Design and Analysis of Algorithms

L31: Traveling Salesman Problem Dynamic Programming

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - Sec <u>5.9</u>
- R1: Introduction to Algorithms
 - Cormen et al.
- https://www.youtube.com/watch?v=-JjA4BLQyqE
- https://www.tutorialspoint.com/design_and_analysis_of_algorithms/ design_and_analysis_of_algorithms_travelling_salesman_problem.htm

Travelling Salesman Problem

- Known as Held-Karp algorithm
 - Proposed in 1962 to solve TSP
- TSP problem:
 - Find a tour of all cities in a country (assuming all cities are reachable)
 - The tour should visit each city only once
 - Tour should end at starting city, and
 - Tour should be of minimum distance. (cost)

Example 1:TSP problems

- You are organizing a function at your home and you would like to invite your friends for the same.
 - Starting from your home, you need to visit each friend's house to personally invite.
 - The route/distance from one house to another house is known.
 - The up and down time taken to travel between two houses is not same i.e. depends upon travel direction
 - e.g. some one way roads, pot-holed roads etc
- Goal: Find the shortest (time) route.

Example 2:TSP problems

- A robotic arm needs to tighten the screw/bolts on a machine.
 - There are different points where screw/bolts needs to be tightened
 - Robotic arm can reach from any screw/bolt position to another screw/bolt position.
 - The time taken to tighten to a bolt is constant so can be ignored. Time taken by robotic arm varies.
 - Interested in time taken by robotic arm when moving
- Goal: Find the optimal path for robot arm to tighten all the bolts and return to its start point.

TSP Problem

- Given directed graph G=(V, E) with n>1 edges,
 - Cost of each directed edge (i, j) is given as Cij≥0
 - Cost is considered as ∞ when edge is not defined
 - A tour of G is a directed simple cycle that includes every vertex in the graph
 - The cost of a tour is the sum of cost of edges on the tour.
 - Traveling Salesman Problem is to find the tour of minimum cost.
- For simplicity, we assume tour starts at s=1

TSP Problem

- Brute force approach
 - Enumerate all permutations of n nodes
 - Compute the cost corresponding to each permutation
 - Find the permuation with minimum cost.
 - Time complexity: (n!)
- TSP is an NP-Hard problem
 - Can we do better though still exponential, e.g. \circ (2n) \circ (nn) >0 (n!) >0 (kn, n>k) >0 (2n)
 - Subset problems are easier compared to permutations
 - k^n is always better than n! (for n>k).
 - Subset problem leads to dynamic programming approach

TSP Problem: Dynamic Programming

- Let start vertex s=1, and thus tour ends at 1.
- Every tour consists of
 - An edge e_{1k} , for some $k \in V \{1\}$, and
 - A path from k to 1 going thru each vertex exactly once other than k and 1
 - i.e. $\forall \in \forall -\{1, k\}$.
 - Optimal tour is minimu of all such tours
- Using Optimality principle:
 - The tour is optimal, when
 - Path from k to 1 must be a shortest path going thru all vertices in $V-\{1,k\}$.

TSP Sub-Problem: Dynamic Programming

- What is appropriate subproblem for TSP?
 - Subproblem refers to partial solution
- Most obvious partial solution
 - Initial portion of a tour
- Starting at vertex 1
 - Consider we visited few cities, and currently at city i.
 - What we need to do to extend this tour?
 - Need to know i
 - So as to know which cities to visit next
 - Need to know cities (i.e. subset S) visited so far
 - So as not to revisit any of them again

TSP Problem: Dynamic Programming

- To solve using DP, we need to identify recurrence relation
- Let g (i, S) denotes the length of shortest path
 - Starting from vertex i,
 - Going thru all vertices in $S-\{i\}$, and
 - Terminating at vertex 1.
 - Note: we return to vertex 1, even though start from i
- Goal: compute g (1, V−{1})
 - Denotes the length of optimal TSP tour
- Recurrence relation using Principle of Optimality: $g(1, V-\{1\}) = \min_{2 \le k \le n} \{c_{1k}+g(k, V-\{1, k\})\}.....(1)$
- Generalizing above for i∉S

```
g(i,S) = \min_{j \in S} \{c_{ij} + g(j,S - \{j\})\}  .....(2)
```

• Thus, solving $g(1, V-\{1\})$ requires to solving $g(k, V-\{1, k\})$ for all $k\neq 1$

TSP Problem: Dynamic Programming

- Computing g(i, S) where |S| = 0
- g (i, \emptyset) implies shortest path from node i to 1
 - Going thru an empty set (\emptyset) of vertices i.e.
 - Without going thru any vertex i.e. direct edge $i \rightarrow 1$
 - Thus, $g(i,\emptyset) = c_{i1}, 1 \le i \le n$.
- Next, compute g(i, S) for all S of size 1 i.e. $\forall S, |S| = 1$
- Thus, then we compute g(i, S) for all S of size 2
 - i.e. $\forall S$, |S| = 2, and so on
- When, |S| < n-1, then the values of i and S for which g(i, S) is needed are such that $i \ne 1, 1 \notin S$, and $i \notin S$.
- Tour construction requires that we maintain node j that
 - Minimizes g(i, S) i.e. $min_{i \in S} \{c_{ij} + g(j, S \{j\})\}$
 - Let J(i,S) denote this node

	1	2	თ	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

```
• Goal: g(1, V-\{1\})
= g(1, \{2, 3, 4\})
g(1, \{2, 3, 4\}) = \min\{c_{12}+g(2, \{3, 4\}), c_{13}+g(3, \{2, 4\}), c_{14}+g(4, \{2, 3\})\}
```

- Process: compute bottom up
 - i.e. g(i, |S|), for |S|=0, 1, ...

• Goal:
$$g(1, V-\{1\})$$

= $g(1, \{2, 3, 4\})$

• Power set of
$$\{2,3,4\}$$

Ø, $\{2\}$, $\{3\}$, $\{4\}$,
 $\{2,3\}$, $\{2,4\}$, $\{3,4\}$
 $\{2,3,4\}$
g $(1,\emptyset) = c_{11} = 0$
g $(2,\emptyset) = c_{21} = 5$
g $(3,\emptyset) = c_{31} = 6$

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

Compute g(i, S),
$$\forall$$
 | S|=1, i \in {2, 3, 4}
g(2, {3}) = c₂₃+g(3, Ø) = 9+6=15
g(2, {4}) = c₂₄+g(4, Ø) = 10+8=18
J(2, {3}) = 3, J(2, {4}) = 4
g(3, {2}) = c₃₂+g(2, Ø) = 13+5=18
g(3, {4}) = c₃₄+g(4, Ø) = 12+8=20
J{3, {2}=2, J(3, {4})=4
g(4, {2}) = c₄₂+g(2, Ø) = 8+5=13
g(4, {3}) = c₄₃+g(3, Ø) = 9+6=15
J(4, {2}) = 2, J(4, {3}=3)

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

```
g(2, \{3\})=15, g(2, \{4\})=18, g(3, \{2\})=18, g(3, \{4\})=20, g(4, \{2\})=13, g(4, \{3\})=15
```

Compute g(i, S), for |S| = 2

$$g(2,\{3,4\}) = \min\{c_{23} + g(3,\{4\}), c_{24} + g(4,\{3\})\}$$

$$= \min\{9 + 20, 10 + 15\} = 25; \quad J(2,\{3,4\}) = 4$$

$$g(3,\{2,4\}) = \min\{c_{32} + g(2,\{4\}), c_{34} + g(4,\{2\})\}$$

$$= \min\{13 + 18, 12 + 13\} = 25; \quad J(3,\{2,4\}) = 4$$

$$g(4,\{2,3\}) = \min\{c_{42} + g(2,\{3\}), c_{43} + g(3,\{2\})\}$$

$$= \min\{8 + 15, 9 + 18\} = 23; \quad J(2,\{3,4\}) = 2$$

	1	2	ო	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

```
g(2, {3,4})=25, g(3, {2,4})=25, g(4, {2,3})=23, 

Compute g(i,S), for |S|=3

g(1, {2,3,4})=

min\{c_{12}+g(2, {3,4}), c_{13}+g(3, {2,4}), c_{14}+g(4, {2,3})\}

=min\{10+25, 15+25, 20+23\}

=35

J(1, {2,3,4})=2
```

• Thus, the optimal tour has length 35.

TSP Example: Tour Construction

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

Knowing
$$J(1, \{2, 3, 4\}) = 2$$
,
 $J(2, \{3, 4\}) = 4$, and
 $J(4, \{3\}) = 3$

The optimal tour is 1, 2, 4, 3, 1.

Complexity Analysis (Book)

- Number of g (i, S) that have to be computed
- For each value of |S| = k,
 - There are n-k-1 choices for i
 - Exclude vertex 1 from remaining n-k nodes
 - The number of subsets of size k excluding 1, and i ${}^{n-2}\mathsf{C}_k$
- Thus, total number of g(i,S) to be computed

$$\sum_{k=0}^{n-2} (n-k-1)^{(n-2)} C_k \ge \sum_{k=0}^{n-2} (n-1)^{(n-2)} C_k$$

$$= (n-1)(1+1)^{n-2} = (n-1)2^{n-2}$$

- Computation of g (i, S) for each |S| = k requires
 - k-1 comparisons (min of k terms)
- Taking highest value of k as n-1
- Thus, total time complexity = $(n-1)*(n-1)2^{n-2}=0(n^22^n)$

Complexity Analysis (Other Look)

- For the n vertices in the graph,
 - There are 2ⁿ subsets.
- For each subset, two kind of work is done
 - Addition (costs),
 - Comparison (to find minimum).
- Computation for each subset
 - Go thru each vertex once to find the min cost pathO(n)
 - For each vertex, check which is the right vertex before it.
 - -0(n)
 - Thus, work done $O(n) * O(n) = O(n^2)$
- Total time complexity: $O(n^2) *O(2^n) = O(n^22^n)$

Summary

- Understanding TSP problem
- Application of Dynamic Programming
- Complexity analysis