Ch 10.1: Neural Nets

Lecture 28 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Nov 28, 2022

Announcements

Last time:

SVM

This lecture:

• Feed Forward Neural Nets

Announcements:

Section 1

Neural Nets

r. Munch (MSU-CMSE) Mon, Nov 28, 2022

The idea

Feed Forward Neural Network: The cartoon

A very simple example

Computing A_k for (1,0)

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

A very simple example

Computing Y for (1,0)

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

A very simple example

Computing Y for (0,1)

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj} X_j), \qquad f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

A different example

- Draw the diagram for a neural net with input data points with p=3 (i.e., (X_1,X_2,X_3)) and two units in the hidden layer.
- Using the ω and β matrices, what is the output predicted Y for the point (2,0,1)?

$$\omega = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} -1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

Use the activation function

$$g(z) = (z)_+ = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$

Extra space

Dr. Munch (MSU-CMSE) Mon, Nov 28, 2022

Choices for activation function

Sigmoid:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

ReLU: Rectified linear unit

$$g(z) = (z)_+ = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$

Matrix version: First layer

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj} X_j),$$

$$A^{(1)} = g(\mathbf{W}^{(1)} \cdot \mathbf{X}) \qquad \mathbf{X}^T = (1 \ X_1 \ X_2 \ \cdots \ X_p)$$

Matrix version: Output

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

$$Y = \beta \cdot \mathbf{A}^{(1)} \qquad (\mathbf{A}^{(1)})^T = (1 \ A_1^{(1)} \ A_2^{(1)} \ \cdots \ A_K^{(1)})$$

Now what?

Choose parameters by minimizing RSS, $\sum_{i=1}^{n} (y_i - f(x_i))^2$

Chosen in advance:

Tuned by the model:

Coding

Or. Munch (MSU-CMSE)

Next time

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	М	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	М	Nov 14	Random Forests	8.2.1, 8.2.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Extended virtual office hours		
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Single layer NN	10.1	HW #9 Due
30	W	Nov 30	Multi Layer NN	10.2	
31	F	Dec 2	CNN	10.3	
32	М	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	

Dr. Munch (MSU-CMSE) Mon, Nov 28, 2022