Investigação Operacional

Folha de Exercícios nº4

Problemas de transportes

1. Determinada empresa de importação de bananas da Madeira, possui três armazéns (designados A1, A2 e A3), que alojam temporariamente as bananas importadas, e quatro lojas distribuídas pelo país (designadas L1, L2, L3 e L4), onde as mesmas são colocadas à venda.

Sabe-se que A1, A2 e A3 dispõem semanalmente de 9, 10 e 6 contentores dessas bananas, respetivamente. Por outro lado, sabe-se que os requerimentos semanais por parte das lojas L1, L2, L3 e L4, são de 4, 8, 5 e 8 contentores das mesmas, respetivamente.

São também conhecidos os custos do transporte de cada contentor de bananas, entre os vários armazéns e as diversas lojas da empresa. Tais custos em unidades monetárias (UM) por contentor, são apresentados na tabela que se segue:

	L1	L2	L3	L4
A1	4	4	1	6
A2	9	6	2	9
А3	1	7	1	7

- a) Formule o problema em termos de programação linear, de modo a minimizar o custo total de transporte das referidas bananas;
- b) Obtenha uma solução básica admissível inicial para o problema, usando o *método:*
 - do canto noroeste;
 - do mínimo da matriz de custos;
 - das penalidades;
- c) Partindo de uma das soluções obtidas em b), determine a solução ótima pelo método dos transportes.
- Suponha que se pretende transportar um determinado produto de três origens (O1, O2 e O3), para três destinos (D1, D2 e D3).

As origens **O1**, **O2** e **O3**, dispõem de **6**, **8** e **4** unidades desse produto, respetivamente. Por outro lado, em **D1**, **D2** e **D3**, são requeridas **3**, **6** e **9** unidades do mesmo, respetivamente.

Os custos unitários de transporte de tal produto, das várias origens para os diversos destinos, são dados pela tabela que se segue.

	D1	D2	D3
01	3	2	6
O2	1	7	2
О3	4	1	5

(Valores em unidades monetárias - UM)

- a) Formule o problema em termos de programação linear, de modo a minimizar o custo total de transporte;
- b) Obtenha uma solução básica admissível inicial para o problema, usando o *método*:
 - do canto noroeste;
 - do mínimo da matriz de custos;
 - das penalidades;
- c) Partindo da solução obtida pelo primeiro método, resolva o problema pelo método dos transportes.
- 3. Uma determinada empresa possui 4 fábricas onde é produzido determinado produto e 2 centros de distribuição a partir dos quais tal produto é distribuído pelas zonas Norte e Sul do país. Nas fábricas F1, F2, F3 e F4, são produzidas mensalmente 3, 6, 2 e 5 toneladas de produto, respetivamente. O mesmo produto é depois transportado até aos dois centros de distribuição C1 e C2, sendo o custo unitário deste transporte dado pela seguinte tabela (em milhares de euros por tonelada):

	C1	C2
F1	2	4
F2	4	6
F3	1	2
F4	4	8

Sabe-se que nos centros C1 e C2, são requeridas mensalmente 7 e 9 toneladas de produto, respetivamente.

- a) Formule o problema em termos de programação linear de modo a minimizar o custo total do transporte;
- b) Obtenha uma primeira solução básica admissível, usando o método das penalidades;
- c) Partindo da solução obtida em b), resolva o problema pelo *método dos transportes* e comente a solução ótima obtida.

4. Suponha que se pretende transportar um determinado produto de três origens (O1, O2, O3) para quatro destinos (D1, D2, D3, D4). As origens O1, O2 e O3 dispõem cada uma de 5, 5 e 6 carregamentos desse produto, respetivamente. Em D1, D2, D3 e D4 são requeridos 4, 4, 6 e 2 carregamentos do mesmo produto, respetivamente. Os custos de transporte das várias origens para os diversos destinos, por cada carregamento do produto, são dados pela seguinte tabela:

	D1	D2	D3	D4
01	4	1	4	9
O2	2	6	6	0
О3	1	9	2	10

(Valores em milhares de euros)

- a) Formule o problema em termos de programação linear, de modo a minimizar o custo total de transporte;
- b) Obtenha uma solução básica admissível inicial para o problema, pelo método do mínimo da matriz de custos;
- c) Partindo da solução obtida em b), resolva o problema pelo *método dos transportes*, comentando a solução ótima obtida.
- **5.** Suponha que se pretende transportar um determinado produto de três origens (O1,O2,O3) para três destinos (D1,D2,D3).

As origens **O1**, **O2** e **O3** dispõem cada uma de **7**, **6** e **2** unidades desse produto, respetivamente. Em **D1**, **D2** e **D3** são requeridas **8**, **4** e **3** unidades do mesmo produto, respetivamente.

Os custos de transporte (em euros), por unidade transportada, são dados pela seguinte tabela:

	D1	D2	D3
01	6	6	7
02	9	5	5
О3	1	2	1

- a) Formule o problema em termos de programação linear, de modo a minimizar o custo total de transporte.
- b) Obtenha uma solução básica admissível inicial pelo *método das penalidades*.

- c) Partindo da solução obtida em b), resolva o problema pelo *método dos transportes*, comentando a solução ótima obtida.
- 6. Suponha agora que se pretende transportar um determinado produto de três origens (O1, O2, O3) para quatro destinos (D1, D2, D3, D4). As origens O1, O2 e O3 dispõem cada uma de 20 unidades desse produto. Em D1, D2, D3 e D4 são requeridas 15, 7, 10 e 14 unidades do mesmo produto, respetivamente. Os custos de transporte das várias origens para os diversos destinos, por cada unidade do produto, são dados pela seguinte tabela:

	D1	D2	D3	D4
01	8	2	3	5
O2	5	2	4	3
О3	9	12	5	1

(Valores em milhares de euros)

- a) Formule o problema em termos de programação linear, de modo a minimizar o custo total de transporte;
- **b)** Obtenha uma solução básica admissível inicial para o problema, pelo *método das penalidades*;
- c) Partindo da solução obtida em b), resolva o problema pelo *método dos transportes*, comentando a solução ótima obtida.
- 7. Uma determinada companhia petrolífera possui 4 plataformas de produção e 2 refinarias. Nas plataformas P1, P2, P3 e P4 existem disponíveis 3, 6, 2 e 5 tanques de petróleo, respetivamente. O petróleo é transportado por mar até às duas refinarias, sendo o custo unitário deste transporte dado pela seguinte tabela (em milhares de euros por tanque):

	R1	R2
P1	2	4
P2	4	6
P3	1	2
P4	4	8

Sabe-se que nas refinarias **R1** e **R2** são requeridos **4** e **9** tanques de petróleo, respetivamente.

- a) Formule o problema em termos de programação linear de modo a minimizar o custo total do transporte;
- **b)** Obtenha uma primeira solução básica admissível utilizando o *método das* penalidades;
- c) Resolva o problema pelo *método dos transportes* e comente a solução ótima obtida.
- Determinada empresa pretende transportar um dado produto de duas origens (O1 e
 O2) para três destinos (D1, D2 e D3).

As origens dispõem de 3 e 7 unidades de produto, respetivamente. Nos destinos são requeridas 6, 3 e 3 unidades de produto, respetivamente. Os custos unitários de transporte são dados pela seguinte tabela

	D1	D2	D3
01	4	1	7
O2	6	3	2

(Valores em unidades monetárias - UM)

- a) Formule o problema em termos de programação linear de modo a minimizar o custo total do transporte;
- b) Obtenha uma primeira solução básica admissível utilizando o método do canto noroeste;
- c) Resolva o problema pelo *método dos transportes* e comente a solução ótima obtida.
- 9. Suponha que se pretende transportar um determinado produto de três origens (O1,O2,O3) para três destinos (D1,D2,D3). As origens O1, O2 e O3 dispõem cada uma de 4, 4 e 6 carregamentos desse produto, respetivamente. Em D1, D2 e D3 são requeridos 3, 3 e 8 carregamentos do mesmo produto, respetivamente. As distâncias em Km entre as várias origens e destinos são dadas pela seguinte tabela:

	D1	D2	D3
01	200	400	100
O2		300	600
О3	500		200

Note-se que entre a origem **O2** e o destino **D1**, bem como entre a origem **O3** e o destino **D2**, não há estrada.

 a) Formule o problema em termos de programação linear, de modo a minimizar a distância total percorrida;

- **b)** Obtenha a solução básica admissível inicial pelo *método* do *mínimo da matriz dos custos*, e calcule a correspondente distância total percorrida;
- c) Partindo da solução obtida em b), resolva o problema pelo *método dos transportes*, comentando a solução ótima obtida.
- 10. Uma empresa pretende determinar o plano ótimo de transporte da matéria-prima armazenada em 2 centros de distribuição (C1 e C2), para 3 fábricas (F1, F2 e F3) onde é transformada. Nos centros de distribuição C1 e C2, existem 20 e 18 toneladas de matéria-prima, respetivamente. Nas fábricas F1, F2 e F3, são necessárias 12, 14 e 16 toneladas de matéria-prima, respetivamente. Os custos unitários de transporte em unidades monetárias (UM), são dados na tabela abaixo.

	F1	F2	F3
C1	5	2	3
C2	4		2

Note-se que o trajeto entre o centro C2 e a fábrica F2 não pode ser utilizado.

- a) Obtenha a solução básica admissível inicial pelo *método* do *canto noroeste*, e calcule o correspondente custo total de transporte;
- **b)** Partindo da solução obtida em a), resolva o problema pelo *método dos transportes*, comentando a solução ótima obtida.
- 11. Uma empresa de confeção produz fardas para hotelaria em 3 fábricas distintas, F1, F2 e F3, que fornecem 4 lojas de venda ao público, L1, L2, L3 e L4, situadas em diferentes zonas do país. A capacidade de produção diária das fábricas F1, F2 e F3 é de 100, 200 e 140 fardas, respetivamente. A procura diária por este tipo de vestuário nas lojas L1, L2, L3 e L4 é de 60, 90, 85 e 110, respetivamente. Por motivos logísticos, a fábrica F1 não fornece a loja L1, nem F3 fornece L4. Os custos unitários de transporte (em euros) das fábricas para as lojas são os seguintes:

	L1	L2	L3	L4
F1		3	5	12
F2	7	6	9	11
F3	6	10	8	

- a) Obtenha a solução básica admissível inicial pelo método das penalidades, e calcule o correspondente custo total de transporte;
- **b)** Partindo da solução obtida em a), resolva o problema pelo *método dos transportes*, comentando a solução ótima obtida.