ADHEESH CHATTERJEE

3405 Tulane Drive, College Park, MD 20783

adheeshchat@gmail.com

Portfolio: https://adheeshc.github.io/ +1 (240) 784 7779

EDUCATION

M.Eng Robotics, *University of Maryland, College Park, MD GPA – 3.63 May 2020*

Concentration – Autonomous Systems Development: Perception, Planning, Control & Decision Making

B.Tech Mechanical Engineering, Vellore Institute of Technology, India GPA – 8.91/10 May 2018

• Merit Certificate – Academic Excellence and Scholarship, VIT University (2015)

Deep Learning Specialization, deeplearning.ai, Coursera

Dec 2019

SKILLS

Interests SLAM, Reinforcement Learning, Computer Vision, Motion Planning, Sensor Fusion,

Controller Design, 3D Mapping

Engineering SolidWorks, ANSYS Workbench, VREP, Raspberry Pi, Arduino

Programming Python, ROS, Gazebo, C/C++, Rust, Matlab, Git, OpenCV, OpenGL, Numpy, Matplotlib,

Pandas, Scikit-learn, TensorFlow, Pytorch (w/CUDA), OpenAI Gym, HTML5+CSS, Javascript

RESEARCH EXPERIENCE

University of Maryland – Summer Research Assistant Maryland, USA May 19 – Sep 19

 Created an integrated Semantic Segmentation and Depth Estimation network using encoder-decoder CNN architecture (VGGnet and Resnet) by performing sensor fusion of image and LIDAR data

University of Maryland – Research Assistant

Maryland, USA

Sep 19 – May 20

• Developed a Multi-Agent Cooperative Reinforcement Learning solution to the frontier exploration problem using a decentralized system of drones and a mobile robot. Worked with a modified Rainbow algorithm

University of Maryland – *Teaching Assistant*

Maryland, USA

Jan 20 – May 20

 Assisted students and aided professor for the Robot Learning course covering topics focused on Reinforcement Learning, Control through Machine Learning and Evolutionary Robotics

TECHNICAL PROJECTS

SLAM (Simulataneous Localization and Mapping)

- Localization Extended Kalman Filter, Unscented Kalman Filter and Particle Filter
- Mapping 2D Gaussian grid, ray casting, K-means clustering and rectangle fitting using LIDARs
- Complete Frameworks Iterative Closest Point Matching, FastSLAM, GraphSLAM, V-SLAM

Motion Planning Algorithms

- BFS, DFS, Dijkstra, A*, RRT, RRT*, PRM, B-Spline, CubicSpline, Dubins Path to find collision free path
- Kruskal, Prim, Boruvka and Nearest Neighbour algorithm to form a Minimum Spanning Tree to solve the Travelling Salesman Problem

ROS Projects

- Built an autonomous robot using a Raspberry Pi microcontroller. Performed UKF-SLAM to map out the UMD Robotics Realization Lab while using ROS packages Movelt and Rviz
- Simulated an assembly line of Pick and Place robots to sift through objects and seperate out individual components using find object 2d ROS package

Controller Design

- Implemented an LQR speed and steering control for path tracking
- Simulated Path tracking with iterative model predictive speed and steering control (MPC)

Sensor Fusion

 Processed Lidar point cloud, Radar and Camera data to calculate total time to collision from preceding vehicles and 3D object tracking in C++ (using Point Cloud Library)

Structure From Motion

 Used RANSAC based Outlier Rejection, PnP Estimation and Bundle Adjustment to reconstruct a 3D point cloud of surrounding structures and environment in C++ using OpenGL and 6DOF camera pose calibration on The ApolloScape Open Data set

Computer vision applications for Self-Driving Cars

 Visual Odometry, Lane Detection, Traffic Sign Recognition and Classification using HOG feature descriptors and SVM, Lucas Kanade Object Tracker