1. $X = \{a,b,c\}$ とする. 以下で定める $\mathcal O$ に対して $(X,\mathcal O)$ は全て位相空間ではない. その理由をそれぞれ説明せよ.

(a) $\mathcal{O} = \{\{a\}, \{b\}, \{a, b\}\}.$

(解答例)

 $\emptyset \notin \mathcal{O}$ である. $X \notin \mathcal{O}$ である. 等.

(b) $\mathcal{O} = \{\emptyset, \{a, b\}, \{a, c\}, X\}.$

(解答例)

 $\{a,b\},\{a,c\}\in\mathcal{O}$ であるが, $\{a,b\}\cap\{a,c\}=\{a\}\notin\mathcal{O}$ である.

(c) $\mathcal{O} = \{\emptyset, \{a\}, \{b\}, X\}.$

 $\{a\},\{b\}\in\mathcal{O}$ であるが, $\{a\}\cup\{b\}=\{a,b\}\notin\mathcal{O}$ である.

2. $X=\{a,b,c\}$ に対して、 $\mathcal{O}=\{\varnothing,\{a\},\{a,b\},\{a,c\},X\}$ とする. このとき (X,\mathcal{O}) が位相空間であることを、以下の表を完成させた上で説明せよ.

(解答例)

Λ	Ø	$\{a\}$	$\{a,b\}$	$\{a,c\}$	X
Ø	Ø	Ø	Ø	Ø	Ø
<i>{a}</i>	Ø	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
$\{a,b\}$	Ø	<i>{a}</i>	$\{a,b\}$	$\{a\}$	$\{a,b\}$
$\{a,c\}$	Ø	<i>{a}</i>	$\{a\}$	$\{a,c\}$	$\{a,c\}$
X	Ø	$\{a\}$	$\{a,b\}$	$\{a,c\}$	X
U	Ø	<i>{a}</i>	$\{a,b\}$	$\{a,c\}$	X
Ø	Ø	$\{a\}$	$\{a,b\}$	$\{a,c\}$	X
$\{a\}$	$\{a\}$	$\{a\}$	$\{a,b\}$	$\{a,c\}$	X
$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	X	X
$\{a,c\}$	$\{a,c\}$	$\{a,c\}$	X	$\{a,c\}$	X
X	X	X	X	X	X

二つの表の全ての要素がOに属していることが見てとれる。したがって(X,O)は位相空間である。