

Variables influencing the number of members in a household domiciled in SOCCSKSARGEN, a region of the Philippines

Author: Urszula Wolanowska, School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom E-mail: 2322312w@student.gla.ac.uk

Introduction

- It is of interest to the government to investigate variables that affect the number of people living in one household in the Philippines.
- Data on 2122 households is obtained from the Family Income and Expenditure Survey (FIES) conducted by the Phillippine Statistics Authority.
- My analysis covers the SOCCSKSARGEN region of the Philippines (Figure 1).

Figure 1: Map of the Philippines with the SOCCSKSARGEN region highlighted in red

Response (y): Number of Household Members

Explanatory variables (X): Household Income (in Philippine peso ₱), Food

Expenditure (in ₱), Head' of Household Gender, Head' of Household Age, Type
of Household, House Floor Area, House Age, Number of Bedrooms, Electricity

Availability

Approach and Methodology

- o In Figure 2, it can be seen that the number of people living in one household, our response variable y, follows a Poisson distribution such that: $y \sim Po(\mu)$.
- \circ Here, the parameter μ corresponds to the average number of people living in a household.
- This is equivalent to saying that the probability distribution function of y is: $f(y) = \frac{\mu^y e^{-\mu}}{y!}$.

Figure 2: Kernel estimation of the density function of the total number of household members (y)

The relationship between the number of people living in a household \boldsymbol{y} and the predictor variables \boldsymbol{X} is modelled using Poisson, Quasi-Poisson and Negative Binomial Regression.

Results

The best model fit was achieved with the **Quasi-Poisson regression with log-transformed covariates:**

(1)
$$E(y) = \log \hat{\mu} = \log(\mathbf{x}^T)\widehat{\boldsymbol{\beta}},$$

and $Var(y) = \phi \hat{\mu}$ where

 $\phi = \frac{Pearson's\ chi-squared\ statistics}{Residual\ degrees\ of\ freedom} = \frac{X^2}{n-p}\ is\ the\ dispersion\ parameter\ for\ this\ model.$

Figure 3: Standardised Residuals plot for model (1)

- Parameter estimates
 β are all significant, meaning there is a significant relationship between all the explanatory variables and the response.
- Nonetheless, there is still some variation unexplained by this model. This can be seen in Figure 3, where plenty of standardised residuals are above 2.

Conclusion and discussion

- o All the explanatory variables provided have a significant impact on the number of household members.
- However, more predictors could be included to account for more variation in the response variable. Potential covariates could include Head's of Household Marital Status, Employment Status, interactions and many others.

References

Figure 1, PhilAtlas, Map data © OpenStreetMap contributors. 2020. SOCCSKSARGEN (Region XII). [Online]. [Accessed 29 October 2020]. Available from:

https://www.philatlas.com/mindanao/r12.html