### **ASSIGNMENT B: APPROXIMATION OF FUNCTION**

Author: Minh Hieu Do (ID: 288414)

**Course: Numerical Methods (ENUME)** 

Advisor: Andrzej Miekina, Ph.D., Assistant Professor

# Contents

| 1.                                                             | -          | The concise description of numerical algorithms                                                         | 3  |
|----------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|----|
| á                                                              | ì.         | Least-squares approximation of a function                                                               | 3  |
| ŀ                                                              | ο.         | Legendre polynomials                                                                                    | 3  |
| (                                                              | <b>:</b> . | Accuracy indictors                                                                                      | 3  |
| 2.                                                             | -          | The methodology for testing numerical algorithms                                                        | 4  |
| 3.                                                             |            | The results of testing numerical algorithms                                                             |    |
| ã                                                              | ì.         | Problem 1                                                                                               |    |
| ŀ                                                              | <b>)</b> . | Problem 2                                                                                               | 6  |
|                                                                | ·          | Problem 3                                                                                               |    |
| (                                                              | d.         | Problem 4                                                                                               |    |
| 4.                                                             |            | Conclusion                                                                                              |    |
| Lis                                                            |            | of references                                                                                           |    |
| MATLAB Code                                                    |            |                                                                                                         |    |
|                                                                |            |                                                                                                         |    |
| _                                                              |            | re 1. Exact data for N = 5                                                                              |    |
| Figure 2. Exact data for N = 10                                |            |                                                                                                         |    |
| _                                                              |            | re 3. Exact data for N = 15                                                                             |    |
| Figure 4. The approximation of $f(x)$ for $N = 10$ and $K = 5$ |            |                                                                                                         |    |
| _                                                              |            | re 6. The approximation of f(x) for N = 40 and K = 35                                                   |    |
| _                                                              |            | re 7. The dependence of $\delta 2K$ , $N$ on N and K                                                    |    |
| _                                                              |            | re 8. The dependence of $\delta \infty K$ , $N$ on N and K                                              |    |
| _                                                              |            | re 9. The dependence of $\delta 2K$ , $N$ on $\sigma y 2$ with the level of disturbance is 0.01         |    |
| _                                                              |            | re 10. The dependence of $\delta \infty K$ , $N$ on $\sigma y2$ with the level of disturbance is 0.01   |    |
|                                                                |            | re 12. The dependence of $\delta \infty K$ , $N$ on $\sigma y2$ with the level of disturbance is 0.001  |    |
|                                                                |            | re 13. The dependence of $\delta 2K$ , $N$ on $\sigma y2$ with the level of disturbance is 0.0001       |    |
| Fig                                                            | ur         | re 14. The dependence of $\delta \infty K$ , $N$ on $\sigma v2$ with the level of disturbance is 0.0001 | 11 |

#### 1. The concise description of numerical algorithms

a. Least-squares approximation of a function

A set of *n* discrete data points  $\{x_n, f(x_n)\}, n = 1, 2, ..., N$  is given.

Consider the function

$$\hat{f}(x;\alpha) = \sum_{k=1}^{K} \alpha_k \Phi_k(x)$$

where  $\Phi_k(x)$  is a linearly independent function (base function)

The coefficients  $\alpha = [\alpha_1 \dots \alpha_K]^T$  are given by the solution to the equation

$$\mathbf{\Phi}^T \cdot \mathbf{\Phi} \cdot \mathbf{\alpha} = \mathbf{\Phi}^T \cdot \mathbf{y}$$

where

$$\mathbf{\Phi} = \begin{bmatrix} \Phi_{1}(x_{1}) & \Phi_{2}(x_{1}) & \cdots & \Phi_{K}(x_{1}) \\ \Phi_{1}(x_{2}) & \Phi_{2}(x_{2}) & \cdots & \Phi_{K}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \Phi_{1}(x_{N}) & \Phi_{2}(x_{N}) & \cdots & \Phi_{K}(x_{N}) \end{bmatrix}$$

and

$$y = [f(x_1) f(x_2) ... f(x_n)]^T$$

b. Legendre polynomials

The set of Legendre polynomials is orthogonal on [-1, 1] with w(x) = 1

$$P_k(x)$$
 for  $k = 1, 2 ... K$ :

$$P_0(x)=1$$

$$P_1(x) = x$$

$$P_k(x) = \frac{2k-1}{k} x P_{k-1}(x) - \frac{k-1}{k} P_{k-2}(x)$$
 for  $k > 1$ 

3

c. Accuracy indictors

$$\delta_2(K,N) = \frac{\|\hat{f}(x;K,N) - f(x)\|_2}{\|f(x)\|_2} \text{ and } \delta_\infty(K,N) = \frac{\|\hat{f}(x;K,N) - f(x)\|_\infty}{\|f(x)\|_\infty}$$

#### 2. The methodology for testing numerical algorithms

- Make the graphs of the function  $f(x) = -\sin(\pi x) e^{-x}$  with  $-1 \le x \le 1$
- Design a MATLAB procedure using the method of least square and the *Legendre* polynomials as the base function to approximate the function f(x) on the basis of the data  $\{(x_n, y_n) | n = 1, ..., N\}$ .
- Plot the graphs to compare the approximation to the exact data for several pairs of the values of the parameters N and K.
- Make the matrixes of  $\delta_2(K, N)$  and  $\delta_\infty(K, N)$  for K = 4, ..., 40; N = k+2, ..., 42.
- Plot 3D graphs of the dependence of  $\delta_2(K, N)$  and  $\delta_{\infty}(K, N)$  on K and N.
- Repeat the above study with the pseudorandom additive errors  $\{\Delta \tilde{y}_n | n=1,...,N\}$  following the normal distribution with the zero mean and variance  $\sigma_v^2$ :

$$\{(x_n, \tilde{y}_n)|n=1,...,N\}, where \tilde{y}_n = y_n + \Delta \tilde{y}_n$$

by using the MATLAB function *randn* to generate the errors.

# 3. The results of testing numerical algorithms

### a. Problem 1



Figure 1. Exact data for N = 5



Figure 2. Exact data for N = 10



Figure 3. Exact data for N = 15

#### b. Problem 2



Figure 4. The approximation of f(x) for N = 10 and K = 5



Figure 5. The approximation of f(x) for N = 20 and K = 15



Figure 6. The approximation of f(x) for N = 40 and K = 35

# c. Problem 3



Figure 7. The dependence of  $\delta_2({\it K},{\it N})$  on N and K



Figure 8. The dependence of  $\delta_\infty(K,N)$  on N and K

## d. Problem 4



Figure 9. The dependence of  $\delta_2(K,N)$  on  $\sigma_y^2$  with the level of disturbance is 0.01



Figure 100. The dependence of  $\delta_\infty(K,N)$  on  $\sigma_y^2$  with the level of disturbance is 0.01



Figure 11. The dependence of  $\delta_2(K,N)$  on  $\sigma_y^2$  with the level of disturbance is 0.001



Figure 112. The dependence of  $\delta_\infty(K,N)$  on  $\sigma_y^2$  with the level of disturbance is 0.001



Figure 123. The dependence of  $\delta_2(K,N)$  on  $\sigma_y^2$  with the level of disturbance is 0.0001



Figure 134. The dependence of  $\delta_{\infty}(K,N)$  on  $\sigma_y^2$  with the level of disturbance is 0.0001

#### 4. Conclusion

After using the method of least squares to approximate the function based on the discrete data, two numerical methods of solving the system of normal equations: Cholesky-Banachiewicz and MATLAB/Simulink built-in method, were used to solve and analyze the solutions of approximation. The obtained results are very close to each other. From three pairs of the values of the parameters N and K, it can be concluded that the higher N and K are, the more accurate the approximation is.

For the given function, with  $x \in [-1, 1]$ , both accuracy indicators  $\delta_2(K, N)$  and  $\delta_{\infty}(K, N)$  bottom at N around 25.

By analyzing the graphs of the dependence of  $\delta_2(K, N)$  and  $\delta_\infty(K, N)$  on  $\sigma_y^2$ , it can be seen that the lower the level of disturbance is, the more precise the approximation is.

# List of references

- R. Z. Morawski, Lecture notes for ENUME students
- A. Miękina, ENUME MatLab Intro 2018

MathWorks, MATLAB Documentation, <a href="https://www.mathworks.com/help/index.html">https://www.mathworks.com/help/index.html</a>

#### MATLAB Code

```
clear all
close all
clc
f = @(x) - \sin(pi*x).*exp(-x);
Ns = [5, 10, 15];
Ks = [2, 5, 8];
x1 = linspace(-1, 1, 100);
%%Problem 1
for i = 1 : 3
   N = Ns(i);
    y = f(x1);
    figure (i)
    plot(x1, y);
    hold on
    grid on
   [x, y] = createXY(N);
    plot(x, y, '*');
    xlabel('x');
    ylabel('y');
    title(['N = ', num2str(N)]);
end
Ns = [10, 20, 40];
Ks = [5, 18, 35];
%%Problem 2
for i = 1 : 3
   N = Ns(i);
    K = Ks(i);
    [x, y, fxLS, fxLSChol] = LSsolve(K, N);
    figure(i+3)
    plot(x1, f(x1), x, fxLS, '-o')
    legend('reference function', 'result of approximation')
    grid on
    xlabel('x')
    ylabel('f(x)')
    title(['The approximation of f(x) for N = ',
num2str(N), and K = ', num2str(K));
end
```

```
%Problem 3
%Dependence of indicator on N and K
K = [4:40];
N = [6:42];
accuracy = zeros(length(K), length(N));
accuracyInf = zeros(length(K), length(N));
for k = 4 : 40
    for n = k+2 : 42
        [x, y, fxLS, ] = LSsolve(k, n);
        accuracy(k-3, n-k-1) = norm(fxLS - y) / norm(y);
        accuracyInf(k-3, n-k-1) = norm(fxLS - y, Inf) /
norm(y, Inf);
    end
end
figure (7)
mesh (K, N, log10 (accuracy))
xlabel('K');
ylabel('N');
zlabel('\bf \delta {2}');
title('The dependence of \delta {2}(K, N) on N and K');
grid on
figure(8)
mesh(K, N, log10(accuracyInf))
xlabel('K');
ylabel('N');
zlabel('\bf \delta {\infty}');
title('The dependence of \delta {\infty}(K, N) on N and
K');
grid on
%Problem 4
err = [0.01, 0.001, 0.0001];
accuracy = zeros(length(K), length(N));
accuracyInf = zeros(length(K), length(N));
variance = zeros(length(K), length(N));
for i = 1 : 3
    lvDisturbance = err(i);
    for k = 4 : 40
        for n = k+2 : 42
            [x, y, fxLS,] = LSsolveErr(k, n,
lvDisturbance);
```

```
accuracy(k-3, n-k-1) = norm(fxLS - y) /
norm(y);
            accuracyInf(k-3, n-k-1) = norm(fxLS - y, Inf) /
norm(y, Inf);
            variance (k-3, n-k-1) = var(y);
        end
    end
    figure (2*i + 7)
    mesh (K, N, log10 (accuracy))
    xlabel('K');
    vlabel('N');
    zlabel('\bf \delta {2}');
    title(['The dependence of \delta {2}(K, N) on
\sigma \{y\}^{2} with level of disturbance is ',
num2str(lvDisturbance)]);
    grid on
    figure (2*i + 8)
    mesh(K, N, log10(accuracyInf))
    xlabel('K');
    ylabel('N');
    zlabel('\bf \delta {\infty}');
    title(['The dependence of \delta {\infty}(K, N) on
\sigma {v}^{2}with level of disturbance is ',
num2str(lvDisturbance)]);
    grid on
end
%%Function to solve approximation
function[x, y, fxLS, fxLSChol] = LSsolve(K, N)
    [x, y] = createXY(N);
    y = y';
    P = createBase(K, N, x);
    res = (P' * P) \setminus (P' * y);
    resCB = solveCB(P' * P, P' * y);
    fxLS = P * res;
    fxLSChol = P * resCB;
end
%%Function to solve approximation with error
function[x, y, fxLS, fxLSChol] = LSsolveErr(K, N, err)
    [x, y] = createXY(N);
    y = y';
    yErr = randn(N,1) * err;
```

```
y = y \cdot (1 + yErr);
    P = createBase(K, N, x);
    res = (P' * P) \setminus (P' * y);
    resCB = solveCB(P' * P, P' * y);
    fxLS = P * res;
    fxLSChol = P * resCB;
end
%%Function to create data \{(xn, yn) \mid n = 1, \ldots, N\}-----
function [X, Y] = createXY(N)
    f = @(x) - sin(pi*x).*exp(-x);
    for n = 1 : N
       X(n) = -1 + 2*(n-1)/(N-1);
    end
   Y = f(X);
end
%%Function to creaatebase-----
function P = createBase(K, N, x)
    for n = 1 : N
       P(n, 1) = 1;
       P(n, 2) = x(n);
       for i = 3 : K+1
           k = \dot{\gamma} - 1;
           P(n, j) = (2*k-1)/k * x(n) * P(n, j-1) - (k-1)
1) /k * P(n, j-2);
       end
    end
end
%%Cholesky function-----
_____
function [L] = Cholesky(A)
   N = length(A);
   L = A-A;
    for i = 1 : N
       L(i, i) = sqrt(A(i, i) - L(i, :)*L(i, :)');
        for j = (i + 1) : N
           L(j, i) = (A(j, i) - L(i, :)*L(j, :)')/L(i,
i);
```

```
end
   end
end
%%Function to sovle linear system-----
function [X] = solveCB(A, b)
   L = Cholesky(A);
   Lt = L';
   [n, \sim] = size(A);
   y = zeros(n, 1);
   X = zeros(n, 1);
   y(1) = b(1)/L(1, 1);
```

y(i) = (b(i) - L(i, :)\*y)/L(i, i);

X(i) = (y(i) - Lt(i, :)\*X)/L(i, i);

end

end

for i = 2 : n

X(n) = y(n)/Lt(n, n);for i = n-1 : -1 : 1