Assignment -2

Python Programming

Assignment Date	21 September 2022
Student Name	Mr. Gokulkannan V
Student Register Number	910619104021
Maximum Marks	

1. Importing necessary Libraries and Dataset

out[143]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsA cti v e M
	0	1	15634602	Hargrav e	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

10000 rows x 14 columns

SHAPE AND SIZE OF THE DATASET

```
10 [10]= data.shape
Out[101]: (10000, 14)
```

DataTypes

```
In [1834]
data.describe(include='object')
Out[183]:
```

data.dtypes

top

freq

Out[102]:

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

	Surname	Geography	Gender
count	10000	10000	10000
unique	2932	3	2

France

5014

Male

5457

Smith

32

Describe function to watch the Mean, Medium, etc

	data.d	escribe()								
t[105]:		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
	count 1	0000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797
	min 1.00000		1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000
	max 10000.00000		1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000
										

2. Perform Visualizations

UNIVARIATE ANALYSIS

Histogram

data.info()

```
cols = 3
rows = 4
num_cols = data.select_dtypes(exclude='object').columns
fig = plt.figure( figsize=(cols*5, rows*5))
for i, col in enumerate(num_cols):
    ax=fig.add_subplot(rows,cols,i+1)
    sns.histplot(x = data[col], ax = ax)

fig.tight_layout()
plt.show()
```


Distplot

Countplot

Boxplot

```
cols = 3
rows = 4
num_cols = data.select_dtypes(exclude='object').columns
fig = plt.figure( figsize=(cols*5, rows*5))
for i, col in enumerate(num_cols):
    ax=fig.add_subplot(rows,cols,i+1)
    sns.boxplot(x = data[col], ax = ax)

fig.tight_layout()
plt.show()
```


Bivariate Analysis

Out[110]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem
	0	1	15634602	Hargrav e	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
                    Non-Null Count Dtype
    RowNumber
                    10000 non-null int64
                    10000 non-null int64
    CustomerId
                    10000 non-null object
    Surname
3
    CreditScore
                    10000 non-null int64
                    10000 non-null object
    Geography
                     10000 non-null object
    Gender
    Age
                    10000 non-null int64
    Tenure
                     10000 non-null
                    10000 non-null float64
    Balance
                   10000 non-null int64
    NumOfProducts
10
   HasCrCard
                     10000 non-null
11
    IsActiveMember 10000 non-null int64
12 EstimatedSalary 10000 non-null float64
13 Exited
                     10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

Numerical variable vs Numerical variable

Scatterplot

```
In [112... sns.scatterplot(x='Balance', y='Age', data = data, hue='Gender')
   plt.show()
```


Categorical vs Categorical

Catplot

```
sns.catplot(x='Gender', y='Age', data=data, kind='point', hue='Geography')
plt.show()
```


Multivariate Analysis

PairPlot

sns.pairplot(data)

Out[114]: <seaborn.axisgrid.PairGrid at 0x24161886980>

3. Perform descriptive statistics on the dataset.

ο.	- 4-	11	А	А	1	

:	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProduct
cou	nt 10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000	10000.000000	10000.00000
uniq	ue NaN	NaN	2932	NaN	3	2	NaN	NaN	NaN	Na
t	op NaN	NaN	Smith	NaN	France	Male	NaN	NaN	NaN	Na
fr	eq NaN	NaN	32	NaN	5014	5457	NaN	NaN	NaN	Na
me	an 5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800	76485.889288	1.53020
s	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174	62397.405202	0.58165
m	in 1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000	0.000000	1.00000
25	25 00.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000	0.000000	1.00000
50	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000	97198.540000	1.00000
75	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000	127644.240000	2.00000
m	ax 10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000	250898.090000	4.00000

data.describe(include='all')

```
Out[145]: RowNumber
CustomerId
                              10000
          Surname
                              10000
          CreditScore
                              10000
          Geography
                              10000
          Gender
                              10000
          Age
                              10000
          Tenure
                              10000
          Balance
          NumOfProducts
                              10000
          HasCrCard
                              10000
          IsActiveMember
                              10000
          EstimatedSalary
                              10000
          Exited
                              10000
          dtype: int64
```

4. Handle the Missing values.

Fill with Zeros for NAN values

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsA ct
(1	15634602	Hargrav e	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

5. Find the outliers and replace the outliers

	a												
47]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsA cti v e M
	0	1	15634602	Hargrav e	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

10000 rows x 14 columns

```
in [148... missing_values=data.isnull().sum()
    missing_values[missing_values>0]/len(data)*100

Out[148]: Series([], dtype: float64)

In [149... data.drop(['RowNumber', 'Exited', 'CustomerId', 'Surname', 'Geography', 'Gender'], axis=1, inplace=True)
    data.head()
```

```
0
                                          0.00
                                                                                             101348.88
                     619
                          42
                                                                                             112542.58
           1
                                      83807.86
                     608
                          41
                                                                      0
           2
                     502
                          42
                                   8 159660.80
                                                                                     0
                                                                                             113931.57
                                                                                     0
                     699
                                          0.00
                                                                      0
                                                                                              93826.63
                                   2 125510.82
                     850
                          43
                                                           1
                                                                                              79084.10
In [150...
          cols = 3
          rows = 4
          num_cols = data.select_dtypes(exclude='object').columns
          fig = plt.figure( figsize=(cols*5, rows*5))
          for i, col in enumerate(num_cols):
              ax=fig.add_subplot(rows,cols,i+1)
              sns.boxplot(x = data[col], ax = ax)
          fig.tight_layout()
          plt.show()
                                                                                               0
                                                                                                      2
              400
                     500
                           600
                                 700
                                          800
                                                      20
                                                               40
                                                                        60
                                                                                  80
                                                                                                                    6
                                                                                                                           8
                                                                                                                                  10
                                                                                                               Tenure
                        CreditScore
                                                                      Age
           0
                50000 100000 150000 200000 250000
                                                                2.0 2.5 3.0
                                                                                  3.5
                                                                                               0.0
                                                                                                     0.2
                                                                                                             0.4 0.6
                                                                                                                                  1.0
                                                    1.0
                                                          1.5
                                                                                        4.0
                                                                                                                           0.8
                                                                                                             HasCrCard
                          Balance
                                                                 NumOfProducts
          0.0
                 0.2
                        0.4
                               0.6
                                      0.8
                                             1.0
                                                            50000
                                                                   100000
                                                                            150000
                                                                                      200000
                      IsActiveMember
                                                                 EstimatedSalary
          data['CreditScore'].hist()
```

Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary

CreditScore Age Tenure

Out[149]:

data['Age'].hist()

Out[124]: <AxesSubplot: >

data['NumOfProducts'].hist()

Out[125]: <AxesSubplot: >


```
print('Skewness value of Age: ',data['Age'].skew())
Age_mean = data['Age'].mean()
print('Mean of Age is: ',Age_mean)
Age_std = data['Age'].std()
print('Standard Deviation of Age is: ',Age_std)
low= Age_mean -(3 * Age_std)
high= Age_mean + (3 * Age_std)
Age_outliers = data[(data['Age'] < low) | (data['Age'] > high)]
#print('Outliers of Age is:\n',Age_outliers)
print('Outliers of Age is:')
Age_outliers.head()
Skewness value of Age: 1.0113202630234552
```

Mean of Age is: 38.9218

Standard Deviation of Age is: 10.487806451704609

Outliers of Age is:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
85	652	75	10	0.00	2	1	1	114675.75
158	646	73	6	97259.25	1	0	1	104719.66
230	673	72	1	0.00	2	0	1	111981.19
252	681	79	0	0.00	2	0	1	170968.99
310	652	80	4	0.00	2	1	1	188603.07

```
print('Skewness value of CreditScore: ',data['CreditScore'].skew())
CreditScore_mean = data['CreditScore'].mean()
print('Mean of CreditScore is: ',CreditScore mean)
CreditScore_std = data['CreditScore'].std()
print('Standard Deviation of CreditScore is: ',CreditScore_std)
low= CreditScore_mean -(3 * CreditScore_std)
high= CreditScore_mean + (3 * CreditScore_std)
CreditScore_outliers = data[(data['CreditScore'] < low) | (data['CreditScore'] > high)]
#print('Outliers of Age is:\n',Age_outliers)
print('Outliers of CreditScore is:')
```

```
CreditScore_outliers.head()
Skewness value of CreditScore: -0.07160660820092675
Mean of CreditScore is: 650.5288
Standard Deviation of CreditScore is: 96.65329873613035
Outliers of CreditScore is:
      CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
             359
                   44
                           6 128747.69
                                                                             0
                                                                                     146955.71
1405
 1631
             350
                   54
                           1 152677.48
                                                                                     191973.49
                           0 109733.20
                                                               0
                                                                                      123602.11
 1838
             350
                   39
                   52
                           8 143542.36
                                                    3
                                                                             0
                                                                                     141959.11
 1962
             358
 2473
                           4 163146.46
                                                                             0
                                                                                      169621.69
             351
```

```
print('Skewness value of NumOfProducts: ',data['NumOfProducts'].skew())
NumOfProducts_mean = data['NumOfProducts'].mean()
print('Mean of NumOfProducts is: ',NumOfProducts_mean)
NumOfProducts_std = data['NumOfProducts'].std()
print('Standard Deviation of NumOfProducts is: ',NumOfProducts_std)
low= NumOfProducts_mean - (3 * NumOfProducts_std)
high= NumOfProducts_mean + (3 * NumOfProducts_std)
NumOfProducts_outliers = data[(data['NumOfProducts'] < low) | (data['NumOfProducts'] > high)]
#print('Outliers of Age is:\n',Age_outliers)
print('Outliers of NumOfProducts is:')
NumOfProducts_outliers.head()
```

Skewness value of NumOfProducts: 0.7455678882823168 Mean of NumOfProducts is: 1.5302 Standard Deviation of NumOfProducts is: 0.5816543579989906 Outliers of NumOfProducts is:

Out[153]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
	7	376	29	4	115046.74	4	1	0	119346.88
	70	738	58	2	133745.44	4	1	0	28373.86
	1254	628	46	1	46870.43	4	1	0	31272.14
	1469	819	49	1	120656.86	4	0	0	166164.30
	1488	596	30	6	121345.88	4	1	0	41921.75

Outliers Eliminated

```
Q1 = data['Age'].quantile(0.25)
Q3 = data['Age'].quantile(0.75)

IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
data['Age']=np.where(data['Age']>upper_whisker,np.where(data['Age']<lower_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker,deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker.deriver_whisker_deriver_whisker.deriver_whisker_deriver_whisker_deriver_whisker_deriver_whisker_deriver_whisker_deriver_whisker_deriver_whisker_deriver_whisker_deriver_whisker_deriver
```

60 50 40 30 20

```
Q3 = data['CreditScore'].quantile(0.75)

IQR = Q3 - Q1

whisker_width = 1.5

lower_whisker = Q1 - (whisker_width*IQR)

upper_whisker = Q3 + (whisker_width*IQR)

data['CreditScore']=np.where(data['CreditScore']>upper_whisker,upper_whisker,np.where(data['CreditScore']<lower

print('Outliers Removed in CreditScore:')

sns.boxplot(data['CreditScore'])

Outliers Removed in CreditScore:
```


6. Check for Categorical columns and perform encoding.

```
#data1 = pd.read_csv('Churn_Modelling.csv')
#data1.head()

import numpy as np #for numpy operations
import pandas as pd #for creating DataFrame using Pandas
```

```
# to split the dataset using sklearn
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
# load titanic dataset
data1 = pd.read_csv('Churn_Modelling.csv')
data1.head(10)
```

```
Out[2]:
             RowNumber Customerld Surname CreditScore Geography Gender
                                                                                    Age Tenure
                                                                                                    Balance NumOfProducts HasCrCard IsActiveMemb
                             15634602 Hargrav e
                                                                   France
                                                                           Female
          1
                        2
                             15647311
                                             Hill
                                                          608
                                                                                                   83807.86
                                                                                                                                        0
                                                                    Spain
                                                                           Female
                                                                                      41
          2
                             15619304
                                            Onio
                                                                                               8 159660.80
                        3
                                                          502
                                                                   France
                                                                           Female
                                                                                      42
                                                                                                                           3
                                                                                                                                        1
          3
                        4
                             15701354
                                            Boni
                                                          699
                                                                   France
                                                                            Female
                                                                                      39
                                                                                                        0.00
                                                                                                                                        0
          4
                        5
                             15737888
                                         Mitchell
                                                          850
                                                                                               2 125510.82
                                                                    Spain
                                                                                      43
                                                                                                                           1
                                                                                                                                        1
                                                                           Female
                                                                                                                           2
          5
                             15574012
                                            Chu
                                                          645
                                                                                               8 113755.78
                        6
                                                                    Spain
                                                                              Male
                                                                                      44
          6
                        7
                             15592531
                                          Bartlett
                                                          822
                                                                   France
                                                                              Male
                                                                                      50
                                                                                                        0.00
                                                                                                                           2
                                                                                                                                        1
          7
                        8
                                                          376
                                                                                               4 115046.74
                                                                                                                           4
                             15656148
                                          Obinna
                                                                 Germany
                                                                           Female
                                                                                      29
          8
                                                                                                                           2
                                                                                                                                       0
                        9
                             15792365
                                             He
                                                          501
                                                                   France
                                                                              Male
                                                                                      44
                                                                                               4 142051.07
                       10
                             15592389
                                             H?
                                                          684
                                                                   France
                                                                              Male
                                                                                      27
                                                                                               2 134603.88
```

```
data1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999

Data columns (total 14 columns):

### Columns | Non-Null Count Division | Columns | Co
```

```
#
    Column
                      Non-Null Count
    RowNumber
                      10000 non-null
 0
                                      int.64
 1
    CustomerId
                      10000 non-null
                                      int64
                      10000 non-null
 2
     Surname
                                      object
                      10000 non-null
 3
    CreditScore
                                      int64
 4
    Geography
                      10000 non-null
                                      object
 5
                      10000 non-null
     Gender
                                      object
 6
                      10000 non-null
    Age
                                      int.64
                      10000 non-null
    Tenure
                                      int.64
 8
    Balance
                      10000 non-null float64
 9
                      10000 non-null
    NumOfProducts
                                      int64
 10
                      10000 non-null int64
    HasCrCard
 11
    IsActiveMember
                      10000 non-null int64
 12
    EstimatedSalary 10000 non-null float64
                      10000 non-null int64
 13 Exited
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

```
# label_encoder object
label_encoder =LabelEncoder()
# Encode labels in column.
data1['Surname'] = label_encoder.fit_transform(data1['Surname'])
data1.head(10)
```

RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMemb Out[4]: 0 42 0.00 1 15634602 1115 619 France Female 1 2 15647311 1177 608 Spain Female 41 83807.86 0 2 3 15619304 2040 502 France Female 42 159660.80 3 3 4 0.00 2 15701354 289 699 France Female 39 0 4 5 15737888 1822 850 Spain Female 43 2 125510.82 1 1 5 6 15574012 537 645 Spain 44 8 113755.78 2 Male 2 6 7 15592531 177 822 50 0.00 1 France Male 7 8 15656148 2000 376 Germany Female 29 4 115046.74 4 8 4 142051.07 2 0 9 15792365 1146 501 France Male 44 9 10 15592389 1081 684 France Male 27 2 134603 88

```
data1['Gender'] = label_encoder.fit_transform(data1['Gender'])
data1.head(10)
```

			_		_		_	_				
Out[7]:		CustomerId								NumOfProducts		IsActiveMemb
	0 1		1115	619	France	0	42	2	0.00	1	1	
	1 2		1177	608	Spain	0	41	1	83807.86	1	0	
	2 3		2040	502	France	0	42	8		3	1	
	3		289	699	France	0	39	1	0.00	2	0	
	4 5	15737888	1822	850	Spain	0	43	2	125510.82	1	1	
	5 6	15574012	537	645	Spain	1	44	8	113755.78	2	1	
	6 7	15592531	177	822	France	1	50	7	0.00	2	1	
	7 8	15656148	2000	376	Germany	0	29	4	115046.74	4	1	
	8 9	15792365	1146	501	France	1	44	4	142051.07	2	0	
	9 10	15592389	1081	684	France	1	27	2	134603.88	1	1	
4												
To 101.	1-+-1[[[]											
	<pre>data1['Geography'] = label_encoder.fit_transform(data1['Geography']) data1.head(10)</pre>											
	_		bel_enco	der.fit_tra	ansform(da	ta1['Ge	ograp	ohy'])				
Out[8]:	data1.head(_	_					Balance	NumOfProducts	HasCrCard	Is A ctiveMemb
Out[8]:	data1.head(CustomerId	_	_					Balance	NumOfProducts	HasCrCard	IsActiveMemb
Out[8]:	data1.head(CustomerId 15634602	Surname	CreditScore	Geography	Gender	Age	Tenure				IsActiveMemb
Out[8]:	data1.head(RowNumber	CustomerId 15634602 15647311	Surname	CreditScore	Geography 0	Gender 0	Age 42	Tenure 2	0.00 83807.86	1	1	IsActiveMemb
Out[8]:	RowNumber 1 2	CustomerId 15634602 15647311 15619304	Surname 1115 1177	CreditScore 619 608	Geography 0 2	Gender 0 0	Age 42 41	Tenure 2	0.00 83807.86	1	1 0	IsActiveMemb
Out[8]:	RowNumber 1 2 2 3	CustomerId 15634602 2 15647311 3 15619304 4 15701354	Surname 1115 1177 2040	CreditScore 619 608 502	Geography 0 2 0	Gender 0 0 0	Age 42 41 42	Tenure 2 1 8 1	0.00 83807.86 159660.80	1 1 3	1 0	IsActiveMemb
Out[8]:	RowNumber 1 2 2 3 3 4	CustomerId 15634602 15647311 15619304 15701354 15737888	Surname 1115 1177 2040 289	CreditScore 619 608 502 699	Geography 0 2 0 0	Gender 0 0 0 0	Age 42 41 42 39	Tenure 2 1 8 1 2	0.00 83807.86 159660.80 0.00	1 1 3 2	1 0 1	IsActiveMemb
Out[8]:	data1	CustomerId 15634602 15647311 15619304 15701354 15737888 15574012	Surname 1115 1177 2040 289 1822 537	CreditScore 619 608 502 699 850 645	Geography 0 2 0 0 2 2 2 2	Gender 0 0 0 0 0 0 0 1	Age 42 41 42 39 43	Tenure 2 1 8 1 2 8 8	0.00 83807.86 159660.80 0.00 125510.82 113755.78	1 1 3 2 1 2	1 0 1 0 1	IsActiveMemb
Out[8]:	data1.head(RowNumber 0 1 2 3 4 5 6 7	CustomerId 15634602 15647311 15619304 15701354 15737888 15574012 15592531	Surname 1115 1177 2040 289 1822 537 177	CreditScore 619 608 502 699 850 645	Geography 0 2 0 0 2 2 2 2 2 2 0	Gender 0 0 0 0 1 1	Age 42 41 42 39 43 44 50	Tenure 2 1 8 1 2 8 7	0.00 83807.86 159660.80 0.00 125510.82 113755.78 0.00	1 1 3 2 1 2 2	1 0 1 0 1 1 1	IsActiveMemb
Out[8]:	data1	CustomerId 15634602 15647311 15619304 15701354 15737888 15574012 15592531 15656148	Surname 1115 1177 2040 289 1822 537	CreditScore 619 608 502 699 850 645	Geography 0 2 0 0 2 2 2 2	Gender 0 0 0 0 0 0 0 1	Age 42 41 42 39 43	Tenure 2 1 8 1 2 8 7	0.00 83807.86 159660.80 0.00 125510.82 113755.78 0.00 115046.74	1 1 3 2 1 2	1 0 1 0 1	IsActiveMemb

7. Split the data into dependent and independent variables.

2 134603.88

#

10

15592389

1081

Dependent Variable: A dependent variable is a variable w hose value depends on another variable.

#

Independent Variable: An Independent variable is a variable whose value never depends on another variable.

#

```
print("The Minimum value of Dataset:\n",data1.min(numeric_only=True))
print("\n")
print("The Maximum value of Dataset:\n",data1.max(numeric_only=True))
print("\n")
print("The Mean value of Dataset:\n",data1.mean(numeric_only=True))
print("\n")

print(data1.count(0))
print(data1.shape)
print(data1.size)
```

```
RowNumber
                                     1.00
                             15565701.00
         CustomerId
         Surname
                                    0.00
         CreditScore
                                  350.00
         Geography
                                   0.00
         Gender
                                    0.00
         Age
                                   18.00
         Tenure
                                    0.00
         Balance
                                    0.00
         NumOfProducts
                                    1.00
         HasCrCard
                                    0.00
         IsActiveMember
                                    0.00
                                   11.58
         {\tt EstimatedSalary}
         Exited
                                    0.00
         dtype: float64
         The Maximum value of Dataset:
                                10000.00
          RowNumber
         CustomerId
                             15815690.00
         Surname
                                 2931.00
         CreditScore
                                  850.00
         Geography
                                    2.00
         Gender
                                    1.00
         Age
                                   92.00
         Tenure
                                   10.00
                               250898.09
         Balance
         NumOfProducts
                                    4.00
         HasCrCard
                                     1.00
         IsActiveMember
                                    1.00
         EstimatedSalary
                               199992.48
         Exited
                                    1.00
         dtype: float64
         The Mean value of Dataset:
                             5.000500e+03
          RowNumber
         CustomerId
                             1.569094e+07
         Surname
                             1.507774e+03
         CreditScore
                             6.505288e+02
         Geography
                             7.463000e-01
         Gender
                             5.457000e-01
                             3.892180e+01
         Age
         Tenure
                             5.012800e+00
         Balance
                             7.648589e+04
         NumOfProducts
                             1.530200e+00
                             7.055000e-01
         HasCrCard
         IsActiveMember
                             5.151000e-01
         EstimatedSalary
                             1.000902e+05
         Exited
                             2.037000e-01
         dtype: float64
         RowNumber
                             10000
         CustomerId
                             10000
                             10000
         Surname
         CreditScore
                             10000
                             10000
         Geography
                             10000
         Gender
         Age
                             10000
         Tenure
                             10000
         Balance
                             10000
                             10000
         NumOfProducts
         HasCrCard
                             10000
                             10000
         IsActiveMember
         EstimatedSalary
                             10000
         Exited
                             10000
         dtype: int64
         (10000, 14)
         140000
         y = data1["Surname"]
         x=data1.drop(columns=["Surname"],axis=1)
         x.head()
            RowNumber CustomerId CreditScore Geography Gender Age Tenure
                                                                           Balance NumOfProducts HasCrCard IsActiveMember Estimat
Out[31]:
         0
                     1
                         15634602
                                                    0
                                                                              0.00
                                        619
                                                           0
                                                               42
                                                                       2
                                                                                                        1
          1
                     2
                         15647311
                                        608
                                                           0
                                                               41
                                                                          83807.86
          2
                    3
                         15619304
                                        502
                                                    0
                                                           0
                                                               42
                                                                       8 159660.80
                                                                                              3
                                                                                                        1
                                                                                                                      0
```

The Minimum value of Dataset:

3

4

4

5

15701354

15737888

0

2

0 39

0 43

699

850

2

0

1

0

1

0.00

2 125510.82

9. Scale the independent variables

```
names=x.columns
           names
           Index(['RowNumber', 'CustomerId', 'CreditScore', 'Geography', 'Gender', 'Age',
                    'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember',
                   'EstimatedSalary', 'Exited'],
                  dtype='object')
           from sklearn.preprocessing import scale
           X=scale(x)
           array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.97024255,
Out[36]:
                     0.02188649, 1.97716468],
                   [-1.7315312 , -0.60653412, -0.44003595, ..., 0.97024255, 0.21653375, -0.50577476],
                   [-1.73118479, -0.99588476, -1.53679418, ..., -1.03067011,
                     0.2406869 , 1.97716468],
                   [ 1.73118479, -1.47928179, 0.60498839, ..., 0.97024255,
                     -1.00864308, 1.97716468],
                   [\ 1.7315312\ ,\ -0.11935577,\ 1.25683526,\ \ldots,\ -1.03067011,
                    -0.12523071, 1.97716468],
                   [ 1.73187761, -0.87055909, 1.46377078, ..., -1.03067011,
                    -1.07636976, -0.50577476]])
           x = pd.DataFrame(X,columns = names)
                RowNumber CustomerId CreditScore Geography
                                                                                                Balance NumOfProducts HasCrCard
                                                                                                                                     IsActiveMem
                                                                   Gender
                                                                                Age
                                                                                       Tenure
                    -1.731878
                                -0.783213
                                            -0.326221
                                                       -0.901886
                                                                 -1.095988
                                                                            0.293517
                                                                                     -1.041760
                                                                                               -1.225848
                                                                                                                -0.911583
                                                                                                                           0.646092
                                                                                                                                           0.970
                   -1.731531
                               -0.606534
                                            -0.440036
                                                                 -1.095988
                                                                                     -1.387538
                                                                                                0.117350
                                                                                                                -0.911583
                                                                                                                           -1.547768
                                                                                                                                           0.970
                                                        1.515067
                                                                            0.198164
                   -1.731185
                                -0.995885
                                            -1.536794
                                                       -0.901886
                                                                 -1.095988
                                                                            0.293517
                                                                                      1.032908
                                                                                                1.333053
                                                                                                                2.527057
                                                                                                                           0.646092
                                                                                                                                           -1.030
                    -1.730838
                                0.144767
                                            0.501521
                                                       -0.901886
                                                                 -1.095988
                                                                            0.007457
                                                                                     -1.387538
                                                                                               -1.225848
                                                                                                                0.807737
                                                                                                                           -1.547768
                                                                                                                                           -1.030
              3
                                                                                     -1.041760
                                                                                                                           0.646092
                                                                                                                                           0.970
                   -1.730492
                                0.652659
                                            2.063884
                                                        1.515067
                                                                 -1.095988
                                                                            0.388871
                                                                                                0.785728
                                                                                                                -0.911583
             ...
                    1.730492
                               -1.177652
                                            1.246488
                                                       -0.901886
                                                                  0.912419
                                                                            0.007457 -0.004426
                                                                                               -1.225848
                                                                                                                0.807737
                                                                                                                           0.646092
                                                                                                                                           -1.030
           9995
                                                                                                                           0.646092
                    1.730838
                               -1.682806
                                            -1.391939
                                                       -0.901886
                                                                  0.912419
                                                                           -0.373958
                                                                                      1.724464
                                                                                               -0.306379
                                                                                                                -0.911583
                                                                                                                                           0.970
           9996
                    1.731185
                               -1.479282
                                            0.604988
                                                        -0.901886
                                                                 -1.095988
                                                                           -0.278604
                                                                                      0.687130
                                                                                               -1.225848
                                                                                                                -0.911583
                                                                                                                           -1.547768
                                                                                                                                           0.970
                    1.731531
                                -0.119356
                                            1.256835
                                                        0.306591
                                                                  0.912419
                                                                            0.293517
                                                                                     -0.695982
                                                                                               -0.022608
                                                                                                                0.807737
                                                                                                                           0.646092
                                                                                                                                           -1.030
           9998
           9999
                    1.731878
                               -0.870559
                                            1.463771
                                                       -0.901886
                                                                 -1.095988 -1.041433 -0.350204
                                                                                                0.859965
                                                                                                                -0.911583
                                                                                                                           0.646092
                                                                                                                                           -1.030
          10000 row s x 13 columns
```

10000 row s × 13 columns

10. Split the data into training and testing

#

The train-test split is used to estimate the performance of machine learning algorithms that are applicable for prediction-based Algorithms/Applications. By default, the Test set is split into 30 % of actual data and the training set is split into 70% of the actual data.

#

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

x_train.head()
```

Out[40]:		RowNumber	CustomerId	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem
	7389	0.827747	-0.195066	0.170424	1.515067	-1.095988	-0.469311	-0.004426	-1.225848	0.807737	0.646092	-1.030
	9275	1.481077	0.810821	-2.312802	0.306591	0.912419	0.293517	-1.387538	-0.012892	-0.911583	0.646092	0.970
	2995	-0.694379	-1.507642	-1.195351	-0.901886	-1.095988	-0.946079	-1.041760	0.575076	-0.911583	0.646092	-1.030
	5316	0.109639	1.243462	0.035916	1.515067	0.912419	0.102810	-0.004426	0.467955	-0.911583	0.646092	-1.030
	356	-1.608556	-1.100775	2.063884	1.515067	-1.095988	1.723821	1.032908	0.806010	0.807737	0.646092	0.970

x_train.shape,y_train.shape,x_test.shape,y_test.shape

Out[41]: ((8000, 13), (8000,), (2000, 13), (2000,))

Loading [MathJax]/extensions/Safe.js