

Travaux Dirigés Libres n°3 : Électronique 1

Exercice n°1: Matrices caractéristiques des quadripôles particuliers

Pour chacun des quadripôles proposés ci-dessous, on vous demande de calculer les matrices caractéristiques suivantes :

- 1°) La matrice chaine directe (a)
- **2°)** La matrice chaine inverse (<u>a</u>i)
- **3°)** La matrice impédance (<u>z</u>)
- **4°)** La matrice admittance (y)
- **5°)** La matrice hybride directe (<u>h</u>)
- **6°)** La matrice hybride inverse (<u>a</u>)

Exercice n°2: Quadripôle quelconque

On considère le quadripôle quelconque ci-dessous, on demande de calculer toutes les matrices caractéristiques.

Exercice n°3: Association des quadripôles

1°) Pour ce type d'association, **en cascade**, on demande de calculer la matrice chaine directe (\underline{a}) et de la matrice chaine inverse (\underline{a} i).

En déduire les autres matrices caractéristiques : (z), (y), (h) et (g).

 2°) Pour ce type d'association, **en série**, on demande de calculer la matrice impédance (\underline{z}).

En déduire les autres matrices caractéristiques : (\underline{a}) , (\underline{a}_i) , (\underline{y}) , (\underline{h}) et (\underline{g}) .

3°) Pour ce type d'association, **en parallèle**, on demande de calculer la matrice admittance (y).

En déduire les autres matrices caractéristiques : (\underline{a}) , (\underline{a}_i) , (\underline{z}) , (\underline{h}) et (\underline{g}) .

4°) Pour ce type d'association, **en série-parallèle**, on demande de calculer la matrice hybride directe (<u>h</u>).

En déduire les autres matrices caractéristiques : (\underline{a}) , (\underline{a}_i) , (\underline{z}) , (\underline{y}) et (\underline{g}) .

4°) Pour ce type d'association, **parallèle** - **série**, on demande de calculer la matrice hybride inverse (g).

En déduire les autres matrices caractéristiques : (\underline{a}) , (\underline{a}_i) , (\underline{z}) , (\underline{y}) et (\underline{h}) .

Pr. A. BAGHDAD TDL n°3 «Électronique 1 » 5/8

Exercice n°4: Modèles électriques des quadripôles

En partant de la définition des six matrices caractéristiques du même quadripôle, on demande de représenter ce dernier par six circuits électriques équivalents indépendants.

Exercice n°5: Configuration générale d'un quadripôle

On considère la configuration générale d'un quadripôle inséré entre un générateur et une charge.

- **I**°) On suppose que le quadripôle est défini par sa matrice de transfert (\underline{T}) appelée également matrice chaine inverse. On demande d'établir, en fonction de ses paramètres ainsi que les caractéristiques du générateur et de la charge, les expressions des grandeurs suivantes :
- **1**°) L'amplification en tension A_v .
- **2°)** L'impédance d'entrée Z_E .
- **3°)** L'impédance sortie Z_S .

- II') Mêmes questions pour les autres matrices caractéristiques du même quadripôle.
- **III°)** Pour chaque quadripôle de l'exercice n°1. On demande de calculer :
- **1°)** L'amplification en tension A_v .
- **2**°) L'amplification en courant A_i .
- **3°)** L'amplification en puissance A_p .

Que peut-on conclure concernant les valeurs des amplifications?

- **4°)** L'impédance d'entrée Z_E .
- **5°)** L'impédance sortie \underline{Z}_S .
- **6°)** L'impédance caractéristique $\underline{Z}_{\mathbb{C}}$.
- **7°)** L'impédance de transfert direct \underline{Z}_{TD} .
- **8°)** L'impédance de transfert inverse \underline{Z}_{TI} .
- **9°)** L'admittance de transfert direct \underline{Y}_{TD} .
- **10°)** L'admittance de transfert inverse \underline{Y}_{TI} .

Pour faciliter le calcul, on suppose que toutes les résistances du montage sont identiques avec celles du générateur et de la charge : $R_g = R_L = R_i$.

VI'') Pour chaque cas de la question III''), on remplace la charge R_L par la valeur de l'impédance caractéristique Z_C préalablement calculée. On vous demande de recalculer les nouvelles valeurs des amplifications et de conclure.

Exercice n°6 : Matrices caractéristiques des quadripôles R L C

Pour chaque quadripôle proposé ci-dessous, on demande de calculer les matrices caractéristiques suivantes :

- **1°)** La matrice chaine directe (<u>a</u>)
- 2°) La matrice chaine inverse (ai)
- 3°) La matrice impédance (<u>z</u>)
- **4°)** La matrice admittance (y)
- 5°) La matrice hybride directe (h)
- **6°)** La matrice hybride inverse (g)

