Markov Chain Monte Carlo

Natalie Packham
Berlin School of Economics & Law

Bayesian Statistics Explorations

26 November 2019

Contents

Overview

Markov chains

Markov Chain Monte Carlo

Overview

- ► Monte Carlo simulation: directly sample random numbers from a distribution of interest (e.g. normal distribution).
- There are applications especially those involving Bayesian inference
 where this is not possible.
- Idea of Markov Chain Monte Carlo (MCMC): cleverly choose a Markov chain whose stationary distribution corresponds to the distribution of interest.
- By running simulations of this Markov chain for long enough, construct a sample the approximates the distribution of interest.
- Exposition here uses material from (Lemieux, 2009), (Stachurski, 2016), (Fahrmeir et al., 2009).

Contents

Overview

Markov chains

Markov Chain Monte Carlo

Markov chain

- A standard reference is (Norris, 1998).
- Let λ be a distribution on a countable set I (the state-space).
- ▶ A matrix $P = (p_{ij} : i, j \in I)$ is stochastic if every row $(p_{ij} : j \in I)$ is a distribution; this is the so-called transition matrix.

Definition

The process $(X_n)_{n\geq 0}$ is a Markov chain with initial distribution λ and transition matrix P if

- (i) X_0 has distribution λ , i.e., $\mathbf{P}(X_0 = j) = \lambda_j$;
- (ii) for $n \ge 0$, conditional on $X_n = i$, X_{n+1} has distribution $(p_{ij} : j \in I)$;
- (iii) $P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_n = i) = P(X_{n+1} = j | X_n = i).$

Invariant / stationary distribution

Definition

The distribution λ is invariant (stationary) for P if

$$\lambda P = \lambda$$
.

Theorem

Let $(X_n)_{n\geq 0}$ be $Markov(\lambda, P)$. If λ is invariant for P, then $(X_{m+n})_{n\geq 0}$ is also $Markov(\lambda, P)$.

Convergence to equilibrium

Definition

A Markov chain is irreducible if it is possible to get to any state from any other state.

Definition

The state $i \in I$ is aperiodic if

$$p_{ii}^{(n)} = \mathbf{P}(X_{n+m} = i | X_m = i) > 0$$
, for sufficiently large n .

A Markov chain is aperiodic if all states are aperiodic.

Theorem

Let P be irreducible and aperiodic, and suppose that P has an invariant distribution π . Let λ be any distribution. Suppose that $(X_n)_{n\geq 0}$ is $Markov(\lambda, P)$. Then

$$\mathbf{P}(X_n = j) \to \pi_i$$
 as $n \to \infty$ for all j .

Ergodic Markov process

Definition

A Markov chain is ergodic if it is aperiodic, irreducible and if it has an invariant distribution.

Ergodic Theorem

- Ergodic Theorems: limiting behaviour of averages over time.
- Example: Strong law of large numbers.

Theorem (Ergodic Theorem)

Let P be irreducible and let λ be any distribution. If $X = (X_n)_{n \ge 0}$ is $Markov(\lambda, P)$ and if P has an invariant distribution, then, for any bounded function $f: I \to \mathbb{R}$ we have

$$\mathbf{P}\left(\left(\frac{1}{n}\sum_{k=0}^{n-1}f(X_k)\to\overline{f}\ as\ n\to\infty\right)=1,$$

where

$$\overline{f} = \sum_{i \in I} \pi_i f_i,$$

and where $\pi = (\pi_i : i \in I)$ is the unique invariant distribution.

イロン イ御 とくまとくまとしまし

Stochastic kernel

- In the following, we use the notion of a stochastic kernel, which describes the transition behaviour of Markov processes in general.
- ► A transition matrix is a stochastic kernel for a discrete system.
- A transition density describes the transition behaviour of a Markov chain with state space a subset of \mathbb{R}^d .

Definition

Let $\mathcal{B}(S)$ be the Borel subsets of $S \subset \mathbb{R}^K$. A stochastic kernel is a function $Q: S \times \mathcal{B}(S) \to [0,1]$ such that

- (i) $Q(s, \cdot)$ is a probability measure on $\mathcal{B}(S)$ for all $s \in S$ and
- (ii) $g_B(s) := Q(s, B)$ is \mathcal{B} -measurable for each $B \in \mathcal{B}(S)$.

Contents

Overview

Markov chains

Markov Chain Monte Carlo

Markov Chain Monte Carlo

- ▶ MCMC is a way of simulating from a given density π on $S \subset \mathbb{R}^d$. The idea is to construct a stochastic kernel P on S such that
 - (i) π is a stationary distribution for P,
 - (ii) P is sufficiently ergodic that its sample path averages converge to expectations under π .

MCMC: Metropolis-Hastings algorithm, ideas

- ► The Metropolis-Hastings algorithm starts with a proposal density q = q(s, s').
- Draws from the proposal density are called proposals.
- ► Each proposal is
 - either accepted by moving to the new state;
 - or rejected by staying at the existing state.
- The probability of accepting is structured so that the chain tends to stay in regions where π puts most probability mass.
- As a consequence, for a sequence (X_t) generated by this process:

fraction of time spent in
$$B = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{\{X_t \in B\}} \approx \pi(B)$$
 for large T .

© N. Packham MCMC, 26 Nov 2019

MCMC: Metropolis-Hastings algorithm

- Assume that the acceptance probability is $\alpha = \alpha(X_t, Y)$, where
 - \triangleright X_t is the current state,
 - Y is the proposal.
- ► The algorithm draws Y from $q(X_t, \cdot)$ and $U \sim U(0, 1)$ independently.
- ▶ If $U \le \alpha(X_t, Y)$, then $X_{t+1} = Y$, else $X_{t+1} = X_t$.
- ▶ It is easily checked that the stochastic kernel of (X_t) has the form

$$P(s,B) = \int_{B} p(s,s') ds' + (1-\lambda(s)) \mathbf{1}_{\{s \in B\}},$$

where $p(s, s') := q(s, s')\alpha(s, s')$ and $\lambda(s) := \int p(s, s') ds'$.

MCMC: Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm, the acceptance probability function α is defined as

$$lpha(s,s') := \min \left\{ rac{\pi(s')q(s',s)}{\pi(s)q(s,s')}, 1
ight\},$$

with $\alpha(s, s') = 1$ if $\pi(s)q(s, s') = 0$.

Theorem

In the setting above, π is a stationary distribution for P.

▶ If q(s, s') = q(s', s), e.g. $q(s, s') = \phi(s - s')$ for some function ϕ , sampling from π boils down to being able to calculate density values of π .

© N. Packham

Bayesian estimation

• If π is a posterior density in Bayesian estimation,

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})},$$

with $p(\mathbf{x}) = \int (p(\mathbf{x}|\theta')p(\theta') d\theta')$, then calculation of the integral drops out due to the ratio in α .

- ► Here,
 - $p(\theta)$ is the prior density,
 - $p(\cdot|\theta)$ the likelihood (joint density of the data given θ)
 - $ightharpoonup p(\cdot|\mathbf{x})$ is the posterior density.

Contents

Overview

Markov chains

Markov Chain Monte Carlo

- ▶ This follows the example from Section B.5 of (Fahrmeir et al., 2009).
- Let Y_1, \ldots, Y_n be a sample of independent, Poisson distributed random variables with parameter λ .
- $ightharpoonup \lambda$ is unknown and to be estimated using Bayesian inference and MCMC.
- ▶ The joint distribution of the sample $\mathbf{y} = (y_1, \dots, y_n)$ is

$$p(\mathbf{y}|\lambda) = \prod_{i=1}^n f(y_i;\lambda),$$

where $f(\cdot; \lambda)$ denotes the Poisson probability function with parameter λ .

- Choice of prior: The Gamma distribution is a conjugate prior
 - (i.e., prior and posterior have the same distribution type), so we choose $\lambda \sim G(a,b)$.
- Other prior distributions (e.g. uniform, normal, ...) give good results, too.
- ▶ The posterior is

$$p(\lambda|\mathbf{y}) = \frac{p(\mathbf{y}|\lambda)p(\lambda)}{\int p(\mathbf{y}|\lambda)p(\lambda)\,\mathrm{d}\lambda}.$$

- ▶ Using MCMC, the denominator, which is a constant that does not depend on λ , drops out.
- ► The posterior density is

$$\mathbf{y}|\lambda \sim G\left(a+\sum_{i=1}^n y_i, b+n\right).$$

▶ Drawing the sample and setting up likelihood and prior functions:

```
>>> import numpy as np
>>> import scipy as sp
>>> import scipy.stats as scs
>>> import matplotlib.pyplot as plt
>>> plt.style.use('seaborn') # sets the plotting style
>>> np.random.seed(583920)
>>> a=0.1
>>> y = scs.poisson.rvs(1, size=125) # sample data
>>> y.mean()
0.984
>>> def 1(lamb): # likelihood
       return scs.poisson.pmf(y, lamb).prod()
. . .
>>> def prior(lamb):
       return scs.gamma.pdf(lamb, a) # gamma prior
```

Running the MCMC algorithm and plotting the posterior density:

```
. . .
>>> T = 1000
>>> sigma = 0.05
>>> x = np.zeros(T)
>>> z = scs.norm.rvs(size=T) # simulate proposal from normal proposal density
>>> u = scs.uniform.rvs(size=T)
>>> x[0] = 1
>>> for t in range(1,T):
        s = x[t-1] + sigma * z[t-1] # proposal
     alpha = l(s) * prior(s) / (l(x[t-1]) * prior(x[t-1])) \setminus
                if (1(x[t-1]) * prior(x[t-1])) > 0 else 1
     x[t] = s \text{ if } u[t] \le alpha else } x[t-1]
>>> u = np.arange(0.5, 1.5, 0.01)
>>> _ = plt.hist(x, bins=20, density=True);
>>> alpha = a + v.sum()
>>> beta = 1 + len(y)
>>> _ = plt.plot(u, scs.gamma.pdf(u, alpha) * sp.exp(u * (1-beta)) \
        * beta**alpha, linewidth=3);
>>> plt.savefig('mcmc_pic.pdf')
>>> print(x.mean())
0.9806439285842388
```

Output produced:

References

Ludwig Fahrmeir, Thomas Kneib, and Stefan Lang. *Regression*. Springer, 2nd edition, 2009.

Christiane Lemieux. *Monte Carlo and Quasi-Monte Carlo Sampling*. Springer, 2009.

J. R. Norris. Markov Chains. Cambridge University Press, 1998.

John Stachurski. A Primer in Econometric Theory. MIT Press, 2016.

Thank you!

Prof. Dr. Natalie Packham Professor of Mathematics and Statistics Berlin School of Economics and Law Badensche Str. 52 10825 Berlin

