

Contents lists available at SciVerse ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Table of experimental nuclear ground state charge radii: An update

I. Angeli^a, K.P. Marinova^{b,*}

ARTICLE INFO

Article history:
Received 9 August 2011
Received in revised form
10 November 2011
Accepted 2 December 2011
Available online 12 December 2012

Keywords: Nuclear charge radii Radii changes Optical isotope shifts K_{α} X-ray isotope shifts Electron scattering Muonic atom spectra

ABSTRACT

The present table contains experimental root-mean-square (rms) nuclear charge radii R obtained by combined analysis of two types of experimental data: (i) radii changes determined from optical and, to a lesser extent, K_{α} X-ray isotope shifts and (ii) absolute radii measured by muonic spectra and electronic scattering experiments. The table combines the results of two working groups, using respectively two different methods of evaluation, published in ADNDT earlier. It presents an updated set of rms charge radii for 909 isotopes of 92 elements from $_1$ H to $_{96}$ Cm together, when available, with the radii changes from optical isotope shifts. Compared with the last published tables of R-values from 2004 (799 ground states), many new data are added due to progress recently achieved by laser spectroscopy up to early 2011. The radii changes in isotopic chains for He, Li, Be, Ne, Sc, Mn, Y, Nb, Bi have been first obtained in the last years and several isotopic sequences have been recently extended to regions far off stability, (e.g., Ar, Mo, Sn, Te, Pb, Po).

 $\hbox{@ 2012}$ Elsevier Inc. All rights reserved.

^a Institute of Experimental Physics, University of Debrecen, H-4010 Debrecen Pf. 105, Hungary

^b Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

^{*} Corresponding author. Tel.: +7 4962162084; fax: +7 4962165083. E-mail address: marinova@nrmail.jinr.ru (K.P. Marinova).

Contents

1.	Introduction	70
	Evaluation procedures	
3.	Data sources	71
	3.1. Radii changes from optical isotope shift	71
	3.2. Radii differences between isotopes from K_{α} isotope shifts	72
	3.3. rms radii from e^- and μ^- experiments	72
4.	Global behaviour of rms nuclear charge radii	73
	Acknowledgments	75
	References	75
	Explanation of Tables	76
	Table 1. Nuclear radii changes and rms nuclear charge radii.	76
	Table 2. Parameters used for extraction of radii changes from OIS	76

1. Introduction

The nuclear charge radius is one of the most obvious and important nuclear parameters that give information about the nuclear shell model and the influence of effective interactions on nuclear structure. Experimental information on root-meansquare (rms) nuclear charge radii can be derived from different sources and has been published several times. The results from electron scattering (e^{-}) experiments are expressed in terms of the rms radius, and, for some nuclei, in parameters of the Fermidistribution [1,2]. Muonic X-ray energies are another source of information. These probe somewhat different moments of nuclear distribution, the so called "Barrett moments" $\langle r^k e^{-\alpha r} \rangle$, nevertheless the results are quoted also in terms of $\langle r^2 \rangle$ [3,4]. Optical and K_{α} X-ray isotope shifts are sensitive to the same nuclear parameters and provide an important source of complementary information on mean square (ms) radii changes $\delta \langle r^2 \rangle$. The $K_{\alpha}X$ results are easier to interpret; however, these measurements can be performed only on stable isotopes since the experimental method requires several tens of milligrams of target. The same refers to experiments with μ^- atoms and electron scattering e^- , while optical isotope shifts (OIS) can be measured with negligible quantities of radioactive atoms, inclusive single ones, with lifetimes down to 1 ms, and thus give access to long chains of radioactive isotopes extending far off stability [5,6].

The four electromagnetic methods are sensitive to different properties of the nuclear ground-state charge distributions. For this reason, a combination of data from different experimental methods generally yields more detailed and accurate knowledge of the nuclear radii than is available from any single method alone.

Many new data on isotope shift measurements have been published in recent years; therefore, it is again the right moment to see another summary of facts and trends in the field. This is already done in the recent paper [7], which presents and discusses not only the isotopic trend of nuclear charge radii but also a full systematic of isotonic shifts extracted from the wealth of data. Special attention is paid to the structural evolution along the isotonic and isotopic chains around the "traditional" magic numbers 8, 20, 28, 50, 82 and 126 and to the appearance of new non-traditional magic numbers especially in the region of light nuclei. However, discussing the consequences of the *R*-tabulation, the paper [7] does not give numerical values of R's. The latter, together with short explanations, are accessible online in the database of the Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics and are presented as three different data sets (see Refs. [8-10]). A modified and updated version can be found in the site Data Library of NDS IAEA [11] as a single data set.

The purpose of this paper is to present in a compact form the numerical values of the experimental rms charge radii obtained by a combined treatment of the experimental data of both types -R and $\delta \langle r^2 \rangle$. The results of two different methods of data evaluation

[12,13] are combined into a single data set (Table 1). This is for the benefit of data users, who generally prefer a single, unified data set to several separate tables. Also a few new data are added, due to the last achievements of laser spectroscopy (see references to Table 2). Therefore, the resulting tabulation of radii covers a broader range of *Z* and *N* than most recently published tables [10,11]: it contains 909 isotopes for 92 elements.

2. Evaluation procedures

The principle of a combined treatment is obvious: a simple relation

$$R^{2}(A) = R^{2}(A') + \delta \left\langle r^{2} \right\rangle^{A'A} \tag{1}$$

links the data on rms radii R ($R=\langle r^2\rangle^{1/2}$) of a stable reference isotope A' with the radius change

$$\delta \langle r^2 \rangle^{A'A} = \langle r^2 \rangle^A - \langle r^2 \rangle^{A'} \tag{2}$$

between A' and a radioactive isotope A, giving the R(A) value of any isotope A in a long isotopic sequence. The extraction of R according to this simple equation meets with serious statistical and computational problems in cases where there exist data on R(A) for many isotopes and especially on $\delta \langle r^2 \rangle$ in long isotopic chains. So far three essentially different methods of combined analysis have been developed and the tabulated rms charge radii have been published [4,12-14]. Details of the different data treatments can be found in the original papers. Below only a brief description is given.

In Ref. [12] an algorithm is suggested for averaging the data for all known radii of isotopes and for all known chains of radii changes between isotopic pairs of the same element. It is a least square fit procedure in which the experimental data from electron scattering (e^-) and muonic atom X-rays (μ^-) are fitted to the more accurate radii changes in an isotopic sequence. Therefore, Ref. [12] lays stress on the ms radii changes and the resulting R values along long isotopic sequences correspond exactly to Eq. (1). The method has two disadvantages: (1) due to averaging over many different isotopic chains, it underestimated slightly the total uncertainties and (2) using the input data on $R_{e\mu}$ as given by [15], it doesn't take into account any isotonic or isobaric $R_{e\mu}$ dependence.

On the contrary, in the evaluation procedure of Ref. [13], first R and δR values (also from non-isotopes) were taken into account from electron scattering (e^-) , muonic atom X-rays (μ^-) , K_α X-ray isotope shifts (KIS) and from optical isotope shifts along the valley of stability. Owing to the large number of independent and redundant R and δR data, weighted averaging and several constraints were applied resulting in a more accurate and consistent set of average $R_{e\mu KO}$ and $\delta R_{e\mu KO}$ data for stable nuclei. This data set can be regarded as a "backbone" for the next step. The uncertainty $\Delta \delta R_{e\mu KO}$ of the average differences $\delta R_{e\mu KO}$ is significantly less than that of the input data (e.g., it is less than the (total) error $\Delta \delta R_{OIS}$

of δR_{OIS}). The reduction of the total error from $\Delta \delta R_{OIS}$ to $\Delta \delta R_{e\mu KO}$ varied from element to element between 0.2 and 0.6. As δR values of a given isotopic series with n members are linearly interrelated with each other,

$$\delta R^{A',A_k} = \delta R^{A',A} \times \sqrt{\frac{\delta \nu_{FS}^{A',A_k}}{\delta \nu_{FS}^{A',A}}} \quad k = 1, 2, \dots, n-1$$
 (3)

correction factors $\delta R_{e\mu KO}/\delta R_{OIS}$ were formed; their values varied between 0.9 and 1.3 depending on the element. These factors were used to multiply those δR_{OIS} values of the isotopic chain, for which only OIS measurements were available, thus correcting for the common – Z-dependent – systematic errors. These corrected series of differences ("wings") were added to the backbone. In this way a set of rms radii R was obtained. As the correction factor has the same value for a given element, this correction does not change the relative trend of $R_{\rm Z}(N)$ isotopic dependence. However it improves the absolute R values, which are important for the investigation of the radius surface R(N, Z) (e.g., for isotonic dependence). It is evident from the above that the δR_{OIS} values as obtained by OIS measurements, are not to be expected to fit exactly into the system of R data so derived. Thus, the algorithm [13] improves the links between different isotopic series, helping the study of isotonic and isobaric behaviour. This is its main advantage.

Fricke et al. [4,14] proposed a "model independent" way to determine parameters needed to extract radii changes from OIS using the so called King-plot [16]. This procedure essentially correlates OIS-data via King-plots with *R*, extracted from isotopic shift measurements in muonic atoms. Additional input enters from elastic electron scattering experiments wherever data are available; this concerns higher radial moments of the nuclear charge distribution. In the majority of cases the results from this model independent analysis agree passably with those obtained from electron shell data.

In all cases, the combined treatment is applicable to those elements for which both types of data, on R and $\delta\langle r^2\rangle$, exist. The differences in the absolute R-values between these data sets are usually less than or around one percent. Although small, these differences lead to unexpected charge radii behavior in some cases of Ref. [14] which is not consistent with nuclear ground state properties. The problem is already discussed in Refs. [7,17]. On the contrary, the data sets of Refs. [8,9] are very close. Both data sets show the same fundamental properties and, what is of special importance, are consistent with gross nuclear radii trend and other nuclear ground state characteristics.

All the source data of Refs. [8,9] are carefully checked and even, when necessary, re-evaluated and updated. A careful analysis of the results has been performed, showing that the simple average values, R_{av} , of the two data sets can be regarded as "the best" experimental R tabulation. $R=R_{av}$ expresses in a great extent the advantages of both algorithms of combined analysis: improves the radii of stable nuclei replacing $R_{e\mu}$ by the more accurate $R_{e\mu KO}$ according to the algorithm of Ref. [13] and comprises the exact values of $\delta \langle r^2 \rangle$ according to the algorithm of Ref. [12]. The uncertainties $\Delta R_{tot} = \Delta \delta R_{e\mu KO,tot}$ of the rms radii R account for the total, statistical and systematic errors of both types of source data, as calculated by the method of Refs. [12,13]. To reflect the possible systematic discrepancies between two different evaluations we adopt a single unified set of uncertainties defined as

$$\Delta R_{tot} = \max(\Delta R [12], \Delta R [13], 0.5 \times |R [12] - R [13]|).$$
 (4)

Only in 4% of all cases the differences between the two data sets of R are dominant. This is probably due to the statistical nature of data.

The new radii tabulation (Ref. [7] and the present work) permits to draw not only qualitative but also quantitative conclusions about the isotopic and isotonic radii trend for an extended range

of Z and N: $1 \le Z \le 96$ and $1 \le N \le 152$. Let us emphasize that both data sets [8,9] on which Table 1 is based are not a result of a simple compilation of individual measurements, but contains self-consistent set of R values giving a global survey of nuclear charge radii over the whole nuclide chart.

3. Data sources

3.1. Radii changes from optical isotope shift

In the algorithms of Refs. [12,13], the sources of data on nuclear parameters λ and $\delta \langle r^2 \rangle$ published before 1989 are the compilations Refs. [5,18]. Only a limited number of original papers after 1989 are used in Ref. [12], while the tables of Ref. [13] take into account a large amount of more recent results. The reference list to Table 2 of this work presents the updated data sources on $\delta \langle r^2 \rangle$. About 25% of the OIS data are published or found since the previous tables from 2004 covering 799 ground states. Compared to 2004 [13], and even compared to 2008 [10], many new data are added in the present table including information up to mid 2011. The radii changes in isotopic chains for He, Li, Be, Ne, Sc, Mn, Y, Nb, Ir, Bi are either first obtained or revised in the last years and, several isotopic sequences are recently extended to regions far off stability (e.g., Ar, Mo, Sn, Te, Pb, Po). In some cases (Ca, La, Eu, Gd, Hf) only single additional radioactive isotopes are added to the already existing data. In recent papers new results on rms charge radii are published based on OIS measurements: ⁷⁴Rb [19], ^{21–32}Mg [20], ¹²Be [21] and 63-82Ga [22].

Given the fact that the previous evaluation of $\delta\langle r^2\rangle$ all over the nuclide chart [5] is already more than two decades old, we display in Table 1 also the source data on charge radii changes reflecting today's status in this research area. As many changes and improvements are included, we believe that the information on $\delta\langle r^2\rangle$ may be of general usefulness to many researchers from experimental and theoretical point of view. The details about the choice of these data and on how the displayed $\delta\langle r^2\rangle$ values have been derived are given in Table 2.

For extraction of nuclear radii changes from experimental OIS one needs to know two parameters, the so called electronic factor, F, related to the change in the electronic density at the nucleus for the optical transition and the mass shift constant, MS, accounting for the finite mass of the nucleus. The latter consists of two terms: normal, N, and specific, S, mass shift constants: MS = N + S. The procedure of extraction of nuclear radii changes from OIS is well known and described many times. For this reason, without going into details, we only present the equations which have been used for evaluation of $\delta \langle r^2 \rangle$.

The isotope shift, i.e. the difference in frequency

$$\delta \nu^{A',A} = \nu^A - \nu^{A'} \tag{5}$$

of a particular atomic transition between two isotopes with masses m_A and $m_{A'}$ can be decomposed into mass shift, $\delta \nu_{MS}$, arising from the change of the nuclear mass, and field shift $\delta \nu_{FS}$, sensitive to a change in the charge distribution inside the nucleus. It is caused by the additional neutrons and is proportional to the nuclear parameter λ :

$$\delta v^{A',A} = \delta v_{FS}^{A',A} + \delta v_{MS}^{A',A} = F \lambda^{A',A} + \frac{m_A - m_{A'}}{m_A m_{A'}} (N + S).$$
 (6)

The nuclear parameter λ takes into account the change of the electronic wave function over the nuclear volume. This requires an expansion into a power series of the radial moments of the nuclear charge distribution [23]

$$\lambda^{A',A} = \delta \langle r^2 \rangle^{A',A} + \sum_{k=1}^{\infty} \frac{C_k(Z)}{C_1(Z)} \delta \langle r^2 \rangle^{2k}$$
$$= \delta \langle r^2 \rangle^{A',A} \left[1 + \sum_{k=1}^{\infty} \frac{C_k}{C_1} \delta \langle r^2 \rangle^{2k} / \delta \langle r^2 \rangle^{A',A} \right]. \tag{7}$$

Fig. 1. Development of the experimental values of the proton radius during the years: Hand, 1963 [33], Simon, 1980 [34], Melnikov, 2000 [35], Sick, 2003 [36], Borisyuk, 2010 [37] and Pohl, 2010 [38].

For light nuclei, the contribution of higher order moments, the so called higher moments correction (HM), is vanishingly small, usually less than the experimental errors, and therefore $\lambda \approx \delta \langle r^2 \rangle$. For the heaviest nuclei the radial moments higher than $\delta \langle r^2 \rangle$ contribute almost 10%. A well developed procedure has been applied [13,14] to convert the experimental λ into $\delta \langle r^2 \rangle$. This is done for all isotopes with $Z \geq 36$.

Traditionally, F has been evaluated from atomic electron shell data using either semi-empirical procedures and/or Hartree-Fock methods for calculating the relevant electronic density at the site of the nucleus. The normal mass shift constant, given by $N = \nu m_e$, is calculated with the transition frequency ν and the electronic mass m_e . The specific mass shift constant, S, accounting for the correlations of the electronic motion, can be calculated reliably only for very light elements. In all cases of medium mass and heavy elements, different kinds of semi-empirical methods have been used. These methods of F and MS evaluation have yielded very consistent sets of $\delta \langle r^2 \rangle^{A',A}$ -values [5] all over the nuclear chart and even for very long isotopic chains. They didn't produce (e.g., unreasonable crossings of the isotopic course of nuclear radii between different elements). More importantly, the results could be interpreted in quantitative agreement with other well established experimental facts of nuclear structure. For extracting the nuclear parameter λ from OIS, the semi-empirical approach using optical information was preferred whenever possible (see Table 2 and the corresponding references).

When more than one data set on OIS is available, generally the most precise value that has been published was used. In many cases it was necessary to compile data from different sources and to reanalyze them.

3.2. Radii differences between isotopes from K_{α} isotope shifts

Most of the 89 K_{α} X-ray IS data are from Table II of Ref. [4], which is an extended version of Ref. [24]. Original papers have also been taken into account [25–27]. Two modifications were performed in Table II of Ref. [4]: (1) For uranium the correct mass interval is $^{233-238}$ U instead of $^{235-238}$ U (see Ref. [28]). (2) Regarding the results of a χ^2/n' test [29], the shift for $^{121-123}$ Sb [30] was omitted and some errors increased. In the table and papers referred above, energy shifts δE_{Coul} are given, which can be expressed in terms of even moments of the charge distribution: $\delta E_{Coul} = C_1 \lambda$, where the nuclear parameter λ contains the information on the size of the nucleus. Exploiting the wealth of δR data from e^- and μ^- experiments, it was possible to compare the theoretically

Fig. 2. Isotopic behaviour of rms charge radii for light elements from $_2$ He to $_{35}$ Br. For the sake of completeness the R-values obtained by non-optical methods are also shown. The error bars include the total, statistical and systematic uncertainties of the input data. The dashed vertical lines denote the conventional shell closures, while the small-dashed lines indicate the appearance of non-traditional magic numbers (see Ref. [7]).

calculated C_1 value to experiment in a wide range of atomic numbers, and to perform a small (0.965) correction on it. For more details see Section 2.5 of Ref. [13].

3.3. rms radii from e^- and μ^- experiments

The main source for the R values is the table of Ref. [15] which summarizes data from a large number of e^- and μ^- experiments, explaines in detail the sources and selection of these data, as well as the statistical procedure of the combined treatment of both data types. Here we briefly mention only the changes. Change in the evaluation: for the absolute R data from e^- and μ^- methods, the simpler and more transparent averaging formulae were used (EXCEL) instead of the lengthy (FORTRAN) procedure (see Chapter 4 in Ref. [15]). This resulted in small changes in the mean R values. New data: for the stable isotopes of 9 elements, the table [15] contains rms radius values evaluated model independently by combining electron scattering, muonic atoms X-ray and optical isotope shifts. These are: Ca, Kr, Sr, Zr, Mo, Sn, Sm, Gd and Pb. In the first step of the present updated version of combined treatment, the R values for these isotopes are recalculated using only e^- and μ^- data sources and then, in a second step, two different procedures [12,13] of combined analysis with OIS data are performed. The radii of U and Th isotopes are also recalculated in view of critical remarks from Kozhedub [31].

Special attention deserves the new value for the radius of ⁶Li obtained by analysis of electronic scattering experiments data and

Fig. 3. Isotopic behaviour of rms charge radii for medium mass and heavy elements: from $_{36}$ Kr to $_{96}$ Cm. For clear presentation, these elements are grouped in three panels with identical R and N scales in such a way that the major neutron shell closures at N=50, 82 and 126 are well pronounced.

theoretical calculations [32]. Nörtershäuser et al. [32] used this value as absolute reference for the radii in the Li isotopic chain and their results, the most correct existing data for Li, are displayed without any changes in Table 1.

Let us note that for Re, Po, Rn, Fr, Ra and Cm there are no experimental $\it R$ data. Reference radii $\it R_0$ are calculated by the formula

$$R_0 = \left(r + \frac{r_1}{A_0^{2/3}} + \frac{r_2}{A_0^{4/3}}\right) \times A_0^{1/3} \tag{8}$$

with parameters: $r_0 = 0.9071(13)$ fm, $r_1 = 1.105(25)$ fm, $r_2 = -0.548(34)$ fm, which are the results of a least-squares fit to radii along the line of stability (see Table 2 in Ref. [13]). These parameters are correlated. Therefore for safety's sake, for the uncertainty ΔR_0 the value $2 \times (\Delta R_{0,unc})$ was used, where $\Delta R_{0,unc}$ is the value calculated by the assumption of uncorrelated parameters.

It is worth considering the problems connected with the proton radius the experimental value of which strongly changed during the years (see Fig. 1 and references therein [33–38]). In 2010, a

measurement of muonic hydrogen atom Lamb shift [38] resulted in an rms charge radius value $r_{p,\mu}=0.84184(67)$ fm, which differs significantly from the earlier values obtained by electronic measurements (see e.g. 2nd paragraph in Section 2.1. of Ref. [13] and Section 5 in Ref. [7]). This strong deviation between electronic and muonic results may question the correctness of some quantum electrodynamic (QED) calculations or even the validity of the Standard Model of particle physics [39], and produced an active interest in the literature [40–44]. As this problem is not yet settled, it seems advisable to remain on the safe side, and to restrict ourselves to data derived from electronic measurements. See also [45].

4. Global behaviour of rms nuclear charge radii

Transforming $\delta\langle r^2\rangle$ into absolute rms radii values, one receives a global overlook on the charge radii trend in an extended region of nuclei from He to Cm. The accuracy of the combined data is high compared to that of the directly measured radii values for the same element.

Fig. 4. Isotonic behaviour of *rms* radii *R* over the whole nuclide chart. In this case only the *R*-scales in all panels are identical. For visual simplicity only even *N* curves are drawn in panels (b)–(d). Special attention is paid to the region of light elements: panel (a), elements from ₁H to ₈O where isotonic curves for all odd and even *N*-values are drawn.

The dependences of the rms nuclear radii on neutron number N and proton number Z are demonstrated in Figs. 2–4. Adding new data to that of Ref. [10] does not influence the global features of the isotopic (Figs. 2 and 3) and the isotonic (Fig. 4a–d) radii developments. Different aspects of the nuclear radii tabulation can be considered. Those include (i) general features of the isotopic and isotonic trends; (ii) appearance of non-traditional magic numbers; (iii) new exotic phenomena that have been observed in the region of light nuclei; (iv) influence of the deformations; (v) data reliability, and (vi) comparison between theory and experiment. As all consequences of the radii tabulation are already discussed in detail in our previous work [7], here we summarize briefly only those which refer to the appearance or disappearance of magic numbers.

The conventional nucleon magic numbers 2, 28, 50 and 82 are evident from the charge radii development. The effect can be seen in Figs. 2–4 showing that the slope of the isotopic and isotonic curves is steeper at the beginning of an interval between two magic numbers and tends to saturate at the end. Therefore,

the shell closure effect on the charge radii manifests itself in characteristic slope changes (kinks) of radii at magic neutron and proton numbers. As has been shown in our previous work [7], a quantitative criterium of finding shell closure effects can be applied even if the eye is uncertain in deciding about its existence. This is the case for N=126 and for most of the isotonic series.

New data in the region of light nuclei are of great importance, showing interesting peculiarities. Some of those are already discussed in Ref. [7]. For example, there is a strong indication that for nuclei with Z around 10, the neutron numbers N=6 and N=14 (or N=16) may be magic or magic like instead of the conventional magic numbers N=8 and N=20 (see subsection 3.2 of Ref. [7]). From the point of view of isotopic nuclear radii behavior, the magic number N=20 has no visible influence on the development of the charge radii in the case of stable nuclei in the Ca region (see Fig. 2). In the mass region A=100, the double magicity of 96 Zr [46] is also confirmed by the rms charge radii trend [7].

Here we call the attention on Fig. 4a, where a characteristic slope change of the isotonic curve at Z = 6 for N = 8 and also

Table A Comparison of $J^{\pi}=2^+$ and 4^+ level energies, transition probabilities $B(E2)\uparrow$ and the parameters of the quadrupole deformation in the isotonic series N=8 confirming the double magicity of ^{14}C [48].

_					
Element	Z	E(2 ⁺) (keV)	$E(4^+)/E(2^+)$	$B(E2)\uparrow(e^2b^2)$	β_2
¹² Be	4	2102	_	_	_
¹⁴ C	6	7012	1.53	0.00187	0.360(24)
¹⁶ O	8	6917	1.72	0.00406	0.364(17)
¹⁸ Ne	10	1887	1.79	0.0269	0.640(27)

for N = 7 appears. It corresponds to the closure of the proton $1p_{3/2}$ subshell and is in agreement with other ground state nuclear properties, signifying magicity of the (Z, N) pair Z = 6, N = 8[47,48]. Table A illustrates some of them. The local maximum of the energy $E_1(2^+)$ of the first 2^+ excited state, the minimum of the ratio $E_1(4^+)/E_1(2^+)$ of the energies of the first $J^{\pi}=4^+$ and $J^{\pi}=4^+$ 2^+ states and the minimum of $B(E2) \uparrow$ transition probability at ¹⁴C are even more pronounced that in the case of the classical double magic ¹⁶O. The two isotones ¹⁴C and ¹⁶O has the same quadrupole deformation parameter β_2 smaller than β_2 for the neighbouring isotone ¹⁸Ne. As can be seen from Table A and is already shown in our previous work [7] as well as by other authors (see, e.g., Refs. [6, 49]), nuclear charge radii as a function of neutron (or proton) number correlate with other experimental spectroscopic and mass observables. Up to now there are not many attempts for searching such correlations, but they "would be highly desirable in view of the need for reliable nuclear models" [6] involving nuclei far from stability. This would provide a new perspective to study the structural evolution of nuclear ground states with N and/or Z.

Not all conclusions in Ref. [7] are unambiguous. However this work, in a combination with the present nuclear radii tabulation, gives a ground for a more general nuclear physics discussion and is a challenge for further experiments. The data present the *status quo* of our knowledge about experimental radii values.

Acknowledgments

The authors are grateful to W. Nörtershäuser for providing data on Li charge radii before its publishing. Thanks are due to Yu. Gangrsky for the helpful suggestions.

References

- [1] R. Hofstadter, H.R. Fechter, J.A. McIntyre, Phys. Rev. 92 (1953) 978.
- [2] H. de Vries, C.W. de Jager, C. De Vries, At. Data Nucl. Data Tables 36 (1987) 495.
- [3] R. Engfer, H. Schneuwly, J.L. Vuilleumier, H.K. Walter, A. Zehnder, At. Data Nucl. Data Tables 14 (1974) 409.
- [4] G. Friecke, C. Bernhardt, K. Heilig, L.A. Schaller, L. Schellenberg, E.B. Shera, C.W. de Jager, At. Data Nucl. Data Tables 60 (1995) 177.

- [5] E.W. Otten, in: D.A. Bromley (Ed.), Treatise on Heavy-Ion Science, 1989, pp. 517–638.
- [6] H.-J. Kluge, Hyperfine Interact. 196 (2010) 295.
- [7] I. Angeli, Yu.P. Gangrsky, K.P. Marinova, I.N. Boboshin, S.Yu. Komarov, B.S. Ishkhanov, V.V. Varlamov, J. Phys. G 36 (2009) 085102.
- [8] I. Angeli, Recommended values of nuclear charge radii, 2008, http://cdfe.sinp.msu.ru/services/radchart/radhelp.html#rad.
- [9] Yu. Gangrsky, K. Marinova, Nuclear charge radii, 2008. http://cdfe.sinp.msu.ru/services/radchart/radhelp.html#rad.
- [10] Database of the Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics. http://cdfe.sinp.msu.ru/services/radchart/radmain.html.
- [11] I. Angeli, K. Marinova, Nuclear charge radii 2010, A newsletter of the Nuclear Data Section (NDS) Issue No. 50, 2010, 3 http://www.pub.iaea.org/MTCD/publications/PDF/Newsletters/ND-NL-50.pdf (p. 3) (see also http://www-nds.iaea.org/livechart/).
- [12] E.G. Nadjakov, K.P. Marinova, Yu.P. Gangrsky, At. Data Nucl. Data Tables 56 (1994) 133.
- [13] Ì. Angéli, At. Data Nucl. Data Tables 87 (2004) 185.
- [14] G. Fricke, K. Heilig, Landolt-Börnstein: Num. Data and Funct. Relat. in Science and Tech., in: New Series, Group I: Elem. Part., Nuclei and Atoms, vol. 20, Springer Verlag. 2004. 324 pages.
- [15] I. Angeli, Table of nuclear root mean square charge radii, INDC(HUN)-033, IAEA Nuclear Data Section, Vienna, 1999.
- [16] W.H. King, Isotope Shift in Atomic Spectra, Plenum Press, New York, 1984.
- [17] J. Libert, B. Roussière, J. Sauvage, Nuclear Phys. A 786 (2007) 47.
- [18] P. Aufmuth, K. Heilig, A. Steudel, At. Data Nucl. Data Tables 87 (1987) 455.
- [19] E. Mané, et al., Phys. Rev. Lett. 107 (2011) 212502.
- [20] D.T. Yordanov, et al., Phys. Rev. Lett. 108 (2012) 042504.
- [21] A. Krieger, et al., Phys. Rev. Lett. 108 (2012) 142501.
- [22] T.J. Procter, et al., Phys. Rev. C68 (2012) 034329.
- [23] E.C. Seltzer, Phys. Rev. 188 (1969) 1916.
- [24] F. Boehm, P.L. Lee, At. Data Nucl. Data Tables 14 (1974) 605.
- [25] P.L. Lee, F. Boehm, A.A. Hahn, Phys. Rev. C 17 (1978) 185.
- [26] C.W.E. Eijk, J. Wijnhorst, M.A. Popelier, W.A. Gillespie, J. Phys. G 5 (1979) 315.
- [27] S.R. Elliott, P. Beiersdorfer, M.H. Chen, Phys. Rev. Lett. 76 (1996) 1031.
- [28] R.T. Brockmeier, F. Boehm, E.N. Hatch, Phys. Rev. Lett. 15 (1965) 132.
- [29] I. Angeli, Hyperfine Interact, 136 (2001) 17.
- [30] A.S. Rylnikov, A.I. Egorov, G.A. Ivanov, V.I. Marushenko, A.F. Mezentsev, A.I. Smirnov, O.I. Sumbaev, V.V. Fyodorov, J. Exp. Theor. Phys. 63 (1972) 53.
- [31] Yu. Kozhedub, (St. Petersburg State University), private communication, 2007.
- [32] W. Nörtershäuser, T. Neff, R. Sánchez, I. Sick, Phys. Rev. C 84 (2011) 024307.
- [33] L.N. Hand, D.G. Miller, R. Wilson, Rev. Modern Phys. 35 (1963) 335.
- [34] G.G. Simon, Ch. Schmitt, F. Borkowski, V.H. Walther, Nuclear Phys. A 333 (1980) 381.
- [35] K. Melnikov, T. van Ritbergen, Phys. Rev. Lett. 84 (2000) 1673.
- [36] I. Sick, Phys. Lett. B 576 (2003) 62.
- [37] D. Borisyuk, Nuclear Phys. A 843 (2010) 59.
- [38] R. Pohl, A. Antognini, F. Nez, et al., Nature 466 (2010) 213.
- [39] J. Flowers, Nature 466 (2010) 195.
- [40] M.O. Distler, J.C. Bernauer, Th. Walcher, Phys. Lett. B 696 (2011) 343.
- [41] A. De Rujula, Phys. Lett. B 697 (2011) 26.
- [42] U.D. Jentschura, Ann. Phys. 326 (2011) 500.
- [43] U.D. Jentschura, Ann. Phys. 326 (2011) 516.
- [44] G.A. Miller, A.W. Thomas, J.D. Carroll, J. Rafelski, Natural resolution of the proton size puzzle. arXiv:1101.4073v1 [physics.atom-ph] 21 Jan 2011.
- [45] J.C. Bernauer, et al., Phys. Rev. Lett. 105 (2010) 242001.
- [46] I.N. Boboshin, V.V. Varlamov, B.S. Ishkhanov, E.A. Romanovsky, Phys. Atomic Nuclei 70 (2007) 1363.
- [47] B.A. Brown, W.A. Richter, Phys. Rev. C 72 (2005) 057301.
- [48] O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61 (2008) 602.
- [49] R.B. Cakirli, R.F. Casten, K. Blaum, Phys. Rev. C 82 (2010) 061306(R).
- [50] W. Nörtershäuser, Hyperfine Interact. 198 (2010) 73.

Explanation of Tables

Table 1. Nuclear radii changes and *rms* **nuclear charge radii.** (The IS and charge radii changes in the isotopic sequence ^{21–32}Mg are already measured by the Mainz-COLLAPS collaboration (see Ref. [50]) but are as yet not published. For this reason Table 1 include only *R*-values of stable Mg isotopes as given in Ref. [15].)

Z Atomic (proton) number of the element
El Chemical symbol of the element

A Mass number
N Neutron number

 $\delta \langle r^2 \rangle^{A',A}$ Nuclear radii changes from OIS (column 5). $\delta \langle r^2 \rangle^{A',A} = \lambda^{A',A}$ for Z < 35; in all cases with Z > 36 the higher

moment (HM) corrections have been taken into account. This is done either by the authors themselves or

recalculated using the average values of HM as given by Ref. [14].

 $\Delta\delta\langle r^2\rangle^{A',A}$ Errors of radius changes (column 6). Only statistical errors are presented thus demonstrating the accuracy

of optical isotope shift measurements. Some exceptions are explicitly pointed in Table 2.

R The average $rms R = R_{euKO}$ -values of both procedures of combined analysis [12,13] (column 7). Note that

the experimental bases and evaluation procedures underlying these R values are not identical with those

for $\delta \langle r^2 \rangle^{A,A'}$; see Chapter 2.

 $\Delta_{tot}R$ The total errors of R (column 8) defined by Eq. (4). It includes the uncertainties ΔR of absolute radii,

statistical and systematic errors of $\delta\langle r^2\rangle$ as obtained by the evaluation procedure of Ref. [13] and the deviation between the results of the two procedures (see Section 2). In the case if the latter are dominant,

these errors are underlined.

 $\Delta_{rel}R$ Relative error of $R_{e\mu KO}$ with respect to the reference isotope for radii changes (Column 9).

Table 2. Parameters used for extraction of radii changes from OIS

Note: References given by number are from the reference list to the main text; references given by abbreviations of name and year are from the reference list to Table 2.

F Electronic factor
N Normal mass shift
S Specific mass shift

MS Mass shift, where MS = N + S

Abbreviation related to the electronic factor F and the total mass shift MS

cal Atomic theory calculation; for the theoretical method used (see the corresponding papers)

se Semi-empirical procedure using optical data (e.g., Ref. [5]) $e^-, \mu^-, e\mu$ Calculated via King plot [16] of OIS versus e^-, μ^- or $e\mu$ radii

Estimated using $\delta \langle r^2 \rangle^{N',N}$ of neighboring isotones.

Errors of F and MS

phen

 dF_{cal} , dMS_{cal} Accepted 10% if not theoretically estimated

dF_{se} Between 1% [Bl85, table reference] and 10% (in most cases)

 dMS_{se} For medium mass and heavy elements [He74], where $dMS_{se} = 0.5N$ for s²-sp transitions with

 $S = (0 \pm 0.5)N$, $dMS_{se} = 0.9N$ for s-p transitions with $S = (0.3 \pm 0.9)N$

 $dF_{e\mu}$, $dMS_{e\mu}$ Obtained in the least square fit procedure of King plot.

 dF_{phen} , dMS_{phen} Estimations.

Table 1 Nuclear radii changes and rms nuclear charge radii. For the neutron the entry is $\langle r^2 \rangle$ (fm²).

Z	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~(\mathrm{fm}^2)$	R (fm)	$\Delta_{tot}R$ (fm)	ΔR_{rel}
0	n	1	1			-0.1149	0.0027	
1	Н	1	0	0	0	0.8783	0.0086	
•	**	2	1	3.82007	0.00065	2.1421	0.0088	
		3	2			1.7591	0.0363	
2	He	3	1	1.059	0.003	1.9661	0.0030	0.0008
_	110	4	2	0	0	1.6755	0.0028	0
		6	4	1.466	0.034	2.0660	0.0111	0.0082
		8	6	0.911	0.095	1.9239	0.0306	0.0247
3	Li	6	3	0	0	2.5890	0.0390	0
_		7	4	-0.731	0.022	2.4440	0.0420	0.0046
		8	5	-1.230	0.032	2.3390	0.0440	0.0070
		9	6	-1.663	0.032	2.2450	0.0460	0.0073
		11	8	-0.543	0.069	2.4820	0.0430	0.0141
4	Be	7	3	0.66	0.05	2.6460	0.0160	0.0094
		9	5	0	0	2.5190	0.0120	0
		10	6	-0.79	0.08	2.3550	0.0170	0.0170
		11	7	-0.28	0.05	2.4630	0.0150	0.0102
5	В	10	5			2.4277	0.0499	
		11	6			2.4060	0.0294	
6	С	12	6			2.4702	0.0022	
		13	7			2.4614	0.0034	
		14	8			2.5025	0.0087	
7	N	14	7			2.5582	0.0070	
		15	8			2.6058	0.0080	
8	0	16	8			2.6991	0.0052	
U	O	17	9			2.6932	0.0075	
		18	10			2.7726	0.0056	
9	F	19	10			2.8976	0.0025	
				0.224	0.020			0.0040
10	Ne	17	7	0.221	0.029	3.0413	0.0088	0.0048
		18 19	8 9	-0.207 0.017	0.015 0.019	2.9714 3.0082	0.0076 0.0040	0.0025 0.0032
		20	10	0.017 0	0.019 0	3.0055	0.0040 0.0021	0.0032 0
		21	11	-0.217	0.014	2.9695	0.0021	0.0023
		22	12	-0.322	0.004	2.9525	0.0040	0.0034
		23	13	-0.572	0.034	2.9104	0.0071	0.0057
		24	14	-0.628	0.019	2.9007	0.0078	0.0032
		25	15	-0.431	0.016	2.9316	0.0088	0.0027
		26	16	-0.485	0.018	2.9251	0.0100	0.0030
		28	18	-0.241	0.035	2.9642	0.0134	0.0059
11	Na	20	9	-0.130	0.070	2.9718	0.0420	0.0117
		21	10	0.120	0.050	3.0136	0.0284	0.0083
		22	11	-0.050	0.040	2.9852	0.0169	0.0067
		23	12	0	0	2.9936	0.0021	0
		24	13	-0.120	0.040	2.9735	0.0169	0.0067
		25 26	14 15	-0.100 -0.005	0.030 0.018	2.9769 2.9928	0.0252 0.0331	0.0050 0.0030
		27	16	0.120	0.040	3.0136	0.0467	0.0050
		28	17	0.280	0.050	3.0400	0.0581	0.0083
		29	18	0.600	0.080	3.0922	0.0723	0.0132
		30	19	0.760	0.120	3.1180	0.0884	0.0197
		31	20	1.090	0.070	3.1704	0.0893	0.0116
12	Mg	24	12			3.0570	0.0016	
	8	25	13			3.0284	0.0022	
		26	14			3.0337	0.0018	
13	Al	27	14			3.0610	0.0031	
14	Si	28 29	14 15			3.1224 3.1176	0.0024 0.0052	
		30	16			3.1336	0.0032	
15	D							
15	P	31	16			3.1889	0.0019	
	S	32	16			3.2611	0.0018	
16		34	18			3.2847	0.0021	
16			20			3.2985	0.0024	
16		36						
	Cl	36 35	18			3.3654	0.0191	
	Cl					3.3654 3.3840	0.0191 0.0170	
16 17 18	Cl Ar	35 37	18	-0.375	0.038			0.0056
17		35	18 20	-0.375 -0.395	0.038 0.021	3.3840	0.0170	0.0056 0.0031

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~(\mathrm{fm}^2)$	R (fm)	$\Delta_{tot}R(\mathrm{fm})$	ΔR_{rel}
		35	17	-0.263	0.026	3.3636	0.0042	0.003
		36	18	-0.084	0.018	3.3905	0.0023	0.001
		37	19	-0.081	0.009	3.3908	0.0022	0.001
		38	20	0	0	3.4028	0.0019	0
		39	21	0.044	0.067	3.4093	0.0031	0.002
		40	22	0.167	0.009	3.4274	0.0026	0.001
		41	23	0.151	0.012	3.4251	0.0030	0.001
		43	25	0.262	0.012	3.4414	0.0041	0.001
			23					
		42		0.221	0.014	3.4354	0.0039	0.002
		44	26	0.289	0.009	3.4454	0.0046	0.001
		46	28	0.237	0.022	3.4377	0.0044	0.003
9	K	38	19	-0.058	0.041	3.4264	0.0051	0.006
		39	20	0	0	3.4349	0.0019	0
		40	21	0.022	0.002	3.4381	0.0028	0.000
		41	22	0.117	0.006	3.4518	0.0055	0.000
			23					
		42		0.116	0.015	3.4517	0.0070	0.002
		43	24	0.143	0.009	3.4556	0.0086	0.001
		44	25	0.148	0.011	3.4563	0.0101	0.001
		45	26	0.176	0.013	3.4605	0.0118	0.001
		46	27	0.143	0.012	3.4558	0.0126	0.001
		47	28	0.126	0.013	3.4534	0.0138	0.001
	C-							
)	Ca	39	19	-0.127	0.016	3.4595	0.0025	0.002
		40	20	0	0	3.4776	0.0019	0
		41	21	0.003	0.003	3.4780	0.0019	0.000
		42	22	0.215	0.005	3.5081	0.0021	0.000
		43	23	0.125	0.003	3.4954	0.0019	0.000
		44	24	0.283	0.006	3.5179	0.0021	0.000
		45	25	0.119	0.006	3.4944	0.0021	0.000
			26					
		46		0.124	0.005	3.4953	0.0020	0.000
		47	27	0.005	0.001	3.4783	0.0024	0.000
		48	28	-0.004	0.006	3.4771	0.0020	0.000
		50	30	0.276	0.035	3.5168	0.0064	0.005
	Sc	42	21	0.172	0.031	3.5702	0.0238	0.004
	30							
		43	22	0.082	0.014	3.5575	0.0147	0.002
		44	23	-0.019	0.011	3.5432	0.0016	0.00
		45	24	0	0	3.5459	0.0025	0
		46	25	-0.154	0.008	3.5243	0.0089	0.00
!	Ti	44	22	0.143	0.037	3.6115	0.0051	0.004
•	11		23		0.037	3.5939		
		45 46		0.013			0.0032	0.002
		46	24	0.110	0.007	3.6070	0.0022	0.00
		47	25	0.030	0.004	3.5962	0.0019	0.000
		48	26	0	0	3.5921	0.0017	0
		49	27	-0.139	0.009	3.5733	0.0021	0.00
		50	28	-0.160	0.007	3.5704	0.0022	0.00
	17							
1	V	51	28			3.6002	0.0022	
	Cr	50	26	0.099	0.037	3.6588	0.0065	0.00
		52	28	0	0	3.6452	0.0042	0
		53	29	0.043	0.045	3.6511	0.0075	0.00
		54	30	0.317	0.045	3.6885	0.0074	0.00
	Mn	50	25	0.046	0.003	3.7120	0.0196	0.00
		51	26	-0.023	0.045	3.7026	0.0212	0.00
		52	27	-0.259	0.013	3.6706	0.0128	0.00
		53	28	-0.292	0.004	3.6662	0.0076	0.00
		54	29	-0.165	0.007	3.6834	0.0049	0.00
		55	30	-0.103 0	0.007	3.7057	0.0049	0.00
		56	31	0.066	0.010	3.7146	0.0052	0.00
	Fe	54	28	-0.330	0.001	3.6933	0.0019	0.00
		56	30	0	0	3.7377	0.0016	0
		57	31	0.108	0.001	3.7532	0.0017	0.00
		58	32	0.274	0.001	3.7745	0.0017	0.000
				0.2/4	0.002			0.00
	Co	59	32			3.7875	0.0021	
				0.267	0.005			0.000
	Ni	58	30	-0.267	0.005	3.7757	0.0020	0.000
		60	32	0	0	3.8118	0.0016	0
		61	33	0.082	0.007	3.8225	0.0019	0.00
		62	34	0.211	0.007	3.8399	0.0021	0.00
		64	36	0.338	0.010	3.8572	0.0023	0.00
	C:				•			
	Cu	63	34			3.8823	0.0015	
		65	36			3.9022	0.0014	
		05						
	7n			-0.162	0.002	3 0283	0.0015	0.000
	Zn	64 66	34 36	−0.162 0	0.002 0	3.9283 3.9491	0.0015 0.0014	0.000 0

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle ~({\rm fm}^2)$	$\Delta\delta\langle r^2\rangle~({\rm fm}^2)$	R (fm)	$\Delta_{tot}R$ (fm)	ΔR_{rel}
		68 70	38 40	0.131 0.286	0.002 0.003	3.9658 3.9845	0.0014 0.0019	0.0003 0.0004
31	Ga	69	38	0.200	0.005	3.9973	0.0013	0.0004
		71	40			4.0118	0.0018	
32	Ge	70	38			4.0414	0.0012	
-		72	40			4.0576	0.0013	
		73	41			4.0632	0.0014	
		74	42			4.0742	0.0012	
		76	44			4.0811	0.0012	
33	As	75	42			4.0968	0.0020	
34	Se	74	40			4.0700	0.0200	
		76	42			4.1395	0.0016	
		77	43			4.1395	0.0018	
		78 80	44 46			4.1406 4.1400	0.0017 0.0018	
		82	48			4.1400	0.0019	
35	Br	79	44			4.1629	0.0021	
55	DI	81	46			4.1599	0.0021	
36	1/			0.100	0.010			0.0022
90	Kr	72 74	36 38	-0.168 0.030	0.018 0.005	4.1635 4.1870	0.0060 0.0041	0.0022 0.0006
		74 75	39	0.221	0.003	4.2097	0.0041	0.0008
		76	40	0.156	0.004	4.2020	0.0036	0.0005
		77	41	0.209	0.005	4.2082	0.0037	0.0006
		78	42	0.172	0.003	4.2038	0.0033	0.0004
		79	43	0.168	0.004	4.2034	0.0032	0.0005
		80	44	0.114	0.007	4.1970	0.0029	0.0008
		81	45	0.099	0.004	4.1952	0.0026	0.0005
		82	46	0.071	0.003	4.1919	0.0025	0.0004
		83	47	0.031	0.003	4.1871	0.0023	0.0004
		84 85	48 49	0.042 0.009	0.001 0.004	4.1884 4.1846	0.0022 0.0022	0.0001 0.0004
		86	50	0.003	0.004	4.1835	0.0022	0.0004
		87	51	0.125	0.003	4.1984	0.0027	0.0004
		88	52	0.282	0.004	4.2171	0.0043	0.0005
		89	53	0.379	0.004	4.2286	0.0054	0.0005
		90	54	0.495	0.010	4.2423	0.0069	0.0012
		91	55	0.597	0.006	4.2543	0.0081	0.0007
		92	56 57	0.751	0.005	4.2724	0.0099	0.0006
		93	57 58	0.811	0.004	4.2794	0.0107	0.0005
		94 95	58 59	0.989 1.045	0.004 0.003	4.3002 4.3067	0.0129 0.0136	0.0005 0.0004
		96	60	1.217	0.010	4.3267	0.0158	0.0012
37	Rb	76	39	0.2241	0.0270	4.2273	0.0070	0.0032
		77	40	0.2884	0.0069	4.2356	0.0080	0.0008
		78	41	0.3118	0.0023	4.2385	0.0083	0.0004
		79	42	0.2291	0.0023	4.2284	0.0065	0.0003
		80	43	0.2207	0.0068	4.2271	0.0061	0.0008
		81	44	0.1730	0.0022	4.2213	0.0051	0.0003
		82	45	0.1347	0.0065	4.2160	0.0042	0.0008
		83 84	46 47	0.0522 0.0079	0.0015 0.0032	4.2058 4.1999	0.0028 0.0023	0.0002 0.0004
		85	48	0.0362	0.0032	4.1999	0.0023	0.0004
		86	49	0.0276	0.0022	4.2025	0.0024	0.0003
		87	50	0	0	4.1989	0.0021	0
		88	51	0.1390	0.0078	4.2170	0.0038	0.0010
		89	52	0.3109	0.0031	4.2391	0.0074	0.0004
		90	53	0.4370	0.0080	4.2554	0.0102	0.0010
		91	54	0.5685	0.0035	4.2723	0.0131	0.0007
		92	55 56	0.7094	0.0080	4.2903	0.0163	0.0010
		93	56 57	0.9340	0.0035	4.3048	0.0187	0.0010
		94 95	57 58	1.0984 1.1856	0.0056 0.0074	4.3184 4.3391	0.0211 0.0248	0.0011 0.0014
		96	59	1.7719	0.0074	4.3501	0.0248	0.0014
		97	60	1.8553	0.0150	4.4231	0.0395	0.0013
		98	61	1.8553	0.0150	4.4336	0.0414	0.0024
38	Sr	77	39	0.253	0.012	4.2569	0.0044	0.0014
	51	78	40	0.247	0.008	4.2561	0.0044	0.0014
		79	41	0.266	0.006	4.2586	0.0039	0.0003
		80	42	0.248	0.007	4.2562	0.0037	0.0008
		81	43	0.236	0.006	4.2547	0.0034	0.0007
		82	44	0.182	0.006	4.2478	0.0030	0.0007
		83	45	0.165	0.004	4.2455	0.0027	0.0005

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle (\mathrm{fm}^2)$	$\Delta\delta\langle r^2\rangle~({\rm fm}^2)$	R (fm)	$\Delta_{tot}R(\mathrm{fm})$	ΔR_{rel}
		84	46	0.118	0.003	4.2394	0.0024	0.0004
		85	47	0.049	0.003	4.2304	0.0021	0.0004
		86	48	0.051	0.002	4.2307	0.0020	0.0002
		87	49	0.007	0.002	4.2249	0.0019	0.0002
		88	50	0	0	4.2240	0.0018	0
		89	51	0.126	0.001	4.2407	0.0013	0.0001
		90	52	0.120	0.001	4.2611	0.0023	0.0001
		91	53	0.381	0.003	4.2740	0.0046	0.0004
		92	54	0.522	0.005	4.2924	0.0064	0.0006
		93	55	0.601	0.004	4.3026	0.0075	0.0005
		94	56	0.728	0.006	4.3191	0.0091	0.0007
		95	57	0.817	0.005	4.3305	0.0102	0.0006
		96	58	0.986	0.006	4.3522	0.0125	0.0007
		97	59	1.067	0.007	4.3625	0.0135	0.0009
		98	60	1.656	0.006	4.4377	0.0214	0.0008
		99	61	1.750	0.008	4.4495	0.0226	0.0011
		100	62	1.867	0.015	4.4640	0.0240	0.0011
								
39	Y	86	47	0.071	0.003	4.2513	0.0023	0.0008
		87	48	0.058	0.002	4.2498	0.0022	0.0007
		88	49	0.009	0.001	4.2441	0.0021	0.0001
		89	50	0	0	4.2430	0.0021	0
		90	51	0.123	0.001	4.2573	0.0021	0.0014
			53			4.2887		
		92		0.393	0.001		0.0050	0.0045
		93	54	0.537	0.002	4.3052	0.0065	0.0061
		94	55	0.614	0.001	4.3142	0.0074	0.0070
		95	56	0.738	0.002	4.3284	0.0087	0.0083
		96	57	0.840	0.001	4.3402	0.0099	0.0095
		97	58	0.996	0.002	4.3580	0.0116	0.0112
		98	59	1.110	0.001	4.3711	0.0129	0.0124
		99	60	1.943	0.001	4.4658	0.0223	0.0213
		100	61	1.985	0.001	4.4705	0.0228	0.0218
		101	62	2.127	0.001	4.4863	0.0244	0.0232
		102	63	2.173	0.002	4.4911	0.0249	0.0237
40	Zr	87	47	0.059	0.005	4.2789	0.0030	0.0006
		88	48	0.061	0.005	4.2787	0.0025	0.0006
		89	49	0.006	0.005	4.2706	0.0010	0.0006
		90	50	0.000	0.003	4.2694	0.0010	0.0000
			51			4.2845	0.0010	
		91		0.132	0.003			0.0011
		92	52	0.314	0.004	4.3057	0.0013	0.0025
		94	54	0.546	0.003	4.3320	0.0013	0.0032
		96	56	0.72	0.006	4.3512	0.0015	0.0034
		97	57	0.835	0.005	4.3792	<u>0.0136</u>	0.0006
		98	58	1.002	0.005	4.4012	0.0164	0.0006
		99	59	1.113	0.004	4.4156	0.0181	0.0006
		100	60	1.669	0.004	4.4891	0.0289	0.0006
		101	61	1.847	0.005	4.5119	0.0318	0.0007
		102	62	1.983	0.005	4.5292	0.0340	0.0008
41	Nb	90	49	-0.301	0.004	4.2891	0.0040	0.0004
		91	50	-0.312	0.001	4.2878	0.0040	0.0001
		92	51	-0.185	0.002	4.3026	0.0043	0.0003
		93	52	0	0	4.3240	0.0017	0
		99	58	0.716	0.009	4.4062	0.0125	0.0010
		101	60	1.419	0.003	4.4861	0.0203	0.0002
		101	62	1.630	0.002	4.5097	0.0203	0.0002
12	Mo	90	48	0.113	0.001	4.3265	<u>0.0016</u>	0.0001
		91	49	0.033	0.002	4.3182	0.0012	0.0001
		92	50	0	0	4.3151	0.0012	0
		94	52	0.334	0.001	4.3529	0.0012	0.0001
		95	53	0.421	0.001	4.3628	0.0013	0.0001
		96	54	0.617	0.001	4.3847	0.0015	0.0001
		97	55	0.644	0.001	4.3880	0.0015	0.0001
		98	56	0.834	0.001	4.4091	0.0018	0.0001
		100	58	1.177	0.001	4.4468	0.0025	0.0001
		102	60	1.585	0.003	4.4914	0.0038	0.0001
		103	61	1.798	0.003	4.5145	0.0046	0.0002
		104	62	1.893	0.002	4.5249	0.0051	0.0002
		105	63	2.021	0.002	4.5389	0.0057	0.0002
		106	64	2.113	0.003	4.5490	0.0058	0.0003
		108	66	2.213	0.003	4.5602	0.0067	0.0003
14	Ru	96	52	-1.069	0.003	4.3908	0.0047	0.0003
	m	98	54	-0.772	0.005	4.4229	0.0055	0.0005
		70	J⁴ŧ	-0.772	0.003	7.4223	0.0033	0.0003
				0.60	0.004	4 4220	0.0042	0.0004
		99 100	55 56	-0.68 -0.506	0.004 0.003	4.4338 4.4531	0.0042 0.0031	0.0004 0.0004

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~({\rm fm}^2)$	R (fm)	$\Delta_{tot}R(fm)$	ΔR_{rel}
		101	57	-0.444	0.005	4.4606	0.0020	0.0006
		102	58	-0.263	0.004	4.4809	0.0018	0.0005
		104	60	0	0	4.5098	0.0020	0
45	Rh	103	58			4.4945	0.0023	
46	Pd	102	56	-0.675	0.003	4.4827	0.0044	0.0003
		104	58	-0.445	0.002	4.5078	0.0027	0.0002
		105	59	-0.377	0.002	4.5150	0.0030	0.0002
		106	60	-0.227	0.001	4.5318	0.0029	0.0001
		108	62	0	0	4.5563	0.0027	0
		110	64	0.205	0.001	4.5782	0.0030	0.0001
47	Ag	101	54	-0.670	0.003	4.4799	0.0088	0.0003
		103 104	56 57	-0.482 -0.416	0.002 0.002	4.5036 4.5119	0.0065 0.0058	0.0002 0.0002
		105	58	-0.410 -0.296	0.002	4.5269	0.0038	0.0002
		107	60	-0.148	0.001	4.5454	0.0031	0.0002
		109	62	0	0	4.5638	0.0025	0
48	Cd	102	54	-1.010	0.045	4.4810	0.0122	0.0050
		103	55	-0.901	0.027	4.4951	0.0105	0.0030
		104	56	-0.765	0.048	4.5122	0.0083	0.0053
		105	57	-0.692	0.034	4.5216	0.0070	0.0038
		106	58	-0.576	0.008	4.5383	0.0036	0.0009
		107	59 60	-0.495	0.030	4.5466	0.0039	0.0033
		108 109	60 61	-0.412 -0.387	0.011 0.039	4.5577 4.5601	0.0031 0.0035	0.0012 0.0043
		110	62	-0.252	0.005	4.5765	0.0035	0.0043
		111	63	-0.130	0.013	4.5845	0.0028	0.0014
		112	64	-0.103	0.003	4.5944	0.0024	0.0003
		113	65	-0.008	0.004	4.6012	0.0028	0.000
		114	66	0	0	4.6087	0.0023	0
		115	67	0.024	0.046	4.6114	0.0046	0.0050
		116	68	0.088	0.003	4.6203	0.0059	0.0003
		117 118	69 70	0.083 0.129	0.018 0.022	4.6136 4.6246	0.0025 0.0060	0.0020 0.0024
		120	70 72	0.174	0.022	4.6300	0.0069	0.0022
40	T							
49	In	104 105	55 56	-0.866 -0.754	0.015 0.014	4.5184 4.5311	0.0117 0.0103	0.0017 0.0015
		106	50 57	-0.734 -0.698	0.014	4.5375	0.0103	0.0013
		107	58	-0.592	0.010	4.5494	0.0082	0.001
		108	59	-0.524	0.005	4.5571	0.0071	0.0006
		109	60	-0.422	0.007	4.5685	0.0061	0.0008
		110	61	-0.371	0.008	4.5742	0.0056	0.0009
		111	62	-0.270	0.005	4.5856	0.0044	0.0005
		112 113	63 64	-0.224 -0.1317	0.006 0.0003	4.5907 4.6010	0.0041 0.0031	0.0007 0.000
		114	65	-0.1317 -0.090	0.0003	4.6056	0.0031	0.0002
		115	66	_0.030 0	0.002	4.6156	0.0025 0.0026	0.0002
		116	67	0.049	0.001	4.6211	0.0027	0.000
		117	68	0.122	0.004	4.6292	0.0032	0.0004
		118	69	0.162	0.002	4.6335	0.0033	0.0002
		119	70	0.226	0.004	4.6407	0.0040	0.0004
		120	71	0.259	0.002	4.6443	0.0042	0.0002
		121 122	72 73	0.315 0.342	0.003 0.004	4.6505 4.6534	0.0047 0.0051	0.0003 0.0004
		123	73 74	0.342	0.004	4.6534 4.6594	0.0051	0.000
		124	74 75	0.424	0.003	4.6625	0.0060	0.000
		125	76	0.465	0.005	4.6670	0.0064	0.000
		126	77	0.494	0.007	4.6702	0.0068	0.0008
		127	78	0.523	0.007	4.6733	0.0071	0.0008
50	Sn	108	58	-0.825	0.003	4.5605	0.0029	0.000
		109	59	-0.764	0.006	4.5679	0.0027	0.000
		110	60	-0.666	0.002	4.5785	0.0025	0.000
		111	61	-0.612	0.005	4.5836	0.0024	0.000
		112	62	-0.520	0.005	4.5948	0.0022	0.000
		113 114	63 64	-0.458 -0.3838	0.001 0.0001	4.6015 4.6099	0.0021 0.0020	0.000 0.000
		114	64 65	-0.3360	0.0001	4.6099 4.6148	0.0020	0.000
		116	66	-0.3300 -0.2471	0.0001	4.6250	0.0019	0.000
		117	67	-0.1971	0.0001	4.6302	0.0019	0.000
		118	68	-0.1174	0.0001	4.6393	0.0019	0.000
		119	69	-0.0724	0.0001	4.6438	0.0020	0.000
		120	70	0	0	4.6519	0.0021	0
		121	71	0.045	0.001	4.6566	0.0021	0.000

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~(\mathrm{fm}^2)$	R (fm)	$\Delta_{tot}R(fm)$	ΔR_{rel}
		123	73	0.140	0.001	4.6665	0.0023	0.0001
		124	74	0.2008	0.0001	4.6735	0.0023	0.0001
		125	75	0.235	0.003	4.6765	0.0026	0.0003
		126	76	0.290	0.003	4.6833	0.0043	0.0003
		127	77	0.322	0.003	4.6867	0.0048	0.0003
		128	78	0.372	0.004	4.6921	0.0054	0.0003
		129	78 79	0.384	0.003	4.6934	0.0054	0.0004
		130	80	0.464	0.003	4.7019	0.0066	0.0003
		131	81	0.520	0.004	4.7078	0.0073	0.0004
		132	82	0.534	0.002	4.7093	0.0076	0.0002
51	Sb	121 123	70 72			4.6802 4.6879	0.0026 0.0025	
52	Te	116	64	-0.563	0.027	4.6847	0.0023	0.0094
)2	ic	118	66	-0.457	0.027	4.6956	0.0125	0.0034
		120	68	-0.377	0.006	4.7038	0.0088	0.0070
		122	70	-0.305	0.010	4.7095	0.0031	0.0053
		123	71	-0.289	0.011	4.7117	0.0035	0.0048
		124	72	-0.227	0.009	4.7183	0.0029	0.0039
		125	73	-0.208	0.011	4.7204	0.0030	0.0033
		126	74	-0.153	0.009	4.7266	0.0032	0.0025
		128	76	-0.077	0.003	4.7346	0.0032	0.0023
		130	78	0	0	4.7423	0.0025	0
		132	80	0.076	0.016	4.7500	0.0031	0.0017
		134	82	0.144	0.016	4.7569	0.0041	0.0032
		136	84	0.389	0.019	4.7815	0.0089	0.0071
3	I	127	74			4.7500	0.0081	
4	Xe	116	62	-0.599	0.009	4.7211	0.0096	0.0009
		118	64	-0.460	0.007	4.7387	0.0070	0.0007
		120	66	-0.363	0.007	4.7509	0.0063	0.0007
		122	68	-0.299	0.006	4.7590	0.0059	0.0006
		124	70	-0.242	0.005	4.7661	0.0055	0.0005
		126	70 72	-0.242 -0.193	0.003	4.7722	0.0053	0.0003
		127	73	-0.181	0.020	4.7747	0.0038	0.0021
		128	74	-0.152	0.004	4.7774	0.0050	0.0004
		129	75	-0.151	0.001	4.7775	0.0050	0.0003
		130	76	-0.117	0.003	4.7818	0.0049	0.0003
		131	77	-0.125	0.001	4.7808	0.0049	0.0002
		132	78	-0.0844	0.0017	4.7859	0.0048	0.0002
		133	79	-0.106	0.005	4.7831	0.0048	0.0005
		134	80	-0.0518	0.0013	4.7899	0.0047	0.0003
		136	82	0.0310	0.0015	4.7964	0.0047	0.0001
		137	83	0.105	0.003	4.8094	0.0049	0.0003
		138	84	0.254	0.003	4.8279	<u>0.0079</u>	0.0003
		139	85	0.359	0.006	4.8409	<u>0.0100</u>	0.0006
		140	86	0.486	0.002	4.8566	0.0125	0.0002
		141	87	0.591	0.004	4.8694	0.0147	0.0004
		142	88	0.710	0.009	4.8841	0.0169	0.0009
		143	89	0.794	0.003	4.8942	0.0187	0.0004
		144	90	0.908	0.004	4.9082	0.0208	0.0005
		144 146	90 92	1.100	0.005	4.9082 4.9315	0.0208 0.0245	0.0005
5	Cs	118	63	-0.2044	0.003	4.7832	0.0092	0.0003
•	CS					4.7896	0.0092	0.0002
		119	64	-0.1411	0.0062			
		120	65	-0.1229	0.0015	4.7915	0.0075	0.0002
		121	66	-0.2650	0.0009	4.7769	0.0078	0.0001
		122	67	-0.2618	0.0016	4.7773	0.0070	0.0002
		123	68	-0.2156	0.0006	4.7820	0.0070	0.0001
		124	69	-0.2083	0.0012	4.7828	0.0062	0.0001
		125	70	-0.1574	0.0006	4.7880	0.0062	0.000
		126	71	-0.1645	0.0009	4.7872	0.0056	0.000
		127	71	-0.1043 -0.1022	0.0009	4.7936	0.0055	0.000
		128	73	-0.1173	0.0004	4.7921	0.0052	0.000
		129	74	-0.0582	0.0011	4.7981	0.0050	0.000
		130	75	-0.0482	0.0010	4.7992	0.0049	0.0001
		131	76	-0.0146	0.0007	4.8026	0.0047	0.000
		132	77	-0.0383	0.0006	4.8002	0.0046	0.000
		133	78	0	0	4.8041	0.0046	0
		134	79	-0.0100	0.0011	4.8031	0.0046	0.000
		135	80	0.0259	0.0009	4.8067	0.0047	0.000
		136	81	0.0233	0.0005	4.8059	0.0052	0.0002
		137	82	0.0852	0.0011	4.8128	0.0050	0.0001
		138	83	0.2099	0.0008	4.8255	0.0050	0.000
		139	84	0.3739	0.0012	4.8422	0.0069	0.000
		140	85	0.5051	0.0013	4.8554	0.0088	0.0001

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle ~({\rm fm}^2)$	$\Delta\delta\langle r^2\rangle~({\rm fm}^2)$	R (fm)	$\Delta_{tot}R$ (fm)	ΔR_{rel}
		141	86	0.6389	0.0015	4.8689	0.0108	0.0002
		142	87	0.7732	0.0007	4.8825	0.0132	0.0001
		143	88	0.9127	0.0005	4.8965	0.0151	0.0002
		144	89	1.0030	0.0007	4.9055	0.0161	0.0002
		145	90	1.1362	0.0010	4.9188	0.0191	0.0003
		146	91	1.2293	0.0021	4.9281	0.0193	0.0003
56	Ba	120	64	-0.267	0.010	4.8092	0.0058	0.0010
50	Du	121	65	-0.189	0.012	4.8176	0.0052	0.0012
		122	66	-0.163 -0.212	0.002	4.8153	0.0052	0.0002
		123	67	-0.212 -0.228	0.002	4.8135	0.0054	0.0002
		124	68	-0.228 -0.1819	0.002	4.8185	0.0052	0.0002
						4.8177		
		125	69 70	-0.189 -0.1479	0.002		0.0052	0.0002
		126 127	70 71		0.0002	4.8221	0.0050	0.000
			71 72	-0.1641	0.0010	4.8204	0.0051	0.000
		128		-0.1160	0.0003	4.8255	0.0048	0.000
		129	73	-0.1219	0.0004	4.8248	0.0049	0.000
		130	74	-0.0895	0.0002	4.8283	0.0047	0.0001
		131	75	-0.0960	0.0003	4.8276	0.0048	0.000
		132	76	-0.0700	0.0001	4.8303	0.0047	0.0001
		133	77	-0.0873	0.0002	4.8286	0.0047	0.0001
		134	78	-0.0547	0.0001	4.8322	0.0047	0.000
		135	79	-0.0812	0.0003	4.8294	0.0047	0.000
		136	80	-0.0422	0.0002	4.8334	0.0046	0.000
		137	81	-0.0609	0.0002	4.8314	0.0047	0.000
		138	82	0	0	4.8378	0.0046	0
		139	83	0.129	0.001	4.8513	0.0049	0.000
		140	84	0.292	0.001	4.8684	0.0059	0.000
		141	85	0.410	0.001	4.8807	0.0069	0.000
		142	86	0.550	0.001	4.8953	0.0083	0.000
		143	87	0.679	0.002	4.9087	0.0096	0.0002
		144	88	0.823	0.003	4.9236	0.0112	0.000
		145	89	0.928	0.002	4.9345	0.0123	0.000
		146	90	1.058	0.002	4.9479	0.0123	0.000
		148	92	1.304	0.005	4.9731	0.0158	0.000
57	La	135	78	-0.061	0.006	4.8488	0.0060	0.000
		137	80	-0.048	0.001	4.8496	0.0053	0.000
		138	81	-0.067	0.001	4.8473	0.0051	0.000
		139	82	0	0	4.8550	0.0049	0
58	Ce	136	78	-0.031	0.002	4.8739	0.0018	0.0002
50	Ce	138	80	-0.031 -0.033	0.002	4.8737	0.0018	0.0002
		140	82				0.0018	0.000
				0 201	0	4.8771		
		142	84	0.281	0.002	4.9063	0.0020	0.0002
		144	86	0.513	0.002	4.9303	0.0024	0.0002
		146	88	0.793	0.002	4.9590	0.0028	0.0002
		148	90	1.089	0.002	4.9893	0.0035	0.0002
59	Pr	141	82			4.8919	0.0050	
60	Nd	132	72	0.050	0.030	4.9174	0.0026	0.003
50	INU							
		134	74 75	0.005	0.021	4.9128	0.0026	0.002
		135	75 76	-0.037	0.033	4.9086	0.0026	0.0034
		136	76	-0.012	0.027	4.9111	0.0026	0.002
		137	77	-0.043	0.016	4.9080	0.0026	0.001
		138	78	-0.006	0.021	4.9123	0.0026	0.002
		139	79	-0.047	0.014	4.9076	0.0025	0.001
		140	80	-0.022	0.027	4.9101	0.0026	0.002
		141	81	-0.066	0.014	4.9057	0.0026	0.001
		142	82	0	0	4.9123	0.0025	0
		143	83	0.130	0.005	4.9254	0.0026	0.000
		144	84	0.296	0.003	4.9421	0.0027	0.000
		145	85	0.410	0.005	4.9535	0.0028	0.000
		146	86	0.571	0.004	4.9696	0.0030	0.000
		148	88	0.876	0.004	4.9999	0.0036	0.000
		150	90	1.282	0.005	5.0400	0.0044	0.000
2	C							
2	Sm	138	76	0.067	0.015	4.9599	0.0034	0.001
		139	77	0.027	0.014	4.9556	0.0034	0.001
		140	78	0.037	0.015	4.9565	0.0034	0.001
		141	79	0.030	0.023	4.9517	0.0034	0.002
		142	80	-0.007	0.013	4.9518	0.0034	0.001
		143	81	-0.043	0.015	4.9479	0.0034	0.001
		144	82	0	0	4.9524	0.0034	0
		145	83	0.1167	0.0016	4.9651	0.0034	0.000
						4.9808		
		146	84	0.2732	() ()OOX		().0035	()()()
		146 147	84 85	0.2732 0.3669	0.0008 0.0004	4.9892	0.0035 0.0035	0.001 0.001

Table 1 (continued)

	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~({\rm fm}^2)$	R (fm)	$\Delta_{tot}R(\mathrm{fm})$	ΔR_{rel}
		149	87	0.6125	0.0004	5.0134	0.0035	0.0024
		150	88	0.8240	0.0004	5.0387	0.0048	0.0031
		151	89	0.9800	0.0008	5.0550	0.0057	0.0038
		152	90	1.2493	0.0003	5.0819	0.0060	0.0038
		153	91	1.3490	0.0005	5.0925	0.0068	0.0002
		154	92	1.4806	0.0004	5.1053	0.0067	0.0040
63	Eu	137	74	0.099	0.043	4.9762	0.0095	0.0046
33	Lu	138	75	0.115	0.042	4.9779	0.0094	0.0045
		139	76	0.081	0.046	4.9760	0.0093	0.0048
		140	77	0.0295	0.0021	4.9695	0.0091	0.0017
		141	78	0.0323	0.0011	4.9697	0.0091	0.0013
		142	79	-0.056	0.003	4.9607	0.0091	0.0010
		143	80	-0.027	0.001	4.9636	0.0091	0.0007
		144	81	-0.051	0.002	4.9612	0.0091	0.0004
		145	82	0	0	4.9663	0.0091	0
		146	83	0.1248	0.0019	4.9789	0.0092	0.0004
		147	84	0.2718	0.001	4.9938	0.0094	0.0006
		148	85	0.3787	0.0017	5.0045	0.0097	0.0010
		149	86	0.5338	0.001	5.0202	0.0103	0.0013
		150	87	0.6278	0.0013	5.0296	0.0108	0.0016
		151	88	0.8538	0.0011	5.0522	0.0046	0.0018
		152	89	1.3989	0.0034	5.1064	0.0066	0.0021
		153	90	1.4554	0.0017	5.1115	0.0062	0.0024
		154	91	1.588	0.006	5.1239	0.0079	0.0006
		155	92	1.567	0.008	5.1221	0.0069	0.0008
		156	93	1.612	0.008	5.1264	0.0071	0.0009
		157	94	1.702	0.007	5.1351	0.0075	0.0010
		158	95	1.765	0.008	5.1413	0.0078	0.0011
		159	96	1.852	0.008	5.1498	0.0084	0.0012
- 4	C 4							
64	Gd	145	81	-1.915	0.029	4.9786	0.0077	0.0029
		146	82	-1.914	0.015	4.9801	0.0140	0.0015
		148	84	-1.617	0.015	5.0080	0.0171	0.0015
		150	86	-1.358	0.015	5.0342	0.0159	0.0015
		152	88	-1.01	0.001	5.0774	0.0048	0.0001
		154	90	-0.5338	0.0003	5.1223	0.0040	0.0001
		155 156	91	-0.4309	0.0002	5.1319	0.0041	0.0001
		156	92	-0.3229	0.0002	5.1420	0.0042	0.0001
		157	93	-0.2918	0.0001	5.1449	0.0042	0.0001
		158 160	94 96	−0.1643 0	0.0001 0	5.1569 5.1734	0.0043 0.0044	0.0001 0
	m!							
65	Tb	147	82	-1.393	0.012	4.9201	0.1508	0.0032
		148	83	-1.304	0.011	4.9291	0.1507	0.0030
		149	84	-1.175	0.009	4.9427	0.1506	0.0027
		150	85	-1.100	0.009	4.9499	0.1505	0.0025
		151	86	-0.969	0.008	4.9630	0.1504	0.0022
		152	87	-0.909	0.008	4.9689	0.1504	0.0021
		153	88	-0.655	0.008	4.9950	0.1502	0.0016
		154	89	-0.272	0.018	5.0333	0.1501	0.0019
		155	90	-0.215	0.009	5.0391	0.1500	0.0010
		157	92	-0.116	0.008	5.0489	0.1500	0.0009
		159	94	0	0	5.0600	0.1500	0
	_	146	80	-0.018	0.002	5.0438	0.2389	0.0002
56	Dy				0	5.0455	0.2389	0
56	Dy	148	82	0	0	J.U 1 JJ		
56	Dy		82 83		0.013	5.0567	0.2394	0.0012
56	Dy	148 149	83	0.119	0.013	5.0567		0.0012
66	Dy	148 149 150	83 84	0.119 0.268	0.013 0.026	5.0567 5.0706	0.2413	0.0012 0.0026
66	Dy	148 149 150 151	83 84 85	0.119 0.268 0.370	0.013 0.026 0.037	5.0567 5.0706 5.0801	0.2413 0.2435	0.0012 0.0026 0.0036
66	Dy	148 149 150 151 152	83 84 85 86	0.119 0.268 0.370 0.530	0.013 0.026 0.037 0.053	5.0567 5.0706 5.0801 5.0950	0.2413 0.2435 0.2482	0.0012 0.0026 0.0036 0.0051
66	Бу	148 149 150 151 152 153	83 84 85 86 87	0.119 0.268 0.370 0.530 0.621	0.013 0.026 0.037 0.053 0.062	5.0567 5.0706 5.0801 5.0950 5.1035	0.2413 0.2435 0.2482 0.2516	0.0012 0.0026 0.0036 0.0051 0.0060
66	Бу	148 149 150 151 152 153 154	83 84 85 86 87 88	0.119 0.268 0.370 0.530 0.621 0.844	0.013 0.026 0.037 0.053 0.062 0.084	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241	0.2413 0.2435 0.2482 0.2516 0.2618	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082
66	Бу	148 149 150 151 152 153 154 155	83 84 85 86 87 88 89	0.119 0.268 0.370 0.530 0.621 0.844 1.077	0.013 0.026 0.037 0.053 0.062 0.084 0.108	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103
66	Бу	148 149 150 151 152 153 154 155 156	83 84 85 86 87 88	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257	0.013 0.026 0.037 0.053 0.062 0.084	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241	0.2413 0.2435 0.2482 0.2516 0.2618	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082
66	Бу	148 149 150 151 152 153 154 155	83 84 85 86 87 88 89	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123
66	Бу	148 149 150 151 152 153 154 155 156 157 158	83 84 85 86 87 88 89 90 91	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133
66	Бу	148 149 150 151 152 153 154 155 156 157 158 159	83 84 85 86 87 88 89 90 91 92 93	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3031	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144
66	Бу	148 149 150 151 152 153 154 155 156 157 158 159 160	83 84 85 86 87 88 89 90 91 92 93 94	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3023 0.3031	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144
6	Бу	148 149 150 151 152 153 154 155 156 157 158 159 160 161	83 84 85 86 87 88 89 90 91 92 93 94	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478 1.616 1.647	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162 0.165	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951 5.1962	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3031 0.3139 0.0459	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0134 0.0144 0.0155 0.0159
66	Бу	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	83 84 85 86 87 88 89 90 91 92 93 94 95 96	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478 1.616 1.647 1.753	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162 0.165 0.175	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951 5.1962 5.2074	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3023 0.3031 0.3139 0.0459 0.0172	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144 0.0155 0.0159
66	Бу	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478 1.616 1.647 1.753 1.806	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162 0.165 0.175 0.181	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951 5.1962 5.2074 5.2099	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3031 0.3139 0.0459 0.0172	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144 0.0155 0.0159 0.0169
		148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478 1.616 1.647 1.753 1.806 1.901	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162 0.165 0.175 0.181 0.190	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951 5.1962 5.2074 5.2099 5.2218	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3023 0.3031 0.3139 0.0459 0.0172 0.0120	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144 0.0155 0.0159 0.0169 0.0169
	Но	148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478 1.616 1.647 1.753 1.806 1.901 -1.709	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162 0.165 0.175 0.181 0.190 0.008	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951 5.1962 5.2074 5.2099 5.2218	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3031 0.3139 0.0459 0.0172 0.0120 0.0106	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144 0.0155 0.0159 0.0169 0.0169 0.0179
		148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 151	83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478 1.616 1.647 1.753 1.806 1.901 -1.709 -1.486	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162 0.165 0.175 0.181 0.190 0.008 0.006	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951 5.1962 5.2074 5.2099 5.2218 5.0398 5.0614	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3031 0.3139 0.0459 0.0172 0.0120 0.0106 0.0354 0.0343	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144 0.0155 0.0159 0.0169 0.0169 0.0179
57		148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	0.119 0.268 0.370 0.530 0.621 0.844 1.077 1.257 1.352 1.468 1.478 1.616 1.647 1.753 1.806 1.901 -1.709	0.013 0.026 0.037 0.053 0.062 0.084 0.108 0.126 0.135 0.147 0.148 0.162 0.165 0.175 0.181 0.190 0.008	5.0567 5.0706 5.0801 5.0950 5.1035 5.1241 5.1457 5.1622 5.1709 5.1815 5.1825 5.1951 5.1962 5.2074 5.2099 5.2218	0.2413 0.2435 0.2482 0.2516 0.2618 0.2751 0.2869 0.2936 0.3023 0.3031 0.3139 0.0459 0.0172 0.0120 0.0106	0.0012 0.0026 0.0036 0.0051 0.0060 0.0082 0.0103 0.0123 0.0133 0.0144 0.0144 0.0155 0.0159 0.0169 0.0169 0.0179

Table 1 (continued)

Ζ	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~(\mathrm{fm}^2)$	R (fm)	$\Delta_{tot}R$ (fm)	ΔR_{rel}
		155	88	-1.003	0.003	5.1076	0.0326	0.0003
		156	89	-0.881	0.003	5.1156	0.0326	0.0003
		157	90	-0.518	0.002	5.1535	0.0316	0.0002
		158	91	-0.48	0.004	5.1571	0.0316	0.0004
		159	92	-0.37	0.002	5.1675	0.0314	0.0002
		160	93	-0.384	0.003	5.1662	0.0315	0.0003
		161	94	-0.253	0.002	5.1785	0.0313	0.0002
		162	95	-0.219	0.008	5.1817	0.0313	0.0008
		163	96	-0.123	0.006	5.1907	0.0313	0.0006
		165	98	0	0	5.2022	0.0312	0
58	Er	150	82	-2.114	0.013	5.0548	0.0254	0.0030
		152	84	-1.846	0.013	5.0843	0.0257	0.0027
		154	86	-1.584	0.002	5.1129	0.0268	0.0021
		156	88	-1.307	0.001	5.1429	0.0285	0.0018
		158	90	-1.001	0.001	5.1761	0.0312	0.0015
		160	92	-0.738	0.001	5.2045	0.0336	0.0012
		162	94	-0.551	0.001	5.2246	0.0040	0.0010
		164	96	-0.392	0.001	5.2389	0.0035	0.0007
		166	98	-0.263	0.001	5.2516	0.0031	0.0005
		167	99	-0.218	0.001	5.2560	0.0031	0.0004
		168	100	-0.132	0.001	5.2644	0.0035	0.0002
		170	102	0	0	5.2789	0.0041	0
9	Tm	153	84	-1.708	0.033	5.0643	0.0190	0.0030
		154	85	-1.609	0.015	5.0755	0.0166	0.0019
		156	87	-1.359	0.009	5.0976	0.0135	0.0006
		157	88	-1.157	0.005	5.1140	0.0074	0.0008
		158	89	-1.058	0.006	5.1235	0.0069	0.0007
		159	90	-0.898	0.003	5.1392	0.0060	0.0004
		160	91	-0.783	0.003	5.1504	0.0055	0.0004
		161	92	-0.667	0.002	5.1616	0.0050	0.0003
		162	93	-0.567	0.003	5.1713	0.0048	0.0005
		163	94	-0.427	0.002	5.1849	0.0042	0.0002
		164	95	-0.368	0.003	5.1906	0.0042	0.0006
		165	96	-0.265	0.002	5.2004	0.0038	0.0002
		166	97	-0.221	0.003	5.2046	0.0038	0.0003
		167	98	-0.134	0.002	5.2129	0.0036	0.0003
		168	99	-0.092	0.004	5.2170	0.0036	0.0004
		169	100	0	0	5.2256	0.0035	0
		170	101	0.048	0.001	5.2303	0.0036	0.0005
		171 172	102 103	0.139 0.164	0.005 0.022	5.2388 5.2411	0.0037 0.0052	0.0006 0.0030
0	Yb	152	82	-2.746	0.004	5.0423	0.0146	0.0028
U	ΙU	154	84	-2.746 -2.335	0.004	5.0423	0.0146	0.0026
		155	85		0.003		0.0103	0.0020
		156	86	-2.181 -2.015	0.007	5.1040 5.1219	0.0110	0.0010
		157	87	-1.908	0.002	5.1324	0.0103	0.0023
		158	88	-1.737	0.003	5.1498	0.0088	0.0006
		159	89	-1.618	0.009	5.1629	0.0084	0.0022
		160	90	-1.462	0.003	5.1781	0.0076	0.0022
		161	91	-1.353	0.001	5.1889	0.0070	0.0003
		162	92	-1.191	0.001	5.2054	0.0072	0.0003
		163	93	-1.089	0.001	5.2157	0.0064	0.0002
		164	94	-0.942	0.001	5.2307	0.0060	0.0002
		165	95	-0.8473	0.0003	5.2399	0.0058	0.0002
		166	96	-0.7220	0.0004	5.2525	0.0057	0.0001
		167	97	-0.6252	0.0003	5.2621	0.0056	0.0001
		168	98	-0.5406	0.0003	5.2702	0.0056	0.0001
		169	99	-0.4692	0.0003	5.2771	0.0056	0.0007
		170	100	-0.3845	0.0001	5.2853	0.0056	0.0001
		171	101	-0.3273	0.0001	5.2906	0.0057	0.0001
		172	102	-0.2366	0.0001	5.2995	0.0058	0.0002
		173	103	-0.1810	0.0001	5.3046	0.0059	0.0002
		174	104	-0.1159	0.0001	5.3108	0.0060	0.0003
		175	105	-0.0827	0.0074	5.3135	0.0061	0.0002
		176	106	0	0	5.3215	0.0062	0
1	Lu	161	90	-1.5083	0.0013	5.2293	0.0320	0.0003
1	Lu	162						0.000
			91	-1.3966	0.0012	5.2398	0.0317	
		163	92	-1.2174	0.0012	5.2567	0.0312	0.0003
		164 165	93	-1.1006	0.0012	5.2677	0.0310	0.0002
		165	94	-0.9372	0.0007	5.2830	0.0307	0.0002
		166	95	-0.7851	0.0008	5.2972	0.0305	0.0001

Table 1 (continued)

?	el.	Α	N	$\delta \langle r^2 \rangle (\mathrm{fm}^2)$	$\Delta\delta\langle r^2\rangle~({\rm fm}^2)$	R (fm)	$\Delta_{tot}R(\mathrm{fm})$	ΔR_{rel}
		169	98	-0.4443	0.0006	5.3290	0.0302	0.000
		170	99	-0.3644	0.0006	5.3364	0.0302	0.000
		171	100	-0.2863	0.0007	5.3436	0.0302	0.000
		172	101	-0.2323	0.0007	5.3486	0.0302	0.000
		173	102	-0.1340	0.0010	5.3577	0.0303	0.000
		174	103	-0.0718	0.0006	5.3634	0.0303	0.000
		175	104	0	0	5.3700	0.0304	0
		176	105	0.0425	0.0010	5.3739	0.0304	0.000
		177	106	0.1248	0.0009	5.3815	0.0305	0.000
		178	107	0.1714	0.0010	5.3857	0.0306	0.000
		179	108	0.2357	0.0010	5.3917	0.0307	0.000
	Hf	170	98	-0.494	0.009	5.2898	0.0055	0.000
	111	171	99	-0.366	0.005	5.3041	0.0033	0.000
		172	100	-0.322	0.006	5.3065	0.0043	0.000
		173	101	-0.244	0.004	5.3140	0.0045	0.000
		173	102	-0.244 -0.180	0.004	5.3201	0.0035	0.000
		175	103	-0.091	0.002	5.3191	0.0036	0.001
		176	104	-0.091	0.001	5.3286	0.0032	0.000
		177	105	-0.065	0.001	5.3309	0.0031	0.000
		178	106	0	0	5.3371	0.0031	0
		179	107	0.039	0.002	5.3408	0.0031	0.000
		180	108	0.040	0.005	5.3470	0.0032	0.000
		182	110	0.176	0.005	5.3516	0.0036	0.000
	Ta	181	108			5.3507	0.0034	
	W	180	106	-0.169	0.006	5.3491	0.0022	0.001
	**	182	108	-0.099	0.005	5.3559	0.0022	0.001
		183	109	-0.047	0.005	5.3611	0.0017	0.000
				-0.047 0	0 .000			0.000
		184 186	110 112	0.086	0.004	5.3658 5.3743	0.0023 0.0026	0.000
	_							
	Re	185	110	0	0	5.3596	0.0172	0
		187	112	0.110	0.010	5.3698	0.0173	0.000
	Os	184	108	-0.320	0.018	5.3823	0.0022	0.001
		186	110	-0.231	0.015	5.3909	0.0017	0.001
		187	111	-0.205	0.016	5.3933	0.0018	0.001
		188	112	-0.144	0.011	5.3993	0.0011	0.001
		189	113	-0.119	0.012	5.4016	0.0012	0.001
		190	114	-0.068	0.006	5.4062	0.0012	0.000
		190 192	116	_0.008	0 .000	5.4002 5.4126	0.0015 0.0015	0.000
	T.,.							
	Ir	182	105	-0.283	0.006	5.3705	0.1061	0.000
		183	106	-0.203	0.004	5.3780	0.1061	0.000
		184	107	-0.176	0.003	5.3805	0.1061	0.000
		185	108	-0.123	0.003	5.3854	0.1061	0.000
		186	109	-0.073	0.004	5.3900	0.1061	0.000
		187	110	-0.168	0.003	5.3812	0.1061	0.000
		188	111	-0.140	0.004	5.3838	0.1061	0.000
		189	112	-0.076	0.002	5.3898	0.1061	0.000
		191	114	0	0	5.3968	0.1061	0
		193	116	0.069	0.001	5.4032	0.1061	0.000
	Pt	178	100	-0.529	0.016	5.3728	0.0066	0.001
	Γt	179	101	-0.325 -0.335	0.010	5.3915	0.0050	0.00
		180	102	-0.360	0.011	5.3891	0.0049	0.001
			103	-0.251	0.015	5.3996	0.0041	0.001
		181		0.050		5.3969	0.0041	0.000
		182	104	-0.279	0.010			
		182 183	105	-0.196	0.020	5.4038	0.0036	0.001
		182					0.0036 0.0036	0.001
		182 183	105	-0.196	0.020	5.4038	0.0036	0.00° 0.00°
		182 183 184	105 106	-0.196 -0.240 -0.090 -0.213	0.020 0.018	5.4038 5.4015	0.0036 0.0036	0.000 0.000 0.000
		182 183 184 185	105 106 107	-0.196 -0.240 -0.090 -0.213	0.020 0.018 0.005	5.4038 5.4015 5.4148	0.0036 0.0036 0.0028 0.0036	0.000 0.000 0.000 0.000
		182 183 184 185 186 187	105 106 107 108 109	-0.196 -0.240 -0.090 -0.213 -0.188	0.020 0.018 0.005 0.004 0.004	5.4038 5.4015 5.4148 5.4037 5.4063	0.0036 0.0036 0.0028 0.0036 0.0037	0.001 0.001 0.000 0.000 0.000
		182 183 184 185 186	105 106 107 108 109 110	-0.196 -0.240 -0.090 -0.213	0.020 0.018 0.005 0.004	5.4038 5.4015 5.4148 5.4037	0.0036 0.0036 0.0028 0.0036	0.000 0.000 0.000 0.000 0.000
		182 183 184 185 186 187 188	105 106 107 108 109 110 111	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187	0.020 0.018 0.005 0.004 0.004 0.003 0.005	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035	0.001 0.001 0.000 0.000 0.000 0.000
		182 183 184 185 186 187 188 189	105 106 107 108 109 110 111 112	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137	0.020 0.018 0.005 0.004 0.004 0.003 0.005 0.005	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030	0.00 0.000 0.000 0.000 0.000 0.000
		182 183 184 185 186 187 188 189 190	105 106 107 108 109 110 111 112 113	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137	0.020 0.018 0.005 0.004 0.004 0.003 0.005 0.002 0.004	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030	0.001 0.000 0.000 0.000 0.000 0.000 0.000
		182 183 184 185 186 187 188 189 190 191	105 106 107 108 109 110 111 112 113 114	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.137 -0.142 -0.073	0.020 0.018 0.005 0.004 0.003 0.005 0.005 0.002 0.004	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031	0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000
		182 183 184 185 186 187 188 189 190 191 192 193	105 106 107 108 109 110 111 112 113 114 115	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.004	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028	0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000
		182 183 184 185 186 187 188 189 190 191 192 193 194	105 106 107 108 109 110 111 112 113 114 115	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.004 0.002 0.006	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191 5.4236	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028 0.0027	0.00° 0.00° 0.00° 0.00° 0.00° 0.00° 0.00° 0.00° 0.00°
		182 183 184 185 186 187 188 189 190 191 192 193 194	105 106 107 108 109 110 111 112 113 114 115 116 117	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047 0 0.036	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.006 0	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191 5.4236 5.4270	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028 0.0027 0.0025	0.00° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000°
		182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	105 106 107 108 109 110 111 112 113 114 115 116 117	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047 0 0.036 0.075	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.006 0 0	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191 5.4236 5.4270 5.4307	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028 0.0027 0.0025 0.0026	0.00° 0.00° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000° 0.000°
		182 183 184 185 186 187 188 189 190 191 192 193 194	105 106 107 108 109 110 111 112 113 114 115 116 117	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047 0 0.036	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.006 0	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191 5.4236 5.4270	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028 0.0027 0.0025	0.007 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	Au	182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	105 106 107 108 109 110 111 112 113 114 115 116 117	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047 0 0.036 0.075	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.006 0 0	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191 5.4236 5.4270 5.4307	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028 0.0027 0.0025 0.0026	0.007 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	Au	182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 198	105 106 107 108 109 110 111 112 113 114 115 116 117 118	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047 0 0.036 0.075 0.154	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.006 0 0.002 0.002 0.002	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191 5.4236 5.4270 5.4307 5.4383	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028 0.0027 0.0025 0.0026 0.0027 0.0027	0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	Au	182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 198	105 106 107 108 109 110 111 112 113 114 115 116 117 118 120	-0.196 -0.240 -0.090 -0.213 -0.188 -0.193 -0.187 -0.137 -0.142 -0.073 -0.047 0 0.036 0.075 0.154 -0.140	0.020 0.018 0.005 0.004 0.003 0.005 0.002 0.004 0.002 0.006 0 0.002 0.002 0.002 0.002	5.4038 5.4015 5.4148 5.4037 5.4063 5.4053 5.4060 5.4108 5.4102 5.4169 5.4191 5.4236 5.4270 5.4307 5.4383 5.4247	0.0036 0.0036 0.0028 0.0036 0.0037 0.0034 0.0035 0.0030 0.0031 0.0028 0.0027 0.0025 0.0026 0.0027 0.0025 0.0026	0.00° 0.00° 0.000°

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle ~({\rm fm}^2)$	$\Delta\delta\langle r^2\rangle~({\rm fm}^2)$	R (fm)	$\Delta_{tot}R\left(\mathrm{fm}\right)$	ΔR_{rel}
		187	108	-0.382	0.005	5.4018	0.0058	0.0008
		188	109	-0.352	0.006	5.4049	0.0055	0.0008
		189	110	-0.313	0.004	5.4084	0.0052	0.0006
		190	111	-0.284	0.005	5.4109	0.0049	0.0006
		191	112	-0.245	0.001	5.4147	0.0046	0.0004
		192	113	-0.211	0.002	5.4179	0.0044	0.0003
		193	114	-0.164	0.001	5.4221	0.0042	0.0002
		194	115	-0.131	0.001	5.4252	0.0040	0.0002
		195	116	-0.079	0.004	5.4298	0.0040	0.0006
		196	117	-0.043	0.005	5.4332	0.0039	0.0004
		197	118	0	0	5.4371	0.0038	0
		198	119	0.031	0.002	5.4400	0.0038	0.0002
		199	120	0.090	0.001	5.4454	0.0039	0.0001
80	Hg	181	101	-0.114	0.004	5.4364	0.0032	0.0004
		182	102	-0.693	0.021	5.3833	0.0052	0.0020
		183	103	-0.070	0.004	5.4405	0.0031	0.0004
		184	104	-0.550	0.002	5.3949	0.0047	0.0002
		185	105	-0.077	0.001	5.4397	0.0031	0.0001
		186	106	-0.477	0.001	5.4017	0.0043	0.0001
		187 188	107 108	-0.447	0.002	5.4046	0.0042	0.0002
		189	108	-0.404 -0.387	0.001 0.002	5.4085 5.4100	0.0040 0.0040	0.0001 0.0002
		190	110	-0.326	0.002	5.4158	0.0040	0.0002
		191	111	-0.313	0.001	5.4171	0.0037	0.0001
		192	112	-0.313 -0.246	0.004	5.4232	0.0037	0.0004
		193	113	-0.240 -0.242	0.009	5.4238	0.0035	0.0001
		194	114	-0.164	0.003	5.4309	0.0033	0.0003
		195	115	-0.126	0.005	5.4345	0.0033	0.0001
		196	116	-0.0825	0.0001	5.4385	0.0031	0.0001
		197	117	-0.054	0.003	5.4412	0.0031	0.0003
		198	118	0	0	5.4463	0.0031	0
		199	119	0.0130	0.0001	5.4474	0.0031	0.0002
		200	120	0.0942	0.0001	5.4551	0.0031	0.0003
		201	121	0.1258	0.0001	5.4581	0.0032	0.0003
		202	122	0.1981	0.0001	5.4648	0.0033	0.0003
		203	123	0.231	0.004	5.4679	0.0035	0.0003
		204	124	0.3001	0.0001	5.4744	0.0036	0.0003
		205	125	0.333	0.002	5.4776	0.0038	0.0003
		206	126	0.397	0.002	5.4837	0.0040	0.0003
81	Tl	188	107	-0.7708	0.0005	5.4017	0.0072	0.0013
		190	109	-0.6693	0.0003	5.4121	0.0056	0.0013
		191	110	-0.6201	0.0007	5.4169	0.0048	0.0003
		192	111	-0.5967	0.0003	5.4191	0.0051	0.0012
		193	112	-0.542	0.011	5.4243	0.0042	0.0008
		194	113	-0.5261	0.0005	5.4259	0.0046	0.0010
		195	114	-0.457	0.007	5.4325	0.0039	0.0006
		196	115	-0.4546	0.0005	5.4327	0.0042	0.0009
		197	116	-0.391	0.001	5.4388	0.0036	0.0002
		198	117	-0.383	0.007	5.4396	0.0036	0.0006
		199	118	-0.296	0.007	5.4479	0.0031	0.0006
		200	119	-0.283	0.007	5.4491	0.0031	0.0006
		201	120	-0.197	0.001	5.4573	0.0029	0.0004
		202	121	-0.174	0.007	5.4595	0.0027	0.0006
		203	122	-0.0978	0.0001	5.4666	0.0027	0.0002
		204	123	-0.060	0.007	5.4704	0.0028	0.0006
		205	124	0	0	5.4759	0.0026	0 0000
		207	126	0.0993	0.0002	5.4853	0.0027	0.0002
		208	127	0.185	0.013	5.4946	0.0028	0.0012
82	Pb	182	100	-1.311	0.013	5.3788	0.0035	0.0012
		183	101	-1.225	0.008	5.3869	0.0030	0.0007
		184	102	-1.160	0.005	5.3930	0.0029	0.0005
		185	103	-1.103	0.008	5.3984	0.0028	0.0007
		186	104	-1.057	0.005	5.4027	0.0027	0.0005
		187	105	-1.002	0.006	5.4079	0.0026	0.0006
		188	106	-0.938	0.006	5.4139	0.0025	0.0006
		189	107	-0.898	0.008	5.4177	0.0024	0.0007
		190	108	-0.851	0.002	5.4222	0.0023	0.0005
		191	109	-0.845	0.004	5.4229	0.0026	0.0011
		192	110	-0.766	0.005	5.4300	0.0025 0.0023	0.0011 0.0007
					0.003	5.4310	0.0073	0.0007
		193	111	-0.756				
		194	112	-0.689	0.004	5.4372	0.0023	0.0009
								0.0007 0.0009 0.0011 0.0014

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~(\mathrm{fm}^2)$	R (fm)	$\Delta_{tot}R(fm)$	ΔR_{rel}
		198	116	-0.5258	0.0002	5.4524	0.0022	0.0012
		199	117	-0.5206	0.0005	5.4529	0.0022	0.0012
		200	118	-0.4322	0.0002	5.4611	0.0020	0.0010
		201	119	-0.4127	0.0003	5.4629	0.0019	0.0009
		202	120	-0.3307	0.0002	5.4705	0.0017	0.0007
		203	121	-0.3071	0.0003	5.4727	0.0017	0.0007
		204	122	-0.2249	0.0001	5.4803	0.0014	0.0005
		205	123	-0.1983	0.0002	5.4828	0.0015	0.0005
		206	124	-0.1189	0.0001	5.4902	0.0014	0.0003
		207	125	-0.0743	0.0001	5.4943	0.0014	0.0002
		208	126	0	0	5.5012	0.0013	0
		209	127	0.0945	0.0005	5.5100	0.0014	0.0003
		210	128	0.2125	0.0002	5.5208	0.0016	0.0007
		211	129	0.3020	0.0003	5.5290	0.0017	0.0007
		212	130	0.4178	0.0016	5.5396	0.0019	0.0003
		214	132	0.6150	0.0011	5.5577	0.0023	0.0002
33	Bi	202	119	-0.408	0.002	5.4840	0.0069	0.0002
		203	120	-0.330	0.002	5.4911	0.0058	0.0002
		204	121	-0.305	0.003	5.4934	0.0055	0.0003
		205	122	-0.224	0.001	5.5008	0.0044	0.0001
		206	123	-0.196	0.001	5.5034	0.0040	0.0001
		207	124	-0.119	0.002	5.5103	0.0032	0.0002
		208	125	-0.071	0.002	5.5147	0.0028	0.0002
		209	126	0	0	5.5211	0.0026	0
		210	127	0.099	0.003	5.5300	0.0030	0.0003
		212	129	0.307	0.004	5.5489	0.0054	0.0004
		213	130	0.416	0.001	5.5586	0.0069	0.0001
_	-							
4	Po	192	108	-0.403	0.019	5.5220	0.0178	0.0017
		194	110	-0.462	0.016	5.5167	0.0178	0.0014
		196	112	-0.496	0.013	5.5136	0.0178	0.0012
		198	114	-0.485	0.017	5.5146	0.0178	0.0015
		200	116	-0.426	0.014	5.5199	0.0178	0.0013
		202	118	-0.336	0.015	5.5281	0.0177	0.0014
		204	120	-0.229	0.014	5.5378	0.0177	0.0013
		205	121	-0.216	0.014	5.5389	0.0177	0.0013
		206	122	-0.116	0.014	5.5480	0.0177	0.0013
		207	123	-0.092	0.014	5.5501	0.0177	0.0013
		208	124	0	0	5.5584	0.0176	0
		209	125	0.049	0.012	5.5628	0.0176	0.0011
		210	126	0.134	0.010	5.5704	0.0176	0.0009
		216	132	0.867	0.014	5.6359	0.0174	0.0012
		218	134	1.092	0.015	5.6558	0.0173	0.0013
	_							
6	Rn	202	116	-0.4382	0.0004	5.5521	0.0181	0.0001
		204	118	-0.3860	0.0003	5.5568	0.0180	0.0001
		205	119	-0.3849	0.0003	5.5569	0.0180	0.0001
		206	120	-0.3058	0.0003	5.5640	0.0178	0.0001
		207	121	-0.2926	0.0002	5.5652	0.0178	0.0001
		208	122	-0.2125	0.0002	5.5725	0.0177	0.0000
		209	123	-0.1917	0.0001	5.5743	0.0177	0.0000
		210	124	-0.1143	0.0001	5.5813	0.0177	0.0000
		211	125	-0.0735	0.0001	5.5850	0.0176	0.0000
		212	126	0	0	5.5915	0.0176	0
		218	132	0.7000	0.0003	5.6540	0.0187	0.0001
		219	133	0.8212	0.0003	5.6648	0.0191	0.0001
		220	134	0.9151	0.0003	5.6731	0.0194	0.0002
		221	135	1.0320	0.0004	5.6834	0.0199	0.0002
		222	136	1.1236	0.0004	5.6915	0.0203	0.0002
_	-							
7	Fr	207	120	-0.21794	0.00016	5.5720	0.0176	0.0000
		208	121	-0.20804	0.00012	5.5729	0.0176	0.0000
		209	122	-0.13043	0.00008	5.5799	0.0176	0.0000
		210	123	-0.10831	0.00004	5.5818	0.0176	0.0000
		211	124	-0.03757	0.00004	5.5882	0.0176	0.0000
		212	125	0	0	5.5915	0.0176	0
		213	126	0.06829	0.00008	5.5977	0.0176	0.0000
		220	133	0.86725	0.00045	5.6688	0.0177	0.0001
		221	134	0.98269	0.00033	5.6790	0.0177	0.0002
		222	135	1.09543	0.00012	5.6890	0.0177	0.0002
		223	136	1.16507	0.00008	5.6951	0.0178	0.0002
		224	137	1.28937	0.00004	5.7061	0.0178	0.0002
		225	138	1.34862	0.00004	5.7112	0.0178	0.0002
		226	138	1.43700	0.00022	5.7112	0.0178	0.0002
		227	140	1.60249	0.00004	5.7335	0.0178	0.0002

Table 1 (continued)

Z	el.	Α	N	$\delta \langle r^2 \rangle (\text{fm}^2)$	$\Delta\delta\langle r^2\rangle~(\mathrm{fm}^2)$	R (fm)	$\Delta_{tot}R(fm)$	ΔR_{rel}
		228	141	1.67522	0.00020	5.7399	0.0179	0.0003
88	Ra	208	120	-0.2560	0.0002	5.5850	0.0183	0.0024
		209	121	-0.2530	0.0002	5.5853	0.0182	0.0022
		210	122	-0.1820	0.0002	5.5917	0.0180	0.0017
		211	123	-0.1680	0.0001	5.5929	0.0179	0.0015
		212	124	-0.0990	0.0001	5.5991	0.0177	0.0009
		213	125	-0.0660	0.0001	5.6020	0.0177	0.0006
		214	126	0	0	5.6079	0.0177	0
		220	132	0.6790	0.0002	5.6683	0.0215	0.0062
		221	133	0.8050	0.0002	5.6795	0.0228	0.0073
		222	134	0.8950	0.0002	5.6874	0.0239	0.0081
		223	135	1.0070	0.0003	5.6973	0.0253	0.0091
		224	136	1.0900	0.0003	5.7046	0.0263	0.0098
		225	137	1.2080	0.0003	5.7150	0.0279	0.0108
		226	138	1.2770	0.0003	5.7211	0.0288	0.0115
		227	139	1.3650	0.0004	5.7283	0.0300	0.0123
		228	140	1.4590	0.0004	5.7370	0.0315	0.0131
		229	141	1.5560	0.0005	5.7455	0.0329	0.0140
		230	142	1.6670	0.0005	5.7551	0.0325	0.0150
		232	144	1.8540	0.0005	5.7714	0.0375	0.0166
90	Th	227	137	-0.508	0.003	5.7404	0.0165	0.0062
		228	138	-0.413	0.001	5.7488	0.0152	0.0049
		229	139	-0.334	0.001	5.7557	0.0143	0.0040
		230	140	-0.2050	0.0004	5.7670	0.0131	0.0025
		232	142	0	0	5.7848	0.0124	0
92	U	233	141	-0.435	0.001	5.8203	0.0049	0.0043
		234	142	-0.334	0.001	5.8291	0.0052	0.0033
		235	143	-0.2803	0.0002	5.8337	0.0041	0.0027
		236	144	-0.1676	0.0002	5.8431	0.0038	0.0016
		238	146	0	0	5.8571	0.0033	0
94	Pu	238	144	-0.082	0.004	5.8535	0.0378	0.0012
		239	145	0	0	5.8601	0.0378	0
		240	146	0.122	0.003	5.8701	0.0379	0.0016
		241	147	0.179	0.004	5.8748	0.0379	0.0019
		242	148	0.273	0.004	5.8823	0.0380	0.0024
		244	150	0.426	0.008	5.8948	0.0382	0.0032
95	Am	241	146	-0.142	0.008	5.8928	0.0042	0.0012
		243	148	0	0	5.9048	0.0035	0
96	Cm	242	146	-0.168	0.056	5.8285	0.0192	0.0049
		244	148	0	0	5.8429	0.0181	0
		245	149	0.054	0.011	5.8475	0.0182	0.0010
		246	150	0.156	0.022	5.8562	0.0184	0.0020
		248	152	0.303	0.054	5.8687	0.0193	0.0040

Table 2Parameters used for the extraction of radii changes from OIS.

- ₁H IS on 1S \rightarrow 2S transition; $\delta \langle r^2 \rangle^{1,2}$ as given by [Pa10].
- ${}_{2}\text{He} \qquad \text{He I at 389 nm, 2}{}^{3}\text{S}_{1} \rightarrow 3{}^{3}\text{P}_{2} \text{ transition; } \\ \delta \langle r^{2} \rangle \text{ [Wa04, Mu07]; } \\ F_{cal} = +1.008 \text{ MHz/fm}{}^{2}, \\ MS_{cal}({}^{4.6}\text{He}) = +43196.217 \text{ MHz (see for details [Dr04]).} \\ \text{In the last 389 nm, 2}{}^{3}\text{S}_{1} \rightarrow 3{}^{3}\text{P}_{2} \text{ transition; } \\ \delta \langle r^{2} \rangle \text{ [Wa04, Mu07]; } \\ F_{cal} = +1.008 \text{ MHz/fm}{}^{2}, \\ MS_{cal}({}^{4.6}\text{He}) = +43196.217 \text{ MHz (see for details [Dr04]).} \\ \text{In the last 389 nm, 2}{}^{3}\text{S}_{1} \rightarrow 3{}^{3}\text{P}_{2} \text{ transition; } \\ \delta \langle r^{2} \rangle \text{ [Wa04, Mu07]; } \\ F_{cal} = +1.008 \text{ MHz/fm}{}^{2}, \\ MS_{cal}({}^{4.6}\text{He}) = +43196.217 \text{ MHz (see for details [Dr04]).} \\ \text{(Mag)} = -1.008 \text{ MHz/fm}{}^{2}, \\ MS_{cal}({}^{4.6}\text{He}) = -1.008 \text{ MHz/fm}{}^{2}, \\ MS_{cal}({}^{4$
- 3Li Li I at 735 nm ($2s^2S_{1/2}$ - $3s_2S_{1/2}$ -two photon transition); $\delta\langle r^2\rangle$ as given by [Nö11, 28] (see also [Ew04, Sá06, Sá06b]); $F_{cal}=-1.5719(16)$ MHz/fm², $MS_{cal}=+11452.821(3)$ MHz for $\delta\langle r^2\rangle^{6.7}$ [Nö11, 28] (the latest version of F and MS calculations); the OIS experimental technique is accompanied by high-precision theoretical calculations.
- 4Be Be I at D₁ and D₂-lines; $\delta \langle r^2 \rangle$ [Nö 09, Žá10]; $F_{cal}(D_1) = -16.912 \text{ MHz/fm}^2$, $MS_{cal}(^{9.7}\text{Be}) = -49225.765 \text{ MHz}$ [Ya08]; $F_{cal}(D_2) \approx +17 \text{ MHz/fm}^2$ (for details see [Pu08]), $MS_{cal}(^{9.7}\text{Be}) = -49231.827(39) \text{ MHz}$ [Ya08].
- IS for Ne I at 614.3 nm, transition $2p^5 3s[3/2]_2 \rightarrow 2p^5 3p[3/2]_2$; $\delta \langle r^2 \rangle$ as given by [Ge08, Ma11]; $F_{se} = -40(4)$ MHz/fm², $MS_{\mu} = +363(42)$ GHz u calibrated via King plot with R_{μ} -data of [4].
- ₁₁Na IS for Na I at D₁-line; $\delta \langle r^2 \rangle$ [5]; $F_{se} = -47 \text{ MHz/fm}^2$; $MS_{se} = +385.5 \text{ GHz u}$ [Hu82].
- 18 Ar IS for Ar I at 763.7 nm, transition 3p⁵4s[3/2]₂ → 3p⁵4p[3/2]₂ [KI96, Bl08]; $\delta \langle r^2 \rangle$ [Bl08] with $F_{se} = -104(10)$ MHz/fm²; $MS_{\mu} = +189.0(1.9)$ −calibrated via King plot using R_{μ} -data of [4].
- Is for K I at D₁-line; $\delta\langle r^2 \rangle$ [To82], $F_{se} = -128$ MHz/fm²; $MS_{e\mu} = +198.4(3.9)$ GHz u–King plot procedure using model independent $R_{e\mu}$ data from [Wo81].
- IS for $^{40-48}$ Ca I at different transition; $\delta\langle r^2\rangle$ from [Pa84], $F_{e\mu}$, $MS_{e\mu}$ —via King plot procedure using $R_{e\mu}$ data from [Wo81]; IS($^{40.39}$ Ca) [Ve96] and IS($^{44.50}$ Ca) [Ve92] for Call at 397 nm, transition $3p^64s^2S_{1/2} \rightarrow 3p^64p^2P_{1/2}$; $F_{cal} = -283(6)$ MHz/fm² [Må92], $MS_{e\mu} = +405.1(3.8)$ GHz u from King-plot procedure versuss OIS data of [Pa84].
- ₂₁Sc Sc II at 363.1 nm, transition $3d4s^3D_2 \rightarrow 3d4p^3F_3$, $F_{cal} = -355(50)$ MHz/fm², $MS_{cal} = +583(30)$ GHz u [Av11].
- IS for Ti II at 324.2 nm, transition $d^2s^4F_{3/2} \rightarrow d^2p^4F_{3/2}$ [Ga04]; $F_{cal} = -460(46)$ MHz/fm², $MS_{e\mu} = +788(6)$ GHz u calibrated by model independent $R_{e\mu}$ -data of [Wo81].
- $\delta(r^2)$ recalculated with isotopic shifts of Cr I–projected values on 520.8 nm (transition 3d⁵4s $^5S_2 \rightarrow 3d^54p \,^5P_3$) [14], $F_{e\mu} = +244.6(34.5) \,$ MHz/fm², $MS_{e\mu} = -475.4(9.4) \,$ GHz u calibrated via King-plot using $R_{e\mu}$ -data of [15].
- $_{25}$ Mn IS for Mn II at 294.9 nm, transition $3d^54s^5S_2 \rightarrow 3d^54p^5P_3$, $\delta(r^2)$ calculated with $F_{cal} = -572$ MHz/fm², $MS_{cal} = +852$ GHz u [Ch10].
- 26Fe IS for Fe I at 304.76 nm, transition $3d^64s^2$ $^5D_2 \rightarrow 3d^74p$ 5D_3 [Be97]; $\delta\langle r^2\rangle$ recalculated with $F_{e\mu} = -920(114)$ MHz/fm 2 , $MS_{e\mu} = +2992(50)$ GHz u-calibration via King plot using $R_{e\mu}$ data of [15].
- 28Ni IS for Ni I at 361.05 nm, transition 3d⁹4s $^3D_2 \rightarrow 3d^94p$ 3P_2 [St80]; $\delta\langle r^2\rangle$ recalculated with $F_{se}=-767(77)$ MHz/fm 2 ; $MS_{e\mu}=+1228(15)$ GHz u-calibrated via King plot using $R_{e\mu}$ data of [15].
- 30Zn IS for Zn I at 307.6 nm, transition $3d^{10}4s^2^1S_0 \rightarrow 3d^{10}4s4p^3P^1$ [Ca97]; $\delta\langle r^2\rangle$ recalculated with $F_{cal}=-1510(151)$ MHz/fm² [Ca97], $MS_{e\mu}=+1970(29)$ GHz ucalibrated via King plot using $R_{e\mu}$ data of [15].
- $_{36}$ Kr $\delta \langle r^2 \rangle$ as given in [Ke94]; $F_{se} = -608(61)$ MHz/fm², $MS_e = +167(19)$ GHz u determined via King plot using R_e data of [Ma84].
- ₃₇Rb IS for Rb I at D₂-line; $F_{se} = -650(65) \text{ MHz/fm}^2$, $MS_{se} \approx N = +211 \text{ GHz u [Th81]}$.
- 38 Sr IS for Sr II at 407.9 nm, transition 5 s² S_{1/2} → 5p ²P_{3/2}; IS(^{78,79-98,100}Sr) [Bu90]; IS(⁷⁷⁻⁸⁸Sr) [Li92]; IS(⁹⁹Sr) [Li91]; $F_{se} = -1582(49)$ MHz/fm², $MS_{\mu} = +351(44)$ GHz u [Bu90].
- $_{39}$ Y Y II at 363 nm (5s² 1 S₀ \rightarrow 4d5p 1 P₁); $F_{phen} = -3181$ MHz/fm², $MS_{phen} = +1789$ GHz u–King plot vs $\delta \langle r^{2} \rangle$ of neighboring isotones [Ch07].
- $_{40}$ Zr IS($^{91-102}$ Zr II) at nm 327 nm (d2 s 4 F₃ \rightarrow d2 p 4 F₅ transition) [Ca02]; $\delta\langle r^{2}\rangle$ recalculated with $F_{e\mu}=-2190(183)$ MHz/fm², $MS_{e}=+737(202)$ GHz u via King plot versus $R_{e\mu}$ data of [8]; IS($^{87-92}$ Zr II) at 310 nm (d2 s 4 F_{3/2} \rightarrow d2 p 4 D_{3/2} transition) [Fo02], $\delta\langle r^{2}\rangle$ recalculated with $F_{e\mu}(310 \text{ nm})=-1762(119)$ MHz/fm², $MS_{e\mu}=+385(139)$ GHz u via King plot versus $R_{e\mu}$ data of [8].
- 41Nb IS for Nb II at 291 nm (5s $^5F_1 \rightarrow 5p$ 5F_1 transition); $\delta\langle r^2 \rangle$ from [Ch09];, $F_{phen} = -2.43$ GHz/fm², $MS_{phen} = +718$ GHz u using King plot versus $\delta\langle r^2 \rangle$ of neighbouring isotopic chain of Zr.
- 42Mo IS for Mo II at 293 nm (4d⁴5s 6 D_{1/2} \rightarrow 4d⁴5p 6 F_{1/2} transition) [Ch09a]; $\delta \langle r^2 \rangle$ recalculated with $F_\mu = -2.82(2)$ GHz/fm², $MS_\mu = +681(197)$ GHz u from King plot using R_μ of [8].
- IS for Ru I at 437 nm (4d⁶5s² 5D₄ \rightarrow 4d⁷5p ³F₄ transition) [Ki64]; $\delta \langle r^2 \rangle$ recalculated with $F_{e\mu}=-4621(581)$ MHz/fm², $MS_{e\mu}=+2275(766)$ GHz u from King plot versus $R_{e\mu}$ data of [15].
- IS for Pd I at 447.4 nm (4d 9 5s 1 D $_2 \rightarrow 4d^9$ 5p 3 P $_2$ transition) [Kü93]; $\delta \langle r^2 \rangle$ recalculated with $F_{\mu e} = -2775(118)$ MHz/fm 2 , $MS_{\mu e} = +668(146)$ GHz u-calibrated via King plot versus $\Lambda_{\mu e}$ [14].
- $_{47} \text{Ag} \qquad \text{Ag I at 547.7 nm } \\ (4d^9 \overline{\text{Ss}}^2 \ ^2D_{5/2} \rightarrow 4d^{10} \text{Gp }^2P_{3/2}); \\ \delta\langle r^2 \rangle \text{ as given in [Di89], where } \\ F_{\text{se}} = -12070(966) \ \text{MHz/fm}^2, \\ MS_{\text{se}} = +4446(2700) \ \text{GHz u.}$
- 48Cd IS for Cd I for at 326.1 nm ($4^{d10}5s^2$ $^1S_0 \rightarrow 4d^{10}5s^5p$ 3P_1) using projected values from [14] (see references therein); $\delta\langle r^2\rangle$ recalculated with $F_{se}=+3910(460)$ MHz/fm², $MS_{se}=+876(230)$ GHz u (see [5] and references therein).
- 49In IS for In II at 451 nm (5s²5p ²P_{3/2} \rightarrow 5s²6s ²S_{1/2}); $F_{cal} = +2.070(10)$ GHz/fm²; $MS_{phen} = -62(73)$ GHz u calibrated using $\delta \langle r^2 \rangle$ for neighbouring isotones [Eb87].
- 50Sn Sn I at 286.3 nm (5s²5p² 3 P₀ \rightarrow 5s²5p6s 3 P₁); IS($^{110-125}$ Sn) [An86]; IS($^{126-132}$ Sn) [Bl05]; IS(108,109 Sn) at 452 nm [Eb87b] calibrated to 286.3 nm; $F_{se} = +3.30(27)$ MHz/fm² [Ba83]; $MS_{\mu} = -761(200)$ GHz u [Bl05] calibrated using King plot versus R_{μ} data of [Pi90].
- $_{52}$ Te IS for Te II at 214.3 nm $(5p^{43}P_2 \rightarrow 5p^36s^3S_1)$ [Ro09], $F_{\mu} = +3.78(48)$ GHz/fm², $MS_{\mu} = -556(283)$ GHz[16] calibrated via King plot with R_{μ} data of [4].
- 54Xe IS for Xe I at $\lambda = 823.2$ nm (5p⁵6s [3/2]₂ \rightarrow 5p⁵6p [3/2]₂); $\delta \langle r^2 \rangle^{116-146}$ Xe (exceptions 127,133 Te) [Bo89]; IS(127,133 Xe) projected values on 823.2 nm (see [14] and references therein); $F_{se} = -2.32(23)$ GHz/fm², $MS_{se} \approx N = +193(178)$ GHz u [Bo89].
- ⁵⁶Ba IS for Ba I projected values on 553.6 nm (6s^{2 1}S₀ \rightarrow 6s6p ¹P₁ transition) (see [14] and references therein); $\delta(r^2)$ recalculated with $F_{se} = -3929(40)$ MHz/fm², MS_{se} $\approx N = +295$ GHz u [Be79].
- 57La IS for La II at 538.2 nm (6s^{2 1}S₀ → 5d6p ³D₁); $\delta(r^2)$ − recalculated using $F_{se} = -13.15(1.23) \text{ GHz/fm}^2$, $MS_{se} = -4106 \text{ GHz u} \text{combined data from [li03, Fi74]}$.
- $_{58}$ Ce IS for Ce II for 331 nm (5d² J = $7/2 \rightarrow 5$ d6p J = 7/2); $F_{se} = +2031(103) \text{ MHz/fm}^2$, $MS_{se} = -666(504) \text{ GHz u [Ch03]}$.
- $_{62}$ Sm $\delta \langle r^2 \rangle$ recalculated using projected values of IS($^{138-154}$ Sm) for Sm I on 570.7 nm (4 If 6 6s 2 7F₁ \rightarrow 4f 6 6s6p 7 F₀) (see [14] and references therein), $F_{se} = -4199(389)$ MHz/fm 2 , $MS_{se} = -295(13)$ GHz u calculated combining OIS data of [En90, Br80].

- IS for Eu I; $\delta \langle r^2 \rangle$ recalculated using IS($^{137-139}$ Eu) [Ba04] and IS(154 Eu) [Zh84] at 576.5 nm (6s^{2 8}S_{7/2} \rightarrow 6s6p 6 P_{7/2}) with $F_{se} = -6.55$ GHz/fm², $MS_{se} \approx N = +285$ GHz u [Ba04]; IS($^{140-153}$ Eu) at 462.7 nm (4f⁷6s^{2 8}S_{7/2} \rightarrow 4f⁷6s6p 8 P_{7/2}) with $F_{se} = -5.25$ GHz/fm²; $MS_{se} \approx N = +355$ GHz u [Ah85]; IS($^{155-159}$ Eu) at 601.8 nm (6s^{2 8}S_{7/2} \rightarrow 6s6p 8 P_{9/2}) with $F_{se} = -6.57$ GHz/fm², $MS_{se} \approx N = +274$ GHz u [Al90].
- 64Gd IS of Gd I; $\delta\langle r^2 \rangle$ recalculated using IS(¹⁴⁶⁻¹⁶⁰ Gd) projected values on 585.2 nm (5d6s² ⁹D₅ → 5d6s6p ⁹D₅) see [14] and references therein; $F_{se} = -7.08$ GHz/fm², $MS_{se} = +167(139)$ GHz u [Bo87, Al88]; IS(^{145,160}Gd) at 569.6 nm (5d6s² ⁹D₄ → 5d6s6p ⁹D₅), $F_{se} = -7.03$ GHz/fm², $MS_{se} = +162(139)$ GHz u [Ba05, Bo87].
- ₆₅Tb IS for Tb I at 579.6 nm (4f⁹6s² 6 H \rightarrow 4f⁹6s6p H_{17/2}); $F_{se} = -7.83$ GHz/fm², $MS_{se} \approx N = +283.7$ GHz u [Al90b].
- Data for radioactive isotopes are not published; $\delta \langle r^2 \rangle$ recalculated using λ as given by [5]; IS for Dy I at 421 nm (D₁-line) $F_{se} = -7.26$ GHz/fm², $MS_{se} \approx N = +390$ GHz u[5] (see also the references therein); in this case the uncertainties include statistical and systematic errors.
- 67Ho IS for Ho I at 592.2 nm (4f¹¹6s² 4 I_{15/2} \rightarrow 4f¹¹6s6p (15/2, 1)_{15/2} transition), $F_{se} = -8.41 \text{ GHz/fm}^2$, $MS_{se} \approx N = +278 \text{ GHz u [Al89]}$; IS(151Ho) not published; the $\lambda^{165,151}$ given in [5] was used.
- 68 Er IS for Er I projected values on 582.7 nm $(4f^{12}6s^2)^3H_6 \rightarrow [4f^{12}6s6p(^3P_1)]_7$) (see [14] and references therein); $\delta\langle r^2\rangle$ recalculated with $F_{se}=-8.08$ GHz/fm², $MS_{se}\approx N=+282$ GHz u (preliminary values of [5, Ne84]).
- 69Tm IS for Tm I at 597.13 nm (4f¹³6s² $^2F_{7/2} \rightarrow 4$ f¹³6s6p_{7/2}); IS(^{153,154}Tm) [Ba00]; IS(¹⁵⁶Tm) [Al87]; IS(¹⁵⁷⁻¹⁷²Tm) [Al88b] nm; $\delta \langle r^2 \rangle$ recalculated with $F_{se} = -10.3$ GHz/fm², $MS_{se} \approx N = +275$ GHz u [Al88b].
- 70 Yb I; $\delta \langle r^2 \rangle$ recalculated using IS(152-176Yb) projected values on 555.6 nm (4f¹⁴6s² ¹S₀ \rightarrow 4f¹⁴6s6p ³P₁) (see [14] and references therein) with $F_{se} = -11.5 \text{ GHz/fm}^2$, $M_{Se} = +4581(1531) \text{ GHz}$ u from combined optical, muonic and electronic K_x data analysis of [Cl79].
- 71Lu IS for Lu I at 451.9 nm $(5d6s^2 {}^2D_3 \rightarrow 5d6s6p {}^2D_3)$ [Ge98]; $\delta \langle r^2 \rangle$ recalculated relative 175 Lu with $F_{se} = -11.2$ GHz/fm², $MS_{se} \approx N = +362$ GHz u from [Ge98] with HM correction as given in [14].
- 72Hf Hf II; $\delta \langle r^2 \rangle^{170-175,176-182}$ recalculated using IS projected values on 301.3 nm (5d6s² 2 D_{3/2} \rightarrow 5d6s6p 2 D_{5/2}) (see [14] and references therein) with $F_{SE} = -22.1(4) \text{ GHz/fm}^2$, $MS_{SE} = +298(503) \text{ GHz}$ u using analisys of [Zi94, Le99]; IS (171 Hf) at 301.3 nm from [Ye00]; $\delta \langle r^2 \rangle^{174,175}$ from [Ji97].
- 74 W $\delta \langle r^2 \rangle$ mean value of four optical transition of W I; reference transition 543.5 nm (5d⁴6s² 5 D₁ → 5d⁴6s6p 7 F₁); $F_{se} = +19.85$ GHz/fm², $MS_{se} \approx N = +303(152)$ GHz u [Ji94].
- $_{75}$ Re $\lambda^{187,185}$ from [Kr86] additionally corrected for HM.
- $_{76}$ Os $\lambda^{A'A}$ of [Au87] (see also the references therein) corrected for HM.
- $_{77} Ir \qquad \text{IS for Ir I at 351.5 nm } (5d^76s^2 \ ^4F_9 \rightarrow 5d^76s6p \ ^6F_{11/2}); \\ \delta \langle r^2 \rangle \ \text{from [Ve06]; } \\ F_{se} = -30.94 \ \text{GHz/fm}^2, \\ MS_{se} \approx N = +468(234) \ \text{GHz u.}$
- $_{78}$ Pt IS($^{183-198}$ Pt) for Pt I at 265.57 nm (5d 9 6s 3 D₃ \rightarrow 5d 9 6p 7₄) [Hi92], $F_{se} = -20.78$ GHz/fm 2 , $MS_{se} = +798$ GHz u; IS($^{178-185}$ Pt) for Pt I at 306.5 nm (5d 9 6s 3 D₃ -5d 9 6p 3 P₂), [Bl00, Sa00], $F_{se} = -18.5$ (10) GHz/fm 2 , $MS_{se} = +764$ GHz u via King plot for stable Pt isotopes using [Ne87].
- $_{79}$ Au IS for Au I, projected values on 267.6 nm (5d 10 6s 2 S $_{1/2}$ → 5d 10 6p 2 P $_{1/2}$) [14] (see also references therein) for $^{184-189}$ Au; 183 Au at 267.6 nm [Kr88]; $F_{cal} = -43.07$ GHz/fm 2 , $MS_{se} = +799(553)$ GHz u [Wa87, Pa94].
- $_{80}$ Hg IS($^{181-204}$ Hg) for Hg I projected values on 253.65 nm (5d 10 6s² 3 S $_{0} \rightarrow 5d^{10}$ 6s6p 3 P $_{1}$) (see [14] and references therein); IS(205,206 Hg) [Ul86]; $\delta \langle r^{2} \rangle$ recalculated with $F_{cal} = -55.36$ GHz/fm² [To85], $MS_{se} \approx N = +648(324)$ GHz u. IS($^{190-207}$ Hg) projected values on 535 nm (6s²6p 2 P $_{3/2} \rightarrow 6s^{2}$ 7s 2 S $_{1/2}$) [14] (see also references therein).
- 81Tl IS(188Tl) for Tl I at 535 nm (6s²6p ²P_{3/2} 6s²7s ²S_{1/2}) from [Me92]; $\delta \langle r^2 \rangle$ recalculated with $F_{cal} = +18.94$ GHz/fm² [Me92], $MS_{se} \approx +399(83)$ GHz u; $\delta \langle r^2 \rangle^{207,208}$ [La92] recalculated relative ²⁰⁵Tl using IS (^{205,207}Tl) at 535 nm [Ne85].
- 82Pb IS for Pb I on 283.3 nm (6s²6p²3P₀ \rightarrow 6s²6p7s³P₁); IS (196-214Pb) [An86b]; IS (182-189Pb) [Wi07, Se09]; IS (190-195Pb) projected values on 283.3 nm [14], $F_{eu} = +20.26(18) \text{ GHz/fm}^2 [\text{An86b}], MS_{cal} = +0.19(25) \cdot N = +110(145) \text{ GHz u [Ki85]}.$
- IS for Bi I at 306.7 nm (6s²6p³ 4S_{3/2} \rightarrow 6s²6p²7s 4P_{1/2}) [Pe00]; $\delta\langle r^2 \rangle$ estimated using experimental value of $\delta\langle r^2(\text{Pb}) \rangle^{208,206} = -0.119 \text{ fm}^2 \approx \langle r^2(\text{Bi}) \rangle^{209,207}$ with an adopted uncertainty of 0.020 fm²; Fest = -25.4(4.3) GHz/fm² and MS_{se} $\approx N = +536 \text{ GHz}$ u.
- $_{84}$ Po Po I at $\lambda=843.38$ nm (6p³7s $^5\text{S}_2\rightarrow6\text{p}^3\text{7p}$ $^5\text{P}_2)$ even isotopes [Co11]; IS(odd isotopes) [Ko91] projected values on 843.38 nm; $F_{cal}=-12.786$ GHz/fm²; $MS_{cal}=-116$ GHz u [Co10].
- $_{86}$ Rn IS for Rn I at 745 nm, $7s[3/2]_2 \rightarrow 7p[5/2]_3$ transition (see Fig. 3 [Bo87b]), $\delta\langle r^2 \rangle$ recalculated using $F_{se} = -22.1$ GHz/fm²[5], $MS_{se} \approx N = +221$ GHz u.
- $_{87}$ Fr IS for Fr I at 717.97 nm, D₂-line [Co85]; $\delta(r^2)$ recalculated in [Co87] with $F_{se}=-24.10$ GHz/fm 2 , $MS_{se}\approx N=+229$ GHz u.
- $_{88}$ Ra IS for Ra I at 482.6 nm, $7s^2 ^1S_0 \rightarrow 7s7p^1$ P_1 transition; $\delta \langle r^2 \rangle$ as given by [Ah88]; $F_{se} = -35.27$ GHz/fm, $MS_{se} \approx N = +341$ GHz u (see [We87, Ah88]).
- $_{90}$ Th IS for Th II at 583.89 nm (6d²7s 4 F_{3/2} → 5f6d²); $δ(r^2)$ as given by [Kä89] with statistical errors only, $F_{phen} = -81.3(11.2)$ GHz/fm², calibrated using $λ^{232,230} = 0.189(26)$ fm² (see [Au87] and references therein), $MS_{se} ≈ N = +282$ GHz u.
- $\text{IS for UI at 591.5 nm } (6d7s^2\,^5\text{L}_0 \rightarrow 6d7s7p\,^7\text{M}_7) \, [\text{An92}]; \\ F_{phen} = -33.6(7.4) \, \text{GHz/fm}^2, \\ \text{calibrated using } \lambda^{238.236} = -0.151(34) \, \text{fm}^2 \, (\text{see [Au87] and references therein}), \\ MS_{se} \approx N = +278 \, \text{GHz u.}$
- IS for Pu I at 420.64 nm ($f^6s^2 \rightarrow f^6sp$) [Ge87]; $\delta\langle r^2\rangle$ recalculated assuming $MS_{se} \approx N = +391$ GHz u, F = -42.4(3.6) GHz/fm² obtained by one parameter fit to model dependent muonic radii of 239,240,242 Pu of [Zu86] (see also [14]).
- $_{95} Am~~\lambda^{243,241} = -0.128(7)$ [Ba98] (see references therein) corrected for HM.
- $_{96}$ Cm $\lambda^{244,A}$ from [Au87] (see references therein) corrected for HM.

References for Table 2 (for radii changes from OIS).

- [Ki64] W.H. King, Isotope shifts in the arc spectrum of ruthenium, Proc. Roy. Soc. London 280 (1964) 430.
- [Fi74] W. Fischer, H. Hühnermann, K. Mandrek, Isotope shift measurements in the atomic spectrum of lanthanum, Z. Phys. 269 (1974) 245.
- [He74] K. Heilig, A.Steudel, At. Data Nucl. Data Tables 14 (1974) 613.
- [Be79] K. Bekk, A. Andle, S. Göring, A. Hansel, G. Nowicki, H. Rebel, G. Schatz, Laserspectroscopic study of collective properties of neutron deficient Ba nuclei, Z. Phys. A 291 (1979) 219.
- [Cl79] D.L. Clark, M.E. Cage, D.A. Lewis, G.W. Greenlees, Optical isotope shifts and hyperfine splittings for Yb, Phys. Rev. 20 (1979) 239.
- [Br80] H. Brand, B. Seibert, A. Steudel, Laser-atomic-beam spectroscopy in Sm: isotope shifts and changes in mean-square charge radii, Z. Phys. A 296 (1980) 281
- [St80] A. Steudel, U. Triebe and D. Wendtlandt, Isotope shift in Ni I and changes in mean square nuclear charge radii of stable Ni isotopes, Z. Phys. A 296 (1980) 189.
- [Wo81] H.D. Wohlfahrt, E.B. Shera, M.V. Hoehn, Y. Yamazaki, R.M. Steffen, *Nuclear charge distributions in* $^{1}f_{7/2}$ -shell nuclei from muonic X-ray measurements, Phys. Rev. C 23 (1981) 523.
- [Th81] C. Thibault, F. Touchard, S. Büttgenbach, R. Klapisch, M. de Saint Simon, H.T. Duong, P. Jaquinot, P. Juncar, S. Liberman, P. Pillet, J. Pinard, J.L. Vialle, A. Pesnelle, G. Hube, Hyperfine structure and isotope shift of the D₂ line of 76-98 Rb and some their isomers, Phys. Rev. C 23 (1981) 2720.
- [Th81b] C. Thibault, F. Touchard, S. Büttgenbach, R. Klapisch, M. de Saint Simon, H.T. Duong, P. Jaquinot, P. Juncar, S. Liberman, P. Pillet, J. Pinard, J. L. Vialle, A. Pesnelle, G. Huber, Hyperfine structure and isotope shift of the D₂ line of ¹¹⁸⁻¹⁴⁵Cs and some their isomers, Nuclear Phys. A 367 (1981) 1.
- [Hu82] G. Huber, F. Touchard, S. Buettgenbach, C. Thibault, R. Klapisch, H.T. Duong, S. Liberman, J. Pinard, J.L. Vialle, P. Juncar, P. Jacquinot, Spin, magnetic moments and isotope shifts of 21-31 Na by high resolution laser spectroscopy of the atomic D₁ line, Phys. Rev. C 18 (1978) 2342.
- [To82] F. Touchard, P. Guimbal, S. Büttgenbach, R. Klapisch, M. de Saint Simon, C. Thibault, H.T. Duong, P. Juncar, S. Lieberman, J. Pinard, J.L. Vialle, *Isotope shifts and hyperfine structure of* ^{37–48}K *by laser spectroscopy*, Phys. Lett. B 108 (1982) 169.
- [Ba83] P. E.G. Baird, S.A. Blundell, G. Burrows, C. J. Foot, G. Meiselt, D.N. Stacey, G. K. Woodgate, Laser spectroscopy of the tin isotopes, J. Phys. B: At. Mol. Phys. 16 (1983) 2485.
- [Ma84] G.K. Mallot: Ph.D.Thesis, Univ. Mainz (1984).
- [Ne84] R. Neugart, private communication.
- [Pa84] C.W.P. Palmer, P.E.G. Baird, S.A. Blundell, J.R. Brandenberger, C.J. Foot, D.N. Stacey, G.W. Woodgate, *Laser spectroscopy of calcium isotopes*, J. Phys. B: At. Mol. Phys. 17 (1984) 2197.
- [Zh84] A.N. Zherikhin, O.N. Kompanets, V.S. Letokhov, I.V. Mishin, V.N. Fedoseev, G.D. Alkhasov, A.E. Barzakh, E.E. Berlovich, V.P. Denissov, A.G. Dernatian, V.S. Ivanov, *High-resolution laser photoionization spectroscopy of radioactive europium isotopes*, Zh. Eksp. Teor. Fiz. 86 (1984) 1249.
- [Ah85] S.A. Ahmad, W. Klempt, C. Eksröm, R. Neugart, K. Wendt, *Nuclear spins, moments and changes of the mean square radii of* ^{140–153}Eu, Z. Phys. A 321 (1985) 35.
- [Bl85] S.A. Blundell, P.E.G. Baird, C.W.P. Palmer, D.N. Stacey, G.K. Woodgate, D. Zimmermann: A Re-Evaluation of Isotope Shift Constants, Z. Physik A Atoms and Nuclei 321 (1985) 31.
- [Co85] A.Coc, C. Thibault, F. Touchard, H.T. Duong, P. Juncar, S. Liberman, J. Pinard, J. Lerme, J.L. Vialle, S. Büttgenbach, A.C. Mueller, A. Pesnelle and the ISOLDE Collaboration, *Hyperfine structure and isotope shifts of* 207-213,220-228 Fr; possible evidence of octupole deformation, Phys. Lett. 163B (1985) 66.
- [Ki85] W.H. King, M. Wilson, Isotope shifts in lead: mass shifts and the odd-even effect, J. of Phys. G 11 (1985) L43.
- [Ne85] R. Neugart, H.H. Stroke, S.A. Ahmad, H.T. Duong, H.L. Ravn, K. Wendt, Nuclear magnetic moment of ²⁰⁷Tl, Phys. Rev. Lett. 55 (1985) 1559.
- [To85] G. Torbohm, G. Fricke, A. Rosén, State dependent volume isotope shifts of low lying states of group IIa and IIb elements, Phys. Rev. A 31 (1985) 2038.
- [An86] M. Anselment, K. Bekk, A. Hanser, H. Hoeffgen, G. Meisel, S. Göring, H. Rebel, G. Schatz, Charge radii and moments of tin nuclei by laser spectroscopy, Phys. Rev. C 34 (1986) 1052.
- [An86b] M. Anselment, W. Faubel, S. Göring, A. Hansen, G. Meisel, H. Rebel, G. Schatz, The odd-even staggering of the nuclear charge radii of Pb isotopes, Nuclear Phys. A 451 (1986) 471.
- [Kr86] J.-R. Kropp, H.-D. Kronfeldt, A. Lucas, R. Winkler, *Isotope shift and hyperfine-structure analysis in the* Re I *configurations* (5d + 6s) 66p, Physica B + C 138 (1986) 335.
- [Ul86] G. Ulm, S.K. Bhattacherjee, P. Dabkewicz, G. Huber, H.-J. Kluge, T. Kühl, H. Lochmann, E.-W. Otten, K. Wendt, A.A. Ahmad, W. Klempt, R. Neugart and the ISOLDE Collaboration, Isotope shift of ¹⁸²Hg and update of nuclear moments and charge radii in the isotope range ¹⁸¹Hg-²⁰⁶Hg, Z. Phys. A 325 (1986) 247.
- [Zu86] J.D. Zumbro, R.A. Naumann, M.V. Hoehn W. Reuter, E. B. Shera, C. E. Bemis, Jr., Y. Tanaka, E2 and E4 deformations in ²³²Th and ^{239,240,242}Pu, Phys. Lett. B 167 (1986) 383.
- [Al87] G.D. Alkhazov, A.E. Barzakh., V.N. Buyanov, V.P. Denisov, V.S. Ivanov, V.S. Letokhov, V.I. Mishin, S.K. Sekatsky, V.N. Fedoseyev, I.Y. Chubukov, Studies of nuclear charge radii and electromagnetic moments of radioactive Nd, Sm, Eu, Ho, Tm isotopes by laser resonance atomic photoionization technique, Preprint 1309. INP of the Acad. Sci. USSR, Leningrad, 1987.
- [Au87] P. Aufmuth, K. Heilig, A. Steudel, Mean-square nuclear charge radii from optical isotope shifts, At. Data Nucl. Data Tables 87 (1987) 455.
- [Bo87] S. K. Borisov, Yu.P. Gangrsky, C. Hradecny, S.G. Zemlyanoi, B.B. Krynetsky, K.P. Marinova, B.N. Markov, V.A. Mishin, Yu.Ts. Oganessian, O.M. Stel'makh, Hoang Thi Kim Hue, Tran Cong Tam, Measurements of the charge radii changes of Nd, Sm and Gd nuclides by resonance laser light, Sov. Phys. JETP 66 (1987) 882.
- [Bo87b] W. Borchers, R. Neugart, E.W. Otten, H.T. Duong, G. Ulm, K. Wendt, Hyperfine structure and isotope shifts investigations in ^{202–222}Rn for the study of nuclear structure beyond Z = 82, Hyperfine Interact. 34 (1987) 25.
- [Co87] A.Coc, C. Thibault, F. Touchard, H.T. Duong, P. Juncar, S. Liberman, J. Pinard, M. Carre, J. Lerme, J. L. Vialle, S. Büttgenbach, A.C. Mueller, A. Pesnelle, Isotope shift, spin and hyperfine structure of 118,146 Cs and some francium isotopes, Nuclear Phys. A 468 (1987) 1.
- [Eb87] J. Eberz, U. Dinger, G. Huber, H. Lochmann, R. Menges, R. Neugart, R. Kirchner, O. Klepper, T.U. Kühl, D. Marx, G. Ulm, K. Wendt, Spins, moments abd mean square charge radii of 104-127 In determined by laser spectroscopy, Nuclear Phys. A 464 (1987) 9.
- [Eb87b] J. Eberz, U. Dinger, G. Huber, H. Lochmann, R. Menges, G. G. Ulm, R. Kirchner, O. Klepper, T.U. Kiihl, D. Marx, Nuclear spins, moments and charge radii of ^{108–111}Sn, Z. Phys. A 326 (1987) 121.
- [Ge87] S. Gesternkorn, F. Tomkins, Evaluation de l'effet spécifique de masse dans le spectre d'arc du plutonium, Phys. Scr. 36 (1987) 240.
- [Ne87] W. Neu, G. Passler, G. Sawatzky, R. Winkler, H.-J. Kluge, Isotope shift and hyperfine structure of stable platinum isotopes, Z. Phys. D 7 (1987) 193.
- [Wa87] K. Walmeroth, G. Bollen, A. Dohn, P. Egelhof, J. Grüner, F. Lindenlauf, U. Krönert, J. Campos, A. Rodriguez Yunta, M.J.G. Borge, A. Venugopalan, J.L. Wood, R. B. Moor, H.-J. Kluge, Sudden change in the nuclear charge distribution of very light gold isotopes, Phys. Rev. Lett. 58 (1987) 1516.
- [We87] K. Wendt, S.A. Ahmad, W. Klempt, R. Neugart, E.W. Otten, H.H. Stroke, On the hyperfine structure and isotope shift of radium, Z. Phys. D 4 (1987) 227.

- [Ah88] S.A. Ahmad, W. Klempt, R. Neugart, E.W. Otten, P.-G. Reinhard, G. Ulm, K. Wendt, Mean square charge radii of radium isotopes and octupole deformation in the 220-228 Ra region, Nuclear Phys. A 483 (1988) 224.
- [Al88] G.D. Alkhasov, A.E. Barzakh, V.P. Denisov, V.S. Ivanov, I.Y. Chubukov, N.B. Buyanov, V.S. Letokhov, V.I. Mishin, S.K. Sekatskii, V.N. Fedoseev, Isotopic changes of gadolinium nuclei charge radii and magic nucleus charge radius ¹⁴⁶Gd, Akad. Nauk USSR, Leningrad Inst. Yad. Fis., preprint No 1417, 20 pages (1988); (in Russian); Mean square charge radius of the magic nucleus ¹⁴⁶Gd. Zh. Eksp. Theor. Fiz. 48 (1988) 373.
- [Al88b] G.D. Alkhazov, A.E. Barzakh, I.Y. Chubukov, V.P. Denisov, V.S. Ivanov, V.N. Panteleev, V.E. Starodubsky, N.B. Buyanov, M.N. Fedoseyev, V.S. Letokhov, V.I. Mishin, S.K. Sekatskli, *Nuclear electromagnetic moments and charge radii of deformed thulium isotopes with the mass numbers A* = 157–172, Nuclear Phys. A 477 (1988) 37.
- [Kr88] U. Krönert, S. Becker, G. Bollen, M. Gerber, T. Hilberath, H.-J. Kluge, G. Passler and the ISOLDE Collaboration, Observation of strongly deformed ground state configuration in ¹⁸⁴Au and ¹⁸³Au by laser spectroscopy, Z. Phys. A 331 (1988) 521.
- [Al89] G.D. Alkhazov, A.E. Barzakh, I.Y. Chubukov, V.P. Denisov, V.S. Ivanov, N.B. Buyanov, Nuclear deformation of holmium isotopes, Nuclear Phys. A 504 (1989) 549.
- [Bo89] W. Borchers, E. Arnold, W. Neu, R. Neugart, K. Wendt, G. Ulm and ISOLDE Collaboration, Xenon isotopes far from stability studied by collisional ionization laser spectroscopy, Phys. Lett. B 216 (1989) 7.
- [Di89] U. Dinger, J. Eberz, G. Huber, R. Menges, R. Kirchner, O. Klepper, T. Kühl, D. Marx, Nuclear moments and change in the charge radii of neutron-deficient silver isotopes, Nuclear Phys. A 503 (1989) 331.
- [Kä89] W. Kälber, J. Ring, W. Faubel. S. Göring, G. Meisel, H. Rebel, R.C. Thompson, *Nuclear radii of thorium isotopes from laser spectroscopy*, Z. Physics A334, (1989) 103.
- [Ot89] E.W. Otten, Nuclear radii and moments of unstable isotopes. in Treatise on heavy-ion science, D.A. Bromley, Editor. 1989. p. 517-638.
- [Al90] G.D. Alkhazov, A.E. Barzakh, V.A. Bolshakov, V.P. Denisov, V.S. Ivanov, Y.Y. Sergeyev, I.Y. Chubukov, V.I. Tikhonov, V.S. Letokhov, V.I. Mishin, S.K. Sekatsky, V.N. Fedoseyev, Odd–even staggering in nuclear charge radii of neutron-rich europium isotopes, Z. Phys. A 337 (1990) 257.
- [Al90b] G.D. Alkhazov, A.E. Barzakh, V.P. Denisov, V.S. Ivanov, I.Y. Chubukov, V.S. Letokhov, V.I. Mishin, S.K. Sekatsky, V.N. Fedoseyev, Electromagnetic moments and nuclear charge radii for neutron-deficient Tb isotopes and the deformation jump near Z = 64, N = 90, Z. Phys. A 337 (1990) 367.
- [Bu90] F. Buchinger, E.B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R.E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Fleming, D.W.L. Sprung, G. Ulm, Systematics of nuclear ground state properties in 78–100 Sr by laser spectroscopy, Phys. Rev. C 41 (1990) 2883.
- [En90] J.G. Englandt, I.S. Grant, J.A.R. Griffith, D.E. Evans, D.A. Eastham, G.W.A. Newton, P.M. Walker, *Isotope shifts and hyperfine splittings in* 144–151 Sm I, J. Phys. G 16 (1990) 105
- [Pi90] C. Piller, C. Gugler, R. Jacot-Guillarmod, L.A. Schaller, L. Schellenberg, H. Schneuwly, G. Fricke. T. Hennemamm, J. Herzberz, Nuclear charge radii of the tin isotopes from muonic atoms, Phys. Rev. C 42 (1990) 182.
- [Ko91] D. Kowalewska, K. Bekk, S. Göring, A. Hanser, W. Kälber, G. Meisel, H. Rebel, *Isotope shifts and hyperfine structure in polonium isotopes by atomic-beam laser spectroscopy*, Phys. Rev. A 44 (1991) R1442.
- [Li91] P. Lievens, R.E. Silverans, L. Vermeeren, W. Borchers, W. Neu, R. Neugart, K. Wendt, F. Buchinger, E. Arnold and ISOLDE. Collaboration, Nuclear ground state properties of ⁹⁹Sr by collinear laser spectroscopy with non-optical detection, Phys. Lett. B 256 (1991)141.
- [An92] A. Anastasov, Yu.P. Gangrsky, K.P. Marinova, B.N. Markov and S.G. Zemlyanoi, *Nuclear charge radii changes of uranium and hafnium isotopes determined by laser spectroscopy*, Hyperfine Interact. 74 (1992) 31.
- [Hi92] T. Hilberath, S. Becker, G. Bollen, H.-J. Kluge, U. Krönert, G. Passler, J. Rikovska, R. Wyss and ISOLDE Collaboration, *Ground-state properties of neutron-deficient platinum isotopes*, Z. Phys. A 342 (1992) 1.
- [La92] W. Lauth, H. Backe, M. Dahlinger, I. Klaft, P. Schwamb, G. Schwickert, N. Trautmann, U. Othmer, Resonance ionization spectroscopy in a buffer gas cell with radioactive decay detection, demonstrated using ²⁰⁸Tl, Phys. Rev. Lett. 68 (1992) 1675.
- [Le92] V.S. Letokhov, V.I. Mishin, S.K. Sekatsky, V.N. Fedoseyev, G.D. Alkhazov, A.E. Barzakh, V.P. Denisov, V.E. Starodubsky, Laser spectroscopic studies of nuclei with neutron number N < 82 (Eu, Sm and Nd isotopes), J. Phys. G 18 (1992) 1177.
- [Li92] P. Lievens, L. Vermeeren, R.E. Silverans, E. Arnold, R. Neugart, K. Wendt, F. Buchinger, *Spin, moments, and mean square nuclear charge radius of* 77-88 Sr, Phys. Rev. C 46 (1992) 797.
- [Må92] A.-M. Mårtensson-Pendrill, A. Ynnerman, H. Warston, L. Vermeeren, R.E. Silverans, A. Klein, R. Neugart, C. Schulz, P. Lievens, *Isotope shifts and nuclear-charge radii in singly ionized* 40-48 Ca, Phys. Rev. A 45 (1992) 4675.
- [Me92] R. Menges, U. Dinger, N. Boos, G. Huber, S. Schröder, S. Dutta, R. Kirchner, O. Klepper, T. Kühl, D. Marx, G.D. Sprouse, Nuclear moments and the change in the mean square charge radius of neutron deficient thallium isotopes, Z. Phys. A 341 (1992) 475.
- [Ve92] L. Vermeeren, R.E. Silverans, P. Lievens, A. Klein, R. Neugart, C. Schulz, F. Buchinger, Ultrasensitive radioactive detection of collinear-laser optical pumping: Measurement of the nuclear charge radius of 50 Ca, Phys. Rev. Lett. 68 (1992) 1679.
- [Kü93] E. Kümmel, M. Baumann, C.S. Kischkel, Hyperfine structure and isotope shift in the4d⁹5sconfiguration of Pd I, Z. Phys. D 25 (1993) 161.
- [Ji94] W.G. Jin, M. Wakasugi, T.T. Inamura, T. Murayama, T. Wakui, H. Katsuragawa, T. Ariga, T. Ishizuka, M. Koizumi, I. Sugai, *Isotope shifts and hyperfine structure in Lul and WI*, Phys. Rev. A 49 (1994) 762.
- [Ke94] M. Keim, E. Arnold, W. Borchers, U. Georg, A. Klein, R. Neugart, L. Vermeeren, R.E. Silverans, P. Lievens, Laser-spectroscopy measurements of ^{72–96}Kr spins, moments and charge radii, Nuclear Phys. A 586 (1994) 219.
- [Pa94] G. Passler, J. Rikovska, E. Arnold, H.-J. Kluge, L. Monz, R. Neugart, H. Ravn, K. Wendt and ISOLDE Collaboration, Quadrupole moments and nuclear shape of neutron-deficient gold isotopes, Nuclear Phys. A580 (1994) 173.
- [Zi94] D. Zimmermann, P. Baumann, D. Kuszner, A. Werner, *Isotope shift and hyperfine structure in atomic spectrum of hafnium by laser spectroscopy*, Phys. Rev. A 50 (1994) 1112.
- [Kl96] A. Klein, B.A. Brown, U. Georg, M. Keim, P. Lievens, R. Neugart, M. Neuroth, R.E. Silverans, L. Vermeeren, and ISOLDE Collaboration, *Moments and mean square charge radii of short-lived argon isotopes*, Nuclear Phys. A 607 (1996) 1.
- [Ve96] L.Vermeeren, P. Lievens, R.E. Silverans, U. Georg, M. Keim, A. Klein, R. Neugart, M. Neuroth, F. Buchinger, and ISOLDE Collaboration, *The mean square nuclear charge radius of* ³⁹Ca, J. Phys. G 22 (1996) 1517.
- [Be97] D. M. Bentony, E.C.A. Cochrane, J.A.R Griffith, Optical isotope shifts in the iron atom, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 5359
- [Ca97] P. Campbell, J. Billowes I. S. Grant, The specific mass shift of the zinc atomic ground state, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 2351.
- [Ji97] W. G. Jin, M. Wakasugi, M. G. Hies, T. T. Inamura, T. Murayama, T. Ariga, A. Yamashita, T. Wakui, H. Katsuragawa, T. Ishizuka, J. Z. Ruan, I. Sugai, Nuclear moments and charge radius of 175 Hf from optical measurement of hyperfine structure, Phys. Rev. C 55 (1997) 1545.
- [Ba98] H. Backe, M. Hies, H. Kunz, W. Lauth, O. Curtze, P. Schwamb, M. Sewtz, W. Theobald, R. Zahn, K. Eberhardt, N. Trautmann, D. Habs, R. Repnow, B. Fricke, Isotope Shift Measurements for Superdeformed Fission Isomeric States, Phys. Rev. Lett. 80 (1998) 920.
- [Ge98] U. Georg, W. Borchers, M. Keim, A. Klein, P. Lievens, R. Neugart, M. Neuroth, P.M. Rao, C. Schulz and ISOLDE Collaboration, Laser spectroscopy investigation of the nuclear moments and radii of lutetium isotopes, Eur. Phys. J. A 3 (1998) 225.

- [Le99] J. M. G. Levins, D. M. Benton, J. Billowes, P. Campbell, T. G. Cooper, P. Dendooven, D. E. Evans, D. H. Forest, I. S. Grant, J. A. R. Griffith, J. Huikari, A. Jokinen, K. Peräjärvi, G. Tungate, G. Yeandle, J. Äystö, First On-Line Laser Spectroscopy of Radioisotopes of a Refractory Element, Phys. Rev. Lett. 82 (1999) 2476.
- [Ba00] A. E. Barzakh, I. Ya. Chubukov, D. V. Fedorov, V. N. Panteleev, M. D. Seliverstov, Yu. M. Volkov, *Mean square charge radii of the neutron-deficient rare-earth isotopes in the region of the nuclear shell N* = 82 measured by the laser ion source spectroscopy technique, Phys. Rev. C 61 (2000) 034304.
- [Bl00] F. Le Blanc, The COMPLIS experiment on neutron-deficient Au, Pt and Ir isotopes, Hyperfine Interact. 127 (2000) 71.
- [Pe00] M.R. Pearson, P. Campbell, K. Leerungnavarat, J. Billowes, I.S. Grant, M. Keim, J. Kilgallon, I.D. Moore, R. Neugart, M. Neuroth, S. Wilbert and ISOLDE Collaboration, Nuclear moments and charge radii of bismuth isotopes, J. Phys. G 26 (2000) 1829.
- [Sa00] J. Sauvage, N. Boos, L. Cabaret, J.E. Crawford, H.T. Duong, J. Genevey, M. Girod, G. Huber, F. Ibrahim, M. Krieg, F.L. Blanc, J.K.P. Lee, J. Libert, D. Lunney, J. Obert, J. Oms, S. Péru, J. Pinard, J.C. Putaux, B. Roussière, V. Sebastian, D. Verney, S. Zemlyanoi, J. Arianer, N. Barré, M. Ducourtieux, D. Forkel-Wirth, G.L. Scornet, J. Lettry, C. Richard-Serre, C. Véron. COMPLIS experiments: Collaboration for spectroscopy, Measurements using a Pulsed Laser Ion Source, Hyperfine Interact. 129 (2000) 303.
- [Ye00] G. Yeandle, J. Billowes, P. Campbell, E.C.A. Cochrane, P. Dendooven, D.E. Evans, J.A.R. Griffith, J. Huikari, A. Jokinen, I.D. Moore, A. Nieminen, K. Peräjärvi, G. Tungate, J. Äystö, Nuclear moments and charge radii of the ¹⁷¹Hf ground state and isomer, J. Phys. G 26 (2000) 839.
- [Ca02] P. Campbell, H.L. Thayer, J. Billowes, P. Dendooven, K.T. Flanagan, D.H. Forest, J.A.R. Griffith, J. Huikari, A. Jokinen, R. Moore, A. Nieminen, G. Tungate, S. Zemlyanoi, J. Äystö, Laser Spectroscopy of Cooled Zirconium Fission Fragments, Phys. Rev. Lett. 89 (2002) 082501.
- [Fo02] D.H. Forest, J. Billowes, P. Campbell, P. Dendooven, K.T. Flanagan, J.A.R. Griffith, J. Huikari, A. Jokinen, R. Moore, A. Nieminen, H.L. Thayer, G. Tungate, S. Zemlyanoi, J. Äystö, Laser spectroscopy of neutron deficient zirconium isotopes, J. Phys. G 28 (2002) L63.
- [Ch03] B. Cheal, M. Avgoulea, J. Billowes, P. Campbell, K.T. Flanagan, D.H. Forest, M. D. Gardner, J. Huikari, B.A. Marsh, A. Nieminen, H.L. Thayer, G. Tungate, J. Äystö, Collinear laser spectroscopy of neutron-rich cerium isotopes near the N = 88 shape transition, J. Phys. G 29 (2003) 2479.
- [Ii03] H. limura, M. Koizumi, M. Miyabe, M. Oba, T. Shibata, N. Shinohara, Y. Ishida, T. Horiguchi, H. A. Schuessler, Nuclear moments and isotope shifts of ¹³⁵La, ¹³⁷La, and ¹³⁸La by collinear laser spectroscopy, Phys. Rev. C 68 (2003) 054328.
- [Ba04] A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov, Changes in the mean square charge radii of neutron-deficient europium isotopes measured by the laser ion source resonance ionization spectroscopy, Eur. Phys. J. A 22 (2004) 69.
- [Dr04] G.W.F. Drake, Helium. Relativity and QFD, Nuclear Phys. A 737 (2004) 25.
- [Ew04] G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, T. Kühl, R. Sanchez, A. Wojtaszek, B.A. Bushaw, G.W.F. Drake, Z.-C. Yan, C. Zimmerman, Nuclear Charge Radii of ^{8,9}Li Determined by Laser Spectroscopy, Phys. Rev. Lett. 93 (2004) 113002.
- [Ga04] Yu.P. Gangrsky, K.P. Marinova, S.G. Zemlyanoi, I.D. Moore, J. Billowes, P. Campbell, K.T. Flanagan, D.H. Forest, J.A.R. Griffith, J. Huikari, R. Moore, A. Nieminen, H. Thayer, G. Tungate, J. Äystö, *Nuclear charge radii of neutron deficient titanium isotopes* ⁴⁴Ti *and* ⁴⁵Ti, J.Phys. G 30 (2004) 1089.
- [Mu04] P. Mueller, I. A. Sulai, A.C.C. Villari, J.A. Alcántara-Nuñez, R. Alves-Condé, K. Bailey, G.W. F. Drake, M. Dubois, C. Eléon, G. Gaubert, R. J. Holt, R.V. F. Janssens, N. Lecesne, Z.-T. Lu,T. P. O'Connor, M.-G. Saint-Laurent, J.-C. Thomas, L.-B. Wang, Nuclear Charge Radius of ⁸He, Phys. Rev. Lett. 99 (2004) 252501.
- [Wa04] L.-B. Wang, P. Mueller, K. Bailey, G.W.F. Drake, J.P. Greene, D. Henderson, R.J. Holt, R.V.F. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O'Connor, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang, Laser spectyroscopic Determination of the ⁶He Nuclear Charge Radius, Phys. Rev. Lett. 93 (2004) 142501.
- [Ba05] A. E. Barzakh, D. V. Fedorov, A. M. Ionan, V. S. Ivanov, F. V. Moroz, K. A. Mezilev, S. Yu. Orlov, V. N. Panteleev, Yu. M. Volkov, Laser spectroscopic studies of ¹⁴⁵Gd, ¹⁴⁵Gdm, and ¹⁴³Gd^m, Phys. Rev. C 72 (2005) 017301.
- [BI05] F. Le Blanc, L. Cabaret, E. Cottereau, J. E. Crawford, S. Essabaa, J. Genevey, R. Horn, G. Huber, J. Lassen, J. K. P. Lee, G. Le Scornet, J. Lettry, J. Obert, J. Oms, A. Ouchrif, J. Pinard, H. Ravn, B. Roussiere, J. Sauvage, D. Verney, Charge-radius change and nuclear moments in the heavy tin isotopes from laser spectroscopy: Charge radius of 132 Sn, Phys. Rev. Lett C 72 (2005) 034305.
- [Ve06] D. Verney, L. Cabaret, J.E. Crawford, H.T. Duong, B. Fricke, J. Genevey, G. Huber, F. Ibrahim, M. Krieg, F. Le Blanc, J.K.P. Lee, G. Le Scornet, D. Lunney, J. Obert, J. Oms, J. Pinard, J.C. Puteaux, K. Rashid, B. Roussière, J. Sauvage, V. Sebastian and the ISOLDE Collaboration, *Deformation change in light iridium nuclei from laser spectroscopy*, Eur. Phys. J. A 30 (2006) 489.
- [Sá06] R. Sánchez, W. Nörtershäuser, A. Dax, G. Ewald, S. Götte, R. Kirchner, H.-J. Kluge, T. Kühl, A. Wojtaszek, B.A. Bushaw, G.W. F. Drake, Zong-Chao Yan, C. Zimmermann, D. Albers, J. Behr, P. Bricault, J. Dilling, M. Dombsky, J. Lassen, C. D. P. Levy, M. R. Pearson, E. J. Prime, V. Ryjkov, Nuclear charge radius of ¹¹Li, Hyperfine Interact. 171 (2006) 181.
- [Sá06b] R. Sánchez, W. Nörtershäuser, G. Ewald, D. Albers, J. Behr, P. Bricault, B. A. Bushaw, A. Dax, J. Dilling, M. Dombsky, G.W. F. Drake, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, J. Lassen, C. D. P. Levy, M. R. Pearson, E. J. Prime, V. Ryjkov, A. Wojtaszek, Z.-C. Yan, C. Zimmermann, Nuclear Charge Radii of 9-11Li: The Influence of Halo Neutron, Phys. Rev. Lett. 96 (2006) 033002.
- [Ch07] B. Cheal, M. D. Gardner, M. Avgoulea, J. Billowes, M. L. Bissell, P. Campbell, T. Eronen, K. T. Flanagan, D. H. Forest, J. Huikari, A. Jokinen, B. A. Marsh, I. D. Moore, A. Nieminen, H. Penttilä, S. Rinta-Antila, B. Tordoff, G. Tungate, J. Äystö, *The shape transition in the neutron-rich yttrium isotopes and isomers*, Phys. Rev. Lett B 645 (2007) 133.
- [Li07] J. Libert, B. Roussière, J. Sauvage, Signs of dynamical effects for Cd, Sn, Te, Xe, Ba and Sm nuclear charge radii, Nuclear Phys. A 786 (2007) 47.
- [Mu07] P. Mueller, I. A. Sulai, A. C. C. Villari, J. A. Alcántara-Núñez, R. Alves Condé, K. Bailey, G.W. F. Drake, M. Dubois, C. Eléon, G. Gaubert, R. J. Holt, R.V. F. Janssens, N. Lecesne, Z.-T. Lu, 1 T. P. O'Connor, M.-G. Saint-Laurent, J.-C. Thomas, L.-B. Wang, *Nuclear Charge Radius of* ⁸He. Phys. Rev. Lett. 99 (2007) 252501.
- [Wi07] H. de Witte, A. N. Andreyev, N. Barré, M. Bender, T. E. Cocolios, S. Dean, D. Fedorov, V. N. Fedoseyev, L. M. Fraile, S. Franchoo, V. Hellemans, P. H. Heenen, K. Heyde, G. Huber, M. Huyse, H. Jeppessen, U. Köster, P. Kunz, S. R. Lesher, B. A. Marsh, I. Mukha, B. Roussière, J. Sauvage, M. Seliverstov,
 I. Stefanescu, E. Tengborn, K. Van de Vel, J. Van de Walle, P. Van Duppen, Yu. Volko, Nuclear Charge Radii of Neutron-Deficient Lead Isotopes Beyond N = 104 Midshell Investigated by In-Source Laser Spectroscopy. Phys. Rev. Lett. 98 (2007) 112502.
- [Bl08] K. Blaum, W. Geithner, J. Lassen, P. Lievens, K. Marinova, R. Neugart, Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N = 20 and N = 2. Nuclear Phys. A 799 (2008) 30.
- [Ge08] W. Geithner, T. Neff, G. Audi, K. Blaum, P. Delahaye, H. Feldmeier, S. George, C. Guénaut, F. Herfurth, A. Herlert, S. Kappertz, M. Keim, A. Kellerbauer, H.-J. Kluge, M. Kowalska, P. Lievens, D. Lunney, K. Marinova, R. Neugart, L. Schweikhard, S. Wilbert, C. Yazidjian, Masses and Charge Radii of 17-22 Ne and the Two-Proton-Halo Candidate 17 Ne, Phys. Rev. Lett 101 (2008) 252502.
- [Pu08] M. Puchalski, K. Pachucki, Relativistic, QED, and finite nuclear mass corrections for low-lying states of Li and Be+, Phys. Rev. A 78 (2008) 052511.
- [Ya08] Z.-C. Yan, W. Nörtershäuser, G. W. F. Drake, High Precision Atomic Theory for Li and Be+: QED Shifts and Isotope Shifts, Phys. Rev. Lett. 100 (2008) 243002.
- [Ch09] B. Cheal, K. Baczynska, J. Biliowes, P. Campbell, F.C. Charlwood, T. Eronen, D.H. Forest, T. Kessler, I.D. Moore, M. Reponen, S. Rothe, M. Riiffer, A. Saastamoinen, G. Tungate, J. Äystö, *Laser Spectroscopy of Niobium Fission Fragments: First Use of optical Pumping in an Ion Beam Cooler-Buncher*, Phys. Rev. Lett. 102 (2009) 222501.
- [Ch09a] F.C. Charlwood, K. Baczynska, J. Billowes, P. Campbell, B. Cheal, T. Eronen, D.H. Forest, A. Jokinen, T. Kessler, I.D. Moore, H. Penttilä, R. Powis, M. Rüffer, A. Saastamoinen, G. Tungate, J. Äystö, *Nuclear charge radii of molybdenum fission fragments*, Phys. Lett. B 674 (2009) 23.

- [Nö09] W. Nörtershäuser, D. Tiedemann, M. Záková, Z. Andjelkovic, K. Blaum, M. L. Bissell, R. Cazan, G.W.F. Drake, Ch. Geppert, M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F. Schmidt-Kaler, Z.-C. Yan, D.T. Yordanov, C. Zimmermann, *Nuclear Charge Radii of* 7,9,10 Be *and the One-Neutron Halo Nucleus* 11 Be, Phys. Rev. Lett. 102 (2009) 062503.
- [Ro09] B. Roussière, (2009) private communication
- [Se09] M. D. Seliverstov, A. N. Andreyev, N. Barré, A. E. Barzakh, S. Dean, H. De Witte, D.V. Fedorov, V.N. Fedoseyev, L.M. Fraile, S. Franchoo, J. Genevey, G. Huber, M. Huyse, U. Koester, P. Kunz, S.R. Lesher, B.A. Marsh, I. Mukha, B. Roussiere, J. Sauvage, I. Stefanescu, K. Van de Vel, P. Van Duppen, Yu.M. Volkov, Charge radii and magnetic moments of odd-A ^{183–189}Pb isotopes, Eur. Phys. J. A 41 (2009) 315.
- [Ch10] F.C. Charlwood, J. Billowes, P. Campbell, B. Cheal, T. Eronen, D.H. Forest, S. Fritzsche, M. Honmaf, A. Jokinen, I.D. Moore, H. Penttil, R. Powis, A. Saastamoinen, G. Tungate, J. Aysto, *Ground state properties of manganese isotopes across the N* = 28 *shell closure*, Phys. Lett. B 690 (2010) 346.
- [Pa10] C.G. Parthey, A. Matveev, J. Alnis, R. Pohl, Th. Udem, U.D. Jentschura, N. Kolachevsky, T. W. Hänsch, *Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift*, Phys. Rev. Lett. 104 (2010) 233001.
- [Žá10] M. Žáková, Z. Andjelkovic, M.L. Bissell, K. Blaum, G.W.F. Drake, Ch. Geppert, M. Kowalska, J. Krämer, A. Krieger, M. Lochmann, T. Neff, R. Neugart, W. Nörtershöuser, R. Sánchez, F. Schmidt-Kaler, D. Tiedemann, Z.-C. Yan, D.T. Yordanov, C. Zimmermann, Isotope shift measurements in the 2s_{1/2} → 2p_{3/2} transition of Be+ and extraction of the nuclear charge radii for ^{7,10,11}Be, J. Phys. G 37 (2010) 055107.
- [Av11] M. Avgoulea, Yu.P. Gangrsky, K.P. Marinova, S.G. Zemlyanoi, S. Fritzsche, D. Iablonskyi, C. Barbieri, E.C. Simpson, P.D. Stevenson, J. Billowes, P. Campbell, B. Cheal, B. Tordoff, M.L. Bissell, D.H. Forest, M.D. Gardner, G. Tungate, J. Huikari, A. Nieminen, H. Penttilä, J. Äystö, *Nuclear charge radii and electromagnetic moments of radioactive scandium isotopes and isomers*, J. Phys. G 38 (2011) 025104.
- [Co11] T.E. Cocolios, W. Dexters, M.D. Seliverstov, A.N. Andreyev, S. Antalic, A.E. Barzakh, B. Bastin, J. Büscher, I.G. Darby, D.V. Fedorov, V.N. Fedosseyev, K.T. Flanagan, S. Franchoo, S. Fritzsche, G. Huber, M. Huyse, M. Keupers, U. Köster, Yu. Kudryavtsev, E. Mané, B.A. Marsh, P.L. Molkanov, R.D. Page, A.M. Sjoedin, I. Stefan, J. Van de Walle, P. Van Duppen, M. Venhart, S.G. Zemlyanoy, M. Bender, P.-H. Heenen, *Early onset of ground-state deformation in the neutron-deficient polonium isotope*, Phys. Rev. Lett. 106 (2011) 052503.
- [Ma11] K. Marinova, W. Geithner, M. Kowalska, K. Blaum, S. Kappertz, M. Keim, S. Kloos, G. Kotrotsios, P. Lievens, R. Neugart, H. Simon, S. Wilbert, *Charge radii of neon isotopes over sd-shell*, Phys. Rev. C 84 (2011) 034313.
- [Nö11] W. Nörtershäuser, R. Sánchez, G. Ewald, A. Dax, J. Behr, P. Bricault, B. A. Bushaw, J. Dilling, M. Dombsky, G. W. F. Drake, S. Götte, H.-J. Kluge, Th. Kühl, J. Lassen, C. D. P. Levy, K. Pachucki, M. Pearson, M. Puchalski, A. Wojtaszek, Z.-C. Yan, C. Zimmermann, Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination, Phys. Rev. A 83 (2011) 012516.