Logistic Regression

Logistic linear regression atau Regresi logistik merupakan analisis regresi yang digunakan ketika variabel dependen bersifat dikotomis (biner). Seperti semua analisis regresi, regresi logistik adalah analisis prediktif. Regresi logistik digunakan untuk menggambarkan data dan untuk menjelaskan hubungan antara satu variabel biner dependen dan satu atau lebih variabel independen nominal, ordinal, interval, atau tingkat rasio.

Two-dimensional case

For this exercise, suppose that a high school has a dataset representing 40 students who were admitted to college and 40 students who were not admitted. Each $(x^{(i)}, y^{(i)})$ training example contains a student's score on two standardized exams and a label of whether the student was admitted.

Your task is to build a binary classification model that estimates college admission chances based on a student's scores on two exams.

First, download data and save into variable

```
import pandas as pd
import numpy as np

urlx = 'http://bit.ly/32tX8zR'
urly = 'http://bit.ly/2CtJT7m'
dfx = pd.read_table(urlx, sep="\s+",usecols=['ExamA','ExamB'])
dfy = pd.read_table(urly, sep="\s+", usecols=['y'])

dfy = np.ravel(dfy)
```

Plot Data

```
import matplotlib.pyplot as plt

data1=dfx.iloc[0:39]
   data2=dfx.iloc[40:79]

plt.xlabel("Exam A score")
   plt.ylabel("Exam B score")
   plt.scatter(data1.ExamA,data1.ExamB, marker='^', color='red')
   plt.scatter(data2.ExamA,data2.ExamB, marker='o', color='blue')
   plt.legend(('Admitted','Not admitted'), loc='upper left')
   plt.show()
```


Logistic Regression

```
from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(dfx, dfy, test_size=0.25, random
```

```
In [4]: x_test
```

Out[4]:		ExamA	ExamB
	50	26.5	68.5
	27	49.0	79.0
	30	42.0	83.5

45	37.5	64.5
71	36.0	73.0
66	56.5	61.0
68	49.5	63.0
48	21.5	42.0
69	34.5	72.5
40	36.5	53.0
63	24.5	58.0
2	53.5	86.0
72	27.0	53.5
52	18.5	67.0
34	41.5	71.5
3	46.0	84.0
22	31.5	72.0
7	42.0	75.0
26	61.0	45.0
y_t	est	
arra		., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., ., 1.])
log	isticRe	<pre>n.linear_model import LogisticRegression r = LogisticRegression() r.fit(x_train, y_train)</pre>
Logi	sticReg	ession()
r_p		logisticRegr.predict(x_test)
arra		., 1., 0., 0., 1., 1., 1., 0., 1., 0., 0., 1., 0., 0., 1., 1., 1.]
Confu		
pri	nt(confi	n.metrics import classification_report, confusion_matrix, plot_confusionsion_matrix(y_test, Y_predic)) ion_matrix(logisticRegr, x_test, y_test)
	71 66 68 48 69 40 63 2 72 52 34 3 22 7 26 y_t arra Confu	71 36.0 66 56.5 68 49.5 48 21.5 69 34.5 40 36.5 63 24.5 2 53.5 72 27.0 52 18.5 34 41.5 3 46.0 22 31.5 7 42.0 26 61.0 y_test array([0., 1 1., 1 from skleary logisticRegy logisticRegy logisticRegy confusion Mate from skleary from skleary from skleary logisticRegy confusion Mate from skleary from skleary logisticRegy logisticRegy Confusion Mate

C:\Users\USER\anaconda3\envs\tensorflow\lib\site-packages\sklearn\utils\deprecation.
py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_c
onfusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the cla

ExamA ExamB

18.5

74.5

77

[1 7]]

 $\verb|ssmethods: ConfusionMatrixDisplay.from_predictions| or ConfusionMatrixDisplay.from_e| stimator. \\$

warnings.warn(msg, category=FutureWarning)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x16c35d90670>

In [9]:	<pre>print(classification_report(y_test, Y_predic))</pre>
---------	---

	precision	recall	f1-score	support
0.0	0.89	0.67	0.76	12
1.0	0.64	0.88	0.74	8
accuracy			0.75	20
macro avg	0.76	0.77	0.75	20
weighted avg	0.79	0.75	0.75	20

Homework

print(df.isna().sum())

A. Diberikan data pada tautan berikut ini https://www.kaggle.com/uciml/pima-indians-diabetes-database

- 1. Buatlah model Logistic Regression dengan menggunakan fitur pregnant & glucose
- 2. Buatlah model Logistic Regression dengan menggunakan fitur bp & insulin
- 3. Buatlah model Logistic Regression dengan menggunakan fitur skin & BMI

Tambahkan spliting data training dan testing, serta evaluasi menggunakan data testing

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix, classification_report
from sklearn.linear_model import LogisticRegression
import numpy as np
In [11]:

df = pd. read_csv('diabetes.csv')
print(df)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	

2	8	183		64	0	0
3	1	89		66	23	94
4	0	137		40	35	168
••		•••		•••	•••	•••
763	10	101		76	48	180
764	2	122		70	27	0
765	5	121		72	23	112
766	1	126		60	0	0
767	1	93		70	31	0
Diabetes	sPedigr	reeFunction	Age	Outcome		
0	Ü	0.627	50	1		
1		0.351	31	0		
2		0.672	32	1		
3		0.167	21	0		
4		2.288	33	1		
• •						
763		0.171	63	0		
764		0.340	27	0		
765		0.245	30	0		
766		0.349	47	1		
767		0.315	23	0		
[768 rows x 9	9 colum	ıns]				
Pregnancies		0				
Glucose		0				
BloodPressure	2	0				
SkinThickness	5	0				
Insulin		0				
BMI		0				
DiabetesPedi	greeFur	oction 0				
Age		0				
Outcome		0				

23.3 28.1 43.1

32.9 36.8 26.2 30.1 30.4

SOAL 1

Outcome dtype: int64

```
In [12]: x=df[["Pregnancies","Glucose"]]
    y=df["Outcome"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=0)
```

```
In [13]:
    logisticRegr=LogisticRegression()
    logisticRegr.fit(x_train,y_train)
    Y_predic=logisticRegr.predict(x_test)
    plot_confusion_matrix(logisticRegr,x_test,y_test)
    print(classification_report(y_test,Y_predic))
```

	precision	recall	f1-score	support
0	0.78	0.87	0.82	130
1	0.65	0.50	0.56	62
accuracy			0.75	192
macro avg	0.72	0.68	0.69	192
weighted avg	0.74	0.75	0.74	192

C:\Users\USER\anaconda3\envs\tensorflow\lib\site-packages\sklearn\utils\deprecation. py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_c onfusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the cla ss methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_e stimator.

warnings.warn(msg, category=FutureWarning)

SOAL 2

```
In [14]: x=df[["BloodPressure","Insulin"]]
    y=df["Outcome"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=0)
```

```
In [15]:
    logisticRegr=LogisticRegression()
    logisticRegr.fit(x_train,y_train)
    Y_predic=logisticRegr.predict(x_test)
    plot_confusion_matrix(logisticRegr,x_test,y_test)
    print(classification_report(y_test,Y_predic))
```

	precision	recall	f1-score	support
0	0.69	0.99	0.81	130
1	0.80	0.06	0.12	62
accuracy			0.69	192
macro avg	0.74	0.53	0.47	192
weighted avg	0.73	0.69	0.59	192

C:\Users\USER\anaconda3\envs\tensorflow\lib\site-packages\sklearn\utils\deprecation. py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_c onfusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_e stimator.

warnings.warn(msg, category=FutureWarning)


```
In [16]: x=df[["SkinThickness","BMI"]]
    y=df["Outcome"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=0)
```

```
In [17]:
    logisticRegr=LogisticRegression()
    logisticRegr.fit(x_train,y_train)
    Y_predic=logisticRegr.predict(x_test)
    plot_confusion_matrix(logisticRegr,x_test,y_test)
    print(classification_report(y_test,Y_predic))
```

C:\Users\USER\anaconda3\envs\tensorflow\lib\site-packages\sklearn\utils\deprecation. py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_c onfusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the cla ss methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_e stimator.

warnings.warn(msg, category=FutureWarning)

	precision	recall	f1-score	support
0	0.71	0.89	0.79	130
1	0.52	0.24	0.33	62
accuracy			0.68	192
macro avg	0.61	0.57	0.56	192
weighted avg	0.65	0.68	0.64	192

