Worksheet 1: SMP

Rin Meng 51940633

January 9, 2025

1 Build intuition through examples.

From this point onwards, we will read $\mathbf{Prefers}(x, y)$ as x prefers y over some other option.

- 1. Small and trivial instances of the problem, consider these instances:
 - (a) Only one student s and one employer e:
 - Students: s_1
 - Employers: e_1
 - Preferences:
 - A. Prefers (s_1, e_1)
 - B. **Prefers** (e_1, s_1)
 - Triviality: Only one student and one employer, so there is only one match.
 - (b) Equal preferences for all students and employers:
 - i. Students: s_1, s_2
 - ii. Employers: e_1, e_2
 - iii. Preferences:
 - A. **Prefers** $(s_1, e_1 \vee e_2)$
 - B. **Prefers** $(s_2, e_1 \vee e_2)$
 - C. **Prefers** $(e_1, s_1 \vee s_2)$
 - D. **Prefers** $(e_2, s_1 \vee s_2)$
 - iv. Triviality: All students and employers have indifferent preferences, so there are multiple stable matchings.

- (c) Perfectly matched preferences between students and employers:
 - i. Students: s_1, s_2
 - ii. Employers: e_1, e_2
 - iii. Preferences:
 - A. Prefers (s_1, e_1)
 - B. Prefers (s_2, e_2)
 - C. Prefers (e_1, s_1)
 - D. Prefers (e_2, s_2)
 - iv. Triviality: All are perfectly matched, therefore there is only one stable matching.
- 2. Potential solutions to these instances:
 - (a) Only one student s and one employer e:
 - The only stable matching is (s_1, e_1) .
 - This solution is trivial but is optimal as well.
 - (b) Equal preferences for all students and employers:
 - There are multiple stable matchings: $(s_1, e_1), (s_2, e_2)$ and $(s_1, e_2), (s_2, e_1)$.
 - This solution is optimal, but not unique.
 - (c) Perfectly matched preferences between students and employers:
 - The only stable matching is $(s_1, e_1), (s_2, e_2)$.
 - This solution is optimal and unique.

There are many ways to conclude if a solution is better. When we consider fairness and satisfaction, we may value **Instance b** more than others. However, when we consider uniqueness and optimality, we may value **Instance c** more than others.

2 Developing a Formal Problem Specification

- 1. Notation for describing the problem instance.
 - (a) Let $S = \{s_1, s_2, \dots, s_n\}$ be the set of students.
 - (b) Let $E = \{e_1, e_2, \dots, e_n\}$ be the set of employers.

- (c) Student's preference list $P(s_i)$, which is a ranked list of employers from most preferred to least preferred.
- (d) Employer's preference list $P(e_j)$, which is a ranked list of students from most preferred to least preferred.
- (e) A matching is a bijection $M: S \to E$, or a set of pairs $M = \{(s, e)\}$ where s and e are matched uniquely.
- (f) A blocking pair (s_i, e_j) is a pair of student-employer that prefer each other over their current match.
 - i. s_i prefers e_i over $M(s_i)$.
 - ii. e_i prefers s_i over $M(e_i)$.

2. Notation for describing a potential solution

- (a) A set of potential matches $M = \{(s_1, e_1), (s_2, e_2)\}$ of student-employer pairs.
- (b) Valid if and only if every student and employer is assigned exactly one (uniqueness).

3. Good solutions

- (a) Optimality
 - i. A solution is student-optimal if it provides the best possible match for every student.
 - ii. A solution is employer-optimal if it provides the best possible match for every employer.

(b) Uniqueness

- i. If a unique stable matching exists, it is the only correct solution.
- ii. If multiple stable matchings exist, we will pick the one that maximizes a criterion (e.g., student happiness, fairness).

(c) Stability

- i. No blocking pairs exist in the matching.
- ii. A matching M is stable if there exists no student-employer pair (s_i, e_j) such that

- A. s_i prefers e_j over $M(s_i)$, the employer currently matched with s_i .
- B. e_j prefers s_i over $M(e_j)$, the student currently matched with e_j .