1a. Perform the substitution $u = \cos^2 x - \sin x + 5$ for the integral $\int_0^{\pi/2} \frac{2\cos x \sin x + \cos x}{(\cos^2 x - \sin x + 5)^3} dx.$

Be sure to change the integration limits. Do NOT perform the integration. Fill in your answer below:

$$\int_{--}^{--} du$$

1b. Perform the integral you obtained in (a) to evaluate $\int_0^{\pi/2} \frac{2\cos x \sin x + \cos x}{(\cos^2 x - \sin x + 5)^3} dx.$

1c. If $g'(x) = \frac{2\cos x \sin x + \cos x}{(\cos^2 x - \sin x + 5)^3}$, find the total change of g(x) over the interval $0 \le x \le \pi/2$.

2a. If the instantaneous rate of change of f(x) is given by $\left(\frac{1}{\cos^2 x} + \frac{2}{\csc x}\right)$, find the total change of f(x) over $0 \le x \le \pi/4$.

2b. Perform the following integral. If substitution is needed show all steps carefully.

$$\int \sec(3x)\tan(3x)\,dx \stackrel{?}{=}$$

3. Find the anti-derivative F(x) of $f(x) = \sin x \cos^2 x$ such that F(0) = 2/3.

4. Find the derivatives of the following functions:

$$\mathbf{a.} \ f(x) = \int_e^x e^{\sin(2t)} \, dt$$

b.
$$y = \int_{x^2}^1 \frac{t^2 + 1}{\ln(t^2 + 1)} dt$$

5. Referring to the graph of f(t) below, compute the following values or expressions. The dotted line the graph of the tangent line to curve at t=2

a. Average rate of change of f(t) over [1, 5].

b. Find the linear approximation to the function f(t) at t=2. Estimate f(1.9).

c. The instantaneous rate of change of p(t) = tf(t) at t = 2

d. The slope to the graph of $Q(t) = \frac{f(t)}{t+1}$ at t=2

6. Let $f(x) = \frac{3}{(2x+1)}$. Find all values x = c in the interval $1 \le x \le 4$ that satisfy the Mean Value Theorem.

7. Find all critical points of the function $f(x) = x - 6 \cdot x^{2/3}$.

8 a. Solve the initial value problem: $\frac{dy}{dx} = e^{-x} + 3e^x$ such that y(0) = 3.

8 b. Find also x-intercept of the graph of the function g(x) = y(x) - 1 where y is the function you found in part (a).