

Pontificia Universidad Católica de Valparaíso

Laboratorio de máquinas ICM557

Informe N°4

Autor:

Ignacio Soto

Profesores:

Cristóbal Galleguillos

Tomás Herrera

${\rm \acute{I}ndice}$

1.	Introducción	2
2.	Tabulación de valores	3
3.	Relación entre frecuencia y RPM	3
4.	Descripción de las constantes físicas	4
5.	Consumo específico del combustible	4
6.	Curva consumo específico	5
7.	Curva de costos	5
8.	Punto de funcionamiento óptimo	6
9.	Comparación con tarifa industrial de Chilquinta	6
10	.Comparación con grupo electrógeno moderno	6
11	.Conclusiones y comentarios	7

1. Introducción

Los grupos electrógenos se caracterizan por generar electricidad en lugares donde no hay suministro eléctrico y en lugares donde la energía eléctrica corresponde a un ítem crítico donde no puedan existir cortes de electricidad. Es por eso que es importante estudiar su comportamiento, ya que uno de los componentes principales es el motor de combustión interna. Del mismo modo, se debe establecer las relaciones entre las variables eléctricas y el comportamiento del motor con el objetivo de establecer un punto de funcionamiento óptimo que permita obtener el menor costo por kWh generado.

2. Tabulación de valores

N°	I1 [A]	12 [A]	13 [A]	V2 [V]	V2 [V]	V3 [V]	f [Hz]	Vol [cm3]	Vol [m3]	t [s]
1	26	26	27	404	404	404	51,5	375	0,000375	150
2	28	29	29	402	402	402	51	375	0,000375	146
3	39	39	37	400	400	400	50,5	375	0,000375	132
4	42,5	42,6	40,9	400	400	400	50	375	0,000375	125
5	46,4	46,5	44,6	399,9	399,9	399,9	50	375	0,000375	120

Figura 1: Parámetros de funcionamiento del motor

N°	Qcb (m3/s)	Qcb (L/s)	lm	Vm	Pel [W]	Pel [kW]	bel [kg/kWh]	CkWh [\$/kWh]
1	0,0000025	0,0025	26,333	404	8661,800	8,662	0,8832	513,808
2	2,5685E-06	0,00257	28,667	402	9382,622	9,383	0,8377	487,330
3	2,8409E-06	0,00284	38,333	400	12484,108	12,484	0,6963	405,106
4	0,000003	0,003	42,000	400	13678,240	13,678	0,6711	390,445
5	3,125E-06	0,003125	45,833	399,9	14922,919	14,923	0,6408	372,791

Figura 2: Tabulación de los parámetros calculados

3. Relación entre frecuencia y RPM

A partir de la frecuencia de funcionamiento del motor se puede establecer la siguiente relación para obtener este valor en RPM:

$$1 [hz] = \frac{60 rev}{1 min} \cdot \frac{2}{p} \tag{1}$$

Con $p = N^{\circ} polos = 4$

De esta manera, las RPM de trabajo del motor fueron:

Hz	RPM
50	1500
50,5	1515
51	1530
51,5	1545

Tabla 1: Conversión de hz a RPM

4. Descripción de las constantes físicas

• Densidad del combustible: Razón entre masa y volumen para el combustible diésel

$$\rho = 850 \, \frac{kg}{m^3}$$

- Costo del combustible: Valor en pesos chilenos para un litro de combustible diésel, al 11 de octubre del 2020 este valor corresponde a: $c = 490, 4 \frac{\$}{L}$
- \blacksquare Diferencia entre fases: Para un motor trifásico se tiene que $\phi=120^\circ$
- Volumen de la bureta: en este caso corresponde a $375 cm^3$

5. Consumo específico del combustible

El consumo específico del combustible se calcula de la siguiente manera:

$$\dot{m}_{comb} = \rho \cdot \dot{Q}_{cb}$$

N°	mcomb [kg/s]	mcomb [kg/h]
1	0,00213	7,6500
2	0,00218	7,8596
3	0,00241	8,6932
4	0,00255	9,1800
5	0,00266	9,5625

Figura 3: Valores obtenidos para el consumo específico del combustible

6. Curva consumo específico

Figura 4: Curva de consumo específico vs corriente media

7. Curva de costos

Figura 5: Curva de costo del kWh vs corriente media

8. Punto de funcionamiento óptimo

El punto óptimo de funcionamiento, acorde a las figuras 4 y 5, que poseen las mismas características descendentes, seria en la medición $N^{\circ}5$ a los 50 hz o 1500 RPM, debido a que en este punto se presenta el menor valor de costo por carga y consumo específico de energía.

9. Comparación con tarifa industrial de Chilquinta

Dentro de las tarifas vigentes entregadas por Chilquinta, el menor costo por kWh es de $83,558 \, \frac{\$}{kWh}$ para la zona de Quilpué. En contraste, el menor valor conseguido fue de $372,791 \, \frac{\$}{kWh}$ con el grupo electrógeno.

10. Comparación con grupo electrógeno moderno

Actualmente la industria ofrece equipos que obedecen a estándares de clase mundial, lo que permite alta eficacia, bajo consumo de combustible y cumplimiento con las normas de emisiones globales. Es por eso, que se desea comparar el costo del kWh respecto del equipo ensayado. Para esto, se utilizara la fórmula:

$$C_{kWh} = \frac{\dot{Q}_{cb} \cdot c}{P_{el}}$$

El grupo electrógeno elegido corresponde al modelo C1.5 (50hz) de CAT, cuya capacidad de generación de potencia va desde los 10 kVA hasta los 12.5 kVA, es decir, desde los 12,5 kW hasta los 16,875 kW (utilizando un factor de potencia estándar de 0,8).

ESPECIFICACIONES DE LOS GRUPOS ELECTRÓGENOS					
Clasificación mínima	10,0 kVA				
Clasificación máxima	13,5 kVA				
Estrategia de emisiones y combustible	Equivalente a R96/EUIIA				
Voltaje	110 a 415 voltios				
Frecuencia	50 Hz				
Velocidad	1.500 rpm				
Ciclo de trabajo	De respaldo, principal				

Figura 6: Especificaciones del grupo electrógeno CAT C1.5

Finalmente, el costo obtenido para una generación de 15kW fue 296,7 $\frac{\$}{kWh}$, lo cual representa una disminución del 20,41 % respecto al valor del equipo ensayado.

11. Conclusiones y comentarios

Si comparamos los gráficos de costos y consumo específico podemos observar que la tendencia de ambos es a la baja a mayor corriente media. Esto se explica porque ambos parámetros dependen de las mismas variables \dot{Q}_{cb} y P_{el} . De aquí se infiere que a mayor corriente media generada, menor será el costo de generación por kWh.

Del mismo modo, se estableció una comparación con un grupo electrógeno moderno evidenciando una disminución del costo por kWh del $20,41\,\%$ lo cual podría significar un importante ahorro.

Los grupos electrógenos corresponden a un equipo fundamental para servicios críticos que necesiten suministro ininterrumpido de energía, sin embargo, su uso se límita sólo en situaciones de emergencia donde el suministro electrico por parte del proveedor se vea interrumpido, esto es, debido al elevado costo de generacion que implica su uso respecto al precio entregado por un proveedor como Chilquinta.