

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

원 번 10-2004-0004308

Application Number

2004년 01월 20일

Filing Date JAN 20, 2004

출 한국생명공학연구원 ЮI

Korea Research Institute of Applicant(s) Bioscience and Biotechnology

2010년 0 4 월 0 7 일

COMMISSIONER

This certificate was issued by Korean Intellectual Property Office. Please confirm any forgery or alteration of the contents by an issue number or a barcode of the document below through the KIPOnet-Online Issue of the Certificates' menu of Korean Intellectual Property Office homepage (www.kipo.go.kr). But please notice that the confirmation by the issue number is available only for 90 days.

Issue Date: 2010.04.07 1/1

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2004.01.20

【발명의 국문명칭】 줄기 세포로부터 자연살해 세포로의 분화 조절용 유전자를

유효성분으로 포함하는 분화 조절제

【발명의 영문명칭】 Differentiation regulating agent containing gene which

regulating differentiation from stem cell to natural

killer cell as effective ingradient

【출원인】

【명칭】 한국생명공학연구원

【출원인코드】 3-1999-034166-5

【대리인】

【성명】 이원희

【대리인코드】 9-1998-000385-9

【포괄위임등록번호】 2002-029927-3

【발명자】

【성명의 국문표기】 최인표

【성명의 영문표기】 CHOI, Inpyo

【주민등록번호】 560108-1XXXXXX

【우편번호】 305-335

【주소】 대전광역시 유성구 궁동 다솔 아파트 103동 204호

【국적】

KR

【발명자】

【성명의 국문표기】 강형식

【성명의 영문표기】

KANG, Hyung-Sik

【주민등록번호】

620129-1XXXXXX

【우편번호】

302-280

【주소】

대전광역시 서구 월평동 전원아파트 102동 1402호

【국적】

KR

【발명자】

【성명의 국문표기】

윤석란

【성명의 영문표기】

YOON, Suk-Ran

【주민등록번호】

631211-2XXXXXX

【우편번호】

302-120

【주소】

대전광역시 서구 둔산동 아너스빌 1809호

【국적】

KR

【발명자】

【성명의 국문표기】

김은미

【성명의 영문표기】

KIM, Eun-Mi

【주민등록번호】

770315-2XXXXXX

【우편번호】

301-836

【주소】

대전광역시 중구 유천2동 267-4

【국적】

KR

【심사청구】

청구

【핵산염기 및 아미노산 서열목록】

【서열개수】 48

【서열목록의 전자문서】 첨부

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출

원심사 를 청구합니다.

대리인

이원희 (인)

【수수료】

【기본출원료】 64 면

38,000 원

【가산출원료】

0 면 0 원

【우선권주장료】

0 건

0 원

【심사청구료】

7 항

333,000 원

【합계】

371,000 원

【감면사유】

정부출연연구기관

【감면후 수수료】 185,500 원

[요약서]

[요약]

본 발명은 줄기세포에서 자연살해 세포로의 분화 조절용 유전자를 유효성분으로 함유하는 세포분화 조절제에 관한 것으로, 보다 구체적으로는 줄기세포에서 전구 자연살해 세포로의 분화 조절용 유전자를 유효성분으로 함유하는 세포분화 조절제 및 SAGE 분석방법을 통하여 상기 분화 조절 유전자를 스크리닝하는 방법에 관한 것이다. 본 발명의 유전자는 줄기세포에서 자연살해 세포로의 분화를 조절하는 것으로 알려져 있지 않은 신규한 유전자로, 상기 유전자는 SAGE 분석방법을 통해 손쉽게 스크리닝될 수 있고, 상기 유전자를 유효성분으로 함유하는 자연살해 세포분화 조절제는 항암제로 유용하게 사용될 수 있다.

【대표도】

도 2

【명세서】

【발명의 명칭】

줄기 세포로부터 자연살해 세포로의 분화 조절용 유전자를 유효성분으로 포함하는 분화 조절제{Differentiation regulating agent containing gene which regulating differentiation from stem cell to natural killer cell as effective ingradient}

【도면의 간단한 설명】

[0001] 도 1a 내지 도 1c는 OP9 간질세포 존재하(+OP9) 또는 OP9 부재하(-OP9)에서 생쥐의 조혈줄기 세포(HSC)로부터 전구 NK 세포(pNK)를 거쳐 성숙 NK 세포(mNK)로 의 분화 단계별 표면 분자의 발현을 비교한 것이다.

[0002] 도 1a는 NK 세포 분화 각 단계에 있는 세포들의 순도를 두가지 색의 유세포 분석기에 의해 결정한 것으로 각각의 사방면(quadrant)에 있는 숫자는 해당 세포들 의 백분율을 나타낸다.

[0003] 도면에서 HSC 세포의 경우, Lin c-kit : 96%, pNK 세포의 경우, CD122 NK1.1: 95%, mNK(-OP9) 및 mNK(+OP9) 세포의 경우, CD122 NK1.1: 각각 94% 및 96%

[0004] 도 1b는 전구 NK 세포를 OP9 간질 세포를 첨가하여 배양해 성숙 NK 세포로

분화시켰을때, NK 세포 관련 표면 마커(NK1.1, DX5, CD94, NKG2A)가 발현 유도됨을 보여주는 그래프이다.

[0005] 도 1c는 NK 세포 분화 과정 중의 각 단계의 세포에서 전체 세포질 RNA를 분리해 대표적인 NK 세포 관련 유전자인 CD122 및 퍼포린(perforin)이 발현되는지 여부를 확인한 RT-PCR 분석 결과이다.

[0006] 도 2는 본 발명의 분화 조절 유전자를 탐색하기 위한 SAGE 분석 방법을 나타 낸 모식도이다.

[0007] 도 3a 내지 도 3f는 NK 세포 분화 과정 동안의 유전자 발현 프로파일 (profile)을 SAGE 분석하여 클러스터(cluster)한 것이다.

[0008] 도 3a는 HSC 세포에서 발현이 가장 높은 유전자군, 도 3b는 pNK 세포에서 발현이 가장 높은 유전자군, 도 3c는 mNK(-OP9) 세포에서 발현이 가장 높은 유전자군, 도 3d는 mNK(+OP9) 세포에서 발현이 가장 높은 유전자군을 나타낸다.

[0009] 도 3e는 NK 세포의 활성을 저해하는 유전자, 도 3f는 NK 세포의 활성을 촉진 시키는 유전자를 나타낸다.

[0010] 상기 도 3a 내지 도 3f에서 SAGE 분석하여 클러스터한 결과에서 클러스터의 빈도가 80 이상인 것은 빨강, 50 내지 79인 것은 노랑, 30 내지 49인 것은 초록, 29 이하인 것은 파랑으로 표시하였다.

[0011] 도 4a 내지 도 4d는 본 발명에서 SAGE 분석을 통해 NK 세포 분화 조절을 한다고 분석된 유전자가 실제 발현이 되는지를 RT-PCR로 분석한 것으로, 각각은 β-

[0012]

[0014]

액틴 유전자를 비교군으로 하여 정량화하였다.

도 4a는 NK 세포 분화 과정중 HSC 세포에 특이적으로 발현되는 유전자, 도 4b는 pNK 세포에 특이적으로 발현되는 유전자, 도 4c는 mNK 세포에 특이적으로 발현되는 유전자를 분석한 것이며, 도 4d는 NK 세포 분화에 리포단백질 리파제(LPL)가 미치는 영향을 조사하기 위해 LPL을 250 ng/ml 및 500 ng/ml 처리하였을 때 mNK 세포로 분화가 증가됨을 확인한 것이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

[0013] 본 발명은 줄기세포로부터 자연살해 세포로의 분화 조절용 유전자를 유효성 분으로 함유하는 세포 분화 조절제 및 상기 유전자를 스크리닝하는 방법에 관한 것 이다.

줄기 세포(stem cell)는 여러 기관으로의 분화능(multipotent)과 자가 재생 능(self renewal)을 가진 세포로 배아에서 뿐만 아니라 성체에서도 발견된다. 줄 기세포는 하나의 세포로부터 특이한 세포 또는 기관으로의 분화가 가능하여 이를 이용한 기관이식(organ transplantation) 또는 세포 대체요법(cell therapy)의 치료에 지대한 관심을 모으고 있다.

[0015] 성체 줄기세포중 하나인 조혈줄기 세포(hematopoietic stem cell)는 혈액을

구성하는 모든 세포 즉, 적혈구, 백혈구, 혈소판 및 림프구로 분화할 수 있는 세포로 주로 골수에 있는 조혈줄기 세포로부터 생체의 면역체계를 구성하는 세포들이지속적으로 자가 재생된다. 현재, 조혈줄기 세포는 골수이식을 통하여 암이나 여러 혈액질환의 치료에만 사용되고 있으나 최근에는 동물모델에서 조혈줄기 세포가근육, 신경, 뼈와 같은 다른 형의 세포로도 분화가 가능하다고 보고되고 있어 이를인간세포에 적용한다면 조혈줄기 세포가 다양한 세포와 조직을 대체할 수 있게 됨으로써 당뇨병, 파킨슨씨 병(Parkinson's disease), 착수손상을 비롯한 많은 질환의 치료를 가능하게 할 것으로 기대된다.

[0016]

특히, 자연살해 세포(natural killer cell, 이하 'NK 세포'라 약칭함)는 비특이적인 암의 살상능력이 있다. 이러한 NK 세포의 살해능을 이용하여 LAK(lymphokine activated killer cell)과 TIL(tumor infiltration lymphocytes)를 이용하여 고형암(solid tumor) 치료에 이용하거나, 공여자 임파구 주입(donor lymphocyte infusion)을 통한 면역치료법(J Immunol., 1986, 36(10):3910-3915; Hematologia, 1999, 84:1110-1149)을 수행함으로써, 골수이식이나 장기 이식시 발생하는 거부반응을 방지하기 위한 새로운 세포치료 요법으로 응용되고 있다. 또한, NK 세포의 분화와 활성의 결함은 유방암(Breast Cancer Res Treat., 2003, 66(3):255-263), 흑색종암(Melanoma Res., 2003, 13(4):349-356), 폐암(Lung Cancer, 2002, 35(1):23-18)등 다양한 질병들과 관련 되어있음이 보고되어 이러한 질병들을 치료하기 위해 NK 세포 치료법이 대두되고 있다.

[0017]

이에, 본 발명에서는 SAGE(Serial Analysis of Gene Expression)를 이용하여 줄기세포로부터 NK 세포로의 분화조절에 관여하는 신규 유전자들을 발굴하였으며, 이러한 세포분화 조절 유전자를 이용함으로써 NK 세포의 분화를 조절하고 나아가 암을 치료할 수 있는 가능성을 확인함으로써 본 발명을 완성하였다.

【발명이 이루고자 하는 기술적 과제】

[0018] 본 발명의 목적은 줄기 세포로부터 자연살해 세포로의 분화 조절용 유전자를 유효성분으로 함유하는 NK 세포 분화 조절제 및 SAGE 분석방법을 이용하여 상기 유전자를 스크리닝하는 방법을 제공하는 것이다.

【발명의 구성】

[0019] 상기 목적을 달성하기 위해 본 발명은 줄기 세포로부터 자연살해 세포로의 분화 조절제를 제공한다.

[0020] 또한, 본 발명은 줄기 세포로부터 전구 자연살해 세포로의 분화 조절제를 제공한다.

[0021] 또한, 본 발명은 전구 자연살해 세포로부터 성숙 자연살해 세포로의 분화 조절제를 제공한다.

[0022] 또한, 본 발명은 상기 분화 조절제를 이용한 항암제를 제공한다.

[0023] 또한, 본 발명은 SAGE 분석방법을 이용하여 줄기 세포로부터 자연살해 세포

[0025]

[0026]

[0027]

로의 분화 조절용 유전자를 스크리닝하는 방법을 제공한다.

[0024] 본 발명에 있어서, '분화 조절 유전자'라 함은 줄기 세포에서 자연살해 세포 로의 분화단계를 조절하는 유전자로 분화를 촉진 또는 억제하는 기능을 하는 모든 유전자를 말한다. 즉, 본 발명의 분화 조절 유전자에 의해 분화를 촉진시켜 다음

단계로 진행할 수 있게 할 수도 있고, 각 단계를 유지하는데 필수적인 기능을 할

수도 있으며, 다음 분화 단계로 진행하지 못하게 하는 기능을 할 수도 있다.

본 발명에 있어서, 'SAGE'라 함은 '유전자 발현의 순차적인 분석(Serial analysis of gene expression)'을 의미하는 것으로 본 발명에서 분석한 SAGE 분석 방법은 통상적인 SAGE 분석방법을 사용하여도 무방하며, 제조사의 방침 (Invitrogen life technologies)(http://www.invitrogen.com)에 따라 수행할 수도 있다.

본 발명의 유전자명 뒤의 괄호안에 표시된 것은 각 유전자의 서열이 나타나 있는 유전자은행 기탁번호(GenBank ID)로 상기 유전자은행 기탁번호는 당업자라면 누구든지 용이하게 검색하고, 이용할 수 있다.

본 발명에서 II형 제한효소는 유전공학에서 널리 사용되는 효소로 활성발현에 마그네슘이온을 필요로 하여 DNA분자의 특정한 염기배열을 인식하고 그 부위 또는 인식염기배열로부터 일정 염기 떨어진 인접부위를 정확하게 절단하는 효소를 말하며, 본 발명에서 사용한 'IIS형 제한효소'는 NIaIII(약 250 염기쌍 마다 CATG 부

위를 인식하여 자름)를 말한다.

[0028] 이하, 본 발명을 상세히 설명한다.

[0029]

호메오박스 단백질 MIX(AF15457), 프리-프로-프로티나제 본 발명은 3(U97073), 마이엘로블라스토시스(Myb) 종양유전자(M16499), 케라틴 콤플렉스 1, 산성, 유전자 13(NM_010662), PA-포스파타제 관련된 포스포에스터라제(AK002966), y-파빈(BC011200), 포크헤드-관련된 전사인자 1C(AF330105), RIKEN cDNA 5730501N20 유전자(AK017744); c-myc 단백질(X010223), 리보좀 단백질 L10A(AK002613), Oct 2b 유전자(X53654), 미정(AK015601), 디하이드로리포아미드 디하이드로게나제(BC003368), 트라클(U81030), 라이소자임(BC002069), 페리틴 H 체 인(BC012314). 브레비칸(X87096). 매트릭스 메탈로프로티나제 12(BC019135). EIA-자극된 유전자의 세포적 억제제(AF084524), S100 칼슘 결합 단백질 A9(BC027635), MPS1 단백질(L20315), 트랜스글루타미나제 2(BC016492), 혈청 및 글루코코티코이드 조절된 단백질 키나제(AF139639), RIKEN cDNA 5830413L19(BC027496), 인터페론-유 도된 단백질(BC003804), 유지방 글로불 막단백질 EGF 인자 8(BC018577), 세포-표 면 당단백질 p91(U83172), 아르기나제 1(BC050005), 종양괴사 인자 수용체 1(M59378), 레티노이드-유도성 세린 카복시펩티다제(AF330052), 가설의 단백질 FLJ11000 유사(BC023802), 인터루킨-18 결합 단백질 d 전구체(AF110803), 클로라이 드 채널 7(AK009435), CD36 항원(BC010262), 잠정적 아연 핑거 단백질 유사 (BC030186), 카보하이드레이트 결합 단백질 35(J03723), C형 칼슘 의존, 카보하이

[0030]

드레이트(BC003218), 리포단백질 리파제(NM_008509), v-maf 근건막 섬유육종 종양 유전자(BC038256), 인터루킨 7 수용체(NM_008372), 키모카인(C-C) 수용체 1(BC011092), 뉴로필린(MGD|MGI:106206)(AK002673), SERPINA3G(XM_127137), GABA-A 수용체 소단위 6(X51986), LAPTm5(U51239), G-단백질 신호 조절제(BC049968), 데코 이-촉진 인자 GPI 고정된 mRNA(L41366), Y 박스 단백질 3(AK019465), 오스테오폰틴 전구체(J04806), 아밀로이드 β(A4) 전구체 단백질-결합, 패밀리(AK021331), T 세 포 수용체 β 소단위 변형(U63547), 면역 연관된 뉴크레오타이드 1(BC005577), 상 위단계 전사 인자 1(NM_009480), 후각 수용체 MOR267-7(NM_146714), 림프구 특이적 단백질 티로신 키나제(M12056), 파골세포종 억제 인자(AB013898), 혈소판 활성 수 용체 상동 유사(BC024054), 자연살해 세포 단백질군 2-A1(AF016008), 가설의 단백 질 MGC36662(BC023851), 세마포린 6A 전구체 유사(AK004390), 뉴로필라멘트 유사, 중 폴리펩타이드(BC025872), 코로닌 유사, 액틴 결합 단백질 2A(BC026634), 솔루트 전달 패밀리 6(BC015245), 잠정적 퓨린성 수용체 P2Y10 상동(AK020001), T 세포 수 용체 감마 체인(X03802), 폴리 A 폴리머라제 알파(NM_011112), OPA-연관 단백질 OIP5 유사(AKO17825), 미토젠 활성화된 단백질 키나제 1 유사(BC006708)로 구성된 군으로부터 선택되는 하나 이상의 유전자를 유효성분으로 포함하는 것을 특징으로 하는 자연살해 세포의 분화 조절제를 제공한다.

또한, 본 발명은 호메오박스 단백질 MIX(AF15457), 프리-프로-프로티나제 3(U97073), 마이엘로블라스토시스(Myb) 종양유전자(M16499), 케라틴 콤플렉스 1,

산성, 유전자 13(NM_010662), PA-포스파타제 관련된 포스포에스터라제(AK002966), γ -파빈(BC011200), 포크헤드-관련된 전사인자 1C(AF330105), RIKEN cDNA 5730501N20 유전자(AK017744), c-myc 단백질(X010223), 리보좀 단백질 L10A(AK002613), Oct 2b 유전자(X53654), 미정(AK015601), 디하이드로리포아미드 디하이드로게나제(BC003368), 트라클(U81030)로 구성된 군으로부터 선택되는 하나 이상의 유전자를 유효성분으로 포함하는 것을 특징으로 하는 줄기세포에서 전구 자연살해 세포로의 분화 조절제를 제공한다.

[0031]

또한, 본 발명은 라이소자임(BC002069), 페리틴 H 체인(BC012314), 브레비칸 (X87096), 매트릭스 메탈로프로티나제 12(BC019135), EIA-자극된 유전자의 세포적 억제제(AF084524), S100 칼슘 결합 단백질 A9(BC027635), MPS1 단백질(L20315), 트랜스글루타미나제 2(BC016492), 혈청 및 글루코코티코이드 조절된 단백질 키나제 (AF139639), RIKEN cDNA 5830413L19(BC027496), 인터페론-유도된 단백질 (BC003804), 유지방 글로불 막단백질 EGF 인자 8(BC018577), 세포-표면 당단백질 p91(U83172), 아르기나제 1(BC050005), 종양괴사 인자 수용체 1(M59378), 레티노이 드-유도성 세린 카복시펩티다제(AF330052), 가설의 단백질 FLJ11000 유사 (BC023802), 인터루킨-18 결합 단백질 d 전구체(AF110803), 클로라이드 채널 7(AK009435), CD36 항원(BC010262), 잠정적 아연 핑거 단백질 유사(BC030186), 카보하이드레이트 결합 단백질 35(J03723), C형 칼슘 의존, 카보하이드레이트 (BC003218), 리포단백질 리파제(NM_008509), v-maf 근건막 섬유육종 중양유전자

(BC038256), 인터루킨 7 수용체(NM_008372), 키모카인(C-C) 수용체 1(BC011092), 뉴로필린(MGD | MGI:106206)(AK002673)로 구성된 군으로부터 선택되는 하나 이상의 유전자를 유효성분으로 포함하는 것을 특징으로 하는 전구 차연살해 세포로부터 성숙 자연살해 세포로의 분화 조절제를 제공한다.

[0032]

또한, 본 발명은 SERPINA3G(XM_127137), GABA-A 수용체 소단위 6(X51986), LAPTm5(U51239), G-단백질 신호 조절제(BC049968), 데코이-촉진 인자 GPI 고정된 mRNA(L41366), Y 박스 단백질 3(AK019465), 오스테오폰틴 전구체(J04806), 아밀로 이드 β(A4) 전구체 단백질-결합, 패밀리(AKO21331), T 세포 수용체 β 소단위 변 형(U63547), 면역 연관된 뉴크레오타이드 1(BC005577), 상위단계 전사 인자 1(NM_009480), 후각 수용체 MOR267-7(NM_146714), 림프구 특이적 단백질 티로신 키 나제(M12056), 파골세포종 억제 인자(AB013898), 혈소판 활성 수용체 상동 유사 (BC024054), 자연살해 세포 단백질군 2-A1(AF016008), 가설의 단백질 MGC36662(BC023851), 세마포린 6A 전구체 유사(AK004390), 뉴로필라멘트 유사, 중 폴리펩타이드(BC025872), 코로닌 유사, 액틴 결합 단백질 2A(BC026634), 솔루트 전 달 패밀리 6(BC015245), 잠정적 퓨린성 수용체 P2Y10 상동(AK020001), T 세포 수용 체 감마 체인(X03802), 폴리 A 폴리머라제 알파(NM_011112), OPA-연관 단백질 OIP5 유사(AK017825), 미토젠 활성화된 단백질 키나제 1 유사(BC006708)로 구성된 군으 로부터 선택되는 하나 이상의 유전자를 유효성분으로 포함하는 것을 특징으로 하는 성숙 자연살해 세포의 분화 조절제를 제공한다.

[0033] •

본 발명의 분화 조절제의 유효성분인 유전자는 1) 줄기세포에서 전구 NK 세포로의 분화 조절, 2) 전구 NK 세포에서 성숙 NK 세포로의 분화 조절 및 3) 성숙 NK 세포의 분화 조절 기능을 하는 유전자로, 상기 각 단계의 분화 조절 유전자는 모두 줄기세포에서 NK 세포로의 분화 조절제로 사용될 수 있다. 본 발명의 실시예에서는 조혈줄기 세포인 HSC 세포에 사이토카인을 처리하여 배양함으로써 전구 NK 세포, 성숙 NK 세포로 분화유도를 시킬 수 있었다(도 1a 내지 도 1c). 상기 각 단계의 세포로부터 전체 RNA를 분리하고, 도 2에 나타난 모식도와 같이 SAGE 분석을 수행하였다. SAGE 분석을 통해 각 분화 단계별로 발현이 특이적으로 증가하는 유전자들을 탐색할 수 있었다(도 3a 내지 도 3f). 상기 탐색된 유전자를 이용하여 기존의 공지된 유전자 은행에 기탁된 유전자와 비교분석한 결과, 줄기세포에서 pNK 세포로의 분화(표 3 참조), pNK 세포에서 mNK 세포로의 분화(표 4 참조), mNK 세포 의 분화(표 5 참조)를 조절하는 기능을 한다고 기존에 보고되지 않은 유전자군을 탐색할 수 있었다.

[0034]

따라서, SAGE를 통해 본 발명에서 분석한 유전자는 기존에 줄기세포에서 NK 세포로의 분화를 조절한다고는 알려져 있지 않은 신규한 기능을 하는 유전자임을 알 수 있으며, 이러한 유전자를 하나 이상 유효성분으로 함유하는 제제는 세포분화를 조절하는데 사용될 수 있다. 즉, 표 3에 기재된 유전자 중에서 하나 이상의 유전자를 이용하여 줄기세포로부터 전구 NK 세포로의 분화 조절제를 제조할 수 있으며, 표 4에 기재된 유전자 중에서 하나 이상의 유전자를 이용하여 전구 NK 세포로

부터 성숙 NK 세포로의 분화 조절제를 제조할 수 있고, 표 5에 기재된 유전자 중에서 하나 이상의 유전자를 이용하여 성숙 NK 세포의 분화 조절제를 제조할 수 있다. 또한, 상기 표 3, 표 4 및 표 5에 기재된 유전자 모두는 줄기세포로부터 NK 세포로의 분화를 조절하는 기능을 하므로 이들 중 하나 이상의 유전자를 이용하여 자연살해 세포의 분화 조절제를 제조할 수 있다.

[0035]

본 발명의 세포 분화 조절제는 암의 치료 용도로 사용할 수 있다. 본 발명의 분화 조절제를 이용하여 치료할 수 있는 암으로는 유방암, 흑색종암 및 폐암으로 구성된 군으로부터 선택되는 암인 것이 바람직하다. NK 세포의 분화와 활성에 결함이 생기게 되면 다양한 암이 발생하게 되는데, 예를 들어 유방암(Breast Cancer Res Treat., 2003, 66(3):255-263), 흑색종암(Melanoma Res., 2003, 13(4):349-356), 폐암(Lung Cancer, 2002, 35(1):23-18)이 발생한다고 보고되어 있다. 따라서, 본 발명의 NK 세포 분화 조절제를 이용하면 NK 세포 분화를 조절함으로써 암, 특히 상기 기재된 암을 치료할 수 있다는 것이 자명하다.

[0036]

본 발명의 세포 분화 조절제는 임상투여시에 경구 또는 비경구로 투여가 가능하며 일반적인 의약품제제의 형태로 사용될 수 있다. 즉, 본 발명의 세포 분화조절제는 실제 임상투여 시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있는데, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는하나 이상의 본 발명의 유전자에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄

산칼슘(Calcium carbonate), 수크로스(Sucrose) 또는 락토오스(Lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순회석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위탭을 (witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용 될 수 있다.

[0037] 본 발명의 치료제의 유효용량은 0.1 ~ 0.2 mg/kg 이고, 바람직하기로는 0.15 mg/kg 이며, 하루 1~3 회 투여될 수 있다.

[0038] 또한, 본 발명은

[0039]

- 1) 세포로부터 전체 RNA를 분리하여 cDNA를 합성하는 단계;
- [0040] 2) 단계 1의 cDNA를 절단하여 태그를 분리하는 단계;
- [0041] 3) 단계 2에서 분리한 태그 각각을 연결한 후 이의 염기서열을 분석하는 단계; 및

4) 단계 3에서 분석한 염기서열을 SAGE 분석 프로그램을 사용해 발현량을 측정하는 단계를 포함하는 것을 특징으로 하는 줄기 세포로부터 자연살해 세포로의 분화 조절용 유전자를 스크리닝하는 방법을 제공한다.

[0043]

[0042]

상기 단계 1에 있어서, 세포는 줄기 세포에서부터 자연살해 세포까지의 각 분화 단계별 세포인 것이 바람직하다. 본 발명의 바람직한 실시예에서는 줄기 세 포로 조혈줄기 세포(HSC)를 사용하고, 자연살해 세포로 전구 자연살해 세포, 성숙 자연살해 세포를 사용하였다. 또한, 전체 RNA는 샘플로부터 RNase 오염을 방지하 면서 고수율로 전체 RNA를 분리할 수 있는 방법이면 어느 것이든 사용하여 분리하 여도 무방하다(Sambrook, et al., 1989, Molecular Cloning). 통상적으로는 RNA 분리 시약을 사용하여 제조사의 방침에 따라 분리하는 것이 간편하다. 또한, 전체 RNA로부터 cDNA를 합성하는 것은 전체 RNA에 올리고 dT 프라이머를 결합시켜 cDNA 를 합성하는 것으로, 반드시 상기 방법으로 합성하지 않아도 되며 cDNA를 합성할 수 있는 방법이면 어떤 방법을 사용하여도 무방하다. 본 발명의 바람직한 실시예 에서는 전체 RNA에 올리고 dT 프라이머를 위해 폴리 A 서열을 삽입하기 위해 사용 한 것이다. 올리고 dT 프라이머는 20 내지 30 개의 T 서열이 반복되는 것이 바람 직하다. 또한, 상기 올리고 dT 프라이머에는 추가로 자석비드를 결합시켜 cDNA를 합성하였으며, 이때 올리고 dT 프라이머는 mRNA를 합성하기로 한쪽 말단에 자석 비 드를 결합시킬 수도 있는데, 자석 비드를 이용하면 손쉽게 다른 물질의 오염없이 태그를 분리할 수 있는 장점이 있다.

[0045]

[0048]

[0049]

[0050]

[0044] 또한, 상기 단계 2에 있어서, cDNA를 절단하여 태그를 분리하는 단계는

a) cDNA를 ⅡS형 제한효소 1로 절단하여 태그를 제조하는 단계;

[0046] b) IIS형 제한효소 1 인식부위를 한쪽 말단에 포함하는 2종의 어댑터를 상기 단계 a에서 제조한 태그의 절단부위에 각각 연결시키는 단계;

[0047] c) 어댑터 연결된 상기 단계 b의 태그를 ·IIS형 제한효소 2로 절단하여 상기 태그로부터 올리고 dT 자석 비드를 절단하여 태그를 분리하는 단계;

d) 단계 c에서 제조된 태그 각각을 연결하여 이중태그를 제조하는 단계;

e) 단계 d에서 제조된 이중태그를 IIS형 제한효소 1로 절단하여 어댑터를 절 단해 냄으로써 이중태그만을 제조하는 단계를 포함하여 제조되는 것이 바람직하다.

상기 단계 a에 있어서, 합성된 cDNA를 IIS형 제한효소 1로 절단하는 것은 상기 제한효소로 절단한 부위가 추후의 태그를 연결하기 위한 부위로 사용될 수 있으며, 절단된 부위가 5' 오버행(overhangs)을 형성함으로서 태그 연결이 용이하다는 장점 때문에 상기 제한효소로 절단하는 것이다. IIS형 제한효소 1는 여러 가지 효소 중에 어느 하나를 선택하여 사용하어도 무방하나 NIaIII 제한효소를 사용하는 것이 더욱 바람직하다. 왜냐하면, cDNA에 있어서 250 bp마다 상기 NIaIII 제한효소 인식부위가 존재하고 있다고 알려져 있기 때문에 상기 제한효소를 사용하면 일정한 크기를 갖는 태그를 손쉽게 절단해 낼 수 있다.

[0051] 상기 단계 b에 있어서, 태그의 절단 부위에 각각 연결시키는 2종의 어댑터는

약 40 bp 내외의 길이를 가진 서열이 상보적으로 결합된 것으로서, 태그와 결합하는 부위에 있는 NIaIII 제한효소 인식부위(CATG)를 한쪽 말단에 포함하고 있어 오버행을 형성하며, 이 부위가 태그와 결합하기 용이하도록 한다.

[0052]

상기 단계 c에 있어서, 어댑터 연결된 상기 태그를 ⅡS형 제한효소 2로 절단하는 것은 ⅡS형 제한효소 2가 어댑터에 있는 제한효소 부위에 결합하여 제한효소 절단부위로부터 10 내지 14bp 하류에 있는 부위를 절단하여 최종적으로는 5' 말단에 4 bp의 오버행 말단을 포함하는 약 50 bp 크기의 태그를 분리할 수 있도록한다. 상기 ⅡS형 제한효소 2는 BsmFI을 사용하는 것이 바람직하다.

[0053]

상기 단계 d에 있어서, 태그 각각을 연결하여 이중태그를 형성하는 것은 태그 각각의 5' 말단이 오버행 말단을 형성하고 있기 때문에 이 부위를 서로 연결함으로써 이중태그를 형성하는 것이다. 이렇게 형성된 이중태그는 약 100 bp 정도의크기를 형성한다.

[0054]

상기 단계 e에 있어서, 이중태그를 ⅡS형 제한효소 1로 절단하여 어댑터를 절단해 냄으로써 이중태그만을 제조하는 것은 태그의 말단과 어댑터가 연결되는 부 위가 ⅡS형 제한효소 1 인식부위를 포함하기 때문에 상기 효소를 이용하면 어댑터 가 절단되어 나가 약 26 bp 크기의 이중태그만을 분리할 수 있다.

[0055]

또한, 상기 단계 3에 있어서, 단계 2에서 분리한 태그 절편을 20 내지 50 개 연결한 후 염기서열을 분석하는 단계는 하기 기재된 단계로 수행하는 것이 바람직

하다.

[0056] a) 단계 2에서 제조한 이중태그를 각각 연결하여 콘카트머(concatemer) 형태

로 제조한 후 클로닝용 벡터에 클로닝하는 단계; 및

[0057] b) 단계 a에서 클로닝한 벡터의 태그 염기서열을 분석하는 단계.

[0058] 상기 단계 a에 있어서, 이중태그를 연결하여 콘카트머(concatemer) 형태로

제조하는 것은 이중태그의 양쪽 말단이 모두 IIS형 제한효소 1 인식부위를 포함해

오버행을 형성하므로, 이렇게 제조된 이중태그 각각은 모두 연결될 수 있고 이렇게

하여 약 20 내지 50개의 태그가 연결된 콘카트머를 형성할 수 있다. 또한, 상기

제조한 콘카트머 형태의 태그를 클로닝용 벡터에 클로닝하는 것은 염기서열 분석하

기 용이하게 하기 위해 통상적으로 사용되는 클로닝 벡터에 삽입하는 것이 바람직

하며, 본 발명의 바람직한 실시예에서는 pZerO-1 벡터를 사용하였다. 상기 발현벡

터는 SAGE 분석 방법을 수행하기 위해 제공되는 분석 킷트(Invitrogen Life

Science)에 포함되어 있는 벡터로서 용이하게 이용할 수 있다.

[0059] 또한, 상기 단계 4에 있어서, 분석한 염기서열을 SAGE 분석 프로그램을 사용

해 발현량을 측정하는 것은 염기서열 분석한 결과를 유전자은행에 기탁된 유전자

염기서열과 비교하여 어떠한 유전자인지 확인한 뒤 SAGE 분석 프로그램을 이용하여

발현 양상이 높은 것에서부터 시작하여 낮은 것까지를 클러스터링하여 빨강색, 노

랑색, 녹색, 파랑색으로 구분하여 표시함으로써 유전자의 발현 양상을 용이하게 확

인할 수 있게 한다. 또한, 이러한 발현양은 수치화하여도 무방하다. 본 발명의 바람직한 실시예에서는 클러스터의 빈도가 80 이상인 것은 빨강, 50 내지 79인 것은 노랑, 30 내지 49인 것은 초록, 29 이하인 것은 파랑으로 표시하였다. SAGE 분석 프로그램은 제조사에서 제공하는 프로그램을 사용하거나 인터넷상에서 제공되는 소프트웨어를 이용할 수 있다. 본 발명에서는 SAGE 결과를 클러스터링하기 위해 일반적으로 사용되는 프로그램(cluster and treeview computer program, http://rana.1b1.gov)을 사용하였다.

[0060] 본 발명의 유전자 스크리닝 방법은 SAGE 분석 방법을 통하여 스크리닝하는 것으로, 상기 각 단계는 일반적인 SAGE 분석 방법을 이용하여 수행하여도 무방하고, 제조사의 방침에 따라 적정하게 조정하여 수행하는 것이 바람직하다. 본 발명의 방법을 간단하게 모식도로 나타내면 도 2와 같다.

[0061] 이하, 본 발명을 실시예에 의해 상세히 설명한다.

[0062] 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실 시예에 한정되는 것은 아니다.

<실시예 1> 골수로부터 조혈세포의 분리

[0063]

[0064] 6 내지 9주령의 C57BL/6 생쥐(대한실험동물)의 경골과 대퇴골을 비롯한 모든 뼈를 분쇄하여 분쇄물을 70 마이크론 세포 스트레이너(strainer)로 통과시킨 다음.

용해 용액(Sigma, St. Louse, MO)을 처리하여 적혈구를 제거함으로써 골수세포를 얻었다. 골수세포를 계통 마커 (CD11b : 대식세포 마커, Gr-1 :과립구 마커, B220 : B세포 마커, NK1.1: NK세포 마커, CD2 : T세포 마커, TER-119: 적혈구 마커)에 대하여 바이오틴(biotin) 표지된 항체들과 반응시킨 후 세척하고, 스트랩트아비딘(streptavidin)이 표지된 자석 비드(Miltenyi Biotec, Auburn, CA)와 반응시켰다. 자석이 표지된 Lin[†] 세포들은 SuperMACS(Miltenyi Biotec)의 자장 안에서 CS 컬럼(Miltenyi Biotec)에 통과시켜서 소거하였다. 컬럼을 통과한 나머지 Lin 세포들을 c-kit과 결합된 자석 비드와 반응시키고 MS 컬럼(Miltenyi Biotec)을 통과시킨 후 컬럼에 잔류하는 c-kit[†] 세포를 얻었다. 이렇게 얻은 Lin c-kit[†]인 조혈줄기 세포(hematopoietic stem cell, 이하 'HSC 세포'라 약칭함)의 순도는 형광 유세포 계수기(FACS)(BD Bioscience, Mountainview, CA)로 확인한 결과, 96%이상의 순도를 가 집을 확인하였다.

<실시예 2> 조혈세포로부터 NK 세포로의 분화 유도

[0065]

[0066]

상기 실시예 1에서 골수로부터 분리한 HSC 세포를 2 × 10⁶ 세포수/웰의 농도로 생쥐 SCF(30 ng/ml, BioSource, Camarillo, CA), 생쥐 Flt3L(50 ng/ml, PeproTech, Rocky Hill, NJ), 생쥐 IL-7(0.5 ng/ml, PeproTech), 인도메타신(2 g/ml, Sigma), 젠타마이신(20 g/ml) 및 10% 우태아 혈청을 함유하는 RPMI 완전 배지

를 사용하여 6-웰 플레이트(Falcon)에 접종하였다. 상기 세포를 37℃, 5% CO₂에서 6일 동안 배양하는데, 배양 3일 후 배양 상층액 절반을 버리고 상기 접종시와 같은 조성의 사이토카인이 함유된 새로운 배지로 갈아 주었다. 배양 6일후, FITC 표지된 CD122항체와 자석 비드가 붙은 항 FITC 항체를 이용하여 MACS로 CD122[†]인 NK 전구체 세포(premature NK cell, 이하 'pNK 세포'라 약칭함)를 분리하였다. NK 전구체 세포의 순도는 형광 유세포 계수기(FACS)로 분석한 결과, 92% 이상이었다.

[0067]

[8900]

성숙한 NK 세포(mature NK cell, 이하 mNK 세포'라 약칭함)로의 분화를 위해서는 6일 후 HSC 세포를 회수하여 OP9 간질 세포(stromal cell)(Nakano T, Kodama H, Honjo T., Science, 1994, 265(5175):1098-1101)와 함께 또는 단독으로 생쥐 IL-15(20 ng/ml, PeproTech)의 존재하에서 배양하였다. 배양 3일 후, 배양 배지의절반을 같은 조성의 새로운 배지로 갈아주고, 배양 12일째, FITC로 표지된 항-NK1.1 항체와 자석 비드(MACS)가 붙은 항-FITC 항체를 이용하여 NK1.1 세포를 분리하였다. 성숙한 NK 세포는 항-CD122, NK1.1, DX5, NK 세포 수용체 항체들을 이용하여 유세포 계수기(flow cytometry)로 분석하였다.

<실시예 3> 분리 정제한 NK 세포의 분화단계별 특이적 표현형 확인

[0069] NK 세포의 분화 단계별 특이적 세포를 얻기 위해, 생쥐의 골수로부터 분리한
Lin c-kit HSC(> 95%)를 SCF, Flt-3L, IL-7 존재하에서 6일간 배양한 후, CD122 [†]

인 pNK 세포(95%)를 분리하고, 유세포 계수기로 분석하였다. 그리고, mNK 세포(-OP9 or +OP9)는 IL-15 단독 또는 IL-15와 OP9 간질 세포를 함께 6일간 더 배양한 후 세포를 수득하여 유세포 계수기로 분석하였다(도 1a). 간질 세포와 함께 배양 하였을 때, 더 많은 mNK 세포(-OP9; 94% 및 +OP9; > 95%)를 얻을 수 있었다. 세포 표면의 Lv49 수용체들은 mNK 세포의 기능에 중요한 역함을 하고 그들의 발현 은 다른 면역세포들과의 상호연관(communication)에 의한 신호전달에 의해 조절된 다. 골수에서 유래된 HSC와 간질 세포와의 동시배양이 mNK 세포의 Ly49 수용체 발 현에 필수적인가를 알아보기 위해 IL-15의 존재하에서 단독 또는 OP9 세포와 함께 mNK 세포를 배양하고 Ly49 발현을 조사하였다(도 1b). OP9과 함께 배양하였을때 (+OP9) mNK 세포에서 Ly49C/I 및 Ly49G2의 발현이 유도된 반면, OP9과 함께 배양하 지 않으면(-OP9) Ly49C/I 및 Ly49G2의 발현이 유도되지 않았다. 이는 OP9 간질 세 포와의 동시 배양이 NK 세포의 추후의 성숙(maturation)에 필수적이라는 것을 암시 한다. NK 세포 분화단계별 CD122와 퍼포린(perforin) 유전자 발현 양상을 통해 분 화하는 동안 NK 세포로 성숙(maturation)됨을 확인할 수 있었다(도 1c).

<실시예 3> SAGE(Serial analysis of gene expression)

[0070]

[0071]

상기 실시예 2에서 제조한 HSC 세포를 비롯하여 NK 분화단계 특이적인 세포 (pNK 및 mNK)로부터 전체 RNA를 분리한뒤 5 μg의 전체 RNA로부터 올리고 (dT)₂₅ 자석 비드(Dynal A.S., Oslo, Norway)를 사용하여 mRNA를 분리 정제하였다. 상기 올

리고 dT 비드로 분리 정제한 mRNA를 5'-바이오틴화되고 3'-연결된 올리고 (dT) 프 라이머를 이용하여 cDNA 합성 킷트(Invitrogen, Life Technologies)로 합성하였다. 제조사의 방침(Invitrogen, Life Technologies)에 따라 도 2의 모식도로 예시되는 방법으로 cDNA로부터 SAGE 분석용 태그를 제작하였다. 상기 cDNA를 제한효소인 NIaⅢ로 자른뒤 3'-부분을 스트렙트아비딘 코팅된 자석 비드(Dynal)로 결합시켰다. 태그는 2개의 분획으로 나누고, WaⅢ 인식 부위가 있는 2개의 링커(Invitrogen, Life Technologies)로 각각 연결하였다. 링커를 연결한 태그를 *Bsm*FI으로 절단한 뒤, 절단에 의해 유리된 태그와 링커에 Pfu DNA 폴리머라제를 처리하여 블런트-말 단으로 만들고 블런트-말단을 연결하여 이중태그(ditag)가 형성되도록 하였다. 바 이오틴 표지된 SAGE 프라이머(Invitrogen, Life Technologies)를 이용하여 상기 이 중태그를 PCR 증폭한 후, 이중태그를 NIaIII로 절단하여 링커로부터 분리하고; T4 DNA 리가제를 처리하여 콘카트머(concatemer) 형태로 만들었다. 상기 제조된 콘카 트머들을 Sph I-절단된 pZero-1 벡터(Invitrogen, Carlsbad, CA)에 클로닝하였다 (도 2). 서열번호 1로 기재되는 M13 정방향 프라이머와 서열번호 2로 기재되는 M13 역방향 프라이머를 사용하여 상기 클로닝 산물을 PCR 증폭한 후 증폭된 양성 콜로니를 선택하여 PCR 산물을 염기서열 분석킷트(Big-Dye sequencing kit)와 염기 서열분석기기(ABI377 sequencer, Perkin-Elmer Applied Biosystems, Branchburg, NJ)로 서열분석하였다. 태그서열은 SAGE 300 소프트웨어로 추출하였다.

<실시예 4> SAGE 데이터 분석

[0072]

출원번호: 10-2004-0004308 <4-1> 생물정보학적 분석

[0074]

[0073]

참조 SAGE-태그 데이터베이스는 유전자은행(GenBank)에서 대부분의 알려진생쥐 발현 서열을 나타내는 유니진 생쥐 데이터베이스(UniGene mouse database)로부터 제작하였다. 서열에서 SAGE 태그를 결정하는 조건은 (i) 각각 전사체의 방향성, (ii) 폴리 (A) 신호(AATAAA 또는 ATTAAA)의 존재, (iii) 폴리 (A) 꼬리의존재, (iv) 서열에서 마지막 CATG 절단 부위의 존재로 하였다. 참조서열로부터 추출된 모든 SAGE 태그는 참조 SAGE 데이터베이스를 구축하는데 사용하였다. 참조SAGE 데이터베이스(http://www.hpc1.cs.uchicago.edu/gist)에 대해서 실험적인 SAGE 태그를 매치하고, 각각의 SAGE 태그에 대응하는 가능한 유전자를 동정하기 위해 컴퓨터 프로그램 SAGEmap(Lash A.E et al., Genome Res., 2000, 10(7):1051-1060)을 이용하였다.

<4-2> SAGE 프로파일의 정량적인 분포에 따른 클러스터링 분석

[0076]

[0075]

상기 실시예 <4-1>에서 수행하여 얻은 SAGE 데이터를 NK 세포 분화과정 동안 그들의 다른 발현과 기능적 패턴에 근거하여 클러스터링(clustering)하기 위해 클러스터링 컴퓨터 프로그램(cluster and treeview computer program, http://rana.1b1.gov)을 사용하여 분석하였다. 간단히, 각각의 측정 단계에 그들의 빈도에 따라(PERL script available upon request) 파랑, 초록, 노랑, 빨강의색을 할당하였다. 중간 값은 상응하는 RGB 값에 삽입하였다. 이런 색상화된 가시

적인 검사에 의해 높고 뚜렷한 발현 양상을 보이는 몇몇 태그들이 채택되고, 그들을 패널에서 서로 떨어지게 배치하였다. 다른 태그들은 이웃하는 열들이 유사한 발현양상을 보이고 전체가 점차적인 색상변화를 보이도록 하는 방법으로 재배열하였다.

[0077]

HSC, pNK, mNK(-OP) 및 mNK(+OP9) 세포들의 SAGE 프로파일을 이용하여 NK 세 포로 분화하는 과정 중에 유전자 발현양상이 증가 또는 감소하는지 분석하였다. 그 결과, 도 3a 내지 도 3f에서 보는 바와 같이 채택된 유전자들을 4개의 다른 군 으로 클러스터링되었다. 예를 들어, 도 3a는 HSC에서 발현이 높고 NK세포가 분화 됨에 따라 감소하는 유전자군 나타내고, 도 3b 및 도 3c는 각각 pNK세포와 mNK(-OP9) 세포에서 발현이 높은 유전자 군을 나타내며, 도 3d는 발현이 점차적으로 증 가하다가 mNK(+OP9) 세포에서 최대의 발현을 보이는 유전자군을 나타내 주었다. 특히, pNK 세포군에서 최대 발현을 나타내는 유전자군(도 3b)은 림프구 분화 항체, C-C 케모카인 수용체, 종양 괴사 인자 및 인터루킨-18 결합 단백질과 같은 많은 면 역 조절 유전자들을 포함하고 있고, 이는 pNK 세포의 분화에 면역 조절자들이 중요 하다는 것을 시사한다. 다음에는 공개된 데이터베이스를 기초로, 유전자들을 NK 세포 활성을 조절하는 기능에 따라 분류하였다. 도 3e 및 도 3f는 각각 NK 세포 활성을 저해 및 촉진하는 유전자들을 나타내었다. 많은 경우 이 유전자들은 분화 과정중의 늦은 단계에서 발현된다. 활성화 유전자에는 미토젠(mitogen) 활성화된 키나제(mitogen 단백질 포스포리파제 activated protein kinase), A2(phospholipase A2), IL-2 수용체(IL-2 receptor), 케모카인 수용체(chemokine

receptor)와 같은 많은 신호 분자들이 포함되어 있다.

[0078] <실시예 5> NK 세포 분화 단계별 분화 단계 조절 유전자 분석

<5-1> NK 세포 분화 단계별 SAGE 라이브러리 제조

[0800]

[0079]

상기 실시예 4를 통해 SAGE 분석한 결과를 이용하여 각 분화 단계(HSC, pNK, mNK(-OP9), mNK(+OP9))에 있는 NK 세포로부터 4군의 독립적인 SAGE 라이브러리를 HSC의 SAGE 라이브러리에서는 전체 44,998개의 태그로부터 19,830개의 만들었다. 특이(unique) 전사체가 동정되었고, 이중에서 12,899개의 특이 유전자가 동정되었 다. pNK 세포의 SAGE 라이브러리에서는 전체 40,771개의 태그로부터 17,745개의 특이 전사체가 동정되었고, 이중에서 11,684개의 특이 유전자가 동정되었다. 유사 하게 mNK 세포의 SAGE 라이브러리에서는 전체 42,160개의 태그(mNK(-OP9))와 42,535개의 태그(mNK(+OP9))로부터 각각 20,803개 및 20,791개의 특이 전사체가 동 정되었고, 이중에서 각각 3,650개 및 14,335개의 특이 유전자가 동정되었다. 적으로, 4개의 SAGE 라이브러리로부터 총 170,464개의 태그가 동정되었고, 이로부 터 59,657개의 특이 전사체 및 이로부터 35,385개의 특이 유전자가 동정되었다. 59,657개의 특이 전사체 중에서 77.9%는 단일 카피, 16.8%는 2 내지 4 카피, 3.2% 는 5 내지 9 카피, 1.9%는 10 내지 99 카피로 나타나고, 오직 0.2%만이 100 카피 이상 나타냈다(표 1).

【丑 1】

[0082]

[0081] NK 세포로의 분화 단계별 SAGE 결과

분화단계별 세포	태그수	특이 전사체수	특이 유전자수
HSC	44,998	19,830	12,899
pNK	40,771	17,745	11,684
mNK(-OP9)	42,160	20,803	13,650
mNK(+OP9)	42,535	20,791	14,335
전체	170,464	59,657	35,385

또한, 상기 분석된 SAGE 결과로부터 NK 세포 분화에 영향을 미친다고 알려져 있는 유전자들의 발현양상이 그대로 반영되는지 확인하였다. 그 결과, 공지된 바와 같이 그랜자임(Granzyme)(GenBank ID NM_013542)과 NKG2A(GenBank ID AF106008), 2B4(GenBank ID L19057), Ly49Q(GenBank ID AB033769), CD94(GenBank ID AF057714)와 같은 mNK 세포 수용체들은 mNK 세포에서는 높게 계수되었으나 HSC와 pNK세포에서는 계수되지 않았다. IL-15(GenBank ID U14332)는 오직 HSC와 pNK 세포에서 검출되고, ID2(GenBank ID BC006951)는 pNK 세포 단계부터 검출됨을 확인하였다(표 2).

[0083] 분화 단계 관련 공지 유전자의 SAGE 결과 확인

유전자	HSC	рNK	mNK(-OP9)	mNK(+OP9)
그랜자임	0	0	508	664
NKG2A	0	0	6	3
NK 수용체 2B4	1	0	17	17

NK 수용체 Ly-49Q	0	1	2	6
CD94	0	0	3	1
IL-15	3	3	0	0
Ly49G2	0	0	1	0
ID-2	0	7	5	9

<5-2> NK세포 분화과정 중 분화단계 특이적으로 발현되는 유전자의 분석

[0085] NK 분화의 각각의 단계에는 서로 구별되는 유전자의 발현 양상이 나타난다고 알려져 있어서 분화단계 특이적으로 유도되는 유전자를 동정하였다. 통계적으로 유의적인 차이를 조사하기 위해 특정 단계에서 적어도 4배 이상 계수되는 유전자 군을 표로 만들었다.

[0086] 그 결과, 15개의 유전자가 HSC에서 현저하게 발현되었다(표 3). 그 중에서 인터루킨-1 수용체 연관된 키나제(IRAK)는 NK 세포 활성화와 신호전달에 관여하고, IRAK-결핍 생쥐는 IL-18-유도된 NK 세포 독성의 유도능과 활성화된 NK세포에 의한 IFN- y 의 생성이 심각하게 손상되어있다고 알려져 있어, 본 발명의 분석이 정확하게 되었음을 알 수 있었다.

【丑 3】

[0087]

[0084]

유전자명	GenBank ID	HSC	pNK	mNK	mNK
				(-0P9)	(+0P9)
호메오박스 단백질 MIX	AF15457	28	0	0	0
프리-프로-프로티나제 3	U97073	28	0	0	0
마이엘로블라스토시스 (Myb) 종양유전자	M16499	11	1	0	1

NM_010662	9	0	0	0
AK002966	8	0	1	1
AK009132	7	0	0	0
BC011200	6	0	0	0
AF330105	4	1	1	0
AK017744	4	1	0	0
X010223	4	0	0	1
AK002613	4	0	1	0
X53654	4	0	0	0
AK015601	4	0	0	0
BC003368	4	0	00	0
U81030	4	0	0	_ 0
	AK002966 AK009132 BC011200 AF330105 AK017744 X010223 AK002613 X53654 AK015601 BC003368	AK002966 8 AK009132 7 BC011200 6 AF330105 4 AK017744 4 X010223 4 AK002613 4 X53654 4 AK015601 4 BC003368 4	AK002966 8 0 AK009132 7 0 BC011200 6 0 AF330105 4 1 AK017744 4 1 X010223 4 0 AK002613 4 0 X53654 4 0 AK015601 4 0 BC003368 4 0	AK002966 8 0 1 AK009132 7 0 0 BC011200 6 0 0 AF330105 4 1 1 AK017744 4 1 0 X010223 4 0 0 AK002613 4 0 1 X53654 4 0 0 AK015601 4 0 0 BC003368 4 0 0

[8800]

또한, pNK 세포에서는 30개의 유전자들이 거의 예외적으로 이 단계에서 발현되었다(표 4). 그 중에서, c-kit 리간드는 정상적인 수의 완전 분화된 mNK 세포의생성에 필수적인 신호이며 전구체로부터 NK 세포의 생성이 c-kit 신호전달 부재하에서는 감소된다고 알려져 있다. 또한, 2-마이크로글로불린(microglobulin)은 Ly49 수용체 발현의 시작과 NK 세포 분화에 핵심 조절자인 NK 세포 수용체 다양성의 형성에 관여한다고 알려져 있고, 변이된 Fc 수용체의 발현은 NK 세포의 발생과기능에 영향을 미쳐 순환상의 CD56+CD3-NK 세포의 수를 감소시키고, NK 세포 혈구감소증(cytopenia)과 임상적으로 중요한 면역 결핍증을 일으킨다고 알려져 있다.따라서, NK 세포 분화를 조절한다고 공지된 유전자의 발현양상이 정확하게 나타난것으로 보아 본 발명에서 측정한 결과가 정확함을 알 수 있었다.

【丑 4】

[0089]

[0090]

유전자명	GenBank ID	HSC	pNK	mNK	mNK
				(-OP9)	(+OP9)
라이소자임	BC002069	14	1321	2	3
페리틴 H 체인	BC012314	25	962	7	18
브레비칸	X87096	7	259	1	1
매트릭스 메탈로프로티나제 12	BC019135	0	69	0	0
EIA-자극된 유전자의 세포적 억제제	AF084524	5	45	7	1
c-kit 리간드	M64262	0	62	0	0
S100 칼슘 결합 단백질 A9	BC027635	1	42	0	1
MPS1 단백질	L20315	1	35	0	0
트랜스글루타미나제 2	BC016492	0	25	1	1
혈청 및 글루코코티코이드 조절된	AF139639	0	20	0	0
단백질 키나제					
RIKEN cDNA 5830413L19	BC027496	0	18	0	0
β2-마이크로글로불린 mRNA	M10416	0	17	0	0
인터페론-유도된 단백질	BC003804	0	17	0	0
유지방 글로불 막단백질 EGF 인자 8	BC018577	3	16	0	1
Fc y 수용체	M14215	· 3	15	1	1
세포-표면 당단백질 p91	U83172	0	13	0	1
아르기나제 1	BC050005	0	12	0	0
종양괴사 인자 수용체 1	M59378	1	12	0	2
레티노이드-유도성 세린 카복시펩티다제	AF330052	2	11	0	0
가설의 단백질 FLJ11000 유사	BC023802	0	11	2	0
인터루킨-18 결합 단백질 d 전구체	AF110803	0	10	0	0
클로라이드 채널 7	AK009435	0	9	1	0
CD36 항원	BC010262	0	8	0	0
잠정적 아연 핑거 단백질 유사	BC030186	1	8	1	0
카보하이드레이트 결합 단백질 35	J03723	0	7	3	0
C형 칼슘 의존, 카보하이드레이트	BC003218	0	7	0	0
리포단백질 리파제	NM_008509	0	7	0	0
v-maf 근건막 섬유육종 종양유전자	BC038256	0	6	0	0
인터루킨 7 수용체	NM_008372	0	5	0	0
키모카인(C-C) 수용체 1	BC011092	0	5	0	0
뉴로필린(MGD MGI:106206)	AK002673	0	5	0	0

한편, mNK 세포로부터는 27개의 유전자가 선택되었다(표 5). 그 중 Src 패밀리 티로신 키나제 Fyn은 NK 세포 활성화와 관련이 있다고 알려져 있다.

[丑 5]

[0091]

[0092]

[0093]

유전자명	GenBank ID	HSC	pNK	mNK	mNK
				(-OP9)	(+0P9)
SERPINA3G	XM_127137	2	0_	29	45
GABA-A 수용체 소단위 6	X51986	0	0	16	44
LAPTm5	U51239	5	4	18	25
G-단백질 신호 조절제	BC049968	0	0	0	17
데코이-촉진 인자 GPI 고정된 mRNA	L41366	0	0	0	12
Y 박스 단백질 3	AK019465	0	0	10	17
오스테오폰틴 전구체	J04806	0	1	2	14
아밀로이드 β(A4) 전구체 단백질-결합,	AK021331	2	0	5	12
- 패밀리					
Τ 세포 수용체 β 소단위 변형	U63547	0	0	8	11
면역 연관된 뉴크레오타이드 1	BC005577	0	0	9	0
상위단계 전사 인자 1	NM_009480	0	1	0	8
후각 수용체 MOR267-7	NM_146714	0	0	0	8
림프구 특이적 단백질 티로신 키나제	M12056	0	0	7	1
파골세포종 억제 인자	AB013898	1	1	0	7
혈소판 활성 수용체 상동 유사	BC024054	0	1	3	7
자연살해 세포 단백질군 2-A1	AF016008	0	0	3	6
가설의 단백질 MGC36662	BC023851	0	1	2	6
세마포린 6A 전구체 유사	AK004390	0	0	6	2
Fyn 프로토-종양유전자	BC032149	0	О	5	5
뉴로필라멘트 유사, 중 폴리펩타이드	BC025872	0	0	2	5
코로닌 유사, 액틴 결합 단백질 2A	BC026634	1	1	6	2
솔루트 전달 패밀리 6	BC015245	1	1	6	5
잠정적 퓨린성 수용체 P2Y10 상동	AK020001	0	0	5	4
T 세포 수용체 감마 체인	X03802	0	_ 1	5	4
폴리 A 폴리머라제 알파	NM_011112	0	0	5	3
OPA-연관 단백질 OIP5 유사	AK017825	0	0	5	1
미토젠 활성화된 단백질 키나제 1 유사	BC006708	1	0	5	4

<실시예 6> RT-PCR 수행을 통한 유전자 발현 양상 분석

SAGE 데이터로부터 다른 유전자의 발현 양상을 확인하기 위해 반정량적 (semiquantitative) RT-PCR을 수행하였다. 발현을 확인하고자 하는 유전자에 따라하기와 같은 프라이머를 작성하여 RT-PCR을 수행하였다. 모든 PCR 혼합물은 95℃에서 1분간 가열하고, HSC와 mNK 세포에 대해서는 95℃ 1분, 55℃에서 1분, 72℃에

서 2분의 조건으로, NK 전구체 세포에 대해서는 95℃ 1분, 60℃에서 1분, 72℃에서 2분으로 28회 또는 32회로 PCR을 행하고, 72℃에서 10분 더 확장반응 시킨다음 증폭된 PCR 산물을 전기영동하여 에티듐 브로마이드 염색으로 확인하였다.

[0094] ɣ-파빈(ɣ-parvin): 서열번호 3 및 서열번호 4,

[0095] 포크헤드-관련 전사인자 1c(Forkhead-related transcription factor 1c, Foxplc): 서열번호 5 및 서열번호 6,

[0096] c-myc 단백질: 서열번호 7 및 서열번호 8,

[0097] 케라틴 컴플렉스(keratin complex, KC) 1: 서열번호 9 및 서열번호 10,

[0098] PA-포스파타제 관련 포스포에스터라제(phosphatase related phosphoesterase, PA-PRP): 서열번호 11 및 서열번호 12,

[0099] 인터루킨 1 수용체 연관된 키나제(interleukin 1 receptor-associated kinase, IRAK): 서열번호 13 및 서열번호 14,

[0100] 리보좀 단백질(ribosomal protein) L10A: 서열번호 15 및 서열번호 16,

[0101] 프리-프로-프로티나제(pre-pro-proteinase) 3: 서열번호 17 및 서열번호 18,

[0102] 마이엘로블라스토시스 옹코진(myeloblastosis oncogene): 서열번호 19 및 서열번호 20,

[0103] 카보하이드레이트 결합 단백질(carbohydrate binding protein, CBP) 35: 서 열번호 21 및 서열번호 22,

[0104] IL-7 수용체: 서열번호 23 및 서열번호 24,

[0105] 리포단백질 리파제(lipoprotein lipase, LPL): 서열번호 25 및 서열번호 26,

[0106] 페리틴 H 체인: 서열번호 27 및 서열번호 28,

[0107] 매트릭스 메탈로프로티나제(matrix metalloproteinase, MMP) 12: 서열번호 29 및 서열번호 30.

[0108] G-단백질 신호 조절제(regulator of G-protein signaling, RGS): 서열번호 . 31 및 서열번호 32,

[0109] 서피나3G(Serpina3G): 서열번호 33 및 서열번호 34,

[0110] 퓨리너직 수용체(purinergic receptor) P2Y: 서열번호 35 및 서열번호 36,

[0111] 림프구-특이적 단백질 티로신 키나제(PTK): 서열번호 37 및 서열번호 38.

[0112] 세마포린 6A 전구체(semaphorin 6A precursor): 서열번호 39 및 서열번호 40,

[0113] CD122: 서열번호 41 및 서열번호 42,

[0114] 퍼포린(perforin): 서열번호 43 및 서열번호 44,

[0115] β-액틴(β-actin): 서열번호 45 및 서열번호 46

[0116] 그 결과, HSC에서는 ɣ-파빈, 포크헤드-관련된 전사 인자 1C(Foxp1C), c-myc 및 프리-프로-프로티나제 3 등 9개의 유전자가 선택적으로 발현되었다(도 4a). pNK세포에서는 예외적으로 IL-7R과 매트릭스 메탈로프로티나제(MMP12)가 발현되었다(도 4b). mNK 세포에서는 퓨리너직 수용체 P2Y10와 림프구-특이적 PTK가 예외적

[0118]

[0119]

으로 발현함을 확인하였다(도 4c).

[0117] <실시예 7> LPL이 NK 세포 분화과정에 미치는 영향 확인

상기 실시예 4의 결과를 통해, NK 세포 분화과정 중 분화단계 특이적으로 발현되는 유전자 중에 서열번호 47로 기재되는 리포단백질 리파제(이하 'LPL'이라 약칭함)가 NK 세포 분화 과정중에 pNK 세포에서 과량 발현됨을 확인하였다. LPL은 NK세포의 증식을 촉진시키고, 자발적인 세포독성(spontaneous cytotoxicity)과 림포카인 활성화된 킬러(lymphokine-activated killer, LAK) 활성을 저해시킨다고 알려져 있다. 이에, LPL의 pNK-특이적인 발현이 mNK 세포로의 분화에 요구되는지를알아보기 위해, HSC를 6일간 초기 배양한 후, OP9 간질 세포의 부재하에 IL-15와함께 LPL을 처리하여 NK 세포 비율을 측정하였다.

그 결과, IL-15을 단독으로 처리하여 배양한 것에 비해 LPL과 함께 처리했을 때 NK 세포 비율이 점차적으로 증가되었다(NK1.1+ NKG2A/C/E+ 세포; IL-15 단독처리에서는 50% 존재 versus IL-15와 LPL 250 ng/ml 및 IL-15와 LPL 500 ng/ml 처리에서는 각각 71% 및 86% 존재)(도 4d). 따라서, 상기 결과로부터 pNK세포에서 mNK 세포로의 분화에 LPL이 중요한 역할을 함을 알 수 있었고, 이를 통해 본 발명에서 NK 세포 분화 조절 유전자를 탐색한 결과는 정확한 결과임을 알 수 있었다.

본 발명을 완성하였다.

【발명의 효과】

[0120] 상기에서 살펴본 바와 같이, 줄기 세포에서 자연살해 세포로의 분화 조절에 관련된 기능을 하는 유전자들을 탐색하고, SAGE 분석 방법을 이용하면 상기와 같이 기존에 알려지지 않은 기능을 하는 유전자를 손쉽게 탐색할 수 있음을 밝힘으로써

【특허청구범위】

【청구항 1】

호메오박스 단백질 MIX(AF15457), 프리-프로-프로티나제 3(U97073), 마이엘 로블라스토시스 (Myb) 종양유전자(M16499), 케라틴 콤플렉스 1, 산성, 유전자 13(NM_010662), PA-포스파타제 관련된 포스포에스터라제(AK002966), y-파빈 (BC011200), 포크헤드-관련된 전사인자 1C(AF330105), RIKEN cDNA 5730501N20 유 전자(AK017744), c-myc 단백질(X010223), 리보좀 단백질 L10A(AK002613), Oct 2b 유전자(X53654), 미정(AK015601), 디하이드로리포아미드 디하이드로게나제 (BC003368), 트라클(U81030), 라이소자임(BC002069), 페리틴 H 체인(BC012314), 브 레비칸(X87096), 매트릭스 메탈로프로티나제 12(BC019135), EIA-자극된 유전자의 세포적 억제제(AF084524), S100 칼슘 결합 단백질 A9(BC027635), MPS1 단백질 (L20315), 트랜스글루타미나제 2(BC016492), 혈청 및 글루코코티코이드 조절된 단 백질 키나제(AF139639), RIKEN cDNA 5830413L19(BC027496), 인터페론-유도된 단백 질(BC003804), 유지방 글로불 막단백질 EGF 인자 8(BC018577), 세포-표면 당단백 질 p91(U83172), 아르기나제 1(BC050005), 종양괴사 인자 수용체 1(M59378), 레티 노이드-유도성 세린 카복시펩티다제(AF330052), 가설의 단백질 FLJ11000 유사 (BC023802), 인터루킨-18 결합 단백질 d 전구체(AF110803), 클로라이드 채널 7(AK009435), CD36 항원(BC010262), 잠정적 아연 핑거 단백질 유사(BC030186), 카 보하이드레이트 결합 단백질 35(J03723), C형 칼슘 의존, 카보하이드레이트

(BC003218), 리포단백질 리파제(NM_008509), v-maf 근건막 섬유육종 종양유전자 (BC038256), 인터루킨 7 수용체(NM_008372), 키모카인(C-C) 수용체 1(BC011092), 뉴로필린(MGD|MGI:106206)(AK002673), SERPINA3G(XM_127137), GABA-A 수용체 소단 위 6(X51986), LAPTm5(U51239), G-단백질 신호 조절제(BC049968), 데코이-촉진 인 자 GPI 고정된 mRNA(L41366), Y 박스 단백질 3(AK019465), 오스테오폰틴 전구체 (J04806), 아밀로이드 β(A4) 전구체 단백질-결합, 패밀리(AK021331), T 세포 수용 체 β 소단위 변형(U63547), 면역 연관된 뉴크레오타이드 1(BC005577), 상위단계 전사 인자 1(NM_009480), 후각 수용체 MOR267-7(NM_146714), 림프구 특이적 단백질 티로신 키나제(M12056), 파골세포종 억제 인자(AB013898), 혈소판 활성 수용체 상 동 유사(BC024054), 자연살해 세포 단백질군 2-A1(AF016008), 가설의 단백질 MGC36662(BC023851), 세마포린 6A 전구체 유사(AK004390), 뉴로필라멘트 유사, 중 폴리펩타이드(BC025872), 코로닌 유사, 액틴 결합 단백질 2A(BC026634), 솔루트 전 달 패밀리 6(BC015245), 잠정적 퓨린성 수용체 P2Y10 상동(AK020001), T 세포 수용 체 감마 체인(X03802), 폴리 A 폴리머라제 알파(NM_011112), OPA-연관 단백질 OIP5 유사(AK017825), 미토젠 활성화된 단백질 키나제 1 유사(BC006708)로 구성된 군으 로부터 선택되는 하나 이상의 유전자를 유효성분으로 포함하는 줄기 세포에서 자연 살해 세포로의 분화 조절제.

【청구항 2】

호메오박스 단백질 MIX(AF15457), 프리-프로-프로티나제 3(U97073), 마이엘로블라스토시스 (Myb) 종양유전자(M16499), 케라틴 콤플렉스 1, 산성, 유전자13(NM_010662), PA-포스파타제 관련된 포스포에스터라제(AK002966), ɣ-파빈(BC011200), 포크헤드-관련된 전사인자 1C(AF330105), RIKEN cDNA 5730501N20 유전자(AK017744), c-myc 단백질(X010223), 리보좀 단백질 L10A(AK002613), Oct 2b유전자(X53654), 미정(AK015601), 디하이드로리포아미드 디하이드로게나제(BC003368), 트라클(U81030)로 구성된 군으로부터 선택되는 하나 이상의 유전자를포함하는 것을 특징으로 하는 줄기세포에서 전구 자연살해 세포로의 분화 조절제.

【청구항 3】

라이소자임(BC002069), 페리틴 H 체인(BC012314), 브레비칸(X87096), 매트릭스 메탈로프로티나제 12(BC019135), EIA-자극된 유전자의 세포적 억제제 (AF084524), S100 칼슘 결합 단백질 A9(BC027635), MPS1 단백질(L20315), 트랜스글루타미나제 2(BC016492), 혈청 및 글루코코티코이드 조절된 단백질 키나제 (AF139639), RIKEN cDNA 5830413L19(BC027496), 인터페론-유도된 단백질 (BC003804), 유지방 글로불 막단백질 EGF 인자 8(BC018577), 세포-표면 당단백질 p91(U83172), 아르기나제 1(BC050005), 종양괴사 인자 수용체 1(M59378), 레티노이드-유도성 세린 카복시펩티다제(AF330052), 가설의 단백질 FLJ11000 유사

(BC023802), 인터루킨-18 결합 단백질 d 전구체(AF110803), 클로라이드 채널 7(AK009435), CD36 항원(BC010262), 잠정적 아연 핑거 단백질 유사(BC030186), 카보하이드레이트 결합 단백질 35(J03723), C형 칼슘 의존, 카보하이드레이트 (BC003218), 리포단백질 리파제(NM_008509), v-maf 근건막 섬유육종 종양유전자 (BC038256), 인터루킨 7 수용체(NM_008372), 키모카인(C-C) 수용체 1(BC011092), 뉴로필린(MGD|MGI:106206)(AK002673)로 구성된 군으로부터 선택되는 하나 이상의 유전자를 유효성분으로 포함하는 것을 특징으로 하는 전구 자연살해 세포로부터 성숙 자연살해 세포로의 분화 조절제.

【청구항 4】

SERPINA3G(XM_127137), GABA-A 수용체 소단위 6(X51986), LAPTm5(U51239), G-단백질 신호 조절제(BC049968), 데코이-촉진 인자 GPI 고정된 mRNA(L41366), Y 박스 단백질 3(AK019465), 오스테오폰틴 전구체(J04806), 아밀로이드 β(A4) 전구체 단백질-결합, 패밀리(AK021331), T 세포 수용체 β 소단위 변형(U63547), 면역연관된 뉴크레오타이드 1(BC005577), 상위단계 전사 인자 1(NM_009480), 후각 수용체 MOR267-7(NM_146714), 림프구 특이적 단백질 티로신 키나제(M12056), 파골세포종 억제 인자(AB013898), 혈소판 활성 수용체 상동 유사(BC024054), 자연살해 세포단백질군 2-A1(AF016008), 가설의 단백질 MGC36662(BC023851), 세마포린 6A 전구체유사(AK004390), 뉴로필라멘트 유사, 중 폴리펩타이드(BC025872), 코로닌 유사, 액틴 결합 단백질 2A(BC026634), 솔루트 전달 패밀리 6(BC015245), 작정적 퓨린성 수

용체 P2Y10 상동(AK020001), T 세포 수용체 감마 체인(X03802), 폴리 A 폴리머라제알파(NM_011112), OPA-연관 단백질 OIP5 유사(AK017825), 미토젠 활성화된 단백질키나제 1 유사(BC006708)로 구성된 군으로부터 선택되는 하나 이상의 유전자를 유효성분으로 포함하는 것을 특징으로 하는 성숙 자연살해 세포의 분화 조절제.

【청구항 5】

제 1항 내지 제 4항 중 어느 한항에 있어서, 상기 분화 조절제는 항암용으로 이용하는 것을 특징으로 하는 세포 분화 조절제.

【청구항 6】

제 5항에 있어서, 상기 암은 유방암, 흑색종암 및 폐암으로 구성된 군으로부터 선택되는 것을 특징으로 하는 세포 분화 조절제.

【청구항 7】

- 1) 세포로부터 전체 RNA를 분리하여 cDNA를 합성하는 단계;
- 2) 단계 1의 cDNA를 절단하여 태그를 분리하는 단계;
- 3) 단계 2에서 분리한 태그 각각을 연결한 후 염기서열을 분석하는 단계; 및
- 4) 단계 3에서 분석한 염기서열을 SAGE(Serial Analysis of Gene expression) 분석 프로그램을 사용해 발현량을 측정하는 단계를 포함하는 것을 특

징으로 하는 줄기 세포로부터 자연살해 세포로의 분화 조절용 유전자를 스크리닝하

는 방법.

【도면】

[도 1a]

[도 1b]

【도 1c】

[도 2]

출원번호: 10-2004-0004308

【도 3a】

[도 3b]

【도 3c】

[도 3d]

【도 3e】

Unidene Genebank BC02955 benzod az epine receptor inhibition of NK activity functions as an inhibitory receptor in human NK cells suppression of exocytosis (perform and granzyme) from NK cells suppression of exocytosis (perform and granzyme) from NK cells inhibition of human NK cytotoxicity inhibition of human NK cytotoxicity inhibition of human NK cytotoxicity inhibition of human NK cells inhibition of human NK cytotoxicity inhibition of human NK cells inhibition of NK cells responses

Gene Name

【도 3f】

Linicans

Constraint

Discrepance

Constraint

Constra

출원번호: 10-2004-0004308

【도 4a】

	HSC PNK NM YNE	(+0-3)	Сору	No c	of SA	GE tag
	28 32 28 32 28 32 28	3 32	. н	Ρ	-ÒP	+OP
γ-parvin		PR 14	6	Ó	0:-	Ó
Foxp1C			4	a ·	1	Ŏ
c-myc			. 4	0	ο .	1
ксı			9	0	Ö	0
PA-PRP	*****		8	o	ì	i
IRAK	• •		7.	0	0	.0
LIOA	ACC TO		4	o	1	0
pre-pro proteinase3	150		27	0	o,	O
Myb		×	11	1,,,	0	1,

【도 4b】

	HSC PNK E E E E	Cop	ý No	of SA	GE tag
	28 32 28 32 28 32 28 32	Н	P	OP.	+OP
CBP 35		0	7	. 3	0
IL-7R		0	- 5	0	0
Lipoprotein lipase (LPL)	v .	.0	7	Ó	Ö.
TNFRI	لسا ، تب	í	12	ò	2
ММР1.2	in the second se	0	69	ó	ò
Ferritin H chain		25	962.	7	18

출원번호: 10-2004-0004308

[도 4c]

	HSC PNK E -	Copy No of SAGE tag		
	28, 32, 28, 32, 28, 32, 28, 32	H P OP +OP		
CBP 35		0 7, 23 0		
IL-7R	and the same of th	0 5 0 0		
Lipoprotein lipase (LPL)	* - *	0 7 0 0		
TNFRI	فن فنت	1 12 0 2		
MMP12	t-man ²	0 69 0 0		
Ferritin H chain	Comp belong could belong 45 % tentor	25, 962, 7: 18		

【도 4d】

【서열목록】

<110>	Korea Research	Institute of Bioscie	ence and Biotechnolog	gy © <120> Dif:	ferentiation regulating
agent con	taining gene whi	ch regulating ⊆	differentiation	from stem cell	to natural killer cell
aso	effective	ingradient ⊑< 130>	4p-01-08 5 <160>	48 5 <170>	KopatentIn 1.71 5 <210>
10<211>	16 0 <212>	DNA G <213> Arti	ficial Sequence 220)> ⊡ <223> M1	3 forward primer ⊡ <400>
10gaccggca	agc aaaatg				160<210> 20<211>
165<212>	DNA5<213>	Artificial Sequenc	e©<220>©<223> M13	reverse primer	© <400> 2⊡caaaagggtc
agtgct				165<210>	30<211> 200<212>
DNA 2213>	Artificial S	Sequence ©<220>©<223 >	forward primer f	for gamma-parvir	a⊡<400> 3⊡ctctgaagga
cccagcagt	c			200<210>	40<211> 200<212>

출원번호: 10-2004-0004308
DNA©<213> Artificial Sequence©<220>©<223> reverse primer for gamma-parvin©<400> 4©gcagctgtag
ggatagcctg 200<210> 50<211> 200<212>
DNAD<213> Artificial SequenceD<220>D<223> forward primer for FoxplcD<400> 5Dcgaatctcca
gaaaagcagc 20 0< 210> 6 0 <211> 20 0 <212>
DNA©<213> Artificial Sequence©<220>©<223> reverse primer for Foxplc©<400> 6©aaatctggac
tgtggttggc 20 0< 210> 7 0< 211> 20 0< 212>
DNA©<213> Artificial Sequence©<220>©<223> forward primer for c-myc©<400> 7©gcccagtgag
gatatctgga 205<210> 85<211> 205<212>
DNA©<213> Artificial Sequence©<220>©<223> reverse primer for c-myc©<400> 8@gaatcggacg
aggtacagga 20 5 <210> 9 5 <211> 20 5 <212>
DNA©<213> Artificial Sequence©<220>©<223> forward primer for KC1©<400> 9©ggcaacgaga
agatcaccat 200<210> 100<211> 200<212>
DNAD<213> Artificial SequenceD<220>D<223> reverse primer for KC1D<400> 10Dccacattgac
ctggcctact 200<210> 110<211> 200<212>
DNAS<213> Artificial SequenceS<220>S<223> forward primer for PA-PRPS<400> 11Scttattgttg
gtgctgccct 200<210> 120<211> 200<212>
DNA©<213> Artificial Sequence©<220>©<223> reverse primer for PA-PRP©<400> 12@ggttggtcga
ggagtgttgt 200<210> 130<211> 200<212>
DNA©<213> Artificial Sequence©<220>©<223> forward primer for IRAK©<400> 13©gaagccttgc
cagatagcag 20 2 <210> 14 2 <211> 20 2 <212>
DNA©<213> Artificial Sequence©<220>©<223> reverse primer for IRAK©<400> 14©gcaagacaag
aaagcaaggg 20 2< 210> 15 2< 211> 20 2< 212>
DNA©<213> Artificial Sequence©<220>©<223> forward primer for L10A©<400> 15©cacacattgg
gcttcacaac 20 0< 210> 16 0< 211> 20 0< 212>
DNA©<213> Artificial Sequence©<220>©<223> reverse primer for L10A©<400> 16©tgagttcaca
ttccagcagc 20 0< 210> 17 0< 211> 20 0< 212>
DNA©<213> Artificial Sequence©<220>©<223> forward primer for pre-pro-proteinase 3©<400>
17@acgtgcttct cctccagcta 200<210> 180<211>
20 © <212> DNA © <213> Artificial Sequence © <220> © <223> reverse primer for pre-pro-proteinase
35<400> 185agggaacaga gctgactcca 205<210>
19 5 <211> 20 5 <212> DNA 5 <213> Artificial Sequence 5 <220> 6 <223> forward primer for
myeloblastosis oncogene©<400> 19©gaagaaagtg cctcaccagc
20 0< 210> 20 0< 211> 20 0< 212> DNA 0< 213> Artificial Sequence 0< 220> 0< 223> reverse
primer for myeloblastosis oncogene © <400> 20 © gttcaagaac tgcgagggag
20 5 <210> 21 5 <211> 20 6 <212> DNA 5 <213> Artificial Sequence 5 <220> 5 <223>
forward primer for CBP355 400 210ctcctcctag tgcctacccc
20 0< 210> 22 0< 211> 20 0< 212> DNA 0< 213> Artificial Sequence 0< 220> 0< 223> reverse
primer for CBP35©<400> 22©gtcacgactg atccccagtt
20 5 <210> 23 5 <211> 20 5 <212> DNA 5 <213> Artificial Sequence 5 <220> 5 <223> forward primer for
IL-7 receptor 400> 23 tgccagattc atgaggtgaa
20 5 <210> 24 5 <211> 20 5 <212> DNA 5 <213> Artificial Sequence 5 <220> 5 <223> reverse primer for
IL-7 receptor 400> 24 ggagagcaag cattccagac

출원번호: 10-2004-0004308 200<210> 255<211> 200<212> DNA 213> Artificial Sequence <220 <223 > forward primer for 200<210> LPL**2<400>** 25ocagctgggcc taactttgag 200<212> DNA 213> Artificial Sequence <220 < 223 > reverse primer for LPL <400> 260<211> 205<210> 26 ccatcctcag tcccagaaaa 270<211> 200<212> DNA 213> Artificial Sequence <220 <223 > forward primer for ferritin H chain 400> 200<210> 280<211> 27 gaccgagatg atgtggctct 200<212> DNA 213> Artificial Sequence <220 <223 > reverse primer for ferritin H chain 400> 205<210> 295<211> 28Daaaagatgaa ggcagcctga 202<212> DNA 213> Artificial Sequence 220 223 forward primer for MMP 120<400> 200<210> 295tttggagctc acggagactt 305<211> 205<212> DNA 213> Artificial Sequence <220 <223 > reverse primer for MMP 125<400> 205<210> 315<211> 30@gcttggccat atggaagaaa 200<212> DNA 2213> Artificial Sequence <220 <223 > forward primer for RGS@<400> 200<210> 31 gcagcaacct agaagccatc 320<211> 205<212> DNA 2213> Artificial Sequence <220 <223 > reverse primer for RGS < 400> 32 tgtgagacgg caagaatgag 205<210> 335<211> 205<212> DNA 2213> Artificial Sequence <220 < 223 > forward primer for Serpina3G2<400> 33 ttcaacctca cagagacccc 200<210> 345<211> 205<212> DNA 213> Artificial Sequence <220 <223 > reverse primer for Serpina3Go<400> 34 gtaagettge ttecacetge 205<210> 355<211> 205<212> DNA 213> Artificial Sequence <220 <223 > forward primer for P2Y < 400> 205<210> 35@gccagaaact ggaagcgtag 360<211> 202<212> DNA 213> Artificial Sequence 220 223> reverse primer for P2Y < 400> 36 ggtcacgaaa ctctgaagcc 200<210> 370<211> 200<212> DNA < 213> Artificial Sequence <220 <223 > forward primer for lymphocyte-specific PTK < 400> 37 gaatetgage egtaaggaeg 205<210> 389<211> 200<212> DNA 213> Artificial Sequence <220 > 2223 > reverse primer for lymphocyte-PTK5<400> specific 38octgcataaag ccggactagc 205<210> 395<211> 200<212> DNA 213> Artificial Sequence <220 <223 > forward primer for 6A precursor <a> semaphor in 39Baagccaccta gagcgatttg 200<210> 402<211> 200<212> DNA 213> Artificial Sequence 220 223 223 ≥ reverse precursor 400> primer for semaphorin 6A 40 gcttccagaa gatcacaggg 200<210> 345<212> 410<211> DNA < 213> Artificial Sequence <220 <223 > forward primer for CD1220<400> 41 gtcgacgctc ctctcagctg tgatggctac cata 420<211> 365<212> DNA 213> 345<210> Artificial Sequence <220 <223 > reverse CD1220<400> 42**g**gatcccaga primer for agacgtctac gggcctcaaa ttccaa Artificial Sequence <220 > <223 > 365<210> 430<211> 215<212> DNA 213> forward primer for per for in <a>E 43 gtcacgtcga agtacttggt g 210<212> 210<210> 440<211> DNA 213> Artificial Sequence <220 > <223 > reverse primer for per for in **2**<400> 44@aaccagccac t atagcacaca 210<210> 450<211> 200<212> DNA 213> Artificial Sequence <220 < 223 > forward primer for bata-actin 400> 45⊠gtggggcgcc ccaggcacca

출원번호: 10-2004-0004308 DNA 213> Artificial Sequence <220 <223 > 200<210> 460<211> 245<212> reverse primer for beta-actin₫<400> 46octccttaatg tcacgcacga tttc DNA 2213> 245<210> 470<211> 1425 < 212 > Mus musculus <220 > 221 > CDS < 222> (1)..(1422)**@<**223> Mus musculus lipoprotein lipase <a> 47 atg gag agc aaa gcc ctg ctc ctg gtg 48@Met Glu Ser Lys Ala Leu Leu Leu Val Val Leu Gly Val Trp Leu gtc ctg gga gtt tgg ctc cag Gln 5 10 15 Dagt ttg acc gcc ttc cga gga 96 Ser Leu Thr Ala Phe Arg Gly Gly Val Ala Ala Ala Asp ggg gtg gcc gca gca gac gca gga aga 20 25 30 gat ttc tca gac atc Ala Gly Arg 144 Asp Phe Ser Asp Ile Glu Ser Lys Phe Ala Leu gaa agc aaa ttt gcc cta agg acc cct gaa gac Arg Thr Pro Glu Asp 40 0 45 Daca gct gag gac act tgt cat ctc att cct gga tta gca gac tct gtg 192oThr Ala Glu Asp Thr Cys His Leu Ile 50 55 Pro Gly Leu Ala Asp Ser Val 0 at ct 240 Ser Asn Cys His Phe Asn His aac tgc cac ttc aac cac agc agc aag acc ttc gtg gtg atc cat Ser Ser Lys Thr Phe Val Val Ile His **a** 65 75 288 Gly Trp Thr. Val Thr Gly agga tgg acg gta acg gga atg tat gag agt tgg gtg ccc aaa ctt gtg 95 Met Tyr Glu Ser Trp Val Pro Lys Leu Val 90 Egcc gcc ctg tac aag aga gaa cct gac tcc aat gtc att gta gta gac 336 Ala Ala Leu Tyr Lys Arg Glu Pro Asp Ser Asn Val Ile Val Val Asp 110 Otgg ttg tat cgg gcc cag caa cat tat cca gtg tca gct ggc tac acc 384 Trp Leu Tyr Arg Ala Gln Gln His Tyr Pro Val Ser Ala Gly Tyr Thr 120 125 115 Daag ctg gtg gga aat gat gtg gcc aga ttc atc aac tgg atg gag gag 432 Lys Leu Val Gly Asn Asp Val Ala Arg Phe Ile Asn Trp Met Glu Glu c 130 135 140 agag ttt aag tac ccc cta gac aac gtc cac ctc tta ggg tac agc ctt 480©Glu Phe Lys Tyr Pro Leu Asp Asn Val His Leu Leu Gly Tyr Ser Leu 155 **□**145 150 528**G**1y Egga gcc cat gct gct ggc gta gca gga agt ctg acc aat aag aag gtc Ala His Ala Ala Gly Val Ala Gly Ser Leu Thr Asn Lys Lys Val 165 170 175 Daat aga att act ggt ttg gat cca gct ggg cct aac ttt gag tat gca 576 Asn Arg Ile Thr Gly Leu Asp Pro Ala Gly Pro Asn Phe Glu Tyr Ala 190 185 gaa gcc ccc agt cgc ctt tct cct gat gac gct gat ttt gta gat gtc 624 Glu Ala Pro Ser Arg Leu Ser Pro Asp Ala Asp Phe Val Asp Val 195 200 205 Otta cac aca ttt acc agg ggg tca cct ggt cga agt att ggg atc cag 672 Leu His Thr Phe Thr Arg Gly Ser Pro Gly Arg Ser Ile Gly Ile Gln 220 215 aaa cca gtg ggg cat gtt gac att tat ccc aat gga ggc act ttc cag 720 Lys Pro Val Gly His Val Asp Ile Tyr Pro Asn Gly Gly Thr Phe Gln **2**225 230 Occa gga tgc aac att gga gaa gcc atc cgt gtg att gca gag 768mPro Gly Cys Asn Ile Gly Glu Ala Ile Arg Val Ile Ala Glu Arg Gly С aga gga 245 250 255 Ectc gga gac gtg gac cag ctg gtg aag tgc tcg cat gag 816 Leu Gly Asp Val Asp Gln Leu Val Lys Cys Ser His Glu Arg Ser Ile С cgc tcc att 260 265 Cat ctc ttc att gac tcc ctg ctg aat gaa gaa aac 864@His Leu Phe Ile Asp Ser Leu Leu Asn Glu Glu Asn Pro Ser Lys Ala c ccc agc aaa gca 275 280 285 tac agg tgc aac tcc aag gaa gcc ttt gag aaa 912 Tyr Arg Cys Asn Ser Lys Glu Ala Phe Glu Lys Gly Leu Cys Leu Ser 0

ggg ctc tgc ctg agt

출원번호: 10-2004-0004308 290 295 300 Digt aga aag aat cgc igt aac aat cig ggc 960©Cys Arg Lys Asn Arg Cys Asn Asn Leu Gly Tyr Glu Ile Asn Lys Val tat gag atc aac aag gtc 315 **3**05 310 320 Daga gcc aag aga agc agc aag atg 1008 Arg Ala Lys Arg Ser Ser Lys Met Tyr Leu Lys Thr Arg Ser tac ctg aag act cgc tct cag atg Gin Met 325 330 335 occ tac aaa gtg ttc cat tac caa gtc aag att cac ttt tct ggg act 1056 Pro Tyr Lys Val Phe His Tyr Gln Val Lys Ile His Phe Ser Gly Thr 340 345 350 gag aat ggc aag 1104 Glu Asn Gly Lys Gln His Asn Gln Ala Phe caa cac aac cag gcc ttc gaa att tct ctg tac ggc Glu Ile Ser Leu Tyr Gly 355 360 365 Daca gtg gcc gag agc gag aac att ccc ttc acc ctg ccc gag gtt tcc 1152 Thr Val Ala Glu Ser Glu Asn Ile 375 Pro Phe Thr Leu Pro Glu Val Ser 380 ■aca aat aaa acc tac tcc ttc ttg att tac acg gag gtg gac atc gga 1200 Thr Asn Lys Thr Tyr Ser Phe Leu Ile Tyr Thr Glu Val Asp Ile Gly **2385** 390 395 agaa ctg ctc atg atg aag ctt aag tgg atg agc gac tcc tac ttc agc 1248 Glu Leu Leu Met Met Lys Leu Lys Trp Met Ser Asp Ser Tyr Phe Ser 405 410 415 gtgg ccc gac tgg tgg agc agc ccc agc ttc gtc atc gag agg atc cga 1296 Trp Pro Asp Trp Trp Ser Ser Pro Ser Phe Val Ile Glu Arg Ile Arg 425 ■gtg aaa gcc gga gag act cag aaa aag gtc atc ttc tgt gct agg gag 1344 Val Lys Ala Gly Glu Thr Gln Lys Lys Val Ile Phe Cys Ala Arg Glu 435 440 ■aaa gtt tct cat ctg cag aag gga aag gac tca gca gtg ttt gtg aaa 1392 Lys Val Ser His Leu Gln Lys Gly Lys Asp Ser Ala Val Phe Val Lys 450 455 460 otgc cat gac aag tct ctg aag aag tct ggc tga 470 1425 Cys His Asp Lys Ser Leu Lys Lys Ser Gly **2465 ©<210>** 48**©<211>** 474**©<212>** PRT <213> Mus musculus 400> 48⊡Met Glu Ser Lys Ala Leu Leu Leu Val Val Leu Gly Val Trp Leu Gln 1 10 15 **©**Ser Leu Thr Ala Phe Arg Gly Gly Vai Ala Ala Ala Asp Ala Gly Arg**©** 20 25 30 ■Asp Phe Ser Asp Ile Glu Ser Lys Phe Ala Leu Arg Thr Pro Glu Asp 35 40 45 Thr Ala Glu Asp Thr Cys His Leu Ile Pro Gly Leu Ala Asp Ser Val 50 55 60 Ser Asn Cys His Phe Asn His Ser Ser Lys Thr Phe Val Val Ile His 65 70 75 80 Gly Trp Thr Val Thr Gly Met Tyr Glu Ser Trp Val Pro Lys Leu Valo 85 90 95 🖪 Ala Leu Tyr Lys Arg Glu Pro Asp Ser Asn Val Ile Val Val Asp 100 105 110 Trp Leu Tyr Arg Ala Gln Gln His Tyr Pro Val Ser Ala Gly Tyr Thro 115 120 125 ■Lys Leu Val Gly Asn Asp Val Ala Arg Phe Ile Asn Trp Met Glu Glu 130 135 140 Glu Phe Lys Tyr Pro Leu Asp Asn Val His Leu Leu Gly Tyr 150 Ser Leu

145 155 160 Gly Ala His Ala Ala Gly Val Ala Gly Ser Leu Thr Asn Lys Lys Vale 170 165 175 **□**Asn 180 Arg Ile Thr Gly Leu Asp Pro Ala Gly Pro Asn Phe Glu Tyr Ala⊠ 185 195 190 Glu Ala Pro Ser Arg Leu Ser Pro Asp Asp Ala Asp Phe Val Asp Val 200 205 The His Thr Phe Thr Arg Gly Ser Pro Gly Arg Ser Ile Gly Ile Gln 210 215 220 Lys Pro Val Gly His Val Asp Ile Tyr Pro Asn Gly Gly Thr Phe Gln 225 230 235 240 Pro Gly Cys Asn Ile Gly Glu Ala Ile Arg

출원번호: 10-2004-0004308 250 Val Ile Ala Glu Arg Gly 245 255 Leu Gly Asp Val 260 Asp Gln Leu Val Lys Cys Ser His Glu Arg Ser Ile 265 270 THIS Leu Phe Ile Asp Ser Leu Leu Asn Glu Glu Asn Pro Ser Lys Ala . 275 280 285 Tyr Arg Cys Asn Ser Lys Glu Ala Phe Glu Lys Gly Leu Cys Leu Ser 290 300 Cys Arg Lys Asn Arg Cys Asn Asn Leu Gly Tyr Glu Ile Asn Lys Val⊠305 295 310 315 320 Arg Ala Lys Arg Ser Ser Lys Met Tyr Leu Lys Thr 325 330 Arg Ser Gln Met 335 Pro Tyr Lys Val Phe His Tyr Gln Val Lys Ile His Phe Ser Gly Thro 340 345 350 Glu Asn Gly Lys Gln His Asn Gln Ala Phe Glu Ile Ser Leu Tyr Gly 355 360 370 375 365 Thr Val Ala Glu Ser Glu Asn Ile Pro Phe Thr Leu Pro Glu Val Ser 380 Thr Asn Lys Thr Tyr Ser Phe Leu Ile Tyr Thr Glu Val Asp Ile Gly 285 395 390 400 Glu Leu Leu Met Met Lys Leu Lys Trp Met Ser Asp Ser Tyr Phe Ser 405 410 415 Trp Pro Asp Trp Trp Ser Ser Pro 420 430 Wal Lys Ala Ser Phe Val Ile Glu Arg Ile Arg Gly Glu Thr Gln Lys Lys Val Ile Phe Cys Ala Arg Glu 435 440 445 Tuys Val Ser His Leu Gln Lys Gly Lys Asp Ser Ala Val Phe Val Lys 450 455 470 460 Cys His Asp Lys Ser Leu Lys Lys Ser Gly 465 С