

Jani Juvani

29.12.2023

Data set

- Consists of 10 features and 1 target variable
 - 8 blood sample measurements
 - Age
 - Sex
 - In care / out care treatment plan (target)
- Collected from Kaggle.com
- ➤ In CSV file format

Use case

- > To predict patient treatment plan
 - In care
 - Out care
- > Helps doctors to make more informed decisions
- > Improves the care of patients
 - More ill patients stay in the hospital
- > Reduces costs
 - Less unnecessary patients in the hospital
 - Fewer patient callbacks

- Three different classifier models were examined
 - Logistic regression
 - Support vector machine
 - Deep learning model
- > Support vector machine performs best
 - Accuracy 75 %
 - Sensitivity to predict in care 67 %
 - Specificity to predict in care 81 %

Architectural choices

- Data integration
 - Python with Pandas and Scikit-learn libraries
- Data repository
 - Github
- Discovery and exploration
 - Python with Matplotlib and Seaborn libraries
- Actionable insights
 - Python with Scikit-learn and Keras libraries
- Data product
 - Presentation of the results and a Jupyter notebook

Data pre-processing and feature engineering

- No missing values in data
- > Target variable unbalanced, in care 1784/out care 2628
- > Encoding character variables
 - Sex M/F \rightarrow 1/0
 - Target variable in care/out care $\rightarrow 1/0$
- Data standardization
 - Features are scaled by removing the mean and scaling to unit variance
- > All features selected for prediction models

Data visualization

- Distribution and box plots were used
- > Slight differences are observed in distributions with different targets

Models

- 1. Logistic regression
- 2. Support vector machine
- 3. Feed forward neural network
 - 2 dense layers with 20 units and leaky relu activation
 - Output layer with 1 unit and sigmoid activation
- Class weight 1.5 for target variable 1 (in care) in all models
- > Data consists of 4412 samples
 - Training data 80 %
 - Test data 20 %

Model performance

Logistic regression

Accuracy 70 %

Sensitivity 65 %

Specificity 74 %

Support vector machine Accuracy 75 % Sensitivity 67 % Specificity 81 % 435 100 True labels 114 234 in care in care Predicted labels

Feed forward NN

Accuracy 73 %

Sensitivity 63 %

Specificity 81 %

Conclusion

- > Support vector machine is the best model
 - Acc 75%, Sen 67 %, Spe 81 %
- > Non-linear model does not improve model performance
- Feature distributions only slightly different between classes
 - Additional features could improve model performance
- Class weight 1.5 for target variable 1 (in care)
 - Sensitivity can be slightly increased at the expense of accuracy and specificity by raising class weight