

Engenharia Eletrotécnica e de Computadores

Automação de uma Fábrica Industrial – Separação de Materiais

Automação

João Sampaio 18611 João Sousa 19408 Tiago Carvalho 18601

02-07-2023

Resumo

Este relatório tem por objetivo a avaliação da componente prática da unidade curricular de Automação e pretende-se desenvolver um projeto de automação com base no uso de autómatos, sensores e atuadores. Os autómatos e os seus periféricos servem para diversas funções, mas neste projeto serão usados na construção de uma fábrica industrial virtual.

O processo de desenvolvimento passou por compreender o funcionamento do autómato, ou seja, como é que se ativavam as saídas e liam as entradas, para depois ser possível utilizar as do software de simulação, o factory.io. Definição de bits, definição de espaços de memoria, comunicação MODBUS, montagem da fábrica, elaboração de grafcet, extração de equações de entrada e saída, mapa de entradas e saída, programação, elaboração de interface homem-máquina, testes, tudo de modo a ser possível obter o melhor resultado possível.

Como resultado foi possível completar o projeto, com a fábrica virtual 100% funcional, um painel de controlo físico com botões e Leds de indicação linha em produção, e uma interface homem-máquina onde é possível visualizar dados e comandar a fábrica tal como no painel de controlo físico.

Índice

1.	. Cor	texto	2
	1.1.	Tecnologias Utilizadas	3
2.	. Cor	figurações Iniciais	4
3.	Des	crição Técnica	5
	3.1.	Entrada no Sistema e Pesagem dos Materiais	5
	3.1.1.	Grafcets	7
	3.1.2.	Equações de Transição e Saída	8
	3.2.	Processamento de Peças	9
	3.2.1.	Grafcet	. 11
	3.2.2.	Equações de Transição e Saída	. 13
	3.3.	Processamento de Caixas de Papel	. 15
	3.3.1.	Grafcet	. 16
	3.3.2.	Equações de Transição e de Saída	. 17
4.	Pro	gramação do PLC	. 19
	4.1.	Pesagem	. 19
	4.2.	Pick and Place - Etiquetagem e KUKA	. 20
	4.2.1.	Etiquetagem	. 20
	4.2.2.	KUKA - Pick and Place	. 21
	4.0		
	4.3.	Sensor de Visão	. 22
	4.3.4.4.	Sensor de Visão	
5.	4.4.		. 23
5.	4.4.	Medição da altura	. 23 . 24
5.	4.4. . Enti	Medição da alturaadas e saídas físicas	. 23 . 24 . 24
5.	4.4. . Enti 5.1.	Medição da alturaadas e saídas físicas	. 23 . 24 . 24 . 25
5.	4.4. Enti 5.1. 5.2.	Medição da altura radas e saídas físicas Esquema Elétrico das Montagens Físicas Paragem de Emergência	. 23 . 24 . 24 . 25
5.	4.4. Entr 5.1. 5.2. 5.3.	Medição da altura radas e saídas físicas Esquema Elétrico das Montagens Físicas Paragem de Emergência Paragem do sistema	. 23 . 24 . 24 . 25 . 26
5.	4.4. 5.1. 5.2. 5.3. 5.4. 5.5.	Medição da altura adas e saídas físicas Esquema Elétrico das Montagens Físicas Paragem de Emergência Paragem do sistema Sinalização luminosa	. 23 . 24 . 25 . 26 . 27
	4.4. 5.1. 5.2. 5.3. 5.4. 5.5.	Medição da altura	. 23 . 24 . 25 . 26 . 27 . 28

	6.2.	Caixas de Papel	29
	6.3.	Peças Azuis	30
	6.4.	Movimentação entre Janelas	31
	6.5.	Comunicação HMI (NBDesigner-Sysmac)	32
7	'. Ane	exos	34
	7.1.	Entrada no Sistema e Pesagem dos Materiais	34
	Ane	exos I – Grafcet Nível 1	34
	Ane	exos I – Grafcet Nível 2	35
	7.2.	Processamento de Caixas	36
	Ane	exos II - Grafcet Nível 1	36
	Ane	exos II - Grafcet Nível 2	37
	7.3.	Processamento de Peças	38
	Ane	exos III - Grafcet Nível 1	38
	Ane	exos III - Grafcet Nível 2	39
	7.4.	Etapas Especiais	40
	Ane	exos IV – Grafcet	40
	7.5.	Mapa de Saídas e Entradas	41
	7.6.	Esquema Elétrico	42

Índice de Figuras

Figura 1 - A Vermelho pode-se observar o tamanho das matrizes de comunicação e os
espaços de memória onde estão alocados, a azul pode-se ver a quantidade de entradas
e saídas, e o seu tipo, que se pretende ler4
Figura 2 - Zona da fábrica virtual onde é feita a seleção e pesagem dos materiais 6
Figura 3 - Grafcet Nível 1 - Seleção do material e pesagem: Aqui registam-se os aspetos
funcionais que constituem um caderno de encargos especificado7
Figura 4 - Grafcet Nível 2 - Seleção do material e pesagem: Aqui os aspetos tecnológicos
já surgem com a definição precisa de entradas e saídas7
Figura 5 - Zona na fábrica virtual onde são processadas as peças. Na esquerda a zona
de separação de material cru. Ao centro o robô da KUKA que realiza a transformação.
Na direita a zona de separação final pós peça criada10
Figura 6 – Excerto Grafcet Nível 1 - Processamento de peças: Aqui registam-se os
aspetos funcionais que constituem um caderno de encargos especificado11
Figura 7 - Excerto Grafcet Nível 2 - Processamento de peças: Aqui os aspetos
tecnológicos já surgem com a definição precisa de entradas e saídas12
Figura 8 - Zona da fábrica de processamento de caixas. Medição da altura realizada no
sensor ao centro do tapete. Separação através dos pneumáticos para as rampas.
Removidas no final15
Figura 9 - Excerto Grafcet Nível 1 - Processamento de caixas: Aqui registam-se os
aspetos funcionais que constituem um caderno de encargos especificado16
Figura 10 - Excerto Grafcet Nível 2 - Processamento de caixa: Aqui os aspetos
tecnológicos já surgem com a definição precisa de entradas e saídas16
Figura 11 – Excerto de programação ladder para a aquisição do valor do peso e seleção
da etapa seguinte. O valor é lido e guardado numa variável que é usada para realizar a
comparação entre o peso de referência e permitir a separação. Valor enviado para a
HMI. Timer de 5 segundos para garantir uma leitura correta19
Figura 12 - Excerto de código onde se compara o peso lido com as referências para
cada caixa, e move-se o valor para o respetivo eixo vertical da pick-and-place20
Figura 13 - Etapa das Pick-and-Place, onde existe uma verificação da posição do eixo
horizontal, em relação à posição correta21
Figura 14 - Excerto de programação ladder para a aquisição do tipo de peça (raw
Figura 14 - Excerto de programação ladder para a aquisição do tipo de peça (raw material, lid ou base). A leitura do valor lido no sensor (1,2 ou 3) é guardado numa

Figura 15 - Excerto de programação ladder para a leitura do tamanho das caixas
(pequenas, médias e grandes). A leitura do valor lido no sensor é guardada numa
variável. Essa variável é comparada com as referências e o programa segue para a
etapa correspondente
Figura 16 - Esquema elétrico da montagem do painel de controlo, incluindo o autómato,
switch, hmi e todos os botões e leds24
Figura 17 - Entradas e saídas físicas declaradas no mapa de IO´s do Sysmac24
Figura 18 - Excerto de código onde qualquer um dos ativadores de emergência pode
ser ativo. Verifica-se a última etapa não é a 100, para não ficar num estado bloqueante
e guarda a última etapa onde se encontrava, entrando depois na etapa de emergência
25
Figura 19 - Excerto de código onde se executa o início da fábrica. Em cima verificamos
que quando o botão de início físico ou na HMI é pressionado e o botão de stop não está
encravado, o sistema avança para a etapa seguinte de acordo com a seleção da chave
de duas posições, no caso de o botão estar encravado o sistema fica em pausa, e se
for carregado o botão de reset físico ou na HMI, os contadores são resetados26
Figura 20 - Botoneira com o botão de início da linha(start), e á sua esquerda tem o led
vermelho que indica paragem da linha, em seguida led amarelo que indica a paragem
de emergência. Por último o led verde que indica que a linha está em funcionamento.
de emergência. Por último o led verde que indica que a linha está em funcionamento.
27
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas
Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas

Índice de Tabelas

Tabela 1 - Etapas de transição da secção de seleção de material e pesagem	8
Tabela 2 - Etapas de saída da secção de seleção de material e pesagem	8
Tabela 3 - Etapas de transição da secção de processamento de peças de plástico	13
Tabela 4 - Etapas de saída da secção de processamento de peças	14
Tabela 5 - Etapas de transição da secção de processamento caixas	17
Tabela 6 - Etapas de saída da secção de processamento de caixas	18
Tabela 7 - Equações de transição e saída para o processo de emergência	25
Tabela 8 - Etapa de transição para o reset dos contadores de caixas e peças	26

Lista de Acrónimos

PLC - Programmable Logic Controller

HMI - Human Machine Interface

NO - Normalmente Aberto

NC - Normalmente Fechado

ms - Milissegundos

PP - Pick and Place

But – Botão

Emerg – Emergência

Conv - Conveyor

IR - Infrared Sensor

NBD - NB-Designer

Introdução

Uma linha industrial pode ser de vários tipos, nomeadamente manual ou automatizada, quando é este o caso, é controlada com um computador industrial, mais conhecido como autómato. Este dispositivo controla os sensores e atuadores durante todos os processos, executando ações para as quais foi programado.

Nesta linha de separação dois tipos de material são dispensados de acordo com o desejo do operador, são pesados e com base no seu peso têm processos de tratamento diferentes.

As peças de plástico são separadas em tampas e bases, e quando o material é cru, ou seja, não foi transformado em base ou tampa, é necessário realizar a sua transformação e depois a sua devida separação.

As caixas passam por um processo de medição e depois são separadas pelo tamanho.

1. Contexto

Como neste trabalho o objetivo é fazer uma simulação de uma linha de produção automatizada, foi escolhido o tema de separação e processamento de materiais.

Para que o trabalho seja completado com sucesso, foram estabelecidos alguns requisitos, tais como:

- Programação de um PLC físico NX;
- Utilização de 5 ou mais entradas físicas digitais;
- Utilização de 3 ou mais atuadores físicos digitais.

Criação da fábrica virtual com recurso ao Factory.IO, com um mínimo de:

- o 25 entradas digitais;
- 25 saídas digitais;
- o 6 entradas analógicas;
- o 6 saídas analógicas.

Os requisitos de funcionamento da fábrica são os seguintes:

- Gerar dois tipos de materiais diferentes;
- Pesagem de todos os materiais;
- Processamentos diferentes dos materiais de acordo com o peso;
- Etiquetagem de todos os materiais;
- Medição da altura das caixas de papel;
- Separação das caixas de papel de acordo com a altura;
- Remoção das caixas e contagem do número de caixas por tamanho;
- Separação das peças de plástico de acordo com o seu tipo;
- Processamento das peças de plástico em material cru;
- Selecionar o tipo de caixa final quando o material cru é transformado;
- Remoção das peças e contagem do número de peças por tipo;
- Processamento por unidade;
- Inicio da separação através de um botão de start;
- Paragem da separação através de um botão de stop;
- Botoneira com Leds de indicação de atividade;
- Painel de ecrãs com contagem de todos os materiais;
- Seletor para tipo de material a ser gerado;

- Botão para o reset dos valores dos contadores;
- Botão de emergência que pára imediatamente o processamento;
- Porta de acesso que para a produção quando esta aberta;
- Interface Homem-Máquina;
- Utilização de um tapete analógico;

Para facilitar a organização do trabalho, após ser projetada a fábrica no simulador, optou-se por dividir os grafcets e a programação por divisões, parte comum, parte da direita e parte da esquerda.

1.1. Tecnologias Utilizadas

De modo a ser possível a elaboração do trabalho e realizar os objetivos supracitados, utilizaram-se alguns programas e tecnologias:

- Sysmac Studio software usado para a programação do PLC da serie OMRON NX;
- Autómato É o equipamento capaz de controlar processos, adquirir dados e realizar ações de forma autónoma;
- NB-Designer software que permite elaborar o designe da HMI;
- **Switch Ethernet** Equipamento usado para conectar todos os equipamentos na mesma rede, para fazer a comunicação entre cada módulo;
- Modbus Protocolo de comunicação utilizado em sistemas de automação industrial. Permite a comunicação entre o CX-Programmer e o Factory I/O através de cabo de rede;
- Factory IO permite a construção virtual da fábrica, com todos os sensores e atuadores funcionais quando programados.

2. Configurações Iniciais

Em ordem a ser possível comunicar entre os dois softwares e o autómato, foram necessárias algumas configurações iniciais para transferir os dados entre o Sysmac, o autómato e o Factory.IO.

O método de comunicação utilizado foi o ModBus TCP, onde o Factory.IO é usado como servidor e o autómato como um cliente.

No Sysmac começou-se por selecionar o método de conexão, ou seja, conexão direta via Ethernet, e foi atribuído um IP ao autómato, nomeadamente 192.168.250.1.

No factory.IO selecionou-se a configuração ModBus TCP/IP Server, e atribuiu-se o host 192.168.250.20:502. Foram definidas 40 entradas e saídas digitais, 10 entradas analógicas e 11 saídas analógicas.

Em seguida no sysmac criou-se a trama de comunicação, onde foi colocado os respetivos endereços de IP do Factory.IO, define-se a taxa de atualização dos dados, cerca de 100 milissegundos, e definiu-se o nome das matrizes de dados das entradas e saídas, nomeadamente, DigitalInputs, OutputsDigitais, AnalogInputs e AnalogOutputs.

Na trama de comunicação definiu-se o intervalo de memória para cada registo de entrada e saída e quantos endereços são para ler ou escrever, de acordo com o tipo de entrada e saída.

Figura 1 - A Vermelho pode-se observar o tamanho das matrizes de comunicação e os espaços de memória onde estão alocados, a azul pode-se ver a quantidade de entradas e saídas, e o seu tipo, que se pretende ler

3. Descrição Técnica

Nesta secção do relatório é descrito o comportamento de cada zona da fábrica, nomeadamente a zona onde a separação e pesagem dos materiais é feita, em seguida como é realizado o tratamento das peças e das caixas de papel. Com base nesta descrição é possível elaborar os grafcet nível 1 e consequentemente o de nível 2.

3.1. Entrada no Sistema e Pesagem dos Materiais

Existem dois tipos de materiais que podem ser gerados, caixas de papel e peças de plástico. Esta seleção é feita através de uma chave seletora física de 2 posições, que permite alternar entre a dispensa de peças de plástico e de caixas de papel.

Considere-se as caixas de papel como exemplo, quando se carrega no botão de iniciar a separação, a caixa é dispensada e ao cair sobre o feixe de luz do sensor infravermelho, é ativado o Led de indicação de linha em funcionamento e o tapete que transporta a caixa até a balança.

No final do tapete encontra-se outro sensor infravermelho, que ativa o tapete da balança, fazendo com que a caixa passe para a mesma, até que seja detetada por outro sensor que faz com que o tapete pare para proceder a pesagem da caixa durante cinco segundos, com o intuito de estabilizar a leitura do peso da caixa. Quando acaba o tempo de pesagem o valor lido na balança é guardado e a caixa é movida até ao sorter.

O sorter, de acordo com o peso do material selecionado, separa para a esquerda ou para a direita. Se o valor guardado for maior que quatro quilos ou igual a um quilo, o material é separado para a direita, ativando os rolamentos e direcionando-os para a direita onde é feito o processamento das caixas de papel.

No caso de o material ter peso inferior a quatro quilos, este é separado para a esquerda, ativando os rolamentos e direcionando-os para a esquerda, onde são tratadas as peças de plástico.

Figura 2 - Zona da fábrica virtual onde é feita a seleção e pesagem dos materiais

3.1.1. Grafcets

Nível 1(anexo1)

Figura 3 - Grafcet Nível 1 - Seleção do material e pesagem: Aqui registam-se os aspetos funcionais que constituem um caderno de encargos especificado

Nível 2

Figura 4 - Grafcet Nível 2 - Seleção do material e pesagem: Aqui os aspetos tecnológicos já surgem com a definição precisa de entradas e saídas

3.1.2. Equações de Transição e Saída

Equações de Transição

Etapa	Atividade
E0	(E20 * fT8 * Stop_But) + (E21 *fT9 * Stop_But) + (E90 * fT10 * Stop_But) +
	(E28 * fT12 * Stop_But) + (E29 * fT13 * Stop_But)
E1	(E0 * Start_But * Stop_But * But_Papel) + (E20 * fT1) + (E21 * fT9) + (E90 *
	fT10)
E99	(E0 * Start_But * Stop_But * But_Papel) + (E28 * fT12) + (E29 * fT13)
E2	(E99 + E1) * Entry_Box_IR
E 3	E2 * Scale_Box_IR
E4	E3 * Scale_IR
E5	E4 * (PesoGuarda > PesoCaixaRef + PesoGuarda = 1) * fT4
E6	E4 * (PesoGarda < PesoCaixaRed* fT4)

Tabela 1 - Etapas de transição da secção de seleção de material e pesagem

Equações de Saída

. ,		
Saída	Etapa	
Led_Is_On	E1 + E99	
Led_Is_Stop	E0	
Emissor_Peças	E2	
Scale_Conv	E3 + E5 + E6	
Sorter_Activate	E5 + E6	
Sorter_Right_Side	E5	
ZAxis_SetPoint_RightPP	E10 + E11 + E0	
Card_Box_Conv	E14 + E16 + 18 + E0	
Sorter_Left_Side	E6	
ZAxis_SetPoint_Left_PP	E9 + E22 + E0	

Tabela 2 - Etapas de saída da secção de seleção de material e pesagem

3.2. Processamento de Peças

Após a ativação do sorter com a direção esquerda, para partes de material com peso inferior a 4kg, a parte esquerda da separação é ativada.

Na saída do sorter um sensor infravermelho ativa o movimento do tapete até à zona de etiquetagem, onde outro sensor infravermelho executa a paragem do movimento. A pick-and-place procede a realizar a etiquetagem da peça, executando um movimento para baixo no eixo Z, até tocar na peça. Após esse movimento, o sensor embutido na pick-and-place deteta a peça e dá como terminado o processo de etiquetagem, voltando à sua posição de origem.

O movimento continua através de mais dois tapetes, um deles curvo, ativados por sensores infravermelho, até à zona de identificação da peça de caixa. Nessa zona existe um sensor de visão que retorna 1, 2 ou 3, para material cru (por transformar), tampa ou base (raw material, lid ou base, respetivamente).

Quando a peça estiver devidamente identificada, entra na zona de seleção e é separada recorrendo a pequenos tapetes de separação que rodam 45°, e quando ativados, empurram a peça para a rampa.

No caso de tampas e bases o sistema é direto, ou seja, ativa o respetivo tapete de separação que empurra a peça para a rampa, sendo mais tarde removida.

Para o caso do material cru o processo é ligeiramente mais demorado, visto que é necessário transformar esse material numa tampa ou numa base. Para tal, o material é separado para um tapete que o conduz até um robô da KUKA controlado automaticamente. Quando uma peça chega à entrada do espaço de trabalho do robô, um sensor capacitivo dá o sinal para iniciar o processo de criação da peça. A peça criada pode ser escolhida através de uma chave seletora de 2 posições no painel de controlo do robô (base = 0 e tampa = 1).

Quando acabar a transformação, o robô da KUKA coloca a peça na zona de saída de peças, onde outro sensor capacitivo deteta a sua presença e ativa o tapete curvo e um tapete normal, de modo a movimentar a peça para a zona de seleção. Se uma peça for do tipo base, a pick-and-place não realiza a separação permitindo a continuação da peça no mesmo tapete até à sua remoção.

Se for do tipo tampa, um sensor infravermelho ao lado da pick-and-place vai detetar e parar o movimento do tapete. A pick-and-place primeiramente realiza um movimento para baixo no eixo do Z de modo a agarrar a peça através de sucção, depois volta para a posição base e realiza um movimento em frente no eixo do X, voltando a descer no eixo do Z, de modo a largar a peça no tapete de remoção de peças tipo tampa.

Recorrendo ao encoder dos motores da pick-and-place, a sua posição atual é conhecida a qualquer momento, e como o movimento é programado e sempre igual, no final desse movimento a peça é largada e o tapete ativado, removendo a peça no final.

Todos os removers (zona de remoção das peças) usados têm um sensor infravermelho para dar como terminado o processo. Após terminado esse processo, uma peça é contada e o programa retorna à parte inicial.

Figura 5 - Zona na fábrica virtual onde são processadas as peças. Na esquerda a zona de separação de material cru. Ao centro o robô da KUKA que realiza a transformação. Na direita a zona de separação final pós peça criada.

3.2.1. Grafcet

Nível 1 (anexos)

Figura 6 – Excerto Grafcet Nível 1 - Processamento de peças: Aqui registam-se os aspetos funcionais que constituem um caderno de encargos especificado

Figura 7 - Excerto Grafcet Nível 2 - Processamento de peças: Aqui os aspetos tecnológicos já surgem com a definição precisa de entradas e saídas

3.2.2. Equações de Transição e Saída

Equações de Transição

Etapa	Atividade
E7	E6 * Left_Side_IR
E 9	E7 * Item_Stamp_Left_IR
E22	E9 * Item_Detected_Left_PP
E23	E22 *Left_Side_Curved_IR
E24	E23 * Vision_Conv_IR
E25	E24 * Color_Boxes_IR * (Sens_Vision_Guarda = 1)
E26	E24 * Color_Boxes_IR * (Sens_Vision_Guarda = 2)
E27	E24 * Color_Boxes_IR * (Sens_Vision_Guarda = 3)
E28	E26 * Lid_Exit_IR
E29	E27 * Base_Exit_IR
E30	E25 * Conv_Entrada_Kuka
E31	E30 * Kuka_Entry_Cap
E32	E31 * Kuka_Exit_Cap
E33	E32 * Kuka_Exit_Conv_IR
E34	E33* Seletor_Lid * SeparationPP_IR
E35	E34 * KukaPP_Item_Detected
E36	E35 * (Kuka_ZPosition = 0)
E37	E36 * (Kuka_XPosition = 7)
E38	E37 *(Kuka_ZPosition = 7)
E39	E38 * Kuka_Item_Detected
E92	(E28 * fT12) + (E29 * fT13)
	, , , , , , , , , , , , , , , , , , , ,

Tabela 3 - Etapas de transição da secção de processamento de peças de plástico

Equações de Saída

Saída	Etapa
Left_Side_Conv	E7 +E22 + E23
ZAxis_SetPoint_Left_PP	E9 + E22 + E0
Left_Side_Curved_Conv	E23 + E24
Vision_Conv	E24
Colo_Boxes_Conv	E25 + E26 + E27
Sorter_Raw_Material_Activate	E25
Sorted_Raw_Material_Turn	E25
Sorter_Lid_Turn	E26
Sorter_Base_Turn	E27
Sorter_Base_Activate	E27
Remover_Product_Lid	E28
Remover_Lid	E28
Remover_Product_Base	E29
Remover_Base	E29
Conv_Kuka	E30
Machine_Center1(Start)	E31
Machine_Center0(Stop)	E32
Curved_Kuka_Exit_Conv	E32 + E33
Right_Exit_Kuka_Conv	E33
Kuka_Pick_and_Place_Grab	E34
Kuka_Pick_and_Place_ZSetPoint	E35 + E37 + E38
Kuka_Pick_and_Place_XSetPoint	E36 + E38
Left_Exit_Kuka_Conv	E39
CaixasSContador	E92
CaixasMContador	E92
CaixasLContado	E92
LidMaterial	E92
BaseMaterial	E92

Tabela 4 - Etapas de saída da secção de processamento de peças

3.3. Processamento de Caixas de Papel

Após a ativação do sorter com a direção direita para partes de caixa com peso superior a 4kg, a parte direita da separação é ativada.

Na saída do sorter um sensor infravermelho ativa o movimento do tapete até à zona de etiquetagem, onde outro sensor infravermelho executa a paragem do movimento. A pick-and-place procede a realizar a etiquetagem da peça executando um movimento para baixo no eixo Z, até tocar na peça. Após isso, o sensor embutido na pick-and-place deteta a peça e dá como terminado o processo de etiquetagem, voltando à sua posição de origem, e a caixa é movimentada novamente ao longo do tapete.

O movimento continua através de mais dois tapetes, um deles curvo, ativados por sensores infravermelho, até à zona de medição da altura das caixas. Nessa zona existe um sensor de altura que retorna o valor da altura de cada tipo de caixa.

Medido o valor da caixa, o tapete onde as caixas são separadas é colocado a uma velocidade baixa e constante, para que a caixa seja empurrada de forma suave. De acordo com a altura as caixas são separadas em três locais distintos, as mais pequenas na primeira saída (tipo S), as médias na segunda (tipo M) e as grandes na última (tipo L).

Quando o sensor atribuído a cada altura de caixa for ativado, o pusher (pneumático) entra em funcionamento empurrando a caixa pela rampa até à zona onde é removida. Só é removida quando o sensor infravermelho no final a detetar, incrementando o número de caixas separadas nos contadores, e o sistema retorna ao estado inicial.

Figura 8 - Zona da fábrica de processamento de caixas. Medição da altura realizada no sensor ao centro do tapete. Separação através dos pneumáticos para as rampas. Removidas no final.

3.3.1. Grafcet

Nível 1(7.2)

Figura 9 - Excerto Grafcet Nível 1 - Processamento de caixas: Aqui registam-se os aspetos funcionais que constituem um caderno de encargos especificado

Nível 2

Figura 10 - Excerto Grafcet Nível 2 - Processamento de caixa: Aqui os aspetos tecnológicos já surgem com a definição precisa de entradas e saídas

3.3.2. Equações de Transição e de Saída

Equações de Transição

Etapa	Atividade
E8	E5 * Right_Side_IR
E10	E8 * Item_Stamp_IR
E11	E10 * Item_Detected_Right_PP
E12	E11 * Right_Side_Curved_IR
E13	E12 * Height_Conv_IR
E14	E13 * (AlturaGuarda = AlturaCaixasRefS)
E15	E14 * Pusher_Box_S_IR
E16	E13 * (AlturaGuarda = AlturaCaixasRefM)
E17	E16 * Pusher_Box_M_IR
E18	E13 * (AlturaGuarda = AlturaCaixasRefL)
E19	E18 * Pusher_Box_L_IR
E20	E15 * Count_Box_S_IR
E21	E17 * Count_Box_M_IR
E90	E19 * Count_Box_L_IR
E92	(E20 * fT8) + (E21 * fT9) + (E90 * fT10)

Tabela 5 - Etapas de transição da secção de processamento caixas

Equações de Saída

Saída	Etapa
Right_Side_Conv	E8 + E11 + E12
ZAxis_SetPoint_RightPP	E10 + E11 + E0
Right_Side_Curved_Conv	E11 + E12
Right_Side_Height_Conv	E12 + E13 +E14 + E16 +E18
Card_Box_Conv	E14 + E16 + 18 + E0
Pusher_Box_M	E17
Pusher_Box_L	E19
Pusher_Box_S	E15
Remover_Box_S	E20
Remover_Box_M	E21
Remover_Box_L	E90
CaixasSContador	E92
CaixasMContador	E92
CaixasLContador	E92
LidMaterial	E92
BaseMaterial	E92
Pusher_Box_S Remover_Box_S Remover_Box_M Remover_Box_L CaixasSContador CaixasMContador CaixasLContador LidMaterial	E15 E20 E21 E90 E92 E92 E92 E92 E92

Tabela 6 - Etapas de saída da secção de processamento de caixas

4. Programação do PLC

4.1. Pesagem

De forma a obter o valor lido pela balança no Factory.IO, é feita a leitura da entrada analógica correspondente à balança e esse valor é guardado numa variável (pesoCaixa), onde o seu tipo de dados é convertido de WORD para INT e colocado em outra variável (pesoGuarda), para possibilitar a utilização de números inteiros, e assim comparar o peso com as referências (pesoCaixa_Ref). Conforme a validação do peso, o programa é movido para etapas diferentes.

É utilizado um timer(timer_S4) com cinco segundos, para possibilitar a leitura do valor real do peso da caixa.

Para fazer a leitura utilizou-se a instrução MOVE, e para a conversão a instrução WORD_TO_INT.

Figura 11 – Excerto de programação ladder para a aquisição do valor do peso e seleção da etapa seguinte. O valor é lido e guardado numa variável que é usada para realizar a comparação entre o peso de referência e permitir a separação. Valor enviado para a HMI. Timer de 5 segundos para garantir uma leitura correta.

4.2. Pick and Place - Etiquetagem e KUKA

4.2.1. Etiquetagem

Para a simulação da colocação de uma etiqueta, utilizou-se uma pick-and-place e o seu controlo foi feito analogicamente, controlando os seus eixos através de valores previamente identificados.

Neste caso, como apenas foi necessário mover o eixo Z, que é aquele que executa o movimento vertical. Quando o sensor infravermelho (Item_Stamp_Left_IR) é ativado, converte-se o valor 9, que é o tamanho das peças de plástico, para o tipo de dados WORD, e guarda-se numa variável (ZSetPoint_LeftPP). Em seguida o valor é movido através da instrução MOVE para a saída analógica correspondente ao eixo Z (ZAxis_SetPoint_LeftPP).

Quando o sensor de proximidade da pick-and-place deteta a peça (Item_Detected_LeftPP), é ativado um timer(timer_S11) para simular a etiquetagem, e no fim do timer o eixo Z é colocado na posição original através do mesmo processo.

Figura 12 - Excerto de código onde se compara o peso lido com as referências para cada caixa, e move-se o valor para o respetivo eixo vertical da pick-and-place.

4.2.2. KUKA - Pick and Place

De forma a separar o material cru depois de transformado, inicialmente verifica-se se o botão de seleção está para bases ou tampas. No caso de ser tampas, o processo para remover a peça passa por uma pick-and-place que a coloca noutro tapete, permitindo a sua remoção no local correto.

Para fazer este movimento, o programa espera até que a peça esteja em frente ao sensor infravermelho (SeparationPP_IR), e o botão (Seletor_Lid) esteja selecionado seguida é movido valor para tampas, em para eixo (Kuka_PickandPlace_ZSetPoint), para que este desça até a altura da caixa. Quando o eixo chegar à respetiva posição, através do sensor de proximidade embutido na pickand-place (KukaPP_Item_Detected), o ar comprimido é ativo e a peça é sugada através da ativação do contacto do end-effector (Kuka_PickandPlace_Grab). Após a peça ser agarrada, o eixo Z sobe executando o processo contrário à descida, quando a posição do eixo Z se encontrar na posição 0, ou seja, quando ZAxisPosition_KukaPP for igual ao valor da entrada analógica que corresponde a posição atual do eixo (KukaPickandPlaceZPosition), é feito o movimento no eixo do X, transportando peça para cima do tapete correspondente. Esse movimento é feito através da instrução MOVE, movendo o valor 8 para o setpoint do eixo X através da saída analógica correspondente(Kuka_PickandPlace_XSetPoint).

Quando a posição do eixo X(KukaPickandPlaceXPosition) for igual ao valor do setpoint, volta-se a descer o eixo vertical, para pousar a peça no tapete correspondente.

Quando o eixo se encontrar a posição correta a peça é largada, ou seja, o contacto do end-effector (Kuka_PickandPlace_Grab) é desativado e os dois eixos são retomados a sua posição inicial, movendo um 0 através da instrução MOVE, para cada saída analógica correspondente.

Quando o sensor de proximidade deixa de detetar a peça, o tapete começa a mover-se novamente, já na para a próxima etapa.

Figura 13 - Etapa das Pick-and-Place, onde existe uma verificação da posição do eixo horizontal, em relação à posição correta

4.3. Sensor de Visão

Para saber o tipo de material que está a ser separado, recorreu-se a um sensor de visão que retorna valores de acordo com o tipo de material no tapete.

O método de leitura do sensor é semelhante aos métodos de leitura analógicos supracitados, ou seja, quando uma peça passa na área de visão do sensor este retorna 1,2 ou 3 de acordo com o tipo de peça. Esse valor é lido da entrada analógica (VisionSendor) através da instrução MOVE, e guardado na variável (sensorVisaoLer). Em seguida é convertido de WORD para INT, com o auxílio da mesma instrução anterior e guardado o valor inteiro numa nova variável (sensorVisaoGuarda).

O valor lido é comparado com as referências dos materiais utilizando a instrução '=', quando a comparação for verdadeira, o programa é movido para a etapa correspondente.

Figura 14 - Excerto de programação ladder para a aquisição do tipo de peça (raw material, lid ou base). A leitura do valor lido no sensor (1,2 ou 3) é guardado numa variável. Essa variável é comparada com a referência e o programa segue para a etapa correspondente

4.4. Medição da altura

Para as diferentes caixas poderem ser separdas, é realizada uma separação por altura. Para tal recorreu-se a um sensor de medição de altura presente no meio do tapete de transporte.

Quando uma caixa passa no sensor de altura, a leitura é feita, movendo o valor da entrada analogida (Height_Value) para uma variável, com o recurso a instrução MOVE. Como este valor é do tipo de dados WORD, faz-se uma conversão para inteiro, através da instrução WORD_TO_INT, onde o valor inteiro é anexado numa nova variável (altura_Guarda).

Após lida a altura da caixa, esta é comparada com os valores de referência de cada uma, usando a instrução '='. Quando a instrução for válida, o programa é movido para a etapa correspondente.

Figura 15 - Excerto de programação ladder para a leitura do tamanho das caixas (pequenas, médias e grandes). A leitura do valor lido no sensor é guardada numa variável. Essa variável é comparada com as referências e o programa segue para a etapa correspondente

5. Entradas e saídas físicas

5.1. Esquema Elétrico das Montagens Físicas

Na seguinte Figura 16 observa-se o modo como os botões e Leds foram ligados no painel de controlo físico. Estas entradas e saídas são declaradas no sysmac, através do mapa de entradas e saídas. Consta também como o autómato, a HMI e o switch são ligados.

Figura 16 - Esquema elétrico da montagem do painel de controlo, incluindo o autómato, switch, hmi e todos os botões e leds

Input Bit 01	Input Bit 01	R	BOOL	Emerg_But	Botao de Emergencia	Global Variables
Input Bit 02	Input Bit 02	R	BOOL	Start_But	Botao de início de linha	Global Variables
Input Bit 03	Input Bit 03	R	BOOL	Stop_But	Botao Stop- pára linha depois da caix	Global Variables
Input Bit 04	Input Bit 04	R	BOOL	But_papel	Emite caixas de papel	Global Variables
Input Bit 05	Input Bit 05	R	BOOL	But_pecas	Emite peças azuis	Global Variables
Input Bit 06	Input Bit 06	R	BOOL	But_Reset	Reset aos contadores	Global Variables
Output Bit 00	Output Bit 00	RW	BOOL	Led_ls_On	Led Verde de Producao em Curso	Global Variables
Output Bit 01	Output Bit 01	RW	BOOL	Led_Is_Stop	Led Vermelho de linha parada	Global Variables
Output Bit 02	Output Bit 02	RW	BOOL	Led_Is_Emergency	Led Amarelo de Emergência Ativa	Global Variables

Figura 17 - Entradas e saídas físicas declaradas no mapa de IO´s do Sysmac

5.2. Paragem de Emergência

A fábrica dispõe também de um sistema de emergência que é ativado por quatro tipos de acontecimentos:

- Pressionar o botão físico;
- Abrir uma porta de acesso às máquinas;
- Pressionar o botão na HMI;
- Parar a execução da fábrica no factory.io.

Qualquer um deles pode ser carregado, ou a porta ser aberta, realizando uma paragem do sistema a qualquer momento. Ao realizar a paragem, a respetiva sinalização de emergência é ativada, correspondendo a um led físico e a um led na HMI.

A reativação do sistema é realizada ao pressionar o botão Start, e no caso da porta, esta tem de estar fechada e só depois o botão pode ser pressionado. Aquando da reativação, o sistema retorna á etapa que estava quando foi pressionado o botão de emergência. Isso é possível devido a uma variável auxiliar que guarda o valor da etapa.

Parar a execução do programa no Factory.IO também ativa a paragem de emergência, no entanto, não volta para a última etapa do sistema guardada na variável auxiliar, mas sim para a etapa 0, visto que quando isto acontece, o material desaparece. Através deste método, o processo manual de reativação do sistema é evitado.

	Equação de Transição	Equação de Saída		
Etapa	Atividade	Saída	Etapa	
E100	E_n * (Emerg_But + Safety_Door)	Led_Is_Emergency	E100	

Tabela 7 - Equações de transição e saída para o processo de emergência

Figura 18 - Excerto de código onde qualquer um dos ativadores de emergência pode ser ativo. Verifica-se a última etapa não é a 100, para não ficar num estado bloqueante e guarda a última etapa onde se encontrava, entrando depois na etapa de emergência

5.3. Paragem do sistema

Quando se pretende parar a produção no geral, existe o botão de Stop de encravamento que ao ser pressionado, após a conclusão do ciclo de separação, não permite que mais peças/caixas sejam dispensadas.

No caso de ainda haver material a ser separado, o programa está preparado para deixar terminar qualquer processo em andamento, e só após isso cessa de dispensar mais peças/caixas.

Quando está no estado de stop (etapa 0), um led de paragem de processamento é ativado, e durante esta paragem é possível realizar um reset nos valores dos contadores (contagem de peças/caixas) e selecionar o tipo de material a ser dispensado (caixas ou peças) através da chave física de duas posições.

Retoma o processamento das peças/caixas após o botão de start ser novamente pressionado e o botão de stop ser desencravado.

Figura 19 - Excerto de código onde se executa o início da fábrica. Em cima verificamos que quando o botão de início físico ou na HMI é pressionado e o botão de stop não está encravado, o sistema avança para a etapa seguinte de acordo com a seleção da chave de duas posições, no caso de o botão estar encravado o sistema fica em pausa, e se for carregado o botão de reset físico ou na HMI, os contadores são resetados

Equação de Transição				
Etapa	Atividade			
E98	E0 * Reset_But			

Tabela 8 - Etapa de transição para o reset dos contadores de caixas e peças

5.4. Sinalização luminosa

Sinalização do estado do sistema através de 3 leds, onde um deles é indicador do sistema parado á espera de ser iniciado novamente. Outro sinaliza o estado de emergência e o último sinaliza o processamento em curso.

Figura 20 - Botoneira com o botão de início da linha(start), e á sua esquerda tem o led vermelho que indica paragem da linha, em seguida led amarelo que indica a paragem de emergência. Por último o led verde que indica que a linha está em funcionamento.

5.5. Mapa de Entradas e Saídas

Com a colocação de todos os componentes na fábrica, é possível elaborar um mapa de entradas e saídas (página41), onde constam todos os sensores, e todos os atuadores, quer sejam digitais ou analógicos.

Figura 21 - Excerto do mapa de entradas e saídas, onde constam quer as entradas/saídas digitais e as analógicas

6. Interface Homem Máquina (HMI)

A HMI permite que um utilizador comunique com uma máquina. Desta forma desenvolveu-se uma que, através de uma interface gráfica, apresenta dados em tempo real acerca do sistema, assim como a possibilidade de controlar algum equipamento sem a necessidade de recorrer aos painéis físicos.

A HMI desenvolvida encontra-se dividida em três janelas principais.

- Painel de Controlo;
- Caixas de Papel;
- Peças Azuis.

6.1. Painel de Controlo

Figura 22 - Painel de controlo da HMI, onde se verifica os leds do estado do sistema no canto superior esquerdo, os comandos de operação no canto superior direito, ao centro o tipo de material a ser separado e no canto inferior esquerdo, dois ecrãs referentes ao peso do último material pesado e altura da última caixa medida

Nesta janela são apresentados alguns botões, leds e ecrãs.

Os botões de start, stop e emergency comportam-se da mesma forma que os respetivos botões físicos.

Existem também três leds associados ao estado atual do sistema, o primeiro indica quando o programa está em curso, o segundo indica quando o sistema está em emergência e o terceiro indica quando o sistema está em Stop.

Os displays mostram o peso do último material pesado e a altura da última caixa medida. Estes valores são atualizados com a chegada de um novo material ao respetivo sensor.

Por fim está incluído também um interruptor que funciona em conjunto com dois leds. Este switch indica o tipo de material que está a ser separado pelo sistema, apontando para o led correspondente, que acende caso seja o material escolhido.

Não é possível alterar o estado do interruptor através da HMI, apenas através da chave seletora física.

6.2. Caixas de Papel

Figura 23 - Janela da caixa de papel com os respetivos contadores e botão de reset

Neste painel, encontram-se três ecrãs associados aos contadores de caixas S, M e L e um botão de reset, que reinicia os contadores para o valor zero. Estes ecrãs estão sincronizados com os ecrãs presentes no Factory.IO.

É também apresentada informação presente no Painel de Controlo como leds que indicam o tipo de material a ser separado, botões de start, stop e emergência, leds do estado atual do sistema para que o utilizador consiga sempre ter noção geral do estado do sistema.

6.3. Peças Azuis

Figura 24 - Janela das peças, onde mostra o tipo de peça a separar e a contagem de peças já separadas

Para as peças azuis, a mesma informação do Painel de Controlo que é apresentada na janela das Caixas de Papel, é também apresentada nesta janela.

Estão presentes dois ecrãs associados aos contadores de peças Base e Lid e também um botão de Reset, com o mesmo intuito que o anterior. Também estes ecrãs estão sincronizados com os ecrãs do Factory.IO.

Adicionalmente existe um interruptor associado à chave seletora do robô da KUKA, presente no Factory.IO. Este interruptor tem um modo de funcionamento semelhante ao do Painel de Controlo, com a diferença de informar o utilizador acerca da peça que a KUKA transforma, após receber material cru.

6.4. Movimentação entre Janelas

Figura 25 - Menu de acesso rápido a todas as janelas

Para possibilitar a movimentação das janelas, foi criado um Menu de Acesso Rápido, com teclas de função, que ao serem pressionadas permitem a navegação entre janelas.

A tecla de menu, assim como a data e hora, encontram-se presentes em todas as janelas do programa, fazendo parte da Janela Comum. Um tipo de janela na qual todo o seu conteúdo está presente nas restantes janelas. A janela inicial, ou Janela 0, apenas introduz o trabalho, não tendo qualquer função relevante para o sistema desenvolvido.

Figura 26 - Janela inicial com informações

6.5. Comunicação HMI (NBDesigner-Sysmac)

O controlo de todas as variáveis criadas no NBDesigner é feito no Sysmac. Para isso é necessário atribuir endereços e tipos de memória.

Para os botões, leds e switches, que apenas têm estado True ou False, é usada a memória W_bit no NBDesigner, referente à área de trabalho do PLC NX1P2.

Figura 27 - Atribuição do endereço e tipo de memória para o switch

Para ecrãs de contagem de materiais que recebem valores do tipo Word, é escolhida a memória D referente à memória de dados do PLC.

Figura 28 - Atribuição do endereço e tipo de memoria para o display do peso das caixas

Para atribuição dos endereços no Sysmac, estes têm de ser iguais aos endereços atribuídos no NBD.

Name	Data Type	Initial Value	AT	Retain	Constant	Network Publish	$\overline{\mathbb{L}}$	Comment
hmi_sw_kuka	BOOL		%W0.10			Publish Only	₩	SW=0 KUKA transforma peças em Base/ SW=1 ""peças Lid
hmi_pesoCaixa	INT		%D710	✓		Publish Only	₩	Mostra peso da caixa

Figura 29 - Criação das variáveis no Sysmac e atribuição dos respetivos endereços, correspondentes aos do NBD

Conclusão

O grande obstáculo a ultrapassar foi inicialmente, com a alocação de memória para todos as entradas e saídas (digitais ou analógicas) e a trama de comunicação, que reescrevia os valores em posições já ocupadas.

O desenvolvimento inicial de todos os Grafcets também demonstrou ser um problema, devido ao facto do mau entendimento de certos componentes do Factory.IO, com funcionamentos diferentes do esperado, e também devido à alteração e adicionar de componentes em diferentes zonas da fábrica. Estes problemas obrigaram à realização de várias correções e mudanças nos Grafcets ao longo de todo o trabalho.

De modo a melhorar/desenvolver o trabalho realizado futuramente, seguem as seguintes sugestões:

- Ampliar a fábrica para separar todo o tipo de peças de caixas;
- Registo mensal na HMI da contagem de materiais. Cada reset realizado corresponderia a um mês de funcionamento do sistema;
- Separação de vários materiais ao mesmo tempo, abordando a projeção do sistema de forma diferente.

7. Anexos

7.1. Entrada no Sistema e Pesagem dos Materiais

Anexos I – Grafcet Nível 1

Anexos I – Grafcet Nível 2

7.2. Processamento de Caixas

Anexos II - Grafcet Nível 1

7.3. Processamento de Peças

Anexos III - Grafcet Nível 1

Anexos III - Grafcet Nível 2

7.4. Etapas Especiais

Anexos IV – Grafcet

Etapas Especiais

7.5. Mapa de Saídas e Entradas

7.6. Esquema Elétrico

