Consider a point x on a 3-surface U that is a surface of revolution and a vector v in the tangent space U_x .

Consider the component v_0 of v along S^2 .

Consider the great circle made by extending x to a geodesic in the direction of v_0 .

We can reflect across this great circle on all the spherical cross-sections of U.

By symmetry, the geodesic made by extending x in the v direction must stay on this slice of U.

This reduces finding the geodesic on a 3-surface of revolution to finding one on a 2-surface.

Finding the vectors from a point:

Rather than mapping a sphere to \mathbb{R}^2 , we can embed it in \mathbb{R}^3 .

Given points $\mathbf{x}, \mathbf{y} \in S^2 \times \mathbb{R}$,

Let $\mathbf{v} =$ the normalization of the projection of \mathbf{y}_1 perpendicular to \mathbf{x}_1 .

Let θ = the angle between \mathbf{x} and $\mathbf{y} = \arccos\langle \mathbf{x}, \mathbf{y} \rangle$

Now we take the points $\mathbf{x}' = (0, x_4)$ and $\mathbf{y}' = (\theta, y_4)$ in the two-dimensional version.

Let \mathbf{z}' be a vector between them.

Let the S^2 component of **z** be z'_0 **v** and the **R** component be z'_1 .

z is a vector between the two points.

Finding a point from a vector:

Given point \mathbf{x} and vector \mathbf{z} ,

Let
$$\mathbf{x}' = (0, x_2), \mathbf{z}' = (\|\mathbf{z}_1\|, z_2).$$

Let $\mathbf{v} = \|\mathbf{z}_1\|$.

Find \mathbf{y}' with the two-dimensional version.

$$\mathbf{y} = (\mathbf{x}_1 \cos y_1' + \mathbf{v} \sin y_1', y_2').$$

In order to create the matrices, we must work in a more relevant basis. We can do this by commuting with the appropriate matrix.

$$\mathbf{e}_1 \mapsto \mathbf{e}_1, \mathbf{v} \mapsto \mathbf{e}_2, \mathbf{x}_1 \mapsto \mathbf{e}_3, \mathbf{x}_1 \times \mathbf{v} \mapsto \mathbf{e}_4$$

$$(\mathbf{e}_1,\mathbf{v},\mathbf{x}_1,(\mathbf{x}_1\times\mathbf{v}))^{-1}$$

$$= (\mathbf{e}_1, \mathbf{v}, \mathbf{x}_1, (\mathbf{x}_1 \times \mathbf{v}))^T$$
, since it's a rotation matrix.

First, we use the rotation of the two-dimensional version to find the rotation between \mathbf{e}_1 and \mathbf{v} .

$$\begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Next, we have to deal with the fact that the S^2 component rotates.

Let
$$\phi = y_2' - x_2'$$
.

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \phi & -\sin \phi & 0 \\
0 & \sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Putting this all together, we get:

$$(\mathbf{e}_{1}, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z})) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (\mathbf{e}_{1}, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z}))^{T}$$

????
$$\sin \theta_0 = \frac{\mathbf{x}' \times (\mathbf{x}' - \mathbf{c})}{|\mathbf{x}'||\mathbf{x}' - \mathbf{c}|} \\
= \frac{x'_0(x'_1 - c_1) - x'_1(x'_0 - c_0)}{\sqrt{|\mathbf{x}'|^2|\mathbf{x}' - \mathbf{c}|^2}} \\
= \frac{x'_0x'_1 - x'_1(x'_0 - c_0)}{\sqrt{|\mathbf{x}'|^2|\mathbf{x}' - \mathbf{c}|^2}} \\
= \frac{c_0x'_0}{\sqrt{|\mathbf{x}'|^2|\mathbf{x}' - \mathbf{c}|^2}} \\
\cos \theta_0 = \frac{\langle \mathbf{x}', \mathbf{x}' - \mathbf{c} \rangle}{|\mathbf{x}'||\mathbf{x}' - \mathbf{c}|} \\
\sin \theta_1 = \frac{\mathbf{y}' \times (\mathbf{y}' - \mathbf{c})}{|\mathbf{y}'||\mathbf{y}' - \mathbf{c}|} \\
= \frac{c_0y'_0}{\sqrt{|\mathbf{y}'|^2|\mathbf{y}' - \mathbf{c}|^2}} \\
\cos \theta_1 = \frac{\langle \mathbf{y}', \mathbf{y}' - \mathbf{c} \rangle}{|\mathbf{y}'||\mathbf{y}' - \mathbf{c}|} \\
\left(\frac{\cos \theta_1 - \sin \theta_1}{\sin \theta_1 \cos \theta_1}\right) \left(\frac{\cos \theta_0 \sin \theta_0}{-\sin \theta_0 \cos \theta_0}\right) \\
\text{Let } \mathbf{z} = \text{the normalization of the component}$$

Let z = the normalization of the component of y perpendicular to x.

I'm going to need to commute this with a matrix that moves z to (0,1,0,0). I'm going to make the first digit be the distance along the arc in \mathbb{H}^2 .

Let's just let it move x to (0,0,1,0) and $\mathbf{x} \times \mathbf{z}$ to (0,0,0,1). It will preserve (1,0,0,0).

This makes the matrix

$$\mathbf{e}_1 \mapsto \mathbf{e}_1, \mathbf{z} \mapsto \mathbf{e}_2, \mathbf{x} \mapsto \mathbf{e}_3, \mathbf{x} \times \mathbf{z} \mapsto \mathbf{e}_4$$
 $(\mathbf{e}_1, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{y}'))^{-1}$
 $= (\mathbf{e}_1, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{y}'))^T$, since it's a rotation matrix.
???
 $(\mathbf{e}_1, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z}))^T$

$$(\mathbf{e}_1, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z})) \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0 \\ \sin \theta_1 & \cos \theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta_0 & \sin \theta_0 & 0 & 0 \\ -\sin \theta_0 & \cos \theta_0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (\mathbf{e}_1, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z}))^T$$

This still fails to take into account the rotation around the sphere.

It just rotates between \mathbf{x} and \mathbf{z} , so if we do it mid-conjugation, we can just do it with a 2×2 matrix like so:

$$\begin{aligned} (\mathbf{e}_{1}, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z})) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -\sin \theta_{0} & \cos \theta_{0} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ (\mathbf{e}_{1}, \mathbf{z}, \mathbf{x}, (\mathbf{x} \times \mathbf{z}))^{T} \\ \end{aligned}$$
 Where $\theta = \frac{1}{2k} \ln \|\mathbf{y}'\|^{2}$