⑩実用新案公報

49公告 昭和44年(1969)7月3日

(全3頁)

図対物光軸の間隔可変式双対物顕微鏡の構造

②実 願 昭40-8382

22日 願 昭40 (1965) 2月5日

⑰考 案 者 鈴木広

川崎市千年新町28の5

同 塩育

川崎市溝のロ753

⑦出 願 人 日本光学工業株式会社

東京都中央区日本橋通1の7

代 表 者 白浜浩 代 理 人 石倉豊

図面の簡単な説明

一実施例の主要断面図を示す。但し、リレー及び 接眼光学系は紙背の方向にあるが、図示の都合上 90度転回して示す。第3図は接眼レンズより見 た視野図で、イは2個の物点像を各々の半視野中 合せた場合、八及び二は各々一方の物点像だけを 全視野内に置いた場合を示す。

考案の詳細な説明

本考案は同一平面上に離れて置かれた二物点を 同一視野内で観察することを目的とし、且物点間 25 れている。 隔の変化に応じて対物光軸を可変し得る新しい顕 微鏡に関するものである。

近年軽電機の分野で多用されているプリント配 線方式においては、数回の写真腐触工程を必要と ね合せなければならないが、配線図板が小型化さ れ、或は配線図が複雑になるにつれて、重ね合せ の精度はより高いものが要求せられる。そのため 一般的には第1図に示す如く原板及び配線図板の 双方に定点マークA, B及びA', B'を形成し 35 ておく。 裸眼または顕微鏡を使用して合致状態を判別する のであるが普通の顕微鏡では実視野が小さいので 僅かな間隔の二物点しか観察できず、比較顕微鏡 では二光軸の間隔が比較的に長くしかも固定され

ているので不適当である。

本考案はこの欠点を補うためになされたもので ある。

以下一実施例について詳述する。先ず顕微光学 5 系 (双対物であるから対物光学系は左右同形とな る) において、A及びBは所定の間隔Dをおいて 並置された二個の物点、L1, L2, L3は顕微 鏡の対物光学系を構成するレンズ群で、特に第2 レンズL2と第3レンズL3との間は平行光束と 10 なる如く構成し、しかもこの間の光軸の一部が後 述の載置台S面とほぼ平行になる如く予め構成し ておく。L4はリレー光学系を構成するレンズ群 L5は接眼レンズ、P1は半透過プリズム、P2 は両斜面を表面反射鏡面とした視野変換プリズム 第1図は説明図を示し、第2図は本考案に基く15で、その頂点の位置は左右の対物光学系によつて 結ばれる物点A, Bの第一像面A', B'と一致 する如く構成されている。Paは光路屈曲プリズ ム、M₁, M₂, M₃, M₄はいずれも表面反射 鏡で、特にM3は図示と異り紙背の方向へ光路を 央に置いた場合、口は各々の物点像を半分ずつ突 20 屈曲させるように配設されている。 Fは落射照明 用の光源、Cは該Sの照明光を第1レンズL1の 後方焦点面に結像させて、物点A,Bを平行照明 するためのコンデンサーレンズ、Sは被検物の載 物台で、公知手段により上下動し得る如く構成さ

次に機械的構造において、1は上中下段に夫々 案内溝 1 a , 1 b , 1 c を備えた顕微鏡鏡体、2 は下側の腕部に雌ねじ2aを形成した対物筒で、 前記1b.1c内を載物台S面に対し平行に移動 するため、写真原板と配線図板とは常に正確に重 30 し得る如く構成されその内部には前記対物 光学系 の大部分及び照明光学系を有している。 3 は前記 1に回動可能に設けられた操作用微動ねじで、前 記雌ねじ2aに係合している。4は該3の一端に 固着された操作ツマミで、軸方向の動きは固定し

> 5は左側の第3レンズL3を内臓した調節筒で その円筒面の一部にはラック5 aが形成されてい る。 8 は該5 a と嚙合う調節用ピニオンで、軸7 を介して外部より回動できるように構成されてい

る。 8 は前記 1 a 内を摺動可能に設けられた視野 変換台で、内部には視野変換プリズムP2及び一 組の表面反射鏡M2を有している。そして下部に はラツク8a及び3個のクリツクストップ用凹部 8 b が形成されている。尚、3個の凹部 8 b の内 5 中央のものは左右の光学系視野が夫々半視野宛と なる位置に定め、左右のものは各々の光学系視野 が夫々全視野となる位置に定める。 9 は該ラツク 8 a と嚙合う移動用ピニオンで、軸10を介して 外部より回動できるように構成されている。 11 10 点をも有する。 は弾性材で作られたクリツクストツプバネ、12 は接眼筒である。

かくの如き構造であるから、左右の操作ツマミ 4を回動すれだ、各々の対物筒2は載物台5面に 物点A,Bの間隔が変化しても(例えばD′) 左 右の対物光軸をその位置に移動できるので、第3 図イ,口に示す如く各物点(AまたはB)の像(A" またはB") を夫々の半視野の中央に置きま ニオン9及びラック8aによつて視野変換台8を 左右へ移動させれば、第3図ハ, 二の如く各物点 (AまたはB)を別個に全視野内で観測すること も可能である。

先ず右側の光学系で一方の物点Bを合焦し、しか る後ピニオン 8 及びラツク 5 a によつて左側第 3 レンズL3を調節して、他方の物点Aを合焦すれ ばよい。

尚、微動ねじに方向の異る二種のねじを形成し 30 特 て左右の対物筒雌ねじに夫々係合させ、一個の操

作ツマミで同時に両者を移動させるように構成し てもよく、また案内溝1cの付近にスケール等を 設置して、対物筒2の移動距離をも測定し得るよ うに構成してもよい。

以上述べた如く本考案を用いるならば、対物光 軸の間隔を連続的に変化し得るので、精密比較或 は量産品の検査等に用いて非常に効果がある。ま た本実施形の如く視野変換装置を附加した場合に おいては、その用途が非常に拡大されるという利

実用新案登録請求の範囲

対物レンズL1の後方に半透過鏡P1を斜設し て被検物面Sと平行を成す光路と、直交する光路 とに二分し、その平行な光路上で且つ又前記対物 対し平行に移動してその間隔を変える。従つて二 15 レンズL1の後側焦点にその焦点を合致せしめた 凹レンズL2を設けて平行光束部を形成すると共 に、前記直交光路上に照明光学系F, Cを配設し これらを対物レンズL」と一体的に前記平行光路 方向へ可動する如く構成し、更に前記平行光束部 たは互に突合せて観察することができる。またピ 20 に凸レンズL3と、その前後に反射部材M⒈.M 2 とを設け、左右の物体の像を同一面内で結像す る如く成し、この結像面に頂点を合致せしめた視 野変換プリズムP2を設け、該プリズムP2と前 記左右一対の反射部材M2とを、前記対物レンズ しかも二物点A,Bに高さの差がある場合には 25 L_1 と同一方向へ可動する如く構成したことを特 徴とする双対物顕微鏡の構造。

引用文献

公 昭36-23124 公 昭35-10474

ı