	Teste de Matemática A
	2022 / 2023
Teste N.º 1	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tinta azul ou pret	a.
Não é permitido o uso de corretor. Risque aquilo que preter	
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada item.	
As cotações dos itens encontram-se no final do enunciado.	
Na resposta aos itens de escolha múltipla, selecione a opço respostas, o número do item e a letra que identifica a opço respostas.	

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação,

apresente sempre o valor exato.

1. Na figura está representado o triângulo [ABC]. Sabe-se que:

- $C\widehat{B}A = 45^{\circ}$
- $C\hat{A}B = 30^{\circ}$
- $\overline{BC} = 2$

Determine, sem recurso à calculadora, o valor exato de \overline{AB} .

2. Na figura está representado um triângulo [ABC], inscrito numa semicircunferência de diâmetro [AB]. Sabe-se que $\overline{AB} = 6$.

Seja α a amplitude do ângulo *BAC*.

Mostre que a área da região a sombreado na figura é dada, em função de α , por $\frac{9}{2}\pi - 18$ sen $\alpha \cos \alpha$.

3. Sem recorrer à calculadora, determine os valores de k para os quais se tem:

$$\operatorname{sen} x = k^2 + 2k + 1 \wedge x \in \left] \frac{\pi}{2}, \pi \right[$$

Apresente a sua resposta sob a forma de intervalo de números reais ou reunião de intervalos de números reais.

4. De dois ângulos, de amplitudes α e β , sabe-se que $\alpha \in \left]\pi, \frac{3\pi}{2}\right[$ e $\beta \in \left]-\frac{3\pi}{2}, -\pi\right[$.

Então, pode afirmar-se que:

- **(A)** sen $\alpha \times \cos \beta < 0$
- **(B)** $\operatorname{tg} \alpha \times \cos \beta > 0$
- (C) $\cos \alpha + \tan \beta > 0$
- **(D)** $\sin \alpha \sin \beta < 0$
- **5.** Mostre que, para todo *x* onde a expressão tem significado, é válida a seguinte igualdade:

$$\cos^4 x + \sin^2 x \cos^2 x + \sin^2 x + \operatorname{tg}^2 x = \frac{1}{\cos^2 x}$$

- **6.** De três ângulos, de amplitudes α , β e γ , sabe-se que:
 - $\bullet \quad \alpha + \beta = \frac{3\pi}{2}$
 - $\alpha + \gamma = 2022\pi$

Qual das expressões seguintes é equivalente $a - \cos \gamma - \sin \beta + \cos \alpha$?

- (A) $3\cos\alpha$
- **(B)** $\cos \alpha$
- (C) $2\cos\alpha + \sin\alpha$
- **(D)** $\cos \alpha + 2 \sin \alpha$
- 7. Sabendo que sen β tg $\beta = \frac{9}{20}$, determine, sem recorrer à calculadora, a não ser para efetuar eventuais cálculos numéricos, o valor exato de cos β.
- **8.** Considere $A(x) = \cos^2\left(-\frac{3\pi}{2} + x\right) + \operatorname{tg}(-2023\pi + x) \times \operatorname{sen}\left(x + \frac{3\pi}{2}\right) + \cos^2(2023\pi + x)$.

A expressão A(x) é igual a:

- **(A)** -1
- **(B)** 1
- **(C)** $1 \sin x$
- **(D)** $1 + \sin x$
- 9. Considere, em ℝ, a equação trigonométrica:

$$3\cos x = -1$$

Quantas soluções tem esta equação no intervalo $\left]-\frac{3\pi}{2},4\pi\right[$?

- **(A)** 6
- **(B)** 5
- **(C)** 4
- **(D)** 3

10. Na figura estão representados, num referencial o.n. Oxy, a circunferência trigonométrica e o trapézio [ABCD].

Sabe-se que:

- a reta r é tangente à circunferência no ponto de coordenadas (1,0);
- o ponto A pertence ao segundo quadrante e à circunferência;
- ullet o ponto B é o simétrico do ponto A em relação ao eixo Ox;
- o ponto D pertence à reta r;
- o ponto C é o simétrico do ponto D em relação ao eixo Ox;
- α é a amplitude, em radianos, do ângulo orientado que tem por lado origem o semieixo positivo Ox e por lado extremidade a semirreta $\dot{O}A$, $\alpha \in \left[\frac{\pi}{2}, \pi\right[$;

- $\alpha \frac{\pi}{2}$ é a amplitude, em radianos, do ângulo orientado que tem por lado origem o semieixo positivo Ox e por lado extremidade a semirreta $\dot{O}D$.
- **10.1.** Mostre que a área do trapézio [ABCD] pode ser dada pela expressão:

$$\frac{-\cos^2\alpha - \cos\alpha + 1}{\sin\alpha}(1 - \cos\alpha)$$

- **10.2.** Para uma certa posição do ponto A, sabe-se que $\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{1}{3}$. Sem recurso à calculadora, determine, para essa posição do ponto A, a área do trapézio [ABCD]. Apresente o resultado na forma $a + \frac{b\sqrt{c}}{d}$, $a, b, c, d \in \mathbb{N}$.
- **10.3.** Considere, para um certo valor de $\beta \in \left| \frac{4\pi}{5}, \pi \right|$, a área do trapézio [ABCD]. Sabe-se que, quando esse valor de β diminui $\frac{\pi}{6}$ radianos, a área do trapézio [ABCD] reduz para metade. Determine, recorrendo às capacidades gráficas da calculadora, o valor de β, sabendo que no intervalo considerado esse valor existe e é único.

Apresente o resultado com aproximação às centésimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

11. Numa circunferência, um arco tem $\frac{4\pi}{7}$ cm de comprimento e o setor circular correspondente tem $\frac{8\pi}{7}$ cm² de área.

A amplitude, em radianos, do arco é:

- **(A)** $\frac{\pi}{7}$
- **(B)** $\frac{6\pi}{7}$
- **(C)** 4
- **(D)** 2

FIM

COTAÇÕES

	Item												
	Cotação (em pontos)												
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.1.	10.2.	10.3.	11.	
20	15	20	10	20	10	15	10	10	20	20	20	10	200