Active Learning for Phenotyping Tasks

Dmitriy Dligach, Timothy A. Miller, and Guergana Savova

Boston Children's Hosptial and Harvard Medical School

June 21, 2016

Introduction

- Phenotyping
 - What's a phenotype?
 - i2b2 and eMERGE
 - Link EHRs to biobanks for genetic analysis
 - Supervised learning for phenotyping
- Manual annotation needed
 - Standard approach: passive learning
 - Alternative: active learning

Active Learning

- Approach for selecting data for annotation
- Data selection delegated to classifier
- Pool-based scenario
 - Lots of unlabeled data
 - Can afford to annotate only a small amount
- Little work in clinical domain

Intuition

Suppose there's a little bit of labeled data

- Classify example \vec{x}
 - $p(c_1|\vec{x}) = 0.95$ and $p(c_2|\vec{x}) = 0.05$
 - $p(c_1|\vec{x}) = 0.55$ and $p(c_2|\vec{x}) = 0.45$
- Margin Sampling
 - $PredictionMargin = |P(c_1|\vec{x}) P(c_2|\vec{x})|$
 - Annotate examples with smallest margin first

How does active learning work?

- Seed classifier
 - Annotate a small amount of data
 - Train a classifier
- Iterative process
 - Apply the classifier to the pool of unlabeled data
 - Select an example and add it to the training set
 - Retrain the classifier
 - · Check if we are done
- The learner quickly converges on the decision boundary

Data Representation

- Unit of classification
 - Single patient
- Patient representation
 - Set of CUIs extracted with cTAKES
 - Abstract from lexical variability of medical terminology
 - Filter out non-clinical vocabulary
- Phenotype-specific dictionaries
- Patient vector \vec{x}
 - Element x_n is frequency of CUI_n

Naive Bayes

- Need to evaluate $p(c_i|\vec{x})$
- Multinomial Naive Bayes
 - Probabilistic classifier
 - Supports multi-class classification
 - Training and classification speed
- Uncertainty sampling:

$$prediction margin = |p(c_1|\vec{x}) - p(c_2|\vec{x})|$$
 (1)

Counts

Compute posterior probability as follows:

$$p(c_i|\vec{x}) = \frac{1}{Z}p(c_i)\prod_{n=1}^{N}p(CUI_n|c_i)^{x_n}$$
 (2)

 $p(c_i)$ - prior probability of class c_i

N is the number of CUIs in the phenotype-specific dictionary

 CUI_n is the n_{th} CUI in that dictionary

 x_n is the frequency of CUI_n in \vec{x}

Z (evidence) is the scaling factor

Determine $p(c_i)$ and $p(CUI_n|c_i)$ via maximum likelihood estimation

Dataset creation

- Created within the i2b2 initiative
- ICD-9 codes used to form initial cohort
- About 600 patients selected randomly
- Labeled by domain experts

Dataset stats

Phenotype	Total Instances	Number of Classes	Proportion of Predominant Class
Ulcerative Colitis	600	2	0.630
Crohn's Disease	600	2	0.665
Multiple Sclerosis	595	5	0.395
Type II Diabetes	600	3	0.583

Evaluation

- Learning curve generation
 - Done in the style of 10-fold cross validation
- Within each fold:
 - Training data
 - Pool of "unlabeled" examples
 - Held-out test set
- Various seed sizes
 - Affect of seed size and performance
 - Only showing the plots for seed size = 30
 - See the paper for other sizes
- Gold labels in the pool hidden from classifier

Learning Curves

Ulcerative Colitis, Crohn's Disease, Multiple Sclerosis, Type II Diabetes

Close-up

Ulcerative Colitis

Sample plot

- Active Learning above passive
- Only need 1/3 of the data
- Best performance higher

Ulcerative Colitis

Difference between areas under the curve (Active - Passive)

Seed Size	Ulcerative Colitis	Crohn's Disease	Multiple Sclerosis	Type II Diabetes
10	6.90	4.17	10.50	11.05
30	6.64	2.21	15.43	7.49
50	8.63	1.75	8.61	8.90

Conclusion

- Annotation effort reduced by 2/3
- Active learning sometimes reaches better accuracy
- Need to know when to stop
- What happens if the base classifier is swapped?

Questions?