Prof. Jonatha Rodrigues da Costa & Prof. Giovanni Cordeiro Barroso Universidade Federal do Ceará Departamento de Física

Redes de Petri autônomas

- Descrevem de forma qualitativa um sistema modelado;
- Uma transição pode disparar quando habilitada;
- Os instantes de disparo de uma transição não são conhecidos ou indicados;

Redes de Petri Não-Autônomas

- Descrevem o funcionamento de um sistema em que sua evolução é condicionada pelos eventos externos ou pelo tempo;
- Podem ser:
 - Sincronizadas dependentes de eventos externos;
 - ◆ Temporizadas dependentes do tempo.

- Introduzidas por M. Moalla, J. Pulou e J. Sifakis;
- Descrevem o que se passa e quando se passa;
- Permitem modelar sistemas em que os disparos das transições são sincronizados com os eventos do sistema modelado;

- A cada transição é associado um evento;
- O disparo de uma transição se efetuará:
 - se a transição está habilitada e;
 - quando o evento associado à transição ocorre.

- Os eventos externos correspondem a uma variação de estado do sistema modelado;
- Uma mudança de marcação na RPS será denominado de evento interno.

Uma RPS é uma tripla:

<RP, E, Sinc>

em que:

- ◆ RP é uma rede de Petri;
- ◆ E é um conjunto de eventos externos;
- ◆Sinc é uma aplicação do conjunto de transições T da RP em E ∪ {e}.

Em que « e » é o elemento neutro do monoide « E**

Por definição:

- $E = \{E^1, E^2, ...\}$ é um conjunto de eventos externos;
- A notação E¹ corresponde ao nome do evento externo;
- A notação E_j corresponde ao evento associado à transição t_i .

$$P = \{p_1, p_2\};$$

$$T = \{t_1, t_2\};$$

$$M_0 = (1 \ 0);$$

$$E = \{E^5, E^6\};$$

$$t_1 \rightarrow E^5 \ e \ t_2 \rightarrow E^6.$$

Hipótese:

Dois eventos externos não podem ocorrer simultaneamente.

Diz-se que uma transição t_j é receptiva ao evento E¹, quando a mesma está habilitada e é associada ao referido evento

Redes de Petri Sincronizadas Exemplos

 t_1 é receptiva ao evento E^5 na marcação $M = (1 \ 0)$.

Redes de Petri Sincronizadas Exemplos

- Um mesmo evento pode ser associado a várias transições: $(t_1, t_2) \rightarrow E^5$;
- Na marcação (1 0 0), t_1 é receptiva ao evento E^5 , enquanto t_2 não o é.

Redes de Petri Sincronizadas Exemplos

Um mesmo evento associado a mais de uma transição.

- Considere um novo evento que não seja um evento externo;
- Esse evento é denominado de evento sempre ocorrente – e;

$$t_2 \rightarrow e$$

Isso significa que, tão logo t₂ esteja habilitada, ela é receptiva ao evento e que ocorre sempre e assim, pode disparar.

- t₁ receptiva a E⁴;
- Quando E⁴ ocorre, t₁ dispara.

Como e ocorre sempre, t₂ é disparada imediatamente na marcação (0 1)

Diz-se que a marcação (1 0) é estável pois ela só muda quando da ocorrência de E⁴.

Diz-se que a marcação (0 1) é instável pois ela é receptiva ao evento e.

Assim, quando a marcação for

$$M_0 = (1 \ 0)$$

e o evento E⁴ ocorrer, ocorrerá o disparo não só de t₁, mas sim da seqüência de transições

$$t_1t_2$$

RPS - Grafo de Marcações Estáveis

Grafo de Marcações

RP autônoma

Grafo de Marcações Estáveis

RP sincronizada

Transições t₁ e t₄ estão habilitadas e receptivas ao mesmo evento E¹

$$M_0 = (1\ 0\ 0\ 1\ 0\ 0)$$

Disparando a seqüência t_1t_4 ou t_4t_1 a partir de M_0 , chega-se à marcação

$$M_2 = (0 \ 1 \ 0 \ 0 \ 1 \ 0)$$

Transições t₁ e t₄ estão habilitadas e receptivas ao mesmo evento E¹

$$M_0 = (1\ 0\ 0\ 1\ 0\ 0)$$

Disparando a seqüência t_1t_4 ou t_4t_1 a partir de M_0 , chega-se à marcação

$$M_2 = (0 \ 1 \ 0 \ 0 \ 1 \ 0)$$

A ordem de disparo de t_1 e t_4 é indiferente visto que a RPS é <u>per sistente</u> para M_0 , ou seja;

 $\overline{M_0[t_1t_4\rangle M_2}$ ou $\overline{M_0[t_4t_1\rangle M_2}$

$$M_0 = (0\ 0\ 1\ 0\ 1\ 0)$$

Neste caso, t_3 e t_5 estão habilitadas e são receptivas ao evento E^1 .

$$M_0 [t_3 t_5] M_2$$
 ou $M_0 [t_5 t_3] M_2$
 $M_2 = (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1)$

Disparando t₃, chega-se à marcação

$$M_1 = (0\ 0\ 0\ 0\ 2\ 1\ 0)$$

em que somente t₅ está habilitada.

Disparando t₅, chega-se à marcação

$$M_2 = (0\ 0\ 0\ 0\ 1\ 0\ 1)$$

 Disparando t₅, chega-se à marcação

$$M_1 = (0\ 0\ 1\ 0\ 0\ 1)$$

em que t₃ e t₆ estão habilitadas.

t₃ era e continua sendo receptiva
 a E¹, mas t₆ é receptiva ao evento
 e.

Qual a solução?

• No momento da ocorrência do evento E¹, haviam duas e somente duas transições habilitadas, que são t₃ e t₅.

« Elas serão então disparadas não importa em que ordem ».

•Disparando então t₃, chega-se à marcação

$$M_2 = (0\ 0\ 0\ 0\ 1\ 0\ 1)$$

- Nos exemplos anteriores existem duas transições receptivas ao mesmo evento, mas elas não estão em conflito;
- Se duas transições estão em conflito e elas estão habilitadas, diz-se que as mesmas estão em conflit o efetivo;
- Lembre que duas transições em conflito associadas a eventos externos distintos não estão em conflito efetivo, pois esses eventos não podem ocorrer simultaneamente.

Em uma RPS, cada transição é associada seja a um evento externo E^i , seja a um evento sempre ocorrente e, ou seja, a um elemento de $E \cup \{e\}$;

Diz-se que uma RPS é *completamente sincronizada* se nenhuma de suas transições é associada ao evento sempre ocorrente **e**;

Uma transição t_j pode ser associada ao evento $(E^k + E^q)$

significando que se t_j é habilitada, ela é receptiva aos eventos **E**^k e **E**^q e pode disparar se um deles ocorrer.

Obtém-se uma RPS equivalente se t_j é substituída por duas transições t_{j1} e t_{j2} em paralelo (com os mesmos lugares de entrada e de saída de t_i);

- t_{11} é associada a E^k e t_{12} é associada a E^q ;
- Associar um só evento a uma transição não é uma restrição e sim uma forma mais simples de apresentação.

Seqüência de Simulação Completa (SSC):

•Quando várias transições podem ser disparadas simultaneamente (na realidade, uma seqüência de disparo) pela ocorrência de um evento $X ∈ E ∪ \{e\}$;

RPS - Seqüência de Simulação Completa

Seja T(X, M) o conjunto das transições receptivas ao evento X na marcação M

Definição:

S_k é uma Seqüência de Simulação Completa (SSC) em relação a um evento X, em uma dada marcação M se ela preenche as quatro condições seguintes:

RPS - Seqüência de Simulação Completa

Condição 1)

 S_k é uma seqüência de disparo a partir da marcação M, composta exclusivamente de transições que pertencem a T(X, M);

RPS - Seqüência de Simulação Completa

Condição 1)

 $S_k = \{t_3 t_5\}$, ou seja:

 $\{t_3 t_5\} = t_3 t_5 + t_5 t_3 + [t_3 t_5]$, em que $[t_3 t_5]$ significa o disparo simultâneo de $t_3 t_5$.

[t₃ t₅] nem sempre é possível.

Condição 2)

Toda transição de T(X, M) aparece no máximo uma vez na seqüência S_k ;

Condição 2)

Por princípio, uma transição habilitada t_i só vai disparar quando da ocorrência de um evento E_i, assim, uma transição que possa ser disparada várias vezes a partir de uma dada marcação, irá disparar uma única vez a cada ocorrência do evento associado.

Condição 3)

Toda seqüência S_h obtida permutando-se as transições de S_k é também uma seqüência de disparo a partir da marcação M;

Condição 3)

$$T(E^1, M_0) = \{t_1, t_2\};$$

 $S_1 = t_1t_2$, $S_2 = t_2t_1$ e $S_3 = [t_1t_2]$ são as seqüências de disparo a partir de M_0 .

As sequências S_1 , S_2 e S_3 são as SSC, assim:

$$S_1 = \{t_1 t_2\}.$$

Condição 4)

Não existe uma outra sequência de disparo mais longa contendo todas as transições de S_k e que preencha as condições 1, 2 e 3.

Condição 4)

 t_1t_2 é uma seqüência de disparo, mas t_2t_1 não é uma seqüência válida, assim, t_1t_2 não é uma SSC.

 $S_1 = \lambda$; $S_2 = t_1$ e $S_3 = t_2$ são diferentes SSCs.

Propriedade 1:

- a) Se S_k é uma SSC, então, toda seqüência S_h obtida ao se permutar as transições de S_k é também uma SSC (S_k e S_h são equivalentes);
- b) Se S_k é uma SSC contendo todas as transições de T(X, M), então, essa SSC é única (a ordem de disparo das transições é sem importância). Diz-se que S_k é uma SSC máxima.

Propriedade 1:

A seqüência t₁t₂ é uma SSC. As propriedades 1.a e 1.b decorrem da definição de SSC.

$$T(E^1, M) = \{t_1, t_2\};$$

 $\{t_1t_2\}$ é uma SSC máxima.

Propriedade 1:

$$T(E^1, M) = \{t_1, t_2\};$$

1. $S_1 = \lambda$; $S_2 = t_1$ e $S_3 = t_2$ são diferentes SSCs;

2. {t₁t₂} não é uma SSC, então não existe SSC máxima.

RPS – Disparo iterativo pela ocorrência de um evento externo

- O disparo iterativo pela ocorrência de um evento externo E¹ é composto por:
 - disparo de uma SSC devido a Eⁱ;
 - seguido eventualmente pelo disparo de uma ou mais SSC devido a ocorrência de e.

RPS – Disparo iterativo pela ocorrência de um evento externo

$$M_0 = (0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0);$$

$$T{E^2, M_0} = {t_2, t_5};$$

$$T{E^3, M_0} = {t_3};$$

M₀ é uma marcação estável;

 $\{t_2t_5\}$ é uma SSC;

 $\{t_3\}$ é uma outra SSC.

RPS — Disparo iterativo pela ocorrência de um evento externo

Disparando a SSC $\{t_2t_5\}$

RPS — Disparo iterativo pela ocorrência de um evento externo

Disparando a SSC $\{t_2t_5\}$

- Faz implicitamente a hipótese de que o número de iterações é finito. Assim, a partir de toda marcação estável acessível, toda ocorrência de um evento externo conduz a uma marcação estável em um número finito de SSC;
- Uma RPS que possua esta propriedade é uma RPS pronta.

- 1. Dada a marcação inicial M_0 , inicialize o sistema, faça X = e e vá ao *passo 3*;
- 2. Considere o primeiro instante de ocorrência de um novo evento externo e faça $X = \mathbb{E}^1$, sendo \mathbb{E}^1 o evento externo que ocorreu;
- 3. Determine o conjunto de transições habilitadas e receptivas a *X*. Se esse conjunto é vazio, descarte *X* e retorne ao *passo* 2;
- 4. Efetue uma SSC;
- 5. Faça X = e. Retorne ao *passo 3*.

A primeira característica que se espera de uma RPS é que ela seja *pronta* ou *estável*.

Uma RPS é *pronta* ou *estável*, se para toda marcação estável acessível e para todo evento externo Eⁱ, o disparo iterativo de transições devido a ocorrência de Eⁱ contenha um número finito de SSCs.

Se o número de SSCs é sempre inferior ou igual a k, diz-se que a RPS é k-pronta, ou k-estável

- 1. Se uma RPS preenche as duas condições seguintes, então ela é *estável*:
 - 1. A toda transição fonte é associado um evento externo;
 - Para todo <u>circuito elementar</u> p₁t₁p₂t₂...
 p_qt_q, existe pelo menos uma transição dentre o conjunto {t₁, t₂, ..., t_q} que é sincronizada por um evento externo.

A condição 1 é necessária pois uma transição fonte está sempre habilitada.

A condição 2 assegura que não pode existir um circuito em que todas as transições sejam disparadas sucessivamente pela ocorrência do evento e.

2. Para que uma RPS seja estável, é necessário e suficiente que toda seqüência repetitiva, estacionária ou crescente (a partir de qualquer marcação acessível), contenha pelo menos uma transição sincronizada com um evento externo.

Observação: Uma RPS totalmente sincronizada é dita 1-pronta, dado que todo disparo de uma SSC, devido a ocorrência de um evento externo, conduz a uma marcação estável.

A condição de que uma RP autônoma seja limitada para uma marcação inicial M₀ é suficiente mas não necessária para que a RPS seja limitada para a mesma marcação inicial.

A condição de que uma RP autônoma seja *viva* para uma marcação inicial M₀ não é nem *necessária* nem *suficiente* para que a RPS seja viva para a mesma marcação inicial.

- RPS viva;
- Todas as transições podem ser disparadas.

- Marcações mortas;
- RP não viva.

- •T₅ nunca dispara;
- •RPS não viva.

- Todas as transições podem ser disparadas;
- RP viva.

Se uma Rede de Petri simples R é viva para uma marcação inicial M_0 , então toda RPS totalmente sincronizada e construída a partir de R, é viva para M_0 .

RPS – Observações Finais

- As propriedades de uma RP autônoma não são necessariamente conservadas quando a mesma é munida de sincronização;
- A maioria dos métodos de busca de propriedades de uma RP se aplicam às RPS, por exemplo, álgebra linear, reduções e grafo de marcações alcançáveis;

RPS – Observações Finais

Fez-se a hipótese de que dois eventos externos não ocorrem simultaneamente. Pode-se desprezar esta hipótese modificando-se o passo 2 do algoritmo do grafo das marcações estáveis alcançáveis:

X é o conjunto dos eventos que ocorrem no instante t.

As propriedades 1 a 4 continuam verdadeiras.

RPS – Observações Finais

- Suponha que uma RPS seja totalmente sincronizada e que cada evento externo seja associado a uma só transição, ou seja, a cada t_i é associado um evento Eⁱ, então:
 - Se todas as seqüências de eventos externos são possíveis, a RPS possui todas as propriedades da RP autônoma correspondente;
 - Senão, as propriedades podem não se conservar.

RPS – Bibliografia Consultada

- R. David, H. Alla, 'Discrete, Con'tinuos, and Hybrid Petri Nets', 2^e édition, Springer Berlin, 2005.
- R. David, H. Alla, 'Du Grafcet aux Réseaux de Petri', 2^e édition, Ed. Hermes Paris, 1992.
- J.-M. Proth, X. Xie, 'Les Réseaux de Petri pour la Conception de la Gestion des Systèmes de Prodution', Masson, Paris, 1994.
- J. L. Peterson, 'Petri Net Theory and the Modeling of Systems', Prentice-Hall, N.J., 1981.

Fim

Expressões Regulares

- Uma *Expressão Regular* é uma linguagem (um conjunto de seqüências) definida sobre um alfabeto (conjunto de símbolos);
- O conjunto de transições

$$T = \{t_1, t_2, ..., t_m\}$$

de uma RP pode ser visto como um alfabeto;

Todas as seqüências possíveis dessas transições podem ser vistas como uma linguagem sobre o alfabeto T.

Expressões Regulares Operações de Base

União – representada pelo símbolo +:

$$t_1 + t_2 = t_2 + t_1$$

significando t₁ ou t₂.

Expressões Regulares Operações de Base

Concatenação – representada como um produto:

$$t_1 t_2 = (t_1) (t_2) \neq t_2 t_1$$

significando t_1 seguido de t_2 .

- $t_1t_1 = t_1^2$, significa t_1 duas vezes sucessivas;
- t₂ t₁ t₅ é uma seqüência de tamanho 3;
- $^{\blacksquare}$ λ é a seqüência de comprimento nulo.

Expressões Regulares Operações de Base

Iteração – representada pelo símbolo *:

$$T^* = (t_1 + t_2 + ... + t_m)^*$$

contém todas as seqüências finitas que podem ser construídas a partir do alfabeto

$$T = \{t_1, t_2, ..., t_m\}$$

A seqüência de comprimento nulo λ é o elemento neutro do monoide T*.

Expressões Regulares Exemplos

$$t_1(t_2 + t_3) = t_1 t_2 + t_1 t_3$$

significa t₁ seguido de (t₂ ou t₃)

Expressões Regulares Exemplos

$$(t_1 + t_2)t_3 = t_1t_3 + t_2t_3$$

significa (t₁ ou t₂) seguido de t₃

Expressões Regulares Exemplos

$$t_1^* = \lambda + t_1 + t_1 t_1 + t_1 t_1 t_1 + \dots$$

Significa repetição de t₁ um número qualquer de vezes

Uma RP é *persistente* para uma dada marcação inicial M_0 se para toda marcação acessível $M_i \in R(M_0)$, a seguinte propriedade se verifica: « se t_i e t_k são habilitadas na marcação M_i, então t_it_k é uma seqüência de disparo a partir de M_i, bem como t_kt_i por simetria »

Conflito

Conflito estrutural

Conflito efetivo

Circuito Elementar

Um circuito elementar é um circuito que não passa mais de uma vez em um mesmo lugar.

Seqüência Repetitiva

Dada M'∈ R(M₀), uma seqüência repetitiva é uma seqüência de transições, que disparada a partir de M', retorna a RP à marcação M', ou seja:

$$M'[S_1\rangle M'$$

em que S₁ é uma seqüência de transições válida a partir de M'.

Seqüência Repetitiva

Uma seqüência repetitiva que contém todas as transições da RP (cada uma pelo menos uma vez) é uma seqüência repetitiva completa.

Seqüência Repetitiva

Uma seqüência repetitiva S_1 tal que $M'[S_1\rangle M'$

é dita ser uma seqüência repetitiva estacionária;

■ Uma seqüência repetitiva S₂ tal que

$$M'[S_2] M''$$
 e $M'' > M'$

é dita ser uma seqüência repetitiva crescente.

Rede de Petri Simples

Uma rede de Petri simples é uma RP na qual cada transição não pode 'se envolver' em mais de um conflito.

RP não simples

