

This project analyzes employee attrition data to understand the factors that contribute to employee turnover.

Using a dataset from an HR department, I created a comprehensive Tableau dashboard to visualize key metrics such as attrition rate, total number of employee and so on.

THE MAIN GOALS OF THIS PROJECT ARE:

TO IDENTIFY TRENDS AND PATTERNS IN EMPLOYEE ATTRITION.

TO PROVIDE ACTIONABLE INSIGHTS FOR HR TO REDUCE TURNOVER.

TO GAIN HANDS-ON EXPERIENCE WITH POWER BI FOR DATA VISUALIZATION.


```
Importing the required Libraries and cleaning the Dataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
data = pd.read_csv(r"C:\Users\91931\Downloads\Intern\Dataset\HR-Employee
Attrition.csv")
#Checking for duplicated values
data.duplicated().sum()
#Checking for null values
data.isnull().sum()
```



```
•••
                             Employee's Demographics
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15,5))
sns.histplot(data=data, x='Age', kde=True, ax=axes[0])
axes[0].set_title('Distribution Employee by Age')
axes[0].set_xlabel('Age')
axes[0].set_ylabel('Count')
sns.countplot(data=data, x='Gender', ax=axes[1], palette='Set3')
axes[1].set_title('Distribution Employee by Gender')
axes[1].set_xlabel('Gender')
axes[1].set_ylabel('Count')
sns.countplot(data=data, x='Department', ax=axes[2], palette='Set3')
axes[2].set_title('Distribution Employee by Department')
axes[2].set_xlabel('Department')
axes[2].set_ylabel('Count')
plt.tight_layout()
plt.show()
```



```
# Make a new function called calculation attrition rate

def calculate_attrition_rate(data,column):
    attrition_counts =

data.groupby([column,'Attrition']).size().unstack(fill_value=0)
    attrition_rate = attrition_counts['Yes'] / attrition_counts.sum(axis=1) *

100
    attrition_rate_data = attrition_rate.reset_index()
    attrition_rate_data.columns = [column, 'AttritionRate']
    return attrition_rate_data
```

```
•••
                             Attrition by Age and Gender
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15,6))
sns.kdeplot(data=data_attrition, x='Age', fill=True, ax=axes[0])
axes[0].set_title('Attrition by Age')
axes[0].set_xlabel('Age')
axes[0].set_ylabel('Density')
# Plot 2: Bar plot of Gender count with Attrition hue
attrition_rate_data = calculate_attrition_rate(data, 'Gender')
sns.barplot(data=attrition_rate_data, x='Gender',
y='AttritionRate', ax=axes[1], palette='Set3')
axes[1].set_title(f'Attrition Rate by Gender')
axes[1].set_xlabel('Gender')
axes[1].set_ylabel('Attrition Rate (%)')
plt.tight_layout()
plt.show()
```


CONCLUSION

- The analysis of the HR dataset reveals important insights regarding employee attrition and job satisfaction within the organization.
- A high attrition rate was observed among employees aged 25-34, indicating a potential need for enhanced career development opportunities, better compensation packages, and improved worklife balance initiatives.
- By implementing targeted strategies such as leadership development programs, improved employee engagement initiatives, and enhanced support for career progression, the organization can reduce turnover and boost overall job satisfaction.
- These actions are expected to lead to increased employee retention, better performance, and a healthier organizational culture.
- The findings and recommendations from this analysis serves as a foundation for to make data-driven decisions aimed at improving employee experience and driving sustainable growth.

Dashboard

Average total working			
years			
11.28			

Average age 36.92

Gender and job role				
	Female	Male		
Sales Executive	132	194		
Research Scientist	114	178		
Laboratory Technician	85	174		
Manufacturing Director	72	73		
Healthcare Representati	51	80		
Manager	47	55		
Sales Representative	38	45		
Research Director	33	47		
Human Resources	16	36		

	Total employees by department and job role			
	Human	Human Resources	52	
	Resources	Manager	11	
	Research & D	Research Scientist	292	
	evelopment	Laboratory Technician	259	
		Manufacturing Director	145	
		Healthcare Representative	131	
		Research Director	80	
$\ $		Manager	54	
	Sales	Sales Executive	326	
		Sales Representative	83	
		Manager	37	