ME 311: Microprocessors and Automatic Control

Basics of digital logic design: Combinational

P.S. Gandhi Mechanical Engineering IIT Bombay

PRASANNA S GANDHI gandhi@me.iitb.ac.in

1

Life Skill

How to understand?

- I read and I forget
- I see and I remember
- I do and I understand
- So how to study? Not just by reading books, web, or slides or seeing someone do! Do it yourself ©

PRASANNA S GANDHI gandhi@me.iitb.ac.in

2

Recap

- CMOS circuits, brief history of microprocessor development
- Intro to combinatorial logic design steps
 - Given general problem statement
 - Perform digital abstraction
 - Express input output in truth table
 - Write boolean expressions for each output in terms of inputs
 - Simplify using K maps or identities

PRASANNA S GANDHI gandhi@me.iitb.ac.ir

3

Encoding/Mapping

Physical world to binary: Towards
Mathematical abstraction of a given problem

Technology	State 0	State 1
Relay logic	Circuit Open	Circuit Closed
CMÓS logic	0.0-1.0 volts	2.0-3.0 volts
Transistor transistor logic (TTL	.) 0.0-0.8 volts	2.0-5.0 volts
Fiber Optics	Light off	Light on
Dynamic RAM	Discharged capacito	r Charged capacitor
Nonvolatile memory (erasable)	Trapped electrons	No trapped electrons
Programmable ROM	Fuse blown	Fuse intact
Bubble memory	No magnetic bubble	Bubble present
Magnetic disk'	No flux reversal	Flux reversal
Compact disc	No pit	Pit
	SANNA S GANDHI gandhi@me.iitb.ac.in	4

Identities of Boolean algebra

- Revise standard identities used for simplification
- K maps: If you want to optimize the digital circuit

PRASANNA S GANDHI gandhi@me.iitb.ac.i

2

Full Adder

- Implementation: Fundes
- The larger the number of inputs to a gate slower it will be
- Also the propagation delay increases more than linearly with number of inputs to a gate
- Good rule-of-thumb: DO NOT use gates with more than four inputs

PRASANNA S GANDHI gandhi@me.iitb.ac.ir

24

