Two-Graphs and NSSDs: An Algebraic Approach

Luke Collins Irene Sciriha

DEPARTMENT OF MATHEMATICS
Faculty of Science
University of Malta

Combinatorics and Graph Theory Day 31st January, 2019

Outline

- Introduction
 - Spectrum and Seidel Switching
 - Defining Two-Graphs
- Regular Two-Graphs
 - The Involution M
 - Descendant Form of a Regular Two-Graph
 - Results about Descendants of Regular Two-Graphs
- Strongly Regular Graphs
 - Definition
 - Structure of Descendants of Regular Two-Graphs
- Conference Graphs

luke.collins@um.edu.mt

Basic Definitions

Definition (Graph)

A graph G is a pair (V, E) where V is a non-empty finite set of vertices, and $E \subseteq \binom{V}{2}$ is a set of edges, i.e. unordered pairs of the elements of V.

We usually use the letter n for the number of vertices, that is, n = |V|.

To encode graphs algebraically, we can use an adjacency matrix:

Definition (Adjacency matrix)

The adjacency matrix of a graph G = (V, E) is the $n \times n$ matrix (a_{ij}) where

$$a_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ is adjacent to vertex } j, \text{ i.e. } \{v_i, v_j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

Seidel Matrix

Introduction

Another way of encoding graphs is the Seidel matrix.

Definition (Seidel matrix)

The **Seidel matrix** of a graph G = (V, E) is the $n \times n$ matrix (s_{ij}) where

$$s_{ij} = \begin{cases} 0 & \text{if i = j} \\ -1 & \text{if vertex } i \text{ and vertex } j \text{ are adjacent} \\ 1 & \text{otherwise.} \end{cases}$$

Eventually we will work with a variant of the Seidel matrix, which we will introduce later.

Introduction

Seidel Matrix

Example (A simple Seidel matrix)

Consider the following graph. It has the following Seidel matrix.

Note that if **A** and **S** are the adjacency and Seidel matrices of G respectively,

$$S = J - I - 2A$$

where **J** is the matrix consisting entirely of 1's and **I** is the identity matrix.

Spectrum of a Graph

The distinct eigenvalues $\mu_1, \mu_2, \ldots, \mu_s$ of a given matrix **X** together with their multiplicities m_1, m_2, \ldots, m_s form the **spectrum** of **X**, denoted $\mu_1^{(m_1)} \mu_2^{(m_2)} \cdots \mu_s^{(m_s)}$.

Definition (Spectra)

- lacktriangle The **spectrum** of a graph G is the spectrum of its adjacency matrix
- ② The **Seidel spectrum** of a graph G is the spectrum of its Seidel matrix

Given a graph G = (V, E) and a subset of the vertices $U \subseteq V$, the operation of Seidel switching with respect to U exchanges all edges and **non-edges** between *U* and $V \setminus U$ to obtain the graph SS(U).

Example

luke.collins@um.edu.mt

Given a graph G=(V,E) and a subset of the vertices $U\subseteq V$, the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and $V\setminus U$ to obtain the graph $\mathrm{SS}(U)$.

Example

Given a graph G = (V, E) and a subset of the vertices $U \subseteq V$, the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and $V \setminus U$ to obtain the graph SS(U).

Example

luke.collins@um.edu.mt

Given a graph G=(V,E) and a subset of the vertices $U\subseteq V$, the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and $V\setminus U$ to obtain the graph $\mathrm{SS}(U)$.

Example

luke.collins@um.edu.mt

Given a graph G=(V,E) and a subset of the vertices $U\subseteq V$, the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and $V\setminus U$ to obtain the graph $\mathrm{SS}(U)$.

Example

Given a graph G = (V, E) and a subset of the vertices $U \subseteq V$, the operation of *Seidel switching* with respect to U exchanges all edges and non-edges between U and $V \setminus U$ to obtain the graph SS(U).

Example

What Seidel Switching does to the Seidel Matrix

We can assume that the vertices of the set $U \subseteq V$ are labelled first (otherwise simply relabel the vertices). In our example, we had the following:

G

What Seidel Switching does to the Seidel Matrix

In general, if **S** and $S_{SS(U)}$ are the Seidel matrices of G and SS(U), then

$$\mathbf{S} = \left(egin{array}{c|c} \mathbf{S}_{U} & \mathbf{R} \ \hline \mathbf{R}^{ op} & \mathbf{S}_{V \setminus U} \end{array}
ight) \iff \mathbf{S}_{\mathrm{SS}(U)} = \left(egin{array}{c|c} \mathbf{S}_{U} & -\mathbf{R} \ \hline -\mathbf{R}^{ op} & \mathbf{S}_{V \setminus U} \end{array}
ight).$$

In other words, $\mathbf{S}_{SS(U)} = \mathbf{D}^{-1}\mathbf{S}\mathbf{D}$, where $\mathbf{D}^{-1} = \mathbf{D}$ is the diagonal matrix with $d_{ii} = +1$ if $i \in U$ and $d_{ii} = -1$ otherwise.

It follows that **S** and $S_{SS(U)}$ are similar, and therefore G and SS(U) have the same Seidel spectrum.

Two-Graphs

The operation of Seidel switching defines an equivalence relation on the set of all graphs on n vertices.

Definition (Two-graph)

A **two-graph** or **switching class** is an equivalence class of the Seidel switching equivalence relation.

- A two-graph on *n* vertices consists of all the *n*-vertex graphs with the same Seidel spectrum.
- The term 'two-graph' originally arose in a combinatorial context, and actually refers to a couple (V, Δ) where $\Delta \subseteq \binom{V}{3}$ is a collection of triples $\{v_1, v_2, v_3\}$ with the property that any 4-subset of V contains an even number of triples of Δ . This is known to be equivalent to our definition.

Regular Two-Graphs

Definition (Regular two-graph)

A two-graph is said to be **regular** if the Seidel matrix of any representative has precisely two distinct eigenvalues.

- This is a valid definition because the Seidel spectrum of any member of a two-graph is the same.
- Reverting to the combinatorial definition of 'two-graph', (V, Δ) is said to be regular if every pair of vertices lies in the same number of triples of Δ . This is known to be equivalent to our definition.

The Involution M

Suppose M is a symmetric matrix which is involutionary, that is, $M^2 = I$. Then

- By spectral decomposition, **M** has eigenvalues 1 and -1.
- If M is written as

$$\mathbf{M} = \left(\begin{array}{c|c} \mathbf{B} & \mathbf{v} \\ \hline \mathbf{v}^\top & -\lambda \end{array} \right),$$

then $\mathbf{B}v = \lambda v$ and $|\lambda| < 1$.

Furthermore, if the spectrum of **M** is $1^{(n-k)}(-1)^{(k)}$, then it follows by Cauchy's interlacing inequalities that the spectrum of **B** is

$$1^{(n-k-1)}(-1)^{(k-1)}\lambda^{(1)}$$
.

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

If **S** is the Seidel matrix of a regular two-graph on *n* vertices with eigenvalues μ_1, μ_2 , then

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

where

$$\alpha = \frac{2}{\mu_1 - \mu_2} \quad \text{and} \quad \lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2}$$

is an involution.

- This matrix still gives us an encoding of the graph.
- $\bullet \ \mu_1 \mu_2 = 1 n.$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$$

Example $(K_{2,4})$

Seidel spectrum: $(-1)^5(5)^1$

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$
$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$$\mathbf{S} = \begin{pmatrix} 0 & -1 & 1 & 1 & -1 & 1 \\ -1 & 0 & -1 & -1 & 1 & -1 \\ 1 & -1 & 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 & -1 & 1 \\ -1 & 1 & -1 & -1 & 0 & -1 \\ 1 & -1 & 1 & 1 & -1 & 0 \end{pmatrix}$$

$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I}$

Example $(K_{2,4})$

Seidel spectrum: $(-1)^5(5)^1$

Strongly Regular Graphs

$$\alpha = \frac{2}{\mu_1 - \mu_2} = -\frac{1}{3}$$

$$\lambda = \frac{\mu_1 + \mu_2}{\mu_1 - \mu_2} = -\frac{2}{3}$$

$$\mathbf{M} = \alpha \mathbf{S} - \lambda \mathbf{I} = \begin{pmatrix} 2/3 & 1/3 & -1/3 & -1/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 & 1/3 & -1/3 & 1/3 \\ -1/3 & 1/3 & 2/3 & -1/3 & 1/3 & -1/3 \\ -1/3 & 1/3 & -1/3 & 2/3 & 1/3 & -1/3 \\ 1/3 & -1/3 & 1/3 & 1/3 & 2/3 & 1/3 \\ -1/3 & 1/3 & -1/3 & -1/3 & 1/3 & 2/3 \end{pmatrix}$$

Every two-graph on n vertices has a class representative of the form $D \stackrel{.}{\cup} K_1$ where D is a graph on n-1 vertices.

Definition (Descendant)

Any two-graph representative of the form $D \dot{\cup} K_1$ is said to be in *descendant* form, and the component D is said to be a *descendant* of the two-graph.

Obtaining a Descendant Form

Consider a representative (V, E) which is not in descendant form.

- Pick any vertex $v \in V$.
- 2 Let U be the set of all neighbours of v.
- **3** Then the vertex v is isolated in SS(U).

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges. Switch edges and non-edges.

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges. Switch edges and non-edges. Obtain SS(U).

Example (The Petersen Graph)

The famous Petersen graph is contained in a regular two-graph.

Let us isolate vertex 8. Its set of neighbours is $U = \{7, 3, 9\}$. Now we focus on the edges between U and $V \setminus U$. And the non-edges. Switch edges and non-edges. Obtain SS(U). Move vertices around to look nicer.

Using the fact that $\mathbf{M}^2 = \mathbf{I}$, we easily obtain the following known results for descendants of regular two-graphs.

1 D is a ρ -regular subgraph, each vertex having degree

$$\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1.$$

2 Substituting for α and λ , we also get that n and $\mu_1 + \mu_2$ have the same parity (even/odd).

Results and Descendants of a Regular Two-Graphs

We prove the first result, that D is ρ -regular with $\rho = \frac{n}{2} - \frac{\lambda}{\alpha} - 1$.

Proof.

Let the Seidel eigenvalues of G be μ_1 and μ_2 , where G is in descendant form. Using the values of α and λ , the first and last rows of the involution \mathbf{M} are of the form

Row 1
$$\begin{pmatrix} -\lambda & \pm \alpha & \pm \alpha & \cdots & \pm \alpha & \alpha \\ & & \vdots & & & \\ \alpha & \alpha & \alpha & \cdots & \alpha & -\lambda \end{pmatrix}$$

where we are assuming that the last row corresponds to the isolated vertex. The number of $-\alpha$'s in row 1 is the degree of vertex 1. Since $\mathbf{M}^2 = \mathbf{I}$, the inner product $\langle \text{Row 1}, \text{Row } n \rangle = 0$.

Results and Descendants of a Regular Two-Graphs

We prove the first result, that D is ρ -regular with $\rho = \frac{n}{2} - \frac{\lambda}{2} - 1$.

Proof.

Row 1
$$\begin{pmatrix} -\lambda & \pm \alpha & \pm \alpha & \cdots & \pm \alpha & \alpha \\ & & \vdots & & & \\ \alpha & \alpha & \alpha & \cdots & \alpha & -\lambda \end{pmatrix}$$

$$\langle \text{Row 1}, \text{Row } n \rangle = 0 \implies -\alpha \lambda - (n-2)\alpha^2 - 2\rho_1 \alpha - \alpha \lambda = 0$$

where ρ_1 denotes the degree of vertex 1.

Note that ρ_1 is independent of the vertex label 1, since

$$\langle \text{Row 1}, \text{Row } i \rangle = 0$$

for all $1 \le i \le n-1$. Thus *D* is ρ -regular.

Strongly Regular Graphs

Recall: A graph is called *regular* if all the vertices are of the same degree.

Definition (Strongly regular graph)

A graph G is said to be a strongly regular graph or an $srg(n, \rho, e, f)$ if:

- 1 it has *n* vertices,
- **2** each vertex has degree ρ ,
- every two adjacent vertices have e common neighbours, and
- 4 every two non-adjacent vertices have f common neighbours.

Strongly Regular Graphs

Example (Descendant of Petersen Graph)

The descendant from the last example is an srg(9, 4, 1, 2).

Structure of Descendants of Regular Two-Graphs

Consider a descendant form $D \dot{\cup} K_1$ of a regular two-graph and the following notations for pairs of vertices.

	# of common	# of common
	neighbours	non-neighbours
Adjacent vertices	ẽ	ě
Non-adjacent vertices	$ ilde{f}$	$\widetilde{\widetilde{f}}$

By considering the rows of **M** we obtain the following formulæ:

$$\tilde{e} + \tilde{e} = \frac{1}{2}(n-2) - \frac{\lambda}{\alpha}$$
 $\tilde{f} + \tilde{f} = \frac{1}{2}(n-2) + \frac{\lambda}{\alpha}$
 $\tilde{e} - \tilde{e} = 2\rho - n$ $\tilde{f} - \tilde{f} = 2\rho - (n-2)$

From these it follows that \tilde{e} , \tilde{e} , \tilde{f} and \tilde{f} are invariant for any pair of adjacent/non-adjacent vertices.

Structure of Descendants of Regular Two-Graphs

From the formulæ obtained previously, we get the following results. Given a descendant form $D \dot{\cup} K_1$ of a regular two-graph on n vertices, then

- D is an $srg(n-1, \rho, e, f)$ where $e = \tilde{e}$ and $f = \tilde{f} = \frac{\rho}{2}$.
- ullet $ho = -rac{1}{2}(1 + \mu_1\mu_2 + (\mu_1 + \mu_2))$ and $e = -rac{1}{2}(5 + \mu_1\mu_2 + 3(\mu_1 + \mu_2))$.
- *n* must be even.
- $\frac{\lambda}{\alpha}$ is an integer.

An Application: Conference Graphs

We conclude by mentioning an application of two-graphs. In the paper, we continue to use the theory of NSSD's to study **conference graphs**. These are regular two-graphs which have $\mu_1 = -\mu_2$.

Their Seidel matrices are precisely the so-called **conference matrices**, i.e. (0,1,-1)-matrices with zero on the diagonal and which satisfy $\mathbf{SS}^{\top}=k\mathbf{I}$ for some k.

These have applications in telephone networks. A necessary condition for setting up a conference with n telephone ports and ideal signal loss is the existence of an $n \times n$ conference matrix.

An Application: Conference Graphs

Figure: Implementation of 6-port conference matrix, corresponds to the smallest existing conference graph on n=6 vertices with Seidel eigenvalues $\pm\sqrt{5}$.

Thank you!

DEPARTMENT OF MATHEMATICS

Faculty of Science University of Malta

