Centre for Data Analytics

Introduction to Constraint Programming

Helmut Simonis

CRT-AI Training Program, March 29th, 2021

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Acknowledgments

The author is partially supported by Science Foundation Ireland (Grant Number 05/IN/I886). This material was developed as part of the ECLiPSe ELearning course:

https://eclipseclp.org/ELearning/index.html Support from Cisco Systems and the Silicon Valley Community Foundation is gratefully acknowledged.

Insight Centre for Data Analytics

March 29th, 2021

Slide 3

Objectives

- Overview of Core Constraint Programming
- Three Main Concepts
 - Constraint Propagation
 - Global Constraints
 - Customizing Search
- Get Some Experience with MiniZinc
- Based on Examples, not Formal Description

Outline

- Why Constraint Programming?
- Constraint Propagation
- Global Constraints
- Customizing Search

Insight Centre for Data Analytics

March 29th, 2021

Slide 5

Using MiniZinc IDE

- Developed in the Australian NICTA project
- Maintained by Monash University
- Modelling tool with multiple back-end solvers
- Available from https://www.minizinc.org/

Examples in ECLiPSe

- Open sourced constraint programming language
- Development goes back to 1985
- ECRC, ICL, IC-Parc, PTL, Cisco
- https://eclipseclp.org/
- Specialities
 - Develop new solvers for specific domains
 - Integration with MIP
- Not included in bundled MiniZinc IDE
- Specialized visualization tools used here
 - CP-Viz, Simonis et al. 2010

Insight Centre for Data Analytics

March 29th, 2021

Slide 7

Course Based on ECLiPSe ELearning Course

- Self-study course in constraint programming
- Supported by Cisco Systems and Silicon Valley Community Foundation
- Multi-media format, video lectures, slides, handout etc
- https://eclipseclp.org/ELearning/index.html

Constraint Programming - in a nutshell

- Declarative description of problems with
 - Variables which range over (finite) sets of values
 - Constraints over subsets of variables which restrict possible value combinations
 - A solution is a value assignment which satisfies all constraints
- Constraint propagation/reasoning
 - Removing inconsistent values for variables
 - Detect failure if constraint can not be satisfied
 - Interaction of constraints via shared variables
 - Incomplete
- Search
 - User controlled assignment of values to variables
 - Each step triggers constraint propagation
- Different domains require/allow different methods

Insight Centre for Data Analytics

March 29th, 2021

Slide 9

Constraint Programming is Different

- Declarative Programming
 - Concentrate on what you want
 - Not how to get there
 - Program != Algorithm
 - Program = Model
- Applied to Combinatorial Problems
 - No complete polynomial algorithms known (exist?)
 - CP less ad-hoc than heuristics
 - Models can evolve

A Subtractive Process

"Oh, bosh, as Mr. Ruskin says. Sculpture, per se, is the simplest thing in the world. All you have to do is to take a big chunk of marble and a hammer and chisel, make up your mind what you are about to create and chip off all the marble you don't want."-Paris Gaulois.

Source: https://quoteinvestigator.com/2014/06/22/chip-away/

Insight Centre for Data Analytics

March 29th, 2021

Slide 11

Basic Process

More Realistic

Insight Centre for Data Analytics

March 29th, 2021

Slide 13

Dual Role of Model

- Allows Human to Express Problem
 - Close to Problem Domain
 - Constraints as Abstractions
- Allows Solver to Execute
 - Variables as Communication Mechanism
 - Constraints as Algorithms

Modelling Frameworks

- MiniZinc (NICTA, Monash University, Australia)
- NumberJack (Insight, Ireland)
- Essence (UK)
- Allow use of multiple back-end solvers
- Compile model into variants for each solver
- A priori solver independent model(CP, MIP, SAT)

Insight Centre for Data Analytics

March 29th, 2021

Slide 15

Framework Process

Do It Now!

- Download and install Minizinc
- https://www.minizinc.org/

Insight Centre for Data Analytics

March 29th, 2021

Slide 17

Part I

Basic Constraint Propagation

Example 1: SEND+MORE=MONEY

- Example of Finite Domain Constraint Problem
- Models and Programs
- Constraint Propagation and Search
- Some Basic Constraints: linear arithmetic, alldifferent, disequality
- A Built-in search
- Visualizers for variables, constraints and search

Insight Centre for Data Analytics

March 29th, 2021

Slide 19

Problem Definition

A Crypt-Arithmetic Puzzle

We begin with the definition of the SEND+MORE=MONEY puzzle. It is often shown in the form of a hand-written addition:

Rules

- Each character stands for a digit from 0 to 9.
- Numbers are built from digits in the usual, positional notation.
- Repeated occurrence of the same character denote the same digit.
- Different characters denote different digits.
- Numbers do not start with a zero.
- The equation must hold.

Insight Centre for Data Analytics

March 29th, 2021

Slide 22

Model

- Each character is a variable, which ranges over the values 0 to 9.
- An *alldifferent* constraint between all variables, which states that two different variables must have different values. This is a very common constraint, which we will encounter in many other problems later on.
- Two disequality constraints (variable X must be different from value V) stating that the variables at the beginning of a number can not take the value 0.
- An arithmetic equality constraint linking all variables with the proper coefficients and stating that the equation must hold.

MiniZinc

```
include "alldifferent.mzn";
var 0..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 0..9: M;
var 0..9: 0;
var 0..9: R;
var 0..9: Y;
constraint S != 0;
constraint M != 0;
constraint
                      1000 * S + 100 * E + 10 * N + D
                    + 1000 * M + 100 * O + 10 * R + E
       = 10000 * M + 1000 * O + 100 * N + 10 * E + Y;
constraint alldifferent([S,E,N,D,M,O,R,Y]);
solve satisfy;
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 25

Choice of Model

- This is *one* model, not *the* model of the problem
- Many possible alternatives
- Choice often depends on your constraint system
 - Constraints available
 - Reasoning attached to constraints
- Not always clear which is the best model
- Often: Not clear what is the problem

Running the Program (MiniZinc IDE)

Insight Centre for Data Analytics

March 29th, 2021

Slide 27

Question

- But how did the program come up with this solution?
- We show solution with ECLiPse, other solvers vary slightly

Domain Definition

```
var 0..9: S;
var 0..9: E;
var 0..9: N;
var 0..9: D;
var 0..9: M;
var 0..9: C;
var 0..9: R;
var 0..9: Y;
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 30

Domain Visualization

Columns = Values

	0	1	2	3	4	5	6	7	8	9
S										
E										
N										
D										
M			Се	lls=	Sta	te				
0										
R										
Y										

Rows = Variables

Alldifferent Constraint

```
include "alldifferent.mzn";
constraint alldifferent([S,E,N,D,M,O,R,Y]);
```

- Built-in alldifferent predicate included
- No initial propagation possible
- Suspends, waits until variables are changed
- When variable is fixed, remove value from domain of other variables
- Forward checking

Insight Centre for Data Analytics

March 29th, 2021

Slide 32

Alldifferent Visualization

Uses the same representation as the domain visualizer

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

Disequality Constraints

```
constraint S != 0;
constraint M != 0;
```

Remove value from domain

$$S \in \{1..9\}, M \in \{1..9\}$$

Constraints solved, can be removed

Insight Centre for Data Analytics

March 29th, 2021

Slide 34

Domains after Disequality

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

Equality Constraint

- Normalization of linear terms
 - Single occurence of variable
 - Positive coefficients
- Propagation

Insight Centre for Data Analytics

March 29th, 2021

Slide 36

Normalization

Simplified Equation

$$1000*S+91*E+10*R+D=9000*M+900*O+90*N+Y$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 38

Propagation

$$\underbrace{\frac{1000 * S^{1..9} + 91 * E^{0..9} + 10 * R^{0..9} + D^{0..9}}_{1000..9918} = \underbrace{\frac{1000..9918}{9000 * M^{1..9} + 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9}}_{9000..89919}}$$

Deduction:

$$M = 1, S = 9, O \in \{0..1\}$$

Why? ▶ Skip

Consider lower bound for S

$$\underbrace{1000*S^{1..9} + 91*E^{0..9} + 10*R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000*M^{1..9} + 900*O^{0..9} + 90*N^{0..9} + Y^{0..9}}_{9000..9918}$$

- Lower bound of equation is 9000
- Rest of lhs (left hand side) $(91 * E^{0..9} + 10 * R^{0..9} + D^{0..9})$ is atmost 918
- *S* must be greater or equal to $\frac{9000-918}{1000} = 8.082$
 - otherwise lower bound of equation not reached by lhs
- S is integer, therefore $S \geq \lceil rac{9000-918}{1000}
 ceil = 9$
- S has upper bound of 9, so S=9

Insight Centre for Data Analytics

March 29th, 2021

Slide 40

Consider upper bound of M

$$\underbrace{1000*S^{1..9} + 91*E^{0..9} + 10*R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000*M^{1..9} + 900*O^{0..9} + 90*N^{0..9} + Y^{0..9}}_{9000..9918}$$

- Upper bound of equation is 9918
- Rest of rhs (right hand side) 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9} is at least 0
- *M* must be smaller or equal to $\frac{9918-0}{9000} = 1.102$
- M must be integer, therefore $M \leq \lfloor \frac{9918-0}{9000} \rfloor = 1$
- M has lower bound of 1, so M=1

Consider upper bound of O

$$\underbrace{1000*S^{1..9} + 91*E^{0..9} + 10*R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000*M^{1..9} + 900*O^{0..9} + 90*N^{0..9} + Y^{0..9}}_{9000..9918}$$

- Upper bound of equation is 9918
- Rest of rhs (right hand side) $9000*1+90*N^{0..9}+Y^{0..9}$ is at least 9000
- *O* must be smaller or equal to $\frac{9918-9000}{900} = 1.02$
- O must be integer, therefore $O \leq \lfloor rac{9918-9000}{900}
 floor = 1$
- O has lower bound of 0, so $O \in \{0..1\}$

Insight Centre for Data Analytics

March 29th, 2021

Slide 42

Propagation of equality: Result

	0	1	2	3	4	5	6	7	8	9
S		-	-	-	-	-	-	-	-	*
E										
N										
D										
М		*	-	-	-	-	-	-	-	-
0			*	*	*	*	*	*	*	×
R										
Υ										

Propagation of alldifferent

$$O = 0, [E, R, D, N, Y] \in \{2..8\}$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 44

Waking the equality constraint

- Triggered by assignment of variables
- or update of lower or upper bound

Removal of constants

$$1000 * 9 + 91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} =$$

$$9000 * 1 + 900 * 0 + 90 * N^{2..8} + Y^{2..8}$$

$$1000 * 9 + 91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} =$$

$$9000 * 1 + 900 * 0 + 90 * N^{2..8} + Y^{2..8}$$

$$91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} = 90 * N^{2..8} + Y^{2..8}$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 46

Propagation of equality (Iteration 1)

$$\underbrace{91*E^{2..8}+10*R^{2..8}+D^{2..8}}_{204..816} = \underbrace{90*N^{2..8}+Y^{2..8}}_{182..728}$$

$$\underbrace{91*E^{2..8}+10*R^{2..8}+D^{2..8}}_{204..728} = 90*N^{2..8}+Y^{2..8}$$

$$\underbrace{204..728}_{204..728}$$

$$N \ge 3 = \lceil \frac{204-8}{90} \rceil, E \le 7 = \lfloor \frac{728-22}{91} \rfloor$$

Propagation of equality (Iteration 2)

$$91 * E^{2..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{91 * E^{2..7} + 10 * R^{2..8} + D^{2..8}}_{204..725} = \underbrace{90 * N^{3..8} + Y^{2..8}}_{272..728}$$

$$\underbrace{91 * E^{2..7} + 10 * R^{2..8} + D^{2..8}}_{272..725} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{272..725}_{272..725}$$

$$E \ge 3 = \lceil \frac{272 - 88}{91} \rceil$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 48

Propagation of equality (Iteration 3)

$$91 * E^{3..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = \underbrace{90 * N^{3..8} + Y^{2..8}}_{272..728}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = 90 * N^{3..8} + Y^{2..8}$$

Propagation of equality (Iteration 4)

$$91 * E^{3..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = \underbrace{90 * N^{4..8} + Y^{2..8}}_{362..728}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{362..725} = 90 * N^{4..8} + Y^{2..8}$$

$$E \ge 4 = \lceil \frac{362 - 88}{91} \rceil$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 50

Propagation of equality (Iteration 5)

$$91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = \underbrace{90 * N^{4..8} + Y^{2..8}}_{362..728}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{386..725}_{386..725}$$

$$N \ge 5 = \lceil \frac{386 - 8}{90} \rceil$$

Propagation of equality (Iteration 6)

$$91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = \underbrace{90 * N^{5..8} + Y^{2..8}}_{452..728}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{452..725} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{10 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{452..725} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{10 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{452..725} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{10 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{452..725} = 90 * N^{5..8} + Y^{2..8}$$

No further propagation at this point

Insight Centre for Data Analytics

March 29th, 2021

Slide 52

Domains after setup

	0	1	2	3	4	5	6	7	8	9
S										
E										
N										
D										
М										
0										
R										
Υ										

Search

solve satisfy;

- Try to find a feasible solution, choice left to solver
- Naive search strategy shown here
 - Try variable in order given
 - Try values starting from smallest value in domain
 - When failing, backtrack to last open choice
 - Chronological Backtracking
 - Depth First search

Insight Centre for Data Analytics

March 29th, 2021

Slide 55

Search Tree Step 1

Variable S already fixed

Step 2, Alternative E=4

Variable $E \in \{4..7\}$, first value tested is 4

Insight Centre for Data Analytics

March 29th, 2021

Slide 57

Assignment E=4

	0	1	2	3	4	5	6	7	8	9
S										
E					*	-	-	-		
N										
D										
М										
0										
R										
Υ										

Propagation of E = 4, equality constraint

$$91 * 4 + 10 * R^{2..8} + D^{2..8} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{91 * 4 + 10 * R^{2..8} + D^{2..8}}_{386..452} = \underbrace{90 * N^{5..8} + Y^{2..8}}_{452..728}$$

$$\underbrace{91 * 4 + 10 * R^{2..8} + D^{2..8}}_{452} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{91 * 4 + 10 * R^{2..8} + D^{2..8}}_{452} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{N = 5, Y = 2, R = 8, D = 8}$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 59

Result of equality propagation

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N						*	-	-	-	
D			-	-	-	-	-	-	*	
М										
0										
R			-	-	-	-	-	-	*	
Υ			*	-	-	-	-	-	-	

Propagation of alldifferent

Alldifferent fails!

Insight Centre for Data Analytics

March 29th, 2021

Slide 61

Step 2, Alternative E=5

Return to last open choice, E, and test next value

Assignment E=5

	0	1	2	3	4	5	6	7	8	9
S										
E					-	*	-	-		
N										
D										
М										
0										
R										
Υ										

Insight Centre for Data Analytics

March 29th, 2021

Slide 63

Propagation of all different

$$N \neq 5, N \geq 6$$

Propagation of equality

$$91*5+10*R^{2..8}+D^{2..8}=90*N^{6..8}+Y^{2..8}$$

$$\underbrace{91*5+10*R^{2..8}+D^{2..8}}_{477..543}=\underbrace{90*N^{6..8}+Y^{2..8}}_{542..728}$$

$$\underbrace{91*5+10*R^{2..8}+D^{2..8}}_{542..543}=90*N^{6..8}+Y^{2..8}$$

$$\underbrace{N=6,Y\in\{2,3\},R=8,D\in\{7..8\}}$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 65

Result of equality propagation

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N							*	-	-	
D			×	*	×		*			
М										
0										
R			-	-	-		-	-	*	
Υ					*		*	×	×	

Propagation of all different

$$D = 7$$

Insight Centre for Data Analytics

March 29th, 2021

Slide 67

Propagation of equality

$$91 * 5 + 10 * 8 + 7 = 90 * 6 + Y^{2..3}$$

$$\underbrace{91 * 5 + 10 * 8 + 7}_{542} = \underbrace{90 * 6 + Y^{2..3}}_{542..543}$$

$$\underbrace{91*5+10*8+7=90*6+\textit{Y}^{2..3}}_{542}$$

$$Y = 2$$

Last propagation step

	0	1	2	3	4	5	6	7	8	9
S										
E										
N										
D										
М										
0										
R										
Υ			*	-						

Insight Centre for Data Analytics

March 29th, 2021

Slide 69

Complete Search Tree

Search Tree with Gecode/GIST

Insight Centre for Data Analytics

March 29th, 2021

Slide 72

Some Differences

- Uses Binary branching
- Solutions in green, failure leafs in red, internal nodes in blue
- By default, shows all failed sub trees collapsed
- By default, uses different search strategy

Solution

Insight Centre for Data Analytics

March 29th, 2021

Slide 74

Points to Remember

- Constraint models are expressed by variables and constraints.
- Problems can have many different models, which can behave quite differently. Choosing the best model is an art.
- Constraints can take many different forms.
- Propagation deals with the interaction of variables and constraints.
- It removes some values that are inconsistent with a constraint from the domain of a variable.
- Constraints only communicate via shared variables.

Points to Remember

- Propagation usually is not sufficient, search may be required to find a solution.
- Propagation is data driven, and can be quite complex even for small examples.
- The default search uses chronological depth-first backtracking, systematically exploring the complete search space.
- The search choices and propagation are interleaved, after every choice some more propagation may further reduce the problem.

Insight Centre for Data Analytics

March 29th, 2021

Slide 77

Part II

Global Constraints

Example 2: Sudoku

- Global Constraints
 - Powerful modelling abstractions
 - Non-trivial propagation
 - Different consistency levels
- Example: Sudoku puzzle

Insight Centre for Data Analytics

March 29th, 2021

Slide 79

Problem Definition

Sudoku

Fill in numbers from 1 to 9 so that each row, column and block contain each number exactly once

4	1 2 3 4 5 6 7 8 9	8	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 1 2 3	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9
4 5 6 7 8 9	4 5 6 7 8 9	4 5 6 7 8 9	1	7	4 5 6 7 8 9	4 5 6 7 8 9	4 5 6 7 8 9	4 5 i 7 8 i
1 2 3 4 5 6 7 8 9	8	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	3	2			
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	6	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	8	2	5	1 2 3 4 5 7 7 8
1 2 3 4 5 6 7 8 9	9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	8	1 2 3 4 5 1 7 8 1
1 2 3 4 5 6 7 8 9	3	7		1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 7 7 8
2	7	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	5	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 1 7 8 1
1 2 3 4 5 6 7 8 9	1	4	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 1 7 8 1			
1 2 3 4 5 6 7 8 9	6	1 2 3 4 5 6 7 8 9	4					

4		2	8	5	6	3	1	7	9
3		5	တ	$\overline{}$	7	2	4	60	8
7	•	6	1	4	8	တ	5	ന	2
1		4	60	ന	9	80	2	5	7
5)	9	2	7	4	$\overline{}$	3	80	6
8)	ദ	7	6	2	5	9	4	1
2		7	4	တ	5	60	8	$\overline{}$	3
6)	8	3	2	1	4	7	ഠാ	5
9)	1	5	8	3	7	6	2	4

Model

- A variable for each cell, ranging from 1 to 9
- A 9x9 matrix of variables describing the problem
- Preassigned integers for the given hints
- alldifferent constraints for each row, column and 3x3 block

Insight Centre for Data Analytics

March 29th, 2021

Slide 82

Reminder: alldifferent

- Argument: list of variables
- Meaning: variables are pairwise different
- Reasoning: Forward Checking (FC)
 - When variable is assigned to value, remove the value from all other variables
 - If a variable has only one possible value, then it is assigned
 - If a variable has no possible values, then the constraint fails
 - Constraint is checked whenever one of its variables is assigned
 - Equivalent to decomposition into binary disequality constraints

Main Program

Insight Centre for Data Analytics

March 29th, 2021

Slide 84

Main Program Output

```
output [ "sudoku:\n" ] ++
  [ show(puzzle[i,j]) ++
  if j = N then
     if i mod S = 0 /\ i < N then "\n\n"
     else "\n"
     endif
  else
     if j mod S = 0 then " "
     else " "
     endif
  endif
  i,j in 1..N ];</pre>
```

Main Program Data

Insight Centre for Data Analytics

March 29th, 2021

Slide 86

Running sudoku_decompose.mzn

```
## Comparison - Uniform Property Com
```

Domain Visualizer

- Problem shown as matrix
- Each cell corresponds to a variable
- Instantiated: Shows integer value (large)
- Uninstantiated: Shows values in domain

4	1 2 3 4 5 6 7 8 9	8	1 2 3 4 5 6 7 8 9					
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	$\overline{}$	7	1 2 3 4 5 6 7 8 9			
1 2 3 4 5 6 7 8 9	8	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	3	2			
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	6	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	8	2	5	1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9	9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	8	1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9	3	7	6	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9
2	7	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	5	1 2 3 4 5 6 7 8 9			
1 2 3 4 5 6 7 8 9	1	4	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9			
1 2 3 4 5 6 7 8 9	6	1 2 3 4 5 6 7 8 9	4					

Insight Centre for Data Analytics

March 29th, 2021

Slide 88

Initial State (Forward Checking)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 1 2 3 1 4 5 6 4 7 8 9 7 1 2 3 1 4 5 6 4 7 8 9 7	2 3 5 6 8 9 2 3 5 6 8 9	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 7	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6	1 2 3 4 5 6 7 8 9 9 1 4 7	2 3 5 6	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6	2 1 2 3 4 5 6 7 8 9	5 1 2 3 4 5 6	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
7 8 9 2 1 2 3 4 5 6 7 8 9	7 1 4 7 1 4 5 6 4 7 8 9 7	2 3 5 6 8 9 2 3 5 6 8 9	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	7 8 951	7 8 9 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9	7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9	1 2 3 1 4 5 6 4 7 8 9 7	2 3	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	6	1 2 3 4 5 6 7 8 9	4

Propagation Steps (Forward Checking)

4	1 2 5 6	8	2 3 5 9	2 3 6 9	2 3 5 6 9	1 5 7	1 6 7 9	1 5 6 7 9
3 6 9	2 5 6	3 5 9	1	7	2 3 5 6 9	4 5	4 6 9	5 6 8 9
6 7 9	5 6	1 5 9	4 5 9	8	5 6 9	1 4 5 7	3	2
1	4	6	3 7 9	3 9	8	2	5	379
5	9	2	3 4 7	3 4 6	1 3 6 7	1 3 4 7	8	1 3 6 7
8	3	7	6	2 4	1 2 5	9	1 2	1 5
2	7	1 3 4 9	3 4 8 9	5	1 3 6 9	1 3 4 8	1 4 6 9	1 3 6 8 9
3 6 7 9	2 5 6 8	5 9	2 3 5 7 8 9	1	4	5 7 8	2 6 7 9	3 5 6 7 8 9
379	1 2 5 8	1 3 5 9	2 3 5 7 8 9	2 3	1 2 3 5 7 9	6	 1 2 7 9 	4

Insight Centre for Data Analytics

March 29th, 2021

Slide 91

After Setup (Forward Checking)

4	1 2 5 6	8	2 3 5 9	3 6 9	2 3 6 9	1 5 7	1 6 7 9	5 6 7 9
3 6 9	2 5 6	5 9	1	7	2 3 6 9	4 5 8	6	5 6 8 9
6 7 9	5 6	1 5 9	4 5 9	80	6 9	1 4 5 7	က	2
1	4	6	379	3 9	8	2	5	3 7
5	9	2	3 4 7	3	1 3	7	8	3 6 7
8	3	7	6	2	5	9	4	1
2	7	1 3 4 9	3 8 9	5	3 6 9	1 3	1 9	3 8 9
3 6 9	5 6 8	3 5 9	2 3 7 8 9	1	4	5 7 8	2 7 9	5 7 8 9
9	1 5 8	1 3 5 9	2 37 8 9	3	2 37 9	6	 1 2 7 9 	4

Can we do better?

- The alldifferent constraint is missing propagation
 - How can we do more propagation?
 - Do we know when we derive all possible information from the constraint?
- Constraints only interact by changing domains of variables

Insight Centre for Data Analytics

March 29th, 2021

Slide 94

A Simpler Example

```
include "alldifferent.mzn";

var 1..2:X;
var 1..2:Y;
var 1..3:Z;

constraint alldifferent([X,Y,Z]);

solve satisfy;
```

Using Forward Checking

- No variable is assigned
- No reduction of domains
- But, values 1 and 2 can be removed from Z
- This means that Z is assigned to 3

Insight Centre for Data Analytics

March 29th, 2021

Slide 96

Visualization of alldifferent as Graph

- Variables on the left
- Values on the right
- If value is in domain of variable, show link between them
- This is called a bipartite graph

A Simpler Example

Value Graph for

Insight Centre for Data Analytics

March 29th, 2021

Slide 98

A Simpler Example

Check interval [1,2]

A Simpler Example

- Find variables completely contained in interval
- There are two: X and Y
- This uses up the capacity of the interval

Insight Centre for Data Analytics

March 29th, 2021

Slide 98

A Simpler Example

No other variable can use that interval

A Simpler Example

Only one value left in domain of Z, this can be assigned

Insight Centre for Data Analytics

March 29th, 2021

Slide 98

Idea (Hall Intervals)

- Take each interval of possible values, say size N
- Find all K variables whose domain is completely contained in interval
- If K > N then the constraint is infeasible
- If K = N then no other variable can use that interval
- Remove values from such variables if their bounds change
- If K < N do nothing
- Re-check whenever domain bounds change

Implementation

- Problem: Too many intervals $(O(n^2))$ to consider
- Solution:
 - Check only those intervals which update bounds
 - Enumerate intervals incrementally
 - Starting from lowest(highest) value
 - Using sorted list of variables
- Complexity: $O(n \log(n))$ in standard implementations
- Important: Only looks at min/max bounds of variables

Insight Centre for Data Analytics

March 29th, 2021

Slide 100

Bounds Consistency

Definition

A constraint achieves *bounds consistency*, if for the lower and upper bound of every variable, it is possible to find values for all other variables between their lower and upper bounds which satisfy the constraint.

Annotation: :: bounds

```
include "alldifferent.mzn";

var 1..2:X;
var 1..2:Y;
var 1..3:Z;

constraint alldifferent([X,Y,Z]) :: bounds;
solve satisfy;
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 102

Running with Gecode Gist

All Solutions

Node Inspector (Root)

Can we do even better?

- Bounds consistency only considers min/max bounds
- Ignores "holes" in domain
- Sometimes we can improve propagation looking at those holes

Insight Centre for Data Analytics

March 29th, 2021

Slide 104

Another Simple Example

```
include "alldifferent.mzn";

var {1,3}:X; % note enumerated domain
var {1,3}:Y;
var 1..3:Z; % note domain as interval
% annotated constraint
constraint alldifferent([X,Y,Z]) :: bounds;
solve satisfy;
```


Value Graph for

Insight Centre for Data Analytics

March 29th, 2021

Slide 106

Another Simple Example

- Check interval [1,2]
- No domain of a variable completely contained in interval
- No propagation

- Check interval [2,3]
- No domain of a variable completely contained in interval
- No propagation

Insight Centre for Data Analytics

March 29th, 2021

Slide 106

Another Simple Example

But, more propagation is possible, there are only two solutions

Solution 1: assignment in blue

Insight Centre for Data Analytics

March 29th, 2021

Slide 106

Another Simple Example

Solution 2: assignment in green

Combining solutions shows that Z=1 and Z=3 are not possible. Can we deduce this without enumerating solutions?

Insight Centre for Data Analytics

March 29th, 2021

Slide 106

Bounds Consistency with Gecode Gist: No Propagation

All Solutions

Node Inspector (Root)

Solutions and Maximal Matchings

- A Matching is subset of edges which do not coincide in any node
- No matching can have more edges than number of variables
- Every solution corresponds to a maximal matching and vice versa
- If a link does not belong to some maximal matching, then it can be removed

Insight Centre for Data Analytics

March 29th, 2021

Slide 108

Implementation

- Possible to compute all links which belong to some matching
 - Without enumerating all of them!
- Enough to compute one maximal matching
- Requires algorithm for strongly connected components
- Extra work required if more values than variables
- All links (values in domains) which are not supported can be removed
- Complexity: $O(n^{1.5}d)$

Domain Consistency

Definition

A constraint achieves *domain consistency*, if for every variable and for every value in its domain, it is possible to find values in the domains of all other variables which satisfy the constraint.

- Also called generalized arc consistency (GAC)
- or hyper arc consistency

Insight Centre for Data Analytics

March 29th, 2021

Slide 110

Simple Example Revisited

```
include "alldifferent.mzn";

var {1,3}:X; % note enumerated domain
var {1,3}:Y;
var 1..3:Z; % note domain as interval

% note different annotation
constraint alldifferent([X,Y,Z]) :: domain;
solve satisfy;
```

Domain Consistency with Gecode Gist: Propagation

All Solutions

Node Inspector (Root)

Insight Centre for Data Analytics

March 29th, 2021

Slide 112

Can we still do better?

- NO! This extracts all information from this one constraint
- We could perhaps improve speed, but not propagation
- But possible to use different model
- Or model interaction of multiple constraints

Should all constraints achieve domain consistency?

- Domain consistency is usually more expensive than bounds consistency
 - Overkill for simple problems
 - Nice to have choices
- For some constraints achieving domain consistency is NP-hard
 - We have to live with more restricted propagation

Insight Centre for Data Analytics

March 29th, 2021

Slide 114

Main Program

Initial State (Domain Consistency)

4	1 2 3	1 2 3 1 2 3	1 2 3 1 2 3	1 2 3 1 2 3
	4 5 6	4 5 6 4 5 6	4 5 6 4 5 6	4 5 6 4 5 6
	7 8 9	7 8 9 7 8 9	7 8 9 7 8 9	7 8 9 7 8 9
1 2 3	1 2 3 1 2 3	1 7	1 2 3 1 2 3	1 2 3 1 2 3
4 5 6	4 5 6 4 5 6		4 5 6 4 5 6	4 5 6 4 5 6
7 8 9	7 8 9 7 8 9		7 8 9 7 8 9	7 8 9 7 8 9
1 2 3	1 2 3 1 2 3	1 2 3	1 2 3 1 2 3	3 2
4 5 6	4 5 6 4 5 6	4 5 6	4 5 6 4 5 6	
7 8 9	7 8 9 7 8 9	7 8 9	7 8 9 7 8 9	
1 2 3	1 2 3	1 2 3 1 2 3	8 2	5 1 2 3
4 5 6	4 5 6	4 5 6 4 5 6		4 5 6
7 8 9	7 8 9	7 8 9 7 8 9		7 8 9
1 2 3	9 1 2 3	1 2 3 1 2 3	1 2 3 1 2 3	8 1 2 3
4 5 6	4 5 6	4 5 6 4 5 6	4 5 6 4 5 6	4 5 6
7 8 9	7 8 9	7 8 9 7 8 9	7 8 9 7 8 9	7 8 9
1 2 3	3 7	6 1 2 3	1 2 3	1 2 3 1 2 3
4 5 6		4 5 6	4 5 6	4 5 6 4 5 6
7 8 9		7 8 9	7 8 9	7 8 9 7 8 9
2	7 1 2 3	1 2 3	1 2 3 1 2 3	1 2 3 1 2 3
	4 5 6	4 5 6	4 5 6 4 5 6	4 5 6 4 5 6
	7 8 9	7 8 9	7 8 9 7 8 9	7 8 9 7 8 9
1 2 3	1 2 3 1 2 3	1 2 3	4 1 2 3	1 2 3 1 2 3
4 5 6	4 5 6 4 5 6	4 5 6	4 5 6	4 5 6 4 5 6
7 8 9	7 8 9 7 8 9	7 8 9	7 8 9	7 8 9 7 8 9
1 2 3	1 2 3 1 2 3	1 2 3 1 2 3	1 2 3	1 2 3
4 5 6	4 5 6 4 5 6	4 5 6 4 5 6	4 5 6	4 5 6
7 8 9	7 8 9 7 8 9	7 8 9 7 8 9	7 8 9	7 8 9

Insight Centre for Data Analytics

March 29th, 2021

Slide 116

Propagation Steps (Domain Consistency)

4	2	8	5	6	3	1	1 6 7 9	1 5 6 7 9
3 6 9	5	3 5 9	1	7	2	4	6	8
7	6	1	4	8	9	5	3	2
1	4	6	3 7 9	3 9	8	2	5	379
5	9	2	3 7	4	1	1 3 4 7	8	6
8	3	7	6	2	5	9	4	1
2	7	4	3 8 9	5	6	8	1	1 3 6 8 9
6	8	5 9	2	1	4	5 7 8	2 6 7 9	5
3	1	5	8	2 3	7	6	2	4

After Setup (Domain Consistency)

4	2	8	5	6	3	1	7 9	7 9
3	5	3	1	7	2	4	6	8
7	6	~	4	8	9	5	3	2
1	4	6	3 7 9	3	8	2	5	7
5	9	2	7	4	1	7	8	6
8	3	7	6	2	5	9	4	1
2	7	4	3	5	6	8	1	3
6	8	3	2	1	4	7	7 9	5
3	1	5	8	3	7	6	2	4

Insight Centre for Data Analytics

March 29th, 2021

Slide 118

Comparison

4	1 2 5 6	8	2 3 5 9	3 6 9	2 3 6 9	1 5 7	1 6 7 9	5 6
3 6 9	2 5 6	5 9	1	7	2 3 6 9	4 5 8	6	5 6
6 7 9	5 6	1 5 9	4 5 9	8	6	1 4 5 7	3	2
1	4	6	7 9	3	8	2	5	7
5	9	2	3 4 7	4	1 3	7	8	7
8	3	7	6	2	5	9	4	1
2	7	1 3 4 9	8 9	5	3 6 9	1 3	1 9	8 9
3 6 9	5 6 8	5 9	2 3 7 8 9	1	4	5 7 8	2 7 9	5 7 8 9
3	1 5 8	1 3 5	2 3	3	2 3	6	12	4

Bounds Consistency

Domain Consistency

4	2	8	5	6	3	1	7 9	7 9
9	5	3	1	7	2	4	6	8
7	6	1	4	8	9	5	3	2
1	4	6	7 9	3	8	2	5	7
5	9	2	7	4	1	7	8	6
8	\mathcal{S}	7	6	2	5	9	4	1
2	7	4	3	5	6	8	1	3
6	8	3	2	1	4	7	7 9	5
3 9	1	5	8	3	7	6	2	4

Typical?

- This does not always happen
- Sometimes, two methods produce same amount of propagation
- Possible to predict in certain special cases
- In general, tradeoff between speed and propagation
- Not always fastest to remove inconsistent values early
- But often required to find a solution at all

Insight Centre for Data Analytics

March 29th, 2021

Slide 120

Simple search routine

- Enumerate variables in given order
- Try values starting from smallest one in domain
- Complete, chronological backtracking
- Advantage: Results can be compared with each other
- Disadvantage: Usually not a very good strategy

Forcing Naive Search

```
solve :: int_search(
   puzzle,
   input_order,
   indomain_min)
satisfy;
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 123

Search Tree (Forward Checking)

Search Tree (Bounds Consistency)

Insight Centre for Data Analytics

March 29th, 2021

Slide 125

Search Tree (Domain Consistency)

Trading Propagation Against Search

- If we perform more propagation, search is more constrained
- Fewer values left, fewer alternatives to explore in search
- Best compromise is not obvious
- But can be learned from examples or during search
- Annotations are optional

Insight Centre for Data Analytics

March 29th, 2021

Slide 127

Are there other Global Constraints?

- alldifferent is the most commonly used constraint
- Propagation methods can be explained
- But there are many more

Global Constraint Catalog

- https://sofdem.github.io/gccat/
- Description of 354 global constraints, 2800 pages
- Not all of them are widely used
- Detailed, meta-data description of constraints in Prolog

Insight Centre for Data Analytics

March 29th, 2021

Slide 130

Families of Global Constraints

- Value Counting
 - alldifferent, global cardinality
- Scheduling
 - cumulative
- Properties of Sequences
 - sequence, no_valley
- Graph Properties
 - circuit, tree

Common Algorithmic Techniques

- Flow Based Algorithms (see talk on Tuesday)
- Automata
- Task Intervals
- Reduced Cost Filtering
- Decomposition

Insight Centre for Data Analytics

March 29th, 2021

Slide 132

Part III

Customizing Search

What we want to introduce

- Importance of search strategy, constraints alone are not enough
- Two schools of thought
 - Black-box solver, solver decides by itself
 - Human control over process
- Dynamic variable ordering exploits information from propagation
- Variable and value choice
- Hard to find strategy which works all the time
- int_search annotation, simple search abstraction
- seq_search and priority_search, add flexibility
- Different way of improving stability of search routine

Insight Centre for Data Analytics

March 29th, 2021

Slide 134

Example Problem

- N-Queens puzzle
- Rather weak constraint propagation
- Many solutions, limited number of symmetries
- Easy to scale problem size

Problem Definition

8-Queens

Place 8 queens on an 8 \times 8 chessboard so that no queen attacks another. A queen attacks all cells in horizontal, vertical and diagonal direction. Generalizes to boards of size $N \times N$.

Solution for board size 8×8

Insight Centre for Data Analytics

March 29th, 2021

Slide 137

Basic Model

- Cell based Model
 - A 0/1 variable for each cell to say if it is occupied or not
 - Constraints on rows, columns and diagonals to enforce no-attack
 - N^2 variables, 6N-2 constraints
- Column (Row) based Model
 - A 1..N variable for each column, stating position of queen in the column
 - Based on observation that each column must contain exactly one queen
 - N variables, $N^2/2$ binary constraints

Model

assign $[X_1, X_2, ... X_N]$

s.t.

```
\forall 1 \leq i \leq N : \quad X_i \in 1..N
\forall 1 \leq i < j \leq N : \quad X_i \neq X_j
\forall 1 \leq i < j \leq N : \quad X_i + j \neq X_j + i
\forall 1 \leq i < j \leq N : \quad X_i + i \neq X_j + j
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 140

MiniZinc Program

```
int: n=8;
array[1..n] of var 1..n: queens;
constraint
    forall(i, j in 1..n where i < j) (
        queens[i] != queens[j] /\
        queens[i] + i != queens[j] + j /\
        queens[i] - i != queens[j] - j
);
solve :: int_search(
        queens,
        input_order,
        indomain_min)
        satisfy;</pre>
```

Default Strategy

Insight Centre for Data Analytics

March 29th, 2021

Slide 143

First Solution

Observations

- Even for small problem size, tree can become large
- Not interested in all details
- Ignore all automatically fixed variables
- For more compact representation abstract failed sub-trees

Insight Centre for Data Analytics

March 29th, 2021

Slide 145

Compact Representation

Number inside triangle: Number of choices
Number under triangle: Number of failures

Exploring other board sizes

- How stable is the model?
- Try all sizes from 4 to 100
- Timeout of 100 seconds

Insight Centre for Data Analytics

March 29th, 2021

Slide 147

Naive Stategy, Problem Sizes 4-100

Observations

- Time very reasonable up to size 20
- Sizes 20-30 times very variable
- Not just linked to problem size
- No size greater than 30 solved within timeout

Insight Centre for Data Analytics

March 29th, 2021

Slide 149

Possible Improvements

- Better constraint reasoning
 - Remodelling problem with 3 alldifferent constraints
 - Global reasoning as described before
 - Not explored here
- Better control of search
 - Static vs. dynamic variable ordering
 - Better value choice
 - Not using complete depth-first chronological backtracking

Static vs. Dynamic Variable Ordering

- Heuristic Static Ordering
 - Sort variables before search based on heuristic
 - Most important decisions
 - Smallest initial domain
- Dynamic variable ordering
 - Use information from constraint propagation
 - Different orders in different parts of search tree
 - Use all information available

Insight Centre for Data Analytics

March 29th, 2021

Slide 152

First Fail strategy

- Dynamic variable ordering
- At each step, select variable with smallest domain
- Idea: If there is a solution, better chance of finding it
- Idea: If there is no solution, smaller number of alternatives
- Needs tie-breaking method

Modified MiniZinc Program

```
int: n=8;
array[1..n] of var 1..n: queens;
constraint
    forall(i, j in 1..n where i < j) (
        queens[i] != queens[j] /\
        queens[i] + i != queens[j] + j /\
        queens[i] - i != queens[j] - j
    )
;
solve :: int_search(
        queens,
        first_fail,
        indomain_min)
        satisfy;</pre>
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 154

Variable Choice

- Determines the order in which variables are assigned
- input_order assign variables in static order given
- smallest assign variable with smallest value in domain first
- first_fail select variable with smallest domain first
- dom_w_deg consider ratio of domain size and failure count
- Others, including programmed selection for specific solvers

Value Choice

- Determines the order in which values are tested for selected variables
- indomain_min Start with smallest value, on backtracking try next larger value
- indomain_median Start with value closest to middle of domain
- indomain_random Choose values in random order
- indomain_split Split domain into two intervals

Insight Centre for Data Analytics

March 29th, 2021

Slide 156

Comparison

- Board size 16x16
- Naive (Input Order) Strategy
- First Fail variable selection

Naive (Input Order) Strategy (Size 16)

Insight Centre for Data Analytics

March 29th, 2021

Slide 158

FirstFail Strategy (Size 16)

Comparing Solutions

March 29th, 2021

Slide 160

FirstFail, Problem Sizes 4-100

Observations

- This is much better
- But some sizes are much harder
- Timeout for sizes 88, 91, 93, 97, 98, 99

Insight Centre for Data Analytics

March 29th, 2021

Slide 162

More Reactive Variable Selection

- Domain size is important, but other information is useful as well
- Dom/Weighted Degree: better results in many situations
- Weight Degree: count how often variable has been involved in failure
- Focus on more complicated part of problem
- Changes during search, learns from past performance
- Option dom_w_deg

Weighted Degree Variable Selection

```
int: n=8;
array[1..n] of var 1..n: queens;
constraint
    forall(i, j in 1..n where i < j) (
        queens[i] != queens[j] /\
        queens[i] + i != queens[j] + j /\
        queens[i] - i != queens[j] - j
    )
;
solve :: int_search(
        queens,
        dom_w_deg,
        indomain_random)
        satisfy;</pre>
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 164

Result for size 16 with Gecode-Gist

Sample Results for Larger Sizes

Insight Centre for Data Analytics

March 29th, 2021

Slide 166

Approach 1: Heuristic Portfolios

- Try multiple strategies for the same problem
- With multi-core CPUs, run them in parallel
- Only one needs to be successful for each problem

Approach 2: Restart with Randomization

- Only spend limited number of backtracks for a search attempt
- When this limit is exceeded, restart at beginning
- Requires randomization to explore new search branch
- Randomize variable choice by random tie break
- Randomize value choice by shuffling values
- Needs strategy when to restart

Insight Centre for Data Analytics

March 29th, 2021

Slide 168

Random Variable Choice and Restarts

```
int: n=8;
array[1..n] of var 1..n: queens;
constraint
    forall(i, j in 1..n where i < j) (
        queens[i] != queens[j] /\
        queens[i] + i != queens[j] + j /\
        queens[i] - i != queens[j] - j
    )
;
solve :: int_search(
        queens,
        dom_w_deg,
        indomain_random)
        :: random_linear(100)
        satisfy;</pre>
```

Approach 3: Partial Search

- Abandon depth-first, chronological backtracking
- Don't get locked into a failed sub-tree
- A wrong decision at a level is not detected, and we have to explore the complete subtree below to undo that wrong choice
- Explore more of the search tree
- Spend time in promising parts of tree

Insight Centre for Data Analytics

March 29th, 2021

Slide 170

Example: Credit Search

- Not available in all solvers
- Explore top of tree completely, based on credit
- Start with fixed amount of credit
- Each node consumes one credit unit
- Split remaining credit amongst children
- When credit runs out, start bounded backtrack search
- Each branch can use only K backtracks
- If this limit is exceeded, jump to unexplored top of tree

Credit, Search Tree Problem Size 94

Insight Centre for Data Analytics

March 29th, 2021

Slide 172

Credit, Problem Sizes 4-200

Dealing with Heterogeneous Variables

- int_search works when all variables represent the same concept
- e.g. the start of an activity
- It struggles if different variable sets denote different concepts
- eg. x and y dimension in a placement problem
- Two alternative search methods
 - seq_search do two searches, one after the other
 - priority_search interleave the assignment of the different variables

Insight Centre for Data Analytics

March 29th, 2021

Slide 174

Seq_search

- Find first solution for one set of variables, then for another
- Simple form of problem decomposition
- Especially useful to control assignment of cost variables
- Often a risky, high pay-off strategy
 - If it works, it works very well
 - But if it does not work, it leads to very deep backtracking

Seq_search Example

```
solve ::seq_search([
    int_search(x, smallest, indomain_split),
    int_search(y, first_fail, indomain_split)])
    minimize objective;
```

Insight Centre for Data Analytics

March 29th, 2021

Slide 176

Priority_search

- Often two sets of variables are linked with each other
- X and y coordinate of rectangle to place
- Time and location in time tabling
- Want to interleave assignment, e.g. fix x and y coordinate of one item before assigning the next
- Still want to use dynamic variables selection, based on properties of one of the variables
- Only available in Chuffed

Priority_search Example

Insight Centre for Data Analytics

March 29th, 2021

Slide 178

Points to Remember

- Choice of search can have huge impact on performance
- Dynamic variable selection can lead to large reduction of search space
- Packaged search can do a lot, but programming search adds even more
- Depth-first chronologicial backtracking not always best choice
- How to control this explosion of search alternatives?

Part IV

What is missing?

Insight Centre for Data Analytics

March 29th, 2021

Slide 180

Many Specialized Topics

- How to design efficient core engine
- Hybrids with LP/MIP tools
- Hybrids with SAT
- Symmetry breaking
- Use of MDD/BDD to encode sets of solutions
- High level modelling tools
- Debugging/visualization

Reformulation

- Just because the user has modelled it this way, it doesn't mean we have to solve it that way
 - Replace some constraint(s) by other, equivalent constraints
 - Because we don't have that constraint in our system
 - For performance

Insight Centre for Data Analytics

March 29th, 2021

Slide 182

Learning

- While solving the problem we can learn how to strengthen the model/search
 - Understand which constraints/method contribute to propagation and change schedule
 - Learn no-good constraints by explaining failure
 - Adapt search strategy based on search experience