- Instance-Based Learning (IBL)
- La idea es crear un clasificador 'perezoso' (lazy)
- Para clasificar una nueva instancia, se utiliza las que más se le parecen de las que ya se conoce.
- Fases:
 - 1. Entrenamiento: No se entrena, sino que se almacena todo el conjunto de datos disponibles
 - No se realiza ningún cómputo
 - 2. Generalización: dado un nuevo dato, se extraen de memoria un conjunto de datos similares, que son utilizados para clasificar el nuevo dato
 - Aquí es donde se realiza todo el cómputo

- ¿Cómo definimos el concepto de similitud?
- ¿Coste de clasificación?
 - ¡Todo el cómputo se realiza en tiempo de clasificación!
 - Aprendizaje Perezoso (Lazy Learning)

Ventajas:

- Para cada nueva instancia puedo obtener un clasificador diferente.
- La descripción de las instancias puede ser tan compleja como quiera.

Desventajas:

- El costo de clasificación puede ser alto.
- Atrib. irrelevantes pueden afectar la medida de similitud.

- k-NN (k-Nearest Neighbour)
 - Un nuevo caso se va a clasificar en la clase más frecuente a la que pertenecen sus k vecinos más cercanos
 - · También para realizar regresión
 - Idea muy simple e intuitiva
 - Fácil implementación
 - No hay un modelo explícito

- k-NN (k-Nearest Neighbour)
 - Todas las instancias corresponden con puntos en un espacio de dimensión n (Rⁿ)
 - Cada instancia está caracterizada por n valores
 - Por tanto, cada instancia es un punto con n coordenadas
 - Se puede calcular la distancia entre dos instancias por medio de la distancia euclídea:

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (x_i[r] - x_j[r])^2}$$

- k-NN (k-Nearest Neighbour)
 - Se puede calcular la distancia entre dos instancias por medio de la distancia euclídea:

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (x_i[r] - x_j[r])^2}$$

- Si los atributos tienen diferentes rangos, se normaliza
 - Paso crucial
 - ¿Qué ocurriría si no se normalizase?
- Si los atributos tienen valores simbólicos, ¿se numeran?
- Se calcula así la distancia de una instancia al resto

- k-NN (k-Nearest Neighbour)
 - Otras medidas de distancia:
 - Manhattan:

$$\sum_{i=1}^{k} \left| x_i - y_i \right|$$

• Minkowski:

$$\left(\sum_{i=1}^{k} \left(\left|x_{i}-y_{i}\right|\right)^{q}\right)^{1/q}$$

- Coseno:
 - I (coseno del ángulo entre los dos puntos)
 - Se toman los puntos como vectores
- Estas (junto con la euclídea) son válidas sólo para variables continuas

- k-NN (k-Nearest Neighbour)
 - Otras medidas de distancia:
 - Para variables categóricas
 - Distancia de Hamming:

Hamming Distance

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

$$x = y \Rightarrow D = 0$$

$$x \neq y \Rightarrow D = 1$$

 También utilizada cuando las instancias son datos binarios

Х	Υ	Distance
Male	Male	0
Male	Female	1

- k-NN (k-Nearest Neighbour)
 - Otras medidas de distancia:
 - Correlación
 - I (correlación entre las instancias)
 - En este caso, la lista de valores de variables que conforma una instancia se toma como una secuencia de valores

- El parámetro k identifica cuántos vecinos se utilizan para la decisión
- Función objetivo
 - Dada una instancia x, y sus k vecinos: x₁, ..., x_k
 - Caso discreto: Clasificación:
 Se asigna el valor más común de entre los k más cercanos:

f:
$$\mathbb{R}^n \to V$$
, $V = \{v_1, ..., v_s\}$

$$\hat{f}(x) = \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k \delta(v, f(x_i))$$

donde $\delta(a,b)=1$ si a=b, y $\delta(a,b)=0$ en cualquier otro caso

Es decir, aquella etiqueta con la que haya mayor coincidencia:

Clase v tal que
$$\sum_{i=1}^k \delta(v, f(x_i))$$
 sea la más alta

- El parámetro k identifica cuántos vecinos se utilizan para la decisión
- Función objetivo
 - Dada una instancia x, y sus k vecinos: x₁, ..., x_k
 - Caso continuo: Regresión:
 Se asigna el valor medio de entre los k más cercanos:
 f: Rⁿ → R

$$\hat{f}(x) = \frac{\sum_{i=1}^{k} f(x_i)}{k}$$

- Ejemplo: caso continuo:
 - Precios de coches a partir de potencia y dist. ejes:
 - Árbol de regresión:

- Ejemplo: caso continuo:
 - Precios de coches a partir de potencia y dist. ejes:

Árbol de regresión:

Nuevas instancias:

Valores resultantes: -0.150 y -0.89

Discontinuidad muy grande

- Ejemplo: caso continuo:
 - Precios de coches a partir de potencia y dist. ejes:

• kNN (k=3):

Nuevas instancias:

Valores resultantes:
Media de los valores
de las 3 instancias
más cercanas
Valor con menos
discontinuidad

 El parámetro k identifica cuántos vecinos se utilizan para la decisión

- ¿Qué k se escoge?
 - Proceso prueba y error, dado que depende del problema
 - Las regiones que se forman con I-NN se denominan regiones de Voronoi

- Algoritmo k-NN:
 - Entradas:
 - D = $\{(x_1, c_1),...,(x_N,c_N)\}$ conjunto de patrones
 - x: nuevo caso a clasificar
 - k
 - k-NN(D, x, k)
 - Para todo objeto (x_i, c_i) en D,
 - Calcular $d_i = d(x_i,x)$
 - Ordenar d_i en orden ascendente
 - Quedarnos con los k casos D_x^k ya clasificados más cercanos a x
 - Asignar a x la clase más frecuente en D_x^k

• k-NN: Ejemplo: con K = 9: "o" X_2

• k-NN: Ejemplo:

con K = 23: "+" X_2

- k-NN:Valor de k:
 - Si se elige k muy bajo, el resultado es muy sensible al ruido.
 - Si es muy alto, las zonas que tengan muchos ejemplos pueden acaparar a zonas que tengan menos.
 - Una forma de estimar k es probando distintos valores, midiendo los resultados dejando un elemento del conjunto fuera y clasificando con el resto
 - I-out-cross-validation

- k-NN:Valor de k:
 - Se constata empíricamente que el porcentaje de casos bien clasificados es no monótono con respecto de k
 - Una buena elección son valores de k entre 3 y 7

- k-NN:Valor de k:
 - Por lo general, se elige un k impar para no tener problemas de empate.
 - Los valores usuales son bajos: 1, 3 y 5.
 - Para el caso discreto (clasificación), cuando se tienen 2 clases
 - Si se tienen más de 2 clases se puede dar empate con valores pares e impares
- En caso de que se produzca un empate entre dos o más clases, conviene tener una regla heurística para su ruptura, por ejemplo:
 - Seleccionar la clase que contenga al vecino más próximo
 - Seleccionar la clase con distancia media menor
 - etc.

• k-NN:

- Tanto para regresión como para clasificación, a la hora de emitir una salida no se analiza todo el espacio
- Modelos como SVM, RR.NN.AA., árboles, etc. crean un modelo global que es aplicable en todo el espacio
- En cambio, kNN analiza una zona pequeña del espacio para dar lugar a una estimación
 - Realiza una aproximación local
 - Sólo estudia cómo es el espacio en esa zona concreta
 - El problema podría ser más fácilmente resoluble de forma local que de forma global

- Este paradigma es un tanto atípico si se compara con el resto de paradigmas clasificatorios:
 - En el resto de paradigmas la clasificación de un nuevo caso se lleva a cabo a partir de dos tareas:
 - Inducción del modelo clasificatorio
 - 2. La posterior deducción (o aplicación) sobre el nuevo caso,
 - En cambio, en este paradigma, al no existir modelo explícito, las dos tareas anteriores se encuentran colapsadas en lo que se acostumbra a denominar transinducción.

- Variantes del k-NN:
 - k-NN con rechazo
 - k-NN con distancia media
 - k-NN con ponderación de vecinos
 - k-NN con distancia mínima
 - k-NN con ponderación de variables

- Variantes del k-NN:
 - k-NN con rechazo
 - k-NN con distancia media
 - k-NN con ponderación de vecinos
 - k-NN con distancia mínima
 - k-NN con ponderación de variables

Variantes: k-NN con rechazo:

Variantes: k-NN con rechazo:

- Variantes: k-NN con rechazo:
 - Para poder clasificar un caso hay que tener ciertas garantías
 - Puede ocurrir que un caso quede sin clasificar, si no hay esas garantías de que se asigne a la clase correcta
 - Ejemplos de garantías:
 - El número de votos obtenidos por la clase deberá superar un umbral prefijado.
 - Por ejemplo, si k=10, con 2 clases, el umbral podría ser 6
 - El número de votos obtenidos por la clase más votada deberá superar a la segunda más votada en cierta cantidad
 - Por ejemplo, si k=20, con 4 clases, se asignará clase si la diferencia de votos entre la más votada y la siguiente sea mayor que 3
 - Para asignar una clase, debe de haber mayoría absoluta.

- Variantes del k-NN:
 - k-NN con rechazo
 - k-NN con distancia media
 - k-NN con ponderación de vecinos
 - k-NN con distancia mínima
 - k-NN con ponderación de variables

- Variantes: k-NN con distancia media:
 - Asignar un nuevo caso a la clase cuya distancia media sea menor

• En este caso, la nueva instancia se clasifica como "+", porque la distancia media a los dos casos de ejemplo de clase "+" es menor que la distancia media a los 5 casos "o"

- Variantes: k-NN con distancia media:
 - Asignar un nuevo caso a la clase cuya distancia media sea menor
 - Problema: mucha sensibilidad al ruido: Ejemplo:

- Variantes: k-NN con distancia media:
 - Asignar un nuevo caso a la clase cuya distancia media sea menor
 - Problema: mucha sensibilidad al ruido: Ejemplo:

- Variantes: k-NN con distancia media:
 - Asignar un nuevo caso a la clase cuya distancia media sea menor
 - Problema: mucha sensibilidad al ruido: Ejemplo:

- Variantes: k-NN con distancia media:
 - Asignar un nuevo caso a la clase cuya distancia media sea menor
 - Problema: mucha sensibilidad al ruido: Ejemplo:

- Variantes del k-NN:
 - k-NN con rechazo
 - k-NN con distancia media
 - k-NN con ponderación de vecinos
 - k-NN con distancia mínima
 - k-NN con ponderación de variables

- Variantes: k-NN con ponderación (pesado) de vecinos
 - Distance-Weighted k-NN:
 - Ponderar la importancia que aporta cada vecino al valor de la función objetivo, en función de su distancia
 - Ejemplo: inverso de la distancia
 - Ejemplo: inverso de la distancia al cuadrado

- Variantes: k-NN con ponderación (pesado) de vecinos
 - Dada una instancia x, y sus k vecinos: x₁,...,x_k
 - Caso discreto:
 - Función objetivo:

$$\hat{f}(x) = \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^{k} w_i \delta(v, f(x_i))$$

donde $w_i = I / d(x_i, x_i)^2$

- Si algún x_i coincide exactamente con x, se utiliza la versión no ponderada para los que cumplan dicha condición.
 - O devolver la clase de x_i

- Variantes: k-NN con ponderación (pesado) de vecinos
 - Dada una instancia x, y sus k vecinos: $x_1, ..., x_k$
 - Caso continuo:
 - Función objetivo:

$$\hat{f}(x) = \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

donde $w_i = I / d(x_i, x_i)^2$

Variantes: k-NN con ponderación (pesado)

de vecinos

	$d(\mathbf{x}_i, \mathbf{x})$	$ w_i $
\mathbf{x}_1	2	0,5
\mathbf{x}_2	2	0,5
\mathbf{x}_3	2	0,5
\mathbf{x}_4	2	0,5
\mathbf{x}_5	0,7	1/0,7
\mathbf{x}_6	0,8	1/0,8

$$w_i = \frac{1}{d(x_i, x)}$$

- En este caso, los pesos relativos a la clase "o" suman 2, y los pesos relativos a la clase "+" suman 2.67
 - Se clasifica como "+" a pesar de haber más vecinos de clase "o"

- Variantes del k-NN:
 - k-NN con rechazo
 - k-NN con distancia media
 - k-NN con ponderación de vecinos
 - k-NN con distancia mínima
 - k-NN con ponderación de variables

- Variantes: k-NN con distancia mínima:
 - Se comienza seleccionando un caso por clase
 - Generalmente, el caso más cercano al baricentro o centroide de todos los elementos de dicha clase
 - De esta forma, se reduce la dimensión del fichero de casos a almacenar del número de ejemplos al número de clases
 - Dado un nuevo caso a clasificar, se asigna este nuevo caso a la clase cuyo representante esté más cercano
 - Es como hacer un I-NN al conjunto con solo un caso por clase

- Variantes: k-NN con distancia mínima:
 - Patrones:

- Variantes: k-NN con distancia mínima:
 - Centroides de cada clase:

- Variantes: k-NN con distancia mínima:
 - Instancias más cercanas a los centroides:

- Variantes: k-NN con distancia mínima:
 - Clasificación de nuevas instancias:

- Variantes: k-NN con distancia mínima:
 - Ventaja:
 - El coste computacional es inferior al k-NN genérico
 - Desventaja:
 - Su efectividad está condicionada a la homogeneidad dentro de las clases
 - Cuanto más homogéneas, más efectivo

- Variantes: k-NN con distancia mínima:
 - Con conjuntos no homogéneos la técnica fallaría:

- Variantes: k-NN con distancia mínima:
 - Con conjuntos no homogéneos la técnica fallaría:

- Variantes: k-NN con distancia mínima:
 - Con conjuntos no homogéneos la técnica fallaría:

- Variantes: k-NN con distancia mínima:
 - Con conjuntos no homogéneos la técnica fallaría:

- Variantes del k-NN:
 - k-NN con rechazo
 - k-NN con distancia media
 - k-NN con ponderación de vecinos
 - k-NN con distancia mínima
 - k-NN con ponderación de variables

- Variantes: k-NN con ponderación (pesado) de variables
 - Hasta ahora, el cálculo de las distancias pondera de la misma manera todas las variables
 - ¿Son todos los atributos o características igual de relevantes?
 - ¿Depende esa relevancia de la zona del espacio?
 - Si hay, por ejemplo, 20 variables, y solo dos de ellas son relevantes, instancias que en realidad son muy diferentes pueden estar muy próximas en el espacio
 - "Maldición de las dimensiones"

- Variantes: k-NN con ponderación (pesado) de variables
 - Hasta ahora, el cálculo de las distancias pondera de la misma manera todas las variables
 - Por ejemplo: distancia euclídea:

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (x_i[r] - x_j[r])^2}$$

n: número de variables

- Variantes: k-NN con ponderación (pesado) de variables
 - La distancia euclídea

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (x_i[r] - x_j[r])^2}$$

otorga la misma importancia a todas las variables

- Puede ser peligroso si hay alguna variable irrelevante
- Solución: ponderar cada una de las variables
 - Corresponde a modificar el "largo" de los ejes en el espacio
 - Por ejemplo, con la fórmula anterior:

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} w_r (x_i[r] - x_j[r])^2}$$

w_r asigna un peso a la variable r

• Variantes: k-NN con ponderación (pesado) de variables $X_1 \quad X_2$

- Ejemplo:
 - Variable x₁ es irrelevante para C
 - Variable x₂ es relevante para C
- ¿Cómo calcular los términos w_r?
 - Una forma podría ser a partir de la medida de información mutua
 I(x_i, C) entre la variable x_i y la variable de clase C

$$I(X_i, C) = \sum_{x_i, c} p_{(X_i, C)}(x_i, c) \log \frac{p_{(X_i, C)}(x_i, c)}{p_{X_i}(x_i) \cdot p_C(c)}$$

X_1	X_2	C
0	0	1
0	0	1
0	0	1
1	0	1
1	0	1
1	1	1
0	1	0
0	1	0
0	1	0
1	1	0
1	1	0
1	0	0

- Variantes: k-NN con ponderación (pesado) de variables
 - Medida de información mutua entre dos variables
 - Reducción en la incertidumbre sobre una de las variables cuando se conoce el valor de la otra variable
 - Cuanto mayor sea la medida de información mutua entre las variables, mayor será la "dependencia" existente entre las mismas
 - En este caso, se calcula la medida de información mínima entre cada variable y la variable de clase
 - El peso w_r asociado a la variable x_r será proporcional a la medida de información mutua $I(x_r, C)$

- Siempre hay problemas cuando el conjunto de instancias es muy grande:
 - Problemas de almacenamiento
 - Problemas de cálculo de vecinos
- Soluciones:
 - Indexación
 - Selección de instancias
 - Reemplazo de instancias

- Siempre hay problemas cuando el conjunto de instancias es muy grande:
 - Problemas de almacenamiento
 - Problemas de cálculo de vecinos
- Soluciones:
 - Indexación
 - Selección de instancias
 - Reemplazo de instancias

- Soluciones: Indexación:
 - Árboles KD (Locally Weighted Regression)
 - A.W. Moore

- Agrupación o clustering
 - Aprendizaje no supervisado

- Siempre hay problemas cuando el conjunto de instancias es muy grande:
 - Problemas de almacenamiento
 - Problemas de cálculo de vecinos
- Soluciones:
 - Indexación
 - Selección de instancias
 - Reemplazo de instancias

- Soluciones: Selección de instancias:
 - Elegir un grupo reducido de instancias (prototipos) (S) que mantengan la misma información que el conjunto total (T)
 - Métodos:
 - Incremental:
 - Comenzar con un conjunto S de prototipos vacío
 - Ir añadiendo instancias al conjunto S a partir de las instancias en T, siempre y cuando cumplan un determinado criterio
 - Por ejemplo, cuando al intentar clasificarlo, se clasifica de forma distinta a su clase
 - Condensación de Hart

- Soluciones: Selección de instancias:
 - Elegir un grupo reducido de instancias (prototipos) (S) que mantengan la misma información que el conjunto total (T)
 - Métodos:
 - Decremental:
 - Comenzar con un conjunto S=T de prototipos
 - Ir eliminando instancias al conjunto S, siempre y cuando cumplan un determinado criterio
 - Por ejemplo, que al extraerlo del conjunto, se sigue clasificando correctamente
 - Edición de Wilson

- Siempre hay problemas cuando el conjunto de instancias es muy grande:
 - Problemas de almacenamiento
 - Problemas de cálculo de vecinos
- Soluciones:
 - Indexación
 - Selección de instancias
 - Reemplazo de instancias

- Soluciones: Reemplazo de instancias:
 - Calcular **prototipos** a partir del conjunto de entrenamiento
 - Normalmente I-NN
 - Learning Vector Quantization (LVQ):
 - Comenzar con un conjunto de prototipos $S = \{s_1, ..., s_M\}$
 - Repetir:
 - Elegir una nueva instancia x
 - Obtener el prototipo más cercano de S, s = $argmin_i(d(x,s_i))$
 - Actualizar la posición de s_i:

$$s_i = s_i + \alpha[x - s_i]$$
 si s_i y x pertenecen a la misma clase $s_i = s_i - \alpha[x - s_i]$ si s_i y x pertenecen distinta clase

 Problema de LVQ: Definición del número de prototipos a utilizar

- Soluciones: Reemplazo de instancias:
 - Patrones:

- Soluciones: Reemplazo de instancias:
 - Prototipos:

- Soluciones: Reemplazo de instancias:
 - Ante esta instancia, se acerca el prototipo más cercano:

• Soluciones: Reemplazo de instancias:

- Soluciones: Reemplazo de instancias:
 - Ante esta instancia, se aleja el prototipo más cercano:

• Soluciones: Reemplazo de instancias:

- Soluciones: Reemplazo de instancias:
 - Patrones junto con los prototipos movidos con esas dos:

- Selección de características
 - ¿Son todos los atributos o características relevantes para el problema de clasificación?
 - Selección de características:
 - Determinar qué características son las interesantes, y eliminar las restantes
 - En los árboles de decisión esto está resuelto por el propio mecanismo de construcción de los árboles
 - Soluciones: Métodos estadísticos, algoritmos genéticos, ...
 - Fases:
 - Selección de características
 - Limpieza de datos
 - k-NN

- Métodos relacionados:
 - Razonamiento basado en casos
 - Case-Based Reasoning (CBR)
 - · ¿Qué sucede cuando las instancias son representadas de forma más compleja?
 - Ejemplo:
 - Transporte:<ómnibus>
 - Tiempo:<lluvioso>
 - Predicción:<dia+1: nublado, dia+2=soleado, dia+3=?>
 - Lugar:<casa[cuartos=2, sin piscina], centro=lejos>
 - Personas:<adultos[hombres=I, mujeres=I], niños=4>
 - Satisfacción: ????

- Métodos relacionados:
 - Razonamiento basado en casos
 - Es una técnica de Inteligencia Artificial que se basa en la utilización de experiencias previas para resolver nuevos problemas mediante la hipótesis:
 - · Problemas similares tienen soluciones similares.
 - Típico en aprendizaje humano
 - Aprendizaje por analogía
 - Tema I

- Métodos relacionados:
 - Razonamiento basado en casos
 - Dado un problema a resolver, el CBR busca, en una base de datos llamada Base de Casos, problemas similares que anteriormente se hayan resuelto con éxito, llamados casos, y adapta las soluciones para dar una solución al problema actual.
 - Este mecanismo de razonamiento es utilizado por los humanos en múltiples problemas y permite que sea un sistema de fácil comprensión.

- Métodos relacionados:
 - Razonamiento basado en casos
 - El CBR involucra toda una metodología con un ciclo de actividades que además de solucionar nuevos problemas nos permita aprender de las buenas soluciones obtenidas por los nuevos problemas:
 - Recuperar
 - Reutilizar
 - Revisar
 - Retener

- Métodos relacionados:
 - Razonamiento basado en casos
 - Recuperar (retrieve):
 - Dado un problema, se recuperan los casos más similares de la Base de Casos
 - · Un caso es un problema anterior con su solución.
 - Reutilizar (reuse):
 - Extraer la solución del caso seleccionado para utilizarla
 - Esto puede implicar adaptar la solución a la nueva situación.

- Métodos relacionados:
 - Razonamiento basado en casos
 - Revisar (revise):
 - Se debe analizar si la nueva solución es aceptable y si es necesario revisarla.
 - Si bien se suele entender que en el proceso de reutilización se lleva a cabo toda la problemática de adaptación del caso ó casos recuperados para el nuevo problema, en muchas aplicaciones prácticas las fases de reutilización y revisión apenas se distinguen, y muchos investigadores hablan de fase de adaptación, que combina ambas.
 - Retener (retain):
 - Después de haber aplicado la solución con éxito, se debe almacenar la experiencia como un nuevo caso en la Base de Casos.

- Métodos relacionados:
 - Razonamiento basado en casos

- Métodos relacionados:
 - Razonamiento basado en casos
 - Los cuatro procesos no son tareas únicas, es decir, cada uno de ellos implica llevar a cabo una serie de tareas más específicas.
 - Jerarquía de tareas

- Métodos relacionados:
 - Razonamiento basado en casos

- Métodos relacionados:
 - Razonamiento basado en casos
 - Basado en los mismos principios que kNN
 - Se clasifica una instancia en base a casos parecidos
 - La diferencia es que, en lugar de utilizar puntos en un espacio euclídeo, representamos las instancias con atributos más complejos
 - Se debe buscar una métrica de similitud que depende del dominio de trabajo
 - La solución se basa en combinaciones complejas y específicas al dominio de aplicación

- Métodos relacionados:
 - Razonamiento basado en casos
 - Representaciones de la información mucho más desarrolladas:
 - Imágenes
 - Documentos
 - Planes
 - etc.

- Paradigma que puede usarse en otro tipo de espacios:
 - En lugar de instancias representadas en el espacio euclídeo
 - Representaciones más complejas
 - Por ejemplo: clasificación de imágenes:
 - Base de datos con imágenes de distintas clases
 - Mediante la creación de un modelo (RNA,SVM,etc):
 - Extraer características de las imágenes
 - Crear base de datos con esas características y las clases
 - Ajustar un modelo de aprendizaje máquina
 - Ante una nueva instancia, extraer características y aplicar el modelo

- Paradigma que puede usarse en otro tipo de espacios:
 - En lugar de instancias representadas en el espacio euclídeo
 - Representaciones más complejas
 - Por ejemplo: clasificación de imágenes:
 - Base de datos con imágenes de distintas clases
 - Mediante el paradigma del aprendizaje basado en instancias:
 - Desarrollar una función que, entre dos imágenes, de una medida de similitud entre las mismas
 - Ante una nueva imagen, calcular las más cercanas y a partir de ellas, calcular la clase de pertenencia

- Algoritmos perezosos (lazy) vs. voraces (o ansiosos, ávidos, etc.) (greedy)
 - Los algoritmos perezosos [KNN, Regresión Local...] retrasan el cálculo de una hipótesis hasta la llegada de una nueva consulta.
 - Computan una aproximación local de la función objetivo para responder cada nueva consulta.
 - En otras palabras, utilizan múltiples aproximaciones locales para modelar la función objetivo [global].
 - Los algoritmos voraces pueden utilizar también aproximaciones; sin embargo, éstas quedan "fijas" al conjunto de entrenamiento.
 - Se elabora un modelo
 - Dado un mismo espacio de hipótesis, los algoritmos perezosos tienen un mayor poder de adaptación a una nueva consulta
 - y mayor adaptación a cambios en el problema

Resumen:

- Estos métodos posponen la creación de una hipótesis hasta el momento de una nueva clasificación
- Esto les permite generar una aproximación local para cada una de las nuevas instancias, aproximando el objetivo con funciones complejas
- Desventajas:
 - El costo de cálculo de estas aproximaciones
 - Definición de una métrica apropiada
 - Almacenamiento