سلسلة تمارين حول درس التطبيقات

التمرين الأول. نعتبر التطبيق g من \mathbb{R}^+ نحو [0,1] المعرف بما يلي

$$g(x) = \frac{x}{x+1}$$

- 1. بين أن g تقابل و حدد تقابله العكسى.
 - 2. لكل عدد صحيح طبيعي $2 \ge n$ ، نضع

$$g^{(n)} = \underbrace{\circ g \circ \dots \circ g}_{n}$$
مرة

 $.g^{(3)}$ مع $.g^{(2)}$ أحسب $.g^{(1)}$ و

3. تضنن صيغة $g^{(n)}(x)$ ثم أثبث ذلك بإستعمال برهان بالترجع.

 ${\mathbb R}$ التمرين الثاني. ليكن f تطبيقاً من بحیث لکل x من \mathbb{R} لدینا

$$f(x+1) + 2f(1-x) = 3x - 2$$

f(x)

بدلالة

التمرین الثالث. نعتبر المجموعتین c و b و a حیث E = $\{a,b,c\}$ التمرين الثالث. مختلفة مثنى مثنى.

- نحو E نحو التطبيقات المعرفة من E نحو ثم حدد عدد هذه التطبيقات. F
- 2. حدد من بين هذه التطبيقات، الشمولية منها و التباينية منها.

التمرين الرابع. نعتبر التطبيق f من $\mathbb R$ نحو ألمعرف بما يلى أ $[0,+\infty[$

$$f(1)$$
 أحسب $f(x) = \frac{1}{x^2 - 2x + 2}$

- 1. بین أن f غیر تباینی.
- $.f(\mathbb{R})=]0,1]$ بين أن 2.
- 3. حدد هل f شمولی معللاً جوابك.

 $f:\mathbb{R}^2 o\mathbb{R}$ التمرين الخامس. نعتبر التطبيق f(x,y) = 2x + y المعرف بما يلي

- 1. بين أن التطبيق f ليس تباينياً.
 - f بين أن f شمولي.
- $A = \{-1, 2\}$ لتكن المجموعة. $A \times A$ حيث A^2 الجداء الديكارتي $A \times A$

التمرين السادس. بإعتبار المجموعة بين أنه $A = \{n \in \mathbb{N} \mid n \notin f(n)\}$ $\mathcal{P}(\mathbb{N})$ نحو \mathbb{N} نحو f لاُ يُوجِدُ تقابِل

التمرين السابع. لتكن \overrightarrow{u} متجهة غير \overrightarrow{u} منعدمة و (D) مستقيماً متجهته الموجهة S_{Δ} و \overrightarrow{u} الإزاحة ذات المتجهة $t_{\overrightarrow{u}}$ و زمر بالرمز التُماثل المُحوري الذي محوره Δ .

- $.t_{\overrightarrow{u}}\circ S_{\Delta}=S_{\Delta}\circ t_{\overrightarrow{u}}$ 1. بين أن
- $(t_{\overrightarrow{u}}\circ S_\Delta)^{-1}$ يين أن $S_\Delta \circ t_{\overrightarrow{u}}\circ S_\Delta$ تقابل ثم حدد $S_\Delta \circ t_{\overrightarrow{u}}\circ S_\Delta$.

التمرين الثامن. ليكن f تطبيقاً من $\mathcal{P}(E)$ نحو معرفاً بما يلى $\mathcal{P}(E)$

$$f(X) = X - \{a\}, \qquad a \in X$$

$$f(X) = X \cup \{a\}, \qquad a \notin X$$

 $f \circ f$.1

2. ماذا يمكنك أن تستنتج ؟

 $\overline{$ الت**مرین التاسع.** لتکن E و F و G و G اربع $g:g:f:E\to F$ لتحبر التطبیقات $f:E\to F$ و h:G o H و بين أنه إذا كان $g\circ f$ تقّابلاً و كان $g \circ h$ تقابلاً فإن f و g و أيضاً تقابلات.

التمرين العاشر. ليكن f تطبيقاً بحيث لكل من \mathbb{R} لدينا x

$$(f \circ f \circ f)(x) = 2x - 1$$

التمرين الحادي عشر. نعرف التطبيق یما یلی $f: \mathbb{N}^2 o \mathbb{N}$

$$f(x,y) = \frac{(x+y)(x+y+1)}{2} + y$$

بين أن التطبيق f تبايني.

حدد