16.3 The Fundamental Theorem for Line Integrals.

Recall.
$$\int_a^b F'(x) dx = F(b) - F(a)$$

$$\int_{a}^{b} \overrightarrow{\varphi} \cdot \overrightarrow{r}'(t) dt = \int_{a}^{b} \frac{1}{12} \frac{1}{$$

2 Theorem Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Remarks.

$$\int_C \vec{\nabla} \cdot d\vec{r} = f(\alpha_{r_1} y_r) - f(\alpha_{r_1} y_r).$$

2. In 3D.

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3}\mathbf{x}$$

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0) along a piecewise-smooth curve C. (See Example 16.1.4.)

Conservative vector fields: P= Pt, some f.

, then
$$[77 = P]$$
.

$$\int_{C} \vec{P} \cdot d\vec{r} = \int_{C} \vec{r} \cdot d\vec{r} \cdot d\vec{r} \cdot d\vec{r} = \int_{C} \vec{r} \cdot d\vec{r} \cdot d\vec{r} \cdot d\vec{r} = \int_{C} \vec{r} \cdot d\vec{r} \cdot d\vec{r} \cdot d\vec{r} \cdot d\vec{r} = \int_{C} \vec{r} \cdot d\vec{r} \cdot d\vec{r$$

Definition. 1) Path: piece-wise smooth curve.

2 Independent of Path: \overrightarrow{F} is ind. of path if for any two paths C_1 & C_2 starting at A and ending at B, then $\int_{C_1} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C_2} \overrightarrow{F} \cdot d\overrightarrow{r} . \qquad (Example 4 in 16.2, not true)$

Theorem $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

(3) Clused path: a path with the same starting d ending points.

Theorem Suppose \mathbf{F} is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then \mathbf{F} is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$.

open connected

Theorem Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an <u>open simply-connected</u> region D. Suppose that P and Q have <u>continuous first-order partial derivatives</u> and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \hspace{1cm} \text{throughout D}$$

Then $\ \mathbf{F}$ is conservative. The converse also holds.

6) Simply-ronnecled: No holes!

$$\mathbf{F}(x, y) = (x - y)\mathbf{i} + (x - 2)\mathbf{j}$$

is conservative.

EXAMPLE 3 Determine whether or not the vector field

$$\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 - 3y^2)\mathbf{j}$$

is conservative.

EXAMPLE 4

- (a) If $\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$.
- (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by

$$\mathbf{r}(t) = e^t \sin t \, \mathbf{i} + e^t \cos t \, \mathbf{j} \qquad 0 \le t \le \pi$$

EXAMPLE 5 If $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + (2xy + e^{3z}) \mathbf{j} + 3ye^{3z} \mathbf{k}$, find a function f such that $\nabla f = \mathbf{F}$.

Conservation of Energy.