S.5 PURE MATHEMATICS TIME: 3 HOURS

INSTRUCTIONS: Attempt **all** questions in **section A** and **any five** in **section B**. **SECTION A**

- 1. Three consecutive terms of an A.P have the sum of 36 and a product of 1428. Find the three terms.
- 2. Determine the equation of the tangent and the normal to the curve y = (x + 1)(2x + 3) at a point (2,21)
- 3. If the roots of the equation $ax^2 + bx + c = 0$ differ by 3. Show that $b^2 = 9a^2 + 4ac$.
- 4. Differentiate from the first principles $f(x) = 2x^2 + 5x 3$. Hence find $f^1(2)$
- 5. Solve the equation $2x = \cot 3x$ for $0^{\circ} \le x \le 180^{\circ}$
- 6. Find the equation of the circle whose end diameter is the line joining the points A(1,3) and (-2,5)
- 7. A container is in the form of an inverted right circular cone. Its height is 100cm and base radius is 40cm. The container is full of water and has a small hole at 1B vertex. Water is flowing through the hole at a rate of 100cm³s⁻¹. Find the rate at which the water level in the container is falling when the height of water in the container is halved.
- 8. A point P moves such that its distance from the two points A(2,0) and B(8,6) are in the ratio AP:PB=3:2. Show that the focus of P is a circle.

SECTION B

- 9. (a) Differentiate $\frac{x^2}{\sqrt{(1-2x^2)}}$ with respect to x.
 - (b) Given that $x = \frac{t^2}{1+t^3}$ and $y = \frac{t^3}{1+t^3}$ find $\frac{d^{2y}}{d_{x^2}}$
- 10. (a) Solve the equations $\cos 2x = 4\cos^2 x 2\sin^2 x$ for $0^0 \le x \le 180^0$
 - (b) Show that if $\sin(x + \alpha) = p \sin(x \alpha)$ then $\tan = (\frac{p+1}{p-1}) \tan \alpha$ Hence solve the equation $\sin(x + 20^0) = 2 \sin(x - 20)$ for $0^0 \le x \le 180^0$
- 11. The function $f(x) = b + ax 4x^2 + 8x^3$ gives a remainder of -19 when divided by (x + 1) and a remainder of 2 when divided by (2x 1). Find the value of a and b
 - (b) The roots of the equation $x^2 4x + 2 = 0$ are α and β for the equation whose roots $are(\alpha + 2\beta)$ and $(\beta + 2\alpha)$.
- 12. (a) Differentiate $\cos(x^2e^x)$ with respect to x.
 - (b) Given that $y = Ae^{3x} + Be^{-2x}$ show that $\frac{d^{2y}}{d_{x^2}} \frac{dy}{dx} 6y = 0$
 - (c) Find the equation of the normal to the curve $x^{2y} + 3y^2 4x 12 = 0$ at the point (1,2)
- 13. The parametric equations $x = \frac{1+t}{1-t}$ and $y = \frac{2t^2}{1-t}$ represents a curve.
 - (i) Find the Cartesian equation of the curve.
 - (ii) Determine the turning points of the curve and the nature.
 - (iii) State the asymptotes and intercepts of the curve.
 - (iv) Hence sketch the curve.

- 14. (a) Determine the maximum and minimum value of the expression $6 \sin x 3 \cos x$ (b) Prove that $\frac{\cos 11^0 + \sin 11^0}{\cos 11^0 \sin 11^0} = \tan 56$ (c) Prove by induction that $\sum_{r=1}^n r^2(r+1) = \frac{n}{12}(n+1)(n+2)(3n+1)$ where n is a whole number.

END