$$\chi_{b2}(2P)$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(3S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+.

$\chi_{b2}(2P)$ MASS

VALUE (MeV)

DOCUMENT ID

10268.65 \pm 0.22 \pm 0.50 OUR EVALUATION From γ energy below, using $\varUpsilon(3S)$ mass = 10355.2 \pm 0.5 MeV

$m_{\chi_{b2}(2P)} - m_{\chi_{b1}(2P)}$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
13.10±0.24 OUR AVERAGE			
$12.3 \pm 2.6 \pm 0.6$	$^{ m 1}$ AAIJ	14BG LHCB	$pp \rightarrow \gamma \mu^+ \mu^- X$
13.04 ± 0.26	LEES	14M BABR	Υ (3S) $ ightarrow \gamma \gamma \mu^+ \mu^-$
$13.5 \pm 0.4 \pm 0.5$	² HEINTZ	92 CSB2	$e^+e^- ightarrow \gamma X$, $\ell^+\ell^-\gamma\gamma$

¹ From the $\chi_{bj}(2P) \rightarrow \Upsilon(1S)\gamma$ transition.

γ ENERGY IN $\Upsilon(3S)$ DECAY

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
86.19±0.22 OUR EVA	Treating systematic errors as correlated				
86.40±0.18 OUR AVE	RAGE				
$86.04 \pm 0.06 \pm 0.27$					$\Upsilon(3S) \rightarrow \gamma X$
86 ± 1	101	CRAWFORD	92 B	CLE2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
86.7 ± 0.4	10319	³ HEINTZ	92	CSB2	$e^+e^- ightarrow \gamma X$
86.9 ± 0.4	157	⁴ HEINTZ	92	CSB2	$e^+e^- ightarrow \ell^+\ell^-\gamma\gamma$
$86.4 \pm 0.1 \pm 0.4$	30741	MORRISON	91	CLE2	$e^+e^- ightarrow \gamma X$

 $^{^3}$ A systematic uncertainty on the energy scale of 0.9% not included. Supersedes NARAIN 91

$\chi_{b2}(2P)$ DECAY MODES

	Mode		Fraction $(\Gamma_i /$	Γ)	Confidence level
Γ_1	$\omega \ \varUpsilon(1S)$		$(1.10^{+0.34}_{-0.30})$	¹) %	
Γ_2	$\gamma \ \varUpsilon(2S)$		(8.9 ± 1.2)) %	
Γ_3	$\gamma~ \varUpsilon (1S)$		(6.6 ± 0.8)) %	
	$\pi\pi\chi_{b2}(1P)$		(5.1 ± 0.9)	$) \times 10^{-3}$	3
Γ_5	$D^0 X$		< 2.4	%	90%
Γ ₆	$\pi^+\pi^-$ K ⁺ K ⁻ π^0		< 1.1	\times 10 ⁻⁴	90%
ΗΤΊ	ΓΡ://PDG.LBL.GOV	Page 1	Creat	ted: 5/3	0/2017 17:21

² From the average photon energy for inclusive and exclusive events. Supersedes NARAIN 91.

⁴A systematic uncertainty on the energy scale of 0.9% not included. Supersedes HEINTZ 91.

Γ ₇	$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}$	< 9	\times 10 ⁻⁵	90%
Γ ₈	$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7	\times 10 ⁻⁴	90%
Γ_9		(3.9	± 1.6) $\times10^{-4}$	
Γ_{10}	$2\pi^{+}2\pi^{-}K^{+}K^{-}$		± 4) \times 10 ⁻⁵	
	$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	(2.4	$\pm 1.1\) imes 10^{-4}$	
Γ_{12}	$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	(4.7	$\pm 2.3\) imes 10^{-4}$	
Γ_{13}	$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 4	\times 10 ⁻⁴	90%
	$3\pi^{+}3\pi^{-}$	(9	± 4) $ imes$ 10 ⁻⁵	
	$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2	$\pm 0.4) \times 10^{-3}$	
	$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4	$\pm 0.7\) imes 10^{-4}$	
Γ_{17}	$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(4.2	$\pm 1.7\) imes 10^{-4}$	
	$4\pi^+4\pi^-$	(9	± 5) × 10 ⁻⁵	
Γ ₁₉	$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3	$\pm 0.5 \) \times 10^{-3}$	

$\chi_{b2}(2P)$ BRANCHING RATIOS

```
Γ(ω Υ(1S))/Γ<sub>total</sub>

VALUE (units 10^{-2})

EVTS

DOCUMENT ID

TECN

COMMENT

1.10+0.32+0.11

20.1+5.8 5 CRONIN-HEN..04

CLE3

\Upsilon(3S) \rightarrow \gamma \omega \Upsilon(1S)

Susing B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)) = (11.4 ± 0.8)% and B(\Upsilon(1S) \rightarrow \ell^+\ell^-) = 2

B(\Upsilon(1S) \rightarrow \mu^+\mu^-) = 2 (2.48 ± 0.06)%.
```

 $\Gamma(\gamma \Upsilon(2S))/\Gamma_{\text{total}}$ Γ_2/Γ

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
0.089 ± 0.012 OUR AVE	RAGE				
$0.085 \!\pm\! 0.010 \!\pm\! 0.010$		6,7,8 LEES	14M	BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$
$0.084 \pm 0.011 \pm 0.010$	2.5k	⁹ LEES	11J	BABR	$\Upsilon(3S) \rightarrow X\gamma$
$0.096 \pm 0.022 \pm 0.012$		^{7,10} CRAWFORD	92 B	CLE2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
$0.106 \pm 0.016 \pm 0.013$		7,11 HEINTZ	92	CSB2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$

⁶ LEES 14M quotes $\Gamma(\chi_{b2}(2P) \to \gamma \Upsilon(2S))/\Gamma_{total} \times \Gamma(\Upsilon(3S) \to \gamma \chi_{b2}(2P))/\Gamma_{total} = (1.12 \pm 0.13)\%$ combining the results from samples of $\Upsilon(3S) \to \gamma \gamma \mu^+ \mu^-$ with and without converted photons.

⁷ Assuming B($\Upsilon(2S) \to \mu^+ \mu^-$) = (1.93 ± 0.17)%.

8 LEES 14M reports $[\Gamma(\chi_{b2}(2P) \to \gamma \Upsilon(2S))/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma \chi_{b2}(2P))] = (1.12 \pm 0.13) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma \chi_{b2}(2P)) = (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁹ LEES 11J reports $[\Gamma(\chi_{b2}(2P) \to \gamma \Upsilon(2S))/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma \chi_{b2}(2P))] = (1.1 \pm 0.1 \pm 0.1) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma \chi_{b2}(2P)) = (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹⁰ CRAWFORD 92B quotes B($\Upsilon(3S) \to \gamma \chi_{b1}(2P)$) ×B($\chi_{b2}(2P) \to \gamma \Upsilon(2S)$) × 2 B($\Upsilon(2S) \to \ell^+ \ell^-$) = (4.98 ± 0.94 ± 0.62) 10⁻⁴.

¹¹ Recalculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)$) \times B($\chi_{b2}(2P) \rightarrow \gamma \Upsilon(2S)$) = (1.90 \pm 0.23 \pm 0.18) % using B($\Upsilon(2S) \rightarrow \mu^+ \mu^-$) = (1.44 \pm 0.10)%. Supersedes HEINTZ 91.

G	`	• 7.			
$\Gamma(\gamma \Upsilon(1S))/\Gamma_{total}$					Г ₃ /Г
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.066 ± 0.008 OUR AV					
$0.061 \pm 0.004 \pm 0.007$	12,13,14		14M	BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$
$0.070\pm0.004\pm0.008$	11k ¹⁵		11 J	BABR	$\Upsilon(3S) \rightarrow X\gamma$
$0.077 \pm 0.018 \pm 0.009$		⁵ CRAWFORD	92 B	CLE2	$e^+e^- ightarrow \ell^+\ell^-\gamma\gamma$
$0.061\!\pm\!0.009\!\pm\!0.007$	13,17	⁷ HEINTZ	92	CSB2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
					$\gamma \chi_{b2}(2P) / \Gamma_{\text{total}}$
$=$ (8.03 \pm 0.50) $ imes$ with and without ∞			from	samples	of $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$
13 Assuming B($\Upsilon(1S)$			5)%.		
				× [Β()	$\gamma(3S) \rightarrow \gamma \chi_{b2}(2P))] =$
					$\Upsilon(3S) \rightarrow \gamma \chi_{h2}(2P) =$
					or and our second error is
the systematic erro			•		
15 LEES 11 J reports [$\Gamma(\chi_{b2}(2P)$ -	$\rightarrow \gamma \Upsilon(1S))/\Gamma$	total]	\times [B(γ	$\gamma(3S) \rightarrow \gamma \chi_{b2}(2P))] =$
$(9.2 \pm 0.3 \pm 0.4)$	$< 10^{-3}$ which	h we divide by c	ur bes	st value	$B(\Upsilon(3S)\to \gamma\chi_{b2}(2P))$
				ment's e	error and our second error
is the systematic er				D./	(0.5) 00(1.6)) 0

$\Gamma(\pi\pi\chi_{h2}(1P))/\Gamma_{total}$

 Γ_{Δ}/Γ

· (· · · /LD2(- · /) / · to	otai				· · · / ·
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
5.1±0.9 OUR AVERA	GE				
$4.9 \pm 0.7 \pm 0.6$	17k	¹⁸ LEES			$e^+e^- ightarrow \pi^+\pi^- X$
$6.0\pm 1.6\pm 1.4$		¹⁹ CAWLFIELD	06	CLE3	$\Upsilon(3S) \rightarrow 2(\gamma \pi \ell)$
				suming l	$B(\Upsilon(3S) \to \chi_{b2}(2P)X)$
		$= (13.1 \pm 1.6) \times 1$			
¹⁹ CAWLFIELD 06 q	uote $\Gamma(\chi_b)$	$(2P) \rightarrow \pi \pi \chi_b(1R)$	P)) =	0.83 \pm	$0.22\pm0.08\pm0.19\text{keV}$
assuming I-spin co	nservation,	no <i>D</i> -wave contrib	oution	$\Gamma(\chi_{b1})$	$(2P))=96\pm16$ keV, and
$\Gamma(\gamma_{1/2}(2P)) = 138$					•

$\Gamma(\pi^+\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

¹⁶ CRAWFORD 92B quotes B($\Upsilon(3S) \to \gamma \chi_{b2}(2P)$) ×B($\chi_{b2}(2P) \to \gamma \Upsilon(1S)$) × 2 B($\Upsilon(1S) \to \ell^+ \ell^-$) = (5.03 ± 0.94 ± 0.63) 10⁻⁴.

17 Recalculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \to \gamma \chi_{b2}(2P)$) ×B($\chi_{b2}(2P) \to \gamma \Upsilon(1S)$) =(0.77 ± 0.11 ± 0.05)% using B($\Upsilon(1S) \to \mu^+ \mu^-$) = (2.57 ± 0.05)%. Supersedes HEINTZ 91.

 $^{^{20}}$ For $p_{D0} > 2.5$ GeV/c.

²¹ The authors also present their result as $(0.2 \pm 1.4 \pm 0.1) \times 10^{-2}$.

 $\Gamma(2\pi^+\pi^-K^-K^0_S)/\Gamma_{\text{total}}$

²³ ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \rightarrow 2\pi^+\pi^-K^-K^0_S)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^+\pi^-K^-K^0_S)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^+\pi^-K^-K^0_S)]$ $\gamma \chi_{h2}(2P))] < 12 \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow \gamma \chi_{h2}(2P)$) $= 13.1 \times 10^{-2}$.

$\Gamma(2\pi^+\pi^-\textit{K}^-\textit{K}^0_S\,2\pi^0)/\Gamma_{\rm total}$

VALUE (units 10^{-4}) CL% $\gamma \chi_{b2}(2P))] < 87 \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)$) $= 13.1 \times 10^{-2}$.

$\Gamma(2\pi^+2\pi^-2\pi^0)/\Gamma_{\text{total}}$

 $rac{ extit{DOCUMENT ID}}{ ext{25}} rac{ extit{COMMENT}}{ ext{ASNER}} = 0$ 8A CLEO $rac{ extit{COMMENT}}{ au(3S)
ightarrow \gamma 2\pi^+ 2\pi^- 2\pi^0}$ VALUE (units 10⁻⁴) EVTS $3.9 \pm 1.6 \pm 0.5$

²⁵ ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \rightarrow 2\pi^+ 2\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma\chi_{b2}(2P))] = (51 \pm 16 \pm 13) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma\chi_{b2}(2P))$ $= (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-)/\Gamma_{\text{total}}$

 $\frac{\textit{DOCUMENT ID}}{26}$ $\frac{\textit{TECN}}{\mathsf{ASNER}}$ 08A CLEO $\gamma(3S) \rightarrow \gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-}$ VALUE (units 10^{-4}) EVTS $0.9\pm0.4\pm0.1$ $^{26}\,\mathrm{ASNER}$ 08A reports $[\Gamma(\chi_{b2}(2P)\ \rightarrow\ 2\pi^{+}\,2\pi^{-}\,\mathrm{K}^{+}\,\mathrm{K}^{-})/\Gamma_{\mathrm{total}}]\ \times\ [\mathrm{B}(\varUpsilon(3S)\ \rightarrow\ T_{\mathrm{total}})]$

 $\gamma \chi_{h2}(2P))] = (12 \pm 4 \pm 3) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma\chi_{b2}(2P))=(13.1\pm1.6)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-\pi^0)/\Gamma_{\rm total}$

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

2.4±1.0±0.3 16 27 ASNER 08A CLEO $\Upsilon(3S) \rightarrow \gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-} \pi^{0}$ 27 ASNER 08A reports [$\Gamma(\chi_{b2}(2P) \rightarrow 2\pi^{+}\,2\pi^{-}\,K^{+}\,K^{-}\,\pi^{0})/\Gamma_{\rm total}]$ \times [B($\Upsilon(3S) \rightarrow 2\pi^{+}\,2\pi^{-}\,K^{+}\,K^{-}\,\pi^{0})$ $\gamma \chi_{h2}(2P))] = (32 \pm 11 \pm 8) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma \chi_{b2}(2P))=(13.1\pm 1.6)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0})/\Gamma_{\text{total}}$

 Γ_{12}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT 4.7 \pm 2.2 \pm 0.6 14 28 ASNER 08A CLEO $\Upsilon(3S) \rightarrow \gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-} 2\pi^{0}$ ²⁸ ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \rightarrow 2\pi^+ 2\pi^- K^+ K^- 2\pi^0)/\Gamma_{ ext{total}}] \times [B(\Upsilon(3S) \rightarrow 2\pi^+ 2\pi^- K^+ K^- 2\pi^0)]$ $\gamma \chi_{b2}(2P))] = (62 \pm 23 \pm 17) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma \chi_{h2}(2P) = (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(3\pi^+2\pi^-K^-K_S^0\pi^0)/\Gamma_{\text{total}}$

 Γ_{13}/Γ

²⁹ ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \rightarrow 3\pi^+ 2\pi^- K^- K^0_S \pi^0)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P))] < 58 \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)) = 13.1 \times 10^{-2}$.

$\Gamma(3\pi^+3\pi^-)/\Gamma_{\text{total}}$

 $\Gamma_{14}/$

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT $0.9\pm0.4\pm0.1$ 14 30 ASNER 08A CLEO $r(3S) \rightarrow r(3T) \rightarrow r(3$

³⁰ ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \to 3\pi^+ 3\pi^-)/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma\chi_{b2}(2P))]$ = $(12 \pm 4 \pm 3) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma\chi_{b2}(2P)) = (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_{15}/Γ

³¹ ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \to 3\pi^+ 3\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma\chi_{b2}(2P))]$ = $(159 \pm 33 \pm 43) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma\chi_{b2}(2P))$ = $(13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-K^+K^-)/\Gamma_{\text{total}}$

 Γ_{16}/Γ

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

1.4±0.7±0.2

12

32 ASNER

08A CLEO $\Upsilon(3S) \rightarrow \gamma 3\pi^{+} 3\pi^{-} K^{+} K^{-}$ 32 ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \rightarrow 3\pi^{+} 3\pi^{-} K^{+} K^{-})/\Gamma_{\text{total}}] \times [B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P))] = (19 \pm 7 \pm 5) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)) = (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{17}/Γ

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT 4.2±1.7±0.5 16 33 ASNER 08A CLEO $\Upsilon(3S) \rightarrow \gamma 3\pi^{+} 3\pi^{-} K^{+} K^{-} \pi^{0}$

³³ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \rightarrow 3\pi^+ 3\pi^- K^+ K^- \pi^0)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma\chi_{b2}(2P))] = (55 \pm 16 \pm 15) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma\chi_{b2}(2P)) = (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(4\pi^+4\pi^-)/\Gamma_{\text{total}}$

18/1

Created: 5/30/2017 17:21

³⁴ ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \to 4\pi^+ 4\pi^-)/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma\chi_{b2}(2P))]$ = $(12 \pm 5 \pm 3) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma\chi_{b2}(2P)) = (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(4\pi^+4\pi^-2\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 08A CLEO $\Upsilon(3S) \rightarrow \gamma 4\pi^+ 4\pi^- 2\pi^0$ $13 \pm 5 \pm 2$ 35 ASNER 08A reports $[\Gamma(\chi_{b2}(2P) \rightarrow 4\pi^+ 4\pi^- 2\pi^0)/\Gamma_{ ext{total}}] \times [B(\varUpsilon(3S) \rightarrow \gamma\chi_{b2}(2P))]$ = $(165 \pm 46 \pm 50) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow \gamma \chi_{h2}(2P)$) $= (13.1 \pm 1.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\chi_{h2}(2P)$ Cross-Particle Branching Ratios $\Gamma(\chi_{b2}(2P) \to \gamma \Upsilon(1S))/\Gamma_{\text{total}} \times \Gamma(\Upsilon(3S) \to \gamma \chi_{b2}(2P))/\Gamma_{\text{total}}$ $\Gamma_3/\Gamma \times \Gamma_{20}^{\Upsilon(3S)}/\Gamma^{\Upsilon(3S)}$ 11J BABR $\Upsilon(3S) o X\gamma$ VALUE (units 10^{-3}) $\Gamma(\chi_{b2}(2P) \to \gamma \, \Upsilon(2S))/\Gamma_{\text{total}} \, imes \, \Gamma(\Upsilon(3S) \to \gamma \chi_{b2}(2P))/\Gamma_{\text{total}}$ $\Gamma_2/\Gamma \times \Gamma_{20}^{\Upsilon(3S)}/\Gamma^{\Upsilon(3S)}$ VALUE (units 10^{-2}) ______ EVTS TECN COMMENT $1.1\pm0.1\pm0.1$ **LEES** 11J BABR $\Upsilon(3S) \rightarrow X\gamma$ $B(\chi_{b2}(2P) \rightarrow \chi_{b2}(1P)\pi^{+}\pi^{-}) \times B(\Upsilon(3S) \rightarrow \chi_{b2}(2P)X)$ DOCUMENT ID TECN COMMENT 11C BABR $e^+e^- \rightarrow \pi^+\pi^- X$ $0.64\pm0.05\pm0.08$ 17k **LEES** $B(\chi_{b2}(2P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)) \times B(\Upsilon(1S) \rightarrow \ell^+\ell^-)$ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT 2.02±0.18 OUR AVERAGE $1.95 ^{\,+\, 0.22 \,+\, 0.10}_{\,-\, 0.21 \,-\, 0.16}$ ³⁶ LEES 14M BABR $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$ 37 CRAWFORD 92B CLE2 $\Upsilon(3S) \rightarrow \gamma \gamma \ell^+ \ell^-$ 38 HEINTZ 92 CSB2 $\Upsilon(3S) \rightarrow \gamma \gamma \ell^+ \ell^ 2.52 \pm 0.47 \pm 0.32$ $1.98 \pm 0.28 \pm 0.12$ $^{36}\,\mathrm{From}$ a sample of $\,\varUpsilon(3\mathcal{S})\to~\gamma\gamma\mu^{+}\,\mu^{-}$ with converted photons. 37 CRAWFORD 92B quotes $2\times$ B($\Upsilon(3S)\to \gamma\chi_{bJ}(2P)$) B($\chi_{bJ}(2P)\to \gamma\Upsilon(\mathsf{nS})$)

$[B(\chi_{b2}(2P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P))] / [B(\chi_{b1}(2P) \rightarrow \gamma \chi_{b2}(2P))]$ $\gamma \Upsilon(1S)) \times B(\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P))$

DOCUMENT ID TECN COMMENT VALUE (%) 14M BABR $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^ 66.6 \pm 3.0$

 $B(\Upsilon(nS) \rightarrow \ell^+\ell^-).$

³⁸ Calculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)$)×B($\chi_{b2}(2P) \rightarrow$ $\gamma \Upsilon(1S)$) = (0.77 ± 0.11 ± 0.05)% using B($\Upsilon(1S) \rightarrow \mu^{+} \mu^{-}$) = (2.57 ± 0.05)%

³⁹ From a sample of $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$ events without converted photons.

$B(\chi_{b2}(2P) \rightarrow \gamma \Upsilon(2S)) \times B(\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)) \times B(\Upsilon(2S) \rightarrow \ell^+\ell^-)$

VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT 2.74±0.29 OUR AVERAGE $3.22^{igoplus 0.58}_{igoplus 0.53} {+0.16}_{0.71}$ 14M BABR $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$ ⁴⁰ LEES ⁴¹ CRAWFORD 92B CLE2 $\Upsilon(3S) \rightarrow \gamma \gamma \ell^+ \ell^ 2.49 \pm 0.47 \pm 0.31$ 92 CSB2 $r(3s) \rightarrow \gamma \gamma \ell^+ \ell^-$ ⁴² HEINTZ $2.74 \pm 0.33 \pm 0.18$ ⁴⁰ From a sample of $\Upsilon(3S) \to \gamma \gamma \mu^+ \mu^-$ with converted photons. ⁴⁰ From a sample of $\Upsilon(3S) \to \gamma \gamma \mu^+ \mu^-$ with converted photons. ⁴¹ CRAWFORD 92B quotes $2 \times \mathbb{B}(\Upsilon(3S) \to \gamma \chi_{bJ}(2P))$ $\mathbb{B}(\chi_{bJ}(2P) \to \gamma \Upsilon(\mathsf{nS}))$ $B(\Upsilon(nS) \rightarrow \ell^+\ell^-).$ 42 Calculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \rightarrow \gamma \chi_{b2}(2P)$) \times B($\chi_{b2}(2P) \rightarrow \gamma \chi_{b2}(2P)$) $\gamma \Upsilon(2S)$) = (1.90 ± 0.23 ± 0.18) % using B($\Upsilon(2S) \rightarrow \mu^{+} \mu^{-}$) = (1.44 ± 0.10)%.

$\begin{array}{l} [\mathsf{B}(\chi_{b2}(2P) \to \ \gamma \ \varUpsilon(2S)) \times \mathsf{B}(\ \varUpsilon(3S) \to \ \gamma \chi_{b2}(2P))] \ / \ [\mathsf{B}(\chi_{b1}(2P) \to \ \gamma \ \varUpsilon(2S)) \times \mathsf{B}(\ \varUpsilon(3S) \to \ \gamma \chi_{b1}(2P))] \end{array}$

VALUE (%)	DOCUMENT ID		TECN	COMMENT
46.9±2.0	43 LEES	14M	BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$

⁴³ From a sample of $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$ without converted photons.

$\chi_{b2}(2P)$ REFERENCES

AAIJ LEES	14BG 14M	JHEP 1410 088 PR D90 112010	R. Aaij <i>et al.</i> J.P. Lees <i>et al.</i>	(LHCb Collab.) (BABAR Collab.)
LEES	11C	PR D84 011104	J.P. Lees et al.	(BABAR Collab.)
LEES	11J	PR D84 072002	J.P. Lees et al.	(BABAR Collab.)
ASNER	A80	PR D78 091103	D.M. Asner et al.	(CLEO Collab.)
BRIERE	80	PR D78 092007	R.A. Briere et al.	(CLEO Collab.)
CAWLFIELD	06	PR D73 012003	C. Cawlfield et al.	(CLEO Collab.)
ARTUSO	05	PRL 94 032001	M. Artuso et al.	(CLEO Collab.)
CRONIN-HEN	. 04	PRL 92 222002	D. Cronin-Hennessy et al.	(CLEO Collab.)
CRAWFORD	92B	PL B294 139	G. Crawford et al.	(CLEO Collab.)
HEINTZ	92	PR D46 1928	U. Heintz <i>et al.</i>	(CUSB II Collab.)
HEINTZ	91	PRL 66 1563	U. Heintz <i>et al.</i>	(CUSB Collab.)
MORRISON	91	PRL 67 1696	R.J. Morrison et al.	(CLEO Collab.)
NARAIN	91	PRL 66 3113	M. Narain <i>et al.</i>	(CUSB Collab.)