Quick Permutation Test: feature filtering of n-gram data

Piotr Sobczyk^{1*}, Michał Burdukiewicz², Chris Lauber³, Paweł Mackiewicz²
*Piotr.Sobczyk@pwr.edu.pl

¹Wrocław University of Technology, Department of Mathematics, Poland ²University of Wrocław, Department of Genomics, Poland

³Dresden University of Technology, Institute of Medical Informatics and Biometry, Poland

Introduction

N-grams (k-tuples) are vectors of n characters derived from input sequence(s). They may form continuous sub-sequences or be discontinuous. Another important n-gram parameter is its position. Instead of just counting n-grams, one may want to count how many n-grams occur at a given position in multiple (e.g. related) sequences.

	D1	DΩ	D2	P4	DE	D6
	P ₁	P Z	P3	P4	P 5	P0
S1	4	3	1	1	2	3
S 2	4	4	3	3	4	4
S 3	3	1	1	4	4	2
	San	nple	seq	uen	ces.	

P1_1	P2_1	P3_1	P4_1	P5_1	P6_1	P1_2	P2_2	P3_2	P4_2	P5_2	P6_2	P1_3
0	0	1	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	1	1

A fraction of possible unigrams with position information.

Originally developed for natural language processing, n-grams are also used in proteomics, genomics and transcriptomics.

Curse of dimensionality

Even when we limit ourselves to only continuous positioned n-grams, feature space growths rapidly with the number of elements in n-gram (n) and length of the sequence (L).

Number of possible positioned n-grams:

Feature selecting permutation tests

Model and statistic independent permutation tests can be used to filter features obtained through counting n-grams.

During a permutation test class labels are randomly exchanged during computation of significance statistic. p-values are defined as:

p-value
$$=rac{N_{T_P>T_R}}{N}$$

where $N_{T_P>T_R}$ is number of times when T_P (permuted test statistic) was more extreme than T_R (test statistic for non-permuted data). Permutation tests are computationally expensive (especially precise estimation of low p-values, because the number of permutations is inversely proportional to the interval between p-values).

QuiPT algorithm

If probability that target equals 1 is \boldsymbol{p} and probability that feature equals 1 is \boldsymbol{q} and feature and target are independent then each of them has the following probabilities

$$P(Target, Feature) = (1, 1)) = p \cdot q$$
 $P(Target, Feature) = (1, 0)) = p \cdot (1 - q)$
 $P(Target, Feature) = (0, 1)) = (1 - p) \cdot q$
 $P(Target, Feature) = (0, 0)) = (1 - p) \cdot (1 - q)$

So, this shows that what we actually get is a contingency table that needs to tested for independance.

Independence test

 $\mathsf{F}(\mathsf{n}_{1,1},n_{1,0},n_{0,1},n_{0,0}) = \binom{n}{n_{1,1}} (p \cdot q)^{n_{1,1}} \binom{n-n_{1,1}}{n_{1,0}} (p \cdot (1-q))^{n_{1,0}} \\ \binom{n-n_{1,1}-n_{1,0}}{n_{0,1}} ((1-p) \cdot q)^{n_{0,1}} \binom{n-n_{1,1}-n_{1,0}-n_{0,1}}{n_{0,0}} ((1-p) \cdot (1-q))^{n_{0,0}} \\ \text{Our data gives constraints: } n_{1,\cdot} = n_{1,1} + n_{1,0} \text{ and } n_{\cdot,1} = n_{1,1} + n_{0,1}. \text{ Thus, conditioning on } n_{1,1} \text{ we get hypergeometric distribution.}$

This is in fact exact two-sided Fisher's test. Information Gain is used here as a way of deciding which contingency tables are more extreme.

Validation procedure

	Target	Feature	Freq
1	1 0	0	40
2	2 1	0	10
3	3 0	1	25
4	4 1	1	40
3	3 0 4 1	1 1	2

Summary

Quick permutation test is a powerful and quick equivalent of permutation test in binary feature-binary target testing scenario.

Avaibility

biogram R package:

http://cran.r-project.org/web/packages/biogram/

Bibliography