CS201: Discrete Math for Computer Science
2022 Spring Semester Written Assignment # 6
Due: June 2th, 2022, please submit one pdf file through Sakai
Please answer questions in English. Using any other language will
lead to a zero point.

Plagiarism in an Assignment or a Quiz:

- For the first time: the score of the assignment or quiz will be zero
- For the second time: the score of the course will be zero
- When two assignments are nearly identical, the policy will apply to BOTH students, unless one confesses having copied without the knowledge of the other.

Any late submission will lead to a zero point with no exception.

- **Q. 1.** (5 points) Let G be a *simple* graph with n vertices.
 - (a) What is the maximum number of edges G can have?
 - (b) If G is connected, what is the *minimum* number of edges G can have?
 - (c) Show that if the minimum degree of any vertex of G is greater than or equal to (n-1)/2, then G must be connected.
- **Q. 2.** (5 points) Let $n \geq 5$ be an integer. Consider the graph G_n whose vertices are the sets $\{a,b\}$, where $a,b \in \{1,\ldots,n\}$ and $a \neq b$, and whose adjacency rule is *disjointness*, that is, $\{a,b\}$ is adjacent to $\{a',b'\}$ whenever $\{a,b\} \cap \{a',b'\} = \emptyset$.
 - (a) Draw G_5 .
 - (b) Find the degree of each vertex in G_n .
- **Q. 3.** (5 points) The complementary graph G of a simple graph G has the same vertices as G. Two vertices are adjacent in G if and only if they are not adjacent in G. A simple graph G is called *self-complementary* if G and \overline{G} are isomorphic. Show that if G is a self-complementary simple graph with v vertices, then $v \equiv 0$ or $1 \pmod{4}$.

- **Q. 4.** (10 points) Suppose that G is a graph on a finite set of n vertices. Prove the following:
 - (a) If every vertex of G has degree 2, then G contains a cycle.
 - (b) If G is disconnected, then its complement \bar{G} is connected.
- **Q. 5.** (5 points) Let G = (V, E) be an undirected graph and let $A \subseteq V$ and $B \subseteq V$. Show that
 - $(1) N(A \cup B) = N(A) \cup N(B).$
 - (2) $N(A \cap B) \subseteq N(A) \cap N(B)$, and give an example where $N(A \cap B) \neq N(A) \cap N(B)$.
- **Q. 6.** (5 points) Show that if G is bipartite simple graph with v vertices and e edges, then $e \leq v^2/4$.
- **Q. 7.** (10 points) Given a connected graph G = (V, E), the distance $d_G(u, v)$ of two vertices u, v in G is defined as the length of a shortest path between u and v. The diameter diam(G) of G is defined as the greatest distance among all pairs of vertices in G. That is, $\max_{u,v\in V} d_G(u,v)$. The eccentricity $\operatorname{ecc}(v)$ of a vertex v of G is defined as $\max_{u\in V} d_G(u,v)$. Finally, the radius $\operatorname{rad}(G)$ of G is defined as the minimal eccentricity of a vertex in G, namely $\min_{v\in V} \operatorname{ecc}(v)$. Prove the following.
 - (a) $rad(G) \le diam(G) \le 2rad(G)$.
 - (b) For every positive integer n, there are connected graphs G_1 and G_2 with $\operatorname{diam}(G_1) = \operatorname{rad}(G_1) = n$ and $\operatorname{diam}(G_2) = 2\operatorname{rad}(G_2) = 2n$.
- **Q. 8.** (5 points) Use paths either to show that these graphs are not isomorphic or to find an isomorphism between these graphs.
- **Q. 9.** (10 points) Show that a directed multigraph having no isolated vertices has an Euler circuit if and only if the graph is weakly connected and the indegree and out-degree of each vertex are equal.
- **Q. 10.** (5 points) Which of the these nonplanar graphs have the property that the removal of any vertex and all edges incident with that vertex produces a planar graph? a) K_5 b) K_6 c) $K_{3,3}$ d) $K_{3,4}$

Figure 1: Q.19

Q. 11. (5 points) Which complete bipartite graphs $K_{m,n}$, where m and n are positive integers, are trees?

Q. 12. (10 points) An n-cube is a cube in n dimensions, denoted by Q_n . The 1-cube, 2-cube, 3-cube are a line segment, a square, a normal cube, respectively, as shown below. In general, you can construct the (n+1)-cube Q_{n+1} from the n-cube Q_n by making two copies of Q_n , prefacing the labels on the vertices with a 0 in one copy of Q_n and with a 1 in the other copy of Q_n , and adding edges connecting two vertices that have labels differing only in the first bit. Show that every n-cube has a Hamilton circuit.

Figure 2: Q.36

Q. 13. (5 points) Consider the two graphs G and H. Answer the following three questions, and explain your answers.

(1) Which of the two graphs is/are bipartite?

Figure 3: Q.37

- (2) Are the two graphs *isomorphic* to each other?
- (3) Which of the two graphs has/have an Euler circuit?
- **Q. 14.** (5 points) There are 17 students who communicates with each other discussing problems in discrete math. They are only 3 possible problems, and each pair of students discuss one of these three 3 problems. Prove that there are at least 3 students who are all pairwise discussing the same problem.
- **Q. 15.** (5 points) How many different spanning trees does each of these simple graphs have? a) K_3 b) K_4 c) $K_{2,2}$ d) C_5
- **Q. 16.** (5 points) How many nonisomorphic spanning trees does each of these simple graphs have?
 - a) K_3 b) K_4 c) K_5