Practice Sheet Review

Base Case 7,
$$b-a \le || \Rightarrow || + a || = n \le 2$$

If $b-a \le 1$ Then RETURN(1)

 $b = a \le 1$ Then RETURN(1)

 $a \ge a \ge 1$

O-work $T_3(n) = Cn + \sqrt{n} \left[\frac{1}{3} \left(\frac{1}{n} \right) \right]$ Assume $n_0 \le k \le n$ $T_3(k) \le ak \left[\frac{1}{3} \left(\frac{1}{3} k \right) \right]$ with a > 0 $T_3(n) = Cn + \sqrt{n} T_3(\sqrt{n}) \le cn + \sqrt{n} \left(\frac{a\sqrt{n} \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]}{a\sqrt{n} \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]}$ $= Cn + an \left(\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right) = cn + an \left(\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right) - \frac{1}{3} 2 \right)$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] \le an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] = an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] = an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right] = an \left[\frac{1}{3} \sqrt{n} \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \left(\frac{1}{3} \sqrt{n} \right) + cn - an \right]$ $= an \left[\frac{1}{3} \sqrt{n} \right]$ $= an \left[\frac{1}{3} \sqrt{n} \right]$ $= an \left[\frac{1}{3} \sqrt{n} \right]$ $= an \left[\frac$