Permutations and Combinations

The Pigeonhole Principle.

A typical situation

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

A typical situation

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Four is enough.

The Pigeonhole Principle

If you have 10 pigeons in 9 boxes, at least one box contains two birds.

The pigeonhole principle. If k is a positive integer and k + 1 or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.

The Pigeonhole Principle

What is the minimum number of students required in a class to be sure that at least two will receive the same grade, if there are five possible grades, A, B, C, D, and F?

The Pigeonhole Principle

What is the minimum number of students required in a class to be sure that at least two will receive the same grade, if there are five possible grades, A, B, C, D, and F?

$$5 + 1 = 6$$
 students.

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle. If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Ceiling function:

$$\lceil x \rceil$$
 = the smallest integer not less that that x

So, for example,

$$[2.0] = 2$$

 $[0.5] = 1$
 $[-3.5] = -3$

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle. If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Example: How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle. If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Example: How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?

"Birds" are cards. "Boxes" are suits, k = 4.

How many cards, N, should we take to guarantee that at least three of them fall in the same "box" (suit):

$$\left\lceil \frac{N}{k} \right\rceil = \left\lceil \frac{N}{4} \right\rceil \ge 3 > 2.$$

The smallest possible $N = 2 \cdot 4 + 1 = 9$. $\clubsuit \diamondsuit \diamondsuit \heartsuit \diamondsuit \spadesuit \spadesuit$

Count the number of ways to arrange the elements of this set:

$${a, b, c, d, e, f}$$

- There are 6 ways to select the first element,
- 5 ways to select the second element,
- 4 ways to select the third ...
- ...continue the process
- In the end, the only remaining element takes the last position.

$$6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$
 ways!

Factorial

How large this number is?

$$6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

This function is called *factorial* and denoted by *n*!:

$$1! = 1$$

$$2! = 2 \cdot 1$$

$$3! = 3 \cdot 2 \cdot 1$$

$$4! = 4 \cdot 3 \cdot 2 \cdot 1$$

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot 1$$
and by convention,
$$0! = 1$$

Def. A *permutation* of a set of distinct objects is an ordered arrangement of these objects.

A finite set of 6 elements has

$$P(6) = 6! = 720$$
 permutations.

A finite set *A* with cardinality |A| = n has

$$P(n) = n!$$
 permutations.

What if we want to arrange only r elements?

Def. An ordered arrangement of r elements of a set is called an r-permutation.

Can we get the formula the the number of r-permutations?

Count the number of ways to arrange 4 elements of the set:

$${a, b, c, d, e, f}$$

- There are 6 ways to select the first element,
- 5 ways to select the second element,
- 4 ways to select the third ...
- 3 ways to select the fourth ...

$$6 \cdot 5 \cdot 4 \cdot 3$$
 ways!

The number of r-permutations of the set of n elements:

$$P(n,r) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$

The number of r-permutations of the set of n elements:

$$P(n,r) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$

Multiply and divide by $(n-r) \cdot (n-r-1) \cdot \ldots \cdot 2 \cdot 1$,

$$P(n,r) = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1}{(n-r) \cdot (n-r-1) \cdot \dots \cdot 2 \cdot 1} = \frac{n!}{(n-r)!}$$

The number of r-permutations of the set of n elements:

$$P(n,r) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$
$$P(n,r) = \frac{n!}{(n-r)!}$$

The formula makes sense only for $0 \le r \le n$, otherwise the notion of r-permutation does not make sense.

How many ways are there to select a first-prize winner, a secondprize winner, and a third-prize winner from 100 different people who have entered a contest?

How many ways are there to select a first-prize winner, a secondprize winner, and a third-prize winner from 100 different people who have entered a contest?

$$P(100,3) = 100 \cdot 99 \cdot 98 = 970200.$$

Alternatively,

$$P(100,3) = \frac{100!}{(100-3)!} = \frac{1 \cdot 2 \cdot \dots \cdot 100}{1 \cdot 2 \cdot \dots \cdot 97} = 98 \cdot 99 \cdot 100 = 970200.$$

What if the order does not matter?

You are given all r-permutations of a set.

Now, let's say that you don't really care about the ordering in each r-permutation.

Concrete example. You are given a group of 4 students, $\{a, b, c, d\}$. How many groups of 3 students can be formed?

The total number of 3-permutations: $P(4,3) = 4 \cdot 3 \cdot 2 = 24$.

```
All possible groups:

abc, acb, bac, bca, cab, cba the same subset {a, b, c}

abd, adb, bad, bda, dab, dba the same subset {a, b, d}

acd, acb, cad, cda, dac, dca the same subset {a, c, d}

bcd, bcb, cbd, cdb, dbc, dcb the same subset {b, c, d}
```

What if the order does not matter?

Concrete example. You are given a group of 4 students, $\{a, b, c, d\}$. How many groups of 3 students can be formed?

The total number of 3-permutations: $P(4,3) = 4 \cdot 3 \cdot 2 = 24$.

Let x be the number of unordered selections of 3 students, such as, for example: $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

Each such selection can be realized in P(3) = 3! = 6 permutations, e.g. $\{a, b, c\}$ has the following 6 permutations: abc, acb, bac, bca, cab, cba.

$$P(4,3) = x \cdot P(3).$$

Thus, there are only $x = \frac{P(4,3)}{P(3)} = \frac{24}{6} = 4$ unordered selections of 3 students.

Combinations

Def. An r-combination of elements of a set is an unordered selection of r elements from the set.

The number of r-combinations is

$$\binom{n}{r} = \frac{P(n,r)}{P(r)}$$

This notations reads as "n choose r".

Combinations

Def. An r-combination of elements of a set is an unordered selection of r elements from the set.

The number of r-combinations is

$$\binom{n}{r} = \frac{P(n,r)}{P(r)}$$

Let's express it in terms of n, r, and their factorials:

$$P(n,r) = \frac{n!}{(n-r)!} \text{ and } P(r) = r!, \text{ therefore}$$

$$\binom{n}{r} = \frac{n!}{(n-r)!}$$

Example with cards

$$\binom{n}{r} = \frac{n!}{(n-r)! \ r!}$$

Counting hands of 5 cards from the deck of 52.

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

Example with cards

$$\binom{n}{r} = \frac{n!}{(n-r)! \ r!}$$

Counting hands of 5 cards from the deck of 52.

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

$$\binom{52}{5} = \frac{52!}{(52-5)! \ 5!} = \frac{52!}{47! \ 5!} = \frac{48 \cdot 49 \cdot 50 \cdot 51 \cdot 52}{5!} = 2598960.$$

Example with cards

$$\binom{n}{r} = \frac{n!}{(n-r)! \ r!}$$

Counting hands of 5 cards from the deck of 52.

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

$$\binom{52}{5} = \frac{52!}{(52-5)! \, 5!} = \frac{52!}{47! \, 5!} = \frac{48 \cdot 49 \cdot 50 \cdot 51 \cdot 52}{5!} = 2598960.$$

More examples:

$$\binom{52}{2} = \frac{51 \cdot 52}{2} = 1326.$$
 $\binom{52}{1} = 52.$

Summary

Given a set with *n* elements.

The number of *permutations* of the elements the set:

$$P(n) = n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$$

The number of *r*-*permutations* of the set:

$$P(n,r) = \frac{n!}{(n-r)!} = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$

The number of unordered r-combinations ("n choose r"):

$$\binom{n}{r} = \frac{P(n,r)}{P(r)} = \frac{n!}{(n-r)! \ r!}$$

Let's be more systematic

How does $\binom{n}{r}$ change with r?

$$\binom{0}{0} = \frac{0!}{0! \ 0!} = \frac{1}{1}.$$

$$\binom{1}{0} = \frac{1!}{1! \ 0!} = 1, \quad \binom{1}{1} = \frac{1!}{0! \ 1!} = 1.$$

$$\binom{2}{0} = \frac{2!}{2! \ 0!} = 1, \quad \binom{2}{1} = \frac{2!}{1! \ 1!} = 2, \quad \binom{2}{2} = \frac{2!}{0! \ 2!} = 1.$$

$$\binom{3}{0} = \frac{3!}{3! \ 0!} = \mathbf{1}, \quad \binom{3}{1} = \frac{3!}{2! \ 1!} = \mathbf{3}, \quad \binom{3}{2} = \frac{3!}{1! \ 2!} = \mathbf{3}, \quad \binom{3}{3} = \frac{3!}{0! \ 3!} = \mathbf{1}.$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \qquad 1$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \qquad 1 \qquad 1$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad \qquad 1 \qquad 2 \qquad 1$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \qquad 1 \qquad 3 \qquad 3 \qquad 1$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \qquad \qquad 1 \qquad 4 \qquad 6 \qquad 4 \qquad 1$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \qquad 1 \qquad 5 \qquad 10 \qquad 10 \qquad 5 \qquad 1$$

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = x + y$$

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = 1x + 1y$$

$$(x+y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$$

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = 1x + 1y$$

$$(x+y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$$

The general formula is

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = 1x + 1y$$

$$(x+y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$$

The general formula is

$$(x+y)^{n} = \binom{n}{0} \cdot x^{n} + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^{2} + \dots + \binom{n}{n} \cdot y^{n}.$$
$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$

Coefficients of $(x + y)^n$

Let's prove

$$(x+y)^{n} = \binom{n}{0} \cdot x^{n} + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^{2} + \dots + \binom{n}{n} \cdot y^{n}.$$

$$(x+y)^{n} = \underbrace{(x+y) \cdot (x+y) \cdot \dots \cdot (x+y)}_{n \text{ times}} = \underbrace{\underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ times}} + \underbrace{(x \cdot \dots \cdot x) \cdot y + \dots + y \cdot (x \cdot \dots \cdot x)}_{=x^{n-1}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (x \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(x \cdot \dots \cdot x) \cdot (x \cdot$$

Coefficients of $(x + y)^n$

Let's prove

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

$$(x+y)^{n} = \underbrace{(x+y) \cdot (x+y) \cdot \dots \cdot (x+y)}_{n \text{ times}} = \underbrace{1 \cdot x^{n} + \dots \cdot x^{n-1} y + \dots \cdot x^{n-1} y + \dots \cdot x^{n-2} y^{2} + \dots + \dots \cdot x^{n-1} y}_{1 \cdot y^{n}}$$

Coefficients of $(x + y)^n$

Let's prove

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

$$(x+y)^n = \underbrace{(x+y)\cdot(x+y)\cdot\ldots\cdot(x+y)}_{n \text{ times}} = \underbrace{\binom{n}{0}\cdot x^n + \binom{n}{1}\cdot x^{n-1}y + \binom{n}{2}\cdot x^{n-2}y^2 + \ldots + \binom{n}{n}\cdot y^n}_{n}.$$

Shorter notation for the same thing:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

This result is called *The Binomial Theorem*, and this is why the coefficients, $\binom{n}{k}$, are also called the *binomial coefficients*.

Let's prove that

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n.$$

Let's prove that

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n.$$

$$(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} 1^k = \sum_{k=0}^n \binom{n}{k} \cdot 1 = \sum_{k=0}^n \binom{n}{k}.$$

Therefore,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n.$$

Results like this are not so obvious.

Recall that

$$\binom{n}{k} = \frac{n!}{(n-k)! \ k!}$$

So,

$$\frac{n!}{n! \ 0!} + \frac{n!}{(n-1)! \ 1!} + \frac{n!}{(n-2)! \ 2!} + \dots + \frac{n!}{0! \ n!} = 2^n.$$

In this form, the result seems to be much harder to prove.

Pascal's Triangle Again

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \qquad 1$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \qquad 1 \qquad 1$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad \qquad 1 \qquad 2 \qquad 1$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \qquad 1 \qquad 3 \qquad 3 \qquad 1$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \qquad \qquad 1 \qquad 4 \qquad 6 \qquad 4 \qquad 1$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \qquad 1 \qquad 5 \qquad 10 \qquad 10 \qquad 5 \qquad 1$$

Pascal's Identity

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Every number in Pascal's triangle is equal to the sum of the two numbers that are immediately above.