CAPÍTULO 4

Teoria da Dualidade

1. Introdução

Uma dos conceitos mais importantes em programação linear é o de dualidade. Qualquer problema de PL tem associado um outro problema de PL, chamado o **Dual**. Neste contexto, o problema original denomina-se por **Primal**.

Um dos principais papéis da teoria da dualidade é a interpretação e implementação da análise de sensibilidade, que é uma parte muito importante de um estudo de PL.

2. Formulação do problema Dual

Dado um problema de PL, de maximização, na forma típica :

Maximizar Z = C XSujeito a $A X \le b$ $X \ge 0$

existe um outro problema de PL que lhe está associado, o dual, que consiste em:

Minimizar W = b YSujeito a $A^T Y \ge C$ $Y \ge 0$

Por outro lado, dado um problema de PL, de minimização, na forma típica :

Minimizar Z = C XSujeito a $A X \ge b$ $X \ge 0$ existe um outro problema de PL que lhe está associado, o dual, que consiste em:

Maximizar
$$W = b Y$$

Sujeito a $A^T Y \le C$
 $Y \ge 0$

As regras de transformação que se aplicaram, foram as seguintes :

- i) A cada variável do primal corresponde uma restrição no dual;
- ii) A cada restrição do primal corresponde uma variável do dual;
- iii) Os coeficientes da função objectivo do primal correspondem aos termos independentes das restrições do dual;
- iv) Os termos independentes das restrições do primal correspondem aos coeficientes da função objectivo do dual;
- v) A transposta da matriz das restrições do primal, é a matriz das restrições do dual;
- vi) Se o primal for um problema de maximização (minimização) na forma típica, então o problema
 dual será um problema de minimização (maximização) na forma típica.

Relações Primal-Dual

Maximização	←– Passagen	n ao Dual −→	Minimização	
≤ i-ésima restrição =	>1	≥ 0 ≤ 0 livre	i-ésima variável	
≥0 j-ésima variável livre	≤ 0	≥ ≤ j-ésima res =	strição	
Matriz das restriçõ	ŏes — A	Matriz das restrições — A ^T		
Coeficientes da funçã	o objectivo	Termos independentes		
Termos independ	dentes	Coeficientes da função objectivo		

Exemplo:

 Primal
 Dual

 Maximizar $Z = 2x_1 + x_2$ Minimizar $Z = 5y_1 + 3y_2 + 3y_3$

 Sujeito a
 $x_1 + x_2 = 5$ Sujeito a
 $y_1 + y_2 = 2$ $y_1 + y_2 = 2$
 $x_1 \le 3$ $x_1 \le 3$ $y_1 = x_1 = x_2 = 1$ $y_1 = x_1 = x_2 = 1$
 $x_1 = x_2 \ge 3$ $x_1 = x_2 \ge 0$ $x_1 = x_2 \ge 0$

Um exemplo 47

3. Propriedades fundamentais da dualidade

Nesta secção serão apresentados os principais resultados da dualidade, que relacionam as soluções de qualquer par de problemas duais, em particular as óptimas.

Resultado 1. O valor da função objectivo, Z, de qualquer solução admissível do problema primal, $X = (x_1, x_2, ..., x_n)$, não excede o valor da função objectivo, W, de qualquer solução admissível do problema dual, $Y = (y_1, y_2, ..., y_n)$, isto é,

$$Z = \sum_{j} c_{j} x_{j} \le W = \sum_{i} b_{i} y_{i}$$

Resultado 2. Se X^* e Y^* são soluções admissíveis para os problemas primal e dual, respectivamente, tais que Z^* = W^* , então X^* e Y^* são as soluções óptimas do primal e do dual, respectivamente.

Resultado 3.

- a) Para qualquer par de problemas duais, a existência de solução óptima (finita) para um deles garante a existência de solução óptima (finita) para o outro e os respectivos valores das funções objectivo são iguais : Z* = W*.
- **b)** As componentes do vector $Y^* = (y_1^*, y_2^*, \cdots, y_m^*)$ encontram-se no quadro óptimo do primal na linha $(z_j c_j)$, associados aos valores de \mathbf{z}_j , nas colunas correspondentes às variáveis folga (quando uma restrição não tem associada qualquer variável folga, considera-se a variável que deu origem à matriz identidade de partida).
- c) Os valores das variáveis folga na solução óptima do dual, são os valores dos elementos da linha $(z_i c_i)$, correspondentes apenas às variáveis principais do primal.
- **Resultado 4.** Um problema de programação linear tem solução óptima (finita) se e só se existirem soluções admissíveis para os problemas primal e dual.
- **Resultado 5.** Se para algum dos problemas existir solução não limitada, então o outro não possui soluções admissíveis.

4. Um exemplo

Considere-se o problema das secretárias e das estantes, já resolvido no Capítulo 2. O dual deste problema, é o seguinte :

Minimizar W = 720
$$y_1$$
 + 880 y_2 + 160 y_3
Sujeito a 2 y_1 + 4 y_2 + y_3 \geq 6
4 y_1 + 4 y_2 \geq 3
 $y_1, y_2, y_3 \geq 0$

48 Um exemplo

Passando o problema para a sua forma padrão, tem-se:

Minimizar
$$W = 720 y_1 + 880 y_2 + 160 y_3$$

Sujeito a $2 y_1 + 4 y_2 + y_3 - y_4 = 6$
 $4 y_1 + 4 y_2 - y_5 + y_6 = 3$
 $y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$ (y_6 é variável artificial)

Este problema é equivalente ao seguinte (de Maximização) :

- Maximizar
$$W = -720 y_1 - 880 y_2 - 160 y_3$$

Sujeito a $y \in Y$ (Y é a região admissível do problema dual)

Aplicando o método das Duas-Fases, tem-se:

1^a Fase:

Construção do seguinte problema auxiliar :

Minimizar $W' = y_6$ Sujeito a $y \in Y$

Este problema, é equivalente ao seguinte (de maximização) :

- Maximizar $W' = -y_6$ Sujeito a $y \in Y$ (Y é a região admissível do problema dual)

Resolvendo este último problema pelo algoritmo Simplex, vem :

Passo inicial:

					$\mathbf{y_4}$			
	у ₃ У ₆	2	4	1	-1	0	0	6
←	y ₆	4	<u>4</u>	0	0	-1	1	3
	$\mathbf{w'_{i}} - \mathbf{c'_{i}}$	-4	-4	0	0	1	0	-3
	, ,,		1					•

1ª iteração:

					y_5		
y ₃	-2	0	1	-1	1 -1/4	-1	3
$\mathbf{w'_{i}} - \mathbf{c'_{i}}$	0	0	0	0	0	1	0

Desta forma, completou-se a 1^a fase, pois y_6 está fora da base, com $w^* = 0$. Assim, a solução óptima do problema de Minimização é a mesma do de Maximização, agora determinada :

$$w' = (0, 3/4, 3, 0, 0, 0).$$

2ª fase:

Utiliza-se o quadro anterior, apenas alterando a última linha:

Passo inicial:

	\mathbf{Y}_{B}	$\mathbf{y_1}$	$\mathbf{y_2}$	y_3	y_4	\mathbf{y}_5	y_6	2° m.
	y_3	-2	0	1	-1	1 -1/4	-1	3
	y_2	1	1	0	0	-1/4	1/4	3/4
	$\mathbf{w_j} - \mathbf{c_j}$	720	880	160	0	0	0	0
_	$\mathbf{w_j} - \mathbf{c_j}$	160	0	0	160	60	-60	-1140

Como para todo o j, $w_j-c_j\geq 0$ (para j = 6 não interessa), a solução associada a esta base é óptima. Portanto, tem-se o seguinte :

$$y^* = \left(0, \frac{3}{4}, 3, 0, 0, 0\right) \text{ com } W_{min} = 1140 \text{ (W}_{max} = -1140 \text{ e W}_{min} = -W_{max}\text{)}.$$

Conclusão:

$$x^* = (160, 60, 160, 0, 0) \text{ com } Z_{\text{max}} \text{ (primal)} = W_{\text{min}} \text{ (dual)} = 1140.$$
 $x_1^* = w_4 \text{ com } w_4 - c_4 = 160 \qquad \Rightarrow w_4 - 0 = 160 \text{ } (c_4 = 0) \qquad \Rightarrow x_1^* = w_4 = 160$
 $x_2^* = w_5 \text{ com } w_5 - c_5 = 60 \qquad \Rightarrow w_5 - 0 = 60 \text{ } (c_5 = 0) \qquad \Rightarrow x_2^* = w_5 = 60$
 $x_3^* = w_1 - c_1 \qquad \Rightarrow x_3^* = 160$
 $x_4^* = w_2 - c_2 \qquad \Rightarrow x_4^* = 0$
 $x_5^* = w_3 - c_3 \qquad \Rightarrow x_5^* = 0$

5. Algoritmo Dual Simplex

O algoritmo Simplex estudado até aqui, o primal, não é único, nem mesmo, em certos casos, o mais eficiente. Com efeito :

- raramente a utilização do algoritmo Simplex dispensa a técnica das variáveis artificiais;
- a imposição de limites às variáveis aumenta substancialmente o número de restrições;
- em problemas de grande dimensão, este algoritmo torna-se em geral bastante "pesado";
- alterações posteriores nos parâmetros exigem, em muitos casos, a resolução do problema a partir do inicio.

Por outro lado, os problemas de PL apresentam por vezes estruturas tão particulares, que podem ser resolvidos, mais eficientemente, por métodos especificamente concebidos para o efeito.

Neste sentido, têm vindo a ser desenvolvidos métodos de resolução, cujo objectivo fundamental consiste em reduzir o número de iterações necessário no algoritmo primal Simplex, como é o caso do método Dual Simplex, que deriva do método Simplex.

O *algoritmo dual Simplex* consiste num processo, que partindo duma SBA do dual, a qual corresponde inicialmente a uma SBNA do primal, desenvolve-se iterativamente, até se atingir um par de soluções admissíveis do primal e do dual, que são as soluções óptimas respectivas, ou se concluir que o problema apresenta solução não limitada, sendo então o primal impossível.

Em muitos problemas, é mais fácil obter uma solução admissível para o dual do que para o primal. Nestes casos, este algoritmo revela-se útil, em princípio preferível ao algoritmo primal. Também na análise de pós-optimização, este algoritmo dispensa muitas vezes a resolução do problema a partir do inicio, perante variações discretas ou contínuas de parâmetros do modelo.

Ao aplicar-se o algoritmo primal Simplex, passa-se de SBA em SBA do Primal e, simultaneamente, de SBNA em SBNA do Dual, até se atingir uma SBA do Dual (que também é do primal); neste momento, o processo termina, pois está-se em presença da solução óptima do primal, que também é solução óptima do dual. Esquematicamente, tem-se

Primal: SBA → · · · · → SBA → SBA (X* finito) / SBA (Solução não limitada)

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Dual: SBNA → · · · · → SBNA → SBA (Y* finito) / SBNA (Problema impossível)

O algoritmo Dual Simplex, é um processo que, embora aplicado ao problema primal, tem um comportamento homólogo ao algoritmo Primal Simplex aplicado ao problema dual. Este processo consiste em partir duma SBA do Dual, a que corresponde uma SBNA do Primal, prosseguindo até se atingir um par de soluções admissíveis do primal e do dual, que são as soluções óptimas respectivas, ou se concluir que o problema dual apresenta solução óptima não limitada, sendo então o primal impossível. Esquematicamente, tem-se :

Dual:
 SBA
 → ··· → SBA
 → SBA (Y* finito)
 / SBA (Solução não limitada)

$$\updownarrow$$
 \updownarrow
 \updownarrow
 \updownarrow
 \updownarrow
 \blacklozenge
 \updownarrow
 \updownarrow
 \updownarrow
 \blacklozenge
 \lor
 \lor
 \lor
 \blacklozenge
 \lor
 \lor
 \lor
 \blacklozenge
 \lor
 \lor
 \lor
 \blacklozenge
 \lor
 \lor

O algoritmo Dual Simplex, para problemas de maximização, consiste nos seguintes passos :

Passo 1. Construir o quadro Simplex correspondente à SBA do dual (SBNA do primal) em presença, isto é, uma solução em que $z_j - c_j \ge 0$, para j = 1, 2, ..., n.

 $\mbox{\bf Passo 2. Se } \overline{b}_i \geq 0, \mbox{\bf i} \in I_B \mbox{\bf , o processo termina : está-se em presença de uma solução óptima finita para o problema dual, logo, uma solução óptima finita para o primal.$

O processo prossegue no caso de existir algum $\,\overline{b}_i < 0, \quad i \in I_B \,.$

Passo 3. Escolher a VNB a sair na base, de acordo com o critério

$$\min_{i} \left\{ \overline{b}_{i} : \overline{b}_{i} < 0 \right\} \text{ (escolha da linha do elemento redutor — linha t)}$$

Passo 4. Escolher a variável a entrar na base, de acordo com o critério

$$\frac{z_k - c_k}{\bar{a}_{tk}} = \min_{j} \left\{ \left| \frac{z_j - c_j}{\bar{a}_{tj}} \right| : \bar{a}_{tj} < 0 \right\}$$
 (escolha da coluna do elemento redutor — *coluna k*)

Se $\bar{a}_{tj} \ge 0$, para j = 1, 2, ..., n, o processo termina : está-se em presença de uma solução não limitada para o problema dual ($w \to -\infty$), logo, o problema primal não possui soluções admissíveis. O processo prossegue no caso de existir algum $\bar{a}_{tj} < 0$.

Passo 5. Substituir \overline{A}_t por \overline{A}_k na base, obtendo nova base, tal que $z_j - c_j \ge 0$, j = 1, 2, ..., n; para tal, aplicar o método de eliminação de Gauss–Jordan tomando \overline{a}_{tk} como elemento redutor ("pivot"). Voltar ao passo 2.

Para resolver o problema de degenerescência no dual, que se manifesta pela existência de pelo menos um $z_j - c_j = 0$ para $j \notin I_B$, é possível desenvolver um processo similar ao apresentado para o primal Simplex. Neste caso, perante a situação de empate no critério de entrada, isto é,

$$\frac{z_k - c_k}{\overline{a_{tk}}} = \dots = \frac{z_r - c_r}{\overline{a_{tr}}} = \min_{j} \left\{ \left| \frac{z_j - c_j}{\overline{a_{tj}}} \right| : \overline{a_{tj}} < 0 \right\}$$

procede-se à determinação de

$$\min_{j=k,\dots,q} \left\{ \left| \frac{\overline{a_{1j}}}{\overline{a_{tj}}} \right| : \overline{a_{tj}} < 0 \right\},\,$$

para j correspondente às variáveis empatadas, indicando o valor obtido a variável a introduzir na base. Se o empate persistir, procede-se da mesma forma com a_{21} , e assim sucessivamente.

Exemplo:

Considere-se o seguinte problema de PL:

Minimizar
$$Z = 10 x_1 + 5 x_2$$

Sujeito a $20 x_1 + 50 x_2 \ge 200$
 $50 x_1 + 10 x_2 \ge 150$
 $30 x_1 + 30 x_2 \ge 210$
 $x_1, x_2 \ge 0$

Passando o problema para a sua forma padrão, tem-se:

Minimizar
$$Z = 10 x_1 + 5 x_2$$

Sujeito a $20 x_1 + 50 x_2 - x_3 = 200$
 $50 x_1 + 10 x_2 - x_4 = 150$
 $30 x_1 + 30 x_2 - x_5 = 210$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

no qual não se encontra I_3 , mas que ao multiplicar-se todas as restrições por (-1) isso já acontece :

Minimizar
$$Z = 10 x_1 + 5 x_2$$

Sujeito a $-20 x_1 - 50 x_2 + x_3 = -200$
 $-50 x_1 - 10 x_2 + x_4 = -150$
 $-30 x_1 - 30 x_2 + x_5 = -210$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Para se resolver este problema, tem-se que se converter num de maximização :

- Maximizar
$$Z + 10 x_1 + 5 x_2 = 0$$

Sujeito a $x \in X$

Portanto, como não existem variáveis artificiais no problema, mas os termos independentes são negativos, tem que se aplicar o algoritmo Dual Simplex :

Passo inicial:

 x_5 é a variável que sai da base, pois, x_5 = min { -200, -150, -210 } = -210

$$x_2$$
 é a variável que entra na base, pois, $x_2 = \min \left\{ \frac{10}{-30} \middle| \frac{5}{-30} \middle| \right\} = \frac{5}{30}$

Aplicando o método de Gauss-Jordan, obtém-se o seguinte quadro (1ª iteração):

	\mathbf{X}_{B}	\mathbf{x}_1	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{x_4}$	\mathbf{x}_{6}	2° m.
	\mathbf{x}_3	30	0	1	0	-5/3	150
←	x_4	<u>-40</u> 1	0	0	1	-1/3	-80
	x_2	1	1	0	0	-1/30	7
	$z_i - c_i$	5	0	0	0	5/30	-35
	, ,	^				<u>'</u>	

 x_4 é a variável que sai da base, pois, x_4 = min { -80} = -80

$$x_1$$
 é a variável que entra na base, pois, $x_1 = \min \left\{ \left| \frac{5}{-40} \right|, \left| \frac{\frac{5}{30}}{-\frac{1}{30}} \right| \right\} = \frac{5}{40}$

Aplicando de novo o método de Gauss-Jordan, obtém-se o seguinte quadro (2ª iteração):

\mathbf{X}_{B}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	$\mathbf{x_4}$	\mathbf{x}_6	2° m.
x_3	0	0	1	3/4	-23/12	90
\mathbf{x}_1	1	0	0	-1/40	1/120	2
x_2	0	1	0	1/40	-1/24	5
$z_i - c_i$	0	0	0	1/8	1/8	-45

Como os termos independentes são todos não negativos, a solução obtida é admissível, logo é óptima do problema primal. Portanto, a solução óptima é a seguinte :

$$X^* = (2, 5, 90, 0, 0)$$
 \Leftrightarrow $Z_{min} = -Z_{max} = -(-45) = 45$.

O problema dual é composto por 3 variáveis de decisão e por 2 restrições (logo, por 2 variáveis folga).

Variáveis de decisão : y₁, y₂ e y₃.

Variáveis folga : y₄ e y₅.

Função objectivo : Max $W = 200 y_1 + 150 y_2 + 210 y_3$.

Solução óptima:

$$y_{1}^{*} = z_{3} \cos z_{3} - c_{3} = 0 \qquad \Rightarrow \qquad z_{3} = 0 \ (c_{3} = 0) \qquad \Rightarrow \qquad y_{1}^{*} = 0$$

$$y_{2}^{*} = z_{4} \cos z_{4} - c_{4} = 1/8 \qquad \Rightarrow \qquad z_{4} = 1/8 \ (c_{4} = 0) \qquad \Rightarrow \qquad y_{2}^{*} = 1/8$$

$$y_{3}^{*} = z_{5} \cos z_{5} - c_{5} = 1/8 \qquad \Rightarrow \qquad z_{5} = 1/8 \ (c_{5} = 0) \qquad \Rightarrow \qquad y_{3}^{*} = 1/8$$

$$y_{4}^{*} = z_{1} - c_{1} = 0 \qquad \Rightarrow \qquad y_{4}^{*} = 0$$

$$y_{5}^{*} = z_{2} - c_{2} = 0 \qquad \Rightarrow \qquad y_{5}^{*} = 0$$

$$Y^{*} = \left(0, \frac{1}{8}, \frac{1}{8}, 0, 0\right) \Leftrightarrow \qquad W_{max} = \left(200 \times 0 + 150 \times \frac{1}{8} + 210 \times \frac{1}{8} = \frac{360}{8}\right) = 45 = Z_{min} \ .$$