# Clinical implementation of deep learning: Automatic contouring via U-Net architecture

### Matthew Cooper<sup>1</sup> Simon Biggs<sup>2</sup>

Yu Sun<sup>1</sup> Matthew Sobolewski<sup>2</sup>

<sup>1</sup>The University of Sydney (USyd). School of Physics. Institute of Medical Physics.

<sup>2</sup>Riverina Cancer Care Centre (RCCC). Cancer Care Associates.

Thesis: github.com/matthewdeancooper/masters\_thesis

Video overview: docs.pymedphys/com/background/autocontouring







### **Current limitations**

#### Variability

- Large intra and inter-observer variance (IOV).<sup>1</sup>
- AAPM TG275 risk assessment multiple human-factor failure modes in RT.<sup>2</sup>

#### Time constraints

- Atlas methods 
  ⇒ significant correction times.<sup>3</sup>
- Barrier to future technologies that require fast contouring.<sup>3</sup>

#### Deep learning potential

- Shown to reduce IOV and contouring time.<sup>3</sup>
- Significant improvement cf. atlas methods (time & accuracy).<sup>4</sup>

<sup>&</sup>lt;sup>1</sup> Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271, ppt. 10.1111/1764-9485, 12844

<sup>&</sup>lt;sup>2</sup>Eric Ford et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236–e272. DOI: https://doi.org/10.1002/mp.14030

<sup>&</sup>lt;sup>3</sup>Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462

<sup>&</sup>lt;sup>4</sup>Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

### Research goals

Model 1: QA tool - Pelvic imaging for prostate cancer (Patient, bladder, rectum).

- Alert if prediction differs significantly from expert.
- Need for delineation to be part of regular QA.<sup>4</sup>

Model 2: Automatic contouring - Canine vacuum bag

• Manual vacuum bag contouring  $\approx$  30 min

Goal: Performance similar to human experts.

Performance metric (sDSC) that takes into account expert IOV.<sup>3</sup>

Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

<sup>&</sup>lt;sup>4</sup> Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393-406, DOI: 10.1111/1754-9485.12462

# Surface dice similarity coefficient (sDSC)

$$DSC_{1,2} = \frac{2|M_1 \cap M_2|}{|M_1| + |M_2|}$$

$$sDSC_{1,2}^{(\tau)} = \frac{|S_1 \cap B_2^{(\tau)}| + |S_2 \cap B_1^{(\tau)}|}{|S_1| + |S_2|}$$



<sup>&</sup>lt;sup>3</sup>Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

### Modules - All happy models are alike...



# **Deployment - DICOM networking**



### Pelvic imaging - Patient



# Pelvic imaging - Bladder



### Pelvic imaging - Rectum



# Canine imaging - Vacuum bag



### Structure averaged metrics

|                           | sDSC     | DSC          | MSD (mm)     | Sensitivity | Specificity |
|---------------------------|----------|--------------|--------------|-------------|-------------|
| Pelvic imaging            |          |              |              |             |             |
| Patient                   |          | 0.998(0.001) | 0.002(0.005) | 0.99        | 0.99        |
| Bladder ( $\tau$ 1.46 mm) | 0.9(0.2) | 0.9(0.2)     | 1(3)         | 0.79        | 0.99        |
| Rectum ( $\tau$ 6.99 mm)  | 0.9(0.1) | 0.7(0.1)     | 1(2)         | 0.62        | 0.99        |
| Average                   | . ,      | 0.9(0.2)     | 0.6(2)       | 0.99        | 0.99        |
| Canine imaging            |          |              |              |             |             |
| Vacbag                    |          | 0.952(0.001) | 0.2(0.3)     | 0.95        | 0.99        |

### Cf. Expert IOV.<sup>2</sup>

 $\bullet$  Clinically 'acceptable' bladder and rectum DSC  $\geq 0.7$ 

ullet Bladder: DSC 0.93  $\pm$  0.03, MSD 0.9(0.3) mm.

 $\bullet$  Rectum: DSC 0.81  $\pm$  0.07, MSD 3(2) mm.

<sup>&</sup>lt;sup>2</sup>Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754–9485.12844

<sup>&</sup>lt;sup>3</sup>Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

#### Conclusion and future work

#### Pelvic imaging model:

- Patient contouring within tolerances
- Suspect more data will improve bladder and rectum segmentation.
- 3D architecture may identify gaseous rectal volumes.

#### Canine imaging model:

- Successfully deployed to clinic under a prototype warning
- Performance improvement of approximately 30 minutes per patient

#### **Future**

- Develop a soft surrogate for sDSC to optimise directly
- U-Net no longer S.O.T.A ⇒ HR-Net.<sup>16</sup>

<sup>&</sup>lt;sup>16</sup> Jingdong Wang et al. Deep High-Resolution Representation Learning for Visual Recognition. 2020. arXiv: 1908.07919 [cs.CV]

#### References I

- Ford, Eric et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236–e272. DOI: https://doi.org/10.1002/mp.14030.
- Nikolov, Stanislav et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV].
- Roach, Dale et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: *Journal of Medical Imaging and Radiation Oncology* 63.2 (2019), pp. 264–271. DOI: 10.1111/1754-9485.12844.
- Vinod, Shalini K et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: *Journal of Medical Imaging and Radiation Oncology* 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462.
- Wang, Jingdong et al. Deep High-Resolution Representation Learning for Visual Recognition. 2020. arXiv: 1908.07919 [cs.CV].