

Devoir surveillé 2 - 15/10/24

Exercice 1: Soient E un \mathbb{R} espace vectoriel non nul de dimension finie $n, u \in \mathcal{L}(E)$

- 1. On suppose que pour tout $x \in E$, u(x) et x sont colinéaires.
 - (a) Soient $x, x' \in E \setminus \{0\}$ et a, b deux réels distincts tels que u(x) = ax, u(x') = bx'. Démontrer que (x, x') est une famille libre de E.
 - (b) Démontrer (par l'absurde) que u est une homothétie (c'est-à-dire égal à λId pour un certain $\lambda \in \mathbb{R}$)
- 2. Supposons que u commute avec tout endomorphisme de E. Soient $x \in E$, p_x la projection sur $Vect_{\mathbb{R}}(x)$ parallèlement à un supplémentaire de $Vect_{\mathbb{R}}(x)$. Démontrer que $u(p_x(x)) \in Vect_{\mathbb{R}}(x)$ et en déduire que u est une homothétie.
- 3. Soit $M \in \mathcal{M}_n(\mathbb{R})$ (avec $n \in \mathbb{N}^*$) telle que Tr(M) = 0.
 - (a) Démontrer que M est semblable à une matrice de la forme $\begin{pmatrix} 0 & A \\ B & C \end{pmatrix}$ avec $A \in \mathcal{M}_{n-1,1}(\mathbb{R}), P \in \mathcal{M}_{1,n-1}(\mathbb{R}), C \in \mathcal{M}_{n-1,1}(\mathbb{R})$ (on pourra différencier les cas selon si M représente une homothétie ou non).
 - (b) En déduire que M est semblable à une matrice de diagonale nulle.

Exercice 2: Soient E un \mathbb{K} -espace vectoriel, $f \in \mathcal{L}(E)$ et $\lambda_1, ...\lambda_n$ des scalaires deux à deux distincts avec $n \geq 2$. Démontrer que la somme des $Ker(f - \lambda_i Id)$ pour $i \in [1, n]$ est directe.

Exercice 3 : Le but de cet exercice est de déterminer la suite $(u_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}, u_{n+3}=6u_{n+2}-11u_{n+1}+6u_n$ et $u_0=0, u_1=1, u_2=5$

Dans cet exercice, toutes les récurrences "évidentes" pourront ne pas être rédigées.

- 1. Pour tout $n \in \mathbb{N}$, on note $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$, déterminer $A \in \mathcal{M}_{3,3}(\mathbb{R})$ telle que $X_{n+1} = AX_n$.
- 2. Déterminer $e_1 \in \mathbb{R}^3$ tel que $Ae_1 = e_1$.
- 3. On suppose que A est semblable à $D=\begin{pmatrix}1&0&0\\0&a&0\\0&0&b\end{pmatrix}$ avec $a,b\in\mathbb{R}.$
 - (a) Démontrer que deux matrices semblables ont même trace.
 - (b) Quelle autre application de $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est égale pour des matrices semblables?
 - (c) En déduire les valeurs de a et b.
 - (d) Déterminer l'expression de D^n pour tout $n \in \mathbb{N}$.
- 4. Vérifier que A est bien semblable à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
- 5. En déduire qu'il existe $\alpha, \beta, \gamma \in \mathbb{R}$ tels que pour tout $n \in \mathbb{N}, u_n = \alpha + \beta 2^n + \gamma 3^n$.