

Global Explanations with Decision Rules: a Co-learning Approach

Géraldin Nanfack, Paul Temple and Benoît Frénay

PReCISE Research Center, Namur Digital Institute (NADI), University of Namur, Belgium

Introduction

- Medical or justice models may require models to provide explanations for their predictions
- Interpretable decision lists and trees exist but in practice, more powerful models like deep networks perform well even for tabular data [1]
- Post-hoc explainability methods exist but there are little guarantees that explanations accurately reflect knowledge learned by the black-box model
- Recent works have proposed to regularise black-box models for explainability but they require prior knowledge

Our Approach

The Soft Truncated Gaussian Mixture Analysis (STruGMA) is a differentiable probabilistic model designed to embed a set of hyper-rectangle rules.

- Given a black-box model, we aim to learn global decision rule explanations that reflect knowledge embedded in the black-box model.
- We propose to co-learn the black-box model and STruGMA and show that thanks to co-learning (i) the black-box model becomes easier to explain and (ii) remains competitive in terms of accuracy.

Figure: A soft Truncated Gaussian Distribution

$$p\left(\boldsymbol{x}|z=k;\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k},\boldsymbol{\alpha}^{(1)},\boldsymbol{\alpha}^{(2)}\right) \approx \frac{\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})}{\int_{\boldsymbol{\alpha}_{k}^{(1)}}^{\boldsymbol{\alpha}_{k}^{(2)}} \mathcal{N}(\boldsymbol{t};\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})d\boldsymbol{t}} \qquad \text{m}$$

$$\prod_{d=1}^{D} \sigma_{\eta}\left(x_{d} - \alpha_{kd}^{(1)}\right) \left(1 - \sigma_{\eta}\left(x_{d} - \alpha_{kd}^{(2)}\right)\right),$$

The Co-learning Framework

Figure: Left: the black-box model, right: STruGMA

 $\lambda^* \times \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) + (1 - \lambda^*) \times D_{\mathrm{KL}}(p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\beta})||p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\theta})),$ where $D_{\mathrm{KL}}(p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\beta})||p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\theta})) =$ $\mathbb{E}_{\boldsymbol{x} \sim p(\mathbf{x}; \boldsymbol{\beta})}[D_{\mathrm{KL}}(p(\mathbf{Y}|\boldsymbol{x}; \boldsymbol{\beta})||p(\mathbf{Y}|\boldsymbol{x}; \boldsymbol{\theta}))]$ $\approx \frac{1}{N_s} \sum_{i=1}^{N_s} \sum_{c=1}^{C} p(y = c|\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) \log \frac{p(y = c|\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})}{p(y = c|\hat{\boldsymbol{x}}_i; \boldsymbol{\theta})},$

Learning the black-box model

 $\mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ is the cross-entropy loss and using the multiple gradient descent algorithm (MGDA)[2, 3]

multiple gradient descent algorithm (MGDA)[2, 3]
$$\lambda^* = \underset{\lambda}{\operatorname{argmin}} \left| \lambda \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) + (1 - \lambda) \nabla_{\boldsymbol{\theta}} D_{\mathrm{KL}} (p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\beta}) || p(\mathbf{Y}|\mathbf{X}; \boldsymbol{\theta})) \right|$$

Learning STruGMA

STruGMA is learned using the EM algorithm with challenges that we solved, namely:

- No closed-form solution: gradient descent in M-Step
- Hard constraints $\boldsymbol{\alpha}^{(1)} < \boldsymbol{\alpha}^{(2)}$: projected gradient
- Overlapping rules: simple yet effective heuristic to enforce the constraint:

$$\max_{d} \left(\left| \frac{1}{2} \left(\alpha_{id}^{(1)} + \alpha_{id}^{(2)} \right) - \frac{1}{2} \left(\alpha_{jd}^{(1)} + \alpha_{jd}^{(2)} \right) \right| - \frac{1}{2} \left(\alpha_{id}^{(2)} - \alpha_{id}^{(1)} \right) - \frac{1}{2} \left(\alpha_{jd}^{(2)} - \alpha_{jd}^{(1)} \right) \right) \ge 0.$$

Finally, we use **knowledge distillation** so that STruGMA globally explains the black-box model.

• Fidelity is improved thanks to co-learning

Table: TreeExplainer is the baseline and TreeCoExplainerHR and TreeCoExplainerBB are ours.

Results

	TreeEx-	TreeCoEx-	TreeCoEx-
Dataset	plainer	plainerHR	plainerBB
Bank	95.97 (0.74)	96.18 (0.63)	96.49 (0.89)
Credit	77.3 (3.47)	81.25 (3.47)	81.5 (3.43)
Ionosphere	87.32 (3.25)	90.28 (3.42)	88.87 (5.69)
Gamma	93.31 (2.08)	93.15 (0.85)	95.6 (0.36)
Pima	88.44 (2.41)	88.9(1.35)	92.01(3.24)
Waveform	80.26 (1.53)	80.52 (1.87)	80.86 (1.28)
Wine	89.17 (4.62)	92.78 (4.93)	89.72 (2.64)

• Model's accuracy is little impacted $(\pm 2\%)$

Table: Predictive accuracy of co-learned black-box models (coBB) and black-box models without co-learning (BB).

Dataset coBB	BB
Bank 90.68 (0.77)	90.99 (0.84)
Credit 75.65 (3.88)	74.75 (3.5)
Ionosphere 90.98 (3.88)	90.56 (3.45)
Gamma $80.57 (0.49)$	82.79 (2.53)
Pima $73.12 (2.31)$	75.39 (1.77)
Waveform $85.97 (0.87)$	86.15(0.7)
Wine $96.94 (2.43)$	97.5 (2.05)

And the co-learned black-box model continues to be competitive

Table: Predictive accuracy of co-learned black-box models (coBB) and decision trees (DT).

Dataset	coBB	DT
	90.68 (0.77)	
	75.65 (3.88)	
Ionosphere	90.98 (3.88)	90.28 (4.43)
Gamma	80.57 (0.49)	82.72 (0.43)
Pima	73.12 (2.31)	72.02 (2.59)
Waveform	85.97 (0.87)	75.24 (1.23)
Wine	96.94 (2.43)	87.78 (4.93)

References

- [1] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
 Self-normalizing neural networks.
 In *ICLR*, 2017.
- [2] Ozan Sener and Vladlen Koltun.

 Multi-task learning as multi-objective optimization.

 In *Neurips*, 2018.
- [3] Jean-Antoine Désidéri.

 Multiple-Gradient Descent Algorithm (MGDA).

 PhD thesis, INRIA, 2009.