Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

IIMAS UNAM

8 de diciembre de 2023

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambient

Resultados

La interfaz agente-ambiente

Figure 3.1: The agent–environment interaction in a Markov decision process.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambient

lesultados

Actor-critic

Un método actor-crítico aprende las funciones de aproximación tanto para la política como para la función de valor.

- Actor: la función relacionada con la política $(\pi(a|s) \circ \mu(s))$.
- ightharpoonup Crítico: la función relacionada con el valor $(q(s, a) \circ v(s))$.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambient

Cesultados

El problema

Problema: encontrar una política donde las variables acción (a) y (estado) s son continuas, y probar resultados en problemas de control físico (como balancear un péndulo o manejar un carro).

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambiento

esultados

Los agentes

Para el agente se utilizaron los siguientes algoritmos:

- ► Deep Q-Network (DQN)
- ▶ Deep Deterministic Policy Gradient (DDPG)

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

Agente y ambiente

Resultados

El ambiente

Ambos algoritmos se probaron en el problema de cartpole, el cual consiste en balancear un péndulo moviendo el carro de manera horizontal.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambiente

Resultados

DQN vs DDPG

DQN

- ► Aproxima directamente la función Q
- Opera con acciones discretas
- Solo tiene una red que aproxima Q

DDPG

- Aproxima una política determinista que maximice la esperanza
- Opera con acciones continuas
- lacktriangle Tiene dos redes, la que aproxima Q y la que aproxima μ

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambiente

Resultados

Recompensa en DDPG

Número de pasos: 40,000

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambient

Resultados

Recompensa en DQN

Número de episodios: 30,000

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje poi refuerzo

Agente y ambient

Resultados

Lonciusiones

Conclusiones

- ► La discretización de las acciones para usar DQN puede resultar mejor que DDPG si la dimensión de la acción es baja.
- ► El tiempo de cómputo de DQN puede ser mayor debido a que tiene que iterar sobre el espacio de estados discretizados.
- ► El agente DDPG puede no apreder correctamente si el ruido es muy alto.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Agente y ambiente

esultados

