Assignment 3

Meriam Elabor, 1076589

March 22, 2018

Question 1.1

1-KNN			
Record	Distance from the record	Label of the record	
7	1.29007933	-1	
Prediction		-1	

Question 1.2

3-KNN			
Record	Distance from the record	Label of the record	
27	1.36993215	1	
22	1.65639809	1	
40	2.09803532	1	
Prediction		1	

Question 1.3

5-KNN			
Record	Distance from the record	Label of the record	
30	3.23194266	1	
9	5.03028237	-1	
37	5.2278505	1	
38	5.23353427	1	
40	5.61435592	1	
Prediction		1	

Question 1.4

Testing Error Rates		
1-NN Test Error Rate	3-NN Test Error Rate	5-NN Test Error Rate
0.025	0.05	0.075

Question 2.1

$$h_{\Theta}(x) \in (1, -1)$$

Question 2.2

let
$$J(\Theta) = \frac{1}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n)^2$$
, $h_{\Theta}(x^n) = \frac{2}{1 + e^{\Theta^T \cdot x}} - 1$, $g_{\Theta}(x^n) = \frac{1}{1 + e^{\Theta^T \cdot x}}$, then $\forall k = \{0, ..., 4\}$

$$\begin{split} &\frac{\partial J(\Theta)}{\partial \theta_k} = \frac{\partial J(\Theta)}{\partial h_{\Theta}(x^n)} \cdot \frac{\partial h_{\Theta}(x^n)}{\partial \theta_k} \\ &\frac{\partial J(\Theta)}{\partial h_{\Theta}(x^n)} = \frac{2}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n) \\ &\frac{\partial h_{\Theta}(x^n)}{\partial \theta_k} = \frac{2x_k e^{\Theta^T \cdot x}}{(1 + e^{\Theta^T \cdot x})^2} = 2x_k g_{\Theta}(x^n) (1 - g_{\Theta}(x^n)) \\ &\text{thus } \frac{\partial J(\Theta)}{\partial \theta_k} = 4x_k \frac{1}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n) g_{\Theta}(x^n) (1 - g_{\Theta}(x^n)) \end{split}$$

and
$$\theta_k \to \theta_k - \alpha 4x_k \frac{1}{N} \sum_{n=1}^{N} (h_{\Theta}(x^n) - y^n) g_{\Theta}(x^n) (1 - g_{\Theta}(x^n)), \forall k = \{0, ..., 4\}$$

Question 2.3

Logistic Regression Classifier			
Testing record	Classifier Output $h_{\Theta}(x^{(n)})$	Final Output	
5	-0.949479	-1	
10	-0.991887	-1	
15	-0.996641	-1	
20	-0.992353	-1	
25	0.893525	1	
30	0.968980	1	
35	0.991332	1	
40	0.983889	1	

Question 3.1

let
$$f(X) = \frac{1}{1+e^X}$$
, $X \in \mathbb{R}$ then $h_{\Theta}(x) = g_2 = f(g_1\theta_6 + x_0\theta_5)$, $h_{\Theta}(x) \in (0, 1)$ $g_1 = f(x_0\theta_0 + x_1\theta_1 + x_2\theta_2 + x_3\theta_3 + x_4\theta_4)$

Question 3.2

$$\begin{array}{l} \text{let } f(X) = \frac{1}{1+e^X}, \quad X \in \mathbb{R} \text{ and } \\ J(\Theta) = (h_{\Theta}(x) - y)^2 \text{ then } \\ \frac{d}{dX} f(X) = f(X)(1 - f(X)) \\ \text{and } \quad \forall k = \{5,6\} \end{array}$$

$$\begin{array}{l} \frac{\partial J(\Theta)}{\partial \theta_k} = \frac{\partial J(\Theta)}{\partial h_\Theta(x)}.\frac{\partial h_\Theta(x)}{\partial \theta_k} \\ \frac{\partial J(\Theta)}{\partial h_\Theta(x)} = 2\big(h_\Theta(x) - y\big) \\ \frac{\partial h_\Theta(x)}{\partial \theta_k} = 2x_k h_\Theta(x)\big(1 - h_\Theta(x)\big) \\ \text{thus } \frac{\partial J(\Theta)}{\partial \theta_k} = 4x_k \big(h_\Theta(x) - y\big)h_\Theta(x)\big(1 - g_\Theta(x)\big) \end{array}$$

and
$$\theta_k \to \theta_k - \alpha 4x_k(h_{\Theta}(x) - y)h_{\Theta}(x)(1 - h_{\Theta}(x)), \forall k = \{5, 6\}$$

$$\forall k = \{0, \dots, 4\}$$

$$\begin{array}{l} \frac{\partial J(\Theta)}{\partial \theta_k} = \frac{\partial J(\Theta)}{\partial h_\Theta(x)}.\frac{\partial h_\Theta(x)}{\partial g1}.\frac{\partial g1}{\partial \theta_k} \\ \frac{\partial J(\Theta)}{\partial h_\Theta(x)} = 2(h_\Theta(x) - y) \\ \frac{\partial h_\Theta(x)}{\partial g1} = 2\theta_6 h_\Theta(x)(1 - h_\Theta(x)) \\ \frac{\partial g1}{\partial \theta_k} = x_k g1(1 - g1) \\ \text{thus } \frac{\partial J(\Theta)}{\partial \theta_k} = 4x_k \theta_6(h_\Theta(x) - y)h_\Theta(x)(1 - h_\Theta(x))g1(1 - g1) \end{array}$$

and
$$\theta_k \to \theta_k - \alpha 4x_k \theta_6(h_{\Theta}(x) - y)h_{\Theta}(x)(1 - h_{\Theta}(x))g1(1 - g1), \forall k = \{0, ..., 4\}$$