Assignment 1

Sankalp Parashar and Utkarsh Ranjan

Spring 2022

Contents

Question 1														
Initial Data	 													
Mean Aligned Data														
Eigenvalue Plots	 													
Variance along top 3 directions				•	 •		•					•		
Question 2														
Initial Data	 													
Mean Aligned Data	 													
Eigenvalue Plots	 													
Variance along top 3 directions														

Question 1

Initial Data

Mean Aligned Data

Using Code 22

Eigenvalue Plots

Using Code 11

Variance along top 3 directions

Using Code 22

Question 2

Initial Data

Mean Aligned Data

Using Code 22

Eigenvalue Plots

Using Code 11

Variance along top 3 directions

Using Code 22

Question 3

	Value No. Date VOLVA
1	For two shapes z, , zz which are not in preshape space, we can first put them the poinset in pre-shape -
	This can be done in two steps:
	1. Standardizing location: -> (computing centroid of each pointset. -> Subtracting controid (a-ordinates from each. point (o-ordinate
	$Z_{1} = Z_{1} - \sum_{n=1}^{N} Z_{1n}$
	Each Zi is a painset : { zo in R3: n=1,, N}
	2. Standardizing scale &:- -> Re-scaling each pointet to have same scale -> givide by 2-norm of the verticer.
	$\frac{Z_1 = Z_1 Z_1}{\sum_{n=1}^{\infty} \left(\left \left Z_{n} \right \right _2 \right)^{\alpha}}$
	3. After this we can atight align shapes wiret reduction. by multiplying the pointlet with a reduction matrix R

M T W T F S S Page No.: Date: VOUVA
Thus the Procrustes distance / dissimilarity between z, , zz with the introduction of transformational, restational and scale variables as -
$d(z_{1},z_{2}) = \min_{0,T,s} d^{2}(z_{1}, similority Transform(z_{2},0,T,s))$ $= \min_{0,T,s} \sum_{n=1,,N} z_{1},-sM_{0}z_{2},-T _{2}^{2}$

			M I W T F 5 5 Page No. Date YOUVA				
			Date	YOUVA			
A. 2	- Objective function for $k-m$ for k -partition $S = (S_1, S_2)$ shapes, with non-empty classes $\omega(s) = \sum_{i=1}^{K} \sum_{N_i \in S_i} N_i ^2$		of und	enlying			
	Here, instead instead of mean have class of shapes with the shape and enclidean distanter Procurestes distance.		lass Si, is the m	we			
	$\omega(s) = \sum_{i=1}^{K} \frac{d_i(\mathbf{z}_i)}{\mathbf{z}_{j \in S_i}}$,M-,)					
	$\omega(s) = \sum_{i=1}^{k} \sum_{z \in S_i} \min_{0, T, s} \sum_{i=1}^{m} \sum_{z \in S_i} \sum_{i=1}^{m} \sum_{z \in S_i} \sum_{z \in S_i} \sum_{i=1}^{m} \sum_{z \in S_i} \sum_{z \in S_$,-sMoH,	: -TII2			
	Hove, for each class Si and moon the can be found a algorithm (discussed in class thinings: \(\times \)	ling the	Rmzm	-Tml			
	→ Given mean, find aptim → Given all transformations pointset. → Average	al transfor	emation	mear			

	Face file. Face file. VOLIVA
As3. Algorithm for clustering (k-Hoons.	++):-
- An initial estimate for the K-closs given	mean shape is
function w(s) with respect to S shape part z. to the class whose r the minimum Procuustes disto	, assigning each mean -shape has
the mean-shape of class M; for by finding the mean of shapes algo mentioned in part (b).	
- Repeat is and (ii) artil convoce	gence.
Termination (condition: - If w(s)	doesn't decrease
ted estimate, then terminate	made to the upda-
Initialization condition:	
pick a shape z uniformly at mon Telz?	dom and set
puck = Z = Z at rundom , with proportional to cost (Z,T) = r	n probability nin d (7, 11) He T
T-TUZZ.	