N ALTIM

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC

PRÓ-REITORIA DE GRADUAÇÃO – PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS - DCET COLEGIADO DE CIÊNCIA DA COMPUTAÇÃO - COLCIC

PROGRAMA DE DISCIPLINA

CÓDIGO	DISCIPLINA	PRÉ-REQUISITO(S)	
CET 074	ALGEBRA ABSTRATA	CET 638 – ALGEBRA E GEOMETRIA ANALÍTICA	

C/HORÁRIA		CRÉDITOS	PROFESSOR (A)		
T	60	4			
P	0	0			
TOTAL	60	4			

EMENTA

Estruturas algébricas. Princípios de contagem. Indução matemática. Álgebra universal.

OBJETIVO(S)

Capacitar o aluno a manipular e provar propriedades sobre estruturas indutivas e nãoindutivas e apresentar os principais conceitos de álgebra abstrata.

METODOLOGIA
Aulas expositivas.

AVALIAÇÃO			
	•		
Provas teóricas.			

CONTEÚDO PROGRAMÁTICO

1. Estruturas algébricas

Axiomas e teoremas.

Métodos de prova.

Conjuntos, relações e funções.

Relação de equivalência.

Tipos de funções: parcial, total, inversa, injetora, sobrejetora, bijetora.

Grupo e semigrupo.

Propriedades dos grupos.

Anéis: propriedades e homomorfismos.

Reticulados: definição, isomorfismo. Reticulados algébricos.

2. Princípios de contagem

Cardinalidade de conjunto e de união de conjuntos.

Enumeração de conjunto.

Diagonalização.

3. Indução Matemática

Princípio de indução.

Provas por indução.

Erros comuns em indução.

Definições indutivas.

Resolução de equações recorrentes.

Primeiro Princípio de Indução (Indução Fraca).

Segundo Princípio de Indução (Indução Forte).

4. Álgebra universal

Definição e exemplos.

Álgebras isomórficas.

Homomorfismos e isomorfismos.

REFERÊNCIA BIBLIOGRÁFICA

MENEZES, Paulo Blauth. **Matemática Discreta para Computação e Informática**. Editora SAGRA, 2004.

SCHEINERMAN, Edward R. Matemática Discreta. Editora: Thomson Pioneira, 2002.

GRAHAM, R.; KNUTH, D.; PATASHNIK, O . Concrete Mathematics: A Foundation for Computer Science. Editora Addison-Wesley, 1994.

ROSEN, H. Kenneth. **Discrete Mathematics and Its Applications**. Editora McGraw-Hill, 2003.

GERSTING, Judith L. Fundamentos matemáticos para a Ciência da Computação. Editora LTC, 2001.

GERSTING, Judith L. Mathematical Structures for Computer Science: A Modern Treatment of Discrete Mathematics. Editora W. H. Freeman, 2002.

BURRIS, S.; SANKAPPANAVAR. **A course in Universal Algebra**. Springer-Verlag, New York, 1981.