Name:

1. Analyze the following AC power system with three loads connected to a $450 V_{\rm rms}$ bus.

(a) Find the real and reactive powers for each of the 3 loads.

$$Q_1 =$$

$$S_1 =$$

$$P_2 =$$

$$Q_2 =$$

$$S_2 =$$

$$P_3 =$$

$$Q_3 =$$

$$S_3 =$$

(b) Find the total real and reactive powers supplied by the bus to the loads

 $P_{\rm bus} =$

 $Q_{
m bus} =$

(c) Find the bus apparent power.

 $S_{
m bus} =$

(d) Find the RMS value of the bus current.

 $I_{
m bus} =$

2.	A 3HF	induction	motor	is powered	from a	a $220V_{\rm rms}$	bus.	While delivering	ng rated	power,	it	operates	at
	80% ef	ficiency and	d 0.85 p	power factor	r (lagg	ing).							

(a) Find the real mechanical power out in Watts.

$$P_{
m mech} =$$

(b) Find the real electrical power into the motor.

$$P =$$

(c) Find the apparent power of the motor

$$S_{
m motor} =$$

(d) Find the reactive power of the motor.

$$Q_{
m motor} =$$

(e) Find the current drawn by the motor from the $220 V_{\rm rms}$ bus

$$I_{
m motor} =$$

(f) We wish to reduce this current to 13A by attaching a second item to the $220V_{\rm rms}$ bus the a negative reactive power. Determine the amount of that reactive power.							
	$Q_{ m device} =$						