Data Visualizations

ACCURACY TABLE(%)

Risk Matrices		COR	DECORRELATED		
	TRAINING	TEST	TEST MISSING	TRAINING	TEST
Risk 1	81	77	70	84	82.5
Risk 2	17	18	36	14	17
Risk 3	57	44	44	57	44
Risk 4	43	56	57	43	57
Risk 5	83	82	72	86	83
Risk 6	82	77	73	83	78

Ques 3: Correlated Features
TEST DATASET

TEST MISSING DATASET

TEST DATASET

Computer Exercise: Ques 1:

No. of Features	Total Error	Bhattacharyya Bound
1	0.35	0.47
2	0.40	0.46
3	0.15	0.41

Ques 2:

True Error from Region 2:

 $(0.5 + 0.5 \cdot erf(db-m2)/(math.sqrt(2) \cdot sig2)) \cdot P(x2)$

True Error from Region 1:

(0.5 - 0.5*erf(db-m1)/(math.sqrt(2)*sig1))*P(x1)

PRIOR VALUES	Error	BHATTA BOUND	ORIGINAL DECISION BOUNDARY	NEW DECISION BOUNDARY	PLOT
Mean 15 Mean 2 .5 Variance 1 1 Variance 2 1 Prior 1 0.5 Prior 2 0.5	0.32	0.44	0.0	-0.14 0.08 0.03 -0.04 0.06 0.03	0.45 0.40 0.35 0.25 0.20 Emperical Error Bhattacharya Bound True Error Rate 0.20 Number of Points
Mean 15 Mean 2 .5 Variance 1 2 Variance 2 2 Prior 1 0.67 Prior 2 0.33	0.40	0.44	1.39	1.39 1.39 1.39 1.39 1.39 1.39	0.44 - 0.42 - 0.40 - 0.38 - 0.36 - Emperical Error Bhattacharya Bound True Error Rate 0 200 400 600 800 1000 Number of Points

Mean 15 Mean 2 .5 Variance 1 2 Variance 2 2 Prior 1 0.5 Prior 2 0.5	0.37	0.47	0.0	-0.01 0.26 -0.54 -0.01 -0.04 -0.05	0.475 0.450 0.425 0.400 0.375 0.350 0.325 0.300 Emperical Error Bhattacharya Bound True Error Rate 0 200 400 600 800 1000 Number of Points
Mean 15 Mean 2 .5 Variance 1 3 Variance 2 1 Prior 1 0.5 Prior 2 0.5	0.35	0.43	-0.24	-1.6 -0.19 -0.85 -0.98 -0.98 -0.92	0.425 - 0.400 - 0.375 - 0.350 - 0.325 - 0.300 - 0.275 - 0.250 - 0.200 400 600 800 1000 Number of Points

Analysis and Inference:

- 1. Class Wise Decorrelation increases the accuracy.
- 2. Changing risk can affect the accuracy crucially.
- 3. Empirical Error is independent of number of features.
- 4. Bhattacharyya bound tends to decrease with increase in number of features.