이슈보고서

산업경제팀

VOL.2022-이슈-16(2022.9)

로봇산업 동향 및 성장전략

CONTENTS

<요약>

I. 로봇산업 개요

II. 글로벌 로봇산업 현황 및 전망

皿. 한국 로봇산업 현황 및 경쟁력

IV. 주요국 로봇산업 육성정책

V. 결론 및 시사점

작성

선임연구원 이미혜 (6252-3608)

< 요약 >

세계 로봇산업은 2020년 약 250억 달러에서 2030년 1,600억 달러 규모로 연평균 20% 성장할 전망

- 인구고령화, 로봇 가격하락, 삶의 질 향상 추구 등이 로봇 도입을 촉진하면서 로봇산업 성장의 축이 산업용 로봇에서 서비스 로봇으로 이동할 전망
- 2020년 산업용 로봇 시장은 132억 달러 규모이며 2020~2024년에 연평균 8% 성장 전망
- 2020년 서비스 로봇시장은 111억 달러이며 2020~2024년에 연평균 20% 성장 전망
- 세계 로봇산업 규모는 소프트웨어와 주변기기, SI 포함시 최대 4배 규모로 추산

2020년 한국 로봇 생산은 5.0조원으로 2015~2020년에 연평균 3.6% 성장

- 한국 로봇산업은 제조업용 로봇(52%)과 부품·소프트웨어(33%) 중심의 구조
- 한국의 스마트 제조로봇 기술은 최고 기술보유국인 EU 대비 80.0%, 서비스 로봇 기술 수준은 최고 기술보유국인 미국 대비 80.0~83.5% 수준
- 로봇산업 관련 사업체수('20)는 약 2,500개사이나 중소기업이 대부분(98.5%)으로 자본력이 약하며 글로벌 경쟁력을 갖춘 기업은 소수에 불과

주요국은 제조업 경쟁력 제고, 사회문제 해소 등을 위해 로봇산업을 육성

- (미국) 제조업 부흥을 위해 '첨단제조 파트너쉽(Advanced Manufacturing Partnership)'을 발표하고 협동로봇, 로봇 융합 기술개발 등을 추진
- (일본) '로봇 신전략' 하에 사회문제 해결을 목표로 로봇 관련 규제개혁, 기술개발,
 로봇 보급, 시스템 통합(SI) 기업 및 인력육성 등을 지원
- (중국) '중국 제조 2025'의 핵심분야로 로봇을 선정했으며 로봇산업 발전계획 (2016~2020) 등을 통해 로봇산업을 육성
- (EU) 로봇을 차세대 핵심 전략산업으로 선정하고 연구기금 지원제도 Horizon 2020('14~'20), Horizon Europe('21~'27)을 중심으로 민관협력을 통한 로봇 기술 개발을 지원
- (한국) 로봇산업 글로벌 강국으로 도약을 목표로 로봇산업 생태계 강화를 추진

로봇은 4차 산업혁명의 기반 기술로 우리나라 주력산업의 경쟁력 제고에 기여할 수 있으며 전후방 산업과의 연관효과가 높아 산업육성이 필요함

- 한국은 제조업 강국이며 제조업의 로봇 활용도가 높은 국가로 로봇은 중소제조업 의 경쟁력 제고, 인력부족 해소 등에 기여할 수 있음
- 로봇산업은 다양한 산업과 연계성이 높아 전후방산업의 동반성장과 고부가가치화 를 견인하며 지능형 로봇기술은 전산업을 변화시킬 새로운 융합기반을 제공
- 로봇산업은 성장 초기 단계로 성장잠재력이 높으며 한국기업에게도 기회가 있음

로봇산업 육성을 위해 국내시장 활성화, 기술력 제고, 해외시장을 염두에 둔 전략 수립과 진출 지원 등이 요구됨

- 국내 로봇 시장 활성화 및 로봇기업의 Reference 확보를 위해 로봇 활용도가 낮은 산업, 작업환경이 열악하고 인력난을 겪는 산업 등의 로봇 도입 지원 강화 필요
- R&D 뿐만 아니라 M&A 지원, Al·5G 등 기술기업과의 협력, 인력 육성 등이 필요
- 국내 시장은 협소하여 해외 진출을 염두에 둔 사업모델 수립 및 해외진출 지원 필요

로봇기업이 기술개발, 상용화 단계에서 자금부족 등으로 사업화에 실패하는 것을 방지하기 위해 정책금융 지원 확대가 필요

- 신기술산업은 기술개발단계와 상용화 단계에서 2차례 죽음의 계곡(Valley of Death)을 경험
- 로봇산업은 대중화되기까지 5~10년이 소요될 것으로 예상되어 장기 금융지원이 가능한 정책금융 지원 확대 필요

I. 로봇산업 개요

(정의) 외부환경을 스스로 인식(Sense)하고, 상황을 판단(Think)하여 자율적으로 동작(Act)하는 기계장치¹⁾

- 광의의 로봇은 자율주행차, 드론, AI 스피커 등을 포함하나 협의의 로봇은 산업용 로봇과 서비스용 로봇만을 포함
- 광의의 로봇은 로봇기술의 융합을 통해 타 분야의 로봇화로 파생되는 산업(자율주행 차 등)을 포함
- 국제로봇협회(International Federation of Robotics, IFR)는 협의의 로봇*만을 커버하고 있으며, 로봇을 용도에 따라 산업용 로봇**과 서비스 로봇으로 분류
 - * ①소프트웨어(bots²), AI, RPA³), ②원격조정 드론, 무인항공기(UAV), 무인지상차량(UGV), 무인잠수정(UUV), ③자율주행차, ④ATM, 스마트세탁기 등을 제외
 - ** 산업용 로봇(Industrial Robot)이 국제적으로 사용되나 우리나라는 제조 로봇으로도 불림

자료: 정보통신기획평가원.

¹⁾ 지능형 로봇 개발 및 보급 촉진법 제 2조 제 1호

²⁾ 특정 업무를 수행하도록 프로그래밍된 소프트웨어 응용 프로그램(예: 챗봇)

³⁾ Robotics Process Automation(업무자동화). 반복적인 업무를 로봇 소프트웨어를 통해 자동화

로봇은 사람의 명령 또는 현장제어에 따라 수동적, 반복적 작업을 수행했으나 ICT 기술 발전과 융복합화로 능동적 작업 수행이 가능한 지능형 로봇으로 발전

- (Robotics 1.0) 1960~1980년대는 로봇 도입 초기 단계로 로봇은 프로그램된 기계 장치에 머물렀으며 로봇 연구테마는 모터와 관련 컨트롤러 개발에 집중됨
- 자동차산업을 시작으로 대규모 제조업에 로봇이 도입되기 시작했으며 로봇은 사람과 격리된 공간에서 반복적이고 위험한 업무를 수행
- (Robotics 2.0) 1990~2000년대는 로봇의 Transforming 단계로 로봇의 산업 및 상업 적 사용이 확대되었으며 로봇 연구테마는 Automation(자동화)에 집중됨
- 로봇의 환경 인지능력 제고를 위해 다양한 센서 연구가 증가했으며, 원격조정 로봇도 주요 연구 주제로 부상
- 일본 혼다가 인간의 신체와 유사한 모습을 갖춘 이족 보행 휴머노이드 로봇을 발표
- (Robotics 3.0) 2010~2020년대는 로봇의 Digitalization(딥러닝 등)에 연구가 집중되었으며 로봇과 사람이 동일 공간에서 작업 가능한 협동로봇이 등장
- (Robotics 4.0) 2020년대초부터는 로봇의 대중화 단계로 AloT(사물지능융합기술), 클라우드 로보틱스 등으로 로봇의 고도화 전망

로봇산업 발전과정 - 산업용 로봇 중심으로

분류	단계	주요 내용
Robotics 1.0	초기 단계 (1960s~1980s)	· 사용처: 대규모 제조업 · 연구테마: Motorization(로봇 컨트롤러, 모터) · 격리된 공간에서 반복적이고 위험한 업무 수행
Robotics 2.0	Trasforming 단계 (1990s~2000s)	· 사용처: 산업 및 상업적 사용 · 연구테마: Automation(힘/토크 센서, 머신비전 등) · 휴머노이드 로봇의 출현
Robotics 3.0	빅뱅 단계 (2010s~2020s)	· 연구테마: Digitalization (딥러닝, 빅데이터 등) · 협동로봇의 출현
Robotics 4.0	대중화 단계 (2020s~)	· 연구테마: 협업과 인지(클라우드 로보틱스, 5G AloT(사물지능융합기술) 등)

자료 : Zhen Gao, 'From Industry 4.0 to Robotics 4.0 – A Conceptual Framework for Collaborative and Intelligent Robotics Systems', 2019

산업용 로봇은 제조현장에서 제품 생산부터 출하까지의 공정내 작업을 수행하기 위한 자동조정장치로 전통 산업용 로봇과 협동로봇으로 분류

- 전통 산업용 로봇은 소수의 반복적 업무를 수행하는 대형 로봇으로 사람의 안전을 지키기 위해 펜스 설치, 안전거리 확보 등이 필요
- 협동로봇은 중소형 로봇으로 안전기능을 갖춰 인간과 로봇이 동일 공간에서 함께 작 업 가능
- 협동로봇은 기존 산업용 로봇 대비 설치·시운전이 간편하며 공정 변경이 용이하여 소품종 대량생산이 가능하며 전통 산업용 로봇 대비 가격이 낮음
 - * 협동로봇의 투자 회수 기간은 1년 내외, 전통 산업용 로봇의 투자회수 기간은 3년 내외
- 산업용 로봇은 고객사별 요구 사양(예: 적재하중)이 상이하여 고객 맞춤형 생산 방식을 채택하고 있으며, 시스템통합(SI) 기업을 통해 로봇을 판매
- 시스템통합 기업은 수요기업의 니즈에 맞게 산업용 로봇에 특정 기능을 추가하는 등 맞춤형 작업 등을 담당

전통 산업용 로봇과 협동 로봇 비교

	전통 산업용 로봇	협동 로봇
크기	대형	중소형
속도	빠름	안전을 위한 가감속 가능
가반하중 ^{주)}	~200kg+	3~16kg
안전	위험(안전펜스 필요)	안전(센서로 대체)
조작 및 운용	전통적인 프로그래밍 필요	비전문가도 프로그래밍 가능한 쉬운 운영체계
주 수요처	자동차, 전기전자	전기전자, 식품, 의약품 등
비용	고가(1억 이상)	저가(2,000~4,000만원)
공정	소품종 대량 생산에 적합	다품종 변량 생산에 적합

주: 로봇이 들어 옮길 수 있는 최대 무게

자료: 중소벤처기업부, IBK투자증권, 로보신문.

서비스 로봇은 전문서비스 로봇과 개인서비스 로봇으로 분류

- 개인서비스 로봇은 개인이 비상업적인 용도(청소, 교육 등)로 로봇을 사용하며, 전문 서비스 로봇은 상업적 용도로 특정 업무(의료, 물류, 국방 등)를 수행
- 로봇 사용처가 확대되면서 기존 분류의 경계가 흐려지고 있음
- 협동로봇은 바리스타 로봇 등 전문서비스용 로봇으로 발전, 물류로봇은 전문서비스 업 로봇으로 분류되나 공장 등에 도입 증가

로봇산업은 로봇 제조사를 중심으로 후방산업인 소재·부품, 소프트웨어 분야와 전방산업인 시스템통합 및 제조·서비스 수요처로 구성됨

- 로봇제조사는 소재·부품, 소프트웨어를 구매하여 로봇을 개발하며, 시스템 통합기업 과 계약을 체결하고 로봇을 유통
- 로봇 부품은 구조부품, 구동부품, 센싱부품, 제어부품으로 분류
- 로봇 소프트웨어는 로봇용 운영시스템(OS), 미들웨어4), 어플리케이션, 개발도구, 시뮬레이터를 포함
- 시스템 통합기업은 수요기업의 요구사항에 부합하는 로봇 시스템을 설계하고 제작, 설치, 시운전, 유지보수를 담당

로봇산업 생태계

자료 : 산업통상자원부.

⁴⁾ 로봇의 다양한 센서,액추에이터 및 공통 기능 요소를 사용하기 쉽게 API(Application Programming Interface)로 제공하고 이들을 운용, 관리

- 로봇은 기구부, 센서, 제어기(Controller), 구동기(Actuator) 등으로 구성
- 기구부는 로봇의 골격과 로봇팔, 손에 해당하는 말단효과장치(End effector 또는 EOAT(End-of-Arm-tooling))로 구성
 - · 말단효과장치는 로봇팔의 끝단 장치로 실질적인 작업(예: 용접)을 수행
- 센서는 로봇의 오감을 담당하며 카메라, GPS 등이 사용됨
- 제어기(Controller)는 로봇의 두뇌역할을 담당하며 구동기에 출력 구동신호를 제공
 - · 반도체, 소프트웨어 등이 포함됨
- 구동기(Actuator)는 로봇의 근육을 담당하여 로봇을 움직이는 장치
 - · 모터, 감속기5), 인공근육 등이 포함됨

로봇의 주요 구성 요소 기구부 로봇의 골격을 담당 (예: 로봇팔, 말단효과장치(손)) 센서 로봇의 오감을 담당 (예: 카메라 등) 제어기 (Controller) 로봇의 두뇌 역할을 담당 (예: 반도체, 소프트웨어) 구동기 (Actuator) 로봇의 근육을 담당 (예: 서보모터, 인공근육 등)

⁵⁾ 산업용 로봇 관절에 사용

П. 글로벌 로봇산업 현황 및 전망

1. 시장규모

세계 로봇산업은 2020년 약 250억 달러에서 2030년 1,600억 달러 규모로 연평 균 20% 성장할 전망⁶⁾

- 인구고령화, 로봇 가격하락, 삶의 질 향상 추구(예:고위험 업무 기피) 등이 로봇 도입을 촉진하면서 로봇산업 성장의 축이 산업용 로봇에서 서비스 로봇으로 이동할 전망
- 세계 로봇산업 규모는 2020년 약 250억 달러로 산업용 로봇이 54%, 서비스용 로봇 이 46%를 차지
- 로봇산업은 산업용 로봇 중심이었으나 1990년대에 개인서비스 로봇, 2000년 이후에 는 전문서비스 로봇 개발 붐이 발생
- 로봇 도입은 로봇 가격하락⁷⁾ 뿐만 아니라 로봇 사용량에 비례하여 비용을 지급하는 Robot-as-a-Service(RaaS) 사업모델의 확산 등으로 확대될 전망
- 세계 로봇산업 규모는 소프트웨어와 주변기기, SI 포함시 최대 4배 규모로 추산
- 5G, AI, 클라우드가 로봇의 기술발전을 견인하면서 관련 시장이 빠르게 성장할 전망

자료 : 국제로봇연맹(International Federation of Robotics), 'World Robotics 2021', 2021.10.

⁶⁾ Boston Consulting

⁷⁾ 라이트의 법칙(기계의 생산 대수 2배 증가시 가격은 절반으로 하락) 등에 따라 2025년 산업용 로봇의 가격이 2015 년 대비 65% 하락할 전망 (Ark Investment)

2020년 산업용 로봇 시장은 132억 달러 규모이며 2020~2024년에 연평균 8% 성장 전망

- 세계적으로 운영중인 산업용 로봇('20)은 300만대이며 2020년 한 해 동안 설치된 산업용 로봇은 38.4만대
- 연간 산업용 로봇 설치대수는 2015~2020년에 연평균 9% 성장했으며 2021년 산업용 로봇 설치대수는 48.7만대로 전년대비 27% 성장한 것으로 추정됨
 - · 국제로봇연맹은 기존에 2023년 산업용 로봇 설치대수를 48.6만대로 전망했으며 예상보다 2년 앞당겨진 2021년에 이를 달성
 - · 2009년은 산업용 수요가 폭발하는 변곡점으로 로봇 수요 증가, 가격 하락 발생
- 협동로봇의 확산, 공급망 안정화 등을 위한 주요국의 제조업 육성 정책, 전기차·배터리 등 신산업 투자 증가 등이 산업용 로봇 수요를 견인할 전망
 - · 협동로봇은 2020년 산업용 로봇 설치대수의 6%에 불과하나 2017~2020년에 연평균 26% 성장, 반면에 전통 산업용 로봇 설치대수는 동 기간 연평균 1% 역성장
 - · 가격경쟁력을 갖춘 협동로봇의 성장으로 중소기업의 로봇 도입이 증가하면서 협동로봇 설 치대수는 2021~2026년에 연평균 22% 성장 전망(야노리서치, '22.3)
- 산업용 로봇의 주요 수요산업('20)은 전기전자 29%, 자동차 21%, 금속·기계 11% 순 으로 3개 산업이 61%를 차지하여 타 산업의 로봇 도입 잠재력이 풍부
- 1960년대초 GM이 로봇을 도입한 후 자동차산업은 60년간 산업용 로봇을 사용했으 며 로봇의 업무도 용접, 페인팅 등 단순 반복 작업에서 이송, 조립 등으로 확대
 - * 산업용 로봇 업무 비중('20): 이송(43%), 용접(17%), 조립(12%) 3대 분야가 73%

산업용 로봇 연간 설치대수 단위: 만대

60 추정('22.6) 50 40 로본 30 판매량 20 10 2015 2016 2017 2018 2019 2020 2021f 2022f 2023f 2024f

자료: 국제로봇연맹.

산업용 로봇 수요의 가격탄력성

자료: ARK Investment.

- 국가별 산업용 로봇 설치 대수 비중은 중국 44%, 일본 10%, 미국 8%, 한국 약 8%, 독일 약 6% 순으로 5개국이 76%를 차지
- 지역별로는 아시아가 최대 시장이며, 로봇도입률이 낮고 인건비가 상승하는 중국, 인도, 브라질 등의 산업용 로봇 도입이 증가할 전망
- 공급망 위기를 겪으면서 미국 등 선진국의 로봇 수요도 증가할 전망
 - * 미국의 산업용 로봇 침투율(penetration rate) 10% 미만®

2020년 서비스 로봇 시장은 111억 달러이며 2020~2024년에 연평균 20% 성장 전망

- 2020년 전문서비스 로봇 시장은 전년 대비 12% 증가한 67억 달러를 기록했으며 2020~2030년에 연평균 25% 성장 전망
- 2020년 전문서비스 로봇 판매량은 전년 대비 41% 증가한 13.2만대이며 세부 판매량 비중은 물류 33%, 전문청소 26%, 의료용 로봇 14%, 접객로봇 11% 순
 - · 물류 로봇은 전자상거래의 성장 등으로 판매량이 전년 대비 33% 증가한 4.3만대를 기록. 주로 실내(물류창고 등)에서 사용되나 실외 배달 로봇 등이 성장잠재력을 보유
 - · 전문청소로봇은 코로나19 등으로 판매량이 전년 대비 92% 증가한 3.4만대를 기록
 - · 의료용 로봇의 2020년 판매량은 전년동기 대비 174% 증가한 1.8만대를 기록. 물량은 크지 않지만 평균 판매단가⁹⁾가 높아 금액기준 전문서비스 로봇 시장의 55%를 차지
- 소비자용 로봇 시장은 전년대비 16% 증가한 44억 달러를 기록
- 주력 제품은 로봇 청소기로 시장규모는 24억 달러이며 소비자용 로봇 매출의 56%, 판매량의 93%를 차지. 2000년대 초반에 출시되었으며 현재 시장 확대 단계에 위치
- 서비스 로봇 시장에서 전문서비스용 로봇과 소비자용 로봇의 비중은 6:4이며 전문서 비스용 로봇(물류, 의료 등)이 소비자용 로봇 대비 성장률이 높을 것으로 전망

⁸⁾ A Roadmap for U.S. Robotics(2020)

⁹⁾ 인튜이티브 서지컬사의 수술용 로봇 다빈치의 가격은 대당 2백만 달러

로봇산업의 성장잠재력은 풍부하나 대중의 기대수준과 로봇의 능력과의 격차, 로봇 사업화 모델 미흡 등으로 로봇의 대중화는 5~10년 후로 예상

- 시장조사기관 가트너는 Hype Cycle을 통해 새로운 기술의 등장부터 성숙기에 도달할 때까지의 시간(기술 성숙도)을 5단계로 분류
- 혁신적 기술 단계는 기술이 관심을 받으나 상용제품은 없는 단계
- 기대의 정점 단계는 선도기업의 성공과 실패 스토리가 나오기 시작하는 시점으로 일 부 기업은 사업에 착수하나 다수 기업은 관망
- 환멸의 계곡은 다수 기업이 사업을 포기하고 생존 기업만 투자 지속
- 이해의 확산 단계는 명확한 수익모델이 생기면서 시장을 이해
- 생산 안정화 단계는 기술이 시장에서 자리 잡음
- 지능형 로봇은 Hype Cycle상 기대의 정점 초입에 위치하며 생산 안정화 단계 도달 까지 5~10년이 소요될 전망
- 대중은 영화 등을 통해 고도로 지능화된 로봇을 기대하고 있으나 현재는 로봇이 다양한 분야에 도입되면서 Reference를 구축하는 단계
 - · 산업용 로봇, 로봇청소기 외 대부분 로봇은 규모의 경제에 도달하지 못함
 - · 산업용 로봇에 필요한 대부분의 기술은 검증된 기술을 사용하나 서비스 로봇에 필요한 대부분의 기술(AI 등)은 개발중

자료: 가트너('21.7)

※ 참고 : 로봇 기반 기술 수준

- 지능형 로봇으로 발전하기 위한 주요 핵심 기술 수준은 아직 대중에 기대에 미치 지 못함
- 로봇 구동기술, 사물인식, 실내 자율주행 기술은 상용화 수준이나 AI, 5G, 클라우드, 실외 자율주행 등의 기술은 발전이 필요
 - · AI 기술은 이미지 인식, 음성인식 등 일부 기능에 특화된 AI 기술이 비약적으로 발전했으나 사람의 수준으로 사고하는 범용 AI 수준에는 도달하지 못함
 - · 자율주행차는 도로에서만 운행되나 로봇의 실외 자율주행 기술은 비정형화된 공간, 다양한 장애물 등으로 인해 자율주행차보다 높은 수준의 기술이 필요

주요 로봇 기반 기술 수준

분류	현 수준	코멘트
구동	•	· 로봇 팔 및 손의 구동 기술과 이동 기술은 상용화 수준
Al	•	
5G	•	· B2B 서비스의 5G 특화망 ³⁾ 은 태동기 · 인프라 구축(고주파대역 무선기 등) 미비
클라우드	•	· 일반 클라우드 서비스 시장은 성숙 단계 · 로봇 클라우드는 아마존웹서비스 등을 중심으로 초기 형성 단계
자율주행	•	· 실내 자율주행 기술 성숙 · 실외 자율주행 기술은 자기 위치 추정 등 기술 진전 필요
운영체제(OS)	•	· OS 생태계 형성 단계(ROS 등)
소프트 로보틱스 ¹⁾	•	· 소프트 그리퍼, 액츄에이터 등 일부 기술 진전
3D 프린팅	•	· 3D 프린팅 기술은 성숙했으나, 로봇 활용은 제한적 · 비용 절감 및 사용 가능 재료 확대 필요

주: 1) 유연한 소재(예: 고무)를 활용하여 외부 환경에 대한 적응성이 증진된 로봇 공학

2) 이미지 인식 기술은 2015년 이후 인간의 능력을 추월

3) 특정지역에 한해 사용 가능한 통신망

자료 : 유진투자증권

2. 주요 기업

미국, 유럽, 일본기업이 산업용 및 서비스용 로봇산업을 주도

- 산업용 로봇은 일본과 유럽기업인 화낙(일본), ABB(스위스), Yaskawa(일본), Kuka(독일)¹⁰⁾, Kawasaki중공업의 5개사의 과점구조로 5개사의 시장점유율은 약 60%
- 세계 산업용 로봇 시장점유율('20)은 화낙 16%, ABB 12%, Kuka 12%, Kawasaki 10%, Yaskawa 9%, 현대로보틱스 2%, Nachi 2%
 - · 일본은 산업용 로봇 강국으로 2021년 산업용 로봇 출하량의 45%를 공급(IFR, '22.3)
- 협동로봇은 동 시장을 개척한 덴마크의 유니버셜로봇이 선도하고 있지만 기존 산업용 로봇기업과 중국기업 등의 진출로 50개 이상 기업이 참여하여 경쟁 심화
 - · 세계시장점유율: 유니버셜로봇 30~32%, 화낙과 ABB 각 10~12%, Techman Robot(대만)¹¹⁾ 3~5%, Kuka 2~4%, 기타 35~45%
 - · 협동로봇은 기업간 제품 스펙에 큰 차별성이 없어 가격경쟁력과 협동로봇 관련 다양한 서비스(유지보수, 다양한 산업에서 활용 가능한 솔루션 제공 등) 등이 중요
 - * 유니버셜로봇은 교육, 파이낸스(렌탈 및 리스) 등을 제공

산업용 로봇 시장점유율('20)

협동로봇 시장점유율('20)

자료 : 후지경제.

자료: Markets and Markets(2021)

¹⁰⁾ 중국 가전회사 메이디가 인수

¹¹⁾ PC OEM사인 Quanta 그룹 산하 기업

- 서비스 로봇은 미국이 주도하며 응용 분야별 전문기업이 시장을 선도
- 물류로봇은 아마존 등, 로봇청소기는 iRobot이 앞서있으며, 수술용 로봇은 Intuitive Surgical의 독과점 구조
 - · 아마존은 세계 최대 물류로봇 사용 기업으로 2012년 물류로봇기업 키바시스템즈를 인수하고 자사 물류창고에 물류이송로봇 5만여대를 투입
 - · 개인서비스 로봇중 가장 대중화된 로봇청소기의 세계시장점유율('20)은 미국 iRobot 46%, 중국 에코벡스 17%, 중국 Roborock 9% 순(Statista)
- 일본은 소니(애완견 로봇), 혼다·소프트뱅크(휴머노이드 로봇) 등이 서비스 로봇을 개발했으나 소비자의 기대 수준을 충족시키지 못함
 - · 소프트뱅크의 휴머노이드 로봇 Pepper는 2015년 출시 후 호텔, 요양원 등에 2만대 이상 도입되었으나 제한적 기능, 잦은 오류 등으로 6년만에 생산 중단12)

자동차, IT서비스기업, 가전기업 등이 기존 사업 경쟁력 강화와 신시장 진출을 위해 로봇사업을 강화

- 주요 자동차 회사는 로봇기술(센서, AI 등)이 모빌리티 사업의 경쟁력을 결정하는 요소로 판단하고 로봇사업을 강화
- 현대차그룹은 2040년 사업구조를 자동차 50%, UAM(Urban Air Mobility) 30%, 로봇 20%로 변화 추진
- 도요타는 휴머노이드 로봇, 배송로봇, 가정용 로봇 등을 개발중이며 스마트시티를 조성하고 로봇 등의 테스트베드로 활용 추진
 - · 2024~2025년 후지산 인근에 조성될 Woven city는 도요타 직원과 업계 관계자 2천명이 거 주하면서 자율주행, 로봇, 스마트홈 등을 검증할 계획
- 테슬라는 자율주행차 이후 신사업으로 로봇을 선정하고 휴머노이드 로봇 개발 발표13)
 - · 테슬라의 휴머노이드 로봇은 키 172cm, 몸무게 56kg으로 시속 8km로 이동할 수 있고 20kg의 짐 운반이 가능. 22년 하반기 프로토타입 출시, 2024~2025년 양산을 추진¹⁴⁾

¹²⁾ 세계 최초의 로봇 호텔로 등재된 일본 헨나 호텔은 2019년 설치한 로봇 243대중 절반 이상을 사람으로 교체(조선 Biz. '일자리 잃은 로봇...日 페퍼, 6년만에 생산중단 이유'. 2021.7.14)

¹³⁾ 하이투자증권은 테슬라가 로봇을 개발하는 이유를 차량 생산능력 확대('22년 생산능력 205만대→'30년 생산량 목 표 2천만대), 우주기지 건설에 활용일 것으로 추정

¹⁴⁾ 테슬라는 자율주행차에 탑재되는 동일한 반도체와 센서를 로봇에 탑재 방침

- 아마존은 자사 물류부문 혁신, 소비자용 로봇 사업 진출을 위해 로봇 기업 M&A, 산업혁신펀드 조성, 스타트업 투자 등을 추진
- 아마존은 자율카트 등 물류로봇을 개발한 Canvas Technology를 인수('19)했으며 '22년 자율주행이송로봇(Autonomous Mobile Robots, AMR) Proteus 출시
- 아마존은 산업혁신펀드를 조성('22)하고 로봇 스타트업에 투자하고 있으며, 가정용로봇 Astro¹⁵⁾ 출시('21), iRobot 인수 계약 체결('22)을 통해 가정용 로봇사업 강화
- 반도체 검사장비기업 테라다인은 로봇 하드웨어 및 소트프웨어 기업 인수를 통해 검사장비 사업 경쟁력 제고, 로봇으로 사업다각화 추진 (협동/물류로봇 사업 강화)
- 덴마크 유니버셜로봇('15)과 자율주행이송로봇 기업 MiR('18), 로봇제어 소프트웨어 전문기업 Energid('18), 고중량 물류로봇기업 AutoGuide Mobile Robots 인수('19)¹⁶⁾

주요 기업 로봇사업 현황

	1 4 1 2 3 1 2 3
기업	현황
현대차	· 2040년 사업구조를 자동차 50%, UAM(Urban Air Mobility) 30%, 로봇 20%로 변화 추진
도요타	· 휴머노이드 로봇, 배송로봇, 가정용 로봇 등을 개발중이며 스마트시티를 조성하고 로봇 등의 테스트베드로 활용 추진
아마존	· 자사 물류부문 혁신, 소비자용 로봇 사업 진출을 위해 로봇 기업 M&A, 산업혁신펀드 조성, 스타트업 투자 등을 추진
테라다인	· 로봇 하드웨어 및 소트프웨어 기업 인수를 통해 반도체 검사장비 사업 경쟁력 제고, 로봇으로 사업다각화 추진
구글 (알파벳)	· 일상생활속 인간을 돕는 Everyday Robot을 구글 본사에 100여대 도입 하고 실증 추진 (쓰레기 분류, 의자정리 등)
포드	· 로봇기업 '어질리티로보틱스'와 협력해 직립보행 로봇 '디지트'를 개발해 상용화에 도전
Shopify	· 캐나다 전자상거래 회사로 미국 물류로봇 스타트업 6 River Systems 인수

¹⁵⁾ 집안 모니터링, 침입자 감시, 접대 등의 기능을 보유. 가격은 1,000달러이며 판매는 부진한 것으로 추정

¹⁶⁾ MiR은 물류 창고내 저/중하중의 작업을 수행하는 로봇, AutoGuide Mobile Robots는 고하중의 작업 수행 로봇 (하이투자증권, 'Teradyne-반도체 장비에 로봇을 더하다', 2021.9)

로봇의 핵심 부품은 일본, 소프트웨어는 미국기업이 지배적인 사업자

- 로봇의 핵심부품은 일본이 기술력과 규모의 경제를 통해 경쟁우위를 확보
- 일본 Yaskawa, 파나소닉, 하모닉드라이브시스템즈 등이 모터, 감속기, 제어기 등의 주요 사업자
 - · 산업용 로봇 정밀 감속기 시장은 나브테스코(41.3%), 하모닉드라이브시스템즈(28.3%), 일본 전산심포(6.6%) 등 일본기업이 선도 (후지경제('20))
 - * 산업용 로봇은 모터, 감속기, 제어기 등이 로봇 총 원가의 56%를 차지
 - * 협동로봇 원가 비중: 감속기 32%, 서보 모터 22%, 제어장치 12%, 본체 25%, 기타 9% (레인보우로보틱스)
 - * 중대형 감속기는 나브테스코, 소형 감속기(협동로봇 등에 탑재)는 하모닉드라이브시스템 즈가 세계 1위

부품 완성제조 수요자 SI 제어기기 YASKAWA 기타 Nabtesco 엔드이벡터 MITSUBISI ELECTRIC nobot Sumitomo **Panasonic** OMRON 케이블 LEONI RS Automation ROBOTIS SBB9 OKI 비전센서 가속도&자이로센서 모터 센서 광전센서 COGNEX KEYENCE SIEMENS MIS.ES Panasonio SICK REYENCE 로터리엔코더 Omron YASKAWA DANALOS SEIKO Mikon DE SAUTHE NICON HEIDENHAIN NICON MIRATA STOK BALLUFF Pa 힘센서 **Panasonic** FANUC Klenix HENGSTLER FUTEK SEIKO Avago rexroth LEINE E LINDE SICK MITSUBISHI A B ATI Nicera KOLLMORGEN ESTUN DENSO OMRON ELPEPERLIFUCIES Automotion

로봇 부품 생태계 지도

- 주: 붉은 색 박스는 한국기업 자료 :유진투자증권.
- 로봇 운용체제(OS)는 Willow Garage의 오픈 플랫폼 ROS가 주도하며, 아마존 등이 로봇용 클라우드 서비스를 제공
- (클라우드) 아마존은 개발자들이 클라우드에 접속하여 로봇에 필요한 소프트웨어를 개발할 수 있도록 지원하는 로봇용 클라우드 서비스(Robo Maker) 제공

- · ROS 기반의 로보틱스 어플리케이션 개발, 시뮬레이션, 테스트, 로봇 Fleet 관리, OTA(over-the-air) 배포까지 클라우드 환경에서 지원
- (로봇 제어용 알고리즘 소프트웨어) 화낙, Kuka 등 로봇 완제품 기업이 자사 제품에 적용되는 로봇 제어용 소프트웨어를 함께 제공하며, 대형 생산시설에는 지멕스, 다쏘 시스템(프랑스)의 생산설비 전문 제어용 소프트웨어 플랫폼을 도입¹⁷⁾
 - · Kuka는 클라우드 기반의 소프트웨어 플랫폼 'Kuka Connect'를 통해 사용자가 보유중인 모든 Kuka 로봇을 온라인으로 통합 관리하는 솔루션 출시

로봇기업은 주력 제품과 시장에 따라 수익성, 연구개발 투자 등에서 상이한 모습을 보임

- 수익성은 부품 내재화(예: 화낙), 고부가 제품(예:의료로봇), 완제품 로봇 대비 경쟁이 상대적으로 낮은 핵심 부품기업의 수익성이 높음
- 산업용 로봇기업으로 부품을 내재화한 화낙의 영업이익률은 20%로 타사 대비 높으며, 의료로봇 기업 Intuitive Surgical도 높은 수익성을 유지
 - · Intuitive Surgical의 매출 비중('21.4분기)은 로봇은 25.3%이며 소모품(수술도구) 54.4%, 서비스(A/S 등) 15.3%, 운용리스 4% 등으로 소모품과 서비스 분야가 로봇 자체보다 매출 비중이 높음
- 핵심 부품기업인 나브테스코와 하모닉드라이브시스템즈는 10%의 영업이익률을 기록
- 서비스 로봇 기업은 스타트업 중심이며¹⁸⁾ 진입장벽, Reference 구축 및 상용화 수준 등에 따라 상이한 실적을 기록
 - · 서빙로봇은 이동경로가 단순하며 반복작업을 수행하여 기술 진입장벽이 낮고 중국기업의 해외진출 확대 등으로 가격경쟁 심화되어 수익성이 상대적으로 낮은 것으로 추정
 - · iRobot은 1990년 설립된 기업으로 군사용 로봇을 개발했으며 2002년 로봇청소기 개발 후 기업 실적 개선
 - · 보스턴 다이내믹스는 1992년 설립된 기업으로 세계적으로 기술력은 인정받았으나 최근 상용화 단계에 진입하여 2021년 매출액은 668억원, 영업손실 1,970억원 기록
 - * 로봇개 Spot 상용화에 이어 2022년부터 물류로봇 Strecth를 글로벌 물류기업 DHL에 공급 예정(약 180억원)으로 실적 개선 기대

¹⁷⁾ 산업연구원

¹⁸⁾ 서비스 로봇은 산업용 로봇 대비 진입장벽(투자비 등)이 낮아 세계적으로 천개이상의 기업이 사업을 영위하며 이 중 80%가 중소기업

- 산업용 로봇 대비 서비스 로봇의 매출액 대비 R&D 투자 비율이 높음
- 단순반복적 업무를 담당하고 시장이 성숙한 산업용 로봇 대비 서비스 로봇은 시장 성장단계이고 기술개발(예:자율주행)이 어려워 매출액 대비 R&D 투자 비율이 높음

주요 로봇기업 실적('21)

단위: 억 달러

	기업	매출	영업이익률	매출 대비 R&D 비율	비고
	화낙	23.8*	24.8%	6.8%	로봇 매출 비중 37%
	야스카와 전기	13.1*	7.0%	3.8%	로봇 매출 비중 35%
산업용 로봇	ABB	33.0*	8.2%	4.2%	로봇과 기계자동화 사업부 매출 비중 11%
	Kuka	10.1*	6.1%*	4.9%	로봇 매출 비중 31%**
	유니버셜로봇	3.1	-	-	테라다인이 인수
	Intuitive Surgical	57.1	31.9%	11.8%	의료로봇
서비스	iRobot	15.6	-0.1%	10.3%	청소로봇
로봇	에코벡스	10.2	16.9%	4.2%	청소로봇, 로봇 매출 비중 51%
ᆸᄑ	나브테스코	27.3	10.0%	3.2%	
부품	하모닉드라이브	5.0	15.3%	5.3%	

주: * 로봇이 포함된 사업부 매출. 일부 기업은 공장자동화사업부에서 로봇사업을 영위

** 중국사업부 제외

자료 :블룸버그.

Ⅲ. 한국 로봇산업 현황 및 경쟁력

1. 시장규모

2020년 한국 로봇 시장규모는 5.5조원19)으로 2015~2020년에 연평균 5.4% 성장

- 로봇시장은 제조업용 로봇이 52%로 가장 큰 비중을 차지하며 다음으로 부품 및 소 프트웨어 32%, 서비스용 로봇 16% 순
- 한국의 산업용 로봇 판매량('20)은 중국, 일본, 미국에 이어 세계 4위로 시장규모는 2.9조원 규모이며 전기전자, 자동차산업 중심으로 로봇 활용이 활발
 - · 1978년 현대자동차에서 용접용 로봇 도입을 시작으로 국내 자동차산업의 성장과 더불어 제조용 로봇 도입 증가
 - · 1980년대 중반 이후에는 전기전자산업에서 로봇 도입이 증가했으며, 1990년대에는 반도체 산업, 2000년대부터는 디스플레이 산업의 성장과 더불어 로봇 보급 확대
- 서비스용 로봇 시장은 8,600억원 규모로 2015~2020년에 연평균 6.4% 성장했으며, 로봇 청소기외 물류로봇, 의료로봇 시장은 시장형성 초기 단계
 - · 로봇 청소기 시장은 2018년 20만대에서 2020년 30만대 규모로 성장
- 로봇 부품 및 소프트웨어 시장은 1.8조원 규모이며 부품 중심으로 성장

단위: 억원

주: 로봇산업 사업체(4,340개)를 기준으로 모수추정 자료 : 로봇산업 실태조사 결과 보고서(2021).

^{19) 2020}년 네이버의 매출액(5.3조원) 규모, 국내 TV 시장(2.7조원)의 2배 규모

2020년 한국 로봇 생산은 5.0조원으로 2015~2020년에 연평균 3.6% 성장

- 한국 로봇산업은 제조업용 로봇과 부품 및 소프트웨어 중심의 구조
- 로봇생산은 제조업용 로봇이 52%로 가장 큰 비중을 차지하며 다음으로 부품 및 소 프트웨어 33%, 서비스용 로봇(전문서비스용 로봇 9%, 개인서비스용 로봇 7%) 16% 순
- 한국 로봇 생산은 2017년 이후 5조원 수준을 유지
- 로봇 생산 연평균 성장률('15~'20)이 가장 높은 품목은 부품 및 소프트웨어(12.0%)이며 다음으로 전문서비스용 로봇(10.5%), 개인서비스용 로봇(2.1%), 제조용 로봇(1.2%) 순
- 제조업용 로봇('20) 생산은 2.6조원으로 이적재용 및 핸들링 로봇(46.3%)과 조립, 분해, 접착, 마킹 및 라벨링용 로봇(20.8%) 중심으로 생산
- 전문서비스용 로봇('20) 생산은 4,332억원으로 안전 및 극한작업용 로봇(18.2%), 의료용 로봇(15.7%), 군사용 로봇 (13.4%) 중심으로 생산
- 개인서비스용 로봇('20) 생산은 3,564억원으로 로봇 청소기 등에 대한 수요 증가로 가사용 로봇(62.5%) 중심으로 생산
- 로봇부품 및 소프트웨어 생산('20)은 1.6조원으로 로봇 구동용 부품(30.4%), 로봇 제어용 부품(25.8%) 중심이며, 로봇용 작동 소프트웨어 개발 및 공급은 6.7%

한국 로봇 생산액

단위: 억원

연평균 성장률('15~'20)

로봇 생산증가율: 3.6% 부품·소프트웨어: 12.0% 개인서비스용 로봇: 2.1%

전문서비스용 로봇: 10.5%

제조업용 로봇: 1.2%

■ 제조업용 로봇 ■ 전문서비스용 로봇 ■ 개인서비스용 로봇 ■ 부품·SW

주: 로봇산업 사업체(4,340개)를 기준으로 모수추정 자료 : 로봇산업 실태조사 결과 보고서(2021).

2020년 로봇 수출은 1.1조원으로 2015~2020년에 연평균 6.7% 성장

- 로봇 수출은 제조업용 로봇 수출이 성장을 견인
- 한국 로봇 수출은 2017년 이후 1.1조원 수준을 유지
- 로봇 수출('20)의 세부 품목별 비중은 제조업용 로봇 77.6%, 부품 및 소프트웨어 13.2%, 개인서비스용 로봇 6.1%, 전문서비스용 로봇 3.1% 순
- 수출 대상국('20)은 중국, 미국, 독일, 일본 중심이며, 중국이 최대 시장이나 전문서비 스용 로봇은 미국이 최대 시장
- 로봇 수출 연평균 성장률('15~'20)이 가장 높은 분야는 부품 및 소프트웨어(성장률 32.7%)와 제조업용 로봇 5.3%, 전문서비스용 로봇 1.7%, 개인서비스용 로봇 △0.5% 순
- 제조업용 로봇('20) 수출은 8,758억원으로 이적재용 및 핸들링 로봇(비중 39.4%)과 조립, 분해, 접착, 마킹 및 라벨링용 로봇(29.2%) 중심으로 수출
- 개인서비스용 로봇('20) 수출은 692억원으로 가사 로봇(75.3%) 중심으로 생산
- 전문서비스용 로봇('20) 수출은 349억원으로 의료 로봇(57.8%)이 수출을 견인
- 로봇부품 및 소프트웨어 수출('20)은 1,491억원으로 로봇 구동용 부품(38.3%)과 제어용 부품(32.8%) 중심이며 소프트웨어 수출은 1.0%로 미미

한국 로봇 수출액

단위: 억원

■ 제조업용 로봇 ■ 전문서비스용 로봇 ■ 개인서비스용 로봇 ■ 부품·SW

주: 로봇산업 사업체(4,340개)를 기준으로 모수추정 자료: 로봇산업 실태조사 결과 보고서(2021).

한국의 스마트 제조로봇²⁰⁾ 기술은 최고 기술보유국인 EU 대비 80.0%, 서비스로봇 기술수준은 최고 기술보유국인 미국 대비 80.0~83.5% 수준

- 한국의 스마트 제조로봇 기술수준은 최고 기술보유국 EU 대비 80.0%, 기술격차는 3.0년
- 스마트 제조로봇 최고 기술보유국인 EU의 기술수준을 100으로 볼 때 일본 90.0, 미국 89.0, 한국 80.0, 중국 70.0 순으로 한국의 기술력이 중국 대비 다소 앞섬
 - · EU는 스마트 로봇에 필요한 통신 등의 기술을 선도하며 스마트팩토리와 연계 활발
 - · 일본은 로봇제조 기술은 우수하나 소프트웨어 등에서 EU 대비 열위
 - · 미국은 로봇에 AI 적용 시도가 활발, 중국은 해외기업 인수 등을 통해 기술력 제고
- 한국의 서비스용 로봇의 기술 수준은 최고 기술보유국인 미국 대비 80.0~83.5 수준, 기술격차는 2.5~3년 수준
- 적응형 서비스 로봇²¹⁾ 최고 기술보유국인 미국의 기술수준을 100으로 볼 때 일본·EU 95.0, 중국 85.0, 한국 83.5순으로 중국의 기술력이 한국 대비 다소 앞섬
 - · 미국은 서비스 로봇의 핵심기술인 AI에 강점을 보유, EU는 미국 수준의 연구 인프라와 역량을 보유
 - · 일본은 로봇 부품, 응용/서비스는 선도적이나 최신 ICT 기술 수용도가 상대적으로 낮음
- ,·중국의 기술력은 선도국 대비 낮으나 가격경쟁력 확보, 한국은 중소기업 중심으로 연구역량 이 부족
- 재난구조 및 극한탐사 로봇²²⁾ 최고 기술보유국인 미국의 기술수준을 100으로 볼 때 일본 95.0, EU 90.0, 한국·중국 80.0 순으로 한국과 중국간 기술격차가 없음
- , · 한국은 기술 측면에서는 선도국을 빠르게 추격중이나 상용화 실적이 미흡

주요국 로봇 기술수준

		일본	미국	EU	한국	중국
스마트	기술수준(%)	90.0	89.0	100.0	80.0	70.0
제조로봇	격차기간(연)	1.0	1.0	0.0	3.0	3.0
적응형 서비스	기술수준(%)	95.0	100.0	95.0	83.5	85.0
로봇	격차기간(연)	1.0	0.0	1.0	2.5	2.5
재난 구조 및	기술수준(%)	95.0	100.0	90.0	80.0	80.0
극한탐사 로봇	격차기간(연)	1.0	0.0	2.0	3.0	3.0

자료: 한국과학기술기획평가원, '2020년 기술수준평가'

²⁰⁾ AI를 기반으로 작업환경 인지와 자가 학습으로 작업의 효율 증대 및 인간협업이 가능한 로봇 기술

²¹⁾ 인간의 명령과 감정을 이해하고 반응하며 IT기술을 바탕으로 인간에게 다양한 서비스를 제공하는 로봇(실버케어로 봇, 소셜로봇, 교육용 로봇 등)

²²⁾ 재난현장의 국한 조건에서 재난진압 및 피해 확산 방지 작업 등을 위한 로봇으로 극지방, 심해, 우주 등에서 인간을 대신하거나 인간과 협업을 통해 탐사활동을 가능하게 하는 로봇 기술

한국의 로봇 부품 기술은 최고 기술보유국인 일본 대비 68.6% 수준으로 평가

- 한국의 로봇 부품 기술수준은 최고 기술보유국인 일본 대비 68.6%로 기술격차는 2.3년
- 최고 기술보유국인 일본을 100으로 볼 때 미국은 97.1%, 유럽 85.3%, 중국 71.2%, 한 국 68.6% 순으로 한국의 기술력은 중국에 뒤쳐짐
- 로봇 부품의 국산화율은 41% 수준으로 해외 의존도가 높고 국산 부품 활용 사례가 부족

주요국 로봇 부품 기술수준

		일본	미국	유럽	한국	중국
- L L -	기술수준(%)	100.0	97.1	85.3	68.6	71.2
로봇 부품	격차기간(연)	0.0	-	-	2.3	-

자료 : 중소벤처기업부, '중소기업 전략기술로드맵 2022-2024'

로봇산업 관련 사업체수('20)는 약 2,500개사이나 중소기업이 대부분(98.5%)으로 자본력이 약하며 글로벌 경쟁력을 갖춘 기업은 소수에 불과

- 매출 1,000억원 이상 기업은 5개사에 불과
- (제조업용 로봇) 매출 1,000억원 이상 기업은 현대로보틱스, 로보스타, 한화정밀기계 등 5개사이며 매출 100억원 미만 중소기업 비중은 92%
 - · 산업용 로봇은 자동차, 가전, 반도체 등 대규모 수요처를 확보한 현대로보틱스(자동차), 로보스타(가전, LG전자 자회사), 고영테크놀러지(반도체) 등이 국내 시장 선도
- (서비스용 로봇) 매출 500억 이상 기업은 2개사(LG전자, 삼성전자), 매출 100억원 이상 기업은 9개사*이며 매출 50억원 미만 중소기업 비중은 95%
 - * 에브리봇, 휴니드테크놀러지, 대양전기공업, 유진로봇 등
- 부품·SW 분야는 1,400여개 기업 중 대기업은 1개사*이며 대부분 기업규모가 영세
 - * 파나소닉코리아
 - * 부품기업 분포 : 구동 27%, 센싱 15%, 구조 14%, 제어 11%, 소프트웨어 8% 순
- 선도기업 대비 업력이 짧고 자본력이 약하여 글로벌 경쟁을 갖춘 기업은 소수

매출 규모별 로봇기업 현황

단위: 개

	1,000억원	500억원	100억원	50억원	50억원	합계
	이상	이상	이상	이상	미만	업계
제조업용 로봇	5	6	33	41	473	558
서비스용 로봇		2	9	10	437	458
부품 및 SW		1	34	25	1,351	1,411
합계	5	9	76	76	2,261	2,427

자료: 2022년 지능형 로봇 실행계획.

주요 대기업의 로봇사업 강화 등으로 로봇산업 경쟁력은 점진적 향상 전망

- (현대로보틱스) 국내 대표 산업용 로봇기업으로 2024년 매출 1조원을 목표로 수립
- 1984년 현대중공업 내 로봇사업팀으로 출발하여 자동차 제조용 로봇, LCD 운송 로봇 등을 개발
- 2020년 현대중공업지주의 로봇사업 물적분할로 현대로보틱스가 설립되었으며 해외 사업을 강화하고 스마트팩토리, 스마트조선소, 서비스 로봇 등으로 사업 다각화 추진
 - · 지능형 제조분야 사업을 영위하는 중국 하공지능과 JV를 설립하고 2020년부터 산업용 로봇을 중국에서 생산중이며, 2021년에는 유럽시장 공략을 위해 유럽법인 설립
 - · 2021년 로봇 생산량은 2,722대이며, 호텔로봇, 방역로봇 등으로 서비스 로봇 사업 추진23)
- (현대차그룹) 5대 신사업중 하나로 로봇을 선정하고 2040년 사업 포트폴리오를 자동 차 중심에서 자동차 50%, UAM(Urban Air Mobility) 30%, 로봇 20%로 변화 추진
- '현대자동차 2025 전략'에 따르면 2020~2025년에 로보틱스 분야에 1.5조원을 투자할 계획으로 자체 기술 개발과 M&A 등을 통해 로봇사업 경쟁력 제고 추진
 - ·미국 로봇기업 보스턴다이내믹스를 인수했으며 미국에 로봇AI 연구소 설립 추진
 - · 현대차그룹 내 조직인 '로보틱스 랩'은 웨어러블 로봇과 서비스 로봇 등을 공개
 - * 의료용 웨어러블 로봇 MEX는 미국 FDA 인증을 진행중, 현장 작업자의 근력 보조 웨어러블 로봇 VEX는 해외 생산라인(미국 등)에 도입했으며 국내 사업장에는 '21년 하반기에 기아가 처음으로 적용²⁴⁾

²³⁾ KT가 현대로보틱스 지분 10%를 취득했으며 KT와 스마트팩토리, 서비스 로봇 사업 등에서 협력중 24) 파이낸셜뉴스, '현대차, 3분기부터 국내 사업장서 '로봇 조끼'입고 일한다', 2022.6.15

- (두산로보틱스) 2015년 설립된 협동로봇 기업으로 2021년 협동로봇 판매량은 1,100 대를 기록, 2022년 판매량 목표는 2,000대
- 로봇 생산능력은 연간 10,000대 규모로 10여종의 협동로봇 출시하고 식음료(커피, 치킨), 물류 등으로 사업영역을 다각화하고 해외사업 확대 추진²⁵⁾
- (한화) 2017년 국내기업 최초로 협동로봇 출시했으며 기존 물류자동화시스템, 이차 전지, 디스플레이 관련 설비 고도화 추진
- 3개의 협동로봇 모델을 출시했으며, 싱가포르 로봇 및 자동화 솔루션 기업 PBA 그룹과 JV 설립하고 싱가포르 공장을 통해 동남아 시장 공략
- (LG전자) 로봇 관련 기업 인수 후 서비스 로봇 사업을 추진
- 로보티즈('17)와 산업용 로봇기업 로보스타('18) 인수, 캐나다 라이다 플랫폼기업 레 다테크, 미국 AI센서기업 에이아이, 미국 로봇기업 보사노바로보틱스 등에 투자
- 로봇사업 브랜드 LG 클로이를 런칭하고 안내·바리스타·음식조리·서빙·방역로봇 등 6종의 로봇을 선보였으며 물류로봇을 출시할 계획
- (삼성전자) 2022년부터 로봇사업을 본격화하고 의료·가정용 로봇 사업 추진
- 2021년말에 로봇사업팀을 신설, 2022년 하반기에 의료용 웨어러블 로봇 출시 예정
- (KT) 통신, 로봇설치, 플랫폼 사용, 원격 관제, 전용보험 제공 등을 통해 로봇 서비스 플랫폼 사업 추진
- 2021년 로봇사업단이 출범했으며 서비스로봇, 방역로봇, 호텔로봇에서 시니어 케어로봇, 실외배송 로봇으로 사업 확대 추진
- 현대로보틱스에 500억원을 투자하고 로봇사업에서 협력중

²⁵⁾ 해외매출 비중은 70%로 타사 대비 높은 수준

다수 로봇기업은 매출이 증가하고 있으나 미래 시장 선점을 위한 연구개발, 상대적으로 적은 물량, 경쟁심화 등으로 영업손실을 기록

- 주요 기업의 2020~2021년 매출증가율은 서비스 로봇의 매출증가율이 12%로 가장 높았으며 다음으로 부품 8%, 산업용 로봇 7% 순
- 국내 로봇청소기 시장이 확대되고 수술용 로봇이 Reference를 구축하면서 서비스 로봇의 매출증가율이 가장 높게 나타남
- 산업용 로봇기업 매출은 자동차, 전기전자산업 비중이 높아 전방산업 투자위축 영향을 받은 것으로 추정됨

주요 로봇 기업 매출

자료: 전자공시시스템

- 다수 로봇기업은 R&D 투자 증가, 적은 생산량 및 낮은 부품 국산화율로 인한 높은 원가구조, 중국기업의 성장 등에 따른 가격경쟁 등으로 2021년에 영업손실을 기록
- 주요 로봇기업은 기존 사업 경쟁력 제고, 서비스 로봇, 제조 자동화사업 등으로 사업 다각화 등을 위해 R&D 투자를 확대
 - · 매출 대비 R&D 비중('21): 현대로보틱스 8.5%, 티로보틱스 22.3%, 로보티즈 24.9%
- 큐렉소의 의료로봇 사업은 초기 단계로 2020년 18대, 2021년 30대의 의료로봇을 공 급했으며 2022년 판매 목표는 50대로 아직 규모의 경제에 도달하지 못함
- 두산로보틱스의 2021년 판매량은 1,185대이며 2022년 판매량 목표는 2,000대
- 로봇청소기기업 에브리봇의 영업이익률('21)은 20%로 타 로봇기업 대비 높은 이익률을 기록했으나 유진로봇은 중국 로봇청소기 기업과 경쟁 등으로 영업손실 지속

주요 로봇 기업 매출대비 R&D 비율

주: 유진로봇과 큐렉소는 전사 기준

자료 : 전자공시시스템

- 주요 기업은 2022년 매출 목표를 전년 대비 높은 수준으로 설정했으며 손익 개선 노력중
- 두산로보틱스의 2021년 매출은 전년대비 83% 증가한 370억원, 영업손실 71억원을 기록했으며 2022년 매출 목표는 784억원이며 영업이익 흑자전환 목표
- 에브리봇의 2021년 매출은 511억원이며 2022년 매출목표는 전년 대비 20% 증가한 615억원
 - * 2021년 하반기부터 본격적인 해외 진출을 시작

주요 로봇 기업 영업이익

자료: 전자공시시스템

※ 참고: Universal Robots의 성공전략

- (회사개요) Universal Robots는 2005년 설립된 덴마크 스마트업으로 2008년 첫 상업용 협동로봇을 출시했으며 세계 최대 협동로봇 기업으로 성장
- (전략1) Universal Robots는 기존 산업용 로봇기업의 관심도가 낮았던 중소기업을 위한 로봇 기술을 개발하고 틈새시장을 공략
- 좁은 공간에서 사람과 같은 공간에서 작업할 수 있는 협동 로봇을 개발
- (전략2) 협동로봇의 모듈화와 표준화, 협동로봇 생태계 구축을 위해 생태계 참여 자들을 위한 인포메이션 허브 구축
- 협동로봇과 주변기기간 표준 인터페이스를 개발하여 주변기기 기업 등이 자사 로봇과 호환되는 제품 개발을 촉진
 - · 기존 산업용 로봇은 모듈화와 표준화된 인터페이스가 일반적이지 않아 시스템통합이 필요했으며, 시스템통합은 로봇 도입 비용 상승과 유연성 저하를 유발
 - · 애플이 스마트폰과 소프트웨어(앱스토어 등)로 애플 생태계를 구축한 것처럼 Universal Robots는 주변기기 개발자들에게 소프트웨어개발키트(SDK)와 UR+팀의 지원을 제공
 - * 주변기기 개발자가 SKD 웹사이트에 등록하고 제품개발을 시작하면 UR+팀이 일정, 공정, 기술 컨설팅, 제품 검증 등을 지원
- 최종 사용자의 협동로봇 도입과 사용을 지원하기 위해 UR+ 플랫폼 운영, Universal Robots Academy 설립, SI업체 리스트 등을 제공
 - · UR+ 플랫폼에 등록된 주변기기는 협동로봇에 장착하면 바로 사용 가능(Plug & Play)
 - · Universal Robots Academy를 설립하고 최종 사용자가 자체적으로 협동로봇 시스템을 구축·수정할 수 있도록 온라인 교육 및 148개의 제조업에서 협동로봇 사례를 제공
 - · 특정 기능 추가 등 고객 맞춤화가 필요한 경우를 위해 SI업체 리스트를 제공
- (전략3) 협소한 덴마크 국내시장이 아닌 해외시장을 대상으로 사업을 추진
- 2005년 설립, 2008년 첫 상업용 협동로봇 출시, 2010년 이후 해외진출 가속화

자료 : Soo Jung Oh(2021): Emergence of a new sector via a business ecosystem: a case study of Universal Robots and the collaborative robotics sector, Technology Analysis & Strategic Management

IV. 주요국 로봇산업 육성정책

1. 미국

미국은 제조업 부흥을 위해 '첨단제조 파트너쉽(Advanced Manufacturing Partnership)'을 발표하고 협동로봇, 로봇 융합 기술개발 등을 추진

- 로보틱스 로드맵(A Roadmap for U.S. Robotics: From Internet to Robotics)은 로봇 연구개발 방향을 제시하고 국가로봇계획(National Robotics Initiative, NRI)은 로봇 기술 연구를 지원
- 로보틱스 로드맵은 민간 전문가들이 수립하며 지속적 개정을 통해 환경 변화에 부합 하는 로봇산업 비전과 과제를 제시
 - · 1차 로보틱스 로드맵('09)은 국가로봇계획(NRI) 1.0의 근간을 마련, 2차 로보틱스 로드맵('13) 은 로봇을 핵심 경제 조력자(Enabler)로 정의
 - · 3차 로보틱스 로드맵('16)은 자율주행차, 보건 및 가정용 로봇, 제조, 산업용 인터넷 및 사물 인터넷의 사이버 보안기술 강화, 인력 양성 등의 내용을 포함
 - · 4차 로보틱스 로드맵('20)은 재료/통합 센서/계획 및 제어 방법 연구와 멀티 로봇의 조화, 상황 인지 성능 향상, 신기술 활용을 위한 인력 훈련 등을 포함
- 오바마 대통령이 발표한 첨단제조 파트너십('11)의 중요한 부분이 국가로봇계획(NRI)이며, NRI 1.0('11)과 NRI 2.0('16)은 협동로봇, NRI 3.0('20)은 로봇기술 융합을 강조²⁶⁾
 - · NRI 1.0은 국립과학재단 등의 공공기관 주도, NRI 2.0은 학계, 산업계, 기업간 협력을 권장 했으며 2022년 종료된 NRI는 12년간 300개 이상 프로젝트에 2.5억 달러 이상을 지원
 - · NRI 3.0 종료후 국립과학재단은 로봇공학기초연구(Foundational Research in Robotics) 프로 그램을 통해 기존 NRI가 지원한 로봇 기초 연구를 지원
- Manufacturing USA는 미국 제조업의 경쟁력 제고를 위한 공공-민간 네트워크로 ARM (Advanced Robotics For Manufacturing) 등을 통해 스마트 생산 연구 추진
- ARM은 항공우주, 자동차, 전기, 섬유산업 등의 로봇 사용 확대를 유도하기 위해 기술 상용화 단계의 연구, 정부-기업-학계의 커뮤니케이션, 로봇 관련 전문인력 육성을 지원
- ARM의 2020년 상반기의 지원 예산은 5천만 달러이며 과제당 신청 가능 예산은 최대 50만 달러 규모

²⁶⁾ NRI 1.0: The Realization of Co-bots in Direct Support of Individuals and Groups, NRI 2.0: Ubiquitous Collaboarative Robots, NRI 3.0: Innovations in Integration of Robotics

- 보스톤, 피츠버그, 실리콘밸리는 정부, 대학, 기업이 협력하여 로봇 클러스터를 조성27)
- 매사추세츠주 보스톤은 MIT 등 대학교의 로봇 연구가 활발하며 로봇 사업화를 위한 고객 수요조사 및 테스트 지원, 시제품 제작시 로봇 제조사와 연결 등을 통해 창업을 지원
 - · 초기에는 미국 국방부의 R&D 지원, 대학의 인력 양성, 대학 로봇연구소 등의 활발한 창업 이 이루어졌으며 이후 VC 등의 참여 등으로 로봇 클러스터가 활성화됨
- 펜실베니아주 피츠버그는 미국 최초로 로봇 전공학부를 개설한 카네기멜론대학교를 중심으로 로봇 연구가 활발하며 주정부 지원하에 기술의 사업화 등을 지원
 - · 상용화 가능한 기술개발과 창업을 지원하며, 주정부가 조성한 Ben Franklin Technology Partners를 통해 초기 단계 기술기반 기업 등에 자금 등을 지원
- 보스톤, 피츠버그, 실리콘밸리는 미국 로봇 클러스터 연합(USARC)을 결성하고 미국 로 봇 클러스터간 협업 강화, 로봇과 AI에 대한 투자 확대, 로봇 스타트업 지원 등을 추진

2. 일본

일본은 '로봇 신전략' 하에 사회문제 해결을 목표로 로봇 관련 규제개혁, 기술 개발, 로봇 보급, 시스템 통합(SI) 기업 및 인력육성 등을 지원

- 2015년 발표한 '로봇 신전략'은 아베노믹스의 성장 전략에 따라 일본이 직면한 고령화, 재해 등의 사회문제 해결을 위해 로봇산업 육성을 추진
- 세계 로봇 이노베이션 허브로 성장, 세계 최고의 로봇 활용 사회 구현, 사물인터넷 시대 로봇으로 세계시장 선도를 목표로 수립하고 2020년까지 총 1,000억엔 투자 계획
 - · 2020년까지 제조업 조립공정의 로봇 보급률을 대기업은 25%, 중소기업은 10%, 서비스산업은 30%를 달성을 추진
 - · ①산업용 로봇, ②서비스 로봇, ③간호와 의료, ④인프라, 재난 대응 및 건설, ⑤농업·임업·어 업·식품 분야의 실행계획을 수립
- 경제산업성은 로봇관련 전략 추진 모체로 '로봇 혁명 이니셔티브 협의회(RRI)'를 설립
 - · 산업계, 학계, 정부 등이 참여하며 IoT에 의한 생산 시스템 개혁, 로봇 활용 추진, 로봇 이 노베이션 등의 분야에 워킹그룹을 구성하고 표준화 등을 추진

²⁷⁾ 매일경제, ''3대 로봇도시' 키우는 美…보스턴서만 창업 10배 늘었다', 2022.8.24

- 2019년에는 '로봇에 의한 사회 변혁 추진 계획'을 수립하고 시스템통합(SI) 기업 육성, 산학 협력 강화를 통한 인재 육성 및 기술 고도화, 오픈 이노베이션 등을 추진
- 경제산업성은 로봇 관련 기업, 대학, 연구소 등이 기초 및 응용 연구를 공동으로 진행할 수 있는 프로젝트를 공모하고 이들에 의한 법인 형태의 기술연구조합(Collaborative Innovation Partnership) 설립을 지원

수출신용기관 일본국제협력은행(JBIC)은 4차 산업혁명 시대에 일본기업의 혁신 촉진과 피투자회사와의 사업기회 창출을 위해 해외 벤처펀드에 지분을 투자

- JBIC은 일본 컨설팅·투자회사 IGPI와 해외투자펀드 'JBIC IG 파트너스'를 설립('17)하고 일본기업과 해외기업에 공동 투자하여 일본기업의 투자위험을 분산하고, JBIC IG 파트너스가 투자한 해외기업과 일본기업간의 거래 확대를 목표로 펀드를 운영
- JBIC IG 파트너스는 발트지역 사모펀드 BaltCap과 JB Nordic Fund(별칭 NordicNinja)를 조성하고 북유럽·발트지역 첨단기술 스타트업에 투자*
 - · 북유럽·발트지역은 유럽의 실리콘 밸리로 불리나 일본기업의 진출이 제한적인 지역이며, 동 펀드는 자율배달로봇 기업 Starship Technologies 등에 투자
- JBIC은 마루베니, SMBC(Sumitomo Mitsui Banking Corp.)와 싱가포르 Vertex Venture Holdings가 운영하는 벤처펀드 Vertex Master Fund II에 지분투자(19)

자료 : JBIC.

3. 중국

중국은 '중국 제조 2025'의 핵심분야로 로봇을 선정했으며 로봇산업 발전계획 (2016~2020) 등을 통해 로봇산업을 육성

- 2015년 '중국제조 2025'의 10대 육성산업 중 하나로 로봇을 포함
- 중국은 낮은 인건비로 세계의 공장 역할을 담당했으나 인건비 상승으로 제조 경쟁력 이 하락하자 이를 타개하기 위해 로봇산업에 주목
- 로봇산업발전계획('16~'20)은 중점 로봇 제품 10개*, 중점 부품 5개**, R&D 강화 시책*** 등을 포함
 - * 용접 로봇, 협동로봇, Heavy Duty(중량급) AGV, 수술용 로봇, 화재구조 로봇, 간병로봇 등
 - ** 정밀 감속기, 고성능 로봇 전용 서버 보터 및 드라이버, 고속 고성능 컨트롤러, 센서, 엔 드 이펙터
 - *** 공통기술 기초연구강화, 로봇혁신 플랫폼 확립 및 개선, 로봇 표준화 제도 구축 및 강화, 로봇 인증제도 구축 및 강화 추진
- 2020년까지 중국 브랜드 산업용 로봇 연간 생산량 10만대 달성, 서비스 로봇 연간 매출액 300억 위안 이상 달성을 목표로 수립
- 재정 지원 확대, 자금 지원 확대, 인적 역량 강화, 국제교육 및 협력 확대 등을 추진
- 2017년에는 차세대 인공지능산업 발전 추진 3년 행동계획('18~'20)을 통해 서비스로 봇 육성을 본격화
- 2020년까지 가정용 서비스 로봇과 지능형 공공서비스 로봇의 대량 생산 및 활용 등 의 계획을 발표
- 2021년에는 '14차 5개년 로봇산업 발전계획('21~25)'을 발표하고 2035년까지 육성이 시급한 8대 전략적 신흥산업²⁸⁾중 하나로 로봇산업을 지정
- 2025년까지 로봇산업 매출액 연평균 20% 성장, 국제경쟁력을 확보한 선도기업 및 혁신 역량을 보유한 강소 기업 육성 등을 목표로 수립
- 로봇 핵심 기술에서 국제 선도국 수준에 도달하고 핵심 부품 성능과 신뢰성이 국제 동류 제품중 선두 수준에 도달 목표
 - * 중국은 세계 최대 산업용 로봇 시장이나 핵심부품은 수입 의존도가 높고, 로봇 내수 시장 은 외국계 기업 점유율이 70% 이상

²⁸⁾ 고급 신소재, 중대기술장비(고속철 등), 스마트제조 및 로봇 기술, 항공기 엔진, 신에너지 차량 및 스마트카 등

- 3~5개의 글로벌 영향력을 갖춘 산업 클러스터 조성 추진
 - · 상해, 북경 등 주요 지방정부는 로봇산업 지원 정책을 수립, 로봇 클러스터를 조성하고 창업 환경 조성, 로봇 도입 보조금, 세제우대 등을 지원*
 - * 지역 생산 로봇 구입(또는 리스)시 1대당 20% 이내 보조금 지급, 입주기업에 시설 투자금 10% 환급, 매출의 15%에 이르는 보조금 등을 지급²⁹⁾

중국수출입은행은 중국산 로봇 및 중국 브랜드 로봇기업 육성을 위해 M&A, 동북 지역의 로봇 클러스터 개발 등을 지원30)

- 중국 최대 산업용 로봇기업인 SIASUN Robot은 중국수출입은행의 지원하에 산업용 로봇에서 청소로봇, 서비스 로봇 등으로 사업을 다각화하며 성장
- SIASUN Robot은 2000년에 설립된 중국과학원 산하 기업으로 2007년에 GM에 로봇을 공급하면서 인지도를 제고했으며 40개국 이상으로 로봇이 수출되고 있음
 - * 매출은 '17년 24.6억 위안(4,840억원)에서 '21년 33.0억 위안(6,500억원)으로 연평균 8% 성장
- 가전회사 Midea의 독일 산업용 로봇기업 Kuka 인수, 주저우전력기관차유한공사(CSR Zhuzhou Electric Locomotive)의 자회사의 영국 심해 로봇기업 SMD(Specialist Machine Developments) 인수 등을 지원

4. EU

EU는 로봇을 차세대 핵심 전략산업으로 선정하고 연구기금 지원제도 Horizon 2020('14~'20), Horizon Europe('21~'27)을 중심으로 민관협력을 통한 로봇 기술 개발을 지원

- Horizon2020에 의해 로봇공학에 지원되는 민관협력 프로그램인 SPARC(Partnership for Robotics in Europe)을 통해 2014~2020년에 약 28억 유로 지원 추진
- 로봇산업 경쟁우위를 유지하기 위해 로봇산업에 대한 전략연구 범위와 로드맵을 발표 하고 인력 양성, 플랫폼 표준화 등을 추진
- Horizon 2020의 후속사업인 Horizon Europe('21~'27)은 SPARC에 이어 ADRA(AI, Data and Robotics Association)을 통해 협력 예정

²⁹⁾ 조선일보, '중국산 로봇, 국내 식당·물류센터 점령했다', 2022.5.28

³⁰⁾ http://www.eximbank.gov.cn/info/circus/201810/t20181022_7109.html

- AI와 로보틱스에 민관이 26억 유로를 투자하여 기술혁신을 주도할 계획이며, 스마트 제조를 위한 AI 로보틱스 시스템, 로봇 인지능력 향상 등을 선정
- 독일 등 주요국도 로봇산업 지원 정책을 수립
- (독일) 산업부문의 디지털 혁신을 위해 PAiCE(Platforms, Additive Manufacturing, Imaging, Communication, Engineering) 프로그램을 통해 2026년까지 5년간 5,000만 유로의 예산 투입 계획
- (영국) 2021년까지 산업전략기금(Industrial Strategy Challenge Fund)은 극한 환경에 적용 가능한 로봇, AI 프로젝트에 1.1억 파운드 지원

유럽투자은행(EIB)는 벤처 대출, 혁신적인 중소기업 지원을 위한 European Gurantee Fund 등을 통해 로봇기업의 성장을 지원

- 자율배달로봇 회사 Starship Technologies³¹⁾는 유럽전략투자기금(European Fund for Strategic Investments)의 보증하에 유럽투자은행(EIB)의 벤처 대출을 통해 약 5,600 만 달러의 자금을 조달('22)³²⁾
- 프랑스 혈관질환 치료 로봇기업 Robocath는 European Gurantee Fund를 통해 1,500 만 유로를 조달

³¹⁾ Skype의 공동 설립자가 2014년에 창업한 설립한 회사로 에스토니아에서 로봇을 생산.

³²⁾ European Investment Bank, 'Estonia: Starship Technologies agrees €50m funding partnership from the EIB', 2022.1.25.

※ 참고: 덴마크의 로봇산업 육성 성공 사례

덴마크는 정부-연구소-기업간 유기적 협력하에 로봇산업을 육성했으며, 틈새 시장인 중소기업 맞춤형 기술개발 등을 통해 로봇산업의 패러다임을 전환

- 조선업의 경쟁력 제고를 위해 로봇산업에 대한 관심이 높았으며, 조선업의 몰락 이후 지역경제를 살리려는 지방정부와 대학의 노력 등으로 로봇기업 창업이 활발
- 세계적 해운사 머스크는 오덴세에 조선소를 운영했으며 아시아 조선소와 가격 경쟁이 심화되면서 로봇에 관심이 높아져, 머스크 창립자 가족의 기부를 기반으로 1990년대 중반에 South Denmark University의 로봇연구소가 설립됨
- 2012년 조선소가 폐쇄되자 오덴세는 지역 경제 부흥을 위해 로봇 클러스터를 조성
 - · '오덴세 로보틱스 스타트업 허브' 프로그램을 통해 18개월간 프로토타입 제품 개발, 사업 전략 수립, 잠재 투자자와 만남 등을 지원³³⁾
- 덴마크는 로봇산업 후발주자였으나 틈새시장인 중소기업 맞춤형 기술개발, 스타트 업 육성 등을 통해 협동로봇, 자율이송로봇(AMR) 부문에서 경쟁력을 확보
- 4차 산업혁명 기술 연구를 위해 MADE Digital*이 출범('16)했으며 공통 관심사가 있다면 기업 규모·업종에 제한을 두지 않는 연구 프로젝트를 진행³⁴⁾
 - * 덴마크 정부 투자 기관인 Innovation Fund, 기업, 대학, 연구기관 등이 자금을 지원
- · 덴마크 정부의 성장기금(Danish Growth Fund)은 신생기업에 직간접적으로 투자하 거나 대출을 지원하며 하이테크 벤처기업을 우선적으로 지원
 - · Universal Robots는 2005년 설립되었으며 2008년 Danish Growth Fund 투자 이후 빠른 성장을 거듭하고 2010년 이후 해외진출 가속화
- 정책적 지원하에 Univeral Robots, AMR 기업 MiR, End-of-Arm-tooling 기업 OnRobot 등이 글로벌 기업으로 성장
 - · OnRobot은 2015년 설립 후 Danish Growth Fund와 적극적인 M&A 활동³⁵⁾을 통해 제품 포트폴리오를 확대하고 선도기업으로 도약
 - · 미국 반도체장비기업 Teradyne이 유니버셜 로봇과 MiR을 인수했으나 덴마크에 생산시설을 유지하고 있으며, 유니버셜 로봇과 MiR은 오덴세에 협동로봇 허브 설립 추진중36

³³⁾ 사업 전략 수립, 투자금 확보, 기술사업 협력을 위한 파트너와 고객사를 찾을 수 있도록 공공부문, 교육기관, 연구기관, 다양한 산업의 기업들과 협력

³⁴⁾ 방산기업 Terma와 돼지 도축기업 Danish Crown, 펌프업체 Danfoss는 로봇 손 활용 영역을 제조업 전반으로 확대하기 위해 로봇팔 연구를 공동 진행

³⁵⁾ 미국의 Perception Robotics, 헝가리 OptoForce

³⁶⁾ MSD, '유니버설 로봇, 덴마크에 협동로봇 허브 설립', 2020.2.11

5. 한국

한국은 로봇산업 글로벌 강국으로 도약을 목표로 로봇산업 생태계 강화를 추진

- 2008년 지능형 로봇 개발 및 보급 촉진법을 제정했으며 법에 따라 5년 단위로 기본 계획, 연단위로 실행계획을 수립
- 제1차, 제2차 기본계획을 통해 로봇산업진흥원을 설립('10)하고 2011년부터 로봇산업 지원을 본격화
- 제 3차 기본계획('19~'23)을 통해 2023년까지 로봇산업 글로벌 4대 강국 도약 추진
- 목표 달성을 위해 3대 제조업 중심 제조로봇 확대 보급, 4대 서비스 로봇분야 육성, 로봇산업 생태계 기초 체력 강화를 추진
 - · 제조현장의 디지털 전환 가속화를 위해 3대 제조업(뿌리·섬유·식음료)과 전후방 연관효과가 큰 항공, 조선 등을 중심으로 표준모델 개발 확대, 기개발 모델의 보급확산에 주력
 - · 4대 서비스 로봇분야(돌봄, 웨어러블, 의료, 물류) 육성을 위해 기술개발, 보급·실증사업 추진37)
 - · 부품·소프트웨어 개발, 원가비중이 높고 국산화율이 낮은 부품 중심으로 실증보급 사업 추진38)
 - · 로봇의 시험·인증, 실증, 기업지원을 위한 전국 7대 거점을 구축했으며³⁹⁾, 해외진출 지원을 위해 국별 산업 특성을 고려한 맞춤형 수출 지원, ODA(공적개발원조) 활용
- 신정부는 110대 국정과제에서 로봇 세계 3대 강국 도약을 목표로 수립

한국은 선도국과 기술격차 축소, 기업지원 인프라 구축에 집중하면서 창업, 사업화, 해외진출 지원 등은 타 국가 대비 상대적으로 미흡

- 기술개발 중심의 지원정책 등으로 한국의 로봇 특허 수('10~'19)는 중국, 미국, 일본 에 이어 세계 4위를 기록
- 한국은 10년간 로봇 기술개발에 6,000억원 이상을 투입했으며 로봇의 시험인증, 실증 등을 중심으로 지원 정책을 추진
- 한국은 소비자 관련 로봇 특허 건수 세계 1위이며 중국은 산업용 로봇·교통·교육 등, 미국은 ·의료·군사 로봇 등, 일본은 엔터테인먼트·제어 시스템·비전 관련 특허 1위
 - * Top 20 글로벌 로봇 특허 보유 기업('15~'19)중 삼성전자와 LG전자가 각각 1위, 4위(CSET)

^{37) 1}개 제품당 5천만원을 지방자치단체에서 지원, 실증특례를 받은 로봇기업이 사용자 보호를 위해 가입해야하는 책임보험, 표준·인증 개발 등을 지원(1개 제품당 1.2억원)

^{38) 3}대 핵심부품(스마트 그리퍼, 지능형 제어기, 자율주행 센서), 4대 소프트웨어(잡는 기술 SW, 로봇SW 플랫폼, 영 상정보 처리SW, HRI(Human Robot Interface) 기술)

³⁹⁾ 로봇인증센터(대구), 안전로봇·수중로봇복합센터(경북), 제조로봇기술센터(경남) 등

- 국내 로봇의 기술수준은 개선되었으나 내구성, 신뢰성, 가격경쟁력 등은 개선이 필요
 - * 국내기업의 서빙 로봇 가격은 중국기업 제품 대비 15~30% 이상 높으며, 업계에서는 국내 물류로봇, 서빙로봇의 중국기업 점유율을 60% 이상으로 추정
- 기술의 사업화, 창업지원, 인력육성 등이 부족하고 내수 중심으로 사업이 운영됨
- 자체 기술 개발에 집중하면서 M&A 등에 대한 관심도가 낮으나 해외기업들은 활발 한 M&A, 지분 투자 등을 통해 기술력 제고를 추진
- 로봇기업은 대부분 기술인력 중심으로 구성되어 사업모델 수립, 마케팅 역량 등이 미흡하여 기술 사업화, 해외시장 개척 등에 어려움을 겪고 있음
- 미국 카네기멜론대학(CMU)는 60여명의 교수와 280여명의 연구원이 있으나 KAIST는 35여명의 교수와 극소수의 연구원이 있음40

주요국 로봇산업 현황 비교

	1 4 4 4 4 6 6 6								
		미국	일본	중국	EU	한국			
	<u>·</u> 업구조	서비스 로봇	산업용 로봇	산업용 로봇	산업용 로봇과	산업용 로봇			
Ľ	! u TT	중심 구조	강국	최대 시장	서비스 로봇	중심 성장			
		제조업 부흥	사회문제 해결	제조업 경쟁력	로봇산업	로봇산업			
쟏	성책방향	→산업용 로봇	→서비스 로봇	유지→					
		육성	육성	로봇산업 육성	경쟁력 유지	생태계 강화			
로	.봇 관련	_	_	11,066개	_	약 2,500개			
기	업수('20)			11,000-1					
주	요 기업	Intuitive	화낙 5.4조원 ²⁾	SIASUN	ABB 4.5조원	현대로보틱스			
매	출('21) ¹⁾	Surgical 7.8조원	최	0.6조원	ADD 4.312 H	1,893억원			
	로봇공학	0.55474	15 1207	25 15 4 74 4)	(독일)3,439건	11 1 4 4 7-1			
기	특허 ³⁾	9,554건	15,130건	25,154건 ⁴⁾	(프랑스)1,129건	11,144건			
술	정부R&D	2.5억 달러+			28억 유로	5,300억원			
	지원금	('11~'22)	_	_	('14~'20)	('08~'13)			
력	매출대비	10~12%	2~7%	4~10%	5% 수준 ⁵⁾	1~33% ⁶⁾			
	R&D	_							
Ol	력육성 ⁷⁾	CMU(1위),	동경대(3위)	하얼빈 공업대	로잔연방공대	KAIST(18위)			
	770	MIT(2위)	0 0-11(011)	(17위)	(11위)	10 (151(1011)			

주:

1) 전사 매출 기준, ABB는 Robotics & Discrete Automation Business 기준 2) 매출비중은 로봇 36.6%, 공장자동화 30.9%, 소형정밀기계 19.7%, 서비스 12.8% 순. 정밀가공기계에서 산업용 로봇(70년대), 공장자동화(90년대)로 사업 확대

3) 로봇공학 특허는 2010~2019년 기준

- 4) 중국은 특허 출원 보조금을 지급해 특허 건수 급증. 2021년 1월 대부분의 보조금 지급 종료 5) ABB, Kuka 기준
- 6) 레인보우로보틱스('21)의 매출 대비 R&D 비중은 33%

7) 연구성과 기준 세계 로봇공학 대학 순위

자료 : Center for Security and Emerging Technology, EduRank, 로봇산업진흥원.

⁴⁰⁾ 권인소, '2022 로봇미래전략 컨퍼런스',2022.3

V. 결론 및 시사점

로봇은 4차 산업혁명의 기반 기술로 우리나라 주력산업의 경쟁력 제고에 기여할 수 있으며 전후방 산업과의 연관효과가 높아 산업육성이 필요함

- 한국은 제조업 강국이며 제조업의 로봇 활용도가 높은 국가로 로봇은 중소제조업의 경쟁력 제고, 인력부족 해소 등에 기여할 수 있음
- 한국의 국내총생산(GDP) 대비 제조업 비중('20)은 27.8%로 독일(21.6%), 일본(20.8%) 보다도 높아 제조업 경쟁력 강화를 위해 로봇산업 육성이 필요
 - · 한국의 생산가능인구(15~64세)는 2016년 정점을 기록한 후 감소하고 있으며 생산성 향상이 노동력 감소를 상쇄하지 못하면 우리 경제는 현 수준을 유지하기 어려움
 - · 뿌리산업⁴¹⁾은 고위험 작업 환경, 낮은 임금, 근로자의 고령화 등으로 구인난이 지속되고 있어 로봇은 중소기업의 구인난 해소에 기여 할 전망
- 로봇산업은 다양한 산업과 연계성이 높아 전후방산업의 동반성장과 고부가가치화를 견인하며 지능형 로봇기술은 전산업을 변화시킬 새로운 융합기반을 제공
- 로봇산업은 기계, ICT, 소프트웨어(AI, 빅데이터 등), 서비스, 콘텐츠 등 산업별 가치사 슬이 다층적으로 연계되어 있어 전후방산업의 동반성장과 고부가가치화를 견인
 - · 로봇이 수집한 데이터를 기반으로 신사업 창출 가능
- 로봇은 제조업에서 국방, 물류 등으로 전산업으로 수요처가 확대되고 있으며, ICT 기술혁신으로 고부가 제품과 서비스가 출시되고 스마트팩토리 등 신사업모델이 창출 되면서 가치사슬 지속 확대

로봇산업은 성장 초기 단계로 성장잠재력이 높으며 한국기업에게도 기회가 있음

- 전통 산업용 로봇 시장은 성숙 단계이고 과점구도가 형성되어 있으나 협동로봇, 서비스 로봇은 성장 초기 단계로 후발주자인 한국도 충분히 도전해볼 만한 분야
- 한국은 제조업 강국으로 조선, 화학산업 등의 로봇 활용 모델 개발에 유리하며 의료 산업이 발달하여 수술로봇 등의 개발과 실증도 우호적인 환경임
- 덴마크가 중소기업을 위한 협동로봇을 개발하면서 산업용 로봇 시장의 패러다임을 변화시킨 것처럼 우리나라도 우리나라의 강점을 살릴 수 있는 신시장 개척이 필요

⁴¹⁾ 주조, 금형 등을 통해 소재를 부품으로, 부품을 완제품으로 생산하는 기초 공정산업으로 제조업의 기반

- 한국기업에게 기회가 있으나 가성비를 앞세운 중국기업의 가파른 성장 등으로 주어 진 시간은 많지 않은 것으로 보임
- 한국 로봇은 일본, 독일, 미국의 고부가 로봇과 저가 중국 로봇 사이에 위치하며 중 국로봇산업의 고속 성장으로 한중간 기술수준은 격차가 좁혀짐
- 미래 경쟁력을 가늠할 수 있는 로봇공학 특허는 중국이 최다 보유

로봇산업 육성을 위해 국내 시장 활성화, 기술력 제고, 해외시장을 염두에 둔 전략 수립과 진출 지원 등이 요구됨

- 국내 로봇 시장 활성화 및 로봇기업의 Reference 확보를 위해 로봇 활용도가 낮은 산업, 작업 환경이 열악하고 인력난을 겪는 산업 등의 로봇 도입 지원 강화 필요
- 고위험, 고강도 등 작업환경이 열악하고 인력이 부족한 제조현장(뿌리, 섬유, 식음료) 과 음식 서비스업 등의 로봇 활용도는 높지 않음
 - * 업종(로봇 보급대수와 로봇 밀도): 자동차(87,417, 2,235) vs 뿌리(4,112, 84) ('17년말 누적 기준, IFR)
 - * 산업별 인력 부족률('22년 상반기): 운수 및 창고업 6.5%, 제조업 4.5%, 도매 및 소매업 숙박 및 음식점업 4.3% (고용노동부)
- 로봇 1대 도입시 평균 가격은 8,500만원으로 로봇 가격은 2~4천만원 수준이나 센서, 주변기기, 설계비, 공임 등의 비용 포함시 8,500만원으로 증가⁴²⁾
- 기술력 제고를 위해 R&D 뿐만 아니라 M&A 지원, AI·5G 등 기술기업과의 협력, 인력 육성 등이 필요
- 로봇 관련 기업들은 정부 지원이 가장 필요한 분야로 연구개발 지원 확대(36.8%)와 저리 자금 지원(30.3%)을 선정⁴³⁾
- 세계적으로 다수 기업들이 M&A를 통해 기술력 제고, 사업 포트폴리오 강화를 추진 하고 있으나 우리기업은 자체 기술개발 중심으로 기술개발 속도가 뒤처질 수 있음
- 국내 시장은 협소하여 해외 진출을 염두에 둔 사업모델 수립 및 해외진출 지원 필요
- 우리나라 산업용 로봇시장은 자동차와 전기전자산업이 성장을 견인해 왔으나 전기차 로의 전환, 해외투자 확대 등으로 중장기 수요 둔화 전망
 - * 자동차산업의 신규 산업용 로봇 신규 설치 대수: ('18)1.1만대 →('20)0.5만대 (IFR)

⁴²⁾ 마이로봇솔루션

⁴³⁾ 로봇산업실태조사(2020)

- 국내 시장 중심으로 사업 영위시 시장 규모가 작아 가격경쟁력을 갖추기가 쉽지 않으며 성장성도 제약을 받을 수 있음
 - * Universal Robts는 초기 단계부터 해외 시장을 타겟으로 설정하여 매출의 90% 이상이 해외에서 발생, 중국 서빙 로봇기업 Pudu Robotics는 설립 5년만에 50개국에 진출
- 한국 로봇기업은 대부분 중소기업이며 제품개발에 인력이 집중되어 해외사업 역량이 부족하여 정부의 해외시장 조사, 인증, 금융지원 등이 필요
 - · 로봇은 파편화된 시장으로 개별 시장에 대한 정확한 분석이 시행착오를 줄여 줄 수 있음

로봇기업이 기술개발, 상용화 단계에서 자금부족 등으로 사업화에 실패하는 것을 방지하기 위해 정책금융 지원 확대가 필요

- 신기술산업은 기술개발단계와 상용화 단계에서 2차례 죽음의 계곡(Valley of Death)을 경험
- 지능형 로봇 개발은 기계, 제어, 소프트웨어 등과 관련한 전문인력 확보가 필요하여 초기 투자비가 높음
- 로봇이 개발되면 사용자의 품질, 내구성 등의 조건을 충족시키고 Reference를 축적 하는 것이 필요하여 로봇 판매는 예상보다 느린 속도로 증가
- 기업은 신기술이 초기 대중에게 수용되는 시점부터 수익을 창출하나 주류 시장에 편입되기 위해서는 두 차례의 캐즘(단절)⁴⁴⁾을 경험
 - · 기술수용주기는 기술 수용 시간에 따라 소비자를 선도 수용자, 조기 수용자, 초기 대중, 후기 대중, 말기 수용자로 5개군으로 분류
 - · 제프리 무어의 혁신기술 수용주기에 따르면 신기술이 조기 수용자에게 받아들여진 이후 주류 시장에 편입되기까지 장시간이 소요되는데 이때 캐즘(단절)이 발생
 - · 조기 수용자는 기술을 중시하나 초기 대중은 검증된 기술, 합리적 가격 등을 선호하여 다수 벤처기업이 캐즘에 빠짐
- 로봇산업은 대중화되기까지 5~10년이 소요될 것으로 예상되어 장기 금융지원이 가능한 정책금융 지원 확대가 필요
- 국내기업의 5년차 생존률은 29.2%로 OECD 주요국 평균 58.3% 대비 낮음45)
- JBIC의 사례를 벤치마킹하여 해외진출 벤처펀드를 조성하고 국내 기업의 해외 진출 및 해외 로봇 기업의 국내 공급망 편입 등을 지원하는 방안 검토 필요

⁴⁴⁾ 지질학 용어로 지각이 이동하면서 생기는 큰 단절을 의미

⁴⁵⁾ 중소벤처연구원, '국내외 재창업 지원 정책 비교 및 시사점', 2021.12

참고문헌

관계부처 합동, '2020년 지능형 로봇 실행계획', 2020.4 산업통상자원부, '로봇산업 발전방안', 2019.3 한국로봇산업진흥원, '2020 로봇산업실태조사', 2021.12 한국산업기술평가관리원, '미국, 차세대 로봇 기술 개발 동향', 2020.5 산업연구원, '2020 한국의 산업: 주요 산업의 가치사슬 분석과 경쟁우위 원천을 중심으로', 2020

한국은행, '대경권 로봇산업의 육성현황과 정책과제', 2013.9 유진투자증권, 'New Era: 로봇과 공존하는 세상', 2022.6 하이투자증권, '로봇이 선사한 무인화 혁명', 2022.6

키움증권, '로봇: 현재가 된 미래', 2022.5

한국경제, '잘나가던 중국 로봇 스타트업의 추락..."서빙로봇, 돈 안 돼", 2022.7.12'

한겨례, "러스트벨트" 피츠버그는 어떻게 '신경제'의 중심이 되었나?', 2020.6.17

Boston Consulting, 'Robotics Outlook 2030: How Intelligence and Mobility Will Shape the Future', 2021.6.28

International Federation of Robotics, www.ifr.org

The Robot Report, www.robotreport.com