

clink Scan Report

Project Name clink

Scan Start Friday, June 21, 2024 11:43:01 PM

Preset Checkmarx Default

Scan Time 00h:15m:34s

Lines Of Code Scanned 3119 Files Scanned 5

Report Creation Time Saturday, June 22, 2024 12:04:57 AM

Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=50071

Team CxServer
Checkmarx Version 8.7.0
Scan Type Full

Source Origin LocalPath

Density 6/1000 (Vulnerabilities/LOC)

Visibility Public

Filter Settings

Severity

Included: High, Medium, Low, Information

Excluded: None

Result State

Included: Confirmed, Not Exploitable, To Verify, Urgent, Proposed Not Exploitable

ΑII

Excluded: None

Assigned to

Included: All

Categories

Included:

Uncategorized All

Custom All

PCI DSS v3.2 All

OWASP Top 10 2013 All

FISMA 2014 All

NIST SP 800-53 All

OWASP Top 10 2017 All

OWASP Mobile Top 10

2016

Excluded:

Uncategorized None

Custom None

PCI DSS v3.2 None

OWASP Top 10 2013 None

FISMA 2014 None

NIST SP 800-53 None

OWASP Top 10 2017 None

OWASP Mobile Top 10 None

2016

Results Limit

Results limit per query was set to 50

Selected Queries

Selected queries are listed in Result Summary

Result Summary

Most Vulnerable Files

Top 5 Vulnerabilities

Scan Summary - OWASP Top 10 2017 Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2017

Category	Threat Agent	Exploitability	Weakness Prevalence	Weakness Detectability	Technical Impact	Business Impact	Issues Found	Best Fix Locations
A1-Injection	App. Specific	EASY	COMMON	EASY	SEVERE	App. Specific	9	9
A2-Broken Authentication	App. Specific	EASY	COMMON	AVERAGE	SEVERE	App. Specific	0	0
A3-Sensitive Data Exposure	App. Specific	AVERAGE	WIDESPREAD	AVERAGE	SEVERE	App. Specific	0	0
A4-XML External Entities (XXE)	App. Specific	AVERAGE	COMMON	EASY	SEVERE	App. Specific	0	0
A5-Broken Access Control*	App. Specific	AVERAGE	COMMON	AVERAGE	SEVERE	App. Specific	0	0
A6-Security Misconfiguration	App. Specific	EASY	WIDESPREAD	EASY	MODERATE	App. Specific	0	0
A7-Cross-Site Scripting (XSS)	App. Specific	EASY	WIDESPREAD	EASY	MODERATE	App. Specific	0	0
A8-Insecure Deserialization	App. Specific	DIFFICULT	COMMON	AVERAGE	SEVERE	App. Specific	0	0
A9-Using Components with Known Vulnerabilities*	App. Specific	AVERAGE	WIDESPREAD	AVERAGE	MODERATE	App. Specific	9	9
A10-Insufficient Logging & Monitoring	App. Specific	AVERAGE	WIDESPREAD	DIFFICULT	MODERATE	App. Specific	0	0

^{*} Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

Scan Summary - OWASP Top 10 2013 Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2013

Category	Threat Agent	Attack Vectors	Weakness Prevalence	Weakness Detectability	Technical Impact	Business Impact	Issues Found	Best Fix Locations
A1-Injection	EXTERNAL, INTERNAL, ADMIN USERS	EASY	COMMON	AVERAGE	SEVERE	ALL DATA	0	0
A2-Broken Authentication and Session Management	EXTERNAL, INTERNAL USERS	AVERAGE	WIDESPREAD	AVERAGE	SEVERE	AFFECTED DATA AND FUNCTIONS	0	0
A3-Cross-Site Scripting (XSS)	EXTERNAL, INTERNAL, ADMIN USERS	AVERAGE	VERY WIDESPREAD	EASY	MODERATE	AFFECTED DATA AND SYSTEM	0	0
A4-Insecure Direct Object References	SYSTEM USERS	EASY	COMMON	EASY	MODERATE	EXPOSED DATA	0	0
A5-Security Misconfiguration	EXTERNAL, INTERNAL, ADMIN USERS	EASY	COMMON	EASY	MODERATE	ALL DATA AND SYSTEM	0	0
A6-Sensitive Data Exposure	EXTERNAL, INTERNAL, ADMIN USERS, USERS BROWSERS	DIFFICULT	UNCOMMON	AVERAGE	SEVERE	EXPOSED DATA	0	0
A7-Missing Function Level Access Control*	EXTERNAL, INTERNAL USERS	EASY	COMMON	AVERAGE	MODERATE	EXPOSED DATA AND FUNCTIONS	0	0
A8-Cross-Site Request Forgery (CSRF)	USERS BROWSERS	AVERAGE	COMMON	EASY	MODERATE	AFFECTED DATA AND FUNCTIONS	0	0
A9-Using Components with Known Vulnerabilities*	EXTERNAL USERS, AUTOMATED TOOLS	AVERAGE	WIDESPREAD	DIFFICULT	MODERATE	AFFECTED DATA AND FUNCTIONS	9	9
A10-Unvalidated Redirects and Forwards	USERS BROWSERS	AVERAGE	WIDESPREAD	DIFFICULT	MODERATE	AFFECTED DATA AND FUNCTIONS	0	0

^{*} Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

Scan Summary - PCI DSS v3.2

Category	Issues Found	Best Fix Locations
PCI DSS (3.2) - 6.5.1 - Injection flaws - particularly SQL injection	0	0
PCI DSS (3.2) - 6.5.2 - Buffer overflows	9	9
PCI DSS (3.2) - 6.5.3 - Insecure cryptographic storage	0	0
PCI DSS (3.2) - 6.5.4 - Insecure communications	0	0
PCI DSS (3.2) - 6.5.5 - Improper error handling*	0	0
PCI DSS (3.2) - 6.5.7 - Cross-site scripting (XSS)	0	0
PCI DSS (3.2) - 6.5.8 - Improper access control	0	0
PCI DSS (3.2) - 6.5.9 - Cross-site request forgery	0	0
PCI DSS (3.2) - 6.5.10 - Broken authentication and session management	0	0

^{*} Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

Scan Summary - FISMA 2014

Category	Description	Issues Found	Best Fix Locations
Access Control	Organizations must limit information system access to authorized users, processes acting on behalf of authorized users, or devices (including other information systems) and to the types of transactions and functions that authorized users are permitted to exercise.	0	0
Audit And Accountability*	Organizations must: (i) create, protect, and retain information system audit records to the extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful, unauthorized, or inappropriate information system activity; and (ii) ensure that the actions of individual information system users can be uniquely traced to those users so they can be held accountable for their actions.	0	0
Configuration Management	Organizations must: (i) establish and maintain baseline configurations and inventories of organizational information systems (including hardware, software, firmware, and documentation) throughout the respective system development life cycles; and (ii) establish and enforce security configuration settings for information technology products employed in organizational information systems.	0	0
Identification And Authentication*	Organizations must identify information system users, processes acting on behalf of users, or devices and authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to allowing access to organizational information systems.	0	0
Media Protection	Organizations must: (i) protect information system media, both paper and digital; (ii) limit access to information on information system media to authorized users; and (iii) sanitize or destroy information system media before disposal or release for reuse.	0	0
System And Communications Protection	Organizations must: (i) monitor, control, and protect organizational communications (i.e., information transmitted or received by organizational information systems) at the external boundaries and key internal boundaries of the information systems; and (ii) employ architectural designs, software development techniques, and systems engineering principles that promote effective information security within organizational information systems.	0	0
System And Information Integrity	Organizations must: (i) identify, report, and correct information and information system flaws in a timely manner; (ii) provide protection from malicious code at appropriate locations within organizational information systems; and (iii) monitor information system security alerts and advisories and take appropriate actions in response.	0	0

^{*} Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

Scan Summary - NIST SP 800-53

Category	Issues Found	Best Fix Locations
AC-12 Session Termination (P2)	0	0
AC-3 Access Enforcement (P1)	0	0
AC-4 Information Flow Enforcement (P1)	0	0
AC-6 Least Privilege (P1)	0	0
AU-9 Protection of Audit Information (P1)	0	0
CM-6 Configuration Settings (P2)	0	0
IA-5 Authenticator Management (P1)	0	0
IA-6 Authenticator Feedback (P2)	0	0
IA-8 Identification and Authentication (Non-Organizational Users) (P1)	0	0
SC-12 Cryptographic Key Establishment and Management (P1)	0	0
SC-13 Cryptographic Protection (P1)	0	0
SC-17 Public Key Infrastructure Certificates (P1)	0	0
SC-18 Mobile Code (P2)	0	0
SC-23 Session Authenticity (P1)*	0	0
SC-28 Protection of Information at Rest (P1)	0	0
SC-4 Information in Shared Resources (P1)	0	0
SC-5 Denial of Service Protection (P1)*	0	0
SC-8 Transmission Confidentiality and Integrity (P1)	0	0
SI-10 Information Input Validation (P1)*	0	0
SI-11 Error Handling (P2)*	0	0
SI-15 Information Output Filtering (P0)	0	0
SI-16 Memory Protection (P1)	0	0

^{*} Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

Scan Summary - OWASP Mobile Top 10 2016

Category	Description	Issues Found	Best Fix Locations
M1-Improper Platform Usage	This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.	0	0
M2-Insecure Data Storage	This category covers insecure data storage and unintended data leakage.	0	0
M3-Insecure Communication	This category covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.	0	0
M4-Insecure Authentication	This category captures notions of authenticating the end user or bad session management. This can include: -Failing to identify the user at all when that should be required -Failure to maintain the user's identity when it is required -Weaknesses in session management	0	0
M5-Insufficient Cryptography	The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasnt done correctly.	0	0
M6-Insecure Authorization	This is a category to capture any failures in authorization (e.g., authorization decisions in the client side, forced browsing, etc.). It is distinct from authentication issues (e.g., device enrolment, user identification, etc.). If the app does not authenticate users at all in a situation where it should (e.g., granting anonymous access to some resource or service when authenticated and authorized access is required), then that is an authentication failure not an authorization failure.	0	0
M7-Client Code Quality	This category is the catch-all for code-level implementation problems in the mobile client. That's distinct from server-side coding mistakes. This would capture things like buffer overflows, format string vulnerabilities, and various other codelevel mistakes where the solution is to rewrite some code that's running on the mobile device.	0	0
M8-Code Tampering	This category covers binary patching, local resource modification, method hooking, method swizzling, and dynamic memory modification. Once the application is delivered to the mobile device, the code and data resources are resident there. An attacker can either directly modify the code, change the contents of memory dynamically, change or replace the system APIs that the application uses, or	0	0

	modify the application's data and resources. This can provide the attacker a direct method of subverting the intended use of the software for personal or monetary gain.		
M9-Reverse Engineering	This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.	0	0
M10-Extraneous Functionality	Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.	0	0

Scan Summary - Custom

Category	Issues Found	Best Fix Locations
Must audit	0	0
Check	0	0
Optional	0	0

Results Distribution By Status First scan of the project

	High	Medium	Low	Information	Total
New Issues	0	18	1	0	19
Recurrent Issues	0	0	0	0	0
Total	0	18	1	0	19

Fixed issues 0 0 0 0	Fixed Issues	0	0	0	0	0
----------------------	--------------	---	---	---	---	---

Results Distribution By State

	High	Medium	Low	Information	Total
Confirmed	0	0	0	0	0
Not Exploitable	0	0	0	0	0
To Verify	0	18	1	0	19
Urgent	0	0	0	0	0
Proposed Not Exploitable	0	0	0	0	0
Total	0	18	1	0	19

Result Summary

Vulnerability Type	Occurrences	Severity
Buffer Overflow boundcpy WrongSizeParam	9	Medium
<u>Dangerous Functions</u>	9	Medium
Use of Sizeof On a Pointer Type	1	Low

10 Most Vulnerable Files

High and Medium Vulnerabilities

File Name	Issues Found
clink/lobject.c	14
clink/lvm.c	4

Scan Results Details

Buffer Overflow boundcpy WrongSizeParam

Query Path:

CPP\Cx\CPP Buffer Overflow\Buffer Overflow boundcpy WrongSizeParam Version:1

Categories

PCI DSS v3.2: PCI DSS (3.2) - 6.5.2 - Buffer overflows

OWASP Top 10 2017: A1-Injection

Description

Buffer Overflow boundcpy WrongSizeParam\Path 1:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=2

Status New

The size of the buffer used by luaO_chunkid in l, at line 254 of clink/lobject.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaO_chunkid passes to l, at line 254 of clink/lobject.c, to overwrite the target buffer.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	258	258
Object	L	I.

Code Snippet

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

258. memcpy(out, source + 1, 1 * sizeof(char));

Buffer Overflow boundcpy WrongSizeParam\Path 2:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=3

Status New

The size of the buffer used by luaO_chunkid in char, at line 254 of clink/lobject.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaO_chunkid passes to char, at line 254 of clink/lobject.c, to overwrite the target buffer.

_		
	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	258	258

Object char char

Code Snippet

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

258. memcpy(out, source + 1, 1 * sizeof(char));

Buffer Overflow boundcpy WrongSizeParam\Path 3:

Severity Medium
Result State To Verify
Online Results http://win-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=4

Status New

The size of the buffer used by luaO_chunkid in l, at line 254 of clink/lobject.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaO_chunkid passes to l, at line 254 of clink/lobject.c, to overwrite the target buffer.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	266	266
Object	I	I

Code Snippet

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

266. memcpy(out, source + 1, 1 * sizeof(char));

Buffer Overflow boundcpy WrongSizeParam\Path 4:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=5

Status New

The size of the buffer used by luaO_chunkid in char, at line 254 of clink/lobject.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaO chunkid passes to char, at line 254 of clink/lobject.c, to overwrite the target buffer.

_			
		Source	Destination
	File	clink/lobject.c	clink/lobject.c
	Line	266	266
	Object	char	char


```
Code Snippet
```

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

266. memcpy(out, source + 1, 1 * sizeof(char));

Buffer Overflow boundcpy WrongSizeParam\Path 5:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=6

Status New

The size of the buffer used by luaO_chunkid in bufflen, at line 254 of clink/lobject.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaO chunkid passes to bufflen, at line 254 of clink/lobject.c, to overwrite the target buffer.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	270	270
Object	bufflen	bufflen

Code Snippet

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

270. memcpy(out, source + 1 + l - bufflen, bufflen *
sizeof(char));

Buffer Overflow boundcpy WrongSizeParam\Path 6:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=7

Status New

The size of the buffer used by luaO_chunkid in char, at line 254 of clink/lobject.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaO chunkid passes to char, at line 254 of clink/lobject.c, to overwrite the target buffer.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	270	270
Object	char	char

Code Snippet

File Name clink/lobject.c


```
Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {
    ....
270. memcpy(out, source + 1 + 1 - bufflen, bufflen *
    sizeof(char));
```

Buffer Overflow boundcpy WrongSizeParam\Path 7:

Severity Medium
Result State To Verify
Online Results http://win-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=8

Status New

The size of the buffer used by luaO_chunkid in char, at line 254 of clink/lobject.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaO chunkid passes to char, at line 254 of clink/lobject.c, to overwrite the target buffer.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	286	286
Object	char	char

Buffer Overflow boundcpy WrongSizeParam\Path 8:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=9

Status New

The size of the buffer used by luaV_concat in l, at line 284 of clink/lvm.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaV_concat passes to l, at line 284 of clink/lvm.c, to overwrite the target buffer.

	Source	Destination
File	clink/lvm.c	clink/lvm.c
Line	315	315
Object	I	l

Code Snippet

File Name clink/lvm.c

Method void luaV_concat (lua_State *L, int total) {


```
....
315. memcpy(buffer+tl, svalue(top-i), l * sizeof(char));
```

Buffer Overflow boundcpy WrongSizeParam\Path 9:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=10

Status New

The size of the buffer used by luaV_concat in char, at line 284 of clink/lvm.c, is not properly verified before writing data to the buffer. This can enable a buffer overflow attack, using the source buffer that luaV_concat passes to char, at line 284 of clink/lvm.c, to overwrite the target buffer.

	Source	Destination
File	clink/lvm.c	clink/lvm.c
Line	315	315
Object	char	char

Code Snippet

File Name clink/lvm.c

Method void luaV_concat (lua_State *L, int total) {

315. memcpy(buffer+tl, svalue(top-i), l * sizeof(char));

Dangerous Functions

Query Path:

CPP\Cx\CPP Medium Threat\Dangerous Functions Version:1

Categories

OWASP Top 10 2013: A9-Using Components with Known Vulnerabilities OWASP Top 10 2017: A9-Using Components with Known Vulnerabilities

Description

Dangerous Functions\Path 1:

Severity Medium
Result State To Verify
Online Results http://win-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=11

Status New

The dangerous function, memcpy, was found in use at line 254 in clink/lobject.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	258	258

Object memcpy memcpy

Code Snippet
File Name clink/lobject.c
Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

....
258. memcpy(out, source + 1, 1 * sizeof(char));

Dangerous Functions\Path 2:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=12

Status New

The dangerous function, memcpy, was found in use at line 254 in clink/lobject.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	266	266
Object	memcpy	memcpy

Dangerous Functions\Path 3:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=13

Status New

The dangerous function, memcpy, was found in use at line 254 in clink/lobject.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	270	270
Object	memcpy	memcpy

Code Snippet

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

270. memcpy(out, source + 1 + 1 - bufflen, bufflen *
sizeof(char));

Dangerous Functions\Path 4:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=14

Status New

The dangerous function, memcpy, was found in use at line 254 in clink/lobject.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	286	286
Object	memcpy	memcpy

Code Snippet

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

286. memcpy(out, POS, (LL(POS) + 1) * sizeof(char));

Dangerous Functions\Path 5:

Severity Medium
Result State To Verify
Online Results http://win-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=15

Status New

The dangerous function, memcpy, was found in use at line 284 in clink/lvm.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lvm.c	clink/lvm.c
Line	315	315
Object	memcpy	memcpy

Code Snippet

File Name clink/lvm.c


```
Method void luaV_concat (lua_State *L, int total) {
....
315. memcpy(buffer+tl, svalue(top-i), l * sizeof(char));
```

Dangerous Functions\Path 6:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=16

Status New

The dangerous function, strlen, was found in use at line 254 in clink/lobject.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	255	255
Object	strlen	strlen

Code Snippet

File Name clink/lobject.c

Method void luaO_chunkid (char *out, const char *source, size_t bufflen) {

....
255. size_t l = strlen(source);

Dangerous Functions\Path 7:

Severity Medium
Result State To Verify
Online Results http://win-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=17

Status New

The dangerous function, strlen, was found in use at line 180 in clink/lobject.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	191	191
Object	strlen	strlen

Code Snippet

File Name clink/lobject.c

Method const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) {


```
....
191. pushstr(L, s, strlen(s));
```

Dangerous Functions\Path 8:

Severity Medium
Result State To Verify
Online Results http://WIN-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=18

Status New

The dangerous function, strlen, was found in use at line 180 in clink/lobject.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	229	229
Object	strlen	strlen

Code Snippet

File Name clink/lobject.c

Method const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) {

229. pushstr(L, fmt, strlen(fmt));

Dangerous Functions\Path 9:

Severity Medium
Result State To Verify
Online Results http://win-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=19

Status New

The dangerous function, strlen, was found in use at line 201 in clink/lvm.c file. Such functions may expose information and allow an attacker to get full control over the host machine.

	Source	Destination
File	clink/lvm.c	clink/lvm.c
Line	210	210
Object	strlen	strlen

Code Snippet

File Name clink/lvm.c

Method static int I_strcmp (const TString *Is, const TString *rs) {


```
....
210.     size_t len = strlen(l); /* index of first `\0' in both
strings */
```

Use of Sizeof On a Pointer Type

Query Path:

CPP\Cx\CPP Low Visibility\Use of Sizeof On a Pointer Type Version:1

Description

Use of Sizeof On a Pointer Type\Path 1:

Severity Low
Result State To Verify
Online Results http://win-

BA8RD5TJ8IG/CxWebClient/ViewerMain.aspx?scanid=1050081&projectid=500

71&pathid=1

Status New

	Source	Destination
File	clink/lobject.c	clink/lobject.c
Line	211	211
Object	sizeof	sizeof

```
Code Snippet
```

File Name clink/lobject.c

Method const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) {

.... 211. char buff[4*sizeof(void *) + 8]; /* should be enough space for a `%p' */

Buffer Overflow boundcpy WrongSizeParam

Risk

What might happen

Buffer overflow attacks, in their various forms, could allow an attacker to control certain areas of memory. Typically, this is used to overwrite data on the stack necessary for the program to function properly, such as code and memory addresses, though other forms of this attack exist. Exploiting this vulnerability can generally lead to system crashes, infinite loops, or even execution of arbitrary code.

Cause

How does it happen

Buffer Overflows can manifest in numerous different variations. In it's most basic form, the attack controls a buffer, which is then copied to a smaller buffer without size verification. Because the attacker's source buffer is larger than the program's target buffer, the attacker's data overwrites whatever is next on the stack, allowing the attacker to control program structures.

Alternatively, the vulnerability could be the result of improper bounds checking; exposing internal memory addresses outside of their valid scope; allowing the attacker to control the size of the target buffer; or various other forms.

General Recommendations

How to avoid it

- o Always perform proper bounds checking before copying buffers or strings.
- o Prefer to use safer functions and structures, e.g. safe string classes over char*, strncpy over strcpy, and so on.
- o Consistently apply tests for the size of buffers.
- o Do not return variable addresses outside the scope of their variables.

Source Code Examples

CPP

Overflowing Buffers

```
const int BUFFER_SIZE = 10;
char buffer[BUFFER_SIZE];

void copyStringToBuffer(char* inputString)
{
    strcpy(buffer, inputString);
}
```

Checked Buffers

```
const int BUFFER_SIZE = 10;
const int MAX_INPUT_SIZE = 256;
char buffer[BUFFER_SIZE];

void copyStringToBuffer(char* inputString)
{
    if (strnlen(inputString, MAX_INPUT_SIZE) < sizeof(buffer))
    {
        strncpy(buffer, inputString, sizeof(buffer));
    }
}</pre>
```


Dangerous Functions

Risk

What might happen

Use of dangerous functions may expose varying risks associated with each particular function, with potential impact of improper usage of these functions varying significantly. The presence of such functions indicates a flaw in code maintenance policies and adherence to secure coding practices, in a way that has allowed introducing known dangerous code into the application.

Cause

How does it happen

A dangerous function has been identified within the code. Functions are often deemed dangerous to use for numerous reasons, as there are different sets of vulnerabilities associated with usage of such functions. For example, some string copy and concatenation functions are vulnerable to Buffer Overflow, Memory Disclosure, Denial of Service and more. Use of these functions is not recommended.

General Recommendations

How to avoid it

- Deploy a secure and recommended alternative to any functions that were identified as dangerous.
 - If no secure alternative is found, conduct further researching and testing to identify whether current usage successfully sanitizes and verifies values, and thus successfully avoids the usecases for whom the function is indeed dangerous
- Conduct a periodical review of methods that are in use, to ensure that all external libraries and built-in functions are up-to-date and whose use has not been excluded from best secure coding practices.

Source Code Examples

CPP

Buffer Overflow in gets()

Safe reading from user

Unsafe function for string copy

```
int main(int argc, char* argv[])
{
    char buf[10];
    strcpy(buf, argv[1]); // overflow occurs when len(argv[1]) > 10 bytes
    return 0;
}
```

Safe string copy

```
int main(int argc, char* argv[])
{
    char buf[10];
    strncpy(buf, argv[1], sizeof(buf));
    buf[9]= '\0'; //strncpy doesn't NULL terminates
    return 0;
}
```

Unsafe format string

```
int main(int argc, char* argv[])
{
    printf(argv[1]); // If argv[1] contains a format token, such as %s, %x or %d, will cause
an access violation
    return 0;
}
```

Safe format string


```
int main(int argc, char* argv[])
{
    printf("%s", argv[1]); // Second parameter is not a formattable string
    return 0;
}
```


Status: Draft

Use of sizeof() on a Pointer Type

Weakness ID: 467 (Weakness Variant)

Description

Description Summary

The code calls sizeof() on a malloced pointer type, which always returns the wordsize/8. This can produce an unexpected result if the programmer intended to determine how much memory has been allocated.

Time of Introduction

Implementation

Applicable Platforms

Languages

C

C++

Common Consequences

Scope	Effect
Integrity	This error can often cause one to allocate a buffer that is much smaller than what is needed, leading to resultant weaknesses such as buffer overflows.

Likelihood of Exploit

High

Demonstrative Examples

Example 1

Care should be taken to ensure size of returns the size of the data structure itself, and not the size of the pointer to the data structure.

In this example, sizeof(foo) returns the size of the pointer.

```
(Bad Code)
```

```
Example Languages: C and C++
double *foo;
...
foo = (double *)malloc(sizeof(foo));
```

In this example, sizeof(*foo) returns the size of the data structure and not the size of the pointer.

(Good Code)

```
Example Languages: C and C++
```

double *foo;

foo = (double *)malloc(sizeof(*foo));

Example 2

This example defines a fixed username and password. The AuthenticateUser() function is intended to accept a username and a password from an untrusted user, and check to ensure that it matches the username and password. If the username and password match, AuthenticateUser() is intended to indicate that authentication succeeded.

(Bad Code)

```
/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {
```



```
printf("Sizeof username = %d\n", sizeof(username));
printf("Sizeof pass = %d\n", sizeof(pass));
if (strncmp(username, inUser, sizeof(username))) {
printf("Auth failure of username using sizeof\n");
return(AUTH_FAIL);
/* Because of CWE-467, the sizeof returns 4 on many platforms and architectures. */
if (! strncmp(pass, inPass, sizeof(pass))) {
printf("Auth success of password using sizeof\n");
return(AUTH SUCCESS);
else {
printf("Auth fail of password using sizeof\n");
return(AUTH FAIL);
int main (int argc, char **argv)
int authResult;
if (argc < 3) {
ExitError("Usage: Provide a username and password");
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult != AUTH SUCCESS) {
ExitError("Authentication failed");
DoAuthenticatedTask(argv[1]);
```

In AuthenticateUser(), because sizeof() is applied to a parameter with an array type, the sizeof() call might return 4 on many modern architectures. As a result, the strncmp() call only checks the first four characters of the input password, resulting in a partial comparison (CWE-187), leading to improper authentication (CWE-287).

Because of the partial comparison, any of these passwords would still cause authentication to succeed for the "admin" user:

(Attack

```
pass5
passABCDEFGH
passWORD
```

Because only 4 characters are checked, this significantly reduces the search space for an attacker, making brute force attacks more feasible.

The same problem also applies to the username, so values such as "adminXYZ" and "administrator" will succeed for the username.

Potential Mitigations

Phase: Implementation

Use expressions such as "sizeof(*pointer)" instead of "sizeof(pointer)", unless you intend to run sizeof() on a pointer type to gain some platform independence or if you are allocating a variable on the stack.

Other Notes

The use of sizeof() on a pointer can sometimes generate useful information. An obvious case is to find out the wordsize on a platform. More often than not, the appearance of sizeof(pointer) indicates a bug.

Weakness Ordinalities

Ordinality	Description
Primary	(where the weakness exists independent of other weaknesses)

Relationships

retationships				
Nature	Туре	ID	Name	View(s) this relationship pertains to
ChildOf	Category	465	<u>Pointer Issues</u>	Development Concepts (primary)699
ChildOf	Weakness Class	682	Incorrect Calculation	Research Concepts (primary)1000
ChildOf	Category	737	CERT C Secure Coding Section 03 - Expressions (EXP)	Weaknesses Addressed by the CERT C Secure Coding Standard (primary)734
ChildOf	Category	740	CERT C Secure Coding Section 06 - Arrays (ARR)	Weaknesses Addressed by the CERT C Secure Coding Standard734
CanPrecede	Weakness Base	131	Incorrect Calculation of Buffer Size	Research Concepts1000

Taxonomy Mappings

v 11 0			
Mapped Taxonomy Name	Node ID	Fit	Mapped Node Name
CLASP			Use of sizeof() on a pointer type
CERT C Secure Coding	ARR01-C		Do not apply the sizeof operator to a pointer when taking the size of an array
CERT C Secure Coding	EXP01-C		Do not take the size of a pointer to determine the size of the pointed-to type

White Box Definitions

A weakness where code path has:

- 1. end statement that passes an identity of a dynamically allocated memory resource to a sizeof operator
- $\ensuremath{\mathsf{2}}.$ start statement that allocates the dynamically allocated memory resource

References

Robert Seacord. "EXP01-A. Do not take the size of a pointer to determine the size of a type".

https://www.securecoding.cert.org/confluence/display/seccode/EXP01-

 $\underline{A.+Do+not+take+the+sizeof+a+pointer+to+determine+the+size+of+a+type}{>}.$

Content History

Content History				
Submissions				
Submission Date	Submitter	Organization	Source	
	CLASP		Externally Mined	
Modifications				
Modification Date	Modifier	Organization	Source	
2008-07-01	Eric Dalci	Cigital	External	
	updated Time of Introduction			
2008-08-01		KDM Analytics	External	
	added/updated white box definitions			
2008-09-08	CWE Content Team	MITRE	Internal	
	updated Applicable Platforms, Common Consequences, Relationships, Other Notes, Taxonomy Mappings, Weakness Ordinalities			
2008-11-24	CWE Content Team	MITRE	Internal	
	updated Relationships, Taxonomy Mappings			
2009-03-10	CWE Content Team	MITRE	Internal	
	updated Demonstrative Examples			
2009-12-28	CWE Content Team	MITRE	Internal	
	updated Demonstrative Examples			
2010-02-16	CWE Content Team	MITRE	Internal	
	updated Relationships			

BACK TO TOP

Scanned Languages

Language	Hash Number	Change Date
CPP	4541647240435660	6/19/2024
Common	0105849645654507	6/19/2024