Trigonometry Problems

Multiple Choice Questions

1. If $\tan A = \cot B$, then:

(a)
$$A - B = 90^{\circ}$$

(b)
$$A = B = 90^{\circ}$$

(b)
$$A = B = 90^{\circ}$$
 (c) $A + B = 90^{\circ}$ (d)

- $B A = 90^{\circ}$
 - **2.** $(\sec^2 \theta 1)(1 \csc^2 \theta)$ is equal to:

- (a) $\sec \theta$ (b) $\cot \theta$ (c) 0 (d) $\csc \theta$
- 3. $\sqrt{\frac{\sec \theta 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta 1}}$ is equal to: (a) $2 \csc \theta$ (b) $2 \sec \theta$ (c) $2 \sec \theta$

- (c) $2 \tan \theta$
- (d) $2\sin\theta$
- **4.** If $\sin \theta + \cos \theta = a$ and $\sec \theta + \csc \theta = b$, then the value of $b(a^2 1)$ is:

- (a) 2a (b) a + b (c) 2b (d) a b
- **5.** If $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$, then the value of $\cos \theta \sin \theta$ is:
- (a) $\sqrt{2}\cos\theta$ (b) $\sin\theta$
- (c) $\sqrt{2}\sin\theta$

- **6.** $\frac{\csc^2 A}{1+\cot^2 A}$ is equal to: (a) 0 (b) $\csc A$
- (c) 1 (d) $\cot A$
- 7. If $\sin \theta + 2 \cos \theta = 1$, then the value of $2 \sin \theta \cos \theta$ is:

- (a) 1 (b) 2 (c) $\sqrt{2}$
- (d) 0
- 8. $(\sin \alpha + \cos \alpha)(\tan \alpha + \cot \alpha) =$

- (a) $\sec \alpha + \tan \alpha$ (b) $\sec \alpha$ (c) $\sec \alpha + \csc \alpha$
- (d) $\csc \alpha$

- 9. $\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} =$ (a) $2\sin \theta$ (b) $2\cos \theta$

- (c) $2 \tan \theta$
- (d) $2 \csc \theta$

- 10. $\frac{\cos \theta}{1-\sin \theta} + \frac{\cos \theta}{1+\sin \theta} =$ (a) $2\sin \theta$ (b) $2\cos \theta$

- (c) $\frac{2}{\cos\theta}$
- (d) $2 \sec \theta$

- 11. $\frac{\sin \theta 2\sin^3 \theta}{2\cos^3 \theta \cos \theta} =$ (a) $\cot \theta$ (b) $\tan \theta$

- (c) $\frac{1}{\sin \theta}$
- (d) $\sec \theta$
- 12. If $\sec \theta + \tan \theta = p$, then $\frac{p^2 1}{p^2 + 1} =$ (a) $\tan \theta$ (b) $\cos \theta$ (c) $\sin \theta$

- (d) $\csc \theta$
- 13. $\sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta \cdot \cos^2 \theta =$

- (a) 0 (b) 1 (c) 2 (d) -2
- **14.** If $\sin \theta + \cos \theta = \sqrt{3}$, then $\tan \theta + \cot \theta =$
- (a) 1 (b) -1 (c) 2
- (d) -2
- **15.** $\sec \theta (1 \sin \theta)(\sec \theta + \tan \theta) =$

(a) 0 (b) $\frac{1}{2}$ (c) 1 (d) none of these

16. $3 \sec^2 \theta - 9 \tan^2 \theta =$

- (a) 1 (b) 1 (c) 8 (d) 0
- **17.** $(1 + \tan \theta + \sec \theta)(1 + \cot \theta \csc \theta) =$ (a) 0 (b) 1 (c) 2 (d) -1
- 18. $\frac{1+\tan^2\theta}{1+\cot^2\theta}=$ (a) $\sec^2\theta$ (b) -1 (c) $\cot^2\theta$ (d) $\tan^2\theta$
- 19. $(\sec \theta + \tan \theta)(1 \sin \theta) =$ (a) $\sec \theta$ (b) $\sin \theta$ (c) $\csc \theta$ (d) $\cos \theta$

20.

- (i) If θ is an acute angle and $\csc \theta = \sqrt{5}$, find the value of $\cot \theta \cos \theta$.
- (ii) If θ is an acute angle and $\tan \theta = \frac{8}{15}$, find the value of $\sec \theta + \csc \theta$.