Banking Marketing

Project by Erlando Febrian

About Me

I graduated of bachelor's degree from Bandung Institute of Technology, School of Business and Management, Business degree. I also graduated from Rakamin Data Science bootcamp with outstanding grade, awarded as best final project team, and also my role as team leader. I experienced in the following scope:

- Supervised & Unsupervised Learning
- Time Series Forecasting
- A/B Testing
- Deep learning using TensorFlow and Pytorch
- Recommender System
- Customer Lifetime Value
 SQL & Data Visualization (Tableau & Power BI)

Contact

github.com/erIndofebri

brian-insights.site/

erlandoregita99@gmail.com

0821-1000-4094

<u>linkedin.com/in/erlandoregita/</u>

TABLE OF CONTENTS

Section 1
Project Background

O4 Section 4 Modeling

Section 2
Exploratory Data Analysis

Section 5
Business Insights and Recommendation

Section 3
Data Pre Processing

Goal, Metric, and Objective

Goal

Increase conversion rate up to 14%

Metric

Conversion Rate

Objective

- Analyze factors that cause low conversion rate
- Predict customer will convert or not

O1 Project Background

Background, Metric, Objective and Goals

Dataset Overview

1 Year Historical Data (41.188 Clients & 20 Features)

Bank Client Data

- Age
- Job
- Marital Status
- Education
- Default
- Housing
- Loan

Related to Last Contact

- Contact
- Month
- Day of Week
- Duration

Social & Economic Attribute

- Emp.Var.Rate
- Cons.Price.Idx
- Cons.Conf.Idx
- Euribor3m
- Nr.Employed

Dataset Overview

1 Year Historical Data (41.188 Clients & 20 Features)

Other Atributes

- Campaigns
- Pdays
- Previous
- Poutcomes

Y - Target Feature

Has the client subscribed a term deposit?

89%	11%	
No	Yes	

Data Exploration - Contact

Cellular users have slightly higher customers who subscribe term of deposit. It has also higher probability to subscribe (15.44 %)

Data Exploration - Pdays

This feature has high number of clients who was not previously contacted. We will explore how this features affect target feature

*) **Pdays**: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)

Data Exploration - Age

Our clients contains of people around 20-60 years old, but majority of them are in **30-40 years old.** In the next exploration, we will find how age affect to our target feature.

O3Data Preprocessing

Data Pre Processing

Drop Duplicate Values

1784 values dropped. Data is clean, no need to handling missing values

Data Pre Processing

Feature Selection

Using filter method: chi square, mutual info, quasi, univariate feature selection

Handling Target Imbalanced

Using SMOTE with default sampling strategy (1:1)

Feature Scaling

Using MinMaxScaler to scale X_train and X_test

04Modeling

Modeling
Basic Model, Hyperparameter Tuning, Feature
Importance

Classification Model

	Model	Accuracy	Precision	Recall	F2-Score
0	XGBClassifier	0.89	0.51	0.36	0.38
1	AdaBoostClassifier	0.84	0.37	0.59	0.53
2	RandomForestClassifier	0.87	0.44	0.40	0.41
3	LogisticRegression	0.77	0.29	0.66	0.52
4	DecisionTreeClassifier	0.87	0.43	0.34	0.36
5	KNeighborsClassifier	0.87	0.43	0.47	0.47

Focus on Recall Score to minimize False Negative (Predicted will not subscribe term of deposit, but actually subscribe). We consider marketing cost that give customers who predicted as not subscribe is costly. Then, we will do hyperparameter tuning on:

- AdaBoost Classifier
- Random Forest
- Logistic Regression
- KNeighbors

Because they have high F2 Score

Hyperparameter Tuning

		Train Recall Score	Test Recall Score
_	Logistic Regression	0.83	0.83
	Random Forest	0.85	0.83
	Ada Boost	0.85	0.83
	Kneighbors	0.59	0.59

We did 2x hyperparameter tuning, 1st aim to filter good predictive features. As a result we found top 5 predictive features, then 2nd hyperparameter focus on finding good recall score. Top 2 model are:

- AdaBoost Classifier
- Random Forest

Then we decided to choose Random Forest because it has better importance features interpretation rather than Adaboost.

Feature Importances

We can see that:

- Customer who contacted using cellular tend to be more subscribe to term of deposit
- Customers who are frequently contacted (recently contacted) tend to be more subscribe to term of deposit
- etc

^{*)} pdays → number of days that passed by after the client was last contacted from a previous campaign

*) previous → number of contacts performed before this campaign and for this client

^{*)} poutcome_succes → outcome of the previous marketing campaign

O5Business Insights and Recommendation

Business Simulation, Insights, and Recommendation

How Our Model Works?

Business Insights & Recommendation

Based On SHAP Values Feature Importance

Poutcome

Success

Contact

term

For

purpose,

subscribed

more

deposit

re-marketing Keep inform / offer and only target contact our clients to cellular users to get clients regularly using probability recommended platform of

(cellular)

Pdays

To get more clients, For re-marketing purpose, only target clients who previously accept our campaign.

Previous

contact more performed make offers the increase client's probability to subscribe our product

Age

The older clients tend to be more subscribe term of deposit rather than the younger one. For remarketing purpose, only target the older generation

^{*)} For the next step, we will try to implement recommendation above using simulation

Business Simulation

Before

Without modeling, the Bank run blind marketing campaign and random strategy

Current Conversion Rate: 11.67 % / Year

After

With prediction model, the Bank targeted campaign and segmented marketing strategy¹

New Conversion Rate:

14.73 % / Year

After implementing the strategy, bank the can increase Conversion Rate up to 3.06%

Thank You

Appendix

Features Dictionary

Bank Client Data

- 1. **Age** (numeric)
- 2. **Job**: type of job (categorical:'admin.', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')
- 3. **Marital**: marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
- 4. **Education** (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown')
- 5. **Default**: has credit in default? (categorical: 'no','yes','unknown')
- 6. **Housing**: has housing loan? (categorical: 'no','yes','unknown')
- 7. **Loan**: has personal loan? (categorical: 'no','yes','unknown')

Features Dictionary

Related With the Last Contact of the Current Campaign:

- 8. **Contact**: contact communication type (categorical: 'cellular', 'telephone')
- 9. **Month**: last contact month of year (categorical: 'jan', 'feb', 'mar', ..., 'nov', 'dec')
- 10. **Day of week**: last contact day of the week (categorical: 'mon','tue','wed','thu','fri')

Other Attributes

- 11. **Campaign**: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 12. **Pdays**: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 13. **Previous**: number of contacts performed before this campaign and for this client (numeric)
- 14. **Poutcome**: outcome of the previous marketing campaign (categorical: 'failure','nonexistent','success')

Features Dictionary

Social and Economic Context Attributes:

- 8. **Emp.var.rate**: employment variation rate quarterly indicator (numeric)
- 9. **Cons.price.idx**: consumer price index monthly indicator (numeric)
- 10. **Cons.conf.idx**: consumer confidence index monthly indicator (numeric)
- 11. **Euribor3m**: euribor 3 month rate daily indicator (numeric)
- 12. **Nr.employed**: number of employees quarterly indicator (numeric)

Target Feature

13. Y - has the client subscribed a term deposit? (binary: 'yes','no')