Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-30 (Cancelled)

31. (Currently amended) A process for alkylation of an aromatic hydrocarbon or isoalkane with an olefin over the using catalysis [[of]] by a solid acid, comprising contacting a reaction material containing an aromatic hydrocarbon or C₄-C₆ isoalkane, C₂-C₁₈ monoolefin and a compound containing a strongly electronegative element, which serves as an promoter, with a solid acid catalyst to carry out the alkylation, characterized in that the solid acid catalyst is contacted with a hydrocarbon comprising a hydrogen halide prior to its contact with the reaction material.

32. (Cancelled)

- 33. (Currently amended) The process according to claim [[32]]31, wherein said hydrocarbon comprising a hydrogen halide is an aromatic hydrocarbon or isoalkane.
- 34. (Previously presented) The process according to claim 33, wherein said aromatic hydrocarbon or isoalkane comprising a hydrogen halide is the reactant of the alkylation.
- 35. (Cancelled)
- 36. (Cancelled)
- 37. (**Previously presented**) The process according to claim 33, wherein in said aromatic hydrocarbon or isoalkane comprising a hydrogen halide, the hydrogen halide is present in an amount of 10 to 5000 ppm.
- 38. (**Previously presented**) The process according to claim 37, wherein said hydrogen halide is present in an amount of 30 to 3500 ppm.

- 39. (**Previously presented**) The process according to claim 38, wherein said hydrogen halide is present in an amount of 50 to 3000 ppm.
- 40. (**Previously presented**) The process according to any one of claims 34 and 37 to 39, wherein said hydrogen halide is HF or HCl.
- 41. (**Previously presented**) The process according to claim 33, wherein said isoalkane comprising a hydrogen halide is one of C₄-C₆ isoalkanes, or a mixture of them.
- 42. (**Previously presented**) The process according to claim 41, wherein said isoalkane is isobutane.

Claims 43-49 (Cancelled)

50. (Currently amended) A process for alkylation of an aromatic hydrocarbon or isoalkane with an olefin using catalysis by a solid acid, comprising contacting a reaction material containing an aromatic hydrocarbon or C₄-C₆ isoalkane, C₂-C₁₈ monoolefin and a compound containing a strongly electronegative element, which serves as an promoter, with a solid acid catalyst to carry out the alkylation, characterized in that the solid acid catalyst is contacted with a a hydrogen halide prior to its contact with the reaction material The process according to claim 31, wherein said solid acid catalyst is a supported heteropoly acid catalyst, a supported or unsupported heteropoly acid salt catalyst, a zeolite molecular sieve catalyst, a $\mathrm{SO_4}^2$ -/oxide super acid catalyst, a supported Brönsted-Lewis conjugate solid super acid catalyst or an oxide or molecular sieve catalyst treated with a Brönsted acid or Lewis acid, and wherein said supported heteropoly acid catalyst consists of a porous inorganic support and a heteropoly acid, wherein the heteropoly acid is represented by the general formula: H_{8-n}[AM₁₂O₄₀], wherein A represents P or Si, M represents W or Mo, and n represents the valence state of A and is 4 or 5; and wherein said supported heteropoly acid salt catalyst consists of a porous inorganic support and a heteropoly acid acid, wherein the heteropoly acid salt is represented by the general formula: H_{8-n-} mxNx[AM12O40], wherein N is a metal ion selected from alkali metal ions, ammonium ion, alkali

earth metal ions and metal ions of Group IIIA metals, m represents the valence state of the metal ion, x is a number usable in the range 0 < mx < 4, A represents P or Si, M represents W or Mo, and n represents the valence state of A and is 4 or 5; said porous inorganic support being a conventional porous inorganic support selected from activated carbon, silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, natural or synthetic aluminosilicate zeolite, carbon fiber and natural clay, or mixtures thereof.

51. (Cancelled)

52. (Currently amended) A process for alkylation of an aromatic hydrocarbon or isoalkane with an olefin using catalysis by a solid acid, comprising contacting a reaction material containing an aromatic hydrocarbon or C₄-C₆ isoalkane, C₂-C₁₈ monoolefin and a compound containing a strongly electronegative element, which serves as an promoter, with a solid acid catalyst to carry out the alkylation, characterized in that the solid acid catalyst is contacted with a hydrogen halide prior to its contact with the reaction material, wherein said solid acid catalyst is a supported heteropoly acid catalyst, a supported or unsupported heteropoly acid salt catalyst, a supported Brönsted-Lewis conjugate solid super acid catalyst or an oxide catalyst treated with a Brönsted acid or Lewis acid The process according to claim 50 or 51, and wherein said supported heteropoly acid catalyst consists of a porous inorganic support and a heteropoly acid, wherein the heteropoly acid is represented by the general formula: H_{8-n}[AM₁₂O₄₀], wherein A represents P or Si, M represents W or Mo, and n represents the valence state of A and is 4 or 5; and wherein said supported heteropoly acid salt catalyst consists of a porous inorganic support and a heteropoly acid acid, wherein the heteropoly acid salt is represented by the general formula: H_{8-n-mx}N_x[AM₁₂O₄₀], wherein N is a metal ion selected from alkali metal ions, ammonium ion, alkali earth metal ions and metal ions of Group IIIA metals, m represents the valence state of the metal ion, x is a number usable in the range 0 < mx < 4, A represents P or Si, M represents W or Mo, and n represents the valence state of A and is 4 or 5; said porous inorganic support being a conventional porous inorganic support selected from activated carbon, silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, natural or synthetic

RESPONSE TO FIRST OFFICE ACTION Appln. No. 10/586,510 Response Filed October 5, 2009

aluminosilicate zeolite, carbon fiber and natural clay, or mixtures thereof.

- 53. (**Previously presented**) The process according to claim 52, wherein said porous inorganic support is silicon oxide, aluminum oxide or a mixture of them.
- 54. (Currently amended) The process according to claim 50 [[or 51]], wherein said supported Brönsted-Lewis conjugate solid super acid consists of 40 to 95 % by weight of a porous inorganic support, and 1 to 60 % by weight of a heteropoly acid and 0.3 to 15 % by weight of a Lewis acid supported on the porous inorganic support, wherein said heteropoly acid and porous inorganic support are as defined in claim [[22]] 52; said Lewis acid is selected from AlCl₃, BF₃ or XF₅, wherein X represents P, As, Sb or Bi.