Lec11 Note of Algebra

Xuxuayame

日期: 2024年10月16日

如果 $_RM$ 是 R-模, M 不能直接成为 S-模, 但 $S \otimes_R M$ 是 S-模.

 $\forall s \in S$, 我们取 $\mu_s : S \times M \to S \otimes_R M$, $(s', m) \mapsto ss' \otimes m$ 为双线性映射. 那么

$$S \times M \xrightarrow{\operatorname{can}} S \otimes_{R} M$$

$$\downarrow^{\mu_{s}} \downarrow^{\Pi_{s}}$$

$$S \otimes_{R} M$$

这里

$$\tilde{\mu_s} \colon S \otimes_R M \to S \otimes_R M, \ s' \otimes m \mapsto ss' \otimes m$$

为 R-模同态. 那么定义

$$S \times (S \otimes_R M) \to S \otimes_R M, (s, z) \mapsto \tilde{\mu_s}(z).$$

习题: 验证 $S \otimes_R M$ 成为 S-模.

于是我们可以看见函子 $S \otimes_R -: R - \mathsf{Mod} \to S - \mathsf{Mod}$,

$$\begin{array}{ccc}
M & S \otimes_R M \\
\theta \downarrow & & & \downarrow \operatorname{Id}_{S \otimes_R \theta} \\
N & S \otimes_R N
\end{array}$$

称为基变换函子.

例 1.42. $I \triangleleft R$, $R \stackrel{\pi}{\rightarrow} R/I$, 于是 $R - \mathsf{Mod} \rightarrow (R/I) - \mathsf{Mod}$,

$$M \mapsto R/I \otimes_R M \simeq M/IM$$
.

称为 M 关于 I 的**约化** (Reduction).

例 1.43. $\mathbb{Z}A \in \mathbb{Z}$ —Mod. 考虑 $\mathbb{Z} \to \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}, p$ 素. 则可以得到 \mathbb{F}_p -线性空间: $\mathbb{F}_p \otimes_{\mathbb{Z}} A = A/pA$.

若考虑 $\mathbb{Z} \to \mathbb{Q}$, 则 $\mathbb{Q} \otimes_{\mathbb{Z}} A$ 成为 \mathbb{Q} -线性空间.

例 1.44. R 为整环, 则 $R \hookrightarrow K = \operatorname{Frac}(R)$, 那么 $R \operatorname{\mathsf{-Mod}} \to K \operatorname{\mathsf{-Mod}}$, $M \mapsto K \otimes_R M$, 这是一个 K-线性空间.

命题 1.40. $R \xrightarrow{f} S$, $_{S}M$, $_{R}N$, 则

$$M \otimes_S (S \otimes_R N) \simeq M \otimes_R N$$

作为 S-模同构.

证明. 取

$$M \times N \to M \otimes_S (S \otimes_R N), (m, n) \mapsto m \otimes (1_S \otimes n).$$

我们验证这是一个双线性映射. 因为

$$rm \otimes (1_S \otimes n) = r(m \otimes (1_S \otimes n)),$$

 $m \otimes (1_S \otimes rn) = m \otimes (f(r) \otimes n) = f(r)m \otimes (1_S \otimes n).$

于是得到

$$\psi \colon M \otimes_R N \to M \otimes_S (S \otimes_R N), \ m \otimes n \mapsto m \otimes (1_S \otimes n).$$

另外设 $M \times (S \otimes_R N) \to M \otimes_R N, \ (m,z) \mapsto \tilde{\phi}_m(z)$ 为双线性映射, 这里 $\phi_m \colon S \times N \to M \otimes_R N, \ (s,n) \mapsto sm \otimes n$ 为双线性映射, 延拓为 $\tilde{\phi}_m$. 这显然是双线性映射. 验证可知二者复合为 Id.

推论. $R \stackrel{f}{\rightarrow} S \stackrel{g}{\rightarrow} T$ 为环同态, 则

$$T \otimes_R M \simeq T \otimes_S (S \otimes_R M).$$

作为 T-模. $t \otimes m \mapsto t \otimes (1_S \otimes m)$.

评论. $_RF$ 自由 \Rightarrow $_S(S \otimes_R F)$ 自由. $_RP$ 投射 \Rightarrow $_S(S \otimes_R P)$ 投射.

命题 1.41. (1) $_{R}F$ 平坦, 则 $S \otimes_{R} F$ 平坦.

(2) $_RS$ 平坦, $_SM$ 平坦 $\Rightarrow _RM$ 平坦.

证明. (1) 设 $_{S}M \stackrel{i}{\hookrightarrow} _{S}M$ 单, 有图表交换:

$$M' \otimes_{S} (S \otimes_{R} F) \xrightarrow{i_{*}} M \otimes_{S} (S \otimes_{R} F)$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$M' \otimes_{R} F \xrightarrow{i_{*}} M \otimes_{R} F$$

下面的 i_* 单因为 $_RF$ 平坦. 具体来讲是

$$m' \otimes (s \otimes a) \longmapsto i(m') \otimes (s \otimes a)$$

$$\downarrow \qquad \qquad \downarrow$$

$$sm' \otimes a \longmapsto si(m') \otimes a$$

(2) $\forall j: {}_{R}N' \hookrightarrow {}_{R}N$ 单.

$$M \otimes_R N' \longrightarrow M \otimes_R N$$

$$\downarrow^{\simeq} \qquad \qquad \simeq \downarrow$$

$$M \otimes_S (S \otimes_R N') \longrightarrow M \otimes_S (S \otimes_R N)$$

这里 $S \otimes N' \stackrel{j_*}{\hookrightarrow} S \otimes_R N$, 因为 $_RS$ 平坦.

1.5 PID 上的有限生成模

1.5.1

R 为整环, $_RM$, $m \in M$, 则定义

$$\operatorname{Ann}(m) = \{ r \in R \mid rm = 0_M \} \triangleleft R$$

为 m 的零化子 (Annihilator).

命题 1.42. 我们有 R-模同构:

$$R/\mathrm{Ann}(m) \simeq Rm$$
.

证明. $R \rightarrow Rm, r \mapsto rm, \text{Ker} = \text{Ann}(m).$

- 定义 1.37. (1) $m \in M$ 称为扭元 (Torsion element), 若 $\mathrm{Ann}(m) \neq \{0_R\}$. 即 $\exists \ 0 \neq r \in R, \ rm = 0_M$.
 - (2) $M_{\text{tor}} = \{ m \in M \mid m$ 为扭元 $\} \subset M$ 为子模, 称为**扭子模**. 若 $M_{\text{tor}} = 0_M$, 则称 M 是**无扭的**. 若 $M_{\text{tor}} = M$, 则称 M 为**扭模**.

例 1.45. $\mathbb{Z}A$, 那么 $a \in A_{tor} \Leftrightarrow a$ 有限阶.

命题 1.43. M/Mtor 无扭.

证明. 若 $\overline{m} \in M/M_{\text{tor}}$ 为扭元, $\exists \ 0 \neq r, \ r\overline{m} = \overline{0}, \ rm \in M_{\text{tor}} \Rightarrow \exists \ 0 \neq s, \ s(rm) = 0_M \Rightarrow m \in M_{\text{tor}}, \ \overline{m} = \overline{0}.$

对 \forall _RM, 有正合列:

$$0 \to M_{\text{tor}} \hookrightarrow M \twoheadrightarrow M/M_{\text{tor}} \to 0$$

那么事实上 $\forall f: {}_RM \to {}_RM', \ f(M_{\mathrm{tor}}) \subset M'_{\mathrm{tor}}, \ \overline{f}: M/M_{\mathrm{tor}} \to M'/M'_{\mathrm{tor}}, \ \overline{m} \mapsto \overline{f(m)},$ 有 $0 \longrightarrow M_{\mathrm{tor}} \longleftrightarrow M \longrightarrow M/M_{\mathrm{tor}} \longrightarrow 0$ $\downarrow_{\overline{f}}$ $0 \longrightarrow M'_{\mathrm{tor}} \longleftrightarrow M' \longrightarrow M'/M'_{\mathrm{tor}} \longrightarrow 0$

图表交换.

习题: f 同构 $\Leftrightarrow f|_{M_{tor}}$ 与 \overline{f} 同构.

1.5.2

设 R 为 PID.

引理 1.44. $_RM$ 由 n 个元素生成, $M' \subset M$, 则 M' 可由至多 n 个元素生成.

证明. 对n 归纳.

$$n=1$$
 时, $M \simeq R/I$, 则 $M' \simeq J/I$, 这里 $J=(b)$, 于是 M' 由 \overline{b} 生成. $n \geq 2$ 时, $M=\langle v_1, \cdots, v_n \rangle$, $M' \subset M$, 令 $N=\langle v_1, \cdots, v_{n-1} \rangle$, 则 $0 \to M' \cap N \to M' \to M'/(M' \cap N) \to 0$.

为正合列. 而 $M' \cap N \subset N$ 由至多 n-1 个元素生成, $M'/(M' \cap N) \simeq (M'+N)/N \subset M/N$ 为循环模从而 1-生成. 并运用如下引理.

引理 1.45. 习题: Horseshoe Lemma: $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ 正合, 设 X 由 m 个元素生成, Z 由 n 个元素生成, 则 Y 由至多 m+n 个元素生成.

定理 1.46. R 为 PID, 有限生成无扭 R-模均为自由模.

例 1.46. k 域, R = k[x, y], $_R I = (x, y) \subset _R R$ 无扭, 但 $_R I$ 不是自由模.

证明. 设 $M = \langle v_1, \cdots, v_n \rangle$ 无扭.

$$n=1$$
 时, $M=\langle v_1 \rangle$, 则

$$R \simeq M, r \mapsto rv_1.$$

 $n \geq 2$, \mathbb{R}

$$M' = \{ m \in M \mid \exists \ 0 \neq r \in R, \ rm \in \langle v_n \rangle \} \supset Rv_n.$$

那么有

$$0 \to M' \to M \to M/M' \to 0$$

正合. 这里由 M/M' 由 $\overline{v_1}, \cdots, \overline{v_{n-1}}$ 生成且无扭. 因为设 $\overline{m} \in M/M'$ 为扭元则 $\exists \ 0 \neq r, \ rm \in M', \ \exists \ 0 \neq s, \ s(rm) \in \langle v_n \rangle \Rightarrow m \in m', \ \overline{m} = \overline{0}.$

于是由归纳假设, M/M' 自由. 于是 $M \simeq M' \oplus (M/M')$.

我们宣称 $M' \simeq R$. 定义 $M' \stackrel{\varphi}{\to} K$, $x \mapsto \frac{a}{r}$, 这里 $\exists \ 0 \neq r$, $rx = av_n$. 然后检查 φ 良定义.

由引理, M' 由 n 个元素生成, 故 $\mathrm{Im}\varphi$ 也有 n 个元素生成, $\langle \frac{a_1}{r_1}, \cdots, \frac{a_n}{r_n} \rangle \subset \langle \frac{1}{r_1 \cdots r_n} \rangle = \frac{R}{r_1 \cdots r_n} \simeq R$. 故 $M' \simeq \mathrm{Im}\varphi \simeq R$.