Cátedra de SISTEMAS OPERATIVOS

UNIDAD 1 INTRODUCCIÓN A LOS SISTEMAS OPERATIVOS

Parte 2 2024

Temario

- Características de los Sistemas Operativos Modernos
- Windows:
 - Breve reseña histórica
 - Arquitectura
 - Organización del sistema operativo
 - Modelo Cliente/servidor

Características de los Sistemas Operativos Modernos

- 1. Arquitectura Micronúcleo o Microkernel
- 2. Multihilos
- 3. Multiproceso simétrico (SMP–Symmetric Multi Processing)
- 4. Sistemas operativos distribuidos
- 5. Diseño orientado a objetos

1. Arquitectura Micronúcleo o Microkernel

- Asigna pocas funciones al núcleo (las esenciales)
- El sistema operativo se divide en módulos pequeños y bien definidos
- El microkernel se ejecuta en modo núcleo
- Los servicios se dividen en procesos clientes y procesos servidores

2. Multihilos

- Programa

 conjunto de instrucciones dados en una secuencia lógica y con un objetivo
- Proceso
 programa en ejecución con estado y recursos asociados

Un navegador web puede tener un hilo para leer las imágenes de la red, mientras que otro hilo las esta mostrando en pantalla.

2. Multihilos

- Técnica donde un proceso ejecutando una aplicación se divide en hilos que se ejecutan concurrentemente
- Un hilo se ejecuta secuencialmente y es interrumpible para que el procesador pueda ceder el turno a otro hilo
- Proceso \rightarrow un conjunto de uno o más hilos

3. Multiproceso simétrico (SMP-Symmetric Multiprocessing)

- Múltiples procesadores comparten la misma memoria principal y dispositivos de E/S
- Procesadores interconectados por un bus de comunicaciones
- Todos los procesadores pueden eiecutar las mismas funciones

Microprocesador Multinúcleo

evolución de los microprocesadores pasa por incluir en un solo chip varios núcleos, donde cada núcleo incluye todas las unidades funcionales de un procesador (registros, ALU y unidad de control), lo que da lugar a lo que procesador como conoce se multinúcleo.

3. Multiproceso simétrico (SMP-Symmetric Multiprocessing)

Ventajas frente a un solo procesador:

- Rendimiento: algunas partes del trabajo pueden ejecutarse en paralelo
- Disponibilidad: un fallo no detiene la máquina
- · Crecimiento incremental: añadiendo procesador adicional
- Escalabilidad: variedad de productos basado en el número de procesadores

4. Sistemas Operativos Distribuidos

- Es un Sistema operativo donde los usuarios pueden acceder a recursos remotos, de la misma forma que acceden a recursos locales
- Proporciona al usuario la ilusión de una sola máquina siendo la misma un grupo de máquinas separadas
- El procesamiento de los datos está distribuido entre diferentes máquinas
- Permiten que las aplicaciones se ejecuten en varios procesadores al mismo tiempo

5. Diseño Orientado a Objetos

- Facilita el desarrollo de herramientas distribuidas y Sistemas Operativos distribuidos
- Para el sistema operativo todo es un "objeto". Un proceso, un archivo, un dispositivo, por ejemplo.
- Un objeto puede controlar la exclusividad de los accesos a su estado a través de sus métodos.

Breve reseña histórica

Evolución de Windows y Linux

• Los kernelsde Windows y Linux se basa en fundamentos desarrollados a mediados de los años 1970s

Sistema Operativo Linux Características

- Software libre (1)
- Multitarea real
- Multiusuario
- Diseño modular del kernel
- Soporta consolas virtuales
- Sistema Operativo de Red

- Poderoso entorno gráfico
- Librerías compartidas
- Administración de memoria
- Herramientas de Desarrollo
- Seguridad
- Convivencia

- ✓ Instalación del SO Linux en una máquina virtual.
- ✓ Instalación de paquetes

¹⁾ Software Libre, cualquiera lo puede usar, modificar y distribuir.

Estructura de Linux

- Estructura modular -> brinda flexibilidad
- Windows separa:

 - Software del sistema operativo → ejecuta en modo núcleo o kernel
 - Sistema Ejecutivo
 - Kernel
 - HAL (Hardware Abstraction Layer)

Arquitectura del Sistema Operativo

Componentes del modo usuario:

- Procesos de soporte de sistemas
- Procesos de servicios
- Aplicaciones
- Subsistemas de entorno

Componentes del modo núcleo:

- Sistema Ejecutivo
- Núcleo o kernel
- HAL (Capa de abstracción de hardware)
- Controladores de dispositivo
- Gestión de ventanas y sistemas gráficos

Módulos del sistema ejecutivo:

- 1. Administrador de objetos
- 2. Administrador de entrada/salida
- 3. Administrador de procesos e hilos
- 4. Administrador de memoria virtual
- 5. Administrador de seguridad
- 6. Administrador de caché
- 7. Administrador plug and play
- 8. Administrador de consumo de electricidad
- 9. Administrador de configuración
- 10. Administrador de llamadas a procedimiento local (LPC)

Modelo cliente/servidor

Ventajas:

- Simplifica el sistema ejecutivo.
- Mejora la Fiabilidad
- Las aplicaciones se comunican de manera uniforme con el sistema ejecutivo a través de los LPC
- Proporciona una base adecuada para la computación distribuida

Bibliografía

TANENBAUM Andrew S. Sistemas Operativos Modernos. 3era. Edición (2009) Prentice Hall.

Capítulo 2: Introducción a los Sistemas Operativos

ALLENDE-GIBELLINI -SANCHEZ-SERNA Sistema Operativo Linux Teoría y Práctica. 2da. Edición(2019) EdUTecNe

Capitulo 1: Linux

Capítulo 2: Entrada al sistema