Mathematik I für Studierende der Informatik (Diskrete Mathematik)

Steven Köhler

Wintersemester 2011/12 Aufgaben zur Vorbereitung der Bonusklausur am 14.01.2012

1. Es sei R die folgende auf der Menge $A = \{a, b, c, d\}$ definierte Relation:

$$R = \Big\{(a,a), (a,b), (b,b), (c,c), (d,a), (b,a), (a,d), (d,d)\Big\}.$$

- a) Entscheide, welche der folgenden Eigenschaften auf die Relation zutreffen. Gib jeweils eine kurze Begründung.
 - (i) symmetrisch
 - (ii) antisymmetrisch
 - (iii) reflexiv
 - (iv) irreflexiv
 - (v) transitiv
- b) Ist R eine Ordnungs- oder eine Äquivalenzrelation?
- **2.** Es sei $A = \{1, 2, 3\}$.
 - a) Gib eine Relation R_a über der Menge A an, die reflexiv, aber nicht transitiv ist.
 - b) Gib eine Relation R_b über der Menge A an, die symmetrisch und transitiv ist.
 - c) Gib eine Relation R_c über der Menge A an, die irreflexiv und nicht symmetrisch ist. Dabei soll $|R_c| \ge 5$ gelten.
 - d) Gib eine Relation R_d über der Menge A an, die weder Ordnungs- noch Äquivalenzrelation ist. Dabei soll $|R_d| \leq 3$ gelten.
- **3.** Es seien $A = \{1, 2, 3\}$ und $B = \{a, b, c, d\}$ zwei Mengen.
 - a) Wie viele binäre Relationen R_a über der Menge A gibt es?
 - b) Wie viele ternäre Relationen R_b über A, B, A gibt es?
 - c) Wie viele der Relationen aus a) sind reflexiv?
- 4. Gegeben seien die folgenden Matrizen:

$$A = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -2 & -3 \\ 0 & 1 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad \text{und} \quad D = \begin{bmatrix} 3 & 5 \end{bmatrix}.$$

- a) Gib an, welche dieser Matrizen miteinander multipliziert werden können (Das Berechnen der Produkte ist nicht Teil dieser Aufgabe.)
- b) Berechne, falls existent, die folgenden Produkte: AB, BA^T , CD und DC.
- c) Welche Voraussetzungen müssen zwei Matrizen erfüllen, damit deren Produkt existiert?
- 5. a) Zeige, dass die Multiplikation von 2×2 Matrizen im Allgemeinen nicht kommutativ ist.
 - b) Gib 3 Fälle an, in denen die in a) beschriebene Multiplikation dennoch kommutativ ist.
- **6.** Für beliebige Mengen A und B sei $f: A \to B$ eine Funktion. Es gelte $A_1, A_2 \subseteq A$ sowie $B_1, B_2 \subseteq B$. Zeige, dass die folgende Aussage gilt:

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2).$$

- 7. Bestimme, falls möglich, das multiplikative Inverse. Gib im Falle der Nicht-Existenz eine (kurze) Begründung weshalb das Inverse nicht existiert.
 - a) 42 in \mathbb{Z}_{149}
 - b) 51 in \mathbb{Z}_{93}
 - c) 22 in \mathbb{Z}_{23}
- 8. a) Bestimme den Rest von 3⁹⁶⁶ bei Division durch 19.
 - b) Bestimme den Rest von 4¹⁴⁸ bei Division durch 21.
- **9.** Eine Permutation $\pi \in S_9$ sei wie folgt definiert:

$$\pi = \left(\begin{array}{ccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 2 & 5 & 7 & 4 & 6 & 9 & 8 \end{array}\right)$$

- a) Gib π in Zyklenschreibweise an.
- b) Gib π als Nacheinanderausführung von Transpositionen an.
- c) Ist π eine gerade oder eine ungerade Permutation?
- d) Bestimme sign π .
- e) Entscheide, ob durch die folgende Permutation $\rho \in S_9$ dieselbe Permutation beschrieben wie durch π :

$$\rho = (1, 2)(2, 3)(1, 3)(2, 4)(9, 8)(5, 6)(1, 2)(7, 6)(2, 1)(4, 5)(8, 3)(3, 9)(9, 8).$$

- 10. Beweise durch vollständige Induktion, dass der Hyperwürfel Q_n für jedes $n \in \mathbb{N}$ mit $n \geq 2$ einen Hamiltonkreis besitzt.
- 11. Es sei $n \in \mathbb{N}$ mit $n \geq 2$. Der ungerichtete Graph H bestehe aus zwei Zusammenhangskomponenten H_1 und H_2 . Der Teilgraph H_1 sei ein vollständiger Graph mit n Knoten, der Teilgraph H_2 sei ein Baum mit insgesamt 2n Knoten. Der Graph G entsteht aus H dadurch, dass man weitere Kanten wie folgt zu H hinzufügt: Man verbindet jeden Knoten von H_1 mit jedem Knoten von H_2 durch eine Kante
 - a) Wie viele Kanten besitzt der Graph G?
 - b) Besitzt der Graph G einen Hamiltonkreis? Falls ja, so ist eine Konstruktionsvorschrift für einen Hamiltonkreis anzugeben. Falls nein, wieso nicht?
 - c) Begründe, weshalb der Graph G im Allgemeinen keine Eulersche Linie besitzt.
- 12. G sei ein ungerichteter Graph mit 100 Knoten. Dabei besitzen 15 Knoten den Grad 1, 5 Knoten besitzen Grad 2, 55 Knoten besitzen Grad 5; die restlichen Knoten besitzen Grad 8. Wie viele Kanten besitzt der Graph G?
- 13. Wahr oder falsch?
 - (i) Jeder vollständige Graph besitzt einen Hamiltonkreis.
 - (ii) Die Summe aller Knotengrade ist stets gerade.
 - (iii) Ein existiert kein ungerichteter Graph mit n Knoten und n^2 Kanten.
 - (iv) Das "Haus des Nikolaus" besitzt eine Eulersche Linie.
 - (v) Es sei G = (V, E). Gilt $c(G A) \le |A|$ für alle Teilmengen $A \subseteq V$, so besitzt der Graph G einen Hamiltonkreis.