Análisis de Datos I

Unidad 6: Pruebas de Hipótesis

Clase: Pruebas de Bondad de Ajuste
II Semestre de 2024

Unidad 6

Probabilidad y estadística para ingenieros y ciencias.

Walpole, Myers, & Myers. Editorial Pearson.

Prueba de bondad de ajuste Chi cuadrado

Usos

Una prueba de bondad de ajuste se emplea para decidir cuando un conjunto de datos se ajusta a una distribución de probabilidad específica.

- Continuas: Normal, Exponencial, Uniforme, etc.
- Oiscretas: Binomial, Poisson, hipergeométrica, etc.

 H_o : Los datos se ajustan a la distribución f(x) con parametros θ_i , i=1,...,m

 H_1 : Los datos No se ajustan a la distribución f(x) con parametros θ_i , i=1,...,m

Prueba chi cuadrado

La prueba chi cuadrado está basada en la estadística de prueba:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

que tiene una distribución chi cuadrado con k-1 grados de libertad, donde:

k: número de clases o valores a considerar, o_i : frecuencias observadas, e_i : frecuencias esperadas.

Para utilizar esta estadística es necesario que $e_i \geq 5$, en algunos casos es necesario combinar celdas adyacentes para superar este inconveniente o formar las clases de tal manera que se satisfaga esta condición. [Para mayor información sobre esta prueba leer Probabilidad y Estadística, Aplicaciones y Métodos, Autor: George Canavos, Cap. 10]

Prueba chi cuadrado

Valores grandes de la estadística χ^2 indican que H_o debe rechazarse. La región crítica o de rechazo está dada por los valores χ^2 tal que:

$$\chi^2 \ge \chi^2_{\alpha,k-1}$$

En el caso de estimar los parámetros los grados de libertad son k-p-1 donde p es el número de parámetros que se estiman. También es posible calcular el valor P como:

$$Valor\ P = P(\chi^2_{k-1} > \text{valor de la estadística})$$

Ejemplo: caso continuo

Determine si la duración de cierto tipo de batería (En miles de horas) se ajusta a una distribución normal de media $\mu = 1.8$ y desviación estándar $\sigma = 0.4$. si una muestra aleatoria arrojó los siguientes valores:

0,7	1,4	1,6	1,7	1,8	1,9	2,1	2,3
0,9	1,5	1,6	1,7	1,8	1,9	2,1	2,3
1,1	1,5	1,7	1,7	1,8	1,9	2,1	2,4
1,2	1,6	1,7	1,8	1,9	1,9	2,1	2,5
1,4	1,6	1,7	1,8	1,9	1,9	2,2	2,6

 H_o : La duración de las baterías se ajusta a una distribución normal con $\mu=1,8$ y $\sigma=0,4$

 H_1 : La duración de las baterías no se ajusta a una distribución normal con $\mu=1,8$ y $\sigma=0,4$

Tabla de frecuencia agrupada

Se determina el número de clases C a utilizar.

Utilizar la Ley de Sturges: C = (3,3 * log n) + 1 y aproximar al entero más cercano. n es el número de datos a agrupar.

Para n = 50, se obtiene $C = 6,606 \approx 7$.

2. Se calcula el rango R.

R = Dato mayor - Dato menor = 38,6 - 20,5 = 18,1.

3. Se determina la precisión P, P = 0,1.

Nota: la precisión la determina el instrumento de medición dependiendo del número de cifras decimales que maneje, así:

# de cifras	0	1	2	3	4	
P	1	0,1	0,01	0,001	0,0001	

4. Se calcula la amplitud A.

Siempre vamos a aproximar por arriba, teniendo en cuenta la precisión.

$$A = \frac{R}{C} = \frac{18,1}{7} = 2,5857$$

En este caso P = 0,1; entonces A = 2,6.

4. Se calcula la amplitud *A*.

Siempre vamos a aproximar por arriba, teniendo en cuenta la precisión.

$$A = \frac{R}{C} = \frac{18,1}{7} = 2,5857$$

En este caso P = 0,1; entonces A = 2,6.

- **5.** Se calculan límites teóricos (*Límites de clase*) y límites prácticos (*Fronteras de clase*) para las clases.
- Límites para la primera clase serán:

Límite inferior:
$$LI_1 = Dato menor$$

Límite superior:
$$LS_1 = LI_1 + A - P$$

Frontera inferior:
$$FI_1 = LI_1 - \frac{P}{2}$$

Frontera superior:
$$FS_1 = LS_1 + P/2$$

• Límites para las siguientes clases serán:

$$LI_i = LI_{i-1} + A$$

$$LS_i = LS_{i-1} + A$$

$$FI_i = FI_{i-1} + A$$

$$FS_i = FS_{i-1} + A$$

 H_o : La duración de las baterías se ajusta a una distribución normal con $\mu=1,8$ y $\sigma=0,4$

 H_1 : La duración de las baterías no se ajusta a una distribución normal con $\mu=1,8$ y $\sigma=0,4$

Número de clases: $C = 3.3 * \log(n) + 1 = 6$

Precisión: P = 0,1

Amplitud: $A=\frac{Rango}{C}=\frac{2.6-0.7}{6}=0.32\approx0.40$

- **5.** Se calculan límites teóricos (*Límites de clase*) y límites prácticos (*Fronteras de clase*) para las clases.
- Límites para la primera clase serán:

Límite inferior:
$$LI_1 = Dato menor$$

Límite superior:
$$LS_1 = LI_1 + A - P$$

Frontera inferior:
$$FI_1 = LI_1 - \frac{P}{2}$$

Frontera superior:
$$FS_1 = LS_1 + \frac{P}{2}$$

• Límites para las siguientes clases serán:

$$LI_{i} = LI_{i-1} + A \qquad \qquad LS_{i} = LS_{i-1} + A$$

$$FI_i = FI_{i-1} + A \qquad FS_i = FS_{i-1} + A$$

Ejemplo: caso continuo

 H_o : La duración de las baterías se ajusta a una distribución normal con $\mu=1.8$ y $\sigma=0.4$

 H_1 : La duración de las baterías no se ajusta a una distribución normal con $\mu=1,8$ y $\sigma=0,4$

Número de clases: $C = 3.3 * \log(n) + 1 = 6$

Precisión: P = 0,1

Amplitud: $A=\frac{Rango}{C}=\frac{2,6-0,7}{6}=0,32\approx0,40$

L.I	L.S	Clase		f
0,7	1,0	0,65	1,05	2
1,1	1,4	1,05	1,45	4
1,5	1,8	1,45	1,85	17
1,9	2,2	1,85	2,25	12
2,3	2,6	2,25	2,65	5

Ejemplo: caso continuo

Las frecuencias de clase corresponden a las frecuencias observadas o_i , las frecuencias esperadas se calculan como:

e = probabilidad*número de datos

Las probabilidades se calculan teniendo en cuenta la hipótesis nula, de la siguiente manera:

Para la primera clase:

$$P(X<1,05) = P\left(Z<\frac{1,05-1,8}{0,4}\right) = P(Z<-1,875) = 0,030$$

Ejemplo: caso continuo

Para la segunda clase:

$$P(1,05 < X < 1,45) = P\left(\frac{1,05 - 1,8}{0,4} < Z < \frac{1,45 - 1,8}{0,4}\right)$$
$$= P(-1,875 < Z < -0,875) = 0,16.$$

De igual forma para las siguientes dos clases Para la última clase:

$$P(X>2,25) = P\left(Z > \frac{2,25-1,8}{0,4}\right) = P(Z>1,125) = 0,13$$

Ejemplo: caso continuo

Nos resulta la siguiente tabla:

Clase		o_i	probabilidad	$e_i = prob * 40$
0,65	1,05	2	0,03	1,2
1,05	1,45	4	0,16	6,4
1,45	1,85	17	0,36	14,4
1,85	2,25	12	0,32	12,8
2,25	2,65	5	0,13	5,2

Como la primera clase no cumple con la condición que $e_i \ge 5$ se agrupa con la segunda clase.

Ejemplo: caso continuo

Clase	o_i	e_i
1 y 2	6	7,6
3	17	14,4
4	12	12,8
5	5	5,2

El valor de la estadística será:

$$\chi^2 = \frac{(6-7,6)^2}{7,6} + \frac{(17-14,4)^2}{14,4} + \frac{(12-12,8)^2}{12,8} + \frac{(5-5,2)^2}{5,2} = 0,86$$

Ejemplo: caso continuo

El punto crítico es $\chi^2_{3.0.05} = 7.81$. El valor P está dado por:

Valor
$$P = P(\chi_3^2 > 0.86) = 0.8$$

Como el valor de la estadística es menor que el punto crítico o como valor P es muy grande no se rechaza H_o , es decir , se puede afirmar con un nivel de significancia de 0,05 que el contenido de nicotina se distribuye de forma normal con los parámetros establecidos.

Ejemplo: caso discreto

Se seleccionan 3 artículos (sin reemplazo) de un lote que contiene 5 artículos defectuosos y 3 artículos no defectuosos, después de registrar el número X de artículos defectuosos, los artículos se reemplazan al lote y el experimento se repite 112 veces. Los resultados obtenidos son los siguientes:

\boldsymbol{x}	0	1	2	3
f(x)	1	31	55	25

Con un nivel de significancia de 0,05 pruebe la hipótesis que los datos registrados se pueden ajustar mediante una distribución hipergeométrica con N=8, n=3 y k=5, x=0,1,2,3.

Ejemplo: caso discreto

Bajo las condiciones en que se lleva a cabo el experimento las hipótesis nula y alternativa se plantean como:

 H_o : El número de artículos defectuosos seleccionados se ajustan a una distribución hipergeométrica con N=8, n=3 y k=5, con x=0,1,2,3. Las frecuencias dadas en la tabla anterior son las observadas, las esperadas se calculan teniendo en cuenta la distribución dada con los parámetros establecidos, es decir,

$$p(x) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}} = \frac{\binom{5}{x} \binom{3}{3-x}}{\binom{8}{3}}, \quad x = 0, 1, 2, 3$$

Ejemplo: caso discreto

Reemplazando los valores de x se obtienen las siguientes probabilidades:

\boldsymbol{x}	0	1	2	3
p(x)	1/56	15/56	30/56	10/56

Las frecuencias esperadas se calculan como:

e = probabilidad * # veces que se repite el experimento

Ejemplo: caso discreto

Se obtiene entonces:

\boldsymbol{x}	p(x)	$e_i = p(x) * 112$	o _i
0	1/56	2	1
1	15/56	30	31
2	30/56	60	55
3	10/56	20	25
		112	112

Observación: Para que se cumpliera con la condición que $e_i \ge 5$ el experimento se debió realizar como mínimo 280 veces.

Ejemplo: caso discreto

Al juntar celdas adyacentes se tiene:

\boldsymbol{x}	e_i	0	$(o_i - e_i)^2/e_i$
≤ 1	32	32	0
2	60	55	0, 42
3	20	25	1,25
	112	112	$\chi^2 = \sum_{i=1}^3 (o_i - e_i)^2 / e_i = 1,6.7$

Ejemplo: caso discreto

Decisión:

Región crítica: Punto crítico: $\chi^2_{2,0,05} = 5,99$ (Al final se consideraron 3 celdas, los grados de libertad son k-1=3-1=2) como valor de la estadística ($\chi^2=1,6.7$) es menor que el punto crítico, la decisión es no rechazar H_o ,

Valor P: Valor P= $P(\chi_2^2 > 1,6.7^{-}) = 0,4$ valor P muy grande indica que no se debe rechazar H_o .

Es decir se puede considerar que el número de artículos defectuosos seleccionados se ajustan a una distribución hipergeométrica con los parámetros establecidos.