Lecture 13 - Laplace Transform

Analysis Techniques

Circuit Excitation	Method of Solution
dc (w/ switches)	DC/Transient analysis
ac	Phasor-domain analysis (Steady state only)
Periodic waveform	Fourier series + Phasor-domain (Steady state only)
Waveform	Laplace transform (transient + steady state)

[Source: Berkeley]

Laplace Transform Technique

[Source: Berkeley]

The French Newton Pierre-Simon Laplace (Late 1700)

- Developed mathematics in astronomy, physics, and statistics
- Began work in calculus which led to the Laplace Transform
- Focused later on celestial mechanics
 - One of the first scientists to suggest the existence of black holes

What are Laplace Transforms?

$$F(s) = \mathcal{L}[f(t)] = \int_{0_{-}}^{\infty} f(t)e^{-st}dt$$

- $f(t) \rightarrow F(s)$,
- t is real, being integrated
- s is variable complex; $s = \sigma + j\omega$.
- Note integral starts from 0₋
- Assume f(t)=0 for all t < 0

Inverse Laplace Transforms

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds$$

• Conversely, $F(s) \rightarrow f(t)$, t is variable and s is integrated.

TABLE 12.1 An Abbreviated List of Laplace Transform Pairs

Туре	$f(t) \ (t > 0 -)$	F(s)
(step)	u(t)	$\frac{1}{s}$
(ramp)	t	$\frac{1}{s^2}$
(exponential)	e^{-at}	$\frac{1}{s+a}$
(sine)	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
(cosine)	$\cos \omega t$	$\frac{s}{s^2+\omega^2}$
(damped ramp)	te^{-at}	$\frac{1}{(s+a)^2}$
(damped sine)	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
(damped cosine)	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

Electric Circuits (Fall 2022)

TABLE 12.2 An Abbreviated List of Operational Transforms

Operation	f(t)	F(s)
Multiplication by a constant	Kf(t)	KF(s)
Addition/subtraction	$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
First derivative (time)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
Second derivative (time)	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
nth derivative (time)	$\frac{d^n f(t)}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0^{-}) - s^{n-2}\frac{df(0^{-})}{dt}$ $- s^{n-3}\frac{df^{2}(0^{-})}{dt^{2}} - \dots - \frac{d^{n-1}f(0^{-})}{dt^{n-1}}$
		$- s^{n-3} \frac{df^{2}(0^{-})}{dt^{2}} - \dots - \frac{d^{n-1}f(0^{-})}{dt^{n-1}}$
Time integral	$\int_0^t f(x) dx$	$\frac{F(s)}{s}$
Translation in time	f(t-a)u(t-a), a > 0	$e^{-as}F(s)$
Translation in frequency	$e^{-at}f(t)$	F(s + a)
Scale changing	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First derivative (s)	tf(t)	$-\frac{dF(s)}{ds}$
nth derivative (s)	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
s integral	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) du$

Homogeneity and Additivity

$$\mathcal{L}[a_1 f_1(t)] = a_1 \mathcal{L}[f_1(t)] = a_1 F_1(s)$$

$$\mathcal{L}[a_1f_1(t) + a_2f_2(t)] = a_1\mathcal{L}[f_1(t)] + a_2\mathcal{L}[f_2(t)] = a_1F_1(s) + a_2F_2(s)$$

here a_1 and a_2 are constants

Important implication:

$$\sum_{k=1}^{k} i_k(t) = 0 \iff \sum_{k=1}^{k} I_k(s) = 0$$

$$\sum_{k=1}^{k} u_k(t) = 0 \iff \sum_{k=1}^{k} U_k(s) = 0$$

Time Differentiation

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0_{-})$$

Initial and final value

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0_{-})$$

Time integral

$$\mathcal{L}\left[\int_{0_{-}}^{t} f(\tau)d\tau\right] = \frac{1}{s}F(s)$$

Translation in the Time Domain

$$\mathcal{L}[f(t-\tau)\ u(t-\tau)] = e^{-s\tau}F(s)$$

Example

$$f(t) = A[[u(t-a) - u(t-b)]$$

$$F(s) = A \mathcal{L}[u(t-a) - u(t-b)] = \frac{A}{S}(e^{-as} - e^{-bs})$$

Translation in Frequency domain

$$\mathcal{L}[e^{\alpha t}f(t)]=F(s-\alpha)$$

Example

$$\mathcal{L}\left[\sin\omega t\right] = \frac{\omega}{s^2 + \omega^2}$$

$$\mathcal{L}\left[\sin \omega t\right] = \frac{\omega}{s^2 + \omega^2} \qquad \mathcal{L}\left[e^{-\alpha t}\sin \omega t\right] = \frac{\omega}{\left(s + \alpha\right)^2 + \omega^2}$$

Applying the Laplace Transform

 We assume no initial energy stored at t=0

$$\frac{v(t)}{R} + \frac{1}{L} \int_0^t v(x) dx + C \frac{dv(t)}{dt} = I_{dc} u(t).$$

$$\frac{V(s)}{R} + \frac{1}{L} \frac{V(s)}{s} + C[sV(s) - v(0^{-})] = I_{dc} \left(\frac{1}{s}\right)$$

$$V(s)\left(\frac{1}{R} + \frac{1}{sL} + sC\right) = \frac{I_{dc}}{s}$$

$$V(s) = \frac{I_{dc}/C}{s^2 + (1/RC)s + (1/LC)}.$$

$$v(t) = \mathcal{L}^{-1}\{V(s)\}.$$