

Проектирование и реализация расчётного модуля для системы автоматического формирования генеральных планов площадных объектов капитального строительства

Степанов Сергей

Научный руководитель: Пантенков С.А.

Санкт-Петербург, 19 мая 2022 г.

Введение

Рисунок: Пример генерального плана площадного объекта

Введение 2/26

Цель работы

Упрощение процесса проведения научных изысканий в области автоматического формирования генеральных планов площадных объектов путём создания программного компонента.

Постановка задачи 3/26

Задачи

- 1. сбор и анализ требований пользователей системы,
- 2. анализ возможной нагрузки и вариативности используемых данных,
- 3. формирование системной и программной архитектуры,
- 4. реализация полученного решения.

Постановка задачи 4/26

Варианты использования

Рисунок: Диаграмма вариантов использования

Бизнес-процессы

Предметная область задачи

Входные данные

- допустимая для строительства область на карте;
- стоимостная модель расчета стоимости инженерной подготовки;
- перечень сооружений;
- параметры коммуникаций между сооружениями проектируемого объекта;
- параметры цифровой модели рельефа;

Выходные данные

- фигура площадного объекта;
- местоположения сооружений;
- схема технологических эстакад минимальной длины;
- схема внутриплощадочных проездов;
- стоимость инженерной подготовки;
- зоны распространения теплового потока;
- зоны распространения взрывной волны;

Функциональные требования

- 1. Возможность расчёта генерального плана площадного объекта в автоматическом режиме.
- 2. Расчёт генплана должен представлять последовательность этапов.
- 3. Результат каждого этапа расчёта должен быть сохранён в долговременное хранилище.
- 4. Возможность продолжить расчёт с последнего успешно завершенного этапа.
- 5. Возможность сравнения одинаковых расчётных объектов, полученных путем применения различных методик.
- 6. Возможность загрузки данных, полученных от технических экспертов, в расчётный модуль.
- 7. Возможность загрузки результатов экспериментов, а также информации об особенностях проведения экспериментов в расчётный модуль.

Нефункциональные требования

- 1. Проведение исследований на вычислительном сервере с операционной системой Ubuntu 20.04 LTS.
- 2. Осуществление вызова алгоритмически сложной части системы в отдельном процессе.
- 3. Разработанные алгоритмы должны быть оформлены в отдельную библиотеку, имеющей версионирование.
- 4. Обеспечение высокой скорости добавления алгоритмических методик в проект.
- 5. Обеспечение высокого уровня гибкости системы.

Технологический стек

- Операционная система *Ubuntu 20.04 LTS*
- Язык программирования *Python 3.8.12*
- База данных PostgreSQL 12 с расширением PostGIS 3.1
- Веб-сервер *nginx*
- Автоматическое развертывание Gitlab-Cl
- Контейнеризация Docker и docker-compose
- Документация OpenAPI и LaTex
- Система сборки логов *ELK*
- Протоколы взаимодействия REST API over HTTP
- Формат данных JSON

Общий вид системы

Компоненты расчётной части системы

Сервис запуска математических методов

Компонент запуска математических методов

Хранилище расчётных данных

Сервис запуска расчётных задач

Компонент запуска расчётных задач

Диаграмма последовательности запуска расчётных задач

Математическая библиотека

Расчётная модель данных

Математическая библиотека

Разработка 21/26

Математическая библиотека

Разработка 22/26

Расчётная модель данных

Разработка 23/26

Интерфейс системы

Результаты 24/26

Результаты

- собраны и проанализированы требования пользователей;
- сформированы функциональные и нефункциональные требования к программному компоненту;
- спроектирована системная и программная архитектура расчётного модуля;
- реализован расчётный модуль, состоящий из пяти программных компонент:
 - 1. математическая библиотека,
 - 2. расчётная модель данных,
 - 3. сервис запуска расчётных задач,
 - 4. сервис хранения расчётных данных,
 - 5. сервис запуска математических методов.

Результаты 25/26

Спасибо за внимание!

IT;MOre than a UNIVERSITY