

Escuela Universitaria Ingeniaritzako de Ingenieria Unibertsitate Eskola

CONVOCATORIA ORDINARIA

GRADO EN INGENIERÍA INFORMÁTICA DE GESTIÓN Y SISTEMAS DE INFORMACIÓN

Curso 2012-2013

1. (0,75 ptos) Calcular la función $f : \mathbb{R} \to \mathbb{R}$ definida y continua, así como la constante $C \in \mathbb{R}$ para que se verifique la ecuación $\int_0^x f(t) dt = \int_x^1 f(t) dt + \frac{x^7}{7} + \frac{x^6}{6} + C$.

2. (1,25 ptos) a) Demostrar que el área encerrada por una elipse de semiejes a y b es $S=\pi ab$.

b) Calcular el volumen de un cono de altura 6 cm y base una elipse de semiejes 3 y 2 cm.

3. (1 pto) Resolver la ecuación diferencial $x(\ln x - \ln y) dy - y dx = 0$.

4. (1 pto) Resolver la ecuación
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 2x^2 e^{4x}$$
.

5. (0,75 ptos) Hallar todas las soluciones de la ecuación
$$\left(\frac{dy}{dt}\right)^2 - t\frac{dy}{dt} + y = 0$$

6. (1,25 ptos) Resolver la ecuación $Y'' + Y = 2\cos t$, con las condiciones iniciales Y(0) = 0;

Y'(0)=0, sabiendo que
$$\mathcal{L}\{\sin t\} = \frac{1}{s^2 + 1}$$
, $\mathcal{L}\{\cos t\} = \frac{s}{s^2 + 1}$

7. (1 pto) Sea la función $f(x) = \begin{cases} -1, & x \in [-\pi, 0) \\ 1, & x \in [0, \pi) \end{cases}$, periódica de periodo $T = 2\pi$. Obtener su serie de Fourier y analizar su convergencia.

TIEMPO: 3 HORAS

bla Universitaria de Ingeniaritzako Unibertsitate Eskol

CONVOCATORIA ORDINARIA

Cambios en integrales irracionales

1) Si son del tipo
$$\int R(x, \sqrt{a^2 - x^2}) dx$$
 haremos: $\sqrt{a^2 - x^2} = a \sin t$ \Leftrightarrow $x = a \cos t$

2) Si son del tipo
$$\int R(x, \sqrt{a^2 + x^2}) dx$$
 haremos: $\sqrt{a^2 + x^2} = \frac{a}{\cos t}$ \Leftrightarrow $x = a \tan t$

3) Si son del tipo
$$\int R(x, \sqrt{x^2 - a^2}) dx$$
 haremos: $\sqrt{x^2 - a^2} = a \tan t$ \Leftrightarrow $x = a \sec t$

Métodos abreviados

a) Si Q(x) es de la forma e^{ax} ,

$$y = \frac{1}{F(D)}e^{ax} = \frac{1}{F(a)}e^{ax}, \text{ si } F(a) \neq 0.$$

b) Si Q(x) es de la forma sen(ax+b) o cos(ax+b)

$$y = \frac{1}{F(D^2)} sen(ax + b) = \frac{1}{F(-a^2)} sen(ax + b), \quad si \quad F(-a^2) \neq 0.$$

c) Si Q(x) es de la forma x^m.

$$y = \frac{1}{F(D)}x^{m} = (a_{0} + a_{1}D + a_{2}D^{2} + \dots + a_{m}D^{m})x^{m}$$
 con $a_{0} \neq 0$

d) Si Q(x) es de la forma $e^{ax}V(x)$.

$$y = \frac{1}{F(D)} e^{ax} V(x) = e^{ax} \frac{1}{F(D+a)} V(x).$$

e) Si Q(x) es de la forma xV(x).

$$y = \frac{1}{F(D)}xV(x) = x\frac{1}{F(D)}V(x) - \frac{F'(D)}{[F(D)]^2}V(x).$$

cuela Universitaria Ingeniaritzako de Ingenieria Unibertaltate Eskol

CONVOCATORIA ORDINARIA

Para estudiantes que se acogen al artículo 43 apartado c de la normativa de gestión para las enseñanzas de grado del presente curso

Curso 2012-2013

- **1.** (0,75 ptos) Calcular la función $f : \mathbb{R} \to \mathbb{R}$ definida y continua, así como la constante $C \in \mathbb{R}$ para que se verifique la ecuación $\int_0^x f(t) dt = \int_x^1 f(t) dt + \frac{x^7}{7} + \frac{x^6}{6} + C$.
- 2. (1,25 ptos) a) Calcular el área encerrada por una elipse de semiejes a y b.
- b) Calcular el volumen de un cono de altura 6 cm y base una elipse de semiejes 3 y 2 cm.
- **3.** (1 pto) Resolver la ecuación diferencial $x(\ln x \ln y) dy y dx = 0$.
- **4.** (1 pto) Resolver la ecuación $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 3y = 2x^2 e^{4x}$.
- **5.** (0,75 ptos) Hallar todas las soluciones de la ecuación $\left(\frac{dy}{dt}\right)^2 t\frac{dy}{dt} + y = 0$
- **6.** (1,25 ptos) Resolver la ecuación $Y'' + Y = 2\cos t$, con las condiciones iniciales Y(0) = 0;

Y'(0)=0, sabiendo que
$$\mathcal{L}\{\sin t\} = \frac{1}{s^2 + 1}$$
, $\mathcal{L}\{\cos t\} = \frac{s}{s^2 + 1}$

- 7. (1 pto) Sea la función $f(x) = \begin{cases} -1, & x \in [-\pi, 0) \\ 1, & x \in [0, \pi) \end{cases}$, periódica de periodo $T = 2\pi$. Obtener su serie de Fourier y analizar su convergencia.
- **8. a)** (1 **pto**) Sea la ecuación diferencial $y' = \frac{2y}{x} + xy^2 x^5$. Calcular una solución particular de la forma $y_1 = Kx^2y$ resolver la ecuación diferencial haciendo el cambio $z = y y_1$.
- **b)** (1 **pto**) Sea g(x) una función con derivada segunda en [a,b]. Las tangentes a la curva y=g(x) en los puntos de abscisas a y b forman con OX ángulos cuyos valores son $\frac{\pi}{3}y\frac{\pi}{4}$ respectivamente. Calcular $\int_a^b g''(x) dx$ y $\int_a^b g'(x).g''(x) dx$.
- c) (1 pto) Si $\mathcal{L}\left\{e^{t}F(t)\right\} = \frac{1}{s^{2}-2s+2}$, calcular la transformada de Laplace de las funciones $e^{3t}F(t)$;

$$\frac{e^{3t}F(t)}{t}; \frac{F(t)}{t} \ y \ \int_0^\infty \frac{F(t)}{t} dt \ .$$

TIEMPO: 3 HORAS Y MEDIA

ela Universitaria Ingeniaritzako de Ingenieria Unibertsitate Eskol

CONVOCATORIA ORDINARIA

Cambios en integrales irracionales

4) Si son del tipo
$$\int R(x, \sqrt{a^2 - x^2}) dx$$
 haremos: $\sqrt{a^2 - x^2} = a \sin t$ \Leftrightarrow $x = a \cos t$

5) Si son del tipo
$$\int R(x, \sqrt{a^2 + x^2}) dx$$
 haremos: $\sqrt{a^2 + x^2} = \frac{a}{\cos t}$ \iff $x = a \tan t$

6) Si son del tipo
$$\int R(x, \sqrt{x^2 - a^2}) dx$$
 haremos: $\sqrt{x^2 - a^2} = a \tan t$ \Leftrightarrow $x = a \sec t$

Métodos abreviados

f) Si Q(x) es de la forma e^{ax} ,

$$y = \frac{1}{F(D)}e^{ax} = \frac{1}{F(a)}e^{ax}$$
, si $F(a) \neq 0$.

g) Si Q(x) es de la forma sen(ax+b) o cos(ax+b)

$$y = \frac{1}{F(D^2)} sen(ax + b) = \frac{1}{F(-a^2)} sen(ax + b), si F(-a^2) \neq 0.$$

h) Si Q(x) es de la forma x^m .

$$y = \frac{1}{F(D)}x^{m} = (a_{0} + a_{1}D + a_{2}D^{2} + \dots + a_{m}D^{m})x^{m}$$
 con $a_{0} \neq 0$

i) Si Q(x) es de la forma $e^{ax}V(x)$.

$$y = \frac{1}{F(D)}e^{ax}V(x) = e^{ax}\frac{1}{F(D+a)}V(x).$$

j) Si Q(x) es de la forma xV(x).

$$y = \frac{1}{F(D)}xV(x) = x\frac{1}{F(D)}V(x) - \frac{F'(D)}{\big[F(D)\big]^2}V(x).$$