Tag suggestion system using multi-label text categorization

A report submitted for the J component of

Submitted By

Abhiram Sreekantham - 19BCE2294

NATURAL LANGUAGE PROCESSING (CSE4022)

Slot - B2

Project Guide

Prof. Rajeshkannan R

School of Computer Science and Engineering

BACHELOR OF TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Fall Semester, 2021–2022

1. Abstract

Text analysis is a relatively recent field of study. Marketing, product management, academia, and governance are among the domains where the process of analysing and extracting information from textual data is already in use. Text classification or text categorization is the process of assigning appropriate categories to natural language documents from a pre-defined set. In layman's terms, text categorization is the process of extracting generic tags from unstructured textual material. A list of pre-defined groups is used to generate all generic tags. If you organize your content and things into categories, users will find it easier to discover and navigate your website or application.

In this project, we'll be working on a text classification model that analyses a question's textual description and predicts multiple labels for it. We'll develop a multilabel text classification approach for a tag recommendation system using Multi-Label Text Classification, which is a subset of multiple output models.

2. Introduction

Text analysis is a new topic of research in general. The method of evaluating and extracting information from textual data is already being used in fields including marketing, product management, academia, and governance. The action of classifying natural language documents with applicable categories from a pre-set collection is known as text classification or text categorization. Text categorization, in layman's terms, is the technique of obtaining generalized tags from unstructured textual data. All generic tags are drawn from a list of pre-defined groups. Users will find it easier to explore and browse your website or application if you organise your information and items into categories.

One sample can belong to many classes in Multi-Label Text Classification (MLTC). Most MLTC tasks have dependencies or correlations among labels, as observed. Existing techniques frequently overlook the link between labels.

We'll utilise the dataset "StackSample:10% of Stack Overflow Q&A." It's a multilabel text classification algorithm's issue statement. We'll be working on a text classification model which looks at a textual description of a question and predicts numerous labels for it. We'll use Multi-Label Text Classification to create a multilabel text classification method for a tag recommendation system, which is a subset of multiple output models. The text data undergoes text pre-processing, and the cleaned data is loaded for text classification. We'll use text Vectorization on the data, MultilabelBinarizer to encode the tag labels, and Classical classifiers like SGC, MultiNomial Naive Bayes Classifier, Random Forest Classifier, and others to model and compare the results.

Classification is a sort of supervised learning in machine learning. A classification issue is a predictive modelling problem in which a class label for a given input sample is anticipated. It identifies the data point's class and is most useful when the output has both finite and discrete values.

There are four different forms of categorisation:

- → Binary classification
- → Multiclass classification
- → MultiLabel classification
- → Imbalanced classification

When we apply multi-label text classification, such as Keras multi-label text classification, we may improve the algorithm's accuracy. With XLNET and GPT-2 and GPT-3, you can also employ multi-label text categorization.

3. Literature review

Authors and		Concept /	Methodology	D. I.
year	Title	Theoretical	used/	Relevant
Jean	(Study)	model/	Implementation	Finding
		Framework	Implementation	
Guibin Chen1,	Ensemble	Multi-label text categorization	Our approach consists of two	Many algorithms have
Deheng Ye1,	Application of	refers to the task of assigning	parts: the CNN part for extracting	been proposed for
Zhenchang Xing2,	Convolutional	one or multiple categories (or	text features and the RNN part	representing the
Jieshan Chen3, Erik	and Recurrent	labels) to a textual document,	for multi-label prediction. CNN is	features of text.
Cambria. (2017)	Neural	Multi-label text categorization	used to extract a global fix-length	Previous works use
	Networks for	can generally be divided into	feature vector for the input text.	either tf-idf weighting or
	Multi-label Text	two sub-tasks: text feature	Then, with these feature vectors,	n-gram information for
	Categorization	extraction and multi-label	the "initial state" or prior	the whole document or
		classification.	knowledge of the RNN is	local sequence of words.
		A. Text features Instead of	determined and used to predict a	recent developments in
		representing the whole text in	sequence of labels.	multi-label classification
		one step, e.g., tf-idf weighting		algorithms fall into two
		for a document, most recent	performed. The first training step	_
		works focus on the	,	problem adaption and
		distributional representation of	· ·	algorithm adaption.
		individual words, which is	•	Problem adaption is
		nevertheless pre-processed and		about transforming
		tokenized from the original raw		multi-label classification
		text data.	• , ,	into a simpler problem.
			CNN-RNN model. Using the	
		B. Multi-label classification	softmax classifier as the upper	For algorithm
		Since text features can be well	lover of LCTM for labels	adaptation popular
		represented as a feature vector,		classification algorithms,
		the next step is to do maiti-laber	is then back-propagated from	e.g.,
		classification for sacificatales.	RNN down to CNN to update the	k-nearest-neighbors,
		Each input instance is a high	weights of both the CNN-RNN	decision trees, support
		dimensional feature vector X ∈	model. One state-of-the art	vector machines, to
		Rm, which is assigned to a	update policy Adam is chosen	solve multi-label
		subset y of the label space Y	instead of stochastic gradient	classification problems.
		with L possible labels. The task	decent (SGD) for faster	
		is to learn a function from the	convergence. Besides, for	
		training data.	regularization, we apply	
			12-constraints over all weights in	
			CNN and RNN and use dropout	
			with rate 0.5 in CNN.	

Angel Fiallos,Karina	Using Reddit	1) Multi-label text classification	A methodology is proposed to	There are several
Jimenes (2019)	Data for	model: The multi-label text	automatically categorize data by	researches focused on
	Multi-label Text	classification has been applied	considering Reddit and Twitter	inferring user interest
	Classification of	to several tasks and applications	data. First, a dataset of 42.100	profiles considering the
	Twitter Users	such as categorizing businesses.	publications belongs to popular	tweets that they post.
	Interests	indexing of documents	forums site Reddit is collected to	For example, Siehndel
		collections and detecting	train a model with labeled data.	[3] builded methods
		sentiment analysis in text	Then, a dataset of tweets, an	generate user interest
		Wand2is a madiative	average of 100 tweets per user,	profiles based on the
		Word2vec, is a predictive	from 1573 profiles is collected to	extracted entities from a
		model, based on two layer	predict users' topics of interest	user's tweets, and link
		surface neural networks that	with the trained model. Finally,	these entities to
		are trained to reconstruct	we were able to automatically	Wikipedia categories.
		linguistic contexts of words. This	categorize data with an average	Diag wood asta souice
		model is very efficient to learn	precision of 75.62%.	Piao used categories
		word embeddings from raw		and related entities
		text. Word2Vec takes a large		from DBpedia for
		text corpus and produces a		inferring user interest
		vector space		profiles due to improve
				user models for Twitter
				recommender systems.

Yang Tao,Zhu Cui	A Multi-Label	Traditional text classification	Multi-label text convolutional	In order to solve the
,Zhu Wenjun (2018)	Text	refers to the text of single label	neural network (ML-TextCNN) is	shortcoming of the
	Classification	classification, in other words,	constructed by fusing word	VSM, distributed
	Method Based	each document belongs to only	embedding of labels. The text	representation of words
	on Labels Vector	one category. Due to the	matrix formed by word	and phrases through
	Fusion	complexity of the document, a	embedding is used as input of	word embedding was
		document often belongs to	ML-TextCNN, the semantic	proposed [13]. Its main
		multiple labels. Single label	information and position	idea is to map every
		classification cannot meet the	information of adjacent words in	word to the low
		requirements of text	the text are extracted by	dimensional and dense
		classification today. A new text	convolution and pooling	common vector space
		multi-label learning algorithm is	operations. Then, the output of	by using the relationship
		proposed, which uses CNN to	ML-TextCNN is used as the	between words, so that
		solve the dimension disaster,	semantic vector of the predicted	the closer the word
		local optimal solution and	labels, and the nearest neighbor	meaning is, the closer
		overlearning problem of text	is retrieved in the word	the distance in space.
		vectors, and a more abstract	embedding space of original	
		high-level representation is	labels. Finally the nearest	
		formed by combining the	neighbor labels are used as the	
		underlying features. The	prediction multiple labels of the	
		mapping relationship between	text. Under the experimental	
		text and label vector is built	data set, tested the text	
		through CNN. The network	multi-label.	
		output is used as the label		
		vector of the text to retrieve the		
		nearest neighbor in the word		
		embedding set of labels, and		
		the nearest neighbor as the		
		multi-label of the predicted text		

Haytham Elghazel*,	Fnsemble	An ensemble multi-label	We compared MLRF to several	Many methods have
1			•	been proposed to
· ·	categorization		including MLkNN, the Multi-label	, ,
-	based on	ideas: (1) performing Latent	informed Latent Semantic	diverse, sets of models.
(2016)		,	Indexing and three other	Bagging boosting,
T .	and latent	splitting of the vocabulary; (3)	ensemble multi-label	Random Subspaces,
	semantic	document bootstrapping; and	classification approaches:	Random Forest and
	indexing	(4) the use of BoosTexter as a	' '	Rotation Forest are the
	muexing	powerful multi-label base	, ,	
		•	To make fair comparisons, the	most popular examples
		learner for text	same experimental settings in	of this methodology.
		categorization.MLRF is a natural	·	There are many ways to
		extension of the Rotation Forest		deal with this problem.
		paradigm to multi-labeled data.		BoosTexter is powerful
		MLRF aims at building accurate		approach proposed by
		and diverse multi-label	_	Schapire and Singer, In
		classifiers. The main idea		the training phase,
		, -	classifier for VPCME due to its	BoosTexter maintains a
		extraction algorithm on	excellent predictive performance,	_
		different random splits of the	and the number of nearest	training examples and
		feature set to form a new		their labels, where
		attributes for each base	VPCME, the variable pairwise	training examples and
		multi-label classifier in the		their corresponding
			empirically set to 0.6 as in.	labels that are hard to
		because it is considered	Following the experimental	predict correctly get
		effective to overcome the	settings in , the ensemble size for	incrementally higher
		problems of lexical matching by	VPCME and BoosTexter was	weights.
		deriving conceptual indices	tuned to 100.	
		instead of individual terms (or		
		words) for retrieval in a		
		collection of documents.		
Daggara Al Calamaisk	Footuus vankins	Deasting algorithms have been	AdaBoost.MH iteratively builds a	Mathada ayah as hinam
Masri Ayob, Shahrul	_	5	set of weak hypotheses and then	•
-	_		· ·	,
	_		combines them as a final	2004), classifier chains (Read et al., 2011), label
			· · · · · · · · · · · · · · · · · · ·	
	categorization	, , ,	,	· ·
		set of weak hypotheses.		Vlahavas, 2007), ranking
		RFBoost was introduced to	·	by pairwise comparison
		• ,	the weak hypotheses of decision	
		rank-and-filter strategy in which	•	2008), and calibrated
		it first ranks the training	hypothesis during a specific	ranking by pairwise
		features and then, in each	boosting round, AdaBoost.MH	comparison (Fürnkranz
		learning iteration, filters and	generates a set of weak	et al., 2008) have been

		This step ensures accelerated learning time for RFBoost	the training features. The weak hypothesis that minimizes the Hamming loss training error is then selected, and all other hypotheses are eliminated.	introduced and used to solve many multi-label classification problems. multi-label kNN (MLkNN; Zhang & Zhou, 2007) was adapted from the traditional kNN algorithm for multi-label classification and uses the maximum posterior principle t
Sangwoo Han, Chan Lim, Bonggeon Cha, Jongwuk Lee (2021)	Study for Class Imbalance in Extreme	Extreme multi-label text classification (XMTC) is the problem of finding the most relevant multi-labels from a text corpus with millions of labels. To overcome the class imbalance problem, existing studies suggested various methods using different loss functions (i.e., focal loss function) and data augmentation (i.e., mix-up).	been proposed to overcome the class imbalance in the multilabel problem. Multiplying P@k with the inverse of propensity score can be interpreted as a means to give an advantage to the tail	computational cost is very high, and the model size is also huge. Tree-based.methods build a decision tree to capture the hierarchical structure of labels or samples. SwiftXML recursively partitions a tree into two child nodes, and each internal node stores input and label features.
(2018)	for Efficient	study area in the realm of text mining. The majority of	effectiveness and efficiency. Furthermore, real-world data is inherently ambiguous. To address	Efficient Multi-Label Text Categorization (i e. MFZ-KNN) was used. The results of the IEEE Xplore digital library was

technique is based on semantic antroduced. However, because the membership is determined during the classification stage, it to identify tokens in the text documents. The standard lexical address this, they devised database WordNet is utilised to investigate the semantic links between tokens. Genta Indra Winata Handling imbalanced dataset in multi-label text classifiers are weighed down by the majority of the training data set is estimated with reference to the clusters' centroid. This significantly minimises the complexity of time. Genta Indra Winata Handling imbalanced dataset in multi-label text classifiers are weighed down by the majority of the data and neglect the minority, minimises the complexity of time. Genta Indra Winata Handling imbalanced dataset in multi-label text classification using Bagging and Adaptive Bosting Boosting dand Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Multi-label classification formance. Genta Indra Winata Handling imbalanced dataset in multi-label control this significantly minimises the complexity of time. Genta Indra Winata Handling imbalanced dataset in multi-label classification algorithms may not yield the using Bagging and Adaptive Boosting and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Genta Indra Winata Handling imbalanced dataset in multi-label classification dispersion performance. Genta Indra Winata Handling imbalanced dataset in multi-label classification down by the majority of the training data set is estimated with reference to the clusters' centroid. This is significantly minimises the complexity of time. From the results shown in the research ways to address that are two ways to address the training and Adaptive Boosting and Adaptive Boosting of the proble		Γ	Alada akanda Tlagara aras d	land and formulation to the collection	
and lexical concepts. The standard IEEE taxonomy is used to identify tokens in the text documents. The standard lexical database WordNet is utilised to investigate the semantic links between tokens. Machine			this study. The proposed	•	proposed method
standard IEEE taxonomy is used to identify tokens in the text documents. The standard lexical database WordNet is utilised to investigate the semantic links between tokens. Genta Indra Winata, Masayu Leylia (Moray Leylia (Mor			•		
to identify tokens in the text documents. The standard lexical address this, they devised MFZ-KNN, a modified investigate the semantic links between tokens. MFZ-KNN, a modified (uzzy-based KNN method in which fuzzy clusters are created during the preprocessing step and the membership of the training data set is estimated with reference to the clusters' centroid. This significantly minimises the complexity of time. Genta Indra Winata, Handling imbalanced dataset in multi-label text dassifiers are weighed dataset in multi-label text categorization using Bagging and Adaptive Boosting and Adaptive Boosting best results. In this research, Both approaches can help categorizations perform techniques are used to address better, notably for J48 and SMO. In terms of subset accuracy, and example-based accuracy, SMO with Bagging, ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gullsong Multi-label Classification the research ext categorization of the conducted in the paper onducted in the paper onducte			·		accuracy of 75%
documents. The standard lexical database WordNet is utilised to investigate the semantic links between tokens. Genta Indra Winata, Handling imbalanced khodra (2015) Malti-label text categorization using Bagging and Adaptive Boosting			· · · · · · · · · · · · · · · · · · ·	9	
database WordNet is utilised to investigate the semantic links between tokens. MFZ-KNN, a modified fuzzy-based KNN method in which fuzzy clusters are created during the preprocessing step and the membership of the training data set is estimated with reference to the clusters' centroid. This significantly minimises the complexity of time. Genta Indra Winata, Handling imbalanced khodra (2015) Masayu Leylia dataset in data and neglect the minority, multi-label text categorization using Bagging and Adaptive bost in data and neglect the minority, multi-label text categorization using Bagging and Adaptive bosting and Adaptive bosting and Adaptive bosting best results. In this research, agging and Adaptive bosting in increasing the categorization serform better, notably for J48 and SMO. In terms of subset accuracy and example-based accuracy, SMO with Bagging, ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging, ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging, ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging, ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging, ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging, ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gullsong Multi-label Classification text categorization, the research experimental evaluation results conducted in the paper			· · · · · · · · · · · · · · · · · · ·	· '	
investigate the semantic links between tokens. Fuzzy-based KNN method in which fuzzy clusters are created during the preprocessing step and the membership of the training data set is estimated with reference to the clusters' centroid. This significantly minimises the complexity of time. Genta Indra Winata Handling Masayu Leylia Imbalanced down by the majority of the dataset in multi-label text categorization algorithms may not yield the using Bagging and Adaptive Boosting and Adaptive Boosting best results. In this research. Bagging and Adaptive Boosting best results. In this research. Bagging and Adaptive Boosting best results. In this research. Bagging and Adaptive Boosting best results. In this research. Beth approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy, and example-based accuracy, SMO with Bagging. ML-RB is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gullisong Multi-label Classification Classificat				· •	
between tokens. which fuzzy clusters are created during the preprocessing step and the membership of the training data set is estimated with reference to the clusters' centroid. This significantly minimises the complexity of time. Because classifiers are weighed down by the majority of the data and neglect the minority, multi-label text classification using Bagging and Adaptive and Adaptive Boosting and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Begging and adaptive boosting are two ways to address imbalanced datasets that are evaluated and contrasted with multi-label classifiers in this research. Both approaches can help categorizations perform best results. In this research, bethe pased accuracy, and example-based accuracy, SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging,ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging and Adaptive Boosting to the provide value for SMO with Bagging and A				,	
during the preprocessing step and the membership of the training data set is estimated with reference to the clusters' centroid. This significantly minimises the complexity of time. Genta Indra Winata, Masayu Leylia (Masayu Masayu Leylia) (Masayu Leylia (Masayu Masayu Leylia) (Masayu Leylia) (Masayu Leylia (Masayu Masayu Leylia (Masayu Masayu Leylia) (Masayu Leylia) (Masayu Leylia) (Masayu Leylia (Masayu Masayu Leyl			•	,	
and the membership of the training data set is estimated with reference to the clusters' centroid. This significantly minimises the complexity of time. Genta Indra Winata, Mandling imbalanced dataset in multi-label text cataser in multi-label text catagorization using Bagging and Adaptive Boosting and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Boosting techniques are used to address the problem and increase text categorization performance. Gulisong Multi-label Classification Maiti-label Classification Multi-label Classification Multi-label Classification Adaptive Boosting techniques are used to address the problem and increase text categorization performance. For multi-semantic picture and Nasierding, Atul Classification The Experimental conducted in the paper			between tokens.		
Genta Indra Winata, Handling imbalanced dataset in multi-label text categorization using Bagging and Adaptive Boosting and Malpire Adaptive Boosting better, notably for Jaka and SMO. In terms of subset accuracy and example-based accuracy, SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging ML-LP provides the best results. The micro-averaged f-measu					
Genta Indra Winata, Handling imbalanced dataset in multi-label text categorization best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Gullisong Naiserding, Atul Genta Indra Winata, Handling imbalanced dataset in multi-label text categorization algorithms may not yield the data and neglect the minority, multi-label text classification algorithms may not yield the best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Gullisong Multi-label Classification Nasierding, Atul Multi-label Classification down by the majority of the data and neglect the minority, multi-label classifiers are weighed down by the majority of the data and approvate the majority of the data and neglect the minority, multi-label classifiers are weighed down by the majority of the data and approvate the majority of the data and neglect the minority, minimises the complexity of time. Bagging and adaptive boosting are two ways to address imbalanced datasets that are evaluated and contrasted with multi-label classifiers in this research. Both approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy, SMO with Bagging, ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging, ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gullisong Multi-label Classification text categorization, the research experimental evaluation results conducted in the paper				· ·	
Genta Indra Winata, Handling imbalanced dataset in multi-label text categorization using Bagging and Adaptive Boosting etchniques are used to address the problem and increase text categorization performance. Gulisong Naisayu Leylia Multi-label (2015) Genta Indra Winata, Handling imbalanced down by the majority of the data and neglect the minority, multi-label text categorization algorithms may not yield the best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Gulisong Naiserding, Atul Gulisong Naiserding, Atul Gulisong Naiserding, Atul Because classifiers are weighed down by the majority of the data and adaptive boosting are two ways to address in the research we can conclude that bagging are two ways to address in the research we can conclude that bagging has more potential than adaptive boosting in increasing the accuracy of minority labels. The multi-label classifiers in this research, notably for J48 and SMO. In terms of subset accuracy, and example-based accuracy, SMO with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Nait-label Classification text categorization, the research experimental evaluation results conducted in the paper					
Genta Indra Winata, Masayu Leylia Khodra (2015) Masayu Leylia Mayay to address im the research we can conclude that bagging has more potential that adaptive boosting in the research. Pevaluated and contrasted with multi-label classifiers in this research. Both approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy, of minority labels. Masayu Leylia Mayau Leylia Masayu Leylia Malayu Leylia Masayu Leylia					
Genta Indra Winata, Masayu Leylia imbalanced dataset in multi-label text categorization using Bagging and Adaptive Boosting and Formance. Whiti-label categorization performance. Bagging and Adaptive Boosting and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Whiti-label categorization performance. Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Whiti-label categorization performance. Whiti-label categorization performance. Whiti-label categorization performance. Whiti-label categorization performance. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Natul Multi-label Classification Walti-label Classification text categorization, the research experimental evaluation results conducted in the paper on the results shown are two ways to address impact to wowys to address imbalacted datasets that are evaluated and contrasted with multi-label classification in the research we can conclude that bagging are two ways to address imbalacted datasets that are evaluated and contrasted with multi-label classification in the research we can conclude that bagging are two ways to address imbalacted datasets that are evaluated and contrasted with multi-label classification in the research vertical and contrasted with multi-label datasets that are evaluated and contrasted with multi-label classification in the research vertical and conclude that bagging are two ways to address imbalacted datasets that are evaluated and contrasted with multi-label classification in the research vertical and conclude that bagging are two ways to address imbalacted datasets that are evaluated and contrasted with multi-label				,	
Genta Indra Winata, Handling Masayu Leylia (Modra (2015) imbalanced dataset in multi-label text categorization using Bagging and Adaptive Boosting and Adaptive Boosting and Adaptive acategorization performance. Boosting (2015) description algorithms may not yield the best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Multi-label text categorization performance. Multi-label text categorization performance. Multi-label categorization performance. This paper presented concluded in the paper performance potential perturbation performance potential that adaptive boosting in the research we can increasing the accuracy of minority labels. For multi-semantic picture and text categorization performance. The LEXPERIMENTAL PROVIDED TO THE PRO					
Masayu Leylia Khodra (2015) Imbalanced dataset in multi-label text categorization using Bagging and Adaptive Boosting Boosting Multi-label Categorization performance. Gulisong Nasierding, Atul Imbalanced dataset in multi-label text categorization using Bagging and Madaptive Boosting Multi-label Classification Multi-label Classification Multi-label Classification Multi-label Classification Multi-label Masayu Leylia down by the majority of the data and neglect the minority, multi-label text classification algorithms may not yield the best results. In this research, Both approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy and example-based accuracy, SMO with Bagging.ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Classification Multi-label Classification Multi-label Classification Multi-label Masays to address imbalanced datasets that are evaluated and contrasted with multi-label classifiers in this research. Both approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy, SMO with Bagging.ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. The Experimental conducted in the paper				time.	
Khodra (2015) dataset in multi-label text categorization using Bagging and Adaptive Boosting Boosting best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. categorization performance. Boosting data and neglect the minority, multi-label text classification algorithms may not yield the best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. with Bagging, ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Classification data and neglect the minority, multi-label text classification algorithms may not yield the best results. In this research. Both approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy, SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Classification Conclude that bagging evaluated and contrasted with multi-label classifiers in this research. Both approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy, SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Classification The Experimental conducted in the paper presented experimental evaluation results	Genta Indra Winata,	Handling	Because classifiers are weighed	Bagging and adaptive boosting	Fron the results shown
multi-label text categorization using Bagging and Adaptive Boosting multi-label text categorization using Bagging and Adaptive Boosting multi-label text categorization techniques are used to address the problem and increase text categorization performance. multi-label classifiers in this dadptive boosting in increasing the accuracy of minority labels. Magging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. In terms of subset accuracy, SMO with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gullisong Multi-label Classification Multi-label classification The Experimental conducted in the paper	Masayu Leylia	imbalanced	down by the majority of the	are two ways to address	in the research we can
categorization using Bagging and Adaptive Boosting Boosting algorithms may not yield the best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Categorization performance. Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Categorization performance. Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Categorization performance. Categorization performance. Categorization performance. Multi-label classifiers in this research. Both approaches can help categorizations perform better, notably for J48 and SMO. In terms of subset accuracy, SMO with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Caulisong Multi-label Classification For multi-semantic picture and text categorization, the research	Khodra (2015)	dataset in	data and neglect the minority,	imbalanced datasets that are	conclude that bagging
using Bagging and Adaptive Boosting best results. In this research, Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Lategorization performance. Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. Lategorization performance.		multi-label text	multi-label text classification	evaluated and contrasted with	has more potential than
and Adaptive Boosting Bagging and Adaptive Boosting techniques are used to address the problem and increase text categorization performance. In terms of subset accuracy and example-based accuracy, SMO with Bagging.ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Classification Bagging and Adaptive Boosting better, notably for J48 and SMO. In terms of subset accuracy and example-based accuracy, SMO with Bagging.ML-P provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Classification Classification The Experimental experimental evaluation results Conducted in the paper		categorization	algorithms may not yield the	multi-label classifiers in this	adaptive boosting in
Boosting techniques are used to address the problem and increase text categorization performance. In terms of subset accuracy and example-based accuracy, SMO with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Nasierding, Atul This paper presented Experimental evaluation results The Experimental conducted in the paper		using Bagging	best results. In this research,	research. Both approaches can	increasing the accuracy
the problem and increase text categorization performance. In terms of subset accuracy and example-based accuracy, SMO with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Classification The Experimental conducted in the paper presented experimental evaluation results Conducted in the paper presented conducted in the paper presented experimental evaluation results		and Adaptive	Bagging and Adaptive Boosting	help categorizations perform	of minority labels.
categorization performance. example-based accuracy, SMO with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label Nasierding, Atul Classification Categorization performance. example-based accuracy, SMO with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. This paper presented Classification The Experimental conducted in the paper		Boosting	techniques are used to address	better, notably for J48 and SMO.	
with Bagging.ML-LP provides the best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label For multi-semantic picture and Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper			the problem and increase text	In terms of subset accuracy and	
best results. The micro-averaged f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label For multi-semantic picture and Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper			categorization performance.	example-based accuracy, SMO	
f-measure value for SMO with Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Nasierding, Atul Glassification Gulti-label Light For multi-semantic picture and text categorization, the research experimental evaluation results Gulti-label Light Formulti-semantic picture and text categorization, the research experimental evaluation results Gulti-label Light Formulti-semantic picture and text categorization, the research experimental evaluation results				with Bagging.ML-LP provides the	
Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Nasierding, Atul Classification Bagging.ML-BR is the finest of all. The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. This paper presented experimental evaluation results conducted in the paper				best results. The micro-averaged	
The J48 algorithm with AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Nasierding, Atul Classification This paper presented Experimental Experi				f-measure value for SMO with	
AdaBoost.MH, on the other hand, has the lowest hamming loss value. Gulisong Multi-label For multi-semantic picture and Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper				Bagging.ML-BR is the finest of all.	
hand, has the lowest hamming loss value. Gulisong Multi-label For multi-semantic picture and Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper				The J48 algorithm with	
Gulisong Multi-label For multi-semantic picture and This paper presented The Experimental Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper				AdaBoost.MH, on the other	
Gulisong Multi-label For multi-semantic picture and Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper				hand, has the lowest hamming	
Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper				loss value.	
Nasierding, Atul Classification text categorization, the research experimental evaluation results conducted in the paper	Gulisong	Multi-label	For multi-semantic picture and	This paper presented	The Experimental
	_		· ·	, , ,	conducted in the paper
paggarmar (2010) with Giusternig Imvestigates effective multi-labellor the Giusternig-baseu frevedied that Clusternig	Sajjanhar (2013)	with Clustering			revealed that clustering
for Image and classification algorithms. For the multi-label classification based multi-label	,	_		_	_
		_	•		learning algorithms are
Categorization research of clustering based framework is instantiated with more effective		Categorization	research of clustering based	framework is instantiated with	
multi-label classification six popular MLC algorithms, i.e. compared to their			_	six popular MLC algorithms, i.e.	compared to their
(CBMLC) is conducted. On BR, LP, RAKEL, CLR, HOMER and			(CBMLC) is conducted. On	, ,	

		multi label picture and tout	MI kNN and three distories	non clustorina
		multi-label picture and text	ML-kNN, and three clustering	non-clustering
		datasets, three commonly used		counterparts.
		clustering methods and six	EM.	
		prominent multi-label		
		classification algorithms are		
		applied and evaluated.		
Zhiyang He, Ji Wu,	Label	This study proposes a	This work introduces label	LCMM provides a
Ping Lv (2014)	correlation	probabilistic generative label	correlation mixture model	general framework for
	mixture model	correlation mixing model for	(LCMM), an unique probabilistic	generative models for
	for multi-label	multiple labelled document	generative model for depicting	multiply labelled
	text	data, which may be utilised for	multiplylabeled documents that	document data and has
	categorization	multi-label spoken document	may be used for multilabel	advantages in terms of a
		categorization as well as	spoken document categorization	_
		multi-label text categorization.	as well as multi-label text	data generation process
		In two phases, LCMM models	categorization. Labels and	and the ability to
		the generating process of	themes in LCMM are one-to-one	•
		numerous labels and words in a	correspondences.	correlations. In addition,
			· ·	LCMM can be used to
				create numerous
		a document model. The label		labelled collections of
		correlation network is		discrete data sets.
		established and built with the	of all the subsets is 2K-1, which	
		goal of establishing label	makes it impractical to	
			implement, even when is not	
		prior of any subset of labels.	very large. they use a	
		The words are formed using	simplegreedy strategy with the	
		labels that are represented by	following three steps to solve	
		the document label, the	thisproblem:	
		parameters of which can be	Step-a: Carry out the fold-in	
		learned using the MCE criterion.		
		learned using the Wee criterion.	theconditional probabilityP(z y)	
			for each label in the whole label	
			set.	
			Step-b: Discard the labels whose conditional probability is lower	
			than a threshold.	
			Step-c: Compare all the possible	
			subsets that are limited to being	
			chosen from the remainder	
			labels to explore the best	
			subsets.	

4. Problem Statement

A Stack Overflow question is divided into three sections: Title, Description, and Tags. We should be able to automatically recommend tags relating to the question's subject by using the content in the title and description. These tags are pretty important as they determine the type and field of the question. It also helps in recommending other Stack Overflow users who have already solved many questions related to those tags.

This is crucial to the company's success. The better Stack Overflow can forecast these tags, the better an Ecosystem it can build to get the correct question to the right people.

The task of giving preset categories to free-text texts is known as text categorization (also known as text classification). It has practical real - world applications and may give conceptual representations of document collections. News stories, for example, are often organized by subject categories (topics) or geographic codes; academic papers are commonly classified by technical fields and sub-domains; and patient reports in health-care organizations are frequently indexed from multiple perspectives, utilizing taxonomies of clinical conditions, different kinds of medical procedures, insurance coverage codes, and so on. Spam filtering is another common use of text classification, in which email messages are divided into two categories: spam and non-spam.

Specified tags may assist your blog in a variety of ways, depending on the blog platform you're using. Some blogs include tag clouds plugins, which display every tag which has been assigned to a blog article in the sidebar, with the most frequently used tags in bigger size. A web page for each weblog tag is usually included in most blog platforms. What is the significance of this?

Let's imagine one of your practice areas is vehicle accidents, and one of the tags you commonly use is "motorcycle accidents." Every time you publish a blog article that has that tag, it is added to a page that lists all blog entries that feature "motorcycle crashes" as a tag, increasing the likelihood that your blog will be found by search engines.

The primary purpose of using weblog tags is to categorize your material. Everything on the internet should be nice and tidy, according to Google. Consider blog tags to be distinct buckets that organize entries. However, you would not want to add tags just for adding them.

The use of picture tagging in visual marketing may be a very effective social media technique. It can add to the background of your piece and help it get traction. The technique of providing descriptive data to a photo when it is uploaded is known as image tagging.

When you combine image tagging with current keywords in your hashtags, you get a significant competitive edge.

You may construct a list of tags that are presently popular on social media for convenience and quick reference. Using popular hashtags will increase your odds of reaching out to a larger group of people who are already interested.

Today, the finest channel for engaging your target audience is social media. Many educational institutions are taking use of its influence to increase admissions and placements. However, they don't always take full use of digital marketing features like the notion of tagging.

We described how hashtags operate in this post and how institutions may utilize them to successfully improve their social engagement. People are increasingly using hashtag searches to get information these days. It's a novel method of researching, and scholarly brands should be aware of how to make the most of it.

4.1 Architecture Diagram

4.2 Flow Diagram

4.3 PseudocodeExplanation

```
# Import required packages
df q = readFile("Questions.csv")
df t = readFile("Tags.csv")
// group all tags given to same question into a single string
grouped tags = df t.groupby('Id')
grouped tags = grouped tags['Tag'].apply(tags = ' '.join(tags))
// Drop unnecessary columns from questions
df q.drop(columns=[OwnerUserId, CreationDate, ClosedDate], inplace=True)
// Merge questions and tags into a single dataframe
df = df q.merge(df tags final, on='Id')
// get the most common 20 tags
tag features = getMostCommn(df, "Tags", 20)
// Filter the tags from the dataset and remove all tags that does not belong to
the tag features
df['Tags'] = df['Tags'].apply(tags: keep common(tags))
// apply preprocessing to title
remove html(df['Title'])
remove stopwords(df['Title'])
remove punc(df['Title'])
stem text(df['Title'])
// apply preprocessing to bodya
remove html(df['Body'])
remove stopwords(df['Body'])
remove punc(df['Body'])
stem text(df['Body'])
// binarize our tags
binarizer = MultiLabelBinarizer()
y_bin = binarizer.fit_transform(y)
// vectorize
X title vect = vectorizer title.fit transform(X title)
X body vect = vectorizer body.fit transform(X body)
// train test split
X train, X test, y train, y test = train test split(X, y bin, test size =
0.2)
// Develop the model
svc = LinearSVC()
clf = BinaryRelevance(svc)
// fit training data
clf.fit(X train, y train)
y pred = clf.predict(X test)
print score(y test, y pred)
```

5. Experiment and Results

5.1 Data set (Sample with Explanation)—Share the link source of Dataset.

The dataset "StackSample:10% of Stack Overflow Q&A" will be used. The problem statement for a multilabel text categorization method. The text of 10% of the questions and answers from the Stack Overflow programming Q&A website is included in this dataset. This is broken down into three tables:

- Questions: For all non-deleted Stack Overflow questions with an Id that is a multiple of 10, Questions provides the title, body, creation date, closed date (if applicable), score, and owner ID.
- Answers: Each of the answers to these questions has a body, a creation date, a score, and an owner ID. The ParentId column references the Questions table.
- Tags: Each of these questions has its own set of tags, which are listed under Tags.

Dataset: https://www.kaggle.com/stackoverflow/stacksample?select=Tags.csv

5.1.1 Explain methodology with the dataset.

• Load Questions.csv and Tags.csv

• Group all tags given to the same question into a single string as the data is not grouped by ID.

• Drop unnecessary columns from questions and Merge questions and tags into a single dataframe

• Remove questions with scores lower than 5 to avoid outliers and split tags into list

• Get the most common 20 tags without the count and filter the dataset to only consider the data which has top 20 tags.

- Apply data pre-processing by:
 - Remove HTML
 - Remove stopwords
 - Remove special characters
 - Convert to lowercase
 - Stemming

Html can be handled by the use of **Regular Expressions** and the rest can be done by the help of the **nltk** liberty

```
def remove_html(text):
   return re.sub(r"\<[^\>]\>", "", text).lower()
def remove_stopwords(text):
   words = tokenizer.tokenize(text)
    filtered = [w for w in words if not w in stop_words]
    return ' '.join(map(str, filtered))
def remove_punc(text):
   tokens = tokenizer.tokenize(text)
   # remove punctuations from each token
   tokens = list(map(lambda token: re.sub(r"[^A-Za-z0-9]+", " ", token).strip(), tokens))
    # remove empty strings from tokens
    tokens = list(filter(lambda token: token, tokens))
   return ' '.join(map(str, tokens))
def stem_text(text):
    tokens = tokenizer.tokenize(text)
    tokens = list(map(lambda token: stemmer.stem(token), tokens))
    return ' '.join(map(str, tokens))
```


• Apply MultiLabelBinarizer on Tags and TfidfVectorizer on Questions

```
from sklearn.preprocessing import MultiLabelBinarizer
     from sklearn.feature_extraction.text import TfidfVectorizer
     from sklearn.model selection import train test split
     from scipy.sparse import hstack
[24] X_title = df['Title']
     X_body = df['Body']
     y = df['Tags']
     del df
     binarizer = MultiLabelBinarizer()
     y bin = binarizer.fit transform(y)
    # vectorize
     vectorizer_title = TfidfVectorizer(
         analyzer = 'word',
         strip_accents = None,
         encoding = 'utf-8',
         preprocessor=None,
         max_features=10000)
     vectorizer_body = TfidfVectorizer(
         analyzer = 'word',
         strip accents = None,
         encoding = 'utf-8',
         preprocessor=None,
         max_features=10000)
     X title vect = vectorizer title.fit transform(X title)
     X_body_vect = vectorizer_body.fit_transform(X_body)
     X = hstack([X_title_vect, X_body_vect])
```

- The most applicable machine learning algorithm for our problem is **Linear SVC**.
- The objective of a Linear SVC (Support Vector Classifier) is to fit to the data you provide, returning a "best fit" hyperplane that divides or categorizes, your data. From there, after getting the hyperplane, you can then feed some features to your classifier to see what the "predicted" class is. This makes this specific algorithm rather suitable for our uses, though you can use this for many situations.
- For trying the model we decide to go with **Linear SVC** after a lot of testing as it constantly gave better results when compared to other classical classification methods like SGD Classifier and other Regression models.
- We also used **Binary Relevance** from the scikit-multilearn lib. Binary Relevance transforms a multi-label classification problem with L labels into L single-label separate binary classification problems using the same base classifier provided in the constructor. The prediction output is the union of all per label classifiers.

```
# Develop the model
from sklearn.svm import LinearSVC
from skmultilearn.problem transform import BinaryRelevance # gives better precision
svc = LinearSVC()
clf = BinaryRelevance(svc)
# fit training data
clf.fit(X train, y train)
BinaryRelevance(classifier=LinearSVC(), require dense=[True, True])
                                                                           ↑ ↓ ፡> 🗏 🌣 🖟 🧻 🗄
# Metrics
from sklearn.metrics import accuracy_score, precision_score, recall_score, hamming_loss, f1_score
# make prediction
y pred = clf.predict(X test)
print_score(y_test, y_pred)
Jacard score: 0.6670273581053491
Recall: 0.6732329084588644
Precision: 0.8087120124028273
Hamming Loss (%): 2.9374234381380155
F1 Score: 0.7452753664819695
```

5.1.2 Partial output

Link to Google Collab Notebook:

https://colab.research.google.com/drive/18CMI_zLSWoW-11HUIx30VEMPZA4Nta_w?usp=sharing

```
# Metrics
from sklearn.metrics import accuracy_score, precision_score, recall_score, hamming_loss, f1_score

# make prediction
y_pred = clf.predict(X_test)
print_score(y_test, y_pred)

Dacard score: 0.6670273581053491
----
Recall: 0.6732329084588644
----
Precision: 0.8087120124028273
----
Hamming Loss (%): 2.9374234381380155
----
F1 Score: 0.7452753664819695
----
```

Test Data:

index	Title	Body	Tags	Predducted
2475	chang android I keyboard enter key color	new android I keyboard use system theme coloracc background color enter key match app custom theme way chang that p would assum theme style keyboard find theme materi xml style found android keyboardviewstyl give error 9 21 resourc found match given name attr android keyboardviewstyl p img src http i stack imgur com jinb4 png width 400 p	android	android
2476	branchless memori manag	anyon thought write memori manag c complet branch free written pool stack queue link list alloc pool wonder plausibl write branch free general memori manag p help make realli reusabl framework solid concurr in order cpu cach friend develop p edit branchless mean without direct indirect function call without use if think probabl implement someth first chang request size zero falls call realli got much that feel imposs aspect exercis profil said unifriend processor see worth tri hard avoid branch p		c++
2477	detect held mous button picturebox	need fire event mous picturebox mous button alreadi click held down p problem p mousedown mouseent event handler work togeth well p instanc mous button click held c fire mousedown event handler cursor move picturebox mouseent event fire mous button realeas p		c#
2478	heavi javascript page gap 15 second respons page load	page heavi javascript page leav page go page b take long time go page b differ page realif fast someth page probabl javascript p run network profit develop tool ie 9 show gap 15 second respons domcontentioad event p page heavi javascript run xupus editor rich text xmi editor p anybodi idea could either analys gap happen could make page unload faster p	javascript	javascript
2479	datepick popup format work valu set initi scope	use angular ii bootstarp date picker popus use custom direct plunker a her littp pinkr co edit 053/mm Impozilavifitt p previve http pinks co edit 053/mm Impozilavifitt p previve http pinks co edit 053/mm Impozilavifit previve a previo p	html,javascript	javascript
2480	php syntax highlight	search stong phy syntax highlight engin stong custom i e provid stong own token stong new languag handl sever languag em simultan em i e output page engin work well togeth stong cas class strong i e formal output insert code it span gt code element adom code class code attitbut borus opin totentes schema per mot em search client sides syntax highlight schor jair variety plat stuck a her hitt pip cross on blighlight gesh ai unfortung gesh fall abyam sever reason main reason offlier languag file defin complet differ inconsist style work hour tri refactor differ languag definit common denomin sinc definit fle quit bad final like switch pideal like api similar a her hittp coderay rubychan de coderay a a her hittp pygment or gpygment a javascript a her hittp code goog com p syntaxbrightight op syntaxbrightight a pt AC clarif AC look code highlightight showar written em em plye nor for em by sein cend use in midd php p	php	php
2481	issu touch scroll io focus input	issu scrolleabl div in tri scroll touch outsid input scroll ok without problem tri scroll touch input start scroll lot chanc happen div lot input scroll whole window instead scroll div problem either desktop android found similar question a href http stackoverflow corn question 14333410 in html input tag stop scroll in scrollabl element in html input tag stop scroll scrollabl element a answer either find good solut decid prevent event touchmov user touch input exact want p may someon alreadi face problem bely would realiti apprect it p thank advance pregard p marcelop	html,ios	ios,javascript
	scale drawabl setimagelevel dictat scale	creat small text app ir scale drawabl p defin drawabl xml save code scale up xml code code main xml code layout file code imageview code use code android src drawabl scale up code imageview set magelevel level code code scale level imageview defin code main xml code well imageview defin code main xml code well imageview set magelevel code scale level imageview defin code code scale up xml code anake perceiv differ level set 10000 fil it chang level code setimagelevel code is usuppos, question s p of lis correct uses code setimagelevel code oct code scale up xml code anake perceiv around 5000 higher valus scalebeight scalewidth smaller imag depend valu code setimagelevel code li ut suppos, question s p of lis correct use code setimagelevel code oct control size drawabl defin xml file li what relationship scaleheight scalewidth code setimagelevel code see may well set scaleheight scalewidth 100 use code setimagelevel 5000 code get 50 scale image li encloser stroug strough use scale drawabl defin xml correct scale imagelevel code interpreta percentique secale drawabl defin xml correct percentification.	android	android
2483	calcul x 509 certif sha 1 fingerprint c c object c	background p write client util capabl connect remot server use self its client use opensel perform self its transact would like allow user specifi author ca cert case self sign cert privat ca setup use sign server certif plan use cert fingerprint common name valid date allow user quick view cert client use valid server p question p calcul shat hash fingerprint x509 cert store within pen file use c c object c p day search experi found solut post answer howev welcom better correct solut p		
2484		c 11 gave us possibl use non pod type within union say follow piec code p pre code union one v two uni code pre somewher within class one member activ time question rather simpl p ol ii what default valu uni undefin ii ii whenev class destruct member within union destruct ul ii suppos std typeinfo keep track activ member call destructor explicit member destructor ii ul ii ii doe anyon link languag propos chang union accept non pod type ii ol		c++
2485	reason overhead memori usag array java	java charact data type code char code repres 2 byte array code n code charact code charact code charact code spres code 2n 24 code byte p general overhead code 24 code byte store array code n code object least object primit type p need addit 24 byte use p storng edit storng juli 2nd 2015 strong strong brought attent comment answer question offer a href http programm stackexchang com question 162546 whit the overhead when alloc object array in java here a programm stackexchang p	java	java
	python decor simpl recurs standard librari elsewher	look python decor make function recurs find write lot function like p pre code def xyz data isinst data typethatdenotessingular return map xyz data return singular xyz data code pre figur must decor somewher standard librari slim notat tad p pre code recurs typethatdenotessingular def xyz data return singular xyz data code pre search seem get anywher perhap miss essenti terminolog p thank point right direct p	python	python

index	Title	Body	Tags	Predducted
50	display activ indic wkwebview use swift	work follow code bit show activ indic view whilst page load pit implement strong whanvjastiondeleg strong method fall noth show p suggest fit this p set supportwebriew view strong deleg strong anywher know swift p preceded import with the provision of the provi	ios	ios
	know calle answer call phone state lift call	It know alert calle lift call use code phonestatelistien code along code broadcastreceiv code p general three state code call state it call state offlook call state ring code p code call state offlook code state call call connect state three state code call call ensure call p broadcastreceiv per code public class phonestatelaboredcastreceiv overide public void once controt controt intent intent telephonymana glebphonymana glebphonym	android	android
	submit file jqueri ajax give typeerror	tri submit file form use jqueri code ajax code method p pre code var ofil document getelementbyld imag file 0 var formdata new formdata formdata append imag ofil ajax url element save element data formdata type post code pre result error code typeerror append call object implement interfac formdata code p caus error happen actual code formdata append code insid igueri p	javascript,jquery	javascript,jque
	convert variabl string valu express javascript	tri convert string valu express use condit like p pre code var stringval 20 gt 18 amp amp yes yes if stringval code pre possibl pleas suggest me p thank p	javascript	javascript
54	differ size t std size t	differ code size t code code std size t code term declar use differenti featur p		
	forc nvidia gpu programmat optimus laptop	program directx game run optimus laptop intel gpu use result horribl perform forc nvidia gpu use context menu renam execut bi3 exe famous game execut name perform expect br obvious neither accept solut redistribut game way programmat forc laptop use nvidia gpu br br alreadi tri use directx enumer adapt idirect3d9 getadaptercount idirect3d9 getadapteridentifi work 1 gpu report one use p		
56	pass object paramet constructor function copi properti new object	javascript constructor like p pre code function box obj this obj obj code pre want pass object paramet like p pre code van kox prop p prop2 by prop3 c orde pre give someth like p pre code box obj prop 2 box obj prop 2 box obj prop 2 box obj prop 2 box object paramet like per code the function box obji this prop 1 object prop 1 this prop 2 obj prop 2 this prop 3 object paramet proper direct object paramet would like abject per code pre would like in precise object paramet would like abject paramet assign properti direct properti new custom object creat constructor get code box prop x code code box obj prop x code hox make clear may the mass someth obvious newbi pleas need help thank advantage.	javascript.jquery	c#,objective-
	write stereo wav file python	follow code write simpl sine frequenc 400hz mono war file code chang order produc strong stereo strong war file second channel differ frequenc p pre code import math import wave import struct freq 440 0 data size 41000 finame wavetest wav frate 11025 0 framer float amp 64000 of multipli amplifuld sine list x x rang data size sine ist x x, append math sin 2 math pit freq x frate trans file wave open finame w nchannel 1 sampwidth 5 tamer int frate mather and the comply no companie compress wav file setparam nchannel sampwidth finamer inframe comply companies its x write audit fram file war file writefram struct pack hi nit s amp 2 wav file close code pre	python	python
58	differ 01 1 javascript date	differ date 2015 10 01 2015 10 1 javascript p pre code new date 2015 10 1 code pre return code thu oct 01 2015 00 00 00 gmt 0300 code p pre code new date 2015 10 01 code pre return code wed sep 30 2015 21 00 00 gmt 0300 code p	javascript	javascript
	java increas xmx dynam runtim	jvm server machin want 2 apserv mine sit machin howev want standbi one realli low amount memori alloc xmx passiv one main server activ goe want alloc memori passiv server alreadi without restart much xmx note would consum memori startup cant allow possibl outofinemori p want passiv low xmx activ goe want passiv receiv much xmx p way achiev that thank p	java	java
60	fcm aw sns	use oode aw code resourc android project plan add push notif servic project code aw sns code there question bother much find question regard except one two unclear explain p 1 doe code aw code support code from code code so code work code good recommend use from instead code gcm code find code aw code support code from code p 2 do code aw code store messag data databas even send push notif p 3 I tri put fcm api key sns applic platform show invalid paramet whi p	android	
	stop webcam stream getusermedia without page refresh	It does webcam javascript function dose receiv ajav respons seem imposs close without refresh page method close like video src null video paus etc work browser uniqu way dose stream pass paramet success function way use object outsid function success close webcam pk now question ask a href http stackoverflow com question 15137069 stop close webcam use getusermedia and rtcpeercomect chrome 25 a need differ would need help solv problem p thank p edit work code tri close webcam p pre code navig getusermedia avig getusermedia 124 124 navig mosgetusermedia 124 124 navig mosg	javascript	javascript

Example Application:

Example data:

'Title':

- 'How to handle or avoid a stack overflow in C++',
- "Python getopt module error NameError: name 'opts' is not defined after importing",
- "get append element but got undefined",
- "I have a problem with pip",
- "Best way to center a <div> on a page vertically and horizontally?"],

'Body':

• 'In C++ a stack overflow usually leads to an unrecoverable crash of the program. For programs that need to be really robust, this is an unacceptable behaviour, particularly because stack size is limited. A few questions about how to handle the problem. Is there a way to prevent stack overflow by a general technique. (A scalable, robust solution, that includes dealing with external libraries eating a lot of stack, etc.) Is there a way to handle stack overflows in case they occur? Preferably, the stack gets unwound until theres a handler to deal with that kinda issue. There are languages out

- there, that have threads with expandable stacks. Is something like that possible in C++? Any other helpful comments on the solution of the C++ behaviour would be appreciated.',
- "I'm trying to take in two arguments from the console. The following code seems to have worked on my colleague's computer, so I'm not sure why it is giving me an error when trying to run it on mine. I am on a Mac.import getoptimport sysquestion_id= Nonearg_student = Noneargv = sys.argv[1:]print('test')try:opts, args = getopt.getopt(argv, 'i:s:', ['question_id=','arg_student='])except:print('Error')for opt, arg in opts:if opt in ['-i', '--question_id']:question_id = argelif opt in ['-s', '--arg_student']:arg_student = argprint('Question Number: ' + question_id)print('Student response: ' + arg_student)This is the error I am getting:ErrorTraceback (most recent call last):File '/Users/ailanysmacbook/github/AutomatedEssayGrading/AutomatedEssayGrading/input.py', line 1, in <module>import getoptFile '/Users/ailanysmacbook/github/AutomatedEssayGrading/AutomatedEssayGrading/getopt.py', line 20, in <module>for opt, arg in opts:NameError: name 'opts' is not definedIt seems to be happening right after I try importing it. Do I need to install something? I'm not sure what's missing.",
- "I have append element on my page, and after the element was append i want to send the element value with ajax in javascrypt. But i got response undefinedappend element jquery",
- "I am facing problems in installing packages from pip",
- "Best way to center a <div> element on a page both vertically and horizontally? I know that margin-left: auto; margin-right: auto; will center on the horizontal, but what is the best way to do it vertically, too?"]

```
Frame Application

| Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signature Application | Signatur
```

6. Conclusion

Initially, we used Pandas Data Frame to load the Text Pre-Processed Dataset, then we analyzed the String Tags.AST Module and encoded the tags using Multilabelbinarizer.

Following that, we used TfidfVectorizer to do text vectorization on the question sort dataset. Consequently, we've tested the model against a variety of classifiers, including SGDClassifier, LinearSVC and Supplying Regression For Multi-Label Classification, and we've compared the results to real data.

We found that LinearSVC gave the best results among the classification models tested.

7. Reference

- Y. Tao, Z. Cui and Z. Wenjun, "A Multi-Label Text Classification Method Based on Labels Vector Fusion," 2018 International Conference on Promising Electronic Technologies (ICPET), 2018, pp. 80-85, doi: 10.1109/ICPET.2018.00021.
- 2. A. Fiallos and K. Jimenes, "Using Reddit Data for Multi-Label Text Classification of Twitter Users Interests," 2019 Sixth International Conference on eDemocracy & eGovernment (ICEDEG), 2019, pp. 324-327, doi: 10.1109/ICEDEG.2019.8734365.https://ieeexplore.ieee.org/document/7078554
- 3. G. Chen, D. Ye, Z. Xing, J. Chen and E. Cambria, "Ensemble application of convolutional and recurrent neural networks for multi-label text categorization," 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 2377-2383, doi: 10.1109/IJCNN.2017.7966144.
- 4. S. Han, C. Lim, B. Cha and J. Lee, "An Empirical Study for Class Imbalance in Extreme Multi-label Text Classification," 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 2021, pp. 338-341, doi: 10.1109/BigComp51126.2021.00073.
- 5. Al-Salemi, B., Ayob, M., & Noah, S. A. M. (2018). Feature ranking for enhancing boosting-based multi-label text categorization. *Expert Systems with Applications*, 113, 531–543. https://doi.org/10.1016/j.eswa.2018.07.024
- 6. Elghazel, H., Aussem, A., Gharroudi, O., & Saadaoui, W. (2016). Ensemble multi-label text categorization based on rotation forest and latent semantic indexing. *Expert Systems with Applications*, *57*, 1–11. https://doi.org/10.1016/j.eswa.2016.03.041
- R. Jindal and Shweta, "A Novel Method for Efficient Multi-Label Text Categorization of research articles," 2018 International Conference on Computing, Power and Communication Technologies (GUCON), 2018, pp. 333-336, doi: 10.1109/GUCON.2018.8674985.
- 8. G. I. Winata and M. L. Khodra, "Handling imbalanced dataset in multi-label text categorization using Bagging and Adaptive Boosting," *2015 International Conference on Electrical Engineering and Informatics (ICEEI)*, 2015, pp. 500-505, doi: 10.1109/ICEEI.2015.7352552.
- 9. G. Chen, D. Ye, Z. Xing, J. Chen and E. Cambria, "Ensemble application of convolutional and recurrent neural networks for multi-label text categorization," 2017 International Joint Conference on Neural Networks (IJCNN), 2017, pp. 2377-2383, doi: 10.1109/IJCNN.2017.7966144.
- 10. Z. He, J. Wu and P. Lv, "Label correlation mixture model for multi-label text categorization," 2014 IEEE Spoken Language Technology Workshop (SLT), 2014, pp. 83-88, doi: 10.1109/SLT.2014.7078554.
- 11. https://towardsdatascience.com/multi-label-text-classification-with-scikit-learn-30714b7819c5
- 12. https://www.section.io/engineering-education/multi-label-classification-with-scikit-multilearn/
- 13. https://www.coursera.org/learn/classification-vector-spaces-in-nlp?action=enroll
- 14. https://www.geeksforgeeks.org/understanding-tf-idf-term-frequency-inverse-document-frequency/
- 15. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
- 16. https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
- 17. https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html