第08讲 相似矩阵与相似对角化

8.1 矩阵的相似

定义

设A,B是两个n阶方阵,若存在n阶可逆矩阵P,使得 $P^{-1}AP=B$

• 则称A相似于B.记成 $A \sim B$

矩阵相似关系具有反身性,对称性,传递性

相似矩阵的性质

若 $A \sim B$,则有(反之,不成立)

- r(A) = r(B)
- |A| = |B|
- $|\lambda E A| = |\lambda E B|$
- A, B具有相同的特征值
 - 。 相同的特征值只是必要条件
 - 即相同的特征值的两个矩阵,不一定是相似矩阵

若 $A \sim B$,则(8.12)

- $A^m \sim B^n$
- $f(A) \sim f(B)$
 - 其中f(x)是多项式

若 $A \sim B$ 且A可逆,则

- $A^{-1} \sim B^{-1}$
- $f(A^{-1}) \sim f(B^{-1})$
 - 其中f(x)是多项式

若 $A \sim B$ 且A, B可逆,则(8.12)

- $A^* \sim B^*$
- $\nabla A^{-1} \sim B^{-1}$
 - 0 则
 - $\circ f(A^{-1}) \sim f(B^{-1})$
 - \circ $f(A^*) \sim f(B^*)$

若 $P^{-1}A_1P = B_1, P^{-1}A_2P = B_2$ 则,

• $P^{-1}A_1A_2P = P^{-1}A_1PP^{-1}A_2P = B_1B_2$

• 即 $A_1A_2 \sim B_1B_2$

$$P^{-1}(k_1A_1 + k_2A_2)P = k_1P^{-1}A_1P + k_2P^{-1}A_2P$$

若 $A \sim B$,则tr(A) = tr(B)

- 即 A的迹等于 B的迹
- $\sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} b_{ii}$

8.2 矩阵可对角化的条件

若存在可逆矩阵P,使得 $P^{-1}AP = \Lambda$,

- 其中Λ是对角矩阵
- 则称A可相似对角化,记 $A \sim \Lambda$
- 称Λ是A的相似标准形

其中

- n阶矩阵 $A \sim \Lambda$
 - $\circ \Leftrightarrow A$ 有n个线性无关的特征向量
- 矩阵 A 的属于不同特征值的特征向量线性无关
 - 若n阶矩阵A有n个不同的特征值,
 - 则A有n个线性无关的特征向量,于是 $A \sim \Lambda$
- $\partial \lambda_0 = A$ or $\Delta_0 = A$ or
 - 矩阵 A 相似于对角矩阵
 - \Leftrightarrow A 的对于每个 r_i 重特征值都有 r_i 个线性无关的特征向量

8.3 实对称矩阵必可相似于对角矩阵

- A是实对称矩阵,则A的特征值是实数,特征向量是实向量
 - \circ 对称矩阵 $A=A^T$
- 实对称矩阵A的属于不同特征值的特征向量相互正交
 - 内积为0
- 实对称矩阵A必相似于对角矩阵
 - 即必有n个线性无关的特征向量 $\xi_1, \xi_2, \dots, \xi_n$
 - 即必有可逆矩阵 $P = [\xi_1, \xi_2, \dots, \xi_n]^T$ 使得 $P^{-1}AP = \Lambda$,其中 $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$
 - \circ 且存在正交矩阵Q,使得 $Q^{-1}AQ=Q^TAQ=\Lambda$
 - \circ 故A相似于 Λ

若Q是正交矩阵,则有 $Q^{-1} = Q^T$,其中 $Q^T A Q = \Lambda$

• πA 合同于 Λ ,故实对称矩阵必相似且合同于对角矩阵

题型

判断矩阵是否相似于对角矩阵

- 矩阵可对角化的条件
 - 。 实对称矩阵
 - 特征值都是互异实单根
 - o n个线性无关特征向量
 - 特征值是*r*重根,对应有*r*个线性无关的特征向量
- 某些特殊矩阵必相似于对角矩阵
 - 满足 $A^2 = A$ 的矩阵(8.7)
 - \circ 满足 $A^2 = E$ 的矩阵

主要是还是按照定义,先构造特征方程,求出特征值,进而求特征向量.最后判断

求可逆矩阵P, 使得 $P^{-1}AP = \Lambda$

若A为n阶矩阵,则 ξ_i 对应的 ξ_1,ξ_2,\cdots,ξ_n 特征向量线性无关,可以作为可逆矩阵 $P=[\xi_1,\xi_2,\cdots,\xi_n]$,从而 $P^{-1}AP=\Lambda$

判断两个矩阵是否相似

利用

- 相似矩阵的性质
- 矩阵相似的传递性

若A, B均可相似对角化, 且特征值相同,则A与B相似

若A, B相似,但是不一定 $A \sim B \sim \Lambda$

由特征值,特征向量反求A

若有可逆矩阵P,使得 $P^{-1}AP = \Lambda$,则 $A = P\Lambda P^{-1}$

实对称矩阵的相似对角化

主要要求用正交矩阵将矩阵相似对角化

相似矩阵的应用

利用相似对角矩阵求一些复杂矩阵,高幂次矩阵