Федеральное государственное автономное образовательное учреждение высшего образования

"Национальный исследовательский университет "Высшая школа экономики"

Московский институт электроники и математики им. А.Н.Тихонова

Департамент компьютерной инженерии

Лабораторная работа № 4

по курсу «Базы данных»

Тема: Изучение операций реляционной алгебры

Студент: Молчанов Данил

Андреевич

Группа: М_БД_8

Преподаватель: Чернышов Л.Н.

Дата:

Оценка:

• Постановка задачи

Необходимо написать на языке SQL запросы, которые реализуют операции реляционной алгебры. Если для демонстрации операций PA недостаточно отношений, созданных во время выполнения работы \mathbb{N} 1, то следует создать дополнительные отношения.

• Операция "Проекция":

Это унарная операция (выполняемая над одним отношением), служащая для выбора подмножества атрибутов из отношения R. Она уменьшает арность отношения и может уменьшить мощность отношения за счет исключения одинаковых кортежей.

Для отношения employment_history выберем уникальные атрибуты employee, post:

```
select distinct employee, post
from employment history;
```

	employee numeric (6)	post character (50)
1	4321	third post
2	2225	first post
3	6663	fourth post
4	1234	fourth post
5	1234	third post
6	4321	first post
7	6663	fourht post
8	2225	third post
9	2225	fourth post
10	1234	second post
11	2225	second post

Изображение 1 – Операция "Проекция".

• Операция "Селекция":

Это унарная операция, результатом которой является подмножество кортежей исходного отношения, соответствующих условиям, которые накладываются на значения одного или нескольких атрибутов. Арность отношения в результате селекции не меняется.

Для отношения employee произведём селекцию $\beta_{curr-department=2}$:

```
select *
from employee
where curr department = 2;
```

Результат:

	security_number [PK] numeric (6)	surname character (20)	name_and_patronymic character (30)	taxpayer_number character (12)	gender character (1)	date_of_birth date	curr_department numeric (3)	curr_post character (30)	date_of_taking_office date	work_experience numeric (5,2)
1	1234	Ivanov	Ivan Ivanovich	091827465678	m	1994-12-07	2	fourth post	2022-01-01	2.50
2	1324	Danilov	Danil Alexandrovich	019827445568	m	1992-05-30	2	third post	2022-01-15	2.50
3	6663	Mulyar	Ivan Pavlovich	191824435678	m	1984-12-02	2	engineer test post	2020-03-07	5.50
4	2425	Cherepanov	Dimitry Petrovich	02313464671	m	2001-01-03	2	engineer-middle	2022-11-22	2.00
5	101	Shelest	Maxim Antonovich	12345678901	m	1987-01-07	2	main engineer	2012-11-22	12.00

Изображение 2 – Операция "Селекция".

• Декартово произведение:

Это бинарная операция над разносхемными отношениями, соответствующая определению декартова произведения. Кортежи результирующего отношения состоят из всех атрибутов исходных отношений.

Для отношений posts(post_name) и departments(department_name) выполним декартовое произведение:

```
select post_name, department_name
from posts, departments;
```

	post_name character (50)	department_name character (50)
1	first post	first department
2	first post	second department
3	first post	third department
4	second post	first department
5	second post	second department
6	second post	third department
7	third post	first department
8	third post	second department
9	third post	third department
10	fourth post	first department

Изображение 3 – Декартово произведение.

• Объединение:

Объединение — бинарная операция над односхемными отношениями. Объединением односхемных отношений R и S называется отношение T = R U S, которое включает в себя все кортежи обоих отношений без повторов.

```
Объединим отношения employee c \beta_{data-of-taking-office < '2021-01-01'} employee c \beta_{work-experience > 2}:

select security_number, taxpayer_number, curr_department from employee where date_of_taking_office < '2021-01-01' UNION select security_number, taxpayer_number, curr_department from employee where work experience > 2;
```

	security_number numeric (6)	taxpayer_number character (12)	curr_department numeric (3)
1	101	12345678901	2
2	6663	191824435678	2
3	7777	77724827777	3
4	2225	503917664333	3
5	1234	091827465678	2
6	1324	019827445568	2
7	4321	053917464323	3

Изображение 4 – Объединение.

• Разность:

Разность — бинарная операция над односхемными отношениями. Разностью отношений R и S называется множество кортежей R, не входящих в S.

Из отношения employee вычтем отношение employee с проекций $\beta_{\it salary\,>\,15000}$

```
select surname, name_and_patronymic,
curr_department
from employee
where curr_post not in
(
    select post_name
    from posts
    where salary > 15000
)
```

	surname character (20)	name_and_patronymic character (30)	curr_department numeric (3)
1	Danilov	Danil Alexandrovich	2
2	Nikolenko	Anastasia Stanislavovna	3
3	Khafizov	Ayrat Faurovich	1
4	Shelest	Maxim Antonovich	2

• Пересечение:

Пересечение — бинарная операция над односхемными отношениями. Пересечение односхемных отношений R и S есть подмножество кортежей, принадлежащих обоим отношениям. Это можно выразить через разность:

```
R \cap S = R - (R - S).
```

Выберем security_number, surname и name_and_patronymic из отношения employee, которые находятся в множестве с $\beta_{work-experience > 2}$ и

```
β<sub>curr-post='first post' OR curr-post='fourth post'</sub>:

select distinct security_number, surname,
name_and_patronymic
from employee
where security_number in
(
select security_number from employee
where work_experience > 2
)
and security_number in
(
select security_number from employee
where curr_post = 'first post'
or curr_post = 'fourth post'
```

	security_number [PK] numeric (6)	surname character (20)	name_and_patronymic character (30)	<i>></i>
1	1234	Ivanov	Ivan Ivanovich	
2	4321	Smirnova	Alena Alexandrovna	

Изображение 6 – Пересечение.

• Соединение:

Результат:

Соединения – бинарная операция над разносхемными отношениями. Эта операция определяет подмножество декартова произведения двух разносхемных отношений. Кортеж декартова произведения включает атрибуты обоих исходных отношений. Он входит в результирующее отношение, если выполняется условие соединения F, которое задаёт соотношение значений атрибутов разных таблиц.

Соединим отношения employee и departments по атрибуту num:

```
select l.surname, l.name_and_patronymic,
j.department_name, l.curr_post
    from employee l inner join departments j
    on l.curr department = j.num
```

Результат:

	surname character (20)	name_and_patronymic character (30)	department_name character (50)	curr_post character (30)
1	Ivanov	Ivan Ivanovich	second department	fourth post
2	Smirnova	Alena Alexandrovna	third department	first post
3	Danilov	Danil Alexandrovich	second department	third post
4	Ivanova	Viktoria Arturovna	third department	fourth post
5	Mulyar	Ivan Pavlovich	second department	engineer test post
6	Nikolenko	Anastasia Stanislavovna	third department	second-engineer
7	Khafizov	Ayrat Faurovich	first department	main engineer
8	Cherepanov	Dimitry Petrovich	second department	engineer-middle
9	Yagzho	Alexey Andreevich	third department	first post
10	Shelest	Maxim Antonovich	second department	main engineer
11	Zakharova	Elizaveta Ivanovna	third department	fourth post

Изображение 7 – Соединение.

• Список литературы:

1. PostgreSQL Documentation - The PostgreSQL Global Development Group (1996 - 2023) [Электронный ресурс]. URL: https://www.postgresql.org/docs/