Congruência módulo m e relações de equivalência em $\mathbb Z$

José Antônio O. Freitas

MAT-UnB

Seja C uma classe de equivalência

Seja C uma classe de equivalência de uma relação de equivalência R.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Sejam a, $b \in \mathbb{Z}$,

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a,

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \nmid a$.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

Exemplos

1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a \in \mathbb{Z}$ tal que b=0a.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \nmid a$.

- 1) Os inteiros 1 e 1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).
- 2) O número O não divide nenhum inteiro b, pois não existe a $\in \mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \nmid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a=1a e a=(-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.
- *5*) 3 //8.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a=1a e a=(-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.
- *5*) 3 ∤8.
- *6*) 17 | 51.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a=1a e a=(-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.
- *5*) 3 ∤8.
- *6*) 17 | 51.

i) a | a, para todo $a \in \mathbb{Z}$.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se a $\mid b \in b \mid a$, a, b > 0 então a = b.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se a $\mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos $x, y \in \mathbb{Z}$.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos $x, y \in \mathbb{Z}$.

Sejam a, $b \in \mathbb{Z}$,

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$.

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

1)
$$5 \equiv 2 \pmod{3}$$
, pois $3 \mid (5-2)$.

Definição

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

Exemplos

- 1) $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$.
- 2) $3 \equiv -5 \pmod{2}$, pois $2 \mid (3 (-5))$.

Definição

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente** à b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

Exemplos

- 1) $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$.
- 2) $3 \equiv -5 \pmod{2}$, pois $2 \mid (3 (-5))$.
- 3) $21 \equiv 3 \pmod{6}$, pois $6 \mid (21 3)$.

Definição

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente** à b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

Exemplos

- 1) $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$.
- 2) $3 \equiv -5 \pmod{2}$, pois $2 \mid (3 (-5))$.
- 3) $21 \equiv 3 \pmod{6}$, pois $6 \mid (21 3)$.

Proposição

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

Proposição

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

i)
$$a_1 \equiv b_1 \pmod{m}$$
 se, e somente se, $a_1 - b_1 \equiv 0 \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.
- *iv)* Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, para todo $x \in \mathbb{Z}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.
- *iv)* Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, para todo $x \in \mathbb{Z}$.
- v) Vale a lei do cancelamento: se $d \in \mathbb{Z}$ e mdc(d, m) = 1 então $ad \equiv bd \pmod{m}$ implica $a \equiv b \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.
- *iv)* Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, para todo $x \in \mathbb{Z}$.
- v) Vale a lei do cancelamento: se $d \in \mathbb{Z}$ e mdc(d, m) = 1 então $ad \equiv bd \pmod{m}$ implica $a \equiv b \pmod{m}$.