PROJECT REPORT

1. INTRODUCTION

1.1 Project Overview

Enchanted Wings: Marvels of Butterfly Species is an AI/ML-based image classification system designed to identify various butterfly species using deep learning techniques. It aims to support biodiversity efforts by providing researchers, biologists, and nature enthusiasts with a simple, fast, and offline-capable solution to classify butterfly species from images.

1.2 Purpose

The purpose of this project is to automate the identification of butterfly species using Convolutional Neural Networks (CNNs). This contributes to biodiversity documentation, educational exploration, and environmental conservation through a user-friendly, AI-powered platform.

2. IDEATION PHASE

2.1 Problem Statement

Manual classification of butterfly species is challenging due to:

- Visual similarities among species.
- Inconsistent image quality.
- Lack of taxonomic expertise in the field.

2.2 Empathy Map Canvas

Think: Will this model handle blurry or rare species?

Feel: Frustrated by misidentification; excited when accurate.

Say: "I want a quick, reliable, and easy tool."

Do: Capture images, upload them, review predictions.

Pains: Manual classification, low-quality data, complex tools. **Gains**: Fast, offline access to AI-based species recognition.

2.3 Brainstorming

Ideas considered:

- Mobile app vs web app
- Offline vs cloud model
- Real-time vs batch image upload
- CNN vs other model types

• Geolocation tagging (for future versions)

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Stage 1: Discover – User finds app and reads butterfly fact

Stage 2: Upload – User uploads butterfly image

Stage 3: Predict – Model predicts species and confidence

Stage 4: Learn – User sees info, image, and history

Stage 5: Reflect – User downloads or stores results

3.2 Solution Requirements

- Functional: Image upload, prediction, display of results
- Non-functional: Usability, offline access, scalability, performance

3.3 Data Flow Diagram

Level 0 and Level 1 DFD already covered above (image upload \rightarrow preprocessor \rightarrow model \rightarrow result \rightarrow history log)

3.4 Technology Stack

- **Frontend**: HTML, Streamlit
- **Backend**: Python (Flask), TensorFlow/Keras
- **Database**: MongoDB or SQLite
- **Model**: CNN (MobileNetV2, ResNet50)
- **Deployment**: Localhost (optional Docker/Cloud)

4. PROJECT DESIGN

4.1 Problem-Solution Fit

A user-facing web application solves the need for fast, reliable butterfly classification, without requiring technical knowledge or internet access.

4.2 Proposed Solution

User uploads an image \rightarrow Model classifies species \rightarrow Output displayed with confidence \rightarrow Optionally logged in database

4.3 Solution Architecture

As described in the previous architecture section (UI \rightarrow Backend \rightarrow CNN Model \rightarrow Database/File System)

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Sprint	Task	Story Points
1	Data collection & cleaning	8
2	Model training, testing, deployment	16
Velocity: 12 story points/sprint		

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

- Trained on GPU via Google Colab
- Achieved training accuracy ~95%, validation ~90%
- Prediction latency: ~2 seconds per image
- Confusion matrix used to assess misclassifications

7. RESULTS

7.1 Output Screenshots

8. ADVANTAGES & DISADVANTAGES

Advantages

- Fast and accurate predictions
- Easy for non-technical users
- Works offline
- Encourages biodiversity exploration

Disadvantages

- Misclassification for visually similar species
- Limited dataset may restrict accuracy on rare butterflies
- No current mobile version

9. CONCLUSION

The *Enchanted Wings* project demonstrates how AI and deep learning can be applied to biodiversity conservation and education. It automates species identification and provides a valuable tool for researchers and enthusiasts alike.

10. FUTURE SCOPE

- Expand dataset to include more regional species
- Add geolocation-based predictions
- Cloud deployment for remote access
- User login and profile history
- Mobile application version

11. APPENDIX

Source Code: app.py

```
flask import Flask, render_template, request
tensorflow.keras.models import load_model
tensorflow.keras.preprocessing import image
     rt numpy as np
  Code view is read-only. Switch to the editor.
CLASS_NAMES = sorted(os.listdir("train"))
     *** Butterflies can see ultraviolet light, invisible to the human eye.",
    " - Some butterflies can fly up to 30 miles per hour!",
    "5 Butterflies taste with their feet!",
"© There are around 28,000 species of butterflies worldwide.",
     Butterflies can't fly if they're cold-they need sunshine to warm up!",
    🐪 A butterfly's life is mostly spent as a caterpillar before it transforms.",
     "🤑 No two butterflies have the same wing pattern!",
    * O Monarch butterflies migrate thousands of miles each year.*,
    "  Butterflies help pollinate flowers just like bees!",
"  M The wings of butterflies are covered in tiny scales that reflect light beautifully."
@app.route("/")
def welcome():
    return render_template("welcome.html", fact-random.choice(facts))
@app.route("/input")
def input_page():
    return render_template("input.html")
@app.route("/output", methods=["POST"])
    if 'file' not in request.files:
         return render template("output.html", prediction-None, image path-None)
    file = request.files['file']
         return render_template("output.html", prediction=None, image_path=None)
```

```
# save uploaded file in static folder
filename = "uploaded.jpg"
path = os.path.join("static", filename)
file.save(path)

# Preprocess and predict
img = image.load_ing(path, target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) / 255.0

predictions = model.predict(img_array)
predicted_class = CLASS_NAMES[np.argmax(predictions)]

#return render_template('output.html', prediction=predicted_class, image_path=path)

if __name__ == "__main__":
    app.rum(debug=True)
```

Predict_image.py:

```
Code view is read-only. Switch to the editor.
          from tensorflow.keras.preprocessing import image
         import matplotlib.pyplot as plt
         model_path = 'vgg16_model.h5'
test_dir = 'test'
class_names = sorted(os.listdir('train'))
         model = load_model(model_path)
13 \( def predict_image(img_path):
            img = image.load_img(img path, target_size=(224, 224))
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
            predictions = model.predict(img_array)
predicted_class = class_names[np.argmax(predictions)]
19
20
            plt.imshow(img)
plt.title(f'Predicted: {predicted_class}')
             plt.axis('off')
         test_path = os.path.join(os.getcwd(), test_dir)
27
28
29
         test_images = [f for f in os.listdir(test_path) if f.endswith(('.jpg', '.jpeg', '.png'))]
         for img_file in test_images:
                  print(f'\n Predicting: {img_file}')
predict_image(os.path.join(test_path, img_file))
```

Train_model.py:

```
val_generator = train_datagen.flow_from_directory(
           train_path,
           target_size=(IMG_SIZE, IMG_SIZE),
          batch_size=BATCH_SIZE,
          class_mode='sparse',
40
           subset='validation'
      vgg = VGG16(include_top=False, weights='imagenet', input_shape=(IMG_SIZE, IMG_SIZE, 3))
      vgg.trainable = False # Freeze layers
       # Build model
      model = Sequential([
          vgg,
          Flatten(),
           Dense(train_generator.num_classes, activation='softmax')
      model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
       # Callbacks
      checkpoint = ModelCheckpoint("vgg16_model.h5", save_best_only=True)
       earlystop = EarlyStopping(patience=5, restore_best_weights=True)
   v history = model.fit(
          train generator,
          validation_data=val_generator,
           epochs=EPOCHS,
          callbacks=[checkpoint, earlystop]
```

```
# Plot accuracy

plt.plot(history.history['accuracy'], label='Training Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.title('Model Accuracy')

plt.legend()

plt.show()

# Plot loss

plt.plot(history.history['loss'], label='Training Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.title('Model Loss')

plt.legend()

plt.show()
```

• **GitHub & Demo**: https://github.com/Ruhinaaz28/Enchanted-Wings-Marvels-of-Butterfly-Species