

Fundamentos de física I.

Seminario 1. Construyendo un movimiento parabólico

Una partícula parte del punto $\vec{r}_0 = x_0 \hat{x} + y_0 \hat{y}$ con velocidad inicial $\vec{v}_0 = v_{x0}\hat{x} + v_{y0}\hat{y}$ y aceleración $\vec{a} = -g\hat{y}$, donde $g = 9.81 \ m/s^2$ es el módulo de la gravedad terrestre.

Figura 1: Movimiento con aceleración constante en el eje \hat{y} .

- 1. Demuestra que si el ángulo que forma el vector velocidad inicial \vec{v}_0 con el eje horizontal es θ_0 , entonces podemos escribir $\vec{v}_0 = v_0 cos \theta_0 \hat{x} + v_0 sen \theta_0 \hat{y}$.
- 2. Demuestra que el movimiento de la partícula será una composición de un movimiento rectilíneo uniforme en el eje horizontal con un movimiento rectilíneo uniformemente acelerado en el eje vertical.
- 3. Escribir las ecuaciones implícitas de la trayectoria y demostrar que se corresponde con un movimiento parabólico en el plano xy.
- 4. Demostrar que la trayectoria tiene un máximo. Calcular t_M , x_M e y_M .
- 5. Calcular el alcance, posición máxima en el eje horizontal.
- 6. Demuestra, en el caso de movimiento parabólico, que si dos cuerpos salen del mismo punto $(x_0, y_0 = 0)$ con velocidad inicial de igual magnitud v_0 pero ángulos iniciales $\theta_0 = 30^{\circ}$ y $\theta'_0 = 60^{\circ}$, el alcance es el mismo.

7. Desde lo alto de un acantilado se lanza una pelota con una velocidad inicial de 50 m/s formando un ángulo de 30º con la horizontal. Debajo del acantilado hay una laguna y un pueblo tal y como indica la figura. El acantilado tiene una altura de 55 m. ¿Caerá la pelota en la laguna?

Figura 2: Lanzamiento desde un acantilado