§2. Следящая система с люфтом. Рассмотрим простейшую следящую систему с люфтом в контактном устройстве и в зубчатом зацеплении, описываемую безразмерным уравнением [152]

$$\ddot{x} + \dot{x} = S(x, \dot{x}) \tag{1}$$

где x - координата сервомотора и $S(x,\dot{x})$ - кусочно-постоянная (характеризующая безразмерную э. д. с. и сухое трение в системе). Общеизвестным приемом при исследовании точечных преобразований является представление и исследование точечного преобразования в параметрической форме, где в качестве параметра вводится время пробега изображающей точки по траекториям системы между точками сшивания.

Особенностью рассматриваемой задачи является возможность другого эффективного параметрического представления точечного преобразования с введением в качестве параметров некоторых отрезков в фазовом пространстве. Этот прием имеет значение, вы ходящее за рамки рассматриваемой задачи.

Разбиение плоскости (x, \dot{x}) на области, где $C(x, \dot{x})$ сохраняет постоянное значение, производится в зависимости от двух параметров k и z, характеризующих соответственно люфт в котактном устройстве и люфт в зацеплении.

Запишем уравнение (1) в виде системы

$$\dot{x} = y, \quad \dot{y} = S(x, y) - y \tag{2}$$

и будем рассматривать фазовые траектории на плоскости (x,y). Разбиение фазовой плоскости на траектории будет симметрично относительно начала координат, если за начало отсчета

принять середину максимального интервала длиной z + k, который сервомотор может пройти по инерции. На рис. 210 изображено разбиение плоскости (x, y) на десять областей, где S(x,y) сохраняет постоянные значения, указанные на рисунке. Полосы шириной y0, примыкающие к оси x сверзу или снизу, соответствуют выбиранию сервомотором люфта в зубчатом зацеплении, и для них соответственно S(x,y)=1 или S(x,y)=-1 (сухим трением при свободном движении сервомотора пренебрегаем). Полосе шириной k, содержащей внутри ось y, соответствует выбирание сервомотором совместно со следящей осью люфта в коптактном устройстве при движении по инерции. Здесь S(x,y) =-r или S(x,y) = r характеризует твердое трение в системе. На других участках фазовой плоскости величина S(x,y) имеет значе-

ние $\pm 1 \pm r$, где знаки выбираются в зависимости от знака скорости и знака включенной э. д. с. или 0, если люфт в зацеплении про ходится по инерции. Величина y_0 -максимаьная скорость, до которой разгоняется сервомотор, выбирая люфт в зацеплении, есть однозначная функция параметра z и определяется уравнением

$$z + y_0 + \ln(1 - y_0) = 0. (3)$$

Это уравнение получатется, если в (2) положить S(x,y)=1 и потребовать для решения системы (2) выполнения условий $x=-x_0,y=0; x=-x_0+z,y=y_0$.

Построим точечное преобразование в себя полупрямой $L: y=0, x \leq \frac{-(z+k)}{2}$, примыкающей слева к отрезку покоя: $y=0, \frac{-(z+k)}{2} < x < \frac{z+k}{2}$. Так как фазовое пространство симметрично оносительно начала координат, то задача сводится к построению точечного отображнеия полупрямой L в симметричную полупрямую L', примыкающую к отрезку покоя справа.

Рассмотрим траекторию в верзней полуплоскости, сшитую из четырех ксков, начинающуюся в точке (-u,0) и заканчиваю щуюся в точке (v,0). «Сшивание »траекторий в точках разрыва правых частей системы совершается элементарно, если знак правой части второго из уравнений (2) не изменяется при переходе через линию сшивания. Так будет, если $y_0 \le 1-r$, т. е. если r "не слишком велико". Точки пересечения этой траектории с по лосой ширины k будут $x=\frac{z-k}{2},y=\eta$ и $x=\frac{z+k}{2},y=x_i$. Как оказывается, величины η и ξ целесообразно рассматривать как параметры точечного преобразования.

Из уравнения (2), полагая S(x,y)=1 для первого куска траектории и S(x,y)=1-r для второго и используя условия для концов кусков траекторий: $x=-u,\ y=0;\ x=-u+z,\ y=y_0;\ x=\frac{z-k}{2}\ y=r_i,$ получим

$$u = \frac{z+k}{2} + (1-r)\ln\frac{1-r-y_0}{1-r-\eta} + y_0 - \eta, \quad y_0 \le \eta < 1-r.$$
(4)

Полагая далее S(x,y) = -r для третьего куска траектории и S(x,y) = -1 - r для четвертого и используя условия для концов кусков траекторий

$$x = \frac{z-k}{2}, \quad y = \eta; \quad x = \frac{z+k}{2}, \quad y = \xi; \quad x = v, \quad y = 0,$$

получим

$$rln(\xi + r) - rln(\xi + r) + \eta - \xi - k = 0,$$
 (5)

$$v = \frac{z+k}{2} + \xi + (1+r)\ln\frac{1+r}{\xi+1+r}, \quad 0 \le \xi < \infty.$$
 (6)

Уравнения (4)-(6) определяют требуемое точечное преобразование в параметрической форме с двумя параметрами η и ξ . Разбиение фазового пространства (x,y) на траектории определяется взаиморасположением кривых $u=u(\eta)$ и $v=v(\eta)$ на совмещенных плоскостях (ν,u) и (ν,v) . Исследование взаиморас положения кривых проводится элементарно при использовании η и ξ как параметров.

Из (5) и(6) находим

$$\frac{d\eta}{d\xi} = \frac{\xi(\eta + r)}{\eta(\xi + r)} > 0, \quad \frac{dv}{d\xi} = \frac{\xi}{\xi + 1 + r} > 0.$$

Откуда

$$\frac{dv}{d\eta} = \frac{\eta}{1+r+\xi} \frac{\xi+r}{\eta+r} > 0. \tag{7}$$

Из (4) имеем

$$\frac{du}{d\eta} = \frac{\eta}{1 - r - \epsilon}.\tag{8}$$

Сравнивая (7) и (8), непосредственно обнаруживаем, что для любого η будет

$$du/d\eta > dv/d\eta$$
,

и, следовательно, если существует точка пересечения кривых $u = u(\eta)$ и $v = v(\eta)$, то она единственная и соответствует устойчивой, неподвижной точке преобразования.

Граничные значения кривых $u = u(\eta)$ и $v = v(\eta)$ будут

$$u = (z + k)/2, \quad v = (z + k)/2$$

соответственно при значениях параметров $\eta = y_0$ и $\eta = y_1$ (y_1 определяется как корень уравнения (5) при $\xi = 0$).

Для значений η , близких к 1-r ($\eta=1-r$ - асимптота для $u=u(\eta)$), будет u>v. Точка пересечения кривых $u=u(\eta)$ и

 $v=v(\eta)$, будет поэтому существовать, если $y_1 < y_0$. Граница области существования неподвижной точки преобразования и соответствующего ей устойчивого предельного цикла определяется условием $y_1=y_0$.

Уравнение (3) совместно с уравнением

$$r \ln r - r \ln(y_0 + r) + y_0 - k = 0, (9)$$

полученным из (5) при $\xi = 0$ и $\eta = y_0$, дает в параметрической форме уравнени поверхности (рис. 211), отделяющей в пространстве параметров область автоколебаний от области абсолюной устойчивости. Точкам ниже поверхности соответствует

Рис. 211

область автоколебаний. Точкам выше поверхности - устойчивость в большом (рис. 212, a). Точкам по поверхности - вырожденный двойной цикл, проходящий через концы отрезка по-

Рис. 212:

коя (рис. 212, δ). На рис. 212, ϵ изображены два склеенных предельных цикла - устойчивый и неустойчивый (неустойчивый обозначен штриховой линией).

Если r «велико » $(y_0>1-r)$, фазовые траектории подходят с обеих сторон к линиям сшивания $y=\pm y_0$ и система (2) должна быть из физических соображений доопределена условием

$$\dot{x}=y,y=\left\{ egin{array}{ll} y_0 & \mbox{при } x\leq -(z-k)/2, \\ - y_0 & \mbox{при } x\geq (z-k)/2, \end{array}
ight.$$

требующим, чтобы движение продолжалось по линии стыков таекторий (скользящий режим). Уравнение (4) теряет сысл. Любая траектория, сшитая из четырех кусков в верхней полуплоскости, начинающаяся в точке (-u,0) и заканчивающаяся в точке (v,0), содержит кусок прямой $y=y_0$, принадлежащий линии сшивания. В уравнении (5) праметр η принимает фиксорованное значение y_0 . Уравнения (5) и (6) будут в параметрическом виде (с параметром ξ) связывать v и k. Уравнение (9) сохраняет смысл и для случая сколь угодно больших r.

На рис. 213 изображены различные возможные тиы разбиения фазовой плоскости для этого случая. В отличие от случая «малых r », здесь устойчивый предельный цикл будет вырожденным (на него переходят точки сконтинуума траекторий).

§3. Электрическая цепь с туннельным диодом. Рассматривается система [28]

$$\dot{x} = y - \phi(x), \quad \dot{y} = \sigma - \lambda x - y, \quad g > 0, \quad \lambda > 0, \tag{1}$$

где ϕ - нелинейная функция, содержащая «падающий » участок. Система такого вида встречается при рассмотрениисхем на туннельных диодах, а также в ряде других вопросов. Аппроксимируем $\phi(x)$ кусочно-линейной функцией, состоящей из трех линейных кусков. наклоны k будем считать: падающего участка $k=-\alpha_2<0$, восходящих $k=\alpha_1>0$. Фазовое пространство при такой аппроксимации разбивается на три части, в каждой из которых система линейна. В областях I и III лежат восходящие ветви характеристики, в области II - падающий участок (рис. 214).

1. Состояния равновесия. Разбиение пространства параметров по числу и характеру состояний равновесия. Возможны одно или три грубых состояния равновесия. В случае одного состояния равновесия имеем фокус (узел), всегда устойчивый в областях I или III и неустойчивый в области II, если $\alpha_2 > 1$. В случае

трех состояний равновесия имеем всегда устойчивые фокусы (узлы) в областях I и III и седло в области II. Куски прямых $\sigma=x_1\lambda+y_1$ и $\sigma=x_2\lambda+y_2$ (x_1,y_1 и x_2,y_2 - координаты угловых точек характеристики) при $\lambda\leq\alpha_2$ образуют в плоскости (λ,σ) дискриминантную кривую, отделяющую область трех состояний равновесия от области одного состояния равновесия. Точкам дискриминантной кривой соответствует сшитое состояние равновесия типа седло-фокуса или седло-узла, и уговой точке ($\lambda=\alpha_2$) - неустойчивый отрезок покоя, совпадающий с падающим участком арактеристики.

В случа $\alpha_2 < 1$ невозможны замкнутые траектории и возможными бифуркаци-

Puc. 214

ями являются только появлиние и исчезновение состояний равновесия. Все нижеследующие рассмотрения ведутся для случая $\alpha_2 > 1$ и $(\alpha - 1)^2 < 4a_2$, допускающего разнообразные бифуркации.

2. Бифуркации состояний равновесия.

2.1 Устойчивость состояния равновесия на линии сшивания. Пусть прямая $\sigma - \lambda x - y = 0$ проходит через угловую точку (x_1,y_1) характеристики на границе I и II областей и пусть $\lambda > (\alpha_2+1)^2/4 > \alpha_2$. Тогда область I заполнена кусками траекторий устойчивого фокуса, а область II - неустойчивого. Вводим на линии сшивания областей I и II положительные координаты S_0 и S_1 (а на линии сшивания областей II и III - координаты S_2 и S_3) (см. рис. 214). Преобразования $S_0 \to S_1$ по траекториям области I и $S_1 \to S_0$ по траекториям области II запишутся так:

$$S_2 = S_0 \exp\{-h_1 \pi / \omega_1\}, \overline{S}_0 = S_1 \exp\{-h_2 \pi / \omega_2\}, \tag{2}$$

где ω_i , $-h_i$ (i=1,2) - мнимая и действительная части корней характеристического уравнения соответственно для областей I и II.

Состоянием равновесия будет сшитый цетр ($\overline{S}_0 = S_0$), если $h_1\omega_1^{-1} + h_2^{-1}\omega_2^{-1} = 0$ или, в раскрытом виде,

$$\lambda = \lambda^+ \equiv (\alpha_1 \alpha_2 + 1)(\alpha_1 - \alpha_2 + 2)^{-1}.$$

Фокус на склейке будет устойчив $(\overline{S}_0 < S_0)$ при $\lambda > \lambda^+$ и неустойчив $(\overline{S}_0 > S_0)$ при $\lambda < \lambda^+$.

2.2 Рожсдение предельного цикла из состояния равновесия типа фукос при перемещении состояния равновесия через линию сшивания. Докажем, что в областях I и II может существовать не более одного предельного цикла. Рассмотрим преобразование $S_0 \to \overline{S}_0$ по траекториям областей I и II. Для области I будет

$$S_0 = \frac{\delta_0}{\sin \omega_1 \tau_1} [\omega_1 \cos \omega_1 \tau_1 + h_1 \sin \omega_1 \tau_1 - \omega_1 \ e^{h_1 \tau_1}] = \delta_0 \xi(\tau_1),$$

$$S_1 = \frac{\delta_0}{\sin \omega_1 \tau_1} \left[\omega_1 \cos \omega_1 \tau_1 - h_1 \sin \omega_1 \tau_1 - \omega_1 e^{-h_1 \tau_1} \right] = \delta_0 \chi(\tau_1), \tag{3}$$

где δ_0 - расстояние от границы раздела областей I и II до состояния равновесия; χ и ξ - монотонные функции (возрастающие или убывающие в зависимости от знака δ_0). Преобразование по траекториям области II записывается аналогично.

Вычисление производной функции последования дает

$$d\overline{S}_0/dS_0 = S_0\overline{S}_0^{-1} exp\{-2(h_1\tau_1 + h_2\theta)\}. \tag{4}$$

Здесь τ и θ - время движения соответственно по траекториям областей I и II, $h_1=(1+\alpha_1)/2>0, h_2=(1-\alpha_2)/2<0.$

Пусть состояние равновесия лежит в области I. Тогда для переодического решения $(\overline{S}=S_0)$ с увеличением S_0 время τ_1 убывает (до значения π/ω_1), время θ возрастает (до значения π/ω_2) и производная (4) растет. Поэтому может существовать не более двух точек пересечения функции последования с биссектрисой, причем неподвижная точка с меньшей координатой должна быть устойчива, а с большей - неустойчива. Так как, по предположению, состояние равновесия лежит в области I и является устойчивым фокусом, который не может охватываться усттойчивым же циклом, то в областях I и II может существовать не более одного, причем неустойчивого цикла.

Пусть состояние равновесия лежит в области II. Тогда с ростом S_0 время τ_1 растет, а θ убывает. Аналогично находим, что в этом случае может существовать не более одного устойчивого предельного цикла.

Пусть $\sigma - \lambda x - y = 0$ проходит через верхнюю угловую точку характеристики. Рассмотрим два случая.

- $1. \ \lambda > \lambda^+.$ Сшитый фокус устойчив. траектория, проходящая через нижнюю угловую точку, в силу (2) при $t \to \infty$ накручивается к состоянию равновесия. Эта траектория остается спиралью и при малых смещениях прямой $\sigma \lambda x y = 0$. Если при малом смещении состояние равновесия попадает в область II, то оно становится неустойчивым и, следовательно, появляется хотя бы один устойчивый предельный цикл. По сказанному выше этот цикл единственный. Пусть после смещения состояние равновесия попадает в область I. так как в объединении областей I и II возможно существование не более одного цикла и фокус сохраняет устойчивость, то, следовательно, циклы не возникают.
- $2. \ \lambda < \lambda^+$. Аналогично находим, что если при малом смещении состояние равновесия попадает в область II, то циклы не возникают, а если в область I, то появляется неустойчивый пикл.
- 2.3 Рождение предельных циклов (простого или двойного) из границы области, заполненной замкнутыми траекториями. Рассмотрим преобразования $\overline{S}_0 = f(S_0)$, склеенные из двух кусков: $\overline{S}_0 = \phi(S_0)$ - по траекториям областей I и II и $\overline{S}_0 = \psi(S_0)$ - по всем областям. Покажем, что $f(S_0)$, дифференцируема в точке склейки. Преобразование $S_0 \to S_1$, по траекториям области I дано в (3). Преобразования $S_1 \to S_2, S_2 \to S_3$ и $S_3 \to S_0$ записываются аналогично. Значение $d\overline{S}_0/dS_0$ для функции $\psi(S_0)$ дано в (4), а для функции $\psi(S_0)$ будет

$$d\overline{S}_0/dS_0 = S_0\overline{S}_0^{-1} \exp\{-2h_1(\tau_1 + \tau_3) - 2h_2(\tau_2 + \tau_4)\}.$$
 (5)

Здесь τ_1 и τ_3 - время движения по областям I и III, τ_2 и τ_4 - время движения по верзу и низу области II.

Пусть $S_0 = S_0^*$ - граничное значение, разделяющее интервалы определения преобразований $\phi(S_0)$ и $\psi(S_0)$. Производные для ϕ и ψ в точке склейки совпадают: при $S = S_0^*$ будет $\tau_3 = 0, \theta = \theta^*, \ \tau_2 + \tau_4 = \theta^*.$

Пусть теперь прямая $\sigma - \lambda x - y = 0$ проходит через угловую точку характеристики x_1, y_1 и $\lambda = \lambda^+$. Покажем, что предельных циклов нет.

Функция последования на плоскости (S_0, \overline{S}_0) склеена из отрезка биссектрисы $\overline{S}_0 = S_0 < S_0^*$ и кривой $\overline{S}_0 = \psi(S_0)$. Функция $\overline{S}_0 = f(S_0)$ дифференцирума в точке склейки и, следовательно, при $\lambda = \lambda^+$ будет $d\overline{S}_0/dS_0 = 1$ (из (5) находим также, что $d^2\overline{S}_0/d^2S_0 < 0$). При возрастании S_0 от значения S_0^* показатель экспоненты в (5) монотонно убывает от нулевого значения в точке склейки ($\tau_1 = const, \tau_3$ растет и $h_1 > 0$; τ_2 и τ_4 убывают и $h_2 < 0$). Других точек пересечения (или касания) с биссектрисой, кроме $S_0 = S_0^*$ располагается ниже биссектрисы. Спирали, сшитые из траекторий в обласях I, II и III, накручиваются на границу области, заполненной замкнутыми кривыми, сшитыми из траекторий в областях I и II.

При малом изменении параметров σ и λ функция последования измененной системы лежит в малой окрестности функции последования исходной систоемы. Если сдвигаться по полупрямой $L_1 = 0(L_1 \equiv \sigma - \lambda x_1 - y_1, \lambda > \alpha_2)$ от значения $\lambda = \lambda^+$ в сторону уменьшения λ , то функцией последования для $S_0 < S_0^*$ будет прямая, проходящая через начало координат выше биссектрисы, и для $S_0 > S_0^*$ кривая $\overline{S}_0 = \psi(S_0)$, пересекающая биссектрису один раз (в точке склейки $d^2\overline{S}_0/dS_0^2 \neq 0$ при $\lambda = \lambda^+, \sigma = \sigma^+$). Из границы области, заполненной замкнутыми кривыми, появляется единственный устойчивый предельный цикл. При последующем уменьшении с пачальная точка функции последования перемещается из начала координат по оси S_0 (наименьшее S_0 , соответствует траектории, идущей в устойчивый фокус и касающейся линии сшивания при $\overline{S}_0=0$), и функция последования $\overline{S}_0=f(S_0)$ будет пересекать биссектрису дважды (из фокуса при перемеще нии его с линии склейки появляется единственный неустойчивый предельный цикл). Если сдвинуться по полупрямой в сторону увеличения λ от значения $\lambda = \lambda^+$ и затем уменьшить σ , то функция последования будет целиком лежать ниже биссектрисы. Из непрерывности и дифференцируемости функции последования следует, что в любой малой полуокрестности точки (λ^+, σ^+) (ниже полупрямой) существуют λ и σ , для которых функция после дования касается биссектрисы. На фазовой плоскости этому соответствует появление двойного цикла. Такие точки образуют бифуркационную кривую, выходящую из точки (λ^+, σ^+) на полу прямой $L_1 = 1$.

Касание невозможно при $S_0 < S_0^*$, так как в объединении областей I и II может быть не более одного цикла, и поэтому рождение двойного цикла при измепении параметров происходит при $S_0 = S_0^*$ от границы области, заполненной замкнутыми траекториями.

2.4. Рождение предельных циклов из концов отрезка покоя. Пусть прямая $\sigma - \lambda x - y = 0$ и падающий участок характеристи ки совпадают $\lambda = \alpha_2$. Падающий участок характеристики будет неустойчивым отрезком покоя, а области I и II в силу условия $(\alpha_1 - 1)^2 < 4\alpha_2$ (ем. п. 1) будут заполнены траекториями устойчивых фокусов. Легко получить явпое выражение для преобразования в себя полупрямой S_0 :

$$\overline{S}_0 = S + 0exp\{-2h_1\pi/\omega_1\} + \delta(\alpha_2 - 1)(1 + exp\{-h_1\pi/\omega_1\}).$$

Здесь δ — ширина области II. Преобразование имеет одну устойчивую неподвижную точку.

Повернем теперь прямую $\sigma - \lambda x - y = 0$ вокруг какой-либо точки на падающем участке против часовой стрелки. Отрезок покоя при этом разрушается и возникают седло в области II и устойчивые фокусы в областях I и III. Пусть будет $\lambda = \alpha_2 - \epsilon$, где в $\epsilon > 0$ и мало. Ограничиваясь степенями ϵ не выше первой, получим угловые коэффициенты сепаратрис: $[-1 + \epsilon/(\alpha_2 - 1)]$ (для α -сепаратрис), $[-\alpha_2 - \epsilon/(\alpha_2 - 1)]$ (для ω -сепаратрис).

При $\lambda = \alpha_2$ траектории, выходящие из точки, в которой при $\epsilon \neq 0$ возникает седло, накручиваются на предельный цикл, α -сепаратрисы седла в области II при малых $\epsilon > 0$

лежат в малой окрестности траекторий, выходящих из той же точки при $\epsilon=0$, и, следовательно, α -сепаратрисы также накручиваются на устойчивый предельный цикл, охватывающий все состояния равновесия. Поэтому ω -сепаратрисы могут лишь скручиваться с неустойчивых циклов, лежащих в областях I—II и II—III, охватывающих устойчивые фокусы, возникающие при повороте прямой соответственно в областях I и III. Таким образом, при повороте прямой $\sigma - \lambda x - y = 0$ из концов отрезка покоя появляются устойчивые фокусы в сопровождении охватывающих их неустойчивых циклов (фокусы и циклы возникают одновременно). В окрестности каждого фокуса лежит единственный предельный цикл. Последнее следует из того, что производная функции последования, построенная с использованием траекторий седла в области II, будет также даваться выражением (4), с тем лишь отличием, что с возрастанием S_0 будет $\theta \to \infty$.

3. Бифуркации сепаратрисе.

3.1. Расположелие бифуркационной кривой для. петли. сепаратрисы. Пусть при $\sigma = \sigma_0$ и фиксированном $\lambda = \lambda^*$ прямая $\sigma - -\lambda x - = 0$ проходит через верхнюю угловую точку характеристики. Изменим σ на величину \varkappa ($\varkappa = \sigma_0 - \sigma$) и покажем, что петля сепаратрисы за счет изменения с возникнуть не может. Пусть S_0' и S_1' , — отрезки, отсекаемые α - и ω -сепаратрисами линейного седла в области II на границе областей I и II, а S_0 и S_1 , — координнаты по преобразованию (3) на той же границе. Из (3) следует

$$S_1 = \delta_0 \varkappa [\xi^{-1}(S_0/\delta_0)], \tag{6}$$

где ξ^{-1} — функция, обратная ξ . Величины h_1 и ω_1 , а следовательно, и функции χ и ξ от σ не зависят.

Так как характеристика ,есть функция кусочно-линейная, то при изменении σ величины S_0', S_1' и δ_0 будут пропорциональны \varkappa :

$$S_0' = \gamma_0 \varkappa, \delta_0 = \gamma_1 \varkappa, \tag{7}$$

$$S_1' = \gamma_2 \varkappa. \tag{8}$$

Сшивая проектор на грапице областей I и II (полагая $S'_0 = S_0$), из (6) и (7) находим

$$S_1 = \gamma_1 \varkappa \chi[\xi^{-1}(\gamma_0/\gamma_1)] \equiv \gamma_3 \varkappa, \tag{9}$$

а из (8) и (9) —

$$S_1/S_1' = \gamma_3/\gamma_2 = const.$$

Таким образом, при фиксированном λ величины S_1 и S'_1 , находятся в постоянном отношении и петля сепаратрисы ($S_1 = S'_1$) за счет изменения со возникнуть не может.

Если прямая $\sigma - \lambda x - y = 0$ проходит через середину падающего участка и $\lambda = \lambda_1$, таково, что существует петля сепаратрисы сверху, то в силу симметрии фазового пространства одновременно должна существовать и петля сепаратрисы снизу. При этом осуществляется условие $\gamma_3/\gamma_2 = 1$. Так как γ_3 в и γ_2 от σ не зависят, то это условие и, следовательно, обе петли сохраняются при $\lambda = \lambda_1$, для всех значений о внутри дискриминантной кривой.

3.2. Устойчивость петель сепаратрис. Устойчивость петель сепаратрис будет определяться знаком седловой величины, если седло располагается внутри или на границе области II (теоремы 44 и 47 в [13] переносятся на случай, когда сшитая петля содержит аналитическое

седло). В рассматриваемом случае $\alpha_2 > 1$ седловая величина положительна $(P'_x + Q'_y = \alpha_2 - 1)$ и петли сепаратрис изнутри и снаружи неустойчивы. При изменении па раметров к петле стягивается или от нее рождается единственный неустойчивый предельный цикл (см. гл. 10, §2, IV, и гл. 17, §4, п. 4)

4. Качественные структуры разбиения фазового пространства.

- **4.1.** Фазовые портреты, соответствующие значениям параметров σ' , λ и σ'' , λ таким, что прямые $\sigma' \lambda x y = 0$ и $\sigma'' \lambda x y = 0$ располагаются симметрично относительно середины падающего участка характеристики, будут симметричны относительно последней. При изучепии разбиения пространства парамет ров поэтому можно рассматривать только часть пространства (λ, σ) выше либо ниже линии симметрии $\sigma \lambda x_0 y_0 = 0$, где x_0, y_0 координаты середины падающего участка.
- **4.2.** Рассмотрим структуры разбиспия фазового пространства и последовательность бифуркаций, переводящих одну структуру в другую для значений параметров вдоль бифуркационной прямой $\sigma \lambda x_1 y_1 = 0$ (x_1, y_1) :— координаты верхней угловой точки характеристики).

 Пусть $\lambda > \lambda^+$ (рис. 215, a). Состояние равновесия — устойчивый фокус на склейке, и все траектории идут к пему. При $\lambda = \lambda^+$ (рис. 215,6) возникает область, заполненная замкнутыми траекториями. Все сшитые по областям I—III траектории накручинаются на границу этой области. При $\alpha_2 < \lambda < \lambda^+$ (рис. 215, 6) фокус на склейке неустойчив и при уменьшении > от значения $\lambda=\lambda^+$ от границы области, заполненной замкпутыми траектория ми, рождается устойчивый предельный цикл. При $\lambda = \alpha_2$ (рис. 215, ϵ) (острие дискриминантной кривой) падающий участок характеристики и прямая $\sigma - \lambda x - y = 0$ совнадают. Возникает неустойчивый отрезок покоя внутри устойчивого предельного цикла, При дальнейшем уменьшении λ вдоль дискриминантной кривой появляются два состояния равновесия: склеенный вырожденный седло-узел (см. гл. 4, §2) и устойчивый фокус в области ІІІ. От конца отрезка покоя вместе с фокусом рождается неустойчивый предельный цикл (α -сепаратриса вырождепного состояния равновесия идет к устойчивому циклу, охватывающему все состояния равновесия, ω -сепаратриса скручивается с неустойчивого цикла, охватывающего устойчивый фокус (рис. $(215, \, d)$). Так как α -сепаратриса при $\lambda = 0$ (прямая $y = \sigma$) идет в устойчивый узел в области III, состояние равповесия в области III при изменении параметров вдоль дискриминантной кривой устойчивости не меняет и бесконечность остается неустойчивой, то исчезновение предельных циклов на интервале $0 < \lambda < \alpha_2$ может произойти только за счет слияния предельных циклов с последующим уничтожением двойного цикла. Это может осуществиться лишь при посредстве промежуточной бифуркации — появлении при $\lambda = \lambda_1 < \alpha_2$ (рис. 215, e) потли сепаратрисы, возникшей из α - и ω -сепаратрис сшитого вырожденного состояния равновесия.

Петля сепаратрисы как снаружи, так и изнутри неустойчива. Такую петлю можно рассматривать как особый предельный цикл с состоянием равновесия на нем, отделяющий структуры с неустойчивым предельным циклом, охватывающим состояние равновесия в области III, от структур с неустойчивым циклом, охватывающим все состояния равновесия.

При убывании λ до значения $\lambda=\lambda_1$ в петлю «влипает» изнутри неусточнвый предельный цикл (рис. 215, e), а при дальней шем убывапии λ и разрушении петли от нее рождается неустойчивый предельный цикл (рис. 215, $\varkappa e$), охватывающий все состояния равновесия (асепаратриса идет в устойчивый фокус в области III, ω -сепаратриса скручивается с неустойчивого предельного цикла, который охватывает оба состояния равнонесия, и между циклами нет состояний равновесия). При некотором $\lambda=\lambda_2<\lambda_1$, (рис. 215, \imath) необходимо возникает полуустойчивый двойной предельный цикл, исчезающий при убывании λ . При дальнейшем убывании λ фокусы превратятся в узлы и возпикнет структура, качественно эквивалентная

Рис. 215:

структуре при $\lambda=0$ (рис. 215, u). (При убывании λ до значения $(1-\alpha_1)^2/4$ сохрапяется фокус, при дальнейшем убывании λ фокус превращается в узел.)