IN THE CLAIMS

What is claimed is:

		1
1	1.	A method of forming contact holes, comprising the steps of:
2		forming a first insulating film;
3		forming a hole through the first insulating film;
4		depositing a titanium layer in an essentially anisotropic manner;
5		forming a titanium nitride film;
6		forming a tungsten film;
7		etching a tungsten film; and
8		etching the titanium and tungsten films.
1	2.	The method of claim 1, wherein:
2		depositing a titanium layer in an essentially anisotropic manner
3		includes depositing titanium according to method selected from the group
4		consisting of an ion metal plasma method, a collimate sputtering method, and
5		a long throw sputtering method.
1	3.	The method of claim 1, wherein:
2		forming a contact hole includes forming a contact hole having a width
3		no greater than 0.25 μm.

1	4.	A method, comprising the steps of:
2		anisotropically depositing a first conductive layer over a first
3		insulating layer having a contact structure hole formed therein; and
4		forming a conductive filling layer over the first conductive layer,
5		including within the contact structure hole.
1	5.	The method of claim 4, wherein:
2		depositing the first conductive layer includes an ion metal plasma
3		physical deposition method.
1	6.	The method of claim 5, wherein:
2		the ion metal plasma method of deposition includes applying an RF
3		power in the range of about 2.0 to 3.5 kilowatts to a chamber coil.
1	7.	The method of claim 5, wherein:
2		the ion metal plasma method of deposition includes applying a DC
3		power in the range of 2.0 to 3.0 kilowatts to a target that includes a first
4		conductive layer material.
1	8.	The method of claim 4, wherein:
2		depositing a first conductive layer includes a collimate sputtering
3		method.

1	9.	The method of claim 8, wherein:
2		the collimate sputtering method includes moving sputtering particles
3		through a collimator having an aspect ration of about 2.
1	10.	The method of claim 8, wherein:
2		the collimate sputtering method includes applying a DC power in the
3		range of 1.0 to 2.0 kilowatts to a target that includes a first conductive layer
4		material.
1	11.	The method of claim 4, wherein:
2		depositing a first conductive layer includes a long throw sputtering
3		method.
1	12.	The method of claim 11, wherein
2		the long throw sputtering method includes sputtering in sputtering
3		chamber at a pressure no more than 1.0 mTorr.
1	13.	The method of claim 4, wherein:
2		the first conductive layer comprises titanium.
1	14.	The method of claim 4, wherein:
2		forming the conductive filling layer includes depositing tungsten with
3		a chemical vapor deposition method.

1	15.	The method of claim 4, further including:
2		etching the conductive filling layer to expose the first conductive
3		layer.
1	16.	The method of claim 15, further including:
2		etching the first conductive layer to expose the first insulating layer
3		and forming a plug from the conductive filling layer.
1	17.	A method of forming a contact structure, comprising the steps of:
2		forming a first conducting layer over an insulating layer having a
3		contact hole formed therein, the first conducting layer having a first thickness
4		outside the contact hole that is greater than a second thickness on side surfaces
5		of the contact hole; and
6		forming a conducting filling layer over the first conducting layer
7		including within the contact hole.
1	18.	The method of claim 17, wherein:
2		the first conducting layer comprises titanium and the first thickness is
3		at least 100 nm.
1	19.	The method of claim 17, further including:
2		forming a second conducting layer over the first conducting layer prior

		· · · · · · · · · · · · · · · · · · ·
3		to forming the conducting filling layer.
1	20.	The method of claim 17, further including:
2		etching the conducting filling layer with an etch having a selectivity
3		between the conducting filling layer and the first conducting layer; and
4		etching the first conducting layer with an etch having a selectivity
5		between the first conducting layer and the conducting filling layer.
6		
	11/6-	