Algoritmi e Strutture Dati

a.a. 2014/15

Compito del 11/06/2015

Cognome:	Nome:
Matricola:	E-mail:

Parte I

(30 minuti; ogni esercizio vale 2 punti)

- 1. Nell'ipotesi di indirizzamento aperto, scrivere uno pseudocodice per HASH-SEARCH. Quale è la complessità nel caso medio?
- 2. Per un certo problema sono stati trovati due algoritmi risolutivi (A₁ e A₂) con i seguenti tempi di esecuzione:

$$A_1: T(n) = 3 \cdot T(n/2) + n^2$$

$$A_2$$
: $T(n) = 4 \cdot T(n/2) + n^2$

Si dica, giustificando tecnicamente la risposta, quale dei due algoritmi è preferibile per input di dimensione sufficientemente grande.

3. Si determini un albero di copertura minimo nel seguente grafo:

Algoritmi e Strutture Dati

a.a. 2014/15

Compito del 11/06/2015

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

1. Scrivere un algoritmo **efficiente** che date in input due stringhe di lunghezza *n* i cui caratteri variano in {a, b, ..., x, y, z} rappresentate mediante due array di caratteri A[1..n] e B[1..n], restituisce *true* se e solo se le due stringhe sono una l'anagramma dell'altra. Analizzare la complessità dell'algoritmo.

- 2. Dati due alberi binari di ricerca T₁ e T₂ tali che le chiavi in T₁ sono tutte minori delle chiavi in T₂, scrivere una procedura che restituisce un albero di ricerca contenente tutte le chiavi in tempo O(h), dove h è l'altezza massima dei due alberi. Quale è l'altezza dell'albero risultante?
- 3. Si definisca <u>formalmente</u> la relazione di riducibilità polinomiale tra problemi decisionali (\leq_P) e si stabilisca se le seguenti affermazioni sono vere o false:
 - 1) La relazione \leq_P è transitiva
 - 2) La relazione \leq_P è riflessiva
 - 3) Se \leq_P è simmetrica, allora P = NPC
 - 4) Se $\mathcal{P} \leq_{\mathbb{P}} \mathcal{Q}$ e $\mathcal{Q} \in \mathbb{P}$, allora $\mathcal{P} \in \mathbb{P}$
 - 5) Se \mathcal{P} , $\mathcal{Q} \in NPC$, allora $\mathcal{P} \leq_{P} \mathcal{Q}$ se e solo se $\mathcal{Q} \leq_{P} \mathcal{P}$

Nel primo caso si fornisca una dimostrazione <u>rigorosa</u>, nel secondo un controesempio. (**Nota:** in caso di discussioni poco formali l'esercizio non verrà valutato pienamente.)

4. Si scriva l'algoritmo di Floyd-Warshall, si dimostri la sua correttezza, si fornisca la sua complessità computazionale e si simuli accuratamente la sua esecuzione sul seguente grafo:

