Санкт-Петербургский Государственный Политехнический Университет Институт компьютерных наук и технологий Высшая школа программной инженерии

Самостоятельная работа №3

по дисциплине «Модальные логики и многоагентные системы»

Выполнила студент гр. 3530202/90202

Потапова А.М.

Преподаватель Карпов Ю.Г.

Санкт-Петербург 2021

Содержание

Постановка задачи	3
Синхронная схема	4
Конечный автомат, структура Крипке и автомат Бюхе	5
Требование	6
Композиция полученных автоматов Бюхи	7
Ошибочная траектория	8
Измененная схема	8
Вывод	9

Постановка задачи

- 1. Построить синхронную схему М с двумя входами, двумя выходами и двумя-тремя элементами памяти.
- 2. По схеме М построить конечный автомат, по нему структуру Крипке и автомат Бюхи.
- 3. Сформулировать для схемы какое-либо требование относительно входов и выходов (словестно и как формулу логики LTL). Проверить схему на тестах.
- 4. Для формулы -ф получить автомат Бюхи на сайте.
- 5. Вручную построить синхронную композицию В_м⊗В_{¬Ф} и по ней найти контрпример: последовательность состояний системы, приводящую к ошибочной выходной траектории поведению, не удовлетворяющему Ф.
- 6. По контрпримеру построить такую цепочку входных сигналов системы, которая приводит к некорректному поведению.
- 7. Изменить схему таким образом, чтобы требование Ф выполнялось на всех ее выходных траекториях.

Синхронная схема

$$F1 = x \Rightarrow (y \oplus x)$$

$$F2 = x \land (y \Rightarrow x)$$

Z	X	Y	F1	F2
0	0	0	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	1
1	1	1	0	1

Конечный автомат, структура Крипке и автомат Бюхе

Теперь по полученной таблице и схеме строим конечный автомат:

Поскольку нет перехода во вторую часть автомата, мы можем ее отбросить.

По полученному КА строим структуру Крипке:

По полученному КА строим автомат Бюхи:

Требование

- 1. Когда-то в будущем истинно Z или U : $\Phi = F[Z \lor U]$
- 2. Когда-то в будущем ложно Z и U : $\neg \Phi = \neg F([Z \lor U]) = \neg F[\neg Z \land \neg U] = G[\neg Z \land \neg U]$

Вторая формула представляет собой ошибочное поведение, ее автомат Бюхе, построенный с помощью сайта выглядит следующим образом:

Композиция полученных автоматов Бюхи

 $B_{\neg\Phi}$

 $B_M \otimes B_{-\Phi}$

Ошибочная траектория

Ошибочная траектория: $\{\}, \{\}, \{\}, \dots$

Так как в таком случае навсегда зациклится начальное состояние и поставленное условие никогда не будет выполнено.

Измененная схема

Для того, чтобы исключить найденную ошибочную траекторию уберем зацикливание на начальном состоянии.

Теперь при любом входе система перейдет в следующее состояние, независимо от того z=0 или z=1 формула будет выполняться.

Вывод

В ходе выполнения этой самостоятельной работы была построена синхронная схема M с двумя входами, двумя выходами и двумя элементами памяти. По схеме был построен конечный автомат, по нему структура Крипке и автомат Бюхи. Для схемы было сформулировано требование для выходов: словесно и как формула логики LTL. Для отрицания требования - формулы $\partial \Phi$, был получен автомат Бюхи $B \partial_{\Phi}$ на предоставленном сайте. Была построена синхронная композиция автоматов Бюхи и по ней найден контрпример: последовательность состояний системы, приводящую к ошибочной выходной траектории — поведению. По контрпримеру была построена цепочка входных сигналов схемы, которая приводит к некорректному поведению. Схема изменена таким образом, чтобы требование Φ выполнялось на всех ее выходных траекториях — убран цикл, дающий возможность не возвращаться в начальное состояние, таким образом при любых входных данных будет осуществлен переход. Таким образом, я научилась производить верификацию дискретной схемы.