

planetmath.org

Math for the people, by the people.

Poincaré recurrence theorem

Canonical name PoincareRecurrenceTheorem

Date of creation 2013-03-22 14:29:50 Last modified on 2013-03-22 14:29:50

Owner Koro (127) Last modified by Koro (127)

Numerical id 6

Author Koro (127) Entry type Theorem Classification msc 37B20 Classification msc 37A05 Let (X, \mathcal{S}, μ) be a probability space and let $f: X \to X$ be a measure preserving transformation.

Theorem 1. For any $E \in \mathcal{S}$, the set of those points x of E such that $f^n(x) \notin E$ for all n > 0 has zero measure. That is, almost every point of E returns to E. In fact, almost every point returns infinitely often; i.e.

 $\mu(\{x \in E : \text{ there exists } N \text{ such that } f^n(x) \notin E \text{ for all } n > N\}) = 0.$

The following is a topological version of this theorem:

Theorem 2. If X is a second countable Hausdorff space and $\mathscr S$ contains the Borel sigma-algebra, then the set of recurrent points of f has full measure. That is, almost every point is recurrent.