18. Konvergenzsätze

Definition

Sei (f_k) eine Folge von Funktionen, $f_k : \mathbb{R}^n \to \tilde{\mathbb{R}}$ und $f : \mathbb{R}^n \to \tilde{\mathbb{R}}$.

- (1) (f_k) heißt L^1 -konvergent gegen $\mathbf{f}:\iff \|f-f_l\|_1\to 0\ (k\to\infty)$
- (2) (f_k) heißt eine L^1 -Cauchyfolge : $\iff \forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : ||f_k f_l||_1 < \varepsilon \ \forall k, l \ge k_0.$

Ist (f_k) L^1 -konvergent gegen f, so ist (f_k) eine L^1 -Cauchyfolge: $||f_l - f_k||_1 = ||f_l - f + f - f_k||_1 \ge ||f - f_l||_1 + ||f - f_k||_1$.

Satz 18.1 (Satz von Riesz-Fischer)

 (f_k) sei eine L^1 -Cauchyfolge in $L(\mathbb{R}^n)$, also $f_k \in L(\mathbb{R}^n) \ \forall k \in \mathbb{N}$. Dann existiert ein $f \in L(\mathbb{R}^n)$:

- (1) $||f f_k||_1 \to 0 \ (k \to \infty)$
- (2) $\int f dx = \lim_{k \to \infty} \int f_k dx$
- (3) (f_k) enthält eine Teilfolge, die fast überall auf \mathbb{R}^n punktweise gegen f konvergiert.

(Ohne Beweis)

Satz 18.2 (Satz von Beppo Levi)

Sei (f_k) eine Folge in $L(\mathbb{R})$ mit $f_1 \leq f_2 \leq f_3 \leq \cdots$ auf \mathbb{R}^n und $(\int f_k dx)$ beschränkt. $f: \mathbb{R}^n \to \tilde{\mathbb{R}}$ sei definiert durch $f(x) := \lim_{k \to \infty} f_k(x)$. Dann: $f \in L(\mathbb{R}^n)$ und

$$\int f dx = \lim_{k \to \infty} \int f_k dx \quad (= \int \lim_{k \to \infty} f_k(x) dx)$$

Reweis

Für
$$k \ge l$$
: $||f_k - f_l||_1 \stackrel{16.5}{=} \int \underbrace{f_k - f_l}_{0} dx = \int f_k dx - \int f_l dx = |\int f_k dx - \int f_l dx|$. $(\int f_k dx)$ ist

beschränkt und monoton, also konvergent $\Longrightarrow (\int f_k dx)$ ist eine Cauchyfolge in $\mathbb{R} \Longrightarrow (f_k)$ ist eine L^1 -Cauchyfolge in $L(\mathbb{R}^n)$. 18.1 $\Longrightarrow \exists g \in L(\mathbb{R}^n)$ mit: $\int g dx = \lim \int f_k dx$ und (f_k) enthält eine Teilfolge, die fast überall auf \mathbb{R}^n punktweise gegen g konvergiert $\Longrightarrow f = g$ fast überall auf $\mathbb{R}^n \Longrightarrow f \in L(\mathbb{R}^n)$ und $\int f dx = \int g dx = \lim \int f_k dx$.

Definition

Sei $A \subseteq \mathbb{R}^n$, (A_k) sei eine Folge von Teilmengen von A. (A_k) ist eine **Ausschöpfung von** \mathbf{A} : $\iff A_1 \subseteq A_2 \subseteq A_3 \dots \text{ und } \bigcup^{\infty} A_k = A.$

Satz 18.3

Sei $A \subseteq \mathbb{R}^n$, (A_k) sei eine Ausschöpfung von A und es sei $f \in L(A_k) \ \forall k \in \mathbb{N}$. $f \in L(A) \iff$ $(\int_A |f| dx)$ ist beschränkt. In diesem Fall:

$$\int_{A} f \mathrm{d}x = \lim_{k \to \infty} \int_{A_k} f \mathrm{d}x$$

$$": A_k \subseteq A \implies |f|_{A_k} \le |f|_A \implies \underbrace{\int |f|_{A_k} \mathrm{d}x}_{=\int |f| \mathrm{d}x} \le \int |f|_A \mathrm{d}x$$

Beweis $": A_k \subseteq A \implies |f|_{A_k} \le |f|_A \implies \underbrace{\int |f|_{A_k} \mathrm{d}x} \le \int |f|_A \mathrm{d}x.$ $": OBdA: f \ge 0 \text{ auf } A \text{ } (f = f^+ - f^-). \text{ Dann: } 0 \le f_{A_1} \le f_{A_2} \le f_{A_3} \le \dots |\int f_{A_k} \mathrm{d}x| \le \int |f|_{A_k} \mathrm{d}x = \int_{A_k} |f| \mathrm{d}x \implies (\int f_{A_k} \mathrm{d}x) \text{ beschränkt. Es gilt: } f_{A_k}(x) \to f_A(x) \forall x \in \mathbb{R}^n. 18.2 \implies f_A \in L(\mathbb{R}^n) \text{ und } \int f_A \mathrm{d}x = \lim \int f_{A_k} \mathrm{d}x \implies f \in L(A) \text{ und } \int_A f \mathrm{d}x = \lim \int_{A_k} f \mathrm{d}x.$

Satz 18.4 (Uneigentliche Lebesgue- und Riemann-Integrale)

Es sei $f:[a,\infty)\to\mathbb{R}$ eine Funktion $(a\in\mathbb{R})$ und es gelte $f\in R[a,t]\ \forall t>a.$ Dann: $f \in L([a,\infty)) \iff \int_{-\infty}^{\infty} f dx$ ist **absolut** konvergent. In diesem Fall:

$$\underbrace{\int_{[a,\infty)} f dx}_{\text{L-Int.}} = \underbrace{\int_{a}^{\infty} f dx}_{\text{uneigentl. R-Int}}$$

Sei (t_k) eine Folge in $[a, \infty)$ mit: $a < t_1 < t_2 < t_3 < \dots$ und $t_k \to \infty$ $(k \to \infty)$. $A_k := [a, t_k]$ $(k \in$ \mathbb{N}), $A:=[a,\infty)$. Für $k\in N:I_k:=\int_a^{t_k}f\mathrm{d}x, J_k:=\int_a^{t_k}|f|\mathrm{d}x$ (R-Integrale). 16.9 $\implies f,|f|\in \mathbb{N}$ $L([a,t_k])$ und $I_k = \int_{A_k} f dx$, $J_k = \int_{A_k} |f| dx$. $f \in L(A) \stackrel{18.3}{\Longleftrightarrow} (\int |f| dx)$ ist beschränkt $\iff (J_k)$ ist beschränkt $\overset{J_1 \subseteq J_2 \subseteq \cdots}{\Longleftrightarrow} (J_k)$ konvergent $\iff \int_a^\infty |f| \mathrm{d}x$ konv. In diesem Fall: $\int_A f \mathrm{d}x$ $\lim \int_{A_k} f dx = \lim I_k = \int_a^\infty f dx.$

Beispiele:

Despleie:
$$(1) \ f(x) := \frac{1}{\sqrt{x}}; \quad \text{Analysis } 1 \implies \int_0^1 \frac{1}{\sqrt{x}} dx \text{ abs. konv.} \stackrel{18.4}{\Longrightarrow} f \in L([0,1]). \quad \text{Analysis } 1$$

$$\implies \int_0^1 \frac{1}{x} dx \text{ div.} \stackrel{18.4}{\Longrightarrow} f^2 \notin L([0,1]).$$

(2)
$$f(x) := \begin{cases} \frac{\sin x}{x} & , x > 0 \\ 1 & , x = 0 \end{cases}$$

Analysis $1 \implies \int_0^\infty \frac{\sin x}{x}$ konv., aber nicht abs. konv. 18.4 $\implies f \notin L([0,\infty))$, aber $\int_0^\infty \frac{\sin x}{x} dx$ existiert im uneigentlichen R-Sinne.

Satz 18.5

 $(A_k),(B_k)$ seien Folgen qber Mengen im \mathbb{R}^n .

- (1) Ist $A_1 \subseteq A_2 \subseteq \ldots$ und $A := \bigcup_{k=1}^{\infty} A_k$. Dann gilt: A ist qb \iff $(v_n(A_k))$ ist beschränkt $(\iff (v_n(A_k))$ konvergiert).
 - I. d. Fall: $v_n(A) = \lim_{k \to \infty} v_n(A_k)$.
- (2) Für $j \neq k$ sei $B_j \cap B_k$ jeweils eine Nullmenge und $B := \bigcup_{k=1}^{\infty} B_k$. B ist qb $\iff \sum_{j=1}^{\infty} v_n(B_j)$ konvergiert.
 - I. d. Fall: $v_n(B) = \sum_{j=1}^{\infty} v_n(B_j)$.

Beweis

- (1) Folgt aus 18.3 mit $f \equiv 1$
- (2) $\tilde{A}_k := B_1 \cup B_2 \cup \ldots \cup B_k \ (k \in \mathbb{N})$. Dann: $\tilde{A}_1 \subseteq \tilde{A}_2 \subseteq \ldots$ und $B = \bigcup_{k=1}^{\infty} \tilde{A}_k$. 17.2 $\Longrightarrow \tilde{A}_k$ ist qb und $v_n(\tilde{A}_k) = v_n(B_1) + \ldots + v_n(B_k)$. B ist qb $\iff (v_n(\tilde{A}_k))$ konvergiert $\iff \sum_{j=1}^{\infty} v_n(B_j)$ konvergiert.
 - I. d. Fall: $v_n(B) \stackrel{(1)}{=} \lim_{k \to \infty} v_n(\tilde{A}_k) = \sum_{j=1}^{\infty} v_n(B_j)$.

Satz 18.6 (Satz von Lebesgue (Majorisierte Konvergenz))

Sei $A \subseteq \mathbb{R}^n$ und (f_k) eine Folge in L(A) und (f_k) konv. fast überall auf A punktweise gegen $f: A \to \tilde{\mathbb{R}}$

- (1) Ist $F \in L(A)$ und gilt $|f_k| \leq F$ auf $A \ \forall k \in \mathbb{N}$, so ist $f \in L(A)$ und $\int_A f dx = \lim_{A \to \infty} \int_A f_k dx$.
- (2) Ist A qb und ex. ein $M \geq 0$ mit $(f_k) \leq M$ auf $A \forall k \in \mathbb{N}$, so ist $f \in L(A)$ und $\int_A f dx = \lim_{A \to \infty} \int_A f_k dx$.

Beweis

(1) O.B.d.A: $A = \mathbb{R}^n$ (Übergang $f \to f_A$). \exists Nullmenge N mit $F(x) \in \mathbb{R} \ \forall x \in \mathbb{R}^n \setminus N$ (17.8) $und \ f_k(x) \to f(x) \ (k \to \infty) \ \forall x \in \mathbb{R}^n \setminus N$. Dann: $f_k(x) \in \mathbb{R} \ \forall x \in \mathbb{R}^n \setminus N \ \forall k \in \mathbb{N}$. Wegen 17.7 ändern wir ab: $f(x) := f_k(x) := F(x) := 0 \ \forall x \in N \ \forall k \in \mathbb{N}$. Dann: $f_k(x) \to f(x) \ \forall x \in \mathbb{R}^n$. Für $k, \nu \in \mathbb{N} : g_k(x) := \sup\{f_j(x) : j \ge k\}; \ g_{k,\nu}(x) := \max\{f_k(x), f_{k+1}(x), \dots, f_{k+\nu}(x)\}$. Dann: $|g_k|, |g_{k,\nu}| \le F$ auf \mathbb{R}^n . 16.6 $\Longrightarrow g_{k,\nu} \in L(\mathbb{R}^n)$.

Sei $k \in \mathbb{N}$ (fest). $g_{k,1} \leq g_{k,2} \leq g_{k,3} \leq \ldots$ auf \mathbb{R}^n , $|\int g_{k,\nu} dx| \leq \int |g_{k,\nu}| dx \leq \int F dx \implies (\int g_{k,\nu} dx)_{\nu=1}^{\infty}$ ist beschränkt. Es gilt: $g_{k,\nu}(x) \to g_k(x)$ $(\nu \to \infty) \ \forall x \in \mathbb{R}^n$. 18.2 $\implies g_k \in$

 $L(\mathbb{R}^n)$. Es ist: $g_1 \geq g_2 \geq g_3 \geq \ldots$ auf \mathbb{R}^n ; wie oben: $(\int g_k dx)$ beschränkt. Weiter gilt: $g_k(x) \to f(x) \ (k \to \infty) \ \forall x \in \mathbb{R}^n$.

18.2 $\Longrightarrow f \in L(\mathbb{R}^n)$ und $\int f dx = \lim \int g_k dx$. $h_k(x) := \inf\{f_j(x) : j \geq k\}$ $(x \in \mathbb{R}^n)$. Analog: $h_k \in L(\mathbb{R}^n)$ und $\int f dx = \lim \int h_k dx$. Es ist: $h_k \leq f_k \leq g_k$ auf $\mathbb{R}^n \Longrightarrow \int h_k dx \leq \int f_k dx \leq \int g_k dx \xrightarrow{k \to \infty} \int f dx = \lim \int f_k dx$.

(2) folgt aus (1):
$$A \neq A \Rightarrow A \in L(A) \implies M \in L(A), F := M.$$

Beispiel

Für $k \in \mathbb{N}$ sei $f_k : [1, k] \to \mathbb{R}$ def. durch

$$f_k(x) := \frac{k^3 \sin(\frac{x}{k})}{(1 + kx^2)^2}$$

Bestimme: $\lim_{k\to\infty} \int_1^k f_k(x) dx$.

$$g_k(x) := \begin{cases} f_k(x), & x \in [1, k] \\ 0, & x > k \end{cases} (x \in [1, \infty))$$

Sei $x \in [1, \infty) \implies \exists k_0 \in \mathbb{N} : x \in [1, k] \ \forall k \geq k_0$. Für $k \geq k_0 : g_k(x) = f_k(x) = \frac{\sin(\frac{x}{k})}{\frac{x}{k}} \cdot \frac{k^2 x^2}{(1 + kx^2)^2} = \frac{\sin(\frac{x}{k})}{\frac{x}{k}} \cdot \frac{1}{(\frac{1}{kx} + x)^2} \xrightarrow{k \to \infty} \frac{1}{x^2} =: f(x)$.

$$|g_k(x)| = \underbrace{\frac{|\sin\frac{x}{k}|}{\frac{x}{k}}}_{\leq 1} \cdot \underbrace{\frac{1}{(\frac{1}{kx} + x)^2}}_{\leq \frac{1}{x^2}} \leq \frac{1}{x^2} = f(x). \ f_k \in R[1, k] \stackrel{16.9}{\Longrightarrow} f_k \in L([1, k]) \stackrel{17.7}{\Longrightarrow} g_k \in L([1, \infty))$$

und
$$\int_{[1,\infty)} f dx = \int_1^\infty \frac{1}{x^2} dx = 1. \ 18.6 \implies \underbrace{\int_{[1,\infty)} g_k dx}_{\int_1^k f_k dx} \to \int_{[1,\infty)} f dx = 1.$$

Erinnerung: (Ana I, 23.5): $f:[a,b]\to\mathbb{R}$ sei auf [a,b] db und $f'\in R[a,b]$. Dann: $\int_a^b f'dx=f(b)-f(a)$.

Satz 18.7

 $f:[a,b]\to\mathbb{R}$ sei d
b auf [a,b] und f'sei auf [a,b]beschränkt. Dann
: $f'\in L([a,b])$ und $\int_{[a,b]}f'dx=f(b)-f(a).$

Beweis
$$M := \sup\{|f'(x)| : x \in [a,b]\}.$$
 $f_k(x) := \begin{cases} \frac{f(x+\frac{1}{k})-f(x)}{\frac{1}{k}}, & x \in [a,b-\frac{1}{k}] \\ 0, & x \in (b-\frac{1}{k},b] \end{cases}$. And $I \implies f_k \in R[a,b] \stackrel{16.9}{\Longrightarrow} f \in L([a,b]) : |f(x+\frac{1}{k})-f(x)| \stackrel{\text{MWS}}{=} |f'(\xi)| \frac{1}{k} \le M \frac{1}{k} \ (x \in [a,b-\frac{1}{k}]) \implies$

 $|f_k(x)| \leq M \ \forall x \in [a,b]. \text{ Sei } x \in [a,b) \implies \exists k_0 \in \mathbb{N} : x \in [a,b-\frac{1}{k}] \ \forall k \geq k_0. \text{ Für } k \geq k_0 :$ $f_k(x) = \frac{f(x+\frac{1}{k})-f(x)}{\frac{1}{k}} \stackrel{k\to\infty}{\to} f'(x). \text{ Also: } f_k(x) \to g(x) := \begin{cases} f'(x), & x \in [a,b) \\ 0, & x = b \end{cases} \ \forall x \in [a,b].$

 $18.6 \implies g \in L([a,b]) \stackrel{17.7}{\Longrightarrow} f' \in L([a,b]) \text{ und } \int_{[a,b]} f' dx = \int_{[a,b]} g dx \stackrel{18.6}{=} \lim_{k \to \infty} \int_{[a,b]} f_k dx \stackrel{16.9}{=} \lim_{k \to \infty} \int_a^b f_k dx.$

 $f \in C[a,b] \xrightarrow{\text{Ana I}} f \text{ besitzt auf } [a,b] \text{ eine Stammfunktion } F. \int_a^b f_k(x) dx = k \int_a^{b-\frac{1}{k}} (f(x+\frac{1}{k}) - f(x)) dx = k \int_1^{b-\frac{1}{k}} f(x+\frac{1}{k}) dx - k \int_a^{b-\frac{1}{k}} f(x) dx \xrightarrow{z:=x+\frac{1}{k}} \int_{a+\frac{1}{k}}^b f(z) dz - k \int_a^{b-\frac{1}{k}} f(x) dx = k(F(b) - F(a+\frac{1}{k})) - k(F(b-\frac{1}{k}) - F(a)) = \frac{F(b) - F(b-\frac{1}{k})}{\frac{1}{k}} - \frac{F(a+\frac{1}{k}) - F(a)}{\frac{1}{k}} \xrightarrow{k \to \infty} F'(b) - F'(a) = f(b) - f(a).$