R en estadística aplicada en la universidad de Alcalá

Imagina que lanzas un dado

Marcos Marvá, Fernando San Segundo

Departamento de Física y Matemáticas UAH

LibreTICs

VIII Jornadas usuarios R Albacete 18.11.2016

¿Qué hacíamos? Lo habitual*

Clase magistral (grupo grande)

Ordenadores (grupo pequeño)

Problemas a mano (grupo pequeño)

$$\left[\overline{X}_1 - \overline{X}_2 \mp Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right]$$

$$\left[\overline{X} \mp t_{\alpha/2, n-1} \ \frac{s}{\sqrt{n}}\right]$$

$$\left[\frac{s_1^2\left/s_2^2\right.}{F_{\alpha/2,\,n_1-1,\,n_2-1}};\;\frac{s_1^2\left/s_2^2\right.}{F_{1-\alpha/2,\,n_1-1,\,n_2-1}}\right]$$

$$\left[\overline{X}_{1} - \overline{X}_{2} \mp Z_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \right]$$

$$\left[\overline{X}_{1} - \overline{X}_{2} \mp t_{\alpha/2, n_{1} + n_{2} - 2} \ s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \right]$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131

^{*} en nuestro departamento

¿Qué queríamos?

Computar la solución es parte de la solución

Que la herramienta no sea el límite

Integrar trabajo "a mano" y "a máquina"
 i tablas no, menús fuera!!

• Mejorar intuición en conceptos clave Experimentar Reproducible Interactivo

En el aula, grupo grande

Simulaciones (respaldo libro)

```
Marvá
cisco Javier Baron
```

Población

```
**********
                                              500
# clean memory and set graphical parameters
rm(list=ls())
par(mfrow = c(1,1), mar=c(4,2,1,4))
# You are at home waiting for a book you bought in the Internet
# The delivery arrives at any time withing the next hour,
# X = "number of minutes before the delivery arrives"
Distribución media muestral
# define and plot the population
pop1 \leftarrow seq(from = 0, to = 60, length.out = 60)
hist(pop1, breaks = 0:60, xlab = "Minuto", main = "")
# sample the population and represent the sample
# to get an insight of how long costumers wait
sample.size <- 10
(sample1 <- sample(pop1, size = sample.size, replace =
hist(sample1, xlab = "Minuto", main = "", breaks = 0:6 o
                                                     0.6 0.8 1.0
# function to automate the process
plotSample = function(sample.size = n){
```

En el aula, grupo grande

Simulaciones (respaldo libro)

Aula de ordenadores, grupo pequeño

Tutoriales/docs reproducibles

1.4. Tablas de contingencia relativas en R.

Vamos a ver cómo utilizar R para obtener las tablas relativas que hemos discutido en la página 476 del libro. Concretamente, vamos a ver cómo reproducir los resultados del Ejemplo 12.1.6 en el que se analizaba la tabla de contingencia correpsondiente a una prueba diagnóstica, que hemos usado varias veces en el libro. Empezamos con la tabla de datos básica:

```
(tablaObservada = matrix( c(192, 4, 158, 9646), nrow= 2))

## [,1] [,2]

## [1,] 192 158

## [2,] 4 9646
```

Ponemos nombre a las filas y columnas:

```
colnames(tablaObservada) = c("Enfermos", "Sanos")
rownames(tablaObservada) = c("Positivo", "Negativo")
tablaObservada

## Enfermos Sanos
## Positivo 192 158
## Negativo 4 9646
```

y ya estamos listos para pasar a los valores marginales. Los añadimos a la tabla pero, además, calculamos la suma total:

```
## Enfermos Sanos Sum
## Positivo 192 158 350
## Negativo 4 9646 9650
## Sum 196 9804 10000

(n = sum(tablaObservada))
## [1] 10000
```

En el aula, grupo grande

Simulaciones (respaldo libro)

Aula de ordenadores, grupo pequeño

- Tutoriales/docs reproducibles
- Plantillas

```
# www.postdata-statistics.com
    # POSTDATA. Introducción a la Estadísitica
    # Tutorial-06.
      Fichero de instrucciones R para calcular un intervalo de confianza (1-alfa) para la
        DESVIACION TIPICA de una poblacion normal N(mu, sigma).
   # a partir de una muestra de tamaño n. ste fichero usa los estadisticos de una muestra.
  # previamente calculados (numero de datos, media muestral, etc.)
   rm(list=ls()) #limpieza inicial
16 # ATENCIÓN: Para usar este fichero
17 # la población debe ser (al menos aprox.) normal
  # EN OTROS CASOS NO USES ESTE FICHERO!!
   # ASEGURATE DE HABER ENTENDIDO ESTAS INSTRUCCIONES
   # Introducimos el valor de la desviacion tipica muestral.
23
   # el tamaño de la muestra,
  # y el nivel de confianza deseado.
29
31 #NO CAMBIES NADA DE AQUI PARA ABAJO
33 # Calculamos alfa
34 alfa = 1 - nc
36 # y los grados de libertad:
39 # Calculamos los valores criticos necesarios:
40 (chiAlfa2 = qchisq(1 - (alfa/2), df=k))
41 (chiUnoMenosAlfa2 = qchisq(alfa/2, df=k))
   #Para la varianza, el intervalo de confianza sera
   (intervaloVar = s^2 * k / c(chiAlfa2, chiUnoMenosAlfa2))
  # Y para la desviacion tipica el intervalo de confianza es este:
   (intervaloS = s * sqrt(k / c(chiAlfa2, chiUnoMenosAlfa2)))
```

En el aula, grupo grande

Simulaciones (respaldo libro)

A repository of statistics quizz questions, generated with the Exams package of R.

Aula de ordenadores, grupo pequeño

- Tutoriales/docs reproducibles
- Plantillas

(Auto)evaluación (1)

Github repo ExamineR
 157 preguntas "aleatorias"

Thesaurus

- Lenguage: en English, es Spanish
- · Question type: num numeric, mult multiple choice

00 Rounding numbers

- 000001 Round a number between 0 and 10 to 3-5 significant digits (en es num)
- 000002 Round a number between 0.01 and 1 to 3-5 significant digits (en es num)
- 000003 Round a number between 100 and 100000 to 3-5 significant digits (en es num)
- 000004 Round a large number to 3-6 significant digits (en es num)

01 Descriptive statistics

0101 Central values

- 01010101 Mean (en es num)
- 01010301 Median (en es num)

0102 Dispersal

- 01020101 Population variance (en es num)
- 01020201 Population stardard deviation (en es num)
- 01020301 Sample variance (en es num)
- 01020401 Sample stardard deviation (en es num)

(1) basado en exams A. Zeileis, B. Gruen, F. Leisch, N. Umlauf, D. Ernst

En el aula, grupo grande

• Simulaciones (respaldo libro)

Aula de ordenadores, grupo pequeño

- Tutoriales/docs reproducibles
- Plantillas

(Auto)evaluación (1)

- Github repo ExamineR
 157 preguntas "aleatorias"
- Script StudentR: ¡un estudiante, un examen!

StudentB

An script aided by the exams R package

https://github.com/PostDataStatistics/ExamineR

N°: 1

Bayes, Thomas (Presbyterian Minister)

1. Round the number

3.03625416010618

to 3 significant figures.

2. Find the median of this set of numbers:

5, 0, 7, 10, 5, 0, 10, 5, 11, 11, 7, 6, 6,

Round the result to 4 significant digits.

3. Find the (population) variance of this set of numbers:

3, 12, 0, 10, 12, 1, 6, 0, 1.

Round the result to 4 significant digits.

Studen

An script aided by the exams R package

https://github.com/PostDataStatistics/ExamineR

No: 2 Cox, Gertrude

Round the number

3.11451492831111

to 3 significant figures.

2. Find the median of this set of numbers:

6, 10, 2, 11, 3, 9, 5, 10, 7,

Round the result to 4 significant digits.

3. Find the (population) standard deviation of this set of numbers:

1, 0, 11, 9, 8, 4, 4, 2, 5.

Round the result to 4 significant digits.

(1) basado en exams A. Zeileis, B. Gruen, F. Leisch, N. Umlauf, D. Ernst

Resultados – conclusiones – ideas

Estudiantes

- Pocas dificultades con los scripts
 - Muchos usan plantillas como menús
 - Bastantes comparten/retocan scripts
 - Algunos buscan/usan librerías "avanzadas"

Profesores

Resulta natural usar scripts a las clases "magistrales" simulaciones

imagen

refuerza intuición

- Compartir código con estudiantes (errores reproducibles)
- · Clases más satisfactorias

Ahora mismo....y más allá

- Asignar medida a los resultados
- Trabajo reproducible (coordinado, cuando es posible)
- TFG con R
- Píldora R

Gracias por vuestra atención!!

Enlaces

- Material cuestionarios en repo GuiHub
- Libro, tutoriales (R, Python), blog,...
- Material para las clases y otros...

Inspiraciones

Confessions of a converted lecturer Eric Mazur (physician, Harvard University) – Peer instruction

Material de Fco Javier Barón - UMA