TRATTAMENTI DI SUPERFICI IN TITANIO E LEGA DI TITANIO

trattamenti superficiali

osseointegrazione

Trattamenti fisici

- ☐ trattamenti meccanici:
 - ✓ troncatura
 - ✓ tornitura
 - ✓ levigatura (di finiture diverse) con abrasivi
 - ✓ sabbiatura
- ☐ deposizione superficiale:
 - ✓ deposizione di titanio al plasma (TPS)
 - ✓ deposizione di idrossiapatite (HA)

Rugosità		R_q [μ m]	R _t [μ m]	S _k []
Titanio CP tornito	0.872	1.115	8.090	0.462
Titanio CP levigato 320 Grit-Paper	0.386	0.492	3.953	0.145
Titanio CP lucidato 4000 Grit-Paper	0.314	0.392	3.011	0.129

Valori di rugosità misurati su superfici in Ti CP tornite, levigate e lucidate

Materiale e Tipo di superficie	Levigatura	$R_a[\mu m]$	$R_p[\mu m]$	$R_t[\mu m]$	R _{tm} [µm]
	80 Grit-Paper	0.36 ± 0.21	0.64 ± 0.15	1.43 ± 0.50	0.45 ± 0.05
Nitinol laminato a 950°C	600 Grit-Paper	0.16 ± 0.02	0.63 ± 0.20	0.63 ± 0.44	0.51 ± 0.04
	1200 Grit-Paper	0.10 ± 0.04	0.16 ± 0.04	0.42 ± 0.08	0.20 ± 0.02
	80 Grit-Paper	1.48 ± 0.04	3.12 ± 0.58	6.85± 0.30	2.57 ± 0.01
TiMoCr laminato a 850°C	600 Grit-Paper	1.43 ± 0.17	1.85 ± 1.06	$5.82 \pm \\ 0.71$	1.20 ± 0.14
	1200 Grit-Paper	0.30 ± 0.03	0.85 ± 0.55	1.35 ± 1.06	0.54 ± 0.16
	80 Grit-Paper	0.73 ± 0.05	2.29 ± 0.30	3.74 ± 0.07	0.95 ± 0.05
TiMoCr laminato a 1050°C	600 Grit-Paper	0.44 ± 0.01	1.10 ± 0.21	$2.24 \pm \\ 0.32$	0.67 ± 0.06
	1200 Grit-Paper	0.34 ± 0.04	0.58 ± 0.09	$1.38 \pm \\ 0.01$	0.42 ± 0.02

Valori di rugosità misurati su superfici in Nitinol e TiMoCr

Materiale e tipo di superficie		<i>R</i> _q [μm]	R _t [μm]	R_{sk} [-	R _{ku} []	$oldsymbol{D_q} oldsymbol{ egin{bmatrix} oldsymbol{D_q} \ oldsymbol{eta} \end{bmatrix}}$	l_q [μ m]
Titanio CP tornito	0.39 ± 0.16	0.65 ± 0.3	12.33 ± 8.8	-0.55 ± 1.6	21.94 ± 26.6	25.32 ± 7.9	9 ± 1.3
Titanio CP sabbiato con rutilo da 25 μm	0.88 ± 0.2	1.23 ± 0.3	18.47 ± 5.1	0.49 ± 1.0	9.79 ± 6.4	37.08 ± 4.8	11.82 ± 1.1
Titanio CP sabbiato con allumina da 75 μm	1.27 ± 0.1	1.77 ± 0.2	27.48 ± 7.1	0.05± 0.6	9.56 ± 4.3	46.7 ± 2.0	13.66 ± 0.8

Valori di rugosità misurati su superfici in titanio CP dopo tornitura e sabbiatura con rutilo e allumina

Materiale e tipo di superficie	$S_a[\mu m]$	$S_{cx}[\mu m]$	S _{dr} []
Titanio CP tornito	0.96 ± 0.4	$\textbf{8.48} \pm \textbf{1.2}$	1.34 ± 0.1
Titanio CP sabbiato con allumina da 25 μm	1.2 ± 0.4	9.8 ± 0.6	1.44 ± 0.1
Titanio CP sabbiato con allumina da 75 μm	1.43 ± 0.3	11.63 ± 0.6	1.49 ± 0.1
Titanio CP sabbiato con allumina da 250 μm	2.20 ± 0.3	13.59 ± 1.1	1.81 ± 0.1

Valori di rugosità misurati su superfici in titanio CP dopo tornitura e sabbiatura

Trattamenti chimici

- ☐ trattamenti chimici:
 - ✓ lavaggio con solventi
 - ✓ passivazione nitrica
 - ✓ riposo a caldo
 - ✓ acquaforte acida
 - ✓ attacco alcalino
 - ✓ ossidazione con H₂O₂
 - ✓ decapaggio acido
- ☐ trattamenti elettrochimici:
 - ✓ elettro-erosione
 - ✓ erosione a tuffo
 - ✓ erosione a filo
 - ✓ elettro-lucidatura
 - ✓ anodizzazione

Materiale e tipo di superficie	Valori di profondità [mm]
Titanio CP sabbiato con corindone da 0.12-0.25 mm e decapato	6
Titanio CP sabbiato con corindone da 0.25-0.5 mm	22-28
Titanio CP sabbiato con corindone da 0.25-0.5 mm ed attaccato con acidi	18-23

Intervallo dei valori significativi di profondità dei difetti superficiali di dischetti in titanio

Materiale e tipo di superficie	Incremento della superficie []
Titanio CP lucidato con allumina in polvere	1.081 ± 0.047
Titanio CP lucidato con allumina in polvere ed attaccato con acidi	1.440 ± 0.247
Titanio CP sabbiato con 0.25-0.5 mm ed attaccato con acidi	2.455 ± 0.146

Valori della rugosità misurata sulla superficie di dischetti in titanio

Tipo di materiale e di Superficie	R _{rms} [nm]	$A_{diff}[{ m nm}]$
Titanio CP tornito	30.3 ± 19.8	10.8 ± 7.6
Titanio CP tornito e anodizzato	40.8 ± 14.7	18.0 ± 8.2
Titanio CP tornito e elettro-lucidato	2.9 ± 2.9	0.5 ± 0.4
Titanio CP tornito, elettro-lucidato e anodizzato	32.5	23.3
Titanio CP tornito, elettro-lucidato e anodizzato (aree lisce)	2.7 ± 0.2	0.6 ± 0.1
Titanio CP tornito, elettro-lucidato e anodizzato (aree rugose)	116.7 ± 40.2	88.0 ± 35.0

Valori di topografia relativi ad impianti in titanio Ti CP diversamente trattati

Materiale e tipo di superficie	$R_a[\mu \mathrm{m}]$
Titanio CP tornito	$\boldsymbol{0.31 \pm 0.12}$
Titanio CP sabbiato con rutilo da 10-53 μm	0.61 ± 0.03
Titanio CP sabbiato con rutilo da 10-53 μm e ricoperto con HA	1.89 ± 0.15

Valori di rugosità di superfici in titanio CP tornite, sabbiate e ricoperte con HA

Tipo di materiale e di superficie	Intervallo dimensioni difetti [μm]
Titanio CP ricoperto con HA	30-50
Titanio CP ricoperto mediante TPS	30-50

Valori di rugosità di superfici in titanio CP ricoperte con HA e TPS

attività sperimentale: preparazione di supporti metallici (dischetti in Ti e Ti6Al4V) per saggi di adesione cellulare in vitro

 applicazione di trattamenti superficiali per indurre specifici comportamenti nelle cellule controllo dell'adesione cellulare mediante l'utilizzo di fattori biochimici

Attività sperimentale

- ✓ Caratterizzazione delle superfici di impianti commerciali (riferimento)
- ✓ Sperimentazione di trattamenti superficiali
- ✓ Caratterizzazione della superficie dei dischetti di prova
- ✓ Selezione dei trattamenti superficiali
- ✓ Applicazione di metodi biochimici
- ✓ Indagine profilometrica sulle superfici campione
- ✓ Saggi di adesione cellulare
- ✓ Analisi di corrispondenza tra topografia e adesione cellulare

Immagini SEM di impianto commerciale SLA Ø 3.3 mm

Immagini SEM di impianto commerciale SLA Ø 4.1 mm

Immagini SEM di impianto commerciale TiOBlast Ø 3.5 mm

Immagini SEM di impianto commerciale TiOBlast Ø 4.0 mm

Profondità dei difetti superficiali

Ampiezza dei difetti superficiali

Rapporto tra le lunghezze di profilo e di forma

Immagini al microscopio ottico (100X) di impianto commerciale SLA Ø 4.1 mm

Impianto	Profondità [μm]	Ampiezza [µm]	Rapporto []
SLA - Ø 3.3	12.5	67.6	1.690
SLA - Ø 4.1	20.3	145.2	1.485
TiOBlast - Ø 3.5	6.2	46.5	1.309
TiOBlast - Ø 4.0	6.7	51.1	1.460

Valori medi dei parametri caratterizzanti i difetti superficiali

Impianto	Profondità [μm]	Ampiezza [µm]	Rapporto []
SLA - Ø 3.3	12.5	67.6	1.690
SLA - Ø 4.1	20.3	145.2	1.485
TiOBlast - Ø 3.5	6.2	46.5	1.309
TiOBlast - Ø 4.0	6.7	51.1	1.460

Valori medi dei parametri caratterizzanti i difetti superficiali

- > i difetti superficiali di TiOBlast sono molto più piccoli rispetto a quelli di SLA
- > si apprezzano differenze anche tra i due impianti SLA

Dischetti di prova

caratterizzazione mediante indagine profilometrica

Trattamenti meccanici

levigatura

- irrugosimento carte abrasive SiC (P220 o P80)
- lucidatura (sino a pasta diamantata da 3 μm)

sabbiatura

- corindone 25 µm per 10 s
- corindone 350 µm per 5 o 10 s

Trattamenti chimici

passivazione

 \cdot HNO $_3$ @ RT per 60 o 120 min

attacco con acidi

- HCl:H₂SO₄ @ RT
 per 1, 7, 10, 15, 20, 30, 40, 45, 60
 min
- HCl:H₂SO₄:HF @ RT per 8, 17, 29, 44 min
- HCl:H₂SO₄ @ BP
 per 1, 3, 6, 7, 15 min

Immagini al microscopio ottico di dischetti trattati meccanicamente e attaccati con miscele HCl:H₂SO₄

Dischetti in	Trattamen	ti meccanici	Trattament	i chimici	Profondità	Ampiezza	Rapporto di forma
titanio CP	levigatura	sabbiatura	passivazione	attacco acido	[µm]	[µm]	[]
T1	no	no	no	no	23.5	128.2	
T2	80 Grit	no	no	RT 15 min	12.4	125.5	1
Т3	180 Grit	no	no	no	5.5	111.9	1
T4	180 Grit	no	no	RT 15 min	13.6	127.2	
T5	no	350 μm 10 s	no	BP 7 min	17.9	129.6	2.263
Т6	no	350 μm 10 s	no	BP 15 min	20.7	175.3	1.810
Т7	no	350 μm 10 s	no	BP 6 min	15.6	116.4	1.456
Т8	no	350 μm 10 s	no	RT 15 min	18.2	97.1	1.978
Т9	no	350 μm 10 s	RT 1 h	no	25.2	134.2	2.501
T10	no	350 μm 10 s	RT 2 h	no	18.9	132.6	1.940
T11	no	350 μm 10 s	RT 1 h	no	22.2	120.9	2.469
T12	no	350 μm 10 s	RT 2 h	no	21.7	82.1	2.446
T13	no	350 μm 10 s	no	no	28.1	162.8	
T14	no	no	no	no	11.8	72.2	
T15	no	350 μm 10 s	no	BP 3 min	19.8	120.1	1.970
T16	no	350 μm 10 s	no	RT 10 min	17.3	159.6	1.904
T17	no	350 μm 10 s	no	no	20.2	118.3	2.951
T18	no	350 μm 10 s	no	BP 1 min	22.2	103.3	2.022

Dischetti in	Trattamenti meccanici		Trattamenti chimici		Profondità	Ampiezza	Rapporto di forma
lega Ti6Al4V	levigatura	sabbiatura	passivazione	attacco acido	[µm]	[μ m]	[]
A1	220 Grit	no	no	no	5.1	50.7	
A2	220 Grit	no	no	RT 15 min	5.8	64.4	
А3	220 Grit	no	no	RT 1 h	6.0	51.5	
A4	220 Grit	no	no	RT 45 min	9.4	83.5	
A5	220 Grit	no	no	RT 30 min	6.7	55.6	
A6	80 Grit	no	no	no	12.2	106.1	
A7	80 Grit	no	no	BP 7 min	13.4	108.8	
A8	80 Grit	no	no	BP 15 min	12.3	104.9	
A9	no	350 μm 10 s	no	RT 20 min	16.1	96.4	1.673
A10	no	25 μm 10 s	no	RT 20 min	7.6	70.2	-
A11	no	350 μm 10 s	no	no	15.8	66.9	2.254
A12	no	350 μm 10 s	no	RT 7 min	13.6	94.2	1.486
A13	no	350 μm 10 s	no	RT 15 min	13.8	63.6	1.567
A14	no	350 μm 5 s	no	RT 10 min	15.6	84.3	1.447
A15	no	350 μm 5 s	no	no	15.4	94.0	1.516
A16	80 Grit	no	no	RT 7 min	10.2	116.4	
A17	80 Grit	no	no	RT 15 min	6.7	73.0	
A18	no	350 μm 10 s	no	RT 10 min	16.3	102.7	1.637

Dischetti in	Trattamenti meccanici		Trattamenti chimici		Profondità	Ampiezza	Rapporto di forma
lega Ti6Al4V	levigatura	sabbiatura	passivazione	attacco acido	[µm]	[µ m]	[]
A19	220 Grit	no	no	RT 20 min	7.2	63.3	
A20	220 Grit	no	no	RT 20 min	9.7	100.4	
A21	80 Grit	no	no	RT 8 min	13.2	126.2	
A22	80 Grit	no	no	RT 17 min	7.2	61.1	
A23	no	350 μm 5 s	no	RT 1 min	17.2	134.1	1.837
A24	no	350 μm 10 s	no	RT 10 min	16.4	108.5	1.815
A25	220 Grit	no	RT 2 h	no	6.6	27.5	
A26	80 Grit	no	RT 2 h	no	7.2	69.0	
A27	no	350 μm 10 s	RT 2 h	no	20.3	140.0	1.935
A28	80 Grit	no	no	RT 15 min	13.5	111.5	
A29	80 Grit	no	no	RT 29 min	11.4	145.0	
A30	no	350 μm 5 s	no	RT 10 min	12.2	130.8	1.497
A31	220 Grit	no	RT 1 h	no	5.8	68.3	
A32	80 Grit	no	RT 1 h	no	7.0	95.5	
A33	no	350 μm 10 s	RT 1 h	no	15.3	107.1	1.818
A34	220 Grit	no	RT 1 h	no	5.8	56.6	
A35	80 Grit	no	RT 1 h	no	9.3	65.6	
A36	no	350 μm 10 s	RT 1 h	no	20.0	87.6	2.191

Dischetti in	Trattamenti meccanici		Trattamenti chimici		Profondità	Ampiezza	Rapporto di forma
lega Ti6Al4V	levigatura	sabbiatura	passivazione	attacco acido	[µm]	[µ m]	[]
A37	no	350 μm 10 s	no	no	19.0	75.8	1.913
A38	no	350 μm 10 s	no	RT 20 min	19.7	111.5	1.964
A39	no	350 μm 10 s	no	RT 40 min	17.3	91.3	1.651
A40	no	350 μm 10 s	no	RT 1 h	14.3	75.6	1.381
A41	no	no	no	no	6.4	75.6	1
A42	220 Grit	no	RT 2 h	no	5.4	45.8	-1
A43	80 Grit	no	RT 2 h	no	6.0	47.4	1
A44	no	350 μm 10 s	RT 2 h	no	19.5	87.1	2.099

- Superfici dei dischetti di prova
 - Superfici degli impianti commerciali
- Superficie prescelta

- Superfici dei dischetti di prova
 - Superfici degli impianti commerciali
- Superficie prescelta

- il parametro ampiezza non mostra una distribuzione statisticamente significativa: è non discriminante
- il parametro profondità mostra una distribuzione statisticamente significativa: è discriminante

Titanio CP

Lega Ti6Al4V

Rapporto di forma ÷ profondità Rapporto di forma ÷ profondità

T7
sabbiatura
(corindone da 350 µm)
attacco HCl:H₂SO₄
per 6 min @ BP

A40
sabbiatura
(corindone da 350 μm)
attacco HCl:H₂SO₄
per 60 min @ RT

Adsorbimento

Immobilizzazione covalente

Rilascio da carrier

Immobilizzazione covalente aspecifica

Immobilizzazione covalente specifica

Arricchimento dei substrati metallici con due peptidi di adesione:

(GRGDSP)₄K e HVP lin.

Si sperimentano due modalità di arricchimento:

adsorbimento fisico

- i dischetti campione sono lasciati a riposo in soluzioni acquose del peptide
- metodo semplice ma dalle scarse possibilità di controllo sulla concentrazione superficiale

rilascio da carrier

- sui dischetti campione si stende un sottile velo liquido di soluzione del biopolimero in cui è disperso il peptide
- dopo asciugatura, si forma una pellicola di rivestimento
- una corretta preparazione permette il controllo della concentrazione superficiale

Carrier polimerici utilizzati

polilattidi

- Poli-(L)-lattide (PLL) da 85-160 kDa in TCM al 5.7 % (g/cc)
- Poli-(D, L)-lattide (PDLL) da 75-120
 kDa in TCM al 5.8 % (g/cc)
- Copolimero di Poli-(D, L)-lattide e Poli-glicolide (PLG) da 40-75 kDa in DMK al 20 % (g/cc)

polisaccaridi

• preparato AGA-100 (idrogel di alginato) in acqua al 1% (g/cc)

La deposizione richiede che:

- le concentrazioni abbiano viscosità e tensione di vapore limitate
- si depositi sempre la medesima aliquota di soluzione (70 μl)

La pratica di rivestimento porta ai seguenti risultati:

• 4 mg di PLL • 4 mg di PDLL • 5 mg di PLG • 1 mg di idrogel di alginato

Codestante	Tueldement	Concentrazione superficiale		
Substrato	Trattamento	[nmol/cm ²]		
sabbiato corindone 350 μm per 10 s				
sabbiato corindone 350 μm per 10 s	adsorbimento fisico	(GRGDSP)₄K 0.6		
sabbiato corindone 350 μm per 10 s	adsorbimento fisico	(GRGDSP)₄K 6.0		
sabbiato corindone 350 μm per 10 s	adsorbimento fisico	(GRGDSP)₄K 60.0		
sabbiato corindone 350 μm per 10 s	adsorbimento fisico	HVP lin. 0.6		
sabbiato corindone 350 μm per 10 s	adsorbimento fisico	HVP lin. 6.0		
sabbiato corindone 350 μm per 10 s	adsorbimento fisico	HVP lin. 60.0		
sabbiato corindone 350 μm per 10 s	rivestimento 5 mg di PLG			
sabbiato corindone 350 μm per 10 s	rivestimento 4 mg di PDLL			
sabbiato corindone 350 μm per 10 s	rivestimento 1 mg di Alg			
sabbiato corindone 350 μm per 10 s	rivestimento 1 mg di Alg	(GRGDSP)₄K 60.0		
sabbiato e attaccato a caldo con acidi	1			
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL			
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	(GRGDSP)₄K 0.6		
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	(GRGDSP) ₄ K 6.0		
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	(GRGDSP)₄K 60.0		
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	HVP lin. 0.6		
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	HVP lin. 6.0		
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	HVP lin. 60.0		

Substrato	Trattamento	Concentrazione superficiale [nmol/cm ²]	
sabbiato corindone 350 μm per 10 s			
sabbiato e attaccato a caldo con acidi			
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL		
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	(GRGDSP)₄K 0.6	
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	(GRGDSP) ₄ K 6.0	
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	(GRGDSP)₄K 60.0	
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	HVP lin. 0.6	
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	HVP lin. 6.0	
sabbiato e attaccato a caldo con acidi	rivestimento 4 mg di PLL	HVP lin. 60.0	
sabbiato e attaccato a caldo con acidi	rivestimento 5 mg di PLG		

Caratterizzazione profilometrica

	S _a [μ m]	S _q [μ m]	S _z [μ m]	<i>S_{ds}</i> [cm ⁻²]	S _{sk} []	S _{ku} []	S _{Dq} [°]
Ti SL	2.41	3.03	15.31	4.7E+5	-0.19	3.14	4.45
Ti SL PDLL	1.72	2.22	10.50	6.5E+4	-0.30	4.23	1.58
Ti SL Alg	2.78	3.51	20.92	3.8E+5	-0.02	3.41	3.67
Ti SLA	4.31	5.40	26.50	4.5E+5	-0.31	3.12	6.89
Ti SLA PLL	2.39	3.04	13.99	8.4E+4	-0.11	3.24	1.79

Caratterizzazione profilometrica

Attacco acido HCI:H₂SO₄ @ RT per 60 min

Rivestimento 4 mg di PLL

	<i>S_a</i> [μm]	S _q [μm]	S _z [μ m]	<i>S_{ds}</i> [cm ⁻²]	S _{sk} []	S _{ku} []	S _{Dq} [°]
Lega SL	3.14	3.97	22.51	4.0E+5	-0.53	3.02	5.48
Lega SLA	2.56	3.26	19.01	4.83E+5	-0.09	3.67	4.73
Lega SLA PLL	1.37	1.77	9.95	9.4E+4	0.01	3.87	1.36

Immagini di aree (600x600 mm²) ricostruite al profilometro: superfici SL-Ti2 (a) e SLA-Ti2 (b); superfici SL-Ti5 (c) e SLA-Ti5 (d)

Immagini SEM di superfici SLA-Ti2 (a, b) e SLA-Ti5 (c, d) a diversi ingrandimenti

Immagini di aree (600x600 mm²) ricostruite al profilometro: superfici SL-Ti2 (a) e SLA-Ti5 (b) ricoperte con PLLA

Immagini di aree (600x600 mm²) ricostruite al profilometro: superfici SL-Ti2 ricoperte con PDLA (a) e AGA-100 (b)

- > le superfici sabbiate non sono molto diverse tra di loro
- gli attacchi chimici inducono modificazioni con diversa tendenza
- ➤ i biopolimeri di rivestimento alterano la topografia

Titanio Ti CP

Superficie	Arricchimento	O.D.	
campione	con peptide	[%]	
Ti SL		100	
Ti SL Pep	(GRGDSP)₄K 0.6	86	
Ti SL Pep	(GRGDSP)₄K 6.0	75	
Ti SL Pep	(GRGDSP) ₄ K 60.0	77	
Ti SL Pep	HVP lin. 0.6	78	
Ti SL Pep	HVP lin. 6.0	95	
Ti SL Pep	HVP lin. 60.0	94	
Ti SL PLG		34	
Ti SL PDLL	1	31	
Ti SLA		93	
Ti SLA PLL	1	23	
Ti SLA PLL Pep	(GRGDSP)₄K 0.6	37	
Ti SLA PLL Pep	(GRGDSP)₄K 6.0	35	
Ti SLA PLL Pep	(GRGDSP)₄K 60.0	29	
Ti SLA PLL Pep	HVP lin. 0.6	35	
Ti SLA PLL Pep	HVP lin. 6.0	28	
Ti SLA PLL Pep	HVP lin. 60.0	30	

Lega Ti6Al4V

Superficie	Arricchimento	O.D.	
Campione	con peptide	[%]	
Lega SL		96	
Lega SLA		127	
Lega SLA PLL		18	
Lega SLA PLL Pep	(GRGDSP) ₄ K 0.6	17	
Lega SLA PLL Pep	(GRGDSP)₄K 6.0	19	
Lega SLA PLL Pep	(GRGDSP) ₄ K 60.0	17	
Lega SLA PLL Pep	HVP lin. 0.6	23	
Lega SLA PLL Pep	HVP lin. 6.0	23	
Lega SLA PLL Pep	HVP lin. 60.0	20	
Lega SLA PLG		29	

Disk	OD [%]
SL-Ti2	100
SLA-Ti2	93
SLA-Ti2 + PLLA	23
SLA-Ti2+ PDLA	31
SLA-Ti2+ AGA-100	102
SL-Ti5	96
SLA-Ti5	127
SLA-Ti5+ PLLA	18

Misura della quantità di osteoblasti sulle diverse superifici: il valore relativo al titanio è stato assunto pari al 100%

Mentre le superfici SLA permettono agli osteoblasti di aderire con esiti comparabili, quelle ricoperte sembrano ostacolare l'adesione: tutte tranne la superficie ricoperta con AGA-100

Questo risultato può essere interpretato sulla base delle caratteristiche morfologiche della superficie: il PLLA e il PDLA sono rivestimenti che non richiamano la morfologia superficiale originaria, il rivestimento con AGA-100 la richiama

Si conferma pertanto il ruolo delle proprietà della superficie nella promozione dell'adesione degli osteoblasti

In realtà, i risultati della sperimentazione dimostrano che l'adesione degli osteoblasti non dipende dalla natura del substrato (p. es., composizione chimica) quanto piuttosto dal tipo di rivestimento utilizzato e dalla topografia superficiale

Analisi delle corrispondenze

Dall'analisi delle corrispondenze è possibile asserire che il parametro S_{ds} e i valori della densità ottica (OD) sono strettamente correlati, in base alla loro prossimità

I parametri S_{sk} e S_{ku} mostrano un *trend* analogo, ma non sono correlati ai valori di OD poiché giacciono su posizioni simmetriche rispetto all'origine del piano

 S_a , S_q e S_z sono identificati da proiezioni ristrette e spesso sovrapposte: questa evidenza suggerisce che le aree dei campioni esaminati possiedono un buon livello di isotropia

Infine, la proiezione del parametro $S_{\Delta q}$ indica un correlazione piuttosto buona con i valori di OD, come confermato dalla letterature scientifica, anche se in misura nettamente inferire al parametro S_{ds}

Dalla rappresentazione dell'analisi delle corrispondenze si può sottolineare il fatto che esiste una relazione tra la rugosità, i livelli di adesione e le caratteristiche superficiali È evidente che le proiezioni delle superfici SAL e di quella ricoperta con AGA-100 giacciono in prossimità di OD: ciò significa che tutte queste superfici condividono le stesse proprietà favorevoli in termini di promozione dell'adesione cellulare. Allo stesso tempo, sono tutte caratterizzate da valori elevati di S_{ds} e, anche se in misura inferiore, di $S_{\Delta q}$

Tutte le altre superfici sono localizzate nella parte opposta del piano dal momento che rivelano prestazioni decisamente inadeguate per quanto concerne l'adesione Quindi, l'informazione più significativa contenuta nei dati sperimentali è data dalla netta discriminazione tra superfici che favoriscono o ostacolano l'adesione cellulare, come quantificato dai valori di OD strettamente correlati ai parametri di rugosità S_{ds} e $S_{\Delta q}$