Disciplina: Cálculo II **Ano Letivo:** 2022/2023

Turma: TP4-6

Professor: Nelson Faustino

Gabinete: 11.2.14 e-mail: nfaust@ua.pt

Caderno 1: Séries de Potências e Fórmula de Taylor

Versão de 12 de fevereiro de 2023

Observações

- O Caderno 1 corresponde a um guião que será fielmente seguido ao longo das primeiras aulas. Deve portanto trazer sempre consigo uma cópia deste, em formato papel e/ou digital.
- Na próxima página vai encontrar <u>duas tabelas</u>: uma, contendo um um conjunto minimal de exercícios recomendados da **Folha Prática 1**; uma outra tabela com **Leituras Recomendadas**.
- Nas <u>últimas páginas deste caderno</u> vai encontrar uma lista de **Exercícios Extra** para aprofundar o seu estudo.

"Computational mathematics is mainly based on two ideas: Taylor series, and linear algebra".

Professor Lloyd Nicholas Trefethen, University of Oxford 1,2

¹Citação retirada da página pessoal do autor – https://people.maths.ox.ac.uk/trefethen/maxims.html

²Imagem pode ser encontrada em https://www.geogebra.org/m/cuavrvgt

Folha Prática 1

Os exercícios selecionados da **Folha Prática 1** correspondem a um conjunto mínimo (altamente) recomendado para estudo autónomo.

Tema	Exercícios
Série de Potências	1.(a), 1.(c), 1.(d), 1.(f), 1.(g), 1.(i), 1.(l) 2.
Fórmula de Taylor	3.(b), 3.(c), 3.(d), 3.(f) 4., 5., 6.
Série Geométrica	10., 11.

Leituras Recomendadas

Para além do texto de apoio (Almeida , 2018) e dos **slides do capítulo 1**, disponíveis na plataforma Moodle (cf. Brás (2020)), espera-se que o aluno procure estudar por alguns dos livros que se encontram na bibliografia recomendada da disciplina. Na tabela abaixo foram catalogadas algumas sugestões de leitura³.

Bibliografia	Secção
(Stewart, 2013)	11.8 Séries de Potências (pp. 669–673)
	11.9 Representações de Funções como Séries de Potências (pp. 674–675) [Apenas séries geométricas]
	11.10 Séries de Taylor e Maclaurin (pp. 679–687) [Até ao Exemplo 10]
(Apostol , 1983)	11.6 Séries de potências. Círculo de convergência (pp. 498–500) [Interpretar círculo de convergência como intervalo de convergência]
	11.7 Exercícios (pp. 500–501) [Apenas exercícios 1. a 16.]
(Knuth, 1997)	1.2.6 Binomial Coeficients (pp. 52–74) [Apenas fórmulas aditivas e recursivas, envolvendo coeficientes binomiais]
	1.2.7 Harmonic Numbers (pp. 75–79) [Para complementar o seu estudo de séries harmónicas, já realizado a Cálculo I]
	1.2.8 Fibonacci Numbers (pp. 79–86)
	[Para resolver o Exercício 18 & o Exercício 19]

³Para obter a interpretação combinatória da figura da **página 1**, vide (Knuth , 1997, p. 85, Exercício 16.) e a sua solução na (Knuth , 1997, p. 493).

Séries de Potências

Revisões de Séries Numéricas

Exemplo 1 (Série Geométrica de razão r).

$$\sum_{n=p}^{\infty} ar^n = \frac{ar^p}{1-r} (\neq \pm \infty)$$

 $desde \ que \ |r| < 1.$

Caso contrário, (i.e. se $|r| \ge 1$) a série $\sum_{n=p}^{\infty} ar^n$ é divergente.

Adenda 1 (Progressão Geométrica de Razão r). A convergência/divergência da série geométrica do Exemplo 1 é obtida com base no limite das sucessões das somas parciais, $(S_n)_{n\geq p}$, definida por

$$S_n = \sum_{k=p}^n ar^k.$$

Em concreto, da igualdade $S_n = ar^p \times \frac{1 - r^{n+1}}{1 - r}$ $(r \neq 1)$, segue que $\sum_{n=p}^{\infty} ar^n = ar^p \times \lim_{n \to \infty} \frac{1 - r^{n+1}}{1 - r}$.

Para Treinar Progressões/Séries Geométricas: Pode começar pelo Exercício (1) & Exercício (12).

Exemplo 2 (Série Harmónica (ou de Dirichlet)). Para valores de $p \ge 1$ natural, a série numérica $\sum_{n=p}^{\infty} \frac{1}{n^{\alpha}}$ é convergente, desde que $\alpha > 1$. Caso contrário (i.e. se $\alpha \le 1$), a série $\sum_{n=p}^{\infty} \frac{1}{n^{\alpha}}$ é divergente.

Adenda 2 (Função Zeta de Riemann). Para valores de $\alpha > 1$, a série de potências

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

corresponde à função zeta de Riemann, $\zeta(\alpha)$ (a título de curiosidade, vide (Apostol , 1983, Exemplo 2. da p. 459) & (Knuth , 1997, p. 76)).

Definição 1 (Série absolutamente/simplesmente convergente). A série numérica $\sum_{n=n}^{\infty} a_n$ diz-se:

- Absolutamente convergente se a série dos módulos, $\sum_{n=p}^{\infty} |a_n|$, é convergente;
- Simplesmente convergente se a série dos módulos, $\sum_{n=p}^{\infty} |a_n|$, é divergente mas $\sum_{n=p}^{\infty} a_n$ é convergente.

3

Teorema 1 (Critério de Comparação). Sejam $\sum_{n=p}^{\infty} a_n$ e $\sum_{n=p}^{\infty} b_n$ duas séries numéricas de termos positivos tais que

$$0 < a_n \le b_n$$
, para todo o $n \ge p$ natural.

Então as seguintes conclusões são válidas:

- Convergência $Se \sum_{n=p}^{\infty} b_n$ é convergente, então $\sum_{n=p}^{\infty} a_n$ também é convergente.
- Divergência $Se \sum_{n=p}^{\infty} a_n$ é divergente, então $\sum_{n=p}^{\infty} b_n$ também é divergente.
- Nada se pode concluir $Se \sum_{n=p}^{\infty} b_n$ é divergente ou $\sum_{n=p}^{\infty} a_n$ é convergente, nada podemos concluir quanto à natureza da série numérica a comparar.

Exemplo 3 (Critério de Comparação). O Teorema 1 permite-nos concluir, com base na sequência de desigualdades

$$0 < \frac{e^{-n}}{n} \le e^{-n}$$
, para todo o $n \in \mathbb{N}$

e na convergência da série geométrica, de razão $r=e^{-1}$, dada por $\sum_{n=1}^{\infty}e^{-n}$, que $\sum_{n=1}^{\infty}\frac{e^{-n}}{n}$ é convergente.

Adicionalmente, as propriedades das séries de termos positivos e igualdade $\sum_{n=1}^{\infty} e^{-n} = \frac{e}{e-1}$ permitem-nos ainda concluir que

$$\sum_{n=1}^{\infty} \frac{e^{-n}}{n} \le \frac{e}{e-1}.$$

Contra-Exemplo 1 (Critério de Comparação Inconclusivo). Se ao invés de considerarmos a série geométrica $\sum_{n=1}^{\infty} e^{-n}$, tivéssemos considerado a série harmónica de ordem $\alpha=1$ não conseguiríamos concluir a convergência de $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$, via o Teorema 1. De facto, tem-se

$$0 < \frac{e^{-n}}{n} < \frac{1}{n}$$
, para todo o $n \in \mathbb{N}$.

Todavia, a série $\sum_{n=1}^{\infty} \frac{1}{n}$ é divergente.

Teorema 2 (Critério de Comparação por Passagem ao Limite). Sejam $\sum_{n=p}^{\infty} a_n$ e $\sum_{n=p}^{\infty} b_n$ duas séries numéricas de termos positivos e

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}.$$

Então as seguintes conclusões são válidas:

- Caso L > 0 As séries numéricas $\sum_{n=p}^{\infty} a_n$ e $\sum_{n=p}^{\infty} b_n$ têm a mesma natureza;
- Caso $L = 0 \sum_{n=p}^{\infty} a_n$ é convergente, <u>somente se</u> $\sum_{n=p}^{\infty} b_n$ é convergente;
- Caso $L = +\infty \sum_{n=p}^{\infty} b_n$ é divergente, <u>somente se</u> $\sum_{n=p}^{\infty} a_n$ é divergente.

Adenda 3 (Complementar ao Exemplo 3). É também possível aplicar o Teorema 2 para concluir a convergência da série numérica $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$ a partir da convergência da série $\sum_{n=1}^{\infty} e^{-n}$.

De facto,

$$L = \lim_{n \to +\infty} \frac{\frac{e^{-n}}{n}}{e^{-n}} = \lim_{n \to +\infty} \frac{1}{n} = 0.$$

Teorema 3 (Critério de Leibniz). A série $\sum_{n=p}^{\infty} (-1)^n a_n$ é convergente, desde que as seguintes condições sejam sempre satisfeitas:

- Sucessão de termos positivos $\rightarrow a_n > 0$, para todo o $n \ge p$ natural;
- Sucessão monótona decrescente $\rightarrow a_{n+1} \leq a_n$, para todo o $n \geq p$ natural;
- Limite infinitesimal $\rightarrow \lim_{n\to\infty} a_n = 0$.

Exemplo 4 (Convergência Absoluta). A Definição 1 e o Exemplo 2 permitem-nos concluir que a série harmónica alternada, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\alpha}}$, é <u>absolutamente convergente</u> para valores de $\alpha > 1$.

Adenda 4. A Definição 1 e o Exemplo 2 não nos permitem concluir, de imediato, que a série harmónica alternada, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\alpha}}$, é <u>simplesmente convergente</u> para valores de $\alpha \leq 1$. Para chegarmos nesta conclusão, teremos de aplicar o critério de Leibniz (vide **Teorema 3**).

Exemplo 5 (Convergência Simples). O Exemplo 2 permitem-nos ainda concluir que a série harmónica alternada, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\alpha}}$, é <u>absolutamente convergente</u> para valores de $\alpha > 1$.

Para Revisão: Leia também (Stewart , 2013, pp. 667-668) para rever as estratégias a adotar no estudo de séries numéricas. E procure resolver pelo menos o **Exercício** (2) & o **Exercício** (4).

Raio de Convergência e Domínio de Convergência

Nesta seção iremos focar o nosso estudo em séries de potências da forma

$$\sum_{n=0}^{\infty} a_n (x-c)^n, \tag{1}$$

onde c denota o centro e $(a_n)_{n\in\mathbb{N}_0}$ denota uma sucessão de números reais – vide (Almeida , 2018, Definição 1.1). Em concreto, o estudo da convergência de uma série de potência, enunciado em (Almeida , 2018, Definição 1.1) & (Almeida , 2018, Teorema 1.2), pode ser realizada algoritmicamente seguinte modo:

Passo 0: Calcular raio de convergência usando uma das seguintes fórmulas:

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$
 ou $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$.

Passo 1: Se $R = +\infty$, então a série de potências converge absolutamente em $I = \mathbb{R}$. Caso contrário, ir para o **Passo 2**.

Passo 2: Se R=0 então a série de potências apenas converge absolutamente em $I=\{c\}$. Caso contrário, ir para o **Passo 3**.

Passo 3: A série converge absolutamente no intervalo $I =]c - R, c + R[(0 < R < +\infty).$ Caso contrário, ir para o **Passo 4**.

Passo 4: Averiguar se a série numérica converge nos pontos da forma x = c - R ou x = c + R. Incluir este(s) ponto(s) ao intervalo I em caso de convergência.

Notação 1 (Termos nulos da série de potências). Quando escrevermos $\sum_{n=p}^{\infty} a_n(x-c)^n$ $(p \in \mathbb{N})$ ao invés da fórmula (1), estamos a assumir implicitamente que os primeiros p termos da série de potências dada são nulos, i.e.

$$a_0 = a_1 = \ldots = a_{p-1} = 0.$$

Adenda 5 (Vide Observação 1.2 de (Almeida , 2018)). Aplicação direta do critério da razão/raíz à série de potências $\sum_{n=0}^{\infty} a_n(x-c)^n$ permite-nos concluir que esta

• Converge absolutamente se, e só se

$$\frac{1}{R}|x-c| < 1 \Longleftrightarrow |x-c| < R;$$

• Diverge se, e só se

$$\frac{1}{R}|x-c| > 1 \Longleftrightarrow |x-c| > R;$$

• Nada se pode concluir quando

$$\frac{1}{R}|x-c| = 1 \Longleftrightarrow |x-c| = R.$$

Diagrama 1 (Cálculo de raio/intervalo de convergência). O diagrama abaixo dá-nos uma representação pictórica da Observação 1.2 de (Almeida, 2018).

Adenda 6 (vide Exercício 2. da Folha Prática 1). No caso de $0 < R < \infty$, podemos facilmente verificar que a série dos módulos de (1) coincide nas extremidades $c \pm R$ (|x - c| = R), em virtude da igualdade

$$\sum_{n=0}^{\infty} |a_n(x-c)^n| = \sum_{n=0}^{\infty} |a_n| |x-c|^n.$$

Esta identidade permite-nos ainda concluir o sequinte:

- 1. Se (1) é convergente em [c-R, c+R[ou em]c-R, c+R], então (1) converge simplesmente numa das extremidades (porquê?);
- 2. Se (1) é absolutamente convergente em uma das extremidades, c-R resp. c+R, então o intervalo de convergência é dado por [c-R,c+R].

Com base na fórmula geral da série geométrica, introduzida no **Exemplo 1**, podemos criar vários exemplos para além da célebre série de potências $\sum_{n=0}^{\infty} x^n$, mencionada vários livros de texto (vide p.e. (Almeida , 2018, Exemplo 1.1)).

Exemplo 6 (Séries de Potências vs. Séries Geométrica). A série de potências $\sum_{n=0}^{\infty} (-1)^n (x-1)^n$ é absolutamente no intervalo [0,2[.

Adicionalmente, o raio de convergência é 1 e o domínio de convergência é o intervalo aberto]0,2[(|x-1|<1).

Mais adiante: Iremos verificar que série de potências do Exemplo 6 corresponde à série geométrica da função $\frac{1}{x}$ em torno de c=1.

Adenda 7. Os pontos x=0 (caso x-1=-1) e x=2 (caso x-1=1) <u>não pertencem</u> ao intervalo de convergência da série de potências $\sum_{n=0}^{\infty} (-1)^n (x-1)^n$, dado as séries numéricas

$$\sum_{n=0}^{\infty} 1 \quad resp. \quad \sum_{n=0}^{\infty} (-1)^n$$

serem ambas divergentes (Porquê?).

Exemplo 7 (Análogo ao Exemplo 1.3 de (Almeida , 2018)). À semelhança do Exemplo 6, é também possível demonstrar que a série de potências $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n$ converge absolutamente no intervalo $[0,2[\ (|x-1|<1).$

Para o caso de x = 0 (x - 1 = -1), segue a série de termos negativos

$$\sum_{n=1}^{\infty} \frac{-1}{n} := -\sum_{n=1}^{\infty} \frac{1}{n},$$

com a mesma natureza da serie harmónica de ordem $\alpha=1$, (vide **Exemplo 2**) – é divergente.

No caso de x=2, segue que a série alternada $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ – que tem a mesma natureza da série

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} - está \ nas \ condições \ do \ critério \ de \ Leibniz \ (verifique \ todas \ as \ condições \ do \ \textbf{Teorema 3}) \ pelo \ que \ a \ série \ de \ potências \ dada \ é \ simplesmente \ convergente \ para \ x=2.$

Em suma: o intervalo de convergência corresponde ao intervalo semi-aberto [0,2].

Mais adiante: Iremos verificar que série de potências do Exemplo 7 corresponde à série de Taylor da função ln(x) em torno de c=1.

Exemplo 8 (Análogo ao Exemplo 1.2 de (Almeida , 2018)). Considere-se agora a série de potências, dada por $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n n!} x^{2n}$.

Note-se que esta série não se encontra no formato usual de série potências, uma vez que os termos gerais, associados às potências de ordem ímpar (x^{2n+1}) foram omitidas. Neste caso, será mais recomendável adotar o argumento invocado em (Almeida , 2018, Observação 1.2) para calcular o raio/domínio de convergência da série de potências por aplicação direta do critério da razão.

Em concreto, tome-se $f_n(x) = \frac{(-1)^n}{4^n n!} x^{2n}$. Logo a série de potências dada é absolutamente convergente se, e só se

$$\lim_{n \to \infty} \frac{|f_{n+1}(x)|}{|f_n(x)|} < 1.$$

Após realizar alguns cálculos auxiliares, podemos concluir que a série dada é absolutamente convergente em \mathbb{R} , em virtude de:

1.
$$\frac{|f_{n+1}(x)|}{|f_n(x)|} = \frac{x^2}{4(n+1)}$$
 (verifique); 2. $\lim_{n \to \infty} \frac{x^2}{4(n+1)} = 0$.

Mais adiante: Iremos verificar que série de potências do Exemplo 8 corresponde à série de Maclaurin da função $e^{-\frac{x^2}{2}}$. De momento, não se pretende avançar muito para além do Exercício (17) – um excelente exercício para revisitar conceitos de primitivação e integração, abordados em Cálculo I.

Exemplo 9 (Complementar ao Exemplo 1 da página 669 de (Stewart, 2013)). Por fim, considere-se a série de potências, dada por $\sum_{n=0}^{\infty} n^n x^{2n}$.

Pode-se facilmente verificar, por aplicação direta do critério de Cauchy, que para $f_n(x) = n^n x^{2n}$ se tem

$$\lim_{n \to \infty} \sqrt[n]{|f_n(x)|} = \lim_{n \to \infty} nx^2 = +\infty,$$

para todo o $x \neq 0$.

Neste caso, a série converge apenas absolutamente quando x=0 e, por conseguinte, o raio de convergência é nulo (i.e. R=0).

Contra-Exemplo 2 (Cálculo do Raio de Convergência). Na série de potências da forma

$$\sum_{n=0}^{\infty} \frac{n^n}{n!} x^{2n+1}$$

aparecem apenas representados os termos ímpares (x^{2n+1}) , pelo que é legítimo assumir que o primeiro

termo da série, assim como os termos pares são todos nulos. Neste caso, para $a_n = \frac{n^n}{n!}$ a aplicação do critério da razão permite-nos concluir que

$$\ell = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^n = e.$$

No entanto, a série é divergente para valores de $|x| = \frac{1}{e}$ (verifique!) pelo que $\frac{1}{\ell} = \frac{1}{e}$ não corresponde ao valor do raio de convergência.

Todavia, se aplicarmos a estratégia delineada no Diagrama 2 (que se encontra a seguir), podemos

concluir que $\frac{1}{\sqrt{e}}$ é o valor do raio de convergência. Este facto pode ser deduzido a partir da sequência de equivalências, envolvendo a sucessão de funções $f_n(x) = \frac{n^n}{n!}$:

$$\lim_{n\to\infty}\frac{|f_{n+1}(x)|}{|f_n(x)|}<1\Longleftrightarrow\lim_{n\to\infty}\left(\frac{n+1}{n}\right)^n|x|^2<1\Longleftrightarrow e|x|^2<1\Longleftrightarrow|x|^2<\frac{1}{e}\Longleftrightarrow|x|<\frac{1}{\sqrt{e}}.$$

Adenda 8 (Aplicação do Critério da Razão/Raiz). O Exemplo 8, Exemplo 9 & o Contra-Exemplo 2 mostram-nos que o domínio e o raio de convergência das respetivas séries de potências não requer o cálculo prévio do raio de convergência e do domínio de convergência – apenas aplicação direta do critério da razão ou da raíz, tal como ilustrado de seguida no Diagrama 2.

Diagrama 2 (Estudo Genérico de Série de Potências). O diagrama abaixo resume, de um modo genérico, a estratégia a ser utilizada para estudo de séries de potências.

A ter em linha de conta: Ao resolver os itens do Exercício (6) e, mais adiante, o Exercício (15), pode adotar qualquer uma das estratégias mencionadas. Apenas terá de ter [algum] cuidado que, no caso de adotar a primeira estratégia – assente no cálculo explícito do raio de convergência da série – nos termos da série de potências:

- (a) Terão de aparecer **sempre** potências da forma $(x-c)^n$ e não potências $(x-c)^{2n}$, $(x-c)^{2n+1}$ entre outras (cf. (Brás , 2020, slide 8/19)).
- (b) No caso de aparecerem potências da forma $(mx+b)^n$, terá de rescrever o termo germo geral de modo a separar as potências da forma $(x-c)^n$ da sucessão $(a_n)_{n\in\mathbb{N}_0}$.

Fórmula de Taylor

Resultados Teóricos e Exemplos

Definição 2 (Polinómio de Taylor de ordem n**).** Seja f uma f.r.v.r. admitindo derivadas finitas até à ordem $n \in \mathbb{N}$ num dado ponto $c \in \mathbb{R}$. Ao polinomio

$$T_c^n(f(x)) := \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$$

chamamos polinómio de Taylor de ordem n da função f no ponto c.

Notação 2 (Polinómio de Maclaurin). Para o caso de c = 0, iremos designar $T_0^n(f(x))$ por polinómio de Maclaurin de ordem n de f.

Teorema 4 (Teorema de Taylor Infinitesimal). Sejam $n \in \mathbb{N}_0$ e f uma função real com derivadas contínuas até à ordem n+1 num intervalo I e $c \in I$. Então, para todo o $x \in I \setminus \{c\}$, tem-se

$$f(x) = T_c^n(f(x)) + R_c^n(f(x)),$$

onde:

1. $T_c^n(f(x))$ é o polinómio de Taylor de ordem n de f em c.

2.
$$\lim_{x \to c} \frac{R_c^n(f(x))}{(x-c)^n} = 0.$$

Além disso, $T_c^n(f(x))$ é o único polinómio de grau n tal que as condições acima são satisfeitas.

Note ainda que no caso de $f^{(n+1)}$ existir, é ainda possível estimar o valor de

$$R_c^n(f(x)) = f(x) - T_c^n(f(x))$$

com recurso ao resto de Lagrange de ordem n, tal qual descrito no **Teorema 5**.

Teorema 5 (Teorema de Taylor com Resto de Lagrange). Sejam $n \in \mathbb{N}_0$ e f uma função real com derivadas contínuas até à ordem (n+1) num intervalo I e $c \in I$. Então, para todo o $x \in I \setminus \{c\}$, existe θ entre entre c e x tal que

$$f(x) = T_c^n(f(x)) + R_c^n(f(x)),$$

onde:

1. $T_c^n(f(x))$ é o polinómio de Taylor de ordem n de f em c.

2.
$$R_c^n(f(x)) = \frac{f^{(n+1)}(\theta)}{(n+1)!}(x-a)^{n+1}$$
 é o resto de Lagrange de ordem n de f em c.

Exemplo 10 (Polinómio de Taylor vs. Polinómio de Grau n). Após resolver o Exercício (8) (fortemente recomendado) poderá facilmente chegar na conclusão, via a identidade binomial

$$x^{k} = \sum_{j=0}^{n} \binom{k}{j} c^{j} (x-c)^{k-j}$$

e argumentos de linearidade, que o polinómio de grau n, dado por

$$P_n(x) = a_0 + a_1 x + \ldots + a_n x^n := \sum_{k=0}^n a_k x^k \quad (a_n \neq 0),$$

coincide com o polinómio de Taylor de ordem n. Nas condições do Teorema 4

- 1. A igualdade $T_c^n(P_n(x)) = P_n(x)$ é satisfeita, para todo o $c \in \mathbb{R}$;
- 2. A condição limite $\lim_{x\to c} \frac{R_c^n(f(x))}{(x-c)^n} = 0$ é sempre satisfeita, uma vez que $R_c^n(P_n(x)) = 0$, para todo o $c \in \mathbb{R}$.

Adenda 9. O Teorema 5 também é aplicável ao Exemplo 10, dado que o resto de Lagrange de ordem n ser sempre nulo, em virtude de $P_n^{(n+1)}(0) = 0$.

Exemplo 11 (Polinómio de Taylor de uma função por ramos). Considere-se agora a sucessão de funções por ramos $(f_m(x))_{m\in\mathbb{N}}$, definida por

$$f_m(x) = \begin{cases} x^m, & x \ge 0\\ -x^m, & x < 0 \end{cases}$$

No caso da função f_{n+1} $(n \in \mathbb{N}_0)$, tem-se que esta tem derivadas contínuas até à ordem n. E que estas podem ser representadas, via a igualdade

$$f_{n+1}^{(k)}(x) = \frac{(n+1)!}{(n+1-k)!} f_{n+1-k}(x), \quad k = 0, 1, \dots, n.$$

Após alguns cálculos, seque que

$$T_c^n(f(x)) = \sum_{k=0}^n \binom{n+1}{k} f_{n+1-k}(c)(x-c)^k$$

é o polinómio de Taylor de ordem n de f em torno de c.

No caso particular de c = 0, tem-se que:

- 1. $T_0^n(f_{n+1}(x)) = 0$ é o polinómio de Maclaurin de ordem n de f_{n+1} .
- 2. $T_0^n(f_{n+1}(x)) = 0$ é o único polinómio de Maclaurin de ordem n de f_{n+1} , uma vez que

$$\lim_{x \to 0} \frac{R_0^n(f_{n+1}(x))}{x^n} = \lim_{x \to 0} \frac{f_{n+1}(x)}{x^n} = \lim_{x \to 0} |x| = 0.$$

Contra-Exemplo 3 (Falha na Aplicação do Teorema 5). Na figura disponível em

https://www.geogebra.org/calculator/rr732gfx

encontra-se representada a função f_{n+1} do **Exemplo 11** e a função derivada de ordem n, $f^{(n)}$, dada por $f^{(n)}(x) = (n+1)! |x|$.

Para este caso:

- 1. Não nos é possível aplicar o **Teorema 5** para estimar $R_c^n(f(x))$, uma vez que a função módulo não admite derivada no ponto c = 0.
- 2. Pelo mesmo motivo, também se demonstra que não é possível determinar o polinómio de Maclaurin de ordem n+1 de f_{n+1} , $T_0^{n+1}(f_{n+1}(x))$.

Exemplo 12 (Polinómio de Taylor vs. Progressão Geométrica). Do Exemplo 10 e da Adenda 1 podemos facilmente concluir que, para valores de $x \neq 1$, o polinómio de Taylor de ordem n, em torno do ponto c, admite sempre a representação em forma de fração racional

$$1 + x + \ldots + x^n = \frac{1 - x^{n+1}}{1 - x},$$

ou seja, a igualdade $T_c^n\left(\frac{1-x^{n+1}}{1-x}\right)=1+x+\ldots+x^n$ é uma consequência imediata do facto dos polinómios $1-x^{n+1}$ e 1-x serem divisíveis.

Adenda 10 (Derivadas de ordem k vs. Progressão Geométrica). Com base na igualdade

$$\frac{1}{1-x} = \frac{1-x^{n+1}}{1-x} + \frac{x^{n+1}}{1-x}$$

é ainda possível concluir que $T_0^n\left(\frac{1}{1-x}\right)=1+x+\ldots+x^n$ é o único polinómio de Maclaurin de ordem n de $\frac{1}{1-x}$, em virtude de

$$\lim_{x \to 0} \frac{\frac{x^{n+1}}{1-x}}{x^n} = \lim_{x \to 0} \frac{x}{1-x} = 0.$$

Este facto permite-nos concluir que as derivadas de ordem k de $\frac{1}{1-x}$ em c=0 são iguais a k!, isto é

$$\left[\frac{1}{1-x}\right]_{x=0}^{(k)} = k!, \quad k = 0, 1, \dots, n.$$

Mais adiante: Iremos verificar, via a representação em série geométrica de $\frac{1}{1-x}$, que esta admite derivadas de qualquer ordem em c=0.

Exemplo 13 (Função Exponencial). Pode-se facilmente verificar que a função exponencial e^x , satisfazem a equação $(e^x)' = e^x$. Logo, podemos facilmente concluir o seguinte

13

- 1. $T_0^n(e^x) = \sum_{k=0}^n \frac{x^k}{k!}$ é o polinómio de Maclaurin ordem n de e^x .
- 2. $R_0^n(e^x) = \frac{e^{\theta}}{(n+1)!}x^{n+1}$ (θ entre 0 e x) \acute{e} o resto de Lagrange de ordem n.

Fórmula de Taylor vs. Regra de L'Hôpital

O próximo resultado, que também decorre do **Teorema 4** (ou do **Teorema 5**), permite-nos calcular limites associados a indeterminações do tipo $\frac{0}{0}$.

Teorema 6 (Regra de L'Hôpital). Sejam f e g duas funções com derivadas contínuas até à ordem n num intervalo I e $c \in I$. Adicionalmente, se as seguintes condições são satisfeitas:

- (a) $f^{(k)}(c) = g^{(k)}(c) = 0$, para todo o k = 0, 1, ..., n 1;
- (b) Pelo menos uma das derivadas $f^{(n)}(c)$ ou $g^{(n)}(c)$ é não nula.
- (c) $g(x) \neq 0$ em $I \setminus \{c\}$.

tem-se que

$$\begin{cases} \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f^{(n)}(c)}{g^{(n)}(c)}, & g^{(n)}(c) \neq 0 \\ \lim_{x \to c} \left| \frac{f(x)}{g(x)} \right| = +\infty, & g^{(n)}(c) = 0 \end{cases}$$

Adenda 11 (Regra de L'Hôpital). Note-se que, nas condições do Teorema 6, a fórmula de Taylor com resto de Lagrange (vide Teorema 4) permite-nos concluir que

$$f(x) = \frac{f^{(n)}(x)}{n!} (x - c)^n + R_c^n(f(x)),$$
$$g(x) = \frac{g^{(n)}(x)}{n!} (x - c)^n + R_c^n(g(x)).$$

Pelas duas fórmulas anteriores, e pelas condições

$$\lim_{x \to c} \frac{R_c^n(f(x))}{(x - c)^n} = 0 = \lim_{x \to c} \frac{R_c^n(g(x))}{(x - c)^n}$$

seque que

$$\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{\frac{f(x)}{(x-c)^n}}{\frac{g(x)}{(x-c)^n}}=\lim_{x\to c}\frac{f^{(n)}(x)}{g^{(n)}(x)}\quad [ap\'{o}s\ simplifica\~{c}\~{o}es].$$

Esta conclusão também é válida nas condições do Teorema 5 (justifique o porquê).

Mais adiante: Pretende-se que aplique o **Teorema 6** na resolução do **Exercício** (10). Em particular, a fórmula de Taylor $T_c^n(f(x)) = \frac{f^{(n)}(x)}{n!}(x-c)^n$ que resulta da construção obtida na **Adenda 11**.

Polinómio de Taylor vs. Aproximação Polinomial

Nesta subsecção iremos dar alguns exemplos de aplicabilidade da fórmula de Taylor, introduzida na **Definição 2** assim como da majoração do erro de Lagrange, obtido no **Teorema 5**. Comecemos por observar o seguinte resultado que decorre de aplicação direta do Teorema de Weierstraß [para funções contínuas]:

Corolário 1 (do Teorema 5). Suponhamos que a derivada de ordem n+1 de f, $f^{(n+1)}$, é contínua no intervalo [a,b], então existe uma constante $M:=\max_{x\in [a,b]}|f^{(n+1)}(x)|$ tal que para todo o $x\in [a,b]$,

$$|R_c^n(f(x))| \le \frac{M}{(n+1)!} |x-c|^{n+1} \le \frac{M}{(n+1)!} (b-a)^{n+1}.$$

Exemplo 14 (Aproximação Racional do Número de Euler). É fácil de verificar, com base no Exemplo 13, que

$$e \approx \sum_{k=0}^{n} \frac{1}{k!}$$
.

Se escolhermos x no intervalo [0,1], tem-se que

$$|R_0^n(e^x)| \le \frac{e^{\theta}}{(n+1)!} |x|^{n+1} \le \frac{e}{(n+1)!}$$

Para mais detalhes, vide (Almeida, 2018, Exemplo 1.13).

Nesta fase do seu estudo espera-se que tenha entendido várias ideias basilares por detrás do cálculo do polinómio de Taylor. Uma delas, que resulta do **Teorema 4**, diz-nos que todas as derivadas de ordem k $(0 \le k \le n)$ de f e do polinómio $P_n(x-c) := T_n^c(f(x))$ terão de coincidir.

Para tal, terá de se assumir as seguintes n+1 condições de interpolação são satisfeitas para polinómios P_n da forma do **Exemplo 10**:

$$f^{(k)}(c) = P_n^{(k)}(0)$$
, para todos os $0 \le k \le n$. (2)

Esta última condição garante-nos não apenas que o polinómio de Taylor de um polinómio P_n é o próprio polinómio – independentemente da escolha de $c \in I$. Outra conclusão, que advém desta conclusão, é que o gráfico do polinómio de Taylor aproxima fielmente o gráfico da função f [numa vizinhança $c \in I$] – que advém da condição de limite $\lim_{x\to c} \frac{R_c^n(f(x))}{(x-c)^n} = 0$, subjacente ao **Teorema 4**.

Exemplo 15 (Polinómio de Maclaurin da Função Logística). No exemplo criado em https://www.geogebra.org/calculator/jmrz9zf6, considerou-se o polinómio de Maclaurin da função logística, dada por $f(x) = \frac{2}{1 + e^{-2x}}$. Neste pode verificar-se que:

- (a) O polinómio de MacLaurin de ordem 1 de f coincide com $T_0^1(e^x)$ do **Exemplo 13**;
- (b) Para diferentes ordens, n, o gráfico do polinómio de Maclaurin assemelha-se ao gráfico de f numa vizinhança de (0,1) **ponto de inflexão do gráfico de** f;
- (c) Ao contrário do **Exemplo 13**, basta apenas considerar os polinómios de Taylor de ordem ímpar, em virtude de f das derivadas de ordem par (n = 2k) de f, em c = 0, serem todas nulas.

Adenda 12 (Condições de Interpolação). Da condição (2), seguem ainda as seguintes conclusões:

i) Os coeficientes de ordem k do polinômio P_n são unicamente determinados pela fórmula

$$a_k = \frac{f^{(k)}(c)}{k!}.$$

ii) A regra de L'Hôpital, abordada no Corolário 6, conduz-nos à equivalência^a

$$\lim_{x \to c} \frac{R_c^n(f(x))}{x^n} = 0 \Longleftrightarrow \left[\frac{d^k}{dx^k} R_c^n(f(x)) \right]_{x=0} = 0 \quad (k = 0, 1, \dots, n).$$

^aGeneralização da equivalência diferenciabilidade de $f \iff existência$ de reta tangente ao gráfico de f.

Após estudar os próximos dois exemplos já pode resolver o Exercício (9), e depois, o Exercício (11). Mais adiante, e se já sentir confortável na manipulação de coeficientes binomiais, já pode arriscar resolver o Exercício (16) & o Exercício (17).

Exemplo 16 (Aproximação Racional do Número de Ouro). Suponha que pretende obter uma aproximação racional para o célebre número de ouro $\phi = \frac{1+\sqrt{5}}{2}$.

Para tal, comecemos por calcular o polinómio de Taylor de ordem n da função f definida, para valores de $x \ge 0$, por $f(x) = \frac{1+\sqrt{x}}{2}$, em torno de c = 4. Para tal, observe que

$$i) f(4) = \frac{1+\sqrt{4}}{2} = \frac{3}{2}$$

ii)
$$f'(x) = \frac{1}{4}x^{-\frac{1}{2}} \Longrightarrow f'(4) = \frac{1}{8} \Longrightarrow T_4^1(f(x)) = \frac{3}{2} + \frac{1}{8}(x-4)$$

$$iii)$$
 $f''(x) = -\frac{1}{8}x^{-\frac{3}{2}} \Longrightarrow f''(4) = -\frac{1}{64} \Longrightarrow T_4^2(f(x)) = \frac{3}{2} + \frac{1}{8}(x-4) - \frac{1}{128}(x-8)^2.$

Portanto:

- (a) Aproximação linear de ϕ por $T_4^1(f(4))$: $\phi \approx \frac{3}{2} + \frac{1}{8} = \frac{13}{8}$.
- (b) Aproximação Quadrática de ϕ por $T_4^2(f(4)) \phi \approx \frac{3}{2} + \frac{1}{8} \frac{1}{128} = \frac{207}{128}$.

Com base no exemplo numérico, criado em https://www.geogebra.org/m/tcnpz8fh, poderemos ainda observar o seguinte:

- (a) Aproximação linear de ϕ por $T_4^1(f(4))$ dá-nos um erro de aproximação inferior a 10^{-2} .
- (b) Aproximação Quadrática de ϕ por $T_4^2(f(4))$ dá-nos um erro de aproximação inferior a 10^{-3} .
- (c) O erro de aproximação diminui se considerarmos aproximação por polinómios de Taylor de ordem superior 2. Pode-se ainda verificar que:

i) Para
$$n = 5$$
, obtemos^a $T_4^5(f(4)) = \frac{424159}{262144} e |f(5) - T_4^5(f(5))| < 0.5 \times 10^{-6}$.

ii) Para
$$n=18$$
, o GeoGebra já assume $|f(5)-T_4^5(f(5))|\approx 0$.

Na disciplina de Métodos Numéricos terá a oportunidade de aprofundar esta e outras questões relacionadas com este tipo de exemplos.

an = 5 é o valor máximo para o qual o GeoGebra ainda apresenta a solução na forma de fração irredutível.

Exemplo 17 (Majoração do Erro de Aproximação de ϕ). Com base na derivação da função potência, podemos demonstrar por indução em $n \in \mathbb{N}$ que

$$(x^{-\frac{1}{2}})^{(n)} = (-1)^n \left(\frac{1}{2}\right)_n x^{-\frac{1}{2}-n},$$

onde $(a)_n = a(a+1)(a+3)\dots(a+n-1)$ denota o símbolo de Pochammer.

Desta última fórmula, segue que a derivada de ordem n+1 da função $f(x)=\frac{1+\sqrt{x}}{2}$, é dada por

$$f^{(n+1)}(x) = \frac{(-1)^n}{4} (x^{-\frac{1}{2}})^{(n)} = \frac{1}{4} \left(\frac{1}{2}\right)_n x^{-\frac{1}{2}-n},$$

Adicionalmente, do facto de $f^{(n+1)}$ ser contínua em [4,5] garante-nos, após alguns cálculos, que

$$|R_4^n f(x)| \le \frac{1}{(n+1)!} \max_{x \in [4,5]} |f^{(n+1)}(x)| = \frac{1}{8 \cdot 4^n (n+1)!} \left(\frac{1}{2}\right)_n.$$

Série de Taylor

Os resultados, exemplos e contra-exemplo, a abordar ao longo desta secção, estão correlacionados com o conceito de função analítica — omnipresente em vários livros de cálculo. De momento, a nossa abordagem ao conceito de analiticidade irá resumir-se à informação que consta em (Brás , 2020, slide 15/19)).

Teorema 7 (Existência da Série de Taylor). Sejam I um intervalo, $c \in I$ e $f: I \to \mathbb{R}$ uma função com derivadas finitas de qualquer ordem em I. Então, para todo o $x \in \mathbb{R}$ tem-se que

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$$
 se, e só se, $\lim_{n \to \infty} R_c^n(f(x)) = 0$

Adenda 13. O Teorema 4 & Teorema 7 são resultados complementares. Enquanto que Teorema 4 e, posteriormente, Teorema 5 – no caso de $f^{(n+1)}$ ser contínua em I – nos garantem a unicidade de $T_c^n(f(x))$, num intervalo I contendo c, enquanto que o Teorema 7 diz-nos essencialmente que o limite desta série coincide com f(x), i.e.

$$f(x) = \lim_{n \to \infty} T_c^n(f(x)).$$

Teorema 8 (Série de Taylor vs. Função & Derivadas Limitadas). Sejam I um intervalo, $c \in I$ e $f: I \to \mathbb{R}$ uma função com derivadas finitas de qualquer ordem em I. Se existir M > 0 tal que

$$|f^{(n)}(x)| \le M$$
, para todos os $x \in I, n \in \mathbb{N}_0$

Então, para todo o $x \in \mathbb{R}$ tem-se

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$$

Adenda 14. A demonstração de que Teorema 8 é um caso particular do Teorema 7 é imediata pelo célebre Teorema do Enquadramento, que deve ter tido oportunidade de estudar em Cálculo I.

Exemplo 18 (Aplicabilidade do Teorema 7). Em (Almeida, 2018, Exemplo 1.18) usou-se a condição necessária para a convergência de uma série para mostrar que

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} \ convergente \ em \ \mathbb{R} \Longrightarrow \lim_{n \to \infty} R_0^n(e^x) = e^{\theta} \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} = 0.$$

Sendo que a implicação recíproca é óbvia, fica então mostrado que $\lim_{n\to\infty} T_0^n(e^x)$ (vide **Exemplo 13**) coincide com a série de Taylor.

Exemplo 19 (Aplicabilidade do Teorema 8). Em (Almeida, 2018, Exemplo 1.9 & Exemplo 1.10) foi mostrado que

$$T_0^{2n}(\cos(x)) = \sum_{k=0}^n \frac{(-1)^k}{(2k)!} x^{2k}$$
$$T_0^{2n+1}(\sin(x)) = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!} x^{2k+1}.$$

Mais adiante, foi mostrado em (Almeida , 2018, Exemplo 1.19 & Exemplo 1.20) que os limites das somas parciais

$$\lim_{n \to \infty} T_0^{2n}(\cos(x)) \wedge \lim_{n \to \infty} T_0^{2n+1}(\sin(x))$$

podem ser consideradas como as séries de Taylor das funções cosseno resp. seno, pelo facto de todas as suas derivadas finitas de qualquer ordem em \mathbb{R} serem limitadas.

Exemplo 20 (Série de Taylor da Função Logaritmo). Usando indução em $k \in \mathbb{N}$, é possível demonstrar que a função racional $\frac{1}{x} = x^{-1}$ satisfaz a regra de derivação.

$$(x^{-1})^{(k)} = (-1)^k k! x^{-k-1}.$$

Adicionalmente, da regra de derivação $(\ln(x))' = \frac{1}{x}$ segue que

$$(\ln(x))^{(n)} = (x^{-1})^{(n-1)} = (-1)^{n-1}(n-1)!x^{-n-2}.$$

Destas últimas fórmulas pode-se concluir que a série de potências do **Exemplo 7** é, de facto, a série de Taylor de $\ln(x)$ em torno de c=1.

Esta conclusão pode ser facilmente obtida a partir do **do Teorema 8**, uma vez que $|\ln(x)| \le \ln(2)$ em |1,2| e a designaldade

$$|(\ln(x))^{(n)}| < (n-1)!$$

é satisfeita para todos os $x \in]1,2]$ e $n \in \mathbb{N}$.

Contra-Exemplo 4 (Série de Taylor não converge para a função). Para a função definida por

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & , se \ x \neq 0 \\ 0 & , se \ x = 0 \end{cases}$$

tem-se que, para todo o $n \in \mathbb{N}$ que

$$\lim_{x \to 0^+} \frac{f(x)}{x^n} = \lim_{x \to +\infty} x^n e^{-x^2} = 0 \quad \land \quad \lim_{x \to 0^-} \frac{f(x)}{x^n} = \lim_{x \to -\infty} x^n e^{-x^2} = 0$$

Logo, pela regra de L'Hôpital (vide **Teorema 6**) segue que $f^{(n)}(0) = 0$, para todo o $n \in \mathbb{N}$, provando assim que a série de Maclaurin de f é a função nula (0). No entanto, $R_0^n(f(x)) = e^{-\frac{1}{x^2}}$ e

$$\lim_{n \to \infty} R_0^n(f(x)) = e^{-\frac{1}{x^2}} \neq 0$$

Séries Geométricas

Os exemplos considerados, ao longo desta secção, envolvem meramente manipulações algébricas, baseados no **Exemplo 1** e na representação de funções racionais, da forma

$$\frac{P(x)}{D(x)} \ (\operatorname{grau}(P) < \operatorname{grau}(D))$$

como soma de $frações \ parciais^4$. O objectivo aqui não passa por revisitar esta técnica, mas por aplicá-la sempre que nos seja mais conveniente – é o que se pretende quando tiver a oportunidade de resolver o **Exercício** (13) & **Exercício** (14).

Mais adiante, terá a oportunidade de aplicar este tipo de técnica, assim como revisitar tudo o que aprendeu até aqui, para resolver o **Exercício** 18 & o **Exercício** 19. De salientar que estes dois últimos exercícios deste caderno situa-se na interface entre o cálculo e análise combinatória.

Exemplo 21 (pp. 674–675 de (Stewart , 2013)). Na disciplina de Cálculo I, teve seguramente a oportunidade de verificar o seguinte:

- i) $\frac{1}{1+x^2}$ corresponde à derivada da função $\arctan(x)$;
- ii) $\frac{2x}{1+x^2}$ corresponde à derivada de $\ln(1+x^2)$.

Com base na fórmula geral da série geométrica, abordada no **Exemplo 1**, pode facilmente verificar que ambas as derivadas podem ser representadas como progressões geométricas de razão $r=-x^2$, desde que $x^2 < 1$ ($\Leftrightarrow |-x^2| < 1$).

Em concreto, assumindo que $|-x^2| < 1$ obtemos:

i)
$$\frac{1}{1+x^2} = \frac{1}{1-(-x)^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

 $\int (a=1, r=-x^2 \ e \ p=0 \ em \ Exemplo \ 1);$

ii)
$$\frac{2x}{1+x^2} = \frac{2x}{1-(-x)^2} = \sum_{n=0}^{\infty} 2x(-x^2)^n = \sum_{n=0}^{\infty} 2(-1)^n x^{2n+1}$$

$$(a = 2x, r = -x^2 \ e \ p = 0 \ em \ \textbf{Exemplo 1}).$$

Em suma: Em ambos os casos, o intervalo de convergência corresponde a]-1,1[.

 $^{^4}$ Para obter uma solução explícita para este tipo de decomposição deve ter recorrido ao *método da variação das constantes*

Mais adiante: Iremos averiguar, via o $Teorema\ Fundamental\ do\ Cálculo$, em que condições é possível obter o desenvolvimento da série de potências de f em termos da série de potências da sua derivada, f'.

Exemplo 22 (pp. 674–675 de (Stewart , 2013)). Com base na fórmula geral da série geométrica, abordada no Exemplo 1, tem-se que a função racional $\frac{1}{x+2}$ pode ser representada como uma série geométrica de razão $r=-\frac{x}{2}$, desde que $\left|-\frac{x}{2}\right|<1$.

De facto,

$$\frac{1}{x+2} = \frac{1}{2} \frac{1}{1+\frac{x}{2}} = \frac{1}{2} \frac{1}{1-\left(-\frac{x}{2}\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n \quad \left(\left|-\frac{x}{2}\right| < 1 \right).$$

Após algumas simplificações, concluímos que:

- (a) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n$ corresponde à representação em série de potências de $\frac{1}{x+2}$.
- (b) Esta série é convergente para valores de |x| < 2 ($\Leftrightarrow \left|-\frac{x}{2}\right| < 1$). Ou seja, no intervalo]-2,2[.

Exemplo 23 (Série geométrica vs. método dos coeficientes indeterminados). Para obtermos o desenvolvimento em série de potências da função racional $\frac{1}{(1-x)(x+2)}$ em termos das séries geométricas obtidas no Exemplo 22 e em (Almeida , 2018, Exemplo 1.1), precisamos de aplicar, a priori, o método dos coeficientes indeterminados.

Para tal, comece primeiro por reescrever $\frac{1}{(1-x)(x+2)}$ na forma

$$\frac{1}{(1-x)(x+2)} = \frac{A}{1-x} + \frac{B}{x+2},$$

onde $A, B \in \mathbb{R}$ são constantes a determinar.

Ora, como x=1 e x=-2 são raízes de multiplicidade 1 do polinómio (1-x)(x+2), segue que

$$A = \left[\frac{1}{x+2}\right]_{x=1} = \frac{1}{3} \& B = \left[\frac{1}{1-x}\right]_{x=-2} = -\frac{1}{3}.$$

Logo,

$$\frac{1}{(1-x)(x+2)} = \frac{\frac{1}{3}}{1-x} - \frac{\frac{1}{3}}{x+2} = \sum_{n=0}^{\infty} \frac{1}{3} \left(1 - \frac{(-1)^n}{2^{n+1}}\right) x^n \quad [ap\'{o}s \ simplifica\~{c}\~{o}es].$$

Esta última série converge no intervalo]-1,1[– interseção do intervalo de convergência das séries de potências de $\frac{1}{1-x}$ e de $\frac{1}{x+2}$.

Adenda 15 (Série de Taylor de funções racionais). No caso de $\frac{P(x)}{D(x)}$ representar função racional, com $grau(P) \geq grau(D)$, a determinação da série de Taylor inicia-se com a divisão dos polinómios P(x) e D(x).

Em concreto, se existirem Q(x) e R(x) tais que grav(R) < grav(D) e

$$P(x) = Q(x)D(x) + R(x)$$

tem-se que

$$\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}.$$

Desta última igualdade podemos facilmente concluir que a série de Taylor corresponde ao limite

$$\lim_{n \to \infty} T_c^n \left(\frac{P(x)}{D(x)} \right) = Q(x) + \lim_{n \to \infty} T_c^n \left(\frac{R(x)}{D(x)} \right).$$

Exemplo 24 (Série Geométrica vs. Divisão de Polinómios). Da igualdade

$$\frac{1-x}{x+2} = -1 + \frac{3}{x+2}$$

e do **Exemplo 22** segue que $-1 + \sum_{n=0}^{\infty} \frac{3(-1)^n}{2^{n+1}} x^n$ corresponde à representação da série de potências de $\frac{1-x}{x+2}$ no intervalo]-2,2[.

Contra-Exemplo 5 (Muito Cuidado com Generalizações). É possível de verificar que a série de potências de $\frac{2}{1-x^2}$ coincide com a série de potências de $\frac{1}{1-x}+\frac{1}{1+x}$. De facto, as igualdades

$$1 + (-1)^n = 0$$
 $(n = 2k + 1$ - $impar)$ e $1 + (-1)^n = 2$ $(n = 2k$ - $zero$ ou $par)$

permitem-nos concluir, para valores de x no intervalo]-1,1[, que

$$\frac{1}{1-x} + \frac{1}{1+x} = \sum_{n=0}^{\infty} (1 + (-1)^n) x^n$$
$$= \sum_{k=0}^{\infty} 2x^{2k} \quad (n = 2k)$$
$$= \frac{2}{1-x^2}.$$

No entanto, não é possível encontrar um desenvolvimento em série de potências para $\frac{1}{(1-x^2)(x+2)}$ em termos das séries de potências de $\frac{1}{(1-x^2)}$ e $\frac{1}{(x+2)}$, dado não existirem constantes A e B tal que a igualdade

$$\frac{1}{(1-x^2)(2+x)} = \frac{A}{1-x^2} + \frac{B}{x+2}$$

é sempre satisfeita.

A explicação pela qual igualdades como a anterior não se verificarem, em geral, assenta essencialmente no **método dos coeficientes indeterminados**, que teve a oportunidade de aprender em Cálculo I, quando precisou de calcular primitivas, envolvendo funções racionais.

Exercícios Extra

Os exercícios abaixo deverão ser também ser resolvidos como estudo autónomo (independentemente de serem ou não resolvidos em aula). Caso tenha dúvidas em algum deles, envie-me um e-mail ou compareça numa das OTs.

Revisões de Séries Numéricas

(1) APLICAÇÃO DE SÉRIES GEOMÉTRICAS EM ARITMÉTICA DE PONTO FLUTUANTE

Exprima as seguintes dízimas infinitas periódicas como séries geométricas de razão $r=10^{-m}$ e represente a sua soma na forma de fração irredutível, $\frac{p}{q}$ (i.e. m.d.c(p,q)=1).

- (a) 0,99999999...
- (b) 1,67676767...
- (c) 2,33451451...

SUGESTÕES:

- (a) $0, (9) = 0, 9 + 0, 09 + \dots$
- (b) $1, (67) = 1 + 0, 67 + 0, 0067 + \dots$
- (c) 2,33451451... = 2,33 + 0,00(451)
- (2) Critério de Comparação [por passagem ao Limite]

Estude a natureza das seguintes séries numéricas de termos positivos.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)^3}$$

(c)
$$\sum_{n=0}^{\infty} \frac{2}{1+\sqrt[3]{n}}$$

(e)
$$\sum_{n=1}^{\infty} \frac{7n^3 + n}{n^7 + 11n + 10}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{4n-7}$$

(d)
$$\sum_{n=0}^{\infty} \frac{3}{n^2 - \sqrt{n}}$$

$$(f) \sum_{n=1}^{\infty} \frac{1}{\ln(2n)}$$

Theoria: Teorema 1 ou o Teorema 2 | Praxis: Exemplo 2.

(3) Séries Harmónicas vs. Critério de Leibniz

Mostre que para todo o $\alpha > 1$ a série harmónica alternada $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\alpha}}$ é simplesmente convergente.

Theoria: Teorema 3 | Praxis: Exemplo 2 e Adenda 4.

(4) SÉRIES GEOMÉTRICAS/HARMÓNICAS VS. SÉRIES ALTERNADAS

Comente a veracidade das seguintes afirmações (\mathbf{V} erdadeiro ou \mathbf{F} also), justificando convenientemente a sua resposta.

- (a) É possível concluir a convergência da série numérica $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$ a partir da convergência da série harmónica $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, para valores de $\alpha > 1$.
- (b) As séries numéricas $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$ e $\sum_{n=1}^{\infty} ne^{-n}$ têm a mesma natureza.
- (c) É possível concluir a convergência de $\sum_{n=1}^{\infty} ne^{-n}$ a partir da convergência de $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$.

22

- (d) A série numérica $\sum_{n=0}^{\infty} (-1)^n n e^{-n}$ converge absolutamente.
- (e) A série numérica $\sum_{n=0}^{\infty} \frac{(-1)^n e^{-n}}{n}$ converge simplesmente.
- (f) É possível concluir a convergência da série numérica $\sum_{n=1}^{\infty} \frac{(-1)^n e^{-n}}{n}$ a partir da convergência da série numérica $\sum_{n=0}^{\infty} (-1)^n e^{-n}$.

Theoria: Definição 1 & Teorema 2 | Praxis: Exemplo 3 & Adenda 3.

Critério da Razão ou Critério da Raiz

Estude a natureza das seguintes séries numéricas usando o critério da razão ou o critério da raíz.

(a)
$$\sum_{n=0}^{\infty} \frac{(-3)^n n!}{n^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{5^n \sqrt{n}}$$

(c)
$$\sum_{n=2}^{\infty} \frac{(\ln(n))^n}{n}$$

Séries de Potências

(6) Complementar ao Exercício (2) & Exercício (5)

Determine o raio de convergência e o domínio de convergência das seguintes séries de potências.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{(3n-2)^3}$$

(d)
$$\sum_{n=0}^{\infty} \frac{3(4x-1)^n}{n^2 - \sqrt{n}}$$

(g)
$$\sum_{n=0}^{\infty} \frac{n!}{n^n} (3x)^{2n+1}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(x+1)^n}{4n-7}$$

(e)
$$\sum_{n=1}^{\infty} \frac{7n^3 + n}{n^7 + 11n + 10} (3 - x)^n$$
 (h) $\sum_{n=1}^{\infty} \frac{(2x - 1)^{2n}}{5^n \sqrt{n}}$

(h)
$$\sum_{n=1}^{\infty} \frac{(2x-1)^{2n}}{5^n \sqrt{n}}$$

(c)
$$\sum_{n=0}^{\infty} \frac{2(x-5)^n}{1+\sqrt[3]{n}}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(2x+3)^n}{\ln(2n)}$$

(i)
$$\sum_{n=2}^{\infty} \frac{(\ln(n))^n}{n} (4x - 7)^{3n-2}$$

(7) Complementar ao Exemplo 6 & Exemplo 7

Comente a veracidade das seguintes afirmações (Verdadeiro ou Falso), justificando convenientemente a sua resposta.

- (a) $\sum (-1)^n (x-1)^n$ é uma série de termos positivos, para valores de 1 < x < 2.
- (b) $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n$ é uma série de termos negativos, para valores de 0 < x < 1.

23

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (x-1)^n < \sum_{n=1}^{\infty} (-1)^n (x-1)^n$$
, para valores de $0 < x < 1$.

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^n} (x-1)^n < \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} (x-1)^n$$
, para valores de $1 < x < 2$.

Fórmula de Taylor

(8) Polinómio de Taylor de Polinómios Mónicos

Mostre as seguintes igualdades, envolvendo a fórmula combinatórica $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ e o polinómio de Taylor de ordem n da função x^n em torno do ponto $c, T_c^n(\overset{\backprime}{x^n})$

(a)
$$\frac{d^k}{dx^k}(x^n) = k! \binom{n}{k} x^{n-k}$$
, para todo o $k \le n$.

(b)
$$T_c^n(x^n) = x^n$$
.

Sugestões:

(a) Observe que
$$\frac{n!}{(n-k)!} = n(n-1)\dots(n-(k-1)).$$

(b) Use a definição de T_c^n e o binómio de Newton.

(9) Polinómio de Taylor e Resto de Lagrange⁵

Sejam $T_1^n\left(\frac{1}{x}\right)$ e $T_1^n\left(\ln(x)\right)$ os polinómios de Taylor de ordem n das funções $\frac{1}{x}$ e $\ln(x)$, em torno

(a) Verifique a igualdade
$$\int_1^x T_1^n\left(\frac{1}{t}\right) dt = T_1^n(\ln(x)).$$

(b) Determine a ordem mínima
$$(n)$$
 do polinómio de Taylor $T_1^n(\ln(x))$ que nos permite aproximar $\ln(2)$, no intervalo $[1.9, 2.1]$, com erro inferior 0.5×10^{-6} , i.e.

$$|R_1^n(f(x))| < 0.5 \times 10^{-6}$$
.

THEORIA: Corolário 1 | PRAXIS: Exemplo 12 & Exemplo 20.

(10) Fórmula de Taylor vs. Regra de L'Hôpital

Na resolução das próximas alíneas, considere as seguintes fórmulas:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \quad \cosh(x) = \frac{e^x + e^{-x}}{2}, \quad 2\sin^2(\theta) = 1 - \cos(2\theta).$$

(a) Calcule os seguintes polinómios de Taylor:

i)
$$T_{-1}^2 \left(\ln(x^2 + \sqrt{x^4 - 1}) \right)$$
 ii) $T_0^3 (\sinh(x) - x)$

ii)
$$T_0^3(\sinh(x) - x)$$

iii)
$$T_1^4 \left(\sin^2\left(\pi x\right)\right)$$

(b) Use os polinómios de Taylor, obtidos anteriormente, para calcular o valor exato dos seguintes

i)
$$\lim_{x \to -1} \frac{\ln(x^2 + \sqrt{x^4 - 1})}{x^2 + 2x}$$
 ii) $\lim_{x \to 0} \frac{\sinh(x) - x}{x^3}$ iii) $\lim_{x \to 1} \frac{x^2 + 4x - 5}{\sin^2(\pi x)}$

ii)
$$\lim_{x\to 0} \frac{\sinh(x)-x}{x^3}$$

iii)
$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{\sin^2(\pi x)}$$

11) Existência de Série de Taylor

Seja f a função real de variável real, definida por $f(x) = \ln(1+x)$.

- (a) Mostre que f(x) coincide com sua série de Maclaurin, $\lim_{n\to\infty} T_0^n f(x)$, no intervalo]-1,1].
- (b) Diga, justificando, se para valores de c > 1 a função f também coincide com a sua série de Taylor, $\lim_{n\to\infty} T_c^n f(x)$, no intervalo $[1, +\infty[$.

SUGESTÃO: Refaça os cálculos do **Exemplo 20** para cada um dos casos.

⁵Este exercício é complementar ao **Exercício 7.** da **Folha Prática 1**.

Séries Geométricas

APLICAÇÃO DO EXEMPLO 1

Determine para que valores de $s \in \mathbb{R}$ as séries geométricas abaixo são convergentes e, em caso afirmativo, determine o valor da sua soma.

(a)
$$\sum_{n=0}^{\infty} (\cos(\pi s))^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{3}{4}\right)^n e^{sn}$$

(c)
$$\sum_{n=2}^{\infty} \frac{6^n}{7^{n+1}} s^{n-2}$$

Sugestão:

(c) É conveniente realizar a mudança de variável n = k + 2 $(k \ge 0)$ no somatório.

Complementar ao Exemplo 21, Exemplo 22 & Exemplo 23

Determine o desenvolvimento em série geométrica para cada uma das seguintes funções racionais, indicando o maior intervalo para o qual o desenvolvimento é válido.

(a)
$$\frac{x}{3x-4}$$

(b)
$$\frac{x+1}{x^2-4x+3}$$

(c)
$$\frac{5}{(1+x^2)(x+2)}$$

SUGESTÕES:

(a) Comece por obter o desenvolvimento em série geométrica de $\frac{1}{3r-4}$ (= $\frac{a}{1-r}$; a, r = ?), colocando 4 em evidência no denominador

(b) Comece por reescrever a fração racional na forma $\frac{A_1}{x-r_1} + \frac{A_2}{x-r_1}$, onde r_1 e r_2 são as raízes $de x^2 - 4x + 3.$

(c) Terá de considerar a igualdade $\frac{5}{(1+x^2)(x+2)} = \frac{Ax+B}{1+x^2} + \frac{C}{x+2} - A, B, C$ constantes a determinar – uma vez que $1 + x^2$ não tem raízes reais

Análogo ao Exercício 11 da Folha Prática 1

Desenvolva a função racional $\frac{x-1}{x+1}$ em série de potências de x+5, indicando o maior intervalo para o qual o desenvolvimento em série é válido.

SUGESTÕES:

i) Comece por dividir os polinómios x-1 e x+1 para reescrever $\frac{x-1}{x+1}$ como uma soma.

ii) Use a igualdade $\frac{1}{x+1} = \frac{1}{(x+5)-4}$.

Desafios

Propriedades das Séries de Potências

Seja $(a_n)_{n\in\mathbb{N}_0}$ uma sucessão de termos não nulos, e $\sum_{n=0}^{\infty}a_nx^n$ é uma série de potências convergente no intervalo]-R,R[. Determine o domínio e o raio de convergência das seguintes séries de potências.

(a)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{a_n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{a_n}{Rn+1} (x-R)^n$$

25

(b)
$$\sum_{n=0}^{\infty} \frac{a_n}{Rn+1} (x-R)^n$$
 (c) $\sum_{n=0}^{\infty} \frac{a_n}{Rn+1} (x+R)^{2n}$

(16) Polinómio de Maclaurin vs. Fórmula Binomial

Seja $T_0^n(e^x\sin(x))$ o polinómio de Maclaurin de ordem n de $e^x\sin(x)$ e $R_0^n(e^x\sin(x))$ o respetivo erro de aproximação.

(a) Mostre a seguinte desigualdade, envolvendo o erro de aproximação do polinómio de Maclaurin de ordem n de $e^x \sin(x)$, $R_0^n(e^x \sin(x))$, no intervalo [-1, 0]:

$$|R_0^n(e^x \sin(x))| \le \frac{2^{n+1}}{(n+1)!}$$
, para todo $x \in [-1, 0]$.

(b) Diga, justificando, qual a ordem mínima do polinómio de Maclaurin de $e^x \sin(x)$ (n) a partir da qual se verificam as seguintes desigualdades em [-1, 0]:

i)
$$|R_0^n(e^x \sin(x))| < 1$$

i)
$$|R_0^n(e^x \sin(x))| < 1$$
 ii) $|R_0^n(e^x \sin(x))| < \left(\frac{2}{3}\right)^{n+1}$ iii) $|R_0^n(e^x \sin(x))| < \left(\frac{2}{5}\right)^{n+1}$

iii)
$$|R_0^n(e^x \sin(x))| < (\frac{2}{5})^{n+1}$$

Sugestão:

(a) Aplique diretamente a identidade binomial $2^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k}$ e a regra de derivação generalizada

$$(fg)^{(n+1)}(x) = \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)}(x)g^{(n+1-k)}(x).$$

(b) Vide link https://www.geogebra.org/m/zfdmreqg.

Exercício Computacional envolvendo polinómios de Taylor

Seja f a função real de variável real, definida por $f(x) = \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$.

- (a) Com recurso ao GeoGebra, represente o gráficos da função f e dos polinómio de Maclaurin $T_0^n(f(x))$, onde n deverá ser definido como um parâmetro inteiro.
- (b) Verifique que a aproximação do integral definido $\int_{-4}^{4} e^{-\frac{t^2}{2}} dt$, obtida com recurso ao polinómio de Maclaurin, nos dá uma aproximação do número transcendente $\sqrt{2\pi}$. E determine numericamente qual o menor grau para o qual se tem

$$\left| \int_{-4}^{4} e^{\frac{t^2}{2}} dt - \sqrt{2\pi} \right| < 0.5 \times 10^{-8}.$$

Sugestões:

- (a) Vide exemplo criado em https://www.geogebra.org/classic/tcnpz8fh.
- (b) Comece por demonstrar a igualdade⁷ $\int_{a}^{a} e^{-\frac{t^2}{2}} dt = 2f(a)$.

Números de Fibonacci vs. Séries Geométricas⁸

Seja $f(x) = \sum_{n=0}^{\infty} F_n x^n$ uma série de potências absolutamente convergente em] -R, R[(R-raio de convergência a determinar), definida em termos da sucessão de números Fibonacci $(F_n)_{n\in\mathbb{N}_0}$:

$$F_n = \begin{cases} n &, n = 0, 1\\ F_{k+1} + F_k &, n = k+2 \ (k \ge 0). \end{cases}$$

⁶Para representar o gráfico de f no GeoGebra, use o comando Integral ($\langle Função \rangle$).

⁷Resulta do facto da função integranda, $f'(x) = e^{-\frac{x^2}{2}}$, ser uma função par.

⁸Exercício formulado a partir de (Knuth , 1997, 1.2.8. Fibonacci Numbers).

- (a) Use a definição de $(F_n)_{n\in\mathbb{N}_0}$ (fórmula recursiva dada acima) para mostrar que $f(x)=\frac{x}{1-x-x^2}$.
- (b) Mostre, por indução em $n \in \mathbb{N}_0$, que $F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$.
- (c) Use o desenvolvimento em série de potências de $\frac{x}{1-x-x^2}$ para:
 - i) Confirmar a fórmula geral de $(F_n)_{n\in\mathbb{N}_0}$ obtida no item anterior.
 - ii) Verificar que $R=\frac{1}{\phi}$ é o raio de convergência da série, onde $\phi=\frac{1+\sqrt{5}}{2}$ corresponde ao número de ouro abordado no **Exemplo 16**.
- (d) Estude a natureza das seguintes séries numéricas. Em caso de convergência, calcule sua soma.

i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 5^{\frac{n}{2}} F_n}{2^n}$$

ii)
$$\sum_{n=0}^{\infty} \frac{(-1)^n F_n}{2^n}$$
 iii)
$$\sum_{n=0}^{\infty} 5^{-\frac{n}{2}} F_n$$

iii)
$$\sum_{n=0}^{\infty} 5^{-\frac{n}{2}} F_n$$

Sugestões:

- (a) Comece por reescrever f(x) como $f(x) = F_0 + F_1x + g(x)$ $(F_0, F_1 = ?)$, onde g(x) = $\sum_{k=2}^{\infty} F_{k+2}x^{k+2}$. De seguida, mostre que $g(x) = x^2f(x) + xf(x)$. Para terminar, resolva a equação resultante em ordem a y = f(x) (solução pretendida).
- (b) Primeiro, terá de mostrar que a fórmula geral é verdadeira para n=0 e n=1 (caso base). Para demonstrar o passo indutivo, i.e.

$$F_{k+2} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{k+2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{k+2} \quad (n=k+2)$$

terá de assumir que a fórmula dada é verdadeira para n = k e n = k + 1.

- (c) Análogo ao raciocínio a adotar na resolução no item (b) do **Exercício** (13). Para simplificar a sua resolução:
 - i) Expresse as raízes de $1-x-x^2$ em termos das constantes $\phi = \frac{1+\sqrt{5}}{2}$ e $\psi = \frac{1-\sqrt{5}}{2}$.
 - ii) Como a série de potências obtida pode ser expressa como a soma de duas séries geométricas, de raios r_1 e r_2 respetivamente, então $R = \min\{r_1, r_2\}$ vai ser o raio de convergência pretendido.

IMPLEMENTAÇÃO COMPUTACIONAL DE NÚMEROS DE FIBONACCI

Escreva um programa de computador, num software à sua escolha, que execute as seguintes operações:

- i) Gere os primeiros n+1 números da sucessão de Fibonacci $(F_n)_{n\in\mathbb{N}_0}$ (cf. (Knuth, 1997, p. 79)): $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, \dots$
- ii) Determine, em cada iteração, as aproximações sucessivas para o raio de convergência da série de potências estudada no **Exercício** (18).
- iii) Adote $\left| \left(\frac{F_n}{F_{n+1}} + \frac{1}{2} \right)^2 \frac{5}{4} \right| < 0, 25 \times 10^{-2p} \text{ como } critério \ de \ paragem^9.$
- iv) Nos devolva o valor exato do somatório $\sum_{k=0}^{\infty} F_k$ (somando apenas dois números de Fibonacci)¹⁰.

 $^{^9}$ Este critério de paragem dá-nos uma aproximação de $\frac{1}{\phi}=\frac{\sqrt{5}-1}{2}$ por $\frac{F_n}{F_{n+1}}$ com um erro de arredondamento inferior a 0.5×10^{-p} .

 $^{^{10}}$ Vide (Knuth , 1997, p. 85, Exercício 20) e a sua solução em (Knuth , 1997, p.494).

Bibliografia

Almeida (2018) A. Almeida, *Cálculo II – Texto de apoio* (versão fev. 2018) Disponível na plataforma Moodle da UA.

Apostol (1983) T. M. Apostol, Cálculo: Volume 1, Editora Reverté, Rio de Janeiro, 1983.

Brás (2020) I. Brás, *Séries de Potências e Fórmula de Taylor* (versão 4/2/2020)¹¹ Disponível na plataforma Moodle da UA.

Knuth (1997) D. E. Knuth. The art of computer programming, vol 1: Fundamental Algorithms, 3rd edition, Reading, MA: Addison-Wesley, 1997.

Formato Digital: disponível a partir desta hiperligação [só clicar no texto a azul]

Stewart (2013) J. Stewart, *Cálculo: Volume 2*, Tradução da 7ª edição norte-americana, São Paulo, Cengage Learning, 2013

Formato Digital: disponível a partir desta hiperligação [só clicar no texto a azul]

 $^{^{11}\}mathrm{Aparece}$ no Moodle com o título Slides para o Capítulo 1.