

INTRODUCTION

Context

Non-motorists — such as pedestrians and cyclists — are among the most vulnerable road users. Crashes involving non-motorists often result in severe injuries or fatalities, making it critical to understand and predict crash severity.

The Challange

- Can we accurately predict the severity of a crash based on conditions such as weather, road type, time of day, and environmental factors?
- The aim of this project is to <u>develop predictive models and use tools from DSA 5103 to predict crash</u> severity and identify the most significant risk factors for non-motorists.

ABOUT THE DATA

Data Source: Oklahoma Highway Safety Office website.

The Target variable is crash severity, and it has 5 levels: none, minor, possible, serious, and fatal.

Key Variables

- Weather Conditions (e.g., clear, rainy, foggy)
- Time of Day (e.g., daytime, nighttime)
- Road Type (e.g., highway, urban street)
- Environmental Conditions (e.g., lighting, road surface)

Data size

74122 observation, 67 variables (numerical and categorical with multiple levels)

CODE	CRASH_SEVERITY Level	Description
1	None	No injuries or significant damage.
2	Minor	Minimal injuries or property damage.
3	Possible	Potential injuries that may or may not require medical attention.
4	Serious	Severe injuries necessitating urgent medical care.
5	Fatal	Incidents resulting in fatalities.

EXPLORATORY DATA ANALYSIS (EDA)

Pie Chart of Incident Types

EXPLORATORY DATA ANALYSIS (EDA)

Crash Severity Over Time

DATA PREPARATION

Split data into training and testing sets, 80% for training, 20% for testing 28 variables modeled

MODELING APPROACH

Туре	Method	Detailed Classification
Unsupervised	K-Means Clustering	Clustering
	Multinomial Logistic Regression (MLR)	Statistical Model
	Support Vector Machine (SVM)	Classification and Regression
	Random Forest (RF)	Ensemble Learning
Supervised	Artificial Neural Networks (ANN)	Deep Learning
	Conditional Forest (CF)	Ensemble Learning (Tree-Based)
	Extreme Gradient Boosting (XGBoost)	Gradient Boosting Machine
	Stacking	Ensemble Learning (Meta-Modeling)

10-fold cross-validation was utilized to ensure the robustness and reliability of our model performance

CLUSTERING

Approach: K-means clustering applied on PCA-reduced data, visualized using t-SNE, grouped non-motorist crashes into five distinct clusters based on severity, environment, and temporal factors.

Silhouette Score (PAM): 0.561872

Cluster 1: Daytime crashes in clear weather, minor injuries.

Cluster 2: Urban intersection crashes, high occupancy, dense traffic risks.

Cluster 3: Night crashes, poor lighting, severe/fatal outcomes.

Cluster 4: Daytime crashes in clear weather, minor injuries.

Cluster 5: Hit-and-run crashes, varied severity, unpredictable risks.

STATISTICAL MODEL

Multinomial Logistic Regression

Metric	None	Possible	Minor	Serious	Fatal
Sensitivity	0.11969	0.74930	0.17570	0.09606	0.40455
Specificity	0.98830	0.33730	0.90093	0.93344	0.94162
Pos Pred Value	0.57407	0.35590	0.40075	0.24375	0.43204
Neg Pred Value	0.89493	0.73360	0.74348	0.82219	0.93508
Prevalence	0.11646	0.32820	0.27383	0.18255	0.09892
Detection Rate	0.01394	0.24600	0.04811	0.01754	0.04002
Detection Prevalence	0.02428	0.69110	0.12005	0.07194	0.09263

Metric	None	Possible	Minor	Serious	Fatal	Overall
F1- Score	0.4578	0.7586	0.8089	0.8618	0.9480	0.77 (Macro Avg)
AUC	0.6531	0.5861	0.6130	0.6113	0.8283	0.66 (Macro Avg)
G-Mean	0.7528	0.5243	0.3348	0.3235	0.2967	0.446 (Avg)

ML MODELS

Suport Vector Machine							
Class	Precision	Recall	F1_Score	Specificity	G_Mean		
None	0.6206897	0.1104294	0.1875000	0.9916477	0.3309186		
Possible	0.3586498	0.2130326	0.2672956	0.8593895	0.4278761		
Minor	0.3903743	0.5770751	0.4657097	0.5318275	0.5539895		
Serious	0.2727273	0.0219780	0.0406780	0.9867440	0.1472640		
Fatal	0.2297297	0.7338129	0.3499142	0.7449664	0.7393687		
AVG	0.3744342	0.3312656	0.2622195	0.8229150	0.4398834		

Artificial Neural Network							
Class	Precision	Recall	F1_Score	Specificity	G_Mean		
None	0.4594595	0.1042945	0.1700000	0.9848140	0.3204850		
Possible	0.3603604	0.1002506	0.1568628	0.9343201	0.3060493		
Minor	0.3747045	0.6264822	0.4689349	0.4568789	0.5350014		
Serious	1.0000000	0.0073260	0.0145455	1.0000000	0.0855921		
Fatal	0.2004132	0.6978417	0.3113965	0.7114094	0.7045929		
AVG	0.4789875	0.3072390	0.2243479	0.8174845	0.3903441		

	Random Forest							
Class	Precision	Recall	F1_Score	Specificity	G_Mean			
None	0.4600000	0.1411043	0.2159624	0.9794989	0.3717681			
Possible	0.3668478	0.3383459	0.3520209	0.7844588	0.5151877			
Minor	0.4228571	0.5849802	0.4908789	0.5852156	0.5850979			
Serious	0.4032258	0.1831502	0.2518892	0.9386910	0.4146341			
Fatal	0.3487395	0.5971223	0.4403183	0.8844146	0.7267074			
AVG	0.40033404	0.36894058	0.35021394	0.83445578	0.52267904			

	XG Boost						
Class	Precision	Recall	F1_Score	Specificity	G_Mean		
None	0.5227273	0.1411043	0.222222	0.9840547	0.3726316		
Possible	0.3738872	0.3157895	0.3423913	0.8048104	0.5041336		
Minor	0.3975000	0.6284585	0.4869832	0.5051335	0.5634318		
Serious	0.3120567	0.1611722	0.2125604	0.9196355	0.3849930		
Fatal	0.4240506	0.4820144	0.4511785	0.9321402	0.6703022		
AVG	0.40604436	0.3457077	0.34306712	0.8291548 6	0.49909844		

STACKED PERFORMANCE MEASURE

Stacking							
Class	Precision	Recall	F1_Score	Specificity	G_Mean		
None	0.8695652	0.1226994	0.2150538	0.9977221	0.3498855		
Possible	0.4420601	0.5162907	0.4763006	0.7594820	0.6261897		
Minor	0.4575342	0.6600791	0.5404531	0.5934292	0.6258675		
Serious	0.4500000	0.2307692	0.3050847	0.9362055	0.4648090		
Fatal	0.5206612	0.4532374	0.4846154	0.9567487	0.6585091		
AVG	0.54796414	0.4532374	0.4846154	0.89636552	0.54505216		

GRAPHS OF RF FEATURE RANK AND ROC CURVES

CONCLUSION, INSIGHTS AND RECOMMENDATIONS

Insights

Key Risk Factors

Time of Day and Lighting

Nighttime conditions significantly increase crash severity

Weather Conditions

• Clear weather is associated with less severe outcomes, while adverse weather can increase crash severity.

Road Type and Urban Density

Crashes at urban intersections are more frequent

Recommendations

Enhance Street Lighting

 Install or upgrade streetlights in high-risk areas, especially intersections and crosswalks

Weather-Responsive Traffic Systems

 Implement adaptive traffic control systems that adjust signal timings during adverse weather

Intersection Safety Measures

- Implement traffic-calming measures and dedicated non-motorist pathways at busy urban intersections
- Install smart signals with longer pedestrian crossing times and sensors that detect non-motorists to improve safety

THANK YOU, ANY QUESTION?