CONCOURS MINES PONTS 2016 - FILIERE MP

Théorème taubérien de Hardy-Littlewood-Karamata

A - Une intégrale à paramètre

1. Montrer que la fonction ψ est intégrable sur I

La fonction $\psi: u \mapsto \frac{e^{-u}}{\sqrt{u}}$ est continue et positive sur $]0, +\infty[$.

- Comme $\lim_{u\to +\infty} ue^{-u}=0$ alors $\psi(u)=o_{+\infty}(u^{3/2}).$ La fonction $u\mapsto u^{3/2}$ est intégrable sur $[1, +\infty[$ (intégrale de Riemann) donc ψ est intégrable sur $[1, +\infty[$ par comparaison de fonctions positives.
- La fonction ψ est équivalente en 0 à $u \mapsto \frac{1}{\sqrt{u}}$ qui est intégrable sur]0,1] (intégrale de Riemann). Par comparaison de fonctions positives, $\dot{\psi}$ est intégrable sur [0,1].

De ce fait, la fonction ψ est intégrable sur $I =]0, +\infty[$

2. Déterminer les valeurs de x pour lesquelles F(x) est définie.

- On pose $f_x: u \mapsto \frac{e^{-u}}{(u+x)\sqrt{u}}$ Si x < 0, la fonction f_x n'est pas continue par morceaux sur $]0, +\infty[$ donc F(x) n'est pas définie.

 On peut préciser que de plus $\int_0^{-x} f(u)du$ et $\int_{-x}^{+\infty} f(u)du$ ne sont pas définies car $f(u) \underset{u \to -x}{\sim} \frac{C}{u+x}$
 - Si x=0, la fonction f_x n'est pas intégrable sur]0,1] car $f_x(u) \underset{u\to 0}{\sim} \frac{1}{u^{3/2}}$ et $u\mapsto \frac{1}{u^{3/2}}$ n'est pas intégrable (intégrale de Riemann).
 - Si x > 0, la fonction f_x est positive et pour tout $u \in I$, $f_x(u) \le \frac{1}{r}\psi(u)$. Comme ψ est intégrable sur I (question 1.), f_x est intégrable sur I.

On en déduit que la fonction F est définie sur $I =]0, +\infty[$

3. Montrer que F est de classe \mathscr{C}^1 sur I et exprimer F'(x) sous forme intégrable.

Notons $f:(x,u)\in I^2\mapsto \frac{e^{-u}}{(u+x)\sqrt{u}}$.

- Pour tout $x \in I$, $f_x : u \mapsto f(x, u)$ est continue (par morceaux) et intégrable sur I d'après 2.
- Pour tout $u \in I$, $x \mapsto f(x, u)$ est de classe \mathscr{C}^1 par rapport à x et

$$\frac{\partial f}{\partial x}(x,u) = -\frac{e^{-u}}{(u+x)^2\sqrt{u}}$$

- Pour tout $x \in I$, la fonction $u \mapsto \frac{\partial f}{\partial x}(x,u)$ est continue (par morceaux) sur I.

 Hypothèse de domination locale : Pour tout a>0,

$$\forall x \in [a, +\infty[, \forall u \in I, \left| \frac{\partial f}{\partial x}(x, u) \right| \le \frac{e^{-u}}{a^2 \sqrt{u}} = \frac{1}{a^2} \psi(u)$$

où $u \mapsto \frac{1}{a^2} \psi(u)$ est intégrable sur I.

Ainsi, par le théorème de dérivation des intégrales à paramètre, F est de classe \mathscr{C}^1 sur I et

$$\forall x \in I, F'(x) = -\int_0^{+\infty} \frac{e^{-u}}{(u+x)^2 \sqrt{u}} du$$

1

4. En déduire que pour tout $x \in I,...$

Soit $x \in I$. Calculons F(x) par intégration par parties.

$$F(x) = \left[\frac{2\sqrt{u}e^{-u}}{x+u} \right]_0^{+\infty} + \int_0^{+\infty} \frac{2\sqrt{u}e^{-u}}{x+u} du + \int_0^{+\infty} \frac{2\sqrt{u}e^{-u}}{(x+u)^2} du$$

Toutes les intégrales sont bien définies car F(x) est défini et que le « crochet » vaut 0 d'après les limites usuelles.

On a

$$F(x) = 2 \int_0^{+\infty} \frac{ue^{-u}}{(x+u)\sqrt{u}} du + 2 \int_0^{+\infty} \frac{ue^{-u}}{(x+u)^2 \sqrt{u}} du$$

$$= 2 \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du - 2x \int_0^{+\infty} \frac{e^{-u}}{(x+u)\sqrt{u}} du + \int_0^{+\infty} \frac{e^{-u}}{(x+u)\sqrt{u}} du - 2x \int_0^{+\infty} \frac{e^{-u}}{(x+u)^2 \sqrt{u}} du$$
en écrivant $u = (u+x) - x$ dans les deux termes
$$= 2K - 2xF(x) + F(x) - 2xF'(x)$$

Finalement on obtient bien $xF'(x) - (x - \frac{1}{2})F(x) = K$

5. Montrer qu'il existe une constante C telle que $G(x) = C - K \int_0^{+\infty} \frac{e^{-t}}{t} dt$.

La fonction $G: x \mapsto \sqrt{x}e^{-x}F(x)$ est dérivable sur I et pour tout $x \in I$,

$$G'(x) = \left(\frac{1}{2\sqrt{x}}e^{-x} - \sqrt{x}e^{-x}\right)F(x) + \sqrt{x}e^{-x}F'(x)$$
$$= \frac{e^{-x}}{\sqrt{x}}\left(xF'(x) - (x - \frac{1}{2})F(x)\right)$$
$$= -K\frac{e^{-x}}{\sqrt{x}} \text{ d'après 4.}$$

De ce fait, comme G^\prime est continue et que I est un intervalle, en intégrant,

il existe une constante
$$C$$
 telle que $\forall x \in I, G(x) = C - K \int_0^x \frac{e^{-t}}{t} dt$.

6. Déterminer les limites de G en 0 et $+\infty$ et en déduire la valeur de K.

— Calculons la limite de G en $+\infty$. La fonction F est positive (par positivité de l'intégrale) et décroissante (car la dérivée est négative) donc elle tend vers une limite finie ℓ en $+\infty$. De ce fait, $\lim_{x\to +\infty} G(x)=0$ car $\lim_{x\to +\infty} \sqrt{x}e^{-x}=0$.

D'autre part, en utilisant la formule trouvée en 5. on obtient que $G(x) \xrightarrow[x \to +\infty]{} C - K^2$. On en déduit que $C = K^2$.

— Calculons maintenant la limite de G en 0. Comme $e^x \xrightarrow[x \to 0]{} 1$ on peut se contenter de calculer la limite de $\sqrt{x}F(x)$. On effectue le changement de variable affine u=xt; du=xdt.

$$\sqrt{x}F(x) = \int_0^{+\infty} \frac{x\sqrt{x}e^{-xt}dt}{\sqrt{x}t(xt+x)} = \int_0^{+\infty} \frac{e^{-xt}dt}{\sqrt{t}(1+t)}.$$

On peut alors faire tendre x vers 0. On applique pour ce faire la version continue du théorème de convergence dominée. En effet pour tout $t \in I$, la fonction $x \mapsto \frac{e^{-xt}}{\sqrt{t}(1+t)}$ tend vers $\frac{1}{\sqrt{t}(1+t)}$ quand x tend vers 0. Pour tout $x \in \mathbb{R}_+$, la fonction $t \mapsto \frac{e^{-xt}}{\sqrt{t}(1+t)}$ est continue (par morceau) sur I et pour tout $x \in R$ et tout $t \in I$,

$$\left| \frac{e^{-xt}}{\sqrt{t}(1+t)} \right| \le \frac{1}{\sqrt{t}(1+t)}$$

où $t \mapsto \frac{1}{\sqrt{t(1+t)}}$ est intégrable sur I. On en déduit que

$$\lim_{x \to 0} G(x) = \lim_{x \to 0} \sqrt{x} F(x) = \int_0^{+\infty} \frac{dt}{\sqrt{t}(1+t)}.$$

Maintenant, cette dernière intégrale se calcule en posant $v = \sqrt{t}$; $dv = \frac{1}{2\sqrt{t}}dt$ (la fonction $t \in]0, +\infty[\mapsto \sqrt{t}$ est de classe \mathscr{C}^1 , strictement monotone et induit une bijection de $]0, +\infty[$ sur lui même). On obtient

$$\int_0^{+\infty} \frac{dt}{\sqrt{t(1+t)}} = \int_0^{+\infty} \frac{2dv}{(1+v^2)} = 2\left[\arctan(v)\right]_0^{+\infty} = \pi.$$

D'autre par en reprenant la formule trouvée en 5. on obtient que $G(x) \xrightarrow[x \to 0]{} C$.

En conclusion $K^2 = C = \pi$ et donc $K = \sqrt{\pi}$

B - Étude de deux séries de fonctions

7. Montrer que f et g sont définies et continues sur I.

— Soit $x \in I$, la série $(\sum e^{-nx})$ converge car $e^{-nx} = (e^{-x})^n$ et que $|e^{-x}| < 1$ (série géométrique). De plus, pour tout entier $n \ge 1$, $\frac{e^{-nx}}{\sqrt{n}} \le e^{-nx}$ donc par comparaison de séries à termes positifs, la série ($\sum \frac{e^{-nx}}{\sqrt{n}}$) converge aussi. La fonction f est définie sur I.

Maintenant pour tout entier n, la fonction $x \mapsto \frac{e^{-nx}}{\sqrt{n}}$ est continue. De plus, pour tout $a \in I$, la fonction $x\mapsto \frac{e^{-nx}}{\sqrt{n}}$ est bornée sur $[a,+\infty[$ et

$$\left| \left| x \mapsto \frac{e^{-nx}}{\sqrt{n}} \right| \right|_{\infty, [a, +\infty[} = \frac{e^{-na}}{\sqrt{n}}$$

- Comme la série $(\sum \frac{e^{-na}}{\sqrt{n}})$ la série de fonction définissant n converge normalement donc uni-
- formément sur tout segment de I d'où f est continue.

 Soit $x \in I$, à partir d'un certain rang, $\sqrt{n}e^{-nx} \leq e^{-nx/2}$ car $\sqrt{n}e^{-nx/2} \underset{n \to +\infty}{\longrightarrow} 0$ et est donc inférieur à 1 à partir d'un certain rang. De ce fait, en procédant comme ci-dessus, on montre que g est aussi définie et continue sur I.

8. Montrer que En déduire un équivalent de f(x) lorsque x tend vers 0.

Soit $x \in I$, on étudie $\theta : u \mapsto \frac{e^{-ux}}{\sqrt{u}}$. Elle est décroissante car $u \mapsto e^{-ux}$ est une fonction décroissante à valeurs dans \mathbb{R}_+ et que $u \mapsto \frac{1}{\sqrt{u}}$ aussi. On peut donc utiliser la méthode de comparaison série-intégrale. Précisément, pour tout entier N

$$\int_{1}^{N-1} \theta(u) du \le \sum_{n=1}^{N} \frac{e^{-nx}}{\sqrt{n}} \le \int_{0}^{N} \theta(u) du.$$

En faisant tendre N vers $+\infty$ on obtient,

$$\int_{1}^{+\infty} \theta(u) du \le \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}} = f(x) \le \int_{0}^{+\infty} \theta(u) du.$$

Notons que les intégrales convergent d'après la question 1.

On pose v = ux; dv = xdu dans les deux intégrales et on obtient que

$$\frac{1}{\sqrt{x}} \int_{x}^{+\infty} \frac{e^{-v}}{\sqrt{v}} dv = \frac{1}{x} \int_{x}^{+\infty} \frac{e^{-v}}{\sqrt{v/x}} dv \le f(x) \le \frac{1}{x} \int_{0}^{+\infty} \frac{e^{-v}}{\sqrt{v/x}} dv = \frac{1}{\sqrt{x}} \int_{0}^{+\infty} \frac{e^{-v}}{\sqrt{v}} dv.$$

Par encadrement, on en déduit que $\sqrt{x}f(x)\underset{x\to 0}{\longrightarrow}\int_0^{+\infty}\frac{e^{-v}}{\sqrt{v}}dv=\sqrt{\pi}$ d'après la question 6.

En conclusion $f(x) \underset{x\to 0}{\sim} \sqrt{\frac{\pi}{x}}$

9. Montrer que la suite $\left(\sum\limits_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}\right)_{n \ge 1}$ converge.

On pose pour $k \ge 1$, $v_k = \frac{1}{\sqrt{k}} - \int_{k-1}^k \frac{1}{\sqrt{t}} dt = \frac{1}{\sqrt{k}} - 2(\sqrt{k} - \sqrt{k-1})$. On a donc, par téléscopage, pour tout entier $n \ge 1$,

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n}$$

Or la fonction $t \mapsto \frac{1}{\sqrt{t}}$ est définie et continue sur I et décroissante. De ce fait, pour tout $k \geq 2$, $\frac{1}{\sqrt{k-1}} \leq \int_{k-1}^{k} \frac{1}{\sqrt{t}} dt \leq \frac{1}{\sqrt{k}}$. Cela implique que (pour $k \geq 2$)

$$0 \le v_k \le \frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}}$$

La série $(\sum v_k)$ est donc une série à termes positifs dont les sommes partielles sont majorées car

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n v_k \le v_1 + \sum_{k=2}^n \frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}} \le 1 + v_1.$$

On en déduit que la série $(\sum v_k)$ converge et donc la suite $\left(\sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}\right)_{n \ge 1}$ converge.

10. Démontrer que la série $\sum\limits_{n\geq 1}\left(\sum\limits_{k=1}^n\frac{1}{\sqrt{k}}\right)e^{-nx}$ converge et exprimer sa somme h(x) en fonction de f(x).

Soit $x \in I$. Pour tout $N \ge 1$

$$\sum_{n=1}^{N} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \right) e^{-nx} = \sum_{k=1}^{N} \frac{1}{\sqrt{k}} \sum_{n=k}^{N} e^{-nx}$$

$$= \sum_{k=1}^{N} \frac{1}{\sqrt{k}} \cdot \frac{1}{1 - e^{-x}} \left(e^{-kx} - e^{-(N+1)x} \right)$$

$$= \frac{1}{1 - e^{-x}} \left(\sum_{k=1}^{N} \frac{1}{\sqrt{k}} e^{-kx} - e^{-(N+1)x} \sum_{k=1}^{N} \frac{1}{\sqrt{k}} \right)$$

La première partie est une série convergente qui tend vers $\frac{1}{1-e^{-x}}f(x)$. La deuxième partie tend vers 0, en effet, d'après la question précédente, les sommes partielles $\sum\limits_{k=1}^n\frac{1}{\sqrt{k}}$ sont équivalentes à $2\sqrt{n}$ et $2\sqrt{n}e^{-(N+1)x} \underset{N \to +\infty}{\longrightarrow} 0$.

En conclusion la série converge et sa somme h(x) vaut $h(x) = \frac{1}{1 - e^{-x}} f(x)$.

On pouvait aussi utiliser un produit de Cauchy.

11. En déduire un équivalent de h(x) pour $x \to 0$. Montrer que $g(x) \underset{x \to 0}{\sim} \frac{\sqrt{\pi}}{2x^{3/2}}$.

En utilisant les résultats des questions 8 et 10, on obtient que $h(x) \underset{x\to 0}{\sim} \frac{1}{x} \sqrt{\frac{\pi}{x}} = \frac{\sqrt{\pi}}{x^{3/2}}$.

Maintenant, on pose (α_n) la suite définie à la question 9. par $\alpha_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$. On a donc pour $x \in I$,

$$h(x) = \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} e^{-nx} \right)$$

$$= \sum_{n=1}^{+\infty} (2\sqrt{n} + \alpha_n) e^{-nx}$$

$$= 2g(x) + \sum_{n=1}^{+\infty} \alpha_n e^{-nx} \text{ car les deux séries convergent}$$

Maintenant, on a vu à la question 9. que (α_n) était une suite positive, croissante et convergente. Si on note A sa limite, on a pour tout $x \in I$,

$$\left| \sum_{n=1}^{+\infty} \alpha_n e^{-nx} \right| \le A \left| \sum_{n=0}^{+\infty} e^{-nx} \right| = \frac{A}{1 - e^{-x}} \underset{x \to 0}{\sim} \frac{A}{x}.$$

On en déduit que

$$\sum_{n=1}^{+\infty} \alpha_n e^{-nx} = O_{x \to 0} \left(\frac{1}{x} \right) = O_{x \to 0} \left(\frac{1}{x^{3/2}} \right).$$

Finalement, $g(x) \underset{x \to 0}{\sim} \frac{1}{2} h(x) \underset{x \to 0}{\sim} \frac{\sqrt{\pi}}{2x^{3/2}}$.

C - Séries de fonctions associées à des ensembles d'entiers

12. Quel est I_A quand A est fini?

Si A est fini alors la suite (a_n) est presque nulle. De ce fait, pour tout x dans \mathbb{R}_+ , la série $(\sum_{n\geq 0} a_n e^{-nx})$

converge. On a alors $I_A = \mathbb{R}_+$.

On suppose que A est infini. On veut construire une extractrice, φ strictement croissante de \mathbb{N} dans \mathbb{N} telle que pour tout entier n, $b_n = a_{\varphi(n)} = 1$. Pour cela on pose $\varphi(0) = \min A$ et pour tout entier $n \geq 0$, $\varphi(n+1) = \min(A \cap]\varphi(n), +\infty[$). La définition à bien un sens, car pour tout entier n, $A \cap]\varphi(n), +\infty[$ est une partie non vide (car A est infini) de \mathbb{N} qui admet donc un plus petit élément. Par construction, on a bien que $\varphi(n+1) > \varphi(n)$ donc φ est strictement croissante et $a_{\varphi(n)} = 1$ car $\varphi(n) \in A$.

Dans le cas où A est infini, si x=0 la série $(\sum_{n\geq 0}a_n)$ diverge car sinon les sommes partielles seraient majorées ce qui impliquerait que A serait fini. Maintenant pour x>0, on a pour tout entier N, $\sum_{n=0}^N a_n e^{-nx} \leq \sum_{n=0}^N e^{-nx} \leq \frac{1}{1-e^{-x}}$. La série est donc une série à termes positifs dont les sommes partielles sont majorées. Elle converge. On a donc $I_A = \mathbb{R}_+^* = I$.

13. Vérifier que la série $\sum\limits_{n\geq 0} \mathbf{Card}(A(n))e^{-nx}$ converge et que ...

Soit $x \in S$. Pour tout entier n, on a par définition de A(n), $Card(A(n)) = \sum_{k=0}^{n} a_k$. On en déduit que pour tout entier N

$$\begin{split} \sum_{n=0}^{N} \operatorname{Card}(A(n)) e^{-nx} &=& \sum_{n=0}^{N} \left(\sum_{k=0}^{N} a_k e^{-nx} \right) \\ &=& \sum_{k=0}^{n} a_k \sum_{n=k}^{N} e^{-nx} \\ &=& \frac{1}{1-e^{-x}} \left(\sum_{k=0}^{N} a_k e^{-kx} - (\sum_{k=0}^{N} a_k) e^{-(N+1)x} \right) \end{split}$$

Maintenant, quand $N \to +\infty$, le premier terme tend vers $\frac{1}{1-e^{-x}}f_A(x)$ et le deuxième terme tend vers 0 car il est majoré par $(N+1)e^{-(N+1)x}$ qui tend vers 0 quand N. En conclusion, la série converge et $\sum_{n=0}^{+\infty} \operatorname{Card}(A(n))e^{-nx} = \frac{1}{1-e^{-x}}f_A(x)$.

14. Cas où $A=A_1$ l'ensemble des carrées des entiers naturels non nuls.

Soit x>0. Soit $n\geq 0,$ $A_1(n)=\{1,4,9,\cdots,p^2\}$ où $p^2\leq n$ et $(p+1)^2>n$. C'est-à-dire que $p\leq \sqrt{n}< p+1$. On en déduit que $\operatorname{Card}(A_1(n))=p=\lfloor \sqrt{n}\rfloor$.

Dès lors, en utilisant 13. on obtient que

$$\frac{f_{A_1}(x)}{1 - e^{-x}} = \sum_{n=0}^{+\infty} \mathsf{Card}(A_1(n))e^{-nx} = \sum_{n=0}^{+\infty} \lfloor \sqrt{n} \rfloor e^{-nx}.$$

Maintenant, par définition de la partie entière, pour tout entier n,

$$\lfloor \sqrt{n} \rfloor \le \sqrt{n} \le \lfloor \sqrt{n} \rfloor + 1$$

d'où,

$$\frac{f_{A_1}(x)}{1 - e^{-x}} = \sum_{n=0}^{+\infty} \lfloor \sqrt{n} \rfloor e^{-nx} \le \sum_{n=0}^{+\infty} \sqrt{n} e^{-nx} = g(x) \le \sum_{n=0}^{+\infty} (\lfloor \sqrt{n} \rfloor + 1) e^{-nx} = \frac{f_{A_1}(x)}{1 - e^{-x}} + \frac{1}{1 - e^{-x}}$$

En conclusion,

$$0 \le g(x) - \frac{f_{A_1}(x)}{1 - e^{-x}} \le \frac{1}{1 - e^{-x}}.$$

On utilise alors l'équivalent trouvé à la question 11. On a que

$$0 \le x^{3/2}g(x) - \frac{x^{3/2}f_{A_1}(x)}{1 - e^{-x}} \le \frac{x^{3/2}}{1 - e^{-x}}.$$

Comme le terme de droite tend vers 0 car il est équivalent en 0 à \sqrt{x} et que $x^{3/2}g(x) \xrightarrow[x \to 0]{} \frac{\sqrt{\pi}}{2}$ on en déduit (par encadrement) que $\frac{x^{3/2}f_{A_1}(x)}{1-e^{-x}} \xrightarrow[x \to 0]{} \frac{\sqrt{\pi}}{2}$ et finalement $f_{A_1}(x) \underset{x \to 0}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$.

On en déduit que $xf_{A_1}(x) \xrightarrow[x \to 0]{} 0$ et donc que $A_1 \in S$ et $\Phi(A_1) = 0$.

15. Cas où $A=A_2$ l'ensemble des entiers qui sont la somme des carrées de deux entiers naturels non nuls.

Pour tout entier n, on pose v(n) le nombre de couples d'entiers (p,q) pour lesquels, $p^2 + q^2 = n$. Si on pose (a_n) la suite définie par

$$a_n = \left\{ \begin{array}{ll} 1 & \text{si } n \text{ est un carr\'e parfait} \\ 0 & \text{sinon.} \end{array} \right.$$

on a que pour tout entier n, $v(n) = \sum_{k=0}^{n} a_k a_{n-k}$. En effet on parcourt tous les couples (k, n-k) et on teste si k et n-k sont des carrées parfaits.

Maintenant pour tout x>0, la série $(\sum_{n\geq 0}a_ne^{-nx})$ est une série positive convergente (et donc absolument convergente). D'après la formule du produit de Cauchy, la série $\sum_{n\geq 0}w(n)$ converge aussi où pour tout entier n,

$$w(n) = \sum_{k=0}^{n} a_k e^{-kx} \cdot a_{n-k} e^{-(n-k)x} = \left(\sum_{k=0}^{n} a_k a_{n-k}\right) e^{-nx} = v(n)e^{-nx}.$$

De plus la somme est donnée par

$$\sum_{n=0}^{+\infty} v(n)e^{-nx} = \left(\sum_{n=0}^{+\infty} a_n e^{-nx}\right)^2 = (f_{A_1}(x))^2.$$

Maintenant, si on considère (b_n) la suite définie par l'ensemble A_2 , on a donc pour tout entier n, $b_n \leq v(n)$. Car dès que b_n vaut 1 alors v(n) vaut au moins 1. On en déduit directement que pour tout x > 0,

$$f_{A_2}(x) = \sum_{n=0}^{+\infty} b_n e^{-nx} \le \sum_{n=0}^{+\infty} v(n) e^{-nx} = (f_{A_1}(x))^2.$$

Par suite, $xf_{A_2}(x) \leq x(f_{A_1}(x))^2$. En réutilisant l'équivalent, $f_{A_1}(x) \underset{x \to 0}{\sim} \frac{\sqrt{\pi}}{2\sqrt{x}}$ trouvé à la question 15, on obtient que $\lim_{x \to 0} x(f_{A_1}(x))^2 = \frac{\pi}{4}$. En admettant que $A_2 \in S$ et en passant à la limite, on obtient que $\Phi(A_2) \leq \frac{\pi}{4}$.

D - Un théorème taubérien

16. Montrer que L est bien définie et linéaire de E dans F. Vérifier que $\psi_1 \leq \psi_2$ implique $L(\psi_1) \leq L(\psi_2)$.

Soit $\psi \in E$. C'est une fonction continue par morceaux sur [0,1]. Elle est en particulier bornée. De ce fait, pour tout x > 0, la fonction $L(\psi)$ est définie en x, en effet la série $\sum_{n \geq 0} \alpha_n e^{-nx} \psi(e^{-nx})$ est absolument convergente donc convergente car pour tout entier n,

$$|\alpha_n e^{-nx} \psi(e^{-nx})| \le ||\psi||_{\infty} \alpha_n e^{-nx}$$

et la série $(\sum_{n\geq 0} \alpha_n e^{-nx})$ est convergente par hypothèse.

Par contre, la fonction $L(\psi)$ n'est pas définie en 0. Il semble qu'il y a un problème dans la définition de l'espace vectoriel F

L'application L est linéaire d'après la linéarité de la somme des séries.

De plus si $\psi_1 \leq \psi_2$ alors pour tout x > 0 et pour tout entier n,

$$\alpha_n e^{-nx} \psi_1(e^{-nx}) \le \alpha_n e^{-nx} \psi_2(e^{-nx})$$

car $\alpha_n e^{-nx} \geq 0$. En passant à la somme $L(\psi_1)(x) \leq L(\psi_2)(x)$.

17. Vérifier que E_1 est un sous-espace vectoriel de E et Δ est une forme linéaire continue sur $(E_1, ||.||_{\infty})$.

La fonction nulle **0** appartient à E_1 car $L(\mathbf{0})$ est la fonction nulle. De plus, si ψ_1 et ψ_2 appartiennent à E_1 et si λ, μ sont deux scalaires, on pose $\psi' = \lambda \psi_1 + \mu \psi_2$. On a alors pour tout x > 0,

$$x(L(\psi'))(x) = \lambda x(L(\psi_1))(x) + \mu x(L(\psi_2))(x)$$

Quand $x \to 0$, les deux termes ont une limite finie par définition (à savoir $\lambda \Delta(\psi_1)$ et $\mu \Delta(\psi_2)$). Donc $x(L(\psi'))(x)$ a une limite finie et de ce fait, $\psi' \in E_1$.

On a bien montré que E_1 était un sous-espace vectoriel de E.

De plus, on vient de voir qu'avec les notations précédentes, $\Delta(\lambda\psi_1 + \mu\psi_2) = \lambda\Delta(\psi_1) + \mu\Delta(\psi_2)$ ce qui signifie que Δ est une forme linéaire.

Il reste à montrer que Δ est continue sur $(E_1, ||.||_{\infty})$.

Soit $\psi \in E_1$, d'après les calculs de la question 16, pour tout x > 0,

$$|x(L(\psi))(x)| = x \left| \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \psi(e^{-nx}) \right| \le x \sum_{n=0}^{+\infty} \alpha_n e^{-nx} ||\psi||_{\infty}$$

En faisant tendre x vers 0, on obtient alors que

$$|\Delta(\psi)| = |\lim_{x \to 0} x(L(\psi))(x)| \le \ell ||\psi||_{\infty}.$$

Cela implique bien que la fonction Δ est une forme linéaire continue sur $(E_1,||.||_{\infty})$.

18. Montrer que e_p appartient à E_1 . Calculer $\Delta(e_p)$. En déduire que $E_0 \subset E_1$ et calculer $\Delta(\psi)$ pour $\psi \in E_0$.

On pose $e_p: t \mapsto t^p$ pour $p \in \mathbb{N}$.

— Pour p=0, on a pour tout x>0, $(L(e_0))(x)=\sum_{n=0}^{+\infty}\alpha_ne^{-nx}$. De ce fait, $e_0\in E_1$ et

$$\Delta(e_0) = \lim_{x \to 0} x \sum_{n=0}^{+\infty} \alpha_n e^{-nx} = \ell$$

par hypothèse.

— Pour p > 0, on a pour tout x > 0,

$$(L(e_p))(x) = \sum_{n=0}^{+\infty} \alpha_n e^{-nx} (e^{-nx})^p = \sum_{n=0}^{+\infty} \alpha_n e^{-nx(1+p)} = (L(e_0))((p+1)x).$$

On en déduit que

$$x(L(e_p))(x) = \frac{1}{p+1} \cdot (p+1)x(L(e_0))((p+1)x) \xrightarrow[x \to 0]{\ell} \frac{\ell}{p+1}$$

Finalement, pour tout $p \in \mathbb{N}$, $e_p \in E_1$ et $\Delta(e_p) = \frac{\ell}{p+1}$.

On en déduit par linéarité que pour toute fonction polynomiale P sur $[0,1], P \in E_1$ et $\Delta(P) = \ell \int_0^1 P(t)dt$ car pour tout entier $p \in \mathbb{N}, \Delta(e_p) = \ell \int_0^1 e_p(t)dt$.

Maintenant, si ψ est une fonction continue sur [0,1], d'après le théorème de Weierstrass, il existe une suite (P_k) de fonctions polynomiales sur [0,1] qui converge uniformément vers ψ .

Posons, pour tout entier $k, F_k : x \mapsto x(L(P_k))(x)$ et $F : x \mapsto x(L(\psi))(x)$. En reprenant les calculs précédent, on obtient que pour tout x > 0,

$$|F_k(x) - F(x)| \le \sum_{n=0}^{+\infty} x \alpha_n e^{-nx} ||P_k - \psi||_{\infty} = ||P_k - \psi||_{\infty} x (L(e_0))(x).$$

Maintenant, pour tout a>0, la série de fonctions $\sum \alpha_n e^{-nx}$ converge normalement sur [a,1] donc la fonction $x\mapsto L(e_0)(x)$ est continue sur]0,1[. Il en est de même pour $x\mapsto x(L(e_0))(x)$. Cette dernière se prolonge par continuité en 0 (car elle tend vers ℓ en 0). En particulier, elle est alors continue sur [0,1] et donc bornée. Cela permet de déduire que (F_k) converge uniformément sur [0,1] vers F. Comme de plus, par hypothèse, pour tout $k\geq 0$, $\lim_{x\to 0} F_k(x) = \Delta(P_k)$. D'après le théorème de la double limite, la suite $(\Delta(P_k))$ converge (on le savait déjà) et

$$\lim_{x \to 0} F(x) = \lim_{k \to +\infty} \Delta(P_k).$$

Cela signifie que ψ appartient à E_1 et que

$$\Delta(\psi) = \lim_{k \to +\infty} \Delta(P_k) = \lim_{k \to \infty} \ell \int_0^1 P_k(t) dt = \ell \int_0^1 \psi(t) dt.$$

La dernière égalité découle du fait que (P_k) converge uniformément vers ψ .

19. Vérifier que g_+ et g_- appartiennent à E_0 , calculer $\Delta(g_-)$ et $\Delta(g_+)$. Montrer que $1_{[0,a]} \in E_1$ et calculer $\Delta(1_{[0,a]})$. En déduire $E_1 = E$ et calculer $\Delta(\psi)$.

Les fonctions g_+ et g_- sont affines par morceaux, de plus,

$$\lim_{x \to (a_{\varepsilon})^{+}} g_{-}(x) = \frac{a - (a - \varepsilon)}{\varepsilon} = 1; \lim_{x \to a^{-}} g_{-}(x) = \frac{a - a}{\varepsilon} = 0.$$

On en déduit que g_- est continue sur [0,1]. De même pour g_+ .

On a donc

$$\Delta(g_{-}) = \ell \int_{0}^{1} g_{-}(t)dt = \ell \left(\int_{0}^{a-\varepsilon} 1dt + \int_{a-\varepsilon}^{a} \frac{a-t}{\varepsilon}dt + \int_{a}^{1} 0dt \right) = \ell \left[(a-\varepsilon) + \frac{\varepsilon}{2} \right] = \ell(a-\frac{\varepsilon}{2}).$$

Un calcul similaire, donne $\Delta(g_+) = \ell \left(a + \frac{\varepsilon}{2} \right)$.

On remarque alors que pour tout $\varepsilon > 0$, $g_- \le 1_{[0,a]} \le g_+$. De ce fait, en utilisant 16. on obtient que pour tout x > 0,

$$x(L(g_{-}))(x) \le x(L(1_{[0,a]}))(x) \le x(L(g_{+})(x)).$$

Maintenant,

$$\lim_{x \to 0} x(L(g_-))(x) = \ell\left(a - \frac{\varepsilon}{2}\right)$$

alors il existe η_- tel que $x \leq \eta_-$ implique $x(L(g_-))(x) \geq \ell\left(a - \frac{\varepsilon}{2}\right) - \ell\left(\frac{\varepsilon}{2}\right) = \ell\left(a - \varepsilon\right)$. On procédant de même on obtient η_+ tel que $x < \eta_+$ implique $x(L(g_+))(x) \leq \ell\left(a + \frac{\varepsilon}{2}\right) + \ell\left(\frac{\varepsilon}{2}\right) = \ell\left(a + \varepsilon\right)$. En prenant $\eta = \min\left(\eta_-, \eta_+\right)$ on obtient que pour $x < \eta$,

$$\ell\left(a-\varepsilon\right) \leq x(L(g_{-}))(x) \leq x(L(1_{[0,a]}))(x) \leq x(L(g_{+})(x)) \leq \ell\left(a+\varepsilon\right).$$

Ceci étant vrai pour tout ε , $x(L(1_{[0,a]}))(x) \underset{x\to 0}{\longrightarrow} a\ell$ donc $1_{[0,a]} \in E_1$ et

$$\Delta(1_{[0,a]}) = a\ell = \ell \int_0^1 1_{[0,a]}(t)dt.$$

Soit $a \in [0, 1]$, en procédant comme ci-dessus, avec h_- la fonction nulle et h_+ la fonction définie par

$$h_{+}(x) = \begin{cases} 0 & \text{si } x \in [0, a - \varepsilon] \\ \frac{-a + \varepsilon + x}{a + \varepsilon} & \text{si } x \in]a - \varepsilon, a] \\ \frac{a + \varepsilon^{\varepsilon} - x}{\varepsilon} & \text{si } x \in]a, a + \varepsilon[\\ 0 & \text{si } x \in]a + \varepsilon, 1] \end{cases}$$

on montrer que $\delta_a: x \mapsto \begin{cases} 1 & \text{si } x = a \\ 0 & \text{sinon} \end{cases}$ est aussi dans E_1 et telle que $\Delta(\delta_a) = 0$. De ce fait en modifiant une fonction ψ d'un nombre fini de valeurs, on ne modifie pas l'appartenance (ou la non appartenance) à E_1 pas plus que la valeur de $\Delta(\psi)$

Maintenant, pour $(a,b) \in [0,1]^2$, on remarque $1_{[a,b]} = 1_{[0,b]} - 1_{[0,a]}$. De ce fait, par linéarité, les fonctions en escalier appartiennent à E_1 .

Finalement, pour toute fonction ψ continue par morceaux et tout $\varepsilon > 0$, on sait qu'il existe ψ_- et ψ_+ des fonctions en escaliers telles que $\psi_- \le \psi \le \psi_+$ et $\psi_+ - \psi_- \le \varepsilon$. On peut alors procéder comme ci-dessus pour montrer que $\psi \in E_1$ et que $\Delta(\psi) = \ell \int_0^1 \psi(t) dt$.

20. Calculer $(L(\psi))(\frac{1}{N})$ pour tout entier N>0 et ...

Soit
$$N > 0$$
, $(L(\psi))(\frac{1}{N}) = \sum_{n=0}^{+\infty} \alpha_n e^{-n/N} \psi(e^{-n/N})$. Or on a

$$e^{-n/N} \ge e^{-1} \iff \frac{n}{N} \le 1 \iff n \le N$$

De ce fait,

$$(L(\psi))(\frac{1}{N}) = \sum_{n=0}^{N} \alpha_n e^{-n/N} \frac{1}{e^{-n/N}} = \sum_{n=0}^{N} \alpha_n.$$

On vient de voir (question 19.) que la fonction ψ qui est continue par morceaux appartient à E_1 et que

$$\Delta(\psi) = \ell \int_0^1 \psi(t)dt = \ell \int_{\frac{1}{\epsilon}}^1 \frac{1}{t}dt = \ell.$$

Comme $\Delta(\psi) = \lim_{N \to \infty} \frac{1}{N} (L(\psi))(\frac{1}{N})$, on obtient finalement que

$$\lim_{n \to \infty} \frac{1}{N} \sum_{k=0}^{N} \alpha_k = \ell.$$

21. Si $A \in S$ que vaut $\lim_n \frac{1}{n} \mathbf{Card}(A(n))$? Déterminer alors $\lim_n \frac{1}{n} \sum_{k=1}^n v(k)$.

Soit $A \in S$. On considère la suite (a_n) définie au début de la partie C. On a alors pour tout entier n, $\operatorname{Card}(A(n)) = \sum_{k=0}^{n} a_k$. Comme $A \in S$, on a vu que pour tout x > 0, la série $(\sum_{n \geq 0} a_n e^{-nx})$ converge (vers $f_A(x)$) et on suppose que $xf_A(x) \xrightarrow[x \to 0]{} \Phi(A)$. On peut donc appliquer les résultats de la partie D avec $\ell = \Phi(A)$ et on obtient donc que

$$\lim_{n\to +\infty}\frac{1}{n}\mathrm{Card}(A(n))=\lim_{n\to +\infty}\frac{1}{n}\sum_{k=0}^n a_k=Phi(A).$$

En appliquant les résultats précédent à la suite (v(n)), on a vu que pour tout x>0,

$$x \sum_{n=0}^{+\infty} v(n)e^{-nx} = x(f_{A_1}(x))^2 \underset{x \to 0}{\sim} x. \left(\frac{\sqrt{\pi}}{2\sqrt{x}}\right)^2 \underset{x \to 0}{\sim} \frac{\pi}{4}.$$

On en déduit que

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} v(k) = \frac{\pi}{4}.$$

Corrigé par Denis Petrequin : denis.petrequin@ac-rennes.fr