Using Machine Learning to Develop a Supernatural Martian Substance

TASK DESCRIPTION

A visionary Company X is on a mission to build a self-sustaining city on the red planet. As part of this mission, scientists at Company X are developing a supernatural substance that can withstand Mars' extraterrestrial conditions. This substance will be the building block of this futuristic Martian city. Can Company X turn this idea into a reality? In this assignment, you will use machine learning to predict the quality of this substance based on historical data.

The task is formulated as a regression problem where you will predict a numerical metric that measures the quality of the Martian substance. You will be evaluated with the Mean Absolute Error (MAE) metric. Be aware that MAE is a negatively-oriented score, which means lower values are better!

DATASET DESCRIPTION

Number of instances: 4000 **Number of attributes:** 15

Target Variable: A numerical quality metric of the Martian substance that Company X is developing.

Attribute Information:

Name	Description	Туре	Values
1	Chemical property A of the substance	Numerical	Positive and negative float
2	Chemical property B of the substance	Numerical	Positive and negative float
3	Chemical property C of the substance	Numerical	Positive and negative float
4	Chemical property D of the substance	Numerical	Positive and negative float
5	Chemical property E of the substance	Numerical	Positive and negative float
6	Chemical property F of the substance	Numerical	Positive and negative float
7	Chemical property G of the substance	Numerical	Positive and negative float
8	Whether or not a refraction test was	Categorical	0: Yes
	performed on the substance		1: No
9	Physical property A of the substance	Numerical	Positive and negative float
10	Whether or not a radioactivity test	Categorical	0: Yes
	was performed on the substance		1: No
11	Physical property B of the substance	Numerical	Positive and negative float
12	Physical property C of the substance	Numerical	Positive and negative float
13	Physical property D of the substance	Numerical	Positive and negative float
14	Physical property E of the substance	Numerical	Positive and negative float
15	Physical property F of the substance	Numerical	Positive and negative float

PREDICTION FILE SUBMISSION

You are kindly requested to strictly follow the described submission guidelines:

File Format: .csv

Filename: Student code (e.g. 123456.csv) **Column Format:** 1 Column named *Prediction*

Row Format: Your predictions with the same number of rows and in the same order as the test set

provided to you (see below)

PDF FILE SUBMISSION

Along with your predictions, you are asked to kindly submit the following supporting information:

- A brief description of the step by step methodology (i.e. data cleaning, pre-processing, training, evaluation, etc.) that you have followed to do the assignment, with the aim of illustrating the motivation behind your selected approach.
- 2. The python code that you used to do the assignment, with a fair amount of comments within the code to ensure that they can be clearly understood.

File Format: .pdf

Filename: Student code (e.g. 123456.pdf)

ASSIGNMENT DEADLINES

A. November 27th - The labeled dataset will be released on the BeeP platform;

- B. December 4th The unlabeled dataset will be released on the BeeP platform;
- C. December 5th to December 7th ASSIGNMENT DUE DATE: you are requested to upload both your PREDICTION FILE and the PDF FILE on the BeeP platform. The Assignment folder will be open from December 5th to December 7th at 19pm.