

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

<u>Когнитивная радиооптика (cognitive radio optics)</u> ЭМИИА – машинное зрение на принципах радиооптики с применением искусственных нейронных сетей. Детекция, распознавание образов, вычисление координат и скорости динамических объектов посредством радиоволн, в том числе и за радиопрозрачными преградами.

Разработка архитектуры автономной нейросетевой модели, наборов данных и методов обучения в области обработки цифровых сигналов и машинного зрении на принципах когнитивной радиооптики.

Встраиваемые нейросетевые решения:

- Снижение капитальных и операционных затрат
 - Экономия на smart устройствах
 - Замещение датчиков и сенсоров
 - Сокращение расхода электроэнергии

Автомобили, системы автоматического управления и безопасности движения...

Технология машинного зрения ЭМИИА как дополнение к навигатору, видеорегистратору, лидару, охранной сигнализации и как замена парктронику.

Роботы, производственные комплексы, платформы, машины, оборудование...

Технология машинного зрения ЭМИИА как дополнение к видеокамерам, системам автоматизации и как замена датчиков движения, датчиков присутствия, датчиков позиционирования, систем пассивной навигации.

Розетки, климат системы, бытовая техника, роботы-пылесосы, свет, умные колонки...

Технология машинного зрения ЭМИИА как дополнение к видеокамерам, автоматизации, аварийным системам и как замена датчикам движения, датчикам присутствия и охранным системам.

Варианты интеграции решений ЭМИИА:

- 1. Встраиваемый контроллер
- 2. Встраиваемое ПО (нейронная сеть)
 - 3. Встраиваемый модуль

Встраиваемые программные решения проекта смогут улучшить многие устройства, сделать их интеллектуальней, снизить стоимость комплексных решений и повысить безопасность.

Технологии ЭМИИА позволяют сосредоточить требуемый функционал в границах одного двух устройств. Замещается программно часть устройств, датчиков, сенсоров, а также технологических решений требуемых для мониторинга, сбора данных, автоматизации и машинного зрения.

10-30%

- Снижение капитальных и операционных затрат (автоматизация, информационная безопасность, роботы, цифровые двойники, IoT/IIoT, Industry 4.0)
 - Сокращение расходов на безопасность и облачные вычисления
 - Замещение датчиков и сенсоров
 - Уменьшение потребления электроэнергии

IDC ожидает, что глобальные расходы на цифровые технологии будут поддерживать двузначный годовой темп роста в течение прогнозируемого периода 2017-2022 годов и превысят отметку в 1 триллион долларов к 2022 году.

Ежегодно в мире будет производиться более 10 млрд интеллектуальных устройств.

На данный момент стоимость решений проекта составляет 8\$ и требует аппаратной модификации устройств. Посредством дальнейших разработок мы сможем получить результат применяя только программные инструменты, таким образом упростить интеграцию и масштабирование, а также снизить стоимость внедрения наших решений до одного доллара (цена для конечного пользователя).

20% производимых интеллектуальных устройств (без учета уже эксплуатируемых) имеет необходимость в такого рода технологиях (2 млрд интеллектуальных устройств), планируем занять как минимум 50% данного рынка (когнитивная радиооптика), таким образом общая стоимость внедрения наших решений составит более \$1 млрд в год. Ежегодный рост рынка (АТР, БРИКС) 8% 2021-2030 гг..

ПОТЕНЦИАЛЬНЫЕ ПОТРЕБИТЕЛИ В2В

HONDA GENERAL MOTORS.. KUKA FANUC.. GOOGLE PHILIPS MI YANDEX DYSON BORK..

Бизнес-модель ЭМИИА даст возможность генерировать цепочку технологических ценностей, посредством создания добавленной стоимости продуктам ключевых мировых производителей реализуемых свои решения конечным пользователям, на себестоимости и цене это не отразиться. Данный формат позволяет производителям расширить функционал и извлечь дополнительную прибыль, не только с проданных продуктов, а и с тех которые уже реализованы и эксплуатируются.

Реализация бизнес-модели ЭМИИА дает возможность проекту выйти на глобальный рынок, максимально быстро масштабировать свои решения с минимальными затратами, и привлечь инвестиции.

Бизнес-модель, защита интеллектуальной собственности в международном формате, выверенная маркетинговая стратегия и кадровая политика позволят поднять капитализацию проекта ЭМИИА от ноля до миллиарда долларов и провести первичное размещения акций IPO к 2025 году.

	КСК ГРААД
2015	ЭМИИА - продемонстрирован лабораторный прототип с технологией машинного зрения (радиооптика)
2016	Разработка аппаратной части (топология электронной схемы модуля) Разработка программной части (микропрограммы)
2017	Патентные исследования Разработка аппаратной части (топология электронной схемы модуля и контроллера) Разработка программной части (микропрограммы для модуля и контроллера с нейросетевыми элементами) Произведены тестовые устройства (когнитивная радиооптика/модули)
2018 •	Патентные и маркетинговые исследования Разработка нейронной сети для задач машинного зрения на принципах когнитивной радиооптики Произведены тестовые устройства с технологией машинного зрения (когнитивная радиооптика/контроллеры
2019	HИОКР, исследование оптимальных программно-аппаратных инструментов ML Разработка методологии Machine Learning (ML)
2020	Разработка архитектуры цифровой векторной ML модели автономной нейронной сети Привлечение инвестиций, предпатентная подготовка (научные публикации), патенты (заявки) Тестирование бизнес-модели, формирование маркетинговой стратегии и кадровой политики Выход на рынки EAЭС (продукты, комплексные решения)
2021	Выход на рынки АТР и БРИКС (продукты, комплексные решения, устройства), патенты (заявки)
2022	Прибыль

• IPO

ОПЫТНЫЙ ОБРАЗЕЦ УСТРОЙСТВА НА ПРОГРАММНО-АППАРАТНОЙ БАЗЕ ВСТРАИВАЕМОГО SMART КОНТРОЛЛЕРА ЭМИИА MONOCLE (ТЕСТОВАЯ МОДЕЛЬ В КРУГЛОМ КОРПУСЕ)

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

Transmitting antenna T_2

$$T_1 = -L_2$$
 $T_2 = L_1$

Damping Effect compensated. Zero forcing.

Фрагменты радиограмм и код модели ML движения взрослого человека в волновом фронте, цифровые векторные маркеры и значениями (id, x, y, z) без растровых аналоговых включений (HTML5/JS/JSON).

id="path818" d="m 94.87779,47.028008 c 0.0.336925 -0.263607.0.601613 -0.5991.0.601613 -0.359462.0 -0.623066,-0.264688 -0.623066, -0.601613 0.-0.336911 0.263604, -0.625678 0.623066,-0.625678 0.335493,0 0.5991 0.288767 0.5991,0.625678 z"

id="path820" d="m 86.706063,53.357054 c 0,0.336911 -0.2636040,0.601613 -0.623064,0.601613 -0.335496,0 -0.599099,-0.264702 -0.599099,-0.601613 0,-0.336911 0.263603,-0.625692 0.599099,-0.625692 0,35946, 0 0.623064,0.288781 0,623064,0.625692 z"

id="path826" d="m 101.63564,47.028008 c 0.0.336925 -0.28757.0.601613 -0.62307.0.601613 -0.33549.0 -0.5991,-0.264688 -0.5991,-0.601613 0, -0.336911 0.26361, -0.625678 0.5991,-0.625678 0.3355,0 0.62307, 0.288767 0.62307,0.625678 z"

id= pornsz8 d='m 103.81636.53.597704 c 0,0.360963 -0.2636,0.625679 -0.5991,0.625679 -0.35946, 0 -0.62306.-0.264716 -0.62306,-0.625679 0,-0.336911 0.2636 -0.601613 0.62306,-0.601613 0.3355,0 0.5991, 0.264702 0.5991,0.601613 z"

id="path822" d="m 94.87779,52.009423 c 0,0,336911 -0.263607,0.601627 -0.5991,0.601627 -0.359462.0 -0.623066,-0.264716 -0.623066,-0.601627 0,-0.360962 0.263604 -0.625691 0.623066,-0.625691 0.335493,0 0.5991, 0.264729 0.5991,0.625691 z"

id="path824" d="m 89.413996.49.434488 c 0.0.336911 -0.263603.0.625678 -0.5991.0.625678 -0.335496, 0 -0.623064,-0.288767 -0.623064,-0.625678 0, -0.336884 0.287568,-0.625678 0.623064,-0.625678 0.335497

Цифровая векторная модель ML, псевдо 3D, 2-10 Kbyte, HTML5/JS/JSON, без включения аналоговойрастровой графики

 \rightarrow ТЕСТОВЫЙ КОД МОДЕЛИ ML

Data Set size (fragment 2D) of standard models ML: 100 Kbyte

Size of the Data Set (fragment 2D) of the EMIIA models ML: 2-10 Kbyte

Raster Analog Graphics ML

EMIIA Vector Digital Graphics ML

Сравнительные характеристики фрагментов растрового датасета (слева), и векторного датасета ЭМИИА (справа).

Сравнительные характеристики программно-аппаратных решений Направление: радиооптика	Цена (руб.)	Соответствие санитарным нормам использование в промышленных и бытовых помещениях	Интеграция технологии в бытовые и промышленные устройства loT/lloT	Нейронная сеть Online	Нейронная сеть Offline				
Встраиваемые контроллеры и модули ЭМИИА Разработчик: ЭМИИА Россия	3 000	+	+	+	_				
Радиолокатор Данник-5 Разработчик: ФГУП СКБ ИРЭ РАН Россия	200 000			_					
Портативный радар РО-900 Разработчик: ЛОГИС-ГЕОТЕХ Россия	300 000			_	_				
Прибор EMERALD на базе Wi-Fi роутера Разработчик: Массачусетский технологический институт MIT США	70 000	+	+	+	_				
ЭМИИА: https://www.emiia.ru/p/radiooptics.html PO-900: http://www.geotech.ru/safety_equipment/bezopasnost/radary https://www.geotech.ru/safety_equipment/bezopasnost/radary									

EMERALD: https://www.emeraldinno.com/

PO-900: http://www.geotech.ru/safety_equipment/bezopasnost/radary_-
obnaruzhiteli_lyudej_za_stenami_stenovizory/portativnyj_radar_dlya_operativnogo_obnaruzh_eniya_obektov_za_zhelezobetonnymi_i_raznesennymi_stenami_ro900/

Данник-5: http://www.sdbireras.ru/produkcziya/blizhnyaya-radiolokacziya/radiolokator-dlya-obnaruzheniya-lyudej-za-stenami-dannik-5

Сравнительные характеристики программных решений Направление: нейронные сети для задач машинного зрения на принципах радиооптики (когнитивная радиооптика)	Цена (руб.)	Активная фазированная антенная решетка	Нейросетевая модель, (Offline самообучение)	Нейросетевые фильтры (обработка цифровых сигналов Offline)	Требуемые Вычислительные мощности	Размер нейросетевых инструментов датасеты, скрипты, библиотеки, архивы
Встраиваемые нейросетевые элементы на базе контроллеров и модулей ЭМИИА Разработчик: ЭМИИА Россия	500	_	_	_	от 1 MFLOPS до 30 GFLOPS CPU (в зависимости от задач и формата)	100 MB
Нейросетевые элементы в приборе EMERALD на базе Wi-Fi роутера Разработчик: Массачусетский технологический институт МІТ США	5 000	+		_	140-177 GFLOPS CPU/GPU	1.7 GB

AIIMA | EMIIA

Технико-экономические характеристики, программные инструменты, результаты исследований

 $\rightarrow \PiO\Delta POSHEE (PDF)$

ВЛАДИМИР СТАРОСТИН

СЕО/СТО – экономика/программирование C++/MATLAB/Simulink. Руководитель проекта, разработчик интеллектуальных систем. Опыт управления собственным бизнесом и разработки в сфере информационных технологий более 10 лет. Опыт разработок, управления процессом разработки. Опыт продвижения решений на рынок Германии и Швеции.

Автор **технологии** машинного на принципах когнитивной радиооптики.

Автор **технологии** определения емкости объекта по цифровым SVG контурам радиоволн и обучению нейронной сети на SVG данных для задач машинного зрения (радиооптика). Реализованные проекты: Комплексная система контроля Граад (КСК Граад)*: https://cscgraad.blogspot.com/

Опыт разработок программно-аппаратных решений и управления техническим процессом более 10 лет. Опыт сертификации. Опыт сотрудничества в сфере разработок с Huawei и Axis Communications.

Автор **топологии** активных фазированных антенных решеток для задач машинного зрения (когнитивная радиооптика). Реализованные проекты: Комплексная система контроля Граад (КСК Граад)*:https://cscqraad.blogspot.com/

НАТАЛЬЯ ФИЛИППОВА

COO – инженер по машинному обучению Кандидат филологических наук, MATLAB/Simulink. Опыт научной деятельности более 10 лет: www.ma.cfuv.ru.

Научная школа: «Теория языковых смыслов» (в процессе адаптации к голосовым и диалоговым функциям в Machine Learning для задач ЭМИИА). Автор методологии формирования библиотек машинного обучения для голосовых функций (диалоговая система) в offline-режиме.

дмитрий прокопенко

СМО (О) – маркетинговая стратегия, кадровая политика, операционный и стратегический маркетинг, PR.
Опыт управления собственным бизнесом в инжиниринге более 10 лет. Опыт продвижения и интеграции программно-аппаратных решений Ниаwei, Хіаоті на рынке ЕАЭС. Руководил процессом вывода проекта КСК ГРААД на рынки ЕАЭС, интернет-ресурс проекта: https://cscgraad.blogspot.com/ Реализованные проекты в инжиниринге и интеграции Группа компаний СИНЕРГИЯ:

АЛЕКСЕЙ ЛЮМАН

* Группа разработчиков проекта принимала участие в создании и коммерциализации комплексной системы контроля программно-аппаратного решения КСК ГРААД (умный дом, умный офис, умное производственное предприятие). На базе данного исследовательского потенциала сформирована архитектура разрабатываемой в данный момент технологии машинного зрения на принципах когнитивной радиооптики.

Интернет-ресурс проекта: https://cscgraad.blogspot.com/

Профили участников, дополнительная информация о проекте и команде: https://www.emiia.ru/p/information-economy.html

AIIMA | ANNME

124683 г. Москва, г. Зеленоград корп. 1818

Интернет-ресурс проекта: <u>emiia.ru</u>

Блог проекта: <u>blog.emiia.ru</u>

Репозиторий GitHub: github.com/EMIIA

+7 (916) 368-36-89 +7 (978) 898-60-83

<u>emiia@emiia.ru</u>