Mètodes Bayesians

gener 2016

- 1. Què és una distribució a priori conjugada?
- 2. Què s'entén com a la grandària de mostra equivalent de la distribució a priori?
- 3. Donat un contrast de tres hipòtesis (H_1 , H_2 i H_3), demostra o desmenteix que si disposes dels Factors de Bayes de la hipòtesis I contra la I, I contra la I a partir del càlcul I contra la I contra la I contra la I a partir del càlcul I contra la I c
- 4. Suposa que vols utilitzar l'algoritme *Gibbs Sampling* per obtenir simulacions de la distribució a posteriori d'un paràmetre θ (per exemple amb el WinBUGS). Que faries per assegurar-te de que les simulacions amb les que faràs la inferència corresponen realment a simulacions de la distribució a posteriori $\pi(\theta | y)$?

Suposem $Y|\theta$ segueix una distribució binomial $(n=2, \theta)$ on l'espai de paràmetres és discret de manera que θ només pot prendre dos possibles valors, 0.2 i 0.8, que assumirem a priori equiprobables. La distribució de $Y|\theta$ és:

	Y		
θ	0	1	2
0.2	0.64	0.32	0.04
0.8	0.04	0.32	0.64

així per exemple $P(Y=0|\theta=0.2)=0.64$. Recorda que la distribució de probabilitat de la binomial és: $p(y|\theta) = \frac{n!}{(n-y)!y!} \theta^y (1-\theta)^{n-y}$.

- 5. Dibuixa la distribució a priori de θ .
- 6. Calcula i dibuixa la distribució predictiva a priori per a una $\tilde{n}=2$ (on \tilde{n} simbolitza la grandària d'una futura mostra).

Ara suposem que hem observat y=2 (per n=2).

- 7. Calcula i dibuixa la funció de versemblança.
- 8. Calcula i dibuixa la distribució a posteriori de θ .
- 9. Donat el contrast d'hipòtesis: H_1 : θ =0.2 i H_2 : θ =0.8, calcula el Factor de Bayes de la hipòtesis I contra la 2, FB_{12} .
- 10. Calcula i dibuixa la distribució predictiva a posteriori per a una $\tilde{n}=2$.