OLIMPIADA NAȚIONALĂ DE INFORMATICĂ

Piatra-Neamţ, 15-22 aprilie 2011

Proba 1 Clasa a VIII-a

sport – soluție

prof. Emanuela Cerchez C. N. "Emil Racoviță" Iași

În limbaj matematic problema poate fi tradusă astfel:

Se consideră o permutare a mulțimii {1, 2, ..., n}.

Numim grad al permutării cel mai mic număr k cu proprietatea că $p^k=e$ (unde e este permutarea identică 1 2 ... n).

Prima cerință constă în a determina gradul permutării date.

Orice permutare poate fi descompusă în produs de cicluri $p=c_1c_2...c_k$

Să notăm cu lgi=lungimea ciclului i.

Gradul permutării este egal cu cmmmc (lg_1 , lg_2 , ..., lg_k).

Cea de a doua cerință constă în a determina cea mai mică permutare care are gradul determinat.

Să considerăm descompunerea în factori primi a lui cmmmc:

cmmmc(
$$lg_1$$
, lg_2 , ..., lg_k)= p_1^{a1} p_2^{a2} ... p_m^{am} .

Deoarece:

cmmmc(a,b) = a*b/cmmmdc(a,b).

Vom alege lungimile ciclurilor în permutarea pe care o construim astfel:

$$n=1+1+...1+p_1^{a1} + p_2^{a2}+...+p_m^{am}$$

Odată determinate lungimile ciclurilor permutării, pentru a obține prima permutare de grad maxim în ordine lexicografică vom construi permutarea astfel:

- 1. Considerăm că $\lg_1 <= \lg_2 <= ... <= \lg_k$
- 2. Pentru ca permutarea să fie minimă din punct de vedere lexicografic, ciclul 1 va conține elementele 1, 2, ..., 1q₁, pe care le vom plasa în permutare în ordinea:

Dacă $lg_1=1$, atunci p[1]=1.

Ciclul al doilea va conține elementele \lg_1+1 , ..., $\lg_1+\lg_2$, pe care le plasăm în permutare în ordinea:

$$lg_1+2$$
, lg_1+3 , ..., lg_1+lg_2 , lg_1+1 .

Dacă $lq_2=1$, atunci p [2]=2.

etc.