FCC TEST REPORT(GSM)

for

Londa industry limited

Mobile Phone

Model Number: B3i, H008

FCC ID: 2AC5CH008

Prepared for : Londa industry limited

Address : ROOM636, Gongyi block, No.55 zhenhua road,

Shenzhen, China

Prepared by : Keyway Testing Technology Co., Ltd.

Address : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 14KWE091834E Date of Test : Aug. 25~31, 2014 Date of Report : Sept. 1, 2014

TABLE OF CONTENTS

Tes	Test Report Declaration				
1.	TE	ST SUMMARY	4		
2.	GE	NERAL PRODUCT INFORMATION	5		
2	.1.	Product Function	5		
2	.2.	Description of Device (EUT)	5		
2	.3.	Difference between Model Numbers	5		
2	.4.	Test Supporting System	5		
2	.5.	Independent Operation Modes	6		
3.	TE:	ST SITES	7		
3	.1.	Test Facilities	7		
3	.2.	List of Test and Measurement Instruments	8		
4.	TE:	ST SET-UP AND OPERATION MODES	9		
4	.1.	Principle of Configuration Selection	9		
4	.2.	Block Diagram of Test Set-up			
4	.3.	Test Operation Mode and Test Software	9		
4	.4.	Special Accessories and Auxiliary Equipment			
4	.5.	Countermeasures to Achieve EMC Compliance	9		
5.	ΕM	IISSION TEST RESULTS	10		
5	.1.	Conducted Emission at the Mains Terminals Test	10		
5	.2.	Conducted RF Output Power	13		
5	.3.	99% & -26 dB Occupied Bandwidth			
_	.4.	Frequency Stability			
_	.5.	Conducted Out of Band Emissions			
_	.6.	Conducted Out of Band Emissions			
_	.7.	Transmitter Radiated Power (EIRP/ERP)	26		
_	.8.	Radiated Out of Band Emissions			
6.	PH	OTOGRAPHS OF TEST SET-UP	34		
7.	PH	OTOGRAPHS OF THE EUT	36		

FCC ID: 2AC5CH008

Keyway Testing Technology Co., Ltd.

Applicant: Londa industry limited

Address: ROOM636, Gongyi block, No.55 zhenhua road,

Shenzhen, China

Manufacturer: Londa industry limited

Address: ROOM636, Gongyi block, No.55 zhenhua road,

Shenzhen, China

E.U.T: Mobile Phone

Model Number: B3i, H008

Trade Name: Smart Serial No.: -----

Date of Receipt: Aug. 25, 2014 **Date of Test:** Aug. 25~31, 2014

Test Specification: FCC CFR Title 47 Part 2: 2013

FCC CFR Title 47 Part22 Subpart H: 2013 FCC CFR Title 47 Part24 Subpart E: 2013

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Issue Date: Sept. 1, 2014

Tested by:

Reviewed by:

Jack Bu / Engineer

Andy Gao/ Supervisor

Jade Yang/Supervisor

Other Aspects:

None.

Abbreviations: OK/P=passed

fail/F=failed

n.a/N=not applicable

E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1.TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emission at the Mains Terminals	15.207	PASS
DE 5 (0.4 D)	Part 1.1307	
RF Exposure (SAR)	Part 2.1093	(Please refer to SAR Report)
Conducted RF Output Power	2.1046	PASS
	2.1049,	
99% & -26 dB Occupied Bandwidth	22.917	PASS
	24.238,	
	2.1055,	
Frequency Stability	22.355	PASS
	24.235,	
	2.1051,2.1057	
Conducted Out of Band Emissions	22.917,	PASS
	24.238	
	2.1051,2.1057	
Band Edge	22.917,	PASS
	24.238	
Tananamittan Dadiatad Dawar (FIDD (FDD)	22.913,	DAGG
Transmitter Radiated Power (EIPR/ERP)	24.232	PASS
	2.1053,2.1057	
Radiated Out of Band Emissions	at of Band Emissions 22.917,	
	24.238	

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	Mobile Phone
Model No.:	B3i, H008
	GSM 850MHz:
	Tx: 824.20 - 848.80MHz (at intervals of 200kHz);
Operation Fragueses	Rx: 869.20 - 893.80MHz (at intervals of 200kHz)
Operation Frequency:	GSM 1900MHz:
	Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);
	Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)
Modulation technology:	GSM/GPRS Mode with GMSK Modulation
Antenna Type:	Integral Antenna
Antenna gain:	-2.0dBi
Dower overhu	DC 5V from adapter
Power supply:	Rechargeable lithium-ion battery 3.7V

2.3. Difference between Model Numbers

None.

2.4. Test Supporting System

2.4.1. AC Adapter:

Provide: Londa industry limited

M/N: B3i

I/P: AC 100~240V 50/60Hz

O/P: DC 5V 500mA FCC Approve: FCC VOC

2.5. Independent Operation Modes

During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

	Test modes						
Band	Radiated	Conducted					
GSM 850	■ GSM link	■ GSM link					
PCS 1900	■ GSM link	■ GSM link					

Note: The maximum power levels are GSM mode for GMSK link,

The conducted power tables are as follows:

Conducted Power average (dBm)							
Band		GSM850			PCS1900		
Channel	128	190	251	512	661	810	
Frequency	824.20	836.60	848.80	1850.20	1880.00	1909.80	
GSM (SIM1)	32.48	32.51	32.62	25.97	26.41	26.94	
GSM (SIM2)	31.89	31.79	31.47	25.11	26.02	26.07	

Note: The worst mode was in SIM1, all test data in SIM1 mode in this report..

Page 6 of 44

3. TEST SITES

3.1. Test Facilities

Lab Qualifications: 944 Shielded Room built by ETS-Lindgren, USA

Date of completion: March 28, 2011

966 Chamber built by ETS-Lindgren, USA

Date of completion: March 28, 2011

Certificated by TUV Rheinland, Germany.

Registration No.: UA 50207153 Date of registration: July 13, 2011

Certificated by UL, USA Registration No.: 100567-237

Date of registration: September 1, 2011

Certificated by Intertek

Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011

Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

Name of Firm : Keyway Testing Technology Co., Ltd.

Site Location : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

3.2. List of Test and Measurement Instruments

3.2.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 27,14	Apr. 27,15
Artificial Mains Network	Rohde&Schwarz	ENV216	101315	Apr. 27,14	Apr. 27,15
Artificial Mains Network (AUX)	Rohde&Schwarz	ENV216	101314	Apr. 27,14	Apr. 27,15
RF Cable	FUJIKURA	3D-2W	944 Cable	Apr. 27,14	Apr. 27,15

3.2.2. For radiated emission test

	I	T			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver Rohde&Schwarz		ESCI	101156	Apr. 27,14	Apr. 27,15
System Simulator	Agilent	E5515C	GB43130245	Apr. 30,14	Apr. 30,15
Power Splitter	Weinschel	1506A	NW425	Apr. 30,14	Apr. 30,15
Bilog Antenna	ETS-LINDGREEN	3142D	135452	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	E4411B	MY4511304	Apr. 27,14	Apr. 27,15
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	Apr. 27,14	Apr. 27,15
Signal Amplifier	SONOMA	310	187016	Apr. 27,14	Apr. 27,15
Signal Amplifier	Agilent	8449B	3008A00251	Apr. 27,14	Apr. 27,15
RF Cable	IMRO	IMRO-400	966 Cable 1#	N/A	N/A
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A
Horn Antenna	DAZE	ZN30701	11003	Apr. 27,14	Apr. 27,15
Horn Antenna	SCHWARZBECK	BBHA9170	9170-068	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	8593E	3911A04271	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	E4408B	MY44211125	Apr. 30,14	Apr. 30,15
Signal Amplifier	DAZE	ZN3380C	11001	Apr. 27,14	Apr. 27,15
High Pass filter	Micro	HPM50111	324216	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C836.5-25-X	KW032	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1747.5-75-X2	KW035	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1880-60-X2	KW037	Apr. 30,14	Apr. 30,15
DC Power Supply	LongWei	PS-305D	010964729	Apr. 27,14	Apr. 27,15
Constant temperature and humidity box	GF	GTH-800-40-1P	MAA9906-005	Apr. 27,14	Apr. 27,15
Universal radio communication tester	Rohde&Schwarz	CMU200	3215420	Apr. 27,14	Apr. 27,15
Splitter	Agilent	11636B	0025164	Apr. 27,14	Apr. 27,15

FCC ID: 2AC5CH008

4. TEST SET-UP AND OPERATION MODES

4.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

- 4.2. Block Diagram of Test Set-up See item 6.
- 4.3. Test Operation Mode and Test Software None.
- 4.4. Special Accessories and Auxiliary Equipment None.
- 4.5. Countermeasures to Achieve EMC Compliance None.

5. EMISSION TEST RESULTS

5.1. Conducted Emission at the Mains Terminals Test

5.1.1. Limit 15.207 limits

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)	
	Quasi-peak	Average
0.15-0.5 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50

5.1.2. Test Setup

The EUT was put on a wooden table which was 0.8 m high above the ground and connected to the AC mains through the Artificial Mains Network (AMN). Where the mains cable supplied by the manufacture was longer than 0.8 m, the excess was folded back and forth parallel to the cable at the centre so as to form a bundle no longer than 0.4 m.

The EUT was kept 0.4 m from any other earthed conducting surface. Both sides of AC line were checked to find out the maximum conducted emission levels according to the test procedure during the conducted emission test.

The frequency range from 150 kHz to 30 MHz was investigated.

The bandwidth of the test receiver was set at 9 kHz.

Pretest for all mode, The test data of the worst case condition(s) was reported on the following page.

Measurement Uncertainty: ±2.6 dB.

5.1.3. Test Mode

Refer to section 2.5 for details

Line

			Limit	Over	
	Freq	Level	Line	Limit	Remark
7	MHz	dBuV	dBuV	dB	
1	0.165	25.97	55.21	-29.24	Average
2	0.165	40.00	65.21	-25.21	QP
3	0.280	28.97	50.81	-21.84	Average
4	0.280	36.00	60.81	-24.81	QP
5	0.564	30.65	46.00	-15.35	Average
6	0.564	42.00	56.00	-14.00	QP
7	0.641	32.90	46.00	-13.10	Average
8	0.641	40.00	56.00	-16.00	QP
9	0.679	35.56	46.00	-10.44	Average
10	0.679	46.20	56.00	-9.80	QP
11	18.232	30.90	50.00	-19.10	Average
12	18.232	42.00	60.00	-18.00	QP

Neutral

	Freq	Level	Limit Line	Over Limit	Remark
9	MHz	dBuV	dBuV	dB	
1	0.155	30.22	55.74	-25.52	Average
2	0.155	39.00	65.74	-26.74	QP
3	0.230	28.63	52.44	-23.81	Average
4	0.230	38.00	62.44	-24.44	QP
5	0.270	28.65	51.12	-22.47	Average
6	0.270	36.00	61.12	-25.12	QP
7	0.466	28.00	46.58	-18.58	Average
8	0.466	39.00	56.58	-17.58	QP
9	0.621	30.98	46.00	-15.02	Average
10	0.621	44.80	56.00	-11.20	QP
11	18.328	29.80	50.00	-20.20	Average
12	18.328	42.00	60.00	-18.00	QP

5.2. Conducted RF Output Power

5.2.1. Test Setup

The EUT, which is powered by the adapter, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power.

5.2.2. Test Result

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

Measurement data

Conducted Power average (dBm)							
Band	GSM850 PCS1900						
Channel	128	190	251	512	661	810	
Frequency	824.20	836.60	848.80	1850.20	1880.00	1909.80	
GSM (GMSK, 1 TX slot)	32.48	32.51	32.62	25.97	26.41	26.94	

Note: Measurement Uncertainty: ±2.6 dB.

5.3. 99% & -26 dB Occupied Bandwidth

5.3.1. Limit

According to FCC section 2.1049 and FCC part22.913(a) and FCC part24.232(b), the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth,

5.3.2. Test Setup

The EUT, which is powered by the adapter, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power.

5.3.3. Test Result

Measurement Data

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
0011.050	128	824.20	243.4	316.8
GSM 850 (GSM link)	190	836.60	244.5	317.7
(CON IIIIK)	251	848.80	242.7	319.3
200 4000	512	1850.20	240.4	318.6
PCS 1900 (GSM link)	661	1880.00	243.3	317.7
(33	810	1909.80	241.3	318.6

Note: Measurement Uncertainty: ±20Hz.

Page 14 of 44

Test plot as follows:

GSM 850MHz Lowest channel

GSM 850MHz Middle channel

GSM 850MHz Highest channel:

PCS 1900 (GSM link) Highest channel

5.4. Frequency Stability

5.4.1. Limit

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

5.4.2. Test Setup

Note: Measurement setup for testing on Antenna connector

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber.

The EUT is commanded by the System Simulator (SS) to operate at the maximum output power

5.4.3. Test Result

The nominal, highest and lowest extreme voltages are separately 3.7VDC, 4.2VDC and 3.6VDC which are specified by the applicant; the normal temperature here used is 25°C. The frequency deviation limit of 850MHz band is ±2.5ppm, and 1900MHz is ±1ppm

Normal

Test Conditions			Frequency Deviation			
Band	Power(Vdc)	Temperatu re(°C)	Frequency Error(Hz)	ppm	Limit	Result
	3.7	-30	54	0.0645		
	3.7	-20	37	0.0442		
	3.7	-10	45	0.0538		
GSM850	3.7	0	51	0.0610		
(GSM link)	3.7	10	36	0.0430		
Middle	3.7	20	27	0.0323	.0.5	DACC
channel=190	3.7	30	46	0.0550	±2.5	PASS
channel=836.	3.7	40	35	0.0418		
6MHz	3.7	50	41	0.0490		
	4.25	25	32	0.0383		
	3.70	25	44	0.0526		
	3.40	25	48	0.0574		
	3.7	-30	53	0.0282		
	3.7	-20	47	0.0250		
	3.7	-10	51	0.0271		
PCS1900	3.7	0	45	0.0239		
(GSM link)	3.7	10	36	0.0191		
Middle	3.7	20	26	0.0138	. 1	PASS
channel=661	3.7	30	25	0.0133	±1	PASS
channel=188	3.7	40	67	0.0356		
0MHz	3.7	50	56	0.0298		
	4.25	25	72	0.0383		
	3.70	25	43	0.0229		
	3.40	25	57	0.0303		

Note: Measurement Uncertainty: ±20Hz.

5.5. Conducted Out of Band Emissions

5.5.1. Limit

According to FCC section 22.917(a) and FCC section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

5.5.2. Test Setup

Note: Measurement setup for testing on Antenna connector

5.5.3. Measurement Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 100KHz, Start=30MHz, Stop= 10th harmonic.

Limit = -13dBm

Note: used 5001 sweep points for each plots.

5.5.4. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

Test plot as follows:

GSM 850MHz Lowest channel

GSM 850MHz Middle channel

GSM 850MHz Highest channel

GSM 1900MHz Lowest channel

GSM 1900MHz Middle channel

GSM 1900MHz Highest channel

5.6. Conducted Out of Band Emissions

5.6.1. Limit

According to FCC section 22.917(b) and FCC section 24.238(b), 27.53(g)(h) in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

5.6.2. Test Setup

Note: Measurement setup for testing on Antenna connector

5.6.3. Measurement Procedure

The EUT, which is powered by the adapter, is coupled to the Spectrum Analyzer and the System Simulator with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the System Simulator to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the System Simulator.

5.6.4. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

Test plot as follows:

GSM 850MHz Lowest channel

* Agilent

GSM 850MHz Highest channel

Copyright 2000-2005 Agilent Technologies

GSM 1900MHz Highest channel

5.7. Transmitter Radiated Power (EIRP/ERP)

5.7.1. Limit

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

5.7.2. Test Setup

Below 1GHz

Above 1GHz

Substituted method:

5.7.3. Measurement Procedure

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. all test in Full-Anechoic Chamber.

During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824.2 –848.80.8MHz were measured using a substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follows:

EIRP in frequency band 1850.2 –1909.8MHz were measured using a substitution method. The EUT was replaced by or horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable Loss (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss (dB)

5.7.4. Test Result

EUT mode	Channel	EUT Pol.	Antenna Pol.	ERP(dBm)	Limit (dBm)	Result
		П	V	31.91		
		П	Н	30.45	00.45	
	Lawaat	E1	V	29.95		
	Lowest		Н	29.88	38.45	Pass
		Ea	V	28.87		
		E2	Н	28.31		
		Н	V	31.76		Pass
	Middle	П	Н	29.86	38.45	
GSM850		E1 E2	V	27.65		
(GSM link)			Н	28.53		
			V	27.36		
			Н	28.87		
		Н	V	31.36		
		П	Н	29.86		
	Llighoot	E1	V	27.84	20.45	Door
	Highest		Н	28.89	38.45	Pass
		Eo	V	26.91		
		E2	Н	27.98		

EUT mode	Channel	EUT Pol.	Antenna Pol.	EIRP (dBm)	Limit (dBm)	Result
		Н	V	29.22		
		П	Н	27.21	33.01	
	Laurant	F.4	V	26.65		
	Lowest	E1	Н	25.43		Pass
		E2	V	24.36		
		E2	Н	23.27		
		Н	V	29.67		Pass
	Middle		Н	27.64	33.01	
PCS1900		E1	V	25.58		
(GSM link)			Н	24.26		
		E2	V	25.74		
			Н	24.47		
		Н	V	29.58		
		П	Н	27.98		
	Lliaboot	E4	V	26.47	22.04	Door
	Highest	E1	Н	24.33	33.01	Pass
			V	24.48		
		E2	Н	23.39		

5.8. Radiated Out of Band Emissions

5.8.1. Limit

According to FCC section 22.917(a) and section 24.238(a), 27.53(g) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power

(P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

The spurious emission with frequency band 1900 according to FCC section 2.1057.

5.8.2. Test Setup

Below 1GHz

Above 1GHz

Substituted method:

5.8.3. Measurement Procedure

The EUT was placed on a non-conductive, The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations. all test in Full-Anechoic Chamber.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency

(low, middle and high channels). Once spurious emission was identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

EIRP = S.G. output (dBm) + Antenna Gain(dBi) - Cable Loss (dB)

Note: Measurement Uncertainty: ±3.6 dB.

Band	Frequency	Spurio	ous Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	146.67	Vertical	-69.85		
	1648.40	Vertical	-27.34		
	2472.60	Vertical	-32.99		PASS
	3296.80	Vertical	-34.72	-13	
	4121.00	Vertical	-42.77		
GSM 850	4945.20	Vertical	-37.25		
Lowest	267.86	Horizontal	-70.34		
	2472.60	Horizontal	-30.78		
	3296.80	Horizontal	-34.98		
	4121.00	Horizontal	-40.67		
	4945.20	Horizontal	-42.87		
	5769.40	Horizontal	-39.25		

Band	Frequency	Spurio	ous Emission	Limit	Decult
Бапа	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	156.34	Vertical	-69.88		
	1673.20	Vertical	-31.26		
	2509.80	Vertical	-30.31		PASS
	3346.40	Vertical	-37.42	-13	
	4183.00	Vertical	-42.20		
GSM 850	5019.60	Vertical	-40.17		
Middle	265.78	Horizontal	-69.75		
	1673.20	Horizontal	-27.32		
	2509.80	Horizontal	-30.04		
	3346.40	Horizontal	-42.20		
	4183.00	Horizontal	-45.47		
	5019.60	Horizontal	-40.22		

Band	Frequency	Spurio	ous Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	158.64	Vertical	-70.05		
	1697.60	Vertical	-26.35		
	2546.40	Vertical	-27.34		PASS
	3395.20	Vertical	-33.82	-13	
	4244.00	Vertical	-43.09		
GSM 850	5092.80	Vertical	-40.23		
Highest	284.25	Horizontal	-72.85		
	1697.60	Horizontal	-26.70		
	2546.40	Horizontal	-28.59		
	3395.20	Horizontal	-35.83		
	4244.00	Horizontal	-42.14		
	5092.80	Horizontal	-40.42		

Band	Frequency	Spuri	ous Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	167.79	Vertical	-70.63		
	3700.40	Vertical	-44.36		
	5550.60	Vertical	-43.58		PASS
	7400.80	Vertical	-41.20	-13	
	9251.00	Vertical	-43.48		
PCS1900	11101.20	Vertical	-40.17		
Lowest	258.77	Horizontal	-70.95		
	3700.40	Horizontal	-46.21		
	5550.60	Horizontal	-45.43		
	7400.80	Horizontal	-40.17		
	9251.00	Horizontal	-44.48		
	11101.20	Horizontal	-41.50		

Band	Frequency	Spurio	ous Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	187.45	Vertical	-70.85		
	3760.00	Vertical	-42.20		
	5640.00	Vertical	-43.79		
	7520.00	Vertical	-39.85		
	9400.00	Vertical	-39.51		
PCS1900	11280.00	Vertical	-37.93	-13	PASS
Middle	287.89	Horizontal	-70.95		
	3760.00	Horizontal	-44.36		
	5640.00	Horizontal	-41.87		
	7520.00	Horizontal	-36.62		
	9400.00	Horizontal	-40.22		
	11280.00	Horizontal	-38.16		

Band	Frequency	Spurio	ous Emission	Limit	Result
Dallu	(MHz)	Polarization	Level(dBm)	(dBm)	Result
	178.47	Vertical	-70.73		
	3819.60	Vertical	-42.45		
	5729.40	Vertical	-39.49		PASS
	7639.20	Vertical	-35.26	-13	
	9549.00	Vertical	-39.51		
PCS1900	11458.80	Vertical	-38.85		
Highest	289.97	Horizontal	-70.70		
	3819.60	Horizontal	-42.08		
	5729.40	Horizontal	-37.51		
	7639.20	Horizontal	-33.99		
	9549.00	Horizontal	-39.51		
	11458.80	Horizontal	-37.68		

6. PHOTOGRAPHS OF TEST SET-UP

Conducted Emission

7. PHOTOGRAPHS OF THE EUT

END.