TDA lecture

Priyavrat Deshpande

Chennai Mathematical Institute

February 16, 2022

1/29

Outline

- Complexes from Data
- Persistent homology
- 3 Homology representation

The Cech complex

Point cloud data

A point cloud \mathbb{X} is a set of vectors $\{x_1,\ldots,x_N\}$ in \mathbb{R}^d .

Definition (Cech Complex)

Given a PCD $\mathbb X$ and r>0 the Cech complex $\mathrm{Ch}_r(\mathbb X)$ is an (abstract) simplicial complex whose simplices are those subsets $\sigma\in\mathbb X$ such that

$$\bigcap_{x \in \sigma} B(x; r) \neq \emptyset.$$

3/29

The Cech complex

- If r < r' then $\operatorname{Ch}_r(\mathbb{X}) \subseteq \operatorname{Ch}_{r'}(\mathbb{X})$.
- For a radius r, a subset σ of $\mathbb X$ a simplex if and only if the corresponding set of points is contained in a ball of radius r.
- Checking whether a set of points is contained in a ball of given radius is a well studied problem in computational geometry.

Vietoris-Rips complex

Definition (Diameter)

The diameter of $\mathbb X$ is the upper bound of the set of all pairwise distances, i.e.,

$$\operatorname{diam}(\mathbb{X}) := \sup\{d(x, y) \mid x, y \in \mathbb{X}\}.$$

Definition

Let $X\subset\mathbb{R}^N$ be a finite point cloud and r>0 be the scale parameter. The Vietoris-Rips complex, $V_r(X)$, is defined as the simplicial complex that contains all subsets whose diameter is at most r:

$$V_r(X) := \{ \sigma \subset \mathbb{X} \mid \operatorname{diam}(\sigma) \leq r \}.$$

- In general $V_r(X)$ does not embed in \mathbb{R}^d .
- If r < r' then $V_r(X) \subseteq V_{r'}(X)$.
- It is a clique (or flag) complex, i.e., completely determined by its 1-skeleton.

An example

Left hand side we have Ch_α and on the right hand side we have $V_{2\alpha}.$

4 □ ▶ 4 圖 ▶ 4 ≣ ▶

The relationship

Proposition

$$\operatorname{Ch}_r(\mathbb{X}) \subseteq \operatorname{V}_{2r}(\mathbb{X}) \subseteq \operatorname{Ch}_{2r}(\mathbb{X}).$$

Proof

- Let $\sigma \in \operatorname{Ch}_r$. Then there is a ball of radius r that contains σ . The diameter of such a ball is at most 2r, hence $\sigma \in V_{2r}$.
- Let $\tau \in V_{2r}$. Then $\operatorname{diam}(\tau) \leq r$. Hence there is a ball of radius 2r containing τ . Hence $\tau \in \operatorname{Ch}_{2r}$.

Other witness complex

Definition

Given a PCD $\mathbb X$ and a chosen subset L of landmark points the witness complex, $W(\mathbb X,L)$ is defined as follows: the vertices of W are the points in L. For each $x\in\mathbb X$, we find two points $l_1,l_2\in L$ that are closest to x, and add the edge $\{l_1,l_2\}$. A higher simplex is added if and only if all its edges are present.

The witness complex

How to choose L?

- Randomly.
- Pick l_1 at random. Then choose l_2 such that $d(l_1, l_2)$ is maximum. Choose l_3 that maximizes $\min\{d(l_1, l_3), d(l_2, l_3)\}$ etc.
- Choose from denser regions.

The scale parameter

For a scale parameter r>0 the witness complex $W_r(\mathbb{X},L)$ has vertex set L and $\{l_1,l_2\}$ is an edge if there exists $x\in X$ such that

$$d(x, l_1), d(x, l_2) \le \text{const.} + r.$$

Other complexes

- The Alpha complex.
- The flow complex.
- The Delaunay triangulation.

10 / 29

Outline

- Complexes from Data
- Persistent homology
- 3 Homology representation

Priyavrat (CMI) TDA class February 16, 2022 11/29

Where is the correct shape?

- From data one gets a filtered simplicial complex.
- How to pick the right r? (For which r we get the right shape from which the data is sampled?)
- ullet There might not be just 'one correct' value of r.
- Matrix reduction(s) for every value of r must be expensive!!

Just calculate topological features for all possible scales.

12/29

An example

 $1 \sqrt{2} \qquad 1$

Consider the PCD consisting of $4\ \mathrm{points}.$

For r < 1 the VR complex is just 4 points.

For $1 \le r < \sqrt{2}$ the VR complex is

For $r \geq \sqrt{2}$ the VR complex is a tetrahedron

Question

How do we quantify and keep track of these changes?

Filtered complexes

An increasing sequence $\epsilon_{i_1} < \cdots < \epsilon_{i_n}$ induces a filtration

$$\emptyset \subset VR_{\epsilon_{i_1}}(X) \subseteq \cdots \subseteq VR_{\epsilon_{i_n}}(X).$$

For every $p \ge 0$ we have:

$$H_p(VR_1(X)) \xrightarrow{f_p^{0,1}} H_p(VR_2(X)) \xrightarrow{f_p^{0,2}} \cdots \xrightarrow{f_p^{n-1,n}} H_p(VR_n(X)).$$

In general for i < j

$$f_p^{i,j}: H_p(VR_i(X)) \to H_p(VR_j(X)).$$

14 / 29

Persistent homology

$$f_p^{i,j}: H_p(VR_i(X)) \to H_p(VR_j(X)).$$

Definitions

- p-th persistent homology group: $\mathcal{H}_p^{i,j} := \operatorname{Im}(f_p^{i,j})$.
- p-th persistence Betti number: $\beta_p^{i,j} := \operatorname{rank}(\mathcal{H}_p^{i,j})$.
- Birth at i-th stage: A class c such that

$$c \in H_p(VR_i(X))$$
 but $c \notin \mathcal{H}_p^{i-1,i}$.

• Death of a class at *j*-th stage: A class c such that

$$f_n^{i,j-1}(c)
otin\mathcal{H}_n^{i-1,j-1}$$
 and $f_n^{i,j}(c)\in\mathcal{H}_n^{i-1,j}.$

ullet The number of cycles that are born at ϵ_i and are dead at ϵ_j is:

$$\mu_n^{i,j} := (\beta_n^{i,j-1} - \beta_n^{i-1,j-1}) - (\beta_n^{i,j} - \beta_n^{i-1,j})$$

Are there other filtrations?

Sublevel set filtration

Suppose K is a simplcial complex and f an \mathbb{R} -valued function defined on the vertices of K. Define following "weight function" on K

$$w(\sigma) := \begin{cases} f(v) & \text{if } \sigma = \{v\}, \\ \max_{\tau \subset \sigma} w(\tau) & \text{else.} \end{cases}$$

Then K can be filtered using ascending order of weights of simplices.

One can analogously define superlevel set filtrations.

Outline

- Complexes from Data
- Persistent homology
- 3 Homology representation

Visualizing persistence

Definition (Persistence barcodes)

For every $p \geq 0$ we draw a graph whose verticle axis corresponds to all possible p-homology generators and the horizontal axis is the time parameter.

- Advantage: "judging lengths of lines"
- 4 However, topological features exist at different scales with large relative differences.
- Pretty large data, unimportant details.
- 4 How does on order features?

18 / 29

Example

Visualizing persistence

Definition (Persistence diagram)

The p-persistence diagram is a 2-d coordinate system where x is the birth coordinate and y is the death coordinate. For every p-homology class there is a point (b,d) representing its birth and death time.

- **1** The lifetime of a cycle x_i is called persistence; $pers(x_i) = d_i b_i$.
- Persistence diagram is a type of topological summary.
- The space of all PDs supports various metrics that differentiate topological features.
- They appear very cluttered. Suffer from overplotting.
- **3** Advantage: points are grouped by scale similarity.
- Stable w.r.t. perturbation in the data.
- O Sensitive to "small/big" holes.
- Possible to track holes, record size/scale of the feature.
- Not sensitive to outliers.
- Computable in practice.
- Provides a flexible framework (i.e., clusters/flares_etc,)

Persistence diagrmas

21 / 29

How to interprete?

- High persistence implies existence of **robust** features.
- Spurious topological features are short-lived, i.e., noise.
- **1** The summary description is always 2-dimensional.
- Persistent diagrams are a similarity metirc.
- **1** β_0 : number of connected components (clusters?).
- \bullet β_1 : number of cycles (periodic features?).
- β_2 : number of hollow spaces (?).

February 16, 2022

22 / 29

Persistence diagrmas

The bottleneck distance

Definition

For two PDs X,Y the bottleneck distance ($\infty ext{-Wasserstein metric}$) is defined as

$$d_B(X,Y) := \inf_{\gamma} \sup_{x \in X} ||x - \gamma(x)||_{\infty},$$

where γ runs over all the matchings (bijections) from X to Y.

- $oldsymbol{0}$ The space of PDs with d_B is a metric space.
- 2 There are similar distance functions.
- Proves stability of PH operation.
- PD is not a vector.

Optimal transport

The stability theorem

$\mathsf{Theorem}$

Denote by Let X_1, X_2 be two PCDs and denote by $D_p(X)$ the persistence diagram correponding p-persistence homology. Then

$$d_B(D_p(\mathbb{X}_1), D_p(\mathbb{X}_2)) \le d_H(\mathbb{X}_1, \mathbb{X}_2),$$

where $d_H(\cdot, \cdot)$ is the Hausdorff distance between the sets.

Intuitive meaning

The persistent homology doesn't change under mild perturbation of the data.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ の へ ○ ·

An example

Digression

- PDs can be constructed for functions defined over point clouds.
- PDs are defined and stable for a large class of continuous functions defined over (pre-)compact metric spaces.
- Topological signatures have been used for shape classification and segmentation and clustering.

28 / 29

Topology to Statistics

Recently a lot of methods have been discovered that convert topological features into vectors that can be used for statistical analysis as well as input to ML algorithms.