Review Questions

MAT1320, Fall 2015

- **1.** Let $f(x) = \frac{3x-4}{x-2}$. What is $f^{-1}(-1)$?
- **2.** Solve equation $2^{2x-1} = 3^{x+1}$.
- **3.** Solve equation $\ln x \ln (10 x) = -3$.
- **4.** Evaluate the following expressions:
- (a) $\sin(\arcsin(-0.3))$.
- (b) $\arccos\left(\cos\left(-\frac{\pi}{3}\right)\right)$.
- (c) $\arcsin\left(\sin\left(\frac{2\pi}{3}\right)\right)$.
- (d) $\sin(\arctan a)$.
- **5.** Find limits:
- (a) $\lim_{x\to 2} \frac{x^2-4}{2+x-x^2}$.
- (b) $\lim_{h\to 4} \frac{\sqrt{h+5}-3}{h-4}$.
- (c) $\lim_{h\to\infty} \frac{x^2 + \sqrt{x} 1}{\sqrt{2x^4 + 1}}$.
- (d) $\lim_{h \to -\infty} \frac{x}{\sqrt{4x^2 + 1}}.$
- **6.** Suppose a function is defined as

$$f(x) = \begin{cases} ax+3, & x < -2\\ 2x+b, & -2 \le x \le 3\\ (a+1)x+2b, & x > 3 \end{cases}$$

If this function is continuous for all x, what are a and b?

- **7.** Find the derivative of the function $y = e^{\sin(x^2)}$.
- **8.** Some values of a function y = f(x) and it derivative are given in the following table:

Let $g = f \circ f$. Fill in the following table:

Х	1	2	3	4	5
g(x)					
g'(x)					

- **9.** Find the derivative of **the** function $y = \sqrt{2x-1}$ by the definition.
- **10.** Find the second derivative of $y = \ln(x + \sqrt{x^2 + 4})$.
- **11.** Find the 73rd derivative of thee function $y = \cos x$.
- 12. If a function y = f(x) is defined implicitly by the equation $x^3 y^3 + x^2y + 3y = 1$. Then the derivative of this function at the point (1, 2) is
- **13.** Find the derivative of the function $y = \frac{(x^4 + 1)^{2/3} e^{x^2}}{\sqrt{x^2 + 1}}$. Do not simplify.
- **14.** Find the derivative of $y = (\sin x)^{\sin x}$.
- **15.** The surface of a dock is 5 meters above the deck of a boat. The boat on the water is pulled in by a cable towards the dock. When the boat is 12 meters away horizontally from the dock, it is approaching the dock horizontally at a rate of 0.5 meters per second. How fast is the cable being pulled in?

16. The hypotenuse AB of a right triangle is 10 cm. Angle CAB is increasing at a rate 0.1 radian per minute. What is the rate of change of the area of the triangle when the length of BC is 6 cm?

17. Use the linear approximation of the function $y = \sqrt[3]{5x+7}$ at x = 4 to estimate the value of $\sqrt[3]{25}$. Give the estimate as a fraction.

18. If F(x) is an antiderivative of the function $y = \frac{1}{1+x^2}$ such that $F(0) = \frac{2\pi}{3}$, what is $F(\sqrt{3})$?

19. Suppose $\int_{1}^{3} f(x)dx = 5$, $\int_{2}^{4} f(x)dx = 9$, $\int_{1}^{4} f(x)dx = 11$. Find $\int_{2}^{3} (5f(x) - 2x - 3)dx$.

20. Suppose some values of a function y = f(x) is listed in the following table:

Use all the values in the table and the left sum, right sum, trapezoidal rule, and Simpson's rule, respectively, to estimate the definite integral $\int_{1}^{2.2} f(x)dx$.

21. Use the midpoint rule with n = 4 to estimate the definite integral $\int_0^1 e^{-x^2} dx$.

22. Suppose a particle is moving along the *x*-axis with velocity (in m/sec) $v = 100 - t^2$, $t \ge 0$. Find the total **distance** (not the displacement!) it travels from t = 0 to t = 12.

23. If
$$F(x) = \int_{x^2}^{x^3} \sqrt{2t^2 + 1} dt$$
, find $F'(x)$.

24. Evaluate the definite integral $\int_1^4 \frac{x^2 - 1}{\sqrt{x}} dx$.

25. Evaluate the definite integral $\int_0^2 \frac{x^3}{\sqrt{2x^2+1}} dx$.

26. Calculate the indefinite integral $\int x^2 \arctan x dx$.

- **27.** Calculate definite integral $\int_0^{\pi/3} \sec^4 x dx$.
- **28.** Calculate the definite integral $\int \frac{2x+1}{3x^2-2x-1} dx$.
- **29.** Calculate indefinite integral $\int \frac{x+2}{x^2+2x+5} dx$.
- **30.** Calculate the indefinite integral $\int \frac{x+1}{x(x^2+2x+5)} dx$.
- **31.** Calculate the indefinite integral $\int \frac{1}{(1-x^2)^{3/2}} dx$.
- **32.** Consider function $y = \frac{x^{1/5}}{x+1}$.
- (a) Find the first and the second derivatives of this function.
- (b) Find critical numbers of this function.
- (c) For which values of x is this function increasing / decreasing?
- (d) Find all local max / min of this function, if any.
- (e) For which values of x is the graph of this function concave up / down?
- (f) Find all inflection points, if any.
- (g) Find all vertical/horizontal asymptotes, if any.
- (h) Sketch the graph of this function.
- 33. Find $\lim_{x\to 0} \frac{x-\sin x}{x-\tan x}$.
- **34.** Find $\lim_{x \to \pi/2} \left(x \frac{\pi}{2} \right) \tan x$.
- **35.** Find $\lim_{x\to 0} (1-2x)^{1/x}$.

36. Find
$$\lim_{x \to 1^+} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right).$$

37. Find the maximum area of a rectangle inscribed in a isosceles triangle with base 40 cm and height 30 cm. Justify that what you got is an absolute maximum.

- **38.** A window with perimeter 10 meters has the shape of a rectangle surmounted by an equilateral triangle. Find the dimensions of the window so that the area of the window is maximized.
- **39.** Use Newton's method to find an approximation of a root of the equation $e^x = x + 1$, with $x_1 = 2$. Stop until $|x_{n+1} x_n| < 0.00001$.