We All Want To Change The World

Consider the regions I, II, and III bounded by the curves $y = \sin(\pi x)$, $y = 4x^2$, and the lines x = 0, $x = \frac{1}{2}$, y = 0, and y = 1.

Each of the following integrals gives a volume of rotation. Identify the axis of rotation and the region(s) rotated.

1.
$$\int_0^{1/2} \pi \left(1 - 16x^4 \right) dx$$

2.
$$\int_0^{1/2} 2\pi x \left(\sin(\pi x) - 4x^2 \right) dx$$

3.
$$\int_0^{1/2} 2\pi (x+3) \sin(\pi x) dx$$

4.
$$\int_0^{1/2} \pi \left(\left(2 - \sin(\pi x) \right)^2 - 1 \right) dx$$

5.
$$\int_0^{1/2} \pi \left(\left(4x^2 + 2 \right)^2 - 2^2 \right) dx$$

6.
$$\int_0^{1/2} 2\pi (1-x) (1-\sin(\pi x)) dx$$

7.
$$\int_0^1 2\pi (1-y) \frac{1}{2} \sqrt{y} \, dy$$

8.
$$\int_0^1 \pi \left(\left(1 - \frac{1}{2} \sqrt{y} \right)^2 - \frac{1}{4} \right) dy$$