Robot Construction: Review

ACTUATORS

What is a robot? (Cont.)

- Our definition of robot (for our purposes):
 - An autonomous agent, acting independently.
 Our environment is the real world.
 - The robot can sense its environment (including its own internal state) and act on it to achieve pre-defined goals.
- Robotics: The study of robots their design, construction, capabilities and purpose.

^{*} Robot Programming: A Guide to Controlling Autonomous Robots, Cameron Hughes and Tracy Hughes

Our definition of a robot

- Robot = autonomous embodied agent
- Has a body and a brain

Exists in the physical world (rather than the

virtual or simulated world).

Is a mechanical device

Robot definition (cont.)

- Contains sensors to perceive its own state
- Contains sensors to perceive surrounding environment
- Has effectors that perform actions
- Has a controller that takes input from the sensors, makes intelligent decisions about actions to take, and performs these actions by sending commands to motor

Robot State

- Refers to the description of the system at any point in time
- Internal state refers to the state of the robot
 - E.g., its battery is low
- External state refers to the state of the world
 - As the robot perceives it
 - E.g., it is wet on the ground

Robot components

- All have five common components:
 - Control:
 - Human: Brain, central nervous system
 - Function: the brain makes decisions based on sensory input, nervous system sends signals to muscles
 - What is the equivalent in Robots?
 - Usually the brain is a computer of some kind, wires send signals
 - Effectors (body/structure):
 - Human: Bones and muscles legs, arms, wrists, neck, etc.
 - Function: Allows movement
 - What is the equivalent in Robots?
 - Motors allow movement, wheels

Robot components

- All have five common components (cont.):
 - Perception (sensors):
 - Humans: 5 senses detected by our body (what are they?)
 - Touch, Smell, Sight, Hearing, Taste
 - Robots: Touch sensor notifies robot of contact with another object, sound sensor allows robot to perceive audio.
 - Power source:
 - Humans: food and digestive system
 - Function: provide energy
 - Robots: usually batteries of some kind

Robot components

- Communications:
 - Humans: voice, gesture, hearing
 - Function: communication with outside world
 - Robots: input/output functionality, expressions, wireless signals

Effectors and Actuators

- Terms are often used interchangeably to mean: "whatever makes the robot take an action"
 - but they aren't the same thing

Effectors

- Any device that affects the environment
 - Either through direct impact or influence
 - Examples:
 - Wheels on a mobile robot
 - Or legs, wings, fins...
 - Whole body might push objects
 - Grippers on an assembly robot
 - Or welding gun, paint sprayer
 - Speaker, light, tracing-pen

Effectors

- Specific categories:
 - Manipulators: Industrial robot arms, capable of picking and placing objects, mimicking human
 - Mobile/humanoid robots: effectors enables moving around

ACTUATORS

Actuators

- The mechanisms that enables the effector to execute an action or movement.
 - In animals and humans:
 - muscles and tendons are the actuators
 - make the arms and legs and the backs do their jobs.
 - In robots:
 - Converts software commands into physical movements
 - Through electronic or hydraulic signals
 - Actuators include electric motors and various other technologies.
 - Connected via transmission:
 - System gears, brakes, valves, locks, springs...

PROGRAMMING FUNDAMENTALS

Creating a successful robot

- Creating a successful robot takes team effort
 - Between humans and robots
- Humans is responsible for:
 - identifying the task
 - planning out a solution
 - Explaining to the robot what he needs to do
 - To reach the goal
- Robot is responsible for:
 - Following the instructions it is given
 - Thereby carrying out the plan

Creating a successful robot

- Humans and machines do not speak the same language
- Therefore, a special language needs to be created
 - To translate the necessary instructions from human to robot
 - Such as the NXT-G we are working with
 - These are called programming languages

Programming Language

- Instructions written in programming languages are called programs
 - Created by the programmer
- The programmer needs to:
 - identify the task
 - plan a solution
 - Produce a program that the robot will understand
- The robot will run the program
 - And accomplish the task it was given
 - Assuming the program is correct

Programming Language

- What are the challenges?
- The robot only follows the program
 - It does not think by itself
 - Only has the capabilities that the program gives it
 - The programmer is responsible for:
 - designing a solution
 - Programming the robot to follow it

Lab time!

• Let's work with our robots!

