Lista 3

Probabilidade I

2025-1

Deve escolher 5 exercícios para fazer, com pelo menos dois de cada seção. Nessa lista, os com estrela só indicam os que eu acho relevante saibam fazer, mas nenhum é obrigatório. Essa lista é mais fácil que as anteriores, recomendo tentem fazer todos os exercícios se tiver o tempo. Tem até o dia 1 de Maio até as 12.00 (meio dia) para enviar a lista; cada dia de retraso se descontará um ponto da sua nota. Entrega em LATEX é desejável mas não obrigatória. Enviar no e-mail bruno.andrades@impa.br com o assunto "Lista 3 - [SEU NOME] - Prob I". Pode responder em inglês, espanhol ou português.

Convergência de variáveis aleatórias

1. Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias com $\mathbb{E}[X_nX_m]\leq R(|n-m|)$ para todo $n,m\in\mathbb{N}$ onde R é uma função tal que $R(0)<\infty$ e $R(k)\xrightarrow{k\to\infty}0$. Prove que

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{L^2} 0$$

2. **(*)** Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias tais que existe uma constante C tal que $\mathbb{E} X_n^2 < C$ para todo $n\geq 1$ e que $\mathrm{cov}(X_n,X_m)=0$ para todo $n\neq m$ prove que

$$\frac{S_{n^2} - \mathbb{E}S_{n^2}}{n^2} \xrightarrow{\text{q.c.}} 0$$

 $\underbrace{S_n - \mathbb{E}S_n}_{n} \xrightarrow{\text{q.c.}} 0$

- 3. **(*)** Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias. Mostre que $X_n \stackrel{\mathbb{P}}{\to} X$ se e somente se para toda subsequência $(X_{n_k})_{k\geq 1}$ existe uma subsubsequência $\left(X_{n_{k_j}}\right)_{j\geq 1}$ tal que $X_{n_{k_j}} \stackrel{\text{q.c.}}{\longrightarrow} X$
- 4. **(*)** Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias tal que $X_n \xrightarrow{\mathbb{P}} X$ e seja $f: \mathbb{R} \to \mathbb{R}$ uma função
 - (a) Mostre que se f é contínua, então $f(X_n) \stackrel{\mathbb{P}}{\to} f(X)$
 - (b) Considere $D_f=\{x\in\mathbb{R}: f \text{ \'e descont\'inua em }x\}$. Prove que $D_f\in\mathcal{B}(\mathbb{R})$ e que se $\mathbb{P}(X\in D_f)=0$ então temos $f(X_n)\xrightarrow{(\mathbb{P})}f(X)$ (f não precisa ser mensurável)
 - (c) Mostre que se f é contínua e limitada, $\mathbb{E} f(X_n) \to \mathbb{E} f(X)$
 - (d) Mostre que no item anterior a hipótese de limitada é necessária

5. **(*)** Sejam $(X_n)_n$ variáveis aleatórias tais que cada X_n toma valores em um conjunto finito $A_n \subset \mathbb{R}$. Suponha também que $\lim_n \max_{x \in A_n} \mathbb{P}(X_n = x) = 0$. Mostre que

$$F_{X_n}(X_n) \xrightarrow{(d)} U[0,1]$$

- 6. Sejam $(X_n)_{n\geq 1}$ e $(Y_n)_{n\geq 1}$ sequências de vetores aleatórios em \mathbb{R}^d . Mostre que se $X_n \xrightarrow{(d)} X$ e $|X_n Y_n| \xrightarrow{(\mathbb{P})} 0$, então $Y_n \xrightarrow{(d)} X$
- 7. Sejam $(X_n)_{n\geq 1}$ variáveis aleatórias Bernoulli $X_n\sim \mathrm{Bin}(n,p_n)$ onde $np_n\to \lambda\in [0,\infty).$ Mostre que

$$X_n \xrightarrow{(d)} \text{Poiss}(\lambda)$$

Lei dos grandes números

1. O objetivo dessa questão é provar o teorema de aproximação de Weierstrass. Seja $f:[0,1]\to\mathbb{R}$ uma função contínua. Sejam $X_n\sim \operatorname{Ber} p$ i.i.d. se seja

$$S_n = \sum_{k=1}^n X_k$$

(a) Calcule $\mathbb{E} f\left(\frac{S_n}{n}\right)$ e prove que para todo $\delta>0$

$$\mathbb{P}(|S_n - pn| \le \delta n) \to 1$$

(b) Prove que

$$\sup_{p \in [0,1]} \left| \mathbb{E}f\left(\frac{S_n}{n}\right) - f(p) \right| \to 0$$

e explique porque isso implica o teorema de aproximação de Weierstrass

(Dica: Pode ser útil lembrar que f é uniformemente contínua e utilizar Chebyshev)

2. (*) Um soquete acomoda lâmpadas que eventualmente queimam e são trocadas. Suponha que a n-ésima lâmpada queima após um tempo aleatório $X_n \geq 0$ e após queimada, leva um tempo $Y_n \geq 0$ para ser substituída por uma nova (n+1)-ésima lâmpada. Suponha que $(X_n)_{n\geq 1}$ são i.i.d e independentes de $(Y_n)_{n\geq 1}$ também i.i.d com $\mathbb{E} X_1$ e $\mathbb{E} Y_1$ finitas e $\mathbb{E} Y_1 > 0$. Seja R_t o tempo total em que há uma lâmpada funcionando no soquete no intervalo de tempo [0,t]. Prove que quase certamente,

$$\lim_{t \to \infty} \frac{R_t}{t} = \frac{\mathbb{E}X_1}{\mathbb{E}X_1 + \mathbb{E}Y_1}$$

3. **(*)** Seja $X_0=(0,1)\in\mathbb{R}^2$. Definimos as variáveis aleatórias $(X_n)_{n\geq 1}$ de forma indutiva. X_{n+1} é escolhida uniforme na bola $B(0,|X_n|)\subset\mathbb{R}^2$. Isto é, $X_{n+1}/|X_n|$ tem distribuição uniforme em $B(0,1)\subset\mathbb{R}^2$ e é independente de X_1,\cdots,X_n . Mostre que

$$\frac{-\log|X_n|}{n} \xrightarrow{\text{q.c.}} \frac{1}{2}$$