Frühjahr 22 Themennummer 2 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Man betrachte das ebene autonome System

$$x' = 1 - x - Rxy,$$

$$y' = Rxy - y$$

für einen reellen Parameter $R \neq 1$.

- (a) Bestimmen Sie in Abhängigkeit von R alle stationären Punkte des Systems, die im abgeschlossenen ersten Quadranten, d.h. in $\{(x,y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\}$, liegen.
- (b) Linearisieren Sie das System jeweils um die in (a) bestimmten Ruhelagen und untersuchen Sie diese auf Stabilität.

Lösungsvorschlag:

- (a) Wir suchen die Nullstellen. Für die zweite Gleichung gilt $Rxy y = 0 \iff (Rx 1)y = 0$, woraus y = 0 oder Rx 1 = 0 folgt. Ist R = 0 besitzt die zweite Gleichung keine Lösung, sonst aber genau die Lösung $x = \frac{1}{R}$. Ist y = 0, so verschwindet die erste Gleichung genau für x = 1, ist $R \neq 0$ und $x = \frac{1}{R}$, so verschwindet die erste Gleichung genau für $y = 1 \frac{1}{R}$. Für R = 0 erhalten wir also nur die Ruhelage (1,0), für $R \neq 0$ erhalten wir neben dieser noch die Ruhelage $(\frac{1}{R}, 1 \frac{1}{R})$, die wegen $R \neq 1$ verschieden von (1,0) ist. Andere Ruhelagen gibt es nicht. (1,0) liegt im Quadranten, die anderen Ruhelagen liegen genau für R > 1 im Quadranten, weil aus der ersten Komponente R > 0 und damit aus der zweiten R > 1 folgt, wegen $R \neq 0$.
- (b) Wir bestimmen die Jacobimatrix der Strukturfunktion. Es gilt $J(x,y) = \begin{pmatrix} -1-Ry & -Rx \\ Ry & Rx-1 \end{pmatrix}$ und setzen die Ruhelagen ein. Es gilt $J(1,0) = \begin{pmatrix} -1 & -R \\ 0 & R-1 \end{pmatrix}$ mit Eigenwerten -1 und R-1, für R<1 haben beide Eigenwerte negativen Realteil und die Ruhelage ist stabil, für R>1 gibt es einen Eigenwert mit positivem Realteil und die Ruhelage ist instabil. Für R=0 ist also die einzige Ruhelage stabil. Sei jetzt $R\neq 0$, dann gibt es eine zweite Ruhelage, deren entsprechende Matrix $\begin{pmatrix} -R & -1 \\ R-1 & 0 \end{pmatrix}$ ist. Das charakteristische Polynom ist $\lambda^2 + R\lambda + R 1$ mit den Nullstellen $\lambda_{\pm} = \frac{-R \pm (R-2)}{2}$, also hat die Matrix Eigenwerte $x_1 = -1$ und $x_2 = 1 R$. Für R>1 haben beide Eigenwerte negativen Realteil und die Ruhelage ist instabil, für R<1 gibt es einen Eigenwert mit positivem Realteil und die Ruhelage ist instabil, liegt aber auch nicht im ersten Quadranten.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$