Loader and Urzyczyn are Logically Related

Giulio Manzonetto

Joint work with Henk Barendregt, Mai Gehrke and Sylvain Salvati

giulio.manzonetto@lipn.univ-paris13.fr

Laboratoire LIPN
Université Paris Nord – Villetaneuse

University of Bath - 28 June 2012

In the beginning was untyped λ -calculus...

$$\Lambda: M, N ::= x \mid \lambda x.M \mid MN$$

$$(\beta) \quad (\lambda x.M)N = M[N/x]$$

$$(\eta)$$
 $\lambda x.Mx = M$ where $x \notin fv(M)$

Church'40

Simply Typed Lambda Calculus

In the beginning was untyped λ -calculus...

$$\Lambda : M, N ::= x \mid \lambda x.M \mid MN$$

$$(\beta) \quad (\lambda x.M)N = M[N/x]$$

$$(\eta)$$
 $\lambda x.Mx = M$ where $x \notin fv(M)$

Church'40 Simply Typed Lambda Calculus In the beginning was untyped λ -calculus...

$$\Lambda: M, N ::= x \mid \lambda x.M \mid MN$$

$$(\beta) \quad (\lambda x.M)N = M[N/x]$$

$$(\eta)$$
 $\lambda x.Mx = M$ where $x \notin fv(M)$

Church'40

Simply Typed Lambda Calculus

Simply Typed Lambda Calculus Λ_{\rightarrow}

Simple Types:

$$\mathbb{T}^o: A, B, C ::= o \mid A \rightarrow B$$

Derivation Rules

$$x_1: A_1, \ldots, x_n: A_n \vdash x_i: A_i$$

$$\frac{\triangle \vdash M : A \to B \quad \triangle \vdash N : A}{\triangle \vdash MN : B}$$

$$\frac{\Delta, x : A \vdash M : B}{\Delta \vdash \lambda x . M : A \to B}$$

A λ -term M is simply typable if $\exists \Delta$, A such that $\Delta \vdash M : A$.

Basic Properties

- *M* is simply typable entails *M* is strongly normalizable (SN),
- But there are SN terms that are not simply typable: $\lambda x.xx$

$$\lambda x^C \cdot x^{A \to B} x^A$$
, one needs $C = A$ and $C = A \to B$

Simply Typed Lambda Calculus Λ_{\rightarrow}

Simple Types:

$$\mathbb{T}^o: A, B, C := o \mid A \rightarrow B$$

Derivation Rules:

$$x_1: A_1, \ldots, x_n: A_n \vdash x_i: A_i$$

$$\frac{\Delta \vdash M : A \to B \quad \Delta \vdash N : A}{\Delta \vdash MN : B}$$

$$\frac{\Delta, x : A \vdash M : B}{\Delta \vdash \lambda x . M : A \rightarrow B}$$

A λ -term M is simply typable if $\exists \Delta$, A such that $\Delta \vdash M : A$.

Basic Properties

- *M* is simply typable entails *M* is strongly normalizable (SN),
- But there are SN terms that are not simply typable: $\lambda x.xx$

$$\lambda x^C . x^{A \to B} x^A$$
, one needs $C = A$ and $C = A \to B$

Simply Typed Lambda Calculus Λ_{\rightarrow}

Simple Types:

$$\mathbb{T}^o: A, B, C ::= o \mid A \rightarrow B$$

Derivation Rules:

$$x_1 : A_1, \ldots, x_n : A_n \vdash x_i : A_i$$

$$\frac{\Delta \vdash M : A \to B \quad \Delta \vdash N : A}{\Delta \vdash MN : B} \qquad \frac{\Delta, x : A \vdash M : B}{\Delta \vdash \lambda x . M : A \to B}$$

A λ -term M is simply typable if $\exists \Delta$, A such that $\Delta \vdash M : A$.

Basic Properties

- M is simply typable entails M is strongly normalizable (SN),
- But there are SN terms that are not simply typable: $\lambda x.xx$

$$\lambda x^C . x^{A \to B} x^A$$
, one needs $C = A$ and $C = A \to B$

The full model over a finite set *X* is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

The full model over a finite set X is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

The full model over a finite set X is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

$$\bullet \ \mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}.$$

:

$$\mathcal{F}_{X}(A \to B) = \mathcal{F}_{X}(B)^{\mathcal{F}_{X}(A)}$$

$$\vdots$$

$$\mathcal{F}_X(A)$$

$$\mathcal{F}_X(B)$$

$$\mathcal{F}_X(o \rightarrow o) = X^X$$

$$\mathcal{F}_X(o) = X$$

The full model over a finite set X is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

•
$$\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$$
.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_{X}(A)$ of $\Delta \vdash M : A$

The full model over a finite set X is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

•
$$\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$$
.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_{X}(A)$ of $\Delta \vdash M : A$

Given $\nu : \text{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

$$\bullet \ \llbracket \mathbf{X}^{\mathbf{A}} \rrbracket_{\nu} = \nu(\mathbf{X})$$

$$\bullet \ \llbracket \lambda X^A.M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_X(A) \mapsto \llbracket M \rrbracket_{\nu[x:=a]}$$

$$\bullet \ \llbracket M^{A \to B} N^A \rrbracket_{\nu} = \llbracket M \rrbracket_{\nu} \llbracket N \rrbracket_{\nu}$$

The full model over a finite set X is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

•
$$\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$$
.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_{X}(A)$ of $\Delta \vdash M : A$

Given $\nu : \text{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

- $\bullet \ \llbracket \mathbf{X}^{\mathbf{A}} \rrbracket_{\nu} = \nu(\mathbf{X})$
- $\bullet \ \llbracket \lambda x^A.M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_{X}(A) \mapsto \llbracket M \rrbracket_{\nu[x:=a]}$
- $\bullet \ \llbracket M^{A \to B} N^A \rrbracket_{\nu} = \llbracket M \rrbracket_{\nu} \llbracket N \rrbracket_{\nu}$

•
$[\![\lambda X.M]\!]\mathcal{F}_X(A \rightarrow B)$
:
$\mathcal{F}_X(A)$
:
$\mathcal{F}_{X}(B)$
:
$\mathcal{F}_X(o \to o) = X^X$
$\mathcal{F}_X(o) = X$

The full model over a finite set X is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

•
$$\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$$
.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_{X}(A)$ of $\Delta \vdash M : A$

Given $\nu : \text{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

$$\bullet \ \llbracket \mathbf{X}^{\mathbf{A}} \rrbracket_{\nu} = \nu(\mathbf{X})$$

$$\bullet \ \llbracket \lambda X^A.M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_X(A) \mapsto \llbracket M \rrbracket_{\nu[X:=a]}$$

$$\bullet \ \llbracket \mathbf{M}^{\mathsf{A} \to \mathsf{B}} \mathbf{N}^{\mathsf{A}} \rrbracket_{\nu} = \llbracket \mathbf{M} \rrbracket_{\nu} \llbracket \mathbf{N} \rrbracket_{\nu}$$

The full model over a finite set X is given by

$$\mathcal{F}_X = \{\mathcal{F}_X(A)\}_{A \in \mathbb{T}^o}$$

where $\mathcal{F}_X(A)$ is defined inductively as

•
$$\mathcal{F}_X(o) = X \neq \emptyset$$
,

•
$$\mathcal{F}_X(A \to B) = \mathcal{F}_X(B)^{\mathcal{F}_X(A)}$$
.

Interpretation $\llbracket M \rrbracket_{\nu} \in \mathcal{F}_{X}(A)$ of $\Delta \vdash M : A$

Given $\nu : \text{Var} \times \mathbb{T}^o \to \mathcal{F}_X$.

$$\bullet \ \llbracket \lambda x^A.M \rrbracket_{\nu} = \lambda a \in \mathcal{F}_X(A) \mapsto \llbracket M \rrbracket_{\nu[x:=a]}$$

$$\bullet \|M^{A \to B} N^A\|_{\nu} = \|M\|_{\nu} \|N\|_{\nu}$$

:

f $\mathcal{F}_X(A)$

÷

 $\mathcal{F}_X(B)$

÷

 $\mathcal{F}_X(o \to o) = X^X$

 $\mathcal{F}_X(o) = X$

Lambda Definability

An element $f \in \mathcal{F}_X$ is λ -definable if $\exists M \in \Lambda_{\rightarrow}$ closed such that $\llbracket M \rrbracket = f$.

Plotkin'73

DP: "Given an element f of any (finite) full model, is f λ -definable?"

Plotkin-Statman's Conjecture: DP is decidable

Plotkin'73

DP: "Given an element f of any (finite) full model, is f λ -definable?"

Plotkin-Statman's Conjecture: DP is decidable

Loader'93: NOPE!

Plotkin'73

DP: "Given an element f of any (finite) full model, is f λ -definable?"

Plotkin-Statman's Conjecture: DP is decidable

Loader'93: NOPE!

Theorem [Loader'01]

Loader: DP is undecidable,

WRP: two letters Word Rewriting Problem

 $<_T$ DP: Definability Problem

Plotkin'73

DP: "Given an element f of any (finite) full model, is f λ -definable?"

Let \mathcal{F}_n be the full model over $X = \{x_1, \dots, x_n\}$ for some n > 0.

 DP_n : "Given an element $f \in \mathcal{F}_n$, is $f \lambda$ -definable?"

Plotkin-Statman's Conjecture: DP is decidable

Loader'93: NOPE!

Theorem [Loader'01,Joly'03]

Loader: DP is undecidable,

• Loader: DP_n is undecidable for every n > 6,

• Joly: DP_n is undecidable for every n > 1.

WRP: two letters Word Rewriting Problem

 $<_{\tau}$ *DP*: Definability Problem

Intersection Type Disciplines

More permissive type systems have been proposed...

CDV: Coppo, Dezani, Venneri'81 Logical characterization of Strong Normalization

Intersection Type Disciplines

More permissive type systems have been proposed...

CDV: Coppo, Dezani, Venneri'81

Logical characterization of Strong Normalization

Types:

 $\begin{array}{ll} \mathbb{A}: & \alpha,\beta,\dots & \text{countable set of atoms} \\ \mathbb{T}_{\wedge}: & \sigma,\tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau & \text{intersection types} \end{array}$

Derivation Rules

$$x_{1}: \sigma_{1}, \dots, x_{n}: \sigma_{n} \vdash_{\wedge} x_{i}: \sigma_{i} \quad (ax)$$

$$\frac{\Gamma \vdash_{\wedge} M: \tau \to \sigma \quad \Gamma \vdash_{\wedge} N: \tau}{\Gamma \vdash_{\wedge} MN: \sigma} \quad (\to_{I}) \qquad \frac{\Gamma, x: \sigma \vdash_{\wedge} M: \tau}{\Gamma \vdash_{\wedge} \lambda x. M: \sigma \to \tau} \quad (\to_{E})$$

$$\frac{\Gamma \vdash_{\wedge} M: \sigma \quad \Gamma \vdash_{\wedge} M: \tau}{\Gamma \vdash_{\wedge} M: \sigma \land \tau} \quad (\land_{I}) \qquad \frac{\Gamma \vdash_{\wedge} M: \sigma \quad \sigma \leq \tau}{\Gamma \vdash_{\wedge} M: \tau} \quad (\land_{E})$$

Subtyping:

$$\sigma \leq \sigma \text{ (refl)} \qquad \sigma \wedge \tau \leq \sigma \text{ (incl}_{L}) \qquad \sigma \wedge \tau \leq \tau \text{ (incl}_{R})$$

$$(\sigma \to \tau) \wedge (\sigma \to \tau') \leq \sigma \to (\tau \wedge \tau') \quad (\to_{\wedge})$$

$$\frac{\sigma \leq \gamma \quad \gamma \leq \tau}{\sigma \leq \tau} \text{ (trans)} \qquad \frac{\sigma \leq \tau \quad \sigma \leq \tau'}{\sigma \leq \tau \wedge \tau'} \text{ (glb)} \qquad \frac{\sigma' \leq \sigma \quad \tau \leq \tau'}{\sigma \to \tau \leq \sigma' \to \tau'} \text{ (\to)}$$

Types:

$$\begin{array}{ll} \mathbb{A}: & \alpha,\beta,\dots & \text{countable set of atoms} \\ \mathbb{T}_{\wedge}: & \sigma,\tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau & \text{intersection types} \end{array}$$

Derivation Rules:

$$\begin{array}{c} x_{1}:\sigma_{1},\ldots,x_{n}:\sigma_{n}\vdash_{\wedge}x_{i}:\sigma_{i} \quad (ax) \\ \hline \Gamma\vdash_{\wedge}M:\tau\to\sigma\quad\Gamma\vdash_{\wedge}N:\tau \\ \hline \Gamma\vdash_{\wedge}MN:\sigma \quad (\to_{I}) \quad \frac{\Gamma,x:\sigma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}\lambda x.M:\sigma\to\tau} \quad (\to_{E}) \\ \hline \frac{\Gamma\vdash_{\wedge}M:\sigma\quad\Gamma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}M:\sigma\wedge\tau} \quad (\land_{I}) \quad \frac{\Gamma\vdash_{\wedge}M:\sigma\quad\sigma\leq\tau}{\Gamma\vdash_{\wedge}M:\tau} \quad (\land_{E}) \end{array}$$

Subtyping

$$\sigma \leq \sigma \text{ (refl)} \qquad \sigma \wedge \tau \leq \sigma \text{ (incl}_L) \qquad \sigma \wedge \tau \leq \tau \text{ (incl}_R)$$

$$(\sigma \to \tau) \wedge (\sigma \to \tau') \leq \sigma \to (\tau \wedge \tau') \quad (\to_{\wedge})$$

$$\frac{\sigma \leq \gamma \quad \gamma \leq \tau}{\sigma < \tau} \text{ (trans)} \qquad \frac{\sigma \leq \tau \quad \sigma \leq \tau'}{\sigma < \tau \wedge \tau'} \text{ (glb)} \qquad \frac{\sigma' \leq \sigma \quad \tau \leq \tau'}{\sigma \to \tau < \sigma' \to \tau'} \text{ (\to)}$$

Types:

$$\begin{array}{ll} \mathbb{A}: & \alpha,\beta,\dots & \text{countable set of atoms} \\ \mathbb{T}_{\wedge}: & \sigma,\tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau & \text{intersection types} \end{array}$$

Derivation Rules:

$$\begin{array}{c} x_{1}:\sigma_{1},\ldots,x_{n}:\sigma_{n}\vdash_{\wedge}x_{i}:\sigma_{i} \quad (ax) \\ \hline \Gamma\vdash_{\wedge}M:\tau\to\sigma \quad \Gamma\vdash_{\wedge}N:\tau \\ \hline \Gamma\vdash_{\wedge}MN:\sigma \quad (\to_{I}) \quad \frac{\Gamma,x:\sigma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}\lambda x.M:\sigma\to\tau} \quad (\to_{E}) \\ \hline \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \Gamma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}M:\sigma\wedge\tau} \quad (\land_{I}) \quad \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \sigma\leq\tau}{\Gamma\vdash_{\wedge}M:\tau} \quad (\land_{E}) \end{array}$$

Subtyping:

$$\sigma \leq \sigma \text{ (refl)} \qquad \sigma \wedge \tau \leq \sigma \text{ (incl}_{L}) \qquad \sigma \wedge \tau \leq \tau \text{ (incl}_{R})$$

$$(\sigma \to \tau) \wedge (\sigma \to \tau') \leq \sigma \to (\tau \wedge \tau') \quad (\to_{\wedge})$$

$$\frac{\sigma \leq \gamma \quad \gamma \leq \tau}{\sigma < \tau} \text{ (trans)} \qquad \frac{\sigma \leq \tau \quad \sigma \leq \tau'}{\sigma < \tau \wedge \tau'} \text{ (glb)} \qquad \frac{\sigma' \leq \sigma \quad \tau \leq \tau'}{\sigma \to \tau < \sigma' \to \tau'} \text{ (\to)}$$

A λ -term M is typable in CDV if $\exists \Gamma, \sigma$ such that $\Gamma \vdash_{\wedge} M : \sigma$.

Properties

• M is typable in CDV $\iff M$ is strongly normalizable

$$\lambda \mathbf{X}^{\alpha \wedge (\alpha \to \beta)} . \mathbf{X}^{\alpha \to \beta} \mathbf{X}^{\alpha}$$

Type Inhabitation

An intersection type σ is inhabited if $\exists M$ closed such that $\vdash_{\land} M : \sigma$.

IHP: "Given an intersection type σ , is σ inhabited?"

IHP: "Given an intersection type σ , is σ inhabited?"

Theorem [Urzyczyn'99]

Urzyczyn: IHP is undecidable.

IHP: "Given an intersection type σ , is σ inhabited?"

Theorem [Urzyczyn'99]

Urzyczyn: IHP is undecidable.

Urzyczyn's Proof

EQAEmptiness Problem for Queue Automata; \leq_T ETWEmptiness Problem for Typewriter Automata; \leq_T WTGProblem of winning a Tree Game (game types) $<_T$ IHPInhabitation Problem for CDV

IHP: "Given an intersection type σ , is σ inhabited?"

Theorem [Urzyczyn'99]

Urzyczyn: IHP is undecidable.

Urzyczyn's Proof

EQA Emptiness Problem for Queue Automata;

 \leq_T ETW Emptiness Problem for Typewriter Automata;

 \leq_T WTG Problem of winning a Tree Game (game types)

 \leq_T *IHP* Inhabitation Problem for CDV

Refinement of IHP:

IHP_n: "Given an intersection type σ with at most n atoms, is σ inhabited?"

IHP: Inhabitation Problem for Game Types

Game Types: $\mathcal{G} = \mathbb{A} \cup \mathcal{B} \cup \mathcal{C}$

$$\begin{array}{rcl} \mathcal{A} & = & \mathbb{A}^{\wedge} \\ \mathcal{B} & = & (\mathcal{A} \to \mathcal{A})^{\wedge} \\ \mathcal{C} & = & (\mathcal{D} \to \mathcal{A})^{\wedge} \text{ for } \mathcal{D} = (\mathcal{B} \to \mathcal{A})^{\wedge} \end{array}$$

where $X^{\wedge} = \{ \sigma_1 \wedge \cdots \wedge \sigma_k : k > 0, \ \sigma_i \in X \}$ and $(X \to Y) = \{ \sigma \to \tau : \sigma \in X, \ \tau \in Y \}$

Theorem [Urzyczyn'99]

- Urzyczyn: IHP is undecidable.
- Urzyczyn: IHP is already undecidable for game types.

DP Λ_{\rightarrow} vs IHP Λ_{\wedge}

Apparently, two unrelated problems:

Inhabitation Problem

- Simply typed λ -calculus
- Denotational models
- Definability

- system CDV
- Intersection types
- Inhabitation
- Salvati's "external" viewpoint brought an unexpected link:

$$\mathsf{DP} \simeq_{\mathcal{T}} \mathsf{IHP}$$

Ingredients

- Uniform Intersection Types
- Monotone Finite Models
- Logical Relations

DP Λ_{\rightarrow} vs IHP Λ_{\wedge}

Apparently, two unrelated problems:

Definability Problem	Inhabitation Problem
 Simply typed λ-calculus Denotational models Definability 	system CDVIntersection typesInhabitation

Salvati's "external" viewpoint brought an unexpected link:

$$\mathsf{DP} \simeq_{\mathcal{T}} \mathsf{IHP}$$

Ingredients:

- Uniform Intersection Types
- Monotone Finite Models
- Logical Relations

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

- $\mathcal{U}(o) = \mathbb{A}^{\wedge}$
- $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

- $\mathcal{U}(o) = \mathbb{A}^{\wedge}$
- $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

- $\mathcal{U}(o) = \mathbb{A}^{\wedge}$
- $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

- $\mathcal{U}(o) = \mathbb{A}^{\wedge}$
- $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Remark Game types are uniform:

- $\mathcal{A} = \mathbb{A}^{\wedge} \subseteq \mathcal{U}(o)$
- $\mathcal{B} = (\mathcal{A} \to \mathcal{A})^{\wedge} \subseteq \mathcal{U}(o \to o)$
- $C = ((\mathcal{B} \to \mathcal{A})^{\wedge} \to \mathcal{A})^{\wedge}$ $\subseteq \mathcal{U}(((o \to o) \to o) \to o)$

Some intersection types

$$\mathbb{T}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau$$

"follow the structure" of simple types.

Intersection Types Uniform with A

- $\mathcal{U}(o) = \mathbb{A}^{\wedge}$
- $\mathcal{U}(B \to C) = (\mathcal{U}(B) \to \mathcal{U}(C))^{\wedge}$

Remark Game types are uniform:

- $\mathcal{A} = \mathbb{A}^{\wedge} \subseteq \mathcal{U}(o)$
- $\mathcal{B} = (\mathcal{A} \to \mathcal{A})^{\wedge} \subseteq \mathcal{U}(o \to o)$
- $\begin{array}{c} \bullet \ \ \mathcal{C} = ((\mathcal{B} \to \mathcal{A})^{\wedge} \to \mathcal{A})^{\wedge} \\ \subseteq \mathcal{U}(((o \to o) \to o) \to o) \end{array}$

Corollary

IHP is undecidable also for Uniform Intersection Types.

 CDV^ω

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

$$ullet$$
 $\mathcal{U}^{\omega}(B o C)=(\mathcal{U}^{\omega}(B) o \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_0 = \omega \qquad \omega_{A \to B} = \omega_A \to \omega_B$$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma \le \omega_A} \ (\le_A)$$

Type judgments of CDV $^{\omega}$: $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

CDV $^{\omega}$ is NOT the usual Intersection Type System with ω

 CDV^ω

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

•
$$\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$$

$$ullet$$
 $\mathcal{U}^{\omega}(B o C)=(\mathcal{U}^{\omega}(B) o \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_o = \omega \qquad \omega_{A \to B} = \omega_A \to \omega_B$$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma \leq \omega_A} \ (\leq_A)$$

Type judgments of CDV $^{\omega}$: $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

 CDV^ω is NOT the usual Intersection Type System with ω

 CDV^ω

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

- $\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$
- ullet $\mathcal{U}^{\omega}(B o C)=(\mathcal{U}^{\omega}(B) o \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_{o} = \omega$$
 $\omega_{A \to B} = \omega_{A} \to \omega_{B}$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma \leq \omega_A} \ (\leq_A)$$

Type judgments of CDV $^{\omega}$: $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

CDV^ω is NOT the usual Intersection Type System with ω

 CDV^ω

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

- $\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$
- $\mathcal{U}^{\omega}(B \to C) = (\mathcal{U}^{\omega}(B) \to \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_{o} = \omega$$
 $\omega_{A \to B} = \omega_{A} \to \omega_{B}$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma \leq \omega_A} \ (\leq_A)$$

Type judgments of CDV $^{\omega}$: $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

 CDV^ω is NOT the usual Intersection Type System with ω

 CDV^ω

$$\mathbb{T}^{\omega}_{\wedge}: \quad \sigma, \tau ::= \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau \mid \omega$$

Intersection Types with ω Uniform with A:

- $\mathcal{U}^{\omega}(o) = (\mathbb{A} \cup \{\omega\})^{\wedge}$
- ullet $\mathcal{U}^{\omega}(B o C)=(\mathcal{U}^{\omega}(B) o \mathcal{U}^{\omega}(C))^{\wedge}$

Define

$$\omega_{o} = \omega$$
 $\omega_{A \to B} = \omega_{A} \to \omega_{B}$

We add to the subtyping relation of CDV:

$$\frac{\sigma \in \mathcal{U}^{\omega}(A)}{\sigma < \omega_{A}} \ (\leq_{A})$$

Type judgments of CDV $^{\omega}$: $\Gamma \vdash^{\omega}_{\wedge} M : \sigma$.

CDV and CDV $^{\omega}$ are NOT restricted to uniform types

• Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

$$\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$$

② Given $\sigma \in \mathcal{U}^{\omega}(A)$ and M normal and closed:

$$\vdash^{\omega}_{\wedge} M : \sigma \implies \vdash M : A$$

③ Given ω-free σ ∈ U(A) and M normal and closed:

$$\vdash_{\wedge} M : \sigma \iff \vdash^{\omega}_{\wedge} M : \sigma$$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda xy.y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z.zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda xy.y) (\lambda z.zz) : \alpha \to \alpha}$$

where $\gamma = (\beta \wedge (\beta \rightarrow \beta)) \rightarrow \beta$.

1 Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

$$\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$$

3 Given $\sigma \in \mathcal{U}^{\omega}(A)$ and M normal and closed:

$$\vdash^{\omega}_{\wedge} M : \sigma \implies \vdash M : A$$

⑤ Given ω-free σ ∈ U(A) and M normal and closed:

$$\vdash_{\wedge} M : \sigma \iff \vdash_{\wedge}^{\omega} M : \sigma$$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda xy.y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z.zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda xy.y) (\lambda z.zz) : \alpha \to \alpha}$$

where $\gamma = (\beta \wedge (\beta \rightarrow \beta)) \rightarrow \beta$.

• Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

$$\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$$

3 Given $\sigma \in \mathcal{U}^{\omega}(A)$ and M normal and closed:

$$\vdash^{\omega}_{\wedge} M : \sigma \implies \vdash M : A$$

3 Given ω -free $\sigma \in \mathcal{U}(A)$ and M normal and closed:

$$\vdash_{\land} \mathbf{M} : \sigma \iff \vdash_{\land}^{\mathbf{\omega}} \mathbf{M} : \sigma$$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda xy.y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z.zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda xy.y)(\lambda z.zz) : \alpha \to \alpha}$$

where $\gamma = (\beta \wedge (\beta \rightarrow \beta)) \rightarrow \beta$.

1 Let $\sigma \in \mathcal{U}^{\omega}(A)$ and $\tau \in \mathcal{U}^{\omega}(A')$, then:

$$\sigma \leq \tau \quad \Rightarrow \quad \mathbf{A} = \mathbf{A}'.$$

3 Given $\sigma \in \mathcal{U}^{\omega}(A)$ and M normal and closed:

$$\vdash^{\omega}_{\wedge} M : \sigma \implies \vdash M : A$$

3 Given ω -free $\sigma \in \mathcal{U}(A)$ and M normal and closed:

$$\vdash_{\wedge} \mathbf{M} : \sigma \iff \vdash^{\boldsymbol{\omega}}_{\wedge} \mathbf{M} : \sigma$$

Remark: Only true for normal terms

$$\frac{\vdash^{\omega}_{\wedge} (\lambda xy.y) : \gamma \to \alpha \to \alpha \quad \vdash^{\omega}_{\wedge} (\lambda z.zz) : \gamma}{\vdash^{\omega}_{\wedge} (\lambda xy.y)(\lambda z.zz) : \alpha \to \alpha}$$

where
$$\gamma = (\beta \wedge (\beta \rightarrow \beta)) \rightarrow \beta$$
.

Problem: the model \mathcal{F} is finite

Problem: the model \mathcal{F} is finite

Let us consider a finite set $X \subseteq \mathbb{A}$.

Problem: the model \mathcal{F} is finite and very hard to study!

Let us consider a "simpler" model

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_A, \sqsubseteq_A)\}_{A \in \mathbb{T}^o}$$

where

• $\mathcal{D}(o) = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_A, \sqsubseteq_A)\}_{A \in \mathbb{T}^o}$$

where

•
$$\mathcal{D}(o) = \mathcal{P}(X)$$
 and $f \sqsubseteq_o g$ iff $f \subseteq g$,

 $\mathcal{P}(X)$

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_A, \sqsubseteq_A)\}_{A \in \mathbb{T}^o}$$

where

- $\mathcal{D}(o) = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,
- $\mathcal{D}_{B \to C} = [\mathcal{D}_B \to_m \mathcal{D}_C]$ $\sqsubseteq_{B \to C} = \text{pointwise ordering.}$

:

$[\mathcal{D}_B o_m \mathcal{D}_C]$
:
$\mathcal{D}_{\mathcal{C}}$
:
$\mathcal{D}_{\mathcal{B}}$
:
$\mathcal{P}(X) \to_m \mathcal{P}(X)$
$\mathcal{P}(X)$

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_A, \sqsubseteq_A)\}_{A \in \mathbb{T}^o}$$

where

- $\mathcal{D}(o) = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,
- $\mathcal{D}_{B \to C} = [\mathcal{D}_B \to_m \mathcal{D}_C]$ $\sqsubseteq_{B \to C} = \text{pointwise ordering}.$

Step Functions

Let $f \in \mathcal{D}_A, g \in \mathcal{D}_B$, define $(f \mapsto g) \in \mathcal{D}_{A \to B}$:

$$(f \mapsto g)(h) = \begin{cases} g & \text{if } f \sqsubseteq_A h, \\ \perp_B & \text{otherwise.} \end{cases}$$

:

$$[\mathcal{D}_B \to_m \mathcal{D}_C]$$

$$\vdots$$

$$\mathcal{D}_C$$

$$\mathcal{P}(X) \to_m \mathcal{P}(X)$$

$$\mathcal{P}(X)$$

The monotone model over $(\mathcal{P}(X), \subseteq)$ is

$$\mathcal{D} = \{(\mathcal{D}_A, \sqsubseteq_A)\}_{A \in \mathbb{T}^o}$$

where

- $\mathcal{D}(o) = \mathcal{P}(X)$ and $f \sqsubseteq_o g$ iff $f \subseteq g$,
- $\mathcal{D}_{B \to C} = [\mathcal{D}_B \to_m \mathcal{D}_C]$ $\sqsubseteq_{B \to C} = \text{pointwise ordering}.$

Step Functions

Let $f \in \mathcal{D}_A, g \in \mathcal{D}_B$, define $(f \mapsto g) \in \mathcal{D}_{A \to B}$:

$$(f \mapsto g)(h) = \begin{cases} g & \text{if } f \sqsubseteq_A h, \\ \bot_B & \text{otherwise.} \end{cases}$$

:

$$[\mathcal{D}_B o_m \mathcal{D}_C]$$

 $\mathcal{D}_{\mathcal{C}}$

•

 $\mathcal{D}_{\mathcal{B}}$

i

$$\mathcal{P}(X) \to_m \mathcal{P}(X)$$

 $\mathcal{P}(X)$

Step functions are generators

For every $f \in \mathcal{D}_{A \to B}$ we have $f = \sqcup_{g \in \mathcal{D}_A} (g \mapsto f(g))$.

$$(\cdot)^{ullet}: \mathcal{U}^{\omega}(A)
ightarrow \mathcal{D}_{A}$$

$$(\cdot)^{ullet}: \mathcal{U}^{\omega}(A)
ightarrow \mathcal{D}_{A}$$

$$\mathcal{U}^{\omega}(o)$$

$$\bullet \ \mathcal{U}^{\omega}(o) = X \cup \{\omega\}$$

$$\mathcal{D}_{\mathcal{C}}$$

•
$$\mathcal{D}_o = \mathcal{P}(X)$$

$$(\cdot)^{\bullet}: \mathcal{U}^{\omega}(A) \to \mathcal{D}_{A}$$

$$\alpha^{\bullet} = \{\alpha\} \qquad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$$

$$\mathcal{U}^{\omega}(o)$$

• $\mathcal{U}^{\omega}(o) = X \cup \{\omega\}$

A = 0

- \bullet $\alpha_1 \wedge \cdots \wedge \alpha_k$
- $\alpha \wedge \beta < \alpha$
- \bullet ω top

 \mathcal{D}_{o}

- $\mathcal{D}_o = \mathcal{P}(X)$
- $\{\alpha_1,\ldots,\alpha_k\}$
- $\{\alpha\} \subseteq \{\alpha \land \beta\}$
- Ø bottom

$$(\cdot)^{\bullet}: \mathcal{U}^{\omega}(A) \to \mathcal{D}_{A}$$

$$A = 0 \qquad \qquad \alpha^{\bullet} = \{\alpha\} \qquad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$$

$$A = B \to C \quad (\sigma \to \tau)^{\bullet} = \sigma^{\bullet} \mapsto \tau^{\bullet} \quad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \sqcup \tau^{\bullet}$$

$$\mathcal{U}^{\omega}(o)$$

- $\mathcal{U}^{\omega}(o) = X \cup \{\omega\}$
- $\alpha_1 \wedge \cdots \wedge \alpha_k$
- $\alpha \wedge \beta < \alpha$
- \bullet ω top

 \mathcal{D}_{c}

- $\mathcal{D}_o = \mathcal{P}(X)$
- \bullet { α_1,\ldots,α_k }
- $\{\alpha\} \subseteq \{\alpha \land \beta\}$
- Ø bottom

$$(\cdot)^{\bullet}: \mathcal{U}^{\omega}(A) \to \mathcal{D}_{A}$$

$$A = 0 \qquad \qquad \alpha^{\bullet} = \{\alpha\} \qquad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$$

$$A = B \to C \quad (\sigma \to \tau)^{\bullet} = \sigma^{\bullet} \mapsto \tau^{\bullet} \quad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \sqcup \tau^{\bullet}$$

$\mathcal{U}^{\omega}(o)$

- $\mathcal{U}^{\omega}(o) = X \cup \{\omega\}$
- $\alpha_1 \wedge \cdots \wedge \alpha_k$
- $\alpha \wedge \beta < \alpha$
- \bullet ω top

\mathcal{D}_{c}

- $\mathcal{D}_o = \mathcal{P}(X)$
- \bullet { α_1,\ldots,α_k }
- $\{\alpha\} \subseteq \{\alpha \land \beta\}$
- Ø bottom

Proposition

- For all $A, \sigma, \tau \in \mathcal{U}^{\omega}(A)$, we have $\sigma \leq \tau \iff \tau^{\bullet} \sqsubseteq \sigma^{\bullet}$.
- The map $(\cdot)^{\bullet}$ is an order-reversing bijection $(\mathcal{U}^{\omega}(A)/\simeq) \cong \mathcal{D}_A$

$$(\cdot)^{\bullet}: \mathcal{U}^{\omega}(A) \to \mathcal{D}_{A}$$

$$A = 0 \qquad \qquad \alpha^{\bullet} = \{\alpha\} \qquad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \cup \tau^{\bullet}$$

$$A = B \to C \quad (\sigma \to \tau)^{\bullet} = \sigma^{\bullet} \mapsto \tau^{\bullet} \quad (\sigma \wedge \tau)^{\bullet} = \sigma^{\bullet} \sqcup \tau^{\bullet}$$

Proposition

- For all $A, \sigma, \tau \in \mathcal{U}^{\omega}(A)$, we have $\sigma \leq \tau \iff \tau^{\bullet} \sqsubseteq \sigma^{\bullet}$.
- ullet The map $(\cdot)^ullet$ is an order-reversing bijection $(\mathcal{U}^\omega(A)/\!\!\simeq)\ \cong\ \mathcal{D}_A$

Theorem

Let *M* be normal, closed and such that $\vdash M : A$. Then for all $\sigma \in \mathcal{U}^{\omega}(A)$:

$$\vdash^{\omega}_{\wedge} M : \sigma \iff \sigma^{\bullet} \sqsubseteq \llbracket M \rrbracket^{\mathcal{D}}$$

We need a link between $\mathcal D$ and $\mathcal F_{\mathcal P(X)}$:

We need a link between \mathcal{D} and $\mathcal{F}_{\mathcal{P}(X)}$: Logical Relations!

- $\mathcal{R}_0 = Id$,
- $f \mathcal{R}_{A \to B} g \iff \forall h \in \mathcal{D}_A, h' \in \mathcal{F}_A [h \mathcal{R}_A h' \Rightarrow f(h) \mathcal{R}_B g(h')].$

We need a link between \mathcal{D} and $\mathcal{F}_{\mathcal{P}(X)}$: Logical Relations!

• Fundamental Lemma: For all $M \in \Lambda_{\rightarrow}$ closed we have $\llbracket M \rrbracket^{\mathcal{D}} \ \mathcal{R} \ \llbracket M \rrbracket^{\mathcal{F}}$

 $\vdash_{\land} M : \sigma$

$$\vdash_{\land} \mathbf{M} : \sigma \iff \vdash^{\omega}_{\land} \mathbf{M} : \sigma$$

 $||M| \cdot 0 \iff ||M| \cdot 0 \iff ||M|| \in C$

$$\vdash_{\wedge} \textit{M} : \sigma \iff \vdash^{\omega}_{\wedge} \textit{M} : \sigma \iff \llbracket \textit{M} \rrbracket^{\mathcal{D}} \in \sigma^{\bullet} \uparrow \iff \llbracket \textit{M} \rrbracket^{\mathcal{F}} \in \mathcal{R}(\sigma^{\bullet} \uparrow)$$

If λ -definability is decidable, then IHP for (Uniform) Intersection Types is decidable $\frac{1}{2}$ by Urzyczyn

$$\vdash_{\wedge} \textit{\textit{M}} : \sigma \quad \Longleftrightarrow \quad \vdash^{\omega}_{\wedge} \textit{\textit{M}} : \sigma \quad \Longleftrightarrow \quad \llbracket \textit{\textit{M}} \rrbracket^{\mathcal{D}} \in \sigma^{\bullet} \uparrow \quad \Longleftrightarrow \quad \llbracket \textit{\textit{M}} \rrbracket^{\mathcal{F}} \in \mathcal{R}(\sigma^{\bullet} \uparrow)$$

Inhabitation Problem for CDV \leq_T Definability Problem

Remark

- \mathcal{F}_X is over X
- \mathcal{D} is over $\mathcal{P}(X)$

Logical Relation

•
$$\mathcal{J}_o = \{ (f, F) \mid f \in F \}$$

Logical Relation

- $\mathcal{J}_o = \{ (f, F) \mid f \in F \}$
- $\mathcal{J} =$ logical relation induced by \mathcal{J}_o

Every $f \in \mathcal{F}_X(A)$ represents a $\xi_f \in \mathcal{U}_X(A)$

- A = 0, then $\xi_f = f$,
- $A = B \rightarrow C$, then $\xi_f = \bigwedge_{g \in \mathcal{F}_X(B)} \xi_g \rightarrow \xi_{fg}$.

Idea: the construction "factorize"!

$$\llbracket M \rrbracket^{\mathcal{F}} = f$$

$$\llbracket \mathbf{M} \rrbracket^{\mathcal{F}} = \mathbf{f} \iff \mathbf{f} \ \mathcal{J} \ \llbracket \mathbf{M} \rrbracket^{\mathcal{D}}$$

$$\llbracket M \rrbracket^{\mathcal{F}} = f \quad \Longleftrightarrow \quad f \; \mathcal{J} \; \llbracket M \rrbracket^{\mathcal{D}} \quad \Longleftrightarrow \quad \llbracket M \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet} \uparrow$$

$$\llbracket M \rrbracket^{\mathcal{F}} = f \iff f \mathcal{J} \llbracket M \rrbracket^{\mathcal{D}} \iff \llbracket M \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet \uparrow} \iff \vdash_{\wedge} M : \xi_f$$

If IHP_n for (Uniform) Intersection Types is decidable, then λ -definability in \mathcal{F}_n is decidable $\frac{1}{2}$ (for n > 1 by Joly)

$$\llbracket M \rrbracket^{\mathcal{F}} = f \iff f \mathcal{J} \llbracket M \rrbracket^{\mathcal{D}} \iff \llbracket M \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet} \uparrow \iff \vdash_{\wedge} M : \xi_f$$

 $\mathsf{DP}_n \leq_{\mathcal{T}} \mathsf{IHP}_n$

$$\llbracket \mathbf{M} \rrbracket^{\mathcal{F}} = \mathbf{f} \iff \mathbf{f} \; \mathcal{J} \; \llbracket \mathbf{M} \rrbracket^{\mathcal{D}} \iff \llbracket \mathbf{M} \rrbracket^{\mathcal{D}} \in (\xi_f)^{\bullet \uparrow} \iff \vdash_{\wedge} \mathbf{M} : \xi_f$$

Definability Problem $\leq_{\mathcal{T}}$ Inhabitation Problem for CDV

Refinement of Urzyczyin's Result

IHP_n is undecidable for n > 1.

Degrees of Reduction

- Inhabitation Problem $\leq_{\mathcal{T}}$ Definability Problem (proper Turing-reduction)
- Definability Problem $\leq_{\mathcal{T}}$ Inhabitation Problem (many-one reduction) Logically simpler!

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Refinement of Urzyczyin's Result

IHP_n is undecidable for n > 1.

Degrees of Reduction

- Inhabitation Problem \leq_T Definability Problem (proper Turing-reduction)
- Definability Problem \leq_T Inhabitation Problem (many-one reduction) Logically simpler!

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Refinement of Urzyczyin's Result

IHP_n is undecidable for n > 1.

Degrees of Reduction

- Inhabitation Problem $\leq_{\mathcal{T}}$ Definability Problem (proper Turing-reduction)
- Definability Problem \leq_m Inhabitation Problem (many-one reduction) Logically simpler!

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Refinement of Urzyczyin's Result

IHP_n is undecidable for n > 1.

Degrees of Reduction

- Inhabitation Problem \leq_T Definability Problem (proper Turing-reduction)
- Definability Problem \leq_m Inhabitation Problem (many-one reduction) Logically simpler!

There exists a total computable function ϕ such that $IHP = \phi^{-1}(DP)$.

Thanks for your attention!

