Лекция 3

Ilya Yaroshevskiy

20 апреля 2021 г.

Содержание

1 Правила вывода

1

1 Правила вывода

Сверху посылки, снизу заключения

• Аксиома

$$\overline{\Gamma, \varphi \vdash \varphi}$$

• Введение →

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

 \bullet Удаление \rightarrow

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

• Введение &

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \& \psi}$$

• Удаление &

$$\frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \psi}$$

• Введение ∨

$$\begin{split} \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \\ \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \end{split}$$

• Удалние ∨

$$\frac{\Gamma, \varphi \vdash \rho \quad \Gamma, \psi \vdash \rho \quad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho}$$

• Удаление 丄

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$$

Пример.

$$\frac{\overline{A \vdash A}(\text{akc.})}{\vdash A \to A}(\text{bb.} \ \to)$$

Пример. Докажем $_{\vdash A\&B \to B\&A}$

$$\frac{\frac{\overline{A\&B \vdash A\&B}^{(\text{акс.})}}{A\&B \vdash B}(\text{уд. \&}) \quad \frac{\overline{A\&B \vdash A\&B}^{(\text{акс.})}(\text{уд. \&})}{A\&B \vdash A}(\text{уд. \&})}{\frac{A\&B \vdash B\&A}{\vdash A\&B \to BA}}(\text{вв. &})}$$

Определение. Фиксируем A

Частичный порядок — антисимметричное, транзитивное, рефлексивное отношение Линейный — сравнимы любые 2 элемента

- $a \le b \lor b \le a$
- Наименьший элемент S такой $k \in S$, что если $x \in S$, то $k \le x$
- \bullet Минимальный элемент S такой $k \in S,$ что нет $x \in S,$ что $x \leq k$

Пример.

Нет наименьшего, но есть 3 минимальных. Стрелка из a в b обозначает $b \le a$

Определение.

- ullet Множество верхних граней a и b: $\{x | a \le x \& b \le x\}$
- Множество нижних граней a и b: $\{x | x \le a \& x \le b\}$

Определение.

- \bullet a+b нименьший элемент множества верхних граней
- $a \cdot b$ наибольший элемент множества нижних граней

Определение. Решетка = $\langle A, \leq \rangle$ — структура, где для каждых a,b есть как a+b, так и $a\cdot b$, т.е. $a\in A,b\in B\implies a+b\in A$ и $a\cdot b\in A$

Определение. Дистрибутивная решетка если всегда $a\cdot(b+c)=ab+a\cdot c$

Лемма 1. В дистрибутивной решетке $a + b \cdot c = (a + b) \cdot (a + c)$

Определение. Псевдодополнение $a \to b = \text{наиб.}\{c \mid a \cdot c \le b\}$

Определение. Импликативная решетка — решетка, где для любых a,b есть $a \to b$

Определение. 0 — наименьший элемент решетки, 1 — наибольший элемент решетки

Определение. Псевдобулева алгебра (алгебра Гейтинга) — импликативная решетка с 0

Определение. Булева алгебра — псевдобулева алгебра, такая что $a+(a \to 0)=1$ *Пример.*

- $\bullet \ a \cdot 0 = 0$
- $1 \cdot b = b$
- $\bullet \ a \cdot b = 0$
- $\bullet \ a+b=1$
- $a \rightarrow b =$ наиб. $\{x | a \cdot x \le b\} = b$ $\{x | a \cdot x \le b\} = \{0, b\}$
- $\bullet \ a \to 1 = 1$

•
$$a \rightarrow 0 = 0$$

Можем представить в виде пары $\langle x, y \rangle$

- $a = \langle 1, 0 \rangle$
- $b = \langle 0, 1 \rangle$
- $1 = \langle 1, 1 \rangle$
- $0 = \langle 0, 0 \rangle$

Лемма 2. В импликативной решетке всегда есть 1.

Теорема 1.1. Любая алгебра Гейтинга — модель ИИВ

Теорема 1.2. Любая булева алгебра — модель КИВ

Рассмотрим множество X — **носитель**. Рассмотрим $\Omega \subseteq 2^X$ — подмножество подмножеств X — **топология**.

- 1. $\bigcup X_i \in \Omega$, где $X_i \in \Omega$
- 2. $X_1 \cap \cdots \cap X_n \in \Omega$, если $X_i \in \Omega$
- 3. $\emptyset, X \in \Omega$

Определение.

$$(X)^0 = \text{наиб.}\{w | w \subseteq X, w - \text{откр.}\}$$

 $\Pi pumep$. Дискретная топология: $\Omega=2^X$ — любое множество открыто. Тогда $\langle \Omega, \leq \rangle$ — булева алгебра

Теорема 1.3.

- $a + b = a \cup b$
- $a \cdot b = a \cap b$
- $a \to b = ((X \setminus a) \cup b)^{\circ}$
- $a \leq b$ тогда и только тогда, когда $a \subseteq b$

Тогда $\langle \Omega, \leq \rangle$ — алгебра Гейтинга

Определение. X — все формулы логики

- $\alpha \leq \beta$ это $\alpha \vdash \beta$
- $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$
- $[\alpha]_{\approx} = \{\gamma | \gamma \approx \alpha\}$ класс эквивалентности

Свойство 1. $\langle X/_{\approx}, \leq \rangle$ — алгебра Гейтинга, где $X/_{\approx} = \{[\alpha]_{\approx} | \alpha \in X\}$

Теорема 1.4. Алгебра гейтинга — полная модель ИИВ