1 Data Pre-processing (DS1 – Adult Income)

In this section we will

- · load the dataset,
- · inspect structure & missing values,
- clean obvious issues ("?" placeholders → NaN),
- encode categorical features, and
- · scale numeric columns.

```
# 1-A Imports & Data Load
import pandas as pd
import numpy as np
from google.colab import drive

# Path is relative to your notebook location; adjust if necessary
drive.mount('/content/drive')
df = pd.read_csv("/content/DS1.csv")
print("Shape:", df.shape)
display(df.head())
display(df.info())
```

→ Mounted at /content/drive Shape: (32561, 15)

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_l
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

```
Column
                Non-Null Count Dtype
                  -----
0
                  32561 non-null int64
    age
    workclass
                 32561 non-null object
1
    fnlwgt
                  32561 non-null int64
                  32561 non-null object
    education
    education_num 32561 non-null int64
    marital_status 32561 non-null object
    occupation 32561 non-null object
    relationship
                  32561 non-null object
                  32561 non-null object
    race
                  32561 non-null object
    sex
10 capital_gain
                  32561 non-null int64
11 capital_loss
                  32561 non-null int64
12 hours_per_week 32561 non-null int64
13 native_country 32561 non-null object
14 income
                  32561 non-null object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
```

```
# 1-B Basic EDA & Missing-Value Check
# replace UCI's "?" with NaN
df.replace("?", np.nan, inplace=True)

# count missing values per column
na_counts = df.isna().sum().sort_values(ascending=False)
print("Missing values per column:")
display(na_counts[na_counts > 0])

# quick descriptive stats for numerics
display(df.describe(include=[np.number]).T)

# distribution of target
```

nrint("\nTarget halance:")

display(df['income'].value_counts(normalize=True).to_frame("proportion"))

```
→ Missing values per column:
```

 occupation
 1843

 workclass
 1836

 native_country
 583

dtype: int64

	count	mean	std	min	25%	50%	75%	max	\blacksquare
age	32561.0	38.581647	13.640433	17.0	28.0	37.0	48.0	90.0	ıl.
fnlwgt	32561.0	189778.366512	105549.977697	12285.0	117827.0	178356.0	237051.0	1484705.0	
education_num	32561.0	10.080679	2.572720	1.0	9.0	10.0	12.0	16.0	
capital_gain	32561.0	1077.648844	7385.292085	0.0	0.0	0.0	0.0	99999.0	
capital_loss	32561.0	87.303830	402.960219	0.0	0.0	0.0	0.0	4356.0	
hours_per_week	32561.0	40.437456	12.347429	1.0	40.0	40.0	45.0	99.0	

Target balance:

df.head(20)

```
proportion income <=50K 0.75919 >50K 0.24081
```

1-C Categorical Encoding & Numeric Scaling

```
import pandas as pd
import pickle
from sklearn.preprocessing import StandardScaler, LabelEncoder
```

```
# 2. Drop unwanted columns
df = df.drop(columns=["fnlwgt", "education_num"])
# 3. Standard-scale numeric features
scaler = StandardScaler()
df[["age", "hours_per_week"]] = scaler.fit_transform(df[["age", "hours_per_week"]])
# Save scaler
with open("scaler.pkl", "wb") as f:
    pickle.dump(scaler, f)
# 4. Label-encode the requested categoricals
to_encode = ["workclass", "education", "marital_status", "relationship", "race", "sex", "income"]
for col in to_encode:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
    with open(f"{col} encoder.pkl", "wb") as f:
       pickle.dump(le, f)
# (Optional) Inspect
```

₹		age	workclass	education	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_week
	0	0.030671	6	9	4	Adm- clerical	1	4	1	2174	0	-0.035429
	1	0.837109	5	9	2	Exec- managerial	0	4	1	0	0	-2.222153
	2	-0.042642	3	11	0	Handlers- cleaners	1	4	1	0	0	-0.035429
	3	1.057047	3	1	2	Handlers- cleaners	0	2	1	0	0	-0.035429
	4	-0.775768	3	9	2	Prof- specialty	5	2	0	0	0	-0.035429
	5	-0.115955	3	12	2	Exec- managerial	5	4	0	0	0	-0.035429
	6	0.763796	3	6	3	Other- service	1	2	0	0	0	-1.979184
	7	0.983734	5	11	2	Exec- managerial	0	4	1	0	0	0.369519
	8	-0.555830	3	12	4	Prof- specialty	1	4	0	14084	0	0.774468
	9	0.250608	3	9	2	Exec- managerial	0	4	1	5178	0	-0.035429
	10	-0.115955	3	15	2	Exec- managerial	0	2	1	0	0	3.204161
	11	-0.629143	6	9	2	Prof- specialty	0	1	1	0	0	-0.035429
	12	-1.142331	3	9	4	Adm- clerical	3	4	0	0	0	-0.845327

Next steps: Generate code with df

• View recommended plots

New interactive sheet

```
# Cell 2: Exploratory plots & counts
```

```
import matplotlib.pyplot as plt

# Scatter plot: capital_gain vs. capital_loss
plt.figure(figsize=(8,6))
plt.scatter(df["capital_gain"], df["capital_loss"], alpha=0.3)
plt.title("Capital Gain vs. Capital Loss")
plt.xlabel("capital_gain")
plt.ylabel("capital_loss")
plt.grid(True)
plt.show()

# Distinct value counts
print("Native country value counts:\n", df["native_country"].value_counts(), "\n")
```

print("Occupation value counts:\n", df["occupation"].value_counts())

Native country value counts:	
native_country	
United-States	29170
Mexico	643
Philippines	198
Germany	137
Canada	121
Puerto-Rico	114
El-Salvador	106
India	100
Cuba	95
England	90
Jamaica	81
South	80
China	75
Italy	73
Dominican-Republic	70
Vietnam	67
Guatemala	64
Japan	62
Poland	60
Columbia	59
Taiwan	51
Haiti	44
Iran	43 37
Portugal	34
Nicaragua Peru	34
France	29
Greece	29
Ecuador	28
Ireland	24
Hong	20
Trinadad&Tobago	19
Cambodia	19
Thailand	18
Laos	18
Yugoslavia	16
Outlying-US(Guam-USVI-etc)	14
Honduras	13
Hungary	13
Scotland	12
	_

Holand-Netherlands Name: count, dtype: int64

Occupation value counts: occupation Prof-specialty 4140 Craft-repair 4099 Exec-managerial 4066 Adm-clerical 3770 Sales 3650 Other-service 3295 Machine-op-inspct
Transport-moving 2002 1597 Handlers-cleaners 1370 Farming-fishing 994

928

Tech-support

1

```
Priv-house-serv
                          149
     Armed-Forces
     Name: count, dtype: int64
# Cell: Group countries into continents, encode, and engineer net capital features
import pandas as pd
import pickle
from sklearn.preprocessing import LabelEncoder
# Assuming df is already preprocessed & loaded from your previous cell
# 1. Define a country→continent map
country_to_continent = {
    # North America
    "United-States": "North America",
    "Mexico":
                     "North America",
    "Canada":
                     "North America",
    "Puerto-Rico": "North America",
    "Outlying-US(Guam-USVI-etc)": "North America",
    # Central & South America
    "El-Salvador": "Central America",
    "Guatemala":
                     "Central America",
    "Honduras":
                     "Central America",
   "Honduras": "Central America",
"Cuba": "Caribbean",
    "Dominican-Republic": "Caribbean",
    "Jamaica":
                   "Caribbean",
    "Trinadad&Tobago": "Caribbean",
   "Columbia": "South America",
"Ecuador": "South America",
    "Peru":
                     "South America",
    # Europe
    "Germany":
                     "Europe",
                     "Europe",
    "England":
    "France":
                     "Europe",
    "Italy":
                     "Europe",
                     "Europe",
    "Greece":
    "Ireland":
                     "Europe",
                     "Europe",
    "Poland":
                     "Europe",
    "Portugal":
                     "Europe",
    "Hungary":
                     "Europe",
    "Scotland":
    "Holand-Netherlands": "Europe",
    "Yugoslavia": "Europe",
    # Asia
    "Philippines":
                     "Asia",
                     "Asia",
    "India":
    "China":
                     "Asia",
                     "Asia",
    "Vietnam":
                     "Asia",
    "Japan":
    "Taiwan":
                     "Asia",
                     "Asia",
    "Cambodia":
    "Thailand":
                     "Asia",
                     "Asia",
    "Laos":
                     "Asia",
    "Hong":
    "Iran":
                     "Asia",
   # Middle East
    # (if you have any Middle East countries, add here)
   # Africa
    "Haiti":
                      "North America", # technically Caribbean
    # fallback
}
# 2. Map to continent, fill any unmapped as "Other"
df['continent'] = df['native_country'].map(country_to_continent).fillna("Other")
# 3. Label-encode the continent column
le_cont = LabelEncoder()
df['continent'] = le_cont.fit_transform(df['continent'])
with open("continent_encoder.pkl", "wb") as f:
    pickle.dump(le_cont, f)
# 4. Net capital and flag
df['net_capital'] = df['capital_gain'] - df['capital_loss']
df['had_capital'] = (df['net_capital'] != 0).astype(int)
# Optional: inspect the new columns
print(df[['native_country','continent','capital_gain','capital_loss','net_capital','had_capital']].head())
```

Save final dataframe or continue with modeling...

```
native_country continent capital_gain capital_loss net_capital \
     0 United-States
                              4
                                          2174
                                                           0
                                                                     2174
       United-States
                               4
                                             0
                                                           0
                                                                        0
       United-States
                               4
                                             0
                                                           0
                                                                        0
     3 United-States
                               4
                                             0
                                                           0
                                                                        0
                Cuba
       had_capital
     0
                  1
                  0
     1
     2
                  0
     3
                  0
     4
                  0
# Cell: Drop specified columns and encode occupation
import pickle
from sklearn.preprocessing import LabelEncoder
# 1. Drop the columns
df = df.drop(columns=["capital_gain", "capital_loss", "native_country"])
# 2. Label-encode 'occupation' and save encoder
le occupation = LabelEncoder()
df["occupation"] = le_occupation.fit_transform(df["occupation"])
with open("occupation_encoder.pkl", "wb") as f:
   pickle.dump(le_occupation, f)
# 3. Inspect the result
df.head()
```

₹		age	workclass	education	marital_status	occupation	relationship	race	sex	hours_per_week	income	continent	net_capit;
	0	0.030671	6	9	4	0	1	4	1	-0.035429	0	4	217
	1	0.837109	5	9	2	3	0	4	1	-2.222153	0	4	
	2	-0.042642	3	11	0	5	1	4	1	-0.035429	0	4	
	3	1.057047	3	1	2	5	0	2	1	-0.035429	0	4	
	4	-0.775768	3	9	2	9	5	2	0	-0.035429	0	1	

Next steps: Generate code with df View recommended plots New interactive sheet

Downsampling

```
# Cell: Undersample majority class and visualize balance
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.utils import resample
# Separate majority and minority classes
df_majority = df[df['income'] == 0]
df_minority = df[df['income'] == 1]
# Downsample majority to match minority size
df_majority_down = resample(
   df_majority,
    replace=False,
   n_samples=len(df_minority),
    random_state=42
)
# Combine minority with downsampled majority
df_balanced = pd.concat([df_minority, df_majority_down])
# Shuffle the dataset
df_balanced = df_balanced.sample(frac=1, random_state=42).reset_index(drop=True)
# Replace df with balanced version (optional)
df = df\_balanced
# Visualize class distribution before vs. after
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
```

```
# Before
axes[0].bar([0, 1], df_majority.shape[0], label='0', color='C0')
axes[0].bar([1], df_minority.shape[0], label='1', color='C1')
axes[0].set_title('Original Class Distribution')
axes[0].set_xticks([0, 1])
axes[0].set_xlabel('Income')
axes[0].set_ylabel('Count')

# After
counts = df['income'].value_counts().sort_index()
axes[1].bar(counts.index, counts.values, color=['C0','C1'])
axes[1].set_title('Balanced Class Distribution')
axes[1].set_xticks([0, 1])
axes[1].set_xtlabel('Income')

plt.tight_layout()
plt.show()
```


df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15682 entries, 0 to 15681
Data columns (total 13 columns):
                     Non-Null Count Dtype
 #
     Column
---
     -----
 0
     age
                     15682 non-null float64
     workclass
                     15682 non-null
                                     int64
     education
                     15682 non-null
     marital_status 15682 non-null
                     15682 non-null
     occupation
                                     int64
     relationship
                     15682 non-null
                                     int64
 6
                     15682 non-null
     race
                                     int64
     sex
                     15682 non-null
                                     int64
                                     float64
 8
     hours_per_week
                     15682 non-null
                     15682 non-null
                                     int64
     income
 10 continent
                     15682 non-null
                                     int64
 11
     net_capital
                     15682 non-null
                                     int64
 12 had_capital
                     15682 non-null
                                     int64
dtypes: float64(2), int64(11)
memory usage: 1.6 MB
```

2 Unsupervised Learning on DS1 (Adult Income)

We explore two clustering algorithms:

- **K-Means** (tested for k = 2 ... 10)
- Agglomerative (Ward linkage) using the best-looking k from K-Means

Validation metrics:

- Silhouette Score (higher = better, max 1)
- Davies-Bouldin Index (lower = better)
- Calinski-Harabasz Score (higher = better, optional)

```
# Cell 1: K-Means clustering metrics and visualization
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from \ sklearn.metrics \ import \ silhouette\_score, \ davies\_bouldin\_score, \ calinski\_harabasz\_score
# Exclude target
X = df.drop(columns=['income'])
# Compute metrics for k = 2..10
results = []
for k in range(2, 11):
    km = KMeans(n_clusters=k, random_state=42, n_init=10)
    labels = km.fit_predict(X)
    results.append({
        'k': k,
        'silhouette': silhouette_score(X, labels),
        'davies_bouldin': davies_bouldin_score(X, labels),
        'calinski_harabasz': calinski_harabasz_score(X, labels)
    })
metrics_df = pd.DataFrame(results)
print("K-Means Validation Metrics (k = 2 to 10):")
display(metrics_df)
# Plot the three metrics
plt.figure(figsize=(12,4))
plt.subplot(1,3,1)
plt.plot(metrics_df.k, metrics_df.silhouette, '-o')
plt.title("Silhouette Score"); plt.xlabel("k"); plt.ylabel("Score")
plt.subplot(1,3,2)
plt.plot(metrics_df.k, metrics_df.davies_bouldin, '-o')
plt.title("Davies-Bouldin Index"); plt.xlabel("k"); plt.ylabel("Index")
plt.subplot(1,3,3)
plt.plot(metrics_df.k, metrics_df.calinski_harabasz, '-o')
plt.title("Calinski-Harabasz Score"); plt.xlabel("k"); plt.ylabel("Score")
plt.tight_layout()
plt.show()
best_k = int(metrics_df.loc[metrics_df.silhouette.idxmax(), 'k'])
print(f"→ Best k by silhouette: {best_k}")
```

10

10

2-B Agglomerative Clustering (k=4)

→ Best k by silhouette: 2

Now we'll apply hierarchical clustering with Ward linkage for k=4 and compute the same validation metrics.

Based on those curves, k=4 actually gives the best trade-off (highest Silhouette of \sim 0.125 and lowest DBI of \sim 1.76). Let's lock in k=4 and run Agglomerative clustering to compare.

```
# Cell 2: Agglomerative clustering with the best k
import pandas as pd
import matplotlib.pyplot as plt
from \ sklearn.cluster \ import \ Agglomerative Clustering
from \ sklearn.metrics \ import \ silhouette\_score, \ davies\_bouldin\_score, \ calinski\_harabasz\_score
# Apply Agglomerative clustering
agg = AgglomerativeClustering(n_clusters=best_k, linkage='ward')
labels = agg.fit_predict(X)
# Compute and display metrics
sil = silhouette_score(X, labels)
db = davies_bouldin_score(X, labels)
ch = calinski_harabasz_score(X, labels)
print(f"Agglomerative (k={best_k}) metrics:")
print(f" Silhouette:
                              {sil:.4f}")
print(f" Davies-Bouldin:
                              {db:.4f}")
print(f" Calinski-Harabasz: {ch:.1f}\n")
# Cluster size distribution
dist = pd.Series(labels).value_counts().sort_index()
plt.figure(figsize=(6,4))
dist.plot.bar()
plt.title("Cluster Size Distribution")
plt.xlabel("Cluster")
plt.ylabel("Count")
plt.show()
```

10

```
# Visualize clusters on two key features
plt.figure(figsize=(8,6))
plt.scatter(df['age'], df['hours_per_week'], c=labels, cmap='tab10', alpha=0.5)
plt.title(f"Agglomerative Clusters (k={best_k})")
plt.xlabel("Scaled Age")
plt.ylabel("Scaled Hours per Week")
plt.show()
```

Agglomerative (k=2) metrics:
Silhouette: 0.9766
Davies-Bouldin: 0.0195
Calinski-Harabasz: 122766.8

Feature Selection: Embedded Methods

We'll use two embedded methods to rank and select features:

1. Tree-based importance

Train a RandomForestClassifier on the balanced, preprocessed data and sort features by feature_importances_.

2. L1-penalized model

Fit a LogisticRegression with penalty='l1' (liblinear solver) and pick features with non-zero coefficients.

Note: If you'd also like to consider clustering insights (e.g., features that drive the greatest centroid separation), let me know and I can incorporate those as well before finalizing the set.

```
import pandas as pd
import matplotlib.pyplot as plt
from \ sklearn.ensemble \ import \ Random Forest Classifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
y = df['income']
# Train/test split (stratified)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, stratify=y, test_size=0.2, random_state=42
# 1. Random Forest for feature importance
rf = RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1)
rf.fit(X_train, y_train)
importances = pd.Series(rf.feature_importances_, index=X.columns).sort_values(ascending=False)
print("### Random Forest Feature Importances")
display(importances.to_frame("importance"))
# Plot the importances
plt.figure(figsize=(8,5))
importances.plot.bar()
plt.title("Random Forest Feature Importances")
plt.ylabel("Importance")
plt.tight_layout()
plt.show()
# 2. L1-penalized Logistic Regression
lr = LogisticRegression(penalty='l1', solver='liblinear', C=1.0, random_state=42)
lr.fit(X_train, y_train)
coefs = pd.Series(lr.coef_[0], index=X.columns)
non_zero = coefs[coefs != 0].sort_values(key=abs, ascending=False)
print("\n### L1 Logistic Regression Non-zero Coefficients")
display(non_zero.to_frame("coefficient"))
```

Random Forest Feature Importances

L1 Logistic Regression Non-zero Coefficients

```
coefficient
  had_capital
                     1.143646
                     0.686667
      sex
                     0.518921
      age
hours_per_week
                     0.475709
 marital_status
                     -0.254642
   continent
                     -0.178908
     race
                     0.159890
                     -0.138181
   workclass
  relationship
                     -0.106916
   education
                     0.065439
  occupation
                     0.013676
                     0.000144
  net_capital
```

```
# Subset using the existing df
selected_features = [
    'age', 'hours_per_week', 'relationship', 'marital_status',
    'education', 'occupation', 'net_capital', 'had_capital',
    'income'
]
df_selected = df[selected_features]
print("Shape of selected feature set:", df_selected.shape)
```

```
display(df_selected.head())
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(8,6))
sns.heatmap(df_selected.corr(), annot=True, fmt=".2f", cmap='coolwarm')
plt.title("Correlation Matrix of Selected Features")
plt.show()
```

⇒ Shape of selected feature set: (15682, 9)

	age	hours_per_week	relationship	marital_status	education	occupation	net_capital	had_capital	income	
0	-0.262580	1.584366	0	2	9	9	0	0	0	ıl.
1	1.570235	-0.035429	0	2	11	6	7688	1	1	
2	0.617171	-0.035429	5	2	15	3	0	0	1	
3	-0.555830	-0.035429	4	0	15	0	0	0	0	
4	0.177296	-0.035429	1	5	15	3	0	0	0	

Training and Evaluating Five Classifiers

We'll train and evaluate the following models on our selected feature set (df_selected), using a stratified train/test split:

- 1. Logistic Regression (linear baseline)
- 2. Random Forest (bagged trees)
- 3. Support Vector Machine (RBF kernel)
- 4. AdaBoost (boosted decision stumps)
- 5. Gradient Boosting (boosted trees)

For each, we'll report:

- Classification Report (precision, recall, F1 for each class)
- Confusion Matrix
- Overall metrics: Accuracy, Precision, Recall, F1

```
# Cell: Train & Evaluate Models
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

```
from \ sklearn. ensemble \ import \ Random Forest Classifier, \ Ada Boost Classifier, \ Gradient Boosting Classifier \ from \ sklearn. ensemble \ import \ Random Forest Classifier, \ Ada Boost Classifier, \ Gradient Boosting Classifier \ from \ sklearn. ensemble \ import \ Random Forest \ Classifier, \ Ada Boost \ Classifier, \ Gradient \ Boosting \ Classifier \ from \ sklearn. ensemble \ import \ Random Forest \ Classifier, \ Ada Boost \ Classifier, \ Gradient \ Boosting \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ import \ Random Forest \ Classifier \ from \ Sklearn. ensemble \ from \ Forest \ From \ Forest \ From \ Forest \ From \ From
from sklearn.svm import SVC
from sklearn.metrics import (
         accuracy_score, precision_score, recall_score, f1_score,
         {\tt classification\_report, confusion\_matrix}
)
# Assume df_selected exists from previous cell
X = df_selected.drop(columns=["income"])
y = df_selected["income"]
# Stratified split
X_train, X_test, y_train, y_test = train_test_split(
         X, y, test_size=0.2, stratify=y, random_state=42
# Define models
models = {
         "Logistic Regression": LogisticRegression(solver="liblinear", random_state=42),
         "Random Forest":
                                                           RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1),
                                                           SVC(kernel="rbf", probability=True, random_state=42),
         "SVM (RBF)":
         "AdaBoost":
                                                          AdaBoostClassifier(n_estimators=100, random_state=42),
         "Gradient Boosting": GradientBoostingClassifier(n_estimators=100, random_state=42)
# Train, predict, and evaluate
metrics = {}
for name, model in models.items():
         model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
         # Print classification report
         print(f"\n### {name} Classification Report")
         print(classification_report(y_test, y_pred, digits=3))
         # Plot confusion matrix
         cm = confusion_matrix(y_test, y_pred)
         plt.figure(figsize=(4,3))
         sns.heatmap(cm, annot=True, fmt="d", cbar=False, cmap="Blues")
         plt.title(f"{name} Confusion Matrix")
         plt.xlabel("Predicted")
         plt.ylabel("Actual")
         plt.show()
         # Store overall metrics (positive class = 1)
        metrics[name] = {
   "accuracy": accuracy_score(y_test, y_pred),
                  "precision": precision_score(y_test, y_pred),
                  "recall":
                                            recall_score(y_test, y_pred),
                  "f1_score": f1_score(y_test, y_pred)
```


### Logistic	Regression precision		tion Report f1-score	support
0 1	0.743 0.705	0.680 0.765	0.710 0.734	1569 1568
accuracy macro avg weighted avg	0.724 0.724	0.722 0.722	0.722 0.722 0.722	3137 3137 3137

Logistic Regression Confusion Matrix

Random Forest Classification Report precision recall f1-sc

	precision	recall	f1-score	support
0 1	0.812 0.802	0.799 0.815	0.805 0.808	1569 1568
accuracy macro avg weighted avg	0.807 0.807	0.807 0.807	0.807 0.807 0.807	3137 3137 3137

Random Forest Confusion Matrix

### SV	/M (RBF)	Classification	Report
--------	----------	----------------	--------

	precision	recall	f1-score	support
0 1	0.579 0.870	0.954 0.307	0.721 0.454	1569 1568
accuracy macro avg weighted avg	0.725 0.725	0.630 0.631	0.631 0.587 0.587	3137 3137 3137

SVM (RBF) Confusion Matrix

AdaBoost Classification Report