Intermediate LaTeX

SciPS course 17 Mar 2010

Outline and outcomes

- By the end of the session, you should...
 - Have finished your thesis*
 - Have a good working knowledge of bibliographies, figures, tables
 - Know where to go for further information

* apart from the content

LaTeX

- Very widely used in the sciences for document preparation – almost universally used in some disciplines
- Encourages you to focus on the content rather than the appearance (which it takes care of very well)
- Takes a little effort to get up to speed, but saves hours of tweaking the layout
- Runs very quickly even on large documents
- Excellent for figures, tables, citations...

How to use LaTeX

- Many people use a text editor (e.g., Emacs) and compile the LaTeX source using the command line
 - "pdflatex my_document" -> mydocument.pdf
- There are good, friendly LaTeX GUI applications around, for Windows, Linux and Mac

TeXnicCenter: for Windows

Sussex University thesis template

- University has regulations about the format of theses: margins, preamble, etc.
 - Though probably no one will notice...
- Simple template available

http://astronomy.sussex.ac.uk/~anthonys/latex/usthesis/

Types of LaTeX file

- "*.tex" LaTeX source file
- "*.bib" LaTeX bibliography database
- "*.cls" LaTeX class file
- "*.sty" *old* LaTeX style file
- Other files created automatically when the output is created

Structure of a .tex file

- Preamble: before \begin{document}
 - Packages to include
 - Define handy macros
 - Layout of the document
 - The style of the document
- Document body: \begin... \end{document}
 - The content of the document

Making the output file

- In the old days, people used DVI (DeVice Independent) and Postscript files for output
- Now we know better, and use PDF files
- The old way:
 - "latex my_document"
 - "dvips my_document"
- The new way:
 - "pdflatex my_document"
- Look for options in the GUI applications

Managing large documents

- Easier if each chapter is in its own file
- Exercise...

Bibliographies

- If you intend on writing more than one scientific document in your life, it's very handy to keep bibliographic data in a database.
- LaTeX does that using BibTeX
- Have a look at bib.bib

Adding to bib.bib

- Have a look on the course page for a suitable online source of BibTeX data for your field
- Try to find a relevant paper, and find the BibTeX entry
- Copy and paste into bib.bib
- Include a citation in your new chapter
- Build thesis.tex (twice!)

Figures

- LaTeX places figures in sensible places and can handle cross-references easily
 - Never enter "Figure 1" ... what if you add another figure before "Figure 1"?
 - Instead, use "Figure \ref{descriptive_name}" and inside the figure caption put "\label{descriptive name}"
 - See thesis.tex for an example...
- Download the figures from the course page and try it out...

Tables

- Easy within LaTeX
- Your favourite data analysis package may output data in LaTeX format
 - "&" between columns
 - "\\" at end of lines
- Try making a table using the sample data on the course page

That's all...

- Other miscellaneous exercises on the sheet
- Further information in books/online
- Feel free to email me...

Helmut Kopka and Patrick W. Daly