02207 : Advanced Digital Design Techniques

Low-pass Filter (2 x 1-D)

Examination Project

Group $dt\theta$ 7

Markku Eerola (s053739)

Rajesh Bachani (s061332)

Josep Renard (s071158)

Contents

1	About the Report	2										
2	Design Architecture	2										
3	Sequencing of Operations3.1 Memory Initialization3.2 Memory Read and Write by Processor3.3 Memory Access Sequence	5 6 7										
4	Finite State Machines 4.1 Input Controller											
5	5 Synthesis											
6	Results											
7	Limitations and Extensions	13										
8	VHDL Implementation Files	15										

1 About the Report

In this project, we have designed and implemented the architecture for an image filtering processor which uses a 3x3 filter to perform a convolution on the image of size 256x256 pixels. Following is the work done by the authors.

Authors by Section

- Rajesh Bachani
 - VHDL: FSM_In.vhd, FSM_Out.vhd, Processor_3.vhd, TB_Filter.vhd
 - Report: Sections 3 and 4
- Josep Renard
 - VHDL: Multiplier.vhd, parcial.vhd, CRA_15.vhd, CSA_15bit.vhd
 - Report: Sections 6 and 7
- Markku Eerola
 - VHDL: Adder_2.vhd, Adder_3.vhd, Mux_4.vhd, SHIFTREG.vhd, Memory.vhd, REG.vhd
 - Report: Sections 2 and 5

The rest of the report is organized as follows. In section 2, we explain the internal architecture of the processor. Then in section 3, we give the sequencing of the operations involved in the computation. This section explains the operations performed for memory initialization and the order in which the input memory is read and the output memory is read and written. Also, we here explain the order in which the memory is accessed, which are different for the horizontal and vertical movements of the filter mask. Section 4 explains the design of the controllers at the input and the output. In section 5, we provide the results from the synthesis of the design in Design Vision. The section 6 contains the images obtained after convolution, and also a summary of the results from the synthesis. Finally, we end the report with section 7 with a short explanation on what we think are the limitations of the work done here, and how it could be extended.

2 Design Architecture

The overall design of the filter unit can be seen in figure 1. More detailed architecture can be seen in figure 2.

Figure 1: Filter Unit Design

Figure 2: Processor Architecture

The input and the output signals of the processor are explained below, with their bit-width's.

- Data_in_1, 8 bits, transfers pixels of the image from the input memory to the processor's cache
- Clock, 1 bit, the common clock signal
- Reset, 1 bit, the common active low reset signal
- Filter, 8 bits, used to get the n pixels of the filter, 8 bits over n clock cycles (n = 3 here)
- Disable_filter, 1 bit, used to disable the filter, so the filter register is not written
- Data_in_2, 8 bits, transfers pixels of the image from the output memory to the processor
- Read_In_Mem, 1 bit, indicates the memory when to read pixels of the input image
- Write_In_Mem, 1 bit, indicates the memory when to write pixels to the input image (this is used only when the input memory is initialized)
- Read_Addr_In_Mem, 16 bits, indicates the address from where the next pixel should be read from the input memory
- Data_Out, 8 bits, transfers processed pixels from the processor to the output memory
- Write_Addr_Out_Mem, 16 bits, indicates the address to which the next pixel should be written in the output memory
- Read_Addr_Out_Mem, 16 bits, indicates the address from where the next pixel must be read from the output memory
- Write_Out_Mem, 1 bit, indicates the output memory when to allow writing of data
- Read_Out_Mem, 1 bit, indicates the output memory when to allow reading of data

3 Sequencing of Operations

This section contains a description of the sequence in which the processor performs the operations needed for convolution of the image.

3.1 Memory Initialization

Before the processor starts its operations, we have the memory initialization step, in which both the input and the output memory's are set to initial values. The input memory is initialized with the image pixels, which is done through the testbench. The output memory has to be initialized to zero.

3.2 Memory Read and Write by Processor

There are two controllers as part of the processor, the Input Controller and the Output Controller (indicated by FSM_In and FSM_Out in figure 2). The Input Controller is responsible for reading pixels from the input memory, which holds the original image. On the other hand, the output controller is responsible for reading as well as writing the computed pixels from and to the output memory. The output memory at the end of the computation, holds the pixels of the convoluted image.

It is very important that these two controllers be well synchronized with each other, so the operations are performed smoothly, and there is no data loss. In particular, when the Input Controller is active, the Output Controller should not perform any operation. This is because until the Input Controller has read the next 3 pixels (for the 3x3 filter; it would be n for nxn filter) from the input memory, the convolution is not stable, and so the Output Controller cannot write anything to the output memory. The vice-versa case is also true. So, when the Output Controller is active, the Input Controller should be inactive. This is because while the output memory is being written by the Output Controller, if the Input Controller reads new pixels, then the already computed values would be overwritten, and the synchronization is disturbed completely.

Figure 3: Read Write Synchronization between Input and Output Controllers(1)

Hence we have chosen the approach in which at no point of time, would both the Controllers be active, as shown in figure 3. As we can see, the signal <code>read_in_mem</code> is 1 for three clock cycles. The signal <code>disable_to_cache</code> becomes 1 after one clock cycle delay as compared to <code>read_in_mem</code>. Also, once the <code>read_in_mem</code> becomes 0, the <code>read_out_mem</code> becomes 1. Also at this time, the <code>disable_to_cache</code> becomes 0. Then there is no activity for one clock cycle, during which the convolution is done, after which <code>write_out_mem</code> becomes 1 to write the convoluted pixel to the output memory. The <code>read_in_mem</code> then becomes 1 again after nine clock cycles, i.e. when the Output Controller has finished reading and writing three convoluted pixels to the output memory.

During the horizontal movement, when the horizontal end of the image is reached, the Output Controller becomes idle for a longer duration. This is because the Input Controller now has to load nine fresh pixels from the input memory, which happens in 27 clock cycles. So, once the end of the image is reached (this holds even for vertical movements), the Output Controller becomes idle for 27 cycles, and then starts reading and writing as usual, which goes on uptil the end of the image is again reached (which is 256 rounds of read and write).

Figure 4 depicts this situation in the simulation.

Figure 4: Read Write Synchronization between Input and Output Controllers(2)

3.3 Memory Access Sequence

			1				2			
	1	4	7	 766						
	2	5	8	 767	769	772	775		1534	
HORIZONTAL	3	б	9	 768	770	773	776		1535	
					771	774	777		1536	
					:					
	1	2	3	 		769	770	771		
	4	5	б			772	773	774		
VERTICAL	7	8	9	 		775	776	777		
			:			:				
			:							
	766	767	768			1534	1535	1536		

Figure 5: Sequence of Input Memory Address Access

The figure 5 shows the sequence in which the input memory pixels are accessed by the Input Controller. During the horizontal movement, the 3 pixels are accessed in every column, with the direction of movement of the access being the same as the direction of movement of the filter, i.e. from left to right. Once a horizontal end of the image is reached, the access is started from the next row, with again three pixels in every column and the direction of movement being horizontal.

When the horizontal movement is completed, the vertical movement takes place. During this, three pixels are accessed in every row of the image, and the movement is vertical, from top to bottom. On reaching a vertical end of the image, the reading starts at the top of the next column, again with 3 pixels in each row and movement from top to bottom.

1	257	 65025					
2	258	 65026		1	2	3	 256
3	259	 65027		257	258	259	 512
				65025	65026	65027	 65280
256	512	65280					

Figure 6: Sequence of Output Memory Address Access

The memory access for the Output Controller is simple as compared to the memory access by the Input Controller. The right part of the figure 6 shows the access for the horizontal movement. The top most and the bottom most rows are not written. Once a row is completed the next row pixels are read and written.

For the vertical movement, the first and the last columns are not written. The read and write sequence starts from the second column, and ends when the second last column is finished.

4 Finite State Machines

The following subsections explain the finite state machines describing the Input and the Output Controllers.

4.1 Input Controller

The Input Controller has the following 16 states.

- 1. State init. This is the initialization state of the controller. The next state is init_in_memory_1.
- 2. State *init_in_memory_1*. This state performs the initialization of the input memory. The Controller puts the *can_write* signal to 1, so that the byte read from the *.hex* file is written to the *Data_In* of the input memory. The address to which the byte should be written is also given by the Controller, through the signal *address*. The next state is *init_in_memory_2*.
- 3. State $init_in_memory_2$. This state does the same thing as the previous state, and it increments a counter. Once the value of the counter is greater than 65536, which means that the entire memory has been written, the state changes to h_read_1 .
- 4. State h_read_1 . This state performs the read operation from the input memory for one pixel. The signal can_write is set to 1. The next state is h_read_2 .
- 5. State h_read_2 . This state performs the read operation from the input memory for one pixel. The next state is h_read_3 . The signal $disable_cache$ is set to θ here, since from now we want the cache to start loading the values from the input memory.

- 6. State h_read_3 . This state performs the read operation from the input memory for one pixel. The next state is h_cache .
- 7. State h_cache . This state is used as a delay. The signal $disable_cache$ should be delayed by one clock cycle as compared to the signal can_read since the byte from the memory comes one clock cycle after the can_read is active. The signal can_read is set to θ here. The next state is h_wait .
- 8. State h_wait . This state is used as a wait state, during which the Output FSM is active. Also, the $disable_cache$ signal is set to 1 here, so that no more values from the memory are read into the cache, until the Input Controller gets active again. The next state is h_temp .
- 9. State h_temp. This state is also the wait state, and the finite state machine keeps shuttling between this state and the previous state, for 27 clock cycles. Once the Output Controller writes the new pixels to the output memory, the wait time is over, and the next state is set to v_read_1 and the vertical reading for the memory is started. The states for vertical movement are kept separate from the states for the horizontal movement. This is because the order in which the addresses are generated for the address signal, are different in both the movements (as also shown in figure 5). The purpose of the following states is the same though, with only the address values being different, so we skip the explanation.
- 10. State v_read_1 .
- 11. State v_read_2 .
- 12. State v_read_3 .
- 13. State v_cache.
- 14. State v_wait.
- 15. State $v_{-}temp$.
- 16. State exit_in. This is the exit state of the finite state machine.

4.2 Output Controller

The Output Controller has the following 18 states.

- 1. State init. This is the initialization state of the controller. The next state is init_out_memory_1.
- 2. State *init_out_memory_1*. This state initializes the output memory to θ. The controller puts the *can_write* signal to 1 and the *write_address* is incremented every time in the state. The next state is *init_out_memory_2*.
 - Important to note here, that the output memory is initialized by zeros, since the $Data_In_2$ signal coming from the output memory is set to zero, using the $give_zeros$ signal of the output memory. Also the multiplexer in this state gives zero since the select is forced to '11' by the controller. Hence the $Data_Out$ of the processor is always zero in this state.

- 3. State $init_out_memory_2$. This state performs the same function as the previous state. A counter is maintained which if greater than 65536 indicates that the memory is initialized. Then the next state is h_init_1
- 4. State $h_{-init_{-}1}$. This state is created in order to wait for the cache shift register to get the pixels from the input memory. Actually, when the Input Controller finishes reading a line in the memory, during any of the horizontal or vertical movements, the Output Controller must wait for the time till the cache is filled with the new 9 pixels. The next state is $h_{-init_{-}2}$.
- 5. State $h_{init_{-}2}$. This state performs the same function, and waits till the 9 pixels are filled in the cache shift register. This takes 27 clock cycles, since the Input Controller also remains idle in between. Once this is done, the next state is set to $h_{read_{-}1}$.
- 6. State h_read_1 . This state puts the can_read signal to 1. Also, the corresponding $read_address$ is set. The next state is h_read_write .
- 7. State h_read_write . In this state, the Controller remains idle, so that data is recieved from the output memory in the next clock cycle. The next state is h_write_1 .
- 8. State h_write_1 . This state forces the adder to be selected, by changing the sel signal. The old pixel from the output memory and the new pixel from the adder are added. The signal can_write is set to 1 and the $write_address$ is set to the same value as the $read_address$ in the previous state. If the end of the row or column is reached in the memory, the next state is h_init_1 . Else the next state is h_wait_1 . Also, if the end of the image is identified, then the vertical movement begins, and in that case the next state is set to v_init_1
- 9. State h_wait_1 . In this state, the Controller waits for the Input Controller to read 3 new pixels from the input memory. The next state is h_wait_2 .
- 10. State h_wait_2 . This state performs the same function as the previous state. If 3 clock cycles are over, i.e. if the Input Controller has read 3 new pixels, then the Controller gets active again, and the next state is set to h_read_1 .
 - Again, we avoid giving explanation for the states during the vertical movement, since they all perform the same function as the states occurring during the horizontal movement.
- 11. State $v_{-}init_{-}1$.
- 12. State *v_init_2*.
- 13. State v_read_1 .
- 14. State v_read_write.
- 15. State $v_{\text{-}}write_{\text{-}}1$.
- 16. State v_wait_1 .
- 17. State v_wait_2 .
- 18. State exit_in. This is the exit state of the finite state machine.

5 Synthesis

We synthesized the design using four different clock periods, namely 7ns, 5ns, 3ns and 2ns, and let Design Vision try to optimize the design for speed to get the fastest possible design. Turns out 2ns is the minimum clock period for our design, Design Vision was not able to synthesize a faster design even when we tried. To get meaningful power reports we simulated switching activity with the VSS Simulator and the activity was passed on to Design Vision. On top of power reports we also obtained area and timing reports from the design on all four clock periods. The actual reports can be seen in the appendix, but a summary of the results can be seen in table 1. The power breakdown for the designs on all four clock periods can be seen in table 2. In the breakdown $MULT_{conv}$ and ADD_{conv} refer to the power dissipation in all multipliers and adders involved in the convolution combined. For more detailed breakdown please refer to the appendix.

Table 1: Summary of Design Vision reports

$\mathbf{T}_C [\mathrm{ns}]$	$\mathbf{P}_{stat} \; [\mathrm{mW}]$	$\mathbf{P}_{dyn} [\mathrm{mW}]$	$\mathbf{P}_{tot} [\mathrm{mW}]$	$\mathbf{A}_{comb} \ [\mu m^2]$	$\mathbf{A}_{tot} \ [\mu m^2]$	\mathbf{T}_{cp} [ns]
7	0.16	1.77	1.93	44067	53079	4.7
5	0.16	1.88	2.04	44067	53079	4.7
3	0.11	2.17	2.28	49595	58611	2.9
2	0.19	2.59	2.78	58668	67700	1.9

Table 2: Power breakdown, total power in mW

\mathbf{T}_C	\mathbf{FSM}_{in}	\mathbf{FSM}_{out}	\mathbf{REG}_{filter}	\mathbf{REG}_{cache}	$\overline{ ext{MULT}_{conv}}$	\mathbf{ADD}_{conv}	MUX	\mathbf{ADD}_{out}	\mathbf{REG}_{out}
7	0.207	0.242	0.396	0.547	0.363	0.036	0.035	0.050	0.053
5	0.256	0.300	0.396	0.549	0.365	0.036	0.036	0.056	0.052
3	0.370	0.436	0.401	0.548	0.224	0.110	0.040	0.126	0.052
2	0.512	0.606	0.395	0.557	0.371	0.103	0.044	0.143	0.052

The critical path of the design (see figure 2) is the same for all four clock periods and goes through the cache register, the convolution multipliers, the convolution adders, the multiplexer, the adder and the output register (added for the synthesizer's sake, to constrain the path - doesn't contribute to the delay in any of the timing reports). The path is illustrated in figure 7 along with the delay information.

Figure 7: Critical path of the design

6 Results

The original image which is convoluted in the simulation is shown in figure 8. The convolution of this image takes a total time of 3252224 ns, which is broken down as (with a clock cycle of 2 ns):

- 1. Memory Initialization: 131072 ns (256 * 256 * 2 ns).
- 2. Horizontal Movement: 1560576 ns (256 * 254 * 12 * 2 ns), where 12 is the number of cycles taken for one horizontal movement of the filter.
- 3. Vertical Movement: 1560576 ns (256 * 254 * 12 * 2 ns), where 12 is the number of cycles taken for one vertical movement of the filter.

The left image in the figure 9 is computed using the filter mask of '000010000' and the right image in figure 9 is computed using the filter mask of '010101010'.

Figure 8: Original Image

Figure 9: Convolution Results

Provided below is a summary of the results obtained from the Synthesis of the design.

 $\mathbf{E}_{pc} [\mathrm{mW/MHz}]$ **AREA** $[\mu m^2]$ \mathbf{T}_C Critical N. cycles [ns] Path [ns] (256×256) 3121152 7 4.7 0.01351 53079 31211520.0102053079 5 4.73 2.9 31211520.0068458611 2 67700 1.9 3121152 0.00556

Table 3: Summary

7 Limitations and Extensions

We have designed and implemented the architecture for an image filtering processor which uses a 3x3 filter to perform a convolution on the image of size 256x256 pixels. Though the results of the convoluted image look promising, as shown in section 6, we are aware of some of the limitations of the work. Given more time, we would have liked to add the following missing aspects into the project.

- 1. We have just been able to implement the 3x3 filter for the convolution. Though, it was proposed that we would implement the higher dimension filters as well, including 5x5, 7x7 and 9x9, we were not able to do so, due to the initial problems we faced in the implementation of the 3x3 filter itself. We believe the results obtained in the section 6, in the form of the convoluted image could be better if the dimension of the filter is higher. In those cases, the blur effect on the image would be clearly evident, as compared to the case of the 3x3 filter. We would like to briefly mention how the design of the processor would be modified if we wish to convolute the image using higher dimension filters. If we consider the dimension of the filter as nxn, then we have the following:
 - Number of Adders = n^2

- Number of Multipliers = n
- Size of the Cache Shift Register = n^2
- \bullet Multiplexer would have n inputs and 1 output.
- Select signal from the Output Controller would be 3 bits for 5x5 and 7x7, and 4 bits for 9x9 filter.

In addition the synchronization of the Input and the Output Controllers would change due to the number of clock cycles required to get n new pixels from the memory and compute the output for n pixels at a time. This means the cases described in section 3.2 would now be the following for the n * n filter:

- Number of cycles taken for the Input Controller to read pixels due to the filter movement (horizontal or vertical): n.
- Number of cycles taken for the Output Controller to read and write n new pixels to the output memory: 3*n, since there are three states for every pixel, namely, read, idle and write.
- Number of cycles for which the Output Controller waits in the case when the horizontal movement shifts to the next row or the vertical movement shifts to the next column: [(n+3*n)+(n+3*n)+...(n-1)times...+(n+3*n)]+n, which is $4*n^2-3*n$.
- 2. It is assumed that the filter is symmetric along the two dimensional x and y axes. We need this since the indices of the filter which need to be multiplied with the image pixels would change in horizontal and vertical movements. For simplicity therefore, we have made this assumption. The solution to this problem is quite simple though. We just need to have separate caches in the processor which hold the filter values in a different order. For horizontal movement we would use one cache, while the other one would be used for the vertical movement.
- 3. The mechanism which we have designed for the accessing the memory is ofcourse not the best way. Since we began the implementation with the sequence explained in the section 3.3, we did not change it later. Though, we realized that this is not an efficient way, since it consumes a high number of clock cycles in order to run through the entire image of 256x256 pixels.

8 VHDL Implementation Files

Following are the VHDL files which are core to the project. In addition we have a lot of test benches, which we have created to test the individual components. These extra files (along with the core files) are provided in the ZIP archive.

Listing 1: Memory.vhd

```
a simple 256*256 pixel (256*256*8 bits) Memory module
  arranged in a linear fashion.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity MEMORY is
port (
   Clock:
                         in std_logic;
        Enable:
                         in std_logic;
        Give_Zeros: in std_logic;
        Read:
                        in std_logic;
        Write:
                        in std_logic;
        Read\_Addr:
                        in std_logic_vector(15 downto 0);
        Read_Addr:
Write_Addr:
                        in std_logic_vector(15 downto 0);
                        in std_logic_vector(7 downto 0);
        Data_in:
        Data_out:
                        out std_logic_vector(7 downto 0)
end MEMORY;
architecture BEHLMEMORY of MEMORY is
type memory_type is array (0 to 65536) of std_logic_vector(7 downto 0);
signal tmp_memory: memory_type;
begin
    process (Clock)
    begin
           (Clock 'EVENT and Clock='1' and enable='1') then
             if (Give_Zeros='1') then
                 Data_out <= (Data_out 'range => '0');
             elsif (Read='1') then
                 Data_out <= tmp_memory(conv_integer(Read_Addr));
            end if:
            if (Write = '1') then
                 tmp_memory(conv_integer(Write_Addr)) <= Data_in;
            end if;
        end if;
    end process;
end BEHMEMORY;
```

Listing 2: FSM_in.vhd

```
library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity FSM_in_3 is
port (
   clock:
                           in std_logic;
                           in std_logic;
         reset:
         address:
                                    out std_logic_vector(15 downto 0);
         can_read:
                      out std_logic;
         can_write: out std_logic;
         disable_cache: out std_logic
);
end FSM_in_3;
architecture BEH_FSM_in_3 of FSM_in_3 is
    type state_type is (init, init_in_memory_1, init_in_memory_2, h_read_1, h_read_2,
                            \verb|h_read_3|, \>\> \verb|h_cache|, \>\> \verb|v_cache|, \>\> \verb|h_wait|, \>\> \verb|h_temp|,
                             v_read_1, v_read_2, v_read_3, v_wait, v_temp, exit_in);
    signal next_state , current_state: state_type;
state_reg: process(clock, reset)
begin
                    if (reset = '0') then
                  current_state <= init;</pre>
                    elsif (clock 'event and clock = '1') then
                        current_state <= next_state;</pre>
                    end if;
end process;
comb_logic: process(current_state)
    variable addr_h: INTEGER;
    variable addr_v: INTEGER;
    variable x: INTEGER;
    variable y: INTEGER;
    {\bf variable} \ \ {\bf temp\_address}: \ \ {\bf INTEGER};
    variable counter: INTEGER;
begin
                  case current_state is
        when init =>
            x := 1;
            y := 1;
            counter := 1;
            disable_cache <= '1';
            next_state <= init_in_memory_1;</pre>
            can_read \ll 0;
            {\tt can\_write} <= ~,0~;
            address <= (others => '0');
```

```
when init_in_memory_1 =>
      next_state <= init_in_memory_2;
      can_write <= '1';
     address <= conv_std_logic_vector(counter, 16);
     counter := counter + 1;
when init_in_memory_2 \Rightarrow
    can_write \ll '1';
    address <= conv_std_logic_vector(counter, 16);
      if(counter = 65536) then
         next_state <= h_read_1;
         counter := 1;
         can_write \ll '0';
         address <= (others => '0');
      else
         next_state <= init_in_memory_1;</pre>
         counter := counter + 1;
     end if;
      when h_read_1 \Rightarrow
       next_state <= h_read_2;
       can_read <= '1';
            addr_h := x;
       address <= conv_std_logic_vector(addr_h,16);
       disable_cache <= '1';
      when h_read_2 \Rightarrow
            next_state <= h_read_3;
       can_read <= '1';
            addr_{-}h := addr_{-}h + 256;
       address <= conv_std_logic_vector(addr_h,16);
       disable_cache <= '0';
      when h_read_3 \Rightarrow
            next_state <= h_cache;
       can_read <= '1';
            addr_h := addr_h + 256;
            x := x + 1;
       address <= \ conv\_std\_logic\_vector\left(addr\_h\ , 16\right);
       \label{eq:disable_cache} \mbox{disable_cache} <= \mbox{'0'};
when h_cache \Rightarrow
        disable_cache <= '0';
        can_read <= '0';
        next_state <= h_wait;
      when h_wait \Rightarrow
```

```
counter := counter + 1;
      can_read <= '0';
      \mathrm{address} \mathrel{<=} (\mathbf{others} \implies `0");
      next_state <= h_temp;</pre>
      disable_cache <= '1';
when h_{-}temp \Rightarrow
      counter := counter + 1;
      can_read <= '0';
      address <= (others => '0');
      disable_cache <= '1';
      if (counter > 8) then
          counter := 1;
          if(x > 65024) then
              x := 1;
              next_state <= v_read_1;
              next_state <= h_read_1;
          end if;
      else
         next_state <= h_wait;
      end if;
      when v_read_1 \Rightarrow
      disable_cache <= '1';
      next_state <= v_read_2;
      can_read <= '1';
            addr_v := x;
      address <= conv_std_logic_vector(addr_v, 16);
      when v_read_2 \Rightarrow
            next_state <= v_read_3;</pre>
      can_read <= '1';
            addr_v := addr_v + 1;
      address <= conv_std_logic_vector(addr_v, 16);
      disable_cache <= '0';
      when v_read_3 \Rightarrow
            next_state <= v_cache;
      can_read <= '1';
            addr_v := addr_v + 1;
            x := x + 256;
      address <= conv_std_logic_vector(addr_v,16);
      disable_cache <= '0';
when v_cache \Rightarrow
        disable_cache <= '0';
```

```
next_state <= v_wait;
       when v_wait =>
            counter := counter + 1;
            next_state <= v_temp;
            can_read <= '0';
            address <= (others => '0');
            disable_cache <= '1';
            when v_temp =>
            counter := counter + 1;
            if (counter > 8) then
                counter := 1;
                if(x > 65536) then
                     y := y + 1;
                      x\;:=\;y\,;
               end if;
                if(y = 255) then
                      next_state <= exit_in;
                _{
m else}
                      next_state <= v_read_1;
               end if;
            else
                next_state <= v_wait;
            end if;
            can_read <= '0';
            address <= (others => '0');
       when exit_in \Rightarrow
            can_read <= '0';
            address <= (others => '0');
            next_state <= exit_in;</pre>
            disable_cache <= '1';
            when others =>
                  disable_cache <= '1';
                                 next_state <= init;
            can_read <= '0';
            address <= (others => '0');
        end case;
end process;
end BEH_FSM_in_3;
configuration CFG_FSM_in_3_BEHAVIORAL of FSM_in_3 is
```

can_read <= '0';

for BEH_FSM_in_3
 end for;
end CFG_FSM_in_3_BEHAVIORAL;

Listing 3: FSM_out.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity FSM_out_3 is
port (
   clock:
                          in std_logic;
                          in std_logic;
         reset:
         read_address:
                                   out std_logic_vector(15 downto 0);
         write_address:
                                   out std_logic_vector(15 downto 0);
         \verb"can_read: & \textbf{out} & \verb"std_logic"; \\
         can_write: out std_logic;
         sel: out std_logic_vector(1 downto 0)
);
end FSM_out_3;
architecture BEH_FSM_out_3 of FSM_out_3 is
    type state_type is (init, init_out_memory_1, init_out_memory_2, h_init_1, h_init_2,
     \verb|h-read-1|, \verb|h-read-write|, \verb|h-read-write-2|, \verb|h-write-1|, \verb|h-wait-1|, \verb|h-wait-2|, \\
     v_init_1, v_init_2, v_read_1, v_read_write, v_write_1, v_wait_1, v_wait_2, exit_in);
    signal next_state , current_state: state_type;
begin
state_reg: process(clock, reset)
begin
                    if (reset = '0') then
                  current_state <= init;</pre>
                    elsif (clock 'event and clock = '1') then
                       current_state <= next_state;</pre>
                    end if;
end process;
comb_logic: process(current_state)
    variable addr_h: INTEGER;
    variable addr_v: INTEGER;
    variable x: INTEGER;
    variable y: INTEGER;
    variable temp_address: INTEGER;
    variable counter: INTEGER;
    variable rwcount: INTEGER;
    variable sel_num: INTEGER;
begin
                  case current_state is
       when init \Rightarrow
            x := 257;
            counter := 1;
            rwcount \ := \ 1;
            sel_num := 0;
            next_state <= init_out_memory_1;</pre>
```

```
can_read <= '0';
     {\tt can\_write} <= ~,0~;
     read_address <= (others => '0');
     write_address <= (others => '0');
\label{eq:when_init_out_memory_1} \ \Longrightarrow \ 
     can_write \ll '1';
    sel_num := 3;
     sel <= conv_std_logic_vector(sel_num, 2);
     write_address <= conv_std_logic_vector(counter, 16);</pre>
     next_state <= init_out_memory_2;</pre>
    \mathtt{counter} \; := \; \mathtt{counter} \; + \; 1;
when init\_out\_memory\_2 \Rightarrow
     can_write \ll '1';
     write_address <= conv_std_logic_vector(counter, 16);</pre>
     if(counter = 65536) then
        next_state <= h_init_1;</pre>
        counter := 1;
        {\tt can\_write} <= ~,0~;
        \label{eq:write_address} \mbox{ write_address <= (others => '0');}
        sel_num := 0;
        sel <= conv_std_logic_vector(sel_num, 2);
     else
        next_state <= init_out_memory_1;</pre>
        counter := counter + 1;
        sel_num := 3;
        sel <= conv_std_logic_vector(sel_num, 2);
    end if;
when h_i nit_1 =>
     if(counter = 27) then
         counter := 1;
         next_state <= h_read_1;
         addr_h := x;
     else
         next_state <= h_init_2;
    end if;
    {\tt can\_read} <= ~,0~;
    can_write <= '0';
    read_address <= (others => '0');
     write_address <= (others => '0');
    counter := counter + 1;
when h_init_2 =>
     counter := counter + 1;
```

```
next_state <= h_init_1;</pre>
    can_read <= '0';
    can_write <= '0';
    read_address <= (others => '0');
    write_address <= (others => '0');
     when h_read_1 =>
     next_state <= h_read_write;</pre>
     can_read <= '1';
     can_write \ll '0';
     read_address <= conv_std_logic_vector(addr_h, 16);</pre>
     write_address <= (others => '0');
     sel <= conv_std_logic_vector(sel_num, 2);
     sel_num := sel_num + 1;
next_state <= h_write_1;</pre>
     can_read <= '0';
     can_write \ll '0';
     read_address <= (others => '0');
     write_address <= (others => '0');
     when h_write_1 \Rightarrow
     rwcount := rwcount + 1;
     if (rwcount > 3) then
         if(x > 65277) then
            x := 2;
             next_state <= v_init_1;</pre>
             counter := 1;
             rwcount := 1;
             sel_num := 0;
          elsif((addr_h mod 256) = 0) then
             x := addr_h + 1;
              next_state <= h_init_1;</pre>
         else
               next_state <= h_wait_1;
         end if;
        rwcount := 1;
        sel_num := 0;
        \verb"next_state" <= \verb"h_read_1";
     end if;
     can\_read <= '0';
     can_write \ll '1';
     read_address <= (others => '0');
     write_address <= conv_std_logic_vector(addr_h, 16);</pre>
     addr_h := addr_h + 1;
```

```
-- wait for 3 clock cycles - till FSM1 reads the next 3 pixels
          when h_wait_1 =>
           counter := counter + 1;
           if (counter > 3) then
              counter := 1;
                        x := x + 1;
                        addr_h := x;
                        next_state <= h_read_1;
           else
              next_state <= h_wait_2;
           end if;
          can\_read \ll '0';
          {\tt can\_write} <= ~,0~;
          read_address \ll (others \implies '0');
          write_address <= (others => '0');
     when h_wait_2 \Rightarrow
          counter := counter + 1;
          next_state <= h_wait_1;</pre>
          can_read <= '0';
          can_write <= '0';
          read_address <= (others => '0');
          write_address <= (others => '0');
— States defining the Vertical Movement ——
     when v_i nit_1 =>
          counter := counter + 1;
            if(counter > 27) then
              counter := 1;
              next_state <= v_read_1;</pre>
              addr_v := x;
              next_state <= v_init_2;
          end if;
          can_read <= '0';
          can_write \ll '0';
          read_address <= (others => '0');
          write_address <= (others => '0');
     when v_i n i t_2 \Rightarrow
```

```
can_read <= '0';
    {\tt can\_write} <= ~,0~;
    read_address <= (others => '0');
    write_address <= (others => '0');
    counter := counter + 1;
    next_state <= v_init_1;</pre>
     when v_read_1 \Rightarrow
     next_state <= v_read_write;</pre>
     can_read <= '1';
     can_write \ll '0';
     read_address <= conv_std_logic_vector(addr_v,16);</pre>
     write_address <= (others => '0');
     sel <= conv_std_logic_vector(sel_num, 2);</pre>
     sel_num := sel_num + 1;
when v_read_write =>
    next_state <= v_write_1;</pre>
     can_read <= '0';
     can_write <= '0';
     read_address <= (others => '0');
     write_address <= (others => '0');
     when v_write_1 =>
     rwcount := rwcount + 1;
     if(rwcount > 3) then
        rwcount := 1;
        sel_num := 0;
         if(addr_v > 65280) then
             x\ :=\ x\ +\ 1\,;
             if(x = 256) then
                next_state <= exit_in;
             else
                addr_v := x;
                next_state <= v_init_1;</pre>
             end if;
         else
             next_state <= v_wait_1;</pre>
        end if;
     else
        next_state <= v_read_1;
     end if;
     can_read <= '0';
     can_write \ll '1';
     read_address <= (others => '0');
```

```
write_address <= conv_std_logic_vector(addr_v, 16);</pre>
             addr_v := addr_v + 256;
       -- wait for 3 clock cycles - till FSM1 reads the next 3 pixels
            when v_wait_1 \Rightarrow
             counter := counter + 1;
             if (counter > 3) then
                counter := 1;
                next_state <= v_read_1;
             else
                next_state <= v_wait_2;
            end if;
            {\tt can\_read} <= ~,0~;
            can_write <= '0';
            read_address <= (others => '0');
            write_address <= (others => '0');
       when v_wait_2 \Rightarrow
            counter := counter + 1;
            next_state <= v_wait_1;
            addr_v := addr_v - 512;
            can_read <= '0';
            can_write <= '0';
            read_address <= (others => '0');
            write_address <= (others => '0');
       when exit_in \Rightarrow
            can\_read <= \ '0';
            can_write <= '0';
            read_address <= (others => '0');
            write_address <= (others => '0');
            next_state <= exit_in;</pre>
            when others =>
            can_read <= '0';
            can_write \ll 0;
            read_address <= (others => '0');
            write_address <= (others => '0');
                           next_state <= init;
        end case;
end process;
end architecture BEH_FSM_out_3;
```

Listing 4: REG.vhd

```
library IEEE;
    use IEEE.std_logic_1164.all;
    use IEEE.std_logic_misc.all;
    use IEEE.std_logic_signed.all;
    use IEEE.std_logic_arith.all;
    entity REG is
          port (
                     D : in std_logic_vector(7 downto 0);
                     Clock, Reset : in std_logic;
                     Q : \mathbf{out} \ std_logic_vector(7 \ \mathbf{downto} \ 0));
end entity REG;
architecture BEHLREG of REG is
    p0: process (Clock, Reset) is
        begin
        \mathbf{if}^{-}(\text{Reset} = '0') then
           Q \ll (others \Rightarrow '0');
        elsif ((CLOCK = '1') AND (CLOCK'EVENT)) then
           \mathbf{Q} \mathrel{<=} \mathbf{D};
       \quad \textbf{end} \quad \textbf{if} \ ;
   \quad \textbf{end process} \quad p0 \ ;
end BEH_REG;
```

Listing 5: SHIFTREG.vhd

```
library IEEE;
   use IEEE.std_logic_1164.all;
   use IEEE.std_logic_misc.all;
   use IEEE.std_logic_signed.all;
   use IEEE.std_logic_arith.all;
entity SHIFTREG is
      Port (
               CLOCK : In
                              std_logic;
               RESET : In
                             std_logic;
               disable : In std_logic;
                  QK : In
                              std_logic_vector (7 downto 0);
                   Q : InOut std_logic_vector (71 downto 0) );
end SHIFTREG;
architecture BEH_SHIFTREG of SHIFTREG is
   begin
    process(RESET,CLOCK)
     variable i, j, k, l : integer;
     begin
       if (RESET = '0') then
          for i in 0 to 71 loop
              q(i) <= '0';
          end loop;
       elsif ((CLOCK = '1') AND (CLOCK'EVENT)) then
          if(disable = '0') then
                          for i in 71 downto 8 loop
                                q(i-8) \le q(i);
                          end loop;
               q(71 \text{ downto } 64) \le qk;
               _{
m else}
                     for i in 71 downto 0 loop
                                q(i) \ll q(i);
                          end loop;
               end if;
            end if;
    end process;
end BEH_SHIFTREG;
```

Listing 6: CRA_15.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity CRA_15 is
                  A : In std_logic_vector (15 downto 0);
port (
                  B : In std_logic_vector (15 downto 0);
                  Cin : In std_logic;
                  Cout : Out std_logic;
                  Y : Out std_logic_vector (15 downto 0) );
end CRA_15;
architecture RTL of CRA_15 is
begin
        process (A,B,Cin)
            variable tempC : std_logic_vector (16 downto 0);
            variable P : std_logic_vector (15 downto 0);
            variable G : std_logic_vector (15 downto 0);
            variable Yaux : std_logic_vector (15 downto 0);
            begin
                 tempC(0) := Cin;
                    for i in 0 to 15 loop
                       P(i) := A(i) XOR B(i);
                       G(i) := A(i) AND B(i);
                        Yaux(i):= P(i) xor tempC(i);
                        tempC(i+1):=G(i) OR (tempC(i) AND P(i));
                  end loop;
                  if (\text{tempC}(16)='1') then
                      Yaux(15 \text{ downto } 0) := "1111111111111111";
                  end if;
                  for i in 0 to 7 loop
                    if (Yaux(i+8)='1') then
                          Yaux(15 downto 0):="1111111111111111";
                    end if;
                 end loop;
                  Y(15 \text{ downto } 0) \le Yaux(15 \text{ downto } 0);
                  Cout \leq tempC(16);
             end process;
    end RTL;
    \textbf{configuration} \  \, \text{CFG\_CRA\_15\_BEHAVIORAL} \  \, \textbf{of} \  \, \text{CRA\_15} \  \, \textbf{is}
          for RTL
          end for;
```

Listing 7: CSA_15bit.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity csal5bit is
         Port ( A : In std_logic_vector (15 downto 0);
                 B : In std_logic_vector (15 downto 0);
                  C : In std_logic_vector (15 downto 0);
                  Cin : In std_logic;
                  Cout : Out std_logic;
                  Z : Out std_logic_vector (15 downto 0);
                 Y: Out std_logic_vector (15 downto 0) );
end csa15bit;
architecture BEHAVIORAL of csa15bit is
   signal aux : std_logic;
 begin
process(A, B, C, Cin)
         variable p : std_logic_vector (15 downto 0) ;
         variable g : std_logic_vector (15 downto 0) ;
         variable Z_aux : std_logic_vector (15 downto 0) ;
         variable Y_aux : std_logic_vector (15 downto 0) ;
         variable i : integer;
begin
for i in 0 to 15 loop
        p(i) := A(i) XOR B(i) ;
         g(i) := A(i) \text{ AND } B(i) ;
end loop;
 CARRY —
Y_{\text{-}}aux(0) := Cin;
for i in 0 to 15-1 loop
         Y_{aux}(i+1) := g(i) OR (c(i) AND p(i));
end loop;
Y(15 \text{ downto } 0) \le Y_aux(15 \text{ downto } 0);
aux \le g(15) \text{ OR } (c(15) \text{ AND } p(15));
Cout \le aux;
 — SUM —
for i in 0 to 15 loop
         Z_{aux(i)} := p(i) XOR c(i);
end loop;
Z(15 \text{ downto } 0) \le Z_{aux}(15 \text{ downto } 0);
end process;
\mathbf{end} \;\; \mathrm{BEHAVIORAL};
configuration CFG_csa15bit_BEHAVIORAL of csa15bit is
          for BEHAVIORAL
          end for;
```

Listing 8: parcial.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity parcial is
           M1: in std_logic_vector(7 downto 0);
   port (
            M2: in std_logic_vector(7 downto 0);
            O1: out std_logic_vector(15 downto 0);
            O2: out std_logic_vector(15 downto 0);
            O3: out std_logic_vector(15 downto 0);
            O4: out std_logic_vector(15 downto 0);
            O5: out std_logic_vector(15 downto 0);
            O6: out std_logic_vector(15 downto 0);
            O7: out std_logic_vector(15 downto 0);
            O8: out std_logic_vector(15 downto 0) );
end parcial;
architecture BEHAVIORAL of parcial is
    signal aux: std_logic;
    begin
    process (M1,M2)
        variable i: integer;
        variable Pa1: std_logic_vector(15 downto 0):="00000000000000000";
        variable Pa2: std_logic_vector(15 downto 0):="0000000000000000";
        variable Pa3: std_logic_vector(15 downto 0):="0000000000000000;
        variable Pa4: std_logic_vector(15 downto 0):="00000000000000000";
        variable Pa5: std_logic_vector(15 downto 0):="00000000000000000";
        variable Pa6: std_logic_vector(15 downto 0):="00000000000000000";
        variable Pa7: std_logic_vector(15 downto 0):="0000000000000000";
        variable Pa8: std_logic_vector(15 downto 0):="00000000000000000";
    begin
        for i in 0 to 7 loop
            Pa1(i) := M1(0) \text{ AND } M2(i);
            Pa2(i+1):=M1(1) AND M2(i);
            Pa3(i+2):=M1(2) AND M2(i);
            Pa4(i+3):=M1(3) AND M2(i);
            Pa5(i+4):=M1(4) AND M2(i);
            Pa6(i+5):=M1(5) AND M2(i);
            Pa7(i+6) := M1(6) AND M2(i);
            Pa8(i+7):=M1(7) AND M2(i);
        end loop;
        O1(15 \text{ downto } 0) \le Pa1(15 \text{ downto } 0);
        O2(15 \text{ downto } 0) \le Pa2(15 \text{ downto } 0);
        O3(15 \text{ downto } 0) \le Pa3(15 \text{ downto } 0);
        O4(15 \text{ downto } 0) \le Pa4(15 \text{ downto } 0);
        O5(15 \text{ downto } 0) \le Pa5(15 \text{ downto } 0);
        O6(15 \text{ downto } 0) \le Pa6(15 \text{ downto } 0);
```

```
O7(15 downto 0)<= Pa7(15 downto 0);
O8(15 downto 0)<= Pa8(15 downto 0);

end process;
end BEHAVIORAL;

configuration CFG_parcial_BEHAVIORAL of parcial is
    for BEHAVIORAL
    end for;
end CFG_parcial_BEHAVIORAL;
```

Listing 9: Multiplier.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
-- two 4-bit inputs and one 8-bit outputs
entity multiplier is
port (
       num1, num2:
                        in std_logic_vector(7 downto 0);
                        out std_logic_vector(7 downto 0)
        product:
);
end multiplier;
architecture SCHEMATIC of multiplier is
   signal P0: std_logic_vector(15 downto 0);
   signal P1: std_logic_vector(15 downto 0);
   signal P2: std_logic_vector(15 downto 0);
   signal P3: std_logic_vector(15 downto 0);
   signal P4: std_logic_vector(15 downto 0);
   signal P5: std_logic_vector(15 downto 0);
   signal P6: std_logic_vector(15 downto 0);
   signal P7: std_logic_vector(15 downto 0);
   signal A1: std_logic_vector(15 downto 0);
   signal A2: std_logic_vector(15 downto 0);
   signal A3: std_logic_vector(15 downto 0);
   signal A4: std_logic_vector(15 downto 0);
   signal A5: std_logic_vector(15 downto 0);
   signal A6: std_logic_vector(15 downto 0);
   signal A7: std_logic_vector(15 downto 0);
   signal A8: std_logic_vector(15 downto 0);
   signal A9: std_logic_vector(15 downto 0);
   signal A0: std_logic_vector(15 downto 0);
   signal B1: std_logic_vector(15 downto 0);
   signal B2: std_logic_vector(15 downto 0);
   signal B3: std_logic_vector(15 downto 0);
   signal B4: std_logic_vector(15 downto 0);
   signal B5: std_logic_vector(15 downto 0);
   signal carry_ex1, carry_ex2, carry_ex3, carry_ex4,
   carry_ex5 , carry_ex6 , carry_ex7: std_logic;
   signal ca: std_logic;
   component csa15bit
               A : In std_logic_vector (15 downto 0);
        port (
                B : In std_logic_vector (15 downto 0);
                C : In std_logic_vector (15 downto 0);
                Cin : In std_logic;
                Cout : Out std_logic;
                Z : Out std_logic_vector (15 downto 0);
                Y : Out std_logic_vector (15 downto 0) );
  end component;
  {\bf component}\ {\bf ADDERM}
       port ( A : In std_logic_vector (15 downto 0);
              B : In std_logic_vector (15 downto 0);
              C: In std_logic_vector(15 downto 0);
```

```
Z: In std_logic_vector(15 downto 0));
           end component;
 component parcial
       port ( M1: in std_logic_vector(7 downto 0);
                 M2: in std_logic_vector(7 downto 0);
                 O1: out std_logic_vector(15 downto 0);
                 O2: out std_logic_vector(15 downto 0);
                 O3: out std_logic_vector(15 downto 0);
                 O4: out std_logic_vector(15 downto 0);
                 O5: out std_logic_vector(15 downto 0):
                 O6: out std_logic_vector(15 downto 0);
                 O7: out std_logic_vector(15 downto 0);
                 O8: out std_logic_vector(15 downto 0) );
 end component;
 component CRA_15 is
                           A : In std_logic_vector (15 downto 0);
       port (
                            B : In std_logic_vector (15 downto 0);
                            Cin : In std_logic;
                            Cout : Out std_logic;
                            Y: Out std_logic_vector (15 downto 0) );
 end component;
begin
  ca <= '0';
LPAR : parcial
   Port Map(
                 M1 = > num1,
                 M2=>num2,
                 O1(15 \text{ downto } 0) = > P0(15 \text{ downto } 0),
                 O2(15 \text{ downto } 0) = > P1(15 \text{ downto } 0),
                 O3(15 \text{ downto } 0) = > P2(15 \text{ downto } 0)
                 O4(15 \text{ downto } 0) = >P3(15 \text{ downto } 0),
                 O5(15 \text{ downto } 0) = > P4(15 \text{ downto } 0),
                 O6(15 \text{ downto } 0) = > P5(15 \text{ downto } 0),
                 O7(15 \text{ downto } 0) = > P6(15 \text{ downto } 0),
                 O8(15 \text{ downto } 0) = >P7(15 \text{ downto } 0)
                 );
I_CSA1 : csa15bit
   Port Map (
                A(15 \text{ downto } 0) = > P0(15 \text{ downto } 0)
                B(15 \text{ downto } 0) = > P1(15 \text{ downto } 0),
                C(15 \text{ downto } 0) = > P2(15 \text{ downto } 0),
                Cin = > ca.
                Cout=>carry_ex1,
                Z(15 \text{ downto } 0) = >A0(15 \text{ downto } 0),
                Y(15 \text{ downto } 0) => A1(15 \text{ downto } 0)
                );
I_CSA2 : csa15bit
```

```
Port Map (
                   A(15 \text{ downto } 0) = > P3(15 \text{ downto } 0)
                   B(15 \text{ downto } 0) = > P4(15 \text{ downto } 0),
                   C(15 \text{ downto } 0) = > P5(15 \text{ downto } 0),
                   Cin = > ca,
                   Cout=>carry_ex2,
                   Z(15 \text{ downto } 0) = >A2(15 \text{ downto } 0),
                   Y(15 \text{ downto } 0) = > A3(15 \text{ downto } 0)
I_CSA3 : csa15bit
    Port Map (
                   A(15 \text{ downto } 0) = > A0(15 \text{ downto } 0)
                   B(15 \text{ downto } 0) = > A1(15 \text{ downto } 0),
                   C(15 \text{ downto } 0) = >A2(15 \text{ downto } 0),
                   Cin=>carry_ex1,
                   Cout=>carry_ex3,
                   Z(15 \text{ downto } 0) = > A4(15 \text{ downto } 0)
                   Y(15 \text{ downto } 0) = >A5(15 \text{ downto } 0)
I_CSA4 : csa15bit
    Port Map (
                   A(15 \text{ downto } 0) = > A3(15 \text{ downto } 0)
                   B(15 \text{ downto } 0) = > P6(15 \text{ downto } 0),
                   C(15 \text{ downto } 0) = > P7(15 \text{ downto } 0),
                   Cin=>carry_ex2
                   Cout=>carry_ex4,
                   Z(15 \text{ downto } 0) = >A6(15 \text{ downto } 0),
                   Y(15 \text{ downto } 0) = >A7(15 \text{ downto } 0)
                   );
I_CSA5 : csa15bit
    Port Map (
                   A(15 \text{ downto } 0) = > A4(15 \text{ downto } 0),
                   B(15 \text{ downto } 0) = > A5(15 \text{ downto } 0),
                   C(15 \text{ downto } 0) = >A6(15 \text{ downto } 0),
                   Cin=>carry_ex3,
                   Cout=>carry_ex5,
                   Z(15 \text{ downto } 0) = >A8(15 \text{ downto } 0),
                   Y(15 \text{ downto } 0) => A9(15 \text{ downto } 0)
                   );
 I_CSA6 : csa15bit
    Port Map (
                   A(15 \text{ downto } 0) = > A7(15 \text{ downto } 0),
                   B(15 \text{ downto } 0) = > A8(15 \text{ downto } 0),
                   C(15 \text{ downto } 0) = >A9(15 \text{ downto } 0),
                   Cin=>carry_ex4,
                   Cout=>carry_ex6,
                   Z(15 \text{ downto } 0) => B1(15 \text{ downto } 0),
                   Y(15 \text{ downto } 0) = >B2(15 \text{ downto } 0)
                   );
 I_CRA : CRA_15
    Port Map (
                   A(15 \text{ downto } 0) = > B1(15 \text{ downto } 0)
                   B(15 \text{ downto } 0) = > B2(15 \text{ downto } 0),
                   Cin=>carry_ex5,
                   Cout=>carry_ex7,
                   Y(15 \text{ downto } 0) => B3(15 \text{ downto } 0)
                   );
```

```
product(7 downto 0)<= B3(7 downto 0);
end SCHEMATIC;</pre>
```

Listing 10: Adder_2.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity ADDER_2 is
port( A : In std_logic_vector (7 downto 0);
                  B : In std_logic_vector (7 downto 0);
                  Z : Out std_logic_vector (7 downto 0));
end ADDER_2;
architecture BEH_ADDER_2 of ADDER_2 is
   signal sum_out : std_logic_vector(8 downto 0);
   begin
   sum_out \le ('0' \& A) + ('0' \& B);
   Z(0) \le sum_out(8) \mathbf{OR} sum_out(0);
   Z(1) \le sum_out(8) OR sum_out(1);
   Z(2) \le sum_out(8) \mathbf{OR} sum_out(2);
   Z(3) \le sum_out(8) \mathbf{OR} sum_out(3);
   Z(4) \le sum_out(8) \mathbf{OR} sum_out(4);
   Z(5) \le sum_out(8) \mathbf{OR} sum_out(5);
   Z(6) \le sum_out(8) \mathbf{OR} sum_out(6);
   Z(7) \le sum_out(8) \mathbf{OR} sum_out(7);
end BEH_ADDER_2;
--- architecture BEH_ADDER_2 of ADDER_2 is
      signal\ sum\_out\ :\ unsigned (9\ downto\ 0);
      begin
      process(A, B)
         constant \ zeros: \ unsigned(1 \ downto \ 0) := (others \Rightarrow '0');
         variable \quad sum\_int: INTEGER;
      sum\_out <= (zeros \ \& \ unsigned (A)) \ + \ (zeros \ \& \ unsigned (B));
      sum_int := conv_integer(sum_out);
      if(sum\_int < 255) then
        Z \le std\_logic\_vector(sum\_out(7 downto 0));
      else
         Z <= "11111111";
      end if;
      end process;
--end BEH_ADDER_2;
```

Listing 11: Adder_3.vhd

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity ADDER_3 is
port (
       A : In std_logic_vector (7 downto 0);
                   B : In std_logic_vector (7 downto 0);
                    C : In std_logic_vector (7 downto 0);
                    Z : Out std_logic_vector (7 downto 0));
end ADDER_3:
architecture BEH_ADDER_3 of ADDER_3 is
signal sum_out : std_logic_vector(9 downto 0);
    begin
       sum_out \le ("00" \& A) + ("00" \& B) + ("00" \& C);
       Z(0) \le sum_out(9) \ \mathbf{OR} \ sum_out(8) \ \mathbf{OR} \ sum_out(0);
       Z(1) \le sum_out(9) \ \mathbf{OR} \ sum_out(8) \ \mathbf{OR} \ sum_out(1);
       Z(2) \le sum_out(9) \ \mathbf{OR} \ sum_out(8) \ \mathbf{OR} \ sum_out(2);
       Z(3) \le sum_out(9) \ \mathbf{OR} \ sum_out(8) \ \mathbf{OR} \ sum_out(3);
       Z(4) \le sum_out(9) \ \mathbf{OR} \ sum_out(8) \ \mathbf{OR} \ sum_out(4);
       Z(5) \le sum_out(9) \ \mathbf{OR} \ sum_out(8) \ \mathbf{OR} \ sum_out(5);
       Z(6) \le sum\_out(9) \ \mathbf{OR} \ sum\_out(8) \ \mathbf{OR} \ sum\_out(6);
       Z(7) \le sum_out(9) \ \mathbf{OR} \ sum_out(8) \ \mathbf{OR} \ sum_out(7);
end BEH_ADDER_3;
--- architecture BEH_ADDER_3 of ADDER_3 is
      signal sum_out : unsigned(9 downto 0);
      signal\ temp\ :\ std\_logic\_vector(7\ downto\ 0);
      signal\ c2, c1: std\_logic;
      begin
      process(A, B, C)
          constant \ zeros: \ unsigned(1 \ downto \ 0) := (others \Rightarrow '0');
          variable sum_int: INTEGER;
      sum\_out \le (zeros \ \& \ unsigned \ (A)) + (zeros \ \& \ unsigned \ (B)) + (zeros \ \& \ unsigned \ (C));
      sum_{-}int := conv_{-}integer(sum_{-}out);
      if(sum_int < 255) then
          Z \le std\_logic\_vector(sum\_out(7 downto 0));
      else
          Z <= "11111111";
      end if;
      end \ process;
 -end BEH_ADDER_3;
```

Listing 12: MUX_4.vhd

```
library IEEE;
\mathbf{use} \;\; \mathrm{IEEE.std\_logic\_1164.all} \; ;
use IEEE.std_logic_arith.all;
entity MUX4 is
port (
        SEL: in STD_LOGIC_VECTOR (1 downto 0);
        A,B,C: in STDLOGIC-VECTOR(7 downto 0);
        SIG: out STD_LOGIC_VECTOR(7 downto 0));
end MUX_4;
architecture BEHLMUX of MUX.4 is
begin
     SEL_PROCESS: process (SEL,A,B,C)
     begin
        case SEL is
          \mathbf{when} \ "00"
                        \Rightarrow SIG \Leftarrow A;
          when "01" => SIG <= B;
when "10" => SIG <= C;
          when others \Rightarrow SIG \Leftarrow (others \Rightarrow '0');
        end case;
     \mathbf{end} \;\; \mathbf{process} \;\; \mathbf{SEL\_PROCESS};
end BEH_MUX;
```

Listing 13: Processor_3.vhd

```
library IEEE;
   use IEEE.std_logic_1164.all;
   use IEEE.std_logic_misc.all;
   use IEEE.std_logic_arith.all;
entity Processor_3 is
      Port (
               CLOCK : In
                               std_logic;
               RESET : In
                               std_logic;
                     Read_In_Mem:
                                                  Out std_logic;
                Write_In_Mem : Out std_logic;
                     Read_Out_Mem:
                                                  Out std_logic;
                Write_Out_Mem: Out std_logic;
                     Read\_Addr\_In\_Mem:
                                          Out std_logic_vector(15 downto 0);
                Read_Addr_Out_Mem:
                                          Out std_logic_vector(15 downto 0);
                     Write_Addr_Out_Mem: Out std_logic_vector(15 downto 0);
                     Data_in_1: In std_logic_vector(7 downto 0);
                     Data_in_2: In std_logic_vector(7 downto 0);
                     Data_out: Out std_logic_vector(7 downto 0);
                     Filter: In std_logic_vector(7 downto 0);
                     disable_filter: In std_logic
                  );
end Processor_3;
architecture SCHEMATIC_PROC_3 of Processor_3 is
   component ADDER_3
                A : In std_logic_vector (7 downto 0);
   port (
                    B : In std_logic_vector (7 downto 0);
                    C : In std_logic_vector (7 downto 0);
                    Z : Out std_logic_vector (7 downto 0));
   end component ADDER_3;
   component ADDER_2
                A : In std_logic_vector (7 downto 0);
   port (
                    B : In std_logic_vector (7 downto 0);
                    Z : Out std_logic_vector (7 downto 0));
   \mathbf{end} \;\; \mathbf{component} \;\; \mathrm{ADDER} \text{-} 2\,;
   component SHIFTREG is
      Port (
              CLOCK : In
                             std_logic;
              RESET : In
                              std_logic;
               disable : In
                                std_logic;
              QK : In
                          std_logic_vector (7 downto 0);
              Q : InOut
                          std_logic_vector (71 downto 0) );
   end component SHIFTREG;
   component Multiplier
      Port (
```

```
std_logic_vector (7 downto 0);
                   num2 : In std_logic_vector (7 downto 0);
         product : Out std_logic_vector (7 downto 0) );
end component Multiplier;
component MUX.4 is
port (
      SEL: in STD_LOGIC_VECTOR (1 downto 0);
      A,B,C: in STD_LOGIC_VECTOR(7 downto 0);
      SIG: out STDLOGIC_VECTOR(7 downto 0));
end component MUX_4;
component MUX.2 is
port
      SEL: in STD_LOGIC;
      A,B: in STD_LOGIC_VECTOR(15 downto 0);
      SIG: out STD_LOGIC_VECTOR(15 downto 0));
end component MUX_2;
component MUX_2_1 is
port (
      SEL: in STD_LOGIC;
      A,B: in STD_LOGIC;
      SIG: out STD_LOGIC);
end component MUX_2_1;
component FSM_{in_3}
     port (
            clock:
                              in std_logic;
                 reset:
                                      in std_logic;
                 address:
                                      out std_logic_vector(15 downto 0);
                              out std_logic;
                 can_read:
                 can_write: out std_logic;
                  disable_cache: out std_logic
           );
 end component FSM_in_3;
 component FSM_out_3
     port (
                              in std_logic;
            clock:
                                      in std_logic;
                  reset:
                  read_address:
                                               out std_logic_vector(15 downto 0);
                  write_address:
                                               out std_logic_vector(15 downto 0);
                  can_read:
                              out std_logic;
                 can_write: out std_logic;
                  sel: \ \mathbf{out} \ std\_logic\_vector(1 \ \mathbf{downto} \ 0)
           );
 end component FSM_out_3;
component REG is
     port (
             D: in std_logic_vector(7 downto 0);
             Clock, Reset: in std_logic;
             Q : out std_logic_vector(7 downto 0));
end component REG;
 signal disable_to_cache: std_logic;
```

```
signal cache_bits: std_logic_vector(71 downto 0);
signal filter_bits: std_logic_vector(71 downto 0);
signal mult1_out: std_logic_vector(7 downto 0);
signal mult2_out: std_logic_vector(7 downto 0);
signal mult3_out: std_logic_vector(7 downto 0);
signal mult4_out: std_logic_vector(7 downto 0);
signal mult5_out: std_logic_vector(7 downto 0);
signal mult6_out: std_logic_vector(7 downto 0);
signal mult7_out: std_logic_vector(7 downto 0);
signal mult8_out: std_logic_vector(7 downto 0);
signal mult9_out: std_logic_vector(7 downto 0);
signal add1_out: std_logic_vector(7 downto 0);
signal add2_out: std_logic_vector(7 downto 0);
signal add3_out: std_logic_vector(7 downto 0);
constant zeros: unsigned(7 downto 0) := (others => '0');
signal select_adder: std_logic_vector(1 downto 0);
signal mux_out: std_logic_vector(7 downto 0);
begin
   fsm_input:
   FSM_in_3 port map(CLOCK, RESET, Read_Addr_In_Mem, Read_In_Mem, Write_In_Mem, disable_t
   FSM_out_3 port map(CLOCK, RESET, Read_Addr_Out_Mem, Write_Addr_Out_Mem,
                        Read_Out_Mem, Write_Out_Mem, select_adder);
   SHIFTREG port map(CLOCK, RESET, disable_to_cache, Data_in_1, cache_bits);
   filtermask:
   SHIFTREG port map(CLOCK, RESET, disable_filter, Filter, filter_bits);
   Multiplier port map(cache_bits(7 downto 0), filter_bits(7 downto 0), mult1_out);
   Mult2:
   Multiplier port map(cache_bits(15 downto 8), filter_bits(15 downto 8), mult2_out);
   Multiplier port map(cache_bits(23 downto 16), filter_bits(23 downto 16), mult3_out);
   Multiplier port map(cache_bits(31 downto 24), filter_bits(31 downto 24), mult4_out);
   Multiplier port map(cache_bits(39 downto 32), filter_bits(39 downto 32), mult5_out);
   Mult6 ·
   Multiplier port map(cache_bits(47 downto 40), filter_bits(47 downto 40), mult6_out);
   Multiplier port map(cache_bits(55 downto 48), filter_bits(55 downto 48), mult7_out);
   Mult8:
   Multiplier port map(cache_bits(63 downto 56), filter_bits(63 downto 56), mult8_out);
```

```
Multiplier port map(cache_bits(71 downto 64), filter_bits(71 downto 64), mult9_out);

Add1:
Adder_3 port map(mult1_out, mult2_out, mult3_out, add1_out);

Add2:
Adder_3 port map(mult4_out, mult5_out, mult6_out, add2_out);

Add3:
Adder_3 port map(mult7_out, mult8_out, mult9_out, add3_out);

Multiplexer:
Mux_4 port map(select_adder, add1_out, add2_out, add3_out, mux_out);

Add_new_value:
Adder_2 port map(Data_in_2, mux_out, Data_out);

— regster: Reg port map("111111111", Clock, Reset, data_out);

end SCHEMATIC_PROC_3;
```

Listing 14: TB_filter.vhd

```
library IEEE;
        use IEEE.std_logic_1164.all;
        use STD. textio.all;
        use IEEE.std_logic_arith.all;
        use IEEE.std_logic_textio.all;
        use IEEE.std_logic_signed.all;
entity TB_Filter is
end TB_Filter;
architecture A of TB_Filter is
   signal Clock: std_logic;
        signal mem_Enable:
                                 std_logic;
        signal mem_give_zeros: std_logic;
        signal mem1_Data_in: std_logic_vector(7 downto 0);
   signal proc_RESET: std_logic;
   signal proc_Read_In_Mem:
                                 std_logic;
   {\bf signal} \  \  {\bf proc\_Write\_In\_Mem}:
                                 std_logic;
   signal proc_Read_Out_Mem:
                               std_logic;
        signal proc_Write_Out_Mem:
                                         std_logic;
   signal proc_Read_Addr_In_Mem:
                                         std_logic_vector(15 downto 0);
   signal proc_Read_Addr_Out_Mem:
                                       std_logic_vector(15 downto 0);
        signal proc_Write_Addr_Out_Mem: std_logic_vector(15 downto 0);
        signal proc_Data_in_1: std_logic_vector(7 downto 0);
        signal proc_Data_in_2: std_logic_vector(7 downto 0);
        signal proc_Data_out: std_logic_vector(7 downto 0);
        signal proc_filter_disable: std_logic;
        signal proc_filter: std_logic_vector(7 downto 0);
component MEMORY is
port (
   Clock:
                         in std_logic;
        Enable:
                        in std_logic;
        Give_Zeros: in std_logic;
                        in std_logic;
        Read:
                        in std_logic;
        Write
        Read_Addr:
                        in std_logic_vector(15 downto 0);
        Write_Addr:
                        in std_logic_vector(15 downto 0);
                        in std_logic_vector(7 downto 0);
        Data_in:
                        out std_logic_vector(7 downto 0)
        Data_out:
end component MEMORY;
component Processor_3 is
       Port ( CLOCK : In
                              std_logic;
               RESET : In
                              std_logic;
                     Read_In_Mem:
                                                 Out std_logic;
               Write_In_Mem: Out std_logic;
                     Read\_Out\_Mem:
                                                 Out std_logic;
```

```
Write\_Out\_Mem:
                                  Out std_logic;
                      Read_Addr_In_Mem:
                                           Out std_logic_vector(15 downto 0);
                                           Out std_logic_vector(15 downto 0);
                Read_Addr_Out_Mem:
                      Write_Addr_Out_Mem: Out std_logic_vector(15 downto 0);
                      Data_in_1: In std_logic_vector(7 downto 0);
                     Data_in_2: In std_logic_vector(7 downto 0);
                      Data_out: Out std_logic_vector(7 downto 0);
                      Filter: In std_logic_vector(7 downto 0);
                      disable_filter: In std_logic
                  );
end component Processor_3;
begin
     UUTP : PROCESSOR_3
         Port\ Map\ (CLOCK,\ proc\_RESET,\ proc\_Read\_In\_Mem\ ,\ proc\_Read\_Out\_Mem\ ,\ proc\_Write\_Out\_Mem\ ,
                   proc\_Read\_Addr\_In\_Mem, proc\_Read\_Addr\_Out\_Mem, proc\_Write\_Addr\_Out\_Mem,
                   proc_Data_In_1, proc_Data_In_2, proc_Data_Out, proc_filter, proc_filter_dis
     UUTM_in : MEMORY
        Port Map (CLOCK, mem_Enable, '0', mem1_Read, mem1_Write,
                   mem1_Read_Addr, mem1_Write_Addr, mem1_Data_In, mem1_Data_Out);
     UUTM_out : MEMORY
        Port Map (CLOCK, mem_Enable, mem_give_zeros, mem2_Read, mem2_Write,
                   mem2_Read_Addr, mem2_Write_Addr, mem2_Data_In, mem2_Data_Out);
  UUTP: PROCESSOR_3
      Port Map (CLOCK, proc_RESET, proc_Read_In_Mem, proc_Write_In_Mem, proc_Read_Out_Mem, pr
                 proc_Read_Addr_In_Mem, proc_Read_Addr_Out_Mem, proc_Write_Addr_Out_Mem,
                 proc_Data_In_1, proc_Data_In_2, proc_Data_Out, proc_filter, prod_filter_disab
   UUTM_in : MEMORY
       \textbf{Port Map} \ (\texttt{CLOCK}, \ \mathtt{mem\_Enable} \,, \ \ \texttt{'0'} \,, \ \ \mathtt{proc\_Read\_In\_Mem} \,, \ \ \mathtt{proc\_Write\_In\_Mem} \,,
                 proc_Read_Addr_In_Mem, proc_Read_Addr_In_Mem, mem1_data_in, proc_Data_In_1);
   UUTM_out : MEMORY
      Port Map (CLOCK, mem_Enable, mem_give_zeros, proc_Read_Out_Mem, proc_Write_Out_Mem,
                 proc_Read_Addr_Out_Mem, proc_Write_Addr_Out_Mem, proc_Data_Out, proc_Data_In_
    clock_signal:
    process begin
            Clock <= '1';
            wait for 1 ns;
            Clock <= '0';
           wait for 1 ns;
    end process;
    process
           CONSTANT NLOOPS : integer := 15;
                                                             - Define the file 'handle'
            file cmdfile, outfile: TEXT;
```

```
variable line_in , line_out: Line; -- Line buffers
     variable good: boolean; — Status of the read operations
     variable A,B: std_logic_vector(7 downto 0);
     variable S: std_logic_vector(55 downto 0);
     variable Z: std_logic_vector(31 downto 0);
     variable ERR: std_logic_vector(55 downto 0);
     variable c : integer;
     -- constant TEST_PASSED: string := "Test passed:";
     -- constant TEST_FAILED: string := "Test FAILED:";
  begin
     proc_RESET \ll '0';
     wait for 2 ns;
     mem_Enable \ll '1';
     mem\_give\_zeros <= '1';
-- initialize the filter with pixels
proc_filter_disable <= '0';</pre>
c := 1;
proc_RESET \ll '1';
proc_filter_disable <= '0';</pre>
FILE_OPEN(cmdfile,"lena_256x256.mem",READ_MODE);
-- start filling memory 1 with the image pixels from hex file.
loop
   if endfile (cmdfile) then -- Check EOF
      assert false
      report "End of file encountered; exiting."
           severity NOTE;
           exit;
   end if;
   readline (cmdfile, line_in); -- Read a line from the file
   next when line_in 'length = 0; -- Skip empty lines
                                  -- Read the D argument as hex value
   hread(line_in,A,good);
   assert good report "Text I/O read error" severity ERROR;
   mem1_Data_In \ll A(7 \ downto \ 0);
   write(line_out,c);
  if(c = 10) then
        proc_filter_disable <= '1';</pre>
   elsif ((c mod 2) = 0) then
      proc_filter <= "00000001";
      else
      proc_filter \le "00000000";
  end if;
   wait for 2 ns;
   c := c + 1;
```

Following are the Reports from Synopsys.

Listing 15: Area 2 ns

Report : area

Design: Processor_3 Version: X-2005.09-SP1

Date : Mon Dec 10 21:00:16 2007

Library(s) Used:

 $CORE90GPSVT_(\textbf{File}: \ / \, cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1$

 $/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db)$

 Number
 of
 ports:
 87

 Number
 of
 nets:
 346

 Number
 of
 cells:
 19

 Number
 of
 references:
 19

 $\begin{array}{lll} {\rm Combinational~area:} & 58667.675781 \\ {\rm Noncombinational~area:} & 9034.353516 \end{array}$

Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 67699.968750 Total area: undefined

Listing 16: Area 3 ns

Report : area

Design : Processor_3 Version: X-2005.09-SP1

Date : Mon Dec 10 20:55:25 2007

Library(s) Used:

 $CORE90GPSVT \ (\ \mathbf{File}: \ / \ cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1$

 $/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db)$

 Number of ports:
 87

 Number of nets:
 346

 Number of cells:
 19

 Number of references:
 19

 $\begin{array}{lll} {\rm Combinational~area:} & 49594.769531 \\ {\rm Noncombinational~area:} & 9017.888672 \end{array}$

Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 58610.742188 Total area: undefined

Listing 17: Area 5 ns

Report : area

Design : Processor_3 Version: X-2005.09-SP1

Date : Mon Dec 10 20:31:59 2007

Library(s) Used:

 $CORE90GPSVT \ (\ \mathbf{File}: \ / \ cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1$

 $/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db)$

 Number of ports:
 87

 Number of nets:
 346

 Number of cells:
 19

 Number of references:
 19

 $\begin{array}{lll} {\rm Combinational~area:} & 44067.035156 \\ {\rm Noncombinational~area:} & 9013.498047 \end{array}$

Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 53078.839844 Total area: undefined

Listing 18: Area 7 ns

Report : area

Design : Processor_3 Version: X-2005.09-SP1

Date : Mon Dec 10 20:27:41 2007

Library(s) Used:

 $CORE90GPSVT \ (\ \mathbf{File}: \ / \ cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1$

 $/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db)$

 Number of ports:
 87

 Number of nets:
 346

 Number of cells:
 19

 Number of references:
 19

Combinational area: 44067.035156 Noncombinational area: 9013.498047

Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 53078.839844 Total area: undefined

Listing 19: Total Power 2 ns

Report : power

-analysis_effort low

Design: Processor_3 Version: X-2005.09-SP1

Date : Wed Dec 12 12:54:27 2007

Library(s) Used:

 $CORE90GPSVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1 \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db) \\ CORE90GPHVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPHVT_SNPS-AVT_2.1.a \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db) \\$

Operating Conditions: NomLeak Library: CORE90GPSVT

Design Wire Lo	oad Model	Library
Processor_3	area_48Kto72K	CORE90GPSVT
FSM_{in_3}	$area_6Kto12K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_3}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{add_1}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_2}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_0}$	$area_0to1K$	CORE90GPSVT
FSM_out_3	$area_6Kto12K$	CORE90GPSVT
$FSM_out_3_DW01_inc_5$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_add_0$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_sub_0$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_4$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_2$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_1$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_0$	$area_0to1K$	CORE90GPSVT
SHIFTREG_1	$area_1Kto2K$	CORE90GPSVT
$SHIFTREG_0$	$area_1Kto2K$	CORE90GPSVT
multiplier_8	$area_4Kto5K$	CORE90GPSVT
parcial_8	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}53$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}52$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}51$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}50$	$area_0to1K$	CORE90GPSVT
$csa15bit_49$	$area_0to1K$	CORE90GPSVT
$csa15bit_48$	$area_0to1K$	CORE90GPSVT
$CRA_{-}15_{-}8$	$area_0to1K$	CORE90GPSVT
multiplier_7	$area_4Kto5K$	CORE90GPSVT
parcial_7	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}47$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}46$	$area_0to1K$	CORE90GPSVT
$csa15bit_45$	$area_0to1K$	CORE90GPSVT
$csa15bit_44$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}43$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}42$	$area_0to1K$	CORE90GPSVT
$CRA_{-}15_{-}7$	$area_0to1K$	CORE90GPSVT
multiplier_6	$area_4Kto5K$	CORE90GPSVT

	0.1 177	COPPOSCER
parcial_6	area_0to1K	CORE90GPSVT
$csa15bit_41$	area_0to1K	CORE90GPSVT
$csa15bit_40$	${ m area_0to1K}$	CORE90GPSVT
csa15bit_39	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}38$	$area_0to1K$	CORE90GPSVT
csa15bit_37	$area_0to1K$	CORE90GPSVT
csa15bit_36	$area_0to1K$	CORE90GPSVT
CRA_15_6	$area_0to1K$	CORE90GPSVT
multiplier_5	$area_4Kto5K$	CORE90GPSVT
parcial_5	$area_0to1K$	CORE90GPSVT
csa15bit_35	$area_0to1K$	CORE90GPSVT
$csa15bit_34$	$area_0to1K$	CORE90GPSVT
csa15bit_33	area_0to1K	CORE90GPSVT
csa15bit_32	area_0to1K	CORE90GPSVT
csa15bit_31	area_0to1K	CORE90GPSVT
csa15bit_30	area_0to1K	CORE90GPSVT
CRA_15_5	area_0to1K	CORE90GPSVT
multiplier_4	area_4Kto5K	CORE90GPSVT
parcial_4	area_0to1K	CORE90GPSVT
$csa15bit_29$	area_0to1K	CORE90GPSVT
$csa15bit_{-}28$	$area_0to1K$	CORE90GPSVT
$csa15bit_27$	$area_0to1K$	CORE90GPSVT
csa15bit_26	$area_0to1K$	CORE90GPSVT
$csa15bit_25$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}24$	$area_0to1K$	CORE90GPSVT
CRA_15_4	$area_0to1K$	CORE90GPSVT
multiplier_3	$area_4Kto5K$	CORE90GPSVT
parcial_3	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}23$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}22$	$area_0to1K$	CORE90GPSVT
csa15bit_21	$area_0to1K$	CORE90GPSVT
csa15bit_20	$area_0to1K$	CORE90GPSVT
csa15bit_19	$area_0to1K$	CORE90GPSVT
csa15bit_18	$area_0to1K$	CORE90GPSVT
CRA_15_3	$area_0to1K$	CORE90GPSVT
multiplier_2	$area_4Kto5K$	CORE90GPSVT
parcial_2	$area_0to1K$	CORE90GPSVT
csa15bit_17	$area_0to1K$	CORE90GPSVT
csa15bit_16	$area_0to1K$	CORE90GPSVT
csa15bit_15	area_0to1K	CORE90GPSVT
csa15bit_14	$area_0to1K$	CORE90GPSVT
csa15bit_13	$area_0to1K$	CORE90GPSVT
csa15bit_12	area_0to1K	CORE90GPSVT
CRA_15_2	area_0to1K	CORE90GPSVT
multiplier_1	area_4Kto5K	CORE90GPSVT
parcial_1	area_0to1K	CORE90GPSVT
csa15bit_11	area_0to1K	CORE90GPSVT
csa15bit_10	area_0to1K	CORE90GPSVT
csa15bit_9	area_0to1K	CORE90GPSVT
csa15bit_8	area_0to1K	CORE90GPSVT
csa15bit_7		CORE90GPSVT
csa15bit_6	area_0to1K	
	area_0to1K	CORE90GPSVT
CRA_15_1	area_0to1K	CORE90GPSVT
multiplier_0	area_4Kto5K	CORE90GPSVT
parcial_0	area_0to1K	CORE90GPSVT
csa15bit_5	area_0to1K	CORE90GPSVT
csa15bit_4	$area_0to1K$	CORE90GPSVT

```
csa15bit_3
                        area_0to1K
                                            CORE90GPSVT
csa15bit_2
                        area_0to1K
                                            CORE90GPSVT
csa15bit_1
                        area\_0to1K
                                            CORE90GPSVT
csa15bit_0
                        area_0to1K
                                            CORE90GPSVT
CRA_15_0
                        area\_0to1K
                                            CORE90GPSVT
ADDER_3_2
                        area_1Kto2K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_1
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_0
                        area_0to1K
                                            CORE90GPSVT
ADDER_3_1
                        area_1Kto2K
                                            CORE90GPSVT
ADDER_3_1_DW01_add_1
                                            CORE90GPSVT
                        area_0to1K
ADDER_3_1_DW01_add_0
                        area_0to1K
                                            CORE90GPSVT
ADDER_3_0
                        area_1Kto2K
                                           CORE90GPSVT
ADDER_3_0_DW01_add_1
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0_DW01_add_0
                        area_0to1K
                                           CORE90GPSVT
                        area_0to1K
                                           CORE90GPSVT
MUX_4
ADDER_2
                        area_1Kto2K
                                           CORE90GPSVT
ADDER_2DW01_add_0
                        area_0to1K
                                           CORE90GPSVT
RFG
                        area_0to1K
                                           CORE90GPSVT
Global Operating Voltage = 1
Power-specific unit information :
    Voltage Units = 1V
    Capacitance Units = 1.000000pf
    Time Units = 1ns
                                   (derived from V,C,T units)
    Dynamic Power Units = ImW
    Leakage Power Units = 1pW
  Cell Internal Power
                             1.8695 \text{ mW}
                                         (72\%)
  Net Switching Power
                        = 728.5573 \text{ uW}
                                         (28\%)
Total Dynamic Power
                             2.5980 \text{ mW}
                                        (100\%)
Cell Leakage Power
                        = 185.3964 \text{ uW}
***** End Of Report *****
```

Report : power

-analysis_effort low

Design: Processor_3 Version: X-2005.09-SP1

Date : Wed Dec 12 12:50:27 2007

Library(s) Used:

 $CORE90GPSVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1 \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db) \\ CORE90GPHVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPHVT_SNPS-AVT_2.1.a \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db) \\$

Operating Conditions: NomLeak Library: CORE90GPSVT

Design Wire Loa	d Model	Library
Processor_3	area_48Kto72K	CORE90GPSVT
FSM_in_3	$area_6Kto12K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_3}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{add_1}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_2}$	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW01_inc_0	$area_0to1K$	CORE90GPSVT
FSM_out_3	$area_6Kto12K$	CORE90GPSVT
FSM_out_3_DW01_inc_5	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_add_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_sub_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_4	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_2$	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_1	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_0	$area_0to1K$	CORE90GPSVT
SHIFTREG_1	$area_1Kto2K$	CORE90GPSVT
SHIFTREG_0	$area_1Kto2K$	CORE90GPSVT
multiplier_8	$area_3Kto4K$	CORE90GPSVT
parcial_8	$area_0to1K$	CORE90GPSVT
csa15bit_53	$area_0to1K$	CORE90GPSVT
csa15bit_52	$area_0to1K$	CORE90GPSVT
csa15bit_51	$area_0to1K$	CORE90GPSVT
csa15bit_50	$area_0to1K$	CORE90GPSVT
csa15bit_49	$area_0to1K$	CORE90GPSVT
csa15bit_48	$area_0to1K$	CORE90GPSVT
CRA_15_8	$area_0to1K$	CORE90GPSVT
multiplier_7	$area_3Kto4K$	CORE90GPSVT
parcial_7	$area_0to1K$	CORE90GPSVT
csa15bit_47	$area_0to1K$	CORE90GPSVT
csa15bit_46	area0to1K	CORE90GPSVT
csa15bit_45	$area_0to1K$	CORE90GPSVT
csa15bit_44	$area_0to1K$	CORE90GPSVT
csa15bit_43	$area_0to1K$	CORE90GPSVT
csa15bit_42	$area_0to1K$	CORE90GPSVT
CRA_15_7	$area_0to1K$	CORE90GPSVT
multiplier_6	$area_3Kto4K$	CORE90GPSVT

parcial_6	$area_0to1K$	CORE90GPSVT
csa15bit_41	$area_0to1K$	CORE90GPSVT
csa15bit_40	$area_0to1K$	CORE90GPSVT
csa15bit_39	$area_0to1K$	CORE90GPSVT
csa15bit_38	$area_0to1K$	CORE90GPSVT
csa15bit_37	area_0to1K	CORE90GPSVT
csa15bit_36	area_0to1K	CORE90GPSVT
CRA_15_6	area_0to1K	CORE90GPSVT
multiplier_5	area_3Kto4K	CORE90GPSVT
parcial_5	area_0to1K	
1 -	area_0to1K area_0to1K	CORE90GPSVT
csa15bit_35		CORE90GPSVT
csa15bit_34	area_0to1K	CORE90GPSVT
csa15bit_33	area_0to1K	CORE90GPSVT
csa15bit_32	$area_0to1K$	CORE90GPSVT
csa15bit_31	$area_0to1K$	CORE90GPSVT
$csa15bit_30$	$area_0to1K$	CORE90GPSVT
CRA_15_5	$area_0to1K$	CORE90GPSVT
multiplier_4	$area_3Kto4K$	CORE90GPSVT
parcial_4	$area_0to1K$	CORE90GPSVT
csa15bit_29	$area_0to1K$	CORE90GPSVT
csa15bit_28	$area_0to1K$	CORE90GPSVT
csa15bit_27	area_0to1K	CORE90GPSVT
csa15bit_26	area_0to1K	CORE90GPSVT
csa15bit_25	area_0to1K	CORE90GPSVT
csa15bit_24	area_0to1K	CORE90GPSVT
CRA_15_4	area_0to1K	CORE90GPSVT
multiplier_3	area_3Kto4K	CORE90GPSVT
parcial_3	area_0to1K	CORE90GPSVT
csa15bit_23	area_0to1K	CORE90GPSVT
csa15bit_22	$area_0to1K$	CORE90GPSVT
csa15bit_21	$area_0to1K$	CORE90GPSVT
csa15bit_20	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}19$	$area_0to1K$	CORE90GPSVT
csa15bit_18	$area_0to1K$	CORE90GPSVT
CRA_15_3	$area_0to1K$	CORE90GPSVT
multiplier_2	$area_3Kto4K$	CORE90GPSVT
parcial_2	$area_0to1K$	CORE90GPSVT
csa15bit_17	$area_0to1K$	CORE90GPSVT
csa15bit_16	area_0to1K	CORE90GPSVT
csa15bit_15	area_0to1K	CORE90GPSVT
csa15bit_14	area_0to1K	CORE90GPSVT
csa15bit_13	area_0to1K	CORE90GPSVT
csa15bit_12	area_0to1K	CORE90GPSVT
CRA_15_2	area_0to1K	CORE90GPSVT
multiplier_1	area_3Kto4K	CORE90GPSVT
parcial_1	area_0to1K	CORE90GPSVT
csa15bit_11	area_0to1K	CORE90GPSVT
csa15bit_10	area_0to1K	CORE90GPSVT
$csa15bit_9$	$area_0to1K$	CORE90GPSVT
csa15bit_8	$area_0to1K$	CORE90GPSVT
csa15bit_7	$area_0to1K$	CORE90GPSVT
csa15bit_6	$area_0to1K$	CORE90GPSVT
CRA_15_1	$area_0to1K$	CORE90GPSVT
multiplier_0	$area_3Kto4K$	CORE90GPSVT
parcial_0	$area_0to1K$	CORE90GPSVT
csa15bit_5	$area_0to1K$	CORE90GPSVT
csa15bit_4	area_0to1K	CORE90GPSVT
ı		

```
csa15bit_3
                        area_0to1K
                                           CORE90GPSVT
csa15bit_2
                        area_0to1K
                                           CORE90GPSVT
csa15bit_1
                        area\_0to1K
                                           CORE90GPSVT
csa15bit_0
                        area_0to1K
                                           CORE90GPSVT
CRA_15_0
                        area\_0to1K
                                           CORE90GPSVT
ADDER_3_2
                        area_1Kto2K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_3
                        area_1Kto2K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_4
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_1
                        area_1Kto2K
                                           CORE90GPSVT
ADDER_3_1_DW01_add_3
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_1_DW01_add_4
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0
                        area_1Kto2K
                                           CORE90GPSVT
ADDER\_3\_0\_DW01\_add\_4
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0_DW01_add_3
                        area_0to1K
                                           CORE90GPSVT
                        area_0to1K
                                           CORE90GPSVT
MUX_4
ADDER_2
                        area_0to1K
                                           CORE90GPSVT
ADDER_2DW01_add_2
                        area_0to1K
                                           CORE90GPSVT
RFG
                        area_0to1K
                                           CORE90GPSVT
Global Operating Voltage = 1
Power-specific unit information :
    Voltage Units = 1V
    Capacitance Units = 1.000000pf
    Time Units = 1ns
                                   (derived from V,C,T units)
    Dynamic Power Units = ImW
    Leakage Power Units = 1pW
  Cell Internal Power
                       =
                            1.6337 mW
                                         (75\%)
  Net Switching Power
                       = 542.5233 \text{ uW}
                                         (25\%)
Total Dynamic Power
                             2.1763 \text{ mW}
                                        (100\%)
Cell Leakage Power
                        = 105.2107 \text{ uW}
***** End Of Report *****
```

Listing 21: Total Power 5 ns

Report : power

-analysis_effort low

Design: Processor_3 Version: X-2005.09-SP1

Date : Wed Dec 12 13:16:14 2007

Library(s) Used:

 $CORE90GPSVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1 \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db) \\ CORE90GPHVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPHVT_SNPS-AVT_2.1.a \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db) \\$

Operating Conditions: NomLeak Library: CORE90GPSVT

Design Wire Loa	d Model	Library
Processor_3	area_48Kto72K	CORE90GPSVT
FSM_{in_3}	$area_6Kto12K$	CORE90GPSVT
$FSM_in_3_DW01_inc_3$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{add_1}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_2}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_0}$	$area_0to1K$	CORE90GPSVT
FSM_out_3	$area_6Kto12K$	CORE90GPSVT
$FSM_out_3_DW01_inc_5$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_add_0$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_sub_0$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_4$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_2$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_1$	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_0$	$area_0to1K$	CORE90GPSVT
SHIFTREG_1	$area_1Kto2K$	CORE90GPSVT
$SHIFTREG_0$	$area_1Kto2K$	CORE90GPSVT
multiplier_8	$area_4Kto5K$	CORE90GPSVT
parcial_8	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}53$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}52$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}51$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}50$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}49$	$area_0to1K$	CORE90GPSVT
$csa15bit_48$	$area_0to1K$	CORE90GPSVT
CRA_15_8	$area_0to1K$	CORE90GPSVT
multiplier_7	$area_4Kto5K$	CORE90GPSVT
parcial_7	$area_0to1K$	CORE90GPSVT
$csa15bit_47$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}46$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}45$	$area_0to1K$	CORE90GPSVT
$csa15bit_44$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}43$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}42$	$area_0to1K$	CORE90GPSVT
CRA_15_7	$area_0to1K$	CORE90GPSVT
multiplier_6	$area_4Kto5K$	CORE90GPSVT

parcial_6	area_0to1K	CORE90GPSVT
csa15bit_41	area_0to1K	CORE90GPSVT
csa15bit_40	area_0to1K	CORE90GPSVT
csa15bit_39	area_0to1K	CORE90GPSVT
csa15bit_38	area_0to1K	CORE90GPSVT
csa15bit_37	area_0to1K	CORE90GPSVT
csa15bit_36	area_0to1K	CORE90GPSVT
CRA_15_6	area_0to1K	CORE90GPSVT
multiplier_5	area_4Kto5K	CORE90GPSVT
parcial_5	area_4Kto5K area_0to1K	CORE90GPSVT
csa15bit_35	area_0to1K	CORE90GPSVT
csa15bit_34	area_0to1K	CORE90GPSVT
csa15bit_33	area_0to1K	CORE90GPSVT
csa15bit_33	area_0to1K	CORE90GPSVT
csa15bit_31	area_0to1K	CORE90GPSVT
csa15bit_30	area_0to1K	CORE90GPSVT
CRA_15_5	area_0to1K	CORE90GPSVT
multiplier_4	area_4Kto5K	CORE90GPSVT
parcial_4	area_0to1K	CORE90GPSVT
-	area_0to1K area_0to1K	
csa15bit_29		CORE90GPSVT
csa15bit_28 csa15bit_27	area_0to1K	CORE90GPSVT
	area_0to1K	CORE90GPSVT
csa15bit_26 csa15bit_25	area_0to1K	CORE90GPSVT
	area_0to1K	CORE90GPSVT
csa15bit_24 CRA_15_4	area_0to1K	CORE90GPSVT
	area_0to1K	CORE90GPSVT
multiplier_3	area_4Kto5K	CORE90GPSVT
parcial_3	area_0to1K	CORE90GPSVT
csa15bit_23	area_0to1K	CORE90GPSVT
csa15bit_22	area_0to1K	CORE90GPSVT
csa15bit_21	area_0to1K	CORE90GPSVT
csa15bit_20	area_0to1K	CORE90GPSVT
csa15bit_19	area_0to1K	CORE90GPSVT
csa15bit_18	area_0to1K	CORE90GPSVT
CRA_15_3	area_0to1K	CORE90GPSVT
multiplier_2	area_4Kto5K	CORE90GPSVT
parcial_2	area_0to1K	CORE90GPSVT
csa15bit_17	area_0to1K	CORE90GPSVT
csa15bit_16	area_0to1K	CORE90GPSVT
csa15bit_15	area_0to1K	CORE90GPSVT
csa15bit_14	area_0to1K	CORE90GPSVT
csa15bit_13	area_0to1K	CORE90GPSVT
csa15bit_12	area_0to1K	CORE90GPSVT
CRA_15_2	area_0to1K	CORE90GPSVT
multiplier_1	area_4Kto5K	CORE90GPSVT
parcial_1	area_0to1K	CORE90GPSVT
csa15bit_11	area_0to1K	CORE90GPSVT
csa15bit_10	area_0to1K	CORE90GPSVT
csa15bit_9	area_0to1K	CORE90GPSVT
csa15bit_8	area_0to1K	CORE90GPSVT
csa15bit_7	area_0to1K	CORE90GPSVT
csa15bit_6	area_0to1K	CORE90GPSVT
CRA_15_1	area_0to1K	CORE90GPSVT
multiplier_0	area_4Kto5K	CORE90GPSVT
parcial_0	area_0to1K	CORE90GPSVT
csa15bit_5	area_0to1K	CORE90GPSVT
csa15bit4	$area_0to1K$	CORE90GPSVT

```
csa15bit_3
                        area_0to1K
                                           CORE90GPSVT
csa15bit_2
                        area_0to1K
                                           CORE90GPSVT
csa15bit_1
                        area\_0to1K
                                           CORE90GPSVT
csa15bit_0
                        area_0to1K
                                           CORE90GPSVT
CRA_15_0
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_2
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_3
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_2
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_1
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_1_DW01_add_3
                                           CORE90GPSVT
                        area_0to1K
ADDER_3_1_DW01_add_2
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0_DW01_add_3
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0_DW01_add_2
                        area_0to1K
                                           CORE90GPSVT
                        area_0to1K
                                           CORE90GPSVT
MUX_4
ADDER_2
                        area_0to1K
                                           {\tt CORE90GPSVT}
ADDER_2DW01_add_1
                        area_0to1K
                                           CORE90GPSVT
REG
                        area_0to1K
                                           CORE90GPSVT
Global Operating Voltage = 1
Power-specific unit information :
    Voltage Units = 1V
    Capacitance Units = 1.000000pf
    Time Units = 1ns
                                   (derived from V,C,T units)
    Dynamic Power Units = ImW
    Leakage Power Units = 1pW
  Cell Internal Power
                             1.4971 mW
                                          (80\%)
  Net Switching Power
                        = 382.1958 \text{ uW}
                                         (20\%)
Total Dynamic Power
                            1.8793 \text{ mW}
                                        (100\%)
Cell Leakage Power
                        = 164.4224 \text{ uW}
***** End Of Report *****
```

Report : power

-analysis_effort low

Design: Processor_3 Version: X-2005.09-SP1

Date : Wed Dec 12 12:56:48 2007

Library(s) Used:

 $CORE90GPSVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1 \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db) \\ CORE90GPHVT \ (\textbf{File}: /cell_libs/cmos090_50a/CORE90GPHVT_SNPS-AVT_2.1.a \\ /SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db) \\$

Operating Conditions: NomLeak Library: CORE90GPSVT

Design Wire Loa	ad Model	Library
Processor_3	area_48Kto72K	CORE90GPSVT
FSM_in_3	$area_6Kto12K$	CORE90GPSVT
FSM_in_3_DW01_inc_3	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW01_add_1	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_2}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_0}$	$area_0to1K$	CORE90GPSVT
FSM_out_3	$area_6Kto12K$	CORE90GPSVT
FSM_out_3_DW01_inc_5	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_add_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_sub_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_4	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_2$	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_1	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_0	$area_0to1K$	CORE90GPSVT
SHIFTREG_1	$area_1Kto2K$	CORE90GPSVT
SHIFTREG_0	$area_1Kto2K$	CORE90GPSVT
multiplier_8	$area_4Kto5K$	CORE90GPSVT
parcial_8	$area_0to1K$	CORE90GPSVT
csa15bit_53	$area_0to1K$	CORE90GPSVT
csa15bit_52	$area_0to1K$	CORE90GPSVT
csa15bit_51	$area_0to1K$	CORE90GPSVT
csa15bit_50	$area_0to1K$	CORE90GPSVT
csa15bit_49	$area_0to1K$	CORE90GPSVT
csa15bit_48	$area_0to1K$	CORE90GPSVT
CRA_15_8	$area_0to1K$	CORE90GPSVT
multiplier_7	$area_4Kto5K$	CORE90GPSVT
parcial_7	$area_0to1K$	CORE90GPSVT
$csa15bit_47$	$area_0to1K$	CORE90GPSVT
csa15bit_46	$area_0to1K$	CORE90GPSVT
csa15bit_45	$area_0to1K$	CORE90GPSVT
csa15bit_44	$area_0to1K$	CORE90GPSVT
$csa15bit_43$	$area_0to1K$	CORE90GPSVT
$csa15bit_42$	$area_0to1K$	CORE90GPSVT
CRA_15_7	$area_0to1K$	CORE90GPSVT
multiplier_6	$area_4Kto5K$	CORE90GPSVT

I.		
parcial_6	${ m area_0to1K}$	CORE90GPSVT
$csa15bit_41$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}40$	$area_0to1K$	CORE90GPSVT
csa15bit_39	$area_0to1K$	CORE90GPSVT
csa15bit_38	$area_0to1K$	CORE90GPSVT
csa15bit_37	area_0to1K	CORE90GPSVT
csa15bit_36	area_0to1K	CORE90GPSVT
CRA_15_6	area_0to1K	CORE90GPSVT
multiplier_5	area_4Kto5K	CORE90GPSVT
parcial_5	$area_0to1K$	CORE90GPSVT
$csa15bit_35$	$area_0to1K$	CORE90GPSVT
$csa15bit_34$	$area_0to1K$	CORE90GPSVT
csa15bit_33	$area_0to1K$	CORE90GPSVT
csa15bit_32	$area_0to1K$	CORE90GPSVT
csa15bit_31	$area_0to1K$	CORE90GPSVT
csa15bit_30	$area_0to1K$	CORE90GPSVT
CRA_15_5	area_0to1K	CORE90GPSVT
multiplier_4	area_4Kto5K	CORE90GPSVT
parcial_4	area_0to1K	CORE90GPSVT
1 *		
csa15bit_29	area_0to1K	CORE90GPSVT
csa15bit_28	area_0to1K	CORE90GPSVT
$csa15bit_27$	$area_0to1K$	CORE90GPSVT
$csa15bit_26$	$area_0to1K$	CORE90GPSVT
$csa15bit_25$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}24$	$area_0to1K$	CORE90GPSVT
CRA_15_4	$area_0to1K$	CORE90GPSVT
multiplier_3	$area_4Kto5K$	CORE90GPSVT
parcial_3	$area_0to1K$	CORE90GPSVT
csa15bit_23	area_0to1K	CORE90GPSVT
csa15bit_22	area_0to1K	CORE90GPSVT
csa15bit_21	area_0to1K	CORE90GPSVT
csa15bit_21	area_0to1K	CORE90GPSVT
csa15bit_19	area_0to1K	CORE90GPSVT
csa15bit_18	area_0to1K	CORE90GPSVT
CRA_15_3	area_0to1K	CORE90GPSVT
multiplier_2	$area_4Kto5K$	CORE90GPSVT
parcial_2	$area_0to1K$	CORE90GPSVT
csa15bit_17	$area_0to1K$	CORE90GPSVT
csa15bit_16	$area_0to1K$	CORE90GPSVT
csa15bit_15	$area_0to1K$	CORE90GPSVT
csa15bit_14	$area_0to1K$	CORE90GPSVT
csa15bit_13	$area_0to1K$	CORE90GPSVT
csa15bit_12	area_0to1K	CORE90GPSVT
CRA_15_2	area_0to1K	CORE90GPSVT
multiplier_1	area_4Kto5K	CORE90GPSVT
parcial_1	area_0to1K	CORE90GPSVT
=		
csa15bit_11	area_0to1K	CORE90GPSVT
csa15bit_10	area_0to1K	CORE90GPSVT
csa15bit_9	${ m area_0to1K}$	CORE90GPSVT
csa15bit_8	$area_0to1K$	CORE90GPSVT
csa15bit_7	$area_0to1K$	CORE90GPSVT
csa15bit_6	$area_0to1K$	CORE90GPSVT
CRA_15_1	$area_0to1K$	CORE90GPSVT
multiplier_0	$area_4Kto5K$	CORE90GPSVT
parcial_0	area_0to1K	CORE90GPSVT
csa15bit_5	area_0to1K	CORE90GPSVT
csa15bit_4	area_0to1K	CORE90GPSVT
0501051011	ω1 C ω _ O U O 1 I Y	COLUDIONI

```
csa15bit_3
                        area_0to1K
                                           CORE90GPSVT
csa15bit_2
                        area_0to1K
                                           CORE90GPSVT
csa15bit_1
                        area\_0to1K
                                           CORE90GPSVT
csa15bit_0
                        area_0to1K
                                           CORE90GPSVT
CRA_15_0
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_2
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_3
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_2_DW01_add_2
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_1
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_1_DW01_add_3
                                           CORE90GPSVT
                        area_0to1K
ADDER_3_1_DW01_add_2
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0_DW01_add_3
                        area_0to1K
                                           CORE90GPSVT
ADDER_3_0_DW01_add_2
                        area_0to1K
                                           CORE90GPSVT
                        area_0to1K
                                           CORE90GPSVT
MUX_4
ADDER_2
                        area_0to1K
                                           {\tt CORE90GPSVT}
ADDER_2DW01_add_1
                        area_0to1K
                                           CORE90GPSVT
RFG
                        area_0to1K
                                           CORE90GPSVT
Global Operating Voltage = 1
Power-specific unit information :
    Voltage Units = 1V
    Capacitance Units = 1.000000pf
    Time Units = 1ns
    Dynamic Power Units = ImW
                                   (derived from V,C,T units)
    Leakage Power Units = 1pW
  Cell Internal Power
                             1.4349 mW
                                         (81\%)
  Net Switching Power
                        = 329.4072 \text{ uW}
                                         (19\%)
Total Dynamic Power
                            1.7643 \text{ mW}
                                        (100\%)
Cell Leakage Power
                        = 164.4221 \text{ uW}
***** End Of Report *****
```

Listing 23: Power Breakdown 2 ns

 $\mathbf{Report} \; : \; \mathrm{power}$

-net -cell -hier

-analysis_effort low -sort_mode dynamic_power

 $\begin{array}{ll} Design : Processor_3 \\ Version: X-2005.09-SP1 \end{array}$

Date : Wed Dec 12 12:54:56 2007

Library(s) Used:

 $CORE90GPSVT \ (\textbf{File}: \ / \texttt{cell_libs} / \texttt{cmos}090_50\texttt{a} / CORE90GPSVT_SNPS_AVT_2.1$

 $/SIGNOFF/\,bc_1\,.10\,V_m40\,C_wc_0\,.90\,V_105\,C/PT_LIB/CORE90GPSVT_NomLeak\,.\,db)$

CORE90GPHVT (File: /cell_libs/cmos090_50a/CORE90GPHVT.SNPS-AVT_2.1.a

/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db)

Operating Conditions: NomLeak Library: CORE90GPSVT

Design	Wire Lo	ad Model	Library
Processor_3		area_48Kto72K	CORE90GPSVT
FSM_in_3		$area_6Kto12K$	CORE90GPSVT
FSM_in_3_DW	701_inc_3	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW	01_{-} add $_{-}1$	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW	$701_{\rm inc}_2$	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW	$701_{\rm inc_0}$	$area_0to1K$	CORE90GPSVT
FSM_out_3		$area_6Kto12K$	CORE90GPSVT
FSM_out_3_D	$W01_inc_5$	$area_0to1K$	CORE90GPSVT
FSM_out_3_D	$W01_add_0$	$area_0to1K$	CORE90GPSVT
FSM_out_3_D	$ m W01_sub_0$	$area_0to1K$	CORE90GPSVT
FSM_out_3_D	$ m W01_inc_4$	$area_0to1K$	CORE90GPSVT
FSM_out_3_D	$W01_inc_2$	$area_0to1K$	CORE90GPSVT
FSM_out_3_D	$ m W01_inc_1$	$area_0to1K$	CORE90GPSVT
FSM_out_3_D	$ m W01_inc_0$	$area_0to1K$	CORE90GPSVT
SHIFTREG_1		$area_1Kto2K$	CORE90GPSVT
SHIFTREG_0		$area_{-}1Kto2K$	CORE90GPSVT
multiplier_8	3	$area_4Kto5K$	CORE90GPSVT
parcial_8		$area_0to1K$	CORE90GPSVT
csa15bit_53		$area_0to1K$	CORE90GPSVT
csa15bit_52		$area_0to1K$	CORE90GPSVT
csa15bit_51		$area_0to1K$	CORE90GPSVT
csa15bit_50		$area_0to1K$	CORE90GPSVT
csa15bit_49		$area_0to1K$	CORE90GPSVT
csa15bit_48		$area_0to1K$	CORE90GPSVT
CRA_15_8		$area_0to1K$	CORE90GPSVT
multiplier_7	7	$area_4Kto5K$	CORE90GPSVT
parcial_7		$area_0to1K$	CORE90GPSVT
csa15bit_47		$area_0to1K$	CORE90GPSVT
csa15bit_46		$area_0to1K$	CORE90GPSVT
csa15bit_45		$area_0to1K$	CORE90GPSVT

$csa15bit_{-}44$	$area_0to1K$	CORE90GPSVT
csa15bit_43	$area_0to1K$	CORE90GPSVT
csa15bit_42	$area_0to1K$	CORE90GPSVT
CRA_15_7	$area_0to1K$	CORE90GPSVT
multiplier_6	$area_4Kto5K$	CORE90GPSVT
parcial_6	area_0to1K	CORE90GPSVT
csa15bit_41	area_0to1K	CORE90GPSVT
csa15bit_40	area_0to1K	CORE90GPSVT
csa15bit_39	area_0to1K	CORE90GPSVT
csa15bit_38	area_0to1K	CORE90GPSVT
csa15bit_37	area_0to1K	CORE90GPSVT
csa15bit_36	area_0to1K	CORE90GPSVT
CRA_15_6	area_0to1K	
	area_4Kto5K	CORE90GPSVT
multiplier_5		CORE90GPSVT
parcial_5	area_0to1K	CORE90GPSVT
csa15bit_35	area_0to1K	CORE90GPSVT
csa15bit_34	area_0to1K	CORE90GPSVT
csa15bit_33	area_0to1K	CORE90GPSVT
csa15bit_32	area_0to1K	CORE90GPSVT
csa15bit_31	$area_0to1K$	CORE90GPSVT
csa15bit_30	$area_0to1K$	CORE90GPSVT
CRA_15_5	$area_0to1K$	CORE90GPSVT
multiplier_4	$area_4Kto5K$	CORE90GPSVT
parcial_4	$area_0to1K$	CORE90GPSVT
csa15bit_29	area0to1K	CORE90GPSVT
csa15bit_28	$area_0to1K$	CORE90GPSVT
csa15bit_27	$area_0to1K$	CORE90GPSVT
csa15bit_26	$area_0to1K$	CORE90GPSVT
$csa15bit_25$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}24$	$area_0to1K$	CORE90GPSVT
CRA_15_4	$area_0to1K$	CORE90GPSVT
multiplier_3	$area_4Kto5K$	CORE90GPSVT
parcial_3	$area_0to1K$	CORE90GPSVT
csa15bit_23	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}22$	$area_0to1K$	CORE90GPSVT
csa15bit_21	$area_0to1K$	CORE90GPSVT
csa15bit_20	$area_0to1K$	CORE90GPSVT
csa15bit_19	$area_0to1K$	CORE90GPSVT
csa15bit_18	$area_0to1K$	CORE90GPSVT
CRA_15_3	$area_0to1K$	CORE90GPSVT
multiplier_2	$area_4Kto5K$	CORE90GPSVT
parcial_2	$area_0to1K$	CORE90GPSVT
csa15bit_17	$area_0to1K$	CORE90GPSVT
csa15bit_16	$area_0to1K$	CORE90GPSVT
csa15bit_15	$area_0to1K$	CORE90GPSVT
csa15bit_14	$area_0to1K$	CORE90GPSVT
csa15bit_13	$area_0to1K$	CORE90GPSVT
csa15bit_12	$area_0to1K$	CORE90GPSVT
CRA_15_2	$area_0to1K$	CORE90GPSVT
multiplier_1	$area_4Kto5K$	CORE90GPSVT
parcial_1	$area_0to1K$	CORE90GPSVT
csa15bit_11	$area_0to1K$	CORE90GPSVT
csa15bit_10	$area_0to1K$	CORE90GPSVT
csa15bit_9	$area_0to1K$	CORE90GPSVT
csa15bit_8	$area_0to1K$	CORE90GPSVT
csa15bit_7	area_0to1K	CORE90GPSVT
csa15bit_6	$area_0to1K$	CORE90GPSVT
T .		

CD 4 15 1	0 + 177	CODEOCODOL
CRA_15_1	$area_0to1K$	CORE90GPSVT
multiplier_0	$area_4Kto5K$	CORE90GPSVT
parcial_0	$area_0to1K$	CORE90GPSVT
csa15bit_5	area0to1K	CORE90GPSVT
csa15bit_4	$area_0to1K$	CORE90GPSVT
csa15bit_3	$area_0to1K$	CORE90GPSVT
csa15bit_2	$area_0to1K$	CORE90GPSVT
csa15bit_1	$area_0to1K$	CORE90GPSVT
csa15bit_0	$area_0to1K$	CORE90GPSVT
CRA_15_0	$area_0to1K$	CORE90GPSVT
ADDER_3_2	$area_1Kto2K$	CORE90GPSVT
ADDER_3_2_DW01_add_1	$area_0to1K$	CORE90GPSVT
ADDER_3_2_DW01_add_0	$area_0to1K$	CORE90GPSVT
ADDER_3_1	$area_1Kto2K$	CORE90GPSVT
ADDER_3_1_DW01_add_1	$area_0to1K$	CORE90GPSVT
ADDER_3_1_DW01_add_0	$area_0to1K$	CORE90GPSVT
ADDER_3_0	$area_{-}1Kto2K$	CORE90GPSVT
ADDER_3_0_DW01_add_1	$area_0to1K$	CORE90GPSVT
ADDER_3_0_DW01_add_0	$area_0to1K$	CORE90GPSVT
MUX_4	$area_0to1K$	CORE90GPSVT
ADDER_2	$area_{-}1Kto2K$	CORE90GPSVT
ADDER_2_DW01_add_0	$area_0to1K$	CORE90GPSVT
REG	$area_0to1K$	CORE90GPSVT
1		

Global Operating Voltage = 1

Power-specific unit information :

Voltage Units = 1V

 $Capacitance \ \mathbf{Units} = 1.000000\,\mathrm{pf}$

Time Units = 1ns

 ${\tt Leakage\ Power\ Units} = 1 pW$

Attributes

a $\,$ – $\,$ Switching activity information annotated on net

d - Default switching activity information on net

	Total	Static	Toggle	Switching	
Net	Net Load	Prob.	Rate	Power	Attrs
disable_to_cache	0.293	0.760	0.0800	0.0117	a
cache_bits [24]	0.046	0.477	0.0600	0.0014	a
cache_bits[16]	0.046	0.477	0.0600	0.0014	a
cache_bits [25]	0.045	0.477	0.0596	0.0014	a
cache_bits [49]	0.044	0.477	0.0596	0.0013	a
mux_out[1]	0.078	0.477	0.0988	0.0039	a
cache_bits[41]	0.042	0.477	0.0596	0.0013	a
cache_bits [65]	0.042	0.477	0.0596	0.0013	a
cache_bits [56]	0.041	0.477	0.0600	0.0012	a
cache_bits [64]	0.040	0.477	0.0600	0.0012	a
cache_bits[8]	0.040	0.477	0.0600	0.0012	a
cache_bits[32]	0.040	0.477	0.0600	0.0012	a
cache_bits [48]	0.039	0.477	0.0600	0.0012	a
cache_bits[1]	0.039	0.477	0.0596	0.0011	a

cache_bits [57]	0.038	0.477	0.0596	0.0011	\mathbf{a}
cache_bits[0]	0.037	0.477	0.0600	0.0011	a
cache_bits[9]	0.037	0.477	0.0596	0.0011	a
cache_bits [33]	0.037	0.477	0.0596	0.0011	a
cache_bits [18]	0.040	0.481	0.0551	0.0011	a
cache_bits [66]	0.040	0.481	0.0551	0.0011	\mathbf{a}
cache_bits [58]	0.038	0.481	0.0551	0.0010	\mathbf{a}
cache_bits [10]	0.037	0.481	0.0551	0.0010	\mathbf{a}
cache_bits [26]	0.037	0.482	0.0551	0.0010	\mathbf{a}
cache_bits [50]	0.036	0.482	0.0551	0.0010	\mathbf{a}
cache_bits [2]	0.033	0.482	0.0551	0.0009	a
cache_bits [42]	0.041	0.481	0.0551	0.0011	\mathbf{a}
cache_bits [34]	0.039	0.481	0.0551	0.0011	a
cache_bits [67]	0.040	0.499	0.0462	0.0009	a
cache_bits [27]	0.040	0.499	0.0462	0.0009	a
cache_bits [43]	0.039	0.499	0.0462	0.0009	a
cache_bits [35]	0.039	0.499	0.0462	0.0009	a
cache_bits [51]	0.037	0.499	0.0462	0.0009	a
cache_bits[3]	0.033	0.499	0.0462	0.0008	a
cache_bits[11]	0.039	0.499	0.0462	0.0009	a
cache_bits [59]	0.039	0.499	0.0462	0.0009	
cache_bits [33]	0.039 0.023	0.499 0.477	0.0402 0.0596	0.0009 0.0007	a
cache_bits[17]	$0.025 \\ 0.036$	0.477 0.499	0.0390 0.0462	0.0007	a
cache_bits [68]	0.030 0.040	0.499 0.486	0.0402 0.0357	0.0003	a
cache_bits [12]	0.040	0.486	0.0357 0.0357	0.0007	a
					a
cache_bits [60]	0.039	0.486	0.0357	0.0007	a
cache_bits [36]	0.039	0.486	0.0357	0.0007	a
cache_bits [28]	0.039	0.486	0.0357	0.0007	a
cache_bits [40]	0.009	0.477	0.0600	0.0003	a
cache_bits [44]	0.037	0.486	0.0357	0.0007	a
cache_bits [20]	0.041	0.486	0.0357	0.0007	a
cache_bits [52]	0.036	0.486	0.0357	0.0006	a
cache_bits [4]	0.036	0.486	0.0357	0.0006	a
Data_out [0]	0.002	0.678	0.0752	8.185e - 05	a
Data_out [1]	0.002	0.711	0.0718	7.814e - 05	a
cache_bits [45]	0.039	0.470	0.0260	0.0005	a
cache_bits[37]	0.039	0.470	0.0260	0.0005	a
cache_bits [29]	0.038	0.470	0.0260	0.0005	a
cache_bits [13]	0.039	0.470	0.0260	0.0005	a
cache_bits [21]	0.038	0.470	0.0260	0.0005	a
cache_bits [61]	0.037	0.470	0.0260	0.0005	\mathbf{a}
cache_bits [69]	0.037	0.470	0.0260	0.0005	a
Data_out [2]	0.002	0.730	0.0686	7.464e - 05	a
cache_bits[53]	0.037	0.470	0.0260	0.0005	a
cache_bits[5]	0.035	0.470	0.0260	0.0005	a
Data_out [3]	0.002	0.736	0.0628	6.836e - 05	a
Data_out [4]	0.002	0.736	0.0565	6.150e-05	\mathbf{a}
mux_out [0]	0.039	0.477	0.0998	0.0020	a
Data_out [5]	0.002	0.738	0.0508	5.530e-05	a
mux_out [2]	0.050	0.482	0.0904	0.0023	a
cache_bits [14]	0.038	0.435	0.0148	0.0003	a
cache_bits [70]	0.037	0.435	0.0148	0.0003	a
cache_bits [62]	0.037	0.435	0.0148	0.0003	a
cache_bits [54]	0.037	0.436	0.0148	0.0003	a
cache_bits [46]	0.037	0.435	0.0148	0.0003	a
cache_bits [30]	0.037	0.436	0.0148	0.0003	a
cache_bits [38]	0.037	0.435	0.0148	0.0003	a

cache_bits[22]	0.037	0.435	0.0148	0.0003	a
cache_bits[6]	0.033	0.436	0.0148	0.0002	a
Data_out [6]	0.002	0.743	0.0429	$4.666\mathrm{e}\!-\!05$	a
cache_bits [47]	0.037	0.331	0.0072	0.0001	a
cache_bits [63]	0.037	0.332	0.0072	0.0001	a
cache_bits [23]	0.037	0.331	0.0072	0.0001	a
cache_bits[31]	0.037	0.331	0.0072	0.0001	a
cache_bits [15]	0.038	0.332	0.0072	0.0001	a
cache_bits[55]	0.037	0.331	0.0072	0.0001	a
Data_out[7]	0.002	0.723	0.0277	3.016e-05	a
cache_bits[39]	0.037	0.332	0.0072	0.0001	a
cache_bits[71]	0.037	0.331	0.0072	0.0001	a
cache_bits[7]	0.033	0.331	0.0072	0.0001	a
filter_bits [64]	0.018	0.000	0.18e - 5	1.632e-08	a
filter_bits [24]	0.018	0.000	0.61e - 6	5.469e-09	a
filter_bits[4]	0.014	0.000	0.0000	0.0000	a
filter_bits [5]	0.014	0.000	0.0000	0.0000	a
filter_bits [6]	0.014	0.000	0.0000	0.0000	a
filter_bits [7]	0.014	0.000	0.0000	0.0000	a
filter_bits[10]	0.018	0.000	0.0000	0.0000	a
filter_bits[11]	0.018	0.000	0.0000	0.0000	a
filter_bits [13]	0.014	0.000	0.0000	0.0000	a
filter_bits [14]	0.018	0.000	0.0000	0.0000	a
filter_bits [26]	0.014	0.000	0.0000	0.0000	a
filter_bits [33]	0.018	0.000	0.0000	0.0000	a
filter_bits [36]	0.018	0.000	0.0000	0.0000	a
filter_bits [39]	0.018	0.000	0.0000	0.0000	a
filter_bits [41]	0.018	0.000	0.0000	0.0000	a
filter_bits [42]	0.018	0.000	0.0000	0.0000	a
filter_bits [52]	0.018	0.000	0.0000	0.0000	a
filter_bits [53]	0.018	0.000	0.0000	0.0000	a
filter_bits [55]	0.018	0.000	0.0000	0.0000	a
filter_bits [57]	0.018	0.000	0.0000	0.0000	a
filter_bits [59]	0.018	0.000	0.0000	0.0000	a
filter_bits [61]	0.014	0.000	0.0000	0.0000	a
filter_bits [63]	0.018	0.000	0.0000	0.0000	a
filter_bits [65]	0.018	0.000	0.0000	0.0000	a
filter_bits [69]	0.018	0.000	0.0000	0.0000	a
filter_bits[71]	0.018	0.000	0.0000	0.0000	a
filter_bits [8]	0.018	1.000	0.31e-6	2.721e-09	a
filter_bits [40]	0.018	0.000	$0.12e{-5}$	1.094e-08	a
filter_bits [48]	0.018	0.000	$0.12e{-5}$	1.094e-08	a
filter_bits [16]	0.018	0.000	0.61e - 6	5.543e - 09	a
filter_bits[0]	0.014	0.000	0.0000	0.0000	a
filter_bits[1]	0.014	0.000	0.0000	0.0000	a
filter_bits[2]	0.014	0.000	0.0000	0.0000	a
filter_bits [3]	0.014	0.000	0.0000	0.0000	a
filter_bits[9]	0.018	0.000	0.0000	0.0000	a
filter_bits[12]	0.018	0.000	0.0000	0.0000	a
filter_bits [15]	0.018	0.000	0.0000	0.0000	a
filter_bits [17]	0.014	0.000	0.0000	0.0000	a
filter_bits [18]	0.018	0.000	0.0000	0.0000	a
filter_bits [19]	0.018	0.000	0.0000	0.0000	a
filter_bits [20]	0.018	0.000	0.0000	0.0000	a
filter_bits [21]	0.018	0.000	0.0000	0.0000	a
filter_bits [22]	0.018	0.000	0.0000	0.0000	a
filter_bits [23]	0.018	0.000	0.0000	0.0000	a
•					

filter_bits [25]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [27]	0.018	0.000	0.0000	0.0000	a
filter_bits[28]	0.018	0.000	0.0000	0.0000	a
filter_bits[29]	0.018	0.000	0.0000	0.0000	a
filter_bits [30]	0.018	0.000	0.0000	0.0000	a
filter_bits [34]	0.018	0.000	0.0000	0.0000	a
filter_bits[35]	0.018	0.000	0.0000	0.0000	a
filter_bits [37]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[38]	0.018	0.000	0.0000	0.0000	a
filter_bits [43]	0.018	0.000	0.0000	0.0000	a
filter_bits [44]	0.018	0.000	0.0000	0.0000	a
filter_bits[45]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[46]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [47]	0.022	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[49]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [50]	0.014	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[51]	0.018	0.000	0.0000	0.0000	a
filter_bits [54]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [58]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[60]	0.018	0.000	0.0000	0.0000	a
filter_bits[62]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[66]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[67]	0.018	0.000	0.0000	0.0000	a
filter_bits[68]	0.018	0.000	0.0000	0.0000	a
filter_bits[70]	0.018	0.000	0.0000	0.0000	a
filter_bits [56]	0.022	1.000	$0.15e{-5}$	1.702e-08	a
filter_bits[32]	0.018	1.000	0.92e - 6	8.204e-09	a
filter_bits[31]	0.018	0.000	0.0000	0.0000	a
mux_out[3]	0.037	0.499	0.0750	0.0014	a
mux_out [4]	0.051	0.486	0.0576	0.0015	a
select_adder[0]	0.013	0.278	0.0794	0.0005	a
select_adder[1]	0.013	0.524	0.0794	0.0005	a
$Read_Addr_In_Mem[0]$	0.002	0.180	0.1001	0.0001	a
Read_In_Mem	0.002	0.240	0.0800	8.700e-05	a
mult5_out[2]	0.039	0.481	0.0551	0.0011	a
mux_out [5]	0.024	0.470	0.0419	0.0005	a
Read_Addr_In_Mem [8]	0.002	0.180	0.0801	8.717e - 05	\mathbf{a}
mult8_out [1]	0.059	0.477	0.0596	0.0018	\mathbf{a}
Read_Addr_In_Mem [1]	0.002	0.180	0.0701	7.621e-05	a
mult2_out [2]	0.059	0.481	0.0551	0.0016	a
mult5_out [1]	0.040	0.477	0.0596	0.0012	a
Read_Out_Mem	0.002	0.238	0.2381	0.0003	a
Read_Addr_In_Mem [9]	0.002	0.180	0.0601	6.534e-05	a
mult8_out [4]	0.067	0.486	0.0357	0.0012	a
Read_Addr_Out_Mem [3]	0.002	0.120	0.1198	0.0001	a
Read_Addr_In_Mem [2]	0.002	0.181	0.0551	5.994e-05	a
mult2_out[3]	0.045	0.499	0.0462	0.0010	a
mux_out [6]	0.045	0.436	0.0234	0.0005	a
Read_Addr_In_Mem [11]	0.002	0.180	0.0449	4.883e - 05	a
add4_out[0]	0.004	0.678	0.0752	0.0002	a
Read_Addr_In_Mem [10]	0.002	0.180	0.0499	5.433e - 05	a
Read_Addr_In_Mem [12] mult2_out [1]	0.002	0.180	0.0424	4.608e - 05 0.0006	a
Read_Addr_In_Mem [13]	0.019	0.477	0.0596		a
Read_Addr_In_Mem [13] Read_Addr_In_Mem [3]	0.002	0.180	0.0411	4.471e - 05	a
Read_Addr_In_Mem [3] Read_Addr_In_Mem [14]	0.002	0.181	$0.0475 \\ 0.0405$	5.172e-05 4.402e-05	a
Read_Addr_In_Mem [14] Read_Addr_In_Mem [15]	0.002	0.180		4.402e-05 $4.367e-05$	a
neau_Auur_m_mem [1 0]	0.002	0.180	0.0401	4.507e-05	a

mult8_out[0]	0.021	0.477	0.0600	0.0006	a
Write_Out_Mem	0.002	0.278	0.2381	0.0003	\mathbf{a}
Read_Addr_In_Mem[4]	0.002	0.181	0.0438	4.761e - 05	\mathbf{a}
add2_out[1]	0.010	0.477	0.0596	0.0003	a
Read_Addr_In_Mem [5]	0.002	0.181	0.0419	4.556e-05	a
add1_out[1]	0.009	0.477	0.0596	0.0003	a
Read_Addr_In_Mem [6]	0.002	0.181	0.0409	4.453e - 05	a
Read_Addr_In_Mem [7]	0.002	0.181	0.0405	4.401e-05	a
Read_Addr_Out_Mem [4]	0.002	0.120	0.1198	0.0001	a
add2_out[2]	0.010	0.481	0.0551	0.0003	a
mult8_out[3]	0.024	0.499	0.0462	0.0006	a
add4_out [5]	0.004	0.738	0.0508	0.0001	a
$add4_{out}[1]$	0.004	0.711	0.0718	0.0001	a
add_{1} out [2]	0.004	0.730	0.0686	0.0001	a
mult2_out [4]	0.027	0.486	0.0357	0.0005	a
mult8_out [2]	0.019	0.481	0.0551	0.0005	a
$add2_out[0]$	0.010	0.477	0.0600	0.0003	a
Write_Addr_Out_Mem [0]	0.002	0.139	0.1392	0.0003	a
Read_Addr_Out_Mem [2]	0.002	0.133 0.120	0.1332 0.1198	0.0001	a
Read_Addr_Out_Mem [5]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [6]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [7]	0.002 0.002	0.120 0.120	0.1198	0.0001	a
Read_Addr_Out_Mem[1]	0.002 0.002	$0.120 \\ 0.120$	0.1196	0.0001	a
Read_Addr_Out_Mem[9]	0.002 0.002	0.120	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[10]	0.002 0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[11]	0.002 0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[12]	0.002 0.002	0.119	0.1190 0.1190	0.0001	
Read_Addr_Out_Mem[13]	0.002 0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[14]	0.002 0.002	0.119	0.1190 0.1190	0.0001	a a
Read_Addr_Out_Mem[14]	0.002 0.002	0.119	0.1190 0.1190	0.0001	
Read_Addr_Out_Mem[13]	0.002 0.002	0.119 0.119	$0.1190 \\ 0.1190$	0.0001	a a
Read_Addr_Out_Mem [8]	0.002 0.002	0.119	0.1190 0.1190	0.0001	a
add3_out[1]	0.002 0.009	0.119 0.477	$0.1190 \\ 0.0596$	0.0001	a
add4_out[3]	0.009 0.004	0.477 0.736	0.0590 0.0628		
Write_Addr_Out_Mem[1]	$0.004 \\ 0.002$	$0.730 \\ 0.140$		0.0001	a
add4_out [6]		0.140 0.743	0.1297	0.0001 $8.763e-05$	a
$\begin{bmatrix} \operatorname{add}_{1}\operatorname{out} \begin{bmatrix} 0 \end{bmatrix} \\ \operatorname{add}_{1}\operatorname{out} \begin{bmatrix} 2 \end{bmatrix} \end{bmatrix}$	$0.004 \\ 0.009$		$0.0429 \\ 0.0551$		a
Write_Addr_Out_Mem[2]		0.481		0.0003	a
Write_Addr_Out_Mem [2] Write_Addr_Out_Mem [3]	$0.002 \\ 0.002$	0.140	0.1248	0.0001	a
!	$0.002 \\ 0.015$	0.140	0.1223	0.0001	a
mult2_out [0] Write_Addr_Out_Mem [4]	0.013 0.002	$0.477 \\ 0.140$	$0.0600 \\ 0.1211$	$0.0004 \\ 0.0001$	a
Write_Addr_Out_Mem [4] Write_Addr_Out_Mem [5]					a
Write_Addr_Out_Mem [5] Write_Addr_Out_Mem [6]	0.002	0.140	0.1204	0.0001	a
	0.002	0.140	0.1201	0.0001	a
Write_Addr_Out_Mem [7]	0.002	0.140	0.1200	0.0001	a
Write_Addr_Out_Mem [10]	0.002	0.139	0.1189	0.0001	a
add4_out [4]	0.004	0.736	0.0565	0.0001	a
Write_Addr_Out_Mem [9] Write_Addr_Out_Mem [8]	0.002	0.139	0.1189	0.0001	a
	0.002	0.139	0.1189	0.0001	a
add2_out [4]	0.010	0.486	0.0357	0.0002	a
add2_out [3]	0.010	0.499	0.0462	0.0002	a
Write_Addr_Out_Mem [11]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [12]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [13]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [14]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [15]	0.002	0.139	0.1189	0.0001	a
add1_out[3]	0.009	0.499	0.0462	0.0002	a
$ \operatorname{add1_out}[0] $	0.009	0.477	0.0600	0.0003	a

add3_out[0]	0.009	0.477	0.0600	0.0003	a	
add3_out[2]	0.009	0.481	0.0551	0.0003	a	
add1_out[4]	0.009	0.486	0.0357	0.0002	\mathbf{a}	
$add4_{-}out[7]$	0.004	0.723	0.0277	5.664e-05	\mathbf{a}	
mult5_out [0]	0.013	0.477	0.0600	0.0004	\mathbf{a}	
mult5_out [4]	0.021	0.486	0.0357	0.0004	\mathbf{a}	
add3_out[3]	0.009	0.499	0.0462	0.0002	\mathbf{a}	
mult5_out [3]	0.015	0.499	0.0462	0.0003	\mathbf{a}	
mux_out [7]	0.027	0.331	0.0113	0.0002	\mathbf{a}	
add2_out [5]	0.010	0.470	0.0260	0.0001	\mathbf{a}	
add1_out [5]	0.009	0.470	0.0260	0.0001	\mathbf{a}	
mult8_out [5]	0.015	0.470	0.0260	0.0002	\mathbf{a}	
add3_out [4]	0.009	0.486	0.0357	0.0002	\mathbf{a}	
mult8_out [6]	0.026	0.435	0.0148	0.0002	\mathbf{a}	
mult5_out [6]	0.026	0.435	0.0148	0.0002	\mathbf{a}	
mult5_out[5]	0.015	0.470	0.0260	0.0002	\mathbf{a}	
add3_out[5]	0.009	0.470	0.0260	0.0001	\mathbf{a}	
mult2_out [6]	0.024	0.435	0.0148	0.0002	\mathbf{a}	
mult2_out [5]	0.015	0.470	0.0260	0.0002	\mathbf{a}	
mult5_out [7]	0.036	0.332	0.0072	0.0001	a	
add1_out [6]	0.009	0.435	0.0148	6.772e-05	a	
mult8_out [7]	0.027	0.332	0.0072	9.811e - 05	a	
mult2_out [7]	0.026	0.332	0.0072	9.341e - 05	a	
add3_out [6]	0.009	0.435	0.0148	6.766e - 05	a	
add2_out [6]	0.010	0.435	0.0148	7.630e-05	a	
add3_out [7]	0.006	0.332	0.0072	2.240e-05	a	
add1_out [7]	0.006	0.332	0.0072	2.201e-05	a	
add2_out [7]	0.006	0.332	0.0072	2.229e-05	a	
Write_In_Mem	0.002	0.040	0.61e-6	6.690e-10	a	
mult1_out [0] mult1_out [1]	$0.029 \\ 0.037$	$0.000 \\ 0.000$	$0.0000 \\ 0.0000$	$0.0000 \\ 0.0000$	a a	
mult1_out [2]	0.019	0.000	0.0000	0.0000	a	
mult1_out [3]	0.013	0.000	0.0000	0.0000	a	
mult1_out [4]	0.023	0.000	0.0000	0.0000	a	
mult1_out [5]	0.022	0.000	0.0000	0.0000	a	
mult1_out [6]	0.019	0.000	0.0000	0.0000	a	
mult1_out[7]	0.026	0.000	0.0000	0.0000	a	
mult3_out[0]	0.029	0.000	0.0000	0.0000	a	
mult3_out[1]	0.030	0.000	0.0000	0.0000	a	
mult3_out [2]	0.019	0.000	0.0000	0.0000	a	
mult3_out [3]	0.022	0.000	0.0000	0.0000	\mathbf{a}	
mult3_out [4]	0.023	0.000	0.0000	0.0000	\mathbf{a}	
mult3_out [5]	0.022	0.000	0.0000	0.0000	a	
mult3_out [6]	0.019	0.000	0.0000	0.0000	\mathbf{a}	
mult3_out [7]	0.014	0.000	0.0000	0.0000	\mathbf{a}	
mult4_out[0]	0.022	0.000	0.0000	0.0000	\mathbf{a}	
mult4_out[1]	0.022	0.000	0.0000	0.0000	\mathbf{a}	
mult4_out [2]	0.023	0.000	0.0000	0.0000	\mathbf{a}	
mult4_out [3]	0.027	0.000	0.0000	0.0000	\mathbf{a}	
mult4_out [4]	0.019	0.000	0.0000	0.0000	a	
mult4_out[5]	0.019	0.000	0.0000	0.0000	a	
mult4_out [6]	0.019	0.000	0.0000	0.0000	a	
mult4_out [7]	0.016	0.000	0.0000	0.0000	a	
mult6_out[0]	0.038	0.000	0.0000	0.0000	a	
mult6_out [1]	0.022	0.000	0.0000	0.0000	a	
mult6_out [2]	0.023	0.000	0.0000	0.0000	a	
mult6_out[3]	0.024	0.000	0.0000	0.0000	a	

mult6_out [4]	0.019	0.000	0.0000	0.0000	a
mult6_out[5]	0.019	0.000	0.0000	0.0000	a
mult6_out[6]	0.019	0.000	0.0000	0.0000	a
mult6_out[7]	0.016	0.000	0.0000	0.0000	a
mult7_out[0]	0.035	0.000	0.0000	0.0000	a
mult7_out[1]	0.054	0.000	0.0000	0.0000	a
mult7_out [2]	0.057	0.000	0.0000	0.0000	a
mult7_out[3]	0.028	0.000	0.0000	0.0000	a
mult7_out [4]	0.034	0.000	0.0000	0.0000	a
mult7_out [5]	0.031	0.000	0.0000	0.0000	a
mult7_out [6]	0.019	0.000	0.0000	0.0000	a
mult7_out [7]	0.019	0.000	0.0000	0.0000	a
mult9_out[0]	0.036	0.000	0.0000	0.0000	a
mult9_out[1]	0.055	0.000	0.0000	0.0000	a
mult9_out[2]	0.055	0.000	0.0000	0.0000	a
mult9_out[3]	0.025	0.000	0.0000	0.0000	a
mult9_out [4]	0.023	0.000	0.0000	0.0000	a
mult9_out [5]	0.028	0.000	0.0000	0.0000	a
mult9_out[6]	0.019	0.000	0.0000	0.0000	a
mult9_out[7]	0.019	0.000	0.0000	0.0000	a

Total (319 nets) 102.1547 uW

Attributes

h - Hierarchical cell

Cell	Cell Internal Power	Driven Net Switching Power	Tot Dynamic Power (% Cell/Tot)	Cell Leakage Power Attrs
Add1	0.0159	N/A	N/A (N/A)	6642643.5000
Add2	0.0200	N/A	N/A (N/A)	h 6929183.0000 h
Add3	0.0184	N/A	N/A (N/A)	7031646.5000
Add_new_value	0.0885	N/A	N/A (N/A)	h 3622448.2500
Mult1	0.0000	N/A	N/A (N/A)	h 12121272.0000
Mult2	0.0602	N/A	N/A (N/A)	h 9368228.0000
Mult3	7.634e-04	N/A	N/A (N/A)	h 13342329.0000 h
Mult4	$3.945\mathrm{e}{-09}$	N/A	N/A (N/A)	13322298.0000
Mult5	0.0576	N/A	N/A (N/A)	h 9450452.0000
Mult6	4.489e-04	N/A	N/A (N/A)	h 12693175.0000
Mult7	6.767e - 09	N/A	N/A (N/A)	h 12613385.0000 h
Mult8	0.0589	N/A	N/A (N/A)	8912953.0000

						1
Mult9	$1.172\mathrm{e}{-08}$	N/A	N/A	(N/A)	12212358.000	
Multiplexer	0.0225	N/A	N/A	(N/A)	626341.8750	h
cache	0.4823	N/A	N/A	(N/A)	2204919.000	
filtermask	0.3937	N/A	N/A	(N/A)	1645748.375	h O h
fsm_input	0.2607	N/A	N/A	(N/A)	21460066.000	
fsm_output	0.3389	N/A	N/A	(N/A)	31005236.000	
regster	0.0508	N/A	N/A	(N/A)	191681.2656	h
Totals (19 cells)	1.869mW	N/A	N/A	(N/A)	185.396uW	
		Switch	Int	Leak	Total	
Hierarchy		Power	Power	Power		%
Processor_3		0.729	1.869	9 1.85e	+08 2.783	100.0
regster (REG)		4.97e - 04			$+05 5.15 \mathrm{e}{-02}$	1.8
Add_new_value (ADD)	ER_2)	5.08e - 02	8.85e-0	2 3.62e	+06 0.143	5.1
add_17/plus/plus	$(ADDER_2DW01_a$	dd_0				
		4.95e-02				4.8
Multiplexer (MUX ₋ 4)					+05 4.43 e -02	1.6
Add3 (ADDER_3_0) add_0_root_add_0_	root add 17/plua				$+06 \ 3.69e -02$	1.3
add_0_100t_add_0_	100t_add_17/pius				$+06 \ 2.77e-02$	1.0
add_1_root_add_0_	root add 17/plus					1.0
		0.000			$+06 \ 3.68e - 03$	0.1
Add2 (ADDER_3_1)		9.09e - 03			$+06 \ 3.60 \mathrm{e}{-02}$	1.3
$add_0root_add_0$	root_add_17/plus					
					$+06 2.69 \mathrm{e}{-02}$	1.0
$add_{-}1$ _root_ $add_{-}0$ _	root_add_17/plus	, -			*	0.1
Add1 (ADDER_3_2)		0.000			$+06 3.59 \mathrm{e}{-03} \\ +06 3.03 \mathrm{e}{-02}$	$0.1 \\ 1.1$
add_0_root_add_0_	root add 17/plus					1.1
add_0_1000_add_0_	1000 Lada Lii, pias				$+06 \ 2.20 \mathrm{e}{-02}$	0.8
$add_1-root_add_0$	root_add_17/plus					
	, -	0.000	0.000	3.58e	$+06\ 3.58e-03$	0.1
Mult9 (multiplier_0)	5.97e - 08	1.17e - 0	8 1.22e	$+07 1.22 \mathrm{e} -02$	0.4
I_{CRA} (CRA_15_0)		0.000			$+06 2.40 \mathrm{e}{-03}$	0.1
I_CSA6 (csa15bit_		0.000			$+06 2.33 \mathrm{e} -03$	0.1
I_CSA5 (csa15bit_ I_CSA4 (csa15bit_		0.000			$+06 2.20 \mathrm{e}{-03}$	0.1
I_CSA4 (csa15bit_ I_CSA3 (csa15bit_	,	$0.000 \\ 0.000$			+05 $7.03e-04+06$ $1.92e-03$	
I_CSA2 (csa15bit_	*	0.000			+05 5.92e - 04	
I_CSA1 (csa15bit_	*	0.000			$+06 1.48 \mathrm{e}{-03}$	
I_PAR (parcial_0)	,				$+05 5.78 \mathrm{e}{-04}$	
Mult8 (multiplier_1)	$3.00{\rm e}\!-\!02$	5.89e-0	2 8.91e	$+06 \ 9.78e -02$	3.5
I_CRA (CRA_15_1)					$+06 2.25 \mathrm{e}{-02}$	0.8
I_CSA6 (csa15bit_					$+06 2.42 \mathrm{e} -02$	0.9
I_CSA5 (csa15bit_	7)	4.28e - 03	1.19e - 0	2 1.46e	$+06 1.76 \mathrm{e}{-02}$	0.6

```
I_CSA4 (csa15bit_8)
                                             1.92e-04 3.44e-04 2.18e+05 7.54e-04
                                                                                             0.0
  I_CSA3 (csa15bit_9)
                                             3.63e-03 8.80e-03 1.06e+06 1.35e-02
                                                                                             0.5
                                            9.80e-04\ 3.06e-03\ 7.71e+05\ 4.81e-03
  I_CSA2 (csa15bit_10)
                                                                                             0.2
  I_CSA1 (csa15bit_11)
                                            2.53e - 03 5.93e - 03 8.81e + 05 9.33e - 03
                                                                                             0.3
  LPAR (parcial_1)
                                            2.09e-03 2.61e-03 4.30e+05 5.13e-03
                                                                                             0.2
                                            2.27e-08 6.77e-09 1.26e+07 1.26e-02
Mult7 (multiplier_2)
                                                                                             0.5
  I_CRA (CRA_15_2)
                                                 0.000
                                                            0.000 \quad 2.47e + 06 \quad 2.47e - 03
                                                                                             0.1
                                                            0.000 \quad 3.09 \,\mathrm{e} + 06 \quad 3.09 \,\mathrm{e} - 03
  I_CSA6 (csa15bit_12)
                                                 0.000
                                                                                             0.1
                                                            0.000 \quad 2.50 \,\mathrm{e}{+06} \quad 2.50 \,\mathrm{e}{-03}
  I_CSA5 (csa15bit_13)
                                                 0.000
                                                                                             0.1
                                                            0.000 8.13e+05 8.13e-04
  I_CSA4 (csa15bit_14)
                                                 0.000
                                                                                             0.0
                                                0.000
  I_CSA3 (csa15bit_15)
                                                            0.000 \quad 1.74 \,\mathrm{e}{+06} \quad 1.74 \,\mathrm{e}{-03}
                                     I_{CSA2} (csa15bit_16)
                                                0.000
                                                            0.000 \quad 5.55 \,\mathrm{e}{+05} \quad 5.55 \,\mathrm{e}{-04}
                                                                                             0.0
  I_CSA1 (csa15bit_17)
                                                                                             0.0
  LPAR (parcial_2)
                                                                                             0.0
Mult6 (multiplier_3)
                                                                                             0.5
                                                            0.000 \ 2.46 e + 06 \ 2.46 e - 03
  I_CRA (CRA_15_3)
                                                0.000
                                                                                             0.1
  I_{-}CSA6 \ (csa15bit_{-}18)
                                                            0.000 \ 2.66e+06 \ 2.66e-03
                                                 0.000
                                                                                             0.1
  I_CSA5 (csa15bit_19)
                                                 0.000
                                                            0.000 \ 1.94e+06 \ 1.94e-03
                                                                                             0.1
  I_CSA4 (csa15bit_20)
                                                 0.000
                                                            0.000 \ 9.84e + 05 \ 9.84e - 04
                                                                                             0.0
  I_CSA3 (csa15bit_21)
                                                 0.000
                                                            0.000 \quad 1.62 \,\mathrm{e}{+06} \quad 1.62 \,\mathrm{e}{-03}
                                                                                             0.1
  I_-CSA2 (csa15bit_22)
                                                 0.000
                                                            0.000 \quad 9.39e + 05 \quad 9.39e - 04
                                                                                             0.0
  I_CSA1 (csa15bit_23)
                                          0.000 0.000 1.446 100 1.14

1.23e-03 4.49e-04 6.28e+05 2.31e-03

2.77e-02 5.76e-02 9.45e+06 9.47e-02
                                                 0.000
                                                            0.000 \quad 1.44 \, e{+06} \quad 1.44 \, e{-03}
                                                                                             0.1
  LPAR (parcial_3)
                                                                                             0.1
Mult5 (multiplier_4)
                                                                                             3.4
                                            7.43e-03 1.04e-02 1.69e+06 1.96e-02
  I_CRA (CRA_15_4)
                                                                                             0.7
                                           \begin{array}{c} 7.438-03 & 1.048-02 & 1.698+06 & 1.968-02 \\ 5.868-03 & 1.368-02 & 1.668+06 & 2.118-02 \\ 4.458-03 & 1.138-02 & 1.558+06 & 1.738-02 \\ 1.918-04 & 3.768-04 & 1.938+05 & 7.608-04 \\ 3.788-03 & 1.018-02 & 1.458+06 & 1.538-02 \end{array}
  I_CSA6 (csa15bit_24)
                                                                                             0.8
  I_CSA5 (csa15bit_25)
                                                                                             0.6
  I_CSA4 (csa15bit_26)
                                                                                             0.0
  I_CSA3 (csa15bit_27)
                                                                                             0.6
                                           1.19e-03 2.63e-03 8.33e+05 4.65e-03
  I_CSA2 (csa15bit_28)
                                                                                             0.2
  I_CSA1 (csa15bit_29)
                                           2.65e-03 6.71e-03 1.60e+06 1.10e-02
                                                                                             0.4
  I_PAR (parcial_4)
                                           2.15e-03 2.38e-03 4.72e+05 5.00e-03
                                                                                             0.2
Mult4 (multiplier_5)
                                            1.69e-08 3.95e-09 1.33e+07 1.33e-02
                                                                                             0.5
  I_CRA (CRA_15_5)
                                                 0.000
                                                            0.000 \ 2.41e+06 \ 2.41e-03
                                                                                             0.1
  I_CSA6 (csa15bit_30)
                                                            0.000 \ 2.84e+06 \ 2.84e-03
                                                 0.000
                                                                                             0.1
                                                            0.000 \ 2.08e + 06 \ 2.08e - 03
  I_CSA5 (csa15bit_31)
                                                 0.000
                                                                                            0.1
                                                                                            0.1
  I_CSA4 (csa15bit_32)
                                                            0.000 \ 1.55e + 06 \ 1.55e - 03
                                                 0.000
                                                            0.000 \quad 1.60 \,\mathrm{e}{+06} \quad 1.60 \,\mathrm{e}{-03}
  I_CSA3 (csa15bit_33)
                                                 0.000
                                                                                            0.1
  I_CSA2 (csa15bit_34)
                                                            0.000 \quad 7.81e + 05 \quad 7.81e - 04
                                                                                            0.0
                                                 0.000
  I_CSA1 (csa15bit_35)
                                                 0.000
                                                            0.000 \quad 1.42 \, e{+}06 \quad 1.42 \, e{-}03
                                                                                            0.1
                                          1.69e-08 3.95e-09 6.36e+05 6.36e-04
  I_PAR (parcial_5)
                                                                                             0.0
Mult3 (multiplier_6)
                                            1.29e-03 7.63e-04 1.33e+07 1.54e-02
                                                                                             0.6
  I_CRA (CRA_15_6)
                                                 0.000
                                                            0.000 \ 2.72e+06 \ 2.72e-03
                                                                                             0.1
                                                            0.000 2.55e+06 2.55e-03
  I_CSA6 (csa15bit_36)
                                                 0.000
                                                                                             0.1
  I_CSA5 (csa15bit_37)
                                                            0.000 \ 2.29e+06 \ 2.29e-03
                                                 0.000
                                                                                             0.1
  I_{CSA4} (csa15bit_38)
                                                            0.000 \ 1.23e+06 \ 1.23e-03
                                                                                             0.0
                                                 0.000
                                                            0.000 \ 1.64e+06 \ 1.64e-03
  I_CSA3 (csa15bit_39)
                                                                                             0.1
                                                 0.000
  I_CSA2 (csa15bit_40)
                                                            0.000 8.95e+058.95e-04
                                                 0.000
                                                                                             0.0
                                          I_CSA1 (csa15bit_41)
                                                                                             0.1
  I_PAR (parcial_6)
                                                                                             0.1
Mult2 (multiplier_7)
                                                                                             3.6
  I_CRA (CRA_15_7)
                                                                                             0.8
  I_CSA6 (csa15bit_42)
                                            6.18e - 03 1.68e - 02 1.82e + 06 2.48e - 02
                                                                                             0.9
  I_CSA5 (csa15bit_43)
                                            5.12e-03 1.31e-02 1.88e+06 2.01e-02
                                                                                             0.7
  I_{CSA4} (csa15bit_44)
                                           1.72e-04\ 3.35e-04\ 3.41e+05\ 8.48e-04
                                                                                             0.0
                                           3.46e-03 6.96e-03 1.15e+06 1.16e-02
  I_CSA3 (csa15bit_45)
                                                                                             0.4
                                            1.18e - 03 3.10e - 03 8.43e + 05 5.12e - 03
  I_{CSA2} (csa15bit_46)
                                                                                             0.2
```

```
I_CSA1 (csa15bit_47)
                                                 2.22e-03 6.71e-03 1.26e+06 1.02e-02
                                                                                                    0.4
  LPAR (parcial_7)
                                                 2.38e - 03 2.42e - 03 3.82e + 05 5.18e - 03
                                                                                                    0.2
                                                                 0.000 \quad 1.21e + 07 \quad 1.21e - 02
Mult1 (multiplier_8)
                                                     0.000
                                                                                                    0.4
                                                                 0.000 \quad 2.49 \, e{+06} \quad 2.49 \, e{-03}
  I_CRA (CRA_15_8)
                                                     0.000
                                                                                                    0.1
  I_CSA6 (csa15bit_48)
                                                                 0.000 \ 3.18e + 06 \ 3.18e - 03
                                                     0.000
                                                                                                    0.1
  I_CSA5 (csa15bit_49)
                                                                 0.000 \quad 2.46 \, e{+}06 \quad 2.46 \, e{-}03
                                                                                                    0.1
                                                     0.000
  I_CSA4 (csa15bit_50)
                                                     0.000
                                                                 0.000 \quad 5.21 \,\mathrm{e}{+05} \quad 5.21 \,\mathrm{e}{-04}
                                                                                                    0.0
  I_CSA3 (csa15bit_51)
                                                     0.000
                                                                 0.000 \ 1.28e + 06 \ 1.28e - 03
                                                                                                    0.0
  I_CSA2 (csa15bit_52)
                                                     0.000
                                                                 0.000 \quad 6.60 \,\mathrm{e}{+05} \quad 6.60 \,\mathrm{e}{-04}
                                                                                                    0.0
  I_CSA1 (csa15bit_53)
                                                                 0.000 \quad 1.05 \,\mathrm{e}{+06} \quad 1.05 \,\mathrm{e}{-03}
                                                     0.000
                                                                                                    0.0
  I_PAR (parcial_8)
                                                     0.000
                                                                 0.000 \ 4.88e + 05 \ 4.88e - 04
                                                                                                    0.0
filtermask (SHIFTREG_0)
                                                 1.49e - 07
                                                                 0.394 \ 1.65 e+06
                                                                                         0.395
                                                                                                   14.2
cache (SHIFTREG_1)
                                                 7.29e-02
                                                                 0.482 \quad 2.20 \, e{+06}
                                                                                         0.557
                                                                                                   20.0
                                                                 0.339 \ 3.10e+07
fsm_output (FSM_out_3)
                                                     0.236
                                                                                         0.606
                                                                                                   21.8
                                                 1.29e-02 8.06e-02 3.89e+06 9.74e-02
  r156 (FSM_out_3_DW01_inc_0)
                                                                                                    3.5
  r159 (FSM_out_3_DW01_inc_1)
                                                     0.000
                                                                 0.000 \ 3.80e + 06 \ 3.80e - 03
                                                                                                    0.1
  r162 (FSM_out_3_DW01_inc_2)
                                                     0.000
                                                                 0.000 \ 3.82e + 06 \ 3.82e - 03
                                                                                                    0.1
  r167 (FSM_out_3_DW01_inc_4)
                                                                 0.000 \ 3.78e + 06 \ 3.78e - 03
                                                     0.000
                                                                                                    0.1
  sub_312 (FSM_out_3_DW01_sub_0)
                                                     0.000
                                                                 0.000 \quad 4.46 \, e{+04} \quad 4.46 \, e{-05}
                                                                                                    0.0
  add_287 (FSM_out_3_DW01_add_0)
                                                     0.000
                                                                 0.000 \quad 4.76 \, e + 04 \quad 4.76 \, e - 05
                                                                                                    0.0
  add_109 (FSM_out_3_DW01_inc_5)
                                                 1.08e - 02 \quad 8.36e - 02 \quad 3.89e + 06 \quad 9.83e - 02
                                                                                                    3.5
fsm_input (FSM_in_3)
                                                     0.230
                                                                 0.261 \ 2.15 e+07
                                                                                         0.512
                                                                                                   18.4
  r111 (FSM_in_3_DW01_inc_0)
                                                 1.44e-02 8.03e-02 3.89e+06 9.86e-02
                                                                                                    3.5
  add_192 (FSM_in_3_DW01_inc_2)
                                                     0.000
                                                                 0.000 \quad 3.80 \,\mathrm{e}{+06} \quad 3.80 \,\mathrm{e}{-03}
                                                                                                    0.1
  add_165 (FSM_in_3_DW01_add_1)
                                                     0.000
                                                                 0.000 \quad 4.35 \,\mathrm{e}{+04} \quad 4.35 \,\mathrm{e}{-05}
                                                                                                    0.0
                                                 1.84e-06 1.21e-05 3.78e+06 3.79e-03
  add_103 (FSM_in_3_DW01_inc_3)
                                                                                                    0.1
```

Listing 24: Power Breakdown 3 ns

 $\mathbf{Report} \; : \; \mathrm{power}$

-net -cell -hier

-analysis_effort low -sort_mode dynamic_power

 $\begin{array}{ll} Design : Processor_3 \\ Version: X-2005.09-SP1 \end{array}$

Date : Wed Dec 12 12:51:02 2007

Library(s) Used:

 $CORE90GPSVT \ (\ \mathbf{File}: \ / \ cell_libs/cmos090_50a/CORE90GPSVT_SNPS-AVT_2.1$

 $/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db)$

 $CORE90GPHVT \ (\textbf{File}: \ / \texttt{cell_libs} / \texttt{cmos} \\ 090_50 \\ \text{a} / CORE90GPHVT_SNPS-AVT_2.1. \\ \text{a}$

/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db)

Operating Conditions: NomLeak Library: CORE90GPSVT

Wire Load Model Mode: enclosed

Design Wire Loa	d Model	Library
Processor_3	$area_48Kto72K$	CORE90GPSVT
FSM_in_3	$area_6Kto12K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_3}$	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW01_add_1	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_2}$	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW01_inc_0	$area_0to1K$	CORE90GPSVT
FSM_out_3	$area_6Kto12K$	CORE90GPSVT
FSM_out_3_DW01_inc_5	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_add_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_sub_0	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_4$	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_2	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_1	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_0	$area_0to1K$	CORE90GPSVT
SHIFTREG_1	$area_1Kto2K$	CORE90GPSVT
SHIFTREG_0	$area_1Kto2K$	CORE90GPSVT
multiplier_8	$area_3Kto4K$	CORE90GPSVT
parcial_8	$area_0to1K$	CORE90GPSVT
csa15bit_53	$area_0to1K$	CORE90GPSVT
csa15bit_52	$area_0to1K$	CORE90GPSVT
csa15bit_51	$area_0to1K$	CORE90GPSVT
csa15bit_50	$area_0to1K$	CORE90GPSVT
csa15bit_49	$area_0to1K$	CORE90GPSVT
csa15bit_48	$area_0to1K$	CORE90GPSVT
CRA_15_8	$area_0to1K$	CORE90GPSVT
multiplier_7	$area_3Kto4K$	CORE90GPSVT

parcial_7	$area_0to1K$	CORE90GPSVT
csa15bit_47	$area_0to1K$	CORE90GPSVT
csa15bit_46	$area_0to1K$	CORE90GPSVT
csa15bit_45	area0to1K	CORE90GPSVT
csa15bit_44	$area_0to1K$	CORE90GPSVT
csa15bit_43	area_0to1K	CORE90GPSVT
$\cos a 15 \operatorname{bit}_{-42}$	area_0to1K	CORE90GPSVT
CRA_15_7	area_0to1K	CORE90GPSVT
multiplier_6	area_3Kto4K	CORE90GPSVT
parcial_6	area_0to1K	CORE90GPSVT
csa15bit_41	area_0to1K	CORE90GPSVT
csa15bit_41 csa15bit_40	area_0to1K	CORE90GPSVT
csa15bit_40 csa15bit_39	area_0to1K	CORE90GPSVT
csa15bit_38	area_0to1K	CORE90GPSVT
csa15bit_37	area_0to1K	CORE90GPSVT
csa15bit_36	area_0to1K	CORE90GPSVT
CRA_15_6	area_0to1K	CORE90GPSVT
multiplier_5	area_3Kto4K	CORE90GPSVT
parcial_5	$area_0to1K$	CORE90GPSVT
$csa15bit_35$	${ m area_0to1K}$	CORE90GPSVT
$csa15bit_{-}34$	area0to1K	CORE90GPSVT
csa15bit_33	$area_0to1K$	CORE90GPSVT
csa15bit_32	$area_0to1K$	CORE90GPSVT
csa15bit_31	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}30$	area0to1K	CORE90GPSVT
CRA_15_5	area0to1K	CORE90GPSVT
multiplier_4	$area_3Kto4K$	CORE90GPSVT
parcial_4	$area_0to1K$	CORE90GPSVT
$csa15bit_29$	$area_0to1K$	CORE90GPSVT
csa15bit_28	area0to1K	CORE90GPSVT
$csa15bit_27$	$area_0to1K$	CORE90GPSVT
csa15bit_26	$area_0to1K$	CORE90GPSVT
$csa15bit_25$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}24$	$area_0to1K$	CORE90GPSVT
CRA_15_4	$area_0to1K$	CORE90GPSVT
multiplier_3	$area_3Kto4K$	CORE90GPSVT
parcial_3	$area_0to1K$	CORE90GPSVT
csa15bit_23	$area_0to1K$	CORE90GPSVT
csa15bit_22	$area_0to1K$	CORE90GPSVT
csa15bit_21	$area_0to1K$	CORE90GPSVT
csa15bit_20	$area_0to1K$	CORE90GPSVT
csa15bit_19	$area_0to1K$	CORE90GPSVT
csa15bit_18	$area_0to1K$	CORE90GPSVT
CRA_15_3	$area_0to1K$	CORE90GPSVT
multiplier_2	$area_3Kto4K$	CORE90GPSVT
parcial_2	$area_0to1K$	CORE90GPSVT
csa15bit_17	$area_0to1K$	CORE90GPSVT
csa15bit_16	$area_0to1K$	CORE90GPSVT
csa15bit_15	$area_0to1K$	CORE90GPSVT
csa15bit_14	$area_0to1K$	CORE90GPSVT
csa15bit_13	$area_0to1K$	CORE90GPSVT
csa15bit_12	$area_0to1K$	CORE90GPSVT
CRA_15_2	$area_0to1K$	CORE90GPSVT
multiplier_1	$area_3Kto4K$	CORE90GPSVT
parcial_1	$area_0to1K$	CORE90GPSVT
csa15bit_11	$area_0to1K$	CORE90GPSVT
csa15bit_10	$area_0to1K$	CORE90GPSVT
•		

csa15bit_9	$area_0to1K$	CORE90GPSVT
csa15bit_8	$area_0to1K$	CORE90GPSVT
csa15bit_7	${ m area_0to1K}$	CORE90GPSVT
csa15bit_6	$area_0to1K$	CORE90GPSVT
CRA_15_1	$area_0to1K$	CORE90GPSVT
multiplier_0	$area_3Kto4K$	CORE90GPSVT
parcial_0	${ m area_0to1K}$	CORE90GPSVT
csa15bit_5	$area_0to1K$	CORE90GPSVT
csa15bit_4	$area_0to1K$	CORE90GPSVT
csa15bit_3	$area_0to1K$	CORE90GPSVT
csa15bit_2	$area_0to1K$	CORE90GPSVT
csa15bit_1	${ m area_0to1K}$	CORE90GPSVT
csa15bit_0	$area_0to1K$	CORE90GPSVT
CRA_15_0	$area_0to1K$	CORE90GPSVT
ADDER_3_2	$area_1Kto2K$	CORE90GPSVT
ADDER_3_2_DW01_add_3	$area_1Kto2K$	CORE90GPSVT
ADDER_3_2_DW01_add_4	$area_0to1K$	CORE90GPSVT
ADDER_3_1	area_1Kto2K	CORE90GPSVT
ADDER_3_1_DW01_add_3	$area_0to1K$	CORE90GPSVT
ADDER_3_1_DW01_add_4	$area_0to1K$	CORE90GPSVT
ADDER_3_0	$area_{-}1Kto2K$	CORE90GPSVT
ADDER_3_0_DW01_add_4	$area_0to1K$	CORE90GPSVT
ADDER_3_0_DW01_add_3	$area_0to1K$	CORE90GPSVT
MUX_4	$area_0to1K$	CORE90GPSVT
ADDER_2	area0to1K	CORE90GPSVT
ADDER_2_DW01_add_2	$area_0to1K$	CORE90GPSVT
REG	$area_0to1K$	CORE90GPSVT

```
Global Operating Voltage = 1
Power-specific unit information :
     Voltage Units = 1V
     Capacitance~\textbf{Units}~=~1.000000\,\mathrm{pf}
    Time Units = 1ns
                                         (derived from V,C,T units)
    \label{eq:leakage_power_units} \text{Leakage Power } \mathbf{Units} = 1 \mathrm{pW}
```

Attributes

Net	Total Net Load	Static Prob.	Toggle Rate	Switching Power	Attrs
disable_to_cache	0.293	0.760	0.0800	0.0117	a
cache_bits [16]	0.040	0.477	0.0600	0.0012	a
cache_bits[32]	0.037	0.477	0.0600	0.0011	a
cache_bits [40]	0.037	0.477	0.0600	0.0011	a
cache_bits [0]	0.034	0.477	0.0600	0.0010	a

cache_bits [49]	0.043	0.477	0.0596	0.0013	a
cache_bits [25]	0.038	0.477	0.0596	0.0011	a
cache_bits [64]	0.037	0.477	0.0600	0.0011	a
cache_bits[8]	0.037	0.477	0.0600	0.0011	a
cache_bits [56]	0.038	0.477	0.0600	0.0011	a
cache_bits[9]	0.038	0.477	0.0596	0.0011	a
cache_bits [17]	0.038	0.477	0.0596	0.0011	a
cache_bits [48]	0.038	0.477	0.0600	0.0011	a
cache_bits [24]	0.037	0.477	0.0600	0.0011	a
cache_bits [57]	0.037	0.477	0.0596	0.0011	a
cache_bits [41]	0.037	0.477	0.0596	0.0011	a
cache_bits [65]	0.037	0.477	0.0596	0.0011	a
cache_bits [33]	0.037	0.477	0.0596	0.0011	a
cache_bits[1]	0.035	0.477	0.0596	0.0010	a
cache_bits[10]	0.038	0.481	0.0551	0.0010	a
cache_bits [50]	0.037	0.482	0.0551	0.0010	a
cache_bits [66]	0.037	0.481	0.0551	0.0010	a
cache_bits [58]	0.037	0.481	0.0551	0.0010	a
cache_bits [42]	0.037	0.481	0.0551	0.0010	a
cache_bits [34]	0.037	0.481	0.0551	0.0010	a
cache_bits [18]	0.037	0.481	0.0551	0.0010	a
cache_bits [26]	0.037	0.482	0.0551	0.0010	a
cache_bits[2]	0.034	0.482	0.0551	0.0009	a
cache_bits[11]	0.038	0.499	0.0462	0.0009	\mathbf{a}
cache_bits [51]	0.037	0.499	0.0462	0.0009	a
cache_bits [67]	0.037	0.499	0.0462	0.0009	a
cache_bits [35]	0.037	0.499	0.0462	0.0009	\mathbf{a}
cache_bits[19]	0.037	0.499	0.0462	0.0009	a
cache_bits [59]	0.037	0.499	0.0462	0.0009	a
cache_bits [43]	0.037	0.499	0.0462	0.0009	a
cache_bits [27]	0.037	0.499	0.0462	0.0009	a
cache_bits[3]	0.034	0.499	0.0462	0.0008	a
cache_bits [12]	0.038	0.486	0.0357	0.0007	a
cache_bits [52]	0.037	0.486	0.0357	0.0007	a
cache_bits [28]	0.037	0.486	0.0357	0.0007	a
cache_bits [36]	0.037	0.486	0.0357	0.0007	a
cache_bits [68]	0.037	0.486	0.0357	0.0007	a
cache_bits [20]	0.037	0.486	0.0357	0.0007	a
cache_bits [44]	0.037	0.486	0.0357	0.0007	a
cache_bits [60]	0.037	0.486	0.0357	0.0007	a
cache_bits[4]	0.034	0.486	0.0357	0.0006	a
Data_out [0]	0.002	0.678	0.0752	8.185e - 05	a
Data_out [1]	0.002	0.711	0.0718	7.814e - 05	a
Data_out [2]	0.002	0.730	0.0686	7.464e - 05	a
cache_bits [13]	0.038	0.470	0.0260	0.0005	a
cache_bits [53]	0.037	0.470	0.0260	0.0005	a
cache_bits[21]	0.037	0.470	0.0260	0.0005	a
cache_bits[29]	0.037	0.470	0.0260	0.0005	a
cache_bits[61]	0.037	0.470	0.0260	0.0005	a
cache_bits [45]	0.037	0.470	0.0260	0.0005	a
cache_bits [69]	0.037	0.470	0.0260	0.0005	a
cache_bits[37]	0.037	0.470	0.0260	0.0005	a
cache_bits [5]	0.034	0.470	0.0260	0.0004	a
Data_out [3]	0.002	0.736	0.0628	6.836e - 05	a
mux_out [1]	0.043	0.477	0.0988	0.0021	a
Data_out [4]	0.002	0.736	0.0565	6.150e - 05	a
Data_out [5]	0.002	0.738	0.0508	5.530e - 05	a

cache_bits [14]	0.038	0.435	0.0148	0.0003	a
cache_bits [54]	0.037	0.436	0.0148	0.0003	a
cache_bits[22]	0.037	0.435	0.0148	0.0003	a
cache_bits [30]	0.037	0.436	0.0148	0.0003	a
cache_bits [38]	0.037	0.435	0.0148	0.0003	a
cache_bits [46]	0.037	0.435	0.0148	0.0003	a
cache_bits [70]	0.037	0.435	0.0148	0.0003	a
cache_bits [62]	0.037	0.435	0.0148	0.0003	a
cache_bits[6]	0.034	0.436	0.0148	0.0002	a
Data_out [6]	0.002	0.743	0.0429	$4.666\mathrm{e}\!-\!05$	a
mux_out [0]	0.034	0.477	0.0998	0.0017	a
cache_bits [71]	0.037	0.331	0.0072	0.0001	a
cache_bits [39]	0.037	0.332	0.0072	0.0001	a
cache_bits [15]	0.038	0.332	0.0072	0.0001	a
cache_bits [31]	0.037	0.331	0.0072	0.0001	a
Data_out [7]	0.002	0.723	0.0277	$3.016\mathrm{e}\!-\!05$	a
cache_bits [47]	0.037	0.331	0.0072	0.0001	a
cache_bits [63]	0.037	0.332	0.0072	0.0001	a
cache_bits [55]	0.037	0.331	0.0072	0.0001	a
cache_bits[7]	0.034	0.331	0.0072	0.0001	a
cache_bits [23]	0.037	0.331	0.0072	0.0001	a
filter_bits [64]	0.018	0.000	$0.18e{-5}$	$1.632\mathrm{e}\!-\!08$	a
filter_bits [40]	0.018	0.000	$0.12e{-5}$	1.094e-08	a
filter_bits [48]	0.018	0.000	$0.12e{-5}$	1.094e-08	a
filter_bits [16]	0.018	0.000	0.61e - 6	$5.543\mathrm{e}\!-\!09$	a
filter_bits [24]	0.014	0.000	0.61e - 6	$4.159\mathrm{e}\!-\!09$	a
filter_bits[0]	0.014	0.000	0.0000	0.0000	a
filter_bits[1]	0.014	0.000	0.0000	0.0000	a
filter_bits[2]	0.014	0.000	0.0000	0.0000	a
filter_bits [4]	0.007	0.000	0.0000	0.0000	a
filter_bits[5]	0.014	0.000	0.0000	0.0000	a
filter_bits[6]	0.010	0.000	0.0000	0.0000	a
filter_bits[7]	0.010	0.000	0.0000	0.0000	a
filter_bits[10]	0.018	0.000	0.0000	0.0000	a
filter_bits[11]	0.014	0.000	0.0000	0.0000	a
filter_bits[13]	0.018	0.000	0.0000	0.0000	a
filter_bits[14]	0.014	0.000	0.0000	0.0000	a
filter_bits[18]	0.018	0.000	0.0000	0.0000	a
filter_bits[19]	0.018	0.000	0.0000	0.0000	a
filter_bits [20]	0.018	0.000	0.0000	0.0000	a
filter_bits [21]	0.018	0.000	0.0000	0.0000	a
filter_bits [25]	0.018	0.000	0.0000	0.0000	a
filter_bits [26]	0.018	0.000	0.0000	0.0000	a
filter_bits [27]	0.014	0.000	0.0000	0.0000	a
filter_bits [28]	0.014	0.000	0.0000	0.0000	a
filter_bits[31]	0.014	0.000	0.0000	0.0000	a
filter_bits [33]	0.014	0.000	0.0000	0.0000	a
filter_bits [34]	0.011	0.000	0.0000	0.0000	a
filter_bits [36]	0.011	0.000	0.0000	0.0000	a
filter_bits [41]	0.018	0.000	0.0000	0.0000	a
filter_bits [42]	0.018	0.000	0.0000	0.0000	a
filter_bits [43]	0.018	0.000	0.0000	0.0000	a
filter_bits [44]	0.014	0.000	0.0000	0.0000	a
filter_bits [47]	0.014	0.000	0.0000	0.0000	a
filter_bits [49]	0.018	0.000	0.0000	0.0000	a
filter_bits [50]	0.011	0.000	0.0000	0.0000	a
filter_bits [51]	0.014	0.000	0.0000	0.0000	a

filter_bits [52]	0.018	0.000	0.0000	0.0000	a
filter_bits [53]	0.018	0.000	0.0000	0.0000	a
filter_bits [54]	0.014	0.000	0.0000	0.0000	a
filter_bits [59]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [61]	0.014	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [62]	0.011	0.000	0.0000	0.0000	a
filter_bits [65]	0.018	0.000	0.0000	0.0000	a
filter_bits [66]	0.018	0.000	0.0000	0.0000	a
filter_bits [67]	0.013	0.000	0.0000	0.0000	a
filter_bits [68]	0.018	0.000	0.0000	0.0000	a
filter_bits[70]	0.013	0.000	0.0000	0.0000	a
filter_bits [32]	0.018	1.000	0.92e-6	8.204e-09	a
filter_bits [8]	0.018	1.000	0.31e - 6	2.721e-09	a
filter_bits [3]	0.014	0.000	0.0000	0.0000	a
filter_bits [9]	0.018	0.000	0.0000	0.0000	a
filter_bits[12]	0.011	0.000	0.0000	0.0000	a
filter_bits[15]	0.011	0.000	0.0000	0.0000	a
filter_bits[17]	0.018	0.000	0.0000	0.0000	a
filter_bits[22]	0.011	0.000	0.0000	0.0000	a
filter_bits [23]	0.011	0.000	0.0000	0.0000	a
filter_bits[29]	0.018	0.000	0.0000	0.0000	a
filter_bits [30]	0.011	0.000	0.0000	0.0000	a
filter_bits [35]	0.011	0.000	0.0000	0.0000	a
filter_bits [37]	0.011	0.000	0.0000	0.0000	a
filter_bits[38]	0.011	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [39]	0.011	0.000	0.0000	0.0000	a
filter_bits [45]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [46]	0.011	0.000	0.0000	0.0000	a
filter_bits [55]	0.011	0.000	0.0000	0.0000	a
filter_bits [57]	0.011	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [58]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [60]	0.011	0.000	0.0000	0.0000	a
filter_bits [63]	0.011	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [69]	0.011	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [71]	0.011	0.000	0.0000	0.0000	a
mux_out [2]	0.027	0.482	0.0904	0.0012	\mathbf{a}
filter_bits[56]	0.011	1.000	0.15e - 5	8.146e - 09	a
mux_out[3]	0.036	0.499	0.0750	0.0013	\mathbf{a}
mux_out [4]	0.036	0.486	0.0576	0.0010	\mathbf{a}
mult8_out[1]	0.054	0.477	0.0596	0.0016	a
select_adder[0]	0.013	0.278	0.0794	0.0005	a
select_adder[1]	0.013	0.524	0.0794	0.0005	a
Read_Addr_In_Mem [0]	0.002	0.180	0.1001	0.0001	a
Read_In_Mem	0.002	0.240	0.0800	8.700e-05	a
Read_Addr_In_Mem [8]	0.002	0.180	0.0801	8.717e - 05	a
mult5_out[1]	0.019	0.477	0.0596	0.0006	a
Read_Addr_In_Mem[1]	0.002	0.180	0.0701	7.621e-05	\mathbf{a}
mult8_out[2]	0.057	0.481	0.0551	0.0016	a
mux_out [6]	0.072	0.436	0.0234	0.0008	a
Read_Out_Mem	0.002	0.238	0.2381	0.0003	a
Read_Addr_In_Mem [9]	0.002	0.180	0.0601	6.534e - 05	a
Read_Addr_Out_Mem [3]	0.002	0.120	0.1198	0.0001	a
Read_Addr_In_Mem [2]	0.002	0.181	0.0551	5.994e-05	a
mult8_out[3]	0.063	0.499	0.0462	0.0015	a
mult8_out [0]	0.018	0.477	0.0600	0.0005	a
Read_Addr_In_Mem[11]	0.002	0.180	0.0449	$4.883\mathrm{e}\!-\!05$	a
add4_out[0]	0.004	0.678	0.0752	0.0002	a
1 * *					

Read_Addr_In_Mem[10]	0.002	0.180	0.0499	5.433e - 05	a
Read_Addr_In_Mem [12]	0.002	0.180	0.0424	4.608e - 05	a
Read_Addr_In_Mem [13]	0.002	0.180	0.0411	4.471e - 05	a
Read_Addr_In_Mem[3]	0.002	0.181	0.0475	5.172e-05	a
Read_Addr_In_Mem [14]	0.002	0.180	0.0405	4.402e-05	a
Read_Addr_In_Mem [15]	0.002	0.180	0.0401	4.367e-05	a
mult2_out[3]	0.045	0.499	0.0462	0.0010	a
mux_out [5]	0.019	0.470	0.0419	0.0004	a
mult2_out[0]	0.018	0.477	0.0600	0.0005	a
Write_Out_Mem	0.002	0.278	0.2381	0.0003	a
Read_Addr_In_Mem [4]	0.002	0.181	0.0438	4.761e - 05	a
mult2_out [1]	0.030	0.477	0.0596	0.0009	a
add2_out[1]	0.010	0.477	0.0596	0.0003	a
Read_Addr_In_Mem [5]	0.002	0.181	0.0419	4.556e - 05	a
add1_out[1]	0.009	0.477	0.0596	0.0003	a
Read_Addr_In_Mem [6]	0.002	0.181	0.0409	4.453e - 05	a
Read_Addr_In_Mem [7]	0.002	0.181	0.0405	4.401e-05	a
Read_Addr_Out_Mem [4]	0.002	0.120	0.1198	0.0001	a
add2_out [2]	0.010	0.481	0.0551	0.0003	a
mult5_out [4]	0.049	0.486	0.0357	0.0009	a
Write_Addr_Out_Mem [0]	0.002	0.139	0.0397 0.1392	0.0003	\mathbf{a}
Read_Addr_Out_Mem [2]	0.002	0.139 0.120	0.1392 0.1198	0.0001	a
Read_Addr_Out_Mem [5]	0.002	0.120 0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [6]	0.002	0.120 0.120	0.1198	0.0001	a
Read_Addr_Out_Mem[7]	0.002	0.120 0.120	0.1198	0.0001	a
Read_Addr_Out_Mem[1]	0.002 0.002	0.120 0.120	0.1196 0.1196	0.0001	
Read_Addr_Out_Mem[1]	0.002	0.120 0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[10]	0.002	0.119 0.119	$0.1190 \\ 0.1190$	0.0001	a
Read_Addr_Out_Mem[10]	0.002	0.119 0.119	$0.1190 \\ 0.1190$	0.0001	a
Read_Addr_Out_Mem[11]	0.002 0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[12]	0.002 0.002	$0.119 \\ 0.119$	$0.1190 \\ 0.1190$	0.0001	a
Read_Addr_Out_Mem[13]		$0.119 \\ 0.119$			a
Read_Addr_Out_Mem[14] Read_Addr_Out_Mem[15]	0.002	$0.119 \\ 0.119$	0.1190	$0.0001 \\ 0.0001$	a
Read_Addr_Out_Mem[13] Read_Addr_Out_Mem[0]	0.002		0.1190		a
	0.002	0.119	0.1190	0.0001	a
Read_Addr_Out_Mem [8]	0.002	0.119	0.1190	0.0001	a
add3_out [1]	0.009	0.477	0.0596	0.0003	a
add4_out [3]	0.004	0.736	0.0628	0.0001	a
mux_out [7]	0.060	0.331	0.0113	0.0003	a
Write_Addr_Out_Mem [1]	0.002	0.140	0.1297	0.0001	a
Write_Addr_Out_Mem [2]	0.002	0.140	0.1248	0.0001	a
add1_out [2]	0.009	0.481	0.0551	0.0003	\mathbf{a}
add3_out[2]	0.009	0.481	0.0551	0.0003	a
Write_Addr_Out_Mem [3]	0.002	0.140	0.1223	0.0001	a
Write_Addr_Out_Mem [4]	0.002	0.140	0.1211	0.0001	a
mult2_out [2]	0.016	0.481	0.0551	0.0004	a
Write_Addr_Out_Mem [5]	0.002	0.140	0.1204	0.0001	a
Write_Addr_Out_Mem [6]	0.002	0.140	0.1201	0.0001	a
Write_Addr_Out_Mem [7]	0.002	0.140	0.1200	0.0001	a
Write_Addr_Out_Mem [10]	0.002	0.139	0.1189	0.0001	a
add4_out [4]	0.004	0.736	0.0565	0.0001	a
Write_Addr_Out_Mem [9]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [8]	0.002	0.139	0.1189	0.0001	a
mult5_out [3]	0.019	0.499	0.0462	0.0004	a
add2_out[3]	0.010	0.499	0.0462	0.0002	a
mult2_out [5]	0.051	0.470	0.0260	0.0007	a
add1_out[3]	0.009	0.499	0.0462	0.0002	a
$Write_Addr_Out_Mem[11]$	0.002	0.139	0.1189	0.0001	\mathbf{a}

Write_Addr_Out_Mem [12]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [13]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [14]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [15]	0.002	0.139	0.1189	0.0001	a
add2_out[0]	0.010	0.477	0.0600	0.0003	a
mult2_out [4]	0.032	0.486	0.0357	0.0006	a
add3_out [0]	0.009	0.477	0.0600	0.0003	a
mult5_out [2]	0.019	0.481	0.0551	0.0005	a
add4_out [6]	0.004	0.743	0.0429	8.763e - 05	a
add4_out [1]	0.004	0.711	0.0718	0.0001	a
add4_out [2]	0.004	0.730	0.0686	0.0001	a
mult8_out [4]	0.028	0.486	0.0357	0.0005	a
mult5_out[0]	0.015	0.477	0.0600	0.0004	a
add2_out [4]	0.010	0.486	0.0357	0.0002	a
$add1_out[4]$ $add1_out[0]$	$0.009 \\ 0.009$	0.486	0.0357	0.0002	a
add1_out[0] add3_out[3]	0.009	$0.477 \\ 0.499$	$0.0600 \\ 0.0462$	$0.0003 \\ 0.0002$	a
add3_out [5] add4_out [5]	0.009 0.004	0.499 0.738	$0.0402 \\ 0.0508$	0.0002 0.0001	a a
add4_out [7]	0.004 0.004	0.733 0.723	0.0303 0.0277	5.664e-05	a a
add3_out [4]	0.004	0.486	0.0277 0.0357	0.0002	a
add3_out [5]	0.006	0.470	0.0260	8.127e - 05	a
add1_out [5]	0.006	0.470	0.0260	7.984e-05	a
mult8_out [5]	0.022	0.470	0.0260	0.0003	a
mult5_out [5]	0.019	0.470	0.0260	0.0002	a
mult8_out [6]	0.022	0.435	0.0148	0.0002	a
mult2_out [6]	0.031	0.435	0.0148	0.0002	a
mult5_out [6]	0.019	0.435	0.0148	0.0001	a
mult5_out [7]	0.053	0.332	0.0072	0.0002	a
add1_out [6]	0.009	0.435	0.0148	$6.772e\!-\!05$	a
add2_out [5]	0.006	0.470	0.0260	8.088e - 05	a
add2_out [6]	0.010	0.435	0.0148	7.630e - 05	a
add3_out [6]	0.009	0.435	0.0148	$6.766e\!-\!05$	a
mult2_out[7]	0.019	0.332	0.0072	$6.837\mathrm{e}\!-\!05$	a
add2_out [7]	0.010	0.332	0.0072	$3.704\mathrm{e}\!-\!05$	a
add3_out[7]	0.009	0.332	0.0072	$3.284\mathrm{e}\!-\!05$	a
add1_out[7]	0.009	0.332	0.0072	$3.288\mathrm{e}\!-\!05$	a
mult8_out[7]	0.006	0.332	0.0072	$2.186\mathrm{e}\!-\!05$	a
Write_In_Mem	0.002	0.040	0.61e-6	6.690e - 10	a
mult1_out[0]	0.063	0.000	0.0000	0.0000	a
mult1_out [1]	0.110	0.000	0.0000	0.0000	a
mult1_out [2]	0.093	0.000	0.0000	0.0000	a
mult1_out [3]	0.016	0.000	0.0000	0.0000	a
mult1_out [4]	0.031	0.000	0.0000	0.0000	a
mult1_out [5]	0.016	0.000	0.0000	0.0000	a
mult1_out [6]	0.016	0.000	0.0000	0.0000	a
mult1_out [7]	0.037	0.000	0.0000	0.0000	a
mult3_out [0]	0.055	0.000	0.0000	0.0000	a
mult3_out [1]	0.111	0.000	0.0000	0.0000	a
mult3_out [2]	0.092	0.000	0.0000	0.0000	a
mult3_out [3]	0.019	0.000	0.0000	0.0000	a
mult3_out [4]	0.035	0.000	0.0000	0.0000	a
mult3_out [5]	0.019	0.000	0.0000	0.0000	a
mult3_out [6] mult3_out [7]	$0.019 \\ 0.031$	0.000	$0.0000 \\ 0.0000$	0.0000	a
mult3_out [7] mult4_out [0]	$0.031 \\ 0.030$	$0.000 \\ 0.000$	0.0000	$0.0000 \\ 0.0000$	a
mult4_out[0] mult4_out[1]	$0.030 \\ 0.019$	0.000	0.0000	0.0000	a
mult4_out [1] mult4_out [2]	$0.019 \\ 0.022$	0.000	0.0000	0.0000	a
muru4_0ut [2]	0.022	0.000	0.0000	0.0000	a

mult4_out [3]	0.019	0.000	0.0000	0.0000	a
mult4_out [4]	0.019	0.000	0.0000	0.0000	a
mult4_out [5]	0.019	0.000	0.0000	0.0000	a
mult4_out [6]	0.019	0.000	0.0000	0.0000	a
mult4_out [7]	0.019	0.000	0.0000	0.0000	a
mult6_out [0]	0.042	0.000	0.0000	0.0000	a
mult6_out [1]	0.026	0.000	0.0000	0.0000	a
mult6_out [2]	0.022	0.000	0.0000	0.0000	a
mult6_out [3]	0.019	0.000	0.0000	0.0000	a
mult6_out [4]	0.019	0.000	0.0000	0.0000	a
mult6_out [5]	0.015	0.000	0.0000	0.0000	a
mult6_out [6]	0.019	0.000	0.0000	0.0000	a
mult6_out [7]	0.019	0.000	0.0000	0.0000	a
mult7_out [0]	0.040	0.000	0.0000	0.0000	a
mult7_out [1]	0.034	0.000	0.0000	0.0000	a
mult7_out [2]	0.024	0.000	0.0000	0.0000	a
mult7_out [3]	0.022	0.000	0.0000	0.0000	a
mult7_out [4]	0.019	0.000	0.0000	0.0000	a
mult7_out [5]	0.037	0.000	0.0000	0.0000	a
mult7_out [6]	0.019	0.000	0.0000	0.0000	a
mult7_out [7]	0.019	0.000	0.0000	0.0000	a
mult9_out [0]	0.045	0.000	0.0000	0.0000	a
mult9_out [1]	0.032	0.000	0.0000	0.0000	a
mult9_out [2]	0.026	0.000	0.0000	0.0000	a
mult9_out [3]	0.019	0.000	0.0000	0.0000	a
mult9_out [4]	0.016	0.000	0.0000	0.0000	a
mult9_out [5]	0.045	0.000	0.0000	0.0000	a
mult9_out [6]	0.016	0.000	0.0000	0.0000	a
mult9_out [7]	0.016	0.000	0.0000	0.0000	a

Total (319 nets) 98.0927 uW

Attributes

h - Hierarchical cell

Cell	Cell Internal Power	Driven Net Switching Power	Tot Dynamic Power (% Cell/Tot)	Cell Leakage Power Attrs
Add1	0.0209	N/A	N/A (N/A)	7630430.5000
Add2	0.0187	N/A	N/A (N/A)	h 6005458.0000
Add3	0.0243	N/A	N/A (N/A)	h 7052072.0000
Add_new_value	0.0793	N/A	N/A (N/A)	h 3423997.7500
Mult1	0.0000	N/A	N/A (N/A)	h 3165024.2500
Mult2	0.0382	N/A	N/A (N/A)	h 2761575.0000
Mult3	4.049e-09	N/A	N/A (N/A)	3151741.5000 h

Mult4	$1.877\mathrm{e}\!-\!09$	N/A	N/A (N/A)	2738190.500	
Mult5	0.0319	N/A	N/A (N/A		h 0
Mult6	8.069e-09	N/A	N/A (N/A		h 0
Mult7	$8.056\mathrm{e}{-09}$	N/A	N/A (N/A		h 0
Mult8	0.0368	N/A	N/A (N/A	•	h
Mult9	$1.207\mathrm{e}{-08}$	N/A	N/A (N/A	•	h
Multiplexer	0.0219	N/A	N/A (N/A		h
cache	0.4749	N/A	N/A (N/A		h
filtermask	0.3997	N/A	N/A (N/A		h
	0.1907	,	N/A (N/A	•	h
fsm_input		N/A	, , ,	,	h
fsm_output	0.2457	N/A	N/A (N/A	,	h
regster	0.0508	N/A	N/A (N/A	<i>'</i>	h
	1.634mW	N/A	N/A (N/A	105.211uW	
Totals (19 cells)		Switch	Int Le	eak Total	07.
Hierarchy		Switch Power	Int Le Power Po	eak Total ower Power	%
Hierarchy Processor_3		Switch Power	Int Le Power Po	eak Total ower Power 05e+08 2.281	1(
Hierarchy Processor_3 regster (REG) Add_new_value (ADD	ER.2)	Switch Power 0.543 4.97e-04 4.28e-02	Int Le Power Po	eak Total ower Power 05 e+08 2.281 92 e+05 5.15 e-02	1(
Hierarchy Processor_3 regster (REG)	ER.2)	Switch Power 0.543 4.97e-04 4.28e-02 add_2)	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3.	eak Total Power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.126	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD	ER.2) (ADDER.2_DW01.a	Switch Power 0.543 4.97e-04 4.28e-02 add_2) 4.19e-02	Int Le Power Po 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3.	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.126	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX.4) Add3 (ADDER.3.0)	ER_2) (ADDER_2_DW01_&	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.79e-02 1.00e-02	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX.4)	ER.2) (ADDER.2.DW01.a	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A	Int Le Power Po 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW	eak Total Power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 24 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3)	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX_4) Add3 (ADDER_3_0) add_0_root_add_0_	ER.2) (ADDER.2.DW01.a	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 8.64e-03	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3.	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 24 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX.4) Add3 (ADDER.3.0)	ER.2) (ADDER.2.DW01.a	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 8.64e-03	Int Le Power Po 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_0_DW	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 24 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX_4) Add3 (ADDER_3_0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3_1)	ER.2) (ADDER.2.DW01.a .root_add_17/plu. .root_add_17/plu.	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 8.64e-03 s/plus_1 (A 0.000 8.35e-03	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_0_DW 0.000 3. 1.87e-02 6.	eak Total Power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 24 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02	1(
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX_4) Add3 (ADDER_3_0) add_0_root_add_0_ add_1_root_add_0_	ER.2) (ADDER.2.DW01.a .root_add_17/plu. .root_add_17/plu.	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.00e-02 s/plus-1 (A 8.64e-03 s/plus-1 (A 0.000 8.35e-03 s/plus-1 (A	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_0_DW 0.000 3. 1.87e-02 6. DDER_3_1_DW	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 24 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4)	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX_4) Add3 (ADDER_3_0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3_1)	ER.2) (ADDER.2.DW01.a root_add_17/plu root_add_17/plu	Switch Power 0.543 4.97e-04 4.28e-02 add.2) 4.19e-02 1.00e-02 s/plus_1 (A 8.64e-03 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 6.83e-03 s/plus_1 (A	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_0_DW 0.000 3. 1.87e-02 6. DDER_3_1_DW 1.55e-02 2.	eak Total ower Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 24 e+06 0.120 26 e+05 4.04 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02	1(
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX.4) Add3 (ADDER_3.0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3.1) add_0_root_add_0 add_1_root_add_0 add_1_root_add_0	ER.2) (ADDER.2.DW01.a root_add_17/plu root_add_17/plu	Switch Power 0.543 4.97e-04 4.28e-02 add.2) 4.19e-02 1.00e-02 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 6.83e-03 s/plus_1 (A 0.000	Int Le Power Po 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_0_DW 0.000 3. 1.87e-02 6. DDER_3_1_DW 1.55e-02 2. DDER_3_1_DW 0.000 2.	eak Total Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02 701_add_3) 91 e+06 2.91 e-03	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX.4) Add3 (ADDER_3.0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3.1) add_0_root_add_0 add_1_root_add_0 Add1 (ADDER_3.2)	ER_2) (ADDER_2_DW01_a .root_add_17/plu .root_add_17/plu .root_add_17/plu	Switch Power 0.543 4.97e-04 4.28e-02 add.2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 6.83e-03 s/plus_1 (A 0.000 7.37e-03	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_0_DW 0.000 3. 1.87e-02 6. DDER_3_1_DW 1.55e-02 2. DDER_3_1_DW 0.000 2. 2.09e-02 7.	eak Total Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02 701_add_3) 91 e+06 2.91 e-03 63 e+06 3.59 e-02	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX.4) Add3 (ADDER_3.0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3.1) add_0_root_add_0 add_1_root_add_0 add_1_root_add_0	ER_2) (ADDER_2_DW01_a .root_add_17/plu .root_add_17/plu .root_add_17/plu	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.00e-02 s/plus_1 (A 8.64e-03 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 6.83e-03 s/plus_1 (A 0.000 7.37e-03 s/plus_1 (A	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 0.000 3. 1.87e-02 6. DDER_3_1_DW 1.55e-02 2. DDER_3_1_DW 0.000 2. 2.09e-02 7. DDER_3_2_DW	eak Total Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02 701_add_3) 91 e+06 2.91 e-03 63 e+06 3.59 e-02	1(
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX.4) Add3 (ADDER_3.0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3.1) add_0_root_add_0 add_1_root_add_0 Add1 (ADDER_3.2)	ER.2) (ADDER.2.DW01.a.root_add_17/pluroot_17/pluroot_	Switch Power 0.543 4.97e-04 4.28e-02 add.2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 8.64e-03 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 0.000 7.37e-03 s/plus_1 (A 6.01e-03 s/plus_1 (A	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_1_DW 1.55e-02 2. DDER_3_1_DW 0.000 2. 2.09e-02 7. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02 701_add_3) 91 e+06 2.91 e-03 63 e+06 3.59 e-02 701_add_4) 23 e+06 2.71 e-02 701_add_3)	1(
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX_4) Add3 (ADDER_3_0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3_1) add_0_root_add_0 add_1_root_add_0 Add1 (ADDER_3_2) add_0_root_add_0 add_1_root_add_0 Add1 (ADDER_3_0) add_1_root_add_0 Add1 (ADDER_3_0) add_1_root_add_0 Add1 (ADDER_3_0) add_1_root_add_0	ER.2) (ADDER_2_DW01_a .root_add_17/plu .root_add_17/plu .root_add_17/plu .root_add_17/plu .root_add_17/plu	Switch Power 0.543 4.97e-04 4.28e-02 add.2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 0.000 7.37e-03 s/plus_1 (A 6.01e-03 s/plus_1 (A 0.000	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 2.19e-02 3. DDER_3_1_DW 1.55e-02 2. DDER_3_1_DW 0.000 2. 2.09e-02 7. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW 0.000 4.	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02 701_add_3) 91 e+06 2.91 e-03 63 e+06 3.59 e-02 701_add_4) 23 e+06 2.71 e-02 701_add_3) 22 e+06 4.22 e-03	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX_4) Add3 (ADDER_3_0) add_0_root_add_0_ add_1_root_add_0_ Add2 (ADDER_3_1) add_0_root_add_0_ add_1_root_add_0_ Add1 (ADDER_3_2) add_0_root_add_0_ add_1_root_add_0_ Mult9 (multiplier_0	ER.2) (ADDER_2_DW01_a .root_add_17/plu .root_add_17/plu .root_add_17/plu .root_add_17/plu .root_add_17/plu	Switch Power 0.543 4.97e-04 4.28e-02 add-2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 0.000 7.37e-03 s/plus_1 (A 0.000 7.37e-03 s/plus_1 (A 0.000 2.74e-08	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 0.000 3. 1.87e-02 6. DDER_3_1_DW 1.55e-02 2. DDER_3_1_DW 0.000 2. 2.09e-02 7. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW 0.000 4. 1.21e-08 2.	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02 701_add_3) 91 e+06 2.91 e-03 63 e+06 3.59 e-02 701_add_4) 23 e+06 2.71 e-02 701_add_3) 22 e+06 4.22 e-03 62 e+06 2.62 e-03	10
Hierarchy Processor_3 regster (REG) Add_new_value (ADD add_17/plus/plus Multiplexer (MUX_4) Add3 (ADDER_3_0) add_0_root_add_0 add_1_root_add_0 Add2 (ADDER_3_1) add_0_root_add_0 add_1_root_add_0 Add1 (ADDER_3_2) add_0_root_add_0 add_1_root_add_0 Add1 (ADDER_3_0) add_1_root_add_0 Add1 (ADDER_3_0) add_1_root_add_0 Add1 (ADDER_3_0) add_1_root_add_0	ER_2) (ADDER_2_DW01_a .root_add_17/plu .root_add_17/plu .root_add_17/plu .root_add_17/plu .root_add_17/plu .root_add_17/plu	Switch Power 0.543 4.97e-04 4.28e-02 add.2) 4.19e-02 1.79e-02 1.00e-02 s/plus_1 (A 0.000 8.35e-03 s/plus_1 (A 0.000 7.37e-03 s/plus_1 (A 6.01e-03 s/plus_1 (A 0.000	Int Le Power Pc 1.634 1. 5.08e-02 1. 7.93e-02 3. 7.45e-02 3. 2.19e-02 6. 2.43e-02 7. DDER_3_0_DW 0.000 3. 1.87e-02 6. DDER_3_1_DW 0.000 2. 2.09e-02 7. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW 1.79e-02 3. DDER_3_2_DW 0.000 4. 1.21e-08 2. 0.000 1.	eak Total power Power 05 e+08 2.281 92 e+05 5.15 e-02 42 e+06 0.120 26 e+05 4.04 e-02 05 e+06 4.14 e-02 701_add_3) 78 e+06 3.44 e-02 701_add_4) 18 e+06 3.18 e-03 01 e+06 3.31 e-02 701_add_4) 92 e+06 2.53 e-02 701_add_3) 91 e+06 2.91 e-03 63 e+06 3.59 e-02 701_add_4) 23 e+06 2.71 e-02 701_add_3) 22 e+06 4.22 e-03	10

```
I_CSA4 (csa15bit_2)
                                                  0.000
                                                             0.000 \quad 5.48 \,\mathrm{e}{+04} \quad 5.48 \,\mathrm{e}{-05}
                                                                                              0.0
                                                             0.000 \ 2.04e+05 \ 2.04e-04
  I_CSA3 (csa15bit_3)
                                                  0.000
                                                                                              0.0
  I_CSA2 (csa15bit_4)
                                                             0.000 \quad 5.48 \,\mathrm{e}{+04} \quad 5.48 \,\mathrm{e}{-05}
                                                  0.000
                                                                                              0.0
  I_CSA1 (csa15bit_5)
                                                             0.000 \ 1.19e+05 \ 1.19e-04
                                                  0.000
                                                                                              0.0
  I_PAR (parcial_0)
                                              2.74e-08 1.21e-08 1.39e+05 1.39e-04
                                                                                              0.0
Mult8 (multiplier_1)
                                            2.39e-02\ 3.68e-02\ 2.26e+06\ 6.29e-02
                                                                                              2.8
  I_CRA (CRA_15_1)
                                            9.35e - 03 \quad 8.43e - 03 \quad 6.23e + 05 \quad 1.84e - 02
                                                                                              0.8
  I_CSA6 (csa15bit_6)
                                            3.76e-03 8.31e-03 4.50e+05 1.25e-02
                                                                                              0.5
  I_CSA5 (csa15bit_7)
                                            3.22e-03 6.16e-03 1.85e+05 9.57e-03
                                                                                              0.4
                                            1.96e-04 3.16e-04 5.60e+04 5.67e-04
  I_CSA4 (csa15bit_8)
                                                                                              0.0
  I_CSA3 (csa15bit_9)
                                            2.65e-03 6.52e-03 4.30e+05 9.60e-03
                                                                                              0.4
  I_{CSA2} (csa15bit_10)
                                            9.94e-04 \quad 1.73e-03 \quad 5.70e+04 \quad 2.78e-03
                                                                                              0.1
  I_CSA1 (csa15bit_11)
                                            2.03e-03 4.19e-03 3.44e+05 6.56e-03
                                                                                              0.3
  LPAR (parcial_1)
                                            1.68e - 03 1.15e - 03 1.16e + 05 2.95e - 03
                                                                                              0.1
                                             1.85e - 08 8.06e - 09 3.41e + 06 3.41e - 03
Mult7 (multiplier_2)
                                                                                              0.1
                                                             0.000 \quad 1.40 \,\mathrm{e}{+06} \quad 1.40 \,\mathrm{e}{-03}
  I_CRA (CRA_15_2)
                                                  0.000
                                                                                              0.1
                                                             0.000 \ 1.03e+06 \ 1.03e-03
  I_CSA6 (csa15bit_12)
                                                  0.000
                                                                                              0.0
  I_CSA5 (csa15bit_13)
                                                  0.000
                                                             0.000 \ 1.19e+05 \ 1.19e-04
                                                                                              0.0
  I_CSA4 (csa15bit_14)
                                                  0.000
                                                             0.000 \quad 5.48 \,\mathrm{e}{+04} \quad 5.48 \,\mathrm{e}{-05}
                                                                                              0.0
  I_CSA3 (csa15bit_15)
                                                  0.000
                                                             0.000 \ 3.27e + 05 \ 3.27e - 04
                                                                                              0.0
  I_{-}CSA2 (csa15bit_{-}16)
                                                  0.000
                                                             0.000 \quad 5.48 \, e{+04} \quad 5.48 \, e{-05}
                                                                                              0.0
                                                  0.000
  I_CSA1 (csa15bit_17)
                                                             0.000 \ 2.55e + 05 \ 2.55e - 04
                                                                                              0.0
                                            1.85\,\mathrm{e}{-08}\ 8.06\,\mathrm{e}{-09}\ 1.75\,\mathrm{e}{+05}\ 1.76\,\mathrm{e}{-04}
  LPAR (parcial_2)
                                                                                              0.0
                                              1.73e-08 8.07e-09 2.11e+06 2.11e-03
Mult6 (multiplier_3)
                                                                                              0.1
  I_CRA (CRA_15_3)
                                                             0.000 \ 1.13e+06 \ 1.13e-03
                                                  0.000
                                                                                              0.0
  I_CSA6 (csa15bit_18)
                                                             0.000 \ 2.97e + 05 \ 2.97e - 04
                                                  0.000
                                                                                              0.0
  I_CSA5 (csa15bit_19)
                                                             0.000 \ 1.51e + 05 \ 1.51e - 04
                                                  0.000
                                                                                              0.0
  I_CSA4 (csa15bit_20)
                                                             0.000 \quad 5.48 \, e{+04} \quad 5.48 \, e{-05}
                                                  0.000
                                                                                              0.0
  I_CSA3 (csa15bit_21)
                                                  0.000
                                                             0.000 8.45 e + 04 8.45 e - 05
                                                                                              0.0
  I_CSA2 (csa15bit_22)
                                                 0.000
                                                             0.000 \quad 5.48e + 04 \quad 5.48e - 05
                                                                                              0.0
  I_CSA1 (csa15bit_23)
                                                             0.000 \ 2.07e + 05 \ 2.07e - 04
                                                  0.000
                                                                                              0.0
  I_PAR (parcial_3)
                                            1.73e - 08 \ 8.07e - 09 \ 1.38e + 05 \ 1.38e - 04
                                                                                              0.0
Mult5 (multiplier_4)
                                              2.09e-02 3.19e-02 2.26e+06 5.50e-02
                                                                                              2.4
  I_CRA (CRA_15_4)
                                             6.48e - 03 \quad 8.59e - 03 \quad 1.12e + 06 \quad 1.62e - 02
                                                                                              0.7
  I_CSA6 (csa15bit_24)
                                             4.50e-03 5.76e-03 1.96e+05 1.05e-02
                                                                                              0.5
  I_CSA5 (csa15bit_25)
                                              3.04e-03 6.13e-03 1.72e+05 9.34e-03
                                                                                              0.4
  I_CSA4 (csa15bit_26)
                                              1.95e-04 3.16e-04 5.60e+04 5.67e-04
                                                                                              0.0
                                              2.48e - 03 4.62e - 03 1.47e + 05 7.24e - 03
  I_CSA3 (csa15bit_27)
                                                                                              0.3
  I_{CSA2} (csa15bit_28)
                                              1.02e-03 1.73e-03 5.70e+04 2.81e-03
                                                                                              0.1
  I_CSA1 (csa15bit_29)
                                              1.60e-03 3.46e-03 4.28e+05 5.48e-03
                                                                                              0.2
  I_PAR (parcial_4)
                                              1.60e-03 1.29e-03 8.64e+04 2.98e-03
                                                                                              0.1
Mult4 (multiplier_5)
                                              8.79e-09 1.88e-09 2.74e+06 2.74e-03
                                                                                              0.1
  I_CRA (CRA_15_5)
                                                  0.000
                                                             0.000 \ 1.02e+06 \ 1.02e-03
                                                                                              0.0
                                                             0.000\phantom{0}7.26\,\mathrm{e}{+05\phantom{0}}7.26\,\mathrm{e}{-04\phantom{0}}
  I_CSA6 (csa15bit_30)
                                                  0.000
                                                                                              0.0
                                                             0.000 \ 3.00e+05 \ 3.00e-04
  I_CSA5 (csa15bit_31)
                                                  0.000
                                                                                              0.0
  I_CSA4 (csa15bit_32)
                                                             0.000 \quad 5.48\,\mathrm{e}{+04} \quad 5.48\,\mathrm{e}{-05}
                                                  0.000
                                                                                              0.0
  I_CSA3 (csa15bit_33)
                                                             0.000 \ 3.44e+05 \ 3.44e-04
                                                                                              0.0
                                                  0.000
                                                             0.000 5.48e+04 5.48e-05
  I_CSA2 (csa15bit_34)
                                                  0.000
                                                                                              0.0
  I_CSA1 (csa15bit_35)
                                                             0.000 \ 1.24e+05 \ 1.24e-04
                                                  0.000
                                                                                              0.0
                                           8.79e-09 1.88e-09 1.16e+05 1.16e-04
  I_PAR (parcial_5)
                                                                                              0.0
Mult3 (multiplier_6)
                                              9.13e-09 4.05e-09 3.15e+06 3.15e-03
                                                                                              0.1
                                                             0.000 \quad 1.46 \, e + 06 \quad 1.46 \, e - 03
  I_CRA (CRA_15_6)
                                                  0.000
                                                                                              0.1
                                                  0.000
  I_CSA6 (csa15bit_36)
                                                             0.000 \ 1.03e+06 \ 1.03e-03
                                                                                              0.0
  I_CSA5 (csa15bit_37)
                                                  0.000
                                                             0.000 \ 1.55e+05 \ 1.55e-04
                                                                                              0.0
  I_{CSA4} (csa15bit_38)
                                                  0.000
                                                             0.000 \quad 5.48e + 04 \quad 5.48e - 05
                                                                                              0.0
                                                             0.000 \quad 7.25 \,\mathrm{e}{+04} \quad 7.25 \,\mathrm{e}{-05}
  I_CSA3 (csa15bit_39)
                                                  0.000
                                                                                              0.0
                                                             0.000 \quad 5.48 \,\mathrm{e}{+04} \quad 5.48 \,\mathrm{e}{-05}
                                                  0.000
                                                                                              0.0
  I_{CSA2} (csa15bit_40)
```

```
I_CSA1 (csa15bit_41)
                                                          0.000 \ 1.36e+05 \ 1.36e-04
                                                                                         0.0
  LPAR (parcial_6)
                                            9.13e-09 4.05e-09 1.92e+05 1.92e-04
                                                                                         0.0
                                            2.35e-02 3.82e-02 2.76e+06 6.45e-02
Mult2 (multiplier_7)
                                                                                         2.8
                                            7.96e-03 9.09e-03 1.16e+06 1.82e-02
  I_CRA (CRA_15_7)
                                                                                         0.8
  I_CSA6 (csa15bit_42)
                                            5.35e-03 1.20e-02 8.69e+05 1.82e-02
                                                                                         0.8
  I_CSA5 (csa15bit_43)
                                           3.39e-03 6.41e-03 2.07e+05 1.00e-02
                                                                                         0.4
  I_CSA4 (csa15bit_44)
                                           1.96e-04 3.17e-04 5.60e+04 5.70e-04
                                                                                         0.0
  I_CSA3 (csa15bit_45)
                                           2.51e-03 4.70e-03 1.24e+05 7.33e-03
                                                                                         0.3
  I_CSA2 (csa15bit_46)
                                           1.01e-03 1.73e-03 5.69e+04 2.80e-03
                                                                                         0.1
  I_CSA1 (csa15bit_47)
                                           1.52e-03 2.67e-03 1.32e+05 4.33e-03
                                                                                         0.2
  LPAR (parcial_7)
                                           1.61e-03 1.31e-03 1.55e+05 3.07e-03
Mult1 (multiplier_8)
                                               0.000
                                                          0.000 \quad 3.17e + 06 \quad 3.17e - 03
  I_CRA (CRA_15_8)
                                               0.000
                                                          0.000 \quad 1.27e + 06 \quad 1.27e - 03
                                                          0.000 \ 1.07e + 06 \ 1.07e - 03
  I_CSA6 (csa15bit_48)
                                               0.000
                                                                                         0.0
                                                          0.000 \ 3.05e+05 \ 3.05e-04
                                               0.000
                                                                                         0.0
  I_{CSA5} (csa15bit_49)
  I_CSA4 (csa15bit_50)
                                                          0.000 5.48e+04 5.48e-05
                                               0.000
                                                                                         0.0
  I_CSA3 (csa15bit_51)
                                               0.000
                                                          0.000 8.90 e + 04 8.90 e - 05
                                                                                         0.0
                                                          0.000 5.48e+04 5.48e-05
  I_CSA2 (csa15bit_52)
                                               0.000
                                                                                         0.0
  I_CSA1 (csa15bit_53)
                                               0.000
                                                          0.000 \ 1.64e+05 \ 1.64e-04
                                                                                         0.0
  I_PAR (parcial_8)
                                               0.000
                                                          0.000 \quad 1.63 \,\mathrm{e}{+05} \quad 1.63 \,\mathrm{e}{-04}
                                                                                         0.0
filtermask (SHIFTREG_0)
                                            1.79e-07
                                                          0.400 \ 1.55 e + 06
                                                                               0.401
                                                                                       17.6
cache (SHIFTREG_1)
                                            7.08e-02
                                                          0.475 \ 1.79e+06
                                                                               0.548
                                                                                       24.0
fsm_output (FSM_out_3)
                                               0.159
                                                          0.246 \quad 3.10 \, e{+07}
                                                                               0.436
                                                                                       19.1
  r156 (FSM_out_3_DW01_inc_0)
                                            8.60e-03 5.37e-02 3.89e+06 6.62e-02
                                                                                         2.9
  r159 (FSM_out_3_DW01_inc_1)
                                                          0.000 \ 3.80e + 06 \ 3.80e - 03
                                               0.000
                                                                                         0.2
  r162 (FSM_out_3_DW01_inc_2)
                                                          0.000 \ 3.82e+06 \ 3.82e-03
                                                                                         0.2
                                               0.000
  r167 (FSM_out_3_DW01_inc_4)
                                                          0.000 \ 3.78e + 06 \ 3.78e - 03
                                                                                         0.2
                                               0.000
  sub_312 (FSM_out_3_DW01_sub_0)
                                                          0.000 \quad 4.46 \,\mathrm{e}{+04} \quad 4.46 \,\mathrm{e}{-05}
                                                                                         0.0
                                               0.000
  add_287 (FSM_out_3_DW01_add_0)
                                                          0.000 \quad 4.76 \,\mathrm{e}{+04} \quad 4.76 \,\mathrm{e}{-05}
                                                                                         0.0
                                               0.000
  add_109 (FSM_out_3_DW01_inc_5)
                                            7.18e - 03 5.56e - 02 3.89e + 06 6.67e - 02
                                                                                         2.9
fsm_input (FSM_in_3)
                                               0.157
                                                          0.191 \ 2.15e+07
                                                                               0.370
                                                                                       16.2
  r111 (FSM_in_3_DW01_inc_0)
                                            9.62e-03 5.35e-02 3.89e+06 6.71e-02
                                                                                         2.9
  add_192 (FSM_in_3_DW01_inc_2)
                                               0.000
                                                          0.000 \ 3.80e + 06 \ 3.80e - 03
                                                                                         0.2
  add_165 (FSM_in_3_DW01_add_1)
                                               0.000
                                                          0.000 \quad 4.35 \,\mathrm{e}{+04} \quad 4.35 \,\mathrm{e}{-05}
                                                                                         0.0
  add_103 (FSM_in_3_DW01_inc_3)
                                            1.23e-06 8.08e-06 3.78e+06 3.79e-03
                                                                                         0.2
```

Listing 25: Power Breakdown 5 ns

 $\mathbf{Report} \; : \; \mathrm{power}$

-net -cell -hier

-analysis_effort low -sort_mode dynamic_power

 $\begin{array}{lll} Design &: & Processor_3 \\ Version: & X-2005.09-SP1 \end{array}$

Date : Wed Dec 12 13:16:27 2007

Library(s) Used:

 $CORE90GPSVT \ (\textbf{File}: \ / \texttt{cell_libs} / \texttt{cmos}090_50\texttt{a} / CORE90GPSVT_SNPS_AVT_2.1$

 $/SIGNOFF/\,bc_1\,.10\,V_m40\,C_wc_0\,.90\,V_105\,C/PT_LIB/CORE90GPSVT_NomLeak\,.\,db)$

CORE90GPHVT (File: /cell_libs/cmos090_50a/CORE90GPHVT.SNPS-AVT_2.1.a

/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db)

Operating Conditions: NomLeak Library: CORE90GPSVT

Wire Load Model Mode: enclosed

Design Wire Loa	d Model	Library
Processor_3	$area_48Kto72K$	CORE90GPSVT
FSM_in_3	$area_6Kto12K$	CORE90GPSVT
FSM_in_3_DW01_inc_3	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW01_add_1	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_2}$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_0}$	$area_0to1K$	CORE90GPSVT
FSM_out_3	$area_{-}6Kto12K$	CORE90GPSVT
FSM_out_3_DW01_inc_5	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_add_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_sub_0	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_4$	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_2	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_1	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_0	$area_0to1K$	CORE90GPSVT
SHIFTREG_1	$area_1Kto2K$	CORE90GPSVT
SHIFTREG_0	$area_1Kto2K$	CORE90GPSVT
multiplier_8	$area_4Kto5K$	CORE90GPSVT
parcial_8	$area_0to1K$	CORE90GPSVT
csa15bit_53	$area_0to1K$	CORE90GPSVT
csa15bit_52	$area_0to1K$	CORE90GPSVT
csa15bit_51	$area_0to1K$	CORE90GPSVT
csa15bit_50	$area_0to1K$	CORE90GPSVT
csa15bit_49	$area_0to1K$	CORE90GPSVT
csa15bit_48	$area_0to1K$	CORE90GPSVT
CRA_15_8	$area_0to1K$	CORE90GPSVT
multiplier_7	$area_4Kto5K$	CORE90GPSVT
parcial_7	$area_0to1K$	CORE90GPSVT
csa15bit_47	$area_0to1K$	CORE90GPSVT
csa15bit_46	$area_0to1K$	CORE90GPSVT
csa15bit_45	$area_0to1K$	CORE90GPSVT

$csa15bit_44$	$area_0to1K$	CORE90GPSVT
$csa15bit_43$	$area_0to1K$	CORE90GPSVT
$csa15bit_42$	$area_0to1K$	CORE90GPSVT
CRA_15_7	$area_0to1K$	CORE90GPSVT
multiplier_6	$area_4Kto5K$	CORE90GPSVT
parcial_6	$area_0to1K$	CORE90GPSVT
$csa15bit_41$	$area_0to1K$	CORE90GPSVT
$csa15bit_40$	$area_0to1K$	CORE90GPSVT
csa15bit_39	$area_0to1K$	CORE90GPSVT
csa15bit_38	$area_0to1K$	CORE90GPSVT
csa15bit_37	$area_0to1K$	CORE90GPSVT
csa15bit_36	$area_0to1K$	CORE90GPSVT
CRA_15_6	$area_0to1K$	CORE90GPSVT
multiplier_5	$area_4Kto5K$	CORE90GPSVT
parcial_5	$area_0to1K$	CORE90GPSVT
csa15bit_35	$area_0to1K$	CORE90GPSVT
csa15bit_34	$area_0to1K$	CORE90GPSVT
csa15bit_33	$area_0to1K$	CORE90GPSVT
csa15bit_32	$area_0to1K$	CORE90GPSVT
csa15bit_31	$area_0to1K$	CORE90GPSVT
csa15bit_30	$area_0to1K$	CORE90GPSVT
CRA_15_5	$area_0to1K$	CORE90GPSVT
multiplier_4	$area_4Kto5K$	CORE90GPSVT
parcial_4	$area_0to1K$	CORE90GPSVT
csa15bit_29	$area_0to1K$	CORE90GPSVT
csa15bit_28	$area_0to1K$	CORE90GPSVT
csa15bit_27	$area_0to1K$	CORE90GPSVT
csa15bit_26	$area_0to1K$	CORE90GPSVT
csa15bit_25	$area_0to1K$	CORE90GPSVT
csa15bit_24	$area_0to1K$	CORE90GPSVT
CRA_15_4	$area_0to1K$	CORE90GPSVT
multiplier_3	$area_4Kto5K$	CORE90GPSVT
parcial_3	$area_0to1K$	CORE90GPSVT
csa15bit_23	area_0to1K	CORE90GPSVT
csa15bit_22	$area_0to1K$	CORE90GPSVT
csa15bit_21	area_0to1K	CORE90GPSVT
csa15bit_20	area_0to1K	CORE90GPSVT
csa15bit_19	area_0to1K	CORE90GPSVT
csa15bit_18	area_0to1K	CORE90GPSVT
CRA_15_3	area_0to1K	CORE90GPSVT
multiplier_2	area_4Kto5K	CORE90GPSVT
parcial_2	area_0to1K	CORE90GPSVT
csa15bit_17	area_0to1K	CORE90GPSVT
csa15bit_16	area_0to1K	CORE90GPSVT
csa15bit_15	area_0to1K	CORE90GPSVT
csa15bit_14	area_0to1K	CORE90GPSVT
csa15bit_13	area_0to1K	CORE90GPSVT
csa15bit_12	area_0to1K	CORE90GPSVT
CRA_15_2	area_0to1K	CORE90GPSVT
multiplier_1	area_4Kto5K	CORE90GPSVT
parcial_1	area_0to1K	CORE90GPSVT
csa15bit_11	area_0to1K	CORE90GPSVT
csa15bit_10	area_0to1K	CORE90GPSVT
csa15bit_9	area_0to1K	CORE90GPSVT
csa15bit_8	area_0to1K	CORE90GPSVT
csa15bit_7	area_0to1K	CORE90GPSVT
csa15bit_6	$area_0to1K$	CORE90GPSVT

CRA_15_1	$area_0to1K$	CORE90GPSVT
multiplier_0	$area_4Kto5K$	CORE90GPSVT
parcial_0	$area_0to1K$	CORE90GPSVT
csa15bit_5	$area_0to1K$	CORE90GPSVT
csa15bit_4	$area_0to1K$	CORE90GPSVT
csa15bit_3	$area_0to1K$	CORE90GPSVT
csa15bit_2	$area_0to1K$	CORE90GPSVT
csa15bit_1	$area_0to1K$	CORE90GPSVT
csa15bit_0	$area_0to1K$	CORE90GPSVT
CRA_15_0	$area_0to1K$	CORE90GPSVT
ADDER_3_2	$area_0to1K$	CORE90GPSVT
ADDER_3_2_DW01_add_3	$area_0to1K$	CORE90GPSVT
ADDER_3_2_DW01_add_2	$area_0to1K$	CORE90GPSVT
ADDER_3_1	$area_0to1K$	CORE90GPSVT
ADDER_3_1_DW01_add_3	$area_0to1K$	CORE90GPSVT
ADDER_3_1_DW01_add_2	$area_0to1K$	CORE90GPSVT
ADDER_3_0	$area_0to1K$	CORE90GPSVT
ADDER_3_0_DW01_add_3	$area_0to1K$	CORE90GPSVT
ADDER_3_0_DW01_add_2	$area_0to1K$	CORE90GPSVT
MUX_4	$area_0to1K$	CORE90GPSVT
ADDER_2	$area_0to1K$	CORE90GPSVT
ADDER_2_DW01_add_1	$area_0to1K$	CORE90GPSVT
REG	$area_0to1K$	CORE90GPSVT
I .		

```
Global Operating Voltage = 1
Power-specific \ unit \ information :
    Voltage \ \mathbf{Units} = 1V
    Capacitance Units = 1.000000pf
    Time Units = 1ns
                                   (derived from V, C, T units)
    Dynamic Power Units = ImW
    Leakage Power Units = 1pW
```

Attributes

Net	Total Net Load	Static Prob.	Toggle Rate	Switching Power	Attrs
disable_to_cache	0.293	0.760	0.0800	0.0117	a
cache_bits [24]	0.046	0.477	0.0600	0.0014	a
cache_bits[16]	0.046	0.477	0.0600	0.0014	a
cache_bits[25]	0.045	0.477	0.0596	0.0014	a
cache_bits [49]	0.044	0.477	0.0596	0.0013	a
cache_bits [65]	0.042	0.477	0.0596	0.0013	a
cache_bits[41]	0.042	0.477	0.0596	0.0013	a
cache_bits[56]	0.041	0.477	0.0600	0.0012	a
cache_bits [64]	0.040	0.477	0.0600	0.0012	a

cache_bits 8 0.040						
cache_bits [48]	cache_bits[8]	0.040	0.477	0.0600	0.0012	a
cache_bits [48]	cache_bits[32]	0.040	0.477	0.0600	0.0012	a
cache_bits [1]	cache_bits [48]	0.039	0.477	0.0600	0.0012	a
cache_bits 57						a
cache_bits 9 0.037						
cache_bits 9						
cache_bits 133 0.037						
cache_bits [18]						
cache_bits 566 0.040						
cache_bits 58 0.038						
cache_bits [12]						
cache_bits 10 0.037 0.481 0.0551 0.0010 a cache_bits 26 0.037 0.482 0.0551 0.0010 a cache_bits 50 0.036 0.482 0.0551 0.0010 a cache_bits 34 0.039 0.481 0.0551 0.0011 a cache_bits 21 0.033 0.482 0.0551 0.0009 a cache_bits 27 0.040 0.499 0.0462 0.0009 a cache_bits 27 0.040 0.499 0.0462 0.0009 a cache_bits 28 0.039 0.499 0.0462 0.0009 a cache_bits 33 0.039 0.499 0.0462 0.0009 a cache_bits 35 0.039 0.499 0.0462 0.0009 a cache_bits 51 0.037 0.499 0.0462 0.0009 a cache_bits 51 0.037 0.499 0.0462 0.0009 a cache_bits 51 0.037 0.499 0.0462 0.0009 a cache_bits 59 0.039 0.499 0.0462 0.0009 a cache_bits 59 0.039 0.499 0.0462 0.0009 a cache_bits 59 0.039 0.499 0.0462 0.0009 a cache_bits 59 0.033 0.499 0.0462 0.0009 a cache_bits 59 0.033 0.499 0.0462 0.0008 a cache_bits 59 0.033 0.499 0.0462 0.0008 a cache_bits 50 0.033 0.499 0.0462 0.0008 a cache_bits 50 0.039 0.486 0.0357 0.0007 a cache_bits 52 0.036 0.486 0.0357 0.0006 a cache_bits 52 0.036 0.486 0.0357 0.0006 a cache_bits 54 0.037 0.470 0.0260 0.0005 a cache_bits 54 0.037 0.470 0.0260 0.0005 a cache_bits 54 0.037 0.470 0.0260 0.0005 a cache_bits 54 0.037 0.039 0.470 0.0260 0.0005 a cache_bits 53 0.						
cache_bits 26 0.037 0.482 0.0551 0.0010 a cache_bits 50 0.036 0.482 0.0551 0.0010 a cache_bits 34 0.039 0.481 0.0551 0.0011 a cache_bits 27 0.040 0.499 0.0462 0.0009 a cache_bits 27 0.040 0.499 0.0462 0.0009 a cache_bits 43 0.039 0.489 0.0462 0.0009 a cache_bits 43 0.039 0.499 0.0462 0.0009 a cache_bits 45 0.037 0.499 0.0462 0.0009 a cache_bits 51 0.039 0.499 0.0462 0.0009 a cache_bits 51 0.039 0.499 0.0462 0.0009 a cache_bits 51 0.039 0.499 0.0462 0.0009 a cache_bits 51 0.033 0.477 0.0596 0.0007 a cache_bits 51 0.033 0.499 0.0462 0.0008 a cache_bits 51 0.033 0.499 0.0462 0.0008 a cache_bits 51 0.033 0.499 0.0462 0.0008 a cache_bits 51 0.036 0.499 0.0462 0.0008 a cache_bits 51 0.036 0.499 0.0462 0.0008 a cache_bits 51 0.039 0.486 0.0357 0.0007 a cache_bits 52 0.040 0.486 0.0357 0.0007 a cache_bits 52 0.036 0.486 0.0357 0.0007 a cache_bits 52 0.036 0.486 0.0357 0.0007 a cache_bits 52 0.036 0.486 0.0357 0.0006 a cache_bits 52 0.037 0.470 0.0260 0.0005 a cache_bits 53 0.039 0.470 0.0260 0.0005 a cache_bits 53 0.039 0.						
cache_bits 50						
cache_bits [34]						
cache_bits [27]						
cache_bits [67]						
Cache_bits [27]						
cache_bits [43]						
cache_bits 35 0.039 0.499 0.0462 0.0009 a cache_bits 51 0.037 0.499 0.0462 0.0009 a cache_bits 11 0.039 0.499 0.0462 0.0009 a cache_bits 17 0.023 0.477 0.0596 0.0007 a cache_bits 19 0.036 0.499 0.0462 0.0008 a cache_bits 19 0.036 0.499 0.0462 0.0008 a cache_bits 19 0.036 0.499 0.0462 0.0008 a cache_bits 12 0.040 0.486 0.0357 0.0007 a cache_bits 68 0.040 0.486 0.0357 0.0007 a cache_bits 68 0.040 0.486 0.0357 0.0007 a cache_bits 36 0.039 0.486 0.0357 0.0007 a cache_bits 28						
cache_bits 51						
cache_bits [11]						
cache_bits [59] 0.039 0.499 0.0462 0.0009 a cache_bits [17] 0.023 0.477 0.0596 0.0007 a cache_bits [19] 0.033 0.499 0.0462 0.0008 a cache_bits [12] 0.040 0.486 0.0357 0.0007 a cache_bits [68] 0.040 0.486 0.0357 0.0007 a cache_bits [60] 0.039 0.486 0.0357 0.0007 a cache_bits [36] 0.039 0.486 0.0357 0.0007 a cache_bits [28] 0.039 0.486 0.0357 0.0007 a cache_bits [44] 0.037 0.486 0.0357 0.0007 a cache_bits [44] 0.037 0.486 0.0357 0.0007 a cache_bits [4] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.009 0.477 0.0600 0.0003 a cache_bits [40] 0.041						
cache_bits [17] 0.023 0.477 0.0596 0.0007 a cache_bits [19] 0.033 0.499 0.0462 0.0008 a cache_bits [12] 0.040 0.486 0.0357 0.0007 a cache_bits [68] 0.040 0.486 0.0357 0.0007 a cache_bits [60] 0.039 0.486 0.0357 0.0007 a cache_bits [36] 0.039 0.486 0.0357 0.0007 a cache_bits [36] 0.039 0.486 0.0357 0.0007 a cache_bits [28] 0.039 0.486 0.0357 0.0007 a cache_bits [44] 0.037 0.486 0.0357 0.0007 a cache_bits [44] 0.036 0.486 0.0357 0.0007 a cache_bits [44] 0.036 0.486 0.0357 0.0006 a cache_bits [44] 0.036 0.486 0.0357 0.0006 a cache_bits [45] 0.036						
cache_bits[3] 0.033 0.499 0.0462 0.0008 a cache_bits[19] 0.036 0.499 0.0462 0.0008 a cache_bits[12] 0.040 0.486 0.0357 0.0007 a cache_bits[60] 0.039 0.486 0.0357 0.0007 a cache_bits[36] 0.039 0.486 0.0357 0.0007 a cache_bits[28] 0.039 0.486 0.0357 0.0007 a cache_bits[28] 0.039 0.486 0.0357 0.0007 a cache_bits[44] 0.037 0.486 0.0357 0.0007 a cache_bits[49] 0.036 0.486 0.0357 0.0007 a cache_bits[40] 0.036 0.486 0.0357 0.0006 a cache_bits[40] 0.009 0.477 0.0600 0.0003 a cache_bits[40] 0.001 0.470 0.0260 0.0005 a cache_bits[40] 0.002 0						
cache_bits [19] 0.036 0.499 0.0462 0.0008 a cache_bits [68] 0.040 0.486 0.0357 0.0007 a cache_bits [68] 0.040 0.486 0.0357 0.0007 a cache_bits [60] 0.039 0.486 0.0357 0.0007 a cache_bits [28] 0.039 0.486 0.0357 0.0007 a cache_bits [44] 0.037 0.486 0.0357 0.0007 a cache_bits [52] 0.036 0.486 0.0357 0.0007 a cache_bits [4] 0.037 0.486 0.0357 0.0007 a cache_bits [4] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.009 0.477 0.0600 0.0003 a cache_bits [45] 0.039 0.470 0.0260 0.0005 a cache_bits [45] 0.039 0.470 0.0260 0.0005 a cache_bits [61] 0.037						
cache_bits [12] 0.040 0.486 0.0357 0.0007 a cache_bits [68] 0.040 0.486 0.0357 0.0007 a cache_bits [60] 0.039 0.486 0.0357 0.0007 a cache_bits [28] 0.039 0.486 0.0357 0.0007 a cache_bits [44] 0.037 0.486 0.0357 0.0007 a cache_bits [52] 0.036 0.486 0.0357 0.0006 a cache_bits [41] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.009 0.477 0.0600 0.0003 a cache_bits [20] 0.041 0.486 0.0357 0.0007 a cache_bits [21] 0.039 0.470 0.0260 0.0005 a cache_bits [29] 0.038 0.470 0.0260 0.0005 a cache_bits [61] 0.037						
cache_bits [68] 0.040 0.486 0.0357 0.0007 a cache_bits [60] 0.039 0.486 0.0357 0.0007 a cache_bits [28] 0.039 0.486 0.0357 0.0007 a cache_bits [28] 0.039 0.486 0.0357 0.0007 a cache_bits [44] 0.037 0.486 0.0357 0.0006 a cache_bits [49] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.036 0.486 0.0357 0.0006 a cache_bits [20] 0.041 0.486 0.0357 0.0006 a cache_bits [20] 0.041 0.486 0.0357 0.0006 a cache_bits [21] 0.039 0.477 0.0600 0.0003 a cache_bits [29] 0.038 0.470 0.0260 0.0005 a cache_bits [61] 0.037 0.470 0.0260 0.0005 a cache_bits [5] 0.035						
cache_bits [60] 0.039 0.486 0.0357 0.0007 a cache_bits [36] 0.039 0.486 0.0357 0.0007 a cache_bits [28] 0.039 0.486 0.0357 0.0007 a cache_bits [44] 0.037 0.486 0.0357 0.0007 a cache_bits [4] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.009 0.477 0.0600 0.0003 a cache_bits [45] 0.039 0.470 0.0260 0.0007 a cache_bits [45] 0.039 0.470 0.0260 0.0005 a cache_bits [45] 0.039 0.470 0.0260 0.0005 a cache_bits [29] 0.038 0.470 0.0260 0.0005 a cache_bits [69] 0.037 0.470 0.0260 0.0005 a cache_bits [5] 0.035						
$\begin{array}{c} {\rm cache_bits} \left[36 \right] \\ {\rm cache_bits} \left[28 \right] \\ {\rm cache_bits} \left[28 \right] \\ {\rm cache_bits} \left[28 \right] \\ {\rm cache_bits} \left[24 \right] \\ {\rm cache_bits} \left[44 \right] \\ {\rm cache_bits} \left[52 \right] \\ {\rm cache_bits} \left[44 \right] \\ {\rm cache_bits} \left[40 \right] \\ {\rm cache_bits} \left[40 \right] \\ {\rm cache_bits} \left[40 \right] \\ {\rm cache_bits} \left[20 \right] \\ {\rm cache_bits} \left[40 \right] \\ {\rm cache_bi$						
$\begin{array}{c} {\rm cache_bits} \left[28\right] \\ {\rm cache_bits} \left[44\right] \\ {\rm cache_bits} \left[44\right] \\ {\rm cache_bits} \left[52\right] \\ {\rm cache_bits} \left[52\right] \\ {\rm cache_bits} \left[52\right] \\ {\rm cache_bits} \left[4\right] \\ {\rm cache_bits} \left[40\right] \\ {\rm ca$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
cache_bits [52] 0.036 0.486 0.0357 0.0006 a cache_bits [4] 0.036 0.486 0.0357 0.0006 a cache_bits [40] 0.009 0.477 0.0600 0.0003 a cache_bits [20] 0.041 0.486 0.0357 0.0007 a cache_bits [45] 0.039 0.470 0.0260 0.0005 a Data_out [0] 0.002 0.678 0.0752 8.185e-05 a cache_bits [29] 0.038 0.470 0.0260 0.0005 a cache_bits [61] 0.037 0.470 0.0260 0.0005 a cache_bits [69] 0.037 0.470 0.0260 0.0005 a cache_bits [5] 0.035 0.470 0.0260 0.0005 a cache_bits [37] 0.039 0.470 0.0260 0.0005 a cache_bits [13] 0.039 0.470 0.0260 0.0005 a cache_bits [21] 0.038 0.470 0.0260 0.0005 a cache_bits [53] <						
$\begin{array}{c} {\rm cache_bits}[4] \\ {\rm cache_bits}[40] \\ {\rm cache_bits}[40] \\ {\rm cache_bits}[20] \\ {\rm cache_bits}[20] \\ {\rm cache_bits}[45] \\ {\rm Data_out}[0] \\ {\rm cache_bits}[29] \\ {\rm cache_bits}[61] \\ {\rm cache_bits}[61] \\ {\rm cache_bits}[69] \\ {\rm cache_bits}[69] \\ {\rm cache_bits}[5] \\ {\rm Data_out}[1] \\ {\rm cache_bits}[1] \\ {\rm cache_bits}[2] \\ {\rm cache_bits$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c } Data_out [0] & 0.002 & 0.678 & 0.0752 & 8.185e-05 & a \\ cache_bits [29] & 0.038 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [61] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [69] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [5] & 0.035 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [1] & 0.002 & 0.711 & 0.0718 & 7.814e-05 & a \\ cache_bits [37] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [2] & 0.002 & 0.730 & 0.0686 & 7.464e-05 & a \\ cache_bits [13] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [21] & 0.038 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [53] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [3] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ Data_out [4] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ Data_out [5] & 0.002 & 0.738 & 0.0565 & 6.150e-05 & a \\ cache_bits [14] & 0.038 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.436 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits$						
$\begin{array}{c} {\rm cache_bits} \left[29 \right] & 0.038 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm cache_bits} \left[61 \right] & 0.037 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm cache_bits} \left[69 \right] & 0.037 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm cache_bits} \left[5 \right] & 0.035 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm Data_out} \left[1 \right] & 0.002 & 0.711 & 0.0718 & 7.814e-05 & {\rm a} \\ {\rm cache_bits} \left[37 \right] & 0.039 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm Data_out} \left[2 \right] & 0.002 & 0.730 & 0.0686 & 7.464e-05 & {\rm a} \\ {\rm cache_bits} \left[13 \right] & 0.039 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm cache_bits} \left[21 \right] & 0.038 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm cache_bits} \left[53 \right] & 0.037 & 0.470 & 0.0260 & 0.0005 & {\rm a} \\ {\rm cache_bits} \left[53 \right] & 0.002 & 0.736 & 0.0260 & 0.0005 & {\rm a} \\ {\rm Data_out} \left[3 \right] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & {\rm a} \\ {\rm Data_out} \left[4 \right] & 0.002 & 0.736 & 0.0565 & 6.150e-05 & {\rm a} \\ {\rm Data_out} \left[5 \right] & 0.002 & 0.738 & 0.0508 & 5.530e-05 & {\rm a} \\ {\rm cache_bits} \left[14 \right] & 0.038 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[54 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[54 \right] & 0.037 & 0.436 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ {\rm cache_bits} \left[52 \right] & 0.037 & 0.435 & 0.0148 & 0.0003 & {\rm a} \\ $						
$\begin{array}{c} \operatorname{cache_bits}\left[61\right] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ \operatorname{cache_bits}\left[69\right] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ \operatorname{cache_bits}\left[5\right] & 0.035 & 0.470 & 0.0260 & 0.0005 & a \\ \operatorname{Data_out}\left[1\right] & 0.002 & 0.711 & 0.0718 & 7.814e-05 & a \\ \operatorname{cache_bits}\left[37\right] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ \operatorname{Data_out}\left[2\right] & 0.002 & 0.730 & 0.0686 & 7.464e-05 & a \\ \operatorname{cache_bits}\left[13\right] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ \operatorname{cache_bits}\left[21\right] & 0.038 & 0.470 & 0.0260 & 0.0005 & a \\ \operatorname{cache_bits}\left[53\right] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ \operatorname{cache_bits}\left[53\right] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ \operatorname{Data_out}\left[3\right] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ \operatorname{Data_out}\left[4\right] & 0.002 & 0.736 & 0.0565 & 6.150e-05 & a \\ \operatorname{Data_out}\left[5\right] & 0.002 & 0.738 & 0.0508 & 5.530e-05 & a \\ \operatorname{cache_bits}\left[14\right] & 0.038 & 0.435 & 0.0148 & 0.0003 & a \\ \operatorname{cache_bits}\left[62\right] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \operatorname{cache_bits}\left[54\right] & 0.037 & 0.436 & 0.0148 & 0.0003 & a \\ \operatorname{cache_bits}\left[54\right] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \operatorname{cache_bits}\left[52\right] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \operatorname{cache_bits}\left[52\right] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \operatorname{cache_bits}\left[52\right] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \operatorname{cache_bits}\left[52\right] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \end{array}$						
$\begin{array}{ c c c c c c c c } & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [5] & 0.035 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [1] & 0.002 & 0.711 & 0.0718 & 7.814e-05 & a \\ cache_bits [37] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [2] & 0.002 & 0.730 & 0.0686 & 7.464e-05 & a \\ cache_bits [13] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [21] & 0.038 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [53] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [53] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ Data_out [3] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ Data_out [4] & 0.002 & 0.736 & 0.0565 & 6.150e-05 & a \\ Data_out [5] & 0.002 & 0.738 & 0.0508 & 5.530e-05 & a \\ cache_bits [14] & 0.038 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.436 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \end{array}$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c } Data_out [1] & 0.002 & 0.711 & 0.0718 & 7.814e-05 & a \\ cache_bits [37] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [2] & 0.002 & 0.730 & 0.0686 & 7.464e-05 & a \\ cache_bits [13] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [21] & 0.038 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [53] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [3] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ Data_out [4] & 0.002 & 0.736 & 0.0565 & 6.150e-05 & a \\ Data_out [5] & 0.002 & 0.738 & 0.0508 & 5.530e-05 & a \\ cache_bits [14] & 0.038 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [62] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.436 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \end{array}$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1					
$\begin{array}{ c c c c c c c c } Data_out [2] & 0.002 & 0.730 & 0.0686 & 7.464e-05 & a \\ cache_bits [13] & 0.039 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [21] & 0.038 & 0.470 & 0.0260 & 0.0005 & a \\ cache_bits [53] & 0.037 & 0.470 & 0.0260 & 0.0005 & a \\ Data_out [3] & 0.002 & 0.736 & 0.0628 & 6.836e-05 & a \\ Data_out [4] & 0.002 & 0.736 & 0.0565 & 6.150e-05 & a \\ Data_out [5] & 0.002 & 0.738 & 0.0508 & 5.530e-05 & a \\ cache_bits [14] & 0.038 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [62] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [54] & 0.037 & 0.436 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ cache_bits [22] & 0.037 & 0.435 & 0.0148 & 0.0003 & a \\ \end{array}$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Data_out [5] 0.002 0.738 0.0508 5.530e-05 a cache_bits [14] 0.038 0.435 0.0148 0.0003 a cache_bits [62] 0.037 0.435 0.0148 0.0003 a cache_bits [54] 0.037 0.436 0.0148 0.0003 a cache_bits [22] 0.037 0.435 0.0148 0.0003 a						
cache_bits [14] 0.038 0.435 0.0148 0.0003 a cache_bits [62] 0.037 0.435 0.0148 0.0003 a cache_bits [54] 0.037 0.436 0.0148 0.0003 a cache_bits [22] 0.037 0.435 0.0148 0.0003 a						
cache_bits [62] 0.037 0.435 0.0148 0.0003 a cache_bits [54] 0.037 0.436 0.0148 0.0003 a cache_bits [22] 0.037 0.435 0.0148 0.0003 a						
cache_bits [54] 0.037 0.436 0.0148 0.0003 a cache_bits [22] 0.037 0.435 0.0148 0.0003 a						
cache_bits[22] 0.037 0.435 0.0148 0.0003 a						
cacne_dits[70]						
	cache_bits[70]	0.037	0.435	0.0148	0.0003	a

cache_bits [46]	0.037	0.435	0.0148	0.0003	\mathbf{a}
cache_bits [30]	0.037	0.436	0.0148	0.0003	a
cache_bits [38]	0.037	0.435	0.0148	0.0003	a
cache_bits[6]	0.033	0.436	0.0148	0.0002	a
Data_out [6]	0.002	0.743	0.0429	4.666e-05	a
cache_bits [15]	0.038	0.332	0.0072	0.0001	a
cache_bits [47]	0.037	0.331	0.0072	0.0001	a
Data_out [7]	0.002	0.723	0.0277	3.016e - 05	a
cache_bits [39]	0.002 0.037	0.123	0.0277	0.0001	
cache_bits [34]	$0.037 \\ 0.037$	0.332 0.331	0.0072 0.0072	0.0001	a
2 2					a
cache_bits[71]	0.037	0.331	0.0072	0.0001	a
cache_bits [23]	0.037	0.331	0.0072	0.0001	a
cache_bits [55]	0.037	0.331	0.0072	0.0001	a
cache_bits [63]	0.037	0.332	0.0072	0.0001	a
cache_bits[7]	0.033	0.331	0.0072	0.0001	a
filter_bits [64]	0.018	0.000	0.18e - 5	1.632e-08	a
filter_bits [24]	0.018	0.000	0.61e-6	5.469e-09	a
filter_bits[4]	0.014	0.000	0.0000	0.0000	a
filter_bits[5]	0.014	0.000	0.0000	0.0000	a
filter_bits[6]	0.014	0.000	0.0000	0.0000	a
filter_bits[7]	0.014	0.000	0.0000	0.0000	a
filter_bits [10]	0.018	0.000	0.0000	0.0000	a
filter_bits[11]	0.018	0.000	0.0000	0.0000	a
filter_bits [13]	0.014	0.000	0.0000	0.0000	a
filter_bits [14]	0.018	0.000	0.0000	0.0000	a
filter_bits [26]	0.014	0.000	0.0000	0.0000	a
filter_bits [33]	0.018	0.000	0.0000	0.0000	a
filter_bits [36]	0.018	0.000	0.0000	0.0000	a
filter_bits [39]	0.018	0.000	0.0000	0.0000	a
filter_bits [41]	0.018	0.000	0.0000	0.0000	a
filter_bits [42]	0.018	0.000	0.0000	0.0000	a
filter_bits [52]	0.018	0.000	0.0000	0.0000	a
filter_bits [53]	0.018	0.000	0.0000	0.0000	a
filter_bits [55]	0.018	0.000	0.0000	0.0000	a
filter_bits [57]	0.018	0.000	0.0000	0.0000	a
filter_bits [59]	0.018	0.000	0.0000	0.0000	a
filter_bits [61]	0.014	0.000	0.0000	0.0000	a
filter_bits [63]	0.018	0.000	0.0000	0.0000	a
filter_bits [65]	0.018	0.000	0.0000	0.0000	a
filter_bits [69]	0.018	0.000	0.0000	0.0000	a
filter_bits [71]	0.018	0.000	0.0000	0.0000	a
filter_bits [31]	0.018	0.000	0.0000	0.0000	a
filter_bits [8]	0.018	1.000	0.31e-6	2.721e-09	a
filter_bits [40]	0.018	0.000	$0.31e^{-6}$ $0.12e^{-5}$	1.094e - 08	a
filter_bits [48]	0.018	0.000	$0.12e^{-5}$	1.094e - 08	
filter_bits [16]	0.018	0.000	$0.12e^{-6}$	5.543e - 09	a
filter_bits [0]	0.013 0.014	0.000	0.0000	0.0000	a
filter_bits[0]	0.014 0.014	0.000	0.0000	0.0000	a
filter_bits [2]	0.014 0.014	0.000	0.0000	0.0000	a
					a
filter_bits [3]	$0.014 \\ 0.018$	0.000	0.0000	0.0000	a
filter_bits [9]		0.000	0.0000	0.0000	a
filter_bits [12]	0.018	0.000	0.0000	0.0000	a
filter_bits [15]	0.018	0.000	0.0000	0.0000	a
filter_bits [17]	0.014	0.000	0.0000	0.0000	a
filter_bits [18]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [19]	0.018	0.000	0.0000	0.0000	a
filter_bits[20]	0.018	0.000	0.0000	0.0000	a

filter_bits [21]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[22]	0.018	0.000	0.0000	0.0000	a
filter_bits[23]	0.018	0.000	0.0000	0.0000	a
filter_bits[25]	0.018	0.000	0.0000	0.0000	a
filter_bits[27]	0.018	0.000	0.0000	0.0000	a
filter_bits[28]	0.018	0.000	0.0000	0.0000	a
filter_bits[29]	0.018	0.000	0.0000	0.0000	a
filter_bits[30]	0.018	0.000	0.0000	0.0000	a
filter_bits[34]	0.018	0.000	0.0000	0.0000	a
filter_bits [35]	0.018	0.000	0.0000	0.0000	a
filter_bits [37]	0.018	0.000	0.0000	0.0000	a
filter_bits [38]	0.018	0.000	0.0000	0.0000	a
filter_bits [43]	0.018	0.000	0.0000	0.0000	a
filter_bits [44]	0.018	0.000	0.0000	0.0000	a
filter_bits [45]	0.018	0.000	0.0000	0.0000	a
filter_bits [46]	0.018	0.000	0.0000	0.0000	a
filter_bits [47]	0.022	0.000	0.0000	0.0000	a
filter_bits [49]	0.018	0.000	0.0000	0.0000	a
filter_bits [50]	0.014	0.000	0.0000	0.0000	a
filter_bits [51]	0.018	0.000	0.0000	0.0000	a
filter_bits [54]	0.018	0.000	0.0000	0.0000	a
filter_bits [58]	0.018	0.000	0.0000	0.0000	a
filter_bits [60]	0.018	0.000	0.0000	0.0000	a
filter_bits [62]	0.018	0.000	0.0000	0.0000	a
filter_bits [66]	0.018	0.000	0.0000	0.0000	a
filter_bits [67]	0.018	0.000	0.0000	0.0000	a
filter_bits [68]	0.018	0.000	0.0000	0.0000	a
filter_bits [70]	0.018	0.000	0.0000	0.0000 $1.702e-08$	a
filter_bits [56] filter_bits [32]	$0.022 \\ 0.018$	$1.000 \\ 1.000$	$0.15e-5 \\ 0.92e-6$	8.204e-09	a
mux_out [1]	0.018 0.016	0.477	0.92e - 0 0.0988	0.0008	a a
mux_out [0]	0.010	0.477	0.0998	0.0006	a
mux_out [2]	0.011	0.482	0.0904	0.0007	a
mux_out [3]	0.016	0.499	0.0750	0.0006	a
select_adder[0]	0.013	0.278	0.0794	0.0005	a
select_adder[1]	0.013	0.524	0.0794	0.0005	a
mux_out [4]	0.016	0.486	0.0576	0.0005	a
Read_Addr_In_Mem[0]	0.002	0.180	0.1001	0.0001	a
Read_In_Mem	0.002	0.240	0.0800	8.700e - 05	a
Read_Addr_In_Mem [8]	0.002	0.180	0.0801	$8.717{\rm e}\!-\!05$	a
mux_out [5]	0.016	0.470	0.0419	0.0003	a
$Read_Addr_In_Mem[1]$	0.002	0.180	0.0701	$7.621\mathrm{e}\!-\!05$	a
Read_Out_Mem	0.002	0.238	0.2381	0.0003	a
mult5_out[2]	0.015	0.481	0.0551	0.0004	a
Read_Addr_In_Mem[9]	0.002	0.180	0.0601	6.534e - 05	\mathbf{a}
Read_Addr_Out_Mem [3]	0.002	0.120	0.1198	0.0001	a
Read_Addr_In_Mem [2]	0.002	0.181	0.0551	5.994e-05	a
add4_out[0]	0.004	0.678	0.0752	0.0002	a
Read_Addr_In_Mem [11]	0.002	0.180	0.0449	4.883e - 05	a
Read_Addr_In_Mem [10]	0.002	0.180	0.0499	5.433e - 05	a
Read_Addr_In_Mem [12]	0.002	0.180	0.0424	4.608e - 05	a
Read_Addr_In_Mem [13]	0.002	0.180	0.0411	4.471e - 05	a
Read_Addr_In_Mem [3]	0.002	0.181	0.0475	5.172e - 05	a
Read_Addr_In_Mem [14] Read_Addr_In_Mem [15]	$0.002 \\ 0.002$	0.180	$0.0405 \\ 0.0401$	4.402e-05 4.367e-05	a
Read_Addr_In_Mem [15] Write_Out_Mem	$0.002 \\ 0.002$	$0.180 \\ 0.278$	$0.0401 \\ 0.2381$	0.0003	a
mult2_out [1]	$0.002 \\ 0.015$	$0.278 \\ 0.477$	$0.2381 \\ 0.0596$	0.0003 0.0004	a a
muio2_0ut[1]	0.010	0.411	0.0090	0.0004	a

Read_Addr_In_Mem [4]	0.002	0.181	0.0438	4.761e-05	a
mux_out [6]	0.016	0.436	0.0234	0.0002	a
add2_out[1]	0.010	0.477	0.0596	0.0003	a
Read_Addr_In_Mem [5]	0.002	0.181	0.0419	4.556e-05	a
add1_out[1]	0.009	0.477	0.0596	0.0003	a
Read_Addr_In_Mem [6]	0.002	0.181	0.0409	4.453e - 05	a
Read_Addr_In_Mem [7]	0.002	0.181	0.0405	4.401e-05	a
Read_Addr_Out_Mem [4]	0.002	0.120	0.1198	0.0001	a
add2_out[2]	0.010	0.481	0.0551	0.0003	a
mult5_out[1]	0.015	0.477	0.0596	0.0004	a
mult8_out [0]	0.011	0.477	0.0600	0.0003	a
add4_out [5]	0.004	0.738	0.0508	0.0001	a
add4_out[1]	0.004	0.711	0.0718	0.0001	a
add4_out [2]	0.004	0.730	0.0686	0.0001	a
mult2_out [3]	0.015	0.499	0.0462	0.0003	a
add2_out [0]	0.010	0.477	0.0600	0.0003	a
Write_Addr_Out_Mem [0]	0.002	0.139	0.1392	0.0002	a
Read_Addr_Out_Mem [2]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [5]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [6]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [7]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [1]	0.002	0.120	0.1196	0.0001	a
Read_Addr_Out_Mem [9]	0.002	0.119	0.1190	0.0001	a
Read_Addr_Out_Mem[10]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem [11]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[12]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[13]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[14]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[14]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[15]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem [8]	0.002	0.119 0.119	0.1190 0.1190	0.0001	a
add3_out [1]	0.002	$0.119 \\ 0.477$	$0.1190 \\ 0.0596$	0.0001	
mult8_out [1]	0.009 0.015	$0.477 \\ 0.477$	0.0596	0.0003	a
add4_out [3]	0.013 0.004	$0.477 \\ 0.736$	0.0628	0.0004 0.0001	a
Write_Addr_Out_Mem [1]	0.004 0.002	$0.730 \\ 0.140$		0.0001	a
add4_out [6]	0.002 0.004	$0.140 \\ 0.743$	$0.1297 \\ 0.0429$	8.763e - 05	a
Write_Addr_Out_Mem [2]	0.004	$0.143 \\ 0.140$	0.0429 0.1248	0.0001	a a
add1_out [2]	0.002	0.140 0.481	0.1248 0.0551	0.0001	
mult8_out [2]	0.009 0.015	0.481	$0.0551 \\ 0.0551$	0.0003	a
Write_Addr_Out_Mem [3]	0.013 0.002	0.481 0.140	0.0331 0.1223	0.0004 0.0001	a a
mult8_out [3]	0.002 0.015	$0.140 \\ 0.499$	0.1223 0.0462	0.0001	
Write_Addr_Out_Mem [4]	0.013	0.433 0.140	0.0402 0.1211	0.0003	a
Write_Addr_Out_Mem [5]	0.002	0.140 0.140	0.1211 0.1204	0.0001	a
Write_Addr_Out_Mem [6]	0.002	0.140 0.140	$0.1204 \\ 0.1201$	0.0001	a
Write_Addr_Out_Mem [7]	0.002	0.140 0.140	0.1201 0.1200	0.0001	a
Write_Addr_Out_Mem [10]	0.002	0.140 0.139	0.1200 0.1189	0.0001	a
Write_Addr_Out_Mem [9]	0.002 0.002	0.139 0.139	0.1189 0.1189	0.0001	a
Write_Addr_Out_Mem [8]	0.002	0.139 0.139	0.1189 0.1189	0.0001	a a
add4_out [4]	0.002 0.004	0.139 0.736	$0.1169 \\ 0.0565$	0.0001	
mult8_out [4]	0.004 0.015	$0.730 \\ 0.486$	0.0363 0.0357	0.0001	a
add2_out [4]	0.013 0.010			0.0003 0.0002	a
mult2_out [2]		0.486	0.0357	0.0002 0.0004	a
mult2_out [2] mult2_out [4]	0.015	0.481	0.0551		a
add2_out [3]	$0.015 \\ 0.010$	$0.486 \\ 0.499$	$0.0357 \\ 0.0462$	$0.0003 \\ 0.0002$	a
mult2_out [0]	0.010 0.011			0.0002 0.0003	a
Write_Addr_Out_Mem[11]	$0.011 \\ 0.002$	0.477	0.0600	0.0003 0.0001	a
Write_Addr_Out_Mem [11] Write_Addr_Out_Mem [12]		0.139	0.1189		a
write_Addr_Out_Mem[12]	0.002	0.139	0.1189	0.0001	\mathbf{a}

Write_Addr_Out_Mem [13]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [14]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem[15]	0.002	0.139	0.1189	0.0001	a
add1_out[3]	0.009	0.499	0.0462	0.0002	a
add1_out[0]	0.009	0.477	0.0600	0.0003	a
add3_out[0]	0.009	0.477	0.0600	0.0003	a
add3_out [2]	0.009	0.481	0.0551	0.0003	a
add1_out [4]	0.009	0.486	0.0357	0.0002	a
add4_out [7]	0.004	0.723	0.0277	5.664e-05	a
add3_out[3]	0.009	0.499	0.0462	0.0002	a
mult5_out [0]	0.011	0.477	0.0600	0.0003	a
mult5_out [3]	0.015	0.499	0.0462	0.0003	a
add2_out [5]	0.010	0.470	0.0260	0.0001	a
add1_out[5]	0.009	0.470	0.0260	0.0001	a
mult8_out [5]	0.015	0.470	0.0260	0.0002	a
mult5_out [4]	0.015	0.486	0.0357	0.0003	a
add3_out[4]	0.009	0.486	0.0357	0.0002	a
mux_out [7]	0.016	0.331	0.0113	8.954e - 05	a
mult5_out[5]	0.015	0.470	0.0260	0.0002	a
add3_out[5]	0.009	0.470	0.0260	0.0001	a
mult2_out [5]	0.015	0.470	0.0260	0.0002	a
add1_out[6]	0.009	0.435	0.0148	6.772e-05	a
mult8_out [6]	0.015	0.435	0.0148	0.0001	a
mult5_out [6]	0.015	0.435	0.0148	0.0001	a
mult2_out [6]	0.015	0.435	0.0148	0.0001	a
mult8_out [7]	0.015	0.332	0.0072	5.328e - 05	a
add3_out [6]	0.009	0.435	0.0148	6.766e - 05	a
mult5_out [7]	0.015	0.332	0.0072	5.328e - 05	a
mult2_out [7]	0.015	0.332	0.0072	5.328e - 05	a
add2_out [6]	0.010	0.435	0.0148	7.630e-05	a
add3_out [7]	0.006	0.332	0.0072	2.240e-05	a
add1_out [7]	0.006	0.332	0.0072	2.201e-05	a
add2_out [7]	0.006	0.332	0.0072	2.229e-05	a
Write_In_Mem	0.002	0.040	0.61e-6	6.690e - 10	a
mult1_out [0]	0.011	0.000	0.0000	0.0000	a
mult1_out [1]	0.015	0.000	0.0000	0.0000	a
mult1_out [2]	0.015	0.000	0.0000	0.0000	a
mult1_out [3]	0.015	0.000	0.0000	0.0000	a
mult1_out [4]	0.015	0.000	0.0000	0.0000	a
mult1_out [5]	0.015	$0.000 \\ 0.000$	0.0000	0.0000	a
mult1_out [6] mult1_out [7]	$0.015 \\ 0.015$	0.000	$0.0000 \\ 0.0000$	$0.0000 \\ 0.0000$	a
mult1_out [7] mult3_out [0]	0.013 0.011	0.000	0.0000	0.0000	a
mult3_out [0] mult3_out [1]	$0.011 \\ 0.016$	0.000	0.0000	0.0000	a a
mult3_out [2]	0.016	0.000	0.0000	0.0000	a
mult3_out [2] mult3_out [3]	0.016	0.000	0.0000	0.0000	a
mult3_out [4]	0.016	0.000	0.0000	0.0000	a
mult3_out [4] mult3_out [5]	0.016	0.000	0.0000	0.0000	a
mult3_out [6]	0.016	0.000	0.0000	0.0000	a
mult3_out [7]	0.016	0.000	0.0000	0.0000	a
mult4_out [0]	0.010	0.000	0.0000	0.0000	a
mult4_out [1]	0.011	0.000	0.0000	0.0000	a
mult4_out [2]	0.016	0.000	0.0000	0.0000	a
mult4_out [3]	0.016	0.000	0.0000	0.0000	a
mult4_out [4]	0.016	0.000	0.0000	0.0000	a
mult4_out [5]	0.016	0.000	0.0000	0.0000	a
mult4_out [6]	0.016	0.000	0.0000	0.0000	a
maro 1_0 at [0]	0.010	0.000	0.0000	0.0000	a

mult4_out [7]	0.016	0.000	0.0000	0.0000	a
mult6_out [0]	0.011	0.000	0.0000	0.0000	a
mult6_out[1]	0.015	0.000	0.0000	0.0000	a
mult6_out[2]	0.015	0.000	0.0000	0.0000	a
mult6_out[3]	0.015	0.000	0.0000	0.0000	a
mult6_out [4]	0.015	0.000	0.0000	0.0000	a
mult6_out [5]	0.015	0.000	0.0000	0.0000	a
mult6_out [6]	0.015	0.000	0.0000	0.0000	a
mult6_out [7]	0.015	0.000	0.0000	0.0000	a
mult7_out [0]	0.011	0.000	0.0000	0.0000	a
mult7_out [1]	0.016	0.000	0.0000	0.0000	a
mult7_out [2]	0.016	0.000	0.0000	0.0000	a
mult7_out [3]	0.016	0.000	0.0000	0.0000	a
mult7_out [4]	0.016	0.000	0.0000	0.0000	a
mult7_out [5]	0.016	0.000	0.0000	0.0000	a
mult7_out [6]	0.016	0.000	0.0000	0.0000	a
mult7_out [7]	0.016	0.000	0.0000	0.0000	a
mult9_out [0]	0.011	0.000	0.0000	0.0000	a
mult9_out[1]	0.015	0.000	0.0000	0.0000	a
mult9_out [2]	0.015	0.000	0.0000	0.0000	a
mult9_out[3]	0.015	0.000	0.0000	0.0000	a
mult9_out [4]	0.015	0.000	0.0000	0.0000	a
mult9_out [5]	0.015	0.000	0.0000	0.0000	a
mult9_out [6]	0.015	0.000	0.0000	0.0000	a
mult9_out [7]	0.015	0.000	0.0000	0.0000	a

Total (319 nets)

86.4987 uW

Attributes

h - Hierarchical cell

Cell	Cell Internal Power	Driven Net Switching Power	Tot Dynamic Power (% Cell/Tot)	Cell Leakage Power Attrs
Add1	7.682e-03	N/A	N/A (N/A)	1207736.5000
Add2	8.311e-03	N/A	N/A (N/A)	h 1210277.5000 h
Add3	8.093e - 03	N/A	N/A (N/A)	1310944.5000
Add_new_value	0.0447	N/A	N/A (N/A)	h 855554.0000
Mult1	0.0000	N/A	N/A (N/A)	h 12121272.0000
Mult2	0.0601	N/A	N/A (N/A)	h 9368640.0000
Mult3	7.634e-04	N/A	N/A (N/A)	h 13342329.0000
Mult4	3.945e - 09	N/A	N/A (N/A)	h 13322298.0000
Mult5	0.0579	N/A	N/A (N/A)	9450462.0000 h

Mult6	4.489e-04	N/A	N/A (I	N/A) 15	2693175.000	
Mult7	6.767e-09	N/A	N/A (I	N/A) 15	2613385.000	
Mult8	0.0594	N/A	N/A (I	N/A) 89	913191.0000	h 0
Mult9	1.172e-08	N/A	N/A (I	N/A) 1:	2212358.000	h 00
Multiplexer	0.0226	N/A	N/A (I	N/A) 65	26328.7500	h
cache	0.4762	N/A	N/A (I	N/A) 90	01705.0625	h
filtermask	0.3942	N/A	N/A (I			h 0
fsm_input	0.1348	N/A	N/A (I			h
-		•]	h
fsm_output	0.1712	N/A	N/A (I			h
regster	0.0508	N/A	N/A (I	N/A) 19	91681.2656	h
Totals (19 cells)	1.497mW	N/A	N/A (I	N/A)	164.422uW	
Hierarchy		Switch Power	Int Power	Leak Power	Total Power	%
Processor_3		0.382	1.497	1.64e+08	3 2.044	100.0
regster (REG)		4.97e - 04			5.15e-02	2.5
Add_new_value (ADD)	ER 2)				5.58e - 02	$\begin{bmatrix} 2.7 \end{bmatrix}$
add_17/plus/plus			1.11.0 02	0.000100	0.000 02	
add_17/pids/pids	(11DDD10_2_D W01_a		3 770-02	5 08040	4.72e-02	2.3
Multiplexer (MUX.4)					3.55e-02	1.7
Add3 (ADDER_3_0)					3.39e - 02 $3.29e - 02$	0.6
add_0_root_add_0_	root add 17/plus					0.0
add_0_100t_add_0_	100t_add_11/pius	, -			6.72e-03	0.3
add_1_root_add_0_	root_add_17/plus					0.0
		0.000			5.03e-04	0.0
$Add2 (ADDER_3_1)$		2.33e-03	8.31e-03	1.21e+06	61.19e-02	0.6
$add_0_root_add_0$	root_add_17/plus	, -				
	. 1117/1				5.78e - 03	0.3
$add_1-1-root_add_0$	root_add_17/plus	, -			*	0.0
Add1 (ADDER_3_2)		0.000			5.03e-04 5.10e-02	$0.0 \\ 0.5$
add_0_root_add_0_	root add 17/plus					0.5
	root_add_rr/prac				5.71e-03	0.3
add_1_root_add_0_	root_add_17/plus					0.0
	, 1	0.000			5.03e-04	0.0
Mult9 (multiplier_0)	5.97e - 08	$1.17{\rm e}\!-\!08$	1.22e+0	$7 1.22 \mathrm{e}{-02}$	0.6
I_{CRA} (CRA ₋ 15 ₋ 0)		0.000	0.000	$2.40\mathrm{e}{+06}$	3.40e-03	0.1
I_CSA6 (csa15bit_	·	0.000			3.33e-03	0.1
I_CSA5 (csa15bit_		0.000			3.20e-03	0.1
I_CSA4 (csa15bit_		0.000			5.03e-04	0.0
I_CSA3 (csa15bit_		0.000			61.92e-03	0.1
I_CSA2 (csa15bit_		0.000			5.92e-04	0.0
$I_{-}CSA1$ (csa15bit_	5)	0.000	0.000	1.48e + 06	61.48e - 03	0.1

```
LPAR (parcial_0)
                                            5.97e-08 1.17e-08 5.77e+05 5.78e-04
                                                                                          0.0
Mult8 (multiplier_1)
                                            2.70e-02 5.94e-02 8.91e+06 9.53e-02
                                                                                          4.7
                                            6.93e-03 1.06e-02 2.00e+06 1.95e-02
  I_CRA (CRA_15_1)
                                                                                          1.0
                                            6.38e - 03 1.59e - 02 2.09e + 06 2.44e - 02
  I_CSA6 (csa15bit_6)
                                                                                          1.2
                                           4.28e-03 1.19e-02 1.46e+06 1.76e-02
  I_CSA5 (csa15bit_7)
                                                                                          0.9
  I_CSA4 (csa15bit_8)
                                           1.88e - 04 3.37e - 04 2.18e + 05 7.43e - 04
                                                                                          0.0
  I_CSA3 (csa15bit_9)
                                           3.66e-03 8.87e-03 1.06e+06 1.36e-02
                                                                                          0.7
                                           9.80e-04\ 3.07e-03\ 7.71e+05\ 4.82e-03
  I_CSA2 (csa15bit_10)
                                                                                          0.2
                                           2.54e - 03 5.99e - 03 8.81e + 05 9.42e - 03
  I_CSA1 (csa15bit_11)
                                                                                          0.5
  LPAR (parcial_1)
                                          2.09e-03 2.75e-03 4.30e+05 5.27e-03
                                                                                          0.3
Mult7 (multiplier_2)
                                           2.27e - 08 \quad 6.77e - 09 \quad 1.26e + 07 \quad 1.26e - 02
                                                                                          0.6
  I_CRA (CRA_15_2)
                                                0.000
                                                          0.000 \quad 2.47 \, e + 06 \quad 2.47 \, e - 03
                                                                                          0.1
                                                          0.000 \ 3.09e+06 \ 3.09e-03
  I_CSA6 (csa15bit_12)
                                                0.000
                                                                                          0.2
                                                          0.000 \ 2.50e + 06 \ 2.50e - 03
  I_CSA5 (csa15bit_13)
                                                0.000
                                                                                          0.1
                                                          0.000 8.13e+05 8.13e-04
  I_CSA4 (csa15bit_14)
                                                0.000
                                                                                          0.0
                                                          0.000 \ 1.74e + 06 \ 1.74e - 03
  I_CSA3 (csa15bit_15)
                                                0.000
                                                                                          0.1
                                                          0.000 \quad 5.55e + 05 \quad 5.55e - 04
  I_CSA2 (csa15bit_16)
                                                0.000
                                                                                          0.0
  I_CSA1 (csa15bit_17)
                                                0.000
                                                          0.000 \ 1.02e+06 \ 1.02e-03
                                                                                          0.0
                                         2.27e - 08 6.77e - 09 4.29e + 05 4.29e - 04
  I_PAR (parcial_2)
                                                                                          0.0
                                           1.23e-03 4.49e-04 1.27e+07 1.44e-02
Mult6 (multiplier_3)
                                                                                          0.7
  I_CRA (CRA_15_3)
                                                0.000
                                                          0.000 \quad 2.46 \,\mathrm{e}{+06} \quad 2.46 \,\mathrm{e}{-03}
                                                                                          0.1
  I_CSA6 (csa15bit_18)
                                                0.000
                                                          0.000 \ 2.66e+06 \ 2.66e-03
                                                                                          0.1
  I_CSA5 (csa15bit_19)
                                                0.000
                                                          0.000 \quad 1.94e+06 \quad 1.94e-03
                                                                                          0.1
  I_CSA4 (csa15bit_20)
                                                          0.000 \ 9.84e + 05 \ 9.84e - 04
                                                0.000
                                                                                          0.0
                                                          0.000 \quad 1.62e+06 \quad 1.62e-03
  I_CSA3 (csa15bit_21)
                                                0.000
                                                                                          0.1
                                                          0.000 \ 9.39e + 05 \ 9.39e - 04
  I_CSA2 (csa15bit_22)
                                                0.000
                                                                                          0.0
  I_CSA1 (csa15bit_23)
                                                          0.000 \quad 1.44 \, e{+}06 \quad 1.44 \, e{-}03
                                                0.000
                                                                                          0.1
                                          1.23e-03 4.49e-04 6.28e+05 2.31e-03
  I_PAR (parcial_3)
                                                                                          0.1
Mult5 (multiplier_4)
                                          2.60e-02 5.79e-02 9.45e+06 9.34e-02
                                                                                          4.6
                                          5.74e-03 1.05e-02 1.69e+06 1.80e-02
  I_CRA (CRA_15_4)
                                                                                          0.9
  I_CSA6 (csa15bit_24)
                                          5.87e - 03 \quad 1.36e - 02 \quad 1.66e + 06 \quad 2.11e - 02
                                                                                          1.0
  I_CSA5 (csa15bit_25)
                                           4.46e-03 1.13e-02 1.55e+06 1.73e-02
                                                                                          0.8
  I_CSA4 (csa15bit_26)
                                           1.93e-04\ 3.79e-04\ 1.93e+05\ 7.64e-04
                                                                                          0.0
  I_{CSA3} (csa15bit_27)
                                           3.79e-03 1.02e-02 1.45e+06 1.54e-02
                                                                                          0.8
  I_CSA2 (csa15bit_28)
                                           1.18e - 03 2.61e - 03 8.33e + 05 4.62e - 03
                                                                                          0.2
                                            2.65e-03 6.74e-03 1.60e+06 1.10e-02
  I_CSA1 (csa15bit_29)
                                                                                          0.5
  I_PAR (parcial_4)
                                            2.15e-03 2.59e-03 4.72e+05 5.21e-03
                                                                                          0.3
                                            1.69e-08 3.95e-09 1.33e+07 1.33e-02
Mult4 (multiplier_5)
                                                                                          0.7
  I_CRA (CRA_15_5)
                                                          0.000 \ 2.41e+06 \ 2.41e-03
                                                0.000
                                                                                          0.1
  I_CSA6 (csa15bit_30)
                                                0.000
                                                          0.000 \ 2.84e + 06 \ 2.84e - 03
                                                                                          0.1
  I_CSA5 (csa15bit_31)
                                                0.000
                                                          0.000 \ 2.08e+06 \ 2.08e-03
                                                                                          0.1
                                                          0.000 \quad 1.55 \,\mathrm{e}{+06} \quad 1.55 \,\mathrm{e}{-03}
  I_{CSA4} (csa15bit_32)
                                                0.000
                                                                                          0.1
  I_CSA3 (csa15bit_33)
                                                          0.000 \ 1.60e+06 \ 1.60e-03
                                                0.000
                                                                                          0.1
  I_CSA2 (csa15bit_34)
I_CSA1 (csa15bit_35)
                                                          0.000\ 7.81\,\mathrm{e}{+05}\ 7.81\,\mathrm{e}{-04}
                                                0.000
                                                                                          0.0
                                                          0.000 \quad 1.42 \, e{+}06 \quad 1.42 \, e{-}03
                                                0.000
                                                                                          0.1
                                         1.69e-08 3.95e-09 6.36e+05 6.36e-04
  I_PAR (parcial_5)
                                                                                          0.0
                                            1.29e-03 7.63e-04 1.33e+07 1.54e-02
Mult3 (multiplier_6)
                                                                                          0.8
                                                          0.000 \ 2.72e + 06 \ 2.72e - 03
  I_CRA (CRA_15_6)
                                                0.000
                                                                                          0.1
                                                          0.000 \ 2.55e+06 \ 2.55e-03
  I_CSA6 (csa15bit_36)
                                                0.000
                                                                                          0.1
  I_CSA5 (csa15bit_37)
                                                0.000
                                                          0.000 \ 2.29e+06 \ 2.29e-03
                                                                                          0.1
  I_CSA4 (csa15bit_38)
                                                0.000
                                                          0.000 \quad 1.23 \, e + 06 \quad 1.23 \, e - 03
                                                                                          0.1
                                                          0.000 \quad 1.64 \, e + 06 \quad 1.64 \, e - 03
  I_CSA3 (csa15bit_39)
                                               0.000
                                                                                          0.1
  I_CSA2 (csa15bit_40)
                                                          0.000 \ 8.95e + 05 \ 8.95e - 04
                                                0.000
                                                                                          0.0
  I_CSA1 (csa15bit_41)
                                                0.000
                                                          0.000 \quad 1.46 \,\mathrm{e}{+06} \quad 1.46 \,\mathrm{e}{-03}
                                                                                          0.1
                                         1.29e-03 7.63e-04 5.56e+05 2.61e-03 2.67e-02 6.01e-02 9.37e+06 9.62e-02
  LPAR (parcial_6)
                                                                                          0.1
                                            2.67e-02 6.01e-02 9.37e+06 9.62e-02
Mult2 (multiplier_7)
                                                                                          4.7
                                            6.09e-03 1.08e-02 1.69e+06 1.85e-02
                                                                                          0.9
  I_CRA (CRA_15_7)
```

```
I_CSA6 (csa15bit_42)
                                                 6.13e-03 1.66e-02 1.82e+06 2.46e-02
  I_CSA5 (csa15bit_43)
                                                 5.10e-03 1.31e-02 1.88e+06 2.01e-02
                                                                                                    1.0
  I_CSA4 (csa15bit_44)
                                                 1.76e-04 3.41e-04 3.41e+05 8.57e-04
                                                                                                    0.0
                                                 3.43e-03 6.90e-03 1.15e+06 1.15e-02
  I_CSA3 (csa15bit_45)
                                                                                                    0.6
  I_CSA2 (csa15bit_46)
                                                 1.17e - 03 3.07e - 03 8.43e + 05 5.08e - 03
                                                                                                    0.2
  I_CSA1 (csa15bit_47)
                                                 2.24e-03 6.77e-03 1.26e+06 1.03e-02
                                                                                                    0.5
  I_PAR (parcial_7)
                                                 2.38\,\mathrm{e}{-03}\ \ 2.52\,\mathrm{e}{-03}\ \ 3.82\,\mathrm{e}{+05}\ \ 5.28\,\mathrm{e}{-03}
                                                                                                    0.3
Mult1 (multiplier_8)
                                                     0.000
                                                                 0.000 \quad 1.21 \,\mathrm{e} + 07 \quad 1.21 \,\mathrm{e} - 02
                                                                                                    0.6
  I_CRA (CRA_15_8)
                                                     0.000
                                                                 0.000 \quad 2.49 \,\mathrm{e} + 06 \quad 2.49 \,\mathrm{e} - 03
                                                                                                    0.1
                                                                 0.000 \quad 3.18 \, e{+06} \quad 3.18 \, e{-03}
  I_CSA6 (csa15bit_48)
                                                     0.000
                                                                                                    0.2
                                                     0.000
  I_CSA5 (csa15bit_49)
                                                                 0.000 \ 2.46 \,\mathrm{e}{+06} \ 2.46 \,\mathrm{e}{-03}
                                                                                                    0.1
  I_{CSA4} (csa15bit_50)
                                                     0.000
                                                                 0.000 5.21e+05 5.21e-04
                                                                                                    0.0
  I_CSA3 (csa15bit_51)
                                                     0.000
                                                                 0.000 \ 1.28e+06 \ 1.28e-03
                                                                                                    0.1
  I_CSA2 (csa15bit_52)
                                                     0.000
                                                                 0.000 \quad 6.60 \,\mathrm{e}{+05} \quad 6.60 \,\mathrm{e}{-04}
                                                                                                    0.0
                                                                 0.000 \ 1.05e+06 \ 1.05e-03
  I_CSA1 (csa15bit_53)
                                                     0.000
                                                                                                    0.1
  I_PAR (parcial_8)
                                                                 0.000\ 4.88\,\mathrm{e}{+05}\ 4.88\,\mathrm{e}{-04}
                                                     0.000
                                                                                                    0.0
filtermask (SHIFTREG_0)
                                                 1.79e-07
                                                                 0.394 \ 1.62e+06
                                                                                                  19.4
                                                                                         0.396
cache (SHIFTREG_1)
                                                                 0.476 \ 9.02e+05
                                                 7.18\,{\rm e}\!-\!02
                                                                                         0.549
                                                                                                  26.9
fsm_output (FSM_out_3)
                                                 9.77e-02
                                                                 0.171 \quad 3.10 \, e{+07}
                                                                                         0.300
                                                                                                  14.7
  r156 (FSM_out_3_DW01_inc_0)
                                                 5.16e-03 3.22e-02 3.89e+06 4.13e-02
                                                                                                    2.0
  r159 (FSM_out_3_DW01_inc_1)
                                                     0.000
                                                                 0.000 \ 3.80e + 06 \ 3.80e - 03
                                                                                                    0.2
  r162 (FSM_out_3_DW01_inc_2)
                                                     0.000
                                                                 0.000 \ 3.82e + 06 \ 3.82e - 03
                                                                                                    0.2
  r167 (FSM_out_3_DW01_inc_4)
                                                     0.000
                                                                 0.000 \ 3.78e + 06 \ 3.78e - 03
                                                                                                    0.2
  sub_312 (FSM_out_3_DW01_sub_0)
                                                     0.000
                                                                 0.000 \quad 4.46 \,\mathrm{e}{+04} \quad 4.46 \,\mathrm{e}{-05}
                                                                                                    0.0
  add_287 (FSM_out_3_DW01_add_0)
                                                     0.000
                                                                 0.000 \quad 4.76 \,\mathrm{e}{+04} \quad 4.76 \,\mathrm{e}{-05}
                                                                                                    0.0
  add_109 (FSM_out_3_DW01_inc_5)
                                                 4.31e-03 3.34e-02 3.89e+06 4.16e-02
                                                                                                    2.0
fsm_input (FSM_in_3)
                                                                 0.135 \ 2.15 e+07
                                                                                                  12.5
                                                 9.96e - 02
                                                                                         0.256
  r111 (FSM_in_3_DW01_inc_0)
                                                 5.77e - 03 3.21e - 02 3.89e + 06 4.18e - 02
                                                                                                    2.0
  add_192 (FSM_in_3_DW01_inc_2)
                                                     0.000
                                                                 0.000 \ 3.80e + 06 \ 3.80e - 03
                                                                                                    0.2
  add_165 (FSM_in_3_DW01_add_1)
                                                     0.000
                                                                 0.000 \quad 4.35 \,\mathrm{e} + 04 \quad 4.35 \,\mathrm{e} - 05
                                                                                                    0.0
  add_103 (FSM_in_3_DW01_inc_3)
                                                 7.37e - 07 \quad 4.85e - 06 \quad 3.78e + 06 \quad 3.78e - 03
                                                                                                    0.2
```

Listing 26: Power Breakdown 7 ns

 $\mathbf{Report} \; : \; \mathrm{power}$

-net -cell -hier

-analysis_effort low -sort_mode dynamic_power

 $\begin{array}{lll} Design &: & Processor_3 \\ Version: & X-2005.09-SP1 \end{array}$

Date : Wed Dec 12 12:57:27 2007

Library(s) Used:

 $CORE90GPSVT \ (\ \mathbf{File}: \ / \ cell_libs/cmos090_50a/CORE90GPSVT_SNPS_AVT_2.1$

 $/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPSVT_NomLeak.db)$

CORE90GPHVT (File: /cell_libs/cmos090_50a/CORE90GPHVT.SNPS-AVT_2.1.a

/SIGNOFF/bc_1.10V_m40C_wc_0.90V_105C/PT_LIB/CORE90GPHVT_NomLeak.db)

Operating Conditions: NomLeak Library: CORE90GPSVT

Wire Load Model Mode: enclosed

Design Wire Loa	d Model	Library
Processor_3	area_48Kto72K	CORE90GPSVT
FSM_in_3	$area_6Kto12K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_3}$	$area_0to1K$	CORE90GPSVT
FSM_in_3_DW01_add_1	$area_0to1K$	CORE90GPSVT
$FSM_in_3_DW01_inc_2$	$area_0to1K$	CORE90GPSVT
$FSM_{in_3}DW01_{inc_0}$	$area_0to1K$	CORE90GPSVT
FSM_out_3	$area_{-}6Kto12K$	CORE90GPSVT
FSM_out_3_DW01_inc_5	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_add_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_sub_0	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_4	$area_0to1K$	CORE90GPSVT
$FSM_out_3_DW01_inc_2$	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_1	$area_0to1K$	CORE90GPSVT
FSM_out_3_DW01_inc_0	$area_0to1K$	CORE90GPSVT
SHIFTREG_1	$area_1Kto2K$	CORE90GPSVT
SHIFTREG_0	$area_1Kto2K$	CORE90GPSVT
multiplier_8	$area_4Kto5K$	CORE90GPSVT
parcial_8	$area_0to1K$	CORE90GPSVT
csa15bit_53	$area_0to1K$	CORE90GPSVT
csa15bit_52	$area_0to1K$	CORE90GPSVT
csa15bit_51	$area_0to1K$	CORE90GPSVT
csa15bit_50	$area_0to1K$	CORE90GPSVT
csa15bit_49	$area_0to1K$	CORE90GPSVT
csa15bit_48	$area_0to1K$	CORE90GPSVT
CRA_15_8	$area_0to1K$	CORE90GPSVT
multiplier_7	$area_4Kto5K$	CORE90GPSVT
parcial_7	$area_0to1K$	CORE90GPSVT
csa15bit_47	$area_0to1K$	CORE90GPSVT
csa15bit_46	$area_0to1K$	CORE90GPSVT
csa15bit_45	$area_0to1K$	CORE90GPSVT

csa15bit_44	${ m area_0to1K}$	CORE90GPSVT
csa15bit_43	$area_0to1K$	CORE90GPSVT
$csa15bit_42$	$area_0to1K$	CORE90GPSVT
CRA_15_7	$area_0to1K$	CORE90GPSVT
multiplier_6	$area_4Kto5K$	CORE90GPSVT
parcial_6	$area_0to1K$	CORE90GPSVT
$csa15bit_41$	area_0to1K	CORE90GPSVT
csa15bit_40	area_0to1K	CORE90GPSVT
csa15bit_39	area_0to1K	CORE90GPSVT
csa15bit_38	area_0to1K	CORE90GPSVT
	area_0to1K	CORE90GPSVT
csa15bit_37		
csa15bit_36	area_0to1K	CORE90GPSVT
CRA_15_6	area_0to1K	CORE90GPSVT
multiplier_5	$area_4Kto5K$	CORE90GPSVT
parcial_5	${ m area_0to1K}$	CORE90GPSVT
$csa15bit_35$	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}34$	$area_0to1K$	CORE90GPSVT
csa15bit_33	$area_0to1K$	CORE90GPSVT
csa15bit_32	$area_0to1K$	CORE90GPSVT
csa15bit_31	$area_0to1K$	CORE90GPSVT
csa15bit_30	$area_0to1K$	CORE90GPSVT
CRA_15_5	area_0to1K	CORE90GPSVT
multiplier_4	area_4Kto5K	CORE90GPSVT
parcial_4	area_0to1K	CORE90GPSVT
$\begin{array}{c} \text{partial} = 1 \\ \text{csa} = 15 \text{bit} = 29 \end{array}$	area_0to1K	CORE90GPSVT
csa15bit_28	area_0to1K	CORE90GPSVT
csa15bit_27	area_0to1K	CORE90GPSVT
csa15bit_26	area_0to1K	CORE90GPSVT
csa15bit_25	area_0to1K	CORE90GPSVT
csa15bit_24	$area_0to1K$	CORE90GPSVT
CRA_15_4	$area_0to1K$	CORE90GPSVT
multiplier_3	$area_4Kto5K$	CORE90GPSVT
parcial_3	$area_0to1K$	CORE90GPSVT
$csa15bit_{-}23$	$area_0to1K$	CORE90GPSVT
$csa15bit_22$	$area_0to1K$	CORE90GPSVT
csa15bit_21	$area_0to1K$	CORE90GPSVT
$csa15bit_20$	$area_0to1K$	CORE90GPSVT
csa15bit_19	$area_0to1K$	CORE90GPSVT
csa15bit_18	area_0to1K	CORE90GPSVT
CRA_15_3	area_0to1K	CORE90GPSVT
multiplier_2	area_4Kto5K	CORE90GPSVT
parcial_2	area_0to1K	CORE90GPSVT
csa15bit_17	area_0to1K	CORE90GPSVT
csa15bit_16	area_0to1K	CORE90GPSVT
csa15bit_15	area_0to1K	CORE90GPSVT
csa15bit_14	area_0to1K	CORE90GPSVT
csa15bit_13	area_0to1K	CORE90GPSVT
csa15bit_12	area_0to1K	CORE90GPSVT
CRA_15_2	area_0to1K	CORE90GPSVT
multiplier_1	$area_4Kto5K$	CORE90GPSVT
parcial_1	$area_0to1K$	CORE90GPSVT
csa15bit_11	$area_0to1K$	CORE90GPSVT
csa15bit_10	$area_0to1K$	CORE90GPSVT
csa15bit_9	$area_0to1K$	CORE90GPSVT
csa15bit_8	$area_0to1K$	CORE90GPSVT
csa15bit_7	$area_0to1K$	CORE90GPSVT
csa15bit_6	area_0to1K	CORE90GPSVT
1		

CRA_15_1	$area_0to1K$	CORE90GPSVT
multiplier_0	$area_4Kto5K$	CORE90GPSVT
parcial_0	$area_0to1K$	CORE90GPSVT
csa15bit_5	area0to1K	CORE90GPSVT
csa15bit_4	$area_0to1K$	CORE90GPSVT
csa15bit_3	$area_0to1K$	CORE90GPSVT
csa15bit_2	$area_0to1K$	CORE90GPSVT
csa15bit_1	$area_0to1K$	CORE90GPSVT
csa15bit_0	$area_0to1K$	CORE90GPSVT
CRA_15_0	$area_0to1K$	CORE90GPSVT
ADDER_3_2	$area_0to1K$	CORE90GPSVT
ADDER_3_2_DW01_add_3	$area_0to1K$	CORE90GPSVT
ADDER_3_2_DW01_add_2	$area_0to1K$	CORE90GPSVT
ADDER_3_1	$area_0to1K$	CORE90GPSVT
ADDER_3_1_DW01_add_3	$area_0to1K$	CORE90GPSVT
ADDER_3_1_DW01_add_2	$area_0to1K$	CORE90GPSVT
ADDER_3_0	$area_0to1K$	CORE90GPSVT
ADDER_3_0_DW01_add_3	$area_0to1K$	CORE90GPSVT
ADDER_3_0_DW01_add_2	$area_0to1K$	CORE90GPSVT
MUX_4	$area_0to1K$	CORE90GPSVT
ADDER_2	$area_0to1K$	CORE90GPSVT
ADDER_2_DW01_add_1	$area_0to1K$	CORE90GPSVT
REG	$area_0to1K$	CORE90GPSVT

Global Operating Voltage = 1

Power-specific unit information :

Voltage Units = 1V

 $Capacitance \ \mathbf{Units} = 1.000000\,\mathrm{pf}$

Time Units = 1ns

 ${\tt Leakage\ Power\ Units} = 1 pW$

Attributes

a $\,$ – $\,$ Switching activity information annotated on net

d - Default switching activity information on net

Net	Total Net Load	Static Prob.	Toggle Rate	Switching Power	Attrs
disable_to_cache	0.293	0.760	0.0800	0.0117	a
cache_bits [24]	0.046	0.477	0.0600	0.0014	a
cache_bits [16]	0.046	0.477	0.0600	0.0014	a
cache_bits[25]	0.045	0.477	0.0596	0.0014	a
cache_bits [49]	0.044	0.477	0.0596	0.0013	a
cache_bits [65]	0.042	0.477	0.0596	0.0013	a
cache_bits [41]	0.042	0.477	0.0596	0.0013	a
cache_bits [56]	0.041	0.477	0.0600	0.0012	a
cache_bits [64]	0.040	0.477	0.0600	0.0012	a
cache_bits[8]	0.040	0.477	0.0600	0.0012	a
cache_bits[32]	0.040	0.477	0.0600	0.0012	a
cache_bits [48]	0.039	0.477	0.0600	0.0012	a
cache_bits[1]	0.039	0.477	0.0596	0.0011	a
cache_bits[57]	0.038	0.477	0.0596	0.0011	a

cache_bits[0]	0.037	0.477	0.0600	0.0011	a
cache_bits[33]	0.037	0.477	0.0596	0.0011	a
cache_bits [9]	0.037	0.477	0.0596	0.0011	a
cache_bits[18]	0.040	0.481	0.0551	0.0011	a
cache_bits [66]	0.040	0.481	0.0551	0.0011	a
cache_bits [58]	0.038	0.481	0.0551	0.0010	a
cache_bits [42]	0.041	0.481	0.0551	0.0011	a
cache_bits [10]	0.037	0.481	0.0551	0.0011	a
cache_bits [26]	0.037	0.482	0.0551	0.0010	a
cache_bits [50]	0.036	0.482	0.0551	0.0010	a
cache_bits [34]	0.039	0.481	0.0551	0.0010	a
cache_bits[2]	0.033	0.482	0.0551	0.0009	a
cache_bits [27]	0.040	0.499	0.0462	0.0009	a
cache_bits [67]	0.040	0.499	0.0462	0.0009	a
cache_bits [43]	0.039	0.499	0.0462	0.0009	a
cache_bits [35]	0.039	0.499	0.0462	0.0009	a
cache_bits [51]	$0.035 \\ 0.037$	0.499	0.0462	0.0009	a
cache_bits[11]	0.037 0.039	0.499	0.0462	0.0009	a
cache_bits [59]	0.039	0.499	0.0462	0.0009	a
cache_bits [17]	0.039 0.023	$0.499 \\ 0.477$	0.0402 0.0596	0.0009	
1 2					a
cache_bits[3]	0.033	0.499	0.0462	0.0008	a
cache_bits[19]	0.036	0.499	0.0462	0.0008	a
cache_bits[12]	0.040	0.486	0.0357	0.0007	a
cache_bits [68]	0.040	0.486	0.0357	0.0007	a
cache_bits [60]	0.039	0.486	0.0357	0.0007	a
cache_bits [36]	0.039	0.486	0.0357	0.0007	a
cache_bits [28]	0.039	0.486	0.0357	0.0007	a
cache_bits [44]	0.037	0.486	0.0357	0.0007	a
cache_bits [52]	0.036	0.486	0.0357	0.0006	a
cache_bits [4]	0.036	0.486	0.0357	0.0006	a
cache_bits [40]	0.009	0.477	0.0600	0.0003	a
cache_bits [20]	0.041	0.486	0.0357	0.0007	a
cache_bits [45]	0.039	0.470	0.0260	0.0005	a
Data_out[0]	0.002	0.678	0.0752	8.185e - 05	a
cache_bits [29]	0.038	0.470	0.0260	0.0005	a
cache_bits [61]	0.037	0.470	0.0260	0.0005	a
cache_bits [69]	0.037	0.470	0.0260	0.0005	a
cache_bits[5]	0.035	0.470	0.0260	0.0005	a
Data_out [1]	0.002	0.711	0.0718	7.814e - 05	a
Data_out [2]	0.002	0.730	0.0686	7.464e-05	a
cache_bits [37]	0.039	0.470	0.0260	0.0005	a
cache_bits[13]	0.039	0.470	0.0260	0.0005	a
cache_bits [21]	0.038	0.470	0.0260	0.0005	a
cache_bits[53]	0.037	0.470	0.0260	0.0005	a
Data_out [3]	0.002	0.736	0.0628	6.836e - 05	a
Data_out [4]	0.002	0.736	0.0565	6.150e - 05	a
Data_out [5]	0.002	0.738	0.0508	5.530e-05	a
cache_bits [14]	0.038	0.435	0.0148	0.0003	a
cache_bits [46]	0.037	0.435	0.0148	0.0003	a
cache_bits[70]	0.037	0.435	0.0148	0.0003	a
cache_bits [62]	0.037	0.435	0.0148	0.0003	a
cache_bits [30]	0.037	0.436	0.0148	0.0003	a
cache_bits[22]	0.037	0.435	0.0148	0.0003	a
cache_bits [38]	0.037	0.435	0.0148	0.0003	a
cache_bits [54]	0.037	0.436	0.0148	0.0003	a
cache_bits[6]	0.033	0.436	0.0148	0.0002	a
Data_out [6]	0.002	0.743	0.0429	4.666e-05	a

Data_out [7]	0.002	0.723	0.0277	3.016e-05	a
cache_bits [31]	0.037	0.331	0.0072	0.0001	a
cache_bits [71]	0.037	0.331	0.0072	0.0001	a
cache_bits[15]	0.038	0.332	0.0072	0.0001	a
cache_bits [23]	0.037	0.331	0.0072	0.0001	a
cache_bits [63]	0.037	0.332	0.0072	0.0001	a
cache_bits [39]	0.037	0.332	0.0072	0.0001	a
cache_bits [47]	0.037	0.331	0.0072	0.0001	a
cache_bits [55]	0.037	0.331	0.0072	0.0001	a
cache_bits[7]	0.033	0.331	0.0072	0.0001	a
filter_bits [64]	0.018	0.000	0.18e - 5	1.632e-08	a
filter_bits [24]	0.018	0.000	0.61e - 6	5.469e-09	a
filter_bits [4]	0.014	0.000	0.0000	0.0000	a
filter_bits [5]	0.014	0.000	0.0000	0.0000	a
filter_bits [6]	0.014	0.000	0.0000	0.0000	a
filter_bits[7]	0.014	0.000	0.0000	0.0000	a
filter_bits[10]	0.018	0.000	0.0000	0.0000	a
filter_bits [11]	0.018	0.000	0.0000	0.0000	a
filter_bits [13]	0.014	0.000	0.0000	0.0000	a
filter_bits [14]	0.018	0.000	0.0000	0.0000	a
filter_bits [26]	0.014	0.000	0.0000	0.0000	a
filter_bits [33]	0.018	0.000	0.0000	0.0000	a
filter_bits [36]	0.018	0.000	0.0000	0.0000	a
filter_bits [39]	0.018	0.000	0.0000	0.0000	a
filter_bits [41]	0.018	0.000	0.0000	0.0000	a
filter_bits [42]	0.018	0.000	0.0000	0.0000	a
filter_bits [52]	0.018	0.000	0.0000	0.0000	a
filter_bits [53]	0.018	0.000	0.0000	0.0000	a
filter_bits [55]	0.018	0.000	0.0000	0.0000	a
filter_bits [57]	0.018	0.000	0.0000	0.0000	a
filter_bits [59]	0.018	0.000	0.0000	0.0000	a
filter_bits [61]	0.014	0.000	0.0000	0.0000	a
filter_bits [63]	0.018	0.000	0.0000	0.0000	a
filter_bits [65]	0.018	0.000	0.0000	0.0000	a
filter_bits [69]	0.018	0.000	0.0000	0.0000	a
filter_bits[71]	0.018	0.000	0.0000	0.0000	a
filter_bits [31]	0.018	0.000	0.0000	0.0000	a
filter_bits[8]	0.018	1.000	0.31e-6	$2.721\mathrm{e}\!-\!09$	a
filter_bits [40]	0.018	0.000	$0.12e{-5}$	1.094e-08	a
filter_bits [48]	0.018	0.000	$0.12e{-5}$	1.094e-08	a
filter_bits [16]	0.018	0.000	0.61e - 6	5.543e - 09	a
filter_bits[0]	0.014	0.000	0.0000	0.0000	a
filter_bits[1]	0.014	0.000	0.0000	0.0000	a
filter_bits[2]	0.014	0.000	0.0000	0.0000	a
filter_bits [3]	0.014	0.000	0.0000	0.0000	a
filter_bits[9]	0.018	0.000	0.0000	0.0000	a
filter_bits[12]	0.018	0.000	0.0000	0.0000	a
filter_bits [15]	0.018	0.000	0.0000	0.0000	a
filter_bits[17]	0.014	0.000	0.0000	0.0000	a
filter_bits[18]	0.018	0.000	0.0000	0.0000	a
filter_bits[19]	0.018	0.000	0.0000	0.0000	a
filter_bits[20]	0.018	0.000	0.0000	0.0000	a
filter_bits[21]	0.018	0.000	0.0000	0.0000	a
filter_bits[22]	0.018	0.000	0.0000	0.0000	a
filter_bits[23]	0.018	0.000	0.0000	0.0000	a
filter_bits[25]	0.018	0.000	0.0000	0.0000	a
filter_bits[27]	0.018	0.000	0.0000	0.0000	a

filter_bits[28]	0.018	0.000	0.0000	0.0000	a
filter_bits [29]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [30]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [34]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [35]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [37]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [38]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [43]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [44]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [45]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [46]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [47]	0.022	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [49]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [50]	0.014	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [51]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [54]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[58]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [60]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [62]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [66]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [67]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [68]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits[70]	0.018	0.000	0.0000	0.0000	\mathbf{a}
filter_bits [56]	0.022	1.000	0.15e - 5	1.702e-08	\mathbf{a}
filter_bits[32]	0.018	1.000	0.92e - 6	8.204e-09	a
mux_out[1]	0.016	0.477	0.0988	0.0008	\mathbf{a}
mux_out [0]	0.011	0.477	0.0998	0.0006	\mathbf{a}
mux_out [2]	0.016	0.482	0.0904	0.0007	\mathbf{a}
mux_out[3]	0.016	0.499	0.0750	0.0006	\mathbf{a}
select_adder[0]	0.013	0.278	0.0794	0.0005	\mathbf{a}
select_adder [1]	0.013	0.524	0.0794	0.0005	\mathbf{a}
mux_out [4]	0.016	0.486	0.0576	0.0005	\mathbf{a}
Read_Addr_In_Mem [0]	0.002	0.180	0.1001	0.0001	\mathbf{a}
Read_In_Mem	0.002	0.240	0.0800	8.700e-05	\mathbf{a}
Read_Addr_In_Mem [8]	0.002	0.180	0.0801	8.717e - 05	\mathbf{a}
mux_out[5]	0.016	0.470	0.0419	0.0003	\mathbf{a}
Read_Addr_In_Mem[1]	0.002	0.180	0.0701	7.621e-05	\mathbf{a}
Read_Out_Mem	0.002	0.238	0.2381	0.0003	\mathbf{a}
mult5_out[2]	0.015	0.481	0.0551	0.0004	a
Read_Addr_In_Mem[9]	0.002	0.180	0.0601	$6.534e\!-\!05$	a
Read_Addr_Out_Mem [3]	0.002	0.120	0.1198	0.0001	a
Read_Addr_In_Mem [2]	0.002	0.181	0.0551	5.994e - 05	a
add4_out[0]	0.004	0.678	0.0752	0.0002	a
Read_Addr_In_Mem[11]	0.002	0.180	0.0449	4.883e - 05	a
Read_Addr_In_Mem [10]	0.002	0.180	0.0499	5.433e - 05	a
Read_Addr_In_Mem [12]	0.002	0.180	0.0424	4.608e - 05	a
Read_Addr_In_Mem [13]	0.002	0.180	0.0411	4.471e - 05	a
Read_Addr_In_Mem [3]	0.002	0.181	0.0475	5.172e - 05	a
Read_Addr_In_Mem [14]	0.002	0.180	0.0405	4.402e-05	a
Read_Addr_In_Mem [15]	0.002	0.180	0.0401	4.367e - 05	a
Write_Out_Mem	0.002	0.278	0.2381	0.0003	a
mult2_out [1]	0.015	0.477	0.0596	0.0004	a
Read_Addr_In_Mem [4]	0.002	0.181	0.0438	4.761e - 05	a
mux_out [6]	0.016	0.436	0.0234	0.0002	a
add2_out [1]	0.010	0.477	0.0596	0.0003	a
Read_Addr_In_Mem [5]	0.002	0.181	0.0419	4.556e-05	a
add1_out[1]	0.009	0.477	0.0596	0.0003	a
l r l					

Read_Addr_In_Mem [6]	0.002	0.181	0.0409	4.453e - 05	a
Read_Addr_In_Mem [7]	0.002	0.181	0.0405	4.401e-05	a
Read_Addr_Out_Mem [4]	0.002	0.120	0.1198	0.0001	a
add2_out[2]	0.010	0.481	0.0551	0.0003	a
mult5_out[1]	0.015	0.477	0.0596	0.0004	a
mult8_out[0]	0.011	0.477	0.0600	0.0003	a
add4_out [5]	0.004	0.738	0.0508	0.0001	a
$add4_{-}out[1]$	0.004	0.711	0.0718	0.0001	a
$add4_{-}out[2]$	0.004	0.730	0.0686	0.0001	a
mult2_out [3]	0.015	0.499	0.0462	0.0003	a
$add2_out[0]$	0.010	0.477	0.0600	0.0003	a
Write_Addr_Out_Mem [0]	0.002	0.139	0.1392	0.0002	a
$Read_Addr_Out_Mem[2]$	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [5]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [6]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [7]	0.002	0.120	0.1198	0.0001	a
Read_Addr_Out_Mem [1]	0.002	0.120 0.120	0.1196	0.0001	a
Read_Addr_Out_Mem[9]	0.002	0.120 0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[10]	0.002	0.119	0.1190 0.1190	0.0001	a
Read_Addr_Out_Mem[11]	0.002 0.002	0.119	$0.1190 \\ 0.1190$	0.0001	
Read_Addr_Out_Mem[11]		$0.119 \\ 0.119$			a
Read_Addr_Out_Mem[12]	0.002	$0.119 \\ 0.119$	$0.1190 \\ 0.1190$	$0.0001 \\ 0.0001$	a
	0.002				a
Read_Addr_Out_Mem [14]	0.002	0.119	0.1190	0.0001	a
Read_Addr_Out_Mem [15]	0.002	0.119	0.1190	0.0001	a
Read_Addr_Out_Mem [0]	0.002	0.119	0.1190	0.0001	a
Read_Addr_Out_Mem [8]	0.002	0.119	0.1190	0.0001	a
add3_out [1]	0.009	0.477	0.0596	0.0003	a
mult8_out[1]	0.015	0.477	0.0596	0.0004	a
add4_out [3]	0.004	0.736	0.0628	0.0001	a
Write_Addr_Out_Mem [1]	0.002	0.140	0.1297	0.0001	a
add4_out [6]	0.004	0.743	0.0429	8.763e - 05	a
Write_Addr_Out_Mem [2]	0.002	0.140	0.1248	0.0001	a
add1_out[2]	0.009	0.481	0.0551	0.0003	\mathbf{a}
mult8_out [2]	0.015	0.481	0.0551	0.0004	\mathbf{a}
Write_Addr_Out_Mem [3]	0.002	0.140	0.1223	0.0001	\mathbf{a}
mult8_out[3]	0.015	0.499	0.0462	0.0003	\mathbf{a}
Write_Addr_Out_Mem [4]	0.002	0.140	0.1211	0.0001	\mathbf{a}
Write_Addr_Out_Mem [5]	0.002	0.140	0.1204	0.0001	a
Write_Addr_Out_Mem [6]	0.002	0.140	0.1201	0.0001	\mathbf{a}
Write_Addr_Out_Mem [7]	0.002	0.140	0.1200	0.0001	\mathbf{a}
Write_Addr_Out_Mem[10]	0.002	0.139	0.1189	0.0001	\mathbf{a}
Write_Addr_Out_Mem [9]	0.002	0.139	0.1189	0.0001	\mathbf{a}
Write_Addr_Out_Mem [8]	0.002	0.139	0.1189	0.0001	a
$add4_out[4]$	0.004	0.736	0.0565	0.0001	\mathbf{a}
mult8_out [4]	0.015	0.486	0.0357	0.0003	\mathbf{a}
add2_out[4]	0.010	0.486	0.0357	0.0002	\mathbf{a}
mult2_out[2]	0.015	0.481	0.0551	0.0004	\mathbf{a}
mult2_out [4]	0.015	0.486	0.0357	0.0003	\mathbf{a}
add2_out[3]	0.010	0.499	0.0462	0.0002	\mathbf{a}
mult2_out[0]	0.011	0.477	0.0600	0.0003	a
Write_Addr_Out_Mem[11]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [12]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [13]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [14]	0.002	0.139	0.1189	0.0001	a
Write_Addr_Out_Mem [15]	0.002	0.139	0.1189	0.0001	a
add1_out[3]	0.009	0.499	0.0462	0.0002	a
add1_out[0]	0.009	0.477	0.0600	0.0003	a

add3_out[0]	0.009	0.477	0.0600	0.0003	a
add3_out [2]	0.009	0.481	0.0551	0.0003	a
add1_out [4]	0.009	0.486	0.0357	0.0002	a
add4_out[7]	0.004	0.723	0.0277	5.664e-05	a
add3_out[3]	0.009	0.499	0.0462	0.0002	a
mult5_out[0]	0.011	0.477	0.0600	0.0003	a
mult5_out [3]	0.015	0.499	0.0462	0.0003	a
add2_out[5]	0.010	0.470	0.0260	0.0001	a
add1_out[5]	0.009	0.470	0.0260	0.0001	a
mult8_out[5]	0.015	0.470	0.0260	0.0002	a
mult5_out [4]	0.015	0.486	0.0357	0.0003	a
add3_out[4]	0.009	0.486	0.0357	0.0002	a
mux_out [7]	0.016	0.331	0.0113	8.954e - 05	a
mult5_out[5]	0.015	0.470	0.0260	0.0002	a
add3_out[5]	0.009	0.470	0.0260	0.0001	a
mult2_out[5]	0.015	0.470	0.0260	0.0002	a
add1_out[6]	0.009	0.435	0.0148	6.772e-05	a
mult8_out[6]	0.015	0.435	0.0148	0.0001	a
mult5_out [6]	0.015	0.435	0.0148	0.0001	a
mult2_out [6]	0.015	0.435	0.0148	0.0001	a
mult8_out [7]	0.015	0.332	0.0072	5.328e - 05	a
add3_out[6]	0.009	0.435	0.0148	6.766e - 05	a
mult5_out[7]	0.015	0.332	0.0072	5.328e - 05	a
mult2_out [7]	0.015	0.332	0.0072	5.328e - 05	a
add2_out[6]	0.010	0.435	0.0148	7.630e-05	a
add3_out[7]	0.006	0.332	0.0072	$2.240\mathrm{e}\!-\!05$	a
add1_out[7]	0.006	0.332	0.0072	$2.201\mathrm{e}{-}05$	a
add2_out [7]	0.006	0.332	0.0072	2.229e-05	a
Write_In_Mem	0.002	0.040	0.61e - 6	6.690e - 10	a
mult1_out[0]	0.011	0.000	0.0000	0.0000	a
mult1_out[1]	0.015	0.000	0.0000	0.0000	a
mult1_out[2]	0.015	0.000	0.0000	0.0000	a
mult1_out[3]	0.015	0.000	0.0000	0.0000	a
mult1_out [4]	0.015	0.000	0.0000	0.0000	a
mult1_out[5]	0.015	0.000	0.0000	0.0000	a
mult1_out[6]	0.015	0.000	0.0000	0.0000	\mathbf{a}
mult1_out[7]	0.015	0.000	0.0000	0.0000	a
mult3_out[0]	0.011	0.000	0.0000	0.0000	a
mult3_out[1]	0.016	0.000	0.0000	0.0000	a
mult3_out[2]	0.016	0.000	0.0000	0.0000	a
mult3_out[3]	0.016	0.000	0.0000	0.0000	a
mult3_out [4]	0.016	0.000	0.0000	0.0000	a
mult3_out [5]	0.016	0.000	0.0000	0.0000	a
mult3_out [6]	0.016	0.000	0.0000	0.0000	a
mult3_out [7]	0.016	0.000	0.0000	0.0000	a
mult4_out [0]	0.011	0.000	0.0000	0.0000	a
mult4_out [1]	0.016	0.000	0.0000	0.0000	a
mult4_out [2]	0.016	0.000	0.0000	0.0000	a
mult4_out [3]	0.016	0.000	0.0000	0.0000	a
mult4_out [4]	0.016	0.000	0.0000	0.0000	a
mult4_out [5]	0.016	0.000	0.0000	0.0000	a
mult4_out [6]	0.016	0.000	0.0000	0.0000	a
mult4_out [7]	0.016	0.000	0.0000	0.0000	a
mult6_out[0]	0.011	0.000	0.0000	0.0000	a
mult6_out [1]	0.015	0.000	0.0000	0.0000	a
mult6_out [2]	0.015	0.000	0.0000	0.0000	a
mult6_out[3]	0.015	0.000	0.0000	0.0000	a

mult6_out [4]	0.015	0.000	0.0000	0.0000	a
mult6_out [5]	0.015	0.000	0.0000	0.0000	a
mult6_out [6]	0.015	0.000	0.0000	0.0000	a
mult6_out [7]	0.015	0.000	0.0000	0.0000	a
mult7_out [0]	0.011	0.000	0.0000	0.0000	a
mult7_out [1]	0.016	0.000	0.0000	0.0000	a
mult7_out [2]	0.016	0.000	0.0000	0.0000	a
mult7_out[3]	0.016	0.000	0.0000	0.0000	a
mult7_out [4]	0.016	0.000	0.0000	0.0000	a
mult7_out [5]	0.016	0.000	0.0000	0.0000	a
mult7_out [6]	0.016	0.000	0.0000	0.0000	a
mult7_out [7]	0.016	0.000	0.0000	0.0000	a
mult9_out [0]	0.011	0.000	0.0000	0.0000	a
mult9_out[1]	0.015	0.000	0.0000	0.0000	a
mult9_out [2]	0.015	0.000	0.0000	0.0000	a
mult9_out [3]	0.015	0.000	0.0000	0.0000	a
mult9_out [4]	0.015	0.000	0.0000	0.0000	a
mult9_out [5]	0.015	0.000	0.0000	0.0000	a
mult9_out [6]	0.015	0.000	0.0000	0.0000	a
mult9_out [7]	0.015	0.000	0.0000	0.0000	a

Total (319 nets) 86.4987 uW

Attributes

h - Hierarchical cell

Cell	Cell Internal Power	Driven Net Switching Power	Tot Dynamic Power (% Cell/Tot)	Cell Leakage Power Attrs
Add1	7.676e-03	N/A	N/A (N/A)	1207438.5000
Add2	8.298e - 03	N/A	N/A (N/A)	h 1210619.6250
Add3	8.100e-03	N/A	N/A (N/A)	h 1310742.2500
Add_new_value	0.0401	N/A	N/A (N/A)	h 855629.3125
Mult1	0.0000	N/A	N/A (N/A)	h 12121272.0000
Mult2	0.0602	N/A	N/A (N/A)	9368351.0000
Mult3	$7.634\mathrm{e}\!-\!04$	N/A	N/A (N/A)	h 13342329.0000 h
Mult4	$3.945\mathrm{e}{-09}$	N/A	N/A (N/A)	13322298.0000
Mult5	0.0579	N/A	N/A (N/A)	h 9450824.0000
Mult6	$4.489\mathrm{e}\!-\!04$	N/A	N/A (N/A)	h 12693175.0000
Mult7	6.767e - 09	N/A	N/A (N/A)	h 12613385.0000 h
Mult8	0.0593	N/A	N/A (N/A)	8912982.0000

I					,
Mult9	$1.172\mathrm{e}{-08}$	N/A	N/A (N/A)	12212358.00	_
Multiplexer	0.0226	N/A	N/A (N/A)	626337.7500	
cache	0.4746	N/A	N/A (N/A)	901572.6875	h L
filtermask	0.3942	N/A	N/A (N/A)	1615479.250	h O h
fsm_input	0.1108	N/A	N/A (N/A)	21460100.00	
fsm_output	0.1392	N/A	N/A (N/A)	31005404.00	
regster	0.0508	N/A	N/A (N/A)	191681.2656	h
Totals (19 cells)	1 . 4 3 5mW	N/A	N/A (N/A)	164.422uW	
Hierarchy		Switch Power	Int Leak Power Pow		%
Processor_3		0.329	1.435 1.64	le+08 1.929	100.0
regster (REG) Add_new_value (ADDI add_17/plus/plus		9.33e - 03		$\begin{array}{lll} 2 e + 05 & 5.15 e - 02 \\ 6 e + 05 & 5.03 e - 02 \end{array}$	
add_17/prus/prus	(ADDER_2_DW01_a		3.32e-02.5.08	8e+05 $4.17e-02$	2.2
Multiplexer (MUX_4)				6e+05 3.50 $e-02$	
Add3 (ADDER_3_0)				e+06 1.29e-02	
add_0_root_add_0_	root_add_17/plus			$1_{-add_{-}2}$) 6e+05-6.73e-03	0.3
$add_1root_add_0$	root_add_17/plus				
A 110 (ADDDD 0.1)		0.000		8e+05 5.03 $e-04$	
$\begin{array}{c} \text{Add2 (ADDER_3_1)} \\ \text{add_0_root_add_0_} \end{array}$	root add 17/plua			e+06 1.18e-02	0.6
add_0_100t_add_0_	100t_add_17/pius			5 e + 05 5 . 77 e - 03	0.3
add_1_root_add_0_	root_add_17/plus				0.0
	, ,	0.000		$3e+05 \ 5.03e-04$	0.0
Add1 (ADDER_3_2)				e+06 1.10e-02	0.6
$add_0_root_add_0$	root_add_17/plus				
	. 11 17 / 1			6e+05 5.70e-03	0.3
add_1_root_add_0_	root_add_11/pius	0.000		1_add_3) 8e+05	0.0
Mult9 (multiplier_0)			2e+07 1.22 $e-02$	
I_CRA (CRA_15_0)	,	0.000		0e+06 2.40 $e-03$	
I_CSA6 (csa15bit_	0)	0.000		8e+06 2.33e-03	
I_CSA5 (csa15bit_	1)	0.000	0.000 2.20	0e+06 2.20e-03	0.1
I_CSA4 (csa15bit_		0.000		8e+05 $7.03e-04$	
I_CSA3 (csa15bit_		0.000		2e+06 1.92 $e-03$	
I_CSA2 (csa15bit_ I_CSA1 (csa15bit_		$0.000 \\ 0.000$		2e+05 5.92 $e-043e+06$ 1.48 $e-03$	
I_PAR (parcial_0)	<i>o</i>			7e+05 1.48e-03 7e+05 5.78e-04	
Mult8 (multiplier_1)			e+06 9.52 $e-02$	
I_CRA (CRA_15_1)	,			0e+06 $1.95e-02$	
I_CSA6 (csa15bit_	6)			0 + 06 2.43 = -02	
I_CSA5 (csa15bit_	7)	4.28e-03	1.19e-02 1.46	6e+06 1.76e-02	0.9

```
I_CSA4 (csa15bit_8)
                                                                    1.88e - 04 \ 3.38e - 04 \ 2.18e + 05 \ 7.43e - 04
                                                                                                                                              0.0
                                                                  3.65e-03 8.85e-03 1.06e+06 1.36e-02
   I_CSA3 (csa15bit_9)
                                                                                                                                              0.7
                                                                   9.81e-04\ 3.08e-03\ 7.71e+05\ 4.83e-03
   I_CSA2 (csa15bit_10)
                                                                                                                                              0.3
   I_CSA1 (csa15bit_11)
                                                                   2.54\,\mathrm{e}{-03}\ 5.98\,\mathrm{e}{-03}\ 8.81\,\mathrm{e}{+05}\ 9.40\,\mathrm{e}{-03}
                                                                                                                                              0.5
   I_PAR (parcial_1)
                                                                   2.09e-03 2.75e-03 4.30e+05 5.27e-03
                                                                                                                                              0.3
                                                                   2.27e-08 6.77e-09 1.26e+07 1.26e-02
Mult7 (multiplier_2)
                                                                                                                                              0.7
   I_CRA (CRA_15_2)
                                                                           0.000
                                                                                            0.000 \quad 2.47e + 06 \quad 2.47e - 03
                                                                                                                                              0.1
                                                                                            0.000 \quad 3.09 \,\mathrm{e} + 06 \quad 3.09 \,\mathrm{e} - 03
   I_CSA6 (csa15bit_12)
                                                                           0.000
                                                                                                                                              0.2
                                                                                            0.000 \quad 2.50 \,\mathrm{e}{+06} \quad 2.50 \,\mathrm{e}{-03}
   I_CSA5 (csa15bit_13)
                                                                          0.000
                                                                                                                                              0.1
                                                                                            0.000 8.13e+05 8.13e-04
   I_CSA4 (csa15bit_14)
                                                                          0.000
                                                                                                                                              0.0
   I_CSA3 (csa15bit_15)
                                                                         0.000
                                                                                            0.000 \quad 1.74 \,\mathrm{e}{+06} \quad 1.74 \,\mathrm{e}{-03}
                                                         I_{CSA2} (csa15bit_16)
                                                                                                                                              0.0
   I_CSA1 (csa15bit_17)
                                                                                                                                              0.1
   LPAR (parcial_2)
                                                                                                                                              0.0
Mult6 (multiplier_3)
                                                                                                                                              0.7
                                                                                            0.000 \ 2.46 e + 06 \ 2.46 e - 03
   I_CRA (CRA_15_3)
                                                                         0.000
                                                                                                                                              0.1
   I_{-}CSA6 \ (csa15bit_{-}18)
                                                                                            0.000 \ 2.66e + 06 \ 2.66e - 03
                                                                           0.000
                                                                                                                                              0.1
   I_CSA5 (csa15bit_19)
                                                                           0.000
                                                                                            0.000 \ 1.94e+06 \ 1.94e-03
                                                                                                                                              0.1
   I_CSA4 (csa15bit_20)
                                                                           0.000
                                                                                            0.000 \ 9.84e + 05 \ 9.84e - 04
                                                                                                                                              0.1
   I_CSA3 (csa15bit_21)
                                                                           0.000
                                                                                            0.000 \quad 1.62 \,\mathrm{e}{+06} \quad 1.62 \,\mathrm{e}{-03}
                                                                                                                                              0.1
   I_{CSA2} (csa15bit_22)
                                                                           0.000
                                                                                            0.000 \quad 9.39e + 05 \quad 9.39e - 04
                                                                                                                                              0.0
                                                         \begin{array}{c} 0.000 & 0.000 & 1.44\,\mathrm{e} + 06 & 1.44\,\mathrm{e} - 03 \\ 1.23\,\mathrm{e} - 03 & 4.49\,\mathrm{e} - 04 & 6.28\,\mathrm{e} + 05 & 2.31\,\mathrm{e} - 03 \\ 2.60\,\mathrm{e} - 02 & 5.79\,\mathrm{e} - 02 & 9.45\,\mathrm{e} + 06 & 9.33\,\mathrm{e} - 02 \\ 5.73\,\mathrm{e} - 03 & 1.05\,\mathrm{e} - 02 & 1.69\,\mathrm{e} + 06 & 1.79\,\mathrm{e} - 02 \\ 5.86\,\mathrm{e} - 03 & 1.35\,\mathrm{e} - 02 & 1.66\,\mathrm{e} + 06 & 2.11\,\mathrm{e} - 02 \\ 4.45\,\mathrm{e} - 03 & 1.13\,\mathrm{e} - 02 & 1.55\,\mathrm{e} + 06 & 1.73\,\mathrm{e} - 02 \\ 1.94\,\mathrm{e} - 04 & 3.81\,\mathrm{e} - 04 & 1.93\,\mathrm{e} + 05 & 7.68\,\mathrm{e} - 04 \\ 3.79\,\mathrm{e} - 03 & 1.01\,\mathrm{e} - 02 & 1.45\,\mathrm{e} + 06 & 1.54\,\mathrm{e} - 02 \\ \end{array}
   I_CSA1 (csa15bit_23)
                                                                                                                                              0.1
   LPAR (parcial_3)
                                                                                                                                              0.1
Mult5 (multiplier_4)
                                                                                                                                              4.8
   I_CRA (CRA_15_4)
                                                                                                                                              0.9
   I_CSA6 (csa15bit_24)
                                                                                                                                              1.1
   I_CSA5 (csa15bit_25)
                                                                                                                                              0.9
   I_CSA4 (csa15bit_26)
                                                                                                                                              0.0
   I_CSA3 (csa15bit_27)
                                                                                                                                              0.8
                                                                   1.18e - 03 2.62e - 03 8.33e + 05 4.64e - 03
   I_CSA2 (csa15bit_28)
                                                                                                                                              0.2
   I_CSA1 (csa15bit_29)
                                                                  2.66e - 03 \quad 6.75e - 03 \quad 1.60e + 06 \quad 1.10e - 02
                                                                                                                                              0.6
   LPAR (parcial_4)
                                                                  2.15e-03 2.59e-03 4.72e+05 5.21e-03
                                                                                                                                              0.3
Mult4 (multiplier_5)
                                                                   1.69e-08 3.95e-09 1.33e+07 1.33e-02
                                                                                                                                              0.7
   I_{CRA} (CRA<sub>-</sub>15<sub>-</sub>5)
                                                                           0.000
                                                                                            0.000 \ 2.41e+06 \ 2.41e-03
                                                                                                                                              0.1
                                                                                            0.000 \ 2.84e+06 \ 2.84e-03
   I_{CSA6} (csa15bit_30)
                                                                           0.000
                                                                                                                                              0.1
                                                                                            0.000 \ 2.08e + 06 \ 2.08e - 03
   I_CSA5 (csa15bit_31)
                                                                          0.000
                                                                                                                                              0.1
                                                                                                                                              0.1
   I_CSA4 (csa15bit_32)
                                                                                            0.000 \ 1.55e + 06 \ 1.55e - 03
                                                                           0.000
                                                                                            0.000 \quad 1.60 \,\mathrm{e}{+06} \quad 1.60 \,\mathrm{e}{-03}
   I_CSA3 (csa15bit_33)
                                                                           0.000
                                                                                                                                              0.1
   I_CSA2 (csa15bit_34)
                                                                                            0.000 \quad 7.81e + 05 \quad 7.81e - 04
                                                                                                                                              0.0
                                                                           0.000
   I_CSA1 (csa15bit_35)
                                                                           0.000
                                                                                            0.000 \quad 1.42 \, e{+}06 \quad 1.42 \, e{-}03
                                                                                                                                              0.1
                                                                1.69e-08 3.95e-09 6.36e+05 6.36e-04
   I_PAR (parcial_5)
                                                                                                                                              0.0
Mult3 (multiplier_6)
                                                                   1.29e-03 7.63e-04 1.33e+07 1.54e-02
                                                                                                                                              0.8
                                                      \begin{array}{c} -0 \\ 2.72 \, \mathrm{e} - 0 \\ 2.05 \, \mathrm{e} + 06 & 2.55 \, \mathrm{e} - 0; \\ 3.000 & 2.29 \, \mathrm{e} + 06 & 2.29 \, \mathrm{e} - 0; \\ 0.000 & 1.23 \, \mathrm{e} + 06 & 1.23 \, \mathrm{e} - 03 \\ 0.000 & 0.000 & 1.64 \, \mathrm{e} + 06 & 1.64 \, \mathrm{e} - 03 \\ 0.000 & 0.000 & 8.95 \, \mathrm{e} + 05 & 8.95 \, \mathrm{e} - 04 \\ 0.000 & 0.000 & 1.46 \, \mathrm{e} + 06 & 1.46 \, \mathrm{e} - 03 \\ 1.29 \, \mathrm{e} - 03 & 7.63 \, \mathrm{e} - 04 & 5.56 \, \mathrm{e} + 05 & 2.61 \, \mathrm{e} - 03 \\ 2.67 \, \mathrm{e} - 02 & 6.02 \, \mathrm{e} - 02 & 9.37 \, \mathrm{e} + 06 & 9.63 \, \mathrm{e} - 02 \\ 6.08 \, \mathrm{e} - 03 & 1.07 \, \mathrm{e} - 02 & 1.69 \, \mathrm{e} + 06 & 1.85 \, \mathrm{e} - 02 \\ 6.14 \, \mathrm{e} - 03 & 1.67 \, \mathrm{e} - 02 & 1.82 \, \mathrm{e} + 06 & 2.47 \\ 5.11 \, \mathrm{e} - 03 & 1.31 \, \mathrm{e} - 02 & 1.88 \, \mathrm{e} + 06 \\ 1.76 \, \mathrm{e} - 04 & 3.41 \, \mathrm{e} - 04 \\ 3.43 \, \mathrm{e} - 03 & 6 & 66 \\ 1.17 \, \mathrm{e} \end{array}
   I_CRA (CRA_15_6)
                                                                           0.000
                                                                                            0.000 \ 2.72e + 06 \ 2.72e - 03
                                                                                                                                              0.1
   I_CSA6 (csa15bit_36)
                                                                                                                                              0.1
   I_CSA5 (csa15bit_37)
                                                                                                                                              0.1
   I_{CSA4} (csa15bit_38)
                                                                                                                                              0.1
   I_CSA3 (csa15bit_39)
                                                                                                                                              0.1
   I_CSA2 (csa15bit_40)
                                                                                                                                              0.0
   I_CSA1 (csa15bit_41)
                                                                                                                                              0.1
   I_PAR (parcial_6)
                                                                                                                                              0.1
Mult2 (multiplier_7)
                                                                                                                                              5.0
   I_CRA (CRA_15_7)
                                                                                                                                              1.0
   I_CSA6 (csa15bit_42)
                                                                                                                                              1.3
   I_CSA5 (csa15bit_43)
   I_{CSA4} (csa15bit_44)
                                                                                                                                              0.0
   I_CSA3 (csa15bit_45)
                                                                                                                                              0.6
   I_CSA2 (csa15bit_46)
                                                                                                                                              0.3
```

```
I_CSA1 (csa15bit_47)
                                                2.24e-03 6.77e-03 1.26e+06 1.03e-02
                                                                                                  0.5
  LPAR (parcial_7)
                                                2.38e - 03 2.52e - 03 3.82e + 05 5.28e - 03
                                                                                                  0.3
                                                                0.000 \ 1.21e + 07 \ 1.21e - 02
Mult1 (multiplier_8)
                                                    0.000
                                                                                                  0.6
                                                                0.000 \quad 2.49 \, e{+06} \quad 2.49 \, e{-03}
  I_CRA (CRA_15_8)
                                                    0.000
                                                                                                  0.1
                                                                0.000 \ 3.18e + 06 \ 3.18e - 03
  I_CSA6 (csa15bit_48)
                                                    0.000
                                                                                                  0.2
  I_CSA5 (csa15bit_49)
                                                                0.000 \quad 2.46 \, e{+}06 \quad 2.46 \, e{-}03
                                                                                                  0.1
                                                    0.000
  I_CSA4 (csa15bit_50)
                                                    0.000
                                                                0.000 5.21e+05 5.21e-04
                                                                                                  0.0
  I_CSA3 (csa15bit_51)
                                                    0.000
                                                                0.000 \ 1.28e + 06 \ 1.28e - 03
                                                                                                  0.1
  I_CSA2 (csa15bit_52)
                                                    0.000
                                                                0.000 \quad 6.60 \,\mathrm{e}{+05} \quad 6.60 \,\mathrm{e}{-04}
                                                                                                  0.0
                                                                0.000 \quad 1.05 \,\mathrm{e}{+06} \quad 1.05 \,\mathrm{e}{-03}
  I_CSA1 (csa15bit_53)
                                                    0.000
                                                                                                  0.1
  I_PAR (parcial_8)
                                                    0.000
                                                                0.000 \ 4.88e + 05 \ 4.88e - 04
                                                                                                  0.0
filtermask (SHIFTREG_0)
                                                1.79e - 07
                                                                0.394 \ 1.62e+06
                                                                                       0.396
                                                                                                 20.5
cache (SHIFTREG_1)
                                                7.14e-02
                                                                0.475 \ 9.02e+05
                                                                                       0.547
                                                                                                 28.4
fsm_output (FSM_out_3)
                                                7.14e-02
                                                                0.139 \quad 3.10 \,\mathrm{e}{+07}
                                                                                       0.242
                                                                                                 12.5
  r156 (FSM_out_3_DW01_inc_0)
                                                3.69e-03 2.30e-02 3.89e+06 3.06e-02
                                                                                                  1.6
                                                                0.000 \ 3.80e + 06 \ 3.80e - 03
                                                                                                  0.2
  r159 (FSM_out_3_DW01_inc_1)
                                                    0.000
  r162 (FSM_out_3_DW01_inc_2)
                                                                0.000 \ 3.82e + 06 \ 3.82e - 03
                                                                                                  0.2
                                                    0.000
                                                                0.000 \ 3.78e + 06 \ 3.78e - 03
  r167 (FSM_out_3_DW01_inc_4)
                                                    0.000
                                                                                                  0.2
  sub_312 (FSM_out_3_DW01_sub_0)
                                                    0.000
                                                                0.000 \quad 4.46 \, e{+04} \quad 4.46 \, e{-05}
                                                                                                  0.0
  add_287 (FSM_out_3_DW01_add_0)
                                                    0.000
                                                                0.000 \quad 4.76 \,\mathrm{e}{+04} \quad 4.76 \,\mathrm{e}{-05}
                                                                                                  0.0
  add_109 (FSM_out_3_DW01_inc_5)
                                                3.08e - 03 2.38e - 02 3.89e + 06 3.08e - 02
                                                                                                  1.6
fsm_input (FSM_in_3)
                                                7.47e - 02
                                                                0.111 \ 2.15 e+07
                                                                                       0.207
                                                                                                 10.7
  r111 (FSM_in_3_DW01_inc_0)
                                                4.12e-03 2.29e-02 3.89e+06 3.10e-02
                                                                                                  1.6
  add_192 (FSM_in_3_DW01_inc_2)
                                                    0.000
                                                                0.000 \quad 3.80 \,\mathrm{e}{+06} \quad 3.80 \,\mathrm{e}{-03}
                                                                                                  0.2
  add_165 (FSM_in_3_DW01_add_1)
                                                    0.000
                                                                0.000 \quad 4.35 \,\mathrm{e}{+04} \quad 4.35 \,\mathrm{e}{-05}
                                                                                                  0.0
  add_103 (FSM_in_3_DW01_inc_3)
                                                5.26e-07 3.46e-06 3.78e+06 3.78e-03
                                                                                                  0.2
```

Listing 27: Timing 2 ns ************ Report : timing -path full -delay max $-max_paths 1$ -sort_by group Design : Processor_3 Version: X-2005.09-SP1Date : Mon Dec 10 20:59:15 2007 ************ Library: CORE90GPSVT Operating Conditions: NomLeak Wire Load Model Mode: enclosed Startpoint: cache/Q_reg[48] (rising edge-triggered flip-flop clocked by CLOCK) Endpoint: regster/Q_reg[7] (rising edge-triggered flip-flop clocked by CLOCK) Path Group: CLOCK Path Type: max Des/Clust/**Port** Wire Load Model Library Processor_3 $area_48Kto72K$ CORE90GPSVT multiplier_2 $area_4Kto5K$ CORE90GPSVT parcial_2 $area_0to1K$ CORE90GPSVT csa15bit_17 $area_0to1K$ CORE90GPSVT csa15bit_15 $area_0to1K$ CORE90GPSVT csa15bit_13 $area_0to1K$ CORE90GPSVT csa15bit_12 $area_0to1K$ CORE90GPSVT $area_0to1K$ CORE90GPSVT CRA 15 2 $ADDER_3_0_DW01_add_1$ $area_0to1K$ CORE90GPSVT ADDER_3_0 area_1Kto2K CORE90GPSVT $ADDER_3_0_DW01_add_0$ $area_0to1K$ CORE90GPSVT ADDER_2_DW01_add_2 area_0to1K CORE90GPSVT ADDER_2 $area_0to1K$ CORE90GPSVT Point Path Incr clock CLOCK (rise edge) 0.00 0.00 clock network delay (ideal) 0.00 0.00 $cache/Q_reg[48]/CP$ (FD2QSVTX2) 0.00 0.00 r $cache/Q_reg[48]/Q$ (FD2QSVTX2) 0.120.12 fcache/Q[48] (SHIFTREG_1) 0.12 f0.00Mult7/num1[0] (multiplier_2) 0.00 0.12 fMult7/U69/Z (IVSVTX4) 0.030.14 rMult7/U68/Z (IVSVTX8) 0.020.16 f $Mult7/I_PAR/M1[0]$ (parcial_2) 0.000.16 fMult7/I_PAR/U101/Z (ND2SVTX6) 0.02 $0.18 \, \mathrm{r}$ Mult7/I_PAR/U99/Z (IVSVTX6) 0.020.19 f ${\rm Mult7/I_PAR/O1[0]} \ (\, {\rm parcial_2} \,)$ 0.00 0.19 f $Mult7/I_CSA1/A[0]$ (csa15bit_17) 0.000.19 f

0.04

0.05

 $\begin{array}{cc} 0.24 & f \\ 0.28 & f \end{array}$

 $Mult7/I_CSA1/U60/Z$ (ENSVTX8)

Mult7/I_CSA1/U57/Z (ENSVTX8)

```
Mult7/I_CSA1/Z[0] (csa15bit_17)
                                                           0.00
                                                                      0.28 f
Mult7/I_CSA3/A[0] (csa15bit_15)
                                                           0.00
                                                                      0.28 f
Mult7/I_CSA3/U55/Z (ENSVTX8)
                                                           0.05
                                                                      0.33 f
Mult7/I_CSA3/U59/Z (ENSVTX8)
                                                           0.05
                                                                      0.37 f
Mult7/I_CSA3/Z[0] (csa15bit_15)
                                                           0.00
                                                                      0.37
                                                                           f
Mult7/I_CSA5/A[0] (csa15bit_13)
                                                                      0.37 f
                                                           0.00
Mult7/I_CSA5/U56/Z (ENSVTX8)
                                                           0.05
                                                                      0.42 \, \text{f}
Mult7/I_CSA5/U59/Z (ENSVTX8)
                                                           0.05
                                                                      0.47 f
Mult7/I_CSA5/Z[0] (csa15bit_13)
                                                           0.00
                                                                      0.47 f
Mult7/I_CSA6/B[0] (csa15bit_12)
                                                           0.00
                                                                      0.47 f
Mult7/I_CSA6/U57/Z (ENSVTX8)
                                                           0.06
                                                                      0.53 f
Mult7/I_CSA6/U63/Z (EOSVTX8)
                                                           0.05
                                                                      0.58 f
Mult7/I_CSA6/Z[0] (csa15bit_12)
                                                           0.00
                                                                      0.58 f
Mult7/I_CRA/A[0] (CRA_15_2)
                                                           0.00
                                                                      0.58 f
Mult7/I_CRA/U104/Z (EOSVTX8)
                                                           0.05
                                                                      0.62 r
Mult7/I_CRA/U90/Z (AO2ASVTX6)
                                                           0.03
                                                                      0.65 f
Mult7/I_CRA/U95/Z (AO2ASVTX4)
                                                           0.06
                                                                      0.71 f
Mult7/I\_CRA/U96/Z (AO2ASVTX8)
                                                           0.05
                                                                      0.77 f
Mult7/LCRA/U109/Z (AO2ASVTX8)
                                                           0.05
                                                                      0.82 f
Mult7/I_CRA/U120/Z (AO2ASVTX8)
                                                           0.05
                                                                      0.87
                                                                           f
Mult7/I_CRA/U110/Z (AO2ASVTX8)
                                                           0.05
                                                                      0.92 f
Mult7/I_CRA/U121/Z (AO2ASVTX8)
                                                           0.05
                                                                      0.97 f
Mult7/I_CRA/U89/Z (AO4ABSVTX8)
                                                           0.03
                                                                      1.00 r
Mult7/I_CRA/U97/Z (NR3SVTX8)
                                                           0.02
                                                                      1.02 f
Mult7/I_CRA/U118/Z (ND4SVTX8)
                                                           0.04
                                                                      1.07 r
Mult7/I_CRA/U93/Z (IVSVTX10)
                                                           0.03
                                                                      1.09 f
Mult7/I_CRA/U98/Z (ND2ASVTX8)
                                                                      1.12 r
                                                           0.02
Mult7/I_CRA/Y[1] (CRA_15_2)
                                                           0.00
                                                                      1.12 r
Mult7/product[1] (multiplier_2)
                                                           0.00
                                                                      1.12 r
Add3/A[1] (ADDER_3_0)
                                                           0.00
                                                                      1.12 r
Add3/add_1_root_add_0_root_add_17/plus/plus_1/B[1] (ADDER_3_0_DW01_add_1)
                                                           0.00
                                                                      1.12 r
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U7/Z (IVSVTX8)
                                                                      1.13 f
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U83/Z (ND3ABSVTX8)
                                                           0.06
                                                                      1.19 f
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U36/Z (IVSVTX8)
                                                           0.02
                                                                      1.21 r
Add3/add_1_root_add_0_root_add_17/plus_1/U42/Z (NR2SVTX8)
                                                                      1.22 f
                                                           0.01
Add3/add_1_root_add_0_root_add_17/plus_1/U38/Z (AO6SVTX8)
                                                           0.02
                                                                      1.24 r
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U44/Z (AO20CSVTX8)
                                                                      1.27 f
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U34/Z (IVSVTX4)
                                                                      1.29 r
Add3/add_1_root_add_0_root_add_17/plus_1/U32/Z (ND2SVTX6)
                                                                      1.31 f
                                                           0.02
Add3/add\_1\_root\_add\_0\_root\_add\_17/plus/plus\_1/U33/Z~(ND2SVTX8)
                                                           0.02
                                                                      1.33 r
Add3/add_1_root_add_0_root_add_17/plus/plus_1/SUM[6] (ADDER_3_0_DW01_add_1)
                                                           0.00
                                                                      1.33 \, r
Add3/add_0_root_add_0_root_add_17/plus/plus_1/B[6] (ADDER_3_0_DW01_add_0)
                                                                      1.33 \, r
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U10/Z (IVSVTX6)
                                                                      1.35 f
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U54/Z (ND2ASVTX8)
```

	0.01	1.36 r	
$Add3/add_0_root_add_0_root_add_17/plus/plus_1/U43/Z$		1 0 7 6	
	0.01	1.37 f	
$Add3/add_0_root_add_0_root_add_17/plus/plus_1/U48/Z$			
	0.05	1.42 f	
$Add3/add_0_root_add_0_root_add_17/plus/plus_1/U24/Z$			
	0.02	1.43 r	
$Add3/add_0_root_add_0_root_add_17/plus/plus_1/U31/Z$			
	0.03	1.47 f	
$Add3/add_0_root_add_0_root_add_17/plus/plus_1/U20/Z$	(ENSVTX8)		
	0.05	1.52 f	
Add3/add_0_root_add_0_root_add_17/plus/plus_1/SUM[8]	(ADDER_3_0_1	$DW01_{add_{a}}$	0)
	0.00	1.52 f	
Add3/U37/Z (NR2SVTX8)	0.04	1.56 r	
Add3/U45/Z (ND2ASVTX4)	0.02	1.58 f	
$Add3/Z[2]$ (ADDER_3_0)	0.00	1.58 f	
Multiplexer/C[2] (MUX.4)	0.00	1.58 f	
Multiplexer/U36/Z (AO11NSVTX8)	0.11	1.69 f	
Multiplexer/SIG[2] (MUX.4)	0.00	1.69 f	
$Add_new_value/B[2]$ (ADDER_2)	0.00	1.69 f	
Add_new_value/add_17/plus/plus/B[2] (ADDER_2_DW01_a		1.00 1	
riddinewivarde/addir/prob/prob/prob/b[2] (hbbbht-2-bwor-a	0.00	1.69 f	
Add_new_value/add_17/plus/plus/U36/Z (NR2SVTX8)	0.02	1.72 r	
Add_new_value/add_17/plus/plus/U5/Z (IVSVTX4)	0.01	1.72 f	
Add_new_value/add_17/plus/plus/U43/Z (ND3ASVTX8)	$0.01 \\ 0.02$	1.75 r	
Add_new_value/add_17/plus/plus/U40/Z (ND3SVTX8)	$0.02 \\ 0.02$	1.78 f	
Add_new_value/add_17/plus/plus/U38/Z (ND3SVTX8) Add_new_value/add_17/plus/plus/U38/Z (ND3SVTX8)	$0.02 \\ 0.03$	1.78 I 1.80 r	
Add_new_value/add_17/plus/plus/U42/Z (AO52SVTX8)	0.03	1.83 f	
Add_new_value/add_17/plus/plus/U37/Z (EOSVTX8)	0.05	1.88 r	
Add_new_value/add_17/plus/plus/SUM[7] (ADDER_2_DW0	,	1 00	
A LL (LIOO /F (ODOOLTING)	0.00	1.88 r	
Add_new_value/U20/Z (OR2SVTX6)	0.04	1.92 r	
Add_new_value/Z[7] (ADDER_2)	0.00	1.92 r	
regster/D[7] (REG)	0.00	$1.92 ext{ r}$	
$regster/Q_reg[7]/D$ (FD2QSVTX2)	0.00	1.92 r	
data arrival time		1.92	
clock CLOCK (rise edge)	2.00	2.00	
clock network delay (ideal)	0.00	2.00	
$regster/Q_reg[7]/CP$ (FD2QSVTX2)	0.00	2.00 r	
library setup time	-0.08	1.92	
data required time		1.92	
			-
data required time		1.92	
data arrival time		-1.92	
		0.00	_
slack (MET)		0.00	

Listing 28: Timing 3 ns ************ Report : timing -path full -delay max $-max_paths 1$ -sort_by group Design : Processor_3 Version: X-2005.09-SP1: Mon Dec 10 20:54:42 2007 ************ Library: CORE90GPSVT Operating Conditions: NomLeak Wire Load Model Mode: enclosed Startpoint: cache/Q_reg[0] (rising edge-triggered flip-flop clocked by CLOCK) Endpoint: regster/Q_reg[4] (rising edge-triggered flip-flop clocked by CLOCK) Path Group: CLOCK Path Type: max Des/Clust/**Port** Wire Load Model Library Processor_3 $area_48Kto72K$ CORE90GPSVT multiplier_8 $area_3Kto4K$ CORE90GPSVT csa15bit_53 $area_0to1K$ CORE90GPSVT csa15bit_51 $area_0to1K$ CORE90GPSVT csa15bit_49 $area_0to1K$ CORE90GPSVT csa15bit_48 $area_0to1K$ CORE90GPSVT CRA_15_8 $area_0to1K$ CORE90GPSVT $ADDER_3_2_DW01_add_1$ $area_0to1K$ CORE90GPSVT ADDER_3_2 area_1Kto2K CORE90GPSVT $ADDER_3_2_DW01_add_2$ $area_0to1K$ CORE90GPSVT ADDER_2_DW01_add_0 area_0to1K CORE90GPSVT ADDER_2 $area_1Kto2K$ CORE90GPSVT Point Incr Path clock CLOCK (rise edge) 0.00 0.00 clock network delay (ideal) 0.00 0.00 $cache/Q_reg[0]/CP$ (FD2QSVTX1) 0.00 0.00 r $\operatorname{cache}/\operatorname{Q_reg}[0]/\operatorname{Q} \text{ (FD2QSVTX1)}$ 0.160.16 rcache/Q[0] (SHIFTREG_1) 0.000.16 rMult1/num1[0] (multiplier_8) 0.000.16 rMult1/I_PAR/M1[0] (parcial_8) 0.16 r0.00 Mult1/I_PAR/U79/Z (NR2ASVTX8) 0.090.24 rMult1/I_PAR/O1[0] (parcial_8) 0.000.24 r $Mult1/I_CSA1/A[0]$ (csa15bit_53) 0.000.24 rMult1/I_CSA1/U40/Z (EOSVTX1) 0.09 $0.33 \, \mathrm{r}$ Mult1/I_CSA1/U22/Z (EOSVTX1) 0.44 r0.11 $Mult1/I_CSA1/Z[0]$ (csa15bit_53) 0.44 r0.00 $Mult1/I_CSA3/A[0]$ (csa15bit_51) 0.000.44 r

0.07

0.09

0.52 f

0.61 r

 $Mult1/I_CSA3/U57/Z$ (EOSVTX4)

Mult1/I_CSA3/U22/Z (EOSVTX1)

```
Mult1/I_CSA3/Z[0] (csa15bit_51)
                                                            0.00
                                                                        0.61 r
Mult1/I_CSA5/A[0] (csa15bit_49)
                                                            0.00
                                                                        0.61 r
Mult1/I_CSA5/U57/Z (EOSVTX4)
                                                            0.08
                                                                        0.68 f
Mult1/I_CSA5/U55/Z (EOSVTX4)
                                                            0.06
                                                                        0.74 f
Mult1/I_{CSA5}/Z[0] (csa15bit_49)
                                                            0.00
                                                                        0.74 f
Mult1/I_CSA6/B[0] (csa15bit_48)
                                                                        0.74 f
                                                            0.00
Mult1/I_CSA6/U55/Z (EOSVTX8)
                                                            0.07
                                                                        0.81 f
Mult1/I_CSA6/U60/Z (EOSVTX8)
                                                            0.04
                                                                        0.85 f
Mult1/I_{CSA6}/Z[0] (csa15bit_48)
                                                            0.00
                                                                        0.85 f
Mult1/I_CRA/A[0] (CRA_15_8)
                                                            0.00
                                                                        0.85 f
Mult1/I_CRA/U54/Z (EOSVTX1)
                                                            0.07
                                                                        0.93 f
Mult1/I_CRA/U53/Z (AO2SVTX1)
                                                            0.09
                                                                        1.01 r
Mult1/I_CRA/U51/Z (AO2ASVTX1)
                                                            0.14
                                                                        1.16 r
Mult1/I_CRA/U73/Z (AO2ASVTX4)
                                                            0.08
                                                                        1.24 r
Mult1/I\_CRA/U68/Z (AO2ASVTX2)
                                                            0.07
                                                                        1.31 r
Mult1/I_CRA/U66/Z (AO2ASVTX2)
                                                            0.08
                                                                        1.39 	ext{ r}
Mult1/I_CRA/U72/Z (AO2ASVTX4)
                                                            0.07
                                                                        1.46 \, \mathrm{r}
Mult1/I_CRA/U71/Z (AO2ASVTX4)
                                                            0.06
                                                                        1.52 \, \mathrm{r}
Mult1/I_CRA/U64/Z (AO4ABSVTX6)
                                                            0.03
                                                                        1.55 f
Mult1/I_CRA/U63/Z (NR3ASVTX8)
                                                            0.03
                                                                        1.57 r
Mult1/I_CRA/U65/Z (ND4SVTX6)
                                                            0.03
                                                                        1.60 f
Mult1/LCRA/U70/Z (IVSVTX4)
                                                            0.04
                                                                        1.64 r
Mult1/I_CRA/U61/Z (OR2ABSVTX8)
                                                            0.07
                                                                        1.71
                                                                             f
Mult1/I_CRA/Y[1] (CRA_15_8)
                                                            0.00
                                                                        1.71 f
Mult1/product[1] (multiplier_8)
                                                            0.00
                                                                        1.71 f
Add1/A[1] (ADDER_3_2)
                                                            0.00
                                                                        1.71 f
Add1/add_1_root_add_0_root_add_17/plus/plus_1/A[1] (ADDER_3_2_DW01_add_1)
                                                                        1.71 f
                                                            0.00
Add1/add_1_root_add_0_root_add_17/plus/plus_1/U1_1/CO (FA1SVTX4)
                                                                        1.78 f
                                                            0.07
Add1/add_1_root_add_0_root_add_17/plus/plus_1/U1_2/CO (FA1SVTX4)
                                                                        1.85 f
                                                            0.07
Add1/add_1_root_add_0_root_add_17/plus/plus_1/U1_3/CO (FA1SVTX4)
                                                                        1.92 f
                                                            0.08
Add1/add_1_root_add_0_root_add_17/plus/plus_1/U1_4/CO (FAISVTX8)
                                                            0.07
                                                                        2.00 f
Add1/add_1_root_add_0_root_add_17/plus/plus_1/U1_5/CO (FAISVTX8)
                                                                        2.06 f
                                                            0.07
Add1/add_1_root_add_0_root_add_17/plus/plus_1/U1_6/CO (FA1SVTX8)
                                                                        2.13 f
                                                            0.07
Add1/add_1_root_add_0_root_add_17/plus/plus_1/U1_7/Z (FA1SVTX8)
                                                            0.13
                                                                        2.26 r
Add1/add_1_root_add_0_root_add_17/plus/plus_1/SUM[7] (ADDER_3_2_DW01_add_1)
                                                            0.00
                                                                        2.26 r
Add1/add_0_root_add_0_root_add_17/plus/plus_1/B[7] (ADDER_3_2_DW01_add_2)
                                                            0.00
                                                                        2.26 r
Add1/add_0_root_add_0_root_add_17/plus_1/U13/Z (NR2SVTX8)
                                                                        2.27 f
Add1/add\_0\_root\_add\_0\_root\_add\_17/plus/plus\_1/U14/Z\ (NR2SVTX4)
                                                                        2.30 r
Add1/add_0_root_add_0_root_add_17/plus/plus_1/U8/Z (NR2SVTX6)
                                                                        2.32 f
Add1/add_0_root_add_0_root_add_17/plus/plus_1/U26/Z (AO8DSVTX6)
                                                                        2.38 f
Add1/add_0_root_add_0_root_add_17/plus/plus_1/U25/Z (ENSVTX8)
                                                            0.05
                                                                        2.43 r
Add1/add\_0\_root\_add\_0\_root\_add\_17/plus/plus\_1/SUM[8] \quad (ADDER\_3\_2\_DW01\_add\_2)
```

	0.00	2.43 r
Add1/U26/Z (NR2SVTX8)	0.02	2.45 f
Add1/U33/Z (OR2BSVTX2)	0.09	2.54 r
$Add1/Z[1]$ (ADDER_3_2)	0.00	2.54 r
Multiplexer/A[1] (MUX.4)	0.00	2.54 r
Multiplexer/U40/Z (AO11NSVTX8)	0.12	2.66 r
Multiplexer/SIG[1] (MUX.4)	0.00	2.66 r
$Add_new_value/B[1]$ (ADDER.2)	0.00	2.66 r
$Add_new_value/add_17/plus/plus/B[1] (ADDER_2_DW01_8) = (ADDER_2_DW01_8) + (ADDER_2_2_DW01_8) + (ADDER_2_2_2_2_2_2_2_2_2_2_2_2_2_2_2_2_2_2_2$		
	0.00	$2.66 ext{ r}$
Add_new_value/add_17/plus/plus/U7/Z (AO1ASVTX8)	0.09	2.74 r
Add_new_value/add_17/plus/plus/U5/Z (NR2SVTX8)	0.03	2.77 f
Add_new_value/add_17/plus/plus/U73/Z (AO7ASVTX8)	0.02	2.80 r
Add_new_value/add_17/plus/plus/U72/Z (ENSVTX8)	0.05	2.84 f
Add_new_value/add_17/plus/plus/SUM[4] (ADDER_2_DW0	1_add_0)	
	0.00	2.84 f
Add_new_value/U13/Z (OR2SVTX1)	0.08	2.92 f
$Add_new_value/Z[4]$ (ADDER.2)	0.00	2.92 f
regster/D[4] (REG)	0.00	2.92 f
$regster/Q_reg[4]/D$ (FD2QSVTX2)	0.00	2.92 f
data arrival time		2.92
clock CLOCK (rise edge)	3.00	3.00
clock network delay (ideal)	0.00	3.00
regster/Q_reg[4]/CP (FD2QSVTX2)	0.00	3.00 r
library setup time	-0.07	2.93
data required time		2.93
data required time		2.93
data arrival time		-2.92
slack (MET)		0.01

Listing 29: Timing 5 ns

************ Report : timing -path full -delay max $-max_paths 1$ -sort_by group Design : Processor_3 Version: X-2005.09-SP1: Mon Dec 10 20:29:49 2007 ************ Library: CORE90GPSVT Operating Conditions: NomLeak Wire Load Model Mode: enclosed Startpoint: filtermask/Q_reg[48] (rising edge-triggered flip-flop clocked by CLOCK) Endpoint: regster/Q_reg[7] (rising edge-triggered flip-flop clocked by CLOCK) Path Group: CLOCK Path Type: max Des/Clust/**Port** Wire Load Model Library Processor_3 $area_48Kto72K$ CORE90GPSVT $area_0to1K$ CORE90GPSVT parcial_2 multiplier_2 $area_3Kto4K$ CORE90GPSVT csa15bit_17 $area_0to1K$ CORE90GPSVT csa15bit_15 $area_0to1K$ CORE90GPSVT csa15bit_13 $area_0to1K$ CORE90GPSVT csa15bit_12 $area_0to1K$ CORE90GPSVT $area_0to1K$ CORE90GPSVT CRA 15 2 $ADDER_3_0_DW01_add_1$ $area_0to1K$ CORE90GPSVT ADDER_3_0 $area_0to1K$ CORE90GPSVT $ADDER_3_0_DW01_add_0$ $area_0to1K$ CORE90GPSVT ADDER_2_DW01_add_0 area_0to1K CORE90GPSVT ADDER_2 $area_0to1K$ CORE90GPSVT Point Path Incr clock CLOCK (rise edge) 0.00 0.00 clock network delay (ideal) 0.00 0.00 $filtermask/Q_reg[48]/CP (FD2QSVTX2)$ 0.00 0.00 r $filtermask/Q_reg[48]/Q$ (FD2QSVTX2) 0.110.11 f filtermask/Q[48] (SHIFTREG_0) 0.11 f 0.00Mult7/num2[0] (multiplier_2) 0.00 0.11 f Mult7/I_PAR/M2[0] (parcial_2) 0.000.11 f Mult7/I_PAR/U78/Z (IVSVTX0H) 0.180.28 rMult7/I_PAR/U77/Z (NR2ASVTX1) 0.130.41 fMult7/LPAR/O1[0] (parcial_2) 0.00 $0.41 \, \mathrm{f}$ $Mult7/I_CSA1/A[0]$ (csa15bit_17) 0.000.41 f $Mult7/I_CSA1/U40/Z$ (EOSVTX1) 0.120.53 r $Mult7/I_CSA1/U22/Z$ (EOSVTX1) 0.110.64 r $Mult7/I_CSA1/Z[0]$ (csa15bit_17) 0.000.64 r

0.00

0.64 r

 $Mult7/I_CSA3/A[0]$ (csa15bit_15)

```
Mult7/I_CSA3/U40/Z (EOSVTX1)
                                                            0.11
                                                                       0.75 r
Mult7/I_CSA3/U22/Z (EOSVTX1)
                                                            0.11
                                                                       0.85 r
Mult7/I_CSA3/Z[0] (csa15bit_15)
                                                            0.00
                                                                       0.85 r
Mult7/I_CSA5/A[0] (csa15bit_13)
                                                            0.00
                                                                       0.85 r
Mult7/I_CSA5/U40/Z (EOSVTX1)
                                                            0.11
                                                                       0.96 r
Mult7/I_CSA5/U22/Z (EOSVTX1)
                                                            0.11
                                                                       1.06 \, \mathrm{r}
Mult7/I_CSA5/Z[0] (csa15bit_13)
                                                            0.00
                                                                       1.06 r
Mult7/I_CSA6/B[0] (csa15bit_12)
                                                            0.00
                                                                       1.06 r
Mult7/I_CSA6/U40/Z (EOSVTX1)
                                                            0.10
                                                                       1.16 r
Mult7/I_CSA6/U22/Z (EOSVTX1)
                                                            0.11
                                                                       1.27 r
Mult7/I_CSA6/Z[0] (csa15bit_12)
                                                            0.00
                                                                       1.27 r
Mult7/I_CRA/A[0] (CRA_15_2)
                                                            0.00
                                                                       1.27 r
Mult7/I_CRA/U54/Z (EOSVTX1)
                                                            0.11
                                                                       1.37 r
Mult7/I_CRA/U53/Z (AO2SVTX1)
                                                            0.08
                                                                       1.45 f
Mult7/I\_CRA/U51/Z (AO2ASVTX1)
                                                            0.15
                                                                       1.61 f
Mult7/I_CRA/U49/Z (AO2ASVTX1)
                                                            0.15
                                                                       1.76 f
Mult7/I_CRA/U47/Z (AO2ASVTX1)
                                                            0.15
                                                                       1.92 f
Mult7/I_CRA/U45/Z (AO2ASVTX1)
                                                                       2.07 f
                                                            0.15
Mult7/I_CRA/U43/Z (AO2ASVTX1)
                                                                       2.22 f
                                                            0.15
Mult7/I_CRA/U41/Z (AO2ASVTX1)
                                                            0.15
                                                                       2.37
                                                                            f
Mult7/I_CRA/U39/Z (AO4ABSVTX1)
                                                            0.07
                                                                       2.44 r
Mult7/I_CRA/U25/Z (NR3ASVTX1)
                                                            0.05
                                                                       2.49 f
Mult7/I_CRA/U23/Z (ND4SVTX1)
                                                            0.06
                                                                       2.55 r
Mult7/I_CRA/U22/Z (IVSVTX0H)
                                                            0.15
                                                                       2.70 f
Mult7/I_CRA/U21/Z (ND2SVTX1)
                                                            0.12
                                                                       2.82 r
Mult7/I_CRA/Y[0] (CRA_15_2)
                                                                       2.82 \ \mathrm{r}
                                                            0.00
Mult7/product[0] (multiplier_2)
                                                                       2.82 r
                                                            0.00
Add3/A[0] (ADDER_3_0)
                                                            0.00
                                                                       2.82 r
Add3/add_1_root_add_0_root_add_17/plus/plus_1/B[0] (ADDER_3_0_DW01_add_1)
                                                                       2.82 r
                                                            0.00
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U4/Z (AN2SVTX1)
                                                                       2.90 r
                                                            0.09
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U1_1/Z (FA1SVTX4)
                                                                       3.03 f
                                                            0.12
Add3/add_1\_root\_add_0\_root\_add_17/plus/plus_1/SUM[1] \quad (ADDER_3\_0\_DW01\_add_1)
                                                            0.00
                                                                       3.03 f
Add3/add_0_root_add_0_root_add_17/plus/plus_1/B[1] (ADDER_3_0_DW01_add_0)
                                                            0.00
                                                                       3.03 f
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_1/CO (FA1SVTX4)
                                                                       3.11 f
                                                            0.08
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_2/CO (FA1SVTX4)
                                                                       3.18 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_3/CO (FA1SVTX4)
                                                                       3.25 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_4/CO (FA1SVTX4)
                                                                       3.32 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_5/CO (FA1SVTX4)
                                                                       3.39 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_6/CO (FAISVTX4)
                                                                       3.46 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_7/CO (FA1SVTX4)
                                                                       3.53 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U5/Z (EOSVTX1)
                                                                       3.60 f
Add3/add_0_root_add_0_root_add_17/plus/plus_1/SUM[8] (ADDER_3_0_DW01_add_0)
                                                            0.00
                                                                       3.60 f
Add3/U20/Z (NR2SVTX1)
                                                            0.15
                                                                       3.75 r
```

Add3/U19/Z (ND2ASVTX1)	0.07	$3.82 ext{ f}$	-
$Add3/Z[0]$ (ADDER_3_0)	0.00	3.82 f	
Multiplexer/C[0] (MUX.4)	0.00	3.82 f	
Multiplexer/U30/Z (AO11NSVTX1)	0.20	4.02 f	
Multiplexer/SIG[0] (MUX.4)	0.00	4.02 f	
$Add_{new_value}/B[0]$ (ADDER_2)	0.00	4.02 f	
Add_new_value/add_17/plus/plus/B[0] (ADDER_2_DW01_a	dd_0)	-	
, , , , , , , , , , , , , , , , , , , ,	0.00	4.02 f	
Add_new_value/add_17/plus/plus/U4/Z (AN2SVTX1)	0.10	4.12 f	
Add_new_value/add_17/plus/plus/U1_1/CO (FA1SVTX4)	0.08	4.20 f	
Add_new_value/add_17/plus/plus/U1_2/CO (FA1SVTX4)	0.07	4.27 f	
Add_new_value/add_17/plus/plus/U1_3/CO (FA1SVTX4)	0.07	4.34 f	
Add_new_value/add_17/plus/plus/U1_4/CO (FA1SVTX4)	0.07	4.41 f	
Add_new_value/add_17/plus/plus/U1_5/CO (FA1SVTX4)	0.07	4.48 f	
Add_new_value/add_17/plus/plus/U1_6/CO (FA1SVTX4)	0.07	4.55 f	
Add_new_value/add_17/plus/plus/U1_7/Z (FA1SVTX4)	0.10	4.65 f	
Add_new_value/add_17/plus/plus/SUM[7] (ADDER_2_DW0)	$1_{\text{-}} \text{add}_{\text{-}} 0)$		
	0.00	4.65 f	
Add_new_value/U10/Z (OR2SVTX1)	0.08	4.73 f	
$Add_new_value/Z[7]$ (ADDER_2)	0.00	4.73 f	
regster/D[7] (REG)	0.00	4.73 f	
$regster/Q_reg[7]/D$ (FD2QSVTX2)	0.00	4.73 f	
data arrival time		4.73	
clock CLOCK (rise edge)	5.00	5.00	
clock network delay (ideal)	0.00	5.00	
$regster/Q_reg[7]/CP$ (FD2QSVTX2)	0.00	5.00 r	
library setup time	-0.07	4.93	
data required time		4.93	
data required time		4.93	
data arrival time		-4.73	
slack (MET)		0.20	
biack (htt.)		0.20	

Listing 30: Timing 7 ns

************ Report : timing -path full -delay max $-max_paths 1$ -sort_by group Design : Processor_3 Version: X-2005.09-SP1: Mon Dec 10 20:17:33 2007 ************ Library: CORE90GPSVT Operating Conditions: NomLeak Wire Load Model Mode: enclosed Startpoint: filtermask/Q_reg[48] (rising edge-triggered flip-flop clocked by CLOCK) Endpoint: regster/Q_reg[7] (rising edge-triggered flip-flop clocked by CLOCK) Path Group: CLOCK Path Type: max Des/Clust/**Port** Wire Load Model Library Processor_3 $area_48Kto72K$ CORE90GPSVT $area_0to1K$ CORE90GPSVT parcial_2 multiplier_2 $area_3Kto4K$ CORE90GPSVT csa15bit_17 $area_0to1K$ CORE90GPSVT csa15bit_15 $area_0to1K$ CORE90GPSVT csa15bit_13 $area_0to1K$ CORE90GPSVT csa15bit_12 $area_0to1K$ CORE90GPSVT $area_0to1K$ CORE90GPSVT CRA 15 2 $ADDER_3_0_DW01_add_1$ $area_0to1K$ CORE90GPSVT ADDER_3_0 $area_0to1K$ CORE90GPSVT $ADDER_3_0_DW01_add_0$ $area_0to1K$ CORE90GPSVT ADDER_2_DW01_add_0 area_0to1K CORE90GPSVT ADDER_2 $area_0to1K$ CORE90GPSVT Point Path Incr clock CLOCK (rise edge) 0.00 0.00 clock network delay (ideal) 0.00 0.00 $filtermask/Q_reg[48]/CP (FD2QSVTX2)$ 0.00 0.00 r $filtermask/Q_reg[48]/Q$ (FD2QSVTX2) 0.110.11 f filtermask/Q[48] (SHIFTREG_0) 0.11 f 0.00Mult7/num2[0] (multiplier_2) 0.00 0.11 f Mult7/I_PAR/M2[0] (parcial_2) 0.000.11 f Mult7/I_PAR/U78/Z (IVSVTX0H) 0.180.28 rMult7/I_PAR/U77/Z (NR2ASVTX1) 0.130.41 fMult7/LPAR/O1[0] (parcial_2) 0.00 $0.41 \, \mathrm{f}$ $Mult7/I_CSA1/A[0]$ (csa15bit_17) 0.000.41 f $Mult7/I_CSA1/U40/Z$ (EOSVTX1) 0.53 r0.12 $Mult7/I_CSA1/U22/Z$ (EOSVTX1) 0.110.64 r $Mult7/I_CSA1/Z[0]$ (csa15bit_17) 0.000.64 r

0.00

0.64 r

 $Mult7/I_CSA3/A[0]$ (csa15bit_15)

```
Mult7/I_CSA3/U40/Z (EOSVTX1)
                                                           0.11
                                                                       0.75 r
Mult7/I_CSA3/U22/Z (EOSVTX1)
                                                           0.11
                                                                       0.85 r
Mult7/I_CSA3/Z[0] (csa15bit_15)
                                                           0.00
                                                                       0.85 r
Mult7/I_CSA5/A[0] (csa15bit_13)
                                                           0.00
                                                                       0.85 r
Mult7/I_CSA5/U40/Z (EOSVTX1)
                                                           0.11
                                                                       0.96 r
Mult7/I_CSA5/U22/Z (EOSVTX1)
                                                           0.11
                                                                       1.06 \, \mathrm{r}
Mult7/I_CSA5/Z[0] (csa15bit_13)
                                                           0.00
                                                                       1.06 r
Mult7/I_CSA6/B[0] (csa15bit_12)
                                                           0.00
                                                                       1.06 r
Mult7/I_CSA6/U40/Z (EOSVTX1)
                                                           0.10
                                                                       1.16 r
Mult7/I_CSA6/U22/Z (EOSVTX1)
                                                           0.11
                                                                       1.27 r
Mult7/I_CSA6/Z[0] (csa15bit_12)
                                                           0.00
                                                                       1.27 r
Mult7/I_CRA/A[0] (CRA_15_2)
                                                           0.00
                                                                       1.27 r
Mult7/I_CRA/U54/Z (EOSVTX1)
                                                           0.11
                                                                       1.37 r
Mult7/I_CRA/U53/Z (AO2SVTX1)
                                                           0.08
                                                                       1.45 f
Mult7/I_CRA/U51/Z (AO2ASVTX1)
                                                           0.15
                                                                       1.61 f
Mult7/I_CRA/U49/Z (AO2ASVTX1)
                                                           0.15
                                                                       1.76 f
Mult7/I_CRA/U47/Z (AO2ASVTX1)
                                                           0.15
                                                                       1.92 f
Mult7/I_CRA/U45/Z (AO2ASVTX1)
                                                                       2.07 f
                                                           0.15
Mult7/I_CRA/U43/Z (AO2ASVTX1)
                                                                       2.22 f
                                                           0.15
Mult7/I_CRA/U41/Z (AO2ASVTX1)
                                                           0.15
                                                                       2.37
                                                                            f
Mult7/I_CRA/U39/Z (AO4ABSVTX1)
                                                           0.07
                                                                       2.44 r
Mult7/I_CRA/U25/Z (NR3ASVTX1)
                                                           0.05
                                                                       2.49 f
Mult7/I_CRA/U23/Z (ND4SVTX1)
                                                           0.06
                                                                       2.55 r
Mult7/I_CRA/U22/Z (IVSVTX0H)
                                                           0.15
                                                                       2.70 f
Mult7/I_CRA/U21/Z (ND2SVTX1)
                                                           0.12
                                                                       2.82 r
Mult7/I_CRA/Y[0] (CRA_15_2)
                                                                       2.82 \ \mathrm{r}
                                                           0.00
Mult7/product[0] (multiplier_2)
                                                                       2.82 r
                                                           0.00
Add3/A[0] (ADDER_3_0)
                                                           0.00
                                                                       2.82 r
Add3/add_1_root_add_0_root_add_17/plus/plus_1/B[0] (ADDER_3_0_DW01_add_1)
                                                                       2.82 r
                                                           0.00
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U4/Z (AN2SVTX1)
                                                                       2.90 r
                                                           0.09
Add3/add_1_root_add_0_root_add_17/plus/plus_1/U1_1/Z (FA1SVTX4)
                                                                       3.03 f
                                                           0.12
Add3/add_1\_root\_add_0\_root\_add_17/plus/plus_1/SUM[1] \quad (ADDER_3\_0\_DW01\_add_1)
                                                           0.00
                                                                       3.03 f
Add3/add_0_root_add_0_root_add_17/plus/plus_1/B[1] (ADDER_3_0_DW01_add_0)
                                                           0.00
                                                                       3.03 f
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_1/CO (FA1SVTX4)
                                                                       3.11 f
                                                           0.08
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_2/CO (FA1SVTX4)
                                                                       3.18 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_3/CO (FA1SVTX4)
                                                                       3.25 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_4/CO (FA1SVTX4)
                                                                       3.32 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_5/CO (FA1SVTX4)
                                                                       3.39 f
                                                            0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_6/CO (FAISVTX4)
                                                                       3.46 f
                                                           0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U1_7/CO (FA1SVTX4)
                                                                       3.53 f
                                                           0.07
Add3/add_0_root_add_0_root_add_17/plus/plus_1/U5/Z (EOSVTX1)
                                                                       3.60 f
Add3/add_0_root_add_0_root_add_17/plus/plus_1/SUM[8] (ADDER_3_0_DW01_add_0)
                                                           0.00
                                                                       3.60 f
Add3/U20/Z (NR2SVTX1)
                                                           0.15
                                                                       3.75 r
```

Add3/U19/Z (ND2ASVTX1)	0.07	3.82 f
$Add3/Z[0]$ (ADDER_3_0)	0.00	3.82 f
Multiplexer/C[0] (MUX.4)	0.00	3.82 f
Multiplexer/U30/Z (AO11NSVTX1)	0.20	4.02 f
Multiplexer/SIG[0] (MUX_4)	0.00	4.02 f
Add_new_value/B[0] (ADDER.2)	0.00	4.02 f
Add_new_value/add_17/plus/plus/B[0] (ADDER_2_DW01_a	dd_0	
	0.00	4.02 f
Add_new_value/add_17/plus/plus/U4/Z (AN2SVTX1)	0.10	4.12 f
Add_new_value/add_17/plus/plus/U1_1/CO (FA1SVTX4)	0.08	4.20 f
Add_new_value/add_17/plus/plus/U1_2/CO (FA1SVTX4)	0.07	4.27 f
Add_new_value/add_17/plus/plus/U1_3/CO (FA1SVTX4)	0.07	4.34 f
Add_new_value/add_17/plus/plus/U1_4/CO (FA1SVTX4)	0.07	4.41 f
Add_new_value/add_17/plus/plus/U1_5/CO (FA1SVTX4)	0.07	4.48 f
Add_new_value/add_17/plus/plus/U1_6/CO (FA1SVTX4)	0.07	4.55 f
Add_new_value/add_17/plus/plus/U1_7/Z (FA1SVTX4)	0.10	4.65 f
Add_new_value/add_17/plus/plus/SUM[7] (ADDER_2_DW0	$1_{-}add_{-}0)$	
	0.00	4.65 f
$Add_new_value/U10/Z$ (OR2SVTX1)	0.08	4.73 f
$Add_new_value/Z[7]$ (ADDER.2)	0.00	4.73 f
regster/D[7] (REG)	0.00	4.73 f
$regster/Q_reg[7]/D$ (FD2QSVTX2)	0.00	4.73 f
data arrival time		4.73
clock CLOCK (rise edge)	7.00	7.00
clock network delay (ideal)	0.00	7.00
$regster/Q_reg[7]/CP$ (FD2QSVTX2)	0.00	7.00 r
library setup time	-0.07	6.93
data required time		6.93
data required time		6.93
data arrival time		-4.73
slack (MET)		2.20