Unique in the data

Unique in the Crowd: The privacy bounds of human mobility Unique in the Shopping Mall: On the reidentifiability of credit card

Roteiro

A seguir...

- Apresentação
- Datasets
- Metodologia
- Resultados

Apresentação

- Yves-Alexandre de Montjoye
- Os artigos seguem a mesma linha de pesquisa
 - Analisar a unicidade dos dados em um dataset.
- Unicidade é o risco de re-identificação de um usuário em um dataset anônimo
 - A partir de dados externos.
- Os datasets utilizados são anônimos
 - Nenhum identificador: nome, endereço, números...

Unique in the Crowd

- Dados de mobilidade do usuários
- ~1.5 milhão de usuários de uma operadora telefônica
- Dados coletados entre o período de Abril 2006 a Junho 2007
- Pontos espaço-temporais:
 - Hora e localização da antena.
- Diagrama de Voronoi
 - A metade da distância máxima entre as antenas.

Unique in the Shopping Mall

- Dados de transações com cartão de crédito
- ~1.1 milhão de pessoas de um país da OECD¹
 - Gênero (24% mulheres)
 - Renda (39% baixa, 35% média, 22% alta, 4% UNK)
- Dados coletados entre o período de Janeiro a Março
- Pré-processamento:
 - 138 transações com valores maiores que \$22.800
- Pontos espaço-temporais:
 - O Dia e loja (tupla)
 - Dia, loja e preço (tripla)*

¹Organisation for Economic Co-operation and Development (Organização para a Cooperação e Desenvolvimento Econômico)

Metodologia

Avaliar a unicidade &

Utilizado em ambos

Metodologia

- Dataset (D)
- Dado um conjunto de p pontos espaço-temporais I_p
 - Selecionados aleatoriamente e previamente conhecidos
- Para cada usuário, extrair de D um subconjunto S(I₂)
 - O Que contém exatamente os p pontos de l_p
- Um usuário é identificado se |S(I_p)| = 1
 - Ou seja, se apenas ele corresponde ao "rastro" de p pontos
- ε_p é a porcentagem de usuários identificáveis com p pontos

Exemplo¹

- Sabemos que João:
 - Frequentou uma padaria em 23/09
 - Frequentou um restaurante em 24/09
- Dado 2 pontos p, apenas um subconjunto S(I_p)
 - \circ $|S(I_p)| = 1$
- Logo...
 - o 7abc1a23 = João
- Agora sabemos tudo...

shop	user_id	time	price	price_bin
	7abc1a23	09/23	\$97.30	\$49 – \$146
	7abc1a23	09/23	\$15.13	\$5 – \$16
(F)	3092fc10	09/23	\$43.78	\$16 – \$49
	7abc1a23	09/23	\$4.33	\$2 – \$5
(a)	4c7af72a	09/23	\$12.29	\$5 – \$16
	89c0829c	09/24	\$3.66	\$2 – \$5
X	7abc1a23	09/24	\$35.81	\$16 – \$49

¹Retirado do artigo: Unique in the Shopping Mall: On the reidentifiability of credit card

Unique in the Crowd

- Imagem A representa um exemplo similar ao anterior
- Imagem B mostra a razão entre a unicidade e o número de pontos
 - Com apenas 4 pontos aleatórios, é possível identificar 95% dos indivíduos
 - o 2 pontos é o suficiente para identificar metade dos indivíduos
- Imagem C diz que até no máximo 11 pontos é suficiente para identificar todos os indivíduos

- 114 interações por usuário por mês
- 6500 antenas
 - ~2000 habitantes por antena
- Forte correlação entre o número de antenas e a densidade da população ($R^2 = 0.6426$)

Imagens A e B não foram discutidas no artigo

- ε depende da resolução espacial e temporal dos dados
- Redução na resolução dos dados
 - Maior granularidade
 - Agrupamento de antenas e aumento da janela de *h* horas
- A(p = 4)
- B (p = 10)

• A unicidade de um "rastro" diminui conforme a função de potência

$$\varepsilon = \alpha - x^{\beta}$$

• Ambos os estimadores para α e β são altamente significativos (p < 0,001)

Unique in the Shopping Mall

- Resultados semelhantes ao trabalho anterior
- Apenas 4 pontos identificam cerca de 90% dos indivíduos
- Barra verde = (dia, loja)
- Barra azul = (dia, loja, preço)

- Lojas distribuídas ao longo do país
- Correlação com a densidade da população (R² = 0.51, P < 0.001)

- O preço da transação pode ser usado na reidentificação
- Tripla (dia, loja, preço)
- Preço intervalado, seguido por uma resolução a
- Aumento de 22%, em média

A

Bin#	Range
0]0.2, 0.6]
1]0.6, 1.8]
2]1.8, 5.4]
3]5.4, 16.2]
4]16.2, 48.6]
5]48.6, 145.8]
6]145.8, 437.4]
7]437.4, 1312.2]
8]1312.2, 3936.6]
9]3936.6, 11809.8]
10]11809.8, 35429.4]

в

Bin#	Range
0]0.1, 0.7]
1]0.7, 4.9]
2]4.9, 34.3]
3]34.3, 240.1]
4]240.1, 1680.7]
5]1680.7, 11764.9]
6]11764.9, 82354.3]

• Resolução dos dados

- A seleção de pontos é aleatória
- Maior concentração de pontos
- No máximo 7 pontos, até para o pior caso

Fim.

Obrigado!

Perguntas?