Recent work, ideas and wishes for future activites in mixed models

Søren Højsgaard

Department of Mathematical Sciences

Aalborg University, Denmark

August 12, 2013

Printed: August 12, 2013 File: banff-mixed-models-slides.tex

Contents

1	Background	3
2	Tests in mixed models – the degree of freedom police 2.1 Parametric bootstrap	
3	Example - sugar beets	8
4	Nice-to-have extensions of lmer()	13
5	Linking to graphical models	15

1 Background

- Since 2012, HoD at Dept. of Mathematical Sciences, Aalborg University.
- Before that, working in agricultural science institution funded by external projects.
- Author/maintainer of pbkrtest package (tests in linear mixed models)
- Author of geepack package (inference in generalized estimating equation "models").
- Author/maintainer of various packages related to graphical models and of other packages too.

2 Tests in mixed models – the degree of freedom police

Take two mixed models

$$M: y = Xb + Zu + e$$
 and $M_0: y = X_0b_0 + Zu + e$

where $C(X_0) \subset C(X)$ and $d = \dim(X) - \dim(X_0)$.

Test for M_0 assuming M.

The usual χ^2 approximation to the LR-test statistic tend to give too small p-values.

Effects appear "more significant than they really are".

2.1 Parametric bootstrap

- The pbkrtest package implements parametric bootstrap for testing M_0 under M.
- Idea: Let t be observed value of some test statistic (in principle any statistic you like; in the implementation it is the LR test statistic). In which reference distribution should t be evaluated? Asymptotic χ_d^2 distribution is not very good for small samples.
- Alternative: Simulate e.g. B=1000 new datasets under the fitted hypothesis, i.e. $M_0: y=X_0b_0+Zu+e$ where estimates for b_0 etc. are plugged in.
- Refit M and M_0 to each of these simulated datasets and calulate tests statistic in each case. This gives are reference distribution $\{t^1, \ldots, t^B\}$ in which we can evaluate if t is large.

2.2 Kenward–Roger approximation

- The pbkrtest package implements Kenward-Roger method for calculating DDF (denominator degrees of freedom) for F-test in LMMs.
- Test M_0 under M. Corresponds to testing Lb=0 for a suitable restriction matrix L. Consider Wald–like test statistic:

$$W = \lambda \frac{1}{d} b^{\top} L^{\top} (LVL^{\top})^{-1} Lb$$

where d is degrees of freedom implied by restriction matrix L.

- Has asymptotic $\frac{1}{d}\chi_d^2$ distribution, i.e. $F_{d,\infty}$ distribution.
- Calculate asymptotic mean and variance of W and equate with $F_{d,m}$ distribution to obtain denominator degrees of freedom m.
- Basically $F_{d,m}$ has "heavier tail" than $F_{d,\infty}$.

Status and future:

- Paper about pbkrtest in JSS hopefully on its way.
- Straight forward (in principle) to extend parametric bootstrap to generalized linear mixed models (GLMMs).
- In K–R–approximation we calculate the expected information matrix for the parameters.
- Alternative: Calculation of the average of the expected and the observed information matrices is much easier (and faster) to calculate because some of the nasty terms disappear.
- In principle K–R–approximation can be extended to GLMMs; presumably it is quite technical to get to work.

3 Example - sugar beets

Experimental plan for sugar beets experiment

Sowing dates:

1: 4/4, 2: 12/4, 3: 21/4, 4: 29/4, 5: 18/5

Harvesting dates:

1: 2/10, 2: 21/10

Plot allocation:

							-	Block 2												
Split-plots	1	h1 s3	h1 s4	h1 s5	h1 s2	h1 s1	 	h2 s3	h2 s2	h2 s4	h2 s5	h2 s1	 		h1 s2	h1 s3	h1 s4	h1 s1	1	Harvesting ti Sowing time
16-30	1	h2 s2	h2 s1	h2 s5	h2 s4	h2 s3	 	h1 s4	h1 s1	h1 s3	h1 s2	h1 s5	 	h2 s1	h2 s4	h2 s3	h2 s2	h2 s5	 	Harvesting ti Sowing time
	+-						- -						- -						-+	

Notation: i: harvesting dates (i = 1, 2), j: block (j = 1, 2, 3), k: sowing dates $(k = 1, \ldots, 5)$.

A typical model for such an experiment would be

$$y_{ijk} = \mu + \alpha_i + \beta_j + \delta_k + U_{ij} + \epsilon_{ijk}, \tag{1}$$

where $U_{ij} \sim N(0, \omega^2)$ and $\epsilon_{ijk} \sim N(0, \sigma^2)$. Notice that U_{ij} describes the random variation between whole–plots (within blocks) and the presence of this term implies that measurements on the same split–plot will be positively correlated.

```
R> data( beets )
R> head(beets, 4)
 harvest block sow yield sugpct
1 harv1 block1 sow3 128 17.1
2 harv1 block1 sow4 118 16.9
3 harv1 block1 sow5 95 16.6
4 harv1 block1 sow2 131 17.0
R> beet0<-lmer(sugpct~block+sow+harvest+(1|block:harvest), data=beets,
R> beet_no.harv <- update(beet0, .~.-harvest)</pre>
R> anova(beet0, beet_no.harv)
Data: beets
Models:
beet_no.harv: sugpct ~ block + sow + (1 | block:harvest)
beet0: sugpct ~ block + sow + harvest + (1 | block:harvest)
            Df AIC BIC logLik deviance Chisq Chi Df
beet_no.harv 9 -69.084 -56.473 43.542 -87.084
            10 -79.998 -65.986 49.999 -99.998 12.914
beet0
            Pr(>Chisq)
beet_no.harv
beet0 0.0003261 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
R> (p <- PBmodcomp(beet0, beet_no.harv, nsim=100))</pre>
Parametric bootstrap test; time: 4.37 sec; samples: 100 extremes: 2;
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)
        stat df p.value
LRT 12.914 1 0.0003261 ***
PBtest 12.914 0.0297030 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R> summary( p )
Parametric bootstrap test; time: 4.37 sec; samples: 100 extremes: 2;
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)
           stat df ddf p.value
PBtest 12.9142
                       0.0297030 *
                          0.0158083 *
Gamma 12.9142
Bartlett 5.2025 1.0000 0.0225545 *
F 12.9142 1.0000 3.3492 0.0308176 *
LRT 12.9142 1.0000 0.0003261 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
R> (k <- KRmodcomp(beet0, beet_no.harv))</pre>
F-test with Kenward-Roger approximation; computing time: 0.08 sec.
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)
      stat ndf ddf F.scaling p.value
Ftest 15.21 1.00 2.00 1 0.0599.
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
R> summary( k )
F-test with Kenward-Roger approximation; computing time: 0.08 sec.
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)
       stat ndf ddf F.scaling p.value
Ftest 15.21 1.00 2.00 1 0.0599.
FtestU 15.21 1.00 2.00
                                  0.0599 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

4 Nice—to—have extensions of lmer()

- The lmer() restriction that $e \sim N(0, \sigma^2 I)$ is (potentially) severe. Would be nice to have at least some flexibility for specifying non-trivial repeated-effects (in SAS jargon).
 - -AR(1)
 - Toeplitz
 - Heterogeneous variance
 - **–**

Are there low-hanging apples based on "working residuals"?

- Would be nice with "flexible" residuals:
 - $-r_1 = y X\hat{b}$
 - $-r_2 = y X\hat{b} Z\hat{u}$ where \hat{u} is BLUP.

- Would be nice with predict method (is it there now?). Two (at least) kinds of prediction errors are relevant
 - based on $\mathbb{V}\mathrm{ar}(e)$
 - based on Var(e) and Var(u)
- Flexible prediction method. I have implementation...
- 'Ismeans' and other contrasts. I have implementation...
- More controlled output

5 Linking to graphical models

Example: Measure p behavioural traits y_{ij} on piglets $j=1,\ldots,J$ from litters $i=1,\ldots,I$.

Piglets from same litters are correlated because of genetics.

With y = Xb + Zu + e where $\mathbb{V}\mathrm{ar}(u) = G$ and $\mathbb{V}\mathrm{ar}(e) = R$ we have – in a sloppy notation

$$y|u \sim N(Xb + Zu, R)$$

Hence, R describes the correlation between traits after the genetic component has been taken away.

Model direct and indirect associations by imposing zero's in concentration matrix $K = R^{-1}$. That is the idea in graphical Gaussian models.