Ejercicios Prácticos de Programación Declarativa

Sesión de laboratorio 2

Curso 2020/21

- Realiza los siguientes ejercicios individualmente en un mismo fichero .hs.
- Escribe tu nombre al comienzo del fichero como líneas comentadas. Incluye comentarios significativos y no olvides declarar los tipos de las expresiones que definas.
- 1. Define funciones **recursivas** en Haskell para calcular las siguientes expresiones. Es suficiente con que hagas 4 apartados.
 - a) La lista de los cuadrados de los números naturales entre 0 y n (o sea, $[0, 1, 4, 9, \dots, n^2]$).
 - **b)** La lista anterior, pero con cada número emparejado con su cuadrado y en orden inverso $([(n, n^2), \ldots, (2, 4), (1, 1), (0, 0)])$.
 - (c) La suma $\sum_{i=1}^{i=n} i \cdot |\cos(i)|$.
 - d) La suma de los números menores que n que sean múltiplos de 3 o 5.
 - e) El número de potencias de 3 que sean menores que n y acaben en 43. Usa funciones auxiliares si te son de utilidad.
 - f) (*) El primer número primo mayor que n.
- 2. Define funciones para calcular las expresiones de los tres primeros apartados del ejercicio anterior, pero utilizando **funciones de orden superior** predefinidas en Haskell, en lugar de recursión.
- 3. Programa las siguientes funciones de orden superior, utilizando funciones de orden superior predefinidas en Haskell. Los tipos de las variables n y m usadas en estas funciones tienen que estar en la clase Enum.
 - a) iguales f g n m \Leftrightarrow f x = g x, para todo $n \le x \le m$.
 - b) menorA n m p = menor x con $n \le x \le m$ que verifica p.
 - c) mayor $p = \text{mayor } x \leq n \text{ que verifica } p$.
 - d) ex n m p \Leftrightarrow existe x con $n \le x \le m$ que verifica p.
- 4. Programa las siguientes funciones de orden superior, utilizando funciones de orden superior predefinidas en Haskell:
 - a) filter2 xs p q = (us, vs) donde us son los elementos de xs que cumplen p y vs los que cumplen q.
 - b) filters xs ps = $[xs_1, ..., xs_n]$, donde xs_i son los elementos de xs que cumplen p_i , supuesto que ps es $[p_1, ..., p_n]$.