

Video and Motion Analysis

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

Optical flow used for feature tracking on a drone

optical flow used for motion estimation in visual odometry

Roadmap

(Where we have been and where we are going)

Image filtering

image pyramids

Image gradients

Boundaries

Hough Transform

Image Manipulation (January)

Corner detection Multi-scale detection

Haar-like

HOG

SURF

SIFT

Image Features (February)

Bag-of-words

K-means

Nearest Neighbor

Naive Bayes

SVM

Object Recognition (February)

Perceptron

Gradient Decent

Convolutional Neural Networks (February)

Figure 1: Basic set of 2D planar transformations

DLT

RANSAC

2D Transforms

Homography

2D Alignment (March)

x = PX

P

X

camera matrix

pose estimation

triangulation

F

fundamental matrix

epipolar geometry

Reconstruction

2 view geometry (March)

Stereo Rectification

Block matching

Energy minimization

Stereo (April)

What you can do now

- Detect lines (circles, shapes) in an image
- Recognize objects using a bag-of-words model
- Recognize using Deep Convolutional Neural Networks
- Automatic image warping (homography) and basic AR
- Reconstruct 3D scene structure from two images

What you will learn next

Computer Vision for Video

(a.k.a., working with sequential images)

$$\begin{bmatrix} I_x(\boldsymbol{p}_1) & I_y(\boldsymbol{p}_1) \\ I_x(\boldsymbol{p}_2) & I_y(\boldsymbol{p}_2) \\ \vdots & \vdots \\ I_x(\boldsymbol{p}_{25}) & I_y(\boldsymbol{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\boldsymbol{p}_1) \\ I_t(\boldsymbol{p}_2) \\ \vdots \\ I_t(\boldsymbol{p}_{25}) \end{bmatrix} \qquad \mathbf{min} \\ \boldsymbol{u}, \boldsymbol{v} \sum_{ij} \left\{ E_d(i,j) + \lambda E_s(i,j) \right\}$$

Constant Flow

Horn-Schunck

Optical Flow (April)

Lucas-Kanade (Forward additive)

Baker-Matthews (Inverse Compositional)

Image Alignment (April)

KLT

Kalman Filtering

Mean shift

SLAM

Tracking in Video (April)