Algorithmen und Datenstrukturen

Vorlesung #06 – Dynamische Programmierung

Lehrstuhl für Neurotechnologie, TU Berlin

benjamin.blankertz@tu-berlin.de

23 · Mai · 2023

Themen der heutigen Vorlesung

- ► Rückschau: *Divide-and-Conquer*
- ► Generelles Prinzip der Dynamischen Programmierung (dynamic programming)
- Entwicklung von Ansätzen mit dynamischer Programmierung in drei Beispielen:
 - Gewichtete Intervallauswahl (Weighted Interval Scheduling)
 - ▶ 0/1-Rucksack Problem (0/1-Knapsack Problem)
 - Editierdistanz
- Zwischendurch: P und NP

Divide-and-Conquer

- Das Divide-and-Conquer Paradigm zur Lösung von Optimierungsproblemen geht wie folgt vor:
- Zerlege das Problem in disjunkte Teilprobleme.
- Wenn ein Teilproblem klein genug ist, löse es direkt;
- Andernfalls benutze Rekursion, um eine Lösung zu erhalten.
- Kombiniere Lösungen von Teilproblemen schrittweise zu Lösungen der jeweils übergeordneten Probleme.
- Beispiele:

▶ Binäre Suche, *Mergesort*, Strassen-Algorithmus für Matrixmultiplikation

Dynamische Programmierung

- Lösungsparadigma Dynamisches Programmieren.
- Wird häufig für Optimierungsprobleme verwendet.
- Die Bezeichnung ›dynamisches Programmieren∢ ist recht unspezifisch und ist auf Planung über die Zeit zurückzuführen.
- Richard Bellman, der Namensgeber, hat den Ausdruck wohl aus strategischen Gründen gewählt.
- Einfache Grundidee, zum Teil sehr hohe Effizienzsteigerung

Generelles Prinzip der Dynamischen Programmierung

- Ansatz der **Dynamischen Programmierung** (*dynamic programming*):
- ▶ Rekursive Formel, die das Problem auf die Lösung von Teilproblemen zurückführt.
- Die Teilprobleme brauchen nicht disjunkt zu sein (im Ggs. zu Divide-and-Conquer).
- Deren Lösungen werden gespeichert und für 'größere' Probleme wiederverwendet.
- Üblicherweise wird die Lösung bottom-up (tabulation) bestimmt.
- ▶ In einigen Fällen kann ein *top-down* (*memoization*) Ansatz günstiger sein.

Einführendes Beispiel: Fibonacci Zahlen

- ▶ Zur Einführung der Techniken des dynamischen Programmierens betrachten wir die effiziente Bestimmung n-ten **Fibonacci Zahl** F_n .
- Die Fibonacci Zahlen sind rekursiv definiert:

$$F_n = \begin{cases} 0 & \text{für } n = 0 \\ 1 & \text{für } n = 1 \\ F_{n-1} + F_{n-2} & \text{für } n \ge 2 \end{cases}$$

Rekursive Berechnung der Fibonacci-Zahlen

```
public static long fibonacci(int n)
{
  if (n < 2)
    return n;
  else
    return fibonacci(n-1) + fibonacci(n-2);
}</pre>
```

Redundanz in der Berechnung der Fibonacci Zahlen

- ▶ Die Berechnung von F_n über diese Rekursionsformel ist nicht effizient, da Teillösungen (F_k für k < n) vielfach berechnet werden.
- ► F(45) = 1134903170 calculated with 3672623805 recursive calls.

Berechnung mit Zwischenspeichern top-down

- Speichere berechnete Werte (Teillösungen) in Feld F.
- ▶ Noch nicht gespeicherte Werte werden bei Bedarf rekursiv berechnet und gespeichert.

```
public class FibonacciTopDown {
 private static long[] F;
  public static long fibonacci(int n) {
    F = new long[n+1];
    F[0] = 0;
    F[1] = 1;
    for (int k = 2; k \le n; k++)
      F[k] = -1;
    return fibo(n);
  public static long fibo(int n) {
    if (F[n] < 0)
      F[n] = fibo(n-1) + fibo(n-2);
    return F[n];
```

- Der Wert -1 zeigt an, dass der Wert noch nicht berechnet wurde.
- Dieser Ansatz vermeidet Doppeltberechnungen.

Von Top-down zu Bottom-up

- ▶ Bei dem *top-down* Ansatz gehen die Berechnungsanfragen von oben nach unten.
- Die Anfangswerte sind definiert.
- Von dort werden die Werte bottom-up berechnet und gespeichert.
- ▶ Wenn sowieso alle Werte des Feldes berechnet werden müssen, kann die Berechnung auch gleich bottom-up durchgeführt werden.

Berechnungen auf Vorrat: bottom-up

- ▶ Zur Berechnung von F_n müssen alle vorherigen Werte, also alle F_k für k < n berechnet werden.
- Also kann dies direkt bottom-up erledigt werden, ohne auf den 'Bedarf' zu warten.

```
public static long fibonacci(int n)
{
    F = new long[n+1];
    F[0] = 0;
    F[1] = 1;
    for (int k = 2; k <= n; k++)
        F[k] = F[k-1] + F[k-2];
    return F[n];
}</pre>
```

Speichereffizienz?

- Die Laufzeit ist nun effizient.
- Kann der lineare Speicherbedarf verringert werden?
- Man braucht immer nur die letzten beiden Werte!

```
public static long fibonacci(int n)
{
    F = new long[2];
    F[0] = 0;
    F[1] = 1;
    for (int k = 2; k <= n; k++)
        F[k%2] = F[(k-1)%2] + F[(k-2)%2];
    return F[n%2];
}</pre>
```

Von Fibonacci zum Dynamischen Programmieren

- Das Fibonacci Beispiel erfüllt die Voraussetzung des dynamischen Programmierens:
- 1 Rückführung einer optimalen Lösung auf Teilprobleme (optimal substructure)
- 2 Dabei treten dieselben Teilprobleme vielfach auf (overlapping subproblems)
- Dann kann die Effizienz durch eine Speicherung der Lösungswerte erhöht werden.
- ▶ Die Berechnung kann *top-down* bei Bedarf oder
- bottom-up auf Vorrat durchgeführt werden.
- ► top-down ist günstig, wenn nur manche Teillösungen gebraucht werden und im voraus nicht klar ist, welche das sein werden.
- bottom-up kann die Speichereffizienz steigern, wenn die Teillösungen nur 'schichtweise' gebraucht werden, also Teillösungen überschrieben werden können.

Dynamisches Programmieren

- ▶ Redundante Berechnung durch Speicherung von Teillösungen vermeiden!
- ▶ Rekursive Formel für Optimierungsproblem aufstellen:
- Optimale Lösung in Abhängigkeit von Teillösungen darstellen (Substrukturanalyse)
- Wenn Anzahl gleicher Teillösungen groß ist, kommt der Vorteil der dynamischen Programmierung zum Tragen.
- Andernfalls benötigt dynamische Programmieren meist zu viel Speicher und der Laufzeitgewinn ist nicht so groß.

Dynamisches Programmieren

- Strategie zum Aufstellen der Rekursionsformel:
- Optimale Lösung als gegeben nehmen und dann ihren Wert in Abhängigkeit von Teillösungen darstellen.
- Dabei wird oft eine Fallunterscheidung gemacht, sowie Maximum/Min. gebildet.
- Formel über Zwischenspeicherung (bottom-up oder top-down) implementieren
- Dies ergibt nur den optimalen Wert, nicht die zugehörige Lösung.
- Manchmal kann die Lösung bei der Bestimmung des optimalen Wertes mit gespeichert werden.

Meist ist allerdings ein zweiter Durchlauf erforderlich.

Beispiel 1: Gewichtete Intervallauswahl

- ► Erweiterung: Auswahl gewichteter Intervalle.
- Es gibt Anfragen 1, ..., n zur Nutzung einer Ressource (z.B. Raum, Prozessor, Messgerät) in dem Zeitintervall $I_k = [s_k, f_k)$ und mit dem Gewicht w_k .
- ▶ Ziel: Wähle kompatible Intervalle $S \subseteq \{1, ..., n\}$, so dass das Gewicht der gewählten Intervalle $\sum_{k \in S} w_k$ (= Wert der Lösung) maximal ist.

Neues Problem braucht neuen Ansatz

- ▶ Bei der ungewichteten Intervallauswahl (entsprechend gleichen Gewichten w_k für alle k) ist der Greedy-Algorithmus Frühstes-Ende optimal.
- ▶ Bei der gewichteten Intervallauswahl kann er grandios scheitern:

- Neuer Ansatz mit dynamischer Programmierung
- Wie kann die optimale Lösungen aus Lösungen von Teilproblemen ableiten werden?
- Wir nehmen die Intervalle als aufsteigend nach Endzeiten sortiert an.

Bester Vorgänger

Wir definieren zunächst eine Funktion, die zu jedem Intervall den 'besten' Vorgänger (predecessor) angibt (oder 0, falls jener nicht exisitert).

$$p(j) = \begin{cases} \max\{i \in \mathbb{N} \mid i < j \text{ und } i \text{ kompatibel mit } j\} & \text{falls existent sonst} \\ 1 & & & \\ 2 & & & \\ 3 & & & \\ 4 & & & \\ 5 & & & \\ 6 & & & \\ 7 & & & \\ 8 & & & \\ 9 & & & \\ \end{cases}$$

Intervall j ist also mit Intervall p(j) kompatibel und auch mit allen Intervallen vor p(j) durch die Sortierung nach Endzeitpunkten.

Ansatz für Dynamisches Programmieren: Rekursionsgleichung

- ► **Genereller Ansatz:** Funktion OPT = Wert einer optimalen Lösung
- ▶ Hier: Opt(k) = optimaler Wert (maximales Gewicht) für Anfragen <math>1, ..., k.
- ► **Substrukturanalyse:** Durch Überlegungen zur Optimalität von Teillösungen stellen wir eine Rekursionsgleichung für OPT auf:
- Ansatzpunkt für die Lösung per dynamischer Programmierung
- ▶ Mit Fallunterscheidung in der Defintion von OPT(k):
- Ist Anfrage k in optimaler Lösung enthalten oder nicht?

Rekursionsgleichung für optimale, gewichtete Intervallauswahl

- **Definition:** Sei OPT(k) der optimale Wert für Anfragen $1, \ldots, k$.
- 1. Fall: Anfrage k ist in Lösung Opt(k) enthalten.
- ▶ Anfragen p(k) + 1, ..., k 1 sind mit der Lösung nicht kompatibel.
- ▶ Die optimale Lösung muss die optimale Lösung für 1, ..., p(k) umfasssen
- \triangleright und beinhaltet zusätzlich das Gewicht w_k .
- **2. Fall:** Anfrage k ist in Lösung Opt(k) nicht enthalten.
- ▶ Die optimale Lösung muss die optimale Lösung für 1, ..., k-1 umfasssen.
- Das ergibt folgende Rekursionsgleichung:

$$Opt(k) = \begin{cases} 0 & \text{falls } k = 0 \\ \max(\underbrace{w_k + Opt(p(k))}_{\text{Fall } 1}, \underbrace{Opt(k-1)}_{\text{Fall } 2}) & \text{sonst} \end{cases}$$

TUB AlgoDat 2023 [Kleinberg & Tardos, S. 254]

Gewichtete Intervallauswahl – Erster Ansatz

▶ Die Rekursionsgleichung kann wie folgt umgesetzt werden:

```
Sortiere Anfragen nach Endzeit // f_1 \le \cdots \le f_n

Berechne p_1, \ldots, p_n

opt(n)

procedure opt(k)

if k = 0

return 0

else

return \max(w_k + opt(p_k), opt(k-1))

end
```

Kritische Betrachtung des Implementationsansatzes

- Die Laufzeit ist schlecht.
- Wie bei der rekursiven Berechnung der Fibonacci Zahlen werden die Lösungen für Teilprobleme vielfach neuberechnet.
- ▶ Die Rekursionsformel für OPT liefert nur die Basis für dynamische Programmierung
- ▶ Darauf aufbauend wird die Speicherung der Zwischenlösungen implementiert.
- Soll top-down oder bottom-up vorgegangen werden?
- Aus der Rekusionsformel für OPT sehen wir, dass alle Teillösungen benötigt werden, da OPT(k) von OPT(k-1) abhängt.

Daher ist der Bottom-up Ansatz vorzuziehen.

Gewichtete Intervallauswahl mit Dynamischer Programmierung

▶ Die Werte der Teillösungen *m*[*k*] werden *bottom-up* von 0 bis zu dem gesuchten Wert *n* berechnet werden.

Listing 1: Algorithmus zur Bestimmung der Intervallauswahl mit maximalem Gewicht über dynamische Programmierung

```
Sortiere Anfragen nach Endzeit // f_1 \le \cdots \le f_n

Berechne p_1, \ldots, p_n

m[0] \leftarrow 0

for k = 1 to n

m[k] \leftarrow \max(w_k + m[p_k], m[k-1])

return m[n]
```

Laufzeit für gewichtete Intervallauswahl

Laufzeit für gewichtete Intervallauswahl mit dynamischer Programmierung

Der Algorithmus in Listing 1 bestimmt die Auswahl aus n Intervallen mit maximalem Gewicht in einer Laufzeit in $O(n \log n)$ und mit Speicherbedarf in O(n).

- Sortieren der Aufträge nach Endzeiten: $O(n \log n)$
- **B**erechnung von p_k durch Sortierung nach Anfangszeiten: $O(n \log n)$
- ▶ Initialisierung und Berechnung des Feldes m[] jeweils: O(n)
- ▶ Die Vorbereitung hat also insgesamt eine Laufzeit in $O(n \log n)$ und die eigentliche Intervallauswahl bei gegebenen Sortiertungen O(n).
- ▶ Insgesamt ist die Laufzeit also, wie behauptet, in $O(n \log n)$.
- ▶ Der Speicherbedarf für Feld m[] lässt sich nicht (wie im Fibonacci Beispiel S. 13) reduzieren, da die Rekursionsformel mit p(k) auf unterschiedliche Vorlösungen zurückgreift. □

Die optimale Lösung feststellen

- Der bisherige Ansatz bestimmt den Wert der optimalen Lösung. Wie bekommen wir die Lösung selbst (ausgewählte Intervalle)?
- Dies kann z. B. in einem zweiten Durchlauf gemacht werden.

```
procedure findSolution(k)

if k = 0

return \emptyset

else if w_k + m[p_k] > m[k-1]

return \{k\} \cup findSolution(p_k)

else

return findSolution(k-1)

end
```

- Die Lösung muss nicht eindeutig sein.
- ▶ In dem Fall $w_k + m[p_k] = m[k-1]$ (Ambivalenz bei der Maximumsbildung in OPT), kann Intervall k ausgewählt werden, muss es aber nicht.

Beispiel 2: Ein Wiedersehen mit dem 0/1-Rucksack Problem

0/1-Rucksackproblem

Es sind K Objekte mit Gewicht w_k und Wert v_k (für $1 \le k \le K$) sowie ein Rucksack (knapsack) mit einer maximalen Kapazität W gegeben. Wähle Objekte, so dass ihr Gesmtwert maximal ist und ihr Gesamtgewicht die Kapazität nicht überschreitet.

Formal ist das Ziel $S \subseteq \{1, ..., n\}$ gemäß folgender Optimierung zu wählen:

$$S$$
 maximiert $\sum_{k \in S} v_k$ unter der Bedingung $\sum_{k \in S} w_k \le W$

► Im Gegensatz zu dem teilbaren Rucksackproblem konnte das 0/1-Rucksack Problem nicht effizient (per Greedy Ansatz) gelöst werden.

Interlude: NP-Vollständigkeit

- **Komplexitätsklasse P**: Probleme, für die es einen Algorithmus mit Laufzeit in O(p(n)) für ein Polynom p(n) in der Eingabegröße n gibt.
- ► Ganz grob: P ~ halbwegs effizient lösbar, bzw.
- ▶ Probleme außerhalb von P sind für größere Eingaben praktisch nicht lösbar.
- Beispiel: Ein Algorithmus mit einer Laufzeit von 2^n benötigt bei einer Eingabegröße von n = 100 selbst auf einem sehr schnellen Computer mehr als 10^{14} Jahre.
- ► Komplexitätsklasse NP: Probleme, bei denen in polynomieller Laufzeit festgestellt werden kann, ob ein Lösungskandidat tatsächlich eine Lösung darstellt. Die Bestimmung von Lösungen unterliegt keiner Laufzeitbeschränkung.
- ▶ Ein Problem X heißt NP-schwer (NP-hard), wenn ein beliebiges Problem aus NP in polynomieller Zeit auf eine Lösung von X zurückgeführt werden kann.
- ► Ein Problem heißt NP-vollständig, wenn es zu NP gehört und NP-schwer ist.

Interlude: NP-Vollständigkeit

- Offensichtlich gilt P⊆NP.
- Es wird von den allermeisten vermutet, dass P≠NP gilt. Aber dies konnte bisher nicht bewiesen werden (Millenium Problem, 1.000.000 \$ Preisgeld).
- ▶ NP-vollständige Probleme stellen Prüfsteine für die P=NP Hypothese dar.
- ▶ Wenn für ein einizges NP-vollständiges Problem ein polynomieller Algorithmus gefunden wird, ist P=NP gezeigt und viele relevante Problemstellungen, die z. Z. praktisch nicht lösbar sind, könnten dadurch lösbar werden.
- ▶ Daher sind NP-vollständige Probleme interessante Herausforderungen.
- ► Insbesondere werden für solche Probleme oft ›Ersatzansätze‹ gesucht:
 - Ansätze, die in bestimmten praktischen Fällen eine effiziente Lösungen finden, auch wenn der worst-case exponentiell bleibt.
 - Ansätze, die in effizienter Laufzeit suboptimale, approximative Lösungen bestimmen.

Interlude: NP-Vollständigkeit

- Beispiele für NP-vollständige Probleme:
- ▶ Problem des Handlungsreisenden: Finde in einem vollständigen, gewichteten Graphen einen Zyklus mit minimalem Gewicht, der jeden Knoten genau einmal enthält (*Traveling Salesman Problem*; TSP).
- ► Hamiltonpfad: Finde einen Pfad, der jeden Knoten eines gegebenen Graphen genau einmal besucht, falls es ihn gibt. (Ebenso 'Hamiltonzyklus')
- ▶ 0/1-Rucksack Problem! (auch bei Beschränkung auf ganzzahlige Gewichte)

► Es gibt also nicht viel Hoffnung für einen Ansatz mit dynamischer Programmierung. Wir probieren es trotzdem! (Und beschränken uns dabei auf ganzzahlige Gewichte.)

Erster Ansatz für das 0/1-Rucksack Problem

- **Definition:** Sei Opt(k) der Wert einer optimalen Lösung für Objekte 1, ..., k. (Beachte: Die Reihenfolge der Objekte in der gegebenen Lösung ist beliebig.)
- 1. Fall Objekt *k* ist in der Lösung nicht ausgewählt.
- ▶ Dann besteht die Lösung in der optimalen Lösung für Teilproblem 1, ..., k-1.
- **2. Fall** Objekt *k* ist ausgewählt.
- ▶ Ohne weitere Information lässt sich die Lösung nicht auf Teillösungen zurückführen.
- ▶ Wir wissen nicht, ob Objekt *k* überhaupt ausgewählt werden konnte, und wir wissen nicht wieviel freie Kapazität vorhanden ist, um weitere Objekte auszuwählen.
- ▶ Wir müssen also die Restkapazität als weitere Variable in OPT mitberücksichtigen.

Richtiger Ansatz für das 0/1-Rucksack Problem

- **Definition:** Sei Opt(k, W) der Wert einer optimalen Lösung O für Objekte 1, ..., k mit Maximalgewicht W. (Reihenfolge der Objekte in O ist beliebig.)
- Falls $w_k > W$ kann Objekt k nicht Teil der Lösung sein. Andernfalls:
- 1. Fall: Objekt *k* ist in der Lösung *O* enthalten.
- ▶ Dann besteht die Lösung O in der optimalen Lösung für Teilproblem 1, ..., k-1 mit Maximalgewicht W.
- **2. Fall:** Objekt *k* ist in der Lösung *O* nicht enthalten.
- ▶ Dann besteht die Lösung O in der optimalen Lösung für Teilproblem 1, ..., k-1 mit Maximalgewicht $W w_k$.

$$\mathrm{OPT}(k,W) = \begin{cases} 0 & \mathrm{falls}\ k = 0 \\ \mathrm{OPT}(k-1,W) & \mathrm{falls}\ w_k > W \\ \max(\underbrace{v_k + \mathrm{OPT}(k-1,W-w_k)}_{k\ \mathrm{ausgew\"{a}hlt}}, \underbrace{\mathrm{OPT}\ (k-1,W)}_{k\ \mathrm{nicht}\ \mathrm{ausgew\"{a}hlt}}) & \mathrm{sonst} \end{cases}$$

Weitere Entscheidungen zur Implementation

- ▶ OPT greift in der ersten Dimension nur auf Vorgänger zu, d.h. $OPT(k, \cdot)$ hängt nur von $OPT(k-1, \cdot)$ ab.
- Daher könnte bei dem bottom-up Ansatz der Speicherbedarf auf zwei Spalten der Matrix M beschränkt werden, analog zu dem Fibonacci Beispiel S. 13.
- Allerdings kann dann die eigentliche Lösung (welche Objekte ausgewählt werden) nicht ausgelesen werden kann.
- Denn dazu wird die Matrix der gespeicherten Teillösungen ein zweites Mal durchlaufen, siehe Seite 26.
- ▶ Bei dieser Rekursionsformel für OPT werden nicht alle Teillösungen benötigt.
- Daher benutzen wir hier den top-down Ansatz.
 Der bottom-up Ansatz ist leichter zu implementieren, aber etwas weniger effizient.

Knapsack Top-Down Implementation

```
public class Knapsack {
2
    public int W, K;
3
    public int[] weight;
    public double[] value;
5
    private double[][] M;
     private Queue<Integer> inventory = new LinkedList<>();
7
8
     public Knapsack(int[] weight, double[] value, int W) {
9
       this.W = W;
10
       this.K = weight.length - 1;
11
       this.weight = weight;
12
       this.value = value;
13
       M = new double[K+1][W+1];
14
       for (int w = 0; w \le W; w++) {
15
         M[0][w] = 0.0;
16
         for (int k = 1; k <= K; k++)
17
           M[k][w] = -1.0:
18
19
20
```

Knapsack Top-Down Implementation

```
public double opt(int k, int w)
21
       if (M[k][w] < 0)
23
         if (weight[k] > w)
24
           M[k][w] = opt(k-1, w);
25
         else
26
           M[k][w] = Math.max(value[k] + opt(k-1, w-weight[k]),
27
                                 opt(k-1, w));
28
       return M[k][w];
29
30
31
     public void findSolution(int k, int w)
32
33
       if (k == 0) return;
34
       else if (weight[k] > w)
35
         findSolution(k-1, w);
36
       else if (value[k] + M[k-1][w-weight[k]] > M[k-1][w]) {
37
         findSolution(k-1, w-weight[k]);
38
         inventory.add(k);
39
       } else
40
         findSolution(k-1, w);
41
     }
42
```

Knapsack Beispiel Client

```
public static void main(String[] args)
  double[] value = {0, 2, 3, 1, 5, 7, 3, 6};
 int[] weight = {0, 3, 4, 2, 4, 7, 3, 5};
 int maxWeight = 14;
  Knapsack knapsack = new Knapsack(weight, value, maxWeight);
  double optValue = knapsack.opt(knapsack.K, knapsack.W);
  knapsack.findSolution(knapsack.K, knapsack.W);
  System.out.println("Optimal load: ");
  for (int k : knapsack.inventory)
    System.out.println(knapsack.weight[k] + " - " + knapsack.value[k]);
```

Laufzeit der Knapsack Implementierung

Laufzeit der Knapsack Implementierung

Die 0/1-Knapsack Implementierung für ganzzahlige Gewichte basierend auf dynamischer Programmierung hat eine Laufzeit in O(KW), wobei K die Anzahl der Objekte und W die Kapazität des Rucksacks ist. Der Speicherbedarf ist ebenfalls in O(KW).

Beweis.

- ▶ Die Methode opt() berechnet den Wert durch die Abfrage in Zeile 23 für jedes Paar (k, w) nur einmal. Dies geht jeweils in O(1).
- Somit ist die Laufzeit von opt() und von der Initialisierung in O(KW).
- ▶ 0/1-Knapsack ist NP-vollständig und die Laufzeit ist in O(KW)??
- Auflösung: Diese Abschätzung 'zählt nicht', da sie nicht nur von der Anzahl der Eingabeobjekte, sondern auch von einem Eingabewert abhängt.

Laufzeit der Knapsack Implementierung

Pseudo-polynomieller Algorithmus

Ein Algorithmus zur Lösung eines Problems, das als Eingaben ganze Zahlen hat, heißt **pseudopolynomiell**, wenn seine Laufzeit durch ein Polynom in der Eingabegröße und dem größten Absolutwert der Eingabezahlen beschränkt ist.

- Die Knapsack Implementierung ist also pseudopolynomiell.
- Nach der formalen Definition darf eine Laufzeit-Komplexität nur von der Bitanzahl abhängen, die benötigt wird, um die Eingabedaten zu kodieren.
- Wenn die Kapazitätsgrenze W mit n Bits kodiert wird, kann die Grenze bis zu $W=2^n-1$ betragen. Die Laufzeit in Abhängigkeit von der Eingabelänge in Bits ist daher $O(K2^n)$, also exponentiell!
- ▶ Genau genommen müssten noch die Bits berücksichtigt werden, die benötigt werden, um die K Objekte zu kodieren. Dies macht allerdings nur einen konstanten Faktor aus, wenn nur W variiert wird.

Beispiel 3: Editierdistanz

- ▶ Die Editierdistanz (edit distance, auch Levenshtein-Distanz) ist ein Maß für die Ähnlichkeit zwischen zwei Zeichenketten.
- ► Sie dient als Grundlage für den *diff* Befehl und approximative *String-Matching* Algorithmen.
- ▶ Das Verfahren findet auch Anwendung in der Bioinformatik zur Analyse von DNAund RNA-Sequenzen. Dort wird das Distanzmaß noch etwas angepasst, um die biologischen Gegebenheiten besser zu modellieren.

Beispiel 3: Editierdistanz

- ▶ Die Editierdistanz zwischen zwei Strings *a* und *b* ist die minimale Anzahl von elementaren Buchstabenoperationen, die notwendig sind, um *a* in *b* umzuwandeln.
- ▶ Die elementaren Buchstabenoperationen sind:
 - ▶ **D:** Einen Buchstaben löschen (*delete*)
 - I: Einen Buchstaben einfügen (insert)
 - **S:** Einen Buchstaben ersetzen (*substitute*)
- ▶ Das Editieren kann buchstabenweise von vorne entlang des Strings *a* durchgeführt werden. Dann wird noch folgende Aktion verwendet:
 - -: Einen Buchstaben unverändert übernehmen
- Das Übernehmen eines Buchstaben zählt nicht als Operation im Sinne der Editierdistanz.

Editieroperationen in Action

Wie kann man ALGODAT in DAGOBERT verwandeln?

- ▶ Diese Umwandlung ergibt eine Distanz von 5 (zweimal Einfügen, einmal Löschen, zweimal Ersetzen).
- ▶ Die Editierdistanz ist die kleinste Anzahl von Buchstabenoperationen. Geht es noch kürzer als in dem Beispiel?

Editierdistanz durch Dynamisches Programmieren

- ▶ Definiere Opt gemäß dem Ansatz der dynamischen Programmierung.
- Zunächst einige Schreibweisen:
- Für einen String a bezeichnet a[1:i] den String, der aus den ersten i Zeichen von a besteht.
- ightharpoonup a[1:0] ist der leere String.
- ▶ Desweiteren bezeichnet a[i] (für i > 0) den i-ten Buchstaben von a und

$$a[i] \neq b[j] = \begin{cases} 0 & \text{falls die Zeichen } a[i] \text{ und } b[j] \text{ gleich sind} \\ 1 & \text{sonst} \end{cases}$$

TUB AlgoDat 2023 [Schöning, S. 166] 4

Editierdistanz durch Dynamisches Programmieren

- ▶ OPT(i, j) sei die Editierdistanz zwischen den Substrings a[1:i] und b[1:j].
- Für j=0 soll String a[1:i] in einen leeren String umgewandelt werden: i-mal Löschen (Operation D): Opt(i,0) = i.
- Für i = 0 soll ein leerer String in den String b[1:j] umgewandelt werden: j-mal Einfügen (Operation I): Opt(0,j) = j.
- Für i, j > 0 betrachten wir alle möglichen Operationen, addieren die Editierkosten (=1 für D, I und S) zu der jeweiligen Teillösung und wählen das Minimum:

```
\begin{aligned} \operatorname{OPT}(i,j) &= \min(\operatorname{OPT}(i,j-1)+1, & \operatorname{einfügen \ von} \ b[j] \\ \operatorname{OPT}(i-1,j)+1, & \operatorname{l\"{o}schen \ von} \ a[i] \\ \operatorname{OPT}(i-1,j-1)+(a[i]\neq b[j]) & \operatorname{ersetzen \ oder \ \"{u}bernehmen} \end{aligned}
```

TUB AlgoDat 2023 [Schöning, S. 166]

Matrix der gespeicherten Teillösungen

- ▶ Wir betrachten die Matrix der Teillösungen für a = ALGODAT und b = DAGOBERT.
- Die Randfälle sind einfach.
- ▶ Die Editierdistanz der Strings wird in Eintrag (7,8) der Matrix stehen.
- ▶ Um den Wert zu bestimmen, brauchen wir Teillösungen. Und zwar alle Teillösungen.

		D	A	G	0	В	E	R	T
	0	1	2	3	4	5	6	7	8
A	1								
L	2								
G	3								
0	4								
D	5						_	↑ ▼	†
A	6						+	•	
T	7						←		

TUB AlgoDat 2023 4

Überlegungen zur Implementation

- ▶ Die Betrachtung hat gezeigt, dass zur Bestimmung der Editierdistanz der gegebenen Strings alle Teillösungen, die in der Matrix repräsentiert sind, benötigt werden.
- ▶ Daher bringt die "Berechnung bei Bedarf" des top-down Ansatzes keinen Vorteil.
- Es ist also günstiger, direkt alle Werte der Matrix bottom-up zu bestimmen.
- Wie bei unseren vorigen Beispielen, wird zunächst nur der Wert der Lösung bestimmt, also die Editierdistanz.
- Um die Editiersequenz auszugeben, müsste wieder ein zweiter Durchlauf erfolgen, der anhand der gespeicherten D[][] Werte die optimale Sequenz rekonstruiert. (Dies funktioniert allerdings nicht für die Speicher-effiziente Variante.)

Implementation der Editierdistanz

```
public class EditDistance
  private String a, b;
  private int an, bn;
  private int D[][];
  public EditDistance(String a, String b)
    this.a = a;
    this.b = b;
    an = a.length();
    bn = b.length();
    D = new int[an + 1][bn + 1];
    for (int i = 0; i <= an; i++) {
      D[i][0] = i;
    for (int j = 0; j \le bn; j++)
      D[0][j] = j;
  }
```

Implementation der Editierdistanz

```
public int distance()
 for (int i = 1; i <= an; i++) {
    for (int j = 1; j \le bn; j++) {
      int d1 = D[i][j-1] + 1;
      int d2 = D[i-1][j] + 1;
      int d3 = D[i-1][j-1] + (a.charAt(i-1) == b.charAt(j-1) ? 0 : 1);
      D[i][j] = Math.min(Math.min(d1, d2), d3);
  return D[an][bn];
```

▶ In Java gibt a.charAt(i-1) das *i*-te Zeichen des Strings a zurück. Dadurch ergibt sich eine Diskrepanz zu der OPT-Formel.

Matrix der gespeicherten Teillösungen

		D	A	G	0	В	E	R	T
	0	1	2	3	4	5	6	7	8
A	1	1	1	2	3	4	5	6	7
L	2	2	2	2	3	4	5	6	7
G	3	3	3	2	3	4	5	6	7
0	4	4	4	3	2	3	4	5	6
D	5	4	5	4	3	3	4	5	6
A	6	5	4	5	4	4	4	5	6
${f T}$	7	6	5	5	5	5	5	5	5

Literatur

Generell:

- Schöning U. Algorithmik (Spektrum Lehrbuch). Spektrum Akademischer Verlag;
 2001. ISBN: 978-3827410924
- ▶ Kleinberg J, Tardos E. *Algorithm Design*. Pearson Education Limited; Auflage: Pearson New International Edition (30. Juli 2013). ISBN: 978-1292023946

Anderes Vorlesungsmaterial:

- ▶ Wayne K. Vorlesung *Theory of Algorithms* (COS 423), Princeton University 2013. https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures.php
- ▶ Röglin H. Skript zur Vorlesung Randomisierte und Approximative Algorithmen, Universität Bonn, http://www.roeglin.org/teaching/WS2011/ RandomisierteAlgorithmen/RandomisierteAlgorithmen.pdf
- Skiena S. Vorlesung Algorithms Lecture #16 (CSE 373/548), State University of New York, Stony Brook, 2012. https://www3.cs.stonybrook.edu/~algorith/video-lectures

Danksagung I

Bei der Darstellung vom weighted interval scheduling und dem Rucksack Problem habe ich einige Ideen von den großartigen Folien von Kevin Wayne zu seiner Vorlesung *Theory of Algorithms* (COS 423, Princeton University 2013) aufgenommen. (Seine Vorlesung orientiert sich seinerseits an dem Buch von Kleinberg & Tardos.)

TUB AlgoDat 2023 50

Index

bottom-up, 5

Divide-and-Conquer, 3

Dynamic Programming, 4

Dynamische Programmierung, 4

Editierdistanz, 39

Fibonacci Zahl, 6

Komplexitätsklasse NP, 28 Komplexitätsklasse P, 28

memoization, 5

NP-schwer, 28

NP-Vollständigkeit, 28

tabulation, 5 top-down, 5

Traveling Salesman Problem, 30

TUB AlgoDat 2023 51