	Question #5
	Tansform
	N=rate of housefire Calls (per month)
	n= total colls in a one year period
	t= time introd (months)
	assume:
	- port(b): N= 171 call/month - Paisson Distribution
	- n = 2050 calls
	-t=12 months
(
H	parta: 2050 calls = estimated rate of 170.83 calls/month
	12 months
6	
B	port 5: 1=171; use a Poisson Distribution
	$t = 12 \times 171 = 2052 = n$
	12-171 = 1 Upper:
	12-171 - 12-171 Lower:
1	
0	2050 1 2 [200]
	$\frac{2050}{12\lambda} + \frac{2}{12\lambda} \frac{12\lambda}{12\lambda} = 1$
	1 (2 - 172 27)]
	Supper: 178.37
	1/ 100 S
	(Lower: FO)

Question 6

Transform

$$R : N_{\epsilon} = n3 = \frac{e^{-N\epsilon}(N\epsilon)^n}{n!}$$
 $R : N_{\epsilon} = n3 = \frac{e^{-N\epsilon}(N\epsilon)^n}{n!}$
 $R : N_{\epsilon} = n3 = \frac{e^{-N\epsilon}(N\epsilon)^n}{n!}$
 $R : N_{\epsilon} = n3 = \frac{e^{-N\epsilon}(N\epsilon)^n}{n!}$
 $R : N_{\epsilon} = \frac{e^{-N\epsilon}$

Opart C: (See R-Code)

To account for .953, & (ould Vary between

145 and 197.

Destaset (ie a year) where an exact method may be better for short-term.

