Análisis de señales Transformada de Fourier de tiempo continuo

Escuela de Ciencias exactas e Ingeniería Código: SA2020II TTQ12

Profesor: Marco Teran **G01 -** 1 de diciembre de 2020 Name: G02 - 1 de diciembre de 2020

1 Transformada de Fourier de tiempo continuo

- 1. Encontrar la transformada de Fourier de tiempo continuo (CTFT) para cada una de las siguientes señales, dibujar la magnitud de la CTFT de los ejercicios pares:
 - (a) $x(t) = 3\cos^2(60\pi t)$
- (f) $\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$ (l) $x(t) = 2\cos(2\pi t + 4\pi)\left[u(t) u(t-1)\right]$
- (b) $x(t) = 2 \frac{\sin(2\pi t)}{\pi t}$

- (c) $x(t) = \begin{cases} 1, & \text{si } |t| \leq 2\\ 0, & |t| > 2 \end{cases}$
- (f) $\operatorname{sgn}(t) = \{-1, t < 0\}$ (g) $x(t) = \delta(t t_0)$ (h) $x(t) = u(t t_0)$ (i) $x(t) = -e^{-6t}u(t)$ (n) $x(t) = e^{-\alpha t}\cos(\omega_0 t)u(t)$, donde a > 0
- (d) $x(t) = e^{-\frac{\sqrt{3}}{2}|t|} u(t)$
- (e) $x(t) = \frac{1}{0 + t^2}$
- (k) $x(t) = e^{-3t}u(t) + e^{3t}u(-t)$ (o) $x(t) = 2\cos^2(t)$
- 2. Si $x(t) = X(\omega)$, determine la transformada de Fourier de
 - (a) x(1-t)
- (b) $\frac{\mathrm{d}x(t)}{\mathrm{d}t}\cos t$ (c) $x\left(\frac{t}{2}-2\right)$
- (d) $\frac{d[x(-2t)]}{dt}$
- 3. Mediante las diversas propiedades de la transformada de Fourier de tiempo continuo (CTFT), encuentre la transformada de Fourier de las siguientes señales de la transformada original de u(t):
 - (a) $x(t) = \delta(at)$. (Entienda la función $\delta(t)$ y su (d) $x(t) = te^{-at}u(t)$. relación con la derivada de u(t))
- - (e) $x(t) = e^{-5\pi t} \cos(\omega_0 t) u(t)$.

(b) x(t) = 3tu(t).

(c) $x(t) = -e^{-6t}u(t)$.

- (f) $x(t) = (e^{-t}\cos(2t) 5e^{-3t})u(t) + \frac{1}{2}e^{-j2t}u(-t).$
- 4. Determine la transformada de Fourier de la señal

$$x(t) = e^{-t}u(t) * e^{-2t}u(t)$$

5. Consideremos la señal Campana de Cauchy dada por

$$x(t) = \frac{1}{1+t^2}$$

(a) Encuentre la transformada de Fourier de x(t).

Tenga en cuenta que
$$\int \frac{\mathrm{d}x}{a^2 + b^2x} = \frac{1}{ab} \operatorname{atan}\left(\frac{bx}{a}\right)$$

6. Obtenga la transformada de Fourier de la secuencia de impulsos de peso unitario, que se ilustra en la figura.

7. Considere el sistema que se ilustra en la siguiente Figura

- El sistema A tiene relación entrada salida $x_2(t) = \frac{1}{2}x_1(\frac{t}{2})$.
- El sistema B es lineal e invariante con respuesta impulso h(t).
- (a) Determine la transformada de Fourier de $x_1(t), x_2(t)$ y $x_3(t)$ en función de $X(\omega)$.
- (b) Si la señal de entrada tiene la transformada de Fourier $X(\omega)$ que se presenta en la Figura, dibuje las transformadas de $x_1(t)$, $x_2(t)$ y $x_3(t)$.

2 Transformada inversa de Fourier de tiempo continuo

1. Encontrar y dibujar la transformada inversa de Fourier (IFT) para cada una de las siguientes señales

(a)
$$X(\omega) = \frac{1}{(1+j\omega)^2}$$
 (b) $X(\omega) = 1 - e^{-2|\omega|}$ (c) $X(\omega) = \omega \sin^2(2\omega)$ (d) $X(\omega) = \frac{1}{1-\omega^2+j3\omega}$

 ${f 2.}$ Resuelva la ${f (FT)}$ o la ${f (IFT)}$ (dependiendo del caso) aplicando solo propiedades de la ${f (FT)}$.

(a)
$$x(t) = \sin(\pi t) e^{-2t} u(t)$$

(b) $x(t) = e^{|3t-2|}$
(c) $x(t) = \left[\frac{2\sin(\pi t)}{\pi t}\right] \left[\frac{\sin(2\pi t)}{\pi t}\right]$
(d) $X(\omega) = \frac{2\sin(\omega)}{\omega(j\omega+1)}$
(e) $X(\omega) = \frac{1}{j\omega(j\omega+1)} + 2\pi\delta(\omega)$
(f) $X(\omega) = \frac{j\omega}{(j\omega+2)^2}$

3. Determina la señal $\boldsymbol{x}(t)$ cuya transformada de Fourier se ilustra en la figura.

