INFORMATICĂ – Varianta 1

A) 3

rpentru i ← 1, n execută | a[i] ← i

	_[pentru i ← 1, n ← b[i] ← i +			
	_[pentru i ← 1, n o a[i] ← a[i] b[i] ← a[i]] + b[i]		
Du	pă rularea secvenței de mai sus, sum A) 2n+1	na a [n] + b [n] va fi egală B) 3n+1	cu: C) 3n+2	D) 4n+2
3.	Pentru un graf neorientat cu 10 noc având ca elemente gradele nodurilo Câți dintre următorii vectori pot rej (1,1,2,2,3,2,2,1,1,1), (1,1,1,4,2,1,2, A) 1	or 1,2,, 10 (adică v = (d prezenta secvența gradel	(1), d(2),, d(10)), unde or unui graf neorientat co	cu d(i) am notat gradul nodului i). enex cu 10 noduri:
4.	Fie G ₁ = (V, E ₁) și G ₂ = (V, E ₂) dor n > 5, care verifică următoarea projeste tot o matrice de adiacență a un [x] am notat partea întreagă a numă o Mulțimile de muchii E ₁ și lo Atât graful G ₁ , cât și graful o Atât graful G ₁ , cât și graful o Nu există nod de gradul n -	prietate: suma dintre mat ui graf neorientat cu n n ărului x) E_2 sunt disjuncte. I G_2 au cel puțin n - 1 m I G_2 au cel mult $[n(n-1)/4]$	ricea de adiacență a lui Coduri. Câte dintre următo uchii. 1] muchii.	G_1 și matricea de adiacență a lui G_2
5.	Un şir x este un subşir al şirului a dacă toate caracterele lui x se găsesc în aceeași ordine, nu neapărat consecutiv, în a De exemplu $x = "am"$ este subșir al şirului $a = "admis"$, dar nu și al șirului "mare". Un șir x este o permutare comună a șirurilor a și b dacă există o permutare a lui x care să fie subșir al lui a și există o permutare a lui a care să fie subșir al lui a permutare a lui a este permutare comună a șirurilor $a = "admis"$ și a lui a este subșir al lui a și permutarea "mai" a lui a este subșir al lui a și permutarea "mai" a lui a este subșir al lui a și permutarea "mai" a lui a este subșir al lui a care este cea mai lungă permutare comună a șirurilor: mamaaremerepereprune, mureciresesimerearenina A) 6 B) 10 C) 16 D) 19			
6.	Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) =$ folosește numai operații de adunare pentru a calcula valoarea funcției $f(x)$	e și înmulțire, care este n		
	A) 2021	B) 4042	C) 2043231	D) 2045253

1

1. Într-un vector \mathbf{v} de numere naturale nenegative se pot face sărituri de la o poziție la alta după următoare regulă: dacă ne aflăm pe poziția i putem sări pe una din pozițiile i+1, i+2, ..., $i+\mathbf{v}[i]$. Care este numărul minim de sărituri necesar

2. Considerăm următoarea secvență de program, în care \mathbf{a} și \mathbf{b} sunt două tablouri unidimensionale formate din câte n

pentru a ajunge de la prima poziție la ultima poziție în vectorul $\mathbf{v} = [4, 4, 1, 3, 1, 4, 2, 1, 1, 1]$.

numere întregi și indexate de la 1, iar *i* și *n* sunt două variabile de tip întreg:

7. În următorul algoritm A este o matrice cu 12 linii și 12 coloane, cu liniile și coloanele numerotate de la 1, iar variabilele i, j, n sunt de tip întreg. Dacă initial toate elementele matricei A sunt egale cu 0, care este valoarea afisată după executarea algoritmului?

```
A[1,1] \leftarrow 1
n ← 12
<sub>「</sub>pentru j ← 2, n execută
       A[1,j] \leftarrow 2 * A[1,j-1]
        rpentru i ← 2, j execută
                A[i,j] \leftarrow 2 * (A[i,j-1] + A[i-1,j-1])
scrie A[n-4,n-1]
```

- A) 112640
- B) 245760
- C) 122880
- D) 168960

8. Fie funcția:

```
Limbajele C/C++
                                                        Limbajul Pascal
                                        function f(x:integer):integer;
                                        begin
int f(int x)
                                            if x = 0 then f := 0
{
                                            else
if(x == 0)
                                              if x \mod 2 = 0 then
   return 0;
                                                 f := f(x div 2) + (x + 1) mod 2
if(x % 2 == 0)
   return f(x/2) + (x + 1) % 2;
                                                f := f(x div 2) - x mod 2;
else
                                         end;
   return f(x/2) - x % 2;
}
```

Pentru câte numere naturale nenule mai mici strict decât 2022 funcția returnează 0?

- A) 175
- B) 350
- C) 875
- D) 1021

9. Un vector v cu n componente distincte (indexat de la 1) se numește 2-ordonat dacă v[i-2] < v[i] < v[i+2] pentru orice i, $2 \le i \le n-1$. De exemplu: vectorul [1, 4, 2, 6, 3, 7, 5, 8] este 2-ordonat. Într-un vector 2-ordonat cu 2n elemente care este numărul maxim de poziții la care un element se poate găsi față de poziția lui în vectorul ordonat? (de exemplu, pentru vectorul [1, 4, 2, 6, 3, 7, 5, 8] față de vectorul [1, 2, 3, 4, 5, 6, 7, 8] poziția lui 1 este aceeași, poziția lui 2 diferă cu 1, poziția lui 3 diferă cu 2, etc.)

A) 2

- B) [n/2]
- C) n

D) 2*n*-1

10. Fie \mathbf{v}_1 si \mathbf{v}_2 doi vectori ordonati strict crescător, ce contin n, respectiv m elemente, cu $n = m^2$. Care este complexitatea minimă a unui algoritm pentru a verifica dacă există o pereche de numere întregi (a, b) cu $a \sin v_1$, $b \sin v_2$ astfel încât a + b = k, $cu \ 1 \le k \le 10^{12}$?

- A) $O(\log m^m)$
- B) O(log m)
- C) O(n log m)
- D) O(n + m)

11. Fie un arbore cu 2022 de noduri si 22 de niveluri (numerotate de la 0 la 21), cu toate frunzele aflate pe ultimul nivel (rădăcina este unicul nod al nivelului 0, fiii rădăcinei formează nivelul 1, fiii nodurilor de pe nivelul 1 formează nivelul 2, etc.). Fie F şi f numărul maxim, respectiv minim de frunze pe care îl poate avea un astfel de arbore. Atunci F-f are valoarea:

A) 1899

- B) 2102
- C) 1524
- D) 1900

12. Considerăm următoarea funcție recursivă:

```
Limbajele C/C++
                                                                     Limbajul Pascal
int f(int n, int k)
                                                  function f(x:longint):integer;
                                                  begin
                                                       if n = 0 then f := 0
    if(n == 0)
         return 0;
                                                       else
                                                         if k \mod 2 = 0 then
                                                            f := f(n \text{ div } 10, k \text{ div } 2) + n \text{ mod } 10
    if(k%2 == 0)
         return f(n/10, k/2) + n%10;
                                                         else
    else
                                                            f := f(n \text{ div } 10, (k-1) \text{ div } 2) - n \text{ mod } 10;
         return f(n/10, (k-1)/2) - n%10;
}
```

Ce valoare va furniza funcția în urma apelului f(15092022, 133)?

- A) -15
- B) 13

- D) -17
- 13. Considerăm următoarea secvență de program, în care a, b și k sunt variabile de tip număr întreg:

```
a ← 15
b ← 2022
k ← 0
rcât timp a ≠ b execută
    a ← a + 4
    b ← b - 5
    k \leftarrow k + 1
scrie k
```

După rularea secvenței de mai sus, se va afișa:

- A) nicio valoare
- B) 243
- C) 245
- D) 223
- **14.** Ultima cifră a numărului $1^1 + 2^2 + 3^3 + 4^4 + \cdots + 2021^{2021} + 2022^{2022}$ este:
 - A) 3

B) 5

C) 7

- D) 9
- 15. Considerăm următoarea secvență de cod, în care v este un tablou unidimensional format din n numere întregi nenule și indexat de la 1, iar i si k sunt două variabile de tip număr întreg:

Cu ce expresie trebuie înlocuite punctele de suspensie din secventa de cod dată astfel încât, după executarea ei, variabila ksă aibă valoarea 1 dacă și numai dacă toate valorile din tabloul v au aceeași paritate și același semn?

- A) v[i]*v[1] < 0 sau $v[i] \mod 2 \neq v[1] \mod 2$
- B) v[i]*v[1] < 0 si $v[i] \mod 2 \neq v[1] \mod 2$

- C) v[i]*v[1] > 0 și $v[i] \mod 2 = v[1] \mod 2$
- D) v[i-1]*v[i] < 0 sau $v[i] \mod 2 \neq v[i-1] \mod 2$

Universitatea din București Facultatea de Matematică și Informatică

Concursul de admitere septembrie 2022

Domeniul de licență - Matematică

Barem (toate variantele)

	_		
V.a	ria	nta	-
v a	114	пца	

	I
1	A
1 2 3 4 5 6 7 8	В
3	A
4	A C C B
5	C
6	В
7	C
8	A
9	С
10	A
11	A D C
12	C
13	D D
14	D
15	A

Varianta 2

	I
1	В
2	D
3 4 5	D
4	В
5	C C D
6	C
7	D
7 8 9	В
9	D
10	A
11	В
12	С
13	A
14	D
15	В

Varianta 3

	1	
1	В	
1 2 3 4 5 6 7 8	D	
3	A	
4	A	
5	С	
6	D B	
7	В	
8		
	C	
10	C	
11	C C C	
12	С	
13	В	
14	A	
15	A	

Varianta 4

I
D
D
A
D
В
В
C
A B
В
В
В
D
A
С
D