Topology Homework 5.1

Ethan Jensen

April 28, 2020

EXERCISE 5.1 Show that the taxicab metric on \mathbb{R}^2 satisfies the properties of a metric.

The taxicab metric on \mathbb{R}^2 is defined by

$$d_T(p,q) = |p_1 - q_1| + |p_2 - q_2|$$

(1) (
$$\rightarrow$$
) Let $d_T(p,q) = 0$.
 $|p_1 - q_1| + |p_2 - q_2| = 0$
Since $|x| = 0 \implies x = 0$, $p_1 - q_1 = 0$ and $p_2 - q_2 = 0$
So $p_1 = q_1$, $p_2 = q_2$, and $p = q$.

$$(\leftarrow)$$
 Let p = q.
So $p_1 = q_1$ and $p_2 = q_2$
So $d_T(p,q) = |p_1 - q_1| + |p_2 - q_2| = 0 + 0 = 0$
Thus, $d_T(p,q) = 0$ if and only if $p = q$

(2)
$$d_T(p,q) = |p_1 - q_1| + |p_2 - q_2| = |q_1 - p_1| + |q_2 - p_2| = d_T(q,p)$$

(3) Consider $d_T(p,q) + d_T(q,r)$ $d_T(p,q) + d_T(q,r) = |p_1 - q_1| + |p_2 - q_2| + |q_1 - r_1| + |q_2 - r_2|$ $|x| + |y| \ge |x + y| \ \forall x, y$

$$d_T(p,q) + d_T(q,r) \ge |p_1 - q_1 + q_1 - r_1| + |p_2 - q_2 + q_2 - r_2|$$

$$d_T(p,q) + d_T(q,r) \ge |p_1 - r_1| + |p_2 - r_2|$$

$$d_T(p,q) + d_T(q,r) \ge d_T(p,r)$$

... The taxicab metric on \mathbb{R}^2 satisfies the properties of a metric.

EXERCISE 5.2

- (a) Show that the max metric on \mathbb{R}^2 satisfies the properties of a metric.
- (b) Explain why $d(p,q) = \min\{|p_1 q_1|, |p_2 q_2|\}$ does not define a metric on \mathbb{R}^2 .

The max metric on \mathbb{R}^2 is defined by

$$d_M(p,q) = \max\{|p_1 - q_1| + |p_2 - q_2|\}$$

(a) (1) (
$$\rightarrow$$
) Let $d_M(p,q) = 0$
 $\max\{|p_1 - q_1| + |p_2 - q_2|\} = 0$
So $p_1 - q_1 = 0$ and $p_2 - q_2 = 0$
So $p_1 = q_1$, $p_2 = q_2$ and $p = q$

(
$$\leftarrow$$
) Let $p = q$
So $p_1 = q_1$ and $p_2 = q_2$
So $d_M(p,q) = \max\{|p_1 - q_1|, |p_2 - q_2|\} = \max\{0,0\} = 0$
Thus, $d_M(p,q) = 0$ if and only if $p = q$.

(2)
$$d_M(p,q) = \max\{|p_1 - q_1|, |p_2 - q_2|\} = \max\{|q_1 - p_1|, |q_2 - p_2|\} = d_M(q,p)$$

(3) Consider
$$d_M(p,q) + d_M(q,r)$$
.
 $d_M(p,q) + d_M(q,r) = \max\{|p_1 - q_1|, |p_2 - q_2|\} + \max\{|q_1 - r_1|, |q_2 - r_2|\}$
 $\max\{a,b\} + \max\{c,d\} \ge \max\{a+c,b+d\} \forall a,b,c,d$

$$d_M(p,q) + d_T(q,r) \ge \max\{|p_1 - q_1| + |q_1 - r_1|, |p_2 - q_2| + |q_2 - r_2|\}$$
$$|x| + |y| \ge |x + y| \ \forall x, y$$

$$d_M(p,q) + d_T(q,r) \ge \max\{|p_1 - q_1 + q_1 - r_1|, |p_2 - q_2 + q_2 - r_2|\}$$

$$d_M(p,q) + d_T(q,r) \ge \max\{|p_1 - r_1|, |p_2 - r_2|\}$$

$$d_M(p,q) + d_M(q,r) \le d_M(p,r)$$

... The max metric on \mathbb{R}^2 satisfies the properties of a metric.

(b) Consider the function $d(p,q) = \min\{|p_1 - q_1|, |p_2 - q_2|\}.$

Consider the points p = (0,0), q = (0,2), r = (1,2)By our definition, d(p,q) = 0, d(q,r) = 0, d(p,r) = 1

So it is not the case that $d(p,q) + d(q,r) \ge d(p,r) \ \forall p,q,r$

This function is not a metric because it violates the 3rd property for a metric.

EXERCISE 5.3 For points $p = (p_1, p_2)$ and $q = (q_1, q_2)$ in \mathbb{R}^2 define

$$d_V(p,q) = \begin{cases} 1 & \text{if } p_1 \neq q_1 \text{ or } |p_2 - q_2| \ge 1\\ |p_2 - q_2| & \text{if } p_1 = q_1 \text{ and } |p_2 - q_2| < 1 \end{cases}$$

- (a) Show that d_V is a metric.
- (b) Describe open balls in the metric d_V .

(a) (1) (
$$\rightarrow$$
) Let $d_V(p,q) = 0$
 $d_V(p,q) \neq 1$ so $d_V = |p_2 - q_2|$ and $p_1 = q_1$
So $|p_2 - q_2| = 0$ and $p_2 = q_2$
Thus, $p = q$

(
$$\leftarrow$$
) Let p = q. So $p_1=q_1$ and $p_2=q_2$ So $|p_2-q_2|=0<1$ Thus, $d_V(p,q)=|p_2-q_2|=0$

(2) Since equality and inequality is symmetric and $|-x| = |x| \ \forall x$, $d_V(q,p) = \begin{cases} 1 & \text{if } q_1 \neq p_1 \text{ or } |q_2 - p_2| \geq 1 \\ |q_2 - p_2| & \text{if } q_1 = p_1 \text{ and } |q_2 - p_2| < 1 \end{cases} = d_V(p,q)$

(3) Case 1: Either
$$d_V(p,q)$$
 or $d_V(q,r)$ is 1. $d_V(p,q) \le 1 \ \forall p,q$ $d_V(p,q) + d_V(q,r) \ge d_V(p,r)$

Case 2: $p_1 = q_1$, $q_1 = r_1$, and $|p_2 - q_2| < 1$ and $|q_2 - r_2| < 1$. This means $p_1 = r_1$, by the transitive property of equality. $d_V(p,r) \ge |p_2 - r_2|$ $|p_2 - q_2| + |q_2 - r_2| \ge |(p_2 - q_2) + (q_2 - r_2)| = |p_2 - r_2|$ So $|p_2 - q_2| + |q_2 - r_2| \ge d_V(p,r)$ Thus, $d_V(p,q) + d_V(q,r) > d_V(p,r)$

In all cases, $d_V(p,q) + d_V(q,r) \ge d_V(p,r)$

 $d_V(p,q)$ satisfies all three conditions for a metric.

(b) The shape of open balls centered at some point p depends on the radius.

If $r \leq 1$, then $B_V(p,r) = \{q: p_1 = q_1 \text{ and } |p_2 - q_2| < r\}$ looks like a vertical open interval centered at p, with a width equal to 2r.

If r > 1, then $B_V(p, r) = \mathbb{R}$

EXERCISE 5.9

Let (X, d) be a metric space. A set $U \subseteq X$ is open in the topology induced by d if and only if for each $y \in U$, there is a $\delta > 0$ such that $B_d(y, \delta) \subseteq U$.

Proof.

 (\rightarrow) Let $U\subseteq X$ be open in the topology on X induced by d. And let $y\in U$

Since U is open in (X,d), U can be written as a union of open balls. So, $\exists B_d(p,r) \subseteq U \ni y \in B_D(p,r)$

Let $\delta = r - d(p, y)$. $\delta > 0$ since $y \in B_D(p, r)$. Consider $B_d(y, \delta) = \{q : d(y, q) < r - d(p, y)\}$

 $\forall q \in B_d(y, \delta), \ d(p, y) + d(y, q) \ge d(p, q) \text{ since d is a metric.}$ So d(p, q) < d(p, y) + r - d(p, y) and thus, d(p, q) < rSo $q \in B_d(p, r) \ \forall q \in B_d(y, \delta)$ Thus, $B_d(y, \delta) \subseteq B_d(p, r) \subseteq U$

 \Box nus, $D_d(y, \sigma) \subseteq \Box$

 (\leftarrow) Consider some open $U \subseteq X$ where for each $y \in U$, there is a $\delta > 0$ such that $B_d(y, \delta) \subseteq U$.

By the Union lemma, $U = \bigcup_{y \in U} B_d(y, \delta_y)$

Each $B_d(y, \delta_y)$ is a basis element in the metric space defined by d.

So U is a union of basis elements, which makes it open in the topology induced by d.

 \therefore A set $U \subseteq X$ is open in the topology induced by d if and only if for each $y \in U$, there is a $\delta > 0$ such that $B_d(y, \delta) \subseteq U$.

EXERCISE 5.15

Let (X, d) be a metric space and assume that $A \subseteq X$. Prove that $x \in Cl(A)$ if and only if there exists a sequence in A converging to x.

Proof.

 (\rightarrow) Assume $x \in Cl(A)$.

Then, every open set containing x intersects A at a point other than x.

Consider the sequence of open balls $B_d(x, \frac{1}{n})$ where $n \in \mathbb{Z}_+$. Then let $q_n \neq x$ be the point of intersection between $b_d(x, \frac{1}{n})$ and A. Then define $\{q_n\}$ as the sequence of the points q_n .

Consider some open set U where $x \in U$.

Then by Theorem 5.6, $\exists B_d(x, \delta) \subseteq U$.

Since the set of rational numbers is dense, $\exists a, b \in \mathbb{Z}_+ \ni 0 < \frac{a}{b} < \delta$.

So $\exists b \in \mathbb{Z}_+ \ni 0 < \frac{1}{b} < \delta$

So $\exists b \in \mathbb{Z})_+ \ni B_d(x, \frac{1}{n}) \subseteq B_d(x, \delta) \subseteq U$ for all $n \ge b$.

Thus, $q_n \in U$ for all $n \geq b$.

So for every open set U containing x, $\exists b \in \mathbb{Z}_+ \ni q_n \in U$ for all $n \geq b$. So the sequence $\{q_n\}$ converges to x.

 \leftarrow) Assume that there exists a sequence $\{a_n\}$ in A converging to x. Let U be an open set containing x.

If $x \in A$, then $x \in Cl(A)$.

Otherwise, since the sequence $\{a_n\} \subseteq A$, U intersects A at one of the sequence values, all of which cannot be equal to x, since $x \notin A$.

So every open set containing X intersects A at a point other than x. So x is a limit point of A.

Thus, $x \in Cl(A)$.

In all cases, $x \in Cl(A)$.

 $\therefore x \in Cl(A)$ if and only if there exists a sequence in A converging to x.

5