Lecture 5: Operators

Filipp Furche

Chem 150/250 Fall 2023

10/11/2023

http://ffgroup.chem.uci.edu

Vector Spaces

A set E is called vector space (linear space) over a field \mathbb{K} iff $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in E, \forall a, b \in \mathbb{K}$,

- 1. vector addition "+" is defined, and E is an Abelian group with vector addition as composition law.
- 2. multiplication with scalars is defined, i.e., $ax \in E$, and
 - (i) $a(b\mathbf{x}) = (ab)\mathbf{x}$
 - (ii) $(a+b)(\mathbf{x} = a\mathbf{x} + b\mathbf{x})$
 - (iii) a(x + y) = ax + ay
 - (iv) 1x = x

Examples of Vector Spaces

- \mathbb{R}^n over \mathbb{R} , \mathbb{C}^n over \mathbb{C} , e.g. "real (position) space", reciprocal (momentum) space, phase space, etc.
- Normal modes of a molecule, lattice vibrations
- Hilbert space, e.g., space of all molecular orbitals, spin space

Inner and Outer Products in \mathbb{R}^n

• Inner product: Bilinear, positive definite map $\mathbb{R}^n \to \mathbb{R}$ s.t. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$(\mathbf{x}|\mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$

- Induces "Euclidean" norm $\|\mathbf{x}\| = |\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$
- Example: Scalar product of two 3-vectors
- Outer (tensor) product: Bilinear map $\mathbb{R}^n \to \mathbb{R}^{n \times n}$ s.t.

$$\mathbf{x} \otimes \mathbf{y} = \mathbf{x} \mathbf{y}^T = \begin{pmatrix} x_1 y_1 & x_1 y_2 & \cdots \\ x_2 y_1 & x_2 y_2 & \cdots \\ \vdots & \ddots & \cdots \end{pmatrix}$$

Neither of these products qualify for group multiplication

Operator Algebras

- A linear operator $\mathbf{A}: E \to E$ is a linear map of a vector space E onto itself.
- Linear operators on \mathbb{R}^n are real $n \times n$ matrices.
- A linear operator is itself an element of another vector space $E \otimes E$, because addition and scalar multiplication are defined. For example, $\mathbb{R}^{n \times n}$ is a vector space with respect to addition of matrices and their multiplication by scalars.
- Multiplication of operators $\mathbf{A}, \mathbf{B} \in E$ is defined as bilinear map on $E \otimes E$ such that \mathbf{AB} is the operator corresponding to \mathbf{B} followed by \mathbf{A} . For example, for two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$,

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{A}^T \mathbf{B}$$

(matrix multiplication)

• Vector spaces with bilinear maps are "algebras".