Operations on Sets

Previous Lecture

- Sets and elements
- Subsets, proper subsets, empty sets
- Universe
- Cardinality
- Power set

Venn Diagrams

Often it is convenient to visualize various relations between sets.
 We use Venn diagrams for that.

B is a subset of A

Intersection

• The intersection of sets A and B, denoted by $A \cap B$, is the set that contains those elements that belong to both A and B.

Examples

$$\{1,3,5,7\} \cap \{2,3,4,5,6\} = \{3,5\}$$

 $\{Jan.,Feb.,Dec.\} \cap \{Jan.,Feb.,Mar.\} = \{Jan.,Feb.\}$
 $\{x \mid \exists y \ x=2y\} \cap \{x \mid \exists y \ x=3y\} = \{x \mid \exists y \ x=6y\}$
 $\mathbb{Z} \cap \mathbb{Q}^+ = \mathbb{Z}^+$

Union

The union of sets A and B, denoted by $A \cup B$, is the set that contains those elements that are in A or in B.

• Examples $\{Mon, Tue, Wed, Thu, Fri\} \cup \{Sat, Sun\} = \{Mon, Tue, Wed, Thu, Fri, Sat, Sun\}$ $\{1,3,5,7\} \cup \{2,3,4,5,6\} = \{1,2,3,4,5,6,7\}$

Disjoint Sets and Principle of Inclusion-Exclusion

- Sets A and B are said to be disjoint if $A \cap B = \emptyset$. Sets {Mon,Tue,Wed,Thu,Fri} and {Sat,Sun} are disjoint.
- Principle of inclusion-exclusion. For any finite sets A and B $|A \cup B| = |A| + |B| |A \cap B|$

To count elements in $A \cup B$ we first count elements of A, then elements of B. Elements of $A \cap B$ are counted twice, so, we subtract the number of such elements

• If A and B are disjoint, then $|A \cup B| = |A| + |B|$

Symmetric Difference

- The symmetric difference of sets A and B, denoted by A \triangle B, is the set that contains those elements that are either in A or in B, but not in both.

Example {Jan.,Feb.,Mar.} ∆ {Dec.,Jan.,Feb.} = {Dec.,Mar.}

Disjoint Sets and Symmetric Difference

■ **Theorem**. Sets A and B are disjoint if and only if $A \cup B = A \wedge B$

Proof.

Notice first that $A \triangle B \subseteq A \cup B$.

Suppose A and B are disjoint. To prove the equality, it suffices to show that $A \cup B \subseteq A \Delta B$.

Take $x \in A \cup B$. It belongs to A or B, but $x \notin A \cap B$, as the intersection is empty. Therefore, $x \in A \Delta B$.

We prove by contraposition. Assume $A \cap B \neq \emptyset$. Say $x \in A \cap B$ Then $x \in A \cup B$.

However, from $x \in A \cap B$ we conclude that $x \notin A \triangle B$.

Therefore, $A \cup B \neq A \Delta B$.

Complement

Let A be a set and U a universe, $A \subseteq U$. The complement of A, denoted by \overline{A} , is the set that comprises all elements of U that do not belong to A.

$$\overline{A} = \{x \mid x \in U \text{ and } x \notin A\} = \{x \mid x \notin A\}$$

- Let the universe be the set of all integers, and $A = \{x \mid \exists y \ x=2y \}$ Then \overline{A} is the set of all odd numbers
- The universe is the Latin alphabet, $A = \{a,e,l,o,u,y\}$. Then $\overline{A} = \{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,z\}$.

Difference

The difference of sets A and B (or relative complement of B in A), denoted by A − B, is the set containing those elements that are in A, but not in B.

$$A - B = \{ x \mid x \in A \land x \notin B \}.$$

- Clearly, $\overline{A} = U A$.

Laws of Set Theory

- Similar to logic connectives and formulas, expressions built from set operations and sets also satisfy some laws.
- Theorem. $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof. We will show that $\overline{A \cap B} \subseteq \overline{A \cup B}$ and $\overline{A \cap B} \supseteq \overline{A \cup B}$. Prove that $\overline{A \cap B} \subseteq \overline{A \cup B}$. Take $x \in \overline{A \cap B}$.

By the definition, $x \notin A \cap B$. Therefore, $x \notin A$ or $x \notin B$.

Hence $x \in \overline{A}$ or $x \in \overline{B}$. Thus, $x \in \overline{A} \cup \overline{B}$

Now we prove that $\overline{A \cap B} \supseteq \overline{A} \cup \overline{B}$. Take $x \in \overline{A} \cup \overline{B}$.

By definition, $x \in \overline{A}$ or $x \in \overline{B}$. Therefore, $x \notin A$ or $x \notin B$.

This implies $x \notin A \cap B$. And, finally, $x \in \overline{A \cap B}$.

Q.E.D.

Another Proof

Another way to prove equalities for sets is to use the set builder construction and some logic.

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$
 by definition of complement $= \{x \mid \neg(x \in A \cap B)\}$ by definition of does not belong symbol $= \{x \mid \neg(x \in A \land x \in B)\}$ by definition of intersection $= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$ by De Morgan's law $= \{x \mid (x \notin A) \lor (x \notin B)\}$ by definition of complement $= \{x \mid (x \in \overline{A}) \lor (x \in \overline{B})\}$ by definition of complement $= \{x \mid x \in \overline{A} \cup \overline{B}\}$ by definition of union $= \overline{A} \cup \overline{B}$

Sets and Logic

- If we look closer at the second proof, we notice that there is a very tight connection between set operations and logic connectives
 - corresponds to complement
 - \lor corresponds to union \cup
 - \wedge corresponds to intersection \cap
 - \oplus corresponds to symmetric difference Δ
 - 0 (false) corresponds to the empty set \varnothing
 - 1 (truth) corresponds to the universe L

More Laws of Set Theory

 $A \cup \emptyset = A$

 $A \cap U = A$

Identity laws

 $A \cup U = U$

 $A \cap \emptyset = \emptyset$

Domination laws

 $A \cup A = A$

 $A \cap A = A$

Idempotent laws

 $\overline{(\overline{\mathsf{A}})} = \mathsf{A}$

Complementation law

 $A \cup B = B \cup A$

 $A \cap B = B \cap A$

Commutative laws

 $A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap (B \cap C) = (A \cap B) \cap C$

Associative laws

More Laws of Set Theory (cntd)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Distributive laws

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

De Morgan's laws

$$A \cap (A \cup B) = A$$

 $A \cup (A \cap B) = A$

Absorption laws

$$A \cup \overline{A} = U$$
$$A \cap \overline{A} = \emptyset$$

Complement laws

Homework

Exercises from the Book:

No. 1, 4, 6, 8bc, 16, 17bc (page 146 – 147)