ABSTRACT

Described herein are methods to enhance protein secretion in a host cell. In preferred embodiment, the host cell is a gram-positive microorganism such as a *Bacillus*. In another preferred embodiment, the host cell is a gram-negative microorganism. Preferably the gram-negative microorganism is an *Escherichia coli* or a member of the genus *Pantoaea*. Protein secretion may be enhanced by the overexpression of protein components of the Tat pathway. Alternatively, secretion of foreign proteins can be selectively enhanced by forming a chimeric polypeptide comprising a tat signal sequence and the protein of interest. In a preferred embodiment, the tat signal sequence is selected from phoD or LipA.

Table I. Predicted Twin-Arginine Signal Peptides of B. subtilis*

protein	signal peptide		
AlbB	MSPAQRRILLYHLSFTFVTGAVVYFVKSDYLFTATFYAIAILF		
AmyX TM	MVSIRRSFEAYVDDMNIITYIDAEQKEIM		
AppB TM	MAAYIIRRT MSJPILLGIJULSEVIMKAAPG		
LipA	MKFVKRR <mark>TIALVTILMLSVISLFAL</mark> QPS <u>AKA</u> AEH		
OppB TM	MLKYIGRRI VYMI ITLKWI VIVIE EI MQAAPG		
PbpX	MTSPTRRRTAKRRRRKLNKR SKILLFGLEAVMVCTUL WNALHR		
PhoD	MAYDSRFDEWVQKLKEESFQNNTFDRRKFIQ GAGKUAGUSLGUTTAQSVGAFEV		
QcrA	MGGKHDISRRQFLNYTE EGYGCEMAASMLMPMVRFA		
SpoIIIJ	mllkrr galesmygvem LagCssv		
TlpA TM	MKKTLTTIRRSSIARRITISFILLTLEVPINTALSVSÄYQS		
WapA	MKKRKRRNFKRELAAR VIA MISLVPADVLAKST		
WprA	MKRRKFSSVVAAVLIFALIFSLFSPGTKAAAAGA		
YceA TM	MEMFDLEFMRRAFLAGGMLAYMAPLLGVYLYLRRQ		
YdeJ	mkk rr kicychtaldiget LagCtds		
YdhF	mrri letilvea in LagCeen		
YdhK	msagksyrkkmkq rr mn m kisk <mark>yalgidmusidev</mark> Lsa Cgnnn		
YesM TM	MKKRVAGWY RR MKIKDK <mark>I EVELISHIMAVSELEVYSGV</mark> QYAFHV		
YesW	MRRSCLMIR RR KRMETAVILLVILVMGTSVCR <mark>VKAEGA</mark>		
YfkN TM	MRIQK RTHV ENILR		
YkpC	MLRDLGRRVALAAIHSGILLGGMSUSLANMP		
YkuE	MKKMSRRQFLKGMPGAYARGALTAGGGYGYARYL		
YmaC	MRRFLLN VIIV AND BURNO HYSLEPE		
YmzC	mfeseael rr driaivwiavelLfgaCgn		
YubF TM	MQKYRRNT VAFTVLAY FTFFAGVET FSTGUYNADNL		
YuiC TM	MMLNMIRR LLMTCLKELAFGTTELSVSGIEAKDL		
YvhJ	MAERVRVRKKKKSK RRKIL KR <mark>IMBERALALDWWGLGGYK</mark> LY		
YwbN	MSDEQKKPEQIHRRDILKWGAMAGAAVAIGASGEGGDAPHVQTAAKP		

* Putative twin-arginine signal peptides were identified in two ways. First, the presence of the consensus sequence R-R-X-φ-φ (φ is a hydrophobic residue), immediately in front of an amino-terminal hydrophobic region as predicted with the TopPred2 algorithm (34, 35), was determined. To this purpose, the first 60 residues of all annotated proteins of B. subtilis in the SubtiList database (http://bioweb.pasteur.fr/Genolist/Subtilist.html) were used. Second, within the group of twin-arginine membrane sorting signals, cleavable signal peptides were identified with the SignalP algorithm (61, 62). Conserved residues of the twin-arginine consensus sequence (R-R-X-φ-φ) are indicated in bold. In addition, positively charged residues that could function as a so-called Secavoidance signal (54) are indicated in bold and italics. The hydrophobic H-domain is indicated in gray shading. In signal peptides with a predicted signal peptidase I cleavage site, residues from position -3 to -1 relative to the signal peptidase I cleavage site are underlined. Notably, some of these proteins contain one or more putative transmembrane segments elsewhere in the protein (indicated with "TM"), or are putative lipoproteins. Residues forming a so-called lipobox for signal peptidase II cleavage are enlarged in size.

Plasmids	Relevant properties	Reference	
pUC21	cloning vector; 3.2 kb; Ap ^r	63	
pJCd1	pUC21 derivative; carrying the tatCd gene; 5.4 kb; Ap ^r	This work	
pJCd2	pUC21 derivative for the disruption of tatCd; 6.3 kb; Apr; Kmr	This work	
pJCy1	pUC21 derivative; carrying the <i>tatCy</i> gene; 5.3 kb; Ap ^r	This work	
pJCy2	pUC21 derivative for the disruption of tatCy; 6.5kb; Apr; Spr	This work	
pMutin2	pBR322-based integration vector for <i>B. subtilis</i> ; containing a multiple cloning site downstream of the <i>Pspac</i> promoter, and a promoter-less <i>lacZ</i> -gene preceded by the RBS of the <i>spoVG</i> gene; 8.6 kb; Ap ^r ; Em ^r	31	
pMICd1	pMutin2 derivative; carrying the 5' part of the B. subtilis tatCd gene	This work	
pMICy1	pMutin2 derivative; carrying the 5' part of the B. subtilis tatCy gene	This work	
pDG792	contains a Km resistance cassette; 4.0 kb; Apr, Kmr	64	
contains a Sp resistance cassette; 3.9 kb; Apr, Spr		. 64	
Strains			
E. coli		(5	
MC1061	F ⁻ ; $araD139$; Δ $(ara-leu)7696$; Δ $(lac)X74$; $galU$; $galK$; $hsdR2$; $mcrA$; $mcrB1$; $rspL$	65	
B. subtilis		2	
168	trpC2	-	
$\Delta tatCd$	trpC2; tatCd; Km ^r	This work This work	
$\Delta tatCy$	trpC2; tatCy; Sp ^r		
1tatCd	trpC2; Pspac-tatCd; tatCd-lacZ; Em ^r	This work	
l <i>tatCy</i>	trpC2; Pspac-tatCy; tatCy-lacZ; Em	This work	
$\Delta tatCd$ - $\Delta tatCy$	trpC2; tatCd; Km ^r ; tatCy; Sp ^r	This work	
ItatCd-∆tatCy	trpC2; Pspac-tatCd; tatCd-lacZ; Emr; tatCy; Spr	This work	

GC634-2

Table III. β -galactosidase activity $\left(U/OD_{600}\right)^*$.

0.2
0.2
± 5.5

* To investigate the transcription of the tatCd and tatCy genes, cells of B. subtilis ItatCd (tatCd-lacZ), ItatCy (tatCy-lacZ) or the parental strain 168 (no lacZ gene fusion) were grown for 10 hours in LPDM, MM, SSM or TY medium after dilution from an overnight culture. Samples for β -galactosidase activity determinations were taken at hourly intervals, starting 4 hours after dilution from the overnight culture. As the β -galactosidase activities showed little variation during the entire period of sampling, average values were determined. The numbers in the table represent average values from 3 different experiments. Note that HPDM medium was used for the overnight culture of cells grown in LPDM medium, while overnight cultures of cells grown in MM, SSM or TY medium were prepared with the respective media.

Jongbloed *et al.*, 2000 G (634-2

Table IV. Twin-Arginine Signal Peptides of PhoD and PhoD-like proteins*

protein	signal peptide
PhoD	MAYDSRFDEWVQKLKEESFQNNTFDRRKFIQGAGKLAGUSLGUTLAQSVGAFEV
(Bsu)	
SP1	MTPANHQAPTSAPSPAPSQSSHAPELRAAARSLGRRRFLTVIGAAAALAFAVNLBAAGTASAAEL
(Sco)	MAPTGRPSALAEHAFSPHDAVLGAAARHLGRRRFLTVTAAAAALAFSTNLPARGAVAAPE
SP2	MAPIGRESALABHAESPHDAVLIGAAARHLIGKKKELI I AAAAHAA SI NASAMSAVAAFE
(Sco) SP3	MTSRHRASENSRTPSRRTVVKAAAAGAVGAAPAAAA PAGAADAAPA
(Sco)	
SP4	MTPAARPSQHAPELRAAARHLGRRRFLTVTGAAAAAAAFAVNTPAACT <u>AAAA</u> EL
(Ste)	·

^{*} Homologues of *B. subtilis* PhoD were identified by amino acid sequence similarity searches in GenBank using the BLAST algorithm. SP1 (Sco), gene SCC75A.32c of *Streptomyces coelicolor* (CAB61732); SP2 (Sco), gene SCF43A.18 of *S. coelicolor* (CAB48905); SP3 (Sco), gene SC4G6.37 of *S. coelicolor* (CAB51460), and SP4, *phoD* gene of *Streptomyces tendae* (CAB62565). GenBank accession numbers are indicated in parentheses. Conserved residues of the twin-arginine consensus sequence are indicated in bold. The hydrophobic H-region is indicated in in gray shading. Signal peptidase I recognition sequences predicted with the SignalP algorithm (61, 62) are underlined.

TABLE 5- Plasmids and Strains

Plasmids	Relevant properties	Reference	
pAR3	pACYC184 derived plasmid carrying the araB promoter	25	
	operator and the araC repressor gene from Salmonella		
	typhimurium; Cm ^{r a}		
pAR3phoD	pAR3 derivative; carrying the phoD gene; Cm ^r	This work	
pAR3phoD-lacZ	pAR3 derivative; carrying a fusion gene consisting of	This work	
	the signal sequence region of phoD and lacZ; Cmr		
pQE9	pBR322-based vector for IPTG-inducible synthesis of	Qiagen	
	His ₆ -tagged proteins; Ap ^r •		
pREP4	plasmid; containing lacI ^q repressor gene; Km ^r	Qiagen	
pORI24	plasmid; replicates only in E. coli rep ⁺ strains; Tc ^r	37	
pMUTIN2	pBR322-based integration vector for B. subtilis;	38	
	containing a multiple cloning site downstream of the		
	Pspac promoter, and a promoter-less lacZ-gene		
	preceded by the RBS of the spoVG gene; Apr; Emr		
pMUTIN2bla-	PMUTIN2 derivative; carrying a fusion gene consisting	This work	
phoD.	of signal sequence region of bla and phoD		
pQE9 $tatA_d/C_d$	pQE9 derivative; carrying the B. subtilis $tatA_d/C_d$ genes	This work	
pFAT44	pMAK705 (Hamilton et al., 1989) derivative plasmid	7	
	containing in frame deletion of E. coli tatE		
pFAT126	pMAK705 derivative plasmid containing in frame	39	
	deletion of E. coli tatABCD		
Strains			
E. coli			
TG1	F araD139 Δ(ara-leu)7696 Δ (lac)X74 galU galK	40	
	hsdR2 mcrA mcrB1 rspL		
TG1 ΔtatABCE	TG1 ΔtatABCE	This work	
B. subtilis			
168	trpC2	13	

^a Cm^r, chloramphenicol resistance marker; Ap^r, ampicillin resistance marker; Km^r, kanamycin resistance marker; Tc^r, tetracycline resistance marker; Em^r, erythromycin resistance marker

TABLE & - Localisation of β -galactosidase activity in E. coli TG1(pAR3phoD-lacZ) strains. To investigate the translocation of the hybrid protein consisting of SP_{PhoD} and LacZ, cells of E. coli strains were grown in TY medium to exponential growth. Samples for β -galactosidase activity determinations were taken from supernatants of lysozyme treated cells representing periplasmic activity and spheroplasts representing cell bound activity. Experiments were carried out with duplicated cultures. +/-, standard deviation.

	LacZ activity (units/OD ₆₀₀)			
strain	cell bound	periplasmic	total activity	% export
TG1(pAR3phoD-lacZ)	1108 +/- 201	67 +/- 5	1175	6.4 +/- 3,4
TG1(pAR3phoD-lacZ,				
pREP4, pQE9tatA _d /C _d)	226 +/- 11	94 +/- 2	320	29.4 +/- 0.4
TG1 ΔtatABCE (pAR3phoD-lacZ,		·		
pREP4, pQE9tatA _d /C _d)	278 +/- 8	39 +/- 5	317	12.5 +/- 0.9