Perancangan Percobaan

Model paling sederhana dalam rancangan percobaan:

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
; $i = 1, 2, ..., p$; $j = 1, 2, ..., r$.

dengan:

 Y_{ij} = respons pada perlakuan ke - i, ulangan ke - j

 μ = rataan umum

 τ_i = pengaruh perlakuan ke – i

 ε_{ij} = error atau galat pada perlakuan ke - i, ulangan ke - j

Penting supaya bisa menggunakan model RAL:

- Kapan digunakan?
- Cara pengacakan?

Rancangan Acak Lengkap

Teladan 1. Percobaan varietas (V1, V2, V3, V4) dilakukan untuk mengetahui varietas mana yang memberikan produktivitas lebih baik.

Ulangan: 3

Keempat varietas ditanam pada lahan yang relatif seragam.

Model RAL:

 $Y_{ij} = \mu + \tau_i + \epsilon_{ij}$; untuk i=1,2,3,4 dan j=1,2,3

 Y_{ij} = produktivitas varietas ke-i dan ulangan ke-j

- Mengapa menggunakan Rancangan Acak Lengkap (RAL)?
- Bagaimana cara mengacak perlakuan ke satuan percobaan?

• Menggunakan RAL karena satuan percobaannya (petakpetak lahan yang ditanami) <u>seragam</u>.

• Cara mengacaknya:

- 1. Ada 4 perlakuan & ada 3 ulangan \rightarrow butuh 4x3=12 satuan percobaan (petak lahan).
- 2. Petak lahan diberi nomor 1 sd 12.
- 3. Perlakuan ke-1 (V1) ditempatkan secara acak (menggunakan "Tabel Bilangan Acak" atau random dengan komputer) ke petak lahan; misalnya terpilih di petak nomor 5.
- 4. Ulangi pengacakan V1 sebanyak ulangan yang dibutuhkan (total 3 kali).
- 5. Lakukan pengacakan V2 sebanyak 3 kali, V3 sebanyak 3 kali, dan V4 sebanyak 3 kali.

Hasil Proses Pengacakan

1	2	3
4	5	6
7	8	9
10	11	12

1	2	3
4	V1	6
7	8	9
10	11	12

1	2	V1
4	V1	6
7	8	9
V1	11	12

Penomoran petak

Mengacak V1 ulangan ke-1

Mengacak V1 ulangan ke-2 dan ke-3

V2	V4	V1
V3	V1	V3
V2	V4	V2
V1	V3	V4

V2	2	V1
V3	V1	V3
V2	8	V2
V1	V3	12

V2	2	V1		
4	V1	6		
V2	8	V2		
V1	11	12		

Mengacak V4 ulangan ke-1, 2 dan 3

Mengacak V3 ulangan ke-1, 2 dan 3

Mengacak V2 ulangan ke-1, 2 dan 3

Data hasil pengamatan produktivitas (ton/ha)

	Ulangan	V1	V2	V3	V4	
	1	6.7	6.5	7.8	7.4	
yij	2	6.9	6.7	7.7	6.9	v di
	3	6.8	6.9	7.6	7.0	yı. 7
	Jumlah	20.4	20.1	23.1	21.3	84.9
	Rataan	6.8	6.7	7.7	7.1	7.1 y(bar)

Ujilah apakah ada perbedaan produktivitas antar varietas! Gunakan taraf nyata pengujian sebesar 5%.

yi.(bar)√

Data hasil percobaan tersebut dalam notasi model RAL:

 Y_{11} artinya respons pada perlakuan ke-1 dan ulangan ke-1 = 6.7

$$Y_{12} = 6.9$$

$$Y_{31} = 7.8$$

$$Y_{33} = 7.0$$
 dst....

 Y_1 = jumlah pengamatan pada perlakuan ke-1 = 20.4

$$Y_2 = 20.1$$

$$Y_3 = 23.1$$

$$Y_4 = 21.3$$

Y.. = jumlah seluruh pengamatan = 84.9

 \bar{Y}_1 = Rata-rata perlakuan ke-1 = 6.8

$$\bar{Y}_{2.} = 6.7$$

$$\bar{Y}_3 = 7.7$$

$$\bar{Y}_{4.} = 7.1$$

 \overline{Y} = Rataan seluruh pengamatan = 7.1

Dalam perspektif model RAL (lanjutan):

 μ merupakan rataan umum, yang diduga oleh $\overline{Y}_{..} = 7.1$

 τ_i = pengaruh perlakuan ke - i diduga dengan $\bar{Y}_{i.}$ - $\bar{Y}_{..}$

$$\hat{\tau}_1 = 6.8 - 7.1 = -0.3$$

$$\hat{\tau}_2 = 6.7 - 7.1 = -0.4$$

$$\hat{\tau}_3 = 7.7 - 7.1 = 0.6$$

$$\hat{\tau}_4 = 7.1 - 7.1 = 0$$

Apa hipotesisnya?

Hipotesis yang akan diuji:

H₀:
$$\tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$$

H₁: Paling sedikit ada satu τ_i≠0

- Bagaimana cara menguji hipotesis tersebut?
 - → Diuji menggunakan uji F → ANOVA

Sesuai model RAL, ada tiga sumber keragaman, yaitu perlakuan (varietas), error (acak), dan total. Bentuk Tabel Anovanya sebagai berikut:

Sumber	Db	JK	KT	F
Varietas				
Error				
Total				

Db = Derajat bebas

JK = Jumlah Kuadrat

KT = Kuadrat Tengah

F = F-hitung

Db Varietas = 4 - 1 = 3

Db Total = n - 1 = 12 - 1 = 11

Db Error = Db Total - Db Varietas = 11 - 3 = 8

• Bagaimana cara menguji hipotesis tersebut? (lanjutan)

JK (Total) =
$$\sum_{i=1}^{4} \sum_{j=1}^{3} (y_{ij} - \bar{y}_{..})^2$$

= $(6.7-7.1)^2 + (6.9-7.1)^2 + ... + (7.0-7.1)^2$
= 2.0825
JK (Varietas) = $\sum_{i=1}^{4} 3(\bar{y}_{i.} - \bar{y}_{,.})^2$
= $3\{(6.8-7.1)^2 + (6.7-7.1)^2 + (7.7-7.1)^2 + (7.1-7.1)^2\}$
= 1.8225
JK (Error) = JK (Total) – JK (Varietas)
= $2.0825 - 1.8225 = 0.2600$

$$KT = JK/Db$$

F hit = KT (Varietas) / KT (Error)

Rancangan Acak Lengkap

Sumber	Db	JK	KT	F
Varietas	3	1.8225	0.6075	18.69
Error	8	0.26	0.0325	
Total	11	2.0825		

Nilai F-hitung kita bandingkan dengan F-table, dengan:

F-table =
$$F_{\alpha}(v_1, v_2)$$
; dimana α =0.05, v_1 =3, dan v_2 =8
= $F_{0.05}(3,8) = 4.07$

Karena F-hitung > F-tabel → Tolak H0 (H1 yang benar)

→ ada perbedaan pengaruh varietas

(antar varietas menghasilkan produktivitas yang berbeda)

Tabel F_{0.05 (V1, V2)}

604

P1					100		120			, P1, P2					20-1				
1.	100							Degrees	of Freedo	om for th	e Nume	rator (v)						
1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
4	7.71	9.55	9.28 6.59	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.5
	1.71	0.74	0.39	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.6
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.3
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.6
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.2
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.9
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.7
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70				
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.66	2.62	2.58	2.5
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.33	2.49	2.45	2.4
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.43	2.30	2.34	2.3
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.23	2.1
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2 10							
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.40	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.0
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2,55	2.49	2.45	2.38	2.33	2.23	2.24	2.19	2.15	2.11	2.06	2.0
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.13	2.10	2.06	2.01	1.9
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.97	1.9
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2,45	2.39	2.35	2.28								
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.8
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.8
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.03	1.98	1.94	1.89	1.84	1.78
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.91	1.86	1.81	1.76
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.20										
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.7
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.60
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.6
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.87	1.82	1.77	1.71	1.6
30	4.17	3.32	2.92	2.69												1.01	1.75	1.70	1.6
40	4.08	3.23	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.6
60	4.00	3.15	2.76	2.53	2.37	2.25	2.23	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.5
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.10	1.96	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.83	1.75	1.66	1.61	1.55	1.55	1.43	1.35	1.25

Rancangan Acak Lengkap

Jika menggunakan MINITAB akan diperoleh output seperti ini:

Sources	Df	SS	MS	F	P-Value
Varietas	3	1.8225	0.6075	18.69	0.001
Error	8	0.26	0.0325		
Total	11	2.0825			

Karena P-Value $< \alpha \rightarrow$ Tolak H0

→ ada perbedaan pengaruh varietas

(antar varietas menghasilkan produktivitas yang berbeda)

Tugas-1

Percobaan hujan buatan dilakukan untuk mencari bahan semai yang dapat menghasilkan curah hujan tertinggi

Bahan semai ada 3: A (garam dapur), B (Urea), C (Perak Oksida)

Ulangan: 5

Ketiga bahan semai disemprotkan kepada jenis awan & ketinggian yang relatif sama, kemudian diamati curah hujannya.

Bahan							
Semai	1	2	3	4	5	Rataan	Jumlah
А	18	20	15	18	21	18.4	92
В	10	16	12	13	15	13.2	66
С	21	25	18	23	20	21.4	107
						17.7	265

Buatlah ANOVA-nya & lakukan pengujian apakah ketiga bahan semai memberikan hasil yang berbeda?

Tugas-2

Suatu percobaan dilakukan untuk mengevaluasi metode penyuluhan yang ditujukan untuk mencari metode penyuluhan yang dapat memberikan hasil terbaik (menghasilkan produktivitas tinggi bagi petani)

Metode Penyuluhan: M1, M2, M3

Ulangan: 10

- a. Apa satuan percobaannya?
- b. Berapa satuan percobaan yang dibutuhkan?
- c. Bagaimana mengacak perlakuan ke satuan percobaan?
- d. Bagaimana teknis percobaan tsb di lapangan (termasuk melakukan kontrol lokal)?

Tugas-3

Buktikan:

$$JK(Perlakuan) = r \sum_{i=1}^{p} (\bar{y}_{i.} - \bar{y}_{..})^{2} = \sum_{i=1}^{p} \frac{y_{i.}^{2}}{r} - \frac{y_{..}^{2}}{n}$$

$$JK(Total) = \sum_{i=1}^{n} (y_{ij} - \bar{y}_{..})^{2} = \sum_{i=1}^{n} y_{ij}^{2} - \frac{y_{..}^{2}}{n}$$

$$JK(Error) = \sum_{i=1}^{n} (y_{ij} - \bar{y}_{..})^{2} = JK(Total) - JK(Perlakuan)$$

dengan
$$i=1, 2, ..., p$$

 $j=1, 2, ..., r$
 $n=p x r$