2/85

$$\Rightarrow \Upsilon(s) = \left(a \cos \frac{s}{\sqrt{a+b}}, a \cos h \frac{s}{\sqrt{a+b}}, \frac{b}{\sqrt{a+b}} \right)$$

but
$$a + (s) := x'(s) = \left(-\frac{a}{c} \sin \frac{s}{c}, a \cos \frac{s}{c}, \frac{b}{c}\right)$$

$$\pm 15) := 3'(5) = \left(-\frac{a}{c^2}\cos\frac{5}{c}, -\frac{a}{c^2}\sin\frac{5}{c}, 0\right)$$

$$\Delta P \left\{ \lambda d \overline{p} \left[k(s) = |\dot{t}(s)| = \frac{a^{\circ}}{c^{2}} = \frac{a}{\alpha^{2} + b^{\circ}} \right]$$

$$6 + i \pm 6 = (-\cos \frac{5}{c}, -\sin \frac{5}{c}, 0)$$

$$= \left(\frac{b}{c} \operatorname{Sih} \left\{ \frac{c}{c}, -\frac{b}{c} \cos \left\{ \frac{c}{c}, \frac{a}{c} \right\} \right)$$

$$b(s) = \left(\frac{b}{c^2}\cos\frac{s}{c}, \frac{b}{c^2}\sin\frac{s}{c}, o\right) = -\frac{b}{c^2}n(s)$$

	16
$t_{\alpha}(\xi_{\alpha}) = \langle \xi_{\alpha}(\xi_{\alpha}) \rangle = \langle \xi_{\alpha}(\xi_{\alpha}) \rangle$	$n > \frac{a}{a^2 + b^2} sgn(b) \frac{a}{a^2 + b^2}$
(3) 8 是 121 00 12.	
(3) 8名12110012. 国为了的21000000000000000000000000000000000000	=0.
' 1 0	

4 11 10 40 4 3 1 3 4 5 1 1	
4. (1) 後西西山主西草为 k, k,	
10 10 30 10 10 10 10 10 10 10 10 10 10 10 10 10	
$k_0 + k_1 + k_2 = k_1 \cdot (-k_1) = -k_1^2 \le 0$	*************
(2) Offece 4 \$ x2F to kike = 0 B ki+ke	= 0
ta 2p k = k2 = 0	
极地的人主情点地面。	
田メるめとサイントでとりコレストナイル	7
国为全局发展的为了面积和面积,在我的	へそから,
地面是平面.	
***************************************	•••••••

5. (1)
$$W(r_{0}) = -n_{y}$$
 $W(r_{0}) = -n_{0}$

12) y_{0} W for $\{r_{0}, r_{0}\}$ $F \approx x_{0}^{2} x_{0}^{2} + x_$