Causal Inference Assignment 1

Due noon Saturday 6/21

ICPSR Session 1 (June 20, 2025)

- 1. Refer to the the acorn data set that accompanies this assignment. Using the mean of turnout proportions in treatment group precincts, $n_1^{-1}\mathbf{Z}'\mathbf{y}$, as test statistic, simulate its rerandomization distribution under the null hypothesis of strictly no effect, reporting:
 - (a) your simulation p-value;
 - (b) your simulation approximation of $E[n_1^{-1}\mathbf{Z}'\mathbf{y}]$, the null expected value of the test statistic;
 - (c) your simulation approximation of $\operatorname{Var}[n_1^{-1}\mathbf{Z}'\mathbf{y}]$, this test statistic's variance under the null.

Note that n_1 is the number of treated units, n is the total number of units, \mathbf{Z} is the random assignment variable and \mathbf{y} is the observed outcome variable

- 2. Calculate $E[n_1^{-1}\mathbf{Z}'\mathbf{y}]$, the expected value of the sample mean under the strict null hypothesis of no effect, from first principles i.e., without simulations using data in \mathbf{y} .
- 3. In this setup, $\operatorname{Var}\left[\bar{y}_{1}\right] = \frac{1}{n_{1}} \frac{n_{0}}{n} \frac{\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}}{n-1}$, where $\bar{y}_{1} = n_{1}^{-1}\mathbf{Z}'\mathbf{y}$ is the mean of ys among the group assigned to treatment $(\{i:Z_{i}=1\})$ while $\bar{y}=n^{-1}\mathbf{1}'\mathbf{y}$ is the mean of y over the full study population. If you've seen formulas for the sampling variance of the mean in earlier stats courses, you probably saw

$$\widehat{\operatorname{Var}}\left[\bar{y}_{1}\right] = \frac{s_{y}^{2}}{n_{1}} = \frac{1}{n_{1}} \frac{\sum_{i=1}^{n_{1}} (y_{i} - \bar{y}_{1})^{2}}{n_{1} - 1}, \text{ and/or } \operatorname{Var}\left[\bar{y}_{1}\right] = \frac{\sigma_{y}^{2}}{n_{1}} = \frac{1}{n_{1}} \frac{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}{N}.$$

Which gives a larger value, our new $\text{Var}[\bar{y}_1]$ -formula or the $\text{Var}[\bar{y}_1]$ formula immediately above? Explain why it makes sense that the formula we've given would differ in the direction it does from this other formula.

- 4. Calculate $\operatorname{Var}[n_1^{-1}\mathbf{Z}'\mathbf{y}]$ using the appropriate formula. Determine the error of the simulation-based approximation to this quantity that you reported in question 1, expressing it as a percentage of $\operatorname{Var}[n_1^{-1}\mathbf{Z}'\mathbf{y}]$.
- 5. Determine the Normal theory approximation to $\Pr(n_1^{-1}\mathbf{Z}'\mathbf{y} \geq n_1^{-1}\mathbf{z}'\mathbf{y})$. (Hints: Use the variance and expected values calculated in 4 and 2 to transform your observed treatment group mean into a corresponding "z-score." To to determine Normal quantiles corresponding to z-scores in R, use pnorm(); type ?pnorm for help. And \mathbf{z}' refers to the observed Acorn data treatment assignment.)
- 6. A researcher plans to ask six subjects to donate time to an adult literacy program. Each subject will be asked to donate either 30 (Z=0) or 60 (Z=1) minutes. The researcher is considering three methods for randomizing the treatment. Method I is to make independent decisions for each subject, tossing a coin each time. Method C is to write "30" and "60" on three playing cards each, and then shuffle the six cards. Method P tosses one coin for each of the 3 pairs (1,2), (3,4), (5,6), asking for 30 (60) minutes from exactly one member of each pair.
 - a Discuss strengths & weaknesses of each method.
 - b How would your answers to (a) change if $n: 6 \mapsto 600$?
 - c Determine $E[Z_1]$ under each method.
 - d Determine $E[Z_1 + Z_2 + \cdots + Z_6]$ under each method.
 - e Calculate $E[\mathbf{Z}'\mathbf{1}]$ under each of the three methods.
- f For which of the methods does $E[(\mathbf{Z'1} E[\mathbf{Z'1}])^2] = 0$?
- h For two of the three methods, the linearity property of expected value² entails that $E[\frac{\mathbf{Z}'\mathbf{x}}{\mathbf{Z}'\mathbf{1}}] = (x_1 + x_2 + \ldots + x_6)/6$. Which two are these, and why doesn't the argument work for the third?

¹I.e., for which does $Var[\mathbf{Z}'\mathbf{1}] = 0$? (In general, $Var[V] = E[V - E[V]]^2$.)

²For constant α and β , $E(\alpha + \beta Y) = \alpha + \beta E(X)$. Also $E(\alpha X + \beta Y) = \alpha E(Y) + \beta E(X)$.