10 septembre 2001 Durée : 2 heures Documents autorisés

AUTOMATES

Notation : $|m|_a$ désigne le nombre d'occurrences de la lettre a dans le mot m.

Exercice 1:

Soit *M* l'AFND suivant :

- 1°) Déterminiser et minimiser M.
- 2°) Donner un mot de longueur 5 accepté par M, et un mot de même longueur refusé par M.

Solution:

1°) L'AFND est donné par le tableau de transition suivant :

	a	b	
0	1	2	
1	3	2,4	
2	1,3	4	
3	5	0,4 5	
4	0,3	5	
5	-	-	f

La déterminisation donne le tableau de transition suivant :

	a	b	
0	1	2 24 4	
1	1 3 13 5	24	
2	13	4	
1 2 3	5	04	
24	013	45	
13	35	024	
5	03	5	
5	-	ı	f
04	013	25	
013	135	024	
45	03	5	f
35	5	04	f
024	013	245	
03	15	024	
25	13	4	f
135	35	024	f
245	013	45	$\begin{array}{c} f \\ \hline f \\ \hline f \\ \hline \end{array}$
15	3	24	f

(14)

(15)

Minimisation (P représente l'état puits) :

Classes de 2-équivalence issues de (5):

{5}

{25, 15}

a2b2:

a3b4:

Classes de 0-équivalence : Non finaux : {0, 1, 2, 3, 24, 13, 4, 04, 013, 24, 03, P} (0){5, 45, 35, 25, 135, 245, 15} Finaux: (1) Classes de 1-équivalence issues de (0): $\{0, 1, 2, P\}$ a0b0: (2) a1b0: {3, 13, 013, 03} (3) a0b1: {24, 4, 04, 024} **(4)** Classes de 1-équivalence issues de (1): a0b0: {5, 25, 15} (5) a0b1: {45, 245} (6) a1b0: {35, 135} **(7)** Classes de 2-équivalence issues de (2) : a2b2: $\{0, P\}$ (8) $\{1, 2\}$ a3b4: (9) Classes de 2-équivalence issues de (3) : a5b4: {3, 03} (10){13, 013} a7b4: (11)Classes de 2-équivalence issues de (4) : a3b6: {24, 024} (12)a3b5: {4, 04} (13)

```
Classes de 2-équivalence issues de (6) :
       a3b5:
                     {45}
       a3b6:
                     {245}
Classes de 2-équivalence issues de (7) :
       a5b4:
                     {35}
       a7b4:
                     {135}
Classes de 3-équivalence issues de (8):
       a9b9:
                     {0}
       a3b6:
                     {P}
Classes de 3-équivalence issues de (9) :
       a10b13:
                     {1}
       a11b13:
                     {2}
Classes de 3-équivalence issues de (10) :
       a14b13:
                     {3}
       a15b12:
                     {03}
Classes de 3-équivalence issues de (11) :
       a18b12:
                     {13}
       a19b12:
                     {013}
Classes de 3-équivalence issues de (12) :
       a11b16:
                     {24}
       a11b17:
                     {024}
Classes de 3-équivalence issues de (13) :
       a10b14:
                     {4}
       a11b15:
                     {04}
Classes de 3-équivalence issues de (15) :
       a11b13:
                     {25}
       a10b12:
                     {15}
```

La classe de 3-équivalence étant une partition en singletons de l'ensemble des états, l'AFD obtenu est donc minimal.

(16)

(17)

(18)

(19)

2°) ababb est un mot accepté par l'automate. ababa est un mot refusé par l'automate.

Exercice 2:

Déterminer l'APND acceptant le langage :

$$L_1 = \{ m = m_1 m_2, m_1 \in \langle (a+c)^* \rangle, m_2 \in \langle (b+d)^* \rangle \text{ t.q. } |m_1|_a > |m_2|_b \}.$$

Solution:

Cet APND est donné par le tableau de transition suivant (f est l'état final) :

	a	c	b	d	3
q_0	$(q_0,a,\epsilon)(q_0,A)$	$(q_0,c,\epsilon)(q_0,\epsilon)$	$(q_0,b,A)(q_1,\varepsilon)$	$(q_0,d,A)(q_1,A)$	$(q_0,\varepsilon,A)(f,A)$
\mathbf{q}_1			$(q_1,b,A)(q_1,\varepsilon)$	$(q_1,d,\epsilon)(q_1,\epsilon)$	$(q_1,\varepsilon,A)(f,A)$

Exercice 3:

Déterminer la machine de Turing acceptant le langage :

$$L_2 = \{ m = m_1 m_2, m_1 \in \langle (a+c)^* \rangle, m_2 \in \langle (b+d)^* \rangle \text{ t.q. } |m_1|_a > |m_2|_b \text{ et } |m_1|_c < |m_2|_d \}.$$

Solution:

	a	b	c	d	A	В	С	D	#
q_0	q_1,A,\rightarrow		q_1,C,\rightarrow						
\mathbf{q}_1	\rightarrow	q_2,b,\rightarrow	\rightarrow	q_2,d,\rightarrow					
q_2		\rightarrow		\rightarrow					q₃,#,←
q_3	\leftarrow	\leftarrow	\leftarrow	\leftarrow	q_4,A,\rightarrow		q_5,C,\rightarrow		
q_4	\rightarrow	q_6,B,\leftarrow	\rightarrow	\rightarrow		\rightarrow		\rightarrow	q₀,#,←
q_5	\rightarrow	\rightarrow	\rightarrow	q_6,C,\leftarrow		\rightarrow		\rightarrow	
q_6	\leftarrow	\leftarrow	\leftarrow	\leftarrow	q_7,A,\rightarrow	\leftarrow	q_7,C,\rightarrow	\leftarrow	
\mathbf{q}_7	q_4,A,\rightarrow		q_5,C,\rightarrow			q_8,B,\rightarrow		q_8,D,\rightarrow	
q_8						\rightarrow		\rightarrow	$q_{\scriptscriptstyle F}$,#, \leftarrow
$q_{\scriptscriptstyle F}$									

 q_0 : on marque la première lettre ;

 q_1, q_2 : on vérifie qu'il s'agir d'un mot de <(a+b)*(c+d)*>;

q₃: retour à la première lettre marquée;

q₄ : comme un a a été marqué, on part à la recherche d'un b. Si on en trouve un, on le marque.

Si on n'en trouve plus, le programme continue puisqu'il doit y avoir plus de a que de b;

q₅ : comme un c a été marqué, on part à la recherche d'un d. Si on en trouve un, on le marque.

Si on n'en trouve plus, le programme s'arrête puisqu'il doit y avoir plus de d que de c ;*

q₆: on retourne à la dernière lettre marquée (la différence avec q₃ est que cette lettre marquée a déjà été traitée, alors que dans le cas de q₃ elle ne l'avait pas encore été);

 q_7 : si cela est possible, on marque une lettre, sinon on va en q_8 ;

q₈: on vérifie qu'il n'y a plus de d;

 $q_{\scriptscriptstyle F}$: état final.