Efficient Extended Ant Colony Optimization for Capacitated Electric Vehicle Routing

2022.12

Bo-Cheng Lin¹, Xiao-Fang Liu*^{1, 2}, Yi Mei³

¹Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 30050, China

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 62103202. (Corresponding author: Xiao-Fang Liu)

²Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 30050, China

³School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand

Electric Vehicle Routing

- Strict CO₂ emissions targets
- Demand from markets
- Compulsory phasing out of traditional vehicles
- Long charging time
- · Less charging and swapping stations

Variants of EVRP

- Capacitated EVRP (CEVRP)
- EVRP with partial recharging (EVRPPR)
- · EVRP with time window and recharging stations (EVRPTW)

•••

Variants of EVRP

- · Capacitated EVRP (CEVRP)
- EVRP with partial recharging (EVRPPR)
- EVRP with time window and recharging stations (EVRPTW)

•••

have not been further studied for the complicated constraints in the new problems

Variants of EVRP

- Capacitated EVRP (CEVRP)
 the fundamental problem of other variants
- EVRP with partial recharging (EVRPPR)
- · EVRP with time window and recharging stations (EVRPTW)

• • •

Capacitated Electric Vehicle Routing

Exact algorithms

 mixed integer linear programming (MILP) may fail on large-scale instances

Exact algorithms

- mixed integer linear programming (MILP)
 - may fail on large-scale instances

Heuristic algorithms

- Variable neighborhood search (VNS)
- Iterative local search (ILS)
 - poor exploration ability, easily trapped into local optima

Exact algorithms

- mixed integer linear programming (MILP) may fail on large-scale instances
- Heuristic algorithms
- Variable neighborhood search (VNS)
- Iterative local search (ILS)
 poor exploration ability, easily trapped into local optima
- Genetic algorithms (GA)
- Ant colony optimization (ACO) algorithms stronger exploration and global search ability

Exact algorithms

- · mixed integer linear programming (MILP)
 - may fail on large-scale instances

Heuristic algorithms

- Variable neighborhood search (VNS)
- Iterative local search (ILS)

 poor exploration ability, eacily trapped.
 - poor exploration ability, easily trapped into local optima
- Genetic algorithms (GA)
- Ant colony optimization(ACO) algorithms

stronger exploration and global search ability

Upper-level sub-problem

Constructing customer service sequence without recharging

ACO

Lower-level sub-problem

Inserting charging stations into the customer service sequence

Heuristic

Upper-level sub-problem

Constructing customer service sequence without recharging

connection between battery capacity and cargo capacity is diluted Lower-level sub-problem

Inserting charging stations into the customer service sequence

Can the ants construct scheduling routing with charging stations and customers

at the same time?

Pheromone matrixes in existing ACO methods for CEVRP only record route information between customers.

We extend the pheromone matrix to record the historical information between customers and charging stations.

A new probability distribution is designed for the roulette wheel selection strategy, which considers the remaining battery level and is able to guide ants to select a suitable charging station at a proper time. So, we call it

EACO

Traditional roulette wheel selection strategy

Move from customer to next customer

New roulette wheel selection strategy

Move from customer/recharging station to next customer/recharging station

$$p_{i \to j} = \frac{\left[\varphi_{ij} \left(\left(\frac{kQ}{Rq_i}\right)^{\gamma} \tau_j + (1 - \tau_j)\right)\right]^{\alpha}}{d_{ij}^{\beta}}$$

$$\sum_{l \in I'} \left(\frac{\left[\varphi_{il} \left(\left(\frac{kQ}{Rq_i}\right)^{\gamma} \tau_l + (1 - \tau_l)\right)\right]^{\alpha}}{d_{il}^{\beta}}\right)$$

$$\tau_j \in \{0, 1\}$$

New roulette wheel selection strategy

Move from customer/recharging station to next customer/recharging station

the maximum battery capacity of each EV

$$p_{i \to j} = \frac{\left[\varphi_{ij} \left(\left(\frac{kQ}{Rq_i}\right)^{\gamma} \tau_j + (1 - \tau_j)\right)\right]^{\alpha}}{d_{ij}^{\beta}}$$

$$\sum_{l \in I'} \left(\frac{\left[\varphi_{il} \left(\left(\frac{kQ}{Rq_i}\right)^{\gamma} \tau_l + (1 - \tau_l)\right)\right]^{\alpha}}{d_{il}^{\beta}}\right)$$

a fixed parameter ranging from 0 to 1

remaining battery level of an EV after it arrives at node i

$$\tau_j \in \{0, 1\}$$

If j is the customer, τ_i equals 0, otherwise equals 1

Overall Process

of EACO

Giant Tour

Charging Station

Customer

Local Search

Algorithm 1: Coarse Route Construction

Input: Pheromone matrix Φ , arc set E, node set \hat{I} , maximum battery capacity QOutput: a set of giant route T1 initialize $T = \{0\}$, $I' = I - \{0\}$;
2 while I' is not empty **do**

take the last node in T; $j = roulette_wheel (\hat{I}, i) ;$ append j to T;

remove j from I';

7 end

Algorithm 1: Coarse Route Construction

```
Input: Pheromone matrix \Phi, arc set E, node set I,
         maximum battery capacity Q
  Output: a set of giant route T
1 initialize T = \{0\}, I' = I - \{0\};
2 while I' is not empty do
     take the last node in T;
     j = roulette\_wheel(\hat{I}, i);
     append j to T;
     remove j from I';
7 end
```

However, the giant route will be split by capacity constraints, which leads to the fact that the battery required for returning to a depot should be considered.

Algorithm 2: Fine Route Construction

Input: Pheromone matrix Φ , arc set E, node set I, maximum battery capacity Q, maximum capacity of cargo demand C **Output:** a set of giant route T 1 initialize $T = \{0\}, I' = I - \{0\}$; 2 while I' is not empty do take the last node in T; If $Rc_i < average_{demand}$ then $Rq_i = Q$; $Rc_i = C$; end $j = roulette_wheel (\hat{I}, i);$ we re-evaluate the remaining battery append j to T; remove evel in the fine route construction 10 method to include the battery 11 end consumption for returning to depots.

OK, let's compare EACO with SLMMAS.

SLMMAS inserts charging stations during the construction of a route. Whenever the next selected customer cannot be reached due to the electricity constraint, one charging station that brings minimum extra distance is visited before serving the customer.

TABLE I SEVENTEEN INSTANCES OF CEVRP

Case	Customer	Station	Route
E22	21	8	4
E23	22	9	3
E30	29	6	4
E33	32	6	4
E51	50	5	5
E76	75	7	7
E101	100	9	8
X143	142	4	7
X214	213	9	11
X351	350	35	40
X459	458	20	26
X573	572	6	30
X685	684	25	75
X749	748	30	98
X819	818	25	171
X916	915	9	207
X1001	1000	9	43

Benchmark

IEEE WCCI2020 competition

Small-scale

Medium-scale

Large-scale

_		EACO		0		SLMMAS	
Instance		EACO-C		EACO-F	7	AS-S	AS-O
	best	384.68		384.68		386.15	385.44
E22	mean	385.62	=	384.68	+	386.15	385.44
	std.	2.10		0.00		0.00	0.00
	best	585.99		579.07		582.61	582.61
E23	mean	587.16	-	584.03	=	582.88	582.94
	std.	1.62		3.40		0.60	0.60
	best	513.63		513.63		512.72	514.42
E30	mean	514.27	_	513.63	-	512.72	516.11
E30	std.	1.41		0.00		0.00	0.61
	best	846.79		847.07		860.62	859.25
E33	mean	850.44	+	850.98	+	863.44	860.06
E33	std.	2.55		2.22		2.18	0.74
	best	572.36		573.26		551.19	549.81
	mean	578.27	-	575.14	_	559.34	564.93
E51	std.	5.73		1.82		5.60	8.70
	best	748.04		746.79		744.07	724.24
	mean	756.67	=	752.54	=	754.03	762.09
E76	std.	13.23	_	8.62	-	8.43	13.23
	best	915.00		904.38		872.98	891.77
		926.67		908.39		885.28	904.62
E101	mean		-	4.67	-	10.09	4.64
	std.	11.74				16885.63	
	best	16434.32		16465.70			17238.7
X143	mean	16619.80	+	16627.03	+	17099.20	17985.9
	std.	217.13		108.45		271.24	415.20
	best	12160.14		12088.35		12197.75	11421.4
X214	mean	12369.90	=	12197.89	=	12256.69	12023.7
	std.	187.91		74.21		41.90	129.22
	best	29116.15		28750.95		27749.48	31927.7
X351	mean	29406.93	-	29079.51	-	27820.63	31927.7
	std.	294.22		187.41		65.59	0.00
	best	27986.71		27468.29		28251.70	28448.2
X459	mean	28081.82	+	27986.53	+	28469.61	29434.4
	std.	85.34		299.65		153.36	540.16
X573	best	56738.10		55986.28		57670.41	56609.9
	mean	57068.45	+	56752.22	+	58167.74	57170.3
	std.	306.68		433.90		289.61	199.81
	best	79673.84		79822.20		78862.87	84435.7
X685	mean	80076.58	-	80168.38	-	79012.35	84435.7
A003	std.	264.30		266.54		104.89	0.00
	best	87040.68		87731.50		88070.85	90441.6
X749	mean	87450.01	+	87807.86	+	88381.83	90441.3
A/49	std.	265.64		63.69		214.63	0.00
X819	best	176356.85		176184.24		175315.97	171553.2
	mean	176535.74	-	176726.23	-	175540.33	172355.3
	std.	170.28		315.63		184.18	311.09
X916	best	363784.87		364092.53		363537.41	353046.0
	mean	364557.39	=	364755.93	=	364091.13	354262.1
	std.	613.26	_	623.46	_	321.96	464.68
	hest	83425 31		83103 57		86064.64	XUNITU
X1001	best mean	83425.31 83569.87	+	83103.57 83451.84	+	86064.64 86064.64	89611.9 89611.9

Significant Better 6&7 Equal 4 Significant Worse 7&6 Better* 11

All algorithms use the same population size and stopping criterion for fair comparisons and SLMMAS is denoted as AS-S. In addition, the results of SLMMAS are also presented with the same parameter setting as that in the original study for analysis, which is denoted as AS-O.

*We cannot apply the Wilcoxon rank-sum test between EACO and AS-O, for the detailed result of AS-O is not available.

		EACO				SLMMAS		
Instance		EACO-C		EACO-H	7	AS-S	AS-O	
	best	384.68		384.68		386.15	385.44	
E22	mean	385.62	=	384.68	+	386.15	385.44	
	std.	2.10		0.00		0.00	0.00	
	best	585.99		579.07		582.61	582.61	
E23	mean	587.16	-	584.03	=	582.88	582.94	
1323	std.	1.62		3.40		0.60	0.60	
	best	513.63		513.63		512.72	514.42	
E30	mean	514.27	-	513.63	-	512.72	516.11	
1550	std.	1.41		0.00		0.00	0.61	
	best	846.79		847.07		860.62	859.25	
E33	mean	850.44	+	850.98	+	863.44	860.06	
E33	std.	2.55		2.22		2.18	0.74	
	best	572.36		573.26		551.19	549.81	
1251	mean	578.27	_	575.14	_	559.34	564.93	
E51	std.	5.73		1.82	-	5.60	8.70	
	best	748.04		746.79		744.07	724.24	
	mean	756.67	=	752.54	=	754.03	762.09	
E76	std.	13.23	_	8.62	_	8.43	13.23	
	best	915.00		904.38		872.98	891.77	
		926.67		908.39		885.28	904.62	
E101	mean		-		-	10.09		
	std.	11.74		4.67			4.64 17238.76	
	best	16434.32		16465.70		16885.63		
X143	mean	16619.80	+	16627.03	+	17099.20	17985.91	
	std.	217.13		108.45		271.24	415.20	
	best	12160.14		12088.35		12197.75	11421.43	
X214	mean	12369.90	=	12197.89	=	12256.69	12023.72	
	std.	187.91		74.21		41.90	129.22	
	best	29116.15		28750.95		27749.48	31927.71	
X351	mean	29406.93	-	29079.51	-	27820.63	31927.71	
	std.	294.22		187.41		65.59	0.00	
	best	27986.71		27468.29		28251.70	28448.27	
X459	mean	28081.82	+	27986.53	+	28469.61	29434.48	
12 103	std.	85.34		299.65		153.36	540.16	
	best	56738.10		55986.28		57670.41	56609.94	
X573	mean	57068.45	+	56752.22	+	58167.74	57170.35	
A3/3	std.	306.68		433.90		289.61	199.81	
	best	79673.84		79822.20		78862.87	84435.72	
X685	mean	80076.58	-	80168.38	-	79012.35	84435.72	
X685	std.	264.30		266.54		104.89	0.00	
	best	87040.68		87731.50		88070.85	90441.60	
3/7.40	mean	87450.01	+	87807.86	+	88381.83	90441.36	
X749	std.	265.64		63.69		214.63	0.00	
	best	176356.85		176184.24		175315.97	171553.21	
X819	mean	176535.74		176726.23	_	175540.33	172355.34	
	std.	170.28		315.63		184.18	311.09	
	best	363784.87		364092.53		363537.41	353046.07	
X916	mean	364557.39	_	364755.93	_	364091.13	354262.15	
	std.	613.26	=	623.46	=	321.96	464.68	
		83425.31		83103.57		86064.64		
	best		,				89611.93	
X1001	mean	83569.87	+	83451.84	+	86064.64	89611.93	
	std.	148.98		278.26		0.00	0.00	

The proposed EACO outperforms SLMMAS on medium-scale instances and the largest instance.

All algorithms use the same population size and stopping criterion for fair comparisons and SLMMAS is denoted as AS-S. In addition, the results of SLMMAS are also presented with the same parameter setting as that in the original study for analysis, which is denoted as AS-O.

		EACO				SLMMAS		
Instance		EACO-0		EACO-H	3	AS-S	AS-O	
	best	384.68		384.68		386.15	385.44	
E22	mean	385.62	=	384.68	+	386.15	385.44	
	std.	2.10		0.00		0.00	0.00	
E23	best	585.99	-	579.07		582.61	582.61	
	mean	587.16		584.03	=	582.88	582.94	
	std.	1.62		3.40		0.60	0.60	
	best	513.63		513.63		512.72	514.42	
E30	mean	514.27	-	513.63	-	512.72	516.11	
E30	std.	1.41		0.00		0.00	0.61	
	best	846.79		847.07		860.62	859.25	
E33	mean	850.44	+	850.98	+	863.44	860.06	
E33	std.	2.55		2.22		2.18	0.74	
	best	572.36		573.26		551.19	549.81	
1751	mean	578.27	_	575.14	_	559.34	564.93	
E51	std.	5.73		1.82		5.60	8.70	
	best	748.04		746.79		744.07	724.24	
T1# -	mean	756.67	=	752.54	=	754.03	762.09	
E76	std.	13.23	_	8.62	_	8.43	13.23	
	best	915.00		904.38		872.98	891.77	
		926.67		908.39		885.28	904.62	
E101	mean		-		-	10.09	4.64	
	std.	11.74		4.67				
	best	16434.32	+	16465.70		16885.63	17238.76	
X143	mean	16619.80		16627.03	+	17099.20	17985.91	
	std.	217.13		108.45		271.24	415.20	
	best	12160.14	=	12088.35		12197.75	11421.43	
X214	mean	12369.90		12197.89	=	12256.69	12023.72	
	std.	187.91		74.21		41.90	129.22	
	best	29116.15	-	28750.95	-	27749.48	31927.71	
X351	mean	29406.93		29079.51		27820.63	31927.71	
	std.	294.22		187.41		65.59	0.00	
	best	27986.71	+	27468.29		28251.70	28448.27	
X459	mean	28081.82		27986.53	+	28469.61	29434.48	
	std.	85.34		299.65		153.36	540.16	
	best	56738.10	+	55986.28	+	57670.41	56609.94	
X573	mean	57068.45		56752.22		58167.74	57170.35	
ASIS	std.	306.68		433.90		289.61	199.81	
	best	79673.84	_	79822.20	_	78862.87	84435.72	
X685	mean	80076.58		80168.38		79012.35	84435.72	
	std.	264.30		266.54		104.89	0.00	
	best	87040.68		87731.50		88070.85	90441.60	
X749	mean	87450.01	+	87807.86	+	88381.83	90441.36	
A/49	std.	265.64		63.69		214.63	0.00	
X819	best	176356.85		176184.24	-	175315.97	171553.2	
	mean	176535.74	-	176726.23		175540.33	172355.34	
	std.	170.28		315.63		184.18	311.09	
	best	363784.87		364092.53		363537.41	353046.0	
Wass	mean	364557.39	=	364755.93	=	364091.13	354262.1	
X916	std.	613.26	-	623.46	-	321.96	464.68	
	best	83425.31		83103.57		86064.64	89611.93	
****	mean	83569.87	+	83451.84	+	86064.64	89611.93	
X1001	std.	148.98	+	278.26	+	0.00	0.00	
	sta.	140.90		270.20		0.00	0.00	

AS-S has overtaken AS-O* on 12 instances, by comparing the mean values**, especially on the medium-scale and large-scale instances.

It indicates that the SLMMAS can find better solutions using more iterations rather than larger population sizes.

All algorithms use the same population size and stopping criterion for fair comparisons and SLMMAS is denoted as AS-S. In addition, the results of SLMMAS are also presented with the same parameter setting as that in the original study for analysis, which is denoted as AS-O.

^{*}The algorithm setting of AS-O is that the stopping criterion is defined as fixed execution time and population size is set to n = |I| + 1 for each instance.

^{**}We cannot apply the Wilcoxon rank-sum test between EACO and AS-O, for the detailed result of AS-O is not available.

Generally, SLMMAS can construct good solutions in early stage and may stagnate quickly. It can deal with smallscale problems, but failed on large-scale instances. By contrast, though EACO finds worse solutions in the early stage but converges quickly and surpasses SLMMAS on most instances. In addition, **EACO** presents stronger exploration ability, especially on medium-scale and large-scale instances.

EACO-F is better

EACO-C is better

The EVs run frequently between depot and customers with a long distance, which makes the search space of EACO-F extremely huge and hard to find better solutions.

We generally recommend

EACO

with fine route construction method

THANKS

2022.12

Efficient Extended Ant Colony Optimization for Capacitated Electric Vehicle Routing

Bo-Cheng Lin, Xiao-Fang Liu, Yi Mei