## INDEXATION CONTENU MULTIMEDIA INFORMATION SPOTTING





Nicolas Sidere

### OBJECTIFS ET PROGRAMME DE CE PROJET

#### Indexation visuelle de document

- Décrire le contenu
- L'indexer
- Le retrouver

## UN MONDE 100% NUMÉRIQUE?

273 milliards d'emails sont échangés chaque jour

- 1,4 milliards pour la France (hors spam)
- Entre 55% et 95% des emails sont des spams

Des données de plus en plus nombreuses

90% des données numériques créées ces deux dernières années

Des contenus de plus en plus hybrides

- Existent à la fois en numérique et en papier
- Besoin de retrouver de l'information dans les « deux mondes »

#### UN MONDE SANS PAPIER?

Besoin accru d'accéder et de manipuler l'information

Réseaux

Document numériques



Stockage et indexation







Numérisation

#### DE LA CAPTURE À L'EXPLOITATION DES DOCUMENTS

Acquisition Traitements et Manipulation du contenu **Exploitation** Clustering interactif Valorisation des contenus Extraction de signatures Indexation statistiques Segmentation Classification Navigation dans les corpus Détection de points/régions Extraction de d'intérêts Bouclage de signatures pertinence Structurelles Description Recherche d'information topologique

> Contenus patrimoniaux, administratifs, éducatifs, touristiques Confiance numérique – sécurisation de contenus

## LIMITES ET IMPACTS DE LA NUMÉRISATION

#### Questions fondamentales pour votre projet

- Savez-vous comment numériser vos documents?
- Savez-vous comment décrire vos documents ?
- Etes-vous conscient des limites de votre projet ?
- Savez-vous comment permettre un accès adapté à vos données, pour des publics divers?

### **EXEMPLE DE COUTS**

Exemple d'une Université de 1000 salariés et 9000 étudiants

- Tous les jours, un salarié imprime 1 page ( $\sim$ 250 pages / an)
  - Si chaque page coute 0,10 € (encre + papier + machine)
- Cout annuel = 25 000 €
  - Et les étudiants ne sont pas inclus
- Si chaque salarié passe 20 min par jour à chercher de l'information
  - 250 jours travaillés / an ; 1h coute 20 € (estimation basse)
- Cout annuel = 1 000 000 €

### COÛT D'UNE GESTION MANUEL DES DOCUMENTS

7.5%
OF ALL DOCUMENTS GET LOST





\$220

THE AVERAGE COST TO REPRODUCE A LOST DOCUMENT

### INFORMATION RETRIEVAL TO DOCUMENT IMAGE RETRIEVAL



#### DOCUMENT IMAGE RETRIEVAL APPROACHES

**Recognition-free approaches Recognition-based approaches** Computation of features Convert documents to text using Be able to deal with image noise, low resolution, viewing **OCR** transformations, etc. Text retrieval techniques **Drawbacks:** high computational Information cost, sensitive to image resolution or image noise, etc. Audio Visual Image Graphic captured **Text** Hand-Type-Logo, seal, Scene

written

written

etc.

#### CAMERA-BASED DOCUMENT IMAGE RETRIEVAL

Robust feature extraction!

Network



Reliable indexing methods!

Capturing a query region and retrieving relevant information

#### **Augmented Reality systems:**

- Augmented Songbook
- Kooaba's Paperboy



Digitization and Information extraction





### DEMO DU SYSTÈME À DÉVELOPPER



# CAMERA-BASED DOCUMENT IMAGE RETRIEVAL SYSTEMS USING LOCAL FEATURES



### PARTIE 1 DU CONTENU À SA DESCRIPTION





## DÉCRIRE UNE IMAGE... COMMENT ?

Détecter des points / des zones d'intérêts

- Ce qu'il faut décrire
- Ce qui est important → Ce que l'on veut indexer

Les points / zones doivent être invariants ou robustes

- Aux changements affines
- Aux translations
- Aux rotations
- Aux changements d'échelle

### EXEMPLE I : COLLER 2 PHOTOS D'UN MÊME OBJET (SIFT)









# ON UTILIZE CES POINTS POUR CALCULER LA TRANSFORMATION À PARTIR DES POINTS COMMUNS









### ET ON "COLLE" CES IMAGES







### PRINCIPE APPLIQUÉ À LA RECONNAISSANCE DES FORMES



### PREMIÈRE ÉTAPE : EXTRAIRE DES POINTS D'INTÉRÊTS



Retrieval Results

# SIFT — EN 3 ÉTAPES

#### Detection

- Détecter les points qui sont intéressants à plusieurs échelles
- Extraire la region autour du point d'intérêt (patch visuel)
- Un patch visel est un élément du dictionnaire visuel

#### Description

- Construire un descripteur pour la zone
- Assigner les orientations principales de la region détectée

#### Matching

 Chercher les zones similaires pour indiquer qu'elle correspond à une zone de l'image dans la base de données

- Les changements brusques de niveaux de gris sont de bonnes fonctions
- Peut être calculé par un "Laplacian de Gaussianne" (LoG)



- L'image subit une convolution avec des iltres Gaussian à différentes échelles
  - On calcule des différences entre des filtres successifs (soustractions entre des résultats de filtres différents)
  - Les Keypoints correspondent aux maxima/minima dans ces soustractions appelées "Difference of Gaussians (DoG)"
- En pratique :
  - On compare chaque pixel de l'image "DoG" avec ses 8 voisins à la même echelle
  - On compare chaque pixel avec ses 9 voisins des échelles supérieure et inférieure
- Si le pixel est un maximum ou un minimum parmis tous ces voisins
  - c'est un keypoint



#### Exemple









- (a) 233x189 image
- (b) 832 DOG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures

### 2. DESCRIPTION DE LA ZONE

Attribuer les orientations présentes dans une region

- Créer un histogramme des orientations des gradients de la zone
- Choisir l'orientation principale pour décrire la zone





### 2. DESCRIPTION DE LA ZONE

#### Construction du descripteur SIFT

- Créer un tableau avec tous les orientations (zones)
- Au final, un vecteur de 128 valeurs
  - 8 orientations décrites par un tableau de 4x4 histogram



# PARTIE 2 DE LA DESCRIPTION À SON INDEXATION





### RETROUVER DES POINTS SIMILAIRES

Pour chaque Keypoint de l'image A

• On recherche le point le plus similaire dans l'image B

A B





### RETROUVER DES POINTS SIMILAIRES

Possibilité d'utiliser la recherché des plus proches voisins mais...

- Beaucoup de points d'intérêts dans une image / un document
- Chaque point a son propre vecteur de dimension 128

Si l'on a une base de 1000 documents avec chacun 1000 keypoints

- Base d'1 million de points d'intérêts
- Comment retrouver le plus proche ?
- Comment le retrouver vite ?

Besoin d'indexer les vecteurs!

### INDEXATION À PARTIR D'UNE TABLE DE HACHAGE

Data-item: x



(Table de Hachage)



- Généralement, on voudrait une function de hachage h(x)
  - Don't les éléments similaires soient stockés dans la même case
  - Eviter les colisions (zones visuellement différentes dans la même case)
  - Rapide à calculer
- Les fonctions de hachage rassemblent ces propriétés

### INDEXATION À PARTIR D'UNE TABLE DE HACHAGE ?



Extraire l'ensemble des vecteurs des points d'intérêt

$$H_{index} = \left(\sum_{i=0}^{d-1} f_i \ q^i\right) mod \ H_{size}$$



- d est le nombre de valeurs du descripteur du point d'intérêt de l'image
- q est le niveau constant de quantification
- H<sub>size</sub> est la taille de la table de hachage

# PARTIE 3 DE L'INDEXATION À LA RECHERCHE D'INFORMATION





## DE LA TABLE DE HACHAGE À L'INFORMATION

Une fois que les points d'intérêt ont été indexés...

- Possibilité de recherche quel(s) document(s) dans la base possède le même keypoint
- Appliquer cela à l'ensemble des Keypoints

Il est alors nécessaire de faire une table de vote pour identifier le document dans la base de données qui a le plus de keypoints en commun avec la requête

- Simple histogramme
- Recherche de la valeur maximale

#### MISE EN PRATIQUE





### INDEXATION À PARTIR D'UNE TABLE DE HACHAGE ?

Image à indexer / rechercher

Extraction des points d'intérêts

Calcul des descripteurs des keypoints

Indexation des keypoints pour faciliter leur comparaison

Vote du document le plus probable (avec le plus de votes)



### **POUR LE TP**

- Deux groupes dans une même équipe
  - Chaque groupe correspond à un binôme (ou monome) qui devra travailler sur une des deux parties
    - Extraction de keypoints et de leurs descripteurs
    - Indexation et recherche du document le plus similaire

### POUR LE TP — QUELQUES RESSOURCES

- Introduction à SIFT avec OpenCV et Python
  - https://docs.opencv.org/master/da/df5/tutorial\_py\_sift\_intro.html
- Lire une vidéo à partir d'OpenCV en Python
  - <a href="https://opencv-python-tutroals.readthedocs.io/en/latest/py\_tutorials/py\_gui/py\_video\_display/py\_video\_display.html">https://opencv-python-tutroals.readthedocs.io/en/latest/py\_tutorials/py\_gui/py\_video\_display/py\_video\_display.html</a>
     <a href="https://opencv-python-tutroals.readthedocs.io/en/latest/py\_tutorials/py\_gui/py\_video\_display/py\_video\_display/py\_video\_display.html">https://opencv-python-tutorials/py\_tutorials/py\_gui/py\_video\_display/py\_video\_display/py\_video\_display/py\_video\_display/py\_video\_display/py\_video\_display.html</a>
- Un exemple d'utilisation d'une table de hachage
  - https://www.pyimagesearch.com/2017/11/27/image-hashing-opency-python/
  - Attention, ce n'est pas la bonne fonction de hachage ;-)
- Jeu de données fournies sur Moodle
  - Issues d'un livre et d'une base de documents administratifs
- Composé de deux types de contenus
  - Les images des documents
  - Des vidéos qui simulent la capture du document avec un smartphone ou une webcam