Proposition 1.4.2. Une suite de fonctions (f_n) définie sur un ensemble non vide X converge simplement vers une application $f: X \to \overline{\mathbb{R}}$ si et seulement

$$\overline{\lim} f_n(x) = \lim f_n(x) \quad pour \ tout \ x \in X. \tag{1.4.6}$$

Remarque 1.4.4. Les même propriétés du cas d'une suite numérique demeurent vraies dans le cas d'une suite de fonctions.

1.4.3 Cas d'une suite d'ensembles

Définition 1.4.3. Soit $(A_n)_n$ une suite de parties d'un ensemble non vide X. On appelle $\liminf_{n \to \infty} A_n$ et $\liminf_{n \to \infty} A_n$ définies par

$$\overline{\lim} A_n = \bigcap_{n \ge 1} \bigcup_{p \ge n} A_p, \quad et \quad \underline{\lim} A_n = \bigcup_{n \ge 1} \bigcap_{p \ge n} A_p. \tag{1.4.7}$$

Example. Prenons $X = \mathbb{R}$ et soit la suite définie par

$$A_n = \left[(-1)^n, \ 1 + \frac{1}{n} \right].$$

On a alors,

$$\overline{\lim} A_n = [-1, 1], \quad et \quad \underline{\lim} A_n = \{1\}.$$

Quelques propriétés. Soit $(A_n)_n$ une suite de parties d'un ensemble non vide X. Alors

- 1. $\underline{\lim} A_n \subset \overline{\lim} A_n$.
- 2. $\underline{\lim} A_n^c = (\overline{\lim} A_n)^c$, et $\overline{\lim} A_n^c = (\underline{\lim} A_n)^c$.
- 3. $\chi_{\underline{\lim} A_n} = \underline{\lim} \chi_{A_n}$ et $\chi_{\overline{\lim} A_n} = \overline{\lim} \chi_{A_n}$

1.5 Exercies

Exercice 1.5.1. Soit $\{A_n, n \in \mathbb{N}\}$ une famille de parties d'un ensemble non vide E. Posons pour tout $n \in \mathbb{N}$

$$B_n = A_n - \bigcup_{p=0}^{n-1} A_p; \quad B_0 = A_0$$

- 1. Montrer que
 - $i) \bigcup_{n>0} B_n = \bigcup_{n>0} A_n$
 - $ii) \ \forall n \neq m : B_n \cap B_m = \phi$
- 2. Que peut on en déduire?

Exercice 1.5.2. Soit $\{A_n\}_{n\in\mathbb{N}}$ une suite disjointe de parties d'un ensemble non vide X. Montrer que

$$\chi_{\underset{n\in\mathbb{N}}{\cup}A_n} = \sum_{n\in\mathbb{N}} \chi_{A_n}$$

Exercice 1.5.3. Calculer les limites supérieure et inférieure des suites définies par

$$u_n = (-1)^n$$
, $v_n = (-1)^n + \frac{1}{n}$, $w_n = \frac{(-1)^n}{n^2} + \frac{1}{n}$

 $T. \ HADJ \ KADDOUR$

Exercice 1.5.4. Soit $(x_n)_n$ une suite d'éléments de $\overline{\mathbb{R}}$. Montrer l'équivalence suivante

$$(x_n)_n$$
 converge vers l dans $\overline{\mathbb{R}} \Leftrightarrow \overline{\lim} x_n = \underline{\lim} x_n = l$

Exercice 1.5.5. Soit $(f_n)_n$ la suite de fonctions définie par

$$f_n(x) = x^n, x \in \mathbb{R}, n \ge 1$$

Vérifier que

$$\overline{\lim} f_n(x) = \begin{cases}
1, & si \ |x| = 1 \\
0, & si \ x \in]-1, 1[\\
+\infty, & si \ |x| > 1
\end{cases}$$

$$et \quad \underline{\lim} f_n(x) = \begin{cases}
1, & si \ x = 1 \\
-1, & si \ x = -1 \\
0, & si \ x \in]-1, 1[\\
-\infty, & si \ x < -1 \\
+\infty, & si \ x > 1
\end{cases}$$

Exercice 1.5.6. Calculer $\overline{\lim} A_n$ et $\underline{\lim} A_n$ dans les deux cas suivants

$$A_n = \left[0, 1 + \frac{(-1)^n}{n}\right], \qquad A_n = \left[-1, 2 + \frac{1}{n}\right]$$

Exercice 1.5.7. Soit $\{A_n, n \in \mathbb{N}\}$ une famille de parties d'un ensemble non vide E. Montrer que

$$(\underline{\lim} A_n)^c = \overline{\lim} A_n^c; \quad \chi_{\underline{\lim} A_n} = \underline{\lim} \chi_{A_n} \quad et \quad \chi_{\overline{\lim} A_n} = \overline{\lim} \chi_{A_n}.$$

Exercice 1.5.8. Soit $\{A_{n,p}, n, p \in \mathbb{N}\}$ une famille de parties d'un ensemble E. Montrer (à l'aide d'un contre exemple) que l'égalité

$$\bigcap_{i \in I} \left(\bigcup_{j \in J} A_{i,j} \right) = \bigcup_{j \in J} \left(\bigcap_{i \in I} A_{i,j} \right)$$

est en général fausse même si I et J sont finis.

Solution de l'exercice 1.5.8 Prenez $I = \{0, 1\}, J = \mathbb{N} \ et \ A_{i,j} = \{i + j\}.$

Exercice 1.5.9. Soit $\{A_n, n \in \mathbb{N}\}$ une famille de parties d'un ensemble non vide E.

- 1. Calculer $\lim A_n$ et $\underline{\lim} A_n$ dans les deux cas suivants
 - 1.a La suite $(A_n)_{n\in\mathbb{N}}$ est croissante dans le sens $A_n\subset A_{n+1}\ \forall n\in\mathbb{N}$.
 - 1.b La suite $(A_n)_{n\in\mathbb{N}}$ est décroissante dans le sens $A_{n+1}\subset A_n \ \forall n\in\mathbb{N}$.
- 2. X et Y et ant deux parties de E. Calculer $\lim A_n$ et $\underline{\lim} A_n$ dans le cas où A_n est défini par

$$A_n = \begin{cases} X & si \ n = 2p, \ p \in \mathbb{N} \\ Y & si \ n = 2p+1, \ p \in \mathbb{N}. \end{cases}$$

Application: Calculer $\limsup et \liminf des \ suites (A_n)_{n \in \mathbb{N}} \ et (B_n)_{n \in \mathbb{N}} \ telles \ que$

$$A_n = \left[\frac{1}{n}, 1\right]$$
 et $B_n = \left[-\frac{1}{n}, 1\right]$

 $T.\ HADJ\ KADDOUR$