哈尔滨工业大学《概率论与数理统计 X》试 题

第1章随机事件与概率 第2章 条件概率与独立性

- (1) 若至少有一次及格则他能取得某种资格,求试他取得该资格的概率;
- (2) 若已知他第二次已经及格,求他第一次及格的概率.
- **7.** (6分)两台机床加工同样的零件,它们出现废品的概率分别为 0.03 和 0.02。加工出的零件放在一起。设第一台机床加工的零件比第二台的多一倍,
- (1) 求任取一个零件是合格品的概率;
- (2) 若任取一件是废品品,求它是由第一台机床生产的概率.
- **8.** (6分)有两个盒子,第一个盒子中装有6个白球,4个黑球,第二个盒子中装有3个白球,7个黑球,现从这两个盒子中各取一球放在一起,再从中任取一球,求
- (1) 此球为白球的概率;
- (2) 若此球为白球,求从第一个盒子中取出的球是白球的概率.

第3,4章 随机变量(一维、多维)及其分布

9. 设随机变量 <i>X</i> 与 <i>Y</i> 独立同分布, <i>X</i> 的中能作为概率密度函数的是【 】	的概率密度为 $f(x)$,分布函数为 $F(x)$,则下列式子
(A) $f(x)F(x)$; (C) $F(x)f(y) + f(x)F(y)$;	(B) $2f(x)F(x)$; (D) $F(x)F(y)$;
10. 设随机变量 X 的概率密度为 $f(x)$,则对任意实数 a 有【	且 $f(2-x) = f(2+x)$, $F(x)$ 是 X 的分布函数,
(A) $F(2-a) = 1 - \int_0^a f(2+x) dx$;	(B) $F(2-a) = \frac{1}{2} - \int_{0}^{a} f(2+x)dx$;
(C) $F(2-a) = F(2+a)$;	(D) $F(2-a) = 2F(2+a)-1$;

- 11. 设随机变量 $X \sim U(0,2)$,则 $Y = \begin{cases} X, & 0 < X \triangleleft \\ 2, & \text{其他} \end{cases}$ 的分布函数 1
 - (A) 是连续函数; (B)恰好有一个间断点
 - (C)恰好有两个间断点; (D)恰好有三个间断点;
- **12.** 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & 其他 \end{cases}$, 则 $Y = e^X$ 的概率密度为

- $f_Y(y) =$ ________. **13.** 设随机变量 X 的密度为 $f_X(x) = \begin{cases} 4x^2e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$,求 Y = 2X + 3 的概率密度 _______.
- **14.** (9分)设二维随机变量(*X,Y*)的概率密度为 $f(x,y) = \begin{cases} 4e^{-2x}, & 0 < y < x \\ 0, & 其他 \end{cases}$
- 求(1)问X与Y是否独立?为什么?;
 - (2) 求在 X = 2 时,随机变量 Y 的条件概率密度;
 - (3) 设Z = X + Y , 求Z 的概率密度 $f_z(z)$.
- **15.** (9 分) 设(*X,Y*)是二维随机变量,*X* 的边缘概率密度为 $f_X(x) = \begin{cases} 4xe^{-2x}, & x > 0 \\ 0, & x < 0 \end{cases}$, 在给定

X = x(x > 0) 的条件下,随机变量 Y 在 (0, x) 上服从均匀分布。

求(1)(X,Y)的概率密度;

(2) Y的边缘概率密度;

第 5 章随机变量的数字特征与极限定理

16. $ abla \theta \sim U[0, 2\pi], X = \cos \theta, Y = \cos(\theta) $	+ π),则 🐼	$Y = \underline{\hspace{1cm}}$	
(A) 1; (B) $-\frac{1}{2}$;	(C) $\frac{1}{2}$;	(D) -1 .	
17. 设 $EX = 6$, $DX = 4$,则 X 的分布为			
(A) 参数 $\lambda = 6$ 的泊松分布;	(B) 参数为 <i>n</i>	$=18, P = \frac{1}{3}$ 的二项	页分布;
(C) 区间(0,12)上均匀分布;	(D) 参数为ん	$=\frac{1}{2}$ 的指数分布.	
18.	=6,则【]	
(A) <i>X,Y</i> 不相关;	(B) X,Y 相	互独立;	
(C) $D(X-Y)=5$;	(D) $D(X -$	Y) = 13.	
19. 设 $X \sim E(0.5)$, $Y \sim B(6,0.5)$, 且 $X = 0.5$	与 Y 相互独立,则	协方差 $Cov(X+Y,$, <i>X-Y</i>) 是
(A) 0; (B) -1;	(C) 2.5;	(D) (0.5.
20. 设 X,Y 为两个随机变量, $DX = 1$,	DY = 4, $Cov(X)$	$(Y)=1$, \mathbb{R}^2	X-2Y,
$X_2 = 2X - Y$,则 X_1, X_2 的相关系数 ρ =			
21. (6分) 设随机变量 <i>X</i> , <i>Y</i> 相互独立,且求(1) <i>E</i> [max(<i>X</i> , <i>Y</i>)]; (2) Cov(<i>X</i> + <i>Y</i> , <i>X</i> - <i>Y</i>).			
22. (6分) 设随机变量 <i>X</i> , <i>Y</i> 相互独立, 且	.都服从(0,1)上	上的均匀分布,	
求(1) $E(XY)$, $D(XY)$; (2)以 X,Y 为边长作一长方形,以 A,C	分别表示长方形的	的面积和周长,求	A 和 C 的
相关系数.	73 733-00/3 (00/3 / 0)	13 111 17 17 17 17 17 17 17 17 17 17 17 17	т үлс ну
(3) 在 $Y=1$ 时,随机变量 X 的条件概率密			
(4) 设 $Z = X + Y$,求 Z 的概率密度 f_2	•		
23 (6分) 设二维随机变量(X,Y) 的联合 $f(x,y) = \begin{cases} \frac{1}{3}(x+y), & 0 < x < 1, & 0 < y < 2 \\ 0, & \text{其他} \end{cases}$ 求 $X-Y$ 与 $X+Y$ 的相关系数 ρ .	『 名及图数 <i>为</i>		
24. 设二维随机变量(<i>X</i> , <i>Y</i>)服从正态分布 <i>X</i>	N(1,2;1,2;0),令	Z = XY,则根据·	切比雪夫不
等式 <i>P</i> (<i>Z</i> −2 <3)≥【 】			
(A) $\frac{7}{9}$; (B) $\frac{8}{9}$;	(C) $\frac{2}{9}$;	(D) $\frac{1}{9}$.	
25. 设二维随机变量 (X,Y) 服从正态分布 X	V(1,2;1,4;0.5),	$\Rightarrow Z = X + Y$,则	根据切比雪
夫不等式 <i>P</i> (<i>Z</i> − 3 < 3) ≥ 【	1		
(A) $\frac{7}{9}$; (B) $\frac{8}{9}$;	(C) $\frac{1}{9}$;	(D) $\frac{2}{9}$.	

第6章数理统计的基本概念

26. 总体 $X \sim N(0, \sigma^2)$,抽取简单随机样本 X_1, \dots, X_9 ,则下列统计量的分布中不正确的是.

(A)
$$\frac{\sum_{i=1}^{8} X_{i}}{2\sqrt{2}|X_{9}|} \sim t(1);$$

(B)
$$\frac{1}{9} \sum_{i=1}^{9} X_i \sim N(0, \frac{\sigma^2}{9});$$

(C)
$$\sum_{i=1}^{9} X_i^2 \sim \chi^2(9)$$
;

(D)
$$\frac{7\sum_{i=1}^{2}X_{i}^{2}}{2\sum_{i=3}^{9}X_{i}^{2}} \sim F(2,7);$$

27. 总体 $X \sim N$ (1, , 抽取简单随机样本 X_1, \dots, X_{10} , $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ 分别为样本均值和样本方差,则下列正确的是.【

(A)
$$\bar{X} \sim N(1,1)$$

(B)
$$9S^2 \sim \chi^2(9)$$

(c)
$$\frac{\sqrt{10}(\bar{X}-1)}{S} \sim t(9);$$

$$(A) \ \overline{X} \sim N(1,1);$$

$$(B) \ 9S^{2} \sim \chi^{2}(9);$$

$$(C) \ \frac{\sqrt{10}(\overline{X}-1)}{S} \sim t(9);$$

$$(D) \ \frac{9S^{2}}{\sum_{i=1}^{10}(X_{i}-1)^{2}} \sim F(9,10);$$

28. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_{16} 为来自该总体的简单随机样本, \overline{X} 为样本均值 则 $P(|\bar{X}-\mu|<1)$

- (A) 与 μ 无关,而与 σ^2 有关; (B) 与 μ 有关,而与 σ^2 无关;
- (C) 与 μ , σ^2 都有关;
- (D) 与 μ , σ^2 都无关.

29. 总体 $X \sim N$ (1, h 取简单随机样本 X_1, \dots, X_9 , $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ 分别为样本均值和样本方差,则 $E(\bar{X}^2) + D(S^2) =$ ___. 【

- (B) $\frac{5}{3}$; (C) $\frac{20}{9}$; (D) 4.

第7章参数估计

30. (9 分) 设总体
$$X$$
 的概率密度为 $f(x) = \begin{cases} 2e^{-2(x-\theta)}, & x>\theta \\ 0, & 其他 \end{cases}$, X_1, X_2, \cdots, X_n 为总体 X 的简单随机样本,

- (1) 求 θ 的矩估计 $\hat{\theta}_1$ 和最大似然估计 $\hat{\theta}_2$;
- (2) 判别 $\hat{\theta}_1$, $\hat{\theta}_2$ 的无偏性,若是有偏估计修正为无偏估计;
- (3) 比较(3) 中两个无偏估计哪一个更有效;
- (4) 判别 $\hat{\theta}_1$, $\hat{\theta}_2$ 的相合性.
- **31.** (10 分) 设总体 X 的分布列为 $P(X = k) = (\frac{\theta}{2})^{|k|} (1-\theta)^{1-|k|}, k = -1, 0, 1, 0 < \theta < \frac{1}{2}$ 未
- 知, X_1, X_2, \dots, X_n 为总体 X 的简单随机样本,
- (1) 求 θ 的矩估计 $\hat{\theta}_1$ 和最大似然估计 $\hat{\theta}_2$;
- (2) 判别 $\hat{\theta}_1,\hat{\theta}_2$ 的无偏性,若是有偏估计修正为无偏估计;
- (3) 判别 $\hat{\theta}_1$, $\hat{\theta}_2$ 的相合性。
- **32.** (9 分)设总体 X 的概率密度函数是 $f_X(x) = \lambda^2 x e^{-\lambda x}$ ($\lambda > 0$ 未知,x > 0), X_1, X_2, \cdots, X_n 为总体 X 的简单随机样本,
- (1) 求 λ 的矩估计 $\hat{\lambda}$ 和 $\frac{1}{\lambda}$ 最大似然估计 $T(X_1, X_2, \dots, X_n)$;
- (2) 判别 $T(X_1, X_2, \cdots, X_n)$ 的无偏性;
- **33.** (9 分) 设总体 X 的概率密度函数是 $f_X(x) = \sqrt{\frac{2}{\pi}} \frac{1}{\sigma} e^{-\frac{x^2}{2\sigma^2}}$ ($\sigma > 0$ 未知, x > 0), X_1, X_2, \cdots, X_n 为总体 X 的简单随机样本,
- (1) 求 σ^2 的矩估计 $\hat{\sigma}_1^2$ 和最大似然估计 $\hat{\sigma}_2^2$;
- (2) 判别 $\hat{\sigma}_2^2$ 的无偏性;
- 34. 测量零件尺寸产生的误差 $X \sim N(\mu, \sigma^2)$, σ 未知,今测量10 个零件,得误差的样本均值和样本方差分别为x=1.6, $s^2=0.98$,则 σ^2 的置信度为0.95 的置信区间是_____
- **35**. 测量零件尺寸产生的误差 $X \sim N(\mu, \sigma^2)$, σ 未知,今测量 9 个零件,得误差的样本均值 和样本方差分别为 x=1.22, $x^2=1.44$,则 μ 的置信度为 0.9 的置信区间是_______. (保留小数点后四位)
- 36. 总体 $X \sim N(\mu, \sigma^2)$, $\sigma^2 = 9$,抽取简单随机样本 X_1, \cdots, X_n ,若 $(\bar{X} 0.98, \bar{X} + 0.98)$ 为 μ 的置信度 0.95 下的置信区间,则 $n = ______$.

第8章 假设检验

- **38.** 设 x_1, x_2, \cdots, x_{10} 为总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,测得样本均值和样本方差分别为x=1.0, $s^2=0.49$,对假设 $H_0: \mu=0.9, H_1: \mu>0.9$, 在显著性水平 $\alpha=0.05$ 下,得到的检验结论是
- **39.** 设 x_1, x_2, \cdots, x_9 为总体 $X \sim N(\mu, 1)$ 的简单随机样本,对假设 $H_0: \mu = 1, H_1: \mu = 2$, H_0 的拒绝域为 $K_0 = \{\overline{x} > 1.55\}$,求得犯第一类错误(弃真)的概率 $\alpha = \underline{\hspace{1cm}}$
- **40.** 给定总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知,令 $H_0: \mu \leq \mu_0$, $H_1: \mu = \mu_1(\mu_1 > \mu_0)$, $\alpha_1 < \alpha_2$,则【
- (A) 显著性水平 α_1 时拒绝 H_0 ,则 α_2 时也拒绝 H_1 ;
- (B) 显著性水平 α_1 时接受 H_0 ,则 α_2 时拒绝 H_1 ;
- (C) 显著性水平 α_1 时拒绝 H_0 ,则 α_2 时接受 H_1 ;
- (D) 显著性水平 α_1 时接受 H_0 ,则 α_2 时也接受 H_1 ;