ASSET PURCHASES AND DEFAULT-INFLATION RISKS IN NOISY FINANCIAL MARKETS

Gaetano Gaballo
HEC Paris and CEPR

Carlo Galli UC3M

Expectations in Dynamic Macroeconomic Models
BSE Summer Forum, June 20th, 2023

MOTIVATION

Largest part of sovereign debt held outside of central banks, supporting price discovery

Developments in the bond free float (percent)

Sources: SHS, ECB, ECB Calculations.

"The shadow of fiscal dominance: misconceptions, perceptions and perspectives" Isabel Schnabel, September 11th 2020

- Irrelevance results under complete info & frictionless markets
 - Wallace (81), Backus Kehoe (89)

- Irrelevance results under complete info & frictionless markets
 - Wallace (81), Backus Kehoe (89)
- from Wallace irrelevance (Macro) \longleftrightarrow to preferred-habitat traders (Finance)
 - Curdia Woodford (11), Gertler Karadi (11), Chen et al. (12), Cui Sterk (21); Vayanos Vila (21), Costain et al. (22), Gourinchas et al. (22); Fanelli Straub (21), Itskhoki Mukhin (22); Corsetti Dedola (16)...

- Irrelevance results under complete info & frictionless markets
 - Wallace (81), Backus Kehoe (89)
- from Wallace irrelevance (Macro) \longleftrightarrow to preferred-habitat traders (Finance)
 - Curdia Woodford (11), Gertler Karadi (11), Chen et al. (12), Cui Sterk (21); Vayanos Vila (21),
 Costain et al. (22), Gourinchas et al. (22); Fanelli Straub (21), Itskhoki Mukhin (22); Corsetti Dedola (16)...
- APs and Information Frictions (\approx signaling CB objective/behavioral investors)
 - Mussa (81), Jeanne Svensson (07), Bhattarai et al. (22), Iovino Sergeyev (21)

Dispersed info absent in existing macro theories

- Irrelevance results under complete info & frictionless markets
 - Wallace (81), Backus Kehoe (89)
- from Wallace irrelevance (Macro) \longleftrightarrow to preferred-habitat traders (Finance)
 - Curdia Woodford (11), Gertler Karadi (11), Chen et al. (12), Cui Sterk (21); Vayanos Vila (21),
 Costain et al. (22), Gourinchas et al. (22); Fanelli Straub (21), Itskhoki Mukhin (22); Corsetti Dedola (16)...
- APs and Information Frictions (\approx signaling CB objective/behavioral investors)
 - Mussa (81), Jeanne Svensson (07), Bhattarai et al. (22), Iovino Sergeyev (21)

This paper

• APs and monetary-fiscal interactions in General Equilibrium

Dispersed info absent in existing macro theories

- Irrelevance results under complete info & frictionless markets
 - Wallace (81), Backus Kehoe (89)
- from Wallace irrelevance (Macro) \longleftrightarrow to preferred-habitat traders (Finance)
 - Curdia Woodford (11), Gertler Karadi (11), Chen et al. (12), Cui Sterk (21); Vayanos Vila (21),
 Costain et al. (22), Gourinchas et al. (22); Fanelli Straub (21), Itskhoki Mukhin (22); Corsetti Dedola (16)...
- APs and Information Frictions (\approx signaling CB objective/behavioral investors)
 - Mussa (81), Jeanne Svensson (07), Bhattarai et al. (22), Iovino Sergeyev (21)

This paper

- APs and monetary-fiscal interactions in General Equilibrium
- Imperfect financial markets generate inefficiently high returns

Dispersed info absent in existing macro theories

- Irrelevance results under complete info & frictionless markets
 - Wallace (81), Backus Kehoe (89)
- from Wallace irrelevance (Macro) \longleftrightarrow to preferred-habitat traders (Finance)
 - Curdia Woodford (11), Gertler Karadi (11), Chen et al. (12), Cui Sterk (21); Vayanos Vila (21),
 Costain et al. (22), Gourinchas et al. (22); Fanelli Straub (21), Itskhoki Mukhin (22); Corsetti Dedola (16)...
- APs and Information Frictions (\approx signaling CB objective/behavioral investors)
 - Mussa (81), Jeanne Svensson (07), Bhattarai et al. (22), Iovino Sergeyev (21)

This paper

- APs and monetary-fiscal interactions in General Equilibrium
- Imperfect financial markets generate inefficiently high returns
- APs work through a **dispersed info channel** (w/ learning from prices)

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money

- Heterogeneous agents:
 - **Investors** save either in nominal defaultable **bonds** or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info
- Dispersed info \Rightarrow $\mathbb{E}[\text{bond return}] > \text{natural rate}$
 - govt issues bonds but repays with lump-sum taxes
 - Investors inefficiently save too much

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info
- Dispersed info \Rightarrow $\mathbb{E}[\text{bond return}] > \text{natural rate}$
 - govt issues bonds but repays with lump-sum taxes
 - Investors inefficiently save too much
- Non-contingent APs lower $\mathbb{E}[\text{bond return}]$

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info
- Dispersed info \Rightarrow $\mathbb{E}[\text{bond return}] > \text{natural rate}$
 - govt issues bonds but repays with lump-sum taxes
 - Investors inefficiently save too much
- Non-contingent APs lower E[bond return] ... but increases size of CB balance sheet!

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info
- Dispersed info \Rightarrow $\mathbb{E}[\text{bond return}] > \text{natural rate}$
 - govt issues bonds but repays with lump-sum taxes
 - Investors inefficiently save too much
- Non-contingent APs lower E[bond return] ... but increases size of CB balance sheet!
 - efficient with monetary dominance: CB losses rebated to govt

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info
- Dispersed info \Rightarrow $\mathbb{E}[\text{bond return}] > \text{natural rate}$
 - govt issues bonds but repays with lump-sum taxes
 - Investors inefficiently save too much
- Non-contingent APs lower E[bond return] ... but increases size of CB balance sheet!
 - efficient with monetary dominance: CB losses rebated to govt
 - inefficient with fiscal dominance: inflation depresses Savers' rate of return

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info
- Dispersed info \Rightarrow $\mathbb{E}[\text{bond return}] > \text{natural rate}$
 - govt issues bonds but repays with lump-sum taxes
 - Investors inefficiently save too much
- Non-contingent APs lower E[bond return] ... but increases size of CB balance sheet!
 - efficient with monetary dominance: CB losses rebated to govt
 - inefficient with fiscal dominance: inflation depresses Savers' rate of return
 - the optimal non-contingent AP policy balances the trade-off

- Heterogeneous agents:
 - Investors save either in nominal defaultable bonds or a safe asset
 - Savers save in money
 - ⇒ distinction irrelevant under common/perfect info
- Dispersed info \Rightarrow $\mathbb{E}[\text{bond return}] > \text{natural rate}$
 - govt issues bonds but repays with lump-sum taxes
 - Investors inefficiently save too much
- Non-contingent APs lower E[bond return] ... but increases size of CB balance sheet!
 - efficient with monetary dominance: CB losses rebated to govt
 - inefficient with fiscal dominance: inflation depresses Savers' rate of return
 - the optimal non-contingent AP policy balances the trade-off
- CB can do better! Price-targeting APs lower bond returns and are inflation-neutral.

OUTLINE

- OLG Model
 - Financial Market
- Equilibrium & Welfare in Monetary Dominance
 - without APs
 - with non-contingent APs
- Equilibrium & Welfare in Fiscal Dominance
 - with non-contingent APs
 - with price-targeting APs
- Final Discussion

Model

• Gov't issues nominal bonds B_t to satisfy spending need $\tilde{S}_t \sim U[0,1]$

$$\widetilde{S}_t = \frac{B_t}{P_t}$$

• Gov't issues nominal bonds B_t to satisfy spending need $\widetilde{S}_t \sim U[0,1]$

bond market clearing:
$$\widetilde{S}_t = \frac{B_t}{P_t} = \frac{B_{i,t}}{P_t} + \frac{B_{cb,t}}{P_t}$$

where $B_{i,t}$ and $B_{cb,t}$ are bought by Investors and Central Bank

• Gov't issues nominal bonds B_t to satisfy spending need $\tilde{S}_t \sim U[0,1]$

bond market clearing:
$$\widetilde{S}_t = \frac{B_t}{P_t} = \frac{B_{i,t}}{P_t} + \frac{B_{cb,t}}{P_t}$$

where $B_{i,t}$ and $B_{cb,t}$ are bought by Investors and Central Bank

• B_t yields return R_t at time t+1

• Gov't issues nominal bonds B_t to satisfy spending need $\widetilde{S}_t \sim U[0,1]$

bond market clearing:
$$\widetilde{S}_t = \frac{B_t}{P_t} = \frac{B_{i,t}}{P_t} + \frac{B_{cb,t}}{P_t}$$

where $B_{i,t}$ and $B_{cb,t}$ are bought by Investors and Central Bank

- B_t yields return R_t at time t+1
- Partial default exogenously occurs according to:

$$\theta = \begin{cases} \theta_H = 1 & \text{with probability} \quad q \\ \theta_L \in (0, 1) & \text{with probability} \quad 1 - q \end{cases}$$

• Gov't issues nominal bonds B_t to satisfy spending need $\widetilde{S}_t \sim U[0,1]$

bond market clearing:
$$\widetilde{S}_t = \frac{B_t}{P_t} = \frac{B_{i,t}}{P_t} + \frac{B_{cb,t}}{P_t}$$

where $B_{i,t}$ and $B_{cb,t}$ are bought by Investors and Central Bank

- B_t yields return R_t at time t+1
- Partial default exogenously occurs according to:

$$\theta = \begin{cases} \theta_H = 1 & \text{with probability} \quad q \\ \theta_L \in (0, 1) & \text{with probability} \quad 1 - q \end{cases}$$

• $R_t \theta_t$ is the **ex-post nominal return** on bonds

• Gov't budget

$$\widetilde{S}_t + \frac{\tau_t}{T_t} + \frac{R_{t-1}\theta_{t-1}}{\Pi_t} \frac{B_{t-1}}{P_{t-1}} = \frac{B_t}{P_t} + 2T_{o,t},$$

• Gov't budget

$$\widetilde{S}_t + \tau_t + \frac{R_{t-1}\theta_{t-1}}{\Pi_t} \frac{B_{t-1}}{P_{t-1}} = \frac{B_t}{P_t} + 2 T_{o,t},$$

• CB budget

$$\frac{R_{t-1}\theta_{t-1}}{\Pi_t} \frac{B_{cb,t-1}}{P_{t-1}} - \frac{B_{cb,t}}{P_t} + \tau_t + \frac{M_t}{P_t} = \frac{1}{\Pi_t} \frac{M_{t-1}}{P_{t-1}}$$

• Gov't budget

$$\widetilde{S}_t + \frac{\tau_t}{T_t} + \frac{R_{t-1}\theta_{t-1}}{\Pi_t} \frac{B_{t-1}}{P_{t-1}} = \frac{B_t}{P_t} + 2T_{o,t},$$

• CB budget

$$\frac{R_{t-1}\theta_{t-1}}{\Pi_t} \frac{B_{cb,t-1}}{P_{t-1}} - \frac{B_{cb,t}}{P_t} + \tau_t + \frac{M_t}{P_t} = \frac{1}{\Pi_t} \frac{M_{t-1}}{P_{t-1}}$$

• Fiscal-Monetary interaction depends on τ_t :

$$\tau_t = \begin{cases}
0 \,\forall t & \rightarrow \text{ fiscal dominance: no transfers}
\end{cases}$$

• Gov't budget

$$\widetilde{S}_t + \tau_t + \frac{R_{t-1}\theta_{t-1}}{\Pi_t} \frac{B_{t-1}}{P_{t-1}} = \frac{B_t}{P_t} + 2T_{o,t},$$

• CB budget

$$\frac{R_{t-1}\theta_{t-1}}{\Pi_t} \frac{B_{cb,t-1}}{P_{t-1}} - \frac{B_{cb,t}}{P_t} + \tau_t + \frac{M_t}{P_t} = \frac{1}{\Pi_t} \frac{M_{t-1}}{P_{t-1}}$$

• Fiscal-Monetary interaction depends on τ_t :

$$\tau_t = \begin{cases} 0 \ \forall t & \rightarrow \text{ fiscal dominance: no transfers} \\ \text{s.t.} \ \ \Pi_t = \Pi \ \forall t & \rightarrow \text{ monetary dominance: CB rebates losses} \end{cases}$$

Households: Savers

Agent $s \in [0, 1]$, born at time t, has utility:

$$U_{s,t} = \frac{C_{s,y,t}^{1-\sigma}}{1-\sigma} + C_{s,o,t+1}$$

and budget constraints:

young:
$$C_{s,y,t} = w - \bar{b}_{s,t}$$

old: $C_{s,o,t+1} = \Pi_t^{-1} \bar{b}_{s,t} - T_{o,t+1}$

 $\bar{b}_{s,t}$: savings

Households: Savers

Agent $s \in [0, 1]$, born at time t, has utility:

$$U_{s,t} = \frac{C_{s,y,t}^{1-\sigma}}{1-\sigma} + C_{s,o,t+1}$$

and budget constraints:

young:
$$C_{s,y,t} = w - \overline{b}_{s,t}$$

old: $C_{s,o,t+1} = \Pi_t^{-1} \overline{b}_{s,t} - T_{o,t+1}$

 $\bar{b}_{s,t}$: savings

Savings $\bar{b}_{s,t}$ chosen before any shock happens

$$C_{s,y,t}^{-\sigma} = \mathbb{E}\left[\Pi_{t+1}^{-1}\right]$$

Households: Investors

Agent $i \in [0, 1]$, born at time t, has utility:

$$U_{i,t} = \frac{C_{i,y,t}^{1-\sigma}}{1-\sigma} + C_{i,o,t+1}$$

and budget constraints

young:
$$C_{i,y,t} = w - \bar{b}_{i,t}$$

old: $C_{i,o,t+1} = Q(b_{i,t})\bar{b}_{i,t} - T_{o,t+1}$

 $\bar{b}_{i,t}$ savings; $b_{i,t}$: portfolio choice

Saving chosen before any shock happens:

$$C_{i,y,t}^{-\sigma} = \mathbb{E}[Q(b_{i,t})],$$

Households: Investors

Agent $i \in [0, 1]$, born at time t, has utility:

$$U_{i,t} = \frac{C_{i,y,t}^{1-\sigma}}{1-\sigma} + C_{i,o,t+1}$$

and budget constraints

young:
$$C_{i,y,t} = w - \bar{b}_{i,t}$$

old: $C_{i,o,t+1} = Q(\boldsymbol{b}_{i,t})\bar{b}_{i,t} - T_{o,t+1}$

 $\bar{b}_{i,t}$ savings; $b_{i,t}$: portfolio choice

Saving chosen before any shock happens:

$$C_{i,y,t}^{-\sigma} = \mathbb{E}[Q(\mathbf{b_{i,t}})],$$

FINANCIAL MARKET (ONLY FOR INVESTORS)

- Investor i enters the market with funds $\overline{b}_{i,t}$, cannot sell short $(\underline{b} = 0)$
- Shocks (θ, \widetilde{S}) realise
- Agents receive public + private information about the shocks \rightarrow information set Ω_i

FINANCIAL MARKET (ONLY FOR INVESTORS)

- Investor i enters the market with funds $\overline{b}_{i,t}$, cannot sell short $(\underline{b} = 0)$
- Shocks (θ, \widetilde{S}) realise
- Agents receive public + private information about the shocks \rightarrow information set Ω_i
- Portfolio allocation problem

$$\max_{b_{i,t} \in [0, \bar{b}_{i,t}]} \mathbb{E} \left[Q(b_{i,t}) | \Omega_{i,t} \right] \bar{b}_{i,t}$$

FINANCIAL MARKET (ONLY FOR INVESTORS)

- Investor i enters the market with funds $\bar{b}_{i,t}$, cannot sell short $(\underline{b} = 0)$
- Shocks (θ, \widetilde{S}) realise
- Agents receive public + private information about the shocks \rightarrow information set Ω_i
- Portfolio allocation problem

$$\max_{b_{i,t} \in [0,\overline{b}_{i,t}]} \mathbb{E}\left[Q(b_{i,t})|\Omega_{i,t}\right] \overline{b}_{i,t} = \max_{b_{i,t} \in [0,\overline{b}_{i,t}]} \left\{ \mathbb{E}\left[\frac{R_t \theta_t}{\Pi_{t+1}} \mid \Omega_{i,t}\right] b_{i,t} + \rho \left(\overline{b}_{i,t} - b_{i,t}\right) \right\}$$

• Normalise $\rho = 1$

• Welfare is the ex-ante utility of agents

$$W := \mathbb{E}\left[\frac{(C_{i,y,t})^{1-\sigma}}{1-\sigma} + \frac{(C_{s,y,t})^{1-\sigma}}{1-\sigma} + \underbrace{\bar{b}_{i,t} + \bar{b}_{s,t} - \widetilde{S}_t}_{=C_{i,o,t+1} + C_{s,o,t+1}}\right]$$

 \Rightarrow plugging in lump-sum taxes, the return on savings is always = 1!

• Welfare is the ex-ante utility of agents

$$W := \mathbb{E}\left[\frac{(C_{i,y,t})^{1-\sigma}}{1-\sigma} + \frac{(C_{s,y,t})^{1-\sigma}}{1-\sigma} + \underbrace{\bar{b}_{i,t} + \bar{b}_{s,t} - \widetilde{S}_{t}}_{=C_{i,o,t+1} + C_{s,o,t+1}}\right]$$

 \Rightarrow plugging in lump-sum taxes, the return on savings is always = 1!

• Plug in budget constraints

$$W = 2 w - \frac{1}{2} + \frac{\mathbb{E}[Q(b_{i,t})]^{-\frac{1-\sigma}{\sigma}} + \mathbb{E}\left[\frac{1}{\Pi_{t+1}}\right]^{-\frac{1-\sigma}{\sigma}}}{1-\sigma} - \mathbb{E}[Q(b_{i,t})]^{-\frac{1}{\sigma}} - \mathbb{E}\left[\frac{1}{\Pi_{t+1}}\right]^{-\frac{1}{\sigma}}$$

• Welfare is the ex-ante utility of agents

$$W := \mathbb{E}\left[\frac{(C_{i,y,t})^{1-\sigma}}{1-\sigma} + \frac{(C_{s,y,t})^{1-\sigma}}{1-\sigma} + \underbrace{\bar{b}_{i,t} + \bar{b}_{s,t} - \widetilde{S}_{t}}_{=C_{i,o,t+1} + C_{s,o,t+1}}\right]$$

 \Rightarrow plugging in lump-sum taxes, the return on savings is always = 1!

• Plug in budget constraints

$$W = 2 w - \frac{1}{2} + \frac{\mathbb{E}[Q(b_{i,t})]^{-\frac{1-\sigma}{\sigma}} + \mathbb{E}\left[\frac{1}{\Pi_{t+1}}\right]^{-\frac{1-\sigma}{\sigma}}}{1-\sigma} - \mathbb{E}[Q(b_{i,t})]^{-\frac{1}{\sigma}} - \mathbb{E}\left[\frac{1}{\Pi_{t+1}}\right]^{-\frac{1}{\sigma}}$$

• Social Optimum:
$$E[Q(b_{i,t})] = 1$$
 & $E\left[\frac{1}{\Pi_{t+1}}\right] = 1$

• Welfare is the ex-ante utility of agents

$$W := \mathbb{E}\left[\frac{(C_{i,y,t})^{1-\sigma}}{1-\sigma} + \frac{(C_{s,y,t})^{1-\sigma}}{1-\sigma} + \underbrace{\bar{b}_{i,t} + \bar{b}_{s,t} - \widetilde{S}_{t}}_{=C_{i,o,t+1} + C_{s,o,t+1}}\right]$$

 \Rightarrow plugging in lump-sum taxes, the return on savings is always = 1!

• Plug in budget constraints

$$W = 2 w - \frac{1}{2} + \frac{\mathbb{E}[Q(b_{i,t})]^{-\frac{1-\sigma}{\sigma}} + \mathbb{E}\left[\frac{1}{\Pi_{t+1}}\right]^{-\frac{1-\sigma}{\sigma}}}{1-\sigma} - \mathbb{E}[Q(b_{i,t})]^{-\frac{1}{\sigma}} - \mathbb{E}\left[\frac{1}{\Pi_{t+1}}\right]^{-\frac{1}{\sigma}}$$

- Social Optimum: $E[Q(b_{i,t})] = 1$ & $E\left[\frac{1}{\Pi_{t+1}}\right] = 1$
 - Can APs lower financial returns without increasing inflation?

EQUILIBRIUM & WELFARE

WITH MONETARY DOMINANCE

- Monetary dominance: set τ_t s.t. $\Pi_t = 1$ (CB profits/losses rebated to gov't)
 - no role for savers
 - drop time indices for simplicity

- Monetary dominance: set τ_t s.t. $\Pi = 1$ (CB profits/losses rebated to gov't)
 - no role for savers
 - drop time indices for simplicity
- Derive equilibrium in the financial market given some investors' savings choice \bar{b}

- Monetary dominance: set τ_t s.t. $\Pi = 1$ (CB profits/losses rebated to gov't)
 - no role for savers
 - drop time indices for simplicity
- ullet Derive equilibrium in the financial market given some investors' savings choice $ar{b}$
- Agent *i*'s information set Ω_i
 - private signal $x_i = \theta + \sigma_x \xi_i$, where $\xi_i \sim N(0, 1)$
 - market price R
 - AP policy b_{cb}

- Monetary dominance: set τ_t s.t. $\Pi = 1$ (CB profits/losses rebated to gov't)
 - no role for savers
 - drop time indices for simplicity
- Derive equilibrium in the financial market given some investors' savings choice \bar{b}
- Agent i's information set Ω_i
 - private signal $x_i = \theta + \sigma_x \xi_i$, where $\xi_i \sim N(0, 1)$
 - market price R
 - AP policy b_{cb}
- Agent *i*'s strategy

$$\begin{array}{ll}
R \mathbb{E}[\theta \mid x_i, R] \begin{cases}
> 1 & \text{then} \quad b_i = \overline{b} \\
= 1 & \text{then} \quad b_i \in [0, \overline{b}] \\
< 1 & \text{then} \quad b_i = 0
\end{array}$$

- Monetary dominance: set τ_t s.t. $\Pi = 1$ (CB profits/losses rebated to gov't)
 - no role for savers
 - drop time indices for simplicity
- Derive equilibrium in the financial market given some investors' savings choice \bar{b}
- Agent i's information set Ω_i
 - private signal $x_i = \theta + \sigma_x \xi_i$, where $\xi_i \sim N(0, 1)$
 - market price R
 - AP policy b_{cb}
- Agent *i*'s strategy

$$R \mathbb{E}[\theta \mid x_i, R] \begin{cases} > 1 & \text{then } b_i = \overline{b} \\ = 1 & \text{then } b_i \in [0, \overline{b}] \\ < 1 & \text{then } b_i = 0 \end{cases}$$

• Monotone threshold strategies: investor i buys bonds iff $x_i \geq x_m$

• Bond market clearing

$$\int_0^1 b_i \, \mathrm{d}i + b_{cb} = \widetilde{S}$$

• Bond market clearing

$$\int_0^1 b_i \, di + b_{cb} = \widetilde{S}$$

$$P(x_i \ge x_m) \, \overline{b} + b_{cb} = \widetilde{S}$$

• Bond market clearing

$$\int_{0}^{1} b_{i} di + b_{cb} = \widetilde{S}$$

$$P(x_{i} \ge x_{m}) \overline{b} + b_{cb} = \widetilde{S}$$

$$\Phi\left(\frac{\theta - x_{m}}{\sigma_{x}}\right) = S := \frac{\widetilde{S} - b_{cb}}{\overline{b}}$$

• Bond market clearing

$$\int_{0}^{1} b_{i} di + b_{cb} = \widetilde{S}$$

$$P(x_{i} \ge x_{m}) \overline{b} + b_{cb} = \widetilde{S}$$

$$\Phi\left(\frac{\theta - x_{m}}{\sigma_{x}}\right) = S := \frac{\widetilde{S} - b_{cb}}{\overline{b}}$$

• Solving for the equilibrium cutoff signal

$$x_m(R, b_{cb}) = \theta - \sigma_x \Phi^{-1} \left(\frac{\widetilde{S} - b_{cb}}{\overline{b}} \right)$$

marginal agent's private signal \Leftrightarrow price signal = exogenous fn of shocks (θ, \tilde{S})

MARKET SIGNAL: NO APS, UNIT BOUNDS

$$x_m = \theta - \sigma_x \Phi^{-1} \left(\frac{\widetilde{S} - b_{cb}}{\overline{b}} \right)$$

Market Signal: no APs, $\bar{b} > 1$

$$x_m = \theta - \sigma_x \Phi^{-1} \left(\frac{\widetilde{S} - b_{cb}}{\overline{b}} \right)$$

MARKET SIGNAL: INFORMATION REVELATION

$$x_m = \theta - \sigma_x \Phi^{-1} \left(\frac{\widetilde{S} - b_{cb}}{\overline{b}} \right)$$

Non-Contingent AP Policy

• "Non-contingent" (on θ)

$$b_{cb}(\widetilde{S}) = \begin{cases} \overline{b}_{cb} & \text{if} \quad \widetilde{S} \ge \overline{b}_{cb} \\ \widetilde{S} & \text{if} \quad \widetilde{S} < \overline{b}_{cb} \end{cases}$$

Non-Contingent AP Policy

• "Non-contingent" (on θ)

$$b_{cb}(\widetilde{S}) = \begin{cases} \overline{b}_{cb} & \text{if} \quad \widetilde{S} \ge \overline{b}_{cb} \\ \widetilde{S} & \text{if} \quad \widetilde{S} < \overline{b}_{cb} \end{cases}$$

- \Rightarrow with probability $P_0 := \bar{b}_{cb}$
 - the market is *passive*
 - CB buys at $R = \frac{1}{\theta_H}$

Non-Contingent AP Policy

• "Non-contingent" (on θ)

$$b_{cb}(\widetilde{S}) = \begin{cases} \overline{b}_{cb} & \text{if} \quad \widetilde{S} \ge \overline{b}_{cb} \\ \widetilde{S} & \text{if} \quad \widetilde{S} < \overline{b}_{cb} \end{cases}$$

- \Rightarrow with probability $P_0 := \overline{b}_{cb}$
 - the market is *passive*
 - CB buys at $R = \frac{1}{\theta_H}$

• APs \approx as if investors could individually buy more

$$\Phi\left(\frac{\theta - x_m}{\sigma_x}\right) = \frac{\widetilde{S} - \frac{b_{cb}}{\overline{b}}}{\overline{b}}$$

MARKET SIGNAL: NON-CONTINGENT APS

$$x_m = \theta - \sigma_x \Phi^{-1} \left(\frac{\widetilde{S} - b_{cb}}{\overline{b}} \right)$$

Market Signal: Non-Contingent APs, $\bar{b} > 1$

$$x_m = \theta - \sigma_x \Phi^{-1} \left(\frac{\widetilde{S} - b_{cb}}{\overline{b}} \right)$$

• Market signal noise $\sim N(0, \sigma_x)$ with truncated support $[\sigma_x \Phi^{-1}(S_{\min}), \ \sigma_x \Phi^{-1}(S_{\max})]$

- Market signal noise $\sim N(0, \sigma_x)$ with truncated support $[\sigma_x \Phi^{-1}(S_{\min}), \sigma_x \Phi^{-1}(S_{\max})]$
- Market signal follows a truncated Normal distribution

$$f(x_m \mid \theta) = \begin{cases} \frac{1}{(S_{\text{max}} - S_{\text{min}})} \frac{1}{\sigma_x} \phi\left(\frac{x_m - \theta}{\sigma_x}\right) & \text{for } x_m \in \text{Supp}(x_m \mid \theta) \\ 0 & \text{otherwise} \end{cases}$$

- Market signal noise $\sim N(0, \sigma_x)$ with truncated support $[\sigma_x \Phi^{-1}(S_{\min}), \sigma_x \Phi^{-1}(S_{\max})]$
- Market signal follows a truncated Normal distribution

$$f(x_m \mid \theta) = \begin{cases} \frac{1}{(S_{\text{max}} - S_{\text{min}})} \frac{1}{\sigma_x} \phi\left(\frac{x_m - \theta}{\sigma_x}\right) & \text{for } x_m \in \text{Supp}(x_m \mid \theta) \\ 0 & \text{otherwise} \end{cases}$$

• Distributions $f(x_i|\theta)$ and $f(x_m|\theta)$ are identical iff $[\underline{b}, \overline{b}] = [0, 1]$ and $b_{cb} = 0 \ \forall \widetilde{S}$

- Market signal noise $\sim N(0, \sigma_x)$ with truncated support $[\sigma_x \Phi^{-1}(S_{\min}), \sigma_x \Phi^{-1}(S_{\max})]$
- Market signal follows a truncated Normal distribution

$$f(x_m \mid \theta) = \begin{cases} \frac{1}{(S_{\text{max}} - S_{\text{min}})} \frac{1}{\sigma_x} \phi\left(\frac{x_m - \theta}{\sigma_x}\right) & \text{for } x_m \in \text{Supp}(x_m \mid \theta) \\ 0 & \text{otherwise} \end{cases}$$

- Distributions $f(x_i|\theta)$ and $f(x_m|\theta)$ are identical iff $[\underline{b}, \overline{b}] = [0, 1]$ and $\underline{b_{cb}} = 0 \ \forall \widetilde{S}$
- Now focus on states where the market is *active*

POSTERIOR BELIEFS

• Observing $R \Leftrightarrow$ observing x_m

Posterior Beliefs

- Observing $R \Leftrightarrow \text{observing } x_m$
- Posterior probability distribution for an agent with private information (market)

$$\operatorname{Prob}(\theta_H \mid x_i, x_m, b_{cb}) = \begin{cases} \frac{q f(x_i, x_m \mid \theta_H)}{q f(x_i, x_m \mid \theta_H) + (1 - q) f(x_i, x_m \mid \theta_L)} & \text{if} \quad x_m \in \mathcal{X}_{NR}, \\ 0 & \text{if} \quad x_m \in \mathcal{X}_L \end{cases}$$

where

$$f(x_i, x_m \mid \theta) = \phi\left(\frac{\theta - \frac{x_i + x_m}{2}}{\sigma_x/\sqrt{2}}\right)$$

Posterior Beliefs

- Observing $R \Leftrightarrow \text{observing } x_m$
- Posterior probability distribution for an agent with private information (market)

$$\operatorname{Prob}(\theta_H \mid x_i, x_m, b_{cb}) = \begin{cases} \frac{q f(x_i, x_m \mid \theta_H)}{q f(x_i, x_m \mid \theta_H) + (1 - q) f(x_i, x_m \mid \theta_L)} & \text{if} \quad x_m \in \mathcal{X}_{NR}, \\ 0 & \text{if} \quad x_m \in \mathcal{X}_L \end{cases}$$

where

$$f(x_i, x_m \mid \theta) = \phi \left(\frac{\theta - \frac{x_i + x_m}{2}}{\sigma_x / \sqrt{2}} \right)$$

• An external observer w/out private information (public) instead uses

$$\operatorname{Prob}(\theta_H \mid x_m, b_{cb})$$
 and $f(x_m \mid \theta) = \phi\left(\frac{\theta - x_m}{\sigma_x}\right)$

• Expected payoff for the marginal agent (market)

$$\mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{\boldsymbol{x_i} = \boldsymbol{x_m}}$$

• Expected payoff for the marginal agent (market) pins down equilibrium $R(x_m, b_{cb})$

$$R \mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{\boldsymbol{x_i} = \boldsymbol{x_m}} = 1$$

Equilibrium Prices and Market vs Public Beliefs

• Expected payoff for the marginal agent (market) pins down equilibrium $R(x_m, b_{cb})$

$$R \mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m} = 1 \rightarrow R(x_m, b_{cb}) = \frac{1}{\mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m}} =: \frac{1}{P(x_m, b_{cb})}$$

• Expected payoff for the marginal agent (market) pins down equilibrium $R(x_m, b_{cb})$

$$R \mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m} = 1 \to R(x_m, b_{cb}) = \frac{1}{\mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m}} =: \frac{1}{P(x_m, b_{cb})}$$

• Bond return conditional on x_m

P J

$$\mathbb{E}\left[R\,\theta\mid\boldsymbol{x_{m}},b_{cb}\right]$$

• Expected payoff for the marginal agent (market) pins down equilibrium $R(x_m, b_{cb})$

$$R \mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m} = 1 \rightarrow R(x_m, b_{cb}) = \frac{1}{\mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m}} =: \frac{1}{P(x_m, b_{cb})}$$

• Bond return conditional on x_m

$$\mathbb{E}[R \theta \mid \boldsymbol{x_m}, b_{cb}] = \frac{\mathbb{E}[\theta \mid \boldsymbol{x_m}, b_{cb}]}{\mathbb{E}[\theta \mid x_i, \boldsymbol{x_m}, b_{cb}]_{\boldsymbol{x_i = x_m}}}$$

• Expected payoff for the marginal agent (market) pins down equilibrium $R(x_m, b_{cb})$

$$R \mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m} = 1 \to R(x_m, b_{cb}) = \frac{1}{\mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m}} =: \frac{1}{P(x_m, b_{cb})}$$

• Bond return conditional on x_m

$$\mathbb{E}\left[R\,\theta\mid\boldsymbol{x_{m}},b_{cb}\right] = \frac{\mathbb{E}\left[\theta\mid\boldsymbol{x_{m}},b_{cb}\right]}{\mathbb{E}\left[\theta\mid\boldsymbol{x_{i}},\boldsymbol{x_{m}},b_{cb}\right]\boldsymbol{x_{i}=x_{m}}} = \mathbb{E}\left[\frac{\boldsymbol{V}(\boldsymbol{x_{m}},b_{cb})}{P(\boldsymbol{x_{m}},b_{cb})}\right]$$

Equilibrium Prices and Market vs Public Beliefs

• Expected payoff for the marginal agent (market) pins down equilibrium $R(x_m, b_{ch})$

$$R \mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m} = 1 \to R(x_m, b_{cb}) = \frac{1}{\mathbb{E}[\theta \mid x_i, x_m, b_{cb}]_{x_i = x_m}} =: \frac{1}{P(x_m, b_{cb})}$$

• Bond return conditional on x_m

$$\mathbb{E}\left[R\,\theta\mid \boldsymbol{x_m}, b_{cb}\right] = \frac{\mathbb{E}\left[\theta\mid \boldsymbol{x_m}, b_{cb}\right]}{\mathbb{E}\left[\theta\mid \boldsymbol{x_i}, \boldsymbol{x_m}, b_{cb}\right]_{\boldsymbol{x_i}=\boldsymbol{x_r}}} = \mathbb{E}\left[\frac{\boldsymbol{V}(\boldsymbol{x_m}, b_{cb})}{P(\boldsymbol{x_m}, b_{cb})}\right]$$

- For large x_m the market **over**-values the asset $\Rightarrow \mathbb{E}[R \theta] < 1$ For small x_m the market **under**-values the asset $\Rightarrow \mathbb{E}[R \theta] > 1$

(Albagli, Hellwig, Tsyvinski (2023))

INDIVIDUAL PROFITS

• Omit b_{cb} from notation

- Omit b_{cb} from notation
- Expected individual payoff (before receiving x_i), conditional on x_m

$$\overline{b} \mathbb{E} \left[Q(b_i) \, | \, x_m \right] = \mathbb{E} \left[b_i R \, \theta + (\overline{b} - b_i) 1 \, | \, x_m \right]$$

- Omit b_{cb} from notation
- Expected individual payoff (before receiving x_i), conditional on x_m

$$\bar{b} \mathbb{E} [Q(b_i) \mid x_m] = \mathbb{E} \left[b_i R \theta + (\bar{b} - b_i) 1 \mid x_m \right]$$
$$= \bar{b} \left[\int_{x_m} R \theta \, dF(x_i | x_m) + \int_{x_m} 1 \, dF(x_i | x_m) \right]$$

- Omit b_{cb} from notation
- Expected individual payoff (before receiving x_i), conditional on x_m

$$\begin{split} \overline{b} & \mathbb{E} \left[Q(b_i) \, | \, x_m \right] = \mathbb{E} \left[b_i R \, \theta + (\overline{b} - b_i) \mathbf{1} \, | \, x_m \right] \\ &= \overline{b} \, \left[\int_{x_m} R \, \theta \, \mathrm{d} F(x_i | x_m) + \int^{x_m} \mathbf{1} \, \mathrm{d} F(x_i | x_m) \right] \\ &= \overline{b} \, \left[\int_{x_m} \frac{\mathbb{E} [\theta \, | \, x_i, x_m]}{\mathbb{E} [\theta \, | \, x_i = x_m, x_m]} \, \mathrm{d} F(x_i | x_m) + \int^{x_m} \mathbf{1} \, \mathrm{d} F(x_i | x_m) \right] \end{split}$$

- Omit b_{cb} from notation
- Expected individual payoff (before receiving x_i), conditional on x_m

$$\begin{split} \bar{b} & \mathbb{E}\left[Q(b_i) \mid x_m\right] = \mathbb{E}\left[b_i R \,\theta + (\bar{b} - b_i) 1 \mid x_m\right] \\ &= \bar{b} \left[\int_{x_m} R \,\theta \,\mathrm{d}F(x_i | x_m) + \int^{x_m} 1 \,\mathrm{d}F(x_i | x_m)\right] \\ &= \bar{b} \left[\int_{x_m} \frac{\mathbb{E}[\theta \mid x_i, x_m]}{\mathbb{E}[\theta \mid x_i = x_m, x_m]} \,\mathrm{d}F(x_i | x_m) + \int^{x_m} 1 \,\mathrm{d}F(x_i | x_m)\right] \end{split}$$

• Expected individual payoff (before receiving x_i), unconditional

$$\bar{b} \mathbb{E} [Q(b_i)] = \bar{b} \int_{\mathbb{R}} \mathbb{E} [Q(b_i) | x_m] dF(x_m)$$

EQUILIBRIUM: NO APS

Equilibrium: APs $(\bar{b}_{cb} > 0)$

Welfare

Welfare

- market solution \neq first best
- limits to arbitrage ⇒ indiv. incentive to participate in bond market
- investors do not internalise effect of aggregate demand on R, T_o

WELFARE

- market solution \neq first best
- limits to arbitrage ⇒ indiv. incentive to participate in bond market
- investors do not internalise effect of aggregate demand on R, T_o
- APs ↓ expected individual profits ⇒ consumption and welfare increase

WHAT ABOUT CENTRAL BANK PROFITS?

• When supply is small, very costly for CB to buy all of it

WHAT ABOUT CENTRAL BANK PROFITS?

- When supply is small, very costly for CB to buy all of it
 - ⇒ with Fiscal Dominance, CB losses are a problem

EQUILIBRIUM & WELFARE

WITH FISCAL DOMINANCE

NON-CONTINGENT APS WITH FISCAL DOMINANCE

0.5

0.5

PRICE-TARGETING AP POLICY

• CB buys $b_{cb} \in [0, \overline{b}_{cb}]$ to target a marginal agent $x^* \Leftrightarrow \text{price } R^*$

PRICE-TARGETING AP POLICY

- CB buys $b_{cb} \in [0, \overline{b}_{cb}]$ to target a marginal agent $x^* \Leftrightarrow \text{price } R^*$
- A (tractable) non-revealing policy is such that

$$Prob(\theta \mid x^*, b_{cb}) = Prob(\theta)$$

PRICE-TARGETING AP POLICY

- CB buys $b_{cb} \in [0, \overline{b}_{cb}]$ to target a marginal agent $x^* \Leftrightarrow \text{price } R^*$
- A (tractable) non-revealing policy is such that

$$Prob(\theta \mid x^*, b_{cb}) = Prob(\theta)$$

• Price-targeting policies are 'non-informative' if

$$\mathbb{E}[\theta|x_i = x^*, \mathbf{x_m} = x^*, \mathbf{b_{cb}}] = \mathbb{E}[\theta|x_i = x^*]$$

$$\mathbb{E}[\theta|x_i = x^*, x_m = x^*] = \mathbb{E}[\theta|x_i = x^*]$$

$$\mathbb{E}[\theta|x_i = x^*, x_m = x^*] = \mathbb{E}[\theta|x_i = x^*] = \mathbb{E}[\theta] =: \frac{1}{R^*}$$

$$\mathbb{E}[\theta|x_i = x^*, x_m = x^*] = \mathbb{E}[\theta|x_i = x^*] = \mathbb{E}[\theta] =: \frac{1}{R^*}$$

- Then
 - APs do not distort posterior beliefs and learning from prices

$$\mathbb{E}[\theta|x_i = x^*, x_m = x^*] = \mathbb{E}[\theta|x_i = x^*] = \mathbb{E}[\theta] =: \frac{1}{R^*}$$

- Then
 - APs do not distort posterior beliefs and learning from prices
 - CB expected profits are zero

$$\mathbb{E}[R^* \, \theta] = \frac{\mathbb{E}[\theta]}{\mathbb{E}[\theta]} = 1$$

$$\mathbb{E}[\theta|x_i = x^*, x_m = x^*] = \mathbb{E}[\theta|x_i = x^*] = \mathbb{E}[\theta] =: \frac{1}{R^*}$$

- Then
 - APs do not distort posterior beliefs and learning from prices
 - CB expected profits are zero

$$\mathbb{E}[R^* \, \theta] = \frac{\mathbb{E}[\theta]}{\mathbb{E}[\theta]} = 1$$

$$\Rightarrow \mathbb{E}[\Pi] = 1$$

PRICE-TARGETING APS

EQUILIBRIUM: PRICE-TARGETING APS

CONCLUSION

TAKEAWAYS

- A GE theory of APs with
 - dispersed info & learning from prices
 - market segmentation (Investors & Savers)
 - limits to arbitrage
- With common/perfect information: agent heterogeneity irrelevant, APs are neutral
- With dispersed information
 - Investors save too much
 - APs effective in reducing inefficiency
- Fiscal-monetary regimes
 - Monetary dominance: non-contingent APs work, but create CB losses
 - Fiscal dominance: inflation cost of APs via CB losses & Savers
- Price-targeting APs \(\) welfare, are beliefs- & inflation-neutral

$$\max_{c_i, b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = b_i R \theta + (1 - b_i)1 + \tau$$

- Asset market clearing: $\int b_i di + b_{cb} = S$
- Profits of AP authority: $\tau = b_{cb}(R\theta 1)$

$$\max_{c_i, b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = b_i R \theta + (1 - b_i) 1 + \tau$$

- Asset market clearing: $\int b_i di + b_{cb} = S$
- Profits of AP authority: $\tau = b_{cb}(R\theta 1)$
- \Rightarrow Problem becomes

$$\max_{c_i,b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = (b_i + b_{cb})R\theta + (1 - b_i - b_{cb})$$

$$\max_{c_i, b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = b_i R \theta + (1 - b_i) 1 + \tau$$

- Asset market clearing: $\int b_i di + b_{cb} = S$
- Profits of AP authority: $\tau = b_{cb}(R\theta 1)$
- ⇒ Problem becomes

$$\max_{c_i,b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = (b_i + b_{cb})R\theta + (1 - b_i - b_{cb})$$

- (a) Limits to arbitrage $(b_i \in [\underline{b}, \overline{b}])$ + No info frictions $(\Omega_i = \Omega)$
 - RA market clearing, $c_i = c$, all agents on EE $\rightarrow \mathbb{E}[u'(c)(R\theta 1) \mid \Omega] = 0$

$$\max_{c_i, b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = b_i R \theta + (1 - b_i) 1 + \tau$$

- Asset market clearing: $\int b_i di + b_{cb} = S$
- Profits of AP authority: $\tau = b_{cb}(R\theta 1)$
- \Rightarrow Problem becomes

$$\max_{c_i,b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = (b_i + b_{cb})R\theta + (1 - b_i - b_{cb})$$

- (a) Limits to arbitrage $(b_i \in [\underline{b}, \overline{b}])$ + No info frictions $(\Omega_i = \Omega)$
 - RA market clearing, $c_i = c$, all agents on EE $\rightarrow \mathbb{E}[u'(c)(R\theta 1) \mid \Omega] = 0$
- (b) No limits to arbitrage + Info frictions
 - Each i on own EE, interior solution for each i \rightarrow $\mathbb{E}[u'(c_i)(R\theta 1) \mid \Omega_i] = 0$

$$\max_{c_i, b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = b_i R \theta + (1 - b_i) 1 + \tau$$

- Asset market clearing: $\int b_i di + b_{cb} = S$
- Profits of AP authority: $\tau = b_{cb}(R\theta 1)$
- \Rightarrow Problem becomes

$$\max_{c_i,b_i} \mathbb{E}[u(c_i)|\Omega_i] \quad \text{s.t.} \quad c_i = (b_i + b_{cb})R\theta + (1 - b_i - b_{cb})$$

- (a) Limits to arbitrage $(b_i \in [\underline{b}, \overline{b}])$ + No info frictions $(\Omega_i = \Omega)$
 - RA market clearing, $c_i = c$, all agents on EE \rightarrow $\mathbb{E}[u'(c)(R\theta 1) \mid \Omega] = 0$
- (b) No limits to arbitrage + Info frictions
 - Each i on own EE, interior solution for each $i \to \mathbb{E}[u'(c_i)(R\theta 1) \mid \Omega_i] = 0$
- ⇒ Homogeneous crowding out, APs irrelevant

AP POLICIES

• "Non-contingent" (on θ)

$$b_{cb}(\widetilde{S}) = \begin{cases} \overline{b}_{cb} & \text{if} \quad \widetilde{S} + \underline{b} \ge \overline{b}_{cb} \\ \widetilde{S} + \underline{b} & \text{if} \quad \widetilde{S} + \underline{b} < \overline{b}_{cb} \end{cases}$$

AP POLICIES

• "Non-contingent" (on θ)

$$b_{cb}(\widetilde{S}) = \begin{cases} \overline{b}_{cb} & \text{if} \quad \widetilde{S} + \underline{b} \ge \overline{b}_{cb} \\ \widetilde{S} + \underline{b} & \text{if} \quad \widetilde{S} + \underline{b} < \overline{b}_{cb} \end{cases}$$

with probability $P_0 := \overline{b}_{cb} - \underline{b}$

- the market is *passive*
- CB buys at $R = \frac{1}{\theta_H}$

AP POLICIES

• "Non-contingent" (on θ)

$$b_{cb}(\widetilde{S}) = \begin{cases} \overline{b}_{cb} & \text{if} \quad \widetilde{S} + \underline{b} \ge \overline{b}_{cb} \\ \widetilde{S} + \underline{b} & \text{if} \quad \widetilde{S} + \underline{b} < \overline{b}_{cb} \end{cases}$$

with probability $P_0 := \overline{b}_{cb} - \underline{b}$

- the market is *passive*
- CB buys at $R = \frac{1}{\theta_H}$
- Price-targeting (*later*)

$$b_{cb}(\theta, \widetilde{S}, x^*) = \begin{cases} \widetilde{S} - \overline{b} \Phi \left(\frac{\theta - x^*}{\sigma_x} \right) & \text{if } \widetilde{S} \in \widetilde{S}(\theta, x^*) \\ 0 & \text{otherwise} \end{cases}$$

CENTRAL BANK PROFITS

$$\mathbb{E}[\Pi_{cb} - 1] = \int_0^{\bar{b}_{cb}} \widetilde{S} \left(\mathbb{E}[\theta] \frac{1}{\theta_H} - 1 \right) d\widetilde{S} + \int_{\mathcal{X}_{ND}} \bar{b}_{cb} \left(\mathbb{E}[R \theta \mid x_m] - 1 \right) dF(x_m)$$

