10

15

20

25

30

WO 03/072014 PCT/US02/16877

Recipient (P678-54) and donor (G43:BW6169) strains were grown overnight in 10 mL of LB media (10 g NaCl, 10 g select peptone 140, and 5 g yeast extract in one liter ddH20). The samples were centrifuged and then concentrated in about 0.2 mL of LB media. The concentrated samples were combined and incubated with slow rotation for 30 minutes at 30°C, and were then plated on LB agar plates that contained streptomycin (50 μg/mL) and tetracycline (50 μg/mL). (Ampicillin, streptomycin, tetracycline, and all other chemicals were purchased from Sigma Chemical (St. Louis, MO) unless otherwise indicated.) Recipient cells were resistant to streptomycin and donor cells were resistant to tetracycline; only conjugates, which contained both resistance genes, were able to grow on the LB agar plates that contained streptomycin (50 μg/mL) and tetracycline (50 μg/mL).

Putative conjugates were screened for Lambda phage sensitivity using a cross streak technique, in which putative colonies were cross-streaked on an LB agarose plate (streptomycin, 50 μ g/mL, and tetracycline, 50 μ g/mL) that had been streaked with live Lambda phage. The streaked conjugate colonies were streaked perpendicular to the Lambda phage streak; if a conjugate was sensitive to Lambda phage infection then, upon contact with the Lambda phage streak, there was cell lysis and thus less or no bacterial growth. Thus, in the case of conjugates that were sensitive to Lambda phage, there was deceased bacterial growth "downstreak" from the phage streak.

The conjugate E. coli that were found to be sensitive to Lambda phage infection were then used to create Lambda lysogens. Lysogenization is a process during which Lambda phage incorporates its genome, including exogenous genes added thereto, into a specific site on the chromosome of its E. coli host cell.

The DE3 gene, which is present in the genome of the Lamda phage used to create lysogens, encodes RNA polymerase from bacteriophage T7. Lysogenation was carried out using the DE3-Lysogenation kit (Novagen, Madison, WI) essentially according to the manufacturer's instructions. A T7 polymerase dependent tester phage was used to confirm the presence and expression of the DE3 gene on the bacterial chromosome. The T7-dependent tester phage can only form plaques on a baterial known in the presence of T7 polymerase. The phage uses a T7 promoter for expression of its essential genes. Therefore in a plaque-forming assay only cells which express T7 polymerase can be lysed by the tester phage and only these cells will allow for the formation of plaques. As is described in more detail herein, episomal expression elements that are used in minicells may be designed such

that transcription and translation of a cloned gene is driven by T7 RNA polymerase by utilizing expression sequences specific for the T7 RNA polymerase.

EXAMPLE 2: CLONING OF RAT EDG-1 INTO THE PCAL-C EXPRESSION VECTOR

5 Materials

10

15

20

25

30

Taq Polymerase, PCR Buffers, and PCR reagents were purchased from Roche Molecular Biochemicals (Indianapolis, IN). All restriction enzymes were purchased from Gibco BRL (Grand Island, NY) and Stratagene (La Jolla, CA). QIAprep mini and maxi kits, PCR purification Kits, RNeasy miniprep kits, and the One Step RT-PCR Kit were purchased from QIAGEN (Valencia, CA). The Geneclean Kit was purchased from BIO 101 (Carlsbad, CA). IPTG (isopropy-beta-D-thiogalactopyranoside), T4 DNA Ligase, LB Media components and agarose were purchased from Gibco BRL. The pCAL-c prokaryote expression vector and competent cells were purchased from Stratagene.

The pCAL-c expression vector has a structure in which an ORF may be operably linked to a high-level (but T7 RNA polymerase dependent) promoter, sequences that bind the E. coli Lac repressor, and the strong T7 gene 10 ribosome-binding site (RBS). The LacI repressor is also encoded by an expressed from te pCAL-c vector. As long as it is bound to its recognition sequences in the pCAL-c expression element, the lac repressor blocks transcription from the T7 promoter. When an inducing agent, such as IPTG is added, the lac repressor is released from its binding sites and transcription proceeds from the T7 protmoter, provided the T7 RNA polymerase is present. After induction, the cloned and expressed protein may constitute the majority of newley expressed cellular proteins due to the efficient transcription and translation processes of the system.

Amplification

The first step in cloning rat Edg-1 (rEDG-1) into an expression vector was to design primers for amplification via PCR (polymerase chain reaction). PCR primers were designed using the rat Edg-1 sequence (Nakajima et al., Biophy, J. 78:319A, 2000) in such a manner that they contained either sites for NheI (GCTAGC) or BamHI (GGATCC) on their five prime ends. The upstream primer had the sequence of SEQ ID NO:31. The three prime downstream primer (SEQ ID NO:32) also contained a stop codon, as the pCAL-c vector contains a Calmodulin Binding Protein (CBP) "tag" at its carboxyl terminus which was not

intended to be incorporated into the rat Edg-1 polypeptide in this expression construct. The primer and resulting PCR products were designed so that the five prime end of the rat Edg-1 ORF was in frame with the methionine start codon found in the pCAL-c vector.

OLIGONUCLEOTIDE PRIMER SEQUENCES FOR CLONING INTO PCAL-C:

5 Edg1/pCAL-c construct primers:

Upstream primer (SEQ ID NO:31)

5'-AATTGCTAGCTCCACCAGCATCCCAGTGGTTA-3'

Downstream primer (SEQ ID NO:32)

5'-AATTGGATCCTTAAGAAGAAGAATTGACGTTT-3'

10 Edg1/CBP fusion construct primers:

Upstream primer (SEQ ID NO:31)

5'-AATTGCTAGCTCCACCAGCATCCCAGTGGTTA-3'

Downstream primer (SEQ ID NO:33)

5'-AATTGGATCCAGAAGAAGAATTGACGTTTCCA-3'

15 Edg1/His6 construct primers:

Upstream primer (SEQ ID NO:31)

5'-AATTGCTAGCTCCACCAGCATCCCAGTGGTTA-3'

Downstream primer (SEQ ID NO:34)

5**′** -

20 AATTGGATCCTTAATGATGATGATGATGATGAGAAGAAGAATTGACGTTTCC-3'

Edg3/rtPCR primers:

Upstream primer (SEQ ID NO:35)

5'-TTATGGCAACCACGCACGCGCAGG-3'

Downstream primer (SEQ ID NO:36)

25 5'-AGACCGTCACTTGCAGAGGAC-3'

Edg3/pCAL-c construct primers:

Upstream primer (SEQ ID NO:37)

5'-AATTGCTAGCACGCACGCGCAGGGGCACCCGC-3'

Downstream primer (SEQ ID NO:38)

30 5'-AATTGGTACCTCACTTGCAGAGGACCCCATTCTG-3'

Edg3/His6 construct primers:

Upstream primer (SEQ ID NO:39)

5'-AATTGCTAGCACGCACGCGCAGGGGCACCCGC-3'

Downstream primer (SEQ ID NO:16)

5'-

AATTGGTACCTCAATGATGATGATGATGATGCTTGCAGAGGACCCCATTCTG-3'

GFP/pCAL-c construct primers:

5 Upstream primer (SEQ ID NO:40)

5'-GGTCGCCACCATGGTGAGCAA-3'

Downstream primer (SEQ ID NO:41)

5'-TTAAGGATCCTTACTTGTACAGCTCGTCCAT-3'

GFP/CBP construct primers:

Upstream primer (SEQ ID NO:42)

5'-GGTCGCCACCATGGTGAGCAA-3'

Downstream primer (SEQ ID NO:43)

5'-TTAAGGATCCCTTGTACAGCTCGTCCATGCC-3'

Notes:

10

15

20

25

30

Restriction endonuclease sites are underlined

Stop codons are double underlined

The primers were used to amplify the rEdg-1 DNA ORF using the polymerase chain reaction (PCR). The template used for amplification was mRNA isolated from rat muscle tissue using the RNeasy Miniprep Kit (Qiagen) and was carried out essentially according to the manufacturer's protocol. Both the rtPCR and PCR amplification steps were carried out in a single reaction using the One Step RT-PCR Kit (Qiagen). The resulting rat Edg-1 PCR fragment was purified using the PCR Purification Kit (Qiagen). The amplified double stranded rEdg-1 DNA sequence contained the NheI site at the 5-prime end and the BamHI site at the 3-prime end. This amplified rEdg-1 fragment was used for cloning into the pCAL-c expression vector.

The pCAL-c expression vector contains NcoI, NheI, and BamHI restriction sites in its multiple cloning site. In order to insert rEdg-1-encoding sequence into the expression vector, the rEdg-1 PCR fragment and the pCAL-c expression vector were digested with NheI and BamHI restriction enzymes for one hour at 37°C. The reaction mixture for the digestion step consisted of 1 μ g of DNA, 1x restriction buffer, and 1 μ L of each enzyme. The reaction mixture was brought to a final volume of 20 μ L with ddH2O (dd, double distilled). After 45 minutes, 1 μ L of Calf Intestine Alkaline Phosphatase (CIAP) was added to the pCAL-c reaction mixture in order to remove the terminal phosphates from the digested plasmid DNA.

10

15

20

25

30

WO 03/072014 PCT/US02/16877

The reactions were incubated for an additional 15 minutes at 37°C. The digested DNA samples were then run on a 1% TAE (Tris-acetate/EDTA electrophoresis buffer) agarose gel at 130 volts for 45 minutes. The bands were visualized with UV light after the gel was stained with ethidium bromide.

The appropriate bands were cut out of the gel for purification using the Geneclean Kit (BIO101). The Purified DNA fragments were then quantified on a 1% TAE agarose gel. For the ligation reaction, ratios of insert to vector of 6:1 and 3:1 were used. A negative control comprising vector only was also included in the ligation reactions. The reaction mixtures contained insert and vector DNA, 4 μ L Ligase buffer, and 2 μ L Ligase. The reaction was brought up to a final volume of 20 μ L with ddH₂O. The ligation was carried out at room temperature for about 2 hours. Ten (10) μ L of the ligation reaction mixture was used for subsequent transformation steps.

Ligated DNA was introduced into Epicurian Coli XL1-Blue competent cells using the heat shock transformation technique as follows. The ligation mixture was added to 100 µL of competent cells, placed on ice, and was incubated for about 30 minutes. The cells were then heat shocked at 37°C for 1 minute and put back on ice for 2 minutes. Following heat shock, 950 μL of room temperature LB media was added to the cells and the cells were shaken at 37°C for 1 hour. Following the 1-hour agitation the cells were pelleted for one minute at 12000 rpm in a Eppendorf 5417C microcentrifuge. The supernatant was carefully poured off so that about 200 µL remained. The cells were then resuspended in the remaining LB media and spread on 100x15 mm LB agarose plates containing 50 μg/mL ampicilin. The plates were incubated overnight at 37°C. Colonies were counted the following day, and the ratio of colonies between the negative control and the ligated samples was determined. A high ratio of the number of colonies when the ligation mixture was used to transform cells, as contrasted to the number of negative control colonies indicated that the cloning was successful. Transformed colonies were identified, isolated, and grown overnight in LB media in the presence of ampicillin. The resulting bacterial populations were screened for the presence of the Edg-1-pCAL-c expression construct.

Plasmid DNA was isolated from the cells using the QIAprep Spin Miniprep Kit (Qiagen). Isolated Edg-1-pCAL-c constructs were screened using the restriction enzyme ApaI, which digests the Edg-1-pCAL-c construct at two different sites: one in the Edg-1 coding sequence and one in the pCAL-c vector itself. The plasmid preparations were digested

10

15

20

25

30

WO 03/072014 PCT/US02/16877

with ApaI electrophoresed on a 1% TAE agarose gel and visualized using uv light and ethidium bromide staining. The predicted sizes of the expected DNA fragments were 2065 bp and 4913 bp. As shown in Figure 3, bands of the predicted size were present on the gel. The entire Edg-1-pCAL-c construct was sequenced in order to confirm its structure. This expression construct, a pCAL-c derivative that contains the rat Edg-1 ORF operably linked to a T7 promoter and lac repressor binding sites, is designated "prEDG-1" herein.

EXAMPLE 3: CONSTRUCTION OF RAT EDG-1-CBP FUSION PROTEIN

In order to detect rat Edg-1 protein expression, rEdg-1 coding sequences were cloned into the pCAL-c vector in frame with a CBP fusion tag. The cloning strategy for the rEdg-1-CBP construct was performed essentially as described for the Edg-1-pCAL-c construct with the following differences. The PCR primers (SEQ ID NOS:3 and 5) were as described for the Edg-1-pCAL-c cloning except for the omission of the stop codon in the downstream primer (SEQ ID NO:33). The removal of the stop codon is required for the construction of the Edg-1-CBP fusion protein. The pCAL-c vector is designed so that, when the BamHI site is used for insertional cloning, and no stop codon is present in an ORF inserted into the pCAL-c expression vector the cloned ORF will be in-frame with the CBP fusion tag. Because the three prime downstream primer did not contain a stop codon, a CBP fusion tag could be cloned in-frame with the Edg-1 ORF. Other cloning steps were performed essentially as described before. The resulting plasmid, a pCAL-c derivative that comprises an ORF encoding a rat Edg-1-CBP fusion protein operably linked to a T7 promoter and lac repressor binding sites, is designated "prEDG-1-CBP" herein.

EXAMPLE 4: CLONING OF A HIS-TAGGED RAT EDG-1 INTO PCAL-C EXPRESSION VECTOR

The rEdg-1 protein was manipulated to generate a fusion protein having a 6xHis tag at its carboxyl terminus. A "6xHis tag" or "His tag" is an amino acid sequence consisting of six contiguous histidine residues that can be used as an epitope for the binding of anti-6xHis antibodies, or as ligand for binding nickel atoms. The His-tagged rEdg-1 fusion protein is used to detect rEdg-1 protein expression in the minicell expression system environment.

The rEdg-1-6xHis construct was cloned using the strategy described above for the construction of the rEdg-1-pCAL-c expression construct (prEDG-1), with the upstream primer having the sequence of SEQ ID NO:3, but with the exception that the three prime

10

15

20

25

30

WO 03/072014 PCT/US02/16877

downstream primer (SEQ ID NO:34) was designed to contain six histidine codons followed by a stop codon. The 18 base pair 6xHis tag was incorporated into the carboxyl terminus of the Edg-1 protein as expressed from the pCAL-c vector. Subsequent cloning procedures (PCR, restriction digest, gel purification, ligation, transformation, etc.) were performed as described previously for the Edg-1-pCAL-c construct (prEDG-1). The resulting plasmid, a pCAL-c derivative that comprises an ORF encoding a carboxy-terminal His-tagged rat Edg-1-CBP fusion protein operably linked to a T7 promoter and lac repressor binding sites, is designated "prEDG-1-6xHis" herein.

EXAMPLE 5: AMPLIFICATION AND CLONING OF RAT EDG-3 SEQUENCES

The Edg-3 full length coding sequence was amplified via PCR from rat skeletal muscle mRNA using primers (SEQ ID NOS:35 and 36) designed from the known mouse sequence (Genbank accession NM_010101). The mRNA used as a template for the amplification reaction was isolated using the RNeasy Miniprep Kit (Qiagen). Both the rtPCR and PCR amplification steps were carried out in a single reaction using the One Step RT-PCR Kit (Qiagen). The rEdg-3 PCR products were visualized with UV after electrophoresis in 1% TAE agarose gels and ethidium bromide staining.

The predicted size of the amplified PCR products is 1145 base pairs. An appropriately-sized DNA band was isolated from the TAE gel and purified using the Geneclean Kit (BIO101). The purified band was ligated to the pCR3.1 vector using the TA-cloning kit (Invitrogen). Other cloning steps were carried out as described previously for the cloning of the rEdg-1-pCAL-c construct (prEDG-1)with the exception that the samples were screened using the EcoRI restriction enzyme. The expected sizes of the digested bands were 1145 base pairs and 5060 base pairs. Positive clones were analyzed by automated sequencing. The nucleotide sequences were analyzed using BLAST searches from the NCBI web site (www.ncbi.nlm.nih.gov/). The predicted full length rat Edg-3 amino acid sequence was assembled from the nucleotide sequencing data using in silico translation. The pCR3.1 vector comprising the rat Edg-3 ORF is designated "pCR-rEDG-3" herein.

EXAMPLE 6: CLONING OF RAT EDG-3 CODING SEQUENCES INTO THE PCAL-C EXPRESSION VECTOR

In order to express it in the minicell expression system, the rat Edg-3 ORF was cloned into the pCAL-c expression vector. The cloning strategy used was as described above for the cloning of the rat Edg-1 gene into the pCAL-c vector with the following exceptions.

10

15

20

25

30

WO 03/072014 PCT/US02/16877

The primers used for PCR amplification were designed from the rat Edg-3 sequence and contained sites for the restriction enzymes NheI and KpnI (GGTACC). The NheI site was added to the five prime upstream primer (SEQ ID NO:37) and the KpnI site was added to the three prime downstream primer; SEQ ID NO:38). The NheI and KpnI restriction enzymes were used for the digestion reaction. The reaction mixture for the digestion step consisted of 1 µg of DNA, 1x restriction buffer (provided with the enzyme), and 1 µL of each enzyme. Plasmid preparations were screened by digestion with NheI and KpnI. The digested plasmid DNA was electrophosesed on a TAE agarose gel and visualized by UV after staining with ethidium bromide. The resultant band sizes were predicted to be 1145 base pairs and 5782 base pairs. The positive plasmid clones were analyzed with automated sequencing. The resulting plasmid, a pCAL-c derivative that comprises an ORF encoding a rat Edg-3 protein operably linked to a T7 promoter and lac repressor binding sites, is designated "pEDG-3" herein.

EXAMPLE 7: CLONING OF A HIS-TAGGED RAT EDG-3 INTO THE PCAL-C EXPRESSION VECTOR

In order to detect expression of the rat Edg-3 protein in the minicell expression system, the rat Edg-3 coding sequence was manipulated so as to contain a 6xHis tag at the carboxyl terminus of the protein. The cloning strategy used to create this construct was essentially the same as described above for the rEdg-3-pCAL-c (prEDG-3) construct cloning, with the upstream primer having the sequence of SEQ ID NO:37, with the exception that the three-prime downstream primer (SEQ ID NO:18) was designed to contain a 6xHis coding sequence followed by a stop codon, which allowed for the incorporation of the 6xHis amino acid sequence onto the carboxyl terminus of the Edg-3 receptor protein. Other cloning and screening steps were performed as described above. The resulting plasmid, a pCAL-c derivative that comprises an ORF encoding a carboxy-terminal His-tagged rat Edg-3 fusion protein operably linked to a T7 promoter and lac repressor binding sites, is designated "prEDG-3-6xHis" herein.

EXAMPLE 8: GFP CLONING INTO PCAL-C EXPRESSION CONSTRUCT

Cloning of GFP-encoding nucleotide sequences into the pCAL-c vector was performed in order to produce an expression construct having a reporter gene that can be used to detect protein expression (GFP, green flourescent protein). The cloning strategy used was essentially the same as the cloning strategy described above with the following exceptions. The template used for PCR amplification was the peGFP plasmid "construct"

10

15

20

25

30

WO 03/072014 PCT/US02/16877

(GFP construct sold by Clontech). The primers used for amplification were designed from the GFP coding sequence and contained sites for the restriction enzymes NcoI and BamHI. The NcoI site was added to the five prime upstream primer (SEQ ID NO:40) and the BamHI site was added to the three prime downstream primer; see SEQ ID NO:41) The NcoI and BamHI restriction enzymes were used for the digestion reaction. The reaction mixture for the digestion step consisted of 1 μg of DNA, 1x restriction buffer (provided with the enzyme), and 1 μL of each enzyme. The screening of the plasmid preparations was carried out using NcoI and BamHI. Digested plasmid preparations were electrophoresed and visualized on TAE agarose gels with UV after staining with ethidium bromide. Restriction products having the predicted sizes of 797 and 5782 base pairs were seen. Positive plasmid clones were sequenced using an automated sequencer. The resulting plasmid, a pCAL-c derivative that comprises an ORF encoding a rEdg-3-GFP fusion protein operably linked to a T7 promoter and lac repressor binding sites, is designated "prEDG-3-GFP" herein.

EXAMPLE 9: DESIGN CONSTRUCTION OF CONTROL EXPRESSION ELEMENTS

Control expression elements used to detect and quantify expression of proteins in minicells were preposed. These controls direct the expression of detectable proteins. An expression element used as positive control is pPTC12, which is supplied with the pCAL-c expression vector from Stratagene. This construct contains an ORF encoding a fusion protein comprising beta-galactosidase linked to CBP. Induction of expression of pTC12 should result in the production of a protein of about 120 kD, and this protein is detected via its enzymatic activity or by using antibodies directed to epitopes on the beta-galactosidase or CBP polypeptide.

A GFP fusion construct was created and used as a positive control for the CBP detection kit. This construct was a positive control for induction of protein expression in the minicell expression system. The cloning strategy used to create the construct was essentially the same as that used for the cloning of the GFP into the pCAL-c expression vector, with the exception that the three prime downstream primer did not contain a stop codon; this allowed for the in frame incorporation of the CBP fusion tag to the GFP protein. The upstream primer had the sequence of SEQ ID NO:42, and the downstream primer had the sequence SEQ ID NO:43. The nucleotide sequence of the expression element was confirmed using an automated sequencer. The resulting plasmid, a pCAL-c derivative that comprises an ORF

10

15

20

25

30

WO 03/072014 PCT/US02/16877

encoding GFP operably linked to a T7 promoter and lac repressor binding sites, is designated "pGFP-CBP" herein.

EXAMPLE 10: INTRODUCTION OF PCAL-C EXPRESSION CONSTRUCTS INTO THE MC-T7 ESCHERICHIA COLI STRAIN

The MC-T7 E. coli strain was made competent using the CaCl₂ technique. In brief, cells were grown in 40 mL LB medium to an OD₆₀₀ of 0.6 to 0.8, and then centrifuged at 8000 rpm (7,700 g) for 5 min at 4°C. The pellet was resuspended in 20 mL of cold CaCl₂ and left on ice for five minutes. The cells were then centrifuged at 8000 rpm (7,700 g) for 5 min at 4°C. The cell pellet was resuspended in 1 mL of cold CaCl₂ and incubated on ice for 30 min. Following this incubation 1 mL of 25% glycerol was added to the cells and they were distributed and frozen in 200 μ L aliquots. Liquid nitrogen was used to freeze the cells. These cells subsequently then used for the transformation of expression constructs.

EXAMPLE 11: PREPARATION OF MINICELLS

To some degree, the preparation of minicells varied according to the type of expression approach that is used. In general, there are two such approaches, although it should be noted from the outset that these approaches are neither limiting nor mutually exclusive. One approach is designed to isolate minicells that already contain an expressed therapeutic protein or nucleic acid. Another approach is designed to isolate minicells that will express the protein or nucleic acid in the minicell following isolation.

E. coli are inoculated into bacterial growth media (e.g., Luria broth) and grown overnight. After this, the overall protocol varies with regards to methods of induction of expression. The minicell producing cultures used to express protein post isolation are diluted and grown to the desired OD₆₀₀ or OD450, typically in the log growth phase of bacterial cultures. The cultures are then induced with IPTG and then isolated. The IPTG concentration and exposure depended on which construct was being used, but was usually about 500 μM final for a short time, typically about 4 hours. This treatment results in the production of the T7 polymerase, which is under control of the LacUVR5 promoter, which is repressed by the LacI repressor protein. IPTG relieves the LacI repression and thus induces expression from the LacUVR5 promoter which controls expression of the T7 polymerase from the chromosome. This promoter is "leaky" that is, there is always a basal level of T7 polymerase which can be selected for or against so that the induction before isolation is not required. (This induction step is not required if a non-T7 expression system is used, as the

10

20

25

30

WO 03/072014 PCT/US02/16877

reason for this step is to express the T7 RNA polymerase in the minicell-producing cells so that the polymerase and molecules segregate with the minicell.)

The E. coli cultures that produce minicells containing a therapeutic protein or nucleic acid have different induction protocols. The overnight cultures are diluted as described above; however, in the case of proteins that are not toxic to the parent cells, this time the media used for dilution already contains IPTG. The cultures are then grown to mid-log growth and minicells are isolated. These cultures produce the therapeutic protein or nucleic acid as they grow, and the minicells derived therefrom contain the therapeutic protein or nucleic acid.

Altenatively or additionally, IPTG is added and expression is induced after the isolation of minicells. In the case of non-toxic proteins or nucleic acids that are expressed from expression elements in minicells, this treatment enhances production of the eposimally encoded gene product. In the case of toxic gene products induction post-isolation is preferred.

15 EXAMPLE 12: MINICELL ISOLATION

Minicells were isolated from the minicell producing MC-T7 strain of E. coli using centrifugation techniques. The protocol that was used is essentially that of Jannatipour et al. (Translocation of Vibrio Harveyi N,N'-Diacetylchitobiase to the Outer Membrane of Escherichia Coli, J. Bacteriol. 169: 3785-3791, 1987) and Matsumura et al. (Synthesis of Mot and Che Products of Escherichia coli Programmed by Hybrid ColE1 Plasmids in Minicells, J. Bacteriol. 132:996-1002, 1977).

In brief, MC-T7 cells were grown overnight at 37°C in 2 to 3 mL of LB media containing ampicillin (50 μg/mL), streptomycin (50 μg/mL), and tetracycline (50 μg/mL) (ampicillin was used only when growing MC-T7 cells containing a pCAL-c expression construct). The cells were diluted 1:100 in a total volume of 100 to 200 mL LB media with antibiotics, and grown at 37°C until they reached an OD600 of 0.4 to 0.6, which is roughly beginning of the log growth phase for the MC-T7 E. coli. During this incubation the remainder of the overnight culture was screened for the presence of the correct expression construct using the techniques described above. When the cultures reached the appropriate OD600 they were transferred to 250 mL GS3 centrifuge bottles and centrifuged (Beckman

10

15

20

25

WO 03/072014 PCT/US02/16877

centrifuge) at 4500 rpm (3,500 g) for 5 min. At this point the supernatant contains mostly minicells, although a few relatively small whole cells may be present.

The supernatant was transferred to a clean 250 mL GS3 centrifuge bottle and centrifuged at 8000 rpm (11,300 g) for 10 min. The pellet was resuspended in 2 mL of 1x BSG (10x BSG: 85 g NaCl, 3 g KH₂PO₄, 6 g Na₂HPO₄, and 1 g gelatin in 1 L ddH₂O) and layered onto a 32 mL 5 to 20% continuous sucrose gradient. The sucrose gradient was made with sucrose dissolved in 1x BSG.

The sucrose gradient was then loaded in a Beckman SW24 rotor and centrifuged in a Beckman Ultracentrifuge at 4500 rpm (9,000 g) for 14 min. Following ultracentrifugation a single diffuse band of minicells was present. The top two thirds of this band was aspirated using a 10 mL pipette and transferred to a 30 mL Oakridge tube containing 10 mL of 1x BSG. The sample was then centrifuged at 13,000 rpm (20,400 g) for 8 min. Following centrifugation, the pellet was resuspended in 2 mL 1x BSG, and the resuspended cells were loaded onto another 5 to 20% sucrose gradient. This sucrose gradient was centrifuged and the minicells were collected as described above. The sucrose gradient procedure was repeated a total of three times.

Following the final sucrose gradient step the entire minicell band was collected from the sucrose gradient and added to a 30 mL Oakridge tube that contained 10 mL of MMM buffer (200 mL 1x M9 salts, 2 mL 20% glucose, and 2.4 mL DIFCO Methionine Assay Medium). This minicell solution was centrifuged at 13,000 rpm (20,400 g) for 8 min. The pellet was resuspended in 1 mL of MMM Buffer.

The concentration of minicells was determined using a spectrophotometer. The OD₄₅₀ was obtained by reading a sample of minicells that was diluted 1:100.

EXAMPLE 13: OTHER METHODS TO PREPARE AND ISOLATE MINICELLS

By way of non-limiting example, induction of E. coli parental cells to form minicells may occur by overexpression of the E. coli ftsZ gene. To accomplish this both plasmid-based and chromosomal overexpression constructs were created that place the ftsZ gene under the control of various regulatory elements (Table 6).

TABLE 6. REGULATORY CONSTRUCTS CONTROLLING FTSZ EXPRESSION.

Regulatory region	inducer .	[inducer]	SEQ ID NO.:
Para::ftsZ	Arabinose	10 mM	1, 3
Prha::ftsZ	Rhamnose	1 mM	2, 4
Ptac::ftsZ	IPTG	30 μΜ	5, Garrido et al. ^a

a. Garrido, T. et al. 1993. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

5 Oligonucleotide names and PCR reactions use the following format:

- "gene-1" is N-terminal, 100% homology oligo for chromosomal or cDNA amplification
- "gene-2" is C-terminal, 100% homology oligo for chromosomal or cDNA amplification
- "gene-1-RE site" is same sequence as gene-1 with additional residues for remainder of sequence, RE sites, and/or chimeric fusions.
- "gene-2-RE site" is same sequence as gene-1 with additional residues for remainder of sequence, RE sites, and/or chimeric fusions.

Use "gene-1, 2" combo for chromosomal/cDNA amplification and "gene-1 RE site, gene-2-RE site" to amplify the mature sequence from the "gene-1, 2" gel-purified product.

20

10

15

TABLE 7: OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 6 CONSTRUCTS

SEQ ID NO.:	Primer name	5' to 3' sequence
44	FtsZ-1	CCAATGGAACTTACCAATGACGCGG
45	FtsZ-2	GCTTGCTTACGCAGGAATGCTGGG
46	FtsZ-1-PstI	CGCGGCTGCAGATGTTTGAACCAATGGAACTTACCAA
		TGACGCGG
47	FtsZ-2-XbaI	GCGCCTCTAGATTATTAATCAGCTTGCTTACGCAGGAA
		TGCTGGG

Table 7 oligonucleotide sequences are for use in cloning ftsZ into SEQ ID NO.:1 and 2

25 (insertions of ftsZ behind the arabinose promotor (SEQ ID NO.: 1) and the rhamnose promotor (SEQ ID NO.: 2).

TABLE 8: OLIGONUCLEOTIDE PRIMER SEQUENCES FOR FTSZ CHROMOSOMAL DUPLICATION CONSTRUCTS

SEQ ID NO.:	Primer name	5' to 3' sequence
48	Kan-1	GCTAGACTGGGCGGTTTTATGGACAGCAAGC
49	Kan-2	GCGTTAATAATTCAGAAGAACTCGTCAAGAAGGCG
50	Kan-1-X-frt	GCGCCTACTGACGTAGTTCGACCGTCGGACTAGCGAAG
		TTCCTATACTTTCTAGAGAATAGGAACTTCGCTAGACTG
		GGCGGTTTTATGGACAGCAAGC
51	Kan-2-intD-frt	CAAGATGCTTTGCCTTTGTCTGAGTTGATACTGGCTTTG
		GGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGCGT
		TAATAATTCAGAAGAACTCGTCAAGAAGGCG
52	AraC-1	CGTTACCAATTATGACAACTTGACGG
53	RhaR-1	TTAATCTTTCTGCGAATTGAGATGACGCC
54	LacI ^q -1	GTGAGTCGATATTGTCTTTGTTGACCAG
55	Ara-1-intD	GCCTGCATTGCGGCGCTTCAGTCTCCGCTGCATACTGTC
		CCGTTACCAATTATGACAACTTGACGG
56	RhaR-1-intD	GCCTGCATTGCGGCGCTTCAGTCTCCGCTGCATACTGTC
		CTTAATCTTTCTGCGAATTGAGATGACGCC
57	LacI ^q -1-intD	GCCTGCATTGCGGCGCTTCAGTCTCCGCTGCATACTGTC
		CTTAATAAAGTGAGTCGATATTGTCTTTGTTGACCAG
58	FtsZ-1-X	GCCTGCATTGCGGCGCTTCAGTCTCCGCTGCATACTGTC
		CCGTTACCAATTATGACAACTTGACGG

In like fashion, the ftsZ gene was amplified from SEQ ID NO.: 1, 2 and Ptac::ftsZ (Garrido, T. et al. 1993. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J. 12:3957-3965) plasmid and chromosomal constructs, respectively using the following oligonucleotides:

10 For amplification of araC through ftsZ of SEQ ID NO.: 1 use oligonucleotides:

AraC-1

FtsZ-2

15

For amplification of rhaR through ftsZ of SEQ ID NO.: 2 use oligonucleotides:

RhaR-1

FtsZ-2

20

For amplification of lacI^q through ftsZ of Ptac::ftsZ (Garrido, T., et al.) use oligonucleotides:

lacIq-1

25 ftsZ-2

The above amplified DNA regions were gel-purified and used as template for the second round of PCR using oligonucleotides containing homology with the E. coli chromosomal gene intD and on the other end with random sequence termed "X". Oligonucleotides used in this round of PCR are shown below:

For amplification of araC through ftsZ from SEQ ID NO.: 1 to contain homology to intD and the random X use oligonucleotides:

AraC-1-intD FtsZ-1-X

10

For amplification of rhaR through ftsZ from SEQ ID NO.: 2 to contain homology to intD and the random X use oligonucleotides:

15 RhaR-1-intD FtsZ-1-X

For amplification of lacIq through ftsZ from Ptac::ftsZ to contain homology to intD and the random X use oligonucleotides:

LacIq-1-intD FtsZ-1-X

25

The PCR products from these PCR reactions are as shown below:

To amplify the mature complexes, the following regions were mixed and amplified with the coupled oligonucleotide sequence primers:

SEQ ID NO.: 3 was produced using:

SEQ ID NO.: 4 was produced using:

SEQ ID NO.: 5 was produced using:

10

25

30

35

These expression constructs may be expressed from the plasmid, placed in single copy, replacing the native ftsZ copy on the E. coli chromosome (Garrido, T., et al. 1993. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J. 12:3957-3965), or in duplicate copy retaining the native ftsZ copy while inserting one of the expression constructs in Table 6 into the intD gene on the same chromosome. Chromosomal duplications were constructed using the RED recombinase system (Katsenko, K. A., and B. L. Wanner. One-Step Inactivation of Chromosomal Genes in Escherichia coli K-12 Using PCR Products. Proc. Natl. Acad. Sci. 97:6640-6645. 2000) and are shown in SEQ ID NO 3-5. The later constructs allow native replication during non-minicell producing conditions, thus avoiding selective pressure during strain construction and maintenance. Furthermore, these strains provide defined points of minicell induction that improve minicell purification while creating conditions that allow strain manipulation prior to, during, and following minicell production. By way of non-limiting example these manipulations may be protein production that the cytoplasmic redox state, modify plasmid copy number, and/or produce chaperone proteins.

For minicell production, a minicell producing strain described in the previous section is grown overnight in Luria broth (LB) supplemented with 0.1% dextrose, 100 μ g/ml ampicillin, and when using the single-copy ftsZ construct, 15 μ M IPTG. All incubations were performed at 37°C. For minicell induction only, overnight strains are subcultured

10

15

20

25

30

WO 03/072014 PCT/US02/16877

1/1000 into the same media. If minicell induction is to be coupled with co-expression of other proteins that are controlled by a catabolite repression-sensitive regulator, dextrose was excluded. Minicell induction is sensitive to aeration and mechanical forces. Therefore, flask size, media volume and shake speed is critical for optimal yields. Likewise, bioreactor conditions must be properly regulated to optimize these production conditions.

In shake-flask cultures, strains are grown to early exponential (log) phase as monitored by optical density (OD) at 600 nm (OD600 0.05-0.20). (Bioreactor conditions may differ significantly depending on the application and yield desired). For minicell induction alone, early log phase cultures are induced with the appropriate inducer concentration shown in Table 6. For coupled co-expression, these cultures are induced as shown in Table 6 for the appropriate minicell regulator, while the coupled protein(s) is induced with the inducer appropriate for the regulator controlling the synthesis of that protein. Cultures are grown under the appropriate conditions and harvested during late log (OD600 0.8-1.2). Depending on the application, minicell induced cultures may be immediately chilled on ice prior to purification, or maintained at room temperature during the harvesting process.

To separate minicells from viable, parental cells, cultures are subjected to differential centrifugation (Voros, J., and R. N. Goodman. 1965. Filamentous forms of Erwinia amylovora. Phytopathol. 55:876-879). Briefly, cultures are centrifuged at 4,500 rpm in a GSA rotor for 5 min. Supernatants are removed to a fresh bottle and centrifuged at 8,000 rpm for an additional 10 min to pellet minicells. Pelleted minicells (containing contaminating parental cells) are resuspended in 2 ml LB, LBD (LB supplemented with 0.1% dextrose), Min (minimal M63 salt media) (Roozen, K. J., et al. 1971. Synthesis of ribonucleic acid and protein in plasmid-containing minicells of Escherichia coli K-12. J. Bacteriol. 107:21-23), supplemented with 0.5% casamino acids) or MDT (minimal M63 salt media, supplemented with 0.5% casamino acids, 0.1% dextrose, and thiamine). Resuspended minicells are next separated using linear density gradients. By way of non-limiting example, these gradients may contain sucrose (Cohen A., et al. 1968. The properties of DNA transferred to minicells during conjugation. Cold Spring Harb. Symp. Quant. Biol. 33:635-641), ficol, or glycerol. For example, linear sucrose gradients range from 5-20% and are poured in LB, LBD, Minor MDT. Using a SW28 swinging bucket rotor, gradients are centrifuged at 4,500 rpm for 14 min. Banded minicells are removed, mixed with LB, LBD, Minor MDT, and using a JA-20 rotor are centrifuged at 13,000 rpm for 12 min. Following centrifugation, pellets are resuspended in 2 ml LB, LBD, Minor MDT and subjected to a second density gradient. Following the second density separation, banded minicells are

20

25

WO 03/072014 PCT/US02/16877

removed from the gradient, pelleted as described, and resuspended in LB, LBD, Minor MDT for use and/or storage.

Purified minicells are quantitated using an OD600 measurement as compared to a standard curve incorporating LPS quantity, minicell size, and minicell volume. Quantitated minicells mixtures are analyzed for contaminating, viable parental cells by plating on the appropriate growth media (Table 9).

TABLE 9: MINICELL PURIFICATION AND PARENTAL CELL QUANTITATION

Purification	Total cells	Total parental cells	MC / PC ratio	Fold-purification
Before	4.76 X 10 ¹¹	3.14 X 10 ¹¹	0.25 / 1	-
After	1.49 X 10 ¹¹	6.01 X 10 ⁴	2.48 X 10 ⁶ / 1	5.23 X 10 ⁶

EXAMPLE 14: PROTOPLAST FORMATION

In order to allow a membrane receptor to be presented to the outside environment

(displayed), minicells are made into protoplasts. In order to make the integral membrane protein receptors in the inner membrane more accessible for ligand binding, the outer membrane and cell wall were removed. The removal of the outer membrane and cell wall from E. coli whole cells and minicells to produce protoplasts was performed essentially according to previously described protocols with a few modifications (Birdsell et al.,

Production and Ultrastructure of Lysozyme and Ethylenediaminetetraacetate-Lysozyme Spheroplasts of Escherichia coli, J. Bacteriol. 93:427-437, 1967; Weiss et al., Protoplast Formation in Escherichia Coli, J. Bacteriol. 128:668-670, 1976. Both minicells and whole cells were processed the same way.

In brief, the cells were grown to mid-log phase and pelleted at room temperature (minicells were isolated from cultures in mid-log phase). The pellet was washed twice with 10 mM Tris. Following the second wash protoplast production may be performed using two approaches. In the first approach, following the second wash, the cells were resuspended in 100 mM Tris (pH 8.0) that contained 6-20% sucrose and put in a 37°C waterbath (the Tris/sucrose buffer was pre-warmed to 37°C). The volume used to resuspend the cells was determined by the following equation: (volume of cells x OD450)/ 10 = resuspension volume. After a 1 minute incubation, 2 mg/mL lysozyme was added to a final concentration of 5-100 μg/mL. The samples were then incubated for 12 minutes at 37°C while being

10

15

20

25

WO 03/072014 PCT/US02/16877

gently mixed. Next, 100 mM EDTA (pH 7) was slowly added over a period of 2.5 minutes (amount of EDTA added = 1/00-1/10 volume of cells) followed by a 10 min incubation at 37 °C. The protoplasts are also diluted from 20% sucrose down to either 10% or 5% sucrose, which facilitates the complete removal of the outer membrane and cell wall. The protoplasts thus generated were separated from the outer membrane and cell wall using a sucrose step gradient. A sucrose step gradient does not have a gradual increase in sucrose percentage; rather, it goes directly from one percent to the other. For example, protoplasts generated from whole cells are loaded on a step gradient that is made from 5% and 15% sucrose. The protoplasts spin through the 15% sucrose but the debris generated when making the protoplasts does not spin through the 15% sucrose. The protoplasts are thus separated from the debris. The second method to prepare protoplasts, following the second wash, 1X 109 cells were resuspended with 50 mM Tris, pH 8.0 containing 0.5-50 mM EDTA and 6-20%sucrose. This mixture was incubated at 37°C for 10 min. Following incubation, the mixture was centrifuged at 13,200 RPM in a microcentrifuge for 2 min. After centrifugation, the pellet was resuspened in 50 mM Tris, pH 8.0 containing 5-100 $\mu g/ml$ lysozyme and 6-20% sucrose. This mixture was incubated at 37°C for 10 min. Following incubation, the mixture was centrifuged at 13,200 RPM in a microcentrifuge for 2 min, resuspended in 50 mM Tris pH 8.0 containing 6-20% sucrose for use.

An alternative method to remove contaminating LPS is to use affinity absorption with an anti-LPS antibody (Cortex). To accomplish this, the anti-LPS antibody was coated on either an activated agarose or sepharose matrix (Sigma) or epoxy-coated magnetic M-450 beads (Dynal). The spheroplast/protoplast mixture was subjected to the antibody coated matrix either in batch or using column chromatographic techniques to remove contaminating LPS. Following exposure, the unbound fraction(s) was collected and re-exposed to fresh matrix. To monitor the efficiency of the protoplasting reaction and LPS removal, three constructs were used (Table 10).

TABLE 10: PROTOPLAST MONITORING CONSTRUCTS

Construct	SEQ ID NO	Plasmid	SEQ ID NO	Inducible protein	Inducer
PMPX-5	6	pMPX-32	7	ΔphoA	Rhamnose
PMPX-5	. 6	pMPX-53	8	phoA	Rhamnose
PMPX-5	6	pMPX-33	9	toxR-phoA	Rhamnose

TABLE 11. OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 10 CONSTRUCTS

5

10

15

20

SEQ ID NO.:	Primer name	5' to 3' sequence
59	ΔphoA-1	GCCTGTTCTGGAAAACCGGGCTGCTCAGGG
60	ΔphoA-2	GCGGCTTTCATGGTGTAGAAGAGATCGG
61	ΔphoA-1-PstI	CCGCGCTGCAGATGCCTGTTCTGGAAAACCGGGCTGCT CAGGG
62	ΔphoA-2-XbaI.	GCGCCTCTAGATTATTATTTCAGCCCCAGAGCGGCTTT CATGGTGTAGAAGAGATCGG
63	PhoA-1	GTCACGGCCGAGACTTATAGTCGC
64	PhoA-2	GCGGCTTTCATGGTGTAGAAGAGATCGG
65	PhoA-1-PstI	CCGCGCTGCAGATGTCACGGCCGAGACTTATAGTCGC
66	PhoA-2-XbaI	GCGCCTCTAGATTATTATTTCAGCCCCAGAGCGGCTTT CATGGTGTAGAAGAGATCGG
67	T-phoA-1-PstI	CCGCGCTGCAGATGAACTTGGGGAATCGACTGTTTATT CTGATAGCGGTCTTACTTCCCCTCGCAGTATTACTGCTC ATGCCTGTTCTGGAAAACCGGGCTGCTCAGGG
68	T-phoA-2-XbaI	GCGCCTCTAGATTATTATTTCAGCCCCAGAGCGGCTTT CATGGTGTAGAAGAGATCGG

Oligonucleotides SEQ ID NOS.:59, 60, 61 and 62 were used to amplify phoA lacking a leader sequence (Δ phoA) form the E. coli chromosome. Once amplified, this region was inserted into SEQ ID NO.: 6 using PstI and XbaI to create SEQ ID NO.: 7.

Oligonucleotides SEQ ID NOS.:63, 64, 65 and 66 were used to amplify phoA containing a leader sequence (phoA) form the E. coli chromosome. Once amplified, this region was inserted into SEQ ID NO.: 6 using PstI and XbaI to create SEQ ID NO.: 8.

Oligonucleotides SEQ ID NOS.:59, 60, 67 and 68 were used to amplify phoA lacking a leader sequence (Δ phoA) form the E. coli chromosome and form a translational fusion between the transmembrane domain of toxR from Vibrio cholerae. Once amplified, this region was inserted into SEQ ID NO.: 6 using PstI and XbaI to create SEQ ID NO.: 9.

By co-expression of minicells and protein, minicells were prepared that contained cytoplasmic PhoA (pMPX-32 expresses phoA lacking a leader sequence [ΔphoA]), periplasmic PhoA (pMPX-53 expresses native phoA that exports to the periplasmic space), or inner membrane-bound PhoA (pMPX-33 expresses phoA lacking a leader sequence fused to the transmembrane domain (TMD) of the toxR gene product from Vibrio cholerae). Using these expressed proteins, the efficiency of minicell protoplasting was monitored (Table 12).

10

15

20

25

WO 03/072014 PCT/US02/16877

TABLE 12. EFFICIENCY OF MINICELL PROTOPLAST PREPARATION AND PURIFICATION

Step	Location a	ΔPhoA	PhoA	T-PhoA	LPS total ^b
Minicell	Pellet	100	100	100	100
EDTA/lysozyme	Whole	100	100	100	100
1 st Anti-LPS	Pellet	80	0	80	30
2 nd Anti-LPS	Pellet	60	0	60	0

- a. Measuring the location of protein being measured using an anti-BAP antibody (Sigma). Pellet refers to the presence of the expressed protein in the low-speed centrifugation pellet. These pellets contain only intact cellular bodies. Whole refers to the reaction mixture prior to low-speed centifugation.
- b. Measured using a slot-blot apparatus (Bio-Rad) using the anti-LPS antibody (Cortex)

The data suggests that periplasmic PhoA is lost during the preparation, while both cytoplasmic and membrane-bound PhoA are retained in a cellular body that lacks LPS. However, during this process $\sim 40\%$ of the total minicell content is lost.

EXAMPLE 15: T7-DEPENDENT INDUCTION OF EXPRESSION

Expression from the pCAL-c expression vector is driven from a T7 bacteriophage promoter that is repressed by the LacI gene product. Transcription of the DNA into mRNA, and subsequent translation of mRNA into proteins, does not occur as long as the LacI repressor is bound to the T7 promoter. However, in the presence of IPTG, the LacI repressor does not bind the T7 promoter. Thus, induction of expression from pCAL-c sequences is dependent on the presence of IPTG. Slightly different protocols were used for the induction of Escherichia coli whole and for the induction of minicells. Slight differences are also present in the protocols for induction of minicells for ³⁵S-methionine labeling of proteins in contrast to those for the induction of minicells for Western blot analysis. These induction protocols are described bellow.

For expression in E. coli whole cells, the cells were first grown overnight in 3 mL of LB and antibiotics. The cultures were screened for the presence of the desired expression element as previously described. Cultures containing the desired expression elements were diluted 1:100 and grown to an OD600 of between 0.4 to 0.6. The culture size varied depending on the intended use of the cells. IPTG was then added to a final concentration of

10

20

25

30

WO 03/072014 PCT/US02/16877

 $200~\mu g/mL,$ and the cells were shaken at $30^{\circ}C$ for 4 hours. Following the induction, cells were harvested for analysis.

The induction of minicells was carried out as follows. The minicells were diluted in MMM buffer to 1 mL total volume according to the concentration obtained from the isolation procedure (OD₄₅₀ of about 0.5). The cells were then treated with 50 μg/mL of cycloserine for 30 minutes at 37°C to stop whole cell growth. Following the cycloserine treatment the cells were provided with an amino acid, methionine, which the MMM buffer does not contain. For ³⁵S-labeled protein induction ³⁵S-methionine was added to the minicell sample whereas, for unlabeled protein induction unlabeled methionine was added. Fifteen (15) μCi of ³⁵S-methionine (Amersham Pharmacia Biotech, Piscataway, NJ) was added to the samples for radiolabeling and 5 μmol of methionine was added to the non-labeled minicell samples. Two hundred (200) μg/mL IPTG was also added to the minicell samples, which were then shaken at 30°C for about 4 hours. Following induction, the minicells were harvested for further preparation or analysis.

15 EXAMPLE 16: WESTERN BLOT ANALYSIS

The CBP detection kit was purchased from Stratagene. SDS running buffer, 10% Tris-HCl ready gels, Kaleidoscope Pre-stained Standards, and Laemmli Sample Buffer were purchased from BIO RAD (Hercules, CA). GFP (FL) HRP antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Edg-3CT antibody an antibody directed to the carboxy terminus of was purchased from Exalpha Biologicals (Boston, MA). Anti-6xHis antibody, positrope, and the WesternBreeze Kit were purchased from Invitrogen (Carlsbad, CA). Protocols were carried out essentially according to the manufacturer's instructions unless otherwise indicated.

Three different Western blot protocols were used to detect protein expression in both a minicell expression system and in a whole cell expression system. For both systems, the SDS-PAGE gel and the transfer protocols were essentially as follows. The samples were denatured by diluting the samples 1:1 in Laemmli buffer (BIORAD) and then sonicated for 10 min. The denatured samples were loaded onto a 10% Tris-Glycine gel (BIORAD) and electrophoresed at 130 V for about 1.5 hours in 1X SDS running buffer (BIORAD). The electrophoresed proteins were electrotransferred to nitrocellulose membranes at 0.5 Amps for 1.5 hours in Transfer Buffer (5.8 g Tris, 2.9 g glycine, 200 mL methanol, and 3.7 mL of

10

15

20

25

WO 03/072014 PCT/US02/16877

10% SDS). The nitrocellulose membranes comprising the transferred proteins were used for Western bloting.

GFP Western blots were carried out as follows. The nitrocellulose membrane was blocked for 2 hours with 5% milk in PBST (PBS buffer with 0.05% Tween). Following the blocking step the nitrocellulose membrane was washed twice with PBST. For the detection of GFP protein, an anti-GFP-HRP conjugated antibody (Santa Cruz Biotechnology) was used at a dilution of 1:3000 in PBST (HRP, horse radish peroxidase). The nitrocellulose membrane was incubated in the anti-GFP-HRP antibody solution for one hour and then washed twice with PBST. GFP proteins on the nitrocellulose membrane were detected and visualized using the ECL system (Amersham).

The His-tagged Edg-1 and Edg-3 proteins were detected using a mouse anti-6xHis antibody from Invitrogen and the WesternBreeze chemoluminecent Kit (Invitrogen). The antibody was diluted 1:4000 in buffers provided by the WesternBreeze Kit. The WesternBreeze immunoblot was carried out essentially according to the manufacturer's protocol. The Edg-1-CBP and GFP-CBP fusion proteins were detected using the CBP detection Kit (Stratagene). All antibodies and substrates were provided in the Kit. Figure 3 is a photo of the Western hybridization results showing the presence of Edg-1-6xHis and Edg-3-6xHis in minicells and parent cells.

EXAMPLE 17: METHODS TO INDUCE EXPRESSION

Expression in minicells may proceed following purification of minicells and/or minicell protoplasts from parental cells and LPS constituents, repectively. However, for some applications it is suitable to co-express proteins of interest with minicell induction. For these approaches, one may use the protocol described in EXAMPLE 13 for expression of the phoA constructs. By way of non-limiting example, either of these approaches may be accomplished using one or more of the following expression constructs (Table 13).

TABLE 13: EXPRESSION CONSTRUCTS

Plasmid	Regulatory element(s)	inducer	Plasmid	SEQ ID NO.:
pMPX-5	rhaRS	Rhamnose	pUC-18	6
pMPX-7	uidR	β-glucuronate	pUC-18	10

Plasmid	Regulatory element(s)	inducer	Plasmid	SEQ ID NO.:
pMPX-8	melR	Melibiose	pUC-18	11
pMPX-18	araC	Arabinose	pUC-18	12
pMPX-6	araC	Arabinose	pUC-18	13

TABLE 14: OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 13 CONSTRUCTS

SEQ ID NO.:	Primer name	5' to 3' sequence
69	Rha-1	GCGAATTGAGATGACGCCACTGGC
70	Rha-2	CCTGCTGAATTTCATTAACGACCAG
71	Rha-1-HindIII	CGGCGAAGCTTAATTAATCTTTCTGCGAATTGAG
		ATGACGCCACTGGC
72	Rha-2-PstI	CGCCGTAATCGCCGCTGCAGAATGTGATCCTGCT
		GAATTTCATTAACGACCAG
73	Uid-1	CGCAGCGCTGTTCCTTTGCTCG
74	Uid-2	CCTCATTAAGATAATACTGG
75	Uid-1-HindIII	GCCGCAAGCTTCGCAGCGCTGTTCCTTTGCTCG
76	Uid-2-PstI	CCAATGCATTGGTTCTGCAGGACTCCTCATTAAG
		ATAATAATACTGG
77	Mel-1	CGTCTTTAGCCGGGAAACG
78	Mel-2	GCAGATCTCCTGGCTTGC
79	Mel-1-HindIII	GCCGCAAGCTTCGTCTTTAGCCGGGAAACG
80	Mel-2-SalI	CGGTCGACGCAGATCTCCTGGCTTGC
81	Ara-1	CAAGCCGTCAATTGTCTGATTCG
82	Ara-2	GGTGAATTCCTCCTGCTAGCCC
83	Ara-1-HindIII	GCGCCAAGCTTCAAGCCGTCAATTGTCTGATTCG
84	Ara-2-PstI	CTGCAGGGTGAATTCCTCCTGCTAGCCC
85	Ara-1-XhoI	GCTTAACTCGAGCTTAATAACAAGCCGTCAATTG
		TCTGATTC
86	Ara-2-SstI	GCTTAACCGCGGGCCAAGCTTGCATGCCTGCTCC

5

Oligonucleotides SEQ ID NOS.:69, 70, 71 and 72 were used to amplify the rhaRS genes and their divergent control region from the E. coli chromosome. Once amplified, this region was inserted into pUC18 using HindIII and PstI to create SEQ ID NO.: 6.

Oligonucleotides SEQ ID NOS.:73, 74, 75 and 76 were used to amplify the uidR control region, the uidR gene and the control region for expression from the E. coli chromosome. Once amplified, this region was inserted into pUC18 using HindIII and PstI to create SEQ ID NO.: 10.

10

WO 03/072014 PCT/US02/16877

Oligonucleotides SEQ ID NOS.:77, 78, 79 and 80 were used to amplify the melR gene and its divergent control region from the E. coli chromosome. Once amplified, this region was inserted into pUC18 using HindIII and SalI to create SEQ ID NO.: 11.

Oligonucleotides SEQ ID NOS.:81, 82, 83 and 84 were used to amplify the araC gene and its divergent control region from the E. coli chromosome. Once amplified, this region was inserted into pUC18 using HindIII and PstI to create SEQ ID NO.: 12.

Oligonucleotides SEQ ID NOS.:81, 82, 85 and 86 were used to amplify the araC gene and its divergent control region was PCR amplified from pBAD-24. Once amplified, this region was inserted into pEGFP (Clontech) using XhoI and SstI to create SEQ ID NO.: 13.

Except of pMPX-6, these expression constructs contain the same multiple cloning site. Therefore, any protein of interested may be inserted in each modular expression construct for simple expression screening and optimization.

By way of non-limiting example, other proteins that may be expressed are listed in Table 15.

TABLE 15: OTHER EXPRESSED PROTEINS

Protein	Origin	Construct	Purpose	SEQ ID NO.:
Edg3	Rat	native	GPCR	14
β2AR	Human	native	GPCR	15
TNFR-1a (human)	Human	residues 29-455	Receptor	18
TNFR-1b (human)	Human	residues 41-455	Receptor	17
TNF (human)	Human ·	native	Gene transfer	19
T-EGF	Human	chimera	Gene transfer	20
T-Invasin	Y. pseudotuberculosis	chimera	Gene transfer	21

TABLE 16: OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 15

SEQ ID NO.:	Primer name	5' to 3' sequence
87	Edg-1	GGCAACCACGCACGCGCAGGCCACC
88	Edg-2	CAATGGTGATGGTGATGACCGG
89	Edg-1-SalI	CGCGGTCGACATGGCAACCACGCACGCACGC
	208 1 0	GCCACC
90	Edg-2-KpnI	GCGCCGGTACCTTATCAATGGTGATGGTGATG
,		ATGACCGG
91	β2AR-1	GGGGCAACCCGGGAACGCCAGCGCC
92	β2AR-2	GCAGTGAGTCATTTGTACTACAATTCCTCC
93	β2AR-1-SalI	CGCGGTCGACATGGGGCAACCCGGGAACGGCA
	F-****	GCGCC
94	β2AR-2-BamHI	GCGCCGGATCCTTATTATAGCAGTGAGTCATTT
-	,	GTACTACAATTCCTCC
95	TNFR(29)-1	GGACTGGTCCCTCACCTAGGGGACAGGG
96	TNFR(29)-2	CTGAGAAGACTGGGCGCGGGGGGGGG
97	TNFR(29)-1-SalI	CGCGGGTCGACATGGGACTGGTCCCTCACCTA
		GGGGACAGGG
98	TNFR(29)-2-KpnI	GCGCCGGTACCTTATTACTGAGAAGACTGGGC
		GCGGCGGAGG
99	TNFR(41)-1	GATAGTGTGTCCCC
100	TNFR(41)-2	CTGAGAAGACTGGGCGC
101	TNFR(41)-1-NcoI	GGGAGACCATGGATAGTGTGTCCCC
102	TNFR(41)-2-XbaI	GCCTCATCTAGATTACTGAGAAGACTGGGCGC
103	TNF-1	GAGCACTGAAAGCATGATCCGGGACG
104	TNF-2	CAGGGCAATGATCCCAAAGTAGACCTGC
105	TNF-1-EcoRI	CCGCGGAATTCATGAGCACTGAAAGCATGATC
		CGGGACG
106	TNF-2-HindIII	GGCGCAAGCTTATCACAGGGCAATGATCCCAA
		AGTAGACCTGC
107 ·	T-EGF-1	TCTGATAGCGGTCTTACTTCCCCTCGCAGTATT
		ACTGCTCAATAGTGACTCTGAATGTCCCCTGTC
		CCACGATGGGTACTGCCTCCATGATGGTGTGT
		GCATGTATATTG
108	T-EGF-2	AGGTCTCGGTACTGACATCGCTCCCCGATGTA
		GCCAACAACACAGTTGCATGCATACTTGTCCA
		ATGCTTCAATATACATGCACACCACCATCATGG
		AGGCA
109	T-EGF-3	CCGCGGGTACCATGAACTTGGGGAATCGACTG
		TTTATTCTGATAGCGGTCTTACTTCCCCTCG
110	T-EGF-4	GCGCCAAGCTTATTAGCGCAGTTCCCACCACT
		TCAGGTCTCGGTACTGACGTCCCCCG
111	Inv-1	TCATTCACATTGAGCGTCACCG
112	Inv-2	TTATATTGACAGCGCACAGAGCGG
113	Inv-1-ToxR-EcoRI	GCAAGAATTCACCATGAACTTGGGGAATCGAC
ļ		TGTTTATTCTGATAGCGGTCTTACTTCCCCTCG
		CAGTATTACTGCTCTCATTCACATTGAGCGTC
		CCG

10

15

20

WO 03/072014 PCT/US02/16877

SEQ ID NO.:		5' to 3' sequence
114	1111 - 2 3 3 3 3	CGCGGTTACGTAAGCAACTGCAGTTATATTGA CAGCGCACAGAGCGG

Oligonucleotides SEQ ID NOS.:87, 88, 89 and 90 were used to amplify rat Edg3 from rat cDNA. Once amplified, this region was inserted into SEQ ID NO.: 6 (pMPX-5) using SalI and KpnI to create SEQ ID NO.:14.

Oligonucleotides SEQ ID NOS.:91, 92, 93 and 94 were used to amplify human β2 adrenergic receptor (β2AR) from human heart cDNA. Once amplified, this region was inserted into SEQ ID NO.: 6 (pMPX-5) using SalI and BamHI to create SEQ ID NO.:15.

Oligonucleotides SEQ ID NOS.:95, 96, 97 and 98 were used to amplify human tumor necrosis factor receptor (TNFR residues 29-455) from human Jurkat CL71 cDNA. Once amplified, this region was inserted into SEQ ID NO.: 12 (pMPX-18) using SalI and KpnI to create SEQ ID NO.:18.

Oligonucleotides SEQ ID NOS.:99, 100, 101 and 102 were used to amplify human tumor necrosis factor receptor (TNFR residues 41-455) from human Jurkat CL71 cDNA. Once amplified, this region was inserted into pBAD24 using NcoI and XbaI to create SEQ ID NO.:17.

Oligonucleotides SEQ ID NOS.:103, 104, 105 and 106 were used to amplify human tumor necrosis factor (TNF) from human Jurkat CL71 cDNA. Once amplified, this region was inserted into SEQ ID NO.: 13 (pMPX-6) using EcoRI and HindIII to create SEQ ID NO.:19.

TABLE 17: PROGRAM TO ANNEAL GRADIENT PCR WITH PFX POLYMERASE

Step	Temp (°C)	Time (min)
1	95	2.0
2	95	0.5
3	64	0.5
4	68	2.5
5	Goto 2, 2X	
6	95	0.5
7	62	0.5
8	68	2.5
9	Goto 6, 4X	
10	95	0.5
11	60	0.5
12	68	2.5

10

15

20

25

WO 03/072014 PCT/US02/16877

Step	Temp (°C)	Time (min)
13	Goto 10, 6X	
14	95	0.5
15	58	0.5
16	68	2.5
17	Goto 14, 24X	
18	4	hold
19	end	

Oligonucleotides SEQ ID NOS.:107, 108, 109 and 110 were mixed and PCR amplified using anneal gradient PCR (Table 17) to form mature human epidermal growth factor (EGF) (residues 971-1023) translationally fused to the transmembrane domain of toxR from Vibrio cholerae. Once amplified, this region was inserted into SEQ ID NO.: 13 (pMPX-6) using KpnI and HindIII to create SEQ ID NO.:20.

Using PFX polymerase (Invitrogen) oligonucleotide SEQ ID NO.:111, 112, 113 and 114 were used to amplify invasin residues 490-986 (inv) from Yersinia pseudotuberculosis chromosomal DNA and form a translational fusion between the transmembrane domain of toxR from Vibrio cholerae. Once amplified, this region was inserted into SEQ ID NO.:13 (pMPX-6) using EcoRI and PstI to create SEQ ID NO.:21.

These proteins were proof-of-principle constructs used to evaluate the minicell platform. For purposes of this initial evaluation, all proteins except TNF, T-EGF and T-Invasin were cloned into pMPX-5, with these later proteins cloned into pMPX-6 for gene transfer experiments.

Whether the approach for protein expression is co-expression with minicell induction or expression following minicell and/or protoplast isolation, the procedure to transform the expression constructs is the same. To accomplish this, protein constructs were initially cloned into E. coli MG1655 and then into the minicell producing strain of interest.

Transformation events were selected prior to minicell induction. For co-induction of protein and minicells, see the protocol for phoA expression above. For post-minicell and/or protoplast purification induction experiments, following minicell purification and/or protoplast preparation and purification, these cellular bodies were induced for protein production in either LBD or MDT at a minicell or protoplast / volume ratio of 1 X 109 minicells or protoplasts / 1 ml media. Media was supplemented with the appropriate inducer concentration (see Table 6). Protein induction is sensitive to a variety of factors including, but not limited to aeration and temperature, thus reaction volume to surface area ratio is important, as is the method of shaking and temperature of induction. Therefore, each protein must be treated as required to optimize expression. In addition to expression parameters,

10

15

20

25

WO 03/072014 PCT/US02/16877

protoplasted minicells are sensitive to osmotic and mechanical forces. Therefore, protoplast protein induction reactions must also contain 10% sucrose with greater volume to surface area ratios than required for intact minicells to achieve similar aeration at lower revolutions.

Using the T-PhoA as a non-limiting example, protein expression was performed during and following minicell isolation. To accomplish this task, t-phoA co-expressed with minicell induction was compared to t-phoA expressed after minicell isolation. In both cases, overnight minicell-producing parental strains containing pMPX-5::t-phoA were subcultured into LBD supplemented with the appropriate antibiotic. Cultures were grown to OD600 0.1 and induced for minicell production alone or for both minicell and protein production. Both cultures were harvested at OD600 1.0 and minicells produced were harvested as described above. Minicells to be induced for T-phoA production following purification were induced by introducing 1 X 109 purified minicells into a 15 ml culture tube containing 1 ml MDT with 1 mM L-rhamnose. Minicell protein induction was allowed to proceed for up to 14 hours and compared to protein production obtained using the co-expression approach. For each approach, minicells were fractionated and analyzed for membrane association, total protein, and membrane association-dependent enzymatic activity. These observations were compared to post-induction, pre-isolation parental cell/minicell (PC/MC) mixtures from the coexpressed reactions. The first observation was that co-expression of minicell and protein induction was superior to post-minicell purification induction (Table 18). However, although the kinetics are slower for the post-minicell purification induction protocol, the end result is equivalent.

TABLE 18. COMPARATIVE EXPRESSION: CO-EXPRESSION VERSUS POST MINICELL PURIFICATION INDUCTION

Time of induction	Purified minicell induction a	Co-expression induction ^a
1.0	8.0	-
2.0	-	812.2
4.0	70.0	-
14.0	445.0	-

a. Nanogram expressed T-PhoA per 1 X 109 minicells.

10

20

WO 03/072014 PCT/US02/16877

Using the co-expression induction procedure, the amount of membrane-associated T-PhoA was measured and compared for both parental cells and minicells. Briefly, following co-expression induction of T-PhoA and minicells, minicells were purified and their membranes isolated. For membrane isolation, minicells containing expressed T-PhoA were subjected to three rounds of freeze-thaw lysis in the presence of 10 µg/ml lysozyme. Following freeze-thaw cycling, the reaction was subjected to sonication. Sonicated material was centrifuged at 6,000 rpm in a microcentrifuge for 5 min at room temperature. Supernatants were transferred to a fresh 1.5 ml Eppendorf tube and centrifuged at 70,000 rpm using a TLA-100 rotor. Following centrifugation, the pellet was resuspended in buffer and analyzed for total T-PhoA protein (Table 19) and T-PhoA enzyme activity (Table 20).

TABLE 19: MEMBRANE ASSOCIATED T-PHOA: PARENTAL CELLS VERSUS MINICELLS

		-		Protein	T-PhoA	T-PhoA
	Protein	T-PhoA	T-PhoA	membrane	membrane	% membrane
Cell type ^a	total ^a	total ^b	% total	associated a	associated b	protein total
Parental cells	107.5	5.3	4.9	10.7	3.1	29.0
Minicells	4.6	0.8	17.5	1.0	0.5	50.0
Minicells EQ b	25.2	4.4	-	5.5	2.7	-

- a. Total protein as determined by BCA assay (Pierce)
 - b. Microgram expressed T-PhoA per 1 X 10⁹ minicells as determined via Western using an anti-

PhoA antibody (Sigma) versus a PhoA standard curve (BCA determined).

c. Equivalent membrane lipid to parental cell

TABLE 20: PHOA ENZYMATIC ACTIVITY (RELATIVE UNITS): PARENTAL CELLS VERSUS MINICELLS.

Cell type ^b	Unlysed	Lysed, total	Lysed, membrane
Parent cell	-	358	240
Minicell	275	265	211
Minicell EQ c	1,504	1,447	1,154

a. Activity determined colorimetrically using PNPP measuring optical density at 405 nm

10

15

20

25

30

WO 03/072014 PCT/US02/16877

b. Based on 1X 109 parental cells or minicells per reaction

c. Equivalent membrane lipid to parental cell

These results suggest that co-expression induction of T-PhoA and minicells together results in minicells containing an equivalent amount of T-PhoA produced in both parental cells and minicells. However, the percent of T-PhoA compared to total protein is 3.5X greater in minicells than in parental cells. Furthermore, of the protein made, T-PhoA constitutes 50% of the total membrane protein in minicells, whereas it is only 29% in parental cells. It should be noted that the T-PhoA protein associated with the membrane can be easily removed by treatment with mild, non-ionic detergent suggesting that the T-PhoA present in the membrane pellet is indeed associated with the membrane and not an insoluble, co-sedimenting precipitate (data not shown). Finally, PhoA is a periplasmic enzyme that requires export to the periplasmic space for proper folding and disulfide bond formation. Both of which are required for enzymatic activity. In the time course of this experiment, expression of $\Delta PhoA$ lacking a leader sequence does not demonstrate enzymatic activity. Furthermore, there is no difference between unlysed and lysed minicells containing expressed T-PhoA (Table 20) also demonstrating that the PhoA enzyme domain of the T-PhoA chimera must be present in the periplasmic space. Therefore, the T-PhoA construct must membrane associate and the PhoA domain must orient into the periplasmic space for enzymatic activity. Thus, when comparing equivalent amounts of membrane lipid between parental cells and minicells in Table 20, membrane association-dependent T-PhoA activity is almost 5X greater than in parental cells. Taking into account the data in Table 19 where 50% of T-PhoA is in the membrane compared to 29% in parental cells, the difference in T-PhoA membrane association is not sufficient to explain the almost 5X increase in minicell activity. These observations suggest that minicells contain a capacity to support more expressed membrane protein than parental cells and that the protein that associates with the membrane is more active. This activity may be simply result from minicells allowing greater efficiency of folding and disulfide bond formation for this particular protein. However, do to the fact that minicells do not contain chromosome, it is also possible that the overexpression of this protein is readily finding membrane-binding sites in the absence of chromosomally produced competitors present in parental cells. Furthermore, overexpression of proteins often leads to increased protease expression. Because minicells do not contain chromosome, these otherwise degraded surplus T-PhoA is allowed the continued opportunity to insert and

10

15

WO 03/072014 PCT/US02/16877

properly fold in the membrane, an attribute that could lend favor to overexpression of more complex membrane proteins.

EXAMPLE 18: EXEMPLARY METHODS TO INDUCE AND STUDY COMPLEX MEMBRANE PROTEINS

Expression of non-native (exogenous) complex membrane proteins in bacterial systems can be difficult. Using the minicell system, we are able to eliminate toxicity issues. However, issues still remain with proper translation, compartmentalization at the membrane, insertion in the membrane and proper folding for native activity. To account for these potential problems we have constructed a modular chimeric system that incorporates leader sequences and chaperone-recognized soluble domains that are native to our bacterial minicell system. In addition, we created modular constructs that overexpress the native chaperones groESL and trigger factor (tig). Finally, we have constructed minicell-producing strains that contain mutations that effect protein export and disulfide bond formation. For non-limiting examples of these constructs see Table 21.

TABLE 21: NON-LIMITING TOOLS FOR EXOGENOUS COMPLEX PROTEIN SYNTHESIS AND FUNCTION

Tool	Ref.	Residues of sequence	Purpose	SEQ ID NO
pMPX-5::phoA leader	_	1-48	Membrane targeting	22
pMPX-5::phoA leader	_	1-494	Membrane targeting	23
pMPX-5::malE leader	1	1-28	Membrane targeting	24
pMPX-5::malE leader	1	1-370	Membrane targeting	25
pMPX-17 (groESL, tig)	-	-	Chaperone	26
pMPX-5::trxA::FLAG	2	2-109 a	Solubility	27

a. Residues do not include FLAG sequence.

20 References to Table 21.

- 1. Grisshammer, R., et al. 1993. Expression of a rat neurotensin receptor in Escherichia coli. Biochem. J. 295:571-576.
- 2. Tucker, J., and R. Grisshammer. 1996. Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem. J. 317:891-899.

TABLE 22: OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 21 CONSTRUCTS

SEQ ID NO.:	Primer name	5' to 3' sequence
115	PhoA lead-1	GTCACGGCCGAGACTTATAGTCGC
116	PhoA lead-2	GGTGTCCGGGCTTTTGTCACAGG
117	PhoA lead-1-PstI	CGCGGCTGCAGATGTCACGGCCGAGACTTATA GTCGC
118	PhoA lead-2-XbaI	CGCGGTCTAGATTCTGGTGTCCGGGCTTTTGTC ACAGG
119	PhoA complete	CAGCCCCAGAGCGGCTTTCATGG
120	PhoA complete-2-XbaI	CGCGGTCTAGATTTCAGCCCCAGAGCGGCTTTC ATGG
121	MalE lead-1	CGCGGCTGCAGATGAAAATAAAAACAGGTGCA CGCATCCTCGCATTATCCGCATTAACGACGATG ATGTTTTCCGCCTCGGCTCTCGCCAAAATCTCT AGACGCGG
122	MalE lead-2	CCGCGTCTAGAGATTTTGGCGAGAGCCGAGGC GGAAAACATCATCGTCGTTAATGCGGATAATG CGAGGATGCGTGCACCTGTTTTTATTTTCATCT GCAGCCGCG
123	MalE-1	GGTGCACGCATCCTCGCATTATCCGC
124	MalE-2	CGGCATACCAGAAAGCGGACATCTGC
125	MalE-1-PstI	CGCGGCTGCAGATGAAAATAAAAACAGGTGCA CGCATCCTCGCATTATCCGC
126	MalE-2-XbaI	CGCGGTCTAGAACGCACGGCATACCAGAAAGC GGACATCTGC
127	Tig-1	CGCGACAGCGCGCAATAACCGTTCTCG
128	Tig-2	GCTGGTTCATCAGCTCGTTGAAAGTGG
129	Tig-1-NarI	GCGCCGGCGCATACGCGACAGCGCGCAATAA CCGTTCTCG
130	Tig-2-XbaI	GGCGCTCTAGATTATTATTACGCCTGCTGGTTC ATCAGCTCGTTGAAAGTGG
131	Gro-1	GGTAGCACAATCAGATTCGCTTATGACGG
132	Gro-2	GCCGCCCATGCCACCCATGCCGCCC
133	Gro-1-XbaI	GCGTCTAGAGGTAGCACAATCAGATTCĢCTTAT GACGG
134	Gro-2-HindIII	GGCGCAAGCTTATTATTACATCATGCCGCCCAT GCCACCCATGCCGCCC

10

15

20

WO 03/072014 PCT/US02/16877

SEQ ID NO.:	Primer name	5' to 3' sequence
135	TrxA-1	GCGATAAAATTATTCACCTGACTGACG
136	TrxA-2	GCGTCGAGGAACTCTTTCAACTGACC
137	TrxA-1-Fxa-PstI	CGCGGCTGCAGATGATCGAAGCCCGCTCTAGA CTCGAGAGCGATAAAATTATTCACCTGACTGAC G
138	TrxA-2-FLAG-BamHI	CCGCGGGATCCTTATTAATCATCATGATCTTTA TAATCGCCATCATGATCTTTATAATCCTCGAGC GCCAGGTTAGCGTCGAGGAACTCTTTCAACTGA CC

Oligonucleotides SEQ ID NOS.:115, 116, 117 and 118 were used to amplify the phoA leader (residues 1-49) from E. coli chromosomal DNA. Once amplified, this region was inserted into SEQ ID NO.: 6 (pMPX-5) using PstI and XbaI to create SEQ ID NO.:22.

Oligonucleotides SEQ ID NOS.:115, 117, 119 and 120 were used to amplify the complete phoA gene from E. coli chromosomal DNA. Once amplified, this region was inserted into SEQ ID NO.: 6 (pMPX-5) using PstI and XbaI to create SEQ ID NO.23.

Oligonucleotides SEQ ID NOS.:121 and 122 were used to construct the malE leader (residues 1-28) sequence. Once annealed, this construct was inserted into SEQ ID NO.: 6 (pMPX-5) using PstI and XbaI to create SEQ ID NO.:24.

Oligonucleotides SEQ ID NOS.:123, 124, 125 and 126 were used to amplify the malE expanded leader (residues 1-370) from E. coli chromosomal DNA. Once amplified, this region was inserted into SEQ ID NO.: 6 (pMPX-5) using PstI and XbaI to create SEQ ID NO.:25.

Oligonucleotides SEQ ID NOS.:127, 128, 129 and 130 were used to amplify the tig control and gene region from E. coli chromosomal DNA. Once amplified, this region was ligated to the groESL amplified region below using XbaI prior to insertion into SEQ ID NO.: 6 (pMPX-5) using NarI (from the tig region) and HindIII (from the groESL region) to create SEQ ID NO.:26.

Oligonucleotides SEQ ID NOS.:131, 132, 133 and 134 were used to amplify the groESL control and gene region from E. coli chromosomal DNA. Once amplified, this region was ligated to the tig amplified region above using XbaI prior to insertion into SEQ ID NO.: 6 (pMPX-5) using NarI (from the tig region) and HindIII (from the groESL region) to create SEQ ID NO.:26.

10

15

20

25

30

WO 03/072014 PCT/US02/16877

Oligonucleotides SEQ ID NOS.:135, 136, 137 and 138 were used to amplify trxA (residues 2-109) from E. coli chromosomal DNA and insert FLAG and Factor Xa sequences. Once amplified, this region was inserted into SEQ ID NO.: 6 (pMPX-5) using PstI and BamHI to create SEQ ID NO.:27.

By way of non-limiting example, the pMPX-5::phoA leader (residues 1-48), pMPX-5::phoA leader (residues 1-494), pMPX-5::malE leader (residues 1-28), and pMPX-5::malE leader (residues 1-370) constructs are designed to direct expressed exogenous membrane proteins to the minicell cytoplasmic membrane. In addition to these constructs, By way of non-limiting example, mutations in E. coli genes secA and secY, specifically mutation prlA4 (Strader, J., et al. 1986. Kinetic analysis of lamB mutants suggests the signal sequence plays multiple roles in protein export. J. Biol. Chem. 261:15075-15080), permit promiscuous targeting to the membrane. These mutations, like the above constructs are integrated into the minicell expression system. To complement these mutations, the chaperone complex groESL and trigger factor have also been incorporated into the expression system. By way of nonlimiting example, pMPX-5::trxA::FLAG will be used to create a carboxy-terminal fusion to the protein of interest to increase the membrane insertion efficiency of the membrane protein of interest (Tucker, J., and R. Grisshammer. 1996. Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem. J. 317:891-899). Also By way of nonlimiting example, pMPX-5::FLAG::toxR and pMPX-5::FLAG::\(\lambda \)cI constructs will be prepared to create a carboxy-terminal fusion to the protein of interest for use in a reporterbased assay for protein-protein interactions. By way of non-limiting example, the protein of interest for this system is a GPCR. Also By way of non-limiting example, this GPCR may be the neurotensin receptor from rat (Grisshammer, R., et al. 1993. Expression of a rat neurotensin receptor in Escherichia coli. Biochem. J. 295:571-576.), or the β2 adrenergic receptor from humans (Freissmuth, M., et al. 1991. Expression of two β-adrenergic receptors in Escherichia coli: functional interaction with two forms of the stimulatory G protein. Proc. Natl. Acad. Sci. 88:8548-8552). Insertion of a GPCR into one of these reporter constructs creates a carboxy-terminal fusion between the GPCR of interest and the DNA-binding regulatory domain of the ToxR positive activator, the λcI repressor, or the AraC positive activator. To complete this reporter system, By way of non-limiting example pMPX-5::(X)::toxR or pMPX-5::(X)::λcI will be used to create a carboxy-terminal fusion to the protein of interest for use in a reporter-based assay for protein-protein interactions, where (X) may be any protein or molecule involved in an intermolecular or intramolecular interaction. By way of non-limiting example, this molecule of interest may be a G-protein.

10

15

20

25

30

WO 03/072014 PCT/US02/16877

This G-protein may be the Gail-protein from rat (Grisshammer, R., and E. Hermans. 2001. Functional coupling with $G\alpha q$ and $G\alpha i1$ protein subunits promotes high-affinity agonist binding to the neurotensin receptor NTS-1 expressed in Escherichia coli. FEBS Lett. 493:101-105), or the $G_{s\alpha}$ -protein from human (Freissmuth, M., et al. 1991. Expression of two β-adrenergic receptors in Escherichia coli: functional interaction with two forms of the stimulatory G protein. Proc. Natl. Acad. Sci. 88:8548-8552). Like the GPCR, insertion of a G-protein into one of these reporter constructs creates a carboxy-terminal fusion between the G-protein of interest and the DNA-binding regulatory domain of the ToxR positive activator, the \(\lambda \text{cI repressor, or other regulatory protein. Finally, these plasmid constructs contain the DNA-binding domain of each regulator; the ctx regulatory region from Vibrio cholerae (Russ, W. P., and D. M. Engelman. 1999. TOXCAT: a measure of transmembrane helix association in a biological membrane. 96:863-868), or the Pr10r1 region of bacteriophage lambda (Hu, J. C., et al. 1990. Sequence requirements for coiledcoils: analysis with lambda repressor-GCN4 leucine zipper fusions. Science. 250:1400-1403), respectively. By way of non-limiting example, each binding domain is coupled to a reporter sequence encoding luciferase (Dunlap, P. V., and E. P. Greenberg. 1988. Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-luxR protein regulatory circuit. J. Bacteriol. 170:4040-4046), green fluorescent protein (GFP) (Yang, T. T., et al. 1996. Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene. 173:19-23; Matthysse, A. G., et al. 1996. Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol. Lett. 145:87-94), or other reporter. Co-expression of these GPCR and Gprotein chimeras will create a system measuring the interaction between a GPCR and Gprotein within an intact minicell. This system is designed to be used as a positive or negative read-out assay and may be used to detect loss or gain of GPCR function. Although the GPCR-G-protein interaction is provided as an example, this modular system may be employed with any soluble or membrane protein system measuring protein-protein or other intermolecular interaction.

EXAMPLE 19: EXEMPLARY METHODS FOR GENE TRANSFER USING MINICELLS OR MINICELL PROTOPLASTS

Included in the design of the invention is the use of minicells to transfer genetic information to a recipient cell. By way of non-limiting example, this gene transfer may occur between a minicell and a mammalian cell in vitro, or in vivo, and this gene transfer may

10

15

20

25

30

WO 03/072014 PCT/US02/16877

occur through cell-specific interactions, through general interactions, or a combination of each. To accomplish this task three basic constructs were created. Each of these constructs is created in pMPX-6 which contains a CMV promotor controlling the synthesis of GFP. The plasmid pMPX-6 was constructed by cloning the araC through the multiple cloning site of pBAD24 into pEGFP (Clontech). This construct provided a bacterial regulator as well as a method to monitor the success of gene transfer using GFP expression form the CMV promotor. In design, the protein expressed using the bacterial promotor will drive the cellcell interaction, while the successful transfer of DNA from the minicell to the recipient cell will initiate the production of GFP. By way of non-limiting example, proteins that will drive the cell-cell interaction may be the invasin protein from Yersinia pseudotuberculosis, which stimulates 81 integrin-dependent endocytic events. To properly display the invasin protein on the surface of minicells, the domain of invasin that stimulates these events (residues 490-986) (Dersch, P., and R. R. Isberg. 1999. A region of the Yersinia pseudotuberculosis invasin protein enhances integrin-mediated uptake into mammalian cells and promotes selfassociation. EMBO J. 18:1199-1213) was fused to the transmembrane domain of ToxR. Expression of this construct from pMPX-6 will display T-Inv on the surface of the minicell and stimulate endocytosis with any cell displaying a \beta 1 integrin. Thus, T-Inv display will provide a general mechanism of gene transfer from minicells. To provide specificity, By way of non-limiting example, the ligand portion of epidermal growth factor (EGF) may be fused to the transmembrane domain of ToxR, thus creating a protein that will interact with cells displaying the EGF receptor (EGFR). Likewise, tumor nucrosis factor (TNF) may also serve this purpose by stimulating cell-cell interactions between minicells displaying TNF and cells displaying TNF receptor (TNFR). Although EGF-EGFR and TNF-TNFR interactions may stimulate cell-cell fusion between minicells and recipient cells, or minicell uptake, this alone may not be sufficient to efficiently transfer genetic information from minicells. Therefore, a genetic approach to increasing the cell-cell genetic transfer may be the development of a genetic switch that senses the specificity interaction, e.g. EGF-EGFR interaction, and turns on the production of a second gene product, e.g. invasin, that stimulates the endocytic event. By way of non-limiting example, this genetic switch may be similar to the GPCR-G-protein interaction reporter system above, in that an extracellular event stimulates the dimerization of a transcriptional active regulator, thus turning on the production of invasin or invasin-like protein. In either approach, the display system to stimulate transfer of genetic information from minicells to recipient cells may also be applicable to the transfer of substances other than genetic information, e.g. pre-synthesized therapeutic drugs.

10

15

20

30

WO 03/072014 PCT/US02/16877

To test this targeting methodology, different pMPX-6 constructs containing each of these general or specific cell-cell interaction proteins will be transformed into a minicell producing strain and either by co-expression induction of minicells, by post-minicell purification induction, or by post-protoplasting induction, minicells displaying the targeting protein of interest will be produced. When using the co-expression induction and postminicell purification induction of the targeting protein approaches, it is necessary to protoplast the purified minicells after protein induction. Once the targeting protein has been displayed on the surface of a minicell protoplast, these protoplasts are ready to be exposed to target cells. For preliminary experiments these interactions will be monitored using cell culture of Cos cells in comparison to lipofectamine (Invitrogen), electroporation, and other transfection techniques. Initial experiments will expose protoplasts displaying T-Inv to Cos cells and compare the transfection efficiency to protoplast containing pMPX-6::t-inv in the absence of t-inv expression, naked pMPX-6::t-inv alone, and naked pMPX-6::t-inv with lipofectamine. Each of these events will be monitored using fluorescent microscopy and/or flow cytometry. From these results the specific targeting apparatus proteins will be tested. Using A-431 (display EGFR) and K-562 (no EGFR) cell lines, the pMPX-6::t-egf constructs will be tested. Using the same approaches as for the t-inv study, the level of transfection between A-431 and K-562 cell lines will be measured and compared to those achieved using lipofectamine. Similarly, the ability of TNF to stimulate gene transfer will be studied using L-929 cells. In all cases, the ability of these general and specific targeting protein constructs will be compared to standard transfection techniques. Upon positive results, these methodologies will be tested on difficult to transfect cell lines, e.g. adult cardiomyocytes. The basis of these results will create a foundation for which applications into in vivo gene transfer may occur.

25 EXAMPLE 20: ADDITIONAL AND OPTIMIZED METHODS FOR GENETIC EXPRESSION

Expression in minicells may occur following purification of minicells and/or minicell protoplasts from parental cells and LPS constituents, respectively. However, for some applications it is preferred to co-express proteins of interest with minicell induction. For these approaches, one may use the protocol described in Example 13 for expression of the phoA constructs. Either of these approaches may be accomplished using one or more of the following expression constructs (Table 23) and/or optimized expression constructs (Table 25).

Expression plasmid pCGV1 contains a temperature sensitive lambda cI repressor (cI857) and both lambda PR and PL promoters (Guzman, C. A., et al. 1994. A novel Escherichia coli expression-export vector containing alkaline phosphatase as an insertional inactivation screening system. Gene. 148:171-172) with an atpE initiation region (Schauder, B., et al. 1987. Inducible expression vectors incorporating the Escherichia coli atpE translational initiation region. Gene. 52:279-283). Included in the design of the invention is the modification of this expression vector to best align the required Shine-Delgarno ribosomal binding site with cloning sites. In addition, the pCGVI expression vector was modified to incorporate a stem-loop structure at the 3-prime end of the transcript in order to provide a strong transcriptional stop sequence (Table 23).

Expression plasmid pCL478 contains a temperature sensitive lambda cI repressor (cI857) and both lambda PR and PL promoters (Love, C. A., et al. 1996. Stable high-copy bacteriophage promoter vectors for overproduction of proteins in Escherichia coli. Gene. 176:49-53). Included in the design of the invention is the modification of this expression vector to best align the required Shine-Delgarno ribosomal binding site with cloning sites. In addition, the pCL478 expression vector was modified to incorporate a stem-loop structure at the 3-prime end of the transcript in order to provide a strong transcriptional stop sequence (Table 23).

TABLE 23. LAMBDA CI857 EXPRESSION VECTOR MODIFICATIONS

20

15

5

10

New	Parent	Region	Region added ^a	SEQ ID NO
Plasmid	plasmid	removed		
pMPX-84	pCGV1	NdeI - BamHI	NdeI, SD - PstI, XbaI, KpnI, Stem-loop,	139
		1	BamHI	
pMPX-85	pCGV1	NdeI - BamHI	NdeI, SD - SalI, XbaI, KpnI, Stem-loop,	140
			BamHI	
pMPX-86	pCL478	BamHI - XhoI	BamHI, SD - PstI, XbaI, KpnI, Stem-loop,	141
			XhoI	
pMPX-87	pCL478	BamHI - XhoI	BamHI, SD - Sall, Xbal, KpnI, Stem-loop,	142
			XhoI	

a. "SD" refers to a Shine-Delgarno ribosome-binding sequence; "Stem-loop" refers to a stem-loop structure that functions as a transcriptional stop site.

10

15

20

WO 03/072014 PCT/US02/16877

TABLE 24. OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 23

SEQ ID NO	Primer name	5' to 3' sequence
143	CGV1-1-SalI	TATGTAAGGAGGTTGTCGACCGGCTCAGTCTAGAGGTACCCGCCCTCA TCCGAAAGGGCGTATTG
144	CGV1-2-SalI	GATCCAATACGCCCTTTCGGATGAGGGCGGGTACCTCTAGACTGAGCC GGTCGACAACCTCCTTACA
145	CGV1-1-PstI	TATGTAAGGAGGTTCTGCAGCGGCTCAGTCTAGAGGTACCCGCCCTCA TCCGAAAGGGCGTATTG
146	CGV1-2-PstI	GATCCAATACGCCCTTTCGGATGAGGGCGGGTACCTCTAGACTGAGCC GCTGCAGAACCTCCTTACA
147	CL478-1-SalI	GATCCTAAGGAGGTTGTCGACCGGCTCAGTCTAGAGGTACCCGCCCTC ATCCGAAAGGGCGTATTC
148	CL478-2-SalI	TCGAGAATACGCCCTTTCGGATGAGGGCGGGTACCTCTAGACTGAGCC GGTCGACAACCTCCTTAG
149	CL478-1-PstI	GATCCTAAGGAGGTTCTGCAGCGGCTCAGTCTAGAGGTACCCGCCCTC ATCCGAAAGGGCGTATTC
150	CL478-2-PstI	TCGAGAATACGCCCTTTCGGATGAGGCCGGGTACCTCTAGACTGAGCC GCTGCAGAACCTCCTTAG

Oligonucleoides SEQ ID NOS.: 143 and 144 were annealed to each other to generate a DNA molecule with a 5' overhang at both ends. The overhangs are designed so that the DNA can be directly cloned into pCGVI cut with NdeI (5' overhang is TA) and BamHI (5' overhang is GATC). Insertion of the annealed DNA into pCGVI creates SEQ ID NO.: 139, pMPX-84.

Oligonucleoides SEQ ID NOS.: 145 and 146 were annealed to each other to generate a DNA molecule with a 5' overhang at both ends. The overhangs are designed so that the DNA can be directly cloned into pCGVI cut with NdeI (5' overhang is TA) and BamHI (5' overhang is GATC). Insertion of the annealed DNA into pCGVI creates SEQ ID NO.: 140, pMPX-85.

Oligonucleoides SEQ ID NOS.: 147 and 148 were annealed to each other to generate a DNA molecule with a 5' overhang at both ends. The overhangs are designed so that the DNA can be directly cloned into pCL478 cut with BamHI (5' overlap is GATC) and XhoI (overhang is TCGA). Insertion of the annealed DNA into pCL578 cut with BamHI and XhoI creates SEQ ID NO.: 141, pMPX-86.

Oligonucleoides SEQ ID NOS.: 149 and 150 were annealed to were annealed to each other to generate a DNA molecule with a 5' overhang at both ends. The overhangs are designed so that the DNA can be directly cloned into pCL578 cut with BamHI (5' overlap is

WO 03/072014 PCT/US02/16877

GATC) and XhoI (overhang is TCGA). Insertion of the annealed DNA into pCL478 cut with BamHI and XhoI creates SEQ ID NO.: 142, pMPX-87.

The optimized expression constructs in Table 25 were created from SEQ ID NOS.: 6, 11, and 12 (see Table 13). Modifications were made to optimize the alignment of the SalI or PstI cloning sites with the Shine-Delgarno ribosome-binding site. In addition, stem-loop transcriptional termination sequences were added on the 3' end of the cloning region.

TABLE 25: EXPRESSION CONSTRUCTS

Plasmid	Regulatory element(s)	inducer	Plasmid	SEQ ID NO.:
pMPX-67	RhaRS	Rhamnose	PUC-18	151
pMPX-72	RhaRS	Rhamnose	PUC-18	152
pMPX-66	AraC	Arabinose	PUC-18	153
pMPX-71	AraC	Arabinose	PUC-18	154
pMPX-68	MelR	Melibiose	PUC-18	155

10

TABLE 26. OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 25 CONSTRUCTS

SEQ ID	Primer name	5' to 3' sequence
NO.:		
69	Rha-1	GCGAATTGAGATGACGCCACTGGC
156	Rha-SD	GCAGAACCTCCTGAATTTCATTACGACC
71	Rha-1-HindIII	CGGCGAAGCTTAATTAATCTTTCTGCGAATTGAG
		ATGACGCCACTGGC
157	Rha-SD Sall KpnI	CCGCGGGTACCAATACGCCCTTTCGGATGAGGGC
		GCGGGGATCCTCTAGAGTCGACGTCGACAACCTC
		CTGAATTTCATTACGACC
158	Rha-SD KpnI KpnI	CCGCGGGTACCAATACGCCCTTTCGGATGAGGGC
		GCGGGGATCCTCTAGAGTCGACCTGCAGAACCTC
		CTGAATTTCATTACGACC
81	Ara-1	CAAGCCGTCAATTGTCTGATTCG
159	Ara-SD	CTGCAGGGCCTCCTGCTAGCCCAAAAAAACGGG
		TATGG
83	Ara-1-HindIII	GCGCCAAGCTTCAAGCCGTCAATTGTCTGATTCG
160	Ara-SD Sall KpnI	CCGCGGGTACCAATACGCCCTTTCGGATGAGGGC
		GCGGGGATCCTCTAGAGTCGACGTCGACGGCCTC
		CTGCTAGCCCAAAAAAACGGGTATGG

10

15

20

WO 03/072014 PCT/US02/16877

SEQ ID NO.:	Primer name	5' to 3' sequence
161	Ara-SD PstI KpnI	CCGCGGGTACCAATACGCCCTTTCGGATGAGGGC GCGGGGATCCTCTAGAGTCGACCTGCAGGGCCTC CTGCTAGCCCAAAAAAACGGGTATGG
77	Mel-1	CGTCTTTAGCCGGGAAACG
162	Mel-SD	CCTCCTGGCTTGCTTGAATAACTTCATCATGG
79	Mel-1-HindIII	GCCGCAAGCTTCGTCTTTAGCCGGGAAACG
163	Mel-SD-Sall KpnI	CCGCGGGTACCAATACGCCCTTTCGGATGAGGGC GCGGGGATCCTCTAGAGTCGACCCCCTCCTGGCT TGCTTGAATAACTTCATCATGGC

Oligonucleotides SEQ ID NOS.: 69, 156, 72, and 157 were used to amplify the rhaRS genes and their divergent control region from the E. coli chromosome and insertion of an optimized SalI-Shine-Delgarno ribosome-binding alignment and a stem-loop transcriptional termination sequence. Once amplified, this region was inserted into pUC18 using HindIII and KpnI to create pMPX67, SEQ ID NO.: 151.

Oligonucleotides SEQ ID NOS.: 69, 156, 72, and 158 were used to amplify the rhaRS genes and their divergent control region from the E. coli chromosome and insertion of an optimized PstI-Shine-Delgarno ribosome-binding alignment and a stem-loop transcriptional termination sequence. Once amplified, this region was inserted into pUC18 using HindIII and KpnI to create, pMPX-72, SEQ ID NO.: 152.

Oligonucleotides SEQ ID NOS.: 81, 159, 81, 160 were used to amplify the araC genes and their divergent control region from the E. coli chromosome and insertion of an optimized SalI-Shine-Delgarno ribosome-binding alignment and a stem-loop transcriptional termination sequence. Once amplified, this region was inserted into pUC18 using HindIII and KpnI to create, pMPX-66, SEQ ID NO.: 153.

Oligonucleotides SEQ ID NOS.: 81, 159, 81, 161 were used to amplify the araC genes and their divergent control region from the E. coli chromosome and insertion of an optimized PstI-Shine-Delgarno ribosome-binding alignment and a stem-loop transcriptional termination sequence. Once amplified, this region was inserted into pUC18 using HindIII and KpnI to createm pMPX-71, SEQ ID NO.: 154.

WO 03/072014 PCT/US02/16877

Oligonucleotides SEQ ID NOS.: 77, 162, 79, 163 were used to amplify the melR genes and their divergent control region from the E. coli chromosome and insertion of an optimized Sall-Shine-Delgarno ribosome-binding alignment and a stem-loop transcriptional termination sequence. Once amplified, this region was inserted into pUC18 using HindIII and KpnI to create, pMPX-68, SEQ ID NO.: 155.

EXAMPLE 21: OPTIMIZATION OF RAT NEUROTENSIN RECEPTOR (NTR) EXPRESSION

Expression of specific GPCR proteins in minicells may require chimeric domain

fusions_to stabilize the expressed protein and/or direct the synthesized protein to the
membrane. The NTR protein from rat was cloned into several chimeric combinations to
assist in NTR expression and membrane association (Grisshammer, R., et al. 1993.

Expression of a rat neurotensin receptor in Escherichia coli. Biochem. J. 295:571-576;
Tucker, J., and Grisshammer, R. 1996. Purification of a rat neurotensin receptor expressed
in Escherichia coli. Biochem. J. 317:891-899). Methods for construction are shown the
Tables below.

TABLE 27. NEUROTENSIN RECEPTOR EXPRESSION FACILITATING CONSTRUCTS

Protein ^a	Construct ^b	SEQ ID
		NO
MalE(L)	SalI-MalE (1-370)-Factor Xa-NTR homology	164
NTR	Factor Xa-NTR (43-424)-NotI-FLAG-KpnI	165
MalE(L)-NTR	SalI-MalE(1-370)-Factor Xa-NTR(43-424)-NotI-FLAG-	166
, ,	KpnI	
MalE(S)-NTR	SalI-MalE(1-28)-Factor Xa-NTR(43-424)-NotI-FLAG-	167
	KpnI	
TrxA	NotI-TrxA(2-109)-NotI	168
MalE(L)-NTR-	SalI-MalE(1-370)-Factor Xa-NTR(43-424)-NotI-	169
TrxA	TrxA(2-109)-FLAG-KpnI	
MalE(S)-NTR-TrxA	SalI-MalE(1-28)-Factor Xa-NTR(43-424)-NotI-TrxA(2-	170
• •	109)-FLAG-KpnI	

a. (L) refers to MalE residues 1-370, and (S) refers to MalE residues 1-28.

20

b. All mature constructs were cloned into SalI and KpnI sites of SEQ ID NOS.: 140, 142, 151 and 153.

TABLE 28. OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 27

SEQ ID NO.:	Primer name	5' to 3' sequence
171	MalE-1	GGTGCACGCATCCTCGCATTATCCGC
172	MalE-2	CGCACGGCATACCAGAAAGCGGACATCTGCG
173	MalE-1-SalI	CCGCGGTCGACATGAAAATAAAAACAGGTGCACGC
		ATCCTCGC
174	MalE-2-XaNTR	GCCGTGTCGGATTCCGAGGTGCGGCCTTCGATACGC
		ACGGCAT
		ACCAAGAAAGCGGGATGTTCGGC
175	NTR-1	CCTCGGAATCCGACACGGCAGGGC
176	NTR-2	GTACAGGGTCTCCCGGGTGGCGCTGG
177	NTR-1-Xa	CCGCGATCGAAGGCCGCACCTCGGAATCCGACACG
		GCAGGGCC
178	NTR-2-Flag	GGCGCGGTACCTTTGTCATCGTCATCTTTATAATCT
		GCGGCCGC
		GTACAGGGTCTCCCGGGTGGCGCTGGTGG
179	NTR-2-Stop KpnI	GCGGCGGTACCTTATTATTTGTCATCGTCATCTTTAT
		AATCTGC
		GGCCGCG
180	NTR-1-Xa Lead	CCGCATTAACGACGATGATGTTTTCCGCCTCGGCTC
		TCGCCAAA
		ATCATCGAAGGCCGCACCTCGGAATCCGACACGGC
181	NTR-2-Lead2 SalI	CCGCGGTCGACATGAAAATAAAAACAGGTGCACGC
		ATCCTCGC
		ATTATCCGCATTAACGACGATGATGTTTTCCGCCTC
		GGC
182	TrxA-1	CCGCGAGCGATAAAATTATTCACCTGACTGACG
183	TrxA-2	GCCCGCCAGGTTAGCGTCGAGGAACTCTTTCAACTG
		ACC
184	TrxA-1-NotI	GCGGCCGCAAGCGATAAAATTATTCACCTGACTGA CG
185	TrxA-2-NotI	GGCGCTGCGGCCGCATCATCATGATCTTTATAATCG CC

Oligonucleotides SEQ ID NOS.: 171, 172, 173 and 174 were used to amplify malE residues 1-370 from the E. coli chromosome to create SEQ ID NO.: 164. Using overlap PCR with the extended NTR homology, a chimeric translational fusion was made between MalE (1-370) and NTR residues 43-424 (SEQ ID NO.: 165) to create a SEQ ID NO.: 166. SEQ ID NO.: 166 was cloned into plasmids pMPX-85, pMPX-87, pMPX-66 and pMPX-67 (respectively, SEQ ID NOS.: 140, 142, 151 and 153) using SalI and KpnI.

Three-step PCR with oligonucleotides, SEQ ID NOS.: 175 and 176 as primers was used to amplify NTR residues 43-424 from rat brain cDNA. SEQ ID NOS.: 177 and 178 were then used with the NTR (43-424) template to add factor Xa and FLAG sequence.

10

15

20

25

30

WO 03/072014 PCT/US02/16877

Finally, SEQ ID NOS.: 177 and 179 were used to add a KpnI site to create SEQ ID NO.: 165. Using overlap PCR with malE(1-370) containing extended NTR homology, a chimeric translational fusion was made between NTR (43-424) and MalE (1-370) (SEQ ID NO.: 164) to create a SEQ ID NO.: 166. SEQ ID NO.: 166 was cloned into SEQ ID NOS.: 140, 142, 151 and 153 using SalI and KpnI.

Using three-step PCR oligonucleotides SEQ ID NOS.: 175 and 176 were first used to amplify NTR residues 43-424 from rat brain cDNA. SEQ ID NOS.: 178 and 180 were then used with the NTR (43-424) template to add factor Xa and FLAG sequence. Finally, SEQ ID NOS.: 179 and 181 were used to add KpnI to create SEQ ID NO.: 167. SEQ ID NO.: 167 was cloned into SEQ ID NOS.: 140, 142, 151 and 153 using SalI and KpnI.

Oligonucleotides SEQ ID NOS.: 182, 183, 184 and 185 were used to amplify TrxA residues 2-109 from the E. coli chromosome to create SEQ ID NO.: 168. Using NotI, TrxA residues 2-109 was cloned into SEQ ID NOS.: 166 and 167 to create SEQ ID NOS.: 169 and 170, respectively. SEQ ID NO.: 169 and 170 were cloned into SEQ ID NOS.: 140, 142, 151 and 153 using SalI and KpnI.

EXAMPLE 22: METHODS FOR FUNCTIONAL GPCR ASSAY

Functional G-protein-coupled receptor (GPCR) binding assays in minicells requires expression of a GPCR of interest into the minicell membrane bilayer and cytoplasmic expression of the required G-protein. For these purposes, constructs were created to coexpress both a GPCR and a G-protein. To regulate the ratio of GPCR to G-protein, transcriptional fusions were created. In these constructs, the GPCR and G-protein are cotranscribed as a bi-cistronic mRNA. To measure the GPCR-G-protein interaction in the intact minicell, each protein was created as a chimera with a transactivation domain. For these studies the N-terminal DNA-binding, activation domain of the ToxR protein from V. cholerae was fused to the C-terminus of both the GPCR and G-protein. Finally, to measure the interaction GPCR-G-protein interaction, the ToxR-activated ctx promoter region was cloned in front of lacZ. Dimerization of the ToxR DNA-binding region will bind and activate the ctx promoter. In this construct, heterodimerization of the GPCR and G-protein will promote dimerization of ToxR that will be monitored by LacZ expression. Details of these constructs are shown in Table 29.

TABLE 29. FUNCTIONAL HUMAN GPCR CONSTRUCTS

Protein a, b	Construct a, b	SEQ ID
		NO.:
β2AR	SalI-β2AR-PstI, XhoI	186
GS1α	XhoI-GS1α–XbaI	187
β2AR-GS1α fusion	SalI-β2AR-PstI, XhoI-GS1α-XbaI	188
β2AR-stop	SalI-β2AR-PstI-Stop-SD-XhoI	189
β2AR-stop-GS1α	SalI-β2AR-PstI-Stop-SD-XhoI-GS1α-XbaI	190
ToxR	ClaI-ToxR-XbaI	191
GS1α	XhoI-GS1α-ClaI	192
GS2α	XhoI-GS2α-ClaI	193
Gαq	XhoI-Gqα-ClaI	194
Giα	XhoI-Giα-ClaI	195
Gα12/13	XhoI-Gα12/13-ClaI	196
GS1α-ToxR	XhoI-GS1α-ClaI-ToxR-XbaI	197
GS2α-ToxR	XhoI-GS2α-ClaI-ToxR-XbaI	198
Gaq-ToxR	XhoI- Gαq -ClaI-ToxR-XbaI	199
Giα-ToxR	XhoI-Giα-ClaI-ToxR-XbaI	200
Gα12/13-ToxR	XhoI- Gα12/13-ClaI-ToxR-XbaI	201
ToxR	PstI-ToxR-XhoI	202
β2AR	SalI-β2AR-PstI	203
β2AR-ToxR	SalI-β2AR-PstI-ToxR-Stop-SD-XhoI	204
β2AR-ToxR-stop-	SalI-β2AR-PstI-ToxR-Stop-SD-XhoI-GS1α-ClaI-ToxR-XbaI	205
GS1α-ToxR		
Pctx	XbaI-Pctx-lacZ homology	206
lacZ	Pctx homology-lacZ-XbaI	207
Pctx::lacZ	XbaI-Pctx-lacZ-XbaI	208

a. "SD" refers to the Shine-Delgarno ribosome-binding sequence and "ToxR" refers to the transactivation, DNA-binding domain of the ToxR protein (residues 5-141).

10 TABLE 30. OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 29.

SEQ ID	Primer	5' to 3' sequence
NO.:	name	
209	β2AR-1	GGGGCAACCCGGGAACGGCAGCGCC
210	β2AR-2	GCAGTGAGTCATTTGTACTACAATTCCTCC
211	β2AR-1-	CGCGGTCGACATGGGGCAACCCGGGAACGGCAGCGCC
	SalI	,
212	β2AR-2-	GGCTCGAGCTGCAGGTTGGTGACCGTCTGGCCACGCTC
	Link-XhoI	TAGCAGTGAGTCATTTGTACTACAATTCC
213	GS1α-1	GGGCTGCCTCGGGAACAGTAAGACCGAGG
214	GS1α-2	GAGCAGCTCGTACTGACGAAGGTGCATGC
215	GS1α-1-	GGAGGCCCTCGAGATGGGCTGCCTCGGGAACAGTAAG
	XhoI	ACCGAGG

b. All mature constructs were cloned into SalI and XbaI sites of SEQ ID NOS.: 140, 142, 151 and 153.

SEQ ID	Primer	5' to 3' sequence
NO.:	name	
216	GS1α-2-	CCTCTAGATTATTATCGATGAGCAGCTCGTACTGACGA
	XbaI	AGGTGCATGC
217	GS1α-2-	CCATCGATGAGCAGCTCGTACTGACGAAGGTGCATGC
	ClaI	
218	Gα12-1	CCGGGGTGCTGCGGACCCTCAGCCGC
219	Gα12-2	CTGCAGCATGATGTCCTTCAGGTTCTCC
220	Gα12-1-	GCGGGCTCGAGATGTCCGGGGTGGTGCGGACCCTCAGC
	XhoI	CGC
221	Gα12-2-	GCGCCATCGATCTGCAGCATGATGTCCTTCAGGTTCTCC
	ClaI	
222	Gaq-1	GACTCTGGAGTCCATCATGGCGTGCTGC
223	Gaq-2	CCAGATTGTACTCCTTCAGGTTCAACTGG
224	Gαq-1-XhoI	ATGACTCTGGAGTCCATCATGGCGTGCTGC
225	Gαq-2-ClaI	GCGCCATCGATGACCAGATTGTACTCCTTCAGGTTCAACT
_ ,		GG
226	Giα-1	GGGCTGCACCGTGAGCGCCGAGGACAAGG
227	Giα-2	CCTTCAGGTTGTTCTTGATGATGACATCGG
228	Giα-1-XhoI	ATGGGCTGCACCGTGAGCGCCGAGGACAAGG
229	Giα-2-ClaI	GCGCCATCGATGAAGAGGCCGCAGTCCTTCAGGTTGTTCT
	Giv 2 Citi	TGA
		TGATGACATCGG
230	GS2α-1	GGGCTGCCTCGGGAACAGTAAGACCGAGG
231	GS2α-2	GAGCAGCTCGTACTGACGAAGGTGCATGC
232	GS2α-1-	ATGGGCTGCCTCGGGAACAGTAAGACCGAGG
232	XhoI	
233	GS2α-2-	GCGCCATCGATGAGCAGCTCGTACTGACGAAGGTGCATG
233	ClaI	C
234	β2AR-2-	GGCTCGAGGGCCTCCTTGATTATTACTCGAGGGCCTCC
-2 .	Link-Stop-	TTGATTATTACTGCAGGTTGGTGACCGTCTGGCCACGC
	XhoI	TCTAGCAGTGAGTCATTTGTACTACAATTCC
235	β2AR-2-	CCCTGCAGGTTGGTGACCGTCTGGCCACGCTCTAGCAG
	Link	TGAGTCATTTGTACTACAATTCC
236	Tox (5-	GGACACAACTCAAAAGAGATATCGATGAGTCATATTG
	141)-1B	G
237	Tox (5-	GAGATGTCATGAGCAGCTTCGTTTTCGCG
·	141)-2	
238	Tox (5-	GCGTGGCCAGACGGTCACCAACCTGCAGGGACACAAC
	141)-1-Link	TCAAAAGAGATATCG
239	Tox (5-	CGGGGATCCTCTAGATTATTAAGAGATGTCATGAGCAG
	141)-2-XhoI	CTTCGTTTTCGCG
240	Ctx-1	GGCTGTGGGTAGAAGTGAAACGGGGTTTACCG
241	Ctx-2	CTTTACCATATAATGCTCCCTTTGTTTAACAG
242	Ctx-2-XbaI	CGCGGTCTAGAGGCTGTGGGTAGAAGTGAAACGGGGT
		TTACCG
243	Ctx-2-LacZ	CGACGCCAGTGAATCCGTAATCATGGTCTTTACCATA
		TAATGCTCCCTTTGTTTAACAG
244	LacZ-1	CCATGATTACGGATTCACTGGCCGTCG

10

15

20

25

WO 03/072014 PCT/US02/16877

SEQ ID	Primer	5' to 3' sequence
NO.:	name	
245	LacZ-2	CCAGACCAACTGGTAATGGTAGCGACC
246	LacZ-1-Ctx	GGTAAAGACCATGATTACGGATTCACTGGCCGTCG
247	LacZ-2-	GCGCCTCTAGAAATACGCCCTTTCGGATGAGGGCGTT
	XbaI	ATTATTTTGACACCAGACCAACTGGTAATGGTAGCG
		ACC

Oligonucleotides SEQ ID NOS.: 209, 210, 211 and 212 were used to amplify human β2AR from human cDNA to create SEQ ID NO.: 186. Using SalI and XhoI a translational fusion was made between β2AR and human GS1α (SEQ ID NO.: 187) to create a SEQ ID NO.: 188. SEQ ID NO.: 188 was cloned into SEQ ID NOS.: 140, 142, 151 and 153 using SalI and XbaI.

Oligonucleotides SEQ ID NOS.: 213, 214, 215 and 216 were used to amplify human GS1α from human cDNA to create SEQ ID NO.: 187. Using XhoI and XbaI a translational fusion was made between GS1α and human β2AR (SEQ ID NO.: 186) create SEQ ID NO.: 188. SEQ ID NO.: 188 was cloned into SEQ ID NOS.: 140, 142, 151and 153 using SalI and XbaI.

Oligonucleotides SEQ ID NOS.: 213, 214, 215 and 217 were used to amplify human GS1α from human cDNA to create SEQ ID NO.: 192. Using XhoI and XbaI a translational fusion was made with ToxR residues 5-141 from Vibrio cholerae (SEQ ID NO.: 191) to create SEQ ID NO.: 197. To be used to create a transcriptional fusion with β2AR-ToxR chimeras as shown in SEQ ID NO.: 205 and future GPCR-ToxR chimeras.

Oligonucleotides SEQ ID NOS.: 218, 219, 220 and 221 were used to amplify human Ga12/13 from human cDNA to create SEQ ID NO.: 196. Using XhoI and XbaI a translational fusion was made with ToxR residues 5-141 from Vibrio cholerae (SEQ ID NO.: 191) to create SEQ ID NO.: 201. To be used to create future transcriptional fusions with GPCR-ToxR chimeras as shown in SEQ ID NO.: 205.

Oligonucleotides SEQ ID NOS.: 222, 223, 224 and 225 were used to amplify human Gaq from human cDNA to create SEQ ID NO.: 194. Using XhoI and XbaI a translational fusion was made with ToxR residues 5-141 from Vibrio cholerae (SEQ ID NO.: 191) to create SEQ ID NO.: 199. To be used to create future transcriptional fusions with GPCR-ToxR chimeras as shown in SEQ ID NO.: 205.

10

15

20

25

WO 03/072014 PCT/US02/16877

Oligonucleotides SEQ ID NOS.: 226, 227, 228 and 229 were used to amplify human Giα from human cDNA to create SEQ ID NO.: 195. Using XhoI and XbaI a translational fusion was made with ToxR residues 5-141 from Vibrio cholerae (SEQ ID NO.: 191) to create SEQ ID NO.: 200. To be used to create future transcriptional fusions with GPCR-ToxR chimeras as shown in SEQ ID NO.: 205.

Oligonucleotides SEQ ID NOS.: 230, 231, 232 and 233 were used to amplify human GS2 α from human cDNA to create SEQ ID NO.: 193. Using XhoI and XbaI a translational fusion was made with ToxR residues 5-141 from Vibrio cholerae (SEQ ID NO.: 191) to create SEQ ID NO.: 198. To be used to create future transcriptional fusions with GPCR-ToxR chimeras as shown in SEQ ID NO.: 205.

Oligonucleotides SEQ ID NOS.: 209, 210, 211 and 234 were used to amplify human β2AR from human cDNA to create SEQ ID NO.: 189. Using SalI and XhoI a transcriptional fusion was made between β2AR and human GS1α (SEQ ID NO.: 187) to create a SEQ ID NO.: 190. SEQ ID NO.: 190 was cloned into SEQ ID NOS.: 140, 142, 151 and 153 using SalI and XbaI.

Oligonucleotides SEQ ID NOS.: 236, 237, 238 and 239 were used to amplify bases coinciding with ToxR residues 5-141 from Vibrio Cholerae to create SEQ ID NO.: 202. Using PstI and XhoI a translational fusion was made between ToxR and human β 2AR (SEQ ID NO.: 203) to create SEQ ID NO.: 204.

Oligonucleotides SEQ ID NOS.: 209, 210, 211 and 235 were used to amplify human β2AR from human cDNA to create SEQ ID NO.: 203. Using SalI and PstI a translational fusion was made between β2AR and ToxR (SEQ ID NO.: 202) to create SEQ ID NO.: 204.

Using oligonucleotides SEQ ID NOS.: 197 and 204 transcriptional fusions were created between the β 2AR-ToxR translational fusion (SEQ ID NO.: 204) and the GS1 α -ToxR translational fusion (SEQ ID NO.: 197) to create SEQ ID NO.: 205.

Oligonucleotides SEQ ID NOS.: 240, 241, 242 and 243 were used to amplify the ctx promoter region (Pctx) from Vibrio cholerae to create SEQ ID NO.: 206. Combining this PCR product in combination with the SEQ ID NO.: 207 PCR product and amplifying in the presence of SEQ ID NOS.: 242, 247, SEQ ID NO.: 208 was created. Using XbaI, the SEQ

15

20

WO 03/072014 PCT/US02/16877

ID NO.: 208 reporter construct was subsequently cloned into pACYC184 for cotransformation with the GPCR-G-protein fusions constructs above.

Oligonucleotides SEQ ID NOS.: 244, 245, 246 and 247 were used to amplify the lacZ from E. coli to create SEQ ID NO.: 207. Combining this PCR product in combination with the SEQ ID NO.: 206 PCR product and amplifying in the presence of SEQ ID NOS.: 242 and 247, SEQ ID NO.: 208 was created. Using XbaI, the 208 reporter construct was subsequently cloned into pACYC184 for co-transformation with the GPCR-G-protein fusions constructs above.

10 EXAMPLE 23. MODULAR MEMBRANE-TARGETING AND SOLUBILIZATION EXPRESSION CONSTRUCTS

To produce membrane proteins efficiently in minicells it may be necessary to create chimeric fusions with the membrane protein of interest. In this Example ,various regions of the MalE protein have been cloned into a modular expression system designed to create chimeric fusions with direct difficult to target membrane proteins to produce leader domains that will direct the proteins to the cytoplasmic membrane (Miller, K., W., et al. 1998. Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon. Appl. Environ. Microbiol. 64:14-20). Similarly, a modified version of the TrxA protein has also been cloned into this modular expression system to create chimeric fusions with proteins that are difficult to maintain in a soluble conformation (LaVallie, E. R., et al. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N. Y.) 11:187-193). Table 31 describes each of these modular constructs.

25 TABLE 31. MODULAR MEMBRANE-TARGETING AND SOLUBILIZATION EXPRESSION CONSTRUCTS

Protein ^a	Construct ^a	SEQ ID NO
MalE (1-28)	NsiI-MalE(1-28)-Factor Xa-PstI, SalI, XbaI-FLAG, NheI	248
MalE (1-370, del 354-364)	NsiI-MalE(1-370, del 354-364)-Factor Xa-PstI, SalI, XbaI-FLAG, NheI	249
TrxA (2-109, del 103- 107)	PstI, SalI, XbaI-TrxA(2-109, del 103-107)-FLAG-NheI	250

Protein ^a	Construct ^a	SEQ ID NO
MalE (1-28)-TrxA (2-109, del 103-107)	NsiI-MalE(1-28)-Factor Xa-PstI, SalI, XbaI-TrxA (2-109 del 103-107)-FLAG, NheI	251
MalE (1-370, del 354-364)-TrxA (2-109, del 103-107)	NsiI-MalE(1-370, del 354-364)-Factor Xa-PstI, SalI, XbaI-TrxA (2-109 del 103-107)-FLAG, NheI	252

a. The term "del" refers to a deletion in which amino acid residues following the term "del" are removed from the sequence.

TABLE 32. OLIGONUCLEOTIDE PRIMER SEQUENCES FOR TABLE 31.

5

SEQ ID NO.:	Primer name	5' to 3' sequence
253	MalE-1-NsiI	CGCGGATGCATATGAAAATAAAAACAGGTGCACGCAT CCTCGCATTATCCGCATTAACGACGATGATGTTTTCCG CCTCGGCTCTCGCC
254	MalE-2-middle	CGTCGACCGAGGCCTGCAGGCGGGCTTCGATGATTTT GGCGAG
		AGCCGAGGCGGAAAACATCATCGTCG
255	MalE-3s-NheI	CGAAGCCCGCCTGCAGGCCTCGGTCGACGCCGAATCT AGAGATTATAAAGATGACGATGACAAATAATAAGCTA GCGGCGC
256	MalE-4-NheI	GCGCCGCTAGCTTATTATTTGTCATCG
257	MalE-1a	GGTGCACGCATCCTCGCATTATCCGC
258	MalE-2a	GGCGTTTTCCATGGTGGCGGCAATACGTGG
259	MalE-1-NsiI	CGCGGATGCATATGAAAATAAAAACAGGTGCACGCAT CCTC
		GCATTATCCGC
260	MalE-2-NheI	CCGAGGCCTGCAGGCGGCATA CCAG
		AAAGCGGACTGGGCGTTTTCCATGGTGGCGGCAATAC GTGG
261	MalE-3L-NheI	GCGCCGCTAGCTTATTATTTGTCATCGTCATCTTTATA ATCTC
		TAGATTCGGCGTCGACCGAGGCCTGCAGGCGGGCTTC GATA
		CGC
262	TrxA-1a	CCTGACTGACGACAGTTTTGACACGG
263	TrxA-2a	CCTTTAGACAGTGCACCCACTTTGGTTGCCGC

10

15

WO 03/072014 PCT/US02/16877

SEQ ID NO.:	Primer name	5' to 3' sequence	
264	TrxA-1a-PstI	CGCGGCTGCAGGCCTCGGTCGACGCCGAATCTAGAAG CGAT	
		AAAATTATTCACCTGACTGACGACAGTTTTGACACGG	
265 TrxA-2-NheI		GCGCCGCTAGCTTATTATTTGTCATCGTCATCTTTATA ATCCG	
	i	CCAGGTTCTCTTTCAACTGACCTTTAGACAGTGCACCC ACTTT	
-		GGTTGCCGC	

Oligonucleotides SEQ ID NOS.: 253, 254, 255 and 256 overlap with each other to form a scaffold template to PCR amplify malE (1-28) to create a SEQ ID NO.: 248. Following PCR amplification, SEQ ID NO.: 248 was digested with NsiI and NheI and cloned into SEQ ID NOS.: 152, 154, 139 and 141 digested with PstI and XbaI. The resultant products create SEQ ID NOS.: 266, 267, 268 and 269, respectively, that lose both the 5-prime PstI and 3-prime XbaI restriction site and retain the PstI, SaII, and XbaI restriction sites between MalE (1-28) and the FLAG sequence. Insertion of a protein in alignment with these sites results in a chimeric protein containing amino-terminal MalE (1-28) and carboxy-terminal FLAG.

Oligonucleotides SEQ ID NOS.: 257, 258, 259 and 260 were used to amplify malE (1-370 with a deletion removing residues 354-364) to create SEQ ID NO.: 249. Following PCR amplification, SEQ ID NO.: 249 was digested with NsiI and NheI and cloned into SEQ ID NOS.: 152, 154, 139 and 141 digested with PstI and XbaI. The resultant products create SEQ ID NOS.: 270, 271, 272 and 273, respectively, that lose both the 5-prime PstI and 3-prime XbaI restriction site and retain the PstI, SalI, and XbaI restriction sites between MalE (1-370, del 354-364) and the FLAG sequence. Insertion of a protein in alignment with these sites results in a chimeric protein containing amino-terminal MalE (1-370, del 354-364) and carboxy-terminal FLAG.

Oligonucleotides SEQ ID NOS.: 262, 263, 264 and 265 were used to amplify trxA (2-109 with a deletion removing residues 103-107) to create SEQ ID NO.: 250. Following PCR amplification, SEQ ID NO.: 250 was digested with PstI and NheI and cloned into SEQ ID NOS.: 152, 154, 139 and 141 digested with PstI and XbaI. to create SEQ ID NOS.: 274,

10

WO 03/072014 PCT/US02/16877

275, 276 and 277, respectively. Using these restriction digestion combinations results in loss of the XbaI SEQ ID NO.: 249 insertion site.

The resultant products create SEQ ID NOS.: 274, 275, 276 and 277, respectively, that lose the 3-prime XbaI restriction site and retain the PstI, SalI, and XbaI restriction sites on the 3-prime end of the TrxA (1-109, del 103-107) sequence. Insertion of a protein in alignment with these sites results in a chimeric protein containing Carboxy-terminal TrxA (1-109, del 103-107)-FLAG.

SEQ ID NO: 248 was digested with NsiI and XbaI and cloned into SEQ ID NOS.: 274, 275, 276 and 277 that were digested with PstI and XbaI. The resultant products create SEQ ID NOS.: 278, 279, 280 and 281, respectively, that lose the 5 prime PstI restriction site and retain the PstI, SaII, and XbaI restriction sites between MalE (1-28) and TrxA (1-109, del 103-107). Insertion of a protein in alignment with these sites results in a chimeric protein containing amino-terminal MalE (1-28) and carboxy-terminal TrxA (1-109, del 103-107)-FLAG.

SEQ ID NO.: 249 was digested with NsiI and XbaI and cloned into SEQ ID NOS.: 274, 275, 276 and 277 that were digested with PstI and XbaI. The resultant products create SEQ ID NOS.: 282, 283, 284 and 285, respectively, that lose the 5 prime PstI restriction site and retain the PstI, SalI, and XbaI restriction sites between MalE (1-370, del 354-364) and TrxA (1-109, del 103-107). Insertion of a protein in alignment with these sites results in a chimeric protein containing amino-terminal MalE (1-370, del 354-364) and carboxy-terminal TrxA (1-109, del 103-107)-FLAG.

EXAMPLE 24: POROPLAST™ FORMATION

Minicells are used to prepare Poroplasts in order to increase the accessibility of a

membrane protein component and/or domain to the outside environment. Membrane proteins
in the inner membrane are accessible for ligand binding and/or other interactions in
poroplasts, due to the absence of an outer membrane. The removal of the outer membrane
from E. coli whole cells and minicells to produce poroplasts was carried out using
modifications of previously described protoplast and analysis protocols (Birdsell et al.,
Production and Ultrastructure of Lysozyme and Ethylenediaminetetraacetate-Lysozyme
Spheroplasts of Escherichia coli, J. Bacteriol. 93:427-437, 1967; Weiss et al., Protoplast

10

15

20

25

WO 03/072014 PCT/US02/16877

Formation in Escherichia Coli, J. Bacteriol. 128:668-670, 1976; Matsuyama, S-I., et al. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. 12:265-270, 1993).

In brief, cells were grown to late-log phase and pelleted at room temperature. Minicells were also isolated from cultures in late-log phase. The pellet was washed twice with 50 mM Tris, pH 8.0. Following the second wash, 1 X 10⁹ cells were resuspended in 1 ml 50 mM Tris (pH 8.0) that contained 8% sucrose and 2 mM EDTA. Cell/EDTA/sucrose mixtures were incubated at 37oC for 10 min, centrifuged, decanted, and poroplasted cells were resuspended in 50 mM Tris, pH 8.0 with 8% sucrose. Incubation with anti-LPS-coated magnetic beads, as described in Example 14, is used to enrich for poroplasts that lack LPS. Following incubation with the resuspended protoplasted cells, the anti-LPS magnetic beads were removed from suspension with a magnet.

To examine the range of molecular sizes that can pass through the cell wall, an IgG molecule was tested for its ability to pass the intact cell wall. Binding of an antibody to the ToxR-PhoA chimera expressed on the inner membrane minicell poroplasts was measured. Briefly, minicell poroplasts with and without inner membrane-bound ToxR-PhoA were incubated at 37°C with anti-PhoA antibody in reaction buffer (50 mM Tris, pH 8.0, 8% sucrose, 1% BSA, and 0.01% Tween-20). Following incubation, poroplasts were centrifuged, washed 3 times with reaction buffer, and resuspended in 50 mM Tris, pH 8.0 with 8% sucrose. Following resuspension, bound proteins from 5 X 10⁷ minicells or minicell poroplasts were separated using denaturing SDS-PAGE, transferred to nitrocellulose, and developed using with both anti-PhoA antibody and secondary antibody against both heavy and light chains of anti-PhoA IgG (Table 33).

TABLE 33: ANTI-PHOA ACCESSIBILITY TO POROPLAST INNER MEMBRANE-BOUND TOXR-PHOA

EDTA (mM)	0	2	0	2
Lysozyme (mg/ml)	0	0 .	5	5
	Poroplasts (ng antibody bound)		Protoplasts (ng antibody bound)	

15

WO 03/072014 PCT/US02/16877

Minicells ToxR-PhoA	ND ^a	0.6	ND ^a	12.8
Minicells only	ND a	ND ^a	ND ^a	ND ^a

a. Non-detectable

These results demonstrate that the cell wall present on poroplasts is penetrable by an IgG molecule and that an IgG molecule is capable of passing the intact cell wall and binding to an inner membrane protein. From this data it appeats that poroplast operate at ~ 10% the efficiency of protoplasts by allowing 0.6 ng of IgG to bind inner membrane-bound ToxR-PhoA compared to 12.8 ng. However, given the large size of IgG (~150,000 Daltons) it is expected that molecules having a smaller molecular weight will efficiently access inner membrane proteins in poroplasts.

EXAMPLE 25: PRODUCTION OF NEUROTENSIN RECEPTOR (NTR).

To demonstrate expression of NTR in isolated minicells, MalE(L)-NTR (SEQ ID NO.: 166 was cloned into pMPX-67 (SEQ ID NO.: 151). Following minicell isolation, 1.5 X 10⁹ minicells were induced with 1 mM Rhamnose for 2 hour at 37°C. Following induction, the protein produced was visualized via Western analysis using an anti-MalE antibody following separation on an SDS-PAGE. The results are shown in Figure 2.

These data demonstrates that MalE(L)-NTR is induced 87-fold by addition of 1 mM rhamnose to the minicell induction mixure. Cross-reactive proteins are host MalE and non-specific binding by Goat-anti-mouse HRP secondary antibody.

The contents of the articles, patents, and patent applications, and all other documents and electronically available information mentioned or cited herein, are hereby incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. Applicants reserve the right to physically incorporate into this application any and all materials and information from any such articles, patents, patent applications, or other documents.

10

15

20

WO 03/072014 PCT/US02/16877

The inventions illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms "comprising", "including," containing", etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the inventions embodied therein herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention.

The invention has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the invention. This includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.

Other embodiments are within the following claims. In addition, where features or aspects of the invention are described in terms of Markush groups, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group.

CLAIMS

A minicell comprising a membrane protein selected from the group consisting of a
eukaryotic membrane protein, an archeabacterial membrane protein and an organellar
membrane protein.

- 5 2. The minicell of claim 1, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 3. The minicell of claim 1, wherein said minicell comprises a biologically active compound.
- 4. The minicell of claim 1, wherein said minicell comprises a expression construct,
 wherein said first expression construct comprises expression sequences operably
 linked to an ORF that encodes a protein.
 - 5. The minicell of claim 4, wherein said ORF encodes said membrane protein.
 - 6. The minicell of claim 4, wherein said expression sequences that are operably linked to an ORF are inducible and/or repressible.
- The minicell of claim 4, wherein said minicell comprises a second expression construct, wherein said second expression construct comprises expression sequences operably linked to a gene.
 - 8. The minicell of claim 7, wherein said expression sequences that are operably linked to a gene are inducible and/or repressible.
- 20 9. The minicell of claim 7, wherein the gene product of said gene regulates the expression of the ORF that encodes said protein.
 - 10. The minicell of claim 7, wherein the gene product of said gene is a nucleic acid.
 - 11. The minicell of claim 7, wherein the gene product of said gene is a polypeptide.
- 12. The minicell of claim 11, wherein said polypeptide is a membrane protein, a soluble protein or a secreted protein.
 - 13. The minicell of claim 12, wherein said membrane protein is a membrane fusion protein, said membrane fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide.

15

20

25

WO 03/072014 PCT/US02/16877

14. A minicell comprising a membrane fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide, wherein said second polypeptide is not derived from a eubacterial protein and is neither a His tag nor a glutathione-S-transferase polypeptide.

- 15. The minicell of claim 14, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 16. The minicell of claim 14, wherein said minicell comprises a biologically active compound.
- 10 17. A minicell comprising a membrane conjugate, wherein said membrane conjugate comprises a membrane protein chemically linked to a conjugated compound.
 - 18. The minicell of claim 17, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 19. The minicell of claim 17, wherein said minicell comprises a biologically active compound.
 - 20. The minicell of claim 17, wherein said conjugated compound is selected from the group consisting of a nucleic acid, a polypeptide, a lipid and a small molecule.
 - 21. A method for making minicells, comprising
 - (a) culturing a minicell-producing parent cell, wherein said parent cell comprises an expression construct, wherein said expression construct comprises a gene operably linked to expression sequences that are inducible and/or repressible, and wherein induction or repression of said gene causes or enhances the production of minicells; and
 - (b) separating said minicells from said parent cell, thereby generating a composition comprising minicells,

wherein an inducer or repressor is present within said parent cells during one or more steps and/or between two or more steps of said method.

- 22. The method of claim 21, further comprising
 - (c) purifying said minicells from said composition.

WO 03/072014 PCT/US02/16877

23. The method of claim 21, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.

- 24. The method of claim 21, wherein said gene expresses a gene product that is a factor that is involved in or modulates DNA replication, cellular division, cellular partitioning, septation, transcription, translation, or protein folding.
- 25. The method of claim 21, wherein said minicells are separated from said parent cells by a process selected from the group consisting of centrifugation, ultracentrifugation, density gradation, immunoaffinity and immunoprecipitation.
- The method of claim 22, wherein said minicell is a poroplast, said method further comprising
 - (d) treating said minicells with an agent, or incubating said minicells under a set of conditions, that degrades the outer membrane of said minicell.
- The method of claim 26, wherein said outer membrane is degraded by treatment with an agent selected from the group consisting of EDTA, EGTA, lactic acid, citric acid, gluconic acid, tartaric acid, polyethyleneimine, polycationic peptides, cationic leukocyte peptides, aminoglycosides, aminoglycosides, protamine, insect cecropins, reptilian magainins, polymers of basic amino acids, polymixin B, chloroform, nitrilotriacetic acid and sodium hexametaphosphate and/or by exposure to conditions selected from the group consisting of osmotic shock and insonation.
- 20 28. The method of claim 26, further comprising removing one or more contaminants from said composition.
 - 29. The method of claim 28, wherein said contaminant is LPS or peptidoglycan.
 - 30. The method of claim 29, wherein said LPS is removed by contacting said composition to an agent that binds or degrades LPS.
- The method of claim 21, wherein said minicell-producing parent cell comprises a mutation in a gene required for lipopolysaccharide synthesis.
 - 32. The method of claim 22, wherein said minicell is a spheroplast, said method further comprising
- treating said minicells with an agent, or incubating said minicells under a set of conditions, that disrupts or degrades the outer membrane; and

WO 03/072014 PCT/US02/16877

(e) treating said minicells with an agent, or incubating said minicells under a set of conditions, that disrupts or degrades the cell wall.

- 33. The method of claim 32, wherein said agent that disrupts or degrades the cell wall is a lysozyme, and said set of conditions that disrupts or degrades the cell wall is incubation in a hypertonic solution.
- 34. The method of claim 22, wherein said minicell is a protoplast, said method further comprising
 - (d) treating said minicells with an agent, or incubating said minicells under a set
 of conditions, that disrupt or degrade the outer membrane;
- (e) treating said minicells with an agent, or incubating said minicells under a set of conditions, that disrupts or degrades the cell wall, in order to generate a composition that comprises protoplasts; and
 - (f) purifying protoplasts from said composition.
- 35. The method of claim 22, further comprising preparing a denuded minicell from said minicell.
 - 36. The method of claim 22, further comprising covalently or non-covalently linking one or more components of said minicell to a conjugated moiety.
 - 37. A method of preparing a L-form minicell comprising:
- (a) culturing an L-form eubacterium, wherein said eubacterium comprises one or more of the following:
 - (i) an expression element that comprises a gene operably linked to
 expression sequences that are inducible and/or repressible, wherein
 induction or repression of said gene regulates the copy number of an
 episomal expression construct;
 - (ii) a mutation in an endogenous gene, wherein said mutation regulates the copy number of an episomal expression construct.
 - (iii) an expression element that comprises a gene operably linked to expression sequences that are inducible and/or repressible, wherein induction or repression of said gene causes or enhances the production of minicells; and

25

(iv) a mutation in an endogenous gene, wherein said mutation causes or enhances minicell production.

- (b) culturing said L-form minicell-producing parent cell in media under conditions wherein minicells are produced; and
- 5 (c) separating said minicells from said parent cell, thereby generating a composition comprising L-form minicells,

wherein an inducer or repressor is present within said minicells during one or more steps and/or between two or more steps of said method.

- 38. The method of claim 37, further comprising
- 10 (d) purifying said L-form minicells from said composition.
 - 39. A method of producing a protein, comprising:
 - (a) transforming a minicell-producing parent cell with an expression element that comprises expression sequences operably linked to a nucleic acid having an ORF that encodes said protein;
- 15 (b) culturing said minicell-producing parent cell under conditions wherein minicells are produced; and
 - (c) purifying minicells from said parent cell,
 - (d) purifying said protein from said minicells.
- wherein said ORF is expressed during step (b), between steps (b) and (c), and during step (c).
 - 40. The method of claim 39, wherein said expression elements segregate into said minicells, and said ORF is expressed between steps (c) and (d).
 - 41. The method of claim 39, wherein said protein is a membrane protein.
- 42. The method of claim 39, wherein said protein is a soluble protein contained within said minicells, further comprising:
 - (e) at least partially lysing said minicells.
 - 43. The method of claim 39, wherein said protein is a secreted protein, wherein said method further comprises

15

WO 03/072014 PCT/US02/16877

(e) collecting a composition in which said minicells are suspended or with which said minicells are in contact.

- 44. The method of claim 39, wherein the expression sequences to which said ORF is operably linked are inducible, wherein said method further comprises adding an inducing agent between steps (a) and (b); during step (b); and between steps (b) and (c).
- 45. The method of claim 39, wherein the expression sequences to which said ORF is operably linked are inducible, wherein said expression elements segregate into said minicells, said method further comprises adding an inducing agent after step (c).
- 10 46. The method of claim 39, further comprising:
 - (e) preparing poroplasts from said minicells, wherein said ORF is expressed during step (b); between steps (b) and (c); during step (c); between step (c) and step (d) when said expression elements segregate into said minicells; and/or after step (d) when said expression elements segregate into said minicells.
 - 47. The method of claim 46, further comprising:
 - (f) purifying said protein from said poroplasts.
 - 48. The method of claim 39, further comprising
 - (e) preparing spheroplasts from said minicells,
- wherein said ORF is expressed during step (b), between steps (b) and (c), during step (c), between steps (c) and (d) and/or after step (d).
 - 49. The method of claim 48, further comprising:
 - (f) purifying said protein from said spheroplasts.
 - 50. The method of claim 39, further comprising
- 25 (e) preparing protoplasts from said minicells,
 wherein said ORF is expressed during step (b), between steps (b) and (c), during step
 (c), between steps (c) and (d) and/or after step (d).
 - 51. The method of claim 50, further comprising:
 - (f) purifying said protein from said protoplasts.

- 52. The method of claim 39, further comprising
 - (e) preparing membrane preparations from said minicells, wherein said ORF is expressed during step (b), between steps (b) and (c), during step (c), between steps (c) and (d) and/or after step (d).
- 5 53. The method of claim 48, further comprising:
 - (f) purifying said protein from said membrane preparations.
 - 54. The method of claim 39, wherein said minicell-producing parent cell is an L-form bacterium.
 - 55. A method of producing a protein, comprising:
- 10 (a) transforming a minicell with an expression element that comprises expression sequences operably linked to a nucleic acid having an ORF that encodes said protein; and
 - (b) incubating said minicells under conditions wherein said ORF is expressed.
 - 56. The method of claim 55, further comprising:
- 15 (c) purifying said protein from said minicells.
 - 57. The method of claim 55, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 58. A method of producing a protein, comprising:

25

- transforming a minicell-producing parent cell with an expression element that
 comprises expression sequences operably linked to a nucleic acid having an
 ORF that encodes a fusion protein comprising said protein and a polypeptide,
 wherein a protease-sensitive amino acid sequence is positioned between said
 protein and said polypeptide;
 - (b) culturing said minicell-producing parent cell under conditions wherein minicells are produced;
 - (c) purifying minicells from said parent cell, wherein said ORF is expressed during step (b); between steps (b) and (c); and/or after step (c) when said expression elements segregate into said minicells; and

30

WO 03/072014 PCT/US02/16877

(d) treating said minicells with a protease that cleaves said sensitive amino acid sequence, thereby separating said protein from said polypeptide.

- 59. A poroplast, said poroplast comprising a vesicle, bonded by a membrane, wherein said membrane is an eubacterial inner membrane, wherein said vesicle is surrounded by a eubacterial cell wall, and wherein said eubacterial inner membrane is accessible to a compound in solution with said poroplast.
- 60. The poroplast of claim 59, wherein said poroplast is a cellular poroplast.
- 61. The poroplast of claim 59, wherein said compound has a molecular weight of at least 1 kD.
- The poroplast of claim 59, wherein said poroplast comprises an exogenous nucleic acid.
 - 63. The poroplast of claim 62, wherein said exogenous nucleic acid is an expression construct.
- The poroplast of claim 63, wherein said expression construct comprises an ORF that encodes an exogenous protein, wherein said ORF is operably linked to expression sequences.
 - 65. The poroplast of claim 64, wherein said poroplast comprises an exogenous protein.
 - 66. The poroplast of claim 59, wherein said poroplast comprises an exogenous protein.
- The poroplast of claim 66, wherein said exogenous protein is a fusion protein, a soluble protein or a secreted protein.
 - 68. The poroplast of claim 66, wherein said exogenous protein is a membrane protein.
 - 69. The poroplast of claim 68, wherein said membrane protein is accessible to compounds in solution with said poroplast.
- 70. The poroplast of claim 68, wherein said membrane protein is selected from the group consisting of a eukaryotic membrane protein, an archeabacterial membrane protein, and an organellar membrane protein.
 - 71. The poroplast of claim 68, wherein said membrane protein is a fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide, wherein said second polypeptide is displayed by said poroplast.

72. The poroplast of claim 71, wherein said second polypeptide is displayed on the external side of said eubacterial inner membrane.

- 73. The poroplast of claim 59, wherein said poroplast comprises a membrane component that is chemically linked to a conjugated compound.
- The poroplast of claim 64, wherein said expression construct comprises one or more DNA fragments from a genome or cDNA.
 - 75. The poroplast of claim 64, wherein said exogenous protein has a primary amino acid sequence that is predicted from in silico translation of a nucleic acid sequence.
- 76. A method of making poroplasts or cellular poroplasts, comprising treating eubacterial minicells or cells with an agent, or incubating said minicells or cells under a set of conditions, that degrades the outer membrane of said minicells or cells.
 - 77. The method of claim 76, further comprising purifying said poroplasts or cellular poroplasts in order to remove contaminants.
- 78. The method of claim 76, further comprising placing said poroplasts in a hypertonic solution, wherein 90% or more of said cells or minicells used to prepare said poroplasts would lyse in said solution under the same conditions.
 - 79. A solid support comprising a minicell.
 - 80. The solid support of claim 79, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 20 81. The solid support of claim 79, wherein said solid support is a dipstick.
 - 82. The solid support of claim 79, wherein said solid support is a bead.
 - 83. The solid support of claim 79, wherein said solid support is a mictrotiter multiwell plate.
- 84. The solid support of claim 79, wherein said minicell comprises a detectable compound.
 - 85. The solid support of claim 84, wherein said detectable compound is a fluorescent compound.
 - 86. The solid support of claim 79, wherein said minicell displays a membrane component.

WO 03/072014 PCT/US02/16877

87. The solid support of claim 86, wherein said membrane component is selected from the group consisting of (i) a eukaryotic membrane protein, (ii) an archeabacterial membrane protein, (iii) an organellar membrane protein, (iv) a fusion protein comprising at least one transmembrane domain or at least one membrane anchoring domain, and (v) a membrane conjugate comprising a membrane component chemically linked to a conjugated compound.

- 88. The solid support of claim 86, wherein said membrane component is a receptor.
- 89. The solid support of claim 87, wherein said solid support further comprises a coreceptor.
- 10 90. The solid support of claim 79, wherein said minicell displays a binding moiety.
 - 91. A solid support comprising a minicell, wherein said minicell displays a fusion protein, said fusion protein comprising a first polypeptide that comprises at least one transmembrane domain or at least one membrane anchoring domain, and a second polypeptide.
- 15 92. The solid support of claim 91, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 93. The solid support of claim 91, wherein said second polypeptide comprises a binding moiety.
- 94. The solid support of claim 91, wherein said second polypeptide comprises an enzyme moiety.
 - 95. A solid support comprising a minicell, wherein said minicell comprises a membrane conjugate comprising a membrane component chemically linked to a conjugated compound.
 - 96. The solid support of claim 95, wherein said conjugated compound is a spacer.
- 25 97. The solid support of claim 96, wherein said spacer is covalently linked to said solid support.
 - 98. The solid support of claim 95, wherein said conjugated compound is covalently linked to said solid support.
- A minicell comprising a biologically active compound, wherein said minicell displays
 a binding moiety, wherein said binding moiety is part of a fusion protein comprising
 a first polypeptide that comprises at least one transmembrane domain or at least one

WO 03/072014 PCT/US02/16877

membrane anchoring domain and a second polypeptide that comprises a binding moiety, and said minicell is a poroplast, spheroplast or protoplast.

- 100. A eubacterial minicell comprising a biologically active compound, wherein said minicell displays a binding moiety, wherein said binding moiety is selected from the group consisting of (a) a eukaryotic membrane protein; (b) an archeabacterial membrane protein; (c) an organellar membrane protein; and (d) a fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide, wherein said second polypeptide is not derived from a eubacterial protein and is neither a His tag nor a glutathione-S-transferase polypeptide, and wherein said polypeptide comprises a binding moiety.
 - 101. The minicell of claim 99, wherein said binding moiety is selected from the group consisting of an antibody, an antibody derivative, a receptor and an active site of a non-catalytic derivative of an enzyme.
- 15 102. The minicell of claim 99, wherein said binding moiety is a single-chain antibody.
 - 103. The minicell of claim 99, wherein said binding moiety is directed to a ligand selected from the group consisting of an epitope displayed on a pathogen, an epitope displayed on an infected cell and an epitope displayed on a hyperproliferative cell.
- 104. The minicell of claim 99, wherein said biologically active compound is selected from the group consisting of a radioisotope, a polypeptide, a nucleic acid and a small molecule.
 - 105. The minicell of claim 99, further comprising a first and second nucleic acid, wherein said first nucleic acid comprises eukaryotic expression sequences operably linked to a first ORF, and a second nucleic acid, wherein said second nucleic acid comprises eubacterial expression sequences operably linked to a second ORF.
 - 106. The minicell of claim 105, wherein one of said ORFs encodes a protein that comprises said binding moiety.
 - 107. The minicell of claim 105, wherein said eubacterial expression sequences are induced and/or derepressed when said binding moiety is in contact with a target cell.
- 30 108. The minicell of claim 105, wherein said eukaryotic expression sequences are induced and/or derepressed when said nucleic acid is in the cytoplasm of a eukaryotic cell.

109. The minicell of claim 105, wherein the protein encoded by said first ORF comprises eukaryotic secretion sequences and/or the protein encoded by said second ORF comprises eubacterial secretion sequences.

- 110. A method of associating a radioactive compound with a cell, wherein said cell

 displays a ligand specifically recognized by a binding moiety, comprising contacting
 said cell with a minicell that comprises said radioactive compound and displays said
 binding moiety.
 - 111. The method of claim 110, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 10 112. The method of claim 110, wherein the amount of radiation emitted by said radioactive isotope is sufficient to be detectable.
 - 113. The method of claim 110, wherein the amount of radiation emitted by said radioactive isotope is sufficient to be cytotoxic.
- 114. The method of claim 110, wherein said ligand displayed by said cell is selected from the group consisting of an epitope displayed on a pathogen, an epitope displayed on an infected cell and an epitope displayed on a hyperproliferative cell.
 - 115. The method of claim 110, wherein said binding moiety is selected from the group consisting of an antibody, an antibody derivative, a channel protein protein and a receptor.
- 20 116. The method of claim 110, wherein said binding moiety is a single-chain antibody.
 - 117. The method of claim 110, wherein said binding moiety is selected from the group consisting of an aptamer and a small molecule.
- 118. A method of delivering a biologically active compound to a cell, wherein said cell displays a ligand specifically recognized by a binding moiety, comprising contacting said cell with a minicell that displays said binding moiety, wherein said minicell comprises said biologically active compound, and wherein the contents of said minicell are delivered into said cell from a minicell bound to said cell.
 - 119. The method of claim 118, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.

120. The method of claim 118, wherein said biologically active compound is selected from the group consisting of a nucleic acid, a lipid, a polypeptide, a radioactive compound, an ion and a small molecule.

- The method of claim 118, wherein the membrane of said minicell comprises a system for transferring a molecule from the interior of a minicell into the cytoplasm of said cell.
 - 122. The method of claim 121, wherein said system for transferring a molecule from the interior of a minicell into the cytoplasm of said cell is a Type III secretion system.
- The method of claim 118, wherein said minicell further comprises a first and second nucleic acid, wherein said first nucleic acid comprises eukaryotic expression sequences operably linked to a first ORF, and a second nucleic acid, wherein said second nucleic acid comprises eubacterial expression sequences operably linked to a second ORF.
- 124. The method of claim 123, wherein one of said ORFs encodes a protein that comprises said binding moiety.
 - 125. The method of claim 123, wherein said eubacterial expression sequences are induced and/or derepressed when said binding moiety is in contact with a target cell.
 - 126. The method of claim 123, wherein said eukaryotic expression sequences are induced and/or derepressed when said nucleic acid is in the cytoplasm of a eukaryotic cell.
- 20 127. The method of claim 123, wherein the protein encoded by said first ORF comprises eukaryotic secretion sequences and/or the protein encoded by said second ORF comprises eubacterial secretion sequences.
- 128. A minicell displaying a synthetic linking moiety, wherein said synthetic linking moiety is covalently or non-covalently attached to a membrane component of said mincell.
 - 129. The minicell of claim 128, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 130. A sterically stabilized minicell comprising a displayed moiety that has a longer half-life in vivo than a wild-type minicell, wherein said displayed moiety is a hydrophilic polymer that comprises a PEG moiety, a carboxylic group of a polyalkylene glycol or PEG stearate.

25

WO 03/072014 PCT/US02/16877

131. A minicell having a membrane comprising an exogenous lipid, wherein a minicell comprising said exogenous lipid has a longer half-life in vivo than a minicell lacking said exogenous lipid, and wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.

- 5 132. The minicell of claim 131, wherein said exogenous lipid is a derivitized lipid.
 - 133. The minicell of claim 132, wherein said derivitized lipid is selected from the group consisting of phosphatidylethanolamine derivatized with PEG, DSPE-PEG, PEG stearate; PEG-derivatized phospholipids, and PEG ceramides is DSPE-PEG.
- 134. The minicell of claim 131, wherein said exogenous lipid is not present in a wild-type membrane, or is present in a different proportion than is found in minicells comprising a wild-type membrane,
 - 135. The minicell of claim 134, wherein said exogenous lipid is selected from the group consisting of ganglioside, sphingomyelin, monosialoganglioside GM1, galactocerebroside sulfate, 1,2-sn-dimyristoylphosphatidylcholine, phosphatidylinositol and cardiolipin.
 - 136. The minicell of claim 128, wherein said linking moiety is non-covalently attached to said minicell.
 - 137. The minicell of claim 136, wherein one of said linking moiety and said membrane component comprises biotin, and the other comprises avidin or streptavidin.
- 20 138. The minicell of claim 128, wherein said synthetic linking moiety is a cross-linker.
 - 139. The minicell of claim 128, wherein said cross-linker is a bifunctional cross-linker.
 - 140. A method of transferring a membrane protein from a minicell membrane to a biological membrane comprising contacting a minicell to said biological membrane, wherein said minicell membrane comprises said membrane protein, and allowing said mincell and said biological membrane to remain in contact for a period of time sufficient for said transfer to occur.
 - 141. The method of claim 140, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- The method of claim 140, wherein biological membrane is a cytoplasmic membrane or an organellar membrane.

10

15

25

WO 03/072014 PCT/US02/16877

143. The method of claim 140, wherein said biological membrane is a membrane selected from the group consisting of a membrane of a pathogen, a membrane of an infected cell and a membrane of a hyperproliferative cell.

- 144. The method of claim 140, wherein said biological membrane is the cytoplasmic membrane of a recipient cell.
 - 145. The method of claim 144, wherein said recipient cell is selected from the group consisting of a cultured cell and a cell within an organism.
- 146. The method of claim 140, wherein biological membrane is present on a cell that has been removed from an animal, said contacting occurs in vitro, after which said cell is returned to said organism.
- 147. The method of claim 144, wherein said membrane protein is an enzyme.
- 148. The method of claim 147, wherein said membrane protein having enzymatic activity is selected from the group consisting of a cytochrome P450 and a fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one polypeptide, wherein said second polypeptide has enzymatic activity.
- 149. The method of claim 140, wherein said membrane protein is a membrane fusion protein, said membrane fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide.
- 20 150. The method of claim 149, wherein said second polypeptide is a biologically active polypeptide.
 - 151. The method of claim 140, wherein said minicell displays a binding moiety.
 - 152. A minicell that comprises an expression construct comprising an ORF encoding a membrane protein operably linked to expression sequences, wherein said expression sequences are induced and/or derepressed when said minicell is in contact with a target cell.
 - 153. The minicell of claim 152, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- The minicell of claim 152, wherein biological membrane is a cytoplasmic membrane or an organellar membrane.

WO 03/072014 PCT/US02/16877

155. The minicell of claim 152, wherein said biological membrane is a membrane selected from the group consisting of a membrane of a pathogen, a membrane of an infected cell and a membrane of a hyperproliferative cell.

- 156. The minicell of claim 152, wherein said minicell displays a binding moiety.
- 5 157. The minicell of claim 156, wherein said binding moiety is selected from the group consisting of an antibody, an antibody derivative, an aptamer and a small molecule.
 - 158. The minicell of claim 152, wherein said membrane protein is a membrane fusion protein, said membrane fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide.
 - 159. The minicell of claim 152, wherein said membrane protein having enzymatic activity is selected from the group consisting of a cytochrome P450 and a fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one polypeptide, wherein said second polypeptide has enzymatic activity.
- 15 160. A pharmaceutical composition comprising a minicell, wherein said minicell displays a membrane protein, wherein said membrane protein is selected from the group consisting of a eukaryotic membrane protein, an archeabacterial membrane protein and an organellar membrane protein.
- The pharmaceutical composition of claim 160, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 162. The pharmaceutical composition of claim 160, wherein said membrane protein is selected from the group consisting of a receptor, a channel protein, a cellular adhesion factor and an integrin.
- 25 163. The pharmaceutical formulation of claim 162, wherein said pharmaceutical formulation further comprises an adjuvant.
 - 164. The pharmaceutical formulation of claim 162, wherein said membrane protein comprises a polypeptide epitope displayed by a hyperproliferative cell.
- The pharmaceutical formulation of claim 162, wherein said membrane protein comprises an epitope displayed by a eukaryotic pathogen, an archeabacterial pathogen, a virus or an infected cell.

15

WO 03/072014 PCT/US02/16877

A pharmaceutical composition comprising a minicell, wherein said minicell displays a membrane protein that is a fusion protein, said fusion protein comprising (i) a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and (ii) a second polypeptide, wherein said second polypeptide is not derived from a eubacterial protein.

- 167. The pharmaceutical composition of claim 166, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 168. The pharmaceutical formulation of claim 167, wherein said pharmaceutical formulation further comprises an adjuvant.
 - 169. The pharmaceutical formulation of claim 167, wherein said second polypeptide comprises a polypeptide epitope displayed by a hyperproliferative cell.
 - 170. The pharmaceutical formulation of claim 169, wherein said membrane protein comprises an epitope displayed by a eukaryotic pathogen, an archeabacterial pathogen, a virus or an infected cell.
 - 171. A pharmaceutical composition comprising a minicell, wherein said minicell displays a membrane conjugate, wherein said membrane conjugate comprises a membrane component chemically linked to a conjugated compound.
- The pharmaceutical composition of claim 171, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 173. The pharmaceutical composition of claim 171, wherein said membrane protein is selected from the group consisting of a receptor, a channel protein, a cellular adhesion factor and an integrin.
- 25 174. The pharmaceutical composition of claim 171, wherein said pharmaceutical further comprises an adjuvant.
 - 175. The pharmaceutical composition of claim 171, wherein said membrane component is a polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain, or a lipid that is part of a membrane.

WO 03/072014 PCT/US02/16877

176. The pharmaceutical composition of claim 171, wherein said conjugated compound is a polypeptide, and the chemical linkage between said membrane compound and said conjugated compound is not a peptide bond.

- 177. The pharmaceutical composition of claim 171, wherein said conjugated compound is a nucleic acid.
 - 178. The pharmaceutical composition of claim 171, wherein said conjugated compound is an organic compound.
 - 179. The pharmaceutical composition of claim 176, wherein said organic compound is selected from the group consisting of a narcotic, a toxin, a venom, a sphingolipid and a soluble protein.
 - 180. A method of making a pharmaceutical composition comprising a minicell, wherein said minicell displays a membrane protein, wherein said membrane protein is selected from the group consisting of a eukaryotic membrane protein, an archeabacterial membrane protein and an organellar membrane protein.
- 15 181. The method of claim 1, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 182. The method of claim 180, wherein said method further comprises adding an adjuvant to said pharmaceutical formulation.
- 183. The method of claim 180, wherein said method further comprises desiccating said formulation.
 - 184. The method of claim 183, wherein said method further comprises adding a suspension buffer to said formulation.
 - 185. The method of claim 180, wherein said method further comprises making a chemical modification of said membrane protein.
- 25 186. The method of claim 185, wherein said chemical modification is selected from the group consisting of glycosylation, deglycosylation, phosphorylation, dephosphorylation and proteolysis.
- A method of making a pharmaceutical composition comprising a minicell, wherein said minicell displays a membrane protein that is a fusion protein, said fusion protein comprising (i) a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and (ii) a second

- polypeptide, wherein said second polypeptide is not derived from a eubacterial protein.
- 188. The method of claim 187, wherein said method further comprises adding an adjuvant to said pharmaceutical formulation.
- 5 189. The method of claim 187, wherein said method further comprises desiccating said pharmaceutical formulation.
 - 190. The method of claim 189 wherein said method further comprises adding a suspension buffer to said pharmaceutical formulation.
- 191. The method of claim 187, wherein said method further comprises making a chemical modification of said membrane protein.
 - 192. The method of claim 191, wherein said chemical modification is selected from the group consisting of glycosylation, deglycosylation, phosphorylation, dephosphorylation and proteolysis.
- 193. A method of making a pharmaceutical formulation comprising a minicell, wherein said minicell displays a membrane conjugate, wherein said membrane conjugate comprises a membrane component chemically linked to a conjugated compound.
 - 194. The method of claim 193, wherein said method further comprises adding an adjuvant to said pharmaceutical formulation.
- The method of claim 193, wherein said membrane component is a polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain, or a lipid that is part of a membrane.
 - 196. The method of claim 193, wherein said conjugated compound is a polypeptide, and the chemical linkage between said membrane compound and said conjugated compound is not a peptide bond.
- 25 197. The method of claim 193, wherein said conjugated compound is a nucleic acid.
 - 198. The method of claim 193, wherein said conjugated compound is an organic compound.
 - 199. The method of claim 186, wherein said organic compound is selected from the group consisting of a narcotic, a toxin, a venom, and a sphingolipid.

WO 03/072014 PCT/US02/16877

- 200. A method of detecting an agent that is specifically bound by a binding moiety, comprising contacting a minicell displaying said binding moiety with a composition known or suspected to contain said agent, and detecting a signal that is modulated by the binding of said agent to said binding moiety.
- 5 201. The method of claim 200, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 202. The method of claim 200, wherein said agent is associated with a disease.
 - 203. The method of claim 200, wherein said minicell comprises a detectable compound.
- 204. The method of claim 200, wherein said binding moiety is antibody or antibody derivative.
 - 205. The method of claim 200, wherein said composition is an environmental sample.
 - 206. The method of claim 200, wherein said composition is a biological sample.
 - 207. The method of claim 206, wherein said biological sample is selected from the group consisting of blood, serum, plasma, urine, saliva, a biopsy sample, feces and a skin patch.
 - 208. A method of in situ imaging of a tissue or organ, comprising administering to an organism a minicell comprising an imaging agent and a binding moiety and detecting said imaging agent in said organism.
- The method of claim 208, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 210. The method of claim 208, wherein said binding moiety is an antibody or antibody derivative.
 - 211. The method of claim 208, wherein said binding moiety specifically binds a cell surface antigen.
- 25 212. The method of claim 211, wherein said cell surface antigen is an antigen displayed by a tumorigenic cell, a cancer cell, and an infected cell.
 - 213. The method of claim 211, wherein said cell surface antigen is a tissue-specific antigen.

WO 03/072014 PCT/US02/16877

214. The method of claim208, wherein said method of imaging is selected from the group consisting of magnetic resonance imaging, ultrasound imaging; and computer axaial tomography (CAT).

- A device comprising a microchip operatively associated with a biosensor comprising a minicell, wherein said microchip comprises or contacts said minicell, and wherein said minicell displays a binding moiety.
 - 216. The device of claim 215, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
- 217. A method of detecting a substance that is specifically bound by a binding moiety,

 comprising contacting the device of claim 215 with a composition known or suspected to contain said substance, and detecting a signal from said device, wherein said signal changes as a function of the amount of said substance present in said composition.
 - 218. The method of claim 217, wherein said composition is a biological sample or an environmental sample.
- 15 219 A method of identifying an agent that specifically binds a target compound, comprising contacting a minicell displaying said target compound with a library of compounds, and identifying an agent in said library that binds said target compound.
 - 220. The method of claim 219, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
- 20 221. The method of claim 219, wherein said library of compounds is a protein library.
 - 222. The method of claim 221, wherein said protein library is selected from the group consisting of a phage display library, a phagemid display library, a baculovirus library, a yeast display library, and a ribosomal display library.
- 223. The method of claim 219, wherein said library of compounds is selected from the group consisting of a library of aptamers, a library of synthetic peptides and a library of small molecules.
 - 224. The method of claim 219, wherein said target compound is a target polypeptide.
 - 225. The method of claim 224, wherein said minicell comprises an expression construct comprising expression sequences operably linked to an ORF encoding said target polypeptide.
 - 226. The method of claim 224, wherein said target polypeptide is a membrane protein.

30

WO 03/072014 PCT/US02/16877

227. The method of claim 226, wherein said membrane protein is a receptor or a channel protein.

- 228. The method of claim 226, wherein said membrane protein is an enzyme.
- The method of claim 219, wherein said target compound is a membrane fusion protein, said membrane fusion protein comprising a first polypeptide, wherein said first polypeptide comprises at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide, wherein said second polypeptide comprises amino acid sequences derived from a target polypeptide.
- 230. The method of claim 219, wherein said method further comprises comparing the activity of said target compound in the presence of said agent to the activity of said target compound in the absence of said agent.
 - 231. The method of claim 230, wherein said activity of said target compound is an enzyme activity.
- The method of claim 231, wherein said enzyme is selected from the group consisting of an oxidoreductase, a transferase, a hydrolase, a lyase, an isomerase, a ligase and a synthetase.
 - 233. The method of claim 230, wherein said activity of said target compound is a binding activity.
- The method of claim 233, further comprising comparing the binding of said agent to said target compound to the binding of a known ligand of said target compound.
 - 235. The method of claim 234, wherein a competition assay is used for said comparing.
 - 236. A device comprising microchips operatively associated with a biosensor comprising a set of minicells in a prearranged pattern, wherein said each of said microchips comprise or contact a minicell, wherein each of said minicell displays a different target compound, and wherein binding of a ligand to a target compound results in an increased or decreased signal.
 - 237. A method of identifying an agent that specifically binds a target compound, comprising contacting the device of claim 236 with a library of compounds, and detecting a signal from said device, wherein said signal changes as a function of the binding of an agent to said target compound.

30

WO 03/072014 PCT/US02/16877

238. A method of identifying an agent that specifically blocks the binding of a target compound to its ligand, comprising contacting the device of claim 236 with a library of compounds, and detecting a signal from said device, wherein said signal changes as a function of the binding of an agent to said target compound.

- A method of making a antibody that specifically binds a protein domain, wherein said domain is in its native conformation, wherein said domain is contained within a protein displayed on a minicell, comprising contacting said minicell with a cell, wherein said cell is competent for producing antibodies to an antigen contacted with said cell, in order to generate an immunogenic response in which said cell produces said antibody.
 - 240. The method of claim 239, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 241. The method of claim 239, wherein said protein displayed on a minicell is a membrane protein.
- The method of claim 241, wherein said membrane protein is a receptor or a channel protein.
 - 243. The method of claim 239, wherein said domain is found within the second polypeptide of a membrane fusion protein, wherein said membrane fusion protein comprises a first polypeptide, wherein said first polypeptide comprises at least one transmembrane domain or at least one membrane anchoring domain.
 - 244. The method of claim 239, wherein said contacting occurs in vivo.
 - 245. The method of claim 244, wherein said antibody is a polyclonal antibody or a monoclonal antibody.
- The method of claim 244, wherein said contacting occurs in an animal that comprises an adjuvant.
 - 247. The method of making an antibody derivative that specifically binds a protein domain, wherein said domain is in its native conformation, wherein said domain is displayed on a minicell, comprising contacting said minicell with a protein library, and identifying an antibody derivative from said protein library that specifically binds said protein domain.

248. The method of claim 247, wherein said protein library is selected from the group consisting of a phage display library, a phagemid display library, and a ribosomal display library.

- 249. The method of claim 247 wherein said antibody derivative is a single-chain antibody.
- 5 250. A method of making an antibody or antibody derivative that specifically binds an epitope, wherein said epitope is selected from the group consisting of (i) an epitope composed of amino acids found within a membrane protein, (ii) an epitope present in an interface between a membrane protein and a membrane component, (iii) an epitope present in an interface between a membrane protein and one or more other proteins 10 and (iv) an epitope in a fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain, and a second polypeptide, said second polypeptide comprising said epitope; comprising contacting a minicell displaying said epitope with a protein library, or to a cell, wherein said cell is competent for 15 producing antibodies to an antigen contacted with said cell, in order to generate an immunogenic response in which said cell produces said antibody.
 - 251. The method of claim 250, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 252. The method of claim 250, wherein said cell is contacted in vivo.
- 20 253. The method of claim 252, wherein said antibody is a polyclonal antibody.
 - 254. The method of claim 252, wherein said antibody is a monoclonal antibody.
 - 255. The method of claim 250, wherein said protein library is contacted in vitro.
 - 256. The method of claim 255, wherein said protein library is selected from the group consisting of a phage display library, a phagemid display library, and a ribosomal display library.
 - 257. The method of claim 256, wherein said antibody derivative is a single-chain antibody.
 - 258. A method of determining the rate of transfer of nucleic acid from a minicell to a cell, comprising
 - (a) contacting said cell to said minicell, wherein said minicell comprises said nucleic acid, for a set period of time;
 - (b) separating minicells from said cells;

25

30

WO 03/072014 PCT/US02/16877

(c) measuring the amount of nucleic acid in said cells,

wherein the amount of nucleic acid in said cells over said set period of time is the rate of transfer of a nucleic acid from a minicell.

- 259. A method of determining the amount of a nucleic acid transferred to a cell from a minicell, comprising
 - (a) contacting said cell to said minicell, wherein said minicell comprises an expression element having eukaryotic expression sequences operably linked to an ORF encoding a detectable polypeptide, wherein said minicell displays a binding moiety, and wherein said binding moiety binds an epitope of said cell; and
 - (b) detecting a signal from said detectable polypeptide,

wherein a change in said signal corresponds to an increase in the amount of a nucleic acid transferred to a cell.

- The method of claim 258, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 261. The method of claim 258, wherein said cell is a eukaryotic cell.
 - 262. The method of claim 258, wherein said binding moiety is an antibody or antibody derivative.
 - 263. The method of claim 258, wherein said binding moiety is a single-chain antibody.
- 20 , 264. The method of claim 258, wherein said binding moiety is an aptamer.
 - 265. The method of claim 258, wherein said binding moiety is an organic compound.
 - 266. The method of claim 258, wherein said detectable polypeptide is a fluorescent polypeptide.
 - 267. A method of detecting the expression of an expression element in a cell, comprising
- 25 (a) contacting said cell to a minicell, wherein said minicell comprises an expression element having cellular expression sequences operably linked to an ORF encoding a detectable polypeptide, wherein said minicell displays a binding moiety, and wherein said binding moiety binds an epitope of said cell;

(b) incubating said cell and said minicell for a period of time effective for transfer of nucleic acid from said minicell to said cell; and

- (c) detecting a signal from said detectable polypeptide,
- wherein an increase in said signal corresponds to an increase in the expression of said expression element.
 - 268. The method of claim 267, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 269. The method of claim 267, wherein said cell is a eukaryotic cell and said expression sequences are eukaryotic expression sequences.
- 10 270. The method of claim 269, wherein said eukaryotic cell is a mammalian cell.
 - 271. The method of claim267, wherein said binding moiety is an antibody or antibody derivative.
 - 272. The method of claim 267, wherein said binding moiety is a single-chain antibody.
 - 273. The method of claim 267, wherein said binding moiety is an aptamer.
- 15 274. The method of claim 267, wherein said binding moiety is an organic compound.
 - 275. The method of claim 267, wherein said detectable polypeptide is a fluorescent polypeptide.
 - 276. A method for detecting the transfer of a fusion protein from the cytosol to an organelle of a eukaryotic cell, comprising
- 20 (a) contacting said cell to a minicell, wherein

25

- (i) said minicell comprises an expression element having eukaryotic expression sequences operably linked to an ORF encoding a fusion protein, wherein said fusion protein comprises a first polypeptide that comprises organellar delivery sequences, and a second polypeptide that comprises a detectable polypeptide; and
- (ii) said minicell displays a binding moiety that binds an epitope of said cell, or an epitope of an organelle:

(b) incubating said cell and said minicell for a period of time effective for transfer of nucleic acid from said minicell to said cell and production of said fusion protein; and

- (c) detecting a signal from the detectable polypeptide,
- 5 wherein a change in the signal corresponds to an increase in the amount of the fusion protein transferred to said organelle.
 - 277. The method of claim 276, wherein said organelle is a mitochondrion, a chloroplast or a kinetoplast.
- 278. A minicell comprising at least one nucleic acid, wherein said minicell displays a

 binding moiety directed to a target compound, wherein said binding moiety is
 selected from the group consisting of (i) a eukaryotic membrane protein; (ii) an
 archeabacterial membrane protein; (iii) an organellar membrane protein; and (iv) a
 fusion protein, said fusion protein comprising a first polypeptide, said first
 polypeptide comprising at least one transmembrane domain or at least one membrane
 anchoring domain; and a second polypeptide, wherein said second polypeptide is not
 derived from a eubacterial protein and is neither a His tag nor a glutathione-Stransferase polypeptide, and wherein said polypeptide comprises a binding moiety.
 - 279. The minicell of claim 278, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 280. The minicell of claim 278, wherein said nucleic acid comprises an expression construct comprising expression sequences operably linked to an ORF encoding a protein selected from the group consisting of (i) said eukaryotic membrane protein, (ii) said archeabacterial membrane protein, (iii) said organellar membrane protein; and (iv) said fusion protein.
- 25 281. The minicell of claim 280, wherein said nucleic acid comprises an expression construct comprising expression sequences operably linked to an ORF, wherein said ORF encodes a therapeutic polypeptide.
 - 282. The minicell of claim 281, wherein said therapeutic polypeptide is a membrane polypeptide.
- 30 283. The minicell of claim 281, wherein said therapeutic polypeptide is a soluble polypeptide.

WO 03/072014 PCT/US02/16877

284. The minicell of claim 283, wherein said soluble polypeptide comprises a cellular secretion sequence.

- 285. The minicell of claim 281, wherein said expression sequences are inducible and/or repressible.
- 5 286. The minicell of claim2858, wherein said expression sequences are induced and/or derepressed when the binding moiety displayed by said minicell binds to its target compound.
 - 287. The minicell of claim 1278herein said nucleic acid comprises an expression construct comprising expression sequences operably linked to an ORF, wherein said ORF encodes a polypeptide having an amino acid sequence that facilitates cellular transfer of a biologically active compound contained within or displayed by said minicell.
 - 288 The minicell of claim 278 wherein the membrane of said minicell comprises a system for transferring a molecule from the interior of a minicell into the cytoplasm of said cell.
- The minicell of claim 288 wherein said system for transferring a molecule from the interior of a minicell into the cytoplasm of said cell is a Type III secretion system.
- 290. A method of introducing a nucleic acid into a cell, comprising contacting said cell with a minicell that comprises said nucleic acid, wherein said minicell displays a binding moiety, wherein said binding moiety is selected from the group consisting of (i) a eukaryotic membrane protein; (ii) an archeabacterial membrane protein; (iii) an organellar membrane protein; and (iv) a fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain; and a second polypeptide, wherein said second polypeptide is not derived from a eubacterial protein and is neither a His tag nor a glutathione-S-transferase polypeptide, and wherein said polypeptide comprises a binding moiety; and wherein said binding moiety binds an epitope of said cell.
 - 291. The method of claim 290, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 30 292. The method of claim 290, wherein said nucleic acid comprises an expression construct comprising expression sequences operably linked to an ORF encoding a protein selected from the group consisting of (i) said eukaryotic membrane protein,

10

15

20

WO 03/072014 PCT/US02/16877

- (ii) said archeabacterial membrane protein, (iii) said organellar membrane protein; and (iv) said fusion protein.
- 293. The method of claim 290, wherein said nucleic acid comprises an expression construct comprising expression sequences operably linked to an ORF, wherein said ORF encodes a therapeutic polypeptide.
- 294. The method of claim 293, wherein said expression sequences are inducible and/or derepressible.
- 295. The method of claim 294, wherein said expression sequences are induced or derepressed when the binding moiety displayed by said minicell binds its target compound.
- 296. The method of claim 294, wherein said expression sequences are induced or derepressed by a transactivation or transrepression event.
- 297. The method of claim 292, wherein said nucleic acid comprises an expression construct comprising expression sequences operably linked to an ORF, wherein said ORF encodes a polypeptide having an amino acid sequence that facilitates cellular transfer of a biologically active compound contained within or displayed by said minicell.
- 298. A minicell comprising a nucleic acid, wherein said nucleic acid comprises eukaryotic expression sequences and eubacterial expression sequences, each of which is independently operably linked to an ORF.
 - 299. The minicell of claim 298, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 300. The minicell of claim 298, wherein said minicell displays a binding moiety.
- The minicell of claim 300, wherein said eubacterial expression sequences are induced and/or derepressed when said binding moiety is in contact with a target cell.
 - 302. The minicell of claim 300, wherein said eukaryotic expression sequences are induced and/or derepressed when said nucleic acid is in the cytoplasm of a eukaryotic cell.
 - 303. The minicell of claim 301, wherein the protein encoded by said ORF comprises eubacterial or eukaryotic secretion sequences.
- 30 304. A minicell comprising a first and second nucleic acid, wherein said first nucleic acid comprises eukaryotic expression sequences operably linked to a first ORF, and a

30

WO 03/072014 PCT/US02/16877

- second nucleic acid, wherein said second nucleic acid comprises eubacterial expression sequences operably linked to a second ORF.
- 305. The minicell of claim 304, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 5 306. The minicell of claim 304, wherein said minicell displays a binding moiety.
 - 307. The minicell of claim 306, wherein said eubacterial expression sequences are induced and/or derepressed when said binding moiety is in contact with a target cell.
 - 308. The minicell of claim 306, wherein said eukaryotic expression sequences are induced and/or derepressed when said nucleic acid is in the cytoplasm of a eukaryotic cell.
- 10 309. The minicell of claim 304, wherein the protein encoded by said first ORF comprises eukaryotic secretion sequences and/or the protein encoded by said second ORF comprises eubacterial secretion sequences.
 - 310. A method of introducing into and expressing a nucleic acid in an organism, comprising contacting a minicell to a cell of said organism, wherein said minicell comprises said nucleic acid.
 - 311. The method of claim 310, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 312. The method of claim 310, wherein said minicell displays a binding moiety.
- The method of claim 310, wherein said nucleic acid comprises a eukaryotic expression construct, wherein said eukaryotic expression construct comprises eukaryotic expression sequences operably linked to an ORF.
 - 314. The method of claim 310, wherein said ORF encodes a protein selected from the group consisting of a membrane protein, a soluble protein and a protein comprising eukaryotic secretion signal sequences.
- 25 315. The method of claim 310, wherein said nucleic acid comprises a eubacterial expression construct, wherein said eubacterial expression construct comprises eubacterial expression sequences operably linked to an ORF.
 - 316. The method of claim 315, wherein said minicell displays a binding moiety, wherein said eubacterial expression sequences are induced and/or derepressed when said binding moiety is in contact with a target cell.

WO 03/072014 PCT/US02/16877

317. The method of claim 316, wherein the protein encoded by said ORF comprises eubacterial secretion sequences.

- 318. A minicell comprising a crystal of a membrane protein.
- 319. The minicell of claim 318, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 320. The minicell of claim 318, wherein said membrane protein is a receptor.
 - 321. The minicell of claim 320, wherein said receptor is a G-protein coupled receptor.
 - 322. The minicell of claim 318, wherein said crystal is displayed.
- 323. The minicell of claim 318, wherein said membrane protein is a fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain, and a second polypeptide.
 - 324. The minicell of claim 323, wherein said crystal is a crystal of said second polypeptide.
- 15 325. The minicell of claim 323, wherein said crystal is displayed.
 - 326. A method of determining the three-dimensional structure of a membrane protein, comprising preparing a crystal of said membrane protein in a minicell, and determining the three-dimensional structure of said crystal.
- 327. A method for identifying ligand-interacting atoms in a defined three-dimensional
 20 structure of a target protein, comprising (a) preparing one or more variant proteins of
 a target protein having a known or predicted three-dimensional structure, wherein
 said target protein binds a preselected ligand; (b) expressing and displaying a variant
 protein in a minicell; and (c) determining if a minicell displaying said variant protein
 binds said preselected ligand with increased or decreased affinity as compared to the
 25 binding of said preselected ligand to said target protein.
 - 328. The method of claim 327, wherein said ligand is a protein that forms a multimer with said target protein, and said ligand interacting atoms are atoms in said defined three-dimensional structure are atoms that are involved in protein-protein interactions.
- The method of claim 327, wherein said ligand is a compound that induces a conformational change in said target protein, and said defined three-dimensional structure is the site of said conformational change.

25

WO 03/072014 PCT/US02/16877

330. The method of claim 327, adopted to a method, said method for identifying ligands of a target protein, further comprising identifying the chemical differences in said variant proteins as compared to said target protein.

- 331. The method of claim 330, further comprising mapping said chemical differences onto said defined three-dimensional structure, and correlating the effect of said chemical differences on said defined three-dimensional structure.
 - 332. The method of claim 331, wherein said target protein is a wild-type protein.
 - 333. A minicell library, comprising two or more minicells, wherein each minicell comprises a different exogenous protein.
- The minicell library of claim 333, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 335. The minicell library of claim 333, wherein said exogenous protein is a displayed protein.
- 336. The minicell library of claim 333, wherein said exogenous protein is a membrane protein.
 - 337. The minicell library of claim 336, wherein said membrane protein is a receptor.
 - 338. The minicell library of claim 333, wherein said protein is a soluble protein that is contained within or secreted from said minicell.
- 339. The minicell library of claim 333, wherein minicells within said library comprise an expression element that comprises expression sequences operably linked to a nucleic acid having an ORF that encodes said exogenous protein.
 - 340. The minicell library of claim 339, wherein said nucleic acid has been mutagenized.
 - 341. The minicell library of claim 339, wherein an active site of said exogenous protein has a known or predicted three-dimensional structure, and said a portion of said ORF encoding said active site has been mutagenized.
 - 342. The minicell library of claim 333, wherein each of said minicells comprises an exogenous protein that is a variant of a protein having a known or predicted three-dimensional structure.
- 343. A minicell library, comprising two or more minicells, wherein each minicell comprises a different fusion protein, each of said fusion protein comprising a first

25

WO 03/072014 PCT/US02/16877

polypeptide that is a constant polypeptide, wherein said constant polypeptide comprises at least one transmembrane domain or at least one membrane anchoring domain, and a second polypeptide, wherein said second polypeptide is a variable amino acid sequence that is different in each fusion proteins.

- 5 344. The minicell library of claim 343, wherein minicells within said library comprise an expression element that comprises expression sequences operably linked to a nucleic acid having an ORF that encodes said fusion protein.
 - 345. The minicell library of claim 344, wherein said second polypeptide of said fusion protein is encoded by a nucleic acid that has been cloned.
- 10 346. The minicell library of claim 344, wherein each of said second polypeptide of each of said fusion proteins comprises a variant of an amino acid sequence from a protein having a known or predicted three-dimensional structure.
 - 347. A minicell library, comprising two or more minicells, wherein each minicell comprises a constant protein that is present in each minicell and a variable protein that differs from minicell to minicell.
 - 348. The minicell library of claim 347, wherein one of said constant and variable proteins is a receptor, and the other of said constant and variable proteins is a co-receptor.
 - 349. The minicell library of claim 347, wherein each of said constant and variable proteins is different from each other and is a factor in a signal transduction pathway.
- 20 350. The minicell library of claim 347, wherein one of said constant and variable proteins is a G-protein, and the other of said constant and variable proteins is a G-protein coupled receptor.
 - 351. The minicell library of claim 347, wherein one of said constant and variable proteins comprises a first transrepression domain, and the other of said constant and variable comprises a second transrepression domain, wherein said transrepression domains limit or block expression of a reporter gene when said constant and variable proteins associate with each other.
- The minicell library of claim 347, wherein one of said constant and variable proteins comprises a first transactivation domain, and the other of said constant and variable comprises a second transactivation domain, wherein said transactivation domains stimulate expression of a reporter gene when said constant and variable proteins associate with each other.

15

25

WO 03/072014 PCT/US02/16877

353. A method of identifying a nucleic acid that encodes a protein that binds to or chemically alters a preselected ligand, comprising:

- (a) separately contacting said ligand with individual members of a minicell library, wherein minicells in said library comprise expression elements, wherein said expression elements comprise DNA inserts, wherein an ORF in said DNA insert is operably linked to expression sequences, in order to generate a series of reaction mixes, each reaction mix comprising a different member of said minicell library;
- (b) incubating said reaction mixes, thereby allowing a protein that binds to or chemically alters said preselected ligand to bind or chemically alter said preselected ligand;
 - detecting a change in a signal from reaction mixes in which said ligand has been bound or chemically altered;
 - (d) preparing DNA from reaction mixes in which said ligand has been bound or chemically altered;

wherein said DNA is a nucleic acid that encodes a protein that binds to or chemically alters said preselected ligand.

- 354. The method of claim 353, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
- 20 355. The method of claim 353, wherein said preselected ligand is a biologically active compound.
 - 356. The method of claim 353, wherein said preselected ligand is a therapeutic drug.
 - 357. The method of claim 353, wherein a protein that binds or chemically alters said preselected ligand is a target protein for compounds that are therapeutic for a disease that is treated by administering said drug to an organism in need thereof.
 - 358. The method of claim 353, wherein said preselected ligand is detectably labeled, said mincell comprises a detectable compound, and/or a chemically altered derivative of said protein is detectably labeled.
- 359. A method of determining the amino acid sequence of a protein that binds or chemically alters a preselected ligand, comprising:

WO 03/072014 PCT/US02/16877

- (a) contacting said ligand with a minicell library, wherein minicells in said library comprise expression elements, wherein said expression elements comprise DNA inserts, wherein an ORF in said DNA insert is operably linked to expression sequences;
- 5 (b) incubating said mixture of ligand and minicells, under conditions which allow complexes comprising ligands and minicells to form and/or chemical reactions to occur;
 - (c) isolating or identifying said complexes from said ligand and said mixture of ligand and minicells;
- 10 (d) preparing DNA from an expression element found in one or more of said complexes, or in a minicell thereof;
 - (e) determining the nucleotide sequence of said ORF in said DNA; and
 - (f) generating an amino sequence by in silico translation, wherein said amino acid sequence is or is derived from a protein that binds or chemically alters a preselected ligand.
 - 360. The method of claim 359, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 361. The method of claim 359, wherein said DNA is prepared by isolating DNA from said complexes, or in a minicell thereof.
- 20 362. The method of claim 359, wherein said DNA is prepared by amplifying DNA from said complexes, or in a minicell thereof.
 - 363. The method of claim 359, wherein said protein is a fusion protein.
 - 364. The method of claim 359, wherein said protein is a membrane or a soluble protein.
 - 365. The method of claim 364, wherein said protein comprises secretion sequences.
- 25 366. The method of claim 359, wherein said preselected ligand is a biologically active compound.
 - 367. The method of claim 359, wherein said preselected ligand is a therapeutic drug.
 - 368. The method of claim 359, wherein said preselected ligand is a therapeutic drug, and said protein that binds said preselected ligand is a target protein for compounds that

WO 03/072014 PCT/US02/16877

are therapeutic for a disease that is treated by administering said drug to an organism in need thereof.

- 369. A method of identifying a nucleic acid that encodes a protein that inhibits or blocks an agent from binding to or chemically altering a preselected ligand, comprising:
- 5 (a) separately contacting said ligand with individual members of a minicell library, wherein minicells in said library comprise expression elements, wherein said expression elements comprise DNA inserts, wherein an ORF in said DNA insert is operably linked to expression sequences, in order to generate a series of reaction mixes, each reaction mix comprising a different member of said minicell library;
 - (b) incubating said reaction mixes, thereby allowing a protein that binds to or chemically alters said preselected ligand to bind or chemically alter said preselected ligand;
 - detecting a change in a signal from reaction mixes in which said ligand has been bound or chemically altered;
 - (d) preparing DNA from reaction mixes in which said change in signal ligand has been bound or chemically altered;

wherein said DNA is a nucleic acid that encodes a protein that inhibits or blocks said agent from binding to or chemically altering said preselected ligand

- 20 370. The method of claim 369, wherein said minicell is a eubacterial minicell, a poroplast, a spheroplast or a protoplast.
 - 371. The method of claim 369, wherein said DNA has a nucleotide sequence that encodes the amino acid sequence of said protein that inhibits or blocks said agent from binding to or chemically altering said preselected ligand.
- 25 372. The method of claim 369, wherein a protein that binds or chemically alters said preselected ligand is a target protein for compounds that are therapeutic for a disease that is treated by administering said drug to an organism in need thereof.
- 373. A method of identifying an agent that effects the activity of a protein, comprising contacting a library of two or more candidate agents with a minicell comprising said protein or a polypeptide derived from said protein, assaying the effect of candidate

30

WO 03/072014 PCT/US02/16877

- agents on the activity of said protein, and identifying agents that effect the activity of said protein.
- 374. The method of claim 373, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
- 5 375. The method of claim 373, wherein said protein or said polypeptide derived from said protein is displayed on the surface of said minicell.
 - 376. The method of claim 373, wherein said protein is a membrane protein.
 - 377. The method of claim 376, wherein said membrane protein is selected from the group consisting of a receptor, a channel protein and an enzyme.
- The method of claim 373, wherein said activity of a protein is a binding activity or an enzymatic activity.
 - 379. The method of claim 373, wherein said library of compounds is a protein library.
 - 380. The method of claim 379, wherein said protein library is selected from the group consisting of a phage display library, a phagemid display library, and a ribosomal display library.
 - 381. The method of claim 373, wherein said library of compounds is a library of aptamers.
 - 382. The method of claim 373, wherein said library of compounds is a library of small molecules.
- 20 383. A method of identifying an agent that effects the activity of a protein domain containing a library of two or more candidate agents with a minicell displaying a membrane fusion protein, said fusion protein comprising a first polypeptide, said first polypeptide comprising at least one transmembrane domain or at least one membrane anchoring domain, and a second polypeptide, wherein said second polypeptide comprises said protein domain.
 - 384. A method of identifying undesirable side-effects of a biologically active compound that occur as a result of binding of said compound to a protein, wherein binding a compound to said protein is known to result in undesirable side effects, comprising contacting a minicell that comprises said protein to said biologically active compound.

30

WO 03/072014 PCT/US02/16877

385. The method of claim 384, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.

- 386. The method of claim 384, further comprising characterizing the binding of said biologically active compound to said protein.
- 5 387. The method of claim 384, further comprising characterizing the effect of said biologically active compound on the activity of said protein.
 - 388. A method for identifying an agent that effects the interaction of a first signaling protein with a second signaling protein, comprising
- (a) contacting a library of compounds with a minicell, wherein said minicell comprises:
 - (i) a first protein comprising said first signaling protein and a first transacting regulatory domain;
 - (ii) a second protein comprising said second signaling protein and a second trans-acting regulatory domain; and
 - (iii) a reporter gene, the expression of which is modulated by the interaction between said first trans-acting regulatory domain and said second trans-acting regulatory domain; and
 - (b) detecting the gene product of said reporter gene.
- The method of claim 388, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 390. The method of claim 388, wherein said trans-acting regulatory domains are transactivation domains.
 - 391. The method of claim 388, wherein said trans-acting regulatory domains are transrepression domains.
- 25 392. The method of claim 388, wherein said reporter gene is induced by the interaction of said first trans-acting regulatory domain and said second trans-acting regulatory domain.
 - 393. The method of claim 388, wherein said agent that effects the interaction of said first signaling protein with said second signaling protein is an agent that causes or promotes said interaction.

15

WO 03/072014 PCT/US02/16877

394. The method of claim 388, wherein said reporter gene is repressed by the interaction of said first trans-acting regulatory domain and said second trans-acting regulatory domain.

- 395. The method of claim 394, wherein said agent that effects the interaction of said first signaling protein with said second signaling protein is an agent that inhibits or blocks said interaction.
 - 396. The method of claim 388, wherein said first signaling protein is a GPCR.
 - 397. The method of claim 396, wherein said GPCR is an Edg receptor or a ScAMPER.
 - 398. The method of claim 396, wherein said second signalling protein is a G-protein..
- The method of claim 398, wherein said G-protein is selected from the group consisting of G-alpha-i, G-alpha-s, G-alpha-q, G-alpha-12/13 and Go.
 - 400. The method of claim 388, wherein said library of compounds is a protein library.
 - 401. The method of claim 400, wherein said protein library is selected from the group consisting of a phage display library, a phagemid display library, and a ribosomal display library.
 - 402. The method of claim 388, wherein said library of compounds is a library of aptamers.
 - 403. The method of claim 388, wherein said library of compounds is a library of small molecules.
- 20 404. A method for identifying an agent that effects the interaction of a first signaling protein with a second signaling protein, comprising contacting a library of two or more candidate agents with a minicell, wherein said minicell comprises:
 - (a) a first fusion protein comprising said first signaling protein and a first detectable domain; and
- 25 (b) a second fusion protein comprising said second signaling protein and a second detectable domain,
 - wherein a signal is generated when said first and second signaling proteins are in close proximity to each other, and detecting said signal.
 - 405. The method of claim 404, wherein said signal is fluorescence.

WO 03/072014 PCT/US02/16877

406. The method of claim 404, wherein said first detectable domain and said second detectable domain are fluorescent and said signal is generated by FRET.

- 407. The method of claim 406, wherein said first and second detectable domains are independently selected from the group consisting of a green fluorescent protein, a blue-shifted green fluorescent protein, a cyan-shifted green fluorescent protein; a red-shifted green fluorescent protein; a yellow-shifted green fluorescent protein, and a red fluorescent protein, wherein said first fluorescent domain and said second fluorescent domain are not identical.
- 408. A method of bioremediation, said method comprising contacting a composition that comprises an undesirable substance with a minicell, wherein said minicell alters the chemical structure and/or binds said undesirable substance.
 - 409. A method of bioremediation, said method comprising contacting a composition that comprises an undesirable substance with a minicell, wherein said mincell comprises an agent that alters the chemical structure of said undesirable substance.
- 15 410. The method of claim 409, wherein said agent that alters the chemical structure of said undesirable substance is an inorganic catalyst.
 - 411. The method of claim 409, wherein said agent that alters the chemical structure of said undesirable substance is an enzyme.
- 412. The method of claim 411, wherein said enzyme is a soluble protein contained within said minicell.
 - 413. The method of claim 412, wherein said soluble protein is selected from the group consisting of an oxidoreductase, a transferase, a hydrolase, a lyase, an isomerase, a ligase and a synthetase.
 - 414. The method of claim 411, wherein said enzyme is a secreted protein.
- 25 415. The method of claim 414, wherein said secreted protein is selected from the group consisting of an oxidoreductase, a transferase, a hydrolase, a lyase, an isomerase, a ligase and a synthetase.
 - 416. The method of claim 411, wherein said enzyme is a membrane protein.
- The method of claim 416, wherein said membrane enzyme is selected from the group consisting of a cytochrome P450, an oxidoreductase, a transferase, a hydrolase, a lyase, an isomerase, a ligase and a synthetase.

WO 03/072014 PCT/US02/16877

418. The method of claim 409, wherein said agent that alters the chemical structure of said undesirable substance is a fusion protein comprising a first polypeptide that comprises a transmembrane domain or at least one membrane-anchoring domain, and a second polypeptide, wherein said second polypeptide is an enzyme moiety.

- The method of claim 418, wherein said second polypeptide is a polypeptide derived from a protein selected from the group consisting of an oxidoreductase, a transferase, a hydrolase, a lyase, an isomerase, a ligase and a synthetase.
 - 420. A method of bioremediation, said method comprising contacting a composition that comprises an undesirable substance with a minicell, wherein said mincell comprises an agent that binds an undesirable substance.
 - 421. The method of claim 420, wherein said undesirable substance binds to and is internalized by said minicell or is otherwise inactivated by selective absorption.
 - 422. The method of claim 420, wherein said agent that binds said undesirable substance is a secreted soluble protein.
- The method of claim 422, wherein said secreted protein is a transport accessory protein.
 - 424. The method of claim 420, wherein said agent that binds said undesirable substance is a membrane protein.
- The method of claim 420, wherein said undesirable substance is selected from the group consisting of a toxin, a pollutant and a pathogen.
 - 426. The method of claim 420, wherein said agent that binds said undesirable substance is a fusion protein comprising a first polypeptide that comprises a transmembrane domain or at least one membrane-anchoring domain, and a second polypeptide, wherein said second polypeptide is a binding moiety.
- 25 427. The method of claim 426, wherein said binding moiety is selected from the group consisting of an antibody, an antibody derivative, the active site of a non-enzymatically active mutant enzyme, a single-chain antibody and an aptamer.
 - 428. A minicell-producing parent cell, wherein said parent cell comprises one or more of the following:
- 30 (a) an expression element that comprises a gene operably linked to expression sequences that are inducible and/or repressible, wherein induction or

25

WO 03/072014 PCT/US02/16877

repression of said gene regulates the copy number of an episomal expression construct;

- (b) a mutation in an endogenous gene, wherein said mutation regulates the copy number of an episomal expression construct;
- 5 (c) an expression element that comprises a gene operably linked to expression sequences that are inducible and/or repressible, wherein induction or repression of said gene causes or enhances the production of minicells; and
 - (d) a mutation in an endogenous gene, wherein said mutation causes or enhances minicell production.
- 10 429. The minicell-producing parent cell of claim 428, further comprising an episomal expression construct.
 - 430. The minicell-producing parent cell of claim 428, further comprising a chromosomal expression construct.
- 431. The minicell-producing parent cell of claim 429, wherein said expression sequences of said expression construct are inducible and/or repressible.
 - 432. The minicell-producing parent cell of claim 428, wherein said minicell-producing parent cell comprises a biologically active compound.
 - 433. The minicell of claim 428 wherein said gene that causes or enhances the production of minicells has a gene product that is involved in or regulates DNA replication, cellular division, cellular partitioning, septation, transcription, translation, or protein folding.
 - 434. A minicell-producing parent cell, wherein said parent cell comprises an expression construct, wherein said expression construct comprises expression sequences operably linked to an ORF that encodes a protein, and a regulatory expression element, wherein said regulatory expression element comprises expression sequences operably linked to a regulatory gene that encodes a factor that regulates the expression of said ORF.
 - 435. The minicell-producing parent cell of claim 434, wherein said expression sequences of said expression construct are inducible and/or repressible.
- 30 436. The minicell-producing parent cell of claim 434, wherein said expression sequences of said regulatory expression construct are inducible and/or repressible.

WO 03/072014 PCT/US02/16877

437. The minicell-producing parent cell of claim 434, wherein one or more of said expression element or said regulatory expression element is located on a chromosome of said parent cell.

- 438. The minicell-producing parent cell of claim 434, wherein one or more of said

 expression element or said regulatory expression element is located on an episomal expression construct.
 - 439. The minicell-producing parent cell of claim 438, wherein both of said expression element and said regulatory expression element are located on an episomal expression construct, and one or both of said expression element and said regulatory expression element segregates into minicells produced from said parent cell.
 - 440. The minicell-producing parent cell of claim 434, wherein said minicell-producing parent cell comprises a biologically active compound.
 - 441. The minicell-producing parent cell of claim 440, wherein said biologically active compound segregates into minicells produced from said parent cell.
- The minicell-producing parent cell of claim 434, wherein said ORF encodes a membrane protein or a soluble protein.
 - 443. The minicell-producing parent cell of claim 434, wherein said protein comprises secretion sequences.
- The minicell-producing parent cell of claim 434, wherein the gene product of said gene regulates the expression of said ORF.
 - 445. The minicell-producing parent cell of claim 444, wherein said gene product is a transcription factor.
 - The minicell-producing parent cell of claim 440, wherein said gene product is a RNA polymerase.
- 25 447. The minicell-producing parent cell of claim 446, wherein said parent cell is MC-T7.
 - 448. A minicell comprising a biologically active compound, wherein said minicell displays a binding moiety, wherein said minicell selectively absorbs and/or internalizes an undesirable compound, and said minicell is a poroplast, spheroplast or protoplast.
- The minicell of claim 448, wherein said binding moiety is selected from the group consisting of an antibody, an antibody derivative, a receptor and an active site of a non-catalytic derivative of an enzyme.

20

WO 03/072014 PCT/US02/16877

450. The minicell of claim 458, wherein said binding moiety is a single-chain antibody.

- 451. The minicell of claim 458, wherein said binding moiety is directed to a ligand selected from the group consisting of an epitope displayed on a pathogen, an epitope displayed on an infected cell and an epitope displayed on a hyperproliferative cell.
- 5 452. The minicell of claim 458, wherein said biologically active compound is selected from the group consisting of a radioisotope, a polypeptide, a nucleic acid and a small molecule.
 - 453. The minicell of claim 448, wherein a ligand binds to and is internalized by said minicell or is otherwise inactivated by selective absorption.
- 10 454. A pharmaceutical composition comprising the minicell of claim 448.
 - A method of reducing the free concentration of a substance in a composition, wherein said substance displays a ligand specifically recognized by a binding moiety, comprising contacting said composition with a minicell that displays said binding moiety, wherein said binding moiety binds said substance, thereby reducing the free concentration of said substance in said composition.
 - 456. The method of claim 455, wherein said minicell is selected from the group consisting of a eubacterial minicell, a poroplast, a spheroplast and a protoplast.
 - 457. The method of claim 455, wherein said substance is selected from the group consisting of a nucleic acid, a lipid, a polypeptide, a radioactive compound, an ion and a small molecule.
 - 458. The method of claim 455, wherein said binding moiety is selected from the group consisting of an antibody, an antibody derivative, a channel protein and a receptor.
 - 459. The method of claim 455, wherein said composition is present in an environment.
 - 460. The method of claim 459, wherein said environment is water, air or soil.
- 25 461. The method of claim455, wherein said composition is a biological sample from an organism.
 - 462. The method of claim 461, wherein said biological sample is selected from the group consisting of blood, serum, plasma, urine, saliva, a biopsy sample, feces, tissue and a skin patch.

463. The method of claim 461, wherein said substance binds to and is internalized by said minicell or is otherwise inactivated by selective absorption.

464. The method of claim 463, wherein said biological sample is returned to said organism after being contacting to said minicell.

5

1/2

2/2

Figure 2

SEQUENCE LISTING

SEQ ID NO 1

5 pMPX-23 (complete ftsZ cloned into pMPX-18 using PCR-introduced PstI and XbaI)

		Shine-Delgarno PstI
10	1621 1	CCATACCCGTTTTTTTGGGCTAGC <u>AGGAGG</u> AATTCACC <u>CTGCAG</u> ATGTTTGAACCAATGG M F E P M
10	T	M F E P M
	1681	AACTTACCAATGACGCGGTGATTAAAGTCATCGGCGTCGGCGGCGGCGGCGGTAATGCTG
	6	ELTNDAVIKVIGVGGGGNA
15	1741	$\tt TTGAACACATGGTGCGCGAGCGCATTGAAGGTGTTGAATTCTTCGCGGTAAATACCGATG$
	26	V E H M V R E R I E G V E F F A V N T D
	1801	${\tt CACAAGCGCTGCGTAAAACAGCGGTTGGACAGACGATTCAAATCGGTAGCGGTATCACCA}$
20	46	A Q A L R K T A V G Q T I Q I G S G I T
2.0	1861	AAGGACTGGGCGCTAATCCAGAAGTTGGCCGCAATGCGGCTGATGAGGATCGCG
	66	K G L G A G A N P E V G R N A A D E D R
	1921	ATGCATTGCGTGCGGCGCTGGAAGGTGCAGACATGGTCTTTATTGCTGCGGGTATGGGTG
25	86	D A L R A A L E G A D M V F I A A G M G
	1981	GTGGTACCGGTACAGGTGCAGCACCAGTCGTCGCTGAAGTGGCAAAAGATTTGGGTATCC
	106	G G T G T G A A P V V A E V A K D L G I
30	2041	TGACCGTTGCTGTCGTCACTAAGCCTTTCAACTTTGAAGGCAAGAAGCGTATGGCATTCG
	126	L T V A V V T K P F N F E G K K R M A F
	2101	CGGAGCAGGGGATCACTGAACTGTCCAAGCATGTGGACTCTCTGATCACTATCCCGAACG
25	146	A E Q G I T E L S K H V D S L I T I P N
35	2161	ACAAACTGCTGAAAGTTCTGGGCCGCGGTATCTCCCTGCTGGATGCGTTTGGCGCAGCGA
	166	D K L L K V L G R G I S L L D A F G A A
	2221	ACGATGTACTGAAAGGCGCTGTGCAAGGTATCGCTGAACTGATTACTCGTCCGGGTTTGA
40	186	N D V L K G A V Q G I A E L I T R P G L
	2281	TGAACGTGGACTTTGCAGACGTACGCACCGTAATGTCTGAGATGGGCTACGCAATGATGG
	206	M N V D F A D V R T V M S E M G Y A M M
45	2341	GTTCTGGCGTGGCGAGCGGTGAAGACCGTGCGGAAGAAGCTGCTGAAATGGCTATCTCTT
	226	G S G V A S G E D R A E E A A E M A I S
	2401	CTCCGCTGCTGGAAGATATCGACCTGTCTGGCGCGCGCGGCGTGCTGGTTAACATCACGG
	246	S P L L E D I D L S G A R G V L V N I T
50	2461	CGGGCTTCGACCTGCGTCTGGATGAGTTCGAAACGGTAGGTA
	266	A G F D L R L D E F E T V G N T I R A F
	2521	CTTCCGACAACGCGACTGTGGTTATCGGTACTTCTCTTGACCCGGATATGAATGA
55	286	A S D N A T V V I G T S L D P D M N D E
	2591	
	2581	TGCGCGTAACCGTTGTTGCGACAGGTATCGGCATGGACAAACGTCCTGAAATCACTCTGG

	306	L	R	V	Т	V	V	A	Т	G	I	G	M	D	K	R	P	E	I	Т	L
	2641	TG.	ACC	'AAT	'AAG	CAG	GTI	'CAG	CAG	CCA	GTG	ATG	GAT	cĠc	TAC	CAG	CAG	CAT	GGG	ATG	GCTC
5	326	V	Т	N	K	Q	ν	Q	Q	P	V	M	D	R	Y	Q	Q	H	G	M	A
J	2701	CG	CTG	ACC	CAG	GAG	CAG	AAG	CCG	GTT	GCT	AAA	GTC	GTG	AAT	GAC	AAT	GCG	CCG	CAA	ACTG
	346	P	L	Т	Q	E	Q	K	P	V	A	K	V	V	N	D	N	Α	P	Q	${f T}$
	2761	CG.	AAA	.GAG	CCG	GAT	TAT.	CTC	GAT	ATC	:CCA	.GCA	TTC	CTG	CGT	'AAG	CAA	GCT	GAT	TAA	TAA T
10	366	A	K	E	P	D	Y	L	D	I	P	Α	F	L	R	K	Q	A	D		_
		Хb	аÏ																		
	2821	CT	AGA	GGA	TCC	CCG	GGT	ACC	'GAG	CTC	'GAA	TTC	GTA	ATC	ATG	GTC	ATA	GCT	GTT	TCC	TGTG
15											•										
13	Sequence	con	tai	ns	ful	1-1	.eng	ŗth	fts	z P	CR	amp	lif	ied	fr	om	E .	col	i M	G16	55

Sequence contains full-length ftsZ PCR amplified from $E.\ coli$ MG1655 using oligos containing PstI and XbaI restriction sites.

SEQ ID NO 2

pMPX-47 (complete *ftsZ* cloned into pMPX-5 using PCR-introduced PstI and XbaI)

25	2401	Shine-Delgarno PstI GAATTCAGGCGCTTTTTAGACTGGTCGTAATGAAATTC <u>AGCAGG</u> ATCACATT <u>CTGCAG</u> AT M
30	2461 2	GTTTGAACCAATGGAACTTACCAATGACGCGGTGATTAAAGTCATCGGCGTCGGCGGCGG F E P M E L T N D A V I K V I G V G G G
	2521 22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
35	2581 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
40	2641 62	TAGCGGTATCACCAAAGGACTGGGCGCTGGCGCTAATCCAGAAGTTGGCCGCAATGCGGC S G I T K G L G A G A N P E V G R N A A
	2701 82	TGATGAGGATCGCGATGCATTGCGTGCGCGCGCTGGAAGGTGCAGACATGGTCTTTATTGC D E D R D A L R A A L E G A D M V F I A
45	2761 . 102	TGCGGGTATGGGTGGTACCGGTACAGGTGCAGCACCAGTCGTCGCTGAAGTGGCAAA A G M G G G T G T G A A P V V A E V A K
	2821 122	AGATTTGGGTATCCTGACCGTTGCTGTCGTCACTAAGCCTTTCAACTTTGAAGGCAAGAA D L G I L T V A V V T K P F N F E G K K
50	2881 142	GCGTATGGCATTCGCGGAGCAGGGGATCACTGAACTGTCCAAGCATGTGGACTCTCTGAT R M A F A E Q G I T E L S K H V D S L I
55	2941 162	CACTATCCCGAACGACAACTGCTGAAAGTTCTGGGCCGCGGTATCTCCCTGCTGGATGC T I P N D K L L K V L G R G I S L L D A
33	3001 182	GTTTGGCGCAGCGAACGATGTACTGAAAGGCGCTGTGCAAGGTATCGCTGAACTGATTAC F G A A N D V L K G A V Q $^{\circ}$ G I A E L I T
	3061	${\tt TCGTCCGGGTTTGATGAACGTGGACTTTGCAGACGTACGCACCGTAATGTCTGAGATGGG}$

	202	R	P	G	ь	M	И	v	D	F	A	D	v	R	Т	V	M	ន	E	M	G
	3121	CTAC	'GC'A	ΔТС	ΆΤС	GGT	тст	GGC	GTG	GCG	AGC	GGT	GAA	GAC	CGT	GCG	GAA	GAA	GCT	GCT	GΑ
5	222	У	A	М	M	G	s	G	V	A	s	G	E	D	R	Α	Е	E	Α	A	Е
J	3181	AATG	GCT	ATC	TCT	TCT	'CCG	CTG	CTG	GAA	GAT.	ATC	'GAC	CTG	TCT	GGC	GCG	CGC	GGC	GTG	CT
	242	М	A	I	S	S	P	L	L	E	D	Ι	D	L	S	G	A	R	G		L
	3241	GGTT	'AAC	ATC	ACG	GCG	GGC	TTC	'GAC	CTG	CGT	CTG	GAT	'GAG	TTC	GAA	ACG	GTA	GGT	AAC	AC
10	262	V	N	Ι	Т	A	G	F	D	L	R	L	D	E	F	E	Т	V	G	N	Т
	3301	САТС	יכפד	ימרא	سنست	сст	ידיכי	ימאַר	ממי	ימרמ	ידיי ע	стс	ירים	ישרכי	сст	ъст	тст	ירידיי	GAC	CCG	GΆ
	282	I	R	A	F	A	S	D	N	A	Т	V	V	I	G	Т	S	L	D	P	D
15	3361	TATG	AAT	'GAC	GAG	CTG	CGC	:GTA	ACC	GTT:	GTT	'GCG	ACA	.GGT	ATC	GGC	ATG	GAC	AAA	.CGT	CC
	302	М	N	D	E	L	R	V	Т	V	V	A	Т	G	I	G	M	D	K	R	P
	3421	тдаа	ነው ጥር	ים כיד	ста	стс	ארר	דעעי	י א א ר	CAC	ŀСТТ	CAC	CAG	CCA	GTG	АТС	GAT	'CGC	TAC	CAG	CA
20	322	E	Ι	Т	L	V	Т	N	K	Q	V	Q	Q	P	Λ	М	D	R	Y	Q	Q
20	3481	GCAT	1000	יא ווי	аап	iaaa	i ama	יא מכ	ימאר	ימאר	יכיאכי	י א א ר	יממכ	i Cirinin	ici cim	יר רכ רכי	CITIC C	יכווייכו	ח א א	יביא כי	ת ת
	3481	H	. G G	M	ιυυ. Α	P	L	T	O O	E E	OAO	K	P	V	A	AAA K	V	.G.LG V	N	D	N
	342	1 11	G	1-1		r		*	Ž		Ž	10	-	•			٠	•		_	
	3541	TGCG	CCG	CAA	ACT	'GCG	AAA	GAG	CCG	GAT	TAT	CTC	GAI	ATC	CCA	GCA	TTC	'CTG	CGT	'AAG	CA
25	362	A	P	Q	Т	A	K	E	P	D	Y	L	D	I	P	A	F	L	R	K	Q
						Xb	aI														
	3601	AGCT	GAT	TAA	AAT	TCI	AGA	GGA	TCC	CCG	GGT	'ACC	'GAC	CTC	'GAA	TTC	GTA	ATC	ATG	GTC	AΤ
30	382	A	D																		

Sequence contains full-length ftsZ PCR amplified from $E.\ coli$ MG1655 using oligos containing PstI and XbaI restriction sites.

SEQ ID NO 3

35

40 araC::Para::ftsZ inserted by RED recombination into E. coli MG1655 intD

241 CTTGACGGCT ACATCATTCA CTTTTTCTTC ACAACCGGCA CGGAACTCGC TCGGGCTGGC

- 50 301 CCCGGTGCAT TTTTTAAATA CCCGCGAGAA ATAGAGTTGA TCGTCAAAAC CAACATTGCG
 - 361 ACCGACGGTG GCGATAGGCA TCCGGGTGGT GCTCAAAAGC AGCTTCGCCT GGCTGATACG
- 421 TTGGTCCTCG CGCCAGCTTA AGACGCTAAT CCCTAACTGC TGGCGGAAAA 55 GATGTGACAG
 - 481 ACGCGACGC GACAAGCAAA CATGCTGTGC GACGCTGGCG ATATCAAAAT
 TGCTGTCTGC
 - $\tt 541$ CAGGTGATCG CTGATGTACT GACAAGCCTC GCGTACCCGA TTATCCATCG GTGGATGGAG

	601 TTATCGC		ATCGCTTCCA	TGCGCCGCAG	TAACAATTGC	TCAAGCAGAT
	661 ACAGGTO		TAGCGCCCTT	CCCCTTGCCC	GGCGTTAATG	ATTTGCCCAA
5	721 ATATTGA		TGGTGCGCTT	CATCCGGGCG	AAAGAACCCC	GTATTGGCAA
	781 GGTGATA		CATTCATGCC	AGTAGGCGCG	CGGACGAAAG	TAAACCCACT
10	841 ACAGCAA		TCCGGATGAC	GACCGTAGTG	ATGAATCTCT	CCTGGCGGGA
	901 GACCGCG		CGGCAAACAA	ATTCTCGTCC	CTGATTTTTC	ACCACCCCT
	961 AATCGAG		AGAATATAAC	CTTTCATTCC	CAGCGGTCGG	TCGATAAAAA
15	1021 AGTATCO		TCAATCGGCG	TTAAACCCGC	CACCAGATGG	GCATTAAACG
		CAGCAGGGGA	TCATTTTGCG	CTTCAGCCAT	ACTTTTCATA	CTCCCGCCAT
20		•		araC		
	1141 GGCTCTI			TCAGACATTG	CCGTCACTGC	GTCTTTTACT
			←			
25	1201 GGACCAA		CCGGTAACCC	CGCTTATTAA	AAGCATTCTG	TAACAAAGCG
	1261 ACATTGA		ACGCGTAACA	AAAGTGTCTA	TAATCACGGC	AGAAAAGTCC
30	1321 TAGCGGA		GTCACACTTT	GCTATGCCAT	AGCATTTTTA	TCCATAAGAT
	1381 TTTGGGC		TTTTTATCGC	AACTCTCTAC	TGTTTCTCCA	TACCCGTTTT
35	S 1441 CGCGGTG				CCAATGGAAC	TTACCAATGA
				\rightarrow		
40	1501 GCGCGAG		GCGTCGGCGG	CGGCGGCGGT	AATGCTGTTG	AACACATGGT
	TAAAACA	.GCG			ACCGATGCAC	
	1621 TGGCGCT		CGATTCAAAT	CGGTAGCGGT	ATCACCAAAG	GACTGGGCGC
45	1681 GGCGCTG		GCCGCAATGC	GGCTGATGAG	GATCGCGATG	CATTGCGTGC
	1741 AGGTGCA		TGGTCTTTAT	TGCTGCGGGT	ATGGGTGGTG	GTACCGGTAC
50	1801 CGTCACT		CTGAAGTGGC	AAAAGATTTG	GGTATCCTGA	CCGTTGCTGT
	1861 CACTGAA	*	TTGAAGGCAA	GAAGCGTATG	GCATTCGCGG	AGCAGGGGAT
	1921 AGTTCTG		TGGACTCTCT	GATCACTATC	CCGAACGACA	AACTGCTGAA
55	1981 AGGCGCT		CCCTGCTGGA	TGCGTTTGGC	GCAGCGAACG	ATGTACTGAA
		CAAGGTATCG	CTGAACTGAT	TACTCGTCCG	GGTTTGATGA	ACGTGGACTT
60		CGCACCGTAA	TGTCTGAGAT	GGGCTACGCA	ATGATGGGTT	CTGGCGTGGC

2161 GACCGTGCGG AAGAAGCTGC TGAAATGGCT ATCTCTTCTC CGCTGCTGGA AGATATCGAC 2221 CTGTCTGGCG CGCGCGGCGT GCTGGTTAAC ATCACGGCGG GCTTCGACCT

2221 CTGTCTGGCG CGCGCGGCGT GCTGGTTAAC ATCACGGCGG GCTTCGACCT GCGTCTGGAT

- 5 2281 GAGTTCGAAA CGGTAGGTAA CACCATCCGT GCATTTGCTT CCGACAACGC GACTGTGGTT
 - 2341 ATCGGTACTT CTCTTGACCC GGATATGAAT GACGAGCTGC GCGTAACCGT TGTTGCGACA
 - 2401 GGTATCGGCA TGGACAAACG TCCTGAAATC ACTCTGGTGA CCAATAAGCA GGTTCAGCAG
 - 2461 CCAGTGATGG ATCGCTACCA GCAGCATGGG ATGGCTCCGC TGACCCAGGA GCAGAAGCCG
 - 2521 GTTGCTAAAG TCGTGAATGA CAATGCGCCG CAAACTGCGA AAGAGCCGGA TTATCTGGAT .

15

10

Stop ftsZ

2581 ATCCCAGCAT TCCTGCGTAA GCAAGCTGAT $\overline{\text{TAA}}$ TAATCTA GAGGCGTTAC CAATTATGAC

20 FRT scar intD

homology

2641 AACTTGACGG GAAGTTCCTA TACTTTCTAG AGAATAGGAA CTTCCC AAAG CCAGTATCAA

25 for recombination
3721 CTCAGACAAA GGCAAAGCAT CTTG

Bold, italicized represents homology between the PCR product shown below and intD.

30

35

araC::Para::ftsZ::FRT::kan::Frt

Following RED recombination into *intD*, the kanamycin cassette was removed with *flp* recombinase resulting in a single FRT scar as depicted above. Bold alone represents FRT scar after the *flp* reaction.

40 SEQ ID NO 4

 $\it rhaRS::$ Prha:: $\it ftsZ$ inserted by RED recombination into E. $\it coli$ MG1655 $\it intD$

45

50

241 GAGATGACGC CACTGGCTGG GCGTCATCCC GGTTTCCCGG GTAAACACCA CCGAAAAATA

- 301 GTTACTATCT TCAAAGCCAC ATTCGGTCGA AATATCACTG ATTAACAGGC GGCTATGCTG
 - 361 GAGAAGATAT TGCGCATGAC ACACTCTGAC CTGTCGCAGA TATTGATTGA TGGTCATTCC
- 55 421 AGTCTGCTGG CGAAATTGCT GACGCAAAAC GCGCTCACTG CACGATGCCT CATCACAAAA
 - 481 TTTATCCAGC GCAAAGGGAC TTTTCAGGCT AGCCGCCAGC CGGGTAATCA GCTTATCCAG

		CTGGATGTTG	GCGGCAACGA	ATCACTGGTG	TAACGATGGC
	GATTCAGCAA 601 CATCACCAAC	TGCCCGAACA	CCD DCTCDCC		~~~
	CATGCTGACT	IGCCCGAACA	GCAACICAGC	CATITCGITA	GCAAACGGCA
5		TCAAGCTGAC	CGATAACCTG	CCGCGCCTGC	GCCATCCCCA
		GGTTGCCCTG	CGCTGGCGTT	AAATCCCGGA	ATCGCCCCCT
10		AGACGCTCCG	GGCAATAAAT	AATATTCTGC	AAAACCAGAT
•		TGTTTATCGT	CAGCATGAAT	GTAAAAGAGA	TCGCCACGGG
		TTGAGTACAT	GCAGGCCATT	ACCGCGCCAG	ACAATCACCA
15		TGTTCAGCAA	AGACATCTTG	CGGATAACGG	TCAGCCACAG
		GCAAAAAAAT	CATCTTTGAG	AAGTTTTAAC	TGATGCGCCA
20		GAACGAAGTT	GATTATTCGC	AATATGGCGT	ACAAATACGT
					,
	Stop rhas		: rhaR		
	1141 CGCG <u>TTA</u> TTG CAGTTAAACT	CAGAAAGC <u>CA</u>	TCCCGTCCCT	GGCGAATATC	ACGCGGTGAC
25		←			
	1201 CTCGGCGAAA TAGGCGATGT	AAGCGTCGAA	AAGTGGTTAC	TGTCGCTGAA	TCCACAGCGA
30		GGCCTCGCTG	TGGCGTAGCA	GATGTCGGGC	TTTCATCAGT
		CTGAGGCGTC	AGTCCCGTTT	GCTGCTTAAG	CTGCCGATGT
		AAATTGATCC	GCCACGGCAT	CCCAATTCAC	CTCATCGGCA
35	1441 CCAGCCAGGC TCCTGCAAAC	CAGAAGCAAG	TTGAGACGTG	ATGCGCTGTT	TTCCAGGTTC
	1501 TGCTTTTACG GCGGTCGAGG	CAGCAAGAGC	AGTAATTGCA	TAAACAAGAT	CTCGCGACTG
40	1561 GTAAATCATT ACCTGCTGCA	TTCCCCTTCC	TGCTGTTCCA	TCTGTGCAAC	CAGCTGTCGC
	TGTGGCAGCA	GTTAACGCGC			
	1681 ACTGATTCAG ACATTGGTCA	CCCGGCGAGA	AACTGAAATC	GATCCGGCGA	GCGATACAGC
45	1741 GACACAGATT AAACAGACCG	ATCGGTATGT	TCATACAGAT	GCCGATCATG	ATCGCGTACG
	CCATGTTCGA	GATGGTATAG			
50	1861 CAATCACAAT GGGAGCCGGG	TTCATGAAAA	TCATGATGAT	GTTCAGGAAA	ATCCGCCTGC
٠	Start <i>rhaS</i>				
55		CACGGACGCG	TTACCAGACG	GAAAAAAATC	CACACTATGT
	— ←				
60	1981 <u>T</u> ACTGGCCTC	CTGATGTCGT	CAACACGGCG	AAATAGTAAT	CACGAGGTCA

	2041 TTAAATTTTC	GACGGAAAAC	CACGTAAAAA	ACGTCGATTT	TTCAAGATAC	
5		GCGGTGAGCA	TCACATCACC	ACAATTCAGC	AAATTGTGAA	
3		CCTGGTTGCC	AATGGCCCAT	TTTCCTGTCA	GTAACGAGAA	
10	2221 TCAGGCGCTT	TTTAGACTGG	TCGTAATGAA	_	arno Start ATCACAT <u>ATG</u>	ftsZ
					\rightarrow	
15	2581 TGGAACTTAC GGCGGTAATG	CAATGACGCG	GTGATTAAAG	TCATCGGCGT	CGGCGGCGGC	
	2641 CTGTTGAACA GTAAATACCG	CATGGTGCGC	GAGCGCATTG	AAGGTGTTGA	ATTCTTCGCG	
	2701 ATGCACAAGC	GCTGCGTAAA	ACAGCGGTTG	GACAGACGAT	TCAAATCGGT	
20	AGCGGTATCA 2761 CCAAAGGACT	GGGCGCTGGC	GCTAATCCAG	AAGTTGGCCG	CAATGCGGCT	
	GATGAGGATC	аастаасаа	CECCA A COMO			
	2821 GCGATGCATT GCGGGTATGG	GCGTGCGGCG	CTGGAAGGTG	CAGACATGGT.	CTTTATTGCT	
25	2881 GTGGTGGTAC GATTTGGGTA	CGGTACAGGT	GCAGCACCAG	TCGTCGCTGA	AGTGGCAAAA	
20	2941 TCCTGACCGT	TGCTGTCGTC	ACTAAGCCTT	TCAACTTTGA	AGGCAAGAAG	
	CGTATGGCAT 3001 TCGCGGAGCA	GGGGATCACT	GAACTGTCCA	AGCATGTGGA	CTCTCTGATÇ	
30	ACTATCCCGA 3061 ACGACAAACT	GCTGAAAGTT	стасассаса	CITE A THOUSE COLOR	астасл таса	
50	TTTGGCGCAG					
	3121 CGAACGATGT CGTCCGGGTT	ACTGAAAGGC	GCTGTGCAAG	GTATCGCTGA	ACTGATTACT	
35	3181 TGATGAACGT TACGCAATGA	GGACTTTGCA	GACGTACGCA	CCGTAATGTC	TGAGATGGGC	
20		CGTGGCGAGC	GGTGAAGACC	GTGCGGAAGA	AGCTGCTGAA	
	3301 CTTCTCCGCT GTTAACATCA	GCTGGAAGAT	ATCGACCTGT	CTGGCGCGCG	CGGCGTGCTG	
40	3361 CGGCGGGCTT	CGACCTGCGT	CTGGATGAGT	TCGAAACGGT	AGGTAACACC	
	ATCCGTGCAT 3421 TTGCTTCCGA	CAACGCGACT	GTGGTTATCG	GTACTTCTCT	TGACCCGGAT	
	ATGAATGACG 3481 AGCTGCGCGT	AACCGTTGTT	GCGACAGGTA	тессертсер	СУУУССТССТ	
45	GAAATCACTC					
	3541 TGGTGACCAA CATGGGATGG	TAAGCAGGTT	CAGCAGCCAG	TGATGGATCG	CTACCAGCAG	
	3601 CTCCGCTGAC GCGCCGCAAA	CCAGGAGCAG	AAGCCGGTTG	CTAAAGTCGT	GAATGACAAT	
50	GCGCCGCAAA			r		
	ft s Z	•				Stop
		. GCCGGATTAT	CTGGATATCC	CAGCATTCCT	GCGTAAGCAA	
55						
	3721 AATCTAGAGG	CGTTACCAAT	TATGACAACT	TGACGGGAAG		FRT scar
60		intD	homology fo	or recombina	ation	

3781 TAGGAACTTC CCAAAGCCAG TATCAACTCA GACAAAGGCA AAGCATCTTG

Bold, italicized represents homology between the PCR product shown below and *intD*.

5

rhaRS::Prha::ftsZ::FRT::kan::Frt

Following RED recombination into *intD*, the kanamycin cassette was removed with *flp* recombinase resulting in a single FRT scar as depicted above. Bold alone represents FRT scar after the *flp* reaction.

SEQ ID NO 5

15 lacI::Ptac::ftsZ inserted by RED recombination into E. coli MG1655
intD

- 241 ATTGTCTTTG TTGACCAGTA ATACCTTATG GAAACGGATA ATTCGCTTAT CCATATCTAC
- 25 301 GTCGGCCTTA CCCAGATTCT GCATTTCTAA TCCAGGCTTG ATCTCTTCAC CCTTCAGCAA
 - 361 CGTGCTGCG ACGGCTGCGA GTGCGTAACC TGCAGAGGCC GGATCGTAAG TAATCCCTTC
 - 421 GGTGATATCA CCACTTTTAA TCAGTGATGC CGCCTGTGAA GGGATCATCA
 TGCCATAGAC
- 30 TGCCATAGAC
 481 TGCGACTTTA TTTTTCGCCC GTTTCTCTTT CACCGCACGT CCCGCGCCAA
 TCGGACCGTT
 - ${\tt 541} \qquad {\tt TGAACCAAAG} \ {\tt GAGACAACCG} \ {\tt CTTTCAAGTC} \ {\tt AGGATAGGTT} \ {\tt TTCATCAGGT} \\ {\tt CCAGTGTAGT}$
- 35 601 ACGACGTGAG ACATCCACAC TCTCGGCAAC CGGCATGCGG CGGGTAACTT CATGCATATC
 - 661 CGGGTAATGC TCTTTCTGGT ATTTCACCAG CAAGTCAGCC CATAAGTTAT GCTGCGGCAC
 - 721 GGTCAAACTA CCCACGTAAA TCACATAGCC GCCCTTGCCA CCCATGCGTT
- 40 TCGCCATATG
 - 781 CTCAACATAT TCAGCGGCAA ATTTTTCGTT ATCAATGATT TCGATATCCC AGTTAGCACT
 - 841 TGGCTGACCG GGGGATTCGT TGGTCAGAAC CACAATTCCG GCATCTCGCG
- 45 901 TACCGGTTCC AGCACGTTGG CATCGTTTGG CACGATAGTA ATTGCATTAA CCTTACGGGC
 - 961 GATTAAATCC TCAATAATTT TAACTTGTTG CGGAGCATCA GTACTTGAAG GCCCCACCTG
 - 1021 TGAGGCATTA ACACCAAAGG CTTTACCCGC CTCAACCACA CCTTCGCCCA
- 50 TGCGATTAAA 1081 CCACGGCATA CCATCGACTT TAGAAATATT CACCACGACT TTTTCCGCTG CCTGGAGCGG
 - 1141 CGCAGAAATT AGCGCAGCGC CTAATAACAG CGAAGACACC ATATTGATAA CAAAACGTTT

55

Start *lacI*Start *ftsZ*1201 ATTCATCAT Ptac sequence (see reference below) A

TGGAACTTAC

50

WO 03/072014 PCT/US02/16877

	14	CAATGACGCG	GIGATIAAAG	ICAICGGCGI	75575555555	GGCGGIAAIG
5	CTGTTG	AACA				•
	72	CATGGTGCGC	GAGCGCATTG	AAGGTGTTGA	ATTCTTCGCG	GTAAATACCG
	ATGCACA	AAGC				
	132	GCTGCGTAAA	ACAGCGGTTG	${\tt GACAGACGAT}$	TCAAATCGGT	AGCGGTATCA
	CCAAAG	GACT				
10	192	GGGCGCTGGC	GCTAATCCAG	AAGTTGGCCG	CAATGCGGCT	GATGAGGATC
	GCGATG	CATT				
	252	GCGTGCGGCG	CTGGAAGGTG	CAGACATGĠT	${\tt CTTTATTGCT}$	GCGGGTATGG
	GTGGTG	GTAC				
	312	CGGTACAGGT	GCAGCACCAG	${\tt TCGTCGCTGA}$	AGTGGCAAAA	GATTTGGGTA
15	TCCTGAC	CCGT				
	372	TGCTGTCGTC	ACTAAGCCTT	TCAACTTTGA	AGGCAAGAAG	CGTATGGCAT
	TCGCGGZ	AGCA				
	432	GGGGAT	CACT GAACTGI	CCA AGCATG	rgga ctctctc	SATC ACTATCCCGA
		ACGACAA	CT			
20	492	GCTGAAAGTT	CTGGGCCGCG	GTATCTCCCT	GCTGGATGCG	TTTGGCGCAG
	CGAACG	ATGT			*	
	552	ACTGAAAGGC	GCTGTGCAAG	GTATCGCTGA	ACTGATTACT	CGTCCGGGTT
	TGATGA	ACGT				
	612	GGACTTTGCA	GACGTACGCA	CCGTAATGTC	TGAGATGGGC	TACGCAATGA
25	TGGGTT	CTGG				
	672	CGTGGCGAGC	GGTGAAGACC	GTGCGGAAGA	AGCTGCTGAA	ATGGCTATCT
	CTTCTC	CGCT				
	732	GCTGGAAGAT	ATCGACCTGT	CTGGCGCGCG	CGGCGTGCTG	GTTAACATCA
	CGGCGG	GCTT				
30	792	CGACCTGCGT	CTGGATGAGT	TCGAAACGGT	AGGTAACACC	ATCCGTGCAT
	TTGCTT	CCGA				,
	852		GTGGTTATCG	GTACTTCTCT	TGACCCGGAT	ATGAATGACG
	AGCTGC					
	912		GCGACAGGTA	TCGGCATGGA	CAAACGTCCT	GAAATCACTC
35	TGGTGA					
	972		CAGCAGCCAG	TGATGGATCG	CTACCAGCAG	CATGGGATGG
	CTCCGC					
	1032		AAGCCGGTTG	CTAAAGTCGT	GAATGACAAT	GCGCCGCAAA
40	CTGCGAZ					
40	1092		CTGGATATCC	CAGCATTCCT	GCGTAAGCAA	GCTGAT <u>TAA</u> T
	AATCTAG					
	1152		TATGACAACT	TGACGGGAAG	TTCCTATTCT	CTAGAAAGTA
	TAGGAA			a.aa.		
	1212	CCAAAGCCAG	TATCAACTCA	GACAAAGGCA	AAGCATCTTG	
45						

Bold, italicized represents homology between the PCR product shown below and intD.

```
lacI::Ptac::ftsZ::FRT::kan::Frt
```

Following RED recombination into intD, the kanamycin cassette was removed with flp recombinase resulting in a single FRT scar as depicted above.

Garrido, T., et al. 1993. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J. 12:3957-3965

SEQ ID NO 6

pMPX-5 expression vector

5	1 GAGACGO		CGGTGATGAC	GGTGAAAACC	TCTGACACAT	GCAGCTCCCG
	61 TCAGCGO		GTAAGCGGAT	GCCGGGAGCA	GACAAGCCCG	TCAGGGCGCG
10	121 CTGAGAG	TTGGCGGGTG	TCGGGGCTGG	CTTAACTATG	CGGCATCAGA	GCAGATTGTA
	181 ATCAGGO	ACCATATGCG	GTGTGAAATA	CCGCACAGAT	GCGTAAGGAG	AAAATACCGC
	241 TCTTCG(ATTCGCCATT	CAGGCTGCGC	AACTGTTGGG	AAGGGCGATC	GGTGCGGGCC
15	301 ACGCCAC	TACGCCAGCT	GGCGAAAGGG	GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA
20	361 TCTTTC		ACGACGTTGT	AAAACGACGG		Stop rhaR GC <u>TTA</u> ATTAA
	421 ACCACCO		ACGCCACTGG	CTGGGCGTCA	TCCCGGTTTC	CCGGGTAAAC
25	481 AGGCGG	AATAGTTACT	ATCTTCAAAG	CCACATTCGG	TCGAAATATC	ACTGATTAAC
23	541 TTGATG	GCTGGAGAAG	ATATTGCGCA	TGACACACTC	TGACCTGTCG	CAGATATTGA
	601 GCCTCA	TTCCAGTCTG	CTGGCGAAAT	TGCTGACGCA	AAACGCGCTC	ACTGCACGAT
30	661 ATCAGC	AAAATTTATC	CAGCGCAAAG	GGACTTTTCA	GGCTAGCCGC	CAGCCGGGTA
	721 TGGCGA		TTCGCTGGAT	GTTGGCGGCA	ACGAATCACT	GGTGTAACGA
0.5	781		CAACTGCCCG	AACAGCAACT	CAGCCATTTC	GTTAGCAAAC
35	GGCACA 841		ATGCTCAAGC	TGACCGATAA	CCTGCCGCGC	CTGCGCCATC
	CCCATG		amamaammaa	CCTGCGCTGG	<u>ሮሮ</u> ሞሞአ አ አሞሮሮ	ርርርኔ አጥርርርር
	901 CCCTGC		GIGIGGIIGC	CCIGCGCIGG	CGITAAATCC	COGAMICOCC
40	961 AGATCG		CTTCAGACGC	TCCGGGCAAT	AAATAATATT	CTGCAAAACC
	1021	CGGAAGCGTA	GGAGTGTTTA	TCGTCAGCAT	GAATGTAAAA	GAGATCGCCA
	CGGGTA 1081		ATCGTTGAGT	ACATGCAGGC	CATTACCGCG	CCAGACAATC
45	ACCAGC		ጥረም∆ጥረጥጥሮ∆	GCAAAGACAT	СТТССССАТА	ACGGTCAGCC
	ACAGCG	ACTG				
	1201 GCCACC		GCTGGCAAAA	AAATCATCTT	TGAGAAGTTT	TAACTGATGC
50	1261 ACGTTG		CAGAGAACGA	AGTTGATTAT	TCGCAATATG	GCGTACAAAT
		C+ a-	rhad d	tart rhaR		
	1321			. GC <u>CAT</u> CCCGT	CCCTGGCGAA	TATCACGCGG
55	TGACÇA	-	<u>—</u>	<u>—</u> ←		
				•		

		C GAAAAAGCGT	CGAAAAGTGG	TTACTGTCGC	TGAATCCACA	
	GCGATAGGCG 1441 ATGTCAGTA	A CGCTGGCCTC	сстатаасат	አርርአርአጥርጥር	ረረረር ርጥጥጥር እጥ	
	CAGTCGCAGG	A COCIOCCIC	0010100001	ACCACATOTC	GGGCIIICAI	
5	1501 CGGTTCAGG ATGTAGCGTA	T ATCGCTGAGG	CGTCAGTCCC	GTTTGCTGCT	TAAGCTGCCG	
•	1561 CGCAGTGAA GGCAAAATGG	A GAGAAAATTG	ATCCGCCACG	GCATCCCAAT	TCACCTCATC	
10	1621 TCCTCCAGC GTTCTCCTGC	C AGGCCAGAAG	CAAGTTGAGA	CGTGATGCGC	TGTTTTCCAG	
	1681 AAACTGCTT ACTGGCGGTC	T TACGCAGCAA	GAGCAGTAAT	TGCATAAACA	AGATCTCGCG	
	1741 GAGGGTAAA TCGCACCTGC	T CATTTTCCCC	TTCCTGCTGT	TCCATCTGTG	CAACCAGCTG	
15	1801 TGCAATACG CTCTTGTGGC	C TGTGGTTAAC	GCGCCAGTGA	GACGGATACT	GCCCATCCAG	
	CAGCACATTG	T TCAGCCCGGC				
20	TACGAAACAG	A GATTATCGGT				
	CGTGCCATGT	C CGGTGATGGT				
	2041 TCGACAATC	A CAATTTCATG	AAAATCATGA	TGATGTTCAG	GAAAATCCGC	
25		A TCGCCACGGA	CGCGTTACCA	GACGGAAAAA	AATCCACACT	
30	Start rhas 2161 GT <u>CAT</u> ACTG GTCAGGTTCT	G <i>CCTCCTGATG</i>	TCGTCAACAC	GGCGAAATAG	TAATCACGAG	
	2221 TACCTTAAA ATACAGCGTG	T TTTCGACGGA	AAACCACGTA	AAAAACGTCG	ATTTTTCAAG	
35		G AAATGCGGTG	AGCATCACAT	CACCACAATT	CAGCAAATTG	
		C TTTCCCTGGT	TGCCAATGGC	CCATTTTCCT	GTCAGTAACG	
		•	•			
40	a.				Shine-De	elgarno
		PstI				
	2401 GAATTCAGG	C GCTTTTTAGA	CTGGTCGTAA	TGAAATTC AG	CAGG ATCACA	
	11CTGCAGGT				\rightarrow	
45						
		BamHI : A GGATCCCCGG	KpnI GTACCGAGCT	CGAATTCGTA	ATCATGGTCA	
50		A TTGTTATCCG	CTCACAATTC	CACACAACAT	ACGAGCCGGA	
JU	AGCATAAAGT 2581 GTAAAGCCT CGCTCACTGC	G GGGTGCCTAA	TGAGTGAGCT	AACTCACATT	AATTGCGTTG	
		A GTCGGGAAAC	CTGTCGTGCC	AGCTGCATTA	ATGAATCGGC	
55		G TTTGCGTATT	GGGCGCTCTT	CCGCTTCCTC	GCTCACTGAC	
	2761 CGGTCGTTC CGGTTATCCA	G GCTGCGGCGA	GCGGTATCAG	CTCACTCAAA	GGCGGTAATA	

5	AAGGCCAGGA 2881 ACCGTAAAAA GACGAGCATC		GGAAAGAACA	TGTGAGCAAA	AGGCCAGCAA
5		GGCCGCGTTG	CTGGCGTTTT	TCCATAGGCT	CCGCCCCCT
	2941 ACAAAAATCG	ACGCTCAAGT	CAGAGGTGGC	GAAACCCGAC	AGGACTATAA
		TGGAAGCTCC	CTCGTGCGCT	CTCCTGTTCC	GACCCTĢCCG
4.0		CTTTCTCCCT	TCGGGAAGCG	TGGCGCTTTC	TCATAGCTCA
10	CGCTGTAGGT 3121 ATCTCAGTTC	GGTGTAGGTC	GTTCGCTCCA	AGCTGGGCTG	TGTGCACGAA
	CCCCCCGTTC 3181 AGCCCGACCG	CTGCGCCTTA	TCCGGTAACT	ATCGTCTTGA	GTCCAACCCG
15	GTAAGACACG 3241 ACTTATCGCC	ACTGGCAGCA	GCCACTGGTA	ACAGGATTAG	CAGAGCGAGG
	TATGTAGGCG 3301 GTGCTACAGA	GTTCTTGAAG	TGGTGGCCTA	ACTACGGCTA	CACTAGAAGG
	ACAGTATTTG 3361 GTATCTGCGC	TCTGCTGAAG	CCAGTTACCT	TCGGAAAAAG	AGTTGGTAGC
20	TCTTGATCCG 3421 GCAAACAAAC	CACCGCTGGT	AGCGGTGGTT	TTTTTGTTTG	CAAGCAGCAG
	ATTACGCGCA 3481 GAAAAAAAGG	ATCTCAAGAA	GATCCTTTGA	TCTTTTCTAC	GGGGTCTGAC
25	GCTCAGTGGA 3541 ACGAAAACTC	ACGTTAAGGG	ATTTTGGTCA	TGAGATTATC	AAAAAGGATC
	TTCACCTAGA 3601 TCCTTTTAAA	TTAAAAATGA	AGTTTTAAAT	CAATCTAAAG	TATATATGAG
	TAAACTTGGT				
30	Stop 3				
	3661 CTGACAG <u>TTA</u> CTATTTCGTT	CCAATGCTTA	ATCAGTGAGG	CACCTATCTC	AGCGATCTGT
25	3721 CATCCATAGT	TGCCTGACTC	CCCGTCGTGT	AGATAACTAC	GATACGGGAG
35		TGCTGCAATG	ATACCGCGAG	ACCCACGCTC	ACCGGCTCCA
	GATTTATCAG 3841 CAATAAACCA	GCCAGCCGGA	AGGGCCGAGC		
				GCAGAAGTGG	TCCTGCAACT
40	TTATCCGCCT	TATTAATTGT			
40	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT	TATTAATTGT	TGCCGGGAAG	CTAGAGTAAG	TAGTTCGCCA
40	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG	TGTTGCCATT	TGCCGGGAAG GCTACAGGCA	CTAGAGTAAG	TAGTTCGCCA ACGCTCGTCG
40 45	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA	TGTTGCCATT	TGCCGGGAAG GCTACAGGCA CAACGATCAA	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC
	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA 4081 AAAAAGCGGT GCCGCAGTGT	TGTTGCCATT CTCCGGTTCC TAGCTCCTTC	TGCCGGGAAG GCTACAGGCA CAACGATCAA GGTCCTCCGA	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC TCGTTGTCAG	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC AAGTAAGTTG
45	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA 4081 AAAAAGCGGT GCCGCAGTGT 4141 TATCACTCAT TCCGTAAGAT	TGTTGCCATT CTCCGGTTCC TAGCTCCTTC GGTTATGGCA	TGCCGGGAAG GCTACAGGCA CAACGATCAA GGTCCTCCGA GCACTGCATA	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC TCGTTGTCAG ATTCTCTTAC	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC AAGTAAGTTG TGTCATGCCA
	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA 4081 AAAAAGCGGT GCCGCAGTGT 4141 TATCACTCAT TCCGTAAGAT 4201 GCTTTTCTGT ATGCGGCGAC	TGTTGCCATT CTCCGGTTCC TAGCTCCTTC GGTTATGGCA GACTGGTGAG	TGCCGGGAAG GCTACAGGCA CAACGATCAA GGTCCTCCGA GCACTGCATA TACTCAACCA	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC TCGTTGTCAG ATTCTCTTAC AGTCATTCTG	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC AAGTAAGTTG TGTCATGCCA AGAATAGTGT
45	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA 4081 AAAAAGCGGT GCCGCAGTGT 4141 TATCACTCAT TCCGTAAGAT 4201 GCTTTTCTGT ATGCGGCGAC	TGTTGCCATT CTCCGGTTCC TAGCTCCTTC GGTTATGGCA	TGCCGGGAAG GCTACAGGCA CAACGATCAA GGTCCTCCGA GCACTGCATA TACTCAACCA	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC TCGTTGTCAG ATTCTCTTAC AGTCATTCTG	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC AAGTAAGTTG TGTCATGCCA AGAATAGTGT
45	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA 4081 AAAAAGCGGT GCCGCAGTGT 4141 TATCACTCAT TCCGTAAGAT 4201 GCTTTTCTGT ATGCGGCGAC 4261 CGAGTTGCTC AGAACTTTAA	TGTTGCCATT CTCCGGTTCC TAGCTCCTTC GGTTATGGCA GACTGGTGAG	TGCCGGGAAG GCTACAGGCA CAACGATCAA GGTCCTCCGA GCACTGCATA TACTCAACCA TCAATACGGG	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC TCGTTGTCAG ATTCTCTTAC AGTCATTCTG ATAATACCGC	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC AAGTAAGTTG TGTCATGCCA AGAATAGTGT GCCACATAGC
45	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA 4081 AAAAAGCGGT GCCGCAGTGT 4141 TATCACTCAT TCCGTAAGAT 4201 GCTTTTCTGT ATGCGGCGAC 4261 CGAGTTGCTC AGAACTTTAA 4321 AAGTGCTCAT TTACCGCTGT	TGTTGCCATT CTCCGGTTCC TAGCTCCTTC GGTTATGGCA GACTGGTGAG TTGCCCGGCG	TGCCGGGAAG GCTACAGGCA CAACGATCAA GGTCCTCCGA GCACTGCATA TACTCAACCA TCAATACGGG . CGTTCTTCGG	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC TCGTTGTCAG ATTCTCTTAC AGTCATTCTG ATAATACCGC GGCGAAAACT	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC AAGTAAGTTG TGTCATGCCA AGAATAGTGT GCCACATAGC CTCAAGGATC
45	TTATCCGCCT 3901 CCATCCAGTC GTTAATAGTT 3961 TGCGCAACGT TTTGGTATGG 4021 CTTCATTCAG ATGTTGTGCA 4081 AAAAAGCGGT GCCGCAGTGT 4141 TATCACTCAT TCCGTAAGAT 4201 GCTTTTCTGT ATGCGGCGAC 4261 CGAGTTGCTC AGAACTTTAA 4321 AAGTGCTCAT TTACCGCTGT 4381 TGAGATCCAG TCTTTTACTT	TGTTGCCATT CTCCGGTTCC TAGCTCCTTC GGTTATGGCA GACTGGTGAG TTGCCCGGCG CATTGGAAAA	TGCCGGGAAG GCTACAGGCA CAACGATCAA GGTCCTCCGA GCACTGCATA TACTCAACCA TCAATACGGG CGTTCTTCGG CCCACTCGTG	CTAGAGTAAG TCGTGGTGTC GGCGAGTTAC TCGTTGTCAG ATTCTCTTAC AGTCATTCTG ATAATACCGC GGCGAAAACT CACCCAACTG	TAGTTCGCCA ACGCTCGTCG ATGATCCCCC AAGTAAGTTG TGTCATGCCA AGAATAGTGT GCCACATAGC CTCAAGGATC ATCTTCAGCA

Start bla

4501 GGGCGACACG GAAATGTTGA ATACT $\underline{\mathtt{CAT}}$ AC TCTTCCTTTT TCAATATTAT TGAAGCATTT

 \leftarrow

5

15

- 4561 ATCAGGGTTA TTGTCTCATG AGCGGATACA TATTTGAATG TATTTAGAAA AATAAACAAA
- 4621 TAGGGGTTCC GCGCACATTT CCCCGAAAAG TGCCACCTGA CGTCTAAGAA ACCATTATTA
- 10 4681 TCATGACATT AACCTATAAA AATAGGCGTA TCACGAGGCC CTTTCGTC

The segment *rhaR* through the Prha control region was taken from the *E. coli* MG1655 chromosome using PCR-added *Hind*III and *Pst*I restriction sites. This fragment was cut with *Hind*III and *Pst*I and cloned into pUC-18 cut with the same enzymes. Italicized sequence constitutes both *rhaSR* and protein to be expressed promotor region.

SEQ ID NO 7

pMPX-32 (ΔphoA cloned into pMPX-5 using PCR-introduced PstI and XbaI)

20 Shine-Delgarno PstI 2401 ${\tt GAATTCAGGCGCTTTTTAGACTGGTCGTAATGAAATTC} {\tt AGCAGGATCACATTCTGCAGAT}$ 25 2461 GCCTGTTCTGGAAAACCGGGCTGCTCAGGGCGATATTACTGCACCCGGCGGTGCTCGCCG 2 ENRAAQGDITAP 2521 TTTAACGGGTGATCAGACTGCCGCTCTGCGTGATTCTCTTAGCGATAAACCTGCAAAAAA TGDQTAALRDSLSDKP 30 2581 TATTATTTTGCTGATTGGCGATGGGGATGGGGGACTCGGAAATTACTGCCGCACGTAATTA 42 I L L I G D G M G D S EITAARN 2641 TGCCGAAGGTGCGGCGGCTTTTTTAAAGGTATAGATGCCTTACCGCTTACCGGGCAATA 35 62 AEGAGGFFKGIDALPLT 2701 ${\tt CACTCACTATGCGCTGAATAAAAAAACCGGCAAACCGGACTACGTCACCGACTCGGCTGC}$ 82 T H Y A L N K K T G K P D Y V T D S A A 40 2761 ATCAGCAACCGCCTGGTCAACCGGTGTCAAAACCTATAACGGCGCGCTGGGCGTCGATAT 102 S A T A W S T G V K T Y N G A L G V D ${\tt TCACGAAAAAGATCACCCAACGATTCTGGAAATGGCAAAAGCCGCAGGTCTGGCGACCGG}$ 2821 122 H E K D H P T I L E M A K A A G L A T 45 2881 TAACGTTTCTACCGCAGAGTTGCAGGATGCCACGCCCGCTGCGCTGGTGGCACATGTGAC 142 N V S T A E L Q D A T P A A L V A H V 2941 $\tt CTCGCGCAAATGCTACGGTCCGAGCGCGACCAGTGAAAAATGTCCGGGTAACGCTCTGGA$ 50 162 SRKCYGPSATSEKCP G N A L 3001 $\cdot \texttt{AAAAGGCGGAAAAGGATCGATTACCGAACAGCTGCTTAACGCTCGTGCCGACGTTACGCT}$ 182 K G G K G S I T E Q L L N A R A D 55 3061 ${\tt TGGCGGCGCGCAAAAACCTTTGCTGAAACGGCAACCGCTGGTGAATGGCAGGGAAAAAC}$ 202 G G G A K T F A E T A T A G E W Q 3121 . ${\tt GCTGCGTGAACAGGCACAGGCGCGTGGTTATCAGTTGGTGAGCGATGCTGCCTCACTGAA}$

	222	Ŀ	R	E	Q	A	Q	A	R	G	Y	Q	L	v	s	D	A	A	ន	L	N
	3181	TTCG	GTG	ACG	JAA	GCG.	AAT	CAG	CAA	AAA	CCC	CTG	CTT	GGC(CTG:	rt'T	3CT(GAC	GGC:	AAT.	AТ
5	242	S	V	T	E	A	N	Q	Q	K	P	L	L	G	Ŀ	F	A	D	G	N	M
J	3241	GCCA	GTG	CGC:	rgg	CTA	GGA	CCG	AAA	GCA.	ACG'	TAC	CAT	GGC2	ATI	ATC	JAT?	AAG	200	GCA	GT
	262	P	V	R	W	L	G	P	K	A	Т	Y	H	G	N	I	D	K	P	A	V
	3301	CACC	TGT	ACG	CCA	TAA	CCG	CAA	CGT	AAT	GAC:	AGT	GTA	CCA	ACC	CTG	3CG(CAG	ATG	ACC	GA
10	282	T	С	Т	P	N	P	Q	R	N	D	S	V	P	Т	L	A	Q	M	Т	D
	3361	CAAA	GCC	ATT	GAA'	TTG'	TTG	AGT	AAA	TAA	GAG.	AAA	GGC'	rtt:	rtc	CTG	CAAC	3TTC	GAA	GGT	GC
	302	K	A	I	E	L	L	ន	K	N	E	K	\mathbf{G}_{\cdot}	F	F	L	Q	V	E	G	A
15	3421	GTCA	ATC	GAT	AAA	CAG	GAT	CAT	GCT(GCG.	AAT	CCT'	TGT	3GG(CAA	ATT	3GC(3AG	ACG	GTC	GA
	322	S	I	D	K	Q	D	Н	A	A	N	P	С	G	Q	I	G	E	T	V	D
	3481	TCTC	GAT	GAA	GCC	GTA		CGG(GCG	CTG	GAA'	TTC	GCT						ACG	CTG	GT
20	342	L	D	E	A	V	Q	R	A	L	E	F	Α	K	K	Е	G	N	Т	L	V
	3541	CATA										CAG									
	362	I	V	Т	A	D	H	A	Η	A	S	Q	I.	V	A	P	D	Т	K	A	P
25	3601	GGGC																			
25	382	G	L	Т	Q	A	L	N	Т	K	D	G	A	V	М	V	M	S	Y	G	N
	3661	CTCC																			
	402	S	E	E	D	S	Q	E	Η	Т	G	S	Q	L	R	I	A	A	Y	G	P
30	3721	GCAT																			
	422	H	A	A	N	V	V	G	L	Т	D	Q	Т	D	L	F	Y	Т	M	K	A
									Xb												
35	3781 442	CGCT A	CTG: L	GGG(G			TAA'	TAA'	rct.	AGA	gga'	TCC	CCG	GGT2	ACC(3AG(JTC	JAA'	TTC	JTA.	AT
23	TT	A	1.1	G	لبا	T															

 $\Delta phoA$ sequence constitutes phoA residues 49-453.

40

SEQ ID NO 8

45 pMPX-53 (phoA cloned into pMPX-5 using PCR-introduced PstI and XbaI)

50	2401	GAAT	TCA	GGC	GCT	TTT	TAG	ACT	GGT	CGT.	AAT	'GAA		ne-D C <u>AG</u>	_		CAC	ATT		stI CAG	AT M
50																					
	2461	GTCA	CGG	CCG	AGA	CTT	ATA	GTC	GCT	TTG	TTT	'T'TA	TTT	TTT.	TAA	GTA'	TTT	GTA	CAT	GGA	GΑ
	2	ន	R	P	R	L	Ι	V	A	Ŀ	F	L	F	F	N	V	F	V	H	G	E
	2521	AAAT.	AAA	GTG.	AAA	CAA	AGC	ACT	ATT	GCA	CTG	GCA	CTC	TTA	CCG'	ΓΤΑ	CTG	TTT	ACC	CCT	GT
55	22	N	K	V	K	Q	S	Т	I	A	L	·A	L	L	P	Ŀ	L	F	Т	P	V
	2581	GACA	AAA	GCC	CGG	ACA	CCA	GAA	ATG	CCT	GTT	CTG	GAA	AAC	CGG	GCT	GCT	CAG	GGC	GAT	ΑT
	42	T	K	Α	R	Т	Ρ	E	M	P	V	L	E	N	R	Α	Α	Q	G	D	I

	2641	
	2641 62	TACTGCACCCGGCGGTGCTCGCCGTTTAACGGGTGATCAGACTGCCGCTCTGCGTGATTC T A P G G A R R L T G D O T A A L R D S
_	2701	TCTTAGCGATAAACCTGCAAAAAATATTATTTTGCTGATTGGCGATGGGATGGGGGACTC
5	82	LSDKPAKNIILLIGDGMGDS
	2761	
	2761 102	GGAAATTACTGCCGCACGTAATTATGCCGAAGGTGCGGGCGG
	102	
10	2821	TGCCTTACCGCTTACCGGGCAATACACTCACTATGCGCTGAATAAAAAAACCGGCAAACC
	122	ALPLTGQYTHYALNKKTGKP
	2881	GGACTACGTCACCGACTCGGCTGCATCAGCAACCGCCTGGTCAACCGGTGTCAAAACCTA
15	142	D Y V T D S A A S A T A W S T G V K T Y
1.5	2941	TAACGGCGCGCTGGGCGTCGATATTCACGAAAAAGATCACCCAACGATTCTGGAAATGGC
	162	N G A L G V D I H E K D H P T I L E M A
20	3001	AAAAGCCGCAGGTCTGGCGACCGGTAACGTTTCTACCGCAGAGTTGCAGGATGCCACGCC
20	182	KAAGLATGNVSTAELQDATP
	3061	CGCTGCGCTGGTGGCACATGTGACCTCGCGCAAATGCTACGGTCCGAGCGCGACCAGTGA
	202	A A L V A H V T S R K C Y G P S A T S E
	202	
25	3121	AAAATGTCCGGGTAACGCTCTGGAAAAAGGCGGAAAAGGATCGATTACCGAACAGCTGCT
	222	K C P G N A L E K G G K G S I T E Q L L
	3181 242	TAACGCTCGTGCCGACGTTACGCTTGGCGGCGCGCGCAAAAACCTTTGCTGAAACGGCAAC N A R A D V T L G G G A K T F A E T A T
30	242	NARADVIIGGGARIFAEIAI
-	3241	CGCTGGTGAATGGCAGGAAAAACGCTGCGTGAACAGGCACAGGCGCGTGGTTATCAGTT
	262	A G E W Q G K T L R E Q A Q A R G Y Q L
		•
35	3301	GGTGAGCGATGCTGCCTCACTGAATTCGGTGACGGAAGCGAATCAGCAAAAACCCCTGCT
33	282	V S D A A S L N S V T E A N Q Q K P L L
	3361	TGGCCTGTTTGCTGACGGCAATATGCCAGTGCGCTGGCTAGGACCGAAAGCAACGTACCA
	302	G L F A D G N M P V R W L G P K A T Y H
40	3421	TGGCAATATCGATAAGCCCGCAGTCACCTGTACGCCAAATCCGCAACGTAATGACAGTGT
	322	G N I D K P A V T C T P N P Q R N D S V
	3481	ACCAACCCTGGCGCAGATGACCGACAAAGCCATTGAATTGTTGAGTAAAAATGAGAAAGG
	342	PTLAQMTDKAIELLSKNEKG
45		
	3541	$\tt CTTTTTCCTGCAAGTTGAAGGTGCGTCAATCGATAAACAGGATCATGCTGCGAATCCTTG$
	362	F F L Q V E G A S I D K Q D H A A N P C
	2601	TGGGCAAATTGGCGAGACGGTCGATCTCGATGAAGCCGTACAACGGGCGCTGGAATTCGC
50	3601 382	G Q I G E T V D L D E A V Q R A L E F A
20	502	
	3661	TAAAAAGGAGGGTAACACGCTGGTCATAGTCACCGCTGATCACGCCCACGCCAGGCCAGAT
	402	K K E G N T L V I V T A D H A H A S Q I
<i></i>		
55	3721	TGTTGCGCCGGATACCAAAGCTCCGGGCCTCACCCAGGCGCTAAATACCAAAGATGGCGC
	422	V A P D T K A P G L T Q A L N T K D G A
	3781	AGTGATGGTGATGAGTTACGGGAACTCCGAAGAGGATTCACAAGAACATACCGGCAGTCA
	442	V M V M S Y G N S E E D S Q E H T G S Q
60		

PCT/US02/16877

10 SEQ ID NO 9

WO 03/072014

pMPX-33 (toxR-ΔphoA cloned into pMPX-5 using PCR-introduced PstI and XbaI)

													Shin						Ps		
15	2401	GAAT	TCA	GGC(GCT'	TTT'	TAG	ACTO	GT(CGT	TAA	JAA.	ATT(CAG	CAG	≟ AT(CAC	ATT <u>C</u>	CTG	CAG.	AT M
	2461	GAAC								CTG.	ATA I	3CG	J'I'C'. V	L'L'A(T' T.T.T.G	P	J'L'CC	3CAC A	3'I'A' V	I.T.A.	<u>T.</u>
20	2	N	L	G	N	R	L	F	I	ייר	Т	A	٧	Тī	יד	Р	ш	Α	V	Ш	יד
	2521	GCTC	ATG	CCT	GTT	CTG	GAA	AAC	CGG	GCT	GCT(CAG	GGC(GAT	ATTA	ACTO	GCA(CCC	GGC(GGT	GC
,	22	L	M	Ρ	V	L	E	N	R	A	A	Q	G	D	I	\mathbf{T}	A	P	G	G	A
	2581	TCGC	CGT:	ΓΤΑ	ACG	GGT	GAT	CAG	ACT	GCC	GCT	CTG	CGT	GAT:	гсто	CTTA	AGC	3AT2	AAA	CCT	GC
25	42	R	R	L	Т	G	D	Q	T	A	A	L	R	D	S	Ŀ	S	D	K	P	A
	2641	AAAA	ААТА	ATT.	ATT'	TTG	CTG	ATT	GGC(GAT	GGG:	ATG	GGG	JAC'	rcg	JAAE	ATTA	ACTO	3CC	GCA	CG
	62	K	N	I	I	L	L	I	G	D	G	M	G	D	S	E	I	Т	A	A	R
30	2701	TAAT	ידי א ידי	300	ር አ አ	മമസ	מכמ	aaa	ממטי	тфф	ىلىن ئ	7.7.7	ദവസ	ልጥል(<u>ገ</u> ል ጥረ	בררי	רידי∆ (ירפנ	بالبالد	אממ	cc
50	82	IAAT	A	Δ	E E	G	A A	G	G.	F	F	K	G	I	D	A.	L	P	L	Т	G
	02	14	-		_	_		Ŭ	Ŭ	-	_		_	-	_		_	-		_	_
	2761	GCAA	TAC	ACT	CAC	TAT	GCG	CTG	AAT	AAA	AAA	ACC	GGC:	AAA	CCG	JAC'	TAC	GTC	ACC	GAC	TC
	102	Q	Y	Т	H	Y	A	L	N	K	K	Т	G	K	P	D	Y	V	T	D	S
35																					
	2821	GGCT																			
	122	A	A	S	A	T	A	M	S	Т	G	V	K	Т	Y	N	G	Α	L	G	V
	2881	CGAT	'ATT	CAC	GAA	AAA	GAT	CAC	CCA	ACG.	ATT	CTG	GAA	ATG	GCA.	AAA	GCC	GCA(GGT	CTG	GC
40	142	D	I	H	E	K	D	H	P	Т	I	L	E	M	A	K	A	Α	G	L	A
	2941	GACC	GGT	AAC	GTT	TCT	ACC	GCA	GAG'	TTG	CAG	GAT	GCC:	ACG	ada.	GCT(GCG	CTG	GTG	GCA	.CA
	162	T	G	N	V	S	T	A	E	L	Q	D	A	T	P	A	A	L	V.	A	H
45	2001	TGTG	וז ממו	maa	aaa	מ זה זה	maa	m 2 Cl	cam	aaa	700	aaa	א ממ	7 (117)	י אי וליי	יררר	TOTAL	700	7 7 T	አአጣ	cc
45	3001 182	TGIG	T	S	R		C	Y	G	P	AGC S	A	T	S	JAA E	K	C	P	G.	AAC N	A
	102	v		D	10	10	_	_	J	_	D	п			_	10	_	-	Ü		
	3061	TCTG	GAA	AAA	GGC	GGA	AAA	GGA	TCG.	ATT	ACC	GAA	CAG	CTG	CTT	AAC	GCT	CGT	GCC	GAC	GT
50	202	L	E	K	G	G	K	G	S	I	Т	E	, Q	L	L	N	A	R	A	D	V
50	3121	TACG	CTT	GGC	GGC	GGC	GCA	AAA	ACC	ттт	GCT	GAA	ACG	GCA.	ACC	GCT	GGT	JAA'	TGG	CAG	GG
	222	Т	L	G	G	G	A	K	Т	F	A	E	T	A	Т	A	G	E	M	Q	G
	0.1.0.1		7 GG	от <i>с</i>	aa-	a	~~	a a -	a. ~	~~~	aa-	~~		a		ama.	* a a	~ » —	aam	aaa	ma
55	3181	AAAA K	ACG T	${ m CTG}$	CGT R								Ā. T.W.T.	CAG Q	Tı Lı	V. G'I.G'	AGC S	JATO D	GCT A	GCC A	TC S
<i>33</i> .	242	r.	Т	ונו	к	E	Q	A	Q	A	R	G	1	Q	П	٧	۵	ע	A	A	د .
	3241	ACTG	AAT	TCG	GTG	ACG	GAA	GCG	AAT	CAG	CAA	AAA	CCC	CTG	CTT	GGC	CTG'	rtt(GCT	GAC	!GG
	262	L	N	S	V	T	E	A	N	Q	Q	K	P	L	L	G	L	F	A	D	G
										_	_										

	3301	СААТ	አምረዓ	~~x	ата	aaa	maa	ረሞን (י ע בי בי	ממת:	Λ 7 λ 7λ <i>i</i>	ביריע	7 CC	ጥአር	C Σ ΤΩ	200	л л т	N 파스	ים עבי	አአር	CC
	282	N N	M	P	V	R	W	L	G	P	K	A	T	Y	Н	G	N	I	D		P
	3361	CGCA	GTC.	ACC'	TGT	ACG	CCA	AAT	CCG	CAA	CGT	TAA	GAC	AGT	GTA	CCA	ACC	CTG	GCG	CAG	AT
5	302	A	V	Т	С	Т	P	N	P	Q	R	N	D	S	V	P	·T	L	A	Q	M
	3421	GACC	GAC.	AAA	GCC	ATT	GAA	TTG'	ΓTG	AGT.	AAA	AAT	GAG	AAA	GGC'	ГТТ	TTC	CTG	CAA	GTT	GA
	322	T	D	K	A	I	E	L	Ŀ	S	K	N	E	K	G	F	F	L	Q	V	E
10	3481	AGGT	GCG	ГСА	ATC	GAT:	AAA	CAG	GAT	CAT	3CT	GCG	AAT	CCT	TGT	GGG	CAA	ATT	GGC	GAG	AC
	342	G	A	S	Į	D	K	Q	D	H	A	A	N	P	С	G	Q	I	G	E	Т
	3541	GGTC	GAT	CTC	GAT	GAA	GCC	GTA	CAA	CGG	GCG	CTG	GAA	TTC	GCT.	AAA	AAG	GAG	GGT	AAC	AC
15	362	V	D	L	D	E	A	V	Q	R	A	L	E	F	A	K	K	E	G	Ñ	Т
1.5	3601	GCTG	GTC	ATA	GTC	ACC	GCT	GAT	CAC	GCC	CAC	GCC	AGC	CAG	ATT	GTT	GCG	CCG	GAT	ACC	AA
	382	L	V	I	V	т	A	D	H	A	H	A	s	Q	I	V	A	P	D	T	K
	382 3661	L AGCT	•	_	•	_		_						~		-		_	_	_	
20			•	_	•	_		_						~		-		_	_	_	
20	3661	AGCT	CCG P	GGC G	CTC L	ACC T	CAG Q	GCG A	CTA L	AAT. N	ACC. T	AAA K	GAT D	GGC G	GCA A	GTG V	ATG M	GTG V	ATG M	AGT S	TA Y
20	3661 402	AGCT A	CCG P	GGC G	CTC L	ACC T GAG	CAG Q	GCG A	CTA L	AAT. N	ACC. T	AAA K	GAT D	GGC G	GCA A	GTG V	ATG M	GTG V	ATG M	AGT S	TA Y
20	3661 402 3721	AGCT A	CCG P AAC N	GGC G TCC S	CTC L GAA E	ACC T GAG E	CAG Q GAT	GCG A TCA S	CTA L CAA	AAT. N GAA E	ACC. T CAT. H	AAA K ACC T	GAT D GGC	GGC G AGT S	GCA A CAG	GTG V TTG L	ATG M CGT.	GTG V ATT I	ATG M GCG A	AGT S GCG A	TA Y TA
	3661 402 3721 422	AGCT A CGGG G	CCG P AAC N	GGC G TCC S	CTC L GAA E	ACC T GAG E	CAG Q GAT	GCG A TCA S	CTA L CAA	AAT. N GAA E	ACC. T CAT. H	AAA K ACC T	GAT D GGC	GGC G AGT S	GCA A CAG	GTG V TTG L	ATG M CGT.	GTG V ATT I	ATG M GCG A	AGT S GCG A	TA Y TA
	3661 402 3721 422 3781	AGCT A CGGG G TGGC	CCG P AAC N	GGC G TCC S CAT	CTC L GAA E	ACC T GAG E	CAG Q GAT 'D	GCG A TCA S	CTA L CAA Q GTT	AAT. N GAA E GGA	ACC. T CAT. H	AAA K ACC T ACC	GAT D GGC G	GGC G AGT S	GCA A CAG Q ACC	GTG V TTG L GAT	ATG M CGT. R	GTG V ATT I	ATG M GCG A	AGT S GCG A	TA Y TA Y
	3661 402 3721 422 3781	AGCT A CGGG G TGGC	CCG P AAC N CCG P	GGC G TCC S CAT H	CTC L GAA E GCC A	ACC T GAG E GCC A	CAG Q GAT 'D AAT N	GCG A TCA S GTT V	CTAL L CAA Q GTT V	AAT. N GAA E GGA G	ACC T CAT H CTG L	AAA K ACC T ACC T	GAT D GGC G GAC D	GGC G AGT S CAG	GCA A CAG Q ACC T	GTG V TTG L GAT D	ATG M CGT. R CTC L	GTG V ATT I TTC F	ATG M GCG A TAC Y	AGT S GCG A ACC	AT AT Y Y TA TA

Non-bold, underlined sequence is toxR transmembrane domain segment that constitutes toxR residues 178-198. The remaining sequence is from $\Delta phoA$ constituting phoA residues 49-453.

35

SEQ ID NO 10

pMPX-7 expression vector

40

- 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
- 61 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
- 45 121 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
 - ${\tt 181} \qquad {\tt ACCATATGCG} \ {\tt GTGTGAAATA} \ {\tt CCGCACAGAT} \ {\tt GCGTAAGGAG} \ {\tt AAAATACCGC} \\ {\tt ATCAGGCGCC}$
- 241 ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC 50 TCTTCGCTAT
 - 301 TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT

HindIII

55 361 TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGCCAA GCTTCGCAGC GCTGTTCCTT

PCT/US02/16877 WO 03/072014

	421	TGCTCGCCTG	CTGCGAGCTG	GGTAAGCGGA	CAAATTCTCA	CCGTCTCCGG	
	TGGTGG	GGTA					
	481	CAGGAGCTCA	ATTAATACAC	TAACGGACCG	GTAAACAACC	GTGCGTGTTG	
	TTTACC	GGGA					
5	541	TAAACTCATC	AACGTCTCTG	CTAAATAACT	GGCAGCCAAA	TCACGGCTAT	
	TGGTTA	ACCA					
	601	ATTTCAGAGT	GAAAAGTATA	CGAATAGAGT	GTGCCTTCGC	ACTATTCAAC	
	AGCAAT						
10							Start
	uidR						
	661	GGCGCTCACC	TGACAACGCG	GTAAACTAGT	TATTCACGCT	AACTATAATG	
	GTTTAA	TGAT					
							\rightarrow
15							
	721	GGATAACATG	CAGACTGAAG	CACAACCGAC	ACGGACCCGG	ATCCTCAATG	
	CTGCCA	GAGA					
	781	GATTTTTTCA	GAAAATGGAT	TTCACAGTGC	CTCGATGAAA	GCCATCTGTA	
	AATCTT	GCGC					
20	841	CATTAGTCCC	${\tt GGGACGCTCT}$	${\tt ATCACCATTT}$	CATCTCCAAA	GAAGCCTTGA	
	TTCAGG	CGAT					
	901	TATCTTACAG	GACCAGGAGA	GGGCGCTGGC	CCGTTTCCGG	GAACCGATTG	
	AAGGGA	TTCA					
	961	TTTCGTTGAC	TATATGGTCG	AGTCCATTGT	CTCTCTCACC	CATGAAGCCT	
25	TTGGAC	AACG					•
	1021	GGCGCTGGTG	GTTGAAATTA	TGGCGGAAGG	GATGCGTAAC	CCACAGGTCG	
	CCGCCA	TGCT					
	1081	TAAAAATAAG	CATATGACGA	TCACGGAATT	TGTTGCCCAG	CGGATGCGTG	
	ATGCCC	AGCA					
30	1141	AAAAGGCGAG	ATAAGCCCAG	ACATCAACAC	GGCAATGACT	TCACGTTTAC	
	TGCTGG						
	1201	GACCTACGGT	GTACTGGCCG	ATATCGAAGC	GGAAGACCTG	GCGCGTGAAG	
	CGTCGT	TTGC					
35						Stop uidR	
	1261		CGCGCGATGA	TTGGCGGTAT	CTTAACCGCA	TCCTGATTCT	
	CTCTCT	TTTT					
						*	
40	1321		GTGATAACTG	TGCCCGCGTT	TCATATCGTA	ATTTCTCTGT	
40	GCAAAA		ammaaaa aa a		" " E " E E E E E E	GEN GGGNENE	
	1381		CTTCGGAGAA	TTCCCCCCCAA	AATATTCACT	GTAGCCATAT	
	GTCAT						
	1441	11111100110	CCAATACGCT	CGAACGAACG	TTCGGTTGCT	TATTTTATGG	
15	CTTCTG			001 TOTA T	a	ama mmaa a am	
45	1501		AAGATTAATG	CGATCTATAT	CACGCTGTGG	GTATTGCAGT	
	TTTTGG				3 mmmamamma	an macammma	
		TTGATCGCGG	TGTCAGTTCT	TTTTATTTCC	ATTICICITE	CAIGGGIIIC	
	TCACAG	ATAA CTGTGTGCAA	G 3 G 3 G 3 3 FFFFG		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	COMO A CC A CO	
50			CACAGAATIG	GTTAACTAAT	CAGAIIAAAG	GIIGACCAGI	
<i>5</i> 0	ATTATT	ATCT					
		hine-Delgar	no Dati	Calt Vhat		KpnI	
	1681				GGATCCCCGG		
	CGAATI		TOCTOCHOOT	JOHOLOTHON		2	
55	COMMIT	→					
55		,					
	1741	ATCATGGTCA	TAGCTGTTTC	CTGTGTGAAA	TTGTTATCCG	CTCACAATTC	
	CACACA				,	· · · · · · · ·	
	1801	ACGAGCCGGA	AGCATAAAGT	GTAAAGCCTG	GGGTGCCTAA	TGAGTGAGCT	
60	AACTCA						

	1861 AGCTGCA		CGCTCACTGC	CCGCTTTCCA	GTCGGGAAAC	CTGTCGTGCC
	1921 CCGCTTO	ATGAATCGGC	CAACGCGCGG	GGAGAGGCGG	TTTGCGTATT	GGGCGCTCTT
5	1981 CTCACTO	GCTCACTGAC	TCGCTGCGCT	CGGTCGTTCG	GCTGCGGCGA	GCGGTATCAG
		GGCGGTAATA	CGGTTATCCA	CAGAATCAGG	GGATAACGCA	GGAAAGAACA
10	2101 TCCATAG	AGGCCAGCAA	AAGGCCAGGA	ACCGTAAAAA	GGCCGCGTTG	CTGGCGTTTT
10		CCGCCCCCT	GACGAGCATC	ACAAAAATCG	ACGCTCAAGT	CAGAGGTGGC
	2221 CTCCTGT	AGGACTATAA	AGATACCAGG	CGTTTCCCCC	TGGAAGCTCC	CTCGTGCGCT
15	2281 TGGCGCT	GACCCTGCCG	CTTACCGGAT	ACCTGTCCGC	CTTTCTCCCT	TCGGGAAGCG
	2341 AGCTGGG	TCATAGCTCA	CGCTGTAGGT	ATCTCAGTTC	GGTGTAGGTC	GTTCGCTCCA
20	2401 ATCGTCT	${\tt TGTGCACGAA}$	CCCCCGTTC	AGCCCGACCG	CTGCGCCTTA	TCCGGTAACT
20	2461 ACAGGAT	GTCCAACCCG	GTAAGACACG	ACTTATCGCC	ACTGGCAGCA	GCCACTGGTA
	2521 ACTACGO	CAGAGCGAGG	TATGTAGGCG	GTGCTACAGA	GTTCTTGAAG	TGGTGGCCTA
25	2581 TCGGAA	CACTAGAAGG	ACAGTATTTG	GTATCTGCGC	TCTGCTGAAG	CCAGTTACCT
	2641	AGTTGGTAGC	TCTTGATCCG	GCAAACAAAC	CACCGCTGGT	AGCGGTGGTT
30	2701 TCTTTT	CAAGCAGCAG	ATTACGCGCA	GAAAAAAAGG	ATCTCAAGAA	GATCCTTTGA
50	2761 TGAGAT	GGGGTCTGAC	GCTCAGTGGA	ACGAAAACTC	ACGTTAAGGG	ATTTTGGTCA
	2821 CAATCT	AAAAAGGATC	TTCACCTAGA	TCCTTTTAAA	TTAAAAATGA	AGTTTTAAAT
35	CAAICIA	-AAAG				
				Stop b	la	
	2881 CACCTA		TAAACTTGGT	CTGACAG <u>TTA</u>	CCAATGCTTA	ATCAGTGAGG
40	2941 AGATAA		CTATTTCGTT	CATCCATAGT	TGCCTGACTC	CCCGTCGTGT
		GATACGGGAG	GGCTTACCAT	CTGGCCCCAG	TGCTGCAATG	ATACCGCGAG
45	3061 GCAGAA	ACCGGCTCCA	GATTTATCAG	CAATAAACCA	GCCAGCCGGA	AGGGCCGAGC
10,	3121 CTAGAG	TCCTGCAACT	TTATCCGCCT	CCATCCAGTC	TATTAATTGT	TGCCGGGAAG
	3181 TCGTGG	TAGTTCGCCA	GTTAATAGTT	TGCGCAACGT	TGTTGCCATT	GCTACAGGCA
50	3241 GGCGAG	ACGCTCGTCG	TTTGGTATGG	CTTCATTCAG	CTCCGGTTCC	CAACGATCAA
	3301 TCGTTG	ATGATCCCCC	ATGTTGTGCA	AAAAAGCGGT	TAGCTCCTTC	GGTCCTCCGA
55	3361 ATTCTC	AAGTAAGTTG	GCCGCAGTGT	TATCACTCAT	GGTTATGGCA	GCACTGCATA ·
-	3421 AGTCAT	TGTCATGCCA	TCCGTAAGAT	GCTTTTCTGT	GACTGGTGAG	TACTCAACCA
	3481 ATAATA	AGAATAGTGT	ATGCGGCGAC	CGAGTTGCTC	TTGCCCGGCG	TCAATACGGG

3541 GCCACATAGC AGAACTTTAA AAGTGCTCAT CATTGGAAAA CGTTCTTCGG GGCGAAAACT

3601 CTCAAGGATC TTACCGCTGT TGAGATCCAG TTCGATGTAA CCCACTCGTG CACCCAACTG

5 3661 ATCTTCAGCA TCTTTTACTT TCACCAGCGT TTCTGGGTGA GCAAAAACAG GAAGGCAAAA

Start bla

3721 TGCCGCAAAA AAGGGAATAA GGGCGACACG GAAATGTTGA ATACT $\underline{\mathtt{CAT}}\mathtt{AC}$ 10 TCTTCCTTTT

IICCIIII

(

3781 TCAATATTAT TGAÂGCATTT ATCAGGGTTA TTGTCTCATG AGCGGATACA TATTTGAATG

15 3841 TATTTAGAAA AATAAACAAA TAGGGGTTCC GCGCACATTT CCCCGAAAAG TGCCACCTGA

3901 CGTCTAAGAA ACCATTATTA TCATGACATT AACCTATAAA AATAGGCGTA TCACGAGGCC

3961 CTTTCGTC

20

The segment uidR control region through the Puid promotor region was taken from the E. coli MG1655 chromosome using PCR-added HindIII and PstI restriction sites. This fragment was cut with HindIII and PstI and cloned into pUC-18 cut with the same enzymes. Underlined sequence constitutes the uidR regulatory region while the italicized sequence

25 constitutes the protein to be expressed promotor region under the control of *uidR*.

SEQ ID NO 11

30

pMPX-8 expression vector

- 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
- 35 61 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
 - 121 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
 - 181 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC
- 40 ATCAGGCGCC
 - 241 ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT
 - 301 TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT

45

Stop melR

- 361 TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGCCAA GCTT $\overline{ extbf{TTA}}$ GCC GGGAAACGTC
- 50 421 TGGCGGCGCT GTTGGCTAAG TTTGCGGTAT TGTTGCGGCG ACATGCCGAC ATATTTGCCG
 - 481 AACGTGCTGT AAAAACGACT ACTTGAACGA AAGCCTGCCG TCAGGGCAAT ATCGAGAATA
 - 541 CTTTTATCGG TATCGCTCAG TAACGCGCGA ACGTGGTTGA TGCGCATCGC
- 55 GGTAATGTAC
 - 601 TGTTTCATCG TCAATTGCAT GACCCGCTGG AATATCCCCA TTGCATAGTT GGCGTTAAGT

	661 TTGACGTGCT GGCAATAAAG	CAGCCACATC	GTTGATGGTC	AGCGCCTGAT	CATAGTTTTC	
		GGCTAACATA	AAATTGCGCA	TGGCGCGAGA	CGCTGTTTTT	
5		TGACCAGAAT	CGGTTCCCAG	CCAGAGAGGC	TAAATCGCTT	
		CAATGGCGAG	CTGGCGAATT	TGCTCGTTCG	GACTGTTTAA	
10		CTTCAAACGG	GCTAAGTTGC	TGTGTGGCCA	GTGATTTGAT	
10		GGTTAATCAG	GTCTTTATCC	AGCGGCCAGG	AGAGAAACAG	
		TCGCCATGCT	CTGACAGGTT	CCGGTATCTG	TTAGTTGGTG	
15	1081 GCCCAGAACA GATCAGGTAT	GCGTGATATG	ACCCTGATTG	ATATTCACTT	TTTCATTGTT	ut.
	1141 TCCACATCGC GCTGGTGGGC	CATCGAAAGG	CACATTCACT	TCGACCTGAC	CATGCCAGTG	
20	1201 ATGATATGCG CAGCGACAGC	GTGCGCGAAA	CTCAATCTCC	ATCCGCTGGT	ATTCCGAATA	
			•			art melR
		TCTGTTTTTC	GTCGCTGCTG	CACATAAACG	TATCTGTATT	
25	CATGGATGGC					1
25						← ,
	1321 TCTCTTTCCT	GGAATATCAG	AATTATGGCA	GGAGTGAGGG	AGGATGACTG	
	CGAGTGGGAG	OOMIIIII CIIC	111111111111111111111111111111111111111	0011011011000	1100111101101	
		ACCCTCTTCC	CAGAGGGGCG	AGGGGACTCT	CCGAGTATCA	
30	TGAGGCCGAA					
	1441 AACTCTGCTT TTCACGCAGG	TTCAGGTAAT	TTATTCCCAT	AAACTCAGAT	TTACTGCTGC	
25	1 F 0 1 3 F C F C 3 C F F F F			Shine-Delga:		
35	1501 ATCTGAGTTT TTCGCCTGCC	ATGGGAATGC	TCAACCTGGA	AGC <u>CGGAGG</u> T	TTTCTGCAGA	
	TICGCCIGCC					
			•		SalI X	oaI
	BamHI					
40		TATTCAAGCA	AGCCAGGAGA	TCTGGTACCC	GGGTCGACTC	
,	TAGAGGATCC					
	KpnI					
	_	AGCTCGAATT	CGTAATCATG	GTCATAGCTG	TTTCCTGTGT	
45	GAAATTGTTA					
	1681 TCCGCTCACA	. ATTCCACACA	ACATACGAGC	CGGAAGCATA	AAGTGTAAAG	
		AGCTAACTCA	CATTAATTGC	GTTGCGCTCA	CTGCCCGCTT	
50	TCCAGTCGGG		*	000007		
50	1801 AAACCTGTCG GCGGTTTGCG	TGCCAGCTGC	ATTAATGAAT	CGGCCAACGC	GCGGGGAGAG	
	1861 TATTGGGCGC	TCTTCCGCTT	CCTCGCTCAC	TGACTCGCTG	CGCTCGGTCG	
	TTCGGCTGCG 1921 GCGAGCGGTA	TCAGCTCACT	CAAAGGCGGT	AATACGGTTA	TCCACAGAAT	
55	CAGGGGATAA					
	1981 CGCAGGAAAG AAAAGGCCGC	AACATGTGAG	CAAAAGGCCA	GCAAAAGGCC	AGGAACCGTA	
	2041 GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC	CCCTGACGAG	CATCACAAAA	
	ATCGACGCTC					

	2101 AAGTCAGAGG	TGGCGAAACC	CGACAGGACT	ATAAAGATAC	CAGGCGTTTC	
		CGCTCTCCTG	TTCCGACCCT	GCCGCTTACC	GGATACCTGT	
5	2221 CCCTTCGGGA GTTCGGTGTA	AGCGTGGCGC	TTTCTCATAG	CTCACGCTGT	AGGTATCTCA	
	2281 GGTCGTTCGC ACCGCTGCGC	TCCAAGCTGG	GCTGTGTGCA	CGAACCCCCC	GTTCAGCCCG	
10	2341 CTTATCCGGT CGCCACTGGC	AACTATCGTC	TTGAGTCCAA	CCCGGTAAGA	CACGACTTAT	
	2401 AGCAGCCACT CAGAGTTCTT	GGTAACAGGA	TTAGCAGAGC	GAGGTATGTA	GGCGGTGCTA	
	2461 GAAGTGGTGG GCGCTCTGCT	CCTAACTACG	GCTACACTAG	AAGGACAGTA	TTTGGTATCT	-
15	2521 GAAGCCAGTT AAACCACCGC	ACCTTCGGAA	AAAGAGTTGG	TAGCTCTTGA	TCCGGCAAAC	
	2581 TGGTAGCGGT AAGGATCTCA	GGTTTTTTTG	TTTGCAAGCA	GCAGATTACG	CGCAGAAAAA	
20	2641 AGAAGATCCT ACTCACGTTA	TTGATCTTTT	CTACGGGGTC	TGACGCTCAG	TGGAACGAAA	
	2701 AGGGATTTTG TAAATTAAAA	GTCATGAGAT	TATCAAAAAG	GATCTTCACC	TAGATCCTTT	
					Sto	p bla
25	2761 ATGAAGTTTT G <u>TTA</u> CCAATG	AAATCAATCT	AAAGTATATA	TGAGTAAACT	TGGTCTGACA	
	2821 CTTAATCAGT TAGTTGCCTG	GAGGCACCTA	TCTCAGCGAT	CTGTCTATTT	CGTTCATCCA	
30		GTGTAGATAA	CTACGATACG	GGAGGGCTTA	CCATCTGGCC	
		CGAGACCCAC	GCTCACCGGC	TCCAGATTTA	TCAGCAATAA	
35	3001 CGGAAGGGCC AGTCTATTAA	GAGCGCAGAA	GTGGTCCTGC	AACTTTATCC	GCCTCCATCC	
	3061 TTGTTGCCGG ACGTTGTTGC	GAAGCTAGAG	TAAGTAGTTC	GCCAGTTAAT	AGTTTGCGCA	
	3121 CATTGCTACA TCAGCTCCGG	GGCATCGTGG	TGTCACGCTC	GTCGTTTGGT	ATGGCTTCAT	
40	3181 TTCCCAACGA CGGTTAGCTC	TCAAGGCGAG	TTACATGATC	CCCCATGTTG	TGCAAAAAAG	
	3241 CTTCGGTCCT TCATGGTTAT	CCGATCGTTG	TCAGAAGTAA	GTTGGCCGCA	GTGTTATCAC	
45	3301 GGCAGCACTG CTGTGACTGG	CATAATTCTC	TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	
	3361 TGAGTACTCA GCTCTTGCCC	ACCAAGTCAT	TCTGAGAATA	GTGTATGCGG	CGACCGAGTT	
	3421 GGCGTCAATA TCATCATTGG	CGGGATAATA	CCGCGCCACA	TAGCAGAACT	TTAAAAGTGC	
50	3481 AAAACGTTCT CCAGTTCGAT	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	CTGTTGAGAT	
	3541 GTAACCCACT GCGTTTCTGG	CGTGCACCCA	ACTGATCTTC	AGCATCTTTT	ACTTTCACCA	
55	3601 GTGAGCAAAA CACGGAAATG	ACAGGAAGGC	AAAATGCCGC	AAAAAAGGGA	ATAAGGGCGA	
	Q+ a	rt bla				
		ATACTCTTCC	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	
6 0	€	-				

3721 CATGAGCGGA TACATATTIG AATGTATTTA GAAAAATAAA CAAATAGGGG TTCCGCGCAC

3781 ATTTCCCCGA AAAGTGCCAC CTGACGTCTA AGAAACCATT ATTATCATGA CATTAACCTA

3841 TAAAAATAGG CGTATCACGA GGCCCTTTCG TC

The segment *melR* through the Pmel control region was taken from the *E. coli* MG1655 chromosome using PCR-added *Hind*III and *Pst*I restriction sites. This fragment was cut with *Hind*III and *Pst*I and cloned into pUC-18 cut with the same enzymes. Italicized sequence constitutes both *melR* and protein to be expressed promotor region.

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG

SEQ ID NO 12

GCGCGGACGA

15

20

5

pMPX-18 expression vector

20	GAGACG	FICA				
	61	CAGCTTGTCT	${\tt GTAAGCGGAT}$	$\tt GCCGGGAGCA$	GACAAGCCCG	TCAGGGCGCG
	TCAGCG	GGTG		1		
	121	TTGGCGGGTG	TCGGGGCTGG	CTTAACTATG	CGGCATCAGA	GCAGATTGTA
	CTGAGA	GTGC				
25	181	ACCATATGCG	GTGTGAAATA	CCGCACAGAT	$\tt GCGTAAGGAG$	AAAATACCGC
	ATCAGG	CGCC				
	241	ATTCGCCATT	CAGGCTGCGC	AACTGTTGGG	AAGGGCGATC	GGTGCGGGCC
	TCTTCG	CTAT				
	301	TACGCCAGCT	GGCGAAAGGG	GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA
30	ACGCCA	GGGT				
						<u>ndIII</u>
	361		ACGACGTTGT	AAAACGACGG	CCAGTGCCAA	GCTTCAAGCC
0.5	GTCAAT:	IGTC				
35						
			Stop araC		~~~~~~	
	421		CCAA <u>TTA</u> TGA	CAAC'T'TGACG	GCTACATCAT	TCACTTTTC
	TTCACA	ACCG				
40	481	C C 3 C C C 3 3 C C C	CGCTCGGGCT	аааааааа	ር እ መመመመመጥ እ እ	א וווא ממממממא
40	GAAATA		CGCTCGGGCT	GGCCCCGGIG	CAIIIIIAA	ATACCCGCGA
	541		AACCAACATT	acay acay ca	CTCCCCATAC	сслтссссст
	GGTGCT		AACCAACAII	GCGACCGACG	GIGGCGAIAG	GCAICCGGGI
	601		CCTGGCTGAT	∆ CGTTGGTCC	тсасассъсс	ጥጥል ል ር ል ር ርርር ባ
45	AATCCC		CCIOGCIGAI	11001100100	10000001100	1 17110710001
	661		AAAGATGTGA	CAGACGCGAC	GGCGACAAGC	AAACATGCTG
	TGCGAC				0000.101_100	
	721		AATTGCTGTC	TGCCAGGTGA	TCGCTGATGT	ACTGACAAGO
	CTCGCG'	TACC				
50	781	CGATTATCCA	TCGGTGGATG	GAGCGACTCG	TTAATCGCTT	CCATGCGCCG
	CAGTAA	CAAT				
	841	TGCTCAAGCA	GATTTATCGC	CAGCAGCTCC	GAATAGCGCC	CTTCCCCTTC
	CCCGGC	GTTA				
	901	ATGATTTGCC	CAAACAGGTC	GCTGAAATGC	GGCTGGTGCG	CTTCATCCGG
55	GCGAAA	GAAC	,			
	961	CCCGTATTGG	CAAATATTGA	CGGCCAGTTA	AGCCATTCAT	GCCAGTAGGC

	1021 AAGTAA GTGATGAATC	ACCC ACTGGTGA	TA CCATTCGCGA	GCCTCCGGAT	GACGACCGTA	
		GGCG GGAACAGC	AA AATATCACCC	GGTCGGCAAA	CAAATTCTCG	
5		ACCC CCTGACCG	CG AATGGTGAGA	. TTGAGAATAT	AACCTTTCAT	
		ATAA AAAAATCG	AG ATAACCGTTG	GCCTCAATCG	GCGTTAAACC	
10		TTAA ACGAGTAT	CC CGGCAGCAGG	GGATCATTTT	GCGCTTCAGC	
	1321 ATACTC	CCGC CATTCAGA	GA AGAAACCAAT		art araC G <u>CAT</u> CAGACA	
15	TIGCCGICAC				←	
	1381 TGCGTC TAAAAGCATT	TTTT ACTGGCTC	TT CTCGCTAACC	' AAACCGGTAA	CCCCGCTTAT	
20	1441 CTGTAA CTATAATCAC	CAAA GCGGGACC	AA AGCCATGACA	AAAACGCGTA	ACAAAAGTGT	
	1501 GGCAGA CATAGCATTT	AAAG TCCACATT	GA TTATTTGCAC	GGCGTCACAC	TTTGCTATGC	
	1561 TTATCC. TACTGTTTCT	ATAA GATTAGCG	GA TCCTACCTGA	CGCTTTTTAT	CGCAACTCTC	
25						
			Shine-Delg		stI SalI	XbaI
	1621 <i>CCATAC</i> TCTAGAGGAT	CCGT TTTTTTGG(GC TAGC <u>AGGAGG</u>	AATTCACC <u>CT</u>	GCAG GTCGAC	
20			· →			
30		KpnI		######################################		
	GTGAAATTGT	GTAC CGAGCTCGA				
	1741 TATCCGG AGCCTGGGGT	CTCA CAATTCCA	LA CAACATACGA	GCCGGAAGCA	TAAAGTGTAA	
35	1801 GCCTAA' TTTCCAGTCG	IGAG TGAGCTAAC	CT CACATTAATT	GCGTTGCGCT	CACTGCCCGC	
	1861 GGAAACO AGGCGGTTTG	CTGT CGTGCCAG	CT GCATTAATGA	ATCGGCCAAC	GCGCGGGGAG	
40	1921 CGTATTO CGTTCGGCTG	GGGC GCTCTTCCC	GC TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	
	1981 CGGCGAG ATCAGGGGAT	GCGG TATCAGCTO	CA CTCAAAGGCG	GTAATACGGT	TATCCACÀGA	
	2041 AACGCAG	GGAA AGAACATGI	rg agcaaaaggc	CAGCAAAAGG	CCAGGAACCG	
45	2101 GCGTTG	CTGG CGTTTTTCC	CA TAGGCTCCGC	CCCCCTGACG	AGCATCACAA	
		CAGA GGTGGCGA	AA CCCGACAGGA	CTATAAAGAT	ACCAGGCGTT	
50	TCCCCCTGGA 2221 AGCTCC					
20		CTCG TGCGCTCTC	CC TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	
	GTCCGCCTTT 2281 CTCCCTT	CTCG TGCGCTCTC				r
	GTCCGCCTTT 2281 CTCCCTT CAGTTCGGTG 2341 TAGGTCC		GCTTTCTCAT	AGCTCACGCT	GTAGGTATCT	,
55	GTCCGCCTTT 2281 CTCCCTT CAGTTCGGTG 2341 TAGGTCC CGACCGCTGC 2401 GCCTTAT	rcgg gaagcgtgo	GC GCTTTCTCAT	AGCTCACGCT CACGAACCCC	GTAGGTATCT	
55	GTCCGCCTTT 2281 CTCCCTT CAGTTCGGTG 2341 TAGGTCC CGACCGCTGC 2401 GCCTTAT ATCGCCACTG	ICGG GAAGCGTGG	GCTTTCTCAT GGGCTGTGTG GTCTTGAGTCC	AGCTCACGCT CACGAACCCC AACCCGGTAA	GTAGGTATCT CCGTTCAGCC GACACGACTT	
55	GTCCGCCTTT 2281 CTCCCTT CAGTTCGGTG 2341 TAGGTCC CGACCGCTGC 2401 GCCTTAT ATCGCCACTG 2461 GCAGCAC TACAGAGTTC	ICGG GAAGCGTGG GTTC GCTCCAAGC ICCG GTAACTATC	EC GCTTTCTCAT CT GGGCTGTGTG CG TCTTGAGTCC AG GATTAGCAGA	AGCTCACGCT CACGAACCCC AACCCGGTAA GCGAGGTATG	GTAGGTATCT CCGTTCAGCC GACACGACTT TAGGCGGTGC	

CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA 2581 ACAAACCACC GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA 2641 AAAAGGATCT 5 2701 CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT 2761 TTTAAATTAA 10 Start bla AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA 2821 CAGTTACCAA 15 TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC 2881 CATAGTTGCC TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG 2941 CCCCAGTGCT GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT TATCAGCAAT 3001 20 AAACCAGCCA 3061 GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT GCAACTTTAT CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG 3121 CAACGTTGTT 25 GCCATTGCTA CAGGCATCGT GGTGTCACGC TCGTCGTTTG GTATGGCTTC 3181 ATTCAGCTCC 3241 GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA AGCGGTTAGC TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG CAGTGTTATC 3301 30 ACTCATGGTT ATGGCAGCAC TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT 3361 TTCTGTGACT GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG 3421 TTGCTCTTGC 35 3481 CCGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG 3541 ATCCAGTTCG ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC 3601 40 CAGCGTTTCT 3661 GGGTGAGCAA AAACAGGAAG GCAAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA Start bla 45 3721 TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT \leftarrow CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG 3781 50 GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTATCAT 3841 GACATTAACC 3901 TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTC

The segment *araC* through the Para control region was taken from pBAD24 using PCR-added *HindIII* and *PstI* restriction sites. This fragment was cut with *HindIII* and *PstI* and cloned into pUC-18 cut with the same enzymes. Italicized sequence constitutes both *araC* and protein to be expressed promotor region.

SEQ ID NO 13

5 pMPX-6 expression vector

	1	TAGTTATTAA	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA
	TGGAGT'	TCCG				
10	61	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC
	CCCGCC	CATT				
	121	GACGTCAATA	ATGACGTATG	TTCCCATAGT	AACGCCAATA	GGGACTTTCC
	ATTGAC	GTCA				
	181	ATGGGTGGAG	TATTTACGGT	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT
15	ATCATA!	TGCC				
	241	AAGTACGCCC	CCTATTGACG	TCAATGACGG	TAAATGGCCC	GCCTGGCATT
	ATGCCC	AGTA				
	301		TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA
20	TCGCTA'					
20	361		CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG
	ACTCAC					
	421		CTCCACCCCA	TTGACGTCAA	TGGGAGTTTG	TTTTGGCACC
	AAAATC				,	
25	481		AAATGTCGTA	ACAACTCCGC	CCCATTGACG	CAAATGGGCG
25	GTAGGC		G=G=3=3=3	661 61 66E6		6676161766
	541		GTCTATATAA	GCAGAGCTGG	TTTAGTGAAC	CGTCAGATCC
	GCTAGC	JCTA				
			Those GED			
30	601		Start GFP	ann addadana	GAGCTGTTCA	aaaaaamaam
30	GCCCAT		CCATGGIGAG	CAAGGGCGAG	GAGCTGTTCA	CCGGGGTGGT
	GCCCAI	CIG	→			
				•		
	661	GTCGAGCTGG	ACGGCGACGT	AAACGGCCAC	AAGTTCAGCG	TGTCCGGCGA
35	GGGCGA		,	111100000110	1110111000	
	721	GATGCCACCT	ACGGCAAGCT	GACCCTGAAG	TTCATCTGCA	CCACCGGCAA
	GCTGCC	CGTĠ				
	781	CCCTGGCCCA	CCCTCGTGAC	CACCCTGACC	TACGGCGTGC	AGTGCTTCAG
	CCGCTA	CCCC				
40	841	GACCACATGA	AGCAGCACGA	CTTCTTCAAG	TCCGCCATGC	CCGAAGGCTA
	CGTCCAC	GGAG				
	901	CGCACCATCT	TCTTCAAGGA	CGACGGCAAC	TACAAGACCC	GCGCCGAGGT
	GAAGTT	CGAG				
	961	GGCGACACCC	TGGTGAACCG	CATCGAGCTG	AAGGGCATCG	ACTTCAAGGA
45	GGACGG	CAAC				
	1021		ACAAGCTGGA	GTACAACTAC	AACAGCCACA	ACGTCTATAT
	CATGGC					
	1081		ACGGCATCAA	GGTGAACTTC	AAGATCCGCC	ACAACATCGA
~ 0	GGACGG					
50		GTGCAGCTCG	CCGACCACTA	CCAGCAGAAC	ACCCCCATCG	GCGACGGCCC
	CGTGCT					
	1201		ACTACCTGAG	CACCCAGTCC	GCCCTGAGCA	AAGACCCCAA
	CGAGAA			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~	=======================================
55	1261		TCCTGCTGGA	GTTCGTGACC	GCCGCCGGGA	TCACTCTCGG
55	CATGGA	CGAG				
				What C	on GED	
	1321	Стерия сталаст		XhoI St	TAATAACAAG	
	TCTGAT		CCGGACICAG	ATCICGAGCI	TAMIAACAAG	CCGICAAIIG
	TCTQUT.					

	Stop ara	aC				
	1381 TACCAA <u>TTA</u> T CGGCACGGAA	GACAACTTGA	CGGCTACATC	ATTCACTTTT	TCTTCACAAC	
5		CTGGCCCCGG	TGCATTTTTT	AAATACCCGC	GAGAAATAGA	
		TTGCGACCGA	CGGTGGCGAT	AGGCATCCGG	GTGGTGCTCA	
10		ATACGTTGGT	CCTCGCGCCA	GCTTAAGACG	CTAATCCCTA	
	ACTGCTGGCG 1621 GAAAAGATGT TGGCGATATC	GACAGACGCG	ACGGCGACAA	GCAAACATGC	TGTGCGACGC	
15		TCTGCCAGGT	GATCGCTGAT	GTACTGACAA	GCCTCGCGTA	
20		TGGAGCGACT	CGTTAATCGC	TTCCATGCGC	CGCAGTAACA	
	1801 CAGATTTATC TAATGATTTG	GCCAGCAGCT	CCGAATAGCG	CCCTTCCCCT	TGCCCGGCGT	
20	1861 CCCAAACAGG ACCCCGTATT	TCGCTGAAAT	GCGGCTGGTG	CGCTTCATCC	GGGCGAAAGA	
	GAAAGTAAAC	GACGGCCAGT				
25	TCTCTCCTGG	TACCATTCGC				
	TTTTCACCAC	AAAATATCAC				•
20	GTCGGTCGAT	CGAATGGTGA				
30	GATGGGCATT	AGATAACCGT CCCGGCAGCA				
	2221 AAACGAGTAT TCATACTCCC	CCCGGCAGCA	GGGGATCATT	TIGCGCTICA	GCCATACITI	
35	2281 GCCATTCAGA ACTGCGTCTT	GAAGAAACCA	ATTGTCCATA	Start araC TTG <u>CAT</u> CAGA ←	CATTGCCGTC	
40	2341 TTACTGGCTC	TTCTCGCTAA	CCAAACCGGT	•	ATTAAAAGCA	
40		AAAGCCATGA	CAAAAACGCG	TAACAAAAGT	GTCTATAATC	
		GATTATTTGC	ACGGCGTCAC	ACTTTGCTAT	GCCATAGCAT	
45		GATCCTACCT	GACGCTTTTT	ATCGCAACTC	TCTACTGTTT	
50	2581 GTTTTTTGG	→ GCTAGC <u>AGGA</u>	ECORI <i>GG</i> AATTCACC	KpnI ATGGTACCCG	GGGATCCTCT	SalI
50	Adadicoacc	Shine-D	elgarno			
55	PstI 2641 TGCAGGCATG AACTGATCAT	HindIII CAAGCTTGGC	SstII CCGCGG	GGGATCCACC	GGATCTAGAT	
	2701 AATCAGCCAT	' ACCACATTTG	TAGAGGTTTT	ACTTGCTTTA	AAAAACCTCC	
60	2761 CCTGAACCTG TTGCAGCTTA	AAACATAAAA	TGAATGCAAT	TGTTGTTGTT	AACTTGTTTA	

		AAATAAAGCA	ATAGCATCAC	AAATTTCACA	AATAAAGCAT
	TTTTTCACT 2881 GCATTCTAGT ATTGTAAGCG	TGTGGTTTGT	CCAAACTCAT	CAATGTATCT	TAACGCGTAA
5		GTTAAAATTC	GCGTTAAATT	TTTGTTAAAT	CAGCTCATTT
		CGGCAAAATC	CCTTATAAAT	CAAAAGAATA	GACCGAGATA
10	3061 TTGTTCCAGT	TTGGAACAAG	AGTCCACTAT	TAAAGAACGT	GGACTCCAAC
10	GTCAAAGGGC 3121 GAAAAACCGT TCAAGTTTTT	CTATCAGGGC	GATGGCCCAC	TACGTGAACC	ATCACCCTAA
	3181 TGGGGTCGAG	GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	AGGGAGCCCC
15		AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG
	<u> </u>	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA
• •		GCTACAGGGC	GCGTCAGGTG	GCACTTTTCG	GGGAAATGTG
20	CGCGGAACCC 3421 CTATTTGTTT	ATTTTTCTAA	ATACATTCAA	ATATGTATCC	GCTCATGAGA
	CAATAACCCT 3481 GATAAATGCT	TCAATAATAT	TGAAAAAGGA	AGAGTCCTGA	GGCGGAAAGA
25	ACCAGCTGTG 3541 GAATGTGTGT	CAGTTAGGGT	GTGGAAAGTC	CCCAGGCTCC	CCAGCAGGCA
	GAAGTATGCA 3601 AAGCATGCAT	CTCAATTAGT	CAGCAACCAG	GTGTGGAAAG	TCCCCAGGCT
	CCCCAGCAGG 3661 CAGAAGTATG	CAAAGCATGC	<u>አጥሮ</u> ጥሮ አ አጥጥ አ	GTCAGCAACC	አ ሞ አ ርጥርርርር
30	CCCTAACTCC				
	GCTGACTAAT	CCCCTAACTC			
	3781 TTTTTTATT AGAAGTAGTG	TATGCAGAGG	CCGAGGCCGC	CTCGGCCTCT	GAGCTATTCC
35	3841 AGGAGGCTTT GGATGAGGAT	TTTGGAGGCC	TAGGCTTTTG	CAAAGATCGA	TCAAGAGACA
	Star	t Kan	-		
40	3901 CGTTTCGC <u>AT</u> TGGGTGGAGA →	G ATTGAACAA	GATGGATTGC	ACGCAGGTTC	TCCGGCCGCT
	3961 GGCTATTCGG	CTATGACTGG	GCACAACAGA	СУУТСЕССТЕ	ርጥርጥር;፮ጥር;ርር
45	GCCGTGTTCC				
43	GGTGCCCTGA	GCAGGGGCGC			
	GTTCCTTGCG	AGACGAGGCA			
50	GGCGAAGTGC	CGACGTTGTC			
	4201 CGGGGCAGGA ATCATGGCTG	TCTCCTGŢCA	TCTCACCTTG	CTCCTGCCGA	GAAAGTATCC
	4261 ATGCAATGCG CACCAAGCGA	GCGGCTGCAT	ACGCTTGATC	CGGCTACCTG	CCCATTCGAC
55	4321 AACATCGCAT CAGGATGATC	CGAGCGAGCA	CGTACTCGGA	TGGAAGCCGG	TCTTGTCGAT
	4381 TGGACGAAGA AAGGCGAGCA	. GCATCAGGGG	CTCGCGCCAG	CCGAACTGTT	CGCCAGGCTC
60		CGAGGATCTC	GTCGTGACCC	ATGGCGATGC	CTGCTTGCCG

TGGAAAATGG CCGCTTTTCT GGATTCATCG ACTGTGGCCG GCTGGGTGTG 4501 GCGGACCGCT 4561 ATCAGGACAT AGCGTTGGCT ACCCGTGATA TTGCTGAAGA GCTTGGCGGC GAATGGGCTG 5 4621 ACCGCTTCCT CGTGCTTTAC GGTATCGCCG CTCCCGATTC GCAGCGCATC GCCTTCTATC Stop Kan 4681 GCCTTCTTGA CGAGTTCTTC TGAGCGGGAC TCTGGGGTTC GAAATGACCG 10 ACCAAGCGAC 4741 GCCCAACCTG CCATCACGAG ATTTCGATTC CACCGCCGCC TTCTATGAAA GGTTGGGCTT 4801 CGGAATCGTT TTCCGGGACG CCGGCTGGAT GATCCTCCAG CGCGGGGATC 15 TCATGCTGGA 4861 GTTCTTCGCC CACCCTAGGG GGAGGCTAAC TGAAACACGG AAGGAGACAA TACCGGAAGG 4921 AACCCGCGCT ATGACGGCAA TAAAAAGACA GAATAAAACG CACGGTGTTG GGTCGTTTGT 20 4981 TCATAAACGC GGGGTTCGGT CCCAGGGCTG GCACTCTGTC GATACCCCAC CGAGACCCCA TTGGGGCCAA TACGCCCGCG TTTCTTCCTT TTCCCCACCC CACCCCCAA 5041 GTTCGGGTGA AGGCCCAGGG CTCGCAGCCA ACGTCGGGGC GGCAGGCCCT GCCATAGCCT 5101 25 CAGGTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATTT AAAAGGATCT 5161 AGGTGAAGAT CCTTTTTGAT AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC 5221 ACTGAGCGTC 30 AGACCCCGTA GAAAAGATCA AAGGATCTTC TTGAGATCCT TTTTTTCTGC 5281 GCGTAATCTG CTGCTTGCAA ACAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG 5341 ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA 5401 35 ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT GTAGCACCGC 5461 CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT 5521 GTCTTACCGG 40 GTTGGACTCA AGACGATAGT TACCGGATAA GGCGCAGCGG TCGGGCTGAA 5581 CGGGGGGTTC 5641 GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC 5701 45 CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG GGAAACGCCT 5761 GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCGA TTTTTGTGAT 5821 GCTCGTCAGG 50 GGGGCGGAGC CTATGGAAAA ACGCCAGCAA CGCGGCCTTT TTACGGTTCC 5881 TGGCCTTTTG CTGGCCTTTT GCTCACATGT TCTTTCCTGC GTTATCCCCT GATTCTGTGG 5941 ATAACCGTAT TACCGCCATG CAT 6001 55

The segment *araC* through *SstII* following the Para control region was taken from pBAD24 using a PCR-added *XhoI* restriction site. This fragment was cut with *XhoI* and *SstII* and cloned into pEGFP-C1 (Clontech) cut with the same enzymes. Italicized and underlined

sequence constitutes the CMV promotor region while the italicized alone region constitutes both the araC and protein to be expressed promotor region.

5

SEQ ID NO 14

10

pMPX-56 (rat Edg3 cloned into pMPX-5 using PCR-introduced SalI and KpnI)

15	2401	Shine-Delgarno GAATTCAGGCGCTTTTTAGACTGGTCGTAATGAAATTCAGCAGGATCACATTCTGCAG <u>GT</u>
	0.4.6.7	SalI
20	2461 1	CGACATGGCAACCACGCGCGCGGGGCCACCCGCCAGTCTTGGGGAATGATACTCTCCG M A T T H A Q G H P P V L G N D T L R
20	2521	GGAACATTATGATTACGTGGGGAAGCTGGCAGGCAGGCTGCGGGATCCCCCTGAGGGTAG
,	20	E H Y D Y V G K L A G R L R D P P E G S
	2581	CACCCTCATCACCACCATCCTCTTCTTGGTCACCTGTAGCTTCATCGTCTTGGAGAACCT
25	40	T L I T I L F L V T C S F I V L E N L
	2641	GATGGTTTTGATTGCCATCTGGAAAAACAATAAATTTCATAACCGCATGTACTTTTTCAT
	60	MVLIAIWKNNKFHNRMYFFI
30	2701	CGGCAACTTGGCTCTCTGCGACCTGCTGGCCGGCATAGCCTACAAGGTCAACATTCTGAT
20	80	G N L A L C D L L A G I A Y K V N I L M
	2761	GTCCGGTAGGAAGACGTTCAGCCTGTCTCCAACAGTGTGGTTCCTCAGGGAGGG
25	100	S G R K T F S L S P T V W F L R E G S M
35	2821	GTTCGTAGCCCTGGGCGCATCCACATGCAGCTTATTGGCCATTGCCATTGAGCGGCACCT
	120	F V A L G A S T C S L L A I A I E R H L
	2881	GACCATGATCAAGATGAGGCCGTACGACGCCAACAAGAAGCACCGCGTGTTCCTTCTGAT
40	140	T M I K M R P Y D A N K K H R V F L L I
	0047	
	2941 160	TGGGATGTGCTGGCTAATTGCCTTCTCGCTGGGTGCCCTGCCCATCCTGGGCTGGAACTG G M C W L I A F S L G A L P I L G W N C
	100	
45	3001	$\tt CCTGGAAAACTTTCCCGACTGCTCTACCATCTTGCCCCTCTACTCCAAGAAATACATTGC$
	180	LENFPDCSTILPLYSKKYIA
	3061	CTTTCTCATCAGCATCTTCATAGCCATTCTGGTGACCATCGTCATCTTGTACGCGCGCAT
	200	F L I S I F I A I L V T I V I L Y A R I
50		
	3121 220	CTACTTCCTGGTCAAGTCCAGCAGCCGCAGGGTGGCCAACCACAACTCCGAGAGATCCAT Y F L V K S S S R R V A N H N S E R S M
	220	
	3181	GGCCCTTCTGCGGACCGTAGTGATCGTGGTGAGCGTGTTCATCGCCTGTTGGTCCCCCCT
55	240	ALLRTVVIVVSVFIACWSPL
	3241	TTTCATCCTCTCCTCATCGATGTGGCCTGCAGGGCGAAGGAGTGCTCCATCCTCTTCAA
	260	FILFLIDVACRAKECSILFK

	3301 ⁻	$\tt GAGTCAGTGGTTCATCATGCTGGCTGTCCTCAACTCGGCCATGAACCCTGTCATCTACAC$														AC					
	280	S	Q	W	F	I	M	L	A	V	L	N	S	A	M	N	P	V	I	Y	Т
5	3361	GCTG	GCC	AGC	AAA	BAG	ATGO	CGG	CGT	BCT.	rrc:	rtc	CGG:	ľŢĠĊ	TGT	:GCC	GC'I	GTC	TG	GTC.	AA
	300	L	A	S	K	Е	M	R	R	A	F	F	R	ь	V	С	G	С	Ь	V	K
	3421	GGGC	AAG	3GG2	ACCO	CAG	3CC1	rcc(CCGZ	ATG	CAG	CCTC	3CT(CTTC	ACC	CGF	AGCZ	\GAZ	GT	'AAA	ГC
10	320	G	K	G	T	Q	A	s	P	M	Q	P	Α	L	D	P	S	R	s	K	S
	3481	AAGC	TCC	AGTZ	AAC	AAC	AGC	AGC	AGC	CAC.	rct(CCAZ	AAG	STC	AGG	AAC	BACC	TGC	CCC	CAT	ЗT
	340	S	S	S	N	N	S	S	S	H	S	P	K	V	K	E	D	L	P	H	V
	3541	GGCT	ACC.	rct.	rcc:	rgco	GTT <i>P</i>	ACTO	3AC	AAA	ACG?	AGG:	rcgo	CTTC	:AG/	ATC	GGG	TCC	TC:	rgc/	AA
15	360	A	T	S	S	С	V	T	D	K	T	R	S	L	Q	N	G	V	L	C.	K
	3601	GAAG	GGC	TAA	rcro	3CA	GAT/	ATC	CAG	CAC	AGT	GGC(GGC(CGC.	CGI	AGTO	TAC	AGG	GC(CCG	CG
	380	K	G	N	S	A	D	Ι	Q	H	S	G	G	R	S	S	ь	Е	G	P	R
20	3661	GTTC	GAA	GGT/	AAGO	CCT	ATCO	CTZ	AAC	CCT	CTC	CTC	GGT(CTCC	TTA:	CTF	ACGC	CGT	ACC(GGT(CA
	400	F	E	G	K	P	I	P	N	P	L	L	G	L	D	s	Т	R	T	G	H
									Крі	ıΙ					,						
	3721	TCAT	CAC	CAT	CAC	'AT	TGA'	CAA	GGT2	ACC	GAG(CTC	JAA.	rtc(TAP	ATC	ATGO	FTC	ATA	GCT(ЗT
25	420	H	H	H	H	H						•									

30 SEQ ID NO 15

pMPX-57 ($\beta 2$ Adrenergic receptor ($\beta 2AR$) cloned into pMPX-5 using PCR-introduced SalI and BamHI)

35	·																				
													Sh	ine-l	Delg	arno)				
	2401	GAAT	'TCA	GGC	GCT	TTT	TAG	ACT	'GGT	'CGT	'AAT	GAA	ΙΤΑ	CAG	CAG	GAT	'CAC	TTA!	'C'TG	CAG	GT
		~																			
40	0.4.63	SalI			~~~	aaa	~~~							ama		aaa			700		
40	2461	CGAC																			
	1		M	G	Q	Ρ	G	N	G	S	A	F	L	ь	A	P	N	G	ន	Η	A
	2521	GCCG	GAC	CAC	GAC	GTC	ACG	CAG	CAA	AGG	GAC	GAG	GTG	TGG	GTG	GTG	GGC	'ATG	GGC	'ATC	GT
	20	P	D	H	D	v	Т	0	0	R	D	Е	V	W	V	V	G	М	G	I	V
45	20	-	_		_	•	-	×	*		_	_	•	••	•	•	Ū		•	~	•
	2581	CATG	TCT	CTC	ATC	GTC	CTG	GCC	'ATC	GTG	TTT	'GGC	LAA!	'GTC	CTG	GTC	'ATC	ACA	.GCC	TTA!	GC
	40	М	S	L	I	v	L	Α	I	V	F	G	N	V	L	V	I	Т	Α	I	Α
	2641	CAAG	TTC	'GAG	CGT	CTG	CAG	ACG	GTC	ACC	!AAC	TAC	TTC	'ATC	'ACT	TCA	CTG	GCC	TGT	'GC'I	ĠΑ
50	60	ĸ	F	E	R	L	Q	${f T}$	V	T	N	Y	F	I	\mathbf{T}	s	Ŀ	A	C	A	D
	2701	TCTG	GTC	ATG	IGGC	CTA	GCA	GTG	GTG	CCC	TTT:	'GGC	GCC	:GCC	CAT!	l'TA'	CTT	'ATG	AAA	ATC	TG
	80	Ŀ	V	M	G	L	Α	V	V	P	F	G	A	Α	H	I	Ъ	M	K	M	W
55	2761	GACT	ımmı	1000	177.	шша	шас	mac	107.0	mmm	maa	17 CIT	тас	וא חחת	1/1 /\ IT	отс	d mc	mac	ите	יא מי	aa
55			ъ ттт	.GGC				17.00							_			G	V.	ACC T	A
	100	T	F.	Ġ	N	F	W	C	E	F	W	Т	S	I	D	V	Ь	C	V	T,	A
	2821	CAGO	'ATT	'GAG	ACC	CTG	TGC	GTG	ATC	:GCA	GTG	GAT	'CGC	'TAC	TTT:	'GCC	L'ATT	'ACT	TCA	CCT	'TT
	120	s	I	E	T	L	C	V	I	A	V	D	R	Y	F	A	I	T	S	P	F

55

WO 03/072014 PCT/US02/16877

	2881	CAAG	TAC	CAG.	AGC	CTG	CTG	ACC	AAG	AAT	'AAG	GCC	CGG	GTG	ATC	ATT	CTG	ATG	GTG	TGG	AT
	140	K	Y	Q	S	L	L	T	K	N	K	A	R	V	I	I	L	M	V	W	I
5	2941 160	TGTG V	TCA S	GGC G	CTT L	AYC X	TCC S	TTC F	TTG L	CCC P	ATT I	CAG O		CAC H	TGG W	TAC Y	AGG R	GCC. A	ACC T	CAC H	CA O
	3001	GGAA	-									~									
10	180	E	A	I	N	C	Х	A	И	E	T	C	G	D	F	F	T	N	Q Q	A	Y
10	3061	TGCC	ATT	GCC	TCT	TCC	ATC	GTG	TCC	TTC	TAC	GTT	CCC	CTG	GTG	ATC	ATG	GTC'	TTC	GTC	TA
	200	A	Ι	A	s	S	Ι	V	S	F	Y	V	P	L	V	I	M	V	F	V	Y
15	3121 220	CTCC	AGG R	GTC V	TTT F	CAG O	GAG E	GCC A	AAA K		CAG O		CAG O	AAG K	ATT I	GAC D	AAA K		GAG E	GGC G	CG R
	3181	CTTC	_ር ርልጥ	cтc	രമദ	~ !A A C	יריידיי	יאמר	_ር ያር		-		-	ימפמ	רככ	. ארה	ccc	ር አጥ	cc z	CTC	ירפ
	240	F		V		N	L	s	Q	V	E	Q	D	G	R	T	G	·H	G	L	R
20	3241	CAGA																			
	260	R	S	S	K	F	С	L	K	Ε	H	K	A	L	K	T	L	G	Ι	I	M
	3301 280	GGGC G	ACT T	TTC. F	ACC T	CTC L	TGC C	TGG W	CTG L	CCC P	TTC F	TTC F	ATC	GTT V	AAC N	ATT I	GTG V	CAT H	GTG V	ATC I	CA Q
25	3361	GGAT	AAC	CTC	ATC	CGT!	'AAG	GAA	GTT	TAC	ATC	CTC	СТА	TAA	TGG	ATA	.GGC	TAT	GTC	AAT	TC
	300	D	N	L	I	R	K	E	V	Y	I	L	L	N	W	I	G	Y	V	N	s
30	3421 320	TGGT G	TTC F	AAT N	CCC	CTT L	'ATC	TAC Y	TGC C	CGG R	AGC S	CCA P	GAT D	TTC F	AGG R	TTA:	GCC A	TTC F		GAG E	CT L
50		_	-		_														Q 		
	3481 340	TCTG L	TGC C	CTG L	CGC R	AGG R	S	"ICI	TTG L	AAG K	GCC A	A TAT	GGC	N AAT	GGC G	Y Y	s S	AGC. S	AAC N	GGC G	AA N
35	3541	CACA	.GGG	GAG	CAG	AGT	'GGA	TAT	CAC	GTG	GAA	CAG	GAG	AAA	.GAA	ĀĀT	'AAA'	CTG	CTG	TGT	ĠΑ
	360	Т	G	E	Q	S	G	Y	H	V	E	Q	E	K	E	N	K	L	Ŀ	С	E
	3601 380	AGAC D	CTC L	CCA P	GGC G	ACG T	GAA E	.GAC D	TTT F	GTG V	GGC G	CAT H	CAA O	.GGT G	ACT T	GTG V	CCT P	AGC S	GAT D	AAC N	TA! I
40													~					Bat	mHI		
	3661 400	TGAT D														AAT.	TAA			CCG	GG
	400	Б	b	Q	ū	10	TA	C	b	1	14	ב	J								
45	SEQ ID NO	16							•												
	AATTGGTAC	C TCA	ATG	ATG	A I	'GA'I	'GAT	'GAT	GC	TTG	CAG	AG	GAC	.ccc	TTA	'C T	'G				
50																					
	SEQ ID NO	17																			
	pMPX-1 (HepBAD-24 us										ΓNF	R- 1)	res	idue	s 41	-455	5 clo	ned	into	•	

pBAD-24 using PCR-introduced NcoI and XbaI)

 $Shine-Delgarno\\ \texttt{TCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGC} \underline{\textbf{AGGAGGAATTCACCA}}$ 1261

		NCOI
5	1321 1	$\frac{\textbf{TGG}}{\textbf{M}} \textbf{ATAGTGTGTGTCCCCA} \textbf{AGGAAAAATATATCCACCCTCAAAAATAATTCGATTTGCTGTA} \\ \textbf{M} \ \ \textbf{D} \ \ \textbf{S} \ \ \textbf{V} \ \ \textbf{C} \ \ \textbf{P} \ \ \textbf{Q} \ \ \textbf{K} \ \ \textbf{Y} \ \ \textbf{I} \ \ \textbf{H} \ \ \textbf{P} \ \ \textbf{Q} \ \ \textbf{N} \ \ \textbf{N} \ \ \textbf{S} \ \ \textbf{I} \ \ \textbf{C} \ \ \textbf{C}$
5	1381 21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
10	1441 41	ACTGCAGGGAGTGTGAGAGCGCTCCTTCACCGCTTCAGAAAACCACCTCAGACACTGCC D C R E C E S G S F T A S E N H L R H C
10	1501	
	61	TCAGCTGCTCCAAATGCCGAAAGGAAATGGGTCAGGTGGAGATCTCTTCTTGCACAGTGG L S C S K C R K E M G Q V E I S S C T V
15	1561 81	ACCGGGACACCGTGTGTGGCTGCAGGAAGAACCAGTACCGGCATTATTGGAGTGAAAACC D R D T V C G C R K N Q Y R H Y W S E N
20	1621 101	TTTTCCAGTGCTTCAATTGCAGCCTCTGCCTAATGGGACCGTGCACCTCTCCTGCCAGG L F Q C F N C S L C L N G T V H L S C Q
20	1681 121	AGAAACAGAACACCGTGTGCACCTGCCATGCAGGTTTCTTTC
	1741	TCTCCTGTAGTAACTGTAAGAAAAGCCTGGAGTGCACGAAGTTGTGCCTACCCCAGATTG
25	141	V S C S N C K K S L E C T K L C L P Q I
	1801 161	AGAATGTTAAGGGCACTGAGGACTCAGGCACCACAGTGCTGTTGCCCCTGGTCATTTTCT ENVKGTEDSGTVLPLVIF
30	1861 181	TTGGTCTTTGCCTTTATCCCTCCTCTTCATTGGTTTAATGTATCGCTACCAACGGTGGAFGLCCLCCTCCTCTTCATTGGTTTAATGTATCGCTACCAACGGTGGAFGLCCTCTTCATTGGTTTAATGTATCGCTACCAACGGTGGAFGLCCTCTTCATTGGTTTAATGTATCGCTACCAACGGTGGAFGLCCTACAACGGTGGAFGLCCTACAACGGTGAFGLCCTACAACGGTGAFGLCCTACAACAACAACAACAACAACAACAACAACAACAACAA
	1921 201	AGTCCAAGCTCTACTCCATTGTTTGTGGGAAATCGACACCTGAAAAAGAGGGGGGAGCTTG KSKLYSIVCGKSTPEKEGEL
35	1981 221	AAGGAACTACTAAGCCCCTGGCCCCAAACCCAAGCTTCAGTCCCACTCCAGGCTTCA E G T T T K P L A P N P S F S P T P G F
40	2041 241	CCCCCACCCTGGGCTTCAGTCCCGTGCCCAGTTCCACCTTCACCTCCAGCTCCACCTATA T P T L G F S P V P S S T F T S S S T Y
	2101 261	CCCCCGGTGACTGTCCCAACTTTGCGGCTCCCCGCAGAGAGGTGGCACCACCCTATCAGG T P G D C P N F A A P R R E V A P P Y Q
45	2161 281	GGGCTGACCCCATCCTTGCGACAGCCCTCGGCTCCGACCCCAACCCCCTTCAGA
	2221	G A D P I L A T A L A S D P I P N P L Q
50	301	AGTGGGAGACAGCGCCACAAGCCACAGAGCCTAGACACTGATGACCCCGCGACGCTGT KWEDSAHKPQSLDTDDPATL
	2281 321	ACGCCGTGGTGGAACGTGCCCCCGTTGCGCTGGAAGGAATTCGTGCGGCGCCTAGGGC Y A V V E N V P P L R W K E F V R R L G
55	2341 341	TGAGCGACCACGAGATCGATCGGCTGGAGCTGCAGAACGGGCGCTGCCTGC
	2401 361	AATACAGCATGCTGGCGACCTGGAGGCGACGCCGCGGCGCGAGGCCACGCTGGAGC Q Y S M L A T W R R R T P R R E A T L E
60	2461	TGCTGGGACGCGTGCTCCGCGACATGGACCTGCTGGGCTGCCTGGAGGACATCGAGGAGG

A L C G P A A L P P A P S L L R

10

5

SEQ ID NO 18

401 ·

pMPX-22 (Human tumer necrosis factor receptor (TNFR-1) residues 29-455 cloned into pMPX-18 using PCR-introduced SalI and KpnI)

20											Delg						Sa				
20	1621 1	CC	ATA	.CCC	'GT'I	TTT	TTG	GGC	TAG	CAG	GAG	G AA	TTC	ACC	CTG!	CAG	GTC	GAC	ATG M	GGA G	CTGG L
	-																		1-1	G	ш
	1681																		ĀAĀ	TAT	'ATCC
25	4	V	P	H	Ŀ	G	D	R	Ε	K	R	D	s	V	С	P	Q	G	K	Y	I
	1741	AC	CCT	CAA	AAT	'AA'	TCG	ATT	TGC	TGT	ACC	AAG	TGC	CAC	'AAA	.GG.A	ACC	TAC	TTG	TAC	AATG
	24	H	P	Q	N	N	s	I	С	C	Т	K	C	H	K	G	T	Y	L	Y	N
	1801	AC'	ГGТ	CCA	GGC	.cce	GGG	CAG	GAT	ACG	GAC	TGC	'AGG	GAG	тст	'GAG	AGC	GGC	ידיכיכ	ידידי:	ACCG
30	44	D	C	P	G	P	G	Q	D	Т	D	С	R	E	C	E	s	G	S	F	Т
	1861	CT	ГСА	GAA	AAC	CAC	CTC	'AGA	CAC	TGC	CTC	AGC	TGC	TCC	AAA	TGC	CGA	AAG	GAA	ATG	GGTC
	64	Α	S	Е	N	H	L	R	H	С	L	s	С	S	K	C	R	К	E	М	G
35	1921	ΔGO	3 ጥ ር፥	GAG	איירי	יידיריידי	ייייטיייי	יידים	ልሮል	GTG	GDC	രവര	ദമറ	אככ	CTC	ጥረታጥ	aaa	maa	א כנכ	17 7 C	AACC
	84		V		I	s	s	C	T	A	D	R	D	T	V	C	G	C	R	K	N
	1981	ΆG	TAC.	CGG	САТ	דבידי	тсс	AGT	GAA	אאר	רייייי	יחים	CAG	ጥርረር	יחיירי	ידע ע	ጥርረር	יממר	יכיייכ	THE C	CTCA
	104	Q	Y	R	H	Y	W	S	E	N	L	F	Q	C	F	N	C	S	L L	C	L
40													-								
	2041																				GCAG
	124	N	G	Т	V	H	Ŀ	S	С	Q	E	K	Q	N	T	V	C	Т	С	Н	A
	2101	GT.	TTC'	TTT	CTA	AGA	GAA	AAC	GAG	TGT	GTC	TCC	TGT	AGT	AAC	TGT.	AAG	AAA	AGC	CTG	GAGT
45	144	G	F	F	L	R	Ε	N	E	C,	V	S	C	s	N	С	K	K	S	L	E
	2161	GC	ACG.	AAG	TTG	TGC	CTA	.CCC	CAG	ATT	GAG	AAT	GTT	AAG	GGC	ACT	GAG	GAC	TCA	GGC	ACCA
	164	C	Т	K	L	С	L	P	Q	I	E	N	V	K	G	Т	Е	D	S	G	T
5 0	2221	CA	3TG	CTG	TTG	CCC	CTG	GTC	ATT	TTC	$_{ m TTT}$	GGT	CTT	TGC	СТТ	тта	TCC	СТС	СТС	TTC	ATTG
	184	T	V	L	L	P	L	V	I	F	F	G	L	С	L	Ь	s	L	L	F	I
	2281	GT:	ГТА	ATG	TAT	'CGC	TAC	CAA	CGG	TGG	AAG	TCC	AAG	CTC	TAC	TCC.	ATT	GTT	TGT	GGG	AAAT
55	204	G	L	M	Y	R	Y	Q	R	W	K	S	K	L	Y	S	I	v	С	G	K
<i>3</i> 3	2341	CG	ACA	CCT	GAA	ΔΔΔ	GAG	GGG	GAG	ىلىشات	GDD	GGZ	۵ረሞ	∆ כידיי	ים ריתי	ጆጆ፫	מממ	СПС	מכר	רר א	AACC
	224	s	T	P	E	K	E	G	E	Ь	E	G	T	Т	T	K	P	L	A	Р	N

WO 03/072014

PCT/US02/16877

2401 ${\tt CAAGCTTCAGTCCCACTCCAGGCTTCACCCCCACCTGGGCTTCAGTCCCGTGCCCAGTT}$ PSFSPTPGFTPTLGFSPVPS 244 2461 5 264 S T F T S S S T Y T P G D C P N F A A P 2521 GCAGAGGGGGCACCACCCTATCAGGGGGCTGACCCCATCCTTGCGACAGCCCTCGCCT R R E V A P P Y Q G A D P I L A T A L A 284 10 2581 CCGACCCCATCCCCAACCCCCTTCAGAAGTGGGAGGACAGCGCCCACAAGCCACAGAGCC SDPIPNPLQKWEDSAHKPQS 304 2641 TAGACACTGATGACCCCGCGACGCTGTACGCCGTGGTGGAGAACGTGCCCCGTTGCGCT L D T D D P A T L Y A V V E N V P P L R 15 2701 W K E F V R R L G L S D H E I D R L E L ${\tt AGAACGGCCTGCCTGCGCGAGGCGCAATACAGCATGCTGGCGACCTGGAGGCGCGCAATACAGCATGCTGGCGACCTGGAGGCGCGCAATACAGCATGCTGGCGACCTGGAGGCGCGCAATACAGCATGCTGGCGACCTGGAGGCGCGCAATACAGCATGCTGGCGACCTGGAGGCGCGCAATACAGCATGCTGGCGACCTGGAGGCGCGCAATACAGCATGCTGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGAGGCGACCTGGAGGCGCGCAATACAGCATGCTGGAGGCGGCGCAATACAGCATGCTGGAGGCGGCGCGCAATACAGCATGCTGGAGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGAGGCGACCTGGAGGCGGCGCAATACAGCATGCTGGAGGCGACCTGGAGGCGACCTGGAGGCGACCTGGAGGCGACCTGAATACAGCATGCTGAATACAGCAATACAGAATACAGAATACAGAATACAGAATACAGAATACAGAATACAATACAATACAAGAATACA$ 20 Q N G R C L R E A Q Y S M L A T W R R R $\tt CGCCGCGGCGCGAGGCCACGCTGGAGCTGCTGGGACGCGTGCTCCGCGACATGGACCTGC$ 2821 T P R R E A T L E L L G R V L R D M D L 384

KpnI
2941 CCAGTCTTCTCAGATAATAAGGTACCGAGCTCGAATTCGTAATCATGGTCATAGCTGTTT

P S L L R

35

25

30

2881

404

424

SEQ ID NO 19

pMPX-40 (Human tumer necrosis factor (TNF) cloned into pMPX-6 using PCR-introduced EcoRI and HindIII)

E	co.	RI

									EU	ш											
						Shir	ne-D	elga	arno												
	2581	GTT	TTT	TTG	GGC	TAG	CAG	\overline{GAG}	<u>G</u> AA	TTC	ATG	AGC.	ACT	GAA	AGC	ATG	ATC	CGG	GAC	GTG	GAG
45	1				4				- 		M	S	Т	Е	s	M	Ι	R	D	V	E
	2641	CTG	GCC	GAG	GAG	GCG	CTC	CCC	AAG	AAG	ACA	GGG	GGG	CCC	CAG	GGC	TCC	'AGG	CGG	TGC	TTG
	12	L	A	E	Ε	A	L	Ρ	K	K	T	G	G	P	Q	G	s	R	R	С	L
	2701	TTC	CTC	AGC	CTC	TTC	TCC	TTC	CTG.	ATC	GTG	GCA	GGC	GCC.	ACC.	ACG	CTC	TTC	TGC	CTG	CTG
50	32	F	L	S	L	F	s	F	L	I	V	A	G	A	Т	T	L	F	С	L	L
	2761	CAC	TTT	GGA	GTG	ATC	GGC	CCC	CAG	AGG	GAA	GAG	TTC	CCC.	AGG	GAC	CTC	TCT	CTA	ATC.	AGC
	52	H	F	G	V	I	G	P	Q	R	Е	E	F	P	R	D	L	s	L	I	S
55	2821	CCT	CTG	GCC	CAG	GCA	GTC.	AGA	TCA	TCT	TCT	CGA	ACC	CCG	AGT	GAC	AAG	CCT	GTA	.GCC	CAT
	72	P	L	A	Q	A	V	R	s	s	s	R	T	P	S	D	K	P	V	A	H
	2881	GTT	GTA	GCA	AAC	CCT	CAA	GCT	GAG	GGG	CAG	CTC	CAG'	TGG(CTG.	AAC	CGC	CGG	GCC	AAT	GCC
	92	V	V	A	N	P	Q	Α	E	G	Q	L	Q	M	L	N	R	R	A	N	A

	2941	CTC	CTG	GCC#	AAT	3GC(GTG(GAG	CTG	AGA	GAT	AAC	CAGO	CTGC	TG	FTG	CCA'	TCA	GAG	GGC	CTG
	112	L	L	A	N	G	V	E	\mathbf{L}	R	D	N	Q	L	V	V	P	S	E	G	L
5	3001 132	TAC · Y	CTC:	ATC:	TAC' Y	rcc s	CAG(Q	GTC V	CTC' L	TTC F	AAG(K	G G	CAAC Q	G G	rgc(C	CCC'	rcc s	ACC T	CAT H	GTG: V	CTC L
	3061	CTC.	ACC	CAC	ACC	ATC	AGC	CGC.	ATC	GCC(GTC'	rcc:	TAC	CAG	ACC	AAG(GTC.	AAC	CTC	CTC'	TCT
10	152	L	T	H	Т	I	S	R	I	A	V	s	Y	Q	T	K	V	N	L	L	s
	3121	GCC.	ATC	AAG	AGC	CCC'	TGC	CAG	AGG	GAG.	ACC	CCA	3AGC	3GG(GT(3AG	GCC.	AAG	CCC'	TGG'	TAT
	172	A	I	K	s	P	C	Q	R	E	T	P	E	G	A	E	A	K	P	W	Y
	3181	GAG	CCC	ATC:	TAT	CTG	GGA(GGG	GTC'	TTC	CAG	CTG	JAG/	AAGO	GT	BAC	CGA	CTC	AGC	GCT	GAG
15	192	E	P	Ι	Y	$_{_{\ell}}\mathbf{L}$	G	G	V	F	Q	L	Ε	K	G	D	R	L	S	A	E
	3241	ATC.	AAT(CGG	CCC	GAC'	TAT(CTC	GAC'	TTT	GCC	GAG'	rctc	egg(CAG	JTC'	TAC	ттт	GGG.	ATC.	TTA
	212	I	N	R	P	D	Y	L	D	F	A	E	, S	G	Q	V	Y	F	G	I	I
20	3301 232	GCC A	CTG' L	rga:		ndI:		ccc	GCG(GGC(CCG(GGA'.	rcc <i>i</i>	ACC(€GA!	rcti	AGA	TAA	CTG.	ATC	ATA

SEQ ID NO 20

25

pMPX-52 (toxR-EGF cloned into pMPX-6 using PCR-introduced KpnI and HindIII)

						S	hine	-De	lgar	no			Κį	nI							
	2581	GT	TTT	TTT	'GGG	CTA	.GCA	.GGA	<u>GG</u> A	TTA	'CAC	CAT	GGT	ACC	ATG	AAC	TTG	GGG	AAT	CGA	CTGT
35	1														M	N	L	G	N	R	L
50	2641	TT	ATT	CTG	ATA	.GCG	GTC	TTA	CTT	CCC	CTC	GCA	GTA	TTA	.CTG	CTC	LAA!	'AGT	'GAC	TCI	'GAAT
	8	F	Ι	L	I	A	V	L	L	P	L	A	V	L	L	L	N	s	D	s	E
	2701	GT	CCC	CTG	TCC	CAC	GAT	'GGG	TAC	TGC	CTC	CAT	'GA'I	'GGT	GTG	TGC	ATC	TAT	'ATT	GAA	GCAT
40	28	С	P	L	s	H	D	G	Y	C	L	H	D	G	V	C	M	Y	I	E	A
	2761	TG	GAC	AAG	TAT	'GCA	TGC	AAC	TGT	GTI	'GT'I	'GGC	'T'AC	ATC	GGG	GAG	CGA	TGT	'CAG	TAC	CGAG
	48	Ŀ	D	K	Y	A	С	N	С	V	V	G	Y	I	G	E	R	С	Q	Y	R
45											Hin	dII	I								
	2821	AC	CTG	AAG	TGG	TGG	GAA	CTG	CGC	TAA	TAA	GCI	'TGC	CCC	GCG	GGC	CCG	IGGA	TCC	ACC	GGAT
			68		D :	LK	W	W	Ε	LI	₹										

Non-bold, underlined sequence is *toxR* transmembrane domain segment that constitutes *toxR* residues 178-198. The remaining sequence is from human EGF constituting EGF residues 971-1023.

55

SEQ ID NO 21

331

WO 03/072014 PCT/US02/16877

pMPX-27 (toxR-invasin cloned into pMPX-6 using PCR-introduced EcoRI and PstI)

EcoRI 5 Shine-Delgarno 2581 MNLGNRL F T ${\tt ATAGCGGTCTTACTTCCCCTCGCAGTATTACTGCTCTCATTCACATTGAGCGTCACCGTT}$ 2641 10 I A V L L P L A V L L L S F T L S V T V 2701 QQPQLTLTAAVIGDGAPANG 15 2761 KTAITVEFTVADFEGKPLAG 2821 CAGGAGGTGGTGATAACCACCAATAATGGTGCGCTACCGAATAAAATCACGGAAAAGACA Q E V V I T T N N G A L P N K I T E K T 20 ${\tt GATGCAAATGGCGTCGCGCGCATTGCATTAACCAATACGACAGATGGCGTGACGGTAGTC}$ 2881 DANGVARIALTNTTDGVTV 2941 25 T A E V E G Q R Q S V D T H F V K G T I 3001 GCGGCGGATAAATCCACTCTGGCTGCGGTACCGACATCTATCATCGCTGATGGTCTAATG 131 A A D K S T L A A V P T S I I A D G L M 30 3061 ${\tt GCTTCAACCATCACGTTGGAGTTGAAGGATACCTATGGGGACCCGCAGGCTGGCGCGAAT}$ ASTITLELKDTYGDPQAGAN 3121 $\tt GTGGCTTTTGACACCACCTTAGGCAATATGGGCGTTATCACGGATCACAATGACGGCACT$ V A F D T T L G N M G V I T D H N D G T 35 3181 TATAGCGCACCATTGACCAGTACCACGTTGGGGGTAGCAACAGTAACGGTGAAAGTGGAT 191 Y S A P L T S T T L G V A T V T V K V D 40 211 3301 ${\tt GCTGGCCGCTCCAGTTTCACCGTCTCCACACCGGATATCTTGGCTGATGGCACGATGAGT}$ 231 AGRSSFTVSTPDILADGTMS 45 3361 TCCACATTATCCTTTGTCCCTGTCGATAAGAATGGCCATTTTATCAGTGGGATGCAGGGC S T L S F V P V D K N G H F I S G M Q G 251 ${\tt TTGAGTTTTACTCAAAACGGTGTGCCGGTGAGTATTAGCCCCATTACCGAGCAGCCAGAT}$ 3421 L S F T Q N G V P V S I S P I T E Q P D 50 3481 ${\tt AGCTATACCGCGACGGTGGTTGGGAATAGTGTCGGTGATGTCACAATCACGCCGCAGGTT}$ S Y T A T V V G N S V G D V T I T P Q V 291 3541 GATACCCTGATACTGAGTACATTGCAGAAAAAAATATCCCTATTCCCGGTACCTACGCTG 55 311 D T L I L S T L Q K K I S L F P V P T L 3601 ACCGGTATTCTGGTTAACGGGCAAAATTTCGCTACGGATAAAGGGTTCCCGAAAACGATC

TGILVNGQNFATDKGFPKTI

٠	3661	TTT	AAA	AAC	GCC.	ACA'	TTC	CAG'	TTA	CAG	ATG	JAT	AAC	JAT(JTT(GCT	AAT	AATZ	ACT(CAG'	ΓAΤ
	351	F	K	N	A	Т	F	Q	L	Q	M	D	N	D	V	A	N	N	Т	Q	Y
	3721	GAG	TGG	TCG'	TCG'	TCA'	TTC	ACA	CCC	AAT	JTA:	rcgo	3TT2	AAC	AT	CAG	GGT(CAG	GTG2	ACG2	TTA
5	371	E	W	S	S	S	F	Т	P	N	V	S	V	N	D	Q	G	Q	V	Т	I
	3781	ACC	TAC	CAA	ACC'	TAT	AGC	GAA	GTG	GCT	GTG2	ACGO	GCG!	AAA	AGT2	AAA	AAA'	rtc	CCAZ	AGT	ГАТ
	391	T	Y	Q	Т	Y	S	E	V	A	V	Т	A	K	S	K	K	F	P	S	Y
10	3841	TCG	GTG.	AGT'	TAT	CGG:	TTC:	TAC	CCA	TAL	CGG:	rgg <i>i</i>	ATA!	raco	ATC	GGC(GGC/	\GAT	rcgo	CTG	TA.
	411	s	V	S	Y	R	F	Y	P	N	R	M	I	Y	D	G	G	R	S	L	V
	3901	TCC.	AGT	CTC	3AG	GCC2	AGC	AGA	CAA:	rgc(CAAC	GTT	CAC	SAT	ATG:	rcto	GCG(3TTC	TTC	JAA:	rcc
15	431	S	s	L	E	A	S	R	Q	С	Q	G	s	D	M	S	A	V	L	E	s
	3961	TCA	CGT	GCA2	ACC	AAC	3GA2	ACG(CGTC	GCG(CTC	ACC	igg <i>i</i>	ACA:	TG:	rggo	GGC(GAG1	GGC	GGZ	AGC
	451	S	R	A	Т	N	G	Т	R	A	P	D	G	Т	L	W	G	E	W	G	s
	4021	TTG	ACC	GCG:	[ATA]	AGT.	rctc	JAT'	rgg(CAA:	CTC	GTO	:AA:	l'TA.	'GG	3TC2	AAAA	AAGA	ACCZ	AGCZ	ACG
20	471	L	Т	Α	Y	S	s	D	W	Q	S	G	E	Y	W	V	K	K	Т	S	T
	4081	GAT	TTT(GAAZ	ACC	ATG!	AATZ	ATG(JAC/	ACAC	GCC	CAC	TGC	:AAC	CAC	3GG(CCTC	CAT	'AC'	TGC	3CG
	491	D	F	Ε	Т	M.	N	M	D	T	G	A	Ь	Q	P	G	P	A	Y	L	A
25											Pst	Ξ									
	4141	TTC	CCG	CTC:	rgto	GCG(CTGT	CAZ	CATA	[AA]	TGC	'AG	CAT	:GCA	AG	TTC	GCC	CCGC	GGG	3CCC	:GG
	511	F	P	L	С	A	L	S	I	_											

Non-bold, underlined sequence is *toxR* transmembrane domain segment that constitutes *toxR* residues 178-198. The remaining sequence is from *Yersinia pseudotuberculosis* invasin constituting *inv* residues 490-986.

35 SEQ ID NO 22

pMPX-59 (phoA leader cloned into pMPX-5 using PCR-introduced PstI and XbaI)

40	2401	GAA'	TCA	.GGC	GCT	TTT	'TAG	ACT	GGT	'CGT	'AAT		Shir ATT				CAC	TTA		stI	AT M
45	2461 2	GTCZ S	ACGG R		AGA R	CTT L	ATA I	GTC V	GCT A	TTG L	TTT F	TTA L	TTT F	TTT F	AAT N	GTA' V	TTT F	GTA V	CAT H	'GGA G	GA E
15	2521 22	AAA; N	TAAA K	GTG V	AAA K	.CAA Q	AGC S	ACT T	TTA: I	GCA A	CTG L	GCA A	CTC L	TTA L	CCG' P	TTA:	CTG L	TTT F	'ACC T	CCT P	'GT V
50	2581 42	GAC.	AAA K	.GCC A	CGG R	ACA T	CCA P	GAA E	Xb TCT												

PhoA leader (residues 1-48) from $E.\ coli\ MG1655$ cloned into pMPX-5. Create chimeric fusions with the phoA leader by cloning into XbaI and introducing a stop sequence.

SEQ ID NO 23

55

pMPX-60 (complete phoA cloned into pMPX-5 using PCR-introduced PstI and XbaI)

_		Shine-Delgarno PstI
5	2401 1	GAATTCAGGCGCTTTTTAGACTGGTCGTAATGAAATTC <u>AGCAGG</u> ATCACATT <u>CTGCAG</u> AT M
	2461 2	GTCACGGCCGAGACTTATAGTCGCTTTGTTTTTTTTTTT
10	2521 22	AAATAAAGTGAAACAAAGCACTATTGCACTGGCACTCTTACCGTTACTGTTTACCCCTGT N K V K Q S T I A L A L L P L L F T P V
15	2581 42	GACAAAAGCCCGGACACCAGAAATGCCTGTTCTGGAAAACCGGGCTGCTCAGGGCGATAT T K A R T P E M P V L E N R A A O G D I
15	2641	TACTGCACCCGGCGTGCTCGCCGTTTAACGGGTGATCAGACTGCCGCTCTGCGTGATTC
	62	TAPGGARATT
20	2701 82	TCTTAGCGATAAACCTGCAAAAAATATTATTTTGCTGATTGGCGATGGGGATGGGGACTC L S D K P A K N I I L L I G D G M G D S
	2761	GGAAATTACTGCCGCACGTAATTATGCCGAAGGTGCGGGCGG
25	102	EITAARNYAEGAGGFFKGID
	2821 122	TGCCTTACCGCTTACCGGGCAATACACTCACTATGCGCTGAATAAAAAAACCGGCAAACC A L P L T G Q Y T H Y A L N K K T G K P
30	2881 142	GGACTACGTCACCGACTCGGCTGCATCAGCAACCGCCTGGTCAACCGGTGTCAAAACCTA D Y V T D S A A S A T A W S T G V K T Y
	2941	TAACGGCGCGCTGGGCGTCGATATTCACGAAAAAGATCACCCAACGATTCTGGAAATGGC
25	162	NGALGVDIHEKDHPTILEMA
35	3001 182	AAAAGCCGCAGGTCTGGCGACCGGTAACGTTTCTACCGCAGAGTTGCAGGATGCCACGCC K A A G L A T G N V S T A E L Q D A T P
40	3061 202	CGCTGCGCTGGTGGCACATGTGACCTCGCGCAAATGCTACGGTCCGAGCGCGACCAGTGA A A L V A H V T S R K C Y G P S A T S E
	3121 222	AAAATGTCCGGGTAACGCTCTGGAAAAAGGCGGGAAAAGGATCGATTACCGAACAGCTGCT K C P G N A L E K G G K G S I T E Q L L
45	3181 242	TAACGCTCGTGCCGACGTTACGCTTGGCGGCGCGCAAAAACCCTTTGCTGAAACGGCAAC N A R A D V T L G G G A K T F A E T A T
	3241 262	CGCTGGTGAATGGCAGGGAAAAACGCTGCGTGAACAGGCACAGGCGCGTGGTTATCAGTT A G E W Q G K T L R E Q A Q A R G Y Q L
50	3301 282	GGTGAGCGATGCTGCCTCACTGAATTCGGTGACGGAAGCGGAATCAGCAAAAACCCCTGCT V S D A A S L N S V T E A N Q Q K P L L
55	3361 302	TGGCCTGTTTGCTGACGGCAATATGCCAGTGCGCTGGCTAGGACCGAAAGCAACGTACCA G L F A D G N M P V R W L G P K A T Y H
55	3421 322	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	3481	ACCAACCCTGGCGCAGATGACCGACAAAGCCATTGAATTGTTGAGTAAAAATGAGAAAGG

2401

W	O 03/072014															P	PCT/	US0	2/16	877	
	342	P	Т	L	A	Q	M	т	D	ĸ	Α	I	E	L	L	s	ĸ	N	E	K	G
5	3541 362	CTTT F	TTC F	CTG L	CAA Q	GTT V	GAA E	GGT G	GCG A	TCA S	ATC I	GAT D	'AAA K	.CAG Q	GAT D	CAT H	GCT A	GCG. A	AAT N	CCT' P	TG C
J	3601 382	TGGG G	CAA Q	ATT(I	GGC(G	GAG E	ACG T	GTC V	GAT D	CTC L	GAT D	GAA E	GCC A	GTA V	.CAA Q	.CGG R	GCG A	CTG L	GAA' E	TTC F	GC A
10	3661 402	TAAA K	AAG K	GAG(E	GGT	AAC N	ACG T	CTG L	GTC V	ATA I	.GTC V	ACC T	GCT A	GAT D	'CAC H	GCC A	CAC H	GCC. A	AGC S	CAG Q	TA I
	3721 422	TGTT V	GCG A	CCG(P	GATZ D	ACC. T	AAA K	GCT A.	CCG P	GGC G	CTC L	ACC T	CAG Q	GCG A	CTA L	AAT N	ACC. T	AAA K	GAT D	G G	GC A
15	3781 442	AGTG V	ATG(GTG2 V	ATG2 M	AGT S	TAC Y	GGG. G	AAC N	TCC S	GAA E	GAG E	GAT D	TCA S	CAA Q	GAA E	CAT. H	ACC T	GGC	AGT(CA Q
20	3841 462	GTTG L	CGT/ R	ATTO I	GCG(A	GCG' A	TAT Y	GGC G	CCG P	CAT H	GCC A	GCC A	'AAT N	GTT V	V	G	CTG. L	ACC(GAC(D	CAGA Q	AC T
	3901 482	CGAT D	CTC: L	FTC:	racz Y	ACC.	ATG. M	AAA K	GCC A	GCT A	CTG L	GGG G	CTG L	AAA K	Xb TCT. S						
30	Complete Pl the <i>phoA</i> by SEQ ID NO	clonin	om <i>E</i> g int	. <i>co</i>	oli M baI a	IG10 and	655 intro	clon oduc	ed i	nto a st	pM] op s	PX-:	5. Cence	Creat	te ch	ime	ric f	usio	ns w	vith	
	pMPX-62 (N	MalE re	esidu	ies 1	28	clor	ned :	into	pM:	PX-	5 us	ing	PCR	L-int	rodu	ced	PstI	and	Xb	aI)	
35	2401 1	GAAT"	TCAC	EGC(GTT	PTT.	ΓAG	ACT(GGT(CGT.	AAT	GAA	Shi ATT	ne-I C <u>ag</u>	Delga CAGO	arno <u>S</u> AT	CAC	ATT <u>(</u>	Ps	tI CAGA	TA M
40	2461 2	GAAA K	ATA I	AAA K	ACAC T	GGT(GCA(CGC) R	ATC I	CTC L	GCA' A	TTA L	TCC S	GCA' A	TTAZ L	ACG:	ACG? T	ATGZ M	ATGI M	TTI F	C S
45	2521 22	CGCC' A	TCGC S	ECTO A	CTCC L	€CC A	AAA! K	ATC <u>:</u> I	Xba FCT S												
	MalE residue the malE by														reate	e chi	mer	ic fu	ision	ıs w	ith
50																					
	SEQ ID NO	25																			
55	pMPX-61 (N	MalE re	esidu	es 1	-370) clo	ned	into	pM	IPX	-5 u	sing	PC:	R-in	trod	uced	l Pst	I an	d XI	oaI)	

Shine-Delgarno PstI GAATTCAGGCGCTTTTTAGACTGGTCGTAATGAAATTC<u>AGCAGG</u>ATCACATT<u>CTGCAG</u>AT

	1	м ,
	2461	GAAAATAAAAACAGGTGCACGCATCCTCGCATTATCCGCATTAACGACGATGATGTTTTC
5	2	KIKTGARILALSALTTMMFS
	2521 22	CGCCTCGGCTCTCGCCAAAATCGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAA A S A L A K I E E G K L V I W I N G D K
10	2581 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	2641 62	CACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGA T V E H P D K L E E K F P Q V A A T G D
15	2701 82	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20	2761 102	GTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGA L A E I T P D K A F Q D K L Y P F T W D
20	2821 122	TGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCT A V R Y N G K L I A Y P I A V E A L S L
25	2881 142	GATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCT I Y N K D L L P N P P K T W E E I P A L
	2941 162	GGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTA D K E L K A K G K S A L M F N L Q E P Y
30	3001 182	CTTCACCTGGCCGCTGATTGCTGCTGACGGGGTTATGCGTTCAAGTATGAAAACGGCAA F T W P L I A A D G G Y A F K Y E N G K
35	3061 202	GTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCT Y D I K D V G V D N A G A K A G L T F L
22	3121 222	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
40	3181 242	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	3241 262	CGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATC D T S K V N Y G V T V L P T F K G Q P S
45	3301 282	CAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCT K P F V G V L S A G I N A A S P N K E L
50	3361 302	GGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAA A K E F L E N Y L L T D E G L E A V N K
50	3421 322	AGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCC D K P L G A V A L K S Y E E E L A K D P
55	3481 342	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
60	3541 362	XbaI GATGTCCGCTTTCTGGTATGCCGTGCGT <u>TCTAGA</u> M S A F W Y A V R S R

MalE residues 1-370 from E. coli MG1655 cloned into pMPX-5. Create chimeric fusions with the malE by cloning into XbaI and introducing a stop sequence.

5 SEQ ID NO 26

pMPX-17 (complete *tig* and groESL, both with complete native control region cloned into pMPX-5 using PCR-introduced NarI and HindIII. The *tig* and *groESL* regions are joined using XbaI). Construct to be used on same vector as protein to be expressed or as a template

for insertion into pACYC184.

- Narı

 181 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC
 ATCAGGCGCC
- - 301 CGTCCTATTT GAATGCTTTC GGGATGATTC TGGTAACAGG GAATGTGATT GATTATAAGA

25

10

+1 tig

421 GTGATTTTTT GAGGTAACAA GATGCAAGTT TCAGTTGAAA CCACTCAAGG CCTTGGCCGC

 \rightarrow

- 30
 481 CGTGTAACGA TTACTATCGC TGCTGACAGC ATCGAGACCG CTGTTAAAAG
 CGAGCTGGTC
 - 541 AACGTTGCGA AAAAAGTACG TATTGACGGC TTCCGCAAAG GCAAAGTGCC AATGAATATC
- 35 601 GTTGCTCAGC GTTATGGCGC GTCTGTACGC CAGGACGTTC TGGGTGACCT GATGAGCCGT
 - 661 AACTTCATTG ACGCCATCAT TAAAGAAAAA ATCAATCCGG CTGGCGCACC GACTTATGTT
- 721 CCGGGCGAAT ACAAGCTGGG TGAAGACTTC ACTTACTCTG TAGAGTTTGA
 40 AGTTTATCCG
 - 781 GAAGTTGAAC TGCAGGGTCT GGAAGCGATC GAAGTTGAAA AACCGATCGT TGAAGTGACC
 - 841 GACGCTGACG TTGACGGCAT GCTGGATACT CTGCGTAAAC AGCAGGCGAC CTGGAAAGAA
- 45 901 AAAGACGGCG CTGTTGAAGC AGAAGACCGC GTAACCATCG ACTTCACCGG TTCTGTAGAC
 - 961 GGCGAAGAGT TCGAAGGCGG TAAAGCGTCT GATTTCGTAC TGGCGATGGG CCAGGGTCGT
- 1021 ATGATCCCGG GCTTTGAAGA CGGTATCAAA GGCCACAAAG CTGGCGAAGA 50 GTTCACCATC
 - 1081 GACGTGACCT TCCCGGAAGA ATACCACGCA GAAAACCTGA AAGGTAAAGC AGCGAAATTC
 - 1141 GCTATCAACC TGAAGAAGT TGAAGAGCGT GAACTGCCGG AACTGACTGC AGAATTCATC
- 55 1201 AAACGTTTCG GCGTTGAAGA TGGTTCCGTA GAAGGTCTGC GCGCTGAAGT GCGTAAAAAC
 - 1261 ATGGAGCGCG AGCTGAAGAG CGCCATCCGT AACCGCGTTA AGTCTCAGGC GATCGAAGGT

	1321		CTAACGACAT	CGACGTACCG	GCTGCGCTGA	TCGACAGCGA	
	AATCGA 1381		ласашаалал	aaammaaam		3 2 C 3 3 C C C C C C C C C C C C C C C	
	GGAACT		AGGCTGCACA	GCG111CGG1	GGCAACGAAA	AACAAGCTCT	
5	1441 GCTGGG	CGCGAACTGT	TCGAAGAACA	GGCTAAACGC	CGCGTAGTTG	TTGGCCTGCT	
	1501 GATCGA	GTTATCCGCA	CCAACGAGCT	GAAAGCTGAC	GAAGAGCGCG	TGAAAGGCCT	•
10	1561 AAACAA	ATGGCTTCTG	CGTACGAAGA	TCCGAAAGAA	GTTATCGAGT	TCTACAGCAA	
	1621 TGTACT		ACATGCGCAA	TGTTGCTCTG	GAAGAACAGG	CTGTTGAAGC	
15	tig						Stop
	1681 GCAGGC		TGACTGAAAA	AGAAACCACT	TTCAACGAGC	TGATGAACCA	
20	1741	-	.GAGGTAGCAC	AATCAGATTC	GCTTATGACG	GCGATGAAGA	
	AATTGC 1801		TGAATCAGGG	mmmma) aaaa	7 9999	CAMCACAAMM	
	TTTTTT	-	IGAAICAGGG	TITICACCCG	AIIIIGIGCI	GAICAGAATT	
25	1861 GGGAAA	TTCCCCCTTG	AAGGGGCGAA	GCCTCATCCC	CATTTCTCTG	GTCACCAGCC	
20	GOGAAA	<u>ccac</u>					+1
	groES						, _
20	1921		GCGTCACCCA	TAACAGATAC	GGACTTTCTC	AAAGGAGAGT	
30	TATCAA	.TGAA					
							\rightarrow
	1981 CTAAAT		TTGCATGATC	GCGTGATCGT	CAAGCGTAAA	GAAGTTGAAA	
35	2041 AAGTGC		GTTCTGACCG	GCTCTGCAGC	GGCTAAATCC	ACCCGCGGCG	
	2101 TGAAAG		GGCCGTATCC	TTGAAAATGG	CGAAGTGAAG	CCGCTGGATG	
40	2161 ACAATG		ATTTTCAACG	ATGGCTACGG	TGTGAAATCT	GAGAAGATCG	
	2221 CCGCGC		ATGTCCGAAA	GCGACATTCT	GGCAATTGTT	Stop <i>gro</i> GAAGCG <u>TAA</u> T)ES
45				-	+1 groEL		
	2281 AAATTC		ACGAATTTAA	GGAATAAAGA	TA <u>ATG</u> GCAGC	TAAAGACGTA	
					\rightarrow		
5 0 ₍	2341	አርሬእርሬርጥርሬ	TGTGAAAATG	СТССССССССС	T	aaa aa maaa	
) 00	GTGAAA 2401	GTTA					
	CCGACC		AAAAGGCCGT	AACGIAGIIC	TGGATAAATC	TTTCGGTGCA	
55	2461 GAAAAT	CCAAAGATGG	TGTTTCCGTT	GCTCGTGAAA	TCGAACTGGA	AGACAAGTTC	
- -	2521 GACGGT	GTGCGCAGAT	GGTGAAAGAA	GTTGCCTCTA	AAGCAAACGA	CGCTGCAGGC	
	2581 GTTGCT	CCACTGCAAC	CGTACTGGCT	CAGGCTATCA	TCACTGAAGG	TCTGAAAGCT	

	2641 GCAGTTO		GATGGACCTG	AAACGTGGTA	TCGACAAAGC	GGTTACCGCT	
	2701	AACTGAAAGC	GCTGTCCGTA	CCATGCTCTG	ACTCTAAAGC	GATTGCTCAG	
5	GTTGGTZ 2761		CTCCGACGAA	አሮሮሮሞአርሮሞአ	AACTGATCGC	талласалта	
3	GACAAAG		CICCOACOAA	ACCUIAGUIA	AACIGAICGC	ICHACCALC	
	2821 CTGGAC	GTAAAGAAGG	CGTTATCACC	GTTGAAGACG	GTACCGGTCT	GCAGGACGAA	
	2881.		GCAGTTCGAC	CGTGGCTACC	TGTCTCCTTA	CTTCATCAAC	
10	AAGCCGC	BAAA					
	2941	CTGGCGCAGT	AGAACTGGAA	AGCCCGTTCA	TCCTGCTGGC	TGACAAGAAA	
	ATCTCC	AACA					
	3001	TCCGCGAAAT	GCTGCCGGTT	CTGGAAGCTG	TTGCCAAAGC	AGGCAAACCG	
	CTGCTGF	ATCA					
15	3061	TCGCTGAAGA	TGTAGAAGGC	GAAGCGCTGG	CAACTCTGGT	TGTTAACACC	•
	ATGCGTC	GCA .					
	3121		CGCTGCGGTT	AAAGCACCGG	GCTTCGGCGA	TCGTCGTAAA	
	GCTATGC						
20	3181		AACCCTGACT	GGCGGTACCG	TGATCTCTGA	AGAGATCGGT	
20	ATGGAGG						
	3241		CCTGGAAGAC	CTGGGTCAGG	CTAAACGTGT	TGTGATCAAC	
	AAAGACA						
	3301		CGATGGCGTG	GG'I'GAAGAAG	CTGCAATCCA	GGGCCGTGTT	
25	GCTCAGA		man nan naan	3 COMMONG 3 COM	3 CG3 CGCEG3	7 7 7 7 CECC 7 C	
25	3361		TGAAGAAGCA	ACTICIGACT	ACGACCGTGA	AAAACTGCAG	
	GAACGCC		A C C C C C C C C C C C C C C C C C C C	CCA CTTA TCA	л л стессетес		
	3421 GTTGAA		AGGCGGCG11	GCAGITATCA	AAGTGGGTGC	IGCIACCGAA	
30	3481		A C.C.A.C.C.C.C.C.T.TT	салелтессе	TGCACGCGAC	adama ama aa	
	GTAGAAG		AGCACGCGII	GAAGAIGCCC	IGCACGCGAC	CCGIGCIGCG	
50	3541		тастастаст	CTTCCCCTCA	TCCGCGTAGC	ርምርም <i>እ እ</i> እርምር	
	GCTGAC		1001001001	GTTGGGGTÓM	ICCOCGIAGC	GICIAMACIO	
	3601		CGAAGACCAG	AACGTGGGTA	TCAAAGTTGC	A CTGCGTGCA	
	ATGGAAC		Connicare	11100100111	remidiace	110100010011	
35	3661		GATCGTATTG	AACTGCGGCG	AAGAACCGTC	TGTTGTTGCT	
	AACACCC						
	3721	AAGGCGGCGA	CGGCAACTAC	GGTTACAACG	CAGCAACCGA	AGAATACGGC	•
	AACATGA	ATCG					
	3781	ACATGGGTAT	CCTGGATCCA	ACCAAAGTAA	CTCGTTCTGC	TCTGCAGTAC	
40	GCAGCTT	CTG					
	3841	TGGCTGGCCT	GATGATCACC	ACCGAATGCA	TGGTTACCGA	CCTGCCGAAA	
	AACGATO	ecag					
							Stop
45	groEL						
	3901		CGCTGCTGGC	GGTATGGGCG	GCATGGGTGG	CATGGGCGGC	
	ATGATG1	TAAT					
						•	
50	2067	HindIII	G7 EGGGGGG	00m003.cmc=	* 4 * 44 * - 44 * -	0000m;	
50	3961		CATGCCTGCA	GGTCGACTCT	AGAGGATCCC	CGGGTACCGA	
	GCTCGA	TITC					

55 SEQ ID NO 27

pMPX-63 (C-terminal fusion with Factor Xa TrxA residues 2-109 FLAG cloned into pMPX-5 using PCR-introduced PstI and BamHI)

		Shine-Delgar					arno	o PstI													
	2401 1	GAAT	TCA	.GGC	GCT	TTT	'TAG	ACT	GGT	CGT	TAA'	'GAA	ATT	'C <u>ag</u>	CAG	<u>G</u> AT	CAC	ATT	CTG	CAG	AT M
5	2461	Fa GATO	cto GAA			Xb TCT		Xh CTC		AGC	'GAT	ΊΑΑΑ	ATT	'ATT	'CAC	CTG	ACT	GAC	GAC	AGT	TT
	2	I	Е	A	R	s	R	L	Е	s	D	ĸ	I	I	н	L	Т	D	D	s	F
	2521	TGAC	ACG	GAT	GTA	CTC	AAA	.GCG	GAC	GGG	GCG	ATC	CTC	GTC	GAT	TTC	TGG	GCA	GAG	TGG	T G
10	22	D	Т	D	V	L	K	A	D	G	A	Ι	L	V	D	F	W	A	E	W	С
	2581	CGGT		TGC	AAA	ATG	ATC	:GCC	CCG	ATT	CTC	GAI	'GAA	ATC	GCT	GAC	GAA	TAT	CAG	GGC	!AA
	42	G	P	С	K	M	Ι	Α	P	Ι	Ь	D	Ε	Ι	Α	D	Ε	Y	Q	G	K
15	2641	ACTO	ACC	GTT	GCA	AAA	.CTG	AAC	ATC	GAT	CAA	AAC	CCT!	'GGC	ACT	GCG	CCG.	AAA	TAT	GGC	AT.
	62	L	Т	V	A	K	L	N	Ι	D	Q	N	P	G	T	A	P	K	Y	G	Ι
	2701	CCGT		ATC	CCG	ACT	CTG	CTG	CTG	TTC	AAA	AAC	GGT:	'GAA	GTG	GCG	GCA	ACC	AAA	GTG	lGG
20	82	R	G	I	Ρ	Т	L	L	Ь	F	K	N	G	Е	V	A	À	Т	K	V	G
		XhoI TGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGACGCTAACCTGGCG CTCGA GG <i>AT</i> T																			
	2761																				
	102	A	Ь	S	K	G	Q	L	K	Ε	F	Ь	D	A	N	L	A	L	Е	D	Υ
25																Bam	ΗI				
	2821	TAAA								.GAI	-	'GA'I	-	TAA	TAA	GGA	TCC	CCG	GGT	ACC	!GA
	122	K	D	Н	D	Ğ	D	Y	K	D	Н	D	D								

Gene *trxA* (2-109) from *E. coli* MG1655 cloned into pMPX-5. Create chimeric fusions with the *trxA* by cloning into PstI and XbaI. May remove *trxA* using XhoI. FLAG sequence shown in italics only.

35 SEQ ID NO:28

30

40

45

Rat Edg-3 nucleotide sequence

5

10

WO 03/072014 PCT/US02/16877

SEQ ID NO:29

15 Rat Edg-3 amino acid sequence

M A T T H A Q G H P P V L G N D T L R E H Y D Y C G K L A G R L
R D P P E G S T L I T T I L F L V T C S F I V L E N L A G I A V K V N
I L M S G R K T F S L S P T V W F L A L C D L L A G I A V K V N
I L M S G R K T F S L S P T V W F L R E G S M F V A L G A S T C

20 S L L A I A I A F S L S P T V W F L A R E G S M F V A L G A S T C

20 S L L A I A I A F S L S P T A I L G W N C L E N F P D C S T I L L I G

M C W L I A F S L S I F T A I L C V T I V I V I V S V F L A R I V F L V K

S S S R R V A N H N S E R S M A L L R T V V I V I V S V F I A C W

S P L F I L F L I D V A C R A K E C S I L F R L V C G C L V K G

K G T Q A S P M Q P A L D P S R S K S S S S N N S S S H S P K V

SEQ ID NO.: 153

5 pMPX-66 arabinose-inducible expression vector

- $1 \quad \mathsf{TCGCGCGTTT} \; \mathsf{CGGTGATGAC} \; \mathsf{GGTGAAAACC} \; \mathsf{TCTGACACAT} \\ \mathsf{GCAGCTCCCG} \; \mathsf{GAGACGGTCA}$
- 61 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG 10 TCAGGGCGCG TCAGCGGGTG
 - 121 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
 - 181 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC
- 15 241 ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT
 - $301 \quad {\sf TACGCCAGCT~GGCGAAAGGG~GGATGTGCTG~CAAGGCGATT} \\ {\sf AAGTTGGGTA~ACGCCAGGGT} \\ \quad \cdot$

20 HindIII

361 TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGCCAA GCTTCAAGCC GTCAATTGTC

Stop araC

421 TGATTCGTTA CCAATTATGA CAACTTGACG GCTACATCAT TCACTTTTC TTCACAACCG

- 5 481 GCACGGAACT CGCTCGGGCT GGCCCCGGTG CATTTTTAA ATACCCGCGA GAAATAGAGT
 - 541 TGATCGTCAA AACCAACATT GCGACCGACG GTGGCGATAG GCATCCGGGT GGTGCTCAAA
- 601 AGCAGCTTCG CCTGGCTGAT ACGTTGGTCC TCGCGCCAGC
 10 TTAAGACGCT AATCCCTAAC
 - 661 TGCTGGCGGA AAAGATGTGA CAGACGCGAC GGCGACAAGC
 AAACATGCTG TGCGACGCTG
 - 721 GCGATATCAA AATTGCTGTC TGCCAGGTGA TCGCTGATGT ACTGACAAGC CTCGCGTACC
- 15 781 CGATTATCCA TCGGTGGATG GAGCGACTCG TTAATCGCTT
 CCATGCGCCG CAGTAACAAT
 - 841 TGCTCAAGCA GATTTATCGC CAGCAGCTCC GAATAGCGCC CTTCCCCTTG CCCGGCGTTA
- 901 ATGATTTGCC CAAACAGGTC GCTGAAATGC GGCTGGTGCG
 20 CTTCATCCGG GCGAAAGAAC
 - 961 CCCGTATTGG CAAATATTGA CGGCCAGTTA AGCCATTCAT GCCAGTAGGC GCGCGGACGA
 - 1021 AAGTAAACCC ACTGGTGATA CCATTCGCGA GCCTCCGGAT GACGACCGTA GTGATGAATC
- 25 1081 TCTCCTGGCG GGAACAGCAA AATATCACCC GGTCGGCAAA CAAATTCTCG TCCCTGATTT

1141 TTCACCACCC CCTGACCGCG AATGGTGAGA TTGAGAATAT AACCTTTCAT TCCCAGCGGT

1201 CGGTCGATAA AAAAATCGAG ATAACCGTTG GCCTCAATCG GCGTTAAACC CGCCACCAGA

5 1261 TGGGCATTAA ACGAGTATCC CGGCAGCAGG GGATCATTTT GCGCTTCAGC CATACTTTTC

Start araC

1321 ATACTCCCGC CATTCAGAGA AGAAACCAAT TGTCCATATT
10 GCATCAGACA TTGCCGTCAC

<--

- $1381 \quad TGCGTCTTTT \ ACTGGCTCTT \ CTCGCTAACC \ AAACCGGTAA$ $CCCCGCTTAT \ TAAAAGCATT$
- 15 1441 CTGTAACAAA GCGGGACCAA AGCCATGACA AAAACGCGTA ACAAAAGTGT CTATAATCAC
 - 1501 GGCAGAAAAG TCCACATTGA TTATTTGCAC GGCGTCACAC TTTGCTATGC CATAGCATTT
- 1561 TTATCCATAA GATTAGCGGA TCCTACCTGA CGCTTTTTAT
 20 CGCAACTCTC TACTGTTTCT

SD Sall XbaI

1621 CCATACCCGT TTTTTTGGGC TAGCAGGAGG CCGTCGACTC TAGAGGATCC CCGCGCCCTC

Stem-loop KpnI

1681 ATCCGAAAGG GCGTATTGGT ACCGAGCTCG AATTCGTAAT CATGGTCATA GCTGTTTCCT

5

- 1741 GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC GAGCCGGAAG CATAAAGTGT
- 10 1861 GCTTTCCAGT CGGGAAACCT GTCGTGCCAG CTGCATTAAT GAATCGGCCA ACGCGCGGGG
 - 1921 AGAGGCGGTT TGCGTATTGG GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG
- 1981 GTCGTTCGGC TGCGGCGAGC GGTATCAGCT CACTCAAAGG
 15 CGGTAATACG GTTATCCACA
 - 2041 GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGÇAAAA GGCCAGGAAC
 - 2101 CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC GCCCCCTGA CGAGCATCAC
- 20 2161 AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG
 - 2221 TTTCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC
- 2281 CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC
 25 ATAGCTCACG CTGTAGGTAT

- 2341 CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC CCCCGTTCAG
- 2401 CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT CCAACCCGGT AAGACACGAC
- 5 2461 TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT
 - 2521 GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT
- 2581 ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG
 10 TTGGTAGCTC TTGATCCGGC
 - 2641 AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA
 - 2701 AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC
- 15 2761 GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC
 - 2821 CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT
- 2881 GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG
 20 CGATCTGTCT ATTTCGTTCA
 - 2941 TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA TACGGGAGGG CTTACCATCT
 - 3001 GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA
- 25 3061 ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC

- 3121 ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTTG
- 3181 CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTCAC GCTCGTCGTT TGGTATGGCT
- 5 3241 TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCCAT GTTGTGCAAA
 - 3301 AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA
- 3361 TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG
 10 TCATGCCATC CGTAAGATGC
 - 3421 TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG
 - 3481 AGTTGCTCTT GCCCGGCGTC AATACGGGAT AATACCGCGC CACATAGCAG AACTTTAAAA
- 15 3541 GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACTCT CAAGGATCTT ACCGCTGTTG
 - 3601 AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC
- 3661 ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG
 20 CCGCAAAAAA GGGAATAAGG
 - 3721 GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTTC AATATTATTG AAGCATTTAT
 - 3781 CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA
 TTTAGAAAAA TAAACAAATA
- 25 3841 GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTGACG
 TCTAAGAAAC CATTATTATC

3901 ATGACATTAA CCTATAAAAA TAGGCGTATC ACGAGGCCCT TTCGTC

The segment araC through Para was taken from pBAD24 using PCR added HindIII

and modified aligned Shine-Delgarno (SD) sequence with SalI followed by XbaI, a stem-loop transcriptional stop sequence, and KpnI. The PCR product was cloned into pUC18 using HindIII and KpnI.

10 SEQ ID NO.: 152

pMPX-72 rhamnose-inducible expression vector

- 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT
 15 GCAGCTCCCG GAGACGGTCA
 - 61 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
 - 121 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
- 20 181 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC
 - 241 ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT
- 301 TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT
 25 AAGTTGGGTA ACGCCAGGGT

Stop rhaR

361 TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGCCAA GCTTAATTAA TCTTTCTGCG

5 HindⅢ

- 421 AATTGAGATG ACGCCACTGG CTGGGCGTCA TCCCGGTTTC CCGGGTAAAC ACCACCGAAA
- 481 AATAGTTACT ATCTTCAAAG CCACATTCGG TCGAAATATC
 10 ACTGATTAAC AGGCGGCTAT
 - 541 GCTGGAGAAG ATATTGCGCA TGACACACTC TGACCTGTCG CAGATATTGA TTGATGGTCA
 - 601 TTCCAGTCTG CTGGCGAAAT TGCTGACGCA AAACGCGCTC ACTGCACGAT GCCTCATCAC
- 15 661 AAAATTTATC CAGCGCAAAG GGACTTTTCA GGCTAGCCGC CAGCCGGGTA ATCAGCTTAT
 - 721 CCAGCAACGT TTCGCTGGAT GTTGGCGGCA ACGAATCACT GGTGTAACGA TGGCGATTCA
- 781 GCAACATCAC CAACTGCCCG AACAGCAACT CAGCCATTTC
 20 GTTAGCAAAC GGCACATGCT
 - 841 GACTACTTTC ATGCTCAAGC TGACCGATAA CCTGCCGCGC CTGCGCCATC CCCATGCTAC
 - 901 CTAAGCGCCA GTGTGGTTGC CCTGCGCTGG CGTTAAATCC CGGAATCGCC CCCTGCCAGT
- 25 961 CAAGATTCAG CTTCAGACGC TCCGGGCAAT AAATAATATT CTGCAAAACC AGATCGTTAA

1021 CGGAAGCGTA GGAGTGTTTA TCGTCAGCAT GAATGTAAAA GAGATCGCCA CGGGTAATGC

- 1081 GATAAGGCG ATCGTTGAGT ACATGCAGGC CATTACCGCG CCAGACAATC ACCAGCTCAC
- 5 1141 AAAAATCATG TGTATGTTCA GCAAAGACAT CTTGCGGATA ACGGTCAGCC ACAGCGACTG
 - 1201 CCTGCTGGTC GCTGGCAAAA AAATCATCTT TGAGAAGTTT TAACTGATGC GCCACCGTGG
- 1261 CTACCTCGGC CAGAGAACGA AGTTGATTAT TCGCAATATG
 10 GCGTACAAAT ACGTTGAGAA

Stop rhaS Start rhaR

1321 GATTCGCGTT ATTGCAGAAA GCCATCCCGT CCCTGGCGAA TATCACGCGG TGACCAGTTA

15 <--

- 1381 AACTCTCGGC GAAAAAGCGT CGAAAAGTGG TTACTGTCGC TGAATCCACA GCGATAGGCG
- 1441 ATGTCAGTAA CGCTGGCCTC GCTGTGGCGT AGCAGATGTC
 20 GGGCTTTCAT CAGTCGCAGG
 - 1501 CGGTTCAGGT ATCGCTGAGG CGTCAGTCCC GTTTGCTGCT TAAGCTGCCG ATGTAGCGTA
 - 1561 CGCAGTGAAA GAGAAAATTG ATCCGCCACG GCATCCCAAT TCACCTCATC GGCAAAATGG
- 25 1621 TCCTCCAGCC AGGCCAGAAG CAAGTTGAGA CGTGATGCGC
 TGTTTTCCAG GTTCTCCTGC

- 1681 AAACTGCTTT TACGCAGCAA GAGCAGTAAT TGCATAAACA AGATCTCGCG ACTGGCGGTC
- 1741 GAGGGTAAAT CATTTTCCCC TTCCTGCTGT TCCATCTGTG CAACCAGCTG TCGCACCTGC
- 5 1801 TGCAATACGC TGTGGTTAAC GCGCCAGTGA GACGGATACT GCCCATCCAG CTCTTGTGGC
 - 1861 AGCAACTGAT TCAGCCCGGC GAGAAACTGA AATCGATCCG GCGAGCGATA CAGCACATTG
- 1921 GTCAGACACA GATTATCGGT ATGTTCATAC AGATGCCGAT
 10 CATGATCGCG TACGAAACAG
 - 1981 ACCGTGCCAC CGGTGATGGT ATAGGGCTGC CCATTAAACA CATGAATACC CGTGCCATGT
 - 2041 TCGACAATCA CAATTTCATG AAAATCATGA TGATGTTCAG GAAAATCCGC CTGCGGGAGC
- 15 2101 CGGGGTTCTA TCGCCACGGA CGCGTTACCA GACGGAAAAA AATCCACACT ATGTAATACG

Start rhaS

2161 GTCATACTGG CCTCCTGATG TCGTCAACAC GGCGAAATAG
20 TAATCACGAG GTCAGGTTCT

<--

- 2221 TACCTTAAAT TTTCGACGGA AAACCACGTA AAAAACGTCG
 ATTTTTCAAG ATACAGCGTG
- 25 2281 AATTTCAGG AAATGCGGTG AGCATCACAT CACCACAATT CAGCAAATTG TGAACATCAT

2341 CACGTTCATC TTTCCCTGGT TGCCAATGGC CCATTTTCCT GTCAGTAACG AGAAGGTCGC

SD PstI SalI

5 2401 GAATTCAGGC GCTTTTTAGA CTGGTCGTAA TGAAATTCAG GAGGTTCTGC AGGTCGACTC

XbaI

Stem-loop

KpnI

2461 TAGAGGATCC CCGCGCCCTC ATCCGAAAGG GCGTATTGGT
10 ACCGAGCTCG AATTCGTAAT

2521 CATGGTCATA GCTGTTTCCT GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC

2581 GAGCCGGAAG CATAAAGTGT AAAGCCTGGG GTGCCTAATG
15 AGTGAGCTAA CTCACATTAA

2641 TTGCGTTGCG CTCACTGCCC GCTTTCCAGT CGGGAAACCT GTCGTGCCAG CTGCATTAAT

2701 GAATCGGCCA ACGCGCGGGG AGAGGCGGTT TGCGTATTGG GCGCTCTTCC GCTTCCTCGC

20 2761 TCACTGACTC GCTGCGCTCG GTCGTTCGGC TGCGGCGAGC GGTATCAGCT CACTCAAAGG

2821 CGGTAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG

2881 GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT
25 GGCGTTTTC CATAGGCTCC

- 2941 GCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG
- 3001 GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA
- 5 3061 CCCTGCCGCT TACCGGATAC CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC
 - 3121 ATAGCTCACG CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG
- 3181 TGCACGAACC CCCCGTTCAG CCCGACCGCT GCGCCTTATC

 10 CGGTAACTAT CGTCTTGAGT
 - 3241 CCAACCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA
 - 3301 GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA
- 15 3361 CTAGAAGGAC AGTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG
 - 3421 TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA
- 3481 AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA
 20 TCCTTTGATC TTTTCTACGG
 - 3541 GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA
 - 3601 AAAGGATCTT CACCTAGATC CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA
- 25 3661 TATATGAGTA AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG

- 3721 CGATCTGTCT ATTTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA
- 3781 TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC
- 5 3841 CGGCTCCAGA TTTATCAGCA ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC
 - 3901 CTGCAACTTT ATCCGCCTCC ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA
- 3961 GTTCGCCAGT TAATAGTTTG CGCAACGTTG TTGCCATTGC

 10 TACAGGCATC GTGGTGTCAC
 - 4021 GCTCGTCGTT TGGTATGGCT TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT
 - 4081 GATCCCCCAT GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAGAA
- 15 4141 GTAAGTTGGC CGCAGTGTTA TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG
 - 4201 TCATGCCATC CGTAAGATGC TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG
- 4261 AATAGTGTAT GCGGCGACCG AGTTGCTCTT GCCCGGCGTC
 20 AATACGGGAT AATACCGCGC
 - 4321 CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACTCT
 - 4381 CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT
- 25 4441 CTTCAGCATC TTTTACTTTC ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG

4501 CCGCAAAAAA GGGAATAAGG GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTC

4561 AATATTATTG AAGCATTTAT CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA

5 4621 TTTAGAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTGACG

4681 TCTAAGAAAC CATTATTATC ATGACATTAA CCTATAAAAA TAGGCGTATC ACGAGGCCCT

4741 TTCGTC

The segment rhaR through Prha was taken from the E. coli chromosome using PCR added HindIII and modified aligned Shine-Delgarno (SD) sequence with PstI followed by SalI, XbaI, a stem-loop transcriptional stop sequence, and KpnI. The PCR product was cloned into pUC18 using HindIII and KpnI.

15

SEQ ID NO.: 151

pMPX-67 rhamnose-inducible expression vector

- 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
- 61 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG
 25 TCAGGGCGCG TCAGCGGGTG

121 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC

- 181 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC
- 5 241 ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT
 - 301 TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT
 AAGTTGGGTA ACGCCAGGGT

10 Stop rhaR

361 TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGCCAA GCTTAATTAA TCTTTCTGCG

HindIII

- 15 421 AATTGAGATG ACGCCACTGG CTGGGCGTCA TCCCGGTTTC CCGGGTAAAC ACCACCGAAA
 - 481 AATAGTTACT ATCTTCAAAG CCACATTCGG TCGAAATATC ACTGATTAAC AGGCGGCTAT
- 541 GCTGGAGAAG ATATTGCGCA TGACACACTC TGACCTGTCG
 20 CAGATATTGA TTGATGGTCA
 - 601 TTCCAGTCTG CTGGCGAAAT TGCTGACGCA AAACGCGCTC ACTGCACGAT GCCTCATCAC
 - 661 AAAATTTATC CAGCGCAAAG GGACTTTTCA GGCTAGCCGC CAGCCGGTA ATCAGCTTAT
- 25 721 CCAGCAACGT TTCGCTGGAT GTTGGCGGCA ACGAATCACT GGTGTAACGA TGGCGATTCA

- 781 GCAACATCAC CAACTGCCCG AACAGCAACT CAGCCATTTC GTTAGCAAAC GGCACATGCT
- 841 GACTACTTTC ATGCTCAAGC TGACCGATAA CCTGCCGCGC CTGCGCCATC CCCATGCTAC
- 5 901 CTAAGCGCCA GTGTGGTTGC CCTGCGCTGG CGTTAAATCC CGGAATCGCC CCCTGCCAGT
 - 961 CAAGATTCAG CTTCAGACGC TCCGGGCAAT AAATAATATT CTGCAAAACC AGATCGTTAA
- 1021 CGGAAGCGTA GGAGTGTTTA TCGTCAGCAT GAATGTAAAA 10 GAGATCGCCA CGGGTAATGC
 - 1081 GATAAGGGCG ATCGTTGAGT ACATGCAGGC CATTACCGCG CCAGACAATC ACCAGCTCAC
 - 1141 AAAAATCATG TGTATGTTCA GCAAAGACAT CTTGCGGATA ACGGTCAGCC ACAGCGACTG
- 15 1201 CCTGCTGGTC GCTGGCAAAA AAATCATCTT TGAGAAGTTT TAACTGATGC GCCACCGTGG
 - 1261 CTACCTCGGC CAGAGAACGA AGTTGATTAT TCGCAATATG GCGTACAAAT ACGTTGAGAA
- 20 Stop rhaS Start rhaR
 - 1321 GATTCGCGTT ATTGCAGAAA GCCATCCCGT CCCTGGCGAA TATCACGCGG TGACCAGTTA

<--

25 1381 AACTCTCGGC GAAAAAGCGT CGAAAAGTGG TTACTGTCGC TGAATCCACA GCGATAGGCG

1441 ATGTCAGTAA CGCTGGCCTC GCTGTGGCGT AGCAGATGTC GGGCTTTCAT CAGTCGCAGG

- $1501 \quad {\tt CGGTTCAGGT\ ATCGCTGAGG\ CGTCAGTCCC\ GTTTGCTGCT}$ ${\tt TAAGCTGCCG\ ATGTAGCGTA}$
- 5 1561 CGCAGTGAAA GAGAAAATTG ATCCGCCACG GCATCCCAAT TCACCTCATC GGCAAAATGG
 - 1621 TCCTCCAGCC AGGCCAGAAG CAAGTTGAGA CGTGATGCGC TGTTTTCCAG GTTCTCCTGC
- 1681 AAACTGCTTT TACGCAGCAA GAGCAGTAAT TGCATAAACA
 10 AGATCTCGCG ACTGGCGGTC
 - 1741 GAGGGTAAAT CATTTTCCCC TTCCTGCTGT TCCATCTGTG
 CAACCAGCTG TCGCACCTGC
 - 1801 TGCAATACGC TGTGGTTAAC GCGCCAGTGA GACGGATACT GCCCATCCAG CTCTTGTGGC
- 15 1861 AGCAACTGAT TCAGCCCGGC GAGAAACTGA AATCGATCCG GCGAGCGATA CAGCACATTG
 - 1921 GTCAGACACA GATTATCGGT ATGTTCATAC AGATGCCGAT CATGATCGCG TACGAAACAG
- 1981 ACCGTGCCAC CGGTGATGGT ATAGGGCTGC CCATTAAACA 20 CATGAATACC CGTGCCATGT
 - 2041 TCGACAATCA CAATTTCATG AAAATCATGA TGATGTTCAG GAAAATCCGC CTGCGGGAGC
 - 2101 CGGGGTTCTA TCGCCACGGA CGCGTTACCA GACGGAAAAA AATCCACACT ATGTAATACG

25

Start rhaS

2161 GTCATACTGG CCTCCTGATG TCGTCAACAC GGCGAAATAG
TAATCACGAG GTCAGGTTCT

<--

5 2221 TACCTTAAAT TTTCGACGGA AAACCACGTA AAAAACGTCG
ATTTTTCAAG ATACAGCGTG

2281 AATTTTCAGG AAATGCGGTG AGCATCACAT CACCACAATT CAGCAAATTG TGAACATCAT

2341 CACGTTCATC TTTCCCTGGT TGCCAATGGC CCATTTTCCT
10 GTCAGTAACG AGAAGGTCGC

SD Sall Xbal

2401 GAATTCAGGC GCTTTTTAGA CTGGTCGTAA TGAAATTCAG
15 GAGGTTGTCG ACTCTAGAGG

Stem-loop

KpnI

2461 ATCCCCGCGC CCTCATCCGA AAGGGCGTAT TGGTACCGAG CTCGAATTCG TAATCATGGT

20

2521 CATAGCTGTT TCCTGTGTGA AATTGTTATC CGCTCACAAT TCCACACAAC ATACGAGCCG

2581 GAAGCATAAA GTGTAAAGCC TGGGGTGCCT AATGAGTGAG
25 CTAACTCACA TTAATTGCGT

- 2641 TGCGCTCACT GCCCGCTTTC CAGTCGGGAA ACCTGTCGTG CCAGCTGCAT TAATGAATCG
- 2701 GCCAACGCGC GGGGAGAGGC GGTTTGCGTA TTGGGCGCTC TTCCGCTTCC TCGCTCACTG
- 5 2761 ACTCGCTGCG CTCGGTCGTT CGGCTGCGC GAGCGGTATC AGCTCACTCA AAGGCGGTAA
 - 2821 TACGGTTATC CACAGAATCA GGGGATAACG CAGGAAAGAA CATGTGAGCA AAAGGCCAGC
- 2881 AAAAGGCCAG GAACCGTAAA AAGGCCGCGT TGCTGGCGTT

 10 TTTCCATAGG CTCCGCCCCC
 - 2941 CTGACGAGCA TCACAAAAAT CGACGCTCAA GTCAGAGGTG GCGAAACCCG ACAGGACTAT
 - 3001 AAAGATACCA GGCGTTTCCC CCTGGAAGCT CCCTCGTGCG CTCTCCTGTT CCGACCCTGC
- 15 3061 CGCTTACCGG ATACCTGTCC GCCTTTCTCC CTTCGGGAAG
 CGTGGCGCTT TCTCATAGCT
 - 3121 CACGCTGTAG GTATCTCAGT TCGGTGTAGG TCGTTCGCTC CAAGCTGGGC TGTGTGCACG
- 3181 AACCCCCGT TCAGCCCGAC CGCTGCGCCT TATCCGGTAA
 20 CTATCGTCTT GAGTCCAACC
 - 3241 CGGTAAGACA CGACTTATCG CCACTGGCAG CAGCCACTGG TAACAGGATT AGCAGAGCGA
 - 3301 GGTATGTAGG CGGTGCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA
- 25 3361 GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAAAA AGAGTTGGTA

- 3421 GCTCTTGATC CGGCAAACAA ACCACCGCTG GTAGCGGTGG TTTTTTTGTT TGCAAGCAGC
- 3481 AGATTACGCG CAGAAAAAA GGATCTCAAG AAGATCCTTT GATCTTTTCT ACGGGGTCTG
- 5 3541 ACGCTCAGTG GAACGAAAAC TCACGTTAAG GGATTTTGGT CATGAGATTA TCAAAAAGGA
 - 3601 TCTTCACCTA GATCCTTTTA AATTAAAAAT GAAGTTTTAA ATCAATCTAA AGTATATATG
- 3661 AGTAAACTTG GTCTGACAGT TACCAATGCT TAATCAGTGA
 10 GGCACCTATC TCAGCGATCT
 - 3721 GTCTATTTCG TTCATCCATA GTTGCCTGAC TCCCCGTCGT GTAGATAACT ACGATACGGG
 - 3781 AGGGCTTACC ATCTGGCCCC AGTGCTGCAA TGATACCGCG AGACCCACGC TCACCGGCTC
- 15 3841 CAGATTTATC AGCAATAAAC CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA
 - 3901 CTTTATCCGC CTCCATCCAG TCTATTAATT GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC
- 3961 CAGTTAATAG TTTGCGCAAC GTTGTTGCCA TTGCTACAGG
 20 CATCGTGGTG TCACGCTCGT
 - 4021 CGTTTGGTAT GGCTTCATTC AGCTCCGGTT CCCAACGATC AAGGCGAGTT ACATGATCCC
 - 4081 CCATGTTGTG CAAAAAAGCG GTTAGCTCCT TCGGTCCTCC GATCGTTGTC AGAAGTAAGT
- 25 4141 TGGCCGCAGT GTTATCACTC ATGGTTATGG CAGCACTGCA
 TAATTCTCTT ACTGTCATGC

4201 CATCCGTAAG ATGCTTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT

- 4261 GTATGCGGCG ACCGAGTTGC TCTTGCCCGG CGTCAATACG GGATAATACC GCGCCACATA
- 5 4321 GCAGAACTTT AAAAGTGCTC ATCATTGGAA AACGTTCTTC GGGGCGAAAA CTCTCAAGGA
 - 4381 TCTTACCGCT GTTGAGATCC AGTTCGATGT AACCCACTCG TGCACCCAAC TGATCTTCAG
- 4441 CATCTTTAC TTTCACCAGC GTTTCTGGGT GAGCAAAAAC

 10 AGGAAGGCAA AATGCCGCAA
 - 4501 AAAAGGGAAT AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT
 - 4561 ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTTGAA TGTATTTAGA
- 15 4621 AAAATAAACA AATAGGGGTT CCGCGCACAT TTCCCCGAAA AGTGCCACCT GACGTCTAAG
 - 4681 AAACCATTAT TATCATGACA TTAACCTATA AAAATAGGCG TATCACGAGG CCCTTTCGTC
- The segment rhaR through Prha was taken from the E. coli chromosome using PCR added HindIII and modified aligned Shine-Delgarno (SD) sequence with SalI followed by XbaI, a stem-loop transcriptional stop sequence, and KpnI. The PCR product was cloned into pUC18 using HindIII and KpnI.

25

SEQ ID NO.: 154

pMPX-71 arabinose-inducible expression vector

- 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT
 5 GCAGCTCCCG GAGACGGTCA
 - 61 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
 - 121 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
- 10 181 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC
 - 241 ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT
- 301 TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT
 15 AAGTTGGGTA ACGCCAGGGT

HindIII

361 TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGCCAA GCTTCAAGCC GTCAATTGTC

20

Stop araC

- 421 TGATTCGTTA CCAATTATGA CAACTTGACG GCTACATCAT TCACTTTTC TTCACAACCG
- 481 GCACGGAACT CGCTCGGGCT GGCCCCGGTG CATTTTTAA
 25 ATACCCGCGA GAAATAGAGT

541 TGATCGTCAA AACCAACATT GCGACCGACG GTGGCGATAG GCATCCGGGT GGTGCTCAAA

- 601 AGCAGCTTCG CCTGGCTGAT ACGTTGGTCC TCGCGCCAGC TTAAGACGCT AATCCCTAAC
- 5 661 TGCTGGCGGA AAAGATGTGA CAGACGCGAC GGCGACAAGC AAACATGCTG TGCGACGCTG
 - 721 GCGATATCAA AATTGCTGTC TGCCAGGTGA TCGCTGATGT ACTGACAAGC CTCGCGTACC
- 781 CGATTATCCA TCGGTGGATG GAGCGACTCG TTAATCGCTT
 10 CCATGCGCCG CAGTAACAAT
 - 841 TGCTCAAGCA GATTTATCGC CAGCAGCTCC GAATAGCGCC CTTCCCCTTG CCCGGCGTTA
 - 901 ATGATTTGCC CAAACAGGTC GCTGAAATGC GGCTGGTGCG CTTCATCCGG GCGAAAGAAC
- 15 961 CCCGTATTGG CAAATATTGA CGGCCAGTTA AGCCATTCAT GCCAGTAGGC GCGCGGACGA
 - 1021 AAGTAAACCC ACTGGTGATA CCATTCGCGA GCCTCCGGAT GACGACCGTA GTGATGAATC
- 1081 TCTCCTGGCG GGAACAGCAA AATATCACCC GGTCGGCAAA
 20 CAAATTCTCG TCCCTGATTT
 - 1141 TTCACCACCC CCTGACCGCG AATGGTGAGA TTGAGAATAT AACCTTTCAT TCCCAGCGGT
 - 1201 CGGTCGATAA AAAAATCGAG ATAACCGTTG GCCTCAATCG GCGTTAAACC CGCCACCAGA
- 25 1261 TGGGCATTAA ACGAGTATCC CGGCAGCAGG GGATCATTTT GCGCTTCAGC CATACTTTTC

Start araC

1321 ATACTCCCGC CATTCAGAGA AGAAACCAAT TGTCCATATT GCATCAGACA TTGCCGTCAC

5

<--

1381 TGCGTCTTTT ACTGGCTCTT CTCGCTAACC AAACCGGTAA CCCCGCTTAT TAAAAGCATT

1441 CTGTAACAAA GCGGGACCAA AGCCATGACA AAAACGCGTA
10 ACAAAAGTGT CTATAATCAC

 $1501 \quad {\tt GGCAGAAAAG\ TCCACATTGA\ TTATTTGCAC\ GGCGTCACAC} \\ {\tt TTTGCTATGC\ CATAGCATTT}$

1561 TTATCCATAA GATTAGCGGA TCCTACCTGA CGCTTTTTAT CGCAACTCTC TACTGTTTCT

15

SD PstI Sall XbaI

1621 CCATACCCGT TTTTTTGGGC TAGCAGGAGG CCCTGCAGGT CGACTCTAGA GGATCCCCGC

20

Stem-loop

KpnI

1681 GCCCTCATCC GAAAGGGCGT ATTGGTACCG AGCTCGAATT CGTAATCATG GTCATAGCTG

1741 TTTCCTGTGT GAAATTGTTA TCCGCTCACA ATTCCACACA
25 ACATACGAGC CGGAAGCATA

- 1801 AAGTGTAAAG CCTGGGGTGC CTAATGAGTG AGCTAACTCA CATTAATTGC GTTGCGCTCA
- 1861 CTGCCGCTT TCCAGTCGGG AAACCTGTCG TGCCAGCTGC ATTAATGAAT CGGCCAACGC
- 5 1921 GCGGGGAGAG GCGGTTTGCG TATTGGGCGC TCTTCCGCTT CCTCGCTCAC TGACTCGCTG
 - 1981 CGCTCGGTCG TTCGGCTGCG GCGAGCGGTA TCAGCTCACT CAAAGGCGGT AATACGGTTA
- 2041 TCCACAGAAT CAGGGGATAA CGCAGGAAAG AACATGTGAG
 10 CAAAAGGCCA GCAAAAGGCC
 - 2101 AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTTCCATA GGCTCCGCCC CCCTGACGAG
 - 2161 CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAC
- 15 2221 CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG CĠCTCTCCTG
 TTCCGACCCT GCCGCTTACC
 - 2281 GGATACCTGT CCGCCTTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCATAG CTCACGCTGT
- 2341 AGGTATCTCA GTTCGGTGTA GGTCGTTCGC TCCAAGCTGG
 20 GCTGTGTGCA CGAACCCCCC
 - 2401 GTTCAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA
 - 2461 CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC GAGGTATGTA
- 25 2521 GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA

- 2581 TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA
- 2641 TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTTG
 TTTGCAAGCA GCAGATTACG
- 5 2701 CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTTT
 CTACGGGGTC TGACGCTCAG
 - 2761 TGGAACGAAA ACTCACGTTA AGGGATTTTG GTCATGAGAT TATCAAAAAG GATCTTCACC
- 2821 TAGATCCTTT TAAATTAAAA ATGAAGTTTT AAATCAATCT
 10 AAAGTATATA TGAGTAAACT
 - 2881 TGGTCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA
 TCTCAGCGAT CTGTCTATTT
 - 2941 CGTTCATCCA TAGTTGCCTG ACTCCCCGTC GTGTAGATAA CTACGATACG GGAGGGCTTA
- 15 3001 CCATCTGGCC CCAGTGCTGC AATGATACCG CGAGACCCAC GCTCACCGGC TCCAGATTTA
 - 3061 TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA GTGGTCCTGC AACTTTATCC
- 3121 GCCTCCATCC AGTCTATTAA TTGTTGCCGG GAAGCTAGAG
 20 TAAGTAGTTC GCCAGTTAAT
 - 3181 AGTTTGCGCA ACGTTGTTGC CATTGCTACA GGCATCGTGG TGTCACGCTC GTCGTTTGGT
 - 3241 ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCGAG TTACATGATC CCCCATGTTG
- 25 3301 TGCAAAAAAG CGGTTAGCTC CTTCGGTCCT CCGATCGTTG
 TCAGAAGTAA GTTGGCCGCA

25

WO 03/072014 PCT/US02/16877

- 3361 GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC
 TTACTGTCAT GCCATCCGTA
- 3421 AGATGCTTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA GTGTATGCGG
- 5 3481 CGACCGAGTT GCTCTTGCCC GGCGTCAATA CGGGATAATA CCGCGCCACA TAGCAGAACT
 - 3541 TTAAAAGTGC TCATCATTGG AAAACGTTCT TCGGGGCGAA AACTCTCAAG GATCTTACCG
- 3601 CTGTTGAGAT CCAGTTCGAT GTAACCCACT CGTGCACCCA
 10 ACTGATCTTC AGCATCTTTT
 - 3661 ACTITCACCA GCGTTTCTGG GTGAGCAAAA ACAGGAAGGC AAAATGCCGC AAAAAAGGGA
 - 3721 ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTCC TTTTTCAATA TTATTGAAGC \cdot
- 15 3781 ATTTATCAGG GTTATTGTCT CATGAGCGGA TACATATTTG
 AATGTATTTA GAAAAATAAA
 - 3841 CAAATAGGGG TTCCGCGCAC ATTTCCCCGA AAAGTGCCAC CTGACGTCTA AGAAACCATT
- 3901 ATTATCATGA CATTAACCTA TAAAAATAGG CGTATCACGA
 20 GGCCCTTTCG TC

The segment araC through Para was taken from pBAD24 using PCR added HindIII and modified aligned Shine-Delgarno (SD) sequence with PstI followed by SalI, XbaI, a stem-loop transcriptional stop sequence, and KpnI. The PCR product was cloned into pUC18 using HindIII and KpnI.

SEQ ID NO.: 155

pMPX-68 melibiose-inducible expression vector

5

- 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
- 10 121 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
 - 181 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC
- 241 ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC
 15 GGTGCGGGCC TCTTCGCTAT
 - 301 TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT

HindIII

20 361 TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGCCAA GCTTTTAGCC GGGAAACGTC

Stop MelR

421 TGGCGGCGCT GTTGGCTAAG TTTGCGGTAT TGTTGCGGCG
25 ACATGCCGAC ATATTTGCCG

- 481 AACGTGCTGT AAAAACGACT ACTTGAACGA AAGCCTGCCG TCAGGGCAAT ATCGAGAATA
- 541 CTTTTATCGG TATCGCTCAG TAACGCGCGA ACGTGGTTGA TGCGCATCGC GGTAATGTAC
- 5 601 TGTTTCATCG TCAATTGCAT GACCCGCTGG AATATCCCCA
 TTGCATAGTT GGCGTTAAGT
 - 661 TTGACGTGCT CAGCCACATC GTTGATGGTC AGCGCCTGAT CATAGTTTTC GGCAATAAAG
- 721 CCCAGCATCT GGCTAACATA AAATTGCGCA TGGCGCGAGA 10 CGCTGTTTTT GTGTGTGCGC
 - 781 GAGGTTTTAT TGACCAGAAT CGGTTCCCAG CCAGAGAGGC TAAATCGCTT GAGCATCAGG
 - 841 CCAATTTCAT CAATGGCGAG CTGGCGAATT TGCTCGTTCG GACTGTTTAA TTCCTGCTGC
- 15 901 CAGCGGCGCA CTTCAAACGG GCTAAGTTGC TGTGTGGCCA GTGATTTGAT CACCATGCCG
 - 961 TGAGTGACGT GGTTAATCAG GTCTTTATCC AGCGGCCAGG
 AGAGAAACAG ATGCATCGGC
- 1021 AGATTAAAAA TCGCCATGCT CTGACAGGTT CCGGTATCTG
 20 TTAGTTGGTG CGGTGTACAG
 - 1081 GCCCAGAACA GCGTGATATG ACCCTGATTG ATATTCACTT TTTCATTGTT GATCAGGTAT
 - 1141 TCCACATCGC CATCGAAAGG CACATTCACT TCGACCTGAC CATGCCAGTG GCTGGTGGGC
- 25 1201 ATGATATGCG GTGCGCGAAA CTCAATCTCC ATCCGCTGGT ATTCCGAATA CAGCGACAGC

+1

MelR

1261 GGGCTGCGGG TCTGTTTTC GTCGCTGCTG CACATAAACG
5 TATCTGTATT CATGGATGGC

1321 TCTCTTCCT GGAATATCAG AATTATGGCA GGAGTGAGGG AGGATGACTG CGAGTGGGAG

10 1381 CACGGTTTTC ACCCTCTTCC CAGAGGGGCG AGGGGACTCT CCGAGTATCA TGAGGCCGAA

1441 AACTCTGCTT TTCAGGTAAT TTATTCCCAT AAACTCAGAT TTACTGCTGC TTCACGCAGG

1501 ATCTGAGTTT ATGGGAATGC TCAACCTGGA AGCCGGAGGT
15 TTTCTGCAGA TTCGCCTGCC

SD Sall XbaI

1561 ATGATGAAGT TATTCAAGCA AGCCAGGAGG TCGTCGACTC TAGAGGATCC CCGCGCCCTC

20

Stem-loop KpnI

1621 ATCCGAAAGG GCGTATTGGT ACCGAGCTCG AATTCGTAAT CATGGTCATA GCTGTTTCCT

- 1681 GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC GAGCCGGAAG CATAAAGTGT
- 5 1801 GCTTTCCAGT CGGGAAACCT GTCGTGCCAG CTGCATTAAT GAATCGGCCA ACGCGCGGGG
 - 1861 AGAGGCGGTT TGCGTATTGG GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG
- 1921 GTCGTTCGGC TGCGGCGAGC GGTATCAGCT CACTCAAAGG
 10 CGGTAATACG GTTATCCACA
 - 1981 GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGCAAAA GGCCAGGAAC
 - 2041 CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC GCCCCCTGA CGAGCATCAC
- 15 2101 AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG
 - 2161 TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC
- 2221 CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC
 20 ATAGCTCACG CTGTAGGTAT
 - 2281 CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC·CCCCGTTCAG
 - 2341 CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT CCAACCGGT AAGACACGAC
- 25 . 2401 TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT

- 2461 GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT
- 2521 ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC
- 5 2581 AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA
 - 2641 AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC
- 2701 GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA
 10 AAAGGATCTT CACCTAGATC
 - 2761 CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT
 - 2821 GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT ATTTCGTTCA
- 15 2881 TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA
 TACGGGAGGG CTTACCATCT
 - 2941 GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA
- 3001 ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC
 20 CTGCAACTTT ATCCGCCTCC
 - 3061 ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTTG
 - 3121 CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTCAC GCTCGTCGTT TGGTATGGCT
- 25 3181 TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCCAT GTTGTGCAAA

- 3241 AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA
- 3301 TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC
- 5 3361 TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG
 - 3421 AGTTGCTCTT GCCCGGCGTC AATACGGGAT AATACCGCGC CACATAGCAG AACTTTAAAA
- 3481 GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACTCT
 10 CAAGGATCTT ACCGCTGTTG
 - 3541 AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC
 - 3601 ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG CCGCAAAAAA GGGAATAAGG
- 15 3661 GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTTC
 AATATTATTG AAGCATTTAT
 - 3721 CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA
- 3781 GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTGACG
 20 TCTAAGAAAC CATTATTATC
 - 3841 ATGACATTAA CCTATAAAAA TAGGCGTATC ACGAGGCCCT TTCGTC
- 25 SEQ ID NO.: 166

MalE (1-370) Factor Xa NTR (43-424) FLAG

SalI +1 MalE (1-370)

1

- 5 GTCGACATGAAAATAAAAACAGGTGCACGCATCCTCGCATTATCCGCATTAACGA CGATGATGTTT
 - 1 M K I K T G A R I L A L S A L T T M M F

61

- 10 TCCGCCTCGCCCAAAATCGAAGAAGGTAAACTGGTAATCTGGATTAACG GCGAT
 - 21 SASALAKIEEGKLVIWINGD

121

- 15 AAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAA TTAAA
 - 41 K G Y N G L A E V G K K F E K D T G I K

- 20 GTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAA CTGGC
 - 61 VTVEHPDKLEEKFPQVAATG

241

 ${\tt GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGC}$

81 DGPDIIFWAHDRFGGYAQSG

5

301

CTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTA

101 L L A E I T P D K A F Q D K L Y P F T W

10

361

 ${\tt GATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTT} \\ {\tt ATCG}$

121 DAVRYNGKLIAYPIAVEALS

15

421

 ${\tt CTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCC}\\ {\tt CGGCG}$

141 LIYNKDLLPNPPKTWEEIPA

20

481

CTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCG

161 L D K E L K A K G K S A L M F N L Q E P

541

 ${\tt TACTTCACCTGGCCGCTGATTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCC}$

181 Y F T W P L I A A D G G Y A F K Y E N G

5

601

 ${\bf AAGTACGACATTAAAGACGTGGGCGGGAAAGCGGGTCTGACCTTC}$

201 KYDIKDVGVDNAGAKAGLTF

10

661

 ${\tt CTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCG}\\ {\tt CAGAA}$

221 L V D L I K N K H M N A D T D Y S I A E

15

721

GCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGT CCAAC

241 AAFNKGETAMTINGPWAWSN

20

781

 $\label{eq:accade} \textbf{ATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCA}$ AACCA

261 I D T S K V N Y G V T V L P T F K G Q P

841

 ${\tt TCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA} \\ {\tt AAGAG}$

281 SKPFVGVLSAGINAASPNKE

5

901

 ${\tt CTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGG}\\ {\tt TTAAT}$

301 LAKEFLENYLLTDEGLEAVN

10

961

 $\begin{tabular}{ll} AAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGA\\ AAGAT \end{tabular} \begin{tabular}{ll} AAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGA\\ AAGAT \end{tabular} \begin{tabular}{ll} AAAGAT \end{tabular} \begi$

321 K D K P L G A V A L K S Y E E E L A K D

15

1021

 ${\tt CCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCG}$

PRIAATMENAQKGEIMPNIP

20

Factor Xa +43 NTR

1081

25 QMSAFWYAVLIEARTSESDT

1141

 ${\tt GCAGGGCCCAACAGCGACCTGGACGTGAACACTGACATTTATTCCAAGGTGCTGG} \\ {\tt TGACT}$

5 381 AGPNSDLDVNTDIYSKVLVT

1201

 ${\tt GCTATATACCTGGCACTCTTCGTGGTGGGCACTGTGGGCAACTCCGTGACAGCCTT}\\ {\tt CACT}$

10 401 AIYLALFVVGTVGNSVTAFT

1261

 ${\tt CTAGCGCGGAAGAAGTCACTGCAGAGCCTGCAGAGCACTGTGCATTACCACCTGG}\\ {\tt GCAGC}$

15 421 LARKKSLQSLQSTVHYHLGS

1321

CTGGCACTGTCGGACCTGCTTATCCTTCTGCTGGCCATGCCCGTGGAGCTATACAA CTTC

20 441 LALSDLLILLAMPVELYNF

1381

25 461 IWVHHPWAFGDAGCRGYYFL

1441

5 481 R D A C T Y A T A L N V A S L S V E R Y

1501

TTGGCCATCTCCATGCCATCCCTTCAAGGCCAAGACCCTCATGTCCCGCAGCCGCACCA AGAAA

10 501 LAICHPFKAKTLMSRSRTKK

1561

15 521 FISAIWLASALLAIPMLFTM

1621

 ${\tt GGCCTGCAGAACCGCAGTGGTGACGGCACGCACCCTGGCGGCCTGGTGTGCACACCCCATT}$

20 541 GLQNRSGDGTHPGGLVCTPI

1681

25 · 561 V D T A T V K V V I Q V N T F M S F L F

1741

CCCATGTTGGTCATCTCCATCCTAAACACCGTGATTGCCAACAAACTGACAGTCAT GGTG

5 581 PMLVISILNTVIANKLTVMV

1801

10 601 H Q A A E Q G R V C T V G T H N G L E H

1861

AGCACGTTCAACATGACCATCGAGCCGGGTCGTGTCCAGGCCCTGCGCCACGGAGTCCTC

15 621 STFNMTIEPGRVQALRHGVL

1921

20 641 VLRAVVIAFVVCWLPYHVRR

1981

 ${\tt CTGATGTTCTGCTATATCTCGGATGAACAGTGGACTACGTTCCTCTTCGATTTCTA}\\ {\tt CCAC}$

25 661 LMFCYISDEQWTTFLFDFYH

2041

TATTTCTACATGCTAACCAACGCTCTCTTCTACGTCAGCTCCGCCATCAATCCCAT

5 681 Y F Y M L T N A L F Y V S S A I N P I L

2101

10 701 YNLVSANFRQVFLSTLACLC

2161

15 721 PGWRHRRKKRPTFSRKPNSM

NotI

2221

TCCAGCAACCATGCCTTTTCCACCAGCGCCACCCGGGAGACCCTGTACgcggccgca

20 741 SSNHAFSTSATRETLYAAA

Flag stop KpnI

GATTATAAAGATGACGATGACAAATAATAAGGTACC

D Y K D D D D K * *

SEQ ID NO.: 167

5 MalE (1-28) Factor Xa NTR (43-424) FLAG

SalI +1 MalE leader (1-28)

1

- 10 gtcgacATGAAAATAAAAACAGGTGCACGCATCCTCGCATTATCCGCATTAACGACG ATGATGTTT
 - 1 MKIKTGARILALSALTTMMF

Factor Xa +43 NTR

15 61

TCCGCCTCGCCAAAATCATCGAAGCCCGCACCTCGGAATCCGACACGG CAGGG

- 21 SASALAKIIEARTSESDTAG
- 20 121
 CCCAACAGCGACCTGGACGTGAACACTGACATTTATTCCAAGGTGCTGGTGACTG
 CTATA
 - 41 PNSDLDVNTDIYSKVLVTAI

181

TACCTGGCACTCTTCGTGGTGGGCACTGTGGGCAACTCCGTGACAGCCTTCACTCT
AGCG

61 Y L A L F V V G T V G N S V T A F T L A

5

241

CGGAAGAAGTCACTGCAGAGCCTGCAGAGCACTGTGCATTACCACCTGGGCAGCCTGGCA

81 RKKSLQSLQSTVHYHLGSLA

10

301

 ${\tt CTGTCGGACCTGCTTATCCTTCTGCTGGCCATGCCCGTGGAGCTATACAACTTCAT} \\ {\tt CTGG} \\$

101 LSDLLILLAMPVELYNFIW

15

361

121 V H H P W A F G D A G C R G Y Y F L R D

20

421

 ${\tt GCCTGCACCTATGCCACAGCCCTCAATGTAGCCAGCCTGAGTGTGGAGCGCTACT} \\ {\tt TGGCC}$

141 A C T Y A T A L N V A S L S V E R Y L A

481

ATCTGCCATCCCTCAAGGCCAAGAACCCTCATGTCCCGCAGCCGCACCAAGAAAT TCATC

161 I C H P F K A K T L M S R S R T K K F I

5

541

181 SAIWLASALLAIPMLFTMGL

10

601

201 QNRSGDGTHPGGLVCTPIVD

15

661

 $\label{eq:acaccatic} \textbf{ACAGCCACTGTCAAGGTCGTCATCCAGGTTAACACCTTCATGTCCTGTTTCCCCATG} \\ \textbf{CATG}$

221 TATVKVVIQVNTFMSFLFPM

20

721

TTGGTCATCTCCATCCTAAACACCGTGATTGCCAACAAACTGACAGTCATGGTGCACCAG

241 LVISILNTVIANKLTVMVHQ

781

261 A A E Q G R V C T V G T H N G L E H S T

5

841

 ${\tt TTCAACATGACCATCGAGCCGGGTCGTGTCCAGGCCCTGCGCCACGGAGTCCTCG} \\ {\tt TCTTA}$

281 F N M T I E P G R V Q A L R H G V L V L

10

901

 ${\tt CGTGCTGTGTCATTGCCTTTGTGGTCTGCTGCCCTACCACGTGCGACGCCT}\\ {\tt GATG}$

301 RAVVIAFVVCWLPYHVRRLM

15

961

 ${\tt TTCTGCTATATCTCGGATGAACAGTGGACTACGTTCCTCTTCGATTTCTACCACTA}\\ {\tt TTTC}$

321 FCYISDEQWTTFLFDFYHYF

20

1021

TACATGCTAACCAACGCTCTCTTCTACGTCAGCTCCGCCATCAATCCCATCCTCTA CAAC

341 Y M L T N A L F Y V S S A I N P I L Y N

1081

361 L V S A N F R Q V F L S T L A C L C P G

5

1141

TGGCGCCACCGCCGAAAGAAGAGGCCAACGTTCTCCAGGAAGCCCAACAGCATGT CCAGC

WRHRRKKRPTFSRKPNSMSS

10

NotI Flag

1201

 $\label{eq:AACCATGCCTTTCCACCAGCGCCACCCGGGAGACCCTGTACgcggccgcaGATTATA} \\ AA$

15 401 NHAFSTSATRETLYAAADYK

stop KpnI

GATGACGATGACAAATAATAAGGTACC

DDDDK

20

SEQ ID NO.: 169

MalE (1-370) Factor Xa NTR (43-424) TrxA (2-109) FLAG

SalI +1 MalE (1-370)

1

GTCGACATGAAAATAAAAACAGGTGCACGCATCCTCGCATTATCCGCATTAACGA
5 CGATGATGTTT

1 MKIKTGARILALSALTTMMF

61

 ${\tt TCCGCCTCGGCTCTCGCCAAAATCGAAGAAGGTAAACTGGTAATCTGGATTAACG} \\ {\tt 10} \qquad {\tt GCGAT}$

21 SASALAKIEEGKLVIWINGD

121

AAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAA

15 TTAAA

41 KGYNGLAEVGKKFEKDTGIK

181

GTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAA

20 CTGGC

61 VTVEHPDKLEEKFPQVAATG

241

25

GATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATC TGGC

81 DGPDIIFWAHDRFGGYAQSG

301

CTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTA
5 CCTGG

101 LLAEITPDKAFQDKLYPFTW

361

10

GATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTT ATCG

121 DAVRYNGKLIAYPIAVEALS

421

CTGATTTATAACAAAGATCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCC
15 CGGCG

141 LIYNKDLLPNPPKTWEEIPA

481

CTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAG
20 AACCG

161 L D K E L K A K G K S A L M F N L Q E P

541

TACTTCACCTGGCCGCTGATTGCTGACGGGGGTTATGCGTTCAAGTATGAAAA
25 CGGC

181 Y F T W P L I A A D G G Y A F K Y E N G

601

AAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGA
5 CCTTC

201 KYDIKDVGVDNAGAKAGLTF

661

CTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCG
10 CAGAA

221 L V D L I K N K H M N A D T D Y S I A E

721

15

GCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGT CCAAC

241 AAFNKGETAMTINGPWAWSN

781

ATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTC

20 AACCA

261 IDTSKVNYGVTVLPTFKGQP

841

TCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACA
25 AAGAG

281 SKPFVGVLSAGINAASPNKE

901

 ${\tt CTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGG}$

5 TTAAT

301 LAKEFLENYLLTDEGLEAVN

961

AAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGA

10 AAGAT

321 K D K P L G A V A L K S Y E E E L A K D

1021

CCACGTATTGCCGCCACCATGGAAAACGCCCAGAAAGGTGAAATCATGCCGAACA

15 TCCCG

341 PRIAATMENAQKGEIMPNIP

Factor Xa +43 NTR

1081

20 CAGATGTCCGCTTTCTGGTATGCCGTGCTGATCGAAGCCCGCACCTCGGAATCCGA CACG

361 QMSAFWYAVLIEARTSESDT

1141

 ${\tt GCAGGGCCCAACAGCGACCTGGACGTGAACACTGACATTTATTCCAAGGTGCTGG} \\ {\tt TGACT}$

381 A G P N S D L D V N T D I Y S K V L V T

5

1201

 ${\tt GCTATATACCTGGCACTCTTCGTGGTGGGCACTGTGGGCAACTCCGTGACAGCCTT}\\ {\tt CACT}$

401 AIYLALFVVGTVGNSVTAFT

10

1261

 ${\tt CTAGCGCGGAAGAAGTCACTGCAGAGCCTGCAGAGCACTGTGCATTACCACCTGG}\\ {\tt GCAGC}$

421 LARKKSLQSLQSTVHYHLGS

15

1321

 ${\tt CTGGCACTGTCGGACCTGCTTATCCTTCTGCTGGCCATGCCCGTGGAGCTATACAA}$ ${\tt CTTC}$

441 LALSDLLILLAMPVELYNF

20

1381

461 IWVHHPWAFGDAGCRGYYFL