Patent Abstracts of Japan

PUBLICATION NUMBER

02137287

PUBLICATION DATE

25-05-90

APPLICATION DATE

17-11-88

APPLICATION NUMBER

63291437

APPLICANT: SANYO ELECTRIC CO LTD;

INVENTOR:

HAMADA HIROYOSHI;

INT.CL.

H01S 3/18

TITLE

SEMICONDUCTOR LASER DEVICE

ABSTRACT:

PURPOSE: To prevent the change of reflectivity of a high reflection film caused by high power operation and long time operation of laser light by using a multilayer film composed of an Al₂O₃ film and an AlN film as a high reflection film.

CONSTITUTION: A Fabry-Perot resonator is arranged in the right and left direction. For example, in a semiconductor laser chip 1 of GaAlAs system, a low reflection Al₂O₃ is formed on one side end-surface of a resonator. A high reflection film 4 formed on the other end-surface of the resonator of the semiconductor chip 1 is composed of an Al₂O₃ film 5 and an AIN film 6. In laser ray medium, e.g., three layers of the respective films whose thickness is equal to quarter wavelength are stuck by sputtering method. The AIN film 6 has a wide band gap, that is, 6.04eV for single crystal, and 5.7eV for amorphous. As the result, light absorption is little as compared with a-Si:H, and optical damage is hardly caused. the Al₂O₃ film 5 and the AlN film 6 have the same constitution metal element, so that the reaction on the interface between layers is hardly caused when the multilayer is formed by the same film forming apparatus.

COPYRIGHT: (C)1990,JPO&Japio

⑩日本国特許庁(JP)

10 特許出願公開

◎公開特許公報(A) 平2-137287

®int.Cl. 5

識別記号

广内整理番号

❷公開 平成2年(1990)5月25日

H 01 S 3/18

7377-5F

審査請求 未請求 請求項の数 1 (全3頁)

60発明の名称 半導体レーザ装置

②特 頭 昭63-291437

@出 顧 昭63(1988)11月17日

発明者 浜田 弘喜

大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内

配代 理 人 弁理士 西野 卓嗣 外1名

明细套

1. 発明の名称

半導体レーザ装置

2. 特許技术の新開

(1) レーザ先を出射する共振智雄面上の一方に 高反射膜を、他方に低反射膜を、夫々偏えた半導 体レーザ数型において、上記高反射膜は A ℓ 10 1 駆と A ℓ N 膜からなる多層膜であることを特徴と する半導体レーザ数量。

3. 発明の詳細な説明

(イ) 産業上の利用分野

本発明は半導体レーザ装置に関するものであり、特に高出力型のものに適する。

(ロ) 従来の技術で

従来、ファブリペロ共振器を有する半導体レーザ装置においては、その共振器幅面の一方に高反射膜が、他方に低反射膜が形成されている。このうち高反射膜として、非晶質SI:H膜(以下、a-Si:H膜と記す)とSiO。膜の2層膜、あるいは多層膜(特価昭60-235482号公

似)や、a-Si:H膜とAtiの i製の2層膜、 あるいは多層膜(SANYO TECHNICA I. REVIEW, Vol. 20, No. 1, Feb. 1988)が知られている。こうして、この種半 導体レーザ整置では、低反射膜側から高出力の レーザ光が出射され、高反射膜側から低出力の レーザ光が出射される。この低出力のレーザ光は **通常、半導体レーザ袋量の出力モニタに利用され** る。即ち、低出力のレーザ光は、その出射方向に 配置された交光素子によって受光され、その出力 に応じた電気信号に変換される。この電気信号 it, APC (automatic power control)回路に入力される。APC回路 は、入力された電気信号の値、即ちレーザ光の出 力の値に応じて、半導体レーザ装置の駆動電流を 制御し、その値を一定に保つ。

..(ハ) 発明が解決しようとする課題

しかし乍ら、高反射膜の一材料としてa~Si : Hを用いた半導体レーザ装置では、レーザ光の ご 高出力化、あるいは長時間動作によりa~Si: H 談が先を多く吸いし、オプティカルダメージを受け、その結果高反射談の反射率が経時的に変化してしまう(但し、A & *O * 談はレーザ光を吸収していたの斯 る 反射 専の変化に関与しないが、 の は反射 膜から出射されるレーザ光の の 出力が 一定 であるにもかかわらず、 高反射 膜から 出力が低下していくといった 現象が生じる。 したがって、 従来の半導体レーザ 装置に モニタ することができないといった欠点があった。

本発明は斯る点に置み、レーザ光の高出力化及び長時間動作によって高反射膜の反射率が変化しない半導体レーザ装置を提供するものである。

(二) 課題を解決するための手段

本発明は、レーザ光を出射する共振器増面上の一方に高反射膜を、他方に低反射膜を、失々備えた半導体レーザ装置であって、上述の課題を解決するため、上記高反射膜はA&*O*膜とA&N膜からなる多層膜であることを特徴とする。

表 1

	At . O.	AIN
スィルックを力(智/@゚)	1.2	1.2
スパック圧力(Torr)	2-3×10-1	2-3×10-1
\$美国技术(m)	40	40
1-1-1	At.O. AIN	
211982	Ar	Ar/N, \$9/1
事務性度(で)	~150	-150

このようにして形成された本実施例装留における低反射膜及び高反射膜の反射率は夫々、8%、67%となる。また数2に、高反射膜(4)におけるAℓ,0,膜(5)とAℓN膜(6)の積層数と反射率との関係を、Aℓ,0,膜とa-Si:H膜を用いた従来装置のものと共に示す。

(ホ) 作用

A & N 較は単結晶のものでも、0 4 e V、非晶質のものでも5、7 e V と広いパンドギャップを有するため、a — S i : Hに比して光の吸収が少なく、オプティカルダメージを受けにくい。また、A & *O * 1 膜とA & N 膜は、構成金属元素が同一であるため、同一の成膜装置で、これらの多層膜を形成しても、各層の界面で反応しにくい。

(へ) 実施例

第1図は本発明装置の一実施例を示し、(1)は 図中左右方向にファブリペロ共振器を有する、例 えばGaAℓAs系の半導体レーザチップ、(2) は半導体レーザチップ(1)の一方の共振器端面上 に形成された低反射膜で、Aℓ₁O₁膜(3)からな り、スパッタ法を用いて、レーザ光の模質内 の1/4程度の膜厚に被着される。(4)は半導体 レーザチップ(1)の他方の共振器端面上に形成さ れた高反射膜で、Aℓ₁O₁膜(5)とAℓN膜(6) からなり、スパッタ法を用いて、夫々レーザ光の 模質内、波長の1/4程度の膜厚に、例えば3層

安 2

	従来装置		本実施例装置	
装着板序	材料	反射率(1)	材料	反射率(2)
1	A1.0.	1.9	.0,14	1.9
2	a-Si:H	73	AEN	45
3			A1,0,	9. 1
4			AIN	57
5			A1.0.	20
6			AIN	67

ここで、AL・O。、ALN、a-Si:Hの風 折率は夫々、1.65、1.96、3.1であ り、本実施例装置に用いるALNはa-Si:H より風折率が小さい。このため、本実施例装置の 高反射級(4)は従来装置のそれより6AL・O。膜 (5)とALN(6)の積層数を多くしなければなら ない。しかし、所る高反射膜(4)は製造工程上問 題を生じることなく、容易に形成できる。

第2回は、本実施例装置と、高反射膜にA &, O, 膜とa - Si: H膜を用いた従来装置を動作 させた時のモニタ出力、即ち高反射膜から出射されるレーザ光の経時変化を観定し、初期動作時の出力に現格化したものである。ここで、本実施例装置及び従来装置共半導体レーザチップとして、インナーストライプ型のGaA4As系のものを用い、宝温50での条件の下で低反射膜から出射されるレーザ光の出力を50mWとした。 図から明らかな如く、本実施例装置では長時間にわたって、略一定のモニタ出力が得られる。

以上、本実施例では、半導件レーザチップ(1) として発展被長830nmのGaA&As系のも のを用いたが、本発明装置の半導体レーザチップ (1)はこれに限ることなく、A&N級(6)のパン ドギャップに相当する被長、即ち、A&N級(6) が単結晶のもので206、5nm、非最質のもの で217、5nm以上の発振致長を有するもので あればよい。

(ト) 発明の効果

本税明装置によれば、高反射膜として、Ali O i 膜と Ali N談からなる多層膜を用いることに よって、半導体と一寸を高出力化または長時間動作させた場合をしたモニタ出力が得られ、 正確なモニタが行える。従って、本発明装置は、 低反射膜から出射されるレーザ光を標度良く関仰 することが可能である。また、本発明装置は高出 力の半導体装置において特に有効であることか ら、音を挟え可能なCD、VD、高速レーザプリンタ写、光情報観覧への応用に適する。

4、・図面の簡単な説明

第1回は本発明の一実施例を示す断面図、第2 図は、本発明袋置及び従来装置において高反射機 倒から出射されるレーザ光の出力の経時変化を示 ナ特性図である。

> 出版人 三洋電機株式会社 代理人 弁理士 西野卓嗣(外1名)

第1図

第2図

-451-