Chapter Content

- Inner Products
- Angle and Orthogonality in Inner Product Spaces
- Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition
- Best Approximation; Least Squares
- Change of Basis

6-4 Orthogonal Projections Viewed as Approximations

■ If *P* is a point in 3-space and *W* is a plane through the origin, then the point *Q* in *W* closest to *P* is obtained by dropping a perpendicular from *P* to *W*.

- If we let $\mathbf{u} = OP$, the distance between P and W is given by $\|\mathbf{u} \operatorname{proj}_W \mathbf{u}\|$.
- In other words, among all vectors \mathbf{w} in W the vector $\mathbf{w} = \operatorname{proj}_W \mathbf{u}$ minimize the distance $||\mathbf{v} \mathbf{w}||$.

6.4

BEST APPROXIMATION; LEAST SQUARES

In this section we shall show how orthogonal projections can be used to solve certain approximation problems. The results obtained in this section have a wide variety of applications in both mathematics and science.

Orthogonal Projections Viewed as Approximations

If P is a point in ordinary 3-space and W is a plane through the origin, then the point Q in W that is closest to P can be obtained by dropping a perpendicular from P to W (Figure 6.4.1a). Therefore, if we let $\mathbf{u} = \overrightarrow{OP}$, then the distance between P and W is given by

$$\|\mathbf{u} - \operatorname{proj}_{W} \mathbf{u}\|$$

In other words, among all vectors w in W, the vector $\mathbf{w} = \text{proj}_{W}\mathbf{u}$ minimizes the distance $\|\mathbf{u} - \mathbf{w}\|$ (Figure 6.4.1b).

(a) Q is the point in W closest to P.

O $\begin{array}{c} \mathbf{u} \\ \mathbf{u} - \operatorname{proj}_{W} \mathbf{u} \\ \mathbf{v} \end{array}$ W

(b) $\|\mathbf{u} - \mathbf{w}\|$ is minimized by $\mathbf{w} = \operatorname{proj}_W \mathbf{u}$.

Figure 6.4.1

6-4 Best Approximation

Remark

- lacksquare Suppose **u** is a vector that we would like to approximate by a vector in W.
- Any approximation \mathbf{w} will result in an "error vector" $\mathbf{u} \mathbf{w}$ which, unless \mathbf{u} is in W, cannot be made equal to $\mathbf{0}$.
- □ However, by choosing $\mathbf{w} = \text{proj}_{W}\mathbf{u}$ we can make the length of the error vector
 - $\|\mathbf{u} \mathbf{w}\| = \|\mathbf{u} \operatorname{proj}_{W} \mathbf{u}\|$ as small as possible.
- □ Thus, we can describe $\operatorname{proj}_{W}\mathbf{u}$ as the "best approximation" to \mathbf{u} by the vectors in W.

THEOREM 6.4.1

Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V, and if u is a vector in V, then $\operatorname{proj}_{W} \mathbf{u}$ is the best approximation to u from W in the sense that

$$\|\mathbf{u} - \operatorname{proj}_{W} \mathbf{u}\| < \|\mathbf{u} - \mathbf{w}\|$$

for every vector \mathbf{w} in W that is different from $\operatorname{proj}_{\mathbf{w}}\mathbf{u}$.

Least Squares Problem Given a linear system $A_{\mathbf{X}} = \mathbf{b}$ of m equations in n unknowns, find a vector \mathbf{x} , if possible, that minimizes $||A_{\mathbf{X}} - \mathbf{b}||$ with respect to the Euclidean inner product on \mathbb{R}^m . Such a vector is called a *least squares solution* of $A_{\mathbf{X}} = \mathbf{b}$.

To solve the least squares problem, let W be the column space of A. For each $n \times 1$ matrix x, the product A_X is a linear combination of the column vectors of A. Thus, as x varies over R^n , the vector A_X varies over all possible linear combinations of the column vectors of A; that is, A_X varies over the entire column space W. Geometrically, solving the least squares problem amounts to finding a vector x in R^n such that A_X is the closest vector in W to b (Figure 6.4.2).

Figure 6.4.2

A least squares solution x produces the vector A_X in W closest to b.

Theorem 6.4.1 (Best Approximation Theorem)

- If W is a finite-dimensional subspace of an inner product space V, and if u is a vector in V,
 - lacktriangleq then $\operatorname{proj}_W \mathbf{u}$ is the best approximation to \mathbf{u} form W in the sense that

$$\parallel \mathbf{u} - \operatorname{proj}_{W} \mathbf{u} \parallel < \parallel \mathbf{u} - \mathbf{w} \parallel$$

for every vector \mathbf{w} in W that is different from $\text{proj}_W \mathbf{u}$.

6-4 Least Square Problem

- Given a linear system $A\mathbf{x} = \mathbf{b}$ of m equations in n unknowns
 - ind a vector \mathbf{x} , if possible, that minimize $||A\mathbf{x} \mathbf{b}||$ with respect to the Euclidean inner product on R^m .
 - \Box Such a vector is called a least squares solution of $A\mathbf{x} = \mathbf{b}$.

Theorem 6.4.2

For any linear system $A\mathbf{x} = \mathbf{b}$, the associated normal system

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

is *consistent*, and <u>all solutions of the normal system are least squares solutions of $A\mathbf{x} = \mathbf{b}$.</u>

Moreover, if W is the column space of A, and x is any least squares solution of $A\mathbf{x} = \mathbf{b}$, then the orthogonal projection of \mathbf{b} on W is

$$\operatorname{proj}_{W}\mathbf{b} = A\mathbf{x}$$

(or you can treat it as $A\mathbf{x} - \text{proj}_W \mathbf{b} = \mathbf{0}$)

Theorem 6.4.3

- If A is an $m \times n$ matrix, then the following are equivalent.
 - □ A has linearly independent column vectors.
 - \Box A^TA is invertible.

Theorem 6.4.4

- If A is an $m \times n$ matrix with linearly independent column vectors,
 - □ then for every $m \times 1$ matrix **b**, the linear system A**x** = **b** has a unique least squares solution.
 - □ This solution is given by

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$

lacktriangleq Moreover, if W is the column space of A, then the orthogonal projection of **b** on W is

$$\operatorname{proj}_{\mathbf{W}}\mathbf{b} = A\mathbf{x} = A(A^TA)^{-1}A^T\mathbf{b}$$

6-4 Example 1 (Least Squares Solution)

Find the least squares solution of the linear system $A\mathbf{x} = \mathbf{b}$ given by

$$x_1 - x_2 = 4$$
$$3x_1 + 2x_2 = 1$$
$$-2x_1 + 4x_2 = 3$$

and find the orthogonal projection of \mathbf{b} on the column space of A.

Solution:

$$A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$

 $lue{}$ Observe that \underline{A} has linearly independent column vectors, so we know in advance that there is a unique least squares solution.

6-4 Example 1

We have

$$A^{T}A = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{vmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{vmatrix} = \begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix}$$

$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$
so the normal system $A^{T}A\mathbf{x} = A^{T}\mathbf{b}$ in this case is $\begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$

Solving this system yields the least squares solution

$$x_1 = 17/95, x_2 = 143/285$$

The orthogonal projection of **b** on the column space of A is

$$A\mathbf{x} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 17/95 \\ 143/285 \end{bmatrix} = \begin{bmatrix} -92/285 \\ 439/285 \\ 94/57 \end{bmatrix}$$

01)	Find the normal system accorded with the given linear
	Find the normal system accounted with the given linear system. (after Thin-6.4.2)
0	$\begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}$
Solve	The associated normal system is given by: $ A^{T}A \times = A^{T}b \cdot A^{T} = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 3 & 5 \end{bmatrix} $
	$A^TA \times = A^Tb$. $A^T = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$
	[-1, 3, 5]
	AA=[124][1-1] [1+4+16 -1+6+20] = 21 25]
	$ \widetilde{AA} = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 1+4+16 & -1+6+20 \\ -1+6+20 & 1+9+25 \end{bmatrix} \begin{bmatrix} 21 & 25 \\ 25 & 35 \end{bmatrix} $
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	[-1 3 5] [-2-3+25] [20]
	The normal Eysten is 25 35 [x] = [20].

$$\begin{cases}
2 & -1 & 0 \\
3 & 1 & 2 \\
-1 & 4 & 5 \\
1 & 2 & 4
\end{cases}
\begin{cases}
x_1 \\
x_2 \\
x_3
\end{cases} = \begin{pmatrix} -1 \\
0 \\
1 \\
2
\end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} .15 & -1 & 5 \\
-1 & 22 & 30 \\
5 & 30 & 45
\end{pmatrix}
\begin{cases}
x_1 \\
x_2 \\
x_3
\end{cases} = \begin{pmatrix} -1 \\
0 \\
1
\end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} .15 & -1 & 5 \\
-1 & 22 & 30 \\
5 & 30 & 45
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix} -1 \\
9 \\
13
\end{pmatrix}
\Rightarrow X = \begin{pmatrix} -0.34 \\
-0.15 & 7 \\
-0.17 & 7
\end{pmatrix}$$

In each part, find $det(A^T A)$, and apply Theorem 6.4.3 to determine whether A has linearly independent column vectors.

(a)
$$A = \begin{bmatrix} -1 & 3 & 2 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ -1 & 0 & -2 \\ 4 & -5 & 3 \end{bmatrix}$$

Find the least squares solution of the linear system $A_{\mathbf{x}} = \mathbf{b}$, and find the orthogonal projection of \mathbf{b} onto the column space of A.

(a)
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 0 \\ -7 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 0 \\ -7 \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 9 \\ 3 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ 3 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 6 \\ 0 \\ 6 \end{bmatrix}$

(d)
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 6 \\ 0 \\ 6 \end{bmatrix}$$

Solution

3 a)

First Check whether the Column Vectors are linearly Independent

it square solution of the system Ax = b is given by solution of the rounalized system $AAX = A^{\dagger}b$. $A^{T}A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -2 & 6 \end{bmatrix}$ $A'b = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ -7 \end{bmatrix} = \begin{bmatrix} 19 \\ -7 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 3 & -2 \\ -2 & 6 \end{bmatrix} \begin{bmatrix} 21 \\ 31 \end{bmatrix} = \begin{bmatrix} 14 \\ -7 \end{bmatrix}$ The least square solutions are \$1, =5, \$\frac{1}{2}\$

The orthogonal projection of \mathbf{b} on the column space of A is $A\mathbf{x}$, or

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 11/2 \\ -9/2 \\ -4 \end{bmatrix}$$

3. (c) The associated normal system is

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ -1 & -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ -1 & -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 9 \\ 3 \end{bmatrix}$$

or

$$\begin{bmatrix} 7 & 4 & -6 \\ 4 & 3 & -3 \\ -6 & -3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 18 \\ 12 \\ -9 \end{bmatrix}$$

This system has solution $x_1 = 12$, $x_2 = -3$, $x_3 = 9$, which is the least squares solution of $A\mathbf{x} = \mathbf{b}$.

The orthogonal projection of **b** on the column space of A is A**x**, or

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 12 \\ -3 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 9 \\ 0 \end{bmatrix}$$

which can be written as (3, 3, 9, 0).

3) (d)
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
 $b = \begin{bmatrix} 0 \\ 6 \\ 0 \\ 6 \end{bmatrix}$

$$b = \begin{bmatrix} 0 \\ 6 \\ 0 \\ 6 \end{bmatrix}$$

For L. Independency find Rank or MATA).

$$A = \begin{cases} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{cases}$$

$$A = \begin{cases} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{cases}$$

$$A = \begin{cases} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{cases}$$

$$A^{T}A = \begin{cases} 2 & 1 & 2 & 0 \\ 0 & -2 & -1 & 1 \\ -1 & 2 & 0 & -1 \end{cases}$$

Notinalized system:
$$A^{T}A \times = A^{T}b$$

$$= \begin{bmatrix} 9 & -4 & 0 \\ -4 & 6 & -5 \\ 0 & -5 & 6 \end{bmatrix} \begin{pmatrix} 31 \\ 212 \\ 23 \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ 2 \end{pmatrix}$$
Least square solution $X = \begin{pmatrix} 31 \\ 212 \\ 23 \end{pmatrix} = \begin{pmatrix} 14 \\ 30 \\ 36 \end{pmatrix}$
Oithogonal Pigetion: Projet $A \times = \begin{pmatrix} 2 & 0 & -1 \\ 1 & -2 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 14 \\ 30 \\ 26 \end{pmatrix}$

$$= A \times = \begin{pmatrix} 2 \\ 6 \\ -2 \\ 4 \end{pmatrix}$$
| $A \times = \begin{pmatrix} 2 \\ 6 \\ -2 \\ 4 \end{pmatrix}$

Solution 3 b)

(b)
$$x_1 = \frac{3}{7}, x_2 = -\frac{2}{3}; \begin{bmatrix} \frac{46}{21} \\ -\frac{5}{21} \\ \frac{13}{21} \end{bmatrix}$$

6-4 Example 2

(Orthogonal Projection on a Subspace)

Find the orthogonal projection of the vector $\mathbf{u} = (-3, -3, 8, 9)$ on the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{u}_1 = (3,1,0,1), \, \mathbf{u}_2 = (1,2,1,1), \, \mathbf{u}_3 = (-1,0,2,-1)$$

- Solution:
 - \Box The subspace spanned by \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 , is the column space of

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

- If **u** is expressed as a column vector, we can find the orthogonal projection of **u** on W by finding a least squares solution of the system $A\mathbf{x} = \mathbf{u}$.
- \square proj_W**u** = A**x** from the least square solution.

6-4 Example 2

□ From Theorem 6.4.4, the least squares solution is given by

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{u}$$

□ That is,

$$\mathbf{x} = \begin{bmatrix} 3 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ -1 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix})^{-1} \begin{bmatrix} 3 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ -1 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ -3 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

□ Thus, $\text{proj}_{\mathbf{W}}\mathbf{u} = A\mathbf{x} = [-2 \ 3 \ 4 \ 0]^T$

$$\operatorname{proj}_{\mathbf{W}}\mathbf{u} = A\mathbf{x} = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 4 \\ 0 \end{bmatrix}$$

or, in horizontal notation (which is consistent with the original phrasing of the problem), $proj_W \mathbf{u} = (-2, 3, 4, 0)$.

Find the orthogonal projection of u onto the subspace of \mathbb{R}^4 spanned by the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . 5.

(a)
$$\mathbf{u} = (6, 3, 9, 6)$$
; $\mathbf{v}_1 = (2, 1, 1, 1)$, $\mathbf{v}_2 = (1, 0, 1, 1)$, $\mathbf{v}_3 = (-2, -1, 0, -1)$

(b)
$$\mathbf{u} = (-2, 0, 2, 4); \mathbf{v}_1 = (1, 1, 3, 0), \mathbf{v}_2 = (-2, -1, -2, 1), \mathbf{v}_3 = (-3, -1, 1, 3)$$

Solution

5 a)

$$Ax = U \quad \text{(write all the Vertex are Glumn Vertex)}$$

$$\begin{cases} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{cases} X = \begin{bmatrix} 6 \\ 3 \\ 9 \\ 6 \end{bmatrix}$$
Though given spand, we have to Check for L. I

$$\begin{cases} 2 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{cases} = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ -2 & -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 7 & 4 & -6 \\ 4 & 3 & -3 \\ -6 & -3 & 6 \end{bmatrix}$$

$$\det [A^{T}A) = 7(9) - 4(6) - 6(6) = 63 - 24 - 36 = 63 - 60 = 3 \neq 0$$

$$\Rightarrow \text{ Linearly Independent Column vertex}.$$

$$A^{T}b = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ -2 - 1 & 0 - 1 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \\ 9 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 4 & 1 \\ -2 & 1 \end{pmatrix}$$

$$\text{Nbmolized System} \qquad A^{T}A \times = A^{T}b \Rightarrow \begin{pmatrix} 7 & 4 - 6 \\ 4 & 3 - 3 \\ -6 - 3 & 6 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 2 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 & 1 \\ 3 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 4 & 1 \end{pmatrix}$$

$$\text{Rightim } b = Ax = \begin{pmatrix} 2 & 1 - 2 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \\ 9 \\ 5 \end{pmatrix}$$

Find the orthogonal projection of $\mathbf{u} = (5, 6, 7, 2)$ onto the solution space of the homogeneous linear system 6.

$$\begin{aligned}
 x_1 + x_2 + x_3 &= 0 \\
 2x_2 + x_3 + x_4 &= 0
 \end{aligned}$$

AA= 3/2 0	Au	= -1 - Y2 - Y2 - Y2	10	5 = 3/2
0 3/2		. Y2 - Y2	01	7 3/2
				[0]
$(A^TA)X = (A^TU) =$	3/2 0	1 (x1) - /3	(2).	+
	0 3/2	1 3/	2	•
	· .			
: Solua,		; 25 = 1.		* ;
.; prog u = Ax=	-1/2 1/2	[17]	10	
I JW -	-Y2 -Y2	2 =	-1.	, F
	1 0		13	
	0 1		1	2

6-4 Orthogonal Projection

- If W is a subspace of R^m ,
 - then the transformation $P: R^m \to W$ that maps each vector \mathbf{x} in R^m into its orthogonal projection $\operatorname{proj}_W \mathbf{x}$ in W is called orthogonal projection of R^m on W.

- The orthogonal projections are linear operators
 - □ The standard matrix for the orthogonal projection of R^m on W is $[P] = A(A^TA)^{-1}A^T$

where A is constructed using any basis for W as its column vectors

Let W be the plane with equation 5x - 3y + z = 0.

- (a) Find a basis for W.
- (b) Use Formula 6 to find the standard matrix for the orthogonal projection onto W.

(a) Find a basis for W

$$5x-3y+z=0 \Rightarrow \text{Let } \vec{a}=t ; y=n$$

 $\Rightarrow z=3n-5t$

$$\Rightarrow X = \begin{cases} x \\ y \\ z \end{cases} = \begin{cases} t \\ n \\ 3n-5t \end{cases} = t \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix} + n \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$$

$$\Rightarrow N \Rightarrow \text{null Space basis}$$

$$\begin{cases} \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \end{cases} \Rightarrow A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 6 & -15 \\ -15 & 16 \end{bmatrix}$$

$$(A^{T}A)^{-1} = \begin{bmatrix} 16 & 15 \\ 15 & 26 \end{bmatrix} \frac{1}{191}$$

$$\begin{bmatrix} ab \\ (d) \end{bmatrix} = \begin{bmatrix} d-b \\ -ca \\ ad-bc \end{bmatrix}$$

$$A(A^{T}A)^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 16 & 15 \\ 15 & 26 \end{bmatrix} \frac{1}{191}$$

Find
$$P = A(A^TA)^{-1}A^{T}$$

Let W be the line with parametric equations

11.
$$x = 2t, \quad y = -t, \quad z = 4t \quad (-\infty < t < \infty)$$

- (a) Find a basis for W.
- (b) Use Formula 6 to find the standard matrix for the orthogonal projection onto W.

- 11. (a) The vector $\mathbf{v} = (2, -1, 4)$ forms a basis for the line W.
 - (b) If we let $A = [\mathbf{v}^T]$, then the standard matrix for the orthogonal projection on W is

$$[P] = A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} \begin{bmatrix} \frac{1}{21} \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

$$= \frac{1}{21} \begin{bmatrix} 4 \\ -2 \\ 8 \\ -4 \\ 16 \end{bmatrix}$$

6-4 Example 3

- Verifying formula $[P] = A(A^TA)^{-1}A^T$
- The standard matrix for the orthogonal projection of R3 on the xy-plane :

EXAMPLE 3 Verifying Formula (6)

In Table 5 of Section 4.2 we showed that the standard matrix for the orthogonal projection of \mathbb{R}^3 on the xy-plane is

$$[P] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \tag{7}$$

To see that this is consistent with Formula 6, take the unit vectors along the positive x and y axes as a basis for the xy-plane, so that

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

We leave it for the reader to verify that $A^T A$ is the 2×2 identity matrix; thus Formula 6 simplifies to

$$[P] = AA^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

which agrees with 7.

$$PP_{0} = \frac{1}{35} \begin{bmatrix} -40 \\ -25 \end{bmatrix}$$

$$125$$

$$P_{0} - PP_{0} | 1 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} - PP_{0} | 2 = \begin{bmatrix} 15/2 \\ -9/2 \end{bmatrix}$$

$$= \sqrt{\frac{15}{3}} + (-9/3)^{2} + (3/3)^{2} = 3\sqrt{35/2}$$

$$= 15/\sqrt{35}$$

Theorem 6.4.5 (Equivalent Statements)

- If A is an $m \times n$ matrix, and if $T_A : R^n \to R^n$ is multiplication by A, then the following are equivalent:
 - \Box A is invertible.
 - \triangle $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - \Box The reduced row-echelon form of A is I_n .
 - \Box A is expressible as a product of elementary matrices.
 - \triangle $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
 - $\mathbf{a} \cdot A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
 - \Box det(A) \neq 0.
 - \Box The range of T_A is \mathbb{R}^n .
 - \Box T_A is one-to-one.
 - \Box The column vectors of A are linearly independent.
 - \Box The row vectors of A are linearly independent.

Theorem 6.4.5 (Equivalent Statements)

- □ The column vectors of A span \mathbb{R}^n .
- \Box The row vectors of *A* span \mathbb{R}^n .
- \Box The column vectors of A form a basis for \mathbb{R}^n .
- \Box The row vectors of A form a basis for \mathbb{R}^n .
- \Box A has rank n.
- \Box A has nullity 0.
- The orthogonal complement of the nullspace of A is \mathbb{R}^n .
- \blacksquare The orthogonal complement of the row space of A is $\{0\}$.
- \Box A^TA is invertible.

Assignments

- Exercise-6.4: Examples 1 4 (Pages 498-504)
- Exercise-6.4: Problems 1–11 (Pages 505-509)