10/13/2018 Untitled

```
In [6]: # -*- coding: utf-8 -*-
        Created on Sun Oct 7 15:47:50 2018
        @author: amitp
        import numpy as np
        import pandas as pd
        import scipy.stats as stats
        import matplotlib.pyplot as plt
        import sklearn
        from sklearn.datasets import load boston
        from sklearn.metrics import r2 score
        boston = load boston()
        bos = pd.DataFrame(boston.data)
        X = bos.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11]].values
        Y = bos.iloc[:, 12].values
        from sklearn.cross validation import train test split
        X train, X test, Y train, Y test = train test split(X, Y, test size = 0.1, random state = 0)
        from sklearn.linear_model import LinearRegression
        regressor = LinearRegression()
        regressor.fit(X_train, Y_train)
        Y_pred = regressor.predict(X_test)
        print("Rsquare %f.10f\n"%(r2_score(Y_test,Y_pred)))
        df2 = pd.DataFrame(np.random.randint(low = 0, high = 10, size=(51,2)), columns = ["Test", "Predicted"])
        df2 ["Test"] = Y test
        df2["Predicted"] = Y pred
        print(df2)
        X = bos.iloc[:, :-1].values
        Y = bos.iloc[:, 12].values
        # Building the optimal model using Backward Elimination
        import statsmodels.formula.api as sm
        X = np.append(arr = np.ones((506, 1)).astype(int), values = X, axis = 1)
        \#X_{opt} = X[:, [0, 1, 2, 3, 4, 5]]
        X \text{ opt} = X[:, :-1]
```

```
regressor_OLS = sm.OLS(endog = Y, exog = X_opt).fit()
print(regressor_OLS.summary())

#X_opt = X[:, [0, 1, 2, 3, 4, 5]]
X_opt = X[:, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11]]
regressor_OLS = sm.OLS(endog = Y, exog = X_opt).fit()
print(regressor_OLS.summary())
```

Rsquare 0.472757.10f

	Test	Predicted
0	7.34	5.959792
1	9.53	17.564101
2	10.50	13.449262
3	19.77	22.878492
4	12.34	10.563367
5	8.47	12.495776
6	11.45	14.111716
7	9.29	11.820954
8	12.64	15.424514
9	10.63	15.498500
10	20.62	29.524109
11	21.22	19.341722
12	17.79	17.263366
13	28.28	26.457282
	1.92	
14		7.920136
15	4.74	3.029344
16	10.74	13.489045
17	4.08	3.684551
18	5.33	6.436183
19	8.77	10.668035
20	7.20	9.154575
21	12.03	17.664826
22	14.09	13.462900
23	7.19	7.192765
24	10.21	10.760460
25	13.33	31.480650
26	13.83	14.887065
27	15.79	20.151852
28	4.21	2.779322
29	17.09	14.759709
30	18.03	17.447196
31	14.70	16.623954
32	10.15	13.219908
33	12.40	12.096116
34	9.04	11.633471
35	14.64	18.278034
36	26.77	20.272443
37	8.88	18.080766
38	17.64	18.439250
39	24.10	17.902636
40	8.58	7.918184
41	14.15	10.229469
-		

10/13/2018 Untitled

```
42 9.09 8.371196

43 18.14 20.857925

44 8.65 8.754513

45 9.14 11.427659

46 15.84 13.246092

47 15.12 16.976412

48 29.29 22.516690

49 9.42 10.177163

50 15.02 18.243472
```

OLS Regression Results

Dep. Variab	ole:		y R-squ	uared:		0.651
Model:			OLS Adj.	R-squared:		0.643
Method:		Least Squ	ares F-sta	atistic:		83.78
Date:			2018 Prob	<pre>Prob (F-statistic):</pre>		2.00e-105
Time:		18:1	2:17 Log-l	ikelihood:		-1445.9
No. Observa	itions:		506 AIC:			2916.
Df Residual	.s:		494 BIC:			2966.
Df Model:			11			
Covariance	Type:	nonro	bust			
=======	coef	std err	======= t	P> t	[0.025	0.975]
const	26.1867	4.227	6 . 194	0.000	17.881	34.493
x1	0.1099	0.029	3.815	0.000	0.053	0.166
x2	0.0144	0.012	1.169	0.243	-0.010	0.039
x3	0.1008	0.055	1.831	0.068	-0.007	0.209
x4	-1.1829	0.772	-1.533	0.126	-2.699	0.333
x5	6.2343	3.413	1.827	0.068	-0.471	12.939
x6	-4.3814	0.317	-13.806	0.000	-5.005	-3.758
x7	0.0885	0.011	7.927	0.000	0.067	0.110
x8	0.1671	0.179	0.933	0.351	-0.185	0.519
x9	0.0652	0.059	1.098	0.273	-0.051	0.182
x10	-0.0009	0.003	-0.254	0.800	-0.007	0.006
x11	0.1068	0.117	0.909	0.364	-0.124	0.337
Omnibus:	=======		======= .986 Durbi	i======= in-Watson:	=======	 1.185
Prob(Omnibu	ıc)•			ue-Bera (JB):		295.703
Skew:	13).		.016 Prob(• •		6.15e-65
Kurtosis:			.745 Cond.			1.16e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.16e+04. This might indicate that there are strong multicollinearity or other numerical problems.

10/13/2018 Untitled

OLS Regression Results

Dep. Variable	:		У		uared:		0.651		
Model:			OLS	Adj.	R-squared:		0.644		
Method:		Least Sq	uares		atistic:		92.33		
Date:		Sat, 13 Oct	2018	Prob	(F-statisti	.c):	2.09e-106		
Time:		18:3	12:17	Log-	Likelihood:		-1445.9		
No. Observations:			506	AIC:			2914.		
Df Residuals:			495	BIC:			2960.		
Df Model:			10						
Covariance Type:		nonro	bust						
=========	======	========	=====	=====	========	=======	=======		
	coef	std err		t	P> t	[0.025	0.975]		
const	26.0718			6.209	0.000	17.821	34.322		
x1	0.1100			3.821	0.000	0.053	0.166		
x2	0.0137			1.142	0.254	-0.010	0.037		
x3	0.0947	0.049	:	1.917	0.056	-0.002	0.192		
x4	-1.1590	0.765	-:	1.515	0.130	-2.662	0.344		
x5	6.1684	3.400	:	1.814	0.070	-0.511	12.848		
х6	-4.3751	0.316	-1	3.841	0.000	-4.996	-3.754		
x7	0.0884	0.011		7.930	0.000	0.066	0.110		
x8	0.1662	0.179	(0.929	0.353	-0.185	0.518		
x9	0.0533	0.036	:	1.474	0.141	-0.018	0.124		
x10	0.1046	0.117	(0.894	0.372	-0.125	0.334		
=========	======	========		=====	========	=======	========		
Omnibus: 50.		0.069	Durbin-Watson:			1.185			
Prob(Omnibus):		(0.000	Jarq	ue-Bera (JB)	:	296.678		
Skew:		(0.020	Prob	(JB):		3.78e-65		
Kurtosis:		6	5.751	Cond	. No.		2.02e+03		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.02e+03. This might indicate that there are strong multicollinearity or other numerical problems.