Feuille d'exercices n°2 : Chaînes de Markov : exemples et propriétés.

Exercice 13. [Mesure stationnaire] On rappelle que la matrice de transition de la marche aléatoire sur un graphe G = (V, E) sans sommet isolé est définie par

$$P(x,y) = \frac{\mathbf{1}_{x \sim y}}{\deg x},$$

où deg x est le nombre de voisins de x, et $\mathbf{1}_{x\sim y}$ est l'indicatrice des voisins de x. Pour $n\geq 3$, on pose $V=\{1,2,\ldots,n\}$, et on définit les ensembles d'arêtes

$$E = \{\{x, y\}, |x - y| = 1\}$$
 ; $E' = E \cup \{\{1, n\}\}$

Soit P la matrice de transition de la marche aléatoire sur le segment (V, E), et Q celle de la marche aléatoire sur le n-cycle (V, E').

- 1. Décrire les deux matrices de transition P et Q. Sont-elles irréductibles?
- 2. Calculer par la méthode de votre choix la mesure de probabilité stationnaire de chacune de ces deux matrices de transition.

Exercice 14. [Urne de Polya] On considère une urne composée d'une boule blanche et d'une boule noire à l'instant initial t = 0. À chaque instant $t \ge 0$, on choisit une boule uniformément au hasard dans l'urne, qu'on replace ensuite avec une boule de même couleur pour donner la composition de l'urne à l'instant t + 1. On note (N_t, B_t) le nombre de boules noires et blanches respectivement à l'instant t.

- 1. Quelle est pour tout entier $t \in \mathbb{N}$ la valeur du nombre total de boules dans l'urne à l'instant t, $N_t + B_t$?
- 2. Préciser la matrice de transition de la chaîne de Markov $(N_t, N_t + B_t)_{t \in \mathbb{N}}$ sur l'espace $\mathbb{N}^* \times \mathbb{N}$.
- 3. Montrer que pour tout entier $t \in \mathbb{N}$, N_t suit la loi uniforme sur $\{1, \ldots, t+1\}$.

Exercice 15. [Ruine du joueur] On considère $(X_t)_{t\in\mathbb{N}}$ une chaîne de Markov sur $\Omega = \{0, \dots, n\}$ de matrice de transition

$$P(i,j) = \begin{cases} \frac{1}{2} \mathbf{1}_{\{|j-i|=1\}} & \text{si } i \in \{1,\dots,n-1\} \\ \mathbf{1}_{i=j} & \text{si } i \in \{0,n\}. \end{cases}$$

Il s'agit de la marche aléatoire des gains d'un joueur qui joue à un jeu équilibré, gagne ou perd 1 à chaque tour de jeu et s'arrête lorsqu'il atteint un gain de n ou lorsqu'il atteint 0 et n'a plus d'argent à parier. On s'intéresse au temps aléatoire $\tau = \min\{t \geq 0, X_t \in \{0, n\}\} \in \mathbb{N} \cup \{\infty\}$, et plus précisément à la loi de la variable aléatoire X_{τ} (qui est définie sur l'événement $\{\tau < \infty\}$).

1. Soit $k \in \Omega \setminus \{0, n\}$. Écrire l'événement $\{\tau = t\}$ en fonction de $(X_s, 0 \le s \le t)$. Justifier soigneusement l'égalité suivante à l'aide de la propriété de Markov :

$$\mathbb{P}_k[\tau = t + 1 \,|\, X_1 = k + 1] = \mathbb{P}_{k+1}[\tau = t].$$

2. En déduire, pour $k \in \Omega \setminus \{0, n\}$,

$$\mathbb{P}_k[\tau < \infty \,|\, X_1 = k+1] = \mathbb{P}_{k+1}[\tau < \infty]$$

et

$$\mathbb{E}_k[\tau \,|\, X_1 = k+1] = 1 + \mathbb{E}_{k+1}[\tau].$$

Pour la seconde identité, noter qu'on ne sait pas si la variable aléatoire τ est p.s. finie, mais comme elle est positive ou nulle, son espérance est bien définie.

3. Soit $k \in \Omega$. Posons $f(k) = \mathbb{P}_k[\tau < \infty]$. Donner f(0) et f(n), et montrer que :

$$f(k) = \frac{1}{2}f(k-1) + \frac{1}{2}f(k+1), \quad k \in \Omega \setminus \{0, n\}.$$

Trouver l'unique solution de ce système d'équations.

4. Soit $k \in \Omega \setminus \{0, n\}$. Justifier soigneusement l'égalité suivante à l'aide de la propriété de Markov :

$$\mathbb{P}_k[\tau < \infty \text{ et } X_\tau = n \mid X_1 = k+1] = \mathbb{P}_{k+1}[\tau < \infty \text{ et } X_\tau = n].$$

Soit $k \in \Omega$. Posons $g(k) = \mathbb{P}_k[\tau < \infty \text{ et } X_\tau = n]$. Expliciter g(0) et g(n), et donner l'équation de récurrence satisfaite par g. Résoudre ce système.

- 5. Soit $k \in \Omega$. Posons $h(k) = \mathbb{E}_k[\tau]$. Expliciter h(0) et h(n), et donner l'équation de récurrence satisfaite par h. Résoudre ce système (on pourra poser $\ell(k) = h(k+1) h(k)$).
- 6. Pour cette dernière question, on modifie les probabilités de transition depuis l'état 0 en supposant que P(0,1) = 1 (autrement dit, le joueur est un addict et il se remet à jouer immédiatement après avoir perdu). On pose ~ = min{t ≥ 0, X_t = n} ∈ N ∪ {∞}, et ~ h(k) = E_k(~). Donner h(0) h(1) et h(n). Montrer que h vérifie la même équation de récurrence que h, et la résoudre.

Exercice 16. [Théorème de représentation] Soit Ω un ensemble fini, et \mathcal{E} un espace mesurable.

1. On suppose donnée une fonction mesurable $f: \Omega \times \mathcal{E} \to \Omega$ et une suite de variables aléatoires i.i.d. $(\xi_t)_{t\geq 0}$ à valeurs dans \mathcal{E} . Si $k,l\in \Omega$, on note $P(k,l)=\mathbb{P}[f(k,\xi_0)=l]$. Soit X_0 une variable aléatoire à valeurs dans Ω et indépendante des ξ_t . On définit par récurrence la suite $(X_t)_{t\geq 0}$ par

$$X_{t+1} = f(X_t, \xi_t).$$

Montrer que pour toute suite $(x_0, \ldots, x_t) \in \Omega^{t+1}$,

$$\mathbb{P}\left(\bigcap_{0 \le s \le t} \{X_s = x_s\}\right) = \mathbb{P}(X_0 = x_0) P(x_0, x_1) \cdots P(x_{t-1}, x_t).$$

En déduire que X est une chaîne de Markov de matrice de transition P.

2. On se donne réciproquement une matrice stochastique P sur $\Omega = \{1, 2, ..., n\}$, et une suite de variables aléatoires $(\xi_t)_{t \in \mathbb{R}}$ i.i.d. uniformes dans [0, 1]. On définit une fonction

$$f: \Omega \times [0,1] \to \Omega$$
$$(k,x) \mapsto \sum_{i=1}^{n} \mathbf{1}_{x \ge \sum_{j=0}^{i-1} P(k,j)}.$$

Montrer que $P(k,l) = \mathbb{P}[f(k,\xi_0) = l]$. En déduire que toute chaîne de Markov sur Ω peut être représentée en loi par une chaîne $(X_t)_{t\geq 0}$ définie par la relation de récurrence $X_{t+1} = f(X_t, \xi_t)$, avec une suite de variables i.i.d. $(\xi_t)_{t\geq 0}$.

Exercice 17. [Collecteur de coupons²] Soit $(X_t)_{t\geq 1}$ une suite de variables aléatoires i.i.d. de loi uniforme sur $\{1,\ldots,n\}$. On s'intéresse à la variable aléatoire

$$Y_t = |\{X_s, 1 \le s \le t\}|$$

soit le cardinal de l'ensemble des valeurs distinctes prises par les X_s jusqu'à l'instant t inclus. On s'intéresse dans cet exercice au temps d'atteinte d'un niveau donné par cette chaîne.

- 1. Observer que $Y_t \in \{0, 1, ..., t \land n\}$, et que les trajectoires $t \mapsto Y_t$ sont croissantes. Montrer que $(Y_t)_{t\geq 0}$ est une chaîne de Markov sur $\Omega = \{0, 1, ..., n\}$ et donner sa matrice de transition.
- 2. On note $\tau_k = \min\{t \geq 1, Y_t = k\} \in \mathbb{N} \cup \{\infty\}$ le temps d'atteinte de $k \in \{1, \dots, n\}$. Reconnaître la loi de $\mathbf{1}_{\tau_k < \infty} (\tau_{k+1} \tau_k)$, puis en déduire que

$$\mathbb{P}(\tau_k < \infty) = 1$$
 et $\mathbb{E}[\tau_k] = n \sum_{j=n-k+1}^n \frac{1}{j}$.

Donner un équivalent de $\mathbb{E}[\tau_k]$ lorsque

- $\circ n \to \infty \text{ avec } \frac{k}{n} \to \alpha \in (0,1);$
- o $n \to \infty$ avec $\frac{\log n k + 1}{\log n} \to 0$ (par exemple, k = n).

Comparer en particulier le temps nécessaire pour atteindre n/2 et n.

3. Calculer la probabilité de l'événement $A_i^t = \bigcap_{1 \leq s \leq t} \{X_s \neq i\}$. Exprimer l'événement $\{\tau_n > t\}$ en fonction des A_i^t puis en déduire la majoration : pour tout c > 0,

$$\mathbb{P}(\tau_n > \lceil n \log n + cn \rceil) \le \exp(-c),$$

où $\lceil x \rceil$ désigne l'entier au dessus de x (le "plafond" de x en anglais), $\lceil x \rceil - 1 < x \le \lceil x \rceil$.

Exercice 18. [Chaîne image] Soit $(X_t)_{t\geq 0}$ une chaîne de Markov à valeurs dans Ω et de matrice P, et $f:\Omega\to\Omega'$ une fonction surjective. On pose $Y_t=f(X_t)$, et on suppose que, pour tout $y_1,y_2\in\Omega'$, la probabilité de transition $P(x,f^{-1}\{y_2\})$ est la même pour tout $x\in f^{-1}\{y_1\}$. On note alors cette quantité $Q(y_1,y_2)$.

- 1. Vérifier que Q est une matrice stochastique sur Ω' .
- 2. Montrer que, pour tout $t \in \mathbb{N}$ et $(y_s)_{0 \le s \le t} \in (\Omega')^{t+1}$,

$$\mathbb{P}\left(\bigcap_{0 \le s \le t} \{Y_s = y_s\}\right) = \mathbb{P}\left(\bigcap_{0 \le s \le t-1} \{Y_s = y_s\}\right) Q(y_{t-1}, y_t)$$

et en déduire que $(Y_t)_{t\geq 0}$ est une chaîne de Markov sur Ω' de matrice de transition Q.

3. On appelle mesure image de π par f la mesure de probabilité ν sur Ω' définie par $\nu(y) = \pi(f^{-1}\{y\}), \ y \in \Omega'$. Si π est une mesure stationnaire pour P, que dire de la mesure image de π par f?

^{2.} Interprétation : une collection d'images compte n images différentes ; leur achat chez notre marchand de journaux peut être modélisé par un tirage avec remise ; la question est de savoir en fonction de n quand est-ce que l'on a une collection complète.

Exercice 19. [Urne d'Erhenfest 3] Soit $n \ge 1$. Le graphe G = (V, E) défini par

$$V = \{0,1\}^n \text{ et } E = \{\{x,y\} \in V^2 : \sum_{1 \le i \le n} |x(i) - y(i)| = 1\}$$

s'appelle l'hypercube de dimension n. On considère la marche aléatoire simple $(X_t)_{t\in\mathbb{N}}$ sur ce graphe. L'application somme des coordonnées $f: x \in V \mapsto \sum_{1 \leq i \leq n} x(i) \in \{0, \ldots, n\}$ appliquée à $(X_t)_{t\in\mathbb{N}}$ donne $(Y_t = f(X_t))_{t\in\mathbb{N}}$.

- 1. Représenter le graphe obtenu pour n=2 et n=3, et justifier ainsi le nom d'hypercube pour le graphe G=(V,E).
- 2. Quel est le degré des sommets de G?
- 3. Donner la matrice de transition P de la chaîne $(X_t)_{t\geq 0}$. Est-elle irréductible? Montrer que P admet une unique mesure de probabilité stationnaire π , et la préciser.
- 4. Vérifier à l'aide du résultat de l'exercice 18 par exemple que $(Y_t)_{t\geq 0}$ est encore une chaîne de Markov. Donner sa matrice de transition Q. Est-elle irréductible?
- 5. On appelle mesure image de π par f la mesure ν sur $\{0,\ldots,n\}$ définie par $\nu(k)=\pi(f^{-1}\{k\}), k\in\{0,\ldots,n\}$. Déterminer ν et vérifier que Q est réversible par rapport à la mesure de probabilité ν .
- 6. En déduire à l'aide du cours la valeur de $g(k) = \mathbb{E}_k[\tau_k^+(Y)]$. Calculer la limite de

$$\frac{1}{n}\log(g(k))$$

lorsque $n \to \infty$ et $\frac{k}{n} \to \alpha \in (0,1)$. Donner enfin un équivalent de $g(\frac{n}{2})$ (on pourra s'aider de la formule de Stirling $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$),

Exercice 20. [Chaîne de naissance et mort] Soit $\Omega := \{0, 1, ..., n\}$. On appelle chaîne de naissance et mort une chaîne de Markov dont la matrice de transition est tridiagonale, c'est-à-dire telle que P(i,j) = 0 si $|i-j| \ge 2$. On notera $p_i = P(i,i+1)$, $q_i = P(i,i)$ et $r_i = P(i,i-1)$ avec la convention que r_0 et p_n valent tous deux 0. Posons $w_0 = 1$ et pour $j \in \{1, ..., n\}$,

$$w_j = \frac{\prod_{0 \le i \le j-1} p_i}{\prod_{1 \le i \le j} r_i}.$$

- 1. Faire un dessin de Ω et indiquer sur ce même schéma les probabilités de transition entre les états de Ω . Donner une CNS pour que la chaîne soit irréductible. On supposera cette condition satisfaite dans la suite de l'exercice.
- 2. Montrer que P est réversible et exprimer son unique loi stationnaire π à l'aide des quantités $(w_i)_{0 \le i \le n}$.

L'objectif de la suite de l'exercice est d'estimer les quantités $\mathbb{E}_k[\tau_\ell]$. Pour $\ell \in \{1, \dots n\}$, on pose $\Omega_\ell := \{0, 1, \dots, \ell\}$ et

$$P_{\ell}(x,y) = P(x,y) \text{ si } x,y \in \Omega_{\ell} \setminus \{(\ell,\ell)\} \text{ et } P_{\ell}(\ell,\ell) = p_{\ell} + q_{\ell}$$

^{3.} Interprétation de ce modèle, introduit en 1907 par les époux Ehrenfest pour illustrer certains des paradoxes apparus dans les fondements de la mécanique statistique : on dipose de 2 urnes qui comprennent au total n boules, et, à chaque instant, une boule choisie au hasard parmi les n boules est changée d'urne; on veut alors comprendre la répartion des boules dans les 2 urnes.

 P_{ℓ} définit encore une matrice de transition, et on note $(\widetilde{X}_t)_{t\in\mathbb{N}}$ la chaîne de Markov associée à P_{ℓ} , et X la chaîne de Markov associée à P_{ℓ} . On pose pour $0 \leq \ell \leq n$, $\tau_k^+ = \inf\{t \geq 1 : X_t = k\}$ et $\tau_k = \inf\{t \geq 0 : X_t = k\}$ les temps de retour et d'atteinte pour X, et, pour $0 \leq k \leq \ell$, $\widetilde{\tau}_k^+ = \inf\{t \geq 1 : \widetilde{X}_t = k\}$ et $\widetilde{\tau}_k = \inf\{t \geq 0 : \widetilde{X}_t = k\}$ ceux pour \widetilde{X} .

- 3. Montrer que P_{ℓ} est réversible et exprimer son unique loi stationnaire π_{ℓ} à l'aide des $(w_j)_{0 \leq j \leq \ell}$. Que peut-on dire de π_{ℓ} et de $\pi_{|\{0,\dots,\ell\}}$?
- 4. Exprimer $\mathbb{E}_{\ell}[\widetilde{\tau}_{\ell}^+]$ en fonction de $\mathbb{E}_{\ell-1}[\tau_{\ell}]$, et en déduire la valeur de cette dernière quantité en fonction des paramètres $(w_j)_{0 \leq j \leq n-1}$ et $(r_j)_{0 \leq j \leq n-1}$.
- 5. En déduire la valeur de $\mathbb{E}_k[\tau_\ell]$ pour tous $0 \le k < \ell \le n$.

Exercice 21. [Lemme de la cible aléatoire] Soit $(X_t)_{t\geq 0}$ chaîne de Markov de matrice de transition P irréductible sur Ω , qui admet une mesure de probabilité stationnaire π . On pose

$$f: \Omega \to \mathbb{R}$$

$$x \mapsto \mathbb{E}_x[\tau_{V_{\pi}}] := \sum_{z \in \Omega} \pi(z) \, \mathbb{E}_x[\tau_z].$$

1. Montrer proprement que pour tout $x, z \in \Omega$,

$$\mathbb{E}_x[\tau_z^+] = 1 + \sum_{y \in \Omega} P(x, y) \, \mathbb{E}_y[\tau_z].$$

- 2. En déduire que la fonction f est harmonique pour P sur Ω . On pourra utiliser la relation vue en cours entre $\mathbb{E}_x(\tau_x^+)$ et $\pi(x)$.
- 3. Que peut-on en déduire sur la fonction f? Interpréter ce résultat.

Exercice 22. [Dernier site occupé] On considère la marche aléatoire $(X_t)_{t\geq 0}$ sur le $(n\geq 3)$ -cycle :

$$G = (V, E)$$
 ; $V = \{1, 2, ..., n\}$; $E = \{\{1, 2\}, \{2, 3\}, ..., \{n - 1, n\}, \{n, 1\}\}.$

On convient dans ce qui suit que n+1=1 (autrement dit, $V=\mathbb{Z}/n\mathbb{Z}$). On note $\tau_x=\min\{t\geq 0\,|\,X_t=x\}$ le temps d'atteinte de x, et Y le dernier site visité par la marche aléatoire, formellement défini par

$${Y = y} = {\tau_y = \max_{1 \le x \le n} \tau_x}.$$

1. Expliquer pourquoi

$$\{Y = y\} = \{\tau_{y-1} < \tau_{y+1} < \tau_y\} \cup \{\tau_{y+1} < \tau_{y-1} < \tau_y\}.$$

2. Montrer que, pour tout $y \in \{1, ..., n\}$,

$$\mathbb{P}_{y-1}(\tau_{y+1} < \tau_y) = \frac{1}{n-1}.$$

On pourra trouver un système d'équations pour la fonction $f(k) = \mathbb{P}_k[\tau_{y+1} < \tau_y]$, et résoudre ce système.

3. En déduire la valeur de $\mathbb{P}_x[Y=y]$, et reconnaître la distribution de la variable aléatoire Y. Commenter ce résultat.