This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

e _j e:					
4		•	•		ÿ.
· · · · · · · · · · · · · · · · · · ·				- C	
	<i>*</i>			**	
		•			
	·.	·			
¥)		·			
			4		
					7
				*	
		(*) (*)		4	

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 96/20689 **A61K** (43) International Publication Date: 11 July 1996 (11.07.96)

(21) International Application Number:

PCT/US95/16248

(22) International Filing Date: 13 December 1995 (13.12.95)

(30) Priority Data: 08/364,338

27 December 1994 (27.12.94) US

(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL

COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US). (72) Inventors: AMPARO, Eugene, Cruz; 416 Comer Ketch-Lyndell Road, Downingtown, PA 19335 (US). MILLER, William, Henry; 333 Fell Lane, Schwenksville, PA 19473 (US). PACOFSKY, Gregory, James; 510 Polk Street,

Raleigh, NC 27604-1960 (US). WITYAK, John; 127 Kelton Road, West Grove, PA 19390-9439 (US). WEBER, Patricia, Carol; 1970 Timber Lakes Drive, Yardley, PA 19067 (US). DUNCIA, John, Jonas, Vytautas; 124 Oldbury Drive, Wilmington, DE 19808-1420 (US). SANTELLA, Joseph, Basil, III; 250 Lewis Road, Springfield, PA 19064-2129 (US).

(74) Agents: REINERT, Norbert, F. et al.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AU, CA, JP, MX, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: BORONIC ACID AND ESTER INHIBITORS OF THROMBIN

(57) Abstract

Novel boronic acid and ester and carboxyl-modified amino acid compounds of formula (I): R1-Z-CHR1-A, which are inhibitors of trypsin-like enzymes, are disclosed, where R1, Z, R2 and A are defined within.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM AT AU BB BE BF BG BJ CA CF CCH CN CS CZ DE DK EE ES FI	Armenia Austria Austria Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Germany Denmark Estonia Spain Finland	GB GE GN GR HU IE IT JP KE KG KP KR LI LK LT LU MC MD MG ML	United Kingdom Georgia Guinea Greece Hungary Ireland Italy Japan Kenya Kyngystan Democratic People's Republic of Korea Republic of Korea Kazakhstan Liechtenstein Sri Lanka Liberia Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar Mail	MW MX NE NL NO NZ PL PT RO RU SD SE SG SI SK SN TG TJ TT UA UG	Malawi Mexico Niger Netherlands Norway New Zealand Poland Poland Portugal Romania Russian Federation Sudan Sweden Singapore Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Trinidad and Tobago Ukraine Uganda
	•		Madagascar		

Title

Boronic Acid and Ester Inhibitors of Thrombin

Cross-reference to Earlier Filed Applications

5

10

This application is a continuation-in-part of U.S. Patent Application Serial Number 8/348/029, filed December 1, 1994, which is a continuation-in-part of U.S. Patent Application Serial Number 08/318/029, filed October 4, 1994, which is a continuation-in-part of U.S. Patent Application Serial Number 08/036/377, filed March 24, 1993.

Field of the Invention

This invention relates to the discovery of new boronic acid derivatives which are inhibitors of thrombin and pharmaceutical compositions thereof.

Background of the Invention

20 Hemostasis is the normal physiological process in which bleeding from an injured blood vessel is arrested. It is a dynamic and complex process in which proteolytic enzymes such as thrombin play a key role. Blood coagulation may occur through either of two cascades of 25 zymogen activations, the extrinsic and intrinsic pathways of the coagulation cascade. Factor VIIa in the extrinsic pathway, and Factor IXa in the intrinsic pathway are important determinants of the activation of factor X to factor Xa, which itself catalyzes the activation of prothrombin to thrombin. 30 The last protease in each pathway is thrombin, which acts to hydrolyze four small peptides (two FpA and two FpB) from each molecule of fibrinogen, thus deprotecting its polymerization sites. Once formed, the linear fibrin 35 polymers may be cross-linked by factor XIIIa, which is

itself activated by thrombin. In addition, thrombin is

10

25

a potent activator of platelets, upon which it acts at specific receptors. Thrombin activation of platelets leads to aggregation of the cells and secretion of additional factors that further accelerate the creation of a hemostatic plug. Thrombin also potentiates its own production by the activation of factors V and VIII (see Hemker and Beguin in: Jolles, et. al., "Biology and Pathology of Platelet Vessel Wall Interactions, " pp. 219-26 (1986), Crawford and Scrutton in: Bloom and Thomas, "Haemostasis and Thrombosis," pp. 47-77, (1987), Bevers, et. al., Eur. J. Biochem. 1982, 122, 429-36,

Mann, Trends Biochem. Sci. 1987, 12, 229-33). Thrombosis may be regarded as the pathological condition wherein improper activity of the hemostatic mechanism results in intravascular thrombus formation. 15 Etiological factors such as the presence of atherosclerotic plaque, phlebitis and septicemia may cause thrombosis, leading to impaired blood flow to the effected tissues and possible serious pathological consequences. Thrombosis may be reduced by inhibition 20 of the normal process of blood coagulation by anticoagulants. Anticoagulants act by reducing the amount of thrombin which is generated, or by inhibiting with the proteolytic actions of thrombin.

Currently, two of the most effective classes of drugs in clinical use as anticoagulants are the heparins and the vitamin K antagonists. The heparins are ill-defined mixtures of sulfated polysaccharides that bind to, and thus potentiate the action of antithrombin III.

Antithrombin III is a naturally occurring inhibitor of 30 the activated clotting factors IXa, Xa, XIa, thrombin and probably XIIa (see Jaques, Pharmacol. Rev. 1980, 31, pp. 99-166). The vitamin K antagonists, of which warfarin is the most well-known example, act indirectly by inhibiting the post-ribosomal carboxylations of the 35 vitamin K dependent coagulation factors II, VII, IX and

WO 96/20689 PCT/US95/16248

X (see Hirsch, Semin. Thromb. Hemostasis 1986, 12, 1-11). While effective therapies for the treatment of thrombosis, heparins and vitamin K antagonists have the unfortunate side effects of bleeding and marked interpatient variability, resulting in a small and unpredictable therapeutic safety margin. The use of direct acting thrombin inhibitors is expected to alleviate these problems.

Anticoagulants are also necessary in the processing

of blood for therapeutic or diagnostic purposes or for
the production of blood products or fragments, since
contact of blood with the surfaces commonly used for
blood collection and storage causes activation of
coagulation leading to thrombin formation and clot

formation.

The coagulation proteases thrombin, factor Xa, factor VIIa, and factor IXa are serine proteases having trypsin-like specificity for the cleavage of sequence-specific Arg-Xxx peptide bonds. As with other serine proteases, the cleavage event begins with an attack of the active site serine on the scissile bond of the substrate, resulting in the formation of a tetrahedral intermediate. This is followed by collapse of the tetrahedral intermediate to form an acyl enzyme and release of the amino terminus of the cleaved sequence. Hydrolysis of the acyl enzyme then releases the carboxy terminus.

20

25

A number of naturally occurring thrombin inhibitors have been reported. These include nazumamide A from Theonella sp. (see Fusetani, et. al., Tetrahedron Lett. 1991, 32, 7073-4), cyclotheonamide A from Theonella sp. (see Fusetani, et. al., J. Am. Chem. Soc. 1990, 112, 7053-4), amblyommin from Amblyomma hebraeum (see Bonin, et. al., EP 345614), hirudin from Hirudo medicinalis, recombinant versions of hirudin and hirudin fragments (see Rigbl and Jackson, EP 352903, Koerwer, WO 9109946,

Meyer, et. al., WO 9108233, Dawson, et. al., WO 9109125, Maraganore, et. al., WO 9102750 and Maraganore, EP 333356).

Synthetic thrombin inhibitors have also been disclosed. Arylsulfonylarginine amides such as (2R,4R)-4-methyl-1- $[N^2-\{(3-\text{methyl-1},2,3,4-\text{tetrahydro-8-quinolinyl})\text{ sulfonyl}\}$ -L-arginyl[-2-piperidinecarboxylate] have been shown to be effective inhibitors of thrombin (see Okamoto, et. al. Thromb Res. 1976, 8, 77-82,

- Ohshiro, et. al., Blood Vessel 1983, 14, 216-8), as have compounds containing constrained arginine mimics such as (2-naphthylsulfonylglycyl)-4-amidino-phenylalanyl piperidide (see Stuerzebecher, et. al., Thromb. Res. 1983, 29, 635-42), 1-[2-[5-(dimethylamino)naphth-1-
- y|sulfonamido]-3-(2-iminohexahydropyrimidin-5-yl)propanoyl]-4-methylpiperidine dihydrochloride (see Ishikawa, JP 88227572 and Ishikawa and Inamura, JP 88227573), N-(trans-4-amino-methylcyclohexylcarbonyl)-4-O-(2-picolyl)-L-tyrosine 4-acetanilide dihydrochloride
- (see Okamoto, et. al., EP 217286) and 4[(aminoiminomethyl)amino]benzoic acid esters (see Fuji, et. al., DE 3005580, Matsuoka, et. al., Jpn. J.

 Pharmacol. 1989, 51, 455-63, and Takeshita, et. al., EP 435235).
- Inhibitor design has benefitted from the knowledge of the mechanism of action and of the peptide sequences which are thought to bind in the catalytic site of thrombin, e.g., -Gly-Val-Arg-Gly- of fibrinogen (see Blomback, et. al., J. Biol. Chem., 1972, 247, 1496-512),
- 30 Ile-Pro-Arg-Ser- of prothrombin (see Magnussen, et. al., in: Reich, et. al., "Proteases and Biological Control," pp. 123-149 (1975)) and -Val-Pro-Arg-Gly- of factor XIII (see Takagi and Doolittle, Biochemistry 1974, 13, 750-6 and Nakamura, et. al., Biochem. Biophys. Res. Commun.
- 35 1974, 58, 250-256). This class of mechanism-based inhibitors are exemplified by the tripeptide aldehyde D-

WO 96/20689 PCT/US95/16248

Phe-Pro-N-Me-Arg-H (see Bajusz, et. al., J. Med. Chem. 1990, 33, 1729-35), the chloromethyl ketone Ac-D-Phe-Pro-ArgCH₂Cl (see Kettner and Shaw, Thromb. Res. 1979, 14, 969-73) and the trifluoromethyl ketone D-Phe-Pro-ArgCF₃ (see Kolb, et. al., US 697987).

Kettner and Shenvi (EP 293881, published June 12, 1988), disclose peptide boronic acid inhibitors of trypsin-like proteases of formula (1)

10 R^{1} - [(A³)_Q(A²)_p(A¹)_o]_n-NH-CHR²-BY¹Y² (1)

wherein Y^1 and Y^2 , independently, are hydroxyl or fluoro or, taken together, form a moiety derived from a dihydroxy compound having at least two hydroxy groups

- separated by at least two connecting atoms in a chain or ring, said chain or ring comprising 1 to about 20 carbon atoms and, optionally, a heteroatom which can be N, S, or O; R² is a substituted alkyl selected from the group consisting of -(CH₂)_z-X, -(CH(CH₃)-(CH₂)₂-X, -CH₂-CH-
- 20 (CH₃)-CH₂-X, -(CH₂)₂-CH(CH₃)-X and -(CH₂)₂-CH(CH₃)₂-X, where X is -NH₂, -NH-C(NH)-NH₂ or -S-C(NH)-NH₂, and z is 3 to 5; n, o, p and q are, independently, either 0 or 1; A^1 , A^2 and A^3 are, independently, amino acids of L- or D-configuration selected from the group consisting of Ala,
- Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val; and R¹ is a peptide comprised of 1 to about 20 amino acids, an acyl or a sulfonyl group comprised of 1 to about 20 carbon atoms, H, or an N-terminal protecting group. In this
- disclosure, Kettner and Shenvi demonstrated that the pinanediol esters of boropeptides are pharmacogolically equivalent to the corresponding boronic acids.

Metternich (EP 0471651 A2) discloses borolysine thrombin inhibitors of formula (2)

 $W-Y-NR^4-CHR^5-BQ^1Q^2$ (2

35

35

wherein W is an N-protecting group; Y is a sequence of n amino acids such that the n+1 amino acid peptide Y-Lys or Y-Arg has an affinity for the active site of a trypsin-like protease; where n is an integer of from 1 to 10 and in which at least one amino acid is an unnatural amino acid having a hydrophobic side chain; Q^1 and Q^2 are the same or different and are selected from -OH, -COR1, -CONR1R2, -NR1R2 or -OR3 of \mathbb{Q}^1 and \mathbb{Q}^2 taken together form a diol residue; R_1 , R_2 and R_3 which may be the same or different, are C_{1-10} alkyl, C_{6-10} aryl, C_{6-10} 10aralkyl, or phenyl substituted by up to three groups selected from C_{1-4} alkyl, halogen and C_{1-4} alkoxy; R_4 is hydrogen or C_{1-10} alkyl; R_{5} is a group -A-X; wherein A is -(CH₂)_z- in which z is 2, 3, 4 or 5; -CH(CH₃)-(CH₂)₂-; 15 $-CH_2-CH(CH_3)-CH_2-$; $-(CH_2)_2-CH(CH_3)-$; $-(CH_2)_2-C(CH_3)_2-$; $CH(CH_3) - (CH_2)_3 - ; -CH_2 - CH(CH_3) - (CH_2)_2 - ; -CH_2 - CH_2 - CH(CH_3) - (CH_2)_3 - ; -CH_2 - CH_2 - CH$ CH_{2} -; -(CH_{2})₃- $CH(CH_{3}$)-; -(CH_{2})₃- $C(CH_{3}$)₂: C_{6-10} aryl C_{6-1} 10 aralkyl and X is $-NH_2$, $-NH-C(NH)-NH_2$, $-S-C(NH)-NH_2$, N_3 , -C₁₋₄alkoxy, C₁₋₄alkylthio or $Si(CH_3)_3$ or R₄ and R₅ taken 20 together form a trimethylene group and the asymmetric carbon atom may have the D- or L-configuration or represent any mixture of these.

Surprising for their lack of a basic residue at P₁
25 are tripeptide thrombin inhibitors comprised of 1aminoboronic and 1-aminophosphonic acid analogs of 3methoxy-propylglycine (see Claeson, et. al., US 07245428) and pentylglycine (see Cheng, et. al.,
"Symposium on Thrombosis and Hemostasis," 1991,
30 Amsterdam, Abstract 2150).

In addition to thrombin inhibition, boropeptides have been disclosed with utility as a treatment for tumors, viral infections and arthritis (US 4963655A and EP 354522A), emphysema (US 4499082A), hypertension (EP 315574A) and as factor VII/VIIa inhibitors (WO 8909612A). Kleemann, et. al. (AU A-24693/88) disclose

5 in which A^1 denotes a radical of formulae (4-8).

$$R^{1}NR^{6}-CHR^{5}-C=O-$$
 (4)
$$R^{1}CHR^{12}-CHR^{5}-C=O-$$
 (5)
$$R^{1}NR^{6}-CHR^{5}-CHR^{7}-CHR^{8}-CHR^{9}-C=O-$$
 (6)
$$R^{1}CHR^{12}-CHR^{5}-CHR^{7}-CHR^{8}-CHR^{9}-C=O-$$
 (7)
$$R^{10}-(CH_{2})_{n}-CH(CH_{2})_{m}R^{11}-C=O-$$
 (8)

Despite the foregoing, more efficacious and specific inhibitors of coagulation proteases are needed as

15 potentially valuable therapeutic agents for the treatment of thrombosis. None of the cited references describe or suggest the new thrombin-inhibiting boronic acid derivatives of the present invention.

20 <u>Summary of Invention</u>

This invention pertains to novel compounds of formula (I):

R1-Z-CHR2-A

(I)

25 wherein

Ais

- $a) -BY^1Y^2$
- b) $-C (=0) CF_3$,
- c) -C (=0) CHF2,
- 30 d) $-C (=0) CH_2F$,
 - e) $-C (=0) CH_2C1$,
 - $f) C (=0) OR^3$
 - g) $-C (=0) NR^{15}R^{16}$.
 - h) $-C (=0) R^3$,
- i) $-C (=0) COOR^3$,
 - $j) C(=0) C(=0) NR^{15}R^{16}$

```
k) - C (=0) C (=0) R^3
            1) -C (=0) CY^3Y^4COOR^3,
            m) -C (=0) CY^3Y^4C (=0) NR^{15}R^{16},
            n) -C (=0) CY^3Y^4C (=0) R^3,
  5
            o) -PO3H2, or
            p) -CHO;
      Y^1 and Y^2 are independently
            a) -OH,
            b) -F,
 10
            c) -NR^3R^4, or
            d) C1-C8 alkoxy;
    Y^1 and Y^2 can be taken together to form:
            e) a cyclic boron ester where said chain or ring
                  contains from 2 to 20 carbon atoms and, from
 15
                  0-3 heteroatoms which can be N, S, or O,
            f) a cyclic boron amide where said chain or ring
                 contains from 2 to 20 carbon atoms and, from
                 0-3 heteroatoms which can be N, S, or O,
           g) a cyclic boron amide-ester where said chain or
20
                 ring contains from 2 to 20 carbon atoms and,
                 from 0-3 heteroatoms which can be N, S, or O;
     Y^3 and Y^4 are independently
           a) - OH or
           b) -F;
25
     Z is
         a) - (CH<sub>2</sub>)<sub>m</sub>CONR8-,
         b) - (CH2) mCSNR8-,
         c) -(CH_2)_mSO_2NR^8
         d) -(CH_2)_mCO_2-,
30
         e) -(CH_2)_mC(S)O-, or
         f) - (CH<sub>2</sub>)<sub>m</sub>SO<sub>2</sub>O-;
                              m: 0-6
     R<sup>l</sup> is
         a) -(CH_2)_p-aryl, wherein aryl is phenyl, naphthyl or
            biphenyl substituted with one, two or three
            substituents selected from the group consisting
35
```

of:

```
halo (F, Cl, Br, I), methylenedioxy, -R8,
                     -NR8COR9, C2-C6-alkenyl, C2-C6-alkynyl,
                     -(CH_2)<sub>w</sub>-OR^8, -(C_1-C_6)-perfluoroalkyl,
                     -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                     -(CH_2)_{wS}(O)_{rR}^7, -(CH_2)_{wNR}^8R^9, -(CH_2)_{wCOR}^8,
 5
                     -(CH<sub>2</sub>)_wCHO; -(CH<sub>2</sub>)_wCO<sub>2</sub>R<sup>8</sup>, -(CH<sub>2</sub>)_wCONR<sup>8</sup>R<sup>9</sup>.
                     -(CH_2)_wSO_2NH-(C_1-C_5)-alky1, -(CH_2)_wSO_2NH_2,
                     -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-
                    CO_2 - (C_1 - C_6) - alkyl, - (CH_2)_w NHSO_2 - (C_1 - C_6) - alkyl,
10
                     -(CH<sub>2</sub>)wNHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                     -(CH<sub>2</sub>)wNHSO<sub>2</sub>-phenyl, -(CH<sub>2</sub>)wNHSO<sub>2</sub>-
                    perfluorophenyl, -(CH2) wCN4H, -0(CH2) wCN,
                    -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-CO-(C_1-C_6-
                    alkyl), -(CH2)wNH-CO-(C1-C6-perfluoroalkyl),
15
                    -(CH_2)_{w}NH-CO-(pheny1), -(CH_2)_{w}NH-CO_2-(C_1-C_6-
                    alkyl), -(CH_2)_wNH-CO_2-(C_1-C_6-perfluoroalkyl),
                    -(CH_2)_WNH-CO_2-(phenyl), -0(C=0)-(C_1-C_5-alkyl),
```

- b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:
 - i) quinolinyl,
 - ii) isoquinolinyl,
 - iii) benzopyranyl,
 - iv) benzothiophenyl,
- v) benzofuranyl,
 - vi) 5,6,7,8-tetrahydroquinolinyl,
 - vii) 5,6,7,8-tetrahydroisoquinolinyl,

and wherein the substituents are selected from the group consisting of halo (F, Cl, Br, I), -CN, Cl-Cl0-alkyl, C3-C8-cycloalkyl, C2-Cl0-alkenyl, C2-Cl0-alkynyl, R8, -OR8, -NO2, -CF3, -S(O)rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONHR⁸, NR⁸COR⁹, NR⁸CO₂R⁹,

C)

d)

e)

5

£)

. 10

wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR^{13} , S or O, provided that:

15

- i) there may be only one S or O present in the ring at a time;
- ii) there may only be 1-2 N present when there is an O or S present;
- iii) there may be only 1-4 N present;

ġ)

wherein W, R, T, U and V are selected from the group consisting of: CR^{13} or N, provided that there be no less than 1 and no more than 3 N present;

h)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

is as defined above;

i)

$$T = W - (CH_2)_u = R^{18}$$

$$R^{18}$$

$$R^{19}$$

$$R^{19}$$

$$R^{19}$$

$$R^{19}$$

$$R^{19}$$

10

5

is as defined above;

j)

wherein G is O, S, or NP, where P is an amine protecting group selected from the group

15

consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

k)

wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$):

 \mathbb{R}^2 is

10

5

- a) $-(C_1-C_{12} \text{ alky1})-x$,
- b) $-(C_2-C_{12} \text{ alkenyl})-X$, or

c)

X is

15

- a) halogen (F, Cl, Br, I),
- b) -CN,
- c) -NO₂,
- d) -CF3,
- e) $-S(0)_{r}R^{14}$,
- 20
- f) -NHR14
- g) -NHS(0) rR14,
- h) -NHC(NH)H,
- i) -NHC(NH)NHOH,
- j) -NHC(NH)NHCN,
- 25 k) -NHC (NH) NHR¹⁴,

```
1) -NHC (NH) NHCOR14
               m) -C(NH)NHR14
               n) -C(NH)NHCOR14.
               o) -C(0)NHR14
    5
               p) -C(0)NHC(0)R14,
               q) - C(0) OR^{14}
               r) - OR^{14}
               s) -0C(0)R^{14}.
               t) -0C(0)OR^{14}.
  10
               u) -OC(0) NHR14,
               v) -OC(0) NHC(0) R14
               w) -SC(=NH) NHR14, or
               x) -SC(=NH)NHC(=0)R<sup>14</sup>:
        \mathbb{R}^3 is
  15
               a) hydrogen,
              b) C<sub>1</sub>-C<sub>8</sub> alkyl, ...
              c) -(C_1-C_4 \text{ alkyl}) - \text{aryl},
             d) C5-C7 cycloalkyl, or
              e) phenyl;
 20
       R4 is
              a) hydrogen,
              b) C_1-C_8 alkyl,
              c) -(C<sub>1</sub>-C<sub>4</sub> alkyl)-aryl,
              d) C5-C7 cycloalkyl,
 25
              e) phenyl, or
              f) phenylsulfonyl;
       {\rm R}^{\rm 5} and {\rm R}^{\rm 6} are hydrogen or when taken together form a six
            membered aromatic ring optionally substituted with
            one, two or three substituents selected from the
            group consisting of halo (F, Cl, Br, I), -CN, C1-
 30
            C<sub>10</sub>-alkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>2</sub>-C<sub>10</sub>-alkenyl, C<sub>2</sub>-C<sub>10</sub>-
            alkynyl, -OR^8, -NO_2, -CF_3, -S(O)_{T}R^7, -NR^8R^9, -COR^8,
            -CO_2R^8, -CONR^8R^9, phenyl, benzyl, phenylethyl;
       \mathbb{R}^7 is
. 35
            a) phenyl,
```

```
b) C1-C8-alkyl,
            c) C1-C4-alkoxy,
            d) -CF3, or
            e) benzyl;
      \mathbb{R}^8 and \mathbb{R}^9 are independently
           a) H,
           b)
              Ն-(CH<sub>2</sub>)<sub>m</sub>
           c) C3-C7 cycloalkyl, or
 10
           d) C1-C8-alkyl;
      R<sup>11</sup> is
           a) halo (F, Cl, Br, I),
           b) -CN,
           c) C1-C10-alkyl,
15
           d) C3-Cg-cycloalkyl,
           e) C2-C10-alkenyl,
           f) C2-C10-alkynyl,
           g) -OR8,
           h) -NO2,
20
           i) -CF3,
           j) - S(0)_{rR}^{7},
          k) - NR^8R^9
          1) - COR9,
          m) - CO_2 R^8
          n) -CONR<sup>8</sup>R<sup>9</sup>, or
25
          o) H
     R^{12} is
              H, C_1-C_4 alkyl, phenyl, benzyl, -COR^7, or
              -s(0)_{r}R^{7};
     R^{13} is
30
              H, halogen (F, Cl, Br, I), (C1-C8)alkyl, (C1-
              C6) -perfluoroalkyl, -(CH2)r-D, C3-C8 cycloalkyl,
              C2-C6-alkenyl, C2-C6-alkynyl, methylenedioxy,
```

```
-(CH_2)_w-OR^8, -(CH_2)_wNC, -(CH_2)_wCN, -(CH_2)_wNO_2,
                  -(CH_2)_wCF_3, -(CH_2)_wS(0)_rR^7, -(CH_2)_wNR^8R^9,
                  -(CH_2)_wCOR^8, -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9,
                  -(CH<sub>2</sub>)_{w}SO<sub>2</sub>NH-(C<sub>1</sub>-C<sub>6</sub>)-alkyl, -(CH<sub>2</sub>)_{w}SO<sub>2</sub>NH<sub>2</sub>,
                  -(CH_2)_wSO_2NH-CO-(C_1-C_6)-alkyl, -(CH_2)_wSO_2NH-CO_2-
   5
                  (C_1-C_6) -alkyl, - (CH_2)_wSO_2NH, - (CH_2)_wNHSO_2 - (C_1-C_1)_wNHSO_2
                  C_6)-alkyl, -(CH_2)<sub>w</sub>NHSO<sub>2</sub>-(C_1-C_6)-perfluoroalkyl,
                  - (CH_2)_wNHSO_2-phenyl, - (CH_2)_wNHSO_2-
                 perfluorophenyl, -(CH<sub>2</sub>)_{w}CN<sub>4</sub>H, -O(C=O)-(C<sub>1</sub>-C<sub>5</sub>-
                 alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN, -S(CH_2)_wCN,
 10
                 - (CH_2)_wNH-CO-(C_1-C6-alkyl), - (CH_2)_wNH-CO-(C_1-C6-
                 perfluoroalkyl), -(CH2) wNH-CO-(phenyl),
                 -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl), -(CH_2)_wNH-CO_2-(C_1-alkyl)
                 C6-perfluoroalkyl), -(CH2)wNH-CO2-(phenyl),
 15
                 -(CH2)uphenyl wherein the phenyl contains 0-3
                 substituents selected from R18, -S-(CH2)uphenyl
                 wherein the phenyl contains 0-3 substituents
                 selected from R18, or -O-(CH2)uphenyl wherein
                 the phenyl contains 0-3 substituents selected
20
                 from R18;
      R14 is
             a) -H,
             b) -CF3
             c) -C1-C4 alkyl,
25
             d) -(CH_2)_{\mathbf{q}}-aryl, wherein aryl is phenyl, biphenyl,
             naphthyl, or fluorenyl unsubstituted or substituted
             with one to three substituents selected from the
             group consisting of:
                   halogen (F, Cl, Br, I),
30
                    -CF<sub>3</sub>,
                    -(C_1-C_4 \text{ alkyl}),
                   -(CH<sub>2</sub>)<sub>x</sub>R<sup>15</sup>,
                   - (CH<sub>2</sub>)<sub>x</sub>CO(CH<sub>2</sub>)<sub>vR</sub>15
                   -(CH_2)_{X}C(0)O(CH_2)_{V}R^{15}
35
                   -(CH_2)_{x}C(0)N[(CH_2)_{y}R^{15}][(CH_2)_{y}R^{16}],
                   -methylenedioxy,
```

```
-(C1-C4 alkoxy).
                       -(CH_2)_{x}O(CH_2)_{v}R^{15},
                       - (CH<sub>2</sub>)x0CO(CH<sub>2</sub>)vR<sup>15</sup>,
                       -(CH_2)_{X}OC(0)O(CH_2)_{V}R^{15}
                       -(CH_2)_{x}OC(0)N[(CH_2)_{y}R^{15}][(CH_2)_{y}R^{16}],
 5
                       -(CH_2)_{X}OC(O)N[(CH_2)_{Y}R^{15}][CO(CH_2)_{Y}R^{16}],
                       -(CH_2)_xS(0)_r(CH_2)_vR^{15},
                       -(CH<sub>2</sub>)<sub>x</sub>S(O)<sub>r</sub>(CH<sub>2</sub>)<sub>v</sub>COR<sup>15</sup>,
                       -(CH_2)_{x}S(0)_{r}(CH_2)_{y}C(0)OR^{15},
10
                       -(CH_2)_XS(0)_TN[(CH_2)_VR^{15}][(CH_2)_VR^{16}]
                       -(CH_2)_XN[(CH_2)_YR^{15}][(CH_2)_YR^{16}],
                       -(CH_2)_XN[(CH_2)_YR^{15}][CO(CH_2)_YR^{16}],
                       -(CH_2)_xN[(CH_2)_yR^{15}][C(0)O(CH_2)_yR^{16}],
                       - (CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}][(CH_2)_YR^{16}],
15
                       - (CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}] -
                       [CO(CH<sub>2</sub>)<sub>VR</sub>16],
                       -(CH_2)_XN[(CH_2)_YR^{15}][S(0)_T(CH_2)_YR^{16}];
      R^{15} and R^{16} are independently
              a) hydrogen,
20
              b) C<sub>1</sub>-C<sub>8</sub> alkyl,
              c) -(C_1-C_4 \text{ alkyl}) -aryl, where aryl is defined
                      above,
              d) C5-C7 cycloalkyl,
              e) phenyl, substituted by 0-3 R18,
              f) benzyl, substituted by 0-3 R18, or
25
              g) - (C_1 - C_4 \text{ alkoxy});
      {\rm R}^{15} and {\rm R}^{16} can be taken together to form a ring:
```


30 R^{18} and R^{19} are independently H, halo (F, Cl, Br, I), C_1 - C_8 -alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, -(CH₂)_w-OR⁸, -(CH₂)_wCN, -(CH₂)_wNC, -(CH₂)_wNO₂, -(CH₂)_wCF₃, -(CH₂)_wS(O)_rR⁷, -(CH₂)_wNR⁸R⁹,

()

```
-(CH_2)_wCOR^8, -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9,
                  -(CH_2)_wSO_2NH - (C_1 - C_6) - alkyl, -(CH_2)_wSO_2NH_2,
                  -(CH_2)_wSO_2NH-CO-(C_1-C_6)-alkyl, -(CH_2)_wSO_2NH-
                  CO_2 - (C_1 - C_6) - alkyl, - (CH_2)_wSO_2NH-, - (CH_2)_wNHSO_2-
  5
                  (C_1-C_6) -alkyl, -(CH_2)_wNHSO_2-(C_1-C_6)-
                  perfluoroalkyl, -(CH2)wNHSO2-phenyl,
                  - (CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, - (CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H,
                  -0(C=0)-(C_1-C_5-alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN,
                  -s(CH<sub>2</sub>)<sub>w</sub>CN, -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alkyl),
 10
                  - (CH_2)_wNH-CO-(C_1-C<sub>6</sub>-perfluoroalkyl), - (CH_2)_wNH-
                 CO-(C_1-C_6-pheny1), -(CH_2)_wNH-CO_2-(C_1-C_6-alky1),
                  -(CH_2)<sub>wNH</sub>-CO_2-(C_1-C_6-phenyl), or -O(C=0)phenyl;
      R18 and R19 can be taken together to form a
            methylenedioxy group;
      {\tt R}^{20} and {\tt R}^{20a} are independently
15
                (C_1-C_8) alkyl, -(CH_2) uphenyl wherein the phenyl
               contains 0-3 substituents selected from R18,
                (C1-C6)-perfluoroalkyl, or -(CH2)r-D;
      m is 0 to 6;
20
     n is 1 to 2;
      p is 0 to 2;
      q is 0 to 4.
      r is 0 to 2;
      s is 0 to 3:
25
     t is 1 to 5;
     u is 0 to 5;
     v is 0 to 5;
     w is 0 to 5;
     x is 0 to 6;
30
     y is 0 to 6;
     D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
            oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-
           yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
           pyrid-2-yl, pyrid-4-yl, pyridazin-3-yl, pyridazin-
35
           4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl,
           or tetrazolyl;
```

```
E is -CO-, -SO<sub>2</sub>- , -CH<sub>2</sub>- or a single bond;
       F is -CO-;
      W is
             a) -0-.
  5
             b) -S(0) r-,
             c) -NR^4-
             d) -NC (=0) R^3-
             e) a bond, or
             f) - (CH_2)_{n}-;
      or prodrugs or pharmaceutically acceptable salts
10
           thereof.
             Preferred compounds of formula (I) are those
      compounds wherein:
15
      Z is
           a) -(CH_2)_{m}CONR8-
           b) - (CH<sub>2</sub>) mCSNR<sup>8</sup>-,
           c) -(CH_2)_mSO_2NR^8-
      R<sup>l</sup> is
20
           a) -(CH2)p-aryl, wherein aryl is phenyl, naphthyl or
              biphenyl substituted with one, two or three
              substituents selected from the group consisting
              of:
                 halo (F, Cl, Br, I), methylenedioxy, -R8,
                 -NR^8COR^9, C_2-C_6-alkenyl, C_2-C_6-alkynyl,
25
                 -(CH_2)<sub>w</sub>-OR<sup>8</sup>, -(C_1-C<sub>6</sub>)-perfluoroalkyl,
                 -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                 -(CH_2)_wS(0)_rR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
                 - (CH_2)_wCO_2R^8, - (CH_2)_wCONR^8R^9. - (CH_2)_wSO_2NH- (C_1-
                 C_6)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
30
                 C_6)-alkyl, -(C_{1})_wSO<sub>2</sub>NH-C_{2}-(C_{1}-C_{6})-alkyl,
                 - (CH_2)_wNHSO_2- (C_1-C_6)-alkyl, - (CH_2)_wNHSO_2- (C_1-
                 C6)-perfluoroalkyl, -(CH2)wNHSO2-phenyl,
                 -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H, e-
35
                 O(CH_2)_wCN, -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-
                 CO-(C_1-C_6-alkyl), -(CH_2)_wNH-CO-(C_1-C_6-alkyl)
```

perfluoroalkyl), -(CH₂)_wNH-CO-(phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-alkyl), -(CH₂)_wNH-CO₂-(C₁-C₆-perfluoroalkyl), or -(CH₂)_wNH-CO₂-(phenyl), -0(C=0-(C₁-C₅ alkyl);

- b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:
 - i) quinolinyl,
 - ii) isoquinolinyl,
 - iii) benzopyranyl,
- iv) benzothiophenyl,
 - v) benzofuranyl,
 - vi) 5,6,7,8-tetrahydroquinolinyl,
 - vii) 5,6,7,8-tetrahydroisoquinolinyl,

and wherein the substituents are selected from the group consisting of halo (F, Cl, Br, I), -CN, Cl-Cl0-alkyl, C3-C8-cycloalkyl, C2-Cl0-alkenyl, C2-Cl0-alkynyl, R8, -OR8, -NO2, -CF3, -S(O)rR7, -NR8R9, -COR8, -CO2R8, -CONR8H, NR8COR9, NR8CO2R9;

20 c)

d)

e)

25

f) wherein the ring

represented by -J-K-L-M-Q- is a group

```
selected from:
```

```
-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-
                        -N-C(R^{13})=C(R^{13})-C(R^{13})=N-
                   2)
                        -N-C(R^{13})=C(R^{13})-N=C(R^{13})-
 5
                   3)
                        -N-C(R^{13})=N-C(R^{13})=N-
                   4)
                        -N-C(R^{13})=C(R^{13})-N=N-
                   5)
                   6)
                       -N-C(R^{13})=N-N=N-
                   7) -N-N=C(R^{13})-N=N-
                      =C-O-C(R^{13})=N-C(R^{13})=.
10
                   8)
                   9) -C=C(R^{13})-O-C(R^{13})=N-
                   10) = C - O - C(R^{13}) = C(R^{13}) - N = .
                         -C=C(R^{13})-C(R^{13})=N-O-
                   11)
                         =C-C(R^{13})=C(R^{13})-0-N=
                   12)
15
                         -C=C(R^{13})-O-N=C(R^{13})-
                   13)
                         =C-S-C(R^{13})=N-C(R^{13})=.
                   14)
                         -C=C(R^{13})-S-C(R^{13})=N-
                   15)
                        =C-S-C(R^{13})=C(R^{13})-N=
                   16)
                         -C=N-S-N=C(R13)-,
                   17)
20
                   18)
                         -C=N-S-C(R^{13})=N-
                   19)
                         =C-S-N=C(R^{13})-N=.
                         =C-S-C(R^{13})=C(R^{13})-C(R^{13})=
                   20)
                         -C=C(R^{13})-S-C(R^{13})=C(R^{13})
                  21)
                        =C-O-C(R^{13})=C(R^{13})-C(R^{13})=, or
                  22)
25
                  23)
                        -C=C(R^{13})-O-C(R^{13})=C(R^{13})-
```

g) wherein the ring

represented by -C-W-R-T-U-V- is a group

selected from:

- 1) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})$
- 2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})$
- 3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})$
- 4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$
- 5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$
- 6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$
- 7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})$,
- 8) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})$,
- 9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$
- 10) $-C=N-C(R^{13})=N-N=C(R^{13})-$
- 11) $-C=N-C(R^{13})=C(R^{13})-N=N-$, or
- 12) $-C=C(R^{13})-N=C(R^{13})-N=N-;$

15 h)

5

10

wherein

is as defined above;

i)

~~~

20 is as defined above;

j)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

5 k)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

10 R¹⁴ is

- a) -H,
- b) -CF3
- c) -C1-C4 alkyl,
- d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl,
 naphthyl, or fluorenyl unsubstituted substituted with one to three substituents selected from the group consisting of:

halogen (F, Cl, Br, I),

- -CF3,
- $-(C_1-C_4 \text{ alkyl}),$
 - -methylenedioxy,
 - -(C1-C4 alkoxy),
 - $(CH_2)_{XN}[(CH_2)_{YR}^{15}][(CH_2)_{YR}^{16}];$

and all other required substituents of formula (I) are as defined in Claim 1.

More preferred compounds of the formula (I) are those compounds wherein:

A is

- $a) BY^{1}Y^{2}$
- b) $-C(=0) CF_3$,
- c) -C(=0) CHF2,
- 10 d) $-C (=0) CH_2F$,
 - e) -C(=0) CH₂Cl,
 - $f) C (=0) OR^3$
 - g) $-C (=0) NR^{15}R^{16}$
 - h) $-C (=0) R^3$,
- i) $-C (=0) COOR^3$,
 - j) -C(=0)C(=0)NR15R16,
 - $k) C (=0) C (=0) R^3$,
 - 1) -CHO:

 \mathbf{Y}^1 and \mathbf{Y}^2 are independently

- 20 a) -OH, or
 - b) C₁-C₈ alkoxy;
 - Y¹ and Y² can be taken together to form a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

Z is

25

- 23
 - b) $-(CH_2)_mCSNR^8-$, or
 - c) (CH2) mSO2NR8-;

a) $-(CH_2)_mCONR8-$,

- 30 R¹ is
 - a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents independently selected at each occurrence from the group consisting of:
- halo (F, Cl, Br, I), methylenedioxy, -R⁸, -NR⁸COR⁹, C₂-C₆-alkenyl, C₂-C₆-alkynyl,

C)

```
-(CH_2)<sub>W</sub>-OR<sup>8</sup>, -(C_1-C_6)-perfluoroalkyl,
                  -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                  -(CH_2)_wS(0)_rR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
                  -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH^-(C_1-
                  C_6)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
 5
                  C_6)-alkyl, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH-CO_2-(C_1-C_6)-alkyl,
                   -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-, -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-alkyl,
                   -(CH<sub>2</sub>)wNHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                  -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-phenyl, -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-
10
                  perfluorophenyl, -(CH2) wCN4H, -O(CH2) wCN,
                  -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-CO-(C_1-C_6-CH_2)_wCN
                  alkyl), -(CH_2)_wNH-CO-(C_1-C_6-perfluoroalkyl),
                  - (CH_2)_wNH-CO-(phenyl), - (CH_2)_wNH-CO<sub>2</sub>-(C_1-C6-
                  alkyl), -(CH_2)_{wNH}-CO_2-(C_1-C_6-perfluoroalkyl),
15
                  or -(CH_2)_{w}NH-CO_2-(phenyl), -0(C=0)-C_1-C_5-
                  alkyl);
           b) heteroaryl, wherein heteroaryl is an
              unsubstituted, monosubstituted or disubstituted:
              i)
                     quinolinyl,
20
              ii)
                     isoquinolinyl,
              iii) benzopyranyl,
              iv)
                     benzothiophenyl,
              v)
                     benzofuranyl,
              vi)
                     5,6,7,8-tetrahydroquinolinyl,
25
              vii) 5,6,7,8-tetrahydroisoquinolinyl,
                 wherein the substituents are members selected
                  from the group consisting of: halo (F, Cl, Br,
                 I), -CN, C_1-C_{10}-alkyl, C_3-C_8-cycloalkyl, C_2-
30
                 C10-alkenyl, C2-C10-alkynyl, R8, -OR8, -NO2,
                  -CF_3, -S(0)_{r}R^7, -NR^8R^9, -COR^8, -CO_2R^8, -CO_1R^8H,
                 NR8COR9, NR8CO2R9;
```

d)

e)

5

10

15

20

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

1)
$$-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$$

2)
$$-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$$

3)
$$-N-C(R^{13})=C(R^{13})-N=C(R^{13})$$

4)
$$-N-C(R^{13})=N-C(R^{13})=N-$$

5)
$$-N-C(R^{13})=C(R^{13})-N=N-$$

6)
$$-N-C(R^{13})=N-N=N-$$
,

7)
$$-N-N=C(R^{13})-N=N^{-1}$$

8) =
$$C - O - C(R^{13}) = N - C(R^{13}) =$$
,

9)
$$-C=C(R^{13})-O-C(R^{13})=N-$$

10) =
$$C - O - C(R^{13}) = C(R^{13}) - N =$$
,

11)
$$-C=C(R^{13})-C(R^{13})=N-O-$$
,

12) =
$$C - C(R^{13}) = C(R^{13}) - 0 - N =$$
,

13)
$$-C=C(R^{13})-O-N=C(R^{13})-$$

14) =
$$C-S-C(R^{13})=N-C(R^{13})=$$
,

15)
$$-C=C(R^{13})-S-C(R^{13})=N$$

16) =
$$C-S-C(R^{13})=C(R^{13})-N=$$
,

17) =
$$C-S-C(R^{13})=C(R^{13})-C(R^{13})=$$
,

 10

15

20

19) =
$$C - C(R^{13}) = C(R^{13}) - C(R^{13}) =$$
, or

20) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-$

f) U V

wherein the ring represented by -C-W-R-T-U-V- is a group selected from:

1)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$$

2)
$$-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$$

3)
$$-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})$$

4)
$$-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$$

5)
$$-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$$

6)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$$

7)
$$-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$$

8)
$$-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$$

9)
$$-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$$

10)
$$-C=N-C(R^{13})=N-N=C(R^{13})$$

11)
$$-C=N-C(R^{13})=C(R^{13})-N=N-$$
, or

12)
$$-C=C(R^{13})-N=C(R^{13})-N=N-$$

g)

wherein

is as defined above;

h)

$$\begin{array}{c|c} R \longrightarrow W \\ \hline \\ V \longrightarrow V \\ \hline \\ R^{19} \end{array}$$
 wherein

is as defined above; or

i)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$);

 R^2 is

10

- a) -(C1-C12 alky1)-x,
- b) $-(C_2-C_{12} \text{ alkenyl})-X$, or
- c)

X is

a) halogen (F, Cl, Br, I),

- b) -CN,
- $c) -NO_2,$
- d) -CF3,
- e) NHR14
- 20 f) -NHS(0) $_{r}R^{14}$,

```
g) -NHC(NH)H,
              h) -NHC(NH)NHOH.
               i) -NHC(NH)NHCN.
               j) -NHC(NH)NHR<sup>14</sup>,
  5
              k) -NHC (NH) NHCOR 14.
              1) -C(NH)NHR^{14}.
              m) -C(NH)NHCOR14,
              n) - C(0) NHR^{14}
              o) -C(0) NHC(0) R^{14},
10
              p) - C(0) OR^{14}
              q) - OR^{14}
              r) - OC(0)R^{14}
              s) -OC(0)OR^{14}.
              t) -OC(0)NHR^{14}
15
              u) -OC(0) NHC(0) R^{14}
              v) -SC(=NH) NHR14, or
              w) -SC(=NH) NHC(=0) R^{14}:
      R^{13} is
20
                  H, halogen (F, Cl, Br, I), (C_1-C_6) alkyl,
                  -(CH<sub>2</sub>)<sub>r</sub>-D, methylenedioxy, -(CH<sub>2</sub>)<sub>w</sub>-OR<sup>8</sup>,
                  - (CH_2)_w CONR^8 R^9, - (CH_2)_w NC, - (CH_2)_w CN,
                  -(CH_2)_wNO_2, -(CH_2)_wS(O)_rR^7, -(CH_2)_wCOR^8,
                  -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH-(C_1-CH_2)_wSO_2NH
25
                  C_5)-alkyl, -(CH_2) _wSO_2NH_2, -(CH_2) _wSO_2NH-CO-(C_1-
                  C_6)-alkyl, -(CH_2)<sub>w</sub>SO_2NH-CO_2-(C_1-C_6)-alkyl,
                  - (CH_2)_wNHSO_2- (C_1-C_6)-alkyl, - (CH_2)_wNHSO_2- (C_1-C_6)-
                  C6)-perfluoroalkyl, -(CH2)wNHSO2-phenyl,
                  -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H,
                  -0(C=0)-(C_1-C_5-alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN,
30
                  -s(CH<sub>2</sub>)_wCN, -(CH<sub>2</sub>)_wNH-CO-(C<sub>1</sub>-C<sub>6</sub>-alky1),
                  - (CH_2)_wNH-CO-(C_1-C<sub>6</sub>-perfluoroalkyl), - (CH_2)_wNH-
                 CO-(C_1-C_6-phenyl), -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl),
                  - (CH<sub>2</sub>)<sub>w</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-phenyl); - <math>(CH<sub>2</sub>)<sub>u</sub>phenyl
                 wherein the phenyl contains 0-3 substituents
35
                 selected from R^{18}, or -O(C=0) phenyl wherein the
```

5

10

15

20

25

30

35

```
phenyl contains 0-3 substituents selected from
              R18;
  R14 is
          a) -H,
         b) -CF3
          c) -C1-C4 alkv1.
         d) - (CH<sub>2</sub>)<sub>q</sub>-aryl, wherein aryl is phenyl, biphenyl,
          naphthyl, or fluorenyl are optionally substituted
         with one to three substituents selected from the
         group consisting of:
                 halogen (F, Cl, Br, I),
                -- CF3,
                 -(C1-C4 alkyl),
                 -methylenedioxy,
                 -(C1-C4 alkoxy), or
                 -(CH<sub>2</sub>)<sub>X</sub>N[(CH<sub>2</sub>)<sub>V</sub>R<sup>15</sup>][(CH<sub>2</sub>)<sub>V</sub>R<sup>16</sup>];
 R^{18} and R^{19} are independently
              H, halo (F, Cl, Br, I), C_1-C_6-alkyl, -(CH<sub>2</sub>)<sub>W</sub>-
              OR^8, - (CH_2)_w CN, - (CH_2)_w NC, - (CH_2)_w NO_2,
               -(CH_2)_{wS}(O)_{rR}^7, -(CH_2)_{wNR}^8R^9, -(CH_2)_{wCOR}^8,
               -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH-(C_1-
              C_5)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
              C_6)-alkyl, -(CH_2)<sub>w</sub>SO_2NH-CO_2-(C_1-C_6)-alkyl,
              -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-(C<sub>1</sub>-
             C6)-perfluoroalkyl, -(CH2)wNHSO2-phenyl,
              -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H,
              -0(C=0)-(C_1-C_5-alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN,
              -S(CH_2)_wCN, -(CH_2)_wNH-CO-(C_1-C_6-alky1),
              -(CH<sub>2</sub>) wNH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>) wNH-
              CO-(C_1-C_6-pheny1), -(CH_2)_wNH-CO_2-(C_1-C_6-alky1),
              -(CH_2)<sub>W</sub>NH-CO_2-(C_1-C_6-phenyl), or -O(C=0)phenyl;
R18 and R19 can be taken together to form a
```

methylenedioxy group; R^{20} and R^{20a} are independently

```
(C1-C8)alkyl, -(CH2)uphenyl wherein the phenyl contains 0-3 substituents selected from R<sup>18</sup>, (C1-C6)-perfluoroalkyl,or -(CH2)r-D;
D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
```

oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-yl, pyrid-2-yl, pyrid-4-yl, pyrimidin-2-yl, or pyrimidin-4-yl;

W is

5

30

- a) -0-,
- 10 b) $-NR^4$ -,
 - c) a bond, or
 - d) $-(CH_2)_{n-}$;

and all other required substituents of formula (I) are as defined in Claim 2.

Most preferred compounds of the formula (I) are those compounds wherein:

A is $-BY^{1}Y^{2}$;

20 Y^1 and Y^2 are -OH;

 y^1 and y^2 can be taken together to form a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

25 Z is -(CH₂)_mCONR⁸-; R¹ is

a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of:

halo (F, Cl, Br, I), methylenedioxy, -R⁸, -NR⁸COR⁹, C₂-C₆-alkenyl, C₂-C₆-alkynyl,

- -(CH₂)_w-OR⁸, -(C₁-C₆)-perfluoroalkyl,
- $-(CH_2)_wCN$, $-(CH_2)_wNC$, $-(CH_2)_wNO_2$, $-(CH_2)_wCF_3$,
- 35 $(CH_2)_wS(0)_rR^7$, $(CH_2)_wNR^8R^9$, $(CH_2)_wCOR^8$,
 - $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$. $-(CH_2)_wSO_2NH-(C_1-CH_2)_wSO_2NH$

C6)-alkyl, -(CH₂)wSO₂NH₂, -(CH₂)wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)wSO₂NH-CO₂-(C₁-C₆)-alkyl, -(CH₂)wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)wNHSO₂-phenyl, -(CH₂)wNHSO₂-perfluorophenyl, -(CH₂)wCN₄H, -O(CH₂)wCN, -NH(CH₂)wCN, -S(CH₂)wCN, -(CH₂)wNH-CO-(C₁-C₆-alkyl), -(CH₂)wNH-CO-(C₁-C₆-phenyl), -(CH₂)wNH-CO₂-(C₁-C₆-alkyl), -(CH₂)wNH-CO₂-(C₁-C₆-phenyl); -(CH₂)wNH-CO₂-(C₁-C₆-phenyl);

b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted isoquinolinyl wherein the substituents are members selected from the group consisting of:

halo (F, Cl, Br, I), -CN, Cl-Clo-alkyl, C3-C8-cycloalkyl, C2-Clo-alkenyl, C2-Clo-alkynyl, R8,
-OR8, -NO2, -CF3, -S(O)rR7, -NR8R9, -COR8,

-CO₂R⁸, -CONR⁸R⁹, NR⁸COR⁹, NR⁸CO₂R⁹,

20 c)

15

d)

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

- 1) $-N-C(R^{13})=N-C(R^{13})=N-$,
- 2) $-N-C(R^{13})=C(R^{13})-N=N-$

3)
$$-N-N=C(R^{13})-N=N-$$

5)
$$-N-C(R^{13})=N-N=N-$$

6) =
$$C-S-C(R^{13})=C(R^{13})-C(R^{13})=$$
, or

7) =
$$C - C(R^{13}) = C(R^{13}) - C(R^{13}) = ;$$

5 e)

wherein the ring represented by -C-W-R-T-U-V- is a group selected from:

1) $-C=N-C(R^{13})=C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})$

1)
$$-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$$

2)
$$-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$$

3)
$$-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$$

4)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$$
, or

5)
$$-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$$
:

15 f)

10

wherein

is as defined above;

g)

wherein

20

is as defined above; or

h)

wherein G is S;

 \mathbb{R}^2 is

a) - (C1-C12 alky1)-X, or

5 b)

X is

- a) halogen (F, Cl, Br, I),
- b) -CN,
- 10
- c) -NHR14
- d) -NHC(NH)H,
- e) -NHC(NH)NHR14,
- $f) -C(NH)NHR^{14}$
- $g) OR^{14}$, or
- 15
- h) -SC (=NH) NHR14;

Rll is H;

 R^{13} is

H, halogen (F, Cl, Br, I), $-(CH_2)_wNO_2$, (C₁-C₆)alkyl, $-(CH_2)_r-D$, $-(CH_2)_w-OR^8$,

20 - $(CH_2)_{W}CONR^{8}R^{9}$, - $(CH_2)_{W}CN$, - $(CH_2)_{W}NC$,

 $-(CH_2)_wCOR^8$, $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCO_2R^3$,

 $-(CH_2)_wNR^8R^3$, $-(CH_2)_wS(O)_2R^7$, $-(CH_2)_wSO2NHCO-(C1-$

C6) -alky1, -(CH2) wNHSO2 -phenyl -(CH2) wSO2NH-(C1-

 C_5)-alkyl, -(CH_2) $_wSO_2NH_2$, -(CH_2) $_wSO_2NH$ - CO_2 -(C_1 -

25 C_6) -alkyl, -(CH₂) wNHSO₂-(C₁-C₆) -alkyl,

```
-(CH_2)<sub>w</sub>NHSO<sub>2</sub>-(C_1-C_6)-perfluoroalky1,
                 -(CH_2)_{W}CN_{4}H, -O(C=0)-(C_1-C_5-alkyl), -O(CH_2)_{+}CN,
                 alkyl), -(CH_2)_wNH-CO-(C_1-C_6-perfluoroalkyl), or
  5
                 -(CH_2)uphenyl wherein the phenyl contains 0-3
                 substituents selected from R18;
       R14 is -H;
      R^{18} and R^{19} are independently
                  H, halo (F, Cl, Br, I), C_1-C_6-alkyl, -(CH_2)_{W}-
                  OR^8, - (CH_2)_WCN, - (CH_2)_WNC, - (CH_2)_WNO_2,
 10
                  -(CH_2)_{wS}(0)_{rR}^7, -(CH_2)_{wNR}^8R^9, -(CH_2)_{wCOR}^8,
                  - (CH_2)_wCO_2R^8, - (CH_2)_wCONR^8R^9, - (CH_2)_wSO_2NH- (C_1-
                  C_5)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
                  C_6)-alkyl, -(CH_2)<sub>w</sub>SO_2NH-CO_2-(C_1-C_6)-alkyl,
                  - (CH_2)_wNHSO<sub>2</sub> - (C_1 - C_6) - alkyl, - (CH_2)_wNHSO<sub>2</sub> - (C_1 - C_6)
15
                  C6)-perfluoroalkyl, -(CH2)wNHSO2-phenyl,
                  -(CH<sub>2</sub>)wNHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)wCN<sub>4</sub>H,
                  -0(C=0)-(C_1-C_5-alky1), -0(CH_2)_{t}CN, -NH(CH_2)_{t}CN,
                  -s(CH<sub>2</sub>)<sub>t</sub>CN, -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alkyl),
20
                  -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>w</sub>NH-
                 CO-(C_1-C_6-pheny1), -(CH_2)_wNH-CO_2-(C_1-C_6-alky1),
                 -(CH_2)<sub>w</sub>NH-CO<sub>2</sub>-(C_1-C<sub>6</sub>-phenyl), or -O(C=0)phenyl;
      R18 and R19 can be taken together to form a
            methylenedioxy group;
     {\bf R}^{20} is selected from the group consisting of:
25
                (CH_2)_{r}-D, or -(CH_2)_{u}phenyl wherein the phenyl
               contains 0-3 substituents selected from R18;
     and all other required substituents of formula (I) are
     defined as in Claim 3.
30
```

Specifically preferred are those most preferred compounds listed below:

 N^{1} -(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride 35 N^{1} -(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride

```
N^{1}-(1-fluorenonyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-[1-butyl]benzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(2-benzoylbenzoyl) - (R) -boroarginine, hydrochloride
     N^{1}-(5-phenyl-2-furoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-
          benzoyl) - (R) -boroarginine, hydrochloride
     N^{1}-(2-phenyl-4-isoquinoloyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(4-cyclohexylbenzoyl)-(R)-boroarginine,
10
          hydrochloride
     N^{1}-(2-methyl-4-phenylbenzoyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-[4-phenyl-2-nitrobenzoyl]boroArg, (+)-pinanediol
     N^{1}-[4-phenyl-2-fluorobenzoyl]boroArg, (+)-pinanediol
. 15
     N^{\frac{1}{2}}-[4-phenyl-2-aminobenzoyl]boroArg, (+)-pinanediol
          ester
     N^{1}-[4-phenyl-2-(methylsulfonamido)benzoyl]boroArg, (+)-
20
          pinanediol ester
     N^{1}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroArg, (+)-
          pinanediol ester
     N^{1}-[4-phenyl-2-(cyanomethyl)benzoyl]boroArg, (+)-
          pinanediol ester
     N^{1}-[4-phenyl-2-(diethylamino)benzoyl]boroArg, (+)-
25
          pinanediol ester
     N1-[4-[2-(t-butylaminosulfony1)pheny1]-2-methyl-
          benzoyl]boroArg, (+)pinanediol ester
     N^{l}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
30
          benzoyl]boroArg, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg, (+)-pinanediol ester
     N1-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg,
          (+)-pinanediol ester
    N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg-OH
35
```

```
N^{1}-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-
            methyl-benzoyl]boroArg, (+)-pinanediol ester
      N^{2}-[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
            benzoyl]boroArg, (+)pinanediol ester
      N^{2} - [4 - [2 - (t-butylaminosulfonyl) phenyl] -2 -fluoro-
  5
           benzoyl]boroArg, (+)pinanediol ester
      N^{l} - [4 - [2 - (aminosulfonyl) phenyl] -2 -fluoro-
           benzoyl]boroArg, (+)pinanediol ester
      N^{2}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-
           benzoyl]boroArg, (+) -pinanediol ester
 10
      N1-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
           benzoyl]boroArg, (+)pinanediol ester
      N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg,
            (+)pinanediol ester
     N^{2} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] - 2 - nitro-
 15
           benzoyl]boroArg, (+)-pinanediol ester
     N^{1}-(3-phenylbenzoyl)boroarg, (+)-pinanediol
     N^{1}-[4-(3-BOCNHphenyl)2-methylbenzoyl]boroarg, (+)-
           pinanediol
     N^{\frac{1}{2}}-(5-phenyl-2-furoyl)boroarg, (+)-pinanediol
20
     N^{l}-(5-phenyl-2-thienyl)boroarg, (+)-pinanediol
     N^{2}-[4-(3-nitrophenyl)benzoyl]boroarg, (+)-pinanediol
     N^{1}-[4-(3-aminophenyl)benzoyl]boroarg, (+)-pinanediol
     N^{1}-(3-phenylbenzoyl)borolys, (+)-pinanediol
     N1-(5-phenyl-2-furoyl)boroarg-OH
25
     N^{1}-(3-phenylbenzoyl)borolrg, (+)-pinanediol
     (R) - [5-amino-1-[[[5-(phenylmethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta]]-(1,1-dimethylethyl) [3-[5-[[[4-
30
           [(amino-iminomethyl)amino]-1-(hexahydro-3a,5,5-
          trimethyl-4,6-methano-1,3,2-benzo-dioxaborol-2-
          yl)butyl]amino]carbonyl]-2-thienyl]phenyl]carbamate
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
35
          3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-
```

```
2-yl)pentyl]-5-(phenyl-methyl)-3-(2H-tetrazol-5-
           ylmethyl)-1H-1,2,4-triazole-1-acetamide
           hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[[5-amino-1-(hexahydro-
  5
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]amino]-2-oxoethyl]-5-(phenylmethyl)-1H-
           1,2,4-triazole-3-acetic acid hydrochloride 1:1 with
            [3aS-[2(S^*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[[5-amino-1-
            (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
10
           benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-3-
           (phenylmethyl)-1H-1,2,4-triazole-5-acetic acid
           hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
           (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
15
           benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-5-
           (phenylmethyl)-1H-1,2,4-triazole-3-acetate
           hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
           (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
20
          benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-3-
           (phenylmethyl)-1H-1,2,4-triazole-5-acetate
           hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
25
           2-yl)pentyl]-3-phenyl-5-(phenyl-methyl)-1H-1,2,4-
          triazole-1-acetamide hydrochloride
     (R) - [5-amino-1-[[[3-phenyl-5-(phenylmethyl)-1H-1,2,4-
          triazol-1-yl]acetyl]-amino]pentyl]boronic acid
          hydrochloride
30
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-3-(3-nitro-phenyl)-5-(phenylmethyl)-
          1H-1,2,4-triazole-1-acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-[(aminoiminomethyl)-
35
          amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-
          1,3,2-benzodioxaborol-2-yl)butyl}-3-(3-
```

```
nitrophenyl)-5-(phenylmethyl)-1H-1,2,4-triazole-1-
           acetamide hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1-)]
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
  5
           2-yl) pentyl] -3,5-bis(phenyl-methyl) -1H-1,2,4-
           triazole-1-acetamide hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-[(aminoiminomethyl)-
           amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-
         1,3,2-benzodioxaborol-2-yl)butyl]-3,5-
           bis(phenylmethyl)-1H-1,2,4-triazole-1-acetamide
10
           hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-3-(phenylmethyl)-1H-1,2,4-triazole-1-
15
           acetamide
     (R) - [5-amino-1-[[[3-(phenylmethyl)-1H-1,2,4-triazol-1-
           yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
20
           2-yl)pentyl}-5-methyl-3-(phenylmethyl)-1H-1,2,4-
           triazole-1-acetamide hydrochloride
     [3aS-[2(R*),3a\alpha,4\beta,6\beta]]-N-[5-amino-1-(hexahydro-3a,5,5-
          tri-methyl-4,6-methano-1,3,2-benzodioxaborol-2-
          yl)pentyl]-5-[(phenyl-methoxy)methyl]-3-
25
           (phenylmethyl) -1H-1,2,4-triazole-1-acetamide
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-5-(cyanomethyl)-3-(phenylmethyl)-1H-
          1,2,4-triazole-1-acetamide hydrochloride
30
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-3-(phenylmethyl)-5-propyl-1H-1,2,4-
          triazole-1-acetamide hydrochloride
35
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
```

hydrochloride

5

25

30

```
2-yl)pentyl]-5-phenyl-3-(phenylmethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride

(R)-[5-amino-1-[[[5-methyl-3-(phenylmethyl)-1H-1,2,4-triazol-1-yl]acetyl]-amino]pentyl]boronic acid
```

- [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-phenyl-1H-1,2,4-triazole-1-acetamide hydrochloride
- 10 [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-5-methyl-3-phenyl-1H-1,2,4-triazole-1acetamide hydrochloride
- [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-5-(2-phenyl-ethyl)-1H-1,2,4-triazole-1-acetamide
 - (R) [5-amino-1-[[[5-(2-phenylethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- 20 [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3,5-bis(2-phenyl-ethyl)-lH-1,2,4-triazole-1-acetamide hydrochloride
 - (R) [5-amino-1-[[[3,5-bis(2-phenylethyl)-1H-1,2,4triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
 - [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(2-phenylethyl)-1H-1,2,4-triazole-1-acetamide
 - (R)-[5-amino-1-[[[3-(2-phenylethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(3-phenyl-propyl)-1H-1,2,4-triazole-1-acetamide

35

- (R) [5-amino-1-[[[5-(3-phenylpropyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- (R) [5-amino-1-[[[3-(3-phenylpropyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- 5 [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-1,5-bis(phenyl-methyl)-1H-1,2,4-triazole-3-acetamide hydrochloride 2:8 with (R)-[5-amino-1-[[[1,5-bis(phenylmethyl)-1H-1,2,4-
- triazol-3-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
 - [3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-4-methyl-2-phenyl-5-
- pyrimidinecarboxamide hydrochloride
 [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-2,4-diphenyl-5-pyrimidinecarboxamide hydrochloride
- 25 [3aS-[2(S*),3α,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-6-phenyl-3-pyridinecarboxamide hydrochloride

Illustrative of the compounds of this invention are the following:

```
N^{1}-(4-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol.
          bisulfite
     N^{l}-(3-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
 5
     N^{1}-(3-phenoxybenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
     N^{1}-(4-[4-pyridyl]benzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
     N^{2}-(2-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
10
          bisulfite
     N^{1}-(3-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
     N^{2}-(4-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
15
    N1-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
    N1-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(4-ethylbenzoyl)-(R)-boroarginine (+)-pinanediol,
20
          bisulfite
    N^{1}-(4-n-propylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{1}-(4-isopropylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
25
    N^{1}-(4-n-butylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{1}-(4-tert-butylbenzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-(4-n-hexylbenzoyl)-(R)-boroarginine (+)-pinanediol,
30
          bisulfite
    N^{1}-(4-cyclohexylbenzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(4-n-butyloxybenzoyl)-(R)-boroarginine (+)-
35
          pinanediol, bisulfite
```

```
N^{1}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
     N^{2}-(4-[N-cyclohexylcarbonyl]aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
     N^{1}-(4-[N-(4-methoxy)benzoyl)aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
     N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
     N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
10
     N^{2}-(2-[1-naphthyl]benzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
     N^{2}-(4-[4-carboxy]phenylbenzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
     N^{1}-(4-phenylbenzoyl)-(R)-borothioarginine (+)-
15
          pinanediol, hydrobromide
     N^{1}-(3-phenylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(3-phenoxybenzoyl)-(R)-borothicarginine (+)-
20
          pinanediol, hydrobromide
     N^{1}-(2-benzoylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{2}-(3-benzoylbenzoyl)-(R)-borothioarginine (+)-
         pinanediol, hydrobromide
    N^{1}-(4-benzoylbenzoyl)-(R)-borothioarginine (+)-
25
         pinanediol, hydrobromide
    N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
         borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
30
         borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(4-ethylbenzoyl)-(R)-borothioarginine (+)-pinanediol,
         hydrobromide
    N^{2}-(4-n-propylbenzoyl)-(R)-borothioarginine (+)-
         pinanediol, hydrobromide
    N^{1}-(4-isopropylbenzoyl)-(R)-borothioarginine (+)-
35
         pinanediol, hydrobromide
```

```
N^{1}- (4-n-butylbenzoyl) - (R) -borothioarginine (+) -
          pinanediol, hydrobromide
     N^{1}-(4-tert-butylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(4-n-hexylbenzoyl)-(R)-borothioarginine (+)-
 5
          pinanediol, hydrobromide
     N^{1}-(4-cyclohexylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
10
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(4-n-butyloxybenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}- (4-[N-cyclohexylcarbonyl]aminobenzoyl) - (R) -
15
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}- (4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
     N^{2}-(4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine
20
          (+)-pinanediol, hydrobromide
     N^{2}-(2-[2-phenylbenzyloxycarbonyl]benzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
25
    N^{1}- (4-[4-carboxy]phenylbenzoyl) - (R)-borothioarginine
          (+)-pinanediol, hydrobromide
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{l}-([2-dioxothioxanthinony1]carbony1)-(R)-boroarginine
30
          (+)-pinanediol, bisulfite
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borothioarginine
          (+)-pinanediol, hydrobromide
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-
         borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borothiohomoarginine
          (+)-pinanediol, hydrobromide
```

```
N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
           pinanediol, bisulfite
      N1-([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
           (+)-pinanediol, hydrobromide
      N1-([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
  5
           (+)-pinanediol, hydrobromide
      N1-([3-fluoren-9-ony1]carbony1)-(R)-boroarginine (+)-
           pinanediol, bisulfite
      N1-([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
 10
           (+)-pinanediol, hydrobromide
      N1-([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
           pinanediol, bisulfite
      N^{1}-(1-naphthoy1)-(R)-borothicarginine (+)-pinanediol,
           hydrobromide
     N^{1}-(1-naphthoy1)-(R)-boroarginine (+)-pinanediol,
 15
           bisulfite
      N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
           borothioarginine (+)-pinanediol, hydrobromide
     N1-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
 20
           borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-
           borothioarginine (+)-pinanediol, hydrobromide
     N^{\frac{1}{4}}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
           borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-
25
           borothioarginine (+)-pinanediol, hydrobromide
     N1-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
 30
          borothioarginine (+)-pinanediol, hydrobromide
     N1-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
           (R)-borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
```

```
N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
          trifluoromethylbenzoyl) - (R) -borothioarginine (+) -
          pinanediol, hydrobromide
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
 5
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-[4-carboxy] phenyl-5-hydroxybenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
10
     N^1-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
     N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
     N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
15
          boroarginine (+)-pinanediol, bisulfite
    N<sup>1</sup>-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
    N1-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
20
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
          (R)-boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
25
          boroarginine (+)-pinanediol, bisulfite
    N^1-(2-methyl-4-[4-carboxy]phenyl-5-
          trifluoromethylbenzoyl) - (R) -boroarginine (+) -
          pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
30
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-[5-phenyl] furylcarbonyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-(2-[5-phenyl] thiophen-ylcarbonyl) -(R) -boroarginine
35
          (+)-pinanediol, bisulfite
```

 N^{1} -(2-[5-phenyl]furylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide N^{1} -(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide

- 5 N¹-(3-[6-phenyl]pyridylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
 - N¹-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
 - N^{2} -(3-[6-phenyl]pyridylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 - N^{1} -(3-[5-benzyloxy]pyridylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 - N^{1} -(2-benzopyronylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite

10

20

- 15 N^{1} -(2-benzopyronylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 - N^{l} -(3-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
 - N^{l} -(2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
 - N^{l} -(3-isoquinolinylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 - N^{1} -(2-phenyl-4-isoquinolinylcarbonyl)-(R)borothioarginine (+)-pinanediol, hydrobromide
- 25 N¹-(2-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
 - N^{1} -(2-isoquinolinylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 - N^{2} -(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride
- N^{2} -(3-phenylbenzoyl)-(R)-boroarginine, hydrochloride
 - N^{1} -(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride
 - N^{1} (4-[4-pyridyl]benzoyl) (R)-boroarginine, hydrochloride
- N^{1} -(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
- 35 N^{1} -(3-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
 - N^{1} -(4-benzoylbenzoyl)-(R)-boroarginine, hydrochloride

```
N1-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
           boroarginine, hydrochloride
     N1-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
           boroarginine, hydrochloride
     N^{1}-(4-ethylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-n-propylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-isopropylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-tert-butylbenzoyl)-(R)-boroarginine,
           hydrochloride
     N^{1}-(4-n-hexylbenzoyl)-(R)-boroarginine, hydrochloride
10
     N^{1}-(4-cyclohexylbenzoyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}- (4-n-butyloxybenzoyl) - (R) -boroarginine,
15
          hydrochloride
     N^{1}- (4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
          boroarginine, hydrochloride
     N^{1}- (4-[N-cyclohexylcarbonyl]aminobenzoyl) - (R) -
20
          boroarginine, hydrochloride
     N^{1}- (4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}- (4-[4-methoxy] phenylbenzoyl) - (R) -boroarginine,
          hydrochloride
    N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
25
          boroarginine, hydrochloride
    N1-(2-[1-naphthyl]benzoyl)-(R)-boroarginine,
          hydrochloride
    N^{1}-(4-[4-carboxy] phenylbenzoyl) -(R) -boroarginine,
30
          hydrochloride
    N^{2}-([2-anthraquinonyl]carbonyl)-(R)-boroarginine,
          hydrochloride -
    N^{1-}([2-\text{diox}othioxanthinonyl]carbonyl)-(R)-boroarginine,
          hydrochloride
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
35
          hydrochloride
```

```
N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(1-naphthoyl)-(R)-boroarginine, hydrochloride
     N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
 5
          hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine,
10
          hydrochloride
     N^{2}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
          boroarginine, hydrochloride.
     N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine,
15
          hydrochloride
     N^{2}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
20
          (R)-boroarginine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
25
          trifluoromethylbenzoyl) - (R) -boroarginine,
          hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
30
          boroarginine, hydrochloride
    N^{1}-(2-[5-phenyl]furylcarbonyl)-(R)-boroarginine,
          hydrochloride
    N^{1}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-boroarginine,
          hydrochloride
    N^{1}-(2-benzopyronylcarbonyl)-(R)-boroarginine,
35
          hydrochloride
```

```
N^{1}-(2-isoquinolinylcarbonyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(3-isoquinolinylcarbonyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine,
 5
          hydrochloride
     N1-(4-phenylbenzoyl) -(R)-borothioarginine,
          hydrochloride
     N^{1}-(3-phenylbenzoy1)-(R)-borothioarginine,
10
          hydrochloride
     N^{2}-(3-phenoxybenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-(2-benzoylbenzoyl)-(R)-borothioarginine,
          hydrochloride
     N^{1}-(3-benzoylbenzoyl)-(R)-borothioarginine,
15
          hydrochloride
     N^{1}-(4-benzoylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
20
          borothioarginine, hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
          borothioarginine, hydrochloride
    N^{1}-(4-ethylbenzoyl)-(R)-borothioarginine, hydrochloride
     N^{1}-(4-n-propylbenzoyl)-(R)-borothioarginine,
25
          hydrochloride
    N^{1}-(4-isopropylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-(4-n-butylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-(4-tert-butylbenzoyl)-(R)-borothioarginine,
30
          hydrochloride
    N^{l}-(4-n-hexylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-(4-cyclohexylbenzoyl)-(R)-borothioarginine,
35
          hydrochloride
```

```
N1-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{1}-(4-n-butyloxybenzoyl)-(R)-borothioarginine,
          hydrochloride
 5
     N^{1}- (4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
          borothioarginine, hydrochloride
     N^{1}- (4-[N-cyclohexylcarbonyl] aminobenzoyl) - (R) -
          borothioarginine, hydrochloride
     N^{1}- (4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
10
          borothioarginine, hydrochloride
     N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine,
          hydrochloride
     N^{1}-(2-[2-phenylbenzyloxycarbonyl]benzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{2}-(2-[1-naphthyl]benzoyl)-(R)-borothioarginine,
15
          hydrochloride ·
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borothioarginine,
20
          hydrochloride
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-
          borothioarginine, hydrochloride
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-
          borothiohomoarginine, hydrochloride
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
25
          hydrochloride
    N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
30
          hydrochloride
    N^{1}-(1-naphthoyl)-(R)-borothicarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
         borothioarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
35
         borothioarginine,
                              hydrochloride
```

```
N1-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-
           borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
           borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-
 5
          borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
10
          borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
           (R) -borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
         · borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
15
          trifluoromethylbenzoyl) - (R) -borothioarginine,
          hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          borothioarginine, hydrochloride
20
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{1}-(2-[5-phenyl] furylcarbonyl) - (R) -borothioarginine,
          hydrochloride
    N^{1}-(2-[5-phenyl]thiophenylcarbonyl)-(R)-
25
          borothioarginine, hydrochloride
    N^{1}-(3-[6-phenyl]pyridylcarbonyl)-(R)-boroarginine,
          hydrochloride
    N^{1}-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-boroarginine,
          hydrochloride
30
    N^{1}-(3-[6-phenyl]pyridylcarbonyl)-(R)-borothioarginine,
         hydrochloride
    N^{1}-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-
        borothioarginine, hydrochloride
    N^{1}-(2-benzopyronylcarbonyl) - (R) -borothioarginine,
         hydrochloride
35
```

10

20

30

- N^{1} -(3-isoquinolinylcarbonyl)-(R)-borothioarginine, hydrochloride
- N¹-(2-phenyl-4-isoquinolinylcarbonyl)-(R)borothioarginine, hydrochloride
- 5 N^{1} -(2-isoquinolinylcarbonyl)-(R)-borothioarginine, hydrochloride
 - N^{1} -(4-phenylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{l} -(3-phenylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(3-phenoxybenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(4-[4-pyridyl]benzoyl)-(R)-borolysine (+)-pinanediol hydrochloride
- 15 N^{I} -(2-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(3-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(4-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N1-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 25 N^{1} -(4-ethylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(4-n-propylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(4-isopropylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} -(4-tert-butylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
 - N^{1} (4-n-hexylbenzoyl) (R) -borolysine (+) -pinanediol, hydrochloride
- 35 N^{l} -(4-cyclohexylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride

```
N^{1}-(2-[N-(2-phenylethyl) carbonyl] aminobenzoyl) - (R) -
           borolysine (+)-pinanediol, hydrochloride
      N^{1}-(4-n-butyloxybenzoyl)-(R)-borolysine (+)-pinanediol,
           hydrochloride
      N^{1}- (4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
           borolysine (+)-pinanediol, hydrochloride
      N^{1}- (4-[N-cyclohexylcarbonyl] aminobenzoyl) - (R) -borolysine
            (+)-pinanediol, hydrochloride
      N^{1}- (4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-borolysine
            (+)-pinanediol, hydrochloride
 10
      N^{l}-(4-[4-methoxy]phenylbenzoyl)-(R)-borolysine (+)-
           pinanediol, hydrochloride
      N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-borolysine
            (+)-pinanediol, hydrochloride
 15
      N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borolysine (+)-
           pinanediol, hydrochloride
      N^{1}- (4-[4-carboxy] phenylbenzoyl) - (R) -borolysine (+) -
           pinanediol, hydrochloride
      N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borolysine (+)-
 20
           pinanediol, hydrochloride
      N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-borolysine
            (+)-pinanediol, hydrochloride
      N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
           pinanediol, hydrochloride
      N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
 25
           pinanediol, hydrochloride
      N^{1}-(1-naphthoy1)-(R)-borolysine (+)-pinanediol,
           hydrochloride
      N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
           pinanediol, hydrochloride
. .30
      N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine
            (+)-pinanediol, hydrochloride
      N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
           borolysine (+)-pinanediol, hydrochloride
 35
      N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine
            (+)-pinanediol, hydrochloride
```

<u>.</u>

```
N^{2}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
           borolysine (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-borolysine
           (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-borolysine
  5
           (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
           borolysine (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
10
           (R)-borolysine (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
          trifluoromethylbenzoyl) - (R) -borolysine (+) -
15
          pinanediol, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
     N^{2}-(2-[5-phenyl]furylcarbonyl)-(R)-borolysine (+)-
20
          pinanediol, hydrochloride
     N^{1}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
     N^{1}-(2-benzopyronylcarbonyl)-(R)-borolysine (+)-
25
          pinanediol, hydrochloride
     N^{1}-(2-isoquinolinylcarbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
     N^{2}-(3-isoquinolinylcarbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
    N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-borolysine
30
          (+)-pinanediol, hydrochloride
    N1-(4-phenylbenzoyl)-(R)-borolysine,
                                            hydrochloride
    N^{1}-(3-phenylbenzoyl)-(R)-borolysine,
                                            hydrochloride
    N^{1}-(3-phenoxybenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-[4-pyridyl]benzoyl)-(R)-borolysine, hydrochloride
35
    N^{1}-(2-benzoylbenzoyl)-(R)-borolysine, hydrochloride
```

```
N^{1}-(3-benzoylbenzoyl)-(R)-borolysine, hydrochloride
     N^{1}- (4-benzoylbenzoyl) - (R) -borolysine, hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
 5
          borolysine, hydrochloride
     N^{1}- (4-ethylbenzoyl) - (R)-borolysine, hydrochloride
     N^{1}-(4-n-propylbenzoyl)-(R)-borolysine, hydrochloride
     N^{1}-(4-isopropylbenzoyl)-(R)-borolysine, hydrochloride
     N1- (4-tert-butylbenzoyl) - (R) -borolysine, hydrochloride
10
     N^{1}-(4-n-hexylbenzoyl)-(R)-borolysine, hydrochloride
     N^{1}-(4-cyclohexylbenzoyl)-(R)-borolysine, hydrochloride
     N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
          borolysine, hydrochloride
15
     N^{1}- (4-n-butyloxybenzoyl) - (R) -borolysine, hydrochloride
     N1- (4-[N-cyclopropylcarbony1] aminobenzoy1) - (R) -
          borolysine, hydrochloride
     N^{1}- (4-[N-cyclohexylcarbonyl] aminobenzoyl) - (R) -
          borolysine, hydrochloride
20
    N^{1}- (4-[N-(4-methoxy)benzoyl] aminobenzoyl) - (R) -
          borolysine, hydrochloride
    N^{1}- (4-[4-methoxy] phenylbenzoyl) - (R) -borolysine,
          hydrochloride
    N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
          borolysine, hydrochloride
25
    N1- (2-[1-naphthyl]benzoyl)-(R)-borolysine,
          hydrochloride
    N^{1}- (4-[4-carboxy]phenylbenzoyl) - (R) -borolysine,
          hydrochloride
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borolysine,
30
          hydrochloride
    N^{1}-([2-dioxothíoxanthinonyl]carbonyl)-(R)-borolysine,
          hydrochloride
    N1-([2-fluoren-9-onyl]carbonyl)-(R)-borolysine,
35
          hydrochloride
```

```
N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borolysine,
            hydrochloride
      N^{1}-(1-naphthoy1)-(R)-borolysine, hydrochloride
      N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borolysine,
  5
            hydrochloride
      N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine,
           hydrochloride
      N^{1} - (2-methyl-4-phenyl-5-carboxamidobenzoyl) - (R) -
           borolysine, hydrochloride
 10 N^{2}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine,
           hydrochloride
      N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
           borolysine, hydrochloride
      N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-borolysine,
 15
           hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-borolysine,
           hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
           borolysine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
20
           (R)-borolysine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
           borolysine, hydrochloride
     N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-
25
           trifluoromethylbenzoyl) - (R) -borolysine,
          hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          borolysine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
30
          borolysine, hydrochloride
     N^{1}-(2-[5-phenyl]furylcarbonyl)-(R)-borolysine,
          hydrochloride
    N^{1}-(2-[5-phenyl]thiophenylcarbonyl)-(R)-borolysine,
          hydrochloride
    N^{1}-(2-benzopyronylcarbonyl)-(R)-borolysine,
35
          hydrochloride
```

```
N^{1}-(2-isoquinolinylcarbonyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(3-isoquinolinylcarbonyl)-(R)-borolysine,
          hydrochloride
     N1-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(2-methyl-4-phenylbenzoyl)-R-borolysine,
          hydrochloride
     N1-(2-methyl-4-phenylbenzoyl)-R-borolysine, (+)-
10
          pinanediol, hydrochloride
     N^{l}-(2-methyl-4-phenylbenzoyl)-R-borothioarginine,
          hydrobromide
     N^{I} - (2-methyl-4-phenylbenzoyl) -R-borothioarginine, (+)-
          pinanediol, hydrochloride
15
     N^{1}-(2-methyl-4-phenylbenzoyl)-R-boroarginine,
          hydrochloride
     N^{1}-(2-methyl-4-phenylbenzoyl)-R-boroarginine, (+)-
          pinanediol, bisulfite
     N1-[4-phenyl-2-nitrobenzoyl]boroArg(Me), (+)-pinanediol
20
     N^{l} - [4-phenyl-2-fluorobenzoyl] boroArg(Me), (+)-pinanediol
     N1-[4-phenyl-2-aminobenzoyl]boroArg(Me), (+)-pinanediol
          ester
    N^{1}-[4-phenyl-2-(methylsulfonamido)benzoyl]boroArg(Me),
25
          (+) -pinanediol ester
     N^{l}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroArg(Me),
          (+) -pinanediol ester
    N^{1}-[4-phenyl-2-(cyanomethyl)benzoyl]boroArg(Me), (+)-
30
          pinanediol ester
    N^{1}-[4-phenyl-2-(diethylamino)benzoyl]boroArg(Me), (+)-
          pinanediol ester
    N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg(Me), (+)pinanediol ester
    N^{2}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
35
          benzoyl]boroArg(Me), (+)pinanediol ester
```

```
N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroArg(Me), (+)-pinanediol ester
      N1-[4-[2-(t-
           butylaminosulfonyl)phenyl]benzoyl]boroArg(Me), (+)-
  5
           pinanediol ester
      N1-[4-[2-(t-
           butylaminosulfonyl)phenyl]benzoyl]boroArg(Me)-OH
     N^{1}-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-
           methyl-benzoyl]boroArg(Me), (+)-pinanediol ester
     N^{1}-[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
 10
           benzoyl]boroArg(Me), (+)pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
           benzoyl]boroArg(Me), (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
15
          benzoyl]boroArg(Me), (+)pinanediol ester
     N^{1} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] - 2 - fluoro-
          benzoyl]boroArg(Me), (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
          benzoyl]boroArg(Me), (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-
20
          benzoyl]boroArg(Me), (+)pinanediol ester
     N^{2} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] -2 - nitro-
          benzoyl]boroArg(Me), (+)-pinanediol ester.
     N^{2} - [4-phenyl-2-nitrobenzoyl]boroMPG, (+)-pinanediol
25
     N^{2}-[4-phenyl-2-fluorobenzoyl]boroMPG, (+)-pinanediol
     N^{l} - [4-phenyl-2-aminobenzoyl]boroMPG, (+)-pinanediol
          ester
     N^{1} - [4-phenyl-2-(methylsulfonamido)benzoyl]boroMPG, (+)-
30
          pinanediol ester
    N^{1}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroMPG, (+)-
          pinanediol ester
    N^{1}-[4-phenyl-2-(cyanomethyl)benzoyl]boroMPG, (+)-
          pinanediol ester
35
```

```
N^{1}-[4-phenyl-2-(diethylamino)benzoyl]boroMPG, (+)-
           pinanediol ester
     N1 - [4 - [2 - (t-butylaminosulfonyl) phenyl] - 2 - methyl-
           benzoyl]boroMPG, (+)pinanediol ester
 5
     N^{I} - [4 - [2 - (aminosulfonyl) phenyl] - 2 - methyl -
           benzoyl]boroMPG, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroMPG, (+)-pinanediol ester
     N1-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroMPG,
10
           (+)-pinanediol ester
    N1-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroMPG-
           ОН
     N^{2} - [4 - [2 - (n-butoxycarbonylaminosulfonyl) phenyl] -2 -
          methyl-benzoyl]boroMPG, (+)-pinanediol ester
15
     N^{1}-[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroMPG, (+)pinanediol ester
     N^{l}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroMPG, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
20
          benzoyl]boroMPG, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroMPG, (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
          benzoyl]boroMPG, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroMPG,
25
          (+)pinanediol ester
    N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-
          benzoyl]boroMPG, (+)-pinanediol ester.
    N^{1}-[4-phenyl-2-nitrobenzoyl]boroACA, (+)-pinanediol
30
    N^{1}-[4-phenyl-2-fluorobenzoyl]boroACA, (+)-pinanediol
    N^{1}-[4-phenyl-2-aminobenzoyl]boroACA, (+)-pinanediol
          ester
```

```
N^{2}-[4-phenyl-2-(methylsulfonamido)benzoyl]boroACA, (+)-
           pinanediol ester
      N^{1} - [4-phenyl-2-(cyanomethylamino)benzoyl]boroACA, (+)-
           pinanediol ester
      N^{1}-[4-phenyl-2-(cyanomethyl)benzoyl]boroACA, (+)-
           pinanediol ester
      N^2-[4-phenyl-2-(diethylamino)benzoyl]boroACA, (+)-
           pinanediol ester
      N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
 10
           benzoyl]boroACA, (+)pinanediol ester
      N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroACA, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methy.
           benzoyl]boroACA, (+)-pinanediol ester
     N^{2}-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroACA,
 15
           (+)-pinanediol ester
     N^{2}-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroACA-
           OH
     N^{2} - [4 - [2 - (n-butoxycarbonylaminosulfonyl) phenyl] - 2 -
20
           methyl-benzoyl]boroACA, (+)-pinanediol ester
     N^{2}-[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroACA, (+)pinanediol ester
     N^{2} - [4 - [2 - (t-butylaminosulfonyl) phenyl] -2 - fluoro-
          benzoyl]boroACA, (+)pinanediol ester
     N^{2}-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
25
          benzoyl]boroACA, (+)pinanediol ester
     N^{1} - [4 - [2 - (methoxycarbonylaminosulfonyl)phenyl] -2 - fluoro-
          benzoyl]boroACA, (+)-pinanediol ester
     N^{2}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
          benzoyl]boroACA, (+)pinanediol ester
30
     N1-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroACA,
           (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-
          benzoyl]boroACA, (+)-pinanediol ester
```

```
N^{1}-[4-phenyl-2-nitrobenzoyl]boroLys, (+)-pinanediol
           ester
      N^{1}-[4-phenyl-2-fluorobenzoyl]boroLys, (+)-pinanediol
           ester
     N^{1}-[4-phenyl-2-aminobenzoyl]boroLys, (+)-pinanediol
     N^{1}-[4-phenyl-2-(methylsulfonamido)benzoyl]boroLys, (+)-
           pinanediol ester
     N^{1}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroLys, (+)-
 10 -
           pinanediol ester
     N^{2}-[4-phenyl-2-(cyanomethyl)benzoyl]boroLys, (+)-
           pinanediol ester
     N^{1}-[4-phenyl-2-(diethylamino)benzoyl]boroLys, (+)-
           pinanediol ester
     N^{l} - [4 - [2 - (t - butylaminosulfonyl) phenyl] - 2 - methyl-
15
          benzoyl]boroLys, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroLys, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycabonylaminosulfonyl)phenyl]-2-methyl-
20
          benzoyl]boroLys, (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroLys,
           (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroLys-OH
     N1-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-
25
          methyl-benzoyl]boroLys, (+)-pinanediol ester
     N^{l} - [4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroLys, (+)pinanediol ester
     N^{2}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroLys, (+)pinanediol ester
    N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
30
          benzoyl]boroLys, (+)pinanediol ester
    N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroLys, (+)-pinanediol ester
    N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
          benzoyl]boroLys, (+)pinanediol ester
35
```

```
N^{l}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroLys, (+)pinanediol ester
```

 N^{2} -[4-[2-(methoxyaminosulfonyl)phenyl]-2-nitrobenzoyl]boroLys, (+)-pinanediol ester.

5

Detailed Description of the Invention

Throughout the specification, the following conventional three-letter abbreviations for amino acid residues or amino acids apply:

10	Ala	=	alanine
•	Arg	=	arginine
	Asn	=	asparagine
•	Asp	=	aspartic acid
	Суз	=	Cysteine
15	Gln	=	glutamine
	Glu	=	glutamic acid
•	Gly	=	glycine
	His	222	histidine
	Ile	=	isoleucine
20	Leu	=	leucine
	Lys	=	lysine
	Met	=	methionine
	Phe	=	phenylalanine
	Pro	=	proline
25	Ser	=	serine
	Thr	=	threonine
	Trp	=	tryptophan
	Tyr	=	tyrosine
	Val	=	valine
30	Irg	=	arginine where the guanidine is
			replaced with an isothiouronium (-SC(=NH)NH ₂)
	Arg(Me)	=	arginine with the guanidino group
			methylated
35	MPG	= .	5-methoxy-propylglycine

5

10

ACA = 3-(4-amino)cyclohexylalanine

The prefix "boro" indicates amino acid residues where the carboxy group is replaced by a boronic acid (Formula I, Y^1 and $Y^2 = -OH$).

The pinanediol boronic acid ester and the pinacol boronic acid ester are abbreviated "-C10H16-" and -C6H12-" respectively. Other illustrations of diols useful for deriving a boronic acid orthoesters are 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, 1,2-diisopropylethanediol, 5,6-decanediol, 1,2-dicyclohexylethanediol.

The formamidino modified amino group is abbreviated (CH=NH). For example, the formamidino analog of

-boroOrn-OH {-NH-CH[(CH₂)₃-NH-CH(NH)H]B(OH)₂ }is

-boroOrn(CH=NH)-OH. Analogs containing sidechain substituents are described by indicating the substituent in parenthesis following the name of the parent residue. For example the analog of boroPhenylalanine containing a meta cyano group is -boroPhe(mCN)-. N-alkyl substituents on the guanidino group of boroArg- or on the isothiouronium analogs (boroIrg) are also put in parenthesis in a similar manner.

Other abbreviations are: Z, benzyloxycarbonyl;

BSA, benzene sulfonic acid; THF, tetrahydrofuran; Boc-,
t-butoxycarbonyl-; Ac-, acetyl; pNA, p-nitro-aniline;

DMAP, 4-N,N-dimethylaminopyridine; Tris,
Tris(hydroxymethyl)aminomethane; MS, mass spectrometry;
FAB/MS, fast atom bombardment mass spectrometry.

LRMS(NH3-CI) and HRMS(NH3-CI) are low and high
resolution mass spectrometry, respectively, using NH3 as
an ion source

As used herein, the structure ,wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR13, S or O, provided that:

- i) there may be only one S or O present in the ring at a time;
- ii) there may only be 1-2 N present when there is an O or S present;
- iii) there may be only 1-4 N present; is used as a substituent definition for R¹. This substituent may be exemplified by the following structures where -J-K-L-M-Q- is:

15 1)
$$-N-C(R^{13}) = C(R^{13}) - C(R^{13}) = C(R^{13}) -$$
,
2) $-N-C(R^{13}) = C(R^{13}) - C(R^{13}) = N-$,
3) $-N-C(R^{13}) = C(R^{13}) - N = C(R^{13}) -$,
4) $-N-C(R^{13}) = N-C(R^{13}) = N-$,
5) $-N-C(R^{13}) = N-C(R^{13}) - N = N-$
20 6) $-N-C(R^{13}) = N-N = N-$,
7) $-N-N = C(R^{13}) - N = N-$,
8) $= C-O-C(R^{13}) = N-C(R^{13}) =$,
9) $-C = C(R^{13}) - O-C(R^{13}) = N-$,
10) $= C-O-C(R^{13}) = C(R^{13}) - N =$,
11) $-C = C(R^{13}) - C(R^{13}) = N - O-$,
12) $= C-C(R^{13}) = C(R^{13}) - O-N =$,
13) $-C = C(R^{13}) - O-N = C(R^{13}) =$,
14) $= C-S-C(R^{13}) = N-C(R^{13}) = N-$,
15) $-C = C(R^{13}) - S-C(R^{13}) = N-$,

 $-C=N-S-N=C(R^{13})$ -

17)

18) $-C=N-S-C(R^{13})=N-$, 19) $=C-S-N=C(R^{13})-N=$, 20) $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$, 21) $-C=C(R^{13})-S-C(R^{13})=C(R^{13})-$, 22) $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=$, or 23) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-$.

5 ,

As used herein, the structure , wherein in W, R, T, U and V are independently selected at each occurrence from the group consiting of: CR¹³ or N, provided that there may be only 1-3 N present, is used as a substituent definition for R¹. This substituent may be exemplified by the following structures where -C-W-R-T-U-V- is:

"Amino acid residues" as used herein, refers to natural or unnatural amino acids of either D- or L-30 configuration. Natural amino acids residues are Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Ile, Irg

Leu, Lys, Met, Orn, Phe, Phe(4-fluoro), Pro, Sar, Ser, Thr, Trp, Tyr, and Val. Roberts and Vellaccio, The Peptides, Vol 5; 341-449 (1983), Academic Press, New York, discloses numerous suitable unnatural amino acids and is incorporated herein by reference for that purpose.

"Amino acids residues" also refers to various amino acids where sidechain functional groups are coupled with appropriate protecting groups known to those skilled in the art. "The Peptides", Vol 3, 3-88 (1981) discloses numerous suitable protecting groups and is incorporated herein by reference for that purpose.

The reactions of the synthetic methods claimed herein are carried out in suitable solvents which may be readily selected by one of skill in the art of organic synthesis, said suitable solvents generally being any solvent which is substantially nonreactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, i.e., temperatures which may range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction may be carried out in one solvent or a mixture of more than one solvent.

Depending on the particular reaction step, suitable solvents for a particular reaction step may be selected

15

20

25

30

35

The compounds herein described may have asymmetric centers. All chiral, diastereomeric, and racemic forms are included in the present invention. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. It will be appreciated that certain compounds of the present invention contain an asymmetrically substituted carbon atom, and may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active

10

15

forms, such as by resolution of racemic forms or by synthesis, from optically active starting materials. Also, it is realized that cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically indicated.

When any variable (for example, R^1 through R^{20} , R^{20a} , m, n, D, E, F, W, X, etc.) occurs more than one time in any constituent or in Formula (I), its definition on each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0--3 R^{11} , then said group may optionally be substituted with up to three R^{11} and R^{11} at each occurrence is selected independently from the defined list of possible R^{11} .

Also, for example, in -N(R¹⁵)₂, each of the R¹⁵ substituents may be independently selected from the list of possible R²⁰ groups defined. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

Similarly, by way of example, for the group $-C(R^{11})_2$, each of the two R^{11} substituents on C is independently selected from the defined list of possible R^{11} .

As used herein, "alkyl" is intended to include both branched and straight-chain saturated aliphatic

30 hydrocarbon groups having the specified number of carbon atoms; "haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen (for example -C_vF_w

35 where v = 1 to 3 and w = 1 to (2v+1)); "alkoxy" represents an alkyl group of indicated number of carbon

atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-,bi- or poly-cyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl and cyclooctyl; and "biycloalkyl" is intended to include saturated bicyclic ring groups such as [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0] bicyclodecane (decalin), [2.2.2] bicyclooctane, and so forth. "Alkenyl" is intended to include hydrocarbon chains of either a straight or branched 10 configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like; and "alkynyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or 15 more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like.

"Halo" or "halogen" as used herein refers to

20 fluoro, chloro, bromo, and iodo; and "counterion" is
used to represent a small, negatively charged species
such as chloride, bromide, hydroxide, acetate, sulfate,
and the like.

As used herein, "aryl" or "aromatic residue" is
intended to mean phenyl or naphthyl; the term
"arylalkyl" represents an aryl group attached through an
alkyl bridge. By way of examples: the term "C7-C10
arylalkyl" is intended to refer to an aryl group
attached through a C1-C4 alkyl bridge to the residue of
the indicated compound; the term "(C1-C3 alkyl)aryl" is
intended to refer to a C1-C3 alkyl group which is
attached through an aryl ring to the residue of the
indicated compound; the term "aryl(C1-C3 alkyl)" is
intended to refer to an aryl group attached through a

C1-C3 alkyl group to the residue of the indicated
compound.

10

15

20

25

30

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 8-membered monocyclic or bicyclic or 7- to 14-membered bicyclic or tricyclic or an up to 26-membered polycyclic carbon ring, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocyles include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which is saturated and consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The term "heteroaryl" is intended to mean an aromatic form of a heterocyclic ring. Unless otherwise specified, the heterocyclic and heteroaryl rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. Unless otherwise specified, examples of such heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, benzothiophenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl,

pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl,
tetrahydrofuranyl, tetrahydroquinolinyl,

tetrahydroisoquinolinyl, decahydroquinolinyl or
octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-

thiadiazinyl, 2H, 6H-1,5,2-dithiazinyl, thiophenyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathiinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl,

- isoindolyl, 3H-indolyl, 1H-indazolyl, purinyl, 4Hquinolizinyl, phthalazinyl, naphthyridinyl,
 quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl,
 4aH-carbazolyl, carbazolyl, &-carbolinyl,
 phenanthridinyl, acridinyl, perimidinyl,
- phenanthrolinyl, phenazinyl, phenarsazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl,
- benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

when a bond to a substituent is shown to cross the
bond connecting two atoms in a ring, then such
substituent may be bonded to any atom on the ring. When
a substituent is listed without indicating the atom via
which such substituent is bonded to the rest of the
compound of formula I, then such substituent may be
bonded via any atom in such substituent. The arrest

bonded via any atom in such substituent. For example, when the substituent is piperazinyl, piperidinyl, or tetrazolyl, unless specified otherwise, said piperazinyl, piperidinyl, tetrazolyl group may be bonded to the rest of the compound of formula (I) via any atom in such piperazinyl, piperidinyl, tetrazolyl group.

Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By stable compound or stable structure it is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a

€ 1.

5

reaction mixture, and formulation into an efficacious therapeutic agent.

The term "substituted", as used herein, means that an one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

10 As used herein, the term "any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino or sulfhydryl" means any group bonded to an O, N, or S atom, respectively, which is cleaved from the O, N, or S atom when the compound is administered to a mammalian subject to provide a 15 compound having a remaining free hydroxyl, amino, or sulfhydryl group, respectively. Examples of groups that, when administered to a mammalian subject, are cleaved to form a free hydroxyl, amino or sulfhydryl, 20 include but are not limited to, phosphate esters, C_1 - C_6 alkyl substituted with 0-3 R11, C3-C6 alkoxyalkyl substituted with 0-3 R^{11} , C_1 - C_6 alkylcarbonyl substituted with 0-3 R11, C1-C6 alkoxycarbonyl substituted with 0-3 R¹¹, C₁-C₆ alkylaminocarbonyl substituted with 0-3 R^{11} , benzoyl substituted with 0-3 25 R¹², phenoxycarbonyl substituted with 0-3 R¹², phenylaminocarbonyl substituted with 0-3 R¹², or heteroarylcarbonyl. Examples of groups that, when administered to a mammalian subject, are cleaved to form a free hydroxyl, amino or sulfhydryl, may include hydroxy, amine or sulfhydryl protecting groups, respectively.

As used herein, the term "amine protecting group" means any group known in the art of organic synthesis for the protection of amine groups. Such amine protecting groups include those listed in Greene and

Wuts, "Protective Groups in Organic Synthesis" John Wiley & Sons, New York (1991) and "The Peptides: Analysis, Synthesis, Biology, Vol. 3, Academic Press, New York (1981), the disclosure of which is hereby incorporated by reference. Any amine protecting group 5 known in the art can be used. Examples of amine protecting groups include, but are not limited to, the following: 1) acyl types such as formyl, trifluoroacetyl, phthalyl, and p-toluenesulfonyl; 2) aromatic carbamate types such as benzyloxycarbonyl (Cbz) 10 and substituted benzyloxycarbonyls, 1-(p-biphenyl)-1methylethoxycarbonyl, and 9-fluorenylmethoxycarbonyl (Fmoc); 3) aliphatic carbamate types such as tertbutyloxycarbonyl (Boc), ethoxycarbonyl,

diisopropylmethoxycarbonyl, and allyloxycarbonyl; 4)
cyclic alkyl carbamate types such as
cyclopentyloxycarbonyl and adamantyloxycarbonyl; 5)
alkyl types such as triphenylmethyl and benzyl; 6)
trialkylsilane such as trimethylsilane; and 7) thiol
containing types such as phenylthiocarbonyl and
dithiasuccinoyl.

The term "amino acid" as used herein means an organic compound containing both a basic amino group and an acidic carboxyl group. Included within this term are natural amino acids, modified and unusual amino acids, 25 as well as amino acids which are known to occur biologically in free or combined form but usually do not occur in proteins. Included within this term are modified and unusual amino acids, such as those disclosed in, for example, Roberts and Vellaccio (1983) The 30 Peptides, 5: 342-429, the teaching of which is hereby incorporated by reference. Modified or unusual amino acids which can be used to practice the invention include, but are not limited to, D-amino acids, hydroxylysine, 4-hydroxyproline, an N-Cbz-protected 35 amino acid, ornithine, 2,4-diaminobutyric acid,

homoarginine, norleucine, N-methylaminobutyric acid, naphthylalanine, phenylglycine, &-phenylproline, tert-leucine, 4-aminocyclohexylalanine, N-methyl-norleucine, 3,4-dehydroproline, N,N-

- dimethylaminoglycine, N-methylaminoglycine, 4-aminopiperidine-4-carboxylic acid, 6-aminocaproic acid, trans-4-(aminomethyl)-cyclohexanecarboxylic acid, 2-, 3-, and 4-(aminomethyl)-benzoic acid, 1-aminocyclopentanecarboxylic acid,
- 10 1-aminocyclopropanecarboxylic acid, and 2-benzyl-5-aminopentanoic acid.

The term "peptide" as used herein means a compound that consists of two or more amino acids (as defined herein) that are linked by means of a peptide bond. The term "peptide" also includes compounds containing both peptide and non-peptide components, such as pseudopeptide or peptide mimetic residues or other non-amino acid components. Such a compound containing both peptide and non-peptide components may also be referred to as a "peptide analog".

The term "peptide bond" means a covalent amide linkage formed by loss of a molecule of water between the carboxyl group of one amino acid and the amino group of a second amino acid.

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound of formula (I) is modified by making acid or base salts of the compound of formula (I). Examples of pharmaceutically acceptable salts include,

30 but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

"Prodrugs" are considered to be any covalently

35 bonded carriers which release the active parent drug
according to formula (I) in vivo when such prodrug is

administered to a mammalian subject. Prodrugs of the compounds of formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo; to the parent compounds. 5 Prodrugs include compounds of formula (I) wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but 10 are not limited to, acetate, formate, or benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I); phosphate esters, dimethylglycine esters, aminoalkylbenzyl esters, aminoalkyl esters and carboxyalkyl esters of alcohol and 15 phenol functional groups in the compounds of formula (I); and the like.

The pharmaceutically acceptable salts of the compounds of formula (I) include the conventional nontoxic salts or the quaternary ammonium salts of the 20 compounds of formula (I) formed, for example, from nontoxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and 25 the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, 30 toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the compounds of formula (I) which contain a basic or acidic moiety by conventional chemical methods. Generally, such salts

can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

The disclosures of all of the references cited herein are hereby incorporated herein by reference in their entirety.

Synthesis

The compounds of formula (I) can be prepared using the reactions and techniques described below. The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being affected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the chemical transformations proposed and this will sometimes require judgment as to the order of synthetic steps or selection of particular process scheme used from that shown below in order to obtain a desired compound of the invention.

10

Scheme 1. Synthesis of Thrombin Inhibitors

Reagents: a. IBCF, NMM, RCO₂H, Et₃N, 0 °C, b. NaN₃, c. H₂, Pd(OH)₂/C, HCl, d. DMAP, aminoiminomethanesulfonic acid, e. phenylboronic acid

5 Amine hydrochloride 1 is readily available via the procedure of Kettner and Shenvi (EP 0293881 A2).

There are numerous synthetic methods by which to prepare amide 2, however, competing with amide formation is the cyclization of 1 to afford a complex mixture containing the desired amide and the corresponding N-acylboroproline. Since purification at this stage is unfeasible, choosing the correct method for amide formation is crucial to obtaining 2 in a purity suitable for subsequent synthetic transformations.

Three methods are preferred for the preparation of 2. In the first, a solution of 1 in tetrahydrofuran or dichloromethane at 0 °C is treated sequentially with the desired acid chloride followed by two equivalents of 5 triethylamine. The mixture is then allowed to warm to room temperature overnight. The second method is the mixed anhydride procedure of Anderson, et. al. (J. Am. Chem. Soc. 1967, 89, 5012). In this method the isobutyl mixed anhydride is generated by dissolving the 10 carboxylic acid component in tetrahydrofuran and adding one equivalent of N-methylmorpholine. The solution is cooled to 0 °C and one equivalent of isobutyl chloroformate is added. After 5 minutes, a solution of 1 in chloroform is added, followed by the addition of 15 one equivalent of triethylamine. The mixture is typically stirred at 0 °C for one hour followed by one to several hours at room temperature. The third method for amide formation is the hydroxybenzotriazole/DCC method of König and Geiger (Chem. Ber. 1970, 103, 788-20 Thus, to a solution of 1 and the carboxylic acid component in dimethylformamide or tetrahydrofuran at 0 °C is added N-methylmorpholine, 1-hydroxybenzotriazole hydrate (2 eq) and DCC (1.05 eq). The solution is allowed to warm to room temperature overnight.

The preferred method for the preparation of azide 3 is by reaction of 2 with sodium azide (1.1 eq) in dimethylformamide at 70 °C for 2 hours.

25

30

35

The azide displacement may also be performed prior to amide formation. This is the preferred method in cases where the rate of amide formation is slow relative to the rate of cyclization. Azide 4 is prepared by a modification of the procedure of Kettner and Shenvi (EP 0293881 A2) as shown in Scheme 2. Thus, bromide 5 is reacted with sodium azide, followed by homologation to give 6, chloride displacement to afford 7 and acidic

WO 96/20689

hydrolysis to give 4. Amide formation between 4 and the carboxylic acid component then affords 3 directly.

Scheme 2. Synthesis of Azide 4

5

10

15

20

Reagents: a. NaN₃ b. CHCl₂Li, ZnCl₂, c. LiN(TMS)₂, d. 4M HCl, dioxane

Reduction of azide 3 to amine 8 may be accomplished by hydrogenation over precious metal catalysts. The preferred catalyst for this transformation is Pearlman's catalyst (palladium hydroxide on carbon). The amine is typically isolated as the hydrochloride salt. Isolation of 8 as the free base typically results in lowered yields. Salts of 8 which may confer superior physical properties may be preferred over the hydrochloride salt.

Formamidination of amine 8 may be accomplished using cyanamide. Due to the low reactivity of amine 8, however, the preferred method for this transformation is reaction with 4-dimethylamin-opyridine (DMAP) and aminoiminomethanesulfonic acid (AMSA, prepared by the method of Kim, et. al., Tetrahedron Lett. 1988, 29, 3183-6). This affords guanidine 9, which is isolated as the bisulfite or hydrochloride salt.

Cleavage of pinanediol ester 9 may be accomplished using anhydrous boron trichloride according to the

procedure of Matteson and Ray (J. Am. Chem. Soc. 1980, 102, 7588). This method, however, is strongly Lewis acidic and leads to partial destruction of the substrate. The preferred method for water soluble boronic acids is a transesterification reaction that is run in the presence of excess phenylboronic acid. The free boronic acid 10 may then be isolated using cation exchange chromatography.

The isothiouronium functionalized analogs 11/12 are prepared from bromide 2 according to the procedure of Kettner and Shenvi (EP 0293881 A2).

Inhibitors containing a sulfonamide in place of a carboxamide are prepared from either 1 or 4 by reaction with a sulfonyl chloride in the presence of a hindered amine (Scheme 3). The product sulfonamide 13 is then converted to the guanidinium 14 or isothiouronium 15 in the same manner as the corresponding carboxamides.

Scheme 3. Synthesis of Sulfonamides

20

Inhibitors containing the borolysine moiety are prepared analogously to those containing boroarginine according to Kettner and Shenvi (EP 0293881 A2).

Novel biaryls synthesized in this invention are prepared through palladium catalyzed coupling of an appropriate arylmetal species to the aryl halide of choice using the methods described in Negishi, et. al., Org. Synth. 1987, 66, 67-74, and references cited within.

Synthetic approaches toward construction of pyrroles are numerous: R. J. Sundberg in "Comprehensive Heterocyclic Chemistry", A. R. Katritzky (Ed.), Pergamon Press, New York (1984), Vol. 4, p. 705; Synthesis, 1946, 281. The following discussion is restricted to the most common and reliable methods towards the synthesis of pyrroles within the general scope of the invention.

Compounds where R^1 is a pyrrole can be synthesized as shown on Scheme 4.

Starting material diketone 16 may or may not have its substituents R13-16 in final form as defined in the scope. These substituents might be in protected forms or in the form of suitable precursors which make the heterocyclic portion, for example, amenable to synthesis. These precursor forms can then be converted to their final forms later on in the synthesis using procedures familiar to one skilled in the art.

The cyclization condensation of 1,4-dicarbonyl compounds with ammonia, primary amines or related compounds, the Paal-Knorr reaction, is one of the most general and widely applicable pyrrole syntheses, R. A.

- Jones and G. P. Bean, "The Chemistry of Pyrroles",
 Academic Press, London, 1977; p. 77-81. The generality
 of this approach is primarily determined by the
 availability of the dicarbonyl precursors, 16, as
 illustrated by Scheme 4. By heating such diketones
- with ammonia or amines in a solvent like benzene, toluene or methylene chloride with a catalyst such as sulfuric acid, acetic acid, p-toluenesulfonic acid, alumina or even titanium tetrachloride, pyrroles like 17 may be prepared.
- Subsequent alkylation of pyrrole 17 with a bromoester, for example, leads to the alkylated heterocycle 18. Alkylation conditions include either first deprotonating with NaH or KH in DMF followed by addition of the alkylating agent or simply stirring the heterocycle with the alkylating agent in an inert solvent such as DMF or DMSO at 0°C to 100°C in the presence of an acid scavenger such as K2CO3.

Saponification of ester 18 followed by coupling aminoboronic ester 1 or 19 as discussed previously yields compound 20. This bromide may be either elaborated to the lysine side-chain 21 (X=1) or if X=0, into the corresponding ornithine side-chain or any other side-chain discussed previously. Subsequent hydrolysis of the boronic ester yields the boronic acid as discussed previously too.

The cyclization of dignes 23 with amines has been reported and an adaptation of this method is shown in Scheme 5 (K. E. Schulte et al., Chem. Ber (1965) 98; A. J. Chalk Tet. Lett. (1972) 3487). The dignes are made via transition metal catalyzed coupling of alkynes,

i.e., the Cadio-Chodkiewicz reaction (W. Chodkiewicz Ann. Chim. (Paris) (1957) 2 81g).

Scheme 5

5

10

15

Scheme 6

Furans (27) have been converted directly to pyrroles by treatment with amines but the harsh conditions required (400°C/Al₂O₃) precludes its generality. 2,5-Dialkoxytetrahydrofurans (29) have been more commonly

employed as furan (or 1,4-dicarbonyl) equivalents and react readily with aliphatic or aromatic amines (and even weakly nucleophilic sulfonamides) to give pyrroles as shown in Scheme 6, J. W. F. Wasley and K. Chan,

- 5 Synth. Commun. 3, 303 (1973). Although commercially available 2,5-dialkoxytetrahydrofurans (29) (R¹=R²=H))generally restrict one to preparing 1-substituted pyrroles, more highly substituted systems may be obtained by a three-step alcoholysis of the appropriate furans (27) to the more highly substituted 2,5-dialkoxytetrahydrofurans (29) as shown in Scheme 6, N. L. Weinberg and H. R. Weinberg, Chem. Rev., 68, 449 (1968); N. Elming, Adv. Org. chem., 2, 67 (1960).
- The Hantzsch synthesis utilizes the condensation of 15 β -haloketones (30a) and β -ketoesters (31) in the presence of ammonia or a primary amine to give pyrroles such as (32), as shown in Scheme 7, A. Hantzsch, Chem. Ber., 23, 1474 (1980); D. C. von Beelen, J. Walters, and S. von der Gen, <u>Rec Trav. Chem. 98</u>, 437 (1979). Among 20 the numerous modifications reported over the years, the substitution of (30a) with the readily available α-hydroxyaldehydes or nitroalkenes has expanded the versatility and generality of this important method, D. M. McKinnon, Can. J. Chem. 43, 2628 (1965); H. George 25 and H. J. Roth, Arch. Pharm. 307, 699 (1974); C. A. Grok and K. Camenisch, Helv. Chem. Acta, 36, 49 (1953).

Scheme 7

The closely related Knorr condensation involves the reaction between amino carbonyl compounds (or their precursors) and carbonyl (or dicarbonyl) compounds, J. M. Patterson, Synthesis, 282 (1976). Representative methods for preparing substituted pyrroles (35 and 38) are shown by Scheme 8, equations a) and b), S. Umio et al., Jap. Pat. 7018653, Fujisawa Pharmaceutical Co., Ltd., 1970 (C. A. 73, 77039, 1970); K. Tanaka, K. Kariyone, S. Umio, Chem. Pharm. Bull. (Tokyo)), 17, 611 (1969).

<u>38</u>

15 The elaboration of an appropriately functionalized pyrrole is another method for preparing pyrroles of general formula I. Methyl (or ethyl) 5-formyl-1H-pyrrole-2-carboxylate (43) is a particularly useful intermediate with regards to pyrroles claimed in this invention and has been prepared by a number of methods

as shown by <u>Scheme 9</u>, eq. a, W. A. Davies, A. R. Pinder and I. G. Morris, <u>Tetrahedron 18</u>, 405 (1962); <u>Org Syn.</u>, vol 36, p. 74; <u>Org. Syn.</u>, vol. 51.

More recently, Ullrich has extended the Vilsmeyer
Haack formylation of pyrroles to include vinylogous systems such as (46) by using the 3-(N,N-dimethylformamide derivative, as shown by Scheme 9, eq. b, F. W. Ullrich and E. Breitmaier, Synthesis, 641 (1983); W. Heinz, et al., Tetrahedron, 42, 3753 (1986).

- An especially attractive approach to pyrroles claimed in this invention has recently been reported, whereby lithiation of the 6-dimethylamino-1-azafulvene dimer (49) followed by treatment with an appropriate electrophile and subsequent hydrolysis leads to 5-
- substituted pyrrole-2-carboxaldehydes (<u>51</u>), as illustrated in <u>Scheme 10</u>, J. M. Muchowski and P. Hess, <u>Tetrahedron Lett.</u>, <u>29</u>, 777 (1988). The carboxylic acid, ester and aldehyde side-chains depicted in <u>Schemes 9-10</u> can be readily converted to R¹³⁻¹⁶ by methods familiar
- 20 to one skilled in the art.

A general and versatile approach to pyrazoles (Rl=pyrazole) involves condensation of a 1,3-difunctional compound (usually dicarbonyl) with hydrazine or its derivatives, as shown in Scheme 11 for pyrazoles of the formula 53 and reviewed by G. Corspeau and J. Elguerv, Bull. Soc. Chim. Fr., 2717 (1970). Rarely have pyrazoles have been prepared in which the N-N bond is the last step of the ring closure, J. Elguerv in Comprehensive Heterocyclic Chemistry, S. R. Katritzky

(Ed.) Pergamon Press, New York, Vol. 5 (1984), p. 274; J. Barluenga, J. Chem. Soc, Perkin Trans.1, 2275 (1983).

Scheme 11

5

The condensation of 1,3-dicarbonyl compounds with hydrazine hydrate derivatives is generally carried out by admixture of the two components in a suitable solvent like a lower alcohol, ether, or THF at 0°C to the reflux temperature for 1-18 hours.

The synthesis of 1,3-dicarbonyl compounds has received considerable attention in the literature and most of the major approaches towards 1,3-diketones <u>52</u> of interest in this invention are illustrated by <u>Scheme 12</u>.

Scheme 12 (cont'd.)

O
$$R^{13}$$
 R^{13} R^{13}

- Esters 54a can be reacted with ketones 54 using bases like sodium ethoxide, sodium hydride or sodium amide in a suitable solvent like alcohol, DMF, DMSO or benzene at 0°C to reflux for 4-18 hours with 30-70% efficiency, J. M. Sprague, L. J. Beckham and H. Adkins, J. Amer. Chem. Soc., 56, 2665 (1934). Metallation of hydrazines 55 with n-BuLi followed by reaction with carboxylic acid chlorides and subsequent hydrolysis
- 2853 (1978). Metallation of <u>54</u> with the non15 nucleophilic mesityl lithium followed by acylation also affords <u>52</u>, A. K. Beck, M. S. Hoelstein and D. Seebach, <u>Tetrahedron Lett.</u>, 1187 (1977); D. Seebach, <u>Tetrahedron Lett.</u>, 4839; (1976).

affords 52, D. Enders and P. Wenster, Tetrahedron Lett.,

As shown in <u>Scheme 12</u>, equation b, the addition of 20 Grignard reagents to £-keto carboxylic acid chlorides

may be limited to monoaddition at low temperatures to provide 52, C. D. Hurd and G. D. Kelso, <u>J. Amer. Amer. Soc. 62</u>, 1548 (1940); F. Sato, M. Trone, K. Oyuro, and M. Sato, <u>Tetrahedron Lett.</u> 4303 (1979). Lithium dialkyl

5 copper reagents (R² CuLi) have also been used, Luong-Thi and Riviero, <u>J. Organomet. Chem. 77</u>, C52 (1974).

Analogously, addition of alkyllithium reagents (R¹⁵Li) to the monoanions of ß-keto esters <u>57</u> also give rise to 1,3-diketones, S. N. Huckin and L. Weiler, <u>Can. J. Chem.</u>
10 52, 1379 (1974).

Eschenmoser has demonstrated a synthesis of &diketones through a sulfur extrusion reaction of keto thioesters 58 with tributylphosphine, triethylamine and lithium perchlorate, S. Eshenmoser, Helv. Chim. Acta.,

15 <u>54</u>, 710 (1971).

The rearrangement of α , β -epoxy ketones <u>59</u> to β -diketones <u>52</u> catalyzed by Pd° has been reported, R. Noyori, <u>J. Amer. Chem. Soc.</u> <u>102</u>, 2095 (1980).

Mixed anhydrides such as <u>61</u>, available from

20 carboxylic acids <u>60</u> and trifluoroacetic anhydride, have been shown to acylate alkynes <u>62</u> to produce the enol trifluoroacetate of a ß-diketone <u>63</u>.

Transesterification by refluxing with methanol liberates the ß-diketone <u>52</u>, A. L. Henne and J. M. Tedder, <u>J.</u>

25 <u>Chem.</u> Soc. 3628 (1953).

5 Scheme 14

Scheme 14, cont'd.

Compounds where R¹=imidazole, such as <u>65</u>, are readily available by any of a number of standard methods. For example, acylaminoketone <u>64</u> can be cyclized with ammonia or equivalents thereof, D. Davidson, et al., <u>J. Org. Chem.</u>, <u>2</u>, 319 (1937) to the corresponding imidazole as shown in <u>Scheme 13</u>. The corresponding oxazole <u>66</u> can also be converted to imidazole <u>65</u> by action of ammonia or amines in general, H. Bredereck, et. al., <u>Ber.</u>, <u>88</u>, 1351 (1955); J. W. Cornforth and R. H. Cornforth, <u>J. Chem. Soc.</u>, 96, (1947).

Several alternative routes to imidazoles <u>65</u> are illustrated in <u>Scheme 14</u>. As shown in <u>Scheme 14</u> equation a), reaction of the appropriate R¹³ substituted imidate esters <u>67</u> with an appropriately substituted

 α -hydroxy- or α -haloketone or aldehyde <u>68</u> in ammonia leads to imidazoles of formula <u>65</u>, P. Dziuron, and W. Schunack, <u>Archive</u>, <u>Pharmaz.</u>, 307 and 470 (1974).

The starting imidazole compounds <u>65</u> wherein R¹³ is hydrogen can be prepared as shown in equation b) by reaction of the appropriate R¹³-substituted imidate ester <u>67</u> with α-aminoacetaldehyde dimethyl acetal, M. R. Grimmett, <u>Adv. Heterocyclic Chem.</u>, <u>12</u>, 103 (1970).

As shown in equation c), imidazole <u>72</u> (wherein R¹³=hydrogen and CH₂OH) can be prepared by treatment of the imidate ester <u>67</u> with 1,3-dihydroxyacetone <u>71</u> in ammonia by the procedure described in <u>Archive der Pharmazie</u>, <u>307</u>, 470 (1974). Halogenation of imidazole <u>72</u> or any imidazole wherein R¹³ is hydrogen is

preferably accomplished by reaction with one to two equivalents of N-halosuccinimide in a polar solvent such as dioxane or 2-methoxyethanol at a temperature of 40-100°C for 1-10 hours.

Compounds of formula <u>73</u> can also be prepared from <u>70</u>

20 by reaction with formaldehyde as described in E. F.

Godefroi, et al., <u>Recueil</u>, 91, 1383 (1972) followed by halogenation as was described above.

As shown in equation d) the imidazoles $\underline{65}$ can also be prepared by reaction of R^{13} substituted amidines $\underline{74}$ with an α -hydroxy- or α -haloketone or aldehyde $\underline{68}$ as described by F. Kunckel, $\underline{Ber.}$, $\underline{34}$, 637, (1901).

25

As shown in equation e), preparation of the nitroimidazoles (65, R¹³ = NO₂) is preferably accomplished by heating the appropriate starting imidazole in a 3:1 mixture of conc. sulfuric acid/conc. nitric acid at 60-100°C for 1-6 hours. Nitration of the imidazole can be achieved by first converting the hydroxmethylimidazole to the corresponding chloromethylimidazole 75 employing thionyl chloride or

oxalyl chloride. Nitration, as described above, followed by hydrolysis provides the nitroimidazoles 77.

Imidazoles <u>80</u> where R¹³ = CN can be prepared as shown in equation f) by reaction of R¹³ substituted ortho esters, ortho acids or aldehydes (followed by oxidation of the aldehyde) with diaminomaleonitrile <u>79</u> by the procedure described by R. W. Begland et al., <u>J. Org. Chem.</u>, <u>39</u>, 2341 (1974). Likewise, R¹³ substituted imidate esters <u>67</u> also react with diaminomaleonitrile to give 4,5-dicyanoimidazoles <u>80</u>. The nitrile groups can be further elaborated into other functional groups by methods familiar to one skilled in the art.

Compounds wherein R^{13} = alkyl of 1-6 (straight or branched), phenyl, phenalkyl where alkyl is 1-3 carbon atoms, etc. and another R^{13} = CH₂OH can be prepared as shown in equation g). The imidazoles 83 were prepared as described in L A. Reiter, <u>J. Org. Chem.</u>, <u>52</u>, 2714 (1987), Hydroxymethylation of <u>83</u> as described by U. Kempe, et al. in U.S. Patent 4,278,801 provides the hydroxymethylimidazoles 84.

The CH₂OH group, as in imidazolemethanol <u>72</u>, is a versatile synthon for other functional groups. Scheme <u>15</u> shows some of these transformations, all of which are familiar to one skilled in the art.

25

15

10

Scheme 15

A suitably protected imidazole <u>85</u> may undergo selective halogen-metal exchange followed by quenching with electrophiles to yield trisubstituted imidazoles (Scheme 16) (M. Groziak and L. Wei <u>J. Org. Chem.</u> (1992) <u>57</u>, 3776). This strategy can be used to add several R¹³ groups onto the imidazole ring. By changing the order in which the electrophiles are added, one may change the position to which the electrophile gets attached onto the imidazole ring.

5 where $(R^{13})^+$ is a suitable electrophilic precursors to R^{13} .

The pyrazoles and imidazoles disclosed previously and other heterocycles which will be mentioned later in this specification may undergo alkylation onto a nitrogen

where Y' is a protected form or a suitable precursor to Y; Y is COOH, SO₃H, etc., which is suitable for further coupling to an amine or alcohol to produce the "Z" group of Formula (I).

- 1) NaH or KH, DMF
- X-(CH₂)₀-Y
- 3) elaborate to Y

90

atom just as the pyrrole in Scheme 4 by simply stirring a mixture of the heterocycle <u>88</u> and alkylbromide, iodide, mesylate or tosylate <u>89</u> in the presence of an acid scavanger such as potassium carbonate in an inert solvent such as THF or DMF for several hours to several days at room temperature or up to the reflux temperature of the solvent (Scheme 17).

Another way to make 90 involves first deprotonation of the N-H of heterocycle 88 with a base such as NaH, KH, n-BuLi, t-BuLi, etc., followed by displacement of the X-leaving group of 89 to yield 90.

This sequence can be performed in inert solvents

such as ether or THF. NaH and KH can also be employed
in DMF and DMSO at room temperature or at a higher
temperature. Alkylation sometimes yields regioisomers
when more than one nitrogen atom is present in the
heterocycle. These isomers can be separated by standard
methods such as crystallization or chromatography. Once

alkylated, the Y group can be coupled to the boronic acid moiety and all protecting groups removed to yield compounds of Formula I by procedures described previously.

5 Compounds where R¹ = 1,2,4-triazole can be prepared by the route of H. Paul, G. Hilgetag and G. Jahnchen, Chem. Ber., 101, 2033 (1968) which is depicted in Scheme 18. Imidate ester 92 is formed from nitrile 91 by the method of P. Keynaud and R. D. Moreau Bull. Soc. Chim. 10 France, 2997 (1964). Hydrazide 99 is easily

Scheme 18

15

20

25

٨

prepared via the action of hydrazine on the corresponding methyl ester precursor. It is understood that R^{13} of 91 and 94 do not necessarily have to be in their final form, for example. In each case, they can exist as either a protected species or in the form of a precursor to R^{13} .

Alkylation of triazole <u>96</u> yields two isomeric products <u>97</u> and <u>98</u> when the R¹³ groups are not identical. These intermediates can be converted into final products in the usual fashion as shown in Scheme 19.

10

The regioselective syntheses of both <u>97</u> and <u>98</u> are shown in <u>Scheme 20</u>. Imidate ester <u>93</u> is reacted with hydrazine to form amidrazone <u>103</u>. Alkylation with methyl µ-bromoacetate yields <u>104</u>. Ring closure with either an ortho-ester, acid chloride or anhydride yields triazole <u>98</u>. For a similar triazole synthesis, see David B. Reitz, European Patent Application 508, 445, published 14.10.92., G. D. Searle & Co. For schemes 20, 21 and 22, the different R¹³ groups are differentiated from one another by the placement of a prime symbol next to one of the R¹³ groups, i.e. R¹³.

Scheme 20

5

10

Yet another regioselective synthesis of <u>97</u> or <u>98</u> is depicted in Scheme 21 following a similar sequence as was shown in Scheme 20 (D. B. Reitz, ibid.).

1,2,4-Triazoles also undergo selective metalation at the 5-position when the nitrogen at the 1-position is suitably protected. The metallated triazole can then be quenched through the addition of an electrophile to result in a newly functionalized triazole at the 5: position. Suitable protecting groups are benzyl and trityl. (D. K. Anderson, et al., <u>J. Heterocyclic Chem., 23</u>, 1257 (1986) as well as diethoxymethyl (S. Ohta, et al., <u>Chem. Pharm. Bull.</u>, <u>41</u>, 1226 (1993). The 3-

position can also be metallated if the 5-position is suitably protected (S. Ohta et al., ibid.). Thus here we have two other methods for introducing R¹³ substituents at the 5- or 3-positions of the 1,2,4-triazoles.

Compounds where R¹ = 1,2,3-triazole can be synthesized via the 1,3-dipolar cycloaddition of an azide to an alkyne as shown in Scheme 22 (for an example of this cycloaddition reaction, see W. Kirmse and L. Horner <u>Justus Liebigs Ann. Chem.</u> (1958) 614, 1).

15

Scheme 22

Compounds where R^1 = tetrazole can be synthesized by the methods outlined in Scheme 23. In line a, three methods are given for the conversion of a nitrile into a tetrazole (ammonium chloride/sodium azide: W. G.

Finnegan et al., <u>J. Am. Chem. Soc.</u> 1958, <u>80</u>, 3908; trialkyltin azides: J. G. Luitjen et al., <u>Rec. Trav. Chim. Pays-Bas</u>; dialkyltin oxide: S. Wittenberger and B. G. Donner, <u>J. Org. Chem.</u>, 1993, <u>58</u>, 4139).

In Scheme 23, line b, two procedures are given for the regioselective synthesis of 1,5-disubstituted tetrazoles (DEAD, Ph₃P, TMSN₃: J. V. Duncia, M. E. Pierce, J. B. Santella III, <u>J. Org. Chem.</u> 1991, <u>56</u> 2395; Tf₂O/NaN₃: E. W. Thomas <u>Synthesis</u>, 1993, 767) which can be more difficult to synthesize due to the steric crowding of the substituents.

Compounds where R^1 is an oxazole may be synthesized by a variety of methods including those outlined in Scheme 24. The oldest synthesis and one of the most versatile is shown on line a), namely the

- cyclodehydration of 2-acylaminoketones (The Robinson-Gabriel Synthesis) (see I. J. Turchi in Oxazoles,
 Turchi, I. J., ed. John Wiley and Sons, New York (1986)
 p. 1). The 2-acylaminoketone starting materials may be synthesized from the Dakin-West reaction and
- modifications thereof (G.H. Cleland and F.S. Bennett Synthesis (1985) 681 and references therein). Some cyclodehydration agents include PCl₅, H₂SO₄, P₂O₅, SOCl₂, etc).

Scheme 23

Scheme 24

10

15

20

25

Ra, Rb and RC are equal to R13 which is described in the scope of this application. R13 in Scheme 24 does not have to be in finalized form as it appears in the scope, but can be in protected form or in the form of suitable precursors. It is understood that only when the entire molecule of formula I is synthesized do all of the substituents have to appear in their final forms as stated in the scope. Protected forms and suitable precursors to R13 are readily recognized by one skilled in the art of organic synthesis.

In line b, the reaction of α -acylketones 131 with ammonium acetate/acetic acid also yields oxazole 130 (D. Davidson, M. Weiss, M. Jelling J. Org. Chem. (1937), 2 In line c, we find the regioselective formation of oxazole $\underline{130}$ from the reaction of an α -haloketone $\underline{134}$ with amide 133 (R. Lakham, B. Ternai, Adv. Heterocycl. Chem. (1974) 17, 99; I. J. Turchi, M. J. S. Dewar, Chem. Rev. (1975), 75, 389). Acid chlorides 135 react with oximes 136 to yield after a [3,3] sigmatropic rearrangement (138) oxazole 130 as shown in line d (G. S. Reddy and M. V. Bhatt Ind. J. Chem. (1981) 208, 322; M. V. Bhatt, G. S. Reddy <u>Tet. Lett.</u> (1980) <u>21</u>, 2359). In line e, μ -azidoketones (<u>140</u>), after reaction with triphenylphosphine to yield 141, react with acid chloride 135 to yield oxazole 130 (E. Zbiral, E. Bauer, J. Stroh Monatsh. Chem. (1971) 102, 168). Finally, oxazoles undergo deprotonation with strong bases such as n-BuLi at the 2-position when the 4 and 5 positions are blocked and after quenching with an electrophile can yield oxazole 130 (R. Schroder, V. Schollkopf, E. Blume,

30 I. Hoppe Liebigs Ann. Chem., (1975) 533). As stated earlier, R13 can be either in final form as defined in the scope of this application or in the form of precursor functionality which later on can be elaborated

35 into final form by methods familiar to one skilled in

the art. This holds true not only for the oxazoles discussed here, but for all of the other heterocyclic systems in this application where \mathbb{R}^{13} appears as substituents.

Oxazoles are most readily brominated at the 5position followed by the 4-position and finally the 2position. A brominated oxazole (as well as other
brominated heterocycles in this application) can undergo
aryl cross-coupling reactions catalyzed by transition
metals to yield aryl-or heteroaryl-substituted oxazoles
(See for example E.-I. Negishi; A. O. King; N. Okukado
J. Org. Chem. (1977) 42, 1821).

Compounds where R¹ is an isoxazole may be synthesized by the methods outlined in Scheme 25. In line a, reaction of 1,3-diketone 143 with hydroxylamine yields oxazoles 144 and 145. Nitrile oxide 146 can also add across the triple bond of alkyne 147 to yield isoxazoles 144 and 145. (See P. Grunanger and P. Vita-Finsi Isoxazoles, v. 49 pt. 1 of The Chemistry of Heterocyclic Compounds, E. C. Taylor and A. Weissberger, eds., John Wiley and Sons (New York: 1991) p. 126).

Scheme 25

5

10

15

a)
$$R^{b}$$
 R^{c} $NH_{2}OH$ R^{a} $N-O$ $N-$

As discussed previously R^a , R^b and R^c in Scheme 25 are again equal to R^{13} and are not necessarily in final form as they appear in the scope of this application.

Compounds wherein R¹ is a thiazole may be

synthesized by the method depicted in Scheme 26, which
mimics the route of Scheme 24c) describing a route for
oxazoles. Thus thioamide 148 reacts with α-halocarbonyl
compound 134 to yield thiazole 149. Again as for the
oxazole, R^a, R^b, and R^c have the same definitions. For
the synthesis of thiazoles, by the route depicted in
Scheme 26, see G. Vernin "General Synthetic Methods for
Thiazole and Thiazolium Salts" in Thiazole and Its
Derivatives, J. V. Metzger, ed., volume 34. pt. 1 in The
Chemistry of Heterocyclic Compounds, A. Weissberger and
E. C. Taylor, eds. John Wiley and Sons (New York:1979)
p. 180.

Scheme 26

Compounds wherein R¹ is a 1,2,5-thiadiazole may be synthesized by the methods shown in Scheme 27. Diamine 150 may be reacted with sulfur monochloride to yield 1,2,5-thiadiazole 151. Likewise, α-diketone 152 may be converted into bisoxime 153 which also reacts with S₂Cl₂ to yield 151 (L. M. Weinstock, P. Davis, B. Handelsman, R. Tull J. Org. Chem. (1967) 32, 2823). Z is defined in Scheme 24.

Scheme 27

5 Scheme 28

Compounds wherein R¹ is a 1,2,4-thiadiazole may be synthesized by the method depicted in Scheme 28.

Oxidation of thioamide 154 with hydrogen peroxide yields S-oxide 155 which must be stored at 0°C. Further reaction of the S-oxide intermediate with thioamide 156 yields thioacylamidine 157 which cyclizes to product 158

(V. Goerdeler, H. Porrmann Chem. Ber. (1962) 95, 627). R^a and R^b are as defined previously in Scheme 24.

Compounds where R¹ is a furan may be synthesized by the methods shown in Scheme 29, but as understood by one skilled in the art, not limited thereto, as in the case as for all of the schemes in this patent application. In line a, cyclodehydration of 1,4- dicarbonyl compound 159 yields furan 160 (L. D. Krasnoslobodskaya, Ya. L Gol'dfarb Russ. Chem. Rev. (Engl. Trans.) 1969, 38,

- 10 389). In line b, α-bromoketone or aldehyde 161 protected as its dimethyl ketal or acetal reacts with trimethylsilylenol ether 162 to yield intermediate 163 which cyclizes to furan 160 (T. Mukaiyama, H. Ishihara, K. Inomata Chem. Lett., 1975, 527). Ra, Rb, RC, and Rd
- are R¹³ which is described in the scope of this application and with similar limitations as were described under Scheme 24 for R¹³ with regards to being in final form or not.

20 by the methods shown in Scheme 30. In line a, 1,4-dicarbonyl compound 159 is reacted with a phosphorous sulfide (phosphorous pentasullfide, phosphorous trisulfide, phosphorous heptasulfide, etc.) to yield thiophene 164 (H. D. Hartough, Chem. Heterocycl. Compd.,

- 25 1952, 3, 1). The dicarbonyl compound 159 also reacts with H₂S to favor thiophenes at lower temperatures (-50°C) (F. Duus Tetrahedron, 1976, 32, 2817). Reaction of alkenes 165 or 166 (line b) with sulfur and heat also yield thiophene 164 (A. S. Broun, M. G. Voronkov J. Gen.
- Chem. USSR. (Engl. Trans.) (1947) 17, 1162; M. g. Voronkov, A. S. Broun, ibid, (1948) 18, 700; J. Schmitt., M. Suquet, R. Fallard (C. R. Hebd. Seances Acad, Sci. (1956) 242, 1738. Ra, Rb, Rc and Rd are as defined in Scheme 29.

35

Scheme 29

dehydrating agents include $\rm H_2SO_4,\,HCl,$ polyphosphoric acid, $\rm PCl_3,\,ZnCl_2,\,DMSO,$ phosphoric esters, etc.

Scheme 30

Compounds where R¹ is a pyridine may be synthesized by the methods shown in Scheme 31. It is to be understood that each scheme and each reaction has its own scope and limitations and that no one synthesis is

ി

universally applicable. It is also to be understood that one skilled in the art will be able to determine which synthesis is best suited for his or her needs. In line a, reaction of enamine 167 with ethynyl ketone 168 will cyclize to pyridine 170 (F. Bohlmann, D. Rahtz Chem. Ber. (1957) 90,, 2265). Enamino ketones 171 (line b) condense with 1,3-diketones or beta-keto esters 172 to yield pyridine 174 where R is alkyl, aryl or alkoxy and aryloxy (N. K. Kachetkov, A. Gonsales, A. Nesmeyanov Dokl. Akad, Navk, SSSR (1951) 79, 609; S. Auricchio, R. Bernardi, A. Ricca Tet. Lett. (1976) 9831; H. Henecka Chem. Ber. (1949) 82, 41).

The Hantsch dihydropyridine synthesis can be used in the synthesis of pyridines as shown in line c. are many modifications of this synthesis of which only 15 one is shown. Reaction of 175 with beta-aminocrotonate 176 yields dihydropyridine 177 (F. Bassett, H. Meyer, E. Wehinger Angew. Chem. Int. Ed. Engl. (1981) 20, 762). Further oxidation with, for example, dilute nitric acid yields pyridine 178 where R and R¹ can be different 20 alkoxy groups (E. Knoevenagel, W. Rushhaupt Ber. (1898) 31 1025). Cycloaddition of oxazole 179 with alkene 180 can also yield a pyridine (182) (M. Ya Karpeiskii, V. L. Florent'ev Russ. Chem. Rev. (Engl. Trans.) (1969) 38, 540; R. Lakhan, B. Ternai Adv. Heterocyl. Chem. (1974) 25 17, 99). In all of these pyridine synthesis, Ra, Rb, ${\tt R^C}$, and ${\tt R^d}$ are as described for Scheme 29. All of the substituents around the pyridine ring can be in final form or in the form of a precursor to a given functional group as would be recognized by one skilled in the art. 30 Finally, in line e, hydroxypyridines, such as 183, may be triflated and coupled with an aryl-or heteroarylboronic acid or aryl-or heteroaryltrialkylstannane using a transition metal 35 catalyst such as Pd to yield aryl or

WO 96/20689

heteroarylpyridinecarboxylic acids, such as <u>186</u>. This in turn may be coupled to aminoboronic acid esters as discussed previously to yield compounds of Formula I. Halogens, such as Br or I may be used instead of triflate in compound <u>184</u> to undergo what is known as the Suzuki coupling reaction. R and R¹ in line e) are any of the allowed phenyl substituents in the scope of this application (Suzuki reactions: A. Suzuki <u>Pure Appl.</u> Chem. (1985) <u>57</u>, 1749).

Scheme 31

Compounds where R¹ is a pyridazine may be synthesized by the routes shown in Scheme 32. Reaction of 1,4-carbonyl compound <u>187</u> with hydrazine yields pyridazine <u>188</u>. If the 1,4-dicarbonyl compound is

WO 96/20689

saturated as in line b (compound 159), then the product from the reaction with hydrazine 189 must be oxidized to yield pyridazine 188 (K. C. Nicolaou, W. E. Barnette, R. L. Magolda J. Am. Chem. Soc. (1979) 101, 766;

PCT/US95/16248

5

20

Scheme 32

M. Tisler, B. Stanovnik "Pyridazines and their Benzo Derivatives" in A. R. Katrizky, C W. Rees <u>Comprehensive Heterocyclic Chemistry</u>, v.3 (Pergamon Press: Oxford), 1984, p. 45). Halopyridazines or hydroxypyridazines may also undergo the same aromatic cross-coupling reactions as were described for pyridines. Ra, Rb, RC and Rd, etc., are defined the same as in the pyridine case.

Compounds wherein R¹ is a pyrimidine may be synthesized by the methods shown in Scheme 33. Reaction of 1,3-dicarbonyl compound 190 with amidine 191 yields pyrimidine 192 (D. J. Brown, S. F. Mason The Pyrimidines in A. Weissberger ed. The Chemistry of Heterocyclic Compounds, (John Wiley: New York) 1962, p. 31).

Scheme 33

a)
$$R^b \longrightarrow C$$
 $+$ NH_2 $+$ $R^b \longrightarrow R^b \longrightarrow$

Reaction of amidine 191 with 193 also yields pyrimidines (P. Schenone, L. Sansebastiano, L. Mosti J. Heterocyclic Chem. (1990) 27, 295). Ra, Rb, Rc, and Rd are as defined previously in Scheme 32. Halopyrimidines or hydroxypyrimidines may also undergo the same aromatic cross-coupling reactions as were described for pyridines.

Schame 34

- Compounds in which R¹ is a 1,2,4-triazine may be synthesized by the procedures outlined in Scheme 34. In line a, 1,3-dicarbonyl compound 194 is condensed with amidrazone 195 to yield triazine 196 (H. Neunhoeffer and P. F. Wiley Chemistry of 1,2,3-Triazines and 1,2,4-
- Triazines and Pentazines, v. 33 in A. Weissberger, E. C. Taylor, eds., The Chemistry of Heterocyclic Compounds

 John Wiley and Sons (New York: 1978) pp 194-200 and p.

 524). In line b, cyclization of acylhydrazone 197 with ammonia or ammonium acetate leads to triazine 196 (H.
- Neunhoeffer, P. F. Wiley, ibid., p. 196, 197). In line c, reaction 1,2-dicarbonyl compound 194 with oxalamidrazonates 198 yields 1,2,4-triazine ester 199. Saponification of 199 yields 200 which can be decarboxylated to yield 1,2,4-triazine 201 (H.
- Neunhoeffer, P. F. Wiley, ibid., p. 526). R^a, R^b, and R^C are as defined in the pyridine case. Halotriazines or hydroxytriazines may undergo the same aromatic cross-

10

coupling reactions as were described earlier for pyridines.

Compounds in which R¹ is as described in lines k and l in the scope of this application may be synthesized by the methods described in Scheme 35. If heterocycle -J-K-L-M-Q- 202 contains a bromine, iodine or a hydroxyl group (which can be triflated) designated by X, then it can undergo a Suzuki coupling to yield 204 where u is 0 (A. Suzuki, ibid) (Scheme 35, line a). If instead of B(OH)₂ a trialkyltin group is present, then a Stille coupling can be performed when X = triflate (J. K. Stille Angew. Chem. Int. Ed. Engl. (1986) 25 508; J. K. Stille Pure Appl. Chem. (1985) 57, 1771).

15 Scheme 35

5

The X and B(OH)₂ (or trialkyltin) moieties may be reversed so that now $X = B(OH)_2$ (or R₃Sn) and the phenyl of <u>203</u> contains halogen or triflate group. The same coupling procedures may be used in synthesizing compounds where R¹ is described by line 1 and u is 0 as were used in synthesizing compounds where R¹ is described by line k and u is 0.

When u is not 0, heterocycle 205 and its sixmembered ring counterpart -C-W-R-T-U-V- (described in line 1) must be synthesized from scratch by the methods 10 described heretofore, with the -(CH2) $_u$ -Phenyl-(CH2) $_m$ CO2R group being one of the substituents in final or precursor form. If heterocycle 205 contains an N-H which is alkylatable, then alkylation with 206 where X is Cl, Br, I, mesylate tosylate or triflate yields 207 15 (Scheme 35, line b). The esters 204 and 207 can then be hydrolyzed to the free acid and coupled with aminoboronic acid ester derivative as described in Scheme 4, for example, to yield boronic acid esters which can also be hydrolyzed to the corresponding free 20 boronic acid products.

A general method (Scheme 36) for the synthesis of 4-carboxydihydroheterocycles (oxazolines, thiazolines, imidazolines) utilizes the condensation of an α -amino acid ester (210) with an imidate (211) to provide 212, 25 see: Meyers, A. I.; Hanagan, M. A.; Mazzu, A. L. Heterocycles 1981, 15, 361; Meyers, A. I.; Whitten, C. E. Heterocycles 1976, 1, 1687; North, M.; Pattenden, G. Tetrahedron 1990, 46, 8267; Jones, R. C. F.; Ward, G. J. Tetrahedron Lett. 1988, 29, 3853. In the case where \mathbb{R}^{20} 30 = H, the cyclization might be conducted with trimethyl orthoformate instead of 211, see: Martin, P. K. et al. J. Org. Chem. 1968, 33, 3758. For compounds that are substituted only at the 2-position of the heterocycle, serine or cysteine might be used as the amino acid ester 35 partner. The dihydroimidazole-based materials would be

prepared from an N^a-monoprotected diaminopropionic acid to prevent tautomerization of the double bond once the cyclic system of 212 has been formed, see: Martin, P. K. et al. *J. Org. Chem.* 1968, 33, 3758. Hydrolysis of the ester then affords carboxylic acid 213.

Scheme 36: Synthesis of 4-Carboxyheterocycles.

G = O, S, NP P = amine protecting group

10

15

20

5

It may be desirable to prepare more highly substituted heterocycles as well (Scheme 37). An approach to the oxazoline class could utilize reaction between the anion of 215 and formaldehyde to provide adducts 216 as recorded by Kanemasa, S. et al. Tetrahedron Lett. 1993, 34, 677 and Ito, Y. et al. Tetrahedron 1988, 44, 5253. Hydrolysis of the imine should deliver 217, an example of an α -substituted α -amino acids, as a mixture of isomers. Condensation as before with imidate (211) should generate cyclic moieties of general structure 218 which are hydrolyzed to 219.

The corresponding thiazolines should be available by installing a sulfhydryl group prior to cyclocondensation. To that end, N - protection of 217, followed by reaction with a sulfur nucleophile, a thiol ester or an inorganic salt thereof, based on the work reported by Mitsunobu, O. Synthesis 1981, 1, and Yuan, W. et al. J. Med. Chem. 1993, 36, 211, should provide the substituted cysteine (220) upon premoval of the N-protecting group. Subsequent reaction with the imidate should deliver 221 and ultimately 222, after hydrolysis of the ester.

্ৰ

Scheme 37: Synthesis of Substituted Heterocycles.

The imidazolines should be obtained via the condensation described by Jones, R. C. F.; Ward, G. J. Tetrahedron Lett. 1988, 29, 3853, of a suitable diamino acid with imidate 211. The preparation parallels the sequences discussed above where the anion of 215 would be expected to generate adduct 223 as described by

211

PHN

> Gilbert, I. et al. Tetrahedron Lett. 1991, 32, 2277. Manipulation of the protecting groups and implementation of the aforementioned cyclization should give imidazoline 225 which may be converted to the corresponding carboxylic acid 226.

Using an analogous synthetic sequence (Scheme 38), the polysubstituted versions of these heterocycles should also be accessible. For the oxazo - or imidazo type compounds, reaction of the anion of 215 with an 10 electrophile 227 should deliver 228, as reported by Kanemasa, S. et al. Tetrahedron Lett. 1993, 34, 677 [cf. Meyer, R. et al. Liebigs Ann. Chem. 1977, 1183], and liberation of the a -amino group should then provide 229, as a mixture of isomers. Application of the now standard cyclocondensation should complete the synthesis of 231 upon hydrolysis of 230.

A similar sequence should provide an entry into the thiazolines series (235). However, in the case where R^{3b} = H, this material would be prepared by converting 20 232 to the corresponding mercaptan 233 using the conditions described earlier; the ester in 234 could then be hydrolyzed to afford 235. This reaction sequence would be preferred to avoid use of a presumably unstable thioaldehyde (227 where U = S and $R^{3b} = H$).

15

see: Takahashi, T. et al. Heterocycles 1993, 36, 1601 25 and references therein.

235

SCHEME 38: Polysubstituted Heterocycles, Synthesis I.

Alternative methods for the preparation of these polysubstitutued heterocycles employ (Scheme 39) the

234

addition of the anion of isocyanide 236 to an electrophile 227 to provide the heterocycle 237, see: Ito, Y. et al. Tetrahedron Lett. 1989, 30, 4681; Ito, Y. et al. Tetrahedron Lett. 1988, 29, 6321, 235; Ito, Y. et al. Tetrahedron Lett. 1987, 28, 6215; Ito, Y. et al. Tetrahedron 1988, 44, 5253; Meyer, R. et al. Liebigs Ann. Chem. 1977, 1183. The carboxylic ester may be manipulated at this time, however the preferred sequence would implement either an exchange reaction mediated by a transition metal catalyst as reported by Ito, Y. et 10 al. Tetrahedron 1988, 44, 5253 to provide derivatives 238; standard hydrolysis followed by reaction with imidate 211 would also yield 238. Subsequent conversion to the carboxylic acid 239 should proceed 15 smoothly. For cyclic compounds (243) where $R^{20} = H$, the preferred sequence would involve the sequential hydrolysis of adduct 240, transformation of the hydroxyl group into a sulfhydryl function, cyclocondensation to thiazoline 242 and finally hydrolysis to afford the 20 desired carboxylic acid 243.

SCHEME 39: Polysubstituted Heterocycles, Synthesis II.

Another noteworthy method (Scheme 40) for the assembly of oxazolines and thiazolines utilizes an appropriate N-acyl- β -hydroxy- α -amino acid (244) which

241

5

reacts intramolecularly by cyclization of the amide carbonyl onto the hydroxyl group of the amino acid. This transformation may occur upon treatment with triphenylphosphine and an azodicarboxylate, as reported by Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 33, 6267, 907 and Galéotti, N. et al. Ibid., 2807, or through the use of diphenyl sulfoxide and triflic anhydride, as demonstrated by Yokokawa, F. et al. Synlett 1992, 153, to generate the requisite ring system; in 245. Hydrolysis of the ester then provides 246. Alternatively, this cyclization may be effected by intramolecular displacement of the corresponding halo derivative (-OH --> halogen in 244), which is generated in situ, to provide the oxazoline (245), see: Evans, D. A. et al. J. Org. Chem. 1992, 57, 1961.

SCHEME 40: Alternative Syntheses of Oxazolines and Thiazolines.

20

25

30

10

15

The regioisomeric 5-carboxyheterocycles may be synthesized (Scheme 41) by condensation of an appropriate α-functionalized β-amino acid with imidate 211; for an example of this type of cyclization, see: Wolfe, S. et al. Tetrahedron Lett. 1979, 3913. In the event, nucleophilic opening of an a, b - epoxy acid (247) with an inorganic azide such as lithium azide according to Chong, J. M.; Sharpless, K. B. J. Org.Chem. 1985, 50, 1563 should provide 248; the corresponding esters also participate in this reaction, see:

Commerçon, A. et al. Tetrahedron Lett. 1992, 33, 5185. Reduction should give the requisite α-hydroxy-β-amino acid 249. Alternatively, it may be desirable to prepare 249 from an a - amino acid directly as described by Poss, M. A.; Reid J. A. Tetrahedron Lett. 1992, 33,

- Poss, M. A.; Reid J. A. Tetrahedron Lett. 1992, 33, 1411, by reaction of the appropriate N-BOC compound (250) with 2-furyllithium to provide vicinal amino alcohol (251); manipulation of the furan moiety and deprotection then generates 249. A similar approach
- using 2-lithiothiazoles may also be useful, see:
 Dondoni, A.; Perrone, D. Tetrahedron Lett. 1992, 33,
 7259.

SCHEME 41: Regioisomeric Heterocycles, Synthesis I.

Completion of the syntheses of the heterocycles should follow precedent. Reaction with of 249 with 211 should provide oxazoline 254 directly. This alcohol may also be used in a sequence described previously to allow for incorporartion of sulfur and ultimately provide 250; this mercaptan should lead to thiazoline 251.

Additionally, 249 could be employed as a substrate for reaction with a nitrogen based nucleophile, see:

Mitsunobu, O. Synthesis 1981, 1 [cf. Cardani, S. et al.

Tetrahedron 1988, 44, 5563], to deliver 252 as a precursor for imidazoline 253.

The regioisomeric imiodazolines should be available from other routes as well (Scheme 42). One method would call for hydrolysis of imine 223, discussed earlier in Scheme 37, followed by protection of the newly liberated α -amino group to give 254. Cleavage of the phthaloyl residue and reaction with imidate 211 should provide 255 which is hydrolyzed to 256. An alternative approach calls for reaction of an α -bromo-

20 α,β-unsaturated ester (257) with an amidine (258) [sterically hindered (P is large) materials do not react] to generate 259 in a single step as reported by Marsura, A. et al. Synthesis 1985, 537; hydrolysis of the ester should yield the acid 260.

25

10

SCHEME 42: Alternative Preparations of Imidazolines.

The several types of inhibitors disclosed in this invention can be broadly classified by their electrophilic functional group \underline{A} , as defined in Formula (I). The compounds described below, unlike the boron containing peptides, utilize a highly electrophilic carbon atom at \underline{A} to interact with the active site serine of thrombin. The precursor for the electrophilic carbon

10

inhibitors is the appropriately protected amino acid (261) of Scheme 43.

Scheme 43

The preparation of (261) can be found in the general chemical literature, one such reference being the review by Morrison and Mosher (1976). According to Scheme 43 various terminal functional groups are available from (261): the formamidino- (262), cyanoguanidino- (263), hydroxyguanidino- (264) and guanidino- analogs (265).

The preparation of amidine derivative (267) and phenylguanidines of formula (269) from amino acids (266)

and (268), respectively, is shown in Scheme 44. The conditions used to prepare amidines of formula (267) is discussed for (303) of Scheme 53 while the method for formamidinylation of (268) to give (269) is the same as that described to prepare (295) of Scheme 52.

Scheme 44.

 $Q = -(CH_2)_y$ - or $-(CH_2)_{q-1}C_6H_4(CH_2)_{p-1}$ -

 $Q = -(CH_2)_{q-1}C_6H_4-$

v = 1-12

M = alkyl or benzyl

PG = suitable amine protecting group

10

5

As shown in Scheme 45, appropriately protected derivatives of formulae (261-269), wherein M is an alkyl or benzyl group can be coupled with N,N-disubstituted acid (270) or (271) (wherein M is hydrogen). The X

group in compounds of formulae (261) through (269) and (272) in Scheme 45, as well as in compounds illustrated in the Schemes to follow, is a protected version of the terminal functional group X, as defined by Formula (I), unless deprotection is indicated to obtain the final compound of the sequence.

Scheme 45.

10

15

20

It is understood that the protecting group(s) used should compatible with the conditions of the process discussed; a good source for information on protecting group chemistry is Greene and Wuts (1991).

The preparation of the thrombin inhibitors trihalomethyl ketone (274) and α -ketoester (275) are shown in Scheme 46. The coupled ester (272), wherein M is alkyl or benzyl can be converted to the acid (M is hydrogen) by the methodology appropriate for the particular ester functionality as described in Greene and Wuts (1984). The aldehyde (273) can be prepared by selective reduction of the acid (272, M is hydrogen) to the primary alcohol followed by oxidation.

25

Scheme 46.

15

To obtain the primary alcohol, the acid can be transformed to the mixed anhydride by condensation of the trialkylammonium salt of the acid with an alkyl- or arylchloroformate in an inert non-polar solvent such as tetrahydrofuran, 1,2-dimethoxyethane or toluene at-78°C to room temperature. The solution of the resulting mixed anhydride is filtered and reduced to the peptidyl alcohol with an excess of a borohydride reducing agent in a compatible solvent like water or an alcohol at -78°C to room temperature according to the method of Rodriguez et. al., Tetrahedron Lett. 32, 923 (1991). The peptidyl alcohol can be oxidized to aldehyde (273) without over oxidation by a variety of procedures, as

detailed by Hudlicky in Oxidations in Organic Chemistry, American Chemical Society, p. 114 (1991); the preferred methods include Swern oxidation described by Omura and Swern, Tetrahedron 34, 1651 (1978); and the Pfitzner-

- Moffat oxidation described by Fearon et al.in J. Med. Chem. 30, 1617 (1987). A two step protocol reported by Edwards, Tetrahedron Lett. 33, 4279 (1992) can be used to prepare the trifluoromethyl ketones (274) (J is fluorine) from aldehyde (273). In this procedure a
- metallated trifluoromethyl anion is generated from an excess of trifluoromethyliodide or -bromide and an active metal such as zinc, magnesium, lithium or cadmium in inert, anhydrous solvents like tetrahydrofuran or N,N-dimethylformamide at temperatures of -100°C up to
- the reflux point of the solvent. Alternatively, the metalated trifluoromethyl anion may be generated by the transmetallation of trifluoromethyliodide or -bromide with an organometallic compound such as a Grignard reagent or alkyllithium compound in an inert solvent
- like tetrahydrofuran, hexane or ether at temperatures ranging from -78°C up to the reflux point of the selected solvent. Aldehyde (273) can be added to the solution of the metalated trifluoromethyl anion to form the trifluoroethanol derivative at temperatures of
- -100°C or higher. To obtain the trifluoromethyl ketone (274) where J is fluoro, the alcohol is oxidized by the Pfitzner-Moffat or Swern procedure. Removal of the protecting group(s) on terminal group X by the appropriate method will provide the thrombin inhibitors of formulae (274).

Trihalomethyl analogs of (274), where J is fluoro can also be prepared from aldehyde (273) by a different method. The trihalomethyl ketones are prepared by treating aldehyde (273) with either the trimethylsilyl trihaloacetate or the potassium or sodium trihaloacetate in a polar solvent such as an alcohol, N,N-

dimethylformamide or methylsulfoxide with or without a base such as a trialkyl amine, potassium carbonate or sodium hydroxide at temperatures of -78°C or higher according to the method of Beaulieu, Tetrahedron Lett.

- 32, 1031 (1991); Shell Int. Res., European Patent Application EP 16504). The resulting ααα-trihaloethanol is oxidized and group X can be deprotected as above to give the thrombin inhibitors or formulae (274).
- The α-ketoester thrombin inhibitors, exemplified by (276), are prepared according to a route disclosed by Iwanowicz et. al. in *Bioorgan*. *Med. Chem. Lett.* 12, 1607 (1992). The tris(ethylthio)methyl anion is added to the peptidyl aldehyde (273) in a solvent such as
- tetrahydrofuran, 1,2-dimethoxyethane or toluene at -100°C or higher to give the alcohol (275). The α -hydroxyl ester is generated from (275) by treatment with a mixture of mercuric salts, such as mercuric chloride and mercuric oxide, in an alcohol or water. Swern or
- 20 Pfitzner-Moffat oxidation of the α-hydroxyl ester followed by the deprotection of substituent X protecting group provides thrombin inhibitors of formula (276).

Another method for the preparation of compound (276) substitutes a 1-lithio-1-alkoxyethene or 125 magnesio-1-alkoxyethene for the tris(ethylthio)methyl anion of Scheme 15 in an addition reaction with peptidy aldehyde (273). There can be obtained an adduct analogus to the tris(ethylthio)hydroxyethyl compound (275) when excess 1-magnesio- or 1-lithio-1-alkoxyethene anion is stirred at temperatures ranging from -100 °C to ambient temperature with (273) in anhydrous solvents such as diethyl ether or tetrahydrofuran. This alkoxyolefin product may then be transformed to (276) by oxidative cleavage with reagents such as ozone or

periodate in an inert solvent such as a halohydrocarbon, lower alkyl ketone, an alcohol or water at temperatures

10

ranging from -100 $^{\rm oC}$ to ambient temperature, followed by oxidation of the intervening α -hydroxyester and deprotection as described above.

The preparation of the aa-dihalomethylketone
thrombin inhibitors of this invention is outlined in
Scheme 47.

Schame 47.

$$R^{4} R^{5} H CHO R^{11}N CH(OH)CHJ_{2}$$

$$R^{3} O Q X Z78$$

$$Q = -(CH_{2})_{1-12} \text{ or } CH(CH_{2})_{p}$$

$$R^{4} R^{5} H CH(OH)CHJ_{2}$$

$$R^{11}N Q Q X$$

$$R^{11}N Q Q X$$

$$R^{4} R^{5} H CH(OH)CHJ_{2}$$

The α,α -dihalomethylketone (279), where J is fluoro can be prepared from the aldehyde (273) by selective reaction of the aldehyde with the anion of the corresponding dihalomethane. The metalated 15 dihalomethane anion is generated from one equivalent each of a strong hindered base, such as lithium tetramethylpiperidide or tertbutyllithium, and the selected dihalomethane in an anhydrous, inert solvent like tetrahydrofuran or 1,2-dimethoxyethane at -100°C or 20 higher according to the method of Taguchi et. al. Bull. Chem. Soc. Jpn., 50, 1588 (1977). The metalated dihalomethane anion can be added to the aldehyde (273) at -100°C or higher. Alternatively, the dihalomethane anion is generated from a dihalomethyl(trimethyl)silane

5

10

and an anhydrous fluoride ion source such as tris(diethylamino) sulfonium difluoromethyl silicate in an inert solvent like benzene, acetonitrile or tetrahydrofuran at -78°C or higher, then (273) can be added to give dihaloethanol (278) according to the method of Fujita and Hiyama, J. Am. Chem. Soc. 107, 4085 (1985). The resulting dihaloethanol can be oxidized to ketone (279) by the Swern or Pfitzner-Moffat procedure. Removal of the protecting group(s) on substituent X of (279) gives the aa-dihalomethylketone thrombin inhibitors.

a-Halomethylketone thrombin inhibitors can be prepared by the process illustrated in Scheme 48.

The acid chloride (281) can be prepared from acid (272), wherein M is hydrogen or its trialkylammonium, sodium or potassium salt with a chlorinating agent such as thionyl chloride, oxalyl chloride or dichloromethylmethyl ether in a solvent like tetrahydrofuran or dichloromethane with or without a catalytic amount of N,N
20 dimethylformamide at -78°C or higher. Alternatively, the mixed anhydride of (272) may be prepared as described for (272) in Scheme 46. Compound (281) or the

mixed anhydride of (272) can be treated with an ether solution of diazomethane and either anhydrous hydrogen fluoride or hydrogen chloride gas according to that described by McPhee and Klingsbury, Org. Synth. Coll. III, 119 (1955); or hydrogen bromide according to the method Miescher and Kaji, Helv. Chim. Acta. 24, 1471 (1941).

Scheme 48.

- Selection of the hydrogen fluoride gas will give the α -fluoromethylketone analog, (282) wherein J is fluoro; and hydrogen chloride gas gives the α -chloromethylketone analog (282) wherein J is chloro. Deprotection of X gives the corresponding thrombin inhibitors of (282).
- 10 The general preparative route for the $\alpha\beta$ diketoester, -amide and -ketone thrombin inhibitors of this invention is exemplified in Scheme 49. Compound (281) or the mixed anhydride of (272) can be reacted with a Wittig reagent such as methyl (triphenyl-15 phosphoranylidene) acetate in a solvent like tetrahydrofuran or acetonitrile at temperatures ranging from 0°C to the reflux point of the solvent to give (284). Oxidative cleavage of the phosphoranylidene (284) with an oxidizing agent like ozone or OXONETM in 20 an inert solvent such as tetrahydrofuran, dichloromethane or water at temperatures of -78°C or higher gives the vicinal tricarbonyl compound (285), analogous to that described by Wasserman and Vu.

Tetrahedron Lett. 31, 5205 (1990). Cleavage of the protecting group can provide thrombin inhibitors of formula (285).

5

Scheme 49

The preparative routes for the synthesis of the lphamono- and α,α -dihalo- β -ketoester -amide and ketone 10 thrombin inhibitors of this invention are summarized in Scheme 50. The exemplified β -ketoester (287) is available from the acid derivative (272). The acid (272) can be treated with carbonyl diimidazole in an inert solvent such as tetrahydrofuran or dichloromethane 15 at 0°C or higher to form the acyl imidazole. This acyl imidazole, or the mixed anhydride of (272), can be further reacted with lithioethylacetate in solvents such as 1,2-dimethoxyethane or tetrahydrofuran/hexane at temperatures ranging from -100°C to ambient temperature, 20 according to the method of Dow, J. Org. Chem. 55, 386 (1990) to give β -ketoester (287).

Scheme 50.

$$R^{4} R^{5} H$$
 $R^{4} R^{5} H$
 $R^{11} N$
 $R^{3} O$
 R

288 : J = H, halogen 289: J = dihalogen

5

15

20

Compound (287) serves as a substrate for both mono- and dihalogenation. The α -monochloro analog of (288), where J is each chlorine and hydrogen, can be prepared by controlled halogenation reactions with reagents like N-10 chlorosuccinimide or thionyl chloride in an inert halogenated solvent and at temperatures ranging from -20°C to the reflux point of the selected solvent according to the methods of Uhle, J. Am. Chem. Soc. 83, 1460 (1961); and DeKimpe et. al., Synthesis 2, 188 (1987). The $\alpha\alpha$ -dihalo analog (289) where J is chloro is available from halogenation with molecular chlorine in a halogenated solvent at temperatures of -20°C or higher according to the method of Bigelow and Hanslick, Org. Syn. Coll. II, 244 (1943). Reagents such as Nfluorobis[(trifluoromethyl)sulfonyl]imide are useful for the preparation of mono- and difluoro analogs (288) and (289) by reacting the appropriate stoichiometry of this

reagent with (287) in a halogenated solvent at temperatures of -78°C or higher according to the method of Resnati and DesMarteau, J. Org. Chem. 56, 4925 (1991). Deprotection of substituent X of the halogenation products (288) and (289) can provide the corresponding thrombin inhibitors.

Compounds of formula (287) also serves as a substrate for the preparation of tricarbonyl derivatives such as (285) (Scheme 49). Condensation of (287) with an aldehyde, such as benzaldehyde, gives an β -ene-a,-This ene-dione can be oxidatively cleaved with reagents like ozone or periodate to give tricarbonyl analog (285).

The preparation of the mono- and dihalomethylketone thrombin inhibitors is outlined in Scheme 51. intermediates formed in the preparation of the α -monoand α, α -dihalo- β -ketoester thrombin inhibitors of Scheme 49 can be used in these preparations.

20

15

10

Scheme 51.

288 : J = halogen, H

282: J = dihalogen 289 : J = dihalogen 279: J = halogen, H

The decarboxylation of these halogenation products, (288) and (289), can be effected by saponification of 25 the ester with mild aqueous base such as potassium carbonate or sodium hydroxide in water miscible solvents like an alcohol, tetrahydrofuran or N, Ndimethylformamide, followed by adjusting the pH to a range of 4 to 6. This mixture can be either stirred at 30

ambient temperatures or heated at various temperatures up to the reflux point of the solvent chosen until the formation of (279) or (282) is complete and is similar to that reported in Matsuda et. al., Tetrahedron Lett.

5 30, 4259 (1989). Removal of protecting group(s) can provide thrombin inhibitors corresponding to (279) or (282).

A process for the preparation of the boropeptide thrombin inhibitors of this invention from intermediates 10 (291) and (292) is disclosed in Scheme 52. Compound (291) serves as a starting point for isothiouronium thrombin inhibitors (296) and (297). The boronic ester (296) is prepared by stirring a solution of (291) and thiourea in an inert polar solvent, such as an alcohol or N, N-dimethylformamide, at temperatures ranging from 15 ambient to the reflux temperature of the selected solvent. It is understood that a boronic acid ester like compound (296) is an effective thrombin inhibitor, however, it may be transformed to the corresponding free 20 boronic acid (297) without a loss of biological activity. Compound (297) is derived from the boron ester (296) by transesterification under equilibrium conditions.

25

Scheme 52

Thus stirring ester (296) with an excess of an alkyl- or aryl boric acid in a biphasic mixture of neutral or acidic water and an immiscible solvent, such as ethyl ether or toluene, gives (297) after several hours at ambient temperature. The conditions generally preferred use 5 to 10 equivalents of phenylboric acid in ethyl ether/water at neutral pH. Thrombin inhibitors (293) to (299) are obtained by reduction of an azide intermediate prepared from (291) or (292). The azide intermediate is prepared by heating either (291) or (292) with an inorganic azide, such as sodium or potassium azide, in an anhydrous polar aprotic solvent, such as acetone, dimethylformamide or methyl sulfoxide at temperatures 15 ranging from ambient to 130°C. Alternatively, phase transfer conditions may be employed to prepare the azide intermediate from (291) or (292). For example, a

tetraalkylammonium azide in a non-polar aprotic solvent, such as tetrahydrofuran or toluene, or a crown ether and inorganic azide in biphasic mixtures of water and an immiscible solvent, such as benzene, toluene or xylene,

- can be stirred at room temperature or heated up to the reflux point of the selected solvent. The primary amines (293) and (294) are most conveniently obtained from the catalytic hydrogenation of the azide in an inert solvent, such as an alcohol, ethyl acetate or
- tetrahydrofuran with a transition metal catalyst such as platinum or palladium on carbon under an atmosphere of hydrogen gas. A variety of alternative methods are also useful and can be found in the monograph by Hudlicky (1984, pp. 76). The acid salt of the resulting amines

()

25

15 (293) and (294) may be formed by the addition of one equivalent of the desired acid to the hydrogenation mixture. Phenylboric acid mediated hydrolysis of esters (293) and (294) gives the free boronic acid thrombin inhibitors (298) and (299), compounds of formula (I) of the invention.

Compounds containing a primary guanidine or N-alkyl guanidine functionality may be prepared by the alternative process outlined in Scheme 52. As illustrated with primary amine (293), the transformation to (295) is effected with a guanidinylation agent, such as an S-alkyl thiourea, aminoiminomethane sulfonic acid

- reported by Miller and Bischoff Synthesis 9, 777 (1986), cyanamide reported by Kettner et al. (1990) or their Nalkyl derivatives. This mixture is stirred at room
- temperature or higher with a base, such as potassium carbonate, triethylamine or N,N-dimethylaminopyridine in an inert solvent like water, alcohol, N,N-dimethylformamide or acetone. The guanidine boronic acid esters (295) can be deesterified to give the
- corresponding boronic acid (300) by the phenylboric acid procedure described above.

According to Scheme 53, the bromide (292) is converted to the corresponding alkylnitrile (302) upon exposure to the cyanide anion under a variety of conditions.

5

Scheme 53

10 Effective methods include the use of potassium or sodium cyanides in polar aprotic solvents, such as N,N-dimethylformamide, methylsulfoxide, acetone or ethylmethyl ketone, at temperatures ranging from ambient up to the reflux point of the selected solvent. More useful, however, are conditions employing phase transfer agents such as tetrabutylammonium cyanide in a nonpolar aprotic solvent such as tetrahydrofuran or toluene; or a

biphasic mixture of a crown ether and an inorganic cyanide in water with an immiscible solvent like benzene, toluene or xylene. These mixtures can be stirred at ambient temperature or heated up to the reflux temperature of the selected solvent. like (303) is prepared by first treating nitrile (302) with a saturated solution of a mineral acid such as hydrogen chloride in an alcohol solvent at room temperature or lower. The intermediate O-alkylimidate can be exposed to ammonia, or a primary or secondary 10 amine under anhydrous conditions with or without an inert solvent. As illustrated in Scheme 5, compound (303) is produced by treating the O-alkylimidate formed from (302) with neat anhydrous ammonia at reflux. 15 free boronic acid (304) is obtained by transesterification of (303) with phenylboric acid in a mixture of water and diethyl ether.

EXAMPLE 1: N^2 -(4-Phenylbenzoyl)boroarginine (+)-Pinanediol, Bisulfite

Part A: (+)-Pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate. To a solution of (+)-5 pinanedio1 4-bromo-1(R)-aminobutane-1-boronate hydrochloride (5.00 g, 13.6 mmol) in dichloromethane (50 mL) at 0 °C was added 4-phenylbenzoyl chloride (4.97 g, 22.9 mmol) followed by N-methylmorpholine (4 mL, 36 mmol). After 1 hour, the cooling bath was removed and 10 the mixture stirred at room temperature for 2 hours. The mixture was then diluted with ethyl acetate and washed with 0.1 M hydrochloric acid, saturated sodium bicarbonate and saturated sodium chloride. The organic phase was dried over anhydrous magnesium sulfate, filtered and the filtrate concentrated in vacuo to afford 3.37 g (48%) of the desired amide, mass spectrum: $(M+H)^{+} = 510/512; ^{1}H NMR (300 MHz, CDCl_{3}) d7.9 (2H, d, J)$ = 8.3), 7.84 (1H, bs), 7.6 (2H, d, J = 8.3), 7.44 (5H, m), 4.37 (1H, m), 3.41 (1H, t, J = 6.9), 2.0 (10H, m) 20 1.49 (3H, s), 1.38 (1H, m), 1.29 (3H, s), 0.91 (3H, s).

Part B: (+)-Pinanediol 4-azido-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate. To a solution of (+)pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-25 boronate (3.37 g, 6.60 mmol) in dimethylformamide (6 mL) was added sodium azide (547 mg, 8.41 mmol). resulting mixture was heated at 70 °C for 2 hours, cooled to room temperature, and diluted with ethyl The mixture was then washed with water, acetate. saturated sodium chloride and dried over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate in vacuo gave 3.04 g (97%) of the desired azide, mass spectrum: $(M+H)^+ = 473; l_H$ NMR (300 MHz, CDCl₃) d7.89 (2H, d, J = 8.3), 7.75 (1H, 35

bs), 7.3 (7H, m), 4.32 (1H, m), 3.32 (1H, m), 2.0 (10H, m) 1.48 (3H, s), 1.3 (4H, m), 0.9 (3H, s).

Part C: N1-(4-Phenylbenzoyl)boroornithine (+)-5 pinanediol, hydrochloride. To a solution of (+) pinanediol 4-azido:1'(R)-(4-phenylbenzoyl)aminobutane-1boronate (3.04 g, 6.44 mmol) in methanol (30 mL) was added Pearlman's catalyst (Pd(OH)₂/C, 200 mg) and 1 M hydrochloric acid (6.5 mL, 6.5 mmol). The mixture was placed on a Parr apparatus and hydrogenated at 50 psi for 3 hours. The mixture was filtered using Celite™, washed with methanol and the filtrate concentrated in vacuo. The resulting amorphous solid was dissolved in water and washed with ether. The aqueous phase was then concentrated in vacuo and crystallized from ethyl 15 acetate-hexanes, giving 1.52 g (49%) of the desired amine hydrochloride, mass spectrum: (M+H) + = 447; mp: 157-170 °C; ¹H NMR (400 MHz, CDC13/DMSO-d6) d9.88 (1H, bs), 8.18, (2H, d, J = 8.3), 8.13 (3H, bs), 7.68 (2H, d, bs)20 J = 8.3), 7.61 (2H, dJ = 7.0), 7.45 (2H, dJ = 7.0), 7.37 (1H, d, J = 7.30), 4.20 (1H, d, J = 6.3), 2.99 (1H, m), 2.87 (2H, m), 2.31 (1H, m), 2.13 (1H, m), 1.84 (7H, m), 1.56 (1H, d, J = 10.0), 1.42 (3H, s), 1.29 (3H, s), 0.89 (3H, s).

Part D: N¹-(4-Phenylbenzoyl)boroarginine (+)pinanediol, bisulfite. To a solution of N¹-(4phenylbenzoyl)boroornithine (+)-pinanediol,
hydrochloride (80 mg, 0.17 mmol) in ethanol (2 mL) was

30 added 4-dimethylaminopyridine (40 mg, 0.33 mmol). After
15 minutes, aminoiminomethanesulfonic acid (40 mg, 0.32
mmol) was added and the resulting mixture heated at
reflux for 3 hours. After cooling to room temperature,
the mixture was filtered and the filtrate concentrated

35 in vacuo. The residue was dissolved in chloroform and
washed with 0.1 M hydrochloric acid, water and dried

over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate in vacuo afforded 73 mg (84%) of the desired guanidine, mass spectrum: (M+H)⁺ = 489; ¹H NMR (400 MHz, CDCl₃, 60 °C) d9.48 (1H, bs), 8.10 (2H, d, J = 8.1), 8.07 (1H, bs), 7.75 (1H, bs), 7.54 (2H, d, J = 8.3), 7.48 (2H, d, J = 7.0), 7.35 (3H, m), 7.06 (4H, bs), 4.19 (1H, bd, J = 8.3), 3.1 (2H, m), 2.84 (1H, m), 2.29 (1H, m), 2.12 (1H, m), 1.96 (1H, m), 1.75 (6H, m), 1.47 (1H, d, J = 10.2), 1.40 (3H, s), 1.24 (3H, s), 0.83 (3H, s).

EXAMPLE 34: (+)-Pinanediol 4-(Formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, Hydrobromide

- (+)-Pinanediol 4-(formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, hydrobromide. To a solution of (+)-pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (200 mg, 0.392 mmol) in methanol (3 mL) was added thiourea (120 mg, 1.58 mmol).
 The reaction was stirred at room temperature for 3 days. The mixture was concentrated in vacuo, the residue dissolved in water and washed with ether. Concentration of the aqueous portion afforded 80 mg (35%) of the
- desired isothiourea, mass spectrum: (M+H) + = 506; lH NMR (300 MHz, CDCl₃) d8.15 (2H, d, J = 8.4), 7.61 (2H, d, J = 8.4), 7.52 (2H, m), 7.38 (3H, m), 6.47 (1H, bs), 4.23 (1H, dd, J = 6.6, 1.9), 3.24 (1H, m), 3.14, (1H, m), 2.96, (1H, m), 2.32 (1H, m), 2.15 (1H, m), 1.99 (1H, m), 1.78 (6H, m), 1.48 (1H, d, J = 10.1), 1.42 (3H, s), 1.27 30 (3H, s), 0.86 (3H, s).

()

EXAMPLE 898: R-N1-(3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetyl-borolysine, (+)-pinanediol ester, hydrochloride; $X = -CH_2NH_2$, $R^{13} = -CH_2Ph$, $R^{14} = -CH_2CN$, $Y^1, Y^2 = (+)$ -pin.

Part A. Ethyl benzylimidate, hydrochloride.

HCl gas (17.1 g, 469 mmol, 1.1 eq) was slowly bubbled into a solution of phenylacetonitrile (50.00 g, 10 427 mmol, 1 eq) in ethanol (27.6 mL, 469 mmol, 1.1 eq) at 0 °C. The reaction was put into the refrigerator over the weekend. After warming to room temperature, ether (300 mL) was added to the reaction mixture which had solidified and the contents were vigorously stirred 15 at 0 °C to pulverize the mixture. The solid material was filtered while cold under an inert atmosphere and the filter cake rinsed with some more ether. The product was dried under high vacuum to yield 60.0 g (mp 94.0-95.0 °C) of a white solid. A second crop yielded 20 20.98 g (96.0-97.5 °C).

25 Part B. 3-Cyanomethyl-5-phenylmethyl-1,2,4-triazole.

The imidate from part A (14.92 g, 91 mmol, 1 eq)
was dissolved in ethanol (250 mL) and cooled to 0 °C

under an inert atmosphere. Cyanoacetohydrazide (9.06 g, 91 mmol, 1 eq) dissolved as best possible in warm ethanol was added, and the resultant mixture stirred at room temperature overnight. The mixture was filtered, and the filtrate concentrated to yield a gummy orange 5 solid. Trituration from hexanes yielded 19.72 g of solid product acylamidrazone (MS detects $(M+H)^+ = 216$). This intermediate was heated neat (oil bath) at 170 °C under an inert atmosphere for 0.5 h to crack out water. 10 The product was cooled to room temperature and dissolved in ethyl acetate. The solvent was dried (MgSO4) and stripped to yield 11.89 g of an orange solid. Flash chromatography over silica gel in solvent systems consisting of 3:1 pentane/ethyl acetate to 100% ethyl 15 acetate to 4:1 chloroform/methanol yielded 6.76 g (38%) of a light pink solid product; m.p. = 140.0-142.5 °C. NMR (DMSO-d₆) ∂ 14.00-13.60 (bs, 1H); 7.40-7.10 (m, 5H); 4.08 (s, 2H); 4.05 (s, 2H). MS: $(M+H)^+ = 199.$

Part C. Ethyl (3-cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetate.

20

25

30

The compound from part B (3.36 g, 17 mmol, 1 eq) was added portionwise to a mixture of DMF and 50 % NaH (0.81 g, 17 mmol, 1 eq) at 25 °C. After H₂ evolution had ceased, the mixture was heated a little with a heat gun to ensure complete deprotonation. The mixture was cooled to 0 °C and ethyl bromoacetate (1.88 mL, 17 mmol, 1 eq) was added. The reaction was allowed to warm to room temperature and was stirred overnight. Ethyl acetate was added and the mixture washed with water (5x) to remove the DMF. The organic layer was dried (MgSO₄) and stripped to yield 6.10 g of a reddish

oil. Flash chromatography in 3:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate yielded 2.93 g of an amber oil which consisted of a 4:1 mixture of regioisomers as determined by NMR with the major isomer being depicted above. NMR (major isomer) (CDCl₃) ô 7.40-7.20 (m, 5H); 4.68 (s, 2H); 4.25-4.05 (m, 4H); 3.84 (s, 2H); 1.23 (t, 3H, J=7 Hz).

Part D. (3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetic acid.

The product of part C (1.00g, 3.52 mmol, 1 eq),
1.000 N NaOH (7.03 mL, 7.03 mmol, 2 eq) and methanol (10 mL) were mixed and stirred at room temperature. After
24h, the methanol was stripped and the aqueous mixture washed with ether (2x). The aqueous layer was then acidified with conc. HCl and extracted with ethyl acetate (3x). The organic layers were combined, dried (MgSO₄) and stripped to yield 0.66 g of an off-white
20 glass. MS (M+H) + = 257.

Part E. (+)-Pinanediol 5-bromo-1(R)-((3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate.

25

N-methylmorpholine (0.42 mL, 3.86 mmol, 1.5 eq) was added to a solution of the product in part D (0.66 g,

2.58 mmol, 1 eq) in THF at 25 °C. The mixture was cooled to -20 °C and isobutylchloroformate (0.50 mL, 3.86 mmol, 1.5 eq) in THF was added dropwise. In a seperate flask, pinanediol 5-bromo-1-R-aminopentane-1boronate hydrochloride (0.98 g, 2.58 mmol, 1 eq) was dissolved in CHCl₃ and cooled to -78 °C. Triethylamine (0.36 mL, 2.58 mmol, 1 eq) was then added and the mixture syringed immediately into the reaction flask with the mixed anhydride. The reaction was allowed then to warm to room temperature overnight. The next day, 10 the precipitate was filtered off and the solids were rinsed with THF. The filtrate was stripped to yield 410 mg of a white oil. Flash chromatography over silica gel in solvent systems consisting of 3:1 pentane/ethyl acetate to 100% ethyl acetate to 4:1 chloroform/methanol 15 yielded 300 mg of a clear, colorless viscous oil and only one regioisomer by NMR. MS $(M+H)^+ = 633$ and 635. NMR (CDCl₃) ∂ 7.40-7.10 (m, 5H); 6.13 (d, 1H, J=6 Hz); 4.62 (s, 2H); 4.40-4.20 (m, 1H); 4.17 (s, 2H); 3.86 (s, 1H); 3.50-3.20 (m, 3H); 2.40-2.10 (m, 2H); 2.10-20 1.75 (m, 4H); 1.75-1.10 (m, 13 H); 0.83 (s, 3H).

Part F. (+)-Pinanediol 5-azido-1(R)-((3-Cyanomethyl-5phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1boronate.

30

The product from Part E (300 mg, 0.52 mmol, 1 eq), sodium azide (1.03 mmol, 2 eq), and DMSO (5 mL) were mixed and stirred at room temperature under an inert atmosphere for 24 h. Ethyl acetate was added and the

mixture rinsed with water (5x). The ethyl acetate layer was dried (MgSO4) and stripped to yield 256 mg of a light amber oil. IR (neat) 2096 cm-1. NMR (CDCl3) ∂ 7.40-7.10 (m, 5H); 6.15 (d, 1H, J=6 Hz); 4.62 (s, 2H); 4.40-4.20 (d of d, 1H, J=7, 2 Hz); 4.20-4.10 (m, 2H); 3.85 (s, 2H); 3.40-3.10 (m, 3H); 2.50-1.40 (m, 9H); 1.40-1.00 (m, 9 H); 0.84 (s, 3H).

Part G. (+)-Pinanediol 5-amino-1(R)-((3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate, hydrochloride salt.

The product from Part F (250 mg, 0.46 mmol, 1 eq) and triphenylphosphine (157 mg, 0.6 mmol, 1.3 eq) and 15 THF (5 mL) were mixed and stirred at room temperature. After 1 h, water (11 μ M, 0.6 mmol, 1.3 eq) was added and the mixture stirred overnight. After 24 h, the reaction was not finished, and thus 1.3 eq more equivalents of water were added and the reaction stirred for another 24 20 The reaction was now complete and 1 equivalent of 1.000 N HCl was added. The reaction was then stripped and water was added and the reaction again stripped. Ethyl ether was added and the mixture stripped once more. The residue was dried under high vacuum to yield 25 138 mg of a white glass. MS detects $(M+H)^+ = 519$ and 385 (minus pinanediol). Mass calculated for $C_{28}H_{40}BN_6O_3$: 519.3255. Found: 519.3274. NMR shows a 1:1 mixture of pinanediol ester and free boronic acid.

20

EXAMPLE 908: $R-N^1-(3-(1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetyl-borolysine, (+)-pinanediol ester, hydrochloride; <math>X = -CH_2NH_2$, $R^{13} = -CH_2Ph$, $R^{14} = -CH_2-(CN_4H)$, $Y^1,Y^2 = (+)-pin$.

Part A. Ethyl (3-(N-triphenylmethyl)-1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetate

The product from Example 360, part C (1.83 g, 6.44 mmol, 1 eq), tributyltin chloride (1.75 mL, 6.44 mmol, 1 eq), sodium azide (0.42 g, 6.44 mmol, 1 eq), and xylenes (15 mL) were mixed and refluxed for 24h under an inert atmosphere. The mixture was cooled to room temperature and pyridine was then added (0.57 mL, 7.08 mmol, 1.1 eq) followed after 0.5 h by trityl chloride (1.97 g, 7.08 mmol, 1.1 eq). The following day, the reaction was worked up by adding ethyl ether and rinsing the mixture with water (3x). The ether layer was dried (MgSO4), and stripped to yield 5.66 g of an amber oil. Flash chromatography in 3:1 pentane/ethyl acetate to 100% ethyl acetate over silica gel yielded 1.33 g of an amber

oil which eventually crystallized. MS detects $(M+H)^+ = 570$ and 328 $(M+H-CPh_3)^+$.

5

Part B. (3-(N-Triphenylmethyl)-1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetic acid.

The product from part A (200 mg, 0.35 mmol, 1 eq), 1.000 N NaOH (0.39 mL, 0.39 mmol, 1.1 eq) and THF (5 mL) were mixed and stirred at room temperature under an inert atmosphere for 24 h. The reaction was not finished and thus 0.5 eq more of 1.000 N NaOH were added and stirred overnight. Water was then added and the pH adjusted to 5 with 1N HCl. The mixture was stripped to dryness. The residue was stirred in ethyl acetate. Some solids were filtered and the filtrate was stripped to yield 190 mg of a white glass. NMR (CDCl₃) & 7.40-7.15 (m, 12 H); 7.15-7.00 (m, 8 H); 4.55 (s, 2); 4.40 (s, 2H); 4.10 (s, 2H).

Part C. (+)-Pinanediol 5-azido-1(R)-((3-((N-triphenylmethyl)-1H-tetrazol-5-ylmethyl)-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate.

The compound in part B was converted to the corresponding azidoboronic acid pinanediol ester by the methods disclosed in example 360, parts E and F. IR (neat) 2095 cm⁻¹. NMR (CDCl₃) 0 7.45-7.20 (m, 12H);

5 7.17 (d, 2H, J=7 Hz); 7.12 (d, 6H, J=7 Hz); 6.34 (d, 1H, J=6 Hz); 4.60 (s, 2H); 4.42 (s, 2H); 4.27 (d, 1H, J=7 Hz); 3.13 (t, 2H, J=2 Hz); 3.06 (q, 1H, J=7 Hz); 2.40-2.10 (m, 2H); 2.01 (t, 1H, J=6 Hz); 1.95-1.70 (m, 2H); 1.60-1.40 (m, 4H); 1.37 (s, 3H); 1.35-1.20 (m, 10 5H); 1.16 (d, 1H, J=11 Hz); 0.82 (s, 3H). MS detects (M+H) + 830 and (M+H-CPh₃) +=588.

(ئى

Part D. R-N1-(3-(1H-tetrazo1-5-y1)methy1-5
phenylmethy1-1,2,4-triazo1-1-y1)acety1-borolysine, (+)pinanediol ester, hydrochloride.

The product from part C (135 mg, 0.16 mmol, 1 eq), 10% Pd on carbon (25 mg), chloroform (39 μL, 0.49 mmol, 3 eq) and methanol (5 mL) were mixed and stirred under hydrogen under balloon pressure for 24 h at room temperature. The mixture was filtered through a Celite® cake rinsing the cake well with methanol afterwards. The filtrate was stripped to yield an off-white glass. This glass was triturated with ethyl ether to yield after drying 50 mg of an off-white solid. Mass calcd. for C₂₈H₄₁BN₉O₃: 562.3425. Found: 562.3413. NMR (DMSO-d₆) ∂ 8.75-8.50 (m, 1H); 7.40-7.10 (m, 5H); 4.87 (bs, 2H); 4.30-4.00 (m, 5H); 2.96-2.60 (m, 3H); 2.40-

2.00 (m, 2H); 1.91 (t, 1H, J=6 Hz); 1.90-1.75 (m, 1H); 1.75-1.10 (m, 14 H); 0.80 (s, 3H).

5

EXAMPLE 3458. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borolysine, (+)-pinanediol ester, hydrochloride; $X = -CH_2NH_2$, $R^{13} = -ph$, $R^{14} = -CH_3$, $R^{15} = H$, $Y^1, Y^2 = (+)$ -pin.

10

٨

Part A. 2-Phenyl-4-methylpyrimidin-5-carboxylic acid.

The above compound was synthesized by the procedure of P. Schenone, L. Sansebastiano, L. Mosti J.

- 15 Heterocyclic Chem. 1990, 27, 302 which is generally applicable to a wide variety of pyrimidine-5-carboxylic acids.
- Part B. R-N1-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borolysine, (+)-pinanediol ester, hydrochloride.

The product was obtained using the procedures described in example 360, parts E and F and example 361, part D followed by prepatory TLC in 4:1

25 chloroform/methanol. (M+H) +=477. NMR (DMSO-d₆) 0 8.86 (s, 1H); 8.50-8.30 (m, 2H); 7.70-7.40 (m, 3H); 4.25 (d, 1H, J=7 Hz); 2.90-2.70 (m, 3H); 2.64 (s, 3H); 2.40-1.00 (m, 15H); 0.84 (s, 3H).

EXAMPLE 3538. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)boroarginine, (+)-pinanediol ester, hydrochloride; $X = -NH(C=NH)NH_2$, $R^{13} = -Ph$, $R^{14} = -CH_3$, $R^{15} = H$, $Y^1, Y^2 = (+)-pin$.

Part A. R-N1-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)boroornithine, (+)-pinanediol ester, hydrochloride.

The above intermediate was synthesized by the procedures described for example 361 using the appropriate starting materials.

Part B. $R-N^1-((2-phenyl-4-methylpyrimidin-5-$

15 yl)carbonyl)boroarginine, (+)-pinanediol ester,
hydrochloride.

10

The product from part A (500 mg, 1 mmol, 1 eq), formamidinesulfonic acid (224 mg, 1.8 mmol, 2 eq), 4-(N,N-dimethylamino)pyridine (220 mg, 1.8 mmol, 2 eq, and ethanol (20 mL) were mixed and refluxed under an inert atmosphere for 5 hours. Some solid material was filtered and the filtrate was stripped to yield a yellow glass. The glass was taken up in chloroform/0.1 N HCl. Solids precipitated. These were filtered and dried to

yield 144 mg of product as a white powder: mp 132 °C (dec.). (M+H) $^+$ =505.

Mass calcd. for C₂₇H₃₈BN₆O₃: 505.3086. Found: 505.3098. NMR (DMSO-d₆) ∂ 8.89 (s, 1H); 8.60-8.40 (m, 2H); 8.05-7.80 (m, 1H); 7.65-7.40 (m, 3H); 7.40-6.80 (m, 3H); 4.19 (d, 1H, J=7 HZ); 3.60-3.20 (m, 3H); 2.85-2.40 (m, 4H); 2.40-1.95 (m, 1H); 1.95-1.00 (m, 16 H); 0.80 (t, 3H).

10

20

25

Example 5926. N^1 -[(4R)-2-(2-Phenyl)ethyl-Thiazoline-4-Carboxy]-R-borothioarginine-(+)-pinanediol ester

Part A. (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic acid ethyl ester.

Cysteine ethyl ester hydrochloride (950 mg, 5.10 mmol) was added to a solution of ethyl (2 - phenyl)ethylimidate (900 mg, 5.10 mmol) [prepared by the method of North, M.; Pattenden, G. Tetrahedron 1990, 46, 8267] in EtOH (20 mL) at room temperature. The reaction mixture was stirred for 16 h and concentrated under reduced pressure. The residue was partitioned between H2O (ca. 50 mL) and EtOAc (ca. 100 mL) and the layers were separated; the aqueous phase was extracted with EtOAc (1 x 20 mL). The combined organic layers were washed with saturated aqueous NaCl (1 x 50 mL), dried (Na2SO4), and concentrated under reduced pressure to

give an oil which was purified by flash chromatography, elution with 3:1 hexanes - EtOAc, to afford 885 mg (66%) of the title compound as a colorless oil. 1 H NMR (300 MHz, CDCl₃) 5 7.23 (comp, 5H), 5.05 (dd, 1H, J = 9.5, 9.1 Hz), 4.27 (dq, 2H, J = 7.0, 1.8 Hz), 3.55 (m, 2H), 2.97 (m, 2H), 2.86 (m, 2H), 1.32 (t, 3H, J = 7.0 Hz); LRMS 264 (M + 1, base).

Part B. (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic acid.

A solution of lithium hydroxide monohydrate (96 mg, 2.28 mmol) in H_2O (2 mL) was added to a solution of (4R) - 2 - (2 - phenyl)ethyl - thiazoline - 4 - carboxylic acid ethyl ester (400 mg, 1.52 mmol) in THF (8 mL) and MeOH (5 mL). The reaction mixture was stirred at room 15 temperature for 1 h at which time 2M aqueous HCl was added until pH = 2 and the aqueous phase was extracted with EtOAc (2 \times 30 mL). The combined organic layers were washed with saturated aqueous NaCl (1 \times 20 mL), dried $(MgSO_4)$, and concentrated under reduced pressure 20 to give 340 mg (95%) of the title compound as an oil. $^{1}\mathrm{H}$ NMR (300 MHz, CDCl₃) & 7.22 (comp, 5H), 6.86 (br s, 1H), 5.14 (dd, 1H, J = 9.5, 9.1 Hz), 3.64 (m, 2H), 2.96 (comp, 4H); LRMS 236 (M + 1, base).

25

Part C. (1R)-4-Bromo-1-[(4R)-2-(2-Phenyl)ethyl-thiazoline-4-carbox]amido-1-boronic acid-(+)-pinanediolester.

A solution of (4R) - 2 - (2 - phenyl)ethyl
thiazoline - 4 - carboxylic acid (335 mg, 1.43 mmol) and

4 - methylmorpholine (0.47 mL, 4.28 mmol) in 10 mL of
anhydrous THF at -20 °C was treated with i - butyl
chloroformate (0.20 mL, 1.57 mmol) and stirred for 2 min
after which a solution of (1R) - 4 - bromoaminobutane
1 - boronic acid (+) - pinanediol ester (522 mg, 1.43
mmol) in 4 mL of anhydrous DMF was added. The reaction

WO 96/20689

mixture was stirred at -20 $^{\rm OC}$ for 15 min, warmed to room temperature over 18 h then poured into EtOAc (ca. 100 mL) and washed with H₂O (3 x 25 mL), and saturated aqueous NaCl (1 x 25 mL), dried (Na₂SO₄) and

- concentrated under reduced pressure. The residue was purified by flash chromatography, elution with 3:2 hexanes EtOAc, to give 306 mg (39%) of the title compound as an oil. LRMS 549, 547 (M + 1, base).
- Part D. <u>N¹-[(4R)-2-(2-Phenyl)ethyl-Thiazoline-4-</u> Carboxy]-R-borothioarginine-(+)-pinanediol ester.

A mixture of (1R) - 4 - bromo - 1 - [(4R) - 2 - (2 - phenyl)ethyl - thiazoline - 4 - carbox]amido - 1 - boronic acid (+) - pinanediol ester (295 mg, 0.54 mmol)

- and thiourea (82 mg, 1.08 mmol) in 10 mL of EtOH was heated at reflux for 14 h then cooled to room temperature and concentrated under reduced pressure. The residue was purified by size exclusion chromatography on Sephadex LH 20, elution with MeOH,
- to give a glass which was dissolved in 3 mL of THF and treated with Et₂O (ca. 10 mL) to give a solid that was washed with Et₂O (ca. 5 mL) and dried to afford 230 mg (68%) of the title compound. LRMS 543 (M + 1, base); HRMS Calcd for C₂₇H₄OBN₄O₃S₂: 543.2635. Found:

25 543.2643.

The compounds in the following tables were or can be synthesized by the methods discussed previously or by methods familiar to one skilled in the art.

5

The compounds listed in Tables 1-61 may be prepared using the above examples. It is understood that R^{14-16} and R^{A-C} in the tables correspond to independent R^{13} groups as described within the scope of this application.

Table 1

Ex	x	RA	$\mathbb{R}^{\mathbb{B}}$	RC	Y^1,Y^2	Phys
						Data.
1	NHC (NH) NH2	H	н	Ph	(+)-pin	A
2	NHC (NH) NH ₂	H ÷	Ph	н	(+)-pin	BZ
3	NHC (NH) NH2	H "	OPh	Ph	(+)-pin	B
4	NHC (NH) NH ₂	н	н	4-pyridyl	(+)-pin	c
5	NHC (NH) NH ₂	COPh	н	н	(+)-pin	
6	NHC (NH) NH2	H	COPh	н	(+)-pin	
7	NHC (NH) NH ₂	н	н	COPh		
8	NHC (NH) NH2	н	NHCbz	H	(+)-pin	
9	NHC (NH) NH2	н	NMeCbz	H	(+)-pin	
10	NHC (NH) NH2	н	Н		(†)-pin	
11	NHC (NH) NH ₂	•		Et	(+)-pin	
	_	H	H	n-Pr	(+)-pin	
12	NHC (NH) NH ₂	н	H	i-Pr	(+)-pin	
13	NHC (NH) NH ₂	н	н	n-Bu	(+)-pin	
14	NHC (NH) NH ₂	H	н	t-Bu	(+)-pin	
15	NHC (NH) NH2	н	·H	n-hexyl	(+)-pin	
16	NHC (NH) NH ₂	H	H	cyclohexyl	(+)-pin	

17	NHC (NH) NH ₂	NHCO (CH ₂) ₂ Ph	н	H	(+)-pin	
18	NHC (NH) NH ₂	H	н	O-n-Bu	(+)-pin	
19	NHC (NH) NH ₂	н	н	NHCOcyclopi	(+)-pin	
				opyl		
20	NHC (NH) NH ₂	н .	н	NHCO-	(+)-pin	
				cyclohexyl		
21	NHC (NH) NH ₂	н	н	NHCO (4-	(+)-pin	
				C6H4OMe)		
22	NHC (NH) NH ₂	H	H j	4-C6H4OMe	(+)-pin	
23	NHC (NH) NH ₂	CO2CH2 (2-	H	н	(+)-pin	
		C ₆ H ₄ Ph)				
24	NHC (NH) NH ₂	н	н	1-naphthyl	(+)-pin	
25	NHC (NH) NH ₂	н .	н	4-C6H4CO2H	(+)-pin	
26	NHC (NH) NH ₂	COPh	н	Me	(+) -pin	
27	NHC (NH) NH ₂	н	NHCbz	n-Bu	(+)-pin	
28	NHC (NH) NH ₂	н	NMeCbz	n-Bu	(+)-pin	
29	NHC (NH) NH ₂	Me	H	Ph	(+)-pin	СВ
30	NHC (NH) NH ₂	Me	н	4-C6H4CO2H	(+)-pin	
31	NHC (NH) NH ₂	н	н	4-C6H4CO2Me	(+)-pin	
32	NHC (NH) NH ₂	Me .	. н	4-C6H4CO2Me	(+)-pin	
33	NHC (NH) NH ₂	H ·	OMe	Ph	(+)-pin	
34	SC (NH) NH ₂	н	н	Ph	(+)-pin	מ
35	SC (NH) NH ₂	н	Ph	н	(+)-pin	E
36	SC (NH) NH ₂	Н	OPh	н	(+)-pin	F
37	SC (NH) NH ₂	COPh	н	н	(+)-pin	G
38	SC (NH) NH ₂	H ·	COPh	н .	(+)-pin	н
. 39	SC (NH) NH ₂	н	н	COPh	(+)-pin	ľ
40	SC (NH) NH ₂	H ;	NHCbz	н	(+)-pin	J
41	SC (NH) NH ₂	H.	NMeCbz	H	(+)-pin	ĸ
42	SC (NH) NH ₂	H	H .	Et	(+)-pin	L
43	SC (NH) NH ₂	н	н	n-Pr	(+)-pin	M
44	SC (NH) NH ₂	н	H	i-Pr	(+)-pin	N
45	SC (NH) NH ₂	н	н	n-Bu	(+)-pin	0
46	SC (NH) NH ₂	H -	н	t-Bu	(+)-pin	P
47	SC (NH) NH ₂	H	H .	n-hexyl	(+)-pin	Q

48	SC (NH) NH ₂	н	H .	cyclohecyl	(+)-pin	R
49	SC (NH) NH ₂	NHCOCH2CH2PL	н	н	(+)-pin	s
50	SC (NH) NH ₂	н	н	O-n-Bu	(+)-pin	T
51	SC (NH) NH ₂	н	H	NHCOcyclops	(+)-pin	ט
				opyl	_	
52	SC (NH) NH_2	н	н	NHCOcyclohe	(+)-pin	v
			•	xyl ·		
53	SC (NH) NH ₂	н	H	NHCO (4-	(+)-pin	W
			•	C ₆ H ₄ OMe)		
54	SC (NH) NH ₂	н	н	4-C6H4OMe	(+)-pin	x
55	SC (NH) NH ₂	CO ₂ CH ₂ (2-	H	н	(+)-pin	Y
		C ₆ H ₄ Ph)				
56	SC (NH) NH ₂	H	H	1-naphthy1	(+)-pin	
57	SC (NH) NH ₂	н	н	4-C6H4CO2H	(+)-pin	
58	SC (NH) NH ₂	н	NHCbz	n-Bu	(+)-pin	z
59	SC (NH) NH ₂	н	NMeCbz	n-Bu	(+)-pin	AA
60	SC (NH) NH ₂	COPh	н	Me	(+)-pin	BB
61	SC (NH) NH ₂	H 8	н	4-pyridyl	(+)-pin	
62	SC (NH) NH ₂	Me	H	4-C6H4CO2H	(+)-pin	
63	SC (NH) NH ₂	H	H.	4-C6H4CO2Me	(+)-pin	
64	SC (NH) NH ₂	Ме	н	4-C6H4CO2Me	(+)-pin	
65	SC (NH) NH ₂	Me	н	Ph	(+)-pin	
66	SC (NH) NH ₂	н	OMe	Ph	(+)-pin	
67	CH ₂ NH ₂	Н	н	Ph	(+)-pin	
68	CH ₂ NH ₂	H	Ph	н	(+)-pin	YY .
69	CH ₂ NH ₂	H	OPh	н	(+)-pin	
70	CH ₂ NH ₂	COPh	н	H .	(+)-pin	
71	CH2NH2	н	COPh	H	(+)-pin	
72	CH ₂ NH ₂	н .	H	COPh	(+)-pin	
73	CH ₂ NH ₂	н	NHCbz	н	(+)-pin	
74	CH2NH2	н	NMeCbz	' н	(+)-pin	
75	CH ₂ NH ₂	н	н	Et	(+)-pin	
76	CH ₂ NH ₂	H	н	n-Pr	(+)-pin	
77	CH ₂ NH ₂	H	H	i-Pr	(+)-pin	
78	CH ₂ NH ₂	H	н	n-Bu	(+)-pin	

. 79	CH ₂ NH ₂	н	н	t-Bu	(+)-pin
80	CH ₂ NH ₂	н	H	n-hexyl	(+)-pin
81	CH ₂ NH ₂	н	н	cyclohexyl	(+)-pin
82	CH ₂ NH ₂	MHCOCH2CH2PI	н	н	(+)-pin
83	CH ₂ NH ₂	н	H	O-n-Bu	(+)-pin
84	CH ₂ NH ₂	н	н	NHCOcyclop:	r (+)-pin
				opyl	
85	CH ₂ NH ₂	н	н	NHCOcyclohe	e (+)-pin
				xy1	
86	CH ₂ NH ₂	н	H-	NHCO (4-	(+)-pin
				C6H4OMe)	
87	CH ₂ NH ₂	H	н	4-C6H4OMe	(+)-pin
88	CH ₂ NH ₂	CO ₂ CH ₂ (2-	н	н	(+)-pin
		C6H4Ph)			
89	CH ₂ NH ₂	н	H	1-naphthyl	(+)-pin
90	CH ₂ NH ₂	н	H	4-C6H4CO2H	(+)-pin
91	CH ₂ NH ₂	н	NHCbz	n-Bu	(+)-pin
92	CH ₂ NH ₂	H	NMeCbz	n-Bu	(+)-pin
93	CH ₂ NH ₂	COPh	н	Me	(+)-pin
94	CH ₂ NH ₂	H	н	4-pyridyl	(+)-pin
95	CH ₂ NH ₂	Me	н	4-C6H4CO2H	(+)-pin
96	CH ₂ NH ₂	н	H	4-C6H4CO2Me	(+)-pin
97	CH ₂ NH ₂	Me	H	4-C6H4CO2Me	(+)-pin
98	CH ₂ NH ₂	Me	н	Ph	(+)-pin
99	CH ₂ NH ₂	H	OMe	Ph	(+)-pin
100	CH2NH2	н	ОМе	Ph	он, он
101	NHC (NH) NH ₂	H	н	· Ph	OH, OH
102	NHC (NH) NH ₂	H	Ph	H	он, он
103	NHC (NH) NH2	H	OPh	Ph	ОН,ОН
104	NHC (NH) NH ₂	H	н	4-pyridyl	OH, OH
105	NHC (NH) NH ₂	COPh	н	н .	ОН, ОН
106	NHC (NH) NH ₂	H	COPh	н	он, он
107	NHC (NH) NH2	н	H .	COPh	он, он
108	NHC (NH) NH ₂	н	NHCbz	н	OH, OH
109	NHC (NH) NH ₂	н	NMeCbz	н	он, он

	3770 (270) 200					
110	NHC (NH) NH ₂	H	H	Et	OH, OH	
111	NHC (NH) NH ₂	н	н	n-Pr	OH, OH	
112	NHC (NH) NH ₂	H	H	i-Pr	OH, OH	
113	NHC (NH) NH ₂	. н	H	n-Bu	OH, OH	
114	NHC (NH) NH ₂	н	н	t-Bu	OH, OH	
115	NHC (NH) NH ₂	н	H	n-hexyl	OH, OH	
116	NHC (NH) NH ₂	H	, H	cyclohexy1	он, он	
117	NHC (NH) NH ₂	NHCO (CH ₂) ₂ Pb	H,	н	OH, OH	
118	NHC (NH) NH ₂	н	H.	O-n-Bu	OH, OH	
119	NHC (NH) NH ₂	н .	H	NHCOcyclops	ОН,ОН	
				opy1	1	
120	NHC (NH) NH ₂	н	H.	NHCO-	OH, OH	
		,		cyclohexy1		
121	NHC (NH) NH ₂	н	H	NHCO (4-	он, он	
				C ₆ H ₄ OMe)		
122	NHC (NH) NH ₂	H	H	4-C6H4OMe	OH, OH	
123	NHC (NH) NH ₂	CO ₂ CH ₂ (2-	H	н	OH, OH	
		C ₆ H ₄ Ph)				
124	NHC (NH) NH ₂	Н	H	1-naphthyl	OH, OH	
125	NHC (NH) NH ₂	H	H	4-C6H4CO2H	OH, OH	
126	NHC (NH) NH ₂	COPh	H	Me	OH, OH	•
127	NHC (NH) NH ₂	н .	NHCbz	n-Bu	он, он	
128	NHC (NH) NH ₂	н	MeCbz	n-Bu	ОН, ОН	
129	NHC (NH) NH ₂	Me	н	Ph	ОН, ОН	CD
130	NHC (NH) NH ₂	Me	Н	4-C6H4CO2H	он, он	
131	NHC (NH) NH2	H .	н	4-C6H4CO2Me	ОН, ОН	
132	NHC (NH) NH ₂	Me	H	4-C6H4CO2Me	он, он	
133	NHC (NH) NH ₂	H 4.	OMe	Ph	OH, OH	
134	SC (NH) NH ₂	н	H	Ph	он, он	
135	SC (NH) NH ₂	H	Ph	н	OH, OH	
136	SC (NH) NH ₂	н	OPh	н	OH, OH	
137	SC (NH) NH ₂	COPh	н	н	ОН, ОН	
138	SC (NH) NH2	н	COPh	H	он, он	
139	SC (NH) NH ₂	н	н	COPh	ОН, ОН	
140	SC (NH) NH ₂	н	NHCbz	н	OH, OH	
				•	-	

:::<u>.</u>

141	SC (NH) NH ₂	н	NMeCbz	.н	он, он
142	SC (NH) NH ₂	н	H	Et	он, он
143	SC (NH) NH ₂	н	H	n-Pr	он, он
144	SC (NH) NH ₂	н	н	i-Pr	он, он
145	SC (NH) NH ₂	н	H	n-Bu	он, он
146	SC (NH) NH ₂	н	H	t-Bu	он, он
147	SC (NH) NH ₂	н	H	n-hexyl	OH, OH
148	SC (NH) NH ₂	H -	н	cyclohexyl	он, он
149	SC (NH) NH ₂	NHCOCH2CH2Ph	н	н	он, он
150	SC (NH) NH ₂	н	н	O-n-Bu	он, он
151	SC (NH) NH ₂	н	H	NHCOcyclopr	он, он
				opyl	
152	SC (NH) NH ₂	н.	H	NHCOcyclohe	OH, OH
				xyl	
153	SC (NH) NH ₂	Ħ	H	NHCO (4-	OH, OH
				C6H4OMe)	
154	SC (NH) NH ₂	H	н	4-C6H4OMe	OH, OH
155	SC (NH) NH ₂	CO ₂ CH ₂ (2-	н	н	OH, OH
		C ₆ H ₄ Ph)		•	
156	SC (NH) NH ₂	н	н	1-naphthyl	он, он
157	SC (NH) NH ₂	н .	н	4-C6H4CO2H	он, он
158	SC (NH) NH ₂	н	NHCbz	n-Bu	OH, OH
159	SC (NH) NH ₂	H	NMeCbz	n-Bu	OH, OH
160	SC (NH) NH ₂	COPh	н	Me	он, он
161	SC (NH) NH ₂	н .	н	4-pyridyl	он, он
162	SC (NH) NH ₂	Me	H.	4-C6H4CO2H	он, он
163	SC (NH) NH ₂	Н	H	4-C6H4CO2Me	он, он
164	SC (NH) NH ₂	Me	H -	4-C6H4CO2Me	OH, OH
165	SC (NH) NH ₂	Me	H	Ph	он, он
166	SC (NH) NH ₂	H	OMe	Ph	OH, OH
167	CH ₂ NH ₂	H.	н	Ph .	OH, OH
168	CH ₂ NH ₂	н	Ph	H	он, он
169	CH ₂ NH ₂	H	OPh	н	он, он
170	CH ₂ NH ₂	COPh	н	H	он, он
171	CH ₂ NH ₂	н	COPh .	H	он, он

172	CH ₂ NH ₂	H	н .	COPh	он, он	
173	CH ₂ NH ₂	н	NHCbz	H	OH, OH	
174	CH ₂ NH ₂	н	NMeCbz	н	он, он	
175	CH ₂ NH ₂	н	H	Et	OH, OH	
176	CH ₂ NH ₂	н	н	n-Pr	он, он	
177	CH ₂ NH ₂	н	H	i-Pr	он, он	
178	CH ₂ NH ₂	н	н	n-Bu	он, он	
179	CH2NH2	. н	н	t-Bu	OH, OH	
180	CH ₂ NH ₂	н	н	n-hexyl	OH, OH	
181	CH ₂ NH ₂	н	н	cyclohexyl	он, он	
182	CH ₂ NH ₂	MHCOCH2CH2Ph	н	н	он, он	
183	CH ₂ NH ₂	Н	н	O-n-Bu	OH, OH	
184	CH ₂ NH ₂	H	н	NHCOcyclopr	OH, OH	
				opyl		
185	CH ₂ NH ₂	H	H .	NHCOcyclohe	он, он	
			•	xyl		
186	CH ₂ NH ₂	H .	н	NHCO (4-	он, он	
	•			C ₆ H ₄ OMe)		
187	CH ₂ NH ₂	H	н	4-C6H4OMe	он, он	
188	CH ₂ NH ₂	CO ₂ CH ₂ (2-	н	н	он, он	
		C ₆ H ₄ Ph)				
189	CH ₂ NH ₂	н	H	1-naphthyl	он, он	
190	CH ₂ NH ₂	н	H	4-C6H4CO2H	OH, OH	
191	CH ₂ NH ₂	н	NHCbz	n-Bu	он, он	
192	CH ₂ NH ₂	н	NMeCbz	n-Bu	OH, OH	
193	CH ₂ NH ₂	COPh	H	Me	он, он	
194	CH ₂ NH ₂	н	H	4-pyridyl	он, он	
195	CH ₂ NH ₂	Me	H	4-C6H4CO2H	он, он	
196	CH ₂ NH ₂	H	н	4-C6H4CO2Me	он, он	٠
197	CH ₂ NH ₂	Me	H	4-C6H4CO2Me	OH, OH	
198	CH ₂ NH ₂	Me .	H	Ph	OH, OH	
199	NH (C=NH) NH ₂	F	H	Ph	(+)-pin	SS
200	NH (C=NH) NH ₂	F	H	Ph	он, он	
201	NH (C=NH) NH ₂	NH ₂	н	Ph .	(+)-pin	
202	NH (C=NH) NH ₂	NH ₂	н	Ph	ОН, ОН	

203	NH (C=NH) NH;	NO ₂	н	Ph	(+) -pin	TT
204	NH (C=NH) NH;	NO ₂	н	Pb _.	OH, OH	
205	NH (C=NH) NH	OH.	н	Ph	(+) -pin	
206	NH (C=NH) NH	2 OH	H	Ph	он, он	
. 207	NH (C=NH) NH2	-NHSO2CF3	H	Ph	(+) -pin	
208	NH (C=NH) NH2	-NHSO2CF3	H	Ph	(+) -pin	
209	NH (C=NH) NH ₂	-NHSO2CH3	H	Ph	(+) -pin	
210	NH (C=NH) NH ₂	-NHSO2CH3	н	Ph	(+) -pin	
211	NH (C=NH) NH ₂	CH ₂ CN	H .	Ph	(+) -pin	
212	NH (C=NH) NH ₂	CH ₂ CN	н	Ph	он, он	
213	NH (C=NH) NH ₂	_	H	Ph	(+) -pin	
214	NH (C=NH) NH ₂		H	Ph	ОН, ОН	
215	NH (C=NH) NH ₂	-	H	Ph	(+) -pin	
216	NH (C=NH) NH ₂	_	H	Ph	ОН, ОН	
217	NH (C=NH) NH ₂	-	H	Ph	(+) -pin	
218	NH (C=NH) NH ₂	~	н	Ph	OH, OH	
219	NH (C=NH) NH ₂		H	Ph	(+)-pin	
220	NH (C=NH) NH ₂		H	Ph	ОН, ОН	
221	NH (C=NH) NH ₂	_	H	Ph	(+)-pin	
222	NH (C=NH) NH ₂	_	н	Ph.	он, он	
223	NH (C=NH) NH ₂	CH3	H	2-(t-butyl-	(+)-pin	סס
				MHSO ₂)-Ph		
224	NH (C≖NH) NH ₂	CH ₃	H	2-(t-butyl-	он, он	
	**			NHSO ₂) - Ph		
225	NH (C=NH) NH ₂	CH ₃	Н	2-(ethy1-	(+)-pin	
				NHSO2) - Ph		
226	NH (C=NH) NH ₂	CH ₃	H ·	2-(ethy1-	он, он	
				NHSO ₂) - Ph		
227	NH (C=NH) NH ₂	CH3	H	2- (H2NSO2) -	(+)-pin	ZZ
		1	-	Ph		
228	NH (C=NH) NH ₂	CH ₃	H	2-(H2NSO2)-	он, он	
				Ph		
229	NH (C=NH) NH ₂	СН3	. н	2- (MeCO-	(+)-pin	
				NHSO ₂) - Ph		

230	NH (C=NH) NH ₂	CV-				
-50	(0 1, 2	cn ₃	H .		OH, OH	
				NHSO ₂) - Ph		
231	NH (C=NH) NH ₂	CH ₃	н	2 - (MeOCO-	(+) -pin	AB
				NHSO2) - Ph		
232	NH (C=NH) NH ₂	CH ₃	H	2- (MeOCO-	он, он	
				NHSO2) - Ph		
233	NH (C=NH) NH ₂	CH ₃	н	2-(NH ₂)-Ph	(+) -pin	
234	NH (C=NH) NH2	CH ₃	н	2-(NH ₂)-Ph		
235	nh (c=nh) nh ₂	сн3	H .	2-	(+) -pin	
				(CH3SO2NH) -	_	
				Ph		
236	NH (C=NH) NH ₂	CH ₃	н	2-	ОН, ОН	•
			,	- (Сн ₃ SO ₂ NH) -	•	
	•			Ph		
237	NH (C=NH) NH ₂	CHa	н		4.3	
			n.	2- (m- m = m-)	(+) -pin	
				(CF3SO2NH) -		
238	NH (C=NH) NH ₂	Cu.		Ph.		
430	(0-201) 1012	Ch3	н .	2-	ОН, ОН	
				(CF3SO2NH) -		
	177.60 pms suc	<u></u>	:	Ph		
239	NH (C=NH) NH ₂		H	2- (CN4H) -Ph	(+)-pin	
240	NH (C=NH) NH ₂	_	H	2- (CN4H) -Ph	OH, OH	
241	NH (C=NH) NH ₂	_	H	2-(COOH)-Ph	(+)-pin	
242	NH (C=NH) NH ₂	_	H	2-(COOH)-Ph	ОН, ОН	
243	NH (C=NH) NH ₂	сн3	Н	3-(NH ₂)-Ph	(+)-pin	
244	NH (C=NH) NH ₂	CH ₃	н	3- (NH ₂) -Ph	он, он	
245	NH (C=NH) NH ₂	CH ₃	. н	3-	(+)-pin	
				(CH3SO2NH) -		
				Ph		
246	NH (C=NH) NH ₂	сн3	н	3-	OH, OH	
				(CH3SO2NH) -	J, J	
				Ph		
247	NH (C=NH) NH ₂	CH2	ОН			
248	NH (C=NH) NH ₂	-		Ph	(+) -pin	
249	NH (C=NH) NH ₂	•	OH	Ph	OH, OH	
		~13	NH ₂	Ph	(+)-pin	

250	NH (C=NH) NH	2 CH ₃	NH ₂	Ph	ОН, ОН
251	NH (C=NH) NH	2 F	н	2-(t-butyl-	
				NHSO ₂) - Ph	
252	NH (C=NH) NH	2 F	н	2-(t-butyl-	он, он
				NHSO2) -Ph	
253	NH (C=NH) NH	2 F	H	2-(ethy1-	(+)-pin
٠				NHSO ₂) - Ph	
254	NH (C=NH) NH ₂	F	н	2-(ethy1-	ОН, ОН
				NHSO2) - Ph	•
255	NH (C=NH) NH ₂	F	Н	2-(H ₂ NSO ₂)-	(+) -pin
256	NEW (CHANCE) AND	_		Ph	
. 436	NH (C=NH) NH ₂	F	н	2- (H ₂ NSO ₂) -	OH, OH
257	NH (C=NH) NH ₂			Ph	
43,	-m (C-wii) iii 2	F	н	2 - (MeCO-	(+)-pin
258	NH (C=NH) NH ₂	P	**	NHSO ₂) - Ph	
		•	н	2- (MeCO- NHSO ₂) - Ph	ОН, ОН
259	NH (C=NH) NH2	F	н	2- (MeOCO-	(4) .m.t.m.i
	_	_		NHSO ₂) - Ph	(+) -pin
260	NH (C=NH) NH ₂	F	н		OH, OH
				NHSO ₂) - Ph	o, o
261	NH (C=NH) NH2	н	н	2-(t-butyl-	(+)-pin AC
				NHSO ₂) -Ph	
262	NH (C=NH) NH ₂	C1 .	н	2-(t-buty1-	(+)-pin CE
				NHSO2)-Ph	
263	NH (C=NH) NH ₂	H	н	2-(t-butyl- (OH, OH AD
			••	NHSO2) - Ph	
264	NH (C=NH) NH ₂	Cl	H	2-(t-butyl- (он, он
				NHSO ₂) - Ph	
265	NH (C=NH) NH ₂	Cl	н	2-(ethy1-	(+)-pin
				NHSO ₂) - Ph	
266	NH (C=NH) NH ₂	C1	н	2-(ethyl-	OH, OH
	***			NHSO ₂) - Ph	
267	NH (C=NH) NH ₂	CI	Н	2-(H ₂ NSO ₂)- (+)-pin
				Ph	

268	NH.(C=NH) NH ₂	Cl	H .	2-(H ₂ NSO ₂)- OH, OH
				Ph
269	NH (C=NH) NH ₂	C1	H	2-(MeCO- (+)-pin
				NHSO ₂) - Ph
270	NH (C=NH) NH ₂	C1	H	2-(MeCO-OH, OH
				NHSO ₂) - Ph
271	NH (C=NH) NH ₂	C1	H	2-(MeOCO- (+)-pin
				MHSO ₂) - Ph
272	NH (C=NH) NH ₂	C1	H,	2-(MeOCO- OH, OH
				NHSO ₂) -Ph
273	NH (C=NH) NH ₂	NHSO2CH3	H	2-(t-butyl- (+)-pin
			•	NHSO ₂) -Ph
274	NH (C=NH) NH ₂	NHSO2CH3	H	2-(t-butyl- OH, OH
				NHSO2) - Ph
275	NH (C≕NH) NH ₂	NHSO2CH3	. н	2-(ethyl- (+)-pin
•				NHSO ₂) - Ph
276	NH (C=NH) NH ₂	MHSO2CH3	н	2-(ethy1- OH, OH
				NHSO ₂) - Ph
277	NH (C=NH) NH ₂	NHSO2CH3	н	2-(H ₂ NSO ₂)- (+)-pin
			•	Ph
278	NH (C=NH) NH ₂	NHSO2CH3	н	2-(H2NSO2)- OH, OH
				Ph
279	NH (C=NH) NH ₂	NHSO ₂ CH ₃	н	2-(MeCO- (+)-pin
	•			NHSO ₂) - Ph
280	NH (C=NH) NH ₂	NHSO2CH3	н	2-(MeCO- OH, OH
		,		NHSO ₂) -Ph
281	NH (C=NH) NH ₂	NHSO2CH3	н	2-(MeOCO- (+)-pin
				NHSO ₂) -Ph
282	NH (C=NH) NH ₂	NHSO2CH3	H	2 - (MeOCO - OH, OH
				NHSO ₂) - Ph
283	NH (C=NH) NH ₂	CH ₃	н	3-(t- (+)-pin vv
			•	buty10CO-
				NH) -Ph

284	NH (C=NH) NH	2 СН3	н	3-(t-	он, он	
				butyloco-		
				NH) -Ph		
285	NH (C=NH) NH ₂	N(Et) ₂	н	Ph	(+) -pin	-
286	NH (C=NH) NH ₂	CH ₃	н	2-((ethyl) ₂	(+)-pin	CF
				-NSO2) -Ph		
287	NH (C=NH) NH ₂	CH ₃	н	2- (n-Bu0CO-	(+)-pin	
				NHSO2) - Ph		
288	NH (C=NH) NH ₂	NO ₂	H .	2-(t-butyl-	(+)-pin	CG
				NHSO2) - Ph		
289	ин (с=ин) ин ₂	NO ₂	H	2-(t-butyl-	он, он	
				NHSO2) - Ph		
290	NH (C=NH) NH ₂	NO ₂	н	2-(ethyl-	(+) -pin	
				NHSO ₂) - Ph		
291	NH (C=NH) NH ₂	NO ₂	н	2-(ethy1-	ОН, ОН	
		•		NHSO ₂) - Ph		
292	NH (C=NH) NH ₂	NO ₂	H	2-(H ₂ NSO ₂)-	(+)-pin	
			•	Ph		
293	NH (C=NH) NH ₂	NO ₂	н	2- (H ₂ NSO ₂) -	он, он	
		٠.,		Ph		
294	NH (C=NH) NH ₂	NO ₂	н	2- (MeCO	(+) -pin	
		•		NHSO ₂) - Ph		
295	NH (C=NH) NH ₂	NO ₂	н	2 - (MeCO-	он, он	
				NHSO ₂) - Ph		
296	NH (C=NH) NH ₂	NO ₂	H	2- (MeOCO-	(+)-pin	
		•		NHSO ₂) - Ph		
297	NH (C=NH) NH ₂	NO ₂	н	2 - (MeOCO-	он, он	
	·			NHSO ₂) - Ph		
298	NH (C=NH) NH ₂	_ _	NO ₂	Ph	(+)-pin	AE
299	NH (C=NH) NH ₂	H	NH ₂	Ph	(+)-pin	AF
300	_	Н	NO ₂	Ph	он, он	
301		H	NH ₂		он, он	
302	NH (C=NH) H	Н	H	2-(t-buty1-	(+)-pin	CH
				NHSO ₂) - Ph		
303	NH (C=NH) NH ₂	2-NHBOC	н	Ph	(+)-pin	CI

304	NH (C=NH) NH ₂	2-NO ₂	н .	Ph	(+) -pin	CJ
305	-осн ₃	2-Me	H	2-(H2NSO2)-		
				Ph		
306	CH2NH2	CH ₃	н	4-thiophen-	(+) -pin	
			.,	2-y1	. , , ,	
307	CH ₂ NH ₂	CH ₃	 H	4-thiophen-	(+) -nin	
				3-yl	. , ,,	
308	CH2NH2	СН3	3-thio	н	(+)-pin	
			phen-		. , , , , , , , , , , , , , , , , , , ,	
			2-y1			
309	CH2NH2	CH ₃	3-thio	н	(+)-pin	
			phen-		() pair	
			3-y1			
310	CH2NH2	СН3		4-furan-2-	(+) -pin	
				yl	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠.
311	CH2NH2	сн3	н	4-furan-3-	(+) -pin	
				yl	. , ,	
312	CH2NH2	CH ₃	3-	H	(+) -pin	
			furan-			
	•		2-y1			
313	CH ₂ NH ₂	сн3	3-	н	(+) -pin	
			furan-			
			3-y1			
314	CH ₂ NH ₂	CH3	H	4-imidazol-	(+) -pin	
				2-yl		
315	CH ₂ NH ₂	CH ₃	н	4-imidazol-	(+) -pin	
	*			4-yl		
316	CH ₂ NH ₂	CH3	3-imid	H	(+) -pin	
			azol-			
			2-y1			
317	CH2NH2	CH ₃	3-imid	H	(+) -pin	
			azol-			
			4-yl			
318	CH ₂ NH ₂	СН3		4-pyrazol-	(+)-pin	
				1-y1	مبديق د	
				-		

319	CH ₂ NH ₂	CH ₃	н	4-pyrazol-	(+)-pin
				2-yl	
320	CH ₂ NH ₂	CH3	3-pyra	Н	(+) -pin
			zol-1-		
			уl		
321	CH2NH2	CH ₃	3-pyra	н	(+)-pin
			zo1-2-		
			уl		
322	CH ₂ NH ₂	СНЗ	H	4-pyrrol-1-	(+)-pin
	•	•.•		yl .	
323	CH2NH2	сн3	н	4-pyrrol-2-	(+)-pin
				yl	
324	CH ₂ NH ₂	CH3	3-	H	(+)-pin
			pyrrol.		
			-1-y1		
325	CH ₂ NH ₂	СН3	3-	н	(+)-pin
	,		pyrrol		
			-2-yl		
326	CH2NH2	CH ₃	· H	4-(1,2,4-	(+)-pin
				triazol-1-	
				yl)	
327	CH2NH2	сн3	H	4-(1,2,4-	(+)-pin
				triazol-2-	•
		.		yl)	
328	CH2NH2	сн3	3-	н	(+)-pin
			(1,2,4		
			-tri		
			azol-		
	•		1-y1)		
329	CH ₂ NH ₂	СН3	3-	н	(+)-pin
			(1,2,4	•	
			-tri		
			azol-		
			1-y1)		

330	CH2NH2	СНЗ	н .	4-(1,2,3-	(+)-pin
				triazol-1-	
				y1)	٠
331	CH ₂ NH ₂	CH3	H	4-(1,2,3-	(+) -pin
				triazol-4-	
		,		yl)	
332	CH ₂ NH ₂	CH ₃	3-	н	(+)-pin
			(1,2,3		
			-tri		
			azol-		٠.
		·	1-y1)		
333	CH ₂ NH ₂	CH ₃	3-	H	(+) -pin
			(1,2,3		
			-tri		
			azol-		
			4-y1)		
334	CH ₂ NH ₂	CH3	H	4-tetrazol-	(+)-pin
				1-yl	
335	CH ₂ NH ₂	CH ₃	Н	4-tetrazol-	(+) -pin
				5-yl	•
- 336	CH ₂ NH ₂	CH3	3-	H	(+) -pin
			tetra		
			zo1-1-		
			y1		
337	CH ₂ NH ₂	СН3	3-	H	(+) -pin
			tetra		
		-	zo1-5-		
			yl		·
338	CH ₂ NH ₂	CH3	H	4-0xazo1-2-	(+)-pin
				yl	
339	CH ₂ NH ₂	CH ₃	н	4-0xazo1-4-	(+)-pin
				yl	
340	CH ₂ NH ₂	сн3	H	4-oxazol-5-	(+)-pin
				yl	

341	сн ₂ ин ₂	CH ₃	3-	н	(+)-pin
			oxazol		
			-2-y1		
342	CH ₂ NH ₂	СН3	3-	н	(+)-pin
			oxazo1		
	ē		-4-yl		
343	CH2NH2	СНЗ	3-	н	(+) -pin
			oxazol		
			-5-yl		
344	CH ₂ NH ₂	CH3	н	4-thiazol-	(+) -pin
		•		2-y1	
345	CH ₂ NH ₂	CH3.	н	4-thiazol-	(+)-pin
•	•	,		4-yl	
346	CH ₂ NH ₂	CH ₃	н	4-thiazol-	(+)-pin
				5-y1	
347	CH ₂ NH ₂	CH ₃	. 3-thia	н	(+) -pin
		•	zol-2-		
	•		yl		
348	CH ₂ NH ₂	CH3	3-thia	н	(+)-pin
			zo1-4-		•
			yl		
349	CH ₂ NH ₂	CH ₃	3-thia	н	(+) -pin
			zo1-5-		
			yl	•	
350	CH ₂ NH ₂	CH3	H	4-pyridin-	(+)-pin
	-		•	2-y1	
351	CH ₂ NH ₂	CH ₃	Н	4-pyridin-	(+) -pin
	~· ·			3-y1	
352	CH ₂ NH ₂	CH ₃	3-pyri	H ·	(+)-pin
		**	din-2-		
252	(W-17)	<u>ٺ</u> .	γl		
353	CH ₂ NH ₂	СН3	3-pyri	н	(+) -pin
			din-3-		
			yl .		

354	CH ₂ NH ₂	CH3	н	4-pyrimi	(+)-pin	
				din-2-yl		
355	CH ₂ NH ₂	CH3	H .	4-pyrimi	(+) -pin	
				din-4-yl		
356	CH ₂ NH ₂	CH3	H	4-pyrimi	(+)-pin	
				din-5-yl		,
357	CH2NH2	CH3	3-pyri	н	(+)-pin	
			midin-			
			2-y1			
358	CH ₂ NH ₂	CH3	3-pyri	н	(+) -pin	
			midin-	•		
	•		4-yl			
359	CH ₂ NH ₂	сн3.	3-pyri	н	(+)-pin	
			midin-	•		
			5-yl	•		
(+)	-pin indicat	es (+)-pinane	diol			
A:	MS (M+H) +	= 489;				
B:	MS (DCI -	NH ₃), 505 ($M + H)^+$			
	MS (M+H)+		•			
D:	MS (M+H) +	= 506;				
E:	mp 145-150	°C; MS (DC	I - NH3),	Calc: 506	Found.	506
F:	MS (DCI -	NH ₃), 522 (M + H) +.	2007	- ound;	JUB.

G: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

H: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2605.

10 I: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

J: $[a]_D = -14.85^{\circ}$ (c = 0.606, MeOH); MS (CI - NH₃), m/e (%) 537.2 (10.2, M + H - H₂NCN)+), 429.0 (42.8), 277.0

(100); Anal. Calcd for $C_{30}H_{40}BBrN_4O_5S$: C, 54.64; H,

6.11; N, 8.50; B, 1.64. Found: C, 54.52; H, 6.16; N,

15 8.45; B, 1.60.

K: $[a]_D = -15.07^{\circ}$ (c = 0.604, MeOH); MS (CI - NH₃), m/e

(%) 593.2 (1.2, $(M + H)^+$), 568.3 (22, $(M + NH_4)^+$

 $H_2NCN)^+$), 551.3 (100, (M + H - $H_2NCN)^+$); Anal. Calcd for $C_{31}H_{42}BBrN_4O_5S$: C, 55.29; H, 6.29; N, 8.32; B, 1.61.

20 Found: C, 55.15; H, 6.21; N, 8.22; B, 1.47.

- L: $[a]_D = -14.12^{\circ}$ (c = 0.602, MeOH); MS (DCI NH₃), m/e (%) 458 (100, (M + H)+); Anal. Calcd for $C_{24}H_{37}BBrN_3O_3S$: C, 53.54; H, 6.93; N, 7.81; B, 2.01. Found: C, 53.75; H, 6.98; N, 7.74; B, 1.97.
- 5 M: [a]_D = -14.21° (c = 0.556, MeOH); MS (CI NH₃), m/e (%) 472.2 (13.5, (M + H)⁺), 430.2 (100, (M + H H₂NCN)⁺), 278.0 (61.9); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.50; H, 7.18; N, 7.83; B, 1.73.
- 10 N: $[a]_D = -13.79^\circ$ (c = 0.602, MeOH); MS (DCI NH₃), m/e (%) 472 (100, (M + H)+), 430 (37, (M + H H₂NCN)+); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.64; H, 7.17; N, 7.50; B, 1.74.
- 15 O: $[a]_D = -13.19^\circ$ (c = 0.364, MeOH); MS (CI NH₃), m/e (%) 486.2 (3.3, (M + H)⁺), 444.2 (87.1, (M + H H₂NCN)⁺), 292.0 (100); Anal. Calcd for C₂₆H₄₁BBrN₃O₃S: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 54.99; H, 7.22; N, 7.29; B, 2.07.
- 20 P: $[a]_D = -12.71^\circ$ (c = 0.598, MeOH); MS (DCI NH₃), m/e (%) 486 (100, (M + H)+), 444 (16, (M + H H₂NCN)+); Anal. Calcd for $C_{26}H_{41}BBrN_3O_3S$: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 55.09; H, 7.45; N, 7.40; B, 1.67.
- 25 Q: MS (DCI NH₃), m/e (%) 514 (100, (M + H)⁺), 472 (16, (M + H H₂NCN)⁺); Anal. Calcd for C₂₈H₄₅BBrN₃O₃S: C, 56.57; H, 7.63; N, 7.07; B, 1.82. Found: C, 56.19; H, 7.53; N, 6.97; B, 1.99.
- R: $[a]_D = -11.70^\circ$ (c = 0.530, MeOH); MS (DCI NH₃), 30 m/e (%) 512 (100 (M + H)+) 470 (40 (W + H) +)
- 30 m/e (%) 512 (100, (M + H)+), 470 (40, (M + H H₂NCN)+); Anal. Calcd for C₂₈H₄₃BBrN₃O₃S: C, 56.77; H, 7.32; N, 7.09; B, 1.82. Found: C, 56.49; H, 7.38; N, 6.96; B, 1.75.
 - S: HRMS (DCI NH₃), Calc: 577.3019, Found: 577.3025.
- 35 T: $[a]_D = -8.31^{\circ}$ (c = 0.614, MeOH); MS (DCI NH₃), m/e (%) 502 (100, (M + H)⁺), 460 (28, (M + H H₂NCN)⁺);

WO 96/20689 PCT/US95/16248

```
Anal. Calcd for C26H41BBrN3O4S: C, 53.62; H, 7.10; N,
      7.21; B, 1.86. Found: C, 53.61; H, 7.09; N, 7.20; B,
      1.78.
      U: HRMS (DCI - NH<sub>3</sub>), Calc: 513.2707, Found: 513.2702.
     V: HRMS (DCI - NH<sub>3</sub>), Calc: 555.3165, Found: 555.3176.
     W: HRMS (DCI - NH<sub>3</sub>), Calc: 579.2812, Found: 579.2801.
     X: HRMS (DCI - NH<sub>3</sub>), Calc: 450.2962, Found: 450.2958.
     Y: HRMS (DCI - NH<sub>3</sub>), Calc: 640.3016, Found: 640.3022.
      Z: [a]_D = -8.80^{\circ} (c = 0.602, MeOH); MS (CI - NH<sub>3</sub>), m/e
 10
      (%) 593.2 (1.3, (M + H - H_2NCN)^+), 485.2 (42.7), 333.0
      (100); Anal. Calcd for C34H48BBrN4O5S: C, 57.07; H,
     6.76; N, 7.83; B, 1.51. Found: C, 57.17; H, 6.84; N,
     7.76; B, 1.41.
           MS (CI - NH_3), m/e (%) 649.4 (1.9, (M + H)^+), 624.4
     (31, (M + NH_4 - H_2NCN)^+), 607.2 (100, (M + H - H_2NCN)^+),
 15
     455.0 (39), 444.0 (29.8); Anal. Calcd for
     C35H50BBrN4O5S: C, 57.62; H, 6.91; N, 7.68; B, 1.48.
     Found: C, 57.37; H, 6.86; N, 7.64; B, 1.40.
     BB: HRMS (DCI - NH<sub>3</sub>), Calc: 520.2805, Found: 520.2796.
20
     SS.
          MS (DCI - NH<sub>3</sub>), Calc: 507, Found: 507.
     TT.
          MS (DCI - NH<sub>3</sub>), Calc: 534, Found: 534.
          MS (DCI - NH<sub>3</sub>), Calc: 638, Found: 638.
     w.
     'VV.
          MS (DCI - NH3), Calc: 618, Found: 618.
     XX.
          MS (DCI - NH3), Calc: 489, Found: 489.
25
     YY.
          MS (DCI - NH3), Calc: 461, Found: 461.
     ZZ.
          MS (DCI - NH<sub>3</sub>), Calc: 582, Found: 582.
     AB.
          MS (DCI - NH3), Calc: 641, Found: 641.
          MS (DCI - NH<sub>3</sub>), Calc: 625, Found: 625.
     AC.
          MS (DCI - NH3), Calc: 490, Found: 490.
     AD.
          MS (DCI - NH<sub>3</sub>), Calc: 534, Found: 534.
30
     AE.
          MS (DCI - NH<sub>3</sub>), Calc: 504, Found: 504.
     AF.
          MS (M+H) +, Calc: 503.32, Found: 503.32.
     CB.
     CD.
          MS (M+H)+, Calc: , Found: .(WITYAK)
          MS (M+H)+, Calc: 658, Found: 658.
    CE.
35
    CF.
          MS (M+H) +, Calc: 638, Found: 638.
    CG.
          MS (M+H) +, Calc: 669, Found: 669.
```

CH. MS (M+H)⁺, Calc: 609, Found: 609. CI. MS (M+H)⁺, Calc: 604, Found: 604. CJ. MS (M+H)⁺, Calc: 641, Found: 641. CK. MS (M+H)⁺, Calc: 555, Found: 555.

5

10

Table 2

Ex	x	Y		Y^1,Y^2	Ph	ys Data
365	CH ₂ NH ₂	co		(+)-pin		
366	CH ₂ NH ₂	so ₂		(+)-pin		
367	NHC (NH) NH ₂	co		(+)-pin		
368	NHC (NH) NH ₂	SO ₂		(+)-pin		
369	SC (NH) NH ₂	co		(+)-pin	cc	
370	SC (NH) NH ₂	SO ₂		(+)-pin	ממ	
371	CH ₂ NH ₂	co		OH, OH		
372	CH ₂ NH ₂	so ₂		OH, OH		
373	NHC (NH) NH ₂	ço		он, он		
374	NHC (NH) NH ₂	. SO ₂		OH, OH		
375	SC (NH) NH ₂	co		OH, OH		
376	SC (NH) NH ₂	SO ₂		OH, OH		
CC:	HRMS (DCI	- NH ₃),	Calc:	560.2390,	Found:	560.2407.
DD:	HRMS (DCI	- NH_3),	Calc:	596.2060,	Found:	596.2055.
					•	

Table 3

 Y^1, Y^2 t Phys Data NH_2 382 2 (+)-pin SC (NH) NH₂ 383 2 (+)-pin EE 384 SC (NH) NH2 (+)-pin FF NHC (NH) NH2 385 (+) -pin NHC (NH) NH2 386 1 (+)-pin 387 NH_2 2 OH, OH 388 SC (NH) NH2 2 OH, OH SC (NH) NH₂ 389 OH, OH 390 NHC (NH) NH2 OH, OH 391 NHC (NH) NH2 OH, OH

EE: HRMS (DCI - NH₃), Calc: 546.2597, Found: 546.2604. FF: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

Table 4

 Y^1, Y^2 Ex Phys Data 397. CH2NH2 (+)-pin 398 NHC (NH) NH2 (+)-pin SC (NH) NH₂ 399 (+)-pin GG 400 CH2NH2 OH, OH 401 NHC (NH) NH2 он, он 402 SC (NH) NH₂ OH, OH

5 GG: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2445.

Table 5

Ex	x .	Y^1,Y^2	Phys Data
403	CH ₂ NH ₂	(+)-pin	
404	NHC (NH) NH ₂	(+)-pin	

405	SC (NH) NH ₂	(+)-pin HH	ī	
406	CH2NH2	OH, OH		
407	NHC (NH) NH2	он, он		
408	SC (NH) NH ₂	он, он		
HH: HRMS	(DCI - NH ₃),	Calc: 532.2441,	Found:	532.2452.

Table 6

5

II:

Ex	x	Y^1, Y^2	Phys Data	
436	NHC (NH) NH2	(+)-pin		
437	SC (NH) NH ₂	(+)-pin	II '	
438	CH2NH2	(+),-pin		
439	NHC (NH) NH ₂	OH, OH		
440	SC (NH) NH ₂	OH, OH		
441	CH ₂ NH ₂	ОН, ОН		
HRMS	(DCI - NH ₃),	Calc: 480.24	193, Found:	480.2

Table 7

Ex	x	Y	Y^1, Y^2	Phys Data
447	NHC (NH) NH ₂	0	(+)-pin	WW
448	SC (NH) NH ₂	0	(+)-pin	JJ
449	CH ₂ NH ₂	0	(+)-pin	
450	NHC (NH) NH ₂	s	(+)-pin	
451	SC (NH) NH ₂	s	(+)-pin	
452	CH ₂ NH ₂	S	(+)-pin	
453	NHC (NH) NH ₂	0	OH, OH	
454	SC (NH) NH ₂	0	OH, OH	
455	CH2NH2	. 0	OH, OH	
456	NHC (NH) NH ₂	s	OH, OH	
457	SC (NH) NH ₂	s	OH, OH	
458	CH ₂ NH ₂	s	OH, OH	
777740	/man)	•	•	A.

5 JJ: HRMS (DCI - NH₃), Calc: 496.2441, Found: 496.2449.
WW. MS (DCI - NH₃), Calc: 345, Found: 345.

Table 8

Ex	x	RB	\mathbb{R}^{C}	Y^1, Y^2	Phys Data
464	MHC (NH) NH ₂	H	Ph	(+)-pin	•
465	NHC (NH) NH ₂	OBn	н	(+) -pin	
466	SC (NH) NH ₂	H	Ph	(+)-pin	KK
467	SC (NH) NH ₂	OBn	н	(+)-pin	LL
468	CH ₂ NH ₂	н	Ph	(+)-pin	CT
469	CH ₂ NH ₂	OBn	н	(+)-pin	
470	NHC (NH) NH ₂	н	Ph	OH, OH	
471	NHC (NH) NH ₂	OBn	H	он, он	٠
472	SC (NH) NH ₂	н	Ph	OH, OH	
473	SC (NH) NH ₂	OBn,	н	OH, OH	•
474	CH ₂ NH ₂	н .	Ph	OH, OH	CM
475	CH ₂ NH ₂	OBn.	н	OH, OH	
UDMC	/DGT			•	

5 KK: HRMS (DCI - NH₃), Calc: 507.2601, Found: 507.2592. LL: HRMS (DCI - NH₃), Calc: 537.2667, Found: 537.2685. CL: Anal. Calc'd. for C₂₇H₃₆BN₃O₃• (HCl)_{1.7}• (H₂O)_{2.2}: C, 57.60; H, 7.54; Cl, 10.70; N, 7.46. Found: C, 57.40; H,

7.23; Cl, 10.78; N, 7.53. MS (M+H)+: calc. 462, Found 10 462.

CM: MS(M+H)+: Calc: 328, Found: 328.

Table 9

		Ex	x	Y^1,Y^2	Phys Data	
		476	NHC (NH) NH2	(+)-pin		
		477	SC (NH) NH ₂	(+)-pin	MM	
		478	CH2NH2	(+)-pin		
		479	NHC (NH) NH2	он, он		
		480	SC (NH) NH ₂	OH, OH		
		481	CH ₂ NH ₂	OH, OH		•
5	MM:	HRMS	(DCI - NH ₃),	Calc: 498.	2233, Found:	498.2231.

Table 10

 $\begin{array}{c|c} & Y^1 \\ & B \\ & Y^2 \\ \hline & NH \\ & W^1 \\ & W^2 \\ \end{array}$

Ex	x	Wl	w ²	R ³	Y^1, Y^2	Phys Data
482	NHC (NH) NH ₂	N	CH	н	(+)-pin	
483	SC (NH) NH ₂	N	CH ·	H	(+)-pin	NN
484	CH2NH2	N	CH	н	(+)-pin	

485	MHC (NH) NH ₂	CH	N	Ph	(+)-pir	a.	
486	SC (NH) NH ₂	CH	N	Ph	(+)-pir	a 00	
487	CH ₂ NH ₂	СН	N	Ph	(+)-pir	a.	
488	NHC (NH) NH ₂	N	CH	н	он, он		
489	SC (NH) NH ₂	N	СН	н	он, он		
490	CH ₂ NH ₂	N	СН	н	он, он		
491	NHC (NH) NH2	CH	N	Ph	он, он		
492	SC (NH) NH ₂	CH	N ,	Ph	он, он		
493	CH ₂ NH ₂	CH	N	Ph	он, он		
NN:	HRMS (DCI -	NH_3),	Calc:	481.	2445, E	found:	481.2442.
00:	HRMS (DCI -	NH_3),	Calc:	557.	2758, F	ound:	557.2754.

Table 11

5

Ex	x	Y ¹ ,Y ²	Phys Data
499	NHC (NH) NH2	(+)-pin	
500	SC (NH) NH ₂	(+)-pin	PP
501	CH ₂ NH ₂	(+)-pin	
502	NHC (NH) NH2	OH, OH	
503	SC (NH) NH ₂	OH, OH	
504	CH ₂ NH ₂	OH, OH	

PP: HRMS (DCI - NH₃), Calc: 5481.2445, Found: 481.2440.

Table 12

Ex X R³ Y¹, Y² Phys Data 510 SC(NH)NH₂ H (+)-pin QQ 5 QQ: HRNS (NH₃ -CI/DEP), Calc: 503.3193, Found: 503.3199.

Table 13

					•	
Ex	m, x	$\mathbb{R}^{\mathbf{A}}$	RB	_R C	Y^1, Y^2	Phys
516	2, SC (NH) NH ₂	Н	NHCO- (CH ₂) ₂ Ph	H	(+) -pin	Data RR
517	2, SC (NH) NH ₂	H	Ph	н	(+) -pin	
518	2, SC (NH) NH ₂	н	OPh	Ph	(+) -pin	
519	1, SC (NH) NH ₂	H	H	4- pyridyl	(+)-pin	-
520	1, NHC (NH) NH2	COPh	н	Н	(+)-pin	

521 3, H COPh H (+)-pin
522 3, H H COPh COPh (+)-pin
NHC (NH) NH2

RR: HRMS (DCI-NH₃), Calc: 605.333, Found: 605.3325.

Table 14

Ex	x		m	R ¹³		R14	Y ¹ Y ²	Phys. Data
528	CH2NH2		1	Ph		н	(+)-pin	
529	CH2NH2		1	Ph		Methyl	(+)-pin	
530	CH2NH2		Ţ	Ph		Ethyl	(+)-pin	
531	CH ₂ NH ₂		1	Ph		n-Propyl	(+)-pin	
532	CH ₂ NH ₂		1	Ph		n-Butyl	(+)-pin	
533	CH2NH2		1	Ph		CH ₂ SCH ₃	(+)-pin	
534	CH2NH2		1	Ph		CH ₂ (SO) CH ₃	(+)-pin	
53 5	CH ₂ NH ₂		1	Ph		CH ₂ (80 ₂) CH ₃	(+)-pin	
536	CH2NH2		1	Ph		CH2CH28CH3	(+)-pin	•
537	CH ₂ NH ₂	•	1	Ph		CH_2CH_2 (80) CH_3	(+)-pin	-
538	CH2NH2		1	Ph		CH2CH2 (SO) 2CH3	(+)-pin	
539	CH ₂ NH ₂		1	Ph		CH ₂ CN	(+)-pin	
540	CH ₂ NH ₂		1	Ph		CH2CH2CN	(+)-pin	
541	CH2NH2		1	Ph		CH ₂ CH ₂ CH ₂ CN	(+)-pin	
542	CH2NH2		1	Ph		CF3	(+)-pin	
543	CH2NH2		1	Ph		CF2CF3	(+)-pin	
544	CH2NH2		1	Ph		CF2CF2CF3	(+)-pin	
545	CH ₂ NH ₂		1	Ph		CF2CF2CF2CF3	(+)-pin	
546	CH2NH2	•	1	Ph		F5-Ph	(+)-pin	•
547	CH ₂ NH ₂	•	r.	Ph	-	СH ₂ СО ₂ Н	(+)-pin	
548	CH2NH2		1	Ph		(CH ₂) ₂ CO ₂ H	(+)-pin	
549	CH ₂ NH ₂	=	1	Ph		(CH ₂) ₃ ∞ ₂ H	(+)-pin	
550	CH2NH2	1	ı	Ph		CH2CN4H	(+)-pin	
551	CH2NH2	1	L	Ph		(CH ₂) ₂ CN ₄ H	(+)-pin	
552	CH2NH2	1	L	Ph		(CH ₂) ₃ CN ₄ H	(+)-pin	
553	CH2NH2	٠. ١	ļ	Ph		CH2NO2	(+)-pin	
554	CH ₂ NH ₂	1	L	Ph		(CH ₂) ₂ NO ₂	(+)-pin	•
555	CH2NH2	1		Ph		(CH ₂) 3NO ₂	(+)-pin	

		•				•	
	556	CH ₂ NH ₂	1	Ph	CH ₂ OH	(+)-pin	
•	557	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin	
	558	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin	
	559	CH2NH2	1	Ph	CH ₂ CO ₂ Me	(+)-pin	
	560	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin	
	561	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin	
	562	CH ₂ NH ₂	1	Ph	Ph	(+)-pin	
	563	CH ₂ NH ₂	1	Ph	PhCH ₂	(+)-pin	AG
	564	CH ₂ NH ₂	1	Ph	Ph(CH ₂) ₂	(+)-pin	
	565	CH2NH2	1	Ph	3-NO ₂ -Ph	(+)-pin	
	566	CH2NH2	1	Ph	4-NO2-Ph	(+)-pin	
	567	CH ₂ NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin	
	568	CH2NH2	1	Ph	4-CO2H-Ph	(+)-pin	
	569	CH2NH2	1	Ph	3-CN ₄ H-Ph	(+)-pin	
	570	CH2NH2	1	Ph	4-CN4H-Ph	(+)-pin	
	571	CH2NH2	1	Ph	3 - (HOCH ₂) - Ph	(+)-pin	
	572	CH2NH2	1	Ph	4-(HOCH ₂)-Ph	(+)-pin	
	573	NH (C=NH) NH2	. 1	Ph	н	(+)-pin	
	574	NH (C=NH) NH ₂	1	Ph	Methyl	(+)-pin	
	575	NH (C=NH) NH ₂	1	Ph	' Ethyl	(+)-pin	
	57 6	NH (C=NH) NH ₂	1	Ph	n-Propyl	(+)-pin	
	577	NH (C=NH) NH ₂	1	· Ph	n-Butyl	(+)-pin	
	578	NH (C=NH) NH2	1	Ph	CH2SCH3	(+)-pin	
!	579	NH (C=NH) NH2	1	Ph	CH ₂ (SO) CH ₃	(+)-pin	
!	580	NH (C=NH) NH ₂	1	Ph	CH ₂ (so ₂) CH ₃	(+)-pin	
!	581	NH (C=NH) NH ₂	1	Ph	CH2CH28CH3	(+)-pin	
!	582	NH (C=NH) NH2	1	Ph	CH2CH2 (80) CH3	(+)-pin	
;	583	NH (C=NH) NH2	1	Ph	CH2CH2 (SO) 2CH3	(+)-pin	
	584	NH (C=NH) NH2	1	Ph	CH ₂ CN	(+)-pin	
5	505	NH (C=NH) NH2	1	Ph	CH2CH2CN	(+)-pin	
5	86	NH (C=NH) NH2	1	Ph	CH2CH2CH2CN	(+)-pin	
5	87	NH (C=NH) NH2	1	Ph	CF3	(+)-pin	
5	88	NH (C=NH) NH2	1	Ph	CF ₂ CF ₃		
5	89	NH (C-NH) NH ₂	1	Ph	CF ₂ CF ₂ CF ₃	(+)-pin	
5	90	NH (C=NH) NH2	1	Ph	CF2CF2CF3	(+) -pin	
5	91	NH (C-NH) NH2	1	Ph	F ₅ -Ph	(+)-pin	
5	92	NH (C=NH) NH ₂	1	Ph	сн ₂ ∞ ₂ н	(+)-pin	
5	93	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin	
5	94	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin	
5	95	NH (C=NH) NH ₂	1	Ph		(+)-pin	
		.,2	. •	E 11	CH ₂ CN ₄ H	(+)-pin	

596	NH (C-NH) NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
597	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
598	NH (C=NH) NH2	1	Ph	CH2NO2	(+)-pin
599	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
600	NH (C=NH) NH ₂	1	Ph	(CH ₂) 3NO ₂	(+)-pin
601	NH (C=NH) NH ₂	1	Ph	CH ₂ OH	(+)-pin
602	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ OH	(+)-pin
603	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin
604	NH (C=NH) NH ₂	1	Ph	$\text{CH}_2\text{CO}_2\text{Me}$	(+)-pin
605	NH (C=NH) NH ₂	. 1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
606	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
607	NH (C=NH) NH ₂	1	Ph	Ph	(+)-pin
609	NH (C=NH) NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
610	NH (C=NH) NH ₂	1	Ph	4-NO2-Ph	(+)-pin
611	NH (C=NH) NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
612	NH (C=NH) NH ₂	1	Ph	4-CO2H-Ph	(+)-pin
613	NH (C=NH) NH2	1	Ph	3-CN4H-Ph	(+)-pin
614	NH (C=NH) NH ₂	1	Ph	4 - CN4H - Ph	(+)-pin
615	NH (C=NH) NH ₂	. 1	Ph	3 - (HOCH ₂) - Ph	(+)-pin
616	NH (C=NH) NH ₂	1	Ph	4-(HOCH2)-Ph	(+)-pin
617	CH ₂ NH ₂	1	Ph	н	OH, OH
618	CH2NH2	1	Ph	Methyl	OH, OH
619	CH ₂ NH ₂	1	Ph	Ethyl	ОН, ОН
620	CH2NH2	1	Ph ·	n-Propyl	OH, OH
621	CH ₂ NH ₂	1	Ph	n-Butyl	ОН, ОН
622	CH2NH2	1	Ph	CH2SCH3	он, он
623	CH ₂ NH ₂	. 1	Ph	CH ₂ (SO) CH ₃	он, он
624	CH ₂ NH ₂	1	Ph	CH2 (SO2) CH3	он, он
625	CH ₂ NH ₂	1	Ph	CH2CH2SCH3	ОН, ОН
626	CH ₂ NH ₂	1	Ph	CH2CH2 (60) CH3	он, он
627	CH2NH2	1	Ph	CH2CH2 (SO) 2CH3	он, он
628	CH ₂ NH ₂	1	Ph	CH2CN	ОН, ОН
629	CH ₂ NH ₂	1	Ph	CH2CH2CN	он, он
630	CH ₂ NH ₂	1	Ph	CH2CH2CH2CN	ОН, ОН
631	CH ₂ NH ₂	1	Ph	CF3	он, он
632	CH2NH2	1	Ph	CF2CF3	он, он
633	CH ₂ NH ₂	1	Ph	CF2CF2CF3	он, он
634	CH ₂ NH ₂	1	Ph	CF2CF2CF3	он, он
635	CH2NH2	1	Ph	F5-Ph	он, он
636	CH2NH2	1	Ph	CH2∞2H	OH, OH
				=	,

AH

637	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	он, он
638	CH ₂ NH ₂	. 1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
639	CH2NH2	1	Ph	CH2CN4H	OH, OH
640	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
641	CH2NH2	1	Ph	(CH ₂) ₃ CN ₄ H	он, он
642	CH ₂ NH ₂	· 1	Ph	CH ₂ NO ₂	он, он
643	CH2NH2	1	Ph	(CH ₂) ₂ NO ₂	он, он
644	CH2NH2	1	Ph	(CH ₂) ₃ NO ₂	он, он
645	CH2NH2	1	Рh	CH ₂ OH	он, он
646	CH2NH2	1	Ph	(CH ₂) ₂ OH	он, он
647	CH2NH2	1	Ph	(CH ₂) ₃ OH	он, он
648	CH2NH2	1	Ph	CH2CO2Me	он, он
649	CH2NH2	1	Ph	$(CH_2)_2CO_2Me$	он, он
650	CH2NH2	1	Ph	(CH ₂) ₃ ∞ ₂ Me	он, он
651	CH2NH2	. 1	Ph	Ph	он, он
652	CH2NH2	1	Ph	PhCH ₂	он, он
653	CH ₂ NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH
654	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	он, он
655	CH2NH2	, 1	Ph	4-NO ₂ -Ph	он, он
656	CH2NH2	1	Ph	3-00 ₂ H-Ph	он, он
657	CH ₂ NH ₂	1	Ph	4-CO ₂ H-Ph	он, он
658	CH ₂ NH ₂	1	Ph	3-CN4H-Ph	OH, OH
659	CH ₂ NH ₂	1	Ph	4 - CN4H - Ph	он, он
660	CH2NH2	1	Ph	3-(HOCH ₂)-Ph	он, он
661	CH ₂ NH ₂	· 1	Ph	4- (HOCH ₂) -Ph	он, он
662	NH (C-NH) NH ₂	1	Ph	н	он, он
663	NH (C=NH) NH ₂	1	Ph	Methyl	он, он
664	NH (C=NH) NH ₂	1	Ph .	Ethy1	он, он
665	NH (C=NH) NH ₂	1	Ph	n-Propyl	OH, OH
666	NH (C=NH) NH ₂	1	Ph	n-Butyl	он, он
667	NH (C=NH) NH ₂	1	Ph	CH28CH3	он, он
668	NH (C=NH) NH ₂	1	Ph	CH ₂ (80) CH ₃	он, он
669	NH (C=NH) NH ₂	1	Ph	CH ₂ (so ₂) CH ₃	он, он
670	NH (C=NH) NH ₂	1	Ph	CH2CH2SCH3	он, он
671	NH (C=NH) NH ₂	1	Ph	CH2CH2 (80) CH3	он, он
672	NH (C=NH) NH ₂	1	Ph	CH2CH2 (SO) 2CH3	OH, OH
673	NH (C=NH) NH ₂	1	Ph	CH ₂ CN	он, он
674	NH (C=NH) NH ₂	1	Ph	CH2CH2CN	OH, OH
675	NH (C=NH) NH ₂	1	Ph	CH2CH2CH2CN	он, он
676	NH (C=NH) NH ₂	1	Ph	CF ₃	OH, OH

677	NH (C=NH) NH ₂	1	Ph	CF2CF3	он, он
678	NH (C=NH) NH ₂	1	Ph	CF2CF2CF3	он, он
679	NH (C=NH) NH ₂	1	Ph	CF2CF2CF2CF3	OH, OH
680	NH (C=NH) NH ₂	1	Ph	F ₅ -Ph	ОН, ОН
681	NH (C=NH) NH ₂	1	Ph	CH ₂ CO ₂ H	OH, OH
682	NH (C=NH) NH ₂	1	Ph	$(CH_2)_2 \infty_2 H$	OH, OH
683	NH (C=NH) NH ₂	1	Ph	$(CH_2)_3\infty_2H$	он, он
684	NH (C=NH) NH ₂	1	Ph	CH2CN4H	он, он
685	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	ОН, ОН
686	nh (c=nh) nh ₂	1	Ph	(CH2) 3 CN4H	OH, OH
687	NH (C=NH) NH ₂	1	Ph	CH2NO2	ОН, ОН
688	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ NO ₂	он, он
689	NH (C=NH) NH ₂	1	Ph	(CH ₂) 3NO ₂	он, он
690	NH (C=NH) NH ₂	1	Ph	СН ₂ ОН	он, он
691	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
692	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ OH	он, он
693	NH (C=NH) NH ₂	.1	Ph	CH ₂ CO ₂ Me	OH, OH
694	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	он, он
695	NH (C=NH) NH ₂	1	Ph .	(CH ₂) ₃ CO ₂ Me	он, он
696	NH (C=NH) NH ₂	1	Ph	Ph .	он, он
697	NH (C=NH) NH ₂	1	Ph	PhCH ₂	он, он
698	NH (C-NH) NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH
699	NH (C-NH) NH ₂	1	Ph	3-NO ₂ -Ph	он, он
700	NH (C=NH) NH ₂	1	Ph	4-NO ₂ -Ph	он, он
701	NH (C=NH) NH ₂	1	Ph	3-CO ₂ H-Ph	он, он
702	NH (C=NH) NH ₂	1	Ph	4-CO ₂ H-Ph	он, он
703	NH (C=NH) NH ₂	1.	Ph	3-CN4H-Ph	OH, OH
704	NH (C=NH) NH ₂	1	Ph .	4-CN4H-Ph	он, он
705	NH (C=NH) NH ₂	1.	Ph	3-(HOCH ₂)-Ph	он, он
706	NH (C=NH) NH ₂	1	Ph	4 - (HOCH ₂) - Ph	OH, OH
707	-8-(C=NH)NH2	1	Ph	н	(+)-pin
708	-8-(C=NH)NH ₂	1	Ph	Methyl	(+)-pin
709	-8-(C=NH)NH ₂	1	Ph	Ethyl	(+)-pin
710	-8- (C-NH) NH ₂	1	Ph	n-Propyl	(+)-pin
711	-8-(C=NH)NH2	1	Ph	n-Butyl	(+)-pin
712	-8-(C=NH)NH ₂	1	Ph	CH28CH3	(+)-pin
713	s-(C=NH)NH2	1	Ph	CH ₂ (80) CH ₃	(+)-pin
714	-8-(C=NH)NH ₂	1 .	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
715	-8-(C=NH)NH ₂	1 .	Ph	CH2CH2SCH3	(+)-pin '
716	-8-(C=NH)NH ₂	1	Ph .	CH2CH2 (80) CH3	(+)-pin
					=

717	-8-(C=NH)NH ₂	1	Ph	CH2CH2 (80) 2CH3	(+)-pin
718	-8-(C=NH)NH ₂	1	Ph	CH ₂ CN	(+)-pin
719	-9-(C=NH)NH ₂	1	Ph	CH2CH2CN	(+)-pin
720	-8-(C=NH)NH2	1	Ph	CH2CH2CH2CN	(+)-pin
721	-8-(C=NH)NH ₂	1	Ph	CF ₃	(+)-pin
722	-8-(C=NH)NH2	1	Ph	CF2CF3	(+)-pin
723	-8-(C=NH)NH ₂	1	Ph	CF2CF2CF3	(+)-pin
724	-8- (C=NH) NH ₂	1	Ph	CF2CF2CF2CF3	(+)-pin
725	-8- (C=NH) NH ₂	. 1	Ph	F5-Ph	(+)-pin
726	-8- (C=NH) NH ₂	1	Ph	CH2CO2H	(+)-pin
727	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
728	-8-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
729	-s-(c=NH)NH2	1	Ph	CH2CN4H	(+)-pin
730	-8- (C=NH) NH2	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
731	-8-(C=NH)NH ₂	. 1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
732	-8-(C=NH)NH2	1	Ph	CH2NO2	(+)-pin
733	-s-(C=NH)NH2	1	Ph	$(CH_2)_2NO_2$	(+)-pin
734	-8-(C=NH)NH ₂	1	Ph	$(CH_2)_3NO_2$	(+)-pin
735	-8- (C=NH) NH ₂	1	Ph	СH2ОН	(+)-pin
736	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ OH	(+)-pin
737	-s-(c=nh)nh ₂	1	Ph	(CH ₂) ₃ OH	(+)-pin
738	-8-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	(+)-pin
739	-8-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
740	-8- (C=NH) NH ₂	1	Ph	$(CH_2)_3CO_2Me$	(+)-pin
741	-s-(c=nh)nh ₂	1	Ph	Ph	(+)-pin
742	-8-(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
743	-8-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
744	-8-(C-NH)NH ₂	1	Ph	3-CO ₂ H-Ph	(+)-pin
745	-8-(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
746	-s-(C=NH)NH ₂	1	Ph	3-CN4H-Ph	(+)-pin
747	-8-(C=NH)NH ₂	1	Ph	4-CN4H-Ph	(+)-pin
748	-8-(C=NH)NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
749	-8-(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
750	-8-(C=NH)NH ₂	1	Ph	. н	OH, OH
751	-8- (C=NH) NH ₂	1	Ph	Methyl	OH, OH
752	-s-(C=NH)NH ₂	1	Ph	Ethyl	OH, OH
753	-s-(C=NH)NH ₂	1	Ph	n-Propyl	OH, OH
754	-8-(C=NH)NH ₂	1	Ph	n-Butyl	OH, OH
755	-s-(C=NH)NH2	1	Ph	CH28CH3	он, он
756	-8-(C=NH)NH2	1	Ph	CH ₂ (80) CH ₃	он, он

757	-8- (C=NH) NH ₂	1	Ph	CH ₂ (80 ₂) CH ₃	он, он
758	-8-(C=NH)NH ₂	1	Ph	CH2CH28CH3	он, он
759	-8- (C=NH) NH ₂	1	Ph	CH2CH2 (80) CH3	OH, OH
760	-8-(C=NH)NH ₂	1	Ph	CH2CH2 (80) 2CH3	он, он
761	-8-(C=NH)NH2	1	Ph	CH ₂ CN	он, он
762	-8-(C=NH)NH2	ì	Ph	CH2CH2CN	он, он
763	-8- (C-NH) NH2	1	Ph	CH2CH2CH2CN	он, он
764	-8- (C=NH) NH2	1	Ph	CF3	он, он
765	-8- (C=NH) NH ₂	1	Ph	CF2CF3	он, он
766	-8- (C=NH) NH ₂	1	Ph	CF2CF2CF3	он, он
767	-8- (C=NH) NH ₂	1	Ph	CF2CF2CF3	он, он
768	-8-(C=NH)NH2	1	Ph	F5-Ph	он, он
769	-8 - (C=NH) NH ₂	ĺ	Ph	CH2∞2H	OH, OH
770	-8- (C=NH) NH ₂	1	Ph	$(CH_2)_2 \infty_2 H$	он, он
771	-8- (C=NH) NH ₂	1 .	Ph	(CH ₂) ₃ ∞ ₂ H	он, он
772	-s-(c=nh)nh2	1	Ph	CH2CN4H	ОН, ОН
773	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
774	-B-(C=NH)NH2	1	Ph	(CH ₂) 3 CN ₄ H	он, он
775	-8-(C=NH)NH2	1	Ph	CH2NO2	он, он
776	-8-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ NO ₂	он, он
777	-8-(C=NH)NH ₂	1	Ph	(CH ₂) 3NO ₂	он, он
778	-8-(C=NH)NH ₂	1	Ph	СН ₂ ОН	он, он
779	-8-(C=NH)NH2	1	Ph.	(CH ₂) ₂ OH	он, он
780	-s-(c=nh)nh ₂	1	Ph	(CH ₂) ₃ OH	OH, OH
781	-s-(C=NH)NH ₂	1	Ph	CH ₂ CO ₂ Me	он, он
782	-8-(C=NH)NH2	1	Ph	$(CH_2)_2 \infty_2 Me$	он, он
783	-8-(C-NH)NH ₂	1	Ph	(CH ₂) ₃ ∞ ₂ Me	OH, OH
784	-s-(c=nh)nh ₂	1	Ph	Ph	OH, OH
785	-8-(C=NH)NH ₂	1	Ph	PhCH ₂	он, он
786	-8-(C=NH)NH ₂	1	Ph	Ph(CH ₂) ₂	он, он
787	-8-(C=NH)NH2	> 1	Ph	3-NO ₂ -Ph	он, он
788	-8-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	он, он
789	-8-(C=NH)NH2	1	Ph	3-CO ₂ H-Ph	он, он
790	-8-(C=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	он, он
791	-8-(C=NH)NH2	1	Ph	3-CN4H-Ph	он, он
792	-s-(C=NH)NH2	1	Ph	4-CN4H-Ph	он, он
793	-8-(C=NH)NH2	1	Ph	3 - (HOCH ₂) - Ph	он, он
794	-8-(C=NH)NH ₂	1	Ph	4 - (HOCH ₂) - Ph	он, он
795	CH2NH2	2	Ph	н	(+)-pin
796	CH2NH2	ź	Ph	н	он, он
					•

797	OMe	1	Ph	H	(+)-pin
798	OMe	: 1	Ph	Methyl	(+)-pin
799	OMe	1	Ph	Ethyl	(+)-pin
800	OMe	1	Ph	n-Propyl	(+)-pin
801	OMe	, 1	Ph	n-Butyl	(+)-pin
802	OMe	1	Ph	CH28CH3	(+)-pin
803	OMe	1	Ph	CH ₂ (80) CH ₃	(+)-pin
804	OMe	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
805	OMe	1	Ph	CH2CH28CH3	(+)-pin
806	OMe	1	Ph	CH2CH2 (SO) CH3	(+)-pin
807	OMe	1	Ph	CH2CH2 (80) 2CH3	(+)-pin
808	OMe	1	Ph	CH2CN	(+)-pin
809	OMe	1	Ph	CH2CH2CN	(+)-pin
810	OMe	1	Ph	CH2CH2CH2CN	(+)-pin
811	OMe .	1	Ph	CF ₃	(+)-pin
612	OMe	1	Ph	CF2CF3	(+)-pin
813	OMe	1	Ph	CF2CF2CF3	(+)-pin
814	OMe	1	Ph	CF2CF2CF2CF3	(+)-pin
815	OMe	1	Ph	F ₅ -Ph	(+)-pin
816	OMe	1	Ph	CH ₂ CO ₂ H	(+)-pin
817	OMe	1	Ph	(CH ₂) ₂ ∞ ₂ H	(+)-pin
818	OMe	1	Ph	(CH ₂) ₃ ∞ ₂ H	(+)-pin
819	OMe	1	Ph	CH2CN4H	(+)-pin
820	OMe	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
B2,1	OMe	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
822	OMe	1	Ph.	CH ₂ NO ₂	(+)-pin
823	OMe	1	Ph	(CH2)2NO2	(+)-pin
824	OMe	1	Ph	(CH2)3NO2	(+)-pin
825	OMe	1	Ph	CH ₂ OH	(+)-pin
826	OMe	.1	Ph	(CH ₂) ₂ OH	(+) -pin
827	OMe	1	Ph	(CH ₂) ₃ OH	(+)-pin
828	OMe	1	Ph	CH ₂ CO ₂ Me	(+)-pin
829	OMe	1	Ph	$(CH_2)_2CO_2Me$	(+)-pin
830	OMe	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
831	OMe	1	Ph	Ph	(+)-pin
832	OMe	1	Ph	PhCH ₂	(+)-pin
833	OMe	1	Ph	Ph(CH ₂) ₂	(+)-pin
834	OMe	1	Ph	3-NO ₂ -Ph	(+)-pin
835	OMe	1	Ph	4-NO ₂ -Ph	(+)-pin
836	OMe	1	Ph	3-CO ₂ H-Ph	(+)-pin

837	OMe	1	Ph	4-CO ₂ H-Ph	(+)-pin
838	OMe	1	Ph	3-CN4H-Ph	(+)-pin
839	OMe	1	Ph	4-CN4H-Ph	(+)-pin
840	OMe	1	Ph	3- (HOCH ₂) -Ph	(+)-pin
841	OMe	1	Ph	4- (HOCH ₂) - Ph	(+)-pin
842	OMe	. 1	Ph	· H	он, он
843	OMe	1	Ph	Methyl	он, он
844	OMe	1	Ph	Ethyl	он, он
845	OMe	. 1	Ph	n-Propyl	он, он
846	OMe	1	Ph	n-Butyl	OH, OH
847	OMe	1	Ph	CH28CH3	он, он
948	OMe	.1	Ph	CH2 (80) CH3	он, он
849	OMe	1	Ph	CH ₂ (80 ₂) CH ₃	OH, OH
850	ОМе	1	Ph	CH2CH28CH3	OH, OH
851	OMe	1	Ph	CH2CH2 (80) CH3	OH, OH
852	OMe	1	Ph	CH2CH2 (80) 2CH3	OH, OH
853	OMe	<u>`</u> 1	Ph	CH ₂ CN	OH, OH
854	OMe	1	Ph	CH ₂ CH ₂ CN	OH, OH
855	OMe	1	Ph	CH2CH2CH2CN	он, он
856	OMe	1	Ph	CF ₃	OH, OH
857	OMe	1	Ph	CF2CF3	он, он
858	OMe	. 1	Ph	CF2CF2CF3	OH, OH
859	OMe	1	Ph	CF2CF2CF2CF3	он, он
860	OMe	1	Ph	F ₅ -Ph	он, он
861	OMe	1	Ph	CH ₂ CO ₂ H	он, он
862	OMe	1	Ph	$(CH_2)_2CO_2H$	он, он
863	OMe	1 .	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
864	OMe	1	Ph	CH2CN4H	он, он
865	OMe	` 1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
866	.OMe	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
867	OMe	1	Ph	CH2NO2	OH, OH
868	OMe	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
869	OMe	1	Ph	(CH2)3NO2	OH, OH
870	OMe	1	Ph	CH ₂ OH	OH, OH
871	OMe	1	Ph	(CH ₂) ₂ OH	он, он
872	OMe		Ph	(CH ₂) ₃ OH	он, он
873	OMe	1	Ph	CH ₂ CO ₂ Me	он, он
874	OMe	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
875	OMe	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH -
876	OMe	1 .	Ph	Ph	он, он

877	OMe	1	Ph	PhCH ₂	он, он
878	OMe '	1	Ph	Ph(CH ₂) ₂	OH, OH
879	OMe .	1	Ph	3-NO ₂ -Ph	OH, OH
880	OMe	1	Ph	4-NO2-Ph	OH, OH
881	OMe	1	Ph	3-CO ₂ H-Ph	OH, OH
882	OMe	1	Ph	4-CO ₂ H-Ph	он, он
883	OMe	1	Ph	3-CN4H-Ph	OH, OH
884	OMe	1	Ph	4-CN4H-Ph	OH, OH
885	OMe .	1	Ph	3-(HOCH ₂)-Ph	он, он
886	OMe	1	Ph	4- (HOCH2) -Ph	OH, OH
887	CH2NH2	1	PhCH ₂	H	(+)-pin AK
888	CH2NH2	1	PhCH ₂	Methyl	(+)-pin AL
889	CH2NH2	1	PhCH ₂	Ethyl	(+)-pin
890	CH2NH2	1	PhCH ₂	n-Propyl	(+)-pin AM
891	CH2NH2	1	PhCH2	n-Butyl	(+)-pin
892	CH2NH2	1	PhCH ₂	CH2SCH3	(+)-pin AN
893	CH2NH2	1	PhCH ₂	CH ₂ (so) CH ₃	(+)-pin
894	CH2NH2	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
895	CH2NH2	1	PhCH ₂	CH2CH28CH3	(+)-pin
896	CH2NH2	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
897	CH2NH2	1	PhCH ₂	CH2CH2 (SO) 2CH3	(+)-pin
898	CH2NH2	1	PhCH ₂	CH ₂ CN	(+)-pin CN
899	CH2NH2	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
900	CH2NH2	1	PhCH ₂	CF3	(+)-pin
901	CH2NH2	. 1	PhCH ₂	CF2CF3	(+)-pin
902	CH2NH2	1	PhCH ₂	CF2CF2CF3	(+)-pin
903	CH2NH2	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
904	CH2NH2	1	PhCH ₂	F5-Ph	(+)-pin
905	CH2NH2	. 1	PhCH ₂	сн₂со₂н	(+)-pin AW
906	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
907	CH2NH2	• 1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
908	СН ³ ИН ³	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
909	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
910	CH2NH2	1	PhCH ₂	CH2NO2	(+)-pin
911	CH2NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
912	CH2NH2	. 1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
913	CH ₂ NH ₂	1	PhCH ₂	CH ² OH	(+)-pin AO
914	CH ₂ NH ₂	2	PhCH ₂	CH2OCH2Ph	(+)-pin AP
915	CH2NH2	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
916	CH2NH2	1	PhCH ₂	(CH ₂) 3OH	(+)-pin
		•			() pass

917	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin	CP
. 918	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin	
919	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin	
920	CH2NH2	1	PhCH ₂	Ph	(+)-pin	AQ
921	CH2NH2	. 1	PhCH ₂	PhCH ₂	(+)-pin	AR
922	CH2NH2	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin	
923	CH2NH2	1	PhCH ₂	3-NO2-Ph	(+)-pin	AS
924	CH2NH2	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin	
925	CH2NH2	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin	
926	CH2NH2	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin	
927	CH2NH2	1	PhCH ₂	3-CN4H-Ph	(+)-pin	
928	CH2NH2	1	PhCH ₂	4-CN4H-Ph	(+)-pin	
929	CH2NH2	1	PhCH ₂	3- (HOCH2) -Ph	(+)-pin	
930	CH2NH2	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin	
931	CH2NH2	1	PhCH ₂	3-NH ₂ -Ph	(+)-pin	CQ
932	NH (C=NH) NH2	1	PhCH ₂	н	(+)-pin	-4
933	NH (C=NH) NH ₂	1	PhCH ₂	Methyl	(+)-pin	
934	NH (C-NH) NH ₂	1	PhCH ₂	Ethyl	(+)-pin	
935	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	(+)-pin	
936	NH (C=NH) NH ₂	1	PhCH ₂	n-Butyl	(+)-pin	
937	NH (C=NH) NH ₂	1	PhCH ₂	CH2SCH3	(+)-pin	
938	NH (C-NH) NH2	1	PhCH ₂	CH ₂ (SO) CH ₃	(+)-pin	
939	NH (C=NH) NH2	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	(+)-pin	
940	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH28CH3	(+)-pin	
941	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) CH ₃	(+)-pin	
942	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2(SO)2CH3	(+)-pin	
943	NH (C-NH) NH2	1	PhCH ₂	CH ₂ CN	(+)-pin	
944	NH (C-NH) NH2	. 1	PhCH ₂	CH2CH2CN	(+)-pin	
945	NH (C=NH) NH2	1	PhCH ₂	CH2CH2CH2CN	(+)-pin	
946	NH (C=NH) NH ₂	,1	PhCH ₂	CF ₃	(+)-pin	
947	NH (C=NH) NH ₂	1	PhCH2	CF2CF3	(+)-pin	
948	NH (C=NH) NH2	1	PhCH2	CF2CF2CF3	(+)-pin	
949	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin	
950	NH (C=NH) NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin	
951	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ ∞ ₂ H	(+)-pin	
952	NH (C-NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin	
953	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin	
954	NH (C=NH) NH ₂	1	PhCH ₂	CH2CN4H	(+)-pin	
955	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin	
956	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin	
				_	··/ pan	

957	NH (C=NH) NH ₂	1	PhCH ₂	CH2NO2	(+)-pin
958	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
959	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
960	NH (C=NH) NH2	1	PhCH ₂	CH ₂ OH	(+)-pin
961	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
962	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) 3OH	(+)-pin
963	NH (C=NH) NH2	1	PhCH ₂	CH2CO2Me	(+)-pin
964	NH (C=NH) NH ₂	. 1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
965	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
966	NH (C=NH) NH ₂	1	PhCH ₂	Ph	(+)-pin
967	NH (C-NH) NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin AT
968	NH (C=NH) NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
969	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin AU
970	NH (C-NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
971	NH (C=NH) NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
972	NH (C=NH) NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
973	NH (C=NH) NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
974	NH (C=NH) NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
975	NH (C=NH) NH ₂	1	PhCH ₂	3 - (HOCH2) - Ph	(+)-pin
976	NH (C=NH) NH2	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
977	CH ₂ NH ₂	1	PhCH ₂	н	OH, OH AI
978	CH ₂ NH ₂	1	PhCH ₂	Methyl	OH, OH
979	CH ₂ NH ₂	1	PhCH ₂	Ethyl	он, он
980	CH ₂ NH ₂	1	PhCH ₂	n-Propyl	OH, OH
987	CH ₂ NH ₂	1	PhCH ₂	n-Butyl	OH, OH
982	CH2NH2	1	PhCH ₂	CH ₂ SCH ₃	OH, OH
983	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (SO) CH ₃	OH, OH
984	CH2NH2	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	OH, OH
985	CH ₂ NH ₂	1	PhCH ₂	CH2CH2SCH3	OH, OH
986	CH ₂ NH ₂	1	PhCH ₂	CH2CH2 (SO) CH3	OH, OH
987	CH ₂ NH ₂	1	PhCH ₂	CH2CH2 (SO) 2CH3	он, он
988	CH2NH2	1	PhCH ₂	CH ₂ CN	OH, OH
989	CH ₂ NH ₂	1	PhCH ₂	CH2CH2CN	он, он
990	CH ₂ NH ₂	1	PhCH ₂	CH2CH2CH2CN	он, он
991	CH2NH2	1	PhCH ₂	CF ₃	он, он
992	CH ₂ NH ₂	1	PhCH ₂	CF2CF3	OH, OH
993	CH ₂ NH ₂	1	PhCH ₂	CF2CF2CF3	OH, OH
994	CH ₂ NH ₂	1	PhCH ₂	CF2CF2CF2CF3	он, он
995	CH2NH2	1	PhCH ₂	F5-Ph	он, он
996	CH ₂ NH ₂	1	PhCH ₂	CH ₂ ∞ ₂ H	он, он

997	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	он, он
998	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	он, он
999	CH ₂ NH ₂	1	PhCH ₂	CH2CN4H	OH, OH
1000	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	он, он
1001	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1002	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1003	CH2NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1004	CH2NH2	. 1	PhCH ₂	(CH ₂) 3NO ₂	OH, OH
1005	CH2NH2	1	PhCH ₂	CH ₂ OH	OH, OH
1006	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1007	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) 30H	OH, OH
1008	CH ₂ NH ₂	1	PhCH ₂	сн₂со₂ме	OH, OH
1009	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
1010	CH ₂ NH ₂	1	PhCH ₂	$(CH_2)_3 \infty_2 Me$	OH, OH
1011	CH2NH2	1	PhCH ₂	Ph	OH, OH AV
1012	CH2NH2	1	PhCH ₂	PhCH ₂	OH, OH
1013	CH2NH2	1	PhCH ₂	Ph(CH ₂) ₂	он, он
1014	CH2NH2	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
1015	CH ₂ NH ₂	1	PhCH ₂	4-NO ₂ -Ph	ОН, ОН
1016	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	он, он
1017	CH ₂ NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	он, он
1018	CH ₂ NH ₂	1	PhCH ₂	3-CN4H-Ph	OH, OH
1019	CH ₂ NH ₂	. 1	PhCH ₂	4-CN4H-Ph	OH, OH
1020	CH ₂ NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	ОН, ОН
1021	CH ₂ NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
1022	CH ₂ NH ₂	1	PhCH ₂	F	(+)-pin
1023	CH2NH2	1	PhCH ₂	Cl	(+)-pin
1024	CH2NH2	1	PhCH ₂	Br	(+)-pin
1025	CH ₂ NH ₂	1	PhCH ₂	I	(+)-pin
1026	CH ₂ NH ₂	1	PhCH ₂	COOH .	(+)-pin
1027	CH ₂ NH ₂	1 .	PhCH ₂	COOMe	(+)-pin
1028	CH ₂ NH ₂	1	PhCH ₂	CHO	(+)-pin
1029	CH ₂ NH ₂	1	PhCH ₂	COMe	(+)-pin
1030	CH2NH2	1	PhCH ₂	NO ₂	(+)-pin
1031	CH2NH2	1	PhCH ₂	CN .	(+)-pin
1032	CH2NH2	1	PhCH ₂	isopropyl	(+)-pin
1033	CH2NH2	1	PhCH ₂	3-F-phenyl	(+)-pin
1034	CH2NH2	· 1	PhCH ₂	3-C1-phenyl	(+)-pin
1035	CH2NH2	1 _	PhCH ₂	4-Br-phenyl	(+)-pin -
1036	CH ₂ NH ₂	1 .	PhCH ₂	4-I-phenyl	(+)-pin

1037	CH2NH2	1	PhCH ₂	3-CH ₃ -phenyl	(+)-pin
1038	CH2NH2	1	PhCH ₂	3-MeO-phenyl	(+)-pin
1039	CH2NH2	1	PhCH ₂	3-CN-phenyl	(+)-pin
1040	CH2NH2	1	PhCH ₂	4-CN-phenyl	(+)-pin
1041	CH2NH2	1	PhCH ₂	3-NC-phenyl	(+)-pin
1042	CH ₂ NH ₂	1	PhCH ₂	4-NC-phenyl	(+)-pin
1043	CH2NH2	1	PhCH ₂	3-CF3-phenyl	(+)-pin
1044	CH2NH2	1	PhCH ₂	3-CH ₃ 8-phenyl	(+)-pin
1045	CH ₂ NH ₂	1	PhCH ₂	3-CH3SO-phenyl	(+)-pin
1046	CH2NH2	1	PhCH ₂	3-CH3802-phenyl	(+)-pin
1047	CH2NH2	1	PhCH ₂	3-N(Me)2-phenyl	(+)-pin
1048	CH2NH2	1	PhCH ₂	3-MeCO-phenyl	(+)-pin
1049	CH ₂ NH ₂	1	PhCH ₂	3-CHO-phenyl	(+)-pin
1050	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ Me-phenyl	(+)-pin
1051	CH2NH2	1	PhCH ₂	3-CONH ₂ -phenyl	(+)-pin
1052	CH2NH2	1	PhCH ₂	CH2NHSO2CF3	(+)-pin
1053	CH ₂ NH ₂	1	PhCH ₂	CH2NHSO2CH3	(+)-pin
1054	CH2NH2	1	PhCH ₂	$\mathtt{CH}_2\mathtt{CO}_2$ -i-propyl	(+)-pin
1055	CH ₂ NH ₂	1	PhCH ₂	CH2CHO	(+)-pin
1056	CH ₂ NH ₂	1	PhCH ₂	CH2CH2OMe	(+)-pin
1057	CH2NH2	ı	PhCH ₂	CH ₂ CH ₂ O-i-propyl	(+)-pin
1058	CH ₂ NH ₂	ì	PhCH ₂	CH ₂ OCOMe	(+)-pin
1059	CH2NH2	1	PhCH ₂	CH2OCO-i-propyl	(+)-pin
1060	CH2NH2	1	PhCH ₂	CH2OCO-Phenyl	(+)-pin
1061	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NHCOMe	(+)-pin
1062	CH ₂ NH ₂	. 1	PhCH ₂	CH2NHCO-i-propyl	(+)-pin
1063	CH2NH2	1	PhCH ₂	F	он, он
1064	CH ₂ NH ₂	1	PhCH ₂	Cl	он, он
1065	CH ₂ NH ₂	1	PhCH ₂	Br	он, он
1066	CH ₂ NH ₂	1	PhCH ₂	I	он, он
1067	CH2NH2	1	PhCH ₂	соон	он, он
1068	CH2NH2	1	PhCH ₂	COOMe	он, он
1069	CH ₂ NH ₂	1	PhCH ₂	CHO	он, он
1070	CH2NH2	1	PhCH ₂	COMe	OH, OH
1071	CH2NH2	1	PhCH ₂	NO ₂	он, он
1072	CH ₂ NH ₂	1	PhCH ₂	CN	OH, OH
1073	CH ₂ NH ₂	1	PhCH ₂	isopropyl	он, он
1074	CH ₂ NH ₂	1	PhCH ₂	3-F-phenyl	он, он
1075	CH ₂ NH ₂	1	PhCH ₂	3-Cl-phenyl	он, он
1076	CH2NH2	1	PhCH ₂	4-Br-phenyl	он, он

1077	CH2NH2	1	PhCH ₂	4-I-phenyl	он, он
1078	CH2NH2	1	PhCH ₂	3-CH ₃ -phenyl	он, он
1079	CH2NH2	1	PhCH ₂	3-MeO-phenyl	OH, OH
1080	CH2NH2	1	PhCH ₂	3-CN-phenyl	OH, OH
1081	CH2NH2	1	PhCH ₂	4-CN-phenyl	он, он
1082	CH2NH2	1	PhCH ₂	3-NC-phenyl	ОН, ОН
1083	CH2NH2	1	PhCH ₂	4-NC-phenyl	он, он
1084	CH2NH2	1	PhCH ₂	3-CF3-phenyl	он, он
1005	CH ₂ NH ₂	1	PhCH ₂	3-CH38-phenyl	ОН, ОН
1086	CH2NH2	1	PhCH ₂	3-CH ₃ 80-phenyl	он, он
1087	CH2NH2	1	PhCH ₂	3-CH38O2-phenyl	он, он
1088	CH2NH2	1	PhCH ₂	3-N (Me) 2-phenyl	он, он
1089	CH ₂ NH ₂	1	PhCH ₂	3-MeCO-phenyl	он, он
1090	CH2NH2	1	PhCH ₂	3-CHO-phenyl	он, он
1091	CH2NH2	1	PhCH ₂	3-CO2Me-phenyl	он, он
1092	CH2NH2	1	PhCH ₂	3-CONH2-phenyl	он, он
1093	CH ₂ NH ₂	1	PhCH ₂	CH2NHSO2CF3	он, он
1094	CH2NH2	. 1	PhCH ₂	CH2NHBO2CH3	он, он
1095	CH2NH2	1	PhCH ₂	CH2CO2-i-propyl	он, он
1096	CH2NH2	1	PhCH ₂	CH2CHO	OH, OH
1097	CH ₂ NH ₂	1	PhCH ₂	CH2CH2OMe	он, он
1098	CH ₂ NH ₂	1	PhCH ₂	CH2CH2O-i-propyl	он, он
1099	CH2NH2	1	PhCH ₂	CH2OCOMe	он, он
1100	CH2NH2	1	PhCH ₂	CH2OCO-i-propyl	он, он
1101	CH2NH2	1	PhCH ₂	CH2OCO-Phenyl	он, он
1102	CH2NH2	1 ,	PhCH ₂	CH ₂ NHCOMe	он, он
1103	CH2NH2	1	PhCH ₂	CH2NHCO-i-propyl	он, он
1104	CH2NH2	Ţ	3,4-Di-F-	CH ₂ CN	(+)-pin
			PhCH ₂		•
1105	CH2NH2	1	3,4-Di-	CH ₂ CN	(+)-pin
			Cl-PhCH2		
1106	CH2NH2	1	4-Br-	CH ₂ CN	(+)-pin
			PhCH ₂		
1107	CH2NH2	1	4-I-PhCH ₂	CH ₂ CN	(+)-pin
1108	CH2NH2	1	4-Me-	CH ₂ CN	(+)-pin
			PhCH ₂		
1109	CH ₂ NH ₂	1	2-MeO-	CH2CN	(+)-pin
			PhCH ₂		
1110	CH2NH2	1	2-CN-	CH ₂ CN	(+)-pin
			PhCH ₂		

1111	CH ₂ NH ₂	1	2-NC-	CH ₂ CN	(+)-pin
1112	CH2NH2	1	PhCH ₂ 2-NO ₂ -	CH2CN	(+)-pin
1113	CH ₂ NH ₂	1	PhCH ₂ 2-CF ₃ -	CH2CN	(+)-pin
1114	CH2NH2	1	PhCH ₂ 2-MeS-	CH ₂ CN	(+)-pin
1115	CH2NH2	,	PhCH ₂		
1113	C.1.2.11.2	1	3-Meso- PhCH ₂	CH ₂ CN	(+)-pin
1116	CH2NH2	1	3-Meso ₂ - PhCH ₂	CH ₂ CN	(+) -pin
1117	CH2NH2	1	2-NH ₂ - PhCH ₂	CH ₂ CN	(+)-pin
1118	СН ₂ NН ₂	1	3-NHMe-	CH ₂ CN	(+)-pin
1119	CH2NH2	1	PhCH ₂	CH ₂ CN	(+)-pin
1120	CH2NH2	1	PhCH ₂ 3-MeCO-	CH ₂ CN	(+)-pin
1121	CH ₂ NH ₂	1	PhCH ₂ 2-MeO ₂ C-	CH ₂ CN	
1100	OU AND -		PhCH ₂	_	(+)-pin
1122	CH2NH2		2-NH ₂ OC- PhCH ₂	CH ₂ CN	(+)-pin
1123	CH ₂ NH ₂	1	2-HOCH ₂ - PhCH ₂	CH ₂ CN	(+)-pin
1124	CH2NH2	1	3,4-Di-F- PhCH ₂	CH ₂ CN	он, он
1125	CH ₂ NH ₂	1	3,4-Di- Cl-PhCH ₂	CH ₂ CN	он, он
1126	CH2NH2	1	4-Br-	CH ₂ CN	он, он
1127	CH2NH2	1	PhCH ₂ 4-I-PhCH ₂	CH ₂ CN	он, он
1128	CH2NH2	1	4-Me- PhCH ₂	CH ₂ CN	он, он
1129	CH2NH2	1	2-MeO-	CH ₂ CN	он, он
1130	CH2NH2	1	PhCH ₂ 2-CN-	CH2CN	он, он
			PhCH ₂		

1131	CH ₂ NH ₂	' 1	2-NC-	CH ₂ CN	ОН	, он
1132	CH2NH2	1	PhCH ₂ 2-NO ₂ -	CH2CN	ОН,	ОН
1133	CH ₂ NH ₂	ì	PhCH ₂ 2-CF ₃ -	CH-CN		
1100	<u></u>	•	PhCH ₂	Ch2CN	OH,	OH
. 1134	CH2NH2	. 1	2-Mes-	CH ₂ CN	OH,	ОН
			PhCH ₂		•	
1135	CH ₂ NH ₂	1	3-MeSO-	CH2CN	OH,	OH
			PhCH ₂	·.		
1136	CH2NH2	1	3-MeSO ₂ -	CH ₂ CN	OH,	OH
1127	CH2NH2		PhCH ₂			
1137	Ch2Nh2	1	2-NH ₂ - PhCH ₂	CH ₂ CN	OH,	OH
1138	CH2NH2	1	3-NHMe-	CHaCN	OH	ОН
			PhCH ₂	•	J.,	-
1139	CH2NH2	. 1	2 - CHO -	CH ₂ CN	OH,	ОН
			PhCH ₂			
1140	CH ₂ NH ₂	1	3-MeCO-	CH2CN	OH,	ОН
			PhCH ₂			
1141	CH ₂ NH ₂	1	2-MeO ₂ C-	CH ₂ CN	OH,	ОН
			PhCH ₂			
1142	CH ₂ NH ₂	1	2-NH ₂ OC-	CH ₂ CN	OH,	ОН
1142	CH-MU-		PhCH ₂			
1143	CH ₂ NH ₂	1	2-HOCH ₂ -	CH ₂ CN	OH,	OH ·
1144	NH (C=NH) NH ₂	1	PhCH ₂ PhCH ₂	н	011	011
	NH (C=NH) NH ₂	1	PhCH ₂	n Methyl	OH,	
1146	NH (C=NH) NH ₂	1	PhCH ₂	Bthyl .	OH,	
1147	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	OH,	•
1148	NH (C-NH) NH2	1	PhCH ₂	n-Butyl	OH,	
1149	NH (C=NH) NH ₂	1	PhCH ₂	CH28CH3	OH,	ОН
1150	ин (с=ин) ин ₂	1	PhCH ₂	CH ₂ (so) CH ₃	OH,	ОН
1151	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	OH,	ОН
1152	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2SCH3	OH,	ОН
1153	NH (C=NH) NH ₂	. 1	PhCH2	CH2CH2 (SO) CH3	OH,	OH
1154	NH (C=NH) NH ₂	1	PhCH ₂	СH ₂ CH ₂ (so) ₂ CH ₃	OH,	ОН
1155	NH (C=NH) NH ₂		PhCH ₂	CH ₂ CN	OH,	OH
1156	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2CN	OH,	ОН
1157	NH (C=NH) NH ₂	. 1.	PhCH ₂	CH2CH2CH2CN	OH,	ОН

WO 96/20689 PCT/US95/16248

1158	NH (C=NH) NH ₂	1	PhCH ₂	CF ₃	он, он
1159	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF3	OH, OH
1160	NH (C=NH) NH2	1	PhCH ₂	CF2CF2CF3	OH, OH
1161	NH (C-NH) NH2	1	PhCH ₂	CF2CF2CF2CF3	он, он
1162	NH (C=NH) NH ₂	1	PhCH ₂	F5-Ph	он, он
1163	NH (C-NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	он, он
1164	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ ∞ ₂ H	OH, OH
1165	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ ∞ ₂ H	OH, OH
1166	NH (C=NH) NH ₂	1	PhCH ₂	CH2CN4H	OH, OH
1167	NH (C-NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1168	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1169	NH (C=NH) NH ₂	1	PhCH ₂	CH2NO2	он, он
1170	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1171	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
1172	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ OH	он, он
1173	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1174	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
1175	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
1176	NH (C=NH) NH ₂	1	PhCH ₂	$(CH_2)_2 \infty_2 Me$	он, он
1177	NH (C=NH) NH ₂	1	PhCH ₂	$(CH_2)_3CO_2Me$	он, он
1178	NH (C-NH) NH2	1	PhCH ₂	74	
11/6	m (c-1111/11112	_	2	Ph	он, он
1179	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	он, он
	_				
1179	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	он, он
1179 1180	NH (C-NH) NH ₂ NH (C-NH) NH ₂	1	PhCH ₂	PhCH ₂ Ph(CH ₂) ₂	ОН, ОН ОН, ОН
1179 1180 1181	NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂	1 1 1	PhCH ₂ PhCH ₂	PhCH ₂ Ph(CH ₂) ₂ 3-NO ₂ -Ph	OH, OH OH, OH
1179 1180 1181 1182	NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂	1 1 1	PhCH ₂ PhCH ₂ PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph	OH, OH OH, OH OH, OH
1179 1180 1181 1182 1183	NH (C=NH) NH ₂	1 1 1 1	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph	ОН, ОН ОН, ОН ОН, ОН ОН, ОН
1179 1180 1181 1182 1183 1184	NH (C=NH) NH ₂	1 1 1 1	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph	OH, OH OH, OH OH, OH OH, OH OH, OH
1179 1180 1181 1182 1183 1184 1185	NH (C=NH) NH ₂	1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph	OH, OH OH, OH OH, OH OH, OH OH, OH OH, OH
1179 1180 1181 1182 1183 1184 1185	NH (C=NH) NH ₂	1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 4-CO ₄ H-Ph 4-CN ₄ H-Ph	OH, OH OH, OH OH, OH OH, OH OH, OH OH, OH
1179 1180 1181 1182 1183 1184 1185 1186	NH (C=NH) NH ₂	1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 4-CN ₄ H-Ph 3-(HOCH ₂)-Ph	OH, OH
1179 1180 1181 1182 1183 1184 1185 1186 1187	NH (C=NH) NH ₂	1 1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 4-CN ₄ H-Ph 3-(HOCH ₂)-Ph 4-(HOCH ₂)-Ph	OH, OH
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188	NH (C=NH) NH ₂	1 1 1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 4-CN ₄ H-Ph 3-(HOCH ₂)-Ph 4-(HOCH ₂)-Ph CH ₂ CHO	OH, OH
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189	NH (C=NH) NH ₂	1 1 1 1 1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 4-CN ₄ H-Ph 3-(HOCH ₂)-Ph 4-(HOCH ₂)-Ph CH ₂ CHO CH ₂ CHO	OH, OH
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190	NH (C=NH) NH ₂	1 1 1 1 1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 4-CN ₄ H-Ph 3-(HOCH ₂)-Ph 4-(HOCH ₂)-Ph CH ₂ CHO CH ₂ CHO	OH, OH (+)-pin OH, OH
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191	NH (C=NH) NH ₂ C=NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂	1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 4-CN ₄ H-Ph 3-(HOCH ₂)-Ph 4-(HOCH ₂)-Ph CH ₂ CHO	OH, OH (+)-pin OH, OH
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192	NH (C=NH) NH ₂ C=NH) NH ₂ NH (C=NH) NH ₂ CH ₂ NH ₂ CH ₂ NH ₂ -S- (C=NH) NH ₂	1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 3-CN ₄ H-Ph 3-(HOCH ₂)-Ph 4-(HOCH ₂)-Ph CH ₂ CHO	OH, OH (+)-pin OH, OH (+)-pin OH, OH
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1199 1190 1191 1192 1193	NH (C=NH) NH ₂ C=NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂ NH (C=NH) NH ₂ CH ₂ NH ₂ CH ₂ NH ₂ -S- (C=NH) NH ₂		PhCH ₂	PhCH ₂ Ph (CH ₂) ₂ 3-NO ₂ -Ph 4-NO ₂ -Ph 3-CO ₂ H-Ph 4-CO ₂ H-Ph 3-CN ₄ H-Ph 4-CN ₄ H-Ph 3-(HOCH ₂)-Ph CH ₂ CHO CH ₂ CHO CH ₂ CHO CH ₂ CHO H Methyl	OH, OH (+)-pin OH, OH (+)-pin (+)-pin (+)-pin

1198	-8-(C-NH)NH ₂	1	PhCH ₂	CH28CH3	(+)-pin
1199	-8-(C=NH)NH ₂	1	PhCH ₂	CH ₂ (80) CH ₃	(+)- pi n
1200	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
1201	-8- (C=NH) NH ₂	1	PhCH ₂	CH2CH28CH3	(+)-pin
1202	-8- (C=NH) NH2	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
1203	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin
1204	-8-(C=NH)NH2	1	PhCH ₂	CH2CN	(+)-pin
1205	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2CN	(+)-pin
1206	-8-(C=NH)NH ₂	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
1207	-8-(C=NH)NH ₂	1	PhCH ₂	CF3	(+)-pin
1208	-8-(C=NH)NH ₂	1	PhCH ₂	CF2CF3	(+)-pin
1209	-8- (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF3	(+)-pin
1210	-8-(C=NH)NH ₂	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
1211	-8-(C=NH)NH ₂	1	PhCH ₂	F5-Ph	(+)-pin
1212	-8-(C=NH)NH2	1	PhCH ₂	$\mathtt{CH}_2 \infty_2 \mathtt{H}$	(+)-pin
1213	-8-(C=NH)NH2	1	PhCH ₂	$(CH_2)_2 \infty_2 H$	(+)-pin
1214	-s-(C=NH)NH2	1	PhCH ₂	$(CH_2)_3 \infty_2 H$	(+)-pin
1215	-8-(C=NH)NH ₂	1	PhCH ₂	CH2CN4H	(+)-pin
1216	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1217	-в- (С=NH) NH ₂	1	PhCH ₂	(CH ₂) 3 CN ₄ H	(+)-pin
1218	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
1219	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1220	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1221	-8-(C=NH)NH2	1	PhCH ₂	СH ₂ OH	(+)-pin
1222	-8-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1223	-s-(c=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1224	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ ∞ ₂ Me	(+)-pin
1225	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1226	-8-(C=NH)NH2	1	PhCH ₂	$(CH_2)_3CO_2Me$	(+)-pin
1227	-s-(C=NH)NH2	1	PhCH ₂	Ph	(+)-pin
1228	-s-(C=NH)NH2	1	PhCH ₂	PhCH ₂	(+)-pin
1229	-s-(C=NH)NH ₂	, 1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1230	-8-(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
1231	-8-(C=NH)NH2	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin-
1232	-8-(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
1233	-8-(C=NH)NH2	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
1234	-s-(C=NH)NH2	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
1235	-s-(C-NH)NH2	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
1236	-8-(C=NH)NH2	1	PhCH ₂	3 - (HOCH ₂) - Ph	(+)-pin
1237	-s-(C=NH)NH ₂	1.	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin

1238	- CN	1	PhCH ₂	CH ₂ CN	(+)-pin
1239	-NO ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1240	-CH2NO2	1	PhCH ₂	CH ₂ CN	(+)-pin
1241	-CF3	1	PhCH ₂	CH ₂ CN	(+)-pin
1242	-NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1243	-инон	1	PhCH ₂	CH ₂ CN	(+)-pin
1244	-NHOMe	1	PhCH ₂	CH2CN	(+)-pin
1245	- CH2NHOH	. 1	PhCH ₂	CH ₂ CN	(+)-pin
1246	-CH ₂ NHOMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1247	-NH (C=NH) CH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1248	-ин (с=ин) инон	1	PhCH ₂	CH2CN	(+)-pin
1249	-NH (C=NH) NHNH2	1	PhCH ₂	CH ₂ CN	(+)-pin
1250	-NH (C=NH) NHCN	1	PhCH ₂	CH ₂ CN	(+)-pin
1251	-NH (C=NH) NHCH3	1	PhCH ₂	CH ₂ CN	(+)-pin
1252	-NH (C=NH)	1	PhCH ₂	CH2CN	(+)-pin
	инсосн3				
1253	-C(=NH)NH2	1	PhCH ₂	CH ₂ CN	(+)-pin
1254	-C(=NH)NHMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1255	-C (=NH) NHCOMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1256	- CONH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1257	- CONHCH3	1	PhCH ₂	CH2CN	(+)-pin
1258	- co ₂ cH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1259	-OH	1	PhCH ₂	CH ₂ CN	(+)-pin
1260	- CH ₂ OH	. 1	PhCH ₂	CH ₂ CN	(+)-pin
1261	-sch3	1	PhCH ₂	CH ₂ CN	(+)-pin
1262	-80CH ₃	1,	PhCH ₂	CH ₂ CN	(+)-pin
1263	-so ₂ CH ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1264	-s-(C=NH)NHCH3	1	PhCH ₂	CH ₂ CN	(+)-pin
1265	-8-(C=NH)	1	PhCH ₂	CH ₂ CN	(+)-pin
	инсосн3		•		
1266	-8-(C=NH)NH2	1	PhCH ₂	н .	он, он
1267	-8-(C=NH)NH2	1	PhCH ₂	Methyl	он, он
1268	-8-(C=NH)NH2	1	PhCH ₂	Ethyl	он, он
1269	-s-(C=NH)NH2	1	PhCH ₂	n-Propyl	он, он
1270	-8-(C=NH)NH2	1	PhCH ₂	n-Butyl	он, он
1271	-s-(C=NH)NH2	1	PhCH ₂	CH28CH3	OH, OH
1272	-s-(c=NH)NH2	1	PhCH ₂	CH ₂ (SO) CH ₃	он, он
1273	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	он, он
1274	-s-(C=NH)NH2	1	PhCH ₂	CH2CH28CH3	он, он
1275	-s-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) CH3	он, он

1276	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) 2CH3	он, он
1277	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ CN	он, он
1278	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2CN	он, он
1279	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2CH2CN	он, он
1280	-в- (C=NH) NH ₂	1	PhCH ₂	CF ₃	он, он
1281	-8-(C=NH)NH2	1	PhCH ₂	CF2CF3	он, он
1282	-8-(C=NH)NH2	i	PhCH ₂	CF2CF2CF3	он, он
1283	-s-(c=NH)NH2	1	PhCH ₂	CF2CF2CF2CF3	он, он
1284	-s-(c=NH)NH2	1	PhCH ₂	F5-Ph	он, он
1285	-s-(C=NH)NH ₂	1	PhCH ₂	CH ₂ ∞ ₂ H	OH, OH
1286	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	он, он
1287	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	он, он
1288	-8-(C=NH)NH ₂	1	PhCH ₂	CH2CN4H	он, он
1289	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	он, он
1290	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) 3 CN ₄ H	он, он
1291	-8-(C=NH)NH2	1	PhCH ₂	CH2NO2	он, он
1292	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	он, он
1293	-8-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	он, он
1294	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ OH	он, он
1295	-8-(C-NH)NH2	1	PhCH ₂	(CH ₂) ₂ OH	он, он
1296	-8-(C=NH)NH2	ı	PhCH ₂	(CH ₂) ₃ OH	он, он
1297	-8-(C=NH)NH2	1	PhCH ₂	CH2CO2Me	он, он
1298	-8- (C-NH) NH2	. 1	PhCH ₂	$(CH_2)_2 CO_2 Me$	он, он
1299	-B-(C-NH)NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	он, он
1300	-s-(c=NH)NH2	1	PhCH ₂	Ph	он, он
1301	-8-(C-NH)NH2	1	PhCH ₂	PhCH ₂	он, он
1302	-s-(c=NH)NH2	1	PhCH ₂	Ph(CH_2) ₂	OH, OH
1303	-6-(C=NH)NH2	1	PhCH ₂	3-NO ₂ -Ph	он, он
1304	-8-(C-NH)NH2	1	PhCH ₂	4-NO ₂ -Ph	он, он
1305	-s-(C-NH)NH2	1	PhCH ₂	3-CO ₂ H-Ph	он, он
1306	-s-(C=NH)NH2	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
1307	-s-(C=NH)NH2	1	PhCH ₂	3-CN4H-Ph	он, он
1308	-s-(C=NH)NH2	1	PhCH ₂	4-CN ₄ H-Ph	он, он
1309	-8-(C=NH)NH ₂	1	PhCH ₂	3- (HOCH ₂) - Ph	он, он
1310	-s-(C=NH)NH2	1	PhCH ₂	4- (HOCH ₂) -Ph	он, он
1311	- CN	1	PhCH ₂	CH2CN	он, он
1312	-NO ₂	1	PhCH ₂	CH ₂ CN	он, он
1313	-CH2NO2	1	PhCH ₂	- CH2CN	он, он
1314	-CF ₃	1	PhCH ₂	CH ₂ CN	OH, OH
1315	-NH ₂	1	PhCH ₂	CH2CN	OH, OH

	1316	-NHOH	1	PhCH ₂	CH ₂ CN	OH, OH
	1317	-NHMe	1	PhCH ₂	CH ₂ CN	OH, OH
	1318	- CH ₂ NHOH	1	PhCH ₂	CH ₂ CN	OH, OH
•	1319	-CH ₂ NHOMe	1	PhCH ₂	CH ₂ CN	OH, OH
	1320	-NH (C=NH) CH3	1	PhCH ₂	CH ₂ CN	он, он
	1321	-NH (C=NH) NHOH	1	PhCH ₂	CH ₂ CN	он, он
	1322	-NH (C=NH) NHNH2	1	PhCH ₂	CH ₂ CN	OH, OH
	1323	-NH (C=NH) NHCN	1	PhCH ₂	CH ₂ CN	он, он
	1324	-NH (C=NH) NHCH3	1	PhCH ₂	CH ₂ CN	OH, OH
	1325	-NH (C=NH)	1	PhCH ₂	CH ₂ CN	OH, OH
		инсосн3				
	1326	-C(=NH)NH2	1	PhCH ₂	CH ₂ CN	он, он
	1327	-C(=NH)NHMe	1	PhCH ₂	CH ₂ CN	он, он
	1328	-C (-NH) NHCOMe	1	PhCH ₂	CH ₂ CN	он, он
	1329	-CONH ₂	1	PhCH ₂	CH ₂ CN	он, он
	1330	-CONHCH3	1	PhCH ₂	CH ₂ CN	он, он
	1331	- CO2CH3	1	PhCH ₂	CH ₂ CN	он, он
	1332	-OH	1	PhCH ₂	CH ₂ CN	он, он
	1333	- CH ₂ OH	1	PhCH ₂	CH ₂ CN	OH, OH
	1334	-8CH3	1	PhCH ₂	CH ₂ CN	OH, OH
	1335	- BOCH ₃	1	PhCH ₂	CH ₂ CN	OH, OH
	1336	-802CH3	1	PhCH ₂	CH ₂ CN	он, он
	1337	-8-(C=NH)NHCH3	1	PhCH ₂	CH ₂ CN	он, он
	1338	-8-(C=NH)	1	PhCH ₂	CH ₂ CN	он, он
		инсосн3				
	1339	CH ₂ NH ₂	2	PhCH ₂	H	(+)-pin
	1340	CH ₂ NH ₂	2	PhCH ₂	H	OH, OH
	1341	OMe	1	PhCH ₂	Н	(+)-pin
	1342	OMe	1	PhCH ₂	Methyl	(+)-pin
	1343	OMe	1	PhCH2	Ethyl .	(+)-pin
	1344	OMe	1	PhCH ₂	n-Propyl	(+)-pin
	1345	OMe	1	PhCH ₂	n-Butyl	(+)-pin
	1346	OMe	1	PhCH ₂	CH28CH3	(+)-pin
	1347	OMe	1	PhCH ₂	CH ₂ (SO) CH ₃	(+)-pin
	1348	OMe	1	PhCH ₂	$CH_2(SO_2)CH_3$	(+)-pin
	1349	OMe	1	PhCH ₂	CH2CH28CH3	(+)-pin
	1350	OMe	1	PhCH ₂	CH2CH2 (SO) CH3	(+)-pin
	1351	OMe	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin
	1352	OMe	ì	PhCH ₂	CH ₂ CN	(+)-pin CR
	1353	OMe	1	PhCH ₂	CH2CH2CN	(+)-pin

			_		
1354	OMe	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
1355	OMe	1	PhCH ₂	CF ₃	(+)-pin
1356	OMe	1	PhCH ₂	CF2CF3	(+)-pin
1357	OMe	1	PhCH ₂	CF2CF2CF3	(+)-pin
1358	OMe	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
1359	OMe	1	PhCH ₂	F5-Ph	(+)-pin
1360	OMe	. 1	PhCH ₂	CH2∞2H	(+)-pin
1361	OMe	1	PhCH ₂	(CH ₂) ₂ ∞ ₂ H	(+)-pin
1362	ОМе	. 1	PhCH ₂	(CH ₂) ₃ ∞ ₂ H	(+)- pi n
1363	OMe	1	PhCH ₂	CH2CN4H	(+)-pin
1364	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1365	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1366	OMe	1	PhCH ₂	CH2NO2	(+)-pin
1367	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1368	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1369	OMe	1	PhCH ₂	СH2ОН	(+)-pin
1370	OMe	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1371	OMe	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1372	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
1373	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1374	OMe	1	PhCH ₂	$(CH_2)_3CO_2Me$	(+)-pin
1375	OMe	1	PhCH ₂	Ph	(+)-pin
1376	OMe	1	PhCH ₂	PhCH ₂	(+)-pin
1377	OMe	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1378	OMe	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
1379	OMe .	. 1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
1380	OMe	1	PhCH2	3-CO ₂ H-Ph	(+)-pin
1381	OMe .	1	PhCH ₂	4-00 ₂ H-Ph	(+)-pin
1382	OMe	1	PhCH ₂	3-CN4H-Ph	(+)-pin
1383	OMe	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
1384	OMe	i	PhCH ₂	3- (HOCH ₂) - Ph	(+)-pin
1385	OMe	1	PhCH ₂	4- (HOCH2) - Ph	(+)-pin
1386	OMe	1	PhCH ₂	н	он, он
1387	OMe	. 1	PhCH ₂	Methyl	OH, OH
1388	ОМе	1	PhCH ₂	Ethyl	он, он
1389	OMe	j,	PhCH ₂	n-Propyl	он, он
1390	OMe	1	PhCH ₂	n-Butyl	он, он
1391	OMe	1	PhCH ₂	CH28CH3	он, он
1392	OMe	. 1	PhCH ₂	CH ₂ (SO) CH ₃	OH, OH
1393	OMe	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	OH, OH
			_		1 444

1394	OMe	1	PhCH ₂	CH2CH28CH3	OH, OH
1395	OMe	1	PhCH ₂	CH2CH2 (80) CH3	OH, OH
1396	OMe .	1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH
1397	OMe	1	PhCH ₂	CH ₂ CN	OH, OH
1398	OMe	1	PhCH ₂	CH2CH2CN	OH, OH
1399	OMe	1	PhCH ₂	CH2CH2CH2CN	OH, OH
1400	OMe	1	PhCH ₂	CF ₃	OH, OH
1401	OMe	1	PhCH ₂	CF2CF3	OH, OH
1402	OMe	1	PhCH ₂	CF2CF2CF3	OH, OH
1403	OMe	1	PhCH ₂	CF2CF2CF2CF3	OH, OH
1404	OMe	1	PhCH ₂	F5-Ph	OH, OH
1405	OMe	1	PhCH ₂	CH ₂ CO ₂ H	OH, OH
1406	OMe	1	PhCH ₂	$(CH_2)_2\infty_2H$	OH, OH
1407	OMe	1	PhCH ₂	(CH ₂) ₃ ∞ ₂ H	OH, OH
1408	OMe	1	PhCH ₂	CH2CN4H	OH, OH
1409	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1410	OMe	1.	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1411	OMe	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1412	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	он, он
1413	ONe	1	PhCH ₂	(CH ₂) 3NO ₂	он, он
1414	OMe	1	PhCH ₂	CH ₂ OH	он, он
1415	OMe	1	PhCH ₂	(CH ₂) ₂ OH	он, он
1416	OMe	1	PhCH ₂	(CH ₂) ₃ OH	он, он
1417	OMe	1	PhCH ₂	$\text{CH}_2 \infty_2 \text{Me}$	он, он
1418	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	ОН, ОН
1419	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1420	OMe	1	PhCH ₂	Ph.	он, он
1421	OMe	1	PhCH ₂	PhCH ₂	ОН, ОН
1422	OMe	1	PhCH ₂	Ph(CH ₂) ₂	он, он
1423	OMe	1	PhCH ₂	3-NO ₂ -Ph	он, он
1424	OMe	1	PhCH ₂	4-NO ₂ -Ph	ОН, ОН
1425	OMe	1	PhCH ₂	3-CO ₂ H-Ph	он, он
1426	OMe	1	PhCH ₂	4-CO ₂ H-Ph	он, он
1427	OMe	1	PhCH ₂	3-CN4H-Ph	он, он
1428	OMe	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
1429	OMe	1	PhCH ₂	3-(HOCH ₂)-Ph	он, он
1430	OMe	1	PhCH ₂	4-(HOCH ₂)-Ph	он, он
1431	CH ₂ NH ₂	1	PhCH2CH2	H	(+)-pin AX
1432	CH2NH2	1	PhCH2CH2	Methyl	(+)-pin
1433	CH2NH2	1	PhCH2CH2	Ethyl	(+)-pin

1434	CH2NH2	1	PhCH2CH2	n-Propyl	(+)-pin
1435	CH2NH2	1	PhCH2CH2	n-Butyl	(+)-pin
1436	CH2NH2	1	PhCH2CH2	CH28CH3	(+)-pin
1437	CH2NH2	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
1439	CH2NH2	. 1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
1439	CH2NH2	1	PhCH2CH2	CH2CH28CH3	(+)-pin
1440	CH2NH2	1	PhCH2CH2	CH2CH2 (80) CH3	(+)-pin
1441	CH2NH2	1	PhCH2CH2	CH2CH2 (80) 2CH3	(+)-pin
1442	CH2NH2	1	PhCH2CH2	CH2CN	(+)-pin
1443	CH2NH2	1	PhCH2CH2	CH2CH2CN	(+)-pin.
1444	CH2NH2	. 1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1445	CH2NH2	1	PhCH2CH2	CF ₃	(+)-pin
1446	CH2NH2	1	PhCH2CH2	CF2CF3	(+)-pin
1447	CH2NH2	1 .	PhCH ₂ CH ₂	CF2CF2CF3	(+)-pin
1448	CH2NH2	1	PhCH ₂ CH ₂	CF2CF2CF2CF3	(+)-pin
1449	CH2NH2	1	PhCH2CH2	F5-Ph	(+)-pin
1450	CH2NH2	1	PhCH2CH2	CH ₂ ∞ ₂ H	(+)-pin
1451	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
1452	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin
1453	CH ₂ NH ₂	1	PhCH2CH2	CH2CN4H	(+)-pin
1454	CH ₂ NH ₂	7	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
1455	CH ₂ NH ₂	· 1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin
1456	CH2NH2	1	PhCH2CH2	CH ₂ NO ₂	(+)-pin
1457	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1458	CH2NH2	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
1459	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin Cs
1460	CH2NH2	1 "	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
1461	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin
1462	CH2NH2	1	PhCH2CH2	CH ₂ ∞ ₂ Me	(+)-pin ·
1463	CH2NH2	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1464	CH2NH2	. 1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1465	CH2NH2	1 .	PhCH2CH2	Ph ·	(+)-pin
1466	CH ₂ NH ₂	1	PhCH2CH2	PhCH ₂	(+)-pin
1467	CH2NH2	1	PhCH2CH2	Ph(CH ₂) ₂	(+)-pin AY
1468	CH2NH2	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
1469	CH2NH2	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
1470	CH2NH2	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
1471	CH2NH2	1	PhCH2CH2	4-CO ₂ H-Ph	(+)-pin
1472	CH2NH2	. 1	PhCH2CH2	3-CN ₄ H-Ph	(+)-pin-
1473	CH2NH2	.1 ,	PhCH2CH2	4-CN ₄ H-Ph	(+)-pin

1474	CH2NH2	1	PhCH2CH2	3- (HOCH ₂) -Ph	(4) - min
1475	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4- (HOCH ₂) - Ph	(+)-pin
1476	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	н	(+)-pin
1477	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	 Methyl	(+)-pin (+)-pin
1478	NH (C=NH) NH ₂	. 1	PhCH ₂ CH ₂	Ethyl	_
1479	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin
1480	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
1481	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ 8CH ₃	(+)-pin
1482	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ (80) CH ₃	(+)-pin
1483	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
1484	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2CH2SCH3	(+)-pin (+)-pin
1485	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2CH2 (80) CH3	(+)-pin
1486	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2CH2 (80) 2CH3	(+)-pin
1487	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	(+)-pin
1488	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CH2CH2CN	(+)-pin
1489	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂		(+) -pin
1490	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
1491	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CF ₂ CF ₃	(+)-pin
1492	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CF2CF2CF3	(+)-pin
1493	NH (C=NH) NH2	ı	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1494	NH (C=NH) NH2	1	PhCH2CH2	F ₅ -Ph	(+)-pin
1495	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ ∞ ₂ H	(+)-pin
1496	NH (С=NH) NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
1497	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 3∞2H	(+)-pin
1498	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CH2CN4H	(+)-pin
1499	NH (C=NH) NH2	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
1500	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin
1501	NH (C=NH) NH ₂	ı Î	PhCH2CH2	CH2NO2	(+)-pin
1502	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1503	ин (С=ин) ин ₂	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)~pin
1504	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ OH	(+)-pin
1505	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
1506	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin
1507	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ ∞ ₂ Me	(+)-pin
1508	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ ∞ ₂ Me	(+)-pin
1509	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
1510	NH (C-NH) NH2	1	PhCH2CH2	Ph	(+)-pin
1511	NH (C=NH) NH ₂	1	PhCH2CH2	PhCH ₂	(+)-pin
1512	NH (C=NH) NH ₂	1	PhCH2CH2	Ph(CH ₂) ₂	(+)-pin
1513	NH (C=NH) NH2	. 1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin

	,				
1514	NH (C-NH) NH ₂	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
1515	NH (C=NH) NH ₂	1	PhCH2CH2	3-002H-Ph	(+)-pin
1516	NH (C=NH) NH ₂	1	PhCH2CH2	4-CO2H-Ph	(+)-pin
1517	NH (C=NH) NH ₂	_ 1	PhCH2CH2	3-CN4H-Ph	(+)-pin
1518	NH (C=NH) NH ₂	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
1519	NH (C=NH) NH ₂	1	PhCH2CH2	3-(HOCH ₂)-Ph	(+)-pin
1520	NH (C=NH) NH ₂	1	PhCH2CH2	4- (HOCH2) -Ph	(+)-pin
1521	CH2NH2	1	PhCH2CH2	H	OH, OH AZ
1522	CH ₂ NH ₂	1	PhCH2CH2	Methyl	OH, OH
1523	CH ₂ NH ₂	1	PhCH2CH2	Ethy1	он, он
1524	CH ₂ NH ₂	1	PhCH2CH2	n-Propyl	он, он
1525	CH ₂ NH ₂	1	PhCH2CH2	n-Butyl	он, он
1526	CH ₂ NH ₂	1	PhCH2CH2	CH2BCH3	он, он
1527	CH ₂ NH ₂	1	PhCH2CH2	CH ₂ (80) CH ₃	OH, OH
1528	CH2NH2	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	он, он
1529	CH2NH2	1	PhCH2CH2	CH2CH28CH3	он, он
1530	CH2NH2	1	PhCH2CH2	CH2CH2 (SO) CH3	OH, OH
1531	CH2NH2	1	PhCH2CH2	CH2CH2 (80) 2CH3	OH, OH
1532	CH2NH2	1	PhCH2CH2	CH ₂ CN	OH, OH
1533	CH2NH2	1	PhCH2CH2	CH2CH2CN	OH, OH
1534	CH2NH2	1	PhCH2CH2	CH2CH2CH2CN	он, он
1535	CH2NH2	1	PhCH2CH2	CF ₃	он, он
1536	CH2NH2	1	PhCH2CH2	CF2CF3	OH, OH
1537	CH2NH2	1	PhCH2CH2	CF2CF2CF3	он, он
1538	CH ₂ NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	он, он
1539	CH ₂ NH ₂	1	PhCH2CH2	F5-Ph	ОН, ОН
1540	CH2NH2	1	PhCH2CH2	CH ₂ CO ₂ H	он, он
1541	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	он, он
1542	CH2NH2	1	PhCH2CH2	$(CH_2)_3 \infty_2 H$	OH, OH
1543	CH ₂ NH ₂	1	PhCH2CH2	CH2CN4H	он, он
1544	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	он, он
1545	CH2NH2	1	PhCH2CH2	(CH ₂) 3 CN ₄ H	он, он
1546	CH ₂ NH ₂	1	PhCH2CH2	CH2NO2	OH, OH
1547	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	он, он
1548	CH2NH2	1	PhCH2CH2	(CH ₂) 3NO ₂	OH, OH
1549	CH ₂ NH ₂	1	PhCH2CH2	CH ₂ OH	OH, OH
1550	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
1551	CH2NH2	1	PhCH ₂ CH ₂	(CH ₂) 3OH	он, он
1552	CH ₂ NH ₂	1	PhCH2CH2	CH2CO2Me	ОН, ОН
1553	CH2NH2	1 .	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	OH, OH

1554	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₃ ∞ ₂ Me	OH, OH
1555	CH2NH2	1	PhCH2CH2	Ph	он, он
1556	CH2NH2	1	PhCH2CH2	PhCH ₂	OH, OH
1557	CH2NH2	1	PhCH2CH2	Ph(CH ₂) ₂	OH, OH
1558	CH2NH2	1	PhCH2CH2	3-NO ₂ -Ph	он, он
1559	CH2NH2	1	PhCH2CH2	4-NO ₂ -Ph	он, он
1560	CH2NH2	1	PhCH2CH2	3-CO2H-Ph	он, он
1561	CH2NH2	1	PhCH2CH2	4-CO ₂ H-Ph	OH, OH
1562	CH2NH2	1	PhCH2CH2	3-CN ₄ H-Ph	он, он
1563	CH2NH2	1	PhCH2CH2	4-CN ₄ H-Ph	он, он
1564	CH2NH2	1	PhCH2CH2	3-(HOCH ₂)-Ph	он, он
1565	CH2NH2	1	PhCH2CH2	4- (HOCH2) -Ph	он, он
1566	NH (C=NH) NH ₂	1	PhCH2CH2	H	он, он
1567	NH (C=NH) NH ₂	1	PhCH2CH2	Methyl	он, он
1568	NH (C=NH) NH2	1	PhCH2CH2	Ethyl	он, он
1569	NH (C=NH) NH ₂	1	PhCH2CH2	n-Propyl	он, он
1570	NH (C=NH) NH ₂	1	PhCH2CH2	n-Butyl	он, он
1571	NH (C=NH) NH2	1	PhCH2CH2	CH28CH3	он, он
1572	NH (C=NH) NH2	. 1	PhCH2CH2	CH ₂ (SO) CH ₃	он, он
1573	NH (C=NH) NH2	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	он, он
1574	ин (C=ин) ин ₂	1	PhCH2CH2	CH2CH28CH3	он, он
1575	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CH2CH2 (80) CH3	OH, OH
1576	ин (с=ин) ин ₂	1	PhCH2CH2	CH2CH2 (SO) 2CH3	OH, OH
1577	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CN	ОН, ОН
1578	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CH ₂ CN	OH, OH
1579	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CH ₂ CH ₂ CN	OH, OH
1580	NH (C=NH) NH ₂	1	PhCH2CH2	CF ₃	OH, OH
1581	NH (C=NH) NH2	1	PhCH2CH2	CF2CF3	он, он
1582	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF3	он, он
1583	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	он, он
1584	NH (C-NH) NH ₂	1	PhCH2CH2	F5-Ph	он, он
1585	NH (C=NH) NH ₂	1	PhCH2CH2	сн₂∞2н	он, он
1586	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	он, он
1587	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ ∞ ₂ H	он, он
1598	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CN4H	он, он
1589	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	он, он
1590	NH (C=NH) NH ₂	1 .	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	он, он
1591	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2NO2	он, он
1592	nh (c-nh) nh ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	он, он
1593	NH (C=NH) NH ₂	. 1	PhCH2CH2	(CH ₂) 3NO ₂	он, он

1594	NH (C-NH) NH ₂	1	PhCH2CH2	CH ₂ OH	OH, OH
1595	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	OH, OH
1596	NH (C=NH) NH2	1	PhCH2CH2	(CH ₂) ₃ OH	OH, OH
1597	NH (C=NH) NH2	1	PhCH2CH2	CH2CO2Ne	OH, OH
1598	NH (C=NH) NH ₂	. 1	PhCH2CH2	(CH ₂) ₂ ∞ ₂ Me	OH, OH
1599	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	он, он
1600	NH (C=NH) NH ₂	1	PhCH2CH2	Ph	OH, OH
1601	NH (C=NH) NH2	1	PhCH2CH2	PhCH ₂	он, он
1602	NH (C=NH) NH2	1	PhCH2CH2	Ph(CH ₂) ₂	OH, OH
1603	NH (C=NH) NH2	1	.PhCH2CH2	3-NO ₂ -Ph	OH, OH
1604	NH (C=NH) NH2	1	PhCH2CH2	4-NO ₂ -Ph	он, он
1605	NH (C=NH) NH ₂	1	PhCH2CH2	3-CO2H-Ph	OH, OH
1606	NH (C=NH) NH ₂	1	· PhCH2CH2	4-CO ₂ H-Ph	OH, OH
1607	NH (C=NH) NH ₂	1	PhCH2CH2	3-CN4H-Ph	OH, OH
1608	NH (C=NH) NH ₂	1	PhCH2CH2	4-CN4H-Ph	он, он
1609	NH (C=NH) NH ₂	1	PhCH2CH2	3-(HOCH ₂)-Ph	OH, OH
1610	NH (C=NH) NH ₂	1	PhCH2CH2	4-(HOCH ₂)-Ph	OH, OH
1611	-8-(C=NH)NH ₂	· 1	PhCH ₂ CH ₂	н -	(+)-pin
1612	-s-(C=NH)NH2	1	PhCH2CH2	Methyl	(+)-pin
1613	-8-(C=NH)NH2	1	PhCH2CH2	Ethyl	(+)-pin
1614	-8-(C=NH)NH2	1	PhCH2CH2	n-Propyl	(+)-pin
1615	-8-(C=NH)NH ₂	1	PhCH2CH2	n-Butyl	(+)-pin
1616	-8-(C=NH)NH2	1	PhCH2CH2	CH28CH3	(+)-pin
1617	-s-(C=NH)NH2	1.	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
1618	-в- (с=NH) NH ₂	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
1619	-8-(C=NH)NH2	1	PhCH2CH2	CH ₂ CH ₂ 8CH ₃	(+)-pin
1620	-s-(c=NH)NH2	1	PhCH2CH2	CH ₂ CH ₂ (80) CH ₃	(+)-pin
1621	-8-(C=NH)NH ₂	1	PhCH2CH2	CH2CH2 (80) 2CH3	(+)-pin
1622	-8-(C=NH)NH ₂	1	PhCH2CH2	CH ₂ CN	(+)-pin
1623	-8-(C=NH)NH ₂	1	PhCH2CH2	CH ₂ CH ₂ CN	(+)-pin
1624	-8-(C=NH)NH ₂	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1625	-8-(C=NH)NH ₂	1	PhCH2CH2	CF ₃	(+)-pin
1626	-8-(C=NH)NH2	1	PhCH2CH2	CF2CF3	(+)-pin
1627	-8-(C=NH)NH2	1	PhCH2CH2	CF2CF2CF3	(+)-pin
1628	-8-(C=NH)NH2	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1629	-8-(C=NH)NH ₂	1 .	PhCH2CH2	F5-Ph	(+)-pin
1630	-8-(C=NH)NH ₂	1	PhCH2CH2	$\text{CH}_2 \infty_2 \text{H}$	(+)-pin
1631	-s-(C=NH)NH ₂	1 .	PhCH2CH2	(CH ₂) ₂ ∞ ₂ H	(+)-pin
1632	-s-(C=NH)NH2	1 .	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin -
1633	-8-(C=NH)NH2	1	PhCH2CH2	CH2CN4H	(+)-pin

1634	-s-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
1635	-9-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) 3 CN ₄ H	(+)-pin
1636	-s-(C=NH) NH ₂	1	PhCH2CH2	CH2NO2	(+)-pin
1637	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1638	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
1639	-8- (C=NH) NH ₂	1	PhCH2CH2	CH ₂ OH	(+)-pin
1640	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
1641	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 30H	(+)-pin
1642	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2CO2Me	(+)-pin
1643	-8- (C=NH) NH ₂	, 1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
1644	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
1645	-8- (C=NH) NH ₂	i	PhCH2CH2	Ph	(+)-pin
1646	-s-(C=NH)NH2	. 1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
1647	-8-(C=NH)NH2	1	PhCH2CH2	Ph(CH ₂) ₂	(+)-pin
1648	-s-(C=NH)NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
1649	-s-(C=NH)NH2	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
1650	-s-(c=nh)nh ₂	1	PhCH2CH2	3-CO ₂ H-Ph	(+)-pin
1651	-8-(C=NH)NH ₂	1	PhCH2CH2	4-CO2H-Ph	(+)-pin
1652	-8-(C=NH)NH2	1	PhCH2CH2	3-CN4H-Ph	(+)-pin
1653	-g-(C=NH)NH2	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
1654	-8- (C=NH) NH ₂	1	PhCH2CH2	3- (HOCH ₂) -Ph	(+)-pin
1655	-8-(C=NH)NH ₂	ı	PhCH2CH2	4- (HOCH2) -Ph	(+)-pin
1656	-s-(c=nh)nh ₂	1	PhCH2CH2	H	OH, OH
1657	-8- (C=NH) NH ₂	1	PhCH2CH2	Methyl	он, он
1658	-s-(C=NH)NH2	1	PhCH2CH2	Ethyl	OH, OH
1659	-8-(C=NH)NH2	1	PhCH2CH2	n-Propyl	он, он
1660	-s-(c=NH)NH2	1	PhCH2CH2	n-Butyl	OH, OH
1661	-S-(C=NH)NH2	1	PhCH2CH2	CH2SCH3	он, он
1662	-8-(C=NH)NH2	1	$PhCH_2CH_2$	CH ₂ (SO) CH ₃	OH, OH
1663	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	CH ₂ (60 ₂) CH ₃	он, он
1664	-8-(C=NH)NH2	. 1	PhCH2CH2	CH2CH28CH3	он, он
1665	-8-(C=NH)NH2	1	PhCH2CH2	CH2CH2 (80) CH3	он, он
1666	-8-(C=NH)NH2	1	PhCH2CH2	CH2CH2 (80) 2CH3	
1667	-8-(C=NH)NH2	1	PhCH2CH2	CH ₂ CN	OH, OH
1668	-s-(C=NH)NH2	1	PhCH2CH2	CH2CH2CN	OH, OH
1669	-8-(C=NH)NH2	1		CH2CH2CH2CN	он, он
1670	-s-(C=NH)NH ₂	1	PhCH2CH2		он, он
1671	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	CF2CF3	он, он
1672	-8-(C=NH)NH2	1	١	CF2CF2CF3	OH, OH
1673	-8-(C=NH)NH2	1	*	CF2CF2CF2CF3	OH, OH
			ţ -		J., OI

1674	-8-(C=NH)NH ₂	1	PhCH2CH2	F ₅ -Ph	он, он
1675	-8-(C=NH)NH ₂	1	PhCH2CH2	CH_2CO_2H	OH, OH
1676	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	OH, OH
1677	-8-(C=NH)NH ₂	1	PhCH2CH2	(СН ₂) ₃ СС ₂ Н	он, он
1678	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2CN4H .	он, он
1679	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	он, он
1680	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 3 CN ₄ H	OH, OH
1681	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2NO2	OH, OH
1682	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH, OH
1683	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ NO ₂	он, он
1684	-8- (C=NH) NH ₂	1	PhCH2CH2	СН ₂ ОН	он, он
1685	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
1686	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₃ OH	он, он
1687	-8- (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CO ₂ Me	он, он
1688	-s-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	он, он
1689	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₃ ∞ ₂ Me	он, он
1690	-8- (C=NH) NH ₂	i	PhCH2CH2	Ph	OH, OH
1691	-8- (C=NH) NH2	1	PhCH2CH2	PhCH ₂	он, он
1692	-8- (C=NH) NH2	1	PhCH2CH2	Ph (CH ₂) ₂	он, он
1693	-s-(C=NH)NH2	1	PhCH2CH2	3-NO ₂ -Ph	он, он
1694	-8- (C=NH) NH ₂	1	PhCH2CH2	4-NO2-Ph	он, он
1695	-8-(C=NH)NH2	1	PhCH2CH2	3-CO ₂ H-Ph	он, он
1696	-8- (C=NH) NH ₂	1	PhCH2CH2	4-CO2H-Ph	он, он
1697	-8-(C=NH)NH2	1	PhCH2CH2	3-CN4H-Ph	он, он
1698	-8-(C=NH)NH2	1	PhCH2CH2	4-CN ₄ H-Ph	он, он
1699	-9-(C=NH)NH ₂	1	PhCH2CH2	3 - (HOCH ₂) - Ph	он, он
1700	-s-(c=nh)nh2	1	PhCH2CH2	4 - (HOCH ₂) - Ph	он, он
1701	OMe	1	PhCH2CH2	н	(+)-pin
1702	OMe	1	PhCH2CH2	Methyl	(+)-pin
1703	OMe .	1	PhCH2CH2	Ethyl	(+)-pin
1704	OMe	1	PhCH2CH2	n-Propyl	(+)-pin
1705	OMe	1	PhCH2CH2	n-Butyl	(+)-pin
17,06	OMe	1	PhCH2CH2	CH28CH3	(+)-pin
1707	OMe	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
1708	OMe	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
1709	OMe	1	PhCH2CH2	CH2CH2SCH3	(+)-pin
1710	OMe	1	PhCH2CH2	CH2CH2 (80) CH3	(+)-pin
1711	OMe	1	PhCH2CH2	CH2CH2 (80) 2CH3	(+)-pin
1712	OMe	1	PhCH2CH2	CH ₂ CN	(+)-pin
1713	OMe	1 .	PhCH2CH2	CH2CH2CN	(+)-pin
					-

1714	OMe	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1715	OMe	1	PhCH2CH2	CF3	(+)-pin
1716	OMe	1	PhCH2CH2	CF2CF3	(+)-pin
1717	ОМе	1	PhCH2CH2	CF2CF2CF3	(+)-pin
1718	OMe	. 1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1719	OMe	1	PhCH2CH2	P5-Ph	(+)-pin
1720	OMe	1	PhCH2CH2	сн ₂ ∞ ₂ н	(+)-pin
1721	OMe	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
1722	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ ∞ ₂ H	(+)-pin
1723	OMe	. 1	PhCH2CH2	CH2CN4H	(+)-pin
1724	QMe	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
1725	OMe	1	PhCH2CH2	(CH ₂) 3CN ₄ H	(+)-pin
1726	OMe	1	PhCH2CH2	CH2NO2	(+)-pin
1727	OMe	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1728	OMe	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
1729	OMe	1	PhCH2CH2	CH ₂ OH	(+)-pin
1730	OMe	ı	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
1731	OMe	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin
1732	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
1733	OMe	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
1734	OMe	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
1735	OMe	1	PhCH2CH2	. Ph	(+)-pin
1736	OMe	1	PhCH2CH2	PhCH ₂	(+)-pin
1737	OMe	, 1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin
1738	OMe	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
1739	OMe	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
1740	OMe	1	PhCH2CH2	3-CO ₂ H-Ph	(+)-pin
1741	OMe	1	PhCH2CH2	4-CO ₂ H-Ph	(+)-pin
1742	OMe	1	PhCH2CH2	3-CN4H-Ph	(+)-pin
1743	OMe	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
1744	OMe	1	PhCH2CH2	3-(HOCH ₂)-Ph	(+)-pin
1745	OMe	1	PhCH2CH2	4-(HOCH2)-Ph	(+)-pin
1746	OMe	1	PhCH2CH2	н	ОН, ОН
1747	OMe	1	PhCH2CH2	Methyl	ОН, ОН
1748	OMe	1	PhCH2CH2	Ethyl	он, он
1749	OMe	- 1	PhCH ₂ CH ₂	n-Propyl	он, он
1750	OMe	. 1	PhCH2CH2	n-Butyl	OH, OH
1751	ОМе	1	PhCH2CH2	CH28CH3	OH, OH
1752	OMe	1	PhCH ₂ CH ₂	CH ₂ (80) CH ₃	он, он
1753	OMe	` . 1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	он, он
			:	· ·	on, on

1754 OMe	1 PhCH2CH2 CH2CH28CH3	OH, OH
1755 OMe	1 PhCH2CH2 CH2CH2 (SO) CH3	OH, OH
1756 OMe	1 PhCH2CH2 CH2CH2 (SO) 2CH3	OH, OH
1757 ONe	1 PhCH2CH2 CH2CN	OH, OH
1758 ONe	1 Phoh ₂ ch ₂ ch ₂ ch ₂ ch	OH, OH
1759 OMe	1 PhCH2CH2 CH2CH2CH2CH	OH, OH
1760 OMe	1 PhCH ₂ CH ₂ CF ₃	OH, OH
1761 ONe	1 PhCH2CH2 CF2CF3	OH, OH
1762 ONe	1 PhCH2CH2 CF2CF2CF3	OH, OH
1763 CMe	1 PhCH2CH2 CF2CF2CF3	OH, OH
1764 OMe	1 PhCH2CH2 F5-Ph	OH, OH
1765 OMe	1 PhCH2CH2 CH2CO2H	OH, OH
1766 OMe	1 PhCH2CH2 (CH2)2CO2H	OH, OH
1767 ONe	PhCH2CH2 (CH2)3CO2H	OH, OH
1768 OMe	1 PhCH2CH2 CH2CN4H	OH, OH
. 1769 OMe	1 PhCH2CH2 (CH2)2CN4H	OH, OH
1770 OMe	1 PhCH2CH2 (CH2)3CN4H	OH, OH
1771 OMe	1 PhcH ₂ CH ₂ CH ₂ NO ₂	OH, OH
1772 OMe	1 PhcH ₂ CH ₂ (CH ₂) ₂ NO ₂	OH, OH
1773 ONe	1 PhcH ₂ CH ₂ (CH ₂) ₃ NO ₂	OH, OH
1774 OMe	1 PhCH ₂ CH ₂ CH ₂ OH	OH, OH
1775 OMe	1 PhCH ₂ CH ₂ (CH ₂) ₂ OH	OH, OH
1776 OMe	1 PhCH ₂ CH ₂ (CH ₂) ₃ CH	OH, OH
1777 OMe	1 PhCH2CH2 CH2CO2Me	OH, OH
1778 OMe	1 PhCH2CH2 (CH2)2CO2Me	OH, OH
1779 OMe	1 PhCH2CH2 (CH2)3CO2Ne	OH, OH
1780 OMe	1 PhCH2CH2 Ph	OH, OH
1781 OMe	1 PhCH2CH2 PhCH2	OH, OH
1782 OMe	1 PhCH ₂ CH ₂ Ph(CH ₂) ₂	он, он
1783 OMe	1 PhCH ₂ CH ₂ 3-NO ₂ -Ph	OH, OH
1784 ONe	1 PhCH ₂ CH ₂ 4-NO ₂ -Ph	OH, OH
1785 ONe	1 PhCH2CH2 3-CO2H-Ph	OH, OH
1786 CMe	1 PhCH ₂ CH ₂ 4-CO ₂ H-Ph	OH, OH
1787 OMe	1 PhCH2CH2 3-CN4H-Ph	OH, OH
1789 OMe	1 PhCH2CH2 4-CN4H-Ph	OH, OH
1789 OMe	1 PhCH2CH2 3- (HOCH2) - Ph	OH, OH
1790 OMe	1 PhCH ₂ CH ₂ 4-(HOCH ₂)-Ph	OH, OH
1791 NH (C-NH) H	1 Ph H	(+)-pin
1792 NH (C-NH) H	1 Ph Methyl	(+) -pin -
1793 NH (C=NH) H	1 Ph Ethyl	(+)-pin

		•			
1794	NH (C-NH) H	. 1	Ph	n-Propyl	(+)-pin
1795	NH (C-NH) H	1	Ph	n-Butyl	(+) -pin
1796	NH (C=NH) H	1	Ph	CH28CH3	(+)-pin
1797	NH (C-NH) H	1	Ph	CH ₂ (80) CH ₃	(+)-pin
1798	NE (C=NH) H	1	Ph	CH2 (BO2) CH3	(+)-pin
1799	ne (c-nh) h	1	Ph	CH2CH2BCH3	(+)-pin
1800	NH (C-NH) H	1	Ph	CH2CH2 (80) CH3	(+)-pin
1801	NH (C-NH) H	1	Ph	Cli2Cli2 (80) 2Cli3	(+)-pin
1802	NH (C-NH) H	1	Ph	CH ₂ CN	(+)-pin
1803	NH (C=NH) H	1	Ph	CH2CH2CN	(+)-pin
1804	NH (C-NH) H	1	· Ph	CH2CH2CH2CN	(+)-pin
1805	NH (C=NH) H	-3	Ph	CF ₃	(+)-pin
1806	NH (C=NH) H	- 5	Ph	CF2CF3	(+)-pin
1807	NH (C=NH) H	1	Ph	CF2CF2CF3	(+)-pin
1808	MH (C-MH) H	1	Ph	CF2CF2CF2CF3	(+)-pin
1809	NH (C=NH) H	1	Ph	F5-Ph	(+)-pin
1810	NH (C-NH) H	1	Ph	CH₂∞2H	(+)-pin
1811	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
1812	NH (C-NH) H	1	Ph	(CH2) 3 CO2H	(+)-pin
1813	NH (C=NH) H	1	Ph	CH2CN4H	(+)-pin
1814	NH (C-NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
1815	NH (C=NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
1816	NH (C-NH) H	1	Ph	CH2NO2	(+)-pin
1817	NH (C=NH) H	ī	Ph	(CH ₂) ₂ NO ₂	(+)-pin
1618	NH (C=NH) H	1	Ph	(CH ₂) 3NO ₂	(+)-pin
1819	NH (C-NH) H	1	Ph	CH ₂ OH	(+)-pin
1820	MH (C=NH) H	1	Ph	(CH ₂) ₂ OH	(+)-pin
1821	NH (C=NH) H	1	Ph	(CH ₂) 3OH	(+)-pin
1822	NH (C=NH) H	1	Ph	CH ₂ CO ₂ Me	(+)-pin
1823	NH (C-NH) H	1	Ph	$(CH_2)_2 \infty_2 Me$	(+)-pin
1834	nh (c-nh) h	1	Ph	$(CH_2)_3 \infty_2 He$	(+)-pin
1825	NH (C-NH) H	1	Ph	Ph	(+)-pin
1826	NH (C=NH) H	1	Ph	PhCH ₂	(+)-pin
1827	NH (C=NH) H	1	Ph	Ph(CH ₂) ₂	(+)-pin
1828	NH (C-NH) H	1	Ph	3-NO ₂ -Ph	(+)-pin
1829	NH (C=NH) H	1	Ph .	4-NO2-Ph	(+)-pin
1830	NH (C=NH) H	1	Ph	3-00 ₂ H-Ph	(+)-pin
1831	nh (c=nh) h	i	Ph	4-CO2H-Ph	(+)-pin
1832	NH (C-NH) H	1	Ph	3-CN ₄ H-Ph	(+)-pin
1833	MH (C=MH) H	1	Ph	4-CN4H-Ph	(+)-pin
		•			

1834	nh (c=nh) h	1	Ph	3 - (HOCH ₂) - Ph	(+)-pin
1835	NH (C-NH) H	1	Ph	4- (HOCH ₂) - Ph	(+)-pin
1836	NH (C-NH) H	1	Ph	H	OH, OH
1837	NH (C=NH) H	1	Ph	Methy1	OH, OH
1638	NH (C-NH) H	1	Ph	Ethyl	OH, OH
1839	NH (C=NH) H	1	Ph	n-Propyl	OH, OH
1840	NH (C-NH) H	. 1	Ph	n-Butyl	OH, OH
1941	Me (C-NH) H	1	Ph	CH2SCH3	OH, OH
1842	NH (C=NH) H	1	Ph	CH ₂ (80) CH ₃	OH, OH
1843	NH (C=NH) H	1	Ph	CH ₂ (80 ₂) CH ₃	OH, OH
1844	NH (C=NH) H	. 1	Ph	CH2CH28CH3	OH, OH
1845	NH (C-NH) H	. 1	Ph	CH2CH2 (80) CH3	OH, OH
1846	HH (C=NH) H	1	Ph	CH2CH2 (80) 2CH3	OH, OH
1947	NH (C=NH) H	î	Ph	CH ₂ CN	OH, OH
1848	NH (C=NH) H	1	Ph	CH2CH2CN	OH, OH
1849	NH (C=NH) H	1	Ph	CH2CH2CH2CN	OH, OH
1850	NH (C=NH) H	1	Ph	CF ₃	OH, OH
1851	nh (c=nh) h	1	Ph	CF2CF3	OH, OH
1852	NH (C-NH) H	1	Ph	CF2CF2CF3	OH, OH
1853	NH (C=NH) H	1	Ph	CF2CF2CF2CF3	OH, OH
1854	NH (C=NH) H	1	Ph.	F5-Ph	OH, OH
1855	NH (C=NH) H	1	Ph	$\text{CH}_2 \infty_2 \text{H}$	OH, OH
1856	NH (C-NH) H	1	Ph	(CH ₂) ₂ ∞ ₂ H	OH, OH
1857	NH (C-NH) H	1	Ph	(CH ₂) ₃ ∞ ₂ H	OH, OH
1858	NH (C-NH) H	1	Ph	CH2CN4H	OH, OH
1859	NH (C=NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
1860	NH (C-NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
1861	nh (c=nh) h	1	Ph	CH ₂ NO ₂	OH, OH
1862	NH (C—NH) H	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
1863	ин (С - ин) н	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
1864	NH (C-NH) H	1	Ph	CH ₂ OH	OH, OH
1865	NH (C—NH) H	. 1	Ph	(CH ₂) ₂ OH	OH, OH
1866	NH (C-NH) H	.1	Ph	(CH ₂) ₃ OH	OH, OH
1867	NH (C=NH) H	1	Ph	CH2CO2He	OH, OH
1868	NH (C—NH) H	1	Ph	(CH ₂) ₂ CO ₂ He	OH, OH
1869	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ He	OH, OH
1870	NH (C=NH) H	1	Ph	Ph	OH, OH
1871	NH (C=NH) H	1	Ph	PhCH ₂	OH, OH
1872	NH (C-NH) H	. 1	Ph	Ph(CH ₂) ₂	OH, OH
1873	NH (C-NH) H	1.	Ph	3-NO ₂ -Ph	OH, OH
					-

					· ·
1874	NE (O-NH) H	1	Ph	4-NO ₂ -Ph	OH, OH
1875	NH (C-NH) H	1	Ph	3-00 ₂ H-Ph	OH, OH
1876	NH (C-NH) H	1	Ph	4-00 ₂ H-Ph	OH, OH
1877	NH (C=NH) H	1	Ph	3-CN ₄ H-Ph	OH, OH
1878	NH (C-NH) H	1.	Ph	4-CN4H-Ph	OH, OH
1879	NH (C=NH) H	1	Ph	3- (HOCH ₂) -Ph	OH, OH
1880	NH (C=NH) H	1	Ph	4-(HOCH2)-Ph	OH, OH
1881	me (c-nh) h	1	PhCH ₂	H	(+)-pin
1882	NH (C-NH) H	1	PhCH ₂	Hethyl	(+)-pin
1883	NH (C-NH) H	1	PhCH ₂	Ethyl	(+)-pin
1884	NH (C—NH) H	1	PhCH ₂	n-Propyl	(+)-pin
1885	NH (C-NH) H	. 1	PhCH ₂	n-Butyl	(+)-pin
1886	NH (C-NH) H	1	PhCH ₂	CH28CH3	(+)-pin
1887	NH (C=NH) H	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin
1888	nh (c-nh) h	, 1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
1889	NH (C-NH) H	1	PhCH ₂	CH2CH28CH3	(+)-pin
1890	MH (C=NH) H	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
1891	NH (C=NH) H	1	PhCH ₂	CH2CH2 (SO) 2CH3	(+)-pin
1892	NH (C-NH) H	1	PhCH ₂	CH2CN	(+)-pin
1893	MH (C=NH) H	1	PhCH ₂	CH2CH2CH	(+)-pin
1894	NH (C=NH) H	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
1895	NH (C-NH) H	1	PhCH ₂	CF3	(+)-pin
1896	NH (C-NH) H	1	PhCH ₂	CF2CF3	(+)-pin
1897	nh (C=nh) h	1	PhCH ₂	CF2CF2CF3	(+)-pin
1898	NH (C=NH) H	1	PhCH ₂	CF2CF2CF3	(+)-pin
1899	NH (C=NH) H	1	PhCH ₂	F5-Ph	(+)-pin
1900	NH (C=NH) H	1	PhCH ₂	CH2CO2H	(+)-pin
1901	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1902	NH (C-NH) H	1	PhCH ₂	(CH ₂) ₃ ∞ ₂ H	(+)-pin
1903	NH (C-NH) H	1	PhCH ₂	CH2CN4H	(+)-pin
1904	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1905	NH (C=NH) H	1	PhCH ₂	(CH ₂) 3CN ₄ H	(+)-pin
1906	NH (C-NH) H	1	$PhCH_2$	CH ₂ NO ₂	(+)-pin
1907	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1908	NH (C=NH) H	1	PhCH ₂	(CH ₂) 3NO ₂	(+)-pin
1909	NH (C=NH) H	1	PhCH ₂	CH2OH .	(+)-pin
1910	NH (C=NH) H	í	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1911	NH (C-NH) H	. 1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1912	NH (C=NH) H	1	PhCH ₂	CH2CO2Me	(+)-pin
1913	NH (C-NH) H	. 1	PhCH ₂	(CH ₂) ₂ 00 ₂ Me	(+)-pin

1914	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1915	nh (c-nh) h	1	PhCH ₂	Ph	(+)-pin
1916	NH (C-NH) H	1	PhCH ₂	PhCH ₂	(+)-pin
1917	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1918	nh (c-nh) h	1	PhCH ₂	3-NO2-Ph	(+)-pin
1919	NH (C-NH) H	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
1920	NH (C—NH) H	1	PhCH ₂	3-002H-Ph	(+)-pin
1921	NH (C-NH) H	1	PhCH ₂	4-002H-Ph	(+)-pin
1922	MH (C-MH) H	1 .	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
1923	nr (c=nh) h	1	PhCH ₂	4-cn ₄ H-Ph	(+)- pin
1924	nh (C-nh) h	1	PhCH ₂	3- (HOCH ₂) -Ph	(+)-pin
1925	NH (C-NH) H	1	PhCH ₂	4- (HOCH ₂) -Ph	(+)-pin
1926	NR (C-NH) H	1	PhCH ₂	H	OH, OH
1927	nh (c=nh) h	16.	PhCH ₂	Methyl	OH, OH
1928	NH (C-NH) H	1	PhCH ₂	Ethyl	OH, OH
1929	MH (C—NH) H	1	PhCH ₂	n-Propyl	OH, OH
1930	NH (C-NH) H	1	PhCH ₂	n-Butyl	OH, OH
1931	NH (C=NH) H	1	PhCH ₂	CH28CH3	OH, OH
1932	NH (C—NH) H	1	PhCH ₂	CH2 (80) CH3	OH, OH
1933	NH (C-NH) H	1	PhCH ₂	CH2 (802) CH3	OH, OH
1934	NH (C=NH) H	1	PhCH ₂	CH2CH2SCH3	OH, OH
1935	NH (C=NH) H	1	PhCH ₂	CH2CH2 (80) CH3	OH, OH
1936	NH (C=NH) H	1	PhCH ₂	CH2CH2 (60) 2CH3	OH, OH
1937	NH (C=NH) H	, 1	PhCH ₂	CH ₂ CN	ОН, ОН
1938	NH (C=NH) H	1	PhCH ₂	CH2CH2CN	OH, OH
1939	nh (c—nh) h	1	PhCH ₂	CH2CH2CH2CN	OH, OH
1940	NH (C=NH) H	1	PhCH ₂	CF3	он, он
1941	nh (C-nh) h	1	PhCH ₂	CF ₂ CF ₃	OH, OH
1942 .	NH (C=NH) H	1	PhCH ₂	CF2CF2CF3	OH, OH
1943	NH (C—NH) H	1	PhCH ₂	CF2CF2CF3	OH, OH
1944	NH (C=NH) H	. 1	PhCH ₂	P5-Ph	OH, OH
1945	NH (C=NH) H	1	PhCH ₂	CH2CO2H	OH, OH
1946	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ ∞ ₂ H	он, он
1947	NH (C=NH) H	1	PhCH ₂	(CH ₂) 3∞2H	OH, OH
1948	№ (С=№Н) Н	1	PhCH ₂	CH2CN4H	OH, OH
1949	NH (C=NH) H	1 .	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
1950	NH (C-NH) H	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	он, он
1951	NH (C-NH) H	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1952	NH (C-NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
1953	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH

1954	NH (C-NH) H	1	PhCH ₂	CH ₂ OH	OH, OH
1,955	NH (C=NH) H	1.	PhCH ₂	(CH ₂) ₂ OH	OH, OH
1956	NH (C=NH) H	1	PhCH ₂	(CH ₂) 3OH	OH, OH
1957	NH (C—NH) H	1	PhCH2	CH2CO2Ne	OH, OH
1958	NH (C=NH) H	. 1	PhCH ₂	(CH ₂) ₂ CO ₂ He	OH, OH
1959	NH (C-NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1960	NH (C=NH) H	ı	PhCH ₂	Ph	OH, OH
1961	nh (c=nh) h	. 1	PhCH ₂	PhCH ₂	OH, OH
1962	MH (C-NH) H	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
1963	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
1964	NH (C-NH) H	ī	PhCH ₂	4-NO ₂ -Ph	OH, OH
1965	NH (C=NH) H	- 1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
1966	MH (C—MH) H	- <u>1</u>	PhCH ₂	4-CO ₂ H-Ph	OH, OH
1967	NH (C=NH) H	1	PhCH ₂	3-CN4H-Ph	OH, OH
1968	NH (C=NH) H	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
1969	NH (C=NH) H	1	PhCH ₂	3- (HOCH ₂) - Ph	OH, OH
1970	NH (C-NH) H	1	PhCH ₂	4- (HOCH2) -Ph	OH, OH
1971	NH (C-NH) H	1	PhCH ₂ CH ₂	H	(+)-pin
1972	MH (C=MH) H	1	PhCH2CH2	Methyl	(+) -pin
1973	NH (C-NH) H	, <u>, , , , , , , , , , , , , , , , , , </u>	PhCH2CH2	Ethyl	(+)-pin
1974	NH (C-NH) H	1	PhCH2CH2	n-Propyl	(+)-pin
1975	NH (C=NH) H	1	PhCH2CH2	n-Butyl	(+)-pin
1976	NH (C—NH) H	1.	PhCH2CH2	CH2SCH3	(+)-pin
1977	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
1978	NH (C=NH) H	1	PhCH ₂ CH ₂	CH2 (SO2) CH3	(+)-pin
1979	NH (C=NH) H	1	PhCH2CH2	CH2CH2SCH3	(+)-pin
1980	NH (C=NH) H	1	PhCH2CH2	CH2CH2 (SO) CH3	(+)-pin
1981	NH (C=NH) H	1	PhCH2CH2	CH2CH2(80)2CH3	(+)-pin
1982	NH (C-NH) H	1	PhCH2CH2	CH ₂ CN	(+)-pin
1983	NH (C-NH) H	1	PhCH2CH2	CH2CH2CN	(+)-pin
1984	NH (C-NH) H	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1985	NH (C-NH) H	1	PhCH2CH2	CF ₃	(+)-pin
1986	NH (C=NH) H	1	PhCH2CH2	CF2CF3	(+)-pin
1987	NE (C-NE) E	1	PhCH ₂ CH ₂	CF2CF2CF3	(+)-pin
1988	NH (C=NH) H	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1989	NH (C=NH) H	1	PhCH2CH2	F5-Ph	(+)-pin
1990	NH (C=NH) H	. 1	PhCH2CH2	CH₂CO₂H	(+)-pin
1991	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
1992	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin
1993	nh (c=nh) h	. 1	PhCH2CH2	CH2CN4H	(+)-pin

1994	NH (C-NH) H	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
1995	NH (C-NH) H	· 1	PhCH2CH2	(CH ₂) 3 CN ₄ H	(+)-pin
1996	MH (C-NH) H	1	PhCH2CH2	CH2NO2	(+)-pin
1997	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)- pin
1998	MH (C-NH) H	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
1999	ne (c=ne) e	1	PhCH2CH2	CH ₂ OH	(+)-pin
2000	Me (C—MH) H	1	PhCH2CH2	(CH ₂) ₂ OH	(+)- pin
2001	NH (C-NH) H	1	PhCH2CH2	(CH ₂) 3OH	(+)-pin
2002	MH (C-NH) H	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)- pin
2003	nh (c—nh) h	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
2004	nh (C–nh) h	1	PhCH2CH2	(CH ₂) ₃ ∞ ₂ He	(+)-pin
2005	nh (c=nh) h	1	PhCH2CH2	Ph	(+)-pin
2006	nh (c—nh) h	1	PhCH2CH2	PhCH ₂	(+)-pin
2007	nh (c—nh) h	1	PhCH2CH2	Ph(CH ₂) ₂	(+)-pin
2008	nh (c=nh) h	1	PhCH2CH2	3-NO ₂ -Ph	(+)- <u>pin</u>
2009	NH (C=NH) H	. 1	PhCH2CH2	4-NO2-Ph	(+)-pin
2010	NH (C-NH) H	1	PhCH ₂ CH ₂	3-002H-Ph	(+)-pin
2011	MH (C=NH) H	1	PhCH ₂ CH ₂	4-CO2H-Ph	(+)-pin
2012	NH (C-NH) H	1	PhCH2CH2	3-CN4H-Ph	(+)- pin
2013	NH (C-NH) H	1	PhCH2CH2	4-CN ₄ H-Ph	(+)-pin
2014	nh (c—nh) h	1	PhCH2CH2	3-(HOCH ₂)-Ph	(+)-pin
2015	NH (C=NH) H	1	PhCH ₂ CH ₂	4- (HOCH ₂) -Ph	(+)-pin
2016	NH (C=NH) H	1	PhCH2CH2	H	OH, OH
2017	NH (C=NH) H	1	PhCH ₂ CH ₂	Methyl	OH, OH
2018	NH (C=NH) H	1	PhCH2CH2	Ethy1	OH, OH
2019	NH (C=NH) H	1 .	PhCH2CH2	n-Propyl	OH, OH
2020	NH (C=NH) H	1	PhCH2CH2	n-Butyl	OH, OH
2021	NH (C=NH) H	1	PhCH2CH2	CH28CH3	OH, OH
2022	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80) CH ₃	OH, OH
2023	NH (C=NH) H	• 1	PhCH2CH2	CH2 (802) CH3	OH, OH
2024	MH (C-NH) H	. 1	PhCH2CH2	CH2CH28CH3	OH, OH
2025	NH (C=NH) H	1	PhCH2CH2	CH ² CH ² (80) CH ³	OH, OH
2026	NH (C=NH) H	. 1	PhCH ₂ CH ₂	CH2CH2 (80) 2CH3	OH, OH
2027	NH (C=NH) H	1	PhCH ₂ CH ₂	CH ₂ CN	OH, OH
2028	NH (C-NH) H	1	PhCH2CH2	CH2CH2CN	OH, OH
2029	nh (c-nh) h	1	PhCH2CH2	CH2CH2CH2CN	OH, OH
2030	nh (c—nh) h	1.	PhCH2CH2	CF ₃	OH, OH
2031	NH (C=NH) H	i	PhCH2CH2	CF2CF3	OH, OH
2032	NH (C-NH) H	1.	PhCH2CH2	CF2CF2CF3	OH, OH
2033	NH (C-NH) H	1	PhCH2CH2	CF2CF2CF2CF3	OH, OH
		•			

2034	ne (c=ne) h	1	PhCH2CH2	P5-Ph	OH, OH
2035	NH (C=NH) H	1	PhCH ₂ CH ₂	CH2CO2H	OR, OR
2036	NH (C-NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2037	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH, OH
2038	ne (c-ne) h	. 1	PhCH2CH2	CH2CN4H	OH, OH
2039	NH (C-NH) H	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH, OH
2040	NH (C=NH) H	1	PhCH2CH2	(CH ₂) 3CN ₄ H	OH, OH
2041	NH (C-NH) H	ı	PhCH2CH2	CH2NO2	OH, OH
2042	NH (C-NH) H	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH, OH
2043	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ NO ₂	OH, OH
2044	NH (C=NH) H	. 1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
2045	NH (C=NH) H	- 1	PhCH2CH2	(CH ₂) ₂ OH	OH, OH
2046	NH (C-NH) H	, 1	PhCH2CH2	(CH ₂) 3OH	OH, OH
2047	NH (C-NH) H	1	PhCH ₂ CH ₂	CH2CO2He	OH, OH
2048	NH (C=NH) H	1	PhCH2CH2	$(CH_2)_2CO_2Me$	OH, OH
2049	NH (C-NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	OR, OR
2050	NH (O-NH) H	1	PhcH2CH2	Ph ·	OH, OH
2051	NH (C—NH) H	1	PhCH2CH2	PhCH ₂	OH, OH
2052	NH (C-NH) H	1	PhCH2CH2	Ph(CH ₂) ₂	OH, OH
2053	NH (C-NH) H	1	PhCH2CH2	3-NO ₂ -Ph	OH, OH
2054	NH (C-NH) H	1	PhCH2CH2	4-NO ₂ -Ph	OH, OH
2055	NH (C=NH) H	1	PhCH2CH2	3-CO ₂ H-Ph	OH, OH
2056	nh (C=nh) h	1	PhCH2CH2	4-CO2H-Ph	OH, OH
2057	NH (C-NH) H	1	PhCH2CH2	3-CN ₄ H-Ph	OH, OH
2058	NH (C-NH) H	1	PhCH2CH2	4-CN ₄ H-Ph	OH, OH
2059	NH (C=NH) H	1	PhCH2CH2	3- (HOCH ₂) -Ph	OH, OH
2060	NH (C=NH) H	1	PhCH2CH2	4-(HOCH ₂)-Ph	OH, OH
2061	CH2NH2	1	PhCH ₂	3-NO ₂ -Ph	(+)_pin cu
2062	NH (C-NH) NH ₂	· 1	Ph	PhCH ₂	(+)-pin
2063	NH (C-NH) NH ₂	1	Ph	PhCH ₂ CH ₂	(+) -pin
2064	-8- (C-NH) NH2	1	Ph	PhCH ₂	(+)-pin
2065	-8-(C-NH)NH2	1	Ph	PhCH2CH2	(+) -pin
2066	CH ₂ NH ₂	1	PhCH ₂	CH2CN	(+)-pin CN
2067	CH ₂ NH ₂	1	PhCH ₂	CH2CN4H	(+)-pin CO
2068	CH2NH2	1	PhCH ₂ CH ₂	CH2OCH2Ph	(+)-pin CT

AG. Anal. calcd. for C₃₂H₄₂HN₅O₃ • 0.7 H₂O • 1.7 HCl: C, 61.00; H, 7.21; Cl, 9.56 N, 11.11. Found: C, 60.93; H, 7.20; Cl, 9.57 N, 11.55.

WO 96/20689 PCT/US95/16248

```
AH. Anal. calcd. for C22H28EN5O3 • 12H2O • 2.6HCl: C, 36.09;
 Cl., 12.59; N, 9.56. Found: C, 36.25; Cl, 12.52; N, 9.32.
 AI. Anal. calcd. for C16H24HN5O3*1.5 H2O*1.8 HCl: C, 43.89;
 H, 6.63; Cl, 14.57; N, 16.06. Found: C, 44.01; H, 6.28;
 Cl, 14.21; N, 15.59.
 AJ. Anal. calcd. for C25H34EN5O3*2 H2O*1.6 HCl: C, 53.84; H,
 7.16; Cl, 10.17; N, 12.56. Found: C, 53.71; H, 7.13; Cl,
 10.25; N, 12.60.
     MS (M+H)+1 Calc. 480, Found 480.
AL.
     MS (M+H) ** Calc. 494, Found 494.
AM.
     MS (M+H) ** Calc. 522, Found 522.
AN
     MS (M+H)*1 Calc. 540, Found 540.
AO.
     MS (M+H)*1 Calc. 510, Found 510.
AP.
     MS (M+H)*1 Calc. 600, Found 600.
AQ.
     MS (M+H) +1 Calc. 556, Found 556.
     MS (M+H)+: Calc. 570, Found 570.
AR.
     MS (M+H)+; Calc. 601, Found 601.
AS.
AT.
     MS (M+H) +: Calc. 598, Found 598.
AU.
     MS (M+H)+1 Calc. 629, Found 629.
AV.
     MS (M+H)+: Calc. 422, Found 422.
     MS (M+H)*: Calc. 538, Found 538.
AW.
AX.
     MS (M+H)+1 Calc. 494, Found 494.
AY.
     MS (M+H)*1 Calc. 598, Found 598.
     MS (M+H) *1 Calc. 360, Found 360.
AZ.
     MS (M+H) +1 Calc. 519, Found 519.
CN.
co.
     MS (M+H)*1 Calc. 562, Found 562.
CP.
     MS (M+H)*1 Calc. 552, Found 552.
CQ.
    MS (M+H)*1 Calc. 571, Found 571.
CR.
    MS (M+H) ** Calc. 520, Found 520.
CS.
    MS (M+H)*1 Calc. 524, Found 524.
CT.
    MS (M+H) *1 Calc. 614, Found 614.
```

MS (M+H)** Calc. 571, Found 571.

Table 15

Ex	x	 m		R14	A ₇ Ā ₃	Phys.
2073	CH2NH2	1	Ph	Ħ	(+)-pin	BW
2074	CH2NH2	1	Ph	Hethyl	(+)-pin	BX
2075	CH ₂ NH ₂	. 1	Ph	Ethyl	(+)-pin	
2076	CH2NH2	- 1	Ph	n-Propyl	(+)-pin	
2077	CH2NH2	-	Ph	n-Butyl	(+)-pin	
2078.	CH2NH2	1	Ph	CH28CH3	(+)-pin	•
2079	CH2NH2	1	Ph	CH2 (80) CH3	(+)-pin	
2080	CH2NH2	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin	
2081	CH2NH2	1	Ph	CH2CH2ECH3	(+)-pin	· ·
2082	CH2NH2	1	Ph	CH2CH2 (80) CH3	(+)-pin	
2083	CH2NH2	1	Ph	CH2CH2 (80) 2CH3	(+)-pin	
2084	CH2NH2	1	Ph	CH ₂ CN	(+)-pin	*
2085	CH2NH2	1	Ph	CH2CH2CN	(+)-pin	
2086	CH2NH2	1	· Ph	CH2CH2CH2CN	(+)-pin	
2087	CH2NH2	1	Ph	CF ₃	(+)-pin	
2088	CH2NH2	1	Ph	CF2CF3	(+)-pin	
2089	CH2NH2	1	Ph	CF2CF2CF3	(+)-pin	
2090	CH2NH2	1	Ph	CF2CF2CF2CF3	(+)-pin	
2091	CH2NH2	1	Ph	F5-Ph	(+)-pin	
2092	CH2NH2	1	Ph	CH2CO2H	(+)-pin	•
2093	CH2NH2	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin	
2094	CH ₂ NH ₂	. 1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin	
2095	CH ₂ NH ₂	1	Ph	CH2CN4H	(+)-pin	
2096	CH2NH2	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin	
2097	CH2NH2	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin	
2098	CH2NH2	1	Ph	CH2NO2	(+)-pin	
2099	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin	•
2100	CH2NH2	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin	
2101	CH ₂ NH ₂	1	Ph	CH ₂ OH	(+)-pin	
2102	CH2NH2	. 1	Ph	(CH ₂) ₂ OH	(+)-pin	
2103	CH2NH2	1	Ph	(CH ₂) ₃ OH	(+)-pin	
2104	CH2NH2	. 1	Ph	CH ₂ CO ₂ Me	(+)-nin	

2105	CH ₂ NH ₂	1 Ph	(CH ₂) ₂ CO ₂ Ne	(+)- pi n
2106	CH ₂ NH ₂	1 Ph	(CH ₂) 3CO ₂ Ne	(+)-pin
2107	CH2NH2	1 Ph	3-NO ₂ -Ph	(+)-pin
2108	CH2NH2	1 Ph	4-NO ₂ -Ph	(+)-pin
2109	CH2NH2	. 1 Ph	3-002H-Ph	(+)-pin
2110	CH ₂ NH ₂	1 Ph	4-00 ₂ H-Ph	(+)-pin
2111	CH ₂ NH ₂	1 Ph	3-CN4H-Ph	(+)-pin
2112	CH2NH2	1 Ph	4-CN ₄ H-Ph	(+)- pi n
2113	CH ₂ NH ₂	1 Ph	3- (HOCH ₂) -Ph	(+)-pin
2114	CH ₂ NH ₂	1 Ph	4 - (HOCH ₂) -Ph	(+)-pin
2115	nh (c=nh) nh ₂	1 Ph	H.	(+)-pin
2116	NH (C-NH) NH ₂	1 Ph	Methyl	(+)-pin
2117	NH (C-NH) NH ₂	1 Ph	Ethy1	(+)- pin
2118	NH (C=NH) NH2	1 Ph	n-Propyl	(+)-pin
2119	nh (c=nh) nh ₂	1 Ph	n-Butyl	(+)-pin
2120	NH (C=NH) NH ₂	1 Ph	CH ₂ 8CH ₃	(+)-pin
2121	NH (C-NH) NH ₂	1 Ph	CH ₂ (80) CH ₃	(+)-pin
2122	NH (C-NH) NH ₂	1 Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
2123	NH (C-NH) NH ₂	1 Ph	CH2CH28CH3	(+)-pin
2124	NH (C-NH) NH ₂	1 Ph	CH2CH2 (80) CH3	(+)-pin
2125	NH (C=NH) NH ₂	1 Ph	CH2CH2 (80) 2CH3	(+)-pin
2126	NH (C-NH) NH ₂	1 Ph	CH2CN	(+)-pin
2127	NH (C-NH) NH ₂	1 Ph	CH2CH2CN	(+)-pin
2128	NH (C-NH) NH ₂	· 1 Ph	CH2CH2CH2CN	(+)-pin
2129	NH (C=NH) NH ₂	1 Ph	CF3	(+)-pin
2130	NH (C=NH) NH ₂	1 Ph	CF2CF3	(+)-pin
2131	NH (C=NH) NH2	1 Ph	CF2CF2CF3	(+)-pin
2132	NH (C-NH) NH2	1 Ph	CF2CF2CF2CF3	(+)-pin
2133	nh (c=nh) nh ₂	1 Ph	F5-Ph	(+)-pin
2134	NH (C-NH) NH ₂	1 Ph	CH2CO2H	(+)-pin
2135	NH (C=NH) NH2	1 Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2136	NH (C=NH) NH ₂	1 Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
2137	NH (C=NH) NH ₂	1 Ph	CH2CN4H	(+)-pin
2138	NH (C=NH) NH ₂	1 Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
2139	NH (C=NH) NH ₂	1 Ph	(CH ₂) 3CN ₄ H	(+)-pin
2140	NH (C=NH) NH ₂	. 1 Ph	CH2NO2	(+)-pin
2141	NH (C=NH) NH ₂	1 Ph	(CH ₂) ₂ NO ₂	(+)-pin
2142	NH (C-NH) NH ₂	1 Ph	(CH ₂) ₃ NO ₂	(+)-pin
2143	NH (C-NH) NH ₂	1 Ph	CH2OH	(+) -pin
2144	NH (C-NH) NH ₂	1 Ph	(CH ₂) ₂ OH	(+)-pin
		•		

2145	NH (O-NH) NH2	1	Ph	(CH ₂) 3OH	.(+)- pin
2146	NH (C=NH) NH ₂	1	Ph	CH ₂ CO ₂ Ne	(+)-pin
2147	NH (C-NH) NH ₂	1	Ph	(CH ₂) ₂ CO ₂ He	(+)-pin
2148	NH (C-NH) NH2	1	Ph	(CH2)3CO2He	(+)-pin
2149	NH (C-NH) NH2	1	Ph	3-NO ₂ -Ph	(+)-pin
2150	NH (C-NH) NH2	1	Ph	4-NO2-Ph	(+)-pin
2151	NH (C=NH) NH2	1	Ph	3-002H-Ph	(+)-pin
2152	NH (C=NH) NH2	1	Ph	4-002H-Ph	(+) -pin
2153	NH (C-NH) NH2	1	Ph	3-CN4H-Ph	(+)-pin
2154	NH (C=NH) NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
2155	NH (C=NH) NH2	1	Ph	3- (HOCH ₂) -Ph	(+)-pin
2156	NH (C-NH) NH2	- 1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2157	CH ₂ NH ₂	1. ج	Ph	H	OH, OH
2158	CH2NH2	1	Ph	Methyl	OH, OH
2159	CH2NH2	1	Ph	Ethyl	OH, OH
2160	CH2NH2	1	Ph	n-Propyl	OH, OH
2161	CH2NH2	1	Ph	n-Butyl	OH, OH
2162	CH ₂ NH ₂	1	Ph	CH2SCH3	OH, OH
2163	CH2NH2	1	Ph	CH ₂ (80) CH ₃	OH, OH
2164	CH2NH2	1	Ph	CH2 (802) CH3	OH, OH
2165	CH2NH2	1	Ph	CH2CH28CH3	OH, OH
2166	CH2NH2	1	Ph	CH2CH2 (80) CH3	OH, OH
2167	CH2NH2	1	Ph	CH2CH2 (80) 2CH3	OH, OH
2168	CH ₂ NH ₂	1	Ph	CH2CN	OH, OH
2169	CH ₂ NH ₂	1	Ph	CH2CH2CN	OH, OH
2170	CH ₂ NH ₂	Į,	Ph	CH2CH2CH2CN	OH, OH
2171	CH2NH2	1	Ph	CF ₃	OH, OH
2172	CH2NH2	1	Ph	CF2CF3	OH, OH
2173	CH ₂ NH ₂	1	Ph	CF2CF2CF3	OH, OH
2174	CH2NH2	1	Ph	CF2CF2CF3	OH, OH
2175	CH2NH2	1	Ph	F5-Ph	OH, OH
2176	CH2NH2	1	Ph	CH2CO2H	OH, OH
2177	CH2NH2	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
2178	CH2NH2	1	Ph	(CH ₂) 3 ∞ 2 H	OH, OH
2179	CH2NH2	1	Ph	CH2CN4H	OH, OH
2180	CH ₂ NH ₂	ı	Phi	(CH ₂) ₂ CN ₄ H	OH, OH
2181	CH2NH2	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
2182	CH2NH2	i	Ph	CE ₂ NO ₂	OH, OH
2163	CH2NH2	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2184	CH2NH2	1	Ph	(CH ₂) ₃ NO ₂	
	·	_		· 2. 2 7	OH, OH

	2185	CH ₂ NH ₂	1	Ph	CH ₂ OH	OH, OH
	2186	CH ₂ NH ₂	ļ	Ph	(CH ₂) ₂ OH	OH, OH
	2187	CH2NH2	1	Ph	(CH ₂) 3OH	OH, OH
	2188	CH2NH2	1	Ph	CH2CO2He	OH, OH
	2189	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ ∞ ₂ He	OH, OH
	2190	CH ₂ NH ₂	1.	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
	2191	CH2NH2	1	Ph	3-NO ₂ -Ph	OH, OH
	2192	CH ₂ NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
	2193	CH2NH2	1	Ph	3-00 ₂ H-Ph	OH, OH
	2194	CH2NH2	1	Ph	4-CO2H-Ph	он, он
	2195	CH2NH2	1	Ph	3-CN4H-Ph	OH, OH
	2196	CH ₂ NH ₂	1	Ph	4-CN ₄ H-Ph	OH, OH
	2197	CH2NH2	1	Ph	3 - (HOCH ₂) -Ph	OH, OH
	·2198	CH ₂ NH ₂	1	Ph	4 - (HOCH ₂) -Ph	OH, OH
	2199	NH (C=NH) NH ₂	1	Ph	R	OH, OH
	2200	NH (C=NH) NH ₂	1	Ph	Methyl	OH, OH
	2201	NH (C-NH) NH ₂	. 1	Ph	Ethyl	OH, OH
	2202	NH (C—NH) NH ₂	. 1	Ph	n-Propyl	OH, OH
	2203	NH (C-NH) NH ₂	1	Ph	n-Butyl	OH, OH
	2204	NH (C=NH) NH ₂	1	Ph	CH2BCH3	OH, OH
	2205	NH (C=NH) NH ₂	1	Ph	CH ₂ (80) CH ₃	OH, OH
	2206	NH (C=NH) NH ₂	1	Ph	CH ₂ (80 ₂) CH ₃	OH, OH
	2207	NH (C=NH) NH ₂	1	Ph	CH2CH2SCH3	OH, OH
	2208	NH (C=NH) NH ₂	1	Ph	CH2CH2 (SO) CH3	OH, OH
	2209	NH (C=NH) NH ₂	1	Ph	CH2CH2 (SO) 2CH3	OH, OH
	2210	NH (C=NH) NH ₂	1	Ph	CH ₂ CN	OH, OH
	2211	NH (C=NH) NH ₂	1	Ph	CH ₂ CH ₂ CN	он, он
	2212	NH (C—NH) NH ₂	1	Ph	CH2CH2CH2CN	OH, OH
	2213	NH (C-NH) NH2	1	Ph	CF ₃	OH, OH
	2214	NH (C-NH) NH ₂	1	Ph .	CP2CP3	OH, OH
;	2215	NH (C=NH) NH ₂	1	Ph	CF2CF2CF3	OH, OH
	2216	NH (C=NH) NH ₂	1	Ph	CP2CF2CP2CF3	OH, OH
:	2217	NH (C=NH) NH ₂	1	Ph	F5-Ph	OH, OH
:	2218	NH (C=NH) NH ₂	1	Ph	CH2CO2H	OH, OH
1	2219	NH (C=NH) NH ₂	1	Ph	(CH ₂) 2∞2H	OH, OH
2	2220	NH (C=NH) NH ₂	1	Ph	(CH ₂) 3CO ₂ H	OH, OH
2	2221	NH (C=NH) NH ₂	1	Ph	CH2CN4H	OH, OH
2	2222	NH (C=NH) NH ₂	1	Ph	(CH ₂) 2CH4H	OH, OH
2	2223	NH (C-NH) NH2	1	Ph	(CH ₂) 3CN ₄ H	OH, OH
2	2224	NH (C-NH) NH2	1	Ph	CH2NO2	OH, OH
						-

2225	NH (C-NH) NH ₂	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2226	NH (C-NH) NH ₂	1	Ph	(CH ₂) 3HO ₂	OH, OH
2227	NH (C-NH) NH2	1	Ph	CH ₂ OH	OH, OH
2228	NH (C-NH) NH ₂	1	Ph	(CH ₂) 20H	OH, OH
2229	NH (C=NH) NH ₂	1	Ph	(CH ₂) 30H	OH, OH
2230	NH (C=NH) NH ₂	1	Ph	CH2CO2Me	OH, OH
2231	NH (C=NH) NH2	1	Ph	(CH ₂) ₂ CO ₂ Ne	OH, OH
2232	NH (C-NH) NH2	1	Ph	(CH ₂) 3CO ₂ He	OH, OH
2233	NE (C-NH) NH2	1	Ph	3-NO ₂ -Ph	OH, OH
2234	NH (C=NH) NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
2235	NH (C-NH) NH ₂	1	Ph	3-002H-Ph	OH, OH
2236	NH (C-NH) NH ₂	. 1	Ph	4-002H-Ph	OH, OH
2237	NH (C-NH) NH2	1	Ph	3-CN ₆ H-Ph	OH, OH
2238	NH (C-NH) NH2	i	Ph	4-CN ₄ H-Ph	OH, OH
2239	NH (C-NH) NH ₂	1	Ph	3-(HOCH ₂)-Ph	OH, OH
2240	NH (C-NH) NH ₂	1	Ph	4- (HOCH ₂) -Ph	OH, OH
2241	-8- (C=NH) NH ₂	1	Ph	H	(+)-pin
2242	-8- (C=NH) NH ₂	1	Ph	Methyl	(+)-pin
2243	-8- (C=NH) NH ₂	1	Ph	Ethyl	(+)-pin
2244	-8-(C=NH)NH2	1.	Ph	n-Propyl	(+)-pin
2245	-8-(C-NH)NH2	1	Ph	n-Butyl	(+)-pin
2246	-8- (C=NH) NH ₂	1	Ph	CH ₂ 8CH ₃	(+)-pin
2247	-8- (C=NH) NH ₂	1.	Ph	CH ₂ (80) CH ₃	(+)-pin
2248	-8-(C=NH)NH2	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
2249	-8- (C=NH) NH ₂	1	Ph	CH2CH28CH3	(+)-pin
2250	-6-(C=NH)NH ₂	1	Ph	CH2CH2 (80) CH3	(+)-pin
2251	-8-(C-NH)NH2	1	Ph	CH2CH2 (BO) 2CH3	(+)-pin
2252	-6-(C=NH)NH2	1	Ph	CH2CN	(+)-pin
2253	-8-(C=NH)NH2	1	Ph	CH2CH2CN	(+)-pin
2254	-8-(C-NH) NH ₂	1	Ph	CH2CH2CH2CN	(+)-pin
2255	-s-(C-NH)NH2	1	Ph	CF ₃	(+)-pin
2256	-8-(C=NH)NH2	1	Ph	CF2CF3	(+)-pin
2257	-8-(C=NH)NH ₂	1	Ph	CF2CF2CF3	(+) -pin
2258	-8-(C=NH)NH2	Ĭ	Ph	CF2CF2CF3	(+)-pin
2259	-8-(C=NH)NH2	1	Ph	F5-Ph	(+)-pin
2260	-8-(C=NH)NH2	1	Ph	CH2CO2H	(+)-pin
2261	-8- (C-NH) NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2262	-s-(C=NH)NH2	1	Ph	$(CH_2)_3 \infty_2 H$	(+)-pin
2263	-8-(C-NH)NH2	1	Ph	CH2CN4H	(+)-pin
2264	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin

226	5 -8-(C-NH)NH ₂	1	Ph	(CH ₂) 3CN ₄ H	(+)-pin
226	5 -8-(C-NH)NH ₂	1	Ph	CH ₂ NO ₂	(+)-pin
2267	7 -8-(C-NH) NH ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
2266	8 -8-(C=NH)NH ₂	1	Ph	(CH ₂) 3NO ₂	(+)-pin
2269	-9-(C=NH) NH ₂	1	Ph	CH ₂ OH	(+) -pin
2270	-8-(C=NH)NH ₂	1	Ph	(CH ₂) 20H	(+)-pin
2271	-8-(C=NH)NH ₂	. 1	Ph	(CH ₂) 30H	(+)-pin
2272	-8-(C=NH)NH2	`. 1	Ph	CH2CO2Me	(+)-pin
2273	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2274	-8-(C-NH) NH ₂	1	Ph	(CH2) 3CO2Me	(+)-pin
2275	-8- (C=NH) NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
2276	-8-(C-NH)NH2	1	Ph	4-NO2-Ph	(+)-pin
2277	-8-(C-NH)NH2	1 .	Ph	3-00 ₂ H-Ph	(+)-pin
2278	-8-(C=NH)NH ₂	15.	Ph	4-002H-Ph	(+)-pin
2279	-8-(C=NH) NH ₂	1	Ph	3-CN4H-Ph	(+)-pin
2280	-9-(C=NH) NH ₂	1	Ph	4-CN ₄ H-Ph	(+)-pin
2281	-8- (C=NH) NH ₂	1	Ph	3- (HOCH ₂)-Ph	(+)-pin
2282	-8- (C-NH) NH ₂	1	Ph	4 - (HOCH2) -Ph	(+)-pin
2283	-8- (C-NH) NH ₂	1	Ph	H	OH, OH
2294	-s-(c=nh)nh ₂	1	Ph	Methyl	OH, OH
2285	-8- (C=NH) NH ₂	1	Ph	Ethyl	OH, OH
2286	-8-(C=NH)NH ₂	1	Ph	n-Propyl	OH, OH
2287	-B-(C=NH)NH ₂	1	Ph	n-Butyl	OH, OH
2288	-6-(C=NH)NH ₂	1	Ph	CH2SCH3	OH, OH
2289	-s-(C=NH)NH ₂	1 .	Ph	CH ₂ (80) CH ₃	он, он
2290	-s-(C=NH) NH ₂	1	Ph -	CH ₂ (80 ₂) CH ₃	OH, OH
2291	-8- (C-NH) NH ₂	1	Ph	CH2CH28CH3	OH, OH
2292	-8-(C=NH)NH2	1	Ph	CH ₂ CH ₂ (SO) CH ₃	он, он
2293	-s-(C=NH)NH ₂	1	Ph	CH2CH2 (80) 2CH3	OH, OH
2294		1	Ph	CH ₂ CN	OH, OH
2295	-s-(C=NH)NH2	1,	Ph	CH2CH2CN	OH, OH
2296	-8-(C-NH) NH ₂	1	Ph	CH2CH2CH2CN	OH, OH
2297	-B-(C=NH)NH2	1	Ph	. CF3	он, он
2298	-8-(C=NH) NH ₂	1	Ph	CF2CF3	OH, OH
2299	-s-(C=NH)NH2	1	Ph	CF2CF2CF3	OH, OH
2300	-8- (C-NH) NH ₂	1	Ph	CF2CF2CF2CF3	OH, OH
2301	-s-(c=nh)nh ₂	1	Ph	P5-Ph	OH, OH
2302	-8-(C=NH)NH2	1	Ph .	CH2CO2H	OH, OH
2303	-8-(C-NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
2304	-s-(c=NH)NH2	1	Ph ·	(CH ₂) ₃ CO ₂ H	OH, OH
					-

2205	-G- (A-MILLION	_			
2305 2306	-8-(C=NH)NH ₂ -8-(C=NH)NH ₂	1	Ph	CH2CN4H	OH, OH
2307	-8-(C-NH)NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
2308	-8-(C=NH)NH2	1	Ph	(CH2)3CN4H	OH, OH
2309	-8- (C=NH) NH ₂	1	Ph.	CH ₂ NO ₂	OH, OH
2310	-8- (O-NH) NH ₂	1	Ph ~~	(CH ₂) ₂ NO ₂	OH, OH
2311	-8- (C=NH) NH ₂	1	Ph	(CE ₂) ₃ NO ₂	OH, OH
2312	-8-(C=NH)NH2	1	Ph Ph	CH ₂ OH	OH, OH
2313	-8-(C-NH)NH2	1	Ph Ph	(CH ₂) ₂ OH (CH ₂) ₃ OH	OH, OH
2314	-s-(C=NH)NH2	1	Ph		OH, OH
2315	-8- (C-NH) NH ₂	1	Ph	CH ₂ CO ₂ Me (CH ₂) ₂ CO ₂ Me	OH, OH
2316	-8-(C=NH)NH2	-1	Ph	(CH ₂) ₃ CO ₂ Ne	OH, OH
2317	-8-(C=NH)NH2	ـــــــــــــــــــــــــــــــــــــ	Ph	3-NO ₂ -Ph	OH, OH
2318	-8- (C-NH) NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
2319	-8-(C=NH)NH2	1	Ph	3-00 ₂ H-Ph	OH, OH
2320	-8- (C-NH) NH2	1	Ph	4-CO ₂ H-Ph	OH, OH
2321	-8-(C=NH)NH ₂	1	Ph	3-CN4H-Ph	OH, OH
2322	-8-(C=NH)NH2	1	Ph	4-CN4H-Ph	OH, OH
2323	-8-(C-NH)NH ₂	1	Ph	3- (HOCH ₂) -Ph	OH, OH
2324	-8- (C-NH) NH ₂	1	Ph	4 - (HOCH ₂) - Ph	OH, OH
2325	CH2NH2	2	Ph	н	(+)-pin
2326	CH2NH2	2	Ph	H	OH, OH
2327	Olte	1	Ph	Ħ	(+)-pin
2328	CMe	1	Ph	Methyl	(+)-pin
2329	ONe	1	Ph	Ethy1	(+)-pin
2330	OMe	1	Ph	n-Propyl	(+)-pin
2331	OMe	1	Ph	n-Butyl	(+)-pin
2332	OMe	1.	Ph	CH2SCH3	(+)-pin
2333	OMe	1	Ph	CH ₂ (80) CH ₃	(+)-pin
2334	ONe	1	Ph	CH2 (802) CH3	(+)-pin
2335	Otte	1	Ph	CH2CH2SCH3	(+)-pin
2336	Olie	1	Ph	CH2CH2 (80) CH3	(+)-pin
2337	Offic	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
2338	ONe	1	Ph	CH2CN	(+)-pin
2339	Olife	1	Ph	CH2CH2CN	(+)-pin
2340	Olie	1	Ph	CH2CH2CH2CN	(+) -pin
2341	ONe	1	Ph	CF3	(+)-pin
2342	OMe	1	Ph	CF2CF3	(+)-pin
2343	ONe	1	Ph	CF2CF2CF3	(+)-pin
2344				CF2CF2CF2CF3	

2345	Otto	1	Ph	F ₅ -Ph	(+)- pin
2346	Otto	1	Ph	CH2CO2H	(+) -pin
2347	ONe	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2349	Otto	1	Ph	(CH ₂) 3002H	(+) -pin
2349	OMe	1	Ph	CH2CN4H	(+)-pin
2350	ONe	1	Ph	(CH ₂) ₂ CN ₄ H	(+) - <u>pin</u>
2351	ONe	1	Ph	(CH ₂) ₃ CN ₄ H	(+)- pin
2352	OMe	1	Ph	CH2NO2	· (+)-pin
2353	ONe	. 1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
2354	Obte	1	Ph	(CH ₂) ₃ NO ₂	(+)- pin
2355	Otto	1	Ph	СН ₂ ОН	(+) -pin
2356	OMe	1	Ph	(CH ₂) ₂ OH	(+)-pin
2357	OMe	1	Ph	(CH ₂) ₃ OH	(+) -pin
2358	OMe		Ph	CH ₂ CO ₂ Ne	(+)-pin
2359	Offic	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2360	OMe	ı	Ph ·	(CH ₂) ₃ CO ₂ Me	(+)- pin
2361	OMe	1	Ph	3-1602-Ph	(+)-pin
2362	Office	1	Ph	4-NO ₂ -Ph	· (+)-pin
2363	Offic	1	Ph	3-002H-Ph	(+)-pin
2364	OMe	1	Ph	4-002H-Ph	(+)-pin
2365	OMe	. 1	Ph	3-CN4H-Ph	(+)-pin
2366	OMe	1	Ph	4-CN4H-Ph	(+)-pin
2367	OMe	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
2368	OMe	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2369	OMe	. 1	Ph	H	OH, OH
2370	OMe	1	Ph	Methyl	OH, OH
2371	OMe	1	Ph	Ethyl	OH, OH
2372	OMe	1	Ph	n-Propyl	OH, OH
2373	ONe	1	Ph	n-Butyl	OH, OH
2374	Offic	. 1	Ph	CH28CH3	OH, OH
2375	Offic	, · · · · 1 · ·	Ph	CH ₂ (80) CH ₃	OH, OH
2376	OMe	1	Ph	CH ₂ (80 ₂) CH ₃	OH, OH
2377	CMe	1	Ph	CH2CH28CH3	OH, OH
2378	OMe	1	Ph	CH2CH2 (80) CH3	OH, OH
2379	OMe	1	Ph	CH2CH2 (80) 2CH3	OH, OH
2380	ONe	. 1	Ph	CH ₂ CN	OH, OH
2381	OMe	1	Ph	CH2CH2CN	OH, OH
2382	ONe	. 1	Ph	CH2CH2CH2CN	OH, OH
2383	OMe	.1	Ph '	CP ₃	OH, OH
2384	OMe	1,	Ph	CF2CF3	OH, OH

2385	ONe	. 1	Ph	CF2CF2CF3	OH, OH
2386	Citte	1	Ph	CF2CF2CF2CF3	OH, OH
2387	Olfe	1	Ph	F5-Ph	OH, OH
2388	ONe	1	Ph	CH2CO2H	OH, OH
2389	ONe	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
2390	Olie	1	Ph '	(CH ₂) ₃ CO ₂ H	OH, OH
2391	Olfe	1	Ph	CH2CN4H	OH, OH
2392	Clife	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
2393	Office	. 1	Ph	(CH2) 3CN4H	OH, OH
2394	Olie	1	Ph	CH2NO2	OH, OH
2395	ONe	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2396	Olfe	.1	Ph	(CH ₂) 3NO ₂	OH, OH
2397	Olfe	1	Ph	CH2OH	OH, OH
2398	Otto	1	Ph	(CH ₂) ₂ OH	OH, OH
2399	OMe	1	Ph	(CH ₂) ₃ OH	OH, OH
2400	Olfe	· · · 1	Ph	CH2CO2He	OH, OH
2401	OMe	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
2402	Offe	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
2403	OMe	1	Ph	3-NO ₂ -Ph	CH, CH
2404	OMe	1	Ph	4-NO ₂ -Ph	OH, OH
2405	OMe	1	Ph	3-00 ₂ H-Ph	OH, OH
2406	Olice	1	Ph	4-002H-Ph	OH, OH
2407	Offic	1	Ph	3-CN4H-Ph	OH, OH
2408	OMe	1	Ph	4-CN ₄ H-Ph	OH, OH
2409	Offe	1	Ph	3-(HOCH ₂)-Ph	OH, OH
2410	_OHe	-1	Ph	4- (HOCH ₂) -Ph	OH, OH
2411	CH2NH2	1	PhCH ₂	H	(+)-pin BA
2412	CH2NH2	1	PhCH ₂	Methyl	(+)-pin BC
2413	CH2NH2	1	PhCH ₂	Ethyl	(+) -pin
2414	CH2NH2	1	PhCH ₂	n-Propyl	(+)-pin BD
2415	CH2NH2	1	PhCH ₂	n-Butyl	(+)-pin
2416	CH2NH2	1	PhCH ₂	CH2SCH3	(+)-pin BR
2417	CH2NH2	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin
2418	CH2NH2	. 1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
2419	CH ₂ NH ₂	1,	PhCH ₂	CH2CH28CH3	(+)-pin
2420	CH2NH2	_ 1	PhCH ₂	CH2CH2 (SO) CH3	(+) -pin
2421	CH ₂ NH ₂	1	PhCH ₂	CH2CH2(80)2CH3	(+)-pin
2422	CH2NH2	1	PhCH ₂	CH ₂ CN	(+)-pin BF
2423	CH2NH2	. 1	PhCH ₂	CH2CH2CN	(+) -pin
2424	CH2NH2	. 1	PhCH ₂	CH2CH2CH2CN	(+) -pin

2425	CH2NH2	1	PhCH ₂	CF ₃	(+)-pin-
2426	CH2NH2	1	PhCH ₂	CF2CF3	(+)-pin
2427	CH2NH2	1	PhCH ₂	CF2CF2CF3	(+)-pin
2428	CH ₂ NH ₂	1	PhCH ₂	CF2CF2CF2CF3	(+) -pin
2429	CH2NH2	1.	PhCH ₂	F5-Ph	(+)-pin
2430	CH2NH2	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin BG
2431	CH ₂ NH ₂	1	PhCH ₂	(CH2) 2002H	(+) -pin
2432	CH2NH2	1	PhCH ₂	(CH ₂) 3CO ₂ H	(+)-pin
2433	CH2NH2	1	PhCH ₂	CH2CN4H	(+)-pin
2434	CH2NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2435	CH2NH2	. 1	PhCH ₂	(CH ₂) 3CN ₄ H	(+)-pin
2436	CH2NH2	.1	PhCH ₂	CH2NO2	(+)-pin
2437	CH2NH2		PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2438	CH ² NH ²	1	PhCH ₂	- (CH ₂) ₃ NO ₂	(+)-pin
2439	CH2NH2	1	PhCH ₂	CH ₂ OH	(+)-pin CV
2440	CH ₂ NH ₂	1	PhCH ₂	CH2OCH2Ph	(+)-pin CW
2441	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2442	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) 3OH	(+)-pin
2443	CH ₂ NH ₂	1	PhCH ₂	CH2CO2Me	(+)-pin CX
2444	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2445	CH2NH2	1	PhCH ₂	(CH ₂) 3CO ₂ Me	(+)-pin
2446	CH ₂ NH ₂	1	PhCH ₂	Ph	(+)-pin
2447	CH ₂ NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin
2448	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2449	CH2NH2	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2450	CH ₂ NH ₂	1	PhCH ₂	3-00 ₂ H-Ph	(+)-pin
2451	CH2NH2	, 1	PhCH ₂	4-∞ ₂ H-Ph	(+)-pin
2452	CH2NH2	1	PhCH ₂	3-CN4H-Ph	(+)-pin
2453	CH2NH3	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
2454	CH2NH2	1,	PhCH ₂	3 - (HOCH ₂) -Ph	(+)-pin
2455 .		1	PhCH ₂	4- (HOCH ₂) -Ph	(+)-pin
2456	NH (C-NH) NH ₂	1	PhCH ₂	H	(+)-pin
2457	NH (C=NH) NH ₂	. 1.	PhCH ₂	Methyl	(+)-pin
2458	NH (C-NH) NH ₂	1	PhCH ₂	Ethyl	(+)-pin
2459	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	(+)- <u>pin</u>
2460	NH (C-NH) NH ₂	1	PhCH ₂	n-Butyl	(+)-pin
	NH (C-NH) NH ₂	1	PhCH ₂	CH ₂ 8CH ₃	(+)-pin
2462	NH (C-NH) NH ₂	1	PhCH ₂	CH ₂ (SO) CH ₃	(+) - <u>pin</u>
2463	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
2464	NH (C=NH) NH ₂	. 1	PhCH ₂	CH2CH28CH3	(+)-pin

2465	NH (C-NH) NH ₂	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin	
2466	NH (C-NH) NH ₂	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin	
2467	NH (C-NH) NH2	. 1	PhCH ₂	CH2CN	(+)-pin	
2468	NH (C-NH) NH2	1	PhCH ₂	CH2CH2CN	(+)- pin	
2469	NH (C-NH) NH ₂	. 1	PhCH ₂	CH2CH2CH2CN	(+)-pin	
2470	NH (C-NH) NH ₂	1	PhCH ₂	CF ₃	(+)-pin	
2471	Ne (C-Ne) NH2	1	PhCH ₂	CF2CF3	(+)-pin	
2472	NH (C-NH) NH2	1	PhCH ₂	CF2CF2CF3	(+)-pin	
2473	NH (C-NH) NH ₂	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin	
2474	NH (C-NH) NH2	1	PhCH ₂	F5-Pb	(+)-pin	
2475	NH (C=NH) NH2	1	PhCH ₂	CH2CO2H	(+)-pin	
2476	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) ₂ co ₂ H	(+)-pin	
2477	NH (C-NH) NH2	. 1	PhCH ₂	(CH ₂) ₃ co ₂ H	(+)-pin	
2478	NH (C=NH) NH ₂	1	PhCH ₂	CH2CN4H	(+)-pin	
2479	NE (O-NH) NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin	
2480	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin	
2481	NH (C-NH) NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin	
2482	NH (C-NH) NH ₂	1	$PhCH_2$	(CH ₂) ₂ NO ₂	(+)-pin	
2483	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) 3NO ₂	(+)-pin	
2484	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin	
2485	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
2486	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) 3OH	(+)-pin	
2487	NH (C=NH) NH ₂	ı	PhCH ₂	CH2CO2Me	(+)-pin	
2488	NH (C=NH) NH ₂	1,	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin	
2489	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Ne	(+)-pin	
2490	NH (C=NH) NH ₂	1	PhCH ₂	Ph	(+)-pin	
2491	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin C	r į
2492	NH (C=NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin	
2493	NH (C=NH) NH ³	1	PhCH ₂	3-002H-Ph	(+)-pin	
2494	NH (C=NH) NH ₂	1	PhCH ₂	4-002H-Ph	(+)-pin	
2495	NH (C=NH) NH ₂	1	PhCH ₂	3-CN4H-Ph	(+)-pin	
2496	NH (C-NH) NH ₂	1	PhCH ₂	4-CN4H-Ph	(+)-pin	
2497	NH (C-NH) NH ₂	1	PhCH ₂	3- (HOCH ₂) - Ph	(+)-pin	
2498	NH (C-NH) NH2	1	PhCH ₂	4- (HOCH ₂)-Ph	(+)-pin	
2499	CH ₂ NH ₂	1	PhCH ₂	H .	OH, OH HH	
2500	CH2NE2	1	PhCH ₂	Methyl	OH, OH	•
2501	CH ₂ NH ₂	1	PhCH ₂	Ethy1	OH, OH	
2502	CH2NH2	1	PhCH ₂	n-Propyl	OH, OH	
2503	CH ₂ NH ₂	1	PhCH ₂	n-Butyl	OH, OH	
2504	CH2NE2	1	PhCH ₂	CH28CH3	OH, OH	

2505	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (80) CH ₃	OH, OH
2506	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	OH, OH
. 2507	CH2NH2	1	PhCH ₂	CH2CH28CH3	OH, OH
2508	CH ₂ NH ₂	1	PhCH ₂	CH2CH2 (80) CH3	OH, OH
2509	CH ₂ NH ₂	1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH
2510	CH ₂ NH ₂	1	PhCH ₂	CH2CN	OH, OH
2511	CH2NH2	1	PhCH ₂	टार्2टार्3टा	OH, OH
2512	CH ₂ NH ₂	1	PhCH ₂	CH2CH2CH2CN	OH, OH
2513	CH2NH2	1	PhCH ₂	CF3	OH, OH
2514	CH2NH2	1	PhCH ₂	CF2CF3	OH, OH
2515	CH2NH2	1	PhCH ₂	CF2CF2CF3	OH, OH
2516	CH2NH2	1,	PhCH ₂	CF2CF2CF3	OH, OH
2517	CH2NH2	1	PhCH ₂	F5-Ph	OH, OH
2518	CH ₂ NH ₂	*1	PhCH ₂	_ CH ₂ CO ₂ H	OH, OH
2519	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ ∞ ₂ H	OH, OH
2520	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2521	CH ₂ NH ₂	1	PhCH ₂	CH2CN4H	OH, OH
2522	CH2NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	CH, OH
2523	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2524	CH ₂ NH ₂	1	PhCH ₂	CH ₂ NO ₂	OH, OH
2525	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2526	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2527	CH ₂ NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
2528	CH2NH2	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2529	CH2NH2	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
2530	CH ₂ NH ₂	1	PhCH ₂	CH2CO2Me	OH, OH
2531	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	он, он
2532	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ Ne	OH, OH
2533	CH2NH2	1	PhCH ₂	Ph	OH, OH
2534	CH2NH2	1	PhCH ₂	3-NO ₂ -Ph	он, он
2535	CH ₂ NH ₂	1.	PhCH ₂	4-NO2-Ph	OH, OH
2536	CH ₂ NH ₂	1	PhCH ₂	3-00 ₂ H-Ph	OH, OH
2537	CH2NH2	1	PhCH ₂	4-002H-Ph	OH, OH
2538	CH2NH2	1	PhCH ₂	3-CN4H-Ph	OH, OH
2539	CH2NH2	1	PhCH ₂	4-CN ₄ H-Ph	он, он
2540	CH2NH2	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
2541	CH ₂ NH ₂	1	PhCH ₂	4- (HOCH ₂) -Ph	он, он
2542	NH (C-NH) NH ₂	1	PhCH ₂	H .	OH, OH
2543	NH (C-NH) NH ₂	1	PhCH ₂	Methyl	OH, OH.
2544	NH (C-NH) NH ₂	. 1 .	PhCH ₂	Ethyl	OH, OH
	,				

2545	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	OH, OH
2546	NH (C-NH) NH ₂	1	PhCH ₂	n-Butyl	OH, OH
2547	NH (C=NH) NH ₂	1	PhCH ₂	CH28CH3	OH, OH
2548	NH (C=NH) NH ₂	1	PhCH ₂	CH2 (80) CH3	OH, OH
2549	NH (C-NH) NH2	1	PhCH ₂	CH2 (802) CH3	OH, OH
2550	NH (C-NH) NH ₂	1	PhCH ₂	CH3CH3BCH3	OH, OH
2551	NH (C-NH) NH ₂	1	PhCH ₂	CH2CH2 (80) CH3	OH, OH
2552	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH
2553	MR (C-NH) NH ³	1	PhCH ₂	CH ³ CM	OH, OH
2554	NH (C-NH) NH2	1	PhCH ₂	CH2CH2CN	OH, OH
2555	NH (C-NH) NH ₂	1	PhCH ₂	CH2CH2CH2CN	OH, OH
2556	NH (C=NH) NH2	1	PhCH ₂	CF3	OH, OH
2557	NH (C-NH) NH2	1	PhCH ₂	CF2CF3	OH, OH
2558	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF3	OH, OH
2559	NH (C-NH) NH ₂	1	PhCH ₂	CF2CF2CF2CF3	OH, OH
2560	NH (C=NH) NH2	1	PhCH ₂	F5-Ph	OH, OH
2561	NH (C=NH) NH2	1	PhCH ₂	CH2∞2H	OH, OH
2562	NH (O-NH) NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2563	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) 3CO ₂ H	OH, OH
2564	NH (C-NH) NH ₂	1	PhCH ₂	CH2CN4H	OH, OH
2565	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2566	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) 3CN ₄ H	OH, OH
2567	NH (C-NH) NH2	1	PhCH ₂	CH2NO2	OH, OH
2568	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2569	NH (C-NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2570	NH (C-NH) NH2	1	PhCH ₂	CH ² OH	OH, OH
2571	NH (C-NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2572	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) 30H	OH, OH
2573	NH (C-NH) NH2	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
2574	NH (C=NH) NH2	1	PhCH ₂	(Cli ₂) ₂ CO ₂ Me	OH, OH
2575	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) 3CO ₂ Me	OH, OH
2576	NH (C-NH) NH2	ı	PhCH ₂	3-NO ₂ -Ph	OH, OH
2577	NH (C=NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
2578	NH (C-NH) NH ₂	1	PhCH ₂	3-00 ₂ H-Ph	OH, OH
2579	NH (C-NH) NH ₂	ı	PhCH ₂	4-00 ₂ H-Ph	OH, OH
2580	NH (C-NH) NH ₂	1	PhCH ₂	3-CN4H-Ph	OH, OH
2581	NH (C-NH) NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
2582	NH (C-NH) NH2	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, OH
2583	NH (C=NH) NH ₂	1	PhCH ₂	4 - (HOCH ₂) -Ph	OH, OH
2584	-8-(C=NH)NH2	1	PhCH ₂	H	(+)-pin

2585	-8-(C=NH)NH ₂	1	PhCH ₂	Mathyl	(+)-pin
2586	-8-(C-NH) NH ₂	1	PhCH ₂	Ethyl	(+)-pin
2587	-8 - (C=NH) NH ₂	1	PhCH ₂	n-Propyl	(+)-pin
2588	-8- (C=NH) NH ₂	1	PhCH ₂	n-Butyl	(+)-pin
2589	-8- (C=NH) NH ₂	1	PhCH ₂	CH28CH3	(+)-pin
2590	-в- (С=NH) NH ₂	1	PhCH ₂	CH ₂ (80) CH ₃	(+)- pin
2591	-8 - (C=NH) NH ₂	1	PhCH2	CH2 (802) CH3	(+)- pin
2592	-8- (C=NH) NH ₂	1	PhCH ₂	CH2CH28CH3	(+)-pin
2593	-8 - (C=NH) NH ₂	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
2594	-8-(C=NH) NH ₂	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin
2595	-8- (C=NH) NH ₂	1	PhCH ₂	CH2CN	(+)-pin
2596	-8-(C=NH)NH ₂	.1	PhCH ₂	CH2CH2CN	(+) -pin
2597	-8 - (C-NH) NH ₂	_ 1	PhCH ₂	CH2CH2CH2CN	(+) -pin
2598	-8-(C-NH) NH2	1	PhCH ₂	CF ₃	(+)-pin
2599	-8-(C=NH)NH ₂	1	PhCH ₂	CF2CF3	(+)-pin
2600	-8-(C=NH) NH ₂	1	PhCH ₂	CF2CF2CF3	(+)-pin
2601	-8- (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF3	(+)-pin
2602	-s-(C=NH)NH ₂	1	PhCH ₂	F5-Ph	(+)-pin
2603	-8-(C=NH) NH ₂	1	PhCH ₂	CH2CO2H	(+)-pin
2604	-9-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2605	-8 - (C=NH) NH ₂	1 .	PhCH ₂	(CH ₂) ₃ ∞ ₂ H	(+)-pin
2606	-8- (C=NH) NH ₂	1	PhCH ₂	CH3CN4H	(+)-pin-
2607	-s-(C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2608	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2609	-8- (C-NH) NH ₂	, 1	PhCH ₂	CH ₂ NO ₂	(+)-pin
2610	-9-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2611	-8- (C-NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+') -pin
2612	-S-(C=NH)NH2	1	PhCH ₂	CH2OH	(+)-pin
2613	-s-(C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2614	-8- (C=NH) NH ₂	1	.PhCH2	(CH ₂) 30H	(+)- pin
2615	-s-(C=NH)NH2	1	PhCH ₂	CH2CO2Me	(+)-pin
2616	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2617	-s-(C=NH)NH2	.1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2618	-8-(C=NH)NH2	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2619	-8- (C-NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2620	-8-(C-NH)NH ₂	1	PhCH ₂	3-00 ² H-bp	(+)-pin
2621	-8-(C=NH)NH ₂	1	PhCH ₂	4-002H-Ph	(+) -pin
2622	-s-(C=NH)NH ₂	1	PhCH ₂	3-CN4H-Ph	(+)-pin
2623	-8- (C-NH) NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
2624	-8- (C=NH) NH ₂	1	PhCH ₂	3 - (HOCH ₂) -Ph	(+)-pin

2625	-8-(C=NH)NH2	. 4	PhCH ₂	4- (HOCH ₂) -Ph	(+)-pin
2626	-8- (C=NH) NH ₂	1	PhCH ₂	H	OH, OH
2627	-8- (C=NH) NH ₂	1	PhCH ₂	Methyl	OH, OH
2628	-8- (C=NH) NH ₂	1	PhCH ₂	Ethyl	OH, OH
2629	-8- (C-NH) NH2	1	PhCH ₂	n-Propyl	OR; OH
2630	-8- (C=NH) NH ₂	1	PhCH ₂	n-Butyl	OH, OH
` 2631	-8- (C-NH) NH ₂	1	PhCH ₂	CH2BCH3	OH, OH
2632	-8-(C-NH) NH ₂	1	PhCH ₂	CH2 (80) CH3	OH, OH
2633	-8-(C=NH)NH2	1	PhCH ₂	CH2 (802) CH3	OH, OH
2634	-8- (C=NH) NH ₂	1	PhCH ₂	CH2CH28CH3	OH, OH
2635	-8- (C=NH) NH ₂	1	PhCH ₂	CH ₂ CH ₂ (SO) CH ₃	OH, OH
2636	-B- (C=NH) NH ₂	1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH
2637	-s-(C-NH)NH2	1	PhCH ₂	CH ₂ CN	OH, OH
2638	-8- (C-NH) NH ₂	1	PhCH ₂	CH2CH2CN	OH, OH
2639	-8- (C=NH) NH ₂	1	PhCH ₂	CH2CH2CH2CN	OH, OH
2640	-B- (C=NH) NH ₂	1	PhCH ₂	CF ₃	OH, OH
2641	-8- (C=NH) NH ₂	1	PhCH ₂	CF2CF3	OH, OH
2642	-8-(C=NH)NH2	1	PhCH ₂	CF2CF2CF3	OH, OH
2643	-8- (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF2CF3	OH, OH
2644	-8-(C-NH)NH ₂	1	PhCH ₂	F5-Ph	OH, OH
2645	-8-(C=NH)NH2	1	PhCH ₂	CH2CO2H	OH, OH
2646	-8-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2647	-8-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2648	-8-(C=NH)NH2	1	PhCH ₂	CH2CN4H	OH, OH
2649	-s-(C=NH)NH ₂	1	PhCH ₃	(CH ₂) ₂ CN ₄ H	OH, OH
2650	-8- (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2651	-S-(C=NH)NH2	1	PhCH ₂	CH ₂ NO ₂	OH, OH
2652	-s-(C=NH)NH2	. 1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2653	-6- (C=NH) NH ₂	1.	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2654	-8-(C-NH)NH2	1	PhCH ₂	CH ₂ OH	OH, OH
2655	-8- (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2656		1 .	PhCH ₂	(CH ₂) 3OH	OH, OH
2657	-8- (C=NH) NH2	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
2658	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2659	-s-(C-NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2660	-8- (C-NH) NH2	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
2661	-s-(C-NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
2662	-s-(C-NH)NH2	1	PhCH ₂	3-002H-Ph	OH, OH
2663	-s-(C=NH)NH2	1	PhCH ₂	4-00 ₂ H-Ph	OH, OH
2664	-8-(C=NH)NH2	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH

2665	-8-(C=N	H) NH ₂ 1	PhCH ₂	4-CN4H-Ph	OH, OH
2566	-9- (C=N	H) NH ₂ 1	PhCH ₂	3 - (HOCH ₂) -Ph	OH, OH
2667	-8- (C=N	H)NH ₂ 1	PhCH ₂	4-(HOCH ₂)-Ph	OH, OH
2668	ONe	1	PhCH ₂	н	(+)-pin
2669	Olde	1	PhCH ₂	Methyl	(+)-pin
2670	OMe	1	PhCH ₂	Ethy1	(+)-pin
2671	OMe	1	PhCH ₂	n-Propyl	(+)-pin
2672	OMe	1	PhCH ₂	n-Butyl	(+)-pin
2673	OMe	1	PhCH ₂	CH ₂ 8CH ₃	' (+) -pin
2674	OMe	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin
2675	OMe	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
2676	CMe .	. 1	PhCH ₂	CH2CH28CH3	(+)-pin
2677	Otte	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
2678	ONe	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin
2679	Otto	1	PhCH ₂	CH2CN	(+)-pin
2680	OMe	1	PhCH ₂	CH2CH2CN	(+)-pin
2681	Otte	1.	PhCH ₂	CH2CH2CH2CN	(+)-pin
2682.	Otte	1	PhCH ₂	CF ₃	(+)-pin
2683	OMe	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
2684	OMe	1	PhCH ₂	CF2CF2CF3	(+)-pin
2685	OMe	1	PhCH ₂	CF2CF2CF3	(+)-pin
2686	Olie	1	PhCH ₂	F5-Ph	(+)-pin
2687	OMe	1	PhCH ₂	CH2CO2H	(+)-pin
2688	OMe-	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2689	Otte	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2690	OHe	1	PhCH ₂	CH2CN4H	(+)-pin
2691	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2692	ONe	1	PhCH ₂	(CH ₂) 3CN ₄ H	(+)-pin
2693	OMe	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
2694	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2695	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2696	OMe	1	PhCH ₂	СН2ОН	(+)-pin
2697	ONe	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2698	OMe	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
2699	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
2700	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2701	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2702	OMe	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2703	CMe	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2704	OMe	_ 1	PhCH ₂	3-00 ₂ H-Ph	(+)-pin

2705	Otte		1	PhCH ₂	4-∞2H-Ph	(+)-pin
2706	Otto		1	PhCH ₂	3-CN4H-Ph	(+)-pin
2707	Olfe		1	PhCH ₂	4-CN4H-Ph	(+)-pin
2708	Olfe		1	PhCH ₂	3- (HOCH ₂) -Ph	(+)-pin
2709	ONe		1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
2710	OMe		1	PhCH ₂	H	OH, OH
2711	Olie		1	PhCH ₂	Methyl	OH, OH
2712	ONe		1	PhCH2	Ethyl	OH, OH
2713	OMe		1	PhCH ₂	n-Propyl	OH, OH
2714	OMe		1	PhCH ₂	n-Butyl	OH, OH
2715	OMe		1	PhCH ₂	CH28CH3	OH, OH
2716	OMe	-	ì	PhCH ₂	CH ₂ (80) CH ₃	OH, OH
2717	OMe		1	PhCH ₂	CH2 (802) CH3	OH, OH
2718	ONe	, s - 12 miles - 12 miles	1	PhCH ₂	CH2CH28CH3	OH, OH
2719	OMe		1	PhCH ₂	CH2CH2 (50) CH3	OH, OH
2720	OMe		1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH
2721	OMe	•	1	PhCH ₂	CH2CN	OH, OH
2722	OMe		1	PhCH ₂	CH2CH2CN	OH, OH
2723	OMe		1	PhCH ₂	CH2CH2CH2CN	OH, OH
2724	ONe		1	PhCH ₂	CP3	OH, OH
2725	OMe		1	PhCH ₂	CF2CF3	OH, OH
2726	OMe	•	1	PhCH ₂	CF2CF2CF3	OH, OH
2727	OMe		1	PhCH ₂	CF2CF2CF2CF3	OH, OH
2728	ONe		1	PhCH ₂	F5-Ph	OH, OH
2729	OMe		1	PhCH ₂	CH2CO2H	OH, OH
2730	OMe		1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2731	OMe		1 .	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
2732	OMe		1	PhCH ₂	CH2CN4H	OH, OH
2733	OMe		1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
2734	OMe		1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
2735	OMe		1	PhCH ₂	CH2NO2	OH, OH
2736	OMe		1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH
2737	ONe		1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH
2738	OMe		1	PhCH ₂	CH ₂ OH	OH, OH
2739	OMe		1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2740	Olie		1	PhCH ₂	(CH ₂) 3OH	OH, OH
2741	OMe	•	1	PhCH ₂	CH2CO2Me	OH, OH
2742	Otte		ı	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, OH
2743	OMe	•	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
2744	Otte		1	PhCH ₂	3-NO ₂ -Ph	OH, OH

2745			PhCH ₂	4-NO ₂ -Ph	OH, OH
2746		1	PhCH ₂	3-002H-Ph	OH, OH
2747		1	PhCH ₂	4-00 ₂ H-Ph	OH, OH
2748		1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
2749	ONe	1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
2750	Olfa	1	PhCH ₂	3- (HOCH ₂) - Ph	OH, OH
2751	Olie	1	PhCH ₂	4 - (ROCH ₂) - Ph	OH, OH
2752	CH ₂ NH ₂	1	PhCH2CH2	H	(+)-pin BI
2753	CH ₂ NH ₂	· 1	PhCH2CH2	Methyl	(+)-pin
2754	CH2NH2	1	PhCH2CH2	Ethyl	(+)- pin
2755	CH2NH2	1	PhCH2CH2	n-Propyl	(+)-pin
2756	CH2NH2	1	PhCH2CH2	n-Butyl	(+)-pin
2757	CH2NH2	1	PhCH ₂ CH ₂	CH28CH3	(+)- pin
2758	CH ₂ NH ₂	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
2759	CH2NH2	. 1	PhCH2CH2	CH2 (802) CH3	(+)-pin
2760	CH2NH2	1	PhCH ₂ CH ₂	CH2CH28CH3	(+) -pin
2761	CH ₂ NH ₂	1	PhCH2CH2	CH2CH2 (80) CH3	(+)-pin
2762	CH2NH2	1	PhCH2CH2	CH2CH2 (80) 2CH3	(+)-pin
2763	CH2NH2	1	PhCH2CH2	CE2CN	(+)- pin
2764	CH2NH2	1	PhCH2CH2	CH2CH2CN	(+)-pin
2765	CH ₂ NH ₂	1	PhCH2CH2	CH2CH2CH2CN	(+)- pin
2766	CH2NH2	1	PhCH2CH2	CF3	(+) -pin
2767	CH2NH2	1	PhCH2CH2	CF2CF3	(+)-pin
2768	CH2NH2	1	PhCH2CH2	CF2CF2CF3	(+)- pin
2769	CH2NH2	,1	PhCH2CH2	CF2CF2CF3	(+)-pin
2770	CH2NH2	1	PhCH2CH2	F5-Ph	(+)-pin
2771	CH2NH2	1	PhCH2CH2	CH2CO2H	(+)-pin
2772	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
2773	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin
2774	CH2NH2	1	PhCH2CH2	CH2CN4H	(+)-pin
2775	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
2776	CH2NH2	1	PhCH2CH2	(CH2)3CN4H	(+)-pin
2777	CH2NH2	1	PhCH2CH2	CH ₂ NO ₂	(+)-pin
2778	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
2779	CH2NH2	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
2780	CH2NH2	1	PhCH2CH2	CH ₂ OH	(+)-pin CZ
2781	CH2NH2	1	PhCH ₂ CH ₂	_	(+)-pin DA
2782	CH2NH2	1 .	PhCH ₂ CH ₂		(+)-pin in
2783	CH2NH2	. 1	PhCH ₂ CH ₂		(+)-pin
2784	CH2NH2	1	PhCH ₂ CH ₂		
					(+)-pin

2785	CH ₂ NH ₂	. 1	PhCH2CH2	(CH2) 2002Me	(+)-pin
2786	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ He	(+)-pin
2787	CH2NH2	. 1	PhCH2CH2	3-NO2-Ph	(+)-pin
2788	CH2NH2	1	PhCH2CH2	4-NO2-Ph	(+) - <u>pin</u>
2789	CH2NH2	1	PhCH2CH2	3-CO ₂ H-Ph	(+)-pin
2790	CH2NH2	1	PhCH2CH2	4-∞ ₂ H-Ph	(+)-pin
2791	CH2NH2	1	PhCH2CH2	3-CN4H-Ph	(+)-pin
2792	CH ₂ NH ₂	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
2793	CH ₂ NH ₂	1	PhCH2CH2	3 - (HOCH ₂) -Ph	(+)-pin
2794	CH ₂ NH ₂	1	$PhCH_2CH_2$	4- (HOCH ₂) -Ph	(+)-pin
2795	NH (C=NH) NH ₂	1	PhCH2CH2	H	(+)-pin
2796	NH (C-NH) NH2	1	PhCH2CH2	Methyl	(+)-pin
2797	ин (С-ин) ин ³	. 1	PhCH2CH2	Ethyl	(+)-pin
2798	NH (C-NH) NH ₂	. 1	PhCH2CH2	n-Propyl	(+)-pin
2799	NH (C-NH) NH ₂	1	PhCH2CH2	n-Butyl	(+)-pin
2800	NH (C=NH) NH ₂	1	PhCH2CH2	CH2ECH3	(+)-pin
2801	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
2802	ИН (С=ИН) ИН ₂	1	PhCH2CH2	CH2 (802) CH3	(+)-pin
2803	NH (C-NH) NH2	1	PhCH2CH2	CH2CH2ECH3	(+)-pin
2804	NH (C-NH) NH2	1	PhCH2CH2	CH2CH2 (80) CH3	(+)-pin
2805	NH (C-NH) NH ₂	1	PhCH2CH2	CH2CH2 (80) 2CH3	(+)-pin
2806	NH (C-NH) NH ₂	1	PhCH2CH2	CH2CN	(+)-pin
2807	NH (C-NH) NH ₂	1	PhCH2CH2	CH2CH2CN	(+)-pin
2808	NH (O=NH) NH ₂	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
2809	NH (C=NH) NH ₂	1	PhCH2CH2	CF ₃	(+)-pin
2810	NH (C-NH) NH ₂	1	PhCH2CH2	CF2CF3	(+)-pin
2811	NH (C-NH) NH ₂	1	PhCH2CH2	CF2CF2CF3	(+)-pin
2812	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
2813	NH (C=NH) NH ₂	1	PhCH2CH2	F ₅ -Ph	(+)-pin
2814	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CO2H	(+)-pin
2815	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
2816	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin
2817	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CN4H	(+)-pin
2818	nh (c-nh) nh ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
2819	NH (C=NH) NH2	1	PhCH2CH2	(CH2) 3CN4H	(+)-pin
2820	NH (C-NH) NH2	1	PhCH2CH2	CH2NO2	(+)-pin
2821	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
2822	NH (C-NH) NH2	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
2823	NH (C=NH) NH ₂	1	PhCH2CH2	CH2OH	(+)-pin
2824	NH (C-NH) NH2	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin

2825	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) 3OH	(+)-pin	
2826	NH (C-NH) NH2	1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin	
2827	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin	
2828	ne (C-NH) NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Ne	(+)-pin	
2829	NH (C-NH) NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin	
2830	NH (C-NH) NH ₂	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin	
2831	NH (C-NH) NH ₂	1	PhCH2CH2	3-002H-Ph	(+)-pin	
2832	NH (C=NH) NH ₂	1	PhCH2CH2	4-∞2H-Ph	(+)-pin	
2833	NH (C-NH) NH2	. 1	PhCH2CH2	3-CN4H-Ph	(+)-pin	
2834	NH (C-NE) NH2	ı	PhCH2CH2	4-cn ₄ H-Ph	(+) -pin	
2835	nh (C=nh) nh ₂	1	PhCH2CH2	3 - (HOCH ₂) -Ph	(+)-pin	
2836	NH (C=NH) NH2	1	PhCH2CH2	4-(HOCH2)-Ph	(+) -pin	
2837	CH ₂ NH ₂	ì	PhCH2CH2	H	OH, OH 1	BJ
2838	CH2NH2	1	PhCH2CH2	Methyl	OH, OH	
2839	CH2NH2	1	PhCH2CH2	Ethy1	OH, OH	
2840	CH2NH2	. 1	PhCH2CH2	n-Propyl	OH, OH	
2941	CH ₂ NH ₂	1	PhCH2CH2	n-Butyl	OH, OH	
2842	CH ₂ NH ₂	1	PhCH2CH2	CH28CH3	OH, OH	
2843	CH2NH2	1	PhCH2CH2	CH ₂ (80) CH ₃	OH, OH	
2844	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH2 (802) CH3	OH, OH	
2845	CH2NH2	1	PhCH2CH2	CH2CH28CH3	OH, OH	
2846	CH ₂ NH ₂	1	PhCH2CH2	CH2CH2 (80) CH3	OH, OH	
2847	CH2NH2	1	PhCH2CH2	CH2CH2 (80) 2CH3	OH. OH	
2848	CH2NH2	1	PhCH2CH2	CH ₂ CN	OH, OH	
2849	CH2NH2	1.	PhCH2CH2	CH ₂ CH ₂ CN	OH, OH	
2850	CH2NH2	1	PhCH ₂ CH ₂	CH2CH2CH2CN	OR, OH	
2851	CH2NH2	1	PhCH2CH2	CF ₃	он, он	
2852	CH2NH2	1	PhCH2CH2	CF2CF3	OH, OH	
2853	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF2CF2CF3	OH, OH	
2854	CH2NH2	1	PhCH2CH2	CF2CF2CF2CF3	OH, OH	
2855	CH2NH2	1	PhCH2CH2	F5-Ph	OH, OH	
2856	CH ₂ NH ₂	1	PhCH2CH2	СН2СО2Н	OH, OH	
2857	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	OH, OH	
2858	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH, OH	
2859	CH ₂ NH ₂	1	PhCH2CH2	CH2CN4H	OH, OH	
2860	CH ₂ NH ₂	1 .	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH, OH	
2861	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) 3 CN ₄ H	OH, OH	
2862	CH2NH2	1.	PhCH2CH2	CH2NO2	OH, OH	
2863 .	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH, OH -	
2864	CH2NH2	. 1	PhCH ₂ CH ₂	(CH ₂) 3NO ₂	OH, OH	

2865	CH2NH2	. 1	PhCH2CH2	CH2OH	OH, OH
2866	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	OH, OH
2867	CH2NH2	1	PhCH2CH2	(CH ₂) 30H	OH, OH
2868	CH2NH2	1	PhCH2CH2	CH ₂ CO ₂ Me	OH, OH
2869	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Ne	OH, OH
2870	CH2NH2	1	PhCH2CH2	(CH ₂) 3CO ₂ Me	OH, OH
2871	CH2NH2	1	PhCH2CH2	3-NO ₂ -Ph	OH, OH
2872	CH2NH2	1	PhCH2CH2	4-1102-Ph	OH, OH
2873	CH ₂ NH ₂	1	PhCH2CH2	3-002H-Ph	OH, OH
2874	CH2NH2	1	PhCH2CH2	4-00 ₂ H-Ph	OH, OH
2875	CH2NH2	1	PhCH2CH2	3-CN4H-Ph	OH, OH
2876	CH2NH2	1	PhCH2CH2	4-CN4H-Ph	OH, OH
2877	CH2NH2	1	PhCH2CH2	3-(HOCH ₂)-Ph	OH, OH
2878	CH ₂ NH ₂	1	PhCH2CH2	4- (HOCH ₂) -Ph	OH, OH
2879	NH (C-NH) NH ₂	1	PhCH2CH2	Ħ	OH, OH
2880	NH (C-NH) NH ₂	1	PhCH2CH2	Methyl	OH, OH
2881	NH (C=NH) NH ₂	ı	PhCH ₂ CH ₂	Ethyl	OH, OH
2882	NH (C=NH) NH ₂	1	PhCH2CH2	n-Propyl	OH, OH
2883	NH (C=NH) NH ₂	1	PhCH2CH2	n-Butyl	OH, OH
2884	NH (C-NH) NH2	1	PhCH ₂ CH ₂	CH26CH3	OH, OH
2885	NH (C-NH) NH ₂	1 .	PhCH2CH2	CH2 (80) CH3	OH, OH
2886	NH (C-NH) NH2	1	PhCH ₂ CH ₂	CH2 (802) CH3	OH, OH
2897	NH (C-NH) NH2	1	PhCH ₂ CH ₂	CH2CH2SCH3	OH, OH
2888	NH (C=NH) NH2	1	PhCH2CH2	CH2CH2 (SO) CH3	OH, OH
2889	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CH2CH2 (SO) 2CH3	OH, OH
2890	NH (C=NH) NH ₂	i	PhCH2CH2	CH2CN	OH, OH
2891	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2CN	OH, OH
2892	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2CH2CN	OH, OH
2893	NH (C=NH) NH2	1	PhCH2CH2	CF ₃	OH, OH
2894	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF3	OH, OH
2895	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF3	OH, OH
2896	NH (C-NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	OH, OH
2897	NH (C=NH) NH ₂	1	PhCH2CH2	F5-Ph	OH, OH
2898	NH (C=NH) NH ₂	1	PhCH2CH2	сн ₂ со ₂ н	OH, OH
2899	NH (C-NH) NH2	ì	PhCH2CH2	(CH ₂) ₂ CO ₂ H	OH, OH
2900	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	он, он
2901	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2CN4H	он, он
2902	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH, OH
2903	NH (C-NH) NH2	ı	PhCH2CH2	(CH ₂) ₃ CN ₄ H	OH, OH
2904 .	NH (C-NH) NH2	1	PhCH ₂ CH ₂	CH2NO2	OH, OH

2905		1	PhCH2CH2		OH, OH
2906	•	1	PhCH2CH2	(CH ₂) 3NO ₂	OH, OH
2907	•	1	PhCH ₂ CH ₂	CH2OH	OH, OH
2908		1	PhCH2CH2	(CH ₂) ₂ OH	OH, OH
2909		1	PhCH2CH2	(CH ₂) ₃ OH	OH, OH
2910	_	1	PhCH2CH2	CH2CO2Me	OH, OH
2911	NH (C-NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Ne	OH, OH
2912		1	PhCH2CH2	(CH ₂) ₃ CO ₂ Ne	HO, HO
2913	NH (C=NH) NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	OH, OH
2914	NH (C-NH) NH ₂	1	PhCH2CH2	4-190 ₂ -Ph	OH, OH
2915	nh (c-nh) nh ₂	1	PhCH2CH2	3-002H-Ph	OH, OH
2916	NH (C-NH) NH ₂	1	PhCH2CH2	4-002H-Ph	OH, OH
2917	nh (c-nh) nh ₂	1	PhCH2CH2	3-CN ₄ H-Ph	OH, OH
2918	NH (C-NH) NH3	1	PhCH2CH2	4-CN4H-Ph	OH, OH
2919	NH (C-NH) NH ₂	1	PhCH2CH2	3 - (HOCH ₂) -Ph	OH, OH
2920	NH (C-NH) NH ₂	1	PhCH2CH2	4 - (HOCH ₂) -Ph	OH, OH
2921	-8- (C=NH) NH ₂	1	PhCH2CH2	H	(+)-pin
2922	-s- (C=NH) NH ₂	1	PhCH2CH2	Methyl	(+)-pin
2923	-s-(C=NH)NH2	1	PhCH2CH2	Ethyl	(+)-pin
2924	-8- (C=NH) NH ₂	1	PhCH2CH2	n-Propyl	(+)-pin
2925	-8- (C=NH) NH ₂	1	PhCH2CH2	n-Butyl	(+)-pin
2926	-8- (C=NH) NH ₂	1	PhCH2CH2	CH28CH3	(+)- pin
2927	-8- (C=NH) NH2	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
2928	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2 (802) CH3	(+)-pin
2929	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2CH28CH3	(+)-pin
2930	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2CH2 (SO) CH3	(+)-pin
2931	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2CH2 (SO) 2CH3	(+)-pin
2932	-6- (C-NH) NH ₂	1	PhCH2CH2	CH ₂ CN	(+)-pin
2933	-8- (C=NH) NH ₂	1 .	PhCH2CH2	CH2CH2CN	(+) - <u>pin</u>
2934	-s-(C=NH)NH ₂	1	PhCH2CH2	CH2CH2CH2CN	(+) -pin
2935	-s-(C=NH)NH ₂	1	PhCH2CH2	CP3	(+)-pin
2936	-8 - (C=NH) NH ₂	1	PhCH2CH2	CF2CF3	(+)-pin
2937	-8- (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF3	(+)-pin
2938	-s-(C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
2939	-8 - (C=NH) NH ₂	1	PhCH2CH2	F5-Ph	(+)-pin
2940	-s- (C-NH) NH ₂	1	PhCH2CH2	CH2CO2H	(+)-pin
2941	-8- (C-NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2942	-s-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) 3CO ₂ H	(+)-pin
2943	-8-(C=NH)NH2	1	PhCH2CH2	CH2CN4H	(+)-pin
2944	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	(CH ₂) 2CN ₄ H	(+)-pin
	1				-

2945	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 3CN ₄ H	(+)- pin
2946	-8- (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2NO2	(+)-pin
2947	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
2948	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
2949	-8- (C-NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
2950	-8- (C-NH) NH2	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin
2951	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 3OH	(+)-pin
2952	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2CO2Me	(+)-pin
2953	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)- pi n
2954	-8- (C=NH) NH ₂	1	PhCH2CH2	$(CH_2)_3CO_2Me$	(+)-pin
2955	-8- (C=NH) NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
2956	-8- (C=NH)NH2	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
2957	-8- (C=NH) NH ₂	. 1	PhCH2CH2	3-00 ₂ H-Ph	(+)- <u>pin</u>
2958	-8- (C=NH) NH ₂	1	PhCH2CH2	4-00 ₂ H-Ph	(+)-pin
2959	-8-(C-NH)NH2	1	PhCH2CH2	3-CN ₄ H-Ph	(+)-pin
2960	-6- (C-NH) NH ₂	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
2961	-s-(c-NH)NH ₂	1	PhCH2CH2	3-(HOCH ₂)-Ph	(+)-pin
2962	-8- (C=NH) NH ₂	1	PhCH2CH2	4 - (HOCH ₂) -Ph	(+)-pin
2963	-8- (C-NH) NH2	1	PhCH2CH2	H	OH, OH
2964	-8- (C-NH) NH ₂	1	PhCH2CH2	Methyl	OH, OH
2965	-8- (C-NH) NH ₂	I	PhCH2CH2	Ethyl	OH, OH
2966	-8- (C=NH) NH ₂	1	PhCH2CH2	n-Propyl	OH, OH
2967	-8- (C=NH) NH2	1	PhCH2CH2	n-Butyl	OH, OH
2968	-s-(c=NH)NH2	1	PhCH2CH2	CH28CH3	OH, OH
2969	-s-(C=NH)NH2	1	PhCH2CH2	CH ₂ (80) CH ₃	OH, OH
2970	-8-(C=NH)NH2	1	PhCH2CH2	CH2 (602) CH3	OH, OH
2971	-s-(C=NH)NH2	1	PhCH2CH2	CH2CH2SCH3	OH, OH
2972	-S-(C=NH)NH2	1	PhCH2CH2	CH2CH2 (SO) CH3	OH, OH
2973	-s-(C=NH) NH ₂	1	PhCH2CH2	CH2CH2 (SO) 2CH3	OH, OH
2974	-s-(C=NH)NH ₂	1	PhCH2CH2	CH ₂ CN	OH, OH
	-s-(C=NH)NH ₂		PhCH2CH2	CH2CH2CN	OH, OH
2976	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH2CH2CH2CN	OH, OH
	-s-(C=NH)NH ₂	-	PhCH2CH2	CF ₃	OH, OH
2978	-8-(C=NH)NH2	1	PhCH2CH2	CF2CF3	OH, OH
	-s- (C=NH) NH ₂		PhCH2CH2	CF2CF2CF3	OH, OH
	-s-(C=NH) NH ₂		PhCH ₂ CH ₂	CF2CF2CF3	OH, OH
2981	-8- (C=NH) NH ₂		PhCH2CH2	F5-Ph	OH, OH
2982	-8- (C=NH) NH ₂	1	PhCH2CH2	CH2CO2H	OH, OH
2983	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	OH, OH
2984	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH, OH

2985	-8-(C=NH)NH2	1	PhCH2CH2	CH2CN4H	OH, OH
2986	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH, OH
2987	-s-(C=NH)NH2	.1	PhCH2CH2	(CH2) 3 CM4H	OH, OH
2988	-s-(c=NH) NH ₂	1	PhCH2CH2	CH ₂ NO ₂	OH, OH
2989	-s- (C-NH) NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH, OH
2990	-8- (C-NH) NH2	1	PhCH ₂ CH ₂	(CH ₂) 3NO ₂	OH, OH
2991	-8- (C-NH) NH ₂	1	PhCH2CH2	CH ₂ OH	OH, OH
2992	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	OH, OH
2993	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ OH	OH, OH
2994	-8-(C=NH)NH2	1	PhCH2CH2	CH2CO2Ne	OH, OH
2995	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	OH, CH
2996	-8- (C=NH) NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	OH, OH
2997	-8-(C-NH)NH2	1	PhCH2CH2	3-NO ₂ -Ph	OH, OH
2998	-s-(C-NH)NH2	1	PhCH2CH2	4-NO ₂ -Ph	OH, OH
2999	-s-(C=NH)NH ₂	1	PhCH2CH2	3-00 ₂ H-Ph	OH, OH
3000	-s-(C=NH)NH2	1	PhCH2CH2	4-002H-Ph	OH, OH
3001	-8- (C-NH) NH ₂	1	PhCH2CH2	3-CN4H-Ph	OH, OH
3002	-8- (C-NH) NH ₂	1	PhCH2CH2	4-CN4H-Ph	OH, OH
3003	-8- (C-NH) NH ₂	1	PhCH2CH2	3- (HOCH ₂) - Ph	OH, OH
3004	-8- (C=NH) NH ₂	1	PhCH2CH2	4- (HOCH ₂) -Ph	он, он
3005	OMe	1 .	PhCH2CH2	Ħ	(+)-pin
3006	ONe	1 .	PhCH ₂ CH ₂	Methyl	(+)-pin
3007	OMe	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
3008	OHe	1	PhCH2CH2	n-Propyl	(+)-pin
3009	OMe	1	PhCH2CH2	n-Butyl	(+)- pin
3010	OMe	1	PhCH2CH2	CH ₂ 8CH ₃	(+)-pin
3011	OMe	1 .	PhCH2CH2	CH ₂ (80) CH ₃	(+)- pin
3012	OMe	. 1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
3013	Otte	1	PhCH2CH2	CH2CH28CH3	(+)- pin
3014	OMe	. 1	PhCH2CH2	CH ₂ CH ₂ (60) CH ₃	(+) -pin
3015	OMe	1	PhCH2CH2	CH2CH2 (SO) 2CH3	(+)-pin
3016	OMe	1		CH ₂ CN	(+)-pin
3017	OMe	1		CH2CH2CN	(+) - pin
3018	OMe	. 1		CH2CH2CH2CN	(+)-pin
3019	OMe	, 1	PhCH2CH2	CF ₃	(+)-pin
3020	CMe	1	PhCH2CH2	CF2CF3	(+)-pin
3021	OMe	. 1		CF2CF2CF3	(+)- pin
3022	OMe .	1	PhCH2CH2		(+)-pin
3023	OMe	1	PhCH ₂ CH ₂	F5-Ph	(+)-pin
3024	OMe	. 1	PhCH2CH2	СН2СО2Н	(+)-pin

3025	Olfe		1.	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
3026	Olfe		1	PhCH ₂ CH ₂	(CH ₂) 3∞2H	(+)-pin
3027	Otte		1	PhCH ₂ CH ₂	CH2CN4H	(+)-pin
3028	Olfe		1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
3029	Offe	•	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
3030	Olfe		1	PhCH2CH2	CH2NO2	(+)-pin
3031	Olie		1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
3032	Olic		1	PhCH ₂ CH ₂	(CR2) 3NO2	(+)-pin
3033	Olfe		1	PhCH2CH2	CH ₂ OH	(+)-pin
3034	OMe		1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
3035	OHe		1	PhCH2CH2	(CH ₂) 3OH	(+)-pin
3036	OMe	, .	1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin
3037	Olie		1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
3038	OHe		1	PhCH2CH2	(CH ₂) ₃ CO ₂ He	(+)-pin
3039	OHe		1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
3040	OMe	•	1	PhCH2CH2	4-NO2-Ph	(+)-pin
3041	Office		1	PhCH2CH2	3-00 ₂ H-Ph	(+)-pin
3042	OMe		1	PhCH2CH2	4-00 ₂ H-Ph	(+)-pin
3043	OMe		1	PhCH2CH2	3-CN4H-Ph	(+)-pin
3044	OMe		i	PhCH2CH2	4-CN ₄ H-Ph	(+)-pin
3045	Olfe		1	PhCH2CH2	3 - (HOCH ₂) - Ph	(+)-pin
3046	OMe		1	PhCH2CH2	4- (HOCH ₂) -Ph	(+)-pin
3047	Offic		1	PhCH2CH2	H	OH, OH
3048	OMe		1	PhCH2CH2	Methyl	OH, OH
3049	OMe		1	PhCH ₂ CH ₂	Ethyl	OH, OH
3050	OHe		1	PhCH2CH2	n-Propyl	OH, OH
3051	OMe		1	PhCH2CH2	n-Butyl	OH, OH
3052	OMe		1	PhCH2CH2	CH28CH3	OH, OH
3053	OHe		1	PhCH2CH2	CH ₂ (SO) CH ₃	OH, OH
3054	OMe		1	PhCH2CH2	CH2 (SO2) CH3	OH, OH
3055	OMe		1	PhCH ₂ CH ₂	CH2CH2SCH3	OH, OH
3056	Offe		1.	PhCH2CH2	CH2CH2 (SO) CH3	OH, OH
3057	OHe		1	PhCH2CH2	CH2CH2 (80) 2CH3	OH, OH
3058	OMe	•	1	PhCH2CH2	CH ₂ CN	OH, OH
3059	Otte		1	PhCH2CH2	CH ₂ CH ₂ CN	OH, OH
3060	OMe		1.	PhCH2CH2	CH2CH2CH2CN	OH, OH
3061	OMe		1	PhCH2CH2	CF ₃	OH, OH
3062	OMe	•	1	PhCH ₂ CH ₂	CF2CF3	OH, OH
3063	OMe		1	PhCH2CH2	CF2CF2CF3	OH, OH
3064	OMe	•	1	PhCH2CH2	CF2CF2CF2CF3	OH, OH

	3065	Otte	1	PhCH2CH2	F5-Ph	OH, OH
	3066	ONe	1	PhCH2CH2	CH2CO2H	OH, OH
	3067	ONe	1	PhCH2CH2	(CH ₂) ₂ ∞ ₂ H	OH, OH
	3068	ONe	1	PhCH2CH2	(CH2)3CO2H	OH, OH
	3069	Office	1	PhCH2CH2	CH2CN4H	OH, OH
	3070	ONe	. 1	PhCH ₂ CH ₂	(CH ₂) 2CN ₄ H	OH, OH
	3071	Offe	1	PhCH ₂ CH ₂	(CH ₂) 3 CN ₄ H	OH, OH
;	3072	OMe	1	PhCH2CH2	CH2NO2	OH, OH
:	3073	ONe	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH, OH
	3074	ONe	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
3	3075	OMe	1	PhCH2CH2	CH2OH	OH, OH
3	3076	OMe	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
3	9077	OMe	1	PhCH2CH2	(CH ₂) 30H	он, он
3	078	OMe	1	PhCH2CH2	CH2CO2Me	OH, OH
3	079	Otte	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	OH, OH
3	080	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ He	OH, OH
3	081	OMe	1	PhCH2CH2	3-NO2-Ph	OH, OH
3	082	ONe	1	PhCH2CH2	4-NO ₂ -Ph	OH, OH
3	083	Otte	1	PhCH2CH2	3-002H-Ph	OH, OH
3	084	OMe	1	PhCH ₂ CH ₂	4-00 ₂ H-Ph	OH, OH
3	085	OMe	1	PhCH2CH2	3-CN4H-Ph	OH, OH
3	086	OMe .	1	PhCH2CH2	4-CN ₄ H-Ph	OH, OH
3	087	CNe	1	PhCH2CH2	3 - (HOCH ₂) -Ph	OH, OH
3	880	OMe	1	PhCH2CH2	4- (HOCH ₂) -Ph	OH, OH
3	089	NH (C=NH) H	. 1	Ph	H	(+)-pin
3	090	NH (C=NH) H	1	Ph	Methy1	(+)- pin
3	091	NH (C=NH) H	1	Ph	Ethyl	(+)-pin
3	092	NH (C=NH) H	, · · · · · · 1	Ph	n-Propyl	(+)-pin
3	093	NH (C-NH) H	1	Ph	n-Butyl	(+)-pin
3(094	nh (c=nh) h	1	Ph	CH ₂ BCH ₃	(+)-pin
3	95	NH (C=NH) H	. 1	Ph	CH2 (80) CH3	(+)-pin
30	96	NH (C=NH) H	, 1	Ph	CH2 (802) CH3	(+) -pin
30	97	NH (C-NH) H	1	Ph	CH2CH28CH3	(+)-pin
30	98	NH (C=NH) H	1	Ph	CH2CH2 (80) CH3	(+)-pin
30	99	NH (C=NH) H	1	Ph	CH2CH2 (80) 2CH3	(+)-pin
31	100	NH (C=NH) H	1	Ph	CH ₂ CN	(+)-pin
31	.01	NH (C=NH) H	1	Ph	CH2CH2CN	(+)-pin
31	.02	NH (C=NH) H	. 1	Ph	CH2CH2CH2CN	(+)-pin
31	.03	NH (C=NH) H	1	Ph ·	CF ₃	(+)-pin
31	.04	NH (C-NH) H	. 1	Ph	CF ₂ CF ₃	(+)-pin

				•	
3105	NH (C-NH) H	1	Ph	CF2CF2CF3	(+)-pin
3106	NH (C=NH) H	1	Ph	CF2CF2CF2CF3	(+)-pin
3107	NH (C-NH) H	1	Ph	F5-Ph	(+)-pin
3108	MH (C-NH) H	1	Ph	CH2CO2H	(+)-pin
3109	NH (C=NH) H	1	Ph	$(CH_2)_2CO_2H$	(+)-pin
3110	NH (C-NH) H	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
3111	NH (C=NH) H	1.	· Ph	CH2CN4H	(+)-pin
3112	nh (c-nh) h	1	Ph	(CH2) 2CN4H	(+)-pin
3113	NH (C-NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
3114	NH (C=NH) H	1	Ph	CH2NO2	(+)-pin
3115	NH (C—NH) H	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
3116	NH (C-NH) H	. 1	Ph	(CH ₂) 3NO ₂	(+)-p <u>in</u>
3117	NH (O-NH) H	1	Ph	CH ₂ OH	(+)-pin
3118	NH (C-NH) H	1	Ph	(CH ₂) ₂ OH	(+)-pin
3119	NH (C-NH) H	1	Ph	(CH ₂) ₃ OH	(+)-pin
3120	ne (c=nh) h	1	Ph	CH2CO2Me	(+)-pin
3121	NH (C—NH) H	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
3122	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ He	(+)-pin
3123	NH (C=NH) H	. 1	Ph	3-1102-Ph	(+)-pin
3124	NH (C=NH) H	1	Ph	4-NO2-Ph	(+)-pin
3125	NH (C=NH) H	1	Ph	3-00 ₂ H-Ph	(+)-pin
3126	NH (C=NH) H	1	Ph	4-00 ₂ H-Ph	(+)-pin
3127	NH (C=NH) H	1	Ph	3-CNeH-Ph	(+)-pin
3128	NH (C=NH) H	1	Ph	4-CN4H-Ph	(+)-pin
3129	NH (C-NH) H	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
3130	NH (C=NH) H	1	Ph	4- (HOCH ₂) -Ph	(+)-pin
3131	NH (C-NH) H	1	Ph	н	OH, OH
3132	NH (C=NH) H	1	Ph	Methyl	OH, OH
3133	NH (C—NH) H	1	Ph	Ethyl	OH, OH
3134	NH (C=NH) H	1	Ph	n-Propyl	OH, OH
3135	NH (C-NH) H	1	Ph	n-Butyl	OH, OH
3136	NH (C=NH) H	1	Ph	CH28CH3	OH, OH
3137	NH (C=NH) H	1	Ph	CH ₂ (80) CH ₃	OH, OH
3138	NH (C=NH) H	1 .	Ph	CH2 (802) CH3	OH, OH
3139	NH (C=NH) H	1	Ph	CH2CH2SCH3	OH, OH
3140	NH (C=NH) H	1	Ph	CH ₂ CH ₂ (SO) CH ₃	OH, OH
3141	NH (C=NH) H	1	Ph	CH2CH2 (80) 2CH3	OH, OH
3142	NH (C=NH) H	1	Ph	CH ₂ CN	OH, OH
3143	NH (C-NH) H	1	Ph	CH2CH2CN	ОН, ОН
3144	· NH (C=NH) H	1	Ph	CH2CH2CH2CN	OH, OH

	_				
314	5 NH (C-NH) H	1	Ph	CF3	OH, OH
314	MH (C-NH) H	1	Ph	CF2CF3	OH, OH
3147	MH (C-NH) H	1	Ph	CF2CF2CF3	OH, OH
314	NH (C-NH) H	1	Ph	CF2CF2CF2CF3	OH, OH
3149	<u>ин</u> (С-ин) н	1	Ph	P5-Ph	OH, OH
3150	NH (C-NH) H	. 1	Ph	CH2CO2H	OH, OH
3151	NH (C-NH) H	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
3152	NH (C-NH) H	. 1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH
3153	NH (C-NH) H	1	Ph	CH2CN4H	OH, OH
3154	NH (C=NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH
3155	MH (C=NH) H	1	Ph	(CH ₂) 3CN ₄ H	OH, OH
3156	NH (C=NH) H	1	Ph	CH2NO2	OH, OH
3157	NH (C=NH) H	i	Ph	(CH ₂) ₂ NO ₂	OH, OH
3158	NH (C→NH) H	· 1.	Ph	(CH ₂) ₃ NO ₂	OH, OH
3159	NH (C—NH) H	1	Ph	CH2OH	OH, OH
3160	NH (C=NH) H	1	Ph	(CH ₂) ₂ OH	OH, OH
3161	NH (C-NH) H	1	Ph	(CH ₂) ₃ OH	OH, OH
3162	NH (C=NH) H	1	Ph	CH2CO2Me	OH, OH
3163	NH (C-NH) H	1	Ph	$(CH_2)_2CO_2Me$	OH, OH
3164	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ Ne	OH, OH
3165	NH (C=NH) H	1	Ph	3-190 ₂ -Ph	OH, OH
3166	NH (C→NH) H	1	Ph	4-NO ₂ -Ph	OH, OH
3167	NH (C-NH) H	1	Ph	3-00 ₂ H-Ph	OH, OH
3168	nh (c—nh) h	1	Ph .	4-CO ₂ H-Ph	OH, OH
3169	NH (C=NH) H	1	Ph	3-CN4H-Ph	OH, OH
3170	NH (C-NH) H	1	Ph	4-CN ₄ H-Ph	OH, OH
3171	NH (C=NH) H	1	Ph	3- (HOCH ₂) -Ph	OH, OH
3172	NH (C=NH) H	1	Ph	4 - (HOCH2) -Ph	OH, OH
3173	NH (C=NH) H	1	PhCH ₂	H	(+)-pin
3174	NH (C-NH) H	1	PhCH ₂	Methyl	(+)-pin
3175	NH (C=NH) H	1	PhCH ₂	Ethyl	(+)-pin
3176	NH (C=NH) H	1	PhCH ₂	n-Propyl	(+)-pin
3177	NH (C-NH) H	1	PhCH ₂	n-Butyl	(+)-pin
3178	NH (C=NH) H	1	PhCH ₂	CH28CH3	(+)-pin
3179	NH (C=NH) H	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin
3180	NH (C=NH) H	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
3181	NH (C=NH) H	1	PhCH ₂	CH2CH2SCH3	(+)-pin
3182	NH (C-NH) H	. 1	PhCH ₂	CH2CH2 (SO) CH3	(+)-pin
3183	NH (C=NH) H	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin -
3184	NH (C=NH) H	1	PhCH ₂	CH ₂ CN	(+)-pin

3185	NH (C-NH) H	1	PhCH ₂	CH2CH2CN	(+)-pin
3186	NH (C-NH) H	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
3187	nh (C—Nh) h	1	PhCH ₂	CF ₃	(+)- pin
3188	NH (C=NH) H	1	PhCH ₂	CF2CF3	(+)-pin
3189	nr (c=nr) h	1	PhCH ₂	CF2CF2CF3	(+)-pin
3190	NH (C=NH) H	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
3191	NH (C=NH) H	1	PhCH ₂	P5-Ph	(+)-pin
3192	MH (C—NH) H	1	PhCH ₂	CH2CO2H	(+)-pin
3193	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
3194	NH (C=NH) H	1	PhCH ₂	(CH2) 3CO2H	(+)-pin
3195	NH (C=NH) H	1	PhCH ₂	CH2CN4H	(+)-pin
3196	NH (C-NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
3197	ин (с-ин) н	1,	PhCH ₂	(CH2) 3CN4H	(+)-pin
3198	MH (C-MH) H	T	PhCH ₂	CH2NO2	(+)-pin
3199	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
3200	NH (C=NH) H	1	PhCH ₂	(CH ₂) 3NO ₂	(+)-pin
3201	NH (C=NH) H	1	PhCH ₂	CH2OH	(+)-pin
3202	NH (C-NH) H	1	PhCH ₂	(CH2) 3OH	(+)-pin
3203	nh (c=nh) h	1	PhCH ₂	(CH ₂) 30H	(+)-pin
3204	NH (C=NH) H	1	PhCH ₂	CH2CO2Me	(+)-pin
3205	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
3206	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
3207	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
3208	NH (C=NH) H	1	PhCH ₂	4-NO2-Ph	(+)-pin
3209	NH (C=NH) H	1	PhCH ₂	3-00 ₂ H-Ph	(+)-pin
3210	NH (C=NH) H	1	PhCH ₂	4-00 ₂ H-Ph	(+)-pin
3211	NH (C=NH) H	ı	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
3212	NH (C=NH) H	1	PhCH ₂	4-CN4H-Ph	(+)-pin
3213	NH (C=NH) H	1	PhCH ₂	3- (HOCH ₂) -Ph	(+)-pin
3214	NH (C-NH) H	1	PhCH ₂	4- (HOCH ₂) -Ph	(+)-pin
3215	NH (C=NH) H	1	PhCH ₂	н	OH, OH
3216	NH (C=NH) H	1	PhCH2	Methyl	OH, OH
3217	NH (C=NH) H	1	PhCH ₂	Ethyl	OH, OH
3218	NH (C=NH) H	1	PhCH ₂	n-Propyl	OH, OH
3219	NH (C=NH) H	1	PhCH ₂	n-Butyl	OH, OH
3220	NH (C-NH) H	1	PhCH ₂	CH2SCH3	OH, OH
3221	NH (C-NH) H	1	PhCH ₂	CH ₂ (80) CH ₃	OH, OH
3222	NH (C=NH) H	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	OH, OH
3223	NH (C=NH) H	1	PhCH ₂	CH2CH2SCH3	OH, OH
3224	NH (C=NH) H	1	PhCH2	CH2CH2 (80) CH3	OH, OH
			-	_	

3225	NH (C-NH) H	1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH
3226	nh (c-nh) h	1	PhCH ₂	CH ₂ CN	OH, OH
3227	NH (C—NH) H	1	PhCH ₂	CH2CH2CN	OH, OH
3228	NH (C-NH) H	1	PhCH ₂	CH2CH2CH2CN	OH, OH
3229	NH (C=NH) H	1	PhCH ₂	CF₃	OH, OH
3230	NH (C=NH) H	1	PhCH ₂	CF2CF3	OH, OH
3231	nh (c=nh) h	1	PhCH ₂	CF2CF2CF3	OH, OH
3232	nh (c-nh) h	. 1	PhCH ₂	CF2CF2CF2CF3	OH, OH
3233	NH (C-NH) H	1	PhCH ₂	F ₅ -Ph	OH, OH
3234	NH (C=NH) H	1	PhCH ₂	СН2СО2Н	OH, OH
3235	ne (C=nh) h	1	PhCH ₂	$(CH_2)_2CO_2H$	OH, OH
3236	ne (c-nh) h	1	PhCH ₂	(CH ₂) 3CO ₂ H	OH, OH
3237	NH (C=NH) H	1	PhCH ₂	CH2CN4H	OH, OH
3238	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
3239	NH (C=NH) H	. 1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
3240	NH (C=NH) H	1	PhCH ₂	CH2NO2	OH, OH
3241	nh (c=nh) h	1	PhCH ₂	(CH ₂) ₂ NO ₂	он, он
3242	NH (C-NH) H	1	PhCH ₂	(CH ₂) 3NO ₂	OH, OH
3243	NH (C-NH) H	1	PhCH ₂	CH2OH	OH, OH
3244	NH (C-NH) H	1	PhCH ₂	(CH ₂) ₂ OH	HO, HO
3245	NH (C-NH) H	1	PhCH ₂	(CH ₂) 3OH	OH, OH
3246	NH (C-NH) H	1	PhCH ₂	CH ₂ CO ₂ Me	OH, OH
3247	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ He	он, он
3249	NH (C—NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
3249	NH (C=NH) H	1	PhCH ₂	3-102-Ph	он, он
3250	NH (C=NH) H	1	PhCH ₂	4-NO ₂ -Ph	OH, OH
3251	NH (C-NH) H	1	PhCH ₂	3-00 ₂ H-Ph	OH, OH
3252	NH (C=NH) H	·	PhCH ₂	4-002H-Ph	он, он
3253	NH (C-NH) H	1	PhCH ₂	3-CN ₄ H-Ph	OH, OH
3254	NH (C=NH) H	. 1	PhCH ₂	4-CN ₄ H-Ph	OH, OH
3255	MH (C—MH) H	1	PhCH ₂	3 - (HOCH ₂) -Ph	OH, OH
3256	NH (C-NH) H	1	PhCH ₂	4- (HOCH2) - Ph	OH, OH
3257	NH (C-NH) H	1	PhCH2CH2	н .	(+)-pin
3258	NH (C-NH) H	1	PhCH2CH2	Methyl	(+)-pin
3259	NH (C=NH) H	1	PhCH2CH2	Ethyl	(+)-pin
3260	NH (C-NH) H	1 .	PhCH2CH2	n-Propyl	(+)-pin
3261	NH (C-NH) H	1	PhCH2CH2	n-Butyl	(+)-pin
3262	NH (C=NH) H	1	PhCH2CH2	CH ₂ SCH ₃	(+) -pin
3263	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
3264	ин (с-йн) н	. 1	PhCH ₂ CH ₂	CH ₂ (80 ₂)CH ₃	(+)-pin

3265	NH (C-NH) H	1	PhCH ₂ CH ₂	CH2CH2SCH3	(+)-pin
3266	NH (C=NH) H	1	PhCH ₂ CH ₂	CH2CH2 (80) CH3	(+)-pin
3267	NH (C-NH) H	1	PhCH2CH2	CH2CH2 (60) 2CH3	(+)-pin
3268	NH (C=NH) H	1	PhCH2CH2	CE2CN	(+)-pin
3269	NH (C-NH) H	1	PhCH2CH2	CH2CH2CN	(+)-pin
3270	NH (C=NH) H	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
3271	nh (c-nh) h	. 1	PhCH ₂ CH ₂	CP3	(+)-pin
3272	nh (c-nh) h	1	PhCH2CH2	CF2CF3	(+)-pin
3273	nh (c=nh) h	1	PhCH2CH2	CF2CF2CF3	(+)-pin
3274	NH (C=NH) H	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
3275	NH (C=NH) H	1	PhCH2CH2	F5-Ph	(+) -pin
3276	NH (C-NH) H	1	PhCH2CH2	CH2CO2H	(+)-pin
3277	NH (C-NH) H	. 1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
3278	NH (C-NH) H	. 1	PhCH2CH2	(CH ₂) 3CO ₂ H	(+)-pin
3279	NH (C-NH) H	1	PhCH2CH2	CH2CN4H	(+)-pin
3280	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
3281	NH (C-NH) H	ı	PhCH2CH2	(CH ₂) 3CN ₄ H	(+)- pi n
3282	NH (C-NH) H	1	PhCH2CH2	CH2NO2	(+)-pin
3283	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
3284	NH (C-NH) H	ì	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
3285	NH (C-NH) H	1	PhCH2CH2	СН ₂ ОН	(+)-pin
3286	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
3287	NH (C—NH) H	. 1	PhCH2CH2	(CH ₂) 3OH	(+)-pin
3288	NH (C-NH) H	. 1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin
3289	NH (C—NH) H	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
3290	nh (C=NH) h	1	$PhCH_2CH_2$	(CH ₂) ₃ CO ₂ Me	(+)-pin
3291	NH (C-NH) H	• 1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
3292	NH (C-NH) H	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
3293	NH (C-NH) H	i	PhCH2CH2	3-002H-Ph	(+)-pin
3294	NH (C=NH) H	1	PhCH2CH2	4-002H-Ph	(+)-pin
3295	NH (C-NH) H	1	PhCH ₂ CH ₂	3-CN4H-Ph	(+)-pin
3296	NH (C=NH) H	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
3297	NH (C=NH) H	. 1	PhCH2CH2	3-(HOCH ₂)-Ph	(+)-pin
3298	NH (C=NH) H	1	PhCH2CH2	4-(HOCH ₂)-Ph	(+)-pin
3299	NH (C-NH) H	1	PhCH2CH2	H	OH, OH
3300	NH (C=NH) H	1	PhCH ₂ CH ₂	Methyl	OH, OH
3301	nh (c=nh) h	1	PhCH ₂ CH ₂	Ethyl	OH, OH
3302	NH (C=NH) H	ı	PhCH2CH2	n-Propyl	OH, OH
3303	nh (c=nh) h	1	PhCH2CH2		OH, OH
3304	NH (C-NH) H	1	PhCH2CH2	CH28CH3	OH, OH
				•	·

3305	nh (c=nh) h	1	PhCH2CH2	CH ₂ (80) CH ₃	OH, OH
3306	NH (C-NH) H	1	PhCH2CH2	CH2 (802) CH3	OR, OH
3307	MH (C=NH) H	1	PhCH2CH2	CH2CH28CH3	ÓH, OH
3308	NH (C=NH) H	1	PhCH2CH2	CH2CH2 (80) CH3	ОН, ОН
3309	NH (C-NH) H	. 1	PhCH ₂ CH ₂	CH2CH2 (80) 2CH3	OH, OH
3310	nh (c=nh) h	1	PhCH2CH2	CH ₂ CN	OH, OH
3311	NH (C=NH) H	1	PhCH2CH2	CH2CH2CN	OH, OH
3312	nh (c-nh) h	1	PhCH2CH2	CH2CH2CH2CN	OH, OH
3313	NH (C=NH) H	1	PhCH2CH2	CF3	OH, OH
3314	nh (c=nh) h	1	PhCH2CH2	CF2CF3	OH, OH
3315	NH (C-NH) H	1	PhCH2CH2	CF2CF2CF3	OH, OH
3316	NH (C-NH) H	1	PhCH2CH2	CF2CF2CF2CF3	OH, OH
3317	ne (C=ne) h	ī	PhCH2CH2	F5-Ph	OH, OH
3318	NH (C-NH) H	1	PhCH2CH2	CH2CO2H	OH, OH
3319	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ ∞ ₂ H	OH, OH
3320	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH, OH
3321	NH (C=NH) H	1	PhCH2CH2	CH2CN4H	OH, OH
3322	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH, OH
3323	NH (C—NH) H	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	OH, OH
3324	NH (C-NH) H	1	PhCH2CH2	CH2NO2	OH, OH
3325	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH, OH
3326	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ NO ₂	OH, OH
3327	NH (C=NH) H	1	PhCH2CH2	CH ₂ OH	OH, OH
3328	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ OH	OH, OH
3329	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH, OH
3330	NH (C=NH) H	1	PhCH2CH2	CH2CO2Me	OH, OH
3331	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ ∞ ₂ Me	OH, OH
3332	ин (С–ин) н	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	OH, OH
3333	NH (C-NH) H	1	PhCH2CH2	3-NO ₂ -Ph	OH, OH
3334	NH (C=NH) H	1	PhCH2CH2	4-NO ₂ -Ph	OH, OH
3335	NH (C=NH) H	. 1	PhCH2CH2	3-00 ₂ H-Ph	OH, OH
3336	NH (C=NH) H	1	PhCH2CH2	4-002H-Ph	OH, OH
3337	NH (C=NH) H	1	PhCH2CH2	3-CN4H-Ph	OH, OH
3338	NH (C=NH) H	1	PhCH2CH2	4-CN ₄ H-Ph	OH, OH
3339	NH (C=NH) H	1	PhCH2CH2	3- (HOCH ₂)-Ph	OH, OH
3340	NH (C=NH) H	1	PhCH2CH2	4-(HOCH ₂)-Ph	EO. RO
					•

BA. MS (M+H) +: Calc. 480, Found 480.

BC. MS (M+H)+: Calc. 494, Found 494.

BD. MS (M+H)+: Calc. 522, Found 522.

MS (M+H)+: Calc. 540, Found 540. BF. MS (M+H)+: Calc. 519, Found 519. BG. MS (M+H)+: Calc. 538, Pound 538. MS (M+H)+: Calc. 346, Found 346. MS (M+H)+: Calc. 494, Found 494. BJ. Anal. calcd. for C17H26HN5O3 • 2 H2O • 1.8 HCl: C, 44.30; H, 6.95; Cl, 13.84; N, 15.20. Found: C, 44.22; H, 6.66; Cl, 14.03; N, 14.03. MS (M+H)+: Calc. 466, Found 466. BX. MS (M+H)+: Calc. 480, Found 480. CV. MS (M+H)+: Calc. 510, Found 510. CW. MS (M+H)+: Calc. 600, Found 600. CX. MS (M+H)+: Calc. 552, Found 552. MS (M+H)+: Calc. 629, Found 629. CY. CZ. MS (M+H)+: Calc. 524, Found 524. MS (M+H)+: Calc. 614, Found 614. DA.

Table 16

Ex	x	. m	R13	R14	Yly2	Phys.
3345	CH ₂ NH ₂	1	Ph	Ph	(+)-pin	•
3346	CH2NH2	1	Ph	PhCH ₂	(+)-pin	
3347	CH2NH2	1	Ph	Ph(CH ₂) ₂	(+)pin	
3348	CH2NH2	1	PhCH ₂	Ph	(+)-pin	
3349	CH2NH2	1	PhCH ₂	PhCH ₂	(+)-pin	BX
3350	CH2NH2	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin	
3351	CH2NH2	1	Ph(CH ₂) ₂	Ph	(+)-pin	
3352	CH2NH2	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin	
3353	CH2NH2	, 1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin	-
3354	CH2NH2	1	Ph	Ph	OH, OH	
3355	CH2NH2	1	Ph	PhCH ₂	OH, OH	
3356	CH2NH2	1	Ph	Ph(CH ₂) ₂	OH, OH	
3357	CH2NH2	1	PhCH ₂	Ph	OH, OH	
3358	CH2NH2	1.	PhCH ₂	PhCH ₂	OH, OH	
						,

3359	CH ₂ NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3360	CH2NH2	1	Ph(CH ₂) ₂	Ph	он, он
3361	CH2NH2	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3362	CH2NH2	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3363	NH (C-NH) NH ₂	1	Ph	Ph	(+)-pin
3364	NH (C-NH) NH ₂	1	Ph	PhCH ₂	(+)-pin
3365	NH (C=NH) NH ₂	1	Ph	Ph(CH ₂) ₂	(+)-pin
3366	NH (C=NH) NH ₂	1	PhCH ₂	Ph	(+)-pin
3367	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin
3368	NH (C=NH) NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3369	NH (C-NH) NH ₂	1	Ph(CH ₂) ₂	Ph	(+)-pin
3370	NH (C-NH) NH ₂	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3371	NH (C-NH) NH ₂	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3372	NH (C-NH) NH ₂	1	. Ph	Ph	он, он
3373	NH (C=NH) NH ₂	1	Ph	PhCH ₂	OH, OH
3374	NH (C=NH) NH ₂	. 1	Ph	Ph(CH ₂) ₂	OH, OH
3375	NH (C=NH) NH ₂	1	PhCH ₂	Ph	OH, OH
3376	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	OH, OH
3377	NH (C-NH) NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3378	NH (C=NH) NH ₂	1	Ph(CH ₂) ₂	Ph	OH, OH
3379	NH (C-NH) NH ₂	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3380	NH (C-NH) NH ₂	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3381	Otte	1	Ph	Ph	(+)-pin
3382	OMe	. 1	Ph	PhCH ₂	(+)-pin
3383	OMe	1	Ph	Ph(CH ₂) ₂	(+)-pin
3384	ONe	1	PhCH ₂	Ph	(+)-pin
3385	OMe	. 1	PhCH ₂	PhCH ₂	(+)-pin
3386	OMe	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3387	OMe	1	Ph(CH ₂) ₂	Ph	(+)-pin
3388	OMe	1.	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3389	OMe	1	Ph (CH2) 2	Ph(CH ₂) ₂	(+)-pin
3390	OMe	1	Ph	Ph	OH, OH
3391	OMe	Ţ	Ph	PhCH ₂	он, он
3392	OMe	1	Ph	Ph(CH ₂) ₂	OH, OH
3393	OHe	1	PhCH ₂	Ph	он, он
3394	OMe	1	PhCH ₂	PhCH ₂	OH, OH
3395	OMe	. 1	PhCH ₂	Ph(CH ₂) ₂	он, он
3396	OMe .	. 1	Ph(CH ₂) ₂	Ph	OH, OH
3397	OMe	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3398	OMe	, 1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH

3399	NH (C=NH) H	L	Ph	Ph	(+)-pin
3400	NH (C-NH) H	1	Ph	PhCH ₂	(+)-pin
3401	NH (C-NH) H	1	Ph	Ph(CH ₂) ₂	(+)-pin
3402	NH (C-NH) H	1	PhCH ₂	Ph	(+)-pin
3403	NH (C=NH) H	1	PhCH ₂	PhCH ₂	(+)-pin
3404	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3405	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph	(+)-pin
3406	nh (C=Nh) h	1	Ph (CH ₂) 2	PhCH ₂	(+)-pin
3407	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3408	MH (C-NH) H	1	Ph	Ph	OH, OH
3409	NH (C-NH) H	ı	Ph	PhCH ₂	он, он
3410	NH (C-NH) H	1	Ph	Ph(CH ₂) ₂	OH, OH
3411	NH (C-NH) H	1	PhCH ₂	Ph	OH, OH
3412	NH (C-NH) H	1	PhCH ₂	PhCH ₂	OH, OH
3413	NH (C-NH) H	1	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3414	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph	OH, OH
3415	NH (C=NH) H	1	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3416	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3417	CH2NH2	2	Ph	Ph	(+)-pin
3418	CH2NH2	2	Ph	PhCH ₂	(+)-pin
3419	CH ₂ NH ₂	2	Ph	Ph(CH ₂) ₂	(+)-pin
3420	CH2NH2	2	PhCH ₂	Ph	(+)-pin
3421	CH2NH2	2	PhCH ₂	PhCH ₂	(+)-pin
3422	CH2NH2	2	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3423	CH ₂ NH ₂	2	Ph(CH ₂) ₂	Ph	(+)-pin
3424	CH ₂ NH ₂	2	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3425	CH2NH2	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3426	CH2NH2	2	Ph	Ph	OH, OH
3427	CH2NH2	2	Ph	PhCH ₂	OH, OH
3428	CH2NH2	2	Ph	Ph(CH ₂) ₂	OH, OH
3429	CH2NH2	2.	PhCH ₂	Ph	он, он
3430	CH2NH2	2	PhCH ₂	PhCH ₂	OH, OH
3431	CH2NH2	2	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3432	CH2NH2	2	Ph(CH ₂) ₂	Ph	OH, OH
3433	CH2NH2	2	Ph(CH ₂) ₂	PhCH ₂	OH, OH
3434	CH2NH2	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
3435	NH (C-NH) NH ₂	2	Ph	Ph	(+)-pin
3436	NH (C-NH) NH ₂	2	Ph	PhCH ₂	(+)-pin
3437	NH (C=NH) NH2	2	Ph	Ph(CH ₂) ₂	· (+)-pin
3438	NH (C=NH) NH ₂	2	PhCH ₂	Ph	(+)-pin

3439	NH (C=NH) NH ₂	2	PhCH ₂	PhCH ₂	(+)-pin
3440	NH (C=NH) NH ₂	2	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3441	NH (C=NH) NH2	2	Ph(CH ₂) ₂	Ph	(+)-pin
3442	NH (C=NH) NH2	2	Ph(CE ₂) ₂	PhCH ₂	(+)-pin
3443	NH (C-NH) NH ₂	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3444	NH (C-NH) NH ₂	2	Ph	Ph	OH, OH
3445	NH (C-NH) NH2	2	Ph	PhCH ₂	он, он
3446	NH (C=NH) NH ₂	2	Ph	Ph(CH ₂) ₂	OH, OH
3447	NH (C-NH) NH ₂	2	PhCH ₂	Ph	OH, OH
3448	nh (c-nh) nh ₂	2	PhCH ₂	PhCH ₂	он, он
3449	nh (c-nh) nh ₂	2	PhCH ₂	Ph(CH ₂) ₂	OH, OH
3450	NH (C=NH) NH2	2	Ph(CH ₂) ₂	Ph	OH, OH
3451	NH (C→NH) NH2	2	Ph(CH ₂) ₂	PhCH ₂	он, он
3452	NH (C-NH) NH2	`2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	OH, OH
		•	<u></u> .		, ••

BY. MS (M+H)+: Calc. 570, Found 570.

Table 17

Ex	x	R13	R14	R ¹⁵	Y ¹ Y ²	Phys Data
3457	CH2NH2	Ph	H .	H	(+)-pin	
3458	CH2NH2	Ph	methyl	H	(+)-pin	BK
3459	CH2NH2	Ph	methyl	H	(+)-pin	
3460	CH ₂ NH ₂	. Ph	methyl	methyl	(+)-pin	
3461	CH2NH2	Ph	ethyl	H	(+)-pin	
3462	CH2NH2	Ph	ethyl	methyl	(+)-pin	
3463	CH2NH2	Ph	ethyl	ethyl	(+)-pin	
3464	CH2NH2	Ph	isopropyl	H	(+)-pin	
3465	CH ₂ NH ₂	Ph	phenyl	H	(+)-pin	BL
3466	CH2NH2	Ph	CH ₂ CN	н	(+)-pin	
3467	CH2NH2	Ph	CH2NC	H	(+)-pin	•
3468	CH ₂ NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin	
3469	CH ₂ NH ₂	Ph	CH2SCH3	H	(+)-pin	
3470	CH ₂ NH ₂	Ph	CH280CH3	H	(+)-pin	
3471	CH ₂ NH ₂	Ph	CH2502CH3	H	(+)-pin	
3472	CH ₂ NH ₂	Ph	CH ₂ OH	H	(+)-pin	
3473	CH ₂ NH ₂	Ph	CH ₂ COOH	H	(+)-pin	
3474	CH2NH2	Ph	(CH ₂) ₂ COOH	H	(+)-pin	
3475	CH2NH2	Ph	(CH ₂) ₂ CN	H	(+)-pin	
3476	CH ₂ NH ₂	Ph	СН-СНСООМе	H	(+)-pin	
3477	CH2NH2	Ph .	CH-CHCOOH	H	(+)-pin	
3478	CH2NH2	Ph	CH-CHCN	H	(+)-pin	
3479	CH2NH2	Ph	CH2CN4H	H	(+)-pin	
3480	CH ₂ NH ₂	Ph	CH2NHEO2CF3	H	(+)-pin	
3481	CH2NH2	Ph	CH2CH2CN	H	(+)-pin	
3482	CH ₂ NH ₂	Ph	CH2CH2NC	H	(+)-pin	•
3483	CH ₂ NH ₂	Ph	CH2CH2NO2	H	(+)-pin	
3484	CH ₂ NH ₂	Ph	CH2CH28CH3	H	(+)-pin	
3485	CH2NH2	Ph	CH2CH2SOCH3	H	(+)-pin	
3486	CH ₂ NH ₂	Ph	CH2CH2SO2CH3	H	(+)-pin	
3487	CH2NH2	Ph	CH2CH2OH	H	(+)-pin	

3488	CH2NH2	Ph	NO ₂	Ħ	(+)-pin
3489	CH ₂ NH ₂	Ph	P	H	(+)-pin
3490	CH2NH2	Ph	OH	H	(+)-pin
3491	CH ₂ NH ₂	Ph	Ħ	H	OH, OH
3492	CH2NH2	Ph	methyl	H	OH, OH
3493	CH ₂ NH ₂	Ph	methyl	methyl	OH, OH
3494	CH2NH2	Ph	ethyl	H	он, он
3495	CH2NH2	Ph	ethyl	methyl	OH, OH
3496	CH2NH2	Ph	ethyl	ethyl	OH, OH
3497	CH2NH2	Ph	isoprópyl	H	OH, OH
3498	CH2NH2	Ph	phenyl	H	OH, OH
3499	CH2NH2	Ph	CH2CN	H	OH, OH
3500	CH2NH2	Ph	CH2NC	H	OH, OH
3501	CH2NH2	Ph	CH2NO2	H	он, он
3502	CH2NH2	Ph	CH28CH3	H	OH, OH
3503	CH2NH2	Ph	CH280CH3	H	OH, OH
3504	CH2NH2	Ph	CH2802CH3	ĸ	OH, OH
3505	CH2NH2	Ph	CH ₂ OH	H	он, он
3506	CH2NH2	Ph	CH ₂ COOH	H	он, он
3507	CH2NH2	Ph	(CH ₂) ₂ COOH	H	OH, OH
3508	CH2NH2	Ph	(CH ₂) ₂ CN	H	он, он
3509	CH2NH2	Ph	CH-CHCOOMe	H	он, он
3510	CH2NH2	Ph	CH-CHCOOH	H	OH, OH
3511	CH2NH2	Ph	CH2CN4H	H	он, он
3512	CH2NH2	Ph	CH2NHEO2CF3	H	OH, OH
3513	CH ₂ NH ₂	Ph	CH2CH2CN	H .	он, он
3514	CH2NH2	Ph	CH2CH2NC	H	он, он
3515	CH2NH2	, Ph	CH2CH2NO2	H	OH, OH
3516	CH ₂ NH ₂	Ph	CH2CH28CH3	H	OH, OH
3517	CH ₂ NH ₂	Ph	CH2CH2EOCH3	H	он, он
3518	CH2NH2	Ph	CH2CH2802CH3	H	OH, OH
3519	CH2NH2	Ph	СН ₂ СН ₂ ОН	H	OH, OH
3520	CH2NH2	Ph	CH2CH2COOH	H.	OH, OH
3521	CH ₂ NH ₂	Ph	CH2CH2CN4H	H	OH, OH
3522	CH ₂ NH ₂	Ph	CH2CH2NHSO2CF3	H	он, он
3523	CH2NH2	PhCH ₂	H	H	(+)-pin
3524	CH ₂ NH ₂	Pho	methy1	H	(+)-pin
3525	CH2NH2	PhS	methyl	methyl	(+)-pin .
3526	CH ₂ NH ₂	Phnh	ethyl	H	(+)-pin
3527	CH2NH2	PhCONH	ethyl	methyl	(+)-pin

3528	CH2NH2	PhNHCO	ethyl	ethyl	(+)-pin	
3529	CH2NH2	Ph	imopropyl	Ħ	(+)-pin	
3530	CH2NH2	PhCH ₂	phenyl	H	(+)-pin	
3531	CH2NH2	PhO	CH ₂ CN	H	(+)-pin	
3532	CH2NH2	Phs	CH2NC	H	(+)-pin	
3533	CH ₂ NH ₂	PhnH	CH2NO2	н	(+)-pin	
3534	CH2NH2	PhCONH	CH28CH3	H	(+)-pin	
3535	CH ₂ NH ₂	PhNHCO	CH2SOCH3	H	(+)-pin	
3536	CH2NH2	$Ph(CH_2)_2$	CH2802CH3	H	(+)-pin	
3537	MH (C=NH) NH2	Ph	H	H	(+)-pin	
3538	NH (C-NH) NH ₂	Ph	methyl	H	(+)-pin	BM
3539	NH (C-NH) NH2	Ph	methyl	H	(+)-pin	
3540	MH (C-NH) NH ₂	Ph	methyl	methyl	(+)-pin	
3541	NH (C-NH) NH2	Ph	- ethyl	H	(+)-pin	-
3542	NH (C-NH) NH ₂	Ph	ethyl	methyl	(+)-pin	
3543	NH (C=NH) NH ₂	Ph	ethyl	ethyl	(+)-pin	
3544	NH (C=NH) NH ₂	Ph	isopropyl	H	(+)-pin	
3545	NH (C=NH) NH2	Ph	phenyl	H	(+)-pin	
3546	NH (C-NH) NH ₂	Ph	CH2CN	H	(+)-pin	
3547	NH (C-NH) NH ₂	Ph	CH2NC	H	(+)-pin	
3548	NH (C=NH) NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin	
3549	NH (C=NH) NH ₂	Ph	CH28CH3	H	(+)-pin	
3550	NH (C-NH) NH ₂	Ph	CH280CH3	H	(+)-pin	
3551	NH (C=NH) NH ₂	Ph	CH2802CH3	H	(+)-pin	
3552	NH (C=NH) NH ₂	Ph	CH3OH	H	(+)-pin	
3553	NH (C=NH) NH ₂	Ph	CH2COOH	H	(+)-pin	
3554	NH (C=NH) NH ₂	Ph	(CH ₂) ₂ COOH	- H	(+)-pin	
3555	NH (C=NH) NH ₂	Ph	(CH ₂) ₂ CN	H	(+)-pin	
3556	NH (C=NH) NH ₂	Ph	CH=CHCOOMe	H	(+)-pin	
3557	NH (C-NH) NH ₂	Ph	CH-CHCOOH	H	(+)-pin	
3558	NH (C-NH) NH ₂	Ph	CH2CN4H	H	(+)-pin	
3559	NH (C=NH) NH2	Ph	CH2NH802CF3	H	(+)-pin	
3560	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ CN	H	(+)-pin	
3561	NH (C=NH) NH ₂	Ph	CH2CH2NC	H	(+)-pin	
3562	NH (C=NH) NH ₂	Ph	CH2CH2NO2	H	(+)-pin	•
3563	NH (C=NH) NH2	Ph	CH2CH2SCH3	H	(+)-pin	
3564	NH (C-NH) NH2	Ph	CH2CH2SOCH3	H	(+)-pin	
3565	NH (C=NH) NH ₂	Ph	CH2CH2SO2CH3	H	(+)-pin	
3566	NH (C=NH) NH ₂	Ph	CH2CH2OH	H .	(+)-pin	
3567	NH (C=NH) NH ₂	Ph	NO2	B	(+)-pin	

3568	NH (C=NH) NH ₂	Ph	F	H	(+)-pin
3569	NH (C-NH) NH ₂	Ph	OH	H	(+)-pin
3570	NH (C=NH) NH ₂	Ph	H	H	OH, OH
3571	NH (C-NH) NH ₂	Ph	methyl	H	OH, OH
3572	NH (C-NH) NH ₂	Ph	methyl	methyl	OH, OH
3573	NH (C-NH) NH ₂	Ph	ethyl	H	он, он
3574	NH (C=NH) NH2	Ph	ethyl	methyl	он, он
3575	NH (C=NH) NH2	Ph	ethyl	ethyl	OH, OH
3576	NH (C-NH) NH ₂	Ph	isopropyl	H	OH, OH
3577	NH (C=NH) NH ₂	Ph	phenyl	H	OH, OH
3578	MH (C=NH) NH ₂	Ph	CH2CN	H	OH, OH
3579	NH (C=NH) NH2	Ph.	CH2NC	H	OH, OH
3580	NH (C=NH) NH ₂	Ph	CH2NO2	H	он, он
3581	NH (C-NH) NH2	Ph ·	CH28CH3	H	OH, OH
3582	NH (C=NH) NH ₂	Ph	CH280CH3	H	OH, OH
3583	NH (C=NH) NH ₂	Ph	CH2802CH3	. H	OH, OH
3584	NH (C=NH) NH ₂	Ph	СН 2 ОН	H	OH, OH
3585	NH (C=NH) NH ₂	Ph	CH2COOH	н	OH, OH
3586	NH (C=NH) NH ₂	Ph	(CH ₂) ₂ COOH '	H	он, он
3587	NH (O-NH) NH2	Ph	(CH ₂) ₂ CN	H	он, он
3588	NH (C=NH) NH ₂	Ph	CH-CHCOOMe	H	он, он
3589	NH (C=NH) NH ₂	Ph	CH-CHCOOH	H	он, он
3590	NH (C=NH) NH ₂	Ph	CH2CN4H	H	OH, OH
3591	NH (C-NH) NH ₂	Ph	CH2NHSO2CF3	H	он, он
3592	NH (C -N H) NH ₂	Ph	CH2CH2CN	H	OH, OH
3593	NH (C=NH) NH ₂	Ph	CH2CH2NC	H	OH, OH
3594	NH (C=NH) NH ₂	Ph	CH2CH2NO2	H	он, он
3595	NH (C=NH) NH ₂	Ph	CH2CH2SCH3	H	OH, OH
3596	NE (C-NH) NH ₂	Ph	CH2CH2BOCH3	Ħ	OH, OH
3597	NH (C=NH) NH ₂	Ph .	CH2CH2802CH3	H	он, он
3598	NH (C-NH) NH ₂	Ph	CH2CH2OH	H	OH, OH
3599	NH (C=NH) NH ₂	Ph	CH2CH2COOH	Ħ	он, он
3600	NH (C=NH) NH ₂	Ph	CH2CH2CN4H	H	OH, OH
3601	NH (C-NH) NH ₂	Ph	CH2CH2NHSO2CF3	H	он, он
3602	NH (C=NH) NH ₂	PhCH ₂	н .	H	(+)-pin
3603	NH (C-NH) NH2	PhO	methyl	H	(+)-pin
3604	NH (C-NH) NH ₂	Phs	methyl	methyl	(+)-pin
3605	NH (C=NH) NH ₂	Phnh	ethyl	R .	(+)-pin.
3606	NH (C-NH) NH ₂	PhCONH	ethyl	methyl	(+)-pin
3607	NH (C-NH) NH ₂	Phnhco	ethyl	ethyl	(+)-pin

3608	NE (C-NH) NH2	Ph ·	isopropyl	R	(+)-pin
3609	NH (C-NH) NH2	PhCH ₂	phenyl	H	(+)-pin
3610	NH (C=NH) NH ₂	PhO	CH2CN	H	(+)-pin
3611	NH (C-NH) NH2	Phs	CH2NC	H	(+)-pin
3612	NH (C-NH) NH2	Phnh	CH2NO2	H	(+)-pin
3613	NH (C-NH) NH ₂	PhCONH	CH28CH3	Ħ	(+)-pin
3614	NH (C-NH) NH ₂	PhnHCO	CH280CH3	H	(+)-pin
3615	NH (C=NH) NH2	Ph(CH ₂) ₂	CH2802CH3	H	(+)-pin
3616	Olie	Ph	CH ³	H	(+)-pin
3617	NH (C=NH) H	Ph	CH3	H	(+)-pin
3618	Offe	Ph	CH ₃	H	OH, OH
3619	NH (C-NH) H	Ph	CH ₃	H	OH, OH

BK. MS (M-H)*: Calc. 477, Found 477.

BL. MS (M=H)+: Calc. 539, Found 539.

BM. MS (M=H)*: Calc. 505, Found 505.

Table 18

Rx	x	R ¹³	R14	R15	Y ¹ Y ²	Phys. Data
3624	CH ₂ NH ₂	Ph	H .	H	(+)-pin	
3625	CH2NH2	Ph	methyl	H	(+)-pin	
3626	CH ₂ NH ₂	Ph	ethyl	K	(+)-pin	
3627	CH ₂ NH ₂	Ph ≺∜	ethyl	methyl	(+)-pin	
3628	CH2NH2	Ph	ethýl	ethyl	(+)-pin	•
3629	CH2NH2	Ph	isopropyl	H	(+)-pin	
3630	CH2NH2	Ph	phenyl	H	(+)-pin	
3631	CH ₂ NH ₂	Ph	CH2CN	H	(+)-pin	
3632	CH2NH2	Ph	CH2NC	H	(+)-pin	
3633	CH2NH2	Ph	CH2NO2	H	(+)-pin	
3634	CH2NH2	Ph	CH2SCH3	H	· (+)-pin	
3635	CH ₂ NH ₂	Ph	CH280CH3	H	(+)-pin	
3636	CH ₂ NH ₂	Ph	CH2802CH3	H	(+)-pin	
3637	CH ₂ NH ₂	Ph	CH ₂ OH	н	(+)-pin	
3638	CH ₂ NH ₂	Ph	CH2COOH	· #	(+)-pin	
3639	CH ₂ NH ₂	Ph	CH2CN4H	H	(+)-pin	
3640	CH2NH2	Ph	CH2NHSO2CF3	Ħ	(+)-pin	
3541	CH2NH2	Ph	CH2CH2CN	H	(+)-pin	
3642	CH2NH2	Ph	CH2CH2NC	H	(+)-pin	
3643	CH ₂ NH ₂	Ph	CH2CH2NO2	H	(+)-pin.	
3644	CH ₂ NH ₂	Ph ·	CH2CH28CH3	H	(+)-pin	•
3645	CH ₂ NH ₂	Ph	CH2CH2SOCH3	Н	(+)-pin	
3646	CH ₂ NH ₂	Ph ·	CH2CH2802CH3	H	(+)-pin	
3647	CH2NH2	Ph	CH2CH2OH	H	(+)-pin	
3648	CH ₂ NH ₂	Ph	NO ₂	H	(+)-pin	
3649	CH2NH2	Ph	P	H	(+)-pin	
3650	CH2NH2	Ph	OH .	H	(+)-pin	
3651	CH2NH2	Ph	H	H	OH, OH	
3652	CH2NH2	Ph	methyl	H	он, он	
3653	CH2NH2	Ph	methyl	methyl	он, он	•
3654	CH2NH2	Ph	ethyl	H	OH, OH	
				-	,	

WO 96/20689

3655	CH2NH2	Ph	ethyl	methyl	OF OF
3656	CH2NH2	Ph	ethyl	ethyl	OH, OH
3657	CH2NH2	Ph	isopropyl	Н	OH, OH
3658	CH2NH2	Ph	phenyl	H.	OH, OH
3659	CH2NH2	Ph	CH2CH	H	OH, OH
3660	CH2NH2	Ph	CH2NC	H	OH, OH
3661	CH2NH2	Ph	CH2NO2	H '.	OH, OH
3662	CH2NH2	Ph	CH28CH3	н	OH, OH
3663	CH2NH2	Ph	CH28OCH3	H	OH, OH
3664	CH2NH2	Ph	CH2802CH3	H	он, он
3665	CH2NH2	Ph	CH20H	H ·	OH, OH
3666	CH2NH2	Ph	CH2COOH	H	OH, OH
3667	CH2NH2	. Ph	CH2CN4H	H	OH, OH
3668	CH2NH2	Ph	CH2NHBO2CF3	H	OH, OH
3669	CH2NH2	Ph	CH2CH2CN	H	OH, OH
3670	CH ₂ NH ₂	Ph	CH2CH2NC	H	OH, OH
3671	CH2NH2	Ph	CH2CH2NO2	H	OH, OH
3672	CH2NH2	Ph	CH2CH28CH3	H	OH, OH
3673	CH2NH2	Ph	CH2CH2SOCH3	H	OH, OH
3674	CH2NH2	Ph	CH2CH2SO2CH3	H	OH, OH
3675	CH2NH2	Ph .	CH2CH2OH	H	OH, OH
3676	CH ₂ NH ₂	Ph	CH2CH2COOH	н	ОН, ОН
3677	CH2NH2	Ph	CH2CH2CN4H	H	OH, OH
3678	CH2NH2	Ph	CH2CH2NHSO2CF3	H	OH, OH
3679	CH ₂ NH ₂	PhCH ₂	H	H .	(+)-pin
3680	CH ₂ NH ₂	PhO	methyl	H	(+)-pin
3681	CH ₂ NH ₂	Phs	methyl	methyl	(+)-pin
3682	CH ₂ NH ₂	PhNH	ethyl	H	(+)-pin
3683	CH ₂ NH ₂	PhCONH	ethyl	methyl	(+)-pin
3684	CH ₂ NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3685	CH2NH2	Ph	isopropyl	H	(+)-pin
3686	CH2NH2	PhCH ₂	phenyl	H	(+)-pin
3687	CH2NH2	Pho	CH ₂ CN	H .	(+)-pin
3688	CH ₂ NH ₂	Ph8	CH ₂ NC	H	(+)-pin
3689	CH2NH2	PhNH	CH2NO2	H	(+)-pin
3690	CH ₂ NH ₂	PhCONH	CH28CH3	H	(+)-pin
3691	CH2NH2	PhNHCO	CH2SOCH3	H	(+)-pin
3692	CH2NH2	Ph(CH ₂) ₂	CH2802CH3	H	(+)-pin
3693	NH (C=NH) NH2	Ph	H	н	(+)-pin
3694	NH (C-NH) NH2	Ph	methyl	methyl	(+)-pin

3695	NH (C-NH) NH2	Ph	ethyl	Ħ	(+)-pin
3696	NH (C-NH) NH2	Рħ	ethyl	methyl	(+)-pin
3697	NH (C=NH) NH ₂	Ph	ethyl	ethyl	(+)-pin
3698	NH (C-NH) NH2	Ph	isopropyl	H	(+)-pin
3699	MH (C=NH) NH ₂	Ph	phenyl	H	(+)-pin
3700	NH (C=NH) NH ₂	Ph	CH ₂ CN	H	(+)-pin
3701	NH (C-NH) NH2	Ph	CH2NC	H .	(+)-pin
3702	NH (C=NH) NH ₂	Ph	CH2NO2	H	(+)-pin
3703	NH (C-NH) NH ₂	Ph	CH28CH3	H	(+) -pin
3704	NH (C-NH) NH ₂	Ph	CH2BOCH3	H	(+)-pin
3705	NH (C=NH) NH ₂	Ph	CH2802CH3	H	(+)-pin
3706	NH (C-NH) NH ₂	Ph	CH ₂ OH	H	(+)-pin
3707	NH (C-NH) NH ₂	Ph	CH2COOH	H	(+)-pin
3708	NH (C-NH) NH ₂	Ph	CH2 CN4H	Ħ	(+)-pin
3709	MH (C=NH) NH ₂	Ph	CH2NHSO2CF3	H	(+)-pin
3710	NH (C=NH) NH ₂	Ph	CH2CH2CN	H	(+)-pin
3711	NH (C=NH) NH ₂	Ph	CH2CH2NC	H	(+)-pin
3712	NH (C=NH) NH ₂	Ph	CH2CH2NO2	H	(+)-pin
3713	NH (C=NH) NH ₂	Ph .	CH2CH28CH3	Ħ	(+)-pin
3714	NH (C-NH) NH2	Ph	CH2CH2BOCH3	Ħ	(+)-pin
3715	NH (C=NH) NH ₂	Ph	CH2CH2802CH3	H	(+)-pin
3716	NH (C-NH) NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin
3717	NH (C-NH) NH ₂	Ph	NO ₂	H	(+)-pin
3718	NH (C=NH) NH ₂	Ph	F	H	(+)-pin
3719	NH (C-NH) NH ₂	Ph	OH	H	(+)-pin
3720	NH (C=NH) NH ₂	Ph	H	H	OH, OH
3721	NH (C=NH) NH ₂	Ph	methyl	K	он, он
3722	NH (C=NH) NH ₂	Ph	methyl	methyl	OH, OH
3723	NH (C-NH) NH ₂	Ph	ethyl	H	он, он
3724	NH (C=NH) NH ₂	Ph	ethyl	methyl	он, он
3725	NH (C-NH) NH ₂	Ph	ethyl	ethyl	OH, OH
3726	NH (C=NH) NH ₂	Ph	isopropy1	H	он, он
3727	NH (C=NH) NH ₂	Ph	phenyl	H	OH, OH
3728	NH (C=NH) NH ₂	Ph	CH ₂ CN	H	он, он
3729	NH (C=NH) NH ₂	Ph	CH ₂ NC	H	он, он
3730	NH (C-NH) NH ₂	Ph	CH2NO2	H	он, он
3731	NH (C=NH) NH ₂	Ph	CH ₂ SCH ₃	H	OH, OH
3732	NH (C-NH) NH ₂	Ph	CH2SOCH3	Ħ.	OH, OH
3733	NH (C=NH) NH ₂	Ph	CH2802CH3	H .	OH, OH
3734	NH (C-NH) NH ₂	Ph	CH ₂ OH	H	OH, OH

3735	Ne (C-NH) NH ₂	Ph	CH ₂ COOH	H,	OH, OH
3736	NH (C-NH) NH ₂	Ph	CH2CK4H	H	OH, OH
3737	NH (C-NH) NH2	Ph	CH2NHSO2CF3	H	OH, OH
3738	MH (C=NH) MH3	Ph "	CH2CH2CN	H	OH, OH
3739	nh (C-NH) nh2	Ph	CH2CH2NC	H	он, он
3740	NH (C=NH) NH ₂	Ph	CH2CH2NO2	H	OH, OH
`3741	NH (C-NH) NH2	Ph	CH2CH28CH3	H	OH, OH
3742	NH (C=NH) NH2	Ph	CH2CH280CH3	H	OH, OH
3743	NH (C=NH) NH ₂	Ph	CH2CH2602CH3	·H	OH, OH
3744	NH (C=NH) NH ₂	Ph	CH2CH2OH	H	OH, OH
3745	NH (C=NH) NH ₂	Ph	CH2CH2COOH	Ħ	OH, OH
3746	NH (C-NH) NH2.	Ph	CH2CH2CN4H	н	OH, OH
3747	NH (C-NH) NH2	Ph	CH2CH2NHBO2CF3	H	OH, OH
3748	NH (C-NH) NH ₂	PhCH ₂	· H	H	(+)-pin
3749	NH (C=NH) NH ₂	PhO	methyl	H	(+)-pin
3750	NH (C-NH) NH ₂	Phs	methyl	methyl	(+)-pin
3751	NH (C-NH) NH ₂	PhNH	ethyl	H	(+)-pin
3752	NH (C=NH) NH ₂	PhCONH	ethyl	methyl	(+)-pin
3753	NH (C=NH) NH ₂	Phneco	ethyl	ethyl	(+)-pin
3754	NH (C=NH) NH ₂	Ph	isopropyl	H	(+)-pin
3755	NH (C-NH) NH ₂	PhCH ₂	phenyl	H	(+)-pin
3756	NH (C-NH) NH ₂	Pho	CH ₂ CN	H	(+)-pin
3757	NH (C=NH) NH ₂	Phs	CH ₂ NC	H	(+)-pin
3758	NH (C=NH) NH ₂	PhNH	CH2NO2	H	(+)-pin
3759	NH (C-NH) NH2	Phoonie	CH28CH3	H	(+)-pin
3760	NH (C=NH) NH ₂	PhNHCO	CH ₂ SOCH ₃	H	(+)-pin
3761	NH (C-NH) NH ₂	$Ph(CH_2)_2$	CH2SO2CH3	H	(+)-pin
3762	OMe	Ph	CH3	H	(+)-pin
3763	NH (C-NH) H	Ph	CH3	H	(+)-pin
3764	OMe	Ph	CH ₃	H	OH, OH
3765	nh (c=nh) h	Ph	CH3	H	он, он

Table 19

Ex	x	R13	Ř14	R ¹⁵	Y ¹ Y ²	Phys. Data
3770	CH ₂ NH ₂	Ph	H.	H .	(+)-pin	
3771	CH ₂ NH ₂	Ph	methyl	H	(+)-pin	
3772 .	CH ₂ NH ₂	Ph	H	H	он, он	• • •
3773	CH2NH2	-Ph	methyl	H	OH, OH	
3774	NH (C-NH) NH ₂	.Ph	H	H	(+)-pin	
3775	NH (C-NH) NH ₂	Ph	methyl	H	(+)-pin	•
3776	NH (C-NH) NH ₂	Ph	R	H	OH, OH	
3777	NH (C-NH) NH2	Ph	methy1	H .	он, он	
3778	OMe _	Ph	CH ₃	H	(+)-pin	,
3779	NH (C=NH) H	Ph	CH3	H	(+)-pin	
3780	OMe .	Ph	CH ₃	H	он, он	
3781	NH (C=NH) H	Ph	CH3.	K	OH, OH	

Table 20

Ex	x	R13	R14	.R15	YlY2	Phy
3786	CH2NH2	Ph	H	H	(+)-pin	
3787	CH2NH2	Ph	methyl	methyl	(+)-pin	
3788	CH2NH2	Ph	ethyl	H	(+)-pin	
3789	CH2NH2	Ph	ethyl	methyl	(+)-pin	
3790	CH2NH2	Ph	ethyl	ethyl	(+)-pin	
3791	CH2NH2	Ph	isopropyl	H .	(+)-pin	
3792	CH2NH2	Ph	phenyl	H	(+)-pin	
3793	CH2NH2	Ph	CH ₂ CN	H	(+)-pin	
3794	CH2NH2	Ph	CH2NC	H	(+)-pin	
3795	CH2NH2	Ph	CH ₂ NO ₂	H	(+)-pin	
3796	CH2NH2	Ph	CH2SCH3	H	(+)-pin	
3797	CH ₂ NH ₂	Ph	CH250CH3	H	(+)-pin	
3798	CH ₂ NH ₂	Ph	CH2602CH3	H	(+)-pin	
3799	CH ₂ NH ₂	Ph	CH ₂ OH	H	(+)-pin	
3800	CH ₂ NH ₂	Ph	CH2COOH	H	(+)-pin	
3801	CH ₂ NH ₂	Ph	CH2CN4H	H	(+)-pin	
3802	CH ₂ NH ₂	Ph	CH2NHSO2CF3	H	(+)-pin	
3803	CH ₂ NH ₂	Ph	CH2CH2CN	H	(+)-pin	
3804	CH ₂ NH ₂	Ph	CH2CH2NC	H	(+)-pin	
3805	CH2NH2	Ph	CH2CH2NO2	H	(+)-pin	
3806	CH ₂ NH ₂	Ph ·	CH2CH28CH3	H	(+)-pin	
3807	CH ₂ NH ₂	Ph	CH2CH2SOCH3	н	(+)-pin	
3808	CH2NH2	Ph	CH2CH2602CH3	H	(+)-pin	
3809	CH ₂ NH ₂	Ph	CH2CH2OH	H	(+)-pin	
3810	CH2NH2	Ph	NO ₂	H	(+)-pin	-
3811	CH2NH2	Ph	F	H	(+)-pin	
3812	CH ₂ NH ₂	Ph	OH	H	(+)-pin	
3813	CH2NH2	Ph	н	H	он, он	
3814	CH2NH2	Ph	methyl	H	OH, OH	•
3815	CH2NH2	Ph	methyl	methyl	OH, OH	
3816	CH ₂ NH ₂	Ph	ethyl	H	OH, OH	
			_			

3817	CH2NH2	Ph	ethyl	methyl	OH, OH
3818	CH2NH2	Ph	ethyl	ethyl	OH, OH
3819	CH ₂ NH ₂	Ph	isopropyl	H	OH, OH
3820	CH2NH2	Ph	phenyl	H	OH, OH
3821	CH2NH2	Ph	CH ₂ CN	H	OH, OH
3822	CH ₂ NH ₂	Ph	CH2NC	H	OH, OH
3823	CH2NH2	Ph	CH ₂ NO ₂	H	он, он
3824	CH2NH2	Ph	CH28CH3	H	OH, OH
3825	CH2NH2	Ph	CH280CH3	н .	OH, OH
3826	CH ₂ NH ₂	Ph	CH2802CH3	H	OH, OH
3827	CH2NH2	Ph	CH ₂ OH	H	OH, OH
3828	CH ₂ NH ₂	Ph	CH ₂ COOH	H	OH, OH
3829	CH ₂ NH ₂	Ph	CH2CN4H	H	он, он
3830	CH ₂ NH ₂	Ph	CH2NH8O2CF3	H	OH, OH
3831	CH2NH2	Ph	CH ₂ CH ₂ CN	H	OH, OH
3832	CH ₂ NH ₂	Ph	CH2CH2NC	Ħ .	OH, OH
3833	CH2NH2	Ph	CH2CH2NO2	H	OH, OH
3834	CH ₂ NH ₂	Ph	CH2CH28CH3	H	OH, OH
3835	CH2NH2	Ph	CH2CH2BOCH3	H	OH, OH
3836	CH2NH2	Ph	CH2CH2EO2CH3	H	OH, OH
3837	CH2NH2	Ph	CH2CH2OH	Ħ	OH, OH
3838	CH2NH2	Ph	CH2CH2COOH	H.	он, он
3839	CH2NH2	Ph	CH2CH2CN4H	H	OH, OH
3840	CH2NH2	Ph	CH2CH2NHSO2CF3	H	он, он
3841	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin
3842	CH ₂ NH ₂	PhO	methyl	H	(+)-pin
3843	CH2NH2	Phs	methy1	methyl	(+)-pin
3844	CH ₂ NH ₂	PhNH	ethyl	H	(+)-pin
3845	CH2NH2	Phoonh	ethyl	methyl	(+)-pin
3846	CH ₂ NH ₂	PhnHCO	ethyl	ethyl	(+)-pin
3847	CH2NH2	Ph	isopropyl	Ħ	(+)-pin
3848	CH2NH2	PhCH ₂	phenyl	H	(+)-pin
3849	CH2NH2	PhO	CH ₂ CN	H	(+)-pin
3850	CH2NH2	PhS	CH ₂ NC	H	(+)-pin
3851	CH2NH2	PhNH	CH ₂ NO ₂	H	(+)-pin
3852	CH ₂ NH ₂	PhOONH	CH2SCH3	H .	(+)-pin
3853	CH ₂ NH ₂	Phneco .	CH2SOCH3	H	(+)-pin
3854	CH2NH2	Ph(CH ₂) ₂	CH2802CH3	H ·	(+)- <u>pin</u>
3855	NH (С−NH) NH ₂	Ph	H	H .	(+)-pin
3856	NH (C=NH) NH2	Ph	methyl	methyl	(+)-pin

3857	NH (C-NH) NH ₂	Ph	ethyl	H	(+)-pir
3858	MH (C-NH) NH2	Ph	ethyl	methyl	(+)-pir
3859	NH (C-NH) NH2	Ph	ethyl	ethyl	(+)-pir
3860	NH (C-NH) NH ₂	Ph	isopropyl	H	(+)-pir
3861	NH (C-NH) NH2	Ph	phenyl	H	(+)-pir
3862	nh (c-nh) nh ₂	Ph	CH2CN	H	(+)-pin
3863	NH (C=NH) NH ₂	Ph	CH2NC	Ħ	(+)-pin
3864	nh (c-nh) nh ₂	Ph	CH2NO2	Ħ	(+)-pir
3865	NH (C-NH) NH2	Ph	CH28CH3	. н	(+)-pin
3866	nh (c=nh) nh ₂	Ph	CH2SOCH3	H	(+)-pin
3867	NH (C=NH) NH ₂	Ph	CH2802CH3	H	(+)-pin
3868	NH (C-NH) NH2	Ph	CH2OH	H	(+)-pin
3869	NH (C-NH) NH2	Ph	CH2COOH	H	(+)-pin
3870	NH (C-NH) NH2	Ph	CH2CN4H	H	(+)-pin
3871	NH (C-NH) NH2	Ph	CH2NHSO2CF3	Ħ	(+)-pin
3672	NH (C-NH) NH ₂	Ph	CH2CH2CN	H	(+)-pin
3873	NH (C-NH) NH ₂	Ph	CH2CH2NC	H	(+)-pin
3874	NH (C-NH) NH2	Ph	CH2CH2NO2	H	(+)-pin
3875	NH (C-NH) NH ₂	Ph	CH2CH28CH3	H	(+)-pin
3876	NH (C-NH) NH ₂	Ph	CH2CH2SOCH3	H	(+)-pin
3877	NH (C=NH) NH ₂	Ph	CH2CH2802CH3	H	(+)-pin
3878	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ OH	H	(+)-pin
3879	NH (C=NH) NH ₂	Ph	NO ₂	H	(+)-pin
3880	NH (C=NH) NH2	Ph	P	H	(+)-pin
3881	NH (C-NH) NH ₂	Ph	OH	H	(+)-pin
3882	NH (C-NH) NH ₂	Ph	H	H	OH, OH
3883	NH (C=NH) NH ₂	Ph	methyl	H	OH, OH
3884	NH (C=NH) NH ₂	Ph	methyl	methyl	OH, OH
3885	NH (C=NH) NH ₂	Ph	ethyl	Ħ	OH, OH
3886	NH (C=NH) NH ₂	Ph	ethyl	methyl	OH, OH
3887	NH (C=NH) NH2	Ph	ethyl	ethyl	OH, OH
3898	NH (C=NH) NH ₂	Ph .	isopropyl	H ·	OH, OH
3889	NH (C-NH) NH ₂	Ph	phenyl	H	OH, OH
3890	NH (C=NH) NH ₂	Ph	CH2CN	H	OH, OH
3891	NH (C=NH) NH ₂	Ph	CH2NC	H	OH, OH
3892	NH (C=NH) NH ₂	Ph	CH2NO2	H	OH, OH
3893	NH (C-NH) NH ₂	Ph	CH2SCH3	н	OH, OH
3894	NH (C=NH) NH ₂	Ph	CH2SOCH3	H	OH, OH
3895	NH (C-NH) NH ₂	Ph	CH2802CH3	H	OH, OH
3896	NH (C=NH) NH ₂	Ph	CH ₂ OH	H .	OH, OH

3897	NH (C-NH) NH ₂	Ph	CH2COOH	H	OH, OH
3898	NH (C-NH) NH ₂	Ph	CH2CN4H	H	OH, OH
3899	NH (C=NH) NH ₂	Ph	CH2NHSO2CF3	Ħ	OH, OH
3900	NH (C-NH) NH ₂	Ph	CH2CH2CN	H	он, он
3901	NH (C-NH) NH2	Ph	CH2CH2NC	Ħ	OH, OH
3902	NH (C-NH) NH ₂	Ph	CH2CH2NO2	H	OH, OH
3903	NH (C-NH) NH2	Ph	CH2CH28CH3	Ħ	OH, OH
3904	NH (C=NH) NH2	Ph	CH2CH2BOCH3	H	OH, OH
3905	NH (C-NH) NH ₂	Ph	CH2CH2802CH3	H	OH, OH
3906	NH (C-NH) NH ₂	Ph	CH2CH2OH	H	OH, OH
3907	NH (C=NH) NH ₂	Ph	CH2CH2COOH	Ħ	OH, OH
3908	NH (C-NH) NH ₂	Ph	CH2CH2CN4H	H	OH, OH
3909	NH (C=NH) NH ₂	Ph	CH2CH2NH8O2CF3	H	он, он
3910	NH (C=NH) NH2	PhCH ₂	H.	H	(+)-pin
3911	NH (C-NH) NH ₂	PhO	methyl	H.	(+) -pin
3912	NH (C-NH) NH ₂	Phs	methyl	methyl	(+)-pin
3913	nh (c-nh) nh ₂	PhNH	ethyl	H	(+)-pin
3914	NH (C=NH) NH ₂	Phoonie	ethyl	methyl	(+)-pin
3915	NH (C=NH) NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3916	nh (c=nh) nh ₂	Ph	isopropyl	H	(+) -pin
3917	ne (c-nh) nh ₂	PhCH ₂	phenyl	H	(+)-pin
3918	NH (C=NH) NH ₂	Pho	CH2CN	H	(+) -pin
3919	NH (C-NH) NH2	Phs	CH2NC	H	(+)-pin
3920	NH (C-NH) NH ₂	PhNH .	CH2NO2	H	(+)-pin
3921	nh (c=nh) nh ₂	PhCONH	CH28CH3	Ħ	(+)-pin
3922	NH (C=NH) NH ₂	Phnhco	CH280CH3	H	(+) -pin
3923	NH (C=NH) NH2	Ph(CH2)2	CH2802CH3	H	(+)-pin
3924	OMe	Ph	CH ₃	H	(+)-pin
3925	NH (C=NH) H	Ph	CH3	H	(+)-pin
3926	ONe	Ph	CH ₃	H	OH, OH
3927	NH (C=NH) H	Ph	CH ₃	H	он, он

Table 21

Ex	x	R13	R14	R ¹⁵	Y1X2	Phys. Data
3932	CH2NH2	Ph	H	H	(+)-pin	•
3933	CH2NH2	Ph	methyl	н	(+)-pin	
3934	CH2NH2	Ph	H	H	OH, OH	
3935	CH2NH2	Ph	methyl	H	OH, OH	
3936	NH (C-NH) NH ₂	Ph	H	H	(+)-pin	•
3937	NH (C=NH) NH ₂	Ph	methyl	H	(+)-pin	
3938	NH (C-NH) NH ₂	Ph	н	H	OH, OH	
3939	NH (C-NH) NH ₂	Ph	methyl	H	OH, OH	
3940	OMe	Ph	CH ₃	H	(+)-pin	
3941	NH (C-NH) H	Ph	CR3	H	(+)-pin	
3942	OMe	Ph	CH ₃	H	OH, OH	
3943	NH (C -N H) H	Ph	CH3	H	OH, OH	

Table 22

Ex	x	R13	R14	Yly2	Phys. Data
3948	CH ₂ NH ₂	Ph	Ħ	(+)-pin	
3949	CH2NH2	Ph	methyl	(+)-pin	
3950	CH2NH2	Ph	. н	OH, OH	2.3
3951	CH2NH2	Ph	methyl	OH, OH	•
3952	NH (C=NH) NH ₂	Ph	Ħ	(+)-pin	
3953	NH (C=NH) NH ₂	Ph	methyl	(+)-pin	•
3954	ин (с-ин) ин2	Ph	H	OH, OH	
3955	NH (C-NH) NH2	Ph	methyl	OH, OH	
3956	OMe	Ph	CH ₃	(+)-pin	
3957	NH (C-NH) H	Ph	CH3	(+)- pin	
3958	CMe	Ph	CH3	OH, OH	
3959	NH (C-NH) H	Ph	CH ₃	OH, OH	

Table 23

Ex	x	R13	. R14	Y1Y2	Phys. Data
3964	CH2NH2	Ph	. н	(+)-pin	THE STEEL
3965	CH ₂ NH ₂	Ph	methyl	(+)-pin	
3966	CH ₂ NH ₂	Ph	H	OH, OH	
3967	CH2NH2	Ph	methyl	OH, OH	•
3968	NH (C-NH) NH ₂	Ph	Ħ	(+)-pin	
3969	NH (C-NH) NH2	Ph	methyl	(+)-pin	
3970	NH (C=NH) NH ₂	Ph	н	OH, OH	•
3971	NH (C-NH) NH2	Ph	methyl	OH, OH	
3972	Obia	Ph	CH3	(+)-pin	
3973	NH (C-NH) H	Ph	CH ₃	(+)-pin	
3974	Olfe	Ph	CH ₃	OH, OH	
3975	NH (C=NH) H	Ph	CH3	OH, OH	

WO 96/20689

Table 24

Ex	x	R ¹³	R14	Y ¹ Y ²	Phys. Data
3980	CH2NH2	Ph	H .	(+)-pin	
3981	CH ₂ NH ₂	Ph	methyl	(+)-pin	
3982	CH ₂ NH ₂	Ph	Ħ	OH, OH	
3983	CH2NH2	Ph	methyl	OH, OH	
3984	NH (C=NH) NH2	Ph	H	(+)-pin	
3985	NH (C=NH) NH ₂	Ph	methyl	(+)-pin	
3986	NH (C=NH) NH ₂	Ph	H	OH, OH	
3987	NH (C=NH) NH ₂	Ph	methyl	он, он	
3988	OMe	Ph	CH ₃	(+)-pin	
3989	NH (C=NH) H	Ph	CH3	(+)-pin	
3990	CMe .	Ph.	CH ₃	OH, OH	
3991	NH (C=NH) H	Ph	CH3	OH, OH	

Table 25

	and the second s					
Ex	x	R ¹³	R14 ·	R ¹⁵	Yly2	Phys. Data
3996	CH ₂ NH ₂	Ph	H	Ħ	(+)-pin	
3997	CH2NH2	Ph	methyl	H	(+)-pin	,
3998	CH2NH2	Ph	H	H	OH, OH	•
3999	CH2NH2	Ph	methyl	H	OR, OH	
4000	NH (C-NH) NH2	Ph	H	H	(+)-pin	
4001	NH (C=NH) NH2	Ph	methyl	H	(+)-pin	
4002	NH (C=NH) NH2	Ph	H	H	OH, OH	
4003	NH (C=NH) NH2	Ph	methyl	H	OH, OH	•
4004	Olie	Ph	CH ₃	H	(+)-pin	
4005	NH (C=NH) H	Ph	CH3	H	(+)-pin	
4006	Olie	Ph	CH ₃	H	он, он	
4007	nh (c=nh) h	Ph	CH3	H	OH, OH	

Table 26

Ex	x	R ¹³	R14	R15	YlY2	Phys. Data
4012	CH2NH2	Ph	H	н	(+) -pin	
4013	CH2NH2	Ph	methyl	H	(+)-pin	
4014	CH2NH2	Ph	H	H	OH, OH	
4015	CH2NH2	Ph	methyl	H	он, он	•
4016	CH2NH2	Ph	H	Ph	(+)-pin	
4017	CH2NH2	Ph	H	Ph	он, он	
4018	NH (C-NH) NH ₂	Ph	H	H	(+)-pin	
4019	NH (C-NH) NH2	Ph	methyl	H	(+)-pin	
4020	NH (C-NH) NH2	Ph	H	H	он, он	
4021	NH (C=NH) NH2	Ph	methyl	н	он, он	
4022	NH (C=NH) NH ₂	Ph	H	Ph	(+) -pin	
4023	NH (C-NH) NH ₂	Ph	H	Ph	он, он	
4024	CMe	Ph	CH ₃	H	(+)-pin	
4025	NH (C=NH) H	Ph	CH ₃	H	(+)-pin	
4026	OMe	Ph	CH3	H .	он, он	
4027	NH (C-NH) H	Ph	CH ₃	H.	он, он	

Table 27

Ex	x	R13	R14	R15	R16	Yly2	Phys. Data
4032	CH2NH2	Ph	H	H	H	(+)-pin	
4033	CH2NH2	Ph	methyl	H	H	(+)-pin	-
4034	CH2NH2	Ph	H	H	H	OH, OH	
4035	CH2NH2	Ph	methyl	H .	H .	OH, OH	
4036	NH (C-NH) NH ₂	Ph	H	H	H	(+)-pin	
4037	NH (C-NH) NH ₂	Ph	methyl	H	H	(+)-pin	
4038	NH (C=NH) NH ₂	Ph	H	H	H	OH, OH	
4039	NH (C-NH) NH ₂	Ph	methyl	H	H	OH, OH	
4040	NH (C-NH) NH ₂	Ph	H	CH ₃	CH3	(+)-pin	
4041	NH (C-NH) NH ₂	Ph	H	CH3	CH ₃	он, он	
4042	Olie	Ph	CH3	H	H	(+)-pin	
4043	NH (C-NH) H	Ph	CH3	H	H	(+)-pin	
4044	OMe	Ph	CH3	H	н	OH, OH	•
4045	NH (C=NH) H	Ph	CH3	H	H .	OH, OH	

Table 28

Ex	x	R ¹³	R ¹⁴	R ¹⁵	R16	Y ¹ Y ²	Phys. Data
4050	CH ₂ MH ₂	Ph	CH2CO2H	H	H	(+)-pin	
4051	CH ₂ NH ₂	Ph	methyl	H	Ħ	(+) -pin	•
4052	CH ₂ NH ₂	Ph	CH2CO2H	H	Ħ	он, он	
4053	CH2NH2	Ph	methyl	H	H	OH, OH	
4054	NH (C=NH) NH ₂	Ph	CH2CN	H	H	(+)-pin	
4055	NH (C-NH) NH ₂	Ph	methyl	H	H	(+)-pin	
4056	NH (C=NH) NH ₂	Ph	CH ₂ CN	H	H	OH, OH	
4057	NH (C-NH) NH ₂	Ph	methyl	Ř	H	OH, OH	
4058	NH (C-NH) NH ₂	Ph	CH ₃	CH3	H	(+)-pin	
4059	NH (C=NH) NH ₂	Ph	CH ₃	CH3	H	OH, OH	
4060	ONe	Ph	CH ₃	H .	Ħ	(+)-pin	
4061	NH (C=NH) H	Ph	CH ₃	H:	Ħ	(+)-pin	
4062	Otte	Ph	CH ₃	н .	.H	OH, OH	•
4063	NH (C=NH) H	Ph	CH ₃	R	H	OH, OH	
4064	CH2NH2	Ph	H	H	H	(+)-pin	•
4065	CH2NH2	Ph	H	H	H	OH, OH	

Table 29

Ex	x	R13	R14 .	R ¹⁵	R16	Y1Y2	Phys.	Data	
4070	CH2NH2	Ph	R	H	H	(+)-pin	•		
4071	CH ₂ NH ₂	Ph	methyl	H	H.	(+)-pin			
4072	CH ₂ NH ₂	Ph	H	H	H	OH, OH			
4073	CH2NH2	Ph	methyl	H	H	OH, OH			
4074	NH(C-NH)NH2	Ph	H	Ħ	H	(+)-pin			
4075	NH (C=NH) NH2	Ph	methyl	H	H	(+)-pin			
4076	NH (C=NH) NH ₂	Ph	H	H	H	OH, OH			
4077	NH (C-NH) NH2	Ph	methyl	H	H	OH, OH			
4078	NH (C-NH) NH2	Ph	CH3	CH3	H	(+)-pin			
4079	NH (C=NH) NH2	Ph	CH ₃	CH3	H	OH, OH			
4080	Olfe	Ph	H	H	OH	(+)-pin			
4081	NH (C-NH) H	Ph .	H	Ħ	F	(+)-pin			
4082	OMe	Ph	H	H	Me	OH, OH			
4083	NH (C-NH) H	Ph	H	H	Et	OH, OH			

Table 30

Ex	x	_R 13	R14	R ¹⁵	R ¹⁶	Y ¹ Y ²	Phys. Data
4088	CH2NH2	PhCH ₂	H	H ·	Cl	(+)-pin	
4089	CH2NH2	PhCH ₂	Ħ	methyl	H	(+)-pin	
4090	CH ₂ NH ₂	PhCH ₂	H	CH2CN	H	(+)-pin	
4091	CH2NH2	PhCH ₂	Ħ	CH ₂ COOH	H	(+)-pin	
4092	CH2NH2	PhCH ₂	H	CH2NC	H	(+)-pin	
4093	CH2NH2	PhCH ₂	H	CH2NO2	H	(+)-pin	
4094	CH2NH2	PhCH ₂	H	(CH ₂) ₂ OH	H	(+)-pin	
4095	CH2NH2	PhCH ₂	H	CH280CH3	H	(+)-pin	
4096	CH2NH2	PhCH ₂	H	H	NO2	OH, OH	
4097	CH2NH2	PhCH ₂	H	methyl	H	OH, OH	
4098	CH2NH2	PhCH ₂	H	CH2CN	H	OH, OH	
4099	CH2NH2	PhCH ₂	H	CH2COOH	H.	он, он	
4100	CH2NH2	PhCH ₂	Ħ	CH2NC	H	OH, OH	
4101	CH2NH2	PhCH ₂	H	CH2NO2	Ħ	он, он	
4102	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	H	он, он	
4103	CH2NH2	PhCH ₂	H	CH280CH3	H	он, он	
4104	NH (C-NH) NH ₂	PhCH ₂	H	H	H	(+)-pin	
4105	NH (C-NH) NH ₂	PhCH ₂	H.	methyl	H	(+)-pin	
4106	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	H	(+)-pin	
4107	NH (C=NH) NH2	PhCH ₂	H	СН2СООН	H	(+)-pin	
4108	NH (C=NH) NH2	PhCH ₂	H	CH2NC	H	(+)-pin	
4109	NH (C=NH) NH ₂	PhCH ₂	H	CH2NO2	H	(+)-pin	
4110	NH (C=NH) NH2	PhCH ₂	H	(CH ₂) ₂ OH	H	(+)-pin	
4111	NH (C-NH) NH2	PhCH ₂	H	CH2SOCH3	H	(+)-pin	
4112	NH (C-NH) NH ₂	PhCH ₂	H	H	H	он, он	-
4113	NH (C-NH) NH ₂	PhCH ₂	H	methyl	H	OH, OH	
4114	NH (C-NH) NH2	PhCH ₂	H	CH2CN	H	OH, OH	
4115	NH (C-NH) NH ₂	PhCH ₂	Ħ	СН2СООН	H	OH, OH	
4116	ин (C=NH) ин ₂	PhCH ₂	H	CH2NC	H	OH, OH	
4117	NH (C=NH) NH ₂	PhCH ₂	H	CH2NO2	H	он, он	•
4118	NH (C-NH) NH ₂	PhCH ₂	H .	(CH ₂) ₂ OH	H	OH, OH	

1119 NH (C-NH) NH2 PhCH2 H CH2SOCH3 H OH, OH

Table 31

Ex	x	R13	R14	R15	Y1Y2	Phys.	Data
4124	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin		
4125	CH ₂ NH ₂	PhCH ₂	Ħ	methyl	(+)-pin		
4126	CH2NH2	PhCH ₂	H	CH2CN	(+)-pin		
4127	CH2NH2	PhCH ₂	H	CH2COOH	(+)-pin		
4128	CH2NH2	PhCH ₂	H	CH2NC	(+)-pin		
4129	CH2NH2	PhCH ₂	H	CH ₂ NO ₂	(+)-pin		
4130	CH2NH2	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin		
4131	CH ₂ NH ₂	PhCH ₂	H	CH2SOCH3	(+)-pin		
4132	CH2NH2	PhCH ₂	H	H	OH, OH		
4133	CH2NH2	PhCH ₂	H	methyl	OH, OH		
4134	CH2NH2	PhCH ₂	Ħ	CH ₂ CN	OH, OH		
4135	CH ₂ NH ₂	PhCH ₂	H	CH2 COOH	OH, OH		
4136	CH ₂ NH ₂	PhCH ₂	H	CH2NC	OH, OH		
4137	CH2NH2	PhCH ₂	H	CH2NO2	OH, OH		
4138	CH2NH2	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH		
4139	CH2NH2	PhCH ₂	H	CH280CH3	OH, OH		
4140	NH (C-NH) NH2	PhCH ₂	H	H	(+)-pin		
4141	nh (c=nh) nh ₂	PhCH ₂	H	methyl	(+)-pin		
4142	nh (c=nh) nh ₂	PhCH ₂	H	CH2CN	(+)-pin		
4143	nh (c-nh) nh ₂	PhCH ₂	H,	СН2СООН	(+)-pin		
4144	NH (C=NH) NH ₂	PhCH ₂	н .	CH2NC	(+)-pin		
4145	NH (C=NH) NH ₂	PhCH ₂	Ħ	CH2NO2	(+)-pin		•
4146	NH (C-NH) NH2	PhCH ₂	Ħ	(CH ₂) ₂ OH	(+) -pin		
4147	NH (C=NH) NH2	PhCH ₂	H	CH250CH3	(+)-pin		
4148	NH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH	V.	
4149	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH		
4150	NH (C=NH) NH ₂	PhCH ₂	H	CH2CN	он, он		
4151	NH (С=NH) NH ₂	PhCH ₂	H	CH2○COH	он, он		
4152	NH (C=NH) NH ₂	PhCH ₂	H	CH2NC	OH, OH	•	
4153	NE (C-NH) NH2	PhCH ₂	H	CH2NO2	OH, OH		
4154	NH (C-NH) NH2	PhCH ₂	H	(CH ₂) ₂ OH	он, он		

4155 MH(C-NH) NH₂ PhCH₂ H CH₂SOCH₃ OH, OH

Table 32

		•				
Æx	x	R13	R ¹⁵	R14	YlY2	Phys. Data
4160	CH2NH2	PhCH ₂	H	H	niq-(+)	
4161	CH2NH2	PhCH ₂	Cl	H	(+)-pin	
4162	CH2NH2	PhCH ₂	H	methyl	(+)-pin	
4163	CH2NH2	PhCH ₂	H	CH ₂ CN	(+)-pin	
4164	CH ₂ NH ₂	PhCH ₂	Cl	CH2CN	(+)-pin	
4165	CH ₂ NH ₂	PhCH ₂	H	CH2COOH	(+)-pin	
4166	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
4167	CH ₂ NH ₂	PhCH ₂	H	CH2NO2	(+)-pin	
4168	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4169	CH2NH2	PhCH ₂	H	CH2SOCH3	(+)-pin	
4170	CH2NH2	PhCH ₂	Ħ	H	OH, OH	
4171	CH2NH2	PhCH ₂	C1	H	OH, OH	
4172	CH ₂ NH ₂	PhCH ₂	H	methyl	он, он	
4173	CH ₂ NH ₂	PhCH ₂	I	CH2CN	OH, OH	•
4174	CH ₂ NH ₂	PhCH ₂	Cl	CH2CN	он, он	
4175	CH ₂ NH ₂	PhCH ₂	Ħ	CH2COOH	он, он	
4176	CH2NH2	PhCH ₂	H	CH2NC	OH, OH	
4177	CH ₂ NH ₂	PhCH ₂	H	CH2NO2	OH, OH	
4178	CH ₂ NH ₂	PhCH ₂	H	CH2)20H	OH, OH	
4179	CH2NH2	PhCH ₂	H	сн2восн3	OH, OH	
4180	NH (C-NH) NH ₂	PhCH ₂	H	H	(+)-pin	
4181	NH (C-NH) NH ₂	PhCH ₂	H	methyl	(+)-pin	
4182	NH (C=NH) NH ₂	PhCH ₂	H	CH3CN	(+)-pin	
4183	NH (C=NH) NH2	PhCH ₂	Ħ	CH2COOH	(+)-pin	
4184	NH (C=NH) NH ₂	PhCH ₂	H	CH2NC	(+)-pin	
4185	NH (C=NH) NH2	PhCH ₂	H	CH2NO2	(+)-pin	
4186	NH (C=NH) NH2	PhCH ₂	H .	(CH ₂) ₂ OH	(+) -pin	
4187	NH (С−NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
4188	NH (C=NH) NH ₂	PhCH ₂	H	H	он, он	•
4189	NH (C-NH) NH2	PhCH ₂	H	methyl	OH, OH	

4190	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
4191	NH (C-NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
4192	NH (C-NH) NH2	PhCH ₂	H	CH ₂ NC	OH, OH
4193	NH (C-NH) NH ₂	PhCH ₂	H	CH2NO2	он, он
4194	NH (C-NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
4195	NH (C=NH) NH2	PhCH ₂	H	CH28OCH2	OH. OH

Table 33

	•				
Ex	x	R ^{1.3}	R14	yly2	Phys. Data
4200	CH2NH2	PhCH ₂	н	(+)-pin	
4201	CH2NH2	PhCH ₂	methyl	(+)-pin	
4202	CH2NH2	PhCH ₂	CH ₂ CN	(+) -pin	
4203	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4204	CH2NH2	PhCH ₂	CH2COOH	(+)-pin	
4205	CH2NH2	PhCH ₂	CH ₂ NC	(+)-pin	
4206	CH2NH2	PhCH ₂	CH2NO2	(+)-pin	
4207	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4208	CH2NH2	PhCH ₂	CH280CH3	(+)-pin	
4209	CH2NH2	PhCH ₂	H	OH, OH	
4210	CH2NH2	PhCH ₂	methyl	OH, OH	
4211	CH2NH2	PhCH ₂	CH ₂ CN	OH, OH	
4212	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4213	CH2NH2	PhCH ₂	сн₂соон	OH, OH	
4214	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
4215	CH ₂ NH ₂	PhCH ₂	CH2NO2	OH, OH	
4216	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
4217	CH ₂ NH ₂	PhCH ₂	СИ260СИ3	OH, OH	
4218	NH (C=NH) NH ₂	PhCH ₂	Н	(+)-pin	
4219	NH (C-NH) NH ₂	PhCH ₂	methyl		
4220	NH (C=NH) NH ₂	PhCH ₂	CH2CN	(+) -pin	
4221	NH (C-NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4222	NH (C=NH) NH ₂	PhCH ₂		(+)-pin	
4223	NH (C=NH) NH ₂	_	CH ₂ COOH	(+)-pin	
4224	_	PhCH ₂	(CH ₂) ₂ COOH	· .	
4225	NH (C=NH) NH ₂	PhCH ₂	CH2NC	(+)-pin	
4226	NH (C-NH) NH ₂	PhCH ₂	CH2NO2	(+)-pin	
4227	NH (C-NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4228	NH (C=NH) NH ₂	PhCH ₂	CH2EOCH3	(+)-pin	-
4229	NH (C=NH) NH ₂	PhCH ₂	н	OH, OH	
	NH (C-NH) NH ₂	PhCH ₂	methy1	OH, OH	

4230	NH (C-NH) NH2	PhCH ₂	CH ₂ CN	OH,	CAT.
4231	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ CN	-	
4232			(cn2/2cn	OH,	OH
	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH,	OH
4233	NH (C-NH) NH2	PhCH ₂	(CH ₂) ₂ COOH	OH.	OH
4234	NH (O=NH) NH2	PhCH ₂	CHanc	OH.	OH
4235	MT (0-1971 1997		-	VII.	OA
	NH (C=NH) NH ₂	PhCH ₂	CH3MO3	OH.	OH
4236	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH,	OH
4237	NH (C=NH) NH2	PhCH ₂	CH260CH3	OH.	OR

Table 34

			•	
Ex	x	R13	. yly2	Phys. Data
		m-1		
4242	CH ₂ NH ₂	PhCH ₂	(+)-pin	
4243	CH2NH2	PhCH ₂	он, он	
4244	nh (c-nh) nh ₂	PhCH ₂	(+)-pin	
4245	NH (O-NH) NH2	PhCH ₂	он, он	•
4246	QMe	PhCH ₂	(+)-pin	
4247	OMe	PhCH ₂	он, он	
4248	NH (C=NH) H	PhCH ₂	(+)-pin	
4249	NH (C=NH) H	PhCH ₂	OH, OH	
4250	CH2NH2	Photi ₂ cti ₂	(+)-pin	DB
4251	CH2NH2	PhCH2CH2	OH, OH	
4252	NH (C-NH) NH ₂	PhCH2CH2	(+)-pin	
4253	NH (C-NH) NH2	PhCH ₂ CH ₂	он, он	•
4254	ONe	PhCH2CH2	(+)-pin	
4255	OMe	PhCH2CH2	он, он	
4256	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin	
4257	NH (O=NH) H	PhCH2CH2	он, он	DC
4259	CH ₂ NH ₂	Ph	(+)-pin	
4259"	CH2NH2	Ph - 3%	он, он	·
4260	NH (C-NH) NH ₂	Ph	(+)-pin	
4261	NH (C=NH) NH ₂	Ph	OH, OH	
4262	OMe	Ph	(+)-pin	
4263	OMe	Ph	OH, OH	
4264	NH (C=NH) H	Ph	(+)-pin	•
4265	NH (C-NH) H	Ph	он, он	
4266	CH2NH2	PhCH2CH2S	(+)-pin	
4267	CH2NH2	PhCH2s	(+)-pin	
4258	CH2NH2	PhCH2CH28	он, он	
4269	CH2NH2	PhCH ₂ s	OH, OH	
4270		m=2		

4271	CH ₂ NH ₂	PhCH ₂		(+)-pin
4272	CH2NH2	PhCH ₂		OH, OH
4273	NH (C-NH) NH	PhCH ₂		(+)-pin
4274	NH (C-NH) NH;	PhCH ₂		OH, OH
4275	OMe	PhCH ₂		(+)-pin
4276	Olfe	PhCH ₂		он, он
4277	NH (C=NH) H	PhCH ₂		(+) -pin
4278	NH (O=NH) H	PhCH ₂		OH, OH
4279	CH2NH2	PhCH ₂	CH ₂	(+)-pin
4280	CH2NH2	PhCH ₂	CH ₂	OH, OH
4281	NH (O-NH) NH2	PhCH ₂	Œi2	(+)-pin
4282	NH (C=NH) NH2	PhCH ₂	H ₂	OH, OH
4283	ONe	PhCH ₂ 6	H ₂	(+)-pin
4284	Olfe	PhCH ₂	H ₂	OH, OH
4285	NH (C=NH) H	PhCH ₂	H ₂	(+)-pin
4286	NH (C-NH) H	PhCH ₂ C	H ₂	OH, OH
4287	CH ₂ NH ₂	Ph		(+)-pin
4288	CH ₂ NH ₂	Ph		OH, OH
4289	NH (C=NH) NH2	Ph		(+)-pin
4290	NH (C=NH) NH2	Ph		он, он
4291	OMe	Ph		(+)-pin
4292	Olie	Ph		OH, OH
4293	NH (C-NH) H	Ph		(+)-pin
4294	NH (C-NH) H	Ph		OH, OH
DB.	HRMS Calc'd.	495.3255,	Found	495.3257
DC.	HRMS Calc'd.	467.2442.	Found	467 . 2950

Table 35

Ex	x	R13	Y ¹ Y ²	Phys. Data
		m-1		
4299	CH ₂ NH ₂	PhCH ₂	(+)-piń	
4300	CH2NH2	PhCH ₂	OH, OH	
4301	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
4302	NH (C-NH) NH ₂	PhCH ₂	OH, OH	
4303	OMe	PhCH ₂	(+)-pin	
4304	OMe	PhCH ₂	OH, OH	
4305	NH (C-NH) H	PhCH ₂	(+)-pin	
4306	NH (C=NH) H	PhCH ₂	OH, OH	
4307	CH2NH2	PhCH ₂ CH ₂	(+)-pin	DE
4308	CH ₂ NH ₂	PhCH ₂ CH ₂	он, он	
4309	NH (C-NH) NH2	PhCH ₂ CH ₂	(+)-pin	
4310	NH (C-NH) NH ₂	PhCH ₂ CH ₂	он, он	
4311	CMe	PhCH ₂ CH ₂	(+)-pin	
4312	CMe	PhCH2CH2	OH, OH	
4313	NH (C=NH) H	PhCH2CH2	(+)-pin	•
4314	NH (C-NH) H	PhCH2CH2	OH, OH	
4315	CH2NH2	Ph - No.	(+)-pin j	٠٠.
4316	CH2NH2	Ph	OH, OH	
4317	NH (C-NH) NH ₂	Ph	(+)-pin	
4318	NH (C-NH) NH2	Ph	OH, OH	
4319	OMe	Ph	(+)-pin	
4320	CMe	Ph	OH, OH	•
4321	NH (C-NH) H	Ph .	(+)-pin	
4322	NH (C-NH) H	Ph	OH, OH	
4323		m-2		•
4324	CH2NH2	PhCH ₂	(+)-pin	
 4325	CH2NH2	PhCH ₂	OH, OH	
4 326	NH (C-NH) NH ₂	PhCH ₂	(+)-pin	
	· ·			

4327	NH (C-NH) NH2	PhCH ₂	OH, OH
4328	ONe	PhCH ₂	(+)-pin
4329	ONe	PhCH ₂	OH, OH
4330	NH (C-NH) H	PhCH ₂	(+)-pin
4331	NH (C-NH) H	PhCH ₂	OH, OH
4332	CH ₂ NH ₂	PhCH2CH2	(+)-pin
4333	CH2NH2	PhCH2CH2	OH, OH
4334	NH (C-NH) NH2	PhCH2CH2	(+)-pin
4335	NH (C-NH) NH ₂	PhCH ₂ CH ₂	OH, OH
4336	CMe	PhCH2CH2	(+)-pin
4337	OMe	PhCH2CH2	он, он
4338	NH (C-NH) H	PhCH ₂ CH ₂	(+)-pin
4339	NH (C-NH) H	PhCH2CH2	OH, OH
4340	CH2NH2	Ph	(+)-pin
4341	CH ₂ NH ₂	Ph	OH, OH
4342	NH (C-NH) NH2	Ph	(+)-pin
4343	NH (C-NH) NH2	Ph	OH, OH
4344	ONe	Ph	(+)-pin
4345	CMe	Ph	OR, OR
4346	NH (C-NH) H	Ph	(+)-pin
4347	NH (C-NH) H	Ph	OH, OH
DE.	HRMS Calc'd. 495.3	255, Found	495.3249

Data

Table 36

Ex	X	R13	R14	Y ¹ Y ²
			n=1 .	
4348	CH ₂ NH ₂	PhCH ₂	Ħ	(+)-pin
4349	CH2NH2	PhCH ₂	methyl	(+)-pin
4350	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4351	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4352	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4353	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4354	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4355	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4356	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4357	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4358	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4359	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4360	CH ₂ NH ₂	PhCH ₂	CH2NC	OH, OH
4361	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4362	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4363	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4364	MH (C=MH) MH ₂	PhCH ₂	H	(+) -pin
4365	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4366	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4367	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4368	MH (C=NH) NH ₂	PhCH ₂	СН2СООН	(+) -pin
4369	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2COOH	(+)-pin

4370	NH (C=NH) NH2	PhCH ₂	CH ₂ NC	(+) -pin
4371	MH (C=NH) NH ₂	PhCH ₂	CH2NO2	(+) -pin
4372	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4373	MH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
4374	NH (C=NH) NH ₂	PhCH ₂	H	H, OH
4375	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4376	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4377	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4378	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	OH, OH
4379	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4380	NH (C≠NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4381	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	OH, OH
4382	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4383	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH
4384			n=2	
4385	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4386	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4387	CH ₂ NH ₂	PhCH ₂	CH2CN	(+) -pin
4388	CH ₂ NH ₂	PhCH ₂	CH2COOH	(+)-pin
4389	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4390	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4391	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4392	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4393	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4394	CH ₂ NH ₂	PhCH ₂	methyl	он, он
4395	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4396	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4397	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4398	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4399	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4400	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4401	NH (C=NH) NH2	PhCH ₂		(+)-pin
4402	NH (C=NH) NH ₂	PhCH ₂	ethyl	(+)-pin
4403	MH (C=NH) MH2	PhCH ₂	CH2CN	(+)-pin
4404	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin

4405	MH (C=MH) MH ₂	PhCH ₂	CH3COOH	(+)-pin
4406	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
4407	NH (C=NH) NH ₂	PhCH ₂	CH ² RC	(+) -pin
4408	NH (C=NH) NH ₂	PhCH ₂	CH ₂ HO ₂	(+) -pin
4409	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4410	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4411	NH (C=NH) NH ₂	PhCH ₂		OH, OH
4412	NH (C=NH) NH ₂	PhCH ₂	ethyl	OH, OH
4413	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4414	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2CN	OH, OH
4415	MH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4416	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4417	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4418	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4419	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4420	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4421		1	m=0	
4422	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4423	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4424	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4425	CH ₂ NH ₂	PhCH ₂	CH2COOH	(+)-pin
4426	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4427	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4428	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4429	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4430	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4431	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4432	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4433	CH ₂ NH ₂	PhCH ₂	CH2COOH	OH, OH
4434	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4435	CH ₂ NH ₂	PhCH ₂	CH2NO2	OH, OH
4436	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4437	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4438	MH (C=NH) MH ₂	PhCH ₂	· H	(+)-pin
	•		 .	(·/ p-m

			•	
4440	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4441	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4442	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4443	MH (C=MH) MH ₂	PhCH ₂	(CH ₂) 2000H	(+) -pin
4444	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4445	MH (C=MH) MH ³	PhCH ₂	CH ₂ NO ₂	(+) -pin
4446	nh (C=nh) nh ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4447	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4448	NH (C=NH) NH ₂	PhCH ₂	н	H, OH
4449	NH (C=NH) NH2	PhCH ₂	methyl	OH, OH
4450	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4451	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4452	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4453	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4454	NH (C=NH) NH ₂	PhCH ₂	CH ² NC	OH, OH
4455	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4456	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4457	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH. OH

Phys. Data

Table 37

Ex	x .	R13	R14	$\gamma^1\gamma^2$
		2	- 1	
4462	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4463	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4464	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin .
4465	CH ₂ NH ₂	PhCH ₂	CH2COOH	(+)-pin
4466	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4467	CH ₂ NH ₂	PhCH ₂	CH2NO2	(+) -pin
4468	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4469	CH ₂ NH ₂	FhCH ₂	CH2SOCH3	(+) -pin
4470	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4471	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4472	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4473	CH ₂ NH ₂	PhCH ₂	Сн³соон	OH, OH
4474	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4475	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4476	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4477	CH2NH2	PhCH ₂	CH2SOCH3	OH, OH
4478	MH (C=NH) MH ₂	PhCH ₂	· H	(+)-pin
4479	MH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
4480	MH (C=MH) MH2	PhCH ₂	CH ₂ CN	(+) -pin
4481	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CH	(+) -pin
4482	NH (C=NH) NH ₂	PhCH ₂	CH3COOH	(+) -pin
4483	MH (C=NH) MH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)- pin
4484	MH (C=NH) MH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4485	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin

4486	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4487	NH (C=NH) NH ₂	$PhCH_2$	CH2SOCH3	(+)-pin
4488	NH (C=NH) NH ₂	$PhCH_2$	H	OH, OH
4489	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4490	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4491	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4492	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	OH, OH
4493	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4494	MH (C=NH) MH ₂	PhCH ₂	CH ₂ NC	OH, OH
4495	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	OH, OH
4496	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2OH	OH, OH
4497	MH (C=NH) MH ³	PhCH ₂	CH2SOCH3	OH, OH
4498			m=2	
4499	CH2NH2	PhCH ₂	H	(+) -pin
4500	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4501	CH ₂ NH ₂	PhCH ₂		(+) -pin
4502	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4503	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4504	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4505	CH ₂ NH ₂	PhCH ₂	(CH ₂) 2OH	(+)-pin
4506	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4507	CH ₂ NH ₂	PhCH ₂	. н	OH, OH
4508	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4509	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4510	CH ₂ NH ₂	PhCH ₂	CH2COOH	OH, OH
4511	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4512	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4513	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4514	CH ₂ NH ₂	PbCH ₂	CH2SOCH3	OH, OH
4515	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4516	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
4517	NH (C=NH) NH ₂ .	PhCH ₂	CH2CM	(+)-pin
4518	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4519	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin
4520	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2COOH	(+) -pin

0

4521	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4522	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4523	MH (C=MH) MH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4524	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
4525	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4526	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4527	NH (C=NH) NH ₂	PhCH ₂	CH2CN	OH, OH
4528	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4529	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4530	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4531	NH (C=NH) NH ₂	PhCH ₂	CH2EC	OH, OH
4532	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4533	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4534	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH
		. 2	n=0	
4535	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4536	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4537	CH ₂ NH ₂	PhCH ₂	CH2CN	(+) -pin
4538	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4539	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4540	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4541	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4542	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4543	CH ₂ NH ₂	PhCH ₂	н	OH, OH
4544	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4545	CH ₂ NH ₂	PhCH ₂	CH2CN	OH, OH
4546	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	ОН, ОН
4547	CH ₂ NH ₂	PhCH ₂	CH2NC	он, он
4548	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4549	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4550	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4551	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4552	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4553	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4554	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin

4555	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin
4556	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4557	MH (C=NH) NH2	PhCH ₂	CH ₂ NC	(+) -pin
4558	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4559	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4560	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4561	NH (C=NH) NH ₂	PhCH ₂	н	OH, OH
4562	MH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4563	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4564	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4565	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	OH, OH
4566	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4567	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4568	MH (C=NH) NH ₂	PhCH ₂	CH2NO2	OH, OH
4569	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4570	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 38

X	x .	R ¹³	R ¹⁴	Y1Y2	Phys.	Data
		10-11	L			
4575	CH ₂ NH ₂	PhCH ₂	H	(+)-pin		
4576	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin		
4577	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin		
4578	CH ₂ NH ₂	PhCH ₂	СН2СООН	(+)-pin		
4579	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin		
4580	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin		
4581	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin		
4582	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin		
4583	CH ₂ NH ₂	PhCH ₂	н	OH, OH		
4584	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH		
4585	CH2NH2	PhCH ₂	CH ₂ CN	OH, OH		
4586	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он	•	
4587	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	: *	
4588	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH		
4589	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH		
4590	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	он, он		i
4591	MH (C=NH) NH ₂	PhCH ₂	H	(+)-pin		
4592	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin		
4593	NH (C=NH) NH ₂	PhCH ₂	CH2CM	(+)-pin		•.
4594	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin		·
4595	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin		
4596	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin		
4597	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin		

WO 96/20689 PCT/US95/16248

4598	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4599	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4600	nh (C=nh) nh ₂	PhCH ₂	CH2SOCH3	(+)-pin
4601	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4602	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4603	MH (C=MH) MH ₂	PhCH ₂	CH2CN	OH, OH
4604	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CH	OH, OH
4605	NH (C=NH) NH2	PhCH ₂	CH ₂ COOH	OH, OH
4606	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4607	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4608	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4609	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4610	MH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH
			= 0	
4611	CH2NH2	PhCH ₂	н	(+)-pin
4612	CH ² NH ²	PhCH ₂	methyl	(+)-pin
4613	CH2NH2	PhCH ₂	CH ₂ CN	(+)-pin
4614	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4615	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4616	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4617	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4618	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4619	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4620	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4621	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4622	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4623	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4624	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4625	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4626	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4627	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
4628	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4629	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4630	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4631	NH (C=NH) NH ₂	PhCH ₂	CH3COOH	(+) -pin

4632	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
4633	NH (C=NH) NH ₂	PhCH ₂	CH2NC	(+) -pin
4634	NH (C=NH) NH2	PhCH ₂	CH2NO2	(+)-pin
4635	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4636	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
4637	NH (C=NH) NH2	PhCH ₂	H	OH, OH
4638	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4639	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4640	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	ОН, ОН
4641	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	OH, OH
4642	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4643	MH (C=NH) MH ₂	PhCH ₂	CH ₂ NC	OH, OH
4644	MH (C=NH) MH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
4645	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4646	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH

Table 39

	Ex	x .	R13	R14	$^{\lambda_1\lambda_2}$	Ph
		1	. 1	(**)		
	4651	CH ₂ NH ₂	PhCH ₂	H	(+) -pin	
	4652	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
	4653	CH ₂ MH ₂	PhCH ₂	CH2CN	(+)-pin	
	4654	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
	4655	CH ₂ NH ₂	PhCH ₂	CH2NC	(+)-pin	
	4656	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
	4657	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
	4658	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin	
	4659	CH ₂ NH ₂	PhCH ₂	H	OH, OH	
	4660	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	
	4661	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он	
	4662	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
	4663	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
	4664	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	
	4665	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	
	4666	CH ₂ MH ₂	PhCH ₂	CH2SOCH3	OH, OH	
	4667	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin	
	4668	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	•
	4669	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin	
	4670	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
	4671	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+) -pin	٠
4	4672	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4	4673	MH (C=NH) NH ₂	PhCH ₂	CH3NC	(+) -pin .	
4	4674	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4	1675	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
		•		- · -	. , , , , , , , , , , , , , , , , , , ,	

WO 96/20689 PCT/US95/16248

4676	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4677	MH (C=NH) NH ₂	PhCH ₂	н	OH, OH
4678	MH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4679	MH (C=NH) NH ₂	PhCH ₂	CH3CM	OH, OH
4680	MH (C=MH) MH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4681	MH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4682	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4683	MH (C=MH) MH ₂	PhCH ₂	CH2NC	OH, OH
4684	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	OH, OH
4685	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4686	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
		m=(0	
4687	CH ₂ NH ₂	PhCH ₂	н	(+) -pin
4688	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4689	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4690	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4691	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4692	CH ₂ NH ₂	PhCH ₂	CH ² MO ²	(+)-pin
4693	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4694	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4695	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4696	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4697	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4698	CH ₂ NH ₂	PhCH ₂	CH ² COOH	OH, OH
4699	CH ₂ NH ₂	PhCH ₂	CH2NC	OH, OH
4700	CH ₂ NH ₂	PhCH ₂	CH2NO2	OH, OH
4701	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4702	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4703	NH (C=NH) NH ₂	PhCH ₂	R	(+)-pin
4704	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
4705	MH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4706	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4707	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin
4708	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4709	NH (C=NH) NH2	PhCH ₂	CH ₂ NC	(+)-pin

4710	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4711	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4712	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4713	MH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4714	MH (C=NH) NH2	PhCH ₂	methyl	OH, OH
4715	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4716	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4717	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	
4718	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4719 .	NH (C=NH) NH ₂	PhCH ₂	_	OH, OH
	-	mich ₂	CH ₂ NC	OH, OH
4720	MH (C=MH) MH ³	PhCH ₂	CH ₂ NO ₂	OH, OH
4721	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4722	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH2	Un Un

Table 40

Exc	x	R13	R14	yly2	Phys.	Data
		m=	1 ·			
4727	CH2NH2	PhCH ₂	H	(+)-pin		•
4728	CH2NH2	PhCH ₂	methyl	(+)-pin		
4729	CH2NH2	PhCH ₂	CH ₂ CN	(+) -pin		
4730	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin		٠.
4731	CH2NH2	PhCH ₂	CH ₂ NC	(+)-pin		
4732	CH ₂ NH ₂	FhCH ₂	CH ₂ NO ₂	(+)-pin		
4733	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin		•
4734	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin.		
4735	CH ₂ NH ₂	PhCH ₂	H	OH, OH		
4736	CH ₂ NH ₂	PhCH ₂	methyl.	OH, OH		
4737	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH		
4738	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH		
4739	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH		
4740	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH		
4741	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH		
4742	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	•	
47,43	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin		
4744	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin		i .
4745 .	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin		
4746	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin		
4747	MH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin		
4748	MH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin		
4749	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin	. :	•
4750	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin		
4751	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin		
	•					

4752	MH (C=NH) NH ₂	PhCH ₂	CH ² SOCH ³	(+)-pin
4753	MH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4754	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4755	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4756	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CH	он, он
4757	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4758	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4759	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4760	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4761	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4762	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
		M-	0	
4763	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4764	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4765	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4766	CH ₂ MH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4767	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4768	CH ₂ NH ₂	PhCH ₂	CH ₂ MO ₂	(+) -pin
4769	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4770	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4771	CH ₂ NH ₂	PhCH ₂	H	OH, OH
4772	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4773	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4774	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4775	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4776	CH ₂ NH ₂	PhCH ₂	CH2NO2	OH, OH
4777	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4778	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	OH, OH .
4779	MH (C=MH) NH ₂	PhCH ₂	н .	(+) -pin
4780	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4781	NH (C=NH) NH ₂	PhCH ₂	CH3CM	(+) -pin
4782	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4783	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4784	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	
4785	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin

4786	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4787	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4788	MH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4789	MH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4790	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4791	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4792	MH (C=NH) MH ²	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4793	MH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4794	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4795	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4796	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4797	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4798	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH. OH

Phys.

Table 41

Ex	x	R13	R ¹⁴	Y ¹ Y ²
			m-1	
4803	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4804	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4805	CH ₂ NH ₂	PhCH ₂	CH2CM	(+)-pin
4806	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4807	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4808	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4809	CH ₂ NH ₂	FhCH ₂	(CH ₂) ₂ OH	(+)-pin
4810	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4811	CH2NH2	PhCH ₂	H	OH, OH
4812	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4813	CH ₂ MH ₂	PhCH ₂	CH ₂ CN	OH, OH
4814	CH ₂ NH ₂	PhCH ₂	CH2COOH	он, он
4815	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4816	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4817	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4818	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4819	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4820	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4821	MH (C=MH) MH2	PhCH ₂	CH ₂ CN	(+)-pin
4822	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4823	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4824	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4825	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4826	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4827	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin

4828	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4829	NH (C=NH) NH ₂	PhCH ₂	H	ОН, ОН
4830	MH (C=MH) MH ₂	PhCH ₂	methyl	OH, OH
4831	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4832	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4833	MH (C=MH) MH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4834	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4835	MH (C=MH) MH ₂	PhCH ₂	CH ₂ NC	OH, OH
4836	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4837	eh (C=NH) NH ₂	PhCH ₂	(CH ₂) 2OH	OH, OH
4838	MH (C=NH) MH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
		1	m=0	
4839	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4840	CH ₂ NH ₂	PhCH ₂	methy1	(+) -pin
4841	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4842	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4843	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4844	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4845	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4846	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4847	CH ₂ NH ₂	PhCH ₂	H	он, он
4848	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН
4849	CH ₂ NH ₂	PhCH ₂	CH2CN	он, он
4850	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4851	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4852	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
4853	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4854	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4855	MH (C=NH) NH2	PhCH ₂	H	(+)-pin
4856	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4857	MH (C=NH) NH ₂	PhCH ₂	CH2CN	(+) -pin
4858	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4859	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4860	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin ·
4861	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin

4863 MH (C=NH) NH2 PhCH2 (CH2) 2OH (+)-pin 4864 MH (C=NH) NH2 PhCH2 CH2SOCH3 (+)-pin 4865 MH (C=NH) NH2 PhCH2 H OH, OH 4866 NH (C=NH) NH2 PhCH2 methyl CH, OH 4867 MH (C=NH) NH2 PhCH2 CH2CN OH, OH 4868 NH (C=NH) NH2 PhCH2 (CH2) 2CN OH, OH 4869 MH (C=NH) NH2 PhCH2 CH2COOH OH, OH 4870 NH (C=NH) NH2 PhCH2 (CH2) 2COOH OH, OH 4871 NH (C=NH) NH2 PhCH2 (CH2) 2COOH OH, OH 4872 NH (C=NH) NH2 PhCH2 CH2NO2 OH, OH 4873 NH (C=NH) NH2 PhCH2 CH2NO2 OH, OH					
4864 NH (C=NH) NH ₂ PhCH ₂ CH ₂ SOCH ₃ (+)-pin 4865 MH (C=NH) NH ₂ PhCH ₂ H OH, OH 4866 NH (C=NH) NH ₂ PhCH ₂ methyl CH, OH 4867 NH (C=NH) NH ₂ PhCH ₂ CH ₂ CN OH, OH 4868 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ CN OH, OH 4869 NH (C=NH) NH ₂ PhCH ₂ CH ₂ COCH OH, OH 4870 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ COOH OH, OH 4871 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NC OH, OH 4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NC OH, OH 4873 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ OH, OH	4862	MH (C=MH) MH2	PhCH ₂	CH2NO2	(+) -pin
4865 MH (C=NH) MH ₂ PhCH ₂ H OH, OH 4866 MH (C=NH) MH ₂ PhCH ₂ methyl OH, OH 4867 MH (C=NH) MH ₂ PhCH ₂ CH ₂ CM OH, OH 4868 MH (C=NH) MH ₂ PhCH ₂ (CH ₂) ₂ CM OH, OH 4869 MH (C=NH) MH ₂ PhCH ₂ CH ₂ COOH OH, OH 4870 MH (C=NH) MH ₂ PhCH ₂ (CH ₂) ₂ COOH OH, OH 4871 MH (C=NH) MH ₂ PhCH ₂ CH ₂ MC OH, OH 4872 MH (C=NH) MH ₂ PhCH ₂ CH ₂ MC OH, OH 4873 MH (C=NH) MH ₂ PhCH ₂ CH ₂ MO ₂ OH, OH 4874 MH (C=NH) MH ₂ PhCH ₂ CH ₂ MO ₂ OH, OH	4863	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4866 NH (C=NH) NH ₂ PhCH ₂ methyl CH, CH 4867 NH (C=NH) NH ₂ PhCH ₂ CH ₂ CN CH, CH 4868 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ CN CH, CH 4869 NH (C=NH) NH ₂ PhCH ₂ CH ₂ COCH CH, CH 4870 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ COCH CH, CH 4871 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NC CH, CH 4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NC CH, CH 4873 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ CH, CH 4874 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ CH, CH	4864	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4866 NH (C=NH) NH ₂ PhCH ₂ methyl CH, CH 4867 NH (C=NH) NH ₂ PhCH ₂ CH ₂ CN CH, CH 4868 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ CN CH, CH 4869 NH (C=NH) NH ₂ PhCH ₂ CH ₂ COOH CH, CH 4870 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ COOH CH, CH 4871 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NC CH, CH 4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ CH, CH 4873 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ OH CH, CH 4874 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ CH, CH	4865	NH (C=NH) NH2	PhCH ₂	H	OH, OH
4867 MH (C=NH) MH ₂ PhCH ₂ CH ₂ CM OH, OH 4868 MH (C=NH) MH ₂ PhCH ₂ (CH ₂) ₂ CM OH, OH 4869 MH (C=NH) MH ₂ PhCH ₂ CH ₂ COOH OH, OH 4870 MH (C=NH) MH ₂ PhCH ₂ (CH ₂) ₂ COOH OH, OH 4871 MH (C=NH) MH ₂ PhCH ₂ CH ₂ MC OH, OH 4872 MH (C=NH) MH ₂ PhCH ₂ CH ₂ MO ₂ OH, OH 4873 MH (C=NH) MH ₂ PhCH ₂ CH ₂ MO ₂ OH, OH	4866	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4869 NH (C=NH) NH ₂ PhCH ₂ CH ₂ COOH OH, OH 4870 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ COOH OH, OH 4871 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NC OH, OH 4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ OH, OH 4873 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ OH OH, OH	4867	NH (C=NH) NH ₂	PhCH ₂	CH ² CH	OH, OH
4869 MH (C=NH) NH ₂ PhCH ₂ CH ₂ COCH OH, OH 4870 MH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ COCH OH, OH 4871 MH (C=NH) NH ₂ PhCH ₂ CH ₂ NC OH, OH 4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ OH, OH 4873 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ OH OH, OH	4868	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4870 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ COOH OH, OH 4871 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NC OH, OH 4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ OH, OH 4873 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ OH OH, OH	4869	NH (C=NH) NH ₂	PhCH ₂	CH ² COOH	•
4871 MH (C=NH) NH ₂ PhCH ₂ CH ₂ NC OH, OH 4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ OH, OH 4873 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) ₂ OH OH, OH 4874 NH (C=NH) NH ₂ PhCH ₂ CH, OCC	4870	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	
4872 NH (C=NH) NH ₂ PhCH ₂ CH ₂ NO ₂ CH, OH 4873 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) 2OH OH, OH 4874 NH (C=NH) NH ₂ PhCH ₂ CH COCC	4871	MH (C=MH) MH ₂	PhCH ₂	CH ₂ NC	· ·
4873 NH (C=NH) NH ₂ PhCH ₂ (CH ₂) 2OH OH, OH	4872	MH (C-MH) MH2	PhCH ₂	CH ₂ NO ₂	•
4874 NH (C=NH) NH. ThCH. CT. COT.	4873	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	
CH, OH	4874	MH (C=NH) MH2	PhCH ₂	CH ₂ SOCH ₃	OH, OH

WO 96/20689 PCT/US95/16248

Table 42

	Ex	x .	R ¹³	R ¹⁴	Y ¹ Y ²	Phys.	Data
			m=1			•	
	4879	CH ₂ NH ₂	PhCH ₂	H	(+)-pin		•
	4880	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	•	•
	4881	CH ₂ NH ₂	PhCH ₂	CH ₂ CM	(+)-pin		
	4882	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin		
	4883	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin		
٠,	4884	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin		
	4885	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin		••
	4886	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin		
	4887	CH ₂ NH ₂	PhCH ₂	H .	он, он		
	4888	CH ₂ NH ₂	PhCH ₂	methyl	он, он		
	4889	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он		
	4890	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH		
	4891	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он		
	4892	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH	•	
	4893	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH		•
	4894 -	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH		
	4895	NH (C=NH) NH ₂	PhCH ₂	H .	(+)-pin		
	4896	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin		
	4897	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	•	
	4898	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin		. "
	4899	MH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin		
	4900	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin		
	4901	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	•	

4902	MH (C=MH) MH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4903	MH (C=MH) MH2	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4904	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4905	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4906	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4907	MH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4908	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4909	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4910	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4911	MH (C=NH) MH ₂	PhCH ₂	CH ₂ NC	OH, OH
4912	MH (C=NH) NH ₂	$PhCH_2$	CH ₂ NO ₂	OH, OH
4913	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4914	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH
			m=2	
4915	CH2NH2	PhCH ₂	H	(+) -pin
4916	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4917	CH ₂ NH ₂	PhCH ₂	CH2CN	(+) -pin
4918	CH2NH2	PhCH ₂	CH2COOH	(+) -pin
4919	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4920	CH ₂ NH ₂	PhCH ₂	CH2NO2	(+) -pin
4921	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4922	CH2NH2	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4923	CH2NH2	PhCH ₂	H	OH, OH
4924	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4925	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4926	CH2NH2	PhCH ₂	CH ₂ COOH	OH, OH
4927	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4928	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4929	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4930	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4931	MH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4932	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4933	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4934	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4935	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin

4936	MH (C=MH) MH ₂	PhCH ₂	(CH ₂) 2COOH	(+)-pin
4937	MH (C=MH) MH ₂	PhCH ₂	CH2NC	(+)-pin
4938	MH (C=NH) MH ₂	PhCH ₂	CH21102	(+)-pin
4939	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4940	eh (C=eh) eh ₂	PhCH ₂	CH2SOCH3	(+) -pin
4941	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
4942	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4943	MH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4944	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4945	MH (C=MH) MH ₂	PhCH ₂	CH2COOH	OH, OH
4946	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4947	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4948	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4949	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4950	NH (C=NH) NH ₂	$PhCH_2$	CH ₂ SOCH ₃	OH, OH
			m=0	
4951	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
4952	CH ₂ NH ₂	PhCH ₂	methyl	(+)pin
4953	CH ₂ NH ₂	PhCH ₂	CH2CN	(+) -pin
4954	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4955	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4956	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4957	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4958	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4959	CH ₂ NH ₂	PhCH ₂	н	он, он
4960	CH ₂ NH ₂	PbCH ₂	methyl	OH, OH
4961	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4962	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4963	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4964	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4965	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4966	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
4967	NH (C=NH) NH ₂	PhCH ₂	H	(+)-pin
4968	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
4969	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin

4970	MH (C-MH) MH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4971	MH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin
4972	MH (C=MH) MH2	PhCH ₂	(CH ₂) 2COOH	(+)-pin
4973	MH (C=MH) MH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4974	NH (C-NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4975	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4976	MH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4977	MH (C=NH) MH ₂	PhCH ₂	н	OH, OH
4978	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4979	MH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4980	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4981	MH (C=NH) NH2 -	PhCH ₂	CH ₂ COOH	OH, OH
4982	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4983	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4984	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4985	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4986	MH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH. OH

Table 43

Ex	x	. R ¹³	R14	Y ¹ Y ²	Phys. Data
	e e e e e e e e e e e e e e e e e e e		m=1		
4991	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	·
4992	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin	
4993	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin	
4994	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin	
4995	CH2NH2	PhCH ₂	CH ₂ NC	(+) -pin	
4996	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin	
4997	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin	·
4998	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin	
4999	CH ₂ NH ₂	PhCH ₂	H	он, он	•
5000	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	·
5001	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
5002	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
5003	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
5004	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН	
5005	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH	•
5006	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
5007	NH (C=NH) NH ₂	PhCH ₂	H .	(+) -pin	
5008	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	•
5009	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
5010	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2CN	(+)-pin	
5011	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
5012	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2COOH	(+) -pin	
5013	MH (C=NH) MH2	PhCH ₂	CH ₂ NC	(+)-pin	

5014	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5015	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5016	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
5017	MH (C=NH) MH ₂	PhCH ₂	H	OH, OH
5018	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5019	MH (C=NH) NH ³	PhCH ₂	CH ₂ CN	OH, OH
5020	MH (C=MH) MH2	PhCH ₂	(CH ₂) 2CM	OH, OH
5021	MH (C=NH) MH2	PhCH ₂	CH ₂ COOH	OH, OH
5022	MH (C=MH) MH2	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5023	NH (C=NH) NH ₂	PhCH ₂	CH2NC	OH, OH
5024	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5025	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5026	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH
			m=2	
5027	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
5028	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
5029	CH ₂ NH ₂	PhCH ₂	CH2CK	(+) -pin
5030	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
5031	CH ₂ NH ₂	PhCH ₂	CH2NC	(+) -pin
5032	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5033	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5034	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5035	CH ₂ NH ₂	PhCH ₂	H	OH, OH
5036	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
5037	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5038	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5039	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5040	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5041	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5042	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	OH, OH
5043	MH (C=NH) NH2	PhCH ₂	H	(+) -pin
5044	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
5045	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
5046	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
5047	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin

	•			
5048	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
5049	MH (C=MH) MH2	PhCH ₂	CH ₂ NC	(+)-pin
5050	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	(+)-pin
5051	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5052	MH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5053	NH (C=NH) NH ₂	PhCH ₂	, H	OH, OH
5054	MH (C=NH) MH ₂	PhCH ₂	methyl	OH, OH
5055	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5056	MH (C=NH) MH ₂	PhCH ₂	(CH ₂) ₂ CH	OH, OH
5057	NH (C-NK) NH2	PhCH ₂	CH ₂ COOH	OH, OH
5058	mh (C=NH) mh2	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5059	NH (C=NH) NH ₂	PhCH ₂	CH2NC	OH, OH
5060	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5061	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5062	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
			m=0	
5063	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
5064	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
5065	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
5066	CH ₂ NH ₂	PhCH ₂	CH₂COOH	(+) -pin
5067	CH ₂ NH ₂	PhCH ₂	CH2NC	(+)-pin
5068	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5069	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5070	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
5071	CH ₂ NH ₂	PhCH ₂	· H	OH, OH
5072	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
5073	CH ₂ NH ₂	PhCH ₂	CH2CM	OH, OH
5074	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5075	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5076	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5077	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5078	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
5079	NH (C=NH) NH ₂	PhCH ₂	H	(+) -pin
5080	MH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
5081	MH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin

5082	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
5083	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin
5084	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
5085	MH (C=MH) MH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5086	MH (C=MH) MH ₂	PhCH ₂	CH2NO3	(+) -pin
5087	MH (C=MH) MH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5088	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
5089	MH (C=NH) NH ₂	PhCH ₂	H	OH, OH
5090	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5091	MH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5092	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5093	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	OH, OH
5094	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5095	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5096	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5097	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5098	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH

5160	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
5161	NH (C=NH) NH ₂	PhCH ₂	CH ² NC	(+)-pin
5162	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5163	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5164	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
5165	MH (C=NH) NH ₂	PhCH ₂	, H	OH, OH.
5166	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5167	MH (C=MH) NH ₂	PhCH ₂	CH2CM	OH, OH
5168	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5169	MH (C=NH) NH ₂	PhCH ₂	CH2COOH	он, он
5170	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2000H	OH, OH
5171	NH (C-NH) NH ₂	PhCH ₂	CH ² NC	он, он
5172	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5173	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5174	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
			m=0	
5175	CH ₂ NH ₂	PhCH ₂	H	(+) -pin
5176	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
5177	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5178	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5179	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5180	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5181	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5182	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
5183	CH ₂ NH ₂	PhCH ₂	н	ОН, ОН
5184	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН
5185	CH ₂ NH ₂	PhCH ₂	CH2CM	OH, OH
5186	CH ₂ NH ₂	PhCH ₂	CH ² COOH	он, он
5187	CH ₂ NH ₂	PhCH ₂	CH2NC	OH, OH
5188	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
5189	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5190	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
5191	NH (C=NH) NH ₂	PhCH ₂	H .	(+)-pin
5192	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
5193	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin

5194	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
5195	MH (C=MH) MH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5196	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
5197	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
5198	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
5199	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 20H	(+) -pin
5200	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5201	NH (C=NH) NH ₂	PhCH ₂	Ħ	OH, OH
5202	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5203	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5204	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5205	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5206	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5207	MH (C=NH) NH2	PhCH ₂	CH2NC	OH, OH
5208	NH (C=NH) NH2	PhCH ₂	CH ₂ NO ₂	OH, OH
5209	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5210	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH

Table 45

			•	
Ex	x	R13	Y1Y2	Phys. Data
		m=1		
5215	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5216	CH ₂ NH ₂	PhCH ₂	OH, OH	
5217	NH (C=NH) NH2	PhCH ₂	(+)-pin	
5218	NH (C=NH) NH ₂	PhCH ₂	OH, OH	
5219	CMe	PhCH ₂	(+)-pin	
5220	OMe	PhCH ₂	OH, OH	
5221	NH (C=NH) H	PhCH ₂	(+)-pin	
5222	MH (C=MH) H	PhCH ₂	OH, OH	•
5223	CH ₂ NH ₂	PhCH2CH2	(+)-pin	
5224	CH ₂ NH ₂	PhCH2CH2	OH, OH	
5225	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin	
5226	NH (C=NH) NH2	PhCH ₂ CH ₂	OH, OH	•
5227	OMe	PhCH2CH2	(+)-pin	
5228	CMe	PhCH ₂ CH ₂	OH, OH	
5229	MH (C=NH) H	PhCH ₂ CH ₂	(+)=pin	
5230	ин (С-ин) н	PhCH ₂ CH ₂	ОН, ОН	
5231	CH ₂ NH ₂	Ph	(+) -pin	
5232	CH ₂ NH ₂	Ph	ОН, ОН	
5233	NH (C=NH) NH ₂	Ph	(+) -pin	
5234	NH (C=NH) NH ₂	<i>P</i> h	OH, OH	. *
5235	CMa	Ph	(+)-pin	
5236	C21e	Ph	OH, OH	
5237	MH (C=NH) H	Ph	(+)-pin	•
5238	NH (C=NH) H	Ph	OH, OH	•
٠,	•			

5239	CH ₂ NH ₂	PhCH ₂	(+)-pin
5240	CH ₂ NH ₂	PhCH ₂	OH, OH
5241	NH (C-NH) NH ₂	PhCH ₂	(+) -pin
5242	NH (C=NH) NH ₂	PhCH ₂	OH, OH
5243	OMe	PhCH ₂	(+)-pin
5244	OMe	PhCH ₂	OH, OH
5245	MH (C=MH) H	PhCH ₂	(+)-pin
5246	MH (C=MH) H	PhCH ₂	OH, OH
5247	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5248	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
5249	MH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin
5250	NH (C-NH) NH ₂	PhCH ₂ CH ₂	OH, OH
5251	Office	PhCH ₂ CH ₂	(+) -pin
5252	OMe	PhCH ₂ CH ₂	он, он
5253	NH (C=NH) H	PhCH2CH2	(+)-pin
5254	MH (C=NH) H	PhCH ₂ CH ₂	OH, OH
5255	CH ₂ NH ₂	Ph	(+) -pin
5256	CH ₂ NH ₂	Ph	OH, OH
S257	NH (C=NH) NH2	Ph	(+)-pin
5258	NH (C=NH) NH ₂	Ph	OH, OH
5259	OMe	Ph	(+)-pin
5260	OMe	Ph	OH, OH
5261	NH (C=NH) H	Ph	'' (+)-pin
5262	NH (C=NH) H	Ph	OH, OH
	•		

Table 46

•				
Ex	x	R13	Y ¹ Y ²	Phys. Data
•		m=1	•	
5267	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5268	CH ₂ NH ₂	PhCH ₂	он, он	•
5269	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
5270	NH (C=NH) NH ₂	PhCH ₂	OH, OH	
5271	C25e	PhCH ₂	(+)-pin	
5272	OMe	PhCH ₂	OH, OH	
5273	MH (C=MH) H	PhCH ₂	(+)-pin	
5274	MH (C=MH) H	PhCH ₂	OH, OH	•
5275	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	
5276	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH	
5277	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin	
5278	NH (C=NH) NH ₂	PhCH ₂ CH ₂	OH, OH	
5279	OMe	PhCH ₂ CH ₂	(+)-pin	
5280	CMe	PhCH ₂ CH ₂	OH, OH	
5281	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin	
5282	NH (C=NH) H	PhCH2CH2	OH, OH	
5283	CH ₂ NH ₂	Fh	(+)-pin	
5284	CH ₂ NH ₂	Ph	OH, OH	
5285	NH (C=NH) NH ₂	Ph	(+)-pin .	10
5286	NH (C=NH) NH ₂	Ph.	OH, OH	
5287	CMe	Ph	(+)-pin	•
5288	OMe	Ph	OH, OH	
5289	MH (C=NH) H	Ph	(+)-pin	
5290	NH (C≃NH) H	Ph	OH, OH	
•	•			•

	·		
5291	CH ₂ NH ₂	PhCH ₂	(+)-pin
5292	CH ₂ NH ₂	PhCH ₂	OH, OH
5293	MH (C=NH) NH ₂	PhCH ₂	(+)-pin
5294	MH (C=MH) MH ₂	PhCH ₂	OH, OH
5295	ONe	PhCH ₂	(+)-pin
5296	OMe	PhCH ₂	OH, OH
5297	MH (C=MH) H	PhCH ₂	· (+)-pin
5298	NH (C=NH) H	PhCH ₂	OH, OH
5299	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5300	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
5301	MH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin
5302	NH (C=NH) NH ₂	PhCH ₂ CH ₂	OH, OH
5303	OMe	PhCH ₂ CH ₂	(+)-pin
5304	ОМе	FhCH ₂ CH ₂	OH, OH
5305	NH (C=NH) H	PhCH2CH2	(+)-pin
5306	NH (C=NH) H	PhCH ₂ CH ₂	OH, OH
5307	CH ₂ NH ₂	Ph	(+)-pin
5308	CH ₂ NH ₂	Ph	OH, OH
5309	NH (C=NH) NH ₂	Ph	(+)-pin
5310	MH (C=NH) NH ₂	Ph	OH, OH
5311	CREE	Ph	(+)-pin
5312	CMe	Ph	OH, OH
5313	MH (C=MH) H	Ph	(+)-pin
5314	NH (C=NH) H	Ph	ОН, ОН

Table 47

Ex	x	R13	y ¹ y ²	Phys . Data
		m=1	•	
5319	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5320	CH ₂ NH ₂	PhCH ₂	OH, OH	•
5321	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
5322	NH (C=NH) NH ₂	PhCH ₂	OH, OH	
5323	Office	PhCH ₂	(+) -pin	
5324	Cities	PhCH ₂	ОН, ОН	
5325	NH (C≈NH) H	FhCH ₂	(+)-pin	
5326	MH (C=MH) H	PhCH ₂	OH, OH	
5327	CH ₂ NH ₂	PhCH ₂ CH ₂	(+) -pin	
5328	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH	
5329	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+) -pin	
5330	NH (C=NH) NH ₂	PhCH ₂ CH ₂	OH, OH	
5331	CMe	PhCH ₂ CH ₂	(+) -pin	
5332	CMe	PhCH ₂ CH ₂	OH, OH	
5333	NH (C=NH) H	PhCH ₂ CH ₂	(+) -pin	
5334	NH (C=NH) H	PhCH ₂ CH ₂	он, он	
5335	CH ₂ NH ₂	Ph	(+) -pin	
5336	CH ₂ NH ₂	Ph	ОН, ОН	
5337	NH (C=NH) NH ₂	Ph	(+) -pin	:
5338	MH (C=MH) NH ₂	Ph	OH, OH	
5339	OMe	Ph	(+) -pin	
5340	CMe	Ph	OH, OH	•
5341	MH (C=MH) H	Ph	(+) -pin	
5342	NH (C=NH) H -	Ph	OH, OH	

	• •		
5343	CH ₂ NH ₂	PhCH ₂	(+) -pin
5344	CH ₂ MH ₂	PhCH ₂	OH, OH
5345	NH (C=NH) NH ₂	PhCH ₂	(+)-pin
5346	NH (C=NH) NH ₂	PhCH ₂	OH, OH
5347	Obje	PhCH ₂	(+)-pin
5348	ONE	PhCH ₂	OH, OH
5349	MH (C=NH) H	PhCH ₂	(+)-pin
5350	MH (C=MH) H	PhCH ₂	OH, OH
5351	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5352	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
5353	MH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin
5354	NH (C=NH) NH ₂	PhCH ₂ CH ₂	OH, OH
5355	OMe	PhCH ₂ CH ₂	(+)-pin
5356	OMe	PhCH ₂ CH ₂	OH, OH
5357	MH (C=NH) H	PhCH ₂ CH ₂	(+)-pin
5358	МН (C=NH) Н	PhCH ₂ CH ₂	OH, OH
5359	CH ₂ NH ₂	Ph	(+)-pin
5360	CH ₂ NH ₂	Ph	OH, OH
5361	MH (C=MH) MH2	Ph	(+)-pin
5362	NH (C=NH) NH ₂	Ph	OH, OH
5363	OMe	Ph	(+)-pin
5364	OMe	Ph	OH, OH
5365	NH (C=NH) H	Ph	(+) -pin
5366	NH (C=NH) H	Ph	OH, OH

Table 48

Ex	x	R13	R ¹⁴	R ¹⁵	_Y 1 _Y 2	Phys. Data
	-	_ x		m=1		
5371	CH ₂ NH ₂	PhCH ₂	H	H	(+)-pin	
5372	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	•
5373	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+) -pin	
5374	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5375	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+) -pin	
5376	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5377	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	: .
5378	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
5379	CH ₂ NH ₂	PhCH ₂	Ħ	H	OH, OH	
5380	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
5381	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	•
5382	CH ₂ NH ₂	PhCH ₂	н	CH2COOH	OH, OH	
5383	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
5384	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	*
5385	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	он, он	
5386	CH2NH2	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH	•
5387	NH (C=NH) NH ₂	PhCH ₂	H	H	(+)-pin	
5388	NH (C=NH) NH ₂	PhCH ₂	Ħ	methyl	(+)-pin	•
5389	NH (C=NH) NH ₂	PhCH ₂	Ħ	CH ₂ CN	(+)-pin	٤
5390	NH (C=NH) NH ₂	PhCH ₂	H	CH2COOH	(+)-pin	
5391	NH (C=NH) NH ₂	PhCH ₂	H	CH2NC	(+)-pin	
5392	MH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5393	NH (C=NH) NH ₂	PhCH ₂	Ħ	(CH ₂) ₂ OH	(+)-pin	

	•					
5394		PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
5395		PhCH ₂	H	H	OH, OH	
5396		PhCH ₂	H	methyl	OH, OH	
5397	•	PhCH ₂	H	CH ₂ CN	OH, OH	
5398	NH (C=NH) NH ₂	PhCH ₂	H	CH2COOH	OH, OH	
5399	NH (C=NH) NH ₂	PhCH ₂	H	CH3RC	OH, OH	
5400	NH (C=NH) NH ₂	$PhCH_2$	H	CH ² MO ²	OH, OH	
5401	NH (C=NH) NH ₂	PhCH ₂	H.	(CH ₂) ₂ OH	OH, OH	
5402	NH (C=NH) NH ₂	PhCH ₂	H	CH2SOCH3	OH, OH	
5403	5 T		•	m=0		
5404	NH (C=NH) NH ₂	H	H	3-(t-buty1-	(+)-pin	BS
	The second secon	-	-	O2CNH) - Ph		
5405	NH (C=NH) NH2	H	H	3-(t-butyl-	OH, OH	
				O2CMH) - Ph		
5406	NH (C=NH) NH ₂	H	H	3- (NH ₂) -Ph	(+) -pin	
5407	NH (C=NH) NH ₂	H	H	3- (NH ₂) - Ph	OH, OH	
5408	NH (C=NH) NH ₂	H	H	3 - (CH ₃ SO ₂ NH) -	(+)-pin	
				Ph		
5409	NH (C=NH) NH ₂	H	н .	3- (CH ₃ SO ₂ MH) -	OH, OH	
				Ph		
5410	NH (C=NH) NH ₂	н	methyl	Ph	(+)-pin	
5411	NH (C=NH) NH ₂	H	methyl	Ph	OH, OH	
5412	NH (C=NH) NH ₂	H	CH2CN	Ph	(+)-pin	
5413	NH (C=NH) NH ₂	H ''.	CH ₂ CN	Ph	OH, OH	
5414	NH (C=NH) NH ₂	H	methyl	3- (CH3SO2NH) -	(+)-pin	Comer
		:		Ph		A. C. L. S.
5415	NH (C=NH) NH ₂	H	methyl	3- (CH ₃ SO ₂ NH) -	OH, OH	
		, ·		Ph		•
5416	NH (C=NH) NH ₂	H	CH3	2- (CH3SO2NH) -	(+) -pin	
				Ph		
5417	NH (C=NH) NH ₂	H	CH3	2- (CH3SO2NH) -	OH, OH	-
•				Ph		
5418	NH (C=NH) NH ₂	H	CH ₂ CN	3-(CH3SO2NH)-	(+)-pin	
				Ph	•	-

5419	NH (C=NH) NH ₂	***	CT CT	3. (07. 00 77.)		
3413	MI (C-MI) MB2	H	CH ₂ CN	3- (CH ₃ SO ₂ NH) -	OH, OH	
				Ph		
5420	MH (C=MH) MH ₂	H	CH ₂ CN	2- (CH3SO2NH) -	(+) -pin	
				Ph.		
5421	NH (C=NH) NH ₂	H	CH3CM	2- (CH ₃ SO ₂ NH) -	OH, OH	
				Ph		
5422	MH (C=NH) NH ₂	H	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) -	(+)-pin	
				Ph.		
5423	MH (C=NH) NH ₂	н	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) -	OH, OH	*
				Ph		
5424	NH (C=NH) NH ₂	H	CH ₂ COOH	2- (CH ₃ SO ₂ NH) -	(+) -pin	•
		_#£(-)		Ph .		
5425	NH (C=NH) NH ₂	H	CH ₂ COOH	2-(CH ₃ SO ₂ NH)-	OH, OH	
				Ph		
5426	NH (C=NH) NH ₂	Ħ	H	3-(t-buty1000	(+) -pin	BP
				-NH) -Ph		

BP. MS (M+H)+: Calc 610, Found 610.

BS. MS (M+H)+: Calc 610, Found 610.

Table 49

			•			
Ex	x	R13	R ¹⁴	R15	Y ¹ Y ²	Phys Data
			m=1			
5431	CH ₂ NH ₂	PhCH ₂	H	H	(+) -pin	
5432	CH ₂ NH ₂	PhCH ₂	H	methy1	(+)-pin	
5433	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	ĺ
5434	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
5435	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5436	CH ₂ NH ₂	PhCH ₂	H	CH2NO2	(+)-pin	
5437	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
5438	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin	
5439	CH ₂ NH ₂	PhCH ₂	H	н	OH, OH	
5440	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
5441	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
5442	CH ₂ NH ₂	PhCH ₂	H	CH2COOH	OH, OH	
5443	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
5444	CH ₂ NH ₂	PhCH ₂	н	CH2NO2	OH, OH	
5445	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	£60
5446	CH ₂ NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	OH, OH	•
5447	NH (C=NH) NH ₂	PhCH ₂	н	н	(+)-pin	
5448	NH (C=NH) NH ₂	PhCH ₂	н	methyl	(+)-pin	
5449	MH (C=NH) MH2	PhCH ₂	H	CH ₂ CN	(+)-pin	
5450	MH (C=NH) NH ₂	PhCH ₂	H	СН2СООН	(+) -pin	
- 5451	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin	
5452	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5453	NH (C=NH) NH2	PhCH ₂	н	(CH ₂) ₂ OH	(+) -pin	
5454	NH (C=NH) NH ₂	PhCH ₂	H.	CH ₂ SOCH ₃	(+) -pin	
5455	NH (C=NH) NH ₂	PhCH ₂	н	н		
		•			OH, OH	

5456	NH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH
5457	ын (С-ын) ын ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5458	NH (C=NH) NH ₂	PhCH ₂	H	CH2COOH	ОН, ОН
5459	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5460	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5461	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5462	nh (C=nh) nh ₂	PhCH ₂	H	CH2SOCH3	OH, OH
		•	∭ =	0 .	
5463	CH ₂ XH ₂	PhCH ₂	H	H	(+) -pin
5464	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin
5465	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin
5466	CH ₂ NH ₂	PhCH ₂	H	Сн2соон	(+)-pin
5465	CH ₂ NH ₂	PhCH ₂	H	CH ³ EC	(+) -pin
5466	CH ₂ NH ₂	PhCH ₂	Ħ	CH ₂ NO ₂	(+)-pin
5467	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin
5468	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+) -pin
5469	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH
5470	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH
5471	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5472	CH ₂ NH ₂	PhCH ₂	H	СH ₂ СООН	OH, OH
5473	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5474	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5475	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5476	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
5477	NH (C=NH) NH ₂	PhCH ₂	H	H	(+)-pin
5478	NH (C=NH) NH ₂	PhCH ₂	H	methyl	(+)-pin
5479	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin
5480	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin
5481	MH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin
5482	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin
5483	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin
5484	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+)-pin
5485	NH (C=NH) NH ₂	PhCH ₂	• н	H ·	OH, OH
5486	NH (C=NH) NH ₂	PhCH ₂	H	methy1	OH, OH
5487	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH

5488	MH (C=NH) MH2	PhCH ₂	H	CH ₂ COOH	OH, OH
5489	MH (C=MH) MH2	PhCH ₂	H	CH2NC	OH, OH
5490	MH (C=MH) MH2	PhCH ₂	H	CH2NO2	OH, OH
5491	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5492	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	OH. OH

Table 50

Ex	x	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
		gill -		m=1.		
5497	CH2NH2	PhCH ₂	H	н	(+)-pin	•
5498	CH ₂ NH ₂	PhCH ₂	H	methyl	(+) -pin	
5499	CH2MH2	PhCH ₂	H	CH ₂ CN	(+)-pin	
5500	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+) -pin	
5501	CH2NH2	PhCH ₂	H	CH ₂ NC	(+) -pin	
5502	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+) -pin	•
5503	CH2NH2	PhCH ₂	H	(CH ₂) ₂ OH	(+) -pin	
5504	CH ₂ NH ₂	PhCH ₂	H	CH2SOCH3	(+)-pin	
5505	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH	
5506	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
5507	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	он, он	
5508	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	•
5509	CH2NH2	PhCH ₂	н	CH ² NC	он, он	
5510	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH	
5511	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	
5512	CH ₂ NH ₂	PhCH ₂	Ħ .	CH ₂ SOCH ₃	OH, OH	
5513	MH (C=MH) MH2	PhCH ₂	H .	н	(+) -pin	
5514	NH (C=NH) NH ₂	PhCH ₂	. H	methyl	(+)-pin	
5515	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	(+) -pin	
5516	MH (C=NH) MH ₂	PhCH ₂	H	CH ₂ COOH	(+) -pin	
5517	MH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5518	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	(+)-pin	
5519	NH (C=NH) NH ₂	PhCH ₂	H .	(CH ₂) ₂ OH	(+)pin	

5520	•	PhCH ₂	H	CH2SOCH3	(+) -pin	L
5521	•	PhCH ₂	H	н	OH, OH	
5522		PhCH ₂	H	methyl	OH, OH	
5523		PhCH ₂	H	CH ₂ CN	OH, OH	•
5524		PhCH ₂	H	CH ₂ COOH	OH, OH	
5525	NH (C=NH) NH ₂	PhCH ₂	H	CH2MC	OH, OH	
5526	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ MO ₂	OH, OH	
5527	NH (C=NH) NH ₂	PhCH ₂	H.	(CH ₂) ₂ OH	OH, OH	
5528	NH (C=NH) NH ₂	PhCH ₂	H.	CH ₂ SOCH ₃	OH, OH	
				m=0		
5529		H	H	3-(t-butyl-	(+)-pin	BT
		- ·		O ₂ CNH) - Ph	-	. Jan
5530	MH (C=NH) NH ₂	H	H	3-(t-buty1-	OH, OH	
•				O ₂ CNH) - Ph	•	
5531	NH (C=NH) NH2	H	H	3-(NH ₂)-Ph	(+)-pin	
5532	NH (C=NH) NH ₂	H	H	3-(NH ₂)-Ph	OH, OH	
5533	NH (C=NH) NH ₂	H	H	3 - (CH3SO2NH) -	(+)-pin	
				Ph	_	*
5534	NH (C=NH) NH ₂	H	H	3 - (CH3SO2NH) -	OH, OH	
				Ph		
5535	NH (C=NH) NH ₂	H	H	Ph	(+) -pin	BU
5536	NH (C=NH) NH ₂	н	H	Ph	OH, OH	BV
5537	NH (C=NH) NH ₂	H	CH ₃	Ph	(+) -pin	
5538	NH (C=NH) NH ₂	H	CH3	Ph	OH, OH	•
5539	NH (C=NH) NH ₂	H	CH2CN	Ph	(+) -pin	a Company
5540	NH (C=NH) NH ₂	H	CH ₂ CN	Ph	OH, OH	A CHARLES
5541	NH (C=NH) NH ₂	H	CH ₂ COOH	Ph	(+) -pin	
5542	NH (C=NH) NH ₂	H	CH2COOH	Ph	OH, OH	
5543	NH (C=NH) NH ₂	H .	CH2SO2NH2	Ph	(+) -pin	
5544	NH (C=NH) NH ₂	H	CH ₂ SO ₂ NH ₂		OH, OH	
5545	MH (C=NH) NH	Ħ	CH2CM	3 - (CH ₃ SO ₂ NH) -		• ·
				Ph	· · grann	
5546	NH (C=NH) NH	н .	CH ₂ CN	3 - (CH ₃ SO ₂ NH) -	OH. OH	
				Ph	; V41	
				-		•

WO 96/20689 PCT/US95/16248

5547	MH (C=MH) MH	H	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) -	(+)-pin	
				Ph		
5548	MH (C=MH) MH	H	CH2COOH	3 - (CH ₃ SO ₂ NH) -	OH, OH	
				Ph		
5549	MH (C=NH) NH	H	CH ₂ COOH	2- (CH3SO2NH) -	(+) -pin	
		•		Ph		
5550	MH (C=MH) MH	· H	CH ₂ COOH	2- (CH3SO2NH) -	OH, OH	
				Ph .		•
5551	MH (C=NH) NH ₂	H	H	3-(t-butyloco	(+)-pin	ВО
				-NH) - Ph		
5552	NH (C=NH) NH ₂	H	. H	Ph	(+) -pin	BQ
5553	NH (C=NH) NH ₂	. H	H .	Ph	OH .	BR
	•	·	_			•

BO. MS (M+H) +: Calc. 594, Found 594.

5

10 BU. MS (M+H) +: Calc. 479, Found 479.

BV. MS (M+H) +: Calc. 345, Found 345.

BQ. MS (M+H)+: Calc. 479, Found 479.

BS. MS (M+H)+: Calc. 345, Found 345.

BT. MS (M+H) +: Calc. 594, Found 594.

Table 51

							4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Ex	x	_R 13	R ¹⁴	R ¹⁵	y ¹ y ²	Phys. Data
				m-1			
	5558	CH2NH2	PhCH ₂	H	H	(+)-pin	
	5559	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	
	5560	CH ₂ NH ₂	PhCH ₂	H.	CH2CN	(+)-pin	·
	5561	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin	
	5562	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+) -pin	
	5563	CH ₂ NH ₂	PhCH ₂	H	CH2NO2	(+)-pin	
	5564	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+) -pin	
	5565	CH ₂ NH ₂	PhCH ₂	H	CH2SOCH3	(+)-pin	
	5566	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH	
	5567	CH ₂ NH ₂	PhCH ₂	H	methyl	OH, OH	
	5568	CH ₂ NH ₂	PhCH ₂	H .	CH ₂ CN	OH, OH	
	5569	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH	
	5570	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH	
	5571	CH ₂ NH ₂	PhCH ₂	H	CH2NO2	OH, OH	
	5572	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	
	5573	CH ₂ NH ₂	PhCH ₂	H .	CH2SOCH3	OH, OH	
	5574	NH (C=NH) NH ₂	PhCH ₂	H	H	(+) -pin	
	557 5	NH (C=NH) NH ₂	PhCH ₂	H ·	methyl	(+)-pin	•
	5576	NH (C=NH) NH ₂	PhCH ₂	H	CH ² CM	(+) -pin	
ļ	5577	NH (C=NH) NH ₂	PhCH ₂	H	CH2COOH	(+) -pin	•
1	5578	NH (C=NH) NH ₂	PhCH ₂	H	CH ³ MC	(+) -pin	:
:	5579	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin	
,	5580	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
:	5581	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	(+) -pin	:
					-	- ,	

5582	MH (C=NH) NH ₂	PhCH ₂	H	H	OH, OH
5583	MH (C=NH) NH ₂	PhCH ₂	H	methyl	OH, OH
5584	MH (C=NH) MH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5585	NH (C=NH) NH ₂	PhCH ₂	H	CH2COOH	ОН, ОН
5586	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	OH, OH
5587	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NO ₂	OH, OH
5588	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	он, он
5589	MH (C=NH) NH ₂	PhCH ₂	H	CH2SOCH3	OH, OH
			m=0		
5590	CH ₂ NH ₂	PhCH ₂	H	H	(+) -pin
5591	CH ₂ NH ₂	PhCH ₂	H	methyl	(+) -pin
5592	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	(+) -pin
5593	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	(+)-pin
5594	CH ₂ NH ₂	PhCH ₂	' H	CH ₂ NC	(+) -pin
5595	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin
5596	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+) -pin
5597	CH ₂ NH ₂	PhCH ₂	H	CH2SOCH3	(+) -pin
5598	CH ₂ NH ₂	PhCH ₂	H	H	OH, OH
5599	CH ₂ MH ₂	PhCH ₂	H	methyl	OH, OH
5600	CH ₂ NH ₂	PhCH ₂	H	CH2CN	он, он
5601	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	ОН, ОН
5602	CH ₂ NH ₂	PhCH ₂	H	CH2NC	он, он
5603	CH2NH2	PhCH ₂	H	CH2NO2	OH, OH
5604	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5605	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH
5606	MH (C=MH) MH2	PhCH ₂	H	H	(+) -pin
5607	NH (C=NH) NH ₂	PhCH ₂	H ·	methyl	(+) -pin
5608	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin
5609	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	(+) -pin
5610	MH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	(+) -pin
5611	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin
5612	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+) -pin
5613	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+) -pin
5614	NH (C=NH) NH2	PhCH ₂	H	H .	OH, OH
5615	NH (C=NH) NH ₂	PhCH ₂	н	methyl	OH, OH

5616	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5617	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH, OH
5618	MH (C=MH) MH ₂	PhCH ₂	H	CH2NC	OH, OH
5619	NH (C=NH) NH ₂	PhCH ₂	H	CH2NO2	OH, OH
5620	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5621	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	OH, OH

Table 52

5							
	Ex	x	R ¹³	R14	yly2	Phys.	Data
				m= 0			
	5626	CH ₂ NH ₂	, H	Ħ	(+) -pin		
	5627	CH ₂ NH ₂	H	methyl	(+) -pin		•
	5628	CH ₂ NH ₂	H	H	он, он		
	5629	CH ₂ NH ₂	H	methyl	OH, OH		
	5630	CH ₂ NH ₂	н	CH ₂ CN	(+) -pin		•
	5631	CH ₂ NH ₂	н	(CH ₂) ₂ COOH	(+) -pin		
	5632	CH ₂ NH ₂	H	CH ₂ CN	ОН, ОН		,
	5633	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	он, он		
	5634	CH ₂ NH ₂	H	CH ₂ COOMe	(+) -pin		
	5635	CH ₂ NH ₂	H .	(CH ₂) COOH	(+)-pin		
	5636	CH ₂ NH ₂	н	CH ₂ COOMe	OH, OH		
	5637	CH ₂ NH ₂	н	(CH ₂) COOH	ОН, ОН	•	
	5638	CH ₂ NH ₂	H	(CH ₂) 2CN ₄ H	(+) -pin		
	5639	CH ₂ NH ₂	н	(CH ₂) CN ₄ H	(+)-pin	•	
	5640	CH ₂ NH ₂	H	(CH ²) ² CM ⁴ H	OH, OH	•	•
	5641	CH ₂ NH ₂	H	(CH ₂) CN ₄ H	OH, OH		٠
	5642	NH (C=NH) NH ₂	H	H	(+) -pin		
	5643	NH (C=NH) NH ₂	H	methyl	(+) -pin		
	5644	NH (C=NH) NH ₂	H	H	OH, OH		
•	5645	NH (C=NH) NH ₂	H	methyl	OH, OH		
	5646	NH (C=NH) NH ₂	H	CH2CN	(+) -pin		•
	5647	nh (C=NH) nh ₂	H .	(CH ₂) ₂ COOH	(+) -pin		
	5648	NH (C=NH) NH ₂	н .	CH ₂ CN	OH, OH		
	5649	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	OH, OH		

5650	MH (C=MH) MH ₂	н	CH ₂ COOMe	(+)-pin
5651	MH (C=MH) MH ³	H	(CH ₂) COOH	(+)-pin
5652	MH (C=00H) MH ³	H	CH2COOMe	OH, OH
5653	MH (C=MH) MH2	H	(CH ₂) COOH	OH, OH
5654	NH (C=NH) NH ₂	H	(CH ₂) ₂ CM ₄ H	(+) -pin
5655	NH (C-NH) NH2	H	(CH ₂) CN ₄ H	(+) -pin
5656	NH (C=NH) NH ₂	H	$(CH_2)_2CM_4H$	OH, OH
5657	NH (C=NH) NH ₂	н	(CH ₂) CH ₄ H	OH, OH
5658	OMe	н	H	(+) -pin
5659	CISG	H	H	OH, OH
5660	MH (C=NH) H	H	н	(+)-pin
5661	MH (C=MH) H	H	H	OH, OH
5662	CH ₂ NH ₂	CH ₂ CN	H	(+) -pin
5663	CH ₂ NH ₂	CH ₂ CN	н	OH, OH
5664	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	(+)-pin
5665	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	OH, OH
5666	OMe	CH2COOMe	H	(+) -pin
5667	OMe	CH ₂ COOMe	H	OH, OH
5668	MH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	OH, OH
5669	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	(+)-pin
			m=1	
5670	CH ₂ NH ₂	H	H	(+) -pin
5671	CH ₂ NH ₂	H	methyl	(+) -pin
5672	CH ₂ NH ₂	H	H	OH, OH
5673	CH ₂ NH ₂	H	methyl	он, он
5674	CH ₂ NH ₂	H	CH ₂ CN	(+) -pin
5675	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	(+)-pin
5676	CH ₂ NH ₂	H	CH ₂ CN	OH, OH
5677	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	OH, OH
5678	CH ₂ NH ₂	H	CH ₂ COOMe	(+)-pin
5679	CH ₂ NH ₂	н	(CH ₂) COOH	(+)-pin
5680	CH ₂ NH ₂	н	CH ₂ COOMe	OH, OH
5681	CH ² MH ²	. н	(CH ₂) COOH	OH, OH
5682	CH ₂ NH ₂	н	$(CH_2)_2CN_4H$	(+) -pin
5683	CH ₂ NH ₂	H	(CH ₂) CN ₄ H	(+)-pin -

5684	CH ₂ NH ₂	H	(CH ₂) ₂ CN ₄ H	OH, OH
5685	CH ₂ NH ₂	H .	(CH ₂) CN ₄ H	OH, OH
5686	MH (C=MH) MH2	H	н	(+)-pin
5687	MH (C=NH) MH ₂	H	methy1	(+)-pin
5688	MH (C=NH) NH ₂	Ħ	н	OH, OH
5689	NH (C=NH) NH ₂	H	methyl	OH, OH
5690	NH (C=NH) NH ₂	H	CH2CN	(+) -pin
5691	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	(+)-pin
5692	NH (C=NH) NH ₂	H	CH2CN	OH, OH
5693	NH (C=NH) NH ₂	H	(CH ₂) ₂ COOH	OH, OH
5694	MH (C=NH) NH ₂	H	CH ₂ COOMe	(+) -pin
5695	NH (C=NH) NH ₂	H .	(CH ₂) COOH	(+)-pin
5696	NH (C=NH) NH ₂	н	CH ₂ COOMe	OH, OH
5697	NH (C=NH) NH ₂	H	(CH ₂) COOH	он, он
5698	NH (C=NH) NH ₂	H	(СН ₂) ₂ СТХ ₄ Н	(+)-pin
5699	NH (C=NH) NH ₂	H	(CH ₂) CN ₄ H	(+)-pin
5700	NH (C=NH) NH ₂	H	(CH ₂) ₂ CN ₄ H	OH, OH
5701	NH (C=NH) NH ₂	H	(CH ₂) CN ₄ H	OH, OH
5702	Office	H	н	(+)-pin
5703	OMe	H	н	OH, OH
5704	NH (C≒NH) H	H	н	(+)-pin
5705	NH (C≔NH) H	H	н	он, он
5706	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin
5707	CH ₂ NH ₂	CH ₂ CN	H	он, он
5708	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	(+)-pin
5709	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	OH, OH
5710	CM9	CH ₂ COOMe	H	(+)-pin
5711	OMe	CH ₂ COOMe	H	OH, OH
5712	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	н .	OH, OH
5713	MH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	(+)-pin
	•		g=0	
5714	CH ₂ NH ₂	H	H	(+)-pin
5715	CH ₂ NH ₂	H	methyl	(+)-pin
5716	CH ₂ NH ₂	H	H ·	OH, OH
5717	CH ₂ NH ₂	H	methyl	OH, OH

		•		
5718	CH ₂ NH ₂	H	CH ₂ CN	(+) -pin
5719	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	(+)-pin
5720	CH ₂ NH ₂	Ħ	CH3CM	OH, OR
5721	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	OH, OH
5722	CH ₂ NH ₂	- H	CH ₂ COOMe	(+) -pin
5723	CH ₂ NH ₂	H ··	(CH ₂) COOH	(+)-pin
5724	CH ₂ NH ₂	H	CH ₂ COOMe	OH, OH
5725	CH ₂ NH ₂	H	(CH ₂) COOH	OH, OH
5726	CH ₂ NH ₂	H	(CH ₂) 2CN ₄ H	(+) -pin
5727	CH ₂ NH ₂	H	(CH ₂) CN ₄ H	(+)-pin
5728	CH ₂ NH ₂	H	$(CH_2)_2CN_4H$	OH, OH
5729	CH ₂ NH ₂	H	(CH ₂) CM ₄ H	OH, OH
5730	NH (C=NH) NH ₂	H	H	(+)-pin
5731	MH (C=NH) MH ₂	H	methyl	(+)-pin
5732	NH (C=NH) NH ₂	H	H	OH, OH
5733	NH (C=NH) NH ₂	H	methyl	OH, OH
5734	NH (C=NH) NH ₂	H	CH ₂ CN	(+)-pin
5735	NH (C=NH) NH ₂	H	(CH ₂) ₂ COOH	(+) -pin
5736	MH (C=NH) NH ₂	H	CH ₂ CN	OH, OH
5737	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	OH, OH
5738	NH (C=NH) NH ₂	H	CH ₂ COOMe	(+) -pin
5739	NH (C=NH) NH ₂	н	(CH ₂) COOH	(+)-pin
5740	NH (C=NH) NH ₂	н	CH2COOMe	OH, OH
5741	NH (C=NH) NH ₂	H	(CH ₂) COOH	OH, OH
5742	NH (C=NH) NH ₂	н	$(CH_2)_2CN_4H$	·· (+) -pin
5743	MH (C=NH) NH ₂	H .	(CH ₂) CN ₄ H	(+)-pin
5744	MH (C=NH) NH ₂	H	(CH ₂) ₂ CN ₄ H	OH, OH
5745	NH (C=NH) NH ₂	H	(CH ₂) CM ₄ H	OH, OH
5746	OMe	H	н	(+) -pin
5747	Office	H	H	OH, OH
5748	MH (C=MH) H	H	H	(+) -pin
5749	MH (C=NH) H	H	H .	OH, OH
5750	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin
5751	CH ₂ NH ₂	CH ³ CM	н .	OH, OH
5752	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	(+)-pin

5753	MH (C=NH) NH2	(CH ₂) 2COOH	H	OH, OH
5754	OMe	CH ₂ COOMe	H	(+)-pin
5755	Obte	CH ₂ COOMe	H	OH, OH
5756	MH (C=MH) H	(CH ₂) ₂ CN ₄ H	H	OH, OH
5757	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	H	(+)-pin

Table 53

x .	R13	R14	_Y 1 _Y 2	Phys. Data
CH ₂ NH ₂	H	H	(+)-pin	•
CH ₂ NH ₂	H	H	OH, OH	
NH (C=NH) NH ₂	H.	H	(+)-pin	
NH (C=NH) NH2	н	н	OH, OH	
Obte	H	H	(+)-pin	
OMe	H	H	OH, OH	
MH (C=MH) H	H	H	OH, OH	
NH (C=NH) H	H	H	(+)-pin	
CH2MH2	CH2CM	H	(+) -pin	
CH ₂ NH ₂	CH2CM	H	OH, OH	
MH (C=NH) NH ₂	(CH ₂) COOH	н	(+)-pin	
NH (C=NH) NH ₂	(CH ₂) COOH	H	OH, OH	
OMe	CH ₂ COOMe	н	(+) -pin	
OMe	CH ₂ COOMe	н	OH, OH	
NH (C=NH) H	(CH ₂) CN ₄ H	H	OH, OH	·
NH (C=NH) H	(CH ₂) CN ₄ H	н	(+) -pin	
	CH2NH2 CH2NH2 NH (C=NH) NH2 NH (C=NH) MH2 CM6 NH (C=NH) H NH (C=NH) H CH2NH2 CH2NH2 NH (C=NH) NH2 NH (C=NH) NH2 OM6 OM6 NH (C=NH) NH2 NH (C=NH) NH2	CH2NH2 H CH2NH2 H MH (C=NH) MH2 H MH (C=NH) MH2 H CM6 H MH (C=NH) H H MH (C=NH) H H CH2NH2 CH2CN CH2NH2 CH2CN MH (C=NH) NH2 (CH2) COOH MH (C=NH) MH2 (CH2) COOH CM6 CH2COOM6 CM6 CH2COOM6 NH (C=NH) H (CH2) CN4H	CH2NH2 H H CH2NH2 H H MH (C=NH) NH2 H H NH (C=NH) NH2 H H CMB H H NH (C=NH) H H H NH (C=NH) H H H CH2NH2 CH2CN H CH2NH2 CH2CN H NH (C=NH) NH2 (CH2) COOH H NH (C=NH) NH2 (CH2) COOH H OMB CH2COOMB H OMB CH2COOMB H NH (C=NH) H (C=NH) H	CH2NH2 H (+)-pin CH2NH2 H H CH, CH MH (C=NH) NH2 H H (+)-pin MH (C=NH) NH2 H H CH, CH CMB H H (+)-pin CMB H H CH, CH NH (C=NH) H H CH, CH NH (C=NH) H H CH, CH NH (C=NH) H H H (+)-pin CH2NH2 CH2CN H (+)-pin CH2NH2 CH2CN H CH, CH NH (C=NH) NH2 (CH2) COCH H (+)-pin NH (C=NH) NH2 (CH2) COCH H CH, CH CMB CH2COCMB H (+)-pin CMB CH2COCMB H (+)-pin CMB CH2COCMB H CH, CH NH (C=NH) H (CH2) COCH H CH, CH

Table 54

and m=0

Ex	x	R13	R14	Y^1Y^2	Phys. Data
5782	CH ₂ NH ₂	CH3	H	(+) -pin	
5783	CH2NH2	CH ₃	H	OH, OH	
5784	NH (C=NH) NH ₂	CH ₃	H	(+) -pin	
5785	NH (C=NH) NH2	CH ₃	H	OH, OH	
5786	CMe	Ħ	H	(+) -pin	
5787	CMe	H	H	OH, OH	
5788	NH (C=NH) H	H	H	он, он	
5789	NH (C=NH) H	H	H	(+)-pin .	
5790	CH ₂ NH ₂	CH2CN	H	(+) -pin	
5791.	CH ₂ NH ₂	CH2CM	Ħ	OH, OH	•
5792	MH (C=NH) NH ₂	(CH ₂) COOH	H	(+) -pin	
5793	NH (C=NH) NH ₂	(CH ₂) COOH	H	он, он	
5794	СМа	CH2COOMe	H	(+)-pin	
5795	OMe	CH ₂ COOMe	H	OH, OH	•
5796	NH (C=NH) H	(CH ₂) CN ₄ H	H	OH, OH	
5797	NH (C=NH) H	(CH ₂) CN ₄ H	H	(+)-pin	

Table 55

Ex	x	R13	R14	yly2	Phys. Data
5802	CH ₂ NH ₂	H	. H	(+)-pin	
5803	CH2NH3	H	H	OH, OH	
5804	NH (C=NH) NH ₂	н	H	(+)-pin	
5805	NH (C=NH) NH ²	H	H	OH, OH	
5806	OMe	н -	H	(+)-pin	•
5807	OMe	H	н	OH, OH	
5808	NH (C=NH) H	н	н	OH, OH	
5809	MH (C=MH) H	H	н	(+) -pin	
5810	CH ₂ NH ₂	CH ₂ CN	H .	(+) -pin	
5811	CH ₂ NH ₂	CH ₂ CN	H	OH, OH	
5812	MH (C=NH) NH ₂	(CH ₂) COOH	H	(+)-pin	
5813	MH (C=MH) MH ³	(CH ₂) COOH	H	OH, OH	
5814	OMe	CH ₂ COOMe	H	(+)-pin	
5815	OMe	CH ₂ COOMe	H	OH, OH	
5816	NH (C=NH) H	(CH ₂) CN ₄ H	H	OH, OH	
5817	MH (C=MH) H	(CH ₂) CN ₄ H	H	(+)-pin	

Table 56

1 Exc	x	R13	R14	Y¹Y²	Phys. Data
5822	CH ₂ NH ₂	H .	H	(+)-pin	
5823	CH2NH2	H	H	он, он	
5824	NH (C=NH) NH ₂	H.	H	(+) -pin	
5825	NH (C=NH) NH2	н	H	OH, OH	
5826	OMe	H	H	(+)-pin	•
5827	OMe	Ħ	H	ОН, ОН	
5828	NH (C=NH) H	н	H	OH, OH	
5829	NH (C=NH) H	н	. н	(+) -pin	•
5830	CH ₂ NH ₂	CH2CN	H	(+)-pin	
5831	CH2NH2	CH2CM	Ħ	OH, OH	•
5832	NH (C=NH) NH ₂	(CH ₂) COOH	H	(+)-pin	
5833	NH (C=NH) NH ₂	(CH ₂) COOH	H	OH, OH	
5834	Otte	CH ² COOMe	H	(+) -pin	
5835	OMe	CH2COOMe	H.	OH, OH	÷ .
5836	NH (C=NH) H	(CH ₂) CN ₄ H	H	он, он	•
5837	NH (C=NH) H	(CH ₂) CN ₄ H	H	(+)-pin	

Table 57

Ex	x .	R13	R ¹⁴	Y ¹ Y ²	Phys.	Data
		m=1				
5842	CH ₂ NH ₂	H	H	(+) -pin		· ·
5843	CH ₂ MH ₂	H	H	OH, OH		بن
5844	NH (C=NH) NH ₂	H	H	(+)-pin		
5845	NH (C=NH) NH ₂	H	H	OH, OH		
5846	Clife	H	H	(+)-pin		•
5847	CMe	H	H	OH, OH		
5848	MH (C=MH) H	H	H	OH, OH		
5849	NH (C=NH) H	н	H	(+) -pin		
5850	CH ₂ KH ₂	CH ₂ CN	H	(+)-pin		
5851	CH ₂ NH ₂	CH ₂ CN	H	OH, OH		
5852	NH (C=NH) NH ₂	(CH ₂) COOH	H	(+) -pin		
5853	NH (C=NH) NH ₂	(CH ₂) COOH	H	OH, OH		
5854	OMe	CH ₂ COOMe	H	(+)-pin	•	
5855	OMe	CH2COOMe	H	OH, OH		
5856	MH (C=NH) H	(CH ₂) CM ₄ H	H	OH, OH	-	
5857	NH (C=NH) H	(CH ₂) CN ₄ H	H	(+)-pin		
		m=0				
5858	CH ₂ NH ₂	R	H	(+)-pin		
5859	CH ₂ NH ₂	Ħ	H	OH, OH		
5860	NH (C=NH) NH ₂	н	н	(+)-pin		-
5861	NH (C=NH) NH ₂	Ħ	H	OH, OH		
5862	OMe	H	H	(+)-pin		
5863	OMe	H	H	OH, OH		•
5864	MH (C=NH) H	H	H	OH, OH	•	
				•		

5865	EH (C=EH) H	H	H	(+) -pin
5866	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin
5867	CH ₂ NH ₂	CH ₂ CN	Ħ	OH, OH
5868	NH (C=NH) NH ₂	(CH ₂) COOH	H	(+)-pin
5869	NH (C=NH) NH ₂	(CH ₂) COOH	H	OH, OH
5870	CISS	CH2COOMe	H	(+) -pin
5871	Office	CH ₂ COOMe	H	OH, OH
5872	EH (C=0H) H	(CH ₂) CN ₄ H	H	OH, OH
5873	MH (C=NH) H	(CH ₂) CN ₄ H	H	(+)-pin

Table 58

Ex	x	R ¹³	R14	y ¹ y ²	Phys.	Data
		m=1				
5878	CH ₂ NH ₂	H	H	(+)-pin		
5879	CH ₂ NH ₂	H	н	OH, OH		
5880	MH (C=NH) NH2	н .	H	(+)-pin		
5881	NH (C=NH) NH ₂	н	H	OH, OH		
5882	ORG	H	н	(+)-pin		
5883	OMe	H	H	OH, OH		
5884	MH (C=NH) H	H	H	OH, OH		,
5885	NH (C=NH) H	н	H	(+)-pin		
5886	CH ₂ NH ₂	CH ₂ CN	H	(+) -pin		•
5887	CH ₂ NH ₂	CH ₂ CN	H	OH, OH		
5888	NH (C=NH) NH ₂	(CH ₂) COOH	н	(+) -pin	•	
5889	NH (C=NH) NH ₂	(CH ₂) COOH	н	OH, OH		•
5890	OMe	CH ₂ COOMe	H	(+) -pin		
5891	OMe	CH2COOMe	н	ОН, ОН		San San
5892	NH (C=NH) H	(CH ₂) CN ₄ H	н	OH, OH		
5893	NH (C=NH) H	(CH ₂) CN ₄ H	H	(+) -pin		
	•	m=0				
5894	CH ₂ NH ₂	H	H	(+) -pin		
5895	CH ₂ NH ₂	H	H .	OH, OH	•	
5896	NH (C=NH) NH ₂	H	н	(+) -pin		•
5897	NH (C=NH) NH ₂	K	н	OH, OH		
5898	OMe	н .	н	(+)-pin		
5899	OMe	н	H	OH, OH		,
5900	MH (C=MH) H	H	H	OH, OH		
				•		

5901	MH (C=MH) H	H	H	(+) -pin
5902	CH ₂ NH ₂	CH ₂ CN	H	(+)-pin
5903	CH ₂ NH ₂	CH ₂ CN	H	OH, OH
5904	NH (C=NH) NH ₂	(CH ₂) COOH	H	(+)-pin
5905	NH (C=NH) NH ₂	(CH ₂) COOH	H	OH, OH
5906	CMe	CH ₂ CCOMe	., н	(+) -pin
5907	CMe	CH ₂ COOMe	H	OH, OH
5908	MH (C=MH) H	(CH ₂) CH ₄ H	H	OH, OH
5909	MH (C=MH) H	(CH ₂) CN ₄ H	H	(+)-pin

Table 59

		•		
Ex	x	σ	A _J A _S	Phys. Data
			m-1	
5914	CH ₂ NH ₂	· s	(+) -pin	÷
5915	NHC (=NH) NH2	s	(+) -pin	
5916	SC (=NH) NH2	s	(+) -pin	
5917	CH ₂ NH ₂	s	OH, OH	
5918	MHC (=MH) MH2	s	OH, OH	
5919	SC (=NH) NH ₂	S	OH, OH	
5920	CH ₂ NH ₂	٥	(+)-pin	
5921	NHC (=NH) NH2	0	(+)- pin	
5922	SC (=NH) NH2	0	(+)-pin	
5923	CH ₂ NH ₂	٥	OH, OH	
5924	NHC (=NH) NH2	0 .	OH, OH	
5925	SC (=NH) NH ₂	0	OH, OH	•
			m=2	-
5926	CH ₂ NH ₂	s	(+)-pin	CA
5927	NHC (=NH) NH2	s	(+)-pin	
5928	SC (=NH) NH ₂	s	(+) -pin	
5929	CH ₂ NH ₂	s	OH, OH	
5930	NHC (=NH) NH2	S	OH, OH	٠.
5931	SC (=NH) NH2	S	OH, OH	1 2
5932	CH ₂ NH ₂	0	(+)-pin	
5933	MHC (=NH) NH2	0	(+) -pin	·
5934	SC (=NH) NH2	٥	(+) -pin	
5935	CH ₂ NH ₂	0	OH, OH	
5936	NHC (=NH) NH2		OH, OH	
5937	SC (=NH) NH2	0	OH, OH	
CA:	HRMS Calc.: 543		•	• •

Table 60

	•			•
Ex	x	U	Y ¹ Y ²	Phys. Data
			m=1	
5942	CH ₂ NH ₂	s	(+) -pin	
5943	NHC (=NH) NH ₂	s	(+) -pin	
5944	SC (=NH) NH2 FA -	· s	(+) -pin	
5945	CH ₂ NH ₂	s	OH, OH	
5946	NHC (=NH) NH ₂	s	OH, OH	
5947	SC (=NH) NH ₂	s	OH, OH	
5948	CH2NH2	o	(+) -pin	•
5949	NHC (=NH) NH2	Ó	(+) -pin	
5950	SC (=NH) NH ₂	0	(+) -pin	
5951	CH2NH2	0	OH, OH	·
5952	NHC (=NH) NH ₂	0	OH, OH	
5953	SC (=NH) NH ₂	٥	OH, OH	
			m=2	
5954	CH ₂ NH ₂	s	(+) -pin	
5955	NHC (=NH) NH ₂	s	(+)-pin	••
5956	SC (=NH) NH ₂	s	(+)-pin	
5957	CH ₂ NH ₂	s	OH, OH	
5958	NHC (=NH) NH ₂	s	OH, OH	
5959	SC (=NH) NH ₂	· s	он, он	
5960	CH ₂ NH ₂	0	(+) -pin	:
5961	MHC (=NH) MH ₂	0	(+) -pin	
5962	SC (=NH) NH ₂	0	(+) -pin	
5963	CH ₂ NH ₂	o	OH, OH	
5964	NHC (=NH) NH2	0	он, он	· · · ·
5965	SC (=NH) NH ₂	0	OH, OH	

Table 61

5		`-:	:			
Ex	x	RA	RC	RD	Y1, Y2	Phys
	2770 (2001) and					Data
5970	NHC (NH) NH2	Me	Ph.	Office	(+)-pin	
5971	NHC (NH) NH2	Me	Ph	CONH2	(+)-pin	
5972	MHC (NH) NH2	Me	Ph	F	(+)-pin	
5973	NHC (NH) NH2	Me	Ph	CF3	(+)-pin	
5974	NHC (NH) NH2	Me	Ph	CI	(+)-pin	
5975	NHC (NH) NH2	Me	Ph	OH	(+)-pin	
5976	NHC (NH) NH2	Me	4-C6H4CO2H	OMe	(+)-pin	
5 97 7	NHC (NH) NH2	Me	4-C6H4CO2H	CONH2	(+)-pin	
5978	NHC (NH) NH2	Me	4-C6H4CO2H	P	(+)-pin	
5979	NHC (NH) NH2	Me	4-C6H4CO2H	CF ₃	(+)-pin	
5980	NHC (NH) NH2	Me	4-C6H4CO2H	Cl	(+)-pin	
5981	MHC (NH) NH ₂	Me	4-C6H4CO2H	OH	(+)-pin	į
5982	SC (NH) NH2	Me	Ph	OMe	(+)-pin	٠.
5983	SC (NH) NH ₂	Me	Ph	CONH2	(+)-pin	
5984	SC (NH) NH ₂	Me	Ph	F	(+)-pin	
5985	SC (NH) NH ₂	Me	Ph	CF3	(+)-pin	
5986	SC (NH) NH2	Me	Ph	C1	(+)-pin	
5987	SC (NH) NH ₂	Me	Ph	OH	(+)-pin	
5988	SC (NH) NH2	Me	4-C6H4CO2H	OMe	(+)-pin	:
5989	SC (NH) NH2	Me	4-C6H4CO2H	CONH ₂	(+)-pin	
5990	SC (NH) NH ₂	Me .	4-C6H4CO2H	F	(+)-pin	

5991	SC (NH) NH ₂	Me	4-C6H4CO2H	CF ₃	(+)-pin
5992	SC (NH) NH ₂	Me	4-C6H4CO2H	C1	(+)-pin
5993	SC (NH) NH ₂	Me	4-C6H4CO2H	OH	(+)-pin
5994	CH ₂ NH ₂	Me	Ph	OMe	(+)-pin
5995	CH ₂ NH ₂	Me	Ph	CONH ₂	(+)-pin
5996	CH ₂ NH ₂	Me	Ph	. F	(+)-pin
5997	CH ₂ NH ₂	Me .	Ph.	CF ₃	(+)-pin
5998	CH ₂ NH ₂	Me	Ph	C1 .	(+)-pin
5999	CH ₂ NH ₂	Me	Ph	OH	(+)-pin
6000	CH ₂ NH ₂	Me	4-C6H4CO2H	OMe	(+)-pin
6001	CH ₂ NH ₂	Me	4-C6H4CO2H	CONH2	(+)-pin
6002	CH ₂ NH ₂	Me	4-C6H4CO2H	F	(+)-pin
6003	CH ₂ NH ₂	Me	4-C6H4CO2H	CT3	(+)-pin
6004	CH ₂ NH ₂	Me	4-С6Н4СО2Н	C1	(+) -pin
6005	CH ₂ NH ₂	Me	4-C6H4CO2H	OH	(+)-pin
6006	NHC (NH) NH ₂	Me	Ph	OMe	OH, OH
6007	NHC (NH) NH2	Me	Ph	CONH ₂	OH, OH
6008	NHC (NH) NH ₂	Me	Ph	F	OH, OH
6009	NHC (NH) NH2	Me	Ph	CF ₃	OH, OH
6010	NHC (NH) MH ₂	Me	F h	C1	OH, OH .
6011	NHC (NH) NH2	Me	Ph	OH	OH, OH
6012	NHC (NH) NH ₂	Me	4-C6H4CO2H	OMe	OH, OH
6013	NHC (NH) NH2	Me	4-C6H4CO2H	CONH2	OH, OH
6014	NHC (NH) NH ₂	Me	4-C6H4CO2H	F	он, он
6015	NHC (NH) NH ₂	Me	4-C6H4CO2H	CF ₃	он, он
6016	MHC (NH) NH ₂	Me	4-C6H4CO2H	C1	он, он
6017	MHC (MH) MH ₂	Me	4-C6H4CO2H	OH	OH, OH
6018	SC (NH) NH ₂	Me	Ph	CMe	OH, OH
6019	SC (NH) NH ₂	Me	Ph	CONH ₂	он, он
6020	SC (NH) NH ₂	Me	Ph	F	OH, OH
6021	SC (NH) NH ₂	Me	Ph ·	CF ₃	OH, OH
6022	SC (NH) NH ₂	Me ·	Ph	CI.	OH, OH
6023	SC (NH) NH ₂	Me	Ph	OH	он, он
6024	SC (NH) NH ₂	Me	4-C6H4CO2H	CMe	OH, OH
6025	SC (NH) NH ₂	Me	4-C6H4CO2H	CONH ₂	OH, OH

6026	SC (NH) NH ₂	Me	4-C6H4CO2H	F	OH, OH
6027	SC (NH) NH ₂	Me	4-C6H4CO2H	CF3	OH, OH
6028	SC (NH) NH ₂	Me	4-C6H4CO2H	C1	OH, OH
6029	SC (NH) NH ₂	Me	4-C6H4CO2H	OH	OH, OH
6030	CH ₂ NH ₂	Me	Ph	OMe	OH, OH
6031	CH ₂ NH ₂	Me	Ph	CONH2	OH, OH
6032	CH ₂ NH ₂	Me	Ph	F	OH, OH
6033	CH2NH2	Me	Ph.	CP3	
6034	CH ₂ NH ₂	Me	Ph	cı.	OH, OH
6035	CH2NH2	Me	Ph.	OH	OH, OH
6036	CH2NH2	Me	4-C6H4CO2H		OH, OH
6037	CH2NH2			OMe	OH, OH
	_	THE	4-C6H4CO2H	CONH2	OH, OH
6038	CH ₂ NH ₂	Me	4-C6H4CO2H	F	OH, OH
6039	CH ₂ NH ₂	Me	4-C6H4CO2H	CF ₃	OH, OH
6040	CH ₂ NH ₂	Me	4-C6H4CO2H	Cl	OH, OH
6041	CH ₂ NH ₂	Me	4-C6H4CO2H	OH	OH OH

. 2

10

15

20

25

30

Utility

The compounds of formula (I) are useful as inhibitors of trypsin-like enzymes, notably human thrombin, Factor VIIa, Factor IXa, Factor Xa, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological reactions catalyzed by the aforesaid enzymes such as blood coagulation and inflammation. These compounds are also useful as anticoagulants for the processing of blood for therapeutic or diagnostic purposes or for the production of blood products or fragments, since contact of blood with the surfaces commonly used for blood collection and storage causes activation of coagulation leading to thrombin formation and clot formation.

The effectiveness of compounds of the present invention as inhibitors of blood coagulation proteases was determined using purified human proteases and synthetic substrates following procedures similar to those described in Kettner et al. (1990).

For these assays, the rate of enzymatic (thrombin, Factor Xa, and Factor VIIa) hydrolysis of chromogenic substrates (S2238 (H-D-Phe-Pip-Arg-pNA), S2222, and S2288, respectively; Kabi Pharmacia, Franklin, OH) was measured both in the absence and presence of compounds of the present invention. Hydrolysis of the substrate resulted in the release of pNA, which was monitored spectrophotometrically by measuring the increase in absorbance at 405 nM. A decrease in the rate of absorbance change at 405 nm in the presence of inhibitor is indicative of enzyme inhibition. The results of this assay are expressed as inhibitory constant, Ki.

Thrombin and Xa determinations were made in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000. VIIa determinations were made in 0.05 M tris buffer, pH 7.6, containing 0.10 M NaCl, 4 mM

CaCl₂, and 0.1% bovine serum albumin. The Michaelis constant, K_{m} , for substrate hydrolysis was determined at 25 °C using the method of Lineweaver and Burk.

Values of Ki were determined by allowing 0.2 - 0.5

nM human thrombin or human factor Xa (Enzyme Research Laboratories, South Bend, IN), or 50 nM human factor VIIa (BiosPacific, Emeryville, CA) react with the substrate (0.20 mM - 1 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the velocities (rate of absorbance change vs time) were measured in the time frame of 25-30 minutes. The following relationship was used to calculate Ki values.

 $\frac{v_0 \cdot v_s}{-} = \frac{1}{v_s}$ 15 $v_s = \frac{K_i (1 + s/K_m)}{v_s}$

where:

25

vo is the velocity of the control in the absence of inhibitor;

vs is the velocity in the presence of inhibitor;

I is the concentration of inhibitor;

Ki is the dissociation constant of the enzyme:

inhibitor complex;

S is the concentration of substrate; K_m is the Michaelis constant.

Using the methodology described above, representative compounds of this invention were evaluated and found to exhibit a Ki of less 500 µM thereby confirming the utility of compounds of the invention as effective inhibitors of human blood coagulation proteases. The results of these assays are summarized in Table 62, where +++ indicates a Ki < 500 nM; ++ indicates a Ki < 50,000 nM; and + indicates a Ki 500,000 < nM; - indicates inactive.

Table 62. Ki values for inhibition of Serine Proteases by compounds of the present invention.

EXAMPLE	Thrombin	Factor Xa	Factor VIIa
1	+++	++	NT ·
2	+++	+++	+++
29	+++	NT .	NT .
35	+++	+++	++
68	++ .	++	+++
129	+++	+++	NT
199	+++	+++	+++
203	+++	+++	+++
224	+++	+++	+++
227	+++	+++	++
231	+++	+++	++
261	+++	+++	+++
262	+++	+++	+++
263	+++	+++	+++
283	+++	+++	++
286	+++	+++	+++
288	+++	NT	+++
298	+++	+++	+++
299	+++	+++	+++
302	+++	+++	++
303	+++	++	++
304	++	++	++
305	++	++	++
468	++	++	++
474	++	++	++
887	+++	NT	NT
888	+++	++	++
890	+++	++	++
892	.+++	++	++
898	+++	++	++
905	++	++	-
913	+++	-	++

914	+++	++	++
917	+++	++	. ++
920	+++	NT	NT
921	+++	++	++
923	+++	++	++
931	+++	++	++
967	+++	++	+++
969	+++	++	++
977	+++	NT	NT
1352	+++	++	NT
1431	+++	NT	NT
1459 😅	++	++	++
1467	+++	NT	++
1521	+++	NT	NT
1557	+++	NT	.++.
2066	NT	NT	NT
2067	+++	NT	NT
2068	++	++	++
2073	+++	++	++
2074	+++	++	++
2411	+++	NT	NT
2412	+++	++	++
2414	+++	++	++
2416	+++	++	++
2422	+++	. ++	++
2430	++	++	-
2439	+++	++	++
2440	+++	++	++
2443	+++	++	* ++
2446	+++	++	++
2447	+++	++	++
2490	+++	++	+++
2491	+++	+++	++
2499	+++	++	++
2533	+++	++	· -

+++	NT	. NT
+++	++	+++
+++	++	++
++	NT	nt
+++	++	NT
+++	•	++
+++	++	++
+++	++	. ++
++	++	++
++	++	++
+++	+++	NT
ys +++	+++	nt
NT	NT	NT
	+++ +++ +++ +++ +++ +++ ++	+++ ++ ++ ++ ++ ++ +++ ++ +++ ++ +++ ++ +++ ++ +++ ++ +++

The final concentration of thrombin was 4 NIH units/mL. The effectiveness of compounds in prolonging clotting times is reported as K_iTT (nM; level of inhibitor required to prolong clotting to the time observed for 2 NIH units/mL thrombin in the absence of inhibitor). Compounds of the present invention were found to have K_iTT values in the range of 100 - 6000 nm.

or parenterally to a host to obtain an anti-thrombogenic effect. The dosage of the active compound depends on the mammalian species, body weight, age, and mode of administration as will be obvious to one skilled in the art. In the case of large mammals such as humans, the compounds may be administered alone or in combination with pharmaceutical carriers or diluents at a dose of from 0.02 to 15 mg/Kg to obtain the anti-thrombogenic effect, and may be given as a single dose or in divided doses or as a sustained release formulation.

20 Pharmaceutical carriers or diluents are well known and include sugars, starches and water, which may be used to make tablets, capsules, injectable solutions or

D 96/20689

the like which can serve as suitable dosage forms for administration of the compounds of this invention.

Remington's Pharmaceutical Sciences, A. Osol, is a standard reference text which discloses suitable pharmaceutical carriers and dosage forms. The disclosure of this text is hereby incorporated by reference for a more complete teaching of suitable dosage forms for administration of the compounds of this invention.

PCT/US95/16248

WHAT IS CLAIMED IS:

1. A compound of formula:

 R^{1} -Z-CH R^{2} -A

. 5

wherein:

A is

- $a) BY^1Y^2$
- b) -C(=0)CF3,
- 10 c) -C(=0) CHF₂,
 - d) -C(=0) CH₂F,
 - e) -C(=0) CH₂C1,
 - $f) C (=0) OR^{3}$
 - g) $-C(=0)NR^{15}R^{16}$,
- 15 h) $-C (=0) R^3$,
 - i) $-C(=0)COOR^3$.
 - $j) C(=0) C(=0) NR^{15}R^{16}$
 - k) $-C(=0)C(=0)R^3$,
 - 1) $-C (=0) CY^3Y^4COOR^3$,
- 20 m -C (=0) CY³Y⁴C (=0) NR¹⁵R¹⁶,
 - $n) C (=0) CY^3Y^4C (=0) R^3$
 - o) -PO3H2, or
 - p) -CHO;

 Y^1 and Y^2 are independently.

25

35

- a) -OH,
- b) -F,
- c) $-NR^3R^4$, or
- d) C₁-C₈ alkoxy;

 Y^1 and Y^2 can be taken together to form:

- e) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,
 - f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

```
g) a cyclic boron amide-ester where said chain or
                              ring contains from 2 to 20 carbon atoms and
                              from 0-3 heteroatoms which can be N, S, or O;
          Y^3 and Y^4 are independently
    5
                    a) -OH or
                    b) -F;
           Z is
                  a) - (CH<sub>2</sub>)<sub>m</sub>CONR8-,
                 b) - (CH<sub>2</sub>) mCSNR8-,
  10
                 c) -(CH_2)_mSO_2NR^8-
                 d) - (CH_2)_mCO_2-,
                 e) -(CH_2)_mC(S)O-, or
                 f) - (CH<sub>2</sub>)<sub>m</sub>SO<sub>2</sub>O-;
          Rl is
 15
                 a) - (CH2)p-aryl, wherein aryl is phenyl, naphthyl or
                     biphenyl substituted with one, two or three
                      substituents selected from the group consisting
                     of:
                          halo (F, Cl, Br, I), methylenedioxy, -R8,
                          -NR<sup>8</sup>COR<sup>9</sup>, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl,
 20
                          -(CH<sub>2</sub>)<sub>W</sub>-OR<sup>8</sup>, -(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                          -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                          -(CH<sub>2</sub>)<sub>W</sub>S(O)<sub>T</sub>R<sup>7</sup>, -(CH<sub>2</sub>)<sub>W</sub>NR<sup>8</sup>R<sup>9</sup>, -(CH<sub>2</sub>)<sub>W</sub>COR<sup>8</sup>,
                          -(CH<sub>2</sub>)<sub>W</sub>CHO; -(CH<sub>2</sub>)<sub>W</sub>CO<sub>2</sub>R<sup>8</sup>, -(CH<sub>2</sub>)<sub>W</sub>CONR<sup>8</sup>R<sup>9</sup>.
 25
                          -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-(C<sub>1</sub>-C<sub>5</sub>)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH<sub>2</sub>,
                          -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-
                         CO_2-(C_1-C_6)-alkyl, -(CH_2)<sub>w</sub>NHSO<sub>2</sub>-(C_1-C_6)-alkyl,
                          -(CH_2)<sub>W</sub>NHSO<sub>2</sub>-(C_1-C_6)-perfluoroalkyl,
                          -(CH<sub>2</sub>) wNHSO<sub>2</sub>-phenyl, -(CH<sub>2</sub>) wNHSO<sub>2</sub>-
30
                         perfluorophenyl, -(CH2) wCN4H, -0(CH2) wCN,
                          -NH(CH<sub>2</sub>)<sub>W</sub>CN, -S(CH<sub>2</sub>)<sub>W</sub>CN, -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-
                         alkyl), -(CH_2)_wNH-CO-(C_1-C_6-perfluoroalkyl),
                         -(CH_2)<sub>w</sub>NH-CO-(phenyl), -(CH_2)<sub>w</sub>NH-CO<sub>2</sub>-(C_1-C_6-
                         alkyl), -(CH<sub>2</sub>) wNH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl),
35
                         -(CH<sub>2</sub>)_{W}NH-CO<sub>2</sub>-(pheny1), -0(C=0)-(C<sub>1</sub>-C<sub>5</sub>-alky1),
```

15

20

- b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:
 - i) quinolinyl,
- ii) isoquinolinyl,
 - iii) benzopyranyl,
 - iv) benzothiophenyl,
 - v) benzofuranyl,
 - vi) 5,6,7,8-tetrahydroquinolinyl,
- vii) 5,6,7,8-tetrahydroisoquinolinyl,

and wherein the substituents are members selected from the group consisting of halo (F, Cl, Br, I), -CN, C_1 - C_{10} -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, R^8 , -OR 8 , -NO $_2$, -CF $_3$, -S(0) $_1$ R $_7$, -NR $_8$ R $_9$, -COR $_8$, -CO $_2$ R $_8$, -CONHR $_8$, NR $_8$ COR $_9$, NR $_8$ CO $_2$ R $_9$,

c)

d)

e)

10

15

f)

wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR^{13} , S or O, provided that:

i) there may be only one S or O present in the ring at a time;

ii) there may only be 1-2 N present when there is an O or S present;

iii) there may be only 1-4 N present;

g)

wherein W, R, T, U and V are selected from the group consisting of: CR13 or N, provided that there be no less than 1 and no more than 3 ${\tt N}$ present;

h)

wherein

20

is as defined above;

i)

$$T = W \qquad (CH_2)_u = I \qquad V = I \qquad Wherein$$

is as defined above;

(t

5

wherein G is 0, S, or NP, where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$);

k)

10

wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$);

15 R^2 is

- a) (C1-C12 alkyl)-X,
- b) (C2-C12 alkenyl)-X, or
- c)

X is

- a) halogen (F, Cl, Br, I),
- b) -CN.
- 5 c) $-NO_2$,
 - d) -CF3,
 - e) $-s(0)_{r}R^{14}$,
 - f) -NHR14
 - $g) NHS(0)_{r}R^{14}$
- 10 h) -NHC(NH) H,
 - i) -NHC(NH) NHOH.
 - j) -NHC(NH)NHCN,
 - k) -NHC(NH) NHR14,
 - 1) -NHC(NH) NHCOR14,
- 15 m) -C(NH)NHR14,
 - n) -C(NH) NHCOR14
 - o) -C(0) NHR14
 - p) -C(0)NHC(0)R14,
 - $q) C(0) OR^{14}$
- 20 r) $-0R^{14}$
 - s) $-0C(0)R^{14}$,
 - t) -OC(0) OR14,
 - u) -OC(0) NHR14,
 - v) -OC(0) NHC(0) R14
- 25 w) -SC (=NH) NHR¹⁴, or
 - x) -SC (=NH) NHC (=0) R^{14} ;

R³ is

- a) hydrogen,
- b) C_1 - C_8 alkyl,
- 30 c) -(C₁-C₄ alkyl) -aryl,
 - d) C5-C7 cycloalkyl, or

e) phenyl;

R4 is

- a) hydrogen,
- b) C_1-C_8 alkyl,
- c) $-(C_1-C_4 \text{ alkyl}) \text{aryl}$,
 - d) C5-C7 cycloalkyl,
 - e) phenyl, or
 - f) phenylsulfonyl;

membered aromatic ring optionally substituted with one, two or three substituents selected from the group consisting of halo (F, Cl, Br, I), -CN, Cl-Cl0-alkyl, C3-C8-cycloalkyl, C2-Cl0-alkenyl, C2-Cl0-alkynyl, -OR⁸, -NO₂, -CF₃, -S(O)_TR⁷, -NR⁸R⁹, -COR⁸, -COR⁸R⁹, phenyl, benzyl, phenylethyl;

 R^7 is

- a) phenyl,
- b) C1-Cg-alkyl,
- c) C1-C4-alkoxy,
- 20 d) -CF3. or
 - e) benzyl;

R8 and R9 are independently

- a) H,
- b)

25

- c) C3-C7 cycloalkyl,
 - d) C1-Cg-alkyl, or

R¹¹ is

- a) halo (F, Cl, Br, I),
- 30 b) -CN,
 - c) C1-C10-alkyl,
 - d) C3-Cg-cycloalkyl,
 - e) C2-C10-alkenyl,

```
f) C2-C10-alkynyl,
                             g) - OR^8
                             h) -NO2,
                             i) -CF3.
       5
                             j) -S(0) -R^7,
                             k -NR8R9
                            m) - CO_2R^8
                             1) -COR<sup>9</sup>,
                            n) -CONR<sup>8</sup>R<sup>9</sup>, or
   10
                            o) H
                R12 is
                                      H, C1-C4 alkyl, phenyl, benzyl, -COR7, or
                                       -S(0) rR7;
               R^{13} is
                                      H, halogen (F, Cl, Br, I), (C1-C8) alkyl, (C1-
   15
                                      C6)-perfluoroalkyl, -(CH2)r-D, C3-C8 cycloalkyl,
                                      C2-C6-alkenyl, C2-C6-alkynyl, methylenedioxy,
                                      -(CH_2)_w-OR^8, -(CH_2)_wNC, -(CH_2)_wCN, -(CH_2)_wNO_2,
                                      - (CH_2)_w CF_3, - (CH_2)_w S(O)_x R^7, - (CH_2)_w NR^8 R^9,
  20
                                      -(CH_2)_wCOR^8, -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9,
                                      - (CH_2)_wSO_2NH- (C_1-C_6)-alky1, - (CH_2)_wSO_2NH_2,
                                      - (CH_2)_wSO_2NH-CO-(C_1-C_6) - alkyl, - (CH_2)_wSO_2NH-CO_2-
                                      (C_1-C_6) -alkyl, -(CH_2)_WSO_2NH, -(CH_2)_WNHSO_2-(C_1-C_6)
                                     C6)-alkyl, -(CH2)wNHSO2-(C1-C6)-perfluoroalkyl,
 25
                                     -(CH2) wNHSO2-phenyl, -(CH2) wNHSO2-
                                    perfluorophenyl, -(CH_2)_{W}CN_4H, -0(C=0)-(C_1-C_5-C_5)
                                     alkyl), -0(CH_2)_WCN, -NH(CH_2)_WCN, -S(CH_2)_WCN,
                                     - (CH_2)_{W}NH-CO-(C_1-C6-alkyl), - (CH_2)_{W}NH-CO-(C_1-C6-
                                    perfluoroalkyl), -(CH2)wNH-CO-(phenyl),
30
                                    -(CH_2)_{W}NH-CO_2-(C_1-C_6-alkyl), -(CH_2)_{W}NH-CO_2-(C_1-C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)_{W}NH-CO_2-(C_1-C_2)
                                    C6-perfluoroalkyl), -(CH2) wNH-CO2-(phenyl),
                                    -(CH_2)uphenyl wherein the phenyl contains 0-3
                                    substituents selected from R18, -S-(CH2)uphenyl
                                   wherein the phenyl contains 0-3 substituents
                                   selected from R<sup>18</sup>, or -O-(CH<sub>2</sub>)uphenyl wherein
35
```

```
from R18:
      R14 is
             a) -H,
 5
             b) -CF3
             c) -C1-C4 alkyl,

 d) -(CH<sub>2</sub>)<sub>Q</sub>-aryl, wherein aryl is phenyl, biphenyl,

             naphthyl, or fluorenyl unsubstituted or substituted
             with one to three substituents selected from the
10
             group consisting of:
                    halogen (F, Cl, Br, I),
                     -CF3,
                     -(C_1-C_4 \text{ alkyl}),
                     -(CH_2)_{x}R^{15}
                    -(CH_2)_XCO(CH_2)_VR^{15},
15
                     -(CH_2)_{x}C(O)O(CH_2)_{y}R^{15},
                    -(CH_2)_{x}C(0)N[(CH_2)_{y}R^{15}][(CH_2)_{y}R^{16}],
                    -methylenedioxy.
                     -(C1-C4 alkoxy),
                     -(CH_2)_{X}O(CH_2)_{Y}R^{15},
20
                     - (CH<sub>2</sub>) xOCO (CH<sub>2</sub>) vR<sup>15</sup>,
                     -(CH_2)_{X}OC(0)O(CH_2)_{Y}R^{15},
                    -(CH_2)_{X}OC(O)N[(CH_2)_{Y}R^{15}][(CH_2)_{Y}R^{16}],
                     -(CH_2)_{X}OC(0)N[(CH_2)_{Y}R^{15}][CO(CH_2)_{Y}R^{16}],
                    - (CH_2)_XS(0)_T(CH_2)_YR^{15},
25
                     -(CH_2)_XS(0)_T(CH_2)_VCOR^{15},
                     -(CH_2)_{x}S(0)_{T}(CH_2)_{y}C(0)OR^{15},
                     -(CH_2)_{x}S(0)_{r}N[(CH_2)_{y}R^{15}][(CH_2)_{y}R^{16}]
                     - (CH_2)_XN[(CH_2)_YR^{15}][(CH_2)_YR^{16}],
                     -(CH_2)_XN[(CH_2)_YR^{15}][CO(CH_2)_YR^{16}],
30
                     -(CH_2)_XN[(CH_2)_YR^{15}][C(0)O(CH_2)_YR^{16}],
                     -(CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}][(CH_2)_YR^{16}]
                     -(CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}]
                     [CO(CH_2)_{VR}^{16}],
                    -(CH_2)_XN[(CH_2)_YR^{15}][S(0)_Y(CH_2)_YR^{16}];
35
      R^{15} and R^{16} are independently
```

the phenyl contains 0-3 substituents selected

- a) hydrogen,
- b) C1-C8 alkyl,
- c) -(C₁-C₄ alkyl)-aryl, where aryl is defined above,

d) C₅-C₇ cycloalkyl,

- e) phenyl, substituted by 0-3 R18,
- f) benzyl, substituted by 0-3 R18, or
- g) -(C₁-C₄ alkoxy);

 ${\tt R}^{15}$ and ${\tt R}^{16}$ can be taken together to form a ring:

10

20

5

 R^{18} and R^{19} are independently

H, halo (F, Cl, Br, I), C1-C8-alkyl, C3-C8 cycloalkyl, C2-C6-alkenyl, C2-C6-alkynyl,

15 - $(CH_2)_W$ - OR^8 , - $(CH_2)_W$ CN, - $(CH_2)_W$ NC, - $(CH_2)_W$ NO₂,

 $-(CH_2)_{W}CF_3$, $-(CH_2)_{W}S(O)_{r}R^7$, $-(CH_2)_{W}NR^8R^9$,

 $-(CH_2)_wCOR^8$, $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$,

 $-(CH_2)_WSO_2NH-(C_1-C_6)-alkyl, -(CH_2)_WSO_2NH_2,$

-(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-

 CO_2 - $(C_1$ - $C_6)$ -alkyl, - $(CH_2)_wSO_2NH$ - $(CH_2)_wNHSO_2$ - $(C_1$ - $C_6)$ -alkyl, - $(CH_2)_wNHSO_2$ - $(C_1$ - $C_6)$ -

perfluoroalkyl, -(CH₂) wNHSO₂-(C₁-C₆)-

-(CH2)wNHSO2-perfluorophenyl, -(CH2)wCN4H,

-0(C=0)-(C1-C5-alkyl), -0(CH2)wCN, -NH(CH2)wCN,

25 -S(CH₂)_WCN, -(CH₂)_WNH-CO-(C₁-C₆-alkyl),

-(CH₂)_WNH-CO-(C₁-C₆-perfluoroalkyl), -(CH₂)_WNH-CO-(C₁-C₆-phenyl), -(CH₂)_WNH-CO₂-(C₁-C₆-alkyl),

-(CH_2)_{WNH}- CO_2 -(C_1 - C_6 -phenyl), or -O(C=O)phenyl;

R18 and R19 can be taken together to form a

30 methylenedioxy group;

R²⁰ and R²⁰a are independently:

(C1-C8)alkyl, -(CH2)uphenyl wherein the phenyl contains 0-3 substituents selected from R18, (C1-C6)-perfluoroalkyl,or -(CH2)r-D;

```
m is 0 to 6;
     n is 1 to 2;
     p is 0 to 2;
     q is 0 to 4.
 5 r is 0 to 2;
     s is 0 to 3;
     t is 1 to 5;
    u is 0 to 5;
     v is 0.to 5;
10
     w is 0 to 5;
     x is 0 to 6;
     y is 0 to 6;
     D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
           oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-
           yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
15
           pyrid-2-yl, pyrid-4-yl, pyridazin-3-yl, pyridazin-
          4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl,
           or tetrazolyl;
     E is -CO-, -SO_2-, -CH<sub>2</sub>- or a single bond,
20
     F is -CO-;
     W is
           a) -0-,
          b) -s(0)r-,
           C) -NR^4
           d) -NC (=0) R^3 - ...
25
           e) a bond, or
           f) - (CH_2)_{n};
     or prodrugs or pharmaceutically acceptable salts
         thereof.
30
     2. A compound of Claim 1 wherein:
     Z is
         a) - (CH<sub>2</sub>)<sub>m</sub>CONR8-,
         b) - (CH2) mCSNR8-,
         c) -(CH<sub>2</sub>)<sub>m</sub>SO<sub>2</sub>NR<sup>8</sup>-,
35 .
     R<sup>l</sup> is
```

```
a) - (CH2)p-aryl, wherein aryl is phenyl, naphthyl or
                biphenyl substituted with one, two or three
                substituents selected from the group consisting
                of:
   5
                   halo (F, Cl, Br, I), methylenedioxy, -R8,
                   -NR<sup>8</sup>COR<sup>9</sup>, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl,
                   -(CH<sub>2</sub>)<sub>w</sub>-OR<sup>8</sup>, -(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                   -(CH_2)_{W}CN, -(CH_2)_{W}NC, -(CH_2)_{W}NO_2, -(CH_2)_{W}CF_3,
                   -(CH_2)_{w}S(0)_{r}R^7, -(CH_2)_{w}NR^8R^9, -(CH_2)_{w}COR^8,
                   -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH-(C_1-
 10
                   C_6)-alkyl, -(CH_2)_WSO_2NH_2, -(CH_2)_WSO_2NH-CO-(C_1-
                   C_6)-alkyl, -(CH_2) _wSO_2NH-CO_2-(C_1-C_6)-alkyl,
                   - (CH_2)_{w}NHSO_2- (C_1-C_6) - alky1, - (CH_2)_{w}NHSO_2- (C_1-
                   C6)-perfluoroalkyl, -(CH2)wNHSO2-phenyl,
 15
                   -(CH2)wNHSO2-perfluorophenyl, -(CH2)wCN4H,
                   -0(CH<sub>2</sub>)<sub>W</sub>CN, -NH(CH<sub>2</sub>)<sub>W</sub>CN, -S(CH<sub>2</sub>)<sub>W</sub>CN, -(CH<sub>2</sub>)<sub>W</sub>NH-
                  CO-(C_1-C_6-alky1), -(CH_2)_{WNH}-CO-(C_1-C_6-alky1)
                  perfluoroalkyl), - (CH2) wNH-CO-(phenyl),
                  -(CH_2)_{w}NH-CO_2-(C_1-C_6-alky1), -(CH_2)_{w}NH-CO_2-(C_1-C_6-alky1)
 20
                  C6-perfluoroalkyl), or -(CH2)wNH-CO2-(phenyl),-
                  0(C=0-(C1-C5 alkyl);
           b) heteroaryl, wherein heteroaryl is an
               unsubstituted, monosubstituted or disubstituted:
               i)
                     quinolinyl,
25
               ii)
                     isoquinolinyl,
              iii) benzopyranyl,
               iv)
                     benzothiophenyl,
              V)
                     benzofuranyl,
                     5,6,7,8-tetrahydroquinolinyl,
30
              vii) 5,6,7,8-tetrahydroisoquinolinyl,
              and wherein the substituents are selected from the
              group consisting of halo (F, Cl, Br, I), -CN, C1-
              C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-
              C_{10}-alkynyl, R^8, -OR^8, -NO_2, -CF_3, -S(0)_{TR}^7,
35
```

-NR8R9, -COR8, -CO2R8, -CONR8H, NR8COR9, NR8CO2R9;

E R⁵

d)
-1/2 (CH₂),
R⁸ R⁹

5 e)

f) wherein the ring

represented by -J-K-L-M-Q- is a group

selected from:

20

1) $-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$,

2) $-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$

3) $-N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,

4) $-N-C(R^{13})=N-C(R^{13})=N-$

5) $-N-C(R^{13})=C(R^{13})-N=N-$

15 6) $-N-C(R^{13})=N-N=N-$,

7) $-N-N=C(R^{13})-N=N-$,

8) = $C-O-C(R^{13})=N-C(R^{13})=$,

9) $-C=C(R^{13})-O-C(R^{13})=N-$

10) = $C - C(R^{13}) = C(R^{13}) - N =$,

11) $-C=C(R^{13})-C(R^{13})=N-O-$,

12) = $C - C(R^{13}) = C(R^{13}) - 0 - N =$,

13) $-C=C(R^{13})-O-N=C(R^{13})-$,

14) = $C-S-C(R^{13})=N-C(R^{13})=$,

```
15) -C=C(R^{13})-S-C(R^{13})=N-
                    16) = C-S-C(R^{13})=C(R^{13})-N=.
                    17) -C=N-S-N=C(R<sup>13</sup>)-,
                    18) -C=N-S-C(R^{13})=N-
 5
                    19) = C-S-N=C(R^{13})-N=
                   20) = C-S-C(R^{13})=C(R^{13})-C(R^{13})=
                   21) -C=C(R^{13})-S-C(R^{13})=C(R^{13})-
                   22) =C-O-C(\mathbb{R}^{13})=C(\mathbb{R}^{13})-C(\mathbb{R}^{13})=, or
                   23) -C=C(R^{13})-O-C(R^{13})=C(R^{13})-:
10
           g) wherein the ring
```

represented by -C-W-R-T-U-V- is a group

selected from:

selected from:

1)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$$
,

2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,

3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,

4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$,

5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$,

6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,

7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,

8) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$,

9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,

10) $-C=N-C(R^{13})=N-N=C(R^{13})-$,

11) $-C=N-C(R^{13})=C(R^{13})-N=N-$, or

 $-C=C(R^{13})-N=C(R^{13})-N=N-;$ 12) 25 h)

is as defined above;

i)

$$T = W \qquad (CH_2)_u = V \qquad R^{18}$$

$$R^{18}$$

$$R^{19}$$

$$Wherein$$

is as defined above;

5 j)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

10 k)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

15 R14 is:

20

- a) -H,
- b) -CF3
- c) -C1-C4 alkyl,
- d) -(CH₂)_q-aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl unsubstituted or substituted

```
with one to three substituents selected from the
              group consisting of:
                     halogen (F, Cl, Br, I),
                     -CF3,
   5
                     -(C1-C4 alkyl),
                     -methylenedioxy,
                     -(C1-C4 alkoxy),
                     -(CH_2)_{x}N[(CH_2)_{y}R^{15}][(CH_2)_{y}R^{16}];
       and all other required substituents of formula (I) are
       as defined in Claim 1.
  10
       3. A compound of Claim 2 wherein
             a) -BY^{1}Y^{2},
 15
             b) -C (=0) CF3,
             c) -C (=0) CHF2,
             d) -C (=0) CH2F,
             e) -C(=0)CH2Cl,
             f) - C (=0) OR^3
 20
             g) - C (=0) NR^{15}R^{16}
             h) -C (=0) R^3,
             i) - C (=0) COOR<sup>3</sup>
             j) -C (=0) C (=0) NR^{15}R^{16}
             k) - C (=0) C (=0) R^3
25
             1) -CHO;
      \mathbf{Y}^1 and \mathbf{Y}^2 are independently
            a) -OH, or
            b) C<sub>1</sub>-C<sub>8</sub> alkoxy;
     \mathbf{Y}^1 and \mathbf{Y}^2 can be taken together to form
          a cyclic boron ester where said chain or ring
30
                   contains from 2 to 20 carbon atoms and from 0-
                   3 heteroatoms which can be N, S, or O,
     Z is
          a) - (CH<sub>2</sub>)<sub>m</sub>CONR8-,
35
          b) - (CH<sub>2</sub>)<sub>m</sub>CSNR<sup>8</sup>-, or
```

WO 96/20689 PCT/US95/16248

```
c) -(CH<sub>2</sub>)<sub>m</sub>SO<sub>2</sub>NR<sup>8</sup>-;
     Rl is
          a) - (CH<sub>2</sub>)<sub>D</sub>-aryl, wherein aryl is phenyl, naphthyl or
             biphenyl substituted with one, two or three
             substituents independently selected at each
             occurrence from the group consisting of:
                 halo (F, Cl, Br, I), methylenedioxy, -R8,
                 -NR^8COR^9, C_2-C_6-alkenyl, C_2-C_6-alkynyl,
                 -(CH<sub>2</sub>)<sub>w</sub>-OR<sup>8</sup>, -(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                 -(CH_2)_{W}CN, -(CH_2)_{W}NC, -(CH_2)_{W}NO_2, -(CH_2)_{W}CF_3,
10
                 -(CH_2)_{wS}(O)_{x}R^7, -(CH_2)_{w}NR^8R^9, -(CH_2)_{w}COR^8,
                 -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH-(C_1-
                C_6) -alky1, -(CH_2) _WSO_2NH_2, -(CH_2) _WSO_2NH-CO-(C_1-
                C_6)-alkyl, -(C_{12})_wSO_2NH-CO_2-(C_1-C_6)-alkyl,
15
                 -(CH_2)_WSO_2NH_-, -(CH_2)_WNHSO_2-(C_1-C_6)_-alkyl,
                 - (CH2) wNHSO2-(C1-C6) -perfluoroalkyl,
                 -(CH2) wNHSO2-phenyl, -(CH2) wNHSO2-
                perfluorophenyl, - (CH2) wCN4H, -0(CH2) wCN,
                 20
                alkyl), -(CH2) wNH-CO-(C1-C6-perfluoroalkyl),
                 -(CH<sub>2</sub>) _{\text{WNH}}-CO-(phenyl), -(CH<sub>2</sub>) _{\text{WNH}}-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-
                alkyl), -(CH2) WNH-CO2-(C1-C6-perfluoroalkyl),
                or -(CH_2)_wNH-CO_2-(pheny1), -0(C=0)-C_1-C_5-
                alkyl);
          b) heteroaryl, wherein heteroaryl is an
25
             unsubstituted, monosubstituted or disubstituted:
             i)
                   quinolinyl,
             ii)
                   isoquinolinyl,
             iii) benzopyranyl,
30
             ·iv)
                   benzothiophenyl,
             V)
                   benzofuranyl,
             vi)
                   5,6,7,8-tetrahydroquinoliny1,
```

vii) 5,6,7,8-tetrahydroisoguinolinyl,

5

wherein the substituents are members selected from the group consisting of: halo (F, Cl, Br, I), -CN, C_1 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, R^8 , -OR 8 , -NO 2 , -CF $_3$, -S(O) $_7R^7$, -NR $^8R^9$, -COR 8 , -CO $_2R^8$, -CONR 8 H, NR 8 COR 9 , NR 8 CO2 8 9;

c)

d)

10

20

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

15 1) $-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$

2) $-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,

3) $-N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,

4) $-N-C(R^{13})=N-C(R^{13})=N-$,

5) $-N-C(R^{13})=C(R^{13})-N=N-$

6) $-N-C(R^{13})=N-N=N-$

7) $-N-N=C(R^{13})-N=N-$,

8) = $C-O-C(R^{13}) = N-C(R^{13}) =$.

9) $-C=C(R^{13})-O-C(R^{13})=N-$

10) = $C - C(R^{13}) = C(R^{13}) - N = .$

25 11) $-C=C(R^{13})-C(R^{13})=N-0-$

PCT/US95/16248

```
=C-C(R^{13})=C(R^{13})-0-N=.
                   12)
                          -C=C(R^{13})-O-N=C(R^{13})-
                   13)
                         =C-S-C(R^{13})=N-C(R^{13})=
                   14)
                          -C=C(R^{13})-S-C(R^{13})=N-
                   15)
                         =C-S-C(R^{13})=C(R^{13})-N=,
                   16)
 5
                          =C-S-C(R^{13})=C(R^{13})-C(R^{13})=
                   17)
                         -C=C(R^{13})-S-C(R^{13})=C(R^{13})-.
                   18)
                         =C-O-C(R^{13})=C(R^{13})-C(R^{13})=, or
                   19)
                          -C=C(R^{13})-O-C(R^{13})=C(R^{13})-;
                   20)
            f)
10
```

wherein the ring represented by -C-W-R-T-U-V- is a group selected from:

group selected from:

1)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$$
,

2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,

3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,

4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$,

5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$,

6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,

7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$,

8) $-C=N-C(R^{13})=N-C(R^{13})-C(R^{13})-$,

9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,

10) $-C=N-C(R^{13})=N-N=C(R^{13})-$,

11) $-C=N-C(R^{13})=C(R^{13})-N=N-$, or

25

g)

-401

$$\bigcup_{M=0}^{K} J - (CH_2)_u - \bigcup_{Q \in \mathbb{R}^{18}} \mathbb{R}^{18}$$

Q K

wherein is as defined above;

h)

5

10

is as defined above; or

i)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R_{-R}^3$ -C(=0) R^3 , $-SO_2R^3$, -C(=0) OR^3);

 R^2 is

- a) -(C1-C12 alky1)-X,
- b) $-(C_2-C_{12} \text{ alkenyl})-x$, or
- 15 c)

X is

- a) halogen (F, Cl, Br, I),
- b) -CN,
- 5 c) $-NO_2$,
 - d) -CF3,
 - e) -NHR14
 - f) -NHS(0) $_{r}^{R^{14}}$,
 - g) -NHC(NH)H,
- 10 h) -NHC(NH) NHOH,
 - i) -NHC(NH)NHCN,
 - j) -NHC(NH) NHR14,
 - k) -NHC (NH) NHCOR14.
 - 1) -C(NH) NHR14,
- m) -C (NH) NHCOR 14 ,
 - n) -C(0) NHR14,
 - o) -C(0) NHC(0) R^{14} ,
 - $p) C(0) OR^{14}$
 - $q) OR^{14}$
- 20 $r) -OC(0)R^{14}$,
 - s) -OC(0) OR14,
 - t) -OC(0) NHR14,
 - u) -OC(0) NHC(0) R14,
 - v) -SC(=NH) NHR14, or
- 25 w) $-SC(=NH) NHC(=0) R^{14}$;

R¹³ is

- H, halogen (F, Cl, Br, I), (C1-C6) alkyl,
- -(CH₂)_r-D, methylenedioxy, -(CH₂)_w-OR⁸,
- 30 $(CH_2)_WNC$, $(CH_2)_WCN$, $(CH_2)_WNO_2$,
 - $-(CH_2)_wS(O)_rR^7$, $-(CH_2)_wNR^8R^9$, $-(CH_2)_wCOR^8$,

```
C_5)-alkyl, -(CH_2)_WSO_2NH_2, -(CH_2)_WSO_2NH-CO-(C_1-
                   C_6)-alkyl, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH-CO_2-(C_1-C_6)-alkyl,
                   - (CH_2)_w NHSO_2- (C_1-C_6) -alkyl, - (CH_2)_w NHSO_2- (C_1-
                  C6) -perfluoroalkyl, -(CH2) wNHSO2-phenyl,
   5
                  -(CH2)wNHSO2-perfluorophenyl, -(CH2)wCN4H,
                  -0(C=0)-(C_1-C_5-alky1), -0(CH_2)_wCN, -NH(CH_2)_wCN,
                  -S(CH<sub>2</sub>)<sub>W</sub>CN, -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alky<sub>1</sub>),
                  -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>W</sub>NH-
  10
                  CO-(C_1-C_6-phenyl), -(CH_2)_WNH-CO_2-(C_1-C_6-alkyl),
                  -(CH<sub>2</sub>)<sub>W</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-phenyl), -(CH<sub>2</sub>)<sub>u</sub>phenyl
                  wherein the phenyl contains 0-3 substituents
                  selected from R18, or -O(C=O) phenyl wherein the
                  phenyl contains 0-3 substituents selected from
 15
                  R18;
       Rl4 is
              a) -H,
              b) -CF3
 20
              c) -C1-C4 alky1,
              d) - (CH2) q-aryl, wherein aryl is phenyl, biphenyl,
              naphthyl, or fluorenyl unsubstituted or substituted
              with one to three substituents selected from the
              group consisting of:
25
                    halogen (F, Cl, Br, I),
                   -CF3,
                    -(C1-C4 alkyl),
                    -methylenedioxy,
                    -(C1-C4 alkoxy), or
                    -(CH<sub>2</sub>)<sub>X</sub>N[(CH<sub>2</sub>)<sub>Y</sub>R<sup>15</sup>][(CH<sub>2</sub>)<sub>Y</sub>R<sup>16</sup>];
30
      {\bf R}^{18} and {\bf R}^{19} are independently
                  H, halo (F, Cl, Br, I), C_1-C_6-alkyl, -(CH_2)_{W}-
                  OR^8, - (CH_2)_WCN, - (CH_2)_WNC, - (CH_2)_WNO_2,
35
                  -(CH_2)_wS(O)_TR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
                  -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH-(C_1-
```

PCT/US95/16248 WO 96/20689

```
C_5)-alkyl, -(CH_2)_WSO_2NH_2, -(CH_2)_WSO_2NH-CO-(C_1-
                  C_6) -alkyl, - (CH_2)_{\psi}SO_2NH-CO_2-(C_1-C_6) -alkyl,
                  -(CH<sub>2</sub>) wNHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-alkyl, -(CH<sub>2</sub>) wNHSO<sub>2</sub>-(C<sub>1</sub>-
                  C6) -perfluoroalkyl, - (CH2) wNHSO2 -phenyl,
                  - (CH2) wNHSO2-perfluorophenyl, - (CH2) wCN4H,
 5
                  -0(C=0)-(C_1-C_5-alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN,
                  -S(CH<sub>2</sub>)_{\psi}CN, -(CH<sub>2</sub>)_{\psi}NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alky<sub>1</sub>),
                  - (CH_2)_WNH-CO-(C_1-C6-perfluoroalkyl), - (CH_2)_WNH-
                  CO-(C_1-C_6-pheny1), -(CH_2)_WNH-CO_2-(C_1-C_6-alky1),
                  -(CH<sub>2</sub>)_{\text{WNH}}-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-phenyl), or -O(C=O)phenyl;
10
      R18 and R19 can be taken together to form a
            methylenedioxy group;
      R<sup>20</sup> and R<sup>20a</sup> are independently
                (C1-C8) alkyl, -(CH2) uphenyl wherein the phenyl
                contains 0-3 substituents selected from R<sup>18</sup>,
15
                (C1-C6) -perfluoroalkyl, or -(CH2)r-D;
     D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
            oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-
            yl, pyrid-2-yl, pyrid-4-yl, pyrimidin-2-yl, or
20
            pyrimidin-4-yl;
      W is
             a) -0-,
            b) -NR^{4}-,
             c) a bond, or
25
            d) -(CH_2)_{n}-;
      and all other required substituents of formula (I) are
```

as in claim 2.

4. A compound of Claim 3 wherein: 30 A is $-BY^{1}Y^{2}$: Y^1 and Y^2 are -OH; Y^1 and Y^2 can be taken together to form a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can 35 be N. S. or O.

```
Z is - (CH2) mCONR8-;
       R1 is
            a) - (CH2)p-aryl, wherein aryl is phenyl, naphthyl or
                biphenyl substituted with one, two or three
                substituents selected from the group consisting
  5
                of:
                   halo (F, Cl, Br, I), methylenedioxy, -R8,
                   -NR8COR9, C2-C6-alkenyl, C2-C6-alkynyl,
                   -(CH_2)_W-OR^8, -(C_1-C_6)-perfluoroalky1,
                   -(CH_2)_WCN, -(CH_2)_WNC, -(CH_2)_WNO_2, -(CH_2)_WCF_3,
 10
                   -(CH_2)_{wS}(0)_{IR}^7, -(CH_2)_{wNR}^8R^9, -(CH_2)_{wCOR}^8,
                   - (CH_2)_wCO_2R^8, - (CH_2)_wCONR^8R^9. - (CH_2)_wSO_2NH- (C_1-
                   C_6)-alkyl, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH<sub>2</sub>, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH-CO-(C_1-
                   C_6)-alky1, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH-CO_2-(C_1-C_6)-alky1,
                   - (CH_2)_{W}NHSO_2- (C_1-C_6) -alky1, - (CH_2)_{W}NHSO_2- (C_1-
 15
                  C6) -perfluoroalkyl, -(CH2) wNHSO2-phenyl,
                  - (CH<sub>2</sub>) wNHSO<sub>2</sub>-perfluorophenyl, - (CH<sub>2</sub>) wCN<sub>4</sub>H,
                  -0(CH_2)_WCN, -NH(CH_2)_WCN, -S(CH_2)_WCN, -(CH_2)_WNH-
                  CO-(C_1-C_6-alky1), -(CH_2)_WNH-CO-(C_1-C_6-alky1)
                  perfluoroalkyl), -(CH2)wNH-CO-(C1-C6-phenyl),
20
                  -(CH<sub>2</sub>)<sub>W</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-alkyl), -(CH<sub>2</sub>)<sub>W</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-
                  C6-perfluoroalkyl), or -(CH2)wNH-CO2-(C1-C6-
                  phenyl);
           b) heteroaryl, wherein heteroaryl is an
25
              unsubstituted, monosubstituted or disubstituted
              isoquinolinyl wherein the substituents are members
              selected from the group consisting of:
                  halo (F, Cl, Br, I), -CN, C1-C10-alkyl, C3-C8-
                  cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, R8,
                  -OR^{8}, -NO_{2}, -CF_{3}, -S(O)_{1}R^{7}, -NR^{8}R^{9}, -COR^{8},
30
                  -CO2R8, -CONR8R9, NR8COR9, NR8CO2R9,
           c)
```

d)

5

10

15

20

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

- 1) $-N-C(R^{13})=N-C(R^{13})=N-$,
- 2) $-N-C(R^{13})=C(R^{13})-N=N-$
- 3) $-N-N=C(R^{13})-N=N-$
- 5) $-N-C(R^{13})=N-N=N-$
- 6) = $C-S-C(R^{13})=C(R^{13})-C(R^{13})=$, or
- 7) = $C-O-C(R^{13})=C(R^{13})-C(R^{13})=;$

e)

wherein the ring represented by -C-W-R-T-U-V- is a group selected from:

- 1) $-C=N-C(R^{13})=C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})$
- 1) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$,
- 2) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$,
- 3) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$,
- 4) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$, or
- 5) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-;$

f)

Q K

wherein

is as defined above;

g)

is as defined above; or

h)

wherein G is S;

 \mathbb{R}^2 is

10

5

a) - (C1-C12 alky1) -x, or

b)

X is

a) halogen (F, Cl, Br, I),

15 b) -CN,

```
c) -NHR14
                                d) -NHC(NH)H,
                                e) -NHC(NH)NHR<sup>14</sup>,
                                f) -C(NH) NHR14,
                                q) - OR^{14}, or
   5
                                h) -SC(=NH)NHR^{14};
               Rll is H:
               R^{13} is
                                        H, halogen (F, Cl, Br, I), -(CH2) NO2, (C1-
                                         C_6) alkyl, - (CH_2)_r-D, - (CH_2)_w-OR<sup>8</sup>,
10
                                         -(CH<sub>2</sub>)_{V}CONR<sup>8</sup>R<sup>9</sup>, -(CH<sub>2</sub>)_{V}CN, -(CH<sub>2</sub>)_{V}NC,
                                         -(CH<sub>2</sub>)_{\omega}COR<sup>8</sup>, -(CH<sub>2</sub>)_{\omega}CO<sub>2</sub>R<sup>8</sup>, -(CH<sub>2</sub>)_{\omega}CO<sub>2</sub>R<sup>3</sup>,
                                         -(CH<sub>2</sub>)_wNR<sup>8</sup>R<sup>3</sup>, -(CH<sub>2</sub>)_wS(O)<sub>2</sub>R<sup>7</sup>, -(CH<sub>2</sub>wSO<sub>2</sub>NHCO-(C1-
                                         C6) -alkyl, - (CH2) wNHSO2 - phenyl - (CH2) \psiSO2NH- (C1-
                                         C_5)-alkyl, -(CH<sub>2</sub>)<sub>W</sub>SO<sub>2</sub>NH<sub>2</sub>, -(CH<sub>2</sub>)<sub>W</sub>SO<sub>2</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-
15
                                         C_6)-alkyl, -(C_{1})wNHSO2-(C_{1}-C_{6})-alkyl,
                                         - (CH2) wNHSO2-(C1-C6) -perfluoroalkyl,
                                         -(CH_2)_{W}CN_4H, -O(C=0)-(C_1-C_5-alkyl), -O(CH_2)_{\pm}CN,
                                         -NH(CH2) tCN, -S(CH2) tCN, - (CH2) WNH-CO-(C1-C6-
                                         alkyl), -(CH2)wNH-CO-(C1-C6-perfluoroalkyl), or
20
                                         - (CH2) uphenyl wherein the phenyl contains 0-3
                                         substituents selected from R18:
               R14 is -H:
               R<sup>18</sup> and R<sup>19</sup> are independently
                                            H, halo (F, Cl, Br, I), C_1-C_6-alkyl, -(CH<sub>2</sub>)<sub>W</sub>-
25
                                             OR^8, - (CH_2)_WCN, - (CH_2)_WNC, - (CH_2)_WNO_2,
                                             -(CH_2)_{WS}(0)_{TR}^{7}, -(CH_2)_{WNR}^{8}R^{9}, -(CH_2)_{WCOR}^{8},
                                             -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH^-(C_1-
                                             C_5)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH<sub>2</sub>, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO-(C<sub>1</sub>-
                                             C_6)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-alkyl,
30
                                             -(CH_2)_{W}NHSO_2-(C_1-C_6)-alkyl, -(C_1-C_6)-alkyl, -(C_1-C_6)-al
                                             C6) -perfluoroalkyl, - (CH2) wNHSO2 - phenyl,
                                             -(CH2) wNHSO2-perfluorophenyl, -(CH2) wCN4H,
                                             -O(C=O)-(C1-C5-alky1), -O(CH2) tCN, -NH(CH2) tCN,
                                             -S(CH<sub>2</sub>)<sub>t</sub>CN, -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alkyl),
35
```

```
-(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-phenyl), -(CH<sub>2</sub>)<sub>W</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-alkyl), -(CH<sub>2</sub>)<sub>W</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-phenyl), or -0(C=0)phenyl;
```

- R18 and R19 can be taken together to form a methylenedicxy group;
 - R^{20} is selected from the group consisting of: (CH₂)_r-D, or -(CH₂)_uphenyl wherein the phenyl contains 0-3 substituents selected from R^{18} .
- and all other required substituents of formula (I) are defined as in Claim 3.
 - 5. A compound of Claim 4 selected from the group consisting of:
- 15 N^{1} -(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride
 - N1-(1-fluorenonyl)-(R)-boroarginine, hydrochloride
 - N1-(4-[1-buty1]benzoy1)-(R)-boroarginine, hydrochloride
 - N1-(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
- 20 N¹-(5-pheny1-2-furoy1)-(R)-boroarginine, hydrochloride
 - N1-(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-benzoyl)-(R)-boroarginine, hydrochloride
- 25 N¹-(4-cyclohexylbenzoyl) (R) -boroarginine, hydrochloride

30

- N¹-(2-methyl-4-phenylbenzoyl)-(R)-boroarginine, hydrochloride
- N¹-[4-phenyl-2-nitrobenzoyl]boroArg, (+)-pinanediol ester
- N^{1} -[4-phenyl-2-fluorobenzoyl]boroArg, (+)-pinanediol ester
- N^{I} -[4-phenyl-2-aminobenzoyl]boroArg, (+)-pinanediol ester
- 35 N¹-[4-phenyl-2-(methylsulfonamido)benzoyl]boroArg, (+)-pinanediol ester

WO 96/20689 PCT/US95/16248

```
N^{2}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroArg, (+)-
          pinanediol ester
     N^{1}-[4-phenyl-2-(cyanomethyl)benzoyl]boroArg, (+)-
          pinanediol ester
    N^{1}-[4-phenyl-2-(diethylamino)benzoyl]boroArg, (+)-
 5
          pinanediol ester
     N1-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg, (+)pinanediol ester
    N1-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg, (+)pinanediol ester
10
    N1-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg, (+)-pinanediol ester
    N^{2}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg.
          (+)-pinanediol ester
    N1-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg-OH
15
    N1-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-
          methyl-benzoyl]boroArg, (+)-pinanediol ester
    N1-[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg, (+)pinanediol ester
20
    N1-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
         benzoyl]boroArg, (+)pinanediol ester
    N1-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
         benzoyl]boroArg, (+)pinanediol ester
    N1-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-
25
         benzoyl]boroArg, (+)-pinanediol ester
    N1-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
         benzoyl]boroArg, (+)pinanediol ester
    N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg,
          (+)pinanediol ester
30
    N1-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-
         benzoyl]boroArg, (+)-pinanediol ester
    N^{1}-(3-phenylbenzoyl)boroarg, (+)-pinanediol
    N^{2}-[4-(3-BOCNHphenyl)2-methylbenzoyl]boroarg, (+)-
         pinanediol
    N^{1}-(5-phenyl-2-furoyl) boroarg, (+)-pinanediol
```

```
N1-(5-phenyl-2-thienyl)boroarg, (+)-pinanediol
      N1-[4-(3-nitrophenyl)benzoyl]boroarg, (+)-pinanediol
      N^{I}-[4-(3-aminophenyl)benzoyl]boroarg, (+)-pinanediol
      N^{1}-(3-phenylbenzoyl)borolys, (+)-pinanediol
      N1-(5-phenyl-2-furoyl)boroarg-OH
      N^{1}-(3-phenylbenzoyl)borolrg, (+)-pinanediol
      (R) - [5-amino-1-[[[5-(phenylmethyl)-1H-1,2,4-triazol-1-
           yl]acetyl]amino]-pentyl]boronic acid hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta]]-(1,1-dimethylethyl) [3-[5-[[4-
            [(amino-iminomethy1)amino]-1-(hexahydro-3a,5,5-
 10
           trimethyl-4,6-methano-1,3,2-benzo-dioxaborol-2-
           yl)butyl]amino]carbonyl]-2-thienyl]phenyl]carbamate
           hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
15
           2-yl)pentyl]-5-(phenyl-methyl)-3-(2H-tetrazol-5-
           ylmethyl)-IH-1,2,4-triazole-1-acetamide
           hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
20
           2-yl)pentyl]amino]-2-oxoethyl]-5-(phenylmethyl)-1H-
           1,2,4-triazole-3-acetic acid hydrochloride 1:1 with
           [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[[5-amino-1-
           (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
          benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-3-
25
           (phenylmethyl)-IH-1,2,4-triazole-5-acetic acid
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
          (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
30
          benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-5-
           (phenylmethyl)-1H-1,2,4-triazole-3-acetate
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
          (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
          benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-3-
35
```

```
(phenylmethyl)-1H-1,2,4-triazole-5-acetate
                                     hydrochloride
                   [3aS-[2(S+),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
                                     3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
                                     2-yl) pentyl] -3-phenyl-5-(phenyl-methyl) -1H-1,2,4-
    5
                                     triazole-1-acetamide hydrochloride
                  (R) - [5-amino-1-[[[3-phenyl-5-(phenylmethyl)-1H-1,2,4-
                                    triazol-1-yl]acetyl]-amino]pentyl]boronic acid
                                    hydrochloride
                  [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
10
                                     3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
                                    2-yl)pentyl]-3-(3-nitro-phenyl)-5-(phenylmethyl)-
                                    1H-1.2.4-triazole-1-acetamide hydrochloride
                  [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [(aminoiminomethyl) - [4aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]]] - N - [4 - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha, 4\alpha]]]] - N - [4 - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha, 4\alpha]]]
                                    amino]-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-
15
                                     1,3,2-benzodioxaborol-2-yl)butyl]-3-(3-
                                    nitrophenyl) -5- (phenylmethyl) -1H-1,2,4-triazole-1-
                                    acetamide hydrochloride
                  [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]] - N - [5 - amino - 1 - (hexahydro - 1)] - [5 - amino - 1] - [5 - 
                                     3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
20
                                    2-y1) penty1]-3,5-bis(phenyl-methyl)-1H-1,2,4-
                                    triazole-1-acetamide hydrochloride
                  [3aS-[2(S+),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-[(aminoiminomethyl)-
                                    amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-
                                     1,3,2-benzodioxaborol-2-yl)butyl]-3,5-
25
                                    bis (phenylmethyl) - 1H-1; 2,4-triazole-1-acetamide
                                    hydrochloride
                  [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
                                     3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
                                    2-yl)pentyl]-3-(phenylmethyl)-1H-1,2,4-triazole-1-
30
                                    acetamide
                  (R) - [5-amino-1-[[[3-(phenylmethyl)-1H-1,2,4-triazol-1-
                                    yl]acetyl]amino]-pentyl]boronic acid hydrochloride
                  [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
                                     3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
35
```

.WO 96/20689 PCT/US95/16248

```
2-yl)pentyl]-5-methyl-3-(phenylmethyl)-1H-1,2,4-
            triazole-1-acetamide hydrochloride
      [3aS-[2(R*),3a\alpha,4\beta,6\beta]]-N-[5-amino-1-(hexahydro-3a,5,5-
            tri-methyl-4,6-methano-1,3,2-benzodioxaborol-2-
  5
            y1) penty1] -5-[(pheny1-methoxy) methy1] -3-
            (phenylmethyl)-IH-1,2,4-triazole-1-acetamide
           hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-5-(cyanomethyl)-3-(phenylmethyl)-1H-
 10
           1,2,4-triazole-1-acetamide hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-3-(phenylmethyl)-5-propyl-1H-1,2,4-
15
           triazole-1-acetamide hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-y1)penty1]-5-pheny1-3-(phenylmethy1)-1H-1,2,4-
           triazole-l-acetamide hydrochloride
     (R) - [5-amino-1-[[[5-methyl-3-(phenylmethyl)-1H-1,2,4-
20
           triazol-1-yl]acetyl]-amino]pentyl]boronic acid
           hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-3-phenyl-1H-1,2,4-triazole-1-acetamide
25
           hydrochloride
     [3aS-[2(S*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethy1-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-5-methyl-3-phenyl-1H-1,2,4-triazole-1-
30
          acetamide hydrochloride
     [3aS-[2(S*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-5-(2-phenyl-ethyl)-1H-1,2,4-triazole-
          1-acetamide
    (R) - [5-amino-1-[[[5-(2-phenylethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
```

WO 96/20689 PCT/US95/16248

[3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3,5-bis(2-phenyl-ethyl)-1H-1,2,4-triazole-1-acetamide hydrochloride

- 5 (R) [5-amino-1-[[[3,5-bis(2-phenylethyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- [3aS-[2(S*),3aa,4ß,6ß,7aa]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-3-(2-phenylethyl)-lH-1,2,4-triazole-1-acetamide
 - (R) [5-amino-1-[[[3-(2-phenylethyl)-lH-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- 3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol2-yl)pentyl]-3-(3-phenyl-propyl)-lH-1,2,4-triazolel-acetamide

 $[3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]] - N - [5 - amino - 1 - (hexahydro-$

- (R) [5-amino-1-[[[5-(3-phenylpropyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- 20 (R)-[5-amino-1-[[[3-(3-phenylpropyl)-1H-1,2,4-triazol-1-yl]acetyl]amino]-pentyl]boronic acid hydrochloride

25

- [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-1,5-bis(phenyl-methyl)-1H-1,2,4-triazole-3-acetamide hydrochloride 2:8 with (R)-
 - [5-amino-1-[[[1,5-bis(phenylmethyl)-1H-1,2,4-triazol-3-yl]acetyl]amino]-pentyl]boronic acid hydrochloride
- [3aS-[2(S*),3aα,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-4-methyl-2-phenyl-5pyrimidinecarboxamide hydrochloride
 - [3aS-[2(S*),3aα,4β,6β,7aα]]-N+[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-

5 .

2-yl)pentyl]-2,4-diphenyl-5-pyrimidinecarboxamide hydrochloride

 $[3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-$

[(amimoiminomethy1)amino]-1-(hexahydro-3a,5,5-trimethy1-4,6-methano-1,3,2-benzodioxaborol-2-y1)-butyl]-4-methyl-2-phenyl-5-pyrimidinecarboxamide hydrochloride

[3aS-[2(S*),3α,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-6-phenyl-3-pyridinecarboxamide hydrochloride

(R) - [5-amino-1-[[(6-phenyl-3-pyridinyl)carbonyl]amino]pentyl]boronic acid dihydrochloride

15

6. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of any one of Claims 1 through 5.

20

25

7. A method of treating a physiological disorder in a warm blooded animal catalyzed by trypsin-like enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of any one of Claims I through 5.