Chapter 6 Additional Sum of Squares and Testing Subsets of Regression Coefficients

• Testing subsets of regression coefficients

Can several predictor variables be eliminated from a model simultaneously?

Model:
$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \varepsilon \iff E(Y) = \beta_0 + \beta_1 X + \dots + \beta_{p-1} X_{p-1}$$

 H_0 : $\beta_1 = \beta_2 = 0$ vs. H_a : at least one of β_1 , β_2 is not 0. Equivalently,

$$\begin{split} H_0: E(Y) &= \beta_0 + \beta_3 X_3 + \dots + \beta_{p-1} X_{p-1} \text{ (reduced model)} \quad \text{vs.} \\ H_a: E(Y) &= \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} \text{ (full model)} \end{split}$$

Procedure:

- (1) Fit Y on $X_3, X_4, \dots, X_{p-1} \longrightarrow SS_{reg}(red)$.
- (2) Fit Y on $X_1, X_2, X_3, \dots, X_{p-1} \to SS_{reg}(full)$.

Additional sum of squares (SS) due to adding X_1, X_2 :

$$\begin{split} SS\big(X_1, X_2 \big| X_3, X_4, \cdots, X_{p-1}\big) &= SS_{reg}(full) - SS_{reg}(red) \\ &= [TSS - RSS(full)] - [TSS - RSS(red)] \\ &= RSS(red) - RSS(full) \end{split}$$

— The sum of squares of X_1, X_2 given X_3, X_4, \dots, X_{p-1} , which measures the contribution of X_1, X_2 to the regression sum of squares given X_3, X_4, \dots, X_{p-1} .

Test statistic:
$$F = \frac{[SS_{reg}(full) - SS_{reg}(red)]/2}{RSS(full)/(n-p)}$$

In general, want to test

 H_0 : $\beta_{i_1} = \beta_{i_2} = \dots = \beta_{i_q} = 0$ vs. H_a : at least one of $\beta_{i_1}, \dots, \beta_{i_q}$ is not 0.

$$F = \frac{[SS_{reg}(full) - SS_{reg}(red)]/a}{RSS(full)/b},$$

where a = df of $[SS_{reg}(full) - SS_{reg}(red)]$, b = df of RSS(full) = n - p.

Note: If X'X(full) is nonsingular,

$$a = df$$
 of $[SS_{reg}(full) - SS_{reg}(red)] = [df \ of \ SS_{reg}(full)] - [df \ of \ SS_{reg}(red)]$
= (# of predictor variables in the full model) - (# of predictor variables in the reduced model)
= $(p-1) - [(p-1) - q] = q = \#$ of predictor variables eliminated.

If $\varepsilon_1, \dots, \varepsilon_n$ are *iid* $N(0, \sigma^2)$ and H_0 is true, $F \sim F_{a,b} = F_{q,n-p}$.

Reject
$$H_0$$
 if p -value = $P(F_{q,n-p} \ge F_{obs}) \le \alpha$ or $F_{obs} \ge F_{q,n-p}(1-\alpha)$.

Note: Testing overall linear relationship and testing a coefficient are special cases of testing subsets of regression coefficients.

Additional (Extra) Sum of Squares Principle: Assess the importance of q predictor variables X_{i_1}, \dots, X_{i_q} in a multiple regression model by the additional SS they account for, after all other predictor variables have been accounted for, i.e.,

$$SS(X_{i_1}, \dots, X_{i_q} | \text{all other predictor variables}) = SS_{reg}(full) - SS_{reg}(red)$$

= $RSS(red) - RSS(full)$,

where the full model is the model with all predictor variables involved and the reduced model is the model with X_{i_1}, \dots, X_{i_q} removed.

Note: Essentially, $SS\left(X_{i_1}, \dots, X_{i_q} \middle| \text{ all other predictor variables}\right)$ is the variation in Y explained by X_{i_1}, \dots, X_{i_q} given all other variables in the model, which measures the contribution of X_{i_1}, \dots, X_{i_q} to the regression sum of squares given all other predictor variables in the model.

• Sequential Sums of Squares

 SS_{reg} can be decomposed into (p-1) sum of squares, each with 1 df corresponding to the (p-1) predictor variables. However, the decomposition is not unique. Different orders of the predictor variables yield different decompositions.

Source of variation	df	Sequential SS
X_1	1	$SS(X_1)$
$X_2 X_1$	1	$SS(X_2 X_1)$
$X_3 X_1, X_2$	1	$SS(X_3 X_1,X_2)$
:	:	:
$X_{p-1} X_1, X_2, \cdots, X_{p-2}$	1	$SS(X_{p-1} X_1, X_2, \cdots, X_{p-2})$

Notes: (1) $\left(\frac{SS(X_1)}{TSS} \times 100\right)$ % of the variation in *Y* is explained by the regression using X_1 alone.

(2) The contribution of X_i to SS_{reg} given that X_1, X_2, \dots, X_{i-1} are already in the model is $SS(X_i|X_1, X_2, \dots, X_{i-1})$, which accounts for $\left(\frac{SS(X_i|X_1, X_2, \dots, X_{i-1})}{TSS} \times 100\right)\%$ of the variation in Y.

Example 6.1: For the data in Example 5.3,

- (1) How useful is the regression using X_1 alone? What does X_2 contribute, given that X_1 is already in the regression?
- (2) Test to determine whether we can eliminate X_1 , X_2 , X_3 , X_4 , X_6 , X_8 , and X_9 simultaneously using $\alpha = 0.05$.