Vertiefungskurs Mathematik

Beweismethoden

Direkter Beweis

Mathematische Sätze sind meist als $A \Rightarrow B$ formuliert.

Lies: 'Aus A folgt B' oder 'A impliziert B' oder 'Wenn A wahr ist, dann ist auch B wahr'.

Statt 'A ist wahr' sagt man auch 'A gilt'.

Man nennt dann A die Voraussetzung und B die Behauptung.

Beim *direkten Beweis* geht man davon aus, dass A wahr ist und folgert durch eine Kette gültiger Argumente, dass dann auch B wahr ist.

Beispiel

Satz: Teilt eine natürliche Zahl t zwei ganze Zahlen a und b, dann teilt t auch deren Summe.

Beweis: Da t die Zahlen a und b teilt, kann man a und b darstellen als $a=t\cdot k$ und $b=t\cdot l$ für geeignete $k,l\in\mathbb{Z}$. Damit gilt:

$$a+b=t\cdot k+t\cdot l=t\cdot (k+l)$$
. Da $(k+l)\in\mathbb{Z}$, teilt t auch $a+b$.

Für die eigenen Überlegungen kann es sinnvoll sein, sich Voraussetzung und Behauptung explizit hinzuschreiben und die Argumentation mit mathematischen Symbolen zu entwerfen.

Voraussetzung: $t \in \mathbb{N}$, $a, b \in \mathbb{Z}$, t|a und t|b

Behauptung: t|(a+b)

Beweis:

$$t|a \wedge t|b$$

$$\Rightarrow \exists k, l \in \mathbb{Z} : a = k \cdot t \wedge b = l \cdot t$$

$$\Rightarrow a + b = k \cdot t + l \cdot t = (k+l) \cdot t$$

$$\Rightarrow t|(a+b)$$

Die 'mathematische Etikette' verlangt, dass man viel Wert auf Begleittext legt und so wenig Folgepfeile und Junktoren wie möglich verwendet.

Indirekter Beweis - Kontraposition

Will man den Satz $A \Rightarrow B$ beweisen, so kann man auch seine *Kontraposition* beweisen.

$$\neg B \Rightarrow \neg A$$

Satz: Sei $n \in \mathbb{N}$. Wenn n^2 gerade, dann ist auch n gerade.

Kontraposition: Sei $n \in \mathbb{N}$. Wenn n ungerade, dann ist auch n^2 ungerade.

Beweis der Kontraposition: Als ungerade Zahl lässt sich n als n=2k+1 mit einem $k \in \mathbb{N}$ darstellen. Für das Quadrat von n gilt daher:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

Also ist n^2 ungerade.

Indirekter Beweis - Widerspruchsbeweis

Man geht davon aus, dass die zu beweisende Aussage falsch ist und führt dies zu einem Widerspruch.

Satz: Es gibt unendliche viele Primzahlen.

Beweis: Annahme, es gäbe nur endlich viele Primzahlen $p_1, p_2, ...p_n$. Wir bilden $m = p_1 \cdot p_2 \cdot ... \cdot p_n + 1$. Da m größer ist als jedes $p_1, ..., p_n$, kann es keines dieser p_i , also keine Primzahl sein. m besteht aus Primfaktoren, wir nehmen an, dass Primzahl p_k als Faktor vorkommt. Dann gilt:

$$m=p_k\cdot t=p_1\cdot p_2\cdot ...\cdot p_n+1$$
 für ein $t\in\mathbb{N}$. Also gilt: $p_k\cdot t-p_1\cdot p_2\cdot ...\cdot p_n=1$. Ausklammern von p_k ergibt: $p_k\cdot (t-p_1\cdot p_2\cdot ...(\text{ohne }p_k)...\cdot p_n)=1$.

Das ist unmöglich, da p_k als Primzahl größer als 1 ist und der Term in der Klammer kein Bruch ist. \Box

Satz: $\sqrt{2}$ ist irrational.

Beweis: Annahme $\sqrt{2}$ ist rational , dann lässt sich $\sqrt{2}$ darstellen als vollständig gekürzter Bruch $\frac{p}{q}$. Damit gilt $2 \cdot q^2 = p^2$, also ist p^2 gerade und damit auch p. Also lässt sich p darstellen als p = 2k mit geeignetem $k \in \mathbb{N}$. Eingesetzt in die Gleichung ergibt sich: $2 \cdot q^2 = 4 \cdot k^2$. Daraus folgt $q^2 = 2 \cdot k^2$, also ist q^2 gerade und damit auch q. Da p und q beide gerade sind, ist $\frac{p}{q}$ kein vollständig gekürzter Bruch, im Widerspruch zur Annahme.

Beweis durch vollständige Induktion

Die vollständige Induktion ist ein Beweisverfahren, das in folgender Situation angewendet wird: Zu jeder natürlichen Zahl n ist eine Aussage A(n) gegeben, deren Gültigkeit man beweisen will.

Dazu beweist man:

- (IA) Induktionsanfang: A(1) ist wahr.
- (IS) Induktionsschritt: Wenn A(n) wahr ist, dann ist auch A(n+1) wahr.

Im Induktionsschritt nennt man die Annahme, dass A(n) wahr ist, Induktionsvoraussetzung (IV).

Das Summenzeichen

In den Sätzen, die wir mit vollständiger Induktion beweisen werden, wird manchmal das Summenzeichen benutzt:

$$\sum_{k=1}^{20} k = 1 + 2 + 3 \dots + 19 + 20$$

Weitere Beispiele:

$$\sum_{k=1}^{n} k = 1 + 2 + 3 \dots + n$$

$$\sum_{j=0}^{n} (2j+1) = 1 + 3 + 5 + \dots + (2n+1)$$

$$\sum_{j=0}^{n} a^{j} b^{n-j} = a^{0} b^{n} + a^{1} b^{n-1} + a^{2} b^{n-2} + \dots + a^{n-1} b^{1} + a^{n} b^{0}$$

Satz: Für alle
$$n \in \mathbb{N}$$
 gilt: $\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$

Beweis durch vollständige Induktion:

IA: Für n=1 stimmt die Formel, denn $1 = \frac{1}{2} \cdot 1 \cdot 2$

IS: Wir nehmen an, die Formel gilt für n. Wir müssen zeigen:

$$1+2+...+n+(n+1)\stackrel{!}{=}\frac{1}{2}(n+1)(n+2).$$
 (1)

Mit der Induktionsvoraussetzung berechnet sich die linke Seite zu:

$$1+2+...+n+(n+1)\stackrel{\text{IV}}{=} \frac{1}{2}n(n+1)+(n+1)=\frac{1}{2}n^2+\frac{3}{2}n+1$$

Die rechte Seite von (1) berechnet sich zu:

$$\frac{1}{2}(n+1)(n+2) = \frac{1}{2}(n^2 + 2n + n + 2) = \frac{1}{2}n^2 + \frac{3}{2}n + 1.$$

Also gilt Gleichung (1).