Téléphone : (+33) 6.67.67.38.87 Email : kevin.lippera@ladhyx.polytechnique.fr 39 rue de Plaisance 75014 Paris, France

STAGES DE RECHERCHE

Mai.2017 - Septembre.2017 : Stage de Recherche théorique au LadHyX / Ecole Polytechnique

Palaisea

Etude de la propulsion de particules en lévitation acoustique. Le résultat étant que le comportement non-linéaire de l'advection du fluide couplé à une brisure de symétrie dans la géométrie de la particule peuvent engendrer une propulsion et un spin de la particule soumise à un champ acoustique stationnaire. (Article en cours de rédaction)

Février.2016 - Juillet.2016 : Stage de Recherche théorique et expérimentale au CEMES-CNRS

Toulouse

Etude des **phénomènes de mouillage** à l'échelle du nanomètre. Développement d'un **modèle théorique** de la dissipation visqueuse à l'interface fluide-structure ainsi que d'un **nouveau protocole expérimental** de fabrication de nano pointes très spécifiques. (<u>Article publié</u> **PRF 2017**)

Août.2015 - Janvier.2016 : Stage de Recherche appliquée au Nucléaire à Nuvia Structure

Aix en Provence

Conception d'un nouvel appareil de mesure de la corrosion des circuits de refroidissement de centrales nucléaires. Modélisation théorique et réalisation de pré-tests expérimentaux sur site.

Avril 2014 - Juillet 2014 : Stage de Recherche théorique à Imperial College of London

Londres

Etude de **l'homogénéisation des propriétés mécaniques** des matériaux granulaires via l'étude de la **propagation des ondes acoustiques** se propageant dans ces milieux. **Traitement numérique** de ce problème multi échelles. Les simulations réalisées ont **confirmé les résultats expérimentaux** de l'Université de Bristol qui était également dans le projet.

FORMATION

2017-2020 LadHyX / Ecole Polytechnique : Doctorat en Physique.

Palaiseau

Etude théorique de la propulsion de **nanoparticules autopropulsées en milieu confiné**: Le système étudié est une particule émettant un soluté dans un liquide concentré en surfactant. Un phénomène d'instabilité issu du couplage entre l'advection de la concentration et l'écoulement du fluide permet à la particule de se propulser. Une théorie exacte pour une particule en présence d'interaction (mur, plusieurs particules) reste à ce jour inconnu et fait l'objet de ce doctorat.

2016-2017 Imperial College of London, MSc in Advanced Aeronautical Engineering

London

Parmi les cours abordés :

Mécanique des fluides théorique et informatique, propulsion, design de structures aérodynamiques, mathématiques appliqués aux écoulements, structure, matériaux composites. Note finale du Master 83/100 avec **« Distinction ».**

2013-2015: Ecole des Ponts et Chaussées, Département Génie Mécanique

Paris

Classé 2ème du département sur les deux ans.

Projets réalisés :

2013-2014 : Conception d'un système de propulsion magnétohydrodynamique et dimensionnement d'une application pour le recollement de la couche limite des écoulements à fort Reynold et ainsi permettre la limitation des pertes énergétiques des zones de turbulence.

2014-2015 : Conception d'un **drone traceur quadri rotors** autonome résistant à des chocs importants. Etude notamment du dimensionnement de la coque pour **optimiser l'écoulement issu des pâles.**

2010-2013: CPGE au Lycée Janson de Sailly, Section PCSI puis PSI*

Paris

LANGUES

Anglais: Bilingue

Chinois: intermédiaire (5 ans) Espagnol: intermédiaire (6 ans) Mongol : Notions de base

LANGAGE INFORMATIQUE

Logiciel de calcul: MAPLE Langages : C++, VBA, Python

INTERET PERSONELS

Piano (depuis l'âge de 8ans) Classique et Jazz Hockey, Cyclisme

EXPERIENCE ASSOCIATIVE

Réponsable technique du gala de l'Ecole des Ponts et Chaussées (2013) Brasseur de l'Ecole des Ponts et chaussées (300 litres par ans) (2014-2015)