CS 561 Artificial Intelligence Lecture # 4 Inference in Bayesian Networks

Rashmi Dutta Baruah

Department of Computer Science & Engineering

IIT Guwahati

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी Indian Institute of Technology Guwahati

Guwahati - 781039, INDIA

Outline

- Inference in Bayesian Network
 - Exact Inference
 - Approximate Inference
- Exact Inference
 - Inference by Enumeration
 - Variable Elimination
- Approximate inference: Sampling
- Sampling
 - Direct Sampling methods
 - Forward sampling
 - Rejection sampling
 - Likelihood sampling
 - Markov chain sampling

Conditional Independence

- **Example:** One morning Tracey leaves her house and realise that her grass is wet. Is it due to overnight rain or did she forget to turn off the sprinkler last night?
- Next she notices that the grass of her neighbour, Jack, is also wet.
- This **explains away** to some extent the possibility that her sprinkler was left on, and she concludes therefore that it is probably been raining (it decreases her belief that the sprinkler is on).
- Using the following four propositional random variables, construct the BN and determine if S is d-separated from J when T is known.
 - R: Rain $\in \{0,1\}$ (Rain = 1 means that it has been raining, and 0 otherwise)
 - S: Sprinkler $\in \{0,1\}$
 - J: Jack's grass wet $\in \{0,1\}$
 - T: Tracy's Grass wet

Conditional Independence

- Four propositional random variables are:
 - R: Rain $\in \{0,1\}$ (Rain = 1 means that it has been raining, and 0 otherwise)
 - S: Sprinkler $\in \{0,1\}$
 - J: Jack's grass wet $\in \{0,1\}$
 - T: Tracy's Grass wet

- The trail between S and J: S-T-R-J
- S-T-R converging connection and T is known so influence flows from S to R.
- T-R-J diverging connection and R is not known so influence flows from T to J.
- So, S and J are not d-separated given T

Inference in Bayesian Networks

- Given a Bayesian network, what queries one might ask?
 - Simple query: compute posterior probability i.e. $P(X_i | E=e)$
- X denotes query variable, E is set of evidence variables, E_1 , ... E_m , and e is particular observed event, Y denotes non-query, non-evidence variables (called hidden variables).
- Example: P(Burglary | JohnCalls = true, MaryCalls = true)
 - $X = Bruglary, E = \{JohnCalls, MaryCalls\}, Y = \{Alarm, Earthquake\}$

Inference in Bayesian Networks

Inference by Enumeration

• $P(X | e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$: Sum over the variables not involved in the query.

$$\mathbf{P}(B|j,m) = \alpha \mathbf{P}(B,j,m) = \alpha \sum \sum \mathbf{P}(B,j,m,e,a)$$

Using Bayesian network semantics we can get the expression in terms of CPTs.

Let us write this for *Burglary*= *true*

$$P(b | j,m) =$$

$$\alpha \sum_{e} \sum_{a} P(b) P(e) P(a | b,e) P(j | a) P(m | a)$$

$$= \alpha P(b) \sum_{e} P(e) \sum_{a} P(a | b,e) P(j | a) P(m | a)$$

We know: $P(X_1, ..., X_n) = \pi_{i=1} P(X_i \mid Parents(X_i))$

Inference by Enumeration

Proceed top down, multiplying values along each path and summing at the "+" nodes. Note repetition of the paths for j and m (repeated computation). For large networks takes long time.

Inference by Variable elimination

- Eliminates repeated calculations
- Variable elimination:
 - expression is evaluated from right-to-left order
 - intermediate results are stored
 - summations over each variable are done only for those portions of the expression that depend on the variable.

$$P(B|j,m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$$

$$f_{1}(B) \qquad f_{2}(E) f_{3}(A,B,E) \qquad f_{4}(A) \qquad f_{5}(A) \longleftarrow \qquad factor$$

$$= \alpha f_{1}(B) \times \sum_{e} f_{2}(E) \times \sum_{a} f_{3}(A,B,E) \times f_{4}(A) \times f_{5}(A)$$

Eg.
$$f_4(A) = \binom{P(j|a)}{P(j|\sim a)} = \binom{0.90}{0.05}$$

Matrix

Point-wise product operation

Inference by variable elimination

- Sum out variables (right-to-left) from point-wise products of factors to produce new factors, eventually yielding a factor that is the solution.
 - sum out A from the product f_3 , f_4 , and f_5 giving f_6

$$f_6(B,E) = \sum_{a} f_3(A,B,E) \times f_4(A) \times f_5(A)$$

= $(f_3(a,B,E) \times f_4(a) \times f_5(a)) + (f_3(\sim a,B,E) \times f_4(\sim a) \times f_5(\sim a))$

Now we are left with expression

$$P(B | j, m) = \alpha f_1(B) \times \sum_{E} f_2(E) \times f_6(B, E)$$

• sum out *E* from the product of f_2 and f_6

$$f_7(B) = \sum_{e} f_2(E) \times f_6(B, E) = f_2(e) \times f_6(B, e) + f_2(\sim e) \times f_6(B, \sim e)$$

Now the expression becomes

$$P(B \mid j,m) = \alpha f_1(B) \times f_7(B)$$

Inference by variable elimination

Basic operations

- Point-wise product
 - two factors f_1 and f_2 yields a new factor f whose variables are the union of the variables in f_1 and f_2
 - f's elements are given by product of the corresponding elements in the two factors
 - Example:
 - given two factors $f_1(A,B)$ and $f_2(B,C)$, the pointwise product $f_1 \times f_2 = f_3$ (A,B,C) has 2^{1+1+1} entries (table in next slide)
- Summing out variable
 - It is done by adding up the submatrices formed by fixing the variable to each of its value in turn.

Inference by variable elimination

A	В	f ₁ (A,B)	В	C	f ₂ (B,C)	A	В	C	f ₃ (A,B,C)
T	T	0.3	T	Т	0.2	T	T	T	$0.3 \times 0.2 = 0.06$
T	F	0.7	T	F	0.8	T	T	F	$0.3 \times 0.8 = 0.24$
F	T	0.9	F	Т	0.6	T	F	T	$0.7 \times 0.6 = 0.42$
F	F	0.1	F	F	0.4	T	F	F	$0.7 \times 0.4 = 0.28$
						F	T	T	$0.9 \times 0.2 = 0.18$
						F	T	F	$0.9 \times 0.8 = 0.72$
						F	F	T	$0.1 \times 0.6 = 0.06$
						F	F	F	$0.1 \times 0.4 = 0.04$

• To sum out A from $f_3(A,B,C)$, we write

•
$$f(B,C) = \sum_{a} f_3(A,B,C) = f_3(a,B,C) + f_3(\sim a,B,C)$$

= $\begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix} + \begin{pmatrix} .18 & .72 \\ .06 & .04 \end{pmatrix} = \begin{pmatrix} .24 & .96 \\ .48 & .32 \end{pmatrix}$

Summary Exact Inference

- Inference compute posterior probability distribution for a set of query variables given a set of evidence variables that are observed.
- Exact methods :
 - Inference by enumeration
 - Simple query: $P(B | j,m) = \alpha P(B,j,m) = \alpha \sum P(B,j,m,e,a)$ $P(B | j,m) = \alpha \sum_{e} \sum_{a} P(B) P(E) P(a | B,e) P(j | a) P(m | a)$

Worst case time complexity: for *n* Boolean variable $O(n2^n)$, can be improved by moving the summation outside but still will be $O(2^n)$

Variable elimination

- ullet d^k entries computed for a factor over k variables with domain sizes d
- ordering of elimination of hidden variables does matter- bad elimination order can generate large factors
- Worst case running time exponential in the size of the Bayes' net (large multiply connected networks)

Approximate Inference

- Sampling based inference
- Basic idea: Generate random samples and compute required probabilities from samples.
 - Draw *N* samples from distribution
 - Estimate P(X | E) from samples
- What do we need to know?
 - How to generate a new sample?
 - How many samples do we need?
 - How to estimate P(X | E)?

Sampling

- Known distribution, single variable
- Consider a random variable *X* with $dom(X) = \{x_1, x_2, x_3\}$
- To generate a random sample for *X*
 - Select a random number y in the range [0,1) (we select y from a uniform distribution to ensure that each number between 0 and 1 has same chance of being chosen)
 - Convert this value of y to a sample from given distribution by associating each outcome $\{x_1, x_2, x_3\}$ to a given sub-interval with size proportional to P(X).
 - Example: suppose random() returns y = 0.3, 0.25, 0.45, 0.65 ... corresponding samples will be $x_1, x_1, x_2, ...$

X	P(X)
\mathbf{x}_1	0.6
\mathbf{x}_2	0.1
\mathbf{x}_3	0.3

$$0 \le y < 0.6 \rightarrow X = x_1$$

 $0.6 \le y < 0.7 \rightarrow X = x_2$
 $0.7 \le y < 1 \rightarrow X = x_3$

Sampling Methods

- Forward sampling
- Rejection sampling
- Likelihood weighting
- Gibbs Sampling (MCMC)

Sampling Methods

- Forward sampling / Prior sampling (without evidence)
 - Sample each variable in topological order
 - probability distribution from which the value is sampled is conditioned on the values already assigned to the variable's parents

```
Input: Bayesian network

X = \{X_1, ..., X_n\}, n-\# nodes, N-\# samples

Output: N samples

Process nodes in topological order - first process
the ancestors of a node, then the node itself

1. For t = 1 to N

2. For i = 1 to n

3. X_i \leftarrow \text{sample } x_i^t \text{ from } P(x_i | \text{parents } (X_i))
```

Assume ordering: Cloudy, Sprinkler, Rain, WetGrass

0.99

-W

Forward Sampling

Sampling methods

- Rejection Sampling (evidence available)
 - generate samples from the prior distribution specified by the network, reject all those samples that do not match the evidence.

```
Input: Bayesian network
    X= {X<sub>1</sub>,..., Xn}, n- #nodes
    E - evidence, N - # samples
Output: N samples consistent with E

1. For t=1 to N

2. For i=1 to n

3.     X<sub>i</sub> ← sample x<sub>i</sub><sup>t</sup> from P(x<sub>i</sub> | parent(X<sub>i</sub>))

4.     If X<sub>i</sub> in E and X<sub>i</sub> ≠ x<sub>i</sub>, reject sample:
        set i = 1 and go to step 2
```

Assume ordering: Cloudy, Sprinkler, Rain, WetGrass

Rejection Sampling

+s	-s +r +w		0.99
		-W	0.01
	-r	+W	0.90
		-W	0.10
-S	+r	+W	0.90
		-W	0.10
	-r	+W	0.01
		-W	0.99

Reject sample

Rain

Samples:

+c	+r	0.8
	-r	0.2
-c	+r	0.2
	-r	0.8

Evidence : R = -r

// generate sample *k*

- 1. Sample C from P(C)
- 2. Sample *S* from $P(S \mid C)$
- 3. Sample R from $P(R \mid C)$
- 4. If $R \neq -r$, reject sample and start from 1, otherwise
- 5. Sample *W* from P(W | S, R)

Sampling Method

Problem of Rejection Sampling: for unlikely evidence, lots of samples rejected

- Likelihood Weighting
 - fix the values for evidence variables, and sample only non-evidence variable (not sampling from right distribution anymore)
 - Now weight the samples by evidence likelihood (probability of evidence given parents).

```
For k = 1 to N

For each each X_i in topological order o = (X_1, ..., X_n):

w_k = 1

if X_i \notin E

X_i \leftarrow \text{sample } x_i \text{ from } P(x_i \mid parents(X_i))

else

assign X_i = e_i

w_k = w_k \bullet P(e_i \mid parents(X_i))
```

Assume ordering: Cloudy, Sprinkler, Rain, WetGrass

Likelihood Weighting

0.99

-W