Gaussian Basis Sets

Gaussian Primitives (use because integrals with rⁿ are well known closed form functions)

$$g_S(\alpha,r) = \left(\frac{2\alpha}{\pi}\right)^{\!\!3/4} \ e^{-\alpha} r^2 \qquad \qquad g_X(\alpha,r) = \left(\frac{128\alpha^5}{\pi^3}\right)^{\!\!1/4} \ x \ e^{-\alpha} r^2$$

Atomic Orbitals (linear combination of Gaussian Primitives)

$$\phi_{\mu} = \sum_{i=1}^{n} d_{\mu i} g_{i}(\alpha, r)$$

3-21G basis set: core 1s orbital is sum of 3 gaussians valence shell 2s and 2p orbitals are split into two parts: inner part is sum of 2 gaussians outer part is 1 gaussian

Lithium 3-21G basis set as listed in Gaussian94.

DICHIUM 3-ZIG	Dasis set as	TIPCE	u III Gaussianiji.
<u>αi</u>	\underline{d}_{si}		$\underline{d_{xi}}$
S 3 1.00			
0.3683820000D+0	2 0.696686000)0D-01	
0.5481720000D+0	1 0.381346000)0D+00	
0.1113270000D+0	1 0.681702000)0D+00	
SP 2 1.00			
0.5402050000D+0			0.1615460000D+00
0.1022550000D+0	0 0.114339000)0D+01	0.915663000D+00
SP 1 1.00	1 0 10000000	0.00	0 100000000000000001
0.2856450000D-0	1 0.100000000	10D+0T	0.100000000D+01
Ψ_{1s}			
10			
$= 0.0697 g_{S}(36.8,r)$	+ 0.381 g	$g_{S}(5.48,r)$	$+ 0.682 g_{S}(1.11,$
$(2.36.8)^{3}/4$	$36.8r^2 + 0.301(2)$	$\cdot 5.48 \sqrt{3}/4$	$e^{-5.48r^2} + 0.682 \left(\frac{2 \cdot 1.11}{\pi}\right)^{3/4}$
$= 0.069/(-\pi)$	$3^{-30.01^{-}} + 0.381$	π	$e^{-3.481^{-}}+0.682(\frac{\pi}{\pi})$
$\Psi_{2s}(inner) = -0.263 \text{ g}$	$t_0(0.540 \text{ r}) \pm 1.14$	$\sigma_a(0.102)$	r)
_~ , ,	,	O ~ (,
$\Psi_{2s}(\text{outer}) = 1.00 \text{ g}_{S}(\text{outer})$	0.0286 , r)	$\Psi_{2s} = a^{4}$	$\Psi_{2s}(inner) + b\Psi_{2s}(outer)$
$\Psi_{2px}(inner) = 0.162 g$	$r_{rr}(0.540 \text{ r}) \pm 0.016$	ς σ (0 10′) r)
1		, gX(0.102	-,1 <i>)</i>
$\Psi_{2px}(outer) = 1.00 g_X$	(0.0286,r)		
E(Li, 3-21G) = -200.7	78 eV	E(exp.)	$=-IP_1 - IP_2 - IP_3 = -202$

6-311G basis set: core 1s orbital is sum of 6 gaussians

valence shell 2s and 2p orbitals are split into three parts:

contracted part is sum of 3 gaussians more diffuse part is 1 gaussian most diffuse part is 1 gaussian

Lithium 6-311G basis set as listed in Gaussian94.

α <u>i</u>	\underline{d}_{si}	$\underline{d}_{\mathrm{xi}}$
S 6 1.00		
0.9004600000D+03	0.228704000D-02	
0.1344330000D+03	0.176350000D-01	
0.3043650000D+02	0.8734340000D-01	
0.8626390000D+01	0.2809770000D+00	
0.2483320000D+01	0.6587410000D+00	
0.3031790000D+00	0.1187120000D+00	
SP 3 1.00		
0.486890000D+01	0.9332930000D-01	0.3276610000D-01
0.8569240000D+00	0.9430450000D+00	0.1597920000D+00
0.2432270000D+00	-0.279827000D-02	0.8856670000D+00
SP 1 1.00		
0.635070000D-01	0.1000000000D+01	0.100000000D+01
SP 1 1.00		
0.243683000D-01	0.100000000D+01	0.100000000D+01

$$E(Li,6-311G)=-202.15eV$$

$$E(exp.)=-IP_1 - IP_2 - IP_3 = -202.42eV$$

Carbon 3-21G basis set as listed in Gaussian94.

<u>αi</u>	\underline{d}_{si}	d_{xi}
C		
S 3 1.00		
0.1722560000D+03	0.6176690000D-01	
0.2591090000D+02	0.3587940000D+00	
0.5533350000D+01	0.7007130000D+00	
SP 2 1.00		
0.3664980000D+01	-0.3958970000D+00	0.2364600000D+00
0.7705450000D+00	0.1215840000D+01	0.8606190000D+00
SP 1 1.00		
0.1958570000D+00	0.100000000D+01	0.100000000D+01