

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ РОБОТОТЕХНИКА И КОМПЛЕКСНАЯ АВТОМАТИЗАЦИЯ (РК)

КАФЕДРА РК6 «СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ»

Отчет по лабораторной работе

Исследование эффективности статической балансировки загрузки MBC с использованием имитационного моделирования

Студент	 Абидоков Р. Ш. РК6-21М
Преподаватель	 Карпенко А. П.

Постановка задачи исследования эффективности балансировки загрузки MBC

Пусть X-n-мерный вектор параметров задачи. Положим, что $X \in R^n$, где R^n-n -мерное арифметическое пространство. Параллелепипедом допустимых значений вектора параметров назовем не пустой параллелепипед $\Pi = \{X \mid x_i^- \leq x_i \leq x_i^+, i \in [1,n]\}$, где $x_i^-, x_i^+ -$ заданные константы. На вектор X дополнительно наложено некоторое количество функциональных ограничений, формирующих множество $D = \{X \mid g_i(X) \geq 0, j = 1, 2, ...\}$, где $g_i(X)$ — непрерывные ограничивающие функции.

На множестве $D_x = \Pi \cap D$ тем или иным способом (аналитически или алгоритмически) определена вектор-функция F(X) со значениями в пространстве R^m . Ставится задача поиска значения некоторого функционала $\Phi(F(X))$.

Положим, что приближенное решение поставленной задачи может быть найдено по следующей схеме:

- *Шаг 1.* Покрываем параллелепипед П некоторой сеткой Ω (равномерной или неравномерной, детерминированной или случайной) с узлами $X_1, X_2 \dots X_z$.
- *Шаг 2.* В тех узлах сетки Ω , которые принадлежат множеству D_x , вычисляем значения вектор функции F(X).
- *Шаг 3*. На основе вычисленных значений вектор функции F(X) находим приближенное значение функционала $\Phi(F(X))$.

Суммарное количество арифметических операций, необходимых для однократного определения принадлежности вектора X множеству D_x (т.е. суммарную вычислительную сложность ограничений $x_i^- \le x_i \le x_i^+$ и ограничивающих функций $g_i(X)$, обозначим $C_g \ge 0$. Далее в эксперименте будем полагать $C_a = 0$.

Неизвестную вычислительную сложность вектор-функции F(X) обозначим $C_f(X)$. Подчеркнем зависимость величины C_f от вектора X. Величина $C_f(X)$ удовлетворяет, во-первых, очевидному ограничению $C_f(X) \ge 0$. Вовторых, положим, что известно ограничение сверху на эту величину C_f^{max} , имеющее смысл ограничения на максимально допустимое время вычисления значения F(X). Вычислительную сложность $C_f(X_i)$ назовем вычислительной сложностью узла X_i , $i \in [1, Z]$.

Вычислительную сложность генерации сетки Ω положим равной ZC_{Ω} , а вычислительную сложность конечномерной аппроксимации функционала $\Phi(F(X))$ - равной ζC_{Ω} , где ζ (дзета) - общее количество узлов сетки Ω , принадлежащих множеству D_{x} .

Далее в эксперименте также будем полагать $\mathsf{C}_f = \mathsf{C}_\Omega = 0$.

В качестве вычислительной системы рассмотрим однородную MBC с распределенной памятью, состоящую из процессоров $P_1, P_2 \dots P_N$ и host-процессора, имеющих следующие параметры:

- t время выполнения одной арифметической операции с плавающей запятой;
- d = d(N) диаметр коммуникационной сети;
- *l* длина вещественного числа в байтах;
- t_s латентность коммуникационной сети;
- t_c время передачи байта данных между двумя соседними процессорами системы без учета времени t_s .

В качестве меры эффективности параллельных вычислений используем ускорение

$$S_i(N) = \frac{T(1)}{T_i(N)},\tag{1}$$

где T(1) — время последовательного решения задачи на одном процессоре системы, $T_i(N)$ — время параллельного решения той же задачи на N процессорах, i=1,2 — номер метода балансировки.

Статическая балансировка загрузки

Положим, что из числа Z узлов расчетной сетки Ω множеству D_x принадлежит ζ узлов $\tilde{X}_1, \tilde{X}_2 \dots \tilde{X}_\zeta$. Обозначим $z = \left[\frac{\zeta}{N}\right]$. Тогда идею рассматриваемого метода бал ансировки загрузки можно представить в следующем виде (Рис. 1):

- среди всех узлов $X_1, X_2 \dots X_Z$ сетки Ω выделяем ζ узлов $\tilde{X}_1, \tilde{X}_2 \dots \tilde{X}_{\zeta};$
- разбиваем узлы $\tilde{X}_1, \tilde{X}_2 \dots \tilde{X}_\zeta$ на N множеств $\tilde{\Omega}_i, i \in [1, N]$, где множество $\tilde{\Omega}_1$ содержит узлы $\tilde{X}_1, \tilde{X}_2 \dots \tilde{X}_Z$, множество $\tilde{\Omega}_2$ узлы $\tilde{X}_{Z+1}, \tilde{X}_{Z+2} \dots \tilde{X}_{ZZ}$ и т.д.
- назначаем для обработки процессору P_i множеств узлов $\tilde{\Omega}_i$, $i \in [1:N]$.

Рис. 1. Балансировка загрузки методом равномерной декомпозиции узлов

Для данного метода балансировки загрузки время решения задачи на процессоре P_i можно оценить величиной

$$\tau_i = \tau = 2t_s + znldt_c + zmldt_c + tzC_f, \tag{2}$$

время параллельного решения всей задачи – величиной

$$T_2(N) = \tau, \tag{3}$$

а время решение задачи на одном процессоре величиной

$$T(1) = t\zeta C_f. \tag{4}$$

Таким образом, схема алгоритма для аналитической оценки эффективности балансировки загрузки методом равномерной декомпозиции расчетных узлов имеет следующий вид:

- в квадрате П строим равномерную по каждому из измерений сетку Ω ;
- находим количества узлов ζ , z;
- по формуле (2) вычисляем значение величины τ ;
- по формуле (3) находим величину $T_2(N)$;
- по формуле (4) определяем значение величины T(1);
- по формуле (1) находим оценку ускорения.

Экспериментальная часть

Рассмотрим двумерную задачу (n=2). Параллелепипед Π в этом случае представляет собой прямоугольник $\Pi=\{X|x_i^-\leq x_i\leq x_i^+, i\in[1,2]\}$. Положим, что $x_1^-=x_2^-=0$, $x_1^+=x_2^+=1$, так что область Π является квадратом (Рис. 2).

Рис. 2. Расчетная область задачи

Множество D формируется с использованием одной ограничивающей функции $g_1(X) \ge 0$, то есть $D = \{X | g_1(X) \ge 0\}$. Примем, что эта функция линейна и проходит через заданную преподавателем точку плоскости $O(x_1, x_2)$ с координатами (0, b), как показано на Рис. 2.

Таким образом, уравнение этой функции имеет вид $x_2 = ax_1 + b$, a > 0 В соответствии с номером варианта заданы значения параметров ограничивающей функции: a = 1.0, b = -0.1. Общее количество узлов Z = 256 * 256 = 65536, количество попавших в область D_x узлов $\zeta = 38971$ (принимаем равным 39168, как ближайшим кратным 256).

Параметры моделируемой МВС:

$$N = 2,4,8,16,32,64,128,256;$$
 $t_s = 50 * 10^{-6} c;$ $C_f = 10^2,10^3,10^4 c;$ $t_c = \frac{1}{80} * 10^{-6} c;$ $t_c = \frac{1}{80} * 10^{-6} c;$ $t_c = 10 * 10^{-9} c;$ $t_c = 10 * 10^{-9} c;$

Полученные значения матожиданий и среднеквадратичных отклонений значений ускорений для целевой функции со сложностями, равномерно распределенными в интервалах $C_f \in [0, C_f^{max}], C_f^{max} = 2 * 10^4, 2 * 10^6,$ приведены в Табл. 1, 2. Исходный код программы приведен в Приложении 1.

Табл. 1. Полученные результаты для различных N при r=1

N	$S, C_f^{max} = 2 \cdot 10^4$	$S, C_f^{max} = 2 \cdot 10^6$
2	0.99	1.98
4	1.31	3.89
8	1.57	7.61
16	1.74	14.5
32	1.84	26.7
64	1.90	46.4
128	1.92	73.6
256	1.94	105.1

Табл. 2. Полученные результаты для различных N при r=300

N	$S, C_f^{max} = 2 \cdot 10^4$		$S, C_f^{max} = 2 \cdot 10^6$	
	$M^*[S(N)]$	$\sigma^*[S(N)]$	$M^*[S(N)]$	$\sigma^*[S(N)]$
2	0.989	0.003	1.977	0.008
4	1.313	0.004	3.902	0.016
8	1.571	0.004	7.608	0.032
16	1.743	0.005	14.565	0.091
32	1.843	0.005	26.742	0.188
64	1.899	0.005	46.467	0.409
128	1.928	0.005	73.593	0.548
256	1.942	0.005	105.029	0.852

Рис. 3 $M^*[S(N)]$ для $C_f^{max} = 2 \cdot 10^6$

Рис. 4 $\sigma^*[S(N)]$ для $C_f^{max} = 2 \cdot 10^6$

Рис. 5 $M^*[S(N)]$ для $C_f^{max} = 2 \cdot 10^6$

Рис. 6 $\sigma^*[S(N)]$ для $C_f^{max} = 2 \cdot 10^6$

Ответы на контрольные вопросы

1. Чем объясняется наблюдаемый характер зависимостей ускорений S(N) и оценки математического ожидания ускорения $M^*[S(N)]$?

С ростом числа процессоров уменьшается количество полезных вычислений, совершаемых каждым процессором, при этом издержки на коммуникацию не уменьшаются – как следствие, уменьшается эффективность распараллеливания.

2. Чем объясняется наблюдаемый характер зависимости оценки математического ожидания ускорения $M^*[S(N)]$ от величины C_f^{\max} ?

С увеличением величины C_f^{max} уменьшается доля времени, затрачиваемого на коммуникацию между процессами, и увеличивается доля времени, затрачиваемого на вычисление функции в узлах, которое и делится между процессорами – как следствие, растет эффективность распараллеливания.

3. Чем объясняется наблюдаемый характер зависимости оценки среднего квадратичного отклонения $\sigma^*[S(N)]$ от величины C_f^{max} ?

Поскольку форма функции распределения величины ускорения S(N) не зависит от числа процессоров N, отношение между математическим ожиданием $M^*[S(N)]$ и средним квадратичным отклонением $\sigma^*[S(N)]$ также не зависит от N. По этой причине график среднего квадратичного отклонения повторяет график математического ожидания.

Исходный код программы

```
N proc EQU 256
points N EQU 39168
                                                  queue qhost2_par
                                                  seize host
t s EQU 50e-6
                                                 depart qhost2 par
m s EQU 100
                                                 advance 5e-6, \overline{3}e-6
1 s EQU 8
                                                 release host
t_c EQU 0.125e-7
                                                 assemble (N_proc)
N_gr EQU 2
                                                 assign 3,m1
d s EQU SQR(N proc)-1
z EQU points N/N proc
                                                 mark 2
tau i EQU 2
                                                 split (points N - 1)
t EQU 1e-9
uniform_cf_par FUNCTION rn2,c2
                                                 queue qhost1_posl
0,0.0/1,2e4
                                                 seize host
uniform_cf_posl FUNCTION rn3,c2
                                                 depart qhost1 posl
0,0.0/1,2e4
                                                 advance 5e-6,3e-6
proc par STORAGE 256
                                                 release host
proc posl STORAGE 1
us VARIABLE p4/p3
                                                 queue aproc posl
                                                 enter proc posl
tabl s TABLE v$us, 42, 0.25, 60
                                                 depart qproc_posl
generate 1e8,100
                                                 advance t, fn$uniform cf posl
split (N proc - 1)
                                                 leave proc posl
assign 1,z
                                                 queue qhost2
queue qhost1_par
                                                 seize host
seize host
                                                 depart qhost2
depart qhost1 par
                                                 advance 5e-6,3e-6
advance 5e-6,3e-6
                                                 release host
release host
                                                 assemble points_N
                                                 assign 4,mp2
queue qproc_par
enter proc par
depart qproc_par
                                                 tabulate tabl s
advance tau_i,1e-8
                                                 TERMINATE 1
proc2 advance t,fn$uniform cf par
                                                 START 30
loop 1,proc2
leave proc par
```