CS174A Assignment 1 - Part 1 Written Section: Transformations

Out: Fri 6 Oct 2017

Due: Fri 20 Oct 2017 12pm

Value: 5% of final grade
Total Points: 137

- 1. (45 pts) The point coordinate **p** can be expressed as $\mathbf{p} = 0 + 3 \cdot \mathbf{i} + 0 \cdot \mathbf{j}$, where **i** and **j** are basis vectors of unit length along the **x** and **y** axes, respectively.
 - a. (6pts) Describe the point **p** in terms of the 3 other coordinate systems given below.
 - b. (18pts) How many points does one need to describe a vector? Describe the vector **v** in terms of the 3 other coordinate systems given below.
 - c. (3pts) How is a coordinate frame represented?
 - d. (18pts) Give the three coordinate frame representations, \mathbf{M}_{A} , \mathbf{M}_{B} , \mathbf{M}_{C} , that relate each of the coordinate frames, A, B, C to the world coordinate frame W
 - e. (6pts) Given the position of **p** in each of the three coordinate frames computed in (a), show that each of the coordinate frame representations from (b) can be used as transforms to compute the position of **p** in the world coordinate frame.

- 2. (3 pts) Write down the affine matrix for scaling an object by 2 in y and 3 in z.
- 3. (10 pts) Give the OpenGL Shader commands required to create **M** using elementary transformations. You may assume the matrix stack has been initialized with modelMatrix.setAsIdentity();

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

4. (6 pts) Homogenize the point [2 10 8 4]^T.

5. (20 pts) Write down the 4x4 OpenGL modelview matrix at the four lines A, B, C, and D below.

```
modelMatrix.setAsIdentity();
modelMatrix = modelMatrix * Translate(2,3,0);
///A
modelMatrix = modelMatrix * RotateY(90);
///B
matrixStack.push(modelMatrix);
modelMatrix = modelMatrix * Scale(1,.5,1);
modelMatrix = modelMatrix * Translate(1,1,0);
///C
modelMatrix = matrixStack.pop();
modelMatrix = modelMatrix * Scale(2,1,1);
///D
```

6. (24pts) Write the composite 2D matrix **M** that performs a reflection about an arbitrary tilted line using the elementary transformations and write the equivalent OpenGl Shader code that generates **M**.

7. (26 pts) For each equation below, sketch the new location L' of the L shape on the grid and provide the sequence of commands needed to carry out those operations. Use the function drawL(), which draws an L shape with the lower left corner at the current origin as shown below. You may assume the matrix mode is matrixStack.push (modelMatrix) and that the stack has been initialized with modelMatrix.setAsIdentity().

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a) L' = ABC L

c) L' = CBD L

b) L' = CAD L

d) L' = DCCAD L

