Note:

- 1. The problems are from the textbook by G. H. Givens and J. A. Hoeting
- 2. There are total 2 questions: 8.1 and 8.3.
- 3. The full grade is 10 in this HW with point distributed as

8.1	3
8.3(a)	1
(b)	1
(c)	1
(d)	1
(e)	1
(f)i	1
(f)ii	1

8.1. One approach to Bayesian variable selection for linear regression models is described in Section 8.2.1 and further examined in Example 8.3. For a Bayesian analysis for the model in Equation (8.20), we might adopt the normal–gamma conjugate class of priors $\boldsymbol{\beta}|m_k \sim N(\boldsymbol{\alpha}_{m_k}, \sigma^2 \mathbf{V}_{m_k})$ and $\nu \lambda/\sigma^2 \sim \chi^2_{\nu}$. Show that the marginal density of $\mathbf{Y}|m_k$ is given by

$$\frac{\Gamma\left((\nu+n)/2\right)(\nu\lambda)^{\nu/2}}{\pi^{n/2}\Gamma(\nu/2)|\mathbf{I}+\mathbf{X}_{m_k}\mathbf{V}_{m_k}\mathbf{X}_{m_k}^{\mathrm{T}}|^{1/2}} \times \left[\lambda\nu+\left(\mathbf{Y}-\mathbf{X}_{m_k}\boldsymbol{\alpha}_{m_k}\right)^{\mathrm{T}}\left(\mathbf{I}+\mathbf{X}_{m_k}\mathbf{V}_{m_k}\mathbf{X}_{m_k}^{\mathrm{T}}\right)^{-1}\left(\mathbf{Y}-\mathbf{X}_{m_k}\boldsymbol{\alpha}_{m_k}\right)\right]^{-(\nu+n)/2},$$

where \mathbf{X}_{m_k} is the design matrix, $\boldsymbol{\alpha}_{m_k}$ is the mean vector, and \mathbf{V}_{m_k} is the covariance matrix for $\boldsymbol{\beta}_{m_k}$ for the model m_k .

- **8.3.** Suppose we desire a draw from the marginal distribution of X that is determined by the assumptions that $\theta \sim \text{Beta}(\alpha, \beta)$ and $X|\theta \sim \text{Bin}(n, \theta)$ [96].
 - **a.** Show that $\theta | x \sim \text{Beta}(\alpha + x, \beta + n x)$.
 - **b.** What is the marginal expected value of *X*?
 - **c.** Implement a Gibbs sampler to obtain a joint sample of (θ, X) , using $x^{(0)} = 0$, $\alpha = 10$, $\beta = 5$, and n = 10.
 - **d.** Let $U^{(t+1)}$ and $V^{(t+1)}$ be independent Unif(0,1) random variables. Then the transition rule from $X^{(t)} = x^{(t)}$ to $X^{(t+1)}$ can be written as

$$\begin{split} \boldsymbol{X}^{(t+1)} &= q(\boldsymbol{x}^{(t)}, \, \boldsymbol{U}^{(t+1)}, \, \boldsymbol{V}^{(t+1)}) \\ &= F_{\mathrm{Bin}}^{-1} \left(\boldsymbol{V}^{(t+1)}; \boldsymbol{n}, \, F_{\mathrm{Beta}}^{-1} \left(\boldsymbol{U}^{(t+1)}; \boldsymbol{\alpha} + \boldsymbol{x}^{(t)}, \, \boldsymbol{\beta} + \boldsymbol{n} - \boldsymbol{x}^{(t)} \right) \right), \end{split}$$

where $F_d^{-1}(p;\mu_1,\mu_2)$ is the inverse cumulative distribution function of the distribution d with parameters μ_1 and μ_2 , evaluated at p. Implement the CFTP algorithm from Section 8.5.1, using the transition rule given in (8.50), to draw a perfect sample for this problem. Decrement τ by one unit each time the sample paths do not coalesce by time 0. Run the function 100 times to produce 100 draws from the stationary distribution for $\alpha=10$, $\beta=5$, and n=10. Make a histogram of the 100 starting times (the finishing times are all t=0, by construction). Make a histogram of the 100 realizations of $X^{(0)}$. Discuss your results.

- **e.** Run the function from part (d) several times for $\alpha = 1.001$, $\beta = 1$, and n = 10. Pick a run where the chains were required to start at $\tau = -15$ or earlier. Graph the sample paths (from each of the 11 starting values) from their starting time to t = 0, connecting sequential states with lines. The goal is to observe the coalescence as in the right panel in Figure 8.5. Comment on any interesting features of your graph.
- **f.** Run the algorithm from part (d) several times. For each run, collect a perfect chain of length 20 (i.e., once you have achieved coalescence, don't stop the algorithm at t=0, but continue the chain from t=0 through t=19). Pick one such chain having $x^{(0)}=0$, and graph its sample path for $t=0,\ldots,19$. Next, run the Gibbs sampler from part (c) through t=19 starting with $x^{(0)}=0$. Superimpose the sample path of this chain on your existing graph, using a dashed line.
 - **i.** Is t = 2 sufficient burn-in for the Gibbs sampler? Why or why not?
 - **ii.** Of the two chains (CFTP conditional on $x^{(0)} = 0$ and Gibbs starting from $x^{(0)} = 0$), which should produce subsequent variates $X^{(t)}$ for $t = 1, 2, \ldots$ whose distribution more closely resembles the target? Why does this conditional CFTP chain fail to produce a perfect sample?