N-Body Problem

Newton's law of gravity (inverse square

In vector form,

F =

Newton's law of gravity assumes

ONLY valid

Why does it work for planets?

If the gravitational force for an actual body can be written as the force for a point mass, then

Planets work because

N-Body Problem

Assume

- · Gravity is the only force
- · System of n bodies (m,, m2, ..., m,)
- · Spherically symmetric masses

Note

Force on m_i due to m_n is $\overline{F}_n =$

Sum all forces

Now we can write EOM from Newton's second law

$$\frac{1}{dt}(m_i \nabla_i) = F$$

Assume constant mass.

$$\frac{Id}{dt}(m_i \nabla_i) =$$

If we have n bodies, can we solve $F_i(t)$?

To know ri(t), need to find ri(t)

To solve, we need to know the vector positions t velocities of all the bodies.

Do we really care about ri, rg? what do we really care about?

We nave expressions for \vec{r}_i and \vec{r}_g $\vec{r}_{gi} = -G \sum_{\substack{j=1\\j\neq i}}^{m} \frac{m_j}{r_{ji}^3} \vec{r}_{ji} + G \sum_{\substack{j=1\\j\neq g}}^{m} \frac{m_j}{r_{jg}^3} \vec{r}_{jg}$

If n 23, still can't solve. Need

What happens if n=3 (remove a)?

How about 2? 2nd order DE with one unknown position!