

Projet Mathématiques Informatique

Sujet 2

TRISTAN MICHEL KENZA EL MHAMDI AISSAM RABHI NAEL SENOUN

Table des matières

Introduction

L'objectif du projet est de modéliser ,par le système différentiel ci-dessous, deux espèces en compétitions.

$$(S): \begin{cases} \frac{dx}{dt} = x\left(1 - \frac{x}{k} - \frac{ay}{k}\right) \\ \frac{dy}{dt} = y\left(1 - \frac{y}{l} - \frac{x^2}{l}\right) \end{cases} \tag{1}$$

où x représente le nombre d'individus de la première espèce, y le nombre d'individus de la deuxième espèce, k est le nombre d'individus de la première espèce que peut nourrir le milieu, l est le nombre d'individus de la deuxième espèce que peut nourrir le milieu et a est un coefficient.

Nous allons dans un premier temps réaliser une analyse mathématique du problème. Puis nous le mettrons en oeuvre dans un programme python

1 Analyse mathématique

Analyse du modèle

La variation du nombre d'individu d'une espèce dépend de la capacité du milieu à la nourrir (définie par les coefficients k et l). Pour k et l très grands, le terme $\left(-\frac{x}{k} - \frac{ay}{k}\right)$ sera négligeable, on se retrouve donc avec l'équation

$$\frac{dx}{dt} = x$$

$$\frac{dy}{dt} = y$$

dont les solutions sont des fonctions exponentielles.

On en déduit qu'avec une très grande capacité d'approvisionnement, le nombre d'individu de l'espèce croit de facon exponentielle.

Pour un k (ou l) quelconque, la variation du nombre d'individu de l'espèce x (ou y) dépend du signe de $(1-\frac{x}{k}-\frac{ay}{k})$ (ou $(1-\frac{y}{l}-\frac{x^2}{l})$)

Pour un instant t fixé, la population augmente a t+dt si :

$$k > x(t) + ay(t) \text{ (ou } l > y(t) + x(t)^2)$$
 (2)

On peut interpréter cette inégalité de la manière suivante :

- k et l sont les capacités du milieu à nourrir x et y
- x (respectivement y)est le nombre d'individu nourris par le milieu k (resp. 1)
- a est un coefficient (entre 0 et 1) représentant le pourcentage d'individus de y nourris par le milieu k.
- le terme x + ay (ou $y + x^2$) est la consommation dans k (ou l)
- lorsque la consommation dépasse la capacité, il n'y a plus assez de provisions et la population de x (ou de y) diminue

Nous allons dans ce projet étudier le comportement du modèle en fonction de différents paramètres, essayer de trouver un équilibre entre deux espèces en compétitions dans un même milieu.

Analyse de la stabilité

Le problème donné est un système non linéaire, on cherche les points singuliers du système en résolvant l'équation f(x,y) = (0,0) avec :

$$f(x,y) = \begin{pmatrix} x(1 - \frac{x}{k} - \frac{\alpha y}{k}) \\ y(1 - \frac{y}{l} - \frac{x^2}{l}) \end{pmatrix}$$

On a deux équations du second ordre à résoudre :

Les solutions de l'équation

$$x - \frac{x^2}{k} - \frac{ayx}{k} = 0$$

sont x = 0, x = k - ay

Pour x=0, on a deux solutions de

$$y(1 - \frac{y}{l}) = 0$$

y = 0 et y = l

Pour y=0, on a deux solutions de

$$x - \frac{x^2}{k} = 0$$

x=0 et x=k Les points critiques du système sont (0,0),(k,0),(0,l) et $(k-ay,l-x^2)$ On calcule maintenant les coordonnées de ce dernier points en fonction des paramètres.

$$\begin{cases} x = k - ay \\ y = l - x^2 \end{cases}$$

$$\langle = \rangle \begin{cases} -ax^2 + x + (al - k) = 0 \\ y + x^2 = l \end{cases}$$

Les solutions de la première équation sont :

$$x_1 = \frac{-1 + \sqrt{\Delta}}{2a}$$
 et $x_1 = \frac{-1 - \sqrt{\Delta}}{2a}$ avec $\Delta = 1 + 4(al - k)$

Les 2 derniers points critiques du système sont

$$(k-al-\frac{1-\sqrt{1+4(al-k)}}{2a},l+(\frac{1-\sqrt{1+4(al-k)}}{2a})^2) \text{ et } (k-al+\frac{1-\sqrt{1+4(al-k)}}{2a},l+(\frac{1+\sqrt{1+4(al-k)}}{2a})^2)$$

définis seulement pour $\Delta>0$ soit : $a>\frac{1}{l}(k-\frac{1}{4})$

2 Mise en oeuvre