Week 9 - Linear Algebra

1. Use Sage to solve the following system of equations:

$$\begin{cases} 10x + 2y = 0\\ 2x - y = 154 \end{cases}$$

2. **TICKABLE** Note that the above system of equations is equivalent to the following systems of equations:

$$\begin{cases} 10a + 2b = 0\\ 2a - b = 154 \end{cases}$$

$$\begin{cases} 10m + 2n = 0\\ 2m - n = 154 \end{cases}$$

In essense the only thing that defines the system of equations is the cofficients:

$$\begin{pmatrix} 10, 2, 0 \\ 2, -1, 154 \end{pmatrix}$$

We can of course seperate the right hand side of our equation and perhaps include those elements in a vector. Our system can now be represented as:

$$\begin{pmatrix} 10, 2 \\ 2, -1 \end{pmatrix} \begin{pmatrix} 0 \\ 154 \end{pmatrix}$$

Let us attempt to represent the above system in Sage.

The following defines b as a vector:

$$b = vector(0,154)$$

The representation of coefficients is a well defined mathematical object called a matrix. The following code defines A as a matrix:

$$A = matrix([[10, 2], [2, -1]])$$

If we define a vector ${\tt X}$ as a vector of the symbolic variables:

$$X = vector([x, y])$$

We can **multiply** A by X:

A * X

Verify that $X = (x_0, y_0)$ where (x_0, y_0) is the solution to our system of equations (obtained in (1)).

3. **TICKABLE** In linear algebra (you will study this next semester) a matrix equation is an equation of the form:

$$AX = b$$

or

$$XA = b$$

If we define A and b as in question 2 we can solve this equation quite simply using the solve_right or solve_left methods. The following obtains a solution to the equation AX = b:

A.solve_right(b)

Note that A\b is shorthand for A.solve_right

Use the above to solve the following system of equations using matrix notation:

$$\begin{cases} 4x - 2y + 3z = 10 \\ -x - 5y - 8z = 9 \\ x + y + z = 1 \end{cases}$$

4. For reasons that will become clear, the following definition of matrix multiplication is required:

$$(AB)_{ij} = \sum_{j'} \sum_{i'} A_{ij'} B_{i'j}$$

For 2×2 matrices this is equivalent to:

$$AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

As an example create the following two matrices in Sage:

Attempt to multiply these matrices by hand and carry out their multiplication in Sage:

A*B

Repeat the exercise by multiplying the following pairs of matrices:

1.
$$A = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 4 \\ 1 & 1 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 0 & 144 \\ -2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -2 & 0 \\ -1 & -17 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 0 & -1 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1/3 & 1/3 \\ -1 & 0 \end{pmatrix}$$

5. **TICKABLE** The previous exercise shows that when considering matrix multiplication there exists a matrix which does not have a multiplicative affect: "the identity matrix".

The identity matrix of size $n \times n$ is denoted by \mathbb{I}_n . The following Sage code gives \mathbb{I}_n :

identify_matrix(4)

Note also, that the previous exercise showed that we can sometimes find a matrix B such that $AB = \mathbb{I}_n$. Finding such a matrix is referred to as 'invering' A and if certain properties hold (you will see this in further details next semester) this matrix is denoted A^{-1} .

If we recall the matrix equation AX = b and if we assume that A^{-1} exists then multiplying both sides by A^{-1} gives:

$$A^{-1}AX = A^{-1}b \Rightarrow \mathbb{I}_n X = A^{-1}b \Rightarrow X = A^{-1}b$$

In Sage we can obtain A^{-1} (if it exists) with the following code:

A.inverse()

Thus another approach to solving AX = b is:

A.inverse()*b

Use this approach to solve the systems of equations we have considered so far.

6. **TICKABLE** Recalling your basic python knowledge. Lists can be used to hold any sort of object. Obtain a list of the inverses of the following matrices (when the inverse exists, you might need to look up information on try and except):

$$\begin{pmatrix} \frac{1}{2} & 0 & 0 & -1 & 1 \\ -1 & -1 & 1 & -\frac{1}{2} & 2 \\ 0 & -1 & 0 & -2 & 0 \\ 0 & 0 & \frac{1}{2} & -1 & 0 \\ -1 & 0 & -2 & 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -1 & 0 & 0 & -1 \\ 2 & 1 & 0 & 1 & 1 \\ -2 & 0 & 1 & 2 & 2 \\ -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & -1 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -2 & -1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$

For every matrix in this list and the original list obtain the result of the det method. This gives the determinant of the matrices. It is a very important quantity that will be explained next semester.

- 7. Plotting something?
- 8. Solve a large number of systems of linear equations
- 9. Reading in data for a big system of linear equations
- 10. Creating a big linear system and solve it.