FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 10 (Polinomios)

- 1. Sean p, q polinomios a coeficientes reales tales que gr(p) = n y gr(q) = m. Analice la veracidad o falsedad de las siguientes afirmaciones, justificando adecuadamente.
 - i) El recorrido de p es \mathbb{R} .

(En práctica vii) y viii))

- ii) gr(pq) = n + m.
- iii) $gr(p+q) = max\{n, m\}.$
- iv) Si $gr(p)=2k, k \in \mathbb{Z}$, entonces p es una función par.
- v) Si $\alpha \in \mathbb{R}$, $gr(\alpha p) = gr(p)$.
- vi) Para todo $x \in \mathbb{R}^+$, $p(x) \ge 0$.
- vii) Existe un polinomio s a coeficientes reales tal que p(x)s(x) = 1, para todo $x \in \mathbb{R}$.
- viii) Existe un polinomio s a coeficientes reales tal que para algún $x_0 \in \mathbb{R}$, $p(x_0)s(x_0) = 1$.
- ix) La compuesta $p \circ q$ es una función polinomial de grado nm.
- 2. Determine el grado del polinomio $p(x) = 6x^5 + (3x^2 2)^4(2x 1)^3$.
- 3. Determine un polinomio $p \in \mathcal{P}(\mathbb{R})$ de grado menor o igual a 3, tal que: (En práctica)

$$p(0) = 0, p(1) = 1, p(2) = 4, p(3) = 10.$$

- 4. Sea $p \in \mathcal{P}(\mathbb{R})$, pruebe que los dos enunciados siguientes son equivalentes:
 - i) p(x) es divisible por $(x-c)^k$ pero no por $(x-c)^{k+1}$.
 - ii) p(x) es de la forma $(x-c)^k Q$, donde Q es un polinomio que no admite como raíz al valor c.
- 5. Descomponer $x^6 + 1$ en polinomios irreducibles: i) En \mathbb{R} . ii) En \mathbb{C} . (En práctica)
- 6. Efectúe las divisiones p(x):q(x) en cada caso, identificando el cuociente y el resto de la división.
 - a) $p(x) = x^5 + 2x^4 x^3 + 22x$, $q(x) = x^2 4x + 1$.
 - b) $p(x) = 2x^4 15x^2 + 8x 3$, q(x) = x + 3.
- 7. Dividir los siguientes polinomios por el binomio (x-c), donde el valor c se indica en cada caso. De acuerdo al valor del resto, decidir si el valor de c corresponde o no a una raíz del polinomio.
 - a) $6x^3 + 17x^2 5x 6$, c = -1/2,
- c) $x^3 8x^2 + x + 42$, c = 5.
 - b) $x^4 20x^2 10x 50$. c = 5.
- d) $x^3 2x^2 + x + 2$. c = 2.

- 8. Determinar el valor de la constante k para que los siguientes polinomios tengan como raíz el valor c indicado. (En práctica d))
 - a) $4x^3 4x^2 + kx + 4$, c = -1,

c) $3x^3 + kx^2 - 7x + 6$, c = -3,

b) $6x^3 + 13x^2 + 2k - 40$, c = 4,

- d) $5x^3 + k^2x^2 + 2kx 3$, c = -1.
- 9. Probar que si un polinomio es divisible por (ax b), entonces también resulta divisible por $(x \frac{b}{a})$.
- 10. Sea $p(x) = \sum_{i=0}^{n} a_i x^i$ un polinomio a coeficientes reales, de grado n, y sean x_1, \dots, x_n las raíces de p.

Determine las raíces del polinomio $q(x) = \sum_{i=0}^{n} a_i(\lambda x)^i$, con $\lambda \in \mathbb{R} - \{0\}$. (En práctica)

- 11. Se sabe que 1+i es una raíz de $p(x)=x^4+x^3+x^2-4x+10$. Determine las otras raíces de p(x). (En práctica)
- 12. Si $p(x) = x^4 + Ax^2 Ax 5$ es tal que p(3) = 88, ¿Cuál es el valor de p(-2)?
- 13. Si $p(x) = 3x^3 Ax^2 4x B$ es tal que p(2) = -10 y p(0) = -10, ¿Cuál es el valor de p(4)?
- 14. Sea $p(x) = x^3 + a_2x^2 + a_1x + a_0$ un polinomio mónico a coeficientes reales. Sean α_1, α_2 y α_3 sus raíces. Pruebe que los coeficientes a_0, a_1 y a_3 pueden expresarse en términos de las raíces a través de las relaciones: (En práctica)

$$a_2 = -(\alpha_1 + \alpha_2 + \alpha_3), \quad a_1 = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3, \quad a_0 = -\alpha_1 \alpha_2 \alpha_3.$$

- 15. Estime el número de raíces positivas y negativas para cada uno de los polinomios:
 - a) $5x^3 + 3x^2 + 6x + 1$,
- (En práctica a))

- b) $4x^5 + 3x^4 2x^3 + x^2 x + 4$.
- 16. Usando el teorema de las raíces racionales, probar que $x^3 + x + 2$ no tiene raíces racionales.
- 17. Encontrar las raíces racionales, en el caso de existir, de los siguientes polinomios.
 - a) $x^4 + 2x^3 x 2$,
- b) $x^3 + 2x^2 + x + 5$,
- c) $12x^3 + 7x^2 5x + 15$,
- 18. Muestre que el polinomio $p(x) = 2x^3 3x^2 12x + 6$ tiene todas sus raíces reales y que pertenecen al intervalo [-3, 4]. (En práctica)
- 19. Descomponer en suma de fracciones parciales:

(En práctica b) y c))

- $a) \ \frac{1}{x(x-1)(x-2)},$
- $c) \ \frac{x^5 + 3x}{x^4 5x^2 + 4},$
- e) $\frac{x^2+x+5}{(x-4)(x+1)}$.

 $b) \ \frac{x^2 - x + 1}{x^2(x - 1)^3},$

 $d) \frac{x^6}{(x^2-1)^3}$