Korbinian Münster (korbinian_muenster@ph.tum.de)

Blatt 1

Ferienkurs Elektrodynamik - WS 08/09

1 Spiegelladung für eine Kugel

Im Koordinatenursprung befinde sich ein metallische Kugel mit Radius a. Außerhalb der Kugel befinde sich im Abstand r vom Ursprung eine Ladung q. Bestimmen sie mit Hilfe der Spiegelladungsmethode das Potential außerhalb der Kugel.

2 Dielektrikum

Betrachten Sie zwei konzentrische Kugelschalen mit Gesamtladung Q bzw. -Q und Radius a bzw. b (a < b). Im Zwischenraum befinde sich ein Dielektrikum mit Dielektrizitätskonstante ϵ .

Berechnen Sie das elektrische Potential $\varphi(\mathbf{x})$, das elektrische Feld $\mathbf{E}(\mathbf{x})$ sowie die dielektrische Verschiebung $\mathbf{D}(\mathbf{x})$ im gesamten Raum.

3 Dipolmoment

- (a) Berechnen Sie das Dipolmoment \mathbf{p} für eine Kugel mit Radius a und Oberflächen-Ladungsdichte $\sigma = \sigma_0 \cdot \cos \vartheta$ (ϑ ist der Polarwinkel in Kugelkoordinaten). Überlegen Sie sich zuerst welche Komponenten des Dipolmoments aus Symmetriegründen verschwinden müssen, und berechnen Sie dann die verbleibende(n) Komponente(n).
- (b) Zeigen Sie allgemein, dass das Dipolmoment \mathbf{p} einer Ladungsverteilung $\rho(\mathbf{x})$ unabhängig von der Wahl des Koordinatenursprungs ist (Translationsinvarianz), falls die Gesamtladung gleich Null ist.

4 Potentiale, Felder

- (a) Gegeben sei das elektrische Feld $\mathbf{E}(\mathbf{x}) = (yz, xz, xy)^T$. Bestimmen Sie ein dazugehöriges elektrostatisches Potential.
- (b) Gegeben sei das Magnetfeld $\mathbf{B}(\mathbf{x}) = B_0 \cdot \mathbf{e}_{\varphi}$ (in Zylinderkoordinaten). Wie lautet ein dazu passendes Vektropotential?
- (c) Können die folgenden Vektorfelder ein statisches elektrisches Feld beschreiben? Wenn ja, dann geben Sie die dazugehörige Ladungsdichte ρ an.

$$\mathbf{F}_1(\mathbf{x}) = r \cdot \mathbf{e}_x \qquad \mathbf{F}_2(\mathbf{x}) = f(r) \cdot \mathbf{e}_r$$

5 Laplacegleichung in Zylinderkoordinaten

Zeigen Sie, dass die allgemeine Lösung der Laplacegleichung $-\nabla^2 \phi(\mathbf{x}) = 0$ in Zylinderkoordinaten gegeben ist durch:

$$\phi(\mathbf{x}) = A_0 + B_0 \cdot \ln(r) + \sum_{n=1}^{\infty} \left((A_n r^n + B_n r^{-n}) \cdot \cos n\varphi + (C_n r^n + D_n r^{-n}) \cdot \sin n\varphi \right)$$

Hinweis: Verwenden Sie den Seperationsansatz $\phi(\mathbf{x}) = f(r)g(\varphi)$ und den Laplaceoperator in Zylinderkoordinaten $\nabla^2 = \partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_{\varphi}^2$.