DATA ENGINEERING: DATOS Y PREPROCESAMIENTO

MSc Carlos Córdova BSc Carlos Ramírez

Ciencia de Datos

¿En qué consiste la Ciencia de Datos?

• • • • • •

Ciencia de Datos

- Manejo y procesamiento de grandes volúmenes de datos
 - Estructurados
 - No estructurados
- Extracción de conocimiento
 - Toma de decisiones

Ingeniería de Datos

- Construcción y mantenimiento de sistemas de datos.
- Extracción, transformación y análisis de datos.
- Asegurar accesibilidad y calidad de los datos.

The Process

Central Processsing Unit (CPU) Graphics Processing Unit (GPU)

•

• •

02

DATOS

Fuentes, tipos y estructura.

• • • • • •

• •

• •

• •

•

Fuentes de datos

- Sensores:
 - Dispositivos IoT
 - Sensores ambientales
 - Equipos médicos
- Mediciones o recolección:
 - Encuestas y cuestionarios
 - Observaciones manuales
 - Registros históricos
- Simulaciones o computaciones:
 - Modelos predictivos
 - Simulaciones científicas

Los datos pueden ser:

- Tratados
- Crudos (no tratados)

Datasets

- Data Types
 - → Items → Attributes → Links → Positions → Grids
- → Data and Dataset Types

Tables	Networks & Trees	Fields	Geometry	Clusters, sets, lists
Items	Items (nodes)	Grids	Items	Items
Attributes	Links	Positions	Positions	
	Attributes	Attributes		

→ Dataset Types

Lo que puede ser visualizado. T. Munzner Visualization Analysis & Design (Fig. 2.2)

Estructura de un conjunto de datos

- Dataset:
 - o **n** instancias (filas, registros, elementos)
 - o **m** atributos (columnas, variables)
- Tipos de atributos:
 - Valor único (e.g., número, cadena de texto, símbolo)
 - Estructura compleja (listas, diccionarios, arrays)
- Tipos de variables:
 - Independiente
 - Dependiente

	ID	Age	Sex	Weight	Height	Married	Migrantstatus		
1	1	26	1	132	60	0	Nonmigrant		
2	2	65	0	122	65	0	Migrant		
3	3	15	1	184	67	0	Nonmigrant		
4	4	7	1	145	59	0	Nonmigrant		
5	5	80	0	100	64	0	Migrant		
6	6	43	1	NA	NA	0	Nonmigrant		
7	7	28	1	128	67	1	Nonmigrant		
8	8	66	1	154	60	1	Nonmigrant		
9	9	45	0	166	NA	0	Migrant		
10	10	12	0	164	60	1	Migrant		

Tipos de Datos

- Clasificación:
 - **Ordenados:** numéricos, ordinales
 - Categóricos: nominales, no numéricos 0
- Atributos ordenados:
 - Binarios: 0 y 1 0
 - **Discretos:** valores enteros
 - **Continuos:** valores reales
- Atributos categóricos:
 - Nominales: valor de una lista finita de posibilidades (e.g., Sección A, B, C)
 - Ranqueados: valor categórico con **orden** (e.g., talla S, M, L, XL)
 - Arbitrarios: **lista infinita de opciones** sin orden (e.g., número de DNI)

Attributes

Ordering Direction

Tipos de atributos. T. Munzner, Visualization Analysis & Design (Fig. 2.7)

• •

Estructura de los datos

• Escalares:

Valor numérico individual

Vectores:

- Conjunto de escalares relacionados
- Una dimensión adicional

• Tensores:

- Generalización de escalares, vectores y matrices a más dimensiones
- o Arrays multidimensionales de datos

Dimensions	Example	Terminology
1	0 1 2	Vector
	0 1 2	
2	3 4 5	Matrix
	6 7 8	
-	0 1 2	20.4
3	3 4 5	3D Array (3 rd order Tensor)
	6 7 8	
N	**** *********************************	ND Array

03

PREPROCESAMIENT O DE DATOS

¿Qué hacer cuando los datos no están listos?

.

- En la vida real, los datos **no siempre se encuentran estructurados** o **bien preparados**.
- Casos:
 - Sistema de ventas:
 - Registros sin DNI asociado.
 - Base de datos de pacientes:
 - Registros duplicados con variaciones en el nombre.
 - Encuesta online:
 - Fechas de nacimiento en diferentes formatos.
 - Respuestas inconsistentes en mayúsculas y minúsculas.
 - Registros de sensores:
 - Picos anómalos por errores de medición o interferencias

El preprocesamiento de datos:

- Esencial para la data engineering.
- Asegura calidad y consistencia.

Estadística

Permite:

 Detectar valores inválidos (e.g., errores de medidas de sensores)

- Identificar agrupamientos (e.g., medidas cercanas, similares entre instancias)
- Identificar atributos/variables redundantes (e.g., horas trabajadas, salario total)

Medidas tradicionales

- Media
 - Agrega los datos y permite resumirlos
- Desviación estándar
 - Mide la dispersión de los datos
- Mediana, moda.

Ejemplo: Detección de variables redundantes

- Correlación
 - Medida estadística
 - Permite medir la relación entre dos atributos/variables.

- Si la correlación entre dos variables es ±1 o un valor próximo a ±1 ambas se encuentran altamente correlacionadas.
 - Una debe ser removida.

Ejemplo: Detección de variables redundantes

- Si la correlación entre dos variables es 1 o un valor próximo a 1, ambas se encuentran altamente correlacionadas.
 - Una debe ser removida.

Los datos ausentes afectan la calidad y precisión del análisis.

Opciones:

- Descartar instancias incompletas:
 - Puede reducir significativamente el dataset.
- Agregar una bandera:
 - Permite descartar el atributo durante los cálculos (e.g., usar el 0).
- Imputar los datos:
 - Usar medidas clásicas como la media, mediana, moda.
 - Técnicas avanzadas:
 - KNN
 - Regresión Lineal

Los datos ausentes afectan la calidad y precisión del análisis.

Opciones:

- Descartar instancias incompletas:
 - Puede reducir significativamente el dataset.
- Agregar una bandera:
 - Permite descartar el atributo durante los cálculos (e.g., usar el 0).
- Imputar los datos:
 - Usar medidas clásicas como la media, mediana, moda.
 - Técnicas avanzadas:
 - KNN
 - Regresión Lineal

Mobile ID	Mobile Package		Data Limit Usage		
1	Fast+	157	80%		
2	Lite	99	70%		
3	Fast+	167	10%		
4	Fast+	N/A	80%	4	Delete
5	Lite	76	70%		
6	Fast+	155	10%		
7	N/A	N/A	95%	4	Delete
8	Lite	76	77%		
9	Fast+	180	N/A	4	Delete

Mobile ID	Mobile Package	Download Speed	Data Limit Usage
1	Fast+	157	80%
2	Lite	99	70%
3	Fast+	167	10%
5	Lite	76	70%
6	Fast+	155	10%
8	Lite	76	77%

Los datos ausentes afectan la calidad y precisión del análisis.

Opciones:

- Descartar instancias incompletas:
 - Puede reducir significativamente el dataset.

• Agregar una bandera:

 Permite descartar el atributo durante los cálculos (e.g., usar el 0).

<u>.</u>	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	df.fillna(0)	0	2	5.0	3.0	6	0.0
1	9	NaN	9.0	0	7.0		1	9	0.0	9.0	0	7.0
2	19	17.0	NaN	9	NaN		2	19	17.0	0.0	9	0.0

Los datos ausentes afectan la calidad y precisión del análisis.

Opciones:

- Descartar instancias incompletas:
 - Puede reducir significativamente el dataset.
- Agregar una bandera:
 - Permite descartar el atributo durante los cálculos (e.g., usar el 0).

Imputar los datos:

- Usar medidas clásicas como la media, mediana, moda.
- Técnicas avanzadas:
 - KNN
 - Regresión Lineal

Mode (Download Speed) = 200

Mobile ID	Mobile Package	Download Speed	Data Limit Usage
1	Fast+	200	80%
2	Lite	100	70%
3	Fast+	200	10%
4	Fast+	200	80%
5	Lite	50	70%
6	Fast+	200	10%
7	Fast+	200	95%
8	Lite	200	77%
9	Fast+	180	95%

Recomendación:

- Si los datos son categóricos, usar la **moda**.
- Si los datos son numéricos:
 - Si la distribución es normal: media.
 - Si la distribución no es normal (skewed):
 mediana.

Los datos ausentes afectan la calidad y precisión del análisis.

Opciones:

- Descartar instancias incompletas:
 - Puede reducir significativamente el dataset.
- Agregar una bandera:
 - Permite descartar el atributo durante los cálculos (e.g., usar el 0).

• Imputar los datos:

- Usar medidas clásicas como la media, mediana, moda.
- Técnicas avanzadas:
 - KNN
 - Regresión Lineal

- Distintos atributos pueden encontrarse en escalas diferentes.
 - Resultados distorsionados.

- Comparaciones tendenciosas.
 - Favorecimiento a atributos con mayor escala.

```
:Summary Statistics:
              Min Max
                        Mean
                               SD
                                    Class Correlation
sepal length: 4.3 7.9
                        5.84
                              0.83
                                     0.7826
sepal width:
              2.0
                  4.4
                        3.05
                             0.43
                                     -0.4194
petal length: 1.0 6.9
                        3.76 1.76
                                     0.9490
                                             (high!)
petal width:
                        1.20
              0.1
                  2.5
                              0.76
                                     0.9565
                                             (high!)
```

- La normalización:
 - Elimina la influencia de la escala.
 - Transforma los valores de la escala entre 0 y 1.

- La normalización:
 - Elimina la influencia de la escala.
 - Transforma los valores de la escala entre 0 y 1.
 - No mantiene la dispersión de los datos.

Alternativa: Estandarización (Standardization)

- Transforma los valores para que la media sea 0 y la desviación estándar sea 1.
- Mantiene la dispersión de los datos.

$$X_{scaled} = \frac{X - X_{mean}}{X_{stddey}}$$

Alternativa: Estandarización (Standardization)

- Transforma los valores para que la media sea 0 y la desviación estándar sea 1.
- Mantiene la dispersión de los datos.
- Desventaja: no acota los valores a un rango específico.

- El exceso de variables puede dificultar el análisis.
- Las variables correlacionadas pueden generar redundancia.
- La reducción de dimensionalidad acentúa y facilita el filtrado del ruido (outliers).

Técnicas de Reducción:

- Manual: Selección de variables basada en el conocimiento del dominio.
 - Realizando análisis de correlación y removiendo variables redundantes.
- PCA (Análisis de Componentes Principales):
 - Reduce dimensiones al encontrar componentes principales que explican la mayor varianza.
- MDS (Escalamiento Multidimensional):
 - Representa datos en un espacio de menor dimensión conservando las distancias entre puntos.
- SOM (Mapas Auto organizados):
 - Reducción y visualización de datos de alta dimensionalidad usando redes neuronales.

- PCA (Análisis de Componentes Principales)
 - Vídeo explicativo
 - Resumido:
 - Se estandarizan los datos.
 - Se calcula una matriz de covarianza para determinar cómo varían los pares de variables.
 - Se calculan los valores y vectores propios (eigenvalues y eigenvectors)
 - Se seleccionan los vectores propios que explican la mayor parte de la varianza.
 - Se proyectan los datos originales en el nuevo espacio de componentes principales.

PCA (Análisis de Componentes Principales)

- Mapeo de datos nominales a números
- Los algoritmos de ML trabajan sobre números.

Opciones:

- Para datos nominales ranqueados (con orden):
 - El mapeo es directo (e.g., pequeño
 → 1, mediano → 2, grande → 3).
 - El orden se mantiene.
- Para datos nominales no ranqueados:

Mapeo de datos nominales a números

Los algoritmos de ML trabajan sobre

números.

Opciones:

- Para datos nominales no ranqueados:
 - Label Encoding
 - Asigna un valor único a cada categoría
 - Simple de realizar, pero introduce un orden implícito

Original Data

Team	Points
Α	25
Α	12
В	15
В	14
В	19
В	23
С	25
С	29

Label Encoded Data

Team	Points
0	25
0	12
1	15
1	14
1	19
1	23
2	25
2	29

Mapeo de datos nominales a números

Los algoritmos de ML trabajan sobre

números.

Opciones:

- Para datos nominales no ranqueados:
 - One-Hot Encoding
 - Asigna una columna booleana por cada valor único.
 - Aumenta la dimensionalidad.

Original Data

Team	Points	
Α	25	
Α	12	
В	15	
В	14	
В	19	
В	23	
С	25	
С	29	

One-Hot Encoded Data

Team_A	Team_B	Team_C	Points
1	0	0	25
1	0	0	12
0	1	0	15
0	1	0	14
0	1	0	19
0	1	0	23
0	0	1	25
0	0	1	29

Mapeo de datos nominales a números

Los algoritmos de ML trabajan sobre números.

Opciones:

- Para datos nominales no ranqueados:
 - Binary Encoding
 - Transforma cada categoría única a un número binario.
 - Genera las columnas necesarias para formar todos los números binarios hasta el total de categorías únicas.
 - Reduce la dimensionalidad pero es menos intuitivo.

¿Preguntas?