

Description

The VSM210N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of other applications.

General Features

- V_{DSS} =100V, I_D =210A $R_{DS(ON)} < 4.2m\Omega @ V_{GS}$ =10V (Typ: 3.3 mΩ)
- Good stability and uniformity with high E_{AS}
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- DC motor drive
- High efficiency synchronous rectification in SMPS
- Uninterruptible power supply
- High speed power switching
- Hard switched and high frequency circuits

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM210N10-T7	VSM210N10	TO-247	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDSS	100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	210	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	140	Α
Pulsed Drain Current	I _{DM}	850	Α
Maximum Power Dissipation	P _D	385	W
Derating factor		2.57	W/℃

Shenzhen VSEEI Semiconductor Co., Ltd

Single pulse avalanche energy (Note 3)	E _{AS}	2300	mJ	
Peak Diode Recovery dv/dt (Note 4)	dv/dt	13	V/ns	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 1)	Rejc	0.39	°C/W
---	------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±200	nA
On Characteristics						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	2.5	3.5	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	3.3	4.2	mΩ
Forward Transconductance	g Fs	V _{DS} =25V,I _D =40A	300	-	-	S
Dynamic Characteristics			•			•
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	13500	-	PF
Output Capacitance	C _{oss}		-	862	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	659	-	PF
Switching Characteristics						
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, I_{D} =2A V_{GS} =10V, R_{GEN} =2.5 Ω	-	68	-	nS
Turn-on Rise Time	t _r		-	45	-	nS
Turn-Off Delay Time	t _{d(off)}		-	215	-	nS
Turn-Off Fall Time	t _f		-	56	-	nS
Total Gate Charge	Qg	\/ -20\/ L -20 A	-	304	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_D =30A, V_{GS} =10V ^(Note2)	-	64	-	nC
Gate-Drain Charge	Q _{gd}	VGS-10V	-	95	-	nC
Drain-Source Diode Characteristics	·					
Diode Forward Voltage	V_{SD}	V_{GS} =0 V , I_{S} =40 A	-	-	1.2	V
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 75A	-	65	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note2)}$	-	98	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 2. Pulse Test: Pulse Width ≤ 400µs, Duty Cycle ≤ 2%.
- 3. EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=37.5V,V_G=10V,L=2mH,Rg=25 Ω ,I_{AS}=37A
- 4. Isd \leqslant 125A, di/dt \leqslant 260A/ μ s, Vdd \leqslant V(BR)dss, TJ \leqslant 175°C

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

 T_J -Junction Temperature($^{\circ}C$)

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance