Développement 42. Convexité des valeurs d'adhérence d'une suite

Théorème 1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite complexe d'un compact $X\subset\mathbb{C}$ vérifiant

$$|x_{n+1}-x_n|\longrightarrow 0.$$

Alors l'ensemble Γ de ses valeurs d'adhérence est connexe.

Preuve On raisonne par l'absurde et on suppose que l'ensemble Γ n'est pas connexe. Dans ce cas, on peut trouver deux fermées non vides $A, B \subset \Gamma$ vérifiant $\Gamma = A \sqcup B$. Comme ces dernières sont fermées dans le compact X, elles sont elle-même compactes. On considère donc le réel strictement positif

$$\alpha := d(A, B) > 0.$$

Les ensembles

$$A' \coloneqq \{x \in X \mid d(x, A) < \alpha/3\}$$
 et $B' \coloneqq \{x \in X \mid d(x, B) < \alpha/3\}$

sont des ouverts, donc l'ensemble $K := X \setminus (A' \cup B')$ est un fermé et donc compact.

Ce dernier est disjoint de l'ensemble Γ puisque, comme $\Gamma = A \sqcup B \subset A' \cup B'$, l'inclusion $X \setminus \Gamma \supset K$ est vérifiée ce qui donne $\Gamma \cap K = \emptyset$. Pour conclure la preuve, il suffit donc de construire une sous-suite du compact K de la suite $(x_n)_{n \in \mathbb{N}}$. Une fois cela fait, cette sous-suite admettra une valeur d'adhérence dans l'ensemble K ce qui conduira à une absurdité puisque celle-ci n'appartiendra donc pas à l'ensemble Γ .

Construisons une telle sous-suite. Avec l'hypothèse $|x_{n+1}-x_n| \longrightarrow 0$, il existe un entier $N_0 \in \mathbb{N}$ tel que

$$\forall n \geqslant N_0, \qquad |x_{n+1} - x_n| < \alpha/3.$$

Soit $N \ge N_0$ un entier. On souhaite trouver un entier $n_0 \ge N$ tel que $x_{n_0} \in K$.

Soient $a \in A$ et $b \in B$ deux éléments. Comme le nombre a est une valeurs d'adhérence, il existe un entier $n_1 > N$ tel que $|a - x_{n_1}| < \alpha/3$ de telle sorte que $x_{n_1} \in A'$. De même, il existe un entier $m > n_1$ tel que $|b - x_m| < \alpha/3$ de telle sorte que $x_m \in B'$.

Montrons que $x_m \notin A'$. On raisonne par l'absurde et on suppose que $x_m \in A'$. Comme la partie A est compacte, on peut donc trouver un élément $a' \in A$ tel que $|x_m - a'| < \alpha/3$. L'inégalité triangulaire donne alors

$$|a' - b| \le |a' - x_m| + |x_m - b| < 2\alpha/3 < \alpha$$

ce qui est impossible par définition même du réel α . D'où $x_m \notin A'$.

L'ensemble $\{m>n_1\mid x_m\notin A'\}$ n'est donc pas vide. En particulier, il admet un plus petit élément $n_0>n_1$. Ce dernier vérifie $x_{n_0}\notin A'$ et $x_{n_0-1}\in A'$. Montrons que $x_{n_0}\notin B'$. On raisonne par l'absurde et on suppose que $x_{n_0}\in B'$. Comme précédemment, il existe un élément $b'\in B$ tel que $|x_{n_0}-b'|<\alpha/3$. Comme $x_{n_0-1}\in A'$, il existe aussi un élément $a'\in B$ tel que $|x_{n_0-1}-a'|<\alpha/3$. L'inégalité triangulaire donne ainsi

$$|a'-b'| \le |a'-x_{n_0-1}| + |x_{n_0-1}-x_{n_0}| + |x_{n_0}-b'| < \alpha$$

ce qui est encore impossible. D'où $x_{n_0} \notin B'$. On en déduit que $x_{n_0} \in K$ avec $n_0 \geqslant N$. En conclusion, pour tout entier $N \geqslant N_0$, il existe un entier $n_0 \geqslant N$ tel que $x_{n_0} \in K$. \triangleleft

Corollaire 2. Soient $f: [0,1] \longrightarrow [0,1]$ une fonction continue et $(x_n)_{n \in \mathbb{N}}$ une suite de l'intervalle [0,1] définie par l'égalité

$$x_{n+1} = f(x_n), \qquad n \in \mathbf{N}.$$

On suppose que $x_{n+1} - x_n \longrightarrow 0$. Alors la suite $(x_n)_{n \in \mathbb{N}}$ converge.

Preuve On considère l'ensemble Γ de ses valeurs d'adhérence. Comme l'intervalle [0,1] est compact, le théorème assure que l'ensemble Γ est connexe. Par ailleurs, ce dernier est fermé puisque

$$\Gamma = \bigcap_{p \in \mathbf{N}} \overline{\{x_n \mid n \geqslant p\}}.$$

Montrons que toute valeur d'adhérence $\ell \in \Gamma$ est un point fixe de la fonction f. Par définition, il existe une sous-suite $(x_{\varphi(n)})_{n \in \mathbb{N}}$ qui converge vers le réel ℓ . Mais comme $f(x_{\varphi(n)}) - x_{\varphi(n)} = x_{\varphi(n)+1} - x_{\varphi(n)} \longrightarrow 0$ et la fonction f est continue, on en déduit que $f(\ell) - \ell = 0$.

On raisonne par l'absurde et on suppose que la suite $(x_n)_{n\in\mathbb{N}}$ ne converge pas. D'après le théorème de Bolzano-Weierstrass, elle admet au moins une valeur d'adhérence et, par notre hypothèse, elle en admet au moins deux. Comme l'ensemble Γ est connexe, il contient donc un intervalle $[c-h,c+h]\subset \Gamma$ avec $c\in [0,1]$ et h>0. Comme $c\in \Gamma$, il existe un entier $N\in \mathbb{N}$ tel que $|x_N-c|\leqslant h/2$ si bien que $x_N\in \Gamma$. Avec le paragraphe précédent, on en déduit que $x_{N+1}=f(x_N)=x_N$. Une récurrence immédiate nous assure alors que la suite $(x_n)_{n\geqslant N}$ est constante. En particulier, elle converge ce qui est absurde!

¹ Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.

² Lucas Isenmann et Timothée Pecatte. L'oral à l'agrégation de mathématiques. Ellipses, 2017.