ELEC345

Lecture 2 dBs and Link Budgets

all calculations

- Allows for dealing with large and small numbers easily

- dB=1019(Distance)

Distance		1 dB
Imm	0.001m	-30dB
IM	~	0 dB
10m	_	10013
100M	_	200B
IKM	1000 M	30 dB
10km	10000m	40 dB

Thermal Noise power (No) = kt

(measured in waits/Hz)

k: BOHzmann's constant = 1-380649 x 10-23 m2kgs-2k-1

T : Absolute temperature (room temp. 20°C = 293K)

Thermal Noise	- OBW/HZ
N = -204 + 1010910 (18) - dBW	No = -204 5 No = -174) -30db
N = -174 + 1010g10(B) - dBm	NO114 / dBM/HZ
Bandwidth	

Noise Factor
noise factor,
$$F = \frac{\left(\frac{S}{N}\right)in}{\left(\frac{S}{N}\right)out}$$

Noise Figure

in aB, noise figure,
$$F = \left(\frac{\zeta}{N}\right)_{in}(aB) - \left(\frac{\zeta}{N}\right)_{out}(aB)$$

Total Noise

path Loss

L =
$$2010g_{10}\left(\frac{4\pi R}{\lambda}\right)dB$$

R = distance from transmitter

 $\lambda = \text{wavelength of signal from} = \frac{c}{f}$

Speed of light over frequency

Example: Wifi @ 2.4GHz \rightarrow GHz \Rightarrow 109

 $\lambda = \frac{3\times10^8 \text{m/s}}{2\cdot4\times10^9 \text{Hz}} = 0.115 \text{m}$

L = $2010g_{10}\left(\frac{4\pi(100)}{D\cdot106}\right) = 80 \text{ dB}$

Received Power	transmit Power
	Varies@90061800MHz
	100mW@ 2.4GHZ
-231dBM	18W@ 8GHZ
	-51dBM -155dBW L-125dBM -75dBM or better

summary Question 1:

calculate path loss given f= 800MHz and Plympton 11 km & Ptx: 400W Caradon 19 km & Ptx: 100 kW

Then calculate the received power

> Answer:

db calculations:
$$10\log_{10}(400) = 26dBW$$

$$10\log_{10}(100\times10^{3}) = 50dBW$$

$$\lambda = \frac{3\times10^{8}}{2} = 0.375 \text{ m}$$

path loss:
$$2010g_{10} \left(\frac{4\pi (11000)}{0.379} \right) = 111dB$$

7010910 (411 (1900)) = 116 dB

Received Power

Summary Question 2:

the wifi in garage is 2.4GHz with bandwidth of 20MHz p_{tx} = 100mW and distance = 25m . Find PRx and SNR

$$P_L = 20109 \left(\frac{4\pi (25)}{3\times 10^8} \right) = 68013$$