Logique et structure discrètes : Exercices LINGI1101

Séance 2

1 Rappel

Liste des équivalences logiques

Lois commutatives

- 1. $p \lor q \iff q \lor p$ (commutativité de \lor)
- 2. $p \land q \iff q \land p \ (commutativit\'e \ de \land)$
- 3. $p \Leftrightarrow q \Leftrightarrow q \Leftrightarrow q \ (commutativit\'e\ de \Leftrightarrow)$

Lois associatives

- 1. $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ (associativité de \lor)
- 2. $(p \land q) \land r \iff p \land (q \land r)$ (associativité de \land)

Lois distributives

- 1. $p \land (q \lor r) \iff (p \land q) \lor (p \land r)$ (distributivité de \land sur \lor)
- 2. $p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$ (distributivité de \lor sur \land)

Lois de De Morgan

- 1. $\neg(p \land q) \iff \neg p \lor \neg q \ (loi \ 1 \ de \ De \ Morgan)$
- 2. $\neg(p \lor q) \iff \neg p \land \neg q \ (loi \ 2 \ de \ De \ Morgan)$

Loi de la négation

1.
$$\neg \neg p \iff p$$

Loi du tiers exclu

1.
$$p \lor \neg p \iff \mathbf{true}$$

Loi de la contradiction

1.
$$p \land \neg p \iff false$$

Loi de l'implication

1.
$$p \Rightarrow q \iff \neg p \lor q$$

Loi du contraposée

1.
$$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$$

Loi de l'équivalence

1.
$$p \Leftrightarrow q \Leftrightarrow (p \Rightarrow q) \land (q \Rightarrow p)$$

Lois de l'idempotence

- 1. $p \Leftrightarrow p \lor p \ (idempotence \ de \lor)$
- 2. $p \Leftrightarrow p \land p \ (idempotence \ de \land)$

Lois de simplification

- 1. $p \land \mathbf{true} \iff p$
- 2. $p \lor \mathbf{true} \Longleftrightarrow \mathbf{true}$
- 3. $p \land \mathbf{false} \iff \mathbf{false}$
- 4. $p \lor \mathbf{false} \iff p$
- 5. $p \lor (p \land q) \iff p$
- 6. $p \land (p \lor q) \iff p$

Liste des règles d'inférence

Conjonction	Simplification	Addition	Syllogisme disjoint
$\frac{p}{q}$ $p \wedge q$	$\frac{p \wedge q}{p}$	$\frac{p}{p \vee q}$	$\begin{array}{c} p\vee q\\ \neg p\\ \hline q \end{array}$
Modus ponens	Modus tollens	Contradiction	Double négation
$p \Rightarrow q$ $\frac{p}{q}$	$p \Rightarrow q$ $\frac{\neg q}{\neg p}$	$\frac{p}{\frac{\neg p}{q}}$	$\frac{\neg \neg p}{p}$
Transitivité	Lois de l'équivalence	Théorème de la déduction	Réduction à l'absurde
$\begin{array}{c} p \Leftrightarrow q \\ \underline{q \Leftrightarrow r} \\ \hline p \Leftrightarrow r \end{array}$	$ \begin{array}{c} p \Leftrightarrow q \\ \hline p \Rightarrow q \\ q \Rightarrow p \end{array} $	$p, \dots, r, \boxed{s} \vdash t$ $p, \dots, r \vdash s \Rightarrow t$	$\frac{p, \dots, q, \boxed{r} \vdash s}{p, \dots, q, \boxed{r} \vdash \neg s}$ $\frac{p, \dots, q \vdash \neg r}{p, \dots, q \vdash \neg r}$

2 Exercices

Exercice 1.

Démontrez les équivalences logiques suivantes.

- 1. $p \land (q \land r) \iff (p \land q) \land r$
- 2. $p \Rightarrow (q \Rightarrow r) \Leftrightarrow (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$
- 3. $p \land (p \Rightarrow q) \Rightarrow q \Leftrightarrow \mathbf{true}$
- 4. $(p \lor q) \land (\neg p \lor q) \iff q$
- 5. $(p \lor q) \lor (\neg p \land \neg q) \Leftrightarrow \mathbf{true}$
- 6. $p \lor (q \land r) \Leftrightarrow \neg(\neg(p \lor q) \lor \neg(p \lor r))$
- 7. $(p \lor q) \land \neg (p \land q) \iff (p \land \neg q) \lor (\neg p \land q)$
- 8. $p \land q \Leftrightarrow (p \lor q) \land (p \Leftrightarrow q)$

Exercice 2.

Démontrez, a l'aide d'une table de vérité, la validité des arguments suivants :

1.

$$\begin{array}{c} p \lor q \\ \neg p \\ \hline q \end{array}$$

2.

$$\frac{p}{p \vee q}$$

3.

$$p \Rightarrow q$$

$$q \Rightarrow r$$

$$p \Rightarrow r$$

Exercice 3.

Démontrez que les arguments suivants ne sont pas valides.

1.

$$\frac{p \vee q}{\neg p}$$

2.

$$\begin{array}{c}
p \Leftrightarrow q \\
p \Rightarrow r \\
r
\end{array}$$

3.

$$p \Rightarrow q$$
$$q \Rightarrow p$$
$$p \land q$$

Exercice 4.

Pour chaque ensemble de prémisses, démontrez la conclusion qui suit. Faites attention à bien identifier les lois logiques et les règles d'inférence utilisées.

1. Premisses : $p \Rightarrow q$, $q \Rightarrow r$

Conclusion : $p \Rightarrow r$

2. Premisses : $p \Rightarrow q$, $r \Rightarrow t$, $q \lor t \Rightarrow u$, $\neg u$ Conclusion : $\neg p \land \neg r$

3. Premisses : $\neg p \Rightarrow (q \Rightarrow r), \ t \lor \neg r \lor u, \ p \Rightarrow t, \ \neg t$ Conclusion : $q \Rightarrow u$

4. Premisses : $p \Rightarrow \neg q$, $q \lor r \lor s$, $\neg r \lor s \Rightarrow p$, $\neg r$ Conclusion : s

5. Premisses : $\neg p \Rightarrow (q \Rightarrow r)$, $s \vee \neg r \vee t$, $p \Rightarrow s$, $\neg s$ Conclusion : $q \Rightarrow t$

6. Premisses : $\neg(\neg p \land q)$, $\neg(\neg q \lor r)$ Conclusion : p

7. Premisses : $p \lor q$, $\neg q \lor r$ Conclusion : $p \lor r$

8. Premisses : $(p \wedge q) \vee (r \wedge s)$, $(q \wedge r) \vee (s \wedge t)$ Conclusion : $r \vee (p \wedge t)$

Exercice 5.

Pour chaque ensemble de prémisses, démontrez la conclusion qui suit. Faites attention à bien identifier les lois logiques et les règles d'inférence utilisées.

1. Premisses:

Conclusion : $p \lor \neg (p \land q)$

2. Premisses:

Conclusion : $(p \land q) \lor \neg p \lor \neg q$

3. Premisses:

Conclusion : $\neg p \lor \neg (\neg q \land (\neg p \lor q))$