

R1501x SERIES

AEC-Q100 Grade2 Compliant

1 A LDO Regulator (Operating Voltage up to 24 V) for Automotive Applications

NO.EC-184-160801

OUTLINE

The R1501x is a CMOS-based positive voltage regulator (VR) IC specifically designed for automotive applications. The R1501xxxxB has features of high input voltage operating, 1 A output current drive, and low supply current.

A DMOS transistor*1 is used for the driver, high voltage operating and low on resistance (0.6 Ω at V_{OUT} = 10 V) device is realized. A standard regulator circuit with a current limit circuit and a thermal shutdown circuit are built in this IC.

As the operating temperature range is from -40°C to 105°C and maximum input voltage is up to 24 V, this IC is suitable for the constant voltage source for car accessories.

The regulator output voltage is fixed in this IC. Output voltage accuracy is ±2.0% and output voltage range is from 3.0 V to 12.0 V with a step of 0.1 V, and from 12.5 V to 18.0 V with a step of 0.5 V. The chip enable pin realizes ultra low supply current standby mode.

The packages for this IC are the HSOP-6J for high density mounting of the IC on boards, and the TO-252-5-P2 for high wattage.

*1 The DMOS (Double Diffused MOS) transistor adopted by this IC is characterized by a double diffusion structure which comprises a low density n-type (channel) diffused layer and a high density p-type (sources) diffused layer from the edge of the gate electrode. This IC possesses outstanding properties of high operating voltage and low on-resistance, which have been achieved by the channel length scaled down to submicron dimensions and decreased thickness of the gate oxide film.

FEATURES

Supply Current (Iss)	Typ. 70 μA
Standby Current (Istandby)	Typ. 0.1 μA
Output Current (I _{OUT})	Min. 1 A
Input Voltage Range (V _{IN})	3.0 V to 24.0 V
Ripple Rejection (RR)	Typ. 60 dB (V _{SET} = 5.0 V)
Output Voltage Range (Vout)	3.0 V to 12.0 V (0.1 V steps)
	12.5 V to 18.0 V (0.5 V steps)
Output Voltage Accuracy	±2%
• Temperature-Drift Coefficient of Output Voltage	Typ. ±100 ppm/°C
Line Regulation	Typ. 0.05%/V
Packages	HSOP-6J, TO-252-5-P2
Operating Temperature range	
Built-in Current Limit Circuit	

- Built-in Fold-Back Circuit
- Built-in Thermal Shutdown Circuit

APPLICATIONS

- Power source for car accessories including car audio equipment, car navigation system, and ETC system.
- Power source for control units including EV inverter and charge control.

BLOCK DIAGRAMS

R1501xxxxB

SELECTION GUIDE

The output voltage and package for the IC can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1501SxxxB-E2-AE	HSOP-6J	1,000 pcs	Yes	Yes
R1501JxxxB-T1-#E	TO-252-5-P2	3,000 pcs	Yes	Yes

xxx : The set output voltage (V_{SET}) can be designated in the range from 3.0 V (030) to 12.0 V (120) in 0.1 V steps and 12.5 V (125) to 18.0 V (180) in 0.5 V steps.

#: Designated Automotive Class Code

	Operating Temperature Range	Guaranteed Specs Temperature Range	Screening
Α	−40°C to 105°C	25°C	High temperature
J	-40°C to 105°C	-40°C to 105°C	High and low temperature

Automotive class code (A, J) varies depending on the products.

Product Name	Automotive Class Code		
Product Name	Α	J	
R1501SxxxB-E2-AE	✓		
R1501JxxxB-T1-#E	✓	✓	

PIN DESCRIPTIONS

HSOP-6J

HSOP-6J

Pin No.	Symbol	Description	
1	V_{DD}	Input Pin	
2	GND*1	Ground Pin	
3	GND*1	Ground Pin	
4	CE	Chip Enable Pin, Active-high.	
5	GND*1	Ground Pin	
6	V _{OUT}	Output Pin	

^{*1} When mounting to board, connect between three GND pins by wiring.

TO-252-5-P2

Pin No.	Symbol	Description
1	V_{DD}	Input Pin
2	GND*2	Ground Pin
3	GND*2	Ground Pin
4	CE	Chip Enable Pin, Active-high.
5	V _{OUT}	Output Pin

^{*2} When mounting to board, connect between two GND pins by wiring.

^{*3} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left open.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Item		
V _{IN}	Input Voltage		-0.3 to 36	V
Vce	Input Voltage (CE Pin)		-0.3 to $V_{IN} + 0.3 \le 36$	V
Vout	Output Voltage		-0.3 to $V_{IN} + 0.3 \le 36$	V
		Standard Land Pattern	2100	
D-	Power Dissipation (HSOP-6J)*1	Ultra High Wattage Land Pattern	3400	mW
P _D		Standard Land Pattern	2350	IIIVV
	Power Dissipation (TO-252-5-P2)*1	Ultra High Wattage Land Pattern	4800	
Tj	Operating Junction Temperature Rai	-40 to 150	°C	
Tstg	Storage Temperature Range	Storage Temperature Range		°C

^{*1} Refer to POWER DISSIPATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	3 to 24	V
Та	Operating Temperature Range	-40 to 105	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $V_{IN} = V_{SET} + 1.0 \text{ V}, V_{CE} = V_{IN}, \text{ unless otherwise noted.}$ The specification in _____ is checked and guaranteed by design engineering at -40°C \leq Ta \leq 105°C.

R1501xxxxB (-AE) $(Ta = 25^{\circ}C)$

Symbol	ltem		Conditions	Min.	Тур.	Max.	Unit
		I _{OUT} = 1	Ta = 25°C	x0.98		x1.02	V
V _{оит}	Output Voltage	mA	-40°C ≤ Ta ≤ 105°C	x0.965		x1.035	V
Iss	Supply Current	V _{IN} = 24 V, I _O	_{JT} = 0 A		70	160	μΑ
Istandby	Standby Current	V _{IN} = 24 V, V _O	_E = 0 V		0.1	1.0	μΑ
		0.1 mA ≤ I _{OUT}	≤ 200 mA		25	60	mV
ΔVουτ/ΔΙουτ	Load Regulation	0.1 mA ≤ I _{OUT} :	£1 A		125	300	mV
ΔV _{OUT} /ΔV _{IN}	Line Regulation	V _{SET} + 1 V ≤ V	IN ≤ 24 V, I _{OUT} = 10 mA		0.05	0.1	%/V
			3.0 V ≤ V _{SET} < 5.0 V		0.135	0.225	
		I _{OUT} = 200 mA	5.0 V ≤ V _{SET} < 9.0 V		0.115	0.180	V
			9.0 V ≤ V _{SET} < 12.0 V		0.095	0.155	
	Drangut Valtage		12.0 V ≤ V _{SET} ≤ 18.0 V		0.090	0.140	
V_{DIF}	Dropout Voltage		3.0 V ≤ V _{SET} < 5.0 V		0.675	1.125	
		4 A	5.0 V ≤ V _{SET} < 9.0 V		0.575	0.900	V
		I _{ΟUT} = 1 A	9.0 V ≤ V _{SET} < 12.0 V		0.475	0.775	V
			12.0 V ≤ V _{SET} ≤ 18.0 V		0.450	0.700	
I _{LIM}	Output Current			1			Α
Isc	Short Current Limit	V _{OUT} = 0 V	V _{OUT} = 0 V		65		mA
Vceh	CE Input Voltage "H"			2.0		Vin	V
V _{CEL}	CE Input Voltage "L"			0		0.5	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Tem	perature		135		°C

As all of units, all items except Load Regulation at 0.1 mA \leq I_{OUT} \leq 1 A and Dropout Voltage at I_{OUT} = 1 A are tested and specified under load conditions such as Tj ≈ Ta = 25°C.

R1501x

NO.EC-184-160801

 $V_{IN} = V_{SET} + 1.0 \text{ V}, V_{CE} = V_{IN}, \text{ unless otherwise noted.}$

The specification in ____ is checked and guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.

R1501JxxxB (-JE) $(-40^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C})$

ITTOOTOXXX	_ \				\ .0	0 - 14 - 1	00 0,
Symbol	ltem		Conditions	Min.	Тур.	Max.	Unit
		I _{OUT} = 1	Ta = 25°C	x0.98		x1.02	V
Vоит	Output Voltage		-40°C ≤ Ta ≤ 105°C	x0.965		x1.035	٧
Iss	Supply Current	V _{IN} = 24 V, I _{OU}	T = 0 A		70	160	μA
Istandby	Standby Current	V _{IN} = 24 V, V _C	E = 0 V		0.1	1.0	μA
		0.1 mA ≤ I _{OUT} ≤	≤ 200 mA		25	60	mV
ΔVουτ/ΔΙουτ	Load Regulation	0.1 mA ≤ I _{OUT} ≤	1 A		125	300	mV
ΔVουτ/ΔVιΝ	Line Regulation	V _{SET} + 1 V ≤ V	N ≤ 24 V, I _{OUT} = 10 mA		0.05	0.1	%/V
			3.0 V ≤ V _{SET} < 5.0 V		0.135	0.225	
		I _{OUT} = 200 mA	5.0 V ≤ V _{SET} < 9.0 V		0.115	0.180	V
			9.0 V ≤ V _{SET} < 12.0 V		0.095	0.155	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			12.0 V ≤ V _{SET} ≤ 18.0 V		0.090	0.140	
V _{DIF}	Dropout Voltage		3.0 V ≤ V _{SET} < 5.0 V		0.675	1.125	
		I _{OUT} = 1 A	5.0 V ≤ V _{SET} < 9.0 V		0.575	0.900	V
		IOUT - I A	9.0 V ≤ V _{SET} < 12.0 V		0.475	0.775	
			12.0 V ≤ V _{SET} ≤ 18.0 V		0.450	0.700	
ILIM	Output Current			1			Α
Isc	Short Current Limit	V _{OUT} = 0 V			65		mA
Vceh	CE Input Voltage "H"			2.0		VIN	V
V _{CEL}	CE Input Voltage "L"			0		0.5	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temp	perature		135		°C

All test items listed under Electrical Characteristics are done except for Dropout Voltage and Load Regulation at 1A Output Current.

TYPICAL APPLICATION

External Components

Parts Type	Parts Name	Manufacturer
Соит	Ceramic Capacitor 10 µF	MURATA: GRM32DB31E106K (size: 3225)

TECHNICAL NOTES

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C_{IN} with a capacitance value as much as 0.47 μF or more between V_{DD} pin and GND, and as close as possible to the pins.

Connect external components, especially the output capacitor C_{OUT} , with a suitable value between the V_{DD} and GND, and as close as possible to the pins.

Phase Compensation

In this IC, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C_{OUT} with good frequency characteristics and Equivalent Series Resistance (ESR).

When using a tantalum type capacitor that the ESR value is large, output might be unstable. Evaluate the circuit considering frequency characteristics.

As the bias and the temperature characteristics vary by the capacitor size, manufacturer, and part number, evaluate the circuit with actual using capacitors.

TYPICAL APPLICATION FOR PREVENTING IC DESTRUCTION

When a sudden surge of electrical current travels along the V_{OUT} pin and GND due to a short-circuit, electrical resonance of a circuit involving an output capacitor (C_{OUT}) and a short circuit inductor generates a negative voltage and may damage the device or the load devices. To prevent damage to the device or the load devices, connecting a schottky diode (D1) between the V_{OUT} pin and GND is recommended.

In addition, connect D2 if V_{OUT} pin could be higher than V_{DD} pin.

C_{IN} and C_{OUT} are necessary for preventing unstable operation.

PACKAGE INFORMATION

POWER DISSIPATION (HSOP-6J)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

	Ultra-high Wattage Land Pattern	Standard Land Pattern	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material Glass Cloth Epoxy Plastic (Four-Layer Board)		Glass Cloth Epoxy Plastic (Double-sided Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	50 mm × 50 mm × 1.6 mm	
Copper Ratio	96%	50%	
Through-holes	φ 0.3 mm × 28 pcs	φ 0.5 mm × 24 pcs	

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 150^{\circ}C)$

	Ultra-high Wattage Land Pattern	Standard Land Pattern	Free Air
Power Dissipation	3400 mW	2100 mW	675 mW
Thermal Resistance	37°C/W	59°C/W	185°C/W

() IC Mount Area (mm)

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

PACKAGE DIMENSIONS (HSOP-6J)

MARK SPECIFICATIONS (HSOP-6J)

①②③④: Product Code ... Refer to R1501x MARK SPECIFICATION TABLE

⑤ ⑥: Lot Number ... Alphanumeric Serial Number

R1501x MARK SPECIFICATION TABLE (HSOP-6J)

Product	0234	V _{SET}
Name	11000	
R1501S030B	H 0 3 0	3.0 V
R1501S031B	H 0 3 1	3.1 V
R1501S032B	H 0 3 2	3.2 V
R1501S033B	H 0 3 3	3.3 V
R1501S034B	H 0 3 4	3.4 V
R1501S035B	H 0 3 5	3.5 V
R1501S036B	H 0 3 6	3.6 V
R1501S037B	H 0 3 7	3.7 V
R1501S038B	H 0 3 8	3.8 V
R1501S039B	H 0 3 9	3.9 V
R1501S040B	H 0 4 0	4.0 V
R1501S041B	H 0 4 1	4.1 V
R1501S042B	H 0 4 2	4.2 V
R1501S043B	H 0 4 3	4.3 V
R1501S044B	H 0 4 4	4.4 V
R1501S045B	H 0 4 5	4.5 V
R1501S046B	H 0 4 6	4.6 V
R1501S047B	H 0 4 7	4.7 V
R1501S048B	H 0 4 8	4.8 V
R1501S049B	H 0 4 9	4.9 V
R1501S050B	H 0 5 0	5.0 V
R1501S051B	H 0 5 1	5.1 V
R1501S052B	H 0 5 2	5.2 V
R1501S053B	H 0 5 3	5.3 V
R1501S054B	H 0 5 4	5.4 V
R1501S055B	H 0 5 5	5.5 V
R1501S056B	H 0 5 6	5.6 V
R1501S057B	H 0 5 7	5.7 V
R1501S058B	H 0 5 8	5.8 V
R1501S059B	H 0 5 9	5.9 V
R1501S060B	H060	6.0 V
R1501S061B	H 0 6 1	6.1 V
R1501S062B	H 0 6 2	6.2 V
R1501S063B	H 0 6 3	6.3 V
R1501S064B	H 0 6 4	6.4 V
R1501S065B	H 0 6 5	6.5 V
R1501S066B	H 0 6 6	6.6 V
R1501S067B	H 0 6 7	6.7 V
R1501S068B	H068	6.8 V
R1501S069B	H 0 6 9	6.9 V

·		
Product Name	0234	V _{SET}
R1501S070B	H 0 7 0	7.0 V
R1501S071B	H 0 7 1	7.1 V
R1501S072B	H 0 7 2	7.2 V
R1501S073B	H 0 7 3	7.3 V
R1501S074B	H 0 7 4	7.4 V
R1501S075B	H 0 7 5	7.5 V
R1501S076B	H 0 7 6	7.6 V
R1501S077B	H 0 7 7	7.7 V
R1501S078B	H 0 7 8	7.8 V
R1501S079B	H 0 7 9	7.9 V
R1501S080B	H080	8.0 V
R1501S081B	H 0 8 1	8.1 V
R1501S082B	H 0 8 2	8.2 V
R1501S083B	H083	8.3 V
R1501S084B	H 0 8 4	8.4 V
R1501S085B	H 0 8 5	8.5 V
R1501S086B	H086	8.6 V
R1501S087B	H 0 8 7	8.7 V
R1501S088B	H088	8.8 V
R1501S089B	H089	8.9 V
R1501S090B	H090	9.0 V
R1501S091B	H 0 9 1	9.1 V
R1501S092B	H092	9.2 V
R1501S093B	H 0 9 3	9.3 V
R1501S094B	H 0 9 4	9.4 V
R1501S095B	H 0 9 5	9.5 V
R1501S096B	H096	9.6 V
R1501S097B	H 0 9 7	9.7 V
R1501S098B	H098	9.8 V
R1501S099B	H099	9.9 V
R1501S100B	H100	10.0 V
R1501S101B	H 1 0 1	10.1 V
R1501S102B	H 1 0 2	10.2 V
R1501S103B	H 1 0 3	10.3 V
R1501S104B	H 1 0 4	10.4 V
R1501S105B	H105	10.5 V
R1501S106B	H106	10.6 V
R1501S107B	H 1 0 7	10.7 V
R1501S108B	H 1 0 8	10.8 V
R1501S109B	H109	10.9 V

Product Name	0234	V _{SET}
R1501S110B	H110	11.0 V
R1501S111B	H111	11.1 V
R1501S112B	H112	11.2 V
R1501S113B	H113	11.3 V
R1501S114B	H114	11.4 V
R1501S115B	H115	11.5 V
R1501S116B	H116	11.6 V
R1501S117B	H117	11.7 V
R1501S118B	H118	11.8 V
R1501S119B	H119	11.9 V
R1501S120B	H120	12.0 V
R1501S125B	H125	12.5 V
R1501S130B	H130	13.0 V
R1501S135B	H135	13.5 V
R1501S140B	H140	14.0 V
R1501S145B	H 1 4 5	14.5 V
R1501S150B	H150	15.0 V
R1501S155B	H155	15.5 V
R1501S160B	H160	16.0 V
R1501S165B	H165	16.5 V
R1501S170B	H170	17.0 V
R1501S175B	H175	17.5 V
R1501S180B	H180	18.0 V

POWER DISSIPATION (TO-252-5-P2)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

* Measurement conditions

	Standard Land Pattern	Ultra High Wattage Land Pattern	
Environment	Mounting on board (Wind velocity 0m/s)		
Board Material	Glass cloth epoxy plastic (Double layers)	Glass cloth epoxy plastic (Four-layers)	
Board Dimensions	50mm x 50mm x 1.6mm	76.2mm x 114.3mm x 0.8mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	Top, Back side: Approx. 96%, 2nd, 3rd: 100%	
Through - hole	φ 0.5mm x 24pcs	φ 0.4mm x 30pcs	

* Measurement Results

(Ta=25°C, Tjmax=150°C)

	Standard Land Pattern	Ultra High Wattage Land Pattern
Power Dissipation	2350mW	4800mW
Thermal Resistance	θja=(150-25°C)/2.35W= 53°C/W	θja= (150-25°C)/4.8W = 26°C/W
	θjc= 17°C/W	θjc= 7°C/W

PACKAGE DIMENSIONS (TO-252-5-P2)

MARK SPECIFICATIONS (TO-252-5-P2)

①②③④⑤⑥⑦⑧: Product Code ... Refer to R1501x MARK SPECIFICATION TABLE

9 @: Lot Number ... Alphanumeric Serial Number

R1501x MARK SPECIFICATION TABLE (TO-252-5-P2)

Product Name	02345678	V _{SET}
R1501J030B	A1J030B	3.0 V
R1501J031B	A1J031B	3.1 V
R1501J032B	A1J032B	3.2 V
R1501J033B	A1J033B	3.3 V
R1501J034B	A1J034B	3.4 V
R1501J035B	A1J035B	3.5 V
R1501J036B	A1J036B	3.6 V
R1501J037B	A1J037B	3.7 V
R1501J038B	A1J038B	3.8 V
R1501J039B	A1J039B	3.9 V
R1501J040B	A1J040B	4.0 V
R1501J041B	A1J041B	4.1 V
R1501J042B	A1J042B	4.2 V
R1501J043B	A1J043B	4.3 V
R1501J044B	A1J044B	4.4 V
R1501J045B	A1J045B	4.5 V
R1501J046B	A1J046B	4.6 V
R1501J047B	A1J047B	4.7 V
R1501J048B	A1J048B	4.8 V
R1501J049B	A1J049B	4.9 V
R1501J050B	A1J050B	5.0 V
R1501J051B	A1J051B	5.1 V
R1501J052B	A1J052B	5.2 V
R1501J053B	A1J053B	5.3 V
R1501J054B	A1J054B	5.4 V
R1501J055B	A1J055B	5.5 V
R1501J056B	A1J056B	5.6 V
R1501J057B	A1J057B	5.7 V
R1501J058B	A1J058B	5.8 V
R1501J059B	A1J059B	5.9 V
R1501J060B	A1J060B	6.0 V
R1501J061B	A1J061B	6.1 V
R1501J062B	A1J062B	6.2 V
R1501J063B	A1J063B	6.3 V
R1501J064B	A1J064B	6.4 V
R1501J065B	A1J065B	6.5 V
R1501J066B	A1J066B	6.6 V
R1501J067B	A1J067B	6.7 V
R1501J068B	A1J068B	6.8 V
R1501J069B	A1J069B	6.9 V

Product Name	02345678	V _{SET}
R1501H070B	A1J070B	7.0 V
R1501J071B	A1J071B	7.1 V
R1501J072B	A1J072B	7.2 V
R1501J073B	A1J073B	7.3 V
R1501J074B	A1J074B	7.4 V
R1501J075B	A1J075B	7.5 V
R1501J076B	A1J076B	7.6 V
R1501J077B	A1J077B	7.7 V
R1501J078B	A1J078B	7.8 V
R1501J079B	A1J079B	7.9 V
R1501J080B	A1J080B	8.0 V
R1501J081B	A1J081B	8.1 V
R1501J082B	A1J082B	8.2 V
R1501J083B	A1J083B	8.3 V
R1501J084B	A1J084B	8.4 V
R1501J085B	A1J085B	8.5 V
R1501J086B	A1J086B	8.6 V
R1501J087B	A1J087B	8.7 V
R1501J088B	A1J088B	8.8 V
R1501J089B	A1J089B	8.9 V
R1501J090B	A1J090B	9.0 V
R1501J091B	A1J091B	9.1 V
R1501J092B	A1J092B	9.2 V
R1501J093B	A1J093B	9.3 V
R1501J094B	A1J094B	9.4 V
R1501J095B	A1J095B	9.5 V
R1501J096B	A1J096B	9.6 V
R1501J097B	A1J097B	9.7 V
R1501J098B	A1J098B	9.8 V
R1501J099B	A1J099B	9.9 V
R1501J100B	A1J100B	10.0 V
R1501J101B	A1J101B	10.1 V
R1501J102B	A1J102B	10.2 V
R1501J103B	A1J103B	10.3 V
R1501J104B	A1J104B	10.4 V
R1501J105B	A1J105B	10.5 V
R1501J106B	A1J106B	10.6 V
R1501J107B	A1J107B	10.7 V
R1501J108B	A1J108B	10.8 V
R1501J109B	A1J109B	10.9 V

Due du et Neme		
Product Name	02345678	V _{SET}
R1501J110B	A1J110B	11.0 V
R1501J111B	A1J111B	11.1 V
R1501J112B	A1J112B	11.2 V
R1501J113B	A1J113B	11.3 V
R1501J114B	A1J114B	11.4 V
R1501J115B	A1J115B	11.5 V
R1501J116B	A1J116B	11.6 V
R1501J117B	A1J117B	11.7 V
R1501J118B	A1J118B	11.8 V
R1501J119B	A1J119B	11.9 V
R1501J120B	A1J120B	12.0 V
R1501J125B	A1J125B	12.5 V
R1501J130B	A1J130B	13.0 V
R1501J135B	A1J135B	13.5 V
R1501J140B	A1J140B	14.0 V
R1501J145B	A1J145B	14.5 V
R1501J150B	A1J150B	15.0 V
R1501J155B	A1J155B	15.5 V
R1501J160B	A1J160B	16.0 V
R1501J165B	A1J165B	16.5 V
R1501J170B	A1J170B	17.0 V
R1501J175B	A1J175B	17.5 V
R1501J180B	A1J180B	18.0 V

TYPICAL CHARACTERISTICS

Ta = 25°C, unless otherwise noted.

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current (C_{IN} = Ceramic 0.47 μF, C_{OUT} = Ceramic 10 μF)

2) Output Voltage vs. Input Voltage (C_{IN} = Ceramic 0.47 μ F, C_{OUT} = Ceramic 10 μ F)

3) Supply Current vs. Input Voltage (C_{IN} = Ceramic 0.47 μ F, C_{OUT} = Ceramic 10 μ F)

4) Output Voltage vs. Temperature (C_{IN} = Ceramic 0.47 μF, C_{OUT} = Ceramic 10 μF, I_{OUT} = 1 mA)

5) Supply Current vs. Temperature (C_{IN} = Ceramic 0.47 μ F, C_{OUT} = Ceramic 10 μ F, I_{OUT} = 0 mA)

6) Dropout Voltage vs. Output Current (C_{IN} = Ceramic 0.47 μ F, C_{OUT} = Ceramic 10 μ F)

7) Dropout Voltage vs. Set Output Voltage (C_{IN} = Ceramic 0.47 μF, C_{OUT} = Ceramic 10 μF)

8) Ripple Rejection vs. Input Bias Voltage (C_{IN} = none, C_{OUT} = Ceramic 10 μF, I_{OUT} = 100 mA

9) Ripple Rejection vs. Frequency (C_{IN} = none, C_{OUT} = Ceramic 10 μF, Ripple = 0.5 Vp-p)

NO.EC-184-160801

10) Input Transient Response (C_{IN} = none, C_{OUT} = Ceramic 10 μ F, I_{OUT} = 100 mA, tr = tf = 10 μ s)

11) Load Transient Response (C_{IN} = Ceramic 0.47 μ F, C_{OUT} = Ceramic 10 μ F, tr = tf = 0.5 μ s)

12) Turn On Speed with CE pin (C_{IN} = Ceramic 0.47 μ F, C_{OUT} = Ceramic 10 μ F, tr = tf = 0.5 μ s)

13) Turn Off Speed with CE (C_{IN} = Ceramic 0.47 μ F, C_{OUT} = Ceramic 10 μ F, I_{OUT} = 500 mA, tr = tf = 0.5 μ s)

ESR vs. Output Current

When using this IC, consider the following points:

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is less than or equal to the specified value are marked as the hatched area in the graph.

Measurement conditions

Input Voltage: V_{OUT} + 1 V to 24 V Frequency Band: 10 Hz to 1 MHz Temperature: -40°C to 105°C Capacitor: C_{IN} = Ceramic 0.47 μ F C_{OUT} = Ceramic 10 μ F

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products in this document are designed for automotive applications. However, when using the products for automotive applications, please make sure to contact our sales representative in advance due to confirming the quality level.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

https://www.nisshinbo-microdevices.co.jp/en/buy/