On the sign of Jacobian and orientation of parametrized surfaces

Shibo Liu

http://lausb.github.io

Let $\varphi : \mathbb{R}^m \to \mathbb{R}^m$ be a local diffeomorphism at the point $a \in \mathbb{R}^m$. Then the tangent map $\varphi_* : T_a(\mathbb{R}^m) \to T_b(\mathbb{R}^m)$ is a linear isomorphism given by

$$\varphi_*(a, v) = (\varphi(a), \varphi'(a)v),$$

here we use (a, v) to denote a tangent vector based at a and in the direction $v \in \mathbb{R}^m$. Taking determinent on both sides of the following matrix identity

$$(\varphi'(a)v_1,\ldots,\varphi'(a)v_m)=\varphi'(a)(v_1,\ldots,v_m),$$

it follows that if $\det \varphi'(a) > 0$ and $\{e_i\}_{i=1}^m$ being $e_i = (a, v_i)$ is a positive base of $T_a(\mathbb{R}^m)$, meaning that the determinent with columns v_1, \ldots, v_m is positive, then $\{\varphi_*e_i\}_{i=1}^m$ is a positive base of $T_b(\mathbb{R}^m)$. We say that diffeomorphisms with positive Jacobian preserve orientation.

Suppose that $\varphi: \bar{\Omega} \to \bar{D}$ is a C^1 -diffeomorphism between two smooth domains in \mathbb{R}^m , $a \in \partial \Omega$. It is well known that the submanifold $\partial \Omega$ is orientable and its orientation can be interprited by a nozero normal vector N at a. In many applications, N is given by a local parametrization $x: U \to \partial \Omega$ near a via

$$N = \left(\frac{\partial \left(x^2, \dots, x^m\right)}{\partial \left(u^1, \dots, u^{m-1}\right)}, -\frac{\partial \left(x^1, x^3, \dots, x^m\right)}{\partial \left(u^1, \dots, u^{m-1}\right)}, \dots, (-1)^{m+1} \frac{\partial \left(x^1, \dots, x^{m-1}\right)}{\partial \left(u^1, \dots, u^{m-1}\right)}\right)_{u_0},$$

being U an open subset of \mathbb{R}^{m-1} and $u_0 \in U$ such that $a = x(u_0)$. Because φ is a diffeomorphism between $\partial \Omega$ and ∂D , we automatically get a local parametrization $y = \varphi \circ x$ of ∂D near $b = \varphi(a)$, which gives raise to a normal vector

$$\tilde{N} = \left(\frac{\partial \left(y^2, \dots, y^m\right)}{\partial \left(u^1, \dots, u^{m-1}\right)}, -\frac{\partial \left(y^1, y^3, \dots, y^m\right)}{\partial \left(u^1, \dots, u^{m-1}\right)}, \dots, (-1)^{m+1} \frac{\partial \left(y^1, \dots, y^{m-1}\right)}{\partial \left(u^1, \dots, u^{m-1}\right)}\right)_{u_0}$$

of ∂D at b. The main result of this note is the following theorem.

Theorem 0.1. Let $\varphi: \bar{\Omega} \to \bar{D}$ be a C^1 -diffeomorphism, $a \in \partial \Omega$, $J_{\varphi}(a) > 0$. If N is an outward normal vector of $\partial \Omega$ at a, then \tilde{N} is an outward normal vector of ∂D at b.

Firstly we explain what an outward normal vector means. For $x \in \mathbb{R}^m$, let $\mathcal{N}(x)$ denotes the set of all open neighborhoods of x in \mathbb{R}^m . Let Ω be an open subset of \mathbb{R}^m . We say that $\partial \Omega$ is of class C^k , if for every $a \in \partial \Omega$, there are $U \in \mathcal{N}(a)$ and a C^k -function $g: U \to \mathbb{R}$

Let Ω be an open subset of \mathbb{R}^m . We say that $\partial \Omega$ is of class C^k , if for every $a \in \partial \Omega$, there are $U \in \mathcal{N}(a)$, $V \in \mathcal{N}(0)$ and a C^k -diffeomorphism $\phi : U \to V$

such that $\phi(a) = 0$ and

$$\phi(U\cap\Omega)=V\cap\{y^m>0\}\,,\qquad \phi(U\cap\partial\Omega)=V\cap\{y^m=0\}\,. \tag{0.1}$$
 Obviously $\partial\Omega\cap U=\{\phi^m=0\}$ and since ϕ is a C^1 -diffeomprphism, the Jacobi

$$\phi'(a) = \begin{pmatrix} \partial_1 \phi^1 & \cdots & \partial_m \phi^1 \\ \vdots & & \vdots \\ \partial_1 \phi^m & \cdots & \partial_m \phi^m \end{pmatrix}_a = \begin{pmatrix} \nabla \phi^1(a) \\ \vdots \\ \nabla \phi^m(a) \end{pmatrix}$$

is invertible, which implies that $\nabla \phi^m(a) \neq 0$. Actually, $\nabla \phi^m(a)$ is a normal vector of $\partial \Omega$ at a.

Suppose N is a nonzero normal vector of $\partial\Omega$ at a. Since a is an interior point of U, for some $\delta>0$ we can define a C^1 -function $\eta:(-\delta,\delta)\to\mathbb{R}$ by $\eta(t)=\phi^m(a+tN)$. Obviously,

$$\eta(0) = \phi^m(a) = 0, \qquad \dot{\eta}(0) = \nabla \phi^m(a) \cdot N \neq 0$$

because N is parallel to $\nabla \phi^m(a)$. Assume $\dot{\eta}(0) < 0$, then there exists $\varepsilon > 0$ such that $\phi^m(a+tN) = \eta(t) > \eta(0) = 0$

for
$$t \in (-\varepsilon, 0)$$
. From (0.1) we get $a + tN \in \Omega$. If $\dot{\eta}(0) > 0$ we will get $a - tN \in \Omega$ for $t \in (-\varepsilon, 0)$. The above discussion justifies the following definition.

Definition 0.2. Let Ω be an open subset of \mathbb{R}^m with C^1 -boundary $\partial \Omega$, $a \in \partial \Omega$ and N is a normal vector of $\partial \Omega$ at a. If there exists $\varepsilon > 0$ such that $a + tN \in \Omega$ for

N is a normal vector of $\partial\Omega$ at a. If there exists $\varepsilon > 0$ such that $a + tN \in \Omega$ for $t \in (-\varepsilon, 0)$, then we say that N is an *outward normal vector* of $\partial\Omega$ at a.

Proof (Proof of Theorem 0.1). By the chain role,

$$\begin{pmatrix}
\frac{\partial y^1}{\partial u^1} & \frac{\partial y^1}{\partial u^2} & \cdots & \frac{\partial y^1}{\partial u^{m-1}} \\
\frac{\partial y^2}{\partial u^1} & \frac{\partial y^2}{\partial u^2} & \cdots & \frac{\partial y^2}{\partial u^{m-1}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial y^m}{\partial u^1} & \frac{\partial y^m}{\partial u^2} & \cdots & \frac{\partial y^m}{\partial u^{m-1}}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial y^1}{\partial x^1} & \frac{\partial y^1}{\partial x^2} & \cdots & \frac{\partial y^1}{\partial x^m} \\
\frac{\partial y^2}{\partial x^1} & \frac{\partial y^2}{\partial x^2} & \cdots & \frac{\partial y^2}{\partial x^m} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial y^m}{\partial u^1} & \frac{\partial y^m}{\partial u^2} & \cdots & \frac{\partial y^m}{\partial u^m}
\end{pmatrix} \begin{pmatrix}
\frac{\partial x^1}{\partial u^1} & \frac{\partial x^1}{\partial u^2} & \cdots & \frac{\partial x^1}{\partial u^{m-1}} \\
\frac{\partial x^2}{\partial u^1} & \frac{\partial x^2}{\partial u^2} & \cdots & \frac{\partial x^2}{\partial u^{m-1}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial x^m}{\partial u^1} & \frac{\partial x^m}{\partial u^2} & \cdots & \frac{\partial x^m}{\partial u^{m-1}}
\end{pmatrix},$$

here and in what follows, $\partial_{u^i} y^j$, $\partial_{x^i} y^j$ and $\partial_{u^i} x^j$ are evaluated at u_0 , a and u_0 , respectively. Let A_i^j be the cofactor of $\partial_{x^i} y^j$ in $A = \varphi'(a)$, A^* be the adjugate matrix of A. By the Cauchy-Binet formula,

$$\tilde{N}^{j} = (-1)^{j+1} \frac{\partial(y^{1}, \dots, \hat{y}^{j}, \dots, y^{m})}{\partial(u^{1}, \dots, u^{m-1})}$$

$$= (-1)^{j+1} \sum_{i=1}^{m} \frac{\partial(y^{1}, \dots, \hat{y}^{j}, \dots, y^{m})}{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})} \frac{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}{\partial(u^{1}, \dots, u^{m-1})}$$

$$= \sum_{i=1}^{m} \left\{ (-1)^{i+j} \frac{\partial(y^{1}, \dots, \hat{y}^{j}, \dots, y^{m})}{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})} \right\} \left\{ (-1)^{i+1} \frac{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}{\partial(u^{1}, \dots, u^{m-1})} \right\}$$

$$= \sum_{i=1}^{m} A_{i}^{j} N^{i}.$$

Therefore

$$\tilde{N} = \begin{pmatrix} A_1^1 & \cdots & A_m^1 \\ \vdots & & \vdots \\ A_1^m & \cdots & A_m^m \end{pmatrix} N = (A^*)^T N. \tag{0.2}$$

Since $a \in \partial \Omega$ and N is an outward normal vector of $\partial \Omega$ at a, there is $\varepsilon > 0$, such that for $t \in (-\varepsilon, 0)$ we have $a + tN \in \Omega$ and consequently $\varphi(a + tN) \in D$. Thus,

$$\gamma: t \mapsto \varphi(a+tN), \qquad t \in (-\varepsilon, 0]$$

is a smooth curve from the interior of D to $b \in \partial D$, whose velocity vector at b = $\varphi(a)$ is

$$v = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \varphi(a+tN) = \varphi'(a)N = AN$$

 $v = \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} \varphi(a+tN) = \varphi'(a)N = AN$ Because $A^*A = J_{\varphi}(a)\mathrm{I}_m$, where I_m is the $m \times m$ identity matrix, we deduce from (0.2) that

$$v \cdot \tilde{N} = (AN)^{T} (A^{*})^{T} N$$

= $N^{T} A^{T} (A^{*})^{T} N$
= $N^{T} (A^{*} A)^{T} N = J_{\omega}(a) |N|^{2} > 0$.

On the other hand, since ∂D is of class C^1 , we can choose $U \in \mathcal{N}(b)$ and a C^1 -function $g: U \to \mathbb{R}$ such that g(b) = 0,

$$U \cap D = \{g > 0\}, \qquad U \cap \partial D = \{g = 0\}.$$

Because $\nabla g(b)$ is a normal vector of ∂D at b, there exists a constant $k \neq 0$ such that $\nabla g(b) = k \tilde{N}$.

We claim that k < 0. In fact, take r > 0 such that $\gamma(t) \in U$ for $t \in (-r, 0)$, then consider the function $f:(-r,0]\to\mathbb{R}$ defined by $f(t)=g(\gamma(t))$. We have f(0) = g(b) = 0,

$$k\tilde{N} \cdot v = \nabla g(b) \cdot \dot{\gamma}(0)$$
$$= \dot{f}(0) = \lim_{t \to 0^{-}} \frac{g(\gamma(t))}{t} \le 0,$$

because $\gamma(t) \in D$ for $t \in (-r,0)$. Since $v \cdot \tilde{N} > 0$ and $k \neq 0$, we deduce that

k < 0.To conclude the proof, we need to find a $\delta > 0$ such that $b + t\tilde{N} \in D$ for $t \in (-\delta, 0)$. For this purpose, consider the C^1 -function $\eta: (-s, 0] \to \mathbb{R}$ defined by

$$\eta(t) = g(b + t\tilde{N})$$
 for some $s > 0$ small enough. Then $\eta(0) = g(b) = 0$, $\dot{\eta}(0) = \nabla g(b) \cdot \tilde{N} = k\tilde{N} \cdot \tilde{N} = k|\tilde{N}|^2 < 0$.

Hence, there exists $\delta > 0$ such that for $t \in (-\delta, 0)$ we have

$$g(b+t\tilde{N}) = \eta(t) > 0,$$

that is $b + t\tilde{N} \in D$. Consequently, \tilde{N} is an outward normal vector of ∂D at b.