TC 2006B Interconexión de dispositivos

Direccionamiento

Tecnológico de Monterrey, Campus Querétaro

Agenda de esta sesión

- Direccionamiento físico
- Direccionamiento lógico
- Direccionamiento IPv4
- Clases de redes
- Dirección IP 127.0.0.1
- Direcciones privadas
- NAT
- Puerta de enlace o gateway

Direccionamiento

Red

IP (Internet Protocol)

Direccionamiento lógico

Enlace de datos

MAC (Media Access Control)

Direccionamiento físico

Direccionamiento Físico

MAC (Direccionamiento físico o de hardware)

- La dirección MAC es la dirección de la tarjeta de red.
- La dirección MAC es única e irrepetible

Una dirección MAC puede escribirse de dos formas:

Binaria (48)	11001000 00000001 00011001 00000111 11110010 1010010
Hexadecimales (12)	C8 01 19 07 F2 A4

Creador o constructor de la tarjeta	Número de serie
11001000 00000001 00011001	00000111 11110010 10100100
C8 01 19	07 F2 A4
2 ²⁴ creadores	2 ²⁴ dispositivos

Direccionamiento lógico

Direccionamiento IPv4

Diseñado al inicio de 1980

Se usan 4 bytes para identificar de manera única a cada dispositivo de red.

Una dirección IP puede escribirse de tres formas distintas:

Notación decimal	200.1.25.7		
Binaria	11001000 00000001	00011001	00000111
Hexadecimal	C8 01 19 07		

¿Cómo reconocer que parte pertenece a la red y que parte a un host?

Clases de redes

Cinco clases diseñadas : A, B, C, D, E

	Primer octeto	Segundo octeto	Tercer octeto	Cuarto octeto	Máscara de subred
Clase A	Network	Host	Host	Host	255.0.0.0
Clase B	Network	Network	Host	Host	255.255.0.0
Clase C	Network	Network	Network	Host	255.255.255.0

Máscara de subred (Subnetting Mask)

- Es un código numérico que forma parte de la dirección IP de las computadoras, tiene el mismo formato que la dirección IP, pero afecta sólo a un segmento particular de la red.
- Se utiliza para dividir grandes redes en redes menores, de tal manera que será la misma para las computadoras de una misma subred.

Clases de redes

Cinco clases diseñadas : A, B, C, D, E

Clase	Bytes reservados por la clase	Bytes para identificar Hosts	Máscara de subred
Α	1	3	255.0.0.0
В	2	2	255.255.0.0
С	3	1	255.255.255.0
D	0	4	No tiene
E	0	4	No tiene

Multicast Investigación

Clases de redes

Bytes para Network

Rango de cada clase en binario

Α	00000000	0 1111111
В	10 000000	10 111111
C	110 00000	110 11111
D	1110 0000	11101111
Е	1111 0000	11111111

Clases de redes

Clase D

- Estas direcciones IP están reservadas para multicast (multidifusión). Los datos de la multidifusión no están destinados para un host en particular.
- Los primeros cuatro bits del primer octeto se establecen en **1110**, dando una serie de:

• El resto de los bits se utilizan para identificar el grupo de computadoras al que el mensaje del multicast está dirigido. El rango de direcciones IP va de 224.0.0.0 a 239.255.255.255 y no tienen máscara de subred.

Clase E

- Estas direcciones IP están reservada para fines experimentales.
- Los primeros cuatro bits del primer octeto se establecen en 1111, por lo que las direcciones IP van de 240.0.0.0 a 255.255.255.254 y tampoco tienen máscara de subred.

Clases de redes

		Primer octeto	Segundo octeto	Tercer octeto	Cuarto octeto
en .	#bits	1 7		24	
Clase A		0 Network	Host	Host	Host
CI D	#bits	1 1	14]	16
Clase B		1 0 Network	Network	Host	Host
	#bits	1 1 1	21		8
Clase C	THE BUILD	1 1 0 Network		Network	Host

Clases de redes

Clase	Rango primer octeto	Número de redes		Número de hosts		Dirección de muestra
A	1-126	2 ⁷ – 1 *	127	2 ²⁴ - 2	16,777,214	10.15.121.5 00001010 00001111 01111001 00000101
В	128 - 191	214	16,384	2 ¹⁶ - 2	65,534	130.13.44.52 10000010 00001101 00101100 00110100
C	192 - 223	221	2,097,152	2 ⁸ - 2	254	200.15.23.8 11001000 00001111 00010111 00001000
D	224 - 239					
E	240 - 255					

^{*} La red 127 no se usa está reservada

Ejercicio de clase

¿A qué clase pertenecen las siguientes direcciones de red?

Dirección IPv4	Clase
127. 0. 0. 0	Α
65. 0. 0. 0	
192. 0. 0. 0	
172. 16. 0. 0	
225. 255. 254. 245	

El primer byte nos dice la clase a la que pertenece.

Dirección IP 127.0.0.1

- Está reservada para loopback.
- El dispositivo de red loopback es un interfaz de red virtual que siempre representa al propio dispositivo independientemente de la dirección IP que se le haya asignado.

- La interface loopback no está asociada con ningún tipo de hardware y no está físicamente conectada a la red.
- Se utiliza en tareas de diagnóstico de conectividad y validez del protocolo de comunicación. Se utiliza para checar que la tarjeta de red esté funcionando. Ping 127.0.0.1. Todas las tarjetas se conectan a esta dirección.

Direcciones privadas

Son direcciones de cada clase que no están asignadas.

Las direcciones privadas pueden ser utilizadas por:

- Los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública.
- Los hosts que no se conectan a Internet.

En una misma red no pueden existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten mediante el protocolo NAT (Network Address Translation - Traducción de Dirección de Red).

Las direcciones privadas son:

Clase A	10.X.X.X	10.0.0.0 a 10.255.255.255
Clase B	172.16.X.X – 172.31.X.X	172.16.0.0 a 172.31.255.255
Clase C	192.168.X.X	192.168.0.0 a 192.168.255.255

NAT (Network Address Translation)

Su uso más común es permitir utilizar direcciones privadas para acceder a Internet.

Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles.

NAT (Network Address Translation)

Si el número de direcciones privadas es muy grande puede usarse solo una parte de direcciones públicas para salir a Internet desde la red privada. De esta manera simultáneamente sólo pueden salir a Internet con una dirección IP tantos equipos como direcciones públicas se hayan contratado.

Direccionamiento

Puerta de enlace o Gateway

Es normalmente un equipo informático configurado para dotar a las máquinas de una red local (LAN) conectadas a él de un acceso hacia una red exterior.

