Devoir à la maison $n^{\circ}05$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Etude d'exemples

I.1 I.1.a Si $\alpha = 1$, on a évidemment $\gamma_n = 1$ pour tout $n \in \mathbb{N}$.

Sinon,
$$\gamma_n = \frac{1}{n+1} \frac{1-\alpha^{n+1}}{1-\alpha}$$

I.1.b Si $\alpha = 1$, (γ_n) est constante égale à 1 donc converge vers 1. Si $\alpha = -1$, $\gamma_n = \frac{1}{n+1} \frac{1 + (-1)^n}{2}$ pour tout $n \in \mathbb{N}$ donc $0 \le \gamma_n \le \frac{1}{n+1}$ pour tout $n \in \mathbb{N}$. Ainsi (γ_n) converge

Si $|\alpha| < 1$, alors $\gamma_n \sim \frac{1}{n+1} \frac{1}{1-\alpha}$ donc (γ_n) converge vers 0. Si $|\alpha| > 1$, alors $\gamma_n \sim \frac{1}{n+1} \frac{\alpha^{n+1}}{1-\alpha}$ donc (γ_n) diverge.

I.2 I.2.a On trouve $A^2 = A^T$ et $A^3 = I_3$. On en déduit que $A^{3k} = I_3$, $A^{3k+1} = A$ et $A^{3k+2} = A^T$ pour tout $k \in \mathbb{N}$.

I.2.b Posons $B_n = (n+1)C_n$. D'après la question précédente, $B_{n+3} = B_n + I_n + A + A^T$ pour tout $n \in \mathbb{N}$. Ainsi

$$B_{3n} = B_0 + n(I_n + A + A^T) = I_n + n(I_n + A + A^T)$$

$$B_{3n+1} = B_1 + n(I_n + A + A^T) = I_n + A + n(I_n + A + A^T)$$

$$B_{3n+2} = B_2 + n(I_n + A + A^T) = (n+1)(I_n + A + A^T)$$

On en déduit que

$$C_{3n} = \begin{pmatrix} \frac{n+1}{3n+1} & \frac{n}{3n+1} & \frac{n}{3n+1} \\ \frac{n}{3n+1} & \frac{n+1}{3n+1} & \frac{n}{3n+1} \\ \frac{n}{3n+1} & \frac{n}{3n+1} & \frac{n+1}{3n+1} \\ \frac{n}{3n+1} & \frac{n}{3n+1} & \frac{n+1}{3n+1} \end{pmatrix} \qquad C_{3n+1} = \begin{pmatrix} \frac{n+1}{3n+2} & \frac{n}{3n+2} & \frac{n+1}{3n+2} \\ \frac{n+1}{3n+2} & \frac{n+1}{3n+2} & \frac{n}{3n+2} \\ \frac{n}{3n+2} & \frac{n+1}{3n+2} & \frac{n+1}{3n+2} \end{pmatrix} \qquad C_{3n+2} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

On constate que les suites (C_{3n}) , (C_{3n+1}) et (C_{3n+2}) convergent vers la même matrice $C = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$. On en

déduit que (C_n) converge vers C.

I.2.c On a $C^2 = C$ donc $v^2 = v$, ce qui prouve que v est un projecteur. On a clairement Im v = vect((1, 1, 1)) et on voit que Ker v est l'hyperplan de \mathbb{R}^3 d'équation x + y + z = 0.

I.3 I.3.a On cherche une matrice inversible $P = \begin{pmatrix} a & b \\ dC & d \end{pmatrix}$ telle que AP = PD. La condition AP = PD équivaut au système

$$\begin{cases} \frac{1}{3}a + \frac{2}{3}c = a \\ \frac{1}{3}b + \frac{2}{3}d = -\frac{1}{6}b \\ \frac{1}{2}a + \frac{1}{2}c = c \\ \frac{1}{2}b + \frac{1}{2}d = -\frac{1}{6}d \end{cases}$$

ou encore

$$\begin{cases} a - c = 0 \\ 3b + 4d = 0 \end{cases}$$

Il suffit par exemple de prendre a=c=1, b=4 et d=-3 i.e. $P=\begin{pmatrix} 1 & 4 \\ 1 & -3 \end{pmatrix}$ qui est inversible, de sorte qu'on a bien $A=PDP^{-1}$.

I.3.b On trouve $P^{-1} = \frac{1}{7} \begin{pmatrix} 3 & 4 \\ 1 & -1 \end{pmatrix}$. Par récurrence, on obtient $A^k = PD^kP^{-1}$. Or $D^k = \begin{pmatrix} 1 & 0 \\ 0 & \left(-\frac{1}{6}\right)^k \end{pmatrix}$ et un calcul donne alors

$$\mathbf{A}^{k} = \begin{pmatrix} \frac{3}{7} + \frac{4}{7} \left(-\frac{1}{6} \right)^{k} & \frac{4}{7} - \frac{4}{7} \left(-\frac{1}{6} \right)^{k} \\ \frac{3}{7} - \frac{3}{7} \left(-\frac{1}{6} \right)^{k} & \frac{4}{7} + \frac{3}{7} \left(-\frac{1}{6} \right)^{k} \end{pmatrix}$$

I.3.c On a $A^k = U + \left(-\frac{1}{6}\right)^k V$ pour tout $k \in \mathbb{N}$ avec $U = \begin{pmatrix} \frac{3}{7} & \frac{4}{7} \\ \frac{3}{7} & \frac{4}{7} \end{pmatrix}$ et $V = \begin{pmatrix} \frac{4}{7} & -\frac{4}{7} \\ -\frac{3}{7} & \frac{3}{7} \end{pmatrix}$.

I.3.d On a donc

$$C_n = U + \frac{1 - \left(-\frac{1}{6}\right)^{n+1}}{1 - \left(-\frac{1}{6}\right)} V = U + \frac{1}{n+1} \frac{6}{7} \left(1 - \left(-\frac{1}{6}\right)^{n+1}\right) V$$

I.3.e Comme $\left|-\frac{1}{6}\right| < 1$, on montre que (C_n) converge vers C = U.

I.3.f On vérifie que $U^2 = U$, ce qui prouve que $v^2 = v$. v est donc un projecteur de \mathbb{R}^2 . On a alors Im v = vect((1,1)) et Ker v est la droite d'équation 3x + 4y = 0.

Partie II – Etude de (C_n) lorque A est r-périodique

- **II.1 II.1.a** Posons $z_k = \frac{1}{r} \sum_{l=0}^{r-1} \alpha_{k+l}$ pour tout $k \in \mathbb{N}$. En utilisant, la périodicité de (α_k) , on montre que $z_{k+1} = z_k$ pour tout $k \in \mathbb{N}$. Ainsi la suite (z_k) est constante égale à $z_0 = \gamma$.
 - **II.1.b** Pour tout $n \in \mathbb{N}$,

$$\beta_{n+r} = \sum_{k=0}^{n+r} \alpha_k - \frac{n+r+1}{r} \sum_{k=0}^{r-1} \alpha_k$$

$$= \sum_{k=0}^{n} \alpha_k - \frac{n+1}{r} \sum_{k=0}^{r-1} \alpha_k + \sum_{k=n+1}^{n+r} \alpha_k - \sum_{k=0}^{r-1} \alpha_k$$

$$= (n+1)\gamma_n - (n+1)\gamma + \sum_{k=0}^{r-1} \alpha_{n+1+k} - \sum_{k=0}^{r-1} \alpha_k$$

$$= \beta_n + rz_{n+1} - r\gamma = \beta_n$$

en utilisant la question précédente. Ainsi (β_n) est r-périodique et est donc bornée comme toute suite périodique. En effet, pour tout $n \in \mathbb{N}$,

$$\min_{0 \le k \le r-1} \beta_k \le \beta_n \le \max_{0 \le k \le r-1} \beta_k$$

II.1.c Pour tout $n \in \mathbb{N}$

$$\gamma_n = \gamma + \frac{\beta_n}{n+1}$$

Comme (β_n) est bornée, (γ_n) converge vers γ .

II.2 II.2.a Puisque $A^r = I_p$, $A^{k+r} = A^k$ pour tout $k \in \mathbb{N}$. Il s'ensuit que $\alpha_{k+r} = a_{i,j}(A^{k+r}) = a_{i,j}(A^k) = \alpha_k$ pour tout $k \in \mathbb{N}$. La suite (α_k) est donc r-périodique. Avec les notations de la question précédente, on a $\gamma_n = c_{i,j}(C_n)$ pour tout $n \in \mathbb{N}$. Or on a montré que (γ_n) converge vers γ . Or

$$\gamma = \frac{1}{r} \sum_{k=0}^{r-1} \alpha_k = \frac{1}{r} \sum_{k=0}^{r-1} c_{i,j}(\mathbf{A}^k) = c_{i,j} \left(\frac{1}{r} \sum_{k=0}^{r-1} \mathbf{A}^k \right)$$

Ceci montrer que (C_n) converge vers

$$C = \frac{1}{r} \sum_{k=0}^{r-1} A^k$$

II.2.b Comme A et I_p commutent

$$A^{r} - I_{p} = (A - I_{p}) \left(\sum_{k=0}^{r-1} A^{k} \right) = r(A - I_{p})C$$
$$= \left(\sum_{k=0}^{r-1} A^{k} \right) (A - I_{p}) = rC(A - I_{p})$$

Comme $A^r = I_p$ et $r \neq 0$, AC = CA = C.

II.2.c Puisque AC = C, on montre par récurrence que $A^kC = C$ pour tout $k \in \mathbb{N}$. Il s'ensuit que

$$C^2 = \frac{1}{r} \left(\sum_{k=0}^{r-1} A^k \right) C = \frac{1}{r} \sum_{k=0}^{r-1} A^k C = \frac{1}{r} \sum_{k=0}^{r-1} C = C$$

On en déduit que $v^2 = v$ et v est donc un projecteur.

On a AC = C, ce qui signifie $u \circ v = v$ ou encore $(u - \operatorname{Id}) \circ v = 0$ et donc $\operatorname{Im} v \subset \operatorname{Ker}(u - \operatorname{Id})$. Soit $x \in \operatorname{Ker}(u - \operatorname{Id})$. Alors u(x) = x puis $u^k(x) = x$ pour tout $k \in \mathbb{N}$. On en déduit que

$$v(x) = \frac{1}{r} \sum_{k=0}^{r-1} u^k(x) = x$$

et donc $x \in \text{Im } v$. Ainsi $\text{Ker}(u - \text{Id}) \in \text{Im } v$. Finalement Ker(u - Id) = Im v.

De même, CA = C, ce qui sigifie que $v \circ u = v$ ou encore $v \circ (u - \operatorname{Id}) = 0$ et donc $\operatorname{Im}(u - \operatorname{Id}) \subset \operatorname{Ker} v$. Mais on a également $\operatorname{rg} v = \dim \operatorname{Ker}(u - \operatorname{Id})$ d'après ce qui précède. Le théorème du rang permet donc d'affirmer que $\operatorname{rg}(u - \operatorname{Id}) = \dim \operatorname{Ker} v$ puis que $\operatorname{Im}(u - \operatorname{Id}) = \operatorname{Ker} v$.

II.3 II.3.a La suite (α'_k) est r-périodique. La suite (γ'_n) qui lui est associée converge donc vers

$$\gamma' = \frac{1}{r} \sum_{k=0}^{r-1} \alpha'_k$$

Pour tout $n \in \mathbb{N}$,

$$\gamma'_n - \gamma_n = \frac{1}{n+1} \left(\sum_{k=0}^n \alpha'_k - \sum_{k=0}^n \alpha_k \right)$$

$$= \frac{1}{n+1} \left(\sum_{k=m}^{n+m} \alpha_k - \sum_{k=0}^n \alpha_k \right)$$

$$= \frac{1}{n+1} \left(\sum_{k=n+1}^{n+m} \alpha_k - \sum_{k=0}^{m-1} \alpha_k \right)$$

$$= \frac{1}{n+1} \left(y_n - K \right)$$

avec $y_n = \sum_{k=n+1}^{n+m} \alpha_k$ et $K = \sum_{k=0}^{m-1} \alpha_k$. La suite (y_n) est r-périodique donc bornée. On en déduit que la $(\gamma'_n - \gamma_n)$ converge vers 0. Ainsi (γ_n) converge vers

$$\gamma' = \frac{1}{r} \sum_{k=m}^{m+r-1} \alpha_k$$

II.3.b Soit $(i, j) \in [1, p]^2$. La suite de terme général $\alpha_k = c_{i,j}(A^k)$ est r-périodique à partir du rang m. D'après la question précédente, la suite (γ_n) qui lui est associée converge vers γ' en gardant les mêmes notations. Ceci montre que (C_n) converge vers

$$C = \frac{1}{r} \sum_{k=m}^{m+r-1} A^k$$

II.3.c Comme A et I_p commutent

$$\mathbf{A}^{m+r} - \mathbf{A}^m = (\mathbf{A} - \mathbf{I}_p) \left(\sum_{k=m}^{m+r-1} \mathbf{A}^k \right) = r(\mathbf{A} - \mathbf{I}_p) \mathbf{C}$$
$$= \left(\sum_{k=m}^{m+r-1} \mathbf{A}^k \right) (\mathbf{A} - \mathbf{I}_p) = r \mathbf{C} (\mathbf{A} - \mathbf{I}_p)$$

Comme $A^{m+r} = A^m$ et $r \neq 0$, AC = CA = C.

Puisque AC = C, on montre par récurrence que $A^kC = C$ pour tout $k \in \mathbb{N}$. Il s'ensuit que

$$C^{2} = \frac{1}{r} \left(\sum_{k=m}^{m+r-1} A^{k} \right) C = \frac{1}{r} \sum_{k=m}^{m+r-1} A^{k} C = \frac{1}{r} \sum_{k=m}^{m+r-1} C = C$$

On en déduit que $v^2 = v$ et v est donc un projecteur.

On a AC = C, ce qui signifie $u \circ v = v$ ou encore $(u - \operatorname{Id}) \circ v = 0$ et donc $\operatorname{Im} v \subset \operatorname{Ker}(u - \operatorname{Id})$. Soit $x \in \operatorname{Ker}(u - \operatorname{Id})$. Alors u(x) = x puis $u^k(x) = x$ pour tout $k \in \mathbb{N}$. On en déduit que

$$v(x) = \frac{1}{r} \sum_{k=m}^{m+r-1} u^k(x) = x$$

et donc $x \in \text{Im } v$. Ainsi $\text{Ker}(u - \text{Id}) \in \text{Im } v$. Finalement Ker(u - Id) = Im v.

De même, CA = C, ce qui sigifie que $v \circ u = v$ ou encore $v \circ (u - \operatorname{Id}) = 0$ et donc $\operatorname{Im}(u - \operatorname{Id}) \subset \operatorname{Ker} v$. Mais on a également $\operatorname{rg} v = \dim \operatorname{Ker}(u - \operatorname{Id})$ d'après ce qui précède. Le théorème du rang permet donc d'affirmer que $\operatorname{rg}(u - \operatorname{Id}) = \dim \operatorname{Ker} v$ puis que $\operatorname{Im}(u - \operatorname{Id}) = \operatorname{Ker} v$.

Partie III - Etude de matrices stochastiques

III.1 Pour aller plus vite, on utilisera le fait que $M \in \mathcal{M}_p(\mathbb{R})$ est stochastique si et seulement si M est à coefficients positifs et si MU = U avec $U \in \mathcal{M}_{p,1}(\mathbb{R})$ dont tous les coefficients valent 1.

III.1.a Puisque M et N sont à coefficients positifs et que λ et μ sont des réels positifs, $\lambda M + \mu N$ est à coefficients positifs. De plus, $(\lambda M + \mu N)U = \lambda MU + \mu NU = (\lambda + \mu)U = U$ car M et N sont stochastiques et car $\lambda + \mu = 1$. Ainsi $\lambda M + \mu N$ est stochastique.

Remarque. On a en fait montré que S_p est une partie *convexe* de $\mathcal{M}_p(\mathbb{R})$.

III.1.b Pour tout $(i, j) \in [1, p]^2$,

$$c_{i,j}(MN) = \sum_{k=1}^{p} c_{ik}(M)c_{kj}(N) \ge 0$$

car M et N sont à coefficients positifs. De plus, MNU = MU = U car M et N sont stochastiques. Donc MN l'est également.

III.1.c Tout d'abord, on montre par récurrence que A^n est stochastique pour tout $n \in \mathbb{N}$ en utilisant la question précédente.

 $C_0 = I_p$ est stochastique. Supposons que C_n le soit pour un certain $n \in \mathbb{N}$. Alors $C_{n+1} = \frac{n}{n+1}C_n + \frac{1}{n}A^{n+1}$ est stochastique d'après la question **III.1.a**. Par récurrence, $C_n \in \mathcal{S}_p$ pour tout $n \in \mathbb{N}$.

Supposons que (C_n) admet une limite C. Puisque pour tout $n \in \mathbb{N}$, C_n est stochastique, on a

- $\forall (i, j) \in [[1, p]]^2, c_{i, j}(C_n) \ge 0.$
- $\forall i \in [1, p], \sum_{i=1}^{p} c_{i,j}(C_n) = 1.$

Par passage à la limite,

- $\forall (i, j) \in [[1, p]]^2, c_{i, j}(C) \ge 0.$
- $\forall i \in [[1, p]], \sum_{j=1}^{p} c_{i,j}(\mathbb{C}) = 1.$

Ainsi C est stochastique.

III.2 III.2.a Supposons M déterministe. La somme des coefficients de chaque ligne vaut 1. Comme tous les coefficients valent 0 ou 1, un seul des coefficients de chaque ligne vaut 1 et les autres valents 0.

Réciproquement si tous les coefficients sont égaux à 0 ou 1 et si chaque ligne de M contient exactement un coefficient égal à 1, alors M est bien déterministe.

III.2.b Il y a p choix possibles pour la position du seul coefficient 1 pour chacune des p lignes d'une matrice déterministe. On en déduit que card $\mathcal{D}_p = p^p$.

III.2.c MN est stochastique d'apès la question **III.1.b**. De plus, pour tout $(i, j) \in [1, p]^2$

$$c_{i,j}(MN) = \sum_{k=1}^{p} c_{ik}(M)c_{kj}(N) \in \mathbb{N}$$

La somme des coefficients de chaque ligne de MN valant 1 et chacun de ces coefficients étant entier naturel, un seul d'entre eux vaut 1 et les autres sont nuls. Ceci prouve que MN est déterministe.

III.2.d La suite (A^k) est à valeurs dans \mathcal{D}_p d'après la question précédente. Comme \mathcal{D}_p est un ensemble fini, la suite (A^k) ne peut être injective. Il existe donc des entiers naturels m et n tels que m < n et $A^m = A^n$. Posons $r = n - m \in \mathbb{N}^*$. Alors $A^{m+r} = A^m$ i.e. A est donc r-périodique à partir du rang m.

Si A est inversible, alors en multipliant l'égalité $A^{m+r} = A^m$ par $(A^{-1})^m$, on obtient $A^r = I_p$, ce qui prouve que A est r-périodique.

III.2.e Chaque colonne de A contient au moins un coefficient égal à 1 sinon une colonne de A serait nulle, ce qui contredirait son inversibilité. Comme A contient un seul coefficient égal à 1 par ligne, elle contient en tout *p* coefficients égaux à 1. On en déduit que chaque colonne de A contient exactement un coefficient égal à 1, les autres étant nuls.

On voit alors que $AA^T = I_p$, ce qui prouve que $A^{-1} = A^T$. Les coefficients de A^T sont tous égaux à 0 ou 1 et comme chaque colonne de A^T contient exactement un coefficient égal à 1, chaque ligne de A^T contient exactement un coefficient égal à 1. Ceci prouve que $A^{-1} = A^T$ est déterministe. Comme A^{-1} est évidemment inversible, $A^{-1} \in \Delta_p$.

Remarque. Comme le produit de deux matrices déterministes inversibles et une matrice déterministe (d'après III.2.c) inversible et que $I_n \in \Delta_p$, on voit que Δ_p est un sous-groupe de $\mathrm{GL}_p(\mathbb{R})$.

Les matrices déterministes inversibles sont aussi appelées matrices de permutation. Je vous laisse deviner pourquoi.

- III.3 D'après la question III.2.d, A est *r*-périodique à partir d'un certain rang *m*. D'après les questions II.3.b et II.3.c, (C_n) converge vers une matrice C telle que $C^2 = C$. D'après la question III.1.c, $C \in \mathcal{S}_p$.
- **III.4 III.4.a** Puisque $XY = I_p$, X et Y sont inversibles.

III.4.b Soit $j \in [1, p]$. D'une part,

$$c_{jj}(XY) = \sum_{k=1}^{p} c_{jk}(X)c_{kj}(Y) \le \mu_j \sum_{k=1}^{p} c_{jk}(X) = \mu_j$$

Puisque $c_{jj}(XY) = c_{jj}(I_p) = 1$, on a $\mu_j \ge 1$. D'autre part,

$$\sum_{i=1}^{p} c_{i,j}(\mathbf{Y}) = 1$$

et $c_{i,j} \ge 0$ pour tout $i \in [\![1,p]\!]$ donc $c_{i,j} \le 1$ pour tout $i \in [\![1,p]\!]$. On en déduit que $\mu_j \le 1$. Finalement $\mu_i = 1$.

III.4.c Soit $j \in [1, p]$. Puisque $\mu_j = 1$, un des coefficients de la $j^{\text{ème}}$ ligne vaut 1. Puisque Y est stochastique, la somme des coefficients de cette ligne vaut 1 et, puisque tous les autres coefficients de cette ligne sont positifs, ils sont nuls.

Les coefficients de Y valent donc tous 0 ou 1 et chaque ligne de Y contient exactement un coefficient égal à 1, ce qui prouve que Y est déterministe. Ainsi $Y \in \Delta_p$ puisque Y est également inversible.

Puisque $XY = I_p$, $X = Y^{-1}$ est donc $X \in \Delta_p$ d'après **III.2.e**.

III.4.d Posons $W = UV \in \Delta_p$. On a donc $W^{-1}UV = I_p$. D'après **III.2.e**, $W^{-1} \in \Delta_p$ et a fortiori $W^{-1} \in \mathcal{S}_p$. D'après **III.1.b**, $W^{-1}U \in \mathcal{S}_p$ et ce qui précède montre que $W^{-1}U \in \Delta_p$ et $V \in \Delta_p$. Enfin, $U = W(W^{-1}U) \in \mathcal{D}_p$ d'après **III.2.c** et U est inversible car W et $W^{-1}U$ le sont. Ainsi $U \in \Delta_p$.