Applied Machine Learning

Imbalanced Data: Cost-Sensitive Learning

Learning goals

- Understand cost-sensitive learning principles
- Apply cost matrices to imbalanced classification problems
- Implement threshold tuning

Cost-Sensitive Learning

COST-SENSITIVE LEARNING: IN A NUTSHELL

- Cost-sensitive learning:
 - Classical learning: data sets are balanced, and all errors have equal costs
 - We now assume given, unequal cost
 - And try to minimize them in expectation
- Applications:
 - Medicine Misdiagnosing as healthy vs. having a disease
 - (Extreme) Weather prediction Incorrectly predicting that no hurricane occurs
 - Credit granting Lending to a risky client vs. not lending to a trustworthy client.

		1	Fruth
		Default	Pays Back
Drod	Default	0	10
Pred.	Pays Back	1000	0

COST MATRIX

Input: cost matrix C

	1		True Cla	ss y	
		1	2		g
Classification	1	C(1, 1)	C(1, 2)		C(1, g)
	2	C(2, 1)	C(2,2)		C(2,g)
ŷ		,			, ,
	:	•	•		•
	g	C(g, 1)	C(g,2)		C(g,g)

- C(j, k) is the cost of classifying class k as j,
- 0-1-loss would simply be: $C(j, k) = \mathbb{1}_{[j \neq k]}$
- C designed by experts with domain knowledge
 - Too low costs: not enough change in model, still costly errors
 - Too high costs: might never predict costly classes

COST MATRIX FOR IMBALANCED LEARNING

- Common heuristic for imbalanced data sets:
 - $C(j,k) = \frac{n_j}{n_k}$ with $n_k \ll n_j$, misclassifying a minority class k as a majority class j
 - C(j, k) = 1 with $n_j \ll n_k$, misclassifying a majority class k as a minority class j
 - 0 for a correct classification

• Imbalanced binary classification:

	True class		
	<i>y</i> = 1	y = -1	
Pred. $\hat{y} = 1$	0	1	
class $\hat{y} = -1$	$\frac{n_{-}}{n_{+}}$	0	

So: much higher costs for FNs

MINIMUM EXPECTED COST PRINCIPLE

- Suppose we have:
 - a cost matrix C
 - knowledge of the true posterior $p(\cdot \mid \mathbf{x})$
- Predict class j with smallest expected costs when marginalizing over true classes:

$$\mathbb{E}_{K \sim \rho(\cdot \mid \mathbf{x})}(C(j, K)) = \sum_{k=1}^{g} \rho(k \mid \mathbf{x})C(j, k)$$

• If we trust a probabilistic classifier, we can convert its scores to labels:

$$h(\mathbf{x}) := \underset{j=1,...,g}{\operatorname{arg\,min}} \sum_{k=1}^{g} \pi_k(\mathbf{x}) C(j,k).$$

• Can be better to take a less probable class • "Elkan et al." 2001

OPTIMAL THRESHOLD FOR BINARY CASE 1/2

- Optimal decisions do not change if
 - C is multiplied by positive constant
 - C is added with constant shift
- Scale and shift C to get simpler C':

where

•
$$C'(-1,1) = \frac{C(-1,1)-C(-1,-1)}{C(1,-1)-C(-1,-1)}$$

• $C'(1,1) = \frac{C(1,1)-C(-1,-1)}{C(1,-1)-C(-1,-1)}$

•
$$C'(1,1) = \frac{C(1,1)-C(-1,-1)}{C(1,-1)-C(-1,-1)}$$

OPTIMAL THRESHOLD FOR BINARY CASE 2/2

We predict x as class 1 if

$$\mathbb{E}_{K \sim p(\cdot \mid \mathbf{x})}(C'(1, K)) \leq \mathbb{E}_{K \sim p(\cdot \mid \mathbf{x})}(C'(-1, K))$$

Let's unroll the expected value and use C':

$$p(-1 \mid \mathbf{x})C'(1,-1) + p(1 \mid \mathbf{x})C'(1,1) \le p(-1 \mid \mathbf{x})C'(-1,-1) + p(1 \mid \mathbf{x})C'(-1,1)$$

$$\Rightarrow [1 - p(1 \mid \mathbf{x})] \cdot 1 + p(1 \mid \mathbf{x})C'(1,1) \le p(1 \mid \mathbf{x})C'(-1,1)$$

$$\Rightarrow p(1 \mid \mathbf{x}) \ge \frac{1}{C'(-1,1) - C'(1,1) + 1}$$

$$\Rightarrow p(1 \mid \mathbf{x}) \ge \frac{C(1,-1) - C(-1,-1)}{C(-1,1) - C(1,1) + C(1,-1) - C(-1,-1)} = c^*$$

• If even C(1,1) = C(-1,-1) = 0, we get:

$$p(1 \mid \mathbf{x}) \ge \frac{C(1,-1)}{C(-1,1)+C(1,-1)} = c^*$$

Optimal threshold c* for probabilistic classifier

$$h(\mathbf{x}) := 2 \cdot \mathbb{1}_{[\pi(\mathbf{x}) > c^*]} - 1$$

EMPIRICAL THRESHOLDING: BINARY CASE

- Theoretical threshold from MECP not always best, due to e.g. wrong model class, finite data, etc.
- Simply measure costs on data with different thresholds
- Then pick best threshold → "Sheng et al." 2006 :

- What if two equal local minima? We prefer the one with wider span
- Do this on validation data / over cross-val to avoid overfitting!

EMPIRICAL THRESHOLDING: BINARY CASE

Example: German Credit task

	True class			
	y = good			
Pred. $\hat{y} = good$	0	3		
class $\hat{y} = bad$	1	0		

- ullet Theoretical: $C(good, bad)/(C(bad, good) + C(good, bad)) = 3/4 = <math>c^*$
- Empirical version with 3-CV: For XGBoost, empirical minimum deviates substantially from theoretical version

EMPIRICAL THRESHOLDING: MULTICLASS

- In the standard setting, we predict class $h(\mathbf{x}) = \arg \max_{k} \pi_{k}(\mathbf{x})$.
- Let's use g thresholds c_k now
- Re-scale scores $\mathbf{s} = (\frac{\pi(\mathbf{x})_1}{c_1}, \dots, \frac{\pi(\mathbf{x})_g}{c_g})^\top$,
- Predict class $\arg \max_{k} \pi_{k}(\mathbf{x})$.
- Compute empirical costs over cross-validation
- Optimize over g (actually: g-1) dimensional threshold vector $(c_1, \ldots, c_q)^T$ to produce minimal costs

BINARY INSTANCE-SPECIFIC COST LEARNING

- Assumes instance-specific costs for every observation: $\mathcal{D}^{(n)} = \{(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})\}_{i=1}^n$, where $(\mathbf{x}^{(i)}, \mathbf{c}^{(i)}) \in \mathbb{R}^p \times \mathbb{R}^2$.
- Define "true class" as cost minimal class
- Define observation weights: $|\mathbf{c}^{(i)}[1] \mathbf{c}^{(i)}[0]|$

	$\mathbf{c}^{(i)}[0]$	$c^{(i)}[1]$	$y^{(i)}$	$w^{(i)}$
$x^{(1)}$	1	1	0	0
$\mathbf{x}^{(2)}$	1	2	0	1
$\mathbf{x}^{(3)}$	7	3	1	4

Now solve weighted ERM:

$$\mathcal{R}_{\textit{emp}}(oldsymbol{ heta}) = \sum_{i=1}^{n} oldsymbol{w}^{(i)} L\left(oldsymbol{y}^{(i)}, f(oldsymbol{x}^{(i)} \mid oldsymbol{ heta})
ight)$$

• NB: Instances with equal costs are effectively ignored.

MULTICLASS COSTS

• Consider g > 2. Vanilla CSL is special case of instance specific, use $\mathbf{c}^{(i)}$ same for all $\mathbf{x}^{(i)}$ of the same class

• For two $\mathbf{x}^{(i)}$ with y = 2 and y = 3:

	$c^{(i)}[1]$	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	$y^{(i)}$
$x^{(1)}$	1	0	1	2
${\bf x}^{(2)}$	3	1	0	3
$\mathbf{x}^{(3)}$	1	0	1	2

• Set $\mathbf{c}^{(i)}[y^{(i)}] = 0$, i.e. zero-cost for correct prediction.

CSOVO

- $\bullet \ \mathsf{Let} \ \mathcal{D}^{(n)} = \{(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})\}_{i=1}^n, \, (\mathbf{x}^{(i)}, \mathbf{c}^{(i)}) \in \mathbb{R}^p \times \mathbb{R}^g.$
- Example:

	$\mathbf{c}^{(i)}[1]$	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$
${\bf x}^{(1)}$	0	2	3
x ⁽²⁾	1	0	1
$x^{(3)}$	2	0	3

- For class j vs. k:
 - How to deal with the label $y^{(i)}$? $y^{(i)}$ can be neither j nor k.
 - How to deal with the costs $\mathbf{c}^{(i)}[j]$ and $\mathbf{c}^{(i)}[k]$?

CSOVO

- When training a binary classifier $f^{(j,k)}$ for class j vs. k,
 - Choose cost min class from pair $\arg\min_{l \in \{j,k\}} \mathbf{c}^{(i)}[l]$ as ground truth
 - ullet Sample weight is simply diff between the 2 costs $|\mathbf{c}^{(i)}[j] \mathbf{c}^{(i)}[k]|$
- Example continued:

	$c^{(i)}[1]$	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	c ⁽ⁱ⁾ [1 vs 2]	$\tilde{y}^{(i)}[1 \text{ vs } 2]$	$w^{(i)}[1 \text{ vs } 2]$
${\bf x}^{(1)}$	0	2	3	0/2	1	2
${\bf x}^{(2)}$	1	0	1	1/0	2	1
$\mathbf{x}^{(3)}$	2	0	3	2/0	2	2
	c ⁽ⁱ⁾ [1]	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	c ⁽ⁱ⁾ [2 vs 3]	$\tilde{y}^{(i)}[2 \text{ vs } 3]$	$w^{(i)}[2 \text{ vs } 3]$
x ⁽¹⁾	c ⁽ⁱ⁾ [1]	c ⁽ⁱ⁾ [2]	c ⁽ⁱ⁾ [3]	c ⁽ⁱ⁾ [2 vs 3]	$\tilde{y}^{(i)}$ [2 vs 3]	w ⁽ⁱ⁾ [2 vs 3]
x ⁽¹⁾ x ⁽²⁾ x ⁽³⁾						w ⁽ⁱ⁾ [2 vs 3] 1 1

CSOVO

Example continued

	$c^{(i)}[1]$	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	c ⁽ⁱ⁾ [1 vs 3]	$\tilde{y}^{(i)}[1 \text{ vs } 3]$	$w^{(i)}[1 \text{ vs } 3]$
x ⁽¹⁾	0	2	3	0/3	1	3
${\bf x}^{(2)}$	1	0	1	-/-	-	0
${\bf x}^{(3)}$	2	0	3	2/3	1	1

- For class j vs. k, transform all $(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})$ to $(\mathbf{x}^{(i)}, \arg\min_{l \in \{j,k\}} \mathbf{c}^{(i)}[l])$ with sample-wise weight $|\mathbf{c}^{(i)}[j] \mathbf{c}^{(i)}[k]|$.
- 2 Train a weighted binary classifier $f^{(j,k)}$ using the above
- **3** Repeat step 1 and 2 for different (j, k).
- **9** Predict using the votes from all $f^{(j,k)}$.
- Theoretical guarantee: test costs of final classifier $\leq 2 \sum_{i < k}$ test cost of $f^{(j,k)}$.

