Univerza v Ljubljani Fakulteta za matematiko in fiziko Finančna matematika – 1. stopnja

Tilen Humar, Urban Rupnik

Iskanje bitonične rešitve problema potujočega trgovca

Projekt OR pri predmetu Finančni praktikum

1. Predstavitev problema

Problem potujočega trgovca oziroma problem trgovskega potnika je ponavadi zastavljen v naslednji obliki.

Obstaja n mest, za katera poznamo razdalje med poljubnim parom mest. Trgovec želi obiskati vsa mesta, pri čemer pot začne in konča v istem mestu in vsak kraj obišče natanko enkrat. Katera je najkrajša oziroma najcenejša pot, ki jo lahko izbere trgovec?

V matematičnem jeziku se problem torej prevede na iskanje najcenejšega Hamiltonovega cikla v polnem grafu K_n , kjer ima vsaka povezava e znano utež (ceno) c_e . Ker pa je v osnovi dotični problem "NP-težek", to je, da bi za iskanje njegove rešitve potrebovali več kot polinomski čas, se omejimo na lažjo nalogo iskanja njegove najkrajše bitonične rešitve.

2. Bitonična pot

Definicija 2.1. Zaporedje $(x_n)_{n \in \mathbb{N}}$ je bitonično, ko obstaja tak $k, 1 \leq k < n$, da velja

$$x_1 \le x_2 \le \dots \le x_k \ge \dots \ge x_n$$
.

Bitonična rešitev problema, bo torej pot, kjer bomo začeli v skrajno levo ležečem vozlišču, nadaljevali strogo desno do najbolj desnega vozlišča in še strogo levo nazaj do izhodišča. Bitoničnost poti lahko na grafu preverimo z navpičnicami. Vsaka navpična črta seka pot največ dvakrat.

SLIKA...graf z bitonicno potjo in en z navadno

Iskanje najkrajše bitonične poti je standardna naloga v dinamičnem programiranju, rešljiva v polinomskem času $O(n^2)$, poznamo pa tudi hitrejši algoritem s časovno zahtevnostjo $O(n \log^2 n)$.

3. Dinamično programiranje

Imamo poln graf K_n z množico n vozlišč $\{v_1, v_2, \ldots, v_n\}$, urejenih po naraščajoči x koordinati. Cene povezav so enake (evklidski) razdalji med posameznima vozliščema. Naš problem iskanja najkrajše bitonične poti (po definiciji dinamičnega programiranje) razdelimo na manjše probleme.

Naj bo $P_{i,j}$ (za $i \leq j$) najkrajša bitonična pot, ki se začne v vozlišču v_i , nadaljuje strogo levo do v_1 in nato strogo desno do v_j . Slednja pot obišče vozlišča $\{v_1, v_2, \ldots, v_j\}$. Rešitev problema potujočega trgovca bo torej pot $P_{n,n}$ oziroma $P_{n-1,n} + e_{n-1,n}$, kjer je $e_{n-1,n}$ povezava med v_{n-1} in v_n . Razčlenimo do zdaj ugotovljeno na nekaj podprimerov, iz česar bomo izpeljali rekurzivno formulo.

Naj za pot $P_{i,j}$ velja i < j - 1. V slednji poti bo tako v_{j-1} predhodnik v_j , zato velja, če iz poti $P_{i,j}$ odstranimo povezavo $e_{j-1,j}$, dobimo rešitev $P_{i,j-1}$. **SLIKA** na levi pot od i do j, na desni do j-1.

Poglejmo še primer, ko za $P_{i,j}$ velja i = j - 1. Na poti $P_{i,j}$ bo imela točka v_j predhodnika v_k za $1 \le k \le j - 2$. Če sedaj odstranimo povezavo $e_{k,j}$ nam ostane pot $P_{k,j-1}$. **SLIKA** podobno dve sliki

V zadnji primer (i=j-1) spada tudi skrajni dogodek $\boldsymbol{i=1}$ in $\boldsymbol{j=2}$. Imamo pot z le dvema vozliščema, torej je ta enaka kar njuni povezavi $P_{1,2}=e_{1,2}$.

Zgornje izpeljave lahko sedaj združimo v rekurzivno formulo.

$$P_{i,j} = \begin{cases} e_{1,2} & i = 1, j = 2\\ P_{i,j-1} + e_{j-1,j} & i < j - 1\\ \min_{1 \le k \le j-2} P_{k,j-1} + e_{k,j} & i = j - 1 \end{cases}$$