Principles of Prediction and Inference in Machine Learning Part 1: Principles of Supervised Learning

Matthew S. Shotwell, Ph.D.

Department of Biostatistics Vanderbilt University Medical Center Nashville, TN, USA

February 17, 2021

My Bio

- ► Matthew (Matt) S. Shotwell, Ph.D.
- ► Assoc. Prof. in Biostatistics
- ► 10 years at VU/VUMC
- ► R user 10+ years
- ► Teach "Statistical Machine Learning"; 6 years

Machine learning

source: https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications

Supervised learning (Prediction)

- ► Have input ('features') AND output ('target')
- ► Create a model ('learner') using observed inputs and outputs
- ► Goal is to predict outputs from new inputs
- "Supervised" because we have inputs and outputs

Supervised learning example

Supervised learning workflow

source: https://www.quora.com/What-is-pattern-recognition

Definitions: variable types

- ► quantitative e.g. blood pressure
- qualitative e.g. gender, a.k.a. categorical, discrete, factor, numeric codes for qualitative variables called 'targets'
- ▶ ordered e.g. numerical pain scale (0-10)

Definitions: supervised learning tasks

- ► regression model to predict quantitative output
- classification model to predict qualitative output
- ► regression or classification ordered output

Definitions: notation

- ightharpoonup inputs X
- ightharpoonup quantitative outputs Y
- ightharpoonup qualitative outputs G
- ightharpoonup transpose X^T
- ightharpoonup prediction \hat{Y}

Regression

 $\blacktriangleright \ \ \mathsf{Find} \ \mathsf{function} \ f \ \mathsf{to} \ \mathsf{predict} \ Y \colon \hat{Y} = \hat{f}(X)$

Regression

- ▶ To find f in $\hat{Y} = \hat{f}(X)$, need an **objective function**:
 - ► Objective function must make sense in context of the SL task
 - ▶ Least squared error: minimize $1/n \sum_{i=1}^{n} (y_i f(x_i))^2$
 - ▶ Least absolute error: minimize $1/n\sum_{i=1}^{n}|y_i-f(x_i)|$
- ightharpoonup and need to select a class of models f(X):
 - ► linear models:

$$f(X) = X\beta$$

► k-nearest neighbor:

$$f(X) = \frac{1}{k} \sum_{x_i \in N_k(X)} y_i$$

Least-squares regression (LS)

▶ Given input X, predict Y ($n \times 1$ matrix) as follows:

$$\hat{Y} = \hat{f}(X) = X\hat{\beta}$$

where $\hat{\beta}$ is the value that minimizes the sum of squared error in the training data

▶ The R function 'lm' will estimate β in this way

k-nearest neighbor regression (kNN)

▶ Predict \hat{Y} corresponding to X by averaging the Y values of the k nearest neighbors to X:

$$\hat{Y}(X) = \frac{1}{k} \sum_{x_i \in N_k(X)} y_i$$

- $ightharpoonup N_k(X)$ is set of k training inputs nearest to X, as determined by a distance metric, e.g., the Euclidean distance
- ightharpoonup k parameters is a 'smoothing parameter' or 'tuning parameter'
- 'caret::knnreg' implements kNN regression with Euclidean dist.

LS vs. NN method: flexibility and tuning

- ► LS is a parametric method; no tuning parameter
- ightharpoonup NN is a semiparametric method; tuning parameter k
- ► LS cannot automatically model complex associations
- ► NN can automatically model complex associations
- ► LS can be made more flexible, i.e "tuned", by making the linear predictor more flexible, using 1) more predictors, 2) predictor interactions, and 3) nonlinear transformations of predictors (e.g., splines)

Bias-variance tradeoff

- ightharpoonup more model flexibility (e.g., small k for kNN mehtod) results in less bias, more variance in \hat{Y}
- bias and variance are interpreted across training samples
- ▶ this is called the "bias-variance" tradeoff

Classification (binary case)

- ▶ Think of \hat{Y} as the probability of a '1' outcome
- ▶ The predicted class \hat{G} is '1' if $\hat{Y} > 0.5$ and '0' otherwise
- ▶ Can often estimate \hat{Y} in a manner similar to regression (e.g., LS and NN).

Classification example

- ► Y- qualitative (binary) outcome (orange 1, blue 0)
- $ightharpoonup X_1$ quantitative predictor
- $ightharpoonup X_2$ quantitative predictor
- lacktriangle classification rule: $\hat{G}=$ orange if $\hat{Y}>0.5$ else blue

Linear classification

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

k-nearest neighbor classification

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence chosen by majority vote amongst the 15-nearest neighbors.

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then predicted by 1-nearest-neighbor classification.

Evaluating the model and 'optimism'

- Need a mechanism to evaluate predictive quality of model, by comparing predictions to observed targets: $\hat{Y} = \hat{f}(X)$ vs Y.
- ▶ The **prediction error** of a trained model may be evaluated using the same objective function for estimation (e.g., mean of squared errors: $1/n\sum_{i=1}^n(y_i-\hat{f}(x_i))^2$), but it may be quantified in some other way, e.g., AUROC for classification problems.

Evaluating the model and 'optimism'

- ► The **training error** is the prediction error computed using the training data; training error is optimistic, it should not be used to select a model or tuning parameters
- ► The **test error** is the prediction error computed on new data ("testing data" "out of sample data"); test error is not optimistic, can be used to selet model or tune parameters
- ► The **optimism** is the difference in training and test error

Model tuning

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

FIGURE 2.4. Misclassification curves for the simulation example used in Figures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test sample of size 10,000. The orange curves are test and the blue are training error for k-nearest-neighbor classification. The results for linear regression are the bigger orange and blue squares at three degrees of freedom. The purple line is the optimal Bayes error rate.

Model tuning

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

FIGURE 2.11. Test and training error as a function of model complexity.

Estimating test error: testing/training split

- ► Split data into training and testing data
- ► Use training data to build models
- ► Use testing data to evaluate models
- ► Simple, but not most efficient use of data

Estimating test error: k-fold cross validation

- Split data into k subsets or 'folds'
- ► Use k-1 subsets to build model
- ► Use holdout subset to evaluate model
- Repeat for all k permutations
- ► Results in k estimates of test error; use mean and sd
- ► More complicated, but also more efficient use of data

Other supervised learning methods

- ► the principles we discussed can be applied when using any type of supervised learning method or algorithm
 - supervised learning workflow
 - selecting a suitable objective function
 - training error, test error, optimism
 - ▶ process of tuning/selecting models by minimizing test error

Other supervised learning methods

- other supervised learning methods include
 - ► linear regression/classification methods
 - ► regularization (ridge, lasso)
 - kernel methods/local regression
 - ▶ basis function methods (e.g., splines)
 - support vector maching (classification)
 - classification and regression trees (CART)
 - ▶ bagging and boosting methods (e.g., random forest)
 - neural networks and deep learning

Prediction vs. Inference

Generally two types of tasks:

- ▶ Prediction: Is this a picture of a cat or a dog?
- ► Inference: Does greenhouse gas affect global average temperature?

Prediction vs. Inference

Generally two types of tasks:

- ► Prediction: Predicting an outcome.
- Inference: Making inferences about an unknown structure, mechanism, or relationship: e.g., effect of an exposure on an outcome.
- ► Need to ask: What is my primary task?
- ▶ Need to ask: Can I do both at the same time?
- ► Need to ask: What to consider when doing prediction/inference?

Breakout session (at 5pm)

► In my breakout session, we will work through the k-NN example in R using the orange/blue classification data. We will go through the model fitting and tuning steps.