> Solving Eqs.(1) and (2):

$$I_{c1} = I_{EE}/[1 + \exp(-V_{id}/V_T)]$$

 $I_{c2} = I_{EE}/[1 + \exp(V_{id}/V_T)]$

- > Extremely interesting results:
 - For $V_{id} = 0$, $I_{c1} = I_{c2} = I_{EE}/2$ I_{EE} shared equally between Q_1 and Q_2
 - For positive V_{id} , I_{c1} ↑ and I_{c2} ↓

 For negative V_{id} , I_{c1} ↓ and I_{c2} ↑

 But for both cases, their sum is constant and equal to I_{EE}
 - For $V_{id} > 4V_T$, $I_{c1} \to I_{EE}$ and $I_{c2} \to 0$ For $\neg ve\ V_{id}$, with $|V_{id}| > 4V_T$, $I_{c2} \to I_{EE}$ and $I_{c1} \to 0$

The Current Transfer Characteristics of an npn DA

- Linear Range of the circuit $\sim \pm 4V_T (\sim \pm 100)$ mV at room temperature)
- This range is known as the *analog domain*

- For V_{id} out of this range, either Q_1 or Q_2 carries the entire I_{EE} , with the other remaining off \Rightarrow acts as a Current Switch
 - This is the *digital domain*
- For analog applications, both devices must be on and in the linear range of the I_c - V_{id} characteristic
- The highest linearity, which is also the region of the highest $g_m (= \partial I_c / \partial V_{id})$, occurs around $V_{id} = 0$ ($V_{i1} = V_{i2}$)
- > This is the most preferred DC bias point

- At this point, $I_{C1} = I_{C2} = I_{EE}/2$, and all small-signal parameters of Q_1 and Q_2 are identical to each other
- This particular biasing scheme leads to a Balanced DA, having properties:
 - Q_1 - Q_2 completely matched
 - R_Cs identically equal to each other
 - Both inputs connected to DC ground or to the same
 DC potential (ground is the best choice, obviously)
 - Both Q_1 and Q_2 biased at $I_{EE}/2$
- We will consider only Balanced DAs

- > Unbalanced DAs create anomalies in circuit operation
- ➤ Now, the *output voltages*:

$$V_{o1} = V_{CC} - I_{c1}R_C$$
 and $V_{o2} = V_{CC} - I_{c2}R_C$

➤ Define *Differential-Mode Output Voltage*:

$$V_{od} = V_{o1} - V_{o2} = I_{EE}R_{C}tanh[-V_{id}/(2V_{T})]$$

- V_{od} (positive maximum) = $I_{EE}R_{C}$
- V_{od} (negative minimum) = $-I_{EE}R_{C}$
- At $V_{id} = 0$, $V_{od} = 0$
 - ❖ Permits direct coupling of stages without the need of any coupling capacitor

Linear Range = $\pm 4V_T$ (~ ± 100 mV at room temperature)

The Voltage Transfer Characteristics of an npn DA

> DC Biasing:

- $V_i = V_I + v_i$ (V_I : *DC bias voltage*, v_i : *ac small-signal voltage*)
- $I_c = I_C + i_c$ (I_C : *DC bias current*, i_c : *ac small-signal current*)
- The ideal DC bias point should be $V_{II} = V_{I2}$ $\Rightarrow I_{C1} = I_{C2} = I_{EE}/2$
- Thus, any arbitrary DC voltage can be applied at the bases of Q_1 - Q_2 , provided they are same
 - ⇒ Ideal choice: ground
 - ⇒ Necessitates a negative power supply for proper biasing