Automatic Optimization of Arrays in Affine Loop Nests

Somashekaracharya G Bhaskaracharya 1,2 , *Advisor*: Uday Bondhugula 1

Indian Institute of Science¹ National Instruments²

Storage Optimization

Basic Goal Reuse memory locations for values without overlapping lifetimes

Reuse within a given array or across different arrays

Crucial for data-intensive programs

- run larger problem size with a fixed amount of main memory stencils, image processing applications, DSL compilers
- affine loop-nests

Contracting A Particular Array

```
for(t=1; t<=N; i++)</pre>
 for(i=1; i<=N; i++)</pre>
/*S*/ A[t,i] = f(A[t-1,i-1] + A[t-1,i]
         + A[t-1,i+1]);
```

(a) 1-d stencil using \mathbb{N}^2 storage

Dependences (1, -1), (1, 0) and (1, 1)

Live-out A[T, *]

Array A can be contracted to size $2 \times N$. Optimal?

```
for(t=1; t<=N; i++)</pre>
for(i=1; i<=N; i++)</pre>
/*S*/A[(i-t+N) % (N+1)] = f(A[(i-t+N) % (N+1)]
                     + A[(i-t+1+N) \% (N+1)]
                   + A[(i-t+2+N) \% (N+1)]);
```

(b) Array contracted to N+1 cells. Storage optimal!

Intra-Array Reuse – Typical Approach

Contract array along one or more directions to fixed sizes

Step 1: Determine *good* directions

- canonical directions need not be good ones
- can be difference between $N^2, 2N, N+1$ storage for given $N \times N$ array

Step 2: Minimize the array size along these directions

- thoroughly studied by Lefebvre and Feautrier [1998]

- No good heuristics for **Step 1**
- Darte et al [2005], Lefebvre and Feautrier [1998]
- work with canonical basis or assume that directions are given.

An Array Partitioning Approach

Storage Partitioning Hyperplane

Partitions the iteration space such that each partition uses a single memory location.

```
`t⇒N•••••
(-1,1)
tal···ian
```

Storage hyperplane (-1,1) creating (2N-1) partitions. Good Directions? Hyperplanes with good orientations Contraction? Minimize the number of partitions created **Dimensionality?** Number of storage hyperplanes found

Conflicting indices $\vec{i} \bowtie \vec{j}$

Two array indices $\vec{i}, \vec{j}, \ (\vec{i} \neq \vec{j})$, conflict with each other and the conflict relation $ec{i}\Joinec{j}$ holds if the corresponding array elements are simultaneously live under the given schedule θ .

```
for(i=2; i<=n; i++)
  fib[i] = fib[i-1] + fib[i-2];
result = fib[n];
Dependences? (i-2) \rightarrow_{RAW} i, (i-1) \rightarrow_{RAW} i
Live Out? fib(n)
                                  Conflicts? i \bowtie (i-1)
```

Modulo storage mapping: $fib[i] \rightarrow fib[i \mod 2]$

Conflict Satisfaction

Conflict $\vec{i}\bowtie\vec{j}$ is satisfied by hyperplane $\vec{\Gamma}$ if $\vec{\Gamma}.\vec{i}-\vec{\Gamma}.\vec{j}\neq 0$.

Conflict Set Specification

```
for(t=1; t<=N; i++)</pre>
   for(i=1; i<=N; i++)</pre>
/*S*/ A[t,i] = A[t,i-1] + A[t-1,i];
for(i=1; i<=N; i++)</pre>
   result = result + A[i,N] + A[N,i];
                                           \uparrow t=N• (•t'; i'•) •
        t<del>=N+ + + + +</del>
```

The flow dependences. Live-out portion in yellow.

Conflicts in different conflict polyhedra.

Conflicting indices must be mapped to different partitions

Hyperplane (1,0) Satisfies blue, green conflicts **Hyperplane** (0, 1) Satisfies red conflicts Modulo Storage Mapping $A[t,i] \to A[t \mod N, i \mod N]$ ⇒ No contraction!

But... what about $A[t,i] \rightarrow A[(i-t) \mod (2N-1)]$?

Heuristic To Find Storage Hyperplanes

```
Conflict Set CS = K_1 \cup K_2 \cup \cdots \cup K_l
Conflict satisfaction (\vec{\Gamma}.\vec{s} - \vec{\Gamma}.\vec{t}) \ge 1 \lor (\vec{\Gamma}.\vec{s} - \vec{\Gamma}.\vec{t}) \le -1
```

Pair of decision variables x_{1i}, x_{2i} for each conflict polyhedron K_i

```
x_{1i} = \begin{cases} 1 \text{ if } (\vec{\Gamma}.\vec{s} - \vec{\Gamma}.\vec{t}) \ge 1, \ \forall \ \vec{s} \bowtie \vec{t} \in K_i, \\ 0 \text{ if otherwise.} \end{cases}
x_{2i} = \begin{cases} 1 \text{ if } (\vec{\Gamma}.\vec{s} - \vec{\Gamma}.\vec{t}) \leq -1, \ \forall \ \vec{s} \bowtie \vec{t} \in K_i, \\ 0 \text{ if otherwise.} \end{cases}
```

Conflict satisfaction count η $\eta = \sum_{i=1}^{i=l} (x_{1i} + x_{2i})$

Impacts Dimensionality

 $\uparrow \downarrow \eta \implies \downarrow \uparrow \#$ unsatisfied polyhedra **Objective I** Maximize η

Bound on #partitions $|\vec{\Gamma}.\vec{s} - \vec{\Gamma}.\vec{t}| \leq (\vec{u}.\vec{P} + w)$ $\forall \vec{s} \bowtie \vec{t} \in CS$ $\uparrow \downarrow (\vec{u}.\vec{P} + w) \implies \uparrow \downarrow \#$ partitions **Objective II** Minimize $(\vec{u}.\vec{P} + w)$ **Affects** Storage size

Iterate after eliminating satisfied conflicts from the conflict set.

Intra-Array Reuse Example Revisited

```
t=N• (t'; i')
                  (1,0),(0,1) don't satisfy all conflicts
 (-1,1) Satisfies all conflicts creating {f 2N-1} partitions
                   (-2,1) Satisfies all conflicts creating 3N-2 partitions

\begin{array}{c}
t=1 \\
i=1
\end{array}

                   ({f -3,1}) Satisfies all conflicts creating 4N-3 partitions
Storage Mapping A[t,i] \to A[(i-t) \bmod (2N-1)]
```

Inter-Array Reuse — Typical Approach

Decoupling intra-array from inter-array reuse - e.g. Lefebvre and Feautrier (1998), De Greef et al (1997)

Storage as well as dimension optimal!

- I. Contract each individual array separately
- II. Exploit inter-array reuse opportunities Build the array interference graph – edge between nodes (statements) S_i and S_j $\implies S_i$ prematurely overwrites value computed by S_i (or vice-versa) Greedy coloring of array interference graph statements with same colour write to same data structure rectangular hull of their contracted arrays

Ping-pong style stencil – an example

```
for (t=1; t<=N; t++){</pre>
 for (i=1; i<=N; i++)</pre>
    P[i] = f(Q[i-1], Q[i], Q[i+1]); /*S1*/
  for (i=1; i<=N; i++)</pre>
    Q[i] = P[i]; /*S2*/
for(i=1; i<=N; i++) result += Q[N][i];</pre>
      Arrays P and Q are already contracted to size N
```

Graph colouring: S_1, S_2 cannot write to same data structure P[i] and Q[i] are simultaneously live.

Better Solution $S_i(t,i) \to A[(i-t) \bmod (N+1)], \quad j=1,2$ Need unified approach to exploit intra-array and inter-array reuse

Global Unified Array Space

```
I. Convert to single-assignment form
- statement S_j writes to own local array space A_j (S_j(\vec{i}) writes to A_j[\vec{i}])
```

II. Unify local array spaces into (d+1)-d global array space A

```
A[j] = A_j, padded with (d - d_j) dimensions
for(t=1; t<=N; t++){</pre>
  for(i=1; i<=N; i++)</pre>
/*SO*/A[O,t,i]=f((i>1&&t>1?A[1,t-1,i-1]:Q[i-1]),
                 (t>1?A[1,t-1,i]:Q[i]),
                 (i<N\&\&t>1?A[1,t-1,i+1]:Q[i+1]));
  for(i=1; i<=N; i++)</pre>
/*S1*/A[1,t,i] = A[0,t,i];
for(i=1; i<=N; i++) result += A[1,N,i];</pre>
```

Outermost dimension to index local array spaces

- Partition global array space separately with hyperplanes Γ_s , Γ_t for statements S_s, S_t
- Hyperplane also characterized by its offset
- constant shift of a local array space can enable inter-array reuse

Conflict Satisfaction In Global Array Space

A conflict $\vec{i} \bowtie \vec{j}$ in global array space such that $\vec{i} \in A[s]$ and $ec{j} \in A[t]$ is said to be satisfied by hyperplanes $ec{\Gamma}_s$ and Γ_t with offsets δ_s and δ_t if $\Gamma_s.\vec{i} + \delta_s - \Gamma_t.\vec{j} - \delta_t \neq 0$.

Storage Hyperplanes For Global Array Space

```
Conflict Set
                            CS = CS_{intra} \cup CS_{inter} = K_1 \cup K_2 \cup \cdots \cup K_l
                            For each statement S_j, with offsets \delta_i^{(0)}, \delta_i^{(1)}, \ldots, \delta_i^{(m-1)},
       To Find
                               m partitioning hyperplanes ec{\Gamma}_i^{(0)}, ec{\Gamma}_i^{(1)}, \ldots, ec{\Gamma}_i^{(m-1)}
```

- An intra-statement conflict associated with S_i
- satisfied by atleast one of the hyperplanes found for S_i
- An inter-statement conflict associated with S_i and S_k — satisfied by pair of hyperplanes $ec{\Gamma}_i^{(l)}$ and $ec{\Gamma}_k^{(l)}$ found at same level l

An Integrated Heuristic

```
Conflict satisfaction (\vec{\Gamma_j}.\vec{s} + \delta_j - \vec{\Gamma_k}.\vec{t} - \delta_k) \ge 1 \ \lor
                                                (\vec{\Gamma_i}.\vec{s} + \delta_i - \vec{\Gamma_k}.\vec{t} - \delta_k) \le -1
```

A pair of decision variables x_{1i}, x_{2i} for each conflict polyhedron K_i $x_{1i} = 1 \quad if \quad (\vec{\Gamma_j}.\vec{s} + \delta_j - \vec{\Gamma_k}.\vec{t} - \delta_k) \ge 1 \quad else \quad 0, \ \forall \ \vec{s} \bowtie \vec{t} \in K_i$ $x_{2i} = 1 \quad if \quad (\vec{\Gamma_j}.\vec{s} + \delta_j - \vec{\Gamma_k}.\vec{t} - \delta_k) \le -1 \quad else \quad 0, \ \forall \ \vec{s} \bowtie \vec{t} \in K_i$

Bounds for conflicts associated with statement S_i $\begin{array}{l} \text{Intra-statement}: \quad |\vec{\Gamma_{j}}.\vec{s} - \vec{\Gamma_{j}}.\vec{t}\,| \leq (\vec{u_{j}}.\vec{P} + w_{j}) \; \forall \vec{s} \bowtie \vec{t} \in CS_{intra} \\ \text{Inter-statement}: \quad |\vec{\Gamma_{j}}.\vec{s} + \delta_{j} - \vec{\Gamma_{k}}.\vec{t} - \delta_{k} \;| \leq (\vec{u_{j}}.\vec{P} + w_{j}') \; \forall \vec{s} \bowtie \vec{t} \in CS_{inter} \end{array}$

Inter-statement polyhedron associated with S_j must be satisfied only if $ec{u}_j' = ec{u}_j$ III. Maximize Conflict Satisfaction I. Maximize Conflict Satisfaction

 $\eta_{intra} = \sum_{\forall i, K_i \in CS_{intra}} (x_{1i} + x_{2i})$ II. Minimize $(\vec{u}_j.\vec{P}+w_j)$ for each

statement S_i Affects storage size

 $\eta_{inter} = \sum_{\forall i, K_i \in CS_{inter}} (x_{1i} + x_{2i})$ IV. Minimize $(\vec{u}_i'.\vec{P} + w_i')$ for each statement S_i Affects storage size

Iterate after eliminating satisfied conflicts from the conflict set

Ping-Pong Style Stencil – Example Revisited

```
t=N (t;i)
                      t=N (t,i)
(t,i)
                       (t,i)
i=1 \\ i=1 \\ (0,-1,1) i=N
```

(a) Intra and inter-statement conflicts. (b) (0, -1, 1) satisfies all conflicts

 $(\mathbf{0}, \mathbf{0}, \mathbf{1}), (\mathbf{0}, \mathbf{1}, \mathbf{0})$ Do not satisfy all conflicts

 $(\mathbf{0}, -\mathbf{1}, \mathbf{1})$ Satisfies all conflicts creating $\mathbf{N} + \mathbf{1}$ partitions $(\mathbf{0}, \mathbf{-2}, \mathbf{1})$ Satisfies all conflicts creating N+2 partitions

 $(\mathbf{0}, -\mathbf{3}, \mathbf{1})$ Satisfies all conflicts creating N+3 partitions Storage Mapping $A[j,t,i] \rightarrow A[(i-t) \bmod (N+1)]$ Statement S1 is a redundant copy statement!

Summary

- Unified heuristic for intra-array and inter-array storage reuse
- array space partitioning to find good storage hyperplanes Heuristic driven by a fourfold objective function.
- greedy conflict satisfaction (impacts the dimensionality). minimizes the partitions (minimizes dimension sizes).
- factors in inter-statement conflicts (exploits inter-statement reuse).
- Developed SMO tool—a polyhedral storage optimizer. effective on several real-world examples.
- storage mappings which are asymptotically better than those by existing techniques.