STAT2911 Assignment 1

Student 10: 480048631

1. We have X ~ Negative Binomial (r,p)

$$\Rightarrow P(X=k) = {k-1 \choose r-1} p^r q^{k-r}, k=r,r+1,...$$

Let Y= X -r. Y measures the number of failures before the rth success.

=)
$$P(Y=m) = \begin{pmatrix} r+m-1 \\ r-1 \end{pmatrix} p^r q^m, m = 0,1,2,...$$

We want to prove That
$$\lim_{r\to\infty} P(Y=m) = \frac{\lambda^m}{m!} e^{-\lambda}$$

 $q\to 0$
 $rq\to \lambda$

Let $q = \frac{\lambda}{r}$, we can rewrite P(Y=m) as

$$P(Y=m) = {r+m-1 \choose r-1} \left(1 - \frac{\lambda}{r}\right)^r \left(\frac{\lambda}{r}\right)^m$$
$$= \frac{\lambda^m}{m!} \frac{(r+m-1)!}{(r-1)! r^m} \left(1 - \frac{\lambda}{r}\right)^r$$

want to prove that this $\rightarrow e^{-\lambda}$ as $r \rightarrow \infty$

$$\frac{(r+m-1)!}{(r-1)!r^{m}} = \frac{(r+m-1)(r+m-2)...(r+1)r}{r^{m}} \rightarrow \text{there are } m \text{ terms of this}$$

$$= \frac{r+m-1}{r} \cdot \frac{r+m-2}{r} \cdot \dots \frac{r+1}{r} \cdot \frac{r}{r}$$

$$= \left(1 + \frac{m-1}{r}\right) \left(1 + \frac{m-2}{r}\right) \cdot \dots \left(1 + \frac{1}{r}\right) \cdot 1$$

Substitute back to P(Y=m)

$$P(\gamma = m) = \frac{\lambda^m}{m!} \left(1 + \frac{m-1}{r}\right) \left(1 + \frac{m-2}{r}\right) \dots \left(1 + \frac{1}{r}\right) \left(1 - \frac{\lambda}{r}\right)^r$$

$$\lim_{r \to \infty} P(Y = m) = \frac{\lambda^m}{m!} \times \lim_{r \to \infty} \left(1 + \frac{m-1}{r}\right) \left(1 + \frac{m-2}{r}\right) \dots \left(1 + \frac{1}{r}\right) \times \lim_{r \to \infty} \left(1 - \frac{\lambda}{r}\right)^r$$

using the equality:
$$e^{\times} = \lim_{n \to \infty} \left(1 + \frac{\times}{n}\right)^n$$

Thus,
$$\lim_{r\to\infty} P(Y=m) = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$

2.

- Given that each $\alpha_i \in \{0,1\}$ and Ω is the set of all α , (Ω, F, P) models sequences (i) of infinite Bernoulli trials. We can also interpret this problem as an infinite coin toss model. In addition, we are particularly interested in the first n tosses. Let head = 1 and tail = 0. For example, with $\beta = (0, 1, 1, 0)$. Ep is the set of all sequences of coin toss such that the first 4 to sses pollow the sequence of (T, H, H, T).
- lii) let ji be a sequence of length i+1 starts with i 0's and ends with a 1.

For example, yo = (1)

$$\exists E_{0} = (1, \alpha_1, \alpha_3, \dots) \in F$$

$$\eta_1 = (0, 1)$$

$$\mathfrak{J}_1 = \{0, \pm\}$$
 $\Rightarrow E_{\mathfrak{J}_2} = \{0, \pm\}, \alpha_3, \alpha_4, \ldots\} \in \mathsf{F}$

$$\chi_2 = (0, 0, 1)$$

$$\gamma_2 = (0, 0, 1)$$
 $E_{\gamma_2} = (0, 0, 1, \alpha_4, \alpha_5, ...) \in F$

let $E_r = \bigcup_{i=0}^{\infty} E_{7i}$

since each $E_{7i} \in F$, by definition of a σ -algebra, $E_{7} \in F$.

The set
$$\{0\} = \Omega \setminus E_r \in F$$
.

(iii) We recognise that $\{(0,0,...)\} = \bigcap_{n=1}^{\infty} E_{(0)_n}$ $= E_{(0)} \cap E_{(0,0)} \cap E_{(0,0,0)} \cap \dots$ (with $E_{(0)} \supset E_{(0,0)} \supset E_{(0,0,0)} \supset ...$)

using the probability measure given, $P(E_{(0)_n}) = (1-p)^n$

since
$$p \in (0,1]$$
, $1-p \in [0,1) \Rightarrow \lim_{n\to\infty} P(E_{(0)_n}) = \lim_{n\to\infty} (1-p)^n \to 0$

(iv) For $\alpha \in \Omega$ and $n \in \mathbb{N}$, let $X_n(\alpha) = \alpha_n$. For example, let $\alpha = (0, 1, 0, 1)$ then $X_{\mu}(\alpha) = \alpha_{\mu} = 1$. Since the values X_n can attain are 0 and 1 and we are only interested in the n^{th} element of a sequence \Rightarrow X_n is a Bernoulli random variable.

- Iv) For $\alpha \in \Omega$ and let $X(\alpha) = \inf \{ n : a_n = 1 \}$. That is, in a sequence α of n bernoulli trials, $X(\alpha)$ will return the index of α_n where the first time a "1" appears. For example: $\alpha = (0,0,0.1)$ then $X(\alpha) = 4$ There fore, X is a Geometric random variable.
- (vi) Since Q is a continuation of an infinite number of Bernoulli trials result in a "0". $X(Q) = \infty$.
- (vii) $P(X = \infty) = P(E_{\beta} : X(\alpha \in E_{\beta}) = \infty)$ $= P(Q = \{0,0,...\}) = 0 \text{ (as proved in part (iii))}.$

We have $X(\Omega) = U\{X(\alpha), \alpha \in \Omega\}$ since $Q \in \Omega$ and $X(Q) = \infty \Rightarrow \infty \in X(\Omega)$.