SI231b: Matrix Computations

Lecture 4: Basic Concepts (Part 3)

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology

ShanghaiTech University

Sept. 26, 2021

MIT Lab, Yue Qiu

Basic Concepts: Part 3

- subspaces, span
- dimension of subspaces, rank
- ▶ inner product, orthogonality
- matrix products, computational complexity

MIT Lab, Yue Qiu

Sums of Subspaces

If $\mathcal X$ and $\mathcal Y$ are subspaces of a vector space $\mathcal V$, define the sum of two subspaces by

$$\mathcal{X} + \mathcal{Y} = \{x + y | x \in \mathcal{X} \text{ and } y \in \mathcal{Y}\}$$

then

- ▶ the sum X + Y is again a subspace of V
- ▶ if S_X , S_Y spans \mathcal{X} and \mathcal{Y} , then $S_X \cup S_Y$ spans $\mathcal{X} + \mathcal{Y}$

Examples

- ▶ If $\mathcal{X} \subset \mathbb{R}^2$ and $\mathcal{Y} \subset \mathbb{R}^2$ are subspaces defined by two different lines through the origin, then $\mathcal{X} + \mathcal{Y} = \mathbb{R}^2$
- ▶ If \mathcal{X} is a subspace represents a plane passing through the origin in \mathbb{R}^3 and \mathcal{Y} is a subspace defined by the line through the origin that is perpendicular to \mathcal{X} . $\mathcal{X} + \mathcal{V} = \mathbb{R}^3$

Direct Sum of Subspaces

Let $\mathcal X$ and $\mathcal Y$ be subspaces of a vector space $\mathcal V$, then $\mathcal V$ is said to be a direct sum of $\mathcal X$ and $\mathcal Y$, i.e., $\mathcal V=\mathcal X\oplus\mathcal Y$, if

$$\mathcal{V} = \mathcal{X} + \mathcal{Y}$$
 and $\mathcal{X} \cap \mathcal{Y} = \{0\}$

Equivalently,

Every vector u from the vector space ${\mathcal V}$ can be uniquely represented by

$$\boldsymbol{u}=\boldsymbol{u}_1+\boldsymbol{u}_2$$

with $u_1 \in \mathcal{X}$ and $u_2 \in \mathcal{Y}$. Then we use

$$\mathcal{V} = \mathcal{X} \oplus \mathcal{Y}$$

to represent the direct sum of $\mathcal X$ and $\mathcal Y$.

Example:

 $\mathsf{span}\{\mathsf{e}_1,\ \mathsf{e}_2\}\oplus\mathsf{span}\{\mathsf{e}_3\}=\mathbb{R}^3$

Four Fundamental Subspaces: Range Spaces

Range Spaces

1. The range of a matrix $A \in \mathbb{R}^{m \times n}$ denoted by $\mathcal{R}(A)$, is defined to be the subspace of \mathbb{R}^m generated by the range of Ax

$$\mathcal{R}(A) = \{ y \in \mathbb{R}^m \mid y = Ax, \ x \in \mathbb{R}^n \} \subset \mathbb{R}^m$$

- also called column space
- 2. The range of A^T is the subspace of \mathbb{R}^n defined by

$$\mathcal{R}(A^T) = \left\{ x \in \mathbb{R}^n \mid x = A^T y, y \in \mathbb{R}^m \right\} \subset \mathbb{R}^n$$

- also called row space
- 3. $\mathcal{R}(A)$ is the set of all "images" of vectors $x \in \mathbb{R}^n$ under transformation by A, sometimes $\mathcal{R}(A)$ is called the image space of A.

Four Fundamental Subspaces: Nullspaces

Null Spaces

1. The null space of a matrix $A \in \mathbb{R}^{m \times n}$ denoted by $\mathcal{N}(A)$, is defined to be the subspace of \mathbb{R}^n with

$$\mathcal{N}(\mathsf{A}) = \{\mathsf{x} \in \mathbb{R}^n \mid \mathsf{A}\mathsf{x} = \mathsf{0}\} \subset \mathbb{R}^n$$

- $\mathcal{N}(A)$ is simply the set of all solutions to the homogeneous system Ax=0.
- 2. Similarly, the nullspace of A^T , i.e., $\mathcal{N}(A^T)$

$$\mathcal{N}(\mathsf{A}^\mathsf{T}) = \left\{ \mathsf{y} \in \mathbb{R}^m \mid \mathsf{A}^\mathsf{T} \mathsf{y} = 0 \right\} \subset \mathbb{R}^m$$

 also called left-hand nullspace of A since it is the set of all solutions to the left-hand homogeneous system y^TA = 0^T

Dimension of Subspaces

The dimension of a nontrivial subspace S is defined as the number of elements of a basis for S.

- ▶ the dimension of of the trivial subspace {0} is defined as 0.
- ightharpoonup dim $\mathcal S$ will be used as the notation for denoting the dimension of $\mathcal S$
- physical meaning: effective degrees of freedom of the subspace
- examples:
 - dim $\mathbb{R}^m = m$
 - if k is the number of maximal linearly independent vectors of $\{a_1, \ldots, a_n\}$, then $\dim \operatorname{span}\{a_1, \ldots, a_n\} = k$.

Dimension of Subspaces

Properties:

- ▶ let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$, then dim $S_1 \leq \dim S_2$.
- ▶ let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$ and dim $S_1 = \dim S_2$, then $S_1 = S_2$.
- ▶ let $S \subseteq \mathbb{R}^m$ be a subspace. Then

$$\dim \mathcal{S} = m \Longleftrightarrow \mathcal{S} = \mathbb{R}^m$$
.

- ▶ let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. We have $\dim(S_1 + S_2) \leq \dim S_1 + \dim S_2$.
 - as a more advanced result, we also have

$$\dim(\mathcal{S}_1+\mathcal{S}_2)=\dim\mathcal{S}_1+\dim\mathcal{S}_2-\dim(\mathcal{S}_1\cap\mathcal{S}_2).$$

• if $\mathcal{S} = \mathcal{S}_1 \oplus \mathcal{S}_2$, then

$$\dim S = \dim S_1 + \dim S_2$$

4□ ト 4回 ト 4 章 ト 4 章 ト 章 め 9 ○ ○

Rank

The rank of a matrix $A \in \mathbb{R}^{m \times n}$, denoted by rank(A), is defined as the number of elements of a maximal linearly independent subset of $\{a_1, \ldots, a_n\}$.

- rank(A) is the maximum number of linearly independent columns of A
- ▶ $\dim \mathcal{R}(A) = \operatorname{rank}(A)$ by definition

Facts:

rank(A) = rank(A^T), i.e., the rank of A is also the maximum number of linearly independent rows of A

Proof?

- $ightharpoonup rank(A + B) \le rank(A) + rank(B)$
- rank(AB) ≤ min{rank(A), rank(B)}.
 - Equality holds when A and B are full rank.

Rank

- $ightharpoonup A \in \mathbb{R}^{m \times n}$ is said to have
 - full column rank if the columns of A are linearly independent (more precisely, the collection of all columns of A is linearly independent)
 - ▶ $A \in \mathbb{R}^{m \times n}$ being of full column rank $\iff m \ge n$, rank(A) = n
 - full row rank if the rows of A are linearly independent
 - ▶ $A \in \mathbb{R}^{m \times n}$ being of full row rank $\iff m \le n$, rank(A) = m
 - full rank if rank(A) = min{m, n}; i.e., it has either full column rank or full row rank
 - rank deficient if rank(A) $< \min\{m, n\}$

Invertible Matrices

A square matrix A is said to be nonsingular or invertible if

- A is full rank
- ▶ all the columns of A are linear independent
- ightharpoonup $Ax = 0 \iff x = 0$
- ▶ alternatively, we say A is singular if Ax = 0 for some $x \neq 0$.

The inverse of an invertible A, denoted by A^{-1} , is a square matrix that satisfies

$$A^{-1}A = I.$$

Invertible Matrices

Facts (for a nonsingular A):

- ► A⁻¹ always exists and is unique (or there are no two inverses of A)
- ightharpoonup A^{-1} is nonsingular
- $AA^{-1} = I$
- $(A^{-1})^{-1} = A$
- $ightharpoonup (AB)^{-1} = B^{-1}A^{-1}$, where A, B are square and nonsingular
- $(A^T)^{-1} = (A^{-1})^T$
 - as a shorthand notation, we will denote $A^{-T} = (A^T)^{-1}$

Inner Product

The inner product of two vectors $x, y \in \mathbb{R}^n$ is defined as

$$\langle x, y \rangle = \sum_{i=1}^{n} y_i x_i = y^T x.$$

- ightharpoonup x, y are said to be orthogonal to each other if $\langle x,y\rangle=0$
- ightharpoonup x, y are said to be parallel if $x = \alpha y$ for some α

The angle between two vectors $x, y \in \mathbb{R}^n$ is defined as

$$\theta = \arccos\left(\frac{\mathbf{y}^T \mathbf{x}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}\right).$$

- ightharpoonup x, y are orthogonal if $\theta = \pi/2$
- ightharpoonup x, y are parallel if $\theta = 0$ or $\theta = \pi$

10 P 4 P P 4 P P 4 P P 4 P P

Orthogonality of Four Fundamental Subspaces

- $\triangleright \mathcal{R}(\mathsf{A}) \perp \mathcal{N}(\mathsf{A}^\mathsf{T})$
- $ightharpoonup \mathcal{R}(\mathsf{A}^T) \perp \mathcal{N}(\mathsf{A})$
- Details will follow in the later part

← 4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 夕 Q ○

14 / 33

MIT Lab, Yue Qiu Sept. 26, 2021

Rank Nulllity Theorem

Theorem

For $A \in \mathbb{R}^{m \times n}$, we have

$$rank(A) + dim \mathcal{N}(A) = n$$

Can we prove this?

Important Inequalities for Inner Product

Cauchy-Schwartz inequality:

$$|x^Ty| \le ||x||_2 ||y||_2.$$

Also, the above equality holds if and only if $x = \alpha y$ for some $\alpha \in \mathbb{R}$.

▶ Proof: suppose $y \neq 0$; the case of y = 0 is trivial. For any $\alpha \in \mathbb{R}$,

$$0 \le \|\mathbf{x} - \alpha \mathbf{y}\|_{2}^{2} = (\mathbf{x} - \alpha \mathbf{y})^{T} (\mathbf{x} - \alpha \mathbf{y}) = \|\mathbf{x}\|_{2}^{2} - 2\alpha \mathbf{x}^{T} \mathbf{y} + \alpha^{2} \|\mathbf{y}\|_{2}^{2}.$$
 (*)

Also, the equality above holds if and only if $x = \beta y$ for some β . Let

$$f(\alpha) = \|\mathbf{x}\|_{2}^{2} - 2\alpha\mathbf{x}^{T}\mathbf{y} + \alpha^{2}\|\mathbf{y}\|_{2}^{2}.$$

The function f is minimized when $\alpha = (x^T y)/||y||_2^2$. Plugging this α back to (*) leads to the desired result.

4 D > 4 A > 4 B > 4 B > B 9 Q A

16 / 33

Important Inequalities for Inner Product

Hölder inequality:

$$|x^Ty| \le ||x||_p ||y||_q$$

for any p, q such that 1/p + 1/q = 1, $p \ge 1$.

- examples:
 - (p,q) = (2,2): Cauchy-Schwartz inequality
 - $(p,q) = (1,\infty)$: $|x^Ty| \le ||x||_1 ||y||_{\infty}$.

This can be easily verified to be true:

$$|x^Ty| \le \sum_{i=1}^n |x_iy_i| \le \max_j |y_j| (\sum_{i=1}^n |x_i|) = ||x||_1 ||y||_{\infty}.$$

<ロ > < 部 > < 差 > く差 > 差 の < で

Matrix Product Representations

Let $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, and consider

$$C = AB$$
.

column representation:

$$c_i = Ab_i, \quad i = 1, \ldots, n$$

▶ inner-product representation: redefine $a_i \in \mathbb{R}^k$ as the *i*th row of A.

$$AB = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & \cdots & a_1^T b_n \\ \vdots & & \vdots \\ a_m^T b_1 & \cdots & b_m^T b_n \end{bmatrix}$$

Thus,

$$c_{ij} = a_i^T b_j$$
, for any i, j .

- (ロ) (団) (注) (注) (注) (注) (2) (2)

Matrix Product Representations

 \blacktriangleright outer-product representation: redefine $b_i \in \mathbb{R}^k$ as the *i*th row of B. Thus,

$$C = AB = \sum_{i=1}^{k} a_i b_i^T$$

MIT Lab, Yue Qiu

Matrix Product Representations

- ► The matrix of the form X = ab^T for some a, b is called a rank-one outer product.
 - It can be verified that $rank(X) \le 1$, and rank(X) = 1 if $a \ne 0, b \ne 0$.
- the outer-product representation

$$C = \sum_{i=1}^{k} a_i b_i^T$$

is a sum of k rank-one outer products.

- ▶ does it mean that rank(C) = k?
 - $\operatorname{rank}(\mathsf{C}) \leq \sum_{i=1}^k \operatorname{rank}(\mathsf{a}_i \mathsf{b}_i^\mathsf{T}) \leq k$ is true ¹
 - but the above equality is generally not attained; e.g., k=2, $a_1=a_2$, $b_1=-b_2$ leads to C=0
 - rank(C) = k only when A and B are full rank (take home exam)

¹use the rank inequality $rank(A + B) \le rank(A) + rank(B)$.

20 / 33

MIT Lab, Yue Qiu S12318; Matrix Computations; Shanghai Tesh 1.1 Sept. 26, 2021

Block Matrix Manipulations

Sometimes it may be useful to manipulate matrices in a block form.

▶ let $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$. By partitioning

$$A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

where $A_1 \in \mathbb{R}^{m \times n_1}$, $A_2 \in \mathbb{R}^{m \times n_2}$, $x_1 \in \mathbb{R}^{n_1}$, $x_2 \in \mathbb{R}^{n_2}$, with $n_1 + n_2 = n$, we can write

$$\mathsf{A}\mathsf{x} = \mathsf{A}_1\mathsf{x}_1 + \mathsf{A}_2\mathsf{x}_2$$

similarly, by partitioning

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},$$

we can write

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 \\ A_{21}x_1 + A_{22}x_2 \end{bmatrix}$$

Block Matrix Manipulations

consider AB. By an appropriate partitioning,

$$AB = \begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = A_1B_1 + A_2B_2$$

▶ similarly, by an appropriate partitioning,

$$\mathsf{AB} = \begin{bmatrix} \mathsf{A}_1 \\ \mathsf{A}_2 \end{bmatrix} \begin{bmatrix} \mathsf{B}_1 & \mathsf{B}_2 \end{bmatrix} = \begin{bmatrix} \mathsf{A}_1 \mathsf{B}_1 & \mathsf{A}_1 \mathsf{B}_2 \\ \mathsf{A}_2 \mathsf{B}_1 & \mathsf{A}_2 \mathsf{B}_2 \end{bmatrix}$$

we showcase two-block partitioning only, but the same manipulations apply to multi-block partitioning like

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1q} \\ \vdots & & \vdots \\ A_{p1} & \cdots & A_{pq} \end{bmatrix}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Extension to \mathbb{C}^n

- ▶ all the concepts described above apply to the complex case
- we only need to replace every " \mathbb{R} " with " \mathbb{C} ", and every "T" with "H"; e.g.,
 - •

$$\text{span}\{a_1,\dots,a_n\}=\{y\in\mathbb{C}^m\mid y=\textstyle\sum_{i=1}^n\alpha_ia_i,\ \boldsymbol{\alpha}\in\mathbb{C}^n\},$$

- $\langle x, y \rangle = y^H x$;
- $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^H \mathbf{x}}$, and so forth.

Extension to $\mathbb{R}^{m \times n}$

- the concepts also apply to the matrix case
 - e.g., we may write

$$\text{span}\{A_1,\ldots,A_k\}=\{Y\in\mathbb{R}^{m\times n}\mid Y=\textstyle\sum_{i=1}^k\alpha_iA_i,\ \boldsymbol{\alpha}\in\mathbb{R}^k\}.$$

- sometimes it is more convenient to *vectorize* X as a vector $x \in \mathbb{R}^{mn}$, and use the same treatment as in the \mathbb{R}^n case
- inner product for $\mathbb{R}^{m \times n}$:

$$\langle \mathsf{X}, \mathsf{Y} \rangle = \sum_{i=1}^m \sum_{j=1}^n x_{ij} y_{ij} = \mathsf{tr} \big(\mathsf{Y}^\mathsf{T} \mathsf{X} \big),$$

• the matrix version of the Euclidean norm is called the Frobenius norm:

$$\|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |x_{ij}|^2} = \sqrt{\mathsf{tr}(\mathbf{X}^T\mathbf{X})}$$

ightharpoonup extension to $\mathbb{C}^{m\times n}$ is just as straightforward as in that to \mathbb{C}^n

→□▶→□▶→□▶→□▶ □ りゅ○

- every vector/matrix operation such as x + y, y^Tx, Ax, ... incurs computational costs, and they cost more as the vector and matrix sizes get bigger
- we typically look at floating point arithmetic operations, such as add, subtract, multiply, and divide

- ▶ flops: one flop means one floating point arithmetic operation.
- ▶ flops count of some standard vector/matrix operations: $x, y \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$. $B \in \mathbb{R}^{n \times p}$,
 - x + y: n adds, so n flops
 - y^Tx : n multiplies and n-1 adds, so 2n-1 flops
 - Ax: m inner products, so m(2n-1) flops
 - AB: do "Ax" above p times, so pm(2n-1) flops

- we are often interested in the *order* of the complexity
- **b**ig \mathcal{O} notation: given two functions f(n), g(n), the notation

$$f(n) = \mathcal{O}(g(n))$$

means that there exists a constant C > 0 and n_0 such that $|f(n)| \le C|g(n)|$ for all $n \ge n_0$.

- ▶ big O complexities of standard vector/matrix operations:
 - x + y: $\mathcal{O}(n)$ flops
 - y^Tx : $\mathcal{O}(n)$ flops
 - Ax: $\mathcal{O}(mn)$ flops
 - AB: $\mathcal{O}(mnp)$ flops

- ► Discussion: flop counts do not always translate into the actual efficiency of the execution of an algorithm
- things like pipelining, FPGA, parallel computing (multiple GPUs, multiple servers, cloud computing), etc., can make the story different.
- ▶ flop counts also ignore memory usage and other overheads...
- that said, we need at least a crude measure of the computational cost of an algorithm, and counting the flops serves that purpose.

- computational complexities depend much on how we design and write an algorithm
- ▶ generally, it is about
 - top-down, analysis-guided, designs:
 - seen in class, research papers
 - looks elegant
- ► facts are
 - usually not taught much in class
 - not commonplace in papers
 - subtly depends on your problem at hand
 - a bunch of small differences can make a big difference, say in actual running time
- ▶ here we give several, but by no means all, tips for saving computations

MIT Lab, Yue Qiu SSI2318: MERIX Computations, Shangiar Isch SS Sept. 26, 2021 29 / 33

- apply matrix operations wisely
- Example: try this on Matlab

```
>> A=randn(5000,2);
>> B=randn(2,10000);
>> C=randn(10000,10000);
>>
>> tic; D= A*B*C; toc
Elapsed time is 1.334183 seconds.
>> tic; D= (A*B)*C; toc % ask Matlab to do AB first
Elapsed time is 1.205725 seconds.
>> tic; D= A*(B*C); toc % ask Matlab to do BC first
Elapsed time is 0.067979 seconds.
```

- let us analyze the complexities in the last example
 - $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times p}$, with $n \ll \min\{m, p\}$.
 - We want to compute D = ABC.
 - if we compute AB first, and then D = (AB)C, the flop count will be

$$\mathcal{O}(mnp) + \mathcal{O}(mp^2) = \mathcal{O}(m(n+p)p) \approx \mathcal{O}(mp^2)$$

• if we compute BC first, and then D = A(BC), the flop count will be

$$\mathcal{O}(np^2) + \mathcal{O}(mnp) = \mathcal{O}((m+p)np).$$

• the 2nd option is preferable if n is much smaller than m, p

31 / 33

- use structures, if available
- lacktriangle example: let $A \in \mathbb{R}^{n \times n}$ and suppose that

$$a_{ij} = 0$$
 for all i, j such that $|i - j| > p$,

for some integer p > 0.

- such a structured A is called banded matrix
- if we don't use structures, computing Ax requires $\mathcal{O}(n^2)$

- ullet if we use the banded + sparsity 1 structures, we can compute Ax with $\mathcal{O}(\mathit{pn})$
- different problems may have different fancy/advanced structures to be exploited

MIT Lab, Yue Qiu Sept. 26, 2021 32 / 33

Readings

Readings for lecture 2 and 3

► Carl D. Meyer. *Matrix Analysis and Applied Linear Algebra*, SIAM, 2005.

Chapter 3.1 - 3.7, 4.1 - 4.5, 5.1 - 5.4

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013.

Chapter 1, 2.1 - 2.3