersonic								
Horizontal Launch	25	3	0.93	0.04	0.4	85.57	110.57	2.99%
Scramjet								
Horizontal Launch	50	12	3.6	0	0.4	829.19	879.19	23.74%
Target Orbit	300	25	7.4		0.4	3403.34	3703.34	

Trans-Atmospheric Vehicles (Aerospace Planes)

- Power for takeoff
 - Turbojet/fans
 - Multi-cycle air-breathing engines/scramjets
 - Rockets
- Single-stage-to-orbit
 - Carrying dead weight into orbit
 - High structural ratio for wings, powerplants, and reusability
 - SSTO has very low payload ratio

20

Trans-Atmospheric Vehicle Concepts

Various approaches to staging

Lockheed Clipper

Venture Star/X-33

- Reusable, single-stage-to-orbit, proposed Space Shuttle replacement
- Advertised payload ratio = 2% (dubious)
- · X-33: Sub-orbital test vehicle
- Improved thermal protection
- Linear spike nozzle rocket
- Program cancelled following tank failure in X-33 testing

31

ULA Atlas Evolution

Implementing a Low Risk Evolution Process

ULA Delta Evolution

Orbital-ATK Minotaur and Antares

Minuteman ICBM Derivative

RD-181 Motor

Blue Origin New Shepard and OTS

35

ULA Vulcan Launcher

Successor to Delta 4 Heavy and Atlas Heavy

- 0 6 Orbital-ATK solid-rocket boosters
- LOX/Methane 1st stage, derived from Delta 4 (2 Blue Origin BE-4)
- LOX/LH2, Centaur or ACES 2nd stage (1 or 4 Aerojet Rocketdyne RL-10C)

Firefly Launch Vehicle and Aero-Plug Motor

37

SpaceX Falcon 9, Heavy

Falcon Heavy

- Payload to Low Earth Orbit 53,000 kg
- Payload to Geosynchronous Orbit = 21,200 kg
- Liftoff Mass = 1.462 x 10⁶
- 2 stages, plus 2 boosters, all LOX/RP-1
- 27 Merlin 1D (SL) 1st stage rockets
- 1 Merlin 1D (vac) 2nd stage rocket

Space Launch System

39

Launch Vehicle Structural Loads

- · Static/quasi-static loads
 - Gravity and thrust
 - Propellant tank internal pressure
 - Thermal effects
 - Rocket
 - · Cryogenic propellant
 - · Aerodynamic heating
- Dynamic loads
 - Bending and torsion
 - "Pogo" oscillations
 - Fuel sloshing
 - Aerodynamics and thrust vectoring
- Acoustic and mechanical vibration loads
 - Rocket engine
 - Aerodynamic noise

Structural Material Properties

- Stress, σ: Force per unit area
- Strain, ε: Elongation per unit length

 $\sigma = E \varepsilon$

Proportionality factor, *E*: Modulus of elasticity, or Young's Modulus Strain deformation is reversible below the elastic limit

Elastic limit = yield strength

Proportional limit ill-defined for many materials

41

Structural Material Properties

Material Properties (Wikipedia) Elastic Limit, Density, Young's Modulus, GPa g/cm³ **MPa Aluminum** 400 2.7 Alloy 69 **Carbon-Fiber** 530 1.8 Composite Fiber-Glass 125-150 Composite 2.5 Magnesium 45 100 1.7 Steel 200 250-700 7.8 **Titanium** 105-120 830 4.5

42

Structural Stiffness

Geometric stiffness of a structure that bends about its x axis is portrayed by its area moment of inertia

Area moment of inertia for simple cross-sectional shapes

- Solid rectangle of height, h, and width, w:
- $I_r = wh^3/12$

• Solid circle of radius, r:

- Circular cylindrical tube with inner radius, r_{i} , and outer radius, r_{o} :
- $I_x = \pi r^4 / 4$ $I_x = \pi \left(r_o^4 r_i^4 \right) / 4$

43

Structural Stiffeners

- Axial stiffeners provide high I_x per unit of crosssectional area
- Circular stiffeners increase resistance to buckling
- Honeycomb and waffled surfaces remove weight while retaining I

Propellant Tank Configurations for Launch Vehicles

45

Mercury-Redstone Structure

Semi-monocoque structure (load-bearing skin stiffened by internal components)

External skin, internal tanks separated by longerons and circular stiffeners

Aerodynamic and exhaust vanes for thrust vectoring

Saturn IB First Stage

Parallel tanks, external bracing

47

Saturn V First Stage

Saturn V Second Stage

Integral serial tanks, with common bulkhead

49

Saturn IB Second Stage/ Saturn V Third Stage

Serial tanks, with common bulkhead

Ares I Crew Launch Vehicle

Ares V Cargo Launch Vehicle

Next Time: Spacecraft Structures