# Power of mRCT using Japan's Method 1 or 2

Based on Japan's Method 1 or 2, given the global and target region sample sizes, calculate and simulate the marginal probabilities, conditional probabilities, and joint probabilities of global success and efficacy consistency between target region and globally, in clinical trials using superiority, non-inferiority, and equivalence designs.

```
library(tidyverse)
library(SSMRCT)
rm(list = ls())
pplot <- function(a, b) {</pre>
  a <- pivot_longer(data = a, cols = starts_with("pwr"))</pre>
  b <- pivot_longer(data = b, cols = starts_with("pwr"))</pre>
  ggplot() +
    geom\_point(dat = a, aes(x = f, y = value, color = "calc")) +
    geom\_point(dat = b, aes(x = f, y = value, color = "sim")) +
    geom\_line(dat = a, aes(x = f, y = value, color = "calc")) +
    geom\_line(dat = b, aes(x = f, y = value, color = "sim")) +
    facet_wrap(vars(name)) +
    scale_x_continuous(breaks = seq(0.1, 0.9, 0.2), limits = c(0.1, 0.9)) +
    scale_y_continuous(breaks = seq(0, 1, 0.2), limits = c(0, 1)) +
    labs(x = "allocation ratio", y = "power", color = "")
}
```

## getPwr\_Con\_Super\_JM1

高优

```
a <- getPwr_Con_Super_JM1(delta_j = 0.5, delta_a = 0.7, sigma = 1, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 100, r = 1, sim = FALSE) b <- getPwr_Con_Super_JM1(delta_j = 0.5, delta_a = 0.7, sigma = 1, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 100, r = 1, sim = TRUE) pplot(a, b)
```



```
c <- getPwr_Con_Super_JM1(delta_j = -0.5, delta_nj = -0.7, sigma = 1, f =
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim =
FALSE)
d <- getPwr_Con_Super_JM1(delta_j = -0.5, delta_nj = -0.7, sigma = 1, f =
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim =
TRUE)
pplot(c, d)</pre>
```



# getPwr\_Con\_Noninf\_JM1

### 高优

```
a <- getPwr_Con_Noninf_JM1(delta_j = -0.2, delta_a = -0.1, sigma = 1, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = NA, N = 400, r = 1, direct = 1, sim = FALSE) b <- getPwr_Con_Noninf_JM1(delta_j = -0.2, delta_a = -0.1, sigma = 1, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = NA, N = 400, r = 1, direct = 1, sim = TRUE) pplot(a, b)
```



```
c <- getPwr_Con_Noninf_JM1(delta_j = 0.2, delta_nj = 0.1, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = 0.2, N = NA, r = 1, direct
= -1, sim = FALSE)
d <- getPwr_Con_Noninf_JM1(delta_j = 0.2, delta_nj = 0.1, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = 0.2, N = NA, r = 1, direct
= -1, sim = TRUE)
pplot(c, d)</pre>
```



## getPwr\_Con\_Equi\_JM1

## 高优

```
a <- getPwr_Con_Equi_JM1(delta_j = -0.2, delta_a = -0.1, sigma = 1, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = NA, N = 400, r = 1, sim = FALSE) b <- getPwr_Con_Equi_JM1(delta_j = -0.2, delta_a = -0.1, sigma = 1, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = NA, N = 400, r = 1, sim = TRUE) pplot(a, b)
```



```
c <- getPwr_Con_Equi_JM1(delta_j = 0.2, delta_nj = 0.1, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim =
FALSE)
d <- getPwr_Con_Equi_JM1(delta_j = 0.2, delta_nj = 0.1, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = 0.4, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim =
TRUE)
pplot(c, d)</pre>
```



## getPwr\_Con\_Super\_JM2

## 高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Con_Super_JM2(delta_i = c(1, 0.8), sigma = 4, fi = c(f, 1 - f),
alpha = 0.025, beta = NA, N = 200, r = 1, sim = FALSE)soverall
  res$f <- f
  res
})
b \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Con_Super_JM2(delta_i = c(1, 0.8), sigma = 4, fi = c(f, 1 - f),
alpha = 0.025, beta = NA, N = 200, r = 1, sim = TRUE) $\forall \text{overall}
  res$f <- f
  res
})
pplot(a, b)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Con_Super_JM2(delta_i = c(-1, -0.8), sigma = 4, fi = c(f, 1 - f),
alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = FALSE)$overall
  res$f <- f
  res
})
d \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Con_Super_JM2(delta_i = c(-1, -0.8), sigma = 4, fi = c(f, 1 - f),
alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c, d)
```



## getPwr\_Con\_Noninf\_JM2

#### 高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Con_Noninf_JM2(delta_i = c(-0.5, 0), sigma = 4, fi = c(f, 1 - f),
cut = 2, alpha = 0.025, beta = NA, N = 200, r = 1, direct = 1, sim = 1
FALSE) $overall
  res$f <- f
  res
})
b \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Con_Noninf_JM2(delta_i = c(-0.5, 0), sigma = 4, fi = c(f, 1 - f),
cut = 2, alpha = 0.025, beta = NA, N = 200, r = 1, direct = 1, sim = 1
TRUE) $ overall
  res$f <- f
  res
})
pplot(a, b)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Con_Noninf_JM2(delta_i = c(1, 0), sigma = 4, fi = c(f, 1 - f),
cut = 2, alpha = 0.025, beta = 0.2, N = NA, r = 1, direct = -1, sim =
FALSE) $overall
  res$f <- f
  res
})
d <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res \leftarrow getPwr_Con_Noninf_JM2(delta_i = c(1, 0), sigma = 4, fi = c(f, 1 - f),
cut = 2, alpha = 0.025, beta = 0.2, N = NA, r = 1, direct = -1, sim = 0.025
TRUE) $ overall
  res$f <- f
  res
pplot(c, d)
```



## getPwr\_Con\_Equi\_JM2

## 高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Con_Equi_JM2(delta_i = c(-0.5, 0), sigma = 4, fi = c(f, 1 - f),
cut = 2, alpha = 0.025, beta = NA, N = 200, r = 1, sim = FALSE)soverall
  res$f <- f
  res
})
b \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Con_Equi_JM2(delta_i = c(-0.5, 0), sigma = 4, fi = c(f, 1 - f),
cut = 2, alpha = 0.025, beta = NA, N = 200, r = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a, b)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Con_Equi_JM2(delta_i = c(1, 0), sigma = 4, fi = c(f, 1 - f), cut
= 2, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = FALSE)$overall
  res$f <- f
  res
})
d \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Con_Equi_JM2(delta_i = c(1, 0), sigma = 4, fi = c(f, 1 - f), cut
= 2, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c, d)
```



# getPwr\_Bin\_Super\_JM1

### 高优

```
a1 <- getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RD", sim = FALSE)  
b1 <- getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RD", sim = TRUE)  
pplot(a1, b1)
```



```
a2 <- getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RR", sim = FALSE)
b2 <- getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RR", sim = TRUE)
pplot(a2, b2)
```



```
a3 <- getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR", sim = FALSE)
b3 <- getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR", sim = TRUE)
pplot(a3, b3)
```



```
c1 <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_nj = 0.25, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim = FALSE)
d1 <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_nj = 0.25, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim = TRUE)
pplot(c1, d1)
```



```
c2 <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_nj = 0.25, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim = FALSE) d2 <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_nj = 0.25, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim = TRUE) pplot(c2, d2)
```



```
c3 <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_nj = 0.25, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim = FALSE)
d3 <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_nj = 0.25, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim = TRUE)
pplot(c3, d3)
```



# getPwr\_Bin\_Noninf\_JM1

#### 高优

```
a1 <- getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", direct = 1, sim = FALSE) b1 <- getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", direct = 1, sim = TRUE) pplot(a1, b1)
```



```
a2 <- getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR", direct = 1, sim = FALSE) b2 <- getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR", direct = 1, sim = TRUE) pplot(a2, b2)
```



```
a3 <- getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -\log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR", direct = 1, sim = FALSE) b3 <- getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -\log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR", direct = 1, sim = TRUE) pplot(a3, b3)
```



```
c1 <- getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", direct = -1, sim = FALSE) d1 <- getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", direct = -1, sim = TRUE) pplot(c1, d1)
```



```
c2 <- getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", direct = -1, sim = FALSE) d2 <- getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", direct = -1, sim = TRUE) pplot(c2, d2)
```



```
c3 <- getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", direct = -1, sim = FALSE) d3 <- getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", direct = -1, sim = TRUE) pplot(c3, d3)
```



# getPwr\_Bin\_Equi\_JM1

## 高优

```
a1 <- getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", sim = FALSE) b1 <- getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", sim = TRUE) pplot(a1, b1)
```



```
a2 <- getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR", sim = FALSE) b2 <- getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR", sim = TRUE) pplot(a2, b2)
```



```
a3 <- getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR", sim = FALSE) b3 <- getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR", sim = TRUE) pplot(a3, b3)
```



```
c1 <- getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim = FALSE) d1 <- getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim = TRUE) pplot(c1, d1)
```



```
c2 <- getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim = FALSE) d2 <- getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim = TRUE) pplot(c2, d2)
```



```
c3 <- getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim = FALSE) d3 <- getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_nj = 0.5, p0_nj = 0.5, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim = TRUE) pplot(c3, d3)
```



## getPwr\_Bin\_Super\_JM2

### 高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.7, 0.75), p0_i = c(0.5, 0.5), fi = c(f, 0.75)
1 - f), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", sim =
FALSE) $ overall
  res$f <- f
  res
})
b1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.7, 0.75), p0_i = c(0.5, 0.5), fi = c(f, 0.75)
1 - f), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(a1, b1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.7, 0.75), p0_i = c(0.5, 0.5), fi = c(f, 0.75)
1 - f), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR", sim =
FALSE) $ overall
  res$f <- f
  res
})
b2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.7, 0.75), p0_i = c(0.5, 0.5), fi = c(f, 0.75)
1 - f), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(a2, b2)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a3 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.7, 0.75), p0_i = c(0.5, 0.5), fi = c(f, 0.75)
1 - f), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "OR", sim =
FALSE) $ overall
  res$f <- f
  res
})
b3 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.7, 0.75), p0_i = c(0.5, 0.5), fi = c(f, 0.75)
1 - f), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "OR", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(a3, b3)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
 f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.3, 0.25), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim =
FALSE) $ overall
  res$f <- f
  res
})
d1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.3, 0.25), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(c1, d1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.3, 0.25), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim =
FALSE) $ overall
  res$f <- f
  res
})
d2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.3, 0.25), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(c2, d2)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c3 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.3, 0.25), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim =
FALSE) $ overall
  res$f <- f
  res
})
d3 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Super_JM2(p1_i = c(0.3, 0.25), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(c3, d3)
```



## getPwr\_Bin\_Noninf\_JM2

## 高优

RD

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Bin_Noninf_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f,
1 - f), cut = 0.25, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD",
direct = 1, sim = FALSE)$overall
  res$f <- f
  res
})
b1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = 0.25, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD",
direct = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a1, b1)
```



RR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a2 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = -log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR",
direct = 1, sim = FALSE)$overall
  res$f <- f
  res
})
b2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = -log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR",
direct = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a2, b2)
```



OR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a3 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = -log(0.5), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "OR",
direct = 1, sim = FALSE)$overall
  res$f <- f
  res
})
b3 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = -log(0.5), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "OR",
direct = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a3, b3)
```



RD

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = 0.25, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD",
direct = -1, sim = FALSE)$overall
  res$f <- f
  res
})
d1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = 0.25, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD",
direct = -1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c1, d1)
```



RR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c2 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
 f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR",
direct = -1, sim = FALSE)$overall
  res$f <- f
  res
})
d2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR",
direct = -1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c2, d2)
```



OR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c3 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR",
direct = -1, sim = FALSE)$overall
  res$f <- f
  res
})
d3 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Noninf_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 0.5)
1 - f), cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR",
direct = -1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c3, d3)
```



# getPwr\_Bin\_Equi\_JM2

## 高优

RD

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = 0.25, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", sim =
FALSE) $ overall
  res$f <- f
  res
})
b1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = 0.25, alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RD", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(a1, b1)
```



RR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = -\log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR",
sim = FALSE)$overall
  res$f <- f
  res
})
b2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = -\log(0.6), alpha = 0.025, beta = NA, N = 100, r = 1, scale = "RR",
sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a2, b2)
```



OR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a3 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = -\log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR",
sim = FALSE)$overall
  res$f <- f
  res
})
b3 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.4, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = -\log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR",
sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a3, b3)
```



RD

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = 0.25, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim =
FALSE) $ overall
  res$f <- f
  res
})
d1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = 0.25, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", sim =
TRUE) $ overall
  res$f <- f
  res
})
pplot(c1, d1)
```



RR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim
= FALSE) $overall
  res$f <- f
  res
})
d2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = log(1.4), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", sim
= TRUE) $ overall
  res$f <- f
  res
})
pplot(c2, d2)
```



OR

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c3 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim
= FALSE) $overall
  res$f <- f
  res
})
d3 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Bin_Equi_JM2(p1_i = c(0.6, 0.5), p0_i = c(0.5, 0.5), fi = c(f, 1)
- f), cut = log(1.7), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", sim
= TRUE) $ overall
  res$f <- f
  res
})
pplot(c3, d3)
```



# getPwr\_Surv\_Super\_JM1

## 高优

```
a1 <- getPwr_Surv_Super_JM1(delta_j = log(1.3), delta_nj = log(1.4), f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 1, sim = FALSE) b1 <- getPwr_Surv_Super_JM1(delta_j = log(1.3), delta_nj = log(1.4), f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 1, sim = TRUE) pplot(a1, b1)
```



```
a2 <- getPwr_Surv_Super_JM1(delta_j = log(1.3), delta_a = log(1.4), f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 2, sim = FALSE)

b2 <- getPwr_Surv_Super_JM1(delta_j = log(1.3), delta_a = log(1.4), f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 2, sim = TRUE)

pplot(a2, b2)
```



```
c1 <- getPwr_Surv_Super_JM1(delta_j = log(0.8), delta_a = log(0.7), f = seq(0.1,
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, sim
= FALSE)
d1 <- getPwr_Surv_Super_JM1(delta_j = log(0.8), delta_a = log(0.7), f = seq(0.1,
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, sim
= TRUE)
pplot(c1, d1)</pre>
```



```
c2 <- getPwr_Surv_Super_JM1(delta_j = log(0.8), delta_nj = log(0.7), f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 2, sim = FALSE) d2 <- getPwr_Surv_Super_JM1(delta_j = log(0.8), delta_nj = log(0.7), f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 2, sim = TRUE) pplot(c2, d2)
```



# getPwr\_Surv\_Noninf\_JM1

## 高优

```
a1 <- getPwr_Surv_Noninf_JM1(delta_j = log(0.9), delta_nj = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 1, direct = 1, sim = FALSE) b1 <- getPwr_Surv_Noninf_JM1(delta_j = log(0.9), delta_nj = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 1, direct = 1, sim = TRUE) pplot(a1, b1)
```



```
a2 <- getPwr_Surv_Noninf_JM1(delta_j = log(0.9), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 2, direct = 1, sim = FALSE)  
b2 <- getPwr_Surv_Noninf_JM1(delta_j = log(0.9), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 2, direct = 1, sim = TRUE)  
pplot(a2, b2)  
pplot(a2, b2)
```



```
c1 <- getPwr_Surv_Noninf_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = log(1.3), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, direct = -1, sim = FALSE) d1 <- getPwr_Surv_Noninf_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = log(1.3), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, direct = -1, sim = TRUE) pplot(c1, d1)
```





# getPwr\_Surv\_Equi\_JM1

## 高优

```
a1 <- getPwr_Surv_Equi_JM1(delta_j = log(0.9), delta_nj = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 1, sim = FALSE)  
b1 <- getPwr_Surv_Equi_JM1(delta_j = log(0.9), delta_nj = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 1, sim = TRUE)  
pplot(a1, b1)
```



```
a2 <- getPwr_Surv_Equi_JM1(delta_j = log(0.9), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 2, sim = FALSE)

b2 <- getPwr_Surv_Equi_JM1(delta_j = log(0.9), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = -log(0.7), pi = 0.5, alpha = 0.025, beta = NA, N = 400, r = 1, criterion = 2, sim = TRUE)

pplot(a2, b2)
```



```
c1 <- getPwr_Surv_Equi_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = log(1.3), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, sim = FALSE) d1 <- getPwr_Surv_Equi_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1, 0.9, 0.1), cut = log(1.3), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, sim = TRUE) pplot(c1, d1)
```



```
 \begin{array}{l} \text{c2} <-\text{ getPwr\_Surv\_Equi\_JM1}(\text{delta\_j} = \log(1.1), \ \text{delta\_nj} = \log(1.0), \ \text{f} = \text{seq}(0.1, \\ 0.9, \ 0.1), \ \text{cut} = \log(1.3), \ \text{pi} = 0.5, \ \text{alpha} = 0.025, \ \text{beta} = 0.2, \ \text{N} = \text{NA}, \ \text{r} = 1, \\ \text{criterion} = 2, \ \text{sim} = \text{FALSE}) \\ \text{d2} <-\text{ getPwr\_Surv\_Equi\_JM1}(\text{delta\_j} = \log(1.1), \ \text{delta\_nj} = \log(1.0), \ \text{f} = \text{seq}(0.1, \\ 0.9, \ 0.1), \ \text{cut} = \log(1.3), \ \text{pi} = 0.5, \ \text{alpha} = 0.025, \ \text{beta} = 0.2, \ \text{N} = \text{NA}, \ \text{r} = 1, \\ \text{criterion} = 2, \ \text{sim} = \text{TRUE}) \\ \text{pplot(c2, d2)} \\ \end{array}
```



## getPwr\_Surv\_Super\_JM2

#### 高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(1.2), log(1.4)), fi = c(f, 1 - f),
alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 1, sim = FALSE)$overall
  res$f <- f
  res
})
b1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(1.2), log(1.4)), fi = c(f, 1 - f),
alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a1, b1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(1.2), log(1.4)), fi = c(f, 1 - f),
alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 2, sim = FALSE)$overall
  res$f <- f
  res
})
b2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(1.2), log(1.4)), fi = c(f, 1 - f),
alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 2, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a2, b2)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(0.7), log(0.8)), fi = c(f, 1 - f),
alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, sim = FALSE)$overall
  res$f <- f
  res
})
d1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(0.7), log(0.8)), fi = c(f, 1 - f),
alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c1, d1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
 f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(0.7), log(0.8)), fi = c(f, 1 - f),
alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 2, sim = FALSE)$overall
  res$f <- f
  res
})
d2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Surv_Super_JM2(delta_i = c(log(0.7), log(0.8)), fi = c(f, 1 - f),
alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 2, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c2, d2)
```



## getPwr\_Surv\_Noninf\_JM2

#### 高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 -
f), cut = -\log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 1,
direct = 1, sim = FALSE)$overall
  res$f <- f
  res
})
b1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 -
f), cut = -log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 1,
direct = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a1, b1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 -
f), cut = -\log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 2,
direct = 1, sim = FALSE)$overall
  res$f <- f
  res
})
b2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 -
f), cut = -\log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 2,
direct = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(a2, b2)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 -
f), cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1,
direct = -1, sim = FALSE)$overall
  res$f <- f
  res
})
d1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 -
f), cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1,
direct = -1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c1, d1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 -
f), cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 2,
direct = -1, sim = FALSE)$overall
  res$f <- f
  res
})
d2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Noninf_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 -
f), cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 2,
direct = -1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c2, d2)
```



# getPwr\_Surv\_Equi\_JM2

## 高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Equi_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 - f),
cut = -log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 1, sim = 1
FALSE) $ overall
  res$f <- f
  res
})
b1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Equi_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 - f),
cut = -log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 1, <math>sim = 1
TRUE) $ overall
  res$f <- f
  res
})
pplot(a1, b1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Equi_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 - f),
cut = -log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 2, sim = 1
FALSE) $ overall
  res$f <- f
  res
})
b2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Equi_JM2(delta_i = c(log(0.9), log(1.0)), fi = c(f, 1 - f),
cut = -log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 2, sim = 1
TRUE) $ overall
  res$f <- f
  res
})
pplot(a2, b2)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c1 <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Equi_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 - f),
cut = log(1.3), alpha = 0.025, beta = 0.2, log N = NA, log r = 1, log criterion = 1, log sim = 1
FALSE) $ overall
  res$f <- f
  res
})
d1 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Equi_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 - f),
cut = log(1.3), alpha = 0.025, beta = 0.2, log N = NA, log r = 1, log criterion = 1, log sim = 1
TRUE) $ overall
  res$f <- f
  res
})
pplot(c1, d1)
```



```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Surv_Equi_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 - f),
cut = log(1.3), alpha = 0.025, beta = 0.2, log N = NA, log r = 1, log criterion = 2, log sim = 1
FALSE) $ overall
  res$f <- f
  res
})
d2 \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Surv_Equi_JM2(delta_i = c(log(1.1), log(1.0)), fi = c(f, 1 - f),
cut = log(1.3), alpha = 0.025, beta = 0.2, log N = NA, log r = 1, log criterion = 2, log sim = 1
TRUE) $ overall
  res$f <- f
  res
})
pplot(c2, d2)
```



# getPwr\_Count\_Super\_JM1

### 高优

j & a

```
a1 <- getPwr_Count_Super_JM1(delta_j = log(1.2), delta_a = log(1.3), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 300, r = 1, sim = FALSE) b1 <- getPwr_Count_Super_JM1(delta_j = log(1.2), delta_a = log(1.3), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 300, r = 1, sim = TRUE) pplot(a1, b1)
```



### j & nj

```
a2 <- getPwr_Count_Super_JM1(delta_j = log(1.2), delta_nj = log(1.3), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 300, r = 1, sim = FALSE)  
b2 <- getPwr_Count_Super_JM1(delta_j = log(1.2), delta_nj = log(1.3), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 300, r = 1, sim = TRUE)  
pplot(a2, b2)
```



### 低优

j & a

```
c1 <- getPwr_Count_Super_JM1(delta_j = log(0.8), delta_a = log(0.7), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = FALSE) d1 <- getPwr_Count_Super_JM1(delta_j = log(0.8), delta_a = log(0.7), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = TRUE) pplot(c1, d1)
```



### j & nj



# getPwr\_Count\_Noninf\_JM1

### 高优

j & a

```
a1 <- getPwr_Count_Noninf_JM1(delta_j = log(0.9), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, direct = 1, sim = FALSE) b1 <- getPwr_Count_Noninf_JM1(delta_j = log(0.9), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, direct = 1, sim = TRUE) pplot(a1, b1)
```



### j & nj

```
a2 <- getPwr_Count_Noninf_JM1(delta_j = log(0.9), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, direct = 1, sim = FALSE) b2 <- getPwr_Count_Noninf_JM1(delta_j = log(0.9), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, direct = 1, sim = TRUE) pplot(a2, b2)
```



### 低优

j & a

```
c1 <- getPwr_Count_Noninf_JM1(delta_j = log(1.1), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, direct = -1, sim = FALSE) d1 <- getPwr_Count_Noninf_JM1(delta_j = log(1.1), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, direct = -1, sim = TRUE) pplot(c1, d1)
```



### j & nj

```
c1 <- getPwr_Count_Noninf_JM1(delta_j = log(1.1), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, direct = -1, sim = FALSE) d1 <- getPwr_Count_Noninf_JM1(delta_j = log(1.1), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, direct = -1, sim = TRUE) pplot(c1, d1)
```



# getPwr\_Count\_Equi\_JM1

### 高优

j & a

```
a1 <- getPwr_Count_Equi_JM1(delta_j = log(0.9), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, sim = FALSE) b1 <- getPwr_Count_Equi_JM1(delta_j = log(0.9), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, sim = TRUE) pplot(a1, b1)
```



### j & nj

```
a2 <- getPwr_Count_Equi_JM1(delta_j = log(0.9), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, sim = FALSE) b2 <- getPwr_Count_Equi_JM1(delta_j = log(0.9), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = - log(0.7), alpha = 0.025, beta = NA, N = 400, r = 1, sim = TRUE) pplot(a2, b2)
```



### 低优

j & a

```
c1 <- getPwr_Count_Equi_JM1(delta_j = log(1.1), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = FALSE) d1 <- getPwr_Count_Equi_JM1(delta_j = log(1.1), delta_a = log(1.0), lambda0_j = 0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = TRUE) pplot(c1, d1)
```



### j & nj

```
c1 <- getPwr_Count_Equi_JM1(delta_j = log(1.1), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = FALSE) d1 <- getPwr_Count_Equi_JM1(delta_j = log(1.1), delta_nj = log(1.0), lambda0_j = 0.1, lambda0_nj = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, sim = TRUE) pplot(c1, d1)
```



# getPwr\_Count\_Super\_JM2

高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Count_Super_JM2(delta_i = c(log(1.2), log(1.4)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), alpha = 0.025, beta = NA, N = 300, r
= 1, sim = FALSE)$overall
  res$f <- f
  res
})
b <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Count_Super_JM2(delta_i = c(log(1.2), log(1.4)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), alpha = 0.025, beta = NA, N = 300, r
= 1, sim = TRUE) $overall
  res$f <- f
  res
pplot(a, b)
```



### 低优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Count_Super_JM2(delta_i = c(log(0.8), log(0.6)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), alpha = 0.025, beta = 0.2, N = NA, r
= 1, sim = FALSE)$overall
  res$f <- f
  res
})
d \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Count_Super_JM2(delta_i = c(log(0.8), log(0.6)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), alpha = 0.025, beta = 0.2, N = NA, r
= 1, sim = TRUE) $overall
  res$f <- f
  res
})
pplot(c, d)
```



# getPwr\_Count\_Noninf\_JM2

高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Count_Noninf_JM2(delta_i = c(log(0.9), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = -log(0.7), alpha = 0.025, beta
= NA, N = 300, r = 1, direct = 1, sim = FALSE)^{\text{soverall}}
  res$f <- f
  res
})
b <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Count_Noninf_JM2(delta_i = c(log(0.9), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = -log(0.7), alpha = 0.025, beta
= NA, N = 300, r = 1, direct = 1, sim = TRUE)$overall
  res$f <- f
  res
pplot(a, b)
```



### 低优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Count_Noninf_JM2(delta_i = c(log(1.1), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = log(1.3), alpha = 0.025, beta
= 0.2, N = NA, r = 1, direct = -1, sim = FALSE)$overall
  res$f <- f
  res
})
d \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Count_Noninf_JM2(delta_i = c(log(1.1), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = log(1.3), alpha = 0.025, beta
= 0.2, N = NA, r = 1, direct = -1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c, d)
```



# getPwr\_Count\_Equi\_JM2

高优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
a \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res \leftarrow getPwr_Count_Equi_JM2(delta_i = c(log(0.9), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = -log(0.7), alpha = 0.025, beta
= NA, N = 300, r = 1, sim = FALSE)soverall
  res$f <- f
  res
})
b <- map_dfr(.x = 1:length(f_set), .f = function(i) {</pre>
  f <- f_set[i]
  res <- getPwr_Count_Equi_JM2(delta_i = c(log(0.9), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = -log(0.7), alpha = 0.025, beta
= NA, N = 300, r = 1, sim = TRUE)$overall
  res$f <- f
  res
pplot(a, b)
```



### 低优

```
f_{set} \leftarrow seq(0.1, 0.9, 0.1)
c \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Count_Equi_JM2(delta_i = c(log(1.1), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = log(1.3), alpha = 0.025, beta
= 0.2, N = NA, r = 1, sim = FALSE)$overall
  res$f <- f
  res
})
d \leftarrow map\_dfr(.x = 1:length(f\_set), .f = function(i) {
  f <- f_set[i]
  res <- getPwr_Count_Equi_JM2(delta_i = c(log(1.1), log(1.0)), lambda0_i =
c(0.1, 0.1), t = 5, k = 0, fi = c(f, 1 - f), cut = log(1.3), alpha = 0.025, beta
= 0.2, N = NA, r = 1, sim = TRUE)$overall
  res$f <- f
  res
})
pplot(c, d)
```



# Regional sample size allocation using Japan's Method 1 or 2

Based on Japan's Method 1 or 2, given the global sample size and marginal probability (power) of efficacy consistency between target region and globally, calculate the required sample size allocated to the target region, in clinical trials using superiority, non-inferiority, and equivalence designs.

# getPwr\_Con\_Super\_JM1

```
v <- getPwr_Con_Super_JM1(delta_j = 0.5, delta_a = 0.7, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 100, r = 1, sim = FALSE)
getN_Con_Super_JM1(delta_a = 0.7, delta_j = 0.5, sigma = 1, pi = 0.5, beta1 = 1 -
v$pwr2, N = 100, r = 1)

v <- getPwr_Con_Super_JM1(delta_j = -0.5, delta_a = -0.7, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 100, r = 1, sim = FALSE)
getN_Con_Super_JM1(delta_a = -0.7, delta_j = -0.5, sigma = 1, pi = 0.5, beta1 = 1
- v$pwr2, N = 100, r = 1)</pre>
```

# getPwr\_Con\_Noninf\_JM1

```
v <- getPwr_Con_Noninf_JM1(delta_j = -0.5, delta_a = 0, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = 2, alpha = 0.025, beta = NA, N = 100, r = 1, direct =
1, sim = FALSE)
getN_Con_Noninf_JM1(delta_a = 0, delta_j = -0.5, sigma = 1, pi = 0.5, cut = 2,
beta1 = 1 - v$pwr2, N = 100, r = 1, direct = 1)

v <- getPwr_Con_Noninf_JM1(delta_j = 0.5, delta_a = 0, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = 2, alpha = 0.025, beta = NA, N = 100, r = 1, direct =
-1, sim = FALSE)
getN_Con_Noninf_JM1(delta_a = 0, delta_j = 0.5, sigma = 1, pi = 0.5, cut = 2,
beta1 = 1 - v$pwr2, N = 100, r = 1, direct = -1)</pre>
```

# getPwr\_Con\_Equi\_JM1

```
v <- getPwr_Con_Equi_JM1(delta_j = -0.5, delta_a = 0, sigma = 1, f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = 2, alpha = 0.025, beta = NA, N = 100, r = 1, sim =
FALSE)
getN_Con_Equi_JM1(delta_a = 0, delta_j = -0.5, sigma = 1, pi = 0.5, cut = 2,
beta1 = 1 - v$pwr2, N = 100, r = 1)

v <- getPwr_Con_Equi_JM1(delta_j = 0.5, delta_a = 0, sigma = 1, f = seq(0.1, 0.9,
0.1), pi = 0.5, cut = 2, alpha = 0.025, beta = NA, N = 100, r = 1, sim = FALSE)
getN_Con_Equi_JM1(delta_a = 0, delta_j = 0.5, sigma = 1, pi = 0.5, cut = 2, beta1
= 1 - v$pwr2, N = 100, r = 1)</pre>
```

# getPwr\_Bin\_Super\_JM1

```
v \leftarrow getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = 0.75
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale =
"RD", sim = FALSE)
getN_Bin_Super_JM1(p1_a = 0.75, p0_a = 0.5, p1_j = 0.7, p0_j = 0.5, pi = 0.5,
alpha = NA, beta = NA, beta1 = 1 - vpwr2, N = 200, r = 1, scale = "RD")
v \leftarrow getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = 0.75, p0_a = 0.7
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale =
"RR", sim = FALSE)
getN_Bin_Super_JM1(p1_a = 0.75, p0_a = 0.5, p1_j = 0.7, p0_j = 0.5, pi = 0.5,
alpha = NA, beta = NA, beta1 = 1 - vpwr2, N = 200, r = 1, scale = "RR")
v \leftarrow getPwr_Bin_Super_JM1(p1_j = 0.7, p0_j = 0.5, p1_a = 0.75, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale =
"OR", sim = FALSE)
getN_Bin_Super_JM1(p1_a = 0.75, p0_a = 0.5, p1_j = 0.7, p0_j = 0.5, pi = 0.5,
alpha = NA, beta = NA, beta1 = 1 - vpwr2, N = 200, r = 1, scale = "OR")
v \leftarrow getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_a = 0.25, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale =
"RD", sim = FALSE)
getN_Bin_Super_JM1(p1_a = 0.25, p0_a = 0.5, p1_j = 0.3, p0_j = 0.5, pi = 0.5,
alpha = NA, beta = NA, beta1 = 1 - vpwr2, N = 200, r = 1, scale = "RD")
```

```
v <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_a = 0.25, p0_a = 0.5, f =
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale =
"RR", sim = FALSE)
getN_Bin_Super_JM1(p1_a = 0.25, p0_a = 0.5, p1_j = 0.3, p0_j = 0.5, pi = 0.5,
alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale = "RR")

v <- getPwr_Bin_Super_JM1(p1_j = 0.3, p0_j = 0.5, p1_a = 0.25, p0_a = 0.5, f =
seq(0.1, 0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, scale =
"OR", sim = FALSE)
getN_Bin_Super_JM1(p1_a = 0.25, p0_a = 0.5, p1_j = 0.3, p0_j = 0.5, pi = 0.5,
alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale = "OR")</pre>
```

# getPwr\_Bin\_Noninf\_JM1

```
v \leftarrow getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 200, r = 0.025
1, scale = "RD", direct = 1, sim = FALSE)
getN_Bin_Noninf_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.4, p0_j = 0.5, pi = 0.5, cut
= 0.3, alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale = "RD",
direct = 1
v \leftarrow getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.6), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "RR", direct = 1, sim = FALSE)
getN_Bin_Noninf_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.4, p0_j = 0.5, pi = 0.5, cut
= -\log(0.6), alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale =
"RR", direct = 1)
v \leftarrow getPwr_Bin_Noninf_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.5), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "OR", direct = 1, sim = FALSE)
getN_Bin_Noninf_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.4, p0_j = 0.5, pi = 0.5, cut
= -\log(0.5), alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale =
"OR", direct = 1)
v \leftarrow getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 200, r = 0.025
1, scale = "RD", direct = -1, sim = FALSE)
getN_Bin_Noninf_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.6, p0_j = 0.5, pi = 0.5, cut
= 0.3, alpha = NA, beta = NA, beta1 = 1 - vpwr2, N = 200, r = 1, scale = "RD",
direct = -1
v \leftarrow getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.4), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "RR", direct = -1, sim = FALSE)
getN_Bin_Noninf_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.6, p0_j = 0.5, pi = 0.5, cut
= log(1.4), alpha = NA, beta = NA, beta1 = 1 - vlog(1.4), N = 200, r = 1, scale =
"RR", direct = -1)
v \leftarrow getPwr_Bin_Noninf_JM1(p1_j = 0.6, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.8), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "OR", direct = -1, sim = FALSE)
```

```
getN_Bin_Noninf_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.6, p0_j = 0.5, pi = 0.5, cut = log(1.8), alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale = "OR", direct = -1)
```

# getPwr\_Bin\_Equi\_JM1

```
v \leftarrow getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 200, r =
1, scale = "RD", sim = FALSE)
getN_Bin_Equi_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.4, p0_j = 0.5, pi = 0.5, cut = 0.5
0.3, alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale = "RD")
v \leftarrow getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.6), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "RR", sim = FALSE)
getN_Bin_Equi_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.4, p0_j = 0.5, pi = 0.5, cut = 0.5
-\log(0.6), alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale =
"RR")
v \leftarrow getPwr_Bin_Equi_JM1(p1_j = 0.4, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = -log(0.4), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "OR", sim = FALSE)
getN_Bin_Equi_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.4, p0_j = 0.5, pi = 0.5, cut = 0.5
-\log(0.4), alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale =
"OR")
v \leftarrow getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = 0.3, alpha = 0.025, beta = NA, N = 200, r =
1, scale = "RD", sim = FALSE)
getN_Bin_Equi_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.6, p0_j = 0.5, pi = 0.5, cut = 0.5
0.3, alpha = NA, beta = NA, beta1 = 1 - vpwr2, N = 200, r = 1, scale = "RD")
v \leftarrow getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(1.5), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "RR", sim = FALSE)
getN_Bin_Equi_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.6, p0_j = 0.5, pi = 0.5, cut = 0.5
log(1.5), alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale =
"RR")
v \leftarrow getPwr_Bin_Equi_JM1(p1_j = 0.6, p0_j = 0.5, p1_a = 0.5, p0_a = 0.5, f = 0.5
seq(0.1, 0.9, 0.1), pi = 0.5, cut = log(2.3), alpha = 0.025, beta = NA, N = 200,
r = 1, scale = "OR", sim = FALSE)
getN_Bin_Equi_JM1(p1_a = 0.5, p0_a = 0.5, p1_j = 0.6, p0_j = 0.5, pi = 0.5, cut = 0.5
log(2.3), alpha = NA, beta = NA, beta1 = 1 - v$pwr2, N = 200, r = 1, scale =
"OR")
```

# getPwr\_Surv\_Super\_JM1

```
v \leftarrow getPwr\_Surv\_Super\_JM1(delta\_j = log(1.3), delta\_a = log(1.4), f = seq(0.1, delta\_a)
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 1, sim
= FALSE)
getN_surv_super_JM1(delta_a = log(1.4), delta_j = log(1.3), pi = 0.5, beta1 = 1 - log(1.4)
vpwr2, N = 200, r = 1, criterion = 1)
v \leftarrow getPwr_Surv_Super_JM1(delta_j = log(1.3), delta_a = log(1.4), f = seq(0.1, seq(0.1))
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 2, sim
= FALSE)
getN_surv_super_JM1(delta_a = log(1.4), delta_j = log(1.3), pi = 0.5, beta1 = 1 -
v$pwr2, N = 200, r = 1, criterion = 2)
v \leftarrow getPwr\_Surv\_Super\_JM1(delta\_j = log(0.8), delta\_a = log(0.7), f = seq(0.1, seq(0.1))
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 1, sim
= FALSE)
getN_surv_super_JM1(delta_a = log(0.7), delta_j = log(0.8), pi = 0.5, beta1 = 1 -
v$pwr2, N = 200, r = 1, criterion = 1)
v \leftarrow getPwr\_Surv\_Super\_JM1(delta\_j = log(0.8), delta\_a = log(0.7), f = seq(0.1, seq(0.1))
0.9, 0.1), pi = 0.5, alpha = 0.025, beta = NA, N = 200, r = 1, criterion = 2, sim
getN_Surv_Super_JM1(delta_a = log(0.7), delta_j = log(0.8), pi = 0.5, beta1 = 1 -
vpwr2, N = 200, r = 1, criterion = 2)
```

# getPwr\_Surv\_Noninf\_JM1

```
v \leftarrow getPwr\_Surv\_Noninf\_JM1(delta\_j = log(0.9), delta\_a = log(1.0), f = seq(0.1, log(0.9))
0.9, 0.1), pi = 0.5, cut = -log(0.7), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 1, direct = 1, sim = FALSE)
log(0.7), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 1, direct = 1)
v \leftarrow getPwr_surv_Noninf_JM1(delta_j = log(0.9), delta_a = log(1.0), f = seq(0.1, log(0.9))
0.9, 0.1), pi = 0.5, cut = -log(0.7), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 2, direct = 1, sim = FALSE)
getN_surv_Noninf_JM1(delta_a = log(1.0), delta_j = log(0.9), pi = 0.5, cut = -
log(0.7), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 2, direct = 1)
v \leftarrow getPwr_Surv_Noninf_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1, log(1.1))
0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 1, direct = -1, sim = FALSE)
getN_surv_Noninf_JM1(delta_a = log(1.0), delta_j = log(1.1), pi = 0.5, cut = log(1.1)
log(1.3), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 1, direct = -1)
v \leftarrow getPwr_surv_Noninf_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1, log(1.1))
0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 2, direct = -1, sim = FALSE)
getN_Surv_Noninf_JM1(delta_a = log(1.0), delta_j = log(1.1), pi = 0.5, cut =
log(1.3), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 2, direct = -1)
```

# getPwr\_Surv\_Equi\_JM1

```
v \leftarrow getPwr_Surv_Equi_JM1(delta_j = log(0.9), delta_a = log(1.0), f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = -log(0.7), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 1, sim = FALSE)
getN_Surv_Equi_JM1(delta_a = log(1.0), delta_j = log(0.9), pi = 0.5, cut = -
log(0.7), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 1)
v \leftarrow getPwr_Surv_Equi_JM1(delta_j = log(0.9), delta_a = log(1.0), f = seq(0.1, seq(0.1))
0.9, 0.1), pi = 0.5, cut = -log(0.7), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 2, sim = FALSE)
getN_Surv_Equi_JM1(delta_a = log(1.0), delta_j = log(0.9), pi = 0.5, cut = -
log(0.7), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 2)
v \leftarrow getPwr_Surv_Equi_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1,
0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 1, sim = FALSE)
getN_Surv_Equi_JM1(delta_a = log(1.0), delta_j = log(1.1), pi = 0.5, cut =
log(1.3), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 1)
v \leftarrow getPwr_Surv_Equi_JM1(delta_j = log(1.1), delta_a = log(1.0), f = seq(0.1, log(1.1))
0.9, 0.1), pi = 0.5, cut = log(1.3), alpha = 0.025, beta = NA, N = 200, r = 1,
criterion = 2, sim = FALSE)
getN_Surv_Equi_JM1(delta_a = log(1.0), delta_j = log(1.1), pi = 0.5, cut =
log(1.3), beta1 = 1 - v$pwr2, N = 200, r = 1, criterion = 2)
```

# getPwr\_Count\_Super\_JM1

# getPwr\_Count\_Noninf\_JM1

```
v <- getPwr_Count_Noninf_JM1(delta_j = log(0.9), delta_a = log(1.0), lambda0_j =
0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -
log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, direct = 1, sim = FALSE)
getN_Count_Noninf_JM1(delta_a = log(1.0), delta_j = log(0.9), lambda0_a = 0.1,
lambda0_j = 0.1, t = 5, k = 0, pi = 0.5, cut = -log(0.7), beta1 = 1 - v$pwr2, N =
300, r = 1, direct = 1)

v <- getPwr_Count_Noninf_JM1(delta_j = log(1.1), delta_a = log(1.0), lambda0_j =
0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut =
log(1.3), alpha = 0.025, beta = NA, N = 300, r = 1, direct = -1, sim = FALSE)
getN_Count_Noninf_JM1(delta_a = log(1.0), delta_j = log(1.1), lambda0_a = 0.1,
lambda0_j = 0.1, t = 5, k = 0, pi = 0.5, cut = log(1.3), beta1 = 1 - v$pwr2, N =
300, r = 1, direct = -1)</pre>
```

# getPwr\_Count\_Equi\_JM1

```
v <- getPwr_Count_Equi_JM1(delta_j = log(0.9), delta_a = log(1.0), lambda0_j =
0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut = -
log(0.7), alpha = 0.025, beta = NA, N = 300, r = 1, sim = FALSE)
getN_Count_Equi_JM1(delta_a = log(1.0), delta_j = log(0.9), lambda0_a = 0.1,
lambda0_j = 0.1, t = 5, k = 0, pi = 0.5, cut = -log(0.7), beta1 = 1 - v$pwr2, N =
300, r = 1)

v <- getPwr_Count_Equi_JM1(delta_j = log(1.1), delta_a = log(1.0), lambda0_j =
0.1, lambda0_a = 0.1, t = 5, k = 0, f = seq(0.1, 0.9, 0.1), pi = 0.5, cut =
log(1.3), alpha = 0.025, beta = NA, N = 300, r = 1, sim = FALSE)
getN_Count_Equi_JM1(delta_a = log(1.0), delta_j = log(1.1), lambda0_a = 0.1,
lambda0_j = 0.1, t = 5, k = 0, pi = 0.5, cut = log(1.3), beta1 = 1 - v$pwr2, N =
300, r = 1)</pre>
```

# Sample size and power

Calculating sample size when given power or power when given sample size.

# getN\_Con\_Super

```
(v \leftarrow getN\_Con\_Super(delta = seq(0.5, 1.5, 0.5), sigma = 4, alpha = 0.025, beta = 0.2, N = NA, r = 1)) getN\_Con\_Super(delta = seq(0.5, 1.5, 0.5), sigma = 4, alpha = 0.025, beta = NA, N = 300, r = 1)
```

```
> (v \leftarrow getN_Con_Super(delta = seq(0.5, 1.5, 0.5), sigma = 4, alpha = 0.025, beta = 0.2, N = NA, r = 1))
 delta sigma alpha beta
                              pwr r
                                       N
                                           n1
   0.5
           4 0.025 0.2 0.8001340 1 2010 1005 1005
           4 0.025 0.2 0.8013015 1 504 252 252
           4 0.025 0.2 0.8013015 1 224 112 112
3 1.5
> getN_Con_Super(delta = seq(0.5, 1.5, 0.5), sigma = 4, alpha = 0.025, beta = NA, N = 300, r = 1)
                              pwr r
 delta sigma alpha beta
                                      N n1 n0
         4 0.025 NA 0.1901260 1 300 150 150
4 0.025 NA 0.5812528 1 300 150 150
1 0.5
  1.0
3 1.5
         4 0.025 NA 0.9010628 1 300 150 150
```

Numeric Results for Two-Sample Z-Test Assuming Equal Variance -

Alternative Hypothesis: H1:  $\delta = \mu 1 - \mu 2 \neq 0$ 

| Target | Actual  |      |      |      |     |    |     |   |       |
|--------|---------|------|------|------|-----|----|-----|---|-------|
| Power  | Power   | N1   | N2   | N    | μ1  | μ2 | δ   | σ | Alpha |
| 0.8    | 0.80013 | 1005 | 1005 | 2010 | 0.5 | 0  | 0.5 | 4 | 0.05  |
| 0.8    | 0.80130 | 252  | 252  | 504  | 1.0 | 0  | 1.0 | 4 | 0.05  |
| 0.8    | 0.80130 | 112  | 112  | 224  | 1.5 | 0  | 1.5 | 4 | 0.05  |

#### Two-Sample Z-Tests Assuming Equal Variance

Numeric Results for Two-Sample Z-Test Assuming Equal Variance ----

Alternative Hypothesis: H1:  $\delta = \mu 1 - \mu 2 \neq 0$ 

| Power   | N1  | N2  | N   | μ1  | μ2 | δ   | σ | Alpha |
|---------|-----|-----|-----|-----|----|-----|---|-------|
| 0.19130 | 150 | 150 | 300 | 0.5 | 0  | 0.5 | 4 | 0.05  |
| 0.58127 | 150 | 150 | 300 | 1.0 | 0  | 1.0 | 4 | 0.05  |
| 0.90106 | 150 | 150 | 300 | 1.5 | 0  | 1.5 | 4 | 0.05  |

### getN\_Con\_Noninf

```
 (v \leftarrow getN\_Con\_Noninf(delta = seq(0, -1.5, -0.5), sigma = 4, cut = 2, alpha = 0.025, beta = 0.2, N = NA, r = 1)) \\ getN\_Con\_Noninf(delta = seq(0, -1.5, -0.5), sigma = 4, cut = 2, alpha = 0.025, beta = NA, N = 200, r = 1)
```

### Two-Sample T-Tests for Non-Inferiority Assuming Equal Variance

Numeric Results for an Equal-Variance T-Test ------

 $\delta = \mu 1 - \mu 2 = \mu T - \mu R$ 

Higher Means are Better

Hypotheses: H0:  $\delta \le$  -NIM vs. H1:  $\delta >$  -NIM

| Actual  |                                        |                                                        |                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                   |
|---------|----------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power   | N1                                     | N2                                                     | N                                                                                                                                                           | -NIM                                                                                                                                                                                                       | δ                                                                                                                                                                                                                                                        | σ                                                                                                                                                                                                                                                                                                         | Alpha                                                                                                                                                                                                                                                                                                                                             |
| 0.80009 | 1005                                   | 1005                                                   | 2010                                                                                                                                                        | -2                                                                                                                                                                                                         | -1.5                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                         | 0.025                                                                                                                                                                                                                                                                                                                                             |
| 0.80136 | 253                                    | 253                                                    | 506                                                                                                                                                         | -2                                                                                                                                                                                                         | -1.0                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                         | 0.025                                                                                                                                                                                                                                                                                                                                             |
| 0.80141 | 113                                    | 113                                                    | 226                                                                                                                                                         | -2                                                                                                                                                                                                         | -0.5                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                         | 0.025                                                                                                                                                                                                                                                                                                                                             |
| 0.80146 | 64                                     | 64                                                     | 128                                                                                                                                                         | -2                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                         | 0.025                                                                                                                                                                                                                                                                                                                                             |
|         | Power<br>0.80009<br>0.80136<br>0.80141 | Power N1<br>0.80009 1005<br>0.80136 253<br>0.80141 113 | Power         N1         N2           0.80009         1005         1005           0.80136         253         253           0.80141         113         113 | Power         N1         N2         N           0.80009         1005         1005         2010           0.80136         253         253         506           0.80141         113         113         226 | Power         N1         N2         N         -NIM           0.80009         1005         1005         2010         -2           0.80136         253         253         506         -2           0.80141         113         113         226         -2 | Power         N1         N2         N         -NIM         δ           0.80009         1005         1005         2010         -2         -1.5           0.80136         253         253         506         -2         -1.0           0.80141         113         113         226         -2         -0.5 | Power         N1         N2         N         -NIM         δ         σ           0.80009         1005         1005         2010         -2         -1.5         4           0.80136         253         253         506         -2         -1.0         4           0.80141         113         113         226         -2         -0.5         4 |

### Two-Sample T-Tests for Non-Inferiority Assuming Equal Variance

δ = μ1 - μ2 = μT - μRHigher Means are Better

Hypotheses: H0:  $\delta$  ≤ -NIM vs. H1:  $\delta$  > -NIM

| Power   | N1  | N2  | N   | -NIM | δ    | σ | Alpha |
|---------|-----|-----|-----|------|------|---|-------|
| 0.13999 | 100 | 100 | 200 | -2   | -1.5 | 4 | 0.025 |
| 0.42044 | 100 | 100 | 200 | -2   | -1.0 | 4 | 0.025 |
| 0.75137 | 100 | 100 | 200 | -2   | -0.5 | 4 | 0.025 |
| 0.94043 | 100 | 100 | 200 | -2   | 0.0  | 4 | 0.025 |

# getN\_Con\_Equi

```
 (v \leftarrow getN\_Con\_Equi(delta = seq(0, -1.5, -0.5), sigma = 4, cut = 2, alpha = 0.025, beta = 0.2, N = NA, r = 1)) \\ getN\_Con\_Equi(delta = seq(0, -1.5, -0.5), sigma = 4, cut = 2, alpha = 0.025, beta = NA, N = 200, r = 1)
```

```
> (v \leftarrow getN_Con_Equi(delta = seq(0, -1.5, -0.5), sigma = 4, cut = 2, alpha = 0.025, beta = 0.2, N = NA, r = 1))
 delta sigma cut alpha beta
                                 pwr r
                                         N
        4 2 0.025 0.2 0.8062747 1 170
 -0.5
              2 0.025 0.2 0.8016775 1
                                        226
                                                 113
                                            113
          4 2 0.025 0.2 0.8013015 1
                                       504
3 -1.0
                                            252 252
4 -1.5
              2 0.025 0.2 0.8001340 1 2010 1005 1005
> getN_Con_Equi(delta = seq(0, -1.5, -0.5), sigma = 4, cut = 2, alpha = 0.025, beta = NA, N = 200, r = 1)
                                        N n1 n0
 delta sigma cut alpha beta
                                pwr r
          4 2 0.025 NA 0.8848750 1 200 100 100
1 0.0
          4 2 0.025
4 2 0.025
2 -0.5
                        NA 0.7484754 1 200 100 100
3 -1.0
                        NA 0.4233800 1 200 100 100
         4 2 0.025
4 -1.5
                       NA 0.1409338 1 200 100 100
```

#### Two-Sample T-Tests for Equivalence Assuming Equal Variance

#### 

Hypotheses:  $H0: \delta \le EL \text{ or } \delta \ge EU \text{ vs. } H1: EL < \delta < EU$ 

| Target<br>Power | Actual<br>Power | N1   | N2   | N    | Equiv<br>Limit<br>EL | Upper<br>Equiv<br>Limit<br>EU | δ    | σ | Alpha |
|-----------------|-----------------|------|------|------|----------------------|-------------------------------|------|---|-------|
| 8.0             | 0.80009         | 1005 | 1005 | 2010 | -2                   | 2                             | -1.5 | 4 | 0.025 |
| 0.8             | 0.80136         | 253  | 253  | 506  | -2                   | 2                             | -1.0 | 4 | 0.025 |
| 0.8             | 0.80179         | 114  | 114  | 228  | -2                   | 2                             | -0.5 | 4 | 0.025 |
| 0.8             | 0.80646         | 86   | 86   | 172  | -2                   | 2                             | 0.0  | 4 | 0.025 |

#### Two-Sample T-Tests for Equivalence Assuming Equal Variance

Hypotheses: H0: δ ≤ EL or δ ≥ EU vs. H1: EL < δ < EU

|     |                   |                               | Lower<br>Equiv<br>Limit                   | Upper<br>Equiv<br>Limit                                            |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-------------------|-------------------------------|-------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N1  | N2                | N                             | EL                                        | EU                                                                 | δ                                                                                                                                                                                                                                                                                                                                                           | σ                                                                                                                                                                                                                                                                                                                                                       | Alpha                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100 | 100               | 200                           | -2                                        | 2                                                                  | -1.5                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                       | 0.025                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100 | 100               | 200                           | -2                                        | 2                                                                  | -1.0                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                       | 0.025                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100 | 100               | 200                           | -2                                        | 2                                                                  | -0.5                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                       | 0.025                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100 | 100               | 200                           | -2                                        | 2                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                       | 0.025                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 100<br>100<br>100 | 100 100<br>100 100<br>100 100 | 100 100 200<br>100 100 200<br>100 100 200 | N1 N2 N EL 100 100 200 -2 100 100 200 -2 100 100 200 -2 100 200 -2 | N1         N2         N         EQuiv Limit Limit         EQUIV Limit           100         100         200         -2         2           100         100         200         -2         2           100         100         200         -2         2           100         100         200         -2         2           2         2         2         2 | N1         N2         N         EL         EU         δ           100         100         200         -2         2         -1.5           100         100         200         -2         2         -1.0           100         100         200         -2         2         -1.0           100         100         200         -2         2         -0.5 | N1         N2         N         EL         EU         δ         σ           100         100         200         -2         2         -1.5         4           100         100         200         -2         2         -1.0         4           100         100         200         -2         2         -1.0         4           100         100         200         -2         2         -0.5         4 |

# getN Bin Super

### **RD**

```
(v \leftarrow getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD")) getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = NA, N = 300, r = 1, scale = "RD")
```

```
> (v \leftarrow getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD"))
   p1 p0 scale delta alpha beta
                                      pwr r
1 0.50 0.4
             RD 0.10 0.025 0.2 0.8004125 1 770 385 385
             RD 0.15 0.025 0.2 0.8021598 1 342 171 171
2 0.55 0.4
             RD 0.20 0.025 0.2 0.8033625 1 190 95 95
> getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = NA, N = 300, r = 1, scale = "RD")
   p1 p0 scale delta alpha beta
                                      pwr r
                                             N n1 n0
1 0.50 0.4 RD 0.10 0.025 NA 0.4167057 1 300 150 150
2 0.55 0.4
             RD 0.15 0.025
                              NA 0.7489566 1 300 150 150
             RD 0.20 0.025
                             NA 0.9424375 1 300 150 150
```



| e Ot       | utpu             | ıt Previe  | ew             |                 |              |                |       |       |                |     |                           |      |                   |
|------------|------------------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-----|---------------------------|------|-------------------|
| M          | 3,               | <u>*</u> × | & 🖨 🗞          |                 |              |                |       |       |                | 0   | utput Preview             |      |                   |
| Sr.<br>No. |                  | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πς  | Prop.<br>Treatment (Alt.) | δ1   | Variance          |
| 1          | n <sub>1</sub> 1 | Des 1      | Superiority    | 1               | 1-Sided      | 0.025          | 0.417 | 1     | 300            | 0.4 | 0.5                       | 0.1  | Unpooled Estimate |
| 2          | n <sub>1</sub> 1 | Des2       | Superiority    | 1               | 1-Sided      | 0.025          | 0.749 | 1     | 300            | 0.4 | 0.55                      | 0.15 | Unpooled Estimate |
| 3          | 71               | Des3       | Superiority    | 1               | 1-Sided      | 0.025          | 0.942 | 1     | 300            | 0.4 | 0.6                       | 0.2  | Unpooled Estimate |

### **RR**

```
(v \leftarrow getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR")) getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = NA, N = 300, r = 1, scale = "RR")
```

```
> (v \leftarrow getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR"))
   p1 p0 scale
                   delta alpha beta
                                          pwr r
                                                  N n1 n0
1 0.50 0.4
             RR 0.2231436 0.025 0.2 0.8009186 1 790 395 395
             RR 0.3184537 0.025 0.2 0.8012718 1 360 180 180
2 0.55 0.4
             RR 0.4054651 0.025 0.2 0.8021096 1 208 104 104
3 0.60 0.4
> getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = NA, N = 300, r = 1, scale = "RR")
                    delta alpha beta
   p1 p0 scale
                                          pwr r
                                                  N n1 n0
1 0.50 0.4
             RR 0.2231436 0.025
                                 NA 0.4084626 1 300 150 150
2 0.55 0.4
             RR 0.3184537 0.025
                                  NA 0.7263053 1 300 150 150
             RR 0.4054651 0.025
3 0.60 0.4
                                 NA 0.9212764 1 300 150 150
```

| 🐮 Oı       | ıtpu                                                                                                                             | ıt Previe | ew          |   |         |       |     |   |     |     |      |                   |       |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|---|---------|-------|-----|---|-----|-----|------|-------------------|-------|--|--|
| M          | Output Preview                                                                                                                   |           |             |   |         |       |     |   |     |     |      |                   |       |  |  |
| Sr.<br>No. | o. $  \text{ID}  $ Type Looks Type $  \alpha  $ Power $  \text{nt/nc}  $ Size $  \pi c  $ Treatment (Alt.) Variance $  \rho 1  $ |           |             |   |         |       |     |   |     |     |      |                   |       |  |  |
| 4          | 4                                                                                                                                | Des4      | Superiority | 1 | 1-Sided | 0.025 | 0.8 | 1 | 789 | 0.4 | 0.5  | Unpooled Estimate | 1.25  |  |  |
| 5          | n <sub>1</sub>                                                                                                                   | Des 5     | Superiority | 1 | 1-Sided | 0.025 | 0.8 | 1 | 359 | 0.4 | 0.55 | Unpooled Estimate | 1.375 |  |  |
| 6          | n <sub>1</sub> 1                                                                                                                 | Des6      | Superiority | 1 | 1-Sided | 0.025 | 0.8 | 1 | 207 | 0.4 | 0.6  | Unpooled Estimate | 1.5   |  |  |

| 🖺 Οι       | ıtpu                                            | ıt Previe | ew          |   |         |       |       |   |     |     |               |                   |       |  |  |
|------------|-------------------------------------------------|-----------|-------------|---|---------|-------|-------|---|-----|-----|---------------|-------------------|-------|--|--|
| M          | 4                                               | ±×        | A 🚔 🗞       |   |         |       |       |   |     | 0   | utput Preview |                   |       |  |  |
| Sr.<br>No. | ID   '   Power   nt/nc   '   πc   Variance   ρ1 |           |             |   |         |       |       |   |     |     |               |                   |       |  |  |
| 7          | 7 🚹 Des7 Superiority                            |           |             |   |         |       |       |   |     |     |               |                   |       |  |  |
| 8          | 7                                               | Des8      | Superiority | 1 | 1-Sided | 0.025 | 0.726 | 1 | 300 | 0.4 | 0.55          | Unpooled Estimate | 1.375 |  |  |
| 9          | n <sub>ll</sub>                                 | Des9      | Superiority | 1 | 1-Sided | 0.025 | 0.921 | 1 | 300 | 0.4 | 0.6           | Unpooled Estimate | 1.5   |  |  |

### OR

```
(v <- getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR")) getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = NA, N = 300, r = 1, scale = "OR")
```

```
> (v \leftarrow getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR"))
                   delta alpha beta
                                                 N n1 n0
   p1 p0 scale
                                          pwr r
1 0.50 0.4 OR 0.4054651 0.025 0.2 0.8001075 1 780 390 390
2 0.55 0.4
             OR 0.6061358 0.025 0.2 0.8014941 1 352 176 176
3 0.60 0.4
            OR 0.8109302 0.025 0.2 0.8021096 1 200 100 100
> getN_Bin_Super(p0 = 0.4, p1 = seq(0.5, 0.6, 0.05), alpha = 0.025, beta = NA, N = 300, r = 1, scale = "OR")
                   delta alpha beta
                                         pwr r N n1 n0
   p1 p0 scale
1 0.50 0.4
            OR 0.4054651 0.025 NA 0.4120572 1 300 150 150
2 0.55 0.4
             OR 0.6061358 0.025
                                 NA 0.7360970 1 300 150 150
3 0.60 0.4
            OR 0.8109302 0.025 NA 0.9306329 1 300 150 150
```

| 🚹 Οι       | Output Preview                                                                    |        |             |   |         |       |     |   |     |     |      |       |  |  |  |
|------------|-----------------------------------------------------------------------------------|--------|-------------|---|---------|-------|-----|---|-----|-----|------|-------|--|--|--|
| M          | I S d × A ≒ S Output Preview                                                      |        |             |   |         |       |     |   |     |     |      |       |  |  |  |
| Sr.<br>No. | No. ID Type Looks Type $\alpha$ Power $nt/nc$ Size $nc$ Treatment (Alt.) $\alpha$ |        |             |   |         |       |     |   |     |     |      |       |  |  |  |
| 10         | 7                                                                                 | Des 10 | Superiority | 1 | 1–Sided | 0.025 | 0.8 | 1 | 780 | 0.4 | 0.5  | 1.5   |  |  |  |
| 11         | n <sub>1</sub>                                                                    | Des 11 | Superiority | 1 | 1-Sided | 0.025 | 0.8 | 1 | 351 | 0.4 | 0.55 | 1.833 |  |  |  |
| 12         | 7                                                                                 | Des12  | Superiority | 1 | 1-Sided | 0.025 | 0.8 | 1 | 199 | 0.4 | 0.6  | 2.25  |  |  |  |

| l Ou       | Output Preview                                             |        |             |   |         |       |       |   |     |     |      |       |  |  |  |
|------------|------------------------------------------------------------|--------|-------------|---|---------|-------|-------|---|-----|-----|------|-------|--|--|--|
| Ш          | ∬ S                                                        |        |             |   |         |       |       |   |     |     |      |       |  |  |  |
| Sr.<br>No. | ID   Power nt/nc   πc   ψ1                                 |        |             |   |         |       |       |   |     |     |      |       |  |  |  |
| 13         | 3 1 Des 13 Superiority 1 1-Sided 0.025 0.412 1 300 0.4 0.5 |        |             |   |         |       |       |   |     |     |      |       |  |  |  |
| 14         | 71                                                         | Des 14 | Superiority | 1 | 1-Sided | 0.025 | 0.736 | 1 | 300 | 0.4 | 0.55 | 1.833 |  |  |  |
| 15         | n <sub>al</sub>                                            | Des 15 | Superiority | 1 | 1-Sided | 0.025 | 0.931 | 1 | 300 | 0.4 | 0.6  | 2.25  |  |  |  |

# getN\_Bin\_Noninf

### **RD**

```
(v \leftarrow getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = 0.2, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD", direct = 1)) getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = 0.2, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RD", direct = 1)
```

| 🖺 Οι       | utpu           | ut Previev | v              |                 |              |                |       |       |                |     |                           |                           |       |      |  |
|------------|----------------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-----|---------------------------|---------------------------|-------|------|--|
| M          | S              |            |                |                 |              |                |       |       |                |     |                           |                           |       |      |  |
| Sr.<br>No. |                | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πς  | Prop.<br>Treatment (Alt.) | Prop.<br>Treatment (Null) | δ1    | δ0   |  |
| 28         | η,             | Des28      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.8   | 1     | 770            | 0.5 | 0.4                       | 0.3                       | -0.1  | -0.2 |  |
| 29         | n <sub>1</sub> | Des29      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.801 | 1     | 348            | 0.5 | 0.45                      | 0.3                       | -0.05 | -0.2 |  |
| 30         | 'n             | Des30      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.802 | 1     | 197            | 0.5 | 0.5                       | 0.3                       | 0     | -0.2 |  |

| 🖭 Οι       | ıtpı           | ıt Previev | v              |                 |              |                |       |       |                |       |                           |                           |       |      |
|------------|----------------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-------|---------------------------|---------------------------|-------|------|
| M          | 4              | * ×        | & 🖨 🗞 📉        |                 |              |                |       |       | C              | )utpu | t Preview                 |                           |       |      |
| Sr.<br>No. |                | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πς    | Prop.<br>Treatment (Alt.) | Prop.<br>Treatment (Null) | δ1    | δ0   |
| 31         | 71             | Des31      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.298 | 1     | 200            | 0.5   | 0.4                       | 0.3                       | -0.1  | -0.2 |
| 32         | n <sub>I</sub> | Des32      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.566 | 1     | 200            | 0.5   | 0.45                      | 0.3                       | -0.05 | -0.2 |
| 33         | T <sub>I</sub> | Des33      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.807 | 1     | 200            | 0.5   | 0.5                       | 0.3                       | 0     | -0.2 |

```
RR
  (v \leftarrow getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.6), alpha
  = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR", direct = 1))
  getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.6), alpha =
  0.025, beta = NA, N = 200, r = 1, scale = "RR", direct = 1)
SetN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.6), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RR", direct = 1) p1 p0 cut scale delta alpha beta pwr r N n1 n0 direct 1 0.40 0.5 0.5108256 RR -0.2231436 0.025 NA 0.4441314 1 200 100 100 1 1 1 0.40 0.50 0.5108256 RR -0.1053605 0.025 NA 0.7763663 1 200 100 100 1
2 0.45 0.5 0.5108256
3 0.50 0.5 0.5108256
                    RR -0.1053605 0.025
RR 0.0000000 0.025
                                         NA 0.7763663 1 200 100 100
NA 0.9507448 1 200 100 100
```

| TO O       | utpi            | ut Previev               | v              |                 |              |                |       |       |                |       |                           |                           |     |     |                   |
|------------|-----------------|--------------------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-------|---------------------------|---------------------------|-----|-----|-------------------|
| М          | 3,              | $\stackrel{d}{=} \times$ | & 🚊 🗞 —        |                 |              |                |       |       | C              | )utpu | rt Preview                |                           |     |     |                   |
| Sr.<br>No. |                 | ID                       | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πο    | Prop.<br>Treatment (Alt.) | Prop.<br>Treatment (Null) | ρΊ  | ρ0  | Test<br>Statistic |
| 34         | 7               | Des34                    | Noninferiority | 1               | 1-Sided      | 0.025          | 0.801 | 1     | 475            | 0.5   | 0.4                       | 0.3                       | 0.8 | 0.6 | Wald              |
| 35         | n <sub>al</sub> | Des35                    | Noninferiority | 1               | 1-Sided      | 0.025          | 0.801 | 1     | 213            | 0.5   | 0.45                      | 0.3                       | 0.9 | 0.6 | Wald              |
| 36         | 7               | Des36                    | Noninferiority | 1               | 1-Sided      | 0.025          | 0.802 | 1     | 121            | 0.5   | 0.5                       | 0.3                       | 1   | 0.6 | Wald              |

| ιο 🛅       | ıtpu             | ıt Previev | v              |                 |              |                |       |       |                |       |                           |                           |     |     |                   |
|------------|------------------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-------|---------------------------|---------------------------|-----|-----|-------------------|
| M          | 3,               | * ×        | & 🚔 🗞 —        |                 |              |                |       |       | C              | )utpu | t Preview                 |                           |     |     |                   |
| Sr.<br>No. |                  | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πα    | Prop.<br>Treatment (Alt.) | Prop.<br>Treatment (Null) | ρΊ  | ρ0  | Test<br>Statistic |
| 37         | η <sub>1</sub> 1 | Des37      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.444 | 1     | 200            | 0.5   | 0.4                       | 0.3                       | 0.8 | 0.6 | Wald              |
| 38         | n <sub>1</sub> 1 | Des38      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.776 | 1     | 200            | 0.5   | 0.45                      | 0.3                       | 0.9 | 0.6 | Wald              |
| 39         | n <sub>al</sub>  | Des39      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.951 | 1     | 200            | 0.5   | 0.5                       | 0.3                       | 1   | 0.6 | Wald              |

#### OR

```
(v \leftarrow getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.5), alpha
= 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", direct = 1))
getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.5), alpha =
0.025, beta = NA, N = 200, r = 1, scale = "OR", direct = 1)
```

```
> (v <- getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.5), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR", direct = 1))
p1 p0 cut scale delta alpha beta pwr r N n1 n0 direct
1 0.40 0.5 0.6931472 OR -0.4054651 0.025 0.2 0.8002481 1 1550 775 775 1
2 0.45 0.5 0.6931472 OR -0.2006707 0.025 0.2 0.8001961 1 522 261 261 1
3 0.50 0.5 0.6931472 OR 0.0000000 0.025 0.2 0.8001961 1 522 261 261 1
3 getN_Bin_Noninf(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR", direct = 1)
p1 p0 cut scale delta alpha beta pwr r N n1 n0 direct
1 0.40 0.5 0.6931472
2 0.45 0.5 0.6931472
                                                               OR -0.4054651 0.025
OR -0.2006707 0.025
                                                                                                                           NA 0.1702225 1 200 100 100
NA 0.4116989 1 200 100 100
3 0.50 0.5 0.6931472
                                                                OR 0.0000000 0.025 NA 0.6881741 1 200 100 100
```

| 🐮 Oı       | utpi            | ut Previev               | v              |                 |              |                |       |       |                |       |                           |                           |       |     |
|------------|-----------------|--------------------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-------|---------------------------|---------------------------|-------|-----|
| M          | 3               | $\stackrel{d}{=} \times$ | A 🚔 🗞 💎        |                 |              |                |       |       | (              | Outpu | t Preview                 |                           |       |     |
| Sr.<br>No. |                 | ID                       | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πο    | Prop.<br>Treatment (Alt.) | Prop.<br>Treatment (Null) | ψ1    | ψ0  |
| 40         | П,              | Des40                    | Noninferiority | 1               | 1-Sided      | 0.025          | 0.8   | 1     | 1550           | 0.5   | 0.4                       | 0.333                     | 0.667 | 0.5 |
| 41         | n <sub>a</sub>  | Des41                    | Noninferiority | 1               | 1-Sided      | 0.025          | 0.8   | 1     | 521            | 0.5   | 0.45                      | 0.333                     | 0.818 | 0.5 |
| 42         | n <sub>al</sub> | Des42                    | Noninferiority | 1               | 1-Sided      | 0.025          | 0.801 | 1     | 262            | 0.5   | 0.5                       | 0.333                     | 1     | 0.5 |

| l Ou       | tpu              | ut Previev | V              |                 |              |                |       |       |                |       |                           |                           |       |     |
|------------|------------------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-------|---------------------------|---------------------------|-------|-----|
| M          | 4                | * ×        | & 🚊 🗞 —        |                 |              |                |       |       | C              | )utpu | t Preview                 |                           |       |     |
| Sr.<br>No. |                  | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πς    | Prop.<br>Treatment (Alt.) | Prop.<br>Treatment (Null) | ψ1    | ψ0  |
| 46         | T <sub>1</sub> 1 | Des46      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.17  | 1     | 200            | 0.5   | 0.4                       | 0.333                     | 0.667 | 0.5 |
| 47         | T <sub>1</sub> 1 | Des47      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.412 | 1     | 200            | 0.5   | 0.45                      | 0.333                     | 0.818 | 0.5 |
| 48         | n <sub>ll</sub>  | Des48      | Noninferiority | 1               | 1-Sided      | 0.025          | 0.688 | 1     | 200            | 0.5   | 0.5                       | 0.333                     | 1     | 0.5 |

### getN\_Bin\_Equi

### **RD**

| > (v <- getN_Bin_Equi(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = 0.2, alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RD")) |
|-------------------------------------------------------------------------------------------------------------------------------|
| p1 p0 cut scale delta alpha beta                                                                                              |
| 1 0.40 0.5 0.2 RD -0.10 0.025 0.2 0.8004125 1 770 385 385                                                                     |
| 2 0.45 0.5 0.2 RD -0.05 0.025 0.2 0.8000815 1 350 175 175                                                                     |
| 3 0.50 0.5 0.2 RD 0.00 0.025 0.2 0.8028283 1 264 132 132                                                                      |
| > getN_Bin_Equi(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = 0.2, alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RD")        |
| p1 p0 cut scale delta alpha beta                                                                                              |
| 1 0.40 0.5 0.2 RD -0.10 0.025 NA 0.2875575 1 200 100 100                                                                      |
| 2 0.45 0.5 0.2 RD -0.05 0.025 NA 0.5096424 1 200 100 100                                                                      |
| 3 0.50 0.5 0.2 RD 0.00 0.025 NA 0.6148592 1 200 100 100                                                                       |
|                                                                                                                               |

| Οι         | ıtpı | ıt Previev | v              |                 |              |                |       |       |                |       |                           |       |                       |                        |
|------------|------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-------|---------------------------|-------|-----------------------|------------------------|
| Ш          | 3,   | * ×        | & 🖨 🗞          |                 |              |                |       |       | C              | )utpu | t Preview                 |       |                       |                        |
| Sr.<br>No. |      | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πο    | Prop.<br>Treatment (Alt.) | δ1    | Equivalence<br>Margin | Expected<br>Difference |
| 49         | 4    | Des49      | Equivalence    | 1               | 2-Sided      | 0.025          | 0.8   | 1     | 754            | 0.5   | 0.4                       | -0.1  | 0.2                   | -0.1                   |
| 50         | 71   | Des 50     | Equivalence    | 1               | 2-Sided      | 0.025          | 0.8   | 1     | 341            | 0.5   | 0.45                      | -0.05 | 0.2                   | -0.05                  |
| 51         | 71   | Des51      | Equivalence    | 1               | 2-Sided      | 0.025          | 0.802 | 1     | 257            | 0.5   | 0.5                       | 0     | 0.2                   | 0                      |

| Οι         | ıtpı            | ıt Previev | v              |                 |              |                |       |       |                |     |                           |       |                       |                        |
|------------|-----------------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-----|---------------------------|-------|-----------------------|------------------------|
| M          | ٩,              | * ×        | & 🚔 🗞 –        |                 |              |                |       |       |                | Out | put Preview               |       |                       |                        |
| Sr.<br>No. |                 | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πο  | Prop.<br>Treatment (Alt.) | δ1    | Equivalence<br>Margin | Expected<br>Difference |
| 52         | 4               | Des52      | Equivalence    | 1               | 2-Sided      | 0.025          | 0.298 | 1     | 200            | 0.5 | 0.4                       | -0.1  | 0.2                   | -0.1                   |
| 53         | 71              | Des53      | Equivalence    | 1               | 2-Sided      | 0.025          | 0.528 | 1     | 200            | 0.5 | 0.45                      | -0.05 | 0.2                   | -0.05                  |
| 54         | n <sub>al</sub> | Des54      | Equivalence    | 1               | 2-Sided      | 0.025          | 0.636 | 1     | 200            | 0.5 | 0.5                       | 0     | 0.2                   | 0                      |

### Equivalence Tests for the Difference Between Two Proportions

Numeric Results -----

Test Statistic: Z-Test with Unpooled Variance

Hypotheses: H0: P1 - P2 ≤  $\dot{D}$ 0.L or P1 - P2 ≥ D0.U vs. H1: D0.L < P1 - P2 < D0.U

| Target | Actual  |     |     |     | Ref. |       |       |      |      |       |       |
|--------|---------|-----|-----|-----|------|-------|-------|------|------|-------|-------|
| Power  | Power*  | N1  | N2  | N   | P2   | P1.0L | P1.0U | D0.L | D0.U | D1    | Alpha |
| 0.8    | 0.80041 | 385 | 385 | 770 | 0.5  | 0.3   | 0.7   | -0.2 | 0.2  | -0.10 | 0.025 |
| 0.8    | 0.80008 | 175 | 175 | 350 | 0.5  | 0.3   | 0.7   | -0.2 | 0.2  | -0.05 | 0.025 |
| 0.8    | 0.80283 | 132 | 132 | 264 | 0.5  | 0.3   | 0.7   | -0.2 | 0.2  | 0.00  | 0.025 |

<sup>\*</sup> Power was computed using the normal approximation method.

### Equivalence Tests for the Difference Between Two Proportions

Numeric Results -----

Test Statistic: Z-Test with Unpooled Variance Hypotheses: H0: P1 - P2 ≤ D0.L or P1 - P2 ≥ D0.U vs. H1: D0.L < P1 - P2 < D0.U

|         |     |     |     | Ref. |       |       |      |      |       |       |
|---------|-----|-----|-----|------|-------|-------|------|------|-------|-------|
| Power*  | N1  | N2  | N   | P2   | P1.0L | P1.0U | D0.L | D0.U | D1    | Alpha |
| 0.28756 | 100 | 100 | 200 | 0.5  | 0.3   | 0.7   | -0.2 | 0.2  | -0.10 | 0.025 |
| 0.50964 | 100 | 100 | 200 | 0.5  | 0.3   | 0.7   | -0.2 | 0.2  | -0.05 | 0.025 |
| 0.61486 | 100 | 100 | 200 | 0.5  | 0.3   | 0.7   | -0.2 | 0.2  | 0.00  | 0.025 |

<sup>\*</sup> Power was computed using the normal approximation method.

```
(v \leftarrow getN_Bin_Equi(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.6), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "RR")) getN_Bin_Equi(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.6), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "RR")
```

| > ( | v <  | ge  | tN_Bin_Equ | i(p0 = | 0.5, p1 =   | seq(0.4 | 4, 0.5 | , 0.05),  | cut =  | -log | (0.6), | alpha = | = 0.025, | beta  | = 0. | 2, N | = NA, | r = 1, | scale = | "RR")) |
|-----|------|-----|------------|--------|-------------|---------|--------|-----------|--------|------|--------|---------|----------|-------|------|------|-------|--------|---------|--------|
|     | p1   | p0  | cut        | scale  | delta       | alpha   | beta   | pwr       | r N    | n1   | n0     |         |          |       |      |      |       |        |         |        |
| 1 0 | .40  | 0.5 | 0.5108256  | RR     | -0.2231436  | 0.025   | 0.2    | 0.8014923 | 1 476  | 238  | 238    |         |          |       |      |      |       |        |         |        |
| 2 0 | .45  | 0.5 | 0.5108256  | RR     | -0.1053605  | 0.025   | 0.2    | 0.8012518 | 1 218  | 109  | 109    |         |          |       |      |      |       |        |         |        |
| 3 0 | .50  | 0.5 | 0.5108256  | RR     | 0.0000000   | 0.025   | 0.2    | 0.8032652 | 1 162  | 81   | 81     |         |          |       |      |      |       |        |         |        |
| > g | etN_ | Bin | _Equi(p0 = | 0.5,   | p1 = seq(0. | 4, 0.5  | , 0.05 | ), cut =  | -log(0 | .6), | alpha  | = 0.025 | , beta   | = NA, | N =  | 200, | r = 1 | scale  | = "RR") |        |
|     | p1   | p0  | cut        | scale  | delta       | alpha   | beta   | pwr       | r N    | n1   | n0     |         |          |       |      |      |       |        |         |        |
| 1 0 | .40  | 0.5 | 0.5108256  | RR     | -0.2231436  | 0.025   | NA     | 0.4404729 | 1 200  | 100  | 100    |         |          |       |      |      |       |        |         |        |
| 2 0 | .45  | 0.5 | 0.5108256  | RR     | -0.1053605  | 0.025   | NA     | 0.7614964 | 1 200  | 100  | 100    |         |          |       |      |      |       |        |         |        |
| 3 0 | .50  | 0.5 | 0.5108256  | RR     | 0.0000000   | 0.025   | NA     | 0.9014896 | 1 200  | 100  | 100    |         |          |       |      |      |       |        |         |        |

| *      | Outp     | ut Previev | v              |                 |              |                |       |       |                |     |                           |    |                       |                   |
|--------|----------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-----|---------------------------|----|-----------------------|-------------------|
| N      | 18       | . 📥 X      | & 🖨 🗞 –        |                 |              |                |       |       |                | Out | put Preview               |    |                       |                   |
| S<br>N |          | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πς  | Prop.<br>Treatment (Alt.) | ρΊ | Equivalence<br>Margin | Test<br>Statistic |
| 55     | <u> </u> | Des 55     | Equivalence    | 1               | 2-Sided      | 0.025          | 0.803 | 1     | 162            | 0.5 | 0.5                       | 1  | 1.667                 | Wald              |

| <b>Γ</b> Οι | ıtpu | ıt Previev | v              |                 |              |                |       |       |                |     |                           |    |                       |                   |
|-------------|------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|-----|---------------------------|----|-----------------------|-------------------|
| M           | 3,   | <u>*</u> × | & 🚔 🗞 —        |                 |              |                |       |       |                | Out | put Preview               |    |                       |                   |
| Sr.<br>No.  |      | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | πς  | Prop.<br>Treatment (Alt.) | ρΊ | Equivalence<br>Margin | Test<br>Statistic |
| 56          | 7    | Des56      | Equivalence    | 1               | 2-Sided      | 0.025          | 0.901 | 1     | 200            | 0.5 | 0.5                       | 1  | 1.667                 | Wald              |

### OR

```
(v \leftarrow getN_Bin_Equi(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.5), alpha = 0.025, beta = 0.2, N = NA, r = 1, scale = "OR")) getN_Bin_Equi(p0 = 0.5, p1 = seq(0.4, 0.5, 0.05), cut = -log(0.5), alpha = 0.025, beta = NA, N = 200, r = 1, scale = "OR")
```

### Equivalence Tests for the Odds Ratio of Two Proportions

Test Statistic: Farrington & Manning Likelihood Score Test

Hypotheses: H0: OR ≤ OR0.L or OR ≥ OR0.U vs. H1: OR0.L < OR < OR0.U

| Target | Actual  |     |     |      | Ref. |         |         |       |       |         |       |
|--------|---------|-----|-----|------|------|---------|---------|-------|-------|---------|-------|
| Power  | Power*  | N1  | N2  | N    | P2   | P1.0L   | P1.0U   | OR0.L | OR0.U | OR1     | Alpha |
| 0.8    | 0.80028 | 769 | 769 | 1538 | 0.5  | 0.33333 | 0.66667 | 0.5   | 2     | 0.66667 | 0.025 |
| 0.8    | 0.80120 | 258 | 258 | 516  | 0.5  | 0.33333 | 0.66667 | 0.5   | 2     | 0.81818 | 0.025 |
| 0.8    | 0.80269 | 172 | 172 | 344  | 0.5  | 0.33333 | 0.66667 | 0.5   | 2     | 1.00000 | 0.025 |

<sup>\*</sup> Power was computed using the normal approximation method.

#### Equivalence Tests for the Odds Ratio of Two Proportions

Numeric Results -----

Test Statistic: Farrington & Manning Likelihood Score Test

Hypotheses: H0: OR ≤ OR0.L or OR ≥ OR0.U vs. H1: OR0.L < OR < OR0.U

|         |     |     |     | Ref. |         |         |       |       |         |       |
|---------|-----|-----|-----|------|---------|---------|-------|-------|---------|-------|
| Power*  | N1  | N2  | N   | P2   | P1.0L   | P1.0U   | OR0.L | OR0.U | OR1     | Alpha |
| 0.14266 | 100 | 100 | 200 | 0.5  | 0.33333 | 0.66667 | 0.5   | 2     | 0.66667 | 0.025 |
| 0.30394 | 100 | 100 | 200 | 0.5  | 0.33333 | 0.66667 | 0.5   | 2     | 0.81818 | 0.025 |
| 0.39032 | 100 | 100 | 200 | 0.5  | 0.33333 | 0.66667 | 0.5   | 2     | 1.00000 | 0.025 |

<sup>\*</sup> Power was computed using the normal approximation method.

### getN\_Surv\_Super

```
 (v \leftarrow getN\_Surv\_Super(delta = log(seq(0.7, 0.8, 0.05)), alpha = 0.025, beta = 0.2, N = NA, r = 1, criterion = 1)) \\ getN\_Surv\_Super(delta = log(seq(0.7, 0.8, 0.05)), alpha = 0.025, beta = NA, N = 300, r = 1, criterion = 1)
```

| 🐮 Οι       | utpu             | ıt Previev | 1              |                 |              |                |       |       |                |                     |                     |                   |                     |                     |
|------------|------------------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|---------------------|---------------------|-------------------|---------------------|---------------------|
| M          | 3,               | <u>*</u> × | A 🚔 🗞 🔠        |                 |              |                |       |       |                | Output Pr           | eview               |                   |                     |                     |
| Sr.<br>No. |                  | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | Expected<br>SS (H0) | Expected<br>SS (H1) | Maximum<br>Events | Exp. Events<br>(H0) | Exp. Events<br>(H1) |
| 57         | λ <sub>I</sub> I | Des57      | Superiority    | 1               | 1-Sided      | 0.025          | 0.8   | 1     | 461            | 461                 | 461                 | 247               | 247                 | 247                 |
| 58         | λII              | Des58      | Superiority    | 1               | 1-Sided      | 0.025          | 0.801 | 1     | 694            | 694                 | 694                 | 380               | 380                 | 380                 |
| 59         | λII              | Des 59     | Superiority    | 1               | 1-Sided      | 0.025          | 0.8   | 1     | 1130           | 1130                | 1130                | 631               | 631                 | 631                 |

|            | repe | ıt Previev | •              |                 |              |                |       |       |                |                     |                     |                   |                     |                     |
|------------|------|------------|----------------|-----------------|--------------|----------------|-------|-------|----------------|---------------------|---------------------|-------------------|---------------------|---------------------|
| M          | 1    | * ×        | A: 🚔 🗞         |                 |              |                |       |       |                | Output P            | review              |                   |                     |                     |
| Sr.<br>No. |      | ID         | Design<br>Type | No. of<br>Looks | Test<br>Type | Specified<br>α | Power | nt/nc | Sample<br>Size | Expected<br>SS (H0) | Expected<br>SS (H1) | Maximum<br>Events | Exp. Events<br>(H0) | Exp. Events<br>(H1) |
| 63         | ۱۱   | Des63      | Superiority    | 1               | 1-Sided      | 0.025          | 0.871 | 1     | 560            | 560                 | 560                 | 300               | 300                 | 30                  |
| 64         | الأ  | Des64      | Superiority    | 1               | 1-Sided      | 0.025          | 0.702 | 1     | 548            | 548                 | 548                 | 300               | 300                 | 30                  |
| 65         | الأر | Des65      | Superiority    | 1               | 1-Sided      | 0.025          | 0.489 | 1     | 537            | 537                 | 537                 | 300               | 300                 | 30                  |

# getN\_Surv\_Noninf

```
 (v \leftarrow getN\_Surv\_Noninf(delta = log(seq(1, 1.1, 0.05)), \ cut = log(1.3), \ alpha = 0.025, \ beta = 0.2, \ N = NA, \ r = 1, \ direct = -1, \ criterion = 1)) \\ getN\_Surv\_Noninf(delta = log(seq(1, 1.1, 0.05)), \ cut = log(1.3), \ alpha = 0.025, \\ beta = NA, \ N = 200, \ r = 1, \ direct = -1, \ criterion = 1)
```

```
> (v <- getN_Surv_Noninf(delta = log(seq(1, 1.1, 0.05)), cut = log(1.3), alpha = 0.025, beta = 0.2, N = NA, r = 1, direct = -1, criterion = 1)
delta cut alpha beta pwr r N n1 n0 criterion direct

1 0.000000000 0.2623643 0.025 0.2 0.816296 1 458 229 229 1 -1
2 0.04879016 0.2623643 0.025 0.2 0.8009732 1 690 345 345 1 -1
3 0.09551018 0.2623643 0.025 0.2 0.8009732 1 126 563 563 1 -1
9 getN_Surv_Noninf(delta = log(seq(1, 1.1, 0.05)), cut = log(1.3), alpha = 0.025, beta = NA, N = 200, r = 1, direct = -1, criterion = 1)
delta cut alpha beta pwr r N n1 n0 criterion direct

1 0.00000000 0.2623643 0.025 NA 0.4582798 1 200 100 100 1 -1
2 0.04879016 0.2623643 0.025 NA 0.3454992 1 200 100 100 1 -1
3 0.09531018 0.2623643 0.025 NA 0.2180743 1 200 100 100 1 -1
```



| 🐮 Oı | utpu | ıt Previev | v              |   |         |       |       |   |     |      |                     |     |     |     |
|------|------|------------|----------------|---|---------|-------|-------|---|-----|------|---------------------|-----|-----|-----|
| M    | 3,   | * ×        | & 🚔 🗞 📉        |   |         |       |       |   |     | Outp | out Preview         |     |     |     |
| ID   |      |            |                |   |         |       |       |   |     |      | Exp. Events<br>(H1) |     |     |     |
| 75   | λıl  | Des 75     | Noninferiority | 1 | 1-Sided | 0.025 | 0.458 | 1 | 335 | 335  | 335                 | 200 | 200 | 200 |
| 76   | ۱۱   | Des 76     | Noninferiority | 1 | 1-Sided | 0.025 | 0.326 | 1 | 330 | 330  | 330                 | 200 | 200 | 200 |
| 77   | λII  | Des 77     | Noninferiority | 1 | 1-Sided | 0.025 | 0.218 | 1 | 326 | 326  | 326                 | 200 | 200 | 200 |

# getN\_Surv\_Equi

EAST and PASS do not support.

```
 (v \leftarrow getN\_Surv\_Equi(delta = log(seq(1, 1.1, 0.05)), \ cut = log(1.3), \ alpha = 0.025, \ beta = 0.2, \ N = NA, \ r = 1, \ criterion = 1)) \\ getN\_Surv\_Equi(delta = log(seq(1, 1.1, 0.05)), \ cut = log(1.3), \ alpha = 0.025, \\ beta = NA, \ N = 400, \ r = 1, \ criterion = 1)
```

# getN\_Count\_Super

#### Tests for the Ratio of Two Negative Binomial Rates

|         |     |     |      | Ave<br>Expos<br>Time | Grp 1<br>Event<br>Rate | Grp 2<br>Event<br>Rate | Event<br>Rate<br>Ratio | Neg<br>Binom<br>Disp |       |
|---------|-----|-----|------|----------------------|------------------------|------------------------|------------------------|----------------------|-------|
| Power   | N1  | N2  | N    | μ(t)                 | λ1                     | λ2                     | RR                     | K                    | Alpha |
| 0.80043 | 300 | 300 | 600  | 5                    | 0.1                    | 0.070                  | 0.70                   | 0                    | 0.025 |
| 0.80037 | 443 | 443 | 886  | 5                    | 0.1                    | 0.075                  | 0.75                   | 0                    | 0.025 |
| 0.80037 | 710 | 710 | 1420 | 5                    | 0.1                    | 0.080                  | 0.80                   | 0                    | 0.025 |

#### Tests for the Ratio of Two Negative Binomial Rates

Numeric Results for Testing the Ratio of Two Negative Binomial Rates using the Wald or LR Test -----

Alternative Hypothesis: One-Sided (H0: RR ≥ 1 vs. Ha: RR < 1)

Null Variance Calculation Method: Use True Event Rates (λ1 and λ2)

|         |     |     |      | Ave<br>Expos<br>Time | Grp 1<br>Event<br>Rate | Grp 2<br>Event<br>Rate | Event<br>Rate<br>Ratio | Neg<br>Binom<br>Disp |       |
|---------|-----|-----|------|----------------------|------------------------|------------------------|------------------------|----------------------|-------|
| Power   | N1  | N2  | N    | μ(t)                 | λ1                     | λ2                     | RR                     | K                    | Alpha |
| 0.95143 | 500 | 500 | 1000 | 5                    | 0.1                    | 0.070                  | 0.70                   | 0                    | 0.025 |
| 0.84562 | 500 | 500 | 1000 | 5                    | 0.1                    | 0.075                  | 0.75                   | 0                    | 0.025 |
| 0.65254 | 500 | 500 | 1000 | 5                    | 0.1                    | 0.080                  | 0.80                   | 0                    | 0.025 |

#### References

Zhu, H. and Lakkis, H. 2014. 'Sample Size Calculation for Comparing Two Negative Binomial Rates.' Statistics in Medicine, Volume 33, Pages 376-387.

# getN\_Count\_Noninf

#### Non-Inferiority Tests for the Ratio of Two Negative Binomial Rates

Numeric Results for Non-Inferiority Tests of the Ratio of Two Negative Binomial Rates ------

Test Direction Assumption: Higher Negative Binomial Rates Are Better Hypotheses: H0:  $\lambda 2 / \lambda 1 \le R0$  vs. H1:  $\lambda 2 / \lambda 1 > R0$ 

Variance Calculation Method: Using Assumed True Rates

|         |     |     |      | Average<br>Exposure<br>Time | Grp 1<br>Cntrl<br>Event<br>Rate | Grp 2<br>Trt<br>Event<br>Rate | Event<br>Rate<br>Ratio | Non-Inf-<br>eriority<br>Ratio | Disper-<br>sion |       |
|---------|-----|-----|------|-----------------------------|---------------------------------|-------------------------------|------------------------|-------------------------------|-----------------|-------|
| Power   | N1  | N2  | N    | μ(t)                        | λ1                              | λ2                            | λ2 / λ1                | R0                            | φ               | Alpha |
| 0.80038 | 774 | 774 | 1548 | 5                           | 0.1                             | 0.090                         | 0.90                   | 0.7                           | 1               | 0.025 |
| 0.80012 | 514 | 514 | 1028 | 5                           | 0.1                             | 0.095                         | 0.95                   | 0.7                           | 1               | 0.025 |
| 0.80087 | 371 | 371 | 742  | 5                           | 0.1                             | 0.100                         | 1.00                   | 0.7                           | 1               | 0.025 |

#### Non-Inferiority Tests for the Ratio of Two Negative Binomial Rates

Numeric Results for Non-Inferiority Tests of the Ratio of Two Negative Binomial Rates ------

Test Direction Assumption: Higher Negative Binomial Rates Are Better Hypotheses: H0:  $\lambda 2 / \lambda 1 \le R0$  vs. H1:  $\lambda 2 / \lambda 1 > R0$ 

Variance Calculation Method: Using Assumed True Rates

|         |     |     |      | Average<br>Exposure<br>Time | Grp 1<br>Cntrl<br>Event<br>Rate | Grp 2<br>Trt<br>Event<br>Rate | Event<br>Rate<br>Ratio | Non-Inf-<br>eriority<br>Ratio | Disper-<br>sion |       |
|---------|-----|-----|------|-----------------------------|---------------------------------|-------------------------------|------------------------|-------------------------------|-----------------|-------|
| Power   | N1  | N2  | N    | μ(t)                        | λ1                              | λ2                            | λ2 / λ1                | R0                            | φ               | Alpha |
| 0.61519 | 500 | 500 | 1000 | 5                           | 0.1                             | 0.090                         | 0.90                   | 0.7                           | 1               | 0.025 |
| 0.78920 | 500 | 500 | 1000 | 5                           | 0.1                             | 0.095                         | 0.95                   | 0.7                           | 1               | 0.025 |
| 0.90252 | 500 | 500 | 1000 | 5                           | 0.1                             | 0.100                         | 1.00                   | 0.7                           | 1               | 0.025 |

#### References

Zhu, H. 2017. 'Sample Size Calculation for Comparing Two Poisson or Negative Binomial Rates in Non-Inferiority or Equivalence Trials.' Statistics in Biopharmaceutical Research, 9(1), 107-115, doi:10.1080/19466315.2016.1225594.

# getN\_Count\_Equi

#### Equivalence Tests for the Ratio of Two Negative Binomial Rates

Numeric Results for Equivalence Tests of the Ratio of Two Negative Binomial Rates -----

Hypotheses:  $H0: \lambda 2/\lambda 1 \le RL \text{ or } \lambda 2/\lambda 1 \ge RU \text{ vs. } H1: RL < \lambda 2/\lambda 1 < RU$ 

Variance Calculation Method: Using Assumed True Rates

|         |     |     |      |          | Grp 1 | Grp 2 |                         |        |         |         |       |
|---------|-----|-----|------|----------|-------|-------|-------------------------|--------|---------|---------|-------|
|         |     |     |      | Average  | Cntrl | Trt   | Event                   | Lower  | Upper   |         |       |
|         |     |     |      | Exposure | Event | Event | Rate                    | Equiv. | Equiv.  | Disper- |       |
|         |     |     |      | Time     | Rate  | Rate  | Ratio                   | Limit  | Limit   | sion    |       |
| Power   | N1  | N2  | N    | μ(t)     | λ1    | λ2    | $\lambda 2 / \lambda 1$ | RL     | RU      | φ       | Alpha |
| 0.80019 | 775 | 775 | 1550 | 5        | 0.1   | 0.090 | 0.90                    | 0.7    | 1.42857 | 1       | 0.025 |
| 0.80078 | 553 | 553 | 1106 | 5        | 0.1   | 0.095 | 0.95                    | 0.7    | 1.42857 | 1       | 0.025 |
| 0.80050 | 496 | 496 | 992  | 5        | 0.1   | 0.100 | 1.00                    | 0.7    | 1.42857 | 1       | 0.025 |

#### Equivalence Tests for the Ratio of Two Negative Binomial Rates

Numeric Results for Equivalence Tests of the Ratio of Two Negative Binomial Rates -----

Hypotheses: H0:  $\lambda 2 / \lambda 1 \le RL \text{ or } \lambda 2 / \lambda 1 \ge RU \text{ vs. } H1: RL < \lambda 2 / \lambda 1 < RU$ 

Variance Calculation Method: Using Assumed True Rates

|         |     |     |      |          | Grp 1 | Grp 2 |                         |        |         |         |       |
|---------|-----|-----|------|----------|-------|-------|-------------------------|--------|---------|---------|-------|
|         |     |     |      | Average  | Cntrl | Trt   | Event                   | Lower  | Upper   |         |       |
|         |     |     |      | Exposure | Event | Event | Rate                    | Equiv. | Equiv.  | Disper- |       |
|         |     |     |      | Time     | Rate  | Rate  | Ratio                   | Limit  | Limit   | sion    |       |
| Power   | N1  | N2  | N    | μ(t)     | λ1    | λ2    | $\lambda 2 / \lambda 1$ | RL     | RU      | φ       | Alpha |
| 0.60063 | 500 | 500 | 1000 | 5        | 0.1   | 0.090 | 0.90                    | 0.7    | 1.42857 | 1       | 0.025 |
| 0.74756 | 500 | 500 | 1000 | 5        | 0.1   | 0.095 | 0.95                    | 0.7    | 1.42857 | 1       | 0.025 |
| 0.80503 | 500 | 500 | 1000 | 5        | 0.1   | 0 100 | 1 00                    | 0.7    | 1 42857 | 1       | 0.025 |