

WIDE BANDWIDTH **DUAL BIPOLAR OPERATIONAL AMPLIFIERS**

- INTERNALLY COMPENSATED
- SHORT-CIRCUIT PROTECTION
- GAIN AND PHASE MATCH BETWEEN **AMPLIFIER**
- LOW POWER CONSUMPTION
- PIN TO PIN COMPATIBLE WITH MC1458/LM358
- GAIN BANDWIDTH PRODUCT (at 100kHz) 5.5MHz

DESCRIPTION

The TJM4558 is a high performance monolithic dual operational amplifier.

The circuit combines all the outstanding features of the MC1458 and, in addition possesses three times the unity gain bandwidth of the industry standard.

ORDER CODE

Part Number	Temperature	Package				
Fait Number	Range	N	D	Р		
TJM4558C	0°C, +70°C	•	•	•		
TJM45581	-40°C, +105°C	•	•	•		
Example: TJM4558CN						

N = Dual in Line Package (DIP)

DIP8 (Plastic Package) **SO8** (Plastic Micropackage) TSSOP8 (Thin Shrink Small Outline Package)

PIN CONNECTIONS (top view)

December 2003 1/7

D = Small Outline Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT))
P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT)

SCHEMATIC DIAGRAM (1/2 TJM4558)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	TJM4558I	TJM4558C	Unit
V _{CC}	Supply Voltage	±22		V
V _i	Input Voltage	±	V	
V _{id}	Differential Input Voltage	±;	V	
P _{tot}	Power Dissipation	680		mW
	Output Short Circuit Duration	Infinite		
T _{oper}	Operating Free-Air Temperature Range	-40 to +105 0 to +70		°C
T _{stg}	Storage Temperature	remperature -65 to +150		°C

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 15V$, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Input Offset Voltage ($R_S \le 10k\Omega$)				
V_{io}	$T_{amb} = +25$ °C		1	5	mV
	$T_{min} \le T_{amb} \le T_{max}$.			6	
	Input Offset Current				
I _{io}	$T_{amb} = +25$ °C		20	100	nA
	$T_{min} \le T_{amb} \le T_{max}$.		40		
	Input Bias Current				
I_{ib}	$T_{amb} = +25$ °C		50	400	nA
	$T_{min} \le T_{amb} \le T_{max}$.		100		
	Large Signal Voltage Gain ($R_L = 2k\Omega$, $V_0 = \pm 10V$)		200		
A_{vd}	$T_{amb} = +25$ °C	50	200		V/mV
	$T_{min} \le T_{amb} \le T_{max}$	25			

2/7

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Supply Voltage Rejection Ratio $(R_s \le 10k\Omega)$				
SVR	$T_{amb} = +25$ °C		90		dB
	$T_{min} \le T_{amb} \le T_{max}$		77		
	Supply Current, all amplifiers, no load				
Icc	$T_{amb} = +25$ °C		2.3	4.5	mA
	$T_{min} \cdot \leq T_{amb} \leq T_{max}$.		4		
	Input Common Mode Voltage Range				
V _{icm}	$T_{amb} = +25$ °C	±12			V
	$T_{min} \le T_{amb} \le T_{max}$	±12			
	Common-mode Rejection Ratio $(R_s \le 10k\Omega)$				
CMR	$T_{amb} = +25^{\circ}C$		90		dB
	$T_{min} \le T_{amb} \le T_{max}$.		70		
l _{os}	Output Short Circuit Current	10	20		mA
	Output Voltage Swing				
.,	$T_{amb} = +25$ °C $R_L = 10k\Omega$	±12	±14		.,
V _o	$R_L = 2k\Omega$	±10 ±12	±13		V
	$T_{min} \cdot \leq T_{amb} \leq T_{max}$ $R_L = 10k\Omega$ $R_L = 2k\Omega$	±12			
	Slew Rate				
SR	$(V_i = \pm 10, R_L = 2k\Omega, C_L = 100pF, T_{amb} = 25^{\circ}C, unity gain)$		2.2		V/µs
t _r	Rise Time $(V_i = \pm 20\text{mV}, R_L = 2\text{k}\Omega, C_L = 100\text{pF}, T_{amb} = 25^{\circ}\text{C}, unity gain})$		0.3		μs
1/	Overshoot				0/
K _{OV}	$(V_i = \pm 20 \text{mV}, R_L = 2 \text{k}\Omega, C_L = 100 \text{pF}, T_{amb} = 25 ^{\circ}\text{C}, \text{ unity gain})$		15		%
R _i	Input Resistance	0.3	2		МΩ
C _i	Input Capacitance		1.4		pF
R _o	Output Resistance		75		Ω
В	Unity Gain Bandwidth		2.8		MHz
GBP	Gain Bandwidth Product				MHz
GDP	$(V_i = 10mV, R_L = 2k\Omega, C_L = 100pF, f = 100kHz, T_{amb} = 25^{\circ}C)$		5.5		IVII⊐∠
THD	Total Harmonic Distortion (f = 1kHz, $A_v = 20dB$, $R_L = 2k\Omega$, $V_o = 2V_{pp}$, $C_L = 100pF$, $T_{amb} = 25^{\circ}C$)		0.008		%
	2				nV
e _n	Equivalent Input Noise Voltage ($R_S = 100\Omega$, $f = 1kHz$)		12		∏ √Hz
V_{O1}/V_{O2}	Channel Separation		120		dB

TRANSIENT RESPONSE TEST CIRCUIT

4/7

PACKAGE MECHANICAL DATA

Plastic DIP-8 MECHANICAL DATA

DIM	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
E		8.8			0.346		
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			7.1			0.280	
I			4.8			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	

PACKAGE MECHANICAL DATA

SO-8 MECHANICAL DATA

D114		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04

6/7

PACKAGE MECHANICAL DATA

TSSOP8 MECHANICAL DATA

D.II.4	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
е		0.65			0.0256		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1			0.039		

Information furnished is believed to be accurate and reliable. However, Thicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - United States http://www.st.com