

Advance Technical Information

X-Class HiPerFET™ Power MOSFET

IXFN90N85X

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

V _{DSS}	=	850V
I _{D25}	=	90A
R _{DS(on)}	≤	$41 \text{m}\Omega$

G = Gate	D = Drain
S = Source	

Symbol	Test Conditions		Maximum Ratings		
V _{DSS} V _{DGR}	$T_{J} = 25^{\circ}\text{C to } 150^{\circ}$ $T_{J} = 25^{\circ}\text{C to } 150^{\circ}$		850 850	V	
V _{GSS} V _{GSM}	Continuous Transient		± 30 ± 40	V	
I _{D25}	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$, Pulse	Width Limited by T _{JM}	90 180	A A	
I _A E _{AS}	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$		45 4	A J	
P_{D}	T _C = 25°C		1200	W	
dv/dt	$I_{\rm S} \le I_{\rm DM}, V_{\rm DD} \le V_{\rm DSS}, T_{\rm J} \le 150^{\circ}{\rm C}$		50	V/ns	
T _J T _{JM} T _{stg}			-55 +150 150 -55 +150	0° 0° 0°	
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1mA	t = 1 minute t = 1 second	2500 3000	V~ V~	
M _d	Mounting Torque Terminal Connect		1.5/13 1.3/11.5	Nm/lb.in Nm/lb.in	
Weight			30	g	

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500V~
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

		cteristic Values Typ. Max.				
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$		850			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$		3.5		5.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	T _J = 125°C			50 5	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 45A, Note 1$	1			41	mΩ

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)		Char Min.	aracteristic Values Typ. Max		
g _{fs}	$V_{DS} = 10V, I_{D} = 45A, Note 1$	37	62	S	
R_{Gi}	Gate Input Resistance		0.60	Ω	
C _{iss}			13.3	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		13.0	nF	
C _{rss}			220	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\begin{cases} V_{GS} = 0V \\ V_{DS} = 0.8 \cdot V_{DSS} \end{cases}$		395	pF	
$\mathbf{C}_{o(tr)}$	Time related $\int V_{DS} = 0.8 \cdot V_{DSS}$		1820	pF	
t _{d(on)}	Resistive Switching Times		50	ns	
t, }	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 45A$		20	ns	
t _{d(off)}	$R_{\rm G} = 10$ (External)		126	ns	
t,	$n_{\rm G} = 152 (\text{External})$		8	ns	
$Q_{g(on)}$			340	nC	
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \bullet V_{DSS}$, $I_D = 45A$		78	nC	
Q _{gd}			190	nC	
R _{thJC}				0.104 °C/W	
R _{thCS}			0.05	°C/W	

Source-Drain Diode

Symbol Test Conditions		Characteristic Values			
$(T_J = 25^{\circ}C)$, Unless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			90	A
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			360	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr}	$I_{\rm E} = 45A$, -di/dt = 200A/ μ s		250		ns
Q _{RM}	,		5.3		μC
I _{RM}	$V_{R} = 100V, V_{GS} = 0V$		42.0		Α

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

I_D - Amperes

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

