Datos no agrupados	Datos agrupados			Covarianza		
$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} f_i m_i$			$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$		
$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} f_{i}(m_{i} - \bar{x})^{2}$				$r = \frac{S_{xy}}{S_x S_y}$	
$R = X_{(n)} - X_{(1)}$	$\tilde{\chi} = L_i + \frac{\frac{n}{2} - F_{i-1}}{f_i} \cdot a_i$			Probabilidad		
Diagrama de cajas $RIC = Q_3 - Q_1$	$Mo = L_i + \frac{f_{i-f_{i-1}}}{(f_{i-f_{i-1}}) + (f_{i-f_{i+1}})} \cdot a_i$			$P(E) = \frac{n(E)}{n(\Omega)}$ $P(B A) = \frac{P(B \cap A)}{P(A)}$		
$L_{sup} = Q_3 + 1.5RIC$ $L_{inf} = Q_1 - 1.5RIC$	$AC = \frac{X_{(n)} - X_{(1)}}{k}$; AC: Ancho de clase			$P(A) = \sum_{i=1}^{k} P(B_i) P(A B_i)$ $P(B_r A) = \frac{P(B_r) P(A B_r)}{\sum_{i=1}^{k} P(B_i) P(A B_i)}$		
Variables aleatorias						
	≥ 0		Momento con respecto al or		on respecto al origen	
Discretas	Continu	ias	Discreta		Continuas	
	$\int_{-\infty}^{\infty} f(x) dx = 1$ $F(x) = \int_{-\infty}^{x} f(t) dt$		$E(x^r) = \sum_x x^r$	$^{r}f(x)$	$E(x^r) = \int_{-\infty}^{\infty} x^r f(x) dx$	
$\sum_{x} f(x) = 1$			Momento con respecto a la media			
$\sum_{x} f(x) = 1$ $F(x) = \sum_{t \le x} f(t)$			$dt \qquad \qquad \mu_r = \sum_x (X - \mu)^r f(x)$			
			$\mu_r = \sum_{x} (X - \mu)^r f(x)$ $\sigma^2 = E(x^2) - E^2(x) \; ; E(x^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$			
		delos alea	torios discretos			
Distribución Binomial Distribución Geométrica						
	(n)	-x	P(X -		$X \sim G(p)$ $X = x) = p(1 - p)^{x - 1}$	
$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$			E		$V(X) = \frac{1}{p}; V(X) = \frac{1-p}{p^2}$	
	V(X) = np(1 - p)		·			
Distribución Binomial N $X \sim BN(k,p)$	legativa Di		ribución Hipergeométrica $X \sim H(N, n, k)$		Distribución Poisson $X \sim P(\lambda)$	
					$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$	
$P(X = x) = {x - 1 \choose k - 1} p^{k} (1 - p)^{x - k}$		P(X = 1)	$P(X = x) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$, a.:	
$E(X) = \frac{k}{p} \; ; \; V(X) = \frac{k(1-p)}{p^2}$ $E(X) = \frac{k(X)}{p} = k$		$=\frac{nk}{N}$; $V($	$=\frac{nk}{N}$; $V(X) = \frac{N-n}{N-1} (\frac{nk}{N}) (1 - \frac{k}{N})$		$E(X) = \lambda \; ; \; V(X) = \lambda$	
	Mod	delos alea	torios continuo	S	1	
Distribución Uniforme					ibución normal estándar	
$X \sim U(a,b)$			$X \sim N(\mu, \sigma)$		$X \sim N(0,1)$	
$f(x) = \frac{1}{b-a}; a \le X \le b$ $E(X) = \frac{a+b}{2}; V(X) = \frac{(b-a)^2}{12}$		f(x) =	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ $Z = \frac{x - \mu}{\sigma}$; estandarización	
		D:	Distribución		Distribución Chi Cuadrado	
Distribución Gamma $X \sim G(\alpha, \beta)$			Exponencial			
$1 \qquad \frac{x}{2}$			$X \sim E(\beta)$		$X \sim G\left(\alpha = \frac{v}{2}, \beta = 2\right)$	

$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}$ $E(X) = \alpha \beta ; V(X) = \alpha \beta^{2}$ $\Gamma(n) = (n - 1)! ; \Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ $X \sim E(\beta)$ $f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}}$ $E(X) = \beta^{2}$ $E(X) = \beta ; V(X) = \beta^{2}$ $E(X) = \beta^{2}$ E(X) = v ; V(X) = 2v $E(X) = v \; ; \; V(X) = 2v$ Distribución Beta

Función Beta
$$F(\alpha, \beta) = \int_{0}^{\infty} t^{\alpha - 1} (1 - t)^{\beta - 1} dt = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

$$f(x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

$$E(X) = \frac{\alpha}{\alpha + \beta} \qquad V(X) = \frac{\alpha\beta}{(\alpha + \beta)^{2}(\alpha + \beta + 1)}$$

Distribuciones Conjuntas					
Condicionales	Marginales	Esperanza conjunta			
$f(y x) = \frac{f(x,y)}{f(x)}$	$f(x) = \sum_{y} f(x, y) \qquad f(y) = \sum_{x} f(x, y)$	$E(xy) = \sum_{x} \sum_{y} xyf(x,y)$			
	$f(x) = \int_{y} f(x, y)dy$ $f(y) = \int_{x} f(x, y)dx$	$E(xy) = \int_{y} \int_{x} xyf(x,y) dxdy$			
$f(x y) = \frac{f(x,y)}{f(y)}$	Independencia	Esperanza condicionada			
, 0)	f(x,y) = f(x)f(y)	$E(X Y=y) = \sum x f(x y)$			
Correlación	Covarianza	$\frac{2}{x}$			
$\rho_{x,y} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$	$Cov(X,Y) = \sigma_{xy} = E(XY) - E(X)E(Y)$	$E(X Y=y) = \int_{x} xf(x y)dx$			

Estimaciones (Intervalos de confianza)					
Media (n > 30)	Media (n < 30)	Proporción	Varianza		
$\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}$	$\bar{X} \pm \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}$	$\hat{p} \pm \sqrt{\frac{\hat{p}\hat{q}}{n}} Z_{\frac{\alpha}{2}}$	$\frac{(n-1)s^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}$		

	Prueba de hipótesis			
Una sola media	Dos medias			
$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \qquad t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$ Pruebas pareadas $t = \frac{\overline{d} - d_0}{s_d / \sqrt{n}}$	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}} \qquad Z = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sigma\sqrt{(1/n_1) + (1/n_2)}}$			
Una proporción $Z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0/n}} = \frac{X - np_0}{\sqrt{np_0 q_0}}$	$t = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{S_p \sqrt{(1/n_1) + (1/n_2)}} \qquad S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$			
Dos proporciones $Z = \frac{(\hat{p}_1 - \hat{p}_2) - d_0}{\sqrt{\binom{p_1 q_1}{n_1} + \binom{p_2 q_2}{n_2}}}$ Igualdad de varianzas $F = s_1^2/s_2^2$	$t' = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sqrt{\binom{s_1^2}{n_1} + \binom{s_2^2}{n_2}}} \qquad v = \frac{\binom{s_1^2}{n_1} + \frac{s_2^2}{n_2}}{\frac{\binom{s_1^2}{n_1}}{n_1 - 1} + \frac{\binom{s_2^2}{n_2}}{n_2 - 1}}$			

Pruebas Ji-Cuadrado				
Independencia	$e_{ij} = \frac{r_{i} \cdot c_{j}}{n}$ $\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$ $\nu = (r-1)(c-1)$			
Bondad de ajuste	$e_i = n * p_i$ $\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$ $\nu = (k-1)$			
Kolmogorov	$Smirnov D = max F_n(x) - F_0(x) $			

$$b_1 = \frac{n\sum_{i=1}^n x_i \, y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$b_0 = \frac{\sum_{i=1}^n y_i - b_1 \sum_{i=1}^n x_i}{n} = \bar{y} - b_1 \bar{x}$$