

Biped Robot Flat Foot and Toe Foot Model

N.SUKAVANAM

DEPARMENT OF MATHEMATICS

Biped Robot Flat Foot Model

Robot Model

Parameters

Link	Length	Value	Mass	Value	
HK	l_1	14 inches	m_1	4kg	
KA	l_2	14 inches	m_2	4kg	
HU	l_5	10 inches	m_6	50kg	
HH	l_0	8 inches	m_5	4kg	

Table 3.1: Parameters

- In Figure, each leg of biped robot have 2 degrees of freedom (DOF) with flat foot.
- All the joints are revolute which are called hip joint (H), knee joint (K) and ankle joint (A).
- Centre of mass of upper body is denoted by (U).
- Robot's walk can be considered as a repetition of one-step motion.
- The walking sequence can be determined by computing the trajectory of the hip, ankle and upper body joints.
- For hip trajectory, stable ankle joint is considered as a base and hip as the end effector.
- For biped robot walking on a plane, motion of the stable leg is assumed to be like an inverted pendulum considering it's ankle joint as base and hip as end effector.
- While walking, humans do not fold their stable leg as the whole body weight lies on it.
- Flat foot is attached at the ankle joint of each leg.
- Let the robot walk in sagittal plane (xz-plane).

Swing leg's trajectories:

Boundary Conditions of Ankle Trajectory

$$x_A(t_0) = x_i$$
; $x_A(t_f) = x_i + x_f$; $\dot{x}_A(t_0) = 0$; $\dot{x}_A(t_f) = 0$.
 $z_A(x_0) = 0$; $z_A(x_f) = 0$; $z_A(x_m) = h_1$; $\dot{z}_A(x_m) = 0$.

Ankle Trajectory

$$x_{A}(t) = x_{i} + \left(\frac{3x_{f}}{t_{f}^{2}}\right) t^{2} - \left(\frac{2x_{f}}{t_{f}^{3}}\right) t^{3};$$

$$z_{A}(t) = \frac{h(-(x_{f} + x_{i})^{2}x_{i})}{(x_{m} - x_{i})(x_{m} - x_{f} - x_{i})^{2}} + \frac{h(x_{f} + x_{i})(x_{f} + 3x_{i})x_{A}(t)}{(x_{m} - x_{i})(x_{m} - x_{f} - x_{i})^{2}}$$

$$- \frac{h(2x_{f} + 3x_{i})x_{A}(t)^{2} + hx_{A}(t)^{3}}{(x_{m} - x_{i})(x_{m} - x_{f} - x_{i})^{2}}$$

Stable leg's trajectories:

Boundary Conditions of Hip Trajectory

$$x_H(t_0) = x_i + x_f/4$$
; $x_H(t_f) = x_i + 3x_f/4$; $\dot{x}_H(t_0) = v_s$; $\dot{x}_H(t_f) = v_e$.
 $z_H(t_0) = h$; $z_H(t_f) = h$; $\dot{z}_H(t_0) = v_{zs}$; $\dot{z}_H(t_f) = v_{ze}$.

Hip Trajectory

$$\begin{aligned} x_H(t) &= \frac{x_f}{4} + v_s t + (\frac{(v_e - v_s)}{2t_f} - r_4 \frac{3t_f}{2}) t^2 - 2(\frac{x_f}{2t_f^3} - \frac{(v_s + v_e)}{2t_f^2}) t^3; \\ z_H(t) &= \sqrt{(l_1 + l_2)^2 - (x_H(t) - (x_i + x_f/2))^2}. \end{aligned}$$
where $r_4 = -2(\frac{x_f}{2t_f^3} - \frac{(v_s + v_e)}{2t_f^2})$

Forward Kinematics

For Swing leg

$$x_{A}(t) - x_{H}(t) = l_{1}cos\theta_{1}(t) + l_{2}cos(\theta_{1}(t) + \theta_{2}(t));$$

$$z_{A}(t) - z_{H}(t) = l_{1}sin\theta_{1}(t) + l_{2}sin(\theta_{1}(t) + \theta_{2}(t));$$

where $(x_A(t), z_A(t))$ and $(x_H(t), z_H(t))$ are defined as earlier.

For stable leg

$$x_H(t) - \left(x_i + \frac{x_f}{2}\right) = (l_1 + l_2)\cos\theta_5(t);$$

 $z_H(t) = (l_1 + l_2)\sin\theta_5(t);$

where $(x_i+x_f/2, l_0, 0)$ is the position of the stable leg's ankle joint which lies on the line $y=l_0$.

Trunk Motion

Trunk motion play an important role in ZMP stability.

Case-1

- Upper body start to move from middle to the side of the stable leg's hip during time t₀ to t₁,
- Stay there during time t₁ to t₃.
- Again start moving towards middle of legs between t₃ to t_f time where t₁ = t_f/4 and t₃ = 3t_f/4.

The moving mass trajectory in y-direction is given below: $y_M(t) =$

$$\begin{cases} y_{l} + y_{v}t + \left(\frac{3(y_{a} - y_{l})}{t_{1}^{2}} - \frac{2y_{v}}{t_{1}}\right)t^{2} + \left(\frac{-2(y_{a} - y_{l})}{t_{1}^{3}} - \frac{y_{v}}{t_{1}^{2}}\right)t^{3} & t_{0} \leq t \leq t_{1} \\ y_{a} & t_{1} \leq t \leq t_{3} \\ (y_{a} + \frac{(-3t_{l}t_{3}^{2} + t_{3}^{3})(y_{l} - y_{a})}{(t_{3} - t_{l})^{3}} + \frac{t_{l}t_{3}^{2}y_{v}}{(t_{3} - t_{l})^{2}}\right) \\ \left(\frac{6t_{l}t_{3}(y_{l} - y_{a})}{(t_{3} - t_{l})^{3}} - \frac{(t_{3}^{2} + 2t_{l}t_{3})y_{v}}{(t_{3} - t_{l})^{2}}\right)t + \left(\frac{-3((y_{l} - y_{a})(t_{3} + t_{l})}{(t_{3} - t_{l})^{3}} + \frac{y_{v}(4t_{3} + 2t_{l})}{2(t_{3} - t_{l})^{2}}\right)t^{2} + \left(\frac{2(y_{l} - y_{a})}{(t_{3} - t_{l})^{3}} - \frac{y_{v}}{(t_{3} - t_{l})^{2}}\right)t^{3} & t_{3} \leq t \leq t_{l} \end{cases}$$

Case-2

- Upper body start to move from middle to the side of the stable leg's hip during time t₀ to t_f/8,
- Stay there during time t_f/8 to 7t_f/8.
- Again start moving towards middle of legs between 7t_f/8 to t_f time.

Then the trajectory can be calculated by case-1 equation.

Case-3

Similarly upper body start to move from middle position to stable foot from time t_0 to t_2 , then return back to initial condition. So the moving mass trajectory in y-direction is given below:

$$\begin{split} y_{M}(t) &= \\ \begin{cases} y_{I} + y_{V}t + (\frac{3(y_{S} - y_{I})}{t_{2}^{2}} - \frac{2y_{V}}{t_{2}})t^{2} + (\frac{-2(y_{S} - y_{I})}{t_{2}^{3}} - \frac{y_{V}}{t_{2}^{2}})t^{3} & t_{0} \leq t \leq t_{2} \\ (y_{S} + \frac{(-3t_{1}t_{2}^{2} + t_{2}^{3})(y_{I} - y_{S})}{(t_{2} - t_{I})^{3}} + \frac{t_{I}t_{2}^{2}y_{V}}{(t_{2} - t_{I})^{2}}) \\ (\frac{6t_{I}t_{2}(y_{I} - y_{S})}{(t_{2} - t_{I})^{3}} - \frac{(t_{2}^{2} + 2t_{I}t_{2})y_{V}}{(t_{2} - t_{I})^{2}})t + (\frac{-3((y_{I} - y_{S})(t_{2} + t_{I})}{(t_{2} - t_{I})^{3}} + \frac{y_{V}(4t_{2} + 2t_{I})}{2(t_{2} - t_{I})^{2}})t^{3} \\ + \frac{y_{V}(4t_{2} + 2t_{I})}{2(t_{2} - t_{I})^{2}})t^{2} + (\frac{2(y_{I} - y_{S})}{(t_{2} - t_{I})^{3}} - \frac{y_{V}}{(t_{2} - t_{I})^{2}})t^{3} \\ \end{cases} t_{2} \leq t \leq t_{I} \end{cases}$$

Results

- Let total length of foot is 6 units and width is 4 units, initial and end velocity for ankle is 0 unit/sec.
- Ankle is fixed at the middle point of the foot, so that the initial x coordinate of the ankle is $x_i = 3$ units.
- The ankle joint covers a step length $x_f = 14$ units from initial position $(x_i, 0, 0)$ to the final position $(x_i + x_f, 0, 0)$ with step height h=2.5 units.
- Swing foot lies on the xy-plane in the region 0<x<6 units and -2<y<2 units and stable foot lies on the line y=l₀ in the region 7<x<13 units and 6<y<10 units.</p>

Results

Inverse Kinematics for Swing leg

Inverse Kinematics for Stable leg

Zero Moment Point

- Zero Moment Point (ZMP) may be defined as that point on the surface of the ground about which resultant sum of moments of all forces which are active is zero.
- ZMP can be calculated by following equations:

$$x_{ZMP} = \frac{\sum_{i=1}^{n} m_{i} (\ddot{z}_{i} + g) x_{i} - \sum_{i=1}^{n} m_{i} \ddot{x}_{i} z_{i} - \sum_{i=1}^{n} I_{iy} \Omega_{iy}^{...}}{\sum_{i=1}^{n} m_{i} (\ddot{z}_{i} + g)}$$

$$y_{ZMP} = \frac{\sum_{i=1}^{n} m_{i} (\ddot{z}_{i} + g) y_{i} - \sum_{i=1}^{n} m_{i} \ddot{y}_{i} z_{i} - \sum_{i=1}^{n} I_{ix} \Omega_{ix}^{...}}{\sum_{i=1}^{n} m_{i} (\ddot{z}_{i} + g)}$$

where m_i denotes mass of link i, respective inertial components are denoted by I_{ix} and I_{iy} , absolute angular velocities are denoted by Ω_{ix} and Ω_{iy} , gdenoted the acceleration due to gravity, $(x_{ZMP}, y_{ZMP}, 0)$ denotes coordinates for zero moment point and (x_i, y_i, z_i) denotes coordinates for center of mass of link i.

ZMP Trajectory

Case-1

Case-2

Case-3

Hip		Upp	ZMP	
velocity	Time	Trajectory	initial velocity	stability
v _s =2.3in/s	3s	case-1	$y_v = 10in/s$	stable
v_s =3.5in/s	2s	case-1	$y_v = 15in/s$	stable but small margin
V_S =4.7in/s	1.5s	case-1	$y_v = 20in/s$	unstable
v _s =2.4in/s	3s	case-2	$y_v = 16in/s$	unstable
$v_s=3.5$ in/s	2s	case-2	$y_v = 20in/s$	unstable
$v_s=4.7$ in/s	1.5s	case-2	$y_v = 22in/s$	unstable
v _s =2.3in/s	3s	case-3	$y_v = 7.3 in/s$	stable
$v_s=3.5$ in/s	2s	case-3	$y_v = 10.3 in/s$	stable
$v_s=4.7$ in/s	1.5s	case-3	$y_{\rm V}=11in/s$	stable

Final ZMP Trajectory

Full Body Motion

Toe-Foot Biped Model

Biped Model

Parameters

Link	Length	value	mass	value
HK	l_1	14 units	m_1	4 units
KA	l_2	14 units	m_2	4 units
ES	$2l_3$	4 units	m_3	0.8 units
ST	l_4	2 units	m_4	0.2 units
HU	l_5	12 units	m_6	50 units
HH	l_0	8 units	m_5	4 units
foot width	l_w	3 units		

Table 4.1: Description of robot links

Trajectory Generation

Swing leg's trajectories:

Ankle Trajectory during DSP

$$x_{A}(t) = 2l_{3} + l_{4} + l_{4} \cos \theta_{4t}(t) + l_{3} \cos(\theta_{3t}(t) + \theta_{4t}(t));$$

$$z_{A}(t) = l_{4} \sin \theta_{4t}(t) + l_{3} \sin(\theta_{3t}(t) + \theta_{4t}(t))$$

$$\theta_{3t}(t) = \begin{cases} (\theta_{a}) \left(\frac{3t^{2}}{T_{s}^{2}} - 2\frac{t^{3}}{T_{s}^{3}}\right) & 0 \le t \le t_{1} \\ (\theta_{a}) \left(-4 + 12\frac{t}{T_{s}} - \frac{9t^{2}}{T_{s}^{2}} + 2\frac{t^{3}}{T_{s}^{3}}\right) & t_{1} \le t \le t_{2} \end{cases}$$

$$\theta_{4t}(t) = \begin{cases} \pi & 0 \le t \le t_{1} \\ \pi + (\theta_{b}) \left(-5 + 12\frac{t}{T_{s}} - 9\frac{3t^{2}}{T_{s}^{2}} + 2\frac{t^{3}}{T_{s}^{3}}\right) & t_{1} \le t \le t_{2} \end{cases}$$

Ankle Trajectory during SSP

During SSP (t_2, t_f) , boundary conditions are

$$x_A(t_2) = x_e$$
; $x_A(t_f) = x_f$; $\dot{x_A}(t_2) = x_v$, $\dot{x_A}(t_f) = 0$

$$z_A(x_e) = z_e$$
; $z_A(x_f) = 0$; $z_A(x_m) = h_1$, $z_A(x_f) = 0$

(a) Swing foot during DSP

(b) Swing foot during SSP

(c) Stable foot during DSP

Swing leg's ankle joint trajectory

Ankle Trajectory during SSP

By substituting the boundary conditions, we get

$$n_0 + n_1 t_2 + n_2 t_2^2 + n_3 t_2^3 = x_e; (3)$$

$$n_0 + n_1 t_4 + n_2 t_4^2 + n_3 t_4^3 = x_f; (4)$$

$$n_1 + 2n_2t_2 + 3n_3t_2^2 = x_v;$$
 (5)

$$n_1 + 2n_2t_4 + 3n_3t_4^2 = 0. (6)$$

The matrix representation for these equations (3-6) is

$$M_{4\times1}=A_{4\times4}.N_{4\times1}$$

Then, the coefficients of the polynomial can be calculated by

$$N_{4\times 1} = A_{4\times 4}^{-1}.M_{4\times 1}$$

Stable leg's trajectories:

Sole trajectory

$$x_S = \frac{x_f}{2} + l_3 \cos \theta_6(t), \quad z_S = l_3 \sin \theta_6(t)$$

Toe trajectory

$$x_T = \frac{x_f}{2} + l_3 \cos \theta_6(t) + (l_3 + l_4) \cos(\theta_6(t) + \theta_7(t))$$

$$z_T = l_3 \sin \theta_6(t) + (l_3 + l_4) \sin(\theta_6(t) + \theta_7(t))$$

Hip Trajectory

$$x_H(t_0) = \frac{x_f}{4}, \ x_H(t_f) = \frac{3x_f}{4}, \ \dot{x_H}(t_0) = v_{xhs}, \ \dot{x_H}(t_f) = v_{xhs},$$

$$x_H(t) = \frac{x_f}{4} + \frac{3(x_f)}{2t_f^2} t^2 - \frac{(x_f)}{t_f^3} t^3$$

$$z_H(t) = \sqrt{(l_1 + l_2)^2 - (x_H(t) - (x_f)/2)^2}$$

Supported region for SSP and DSP during one cycle(step)

ZMP Stability Analysis and Trunk Motion

ZMP

$$egin{aligned} x_{ZMP} &= rac{\sum_{i=1}^{n} m_i (x_i (\ddot{z}_i + g) - \ddot{x}_i z_i)}{\sum_{i=1}^{n} m_i (\ddot{z}_i + g)} \ y_{ZMP} &= rac{\sum_{i=1}^{n} m_i (y_i (\ddot{z}_i + g) - \ddot{y}_i z_i)}{\sum_{i=1}^{n} m_i (\ddot{z}_i + g)} \end{aligned}$$

Upper body motion: Case-1

$$y_U(t) = \begin{cases} y_0 + y_v t + \frac{-2y_v t_2 + 3(y_a + y_m/2 - y_0)}{t_2^2} t^2 + \\ \frac{-2(y_a + y_m/2 - y_0) + y_v t_2}{t_2^2} t^3 & t_0 \le t \le t_2 \\ y_a & t_2 \le t \le t_4 \end{cases}$$

ZMP

$$x_{ZMP} = \frac{\sum_{i=1}^{n} m_i (x_i (\ddot{z}_i + g) - \ddot{x}_i z_i)}{\sum_{i=1}^{n} m_i (\ddot{z}_i + g)}$$
$$y_{ZMP} = \frac{\sum_{i=1}^{n} m_i (y_i (\ddot{z}_i + g) - \ddot{y}_i z_i)}{\sum_{i=1}^{n} m_i (\ddot{z}_i + g)}$$

Upper body motion: Case-1

U starts to move from swing leg's hip to stable leg's hip during DSP (t_0, t_2) and stays there all the time during SSP (t_2, t_4) .

$$y_{U}(t) = \begin{cases} y_{0} + y_{v}t + \frac{-2y_{v}t_{2} + 3(y_{a} + y_{m}/2 - y_{0})}{t_{2}^{2}}t^{2} + \\ \frac{-2(y_{a} + y_{m}/2 - y_{0}) + y_{v}t_{2}}{t_{2}^{3}}t^{3} & t_{0} \leq t \leq t_{2} \\ y_{a} & t_{2} \leq t \leq t_{4} \end{cases}$$

Case-2

Upper body start to move from middle to the side of the stable leg's hip during time t_0 to t_1 ,

Stay there during time t_1 to t_3 .

Again start moving towards middle of legs between t_3 to t_f time where $t_1 = t_f/4$ and $t_3 = 3t_f/4$.

$$y_U(t) = \begin{cases} \frac{y_i}{2} + \frac{3(y_i + y_s)}{(4t_1^2)} t^2 - \\ \frac{y_i + y_s}{2(t_1^3)} t^3 & t_0 \le t \le t_1 \\ y_s & t_1 \le t \le t_3 \end{cases} \\ (\frac{(16(t_3 - t_4)^3 - (9(y_i + y_s)t_4^2t_3 - (y_i + y_s)t_4^3)}{4(t_3 - t_4)^3} + \\ (\frac{3(y_i + y_s)}{2(t_3 - t_4)^3} t_4 t_3) t + \frac{3(y_i + y_s)(t_4 + t_3)}{4(t_3 - t_4)^3} t^2 \\ - \frac{(y_i + y_s)}{2(t_3 - t_4)^3} t^3 & t_3 \le t \le t_4 \end{cases}$$

Case-3

Start to move from middle position to stable leg's hip in half time (t_0, t_2) , then return back to initial condition in rest of the time (t_2, t_f) .

$$y_{U}(t) = \begin{cases} \frac{y_{I}}{2} + \frac{3(y_{I} + y_{a})}{(4t_{2}^{2})} t^{2} - \frac{y_{I} + y_{a}}{2(t_{2}^{3})} t^{3} & t_{0} \leq t \leq t_{2} \\ (\frac{(16(t_{2} - t_{4})^{3} - (9(y_{I} + y_{a})t_{4}^{2}t_{2} - (y_{I} + y_{a})t_{4}^{3})}{4(t_{2} - t_{4})^{3}} + \\ (\frac{3(y_{I} + y_{a})}{2(t_{2} - t_{4})^{3}} t_{4} t_{2})t + \frac{3(y_{I} + y_{a})(t_{4} + t_{2})}{4(t_{2} - t_{4})^{3}} t^{2} - \frac{(y_{I} + y_{a})}{2(t_{2} - t_{4})^{3}} t^{3} & t_{2} \leq t \leq t_{4} \end{cases}$$

Results

Figure: Ankle velocity and acceleration trajectory graphs

Effect of upper body motion on ZMP stablity for active foot

Figure: ZMP graph for 3 different cases of Upper body motion

Stable ZMP trajectory for case-1 for $t_f = 2.1sec$.

Results

Upper body	Ankle trajectory	Step Time	Initial hip velocity	Conclusion
No upp er body	cubic,quartic ,quantic	4.5	v _h =2.95	x-ZMP is in the region for $t > 4.5s$ but y-ZMP at middle of hip
Fixed	cubic,quartic ,quantic	3	v _h =2.55	x-ZMP is in the region for t > 3s but y-ZMP at middle of hip
Moving	8			

Table: Simulations based observation

Effect of Upper body, ankle trajectory and other Parameters

Upper	Ankle	Step	Initial hip	Conclusion
body	trajectory	Time	velocity	
case-2	cubic,quartic	3	$v_h=2$	for last 4 time instant
	,quantic		$y_a = 8$	ZMP is out of region
case-3	cubic,quartic	3	$v_h=2$	unstable
	,quantic			
case-1	cubic	2.5	$v_h = 2.8$	stable
	cubic	2.2	$v_h = 3.15$	unstable
	cubic	2.1	$v_h = 3.55$	unstable
	quartic	2.5	$v_h = 2.8$	stable
	quartic	2.2	$v_h = 3.15$	stable
	quartic	2.1	$v_h = 3.55$	unstable
	quintic	2.5	$v_h = 2.8$	stable
	quintic	2.2	$v_h = 3.15$	stable
	quintic	2.1	$v_h = 3.55$	stable
	quintic	2	$v_h = 3.65$	stable
	quintic	1.8	$v_h = 3.65$	unstable

Thanks!

