

Technical Test Result

DESCRIPTION	STATUS
Attempted Questions	15
Blank Answer	0
Basic Correct	13
Optional Correct	0

3				
1. 🗄	Which condition is used to influence a variable directly	v b	v all the	others?

- O(A) Partially connected
- (B) Fully connected

 ✓
- O(C) Local connected
- O(D) None of the mentioned

2. Which algorithm is used for solving temporal probabilistic reasoning?

- (A) Hill-climbing search
- (B) Hidden markov model
- (C) Depth-first search
- O(D) Breadth-first search

3. Where does the Hidden Markov Model is used?

- (A) Speech recognition ✓
- $^{ extsf{O}}$ (B) Understanding of real world
- (C) Both Speech recognition & Understanding of real world
- O(D) None of the mentioned

4. A Web Crawler is a/an
 (A) Intelligent goal-based agent (B) Problem-solving agent (C) Simple reflex agent (D) Model based agent
5. Which data structure is used to give better heuristic estimates?
 ○ (A) Forwards state-space ○ (B) Backward state-space ○ (C) Planning graph algorithm ✓ ○ (D) None of the mentioned
6. This which object recognition process is an error-prone process
 (A) Bottom-up segmentation (B) Top-down segmentation (C) Both Bottom-up & Top-down segmentation (D) None of the mentioned
7. How the distance between two shapes can be defined?
 (A) Weighted sum of the shape (B) Size of the shape (C) Shape context (D) None of the mentioned
8. In k-NN it is very likely to overfit due to the curse of dimensionality. Which of the following option would you consider to handle such problem?
 ○ (A) Dimensionality ○ (B) Feature selection ● (C) A and B ✓ ○ (D) None of these
9. When you use the boosting algorithm you always consider the weak learners. Which of the following is the main reason for having weak learners?

(A) To prevent overfitting ✓
○ (B) To prevent under fitting ○ (C) To prevent overfitting and underfitting
O(D) None of these
10. How to select best hyperparameters in tree based models
 ○ (A) Measure performance over training data ● (B) Measure performance over validation data ○ (C) Both of these ○ (D) None of these
11. A perceptron is:
(A) a single layer feed-forward neural network with pre-processing ✓
(B) an auto-associative neural network
○ (C) a double layer auto-associative neural network○ (D) a neural network that contains feedback
12. A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the
constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively.
The output will be:
O(B) 76
O(C) 119
O(D) 123
O (D) 123 13. $\frac{1}{2}$ p(s=1 x) = 1/(1+exp(-x/T))) ,where 's' is the output given the activation 'x' is a? O (A) hopfield network
 ○ (D) 123 13. p(s=1 x) = 1/(1+exp(-x/T))), where 's' is the output given the activation 'x' is a? ○ (A) hopfield network ○ (B) sigma network
 (D) 123 13. p(s=1 x) = 1/(1+exp(-x/T))), where 's' is the output given the activation 'x' is a? (A) hopfield network (B) sigma network (C) stochastic network ✓
 (D) 123 13. p(s=1 x) = 1/(1+exp(-x/T))), where 's' is the output given the activation 'x' is a? (A) hopfield network (B) sigma network (C) stochastic network (D) none of the mentioned
 (D) 123 13. p(s=1 x) = 1/(1+exp(-x/T))), where 's' is the output given the activation 'x' is a? (A) hopfield network (B) sigma network (C) stochastic network ✓
 (D) 123 13. p(s=1 x) = 1/(1+exp(-x/T))), where 's' is the output given the activation 'x' is a? (A) hopfield network (B) sigma network (C) stochastic network (D) none of the mentioned

- (C) stochastic update
 (D) all of the mentioned ✓
 15. One of the main challenge/s of NLP Is _
 (A) Handling Ambiguity of Sentences ✓
- \bigcirc (B) Handling Tokenization
- O(C) Handling POS-Tagging
- (D) All of the mentioned