Hevristično preiskovanje

prof. dr. Marko Robnik Šikonja December 2016

Reševanje problemov

- preiskovanje je osnovni mehanizem za reševanje problemov
- na mnogo algoritmov lahko gledamo kot na metode preiskovanja
- smiselno je poznati osnovne strategije preiskovanja

Predstavitev s prostorom stanj

- prostor stanj (graf, drevo)
- množica stanj (vsa dosegljiva stanja problema)

$$\mathbf{S} = \{S; S_Z \xrightarrow{*} S\}$$

- povezave med stanji (prehodi med stanji, potrebujemo generator naslednikov)
- prostor stanj omogoča tudi enoten pogled na različne metode načrtovanja algoritmov

Prostor stanj

- * Prostor stanj: $S = \{S; S_Z \xrightarrow{*} S\}$
- * kvaliteta stanja: q(S)
- * končno stanje: $S_0 = \arg \max_{S \in S} q(S)$
- * različne strategije preiskovanja

Primer: drseče ploščice

Primer: trgovski potnik

Primer: križci in krožci

Neinformirano preiskovanje

v širino, v globino, iterativno poglabljanje

V globino iterativno

```
status depthFirst (start_state) {
  stack.makenull(); // inicializacija
  stack.push(start_state); // začetno stanje
  while (!stack.isEmpty()) {
    state = stack.pop (); // trenutno stanje je na vrhu
    if (goal (state))
        return SUCCESS;
     else
       stack.push( successors (state) ); // vsi nasledniki na vrh
   return FAILURE;
```

V globino rekurzivno

```
status depth (state current ) {
  if (goal (current))
    return SUCCESS;
   suc = successors (current);
   foreach (s in suc)
    if ( depth(s) == SUCCESS )
      return SUCCESS;
   return FAILURE;
```

V globino do določene globine rekurzivno

```
status depthRecursive (state current, int to Depth) {
   if (goal (current))
        return SUCCESS;
  if (toDepth>o) {
    suc = successors (current);
    for each s in suc
      if (depthRecursive(s, toDepth-1)==SUCCESS)
         return SUCCESS
  return FAILURE;
```

V širino

```
status breadthFirst (start_state) {
  queue.makenull(); // inicializacija
  queue.enque(start_state); // začetno stanje v vrsto
  while (!queue.isEmpty()) {
    state = queue.deque(); // trenutno stanje je prvo v vrsti
  if (goal (state))
        return SUCCESS;
     else
       queue.enque(successors (state)); // na konec vrste
  // closed.enque(state);
  return FAILURE;
```

Iterativno poglabljanje

```
status ID (start_state) {
  int depth = 1;
  while (depth < MAX_DEPTH) {
   state = depthRecursive(start_state, depth);
   if (state == SUCCESS)
     return SUCCESS;
   else depth++;
  return FAILURE;
```

Računska zahtevnost

- odvisna od faktorja vejanja b in globine iskanja d
- * število vozlišč pri iskanju
- * v širino: $1 + b + b^2 + b^3 + \dots b^d = (b^{d+1}-1)/(b-1) = O(b^d)$
- * iterativno poglabljanje $d+1 + db + (d-1)b^2 + (d-3)b^3 + ... b^d = O(b^d)$

Dvosmerno iskanje

Hevristično preiskovanje

- hevristika metode in pravila za odkrivanje novega (Eureka!)
- uporaba:
 - 💥 točna rešitev ne obstaja
 - 💥 iskanje točne rešitve je računsko prezahtevno
- hevristika: uporabna informacije, ki usmerja preiskovanje v obetavno smer

Primer: križci in krožci

hevristika: na koliko načinov lahko zmagam

Križci in krožci

- simetrija
- hevristika

Požrešno preiskovanje

- hill-climbing
- na vsakem koraku izberemo najboljšega naslednika

Požrešno - implementacija

```
status hillClimbing (start_state) {
   stack.makenull(); // inicializacija
   stack.push(start_state); // začetno na vrh
   while (!stack.isEmpty()) {
     state = stack.pop (); // state = na vrhu sklada
     if (goal (state))
        return SUCCESS;
     else {
        suc = successors (state);
        sort(suc); // uredi glede na hevristično oceno
        stack.push(suc);
   return FAILURE;
```

Lokalni ekstremi

- lokalni in globalni maksimumi
- plato
- greben

Lokalni ekstremi

Plato

Greben

Pogled naprej (lookahead) - horizont

Najprej najboljši

- best first search
- vozlišča hranimo v prioritetni vrsti
- prioriteto določa hevristična ocena

Najprej najboljši - implementacija

```
status bestFirst (start_state) {
   priorityQueue.makenull(); // inicializacija
   priorityqueue.enque(start_state); // začetno stanje
   while (!priorityqueue.isEmpty()) {
     state = priorityQueue.deleteMin(); // prvi po prioriteti
     if (goal (state))
        return SUCCESS;
     else
        priorityQueue.addSorted(successors (state)); // urejeno dodajanje
     // closed.enque(state);
   return FAILURE;
```

A in A*

- poseben primer iskanja "najprej najboljši"
- *f(n) = g(n) + h(n)
- ***** n=stanje
- * g(n) = razdalja (vrednost, število korakov) od začetka do n
- *h(n) = ocena za pot od n do končnega stanja
- vozlišča preiskujemo urejeno glede na f(n)

Primer: drseče ploščice

Drseče ploščice: hevristike

- ploščice, ki niso na mestu (uporablja le del informacije)
- vsota razdalj (premikov) do pravega mesta (ne upošteva težavnosti zamenjav)
- 3. število direktnih zamenjav * 2

Hevristike: drseče ploščice

2 8 3 1 6 4 7 5	5	6	0
2 8 3 1 4 7 6 5	3	4	0
2 8 3 1 6 4 7 5	5	6	0
	Tiles out of place	Sum of distances out of place	2 x the number of direct tile reversals

1	2	3		
8		4		
7	6	5		
Gool				

Goal

Preiskovanje s hevristiko "ploščice, ki niso na mestu"

g(n) – težnja k iskanju v širino

Dopustnost

- marsikdaj želimo zagotovljeno najboljšo (optimalno) rešitev
- algoritem je dopusten (admissable), če zanesljivo najde najkrajšo pot, če ta obstaja
- * predpostavimo: f*(n) = g*(n) + h*(n)
 - g*(n) = najkrajša pot do n
 - $h^*(n) = najkrajša pot od n do cilja$
 - \times algoritem, ki bi uporabljal hevristiko $f^*(n)$ bi bil dopusten

Algoritma A in A*

- algoritem A: najprej najboljši s f(n)
- ★ g(n) je približek za g*(n),
- * če je g(n) monotona (kar pomeni, da se ne zmanjšuje), je dopustna je tudi f(n) = g(n) + h*(n)
- * če je h(n) dopustna, kar pomeni, da podcenjuje razdaljo do cilja oz. h(n) <= h*(n), je dopusten tudi A, ki uporablja f(n) = g(n) + h(n) in tak algoritem imenujemo A*
- trivialna, a neuporabna dopustna hevristika je h(n)=o za vsa vozlišča, ki A* spremeni v iskanje v širino

Optimalnost in dopustnost: dokaz s protislovjem

- * Algoritem A* uporabimo na grafu z dvema ciljnima vozliščema G_1 , G_2 . Cena poti do G_1 je f_1 , cena poti do G_2 je f_2 , velja $f_2 > f_1$. Denimo, da je algoritem našel pot G_2 pred G_1 in torej ni našel optimalne rešitve.
- * Poglejmo vozlišče n, ki je na optimalni poti od začetka do G_1 . Takšno vozlišče mora obstajati in ker ga algoritem še ni razširil in ker je h dopustna hevristika velja $f_1 \ge f(n)$. Po predpostavki, bi algoritem preiskal G_2 pred n, kar lahko stori le v primeru, če $f(n) >= f(G_2)$. Izraza združimo in dobimo $f_1 \ge f(G_2)$. Ker je G_2 ciljno vozlišče velja $h(G_2) = o$ in torej $f(G_2) = g(G_2)$. Tako dobimo $f_1 \ge g(G_2) = f_2$, kar je v nasprotju z začetno domnevo, da je G_2 bolj oddaljen kot G_1 .
- Dokaz potrjuje, da lahko A* najde le najcenejšo pot do cilja.

Monotonost (konsistentnost) hevristike

- ker ne zahtevamo g(n)=g*(n), lahko spočetka do nekaterih neciljnih vozlišč pridemo po daljši poti
- monotonost (lokalna dopustnost) pomeni, da do vsakega vozlišča pridemo po najkrajši poti, oziroma:
 - \times za vsa stanja n_i in n_j , kjer je n_j naslednik n_i $h(n_i) - h(n_j) <= cost(n_i, n_j)$ kjer je $cost(n_i, n_j)$ dejanska razdalja med n_i in n_j
 - $\approx h(goal) = o$
- če je hevristika monotona, pri vsakem vozlišču že prvič vemo, da smo našli najkrajšo pot; ko zamenjamo oceno z dejansko vrednostjo, se f(n) ne zmanjša in je monotono nepadajoča
- vsaka monotona hevristika je tudi dopustna

Informiranost hevristik

- želimo boljše hevristike
- * za dve dopustni hevristiki h_1 in h_2 velja: če za vsa stanja n velja: $h_1(n) <= h_2(n)$ pravimo, da je $h_2(n)$ bolje informirana
- presojamo kvaliteto in časovno zahtevnost hevristike

 $h_1(n) = 0$ $h_2(n) =$

h₂(n)=
 "ploščice, ki
 niso na
 mestu"

Poenostavitve algoritma "najprej najboljši"

- *f(n) = g(n) oziroma h(n)=o
 - optimalno z monotono naraščajočim g(n)
 - razveji in omeji (branch and bound),
 - podobno deluje tudi Dijkstra
- *f(n) = h(n)
 - 💥 požrešno iskanje, neoptimalno

Razveji in omeji (branch and bound)

```
// vrača zgornjo mejo, do koder je še smiselno preiskovati
// kličemo z: best = null ; branchAndBound(start_state, ∞)
// n – trenutno stanje
// d - zgornja meja iskanja
int branchAndBound (state n, int d) {
 if (g(n)+h(n) \ge d) // omeji iskanje
   return ∞;
 if ( goal( n ) ) {
   best = n ; // nova najboljša rešitev
   return q(n); // nova meja
 suc = successors(n);
 foreach ( s E suc ) // razveji
   d = \min(d, branchAndBound(s, d)); // išči in ažuriraj mejo
 return d;
```

Izboljšave algoritma A*

- težava algoritma A* je velika poraba pomnilnika,
 saj je potrebno hraniti vsa vozlišča z vrednostjo
 f(n) manjšo od ciljnega vozlišča
- izboljšave porabijo manj pomnilnika, a še vedno zagotavljajo optimalnost iskanja

Iterativno poglabljanje z A*

- Iterative-Deepening A* (IDA*)
- namesto poglabljanja globine iskanja, poglabljamo vrednost hevristične ocene f(n)
- deluje dobro pri problemih z malo različnih vrednosti f(n) in zelo slabo pri npr. zveznih vrednostih f(n)

RBFS

- Recursive Best First Search, (Korf, 1993)
- shrani f vrednosti vseh otrok na trenutni poti,
- pri iskanju lahko zato preiskuje do meje sobratov
- pri vračanju si zapomni f vrednost najboljšega lista in zato ve, katere veje je vredno ponovno generirati
- prostorska zahtevnost O(b·d)
- uspešnost odvisna od hevristične funkcije in potrebe po regeneriranju

RBFS koda

```
double rbfs(searchNode node, int bound) {
     if (node.f > bound)
      return node.f;
    if (goal(node))
      terminate_search(node);
   children = getChildrenSorted(node) ;
   if (children.length == 0)
     return Infinite;
   while (children[0].f <= bound) {</pre>
       if (children.length==1)
         fSiebling = Infinite;
       else
         fSiebling = children[1].f;
       children[0].f = rbfs(children[0], min(bound, fSiebling) );
       children.sort();
   return children[0].f
```

Prikaz delovanja RBFS: prostor stanj

Prikaz delovanja RBFS

MA* in SMA*

- pomnilniško omejena A* (memory bounded A*)
- * deluje kot A*, dokler ne zmanjka pomnilnika, nato
 - ★ odstrani list z najslabšo vrednostjo f
 - 💥 kot RBFS ažurira njegovo vrednost v predhodniku
 - če ima več listov enako vrednost f, odstrani najstarejšega, razširi najmlajšega
- SMA* najde optimalno rešitev kot A*

Hevristično preiskovanje in princip minimaksa

- osnova: igra dveh nasprotnikov
- primer nim: nasprotnika izmenoma delita ploščice na dva neenaka kupa; nasprotnik, ki ne more deliti izgubi
- primer: nim 7 (majhen prostor stanj, lahko pregledamo vse)

Princip MINIMAKS

- predpostavka: nasprotnika imata na voljo enake informacije, oba poskušata zmagati
- igralec MAX (poskuša maksimizirati svoj rezultat) proti igralcu MIN (poskuša minimizirati MAX-ov rezultat)
- vozlišča označimo po nivojih glede na to, kdo je na potezi
- liste označimo: 1 zmaga MAX, 0 zmaga MIN
- minimax vrednosti propagira navzgor
 - 💥 če je predhodnik MAX, dobi maksimum naslednikov
 - 💥 če je predhodnik MIN, dobi minimum naslednikov
 - vrednosti določajo, kaj največ lahko igralec pričakuje, in poteze izbiramo glede na njih

Minimaks na nim 7

Minimax fiksne globine

- v zanimivih igrah prostora stanj ne moremo pregledati do listov
- pregledamo do neke (fiksne) globine glede na čas, računske in pomnilniške zmogljivosti
- pogled naprej globine n (n-ply look-ahead)
- na globini n vozliščem določimo hevristično oceno kvalitete in jo propagiramo navzgor
- minimax tako izračuna oceno najboljšega stanja do globine n
- hevristike za šah, npr. število in moč figur, postavitev figur, ...

Primer: minimax globine 4

Minimax koda

```
double minimax (currentNode) {
  if ( isLeaf (currentNode) || depth(currentNode) == MaxDepth )
    return heuristicEvaluation (currentNode);
  if ( isMinNode (currentNode) )
    return min (minimax (children (currentNode)));
  if ( isMaxNode (currentNode) )
    return max (minimax (children (currentNode)));
```

Analiza minimaksa

- kratkovidno, ne vidi dlje kot n
- (na videz) dobro stanje na neki globini lahko zapelje igralca
- popravek: selektivno preiščemo še nekaj nivojev naprej od dobrega stanja
- anomalije minimaksa: kršenje predpostavk, težavnost nekaterih pozicij

Alfa-beta rezanje

- minimaks preišče vsa vozlišča do globine n in ocene propagira navzgor
- številna poddrevesa so lahko neperspektivna in jih ne bi bilo treba preiskati

ideja:

- 💥 preiskujmo v globino,
- 💥 za MAX vozlišča predstavlja α najboljšo doslej najdeno vrednost
- 💥 za MIN vozlišča predstavlja β najslabšo vrednost doslej
- 💥 zavržemo MAX vrednosti manjše od α in MIN vrednosti večje od β

Prikaz α-β rezanja

A has $\beta = 3$ (A will be no larger than 3)

B is β pruned, since 5 > 3

C has $\alpha = 3$ (C will be no smaller than 3)

D is α pruned, since 0 < 3

E is α pruned, since 2 < 3

C is 3

Pravila α-β rezanja

- odrežemo naslednike MIN vozlišča z β
 vrednostjo manjšo ali enako α vrednosti
 njegovega MAX predhodnika
- odrežemo naslednike MAX vozlišča z α
 vrednostjo večjo ali enako β vrednosti njegovega
 MIN predhodnika
- primerjamo torej nivo m-1 in m+1, da režemo na nivoju m

α-β rezanje: pedagoška implementacija

```
double alphaBeta (currentNode) {
   if ( isLeaf (current_node) )
    return heuristicEvaluation (currentNode);
   if ( isMaxNode (currentNode) &&
       alpha (currentNode) >= beta (minAncestor (currentNode) )
     stopSearchBelow (currentNode);
   if ( isMinNode (currentNode) &&
        beta (currentNode) <= alpha (maxAncestor(currentNode) )</pre>
    stopSearchBelow (currentNode);
```

α-β rezanje: implementacija

- v izogib doseganju vrednosti α in β nazaj pri predhodnikih, te vrednosti pošljemo kot parametre
- za MAX vozlišče shranimo minimum β vrednosti svojih MIN naslednikov kot beta
- za MIN vozlišče shranimo maksimum α vrednost svojih MAX naslednikov kot alpha
- vsako notranje vozlišče bo tako hranilo vrednosti alpha in beta
- koren drevesa inicializiramo kot $\alpha = -\infty$, $\beta = \infty$

α-β rezanje: koda

```
double alpha_beta (current_node, alpha, beta) {
   if ( is_leaf (current_node) )
    return heuristic_evaluation (current_node);
   if ( is_max_node (current_node) ) {
     alpha = max (alpha, alpha_beta (children, alpha, beta));
     if alpha >= beta
       cut_off_search_below (current_node);
   if is_min_node (current_node){
      beta = min (beta, alpha_beta (children, alpha, beta));
     if beta <= alpha
       cut_off_search_below (current_node);
   klic: alpha_beta (start_node, -infinity, infinity)
```

Dama

- ***** (b≈8, n ≈10²⁰)
- (Samuel, 1959)
 - \varkappa minimax, α-β, ocena pozicij
 - χ na nivoju srednje dobrih igralcev
- Chinook (Schaeffer , 1990, 1994-)
 - minimax, α-β, zelo dobra ocena pozicij, baza končnic z do 8 figur, baza otvoritev, do globine 20, rezanje vnaprej glede na izgubo
 - 💥 premaga svetovnega prvaka
- Blondie24 (Fogel, 2000)
 - 💥 uči se strategije z nevronskimi mrežami in evolucijskimi pristopi
 - na ravni dobrih igralcev

Šah

- ***** (b≈38, n ≈10¹²⁰)
 - \varkappa minimax, α - β , ocena pozicij, baza otvoritev
 - 💥 najboljši programi preiskujejo do globine približno 12
 - linearna povezava med globino preiskovanja in kvaliteto igre
 - 💥 1997, DeepBlue premagal svetovnega prvaka
 - ★ DeepFritz, Rybka

Go

- ***** Go: plošča 19 x 19, b ≈ 360
- leta 2016 AlphaGO premaga svetovnega prvaka
- pristop z globokimi nevronskimi mrežami in spodbujevanim učenjem
- Go-Moku, 15 x 15, varianta 5 v vrsto, dokončno rešena

Nekaj drugih iger

- Othello (reversi), do globine 50, premaga svetovnega prvaka
- * arimaa, šahovska plošča, figure (b ≈ 17281)

Verjetnostne igre

- backgammon, bridge, tarok, poker
- expectiminimax: verjetnostna inačica minimaksa
- Monte-Carlo drevesno preiskovanje: selektivno naključno preiskovanje nekaterih pozicij, statistična ocena uspešnosti, dilema med raziskovanjem novih potez in izkoriščanjem že znanih dobrih potez

Expectiminimax

- kot minimax, a v uporabi tam, kjer so izidi negotovi, npr. v igrah z verjetnostnimi elementi (karte, kocke, igre na srečo....)
- namesto determinističnega minimaxa izračunaj pričakovani minimax (matematično upanje)
- hevristične ocene ocenijo verjetnost dogodkov
- primer: oceni verjetnost, da ima igralec v roki določeno karto

Drevesno preiskovanje Monte Carlo

- Monte Carlo Tree Search (MCTS)za velike prostore stanj so izčrpne metode neuporabne
- ocene kakovosti stanj je včasih težko določiti, potrebno je razviti teorijo za vsako igro posebej
- alternativa.: oceni stanje na podlagi vzorčenja
- predstavi preiskovalni prostor z drevesom
- ideja:
 - simuliraj naključne ocene, dokler se igra ne konča (torej do lista drevesa)
 - propagiraj odločitev proti korenu
 - 3. ponavljaj postopek
 - izberi vozlišče (potezo)) glede na delež uspešnih iger
- ocenjevalna hevristika ni potrebna
- MCTS dokazano konvergira v minimax, ko gre število simulacij v neskončnost

Sestavni deli MCTS

- mnogo naključnih simulacij
- * štirje iterativni koraki

 - ★ širitev dodaj nova vozlišča v drevo
 - 💥 simulacija simuliraj igro iz izbranega vozlišča
 - * ažuriranje rezultat iz lista se propagira proti korenu, obiskana vozlišča dobijo nove vrednosti

Ilustracija MCTS

"Hevristična ocena" vozlišč

- * v resnici izbira vozlišča
- * popolnoma naključno mogoče, a je variance velika
- najdi ravnotežje med "išči ali izkoristi" (explore or exploit)
- način UCT (Upper Confidence bounds applied to Trees)

UCT

$$k = \operatorname{argmax}_{i \in I} \left(\frac{w_i}{n_i} + C \sqrt{\frac{\ln n}{n_i}} \right)$$

- izračunaj UCT za vsa vrhnja (kandidatna) vozlišča i (poteze), kjer je w_i – število zmag iz vozlišča i
 - n_i število obiskov vozlišča i
 - n število obiskov vseh vrhnjih vozlišč n = n1 +n2 + ...
 - C koeficient za uravnavanje izbire med išči ali izkoristi

izberi vozlišče (potezo) z maksimalnim UCT

Praktičen primer: igra tršet

Pravila tršeta

- * 2, 3 ali 4 igralci
- * 4 barve po 10 kart
- moč kart (najmočnejša jemlje)
 - 💥 3, 2, as, kralj, kaval, fant
- točkovanje
 - 💥 as: 1 točka

 - % 7, 6, 5, 4: o točk
 - 💥 zadnji vzetek: 1 točka
- pravilo odgovarjanja na barvo

Tršet za dva igralca

- * vsak igralec dobi 10 kart
- 20 kart ostane na kupu s hrbtom obrnjenim navzgor (element negotovosti)
- po vsakem vzetku igralca vzameta po eno karto iz kupa in jo pokažeta nasprotniku
- postopno se negotovost zmanjšuje
- po 10 rundi imamo na voljo vso informacijo

Tipične strategije tršeta

- * skupaj je na voljo 11 in 2/3 točke, za zmago jih je potrebno dobiti 6
- preproste hevristike:

 - 💥 skušajo dobiti zadnjo rundo
 - ★ prednost so sekvence

Avtomatski igralec za tršet v dva

- cilj: razviti avtomatskega igralca tršeta na osnovi expectiminimaksa in MCTS
- časovna omejitev: 1 sekunda računskega časa na strežniku za vsako potezo
- magistrsko delo Žana Kafola

Expectiminimax

- * v vsaki rundi
- generiraj vse možne konfiguracije nasprotnikovih kart in kart v talonu
- preveč kombinacij za izčrpno preiskovanje
- ustavi se na nekem nivoju in hevristično oceni situaciji
- težko je najti hevristiko za oceno kakovosti igralne pozicije

Minimax

- od 10 runde naprej imamo na voljo vse informacije
- lahko iščemo izčrpno z minimaksom
- uporabimo α-β rezanje

MCTS

- do 10. runde, ko smo še v negotovosti in bi bilo vseh kombinacij preveč
- uporabimo MCTS z UCT izbiro
- upoštevamo časovno omejitev

MCTS proti naključnemu igralcu

MCTS proti človeškim igralcem

* 37.7% uspeh, povprečen človeški igralec 38.9%

Izboljšave MCTS

- ideja: uporabi shranjene poteze človeških igralcev
- * določi začetno kakovost posameznih potez
- izboljšaj z MCTS
- majhna verjetnost, da bi našli povsem enako igro
- problem: kako določiti podobne igre?

Pristop k izrabi človeškega znanja

- * 16 milijonov shranjenih potez
- uporabi le dobre (nadpovprečne) igralce
- določi atribute igre, da najdeš podobne igre
- * npr. število asov, dvojk, trojk, sekvence, ...
- najdi poteze človeških igralcev narejene v podobnih okoliščinah
- za iskanje uporabi npr. kd-drevesa

Uporaba človeškega znanja

- # 1. način
 - uporabi kNN za izbiro najboljše poteze glede na dano strukturo podobnosti
 - 💥 izbrano potezo prilagodi na konkretno situaciji
- * 2. način
 - x preštej zmage glede na dano potezo in uporabi to v UCT
- le majhen napredek v primerjavi z osnovnim MCTS: na voljo ni dovolj časa, da bi naredil dovolj MCTS iteracij