Search

Russell chap 3, 4, 5 Luger chap. 3

Search

Problem solving

- Searching among alternative choices to find
 a sequence of actions by which a goal can be achieved
- Example
 - Route finding : finding a sequence of road
 - Assembly planning : finding a sequence of part assembly
 - Playing game : finding a sequence of move
 - Inference in FOPC : finding a sequence of applying M.P.

State space representation

- Represent problem space as a graph
- Nodes: states
- Arcs: Operations to other states

State space

- [N, A, S, G]
 - N nodes(states)
 - A arcs(operations)
 - S start state
 - G goal state

Planning in a blocks world

8-Puzzle

1	4	3
7		6
5	8	2

1	2	3	
8		4	
7	6	5	

Figure 3.6 State space of the 8-puzzle generated by "move blank" operations.

Inference

$$p \Rightarrow q, p \Rightarrow r, q \Rightarrow s,$$

 $r \Rightarrow t, r \Rightarrow u, p$

t ?

Route finding

start location

goal location

N = {different locations}

A = {move to the adjacent location}

State Space Search

Search

Finding a solution path from S to G

Depth-First Search

Goes deeper whenever possible

```
open = {START}, closed = Ø
while (open ≠ Ø)
  remove leftmost state from open → X
  if (X is GOAL) return (success)
  else
     generate children of X
     put X into closed
     eliminate child if it is in open or close
     put remaining children into left of open(stack)
return (fail)
```


Depth-First Search

Example

Depth-First Search

Figure 3.17 Depth-first search of the 8-puzzle with a depth bound of 5.

Breadth-First Search

Explore search space level by level

```
open = {START}, closed = Ø
while (open ≠ Ø)
  remove leftmost state from open → X
  if (X is GOAL) return (success)
  else
    generate children of X
    put X into closed
    eliminate child if it is in open or close
    put remaining children into right of open(queue)
return (fail)
Choose

Test

Expand
```

Breadth-First Search

Example


```
1. open = { }, closed = { }

2. X = , open = { }, closed = { }

3. X = , open = { }, closed = { }

4. X = , open = { }, closed = { }

5. X = , open = { }, closed = { }

6. X = , open = { }, closed = { }

7. X = , open = { }, closed = { }

8.
```

Breadth-First Search

Figure 3.15 Breadth-first search of the 8-puzzle, showing order in which states were removed from open.

Solution Path

- Store parent information with the states
- Example
 - closed = { (A,0), (B,A), (C,A), (D,A), (E,B), (F,B) }
 - Goal = (G, C)

$$\Rightarrow$$
 G \leftarrow C \leftarrow A

1

DFS vs. BFS

Let

- b: Average branching factor
- d: Search depth

	OPEN	Time	Space	Optimal
DFS	stack	O(bd)	O(b•d)	No
BFS	queue	O(bd)	O(bd)	Yes

■ DFS: b + b + ... + b

BFS: $b + b^2 + ... + b^{d-1}$

Heuristics

- Uninformed search (DFS, BFS)
 - Impractical for large state space
 - 15-puzzle: ~10¹², Chess: ~10¹²⁰, Baduk: ~10³⁶⁰
 - Inefficient in terms of time and space
- Informed search
 - Use heuristics
 - Rules for choosing branches in a state space
 - Guide search to states that are most likely lead to the goal

Informed search, heuristic search

Heuristics

Example

State to search next?

2	8	3				
1	6	4	5	6	0	
	7	5	ic.	2		
2	8	3				
1		4	3	4	0	
7	6	5		EF)		
2	8	3			3	
1	6	4	5	6	0	
7	5	98				
			Tiles out of place	Sum of distances out of place	2 x the number of direct tile reversals	

1	2	3
8		4
7	6	5

Hill Climbing

Algorithm

- Expand current state
- Select best child state (use heuristics)
- Stop if current state is best, or goto 1

Problem

- It may stuck at local maximum
 - Find max z = f(x, y) (S: (1,1), G: unknown)

Best-First Search

Best-first

- Use heuristic value f(n) to evaluate each state
- Choose most promising state from OPEN
 - → If heuristic value estimate the distance (cost) to the goal, choose smallest one

Best-First Search

```
open = \{START\}, closed = \emptyset
while (open \neq \emptyset)
                                                         Choose
   remove leftmost state from open \rightarrow X
   if (X is GOAL) return (success)
                                                          Test
   else
     generate and evaluate children of X
                                                         Expand
     put X into closed
     for each child C
              if C is in open update path
              if C is in closed and reached by shorter path
                                 remove C from closed, put into open
              else
                                 put C into open
     reorder open(priority queue)
return (fail)
```

Best-First Search


```
1. open = { }, closed = { } }
```


BFS vs. Best-First

Evaluation Function

- Heuristics are fallible
 - We want to find good path (not only fast search)
 - → use (heuristic value to G + actual path length from S)

Evaluation Function

Evaluation function

$$f(n) = g(n) + h(n)$$

g(n): actual cost (distance) from S to n

h(n): estimated cost (distance) from n to G

→ f(n) is the estimated cost (distance) from S to G

Under Estimation

- Heuristics are fallible
 - Optimal path may not be found
 - → use heuristic value <u>smaller than real value (h*(n))</u>

Under Estimation

- h(n) ≤ h*(n) guarantees optimal path
 - Example: optimal path length = f* = 10

A* Search

- A search algorithm is admissible
 - If it is guaranteed to find a minimal path to a solution whenever such a path exist
- A* algorithm
 - A best-first search with

$$f(n) = g(n) + h(n)$$

where $h(n) \le h^*(n)$ Admissible!

(h*(n): actual cost (distance) from n to G)

A* Search


```
open = {
                                     },
         closed = {
2. X =
       , open = {
                                     },
         closed = {
3. X =
        , open = {
                                     },
         closed = {
4. X =
       , open = {
                                     },
         closed = {
5. X =
       , open = {
         closed = {
6.
```

Admissible Heuristics

BFS

- f(n) = g(n) $\Rightarrow h(n) = 0 < h^*(n)$
 - \rightarrow h(n) = 0 < h*(n) :. BFS is an A* algorithm!

Route-finding

- h(n) = straight line distance to G≤ h*(n)
- h(n) = Manhattan distance to G≤ h*(n)

Admissible Heuristics

8-puzzle

- h₁(n) = # of tiles in wrong position ≤ h*(n)
- $h_2(n) = Sum of Manhattan distance \le h^*(n)$

2	8	3			
1	6	4	5	6	0
	7	5	E.	2	3
2	8	3			
1		4	3	4	0
7	6	5		<i>2</i> 9	**
2	8	3			
1	6	4	5	6	0
7	5		20200		
			Tiles out of place	Sum of distances out of place	2 x the number of direct tile reversals

1	2	3
8		4
7	6	5

Admissible Heuristics

Informedness

- Accuracy of h(n)
- $0 < h_1(n) < h_2(n) \le h^*(n)$
 - \rightarrow h₂ is more accurate
 - h₂ expands less nodes

Example

h₁(n) = # of tiles in wrong position < h₂(n) = Manhattan distance
 → h₂(n) is better!

A* Search - Example

- Route finding in grid space
 - h(n): Manhattan distance

$$g(n1) = 1$$
 $g(n4) = 1$
 $h(n1) = 7$ $h(n4) = 5$
 $f(n1) = 1 + 7 = 8$ $f(n4) = 1 + 5 = 6$

A* Search - Example

- 8-puzzle
 - h(n): # of tiles out-of-place

Using Heuristics in Game

- Search in 2-persons game
 - Chess, Baduk, ...
- Assumption
 - I select a state that MAXimize my winning probability
 - Opponent select a state that MINimize my winning probability
- Divide states
 - MAX my move
 - MIN opponent's move

Minimax Procedure

Evaluation

- Search to certain depth
- Evaluate states (higher value means better state)
- In MAX node, value of node = max of children
- 4. In MIN node, value of node = min of children

Minimax Procedure

Example: TicTacToe

Alpha-Beta Pruning

- Reduce the search space
- Algorithm
 - Search the game tree like DFS with depth bound
 - α current maximum value of MAX node
 - β current minimum value of MIN node
 - If $\beta \le \alpha$ of parent, stop search
 - If $\alpha \ge \beta$ of parent, stop search

 α always increase β always decrease

Alpha-Beta Pruning

MCTS

Monte Carlo Method

- Algorithms rely on repeated random sampling to obtain numerical results
- Example: computing π
 - Generate random (x, y) in [0,1] x [0,1]
 - Count the number of points inside the circle of radius 1

$$\frac{\#of\ inside\ points}{\#\ of\ total\ points}\approx$$

$$\frac{area\ of\ \frac{1}{4}\ circle}{area\ of\ square} = \frac{\frac{1}{4}\pi}{1}$$

MCTS: Monte Carlo Tree Search

- A heuristic search algorithm for decision processes in game
 - 1. The game is played out to the end by selecting random moves
 - 2. Playout is then used to weight the nodes in the game tree
 - → better nodes are more likely to be chosen in future play

