WEST Search History

Hide Items Restore Clear Cancel

DATE: Monday, March 28, 2005

Hide?	Set Nam	<u>e Query</u>	Hit Count
	DB=PG	PB,USPT,EPAB; PLUR=YES; OP=ADJ	
	L13	13 and 19	0
	L12	19 and L11	0
	L11	17.ab.	400
	L10	L9 and 17	28
	L9	(536/23.1)![CCLS]	11636
	L8	L7 and 11	1
	L7	aldose reducta\$	1684
	L6	aldose reducta?	1
	L5	TTGTGGCCCACTTCCAGATCGAGAAGCTCT	0
	L4	L3 and 11	1
	L3	L2.ab.	48
	L2	ARL	1090
	L1	dai.in.	2665

END OF SEARCH HISTORY

	FILE 'MEDL	INE	' ENTERED AT 13:43:08 ON 28 MAR 2005									
L1	0	SI	DAI/AU .									
L2	2321	21 S ALDOSE REDUCTASE										
L3	312	Si	SARL									
L4	2625	5 S L2 OR L3										
L5	0	S S	TTGTGGCCCACTTCCAGATCGAGAAGCTCT									
			•									
	FILE 'PCTF	ULL	' ENTERED AT 13:43:59 ON 28 MAR 2005									
L6			' ENTERED AT 13:43:59 ON 28 MAR 2005 TTGTGGCCCACTTCCAGATCGAGAAGCTCT									
L6 L7	0	S !										
	0 420	S S	TTGTGGCCCACTTCCAGATCGAGAAGCTCT									
L7	0 420 602	S S	TTGTGGCCCACTTCCAGATCGAGAAGCTCT DAI/AU									
L7 L8	0 420 602	S ! S ! S !	TTGTGGCCCACTTCCAGATCGAGAAGCTCT DAI/AU ALDOSE REDUCTASE L8 AND L7									

Structure

Genome

PMC

Journals

Books

[Sign In]

[Register] My NCBI

Search PubMed

All Databases

PubMed

☑ Limits

Clipboard

Details

₹

Preview

ල

Clear

About Entrez

Text Version

Entrez PubMed New/Noteworthy Help | FAQ Overview Tutorial

Search

E-Utilities MeSH Database PubMed Services Journals Database

My NCBI (Cubby) Single Citation Matcher LinkOut Clinical Queries Batch Citation Matcher

Order Documents Related Resources

NLM Catalog

NLM Gateway ClinicalTrials.gov PubMed Central Clinical Alerts Consumer Health TOXNET

> Field: Title/Abstract Search History will be lost after eight hours of inactivity Click on query # to add to strategy Search numbers may not be continuous; all searches are represented To combine searches use # before search number, e.g., #2 AND #6 for |#5 AND #1 Preview/Index History Protein

#6 Search #5 AND #1 Field: Title/Abstract Most Recent Queries

#5 Search #4 OR #3 Field: Title/Abstract

#4 Search ARL Field: Title/Abstract

#3 Search aldose reductase Field: Title/Abstract

13:40:33

2334

13:40:51 13:41:06 13:41:18

<u>2616</u> <u>290</u>

Time

Result

13:40:12 13:40:24

#2 Search aldose reductase Field: Author

#1 Search dai Field: Author

Clear History

NCBI | NLM | NIH

Department of Health & Human Services Write to the Help Desk

Privacy Statement | Freedom of Information Act | Disclaimer

OM nucleic - nucleic search, using sw model

Run on: March 22, 2005, 22:07:10; Search time 4250 Seconds

(without alignments)

9762.366 Million cell updates/sec

Title: US-10-653-681A-1

Perfect score: 1090

Sequence: 1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 34239544 seqs, 19032134700 residues

Total number of hits satisfying chosen parameters: 68479088

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : EST:*

1: gb_est1:*

2: gb est2:*

3: qb htc:*

4: gb_est3:*

5: gb est4:*

6: gb_est5:*

7: gb_est6:*

8: gb gss1:*

9: gb gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Res	ult No.	Score	% Query Match	Length	DB	ID	Description
c	1	705.4	64.7	735	5	BM981698	BM981698 UI-CF-EN1
	2	685.2	62.9	1586	3	CR607509	CR607509 full-leng
С	3	666	61.1	746	2	BF688991	BF688991 602185236
С	4	652.2	59.8	796	5	BX337598	BX337598 BX337598
	5	647	59.4	909	4	BG169378	BG169378 602320937
С	6	586.6	53.8	666	1	AI924753	AI924753 wn58a02.
	7	585	53.7	613	6	CB132708	CB132708 K-EST0183
С	8	573	52.6	595	5	BM983180	BM983180 UI-CF-EN1

С	9	570.8	52.4	593	5	BU677104	BU677104 UI-CF-DU1
	10	542.4	49.8	623	4	BM793014	BM793014 K-EST0073
	11	526.2	48.3	969	7	CO581979	CO581979 ILLUMIGEN
	12	522	47.9	1012	5	BQ943650	BQ943650 AGENCOURT
С	13	521.6	47.9	540	1	AA804597	AA804597 nk97e06.s
С	14	518.2	47.5	644	6	CA450136	CA450136 UI-CF-FN0
	15	517	47.4	588	2	BE785963	BE785963 601478213
	16	506.8	46.5	881	7	CO580792	· co580792 illumigen
	17	502.6	46.1	704	7	CO582646	CO582646 ILLUMIGEN
	18	498.8	45.8	620	6	CB118695	CB118695 K-EST0165
	19	481.4	44.2	635	7	CV334625	CV334625 IL3-UT011
С	20	475.4	43.6	496	2	AW379341	AW379341 MR0-HT024
С	21	460	42.2	920	2	BE964368	BE964368 601658069
	22	456.4	41.9	592	4	BM819663	BM819663 K-EST0087
	23	449.4	41.2	786	5	BQ221381	BQ221381 AGENCOURT
С	24	447.2	41.0	452	1	AI393702	AI393702 tg66d01.x
C	25	446.4	41.0	456	1	AI292337	AI292337 qm77c02.x
С	26	446.4	41.0	458	1	AI744504	AI744504 wg09a09.x
С	27	446.4	41.0	460	1	AI291463	AI291463 qm73h04.x
	28	446.4	41.0	582	5	BP278752	BP278752 BP278752
С	29	432	39.6	446	5	BX104876	BX104876 BX104876
С	30	426.6	39.1	445	1	AI301329	AI301329 qn27e09.x
	31	426.4	39.1	914	7	CO775128	CO775128 ILLUMIGEN
С	32	426	39.1	448	5	BM975664	BM975664 UI-CF-EN1
	33	417	38.3	445	6	CB161124	CB161124 K-EST0220
	34	402.4	36.9	581	5	BP263763	BP263763 BP263763
С	35	392.6	36.0	415	1	AA947514	AA947514 oq53h01.s
	36	388.8	35.7	453	4	BG197874	BG197874 RST17122
	37	384.8	35.3	912	5	BQ220848	BQ220848 AGENCOURT
С	38	383.4	35.2	405	6	C75075	C75075 C75075 Huma
С	39	378	34.7	388	1	AI831519	AI831519 wj49h11.x
	40	373	34.2	384	2	BE787870	BE787870 601479812
С	41	370.6	34.0	386	1	AI813308	AI813308 wj33c01.x
С	42	365.2	33.5	388	2	BE711936	BE711936 QV2-HT069
	43	360	33.0	796	4	BG682196	BG682196 602629503
	44	351.2	32.2	1342	3	AK075865	AK075865 Mus muscu
	45	348	31.9	1236	3	AK019906	AK019906 Mus muscu

us-10-653-681a-1.n2p.rai

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model March 19, 2005, 00:09:26; Search time 40.5 Seconds Run on: (without alignments) 4018.147 Million cell updates/sec US-10-653-681A-1 Title: Perfect score: 1928 1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090 Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 Delext 513545 segs, 74649064 residues Searched: 1027090 Total number of hits satisfying chosen parameters: Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+_n2p.model -DEV=xlp -q=/cgn2_1/USPT0_spool_p/US10653681/runat_18032005_171051_1302/app_query.fasta_1.128 -DB=Issued_Patents_AA -QFMT=fastan -SUFFIX=n2p.rai -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10653681_@CGN_1_1_46_@runat_18032005_171051_1302 -NCPU=6 -ICPU=3
-NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG
-DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Database: Issued_Patents_AA:* /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
/cgn2_6/ptodata/1/iaa/5B_COMB.pep:*
/cgn2_6/ptodata/1/iaa/6A_COMB.pep:*
/cgn2_6/ptodata/1/iaa/6B_COMB.pep:*
/cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
/cgn2_6/ptodata/1/iaa/backfiles1.pep:* Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	1265	65.6	356	4	US-09-949-016-7215	Sequence 7215, Ap

```
us-10-653-681a-1:n2p.rai
                                                                                                              Sequence 340, App
                          59.9
           1154
                                          316
                                                         US-09-702-705-340
           1154
                          59.9
                                                         US-09-736-457-340
                                          316
                                                  4 US-09-614-124B-340
4 US-09-671-325-340
4 US-09-589-184-340
           1154
                          59.9
                                          316
           1154
1154
                         59.9
                                          316
                          59.9
                                          316
                         59.9
                                                   4 US-09-658-824-340
                                          316
           1154
             889
                         46.1
                                          316
                                                   3 US-08-801-344-4
                                                                                                               Sequence 4, Appli
                                                        US-09-498-599-4
US-08-585-595-3
US-09-270-767-45294
             889
877
                                         316
316
                                                   3
1
                                                                                                              Sequence 4, Appli
                         46.1
                                                                                                              Sequence 3, Appli
Sequence 45294, A
                         45.5
10
         612
586.5
585.5
532
                                          302
11
                         31.7
                                                                                                              Sequence 6679, Ap
Sequence 11456, A
Sequence 6133, Ap
Sequence 7170, Ap
                                         326
347
323
                                                  4 US-09-949-016-6679
4 US-09-949-016-11456
4 US-09-949-016-6133
4 US-09-949-016-7170
12
13
                         30.4
                         30.4
27.6
27.5
                                         325
323
15
              530
                                                  4 US-09-749-010-7170

4 US-09-702-705-1821

4 US-09-671-325-1821

3 US-08-532-896-2

4 US-09-643-597-172

4 US-09-480-8848-172
16
              526
                         27.3
                                                                                                               Sequence 1821, Ap
                                         323
323
323
                                                                                                               Sequence 1821, Ap
             526
526
                         27.3
17
                                                                                                           Sequence 1821, Ap
Sequence 1821, Ap
Sequence 2, Appli
Sequence 172, App
Sequence 173, App
                         27.3
18
              516
                         26.8
19
20
21
22
             514
514
                         26.7
26.7
                                          364
                                          364
                         26.7
                                          364
                                                  4 US-09-702-705-783
              514
                                         364 4 US-09-736-457-783
364 4 US-09-542-615A-172
                                                                                                              Sequence 783, App
23
              514
                         26.7
                                                                                                           Sequence 172, App
24
25
26
27
28
29
30
             514
                         26.7
                                                                                                             Sequence 172, App
Sequence 783, App
Sequence 783, App
Sequence 783, App
Sequence 172, App
                                                  4 US-09-606-421B-172
              514
                         26.7
                                          364
                                                        US-09-614-124B-783
US-09-671-325-783
US-09-589-184-783
                         26.7
26.7
26.7
26.7
                                          364
                                                  4
              514
                                         364
364
              514
                                                   4
              514
                                                   4
              514
                                          364
                                                   4 US-09-466-396A-172
                                                                                                              Sequence 172, App
                         26.7
                                          364
                                                   4 US-09-476-496A-172
              514
                                                                                                              Sequence 172, App
Sequence 783, App
              514
514
                         26.7
                                          364
364
                                                   4 US-09-630-940B-172
31
                                                   4 US-09-658-824-783
32
33
                          26.7
                                                   4 US-09-285-479-172
4 US-09-949-016-9693
3 US-08-853-839-2
4 US-09-949-016-7078
                                                                                                              Sequence 172, App
Sequence 9693, Ap
Sequence 2, Appli
Sequence 7078, Ap
                                         364
297
323
283
309
309
309
              514
                          26.7
             485
473
459
                         25.2
24.5
34
35
36
37
                          23.8
                                                                                                             Sequence 70/8, Ap
Sequence 2, Appli
Sequence 2, Appli
Sequence 2, Appli
Sequence 46713, A
Sequence 14, Appl
Sequence 12, Appl
Sequence 10, Appl
                                                        US-09-166-412-2
US-09-347-803-26
US-08-731-3208-2
                         22.7
              438
                                                   3
38
              438
                                                   3
                                                   4
                          22.7
39
              438
                                                   4 US-08-731-320B-2

4 US-09-166-438-2

4 US-09-270-767-46713

3 US-09-347-803-14

3 US-09-347-803-12

3 US-09-347-803-10
                                          309
40
              438
                          22.7
                                          346
309
          435.5
424.5
41
                          22.6
42
                          22.0
                                          308
43
          411.5
                          21.3
              402
                          20.9
                                          308
44
                                                  3 US-09-347-803-10 Sequence 10, Appl
4 US-09-270-767-43738 Sequence 43738, A
          400.5
                          20.8
                                          326
```

us-10-653-681a-1.n2p.rapb

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model March 19, 2005, 00:25:42; Search time 162 Seconds Run on: (without alignments) 4448.023 Million cell updates/sec Title: US-10-653-681A-1 Perfect score: 1928 1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090 Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 6.0 , Delext Delop 1401741 seqs, 330541175 residues Searched: Total number of hits satisfying chosen parameters: 2803482 Minimum DB seq length: 0
Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+_n2p.model -DEV=xlp -Q=/cgn2_1/USPTO_spool_p/US10653681/runat_18032005_171053_1387/app_query.fasta_1.128 -DB=Published_Applications_AA -QFMT=fastan -SUFFIX=n2p.rapb -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10653681_@CGN_1_1_199_@runat_18032005_171053_1387 -NCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Published_Applications_AA:* Database: /cgn2_6/ptodata/2/pubpaa/US07_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/PCT_NEW_PUB.pep:*
/cgn2_6/ptodata/2/pubpaa/US06_NEW_PUB.pep:*
/cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US07_NEW_PUB.pep:* /cgn2_6/ptodata/2/pubpaa/PCTUS_PUBCOMB.pep:*/cgn2_6/ptodata/2/pubpaa/US08_NEW_PUB.pep:* 6: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US09A_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US09B_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:* 8: 9: 10: 11: /cgn2_6/ptodata/2/pubpaa/US09_NEW_PUB.pep:* 12: /cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:* 13: /cgn2_6/ptodata/2/pubpaa/US10B_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US10D_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:* 14: 15:

16: 17:

```
us-10-653-681a-1.n2p.rapb
18: /cgn2_6/ptodata/2/pubpaa/US11_NEW_PUB.pep:*
19: /cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:*
20: /cgn2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		%			301111111123	
Result		Query				
No.	Score		Length	DB	ID	Description
· 1	1268	65.8	358	9	us-09-925-299-923	Sequence 923, App
2 3 4 5 6 7	1268	65.8	358	10	us-09-925-299-923	Sequence 923, App
3	1159	60.1	316	14	US-10-274-375-3	Sequence 3, Appli
4	1154	59.9	316	9	us-09-736-457-340	Sequence 340, App
5	1154	59.9	316	9	us-09-902-941-340	Sequence 340, App
6	1154	59.9	316	9	us-09-849-626-340	Sequence 340, App
7	1154	59.9	316	10	us-09-476-300-340	Sequence 340, App
8	1154	59.9	316	14	US-10-017-754-340	Sequence 340, App
9	1154	59.9	316	14	US-10-113-872-340	Sequence 340, App
10	1154	59.9	316	15	us-10-283-017-340	Sequence 340, App
11	1073	55.7	316	14	US-10-274-375-2	Sequence 2, Appli
12	1058	54.9	316	14	US-10-274-694-18	Sequence 18, Appl
13	889	46.1	316	15	US-10-205-331-28	Sequence 28, Appl
14	879	45.6	316	16	US-10-451-861-30	Sequence 30, Appl
15	876	45.4	315	16 16	US-10-826-679-1	Sequence 1, Appli Sequence 1573, Ap
16	875 875	45.4	316 316	16	US-10-408-765A-1573 US-10-416-330-43	Sequence 43, Appl
17 18	784	45.4 40.7	318	15	US-10-410-330-43 US-10-258-080-10	Sequence 10, Appl
19	774 774	40.7	245	17	US-10-238-000-10 US-10-653-681A-4	Sequence 4, Appli
20	638.5	33.1	176	16	US-10-451-861-31	Sequence 31, App]
21	622	32.3	301	14	US-10-321-204-51	Sequence 51, Appl
22	613.5	31.8	302	15	us-10-038-854-44	Sequence 44, Appl
23	586.5	30.4	326	15	us-10-161-927-88	Sequence 88, Appl
24	583.5	30.3	279	15	US-10-038-854-398	Sequence 398, App
25	582.5	30.2	307	14	US-10-354-358-122	Sequence 122, App
26	579.5	30.1	269	15	US-10-038-854-52	Sequence 52, Appl
27	571	29.6	325	16	us-10-472-317-36	Sequence 36, Appl
28	560	29.0	325	14	us-10-354-358-114	Sequence 114, App
29	560	29.0	353	9	us-09-925-301-1181	Sequence 1181, Ap
30	560	29.0	353	14	us-10-106-698-4568	Sequence 4568, Ap
31	557.5	28.9	304	14	US-10-274-694-4	Sequence 4, Appli
32	554	28.7	323	14	us-10-321-204-30	Sequence 30, Appl
33	540	28.0	323	15	us-10-038-854-14	Sequence 14, Appl
34	539	28.0	323	14	US-10-177-293-4	Sequence 4, Appli
3.5	539	28.0	323	14	US-10-321-204-1	Sequence 1, Appli
36	539	28.0	323	15	US-10-038-854-124	Sequence 124, App
\ 37	539	28.0	323	15	US-10-403-161-78	Sequence 78, Appl
38	539	28.0	323	15	US-10-403-161-94	Sequence 94, Appl
39	539	28.0	337	15	US-10-403-161-90	Sequence 90, Appl Sequence 2, Appli
40	537	27.9 27.8	326 323	16 14	US-10-476-033-2 US-10-321-204-7	Sequence 7, Appli
41 42	536 536	27.8	323 323	15	US-10-321-204-7 US-10-038-854-122	Sequence 122, App
42 43	536	27.8	323	15	US-10-038-834-122 US-10-403-161-86	Sequence 86, Appl
43 44	536	27.8	323	15	US-10-403-101-80	Sequence 92, Appl
45	534	27.7		15	US-10-403-161-82	Sequence 82, Appl
T)	7,74	21.1	223		00 20 100 101 02	229421122 02, 7,991

OM nucleic - protein search, using frame plus n2p model

Run on: March 19, 2005, 00:08:46; Search time 49.5 Seconds

(without alignments)

4237.425 Million cell updates/sec

Title: US-10-653-681A-1

Perfect score: 1928

Sequence: 1 caaaaacagcaacagaaagc.....ataaaaaaataataatcat 1090

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 566832

Minimum DB seg length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ n2p.model -DEV=xlp

Q=/cgn2_1/USPTO_spool_p/US10653681/runat_18032005_171051_1290/app_query.fasta_1.
1287

-DB=PIR 79 -QFMT=fastan -SUFFIX=n2p.rpr -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10653681 @CGN 1 1 63 @runat 18032005 171051 1290 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database: PIR 79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

.		*				
Result	_	Query			.	D
No.	Score	Match	Length	DΒ	ID	Description
	1017	E2 7	216		DE2440	aldose reductase h
1	1017	52.7	316	2	A53440	
2	961	49.8	316	2	A37990	aldose reductase h
3	889	46.1	316	1	A60603	aldehyde reductase
4	879	45.6	316	2	149484	aldehyde reductase
5	877	45.5	315	1	A35452	aldehyde reductase
6	875	45.4	316	1	A39763	aldehyde reductase
7	870	45.1	302	2	A34406	aldehyde reductase
8	870	45.1	316	2	A59021	aldehyde reductase
9	586.5	30.4	326	1	S41120	cholestenone 5beta
10	571	29.6	325	1	JN0629	alcohol dehydrogen
11	564.5	29.3	326	1	S15835	3-oxo-5beta-steroi
12	560	29.0	325	2	A33851	alcohol dehydrogen
13	554	28.7	323	1	A45366	20alpha-hydroxyste
14	539	28.0	323	2	A53436	3-alpha-hydroxyste
15	536	27.8	323	2	JC5240	3alpha-hydroxychol
16	532	27.6	323	1	A57407	chlordecone reduct
17	527	27.3	323	1	JH0575	prostaglandin-F sy
18	524	27.2	323	1	A28396	prostaglandin-F sy
19	522	27.1	· 323	2	173676	chlordecone reduct
20	517	26.8	329	2	I53872	dihydrodiol dehydr
21	516	26.8	320	2	I73675	chlordecone reduct
22	514	26.7	324	1	JC4280	carbonyl reductase
23	510	26.5	323	2	173674	chlordecone reduct
24	509	26.4	323	1	A56424	estradiol 17beta-d
25	508	26.3	323	2	B57407	3alpha-hydroxyster
26	491	25.5	316	2	Т26766	hypothetical prote
27	474	24.6	323	1	JC2330	luteal 20-alpha-hy
28	471.5	24.5	322	1	A39350	3alpha-hydroxyster
29	451	23.4	309	2	A84599	hypothetical prote
30	449.5	23.3	309	2	B84599	hypothetical prote
31	433.5	22.5	327	1	S76143	probable aldehyde
32	418	21.7	290	2	T02543	aldehyde dehydroge
33	398	20.6	496	2	B89027	protein T08H10.1 [
34	396.5	20.6	284	1	A32950	probable aldehyde
35	389	20.2	310	2	T17013	D-sorbitol-6-phosp
36	386	20.0	313	2	T09670	abscisic acid acti
37	384.5	19.9	317	2	T25526	hypothetical prote
38	380	19.7	274	2	AC1535	oxydoreductases ho
39	379.5	19.7	225	1	CYFGE	epsilon-crystallin
40	373.3	19.6	277	2	D89964	hypothetical prote
41	377	19.6	312	1	S22846	probable aldehyde
41	374	19.6	252	2	S61515	dihydrodiol dehydr
	374	19.4	274	2	AG1177	oxydoreductases ho
43	373 370	19.3	350	2	B84797	probable alcohol d
44				2	D69988	plant metabolite d
45	368.5	19.1	280	2	005500	prant metaporite d

용

us-10-653-681a-1.n2p.rup

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model

March 19, 2005, 00:08:07; Search time 220.5 Seconds Run on:

(without alignments)

5062.733 Million cell updates/sec

Title: US-10-653-681A-1

Perfect score: 1928

1 caaaaacaqcaacaqaaaqc.....ataaaaaaaataataatcat 1090 Seauence:

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 6.0 , Delext Delop

1612378 segs, 512079187 residues Searched:

Total number of hits satisfying chosen parameters: 3224756

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp -Q=/cgn2_1/USPTO_spool_p/US10653681/runat_18032005_171050_1279/app_query.fasta_1.128

-DB=UniProt_03 -QFMT=fastan -SUFFIX=n2p.rup -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10653681_@CGN_1_1_244_@runat_18032005_171050_1279 -NCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

UniProt_03:* Database:

> 1: uniprot_sprot:* uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match L	ength (DB	ID	Description
1 2 3 4	1159 1149 1029 1013	60.1 59.6 53.4 52.5	316 316 315 315	2 1	AKBA_HUMAN Q8IWZ1 ALD2_CRIGR ALD2_MOUSE	060218 homo sapien Q8iwz1 homo sapien 008782 cricetulus P45377 mus musculu
5	1001	51.9	316	2	Q91W30	Q91w30 rattus norv

							•
6789111231451671892122345678903123	992 990 983 965 961 938 898 887 876 875 877 876 879 889 812 801 729.5 654.5 623 607.5 603 593 586.5	51.30 51.30	316 316 315 315 315 315 315 317 317 318 317 319 310 327 327 327 327 327	2221221111211222222222122221	-10-653-681a-1.n2p.rup Q8BIV6 Q8CI22 Q6AY99 ALD1_MOUSE Q68EJ1 Q9QZI2 ALDR_RABIT ALDR_RAT ALDR_MOUSE ALDR_HUMAN Q6FGA4 ALDR_BOVIN ALDR_PIG Q6ICP2 Q90w83 Q6AZC3 Q6PAB5 Q6IQU1 Q9DDC7 Q9VTK9 Q8IQF8 AKE1_MOUSE Q6AZW2 Q96JD6 Q6GMC7 Q8VCX1 AKD1_HUMAN	Q8ci22 Q6ay99 P21300 Q68ej1 Q9qzi2 P15122 P07943 P45376 P15121 Q6fga4 P16116 P80276 Q6icp2 Q90w83 Q6azc3 Q6pab5 Q6iqu7 Q9vtk9 Q8iqf8 Q9dct1 Q9dct1 Q9dct1 Q96jd6 Q6gmc7 Q8vcx1 P51857	mus musculu rattus norv rattus norv oryctolagus rattus norv mus musculu homo sapien homo sapien bos taurus sus scrofa homo sapien gallus gall brachydanio xenopus lae brachydanio lepidodacty drosophila mus musculu brachydanio homo sapien xenopus lae mus musculu homo sapien
10 17							
	8/3 971			1			
				2			
				5			
21	839	43.5	327	2			brachydanio
22				Ž			
23	801	41.5	315	2		Q6iqu1	brachydanio
24		37.8		2			
25	659	34.2	316	2		Q9vtk9	drosophila
26		33.9		2			
27				1			
28	623	32.3	324	2			
29		31.3	32U 227	2			
3U 21	203	3U 8		2		ORVEY1	mus musculu
	586 5		323	1		Q57CX1	homo sanien
33	582.5	30.2	307	2	Q9BU71		homo sapien
34	582.5	30.2	326	2 2 2 2	Q9TV64		oryctolagus
35	581.5	30.2	335	Ž	Q7PCV3		anopheles g
36	577	29.9	292	2	Q7PF06	Q7pf06	anopheles g
37	576	29.9	324	1	AKA1_MOUSE		mus musculu
38	572	29.7	325	2	Q80XJ <i>7</i>	Q80xj7	mus musculu
39	571	29.6	324	1	AKA1_RAT		rattus norv
40	564.5	29.3	326	1	AKD1_RAT		rattus norv
41	560	29.0	324	1	AKA1_HUMAN	P14550	homo sapien
42	555	28.8	333	2	Q6DKM7		xenopus lae
43	554	28.7	323	1	PE2R_RABIT		oryctolagus
44	550.5	28.6	304	2	Q6P702		xenopus lae
45	546	28.3	324	1	AKA1_PIG	2007/ 8	sus scrofa

OM nucleic - nucleic search, using sw model

March 22, 2005, 19:48:55; Search time 5146 Seconds Run on:

(without alignments)

10263.542 Million cell updates/sec

US-10-653-681A-1 Title:

Perfect score: 1090

1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090 Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

4708233 segs, 24227607955 residues Searched:

Total number of hits satisfying chosen parameters: 9416466

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

GenEmbl:* Database :

1: qb ba:*

2: gb htg:*

3: gb in:*

4: gb om:*

5: gb ov:*

6: gb pat:*

7: gb ph:*

8: gb_pl:*

9: gb_pr:* 10: gb_ro:*

11: gb_sts:*

12: gb_sy:*

13: gb_un:*

14: gb_vi:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	833	76.4	1337	9	HSU37100	U37100 Homo sapien
2	830.8	76.2	1336	6	CO718316	CO718316 Sequence

	3	828.2	76.0	1551	9	BC008837	BC008837 Homo sapi
	4	828.2	76.0	1560	6	CQ776685	CQ776685 Sequence
	5	820.2	75.2	1611	9	AF524864	AF524864 Homo sapi
	6	796.6	73.1	1316	6	AR272611	AR272611 Sequence
	7	796.6	73.1	1316	6	AR276192	AR276192 Sequence
	8	796.6	73.1	1316	6	AR406467	AR406467 Sequence
	9	796.6	73.1	1316	6	AR440317	AR440317 Sequence
	10	796.6	73.1	1316	6	AR472475	AR472475 Sequence
	11	796.6	73.1	1316	6	AR543128	AR543128 Sequence
	12	796.6	73.1	1316	6	AX062696	AX062696 Sequence
	13	796.6	73.1	1316	6	AX367613	AX367613 Sequence
	14	796.6	73.1	1316	9	AF052577	AF052577 Homo sapi
	15	718	65.9	1315	6	AX743782	AX743782 Sequence
	16	651.8	59.8	3994	9	AL669847	AL669847 Human DNA
	17	651.8	59.8	121210	9	AL607022	AL607022 Human DNA
	18	574	52.7	574	9	AF044961	AF044961 Homo sapi
	19	508	46.6	1080	6	AX772965	AX772965 Sequence
	20	459.4	42.1	951	9	BT006794	BT006794 Homo sapi
	21	459.4	42.1	951	12	BT007750	BT007750 Synthetic
	22	458.4	42.1	948	9	CR541801	CR541801 Homo sapi
	23	431	39.5	951	6	AX380448	AX380448 Sequence
	24	431	39.5	951	6	AX772962	AX772962 Sequence
	25	395.6	36.3	473	9	AY347931	AY347931 Macaca ra
	26	377.8	34.7	144234	2	AP002425	AP002425 Homo sapi
С	27	377.8	34.7	144279	2	AP001570	AP001570 Homo sapi
С	28	377.8	34.7	216972	9	AC067819	AC067819 Homo sapi
	29	374.8	34.4	585	6	CQ732993	CQ732993 Sequence
С	30	361	33.1	137557	9	AC005909	AC005909 Homo sapi
	31	360.4	33.1	364	6	AX247463	AX247463 Sequence
	32	358.4	32.9	163631	9	AC009276	AC009276 Homo sapi
С	33	358.4	32.9	170919	9	AC078847	AC078847 Homo sapi
С	34	358.4	32.9	177373	2	AP002452	AP002452 Homo sapi
	35	358.4	32.9	196039	2	AC055757	AC055757 Homo sapi
	36	357.2	32.8	1268	10	CGU81045	U81045 Cricetulus
	37	354.4	32.5	1400	10	BC037690	BC037690 Mus muscu
	38	353.4	32.4	356	6	AX247461	AX247461 Sequence
	39	353.4	32.4	1446	10	BC079133	BC079133 Rattus no
	40	344.6	31.6	1413	10	AF182168	AF182168 Rattus no
	41	332	30.5	1315	10	BC005789	BC005789 Mus muscu
	42	331.6	30.4	1304	10	MMU04204	U04204 Mus musculu
	43	327.2	30.0	1225	6	CQ777549	CQ777549 Sequence
	44	327.2	30.0	1225	10	MUSMVDP	J05663 Mouse vas d
	45	327	30.0	993	10	RNO277957	AJ277957 Rattus no

Job time : 5184 secs

us-10-653-681a-1.rng

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on:

March 22, 2005, 19:42:42; Search time 701 Seconds

(without alignments)
9204.733 Million cell updates/sec

Title:

US-10-653-681A-1

Perfect score: 1090

Sequence:

1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090

Scoring table: IDENTITY_NUC

Gapop 10.0, Gapext 1.0

Searched:

4390206 seqs, 2959870667 residues

Total number of hits satisfying chosen parameters:

8780412

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

N_Geneseq_16Dec04:* geneseqn1980s:* geneseqn1990s:* geneseqn2000s:*
geneseqn2001as:* geneseqn2001bs:* geneseqn2002as:* geneseqn2002bs:* geneseqn2003as:* geneseqn2003bs:* geneseqn2003cs:* 10: geneseqn2003ds:* 11: geneseqn2004as:* 12: 13: geneseqn2004bs:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	833	76.4	1337	5	AAS68608	Aas68608 DNA encod
2	833	76.4	1337	10	ADD71032	Add71032 Human ald
3	832.2	76.3	1508	3	AAC98140	Aac98140 Human col
4	828.2	76.0	1560	12	ADJ75119	Adj75119 Marker ge
5	828.2	76.0	1560	12	ADN04246	Adn04246 Antipsori
6	828.2	76.0	1560	13	ACN38728	Acn38728 Tumour-as
7	828.2	76.0	1560	13	ADS85007	Ads85007 Human ato
8	822.8	75.5	1549	12	ADK70274	Adk70274 Respirato
9	796.6	73.1	1316	5	AAF68405	Aaf68405 Human lun
10	796.6	73.1	1316	6	ABK38316	Abk38316 cDNA enco

```
us-10-653-681a-1.rng
                                                                                                            Ads73134 Human kid
Aca10645 Human lun
Abx99596 Lung canc
Adh45842 Human lun
                                                          ADS73134
              796.6
                             73.1
                                          1316
                             73.1
73.1
73.1
     12
              796.6
                                           1316
                                                      8
                                                           ACA10645
     13
              796.6
                                           1316
                                                            ABX99596
              796.6
                                                      10 ADH45842
     14
                                           1316
              796.6
                             73.1
                                                             ADE72379
                                                                                                              Ade72379 Human lun
     15
                                           1316
                                                      12
                             73.1
70.7
     16
              796.6
                                           1316
                                                      13
                                                             ADJ19761
                                                                                                              Adj19761 Human lun
                                                                                                              Adh13722 Human ENZ
                                                             ADH13722
ADC97771
                                           1621
              770.8
     17
                                                      12
                                                                                                              Adc97771 Human ARL
Acn92921 Breast ca
Adr98739 Lung spec
Adh45334 Human enz
                             65.9
                                           1315
                                                      10
     18
                718
                                          1816
770
1170
                                                            ACN92921
ADR98739
ADH45334
              635.4
                             58.3
                                                      11
     19
                                                      13
12
                  616
     20
                             56.5
              540.2
                             49.6
     21
                                                                                                            Acc83986 Human ald
Abz84625 Toxicolog
Adc10183 Human NOV
Aba94733 Human dru
Adc10185 Human NOV
                                                      9 ACC83986
10 ABZ84625
     22
                              46.6
                                           1080
                  508
              439.8
                                            558
971
                              40.3
     23
     24
                  432
                              39.6
                                                      10
                                                            ADC10183
                                                     6 ABA94733
10 ADC10185
                  431
431
                                            951
     25
                              39.5
                                                                                                            Adc10185 Human NOV
Aas39335 Novel hum
Aas39333 Novel hum
Aas72230 DNA encod
Aas92672 DNA encod
Adj75983 Marker ge
Adp28822 Human sec
Aaz24592 Human lun
Aac65831 Human lun
Ab149050 Human lun
Abq92236 Human lun
Ada28651 Human lun
Ada28651 Human lun
Adm56549 Human lun
Adm56549 Human lun
Adm89593 Human lun
Ada28650 Human lun
Ada28650 Human lun
     26
27
28
29
30
                              39.5
                                             966
                                                      4 AAS39335
4 AAS39333
5 AAS72230
5 AAS92672
              360.4
                              33.1
                                             364
                                           356
1926
              353.4
333.8
                              32.4
                              30.6
                                          1926
1926
3620
1225
540
585
585
              333.8
                              30.6
              333.8
     31
                              30.6
                                                      5 AAS69995
     32
33
                                                      12
                                                            ADJ75983
              327.2
317
                              30.0
                              29.1
                                                      12 ADP28822
                             29.0
29.0
29.0
     34
                  316
                                                      2
                                                            AAZ24592
                                                         AAC65831
ABL49050
     35
                  316
                                                      3
     36
37
                   316
                                                      6
                                             585
585
                                                      6 ABQ92236
9 ADA28651
                              29.0
                  316
                316
                             29.0
     38
                                             585
585
                                                      10 ADE53611
     39
                  316
                              29.0
                              29.0
                                                      10
                                                             ADH36746
     40
                  316
                                            585
585
857
858
858
                              29.0
                                                              ADM56549
     41
                   316
                                                      12
                                                            ADN89593
     42
                  316
                              29.0
                                                      12
                                                                                                             Ada28650 Human lun
                              29.0
29.0
                                                            ADA28650
     43
                  316
                                                      9
C
                                                     2 AAZ24591
3 AAC65830
                                                                                                             Aaz24591 Human lun
     44
                   316
C
                  316
                              29.0
                                                                                                             Aac65830 Human lun
```

us-10-653-681a-1.rni

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on:

March 22, 2005, 22:13:45; Search time 228 Seconds

(without alignments)

7822.551 Million cell updates/sec

Title:

US-10-653-681A-1

Perfect score:

1090

Sequence:

1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090

Scoring table:

IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched:

1202784 segs, 818138359 residues

Total number of hits satisfying chosen parameters:

2405568

Minimum DB seg length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

Issued_Patents_NA:*

/cgn2_6/ptodata/1/ina/5A_COMB.seq:*
/cgn2_6/ptodata/1/ina/5B_COMB.seq:*
/cgn2_6/ptodata/1/ina/6A_COMB.seq:*
/cgn2_6/ptodata/1/ina/6B_COMB.seq:*
/cgn2_6/ptodata/1/ina/PCTUS_COMB.seq:*
/cgn2_6/ptodata/1/ina/backfiles1.seq:*

3:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	828.2	76.0	1515	4	us-09-949-016-1344	Sequence 1344, Ap
2	796.6	73.1	· 1316	4	us-09-702 - 705-323	Sequence 323, App
3	796.6	73.1	1316	4.	us-09-736-457-323	Sequence 323, App
4	796.6	73.1	1316	4	US-09-614-124B-323	Sequence 323, App
5	796.6	73.1	1316	4	us-09-671-325-323	Sequence 323, App
6	796.6	73.1	1316	4	us-09-589-184-323	Sequence 323, App
7	796.6	73.1	1316	4	us-09-658-824-323	Sequence 323, App
8	389.2	35.7	914	4	us-09-949-016-3127	Sequence 3127, Ap
9	358.4	32.9	17740	4	us-09-949-016-13086	Sequence 13086, A
10	328.6	30.1	601	4	us-09-949-016-46452	Sequence 46452, A
$\bar{1}1$	316	29.0	585	3	us-09-123-912-92	Sequence 92, Appl
12	316	29.0	585	3	us-09-643-597-92	Sequence 92, Appl
$\overline{13}$	316	29.0	585	4	US-09-480-884A-92	Sequence 92, Appl
$\overline{14}$	316	29.0	585	4	US-09-542-615A-92	Sequence 92, Appl
15	316	29.0	585	4	US-09-606-421B-92	Sequence 92, Appl
$\overline{16}$	316	29.0	585	4	US-09-221-107-92	Sequence 92, Appl
17	316	29.0	585	4	US-09-466-396A-92	Sequence 92, Appl

```
us-10-653-681a-1.rni
                                                                                                           Sequence 92, App]
                             29.0
                                           585
                                                        US-09-476-496A-92
                  316
                                                                                                          Sequence 92, Appl
Sequence 92, Appl
Sequence 91, Appl
Sequence 91, Appl
                                           585
                                                         US-09-630-940B-92
     19
                  316
                             29.0
                                                    4
                                           585
858
858
858
                                                         US-09-285-479-92
US-09-123-912-91
     20
                  316
                             29.0
     21
                  316
                             29.0
                                                    3
c
                             29.0
                                                         US-09-643-597-91
                  316
     22
c
                             29.0
                                                         US-09-480-884A-91
                                                                                                          Sequence 91, Appl
     23
                  316
c
                                                                                                           Sequence 91, Appl
                                           858
858
                                                         US-09-542-615A-91
                            29.0
c
     24
                  316
                                                    4
                                                                                                           Sequence 91, Appl
                            29.0
                                                        US-09-606-421B-91
     25
                  316
c
                                                                                                          Sequence 91, Appl
Sequence 91, Appl
Sequence 91, Appl
Sequence 91, Appl
                                           858
     26
                  316
                             29.0
                                                    4
                                                         US-09-221-107-91
c
                                                    4 US-09-466-396A-91
4 US-09-476-496A-91
4 US-09-630-940B-91
                            29.0
C
     27
                  316
                                           858
                                           858
858
                             29.0
C
     28
                  316
                             29.0
     29
                  316
                                         858
1335
                                                                                                          Sequence 91, Appl
Sequence 1010, Ap
                                                    4 US-09-285-479-91
                             29.0
     30
                  316
              304.8
                             28.0
                                                    4 US-09-023-655-1010
     31
                                                                                                          Sequence 1010, Ap
Sequence 3, Appli
Sequence 3, Appli
Sequence 46451, A
Sequence 13724, A
Sequence 14669, A
                                                   3 US-08-801-344-3
3 US-09-498-599-3
4 US-09-949-016-46451
4 US-09-270-767-13724
4 US-09-949-016-14869
                                         1337
1337
     32
                  292
                             26.8
                 292
                             26.8
     33
              288.4
170.2
                             26.5
                                           601
     34
                                        1290
15141
     35
                             15.6
     36
37
              169.8
165.4
                             15.6
15.2
                                                                                                    Sequence 14869, A Sequence 46442, A Sequence 113475, Sequence 31, Appl Sequence 6562, Ap
                                           601
                                                         US-09-949-016-46442
                                           601
233
233
                             15.2
13.3
              165.4
                                                         US-09-949-016-113475
     38
                                                         US-09-702-705-31
US-09-736-457-31
     39
              145.4
                                                    4
                             13.3
     40
              145.4
                                                    4 US-09-614-124B-31
4 US-09-671-325-31
4 US-09-589-184-31
4 US-09-658-824-31
     41
              145.4
                             13.3
                                           233
                                           233
233
233
     42
              145.4
                             13.3
              145.4
145.4
                             13.3
13.3
     43
     44
                                                   4 US-09-313-294A-6562
                                           292
              141.6
                             13.0
```

us-10-653-681a-1.rnpb

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

March 23, 2005, 00:12:25; Search time 748 Seconds Run on:

(without alignments) 8675.151 Million cell updates/sec

Title: US-10-653-681A-1

Perfect score: 1090

1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090 Sequence:

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

5544816 segs, 2976611598 residues Searched:

Total number of hits satisfying chosen parameters: 11089632

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100% Listing first 45 summaries

Database :

Published_Applications_NA:* /cgn2_6/ptodata/2/pubpna/US07_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US07_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US06_NEW_PUB.seq:*
/cgn2_6/ptodata/2/pubpna/US06_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US07_NEW_PUB.seq:*
/cgn2_6/ptodata/2/pubpna/PCTUS_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US08_NEW_PUB.seq:* 8: 9:

/cgn2_6/ptodata/2/pubpna/US08_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US09A_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US09B_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US09C_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US09C_PUBCOMB.seq:*
/cgn2_6/ptodata/2/pubpna/US09_NEW_PUB.seq:* 10: 11: 12: /cgn2_6/ptodata/2/pubpna/US10A_PUBCOMB.seq:* 13:

/cgn2_6/ptodata/2/pubpna/US10B_PUBCOMB.seq:* /cgn2_6/ptodata/2/pubpna/US10C_PUBCOMB.seq:* 14: 15:

/cgn2_6/ptodata/2/pubpna/US10D_PUBCOMB.seq:* /cgn2_6/ptodata/2/pubpna/US10E_PUBCOMB.seq:* /cgn2_6/ptodata/2/pubpna/US10F_PUBCOMB.seq:* /cgn2_6/ptodata/2/pubpna/US10_NEW_PUB.seq:* 16: 17:

18: 19:

/cgn2_6/ptodata/2/pubpna/US11_NEW_PUB.seq:* 20:

/cgn2_6/ptodata/2/pubpna/US60_NEW_PUB.seq:* 21: 22: /cgn2_6/ptodata/2/pubpna/US60_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match I	Length	DB	ID	Description
1	1090	100.0	1090	19	US-10-653-681A-1	Sequence 1, Appli

```
us-10-653-681a-1.rnpb
                                                                                                                                                                                                                                                us-10-653-681a-1.rnpb

9    US-09-925-299-150

10    US-09-925-299-150

9    US-09-736-457-323

9    US-09-902-941-323

9    US-09-849-626-323

10    US-09-476-300-323

14    US-10-017-754-323

15    US-10-102-524-1731
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Sequence 150, App
Sequence 150, App
Sequence 323, App
                                                                                                                                                                                                 1508
                                                                  832.2
                                                                                                                                      76.3
                                                                  832.2
796.6
                                                                                                                                    76.3
73.1
73.1
73.1
73.1
73.1
73.1
73.1
65.9
64.9
58.3
39.5
                                                                                                                                                                                                  1508
                                                                                                                                                                                                 1316
1316
                                                                   796.6
796.6
                                                                                                                                                                                                  1316
                                                                   796.6
                                                                                                                                                                                                  1316
                                                                                                                                                                                                 1316
1316
1316
1316
1315
1279
1816
                                                                                                                                                                                                                                          14 US-10-017-754-323
15 US-10-102-524-1731
16 US-10-113-872-323
17 US-10-283-017-323
15 US-10-274-375-1
19 US-10-653-681A-3
14 US-10-198-846-14071
15 US-10-274-694-36
18 US-10-332-448-36
10 US-09-803-719-2393
10 US-09-803-719-2391
9 US-09-850-716A-92
9 US-09-850-716A-92
9 US-09-897-778-92
10 US-09-466-396A-92
14 US-10-007-700-92
15 US-10-117-982-92
17 US-10-313-986-92
18 US-10-775-972-92
9 US-09-850-716A-91
9 US-09-850-716A-91
10 US-09-466-396A-91
11 US-10-175-972-91
12 US-10-313-986-91
13 US-10-775-972-91
14 US-10-737-450-97
17 US-10-641-643-1010
9 US-09-864-864-332
15 US-10-171-581-1
17 US-10-172-118-641
17 US-10-342-887-641
18 US-10-717-597-289
                                                                   796.6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Sequence 323, App Sequence 323, App Sequence 323, App Sequence 1, Appli Sequence 3, Appli Sequence 36, Appl Sequence 36, Appl Sequence 2393, Ap Sequence 2393, Ap Sequence 92, Appl Sequence 91, Appl Sequence 91,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Sequence 1731, Ap
                                                                   796.6
                           1Ō
                                                                   796.6
                          11
                                                                   796.6
                                                                                   718
707
                          12
                           13
                                                                   635.4
                                                                                                                                                                                                       951
951
364
                          15
                                                                                    431
                         16
17
18
                                                                                    431
                                                                                                                                       39.5
                                                                   360.4
353.4
                                                                                                                                       33.1
                                                                                                                                    32.4
29.0
29.0
29.0
29.0
29.0
                                                                                                                                                                                                  19
20
21
22
23
24
25
                                                                                    316
                                                                                    316
316
                                                                                    316
                                                                                    316
                                                                                 316
316
                                                                                                                                       29.0
                                                                                                                                     29.0
29.0
29.0
                         26
27
28
                                                                                    316
                                                                                   316
316
 C
                                                                                                                                      29.0
29.0
                                                                                   316
                           30
                                                                             316
c
                                                                                   316
316
316
                                                                                                                                                                                                                                          14 US-10-007-700-91 Sequence 91, Appl 15 US-10-117-982-91 Sequence 91, Appl 17 US-10-313-986-91 Sequence 91, Appl 18 US-10-775-972-91 Sequence 91, Appl 18 US-10-737-450-97 Sequence 97, Appl 17 US-10-641-643-1010 Sequence 1010, Appl 17 US-10-171-581-1 Sequence 332, Appl 17 US-10-172-118-641 Sequence 641, Appl 18 US-10-717-597-289 Sequence 641, Appl 18 US-10-416-330-21 Sequence 289, Appl 18 US-10-416-330-21 Sequence 29, Appl 17 US-10-191-803-12 Sequence 29, Appl 17 US-10-152-319A-1492 Sequence 1492, Appl 18 US-10-152-319A-1492 Sequence 1492, Appl 19 US-10-152-319A-1492
                           31
32
                                                                                                                                       29.0
 C
                                                                                                                                       29.0
c
c
                           33
                                                                                                                                        29.0
                                                                  316
304.8
304.8
                                                                                                                                       29.0
28.0
28.0
                           34
                           35
36
37
                                                                    304.8
                                                                                                                                        28.0
                           38
                                                                     304.8
                                                                                                                                        28.0
                                                                     304.8
304.8
                                                                                                                                         28.0
                           39
                                                                                                                                         28.0
                           40
                           41
                                                                     304.8
                                                                                                                                         28.0
                                                                                                                                        28.0
26.8
                           42
                                                                     304.8
                                                                                     292
                                                                                     292
                                                                                                                                         26.8
                                                                                     292
                                                                                                                                         26.8
                                                                                                                                                                                                   1339
```

OM nucleic - protein search, using frame plus n2p model March 18, 2005, 23:59:48; Search time 182.5 Seconds Run on: (without alignments) 4619.932 Million cell updates/sec US-10-653-681A-1 Title: Perfect score: 1928 1 caaaaacagcaacagaaagc.....ataaaaaaaataataatcat 1090 Sequence: BLOSUM62 Scoring table: Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 6.0 , Delext Delop 2105692 segs, 386760381 residues Searched: 4211384 Total number of hits satisfying chosen parameters: Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ n2p.model -DEV=xlp Q=/cgn2 1/USPTO spool_p/US10653681/runat_18032005_171050_1272/app_query.fasta_1. 1287 -DB=A Geneseq 16Dec04 -QFMT=fastan -SUFFIX=n2p.rag -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10653681_@CGN_1_1_224_@runat_18032005_171050_1272 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Database : A Geneseq 16Dec04:* 1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:* 4: geneseqp2001s:* 5: geneseqp2002s:* 6: geneseqp2003as:*

Pred. No. is the number of results predicted by chance to have a

7:

geneseqp2003bs:*
geneseqp2004s:*

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	1274	66.1	339	4	ABG04421	Abg04421 Novel hum
2	1268	65.8	358	3	AAB53383	Aab53383 Human col
3	1159	60.1	316	3	AAB10872	Aab10872 Human ARL
4	1159	60.1	316	7	ABR62325	Abr62325 Human ald
5	1159	60.1	316	7	ADC97773	Adc97773 Human ARL
6	1159	60.1	316	8	ADK70537	Adk70537 Respirato
7	1159	60.1	316	8	ADJ75577	Adj75577 Marker ge
8	1159	60.1	316	8	ADN04247	Adn04247 Antipsori
9	1159	60.1	316	8	ABM80941	Abm80941 Tumour-as
10	1159	60.1	316	8	ADS85008	Ads85008 Human ato
11	1154	59.9	316	4	AAB76864	Aab76864 Human lun
12	1154	59.9	316	5	AAU85519	Aau85519 Clone #18
13	1154	59.9	316	6	ABU69491	Abu69491 Human lun
14	1154	59.9	316	6	ABU66393	Abu66393 Lung canc
15	1154	59.9	316	7	ADH45859	Adh45859 Human lun
16	1154	59.9	316	8	ADE71611	Ade71611 Human lun
17	1154	59.9	316	8	ADJ19778	Adj19778 Human lun
18	1084.5	56.2	293	8	ADH45296	Adh45296 Human enz
19	1073	55.7	316	7	ADC97772	Adc97772 Human ARL
20	1058	54.9	316	5	ABB07530	Abb07530 Human dru
21	1058	54.9	316	7	ABR62324	Abr62324 Human ald
22	1058	54.9	316	7	ADC10186	Adc10186 Human NOV
23	1056	54.8	316	7	ADC10184	Adc10184 Human NOV
24	961	49.8	316	3	AAB10871	Aab10871 Murine MV
25	961	49.8	316	8	ADJ76302	Adj76302 Marker ge
26	920	47.7	287	8	ADH13653	Adh13653 Human ENZ
27	889	46.1	316	2	AAW69357	Aaw69357 Rat lens
28	889	46.1	316	6	ABM04798	Abm04798 Rat aldos
29	884	45.9	315	7	ADE57875	Ade57875 Rat Prote
30	884	45.9	315	7	ADE57879	Ade57879 Rat Prote
31	884	45.9	315	7	ADE57883	Ade57883 Rat Prote
32	884	45.9	315	7	ADE57887	Ade57887 Rat Prote
33	884	45.9	315	7	ADE57867	Ade57867 Rat Prote
34	884	45.9	315	7	ADE57871	Ade57871 Rat Prote
35	882	45.7	316	8	ADS85097	Ads85097 Mouse ato
36	882	45.7	328	4	ABG11687	Abg11687 Novel hum
37	879	45.6		5	ABB83356	Abb83356 Murine TS
38	878	45.5			AAR15425	Aar15425 Human ald
39	876	45.4		.7	ADE57869	Ade57869 Human Pro
40	876	45.4		7	ADE57877	Ade57877 Human Pro
41	876	45.4		7	ADE57885	Ade57885 Human Pro
42	876	45.4		7	ADE57881	Ade57881 Human Pro
43	876	45.4		7	ADE57889	Ade57889 Human Pro
44	876	45.4			ADE57873	Ade57873 Human Pro
45	876	45.4			ADP90915	Adp90915 Human ald
43	0,0		913	-		