Contents

1 Maxwell equation					
2	Not	ation	2		
	2.1	Finite element space	2		
	2.2	Curl operator	3		
3	Son	ne theories	3		
	3.1	Curl-Curl Problem	3		
	3.2	Curl-Curl-Grad-Div problem	4		
4	Nui	nerical experiments	6		
	4.1	Structure numerical solution	6		
	4.2	Smooth solution domain	6		
	4.3	Non-smooth solution domain	6		
	4.4	Exact Solution	7		
	4.5	Error	8		
	4.6	Rate	9		
	4.7	Figure	10		
	4.8	Conclusion	13		
	4.9	Do next	13		

MAXWELL EQUATIONS

J.Guo

October 13 - November 10,2012

1 Maxwell equation

Let $\Omega \subset \mathbb{R}^d (d=2,3)$ be an open, bounded domain with boundary $\Gamma = \partial \Omega$. We consider the following Maxwell curl-curl problem: Find **u** such that

$$\nabla \times \nabla \times \mathbf{u} - \omega^2 \mathbf{u} = \mathbf{f}, \qquad in \ \Omega$$
 (1.1)

and

$$\mathbf{u} \times \mathbf{n} = 0. \quad on \ \partial\Omega \tag{1.2}$$

where $\mathbf{f} \in (L^2(\Omega))^d$ is a given vector function and $\omega \in \mathbb{R}(\omega \neq 0)$. \mathbf{n} be the unit outward normal vector to Γ .

We also consider the following Maxwell curl-curl-grad-div problem: Find ${\bf u}$ such that

$$\nabla \times \nabla \times \mathbf{u} - \nabla \nabla \cdot \mathbf{u} - \omega^2 \mathbf{u} = \mathbf{f}, \qquad in \ \Omega$$
 (1.3)

and boundary condition: $\mathbf{u} \times \mathbf{n} = 0$ and $\nabla \cdot \mathbf{u} = 0$.

2 Notation

Finite element space and ×-operator.

2.1 Finite element space

$$\mathcal{U}_h = \{ \mathbf{v} \in \mathbb{C}(\overline{\Omega})^d \cap H_0(\nabla \times; \Omega) : \mathbf{v}|_T \in (P_k(T))^d, \forall T \in \mathcal{T}_h \}$$
(2.1)

$$\mathcal{U}_{h}^{+} = \{ \mathbf{v} \in \mathbb{C}(\overline{\Omega})^{d} \cap H_{0}(\nabla \times; \Omega) \cap H(\nabla \cdot; \Omega) : \mathbf{v}|_{T} \in (P_{k}(T))^{d}, \forall T \in \mathcal{T}_{h} \}$$
(2.2)

$$\mathcal{U}_{h}^{0} = \{ \mathbf{v} \in \mathbb{C}(\overline{\Omega})^{d} \cap H_{0}(\nabla \times; \Omega) \cap H_{0}(\nabla \cdot; \Omega) : \mathbf{v}|_{T} \in (P_{k}(T))^{d}, \forall T \in \mathcal{T}_{h} \}$$
(2.3)

where

 \mathcal{T}_h is a regular triangulation of $\Omega \subset \mathbb{R}^2$ (tetrahedrons in \mathbb{R}^3),

h denotes the maximum of diameter of $T, \forall T \in \mathcal{T}$,

 $P_k(T)$ denotes the space of polynomials of degree k on T,

$$H(\nabla \times; \Omega) = \{ \mathbf{v} \in (L^2(\Omega))^d : \nabla \times \mathbf{v} \in (L^2(\Omega))^{2d-3} \}$$
 (2.4)

$$H_0(\nabla \times; \Omega) = \{ \mathbf{v} \in (L^2(\Omega))^d : \nabla \times \mathbf{v} \in (L^2(\Omega))^{2d-3}, \mathbf{v} \times \mathbf{n}|_{\partial\Omega} = 0 \}$$
$$= \{ \mathbf{v} \in H(\nabla \times; \Omega) : \mathbf{v} \times \mathbf{n}|_{\partial\Omega} = 0 \}$$

$$H(\nabla \cdot; \Omega) = \{ \mathbf{v} \in (L^2(\Omega))^d : \nabla \cdot \mathbf{v} \in L^2(\Omega) \}$$
 (2.5)

$$H(\nabla \cdot^0; \Omega) = \{ \mathbf{v} \in H(\nabla \cdot; \Omega) : \nabla \cdot \mathbf{v} = 0 \}$$

$$H_0(\nabla \cdot; \Omega) = \{ \mathbf{v} \in H(\nabla \cdot; \Omega) : \nabla \cdot \mathbf{v}|_{\partial \Omega} = 0 \}$$

2.2 Curl operator

Domain in 3D: $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{n} = (n_1, n_2, n_3)$, where $u_i, n_i \in \mathcal{C}^1(\Omega)(i = 1, 2, 3)$, $\nabla \times \mathbf{u}$ and $\mathbf{u} \times \mathbf{n}$ are defined as follows.

$$\nabla \times \mathbf{u} = \begin{vmatrix} i & j & k \\ \partial_x & \partial_y & \partial_z \\ u_1 & u_2 & u_3 \end{vmatrix} = \left(\frac{\partial u_3}{\partial y} - \frac{\partial u_2}{\partial z}, \frac{\partial u_1}{\partial z} - \frac{\partial u_3}{\partial x}, \frac{\partial u_2}{\partial x} - \frac{\partial u_1}{\partial y}\right)$$

$$\mathbf{u} \times \mathbf{n} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ n_1 & n_2 & n_3 \end{vmatrix} = (u_2 n_3 - u_3 n_2, u_3 n_1 - u_1 n_3, u_1 n_2 - u_2 n_1)$$

Domain in 2D: $\mathbf{u} = (u_1, u_2)$ and $\mathbf{n} = (n_1, n_2)$, where $u_i, n_i, \phi \in \mathcal{C}^1(\Omega)(i = 1, 2)$, $\nabla \times \mathbf{u}$, $\mathbf{u} \times \mathbf{n}$, $\phi \times \mathbf{u}$ and $\mathbf{u} \times \phi$ are defined as follows.

$$\nabla \times \mathbf{u} = \frac{\partial u_2}{\partial x} - \frac{\partial u_1}{\partial y}, \quad \mathbf{u} \times \mathbf{n} = u_1 n_2 - u_2 n_1$$

$$\mathbf{u} \times \phi = (u_2\phi, -u_1\phi), \qquad \phi \times \mathbf{u} = (-u_2\phi, u_1\phi),$$

Note:
$$\phi \to (0, 0, \phi) := \widehat{\phi}, \mathbf{u} \to (u_1, u_2, 0) := \widehat{\mathbf{u}}$$

 $\Rightarrow \phi \times \mathbf{u} := \widehat{\phi} \times \widehat{\mathbf{u}} \text{ and } \mathbf{u} \times \phi := \widehat{\mathbf{u}} \times \widehat{\phi}$

3 Some theories

3.1 Curl-Curl Problem

Find $\mathbf{u} \in \mathcal{U}_h$, such that

$$\int_{\Omega} \nabla \times \mathbf{u}_h \cdot \nabla \times \mathbf{v}_h - \omega^2 \int_{\Omega} \mathbf{u}_h \cdot \mathbf{v}_h = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \qquad \forall \mathbf{v}_h \in \mathcal{U}_h$$
(3.1)

we can get variational form because of $\mathbf{u} \times \mathbf{n}|_{\Gamma} = \mathbf{0}$ and the following $\nabla \times$ Green's formula holds:

$$\int_{\Omega} \nabla \times \mathbf{u} \cdot \mathbf{\Phi} - \int_{\Omega} u \cdot \nabla \times \mathbf{\Phi} = \int_{\partial \Omega} \mathbf{n} \times \mathbf{u} \cdot \mathbf{\Phi}$$
 (3.2)

where $\mathbf{u} = (u_1, u_2, u_3), \Phi = (\phi_1, \phi_2, \phi_3) \in H(\nabla \times; \Omega),$

Proof of Green's formula:

$$\begin{split} &\int_{\Omega} \nabla \times \mathbf{u} \cdot \mathbf{\Phi} - \int_{\Omega} \mathbf{u} \cdot \nabla \times \mathbf{\Phi} \\ &= \int_{\Omega} \phi_{1} (\frac{\partial u_{3}}{\partial y} - \frac{\partial u_{2}}{\partial z}) + \phi_{2} (\frac{\partial u_{1}}{\partial z} - \frac{\partial u_{3}}{\partial x}) + \phi_{3} (\frac{\partial u_{2}}{\partial x} - \frac{\partial u_{1}}{\partial y}) \\ &- \int_{\Omega} u_{1} (\frac{\partial \phi_{3}}{\partial y} - \frac{\partial \phi_{2}}{\partial z}) + u_{2} (\frac{\partial \phi_{1}}{\partial z} - \frac{\partial \phi_{3}}{\partial x}) + u_{3} (\frac{\partial \phi_{2}}{\partial x} - \frac{\partial \phi_{1}}{\partial y}) \\ &= \int_{\Omega} (\phi_{1} \frac{\partial u_{3}}{\partial y} + u_{3} \frac{\partial \phi_{1}}{\partial y}) - (\phi_{1} \frac{\partial u_{2}}{\partial z} + u_{2} \frac{\partial \phi_{1}}{\partial z}) + (\phi_{2} \frac{\partial u_{1}}{\partial z} + u_{1} \frac{\partial \phi_{2}}{\partial z}) \\ &- \int_{\Omega} (\phi_{2} \frac{\partial u_{3}}{\partial x} + u_{3} \frac{\partial \phi_{2}}{\partial x}) + (\phi_{3} \frac{\partial u_{2}}{\partial x} + u_{2} \frac{\partial \phi_{3}}{\partial x}) - (\phi_{3} \frac{\partial u_{1}}{\partial y} + u_{1} \frac{\partial \phi_{3}}{\partial y}) \\ &= \int_{\partial \Omega} \phi_{1} (u_{3} n_{2} - u_{2} n_{3}) + \phi_{2} (u_{1} n_{3} - u_{3} n_{1}) + \phi_{3} (u_{2} n_{1} - u_{1} n_{2}) \\ &= \int_{\partial \Omega} \mathbf{n} \times \mathbf{u} \cdot \mathbf{\Phi} \end{split}$$

Note: while in 2D, the conclusion is the same.

- $\qquad \forall \phi \in H_0^1(\Omega), \text{ we have } \nabla \phi \in H_0(\nabla \times; \Omega) \text{ and } \nabla \times \nabla \times (\nabla \phi) = \mathbf{0}.$
- ▶Helmholtz decomposition: $\forall \mathbf{u} \in H_0(\nabla \times; \Omega)$, we have $\mathbf{u} = \mathring{\mathbf{u}} + \nabla \phi$ with $\mathring{\mathbf{u}} \in H(\nabla \cdot^0; \Omega)$ and $\phi \in H_0^1(\Omega)$.
- ightharpoonup Proposition 3.1 Maxwell's curl-curl problem \Leftrightarrow Poisson equation + Reduced curl-curl problem.

Proof. Let curl-curl problem variational form is find $\mathbf{u} \in H_0(\nabla \times; \Omega)$ such that

$$(\nabla \times \mathbf{u}, \nabla \times \mathbf{v}) - \omega^2(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \quad \forall \mathbf{v} \in H_0(\nabla \times; \Omega)$$

(1). Let $\eta \in H_0^1(\Omega)$, then $\mathbf{v} = \nabla \eta \in H_0(\nabla \times; \Omega)$, and

$$\begin{array}{rcl} (\triangledown \times \mathbf{u}, \triangledown \times (\triangledown \eta)) - \omega^2(\mathbf{u}, \triangledown \eta) & = & (\mathbf{f}, \triangledown \eta) \\ & -\omega^2(\mathring{\mathbf{u}} + \triangledown \phi, \triangledown \eta) & = & (\mathbf{f}, \triangledown \eta) \\ & \omega^2(\triangledown \cdot \mathring{\mathbf{u}}, \eta) - \omega^2(\triangledown \phi, \triangledown \eta) & = & (\mathbf{f}, \triangledown \eta) \text{ (Green's formula)} \end{array}$$

So $\phi \in H_0^1(\Omega)$ satisfies $-\omega^2(\nabla \phi, \nabla \eta) = (\mathbf{f}, \nabla \eta) \quad \forall \eta \in H_0^1(\Omega)$, which is the variational form of the Possion problem.

(2). Let $\mathring{\mathbf{v}} \in H_0((\nabla \times; \Omega) \cap H(\nabla \cdot^0; \Omega))$, and

$$(\nabla \times \mathbf{u}, \nabla \times \mathring{\mathbf{v}}) - \omega^{2}(\mathbf{u}, \mathring{\mathbf{v}}) = (\mathbf{f}, \mathring{\mathbf{v}})$$

$$(\nabla \times (\mathring{\mathbf{u}} + \nabla \phi), \nabla \times \mathring{\mathbf{v}}) - \omega^{2}(\mathring{\mathbf{u}} + \nabla \phi, \mathring{\mathbf{v}}) = (\mathbf{f}, \mathring{\mathbf{v}})$$

$$(\nabla \times \mathring{\mathbf{u}}, \nabla \times \mathring{\mathbf{v}}) - \omega^{2}(\mathring{\mathbf{u}}, \mathring{\mathbf{v}}) = (\mathbf{f}, \mathring{\mathbf{v}})$$

Therefore, $\dot{\mathbf{u}}$ satisfies the following reduced curl-curl problem:

Find $\mathring{\mathbf{u}} \in H_0(\nabla \times; \Omega) \cap H(\nabla \cdot^0; \Omega)$ such that

$$(\nabla \times \mathring{\mathbf{u}}, \nabla \times \mathring{\mathbf{v}}) - \omega^{2}(\mathring{\mathbf{u}}, \mathring{\mathbf{v}}) = (\mathbf{f}, \mathring{\mathbf{v}}),$$

$$\forall \mathring{\mathbf{v}} \in H_{0}(\nabla \times; \Omega) \cap H(\nabla^{0}; \Omega)$$

$$(3.3)$$

▶ Proposition 3.2 Given a Maxwell's curl-curl problem, we can get a corresponding Maxwell's curl-curl-grad-div problem.

Proof. Apply $\nabla \cdot$ to both sides of $\nabla \times \nabla \times \mathbf{u} - \omega^2 \mathbf{u} = \mathbf{f}$, we have $\nabla \cdot \mathbf{u} = -\frac{1}{\omega^2} \nabla \cdot \mathbf{f}$, then \mathbf{u} satisfies the following CCGD problem: Find $\mathbf{u} \in H_0(\nabla \times; \Omega)$, such that

$$\begin{cases}
\nabla \times \nabla \times \mathbf{u} - \nabla \nabla \cdot \mathbf{u} - \omega^2 \mathbf{u} = \mathbf{f} + \frac{1}{\omega^2} \nabla \nabla \cdot \mathbf{f} & in \ \Omega \\
\mathbf{u} \times \mathbf{n} = \mathbf{0} & on \ \partial \Omega
\end{cases}$$
(3.4)

In order to to get CCGD variational form 3.6, which will introduce in next section, we need another boundary condition

$$\nabla \cdot \mathbf{u} = 0, \qquad on \ \partial \Omega \tag{3.5}$$

and now $\mathbf{u} \in H_0(\nabla \times; \Omega) \cap H_0(\nabla \cdot; \Omega)$.

3.2 Curl-Curl-Grad-Div problem

The Maxwell Curl-Curl-Grad-Div(CCGD) problem 1.3 finite element variational form: Find $\mathbf{u} \in \mathcal{U}_h^0$, such that

$$\int_{\Omega} \nabla \times \mathbf{u}_h \cdot \nabla \times \mathbf{v}_h + \int_{\Omega} \nabla \cdot \mathbf{u}_h \nabla \cdot \mathbf{v}_h - \omega^2 \int_{\Omega} \mathbf{u}_h \cdot \mathbf{v}_h = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \qquad \forall \mathbf{v}_h \in \mathcal{U}_h^0$$

$$(\nabla \times \mathbf{u}_h, \nabla \times \mathbf{v}_h) + (\nabla \cdot \mathbf{u}_h, \nabla \cdot \mathbf{v}_h) - \omega^2(\mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h) \qquad \forall \mathbf{v}_h \in \mathcal{U}_h^0$$
(3.6)

▶ $\nabla \cdot$ Green's formula: $\int_{\Omega} \mathbf{v} \cdot \nabla \phi + \int_{\Omega} \nabla \cdot \mathbf{v} \phi = \int_{\partial \Omega} \phi \mathbf{v} \cdot \mathbf{n}$

- ▶ When $\nabla \cdot \mathbf{f} = 0$, the solution \mathbf{u} of CCDG, if exists, belongs to the space $H(\nabla \cdot^0; \Omega)$, then CCDG \Leftrightarrow CC.
- ▶ [Fredholm Theory]The CCGD problem is well-posed as long as $\omega^2 \neq \lambda_i$, where $0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$ are eigenvalues defined by the following eigen-problem:

$$(\nabla \times \mathbf{u}, \nabla \times \mathbf{v}) - (\nabla \cdot \mathbf{u}, \nabla \cdot \mathbf{v}) = \lambda_i(\mathbf{u}_h, \mathbf{v})$$
$$\forall \mathbf{v} \in H_0(\nabla \times; \Omega) \cap H(\nabla \cdot; \Omega)$$

▶ [Regularity] The regularity of the solution of CCGD problem is closely related to the regularity of the Laplace operator with homogeneous Dirichlet or Neumann boundary conditions.

Proof. For simplicity, we assume Ω is simply connected.

If $\mathbf{u} \in H_0(\nabla \times; \Omega) \cap H(\nabla \cdot; \Omega)$, there is an unique Helmholtz decomposition

$$\mathbf{u} = \mathring{\mathbf{u}} + \nabla \phi$$

where $\mathring{\mathbf{u}} \in H_0(\nabla \times; \Omega) \cap H(\nabla^{\cdot 0}; \Omega)$ and $\phi \in H_0^1(\Omega)$

(1). Apply $\nabla \cdot$ to both sides of $\mathbf{u} = \nabla \times \psi + \nabla \phi$, we have

$$\nabla \cdot \mathbf{u} = \nabla \cdot (\nabla \times \psi) + \nabla \cdot (\nabla \phi) = \triangle \phi$$

So the function $\phi \in H_0^1(\Omega)$ satisfies the following Dirichlet boundary value problem:

(2). Apply $\nabla \times$ to both sides of $\mathbf{u} = \nabla \times \psi + \nabla \phi$, we have

$$\nabla \times \mathbf{u} = \nabla \times (\nabla \times \psi) + \nabla \times (\nabla \phi) = -\triangle \psi$$

[since $\triangle \omega = -\nabla \times \nabla \times \omega$, $\triangle \mathbf{w} = -\nabla \times \nabla \times \mathbf{w} + \nabla \nabla \cdot \mathbf{w}$]

So the function $\psi \in H^1(\Omega)$ satisfies the following Neumann boundary value problem:

[since on $\partial\Omega$ $0 = \mathring{\mathbf{u}} \times \mathbf{n} = (\nabla \times \psi) \times \mathbf{n} = -\frac{\partial\psi}{\partial\mathbf{n}}$]

Since $\mathbf{u} = \nabla \times \psi + \nabla \phi$, the regularity of \mathbf{u} can be derived through the elliptic regularity theory on polygonal domains. (P.Grisvard. 1985.)

4 Numerical experiments

4.1 Structure numerical solution

Step 1: find $\mathbf{u} \in H(\nabla \times; \Omega)$, such that $\mathbf{u} \times \mathbf{n}|_{\partial \Omega} = \mathbf{0}$;

(e.g. find $\phi|_{\partial\Omega} = 0$, let $\mathbf{u} = \nabla \phi$, then $\mathbf{f} = -\omega^2 \nabla \phi$)

Step 2: find \mathbf{u}^* depend on \mathbf{u} , such that $\nabla \cdot \mathbf{f}^* = \mathbf{0}$.

(e.g. fine θ , such that $-\omega^2 \triangle \theta = \nabla \cdot \mathbf{f}$ and $\theta|_{\partial\Omega} = 0$. Let $\mathbf{u}^* = \mathbf{u} - \nabla \theta$, then $\mathbf{f}^* = \mathbf{f} + \omega^2 \nabla \theta$ satisfied $\nabla \cdot \mathbf{f}^* = \mathbf{0}$)

Corollary 4.1 When $\nabla \cdot \mathbf{f} = 0$, the solution \mathbf{u} of CCDG, if exists, belongs to the space $H(\nabla \cdot^0; \Omega)$ and CCDG Maxwell problem \Leftrightarrow CC Maxwell problem.

4.2 Smooth solution domain

Figure 4.1: $\Omega = [0, 1]^2$.

Figure 4.2: $\Omega = [0, 1]^3$.

4.3 Non-smooth solution domain

Figure 4.3: $\Omega = [-1, 1]^2/[0, 1] \times [-1, 0]$.

Figure 4.4: $\Omega = [-1, 1]^3/[0, 1]^3$

4.4 Exact Solution

Put $\omega = 1$, The exact solution of Figure 4.1 and Figure 4.3 as following

S2DI Let $p(x,y) = e^{x+y} \sin(\pi x) \sin(\pi y)$, we defined exact solution $\mathbf{u} = \nabla(p(x,y))$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} e^{x+y} \sin(\pi y)(\sin(\pi x) + \pi \sin(\pi x)) \\ e^{x+y} \sin(\pi x)(\sin(\pi y) + \pi \sin(\pi y)) \end{pmatrix}$$
(4.1)

$$\mathbf{u} \in H_0(\nabla \times; \Omega), \ \nabla \cdot \mathbf{u}|_{\partial \Omega} \neq 0$$

 $\mathbf{f} = -\mathbf{u}$

S2DII CC problem (1.1 and 1.2) CCGD variational form (3.4 and 3.5).

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} e^y y(y-1) \\ e^x \sin(\pi x) \end{pmatrix} \tag{4.2}$$

$$\mathbf{u} \in H_0(\nabla \times; \Omega) \cap H_0(\nabla \cdot; \Omega),$$

$$\mathbf{f} = \nabla \times \nabla \times \mathbf{u} - \mathbf{u} = \begin{pmatrix} -2e^y y(y+1) \\ e^x ((\pi^2 - 2)\sin(\pi x) - 2\pi\cos(\pi x)) \end{pmatrix}$$
(4.3)

N2DI Let $\psi = r^{\frac{2}{3}} \sin(\frac{2}{3}\theta)\phi(r)$, where (r,θ) are the polar coordinates at the origin and the cut-off function $\varphi(r)$ is given by

$$\phi(r) = \begin{cases} 1, & r \le 0.25\\ -16(r - 0.75)^3 [5 + 15(r - 0.75) + 12(r - 0.75)^2], & 0.25 \le r \le 0.75\\ 0, & r > 0.75 \end{cases}$$

The exact solution is chosen to be $\mathbf{u} = \nabla \times \psi = (u_1, u_2)'$, then we have

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3}r^{\frac{2}{3}}\sin(\frac{1}{3}\theta)\phi(r) + r^{\frac{5}{3}}\cos(\frac{2}{3}\theta)\sin(\theta)\varphi'(r) \\ -\frac{2}{3}r^{\frac{2}{3}}\cos(\frac{1}{3}\theta)\phi(r) - r^{\frac{5}{3}}\cos(\frac{2}{3}\theta)\cos(\theta)\varphi'(r) \end{pmatrix}$$
(4.4)

$$\mathbf{u} \in H_0(\nabla \times; \Omega) \cap H_0(\nabla \cdot; \Omega),$$

$$\mathbf{f} = -\mathbf{u} - \nabla \times \nabla \times \mathbf{u}$$

N2DII Similar to N2DI let $\varphi = r^{\frac{2}{3}} \sin(\frac{2}{3}\theta)(x^2 - 1)(y^2 - 1)$, the exact solution is given by

$$\mathbf{u} = \nabla \varphi = \begin{pmatrix} -\frac{2}{3}r^{\frac{2}{3}}\sin(\frac{1}{3}\theta)(x^2 - 1)(y^2 - 1) + 2xr^{\frac{2}{3}}\sin(\frac{2}{3}\theta)(y^2 - 1) \\ \frac{2}{3}r^{\frac{2}{3}}\cos(\frac{1}{3}\theta)(x^2 - 1)(y^2 - 1) + 2yr^{\frac{2}{3}}\sin(\frac{2}{3}\theta)(x^2 - 1) \end{pmatrix}$$
(4.5)

$$\mathbf{u} \in H_0(\nabla \times; \Omega), \nabla \cdot \mathbf{u}|_{\partial \Omega} \neq 0$$

$$\mathbf{f} = -\mathbf{u} - \nabla \nabla \cdot \mathbf{u}.$$

S3D

N3D

Remark: In order to get the correct error rate, we give the following remarks:

1.while $\nabla \cdot \mathbf{u}|_{\Omega} = \mathbf{0}$, we consider ccgd problem(eq 3.4 and eq 3.5),instead of cc problem(eq 1.1 and eq 1.2). Variational form is eq 3.6.

2.while $\nabla \cdot \mathbf{u}|_{\Omega} \neq \mathbf{0}$, it is necessary to add $\nabla \cdot \mathbf{u} = g$ (in Ω) to cc problem(eq 1.1 and eq 1.2), and finite element variational form is: Find $\mathbf{u}_h \in U_h^+$ such that

$$(\nabla \times \mathbf{u}_h, \nabla \times \mathbf{v}_h) + (\nabla \cdot \mathbf{u}_h, \nabla \cdot \mathbf{v}_h) - \omega^2(\mathbf{u}_h, \mathbf{v}_h) = (f, \mathbf{v}_h) + (g, \nabla \cdot \mathbf{v}_h), \ \forall \mathbf{v}_h \in U_h^+$$
(4.6)

4.5 Error

Table 4.1: Relative error in L^2 -norm for curl-curl P_1 approximation

$\ \mathbf{u} - \mathbf{u}_h\ _0$	$\mathbf{u} - \mathbf{u}_h \ _0$ S2DI		S2DII		N2D	
Mesh	u1 Error	Ratio	u1 Error	Ratio	Error	Ratio
1/8	7.297e-02		2.359e-02		0.589423	
1/16	1.886e-02	3.87	5.943e-03	3.97	0.635463	
1/32	4.754e-03	3.97	1.489e-03	3.99	0.655565	
1/64	1.191e-03	3.99	3.723e-04	4.00	0.665602	
1/128	2.979e-04	4.00	9.310e-05	4.00		
1/256	7.448e-05	4.00	2.328e-05	4.00		

Table 4.2: Relative error in $\nabla \times L^2$ -norm for curl-curl P_1 approximation

$\ \nabla \times (\mathbf{u} - \mathbf{u}_h)\ _0 + \ \nabla \cdot (\mathbf{u} - \mathbf{u}_h)\ _0$								
P_1	S2DI		S2DII		N2D			
Mesh	u1 Error	Ratio	u1 Error	Ratio	Error	Ratio		
1/8	2.224e-01		1.653e-01		0.5894231			
1/16	1.116e-01	1.99	8.297e-02	1.99	0.635463			
1/32	5.581e-02	2.00	4.152e-02	2.00	0.655565			
1/64	2.791e-02	2.00	2.077e-02	2.00	0.665602			
1/128	1.396e-02	2.00	1.038e-02	2.00				
1/256	6.978e-03	2.00	5.192e-03	2.00				

Table 4.3: Relative error in L^2 -norm for curl-curl P_2 approximation

$\ \mathbf{u} - \mathbf{u}_h\ _0$	S2DI		S2DII		N2D	
Mesh	u1 Error	Ratio	u1 Error	Ratio	Error	Ratio
1/8	1.414e-03		4.419e-04		0.636119	
1/16	1.766e-04	8.01	5.564e-05	7.94	0.658902	
1/32	2.2137e-05	8.00	6.981e-06	7.97	0.670074	
1/64	2.7723e-06	7.98	8.732e-07	7.99		
1/128	3.4380e-07	8.06	1.021e-07	8.56		

Table 4.4: Relative error in $\nabla \times L^2$ -norm for curl-curl P_2 approximation

$\ riangledown imes (\mathbf{u} - \mathbf{u}_h) \ _0 + \ riangledown \cdot (\mathbf{u} - \mathbf{u}_h) \ _0$								
P_2	S2DI		S2DI S2DII		N2D			
Mesh	u1 Error	Ratio	u1 Error	Ratio	Error	Ratio		
1/8	1.7082e-02		6.832E-03		0.960385			
1/16	4.3392e-03	3.94	1.721E-03	3.97	0.98068			
1/32	1.0914e-03	3.98	4.317E-04	3.99	0.990626			
1/64	2.7354e-04	3.99	1.081E-04	3.99				
1/128	6.8460 e - 05	4.00	2.704E-05	4.00				
1/256	1.7124e-05	4.00						

Table 4.5: Relative error in L^2 -norm for curl-curl P_3 approximation

S2DII		2D
Ratio	Error	Ratio
16.32		
15.86		
4.16		
1.89		
	Ratio 16.32 15.86 4.16	Ratio Error 16.32 15.86 4.16

Table 4.6: Relative error	or in ∇	\times L^2 -norm for	curl-curl	P_3 approximation
---------------------------	----------------	--------------------------	-----------	---------------------

$\ \nabla \times (\mathbf{u} - \mathbf{u}_h) \ _0 + \ \nabla \cdot (\mathbf{u} - \mathbf{u}_h) \ _0$									
P_3	S2DI		S2DII		N2D				
Mesh	u1 Error	Ratio	u1 Error	Ratio	Error	Ratio			
1/8	5.061e-04		1.353e-04						
1/16	6.429 e-05	7.87	1.702e-05	7.95					
1/32	8.086e-06	7.95	2.133e-06	7.98					
1/64	1.013e-06	7.98	2.669e-07	7.99					
1/128	1.267e-07	7.99	3.338e-08	8.00					

4.6 Rate

0.399379

Figure 4.5: Rate of S2DI, S2DII in $\|\mathbf{u} - \mathbf{u}_h\|_0$ norm.

Figure 4.6: Rate of S2DI,S2DII in $\|\nabla \times (\mathbf{u} - \mathbf{u}_h)\|_0 + \|\nabla \cdot (\mathbf{u} - \mathbf{u}_h)\|_0$ norm.

Figure 4.7: Rate of S2DI,S2DII in $\|\mathbf{u} - \mathbf{u}_h\|_0$ norm.

Figure 4.8: Rate of S2DI,S2DII in $\|\nabla \times (\mathbf{u} - \mathbf{u}_h)\|_0 + \|\nabla \cdot (\mathbf{u} - \mathbf{u}_h)\|_0$ norm.

Figure 4.9: Rate of S2DI,S2DII in $\|\mathbf{u} - \mathbf{u}_h\|_0$ norm.

Figure 4.10: Rate of S2DI,S2DII in $\|\nabla \times (\mathbf{u} - \mathbf{u_h})\|_0 + \|\nabla \cdot (\mathbf{u} - \mathbf{u_h})\|_0$.

4.7 Figure

Figure 4.11: u1: Approximate solution, mesh: 8x8, P2, S2DI

Figure 4.12: u1: Exact solution, mesh: 8x8

Figure 4.13: u1: Approximate solution, mesh: 16x16, P2, , S2DI

Figure 4.14: u1: Exact solution, mesh: 16x16

Contour plot of exact u1

1

0.8

0.6

0.4

0.2

0

0

0

0

0

0

0

0

0

15

Figure 4.15: u1: Approximate solution, mesh: 32x32, P2, S2DI

Figure 4.16: u1: Exact solution, mesh: 32x32

Figure 4.17: u1: Approximate solution, mesh: 64x64, P2, S2DI

Figure 4.18: u1: Exact solution, mesh: 64x64

Figure 4.19: u1: Approximate solution, mesh: 128x128, P2, S2DI

Figure 4.20: u1: Exact solution, mesh: 128x128

Figure 4.21: u2: Approximate solution, mesh: 8x8, P1, S2DII

Figure 4.22: u2: Exact solution, mesh: 8x8

Figure 4.23: u2: Approximate solution, mesh: 16x16, P1, , S2DII

Figure 4.24: u2: Exact solution, mesh: 16x16

Figure 4.25: u2: Approximate solution, mesh: 32x32, P1, S2DII

Figure 4.26: u2: Exact solution, mesh: 32x32

Figure 4.27: u2: Approximate solution, mesh: 64x64, P1, S2DII

Figure 4.28: u2: Exact solution, mesh: 64×64

Figure 4.29: u2: Approximate solution, mesh: 128x128, P1, S2DII

Figure 4.30: u2: Exact solution, mesh: 128x128

Figure 4.31: u2: Approximate solution, mesh: 256x256, P1, S2DII

Figure 4.32: u2: Exact solution, mesh: 256x256

N2DII

Figure 4.33: u2: Approximate solution, mesh: 32x32, P2, N2DII

Figure 4.34: u2: Exact solution, mesh: 32x32

4.8 Conclusion

- S2DI,S2DII has exact error rate.
- N2DI,N2DII has not exact error rate while in classical finite element method.

4.9 Do next

- Finite Element Methods: Learning and implementing projection finite element method.
- Finite Element Problem: non-smoothing solution, Maxwell eigenproblem.
- Finite Element Domain: Cracked square, multi-materials(square for transmission problems), 3D.