Refilling Fixed-Capacity Containers

Gilles Gnacadja

Research and Development Information Systems, Amgen
Thousand Oaks, California, USA

http://math.GillesGnacadja.info/

California State University Channel Islands
Summer Mathematics
Research Experience for Undergraduates

18 July 2012

- 1 Steady-State Refilling in a Single-Stage Retrieval Process
 - The Single-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 2 Steady-State Refilling in a Multi-Stage Retrieval Process
 - The Multi-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 3 Asymptotic Equidistribution of Congruence Classes
 - The Theorem
 - The Proof

- Steady-State Refilling in a Single-Stage Retrieval Process
 - The Single-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 2 Steady-State Refilling in a Multi-Stage Retrieval Process
 - The Multi-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 3 Asymptotic Equidistribution of Congruence Classes
 - The Theorem
 - The Proof

Retrieve one ball from each of 20 randomly selected containers

Refill each empty container with 5 balls

$$n=1$$

$$n = 2$$

$$n = 3$$

$$n = 4$$

$$n = 5$$

$$n = 6$$

$$n \to \infty$$

Retrieve one ball from each of 20 randomly selected containers

Refill each empty container with 5 balls

$$n = 1$$
 refilled = 0
 $n = 2$ refilled = 0
 $n = 3$ refilled = 0
 $n = 4$ refilled = 0
 $n = 5$
 $n = 6$
 \vdots

Retrieve one ball from each of 20 randomly selected containers

Refill each empty container with 5 balls

$$n = 1$$
 refilled = 0
 $n = 2$ refilled = 0
 $n = 3$ refilled = 0
 $n = 4$ refilled = 0
 $n = 5$ refilled = ?
 $n = 6$ refilled = ?
 $n = 6$ refilled = ?

Retrieve one ball from each of 20 randomly selected containers

Refill each empty container with 5 balls

$$n = 1$$
 refilled = 0
 $n = 2$ refilled = 0
 $n = 3$ refilled = 0
 $n = 4$ refilled = 0

$$n = 5$$
 refilled = ?
 $n = 6$ refilled = ?

$$\begin{array}{ll}
\vdots \\
n \to \infty & \text{refilled} \to 4 \\
\text{Goal: Prove this}
\end{array}$$

- 1 Steady-State Refilling in a Single-Stage Retrieval Process
 - The Single-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 2 Steady-State Refilling in a Multi-Stage Retrieval Process
 - The Multi-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 3 Asymptotic Equidistribution of Congruence Classes
 - The Theorem
 - The Proof

Refilling Events

Container i is refilled at the *n*th pass

The cumulative number of times container i has been selected since the first pass just became a multiple of d=5 at the *n*th pass.

The cumulative number of times container i has been selected since the first pass is a multiple of d=5 at the *n*th pass.

Refilling Events

Container *i* is refilled at the *n*th pass

The cumulative number of times container i has been selected since the first pass just became a multiple of d at the nth pass.

Container *i*is selected
at the *n*th
pass

The cumulative number of times container i has been selected at passes $1, \ldots, n-1$ is congruent to d-1 modulo d.

Probability of Refilling Events

Container i is refilled at the *n*th pass Container i is selected at the *n*th pass

cumulative number times container i has been selected at passes $1, \ldots, n-1$ is congruent to d-1 modulo d.

probability =
$$\frac{M}{N}$$

(M := #(Selected))

probability $\xrightarrow[n\to\infty]{1} \frac{1}{d}$

(from upcoming theorem)

- Steady-State Refilling in a Single-Stage Retrieval Process
 - The Single-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 2 Steady-State Refilling in a Multi-Stage Retrieval Process
 - The Multi-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 3 Asymptotic Equidistribution of Congruence Classes
 - The Theorem
 - The Proof

Motivating application: $\ell = 2$

Multi-Stage Retrieving and Refilling

randomly select M_k containers, and from each of these, retrieve one ball

- Steady-State Refilling in a Single-Stage Retrieval Process
 - The Single-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 2 Steady-State Refilling in a Multi-Stage Retrieval Process
 - The Multi-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 3 Asymptotic Equidistribution of Congruence Classes
 - The Theorem
 - The Proof

Probability of Refilling Events

Container *i* is refilled after stage *k* of the *n*th pass

Container *i* is selected at stages 1,..., *k* of the *n*th pass

The cumulative number of times container i has been selected at passes $1, \ldots, n-1$ is congruent to d-k modulo d.

 $\begin{array}{c} \overset{\bullet}{\text{probability}} = \cdots \end{array}$

probability $\underset{n\to\infty}{\overset{\scriptscriptstyle{\vee}}{\longrightarrow}} 1/d$

(from upcoming theorem)

- Steady-State Refilling in a Single-Stage Retrieval Process
 - The Single-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 2 Steady-State Refilling in a Multi-Stage Retrieval Process
 - The Multi-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 3 Asymptotic Equidistribution of Congruence Classes
 - The Theorem
 - The Proof

Probability Vector

$$f(k)$$
 for $k = 0, ..., \ell$: Probability that, in one pass, the number of times container i is selected is k

$$f=ig(f(0),\ldots,f(\ell)ig)$$
: Probability vector, i.e. $f(0),\ldots,f(\ell)\in\mathbb{R}_{\geqslant 0}$ and $f(0)+\cdots+f(\ell)=1$

Exercise:
$$f(k) = (M_k - M_{k+1})/N \text{ for } k = 0, \dots, \ell,$$
 with $M_0 := N$ and $M_{\ell+1} := 0$

Convolution of Probability Vectors

Probability that, in n passes, the number of times container i is selected is k

$$n$$
 Range of k Probability

1
$$0 \leqslant k \leqslant \ell$$
 $f(k)$

2
$$0 \le k \le 2\ell$$
 $(f * f)(k) = f(0)f(k) + f(1)f(k-1) + f(2)f(k-2) + \cdots + f(k-1)f(1) + f(k)f(0)$

:

$$0 \leq k \leq n\ell \quad (\underbrace{f * f * \cdots * f}_{n})(k) = f^{*n}(k)$$

Convolution of vectors is like multiplication of univariate polynomials.

Probability of Congruence Classes of Refilling Counts

Probability $\varphi(f, n, d, r)$ that, in n passes, the number of times container i is selected is congruent to r modulo d

$$\varphi(f, n, d, r) = \sum_{\substack{0 \le k \le n\ell \\ k = r \bmod d}} f^{*n}(k) = \sum_{q=0}^{\mathsf{floor}((n\ell - r)/d)} f^{*n}(r + dq)$$

Asymptotic Equidistribution of Congruence Classes

http://dx.doi.org/10.1016/j.spl.2012.05.025

Theorem

We have $\lim_{n\to\infty} \varphi(f,n,d,r) = 1/d$, where

- $f = (f(0), \dots, f(\ell))$ is a positive probability vector with $\ell \geqslant 1$;
- d and r are integers with $d \ge 1$ and $0 \le r \le d 1$.

The message: Congruence is asymptotically equidistributed regardless of (positive) starting distribution.

Remark: Result may, but need not, fail if starting distribution f is nonnegative but not positive.

- Steady-State Refilling in a Single-Stage Retrieval Process
 - The Single-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- Steady-State Refilling in a Multi-Stage Retrieval Process
 - The Multi-Stage Retrieval and Refilling Process
 - Mathematical Formulation of Refilling Events
- 3 Asymptotic Equidistribution of Congruence Classes
 - The Theorem
 - The Proof

Setting up for the Proof

Theorem to prove says that $\lim_{n\to\infty} \varphi(f,n,d)$ is the d vector filled with 1/d, where

$$\varphi(f,n,d) \ := \ \left(\varphi(f,n,d,0), \varphi(f,n,d,1), \varphi(f,n,d,2), \ldots, \varphi(f,n,d,d-1) \right) .$$

$$\Phi(f,m,d) := \left(\begin{array}{cccc} \varphi(f,m,d,0) & \varphi(f,m,d,1) & \varphi(f,m,d,2) & \cdots & \varphi(f,m,d,d-1) \\ \varphi(f,m,d,d-1) & \varphi(f,m,d,0) & \varphi(f,m,d,1) & \cdots & \varphi(f,m,d,d-2) \\ \varphi(f,m,d,d-2) & \varphi(f,m,d,d-1) & \varphi(f,m,d,0) & \cdots & \varphi(f,m,d,d-3) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \varphi(f,m,d,1) & \varphi(f,m,d,2) & \varphi(f,m,d,3) & \cdots & \varphi(f,m,d,0) \end{array} \right)$$

- $= \mathsf{CirculantMatrix}\big(\varphi(f, m, d)\big)$
- ullet $\varphi(f,m,d)$ is a nonnegative probability vector; therefore...
- $\Phi(f, m, d)$ is a nonnegative doubly stochastic matrix.
- For m large enough (specifically $m \ge (d-1)/\ell$):
 - The probability vector $\varphi(f, m, d)$ is positive; therefore...
 - The doubly stochastic matrix $\Phi(f, m, d)$ is positive; therefore...
 - Perron-Frobenius Theory: Powers of $\Phi(f, m, d)$ converge of the $d \times d$ matrix filled with 1/d.

Elements of Proof

Proposition For $d, m, n \in \mathbb{Z}_{\geqslant 1}$ with n > m,

$$\varphi(f, n, d) = \varphi(f, n - m, d) \cdot \Phi(f, m, d).$$

Corollary For
$$d, m, s, t \in \mathbb{Z}_{\geq 1}$$
,

$$\varphi(f, sm + t, d) = \varphi(f, t, d) \cdot (\Phi(f, m, d))^{s}.$$

Consequence For
$$d, m, t \in \mathbb{Z}_{\geqslant 1}$$
 with $m \geqslant (d-1)/\ell$,

$$\varphi(f, sm + t, d) \xrightarrow[s \to \infty]{} (\underbrace{1/d, \dots, 1/d}_{d}).$$

Conclusion For
$$d \in \mathbb{Z}_{\geqslant 1}$$
, $\varphi(f, n, d) \xrightarrow[n \to \infty]{} (\underbrace{1/d, \dots, 1/d}_{d})$.