Arduino Soil Moisture Probe

•••

Tyler Brown and Evan Lesmez

Goals

- Remotely monitor soil moisture in Engineer's Way bioretention system
 - Relate soil moisture data to rainfall events and optimize water flow
- Create a soil moisture probe using cheap and readily available equipment
- Make a product that is easily reproduced and can be used in a variety of

applications

• Homes, gardens, irrigation systems, etc.

Equipment

WINGONEER YL-69 Sensor and HC-38 Module

NRF24L01 Radio Transmitter (2x)

Total Cost: \$20

Arduino Uno Board (2x)

Colored
Wire with
pins for
Arduino
(18x)

AA Battery Pack (connects 6 in series)

Setup

- Moisture Probe, Arduino, Radio Transmitter, and battery pack deployed in bioretention system
 - Waterproof plastic container with slot for probe
- Radio receiver and Arduino connected to PC in Thornton B-Wing
- Probe gathers moisture data, transmits to receiver, and uploads to PC
 - All data sent to Blynk server, which can be viewed via Blynk mobile app

Program

- All coding in the Arduino IDE, required importing different libraries all shown in the Git repository:
 - RF24 for radio communication
 - Blynk for posting data to server
- Only two scripts required
 - Transmitter records and sends data (RadioTransmit)
 - Receiver records and uploads data (RadioBlynkReceive)

https://github.com/uva-hydroinformatics/Soil_moisture
 and_Rainfall_sensing

Testing

- Put the transmitter setup out in the rain garden for a week
 - Receiver was in nearby room hooked up to a computer
 - Data was recorded and posted every 30 seconds
 - Blynk app: utilized history graph widget
- Soil moisture levels were obtained and plotted in real time

Results

- Overall successful. Soil moisture plotted over the course of a week
 - O Data collected & posted on the Blynk-server
 - \circ Exported to a CSV and graphed \rightarrow
 - Demonstrated at the UVA SEAS open house
- Rapid data collection
- Instant plotting

Obstacles and Solutions

- Probe Calibration
 - Code must scale probe output to match actual moisture levels. Calibrated with pure water (100%)
 and a dry paper towel (0%)
- Radio Transmission Range
 - Short range boosted with soldered antennas
 - Arduino Shield offers wifi capability for future projects
- Battery Life
 - Frequent transmission drains batteries quickly (roughly 30,000 transmissions per battery pack)
 - Storing data locally and sending less frequent packets dramatically increases lifetime

Future Work

- Pair with tipping bucket that measures rainfall intensity and depth
 - Correlate rainfall depth with soil moisture levels, increase predictability
 - Similar wireless transmission and data logging
- Use probe to automate valve controls
 - \circ Moisture too high \rightarrow Open drainage valves
 - \circ Low moisture \rightarrow close valves, activate sprinklers, etc.
- Improve sturdiness of design
 - Solder pins, build robust container, larger battery pack