Solution

Section 2.7 – Coordinates, Basis and Dimension

Exercise

Suppose $v_1, ..., v_n$ is a basis for R^n and the n by n matrix A is invertible. Show that $Av_1, ..., Av_n$ is also a basis for \mathbb{R}^n .

Solution

Put the basis vectors $v_1, ..., v_n$ in the columns of an invertible matrix V. then $Av_1, ..., Av_n$ are the columns of AV. Since A is invertible, so is AV and its column give a basis.

Suppose $c_1 A v_1 + \dots + c_n A v_n = 0$. This is A v = 0 with $v = c_1 v_1 + \dots + c_n v_n$. Multiply by A^{-1} to get v = 0. By linear independence of v's, all $c_i = 0$. So, the Av's are independent.

Exercise

Consider the matrix $A = \begin{pmatrix} 1 & 0 & a \\ 2 & -1 & b \\ 1 & 1 & c \\ -2 & 1 & d \end{pmatrix}$

- a) Which vectors $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ will make the columns of A linearly dependent?

 b) Which vectors $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ will make the columns of A a basis for $\left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} : y + w = 0 \right\}$?
- c) For $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$, compute a basis for the four subspaces.

Solution

a) All linear combination of $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

b) To satisfy
$$b + d = 0$$
. For example,
$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$A \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + B \begin{pmatrix} 1 \\ 2 \\ 1 \\ -2 \end{pmatrix} + C \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix} ; A \neq 0$$

$$c) \quad \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 5 \\ 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 2 \\ 1 \\ -2 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 5 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & -2 \\ 1 & 1 & 5 \\ -2 & 1 & 2 \end{pmatrix} R_2 - 2R_1 \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -4 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{pmatrix} R_3 + R_2$$

$$= \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{cases} x_1 + x_3 = 0 \\ -x_2 - 4x_3 = 0 \end{cases}$$

The first 2 columns span the column space C(A).

Rank(\mathbf{A}) = 2 and $\begin{bmatrix} -1 & -4 & 1 \end{bmatrix}^T$ is a basis for the one-dimensional $N(\mathbf{A})$.

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} -3 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

Find a basis for x-2y+3z=0 in \mathbb{R}^3 .

Find a basis for the intersection of that plane with xy plane. Then find a basis for all vectors perpendicular to the plane.

Solution

This plane is the nullspace of the matrix

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The special solutions: $s_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ $s_2 = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}$ give a basis for the nullspace, and for the plane.

The intersection of this plane with the xy-plane is a line (x, -2x, 3x) and the vector $(1, -2, 3)^T$ lies in the xy-plane.

The vector $v_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ is perpendicular to both vectors s_1 and s_2 : the space vectors

perpendicular to a plane \mathbb{R}^3 is one-dimensional, it gives a basis.

Exercise

U comes from A by subtracting row 1 from row 3:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix} \quad and \quad U = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Find the bases for the two column spaces. Find the bases for the two row spaces. Find bases for the two nullspaces.

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 3R_2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{cases} x_1 - x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

a) The pivots are in the first two columns, so one possible basis for
$$C(A)$$
 is $\begin{cases} \begin{vmatrix} 1 \\ 0 \end{vmatrix}, \begin{vmatrix} 3 \\ 1 \end{vmatrix} \end{cases}$ and for

$$C(U)$$
 is $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}3\\1\\0\end{bmatrix}\right\}$.

- **b**) Both **A** and **U** have the same nullspace $N(\mathbf{A}) = N(\mathbf{U})$, with basis $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
- c) Both \boldsymbol{A} and \boldsymbol{U} have the same row space $C(A^T) = C(U^T)$, with basis $\begin{bmatrix} 1 & 0 \\ 3 & 1 \\ 2 & 1 \end{bmatrix}$

Write a 3 by 3 identity matrix as a combination of the other five permutation matrices. Then show that those five matrices are linearly independent. (Assume a combination gives $c_1P_1 + ... + c_5P_5 = 0$, and check entries to prove c_i is zero.) The five permutation matrices are a basis for the subspace of 3 by 3 matrices with row and column sums all equal.

$$\begin{split} P_1 = & \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad P_2 = & \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad P_3 = & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad P_4 = & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad P_5 = & \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \\ P_1 + P_2 + P_3 = & \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } P_4 + P_5 = & \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \\ P_1 + P_2 + P_3 - P_4 - P_5 = I \\ c_1 P_1 + c_2 P_2 + c_3 P_3 + c_4 P_4 + c_5 P_5 = & \begin{pmatrix} c_3 & c_1 + c_4 & c_2 + c_5 \\ c_1 + c_5 & c_2 & c_3 + c_4 \\ c_2 + c_4 & c_3 + c_5 & c_1 \end{pmatrix} = 0 \\ c_1 = c_2 = c_3 = 0 \; (diagonal) \Rightarrow & \begin{pmatrix} 0 & 0 + c_4 & 0 + c_5 \\ 0 + c_5 & 0 & 0 + c_4 \\ 0 + c_5 & 0 \end{pmatrix} = 0 \Rightarrow c_4 = c_5 = 0 \end{split}$$

Choose three independent columns of $A = \begin{pmatrix} 2 & 3 & 4 & 1 \\ 4 & 12 & 15 & 2 \\ 0 & 0 & 0 & 9 \\ 0 & 6 & 7 & 0 \end{pmatrix}$. Then choose a different three independent

columns. Explain whether either of these choices forms a basis for C(A).

Solution

$$\begin{pmatrix} 2 & 3 & 4 & 1 \\ 4 & 12 & 15 & 2 \\ 0 & 0 & 0 & 9 \\ 0 & 6 & 7 & 0 \end{pmatrix} R_2 - 2R_1 \begin{pmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 6 & 7 & 0 \end{pmatrix} R_4 - R_2 \begin{pmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & \frac{1}{2} & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 \end{pmatrix} \frac{1}{9} R_{3} \begin{pmatrix} 1 & 0 & \frac{1}{4} & \frac{1}{2} \\ 0 & 1 & \frac{7}{6} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$R_{1} - \frac{1}{2} R_{3} \begin{pmatrix} 1 & 0 & \frac{1}{4} & 0 \\ 0 & 1 & \frac{7}{6} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Rank(A) = 3, the columns space is 3 which form a basis of C(A). The variable is x_3

If
$$x_3 = 1 \Rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{4} & 0 \\ 0 & 1 & \frac{7}{6} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{cases} x_1 + \frac{1}{4}x_3 = 0 \\ x_2 + \frac{7}{6}x_3 = 0 \\ x_4 = 0 \end{cases} \rightarrow x_1 = -\frac{1}{4} \quad x_2 = -\frac{7}{6}$$

N(A) is spanned by $x_n = \begin{pmatrix} -\frac{1}{4} \\ -\frac{7}{6} \\ 1 \\ 0 \end{pmatrix}$, which gives the relation of the columns. The special solution

 x_n gives a relation $-\frac{1}{4}v_1 - \frac{7}{6}v_2 + v_3 = 0$. If we take any two columns from the first three columns and the column 4, they will span a three-dimensional space since there will be no relation among them. Hence, they form a basis of C(A).

Which of the following sets of vectors are bases for \mathbb{R}^2 ?

- a) $\{(2,1), (3,0)\}$
- b) $\{(0,0), (1,3)\}$

Solution

a)
$$k_1(2,1) + k_2(3,0) = (0,0)$$

 $k_1(2,1) + k_2(3,0) = (b_1,b_2)$
 $\begin{vmatrix} 2 & 3 \\ 1 & 0 \end{vmatrix} = -3 \neq 0$

Therefore, the vectors $\{(2,1), (3,0)\}$ are linearly independent and span \mathbb{R}^2 , so they form a basis for R^2

b)
$$k_1(0,0) + k_2(1,3) = (0,0)$$

 $k_1(0,0) + k_2(1,3) = (b_1,b_2)$
 $\begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix} = 0$

Therefore; the vectors $\{(0,0), (1,3)\}$ are linearly dependent, so they don't form a basis for \mathbb{R}^2 .

Exercise

Which of the following sets of vectors are bases for \mathbb{R}^3 ?

- a) $\{(1,0,0), (2,2,0), (3,3,3)\}$ c) $\{(2,-3,1), (4,1,1), (0,-7,1)\}$ b) $\{(3,1,-4), (2,5,6), (1,4,8)\}$ d) $\{(1, 6, 4), (2, 4,-1), (-1, 2, 5)\}$

Solution

a)
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{vmatrix} = 6 \neq 0$$
 Therefore, the set of vectors are linearly independent.

The set form a basis for R^3 .

b)
$$\begin{vmatrix} 3 & 2 & 1 \\ 1 & 5 & 4 \\ -4 & 6 & 8 \end{vmatrix} = 26 \neq 0$$
 Therefore, the set of vectors are linearly independent.

The set form a basis for R^3 .

c)
$$\begin{vmatrix} 2 & 4 & 0 \\ -3 & 1 & -7 \\ 1 & 1 & 1 \end{vmatrix} = 0$$
 Therefore, the set of vectors are linearly dependent.

The set don't form a basis for R^3 .

$$\begin{array}{c|cccc} d & \begin{vmatrix} 1 & 2 & -1 \\ 6 & 4 & 2 \\ 4 & -1 & 5 \end{vmatrix} = 0 \\ \end{array}$$

Therefore; the set of vectors are linearly dependent.

The set don't form a basis for R^3 .

Exercise

Let V be the space spanned by $v_1 = \cos^2 x$, $v_2 = \sin^2 x$, $v_3 = \cos 2x$

- a) Show that $S = \{v_1, v_2, v_3\}$ is not a basis for V.
- b) Find a basis for V.

Solution

a)
$$\cos 2x = \cos^2 x - \sin^2 x$$

 $k_1 \cos^2 x + k_2 \sin^2 x + k_3 \cos 2x = 0$
 $k_1 \cos^2 x + k_2 \sin^2 x + k_3 \left(\cos^2 x - \sin^2 x\right) = 0$
 $\left(k_1 + k_3\right) \cos^2 x + \left(k_2 - k_3\right) \sin^2 x = 0 \implies \begin{cases} k_1 + k_3 = 0 & \rightarrow k_1 = -k_3 \\ k_2 - k_3 = 0 & \rightarrow k_2 = k_3 \end{cases}$
If $k_3 = -1 \implies k_1 = 1$, $k_2 = -1$
 $\left(1\right) \cos^2 x + \left(-1\right) \sin^2 x + \left(-1\right) \cos 2x = 0$

This shows that $\{v_1, v_2, v_3\}$ is linearly dependent, therefore it is not a basis for V.

b) For $c_1 \cos^2 x + c_2 \sin^2 x = 0$ to hold for all real x values, we must have $c_1 = 0$ (x = 0) and $c_2 = 0$ $\left(x = \frac{\pi}{2}\right)$. Therefore, the vectors $v_1 = \cos^2 x$ $v_2 = \sin^2 x$ are linearly independent. $\mathbf{v} = k_1 \cos^2 x + k_2 \sin^2 x + k_3 \cos 2x$ $= \left(k_1 + k_3\right) \cos^2 x + \left(k_2 - k_3\right) \sin^2 x$

This proves that the vectors $v_1 = \cos^2 x$ and $v_2 = \sin^2 x$ span V. We can conclude that $v_1 = \cos^2 x$ and $v_2 = \sin^2 x$ can form a basis for V.

Find the coordinate vector of w relative to the basis $S = \{u_1, u_2\}$ for \mathbb{R}^2

a)
$$u_1 = (1, 0), u_2 = (0, 1), w = (3, -7)$$

d)
$$u_1 = (1, -1), u_2 = (1, 1), w = (0, 1)$$

a)
$$u_1 = (1, 0), u_2 = (0, 1), w = (3, -7)$$

b) $u_1 = (2, -4), u_2 = (3, 8), w = (1, 1)$
d) $u_1 = (1, -1), u_2 = (1, 1), w = (0, 1)$
e) $u_1 = (1, -1), u_2 = (1, 1), w = (1, 1)$

e)
$$u_1 = (1, -1), u_2 = (1, 1), w = (1, 1)$$

c)
$$u_1 = (1, 1), u_2 = (0, 2), w = (a, b)$$

Solution

a) We must first express w as a linear combination of the vectors in S; $w = c_1 u_1 + c_2 u_2$

$$(3,-7) = 3(1,0) - 7(0,1)$$

= $3u_1 - 7u_2$

Therefore,
$$(w)_{S} = (3,-7)$$

b) Solve $c_1 u_1 + c_2 u_2 = \mathbf{w} \implies c_1 (2, -4) + c_2 (3, 8) = (1, 1)$

$$\rightarrow \begin{cases} 2c_1 + 3c_2 = 1 \\ -4c_1 + 8c_2 = 1 \end{cases}$$

$$\begin{bmatrix} 2 & 3 & 1 \\ -4 & 8 & 1 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & \frac{5}{28} \\ 0 & 1 & \frac{3}{14} \end{bmatrix}$$

Therefore,
$$(w)_S = \left(\frac{5}{28}, \frac{3}{14}\right)$$

c) Solve $c_1 u_1 + c_2 u_2 = \mathbf{w} \implies c_1 (1,1) + c_2 (0,2) = (a,b)$

$$\rightarrow \begin{cases} \boxed{c_1 = a} \\ c_1 + 2c_2 = b \end{cases} \Rightarrow \boxed{c_2 = \frac{b - a}{2}}$$

Therefore,
$$(w)_S = (a, \frac{b-a}{2})$$

d) Solve $c_1 u_1 + c_2 u_2 = \mathbf{w} \implies c_1 (1,-1) + c_2 (1,1) = (0,1)$

$$\rightarrow \begin{cases} c_1 + c_2 = 0 \\ -c_1 + c_2 = 1 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} c_1 = -\frac{1}{2} \end{bmatrix} \quad \begin{bmatrix} c_2 = \frac{1}{2} \end{bmatrix}$$

Therefore,
$$(w)_S = \left(-\frac{1}{2}, \frac{1}{2}\right)$$

$$\begin{array}{ll} \textbf{\textit{e}}) \ \ \text{Solve} \ \ c_1 u_1 + \ c_2 u_2 = \textbf{\textit{w}} & \Rightarrow \ c_1 (1,-1) + c_2 (1,1) = (1,1) \\ \\ \rightarrow \begin{cases} c_1 + c_2 = 1 \\ -c_1 + c_2 = 1 \end{cases} \\ \\ \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \xrightarrow{rref} & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} c_1 = 0 \\ c_2 = 1 \end{bmatrix} \end{array}$$

Therefore, $(w)_S = (0, 1)$

Exercise

Find the coordinate vector of v relative to the basis $S = \{v_1, v_2, v_3\}$

a)
$$v = (2, -1, 3), v_1 = (1, 0, 0), v_2 = (2, 2, 0), v_3 = (3, 3, 3)$$

b)
$$v = (5,-12,3), v_1 = (1,2,3), v_2 = (-4,5,6), v_3 = (7,-8,9)$$

Solution

a) Solve
$$c_1v_1 + c_2v_2 + c_3v_3 = \mathbf{v} \implies c_1(1,0,0) + c_2(2,2,0) + c_2(3,3,3) = (2,-1,3)$$

$$\Rightarrow \begin{cases} c_1 + 2c_2 + 3c_3 = 2 \\ 2c_2 + 3c_3 = -1 \end{cases} \Rightarrow c_1 = 2 - 2c_2 - 3c_3 = 3 \\
\Rightarrow c_2 = \frac{-3c_3 - 1}{2} = -2 \\
\Rightarrow c_3 = 3 \Rightarrow c_3 = 1$$

Therefore, $(v)_S = (3, -2, 1)$

$$b) \text{ Solve } c_1 v_1 + c_2 v_2 + c_3 v_3 = \mathbf{v} \implies c_1 (1,2,3) + c_2 (-4,5,6) + c_2 (7,-8,9) = (5,-12,3)$$

$$\Rightarrow \begin{cases} c_1 - 4c_2 + 7c_3 = 5 \\ 2c_1 + 5c_2 - 8c_3 = -12 \\ 3c_1 + 6c_2 + 9c_3 = 3 \end{cases}$$

$$\begin{bmatrix} 1 & -4 & 7 & 5 \\ 2 & 5 & -8 & -12 \\ 3 & 6 & 9 & 3 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Rightarrow \begin{cases} c_1 = -2 \\ c_2 = 0 \\ c_3 = 1 \end{cases}$$

Therefore, $(v)_{S} = (-2, 0, 1)$

Show that $\{A_1, A_2, A_3, A_4\}$ is a basis for M_{22} , and express A as a linear combination of the basis vectors

a)
$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $A_4 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 6 & 2 \\ 5 & 3 \end{pmatrix}$

$$b) \quad A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \quad A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$$
, $A_1 = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Solution

a) Matrices $\{A_1, A_2, A_3, A_4\}$ are linearly independent if the equation

$$k_{1}A_{1} + k_{2}A_{2} + k_{3}A_{3} + k_{4}A_{4} = \mathbf{0}$$

$$k_{1}\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + k_{2}\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + k_{3}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + k_{4}\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \mathbf{0}$$

Has only the trivial solution.

For these matrices to span M_{22} , it must be expressed every matrix $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ as

$$\begin{aligned} k_1 A_1 + k_2 A_2 + k_3 A_3 + k_4 A_4 &= \mathbf{A} \\ k_1 \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + k_3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + k_4 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 2 \\ 5 & 3 \end{pmatrix} \end{aligned}$$

The 2 equations can be written as linear systems

$$k_1 + k_2 + k_3 = 0$$
 $k_1 + k_2 + k_3 = a_1$
 $k_2 = 0$ $k_2 = a_2$
 $k_1 + k_4 = 0$ $k_1 + k_4 = a_3$
 $k_3 = 0$ $k_3 = a_4$

$$\begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix} = -1 \neq 0$$
, that the homogeneous system has only the trivial solution.
$$\left\{ A_1, A_2, A_3, A_4 \right\} \text{ span } M_{22}$$

$$\begin{cases} k_1 + k_2 + k_3 &= 6 \\ k_2 &= 2 \end{cases}$$

$$\begin{cases} k_1 + k_2 + k_3 &= 6 \\ k_2 &= 3 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 & | & 6 \\ 0 & 1 & 0 & 0 & | & 2 \\ 1 & 0 & 0 & 1 & | & 5 \\ 0 & 0 & 1 & 0 & | & 3 \end{bmatrix} \xrightarrow{rref} \begin{cases} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{k_1 = 1} k_2 = 2$$

$$k_3 = 3$$

$$k_4 = 4$$

$$\mathbf{A} = A_1 + 2A_2 + 3A_3 + 4A_4$$

b) Matrices $\{A_1, A_2, A_3, A_4\}$ are linearly independent if the equation

$$\begin{aligned} k_1 A_1 + k_2 A_2 + k_3 A_3 + k_4 A_4 &= \mathbf{0} \\ k_1 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + k_2 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + k_3 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + k_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{0} \end{aligned}$$

Has only the trivial solution.

For these matrices to span M_{22} , it must be expressed every matrix $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ as

$$\begin{aligned} k_1 A_1 + k_2 A_2 + k_3 A_3 + k_4 A_4 &= \mathbf{A} \\ k_1 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + k_2 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + k_3 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + k_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \end{aligned}$$

The 2 equations can be written as linear systems

$$\begin{array}{llll} k_1 & = 0 & k_1 & = a_1 \\ k_1 + k_2 & = 0 & & k_1 + k_2 & = a_2 \\ k_1 + k_2 + k_3 & = 0 & & k_1 + k_2 + k_3 & = a_3 \\ k_1 + k_2 + k_3 + k_4 & = 0 & & k_1 + k_2 + k_3 + k_4 = a_4 \end{array}$$

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 1 \neq 0$$
, that the homogeneous system has only the trivial solution.
$$\left\{ A_1, A_2, A_3, A_4 \right\} \text{ span } M_{22}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 1 & 1 & 0 & 0 & | & 0 \\ 1 & 1 & 1 & 0 & | & 1 \\ 1 & 1 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & -1 \end{bmatrix} \begin{pmatrix} k_1 = 1 \\ k_2 = -1 \\ k_3 = 1 \\ k_4 = -1 \end{pmatrix}$$

$$\mathbf{A} = A_1 - A_2 + A_3 - A_4$$

c)
$$k_1 \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + k_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + k_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{k_1 = 1} k_2 = 1$$

$$\mathbf{A} = A_1 + A_2 - A_3 + 3A_4$$

Consider the eight vectors

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- a) List all of the one-element. Linearly dependent sets formed from these.
- b) What are the two-element, linearly dependent sets?
- c) Find a three-element set spanning a subspace of dimension three, and dimension of two? One? Zero?
- d) Which four-element sets are linearly dependent? Explain why.

- a) $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ zero vector is the only linearly dependent.
- **b**) The set that contains zero vector and any other vector.
- c) 2-dimension:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad or \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad or \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

1-dimensional subspace if we allow duplicates (zero vector) $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$

d) All four-element sets are linearly dependent in three-dimensional space.

Exercise

Find a basis for the solution space of the homogeneous linear system, and find the dimension of that space

a)
$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ -2x_1 - x_2 + 2x_3 = 0 \\ -x_1 + x_3 = 0 \end{cases}$$

d)
$$\begin{cases} x + y + z = 0 \\ 3x + 2y - 2z = 0 \\ 4x + 3y - z = 0 \\ 6x + 5y + z = 0 \end{cases}$$

$$b) \begin{cases} 3x_1 + x_2 + x_3 + x_4 = 0 \\ 5x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

$$e) \begin{cases} 2x_1 + x_2 + 3x_3 = 0 \\ x_1 + 5x_3 = 0 \\ x_2 + x_2 = 0 \end{cases}$$

c)
$$\begin{cases} x_1 - 3x_2 + x_3 = 0 \\ 2x_1 - 6x_2 + 2x_3 = 0 \\ 3x_1 - 9x_2 + 3x_3 = 0 \end{cases}$$

Solution

a)
$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ -2 & -1 & 2 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1 - x_3 = 0 \to x_1 = x_3} x_2 = 0$$

The solution: $(x_1, 0, x_1) = x_1(1, 0, 1)$

The solution space has dimension 1 and a basis (1, 0, 1)

$$b) \begin{bmatrix} 3 & 1 & 1 & 1 & 0 \\ 5 & -1 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 1 & \frac{1}{4} & 1 & 0 \end{bmatrix} \xrightarrow{x_3 = s} x_1 = -\frac{1}{4}x_3 = s$$

$$x_1 = -\frac{1}{4}x_3 = s$$

$$x_4 = t \quad x_2 = -\frac{1}{4}x_3 - x_4 = -\frac{1}{4}s - t$$

The solution: $(x_1, x_2, x_3, x_4) = (-\frac{1}{4}s, -\frac{1}{4}s - t, s, t)$ = $s(-\frac{1}{4}, -\frac{1}{4}, 1, 0) + t(0, -1, 0, 1)$

The solution space has dimension 2 and a basis $\left(-\frac{1}{4}, -\frac{1}{4}, 1, 0\right)$, $\left(0, -1, 0, 1\right)$

c)
$$\begin{bmatrix} 1 & -3 & 1 & 0 \\ 2 & -6 & 2 & 0 \\ 3 & -9 & 3 & 0 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1 - 3x_2 + x_3 = 0 \to x_1 = 3x_2 - x_3}$$

The solution:
$$(x_1, x_2, x_3) = (3x_2 - x_3, x_2, x_3)$$

= $x_2(3, 1, 0) + x_3(-1, 0, 1)$

The solution space has dimension 2 and a basis (3, 1, 0) and (-1, 0, 1)

$$d) \begin{bmatrix} 1 & 1 & 1 & 0 \\ 3 & 2 & -2 & 0 \\ 4 & 3 & -1 & 0 \\ 6 & 5 & 1 & 0 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -4 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x = 4z$$

The solution: (x, y, z) = (4z, -5z, z) = z(4, -5, 1)

The solution space has dimension 1 and a basis (4, -5, 1)

e)
$$\begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 5 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 No basis and dimension = 0

Exercise

If AS = SA for the shift matrix S. Show that A must have this special form:

$$If \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$then A = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$$

"The subspace of matrices that commute with the shift S has dimension _____."

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{bmatrix} = \begin{bmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow d = g = h = 0 \quad b = f \quad a = e = i$$

$$A = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$$

The subspace of matrices that commute with the shift S has dimension 3, because the matrix has only three variables.

Exercise

Find bases for the following subspaces of R^3

- a) All vectors of the form (a, b, c, 0)
- b) All vectors of the form (a, b, c, d), where d = a + b and c = a b.
- c) All vectors of the form (a, b, c, d), where a = b = c = d.

Solution

- a) The subspace can be expressed as span $S = \{(1,0,0,0), (0,1,0,0), (0,0,1,0)\}$ is a set of linearly independent vectors. Therefore; S forms a basis for the subspace, so its dimension is 3.
- **b**) The subspace contains all vectors (a, b, a+b, a-b) = a(1,0,1,1) + b(0,1,1,-1), the set $S = \{(1,0,1,1),(0,1,1,-1)\}$ is linearly independent vectors. Therefore; S forms a basis for the subspace, so its dimension is 2.
- c) The subspace contains all vectors (a, a, a, a) = a(1,1,1,1), we can express the set $S = \{(1,1,1,1)\}$ as span S and it is linearly independent. Therefore, S forms a basis for the subspace, so its dimension is 1.

Exercise

Find a basis for the null space of A.

a)
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix}$$

$$b) \quad A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 1 & 4 & 5 & 6 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8 \end{bmatrix}$$

Solution

a)
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -16 \\ 0 & 1 & -19 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1 = 16x_3 = 16t} \xrightarrow{x_2 = 19x_3 = 19t}$$

The general form of the solution of $A\mathbf{x} = \mathbf{0}$ is $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 16 \\ 19 \\ 1 \end{bmatrix}$, therefore the vector $\begin{bmatrix} 16 \\ 19 \\ 1 \end{bmatrix}$ forms a

basis for the null space of A.

b)
$$A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & 1 & -\frac{2}{7} \\ 0 & 1 & 1 & \frac{4}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1 = -x_3 + \frac{2}{7}x_4 = -t + \frac{2}{7}s} \rightarrow x_2 = -x_3 - \frac{4}{7}x_4 = -t - \frac{4}{7}s$$

The general form of the solution of $\mathbf{A}\mathbf{x} = \mathbf{0}$ is $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = t \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} \frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1 \end{bmatrix}$, therefore the vectors

$$\begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} and \begin{bmatrix} \frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1 \end{bmatrix}$$
 form a basis for the null space of A .

The general form of the solution of
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
 is
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = r \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
, therefore the

vectors
$$\begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ form a basis for the null space of A .

Find a basis for the subspace of \mathbf{R}^4 spanned by the given vectors

a)
$$(1,1,-4,-3)$$
, $(2,0,2,-2)$, $(2,-1,3,2)$

b)
$$(-1,1,-2,0)$$
, $(3,3,6,0)$, $(9,0,0,3)$

Solution

a)
$$\begin{pmatrix} 1 & 1 & -4 & -3 \\ 2 & 0 & 2 & -2 \\ 2 & -1 & 3 & 2 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 1 & -4 & -3 \\ 0 & 1 & -5 & -2 \\ 0 & 0 & 1 & -\frac{1}{2} \end{pmatrix}$$

A basis for the subspace is (1,1,-4,-3), (0,1,-5,-2), $(0,0,1,-\frac{1}{2})$

$$b) \begin{pmatrix} -1 & 1 & -2 & 0 \\ 3 & 3 & 6 & 0 \\ 9 & 0 & 0 & 3 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{6} \end{pmatrix}$$

A basis for the subspace is (1,-1,2,0), (0,1,0,0), $(0,0,1,-\frac{1}{6})$

Exercise

Determine whether the given vectors form a basis for the given vector space

a)
$$v_1(3, -2, 1), v_2(2, 3, 1), v_3(2, 1, -3), in \mathbb{R}^3$$

b)
$$\mathbf{v}_1 = (1, 1, 0, 0), \quad \mathbf{v}_2 = (0, 1, 1, 0), \quad \mathbf{v}_3 = (0, 0, 1, 1), \quad \mathbf{v}_4 = (1, 0, 0, 1), \quad for \mathbb{R}^4$$

c)
$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $M_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $M_3 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $M_4 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ M_{22}

Solution

$$\begin{array}{c|cccc} a & 3 & 2 & 2 \\ -2 & 3 & 1 \\ 1 & 1 & -3 \end{array} = 14 \neq 0$$

The given vectors are linearly independent and span \mathbb{R}^3 , so they form a basis for \mathbb{R}^3 .

$$\begin{array}{c|cccc} \boldsymbol{b} & \begin{vmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{vmatrix} = 2 \neq \boldsymbol{0} \end{array}$$

The given vectors are linearly independent and span \mathbb{R}^4 , so they form a basis for \mathbb{R}^4 .

$$\boldsymbol{M}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \boldsymbol{M}_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \boldsymbol{M}_3 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \boldsymbol{M}_4 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \boldsymbol{M}_{22}$$

$$c) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$$

They form a basis for M_{22} .

Exercise

Find a basis for, and the dimension of, the null space of the given matrix $\begin{bmatrix} 2 & 1 & -1 & 1 \\ 4 & -2 & -2 & 1 \end{bmatrix}$

Solution

$$\begin{bmatrix} 2 & 1 & -1 & 1 \\ 4 & -2 & -2 & 1 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -\frac{1}{2} & \frac{3}{8} \\ 0 & 1 & 0 & \frac{1}{4} \end{bmatrix} \xrightarrow{x_1 - \frac{1}{2}x_3 + \frac{3}{8}x_4 = 0} x_2 + \frac{1}{4}x_4 = 0$$

$$x_1 = \frac{1}{2}x_3 - \frac{3}{8}x_4$$

 $x_2 = -\frac{1}{4}x_4$

$$x = x_3 \begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -\frac{3}{8} \\ \frac{1}{4} \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{4} \\ 0 \\ 1 \end{bmatrix}$$

The bases are:
$$\begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 and
$$\begin{bmatrix} -\frac{3}{8} \\ \frac{1}{4} \\ 0 \\ 1 \end{bmatrix}$$

Dimension: 2