Intro2R

Data Wrangling and Visualisation

Song, Xiao Ping xp.song@u.nus.edu

Course materials: https://github.com/xp-song/Intro2R updated 2020-09-18

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

About our Dataset

Kaggle Machine Learning and Data Science Survey 2018

- The industry-wide survey presents the state of data science and machine learning
- We will be analysing multiple choice responses /data/kaggle-survey-2018_mcq.csv

About our Dataset

More about Kaggle

- An online community for data science
- Owned by Google (>1 mil users in 2017)
- Users can find/publish data and analysis, and take part in data science competitions

Our analysis includes code adapted from R Notebooks created by the Kaggle users Heads or Tails and Jose Berengueres

Install and load packages

Let's install the tidyverse collection of packages

tidyverse: A collection of packages commonly used for data analyses

Example workflow (medium.com)

Let's install the tidyverse collection of packages

```
install.packages("tidyverse", dependencies = TRUE) # don't forget quotes
```

- Type n if you get the following prompt:

 Do you want to install from sources the package which needs compilation?
- Click 'Yes' if you are asked to restart R

Load these packages into R

```
library(tidyverse) # no need quotes
```

"Tidy" data

- Tabular data (2D)
- Each variable is a column & each observation is a row
- Can be in long or wide format

country	year	key	value		country	year	infected	population
Afghanistan	1999	infected	135	-	Afghanistan	1999 >	135	19839494
Afghanistan	1999	population	19839494	-	Afghanistan	2020	384	21739203
Afghanistan	2020	infected	384	+	Australia	1999	34	23423534
Afghanistan	2020	population	21739203	—	Australia	2020	45	23346436
Australia	1999	infected	34	4	Belgium	1999	272	49273820
Australia	1999	population	23423534		Belgium	1999	274	48928472
Australia	2020	infected	45		///	//	*/	
Australia	2020	population	23346436		///	//		
Belgium	1999	infected	272		///			
Belgium	1999	population	49273820	//				
Belgium	2020	infected	274	//				
Belgium	2020	population	48928472					

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Load data

Import tabular data as tibbles using readr::read_csv()

Tibbles are dataframes with stricter rules that avoid hassle/errors often associated with conventional dataframes.

```
multi <- read_csv("data/kaggle-survey-2018_mcq.csv", skip = 1)
head(multi)</pre>
```

Load data

Let's compare read_csv() with read.csv() in base R

```
multi2 <- read.csv("data/kaggle-survey-2018_mcq.csv", skip = 1)
head(multi2)</pre>
```

Examine data

Examine column names

```
head(colnames(multi))

## [1] "Duration (in seconds)"

## [2] "What is your gender? - Selected Choice"

## [3] "What is your gender? - Prefer to self-describe - Text"

## [4] "What is your age (# years)?"

## [5] "In which country do you currently reside?"

## [6] "What is the highest level of formal education that you have attained or plan to attain within the next."
```

 Analysing colnames as entire sentences is not very feasible at scale (we'll abbreviate the colnames later)

Print the first column by name

```
multi$`Duration (in seconds)`
```

• Have to wrap colname with backticks (because of white spaces)

Convert data

The pipe operator %>%

Frequently used to manipulate data in stages/sequence

E.g.:

```
round(exp(diff(log(x))), 1) #using nested brackets

x %>% log() %>% #using the pipe operator
    diff() %>%
    exp() %>%
    round(1)
```

Convert data

Multiple choice questions have categorical answers with discrete levels—i.e. Factors!

Convert columns with character data into factors using mutate_if()

```
multi <- multi %>%
  mutate_if(is.character, as.factor)
```

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Sample Size

How many respondents are there?

nrow(multi)

[1] 23859

Abbreviate the colname Duration (in seconds) to duration using rename()

```
multi <- multi %>%
  rename(duration = `Duration (in seconds)`)
```

Change the units from seconds to minutes using mutate()

```
multi <- multi %>%
  mutate(duration = duration/60) # override the colname
```

Print out first few rows of multi\$duration

```
head(multi$duration)
## [1] 11.833333 7.233333 11.966667 10.350000 12.183333 19.033333
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
  ggplot(aes(duration)) +
  geom_histogram()
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
   ggplot(aes(duration)) +
   geom_histogram() +
   geom_vline(xintercept = median(multi$duration))
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
  ggplot(aes(duration)) +
  geom_histogram() +
  geom_vline(xintercept = median(multi$duration)) +
  scale_x_log10()
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
   ggplot(aes(duration)) +
   geom_histogram(bins = 50) +
   geom_vline(xintercept = median(multi$duration), linetype = 2) +
   scale_x_log10(breaks = c(2, 5, 10, 20, 60, 1440)) + #address extreme x-values
   #customisation
   labs(x = "Duration (mins)", y = "Number of respondents") + #change axis labels
   ggtitle("Most respondents took 15-20 min to complete survey") #add figure title
```


Note: The dashed line denotes the median survey duration. The x-axis has been transformed to a logarithmic scale.

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Abbreviate the colname In which country do you currently reside? to country

```
multi <- multi %>%
  rename(country = `In which country do you currently reside?`)
```

Examine the column

```
head(multi$country)

## [1] "United States of America" "Indonesia"

## [3] "United States of America" "United States of America"

## [5] "India" "Colombia"
```

Summarise the number of respondents per country

```
ctry_n <- multi %>%
  count(country)
```

Summarise the number of respondents per country

Remove rows with certain answers in our summary table ctry_n

```
ctry_n <- ctry_n %>%
  filter(!(country %in% c("Other", "I do not wish to disclose my location")))
ctry_n
```

Map the country name to the ISO3 country code using the function <code>countrycode()</code>

- install.packages("countrycode")
- Add data as a new column named iso3 using mutate()

```
ctry_n <- ctry_n %>%
  mutate(iso3 = countrycode(country, origin = "country.name", destination = "iso3c"))
ctry_n
```

Dealing with duplicates

Let's check if the number of country names & country codes match

```
length(unique(ctry_n$country))

## [1] 56

length(unique(ctry_n$iso3))

## [1] 55
```

Check which elements are duplicated with duplicated()

```
duplicated(ctry_n$iso3)

## [1] FALSE FALSE
```

Dealing with duplicates

Subset all rows with duplicates

```
ctry_n[duplicated(ctry_n$iso3) | duplicated(ctry_n$iso3, fromLast=TRUE),]
```

Dealing with duplicates

Group the dataframe by iso3, then add up the no. of respondents n

Plot ctry_n as an interactive map using highcharter::highchart()

Survey Analysis: Country-level Data

Country-level Data

Datasets

Total population count (The World Bank)

Country-level Data

Datasets

Total population count (The World Bank)

pops

Datasets

Total population count (The World Bank)

• Check for NA values using is.na()

pops[is.na(pops\$iso3),]

Datasets

Total population count (The World Bank)

Remove rows with NA values

```
pops <- pops[!is.na(pops$iso3),]</pre>
```

pops

Datasets Global

Global Innovation Index (INSEAD)

Datasets

Global Innovation Index (INSEAD)

innov

Datasets

We have 3 summary tables with 'countries' as data points (each row):

Join

- 1. ctry_n Number of survey respondents
- 2. pops Total population
- 3. innov Innovation index

Datasets

Join

Combine the three tables using inner_join(), based on the variable

iso3

```
ctry_data <- ctry_n %>%
  inner_join(innov, by = "iso3") %>%
  inner_join(pops, by = "iso3")
```

Datasets

Combined table ctry_data

ctry_data

Datasets Remove country.x and country.y

Join

ctry_data <- ctry_data %>%
 select(-c(country.x, country.y))

Datasets

ctry_data

Join

Datasets

Let's save ctry_data on our computer!

Join

write_csv(ctry_data, "output/country_data.csv")

Save

Calculate the no. of respondents as a proportion of the total population

• Save it in a new colname respop10k

```
ctry_data$respop10k <- ctry_data$n / ctry_data$population * 10000 #respondents per 10k ppl</pre>
```

ctry_data

Plot a bar chart of respop10k for each country, using geom_col as a graphical primitive

```
ctry_data %>%
  ggplot(aes(x = country, y = respop10k)) +
  geom_col()
```


Arrange countries in descending order using reorder(), and swap the axes using coord_flip()

ctryplot

Save the plot to an image file using <code>jpeg()</code>

• Run the following code chunk at one go

```
jpeg(filename = "output/ctryplot.jpeg", width = 1800, height = 2000, res = 300)
ctryplot
dev.off() #finish creating the image file
```

Make a scatter plot of responded against the innovation index, using geom_point() as graphical primitive

```
ggplot(ctry_data, aes(x = respop10k, y = index)) +
  geom_point()
```


Add the label aesthetic to the aes() argument, and add text labels using

```
ggrepel::geom_text_repel()
```


Even more customisation:

```
ggplot(ctry_data, aes(x = respop10k,
                     v = index,
                     label = country)) +
  geom_point() +
  geom_text_repel() +
  #customisation
  labs(y = "Global Innovation Index",
      x = "Kaggle survey respondents per 10k population") +
  theme(legend.position = "none",
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
       panel.background = element_blank(),
        axis.line = element_line(colour = "black",
       arrow = arrow(length = unit(0.08, "inches"), type = "open")))
```


Test the correlation between respop10k and the innovation index using cor.test()

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Explore and visualise data(diamonds, package = "ggplot2")

Filter diamonds that are less than \$3000 with a Premium cut

Hint: Use summary() for a summary of the dataset

Filter diamonds that are less than \$3000 with a Premium cut

```
diamonds[diamonds$price < 3000 & diamonds$cut == "Premium", ]</pre>
```

Example plot


```
diamonds %>%
  ggplot(aes(x = price)) +
  geom_histogram()
```

Example plot

Questions?

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Further applications

Data communication

- Interactive plots with Plotly
- Visualisation with the rCharts package
- Interactive web apps with Shiny
- Alternative outputs for R Markdown documents

Statistics in R

- r-statistics.co by Selva Prabhakaran
- R Tutorial: An Introduction to Statistics
- Learning Statistics with R by Danielle Navarro
- Statistics Fundamentals with R by Datacamp
- Statistics and R by Havard University

Other resources

Skill tracks in R by Datacamp