USN

Fifth Semester MCA Degree Examination, December 2011 **Data Mining and Warehousing**

Max. Marks:100 Time: 3 hrs.

Note: Answer any FIVE full questions.

1	a.	Define the term data warehousing. Explain the data lube technology, with examp	les. (10 Marks)
	b.	Explain the three – tier data warehousing architecture.	(10 Marks)
2	a. b.	Explain the OLAP operation in the multidimensional data model. What is NOISE data? Explain the different techniques of noise data, with example	(10 Marks) les.
			(10 Marks)
3	a. b.	Explain the various data mining tasks in detail, with examples. Explain the architectures of data mining systems.	(12 Marks) (08 Marks)
4	a. b.	Define the market basket analysis. Explain the APRIORI algorithm to find frequent item sets.	(03 Marks)
	c.	Explain the AFRIORI algorithm to find frequent item sets. Explain the different approaches used in multilevel association rules mining.	(10 Marks) (07 Marks)
5	a.	Explain the decision tree induction method, with examples.	(10 Marks)
	b.	Explain the back propagation algorithm.	(06 Marks)
	c.	Define the prediction and linear regression.	(04 Marks)
6	a.	Explain the k – means and k – medaids classification partitioning methods.	(10 Marks)
	b.	Explain the agglomerative nesting and divisive analysis hierarchical clustering m	ethods. (10 Marks)
7	a.	Explain the application of data mining for the telecommunication industry.	(10 Marks)
	b.	Explain the social impacts of data mining, with examples.	(10 Marks)
8		Write short notes on:	
	a.	OPTICS	
		CLIGUE	
	c. d.	C O B W E B k – NN classifiers	(20 Marks)
	64.	AL ALL VANOUALIAND	(=0 1,141 112)