MATH 1560 - Tutorial #1 Solutions

Additional practice:

1. Given $f(x) = \sqrt{x}$, $g(x) = x^2$, and $h(x) = e^{2x}$, compute:

(a)
$$f(f(x)) = \sqrt{\sqrt{x}} = (x^{1/2})^{1/2} = x^{1/4} = \sqrt[4]{x}$$
.

(b) $f(g(x)) = \sqrt{x^2} = |x|$.

Note that it is only true that $\sqrt{x^2} = x$ when $x \ge 0$. The function f(x) is the positive square root function. If x < 0 we have $\sqrt{x^2} = -x$. For example, if x = -2, then $x^2 = 4$, and $\sqrt{x^2} = \sqrt{4} = 2 = -(-2) = -x$.

(c) $g(f(x)) = (\sqrt{x})^2 = x$.

Here we do get back x. Note, however, that the domain of this function includes only $x \ge 0$, since the square root of a negative number is not a real number.

(d)
$$g(h(x)) = (e^{2x})^2 = e^{2(2x)} = e^{4x}$$
.

(e)
$$h(f(x)) = e^{2\sqrt{x}}$$
.

2. Determine if the function is even, odd, or neither:

(a)
$$f(x) = \frac{x^3}{x^2 + 1}$$

Since
$$f(-x) = \frac{(-x)^3}{(-x)^2 + 1} = \frac{-x^3}{x^2 + 1} = -f(x)$$
, the function is odd.

(b) g(x) = x|x|

Since g(-x) = (-x)|-x| = -x|x| = -g(x), the function is odd. (It is a general property of the absolute value function that |-x| = |x| for any x, since the absolute value removes any negative sign.)

(c) $h(x) = \cos(x^5)$

We have $h(-x) = \cos((-x)^5) = \cos(-x^5) = \cos(x^5) = h(x)$, since cosine is an even function.

Assigned problems:

1. Find the domain of the following functions. Write your answer in interval notation.

(a)
$$f(x) = \frac{x+1}{x^2+5x+6} = \frac{x+1}{(x+2)(x+3)}$$
 has domain

$${x \in \mathbb{R} \mid x \neq -2, -3} = (-\infty, -3) \cup (-3, -2) \cup (-2, \infty),$$

since we cannot divide by zero.

(b) For $g(x) = \sqrt{x+2} - \sqrt{3-x}$, we need $x+2 \ge 0$ for the first square root to be defined, and we need $3-x \ge 0$ for the second square root to be defined. (Both must be defined for g(x) to be defined.) Rearranging these inequalities, we need $x \ge -2$ (equivalently, $-2 \le x$) and $3 \ge x$ (equivalently, $x \le 3$). The domain is therefore

$${x \in \mathbb{R} \mid -2 \le x \text{ and } x \le 3} = {x \in \mathbb{R} \mid -2 \le x \le 3} = [-2, 3].$$

(c) For $h(x) = \ln(x^2 - 1)$, we need $x^2 - 1 > 0$, since the domain of the logarithm function is $(0, \infty)$. To ensure that $x^2 - 1 = (x - 1)(x + 1)$ is positive, we must have either x > 1, so that both factors are positive, or x < -1, so that both factors are negative. The domain is therefore

$${x \in \mathbb{R} \mid x < -1 \text{ or } x > 1} = (-\infty, -1) \cup (1, \infty).$$

2. Consider the function $f(x) = \begin{cases} 1-x, & \text{if } 1 \leq 1 \\ x^2, & \text{if } x > 1. \end{cases}$ Evaluate f(-1), f(0), f(1), and f(2). Then, sketch a rough graph.

Note that for x = -1, 0, 1 we have $x \le 1$, so we use the expression 1 - x to evaluate f: f(-1) = 1 - (-1) = 2, f(0) = 1 - 0 = 1, and f(1) = 1 - 1 = 0.

Since 2 > 1, we use the expression x^2 to evaluate f, giving us $f(2) = x^2 = 4$.

The sketch is given as follows:

3. Rewrite $f(x) = |x^2 - x - 2|$ as a piecewise function (without the absolute value).

With $g(x) = x^2 - x - 2$, we note that

$$f(x) = \begin{cases} g(x), & \text{if } g(x) \ge 0\\ -g(x), & \text{if } g(x) < 0 \end{cases}$$

We have $x^2 - x - 2 = (x+1)(x-2) \ge 0$ when either $x \le -1$ (both factors are negative) or $x \ge 2$ (both factors are positive), and $x^2 - x - 2 < 0$ when -1 < x < 2 (when x + 1 > 0 but x - 2 < 0). Thus,

$$f(x) = \begin{cases} x^2 - x - 2, & \text{if } x \le -1 \\ -x^2 + x + 2, & \text{if } -1 < x < 2 \\ x^2 - x - 2, & \text{if } x \ge 2 \end{cases}$$