

Network Security

<CH 5>

Youn Kyu Lee Hongik University

Authentication Part#1

Access Control

- Authentication: Are you who you say you are?
 - Determine whether access is allowed
 - Authenticate human to machine
 - Or authenticate machine to machine
- Authorization: Are you allowed to do that?
 - Once you have access, what can you do?
 - Enforces limits on actions
- Access Control = Authentication + Authorization(but "access control" often used as synonym for authorization)

Are You Who You Say You Are?

- Authentication based on
 - Something you know (or something you've forgotten)
 - For example, a password
 - Something you have (or something you had once)
 - For example, a smartcard
 - Something you are (or something you once were)
 - For example, your fingerprint

Something You Know

- Passwords, Passphrase, Secret Code, ...
- Lots of things act as passwords!
 - PIN, Social security number, Mother's maiden name, Date of birth, Name of your pet, etc.
- Passwords: one of the biggest practical problems facing security engineers today

Trouble with Passwords

- Users do NOT select passwords at random
 (humans are incapable of securely storing or
 memorizing high-quality cryptographic keys)
 and attackers know that ..
 eg. 8 characters password vs. 8x8 bits crypto key
- Users REUSE passwords at multiple sites and attackers know that .. (and try to crack a poorly protected site to obtain them and ...)
- Users often write down passwords on a paper, which can be stolen or be seen by others
- Users are vulnerable to social engineering attacks

Then, Why Passwords?

- Why is "something you know" more popular than "something you have" and "something you are"?
- Cost: passwords are 'almost' free
- **Convenience**: easier for admin to reset password than to issue a new thumb

Password Experiment

- Three groups of users : each group advised to select passwords as follows
 - Group A: At least 6 chars, 1 non-letter
 - Group B: Password based on passphrase
 (eg. It's 12 noon and I am hungry -> I'S12&IAH)
 - Group C: 8 random characters(alpha or numeric)
- Results
 - **Group A:** About 30% of passwords easy to crack
 - Group B: About 10% cracked
 - Passwords easy to remember
 - Group C: About 10% cracked
 - Passwords hard to remember

Password Experiment

- In each case, 1/3rd did not comply
 - And about 1/3rd of those easy to crack!
- Assigned passwords sometimes best
- If passwords not assigned, best advice is...
 - Choose passwords based on passphrase
 - Use password cracking tool to test for weak passwords (*Hashcat, John The Ripper,* ...)
- Require periodic password changes? -- Good?
 - hiJude01, hiJude02, hiJude03, ... for monthly changes
 - NIST(2017): recommend long passphrase only changed on compromise
 - Microsoft(since 2019): not impose password-expiration policy

Attacks on Passwords

- Attacker could...
 - Target one particular account
 - Target any account belonging to a specific target
 - Target any account on a target system
 - Target any account on any system
- Common attack path
 - outsider \rightarrow normal user \rightarrow administrator
 - May only require one weak password!
 - Typical way of penetration done by APT(Advanced Persistent Threat) attack

Password Retry

- Suppose system locks after 3 bad passwords. How long should it lock?
 - 5 seconds
 - 5 minutes
 - Until SA restores service
- Make lock time increase (exponentially) as a function of the number of wrong password trials

Password File

- Bad to store 'plaintext' passwords in a file
- But we need to verify passwords
- Cryptographic solution: hash the passwords
 - Store y = h(password)
 - Can verify entered password by hashing
 - Even with "password file," attacker does not obtain passwords easily due to h()'s one-way property
- But attacker can try a forward search
 - Guess x and check whether y = h(x)

Dictionary Attack

- Attacker can pre-computes h(x) for all x in **dictionary** of common passwords
- Suppose Trudy gets access to password file containing hashed passwords
 - She only needs to compare hashes to her pre-computed dictionary
 - After one-time work, actual attack is trivial
 - LinkedIn passwords encrypted by SHA1 and leaked in 2012
 - → only took 3 days to discover 90% of passwords
- Can we prevent this attack? Or at least make attacker's job more difficult?

Salt and/or Pepper

- Hash password with salt
- Choose random salt s and compute

```
y = h(password, s)
```

and store (s,y) in the password file

- Note: The salt s is not secret
- Easy to verify salted password
- But Trudy must re-compute dictionary hashes for each user
 - Lots more work for Trudy!

Salt and/or Pepper

- Hash password with pepper
- Choose a *common* pepper p and compute y = h(password, p) for *all users* and store all (y)s in the password file and p somewhere else(eg. in a configuration file)
- Note: The pepper p is secret
- Easy to verify peppered password(once p is retrieved)
- But Trudy must
 - guess the pepper OR
 - retrieve it in another way

Number of Hash Iterations

- Another way to increase security of passwords

```
while iteration_counter > 0:
    hash = sha512(hash)
    decrement iteration_counter
```

- For a normal user, calculation will be a bit longer (still, order of milliseconds for a reasonable iteration counter value(100 or so))
- But Trudy(not knowing any password) must do
 - millions of attempts
 - take additional hours/days to retrieve passwords

Other Password Issues

- Reset done via mostly SMS messages(secret code)
 - SIM swapping
 - Malware stealing SMS, Stolen/lost phone
- Failure to change default passwords
 - Wireless Router, Set-top Box, ...
 - IoT devices with no I/O(keyboard, ..)
- Attacker-Installed/Spoofed WiFi Access Points
 - showing bogus Website(made exactly alike to the real one) to collect passwords given to it

Other Password Issues

- Social engineering
 - using phishing SMS, emails, phone calls, ...
- Error logs may contain "almost" passwords
- Bugs, keystroke logging, spyware, etc.

- Credential stuffing
 - : use leaked(via various ways) passwords to try to penetrate the most protected site without causing an alarm (it will work if passwords were reused)

Other Password Issues

- Modern Web browsers can cache passwords
 - : browsers keep asking "save id/passwords" and autocomplete them using previously saved ones

- Password managers(typically, as a browser add-on)
 - : need to memorize a *master password*, which encrypts all the individual site passwords

Authentication Part#2

Biometrics

Source: Thalesgroup Biometrics in 2021 https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/biometrics

Something You Are

- -Biometric
 - "You are your key" Schneier
- Examples
 - Fingerprint
 - o Iris
 - Handwritten signature
 - Facial recognition
 - Voice recognition
 - Gait (walking) recognition
 - 0 ...

Why Biometrics?

- More secure replacement for passwords
- Cheap and reliable biometrics needed
 - Today, an active area of research
- Biometrics are widely used in security today
 - Iris for extremely accurate authentication
 - Palm print for secure entry
 - Fingerprint to unlock car door, etc.
- But with some limitations
 - Non-negligible false-alarm rates in hostile environments
 - High cost for enrollment, usage, and maintenance
 - Application limited for crime scene forensics

- Handwritten Signatures
 - Rare for signatures disputed in court cases, as the context mostly makes it clear who did what
 - So it actually works fairly well in practice, but it certainly is not bulletproof
 - tablet-based signature recognition systems(from early 1990's) record not just the shape of the curve but also its dynamics(the velocity of the hand, where the pen was lifted off ...)
 - and they compare captured signatures against ones enrolled previously
 - these systems show error rates of several %s, at best
 - Works OK as a deterrent to attackers

- Face Recognition
 - Oldest identification mechanism of all
 - Photo ID-based authentication used widely accurate?
 - Neural network revolution since 2012
 - most accurate algorithm(thanks to CNNs) finds matching entries from galleries of 12 million individuals, with a miss rate approaching 0.1%
 - fastest algorithm needs just ½ second to match one against 10 million other faces
 - some algorithms can match side-view photos to galleries of frontal photos (called *pose invariance*)

- Face Recognition
 - Neural network revolution since 2012
 - iPhone X's dot projector paints one's face with tens of thousands of dots and this hardware-based scheme helps to deal with makeup, some sunglasses and facial hair (and claimed to have error rate of one in a million)
 - needs improvement on how to handle variations in pose, age, illumination and expression
 - regulations against face recognition products vary across countries
- Fingerprints : will be discussed later

- Voice Recognition (a.k.a. speaker recognition)
 - Identifying a speaker from a short utterance
 (≠ speech recognition, which is for transcribing speech
 and need to ignore speech idiosyncrasies)
 - Varies whether recognition is text-dependent or not, whether environment is noisy, whether operation must be real time, and whether one needs to *verify speakers* or *recognize them* from a large set
 - A clever attack: *breaking up* intercepted messages from victim *into* quarter second segments that are then *cut and pasted* to provide new, deceptive messages
 - "Deepfake" editing software for voice and image morphing

Ideal Biometric

- Universal applies to (almost) everyone
 - In reality, no biometric applies to everyone
- **Distinguishing** distinguish with certainty
 - In reality, cannot hope for 100% certainty
- Permanent physical characteristic being measured never changes
 - In reality, OK if it to remains valid for long time
- Collectable easy to collect required data
 - Depends on whether subjects are cooperative
- Also, safe, user-friendly, etc., etc.

Biometric Modes

- Identification(for forensics) Who goes there?
 - Compare one-to-many
 - Example: The FBI fingerprint database
- Authentication Are you who you say you are?
 - Compare one-to-one
 - Example: Thumbprint mouse
- Identification problem is much more difficult
 - More "random" matches and needs more comparisons
 - In many cases, subjects are not cooperative at all
- Here we are mostly interested in authentication

Enrollment vs. Recognition

- Enrollment phase

- Subject's biometric info put into database
- Must carefully measure the required info
- OK if slow and repeated measurement needed
- Must be very precise
- May be weak point of many biometric
- Recognition phase
 - Biometric detection, when used in practice
 - Must be quick and simple
 - But must be reasonably accurate (with low error rates)

Cooperative Subjects?

- Authentication cooperative subjects
- Identification uncooperative subjects
- For example, face recognition systems
 - used in Las Vegas casinos to detect known cheaters (terrorists in airports, etc.)
 - often do not have ideal enrollment conditions
 - subject will try to confuse recognition phase
- Cooperative subject makes it much easier
 - 1:1 question and yes/no decision
 - subjects are generally cooperative

Biometric Errors

- False accept(fraud/type1) vs. False reject(insult/type2)
 - False accept Trudy mis-authenticated as Alice
 - False reject Alice not authenticated as Alice
- For any biometric, can decrease fraud or insult, but other one will increase
- For example
 - 99% voiceprint match: low false accept, high false reject
 - 30% voiceprint match: high false accept, low false reject
- Equal error rate:
 - rate where false accept rate = false reject rate
 - A way to compare different biometrics

- Long history of usage in a number of countries
- A systematic studies on fingerprint identification
 - F. Galton's scheme of classifying fingerprint patterns
 - E. Henry's indexing system: assigning 1 bit to whether or not a suspect's 10 fingers had a whorl(a type of circular pattern)
 - Used for essentially 2 purposes: identifying people and crime scene forensics (by police forces)
- Identifying people
 - FBI's NGI(Next Generation Identification) service: identifies about 8 thousand fugitives a month
 - US D. of Homeland Security's IDENT: holds fingerprints on 200 million aliens and matches them against a watch list of bad guys

- Identifying people
 - India's *Aadhaar*: has fingerprints and iris codes of most residents (initially to support welfare payment fraud detection)
 - Equal error rate of typical automatic fingerprint identification systems: slightly below 1% *per finger* (US DHS program requires each visitor's 10-prints!)
 - Other problems: some have damaged fingerprints and rare with no conventional fingerprint patterns at all
 - How to attack?
 - molded fingerprints with cooking gelatin
 - latent fingerprints reactivated(or transferred) using adhesive tape

- Identifying people
 - How to attack?
 - retrieve other's fingerprints from photos in social media (Mitre project to develop software to harvest people's fingerprints from photos they post on social media)
 - 'masterprint': a fake fingerprint that can be worn on your fingertip and be used to match at least one of the partial prints derived from a typical finger (it works against 6% of users' prints)
 - thermal scanners defeated by rubber molded fingers
 - ultrasonic scanners defeated (accidently) via certain silicon screen protectors (some patterns on the protectors recognized as users' fingerprints)
 - and others(some are scary)...

Fingerprints

- Crime Scene Forensics
 - Prints found at a crime scene matched against database
 - Forensic error rate has become extremely controversial
 - limit on the size and quality of the image taken
 - several cases convicted of murder mainly due to their crime scene fingerprints later being refuted by other evidences
 - experts are easy to fail esp. on obscured, dirty prints
 - fingerprints can be transferred using adhesive tape, can be framed by another criminal (or by the police)
 - The belief that fingerprint examination has a zero error rate is now widely ridiculed!

Fingerprint Comparison

- Examples of *loops, whorls, arches,* and *tents*
- *Minutia* (branches and endpoints of ridges) extracted from these features

Fingerprint: Enrollment

- Capture image of fingerprint
- Enhance image
- Identify points (Minutia)

Fingerprint: Recognition

- Extracted points are compared with information st ored in a database
- partial/whole match?
- Aside: <u>Do identical twins' fingerprints differ</u>?

Iris Patterns

- Iris pattern development is "chaotic"
- Little or no genetic influence
- Different even for identical twins
- Different even for the two eyes of a single in dividual
- Pattern is stable through lifetime

Iris Patterns

- Modern and innovative way of identifying people
- Has the best error rates of any biometric system when measured under lab conditions
 - False accept rate of (Very close to) zero
 - EER is less than 1/million
 - if one can tolerate a false reject rate of 1 in 10 thousand, the false accept rate would be < 1/trillion
 - In practice, the false reject rate is much higher than this (why? eyelashes, hangovers can cause camera not to see enough the iris) → 4% ~ 6%
- Large-scale deployments in UAE(detecting deportees who return with false papers) and in India(mandatory to billions of people for many purposes)

Iris Scan

- Scanner locates iris
- Take b/w photo
- Use polar coordinates...
- 2-D wavelet transform
- Get *256 byte iris code* (by J. Daugman in 1993)

Measuring Iris Similarity

- Based on Hamming distance
- Define d(x,y) to be
 - # of non match bits / # of bits compared
 - d(0010,0101) = 3/4 and d(1011111,101001) = 1/3
- Compute d(x,y) on 2048-bit iris code
 - Perfect match is d(x,y) = 0
 - For same iris, 'expected' distance is 0.08
 - At random, expect distance of 0.50
 - Accept iris scan as match if distance < 0.32

Attack on Iris Scan

- Good photo of eye can be scanned
 - Attacker could use photo of eye
- To prevent photo-based attack, scanner could use light to be sure it is a "live" iris OR measure *hippus* a natural fluctuation in the diameter of the pupil that happens at about 0.5Hz

(countermeasure: wear a contact lens with the target's iris patterns printed on it)

Equal Error Rate Comparison

- Equal error rate (EER): fraud rate = insult rate
- Fingerprint biometric has EER of about < 5%
- In theory, iris scan has EER of (very close to) zero
 - But in practice, may be hard to achieve
 - Enrollment phase must be extremely accurate
- Iris codes are currently the most powerful/accurate biometric used in various applications
- Most biometrics much worse than fingerprint!
- Biometrics useful for authentication...
 - ...but identification biometrics would need lots of improvement to be useful in real-life cases

Other biometrics

- Typing patterns(keystroke dynamics)
- Vein patterns
- Hand geometry
- Facial thermograms (maps of the surface temperature of the face, from infrared images)
- The shape of the ear
- DNA
 - Valuable tool for crime scene forensics
 - Determining parenthood in child support case
 - But, slow and expensive for real-time applications
 - Privacy problem (reconstruct many info about a person from their DNA sample)

Attacks on Biometric systems

- Hard to tell 'freshness' of forensic biometric sample (fingerprint or DNA sample can be 'planted')
- Most are vulnerable to suitable 'recordings' esp. via unattended operation of biometric auth. devices: voice recognition, iris scanners by photos on a contact lens, molds of fingerprints
- Most are not as accurate for all people: manual workers with damaged fingerprints (some cases hardcore criminals doing this deliberately)

Attacks on Biometric systems

- Most are vulnerable to collusion: Alice let Bob to take a rubber impression of her fingertip and use it to withdraw money from her account. Alice produces a watertight alibi and claims there's a theft and request her money back

Attacks on Biometric systems

- A combination of two or more biometrics will improve either false-accept rate or false-reject rate, while making the other worse: eq. 2 burglar alarms at your home: the prob. of defeating both goes down while the number of false alarms goes up
- 'physiological' biometrics are very hard(if not impossible) to renew / be reissued

Biometrics: The Bottom Line

- Biometrics are hard to forge
- But attacker could
 - Steal Alice's thumb
 - Photocopy Bob's fingerprint, eye, etc.
 - Subvert software, database, "trusted path" ...
- And how to revoke a "broken" biometric?
 - → a BIG problem (different from a "broken" password/passphrase, which can be "easily" replaced with a new one)
- Biometrics are not foolproof!

Q & A

aiclasshongik@gmail.com