Level 1. DataFrame Basics

Data Frames

Out[45]:

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain
5	1/6/2017	31	2	Sunny

```
In [2]: # #create a dictionary with shape 3 x 5
weather_data = {
    'day': ['1/1/2017','1/2/2017','1/3/2017','1/4/2017','1/5/2017','1/6/2017'
    'temperature': [32,35,28,24,32,31],
    'windspeed': [6,7,2,7,4,2],
    'event': ['Rain', 'Sunny', 'Snow','Snow','Rain', 'Sunny']
}

# #Load dictionary into data frame
df = pd.DataFrame(weather_data)

# display data frame
df
```

Out[2]:

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain
5	1/6/2017	31	2	Sunny

In [3]: # print no of rows and columns of data frame
 df.shape

Out[3]: (6, 4)

Rows

In [4]: # show first 5 records df.head()

Out[4]:

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain

In []: ▶

```
In [5]: 

# show first 3 records
df.head(3)
```

Out[5]:

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow

```
In [6]:  
#show Last 5 records
    df.tail(5)
```

Out[6]:

event	windspeed	temperature	day	
Sunny	7	35	1/2/2017	1
Snow	2	28	1/3/2017	2
Snow	7	24	1/4/2017	3
Rain	4	32	1/5/2017	4
Sunny	2	31	1/6/2017	5

 Out[7]:
 day temperature
 windspeed
 event

 3 1/4/2017
 24
 7 Snow

 4 1/5/2017
 32
 4 Rain

 5 1/6/2017
 31
 2 Sunny

Out[8]:

	day	temperature	windspeed	event
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain
5	1/6/2017	31	2	Sunny

Columns

```
In [9]: ▶ # print all column names
df.columns
```

Out[9]: Index(['day', 'temperature', 'windspeed', 'event'], dtype='object')

```
In [10]:
           ▶ # print entire data of one column
              df['day']
    Out[10]: 0
                   1/1/2017
                   1/2/2017
              1
              2
                   1/3/2017
              3
                   1/4/2017
              4
                   1/5/2017
              5
                   1/6/2017
              Name: day, dtype: object
         #show type of one column
In [11]:
              type(df['day'])
    Out[11]: pandas.core.series.Series
              # print only two columns from a data frame
In [12]:
              df[['day','temperature']]
    Out[12]:
                     day temperature
               0 1/1/2017
                                 32
              1 1/2/2017
                                 35
               2 1/3/2017
                                 28
               3 1/4/2017
                                 24
               4 1/5/2017
                                 32
               5 1/6/2017
                                 31
```

Operations On DataFrame

```
# find maximum value in a column
In [13]:
             df['temperature'].max()
   Out[13]: 35
In [14]:
             # print all data where gpa is greater than 3
             # print all days when temperature was less than 35
             df[df['temperature']>32]
   Out[14]:
                    day temperature windspeed
                                             event
              1 1/2/2017
                               35
                                          7 Sunny
          # find standard deviation of temperature
In [15]:
             df['temperature'].std()
   Out[15]: 3.8297084310253524
```

Out[17]:		temperature	windspeed
	count	6.000000	6.000000
	mean	30.333333	4.666667
	std	3.829708	2.338090
	min	24.000000	2.000000
	25%	28.750000	2.500000
	50%	31.500000	5.000000
	75%	32.000000	6.750000

35.000000

7.000000

set_index

max

event	windspeed	temperature		Out[18]:
			day	
Rain	6	32	1/1/2017	
Sunny	7	35	1/2/2017	
Snow	2	28	1/3/2017	
Snow	7	24	1/4/2017	
Rain	4	32	1/5/2017	
Sunny	2	31	1/6/2017	

```
In [19]: # set day as its original index
df.set_index('day', inplace=True)
```

```
In [20]: 
# print all indexis
df.index
```

Out[20]: Index(['1/1/2017', '1/2/2017', '1/3/2017', '1/4/2017', '1/5/2017', '1/6/2017', '1

```
In [21]:
              # print all record of one index
              df.loc['1/2/2017']
    Out[21]: temperature
                                  35
              windspeed
                                   7
              event
                               Sunny
              Name: 1/2/2017, dtype: object
In [22]:
              # reset its original index
              df.reset_index(inplace=True)
              df.head()
    Out[22]:
                      day temperature
                                      windspeed
                                                 event
               0 1/1/2017
                                  32
                                                  Rain
               1 1/2/2017
                                                Sunny
                                  35
                 1/3/2017
                                  28
                                              2
                                                 Snow
                 1/4/2017
                                  24
                                                 Snow
               4 1/5/2017
                                  32
                                                  Rain
In [23]:
              # set event as original index by inplacing
              df.set index('event',inplace=True) # this is kind of building a hash map using
    Out[23]:
                          day temperature windspeed
                event
                 Rain 1/1/2017
                                      32
                                                  6
               Sunny 1/2/2017
                                      35
                                                  7
                                                  2
                Snow
                      1/3/2017
                                      28
                                                  7
                Snow 1/4/2017
                                      24
                 Rain 1/5/2017
                                       32
                                                  4
               Sunny 1/6/2017
                                       31
                                                  2
              # print information of all snowy days
In [24]:
              df.loc['Snow']
    Out[24]:
                         day temperature windspeed
               event
               Snow 1/3/2017
                                      28
                                                 2
               Snow 1/4/2017
                                      24
                                                 7
```

Level 2. DataFrame Construction

Using csv

Using excel

Using dictionary

```
In [27]: | import pandas as pd
weather_data = {
    'day': ['1/1/2017','1/2/2017','1/3/2017'],
    'temperature': [32,35,28],
    'windspeed': [6,7,2],
    'event': ['Rain', 'Sunny', 'Snow']
}
df = pd.DataFrame(weather_data)
df
Out[27]: day temperature windspeed event
```

27]:		day	temperature	windspeed	event
	0	1/1/2017	32	6	Rain
	1	1/2/2017	35	7	Sunny
	2	1/3/2017	28	2	Snow

Using tuples list

```
In [28]:
              weather_data = [
                  ('1/1/2017',32,6,'Rain'),
                  ('1/2/2017',35,7,'Sunny'),
                  ('1/3/2017',28,2,'Snow')
              df = pd.DataFrame(data=weather_data, columns=['day','temperature','windspeed
    Out[28]:
                     day temperature windspeed event
               0 1/1/2017
                                 32
                                                Rain
               1 1/2/2017
                                 35
                                            7
                                               Sunny
              2 1/3/2017
                                 28
                                                Snow
```

Using list of dictionaries

```
In [29]:
            ▶ weather_data = [
                      {'day': '1/1/2017', 'temperature': 32, 'windspeed': 6, 'event': 'Rain'},
                     {'day': '1/2/2017', 'temperature': 35, 'windspeed': 7, 'event': 'Sunny'}, {'day': '1/3/2017', 'temperature': 28, 'windspeed': 2, 'event': 'Snow'},
                df = pd.DataFrame(data=weather_data, columns=['day','temperature','windspeed
    Out[29]:
                         day temperature windspeed event
                 0 1/1/2017
                                       32
                                                         Rain
                 1 1/2/2017
                                       35
                                                       Sunny
                 2 1/3/2017
                                       28
                                                        Snow
```

Level 3. Handling Missing Data

```
In [30]: # read weather data from csv file and convert date column into date datatype
# set day as index and print dataframe
import pandas as pd
df = pd.read_csv("weather_missing_data.csv",parse_dates=['day'])
type(df.day[0])
df
```

Out[30]:		day	temperature	windspeed	event
	0	2017-01-01	32.0	6.0	Rain
	1	2017-01-04	NaN	9.0	Sunny
	2	2017-01-05	28.0	NaN	Snow
	3	2017-01-06	NaN	7.0	NaN
	4	2017-01-07	32.0	NaN	Rain
	5	2017-01-08	NaN	NaN	Sunny
	6	2017-01-09	NaN	NaN	NaN
	7	2017-01-10	34.0	8.0	Cloudy

40.0

fillna

8 2017-01-11

```
In [31]: # fill all NaN with 0 value
    new_df = df.fillna(0)
    new_df
```

12.0 Sunny

Out[31]:		day	temperature	windspeed	event
	0	2017-01-01	32.0	6.0	Rain
	1	2017-01-04	0.0	9.0	Sunny
	2	2017-01-05	28.0	0.0	Snow
	3	2017-01-06	0.0	7.0	0
	4	2017-01-07	32.0	0.0	Rain
	5	2017-01-08	0.0	0.0	Sunny
	6	2017-01-09	0.0	0.0	0
	7	2017-01-10	34.0	8.0	Cloudy
	8	2017-01-11	40.0	12.0	Sunny

Out[32]:

	day	temperature	windspeed	event
0	2017-01-01	32.0	6.0	Rain
1	2017-01-04	0.0	9.0	Sunny
2	2017-01-05	28.0	0.0	Snow
3	2017-01-06	0.0	7.0	No Event
4	2017-01-07	32.0	0.0	Rain
5	2017-01-08	0.0	0.0	Sunny
6	2017-01-09	0.0	0.0	No Event
7	2017-01-10	34.0	8.0	Cloudy
8	2017-01-11	40.0	12.0	Sunny

```
In [33]: # fill temp and windspeed with previous entry
    new_df = df.fillna(method="ffill")
    new_df
```

Out[33]:

	day	temperature	windspeed	event
0	2017-01-01	32.0	6.0	Rain
1	2017-01-04	32.0	9.0	Sunny
2	2017-01-05	28.0	9.0	Snow
3	2017-01-06	28.0	7.0	Snow
4	2017-01-07	32.0	7.0	Rain
5	2017-01-08	32.0	7.0	Sunny
6	2017-01-09	32.0	7.0	Sunny
7	2017-01-10	34.0	8.0	Cloudy
8	2017-01-11	40.0	12.0	Sunny

```
In [34]: # fill temp and windspeed with next value using back method
new_df = df.fillna(method="bfill")
new_df
```

Out[34]:		day	temperature	windspeed	event
	0	2017-01-01	32.0	6.0	Rain
	1	2017-01-04	28.0	9.0	Sunny
	2	2017-01-05	28.0	7.0	Snow
	3	2017-01-06	32.0	7.0	Rain
	4	2017-01-07	32.0	8.0	Rain
	5	2017-01-08	34.0	8.0	Sunny
	6	2017-01-09	34.0	8.0	Cloudy
	7	2017-01-10	34.0	8.0	Cloudy
	8	2017-01-11	40.0	12.0	Sunny

```
In [35]: # fillna is filling all null value, set a constrain with 1, limit 1
new_df = df.fillna(method="bfill", axis="columns") # axis is either "index" of
new_df
```

Out[35]:		day	temperature	windspeed	event
	0	2017-01-01 00:00:00	32	6	Rain
	1	2017-01-04 00:00:00	9	9	Sunny
	2	2017-01-05 00:00:00	28	Snow	Snow
	3	2017-01-06 00:00:00	7	7	NaN
	4	2017-01-07 00:00:00	32	Rain	Rain
	5	2017-01-08 00:00:00	Sunny	Sunny	Sunny
	6	2017-01-09 00:00:00	NaN	NaN	NaN
	7	2017-01-10 00:00:00	34	8	Cloudy
	8	2017-01-11 00:00:00	40	12	Sunny

Interpolate

```
In [36]: # interpolate all missing values
new_df = df.interpolate()
new_df
```

Out[36]:		day	temperature	windspeed	event
	0	2017-01-01	32.000000	6.00	Rain
	1	2017-01-04	30.000000	9.00	Sunny
	2	2017-01-05	28.000000	8.00	Snow
	3	2017-01-06	30.000000	7.00	NaN
	4	2017-01-07	32.000000	7.25	Rain
	5	2017-01-08	32.666667	7.50	Sunny
	6	2017-01-09	33.333333	7.75	NaN
	7	2017-01-10	34.000000	8.00	Cloudy
	8	2017-01-11	40.000000	12.00	Sunny

dropna

```
In [38]: # drop all those indexis where even a single entry is NaN
new_df = df.dropna()
new_df
```

Out[38]:

_		day	temperature	windspeed	event
_	0	2017-01-01	32.0	6.0	Rain
	7	2017-01-10	34.0	8.0	Cloudy
	8	2017-01-11	40.0	12.0	Sunnv

```
# drop only those indexis where all entries all NaN
In [39]:
               new df = df.dropna(how='all')
               new df
    Out[39]:
                              temperature windspeed
                                                       event
                0 2017-01-01
                                     32.0
                                                 6.0
                                                        Rain
                   2017-01-04
                                     NaN
                                                 9.0
                                                      Sunny
                  2017-01-05
                                     28.0
                                                NaN
                                                       Snow
                  2017-01-06
                                                 7.0
                                     NaN
                                                        NaN
                   2017-01-07
                                     32.0
                                                NaN
                                                        Rain
                  2017-01-08
                                     NaN
                                                NaN
                                                      Sunny
                  2017-01-09
                                     NaN
                                                NaN
                                                        NaN
                  2017-01-10
                                                      Cloudy
                                     34.0
                                                 8.0
                   2017-01-11
                                     40.0
                                                      Sunny
                                                12.0
In [40]:
               # set a threshold , as 1
               new_df = df.dropna(thresh=1)
               new df
    Out[40]:
                         day
                              temperature windspeed
                                                       event
                0 2017-01-01
                                     32.0
                                                 6.0
                                                        Rain
                  2017-01-04
                                     NaN
                                                 9.0
                                                      Sunny
                  2017-01-05
                                     28.0
                                                NaN
                                                       Snow
                  2017-01-06
                                     NaN
                                                 7.0
                                                        NaN
                   2017-01-07
                                     32.0
                                                NaN
                                                        Rain
                   2017-01-08
                                     NaN
                                                NaN
                                                      Sunny
                   2017-01-09
                                     NaN
                                                NaN
                                                        NaN
                7 2017-01-10
                                     34.0
                                                 8.0 Cloudy
                  2017-01-11
                                     40.0
                                                12.0
                                                      Sunny
```

Inserting Missing Dates

```
In [41]: # insert all mising dates in index
dt = pd.date_range("01-01-2017","01-11-2017")
idx = pd.DatetimeIndex(dt)
df.reindex(idx)
```

Out[41]:

	day	temperature	windspeed	event
2017-01-01	NaT	NaN	NaN	NaN
2017-01-02	NaT	NaN	NaN	NaN
2017-01-03	NaT	NaN	NaN	NaN
2017-01-04	NaT	NaN	NaN	NaN
2017-01-05	NaT	NaN	NaN	NaN
2017-01-06	NaT	NaN	NaN	NaN
2017-01-07	NaT	NaN	NaN	NaN
2017-01-08	NaT	NaN	NaN	NaN
2017-01-09	NaT	NaN	NaN	NaN
2017-01-10	NaT	NaN	NaN	NaN
2017-01-11	NaT	NaN	NaN	NaN

Level 4 . Replace Missing Data

Replace (value, value)

```
In [42]: import pandas as pd

#replace any single value with NaN -- e.g -99999 as NaN
data = pd.read_csv('replace_weather_data.csv')
data.replace(-99999, 0, inplace=True)
data
```

Out[42]:		day	temperature	windspeed	event
	0	1/1/2017	32	6	Rain
	1	1/2/2017	0	7	Sunny
	2	1/3/2017	28	0	Snow
	3	1/4/2017	0	7	0
	4	1/5/2017	32	0	Rain
	5	1/6/2017	31	2	Sunny
	6	1/6/2017	34	5	0

Replace ([value, value], value)

```
In [43]: # replace two values with 0
data
new_df = df.replace(to_replace=[-99999,-88888], value=0)
new_df
```

		_			
Out[43]:		day	temperature	windspeed	event
	0	2017-01-01	32.0	6.0	Rain
	1	2017-01-04	NaN	9.0	Sunny
	2	2017-01-05	28.0	NaN	Snow
	3	2017-01-06	NaN	7.0	NaN
	4	2017-01-07	32.0	NaN	Rain
	5	2017-01-08	NaN	NaN	Sunny
	6	2017-01-09	NaN	NaN	NaN
	7	2017-01-10	34.0	8.0	Cloudy
	8	2017-01-11	40.0	12.0	Sunny

Replace (dic{lable:value, label:value}, Rep_value)

Out[46]:

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain
5	1/6/2017	31	2	Sunny

Replace (dic{label:Rep_value, label:Rep_value)

Out[47]:

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	0	7	Sunny
2	1/3/2017	28	0	Snow
3	1/4/2017	0	7	0
4	1/5/2017	32	0	Rain
5	1/6/2017	31	2	Sunny
6	1/6/2017	34	5	0

Replace (dic{value_with_regex, value_with_regex, }, Rep_value)

```
In [48]:  # when windspeed is 6 mph, 7 mph etc. & temperature is 32 F, 28 F etc.
# remove mph, F, C etc using Regex
new_df = df.replace({'temperature': '[A-Za-z]', 'windspeed': '[a-z]'},'', reg
new_df
```

```
Out[48]:
                   day temperature windspeed
                                                event
            0 1/1/2017
                                                 Rain
                                32
            1 1/2/2017
                                35
                                             7 Sunny
            2 1/3/2017
                                28
                                                Snow
            3 1/4/2017
                                24
                                                Snow
            4 1/5/2017
                                32
                                                 Rain
            5 1/6/2017
                                31
                                             2 Sunny
```

Replace (list[value,value,value], [Rep_value,Rep_value,Rep_value])

```
In [49]: # replacing list with another list -- hind : students record

df = pd.DataFrame({
         'score': ['exceptional','average', 'good', 'poor', 'average', 'exceptiona'
          'student': ['rob', 'maya', 'parthiv', 'tom', 'julian', 'erica']
})

df
Out[49]: score student
```

score student 0 exceptional rob 1 average maya 2 good parthiv 3 poor tom 4 average julian 5 exceptional erica

Level 5. Concatination

Replace ([value, value], value)

```
In [51]: ▶ import pandas as pd
             Inside_weather = pd.DataFrame({
                  "city": ["Lahore", "Karachi", "Islamabad"],
                 "temperature": [32,45,30],
                 "humidity": [80, 60, 78]
             })
             Inside_weather
```

Out[51]:		city	temperature	humidity
	0	Lahore	32	80
	1	Karachi	45	60
	2	Islamabad	30	78

create a dataframe

```
In [52]:
             us_weather = pd.DataFrame({
                 "city": ["new york","chicago","orlando"],
                 "temperature": [21,14,35],
                 "humidity": [68, 65, 75]
             })
             us_weather
```

Out[52]:

	city	temperature	humidity
0	new york	21	68
1	chicago	14	65
2	orlando	35	75

concate two data frames

Out[53]:		city	temperature	humidity
	0	Lahore	32	80
	1	Karachi	45	60
	2	Islamabad	30	78
	0	new york	21	68
	1	chicago	14	65
	2	orlando	35	75

re arrange indexis

Out[54]:		city	temperature	humidity
	0	Lahore	32	80
	1	Karachi	45	60
	2	Islamabad	30	78
	3	new york	21	68
	4	chicago	14	65
	5	orlando	35	75

concate and distint by using their keys

Out[55]:			city	temperature	humidity
		0	Lahore	32	80
	Pakistan	1	Karachi	45	60
		2	Islamabad	30	78
		0	new york	21	68
	us	1	chicago	14	65
		2	orlando	35	75

```
In [56]: M df.loc["us"]

Out[56]: city temperature humidity

0 new york 21 68
1 chicago 14 65
2 orlando 35 75
```

print only india data

```
df.loc["Pakistan"]
In [57]:
    Out[57]:
                                          humidity
                        city temperature
                0
                      Lahore
                                      32
                                                80
                1
                     Karachi
                                      45
                                                60
                2 Islamabad
                                      30
                                                78
```

re arange indexis of india

```
temperature df = pd.DataFrame({
In [58]:
                   "city": ["lahore", "karachi", "islamabad"],
                   "temperature": [32,45,30],
              }, index=[0,1,2])
              temperature_df
    Out[58]:
                       city temperature
               0
                     lahore
                                   32
               1
                    karachi
                                   45
               2 islamabad
                                   30
```

Replace ([value, value], value)

Replace ([value, value], value)

```
df = pd.concat([temperature_df,windspeed_df],axis=1)
In [60]:
    Out[60]:
                        city
                            temperature
                                            city windspeed
                0
                      lahore
                                      32
                                          karachi
                                                       12.0
                1
                     karachi
                                      45
                                          lahore
                                                        7.0
                2 islamabad
                                      30
                                            NaN
                                                       NaN
```

Replace ([value, value], value)

```
s = pd.Series(["Humid","Dry","Rain"], name="event")
In [61]:
    Out[61]:
              0
                    Humid
              1
                      Dry
              2
                     Rain
              Name: event, dtype: object
In [62]:
              df = pd.concat([temperature_df,s],axis=1)
    Out[62]:
                       city
                            temperature
                                        event
               0
                     lahore
                                    32
                                       Humid
               1
                    karachi
                                    45
                                          Dry
                 islamabad
                                    30
                                         Rain
```

Level 6. Merging Dataframes

create a new data frame using dictionary

Out[63]: city temperature 0 new york 21 1 chicago 14

orlando

2

create a new data frame using dictionary

35

Out[64]:		city	humidity
	0	chicago	65
	1	new york	68
	2	orlando	75

Merge two data frames

```
In [65]: ► df3 = pd.merge(df1, df2, on="city")
df3
```

Out[65]:		city	temperature	humidity
	0	new york	21	68
	1	chicago	14	65
	2	orlando	35	75

```
In [ ]: ► ▶
```

```
        Out[66]:
        city
        temperature

        0
        new york
        21

        1
        chicago
        14

        2
        orlando
        35
```

3 baltimore

Out[67]: city humidity O chicago 65

1 new york 68

2 san diego 71

```
In [68]:  df3=pd.merge(df1,df2,on="city",how="inner")
  df3
```

38

 Out[68]:
 city
 temperature
 humidity

 0
 new york
 21
 68

 1
 chicago
 14
 65

Out[69]:		city	temperature	humidity
	0	new york	21.0	68.0
	1	chicago	14.0	65.0
	2	orlando	35.0	NaN
	3	baltimore	38.0	NaN
	4	san diego	NaN	71.0

```
In [70]:  M df3=pd.merge(df1,df2,on="city",how="left")
df3
```

```
Out[70]:
```

	city	temperature	humidity
0	new york	21	68.0
1	chicago	14	65.0
2	orlando	35	NaN
3	baltimore	38	NaN

Out[71]:

	city	temperature	humidity
0	new york	21.0	68
1	chicago	14.0	65
2	san diego	NaN	71

Out[72]:

	city	temperature	humidity	_merge
0	new york	21.0	68.0	both
1	chicago	14.0	65.0	both
2	orlando	35.0	NaN	left_only
3	baltimore	38.0	NaN	left_only
4	san diego	NaN	71.0	right_only

Out[73]:

	City	temperature	numuity
0	new york	21	65
1	chicago	14	68
2	orlando	35	71
3	baltimore	38	75

Out[74]:

	city	temperature	humidity
0	chicago	21	65
1	new york	14	68
2	san diego	35	71

Out[75]:

	city	temperature_first	humidity_first	temperature_second	humidity_second
0	new york	21.0	65.0	14.0	68.0
1	chicago	14.0	68.0	21.0	65.0
2	orlando	35.0	71.0	NaN	NaN
3	baltimore	38.0	75.0	NaN	NaN
4	san diego	NaN	NaN	35.0	71.0

Out[76]:

temperature

city	
new york	21
chicago	14
orlando	35

```
df1 = pd.DataFrame({
In [77]:
                 "city": ["new york","chicago","orlando"],
                 "temperature": [21,14,35],
             df1.set_index('city',inplace=True)
```

Out[77]:

temperature

city	
new york	21
chicago	14
orlando	35

Out[78]:

city				
new york	21	NaN	NaN	NaN
chicago	14	NaN	NaN	NaN
orlando	35	NaN	NaN	NaN

