BASIC PROBABILITY: THEORY

Master of Logic, University of Amsterdam, 2018 — LICENSE CC BY-NC-SA 4.0 TEACHERS Alexandre Cremers and Jakub Dotlačil TA Bas Cornelissen

Board questions set 4

Problem 1: Variances

- (a) Prove that if $X \sim \text{Bernoulli}(p)$, then Var(X) = p(1-p).
- **(b)** Prove that if $X \sim \text{Bin}(n, p)$, then Var(X) = np(1 p).
- (c) Suppose $X_1, X_2, ..., X_n$ are independent and all have the same standard deviation σ . Let \overline{X} be the average of $X_1, X_2, ..., X_n$. What is the standard deviation of \overline{X} ? What does this mean?

Problem 2: Covariance

- (a) Flip a fair coin 3 times. Let X be the number of heads in the first 2 flips and let Y be the number of heads in the last 2 flips. Give a table describing the joint distribution of X and Y and directly compute Cov(X,Y).
- **(b)** Let X_1, X_2, X_3 be the results of the three fair coin flips and let X and Y as before. Compute Cov(X, Y) without first using the joint distribution.

Problem 3: More covariance

Toss a fair coin 2n+t times. Let X be number of heads in the first n+t flips and let Y be number of heads in the last n+t flips. Compute Cov(X,Y) and Cor(X,Y).

BASIC PROBABILITY: THEORY

Master of Logic, University of Amsterdam, 2018 — LICENSE CC BY-NC-SA 4.0 TEACHERS Alexandre Cremers and Takub Dotlačil TA Bas Cornelissen

Board questions set 4

Problem 1: Variances

- (a) Prove that if $X \sim \text{Bernoulli}(p)$, then Var(X) = p(1-p).
- **(b)** Prove that if $X \sim \text{Bin}(n, p)$, then Var(X) = np(1 p).
- (c) Suppose $X_1, X_2, ..., X_n$ are independent and all have the same standard deviation σ . Let \overline{X} be the average of $X_1, X_2, ..., X_n$. What is the standard deviation of \overline{X} ? What does this mean?

Problem 2: Covariance

- (a) Flip a fair coin 3 times. Let X be the number of heads in the first 2 flips and let Y be the number of heads in the last 2 flips. Give a table describing the joint distribution of X and Y and directly compute Cov(X,Y).
- **(b)** Let X_1, X_2, X_3 be the results of the three fair coin flips and let X and Y as before. Compute Cov(X,Y) without first using the joint distribution.

Problem 3: More covariance

Toss a fair coin 2n + t times. Let X be number of heads in the first n + t flips and let Y be number of heads in the last n + t flips. Compute Cov(X, Y) and Cor(X, Y).