COX REGRESSION MODEL

Dr. Aric LaBarr
Institute for Advanced Analytics
MSA Class of 2014

PROPORTIONAL HAZARDS

Accelerated Failure Time Model

Initial

- Investigate Survival Curves
- Investigate Hazard Function

Distributions

- Find "best" distribution
 - Graphical methods
 - Statistical Tests

Model Building

- Select significant variables
- Finalize model

Accelerated Failure Time Model

Initial

- Investigate Survival Curves
- Investigate Hazard Function

Distributions

- Find "best" distribution
 - Graphical methods
 - Statistical Tests

Proportional Hazards changes this!!!

Model Building

- Select significant variables
- Finalize model

- "On average, a customer who signed up via direct mail lasts 4 years longer compared to a customer who signed up via telemarketing."
- Results do not say how long someone will last, only relative length of tenure between two groups.
- Cox assumed that factors measured at an initial time point have a uniform proportional effect on hazards between individuals (or groups).

- Cox assumed that factors measured at an initial time point have a uniform proportional effect on hazards between individuals (or groups).
- Cox developed a model that calculated the "average" effect of a variable across all tenures on the hazard.

What effect do the initial conditions have on hazards?

- Cox assumed that factors measured at an initial time point have a uniform proportional effect on hazards between individuals (or groups).
- Cox developed a model that calculated the "average" effect of a variable across all tenures on the hazard.

What effect do the initial conditions have on hazards?

NOT FOCUSED ON PREDICTION!!!

Accelerated Failure Time Model

Cox Regression Model

 Focus on the most basic version of the Cox regression model – proportional hazards with no time-varying covariates.

$$h(t) = h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

 Focus on the most basic version of the Cox regression model – proportional hazards with no time-varying covariates.

$$h(t) = h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

Baseline hazard function

 Focus on the most basic version of the Cox regression model – proportional hazards with no time-varying covariates.

$$h(t) = h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

Covariates used to predict hazards

 Focus on the most basic version of the Cox regression model – proportional hazards with no time-varying covariates.

$$h(t) = h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

$$\log h(t) = \alpha(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

 Focus on the most basic version of the Cox regression model – proportional hazards with no time-varying covariates.

$$h(t) = h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

$$\log h(t) = \alpha(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

- Remember that the Weibull (and Exponential) model was a rare case where we already defined the proportional hazards model.
- Here is the proportional hazards model:

$$\log h(t) = \alpha(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

• If $\alpha(t) = \alpha$, then we have the Exponential model:

$$\log h(t) = \alpha + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

• If $\alpha(t) = \alpha \log t$, then we have the Weibull model:

$$\log h(t) = \alpha \log t + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

- Remember that the Weibull (and Exponential) model was a rare case where we already defined the proportional hazards model.
- Here is the proportional hazards model:

$$\log h(t) \neq \alpha(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

• If $\alpha(t) = \alpha$, then we have the Exponential model:

$$\log h(t) \neq \alpha + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

• If $\alpha(t) = \alpha \log t$, then we have the Weibull model:

$$\log h(t) = \alpha \log t + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

- Why is the proportional hazard model so popular?
- The hazard for any one individual (group) is a fixed proportion of the hazard for any other individual (or group).

$$h_i(t) = h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

$$h_i(t) = h_0(t)e^{\beta_1 x_{j,1} + \dots + \beta_k x_{j,k}}$$

- Why is the proportional hazard model so popular?
- The hazard for any one individual (group) is a fixed proportion of the hazard for any other individual (or group).

$$h_{i}(t) = h_{0}(t)e^{\beta_{1}x_{i,1}+\cdots+\beta_{k}x_{i,k}}$$

$$h_{j}(t) = h_{0}(t)e^{\beta_{1}x_{j,1}+\cdots+\beta_{k}x_{j,k}}$$

$$\frac{h_{i}(t)}{h_{j}(t)} = e^{\beta_{1}(x_{i,1}-x_{j,1})+\cdots+\beta_{k}(x_{i,k}-x_{j,k})}$$

```
proc phreg data=Survival.Recid;
    model week*arrest(0)=fin age race wexp mar paro prio;
run;
```

Hazard Ratio

- If a parameter estimate is positive, increases in that variable increase the expected hazard.
- If a parameter estimate is negative, increases in that variable decrease expected hazard.
- $100 \times (e^{\beta} 1)$ is the % increase in the expected hazard for each one-unit increase in the variable.
- e^{β} is the hazard ratio the ratio of the hazards for each one-unit increase in the variable.

PARTIAL MAXIMUM LIKELIHOOD ESTIMATION

Partial Likelihood Estimation

- This is the more important piece of the work done by Sir David Cox in his original article.
- In the proportional hazards model, the likelihood can be split into two pieces:
 - 1st piece: depends on $h_0(t)$ and the parameters
 - 2nd piece: only depends on the parameters
- Basically, Cox disregarded the first piece and maximized the second piece.

Partial Likelihood Estimation

- Some information about the parameters is lost due to the partial likelihood estimation – inefficient estimates.
- Inefficiency is rather small.
- Estimates still have some desired properties:
 - Unbiased
 - Estimates can be tested in the same way as before.

AUTOMATIC SELECTION TECHNIQUES

Automatic Selection Techniques

- One of the benefits of PROC PHREG is the automatic selection techniques that it employs.
- Has similar selection techniques as PROC LOGISTIC:
 - Best
 - Forward
 - Backward
 - Stepwise

Best Subsets

Forward Selection

Backward Elimination

Stepwise Selection

Automatic Selection Techniques

```
proc phreq data=Survival.Recid;
     model week*arrest(0)=fin age race wexp mar paro prio
                           / selection=score:
run;
proc phreg data=Survival.Recid;
     model week*arrest(0) = fin age race wexp mar paro prio
                           / selection=forward;
run;
proc phreg data=Survival.Recid;
     model week*arrest(0) = fin age race wexp mar paro prio
                           / selection=backward;
run;
proc phreg data=Survival.Recid;
     model week*arrest(0)=fin age race wexp mar paro prio
                           / selection=stepwise;
run;
```


TIME-DEPENDENT COVARIATES

- Time-dependent covariates are predictor variables that could change their value across time.
- The Cox regression model can account for these changing values of input variables.
- The following equation has one fixed variable and one time-dependent variable:

$$\log h(t) = \alpha(t) + \beta_1 x_{i,1} + \beta_2 x_{i,2}(t)$$

- Time-dependent covariates are predictor variables that could change their value across time.
- The Cox regression model can account for these changing values of input variables.
- The following equation has one fixed variable and one time-dependent variable:

$$\log h(t) = \alpha(t) + \beta(x_{i,1}) + \beta_2 x_{i,2}(t)$$

Value stays fixed for all time points!

- Time-dependent covariates are predictor variables that could change their value across time.
- The Cox regression model can account for these changing values of input variables.
- The following equation has one fixed variable and one time-dependent variable:

$$\log h(t) = \alpha(t) + \beta_1 x_{i,1} + \beta_2 x_{i,2}(t)$$

Value changes across time!

- There are some potential problems with time-dependent variables:
 - Variables measured at different regular intervals than response variable.
 - Variables measured at irregular time intervals.
 - Variables that are undefined for certain intervals of time.

- Prisoner Recidivism Data:
 - EMP1 ~ EMP52 variables
 - Measure the full-time employment status during that week.
 - Variables measured at same regular interval as response variable week of recapture.

- The book goes through examples of dealing with timedependent variables that are measured at irregular time points and that are undefined for certain intervals.
- Basic intuition is used for these calculations.

NON-PROPORTIONAL HAZARD MODELS

- The Cox regression model can also be extended into the non-proportional hazards model.
- This occurs when the hazard functions between two individuals are not parallel.

- The Cox regression model can also be extended into the non-proportional hazards model.
- This occurs when the hazard functions between two individuals are not parallel.

 Non-proportional hazards are the same as interactions of one or more variables with time.

- Non-proportional hazards are the same as interactions of one or more variables with time.
- An example of this would be the following equation:

$$\log h(t) = \alpha(t) + \beta_1 x + \beta_2 xt$$
or

$$\log h(t) = \alpha(t) + (\beta_1 + \beta_2 t)x$$

RESIDUAL ANALYSIS

Residuals and Influence Statistics

- Similar to all other types of analysis we have done, we need to check for outliers and influential observations.
- We will discuss three types of residuals:
 - Martingale Residuals
 - Deviance Residuals
 - Schoenfeld Residuals

Martingale Residuals

- Martingale residuals are the difference between the observed number of events and the expected number of events at a specific point in time.
- These are **not** symmetrical around zero!

Martingale Residuals

Deviance Residuals

- Deviance residuals transform the martingale residuals into a more symmetric distribution.
- Values above 3 should be investigated.

Deviance Residuals

Schoenfeld Residuals

- Schoenfeld residuals are calculated for each variable for each individual.
- They are the difference between the actual value of the variable and the expected value for someone who had the event occur at that time.

Schoenfeld Residuals

Influence Statistics

- In the Cox regression model there are two common techniques to measuring the influence of individual observations on the model:
 - Likelihood displacement
 - DFBETA

Residuals & Influential Observations

