DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA QUINTA/SEXTA PRÁCTICA (Modelo A)

1. Aplica la secuencia <u>C</u>alculus:<u>L</u>imit para determinar el siguiente límite:

$$\lim_{n} \left(\frac{2n+1}{2n-\sqrt{n}} \right)^{\sqrt{n+2}} = \boxed{e^{1/2}}$$

2. Aplica la secuencia Calculus: Limit para comparar los órdenes de magnitud de las sucesiones

$$a_n = \sqrt{n^5} - \sqrt{n^3 + 1} \qquad \text{y} \qquad b_n = \log(n)$$

Tendrás que calcular

$$\lim_{n} \frac{a_n}{b_n} = \boxed{+\infty}$$

de donde puedes concluir

$$a_n \quad \gg \quad b_n$$

3. Define, usando la cláusula IF, la sucesión recurrente

$$\begin{cases} a_1 = 2 \\ a_{n+1} = 1 + \frac{1}{3a_n} \end{cases}$$

El término a_{10} de la sucesión, con nueve decimales, es $\boxed{1.263762242}$

4. Define, usando ITERATE, la sucesión recurrente

$$\begin{cases} a_1 &= 3\\ a_{n+1} &= \sqrt{5+4a_n} \end{cases}$$

El término a_{15} de la sucesión, con veinte decimales, es $\boxed{4.99999373940893825399}$

5. Resuelve la ecuación en diferencias que proporciona la forma explícita de la sucesión que define el problema de las torres de Hanoi:

$$\begin{cases} a_1 = 1 \\ a_{n+1} = 2a_n + 1 \end{cases}$$

La expresión explícita para a_n , tras simplificar la función LIN1 DIFFERENCE, quedará

$$a_n = \boxed{2^n - 1}$$

6. Considera $\{a_n\}$ la sucesión de Fibonacci, definida mediante la recurrencia

$$a_{n+2} = a_n + a_{n+1}$$
 , $a_1 = a_2 = 1$

de gran interés por sus numerosas aplicaciones en Ciencias de la Computación, en Matemáticas y en la Teoría de Juegos. Debes, de acuerdo con el formato que usa D5W, resolver la ecuación

$$\boxed{1} \cdot a_{n+2} + \boxed{(-1)} \cdot a_{n+1} + \boxed{(-1)} \cdot a_n = \boxed{0}.$$

La expresión explícita para a_n , tras simplificar la función LIN2_CCF_BV correspondiente, quedará

$$a_n = \sqrt{\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{\sqrt{5}-1}{2}\right)^n (-1)^n}$$

Determina una sucesión exponencial b_n del mismo orden de magnitud que a_n

$$b_n = \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n \right]$$

DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf) CUESTIONARIO DE LA QUINTA/SEXTA PRÁCTICA (Modelo B)

1. Aplica la secuencia <u>Calculus:Limit</u> para determinar el siguiente límite

$$\lim_{n} \left(\frac{n+1}{n-\sqrt{n}} \right)^{\sqrt{n+2}-\sqrt{n}} = \boxed{1}$$

2. Aplica la secuencia Calculus:Limit para determinar el siguiente límite

$$\lim_{n} \left(\frac{\log(n^5)}{\sqrt{n}} \right) = \boxed{0} \qquad \Rightarrow \qquad \log(n^5) \boxed{\ll} \sqrt{n}$$

3. Define, usando la función ITERATE, la sucesión recurrente

$$\begin{cases}
 a_1 &= 2 \\
 a_{n+1} &= \sqrt{1+3a_n}
\end{cases}$$

El término a_{15} de la sucesión, con nueve decimales exactos, es 3.302750507

4. Define, usando la cláusula IF, la sucesión recurrente

$$\begin{cases} a_1 = 5 \\ a_{n+1} = 2 + \frac{1}{a_n} \end{cases}$$

El término a_{20} de la sucesión, con quince decimales, es $\boxed{2.414213562373091}$

5. Utiliza la función LIN1 DIFFERENCE para resolver la ecuación en diferencias (lineal de primer orden)

$$\begin{cases} a_1 = 0 \\ a_n = 3a_{n-1} + n \end{cases}$$

reescribiéndola previamente en la forma que usa D5W. La expresión explícita para a_n queda

$$a_n = \boxed{\frac{5 \cdot 3^{n-1}}{4} - \frac{2n+3}{4}}.$$

Comprueba que $a_n \approx 3^n$. Para ello, calcula

$$\lim_{n} \left(\frac{a_n}{3^n} \right) = \boxed{\frac{5}{12}} \in \mathbb{R}^+.$$

6. Sea a_n el número de cadenas de bits de longitud n que pueden generarse de forma que nunca haya dos ceros consecutivos. Observa (y calcula para n = 5) que las cadenas posibles para los primeros valores serán

de donde se deduce que $a_1=2$, $a_2=3$, $a_3=5$, $a_4=8$, $a_5=\boxed{13}$, ...

Define a_n como sucesión recurrente:

$$a_1 = 2$$
 , $a_2 = 3$, $a_{n+2} = a_n + a_{n+1}$

La expresión explícita para a_n , tras simplificar la función LIN2_CCF_BV correspondiente, quedará

$$a_n = \left[\left(\frac{1}{2} - \frac{3\sqrt{5}}{10} \right) \left(\frac{\sqrt{5} - 1}{2} \right)^n (-1)^n + \left(\frac{3\sqrt{5}}{10} + \frac{1}{2} \right) \left(\frac{\sqrt{5} + 1}{2} \right)^n \right]$$

¿Cuántas cadenas podrías generar por este procedimiento si n=100? $\boxed{927372692193078999176}$

APELLIDOS:	NOMBRE:	GRUPO:
------------	---------	--------