## Numbers

- Natural Numbers:  $\mathbb{N} = \{1, 2, 3, \ldots\}$
- Whole Numbers:  $\mathbb{N} \cup \{0\} = \{0, 1, 2, 3, \ldots\}$
- Integers:  $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Rational Numbers:  $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} , b \neq 0 \right\}$ . Rational Numbers comprise of fractions (includes all proper and improper fractions and mixed numbers). All terminating decimals (eg, 10.87) and recurring decimals (eg, 0.371 = 0.3717171...) are rational numbers because these can all be expressed as fractions. All integers are rational numbers.
- Irrational Numbers: numbers that cannot be expressed in the form  $\frac{a}{b}$ , where a and b are integers and  $b \neq 0$ . Eg.  $\pi$ ,  $\sqrt{2}$ ,  $\sqrt{5}$ ,  $-4\sqrt{7}$ , e, 2.75e, etc. Irrational numbers are non-recurring decimals. Any non-zero rational number multiplied to an irrational number results in an irrational number. For example,  $-\frac{3}{4}\pi$  is irrational.
- Perfect Squares:  $\{1, 4, 9, 16, 25, \ldots\}$
- Perfect Cubes:  $\{1, 8, 27, 64, \ldots\}$
- Prime Numbers: Positive integers at least 2 whose only positive divisors are 1 and itself.  $\{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$
- Composite Numbers: Positive integers ≥ 4 that are not prime, in other words, having factors apart from 1 and itself.

# Equality and Inequality Symbols

| Symbol   | Meaning                     | Example                  |
|----------|-----------------------------|--------------------------|
| =        | is equal to                 | $0.1 = \frac{1}{10}$     |
| <i>≠</i> | is not equal to             | $0.11 \neq \frac{1}{10}$ |
| >        | is greater than             | 0.1 > 0.01               |
| ≥        | is greater than or equal to | $a \geqslant 5$          |
| <        | is less than                | 0.05 < 5                 |
| €        | is less than or equal to    | $b \leqslant 5$          |

## Prime Factorization, HCF, LCM

• Example of prime factorization:

$$\begin{array}{c|cccc} 2 & 4356 \\ 2 & 2178 \\ 3 & 1089 \\ 3 & 363 \\ 11 & 121 \\ \hline & 11 \\ \end{array}$$

Hence  $4356 = 2^2 \times 3^2 \times 11^2$  (in index notation).

• Example of HCF and LCM using prime factorization:

$$4800 = 2^{6} \times 3 \times 5^{2}$$
  
 $5544 = 2^{3} \times 3^{2} \times 7 \times 11$   
 $HCF = 2^{3} \times 3$ 

[take common prime factors and lowest power of each]

$$LCM = 2^6 \times 3^2 \times 5^2 \times 7 \times 11$$

[take all prime factors and highest power of each]

• Examples of square roots and cube roots using prime factorization:

$$54756 = 2^{2} \times 3^{4} \times 13^{2}$$

$$\sqrt{54756} = 2 \times 3^{2} \times 13 = 234$$

$$1728 = 2^{6} \times 3^{3}$$

$$\sqrt[3]{1728} = 2^{2} \times 3 = 12$$

# Approximation

# Significant Figures

Rules of identifying number of significant digits:

- 1. All non-zero digits are significant.
- 2. Zeros between non-zero digits are significant.

Eg. 302 (3 sf) Eg. 10.2301 (6 sf)

1

3. In a whole number, zeros after the last nonzero digit may or may not be significant. It depends on the estimation being made.

## Eg.

$$7436000 = 7000000 (1 \text{ sf})$$

$$7436000 = 7400000 (2 \text{ sf})$$

$$7436000 = 7440000 (3 \text{ sf})$$

$$7436000 = 7436000 (4 sf)$$

$$7436000 = 7436000 (5 sf)$$

$$7436000 = 7436000 (6 \text{ sf})$$

4. In a decimal number, zeros before the 1<sup>st</sup> non-zero digit are not significant.

5. In a decimal number, zeros after the last non-zero digit are significant.

## **Decimal Place Rounding**

#### Examples:

$$0.7374 = 0.74 (2 dp)$$

$$58.301 = 58.30 (2 dp)$$

$$207.6296 = 207.630 (3 dp)$$

$$207.6296 = 207.63 (2 dp)$$

$$207.977 = 208.0 (1 dp)$$

$$207.977 = 207.98 (2 dp)$$

$$18.997 = 19.00 (2 dp)$$

## Standard Form

 $\pm A \times 10^n$ , where  $1 \le A < 10$  and n is an integer.

### Examples:

$$1350000 = 1.35 \times 10^6$$

$$0.000375 = 3.75 \times 10^{-4}$$

## **Common Prefixes**

| $10^{12}$  | trillion   | tera  | T     |
|------------|------------|-------|-------|
| $10^{9}$   | billion    | giga  | G     |
| $10^{6}$   | million    | mega  | M     |
| $10^{3}$   | thousand   | kilo  | k     |
| $10^{-3}$  | thousandth | milli | m     |
| $10^{-6}$  | millionth  | micro | $\mu$ |
| $10^{-9}$  | billionth  | nano  | n     |
| $10^{-12}$ | trillionth | pico  | р     |

## **Indices**

Rules of Indices:

Assume that a, b, m, n are non-zero.

$$a^0 = 1$$

$$a^m \times a^n = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$(a^n)^m = a^{nm}$$

$$a^{-n} = \frac{1}{a^n}$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

#### Caution:

- 1. For indices (powers) that are not integers, the above rules of indices hold only for a, b > 0.
- 2. Likewise, if some of the indices are negative or there is division by either a or b, then the above rules hold only for a, b > 0.

3. 
$$\sqrt{(-8)^2} = \sqrt{64} = 8$$
, NOT  $-8$ .

4. 
$$\sqrt[3]{-27} = -3$$
.

#### Equalities of Indices:

1. If 
$$a^m = a''$$
, then  $m = n$ .

2. If 
$$a^m = b^m$$
, then  $a = b$ .

# Percentage, Ratio, Rate

• To express a percentage as a fraction or decimal, divide by 100:

$$x\% = \frac{x}{100}$$
  
Eg,  $23.5\% = \frac{23.5}{100} = \frac{235}{1000} = \frac{47}{200}$   
Eg,  $401\% = \frac{401}{100} = 4.01$ 

• To express any number as a percentage, multiply it by 100%.

Eg, 
$$0.165 = 0.165 \times 100\% = 16.5\%$$
.

• Expressing a quantity A as a percentage of a quantity B:

$$\frac{A}{B} \times 100\%$$

Eg, Express 63.7 as a percentage of 98.

Answer: 
$$\frac{63.7}{98} \times 100\% = 65\%$$

In words, we say that 63.7 is 65% of 98.

 Increase or decrease a quantity by a given percentage:

Eg, Increase 45 by 2.4%:

Answer: 
$$45 \times \left(1 + \frac{2.4}{100}\right) = 45 \times 1.024 = 46.08$$

Eg, Decrease 45 by 90%:

Answer: 
$$45 \times \left(1 - \frac{90}{100}\right) = 45 \times 0.1 = 4.5$$

• Percentage Increase and Percentage Decrease:

When a quantity increases, the percentage increase is

$$\frac{\rm final\ value\ -\ initial\ value}{\rm initial\ value} \times 100\%$$

When a quantity dereases, the percentage decrease is

$$\frac{\text{initial (bigger) value} - \text{final (smaller) value}}{\text{initial value}} \times 100\%$$

Percentage increase will always be > 0 if the quantity has increased.

Percentage decrease will always be > 0 if the quantity has decreased.

Percentage change is

$$\frac{\rm final\ value\ -\ initial\ value}{\rm initial\ value} \times 100\%$$

regardless of whether the quantity has increased or decreased. Percentage change can be either

- positive or negative depending on whether the quantity has increased or decreased.
- When writing ratios such as a:b,a,b are positive integers. Always reduce ratios to the simplest form, eg, 10:6 is to be reduced to 5:3. The ratio a:b expressed in fraction form is  $\frac{a}{b}$ .

Eg, If 7 times of x is equal to 5 times of y, then x: y = 5: 7 (note the switching of the order)

- We can use ratios to increase and decrease quantities. For example, if we increase a quantity x in the ratio 6:5, the new quantity is  $\frac{6}{5}x$ ; if we decrease a quantity x in the ratio 5:6, the new quantity is  $\frac{5}{6}x$ .
- Various units of measurement:

Mass:

$$1 \text{ kg} = 1000 \text{ g}$$

$$1~\mathrm{g}=1000~\mathrm{mg}$$

Length:

$$1 \text{ km} = 1000 \text{ m}$$

$$1 \text{ m} = 100 \text{ cm}$$

$$1~\mathrm{cm} = 10~\mathrm{mm}$$

Area:

$$1 \text{ km}^2 = 10^6 \text{ m}^2$$

$$1 \text{ m}^2 = 10000 \text{ cm}^2$$

Volume:

$$1 l = 1000 ml$$

$$1 \text{ cm}^3 = 1 \text{ ml}$$

$$1 \text{ m}^3 = 10^6 \text{ cm}^3 = 1000 l$$

Time:

$$1 \text{ hr} = 60 \text{ min}$$

$$1 \min = 60 \sec$$

- Distance = Speed  $\times$  Time
- Average speed = (Total Distance) / (Total Time Taken)

• Conversion of units for speed:

$$26 \text{km/h} = 26000 \text{m/h} = \frac{26000}{3600} \text{m/s} = \frac{65}{9} \text{m/s}$$
  
 $35 \text{m/s} = 0.035 \text{km/s} = (0.035 \times 3600) \text{km/h} = 126 \text{km/h}$ 

• Density = Mass / Volume.

Units are usually  $g/cm^3$  or  $kg/m^3$ .

$$1g/cm^3 = 1000kg/m^3$$
.

Eg, 0.235g/cm<sup>3</sup> = 235kg/m<sup>3</sup>.

# Direct and Inverse Proportion

If y is directly proportional to x, then y = kx, where k is a constant and  $k \neq 0$ . The ratios  $\frac{x}{y}$  and  $\frac{y}{x}$  are constant. Furthermore, the graph on y against x (or of x against y) is a straight line through the origin. Graph showing that y is directly proportional to x:



If y is inversely proportional to x, then  $y = \frac{k}{x}$ , where k is a constant and  $k \neq 0$ . The product xy is constant.

Graph showing that y is inversely proportional to x:



# Map Scales

• Linear scale:

1:n means 1 unit length on map represents n units length on ground.

Eg. 1:5000 means

 $1~\mathrm{cm}$  represents  $5000~\mathrm{cm}$ 

which implies 1 cm represents 50 m  $\,$ 

which implies 1 cm represents 0.05 km  $\,$ 

• Representative Fraction (RF):

If the linear scale is 1:n, the RF is expressed as  $\frac{1}{n}$ .

Eg, if 3 cm represents 6 m, then RF is  $\frac{1}{200}$ .

• Area Scale:

If linear scale is 1 : 20000, then it means 1 cm represents 20000 cm which implies 1 cm represents 0.2 km which implies  $1^2$  cm<sup>2</sup> represents  $(0.2)^2$  km<sup>2</sup>

which implies 1 cm<sup>2</sup> represents 0.04 km<sup>2</sup>

## Number Patterns

Common number patterns:

• Constant difference

Eg, 
$$-5$$
,  $-2$ ,  $1$ ,  $4$ ,  $7$ ,  $10$ , ...

The  $n^{\text{th}}$  term, denoted  $T_n$ , is given by

$$T_n = a + d(n-1)$$

where a is the first term and d is the common difference.

For the sequence  $-5, -2, 1, 4, 7, 10, \ldots$ 

$$T_n = -5 + (n-1)(3) = 3n - 8.$$

Alternatively,

$$T_n = b + dn$$

where b is the term that would have come before the first term (ie, the "zeroth" term).

• Constant multiple (or common ratio)

Eg, 
$$3, 15, 75, 375, \dots$$

$$T_n = a \times r^{n-1}$$

where a is the first term, r is the common ratio, that is, r is the number that when multiplied a term gives the next term.

For the sequence 3, 15, 75, 375, ...

$$T_n = 3 \times 5^{n-1}.$$

• Perfect squares and perfect cubes

$$1, 4, 9, 16, 25, \dots : T_n = n^2$$

$$1, 8, 27, 64, 125, \dots : T_n = n^3$$

$$2, 8, 18, 32, 50, \dots : T_n = 2n^2$$

$$3, 10, 29, 66, 127, \dots : T_n = n^3 + 2$$

# Simultaneous Linear Equations

Method 1: Elimination

$$5x - 2y = 21$$
 —(1)

$$2x - y = 8$$
 —(2)

$$(1) \times 2 : 10x - 4y = 42$$
 —  $(3)$ 

$$(2) \times 5 : 10x - 5y = 40$$
 —(4)

$$(3) - (4) : y = 2$$

Sub into (1): 5x - 2(2) = 21

$$5x - 4 = 21$$

$$5x = 25$$

$$x = 5$$

Method 2: Substitution

$$5x - 2y = 21$$
 —(1)

$$2x - y = 8$$
 —(2)

From (2):

$$y = 2x - 8$$
 —(3)

Sub (3) into (1): 
$$5x - 2(2x - 8) = 21$$

$$5x - 4x + 16 = 21$$

$$x - 16 = 21$$

$$x = 5$$

Sub into (2):

$$2(5) - y = 8$$

$$10 - y = 8$$

$$y = 2$$

## Inequalities

Inequality sign is reversed when both sides are multiplied or divided by a negative number.

Eg. 
$$-3x + 4 \ge 12$$

$$-3x \ge 12 - 4$$

$$-3x \ge 8$$

$$x \le -\frac{8}{3}$$

Eg. 
$$3(x-1) < 4x + 1 \le 7 + 2x$$

$$3(x-1) < 4x+1 \mid 4x+1 < 7+2x$$

$$3x - 3 < 4x + 1$$
  $4x - 2x < 7 - 1$ 

$$3x - 3 < 4x + 1$$
  $4x - 2x \le 7 - 1$ 

$$3x - 4x < 1 + 3 \qquad 2x \le 6$$

$$-x < 4$$
  $x < 3$ 

$$x > -4$$

Ans: 
$$-4 < x \le 3$$



Eg. 
$$5x + 4 < 3x < 6 - 3x$$

$$5x + 4 \le 3x \quad | \quad 3x < 6 - 3x$$

$$2x \le -4 \mid 6x < 6$$

$$x \le -2$$
  $x < 1$ 



Ans:  $x \leq -2$ .

# Expansion

Eg.

$$2p - 3(p+1)$$

$$=2p - 3p - 3$$

$$= -p - 3$$

Eg.

$$5x - (x+1)(2x-3)$$

$$=5x - (2x^2 - 3x + 2x - 3)$$

$$=5x-2x^2+3x-2x+3$$

$$=-2x^2+6x+3$$

## Factorization and Identities

Factorization of Quadratic Expressions:

$$\therefore 5x^2 + 9x - 2 = (5x - 1)(x + 2)$$

Identities:

1. 
$$(a+b)^2 = a^2 + 2ab + b^2$$

2. 
$$(a-b)^2 = a^2 - 2ab + b^2$$

3. 
$$(a+b)(a-b) = a^2 - b^2$$

Common Factorisation Techniques:

• Common Factors

Eg. 
$$6a^3b - 2a^2b = 2a^2b(3a - 1)$$

• Grouping

Eg.

$$6p^{2} - 3pq - 10ap + 5aq$$
$$= 3p(2p - q) - 5a(2p - q)$$

$$= 3p(2p-q) - 3a(2p)$$

$$= (3p - 5a)(2p - q)$$

• Using Difference of Two Squares

Eg. 
$$9a^2 - 1$$

$$= (3a)^2 - (1)^2$$

$$=(3a+1)(3a-1)$$

Eg. 
$$16a^4 - 81$$

$$=(4a^2+9)(4a^2-9)$$

$$= (4a^2 + 9)(2a + 3)(2a - 3)$$

• Combination of methods:

Eg.  $3x^3 - 12xy^2 = 3x(x^2 - 4y^2)$  common factor =3x(x+2y)(x-2y) then diff. of 2 squares

Always try common factor first

Eg.

$$4 - p^{2} + 6pq - 9q^{2}$$

$$= 4 - (p^{2} - 6pq + 9q^{2})$$

$$= (2)^{2} - (p - 3q)^{2}$$

$$= (2 + (p - 3q))(2 - (p - 3q))$$

$$= (2 + p - 3q)(2 - p + 3q)$$

## Algebraic Fractions

Eg. 
$$\frac{x+2}{3} - \frac{x-5}{2} = \frac{2(x+2)}{6} - \frac{3(x-5)}{6}$$
$$= \frac{2(x+2) - 3(x-5)}{6}$$

$$=\frac{2x+4-3x+15}{6}$$

$$\frac{5}{x+1} - \frac{2}{x-3}$$

$$= \frac{5(x-3)}{(x+1)(x-3)} - \frac{2(x+1)}{(x-3)(x+1)}$$

$$= \frac{5(x-3) - 2(x+1)}{(x+1)(x-3)}$$

$$= \frac{5x - 15 - 2x - 2}{(x+1)(x-3)}$$

$$= \frac{3x - 17}{(x+2)(x-5)}$$

Eg.
$$\frac{5}{3x} + \frac{2}{x}$$

$$= \frac{5}{3x} + \frac{6}{3x}$$

$$= \frac{5+6}{3x}$$

$$=\frac{5}{3x}+\frac{6}{3x}$$

$$=\frac{5+6}{3x}$$

$$=\frac{11}{3x}$$

$$\frac{3}{(x+2)^2} - \frac{4}{x+2}$$

$$= \frac{3}{(x+2)^2} - \frac{4(x+2)}{(x+2)^2}$$

$$=\frac{3-4(x+2)}{(x+2)^2}$$

$$3 - 4x - 8$$

$$(x+2)^{2}$$

$$= \frac{3 - 4x - 8}{(x+2)^2}$$
$$= \frac{-4x - 5}{(x+2)^2}$$

Eg. 
$$\frac{7}{x^2 - 9} - \frac{1}{x - 3}$$

$$= \frac{7}{(x + 3)(x - 3)} - \frac{1}{x - 3}$$

$$= \frac{7}{(x + 3)(x - 3)} - \frac{x - 3}{(x - 3)^2}$$

$$= \frac{7 - (x + 3)}{(x + 3)(x - 3)}$$

$$= \frac{7 - x - 3}{(x + 3)(x - 3)}$$

$$= \frac{4 - x}{(x + 3)(x - 3)}$$

Eg.
$$\frac{3x+2}{x^2-4} + \frac{1}{x+2} - \frac{2}{x-2}$$

$$= \frac{3x+2}{(x+2)(x-2)} + \frac{1}{x+2} - \frac{2}{x-2}$$

$$= \frac{3x+2+(x-2)-2(x+2)}{(x+2)(x-2)}$$

$$= \frac{3x+2+x-2-2x-4}{(x+2)(x-2)}$$

$$= \frac{2x-4}{(x+2)(x-2)}$$

$$= \frac{2(x-2)}{(x+2)(x-2)}$$

$$= \frac{2}{x+2}$$

Eg.  

$$\frac{9}{x-5} + \frac{3}{5-x}$$

$$= \frac{9}{x-5} - \frac{3}{x-5}$$

$$= \frac{9-3}{x-5}$$

$$= \frac{6}{x-5}$$

Eg. 
$$\frac{2x}{3y - 8x} + \frac{11x}{80x - 30y}$$

$$= \frac{2x}{3y - 8x} + \frac{11x}{-10(3y - 8x)}$$

$$= \frac{2x}{3y - 8x} - \frac{11x}{10(3y - 8x)}$$

$$= \frac{20x - 11x}{10(3y - 8x)}$$

$$= \frac{9x}{10(3y - 8x)}$$

Eg.
$$\frac{4}{x^2 - 4} + \frac{1}{2 - x}$$

$$= \frac{4}{(x+2)(x-2)} - \frac{1}{x-2}$$

$$= \frac{4 - (x+2)}{(x+2)(x-2)}$$

$$= \frac{4 - x - 2}{(x+2)(x-2)}$$

$$= \frac{2 - x}{(x+2)(x-2)}$$

$$= \frac{-x - 2}{(x+2)(x-2)}$$

$$= -\frac{1}{x+2}$$

Eg.
$$\frac{6p^3}{7q} \div \frac{2p}{21q^2}$$

$$= \frac{6p^3}{7q} \times \frac{21q^2}{2p} \quad [\text{ do cancelling }]$$

$$= 9p^2q$$

Eg. 
$$\frac{4pq^2 + 4pqr}{9pqr^2 + 9pq^2r} = \frac{4pq(q+r)}{9pqr(r+q)}$$
$$= \frac{4}{9r}$$

Eg. 
$$\frac{5k^2 - 17k - 12}{5k^2 - 10k - 40} = \frac{(5k+3)(k-4)}{5(k^2 - 2k - 8)}$$
$$= \frac{(5k+3)(k-4)}{5(k-4)(k+2)}$$
$$= \frac{5k+3}{5(k+2)}$$

Eg. 
$$\frac{xy - z^2 - xz + yz}{y^2 - 2yz + z^2} \div \frac{11}{2xz + x^2 + z^2}$$

$$= \frac{xy - xz + yz - z^2}{y^2 - 2yz + z^2} \times \frac{2xz + x^2 + z^2}{11}$$

$$= \frac{x(y - z) + z(y - z)}{(y - z)^2} \times \frac{(x + z)^2}{11}$$

$$= \frac{(x + z)(y - z)}{(y - z)^2} \times \frac{(x + z)^2}{11}$$

$$= \frac{(x + z)^3}{11(y - z)}$$

Eg. 
$$\frac{1}{x} + 1$$

$$= \left(\frac{1}{x} + 1\right) \div (x+1)$$

$$= \frac{1+x}{x} \times \frac{1}{x+1}$$

$$= \frac{1}{x}$$

Eg.
$$\frac{1 - \frac{1}{x}}{1 - \frac{1}{x^2}}$$

$$= \left(1 - \frac{1}{x}\right) \div \left(1 - \frac{1}{x^2}\right)$$

$$= \left(\frac{x - 1}{x}\right) \div \left(\frac{x^2 - 1}{x^2}\right)$$

$$= \frac{x - 1}{x} \times \frac{x^2}{x^2 - 1^2}$$

$$= \frac{x - 1}{x} \times \frac{x^2}{(x + 1)(x - 1)}$$

$$= \frac{x}{x + 1}$$

# Making Subject of Formula

Eg: Make a the subject y = m(x-a) + b y - b = m(x-a) m(x-a) = y - b  $x - a = \frac{y - b}{m}$   $a = x - \frac{y - b}{m}$ 

Eg: Make x the subject ax - by = 3 - 2xax + 2x = 3 + byx(a+2) = by + 3 $x = \frac{by + 3}{a+2}$ 

Eg: Make d the subject  $T=0.25\pi d^2$   $\pi d^2=4T$   $d^2=\frac{4T}{\pi}$   $d=\pm\sqrt{\frac{4T}{\pi}}$  Note the  $\pm$  when taking square-roots in this type of

Eg: Make 
$$c$$
 the subject 
$$d = \frac{8-c}{c+7}$$
 
$$d(c+7) = 8-c$$
 
$$cd+7d = 8-c$$
 
$$cd+c = 8-7d$$
 
$$c(d+1) = 8-7d$$
 
$$c = \frac{8-7d}{d+1}$$

question.

Eg: Make q the subject

$$5a = \sqrt{\frac{b^2}{q} - \frac{3c}{4}}$$

$$25a^2 = \frac{b^2}{q} - \frac{3c}{4}$$

$$\frac{b^2}{q} = 25a^2 + \frac{3c}{4}$$

$$\frac{b^2}{q} = \frac{100a^2 + 3c}{4}$$

$$\frac{q}{b^2} = \frac{4}{100a^2 + 3c}$$

$$q = \frac{4b^2}{100a^2 + 3c}$$

Eg: Make y the subject  $\frac{x(yz-w^2)}{2} - \frac{y}{3} = 6y$ 

$$\frac{3x(yz - w^2) - \frac{y}{3} = 6y}{3x(yz - w^2) - 2y = 36y}$$
$$3xyz - 3w^2x - 2y = 36y$$
$$3xyz - 38y = 3w^2x$$
$$y(3xz - 38) = 3w^2x$$
$$y = \frac{3w^2x}{3xz - 38}$$

Eg: Make x the subject

$$p\sqrt{x} + q = r + s\sqrt{x}$$

$$p\sqrt{x} - s\sqrt{x} = r - q$$

$$\sqrt{x}(p - s) = r - q$$

$$\sqrt{x} = \frac{r - q}{p - s}$$

$$x = \left(\frac{r - q}{p - s}\right)^2$$

# Solving Quadratic Equations and Equations Involving Algebraic Fractions

Three methods of solving quadratic equations:

## 1. Factorisation

$$3x^{2} - 2x - 8 = 0$$

$$(3x + 4)(x - 2) = 0$$

$$3x + 4 = 0 \text{ or } x - 2 = 0$$

$$x = -\frac{4}{3} \text{ or } x = 2$$

## 2. Using General Formula

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
Eg.  $12x^{2} - x - 25 = 0$ 

$$a = 2, b = -1, c = -25$$

$$x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4(2)(-25)}}{2(2)}$$

$$x = \frac{1 \pm \sqrt{201}}{4}$$

$$x = \frac{1 + \sqrt{201}}{4} \text{ or } \frac{1 - \sqrt{201}}{4}$$

$$x = 3.79(2dp) \text{ or } -3.29(2dp)$$

### 3. Complete the Square

$$x^{2} - 8x + 13 = (x + p)^{2} + q$$

$$x^{2} - 8x + 13$$

$$= x^{2} - 8x + \left(\frac{8}{2}\right)^{2} - \left(\frac{8}{2}\right)^{2} + 13$$

$$= x^{2} - 8x + 16 - 16 + 13$$

$$= (x - 4)^{2} - 3$$
To Solve  $x^{2} - 8x + 13 = 0$ 
First Change To  $(x - 4)^{2} - 3 = 0$ 

$$(x - 4)^{2} = 3$$

$$x - 4 = \pm\sqrt{3}$$

$$x - 4 = \sqrt{3} \text{ or } x - 4 = -\sqrt{3}$$

$$x = \sqrt{3} + 4 \text{ or } x = -\sqrt{3} + 4$$

$$x = 5.73(2dp) \text{ or } 2.27(2dp)$$

Equations involving algebraic fractions:

$$3x = \frac{1}{x} - 4$$

$$3x^{2} = 1 - 4x$$

$$3x^{2} + 4x - 1 = 0$$

$$x = \frac{-4 \pm \sqrt{4^{2} - 4(3)(-1)}}{2(3)}$$

$$= \frac{-4 \pm \sqrt{28}}{6}$$

$$x = \frac{-4 + \sqrt{28}}{6} \quad \text{or} \quad x = \frac{-4 - \sqrt{28}}{6}$$

$$x = 0.22 \quad \text{or} \quad x = -1.55(2 \text{ d.p.})$$

## Eg:

$$x + 1 = \frac{20}{x + 2}$$

$$(x + 1)(x + 2) = 20$$

$$x^{2} + 3x + 2 = 20$$

$$x^{2} + 3x - 18 = 0$$

$$(x + 6)(x - 3) = 0$$

$$x + 6 = 0 \quad \text{or} \quad x - 3 = 0$$

$$x = -6 \quad \text{or} \quad x = 3$$

Eg: 
$$\frac{2-x}{x+1} + \frac{1}{x-3} = \frac{3}{5}$$

$$5(2-x)(x-3) + 5(x+1) = 3(x+1)(x-3)$$

$$5(2x-6-x^2+3x) + 5x+5 = 3(x^2-3x+x-3)$$

$$5(-x^2+5x-6) + 5x+5 = 3(x^2-2x-3)$$

$$-5x^2+25x-30+5x+5 = 3x^2-6x-9$$

$$8x^2-36x+16=0$$

$$2x^2-9x+4=0$$

$$(2x-1)(x-4)=0$$

$$2x-1=0 \text{ or } x-4=0$$

$$x=\frac{1}{2} \text{ or } x=4$$

Eg: 
$$\frac{2x+5}{x^2+4x+3} + \frac{2}{x+3} = 1$$
$$\frac{2x+5}{(x+1)(x+3)} + \frac{2}{x+3} = 1$$
$$2x+5+2(x+1) = (x+1)(x+3)$$
$$2x+5+2x+2 = x^2+4x+3$$
$$4x+7 = x^2+4x+3$$
$$x^2-4=0$$
$$x^2=4$$
$$x=\pm\sqrt{4}$$
$$x=2 \text{ or } x=-2$$

Eg: 
$$\frac{x^2 + 2}{(5x - 4)(2x - 1)} = \frac{1}{3}$$
$$3(x^2 + 2) = (5x - 4)(2x - 1)$$
$$3x^2 + 6 = 10x^2 - 13x + 4$$
$$7x^2 - 13x - 2 = 0$$
$$(7x + 1)(x - 2) = 0$$
$$\therefore 7x + 1 = 0 \quad \text{or} \quad x - 2 = 0$$
$$x = -\frac{1}{7} \quad \text{or} \quad x = 2$$