ELEC 402 IC Power Consumption

Lecture 15

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Prof. Sudip Shekhar (UBC)

Power & Energy

Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

> Instantaneous Power (W): P(t) = I(t)V(t)

> Energy (J): $E = \int_{0}^{T} P(t)dt$

> Average Power (W):

$$P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} P(t) dt$$

Power & Energy in Circuit Elements

$$P_{VDD}\left(t\right) = I_{DD}\left(t\right)V_{DD}$$

$$P_{R}\left(t\right) = \frac{V_{R}^{2}\left(t\right)}{R} = I_{R}^{2}\left(t\right)R$$

Energy Stored in a Capacitor

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C \frac{dV}{dt}V(t)dt$$
$$= C \int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

$$\stackrel{+}{\overset{}_{V_C}} \stackrel{+}{\overset{}_{\Gamma}} C \stackrel{\downarrow}{\overset{}_{V_C}} I_C = C \text{ dV/dt}$$

Charging from 0 to V_C

Charging a Cap through an Inverter

- When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt}V_{DD}dt$$
$$= C_{L}V_{DD}\int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$

- Half the energy from V_{DD} is dissipated in the PMOS transistor as heat, other half stored in capacitor
- When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the NMOS transistor

Switching Waveforms

• Example: $V_{DD} = 1.0V$, $C_{L} = 150fF$, f = 1GHz

Switching Waveforms

• Example: $V_{DD} = 1.0V$, $C_{L} = 150fF$, f = 1GHz

Switching Power

$$P_{switching} = \frac{1}{T_{SW}} \int_{0}^{T_{SW}} i_{DD}(t) V_{DD} dt$$

$$= V_{DD} f_{SW} \int_{0}^{T_{SW}} i_{DD}(t) dt$$

$$= V_{DD} f_{SW} \int_{0}^{T_{SW}} C \frac{dv_{C}}{dt} dt$$

$$= V_{DD} f_{SW} C \int_{0}^{T_{SW}} \frac{dv_{C}}{dt} dt = V_{DD} f_{SW} C \int_{0}^{V_{DD}} dv_{C}$$

 $=CV_{DD}^2f_{SW}$

Activity Factor

- > Suppose the system clock frequency = f
- \triangleright Let $f_{sw} = \alpha f$, where $\alpha =$ activity factor = probability that the circuit node transitions from 0 to 1.
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$

> Dynamic power:

$$P_{\text{switching}} = \alpha C V_{DD}^2 f$$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output
- We will generally ignore this component (as clock period goes further down, i.e. increasing frequency, this assumption becomes less accurate).

Power Dissipation Sources

- $\triangleright P_{total} = P_{dynamic} + P_{static}$
- **>** Dynamic power: P_{dynamic} = P_{switching} + P_{shortcircuit}
 - Switching load capacitances
 - Short-circuit current
- ➤ Static power: P_{static} = (I_{sub} + I_{gate} + I_{junct})V_{DD}
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current

Dynamic Power Example

> 1 billion transistor chip

- 50M logic transistors
 - Average width: 12^λ
 - Activity factor = 0.1
- 950M memory transistors
 - Average width: 4λ
 - Activity factor = 0.02
- 1.0V 65nm process ($\lambda \sim$ 30 nm)
- C = 1 fF/ μ m (gate) + 1 fF/ μ m (diffusion)
- ➤ Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance (!) and short-circuit current.

$$C_{\text{logic}} = (50 \times 10^6)(12\lambda)(0.030 \mu m / \lambda)(2 fF / \mu m) = 27 \text{ nF}$$

$$C_{\text{mem}} = (950 \times 10^6)(4\lambda)(0.030 \mu m / \lambda)(2 fF / \mu m) = 171 \text{ nF}$$

$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.02C_{\text{mem}} \right] (1.0)^2 (1.0 \text{ GHz}) = 6.1 \text{ W}$$

Dynamic Power Reduction

$$P_{\text{switching}} = \alpha C V_{DD}^2 f$$

- > Try to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

Activity Factor Estimation $P_{\text{switching}} = P_{\text{switching}}$

$$P_{\text{switching}} = CV_{DD}^2 f$$

- \triangleright Let P_i = Prob(node i = 1)
 - $\overline{P}_i = 1 P_i$
- \triangleright Completely random data has P = 0.5 and α = 0.25
- > Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs have lower activity factor
 - Depends on design, but typically $\alpha \approx 0.1$

Switching Probability

Assuming the inputs are uncorrelated

Gate	P_{Y}
AND2	$P_{\mathcal{A}}P_{B}$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_{\mathcal{A}}\overline{P}_{\mathcal{B}}$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\!A}\overline{P}_{\!B}$
XOR2	$P_{\mathcal{A}}\overline{P}_{B} + \overline{P}_{\mathcal{A}}P_{B}$

 \triangleright Activity Factor of the output = $\overline{P_Y} * P_Y$

Example

- >An AND4 is built out of two levels of gates
- ➤ Estimate the activity factor at each node if the inputs have P = 0.5

Clock Gating

$$P_{\text{switching}} = CV_{DD}^2 f$$

- > The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - Saves clock activity ($\alpha = 1$)
 - Eliminates all switching activity in the block
 - Requires determining if block will be used
 - Disable clock early in the clock distribution network ($\alpha = 1$) and high cap blocks.
 - Use an enable latch to ensure that enable does not change before the clock falls

Capacitance

- > Gate capacitance
 - Fewer stages of logic
 - Small gate sizes
 - FO8-12 if needed to reduce energy at slight overhead of delay
- > Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

Voltage

- Run each block at the lowest possible voltage that meets performance requirements
- Voltage Domains
 - Provide separate supplies to different blocks
 - Level converters required when crossing from low to high V_{DD} domains

Voltage & Frequency

- > Run each block at the lowest possible voltage and frequency that meets performance requirements
- Dynamic Voltage Frequency Scaling (DVFS)
 - Adjust V_{DD} and f according to workload
 - Cubic reduction in power may be achieved

