Differentiate
Almost
Everywhere

Differentiable Relaxations and Reparameterisations

Jonathon Hare

Vision, Learning and Control University of Southampton

What are differentiable relaxations and reparameterisations?

 We've seen that we can build arbitrary computational graphs from a variety of building blocks

What are differentiable relaxations and reparameterisations?

- We've seen that we can build arbitrary computational graphs from a variety of building blocks
- But, those blocks need to be differentiable to work in our optimisation framework
 - More specifically they need to be continuous and differentiable almost everywhere.

What are differentiable relaxations and reparameterisations?

- We've seen that we can build arbitrary computational graphs from a variety of building blocks
- But, those blocks need to be differentiable to work in our optimisation framework
 - More specifically they need to be continuous and differentiable almost everywhere.
- That limits what we can do... Can we work around that?
 - Relaxations make continuous (and potentially differentiable everywhere) approximations.
 - Reparameterisations rewrite functions to factor out stochastic variables from the parameters.

• Consider the ReLU function f(x) = max(0, x)

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - it does not have any abrupt changes in value
 - small changes in x result in small changes to f(x) everywhere in the domain of x

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - it does not have any abrupt changes in value
 - small changes in x result in small changes to f(x) everywhere in the domain of x
 - ReLU is differentiable almost everywhere
 - No gradient at x = 0; only *left* and *right* gradients at that point
 - There are *subgradients* at x=0; implementations usually just arbitrarily pick f'(0)=0

- Consider the ReLU function f(x) = max(0, x)
 - ReLU is continuous
 - it does not have any abrupt changes in value
 - small changes in x result in small changes to f(x) everywhere in the domain of x
 - ReLU is differentiable almost everywhere
 - No gradient at x = 0; only *left* and *right* gradients at that point
 - There are subgradients at x = 0; implementations usually just arbitrarily pick f'(0) = 0
- Functions that are differentiable almost everywhere or have subgradients tend to be compatible with gradient descent methods
 - We expect that the loss landscape is different for each batch & that
 we'll never actually reach a minima, and we only need to mostly take
 steps in the right direction.

Relaxing ReLU

• Softplus (softplus(x) = ln(1 + e^x)) is a relaxation of ReLU that is differentiable everywhere.

Relaxing ReLU

- Softplus (softplus(x) = ln(1 + e^x)) is a relaxation of ReLU that is differentiable everywhere.
- Its derivative is the Sigmoid function

Relaxing ReLU

- Softplus (softplus(x) = $ln(1 + e^x)$) is a relaxation of ReLU that is differentiable everywhere.
- Its derivative is the Sigmoid function
- Not widely used; counter-intuitively, even though it neither saturates completely and is differentiable everywhere, empirically it has been shown that ReLU works better.

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!
 - softmax can be viewed as a continuous and differentiable relaxation of the arg max function with one-hot output encoding.

- Up until now we've really considered softmax as a generalisation of sigmoid (which represents a probability distribution over a binary variable) to many output categories.
 - softmax transforms a vector of logits into a probability distribution over categories.
- As you might guess from the name, softmax is a relaxation...
 - but not of the max function like the name would suggest!
 - softmax can be viewed as a continuous and differentiable relaxation of the arg max function with one-hot output encoding.
 - The arg max function is not continuous or differentiable; softmax provides an approximation:

$$\mathbf{x} = \begin{bmatrix} 1.1 & 4.0 & -0.1 & 2.3 \\ \arg \max(\mathbf{x}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0.044 & 0.797 & 0.013 & 0.146 \end{bmatrix}$$

The Softmax function with temperature

Consider what happens if you were to divide the input logits to a softmax by a scalar temperature parameter T.

$$\operatorname{softmax}(\boldsymbol{x}/T)_i = \frac{e^{x_i/T}}{\sum_{i=1}^K e^{x_j/T}} \qquad \forall i = 1, 2, \dots, K$$

Jonathon Hare Relaxation 7 / 24

arg max — softmax with temperature

x =	1.1	4.0	-0.1	2.3]
$\operatorname{softmax}(\boldsymbol{x}/1.0) = [$	0.044	0.797	0.013	0.146]
softmax(x/0.8) = [0.023	0.868	0.005	0.104]
softmax(x/0.6) = [0.008	0.937	0.001	0.055]
softmax(x/0.4) = [6.997e-04	9.852e-01	3.484e-05	1.405e-02]
softmax(x/0.2) =	5.042e-07	9.998e-01	1.250e-09	2.034e-04	1

Jonathon Hare Relaxation 8 / 24

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we are not actually going get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation¹.

Jonathon Hare Relaxation 9 / 24

¹for now — we'll address this in a few slides time!

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we are not actually going get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation¹.
- First, consider how to convert a one-hot vector to index representation in a differentiable manner: $[0,0,1,0] \rightarrow 2$
 - Just dot product with a vector of indices: [0, 1, 2, 3]

Jonathon Hare Relaxation 9 / 24

¹for now — we'll address this in a few slides time!

- What if you want to get a scalar approximation to the index of the arg max rather than a probability distribution approximating the one-hot form?
 - Caveat: we are not actually going get a guaranteed integer representation as that would be non-differentiable; we'll have to live with a float that is an approximation¹.
- First, consider how to convert a one-hot vector to index representation in a differentiable manner: $[0,0,1,0] \rightarrow 2$
 - Just dot product with a vector of indices: [0, 1, 2, 3]
- The same process can be applied to the softmax distribution
 - As temperature $T \to 0$, softmax $(\mathbf{x}/T) \cdot [0, 1, \dots, N] \to \arg\max(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^N$.

Jonathon Hare Relaxation 9 / 24

¹for now — we'll address this in a few slides time!

$$\mathbf{x} = [\ 1.1 \ \ 4.0 \ \ -0.1 \ \ 2.3 \]^{\top}$$
 $\mathbf{i} = [\ 0.0 \ \ 1.0 \ \ 2.0 \ \ 3.0 \]^{\top}$
softmax $(\mathbf{x}/1.0)^{\top}\mathbf{i} = 1.2606$
softmax $(\mathbf{x}/0.8)^{\top}\mathbf{i} = 1.1894$
softmax $(\mathbf{x}/0.6)^{\top}\mathbf{i} = 1.1037$
softmax $(\mathbf{x}/0.4)^{\top}\mathbf{i} = 1.0274$
softmax $(\mathbf{x}/0.2)^{\top}\mathbf{i} = 1.0004$

max

• A similar trick applies to finding the maximum value of a vector:

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.
 - As temperature $T \to 0$, softmax $(\mathbf{x}/T)^{\top}\mathbf{x} \to \max(\mathbf{x})$.

- A similar trick applies to finding the maximum value of a vector:
 - Use softmax(x) as an approximate one-hot arg max, and dot product with the vector x.
 - As temperature $T \to 0$, softmax $(\mathbf{x}/T)^{\top}\mathbf{x} \to \max(\mathbf{x})$.

$$\mathbf{x} = [\ 1.1 \ \ 4.0 \ \ -0.1 \ \ 2.3 \]^{\top}$$
 softmax $(\mathbf{x}/1.0)^{\top}\mathbf{x} = 3.571$ softmax $(\mathbf{x}/0.8)^{\top}\mathbf{x} = 3.736$ softmax $(\mathbf{x}/0.6)^{\top}\mathbf{x} = 3.881$ softmax $(\mathbf{x}/0.4)^{\top}\mathbf{x} = 3.974$ softmax $(\mathbf{x}/0.2)^{\top}\mathbf{x} = 3.999$

• L1 norm is the sum of absolute values of a vector

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model
- abs is continuous and differentiable almost everywhere, but...

- L1 norm is the sum of absolute values of a vector
- We've seen that an L1 norm regulariser can induce sparsity in a model
- abs is continuous and differentiable almost everywhere, but...
- unlike ReLU, the gradients left and right of the discontinuity point in equal and opposite directions
 - This can cause oscillations that prevent or hamper learning

Relaxing the L1 norm

Huber loss (aka Smooth L1 loss) relaxes
 L1 by mixing it with L2 near the origin:

$$z_i = \begin{cases} 0.5(x_i - y_i)^2, & \text{if } |x_i - y_i| < 1\\ |x_i - y_i| - 0.5, & \text{otherwise} \end{cases}$$

Relaxing the L1 norm

Huber loss (aka Smooth L1 loss) relaxes
 L1 by mixing it with L2 near the origin:

$$z_i = egin{cases} 0.5(x_i-y_i)^2, & ext{if } |x_i-y_i| < 1 \ |x_i-y_i| - 0.5, & ext{otherwise} \end{cases}$$

 In both cases gradients reduce in magnitude and switch direction smoothly which can lead to much less oscillation.

Backpropagation through random operations

 Up until now all the models we've considered have performed deterministic transformations of input variables x.

Backpropagation through random operations

- Up until now all the models we've considered have performed deterministic transformations of input variables x.
- What if we want to build a model that performs a stochastic transformation of x?

Backpropagation through random operations

- Up until now all the models we've considered have performed deterministic transformations of input variables **x**.
- What if we want to build a model that performs a stochastic transformation of x?
- A simple way to do this is to augment the input x with a random vector z sampled from some distribution

Backpropagation through random operations

- Up until now all the models we've considered have performed deterministic transformations of input variables **x**.
- What if we want to build a model that performs a stochastic transformation of x?
- A simple way to do this is to augment the input x with a random vector z sampled from some distribution
 - The network would learn a function f(x, z) that is internally deterministic, but appears stochastic to an observer that does not have access to z.

Backpropagation through random operations

- Up until now all the models we've considered have performed deterministic transformations of input variables *x*.
- What if we want to build a model that performs a stochastic transformation of x?
- A simple way to do this is to augment the input x with a random vector z sampled from some distribution
 - The network would learn a function f(x, z) that is internally deterministic, but appears stochastic to an observer that does not have access to z.
 - provided that f is continuous and differentiable (almost everywhere) we can perform gradient based optimisation as usual.

Differentiable Sampling

Consider

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

How can we take derivatives of y with respect to μ and σ^2 ?

Differentiable Sampling

If we rewrite

$$y = \mu + \sigma z$$
 where $z = \mathcal{N}(0, 1)$

Then it is clear that y is a function of a deterministic operation with variables μ and σ with an (extra) input z.

• Crucially the extra input is an r.v. whose distribution is not a function of any variables whose derivatives we wish to calculate.

Differentiable Sampling

If we rewrite

$$y = \mu + \sigma z$$
 where $z = \mathcal{N}(0, 1)$

Then it is clear that y is a function of a deterministic operation with variables μ and σ with an (extra) input z.

- Crucially the extra input is an r.v. whose distribution is not a function of any variables whose derivatives we wish to calculate.
- The derivatives $dy/d\mu$ and $dy/d\sigma$ tell us how an infinitesimal change in μ or σ would change y if we could repeat the sampling operation with the same value of z

• The 'trick' of factoring out the source of randomness into an extra input z is often called the **reparameterisation trick**.

- The 'trick' of factoring out the source of randomness into an extra input z is often called the **reparameterisation trick**.
- It doesn't just apply to the Gaussian distribution!

- The 'trick' of factoring out the source of randomness into an extra input z is often called the **reparameterisation trick**.
- It doesn't just apply to the Gaussian distribution!
 - More generally we can express any probability distribution $p(y; \theta)$ or $p(y|x; \theta)$ as $p(y; \omega)$ where ω contains the parameters θ and if applicable inputs x.

- The 'trick' of factoring out the source of randomness into an extra input z is often called the reparameterisation trick.
- It doesn't just apply to the Gaussian distribution!
 - More generally we can express any probability distribution $p(y; \theta)$ or $p(y|x; \theta)$ as $p(y; \omega)$ where ω contains the parameters θ and if applicable inputs x.
 - A sample $\mathbf{y} \sim p(\mathbf{y}; \boldsymbol{\omega})$ can be rewritten as $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$ where \mathbf{z} is a source of randomness.

- The 'trick' of factoring out the source of randomness into an extra input z is often called the **reparameterisation trick**.
- It doesn't just apply to the Gaussian distribution!
 - More generally we can express any probability distribution $p(y; \theta)$ or $p(y|x; \theta)$ as $p(y; \omega)$ where ω contains the parameters θ and if applicable inputs x.
 - A sample $\mathbf{y} \sim p(\mathbf{y}; \boldsymbol{\omega})$ can be rewritten as $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$ where \mathbf{z} is a source of randomness.
 - We can thus compute derivatives $\partial {m y}/\partial {m \omega}$ and use gradient based optimisation as long as
 - f is continuous and differentiable almost everywhere
 - \bullet ω is not a function of z
 - ullet and z is not a function of ω

• Consider a stochastic model $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$ where the outputs are discrete.

- Consider a stochastic model $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$ where the outputs are discrete.
 - This implies f must be a step function.

- Consider a stochastic model $y = f(z, \omega)$ where the outputs are discrete.
 - This implies f must be a step function.
 - Derivatives of a step function at the step are undefined.

- Consider a stochastic model $y = f(z, \omega)$ where the outputs are discrete.
 - This implies f must be a step function.
 - Derivatives of a step function at the step are undefined.
 - Derivatives are zero almost everywhere.

- Consider a stochastic model $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$ where the outputs are discrete.
 - This implies f must be a step function.
 - Derivatives of a step function at the step are undefined.
 - Derivatives are zero almost everywhere.
 - If we have a loss $\mathcal{L}(y)$ the gradients don't give us any information on how to update the parameters θ to minimise the loss

- Consider a stochastic model $\mathbf{y} = f(\mathbf{z}, \boldsymbol{\omega})$ where the outputs are discrete.
 - This implies f must be a step function.
 - Derivatives of a step function at the step are undefined.
 - Derivatives are zero almost everywhere.
 - If we have a loss $\mathcal{L}(y)$ the gradients don't give us any information on how to update the parameters θ to minimise the loss
- Potential solutions:
 - REINFORCE
 - A relaxation and another 'trick': Gumbel Softmax and the Straight-through operator

 \bullet $\mathbb{L}(f(z,\omega))$ has useless derivatives

- \bullet $\mathbb{L}(f(z,\omega))$ has useless derivatives
- But the expected loss $\mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \mathcal{L}(f(\mathbf{z}, \boldsymbol{\omega}))$ is often smooth and continuous.
 - This is not tractable with high dimensional y.
 - But, it can be estimated without bias using an Monte Carlo average.

- \bullet $\mathbb{L}(f(z,\omega))$ has useless derivatives
- But the expected loss $\mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \mathcal{L}(f(\mathbf{z}, \boldsymbol{\omega}))$ is often smooth and continuous.
 - This is not tractable with high dimensional y.
 - But, it can be estimated without bias using an Monte Carlo average.
- REINFORCE is a family of algorithms that utilise this idea.

The simplest form of REINFORCE is easy to derive by differentiating the expected loss:

$$\mathbb{E}_{z}[\mathcal{L}(y)] = \sum_{y} \mathcal{L}(y)p(y)$$
 (1)

$$\frac{\partial \mathbb{E}[\mathcal{L}(y)]}{\partial \omega} = \sum_{y} \mathcal{L}(y) \frac{\partial \rho(y)}{\partial \omega}$$
 (2)

$$= \sum_{\mathbf{y}} \mathcal{L}(\mathbf{y}) p(\mathbf{y}) \frac{\partial \log p(\mathbf{y})}{\partial \boldsymbol{\omega}}$$
 (3)

$$\approx \frac{1}{m} \sum_{\mathbf{y}^{(i)} \sim p(\mathbf{y}), i=1}^{m} \mathcal{L}(\mathbf{y}^{(i)}) \frac{\partial \log p(\mathbf{y}^{(i)})}{\partial \omega}$$
(4)

• This gives us an unbiased MC estimator of the gradient.

The simplest form of REINFORCE is easy to derive by differentiating the expected loss:

$$\mathbb{E}_{z}[\mathcal{L}(y)] = \sum_{y} \mathcal{L}(y)p(y)$$
 (1)

$$\frac{\partial \mathbb{E}[\mathcal{L}(y)]}{\partial \omega} = \sum_{y} \mathcal{L}(y) \frac{\partial \rho(y)}{\partial \omega}$$
 (2)

$$= \sum_{\mathbf{y}} \mathcal{L}(\mathbf{y}) p(\mathbf{y}) \frac{\partial \log p(\mathbf{y})}{\partial \boldsymbol{\omega}}$$
 (3)

$$\approx \frac{1}{m} \sum_{\mathbf{y}^{(i)} \sim p(\mathbf{y}), i=1}^{m} \mathcal{L}(\mathbf{y}^{(i)}) \frac{\partial \log p(\mathbf{y}^{(i)})}{\partial \omega}$$
(4)

- This gives us an unbiased MC estimator of the gradient.
- Unfortunately this is a very high variance estimator, so it would require many samples of y to be drawn to obtain a good estimate

The simplest form of REINFORCE is easy to derive by differentiating the expected loss:

$$\mathbb{E}_{z}[\mathcal{L}(y)] = \sum_{y} \mathcal{L}(y) p(y)$$
 (1)

$$\frac{\partial \mathbb{E}[\mathcal{L}(y)]}{\partial \omega} = \sum_{y} \mathcal{L}(y) \frac{\partial \rho(y)}{\partial \omega}$$
 (2)

$$= \sum_{\mathbf{y}} \mathcal{L}(\mathbf{y}) \rho(\mathbf{y}) \frac{\partial \log \rho(\mathbf{y})}{\partial \omega}$$
 (3)

$$\approx \frac{1}{m} \sum_{\mathbf{y}^{(i)} \sim p(\mathbf{y}), i=1}^{m} \mathcal{L}(\mathbf{y}^{(i)}) \frac{\partial \log p(\mathbf{y}^{(i)})}{\partial \omega}$$
(4)

- This gives us an unbiased MC estimator of the gradient.
- Unfortunately this is a very high variance estimator, so it would require many samples of y to be drawn to obtain a good estimate
 - or equivalently, if only one sample were drawn, SGD would converge very slowly and require a small learning rate.

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, t, from a vocabulary of K tokens is achieved by sampling a categorical distribution

$$t \sim \mathsf{Cat}(p_1, \dots, p_{\mathcal{K}})$$
 ; $\sum_i p_i = 1$.

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, t, from a vocabulary of K tokens is achieved by sampling a categorical distribution

$$t \sim \mathsf{Cat}(p_1, \dots, p_{\mathcal{K}})$$
 ; $\sum_i p_i = 1$.

Generating the probabilities p_1, \ldots, p_K directly from a neural network has potential numerical problems; it's much easier to generate logits, x_1, \ldots, x_K .

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, t, from a vocabulary of K tokens is achieved by sampling a categorical distribution

$$t \sim \mathsf{Cat}(p_1, \dots, p_K)$$
; $\sum_i p_i = 1$.

Generating the probabilities p_1, \ldots, p_K directly from a neural network has potential numerical problems; it's much easier to generate logits, x_1, \ldots, x_K .

The gumbel-softmax reparameterisation allows us to sample directly using the logits:

$$t = \underset{i \in \{1, \dots, K\}}{\operatorname{argmax}} x_i + z_i$$

where $z_1, ... z_K$ are i.i.d Gumbel(0,1) variates which can be computed from Uniform variates through $-\log(-\log(-\mathcal{U}(0,1)))$.

Ok, but how does that help? argmax isn't differentiable!

Ok, but how does that help? argmax isn't differentiable! ...but we've already seen that we can relax arg max using

$$softargmax(\mathbf{y}) = \sum_{i} \frac{e^{y_i/T}}{\sum_{j} e^{y_j/T}} i$$

where T is the temperature parameter.

But... this clearly gives us a result that will be non-integer; we cannot round or clip because it would be non-differentiable.

But... this clearly gives us a result that will be non-integer; we cannot round or clip because it would be non-differentiable.

The Straight-Through operator allows us to take the result of a true argmax that has the gradient of the softargmax:

 $\mathsf{STargmax}(\boldsymbol{y}) = \mathsf{softargmax}(\boldsymbol{y}) + \mathsf{stopgradient}(\mathsf{argmax}(\boldsymbol{y}) - \mathsf{softargmax}(\boldsymbol{y}))$

where stopgradient is defined such that stopgradient(\boldsymbol{a}) = \boldsymbol{a} and ∇ stopgradient(\boldsymbol{a}) = 0.

But... this clearly gives us a result that will be non-integer; we cannot round or clip because it would be non-differentiable.

The Straight-Through operator allows us to take the result of a true argmax that has the gradient of the softargmax:

$$\mathsf{STargmax}(\boldsymbol{y}) = \mathsf{softargmax}(\boldsymbol{y}) + \mathsf{stopgradient}(\mathsf{argmax}(\boldsymbol{y}) - \mathsf{softargmax}(\boldsymbol{y}))$$

where stopgradient is defined such that stopgradient(\boldsymbol{a}) = \boldsymbol{a} and ∇ stopgradient(\boldsymbol{a}) = 0.

Straight-Through Gumbel Softmax

Combine the gumbel softmax trick with the STargmax to give you discrete samples, with a usable gradient^a.

^aThe ST operator is biased but low variance; in practice it works very well and is better than the high-variance unbiased estimates you could get through REINFORCE.

Summary

- Differentiable programming works with functions that are continuous and differentiable almost everywhere.
- Some non-continuous functions can be relaxed to make them more amenable to gradient based optimisation by making continuous approximations.
- Some continuous functions with discontinuous gradients can be relaxed to make optimisation more stable.
- Reparameterisations can allow us to differentiate through random operations such as sampling
- We can even make networks output/utilise discrete variables by combining relaxations and reparameterisations.