

1. (Amended) A compound of Formula (I):

A2
or a pharmaceutically acceptable salt thereof, wherein:

A is O or S;

Q is -NR¹R²;

R¹ is selected from:

H;

C₁-C₆ alkyl substituted with 0-3 R^{1a};

C₃-C₁₀ carbocycle substituted with 0-3 R^{1b};

C₆-C₁₀ aryl substituted with 0-3 R^{1b}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{1b};

R^{1a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃;

C₃-C₁₀ carbocycle substituted with 0-3 R^{1b};

C₆-C₁₀ aryl substituted with 0-3 R^{1b}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{1b};

R^{1b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₆ haloalkyl, and C₁-C₄ haloalkoxy;

*B /
Cont*
~~R² is independently selected from H, C₁-C₆ alkyl, C₃-C₁₀ carbocycle, C₆-C₁₀ aryl, and 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur;~~

*AV
Cont*
~~R³ is -(CR⁷R^{7a})_n-R⁴,
-(CR⁷R^{7a})_n-S-(CR⁷R^{7a})_m-R⁴,
-(CR⁷R^{7a})_n-O-(CR⁷R^{7a})_m-R⁴,
-(CR⁷R^{7a})_n-N(R^{7b})-(CR⁷R^{7a})_m-R⁴,
-(CR⁷R^{7a})_n-S(=O)-(CR⁷R^{7a})_m-R⁴,
-(CR⁷R^{7a})_n-S(=O)₂-(CR⁷R^{7a})_m-R⁴,
-(CR⁷R^{7a})_n-C(=O)-(CR⁷R^{7a})_m-R⁴,
-(CR⁷R^{7a})_n-N(R^{7b})C(=O)-(CR⁷R^{7a})_m-R⁴,
-(CR⁷R^{7a})_n-C(=O)N(R^{7b})-(CR⁷R^{7a})_m-R⁴,
(CR⁷R^{7a})_n-N(R^{7b})S(=O)₂-(CR⁷R^{7a})_m-R⁴, or
(CR⁷R^{7a})_n-S(=O)₂N(R^{7b})-(CR⁷R^{7a})_m-R⁴;~~

~~n is 0, 1, 2, or 3;~~

~~m is 0, 1, 2, or 3;~~

~~R^{3a} is H, OH, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₂-C₄ alkenyl or C₂-C₄ alkenyloxy;~~

~~R⁴ is H, OH, OR^{14a},
C₁-C₆ alkyl substituted with 0-3 R^{4a},
C₂-C₆ alkenyl substituted with 0-3 R^{4a},
C₂-C₆ alkynyl substituted with 0-3 R^{4a},
C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},
C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};~~

~~R^{4a}, at each occurrence, is independently selected from is H, F, Cl, Br, I, CF₃,~~

*B1
Conf*

~~C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},~~
~~C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or~~
~~5 to 10 membered heterocycle containing 1 to 4~~
~~heteroatoms selected from nitrogen, oxygen, and~~
~~sulphur, wherein said 5 to 10 membered heterocycle is~~
~~substituted with 0-3 R^{4b};~~

*A2
Conf*

R^{4b}, at each occurrence, is independently selected from H, OH,
Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃,
S(=O)CH₃, S(=O)₂CH₃,
C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,
C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H, OR¹⁴;
C₁-C₆ alkyl substituted with 0-3 R^{5b};
C₁-C₆ alkoxy substituted with 0-3 R^{5b};
C₂-C₆ alkenyl substituted with 0-3 R^{5b};
C₂-C₆ alkynyl substituted with 0-3 R^{5b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; or
5 to 10 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 10 membered heterocycle is
substituted with 0-3 R^{5c};

R^{5a} is H, OH, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₂-C₄ alkenyl, or C₂-
C₄ alkenyloxy;

R^{5b}, at each occurrence, is independently selected from:
H, C₁-C₆ alkyl, CF₃, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂,
NR¹⁵R¹⁶;
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; or
5 to 10 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 10 membered heterocycle is
substituted with 0-3 R^{5c};

*B¹
cont*

R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

*A¹
cont*

R^6 is H;

C₁-C₆ alkyl substituted with 0-3 R^{6a}; C₃-C₁₀ carbocycle substituted with 0-3 R^{6b}; or C₆-C₁₀ aryl substituted with 0-3 R^{6b};

R^{6a} , at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, aryl or CF₃;

R^{6b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;

R^7 , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, CF₃, phenyl and C₁-C₄ alkyl;

R^{7a} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, CF₃, and C₁-C₄ alkyl;

R^{7b} is independently selected from H and C₁-C₄ alkyl;

Ring B is a 7 membered lactam or thiolactam, wherein the lactam or thiolactam is saturated, partially saturated or unsaturated; wherein each additional lactam carbon or thiolactam carbon is substituted with 0-2 R¹¹; and, optionally, the lactam or thiolactam contains a heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)₂-, -N=, -NH-, and -N(R¹⁰)-;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-4 R¹³;

B' cont
additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R¹³;

A2
C cont
additionally, two R¹¹ substituents on the same or adjacent carbon atoms may be combined to form a C₃-C₆ carbocycle substituted with 0-3 R¹³;

R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹, S(=O)₂NR¹⁸R¹⁹, S(=O)₂R¹⁷; C₁-C₆ alkyl optionally substituted with 0-3 R^{10a}; C₆-C₁₀ aryl substituted with 0-4 R^{10b}; C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{10b};

R^{10a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or aryl substituted with 0-4 R^{10b};

R^{10b}, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹¹, at each occurrence, is independently selected from

*B /
Cont*

H, C₁-C₄ alkoxy, Cl, F, Br, I, =O, CN, NO₂, NR¹⁸R¹⁹, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹, S(=O)₂NR¹⁸R¹⁹, CF₃; C₁-C₆ alkyl optionally substituted with 0-3 R^{11a}; C₆-C₁₀ aryl substituted with 0-3 R^{11b}; C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};

*AV /
Cont*

R^{11a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃; phenyl substituted with 0-3 R^{11b}; C₃-C₆ cycloalkyl substituted with 0-3 R^{11b}; and 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

Z is H;
C₁-C₈ alkyl substituted with 1-3 R¹²; C₂-C₄ alkenyl substituted with 1-3 R¹²; C₂-C₄ alkynyl substituted with 1-3 R¹²; C₁-C₈ alkyl substituted with 0-3 R^{12a}; C₂-C₄ alkenyl substituted with 0-3 R^{12a}; C₂-C₄ alkynyl substituted with 0-3 R^{12a}; C₆-C₁₀ aryl substituted with 0-4 R^{12b}; C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and

~~sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};~~

*B /
cont*
~~R¹², at each occurrence, is independently selected from C₆-C₁₀ aryl substituted with 0-4 R^{12b}; C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};~~

*A/
cont*
~~R^{12a}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, or C₁-C₄ haloalkyl-S-;~~

~~R^{12b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;~~

~~R¹³, at each occurrence, is independently selected from H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;~~

~~R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;~~

~~R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;~~

~~R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;~~

~~R¹⁶, at each occurrence, is independently selected from~~

~~H, OH, C₁-C₆ alkyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;~~

B1
cont
R¹⁷ is H, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl,
aryl substituted by 0-4 R^{17a}, or
-CH₂-aryl substituted by 0-4 R^{17a};

A4
cont
R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃,
S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;

R¹⁸, at each occurrence, is independently selected from
H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-; and

R¹⁹, at each occurrence, is independently selected from
H, OH, C₁-C₆ alkyl, phenyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

provided, when R¹³ is H,

then Z is H;

C₄-C₈ alkyl substituted with 1-3 R¹²;
C₂-C₄ alkenyl substituted with 1-3 R¹²;
C₂-C₄ alkynyl substituted with 1-3 R¹²;
C₁-C₈ alkyl substituted with 0-3 R^{12a};
C₂-C₄ alkenyl substituted with 0-3 R^{12a}; or
C₂-C₄ alkynyl substituted with 0-3 R^{12a}; and

provided, when ring B is a 1,3,4,5-tetrahydro-1-(Z)-5-(R¹⁰)-
6,6,7,7-tetra(R¹¹)-2,4-dioxo-2H-1,5-diazepin-3-yl core, and
R¹³ is H; then

R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹,
S(=O)₂NR¹⁸R¹⁹, S(=O)₂R¹⁷; or
C₁-C₆ alkyl optionally substituted with 0-3 R^{10a};

R^{10a}, at each occurrence, is independently selected from

B'
cont

H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, and CF₃.

2. (Amended) A compound, according to Claim 1, of Formula (Ia):

A'
cont

or a pharmaceutically acceptable salt thereof,
wherein:

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};

C₂-C₄ alkenyl substituted with 0-3 R^{12a}; or

C₂-C₄ alkynyl substituted with 0-3 R^{12a}.

4. (Amended) A compound according to Claim 3 of Formula (Ia)
wherein:

A3
A4
cont

R³ is -(CHR⁷)_n-R⁴,

n is 0 or 1;

R^{3a} is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, allyl, or 3-buten-1-yl;

R⁴ is H, OH, OR^{14a},

C₁-C₄ alkyl substituted with 0-2 R^{4a},

C₂-C₄ alkenyl substituted with 0-2 R^{4a},

C₂-C₄ alkynyl substituted with 0-1 R^{4a},

C₃-C₆ carbocycle substituted with 0-3 R^{4b},

C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or

~~5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b};~~

B'
Cont
A3
Cont

R^{4a}, at each occurrence, is independently selected from is H, F, Cl, Br, I, CF₃,

C₃-C₆ carbocycle substituted with 0-3 R^{4b},

phenyl substituted with 0-3 R^{4b}, or

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b};

/

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R⁵ is H, OR¹⁴;

C₁-C₄ alkyl substituted with 0-3 R^{5b};

C₂-C₄ alkenyl substituted with 0-3 R^{5b};

C₂-C₄ alkynyl substituted with 0-3 R^{5b};

R^{5a} is H, methyl, ethyl, propyl, or butyl;

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, Cl, F, Br, I, =O;

C₃-C₆ carbocycle substituted with 0-3 R^{5c};

phenyl substituted with 0-3 R^{5c}; or

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

B/
Cont

R⁶ is H;

R⁷, at each occurrence, is independently selected from H, F, CF₃, methyl, and ethyl;

A2

Cont

Ring B is a 7 membered lactam or thiolactam, wherein the lactam or thiolactam is saturated, partially saturated or unsaturated; wherein each additional lactam carbon or thiolactam carbon is substituted with 0-2 R¹¹; and, optionally, the lactam or thiolactam contains a heteroatom selected from -N=, -NH-, and -N(R¹⁰)-;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-2 R¹³;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-2 R¹³;

additionally, two R¹¹ substituents on the same or adjacent carbon atoms may be combined to form a C₃-C₆ carbocycle substituted with 0-2 R¹³;

R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷;

C₁-C₄ alkyl optionally substituted with 0-1 R^{10a};

phenyl substituted with 0-4 R^{10b};

C₃-C₆ carbocycle substituted with 0-3 R^{10b}; or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{10b};

B/
Cont
R^{10a}, at each occurrence, is independently selected from H, C₁-C₄ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-4 R^{10b};

A²
Cont
R^{10b}, at each occurrence, is independently selected from H, OH, C₁-C₄ alkyl, C₁-C₃ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, or CF₃;

R¹¹, at each occurrence, is independently selected from H, C₁-C₄ alkoxy, Cl, F, =O, NR¹⁸R¹⁹, C(=O)R¹⁷, C(=O)OR¹⁷, CF₃;
C₁-C₆ alkyl optionally substituted with 0-3 R^{11a};
C₆-C₁₀ aryl substituted with 0-3 R^{11b};
C₃-6 carbocycle substituted with 0-3 R^{11b}; or
5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from H, C₁-C₄ alkyl, OR¹⁴, F, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Z is H;
C₁-C₄ alkyl substituted with 0-3 R^{12a};
C₂-C₄ alkenyl substituted with 0-3 R^{12a}; or
C₂-C₄ alkynyl substituted with 0-3 R^{12a};

B1
Cont
 R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=O)CH_3$, $S(=O)_2CH_3$, C_1-C_4 alkyl, C_1-C_3 alkoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

R^{13} , at each occurrence, is independently selected from H, OH, C_1-C_6 alkyl, C_1-C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$ and CF_3 ;

R^{14} is H, phenyl, benzyl, C_1-C_4 alkyl, or C_2-C_4 alkoxyalkyl;

A2
Cont
 R^{15} , at each occurrence, is independently selected from H, C_1-C_4 alkyl, benzyl, phenethyl, $(C_1-C_4\text{ alkyl})-C(=O)-$, and $(C_1-C_4\text{ alkyl})-S(=O)_2-$;

R^{16} , at each occurrence, is independently selected from H, OH, C_1-C_4 alkyl, benzyl, phenethyl, $(C_1-C_4\text{ alkyl})-C(=O)-$, and $(C_1-C_4\text{ alkyl})-S(=O)_2-$;

R^{17} is H, methyl, ethyl, propyl, butyl, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, phenyl substituted by 0-3 R^{17a} , or $-CH_2\text{-phenyl}$ substituted by 0-3 R^{17a} ;

R^{17a} is H, methyl, methoxy, -OH, F, Cl, CF_3 , or OCF_3 ;

R^{18} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

R^{19} , at each occurrence, is independently selected from H, methyl, and ethyl.

5. (Amended) A compound of Claim 5 of Formula (Ib):

or a pharmaceutically acceptable salt thereof wherein:

Ring B is selected from:

, and

A3
cont

6. (Amended) A compound according to Claim 5 of Formula (Ic):

B2

or a pharmaceutically acceptable salt thereof

wherein

~~R³ is R⁴,~~

*B²
cont*
~~R⁴ is C₁-C₄ alkyl substituted with 0-1 R^{4a},
C₂-C₄ alkenyl substituted with 0-1 R^{4a}, or
C₂-C₄ alkynyl substituted with 0-1 R^{4a};~~

*A²
cont*
~~R^{4a}, at each occurrence, is independently selected from
H, F, CF₃,
C₃-C₆ carbocycle substituted with 0-3 R^{4b},
phenyl substituted with 0-3 R^{4b}, or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{4b}; wherein said 5 to 6 membered
heterocycle is selected from pyridinyl, pyrimidinyl,
triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl,
piperazinyl, piperidinyl, pyrazolyl, imidazolyl,
oxazolyl, isoxazolyl, and tetrazolyl;~~

~~R^{4b}, at each occurrence, is independently selected from H, OH,
Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,
methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy,
C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;~~

~~R⁵ is C₁-C₄ alkyl substituted with 0-1 R^{5b};
C₂-C₄ alkenyl substituted with 0-1 R^{5b};
C₂-C₄ alkynyl substituted with 0-1 R^{5b};~~

~~R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =O;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is~~

B2
Cont

substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thieryl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

A3
C6nt

R¹¹, at each occurrence, is independently selected from H, =O, NR¹⁸R¹⁹, CF₃:
C₁-C₄ alkyl optionally substituted with 0-1 R^{11a}; phenyl substituted with 0-3 R^{11b}; C₃-C₆ carbocycle substituted with 0-3 R^{11b}; and 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thieryl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{11a}, at each occurrence, is independently selected from H, C₁-C₄ alkyl, OR¹⁴, F, Cl, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Z is H;
C₁-C₄ alkyl substituted with 0-3 R^{12a};
C₂-C₄ alkenyl substituted with 0-3 R^{12a}; or

B2
Cont

A3
Cont

$C_2\text{-}C_4$ alkynyl substituted with 0-3 R^{12a} ;

R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=O)CH_3$, $S(=O)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, $C_1\text{-}C_2$ haloalkyl, and $C_1\text{-}C_2$ haloalkoxy;

R^{13} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, $NR^{15}R^{16}$, and CF_3 ;

R^{14} is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

R^{15} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{16} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=O)-, ethyl-C(=O)-, methyl-S(=O)₂-, and ethyl-S(=O)₂-;

R^{18} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

R^{19} , at each occurrence, is independently selected from H, methyl, and ethyl.

A4
Sub B3

8. (Amended) A compound according to Claim 5 of Formula (Ie):

or a pharmaceutically acceptable salt thereof wherein:

B3
Cont
R³ is R⁴,

R⁴ is C₁-C₄ alkyl substituted with 0-1 R^{4a},
C₂-C₄ alkenyl substituted with 0-1 R^{4a}, or
C₂-C₄ alkynyl substituted with 0-1 R^{4a};

A4
Cont
R^{4a}, at each occurrence, is independently selected from
H, F, CF₃,
C₃-C₆ carbocycle substituted with 0-3 R^{4b},
phenyl substituted with 0-3 R^{4b}, or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{4b}; wherein said 5 to 6 membered
heterocycle is selected from pyridinyl, pyrimidinyl,
triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl,
piperazinyl, piperidinyl, pyrazolyl, imidazolyl,
oxazolyl, isoxazolyl, and tetrazolyl;

R^{4b}, at each occurrence, is independently selected from H, OH,
Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,
methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy,
C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R⁵ is C₁-C₄ alkyl substituted with 0-1 R^{5b};
C₂-C₄ alkenyl substituted with 0-1 R^{5b};
C₂-C₄ alkynyl substituted with 0-1 R^{5b};

R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =O;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is

B3
cont

substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

A4
cont

R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷;
C₁-C₄ alkyl optionally substituted with 0-1 R^{10a};
phenyl substituted with 0-4 R^{10b};
C₃-C₆ carbocycle substituted with 0-3 R^{10b}; or
5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{10b}, wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{10a}, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, OR¹⁴, Cl, F, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-4 R^{10b};

R^{10b}, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, Cl, F, NR¹⁵R¹⁶, and CF₃;

Z is H;
C₁-C₄ alkyl substituted with 0-3 R^{12a};
C₂-C₄ alkenyl substituted with 0-3 R^{12a}; or
C₂-C₄ alkynyl substituted with 0-3 R^{12a};

B3
cont

R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=O)CH_3$, $S(=O)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

R^{13} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, $NR^{15}R^{16}$, and CF_3 ;

R^{14} is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

A4
cont

R^{15} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R^{16} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl- $C(=O)-$, ethyl- $C(=O)-$, methyl- $S(=O)_2-$, and ethyl- $S(=O)_2-$;

R^{17} is H, methyl, ethyl, propyl, butyl, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, phenyl substituted by 0-3 R^{17a} , or - CH_2 -phenyl substituted by 0-3 R^{17a} ;

R^{17a} is H, methyl, methoxy, -OH, F, Cl, CF_3 , or OCF_3 ;

R^{18} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

R^{19} , at each occurrence, is independently selected from H, methyl, and ethyl.

A5
cont
B4

10. (Amended) A compound, according to one of Claims 6, 7, 8, or 9, wherein:

R^3 is $-CH_3$, $-CH_2CH_3$, $-CH_2CH_2CH_3$, $-CH_2CH_2CH_2CH_3$,

B4
Cont

~~-CH(CH₃)₂, -CH(CH₃)CH₂CH₃, -CH₂CH(CH₃)₂,~~
~~-CH₂CF₃, -CH₂CH₂CF₃, -CH₂CH₂CH₂CF₃,~~
~~-CH=CH₂, -CH₂CH=CH₂, -CH₂C(CH₃)=CH₂,~~
~~-CH₂CH₂CH=CH₂,~~
~~cis-CH₂CH=CH(CH₃),~~
~~trans-CH₂CH=CH(CH₃),~~
~~-C≡CH, -CH₂C≡CH, -CH₂C≡C(CH₃),~~
~~cyclopropyl-CH₂-, cyclobutyl-CH₂-, cyclopentyl-CH₂-,~~
~~cyclohexyl-CH₂-, cyclopropyl-CH₂CH₂-,~~
~~cyclobutyl-CH₂CH₂-, cyclopentyl-CH₂CH₂-,~~
~~cyclohexyl-CH₂CH₂-, phenyl-CH₂-,~~
~~(2-F-phenyl)CH₂-, (3-F-phenyl)CH₂-, (4-F-phenyl)CH₂-,~~
~~(2-Cl-phenyl)CH₂-, (3-Cl-phenyl)CH₂-, (4-Cl-phenyl)CH₂-,~~
~~(2,3-diF-phenyl)CH₂-, (2,4-diF-phenyl)CH₂-,~~
~~(2,5-diF-phenyl)CH₂-, (2,6-diF-phenyl)CH₂-,~~
~~(3,4-diF-phenyl)CH₂-, (3,5-diF-phenyl)CH₂-,~~
~~(2,3-diCl-phenyl)CH₂-, (2,4-diCl-phenyl)CH₂-,~~
~~(2,5-diCl-phenyl)CH₂-, (2,6-diCl-phenyl)CH₂-,~~
~~(3,4-diCl-phenyl)CH₂-, (3,5-diCl-phenyl)CH₂-,~~
~~(3-F-4-Cl-phenyl)CH₂-, (3-F-5-Cl-phenyl)CH₂-,~~
~~(3-Cl-4-F-phenyl)CH₂-, phenyl-CH₂CH₂-,~~
~~(2-F-phenyl)CH₂CH₂-, (3-F-phenyl)CH₂CH₂-,~~
~~(4-F-phenyl)CH₂CH₂-, (2-Cl-phenyl)CH₂CH₂-,~~
~~(3-Cl-phenyl)CH₂CH₂-, (4-Cl-phenyl)CH₂CH₂-,~~
~~(2,3-diF-phenyl)CH₂CH₂-, (2,4-diF-phenyl)CH₂CH₂-,~~
~~(2,5-diF-phenyl)CH₂CH₂-, (2,6-diF-phenyl)CH₂CH₂-,~~
~~(3,4-diF-phenyl)CH₂CH₂-, (3,5-diF-phenyl)CH₂CH₂-,~~
~~(2,3-diCl-phenyl)CH₂CH₂-, (2,4-diCl-phenyl)CH₂CH₂-,~~
~~(2,5-diCl-phenyl)CH₂CH₂-, (2,6-diCl-phenyl)CH₂CH₂-,~~
~~(3,4-diCl-phenyl)CH₂CH₂-, (3,5-diCl-phenyl)CH₂CH₂-,~~
~~(3-F-4-Cl-phenyl)CH₂CH₂-, or (3-F-5-Cl-phenyl)CH₂CH₂-,~~

A6
Cont

R⁵ is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH(CH₃)₂, -CH₂CH₂CH₂CH₃,
~~-CH(CH₃)CH₂CH₃, -CH₂CH(CH₃)₂, -CH₂C(CH₃)₃,~~
~~-CH₂CH₂CH₂CH₂CH₃, -CH(CH₃)CH₂CH₂CH₃, -CH₂CH(CH₃)CH₂CH₃,~~
~~-CH₂CH₂CH(CH₃)₂, -CH(CH₂CH₃)₂, -CH₂CF₃, -CH₂CH₂CF₃,~~
~~-CH₂CH₂CH₂CF₃, -CH₂CH₂CH₂CH₂CF₃, -CH=CH₂, -CH₂CH=CH₂,~~

B 4
cont

~~-CH=CHCH₃, cis-CH₂CH=CH(CH₃), trans-CH₂CH=CH(CH₃),
trans-CH₂CH=CH(C₆H₅), -CH₂CH=C(CH₃)₂, cis-CH₂CH=CHCH₂CH₃,
trans-CH₂CH=CHCH₂CH₃, cis-CH₂CH₂CH=CH(CH₃),
trans-CH₂CH₂CH=CH(CH₃), trans-CH₂CH=CHCH₂(C₆H₅),
-C≡CH, -CH₂C≡CH, -CH₂C≡C(CH₃), -CH₂C≡C(C₆H₅),
-CH₂CH₂C≡CH, -CH₂CH₂C≡C(CH₃), -CH₂CH₂C≡C(C₆H₅),
cyclopropyl-CH₂-, cyclobutyl-CH₂-, cyclopentyl-CH₂-,
cyclohexyl-CH₂-, (2-CH₃-cyclopropyl)CH₂-,
(3-CH₃-cyclobutyl)CH₂-,
cyclopropyl-CH₂CH₂-, cyclobutyl-CH₂CH₂-,
cyclopentyl-CH₂CH₂-, cyclohexyl-CH₂CH₂-,
(2-CH₃-cyclopropyl)CH₂CH₂-, (3-CH₃-cyclobutyl)CH₂CH₂-,
phenyl-CH₂-, (2-F-phenyl)CH₂-, (3-F-phenyl)CH₂-,
(4-F-phenyl)CH₂-, furanyl-CH₂-, thiienyl-CH₂-,
pyridyl-CH₂-, 1-imidazolyl-CH₂-, oxazolyl-CH₂-,
isoxazolyl-CH₂-,
phenyl-CH₂CH₂-, (2-F-phenyl)CH₂CH₂-, (3-F-phenyl)CH₂CH₂-,
(4-F-phenyl)CH₂CH₂-, furanyl-CH₂CH₂-, thiienyl-CH₂CH₂-,
pyridyl-CH₂CH₂-, 1-imidazolyl-CH₂CH₂-, oxazolyl-CH₂CH₂-,
isoxazolyl-CH₂CH₂-;~~

A 5
cont

Z is methyl, ethyl, i-propyl, n-propyl, n-butyl, i-butyl, s-butyl, t-butyl, or allyl;

R¹⁰ is H, methyl, ethyl, phenyl, benzyl, phenethyl,
4-F-phenyl, (4-F-phenyl)CH₂-, (4-F-phenyl)CH₂CH₂-,
4-Cl-phenyl, (4-Cl-phenyl)CH₂-, (4-Cl-phenyl)CH₂CH₂-,
4-CH₃-phenyl, (4-CH₃-phenyl)CH₂-, (4-CH₃-phenyl)CH₂CH₂-,
4-CF₃-phenyl, (4-CF₃-phenyl)CH₂-, or
(4-CF₃-phenyl)CH₂CH₂-;

R¹¹, at each occurrence, is independently selected from
H, =O, methyl, ethyl, phenyl, benzyl, phenethyl,
4-F-phenyl, (4-F-phenyl)CH₂-, (4-F-phenyl)CH₂CH₂-,
3-F-phenyl, (3-F-phenyl)CH₂-, (3-F-phenyl)CH₂CH₂-,
2-F-phenyl, (2-F-phenyl)CH₂-, (2-F-phenyl)CH₂CH₂-,
4-Cl-phenyl, (4-Cl-phenyl)CH₂-, (4-Cl-phenyl)CH₂CH₂-.

A5
cont
B4
cont

3-Cl-phenyl, (3-Cl-phenyl)CH₂-, (3-Cl-phenyl)CH₂CH₂-,
4-CH₃-phenyl, (4-CH₃-phenyl)CH₂-, (4-CH₃-phenyl)CH₂CH₂-,
3-CH₃-phenyl, (3-CH₃-phenyl)CH₂-, (3-CH₃-phenyl)CH₂CH₂-,
4-CF₃-phenyl, (4-CF₃-phenyl)CH₂-, (4-CF₃-phenyl)CH₂CH₂-,
pyrid-2-yl, pyrid-3-yl, or pyrid-4-yl, and

R¹³, at each occurrence, is independently selected from
H, F, Cl, OH, -CH₃, -CH₂CH₃, -OCH₃, or -CF₃.

B4
cont
A6

12. (Amended) A compound, according to Claim 1, of Formula (Ia):

or a pharmaceutically acceptable salt thereof,
wherein:

Z is C₁-C₈ alkyl substituted with 1-3 R¹²;
C₂-C₄ alkenyl substituted with 1-3 R¹²;
C₂-C₄ alkynyl substituted with 1-3 R¹²;
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or
5 to 10 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 10 membered heterocycle is
substituted with 0-3 R^{12b};

provided, when R¹³ is H,
then Z is C₄-C₈ alkyl substituted with 1-3 R¹²;
C₂-C₄ alkenyl substituted with 1-3 R¹²; or
C₂-C₄ alkynyl substituted with 1-3 R¹²; and

provided, when ring B is a 1,3,4,5-tetrahydro-1-(Z)-5-(R¹⁰)-6,6,7,7-tetra(R¹¹)-2,4-dioxo-2H-1,5-diazepin-3-yl core, and R¹³ is H; then

AB
Cont
B4
Cont
R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹,

S(=O)₂NR¹⁸R¹⁹, S(=O)₂R¹⁷; or

C₁-C₆ alkyl optionally substituted with 0-3 R^{10a}; and

R^{10a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, and CF₃.

15. (Amended) A compound of Claim 14 of Formula (Ib):

AA
or a pharmaceutically acceptable salt thereof wherein:

Ring B is selected from:

✓ B5
A7
cont

16. (Amended) A compound according to Claim 15 of Formula (Ic) :

or a pharmaceutically acceptable salt thereof
wherein

R³ is R⁴,

R⁴ is C₁-C₄ alkyl substituted with 0-1 R^{4a},
C₂-C₄ alkenyl substituted with 0-1 R^{4a}, or
C₂-C₄ alkynyl substituted with 0-1 R^{4a};

R^{4a}, at each occurrence, is independently selected from
H, F, CF₃,
C₃-C₆ carbocycle substituted with 0-3 R^{4b},
phenyl substituted with 0-3 R^{4b}, or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{4b}; wherein said 5 to 6 membered
heterocycle is selected from pyridinyl, pyrimidinyl,
triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl,
piperazinyl, piperidinyl, pyrazolyl, imidazolyl,
oxazolyl, isoxazolyl, and tetrazolyl;

B5
cont

R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R^5 is C₁-C₄ alkyl substituted with 0-1 R^{5b};
C₂-C₄ alkenyl substituted with 0-1 R^{5b};
C₂-C₄ alkynyl substituted with 0-1 R^{5b};

Ax
cont

R^{5b} , at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =O;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{5c}; wherein said 5 to 6 membered
heterocycle is selected from pyridinyl, pyrimidinyl,
triazinyl, furanyl, thieryl, thiazolyl, pyrrolyl,
piperazinyl, piperidinyl, pyrazolyl, imidazolyl,
oxazolyl, isoxazolyl, and tetrazolyl;

R^{5c} , at each occurrence, is independently selected from H, OH,
Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,
methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy,
C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R^{11} , at each occurrence, is independently selected from
H, =O, NR¹⁸R¹⁹, CF₃;
C₁-C₄ alkyl optionally substituted with 0-1 R^{11a};
phenyl substituted with 0-3 R^{11b};
C₃-C₆ carbocycle substituted with 0-3 R^{11b}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{11b}; wherein said 5 to 6

B5
cont

membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

Ax
cont

R^{11a} , at each occurrence, is independently selected from H, C₁-C₄ alkyl, OR¹⁴, F, Cl, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b} ;

R^{11b} , at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Z is C₁-C₃ alkyl substituted with 1-3 R^{12} ;
C₂-C₃ alkenyl substituted with 1-3 R^{12} ;
C₂-C₃ alkynyl substituted with 1-3 R^{12} ;
C₆-C₁₀ aryl substituted with 0-4 R^{12b} ;
C₃-C₆ carbocycle substituted with 0-3 R^{12b} ; or
5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{12b} ; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{12} , at each occurrence, is independently selected from C₆-C₁₀ aryl substituted with 0-4 R^{12b} ;
C₃-C₆ carbocycle substituted with 0-3 R^{12b} ; or
5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{12b} ; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

B5
cont

A7
C6w+

pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{12b} , at each occurrence, is independently selected from
H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=O)CH_3$,
 $S(=O)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

R^{13} , at each occurrence, is independently selected from
H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
Cl, F, Br, CN, $NR^{15}R^{16}$, and CF_3 ;

R^{14} is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

R^{15} , at each occurrence, is independently selected from H,
methyl, ethyl, propyl, and butyl;

R^{16} , at each occurrence, is independently selected from
H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl,
methyl- $C(=O)-$, ethyl- $C(=O)-$,
methyl- $S(=O)_2-$, and ethyl- $S(=O)_2-$;

R^{18} , at each occurrence, is independently selected from
H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and
phenethyl; and

R^{19} , at each occurrence, is independently selected from
H, methyl, and ethyl;

provided, when R^{13} is H,
then Z is C_2-C_3 alkenyl substituted with 1-3 R^{12} ; or
 C_2-C_3 alkynyl substituted with 1-3 R^{12} .

A8

18. (Amended) A compound according to Claim 15 of Formula
(Ie):

see B6

or a pharmaceutically acceptable salt thereof wherein:

R³ is R⁴,

R⁴ is C₁-C₄ alkyl substituted with 0-1 R^{4a},
C₂-C₄ alkenyl substituted with 0-1 R^{4a}, or
C₂-C₄ alkynyl substituted with 0-1 R^{4a};

A⁹
Cont

R^{4a}, at each occurrence, is independently selected from H, F, CF₃, C₃-C₆ carbocycle substituted with 0-3 R^{4b}, phenyl substituted with 0-3 R^{4b}, or 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R⁵ is C₁-C₄ alkyl substituted with 0-1 R^{5b};
C₂-C₄ alkenyl substituted with 0-1 R^{5b};
C₂-C₄ alkynyl substituted with 0-1 R^{5b};

R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =O;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{5c}; wherein said 5 to 6 membered
heterocycle is selected from pyridinyl, pyrimidinyl,
triazinyl, furanyl, thieryl, thiazolyl, pyrrolyl,
piperazinyl, piperidinyl, pyrazolyl, imidazolyl,
oxazolyl, isoxazolyl, and tetrazolyl;

B6
Cont

R^{5c}, at each occurrence, is independently selected from H, OH,
Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,
methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy,
C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷;
C₁-C₄ alkyl optionally substituted with 0-1 R^{10a};
phenyl substituted with 0-4 R^{10b};
C₃-C₆ carbocycle substituted with 0-3 R^{10b}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{10b}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thieryl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{10a}, at each occurrence, is independently selected from H,
methyl, ethyl, propyl, butyl, OR¹⁴, Cl, F, =O, NR¹⁵R¹⁶,
CF₃, or phenyl substituted with 0-4 R^{10b};

~~R^{10b}, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, Cl, F, NR¹⁵R¹⁶, and CF₃;~~

B6
cont

~~Z is C₁-C₃ alkyl substituted with 1-3 R¹²;
C₂-C₃ alkenyl substituted with 1-3 R¹²;
C₂-C₃ alkynyl substituted with 1-3 R¹²;
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₆ carbocycle substituted with 0-3 R^{12b}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{12b}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thieryl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;~~

A8
cont

~~R¹², at each occurrence, is independently selected from
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₆ carbocycle substituted with 0-3 R^{12b}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{12b}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thieryl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;~~

~~R^{12b}, at each occurrence, is independently selected from
H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃,
S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;~~

~~R¹³, at each occurrence, is independently selected from~~

H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;

B6
cont

R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;
R¹⁵, at each occurrence, is independently selected from H,
methyl, ethyl, propyl, and butyl;

A8
cont

R¹⁶, at each occurrence, is independently selected from
H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl,
methyl-C(=O)-, ethyl-C(=O)-,
methyl-S(=O)₂-, and ethyl-S(=O)₂-;

R¹⁷ is H, methyl, ethyl, propyl, butyl, methoxymethyl,
ethoxymethyl, methoxyethyl, ethoxyethyl,
phenyl substituted by 0-3 R^{17a}, or
-CH₂-phenyl substituted by 0-3 R^{17a};

R^{17a} is H, methyl, methoxy, -OH, F, Cl, CF₃, or OCF₃;

R¹⁸, at each occurrence, is independently selected from
H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and
phenethyl; and

R¹⁹, at each occurrence, is independently selected from
H, methyl, and ethyl;

provided, when R¹³ is H,
then Z is C₂-C₃ alkenyl substituted with 1-3 R¹²; or
C₂-C₃ alkynyl substituted with 1-3 R¹².

sub B7
A9
20. (Amended) A compound according to one of Claims 16, 17,
18, 19, wherein:

R³ is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₂CH₃,
-CH(CH₃)₂, -CH(CH₃)CH₂CH₃, -CH₂CH(CH₃)₂,
-CH₂CF₃, -CH₂CH₂CF₃, -CH₂CH₂CH₂CF₃,

~~-CH=CH_2 , $\text{-CH}_2\text{CH=CH}_2$, $\text{-CH}_2\text{C(CH}_3\text{)=CH}_2$,
 $\text{-CH}_2\text{CH}_2\text{CH=CH}_2$,
 $\text{cis-CH}_2\text{CH=CH(CH}_3\text{)}$,
 $\text{trans-CH}_2\text{CH=CH(CH}_3\text{)}$,
 $\text{-C}\equiv\text{CH}$, $\text{-CH}_2\text{C}\equiv\text{CH}$, $\text{-CH}_2\text{C}\equiv\text{C(CH}_3\text{)}$,
 $\text{cyclopropyl-CH}_2\text{-}$, $\text{cyclobutyl-CH}_2\text{-}$, $\text{cyclopentyl-CH}_2\text{-}$,
 $\text{cyclohexyl-CH}_2\text{-}$, $\text{cyclopropyl-CH}_2\text{CH}_2\text{-}$,
 $\text{cyclobutyl-CH}_2\text{CH}_2\text{-}$, $\text{cyclopentyl-CH}_2\text{CH}_2\text{-}$,
 $\text{cyclohexyl-CH}_2\text{CH}_2\text{-}$, $\text{phenyl-CH}_2\text{-}$,
 $(2\text{-F-phenyl})\text{CH}_2\text{-}$, $(3\text{-F-phenyl})\text{CH}_2\text{-}$, $(4\text{-F-phenyl})\text{CH}_2\text{-}$,
 $(2\text{-Cl-phenyl})\text{CH}_2\text{-}$, $(3\text{-Cl-phenyl})\text{CH}_2\text{-}$, $(4\text{-Cl-phenyl})\text{CH}_2\text{-}$,
 $(2,3\text{-diF-phenyl})\text{CH}_2\text{-}$, $(2,4\text{-diF-phenyl})\text{CH}_2\text{-}$,
 $(2,5\text{-diF-phenyl})\text{CH}_2\text{-}$, $(2,6\text{-diF-phenyl})\text{CH}_2\text{-}$,
 $(3,4\text{-diF-phenyl})\text{CH}_2\text{-}$, $(3,5\text{-diF-phenyl})\text{CH}_2\text{-}$,
 $(2,3\text{-diCl-phenyl})\text{CH}_2\text{-}$, $(2,4\text{-diCl-phenyl})\text{CH}_2\text{-}$,
 $(2,5\text{-diCl-phenyl})\text{CH}_2\text{-}$, $(2,6\text{-diCl-phenyl})\text{CH}_2\text{-}$,
 $(3,4\text{-diCl-phenyl})\text{CH}_2\text{-}$, $(3,5\text{-diCl-phenyl})\text{CH}_2\text{-}$,
 $(3\text{-F-4-Cl-phenyl})\text{CH}_2\text{-}$, $(3\text{-F-5-Cl-phenyl})\text{CH}_2\text{-}$,
 $(3\text{-Cl-4-F-phenyl})\text{CH}_2\text{-}$, $\text{phenyl-CH}_2\text{CH}_2\text{-}$,
 $(2\text{-F-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(3\text{-F-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(4\text{-F-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(2\text{-Cl-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(3\text{-Cl-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(4\text{-Cl-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(2,3\text{-diF-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(2,4\text{-diF-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(2,5\text{-diF-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(2,6\text{-diF-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(3,4\text{-diF-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(3,5\text{-diF-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(2,3\text{-diCl-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(2,4\text{-diCl-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(2,5\text{-diCl-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(2,6\text{-diCl-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(3,4\text{-diCl-phenyl})\text{CH}_2\text{CH}_2\text{-}$, $(3,5\text{-diCl-phenyl})\text{CH}_2\text{CH}_2\text{-}$,
 $(3\text{-F-4-Cl-phenyl})\text{CH}_2\text{CH}_2\text{-}$, or $(3\text{-F-5-Cl-phenyl})\text{CH}_2\text{CH}_2\text{-}$,~~

R^5 is -CH_3 , $\text{-CH}_2\text{CH}_3$, $\text{-CH}_2\text{CH}_2\text{CH}_3$, $\text{-CH(CH}_3)_2$, $\text{-CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$,

$\text{-CH(CH}_3)\text{CH}_2\text{CH}_3$, $\text{-CH}_2\text{CH(CH}_3)_2$, $\text{-CH}_2\text{C(CH}_3)_3$,

$\text{-CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$, $\text{-CH(CH}_3)\text{CH}_2\text{CH}_2\text{CH}_3$, $\text{-CH}_2\text{CH(CH}_3)\text{CH}_2\text{CH}_3$,

$\text{-CH}_2\text{CH}_2\text{CH(CH}_3)_2$, $\text{-CH(CH}_2\text{CH}_3)_2$, $\text{-CH}_2\text{CF}_3$, $\text{-CH}_2\text{CH}_2\text{CF}_3$,

$\text{-CH}_2\text{CH}_2\text{CH}_2\text{CF}_3$, $\text{-CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CF}_3$, -CH=CH_2 , $\text{-CH}_2\text{CH=CH}_2$,

-CH=CHCH_3 , $\text{cis-CH}_2\text{CH=CH(CH}_3\text{)}$, $\text{trans-CH}_2\text{CH=CH(CH}_3\text{)}$,

$\text{trans-CH}_2\text{CH=CH(C}_6\text{H}_5\text{)}$, $\text{-CH}_2\text{CH=C(CH}_3)_2$, $\text{cis-CH}_2\text{CH=CHCH}_2\text{CH}_3$,

B 7
cont

~~trans-CH₂CH=CHCH₂CH₃, cis-CH₂CH₂CH=CH(CH₃), trans-CH₂CH=CHCH₂(C₆H₅), -C≡CH, -CH₂C≡CH, -CH₂C≡C(CH₃), -CH₂C≡C(C₆H₅), -CH₂CH₂C≡CH, -CH₂CH₂C≡C(CH₃), -CH₂CH₂C≡C(C₆H₅), cyclopropyl-CH₂-, cyclobutyl-CH₂-, cyclopentyl-CH₂-, cyclohexyl-CH₂-, (2-CH₃-cyclopropyl)CH₂-, (3-CH₃-cyclobutyl)CH₂-, cyclopropyl-CH₂CH₂-, cyclobutyl-CH₂CH₂-, cyclopentyl-CH₂CH₂-, cyclohexyl-CH₂CH₂-, (2-CH₃-cyclopropyl)CH₂CH₂-, (3-CH₃-cyclobutyl)CH₂CH₂-, phenyl-CH₂-, (2-F-phenyl)CH₂-, (3-F-phenyl)CH₂-, (4-F-phenyl)CH₂-, furanyl-CH₂-, thieryl-CH₂-, pyridyl-CH₂-, 1-imidazolyl-CH₂-, oxazolyl-CH₂-, isoxazolyl-CH₂-, phenyl-CH₂CH₂-, (2-F-phenyl)CH₂CH₂-, (3-F-phenyl)CH₂CH₂-, (4-F-phenyl)CH₂CH₂-, furanyl-CH₂CH₂-, thieryl-CH₂CH₂-, pyridyl-CH₂CH₂-, 1-imidazolyl-CH₂CH₂-, oxazolyl-CH₂CH₂-, isoxazolyl-CH₂CH₂;~~

A 9
cont

Z is phenyl, 2-F-phenyl, 3-F-phenyl, 4-F-phenyl,
2-Cl-phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2,3-diF-phenyl,
2,4-diF-phenyl, 2,5-diF-phenyl, 2,6-diF-phenyl,
3,4-diF-phenyl, 3,5-diF-phenyl, 2,3-diCl-phenyl,
2,4-diCl-phenyl, 2,5-diCl-phenyl, 2,6-diCl-phenyl,
3,4-diCl-phenyl, 3,5-diCl-phenyl, 3-F-4-Cl-phenyl,
3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl,
3-MeO-phenyl, 4-MeO-phenyl, 2-Me-phenyl, 3-Me-phenyl,
4-Me-phenyl, 2-MeS-phenyl, 3-MeS-phenyl, 4-MeS-phenyl,
2-CF₃O-phenyl, 3-CF₃O-phenyl, 4-CF₃O-phenyl,
furanyl, thieryl, pyridyl, 2-Me-pyridyl, 3-Me-pyridyl,
4-Me-pyridyl, 1-imidazolyl, oxazolyl, isoxazolyl,
cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
N-piperidinyl,
phenyl-CH₂-, (2-F-phenyl)CH₂-, (3-F-phenyl)CH₂-,
(4-F-phenyl)CH₂-, (2-Cl-phenyl)CH₂-, (3-Cl-phenyl)CH₂-, (4-
Cl-phenyl)CH₂-, (2,3-diF-phenyl)CH₂-,
(2,4-diF-phenyl)CH₂-, (2,5-diF-phenyl)CH₂-,

B 7
Cont

(2, 6-diF-phenyl)CH₂-, (3, 4-diF-phenyl)CH₂-,
(3, 5-diF-phenyl)CH₂-, (2, 3-diCl-phenyl)CH₂-,
(2, 4-diCl-phenyl)CH₂-, (2, 5-diCl-phenyl)CH₂-,
(2, 6-diCl-phenyl)CH₂-, (3, 4-diCl-phenyl)CH₂-,
(3, 5-diCl-phenyl)CH₂-, (3-F-4-Cl-phenyl)CH₂-,
(3-F-5-Cl-phenyl)CH₂-, (3-Cl-4-F-phenyl)CH₂-,
(2-MeO-phenyl)CH₂-, (3-MeO-phenyl)CH₂-,
(4-MeO-phenyl)CH₂-, (2-Me-phenyl)CH₂-,
(3-Me-phenyl)CH₂-, (4-Me-phenyl)CH₂-,
(2-MeS-phenyl)CH₂-, (3-MeS-phenyl)CH₂-,
(4-MeS-phenyl)CH₂-, (2-CF₃O-phenyl)CH₂-,
(3-CF₃O-phenyl)CH₂-, (4-CF₃O-phenyl)CH₂-,
(furanyl)CH₂-, (thienyl)CH₂-, (pyridyl)CH₂-,
(2-Me-pyridyl)CH₂-, (3-Me-pyridyl)CH₂-,
(4-Me-pyridyl)CH₂-, (1-imidazolyl)CH₂-,
(oxazolyl)CH₂-, (isoxazolyl)CH₂-,
(cyclopropyl)CH₂-, (cyclobutyl)CH₂-, (cyclopentyl)CH₂-,
(cyclohexyl)CH₂-, (N-piperidinyl)CH₂-,

phenyl-CH₂CH₂-, (phenyl)₂CHCH₂-, (2-F-phenyl)CH₂CH₂-,
(3-F-phenyl)CH₂CH₂-, (4-F-phenyl)CH₂CH₂-,
(2-Cl-phenyl)CH₂CH₂-, (3-Cl-phenyl)CH₂CH₂-,
(4-Cl-phenyl)CH₂CH₂-, (2, 3-diF-phenyl)CH₂CH₂-,
(2, 4-diF-phenyl)CH₂CH₂-, (2, 5-diF-phenyl)CH₂CH₂-,
(2, 6-diF-phenyl)CH₂CH₂-, (3, 4-diF-phenyl)CH₂CH₂-,
(3, 5-diF-phenyl)CH₂CH₂-, (2, 3-diCl-phenyl)CH₂CH₂-,
(2, 4-diCl-phenyl)CH₂CH₂-, (2, 5-diCl-phenyl)CH₂CH₂-,
(2, 6-diCl-phenyl)CH₂CH₂-, (3, 4-diCl-phenyl)CH₂CH₂-,
(3, 5-diCl-phenyl)CH₂CH₂-, (3-F-4-Cl-phenyl)CH₂CH₂-,
(3-F-5-Cl-phenyl)CH₂CH₂-, (3-Cl-4-F-phenyl)CH₂CH₂-,
(2-MeO-phenyl)CH₂CH₂-, (3-MeO-phenyl)CH₂CH₂-,
(4-MeO-phenyl)CH₂CH₂-, (2-Me-phenyl)CH₂CH₂-,
(3-Me-phenyl)CH₂CH₂-, (4-Me-phenyl)CH₂CH₂-,
(2-MeS-phenyl)CH₂CH₂-, (3-MeS-phenyl)CH₂CH₂-,
(4-MeS-phenyl)CH₂CH₂-, (2-CF₃O-phenyl)CH₂CH₂-,
(3-CF₃O-phenyl)CH₂CH₂-, (4-CF₃O-phenyl)CH₂CH₂-,
(furanyl)CH₂CH₂-, (thienyl)CH₂CH₂-, (pyridyl)CH₂CH₂-,

(2-Me-pyridyl)CH₂CH₂- , (3-Me-pyridyl)CH₂CH₂- ,
(4-Me-pyridyl)CH₂CH₂- , (imidazolyl)CH₂CH₂- ,
(oxazolyl)CH₂CH₂- , (isoxazolyl)CH₂CH₂- ,
(cyclopropyl)CH₂CH₂- , (cyclobutyl)CH₂CH₂- ,
(cyclopentyl)CH₂CH₂- , (cyclohexyl)CH₂CH₂- , or
(N-piperidinyl)CH₂CH₂- ;

B7
Cont
R¹⁰ is H, methyl, ethyl, phenyl, benzyl, phenethyl,
4-F-phenyl, (4-F-phenyl)CH₂- , (4-F-phenyl)CH₂CH₂- ,
4-Cl-phenyl, (4-Cl-phenyl)CH₂- , (4-Cl-phenyl)CH₂CH₂- ,
4-CH₃-phenyl, (4-CH₃-phenyl)CH₂- , (4-CH₃-phenyl)CH₂CH₂- ,
4-CF₃-phenyl, (4-CF₃-phenyl)CH₂- , or
(4-CF₃-phenyl)CH₂CH₂- ;

A9

Cont

R¹¹, at each occurrence, is independently selected from
H, =O, methyl, ethyl, phenyl, benzyl, phenethyl,
4-F-phenyl, (4-F-phenyl)CH₂- , (4-F-phenyl)CH₂CH₂- ,
3-F-phenyl, (3-F-phenyl)CH₂- , (3-F-phenyl)CH₂CH₂- ,
2-F-phenyl, (2-F-phenyl)CH₂- , (2-F-phenyl)CH₂CH₂- ,
4-Cl-phenyl, (4-Cl-phenyl)CH₂- , (4-Cl-phenyl)CH₂CH₂- ,
3-Cl-phenyl, (3-Cl-phenyl)CH₂- , (3-Cl-phenyl)CH₂CH₂- ,
4-CH₃-phenyl, (4-CH₃-phenyl)CH₂- , (4-CH₃-phenyl)CH₂CH₂- ,
3-CH₃-phenyl, (3-CH₃-phenyl)CH₂- , (3-CH₃-phenyl)CH₂CH₂- ,
4-CF₃-phenyl, (4-CF₃-phenyl)CH₂- , (4-CF₃-phenyl)CH₂CH₂- ,
pyrid-2-yl, pyrid-3-yl, or pyrid-4-yl, and

R¹³, at each occurrence, is independently selected from
H, F, Cl, OH, -CH₃, -CH₂CH₃, -OCH₃, or -CF₃.