

학습 내용

- 01 논리회로
- 02 부울 대수

학습 <mark>목표</mark>

- 디지털 논리회로의 특성을 설명할 수 있다.
- 기본적인 논리회로의 종류와 동작을 설명할 수 있다.
- 논리식을 표현하고 공식화하는 부울 대수의 기본 개념과 연산, 기본 정리에 대해 설명할 수 있다.
- 최적의 디지털 회로 설계를 가능하게 하는 논리식의 간략화를 설명할 수 있다.

지난시간 돌아보기

지/난/시/간/의/ 학/습/내/용

정보의 표현과 저장

진법 변환

보수의 개념

데이터의 2진수 표현

문자 데이터의 표현

지난시간 돌아보기

보수

- ✓ 컴퓨터가 기본적으로 수행하는 덧셈 회로를 이용하여 뺄셈을 수행하기 위해 사용
- ✓ r의 보수, r-1의 보수

데이터의 2진수 표현

- ✓ 양의 정수, 음의 정수, 소수를 표현
- ✓ 2진수는 0, 1, 부호 및 소수점의 기호를 이용하여 수를 표현
- ✓ 부호가 존재하는 2진 정수의 표현 (1의 보수, 2의 보수)

지난시간 돌아보기

문자 데이터의 표현

- ✓ BCD
- ✓ ASCII
- ✓ 패리티 검사
- ✓ 해밍코드등

생각 해보기

컴퓨터 시스템의 부속물에는 어떤 것들이 있을까요?

1) 논리회로

■ 논리회로란?

▶ 디지털 코드로 정의한 특정 대상을 처리하기 위해 전기적 신호를 제어하는 회로가 필요하고, 이를 위해 제작된 회로

1) 논리회로

- Gate
 - ▶ '0', '1'의 이진 정보를 처리하는 논리회로
 - ▶ 여러 종류가 존재
 - ▶ 동작은 부울 대수 이용해 표현
 - ▶ 입력과 출력의 관계는 진리표로 표시

AND	진리표	기호		
게이트	A B X 0 0 0	A —		
OR 게이트	0 1 0 1 0 0 1 1 1	BX		
NOT	논리식	스위치 사용 회로		
게이트		A B		
XOR 게이트	X = A · B			

AND	진리표	기호
게이트	A B X 0 0 0	A
OR 게이트	0 1 1 1 0 1 1 1 1	$B \longrightarrow X$
NOT	논리식	스위치 사용 회로
게이트		
		L _o B

AND	진리표	기호		
게이트	A X			
OR 게이트	0 1 1 0	AX		
NOT	논리식	스위치 사용 회로		
게이트	$X = \overline{A}$	A A		

AND	진리표	기호
게이트	A B X 0 0	A 1/
OR 게이트	0 1 1 1 0 1 1 1 0	B ————————————————————————————————————
	느기시	사이를 내용 종급
NOT	논리식	스위치 사용 회로
NOT 게이트	는디식	A B B B B B B B B B B B B B B B B B B B

NAND 게이트	기호	
NOR	논리식	Y = (A·B)'
게이트		A B Y 0 0 1
E-NOR 게이트 (Exclusive Nor)	진리표	1 0 1 0 1 1 1 1 0

NAND 게이트	기호	
NOR	논리식	Y = (A+B)'
게이트		A B Y
E-NOR 게이트 (Exclusive Nor)	진리표	0 0 1 1 0 0 0 1 0 1 1 0

NAND 게이트	기호	
NOR	논리식	Y = (A ⊕ B)' = A ⊚ B
게이트		A B Y 0 0 1
E-NOR 게이트 (Exclusive Nor)	진리표	1 0 0 1 0 0 1 1 1

- 유니버셜 게이트
 - ▶ NAND와 NOR 게이트
 - ▶ 모든 게이트의 구성 가능

- 1) 개요
- 2) 부울 대수의 기본 법칙
- 3) 드모르강(Demorgan) 법칙 4) 카르노 맵(Karnaugh map)을 이용한 부울 함수 간소화

1) 개요

- 부울 대수
 - ▶ 2진 변수와 논리동작을 취급하는 대수
 - ▶ 논리회로의 형태와 구조를 기술하는데 필요한 수학적인 이론

$$f = x + y'z$$

부울 대수의 장점

변수 사이의 진리표 관계를 대수형식으로 표현 논리도의 입출력 관계를 대수형식으로 표시 동일한 성능을 갖는 더 간단한 회로를 만들기에 편리

1) 개요

■ 함수의 논리도와 진리표

X	Υ	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

진리표

1) 개요

■ 부울 대수의 기본적 관계

1	X + 0 = X	2	X · 0 = 0
3	X + 1 = 1	4	X · 1 = X
5	X + X = X	6	$X \cdot X = X$
7	X + X' = 1	8	X · X, = 0
9	X + Y = Y + X	10	XY = YX
11	X + (Y + Z) = (X + Y) + Z	12	X(YZ) = (XY)Z
13	X(Y + Z) = XY + YZ	14	X + YZ = (X + Y)(X + Z)
15	(X + Y)' = X' Y'	16	(XY)' = X' + Y'
17	(X')' = X		

■ 기본 법칙

교환법칙

결합법칙

분배법칙

$$A \cdot B = B \cdot A$$

$$A + B = B + A$$

■ 기본 법칙

교환법칙

결합법칙

분배법칙

■ 기본 법칙

교환법칙

결합법칙

분배법칙

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$A = B$$

$$A \cdot (B+C)$$

$$A \cdot (B+C)$$

$$A \cdot (B+C)$$

$$A \cdot (B+C)$$

■ 기본 법칙

교환법칙

결합법칙

분배법칙

3) 드모르강(Demorgan) 법칙

- 드모르강(Demorgan) 법칙
 - ▶ NOR와 NAND를 취급하는데 유용

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$A - B = \overline{A} \cdot \overline{B}$$

$$A - B = \overline{A} \cdot \overline{B}$$

$$A - C = B$$

$$A - C = A$$

$$A - C =$$

- 카르노 도표
 - ▶ 부울 대수식을 간소화 하기 위한 가장 체계적이고, 간단한 방법
 - ▶ 최적의 간략화에 근거한 디지털 회로설계만이 게이트 수의 최소화 가능

■ 2변수 카르노 도표

1칸은 2개의 변수로 표현

인접한 2칸은 1개의 변수로 표현

■ 2변수 카르노 도표

예
$$F(X, Y) = X'Y' + X'Y + XY' = X' + Y'$$

■ 3변수 카르노 도표

x YZ	00 01		11	10
0	X'Y'Z'	X'Y'Z'	X'YZ	X'YZ'
1	XY'Z'	XY'Z	XYZ	XYZ'

X YZ	00	01	11	10
0	0	1	3	2
	(000)	(001)	(011)	(010)
1	4	5	7	6
	(100)	(101)	(111)	(110)

■ 3변수 카르노 도표

예 F(X, Y, Z) = XY'Z' + XY'Z + XYZ + XYZ'

■ 3변수 카르노 도표

예 F(X, Y, Z) = X'Y'Z' + XY'Z' + X'YZ' + XYZ

■ 4변수 카르노 도표

WX YZ	00	01	11	10	WX YZ	00	01	11	10
00	W'X'Y'Z	W'X'Y'Z	W'X'Y'Z	W'X'YZ'	00	0 (0000)	1 (0001)	3 (0011)	2 (0010)
01	W'XY'Z	W'XYZ'	W'XYZ	W'XYZ'	01	4 (0100)	5 (0101)	7 (0111)	6 (0110)
11	WXY'Z'	WZY'Z	WXYZ	WXYZ'	11	12 (1100)	13 (1101)	15 (1111)	14 (1110)
10	WX'Y'Z'	WX'Y'Z	WX'YZ	WX'YZ'	10	8 (1000)	9 (1001)	11 (1011)	10 (1010)

■ 4변수 카르노 도표

예 F(W, X, Y, Z) = W'X'Y'Z' + W'X'Y'Z + W'XY'Z'+ W'XY'Z + WXYZ + WXYZ'+ WX'YZ+ WX'YZ'

 $F(W, X, Y, Z) = \Sigma(0, 1, 4, 5, 10, 11, 14, 15)$

예제

$$F = \overline{ABCD} + \overline{ABCD}$$

$$+ \overline{ABCD} + \overline{ABCD}$$

① 함수식의 진리값을 Karnaugh Map에 표시

AB CD	00	01	11	10
00	1	1		
01	1	1	1	1
11	1			1
10			1	

예제

 $F = \overline{ABCD} + \overline{ABCD}$ $+ \overline{ABCD} + \overline{ABCD}$

② '1'로 표시된 진리값 중 인접한 값을 1, 2, 4, 8, 16개씩 묶음 (큰 개수로 묶는 것이 함수화를 가장 최소화)

AB CD	00	01	11	
00	1	1	A	
01	1	1	1	1
11	1			1
10			1	

AB CD	00	01	11	10	
00	1	1	A	_	
01	1	1	1	1	AB
11	1			1	
10			1		

진리값들은 각각 다른 묶음에 여러 번 중복하여 묶일 수 있음!

예제

$$F = \overline{ABCD} + \overline{ABCD}$$

$$+ \overline{ABCD} + \overline{ABCD}$$

③ 인접한 값이 없는 경우 단독으로 묶이며 단독으로 묶인 집합은 간략화할 수 없음

AB	CD 00	01	11	10
00	1	1	A	
01	41	1	1	1 / AB
11	31			1
10		BD	1	ABCD

각각의 묶인 집합을 간략화 함, 각각의 간략화된 함수식을 OR 연산을 함

$$F = \overline{AC} + \overline{AB} + BD + A\overline{BCD}$$

논리회로

정리 하기

✓ 게이트

- AND, OR, NOT, XOR 게이트의 회로도 표시, 진리표

진리표	기호	진리표	기호
A B X 0 0 0 0 1 0 1 0 0 1 1 1	A	A B X 0 0 0 0 1 1 1 0 1 1 1 1	A
논리식	스위치 사용 회로	논리식	스위치 사용 회로
X = A · B	A B	X = A + B	7 0 A
진리표	기호	717177	71.5
C-111	기오	진리표	기호
A X 0 1 1 0	A————X	A B X 0 0 0 0 1 1 1 0 1 1 1 0	A
A X 0 1	_	A B X 0 0 0 0 1 1 1 0 1	A — \

정리 하기

부울 대수

- ✓ 기본 법칙
 - 교환법칙, 결합법칙, 분배법칙, 다중부정 등
- ✓ 부울 대수의 기본적 관계

1	X + 0 = X	2	X · 0 = 0
3	X + 1 = 1	4	X · 1 = X
5	X + X = X	6	$X \cdot X = X$
7	X + X' = 1	8	X · X' = 0
9	X + Y = Y + X	10	XY = YX
11	X + (Y + Z) = (X + Y) + Z	12	X(YZ) = (XY)Z
13	X(Y + Z) = XY + YZ	14	X + YZ = (X + Y)(X + Z)
15	(X + Y)' = X' Y'	16	(XY)' = X' + Y'
17	(X')' = X		

- ✓ 카르노 맵을 이용한 부울 함수 간소화
 - 도식적 표현을 사용해 부울 대수를 간략화

