

Pensamento Computacional e Algoritmos

Análise e Desenvolvimento de Sistemas

Prof. Adriano Lima adriano.lima@ifsc.edu.br

fontes #111027 #277756 #16ABCD #FFF4EC fontes Fira Sans Extra Condensed Ubuntu Roboto Mono

#C74E23

Arrays em Java

- grupo de valores que podem ser atribuídos a uma única variável
- do inglês: "matriz"
- os valores em um array são chamados elementos
 - os valores de um mesmo array devem ser do mesmo tipo
- ordenado a posição dos elementos no array é fixa
- a posição numérica dos elementos é chamada de índice (começa em 0)

Arrays em Java

notas = {6, 7.5, 9, 8}

Coleções

números notas = {6, 7.5, 9, 8}

textos alunos = {Carlos, Ana, Joaquim, Eduarda}

símbolos operações = {+, -, *, /}

valores lógicos booleanos = {verdadeiro, falso}

coleções duplas = {{Tom, Jerry}, {Batman, Robin}, {Zé Colmeia, Catatau}}

Coleções

números	notas = {6, 7.5, 9, 8}
textos	alunos = {Carlos, Ana, Joaquim, Eduarda}

símbolos operações = {+, -, *, /}

valores lógicos booleanos = {verdadeiro, falso}

coleções

duplas = {{Tom, Jerry}, {Batman, Robin}, {Zé Colmeia, Catatau}}

Arrays em Java

notas = {6, 7.5, 9, 8}

6.0	7.5	9.0	8.0
0	1	2	3

0 6.0

7.5

9.0

8.0

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3

0

1

2

3

6.0	1.0	8.0	0.5
7.5	3.5	2.5	7.5
9.0	4.5	9.5	6.0
8.0	5.0	10.0	8.5
A	1	2	3

0

1

2

3

6.0	1.0	8.0	0.5
7.5	3.5	2.5	7.5
9.0	4.5	9.5	6.0
8.0	5.0	10.0	8.5
A	1	2	3

	6.0	1.0	8.0	0.5
	7.5	3.5	2.5	7.5
•	9.0	4.5	9.5	6.0
	8.0	5.0	10.0	8.5
	0	1	2	3

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	A	1	2	3

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5

0

3

duplas = {{Tom, Jerry}, {Batman, Robin}, {Zé Colmeia, Catatau}}

duplas = {{Tom, Jerry}, {Batman, Robin}, {Zé Colmeia, Catatau}}

0	Tom	Jerry
1	Batman	Robin
2	Zé Colmeia	Catatau
	0	1

0 1 2

duplas = {{Tom, Jerry}, {Batman, Robin}, {Zé Colmeia, Catatau}}

0	
•	

IOM	Jerry
Batman	Robin
Zé Colmeia	Catatau

0

 0
 1
 2

 duplas = {{Tom, Jerry}, {Batman, Robin}, {Zé Colmeia, Catatau}}

 0
 1
 0
 1

 0
 Tom
 Jerry

 1
 Batman
 Robin

 2
 Zé Colmeia
 Catatau

declaração exemplos

■ sem inicialização

declaração

sem inicialização

```
Tipo[][] nome;
Tipo nome[][];
```

```
// Tipo[][] nome;
int[][] numeros;

// Tipo nome[][];
double medias[][];
```


declaração

- sem inicialização
 Tipo[][] nome;
 Tipo nome[][];
- com inicialização

```
// Tipo[][] nome;
int[][] numeros;

// Tipo nome[][];
double medias[][];
```


declaração

```
sem inicialização
Tipo[][] nome;
Tipo nome[][];
```

com inicialização

```
Tipo[][] nome = {{valores}, {valores}};
Tipo[][] nome = new Tipo[linha][coluna];
```

```
// Tipo[][] nome;
int[][] numeros;

// Tipo nome[][];
double medias[][];

// Tipo[] nome = {valores};
String[][] casais = {{"Miguel", "Bruna"},
{"Rômulo", "Ana"}, {"Paulo", "Silvana"}};

// Tipo[] nome = new Tipo[tamanho];
char[][] letras = new char[11][3];
```


declaração

```
sem inicialização
Tipo[][] nome;
Tipo nome[][];
```

com inicialização

```
Tipo[][] nome = {{valores}, {valores}};
Tipo[][] nome = new Tipo[linha][coluna];
Tipo[][] nome = new Tipo[linha][];
```

```
// Tipo[][] nome;
int[][] numeros;
// Tipo nome[][];
double medias[][];
// Tipo[] nome = {valores};
String[][] casais = {{"Miguel", "Bruna"},
{"Rômulo", "Ana"}, {"Paulo", "Silvana"}};
// Tipo[] nome = new Tipo[tamanho];
char[][] letras = new char[11][3];
// Tipo[] nome = new Tipo[tamanho];
int[][] simbolos = new int[3][];
```


declaração

```
sem inicialização
Tipo[][] nome;
Tipo nome[][];
```

com inicialização

```
Tipo[][] nome = {{valores}, {valores}};
Tipo[][] nome = new Tipo[linha][coluna];
Tipo[][] nome = new Tipo[linha][];
```

```
// Tipo[][] nome;
int[][] numeros;
// Tipo nome[][];
double medias[][];
// Tipo[] nome = {valores};
String[][] casais = {{"Miguel", "Bruna"},
{"Rômulo", "Ana"}, {"Paulo", "Silvana"}};
// Tipo[] nome = new Tipo[tamanho];
char[][] letras = new char[11][3];
// Tipo[] nome = new Tipo[tamanho];
int[][] simbolos = new int[3][];
simbolos[0] = new int[4];
```


declaração

```
sem inicialização
Tipo[][] nome;
Tipo nome[][];
```

com inicialização

```
Tipo[][] nome = {{valores}, {valores}};
Tipo[][] nome = new Tipo[linha][coluna];
Tipo[][] nome = new Tipo[linha][];
```

```
// Tipo[][] nome;
int[][] numeros;
// Tipo nome[][];
double medias[][];
// Tipo[] nome = {valores};
String[][] casais = {{"Miguel", "Bruna"},
{"Rômulo", "Ana"}, {"Paulo", "Silvana"}};
// Tipo[] nome = new Tipo[tamanho];
char[][] letras = new char[11][3];
// Tipo[] nome = new Tipo[tamanho];
int[][] simbolos = new int[3][];
simbolos[0] = new int[4];
simbolos[1] = new int[4];
```

declaração

```
sem inicialização
Tipo[][] nome;
Tipo nome[][];
```

■ com inicialização

```
Tipo[][] nome = {{valores}, {valores}};
Tipo[][] nome = new Tipo[linha][coluna];
Tipo[][] nome = new Tipo[linha][];
```

```
// Tipo[][] nome;
int[][] numeros;
// Tipo nome[][];
double medias[][];
// Tipo[] nome = {valores};
String[][] casais = {{"Miguel", "Bruna"},
{"Rômulo", "Ana"}, {"Paulo", "Silvana"}};
// Tipo[] nome = new Tipo[tamanho];
char[][] letras = new char[11][3];
// Tipo[] nome = new Tipo[tamanho];
int[][] simbolos = new int[3][];
simbolos[0] = new int[4];
simbolos[1] = new int[4];
simbolos[2] = new int[5];
```

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3


```
double[][] notas = new double[4][4];
notas[0][0] = 6;
notas[0][1] = 1;
...
```

1	
2	
3	

0

6.0	1.0	8.0	0.5
7.5	3.5	2.5	7.5
9.0	4.5	9.5	6.0
8.0	5.0	10.0	8.5
0	1	2	3


```
double[][] notas = \{\{6, 1, 8, 0.5\}, \{7.5, 3.5, 2.5, 7.5\}, \{9, 4.5, 9.5, 6\}, \{8, 5, 10, 8.5\}\};
```

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3


```
double[][] notas = \{\{6, 1, 8, 0.5\}, \{7.5, 3.5, 2.5, 7.5\}, \{9, 4.5, 9.5, 6\}, \{8, 5, 10, 8.5\}\};
```

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3


```
double[][] notas = \{\{6, 1, 8, 0.5\}, \{7.5, 3.5, 2.5, 7.5\}, \{9, 4.5, 9.5, 6\}, \{8, 5, 10, 8.5\}\};
```

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3


```
double[][] notas = \{\{6, 1, 8, 0.5\}, \{7.5, 3.5, 2.5, 7.5\}, \{9, 4.5, 9.5, 6\}, \{8, 5, 10, 8.5\}\};
```

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3


```
double[][] notas = \{\{6, 1, 8, 0.5\}, \{7.5, 3.5, 2.5, 7.5\}, \{9, 4.5, 9.5, 6\}, \{8, 5, 10, 8.5\}\};
```

0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3


```
String[][] duplas = new String[3][];
```

0	Tom	Jerry
1	Batman	Robin
2	Zé Colmeia	Catatau
	0	1


```
for (int i = 0; i < notas.length; i++) {
   for (int j = 0; j < notas[0].length; <math>j++) {
       System.out.println(notas[i][j]);
             0
                      6.0
                                 1.0
                                           8.0
                                                     0.5
                      7.5
                                3.5
                                           2.5
                                                     7.5
             2
                      9.0
                                 4.5
                                           9.5
                                                     6.0
                      8.0
                                 5.0
                                          10.0
                                                     8.5
```

0

3

```
for (int i = 0; i < notas.length; i++) {</pre>
   for (int j = 0; j < notas[0].length; <math>j++) {
       System.out.println(notas[i][j]);
```

	U	
	1	
	2	
7	3	

6.0	1.0	8.0	0.5
7.5	3.5	2.5	7.5
9.0	4.5	9.5	6.0
8.0	5.0	10.0	8.5
0	1	2	3

0


```
for (int i = 0; i < notas.length; i++) {
   for (int j = 0; j < notas[0].length; <math>j++) {
       System.out.println(notas[i][j]);
             0
                       6.0
                                 1.0
                                           8.0
                                                      0.5
                      7.5
                                 3.5
                                           2.5
                                                      7.5
             2
                       9.0
                                 4.5
                                           9.5
                                                      6.0
                       8.0
                                 5.0
                                           10.0
                                                      8.5
                        0
                                            2
                                                       3
```


0	6.0	1.0	8.0	0.5
1	7.5	3.5	2.5	7.5
2	9.0	4.5	9.5	6.0
3	8.0	5.0	10.0	8.5
	0	1	2	3

double[][][] notas = new double[4][4][3];

Exercícios Práticos

1. Implemente um algoritmo que construa um array de duas dimensões representando a tabuada de 0 a 9.

Exercícios Práticos

1. Implemente um algoritmo que construa um array de duas dimensões representando a tabuada de 0 a 9.

2. Implemente um algoritmo que some duas matrizes e imprima o resultado.

Exercícios Práticos

1. Implemente um algoritmo que construa um array de duas dimensões representando a tabuada de 0 a 9.

2. Implemente um algoritmo que some duas matrizes e imprima o resultado.

3. Implemente um algoritmo que receba dois arrays, sendo que o primeiro é uma lista de nomes e o segundo é um array multidimensional com a lista das notas em três provas diferentes, e calcule a média de cada aluno.

Pensamento Computacional e Algoritmos

Análise e Desenvolvimento de Sistemas

Prof. Adriano Lima adriano.lima@ifsc.edu.br

