Статика 1

Всего 18 вопросов и 12 задач (схем). Число вариантов 20. По номеру варианта находим свои 4 вопроса и свои 4 задачи (схемы), к каждой схеме прилагаются 4 варианта исходных данных. После номера схемы точка, далее номер варианта.

№ варианта	Номера вопросов	Схемы и исходные данные
1	2, 11, 15, 18	1.1, 3.2, 9.1. 11.1
2	3, 12, 14, 17	3.1, 4.2, 7.1, 12.1
3	1, 10, 15, 18	1.2, 7.2, 11.1, 10.1
4	4, 9, 10, 15	3.1, 5.1, 7.2, 12.1
5	5, 13, 17, 18	2.1, 5.2, 9.1, 11.3
6	1, 6, 11, 18	2.2, 4.3, 8.2, 12.4
7	2, 7, 13, 17	1.3, 3.3, 6.3, 12.1
8	2, 8, 14, 16	2.3, 4.4, 7.4, 10.1
9	3, 9, 15, 17	3.1, 5.2, 8.1, 11.2
10	4, 12, 13, 18	1.4, 2.4. 9.3, 11.3
11	2, 11, 15, 18	1.1, 3.2, 9.1. 11.1
12	3, 12, 14, 17	3.1, 4.2, 7.1, 12.1
13	1, 10, 15, 18	1.2, 7.2, 11.1, 10.1
14	4, 9, 10, 15	3.1, 5.1, 7.2, 12.1
15	5, 13, 17, 18	2.1, 5.2, 9.1, 11.3
16	1, 6, 11, 18	2.2, 4.3, 8.2, 12.4
17	2, 7, 13, 17	1.3, 3.3, 6.3, 12.1
18	2, 8, 14, 16	2.3, 4.4, 7.4, 10.1
19	3, 9, 15, 17	3.1, 5.2, 8.1, 11.2
20	4, 12, 13, 18	1.4, 2.4. 9.3, 11.3

Список вопросов

- 1. Определение механики как науки. Что такое механическое движение?
- 2. Механическое взаимодействие. Понятие силы.
- 3. Моделирование как основной метод механики. Что такое модель?
- 4. Модели материальной точки (МТ) и абсолютно твердого тела (АТТ). Число степеней свободы МТ и АТТ.
- 5. Определение статики как раздела механики.
- 6. Характеристики силы как векторной величины. Линия действия силы.
- 7. Плоская, пространственная, сходящаяся, параллельная системы сил определения и примеры.
- 8. Распределенные, локальные, сосредоточенные силы определения и примеры.
- 9. Две аксиомы статики.
- 10. Формулировка и доказательство теоремы о перенесении силы вдоль линии действия.
- 11. Способы суммирования сил геометрические и аналитический.
- 12. Определение и примеры связей. Реакции связей направления, определяемые очевидно.
- 13. Проекции силы на плоскость и на ось.
- 14. Определение момента силы относительно центра. Плечо силы.
- 15. Пара сил, момент пары и ее характеристики.
- 16. Теорема о переносе силы в любую точку формулировка и доказательство.
- 17. Приведение системы сил к центру.
- 18. Главный вектор и главный момент системы сил. Когда главный вектор и равнодействующая совпадают?

No	Схема	Условие		Варианты исходных данных				анных
1	B B B C P P	Найти усилия в стержнях АВ, ВС при заданных внешних силах и углах в соответствии со схемой.	No 1 2 3 4	$\begin{array}{c c} \alpha \\ \pi/3 \\ \pi/4 \\ \pi/3 \\ \pi/4 \end{array}$	β π/4 π/6 π/3 π/3	γ π/6 π/4 π/2 π/3	P, H 60 80 100 120	Q, H 100 90 100 120

Составная балка AD (в точке С шарнир) общей длиной 10 м шарнирно опирается на две подвижные опоры В и С и на неподвижную А. В точке Е, в центре балки АС, под углом α приложена сила F H, на участке ВС приложена равномерно распределенная нагрузка интенсивностью р H/м. Вес балки АС равен Р H, вес балки CD равен Q H. Найти реакции опор A, B, D

No	P	Q	α	p	AB	AC
					M	, M
1	100	100	60°	100	6	8
2	200	200	45°	100	5	8
3	200	300	60°	150	4	7
4	200	400	45°	150	4	8

Балка AB веса P находится в равновесии за счет груза R, приложенного к тросу, перекинутому через блок в точке C без трения. В точке B подвешен груз Q. В точке A шарнир.

Найти один из трех весов R, Q, P, не заданный в таблице, для положения равновесия при заданных α, β .

Ī	No	R,	Q,	P,	α,	β,
		кĤ	Q, кН	кН	град 45	град 45
	1	1	1		45	45
	2		2	4	60	30
	3	2		4	30	60
ĺ	4		2	5	60	30