In this Course

1. DL basics, linear regression, logistic regression etc.

3. Convolutional Neural

Networks and Applications

4. Generative Adversarial Networks

5. Recurrent networks and applications

Last Lecture

- Tips for Gradient Descent
- Logistic Regression

Lecture 3

- Neural Networks
- Multilayer Neural Networks
- Backpropagation

Three Steps for Deep Learning

Deep Learning is so simple. Don't be afraid......

Neural Network

Dendrite

Different connection leads to different network structures

Axon

Network parameter θ : all the weights and biases in all the "neurons"

Sigmoid Function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define a function set

Each hidden layer can have a different number of neurons.

Matrix Operation

$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

Neural Network

Neural Network

Using parallel computing techniques y = f(x) to speed up matrix operation

$$\sigma(\mathbf{W}^{L} \cdots \sigma(\mathbf{W}^{2} \sigma(\mathbf{W}^{1} \mathbf{x} + \mathbf{b}^{1}) + \mathbf{b}^{2}) \cdots + \mathbf{b}^{L})$$

Output Layer as MultiClass Classifier

Feature extractor replacing feature engineering

Example Application Handwriting Digit Recognition

16 x 16 = 256 N=256

Output (Dim Fixed)

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

Q1: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q2: Can the structure be automatically determined?
 - e.g. automatic Network Architecture Search (NAS)
- Q3: Can we design the network structure?

Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Deep Learning is so simple. Don't be afraid......

Output Layer as MultiClass Classifier

Loss for an Example

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} l^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u>

parameters θ^* that minimize total loss L

Three Steps for Deep Learning

Deep Learning is so simple. Don't be afraid......

Gradient Descent

This is the "learning" of machines in deep learning

Even alpha go using this approach.

People image

Actually

I hope you are not too disappointed.

Lecture 3

- Neural Networks
- Multilayer Neural Networks
- Backpropagation

Backpropagation for Fully Connect Feedforward Network

Gradient Descent

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Starting

Parameters
$$\theta^{(0)} \longrightarrow \theta^{(1)} \longrightarrow \theta^{(2)} \longrightarrow \dots$$

$$\nabla \mathcal{C}(\theta)$$

$$= \begin{bmatrix}
\partial \mathcal{C}(\theta)/\partial w_1 \\
\partial \mathcal{C}(\theta)/\partial w_2 \\
\vdots \\
\partial \mathcal{C}(\theta)/\partial b_1 \\
\partial \mathcal{C}(\theta)/\partial b_2 \\
\vdots$$

Compute
$$\nabla \mathcal{C}(\theta^{(0)})$$
 $\theta^{(1)} = \theta^{(0)} - \eta \nabla \mathcal{C}(\theta^{(0)})$

Compute
$$\nabla \mathcal{C}(\theta^{(1)})$$
 $\theta^{(2)} = \theta^{(1)} - \eta \nabla \mathcal{C}(\theta^{(1)})$

Millions of parameters

To compute the gradients efficiently, we use **backpropagation**.

Chain Rule

$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta s = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

Recall: An Artificial Neuron

Total input of unit $i: net_i^l = \sum_{j=1}^{n^{l-1}} W_{ij}^l x_j^{l-1} + b_i^l$ previous layer as input

Output of unit i: $x_i^l = \sigma(net_i^l)$

Total input of unit $i : net_i^l = \sum_{j=1}^{n^{l-1}} W_{ij}^l x_j^{l-1} + b_i^l$

Output of unit
$$i$$
: $x_i^l = \sigma(net_i^l)$

Backpropagation

$$\begin{array}{c} x^{(n)} \longrightarrow \begin{array}{c} NN \\ \theta \end{array} \longrightarrow \begin{array}{c} y^{(n)} \longleftarrow \\ L^{(n)} \end{array} t^{(n)}$$

$$\mathcal{C}(\theta) = \sum_{n=1}^{N} \mathcal{L}^{(n)}(\theta) \qquad \qquad \frac{\partial \mathcal{C}(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}^{(n)}(\theta)}{\partial w}$$

 Choose squared error as training error measurement and sigmoid as activation function at the output layer

$$\mathcal{L}(\theta) = \frac{1}{2} \sum_{k=1}^{c} (t_k - y_k)^2$$

Loss for one training sample

Gradient Descent

Network parameters
$$\theta = \{W_{ij}^l, b_i^l\} \begin{cases} l=1,\dots,L\\ i=1,\dots,n^l\\ j=1,\dots,n^{l-1} \end{cases}$$

For example: $n^{l-1}=1000$, $n^{l}=1000$

Then each layer has 10⁶ parameters

Tens of Millions of parameters

Need to compute partial derivative with respect to each parameter:

$$W_{ij}^{l} \leftarrow W_{ij}^{l} - \eta \frac{\partial \mathcal{L}(\theta)}{\partial W_{ij}^{l}}$$
$$b_{i}^{l} \leftarrow b_{i}^{l} - \eta \frac{\partial \mathcal{L}(\theta)}{\partial b_{i}^{l}}$$

Compute
$$\frac{\partial \mathcal{L}}{\partial W_{i,i}^l}$$
 and $\frac{\partial \mathcal{L}}{\partial b_i^l}$

$$net_{i}^{l} = \sum_{j=1}^{n^{l-1}} W_{ij}^{l} x_{j}^{l-1} + b_{i}^{l}$$

• Identify the relation between W^l_{ij} and net^l_i , because W^l_{ij} can only affect the network output through net^l_i

Apply chain rule:

where:
$$\frac{\partial net_i^l}{\partial W_{ij}^l} = x_j^{l-1}$$

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^{l}} = \frac{\partial net_{i}^{l}}{\partial W_{ij}^{l}} \frac{\partial \mathcal{L}}{\partial net_{i}^{l}} = x_{j}^{l-1} \boxed{\frac{\partial \mathcal{L}}{\partial net_{i}^{l}}}$$

Compute
$$\frac{\partial \mathcal{L}}{\partial net_i^l}$$

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^l} = x_j^{l-1} \frac{\partial \mathcal{L}}{\partial net_i^l}$$

- Identify the relation between net_i^l and those neurons connected to it in the immediate downstream (next layer)
- Two cases:

l = L: the output layer

l < L: hidden layers

Compute
$$\frac{\partial \mathcal{L}}{\partial net_i^l}$$

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^l} = x_j^{l-1} \frac{\partial \mathcal{L}}{\partial net_i^l}$$

- Identify the relation between net_i^l and those neurons connected to it in the immediate downstream (next layer)
- Case 1 l = L: the output units

Case 2:
 l < L : hidden units

Compute
$$\frac{\partial \mathcal{L}}{\partial net_i^l}$$

Sensitivity of unit i at layer l
 Describe how the overall error changes with the unit's net activation:

$$\delta_i^l = -\frac{\partial \mathcal{L}}{\partial net_i^l}$$

Compute
$$\frac{\partial \mathcal{L}}{\partial net_i^l}$$

• Case 1 l = L: the output units

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^{L}} = x_{j}^{L-1} \frac{\partial \mathcal{L}}{\partial net_{i}^{L}}$$

• Chain Rule

$$\frac{\partial \mathcal{L}}{\partial net_{i}^{L}} = \frac{\partial x_{i}^{L}}{\partial net_{i}^{L}} \frac{\partial \mathcal{L}}{\partial x_{i}^{L}} = \sigma' \left(net_{i}^{L} \right) \frac{\partial \mathcal{L}}{\partial v_{i}} = -(t_{i} - y_{i}) \sigma' \left(net_{i}^{L} \right)$$

Suppose:

$$\delta_i^L = (t_i - y_i)\sigma'(net_i^L)$$

Then: $\frac{\partial \mathcal{L}}{\partial W_{i,i}^L} = -\delta_i^L x_j^{L-1}$

$$(t_i - y_i)\sigma'(net_i^L)$$
 W_{i1}^L
 W_{i2}^L

Output layer

 $T_{in}^L = y_i$
 t_i

 $\mathcal{L}(\theta) = \frac{1}{2} \sum_{k=0}^{\infty} (t_k - y_k)^2$

 $x_i^L = \sigma(net_i^L)$

 $x_i^L = y_i$

Compute
$$\frac{\partial \mathcal{L}}{\partial net_i^l}$$

- Case 2
 l < L: hidden units
- Identify the relation between net_i^l and those neurons connected to it in the immediate downstream (next layer)

• Chain Rule

$$\frac{\partial \mathcal{L}}{\partial net_{i}^{l}} = \sum_{\substack{k \in downstream(net_{i}^{l})}} \frac{\partial net_{k}^{l+1}}{\partial net_{k}^{l}} \frac{\partial \mathcal{L}}{\partial net_{k}^{l+1}}$$

$$= \sum_{k=1}^{n^{l+1}} \frac{\partial net_{k}^{l+1}}{\partial net_{i}^{l}} \frac{\partial \mathcal{L}}{\partial net_{k}^{l+1}}$$

$$\vdots$$

$$\delta_{i}^{l} = \sum_{k=1}^{n^{l+1}} \frac{\partial net_{k}^{l+1}}{\partial net_{i}^{l}} (\delta_{k}^{l+1})$$

$$\vdots$$

$$x_{n^{l}}^{l-1}$$

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^{l}} = x_{j}^{l-1} \frac{\partial \mathcal{L}}{\partial net_{i}^{l}}$$
$$x_{i}^{l} = \sigma(net_{i}^{l})$$

$$\delta_i^l = -\frac{\partial \mathcal{L}}{\partial net_i^l}$$

Compute
$$\frac{\partial \mathcal{L}}{\partial net_i^l}$$

Case 2
 l < L: hidden units

$$\delta_i^l = \sum_{k=1}^{n^{l+1}} \frac{\partial net_k^{l+1}}{\partial net_i^l} \delta_k^{l+1}$$

$$= \sum_{k=1}^{n^{l+1}} \frac{\partial net_k^{l+1}}{\partial x_i^l} \frac{\partial x_i^l}{\partial net_i^l} \delta_k^{l+1}$$

$$=\sum_{k=1}^{n^{l+1}}W_{ki}^{l+1}\sigma'(net_i^l)\delta_k^{l+1}$$

$$= \sigma'(net_i^l) \sum_{k=1}^{n^{l+1}} W_{ki}^{l+1} \delta_k^{l+1}$$

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^l} = -x_j^{l-1} \, \delta_i^l$$

 σ is the activation function

$$net_k^{l+1} = \sum_{i=1}^{n^l} W_{ki}^{l+1} x_i^l + b_k^{l+1}$$

Summary: Error Propagation

$$\delta_i^l = -\frac{\partial \mathcal{L}}{\partial net_i^l}$$

 σ is the activation function

Case 1

$$l = L$$
: the output units

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^L} = -\delta_i^L x_j^{L-1}$$

 $\delta_i^L = \sigma' (net_i^L)(t_i - y_i)$

error of output layer

• Case 2

l < L: hidden units

$$\frac{\partial \mathcal{L}}{\partial W_{i,i}^l} = -\delta_i^l x_j^{l-1}$$

error backpropagated

$$\delta_i^l = \sigma' \left(net_i^l \right) \sum_{k=1}^{n^{l+1}} W_{ki}^{l+1} \delta_k^{l+1}$$

 δ_i^l : an "error term" that measures how much that unit is "responsible" for any errors in the output.

Case 1 and case 2 can be unified.

Illustration of Error Propagation

$$\delta_i^l = \sigma' \left(net_i^l \right) \sum_{k=1}^{n^{l+1}} W_{ki}^{l+1} \delta_k^{l+1}$$

- The sensitivity at a hidden unit is proportional to the weighted sum of the sensitivities at the output units.
- The output unit sensitivities are thus propagated "back" to the hidden units.

BP: Summary

• l = L: the output units

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^L} = -\delta_i^L x_j^{L-1}$$

• 0 < l < L: hidden units

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^l} = -\delta_i^l x_j^{l-1}$$

Forward Pass

$$net_i^l = \sum_{j=1}^{n^{l-1}} W_{ij}^l x_j^{l-1} + b_i^l$$

$$x_i^l = \sigma(net_i^l)$$

$$\delta_i^L = (t_i - y_i)\sigma'(net_i^L)$$

$$\delta_i^l = \sigma'(net_i^l) \sum_{k=1}^{n^{l+1}} W_{ki}^{l+1} \delta_k^{l+1}$$

Backward Pass

$$\frac{\partial \mathcal{L}}{\partial W_{i,i}^l} = -\delta_i^l x_j^{l-1}$$

BP: Summary

• l = L: the output units $\frac{\partial \mathcal{L}}{\partial W_{i,i}^L} = -\delta_i^L x_j^{L-1}$

$$net_i^l = \sum_{j=1}^{n^{l-1}} W_{ij}^l x_j^{l-1} + b_i^l$$
$$x_i^l = \sigma(net_i^l)$$
$$\delta_i^L = (t_i - y_i) \frac{\sigma'(net_i^L)}{\sigma'(net_i^L)}$$

• 0 < l < L: hidden units

$$\frac{\partial \mathcal{L}}{\partial W_{ij}^l} = -\delta_i^l x_j^{l-1}$$

$$\delta_i^l = \sigma'(net_i^l) \sum_{k=1}^{n^{l+1}} W_{ki}^{l+1} \delta_k^{l+1}$$

Implementation note

Need to compute: $\sigma'(net_i^L)$

Suppose sigmoid activation function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma'(z) = \sigma(z) (1 - \sigma(z))$$

Activations $\{x_i^l\}$ have already been stored away from the forward pass through the network.

$$\sigma'(net_i^l) = \sigma(net_i^l) \left(1 - \sigma(net_i^l)\right) = x_i^l (1 - x_i^l)$$

An Example for Backpropagation

$$W_{11}^1 = 0.1$$
 $W_{21}^1 = 0.4$

$$W_{12}^1 = 0.8$$
 $W_{22}^1 = 0.6$

$$x_1^1 = \frac{1}{1 + exp(-(0.1 * 0.35 + 0.9 * 0.8))} = 0.68$$

$$x_2^1 = 0.6637$$

$$W_{11}^2 = 0.3$$

$$W_{12}^2 = 0.9$$

$$x_1^2 = 0.69 = y_1$$

$$net_{i}^{l} = \sum_{j=1}^{n^{l-1}} W_{ij}^{l} x_{j}^{l-1}$$

$$x_{i}^{l} = \sigma(net_{i}^{l})$$

$$1$$

An Example for Backpropagation

Backward Pass Done!

$$L=2$$
: the output units: $\partial \mathcal{L}/\partial W_{ij}^L=-\delta_i^L x_j^{L-1}$

$$\delta_i^L = (t_1 - y_1)\sigma'(net_i^L)$$

$$\delta_1^2 = (t_1 - y_1)\sigma'(net_1^2) = (t_1 - y_1)x_1^2(1 - x_1^2)$$
$$= (0.5 - 0.69) * 0.69 * (1 - 0.69) = -0.0406$$

$$\sigma'(net_i^l) = x_i^l(1 - x_i^l)$$

$$0 < l < 2$$
: hidden units

$$\partial \mathcal{L}/\partial W_{ij}^l = -\delta_i^l x_i^{l-1}$$

$$0 < l < 2$$
: hidden units: $\partial \mathcal{L}/\partial W_{ij}^l = -\delta_i^l x_j^{l-1}$ $\delta_i^l = \sigma' \left(net_i^l\right) \sum_{k=1}^{n^{l+1}} W_{ki}^{l+1} \delta_k^{l+1}$

$$\delta_1^1 = x_1^1 (1 - x_1^1) * W_{11}^2 * \delta_1^2 = 0.68 * (1 - 0.68) * 0.3 * (-0.0406) = -0.0027$$

$$\delta_2^1 = 0.6637 * (1 - 0.6637) * 0.9 * (-0.0406) = -0.0082$$

An Example for BP: Summary

$$1 \le l \le 2$$
: hidden units: $\partial \mathcal{L}/\partial W_{ij}^l = -\delta_i^l x_i^{l-1}$

$$\partial \mathcal{L}/\partial W_{ij}^l = -\delta_i^l x_j^{l-1}$$

$$W_{11}^1 = 0.1$$
 $W_{21}^1 = 0.4$ $W_{11}^2 = 0.3$ $W_{12}^1 = 0.8$ $W_{22}^1 = 0.6$ $W_{12}^2 = 0.9$

$$W_{11}^2 = 0.3$$
 $W_{12}^2 = 0.9$

$$\frac{\partial \mathcal{L}}{\partial W_{11}^2} =$$

$$\frac{\partial \mathcal{L}}{\partial W_{12}^2} =$$

$$\frac{\partial \mathcal{L}}{\partial W_{11}^1} =$$

$$\frac{\partial \mathcal{L}}{\partial W_{12}^1} =$$

$$\frac{\partial \mathcal{L}}{\partial W_{21}^1} =$$

$$\frac{\partial \mathcal{L}}{\partial W_{22}^1}$$
 =

An Example for Backpropagation

Just Repeat!

Weights Update

Suppose: learning rate $\eta = 1$

$$W_{11}^1 = 0.1 - 0.000945 = 0.0991$$

$$W_{12}^1 = 0.8 - 0.00243 = 0.7976$$

$$W_{21}^1 = 0.4 - 0.00287 = 0.3971$$

$$W_{22}^1 = 0.6 - 0.00738 = 0.5926$$

$$W_{11}^2 = 0.3 - 0.0276 = 0.2724$$

$$W_{12}^2 = 0.9 - 0.0269 = 0.8731$$

$$t_1 = 0.5$$

$$\frac{\partial \mathcal{L}}{\partial W_{11}^1} = 0.000945$$

$$\frac{\partial \mathcal{L}}{\partial W_{12}^1} = 0.00243$$

$$\frac{\partial \mathcal{L}}{\partial W_{21}^1} = 0.00287$$

$$\frac{\partial \mathcal{L}}{\partial W_{22}^1} = 0.00738$$

$$\frac{\partial \mathcal{L}}{\partial W_{11}^2} = 0.0276$$

$$\frac{\partial \mathcal{L}}{\partial W_{12}^2} = 0.0269$$

Next Lecture

Convolutional Neural Network

