Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 799 260 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 06.05.1999 Patentblatt 1999/18
- (22) Anmeldetag: 13.12.1995

(21) Anmeldenummer: 95942143.9

- (51) Int Cl.5: C08G 12/32, C08K 3/00, C08K 5/00, C08G 14/10
- (86) Internationale Anmeldenummer: PCT/EP95/04928
- (87) Internationale Veröffentlichungsnummer. WO 96/20229 (04.07.1996 Gazette 1996/30)
- (54) VERFAHREN ZUR HERSTELLUNG GEFÄRBTER MELAMIN-FORMALDEHYD-KONDENSATIONSPRODUKTE

PROCESS FOR PREPARING DYED MELAMINE-FORMALDEHYDE CONDENSATION PRODUCTS PROCEDE DE PREPARATION DE PRODUITS DE CONDENSATION DE **MELAMINE-FORMALDEHYDE COLORES**

- (84) Benannte Vertragsstaaten: AT BE CHOE DK ES FR GB GRIE IT LI LU MC NL PT SE
- (30) Priorität: 23.12.1994 DE 4446386
- (43) Veröffentlichungstag der Anmeldung: 08.10.1997 Patentblatt 1997/41
- (73) Patentinhaber: BASF AKTIENGESELLSCHAFT 67056 Ludwigshafen (DE)

- (72) Erfinder:
- **GUENTHER**, Erhard D-67454 Hassloch (DE)
 - · REUTHER, Wolfgang D-69118 Heldelberg (DE)
- (56) Entgegenhaltungen:

EP-A- 0 355 760 EP-A- 0 469 166 EP-A- 0 624 665

EP-A- 0 408 947 EP-A- 0 601 402 DD-A- 273 864 US-A- 4 886 882

US-A- 4 182 701

Anmerkung: innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

20

25

30

35

40

45

50

55

[0001] Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung gefärbter Melamin-Formaldehyd-Kondensationsprodukte durch Einmischen von Pigmenten oder Farbstoffen in eine Reaktionsmischung, enthaltend Ausgangsverbindungen zur Herstellung der Melamin-Formaldehyd-Kondensationsprodukte.

[0002] Ferner betrifft die Erfindung gefärbte Melamin-Formaldehyd-Kondensationsprodukte sowie deren Verwendung zur Herstellung von gefärbten Formkörpern, insbesondere Fasern und Vilese.

[0003] Die EP-A 523485 beschreibt Melamin-Formaldehyd-Kondensationsprodukte, wobei man bei der Herstellung dieser Produkte Zusatzstoffe wie Pigmente oder Farbstoffe in das Reaktionsgemisch geben kann. Nachteilig an dieser unspezifischen Verfahrensweise ist, daß man für manche Anwendungen, insbesondere bei der Faser und Vliesherstellung, inhomogen gefärbte Kondensationsprodukte erhält. Ferner sind nach bisherigen Beobachtungen die zu verspinnenden Lösungen oftmals mit Stippen versetzt, die zu einem Verstopfen der Rohrleitungen und der Düsen führen können.

[0004] EP-A 355 760 beschreibt ein Verfahren zur kontinuierlichen Herstellung von Melamin-Formaldehyd-Vorkondensat-Lösungen, wobei man Melamin, Formaldehyd, Pigmente und gegebenenfalls Modifizierungsmittel und/oder Zusatzstoffe in einen kontinulerlich arbeitenden Mischer dosiert, die homogene Mischung in einen eln- und zwei-welligen Extruder leitet, bei erhöhter Temperatur kondensiert, abkühlt und austrägt. Nachteilig bei dieser Verfahrensweise ist, daß die Homogenisierung der Pigmente unbefriedigend ist.

[0005] Der Erfindung lag daher die Aufgabe zugrunde, ein verbessertes Verlahren zur Herstellung von gefärbten Melamin-Formaldehyd-Kondensationsprodukten zur Verfügung zu stellen, das die oben genannten Nachteile nicht aufweist.

[0006] Demgemäß wurde ein Verfahren zur Herstellung gefärbter Melamin-Formaldehyd-Kondensationsprodukte durch Einmischen von Pigmenten oder Farbstoffen in eine Reaktionsmischung, enthaltend Ausgangsverbindungen zur Herstellung der Melamin-Formaldehyd-Kondensationsprodukte gefunden, indem man

(A) eine Mischung, enthaltend im wesentlichen

(a) ein substituiertes Melamin der Formel i

$$X^1$$
 N
 N
 X^3

in der X^1 , X^2 und X^3 ausgewählt sind aus der Gruppe bestehend aus -NH₂, -NHR¹ und NR¹R², und X^1 , X^2 und X^3 nicht gleichzeitig -NH₂ sind, und R¹ und R² ausgewählt sind aus der Gruppe bestehend aus Hydroxy-C₂-C₁₀-alkyl, Hydroxy-C₂-C₄-alkyl-(oxa-C₂-C₄-alkyl)_n, mit n = 1 bis 5, und Amino-C₂-C₁₂-alkyl, oder Mischungen von Melaminen I, und

(b) gewünschtemalls Formaldehyd oder Formaldehyd-liefernden Verbindungen, wobei man das Molverhältnis von Formaldehyd zu Melaminen I im Bereich von 40:1 bis 0 wählt,

(c) ein Pigment oder einen Farbstoff und

(d) gewünschtenfalls ein unsubstituiertes Phenol oder mit Resten, ausgewählt aus der Gruppe, bestehend aus C_1 - C_9 -Alkyl und Hydroxy, substituierte Phenole, mit zwei oder drei Phenolgruppen substituierte C_1 - C_4 -Alkane, Di(hydroxyphenyi)sulfone oder Mischungen dieser Phenole,

wobel man das Pigment oder den Farbstoff in einer Menge im Bereich von 0,01 bis 30 Gew.-%, bezogen auf (a) und (b), und man das Phenol in einer Menge im Bereich von 0 bis 5 Mol-%, bezogen auf (a) und (b), zugibt, durch intensives Rühren solange dispergiert, bis keine Pigmentagglomerate ≥ 1 µm mehr vorhanden sind, und anschließend

(B) die in (A) hergestellte Mischung mit Melamin und gewünschtenfalls mit weiterem Phenol, substituiertem Melamin I und Formaldehyd oder Formaldehyd-liefernden Verbindungen versetzt, wobei man die Mengen so wählt, daß das Molverhältnis von Melaminen (Melamin und (a)) zu (b) im Bereich von 1:1,15 bis 1:4,5 liegt, daß das Plgment oder der Farbstoff in einer Menge im Bereich von 0,01 bis 5 Gew.-%, bezogen auf Melamin und (a) und (b), und daß das Phenol in einer Menge im Bereich von 0 bis 5 Mol-%, bezogen auf Melamin und (a) und (b) vorliegen, und enschließend in an sich bekannter Weise kondensiert.

[0007] Außerdem wurden gefärbte Melamin-Formaldehyd-Kondensationsprodukte sowie deren Verwendung zur Herstellung von gefärbten Formkörpern, Insbesondere Fasem und Villese, gefunden.

[0008] In der ersten Stufe (A) des erfindungsgemäßen Verfahrens setzt man eine Mischung, bestehend im wesentlichen aus

(a) einem substituierten Melamin der Formel I

X¹
N X³

In der X1, X2 und X3 ausgewählt sind aus der Gruppe bestehend aus -NH $_2$, -NHR1 und NR1R2, und X1, X2 und X3 nicht gleichzeitig -NH $_2$ sind, und R1 und R2 ausgewählt sind aus der Gruppe bestehend aus Hydroxy-C $_2$ -C $_1$ -alkyl, Hydroxy-C $_2$ -C $_1$ -alkyl-(oxa-C $_2$ -C $_1$ -alkyl) $_n$, mit n = 1 bis 5, und Amino-C $_2$ -C $_1$ -alkyl, oder Mischungen von Melaminen I, und

I.

- (b) gewünschtenfalls Formaldehyd oder Formaldehyd-liefernden Verbindungen, wobei man das Molverhältnis von Formaldehyd zu Melaminen I im Bereich von 40:1 bis 0, vorzugsweise von 25:1 bis 0, wählt,
- (c) einem Pigment oder einem Farbstoff und

25

30

35

40

45

50

(d) gewûnschtenfalls einem unsubstituierten Phenol oder mit Resten, ausgewählt aus der Gruppe, bestehend aus C₁-C₉-Alkyl und Hydroxy, substituierten Phenolen, mit zwei oder drei Phenolgruppen substituierten C₁-C₄-Alkanen, Di(hydroxyphenyl)sulfone oder Mischungen dieser Phenole, wobei man das Pigment oder den Farbstoff in einer Menge im Bereich von 0,01 bis 30, vorzugsweise von 0,5 bis 15 Gew.-%, bezogen auf (a) und (b), und man das Phenol in einer Menge im Bereich von 0 bis 5, vorzugsweise von 0,2 bis 2 Mol-%, bezogen auf (a) und (b), zugibt, ein, und dispergiert diese Mischung solange durch Intensives Rühren, bis keine Pigmentagglomerate ≥ 1 μm mehr vorhanden sind.

[0009] Als substituierte Melamine der allgemeinen Formel I

$$X^1$$
 X^2
 X^3
 X^3

kommen solche in Betracht, in denen X¹, X² und X³ ausgewählt sind aus der Gruppe bestehend aus -NH₂, -NHR¹ und -NR¹R², wobei X¹, X² und X³ nicht gleichzeitig -NH₂ sind, und R¹ und R² ausgewählt sind aus der Gruppe bestehend aus Hydroxy-C₂-C₁0-alkyl, Hydroxy-C₂-C₄-alkyl-(oxa-C₂-C₄-alkyl-)n, mit n = 1 bis 5, und Amino-C₂-C₁2-alkyl.

[0010] Als Hydroxy-C₂-C₁₀-alkyl-Gruppen wählt man bevorzugt Hydroxy-C₂-C₆-alkyl wie 2-Hydroxyethyl, 3-Hydroxy-n-propyl, 2-Hydroxyisopropyl, 4-Hydroxy-n-butyl, 5-Hydroxy-n-pentyl, 6-Hydroxy-n-hexyl, 3-Hydroxy-2,2-dlmethylpropyl, bevorzugt Hydroxy-C₂-C₄-alkyl wie 2-Hydroxyethyl, 3-Hydroxy-n-propyl, 2-Hydroxyisopropyl und 4-Hydroxy-n-butyl, besonders bevorzugt 2-Hydroxyethyl und 2-Hydroxyisopropyl.

[0011] Als Hydroxy-C₂-C₄-alkyl-(oxa-C₂-C₄-alkyl)_n-Gruppen wählt man bevorzugt solche mit n = 1 bis 4, besonders

bevorzugt solche mit n = 1 oder 2 wie 5-Hydroxy-3-oxa-pentyl, 5-Hydroxy-3-oxa-2,5-dimethyl-pentyl, 5-Hydroxy-3-oxa-1,4-dimethyl-pentyl, 5-Hydroxy-3-oxa-1,2,4,5-tetramethyl-pentyl, 8-Hydroxy-3,6-dioxaoctyl.

[0012] Als Amino-C₂-C₁₂-alkyl-Gruppen kommen bevorzugt Amino-C₂-C₈-alkyl-Gruppen wie 2-Aminoethyl, 3-Aminopropyl, 4-Aminobutyl, 5-Aminopentyl, 6-Aminohexyl, 7-Aminohexyl, 5-Aminoethyl sowie 8-Aminoethyl besonders bevorzugt 2-Aminoethyl und 6-Aminohexyl, ganz besonders bevorzugt 6-Aminohexyl, in Betracht.

[0013] Für die Erfindung besonders geeignete substituierte Melamine sind folgende Verbindungen: mit der 2-Hydroxyethylamino-Gruppe substituierte Melamine wie 2-(2-Hydroxyethylamino)-4,6-diamino-1,3,5-triazin, 2,4-Di-(2-hydroxyethylamino)-6-amino-1,3,5-triazin, 2,4,6-Tris-(2-hydroxyethylamino)-1,3,5-triazin, mit der 2-Hydroxyisopropylamino-Gruppe substituierte Melamine wie 2-(2-Hydroxyisopropylamino)-4,6-diamino-1,3,5-triazin, 2,4-Di-(2-hydroxy-3-oxa-pentylamino)-6-amino-1,3,5-triazin, 2,4-Di-(5-hydroxy-3-oxa-pentylamino)-6-amino-1,3,5-triazin, 2,4-Di-(5-hydroxy-3-oxa-pentylamino)-6-amino-1,3,5-triazin, 2,4-Di-(5-hydroxy-3-oxa-pentylamino)-6-amino-1,3,5-triazin, 2,4-Di-(6-aminohexylamino)-6-amino-1,3,5-triazin, 2,4-Di-(6-aminohexylamino)-6-amino-1,3,5-triazin, 2,4-Di-(6-aminohexylamino)-1,3,5-triazin oder Gemische dieser Verbindungen, beispielsweise ein Gemisch aus 10 mol-% 2-(5-Hydroxy-3-oxa-pentylamino)-4,6-diamino-1,3,5-triazin, 50 mol-% 2,4-Di-(5-hydroxy-3-oxy-pentylamino)-6-amino-1,3,5-triazin und 40 mol-% 2,4,6-Tris-(5-hydroxy-3-oxa-pentylamino)-1,3,5-triazin.

[0014] Formaldehyd setzt man in der Regel als wäßrige Lösung mit einer Konzentration von zum Belspiel 40 bis 50 Gew.-% oder in Form von Formaldehyd liefemden Verbindungen, beispielsweise als oligomeren oder polymeren Formaldehyd in fester Form wie Paraformaldehyd, 1,3,5-Trioxan oder 1,3,5,7-Tetroxocan, ein.

[0015] Als Phenole eignen sich ein oder zwei Hydroxygruppen enthaltende Phenole wie unsubstituierte oder mit Resten, ausgewählt aus der Gruppe aus C_1 - C_9 -Alkyl und Hydroxy, substituierte Phenole sowie mit zwei oder drei Phenolgruppen substituierte C_1 - C_4 -Alkane, Di(hydroxyphenyl)sulfone oder Mischungen dieser Phenole.

[0016] Als bevorzugte Phenols kommen in Betracht Phenol, 4-Methylphenol, 4-tert.-Butyl-phenol, 4-n-Octyl-phenol, 4-n-Nonyl-phenol, Brenzcatechin, Resorcin, Hydrochinon, 2,2-Bis(4-hydroxyphenyl)-propan, 4,4'-Dihydroxydiphenyl-sulfon, besonders bevorzugt Phenol, Resorcin und 2,2-Bis(4-hydroxyphenyl)propan.

[0017] Die im erfindungsgemäßen Verfahren zur Anwendung gelangenden Farbstoffe stammen bevorzugt aus der Klasse der Azo-, Anthrachlinon-, Cumarin-, Methin- oder Azamethin-, Chinophthalon- oder Nitrofarbstoffe. Sie sind entweder frei von ionischen Gruppen oder tragen Carboxyl- und/oder Sulfonsäuregruppen.

[0018] Geeignete Farbstoffe, die frei sind von ionischen Gruppen, werden im folgenden näher beschrieben.

[0019] Geeignete Azofarbstoffe sind insbesondere Mono- oder Disazofarbstoffe, z.B. soliche mit einer Diazokomponente, die sich von einem Anilin oder von einem fünfgliedrigen aromatischen heterocyclischen Amin ableitet, das ein bis drei Heteroatome, ausgewählt aus der Gruppe, bestehend aus Stickstoff, Sauerstoff und Schwefel, im heterocyclischen Ring aufweist und durch einen Benzol-, Thiophen-, Pyridin- oder Pyrimidinring anelliert sein kann.

- [0020] Wichtige Mono- oder Disazofarbstoffe sind beispielsweise solche, deren Diazokomponente sich z.B. von einem Anilin oder von einem heterocyclischen Amin aus der Pyrrol-, Furan-, Thiophen-, Pyrazol-, Imidazol-, Oxazol-, Isoxazol-, Thiazol-, Isoxazol-, Thiazol-, Triazol-, Oxadiazol-, Thiadiazol-, Benzofuran-, Benzthiophen-, Benzimidazol-, Benzoxazol-, Benzthiazol-, Benzisothiazol-, Pyridothiophen-, Pyrimidothiophen-, Thienothiophen- oder Thienothiazolreihe ableitet.
- 40 [0021] Besonders zu nennen sind solche Diazokomponenten, die von einem Anilin oder von einem heterocyclischen Amin aus der Pyrrol-, Thiophen-, Pyrazol-, Thiazol-, Isothiazol-, Triazol-, Thiadiazol-, Benzthiophen-, Benzthiazol-, Benzisothiazol-, Pyridothiophen-, Pyrimidothiophen-, Thienothiaphen- oder Thienothiazolreihe stammen.

[0022] Von Bedeutung sind weiterhin Azofarbstoffe mit einer Kupplungskomponente aus der Anilin-, Aminonaphthalin-, Aminothiazol-, Diaminopyridin- oder Hydroxypyridonreihe.

45 [0023] Von besonderer Bedeutung sind Azofarbstoffe der Formel IIa

D1-N=N-K1

(IIa),

50 in der

D1

für einen Rest der Formel

für Hydroxyphenyl oder einen Rest der Formel

und

55

5

Phenyl oder Pyridyl,

L10

	L11	Trifluormethyl, Nitro, C_1 - C_6 -Alkyl, Phenyl, gegebenenfalls durch Phenyl substituiertes C_1 - C_6 -Alkylthlo oder C_1 - C_6 -Dialkylamino,
5	լ12	C_1 - C_6 -Alkyl, Phenyl, 2-Cyanoethylthio oder 2-(C_1 - C_4 -Alkoxycarbonyl)ethylthio,
Ŭ	[13	Wasserstoff, Nitro oder Halogen,
	L14	Wasserstoff, Cyano, C ₁ -C ₄ -Alkoxycarbonyl, Nitro oder Halogen,
10	L ¹⁵ , L ¹⁶ und L ¹⁷	gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, Halogen, Nitro, Cyano, gegebenenfalls substituiertes C_1 - C_4 -Alkoxycarbonyl, C_1 - C_6 -Alkylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl oder gegebenenfalls substituiertes Phenylazo,
1 5	R ¹ und R ²	gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff, gegebenenfalls substituiertes C_1 - C_6 -Alkyl, das durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen sein kann, C_6 - C_7 -Cycloalkyl oder C_3 - C_6 -Alkenyl,
20	H ₃	Wasserstoff, C ₁ -C ₆ -Alkyl oder C ₁ -C ₆ -Alkoxy,
20	H⁴	Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylsulfonylamino, gegebenentalis substituiertes C_1 - C_6 -Alkanoylamino oder Benzoylamino,
25	R ⁵ und R ⁸	gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff oder C_1 - C_6 -Alkyl,
	R ⁷	Wasserstoff, gegebenenfalls substituiertes Phenyl oder Thienyl,
	H ₈	Wasserstoff oder C ₁ -C ₆ -Alkyl,
30	H ₉	Cyano, Carbamoyl oder Acetyl,
35	R ¹⁰ , R ¹¹ und R ¹²	gleich oder verschieden sind und unabhängig voneinander jeweils gegebenenfalls substituiertes C_1 - C_{12} -Alkyl, das durch 1 bis 3 Sauerstoffatome in Etherlunktion unterbrochen sein kann, C_5 - C_7 -Cycloalkyl, gegebenenfalls substituiertes Phenyl, C_3 - C_6 -Alkenyl, gegebenenfalls substituiertes Benzoyl, C_1 - C_8 -Alkanoyl, C_1 - C_6 -Alkylsulfonyl oder gegebenenfalls substituiertes Phenyl-sulfonyl oder R^{11} und R^{12} zusammen mit dem sie verbindenden Stickstoffatom einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest, der gegebenenfalls weitere Heteroatome enthält, und
40	R ¹³	Wasserstoff oder C ₁ -C ₅ -Alkyl bedeuten.
	[0024] Gesignete A	inthrachinographeterifa stammen z B. aug der Klasse der 1. Ambare itt en bei eine

[0024] Geeignete Anthrachinonfarbstoffe stammen z.B. aus der Klasse der 1-Aminoanthrachinone. Sie gehorchen z.B. der Formel Va, Vb, Vc oder Vd

 $\begin{array}{c|c}
0 & NH \longrightarrow A^{1} \\
\hline
\downarrow & \downarrow & \downarrow \\
A^{3} & O & A^{2}
\end{array}$ (Va),

45

7

worin

10

15

20

25

30

35

45

- A1 Wasserstoff, C1-C8-Alkyl oder gegebenenfalls substituiertes Phenyl,
- A² Hydroxy oder den Rest NH-A¹,
- A3 Wasserstoff oder Nitro,
- 40 A⁴ Halogen, Hydroxyphenyl, C₁-C₄-Alkoxyphenyl oder ein Rest der Formel

worln G^1 für Sauerstoff oder Schwefel und G^2 für Wasserstoff oder C_1 - C_8 -Monoalkylsulfamoyl, dessen Alkylkette durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen sein kann, stehen,

- 50 einer der beiden Reste A⁵ und A⁶ Hydroxy und der andere den Rest NH-A¹ oder A⁵ und A⁶ jeweils Wasserstoff,
 - A⁷ Wasserstoff oder C₁-C₈-Alkyl, das gegebenentalis durch 1 bis 3 Sauerstoffatome in Etherlunktion unterbrochen ist,
- einer der beiden Reste A⁸ und A⁹ Hydroxy und der andere Anilin und
 - G3 Sauerstoff oder Imino bedeuten.

[0025] Geeignete Cumarinfarbstoffe stammen z.B. aus der Klasse der 7-Dialkylaminocumarine. Sie gehorchen z.B. der Formel IVa, IVb oder IVc

$$W^1$$
 W^2
 W^3
 W^3
 W^3

worin

5

10

15

20

25

30

45

50

55

W1 und W2 unabhängig voneinander jeweils C1-C4-Alkyl,

³⁵ W³ Benzimidazol-2-yl, 5-Chlorbenzoxazol-2-yl, Benzthiazol-2-yl, 4-Hydroxychinazolin-2-yl oder 5-Phenyl-1,3,4-thiadiazol-2-yl und

W⁴ C₁-C₈-Alkyl bedeuten.

40 [0026] Geeignete Methin- oder Azamethinfarbstoffe stammen z.B. aus der Klasse der Triazolopyridine oder Pyridine. Sie gehorchen z.B. der Formel VIIa oder VIIb

$$Q^{3} \xrightarrow{N} X - Q^{2}$$

$$Q^{4} \xrightarrow{N} Q^{1}$$

$$Q^{1} \qquad Q^{6}$$

$$(VIIa) \qquad (VIIb),$$

worin

X Stickstoff oder CH,

- Q1 C₁-C₂₀-Alkyl, das gegebenenfalls substituient ist und durch ein oder mehrere Sauerstoffatome in Etherfunktion unterbrochen sein kann, gegebenenfalls substituiertes Phenyl oder Hydroxy,
- Q2 einen 5-gliedrigen aromatischen heterocyclischen Rest,
- Q3 Wasserstoff, Cyano, Carbamoyl, Carboxyl oder C1-C4-Alkoxycarbonyl,
- Q4 Sauerstoff oder einen Rest der Formel C(CN)₂, C(CN)COOE¹ oder C(COOE¹)₂, wobei E¹ jeweils für C₁-C₈-Alkyl, das gegebenenfalls durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen ist, steht,
- Q5 Wasserstoff oder C1-C4-Alkyl,

5

10

15

20

25

30

35

40

55

Q⁶ C₁-C₂₀-Alkyl, das gegebenenfalls substituiert ist und durch ein oder mehrere Sauerstoffatome in Etherfunktion unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, Hydroxy oder einen Rest der Formel NE²E³, wobei E² und E³ gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, gegebenenfalls substituiertes C₁-C₁₂-Alkyl, C₅-C₇-Cycloalkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Pyridyl, gegebenenfalls substituiertes C₁-C₁₂-Alkylsulfonyl, gegebenenfalls substituiertes C₁-C₁₂-Alkylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl, gegebenenfalls substituiertes Benzoyl, Pyridylcarbonyl oder Thienylcarbonyl oder E² und E³ zusammen mit dem sie verbindenden Stickstoffatom gegebenenfalls durch C₁-C₄-Alkyl substituiertes Succinimido, gegebenenfalls durch C₁-C₄-Alkyl substituiertes Phthalimido oder einen fünf- oder sechsgliedrigen gesättigten heterocyclischen Rest, der gegebenenfalls weitere Heteroatome enthält, stehen, bedeuten.

[0027] Die Farbstoffe der Formel VIIa oder VIIb können in mehreren tautomeren Formen auftreten, die alle von den Patentansprüchen umfaßt werden. Beispielsweise können die Verbindungen der Formel VIIa (mit Q⁴ = Sauerstoff und Q⁵ = Methyl) u.a. In folgenden tautomeren Formen auftreten:

$$Q^3$$
 $X - Q^2$
 Q^1
 Q^1
 Q^2
 Q^3
 Q^3
 Q^3
 Q^3
 Q^2
 Q^2
 Q^2

Reste Q² können sich z.B. von Komponenten aus Pyrrol-, Thiazol-, Thiophen- oder Indolreihe ableiten. [0028] Wichtige Reste Q² sind z.B. solche der Formeln VIIIa bis VIIId

worin

Εð

E10

30

40

45

50

55

10

m 0 oder 1,

15 E⁴ und E⁵ gleich oder verschieden sind und unabhängig voneinander jeweils Wasserstoff oder mit Ausnahme von Hydroxy auch den obengenannten Rest R¹ oder zusammen mit dem sie verbindenden Stickstoffatom einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest, der gegebenenfalls weitere Heteroatome aufwelst,

20 E⁶ Wasserstoff, Halogen, C₁-C₈-Alkyl, gegebenenfalls durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, gegebenenfalls durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Benzyl, Cyclohexyl, Thienyl, Hydroxy oder C₁-C₈-Monoalkylamino,

E⁷ und E⁸ unabhängig voneinander jeweils Wasserstoff, Hydroxy, gegebenenfalls durch Phenyl oder C₁-C₄-Alkylphenyl substituiertes C₁-C₈-Alkylphenyl substituiertes C₁-C₈-Alkoxy, C₁-C₈-Alkoxy, C₁-C₈-Alkoxylphenylamino, C₁-C₈-Alkylsulfonylamino oder C₁-C₈-Mono- oder Dialkylaminosulfonylamino,

Cyano, Carbamoyl, C₁-C₈-Mono- oder Dialkylcarbamoyl, C₁-C₈-Alkoxycarbonyl oder gegebenenfalls substitutiertes Phenyl und

Halogen, Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, gegebenenfalls durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl oder Thienyl bedeuten.

35 [0029] Besonders geeignete Chinophthalonfarbstoffe weisen einen Chinolinring auf der in Ringposition 4 entweder unsubstituiert oder durch Halogen substituiert ist. Sie gehorchen z.B. der Formel IX

in der G⁴ Wasserstoff, Chlor oder Brom bedeutet.

[0030] Ein geeigneter Nitrofarbstoff gehorcht z.B. der Formel X

$$NH \longrightarrow SO_2 \longrightarrow NH \longrightarrow C_6H_5 \qquad (X)$$

Alle in den obengenannten Formeln auftretenden Alkyl- oder Alkenylgruppen können sowohl geradkettig als auch verzweiał sein.

[0031] Wenn in den obengenannten Formeln substituierte Alkylreste auftreten, so können als Substituenten, sofem nicht anders vermerkt, z.B. Cyclohexyl, Phenyl, C1-C4-Alkylphenyl, C1-C4-Alkoxyphenyl, Halogenphenyl, C1-C8-Alkanoyloxy, C₁-C₈-Alkylaminocarbonyloxy, C₁-C₂₀-Alkoxycarbonyl, C₁-C₂₀-Alkoxycarbonyloxy, wobei die Alkylkette der beiden letztgenannten Reste gegebenenfalls durch 1 bis 4 Sauerstoffatome in Etherfunktion unterbrochen und/oder durch Phenyl oder Phenoxy substitulert ist, Cyclohexyloxy, Phenoxy, Halogen, Hydroxy oder Cyano in Betracht kommen. Die Alkylreste weisen dabei in der Regel 1 oder 2 Substituenten auf.

[0032] Wenn in den obengenannten Formein Alkylireste auftreten, die durch Sauerstoffatome in Etherfunktion unterbrochen sind, so sind, sofern nicht anders vermerkt, solche Alkylreste bevorzugt, die durch 1 bis 4 Sauerstoffatome. insbesondere 1 bis 2 Sauerstoffatome, in Etherlunktion unterbrochen sind.

[0033] Wenn in den obengenannten Formeln substituierte Phenyl- oder Pyridylreste auftreten, so können als Substituenten, sofern nicht anders vermerkt, z.B. C₁-C₈-Alkyl, C₁-C₈-Alkoxy, Halogen, dabei insbesondere Chlor oder Brom, Nitro oder Carboxyl in Betracht kommen. Die Phenyl- oder Pyridylreste weisen dabei in der Regel 1 bis 3 Substituenten auf.

Es folgen beispielhafte Auf zählungen für die Reste in den Formeln II bis IV.

Reste L2, L4, L5, L8, L9, L11, L12, L16, L16, L17, R1, R2, R3, R4, R5, R8, R8, R10, R11, R12 und R13 sind z.B. Methyl, Ethyl, Propyl, Isopropyl, Bufyl, Isobutyl, sec-Butyl, Pentyl, Isopentyl, Neopentyl, terl-Pentyl, Hexyl oder 2-Methylpentyl.

20 [0036] Reste L⁹ sind weiterhin z.B. Benzyl oder 1- oder 2-Phenylethyl.

Reste L², L⁸, L⁹ und L¹¹ sind weiterhin z.B. Methylthio, Ethylthio, Propylthio, Isopropylthio, Butylthio, Isobutylthio, Pentylthio, Hexylthio, Benzylthio oder 1- oder 2-Phenylethylthio.

[0038] Reste L² und L⁸ sind weiterhin z.B. Phenyithio, 2-Methylphenyithio, 2-Methoxyphenyithio oder 2-Chlorphe-

[0039] Reste L2, L8, L16, L16, L17, R3 und R4 sind weiterhin z.B. Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, 25 Isobutoxy, sec-Butoxy, Pentyloxy, Isopentyloxy, Neopentyloxy, tert-Pentyloxy, Hexyloxy oder 2-Methylpentyloxy.

[0040] Reste L⁶ sind, wie weiterhin auch Reste L², L⁸, L¹³, L¹⁴, L¹⁵, L¹⁶ und L¹⁷, z.B. Fluor, Chlor oder Brom.

Reste L7 sind, wie weiterhin auch Reste L1, L2, L8, L15, L16, L17, R10, R11 und R12, z.B. Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, Isopropylsulfonyl, Butylsulfonyl, Isobutylsulfonyl sec-Butylsulfonyl, Pentylsulfonyl, Isopentylsulfonyi, Neopentylsulfonyi, Hexylsulfonyi, Phenylsulfonyi, 2-Methylphenylsulfonyi, 2-Methoxyphenylsulfonyi oder 2-Chlorphenylsulfonyl.

[0042] Reste L3 sind, wie weiterhin auch Reste L6, L7, L8, L14, L16, L16 und L17, z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Butoxycarbonyl, Isobutoxycarbonyl oder sec-Butoxycarbonyl,

[0043] Reste L15, L16 und L17 sind weiterhin z.B. 2-Phenoxyethoxycarbonyl, 2- oder 3-Phenoxypropoxycarbonyl, 2oder 4-Phenoxybutoxycarbonyl, Phenylazo, 4-Nitrophenylazo oder 2,4-Dinitro-6-bromphenylazo.

[0044] Reste L² und L⁸ sind weiterhin z.B. 2-Methoxyethoxy, 2-Ethoxyethoxy, 2- oder 3-Methoxypropoxy, 2- oder 3-Ethoxypropoxy, 2- oder 4-Methoxybutoxy, 2- oder 4-Ethoxybutoxy, 5-Methoxypentyloxy, 5-Ethoxypentyloxy, 6-Methoxyhexyloxy, 6-Ethoxyhexyloxy, Benzyloxy oder 1- oder 2-Phenylethoxy.

[0045] Reste L¹¹ sind weiterhin z.B. Dimethylamino, Diethylamino, Dipropylamino, Diisopropylamino, Dibutylamino, Dipentylamino, Dihexylamino oder N-Methyl-N-ethylamino.

[0046] Reste L12 sind weiterhin z.B. 2-Methoxycarbonylethylthio oder 2-Ethoxycarbonylethylthio.

[0047] Reste R¹, R², R¹¹, R¹² und R¹³ sind weiterhin z.B. Cyclopentyl, Cyclohexyl oder Cycloheptyl.

[0048] Reste L9 sind weiterhin z.B. Phenyl, 2-, 3- oder 4-Methylphenyl, 2,4-Dimethylphenyl, 2-, 3- oder 4-Methoxyphenyl, 2-, 3- oder 4-Chlorphenyl, 2- oder 3-Mathylthienyl oder 2-, 3- oder 4-Mathylpyridyl.

45

[0049] Reste L¹, L⁶ und L⁷ sind weiterhin z.B. Formyl, Acetyl, Propionyl, Butyryl, Pentanoyl oder Hexanoyl.

[0050] Wenn L¹ oder L⁷ für den Rest -CH=T stehen, worin T sich von einer CH-aciden Verbindung H₂T ableitet, können als CH-acide Verbindungen H2T z..B. Verbindungen der Formel

CH₂
$$\stackrel{CN}{\underset{Z^1}{=}}$$
 $\stackrel{CH_2}{\underset{Z^3}{=}}$ $\stackrel{COZ^2}{\underset{Z^3}{=}}$ $\stackrel{NC}{\underset{Z^4}{=}}$ $\stackrel{N}{\underset{S}{=}}$ $\stackrel{C_6H_5}{\underset{Z^5}{=}}$ $\stackrel{CH_3}{\underset{Z^5}{=}}$ $\stackrel{CN}{\underset{Z^5}{=}}$ $\stackrel{CN}{\underset{Z^5}{=}}$ $\stackrel{CN}{\underset{Z^5}{=}}$ $\stackrel{CN}{\underset{Z^5}{=}}$

in Betracht kommen, wobei

15

30

40

- Z¹ Cyano, Nitro, C₁-C₄-Alkanoyi, gegebenenfalls substituiertes Benzoyi, C₁-C₄-Alkylsulfonyi, gegebenenfalls substituiertes Phenylsulfonyi, C₁-C₄-Alkoxycarbonyi, C₂-C₄-Alkenyloxycarbonyi, Phenoxycarbonyi, Carbamoyi, C₁-C₄-Mono- oder Dialkylcarbamoyi, gegebenenfalls substituiertes Phenylcarbamoyi, gegebenenfalls substituiertes Phenyl, Benzthiazol-2-yi, Benzimidazol-2-yi, 5-Phenyl-1,3,4-thiadiazol-2-yi oder 2-Hydroxychinoxalin-3-yi.
- Z² C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₃-C₄-Alkenyloxy,
- Z³ C₁-C₄-Alkoxycarbonyl, C₃-C₄-Alkenyloxycarbonyl, Phenylcarbamoyl oder Benzimidazol-2-yl,
- Z4 Cyano, C1-C4-Alkoxycarbonyl oder C3-C4-Alkenyloxycarbonyl,
- Z⁵ Wasserstoff oder C₁-C₆-Alkyl,
 - Z⁶ Wasserstoff, C₁-C₄-Alkyl oder Phenyl und
 - Z⁷ C₁-C₄-Alkyl bedeuten.

[0051] Dabei ist der Rest, der sich von Verbindungen der Formel XIa, XIb oder XIc ableitet, worin Z^1 Cyano, C_1 - C_4 -Alkanoyl, C_1 - C_4 -Alkoxycarbonyl oder C_3 - C_4 -Alkenyloxycarbonyl, Z^2 C_1 - C_4 -Alkoxycarbonyl oder C_3 - C_4 -Alkenyloxycarbonyl und Z^4 Cyano bedeuten, hervorzuheben.

[0052] Besonders hervorzuheben ist dabei der Rest der sich von Verbindungen der Formel XIa, XIb oder XIc ableitet, worin Z¹ Cyano, C₁-C₄-Alkoxycarbonyl oder C₃-C₄-Alkenyloxycarbonyl, Z² C₁-C₄-Alkoxycarbonyl oder C₃-C₄-Alkenyloxycarbonyl und Z⁴ Cyano bedeuten.

[0053] Reste R¹⁰, R¹¹ und R¹² sind weiterhin z.B. Heptyl, Octyl, 2-Ethylhexyl, Nonyl, Decyl, Undecyl, Dodecyl, 4,7-Dioxanonyl, 4,8-Dioxadecyl, 4,6-Dioxaundecyl, 3,6,9-Trioxaundecyl, 4,7,10-Trioxaundecyl oder 4,7,10-Trioxadecyl.

[0054] Reste R1, R2, R10, R11 und R12 sind weiterhin z.B. 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Butoxyethyl, 2-Isobutoxyethyl, 2- oder 3-Methoxypropyl, 1-Methoxyprop-2-yl, 2- oder 3-Ethoxypropyl oder 2- oder 3-Propoxypropyl, 3,6-Dioxacetyl, 4,7-Dioxacetyl, 2-Hydroxyethyl, 3-Hydroxypropyl, 4-Hydroxybutyl, 2-Cyclohexyloxyethyl, 2- oder 3-Cyclohexyloxypropyl, 2- oder 4-Cyclohexyloxybutyl, 2-Phenoxyethyl, 2-Phenoxypropyl, 3-Phenoxypropyl, 4-Phenoxybutyl, 2-Methoxycarbonylethyl, 2-Ethoxycarbonylethyl, 2- oder 3-Methoxycarbonylpropyl, 2- oder 3-Ethoxycarbonylpropyl, 2- oder 3-Butoxycarbonylpropyl, 4-Methoxycarbonylbutyl, 4-Ethoxycarbonylbutyl, 2-Cyclohexylethyl, 2- oder 3-Cyclohexylpropyl, Benzyl, 1- oder 2-Phenylethyl, 2-Acetyloxyethyl, 2-Proplonyloxyethyl, 2- oder 3-Acetyloxypropyl, Prop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl, But-2-en-1-yl oder But-3-en-1-yl.

[0055] Wenn die Reste R¹¹ und R¹² zusammen mit dem sie verbindenden Stickstoffatom einen fünf- oder sechsgliedrigen gesättigten heterocyclischen Rest, der gegebenenfalls weitere Heteroatome enthält, bedeuten, so kommen dafür z.B. Pyrrolidinyl, Piperidinyl, Morpholinyl, Thiomorpholinyl, Thiomorpholinyl-S,S-dioxid, Piperazinyl oder N-(C₁-C₄-Alkyl)piperazinyl, wie N-Methyl- oder N-Ethylpiperazinyl, in Betracht.

[0056] Reste R¹⁰, R¹¹ und R¹² sind weiterhin z.B. Formyl, Acetyl, Propionyl, Butyryl, Isobutyryl, Pentanoyl, Hexanoyl, Hexanoyl, Octanoyl, 2-Ethylhexanoyl, Benzoyl, 2-, 3- oder 4-Methylbenzoyl, 2-, 3- oder 4-Methoxybenzoyl oder 2-, 3- oder 4-Chlorbenzoyl.

[0057] Es folgen beispielhafte Auf zählungen für die Reste in den Formeln Va bis Vd.

[0058] Geeignete Reste A¹ und A⁷ sind z.B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl, Pentyl, Isopentyl, Neopentyl, tert-Pentyl, Hexyl, 2-Methylpentyl, Heptyl, 1-Ethylpentyl, Octyl, 2-Ethylhexyl oder Isocctyl.

- [0059] Reste A⁷ sind weiterhin z.B. 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Isopropoxyethyl, 2-Butoxyethyl, 2-oder 3-Methoxypropyl, 2- oder 3-Ethoxypropyl, 2- oder 3-Propoxypropyl, 2- oder 3-Butoxypropyl, 2- oder 4-Methoxybutyl, 2- oder 4-Ethoxybutyl, 2- oder 4-Propoxybutyl, 3,6-Dioxaoctyl, 3,6-Dioxaoctyl, 4,8-Dioxaoctyl, 3,7-Dioxaoctyl, 3,7-Dioxaoctyl, 4,7-Dioxaoctyl, 4,7-Dioxaoctyl, 2- oder 4-Butoxybutyl, 4,8-Dioxadecyl, 3,6,9-Trioxadecyl oder 3,6,9-Trioxaundecyl.
- [0060] Reste A¹ sind weiterhin z.B. Phenyl, 2-, 3- oder 4-Mathylphenyl, 2-, 3- oder 4-Ethylphenyl, 2-, 3- oder 4-Propylphenyl, 2-, 3- oder 4-Isopropylphenyl, 2-, 3- oder 4-Isopropylphe
- [0061] Reste A⁴ sind z.B. Fluor, Chlor, Brorn, 2-, 3- oder 4-Methoxyphenyl oder 2-, 3- oder 4-Ethoxyphenyl.
- [0062] Reste G² sind z.B. Methylsulfamoyl, Ethylsulfamoyl, Propylsulfamoyl, Isopropylsulfamoyl, Butylsulfamoyl, Pentylsulfamoyl, Hexylsulfamoyl, Hexylsulfamoyl, Hexylsulfamoyl, Citylsulfamoyl oder 4-Oxahexylsulfamoyl.
 - [0063] Es folgen beispielhaft Auf zählungen für die Reste in den Formeln Vla bis Vlc.
 - [0064] Geeignete Reste W¹, W² und W⁴ z.B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl oder tert-Butyl.
 [0065] Reste W⁴ sind weiterhin z.B. Pentyl, Isopentyl, Neopentyl, tert-Pentyl, Hexyl, 2-Methylpentyl, Heptyl, 1-Ethyl-
- pentyl, Octyl, 2-Ethylhexyl oder isooctyl.
 - [0066] Es folgen beispielhafte Aufzählungen für die Reste in den Formeln VIIa und VIIb.
 - [0067] Geeignete Reste Q1, Q5, Q8, E1, E2, E3, E4, E5, E6, E7, E8 und E10 sind z.B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl oder tert-Butyl.
 - [0068] Reste Q¹, Q⁶, E¹, E², E³, E⁴, E⁵, E⁶, E⁷ und E⁸ sind weiterhin z.B. Pentyl, Isopentyl, Neopentyl, tert-Pentyl, Hexyl, 2-Methylpentyl, Heptyl, 1-Ethylpentyl, Octyl, 2-Ethylpexyl oder Isooctyl.
 - [0069] Reste Q1, E2 und E3 sind weiterhin z.B. Nonyl, Isononyl, Decyl, Isodecyl, Undecyl oder Dodecyl.
 - [0070] Reste Q¹ sind weiterhin z.B. Tridecyl, Isotridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Nonadecyl, Elcosyl (Die obigen Bezeichnungen Isooctyl, Isononyl, Isodecyl und Isotridecyl sind Trivialbezeichnungen und stammen von den nach der Oxosynthese erhaltenen Alkoholen vgl. dazu Ullmanns Encyklopädie der technischen
- Chemie, 4. Auflage, Band 7, Seiten 215 bis 217, sowie Band 11, Seiten 435 und 436.), 2-Methoxycarbonylethyl, Benzyl, 1- oder 2-Phenylethyl, 3-Benzyloxypropyl, Phenoxymethyl, 6-Phenoxy-4-oxahexyl, 8-Phenoxy-4-oxaoctyl, 2-, 3- oder 4-Chlorphenyl oder 2-, 3- oder 4-Carboxylphenyl.
 - [0071] Reste Q¹ und E¹ sind weiterhin z.B. 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Isopropoxyethyl, 2-Butoxyethyl, 2- oder 3-Methoxypropyl, 2- oder 3-Propoxypropyl, 2- oder 3-Butoxypropyl, 2- oder 4-Methoxybutyl, 2- oder 4-Ethoxybutyl, 2- oder 4-Propoxybutyl, 3,6-Dioxaoctyl, 3,6-Dioxaoctyl, 4,8-Dioxaoctyl, 3,7-Dioxaoctyl, 4,7-Dioxaoctyl, 4,7-Dioxaoctyl, 2- oder 4-Butoxybutyl oder 4,8-Dioxaoctyl, 4,7-Dioxaoctyl, 4,7-Dioxaoctyl, 4,8-Dioxaoctyl, 4,
 - [0072] Reste Q¹ sind weiterhin z.B. 3,6,9-Trioxadecyl, 3,6,9-Trioxad
- [0073] Reste Q3, E2, E3 und E9 sind z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Butoxycarbonyl, Isobutoxycarbonyl oder sec-Butoxycarbonyl.
 - [0074] Reste E⁹ sind weiterhin z.B. Mono- oder Dimethylcarbamoyl, Mono- oder Diethylcarbonyl, Mono- oder Dipropylcarbamoyl, Mono- oder Dibutylcarbamoyl oder N-Methyl-N-butylcarbamoyl.
 - [0075] Reste E⁷, E⁸ und E¹⁰ sind welterhin z.B. Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy oder sec-
- 40 [0076] Reste E¹⁰ sind weiterhin z.B. Methylthio, Ethylthio, Propylthio, Isopropylthio, Butylthio, Isobutyithio oder sec-Butylthio.
 - [0077] Reste Q1, E2, E3 und E10 sind weiterhin z.B. Phenyl, 2-, 3- oder 4-Methylphenyl, 2-, 3- oder 4-Ethylphenyl, 2-, 3- oder 4-Propylphenyl, 2-, 3- oder 4-Isopropylphenyl, 2-, 3- oder 4-Butylphenyl, 2-, 4-Dimethylphenyl, 2-, 3- oder 4-Hethoxyphenyl, 2-, 3- oder 4-Isobutoxyphenyl oder 2,4-Dimethoxyphenyl.
- 45 [0078] Reste Q1, E2 und E3 sind weiterhin z.B. 2-Hydroxyethyl, 2- oder 3-Hydroxypropyl, 2-Cyanoethyl, 2- oder 3-Cyanopropyl, 2-Acetyloxyethyl, 2- oder 3-Acetyloxypropyl, 2-Isobutyryloxyethyl, 2- oder 3-Isobutyryloxypropyl, 2-Methoxycarbonylethyl, 2- oder 3-Methoxycarbonyloropyl, 2-Ethoxycarbonylethyl, 2- oder 3-Ethoxycarbonyloropyl, 2-Ethoxycarbonyloxyethyl, 2- oder 3-Ethoxycarbonyloxyethyl, 2- oder 3-Ethoxycarbonyloxyethyl, 2- oder 3-Ethoxycarbonyloxypropyl, 2-Phenylethoxycarbonyloxyylethyl, 2- oder 3-Ethoxycarbonyloxypropyl, 2-GP-Phenylethoxycarbonyloxyylethyl, 2- oder 3-Ethoxycarbonyloxypropyl, 2-GP-Phenylethoxycarbonyloxyylethyl, 2- oder 3-Ethoxycarbonyloxypropyl, 2-GP-Phenylethoxycarbonyloxylethyl, 2- oder 3-Ethoxycarbonyloxypropyl, 2-GP-Phenylethoxycarbonyloxylethyl, 2- oder 3-Ethoxycarbonyloxypropyl, 2-GP-Phenylethoxycarbonyloxylethyl, 2- oder 3-Ethoxycarbonyloxypropyl, 2-GP-Phenylethoxycarbonyloxypropyl, 2-Oder 3-Ethoxycarbonyloxypropyl, 2-Oder 3-Ethoxycarbonyloxy
- 3-(2-Phenylethoxycarbonyloxy)propyl, 2- (2-Ethoxyethoxycarbonyloxy)ethyl oder 2- oder 3-(2-Ethoxyethoxycarbonyloxy)propyl.
 - [0079] Reste E² und E³ sind weiterhin z.B. Pyridyl, 2-, 3- oder 4-Methylpyridyl, 2-, 3- oder 4-Methoxypyridyl, Formyl, Acetyl, Propionyl, Butyryl, Isobutyryl, Pentanoyl, Hexanoyl, Heptanoyl, Octanoyl, 2-Ethylhexanoyl, Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, Isopropylsulfonyl, Butylsulfonyl, Cyclopentylsulfonyl, Cyclohexylsulfonyl, Cyclohexylsulfonyl, Pyridylsulfonyl, Benzoyl, 2-, 3- oder 4-Methylbenzoyl, 2-, 3- oder 4-Methoxybenzoyl,
- Thien-2-ylcarbonyl, Thien-3-ylcarbonyl, Cyclopentyl, Cyclopexyl oder Cycloheptyl.
 - [0080] Wenn E² und E³ oder E⁴ und E⁵ zusammen mit dem sie verbindenden Stickstoffatom einen 5- oder 6-gliedigen gesättigten heterocyclischen Rest, der gegebenenfalls weitere Heterocatome aufweist, bedeuten, so können dafür

- z.B. Pyrrolidinyl, Piperidinyl, Morpholinyl, Piperazinyl oder N-(C₁-C₄-Alkyl)piperazinyl in Betracht kommen.
- [0081] Besonders geeignete Monoazofarbstoffe sind solche der Formel IIIa, in der D¹ einen Rest der Formel IIIb bedeutet.
- [0082] Besonders geelgnete Monoazofarbstoffe sind weiterhin solche der Formel Ita, in der K¹ einen Rest der Formel IVa oder IVd bedeutet.
 - [0083] Besonders hervorzuheben sind Monoazofarbstoffe der Formel IIb

$$L^{2} \longrightarrow L^{3} \qquad \qquad R^{3} \qquad \qquad (IIb),$$

$$R^{4} \longrightarrow R^{2} \qquad \qquad (IIb),$$

in der

10

15

- 20 L¹ Nitro, Cyano, C₁-C₆-Alkanoyl oder einen Rest der Formel -CH=T, worin T die Bedeutung eines Restes einer CH-aciden Verbindung besitzt,
 - L² C₁-C₆-Alkyl, Halogen, gegebenenfalls durch Phenyl oder C₁-C₄-Alkoxy substituiertes C₁-C₆-Alkoxy,
- 25 L3 Cyano, C₁-C₄-Alkoxycarbonyl oder Nitro,
 - R¹ und R² unabhängig voneinander jeweils Wasserstoff, gegebenenfalls substituiertes C₁-C₈-Alkyl, das durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen sein kann, oder C₃-C₈-Alkenyl,
- 30 R³ Wasserstoff, C₁-C₈-Alkyl oder C₁-C₆-Alkoxy und
 - R⁴ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylsulfonylamino oder gegebenenfalls substituiertes C₁-C₆-Alkanoylamino bedeuten.
- 35 [0084] Besonders geeignete Methin- oder Azamethinfarbstoffe gehorchen der Formel VIIa oder VIIb, worin R5 Methyl bedeutet.
 - [0085] Besonders geeignete Methin- oder Azamethinfarbstoffe gehorchen weiterhin der Formel VIIa oder VIIb, worin Q⁵ Cyano bedeutet.
- [0086] Besonders geeignete Methin- oder Azamethinfarbstoffe gehorchen weiterhin der Formel VIIa oder VIIb, worin

 Officer German German (1986) German (1986)
 - [0087] Besonders geeignete Azamethinfarbstoffe gehorchen weiterhin der Formel VII, in der X Stickstoff bedeutet.
 - [0088] Besonders geeignete Methinfarbstoffe gehorchen weiterhin der Formel VII, in der X CH bedeutet.
 - [0089] Besonders geeignete Methin- oder Azamethinfarbstoffe gehorchen weiterhin der Formei VIIa oder VIIb, worin Q² einen Rest aus der Pyrrol-, Thiazol-, oder Thiophenreihe bedeutet.
- 45 [0090] Besonders geeignete Methin- oder Azamethinfarbstoffe gehorchen weiterhin der Formel VIIa, worin Q¹ C₁-C₁2-Alkyl, das gegebenenfalls durch C₁-C₆-Alkanoyloxy, C₁-C₆-Alkoxycarbonyl, deren Alkylkette jeweils durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen sein kann, Phenyl oder C₁-C₆-Alkylphenyl substituiert ist und durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen sein kann, bedautet.
- [0091] Besonders geeignete Methin- oder Azamethinfarbstoffe gehorchen weiterhin der Formel VIIb, worin Q⁶ einen
 Fest der Formel NE²E³ bedeutet, wobel E² und E³ unabhängig vonelnander jewells für gegebenenfalls substituiertes
 C₁-C₁₂-Alkanoyl oder gegebenenfalls substituiertes Benzoyl oder E² auch für Wasserstoff stehen.
 - [0092] Besonders hervorzuheben sind Methin- oder Azamethinfarbstoffe der Formel VIIb, worin Q⁵ einen Rest der Formel NE²E³ bedautet, wobei E² und E³ unabhängig voneinander jeweils für C₁-C₈-Alkanoyl oder Benzoyl oder E² auch für Wasserstoff stehen.
- 55 [0093] Welterhin besonders hervorzuheben sind Methin- oder Azamethinfarbstoffe der Formel VIIa worin Q¹ Alkyl, Alkoxyalkyl, Alkanoyloxyalkyl oder Alkoxycarbonylalkyl, wobei diese Reste jeweils bis zu 12 Kohlenstoffatome aufweisen, gegebenenfalls durch Methyl substituiertes Benzyl oder gegebenenfalls durch Methyl substituiertes Phenyl bedeutet.

[0094] Weiterhin besonders hervorzuheben sind Methin- oder Azamethinfarbstoffe der Formel VIIa oder VIIb, worin Q² einen Rest der obengenannten Formel VIIIa oder VIIIc, dabei insbesondere VIIIa, bedeutet, wobei

E⁴ und E⁵ unabhängig voneinander für Alkyl, Alkoxyalkyl, Alkanoyloxyalkyl oder Alkoxycarbonylalkyl, wobel diese Reste jeweils bis zu 12 Kohlenstoffatome aufweisen, Wasserstoff, gegebenenfalls durch Methyl substituiertes Benzyl oder gegebenenfalls durch Methyl substituiertes Phenyl,

E⁶ für Wasserstoff, C₁-C₄-Alkyl, gegebenenfalls durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, Benzyl oder Thienyl,

E9 für Cyano,

10

15

50

55

für Halogen, Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, gegebenenfalls durch C₁-C₄-Alkyl substituiertes Phenyl oder Thienyl und

n für 0 stehen.

[0095] Besonders geeignete Chinophthalonfarbstoffe gehorchen der Formel IX in der G⁴ Wasserstoff oder Brombedeutet.

20 [0096] Die Monoazofarbstoffe der Formel IIa sind an sich bekannt und in großer Zahl beschrieben, z.B. in K. Venkataraman "The Chemistry of Synthetic Dyes", Vol. VI, Academic Press, New York, London, 1972, oder in der EP-A-201 896.

[0097] Die Anthrachinonfarbstoffe der Formel Va-bis Vc sind ebenfalls an sich bekannt und z.B. in D.R. Waring, G. Hallas "The Chemistry and Application of Dyes", Seiten 107 bis 118, Plenum Press, New York, London, 1990, beschrieben

[0098] Die Cumarintarbstoffe der Formel VIa bis VIc sind ebenfalls an sich bekannt und z.B. in Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 17, Seite 469, beschrieben.

[0099] Die Methin- oder Azamethinfarbstoffe der Formel VIIa und VIIb sind ebenfalls an sich bekannt und z.B. in der US-A-5 079 365 sowie WO-A-9219684 beschrieben.

90 [0100] Die Chinophthalonfarbstoffe der Formel IX sind ebenfalls an sich bekannt und z.B. in der EP-83 553 beschrieben.

[0101] Der Nitrofarbstoff der Formel X ist unter der Bezeichnung C.I. Disperse Yellow 42 (10 338) gebräuchlich.

[0102] Geeignete Farbstoffe, die Carboxyl- und/oder Sulfonsäuregruppen aufweisen, werden im folgenden näher beschrieben. Dabei handelt es sich insbesondere um Azo- oder Anthrachinonfarbstoffe.

35 [0103] Bei den Azofarbstoffen sind Mono- oder Disazofarbstoffe, die auch metallisiert sein k\u00f6nnen, hervorzuheben, insbesondere solche, die 1 bis 6 Carboxyl- und/oder Sulfons\u00e4uregruppen aufweisen.

[0104] Wichtige Azofarbstoffe sind z.B. solche, deren Diazokomponente sich von einem Anilin- oder Aminonaphthalin ableitet.

[0105] Wichtige Azofarbstoffe sind weiterhin z.B. solche, deren Kupplungskomponente sich von einem Anilin-, Naphthalin-, Pyrazolon, Aminopyrazol, Diaminopyridin, Pyridon oder Acylacetarylid ableitet.

[0106] Zu nennen sind beispielsweise metallfreie oder metallisierte (Metallkomplexe) Azofarbstoffe aus der Phenylazo-naphthalin-, Phenyl-azo-1-phenyipyrazol-5-on-, Phenyl-azo-benzol-, Naphthyl-azo-benzol-, Phenyl-azo-amino-naphthalin-, Naphthyl-azo-naphthalin-, Naphthyl-azo-naphthalin-, Naphthyl-azo-naphthalin-, Naphthyl-azo-amino-pyridin-, Naphthyl-azo-pyridon-, Naphthyl-azo-amino-pyridin- oder Stilbyl-azo-benzolreihe.

45 [0107] Die Azofarbstoffe k\u00f6nnen zus\u00e4tzlich auch noch eine reaktive Gruppe, z.B. den Rest der Formel

aufweisen, der über eine gegebenenfalls substituierte Aminogruppe entweder an die Diazo- oder Kupplungskomponente geknüpft ist.

[0108] Von besonderer Bedeutung sind Azofarbstoffe der Formel IIc

 $D^2-N=N-K^2$

(lic),

in der D² für einen Rest der Formel

 $\begin{array}{c} U^1 & U^2 & NH_2 \\ U^2 & U^2 \end{array}$ $(XIIe) \qquad (XIIf)$

und

15

20

25

30

35

40

45

50

55

K² für einen Rest der Formel

17

55 stehen, worln

a 0, 1, 2 oder 3,

- b 0, 1 oder 2,
- c, 0 oder 1,

10

25

30

35

55

- Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Acetyl, Cyano, Carboxyl, Hydroxysulfonyl, C₁-C₄-Alkoxycarbonyl, Hydroxy, Carbamoyl, C₁-C₄-Mono- oder Dialkylcarbamoyl, Fluor, Chlor, Brom oder Trifluormethyl,
 - U² Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Cyano, Carboxyl, Hydroxysulfonyl, Acetylamino, C₁-C₄-Alkoxycarbonyl, Carbamoyl, C₁-C₄-Mono- oder Dialkylcarbamoyl, Fluor, Chlor, Nitro, Sulfamoyl, C₁-C₄-Mono- oder Dialkylsulfamoyl, C₁-C₄-Alkylsulfonyl, Phenylsulfonyl oder Phenoxy,
 - U³ eine direkte Bindung, Sauerstoff, Schwefel oder die Gruppe -NHCO-, NH-CO-NH-, -CONH-, -CO-, -NHSO₂-, -SO₂NH-, -SO₂-, -CH₂-CH₂-, -CH₂-, -NH-, oder -N=N-,
- 15 V¹ Wasserstoff oder C₁-C₄-Alkyl,
 - V2 Wasserstoff, C₁-C₄-Alkyl oder Phenyl, das durch C₁-C₅-Alkyl, C₁-C₄-Alkoxy, Chlor, Brom oder Hydroxysulfonyl substituiert sein kann,
- 20 V³ Wasserstoff oder C₁-C₄-Alkyl, das durch Hydroxy, Cyano, Carboxyl, Hydroxysulfonyl, Sulfato, Methoxycarbonyl, Ethoxycarbonyl oder Acetoxy substituiert sein kann,
 - V⁴ Wasserstoff, C₁-C₄-Alkyl, das durch Hydroxy, Cyano, Carboxyl, Hydroxysulfonyl, Sulfato, Methoxycarbonyl, Ethoxycarbonyl oder Acetoxy substituiert sein kann, Benzyl oder Phenyl, das durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Chlor oder Hydroxysulfonyl substituiert sein kann,
 - V⁶ C₁-C₈-Alkylureido, Phenylureido, das durch Chlor, Methyl, Methoxy, Nitro, Hydroxysulfonyl oder Carboxyl substitulert sein kann, C₁-C₆-Alkanoylamino, das durch Hydroxysulfonyl oder Chlor substitulert sein kann, Cyclohexanoylamino, Benzoylamino, das durch Chlor, Methyl, Methoxy, Nitro, Hydroxylsulfonyl oder Carboxyl substitulert sein kann, oder Hydroxy,
 - V⁸ Wasserstoff, C₁-C₆-Alkyl, das durch Phenyl, C₁-C₄-Alkoxy, Hydroxy, Phenoxy oder C₁-C₄-Alkanoyloxy substitulert sein kann, C₅-C₇-Cycloalkyl, Hydroxysulfonylphenyl, C₁-C₄-Alkanoyl, Carbarnoyl, C₁-C₄-Mono- oder Dialkylcarbarnoyl, Phenylcarbarnoyl oder Cyclohexylcarbarnoyl,
 - V7 Methoxy, Ethoxy, Chlor, Brom, Hydroxysulfonyl, Acetylamino, Amino, Ureido, Methylsulfonylamino, Ethylsulfonylamino, Dimethylamino oder Diethylamino, Methylamino, Ethylamino, Dimethylamino oder Diethylamino,
 - V8 Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Hydroxysulfonyl, Chlor oder Brom,
 - M den Rest eines Benzol- oder Naphthalinrings,
 - V⁹ Methyl, Carboxyl, C₁-C₄-Alkoxycarbonyl oder Phenyl,
- 45 V¹⁰ C₁-C₄-Alkyl, Cyclohexyl, Benzyl oder Phenyl, das gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Methoxy, Nitro, Hydroxysulfonyl, Carboxyl, Acetyl, Acetylamino, Methylsulfonyl, Sulfamoyl oder Carbamoyl substituiert ist,
 - V11 Wasserstoff oder C₁-C₄-Alkyl, das durch Methoxy, Ethoxy oder Cyano substituiert sein kann,
- 50 V¹² Wasserstoff, Methyl, Hydroxysulfonylmethyl, Hydroxysulfonyl, Cyano oder Carbamoyl,
 - V13 Wasserstoff, C₁-C₄-Alkyl, das durch Phenyl, Hydroxysulfonylphenyl, Hydroxy, Amino, Methoxy, Ethoxy, Carboxyl, Hydroxysulfonyl, Acetylamino, Benzoylamino oder Cyano substituiert sein kann, Cyclohexyl, Phenyl, das gegebenentalls durch Carboxyl, Hydroxysulfonyl, Benzoylamino, Acetylamino, Methyl, Methoxy, Cyano oder Chlor substituiert ist, oder Amino, das durch Phenyl, C₁-C₄-Alkyl, Acetyl oder Benzoyl substituiert ist,
 - V¹⁴ C₁-C₄-Alkyl, Phenyl, Hydroxy, Cyano, Acetyl, Benzoyl, Carboxyl, Methoxycarbonyl, Carbamoyl oder Hydroxysulfonylmethyl und

V¹⁵ Wasserstoff, Chlor, Brom, Acetylamino, Amino, Nitro, Hydroxysulfonyl, Sulfamoyl, Methylsulfonyl, Phenylsulfonyl, Carboxyl, Methoxycarbonyl, Acetyl, Benzoyl, Carbamoyl, Cyano oder Hydroxysulfonylmethyl bedeuten,

mit der Maßgabe, daß mindestens eine Carboxyl- und/oder Sulfonsäuregruppe im Molekül vorhanden ist.

[0109] Aromatische Amine, die sich als Diazokomponenten eignen und sich von der Formel XIIa, XIIb, XIIc oder XIId ableiten, sind beispielsweise Anllin, 2-Methoxyanilin, 2-Methylanilin, 4-Chlor-2-aminoanisol, 4-Methylanilin, 4-Methoxyanilin, 2-Methoxy-5-methylanilin, 2,5-Dimethoxyanilin, 2,5-Dimethylanilin, 2,4-Dimethylanilin, 2,5-Diethoxyanilin, 2-Chloranilin, 3-Chloranilin, 4-Chloranilin, 2,5-Dichloranilin, 4-Chlor-2-nitroanilin, 4-Chlor-2-methylanilin, 3-Chloranilin, 4-Chloranilin, 2-methylanilin, 4-Chlor-2-aminotoluol, 4-Phenylsulfonylanilin, 2-Ethoxy-1-naphthylamin, 1-Naphthylamin, 2-Naphthylamin, 4-Methylsulfonylanilin, 2,4-Dichloranilin-5-carbonsaure, 2-Aminobenzoesaure, 4-Aminobenzoesaure, 3-Aminobenzoesäure, 3-Chloranilin-6-carbonsäure, Anilin-2-oder -3- oder -4-sultonsäure, Anilin-2,5-disultonsäure, Anilin-2,4-disulfonsaure, Anilin-3,5-disulfonsaure, 2-Aminotoluol-4-sulfonsaure, 2-Aminoanisol-5-sulfonsaure, 2-Ethoxyanilin-5-sulfonsäure, 2-Ethoxyanilin-4-sulfonsäure, 4-Hydroxysulfonyl-2-aminobenzoesäure, 2,5-Dimethoxyanilin-4-sultonsäure, 2,4-Dimethoxyanilin-5-sulfonsäure, 2-Methoxy-5-methylanilin-4-sulfonsäure, 4-Aminoanisol-3-sulfonsäure, 4-Aminotoluol-3-sulfonsaure, 2-Aminotoluol-5-sulfonsaure, 2-Chloranilin-4-sulfonsaure, 2-Chloranilin-5-sulfonsaure, 2-Bromanilin-4-sulfonsäure, 2,6-Dichloranilin-4-sulfonsäure, 2,6-Dimethylanilin-3- oder -4-sulfonsäure, 3-Acetylaminoanilin-6-sulfonsäure, 4-Acetylaminoanilin-2-sulfonylsäure, 1-Aminonaphthalin-3-, -4-, -5-, -6- oder -7-sulfonsäure, 1-Aminonaphthalin-3,7-disulfonsäure, 1-Aminonaphthalin-3,6,8-trisulfonsäure, 1-Aminonaphthalin-4,6,8-trisulfonsäure, 2-Naphthylamin-5-, -6- oder -8-sulfonsäure, 2-Aminonaphthalin-3, 6, 8-trisulfonsäure, 2-Aminonaphthalin-6,8-disulfonsäure, 2-Aminonaphthalin-1,6-disulfonsäure, 2-Aminonaphthalin-1-sulfonsäure, 2-Aminonaphthalin-1,5-disulfonsäure, 2-Aminonaphthalin-3, 6 -disulfonsäure, 2-Aminonaphthalin-4,8-disulfonsäure, 2-Aminophenol-4-sulfonsäure, 2-Aminophenol-5-sulfonsäure, 3-Aminophenol-6-sulfonsäure, 1-Hydroxy-2-aminonaphthalin-5,8-oder -4,6-disultonsäure, 4-Aminodiphenylamin, 4-Amino-4'-methoxydiphenylamin, 4-Amino-4'-methoxydiphenylamin-3-sulfonsäure, 4-(2'-Methylphenylazo)-2-methylanilin, 4-Aminoazobenzol, 4'-Nitrophenylazo-1-aminonaphthalin, 4-(6'-Hydroxysulfonylnaphthylazo)-1-aminonaphthalin, 4-(2',5'-Dihydroxysulfonylphenylazo)-1-aminonaphthalin, 4'-Amino-3'-methyl-3-nitrobenzophenon, 4-Aminobenzophenon, 4-(4' -Aminophenylazo)benzolsulfonsäure, 4-(4'-Amino-2'- oder 3'-methoxyphenylazo)benzolsulfonsäure oder 2 - Ethoxy-1-naphthylamin-6-sulfonsäure.

25

35

[0110] Aromatische Diamine, die sich als Tetrazokomponenten eignen und sich von der Formel XIIe oder XIII ableiten, sind beispielsweise 1,3-Diaminobenzol, 1,3-Diaminobenzol-4-sulfonsäure, 1,4-Diaminobenzol, 1,4-Diaminobenzol, 1,4-Diamino-2-methylbenzol, 1,4-Diamino-4-methylbenzol, 1,3-Diaminobenzol-5-sulfonsäure, 1,3-Diamino-5-methylbenzol, 1,6-Diaminonaphthalin-4-sulfonsäure, 2,6-Diaminonaphthalin-4,8-disulfonsäure, 3,3'-Diaminodiphenylsulfon, 4,4'-Diaminodiphenylsulfon, 4,4'-Diaminostilben-2,2'-disulfonsäure, 2,7'-Diaminodiphenylsulfon, 4,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon, 3,3'-dinitrobenzophenon, 3,3'-dimethyl-4,4'-Diaminobenzophenon, 4,4'-Diaminobenzophenon, 4,4'-Diamino

[0111] Reste K² sind z.B. Aniline, wie o- oder m-Toluidin, o- oder m-Anisidin, Kresidin, 2,5-Dimethylanilin, 2,5-Dimethoxyanilin, m-Aminoacetanilid, 3-Amino-4-methoxyacetanilid, 3-Amino-4-methylacetanilid, m-Aminophenylharnstoff, N-Methylanilin, N-Methyl-m-toluidin, N-Ethylanilin, N-Ethyl-m-toluidin, N-(2-Hydroxyethyl)anilin oder N-(2-Hydroxyethyl)-m-toluidin.

[0112] Reste K² sind weiterhin z.B. Naphtholsulfonsäuren, wie 1-Naphthol-3-sulfonsäure, 1-Naphthol-4-sulfonsäure, 1-Naphthol-3,8-disulfonsäure, 1-Naphthol-3,8-disulfonsäure, 2-Naphthol-5-sulfonsäure, 2-Naphthol-5-sulfonsäure, 2-Naphthol-6-sulfonsäure, 2-Naphthol-7-sulfonsäure, 2-Naphthol-8-sulfonsäure, 2-Naphthol-3,6-disulfonsäure, 2-Naphthol-6,8-disulfonsäure, 2-Naphthol-3,6,8-trisulfonsäure, 1,8-Dihydroxynaphthalin-3,6-disulfonsäure, 2,6-Dihydroxynaphthalin-8-sulfonsäure oder 2,8-Dihydroxynaphthalin-6-sulfonsäure.

[0113] Reste K² sind welterhin z.B. Naphthylamine, wie 1-Naphthylamin, N-Phenyl-1-naphthylamin, N-Phenyl-2-naphthylamin, 1-Naphthol, 2-Naphthol, 1,5-Dihydroxynaphthalin, 1,6-Dihydroxynaphthalin, 1,7-Dihydroxynaphthalin oder 2,7-Dihydroxynaphthalin.

[0114] Reste K² sind weiterhin z.B. Aminonaphthalinsulfonsäuren, wie 1-Naphthylamin-6-sulfonsäure, 1-Naphthylamin-7-sulfonsäure, 1-Naphthylamin-8-sulfonsäure, 2-Naphthylamin-3,6-disulfonsäure, 2-Naphthylamin-6,8-disulfonsäure.

[0115] Reste K² sind weiterhin z.B. Aminonaphtholsulfonsäuren, wie 1-Amino-5-hydroxynaphthalin-7-sulfonsäure,

1-Amino-8-hydroxynaphthalin-4-sulfonsäure, 1-Amino-8-hydroxynaphthalin-2,4-disulfonsäure, 1-Amino-8-hydroxynaphthalin-3,6-disulfonsäure, 2-Amino-5-hydroxynaphthalin-7-sulfonsäure, 2-Amino-8-hydroxynaphthalin-6-sulfonsäure, 2-Amino-8-hydroxynaphthalin-3,6-disulfonsäure, 2-Amino-5-hydroxynaphthalin-1,7-disulfonsäure, 1-Acetylamino-8-hydroxynaphthalin-3,6-disulfonsäure, 1-Benzoylamino-8-hydroxynaphthalin-3,6-disulfonsäure, 1-Benzoylamino-8-hydroxynaphthalin-4,6-disulfonsäure, 1-Benzoylamino-8-hydroxynaphthalin-4,6-disulfonsäure, 1-Acetylamino-8-hydroxynaphthalin-7-sulfonsäure, 2-Methylamino-8-hydroxynaphthalin-7-sulfonsäure, 2-Methylamino-8-hydroxynaphthalin-6-sulfonsäure oder 2-(3'- oder 4'-Hydroxysulfonyl-phenyl)amino-8-hydroxynaphthalin-6-sulfonsäure.

[0116] Reste K² sind weiterhin z.B. Pyrazolone, wie 1-Phenyl-, 1-(2'-Chlorphenyl)-, 1-(2'-Methoxyphenyl)-, 1-(3'-Methoxyphenyl)-, 1-(4'-Hydroxysulfonylphenyl)- oder 1-(3'-Sulfamoylphenyl)-3-carboxylpyrazol-5-on, 1-(3'-oder 4'-Hydroxysulfonylphenyl)-, 1-(2'-Methyl-4'-hydroxysulfonylphenyl)-, 1-(2'-Methyl-4'-hydroxysulfonylphenylphenyl)-, 1-(2'-Methyl-4'-hydroxysulfonylphenylphenylphenylphenylphenylphenylphenylphenylph

[0117] Reste K² sind weiterhin z.B. Aminopyrazole, wie 1-Methyl-, 1-Ethyl-, 1-Propyl-, 1-Butyl-, 1-Cyclohexyl-, 1-Benzyl- oder 1-Phenyl-5-aminopyrazol, 1-(4-Chlorphenyl)- oder 1-(4'-Methylphenyl)-5-aminopyrazol oder 1-Phenyl-3-methyl-5-aminopyrazol.

[0118] Reste K² sind waiterhin z.B. Pyridone, wie 1-Ethyl-2-hydroxy-4-methyl-5-carbamoylpyrid-6-on, 1-(2'-Hydroxyethyl)-2-hydroxy-4-methyl-5-carbamoylpyrid-6-on, 1-Ethyl-2-hydroxy-4-methyl-5-carbamoylpyrid-6-on, 1-Ethyl-2-hydroxy-4-methyl-5-cyanopyrid-6-on, 1-Methyl-2-hydroxy-4-methyl-5-cyanopyrid-6-on, 1-Methyl-2-hydroxy-5-acetylpyrid-6-on, 1,4-Dimethyl-2-hydroxy-5-cyanopyrid-6-on, 1,4-Dimethyl-5-carbamoylpyrid-6-on, 2,6-Dihydroxy-4-ethyl-5-cyanopyridin, 2,6-Dihydroxy-4-ethyl-5-methyl-sulfonylpyrid-6-on oder 1-Carboxymethyl-2-hydroxy-4-ethyl-5-phenylsulfonylpyrid-6-on.

[0119] Anstelle der Azofarbstoffe der Formel IIc können im erfindungsgemäßen Verfahren auch die entsprechenden Metallkomplextarbstoffe zur Anwendung gelangen.

[0120] Als komplexierende Metalle kommen dabei insbesondere Kupfer, Kobalt, Chrom, Nickel oder Eisen in Betracht, wobei Kupfer, Kobalt oder Chrom bevorzugt sind. Besonders zu nennen sind symmetrische oder unsymmetrische 1:1- oder 1:2-Chromkomplexe. Dabei befinden sich die metallisierten Gruppen in den vorstehend genannten Azofarbstoffen vorzugsweise jeweils in ortho-Stellung zur Azogruppe, z.B. in Form von o.o-Dihydroxy-, o-Hydroxy-o'-carboxy-, o-Carboxy-o'-amino- oder o-Hydroxy-o'-amino-azogruppierungen.

[0121] Bevorzugt sind Farbstoffe der Formel IIc, in der D² für einen Rest der Formel XIIa, XIIb, XIIc, XIId, XIIe oder XIIf steht, worin U¹ Wasserstoff, Methyl, Methoxy, Carboxyl, Hydroxysulfonyl, Hydroxysulfonyl, Hydroxysulfonyl, Hydroxysulfonyl, Hydroxysulfonyl, Acetylamino oder Chlor und U³ die Gruppe -CO-, -SO₂-, -CH=CH-, -CH₂-CH₂-, -CH₂- oder -N=N- bedeuten.

[0122] Bevorzugt sind weiterhin Farbstoffe der Formel IIc, in denen sich der Rest K² von Kupplungskomponenten ableitet, die Sulfonsäuren- und/oder Carboxylgruppen aufweisen und die in ortho- oder para-Stellung zu einer Hydroxy- und/oder Aminogruppe kuppeln. Als Belspiele für solche Kupplungskomponenten seien 2-Acetylamino-5-hydroxynaphthalin-7-sulfonsäure, 2-Acetylamino-8-hydroxynaphthalin-6-sulfonsäure, 1-Acetylamino-8-hydroxynaphthalin-3,6-disulfonsäure, 1-Acetylamino-8-hydroxynaphthalin-4,6-disulfonsäure oder 1-Benzoylamino-8-hydroxynaphthalin-4,6-disulfonsäure genannt.

[0123] Bevorzugt sind Azofarbstoffe der Formel XIV

in der B¹ Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Chlor oder Hydroxysulfonyl und K³ den Rest einer Kupplungskomponente der Naphthelin-, Pyrazolon- oder Pyridonreihe bedeuten.

[0124] Weiterhin besonders bevorzugt sind Azofarbstoffe der Formel XV

in der D² die obengenannte Bedeutung besitzt und B² für Hydroxysulfonyl in Ringposition 3 oder 4 steht.

[0125] Weiterhin besonders bevorzugt sind Azofarbstofie der Formel XVI

15

20

25

30

35

in der D² die obengenannte Bedeutung besitzt und die Aminogruppe in Ringposition 6 oder 7 steht. [0126] Weiterhin-sind wertvolle Verbindungen solche der Formel XVII

$$D^{2} \longrightarrow N \longrightarrow N \longrightarrow NH_{2} \qquad (XVII),$$

in der D² die obengenannte Bedeutung besitzt und d und e unabhängig voneinander jeweils für 0, 1 oder 2 stehen. [0127] Weiterhin sind wertvolle Verbindungen solche der Formel XVIII

$$NH_2$$
 OH

 NH_2 OH

in der B² die obengenannte Bedeutung besitzt und einer der beiden Reste B³ und B⁴ für den Rest D², wobei dieser die obengenannte Bedeutung besitzt und der andere für 3-Amino-6-hydroxysulfonylphenyl oder auch beide Reste B³ und B⁴ für 3-Amino-6-hydroxysulfonylphenyl stehen.

[0128] Besonders zu nennen ist auch der symmetrische 1:2-Chrom komplexfarbstoff, dem der Azofarbstoff 1-(2-Hydroxy-4-hydroxysulfonyl-6-nitronaphth-1-ylazo)-2-hydroxynaphthalin zugrundellegt.

[0129] Weiterhin können im erfindungsgemäßen Verfahren auch saure Anthrachinonfarbstoffe zur Anwendung gelangen. Solche Anthrachinone sind an sich bekannt und beispielsweise in K. Venkataraman "The Chemistry of Synthetic Dyes", Vol. II, Academic Press, New York, 1952, beschrieben.

[0130] Bevorzugt sind saure Anthrachinonfarbstoffe aus der Reihe der 1,4-Diaminoanthrachinone. Sie gehorchen z.B. der Formel XVIII

(XVIII)

in der P1 für Amino oder einen Rest der Formel

steht.

15

20

25

worin P² und P³ unabhängig voneinander jeweils Wasserstoff oder Methyl und einer der beiden Reste P⁴ und P⁵ Wasserstoff oder Methyl und der andere Hydroxysulfonyl bedeuten.

[0131] In der zweiten Stufe (B) des erfindungsgemäßen Verfahrens versetzt man die in Stufe (A) hergestellte Mischung mit Melamin und gewünschtenfalls mit weiterem Phenol, substituiertem Melaimin I und Formaldehyd oder Formaldehyd-liefernden Verbindungen, wobei man die Mengen so wählt, daß das Molverhältnis von Melaminen (Melamin und (a)) zu (b) im Bereich von 1:1,15 bis 1:4,5, vorzugsweise von 1:1,8 bis 1:3,0 liegt, daß das Pigment oder der Farbstoff in einer Menge im Bereich von 0,01 bis 5, vorzugsweise von 0,1 bis 2 Gew.-%, bezogen auf Melamin und (a) und (b), und daß das Phenol in einer Menge im Bereich von 0 bis 5, vorzugsweise von 0,2 bis 2 Mol-%, bezogen auf Melamin und (a) und (b) vorliegen.

[0132] Bei der Herstellung von Fasern ist es besonders bevorzugt, wenn man die Menge an substituiertem Melamin I (Komponente (a) im Bereich von 1 bis 50, vorzugsweise von 5 bis 15 und ganz besonders bevorzugt von 7 bis 12 Mol-%, bezogen auf die Summe von Melamin und substituiertem Melamin I, wählt und bevorzugt von 0,1 bis 9,5, besonders bevorzugt von 1 bis 5 Mol-%, bezogen auf Melamin und (a) und (b), eines der oben angeführten Phenole oder Mischungen derselben einsetzt.

[0133] Die gesamte Mischung wird dann in an sich bekannter Weise, wie es beispielsweise in EP-A 523 485, EP-A 355 760 oder Houben-Weyl, Bd.14/2, Georg Thieme Verlag, Stuttgart, 1963, S. 357 ff beschrieben wird, kondensiert. [0134] Die Reaktionstemperaturen wählt man dabei im allgemeinen in einem Bereich von 20 bis 150, bevorzugt von 40 bis 140°C.

[0135] Der Reaktlonsdruck ist in der Regel unkritisch. Man arbeitet im allgemeinen in einem Bereich von 100 bis 500 kPa, bevorzugt 100 bis 300 kPa.

[0136] Man kann die Reaktion mit oder ohne Lösungsmittel durchführen. In der Regel setzt man beim Einsatz von wäßriger Formaldehydlösung kein Lösungsmittel zu. Bei Verwendung von Formaldehyd gebunden in fester Form wählt man als Lösungsmittel üblicherweise Wasser, wobei die verwendete Menge in der Regel im Bereich von 5 bis 40, bevorzugt von 15 bis 25 Gew.-%, bezogen auf die Gesamtmenge an eingesetzten Monomeren, liegt.

[0137] Ferner führt man die Polykondensation im allgemeinen in einem pH-Bereich oberhalb von 7 aus. Bevorzugt ist der pH-Bereich von 7,5 bis 10,0, besonders bevorzugt von 8 bis 10.

[0138] Des weiteren kann man dem Reaktionsgemisch geringe Mengen üblicher Zusätze wie Alkalimetallsulfiten, z. B. Natriumdisulfit und Natriumsulfit, Alkalimetallformiaten, z.B. Natriumformiat, Alkalimetallcitrate, z.B. Natriumcitrat, Phosphate, Polyphosphate, Hamstoff, Dicyandiamid oder Cyanamid hinzufügen. Man kann sie als reine Einzelverbindungen oder als Mischungen untereinander jeweils in Substanz oder als wäßrige Lösungen vor, während oder nach der Kondensationsreaktion zusetzen.

[0139] Andere Modifizierungsmittel sind Amine sowie Aminoalkohole wie Diethylamin, Ethanolamin, Diethanolamin oder 2-Diethylaminoethanol.

[0140] Als weltere Zusatzstoffe kommen Füllstoffe, Emulgatoren oder Treibmittel in Betracht.

[0141] Als Füllstoffe kann man beispielsweise faser- oder pulverförmige anorganische Verstärkungsmittel oder Füllstoffe wie Glasfasem, Metallpulver, Metallsalze oder Silikate, z.B. Kaolin, Talkum, Schwerspat, Quarz oder Kreide einsetzen. Als Emulgatoren verwendet man in der Regel die üblichen nichtionogenen, anionenaktiven oder kationak-

tiven organischen Verbindungen mit langkettigen Alkylresten. Bei der Verarbeitung der nicht ausgehärteten Harze zu Schäumen kann man als Treibmittel beispielsweise Pentan einsetzen.

[0142] Die Polykondensation kann man diskontinuierlich oder kontinuierlich, beispielsweise in einem Extruder (s. EP-A 355 760), nach an sich bekannten Methoden durchführen.

[0143] Die Herstellung von Formk\u00f6rpern durch H\u00e4rtung der erfindungsgem\u00e4\u00dfen Kondensationsprodukte erfolgt in \u00fcblicher Weise durch Zusatz von geringen Mengen an S\u00e4uren wie Amelsens\u00e4ure, Schwefels\u00e4ure oder Ammoniumchlorid.

[0144] Zur Herstellung von Fasern verspinnt man in der Regel das erfindungsgemäße Melamin-Harz in an sich bekannter Welse belsplelsweise nach Zusatz eines Härters bei Raumtemperatur in einer Rotationsspinnapparatur und härtet anschließend die Rohfasem in einer erhitzten Atmosphäre aus, oder man verspinnt in einer erhitzten Atmosphäre, verdampft dabei gleichzeitig das als Lösungsmittel dienende Wasser und härtet das Kondensat aus. Ein solches Verfahren ist in der DE-A 23 64 091 eingehend beschrieben.

[0145] Zur Herstellung von Vliesen geht man in der Regel von watteförmigen Bahnen aus, indem man diese nach an sich bekannten Methoden nadelt. Die Herstellung von watteförmigen Bahnen nimmt man im allgemeinen nach üblichen Methoden beispielsweise auf einer Krempelanlage vor.

[0146] Die erfindungsgemäß gefärbten Fasem und Vilese setzt man bevorzugt zum Arbeits- und Brandschutz ein, beispielsweise zur Herstellung von sogenannten Blaumännern (Nachteil bislang: flammfestgeschützte Baumwolle verliert den Flammschutz nach mehrmaligem Waschen), Wandbespannungen (beispielsweise für öffentliche Gebäude, in denen die Flammfestigkeit im Vordergrund steht) sowie leichtere Bekleidung für die Feuerwehr.

[0147] In einer bevorzugten Ausführungsform stellt man schwarze Abdeckvlisse und Abdeckgewebe für die Motorraumisolation her. Die Vorteile gegenüber entsprechenden Vliesen aus dem Stand der Technik liegen in der höheren Temperaturbeständigkeit (Dauertemperaturbeständigkeit ca. 200°C), der Flammfestigkeit sowie in der Tatsache, daß - im Vergleich zu anderen Fasern und Vliesen - keine Flammschutzausrüstung erforderlich ist.

[0148] Die Vorteile des erfindungsgemäßen Verfahrens liegen in dem Bereitstellen von homogen gefärbten Melamin-Formaldehyd-Kondensationsprodukten, die insbesondere beim Verspinnen zu Fasern keine Stippen bilden.

Beispiel 1 (Kondensationsharz ohne Farbzusatz)

[0149] Eine Mischung aus 1871 g Melamin, 620 g einer 80 gew.-%igen Mischung aus 10 Mol-% Mono-, 50 Mol-% Bis- und 40 Mol-% Tris-Hydroxyoxapentylmelamin, 472,8 g Paraformaldehyd, 38,2 g Phenol und 15,4 ml Diethylethanolamin wurden innerhalb von 150 mln bei 98°C bis zu einer Viskosität von 500 P-as kondensiert. Nach Zusatz von 1 Gew.-% Ameisensäure wurde das Harz nach bekannter Methode versponnen.

Beispiel 2 (Batch-Kondensationsharz)

[0150] 95 g Pigmentruß (RCC-Klasse) (DEGUSSA) wurden in einer Mischung von 1128,8 g 40 gaw.-%igem Formaldehyd, 633 g einer 80 gew.-%igen Mischung aus 10 Mol-% Mono-, 50 Mol- Bis- und 40 Mol-% Tris-Hydroxyoxapentylmelamin mit einem Ultraturax 30 min fein disperglert, anschließend erfolgte Zugabe von 1746,4 g Melamin, 472,8 g Paraformaldehyd, 38,2 g Phenol, 15,4 ml Diethylethanolamin und 185 g Wasser. Mit 25 gew.-%iger NaOH-Lösung wurde ein pH-Wert von 9,4 eingestellt. Es wurde bei 98°C bis zu einer Viskosltät von 250 P-as kondensiert und anschließend sofort auf Raumtemperatur abgekühlt.

Feststoffgehalt (theor.): 77 %

Endviskosität: 430 Pa-s

[0151] Das schwarze Kondensationsharz wurde mit einem farblosen Kondensationsharz (siehe Beispiel 1) im Verhältnis 1:5 gemischt und in bekannter Welse versponnen.

Beispiel 3

25

35

[0152] 17,2 g Pigment Red 3 (C.I. 12120) wurden in einer Mischung von 733 g 40 gew.-%igem Formaldehyd, 411 g einer 80 gew.-%igen Mischung aus 10 Mol-% Mono-, 50 Mol-% Bls- und 40 Mol-% Tris-Hydroxyoxapentylmelamin mit einem Ultraturax 30 min fein dispergiert, anschließend erfolgte Zugabe von 1134 g Melamin, 307 g Paraformaldehyd, 24,8 g Phenol, 5,0 ml Diethylethanolamin und 107 g Wasser. Mit 25 gew.-%iger Na-OH-Lösung wurde ein pH-Wert von 8,9 eingestellt. Es wurde bei 98°C bis zu einer Viskosität von 250 Pa-s kondensiert und anschließend sofort auf Raumtemperatur abgekühlt.

55 Feststoffgehalt (theor.): 77 %

Endviskosität: 310 Pa-s

[0153] Das orange Kondensationsharz wurde in bekannter Weise versponnen,

Beispiel 4

[0154] 8,2 g Pigment Yellow 183 (C.I. 18792) wurden in einer Mischung von 733 g 40 gew.-%igem Formaldehyd, 411 g einer 80 gew.-%igen Mischung aus 10 Moi-% Mono-, 50 Moi-% Bis- und 40 Moi-% Tris-Hydroxyoxapentylmelamin mit einem Ultraturax 30 min fein dispergiert. Anschließend erfolgte Zugabe von 1134 g Melamin, 307 g Paraformaldehyd, 24,8 g Phenol, 5,0 ml Diethylethanolamin und 107 g Wasser. Mit 25 gew.-%iger Na-OH-Lösung wurde ein pH-Wert von 8,9 eingestellt. Es wurde bei 98°C bis zu einer Viskosität von 250 Pa-s kondensiert und anschließend sofort auf Raumtemperatur abgekühlt.

Feststoffgehalt (theor.): 77 %

10 Endviskosität: 510 Pa-s

[0155] Das gelbe Kondensationsharz wurde in bekannter Weise versponnen.

Beispiel 5

[0156] 8,2 g Pigment Blue (15:3) (C.I. 74160) wurden in einer Mischung von 733 g 40 gew.-%igem Formaldehyd, 411 g einer 80 gew.-%igen Mischung aus 10 Mol-% Mono-, 50 Mol-% Bis- und 40 Mol-% Tris-Hydroxyoxapentylmelamin mit einem Ultraturax 30 min fein dispergiert. Anschließend erfolgte Zugabe von 1134 g Melamin, 307 g Paraformaldehyd, 24,8 g Phenol, 5,0 ml Diethylethanolamin und 107 g Wasser. Mit 25 gew.-%iger Na-OH-Lösung wurde ein pH-Wert von 8,9 eingestellt. Es wurde bei 98°C bis zu einer Viskosität von 225 Pa-s kondensiert und anschließend sofort auf Raumtemperatur abgekühlt.

Feststoffgehalt (theor.): 77 %

Endviskosität: 495 Pa·s

[0157] Das blaue Kondensationsharz wurde in bekannter Weise versponnen.

25 Beispiel 6 (ohne wäßrigen Formaldehyd, Master-Batch)

[0158] 90 g Pigmentruß (RCC-Klasse, Fa. Degussa) wurden in einer Mischung aus 662 g einer 80 gew.-%igen Mischung aus 10 Mol-% Mono-, 50 Mol-% Bls- und 40 Mol-% Tris-Hydroxyoxapentylmelamin und 704 g Wasser mit einem Ultraturax 30 min fein dispergiert. Anschließend erfolgte Zugabe von 1814 g Melamin, 960 g Paraformaldehyd,

39.7 g Phenol, 8,0 ml Diethylethanolamin. Mit 25 gew.-%iger NaOH-Lösung wurde ein pH-Wert von 8,8 eingestellt. Es wurde bei 98°C bis zu einer Viskosität von 660 Pa-s kondensiert und anschließend sofort auf Raumtemperatur abgekühlt.

Feststoffgehalt (theor.): 77 %

Endviskosität: 690 Pa-s

35 [0159] Das schwarze Kondensationsharz wurde mit einem farbiosen Kondensationsharz (siehe Belspiel 1) im Verhältnis 1:5 gemischt und in bekannter Weise versponnen.

Beispiel 7

40 [0160] Farbloses Kondensationsharz aus Beispiel 1 wurde mit 2 Gew.-% einer H\u00e4ntermischung (Mischung aus 35 gew.-%iger Ameisens\u00e4ure, 2 Gew.-% einer 80 gew.-%igen Mischung aus 10 Mol-% Mono-, 50 Mol-% Bis- und 40 Mol-% Tris-Hydroxyoxapentylmelamin, 20 Gew.-% Pigmentru\u00e4 (RCC-Klasse, Fa. Degussa) versetzt, intensiv gemischt und anschlie\u00e4end versponnen.

[0161] Die Viskositätsmessungen erfolgten mit einem Kegel-Platte-Viskosimeter (Fa. Epprecht Instruments & Controls), Meßkegel "Typ D", bei einer Temperatur von 20°C und einem Schergefälle von 20/sec

[0162] Das Verspinnen der Fasern erfolgte nach dem in der DE-A 23 64 091 beschriebenen Verfahren.

Beispiel B

50 [0163]

- a) Zur Ermittlung der Temperaturbeständigkeit wurde gemäß DIN 53 857 ein Gewebe, hergestellt aus den Fasern aus Beispiel 2, bei verschiedenen Temperaturen getestet. Das Ergebnis findet sich in untenstehender Tabelle.
- 55 b) Zum Vergleich wurde analog zu (a) ein Gewebe aus präoxidiertem Polyacryintrii (SIGRAFIL® der Fa. Sigri) getestet. Das Ergebnis findet sich in untenstehender Tabelle.

Tabelle -

Temperaturbeständigkeit			
Faserart	Verweilzelt	Temperatur	Reißfestigkeit (bez. auf Reißfestigkeit zu Beginn des Versuches)
schwarze Fasern aus Beispiel 2	6 h	250°C	110 %
schwarze Fasern aus Beispiel 2	1 h	300°C	110 %
SIGRAFIL®	6 h	250°C	50 %
SIGRAFIL®	1 h	300°C	0 %

Patentansprüche 15

- 1. Verfahren zur Herstellung gefärbter Melamin-Formaldehyd-Kondensationsprodukte durch Einmischen von Pigmenten oder Farbstoffen in eine Reaktionsmischung, enthaltend Ausgangsverbindungen zur Herstellung der Melamin-Formaldehyd-Kondensationsprodukte, dadurch gekennzeichnet, daß man (A) eine Mischung, enthaltend im wesentlichen
 - (a) ein substituiertes Melamin der Formel I

30

20

25

10

in der X1, X2 und X3 ausgewählt sind aus der Gruppe bestehend aus -NH2, -NHR1 und NR1R2, und X1, X2 und X3 nicht gleichzeitig -NH2 sind, und R1 und R2 ausgewählt sind aus der Gruppe bestehend aus Hydroxy- $C_2-C_{10}-\text{alkyl}, \ \text{Hydroxy-} C_2-C_4-\text{alkyl-} \\ (\text{oxa-}C_2-C_4-\text{alkyl})_n, \ \text{mit } n=1 \ \text{bis 5, und Amino-} \\ C_2-C_{12}-\text{alkyl, oder Mischunder} \\ \text{oxa-}C_2-C_4-\text{alkyl})_n \\ \text{oxa-}C_2-C_4-\text{alkyl})_n$ gen von Melaminen I, und

- 35
- (b) gewünschtenfalls Formaldehyd oder Formaldehyd-liefernden Verbindungen, wobei man das Molverhältnis von Formaldehyd zu Melaminen I im Bereich von 40:1 bis 0 wählt,

aus C₁-C₉-Alkyl und Hydroxy, substituierte Phenole, mit zwei oder drei Phenolgruppen substituierte C₁-C₄-

45

- (c) ein Pigment oder einen Farbstoff und
- (d) gewünschtenfalls ein unsubstituiertes Phenol oder mit Resten, ausgewählt aus der Gruppe, bestehend
- Alkane, Di(hydroxyphenyl)sulfone oder Mischungen dieser Phenole, wobei man das Pigment oder den Farbstoff in einer Menge im Bereich von 0,01 bis 30 Gew.-%, bezogen auf (a) und (b), und man das Phenol in einer Menge im Bereich von 0 bis 5 Mol-%, bezogen auf (a) und (b), zugibt, durch intensives Rühren solange dispergiert, bis keine Pigmentagglomerate ≥ 1 µm mehr vorhanden sind.

und anschließend 50

(B) die in (A) hergestellte Mischung mit Melamin und gewünschtenfalls mit weiterem Phenol, substituiertem Melamin I und Formaldehyd oder Formaldehyd-liefernden Verbindungen versetzt, wobei man die Mengen so wählt, daß das Molverhältnis von Melaminen (Melamin und (a)) zu (b) im Bereich von 1:1,15 bis 1:4,5 liegt, daß das Pigment oder der Farbstoff in einer Menge im Bereich von 0,01 bis 5 Gew.-%, bezogen auf Melamin und (a) und (b), und daß das Phenol in einer Menge im Bereich von 0 bis 5 Mol-%, bezogen auf Melamin und (a) und (b) vorliegen, und anschließend in an sich bekannter Weise kondensiert.

55

Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man einen Farbstoff aus der Klasse der Azofarbstoffe, Anthrachinonfarbstoffe, Cumarinfarbstoffe oder Methion- oder Azamethinfarbstoffe einsetzt.

- Gefärbte Melamin-Formaldehyd-Kondensationsprodukte, erhältlich nach dem Verfahren gemäß den Ansprüchen 1 bis 2.
- Verwendung der gefärbten Melamin-Formaldehyd-Kondensationsprodukte gemäß Anspruch 3 zur Herstellung von farbigen Formkörpern, insbesondere Fasem und Vliese.
- 5. Gefärbte Formkörper, insbesondere Fasem und Vliese, erhältlich durch die Verwendung gemäß Anspruch 4.

Claims

5

20

25

35

- A process for preparing colored melamine-formaldehyde condensation products by mixing pigments or dyes into a reaction mixture comprising starting compounds for preparing the melamine-formaldehyde condensation products, which comprises (A) dispersing a mixture essentially comprising
 - (a) a substituted melamine of the formula I

- where X¹, X² and X³ are each selected from the group consisting of -NH2, -NHR¹ and -NR¹R², and X¹, X2 and X3 are not all -NH2, and R¹ and R² are each selected from the group consisting of hydroxy-C2-C10-alkyl, hydroxy-C2-C4-alkyl-(oxa-C2-C4-alkyl)n, where n is from 1 to 5, and amino-C2-C12-alkyl, or mixtures of melamines I, and
 - (b) if desired, formaldehyde or formaldehyde-donating compounds in a molar ratio of formaldehyde to melamines I within the range from 40:1 to 0,
 - (c) a pigment or dye, and
 - (d) if desired, phenol, unsubstituted or substituted by radicals selected from the group consisting of C_1 - C_9 -alkyl and hydroxyl, C_1 - C_4 -alkanes substituted by 2 or 3 phenol groups, di(hydroxyphenyl) sulfones or mixtures thereof,
- the pigment or dye being added in an amount within the range from 0.01 to 30% by weight, based on (a) and (b),
 and the phenol in an amount within the range from 0 to 5 mol%, based on (a) and (b),
 by intensive stirring until there are no longer any pigment agglomerates ≥ 1 µm,
 and then
 - (B) admixing the mixture prepared in (A) with melamine and if desired with further phenol, substituted melamine I and formaldehyde or formaldehyde-donating compounds, the amounts being chosen so that the molar ratio of melamines (melamine and (a)) to (b) is within the range from 1:1.15 to 1:4.5, the pigment or dye is present in an amount within the range from 0.01 to 5% by weight, based on melamine and (a) and (b), and the phenol is present in an amount within the range from 0 to 5 mol%, based on melamine and (a) and (b), and then condensing in a conventional manner.
- A process as claimed in claim 1 wherein the dye used is selected from the class of the azo dyes, anthraquinone dyes, courarin dyes or methine or azamethine dyes.
 - 3. Colored melamine-formaldehyde condensation products obtainable by the process of claim 1 or 2.

- The use of the colored melamine-formaldehyde condensation products of claim 3 for producing colored articles, in particular fibers and webs.
- 5. Colored articles, in particular fibers and webs, obtainable by the use of claim 4.
- The use of a black web as claimed in claim 5 for manufacturing covering webs and fabrics as engine compartment insulation.

10 Revendications

15

20

25

30

35

40

45

50

55

- Procédé de préparation de produits de condensation de la mélamine et du formaldéhyde colorés par l'incorporation sous mélange de pigments ou de colorants à un mélange réactionnel, contenant des composés de départ pour la préparation des produits de condensation de la mélamine et du formaldéhyde, caractérisé en ce que (A), on disperse un mélange, qui contient essentiellement
 - (a) une mélamine substituée de la formule I;

$$\begin{array}{c|c}
X^1 \\
N \\
N \\
N \\
X^3
\end{array}$$
(1)

dans laquelle X^1 , X^2 et X^3 sont choisis dans le groupe formé par les radicaux -NH₂, -NHR¹ et NR¹R², et X^1 , X^2 et X^3 ne sont pas simultanément des radicaux -NH₂, et R¹ et R² sont choisis dans le groupe formé par les radicaux hydroxyalkyle en C_2 à C_{10} , hydroxyalkyl-(C_2 - C_4)-(oxaalkyle en C_2 à C_4)_n, où n a une valeur qui varie de 1 à 5, et aminoalkyle en C_2 à C_{12} , ou des mélanges de mélamines 1, et

- (b) éventuellement du formaldéhyde ou des composés engandrant du formaldéhyde, où le rapport molaire du formaldéhyde aux mélamines I est choisi dans la plage de 40:1 à 0,
- (c) un pigment ou un colorant, et
- (d) éventuellement un phénol non substitué ou des phénols substitués par des radicaux choisis dans le groupe constitué des radicaux alkyle en C_1 à C_9 et hydroxyle, des alcanes en C_1 à C_4 substitués par deux ou trois radicaux phénol, des di(hydroxyphényl)sulfones, ou des mélanges de ces phénols,

où on ajoute le pigment ou le colorant en une proportion qui varie dans la plage de 0,01 à 30% en poids, par rapport à (a) et (b), et on ajoute le phénol en une proportion qui fluctue de 0 à 5% molaires, par rapport à (a) et (b), sous agitation intense et pendant la durée nécessaire pour que ne soient plus présents d'agglomérats du pigment ≥ 1 μm,

- et, ensuite,
- (B) on ajoute au mélange préparé en (A) de la mélamine et éventuellement du phénol supplémentaire, de la mélamine substituée I et du formaldéhyde ou des composés engendrant du formaldéhyde, où l'on choisit les proportions en une manière telle que le rapport molaire des mélamines (mélamine et (a)) à (b) se situe dans la plage de 1:1,15 à 1:4,5, que le pigment ou le colorant soient présents en une proportion qui varie de 0,01 à 5% en poids, par rapport à la mélamine et (a) et (b), et que le phénol soit présent en une proportion qui varie dans la plage de 0 à 5% molaires, par rapport à la mélamine et (a) et (b), et on procède ensuite à la condensation d'une manière en soi connue.
- Procédé suivant la revendication 1, caractérisé en ce que l'on utilise un colorant appartenant à la classe des colorants azoïques, des colorants anthraquinoniques, des colorants cournariniques, ou des colorants méthioniques ou azaméthiniques.
 - 3. Produit de condensation de la mélamine et du formaldéhyde colorés, que l'on peut obtenir par la mise en œuvre

du procédé suivant l'une quelconque des revendications 1 et 2.

15

20

25

30

40

50

- 4. Utilisation des produits de condensation de la mélamine et du formaldéhyde colorés, suivant la revendication 3, pour la fabrication d'articles moulés colorés, en particulier, de nappes et de fibres.
- Articles moulés colorés, plus particulièrement, fibres et nappes, que l'on peut obtenir par l'utilisation suivant la revendication 4.
- 6. Utilisation d'une nappe noire suivant la revendication 5, pour la fabrication de nappes de recouvrement et de tissus de recouvrement et comme produits d'isolation pour les espaces moteurs.

THIS PAGE BLANK (USPTO)

United States Patent [19]

Guenther et al.

Patent Number: [11]

5,837,013

Date of Patent: [45]

Nov. 17, 1998

[54] PREPARATION OF COLORED MELAMINE-FORMALDEHYDE CONDENSATION **PRODUCTS**

[75]	Inventors:	Erhard Guenther, Hassloch; Wolfgang
		Reuther Heidelberg both of Germany

[73]	Assignee:	BASF Aktiengesellschaft,
	-	Ludwieshafen, Germany

[21] Appl. No.:

849,954

[22] PCT Filed: Dec. 13, 1995

[86] PCT No.:

PCT/EP95/04928

§ 371 Date:

Jun. 16, 1997

§ 102(e) Date: Jun. 16, 1997

[87] PCT Pub. No.: WO96/20229

PCT Pub. Date: Jul. 4, 1996

[30] Foreign Application Priority Data

Dec. 23, 1994 [DE]	Germany	44 46 386.3
•		
F#43 T 4 603 5		

[51]

U.S. Cl. 8/49.4; 8/506; 8/520; 8/637.1 [58]

Field of Search 8/494, 506, 520; 528/232, 243

[56]

References Cited

U.S. PATENT DOCUMENTS

4,182,701	1/1980	Cottrell, Jr	
		Ebel et al.	
4,996,289	2/1991	Berbner et al	
5,162,487	11/1992	Weiser et al	
		Weiser et al.	528/163
		Voelker et al	,

FOREIGN PATENT DOCUMENTS

European Pat. Off.	2/1990	355 760
European Pat. Off.	1/1991	408 947
European Pat. Off.	2/1992	469 166
European Pat. Off.	1/1993	523 485
European Pat. Off.	6/1994	601 402
Enropeen Det Off	11/1994	624 665

Primary Examiner-Margaret Einsmann Attorney, Agent, or Firm-Keil & Weinkauf

ABSTRACT

A process for preparing colored melamine-formaldehyde condensation products by:

(A) dispersing a mixture consisting essentially of

(a) a substituted melamine of the formula I

where X1, X2 and X3 are each as disclosed hereinafter, and

- (b) if desired, formaldehyde or formaldehyde-donating compounds in a molar ratio of formaldehyde to melamines I within the range from 40:1 to 0,
- (c) a pigment or dye, and mixing
- (d) if desired, phenol, unsubstituted or substituted. by intensive stirring until there are no longer any pigment agglomerates $\ge 1 \, \mu \text{m}$, and then
- (B) admixing the mixture prepared in (A) with melamine and if desired with further phenol, substituted melamine I and formaldehyde or formaldehyde-donating compounds. and condensing.

9 Claims, No Drawings

50

PREPARATION OF COLORED MELAMINE-FORMALDEHYDE CONDENSATION PRODUCTS

The present invention relates to an improved process for preparing colored melamine-formaldehyde condensation products by mixing pigments or dyes into a reaction mixture comprising starting compounds for preparing the melamine-formaldehyde condensation products.

The present invention further relates to colored 10 melamine-formaldehyde condensation products and to their use for producing colored articles, in particular fibers and webs

EP-A 523485 describes melamine-formaldehyde condensation products produced with or without inclusion in the reaction mixture of additives such as pigments or dyes. The disadvantage of this unspecific procedure is that inhomogeneously colored condensation products are obtained for some applications, in particular in fiber and web manufacture. Furthermore, from experience to date, the spinning solutions frequently contain fisheyes which can cause blockage of the pipework and orifices.

It is an object of the present invention to provide an improved process for preparing colored melamine-formaldehyde condensation products that is free of the 25 abovementioned disadvantages.

We have found that this object is achieved by a process for preparing colored melamine-formaldehyde condensation products by mixing pigments or dyes into a reaction mixture comprising starting compounds for preparing the melamine-formaldehyde condensation products, which comprises

(A) dispersing a mixture consisting essentially of

(a) a substituted melamine of the formula I

where X^1 , X^2 and X^3 are each selected from the group consisting of $-NH_2$, $-NHR^1$ and $-NR^1$, R^2 , and X^1 , X^2 and X^3 are not all $-NH_2$, and R^1 and R^2 are each selected from the group consisting of hydroxy- C_2 - C_{10} -alkyl, hydroxy- C_2 - C_4 -alkyl-(oxa- C_2 - C_4 -alkyl), where n is from 1 to 5, and amino- C_2 - C_{12} -alkyl, or mixtures of melamines I, and

- (b) if desired, formaldehyde or formaldehyde-donating compounds in a molar ratio of formaldehyde to melamines I within the range from 40:1 to 0,
- (c) a pigment or dye, and
- (d) if desired, phenol, unsubstituted or substituted by radicals selected from the group consisting of C₁-C₉alkyl and hydroxyl, C₁-C₄-alkanes substituted by 2 or 3 phenol groups, di(hydroxyphenyl) sulfones or mixtures thereof.

the pigment or dye being added in an amount within the range from 0.01 to 30% by weight, based on (a) and (b), and the phenol in an amount within the range from 0 to 5 mol %, based on (a) and (b),

by intensive stirring until there are no longer any pigment agglomerates ≥1 µm,

(B) admixing the mixture prepared in (A) with melamine and if desired with further phenol, substituted melamine I 65 and formaldehyde or formaldehyde-donating compounds, the amounts being chosen so that the molar ratio of

melamines (melamine and (a)) to (b) is within the range from 1:1.15 to 1:4.5, the pigment or dye is present in an amount within the range from 0.01 to 5% by weight, based on melamine and (a) and (b), and the phenol is present in an amount within the range from 0 to 5 mol %, based on melamine and (a) and (b), and then condensing in a conventional manner.

We have also found colored melamine-formaldehyde condensation products and their use for producing colored articles, in particular fibers and webs.

First step (A) of the process for the present invention comprises dispersing a mixture consisting essentially of

(a) a substituted melamine of the formula I

$$X_1$$
 X_2
 X_3
 X_4
 X_4
 X_5

where X^1 , X^2 and X^3 are each selected from the group consisting of $-NH_2$, $-NHR^1$ and $-NR^1R^2$, and X^1 , X^2 and X^3 are not all $-NH_2$, and R^1 and R^2 are each selected from the group consisting of hydroxy- C_2 - C_{10} -alkyl, hydroxy- C_2 - C_4 -alkyl-(oxa- C_2 - C_4 -alkyl), where n is from 1 to 5, and amino- C_2 - C_{12} -alkyl, or mixtures of melamines 1. and

(b) if desired, formaldehyde or formaldehyde-donating compounds in a molar ratio of formaldehyde to melamines I within the range from 40:1 to 0, preferably from 25:1 to 0,

(c) a pigment or dye, and

(d) if desired, phenol, unsubstituted or substituted by radicals selected from the group consisting of C_I-C₉-alkyl and hydroxyl, C₁-C₄-alkanes substituted by 2 or 3 phenol groups, di(hydroxyphenyl) sulfones or mixtures thereof, the pigment or dye being added in an amount within the range from 0.01 to 30, preferably from 0.5 to 15,% by weight, based on (a) and (b), and the phenol in an amount within the range from 0 to 5, preferably from 0.2 to 2, mol %, based on (a) and (b), by intensive stirring until there are no longer any pigment agglomerates ≥1 μm.

Suitable for use as substituted melamines of the general formula I

are those in which X^1 , X^2 and X^3 are each selected from the group consisting of $-NH_2$, $-NHR^1$ and $-NR^1R^2$, but X^1 , X^2 and X^3 are not all $-NH_2$, and R^1 and R^2 are each selected from the group consisting of hydroxy- C_2 - C_{10} -alkyl, hydroxy- C_2 - C_4 -alkyl-(oxa- C_2 - C_4 -alkyl), where n is from 1 to 5, and amino- C_1 - C_{10} -alkyl.

from 1 to 5, and amino-C₂-C₁₂-alkyl.

Hydroxy-C₂-C₁₀-alkyl is preferably hydroxy-C₂-C₆-alkyl such as 2-hydroxyethyl, 3-hydroxy-n-propyl, 2-hydroxyisopropyl, 4-hydroxy-n-butyl, 5-hydroxy-n-pentyl, 6-hydroxy-n-hexyl, 3-hydroxy-2,2-dimethylpropyl, preferably hydroxy-C₂-C₄-alkyl such as 2-hydroxyethyl, 3-hydroxy-n-propyl, 2-hydroxyisopropyl and 4-hydroxy-n-butyl, particularly preferably 2-hydroxyethyl and 2-hydroxyisopropyl.

Hydroxy-C₂-C₄-alkyl-(oxa-C₂-C₄-alkyl)_n preferably has n from 1 to 4, particularly preferably n 1 or 2 such as

5-hydroxy-3-oxa-pentyl, 5-hydroxy-3-oxa-2,5dimethylpentyl, 5-hydroxy-3-oxa-1,4-dimethylpentyl, 5-hydroxy-3-oxa-1,2,4,5-tetramethylpentyl, 8-hydroxy-3,6dioxacctvl.

Amino-C2-C12-alkyl is preferably amino-C2-C8-alkyl, such as 2-arinoethyl, 3-aminopropyl, 4-aminobutyl, 5-aminopentyl, 6-aminohexyl, 7-aminoheptyl or 8-aminooctyl, particularly preferably 2-aminoethyl or 6-aminohexyl, very particularly preferably 6-aminohexyl.

Particularly suitable substituted melamines for the present 10 invention include for example the following compounds: 2-hydroxyethylamino-substituted melamines such as 2-(:2hydroxyethylamino)-4,6-diamino-1,3,5-triazine, 2,4-di(2hydroxyethylamino)-6-amino-1,3,5-triazine, 2,4,6-tris(2hydroxy-ethylamino)-1,3,5-triazine, 15 2-hydroxyisopropylamino-substituted melamines such as 2-(2-hydroxyisopropylamino)-4,6-diamino-1,3,5-triazine, 2,4-di(2-hydroxyisopropylamino)-6-amino-1,3,5-triazine, 2,4,6-tris(2-hydroxyisopropylamino)-1,3,5-triazine, 5-hydroxy-3-oxapentylamino-substituted melamines such 20 where as 2-(5-hydroxy-3-oxapentylamino)-4,6-diamino-1,3,5triazine, 2,4-di(5-hydroxy-3-oxapentylamino)-6-amino-1,3, 5-triazine, 2,4,6-tris-(5-hydroxy-3-oxapentylamino)-1,3,5triazine, 6-aminohexylamino-substituted melamines such as 2-(6-aminohexylamino)-4,6-diamino-1,3,5-triazine, 2,4-di 25 (6-aminohexylamino)-6-amino-1,3,5-triazine, 2,4,6-tris(6aminohexylamino)-1,3,5-triazine or mixtures thereof, for example a mixture of 10 mol % of 2-(5-hydroxy-3oxapentyl-amino)-4,6-diamino-1,3,5-triazine, 50 mol % of 2,4-di(5-hydroxy-3-oxapentylamino)-6-amino-1,3,5- 30 triazine and 40 mol % of 2,4,6-tris(5-hydroxy-3oxapentylamino)-1,3,5-triazine.

Formaldehyde is generally used in the form of an aqueous solution having a concentration from for example 40 to 50% by weight or in the form of compounds which donate 35 formaldehyde, for example in the form of oligomeric or polymeric formaldehyde in solid form, such as paraformaldehyde, 1,3,5-trioxane or 1,3,5,7-tetroxocane.

Suitable phenols include phenols containing one or two hydroxyl groups such as phenol, unsubstituted or substituted 40 by radicals selected from the group consisting of C1-C9alkyl and hydroxyl and also C1-C4-alkanes substituted by 2 or 3 phenol groups, di(hydroxyphenyl) sulfones or mixtures

Preferred phenols include for example phenol, 45 4-methylphenol, 4-tert-butylphenol, 4-n-octylphenol, 4-nnonylphenol, pyrocatechol, resorcinol, hydroquinone, 2,2bis(4-hydroxyphenyl)-propane or 4,4'-dihydroxydiphenyl sulfone, particularly preferably phenol, resorcinol and 2,2bis(4-hydroxyphenyl)-propane.

The dyes employed in the process of the present invention come from the class of the azo, anthraquinone, coumarin, methine or azamethine, quinophthalone or nitro dyes. They either are free of ionic groups or carry carboxyl and/or sulfo

Suitable dyes which are free of ionic groups will now be more particularly described.

Suitable azo dyes include in particular monoazo or disazo dyes, for example those with a diazo component derived from an aniline or from a five-membered aromatic hetero- 60 cyclic amine which has from one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur in the heterocyclic ring and may be fused with a benzene, thiophene, pyridine or pyrimidine ring.

Important monoazo or disazo dyes include for example 65 those whose diazo component is derived for example from an aniline or from a heterocyclic amine of the pyrrole, furan,

thiophene, pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, triazole, oxadiazole, thiadiazole, benzofuran, benzothiophene, benzimidazole, benzoxazole, benzothiazole, benzisothiazole, pyridothiophene, pyrimidothiophene, thienothiophene or thienothiazole series.

Of particular suitability are those diazo components which come from an aniline or from a heterocyclic amine of the pyrrole, thiophene, pyrazole, thiazole, isothiazole, triazole, thiadiazole, benzothiophene, benzothiazole, benzisothiazole, pyridothiophene, pyrimidothiophene, thienothiophene or thienothiazole series.

Also of importance are azo dyes with a coupling component of the aniline, aminonaphthalene, aminothiazole, diaminopyridine or hydroxypyridone series.

Of particular importance are azo dyes of the formula IIa

$$D^1 - N = N - K^1 \tag{IIa},$$

D1 is a radical of the formula

10

20

. 25

30

35

45

50

55

N I

K is hydroxyphenyl or a radical of the formula

$$\begin{array}{c|c}
R^7 & N \\
& \downarrow & N \\
& S & N \\
& R^2
\end{array}$$

L¹ is nitro, cyano, C₁-C₆-alkanoyl, benzoyl, C₁-C₆-alkylsulfonyl, substituted or unsubstituted phenylsulfonyl or a radical of the formula —CH=T, where T is hydroxyimino, C₁-C₄-alkoxyimino or a radical of an acidic—CH compound,

L² is hydrogen, C₁-C₆-alkyl, halogen, hydroxyl, mercapto, unsubstituted or phenyl- or C₁-C₄-alkoxy-substituted C₁-C₆-alkoxy, substituted or unsubstituted phenoxy, unsubstituted or phenyl-substituted C₁-C₆-alkylthio, substituted or unsubstituted phenylthio, C₁-C₆-alkylsulfonyl or substituted or unsubstituted phenylsulfonyl,

L3 is cyano, C1-C4-alkoxycarbonyl or nitro,

L4 is hydrogen, C1-C6-alkyl or phenyl,

L⁵ is C₁-C₆-alkyl or phenyl,

L⁶ is hydrogen, cyano, C₁-C₄-alkoxycarbonyl, C₁-C₆-alkanoyl, thiocyanato or halogen,

L⁷ is nitro, cyano, C₁-C₆-alkanoyl, benzoyl, C₁-C₄-alkoxy-carbonyl, C₁-C₅-alkylsulfonyl, substituted or unsubstituted phenylsulfonyl or a radical of the formula —CH=T, where T is as defined above,

 L^8 is hydrogen, C_1 – C_6 -alkyl, cyano, halogen, unsubstituted or phenyl- or C_1 – C_4 -alkoxy-substituted C_1 – C_6 -alkoxy, unsubstituted or phenyl-substituted C_1 – C_6 -alkylthio, substituted or unsubstituted phenylthio, C_1 – C_6 -alkylsulfonyl, substituted or unsubstituted phenylsulfonyl or C_1 – C_4 -alkoxycarbonyl,

L⁹ is cyano, unsubstituted or phenyl-substituted C₁-C₆-alkyl, unsubstituted or phenyl-substituted C₁-C₆-alkylthio, substituted or unsubstituted phenyl, thienyl, C₁-C₄-alkyl-thienyl, pyridyl or C₁-C₄-alkyl-thienyl,

L10 is phenyl or pyridyl,

 L^{11} is trifluoromethyl, nitro, C_1-C_6 -alkyl, phenyl, unsubstituted or phenyl-substituted C_1-C_6 -alkylthio or C_1-C_6 -dialkylamino,

 L^{12} is C_1-C_6 -alkyl, phenyl, 2-cyanoethylthio or 2- $(C_1-C_4$ -alkoxy-carbonyl)ethylthio,

L¹³ is hydrogen, nitro or halogen,

L¹⁴ is hydrogen, cyano, C₁-C₄-alkoxycarbonyl, nitro or halogen,

L¹⁵, L¹⁶ and L¹⁷ are identical or different and each is independently of the others hydrogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, halogen, nitro, cyano, substituted or unsubstituted C₁-C₄-alkoxycarbonyl, C₁-C₆-alkylsulfonyl, substituted or unsubstituted phenylsulfonyl or substituted or unsubstituted phenylazo,

R¹ and R² are identical or different and each is independently of the other hydrogen, substituted or unsubstituted C₁-C₆-alkyl, with or without interruption by 1 or 2 oxygen atoms in ether function, C₅-C₇-cycloalkyl or C₃-C₆-alkenyl,

 R^3 is hydrogen, C_1-C_6 -alkyl or C_1-C_6 -alkoxy,

R⁴ is hydrogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylsulfonylamino, substituted or unsubstituted C₁-C₆-alkanoylamino or benzoylamino,

R⁵ and R⁶ are identical or different and each is independently of the other hydrogen or C₁-C₅-alkyl,

R⁷ is hydrogen, substituted or unsubstituted phenyl or thienyl,

R⁸ is hydrogen or C₁-C₆-alkyl,

R⁹ is cyano, carbamoyl or acetyl,

R¹⁰, R¹¹ and R¹² are identical or different and each is independently of the others substituted or unsubstituted

where

 C_1 – C_{12} -alkyl, with or without interruption by 1 to 3 oxygen atoms in ether function, C_5 – C_7 -cycloalkyl, substituted or unsubstituted phenyl, C_3 – C_6 -alkenyl, substituted or unsubstituted benzoyl, C_1 – C_6 -alkylsulfonyl or substituted or unsubstituted phenylsulfonyl, or R^{11} and R^{12} together with the nitrogen atom joining them together are a 5- or 6-membered saturated heterocyclic radical with or without further hetero atoms, and

 R^{13} is hydrogen or C_1-C_6 -alkyl.

Suitable anthraquinone dyes come for example from the class of the 1-aminoanthraquinones. They conform for example to the formula Va, Vb, Vc or Vd

where

A¹ is hydrogen, C₁-C₈-alkyl or substituted or unsubstituted phenyl,

A² is hydroxyl or the radical NH-A¹,

A3 is hydrogen or nitro,

A⁴ is halogen, hydroxyphenyl, C₁-C₄-alkoxyphenyl or a radical of the formula

where G^1 is oxygen or sulfur and G^2 is hydrogen or C_1 – C_8 -monoalkylsulfamoyl whose alkyl chain may be interrupted by 1 or 2 oxygen atoms in ether function, one of the two radicals A^5 and A6 is hydroxyl and the other is NH— A^1 or A^5 and A6 are each hydrogen,

A⁷ is hydrogen or C₁-C₈-alkyl with or without interruption by from 1 to 3 oxygen atoms in ether function, one of the two radicals A⁸ and A⁹ is hydroxyl and the other is aniline, and

G³ is oxygen or imino.

Suitable coumarin dyes come for example from the class of the 7-dialkylaminocoumarins. They conform for example

to the formula VIa, VIb or VIc

where

W¹ and W² are independently of each other C₁-C₄-alkyl, W³ is benzimidazol-2-yl, 5-chlorobenzoxazol-2-yl, benzothiazol-2-yl, 4-hydroxyquinazolin-2-yl or 5-phenyl-1,3,4-thiadiazol-2-yl, and

 W^4 is C_1 - C_8 -alkyl.

Suitable methine or azamethine dyes come for example from the class of the triazolopyridines or pyridines. They conform for example to the formula VIIa or VIIb

$$Q^{1} \longrightarrow \begin{pmatrix} Q^{1} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$Q_1 = \begin{pmatrix} Q_1 & Q_2 & Q_3 \\ Q_2 & Q_4 & Q_4 \end{pmatrix}$$
(VIIP)

where

50

X is nitrogen or CH,

- Q¹ is C₁-C₂o-alkyl with or without substitution and with or without interruption by one or more oxygen atoms in ether function, substituted or unsubstituted phenyl or hydroxyl,
- Q2 is a 5-membered aromatic heterocyclic radical,
- Q³ is hydrogen, cyano, carbamoyi, carboxyl or C₁-C₄-alkoxycarbonyl,
- Q⁴ is oxygen or a radical of the formula C(CN)₂, C(CN) COOE¹ or C(COOE¹)₂, where E¹ is in each case C₁-C₈-alkyl with or without interruption by 1 or 2 oxygen atoms in ether function,

Q⁵ is hydrogen or C₁-C₄-alkyl,

Q⁶ is C₇-C₂₀-alkyl with or without substitution and with or without interruption by one or more oxygen atoms in

25

30

50

(VIIIc)

ether function, substituted or unsubstituted phenyl, hydroxyl or a radical of the formula NE2E3, where E2 and E3 are identical or different and each is independently of the other hydrogen, substituted or unsubstituted C1-C12-alkyl, C5-C7-cycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted C1-C12-alkanoyl, C1-C12-alkoxycarbonyl, substituted or unsubstituted C1-C12-alkylsulfonyl, C5-C7-cycloalkylsulfonyl, sub- 10 stituted or unsubstituted phenylsulfonyl, substituted or unsubstituted pyridylsulfonyl, substituted or unsubstituted benzoyl, pyridylcarbonyl or thienylcarbonyl, or E² and E³ together with the nitrogen atom joining them together are unsubstituted or C1-C4-alkyl-substituted 15 succinimido, unsubstituted or C1-C4-alkyl-substituted phthalimido or a five- or six-membered saturated heterocyclic radical with or without further hetero atoms.

The dyes of the formula VIIa or VIIb can exist in a plurality of tautomeric forms which are all encompassed by the claims. For example, the compounds of the formula VIIa (where Q4=oxygen and Q5=methyl) can exist inter alia in the following tautomeric forms:

Q2 can be derived for example from components of the pyrrole, thiazole, thiophene or indole series.

Important Q2 radicals are for example those of the formulae VIIIa to VIIId

-continued (VIIId)

where

m is 0 or 1,

E4 and E5 are identical or different and are each independently of the other hydrogen or else the abovementioned radical R1, except for hydroxyl, or together with the nitrogen atom joining them together are a 5- or 6-membered saturated heterocyclic radical with or without further hetero atoms,

E⁶ is hydrogen, halogen, C₁-C₈-alkyl, unsubstituted or C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted phenyl, unsubstituted or C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxysubstituted benzyl, cyclohexyl, thienyl, hydroxyl or mono-(C1-C8-alkyl)amino,

E7 and E8 are independently of each other hydrogen, hydroxyl, unsubstituted or phenyl- or C1-4alkylphenyl-substituted C1-C8-alkyl, unsubstituted or phenyl- or C_{1-4} -alkylphenyl-substituted C_{1-8} -alkoxy, C₁-8-alkanoylamino, C₁-C₈-alkylsulfonylamino or mono- or di(C1-8-alkyl)aminosulfonylamino,

E⁹ is cyano, carbamoyl, mono- or di(C₁-C₈-alkyl) carbamoyl, C1-8-alkoxycarbonyl or substituted or unsubstituted phenyl, and

E¹⁰ is halogen, hydrogen, C₁-₄-alkyl, C₁-₄-alkoxy, C₁-₄-alkylthio, unsubstituted or C₁-C₄-alkyl- or C₁-₄alkoxy-substituted phenyl or thienyl.

Particularly suitable quinophthalone dyes have a quinoin ring position 4. They conform for example to the formula IX line ring which is either unsubstituted or halogen-substituted

where G4 is hydrogen, chlorine or bromine. A suitable nitro dye conforms for example to the formula

$$NH - SO_2 - NH - C_6H_5.$$
(X)

Any alkyl or alkenyl appearing in the abovementioned formulae may be straight-chain or branched.

Any substituted alkyl appearing in the abovementioned formulae may have as substituents for example, unless otherwise stated, cyclohexyl, phenyl, C1-C4-alkylphenyl, C₁-4-alkoxyphenyl, halophenyl, C₁-C₈-alkanoyloxy, C₁-8alkylaminocarbonyloxy, C1-C20-alkoxycarbonyl, C1-C20alkoxycarbonyloxy, in which case the alkyl chain in the last two radicals mentioned may be interrupted by from 1 to 4 oxygen atoms in ether function and/or may be phenyl- or phenoxy-substituted, cyclohexyloxy, phenoxy, halogen, hydroxyl or cyano. The number of substituents in substituted alkyl is generally 1 or 2.

In any oxygen-interrupted alkyl appearing in the abovementioned formulae the number of interrupting oxygen atoms in ether function, unless otherwise stated, is preferably from 1 to 4, especially 1 or 2.

Any substituted phenyl or pyridyl appearing in the abovementioned formulae may have as substituents for example, unless otherwise stated, C1-C8-alkyl, C1-C8-alkoxy, halogen, especially chlorine or bromine, nitro or carboxyl. The number of substituents in substituted phenyl or pyridyl is generally from 1 to 3.

Examples will now be mentioned of the radicals in the

formulae II to V.

L², L⁴, L⁵, L⁸, L⁹, L¹¹, L¹², L¹⁵, L¹⁶, L¹⁷, R¹, R², R³, R⁴, R⁵, R⁶, R⁸, R¹⁰, R¹¹, R¹² and R¹³ are each for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, 15 pentyl, isopentyl, neopentyl, tert-pentyl, hexyl or 2-methylpentyl.

L⁹ may also be for example benzyl or 1- or 2-phenylethyl. L², L⁸, L⁹ and L¹¹ may each also be for example methylthio, ethylthio, propylthio, isopropylthio, butylthio, 20 isobutylthio, pentylthio, hexylthio, benzylthio or 1- or 2-phenylethylthio.

L² and L⁸ may each also be for example phenylthio, 2-methylphenylthio, 2-methoxyphenylthio or

2-chlorophenylthio.

L², L⁸, L¹⁵, L¹⁶, L¹⁷, R³ and R⁴ may each also be for example methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, pentyloxy, isopentyloxy, neopentyloxy, tert-pentyloxy, hexyloxy or 2-methylpentyloxy.

L⁶ is and each of L², L⁸, L¹³, L¹⁴, L¹⁵, L¹⁶ and L¹⁷ may

further also be for example fluorine, chlorine or bromine.

L⁷ is and each of L¹, L², L⁸, L¹⁵, L¹⁶, L¹⁷, R¹⁰, R¹¹ and R¹² may further also be for example methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, 35 butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, hexylsulfonyl, phenylsulfonyl, 2-methylphenylsulfonyl, 2-methoxyphenylsulfonyl or 2-chlorophenylsulfonyl.

L² is and each of L⁶, L⁷, L⁸, L¹⁴, L¹⁵ L¹⁶ and L¹⁷ may 40 further also be for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl or sec-butoxycarbonyl. L¹⁵, L¹⁶ and L¹⁷ may each also be for

L¹⁵, L¹⁶ and L¹⁷ may each also be for example 2-phenoxyethoxycarbonyl, 2- or 3-phenoxy-45 propoxycarbonyl, 2- or 4-phenoxybutoxycarbonyl, phenylazo, 4-nitrophenylazo or 2,4-dinitro-6bromophenylazo.

L² and L8 may each also be for example 2-methoxyethoxy, 2-ethoxyethoxy, 2- or 50 3-methoxypropoxy, 2- or 3-ethoxypropoxy, 2- or 4-methoxybutoxy, 2- or 4-ethoxybutoxy, 5-methoxypentyloxy, 5-ethoxypentyloxy, 6-methoxyhexyloxy, 6-ethoxyhexyloxy, benzyloxy or 1- or 2-phenylethoxy.

L11 may also be for example dimethylamino, diethylamino, dipropylamino, diisopropylamino, dibutylamino, dipentylamino, dihexylamino or N-methyl-N-

ethylamino. L¹² may also be for example 2-methoxycarbonylethylthio 60 or 2-ethoxycarbonylethylthio.

R¹, R², R¹¹, R¹² and R¹³ may each also be for example

cyclopentyl, cyclohexyl or cycloheptyl.

L⁹ may also be for example phenyl, 2-, 3- or 4-methylphenyl, 2,4-dimethylphenyl, 2-, 3- or 65 4-methoxyphenyl, 2-, 3- or 4-chlorophenyl, 2- or 3-methylthienyl or 2-, 3- or 4-methylpyridyl.

L¹, L⁶ and L⁷ may each also be for example formyl, acetyl, propionyl, butyryl, pentanoyl or hexanoyl.

In a —CH—T radical L¹ or L⁷ where T is derived from an acidio—CH compound H2T said acidic—CH compounds H₂T can for example be compounds of the formula

$$\begin{array}{c|c}
OZ^{7} & (XIIf) \\
N & N-Z^{5} \\
I & OT
\end{array}$$

where

Z¹ is cyano, nitro, C₁₋₄-alkanoyl, substituted or unsubstituted benzoyl, C1-4-alkylsulfonyl, substituted or unsubstituted phenylsulfonyl, C1-C4-alkoxycarbonyl, C₃-C₄-alkenyloxycarbonyl, phenoxycarbonyl, carbamoyl, mono- or di(C1-C4-alkyl)-carbamoyl, substituted or unsubstituted phenylcarbamoyl, substituted or unsubstituted phenyl, 2-benzothiazolyl, 2-benzimidazolyl, 5-phenyl-1,3,4-thiadiazol-2-yl or 2-hydroxy-3-quinoxalinyl,

 \mathbb{Z}^2 is $\mathbb{C}_{1^{-4}}$ -alkyl, $\mathbb{C}_{1^{-4}}$ -alkoxy or $\mathbb{C}_{3^{-4}}$ -alkenyloxy, Z³ is C₁-4-alkoxycarbonyl, C₃-C₄-alkenyloxycarbonyl, phenylcarbamoyl or 2-benzimidazolyl,

 Z^4 is cyano, C_{1-4} -alkoxycarbonyl or $C_{3}-C_{4}$ alkenyloxycarbonyl,

Z⁵ is hydrogen or C₁-₆-alkyl,

Z⁶ is hydrogen, C₁-C₄-alkyl or phenyl, and

 \mathbb{Z}^7 is $\mathbb{C}_{1^{-4}}$ -alkyl.

Attention is drawn to the radical derived from compounds of the formula XIa, XIb or XIc where Z^1 is cyano, $C_{1^{-4}}$ alkanoyl, C_{1} -4-alkoxycarbonyl or C_{3} - C_{4} -

alkenyloxycarbonyl, \mathbb{Z}^2 is C_1-C_4 -alkyl, C_1-_4 -alkoxy or C₃-C₄-alkenyloxy, Z³ is C₁-4-alkoxycarbonyl or C₃-C₄alkenyloxycarbonyl and Z4 is cyano.

Particular attention is drawn to the radical derived from compounds of the formula XIa, XIb or XIc where Z1 is 5 cyano, C₁-4-alkoxycarbonyl or C₃-C₄-alkenyloxycarbonyl, Z^2 is C_1 – C_4 -alkoxy or C_2 – C_4 -alkenyloxy, Z^3 is C_1 – C_4 -alkoxycarbonyl or C_3 – C_4 -alkenyloxycarbonyl and Z^4 is

octyl, 2-ethylbexyl, nonyl, decyl, undecyl, dodecyl, 4,7dioxanonyl, 4,8-dioxadecyl, 4,6-dioxaundecyl, 3,6,9trioxaundecyl, 4,7,10-trioxaundecyl or 4,7,10trioxadodecyl

2-methoxyethyl, 2-ethoxyethyl, 2-propoxyethyl, 2-butoxyethyl, 2-isobutoxyethyl, 2- or 3-methoxypropyl, 1-methoxyprop-2-yl, 2- or 3-ethoxypropyl or 2- or 3-propoxypropyl, 3,6-dioxaheptyl, 3,6-dioxaoctyl, 4,7dioxaoctyl, 2-hydroxyethyl, 3-hydroxypropyl, 20 4-hydroxybutyl, 2-cyclohexyloxyethyl, 2- or 3-cyclohexyloxypropyl, 2- or 4-cyclohexyloxybutyl, 2-phenoxyethyl, 2-phenoxypropyl, 3-phenoxypropyl, 4-phenoxybutyl, 2-methoxycarbonylethyl, 2-ethoxycarbonylethyl, 2- or 3-methoxycarbonylpropyl, 2- 25 or 3-ethoxycarbonylpropyl, 2- or 3-butoxycarbonylpropyl, 4-methoxycarbonylbutyl, 4-ethoxycarbonylbutyl, 2-cyanoethyl, 2- or 3-cyanopropyl, 4-cyanobutyl, 2-cyclohexylethyl, 2- or 3-cyclohexylpropyl, benzyl, 1- or 2-phenylethyl, 2-acetyloxyethyl, 2-propionyloxyethyl, 2- or 30 3-acetyloxypropyl, prop-2-cn-1-yl, 2-naethyl-prop-2-cn-1yl, but-2-en-1-yl or but-3-en-1-yl.

R¹¹ and R¹² combined with the nitrogen atom joining

them together into a five- or six-membered saturated hetbe for example pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, thiomorpholinyl S,S-dioxide, piperazinyl or N-(C1-C4-alkyl)piperazinyl, such as N-methyl- or

N-ethyl-piperazinyl. R¹⁰, R¹¹ and R¹² may each also be for example formyl, 40 acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl, heptanoyl, octanoyl, 2-ethylhexanoyl, benzoyl, 2-, 3- or 4-methylbenzoyl, 2-, 3- or 4-methoxybenzoyl or 2-, 3- or 4-chlorobenzoyl.

Examples will now be mentioned of the radicals in the 45 formulae Va to Vd.

A¹ and A⁷ are each for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, 2-methylpentyl, heptyl, 1-ethylpentyl, octyl, 2-ethylhexyl or isooctyl.

A⁷ may also be for example 2-methoxyethyl, 2-ethoxyethyl, 2-propoxyethyl, 2-isopropoxyethyl, 2-butoxyethyl, 2- or 3-methoxypropyl, 2- or 3-ethoxypropyl, 2- or 3-propoxypropyl, 2- or 3-butoxypropyl, 2- or 3,6-dioxaheptyl, 3,6-dioxaoctyl, 4,8-dioxanonyl, 3,7dioxaoctyl, 3,7-dioxanonyl, 4,7-dioxaoctyl, 4,7-dioxanonyl, 2- or 4-butoxybutyl, 4,8-dioxadecyl, 3,6,9-trioxadecyl or 3,6,9-trioxaundecyl.

A¹ may also be for example phenyl, 2-, 3- or 60 4-methylphenyl, 2-, 3- or 4-ethylphenyl, 2-, 3- or 4-propylphenyl, 2-, 3- or 4-isopropylphenyl, 2-, 3- or 4-butylphenyl, 2,4-dimethylphenyl, 2-, 3- or 4-methoxyphenyl, 2-, 3- or 4-ethoxyphenyl, 2-, 3- or 4-isobutoxyphenyl or 2,4-dimethoxyphenyl.

A4 is for example fluorine, chlorine, bromine, 2-, 3- or 4-methoxyphenyl or 2-, 3- or 4-ethoxyphenyl.

G² is for example methylsulfamoyl, ethylsulfamoyl, propylsulfamoyl, isopropylsulfamoyl, butylsulfamoyl, pentylsulfamoyl, hexylsulfamoyl, heptylsulfamoyl, octylsulfamoyl or 4-oxahexylsulfamoyl.

Examples will now be mentioned of the radicals in the

formulae VIa to VIc.

W1, W2 and W4 are each for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl.

W4 may also be for example pentyl, isopentyl, neopentyl, R¹⁰, R¹¹ and R¹² may each also be for example heptyl, 10 tert-pentyl, hexyl, 2-methylpentyl, heptyl, 1-ethylpentyl, octyl, 2-ethylhexyl or isooctyl.

Examples will now be mentioned of the radicals in the formulae VIIa and VIIb.

 Q^1 , Q^5 , Q^6 , E^1 , E^2 , E^3 , E^4 , E^5 , E^6 , E^7 , E^8 and E^{10} are each R1, R2, R10, R11 and R12 may each also be for example 15 for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl.

Q¹, Q⁶, E¹, E², E³, E⁴, E⁵, E⁶, E⁷ and E⁸ may each also

be for example pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, 2-methylpentyl, heptyl, 1-ethylpentyl, octyl, 2-ethylhexyl or isooctyl.

Q1, E2 and E3 may each also be for example nonyl,

isononyl, decyl, isodecyl, undecyl or dodecyl.

Q1 may also be for example tridecyl, isotridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl (the above designations isooctyl, isononyl, isodecyl and isotridecyl are trivial names derived from the oxo process alcohols-cf. Ullmann's Enzyklopädie der technischen Chemie, 4th Edition, Volume 7, pages 215 to 217, and Volume 11, pages 435 and 436), 2-methoxycarbonylethyl, benzyl, 1- or 2-phenylethyl, 3-benzyloxypropyl, phenoxymethyl, 6-phenoxy-4oxahexyl, 8-phenoxy-4-oxaoctyl, 2-, 3- or 4-chlorophenyl or 2-, 3- or 4-carboxyphenyl.

Q1 and E1 may each also be for example 2-methoxyethyl, erocyclic radical with or without further hetero atoms may 35 2-ethoxyethyl, 2-propoxyethyl, 2-isopropoxyethyl, 2-butoxyethyl, 2- or 3-methoxypropyl, 2- or 3-ethoxypropyl, 2- or 3-propoxypropyl, 2- or 3-butoxypropyl, 2- or 4-methoxybutyl, 2- or 4-ethoxybutyl, 2- or 4-propoxybutyl, 3,6-dioxaheptyl, 3,6-dioxaoctyl, 4,8-dioxanonyl, 3,7dioxaoctyl, 3,7-dioxanonyl, 4,7-dioxaoctyl, 4,7-dioxanonyl,

2- or 4-butoxybutyl or 4,8-dioxadecyl.

Q1 may also be for example 3,6,9-trioxadecyl, 3,6,9trioxaundecyl, 3,6,9-trioxadodecyl, 3,6,9,12tetraoxatridecyl, 3,6,9,12-tetraoxatetradecyl, 11-oxahexadecyl, 13-butyl-11-oxaheptadecyl or 4,11dioxapentadecyl.

Q3, E2, E3 and E9 are each for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl or sec-butoxycarbonyl.

E⁹ may also be for example mono- or dimethylcarbamoyl, mono- or diethylcarbonyl, mono- or dipropylcarbamoyl, mono- or diisopropylcarbonyl, mono- or dibutylcarbamoyl or N-methyl-N-butylcarbamoyl.

E7, E8 and E10 may each also be for example methoxy, 4-methoxybutyl, 2- or 4-ethoxybutyl, 2- or 4-propoxybutyl, 55 ethoxy, propoxy, isopropoxy, butoxy, isobutoxy or sec-

butoxy.

E¹⁰ may also be for example methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio or secbutylthio.

Q1, E2, E3 and E10 may each also be for example phenyl, 2-, 3- or 4-methylphenyl, 2-, 3- or 4-ethylphenyl, 2-, 3- or 4-propylphenyl, 2-, 3- or 4-isopropylphenyl, 2-, 3- or 4-butylphenyl, 2,4-dimethylphenyl, 2-, 3- or 4-methoxyphenyl, 2-, 3- or 4-ethoxyphenyl, 2-, 3- or 65 4-isobutoxyphenyl or 2,4-dimethoxyphenyl.

 Q^1 , E^2 and E^3 may each also be for example 2-hydroxyethyl, 2- or 3-hydroxypropyl, 2-cyanoethyl, 2- or 3-cyanopropyl, 2-acetyloxyethyl, 2- or 3-acetyloxypropyl, 2-isobutyryloxycthyl, 2- or 3-isobutyryloxypropyl, 2-methoxycarbonylethyl, 2- or 3-methoxycarbonylpropyl, 2-ethoxycarbonylethyl, 2- or 3-ethoxycarbonylpropyl, 2-methoxycarbonyloxyethyl, 2- or 3-methoxycarbonyloxypropyl, 2-ethoxycarbonyloxyethyl, 2- or 3-ethoxycarbonyloxypropyl, 2-butoxycarbonyloxyethyl, 2or 3-butoxycarbonyloxypropyl, 2-(2-phenylethoxycarbonyloxy)ethyl, 2- or 3-(2-phenylethoxycarbonyloxy)propyl, 2-(2-ethoxyethoxycarbonyloxy) 10 ethyl or 2- or 3-(2-ethoxyethoxycarbonyloxy)propyl.

E² and E³ may each also be for example pyridyl, 2-, 3- or 4-methylpyridyl, 2-, 3- or 4-methoxypyridyl, formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl, heptanoyl, octanoyl, 2-ethylbexanoyl, methylsulfonyl, 15 ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, cyclopentylsulfonyl, cyclohexylsulfonyl, cycloheptylsulfonyl, phenylsulfonyl, tolylsulfonyl, pyridylsulfonyl, benzoyl, 2-, 3- or 4-methylbenzoyl, 2-, 3- or 4-methoxybenzoyl, thien-2-ylcarbonyl, thien-3-ylcarbonyl, 20

cyclopentyl, cyclohexyl or cycloheptyl.

E² and E³ or E⁴ and E³ combined with the nitrogen atom joining them together into a five- or six-membered saturated heterocyclic radical with or without further hetero atoms may be for example pyrrrolidinyl, piperidinyl, morpholinyl, 25 piperazinyl or N-(C1-C4-alkyl)piperazinyl.

Particularly suitable monoazo dyes are those of the formula IIa where D1 is a radical of the formula IIIb.

Particularly suitable monoazo dyes further include those of the formula Ia where K¹ is a radical of the formula IVa or 30

Particular attention is drawn to monoazo dyes of the formula IIb

L¹ is nitro, cyano, C₁-C6-alkanoyl or a radical of the formula —CH=T where T is a radical of an acidic-CH compound,

L² is C₁-C₆-alkyl, halogen, unsubstituted or phenyl- or C_1 - C_4 -alkoxy-substituted C_1 - $_6$ -alkoxy,

L3 is cyano, C1-C4-alkoxycarbonyl or nitro,

 R^1 and R^2 are independently of each other hydrogen, 50 substituted or unsubstituted C1-C6-alkyl with or without interruption by 1 or 2 oxygen atoms in ether function, or C₃-C₆-alkenyl,

 \mathbb{R}^3 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy, and

alkylsulfonylamino or substituted or unsubstituted C_1-C_6 -alkanoylamino.

Particularly suitable methine or azamethine dyes conform to the formula VIIa or VIIb where R5 is methyl.

Particularly suitable methine or azamethine dyes further 60 in U.S. Pat. No. 5,079,365 and WO-A-9219684. conform to the formula VIIa or VIIb where Q5 is cyano.

Particularly suitable methine or azamethine dyes further conform to the formula VIIa or VIIb where Q4 is oxygen.

Particularly suitable azamethine dyes further conform to the formula VII where X is nitrogen.

Particularly suitable methine dyes further conform to the formula VII where X is CH.

Particularly suitable methine or azamethine dyes further conform to the formula VIIa or VIIb where Q2 is a radical of the pyrrole, thiazole or thiophene series.

Particularly suitable methine or azamethine dyes further conform to the formula VIIa where Q^1 is C_1 – l_2 -alkyl with or without substitution by C_{1-6} -alkanoyloxy, C_{1-8} -alkoxycarbonyl, whose alkyl chain may be interrupted by 1 or 2 oxygen atoms in ether function, phenyl or C1-C4alkylphenyl and with or without interruption by 1 or 2 oxygen atoms in ether function.

Particularly suitable methine or azamethine dyes further conform to the formula VIIb where Q6 is a radical of the formula NE²E³ where E² and E³ are independently of each other substituted or unsubstituted C₁-C₁₂-alkanoyl or substituted or unsubstituted benzoyl or else E2 is hydrogen.

Particular attention is drawn to methine or azamethine dyes of the formula VIIb where Q6 is a radical of the formula NE²E³ where E² and E³ are independently of each other C₁-C₈-alkanoyl or benzoyl or else E² is hydrogen.

Particular attention is further drawn to methine or azamethine dyes of the formula VIIa where Q1 is alkyl, alkoxyalkyl, alkanoyloxyalkyl or alkoxycarbonylalkyl, which radicals have up to 12 carbon atoms each, unsubstituted or methyl-substituted benzyl or unsubstituted or methyl-substituted phenyl.

Particular attention is further drawn to methine or azamethine dyes of the formula VIIa or VIIb where Q2 is a radical of the abovementioned formula VIIIa or VIIIc, especially VIIIa, where

E4 and E5 are independently of each other alkyl, alkoxyalkyl, alkanoyloxyalkyl or alkoxycarbonylalkyl, which radicals have up to 12 carbon atoms each, hydrogen, unsubstituted or methyl-substituted benzyl or unsubstituted or methyl-substituted phenyl,

E⁶ is hydrogen, C₁-C₄-alkyl, unsubstituted or C_f-C₄alkyl- or C1-4-alkoxy-substituted phenyl, benzyl or thienyl,

E° is cyano.

 E^{10} is halogen, hydrogen, C_1 - C_4 -alkyl, C_{1-4} -alkoxy, C₁-4-alkylthio, unsubstituted or C₁-C₄-alkylsubstituted phenyl or thienyl, and

Particularly suitable quinophthalone dyes conform to the formula IX where G4 is hydrogen or bromine.

The monoazo dyes of the formula II's are known per se and have been described in large numbers, for example in K. Venkataraman, The Chemistry of Synthetic Dyes, Vol. VI, Academic Press, New York, London, 1972, or EP-A-201

The anthraquinone dyes of the formula Va to Vc are hikewise known per se and described for example in D. R. Waring, G. Hallas, The Chemistry and Application of Dyes, pages 107 to 118, Plenum Press, New York, London, 1990.

The coumarin dyes of the formula VIa to VIc are likewise \mathbb{R}^4 is hydrogen, C_1 -C6-alkyl, C_1 -C6-alkoxy, C_1 -C6-55 known per se and described for example in Ullmann's Enzyklopadie der technischen Chemie, 4th Edition, Volume 17, page 469.

The methine or azamethine dyes of the formula VIIa and VIIb are likewise known per se and described for example

The quinophthalone dyes of the formula IX are likewise known per se and described for example in EP-83 553.

The nitro dye of the formula X is commonly referred to as C. I. Disperse Yellow 42 (10 338).

Suitable dyes with carboxyl and/or sulfo groups will now be more particularly described. These dyes are in particular azo or anthraquinone dyes.

20

25

Of azo dyes, it is monoazo or disazo dyes, which may also be metallized, which are notable, in particular those which have from 1 to 6 carboxyl and/or sulfo groups.

Important azo dyes are for example those whose diazo component is derived from an aniline or aminonaphthalene.

Important azo dyes further include for example those whose coupling component is derived from an aniline, naphthalene, pyrazolone, aminopyrazole, diaminopyridine, pyridone or acylacetarylide.

Specific examples include metal-free or metallized (metal complexes) azo dyes of the phenyl-azo-naphthalene, phenyl-azo-1-phenylpyrazol-5-one, phenyl-azo benzene, naphthyl-azo-benzene, phenyl-azo-aminonaphthalene, naphthyl-azo-naphthalene, naphthyl-azo-pyridone, phenyl-azo-aminopyridine, naphthyl-azo-pyridone, naphthyl-azo-aminopyridine or stilbyl-azo-benzene series.

The azo dyes may additionally contain a reactive group, for example the radical of the formula

which is linked either to the diazo component or to the ³⁰ coupling component via a substituted or unsubstituted amino group.

Of particular importance are azo dyes of the formula IIc

where D2 is a radical of the formula

$$H_2N$$
 U^1
 U^3
 U^2
 U^3
 U^3
 U^3
 U^3
 U^3
 U^3
 U^3

K2 is a radical of the formula

HO
$$(SO_3H)_b$$
 (XIIIa)

50

-continued

 $\begin{array}{c|c} HO & U^1 \\ & \downarrow \\ & N-M(-SO_1H)_{n_0} \\ & \downarrow \\ & U^2 \end{array}$

 H_2N (XIII) 10

 V^{10} V^{12} V^{1} V^{1} V^{1} V^{1} V^{1} V^{2} V^{3} V^{3} V^{3} V^{3} V^{3}

V14 (XIIIk) 25

HO V15 0

CO-CH₃ (XIII)

CH₄ /

CO-NH

or

○ - CH₃ U¹ U² (XIII_m) 40 (XIII_m) 40 (XIII_m) 45

where

a is 0, 1, 2 or 3,

b is 0, 1 or 2,

c is 0 or 1,

U¹ is hydrogen, methyl, ethyl, methoxy, ethoxy, acetyl, cyano, carboxyl, hydroxysulfonyl, C₁-C₄-alkoxycarbonyl, hydroxyl, carbamoyl, C₁-4-monoalkylcarbamoyl or -dialkylcarbamoyl, fluorine, chlorine, bromine or trifluoromethyl,

 U^2 is hydrogen, methyl, ethyl, methoxy, ethoxy, cyano, carboxyl, hydroxysulfonyl, acetylamino, C_1 —alkoxycarbonyl, carbamoyl, C_1 —C₄—monoalkylcarbamoyl or -dialkylcarbamoyl, fluorine, chlorine, nitro, sulfamoyl, C_1 —4-monoalkylsulfamoyl or -dialkylsulfamoyl, C_1 —4-alkylsulfonyl, phenylsulfonyl or phenoxy, and

U³ is a direct bond, oxygen, sulfur or the group
—NHCO—, —NH—CO—NH—, —CONH—,
—CO—, —NHSO₂—, —SO₂NH—, —SO₂—,
—CH—CH—, —CH₂—CH₂—, —CH₂—, —NH—,
or —N—N—,

 V^1 is hydrogen or C_1-C_4 -alkyl,

V² is hydrogen, C₁-4-alkyl or phenyl which may be substituted by C₁-C₅-alkyl, C₁-C₄-alkoxy, chlorine, bromine or hydroxysulfonyl,

V³ is hydrogen or C₁-C₄-alkyl which may be substituted by hydroxyl, cyano, carboxyl, hydroxysulfonyl, sulfato, methoxycarbonyl, ethoxycarbonyl or acetoxy,

 V^4 is hydrogen, $C_{1^{-4}}$ -alkyl which may be hydroxyl, cyano-, carboxyl-, hydroxysulfonyl-, sulfato-, methoxycarbonyl-, ethoxycarbonyl- or acetoxysubstituted, benzyl or phenyl which may be substituted by C_1-C_4 -alkyl, $C_{1^{-4}}$ -alkoxy, chlorine or hydroxysulfonyl,

V⁵ is C₃-C₆-alkylureido, phenylureido, which may be chlorine-, methyl-, methoxy-, nitro-, hydroxysulfonylor carboxyl-substituted, C₁-₆-alkanoylamino, which may be hydroxysulfonyl- or chlorine-substituted, cyclohexanoylamino, benzoylamino, which may be chlorine-, methyl-, methoxy-, nitro-, hydroxylsulfonylor carboxyl-substituted, or hydroxyl,

 V^5 is hydrogen, C_1-_6 -alkyl, which may be phenyl-, C_1-C_4 -alkoxy-, hydroxyl-, phenoxy- or C_1-C_4 -alkanoyloxy-substituted, C_5-C_7 -cycloalkyl, hydroxysulfonylphenyl, C_1-C_4 -alkanoyl, carbamoyl, C_1-C_4 -monoalkylcarbamoyl or -dialkylcarbamoyl, phenylcarbamoyl or cyclohexylcarbamoyl,

V⁷ is methoxy, ethoxy, chlorine, bromine, hydroxysulfonyl, acetylamino, amino, ureido, methylsulfonylamino, ethylsulfonylamino, dimethylaminosulfonylamino, methylamino, ethylamino, dimethylamino or diethylamino,

V8 is hydrogen, methyl, ethyl, methoxy, ethoxy, hydroxysulfonyl, chlorine or bromine,

M is the radical of a benzene or naphthalene ring,

V° is methyl, carboxyl, C₁-C₄-alkoxycarbonyl or phenyl, V¹¹¹ C₁-C₄-alkyl, cyclohexyl, benzyl or phenyl which may be substituted by fluorine, chlorine, bromine, methyl, methoxy, nitro, hydroxysulfonyl, carboxyl, acetyl, acetylamino, methylsulfonyl, sulfamoyl or carbamoyl,

V¹¹ is hydrogen or C_f-C₄-alkyl which may be substituted by methoxy, ethoxy or cyano,

V¹² is hydrogen, methyl, hydroxysulfonylmethyl, hydroxysulfonyl, cyano or carbamoyl,

V¹³ is hydrogen, C₁-C₄-alkyl which may be phenyl-, hydroxysulfonylphenyl-, hydroxysl-, amino-, methoxy-, ethoxy-, carboxyl-, hydroxysulfonyl-, acetylamino-, benzoylamino- or cyano-substituted, cyclohexyl, phenyl which may be carboxyl-, hydroxysulfonyl-, benzoylamino-, acetylamino-, methyl-, methoxy-, cyano- or chlorine-substituted, or amino which is substituted by phenyl, C₁-C₄-alkyl, acetyl or benzoyl,

V¹⁴ is C₁-4-alkyl, phenyl, hydroxyl, cyano, acetyl, benzoyl, carboxyl, methoxycarbonyl, carbamoyl or hydroxysulfonylmethyl and

V¹⁵ is hydrogen, chlorine, bromine, acetylamino, amino, nitro, hydroxysulfonyl, sulfamoyl, methylsulfonyl, phenylsulfonyl, carboxyl, methoxycarbonyl, acetyl, benzoyl, carbamoyl, cyano or hydroxysulfonylmethyl, with the proviso that at least one carboxyl and/or sulfo group is present in the molecule.

Aromatic amines which are suitable for use as diazo components and which are derived from the formula XIIa, XIIb, XIIc or XIId are for example aniline, 2-methoxyaniline, 2-methylaniline, 4-chloro-2-

aminoanisole, 4-methylaniline, 4-methoxyaniline, 2-methoxy-5-methylaniline, 2,5-dimethoxyaniline, 2,5dimethylaniline, 2,4-dimethylaniline, 2,5-diethoxyaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline, 2,5dichloroaniline, 4-chloro-2-nitroaniline, 4-chloro-2methylaniline, 3-chloro-2-methylaniline, 4-chloro-2aminotoluene, 4-phenylsulfonylaniline, 2-ethoxy-1naphthylamine, 1-naphthylamine, 2-naphthylamine, 4-methylsulfonylamiline, 2,4-dichloroaniline-5-carboxylic acid, 2-aminobenzoic acid, 4-aminobenzoic acid, 10 3-aminobenzoic acid, 3-chloroaniline-6-carboxylic acid, amiline-2- or -3- or -4-sulfonic acid, aniline-2,5-disulfonic acid, aniline-2,4-disulfonic acid, aniline-3,5-disulfonic acid, 2-aminotoluene-4-sulfonic acid, 2-aminoanisole-5-sulfonic acid, 2-ethoxyaniline-5-sulfonic acid, 2-ethoxyaniline-4- 15 sulfonic acid, 4-hydroxy-sulfonyl-2-aminobenzoic acid, 2,5dimethoxyaniline-4-sulfonic acid, 2,4-dimethoxyaniline-5sulfonic acid, 2-methoxy-5-methylaniline-4-sulfonic acid, 4-aminoanisole-3-sulfonic acid, 4-aminotoluene-3-sulfonic acid, 2-aminotoluene-5-sulfonic acid, 2-chloroaniline-4- 20 sulfonic acid, 2-chloroaniline-5-sulfonic acid, 2-bromoaniline-4-sulfonic acid, 2,6-dichloroaniline-4-sulfonic acid, 2,6-dimethylaniline-3- or -4-sulfonic acid, 3-acetylaminoaniline-6-sulfonic acid. 4-acetylaminoaniline-2-sulfonic acid, 1-aminonaphthalene-3-sulfonic acid, 25 hydroxyethyl)aniline or N-(2-hydroxyethyl)-m-toluidine. 1-aminonaphthalene-4-sulfonic acid, 1-aminonaphthalene-5-sulfonic acid, 1-aminonaphthalene-6-sulfonic acid, 1-aminonaphthalene-7-sulfonic acid, 1-aminonaphthalene-3,7-disulfonic acid, 1-aminonaphthalene-3,6,8-trisulfonic acid, 1-aminonaphthalene-4,6,8-trisulfonic acid, 30 2-naphthylamine-5-sulfonic acid, or -6- or -8-sulfonic acid, 2-aminonaphthalen-3,6,8-trisulfonic 2-aminonaphthalene-6,8-disulfonic acid. 2-aminonaphthalene-1,6-disulfonic 2-aminonaphthalene-1-sulfonic acid, 2-aminonaphthalene- 35 1,5-disulfonic acid, 2-aminonaphthalene-3,6-disulfonic acid, 2-aminonaphthalene-4,8-disulfonic acid. 2-aminophenol-4-sulfonic acid, 2-aminophenol-5-sulfonic acid, 3-aminophenol-6-sulfonic acid, 1-hydroxy-2aminonaphthalene-5,8- or -4,6-disulfonic acid, 40 4-aminodiphenylamine, 4-amino-4'-methoxydiphenylamine, 4-amino-4'-methoxydiphenylamine-3sulfonic acid, 4-(2'-methylphenylazo)-2-methylaniline, 4-aminoazobenzene, 4'-nitrophenylazo-1aminonaphthalene, 4-(6'-hydroxysulfonylnaphthylazo)-1- 45 aminonaphthalene, 4-(2',5'-dihydroxysulfonylphenylazo)-1-aminonaphthalene, 4'-amino-3'-methyl-3-nitrobenzophenone, 4-aminobenzophenone, 4-(4'aminophenylazo)benzenesulfonic acid, 4-(4'-amino-2'methoxyphenylazo)benzenesulfonic acid and 2-ethoxy-1naphthylamine-6-sulfonic acid.

Aromatic diamines which are suitable for use as tetrazo components and which are derived from the formula XIIe or XIIf are for example 1,3-diaminobenzene, 1,3-55 diaminobenzene-4-sulfonic acid, 1,4-diaminobenzene, 1,4diaminobenzene-2-sulfonic acid, 1,4-diamino-2methylbenzene, 1,4-diamino-2-methoxybenzene, 1,3diamino-4-methylbenzene, 1,3-diaminobenzene-5-sulfonic 1,3-diamino-5-methylbenzene, diaminonaphthalene-4-sulfonic acid, diaminonaphthalene-4,8-disulfonic acid, 3,3'diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminostilbene-2,2'-disulfonic acid, 2,7'diaminodiphenyl sulfone, 2,7-diaminodiphenyl sulfone-4,5- 65 disulfonic acid, 4,4'-diaminobenzophenone, 4,4'-diamino-3, 3'-dinitrobenzophenone, 3,3'-diamino-4,4'-

dichlorobenzophenone, 4,4'- or 3,3'-diaminobiphenyl, 4,4'diamino-3,3'-dichlorobiphenyl, 4,4'-diamino-3,3'-dimethoxy- or -3,3'-dimethyl- or -2,2'-dimethyl- or -2,2'dichloro- or -3,3'-diethoxybiphenyl, 4,4'-diamino-3,3'dimethyl-6,6'-dinitrobiphenyl, 4,4'-diaminobiphenyl-2,2'- or -3,3'-disulfonic acid, 4,4'-diamino-3,3'-dimethyl- or -3,3'dimethoxy- or -2,2'-dimethoxybiphenyl-6,6'-disulfonic acid, 4,4'-diamino-2,2', 5,5'-tetrachlorobiphenyl, 4,4'-diamino-3, 3'-dinitrobiphenyl, 4,4'-diamino-2,2'-dichloro-5,5'dimethoxybiphenyl, 4,4 '-diaminobiphenyl-2,2'- or -3,3'-dicarboxylic acid, 4,4'-diamino-3,3'-dimethylbiphenyl-5,5'disulfonic acid, 4,4'-diamino-2-nitrobiphenyl, 4,4'-diamino-3-ethoxy- or -3-hydroxysulfonylbiphenyl, 4,4'-diamino-3,3'dimethylbiphenyl-5-sulfonic acid. diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-diamino-2,2', 3,3'-tetramethyldiphenylmethane, 4,4'-diaminodiphenylethane, 4,4'-diaminostilbene or 4,4'-diaminodiphenylmethane-3,3'dicarboxylic acid.

K² is for example an aniline, such as 0- or m-toluidine, 0or m-anisidine, cresidine, 2,5-dimethylaniline, 2,5dimethoxyaniline, m-aminoacetanilide, 3-amino-4methoxyacetanilide, 3-amino-4-methylacetanilide, m-aminophenylurea, N-methylaniline, N-methyl-mtoluidine, N-ethylaniline, N-ethyl-m-toluidine, N-(2-

K² may also be for example a naphtholsulfonic acid, such as 1-naphthol-3-sulfonic acid, 1-naphthol-4-sulfonic acid, 1-naphthol-5-sulfonic acid, 1-naphthol-8-sulfonic acid, 1-naphthol-3,6-disulfonic acid, 1-naphthol-3,8-disulfonic acid, 2-naphthol-5-sulfonic acid, 2-naphthol-6-sulfonic acid, 2-naphthol-7-sulfonic acid, 2-naphthol-8-sulfonic acid, 2-naphthol-3,6-disulfonic acid, 2-naphthol-6,8-disulfonic acid, 2-naphthol-3,6,8-trisulfonic acid, 1,8dihydroxynaphthalene-3,6-disulfonic acid, 2,6dihydroxynaphthalene-8-sulfonic acid or 2,8dihydroxynaphthalene-6-sulfonic acid.

K² may also be for example a naphthylamine, such as 1-naphthylamine, N-phenyl-1-naphthylamine, N-ethyl-1naphthylamine, N-phenyl-2-naphthylamine, 1-naphthol, 2-naphthol, 1,5-dihydroxynaphthalene, 1,6dihydroxynaphthalene, 1,7-dihydroxynaphthalene or 2,7dihydroxynaphthalene.

K² may also be for example an aminonaphthalenesulfonic acid, such as 1-naphthylamine-6-sulfonic acid, 1-naphthylamine-7-sulfonic acid, 1-naphthylamine-8sulfonic acid, 2-naphthylamine-3,6-disulfonic acid, 2-naphthylamine-5,7-disulfonic acid or 2-naphthylamine-6, 8-disulfonic acid.

K² may also be for example an aminonaphtholsulfonic methoxyphenylazo)benzenesulfonic acid, 4-(4'-amino-3'- 50 acid, such as 1-amino-5-hydroxynaphthalene-7-sulfonic acid, 1-amino-8-hydroxynaphthalene-4-sulfonic acid, 1-amino-8-hydroxynaphthalene-2,4-disulfonic acid, 1-amino-8-hydroxynaphthalene-3,6-disulfonic acid, 1-amino-8-hydroxynaphthalene-4,6-disulfonic acid, 2-amino-5-hydroxynaphthalene-7-sulfonic acid, 2-amino-8hydroxynaphthalene-6-sulfonic acid, 2-amino-8hydroxynaphthalene-3,6-disulfonic acid, 2-amino-5hydroxynaphthalene-1,7-disulfonic acid, 1-acetylamino-8hydroxynaphthalene-3,6-disulfonic acid, 1-benzoylamino-8-hydroxynaphthalene-3,6-disulfonic acid, 1-acetylamino-8-hydroxynaphthalene-4,6-disulfonic acid, 1-benzoylamino-8-hydroxynaphthalene-4,6-disulfonic acid, 1-acetylamino-5-hydroxynaphthalene-7-sulfonic acid, 2-methylamino-8-hydroxynaphthalene-6-sulfonic acid, 2-methylamino-8-hydroxynaphthalene-6-sulfonic acid or 2-(3'- or 4'-hydroxysulfonylphenyl)amino-8hydroxynaphthalene-6-sulfonic acid.

K² may also be for example a pyrazolone, such as 1-phenyl-, 1-(2'-chlorophenyl)-, 1-(2'-methoxyphenyl)-, 1-(2',6'-dichlorophenyl)-, 1-(2',6'-dichlorophenyl)-, 1-(2'-methoxy-5'-hy-droxysulfonylphenyl)-, 1-(2',5'-dihydroxysulfonylphenyl)-, 1-(2'-carboxyphenyl)-, 1-(2',5'-dihydroxysulfonylphenyl)-, 1-(4'-hydroxysulfonylphenyl)-, 1-(3'-sulfamoylphenyl)-3-carboxylpyrazol-5-one, 1-(3'- or 4'-hydroxysulfonylphenyl)-1-(2'-methyl-4'-hydroxysulfonylphenyl)-, 1-(2',5'-dichlorophenyl)-1-(2'-methyl-4'-hydroxysulfonylphenyl)-, 1-(2',5'-dichlorophenyl)-1-(2'-methyl-4'-hydroxysulfonylphenyl)-, 1-(2',5'-dichlorophenyl)-1-(4',8'-dihydroxysulfonylphenyl)-, 1-(2',5'-dichlorophenyl)-1-(4',8'-dihydroxysulfonyl-1-naphthyl)-, 1-(2',5'-dichlorophenyl)-1-(4',8'-dihydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-carboxylphenyl)-, 1-(2'-carboxylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-carboxylphenyl)-, 1-(3'-sulfamoylphenyl)-, 1-(2'-methyl-4'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(4'-hydroxysulfonylphenyl)-, 1-(2'-methoxy-5'-hydroxysulfonylphenyl)-, 1-(2'-methox

K² may also be for example an aminopyrazole, such as 1-methyl-, 1-ethyl-, 1-propyl-, 1-butyl-, 1-cyclohexyl-, 1-benzyl- or 1-phenyl-5-aminopyrazole, 1-(4-chlorophenyl)- or 1-(4'-methylphenyl)-5-aminopyrazole and 20 1-phenyl-3-methyl-5-aminopyrazole.

K² may also be for example a pyridone, such as 1-ethyl-2-hydroxy-4-methyl-5-carbamoylpyrid-6-one, 1-(2'-hydroxyethyl)-2-hydroxy-4-methyl-5-carbamoylpyrid-6-one, 1-phenyl-2-hydroxy-4-methyl-5-carbamoylpyrid-6-one, 1-ethyl-2-hydroxy-4-methyl-5-cyanopyrid-6-one, 1- e t h y l · 2 · h y d r o x y · 4 · m e t h y l · 5 · hydroxysulfonylmethylpyrid-6-one, 1-methyl-2-hydroxy-4-methyl-5-cyanopyrid-6-one, 1-methyl-2-hydroxy-5-acetylpyrid-6-one, 1,4-dimethyl-2-hydroxy-5-cyanopyrid-6-one, 1,4-dimethyl-5-carbamoylpyrid-6-one, 2,6-dihydroxy-4-ethyl-5-cyanopyridine, 2,6-dihydroxy-4-ethyl-5-hydroxy-4-methyl-2-hydroxy-4-methyl-5-hydroxysulfonylmethylpyrid-6-one, 1-methyl-2-hydroxy-4-methyl-5-methylsulfonylpyrid-6-one or 1-carboxymethyl-2-hydroxy-4-ethyl-5-phenylsulfonylpyrid-6-one.

Instead of the azo dyes of the formula IIc the process of the invention may also employ the corresponding metal complex dyes.

Suitable complexing metals here are in particular copper, cobalt, chromium, nickel and iron of which copper, cobalt or chromium are preferred. Of particular suitability are the symmetrical or asymmetrical 1:1 or 1:2 chromium complexes. The metallized groups are each preferably ortho to the azo group, for example in the form of o,o-dihydroxy-,o-hydroxy-o'-carboxy-, o-carboxy-o'-amino- or o-hydroxy-o'-amino-azo-groups.

Preference is given to dyes of formula IIc where D² is a 50 radical of the formula XIIa, XIIb, XIIc, XIId, XIIe or XIIf where U¹ is hydrogen, methyl, methoxy, carboxyl, hydroxysulfonyl, hydroxysulfonyl, nethoxy, carboxyl, hydroxysulfonyl, acetylamino or chlorine and U³ is —CO—, —SO₂—, —CH—CH—, 55—CH₂—CH₂—, —CH₂— or —N—N—.

Preference is further given to dyes of formula IIc where the radical K² is derived from coupling components which have sulfo and/or carboxyl groups and which couple ortho or para to a hydroxyl and/or amino group. Specific examples of such coupling components are 2-acetylamino-5-hydroxynaphthalene-7-sulfonic acid, 2-acetylamino-8-hydroxynaphthalene-6-sulfonic acid, 1-acetylamino-8-hydroxynaphthalene-3,6-disulfonic acid, 1-benzoylamino-8-hydroxynaphthalene-3,6-disulfonic acid, 1-acetylamino-8-hydroxynaphthalene-4,6-disulfonic acid or 1-benzoylamino-8-hydroxynaphthalene-4,6-disulfonic acid.

Preference is given to azo dyes of the formula XIV

$$H_2N$$
 $N=N-K^3$, (XIV)

where B¹ is hydrogen, C_{1-q}-alkyl, C₁-C₄-alkoxy, chlorine or hydroxysulfonyl and K³ is the radical of a coupling component of the naphthalene, pyrazolone or pyridone series.

Particular preference is further given to azo dyes of the formula XV

$$D^2-N=N$$
 HO_3S
 OH
 NH_2
 B^2

where D^2 is as defined above and B^2 is hydroxysulfonyl in ring position 3 or 4.

Particular preference is further given to azo dyes of the formula XVI

where D^2 is as defined above and the amino group is in ring position 6 or 7.

Useful compounds further include those of the formula

$$D^2-N=N - N=N - NH_{2,}$$

$$(SO_3H)_{\ell}$$

$$(SO_3H)_{\ell}$$

$$(SO_3H)_{\ell}$$

where D^2 is as defined above and d and e independently of each other are 0, 1 or 2.

Useful compounds further include those of the formula

$$B^{1}-N=N$$
 $HO_{3}S$
 OH
 $N=N-B^{4}$
 B^{2}
 A
 B^{2}

where B² is as defined above and one of B³ and B⁴ is D², which has the abovementioned meaning, and the other is

3-amino-6-hydroxysulfonylphenyl or else both B³ and B⁴ are 3-amino-6-hydroxysulfonylphenyl.

Also of particular suitability is the symmetrical 1:2 chromium complex dye based on the azo dye 1-(2-hydroxy-4-hydroxysulfonyl-6-nitronaphth-1-ylazo)-2-hydroxynaphthalene.

The process of the present invention may also employ acid anthraquinone dyes. Such anthraquinones are known per se and described for example in K. Venkataraman, The Chemistry of Synthetic Dyes, Vol. II, Academic Press, New York 1952

Preference is given to acid anthraquinone dyes of the series of the 1,4-diaminoanthraquinones. They conform for example to the formula XVIII

$$B^3-N=N$$
 O
 NH_2
 SO_3H
 HO_3S

where P1 is amino or a radical of formula

where P^2 and P^3 are independently of each other hydrogen or methyl and one of P^4 and P^5 is hydrogen or methyl and the other is hydroxysulfonyl.

The second step of the process of the present invention, 35 step (B), comprises admixing the mixture prepared in step (A) with melamine and if desired with further phenol, substituted melamine I and formaldehyde or formaldehydedonating compounds, the amounts being chosen so that the molar ratio of melamines (melamine and (a)) to (b) is within 40 the range from 1:1.15 to 1:4.5, preferably from 1:1.8 to 1:3.0, the pigment or dye is present in an amount within the range from 0.01 to 5, preferably from 0.1 to 2,% by weight, based on melamine and (a) and (b), and the phenol being present in an amount within the range from 0 to 5, preferably 45 from 0.2 to 2, mol %, based on melamine and (a) and (b).

When fibers are to be produced, it is particularly preferable for the amount of substituted melamine I (component (a)) to be within the range from 1 to 50, preferably from 5 to 15, very particularly preferably from 7 to 12, mol %, 50 card. The based on the sum total of melamine and substituted melamine I, and preferably for from 0.1 to 9.5, particularly preferably from 1 to 5, mol %, based on melamine and (a) and (b), of one of the above-recited phenols or mixtures (disas thereof to be used.

The entire mixture is then condensed in a conventional manner as described for example in EP-A 523 485, EP-A 355 760 or Houben-Weyl, vol. 14/2, Georg Thieme Verlag, Stuttgart, 1963, pp. 357.

The reaction temperatures are generally chosen to be 60 within the range from 20° to 150° C., preferably from 40° to

The reaction pressure is generally not critical. It is generally within the range from 100 to 500 kPa, preferably 100 to 300kPa.

The reaction can be carried out with or without solvent. When an aqueous formaldehyde solution is used, generally no solvent is added. When formaldehyde bound in solid form is used, the solvent used is normally water and the amount used generally ranges from 5 to 40, preferably from 15 to 25,% by weight, based on the total amount of monomers used.

Furthermore, the polycondensation is generally carried out in a pH range above 7. Preference is given to the pH range from 7.5 to 10.0, particularly preferably from 8 to 10.

In addition, the reaction mixture may have added to it small amounts of customary additives such as alkali metal sulfites, for example sodium disulfite and sodium sulfite, alkali metal formates, for example sodium formate, alkali metal citrates, for example sodium citrate, phosphates, polyphosphates, urea, dicyandiamide or cyanamide. They can be added as pure individual compounds or as mixtures with one another, in each case without a solvent or as aqueous solutions, before, during or after the condensation reaction.

Other modifiers are amines and also amino alcohols such as diethylamine, ethanolamine, diethanolamine or 20 2-diethylaminoethanol.

Further possible additives include fillers, emulsifiers and blowing agents.

The fillers used can be for example fibrous or pulverulent inorganic reinforcing agents or fillers such as glass fibers, metal powders, metal salts or silicates, for example kaolin, tale, baryte, quartz or chalk. Emulsifiers used are generally the customary nonionic, anionic or cationic organic compounds having long-chain alkyl radicals. When processing the uncured resins into foams the blowing agent used can be 30 for example pentane.

The polycondensation can be carried out continuously or batchwise, for example in an extruder (see EP-A-355 760), in a conventional manner.

the second step of the process of the present invention, 35 products of the present invention is customarily effected by addition of small amounts of acids such as formic acid, sulfuric acid or ammonium chloride.

To produce fibers, the melamine resin of the present invention is generally spun in a conventional manner, for example after addition of a curing agent, at room temperature in a rotospinning apparatus and subsequently the uncured fibers are cured in a heated atmosphere, or the spinning takes place in a heated atmosphere with simultaneous evaporation of the water used as solvent and curing of the condensate. Such a process is described in detail in DE-A 23 64 091.

Webs are generally produced from waddings by needling in a conventional manner. The waddings are generally produced by customary methods, for example on a roller card.

The fibers and webs colored according to the present invention are preferably used in occupational safety and fire protection, for example for manufacturing boilersuits (disadvantage to date: flameproofed cotton loses its flame resistance on repeated washing), wall coverings (for example for public buildings in which flame resistance is of paramount importance) and also more lightweight clothing for firefighters.

In a preferred embodiment, black covering webs and fabrics are manufactured for engine compartment insulation. The advantages over the corresponding prior art webs are higher thermal stability (sustained use temperature resistance at about 200° C.), the low flammability and also the fact that, unlike other fibers and webs, no flameproofing is required.

The advantages of the process of the present invention reside in making available homogeneously colored

50

melamine-formaldehyde condensation products which, in particular on spinning into fibers, do not form fisheyes.

EXAMPLE 1 (Condensation Resin Without Added Color)

A mixture of 1871 g of melamine, 620 g of an 80% strength by weight mixture of 10 mol % of mono-, 50 mol % of bis- and 40 mol % of trishydroxyoxapentylmelamine, 472.8 g of paraformaldehyde, 38.2 g of phenol and 15.4 ml of diethylethanolamine was condensed at 98° C. in the course of 150 min to a viscosity of 500 Pa.s. Following addition of 1% by weight of formic acid, the resin was spun in a conventional manner.

EXAMPLE 2 (Batch Condensation Resin)

95 g of RCC class pigment grade carbon black (DEGUSSA) were finely dispersed over 30 min by means of an Ultraturax in a mixture of 1128.8 g of 40% strength by weight formaldehyde, 633 g of an 80% strength by weight mixture of 10 mol % of mono-, 50 mol % of bis- and 40 mol % of trishydroxyoxapentylmelamine, followed by the addition of 1746.4 g of melamine, 472.8 g of paraformaldehyde, 38.2 g of phenol, 15.4 ml of diethylethanolamine and 185 g of water. A pH of 9.4 was set with 25% strength by weight NaOH solution. The mixture was condensed at 98° C. to a viscosity of 250 Pa.s and then immediately cooled down to room temperature.

Solids content (theor.): 77% Final viscosity: 430 Pa.s
The black condensation resin was mixed with a colorless 30 condensation resin (see Example 1) in a ratio of 1:5 and spun

EXAMPLE 3

in a conventional manner.

17.2 g of Pigment Red 3 (C.I. 12120) were finely dispersed over 30 min by means of an Ultraturax in a mixture of 733 g of 40% strength by weight formaldehyde and 411 g of an 80% strength by weight mixture of 10 mol % of mono-, 50 mol % of bis- and 40 mol % of trishydroxyoxapentylmelamine, followed by the addition of 40 1134 g of melamine, 307 g of paraformaldehyde, 24.8 g of phenol, 5.0 ml of diethylethanolamine and 107 g of water. A pH of 8.9 was set with 25% strength by weight NaOH solution. The mixture was condensed at 98° C. to a viscosity of 250 Pa.s and then immediately cooled down to room 45 temperature.

Solids content (theor.): 77% Final viscosity: 310 Pa.s

The orange condensation resin was spun in a conventional manner.

EXAMPLE 4

8.2 g of Pigment Yellow 183 (C.I. 18792) were finely dispersed over 30 min by means of an Ultraturax in a mixture of 733 g of 40% strength by weight formaldehyde and 411 g of an 80% strength by weight mixture of 10 mol % of mono, 50 mol % of bis- and 40 mol % of trishydroxyoxapentylmelamine, followed by the addition of 1134 g of melamine, 307 g of paraformaldehyde, 24.8 g of phenol, 5.0 ml of diethylethanolamine and 107 g of water. A pH of 8.9 was set with 25% strength by weight NaOH solution. The mixture was condensed at 98° C. to a viscosity of 250 Pa.s and then immediately cooled down to room temperature.

Solids content (theor.): 77% Final viscosity: 510 Pa.s

The yellow condensation resin was spun in a conventional manner.

EXAMPLE 5

8.2 g of Pigment Blue (15:3) (C.I. 74160) were finely dispersed over 30 min by means of an Ultraturax in a mixture of 733 g of 40% strength by weight formaldehyde and 411 g of an 80% strength by weight mixture of 10 mol % of mono-, 50 mol % of bis- and 40 mol % of trishydroxyoxapentylmelamine, followed by the addition of 1134 g of melamine, 307 g of paraformaldehyde, 24.8 g of phenol, 5.0 ml of diethylethanolamine and 107 g of water. A pH of 8.9 was set with 25% strength by weight NaOH solution. The mixture was condensed at 98° C. to a viscosity of 225 Pa.s and then immediately cooled down to room temperature.

Solids content (theor.): 77% Final viscosity: 495 Pa.s

The blue condensation resin was spun in a conventional manner.

EXAMPLE 6 (Without Aqueous Formaldehyde, Masterbatch)

90 g of RCC class pigment grade carbon black (DEGUSSA) were finely dispersed over 30 min by means of an Ultraturax in a mixture of 662 g of an 80% strength by weight mixture of 10 mol % of mono-, 50 mol % of bis- and 40 mol % of trishydroxyoxapentylmelamine and 704 g of water, followed by the addition of 1814.4 g of melamine, 960.8 g of paraformaldehyde, 39.7 g of phenol, 8.0 ml of diethylethanolamine. A pH of 8.8 was set with 25% strength by weight NaOH solution. The mixture was condensed at 98° C. to a viscosity of 660 Pa.s and then immediately cooled down to room temperature.

Solids content (theor.): 77% Final viscosity: 690 Pa.s

The black condensation resin was mixed with a colorless condensation resin (see Example 1) in a ratio of 1:5 and span in a conventional manner.

EXAMPLE 7

Colorless condensation resin of Example 1 was admixed with 2% by weight of a curing agent mixture (mixture of 35% strength by weight formic acid, 2% by weight of an 80% strength by weight mixture of 10 mol % of mono-, 50 mol % of bis- and 40 mol % of trishydroxyoxapentylmelamine and 20% by weight of RCC class pigment grade carbon black from Degussa, intensively mixed and subsequently spun.

The viscosity measurements were carried out with a cone-plate viscometer (from Epprecht Instruments & Controls), measuring cone "type D", at a temperature of 20° C. and a shear gradient of 20/sec.

The fibers were spun by the process described in DE-A-23 64 091.

EXAMPLE 8

- a) To determine the thermal stability, DIN 53 857 was followed to test a fabric produced from the fibers of Example 2 at various temperatures. The results are given in the Table below.
- b) For comparison, a fabric composed of preoxidized polyacrylonitrile (SIGRAFIL® from Sigri) was tested similarly to (a). The result is given in the Table below.

TABLE

Thermal stability			
Fiber type	Residence time	Temperature	Breaking strength (rel. to breaking strength at start of test)
Black fibers of	6 h	250° C.	110%
Example 2			
Black fibers of	1 h	300° C.	110%
Example 2			
SIGRAFIL 4	6 h	250° C.	50 %
SIGRAFIL 👁	1 h	300° C.	0%

We claim:

1. A process for preparing colored melamine-formaldehyde condensation products by mixing pigments or dyes into a reaction mixture comprising starting compounds for preparing the melamine-formaldehyde condensation products, which comprises (A) dispersing a mixture consisting essentially of

(a) a substituted melamine of the formula I

where X¹, X² and X³ are each selected from the group consisting of —NH₂, —NHR¹ and —NR¹R², and X¹, 30 X² and X³ are not all —NH₂, and R¹ and R² are each selected from the group consisting of hydroxy-C₂-C₁₀-alkyl, hydroxy-C₂-C₄-alkyl-(oxa-C₂-C₄-alkyl)_n, where n is from 1 to 5, and amino-C₂-C₁₂-alkyl, or mixtures of melamines I, and

(b) formaldehyde or formaldehyde donating compounds in a molar ratio of formaldehyde to melamines I within the range from 40:1 to 0,

(c) a pigment or dye, and

(d) phenol, unsubstituted or substituted by radicals selected from the group consisting of C₁₋₉-alkyl and hydroxyl, C_{1} - $_4$ -alkanes substituted by 2 or 3 phenol groups, di(hydroxyphenyl) sulfones or mixtures thereof,

the pigment or dye being added in an amount within the range from 0.01 to 30% by weight, based on (a) and (b), and the phenol in an amount within the range from 0 to 5 mol %, based on (a) and (b),

by intensive stirring until there are no longer any pigment agglomerates $\ge 1 \ \mu m$,

10 and then

- (B) admixing the mixture prepared in (A) with melamine and if desired with further phenol, substituted melamine I and formaldehyde or formaldehyde-donating compounds, the amounts being chosen so that the molar ratio of melamines (melamine and (a)) to (b) is within the range from 1:1.15 to 1:4.5, the pigment or dye is present in an amount within the range from 0.01 to 5% by weight, based on melamine and (a) and (b), and the phenol is present in an amount within the range from 0 to 5 mol %, based on melamine and (a) and (b), and then condensing to form the colored products.
- 2. A process as claimed in claim 1 wherein the dye used belongs to the class of the azo dyes, anthraquinone dyes, coumarin dyes or methine or azamethine dyes.
- 3. Colored melamine-formaldehyde condensation products obtained by the process of claim 1.
- The process of claim 1 which further includes forming the colored articles into fibers or webs.
 - 5. Webs or fibers prepared by the process of claim 4.
 - 6. Webs in accordance with claim 5 wherein (c) is black.
- 7. Engine compartments insulated with the a web of claim 6.
- 8. The web in accordance with claim 6 wherein (c) is carbon black.
- 9. The process of claim 1 wherein in step (A), the molar ratio of (b) is essentially 0 and the mol % of (d) is essentially 0, and in step (B) the molar ratio of melamines (a) to (b) is within the range offrom 1:1.15 to 1:4.5.

.

BEST AVAILABLE COPY

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.:

5,837,013

DATED:

November 17, 1998

INVENTOR(S):

GUENTHER et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Col. 29, claim 1, line 41, "C₁₋₉" should be -C₁-C₉₋₋.

Col. 30, claim I, line 1, " C_{1-4} " should be $-C_{1}-C_{4}$ ".

Col. 30, claim 1, line 12, delete "if desired".

Signed and Sealed this

Twenty-third Day of March, 1999

Attest:

Q. TODD DICKINSON

Attesting Officer

Acting Commissioner of Patents and Trademarks

THIS PAGE BLANK (USPTO)