Energie und Leistung

2. Aufgabe (25 Punkte)

Im Rahmen des Umzuges sollen einige PCs neu angeschafft werden. Der Kunde soll sich zwischen zwei PC-Varianten entscheiden. Beide PC-Varianten sind nahezu baugleich bis auf das verwendete Netzteil.

Sie wurden damit beauftragt, für eine Besprechung die Energieeffizienz der beiden PCs unter ökonomischen Gesichtspunkten zu vergleichen.

Betriebsstunden:

- 9 Stunden pro Tag
- Betrieb an 20 Arbeitstagen pro Monat

Die beiden zu vergleichenden PCs sind wie folgt ausgestattet:

- PC-A hat ein niedrigpreisiges Netzteil ohne Zertifikat.
- PC-B hat ein Netzteil nach dem 80Plus Gold Standard.
- a) Errechnen Sie die Leistung und die Energiekosten pro Monat, wenn eine kWh 30 Cent kostet.

entnehmen:

Dem englischsprachigen Manual des Netzteils können Sie folgende Definition entnehmen: Efficiency = Useful power output/Total power input

	C11-	
	PC-A	PC-B
Wirkungsgrad des Netzteils bei 60 W in Prozent	43 %	76 %
Durch die Komponenten des PCs benötigte durchschnittliche Leistung im Betrieb	60 W	60 W
Vom Netzteil bezogene Leistung aus dem Stromnetz	139,53 W	79,95 W
Energiekosten pro Monat in EUR	7,53	4,26

180h pro 17

- c) Machen Sie drei weitere Vorschläge zur Senkung der Energiekosten des IT-Arbeitsplatzes.

 3 Punkte

 1 Industrial ausschaften und nacht sondert werden

 Klimatisierung nacht ausschaften und nacht sondert werden
- d) Bei der Installation der Geräte stellen Sie fest, dass folgende Geräte über eine einzige Mehrfachsteckdose mit der Aufschrift "maximal 16 A" angeschlossen werden sollen.
 - 3 PCs mit einer maximalen Leistungsaufnahme von jeweils 180 W
 - Ein Drucker mit einer maximalen Leistungsaufnahme von 400 W
 - Eine Kaffeemaschine mit einer maximalen Leistungsaufnahme von 1.200 W
 - Klimagerät mit einer maximalen Leistungsaufnahme von 2.000 W

Weisen Sie durch eine Rechnung nach, dass diese Geräte nicht gleichzeitig betrieben werden können.

4 Punkte

$$P = \frac{0}{1000}$$

$$= \frac{3.480 \times 1400 \times + 1200 \times + 2600 \times}{2.50 \times} = 18.4$$