Sztuczna inteligencja i inżynieria wiedzy Lista 2

Gabriel Urbaniak 260428

1 maja 2023

1 Problem

1.1 Reversi

Reversi to gra:

- dwuosobowa,
- o sumie zerowej,
- niekooperacyjna,
- całkowicie deterministyczna,
- w której każdy gracz ma pełną informację o stanie gry,
- o skończonym czasie rozgrywki.

Zadaniem gracza w Reversi jest zwycięstwo przez posiadanie najwiekszej ilości pionków na koniec gry.

Formalny opis gry Reversi:

Definicja 1 (Gracz) Gracz $G \in \{B, C\}$ to gracz grający w grę Reversi. Może wykonać ruch po ruchu przeciwnika lub jako pierwszy, gdy G = B

Definicja 2 (Plansza) Plansza to macierz $P = (p_{ij})_{1 \le i \le 8, 1 \le j \le 8}$, gdzie p to pole na tej planszy. Pole może mieć trzy różne stany: $S = \{0, B, C\}, p_{ij} \in S$.

Definicja 3 (Ruch) Gracz może się ruszyć przez postawienie swojego pionka na dowolne z wolnych pól $p_{ij} = 0$ zmieniając jego symbol na B lub C zależnie od symbolu gracza dopóki jest w stanie przejąć pionki przeciwnika. Jeśli nie jest w stanie przejąć ani jednym ruchem pionka przeciwnika, to ruch gracza jest pomijany.

Definicja 4 (Przejęcie) Przy postawieniu pionka jednego z graczy G na pole p_{ij} należy sprawdzić, czy sąsiadujące pola $p_{i\pm 1j\pm 1}$ należą do przeciwnika. Jeśli tak, to wszystkie pionki przeciwnika w linii prostej w pionie, poziomie lub przekątnej macierzy przecinającą pole p_{ij} w kierunku tego pionka przeciwnika zostają przejęte przez gracza G, czyli zmienione na jego symbol, pod warunkiem, że linia ta kończy się również jego pionkiem.

Definicja 5 (Koniec gry) Gra się kończy, gdy żaden z graczy G nie może wykonać ruchu. Zliczane są wszystkie pola planszy P według ich stanu S.

1.2 Metoda

Definicja 6 (Stan gry) Stan gry to $\mathbf{R}_s = (\mathbf{P}, \mathbf{G})$, gdzie \mathbf{P} to plansza, a \mathbf{G} to gracz, który miałby wykonywać teraz ruch.

Definicja 7 (Drzewo decyzyjne) Drzewo decyzyjne to $\mathbf{N} = (C, S, \mathbf{R}_s)$, $C = \{\mathbf{N}_1, \mathbf{N}_2, ..., \mathbf{N}_n\} \lor \emptyset, S \in \mathbb{R}$, gdzie N jest węzłem, a S wynikiem funkcji oceniającej dla danego węzła.

2 Podsumowanie