ECE408 / CS483 / CSE 408 Fall 2022

Introduction to Machine Learning

Hans Moravec, 1997

Computing has evolved under the premise that some day, computing machines will be able to mimic general human intelligence.

From a computing power perspective, Moore's Law has fueled the idea of the intelligent machine. Hardware has gotten 2x faster every 18 months.

The software, though, has been a vexing open question.

Solving Hard Problems with Software (the established way)

Machine Learning Restates the Problem

Software that Learns: Deep Neural Networks and the re-birth of Al

Google Tensor Processing Unit

Apple A14

Tesla ASIC

Nvidia Ampere

Machine Learning

- Building applications whose logic is not fully understood.
 - Use labeled data data that come with the input values and their desired output values to learn what the logic should be

Machine Learning Tasks (1)

- Classification
 - Which of k categories an input belongs to
 - Ex: object recognition
- Regression
 - Predict a numerical value given some input
 - Ex: predict tomorrow's temperature
- Transcription
 - Unstructured data into textual form
 - Ex: optical character recognition

Machine Learning Tasks (2)

Translation

 Convert a sequence of symbols in one language to a sequence of symbols in another

Structured Output

- Convert an input to a vector with important relationships between elements
- Ex: natural language sentence into a tree of grammatical structure

Others

Forecasting, Anomaly detection, recommendation, synthesis, sampling, imputation, denoising, density estimation

Why Machine Learning Now?

- **Deep Learning:** Advances in DL concepts, frameworks, toolkits have made DL very accessible to all
- Computing Power: GPU computing hardware and programming interfaces such as CUDA has enabled very fast research cycle of deep neural net training
- Data: Lots of cheap sensors, cloud storage, IoT, photo sharing, etc..
- Needs: Autonomous Vehicles, SmartDevices, Security, Societal Comfort with Tech, Health Care, Digital Agriculture, Digital Manufacturing

Types of Problems

Hard to formally describe Literary analysis Recognizing spoken words **International** diplomacy **Face detection** ECE 408 MPs Chess Easy to formally describe Hard to Easy to perform perform

Chess as an AI Success (1)

- Easy to formalize
 - 64 locations, 32 pieces
 - Well-defined, allowable moves
- Score each leaf in a tree of possible board positions
- Proceed down path that results in best position

2-ply game tree for tic-tac-toe

Chess as an AI Success (2)

IBM Deep Blue defeated Gary Kasparov in 1997

- Hard to perform
 - $-\sim 30$ legal moves per position
 - 1,015 moves for 10-ply lookahead
 - 30 years of compute at 1M positions/sec
- Heuristics, pruning, parallel search, fast computers

Types of Problems

The "Machine Learning" Approach

Challenge

Hard to formalize the problem.

Solution

Don't formalize the problem.

Let the machine learn from

data/experience.

Classic Machine Learning

- Humans choose features
- Learn how features are associated with outputs

Machine Learning Building Blocks

Naïve Bayes

Independent features combined using Bayesian prediction model

Perceptrons

"Bio/Neural" inspired method

• Linear / Logistic Regression

Feature contribution learned to perform prediction / classification

• Support Vector Machines

Large margin method

Decision Trees / Random Forests

Space-splitting methods

K-Means Clustering

Unsupervised technique for data analysis

Data Representation is Important!

Different Features for Different Tasks

Which Data Features are Relevant?

- Detecting a car in an image
- Cars have wheels → presence of a wheel?
- Can we describe pixel values that make up a wheel?
 - Circle-shaped?
 - Black/dark rubber around metal rim?
- But what about?
 - Occlusion, perspective, shadows, different colored tires, ...
- Need to treat variations in a consistent and comprehensive manner

Evolution of AI

Classification

• Formally: a function that maps an input to k categories $f: \mathbb{R}^n \to \{1, ..., k\},$

• Our formulation: a function f parameterized by θ that maps input vector x to numeric code y

$$y = f(x, \Theta)$$

• Θ encapsulates the parameters in our network

Linear Classifier (Perceptron)

• Our formulation: $y = f(x, \theta)$ $\theta = \{W, b\}$ $y = sign(W \cdot x + b)$

The perceptron

The neuron

• Dot product + Scalar addition:

Can we learn XOR with a Perceptron?

Perceptron

x[1]	x[0]	AND	OR	XOR
0	0	-1 (-1.5 < 0)	-1 (-0.5 < 0)	-1 (-2.0 < 0)
0	1	-1 (-0.5 < 0)	1 (0.5 > 0)	?
1	0	-1 (-0.5 < 0)	1 (0.5 > 0)	?
1	1	1 (0.5 > 0)	1 (1.5 > 0)	1 (2.0 > 0)

XOR is not a linear combination of AND and OR functions.

x[1]	x[0]	AND	OR	XOR
0	0	-1	-1	-1 (-3 < 0)
0	1	-1	+1	1 (1 > 0)
1	0	-1	+1	1 (1 > 0)
1	1	+1	+1	-1 (-1 < 0)

$$OR = sign(x[0] + x[1] - 0.5)$$

AND =
$$sign(x[0] + x[1] - 1.5)$$

sign() function adds non-linearity to "reposition" data points for the next layer.

$$XOR = sign(2*OR + -1*AND - 2)$$

Multi-Layer Perceptron

x[1]	x[0]	AND	OR	XOR
0	0	-1	-1	-1 (-3 < 0)
0	1	-1	+1	1 (1 > 0)
1	0	-1	+1	1 (1 > 0)
1	1	+1	+1	-1 (-1 < 0)

MultiLayer Perceptron (MLP) for Digit Recognition

This network would has

- 784 nodes on input layer (L0)
- 10 nodes on hidden layer (L1)
- 10 nodes on output layer (L2)

784*10 weights + 10 biases for L1 10*10 weights + 10 biases for L2

A total of 7,960 parameters

Each node represents a function, based on a linear combination of inputs + bias

Activation function "repositions" output value.

Sigmoid, sign, ReLU are common...

Generalize to Fully-Connected Layer

Linear Classifier: Input vector $\mathbf{x} \times$ weight vector \mathbf{w} to produce scalar output \mathbf{y}

Fully-connected: Input vector $\mathbf{x} \times$ weight matrix \mathbf{w} to produce vector output \mathbf{y}

Multilayer Terminology

How to determine the weights?

- Look at observational data to determine the weights?
- Pick some random values?
- Start with something that partially works?

• With enough *labeled* data, we can automatically *encode* the relationship between inputs and outputs.

Forward and Backward Propagation

- Forward (inference)
 - Given parameters θ and input x, produce label y

- Backward (training)
 - Need a way to assess correctness (loss function)
 - Example: $(x y)^2$
 - Find Θ , such that loss is minimized over all input data

Forward Propagation (Inference)

Backward Propagation (Training)

