

Information Management and Data Engineering

CS4D2a - 4CSLL1 - CS3041

Mapping to Logical Design

Séamus Lawless seamus.lawless@scss.tcd.ie

Relational Schema Mapping

- How to move from a conceptual database design
 - Entity Relationship Model
- ...to a logical database design
 - Relational Database Schema
- We follow a series of steps to map entity types, relationships and attributes into relations

Relational Schema Mapping

- We will use the examples from the previous lectures to illustrate these mapping steps
- The mapping will create:
 - Relations
 - with simple, single-valued attributes
 - Constraints
 - primary keys
 - unique keys
 - referential integrity constraints

Mapping of Entity Types

- For each entity type E in the ER diagram, create a relation R that includes all the simple attributes of E
- Composite attributes
 - when mapping composite attributes include only the simple component attributes in the new relation R

Mapping of Entity Types

- Key attributes
 - choose one of the key attributes of E as the primary key of R
 - composite key attributes are included as a composite primary key
- Additional key attributes should be included as secondary unique keys of the relation

Mapping of Entity Types

BRANCH

branch_idnamestreettowncountyphone_nowebsite

Mapping Multivalued Attributes

- For each multivalued attribute A, create a new relation R
- The new relation R will include:
 - An attribute corresponding to A
 - The primary key K from the relation that represents the entity type that A came from
 - This becomes a *foreign key* in R
 - The primary key of R is the combination of A and
 K

Mapping Multivalued Attributes

BOOK

- In addition to mapping the entity types from the ER model into the Relational Schema, we also need to map the relationship types
- Each relationship type is modeled differently
 - -1:1 One to One
 - 1:N One to Many
 - M:N Many to Many

- There are two main approaches to mapping binary 1:1 relationships
 - Foreign Key Approach
 - Most useful and most commonly used
 - Merged-Relation Approach
 - Used in cases of total participation
- For each binary 1:1 relationship type R
 - identify the relations S and T that correspond to the entity types participating in R

- Foreign Key Approach
 - choose one of the participating relations, say S
 - include as a foreign key in S the primary key of T
 - if possible, choose an entity type with total participation in R for the role of S
 - include all the simple attributes of the relationship type R as attributes of S

- Merged Relation Approach
 - This can only be used when both S and T have total participation in the relationship type R
 - Merge the two entity types S and T and the relationship type R into one single relation V
 - V should include all the simple component attributes of S, T and R
 - This is possible as the joint total participation indicates that the two tables will have an identical number of tuples at all time

- For each binary 1:N relationship type R
 - identify the relation S that corresponds to the entity types on the N-side of R
- Include as a foreign key in S, the primary key of T, which is the relation representing the entity type at the other side of R
- Include any simple attributes of the relationship type R as attributes of S
 - or simple component attributes of a composite attribute

Mapping Recursive Relationships

- Recursive relationships
 - where an entity instance can refer to another instance of the same entity type
- For each recursive relationship type R
 - Include the primary key of T, which is the relation representing the entity type involved, as a foreign key in the same relation, T
 - Include any simple attributes of the relationship type
 R as attributes of T
 - or simple component attributes of a composite attribute

Mapping Recursive Relationships

- Many to Many relationship types are more complex to map that 1:1 or 1:N
- As each entity instance may reference many entity instances in the other participating entity type
 - You cannot use a foreign key attribute in either participating entity
 - You must create a new relation to represent the relationship type

- For each binary M:N relationship type R
 - create a new relation S to represent R
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types
 - The combination of these foreign keys is the composite primary key of S
- Include any simple attributes of the relationship type R as attributes of S
 - or simple component attributes of a composite attribute

Cinema Example

