EDEXCEL PURE MATHEMATICS S1 (6683) - JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number		Scheme		Marks	
1.		Frequency densities: 0.16, 1.0, 1.0, 0.4, 0.4, 0.08 Histogram: Scale and labels Correct histogram	M1, A1 B1 B1 (4 n	narks)	
2.	(a)	$P(A \cap B) = \frac{10}{100} = \frac{1}{10} = 0.1$ $P(A') = \frac{75}{100} = 0.75$	M1 A1	(2)	
	(<i>b</i>)	$P(A') = \frac{75}{100} = 0.75$	M1 A1	(2)	
	(c)	$P(B' A) = \frac{P(B' \cap A)}{P(A)} = \frac{\frac{15}{100}}{\frac{25}{100}} = \frac{15}{25} = \frac{3}{5} = 0.6$	M1 A1	(2)	
		$P(A' \cap B) = 0.4$; $P(A')P(B) = 0.75 \times 0.5 = 0.375$	M1		
		Since $P(A' \cap B) \neq P(A')P(B) \Rightarrow$ not independent	A1	.=:	
		One of models is less reliable	A1	(3)	
			(9 11	narks)	
3.		Let <i>X</i> represent amount dispersed into cups $\therefore X \sim N(55, \sigma)$			
	(a)	$P(X < 50) = 0.10 \Rightarrow \frac{50 - 55}{\sigma} = -1.2816$	M1 B1		
		$\sigma = 3.90137$	M1 A1	(4)	
	(<i>b</i>)	$P(X > 61) = P(Z > \frac{61 - 55}{3.90137})$	M1		
		= P(Z > 1.54)	A1		
	(-)	= 1 - 0.90382 = 0.0618; 6.18%	A1	(3)	
	(c)	Let <i>Y</i> represent new amount dispensed.			
		$\therefore Y \sim N(\mu, 3) P(Y < 50) = 0.025 \Rightarrow \frac{50 - \mu}{3} = -1.96$	M1 B1		
		$\mu = 55.88$	M1 A1	(4)	
			(11 n	(11 marks)	

1

EDEXCEL PURE MATHEMATICS S1 (6683) - JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks	Marks	
4.	(a)	$Q_2 = \frac{16+16}{2} = 16$; $Q_1 = 15$; $Q_3 = 16.5$; $IQR = 1.5$	M1A1; B1; B1; B1 (5)		
		1.5 × IQR = 1.5 × 1.5 = 2.25 $Q_1 - 1.5 \times IQR = 12.75 \Rightarrow \text{no outliers below } Q_1$ $Q_3 + 1.5 \times IQR = 18.75 \Rightarrow 25 \text{ is an outlier}$ Boxplot, label scale 14, 15, 16, 16.5, 18.75 (18)	M1 A1 A1 A1 M1 A1	(3)	
		Outlier 322	A1	(7)	
	(c)	$\bar{x} = \frac{322}{20} = 16.1$	M1 A1	(2)	
	(<i>d</i>)	Almost symmetrical/slight negative skew Mean (16.1) \approx Median (16) and $Q_3 - Q_2$ (0.5) $\approx Q_2 - Q_1$ (1.0)	B1 B1 (16 ma	(2) arks)	
5.	(a)	$2k + k + 0 + k = 1$ $\therefore 4k = 1 \Rightarrow k = 0.25 (\clubsuit)$	M1 A1	(2)	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(=)	
	(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	()	$E(X) = \sum x P(X = x) = 0 + 0.25 + 0 + 0.75 = 1$ $E(X^2) = 0 + 0.25 + 0 + 2.25 = 2.5 (*)$	M1 A1 M1 A1	(4)	
	(c)	$Var(3X-2) = 3^{2} Var(X)$ $= 9(2.5-1^{2}) = 13.5$ $P(X_{1} + X_{2}) = P(X_{1} = 3 \cap X_{2} = 2) + P(X_{1} = 2 \cap X_{2} = 3) = 0 + 0 = 0$	M1 M1 A1 B1	(3) (1)	
	(<i>a</i>)	Let $Y = X_1 + X_2$ y 0 1 2 3 4 5 6	B1	(1)	
		$P(Y = y)$ 0.25 0.25 0.0625 0.25 0.125 (0) 0.0625 $P(1.3 \le X_1 + X_2 \le 3.2) = P(X_1 + X_2 = 2) + P(X_1 + X_2 = 3)$	B2 M1	(3)	
	V	= 0.0625 + 0.25 = 0.3125	A1ft, A1ft (16 ma	(3) arks)	

EDEXCEL PURE MATHEMATICS S1 (6683) - JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number	Scheme		Marks	
6 . (a)	x 20 26 32 34 37 44 48 50 53 58 y 24 38 42 44 43 52 59 66 70 79	B1		
	Change in cost of advertising influences number of new car sales	B1		
	Graph: Scale and labels	B1		
	Points all correct	B2	(5)	
(b)	$S_{xy} = 22611 - \frac{402 \times 517}{10} = 1827.6$	M1 A1		
	$S_{xx} = 17538 - \frac{402^2}{10} = 1377.6$	A1		
	$b = \frac{S_{xy}}{S_{xx}} = \frac{1827.6}{1377.6} = 1.326655$	M1 A1		
	$a = \frac{517}{10} - (1.326655) \times \frac{402}{10} = -1.63153$	В1		
	$\therefore y = -1.63 + 1.33x$	B1ft	(7)	
(c)	$\frac{c - 4000}{10} = -1.63 + 1.33(p - 100)$	M1 A1ft		
	c = 2653.7 + 13.3p	A1	(3)	
(<i>d</i>)		B1		
	p = 0 is well outside valid range – meaningless	B1	(2)	
(e)		B1	(2)	
	Only valid in range of data for 1990s	B1	(2)	
		(19 marks)		