Data sheet acquired from Harris Semiconductor SCHS174A

CD54/74HC273, CD54/74HCT273

High Speed CMOS Logic Octal D-Type Flip-Flop with Reset

February 1998 - Revised May 2000

Features

- Common Clock and Asynchronous Master Reset
- Positive Edge Triggering
- Buffered Inputs
- Typical $f_{MAX} = 60MHz$ at $V_{CC} = 5V$, $C_L = 15pF$, $T_A = 25^{\circ}C$
- Fanout (Over Temperature Range)
 - Standard Outputs.................. 10 LSTTL Loads
 Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \leq 1 \mu \text{A}$ at $V_{\mbox{\scriptsize OL}},\, V_{\mbox{\scriptsize OH}}$

Description

The 'HC273 and 'HCT273 high speed octal D-Type flip-flops with a direct clear input are manufactured with silicon-gate CMOS technology. They possess the low power consumption of standard CMOS integrated circuits.

Information at the D input is transferred to the Q outputs on the positive-going edge of the clock pulse. All eight flip-flops are controlled by a common clock (CP) and a common reset (\overline{MR}) . Resetting is accomplished by a low voltage level independent of the clock. All eight Q outputs are reset to a logic 0.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC273F	-55 to 125	20 Ld CERDIP
CD54HC273F3A	-55 to 125	20 Ld CERDIP
CD74HC273E	-55 to 125	20 Ld PDIP
CD74HC273M	-55 to 125	20 Ld SOIC
CD54HCT273F	-55 to 125	20 Ld CERDIP
CD54HCT273F3A	-55 to 125	20 Ld CERDIP
CD74HCT273E	-55 to 125	20 Ld PDIP
CD74HCT273M	-55 to 125	20 Ld SOIC

NOTES:

- When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
- Wafer and die for this part number is available which meets all electrical specifications. Please contact your local TI sales office or customer service for ordering information.

Pinout

Functional Diagram

TRUTH TABLE

	INPUTS							
RESET (MR)	CLOCK CP	DATA D _n	Q					
L	Х	Х	L					
Н	1	Н	Н					
Н	1	L	L					
Н	L	Х	Q_0					

NOTE: H = High Voltage Level, L = Low Voltage Level, X = $\overline{\text{Don't Care}}$, \uparrow = Transition from Low to High Level, Q₀ = Level Before the Indicated Steady-State Input Conditions Were Established.

Absolute Maximum Ratings

Thermal Information

Thermal Resistance (Typical, Note 3)	θ_{JA} (°C/W)	θ^{JC} ($^{\text{C}/\text{W}}$)
PDIP Package	125	N/A
CERDIP Package	105	44
SOIC Package		N/A
Maximum Junction Temperature		150 ^o C
Maximum Storage Temperature Range	65	5 ^o C to 150 ^o C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		

Operating Conditions

Temperature Range, T_A 55 o C to 125 o C Supply Voltage Range, V_{CC}
The state of the s
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

DC Electrical Specifications

			ST ITIONS	ıs		25°C			-40°C TO 85°C		-55°C TO 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	1	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	i	1	0.5	ı	0.5	-	0.5	٧
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output	V _{OH}	V _{IH} or	-0.02	2	1.9	1	-	1.9	-	1.9	-	V
Voltage CMOS Loads		V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	٧
High Level Output	1		-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Voltage TTL Loads			-5.2	6	5.48	-	-	5.34	-	5.2	-	٧
Low Level Output	V _{OL}	V _{IH} or	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads		V_{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
omoc Loads			0.02	6	-	-	0.1	-	0.1	-	0.1	٧
Low Level Output	1		4	4.5	-	-	0.26	-	0.33	-	0.4	V
Voltage TTL Loads	Voltage TTL Loads		5.2	6	ı	-	0.26	-	0.33	-	0.4	٧
Input Leakage Current	II	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА

DC Electrical Specifications (Continued)

			ST ITIONS			25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	1	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	ı	-	0.8	1	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lį	V _{CC} to GND	0	5.5	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load (Note 4)	Δl _{CC}	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS
MR	1.5
Data	0.4
СР	1.5

NOTE: Unit Load is Δl_{CC} limit specified in DC Electrical Specifications table, e.g., 360µA max at 25°C.

Prerequisite For Switching Specifications

		TEST	v _{cc}	25°C		-40°C TO 85°C		-55°C TO 125°C			
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES											
Maximum Clock Frequency (Figure 1)	f _{MAX}	-	2	6	-	-	5	-	4	-	MHz
			4.5	30	-	-	25	-	20	-	MHz
			6	35	-	-	29	-	23	-	MHz
MR Pulse Width (Figure 1)	t _W	-	2	60	-	-	75	-	90	-	ns
			4.5	12	-	-	15	-	18	-	ns
			6	10	-	-	13	-	15	-	ns

^{4.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

Prerequisite For Switching Specifications (Continued)

		TEST	v _{cc}		25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Clock Pulse Width (Figure 1)	t _W	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
Set-up Time Data to Clock (Figure 5)	t _{SU}	-	2	60	-	i	75	i	70	-	ns
			4.5	12	-	ı	15	·	18	-	ns
			6	10	-	ı	13	·	15	-	ns
Hold Time, Data to Clock	t _H	-	2	3	1	i	3	i	3	1	ns
(Figure 5)			4.5	3	-	ı	3	·	3	-	ns
			6	3	-	ı	3	·	3	-	ns
Removal Time, MR to Clock	t _{REM}	-	2	50	1	i	65	i	75	1	ns
			4.5	10	-	-	13	-	15	-	ns
			6	9	-	ı	11	·	13	-	ns
HCT TYPES											
Maximum Clock Frequency (Figure 2)	f _{MAX}	-	4.5	25	-	-	20	-	16	-	MHz
MR Pulse Width (Figure 2)	t _w	-	4.5	12	-	-	15	-	18	-	ns
Clock Pulse Width (Figure 2)	t _w	-	4.5	20	-	-	25	-	30	-	ns
Set-up Time Data to Clock (Figure 6)	tsu	-	4.5	12	-	-	15	-	18	-	ns
Hold Time, Data to Clock (Figure 6)	t _H	-	4.5	3	-	-	3	-	3	-	ns
Removal Time, MR to Clock	t _{REM}	-	4.5	10	-	-	13	-	15	-	ns

Switching Specifications Input $t_{\text{r}}, \, t_{\text{f}} = 6 \text{ns}$

		TEST		25°C		-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
HC TYPES		•						
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	150	190	225	ns
Clock to Output (Figure 3)			4.5	-	30	38	45	ns
			6	-	26	30	38	ns
		C _L = 15pF	5	12	-	-	-	ns
Propagation Delay,	t _{PHL}	C _L = 50pF	2	-	150	190	225	ns
MR to Output (Figure 3)			4.5	-	30	38	45	ns
			6	-	26	30	45 38 - 0 225 45 38 110 22 19	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	75	95	110	ns
(Figure 3)			4.5	-	15	19	22	ns
			6	-	13	16	19	ns
Input Capacitance	C _I	-	-	-	10	10	10	pF
Maximum Clock Frequency	f _{MAX}	C _L = 15pF	5	60	-	-	-	MHz

Switching Specifications Input t_r, t_f = 6ns (Continued)

		TEST	TEST		°C	-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
Power Dissipation Capacitance (Notes 5, 6)	C _{PD}	-	5	25	-	-	-	pF
HCT TYPES								
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	30	38	45	ns
Clock to Output (Figure 4)		C _L = 15pF	5	12	-	-	-	ns
Propagation Delay, MR to Output (Figure 4)	t _{PHL}	C _L = 50pF	4.5	-	32	40	48	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	15	19	22	ns
Input Capacitance	C _{IN}	-	-	-	10	10	10	pF
Maximum Clock Frequency	f _{MAX}	C _L = 15pF	5	50	-	-	-	MHz
Power Dissipation Capacitance (Notes 5, 6)	C _{PD}	-	5	25	-	-	-	pF

NOTES:

- 5. C_{PD} is used to determine the dynamic power consumption, per flip-flop.
- 6. P_D = C_{PD} V_{CC}² f_i + ∑ (C_L V_{CC}² + f_O) where f_i = Input Frequency, f_O = Output Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 3. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Test Circuits and Waveforms (Continued)

FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated