MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 ILFOV PROBA TEORETICĂ Subjecte

Pagina 1 din 2

1. O lentilă subțire, plan convexă, cu diametrul $D=20\,\mathrm{cm}$ și grosimea $h=1.0\,\mathrm{cm}$, este confecționată din sticlă optică având indicele de refracție n=1.50. Pe fața convexă, în dreptul centrului optic, se realizează o scobitură cu aceeași rază de curbură ca și suprafața convexă. Ea este umplută cu un material transparent cu indicele de refracție $n_1=1.40$, obținându-se o lentilă biconvexă simetrică. Diametrul acestei lentile este $d=\frac{D}{3}$. Sistemul obținut ("ochiul magic") este

Figura 1

reprezentat în figura 1. Pe fața plană a sistemului cade un fascicul paralel de lumină.

- a) Calculează distanțele focale ale sistemului obținut (" ochiul magic").
- **b)** Reprezintă mersul razelor de lumină din fasciculul paralel incident, la trecerea prin "ochiul magic".
- c) De cealaltă parte a sistemului se află un ecran așezat perpendicular pe axa optică principală. Calculează distanța la care trebuie plasat ecranul, față de sistem, pentru ca pata luminoasă observată să aibă diametrul minim.
- 2. A. În sistemul reprezentat schematic în figura 2, corpurile au masele $m_1 = 1\,\mathrm{kg}$, respectiv $m_2 = 2\,\mathrm{kg}$ și sunt legate prin intermediul unui fir, considerat ideal, trecut peste un scripete de masă neglijabilă. Planul înclinat cu unghiul $\alpha = 30^\circ$ față de orizontală este fix. Inițial corpurile sunt ținute în repaus, corpul de masă m_2 fiind în contact cu suprafața apei unui lac liniștit. După ce sistemul este lăsat liber, corpul de masă m_2 pătrunde în apă. Coeficientul de frecare la alunecare dintre corpul de masă m_1 și suprafața planului înclinat este $\mu = 0.58 \left(\cong \frac{\sqrt{3}}{3} \right)$. Se consideră neglijabile toate celelalte

frecări. Aria secțiunii transversale a corpului de masă m_2 este $S = 13.3 \text{ cm}^2 \left(\cong \frac{40}{3} \text{ cm}^2 \right)$. Se cunosc:

densitatea apei $\rho = 1000\,\mathrm{kg/m^3}$, accelerația gravitațională $g = 10\,\mathrm{m/s^2}$. Corpul de masă m_2 rămâne vertical în tot timpul mișcării și este suficient de lung pentru ca sistemul să atingă viteza maximă înainte de scufundarea completă a corpului în apă.

- a) Reprezintă grafic accelerația sistemului în funcție de adâncimea de pătrundere a corpului de masă m_2 în apă, până la atingerea vitezei maxime.
 - **b**) Calculează valoarea vitezei maxime atinse de corpul de masă m_2 .
- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 **ILFOV** PROBA TEORETICĂ **Subjecte**

Pagina 2 din 2

B. O scândură cu lățimea constantă este înclinată cu unghiul $\alpha = 50^{\circ}$ fată de orizontală, ca în figura 3. Scândura este traversată de un canal drept AB, care formează cu verticala unghiul φ . Un corp de mici dimensiuni este lăsat să cadă liber prin canal din punctul A. Calculează valoarea unghiului φ astfel încât timpul necesar parcurgerii canalului să fie minim. Frecările sunt neglijabile.

Dacă vei considera necesar. poti folosi următoarele identități:

$$\cos(\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$$

3. Un corp prismatic de masă $M = 9.0 \,\mathrm{kg}$ se poate deplasa în interiorul unui ghidaj, împingând un alt corp de masă $m = 1.6 \,\mathrm{kg}$. În figura 4 este prezentată o vedere de sus a acestui sistem (vectorul acceleratie gravitațională este perpendicular pe planul desenului). Suprafața de contact dintre corpuri se află în plan vertical. Coeficientul de frecare la alunecare dintre

corpurile de masă
$$M$$
 și m este $\mu = 0.87 \left(\cong \frac{\sqrt{3}}{2} \right)$.

Figura 4

Toate celelalte frecări sunt neglijabile. La momentul inițial, când forta $F = 10 \,\mathrm{N}$ începe să actioneze, corpul de masă m era în repaus în poziția indicată în figura 4, distanța dintre el și peretele opus al ghidajului fiind $d = 48.5 \text{ cm} (\cong 28\sqrt{3} \text{ cm})$. Se cunoaște $\alpha = 30^{\circ}$. Calculează:

- a) valoarea accelerației corpului de masă M față de ghidaj;
- b) distanța parcursă de corpul de masă m în lungul ghidajului până în momentul în care lovește peretele opus;
 - c) viteza corpului de masă m fată de ghidaj, în momentul în care loveste ghidajul.

Subiect propus de: prof. Ioan Pop – Colegiul Național "Mihai Eminescu", Satu Mare prof. Viorel Popescu – Colegiul Național "Ion C. Brătianu", Pitești prof. Liviu Blanariu – Centrul Național de Evaluare și Examinare, București

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.