Automatizační cvičení

A4	304. PLC s OP – Sekvenční elektropneumatika			
Vít Petřík		1/7	Známka:	
12. 2. 2020	19. 2. 2020		Odevzdáno:	

Zadání:

Navrhněte program, který bude ovládat pneupohony podle zadaných harmonogramů.

Ideové schéma

Harmonogram a)

Harmonogram b)

	a1				
I ^	aı				
^	-0				
	a0				
	b1				
_D	DI				
B					
	b0				

Harmonogram c)

Postup:

- 1. Sériovým komunikačním kabelem propojíme operátorský panel (OP) Magelis s počítačem.
- 2. V programu XBT-L1000 vytvoříme konfigurační program pro OP.
- 3. Uložíme program a nahrajeme jej do OP.
- 4. Komunikačním kabelem nyní propojíme PC a PLC.
- 5. V programu PL7 Junior sestavíme program pro ovládání pneumatických aktuátorů podle zadaných harmonogramů.
- 6. Program nahrajeme do PLC TSX Micro 3722.
- 7. Otestujeme program.

Nastavení OP:

n+0	Function Keys	$XBT \rightarrow PLC$
n+1	Number of page to be processed	$XBT \leftrightarrow PLC$
n+2	LEDs command	$XBT \leftarrow PLC$

Stránky panelu:

Stránka 1: F1=HARM1 F2=HARM2

F3=HARM3

Stránka 2: F2=pokracuj F3=pauza

F4=zastav

Konfigurace PLC

Tabulka proměnných

Proměnná	Význam
MW0	Index enumerated listu
MW100	F klávesy
MW101	Stránka k zobrazení
Q2.1	Pohon A
Q2.3	Pohon B
Q2.5	Pohon C+
Q2.8	Pohon C-
Q2.9	Pohon D

Výpis programu grafcet

Jazyk LD

Step 0 – action on activation (nastavení zobrazené stránky)

Step 0 – continuous action (zasunutí všech pohonů)

Podmínka přechodu do harmonogramu (n => číslo harmonogramu)

1. step harmonogramu – action on activation (nastavení zobrazené stránky)

Continuous action každého stepu harmonogramu (zapnutí pohonu, n => bit pohonu)

Podmínka přechodu uvnitř harmonogramu (počkání na spínač, n => bit spínače)

Závěr

Střední průmyslová škola a Vyšší odborná škola, Chomutov, Školní 50, příspěvková organizace

Úlohu se mi bohužel nepodařilo splnit na 100%. chyběla mi funkce pozastavení a zastavení. Nevěděl jsem totiž, jak přesně udělat syntaxi paralelního zpracovávání stavů.

Zároveň mi i trochu mrzí, že s PLCčkem nejde udělat něco lepšího, minimálně tedy v LD ne. Moje představa je, že by na začátku programu byl deklarován textový řetězec obsahující definici harmonogramu tak jak je v zadání. Program by tento text zpracoval a podle něj ovládal pohony. Harmonogram by tedy nebyl hard-coded v programu ale dalo by se jej jednoduše měnit v programu, nebo třeba i přes HMI.

Jsem si jist, že bych daný program dokázal naprogramovat v klasickém jazyku jako je C++, python, Java. Ale v ladderu si nejsem jist zdali by něco takového bylo možné. Možná by se tento program dal naprogramovat v jazyku ST, ale bylo by to o hodně pracnější jak normální programovací jazyk.