ECON 6200

Problem Set 3

Gabe Sekeres

March 12, 2025

1. Binary Variables IV estimator

(a) Recall that the OLS estimator is defined by

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

which, in this case, since $x_i^2 = x_i$, simplifies to

$$\hat{\beta} = \frac{\frac{1}{n} \sum_{i=1}^{n} x_i y_i}{\bar{x}} = \frac{\sum_{i=1}^{n} y_i \cdot \mathbb{1}_{x_i=1} + y_i \cdot 0 \cdot \mathbb{1}_{x_i=0}}{\sum_{i=1}^{n} \mathbb{1}_{x_i=1}} = \frac{\sum_{i=1}^{n} y_i \cdot \mathbb{1}_{x_i=1}}{\sum_{i=1}^{n} \mathbb{1}_{x_i=1}} - \frac{\sum_{i=1}^{n} y_i \cdot \mathbb{1}_{x_i=0}}{\sum_{i=1}^{n} \mathbb{1}_{x_i=0}} = \bar{y}_1 - \bar{y}_0$$

We also know that $\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$, so

$$\hat{\alpha} = \bar{y} - (\bar{y}_1 - \bar{y}_0) \cdot \sum_{i=1}^n \mathbb{1}_{x_i = x} = \bar{y} - \bar{y}_1 \cdot \sum_{i=1}^n \mathbb{1}_{x_i = x} = \bar{y}_0$$

We additionally have that $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$, so

$$\hat{y}_1 = \bar{y}_0 + (\bar{y}_1 - \bar{y}_0)x_1 = \bar{y}_0 - \bar{y}_0 + \bar{y}_1 = \bar{y}_1$$

$$\hat{y}_0 = \bar{y}_0 + (\bar{y}_1 - \bar{y}_0)x_0 = \bar{y}_0$$

where $x_1 = 1$ and $x_0 = 0$.

- (b) $\hat{\beta}$ is not a credible estimate for the causal effect of β . If using a Malaria net is correlated with spending more on child health care, then there would be correlation between x and ε .
- (c) Since we have both truly random treatment and full compliance, there is now no way that x and ε are correlated. Thus, $\hat{\beta}$ does estimate the true causal effect of Malaria nets.
- (d) We can use z_i as an instrument for x_i , since validity and the exclusion restriction apply. Our estimator is now

$$\hat{\beta} = (\mathbb{E}ZX')^{-1}\mathbb{E}ZY$$

which becomes

$$\hat{\beta} = \frac{\sum (y_i - \bar{y})(z_i - \bar{z})}{\sum (x_i - \bar{x})(z_i - \bar{z})} = \frac{\bar{y}_1 - \bar{y}_0}{\bar{x}_1 - \bar{x}_0}$$

2. Measurement Error

(a) We have that

$$Y^* + n = \beta_0 + \beta_1 \cdot X^* + \varepsilon \iff Y^* = \beta_0 + \beta_1 \cdot X^* + \varepsilon - n$$

where we have that this estimator is valid since η i.i.d. implies that $\mathbb{E}(\varepsilon - \eta \mid X) = 0$, and we have spherical errors since $\mathbb{E}((\varepsilon - \eta)^2 \mid X) = \sigma_{\varepsilon}^2 + \sigma_{\eta}^2$. Asymptotically, our estimator has a similar distribution as the typical OLS estimator, which follows from central limit theorem:

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2}{\operatorname{Var}(X^*)}\right)$$

1

(b) OLS of Y^* on X would yield the equation

$$Y^* = \beta_0 + \beta_1 \cdot X^* + \beta_1 \cdot \eta + \varepsilon$$

where, since $\mathbb{E}(\beta_1 \mid X^*) \neq 0$, we no longer have that $\mathbb{E}(\beta_1 \eta + \varepsilon \mid X^*) = 0$. In this expression, we have that

$$\hat{\beta}_1 = (X^*X^*)^{-1}X^*(\beta_1 \cdot X^* + \beta_1 \cdot \eta + \varepsilon)$$

so

$$\mathbb{E}[\hat{\beta}_1] = \beta_1 + \underbrace{(X^*X^*)^{-1}X^*\varepsilon}_{=0} + \underbrace{(X^*X^*)^{-1}X^*\beta_1\eta}_{\neq 0}$$

so the bias of this estimator is the nonzero term, $(X^*X^*)^{-1}X^*\beta_1\eta$.

(c) We now observe a second variable, $\bar{X} = X^* + \nu$. We will use this variable as an instrument for X, which is valid since it is correlated with X and uncorrelated with η . We have that

$$\hat{\beta}_{IV} = (\bar{X}X)^{-1}\bar{X}(\beta_1X + \beta_1\eta + \varepsilon) = \beta_1 + \underbrace{(\bar{X}X)^{-1}\beta_1\bar{X}\eta}_{=0} + \underbrace{(\bar{X}X)^{-1}\bar{X}\varepsilon}_{=0} = \beta_1$$

So this estimator is unbiased. Further, since we have that defining $\rho_{X\bar{X}}$ as the covariance between X and \bar{X} , the asymptotics of this estimator simplify to

$$\sqrt{n}(\hat{\beta}_{IV} - \hat{\beta}) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\sigma_{\varepsilon}^2}{\rho_{X\bar{X}}^2 \sigma_X^2}\right)$$

3. Empirical Exercise

n.b. I completed this exercise using Python since I don't have a Stata license and I'm morally opposed to using R. The code is below

(a) I recreated the columns in Hansen, which are:

Vars	2SLS(b)	education
education	0.1611	
experience	0.1193	-0.4133
$experience^2/100$	-0.2305	0.0928
Black	-0.1017	-1.0063
south	-0.0950	-0.2671
urban	0.1164	0.3998
public		0.4304
private		0.1226
p	< 0.001	< 0.001
\mathbf{F}	717.93	525.80

- (b) I added the variable, and the coefficient of interest (on ed76) changed from 0.1611 to 0.1710, a 6.15% change. The full difference is below in the output section.
- (c) The results changed a lot when adding the additional instruments. The coefficient of interest moved to 0.0827, a change of 48.66%. More importantly, the R-squared almost doubled, from 0.1430 to 0.2876. Graphically, we have Figure 1

Figure 1: Coefficient Comparison

Code

The code I used was:

import pandas as pd

Ensure log wage is numeric

```
import numpy as np
import statsmodels.api as sm
from linearmodels.iv import IV2SLS
import matplotlib.pyplot as plt
# Load the Card data
data = pd.read_excel("ps3_code/Card1995.xlsx", sheet_name=0)
# Generate experience variable and squared experience
data['exp76'] = data['age76'] - data['ed76'] - 6
data['exp76sg'] = (data['exp76'] ** 2) / 100
# Rename variables to match Stata code
data = data.rename(columns={
    'nearc4a': 'pub',
'nearc4b': 'priv',
'reg76r': 'south76',
                              # grew up near 4-yr public college
                          # grew up near 4-yr private college
    'reg76r': 'south76', # in south in 1976
'smsa76r': 'urban76' # residence in a standard metropolitan statistical
        area
})
# Drop observations with missing log wage
data = data.dropna(subset=['lwage76'])
```

data['lwage76'] = pd.to_numeric(data['lwage76'], errors='coerce')

data['pubxagesq'] = data['pub'] * ((data['age76'] ** 2) / 100)

Create interaction terms for additional instruments

data['pubxage'] = data['pub'] * data['age76']

```
print("\n========================")
# First, replicate column 2SLS(a) in Table 12.1
print("\n--- Table 12.1, Column 2SLS(a) ---")
formula_2sls = "lwage76 \sim 1 + exp76 + exp76sg + black + south76 + urban76 + [
   ed76 \sim pub + priv]"
model_2sls = IV2SLS.from_formula(formula_2sls, data)
results_2sls = model_2sls.fit(cov_type='robust')
print(results_2sls.summary)
# Now, replicate the final column of Table 12.2 (reduced form regression for
   education)
print("\n--- Table 12.2, Final Column (Reduced Form for Education) ---")
# The final column of Table 12.2 appears to be a reduced form regression of
   education on various covariates
X_reduced_form = sm.add_constant(data[['exp76', 'exp76sq', 'black', 'south76',
     'urban76', 'pub', 'priv']])
reduced_form_model = sm.OLS(data['ed76'], X_reduced_form)
reduced_form_results = reduced_form_model.fit(cov_type='HC1')
print(reduced_form_results.summary())
print("\n========= OUESTION 3.2 ========")
# Add nearc2 to the first stage/reduced form equation
print("\n--- First Stage/Reduced Form with nearc2 added ---")
X_reduced_form2 = sm.add_constant(data[['exp76', 'exp76sq', 'black', 'south76'
   , 'urban76', 'pub', 'priv', 'nearc2']])
reduced_form_model2 = sm.OLS(data['ed76'], X_reduced_form2)
reduced_form_results2 = reduced_form_model2.fit(cov_type='HC1')
print(reduced_form_results2.summary())
# 2SLS with nearc2 added as an instrument
print("\n--- 2SLS with nearc2 added as an instrument ---")
formula_2sls2 = "lwage76 \sim 1 + exp76 + exp76sq + black + south76 + urban76 + [
   ed76 ~ pub + priv + nearc2]"
model_2sls2 = IV2SLS.from_formula(formula_2sls2, data)
results_2sls2 = model_2sls2.fit(cov_type='robust')
print(results_2sls2.summary)
# Compare coefficients
print("\nComparison of coefficients with and without nearc2:")
print(f"2SLS without nearc2 (ed76 coefficient): {results_2sls.params['ed76
print(f"2SLS with nearc2 (ed76 coefficient): {results_2sls2.params['ed76']:.4f
print(f"Difference: {results_2sls2.params['ed76'] - results_2sls.params['ed76
   ']:.4f}")
print(f"Percent change: {((results_2sls2.params['ed76'] - results_2sls.params
   ['ed76'])/results_2sls.params['ed76']*100):.2f}%")
```

```
print("\n========= OUESTION 3.3 ========")
# Estimate the structural equation by TSLS with additional instruments
print("\n--- 2SLS with additional instruments (interactions) ---")
formula_2sls3 = "lwage76 \sim 1 + exp76 + exp76sg + black + south76 + urban76 + [
   ed76 ~ pub + priv + pubxage + pubxagesg + nearc21"
model_2sls3 = IV2SLS.from_formula(formula_2sls3, data)
results_2sls3 = model_2sls3.fit(cov_type='robust')
print(results_2sls3.summary)
# Compare coefficients
print("\nComparison of coefficients with added interactions:")
print(f"Original 2SLS (ed76 coefficient): {results_2sls.params['ed76']:.4f}")
print(f"2SLS with interactions (ed76 coefficient): {results_2sls3.params['ed76
   'l:.4f}")
print(f"Difference: {results_2sls3.params['ed76'] - results_2sls.params['ed76
   'l:.4f}")
print(f"Percent change: {((results_2sls3.params['ed76'] - results_2sls.params
   ['ed76'])/results_2sls.params['ed76']*100):.2f}%")
# Create a bar plot to visualize the comparison
models = ['2SLS (a)\nTable 12.1', '2SLS with nearc2', '2SLS with\ninteractions
coeffs = [results_2sls.params['ed76'], results_2sls2.params['ed76'],
   results_2sls3.params['ed76']]
plt.figure(figsize=(10, 6))
plt.bar(models, coeffs)
plt.ylabel('Coefficient on Education')
plt.title('Comparison of Education Coefficients Across Models')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.savefig('ps3_code/education_coefficients.png')
Output
The raw output from the code was:
======== OUESTION 3.1 ========
--- Table 12.1, Column 2SLS(a) ---
                         IV-2SLS Estimation Summary
                               _____
Dep. Variable:
                             lwage76
                                       R-squared:
                                                                      0.1447
Estimator:
                             IV-2SLS
                                       Adj. R-squared:
                                                                      0.1430
                                       F-statistic:
No. Observations:
                                3010
                                                                      717.93
                    Wed, Mar 05 2025
Date:
                                       P-value (F-stat)
                                                                      0.0000
Time:
                            11:52:08
                                       Distribution:
                                                                     chi2(6)
Cov. Estimator:
                              robust
```

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept exp76 exp76sq black south76 urban76 ed76	3.2680 0.1193 -0.2305 -0.1017 -0.0950 0.1164 0.1611	0.6821 0.0182 0.0368 0.0440 0.0217 0.0263 0.0405	4.7910 6.5681 -6.2729 -2.3134 -4.3717 4.4327 3.9804	0.0000 0.0000 0.0000 0.0207 0.0000 0.0000	1.9311 0.0837 -0.3026 -0.1879 -0.1376 0.0650 0.0818	4.6049 0.1549 -0.1585 -0.0155 -0.0524 0.1679 0.2404

Endogenous: ed76

Instruments: pub, priv

Robust Covariance (Heteroskedastic)

Debiased: False

--- Table 12.2, Final Column (Reduced Form for Education) --- OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	tions: s:	Least Squ Wed, 05 Mar 11:5	0LS Adg nares F-9 2025 Pro		ic):	0.476 0.475 525.8 0.00 -6261.0 1.254e+04 1.259e+04
	coef	std err		z P> z	[0.025	0.975]
const exp76 exp76sq black south76 urban76 pub priv	16.6573 -0.4133 0.0928 -1.0063 -0.2671 0.3998 0.4304 0.1226	0.032 0.171 0.088 0.079 0.085 0.086	113.499 -12.904 0.543 -11.437 -3.396 4.717 4.994	0.000 0.587 0.000 0.001 0.000 1 0.000	16.370 -0.476 -0.242 -1.179 -0.421 0.234 0.261 -0.076	16.945 -0.350 0.428 -0.834 -0.113 0.566 0.599 0.321
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	6).002 Jai).158 Pro	rbin-Watson: rque-Bera (JB ob(JB): nd. No.	:):	1.767 12.583 0.00185 64.2

Notes:

[1] Standard Errors are heteroscedasticity robust (HC1)

======== QUESTION 3.2 ========

--- First Stage/Reduced Form with nearc2 added --- OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	.ons:	Least Squ Wed, 05 Mar 11:5		Adj. F-st Prob		:	0.476 0.475 460.2 0.00 -6260.6 1.254e+04 1.259e+04
	coe	f std err		===== Z	P> z	[0.025	0.975]
const exp76 exp76sq black south76 urban76 pub priv nearc2	16.6343 -0.4128 0.0899 -1.0100 -0.2603 0.3904 0.4210 0.1303 0.067	3 0.032 5 0.171 6 0.088 8 0.079 4 0.086 6 0.087 L 0.102	-12 0 -11 -3 4 4	. 215 . 897 . 524 . 490 . 299 . 563 . 874 . 279	0.000 0.000 0.600 0.000 0.001 0.000 0.000 0.201 0.362	16.341 -0.476 -0.245 -1.183 -0.415 0.223 0.252 -0.069 -0.078	16.927 -0.350 0.424 -0.838 -0.106 0.558 0.591 0.329 0.213
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	(2.199 0.002 0.156 2.972	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.767 12.319 0.00211 64.6

Notes:

[1] Standard Errors are heteroscedasticity robust (HC1)

--- 2SLS with nearc2 added as an instrument --- IV-2SLS Estimation Summary

Dep. Variable:	lwage76	R-squared:	0.1097
Estimator:	IV-2SLS	Adj. R-squared:	0.1079
No. Observations:	3010	F-statistic:	691.41
Date:	Wed, Mar 05 2025	P-value (F-stat)	0.0000
Time:	11:52:08	Distribution:	chi2(6)
Cov Fotimoton.	maha+		

Cov. Estimator: robust

Parameter Estimates

========	========	========	========	========	========	========
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	3.1014	0.6883	4.5061	0.0000	1.7524	4.4503
exp76	0.1234	0.0184	6.7075	0.0000	0.0873	0.1594

exp76sq	-0.2313	0.0376	-6.1428	0.0000	-0.3051	-0.1575
black	-0.0917	0.0446	-2.0555	0.0398	-0.1792	-0.0043
south76	-0.0916	0.0220	-4.1581	0.0000	-0.1348	-0.0484
urban76	0.1113	0.0267	4.1722	0.0000	0.0590	0.1636
ed76	0.1710	0.0408	4.1877	0.0000	0.0910	0.2510

Endogenous: ed76

Instruments: pub, priv, nearc2
Robust Covariance (Heteroskedastic)

Debiased: False

Comparison of coefficients with and without nearc2: 2SLS without nearc2 (ed76 coefficient): 0.1611 2SLS with nearc2 (ed76 coefficient): 0.1710

Difference: 0.0099 Percent change: 6.15%

======== QUESTION 3.3 =========

--- 2SLS with additional instruments (interactions) --- IV-2SLS Estimation Summary

-----Dep. Variable: lwage76 R-squared: 0.2891 IV-2SLS Estimator: Adj. R-squared: 0.2876 F-statistic: No. Observations: 3010 1019.4 Wed, Mar 05 2025 P-value (F-stat) Date: 0.0000 Time: 11:52:08 Distribution: chi2(6)

Cov. Estimator: robust

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept exp76 exp76sq black south76 urban76 ed76	4.5873 0.0872 -0.2247 -0.1809 -0.1219 0.1569 0.0827	0.1107 0.0071 0.0320 0.0180 0.0154 0.0153 0.0062	41.444 12.361 -7.0277 -10.030 -7.9085 10.272 13.295	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.3703 0.0733 -0.2874 -0.2162 -0.1521 0.1270 0.0705	4.8042 0.1010 -0.1621 -0.1455 -0.0917 0.1869 0.0949

Endogenous: ed76

Instruments: pub, priv, pubxage, pubxagesq, nearc2

Robust Covariance (Heteroskedastic)

Debiased: False

Comparison of coefficients with added interactions:

Original 2SLS (ed76 coefficient): 0.1611

2SLS with interactions (ed76 coefficient): 0.0827

Difference: -0.0784 Percent change: -48.66%