Accredited Standards Committee X9
Title: X9-Financial Services

Accredited by the

American National Standards Institute

Working Draft

AMERICAN NATIONAL STANDARD X9.62-199x, Public Key Cryptography For The Financial Services Industry:

The Elliptic Curve Digital Signature Algorithm (ECDSA)[©]

Notice -- This document is a draft document. It has not yet been processed through the consensus procedures of X9 and ANSI.

Many changes which may greatly affect its contents can occur before this document is completed. The working group may not be held responsible for the contents of this document.

Implementation or design based on this draft is at the risk of the user. No advertisement or citation implying compliance with a "Standard" should appear as it is erroneous and misleading to so state.

Copies of the draft proposed American National Standard will be available from the X9 Secretariat when the document is finally announced for two months public comment. Notice of this announcement will be in the trade press.

Secretariat: American Bankers Association Standards Department 1120 Connecticut Ave., N.W. Washington, DC 20036

© 1992 American Bankers Association
All rights reserved

	2	
-		-

Foreword (Informative)

Business practice has changed with the introduction of computer-based technologies. The substitution of electronic transactions for their paper-based predecessors has reduced costs and improved efficiency. Trillions of dollars in funds and securities are transferred daily by telephone, wire services, and other electronic communication mechanisms. The high value or sheer volume of such transactions within an open environment exposes the financial community and its customers to potentially severe risks from accidental or deliberate alteration, substitution or destruction of data. This risk is compounded by interconnected networks, and the increased number and sophistication of malicious adversaries.

Some of the conventional "due care" controls used with paper-based transactions are unavailable in electronic transactions. Examples of such controls are safety paper which protects integrity, and handwritten signatures or embossed seals which indicate the intent of the originator to be legally bound. In an electronic-based environment, controls must be in place that provide the same degree of assurance and certainty as in a paper environment. The financial community is responding to these needs.

This Standard, X9.62-199x, *Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)*, defines a technique for generating and validating digital signatures. This standard describes a method for digital signatures using the elliptic curve analog of the Digital Signature Algorithm (DSA) (ANSI X9.30-1).

Elliptic curve systems are public-key (asymmetric) cryptographic algorithms that are typically used:

- to create digital signatures (in conjunction with a hash algorithm), and
- to establish secret keys securely for use in symmetric-key cryptosystems.

The primary advantage of elliptic curve systems is their apparent high cryptographic strength relative to key size. The attractiveness of elliptic curve cryptosystems may increase relative to other public-key cryptosystems as computing power improvements warrant a general increase in key size. The shorter key sizes may result in significantly shorter certificates and system parameters. These potential advantages manifest themselves in many ways, including storage efficiencies, bandwidth savings, and computational efficiencies. The computational efficiencies may lead in turn to higher speeds, power efficiency, code size reductions, or a combination thereof. These potential efficiencies are particularly beneficial in applications such as:

- high volume transaction systems,
- * wireless communications,
- * hand-held computing (e.g., personal digital assistants),
- * broadcast communications, and
- smart cards.

where bandwidth, processing capacity, power availability or storage are constrained.

When implemented with proper controls, the techniques of this Standard provide:

- data integrity, and
- * non-repudiation of the message origin and the message contents.

Additionally, when used in conjunction with a Message Identifier¹, the techniques of this Standard provide the capability of detecting duplicate transactions. It is the Committee's belief that the proper implementation of this Standard should also contribute to the enforceability of some legal obligations.

The use of this Standard, together with appropriate controls, may have a legal effect, including the apportionment of liability for erroneous or fraudulent transactions and the satisfaction of statutory or contractual "due care" requirements. The legal implications associated with the use of this Standard may be affected by case law and legislation, including the Uniform Commercial Code Article 4A on Funds Transfers (Article 4A).

The details of Article 4A address, in part, the use of commercially reasonable security procedures and the effect of using such procedures on the apportionment of liability between a customer and a bank. A security procedure is provided by Article 4A-201 "for the purpose of (i) verifying that a payment order or communication amending or canceling a payment order originated is that of the customer, or (ii) detecting an error in the transmission or the content of the payment order or communication." The commercial reasonableness of a security procedure is determined by the criteria established in Article 4A-201.

While the techniques specified in this Standard are designed to maintain the integrity of financial messages and provide the service of non-repudiation, the Standard does not guarantee that a particular implementation is secure. It

_

¹ ANSI X9.9-1986, Financial Institution Message Authentication (Wholesale).

is the responsibility of the financial institution to put an overall process in place with the necessary controls to ensure that the process is securely implemented. Furthermore, the controls should include the application of appropriate audit tests in order to verify compliance with this Standard.

Suggestions for the improvement or revision of this Standard are welcome. They should be sent to the X9 Committee Secretariat, American Bankers Association, 1120 Connecticut Avenue, N.W., Washington D.C. 20036.

This Standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on Financial Services, X9. Committee approval of the Standard does not necessarily imply that all the committee members voted for its approval. At the time that this Standard was approved, the X9 Committee had the following members:

Harold Deal, Chairman Alice Droogan, Vice Chairman Cynthia Fuller, Secretariat

Organization Represented Representative

[to be furnished]

The X9F subcommittee on Data and Information Security had the following members:

Glenda Barnes, Chairman

Organization Represented Representative

[to be furnished]

The X9F1 working group which developed this standard had the following members:

M. Blake Greenlee, Chairman

Organization Represented Representative

[to be furnished]

Contents

1.	. SCOPE	1
2.	. DEFINITIONS, ABBREVIATIONS, SYMBOLS AND NOTATION	1
	2.1. Definitions and Abbreviations	
	2.1. DEFINITIONS AND ABBREVIATIONS	
3.	. APPLICATION	6
	3.1. General	
	3.2. THE USE OF THE ECDSA ALGORITHM	
	3.3. CONTROL OF KEYING MATERIAL	
	3.4. APPENDICES	7
4.	MATHEMATICAL CONVENTIONS	8
	4.1. FINITE FIELD ARITHMETIC	8
	4.1.1. The Finite Field F_p	8
	4.1.2. The Finite Field F_{2m}	8
	4.1.3. Trinomial and Pentanomial Basis Representation	8
	4.1.4. Optimal Normal Basis Representation	9
	4.1.5. Fields F _{2^m} Having Both ONB and TPB	10
	4.2. Data Representation.	
	4.2.1. Integer-to-Octet-String Conversion	
	4.2.2. Octet-String-to-Integer Conversion	
	4.3. FINITE FIELD ELEMENT REPRESENTATIONS	
	4.3.1. Field-Element-to-Octet-String Conversion	
	4.3.2. Octet-String-to-Field-Element Conversion	
	4.3.3. Field-Element-to-Integer Conversion 4.4. ELLIPTIC CURVE POINT REPRESENTATIONS	
	4.4.1. Point Compression Technique	
	4.4.2. Conversions	
_		
5.		
	5.1. ELLIPTIC CURVE PARAMETER GENERATION AND VALIDATION	
	5.1.1. Elliptic Curve Parameters and their Validation Over F_p	
	5.1.2. Elliptic Curve Parameters and their Validation Over F_{2^m}	
	5.2. KEY GENERATION AND VALIDATION	
	5.2.1. Key Generation	
	5.2.2. Key Validation	
	5.3. SIGNATURE GENERATION	
	5.3.2. Elliptic Curve Computations	
	5.3.3. Modular Computations	
	5.3.4. The Signature	
	5.4. SIGNATURE VERIFICATION	
	5.4.1. Message Digesting	
	5.4.2. Elliptic Curve Computations	
	5.4.3. Signature Checking	
6.	. ASN.1 SYNTAX	18
	6.1. SYNTAX FOR FINITE FIELD IDENTIFICATION	18
	6.2. SYNTAX FOR FINITE FIELD ELEMENTS AND ELLIPTIC CURVE POINTS	
	6.3. SYNTAX FOR ELLIPTIC CURVE PARAMETERS	

6.4. SYNTAX FOR PUBLIC KEYS	21
7. REFERENCES	22
APPENDIX A AN OVERVIEW OF ELLIPTIC CURVE SYSTEMS	25
APPENDIX B THE ELLIPTIC CURVE ANALOG OF THE DSA (ECDSA)	26
APPENDIX C MATHEMATICAL BACKGROUND	28
C.1. The Finite Field F_P	28
C.2. The Finite Field F_{2^M}	28
C.2.1. Polynomial Bases	29
C.2.2. Trinomial and Pentanomial Bases	
C.2.3. Normal Bases	
C.2.4. Optimal Normal Bases	
C.3. ELLIPTIC CURVES OVER F_p	
C.4. ELLIPTIC CURVES OVER F_{2^M}	
APPENDIX D SECURITY CONSIDERATIONS	37
D.1. THE ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM	37
D.2. SOFTWARE ATTACKS	
D.3. HARDWARE ATTACKS	
D.4. KEY LENGTH CONSIDERATIONS	
D.5. VAUDENAY'S ATTACK	
D.6. SYSTEM PARAMETER GENERATION DECISIONS	
D.7. REPEATED CRYPTOVARIABLES	
D.8. ATTACKS ON THE HASH FUNCTION	
APPENDIX E TABLES OF TRINOMIALS, PENTANOMIALS, AND OPTIMAL NO	
E.1. TABLE OF FIELDS F_{2^M} WHICH HAVE AN ONB	
E.2. IRREDUCIBLE TRINOMIALS OVER F_2	
E.3. IRREDUCIBLE PENTANOMIALS OVER F_2	
E.4. TABLE OF FIELDS F_{2^M} WHICH HAVE BOTH AN ONB AND A TPB OVER F_2	
APPENDIX F NORMATIVE NUMBER-THEORETIC ALGORITHMS	
F.1. AVOIDING CRYPTOGRAPHICALLY WEAK CURVES	
F.1.1. The MOV Condition	
F.1.2. The Anomalous Condition	
F.2. PRIMALITY	
F.2.1. A Probabilistic Primality Test	
F.2.2. Checking for Near Primality F.2.3. A Deterministic Primality Test	
F.3. ELLIPTIC CURVE ALGORITHMS	
F.3.1. Finding a Point of Large Prime Order	
F.3.2. Selecting an Appropriate Curve and Point	
F.3.3. Selecting an Elliptic Curve Verifiably at Random	
F.3.4. Verifying that an Elliptic Curve was Generated at Random	
F.4. PSEUDORANDOM NUMBER GENERATION	
F.4.1. Algorithm Derived from FIPS 186	
F.4.2 Algorithm from ANSI X9.17	
APPENDIX G INFORMATIVE NUMBER-THEORETIC ALGORITHMS	
G.1. FINITE FIELDS AND MODULAR ARITHMETIC	60

G.	1.1. Exponentiation in a Finite Field	60
G.	1.2. Inversion in a Finite Field	60
G.	1.3. Generating Lucas Sequences	60
G.	1.4. Finding Square Roots Modulo a Prime	
G.	1.5. Trace and Half-Trace Functions	61
G.	1.6. Solving Quadratic Equations over F _{2m}	62
G.	1.7. Checking the Order of an Integer Modulo a Prime	63
G.	1.8. Checking the Existence of an Optimal Normal Basis	
G.2.	POLYNOMIALS OVER A FINITE FIELD	63
G.	2.1. GCD's over a Finite Field	63
G.	2.2. Finding a Root in F ₂ ^m of an Irreducible Binary Polynomial	64
G.	2.3. Change of Basis	
G.	2.4. Checking Polynomials over F ₂ for Irreducibility	
G.3.	·	
G.	3.1. Finding a Point on an Elliptic Curve	66
G.	3.2. Computing a Multiple of an Elliptic Curve Point	
A DDENI	DIX H EXAMPLES OF ECDSA AND SAMPLE CURVES	
APPEN		
H.1.	Examples of Data Conversion Methods	68
H.2.	EXAMPLES OF ECDSA OVER THE FIELD F_{2^M}	71
Н.	2.1. An Example With m = 191 (trinomial basis)	71
Н.	2.2. An Example With m = 239 (trinomial basis)	
H.3.	EXAMPLES OF ECDSA OVER THE FIELD F_p	
H.	3.1. An Example With a 192-bit Prime p	76
H.	3.2. An Example With a 239-bit Prime p	<i>7</i> 8
H.4.	SAMPLE ELLIPTIC CURVES OVER THE FIELD F_{2^M}	81
Н.	4.1. 3 Examples With m = 163	81
Н.	4.2. Example With m = 176	82
Н.	4.3. 5 Examples With $m = 191$	
Н.	4.4. Example With $m = 208$	84
Н.	4.5. 5 Examples With $m = 239$	85
H.	4.6. Example With $m = 272$	87
Н.	4.7. Example With $m = 304$	87
Н.	4.8. Example With $m = 359$	88
Н.	4.9. Example With $m = 368$	88
H.	4.10. Example With m = 431	89
H.5.	1	
Н.	5.1. 3 Examples With a 192-bit Prime	89
H.	5.2. 3 Examples With a 239-bit Prime	
H.	5.3. 1 Example With a 256-bit Prime	92
APPEN	DIX I SMALL EXAMPLE OF THE ECDSA	94
I.1.	System Setup	0.4
I.2.	KEY GENERATION	
I.3.	SIGNATURE GENERATION FOR ECDSA.	
I.4.	SIGNATURE VERIFICATION FOR ECDSA.	

Figures

FIGURE 1 DATA TYPES AND CONVERSION CONVENTIONS.	11
Tables	
Tables	
TABLE B-1: DSA AND ECDSA GROUP INFORMATION	26
TABLE B-2: DSA AND ECDSA NOTATION	26
TABLE B-3: DSA AND ECDSA SETUP	27
TABLE B-4: DSA AND ECDSA KEY GENERATION	27
TABLE B-5: DSA AND ECDSA SIGNATURE GENERATION	
TABLE B-6: DSA AND ECDSA SIGNATURE VERIFICATION	27
Table E-1: Values of m , $160 \le m \le 2000$, for which the field F_{2^m} has an ONB over F_2	41
Table E-2: Irreducible trinomials $x^m + x^k + 1$ over F_2	42
TABLE E-3: IRREDUCIBLE PENTANOMIALS $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ over F_2	46
Table E-4: Values of m , $160 \le m \le 2000$, for which the field F_{2^m} has both an ONB and a TPB	OVER $F_2.52$

X9.62-199x

Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)

1. Scope

This Standard defines methods for digital signature (signature) generation and verification for the protection of messages and data using the Elliptic Curve Digital Signature Algorithm (ECDSA). The ECDSA shall be used in conjunction with the hash function defined in ANSI X9.30-1993, *Part* 2, *Secure Hash Algorithm (SHA-1)(revised)*. In addition, this ECDSA Standard provides the criteria for the generation of public and private keys that are required by the algorithm and the procedural controls required for the secure use of the algorithm.

2. Definitions, Abbreviations, Symbols and Notation

2.1. Definitions and Abbreviations

addition rule An addition rule describes the addition of two elliptic curve points P_1

and P_2 to produce a third elliptic curve point P_3 . (See Sections C.3 and

C.4.)

asymmetric A cryptographic algorithm that uses two related keys, a cryptographic public key and a private key; the two keys have the property

algorithm that, given the public key, it is computationally infeasible to derive the

private key.

basis A representation of the elements of the finite field F_{2m} . Two special

kinds of basis are polynomial basis and normal basis. (See Section

C.2.

binary polynomial A polynomial whose coefficients are in the field F_2 .

bit string is an ordered sequence of 0's and 1's.

certificate The public key and identity of an entity together with some other

information, rendered unforgeable by signing the certificate with the private key of the certifying authority which issued that certificate. In this Standard the term certificate shall mean a public-key certificate.

uns Standard the term certificate shan mean a public-key certific

Authority (CA) assign certificates.

Certification

characteristic 2 finite field A finite field containing 2^m elements, where $m \ge 1$ is an integer.

compressed form Octet string representation for a point using the point compression

technique described in Section 4.4.1. (See also Section 4.4.2.)

A Center trusted by one or more entities to create and

cryptographic hash A (mathematical) function which maps values from a large (possibly

very large) domain into a smaller range. The function satisfies the

following properties:

1. it is computationally infeasible to find any input which maps to

any pre-specified output;

2. it is computationally infeasible to find any two distinct inputs

which map to the same output.

cryptographic key (key) A parameter that determines the operation of a cryptographic function

such as:

- 1. the transformation from plaintext to ciphertext and vice versa,
- 2. the synchronized generation of keying material,
- 3. a digital signature computation or validation.

cryptography

The discipline which embodies principles, means and methods for the transformation of data in order to hide its information content, prevent its undetected modification, prevent its unauthorized use, or a combination thereof.

cryptoperiod

The time span during which a specific key is authorized for use or in which the keys for a given system may remain in effect.

digital signature

The result of a cryptographic transformation of data which, when properly implemented, provides the services of:

- 1. origin authentication,
- 2. data integrity, and
- 3. signer non-repudiation.

EC

Elliptic curve.

ECDSA

Elliptic curve analog of the Digital Signature Algorithm (DSA) (ANSI X9.30, Part 1).

elliptic curve

An *elliptic curve* is a set of points specified by 2 parameters a and b, which are elements of a field F_q . The elliptic curve is said to be defined over F_a ; F_a is sometimes called the *underlying field*.

If q = p is an odd prime, p > 3, (so the field is F_p), then the Weierstrass equation defining the curve is of the form $y^2 = x^3 + ax + b$, where $((4a^3 + 27b^2) \mod p) \neq 0$. If q is a power of 2 (so the field is F_{2^m}), then the Weierstrass equation defining the curve is of the form $y^2 + xy = x^3 + ax^2 + b$, where $b \neq 0$.

elliptic curve key pair

Given particular elliptic curve parameters, an *elliptic curve key pair* consists of an elliptic curve private key and the corresponding elliptic curve public key.

elliptic curve private key

Given particular elliptic curve parameters, an *elliptic curve private key*, d, is a statistically unique and unpredictable integer in the interval [1, n-1], where n is the prime order of the base point P.

elliptic curve public key

Given particular elliptic curve parameters, and an elliptic curve private key d, the corresponding *elliptic curve public key*, Q, is the elliptic curve point Q = dP, where P is the base point. Note that Q will never equal O, since $1 \le d \le n - 1$.

elliptic curve parameters

These parameters specify an underlying field F_q , the equation of an elliptic curve over F_q , an elliptic curve point P of prime order, the order n of P, and the cofactor h. (See Section 5.1.)

elliptic curve point

If E is an elliptic curve defined over a field F_q , then an *elliptic curve* point P is either:

1. a pair of field elements (x_P, y_P) (where $x_P, y_P \in F_q$) such that the values $x = x_P$ and $y = y_P$ satisfy the equation defining E, or

2. a special point of called the *point at infinity*.

hash value The result of applying a cryptographic hash function to a message.

hybrid form Octet string representation for both the compressed and uncompressed

forms of an elliptic curve point. (See Section 4.4.2.)

irreducible polynomial A binary polynomial f(x) is *irreducible* if it does not factor as a product

of two binary polynomials, each of degree less than the degree of f(x).

key See cryptographic key.

keying material The data (e.g., keys, certificates and initialization vectors) necessary to

establish and maintain cryptographic keying relationships.

message The data to be signed.

message identifier (MID) A field which may be used to identify a message. Typically, this field is

a sequence number.

non-repudiation This service provides proof of the integrity and origin of data which can

be verified by a third party.

normal basis (NB) A type of basis that can be used to represent the elements of the finite

field F_{2^m} . (See Section C.2.3.)

octet An *octet* is a bit string of length 8. An octet is represented by a

hexadecimal string of length 2. The first hexadecimal digit represents the four leftmost bits of the octet, and the second hexadecimal digit represents the four rightmost bits of the octet. For example, 9D represents the bit string 10011101. An octet also represents an integer in the interval [0, 255]. For example, 9D represents the integer 157.

octet string An octet string is an ordered sequence of octets.

optimal normal basis A type of normal basis that can be used to represent the

(ONB) elements of the finite field F_{2m} . (See Section C.2.4.)

order of a curve The order of an elliptic curve E defined over the field F_q is the number

of points on E, including \mathcal{O} . This is denoted by $\#E(F_q)$.

order of a point The *order of a point P* is the smallest positive integer n such that nP =

O (the point at infinity).

owner The entity whose identity is associated with a private/public key pair.

pentanomial A polynomial of the form $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, where

 $1 \le k_1 < k_2 < k_3 \le m - 1.$

pentanomial basis (PPB) A type of polynomial basis that can be used to represent the elements of

the finite field F_{2^m} . (See Section C.2.2.)

point compression Let P be a point (x_P, y_P) on an elliptic curve E defined over a field F_q .

Point compression allows the point P to be represented using x_P and a single additional bit \widetilde{y}_P derived from x_P and y_P . If q is a prime number, then \widetilde{y}_P is equal to the rightmost bit of y_P . If q is a power of 2, then \widetilde{y}_P

	is 0 if $x_P = 0$; if $x_P \neq 0$, then \widetilde{y}_P is equal to the rightmost bit of the field element $y_P \cdot x_P^{-1}$. The point compression technique is described in Section 4.4.1.
point compression octet (PC)	The rightmost bit of PC shall be equal to the value of \tilde{y}_P if the compressed or hybrid forms are used; otherwise it shall be 0. The second and third rightmost bits shall (respectively) be 1 and 0 if the compressed form is used. The second and third rightmost bits shall (respectively) be 0 and 1 if the uncompressed form is used. The second and third rightmost bits shall (respectively) be 1 and 1 if the hybrid form is used. The three rightmost bits shall be 0 to indicate the point at infinity.
	The remaining five bits of the octet shall be set to 0.
polynomial basis (PB)	A type of basis that can be used to represent the elements of the finite field F_{2^m} . (See Section C.2.1.)
prime finite field	A finite field containing p elements, where p is an odd prime number.
private key	In an asymmetric (public) key system, that key of an entity's key pair which is known only by that entity.
public key	In an asymmetric key system, that key of an entity's key pair which is publicly known.
reduction polynomial	The irreducible binary polynomial $f(x)$ of degree m that is used to determine a polynomial basis representation of F_{2^m} .
scalar multiplication	If k is a positive integer, then kP denotes the point obtained by adding together k copies of the point P . The process of computing kP from P and k is called <i>scalar multiplication</i> .
The Secure Hash Algorithm, Revision 1 (SHA-1)	SHA-1 implements a hash function which maps messages of a length less than 2^{64} bits to hash values of a length which is exactly 160 bits.
signatory	The entity that generates a digital signature on data.
statistically unique	For the generation of n -bit quantities, the probability of two values repeating is less than or equal to the probability of two n -bit random quantities repeating.
trinomial	A polynomial of the form $x^m + x^k + 1$, where $1 \le k \le m - 1$.
trinomial basis (TPB)	A type of polynomial basis that can be used to represent the elements of the finite field F_{2^m} . (See Section C.2.2.)
uncompressed form	Octet string representation for an uncompressed elliptic curve point. (See Section 4.4.2.)
verifier	The entity that verifies the authenticity of a digital signature.
x-coordinate	The <i>x-coordinate</i> of an elliptic curve point, $P = (x_P, y_P)$, is x_P .

y-coordinate

The *y-coordinate* of an elliptic curve point,

$$P = (x_P, y_P)$$
, is y_P .

2.2. Symbols and Notation

[a, b] The interval of integers between and including a and b.

Ceiling: the smallest integer $\geq a$. For example, $\lceil 5 \rceil = 5$ and $\lceil 5.3 \rceil = 6$.

Floor: the largest integer $\leq a$. For example, |5| = 5 and |5.3| = 5.

a mod n The unique remainder $r, 0 \le r \le n - 1$, when integer a is divided by n. For example, 23

mod 7 = 2.

B MOV threshold. A positive integer B such that taking discrete logarithms over F_{qB} is at

least as difficult as taking elliptic curve logarithms over F_q . For this Standard, B shall be

 \geq 20.

d EC private key.

E An elliptic curve.

 $E(F_q)$ The set of all points on an elliptic curve E defined over F_q and including the point at

infinity 0.

 $\#E(F_a)$ If E is defined over F_a , then $\#E(F_a)$ denotes the number of points on the curve (including

the point at infinity \mathcal{O}). $\#E(F_a)$ is called the order of the curve E.

 F_{2^m} The finite field containing 2^m elements, where m is a positive integer.

 F_p The finite field containing p elements, where p is a prime.

 F_q The finite field containing q elements. For this Standard, q shall either be an odd prime

number (p) or a power of $2(2^m)$.

 $h = \#E(F_q)/n$, where n is the order of the base point P. h is called the *cofactor*.

k Per-message secret value. For this Standard, k shall be a statistically unique and

unpredictable integer in the interval [1, n-1].

The length of a field element in octets; $l = \lceil t / 8 \rceil$.

 l_{max} Upper bound on the largest prime divisor of the cofactor h.

 $\log_2 x$ The logarithm of x to the base 2.

m The *degree* of the finite field F_{2^m} .

M Message to be signed.

M' Message as received.

MID Message Identifier.

mod	modulo.
$\mod n$	arithmetic modulo n .
n	The order of the point P . For this Standard, n shall be a prime number. n is the primary security parameter. In general, as n increases, the security of ECDSA also increases. See Appendix D for more information.
0	A special point on an elliptic curve, called the point at infinity. This is the additive identity of the elliptic curve group.
p	An odd prime number.
P	A distinguished point (x_P, y_P) on an elliptic curve called the <i>base point</i> .
Q	EC public key.
r_{min}	Lower bound on the desired (prime) order n of the base point P . For this Standard r_{min} shall be $>2^{160}$.
t	The length of a field element in bits; $t = \lceil \log_2 q \rceil$. In particular, if $q = 2^m$, then a field element in F_{2^m} can be represented as a bit string of bit length $t = m$.
T	In the probabilistic primality test (Section F.2.1), the number of independent test rounds to execute. For this Standard T shall be ≥ 50 .
Tr	Trace function. (See Section G.1.5.)
X	Length in octets of the octet string X .
X Y	Concatenation of two strings <i>X</i> and <i>Y</i> . <i>X</i> and <i>Y</i> are either both bit strings, or both octet strings.
$X \oplus Y$	Bitwise exclusive-or of two bit strings <i>X</i> and <i>Y</i> of the same bit length.
$\widetilde{\mathcal{Y}}_P$	The representation of the y-coordinate of a point P when point compression is used.
Z_p	The set of integers modulo p , where p is an odd prime number.

3. Application

3.1. General

When information is transmitted from one party to another, the recipient may desire to know that the information has not been altered in transit. Furthermore, the recipient may wish to be certain of the originator's identity. Both of these services can be provided through the appropriate use of the ECDSA.

A digital signature is an electronic analog to a written signature and may be used in proving to a third party that the information was, in fact, signed by the claimed originator. Unlike their written counterparts, digital signatures also verify the integrity of information. Digital signatures may also be generated for stored data and programs so that the integrity of the data and programs may be verified at any later time.

3.2. The Use of the ECDSA Algorithm

The ECDSA is used by a *signatory* to generate a digital signature on data and by a *verifier* to verify the authenticity of the signature. Each signatory has a public and private key. The private key is used in the signature generation process, and the public key is used in the signature verification process. For both signature generation and verification, the message, *M*, is compressed by means of the Secure Hash Algorithm (SHA) specified in ANSI X9.30-199x, *Part* 2, *Secure Hash Algorithm* (SHA-1) (*Revised*) prior to the signature generation and verification process. An adversary, who does not know the private key of the signatory, cannot generate the correct signature of the signatory. In other words, signatures cannot be forged. However, by using the signatory's public key, anyone can verify a validly signed message.

The user of the public key of a private/public key pair requires assurance that the public key represents the owner of that key pair. That is, there must be a binding of an owner's identity and the owner's public key. This binding may be certified by a mutually trusted party. This may be accomplished by using a Certification Authority which generates a certificate in accordance with ANSI X9.57, *Certificate Management*.

This Standard provides the capability of detecting duplicate messages and preventing the replay of messages when the signed message includes:

- 1. the identity of the intended recipient, and
- 2. a MID.

The MID shall not repeat during the cryptoperiod of the underlying private/public key pair. Appendix A of ANSI X9.9-1986 provides information on the use of unique MIDs.

3.3. Control of Keying Material

In the ECDSA asymmetric cryptographic system, the integrity of signed data is dependent upon:

- 1. the prevention of unauthorized disclosure, use, modification, substitution, insertion, and deletion of the private key, d, and the per-message value, k, and
- 2. the prevention of unauthorized modification, substitution, insertion, and deletion of elliptic curve parameters for the ECDSA computation procedures.

Therefore, if d is disclosed, the integrity of any message signed using that d can no longer be assured. Similarly, the values for the elliptic curve parameters must be protected.

3.4. Appendices

The Appendices to this Standard provide additional requirements and information on the ECDSA and its implementation.

Appendix	Contents	Normative (N) or Informative (I)
A	An Overview of Elliptic Curve Systems	I
В	The Elliptic Curve Analog of the DSA (ECDSA)	I
C	Mathematical Background	I
D	Security Considerations	I
E	Tables of Trinomials, Pentanomials and Optimal Normal Bases	I
F	Normative Number-Theoretic Algorithms	N
G	Informative Number-Theoretic Algorithms	I
Н	Examples of ECDSA and Sample Curves	I
I	Small Examples of the ECDSA	I

4. Mathematical Conventions

4.1. Finite Field Arithmetic

This section describes the representations that shall be used for the elements of the underlying finite field F_q . Implementations with different internal representations that produce equivalent results are allowed. Mathematics background and examples are provided in Appendix C.

4.1.1. The Finite Field F_p

The elements of the finite field F_p are the integers $\{0, 1, 2, ..., p - 1\}$.

- i) The multiplicative identity element is the integer 1.
- ii) The zero element is the integer 0.
- iii) Addition of field elements is performed modulo p.
- iv) Multiplication of field elements is performed modulo p.

4.1.2. The Finite Field F_{2m}

The elements of the finite field F_{2^m} are the bit strings of bit length m.

There are numerous methods for representing the elements of the finite field F_{2^m} . Two such methods are a polynomial basis (PB) representation (see Section C.2.1) and a normal basis (NB) representation (see Section C.2.3). A trinomial basis (TPB) and a pentanomial basis (PPB) are special types of polynomial bases; these bases are described in Section 4.1.3. An optimal normal basis (ONB) is a special type of normal basis; these bases are described in Section 4.1.4.

One of TPB, PPB, or ONB shall be used as the basis for representing the elements of the finite field F_{2^m} in implementing this Standard, as described in Sections 4.1.3 and 4.1.4. The choice of representation does not affect the security of the ECDSA. Section G.2.3 describes one method for converting the elements of F_{2^m} from one representation to another.

4.1.3. Trinomial and Pentanomial Basis Representation

A polynomial basis representation of F_{2^m} over F_2 is determined by an irreducible polynomial f(x) of degree m over F_2 ; f(x) is called the *reduction polynomial*. The set of polynomials $\{x^{m-1}, x^{m-2}, \dots, x, 1\}$ forms a basis of F_{2^m} over F_2 , called a *polynomial basis*. The elements of F_{2^m} are the bit strings of a bit length which is exactly m. A typical element $a \in F_{2^m}$ is represented by the bit string $a = (a_{m-1}a_{m-2} \dots a_1a_0)$, which corresponds to the polynomial $a(x) = a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_1x + a_0$.

- i) The multiplicative identity element (1) is represented by the bit string (00...001).
- ii) The zero element (0) is represented by the bit string of all 0's.
- iii) Addition of two field elements is accomplished by XORing the bit strings.

iv) Multiplication of field elements a and b is defined as follows. Let r(x) be the remainder polynomial obtained upon dividing the product of the polynomials a(x) and b(x) by f(x). Then $a \cdot b$ is defined to the bit string corresponding to the polynomial r(x).

See Section C.2.1 for further details and an example of a polynomial basis representation. A *trinomial* over F_2 is a polynomial of the form $x^m + x^k + 1$ where $1 \le k \le m - 1$. A *pentanomial* over F_2 is a polynomial of the form $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, where $1 \le k_1 < k_2 < k_3 \le m - 1$.

A trinomial basis representation of F_{2^m} is a polynomial basis representation determined by an irreducible trinomial $f(x) = x^m + x^k + 1$ of degree m over F_2 . Such trinomials only exist for certain values of m. Table E-2 in Appendix E lists an irreducible trinomial of degree m over F_2 for each m, $160 \le m \le 2000$, for which an irreducible trinomial of degree m exists. For each such m, the table lists the smallest k for which $x^m + x^k + 1$ is irreducible over F_2 .

A pentanomial basis representation of F_{2^m} is a polynomial basis representation determined by an irreducible pentanomial $f(x) = x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ of degree m over F_2 . Such pentanomials exist for all values of $m \ge 4$. Table E-3 in Appendix E lists an irreducible pentanomial of degree m over F_2 for each m, $160 \le m \le 2000$, for which an irreducible trinomial of degree m does not exist. For each such m, the table lists the triple (k_1, k_2, k_3) for which (i) $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ is irreducible over F_2 ; (ii) k_1 is as small as possible; (iii) for this particular value of k_1 , k_2 is as small as possible; and (iv) for these particular values of k_1 and k_2 , k_3 is as small as possible.

a. Rules for selecting a trinomial and pentanomial basis representation

- 1. If a polynomial basis representation is used for F_{2^m} where there exists an irreducible trinomial of degree m over F_2 , then the reduction polynomial shall be an irreducible trinomial of degree m over F_2 . To maximize the chances for interoperability, the reduction polynomial used should be $x^m + x^k + 1$ for the smallest possible k. Examples of such polynomials are given in Table E-2 in Appendix E.
- 2. If a polynomial basis representation is used for F_{2^m} where there does not exist an irreducible trinomial of degree m over F_2 , then the reduction polynomial shall be an irreducible pentanomial of degree m over F_2 . To maximize the chances for interoperability, the reduction polynomial used should be $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, where (i) k_1 is as small as possible; (ii) for this particular value of k_1 , k_2 is as small as possible; and (iii) for these particular values of k_1 and k_2 , k_3 is as small as possible. Examples of such polynomials are given in Table E-3 in Appendix E.

4.1.4. Optimal Normal Basis Representation

Optimal normal bases (ONB) over F_2 only exist in F_{2^m} for certain values of m. Table E-1 in Appendix E lists all the values of m, $160 \le m \le 2000$, for which the field F_{2^m} has an ONB over F_2 . There are two kinds of ONB, called type I ONB and type II ONB. The difference between the two types of optimal normal bases is in the mathematical formulas which define them; these mathematical formulas are presented in Section $4.1.4.a.1.^2$ In the case that a finite field F_{2^m} has both a type I and a type II ONB, the type II ONB shall be used.

The elements of the finite field F_{2^m} are the bit strings of bit length which is exactly m. A typical element $a \in F_{2^m}$ is represented by the bit string $a = (a_0 a_1 ... a_{m-2} a_{m-1})$.

- i) The multiplicative identity element (1) is represented by the bit string of all 1's.
- ii) The zero element (0) is represented by the bit string of all 0's.
- iii) Addition of two field elements is accomplished by XORing the bit strings.
- iv) Multiplication of field elements is facilitated by the pre-computation of the *product terms* λ_{ij} , $0 \le i$, $j \le m 1$; a constructive definition of the product terms is given below. An example of computing

² Reference [31] provides mathematical definitions of type I and type II ONB.

the product terms is given in Section C.2.4. Note that there are other ways to determine these product terms.

4.1.4.a. Setup for multiplication in F_{2m} using an optimal normal basis representation

A polynomial $g(x) = a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + ... + a_1x + a_0$ (where each a_i is in the binary field F_2) will be represented by the bit string:

 $a_{m-1}a_{m-2}...a_1a_0$

of length m. For example, the polynomial $g(x) = x^4 + x^3 + 1$ is represented by the bit string 11001 of length m = 5.

1. If F_{2^m} only has a type I ONB, then let $f(x) = x^m + x^{m-1} + ... + x^2 + x + 1$. Otherwise, if F_{2^m} has a type II ONB, then compute $f(x) = f_m(x)$ using the following recursive formulas:

$$f_0(x)=1,$$

$$f_1(x) = x + 1,$$

$$f_{i+1}(x) = xf_i(x) + f_{i-1}(x), i \ge 1.$$

At each stage, the coefficients of the polynomials $f_i(x)$ are reduced modulo 2. Hence f(x) is a polynomial of degree m with coefficients in F_2 . The set of polynomials $\{x, x^2 \bmod f(x), x^2 \bmod f(x), \dots, x^{2^{m-1}} \bmod f(x)\}$ forms a basis of F_{2^m} over F_2 , called a *normal basis*. Construct the $m \times m$ matrix A whose ith row, $0 \le i \le m - 1$, is the bit string corresponding

- 2. Construct the $m \times m$ matrix A whose i^{th} row, $0 \le i \le m 1$, is the bit string corresponding to the polynomial x^{2^i} mod f(x). (The rows and columns of A are indexed by the integers from 0 to m 1.) The entries of A are elements of F_2 .
- 3. Determine the inverse matrix A^{-1} of A.
- 4. Construct the $m \times m$ matrix T whose i^{th} row, $0 \le i \le m 1$, is obtained as follows.
 - a. Compute the polynomial $x \cdot x^{2^{i}} \mod f(x)$ and let the corresponding bit string be denoted v;
 - b. the i^{th} row of T is the bit string vA^{-1} .
- 5. Determine the *product terms* λ_{ij} , for $0 \le i, j \le m 1$, as follows:

$$\lambda_{ii} = T(j-i,-i).$$

Here, T(i, j) denotes the (i, j)-entry of T with indices reduced modulo m. Each *product term* λ_{ij} is an element of F_2 .

It is the case that $\lambda_{0j} = 1$ for precisely one j, $0 \le j \le m - 1$, and that for each i, $1 \le i \le m - 1$, $\lambda_{ij} = 1$ for precisely two distinct j, $0 \le j \le m - 1$. Hence, exactly 2m - 1 of the m^2 entries of the matrix T are 1, the rest being 0. (As 2m - 1 nonzero entries is the minimum possible, this normal basis is called an *optimal normal basis*.)

4.1.4.b. Multiplication in F_{2m} using an optimal normal basis

Let $a = (a_0 a_1 a_2 ... a_{m-1})$ and $b = (b_0 b_1 b_2 ... b_{m-1})$ be two elements in F_{2^m} . Then the product of a and b is the field element $c = (c_0 c_1 c_2 ... c_{m-1})$, where the coefficients c_k are computed using the formula:

$$c_k = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} a_{i+k} b_{j+k} \lambda_{ij}, 0 \le k \le m-1,$$

where all subscripts are reduced modulo m. The quantities λ_{ij} are the product terms defined in Section 4.1.4.a.

An example of field arithmetic using an optimal normal basis representation is given in Section C.2.4.

4.1.5. Fields F_{2m} Having Both ONB and TPB.

Table E-4 in Appendix E lists the values of m, $160 \le m \le 2000$, for which the field F_{2^m} has both an optimal normal basis representation (ONB) and a trinomial basis representation (TPB).

4.2. Data Representation

The data types in this Standard are octet strings, integers, field elements and elliptic curve points. Figure 1 provides a cross-reference for the sections defining conversions between data types that shall be used in the algorithms specified in this Standard. The number on a line is the section number where the conversion technique is specified. Examples of conversions are provided in Section H.1.

4.2.1. Integer-to-Octet-String Conversion

Input: A non-negative integer x, and the intended length k of the octet string satisfying:

 $2^{8k} > x$.

Output: An octet string M of length k octets.

1. Let $M_1, M_2, ..., M_k$ be the octets of M from leftmost to rightmost.

2. The octets of *M* shall satisfy:

$$x = \sum_{i=1}^{k} 2^{8(k-i)} M_i.$$

4.2.2. Octet-String-to-Integer Conversion

Input: An octet string M of length k octets.

Output: An integer x.

1. Let $M_1, M_2, ..., M_k$ be the octets of M from leftmost to rightmost.

2. *M* shall be converted to an integer *x* satisfying:

$$x = \sum_{i=1}^{k} 2^{8(k-i)} M_i.$$

Figure 1 Data Types and Conversion Conventions.

4.3. Finite Field Element Representations

4.3.1. Field-Element-to-Octet-String Conversion

Input: An element α in the field F_{q} .

Output: An octet string S of length $l = \lfloor t/8 \rfloor$ octets, where $t = \lfloor \log_2 q \rfloor$.

1. If q is an odd prime, then α must be an integer in the interval [0, q-1]; α shall be converted to an octet string of length l octets using the technique specified in Section 4.2.1.

2. If $q = 2^m$, then α must be a bit string of length m bits. Let $s_1, s_2, ..., s_m$ be the bits of α from leftmost to rightmost. Let $S_1, S_2, ..., S_l$ be the octets of S from leftmost to rightmost. The rightmost bit s_m shall become the rightmost bit of the last octet S_l , and so on through the leftmost bit s_1 , which shall become the $(8l - m + 1)^{th}$ bit of the first octet S_1 . The leftmost (8l - m) bits of the first octet S_1 shall be zero.

4.3.2. Octet-String-to-Field-Element Conversion

Input: An indication of the field F_q used, and an octet string S of length $l = \lceil t/8 \rceil$ octets, where $t = \lceil \log_2 q \rceil$.

Output: An element α in F_q .

- 1. If q is an odd prime, then convert S to an integer α using the technique specified in Section 4.2.2. It is an error if α does not lie in the interval [0, q-1].
- 2. If $q = 2^m$, then α shall be a bit string of length m bits. Let $s_1, s_2, ..., s_m$ be the bits of α from leftmost to rightmost. Let $S_1, S_2, ..., S_l$ be the octets of S from leftmost to rightmost. The rightmost bit of the last octet S_l shall become the rightmost bit s_m , and so on through the $(8l m + 1)^{th}$ bit of the first octet S_1 , which shall become the leftmost bit s_1 . The leftmost (8l m) bits of the first octet S_1 are not used.

4.3.3. Field-Element-to-Integer Conversion

Input: An element α in the field F_q .

Output: An integer x.

- 1. If q is an odd prime then $x = \alpha$ (no conversion is required).
- 2. If $q = 2^m$, then α must be a bit string of length m bits. Let $s_1, s_2, ..., s_m$ be the bits of α from leftmost to rightmost. α shall be converted to an integer x satisfying:

$$x = \sum_{i=1}^{m} 2^{(m-i)} s_i.$$

4.4. Elliptic Curve Point Representations

An elliptic curve point P (which is not the point at infinity \mathcal{O}) is represented by two field elements, the x-coordinate of P and the y-coordinate of P: $P = (x_P, y_P)$. The point can be represented compactly by storing only the x-coordinate x_P and a certain bit \widetilde{y}_P derived from the x-coordinate x_P and the y-coordinate y_P . The next subsection describes the technique that shall be used to recover the full y-coordinate y_P from x_P and \widetilde{y}_P , if this point compression technique is used.

4.4.1. Point Compression Technique

4.4.1.a. Point compression technique (elliptic curves over F_p)

Let $P = (x_P, y_P)$ be a point on the elliptic curve $E : y^2 = x^3 + ax + b$ defined over a prime field F_p . Then \widetilde{y}_P is defined to be the rightmost bit of y_P .

When the x-coordinate x_P of P and the bit \widetilde{y}_P are provided, then y_P can be recovered as follows.

- 1. Compute the field element $\alpha = x_p^3 + ax_p + b \mod p$.
- 2. Compute a square root β of α mod p. (See Section G.1.4.) It is an error if the output of G.1.4 is "no square roots exist".
- 3. If the rightmost bit of β is equal to \widetilde{y}_P , then set $y_P = \beta$. Otherwise, set $y_P = \beta$.

4.4.1.b. Point compression technique (elliptic curves over F_{2m})

Let $P = (x_P, y_P)$ be a point on the elliptic curve $E : y^2 + xy = x^3 + ax^2 + b$ defined over a field F_{2^m} . Then \widetilde{y}_P is defined to be 0 if $x_P = 0$; if $x_P \neq 0$, then \widetilde{y}_P is defined to be the rightmost bit of the field element $y_P \cdot x_P^{-1}$.

When the x-coordinate x_P of P and the bit \tilde{y}_P are provided, then y_P can be recovered as follows.

- 1. If $x_P = 0$, then $y_P = b^{2^{m-1}}$. (y_P is the square root of b in F_{2^m} .)
- 2. If $x_P \neq 0$, then do the following:
 - 1.1 Compute the field element $\beta = x_P + a + bx_P^{-2}$ in F_{2^m} .
 - 1.2 Find a field element z such that $z^2 + z = \beta$ using the algorithm described in Section G.1.6. It is an error if the output of G.1.6 is "no solutions exist".
 - 1.3 Let \tilde{z} be the rightmost bit of z.
 - 1.4 If $\widetilde{y}_P \neq \widetilde{z}$, then set z = z + 1.
 - 1.5 Compute $y_P = x_P \cdot z$.

4.4.2. Conversions

The octet string representation of the point at infinity o shall be a single zero octet PC = 00.

An elliptic curve point (x_1, y_1) which is not the point at infinity shall be represented as an octet string in one of the following three forms:

- 1. compressed form.
- 2. uncompressed form.
- 3. hybrid form (an uncompressed point which also includes \tilde{y}_1).

4.4.2.a. Point-to-Octet-String conversion

Input: An elliptic curve point (x_1, y_1) , not the point at infinity. **Output:** An octet string *PO* of length l+1 octets if the compressed form is used, or of length 2l+1 octets if the uncompressed or hybrid form is used. $(l = \lceil (\log_2 q) / 8 \rceil)$.

- 1. Convert the field element x_1 to an octet string X_1 . (See Section 4.3.1.)
- 2. If the compressed form is used, then do the following:
 - 2(a) Compute the bit \tilde{y}_1 . (See Section 4.4.1.)
 - 2(b) Assign the value 02 to the single octet *PC* if \tilde{y}_1 is 0, or the value 03 if \tilde{y}_1 is 1.
 - 2(c) The result is the octet string $PO = PC \parallel X_1$.
- 3. If the uncompressed form is used, then do the following:
 - 3(a) Convert the field element y_1 to an octet string Y_1 . (See Section 4.3.1.)
 - 3(b) Assign the value 04 to the single octet *PC*.
 - 3(c) The result is the octet string $PO = PC \parallel X_1 \parallel Y_1$.
- 4. If the hybrid form is used, then do the following:
 - 4(a) Convert the field element y_1 to an octet string Y_1 . (See Section 4.3.1.)
 - 4(b) Compute the bit \tilde{y}_1 . (See Section 4.4.1.)
 - 4(c) Assign the value 06 to the single octet if \tilde{y}_1 is 0, or the value 07 if \tilde{y}_1 is 1.
 - 4(d) The result is the octet string $PO = PC \parallel X_1 \parallel Y_1$.

4.4.2.b. Octet-String-to-Point conversion

Input: An octet string PO of length l+1 octets if the compressed form is used, or of length 2l+1 octets if the uncompressed or hybrid form is used $(l = \lceil (\log_2 q) / 8 \rceil)$, and field elements a, b which define an elliptic curve over F_a .

Output: An elliptic curve point (x_1, y_1) , not the point at infinity.

If the compressed form is used, then parse PO as follows: $PO = PC \mid\mid X_1$, where PC is a single octet, and X_1 is an octet string of length l octets. If

uncompressed or hybrid form is used, then parse PO as follows: $PO = PC \parallel X_1 \parallel Y_1$, where PC is a single octet, and X_1 and Y_1 are octet strings each of length l octets.

- 2. Convert X_1 to a field element x_1 . (See Section 4.3.2.)
- 3. If the compressed form is used, then do the following:
 - 3(a) Verify that *PC* is either 02 or 03. (It is an error if this is not the case.)
 - 3(b) Set the bit \tilde{y}_1 to be equal to 0 if PC = 02, or 1 if PC = 03.
 - 3(c) Convert (x_1, \tilde{y}_1) to an elliptic curve point (x_1, y_1) . (See Section 4.4.1.)
- 4. If the uncompressed form is used, then do the following:
 - 4(a) Verify that *PC* is 04. (It is an error if this is not the case.)
 - 4(b) Convert Y_1 to a field element y_1 . (See Section 4.3.2.)
- 5. If the hybrid form is used, then do the following:
 - 5(a) Verify that *PC* is either 06 or 07. (It is an error if this is not the case.)
 - 5(b) Convert Y_1 to a field element y_1 . (See Section 4.3.2.)
- 6. If q is a prime, verify that $y_1^2 \equiv x_1^3 + ax_1 + b \pmod{p}$. (It is an error if this is not the case.)

If $q = 2^m$, verify that $y_1^2 + x_1y_1 = x_1^3 + ax_1^2 + b$ in F_{2^m} . (It is an error if this is not the case.)

7. The result is (x_1, y_1) .

5. The Elliptic Curve Digital Signature Algorithm (ECDSA)

This section specifies the process of elliptic curve parameter generation and their validation, key generation and validation, and the calculations needed for generation and verification of signatures. Equivalent computations that result in identical output are allowed.

5.1. Elliptic Curve Parameter Generation and Validation

Elliptic curve parameters may either be common to several key pairs (*common elliptic curve parameters*) or specific to one key pair (*specific elliptic curve parameters*). The elliptic curve parameters may be public; the security of the system does not rely on these parameters being secret. The elliptic curve may either be randomly generated in a verifiable manner or in any manner the user chooses (see Section F.3.2). Two cases are distinguished:

- 1. when the underlying field is F_p (p an odd prime), and
- 2. when the underlying field is F_{2^m} .

Note that *n* is the primary security parameter. In general, as *n* increases, the security of ECDSA also increases. See Appendix D for more information.

5.1.1. Elliptic Curve Parameters and their Validation Over F_p

5.1.1.a. Elliptic curve parameters over F_p

Elliptic curve parameters over F_p shall consist of the following parameters:

- a. A field size q = p which defines the underlying finite field F_q , where p > 3 shall be a prime number;
- b. (Optional) A bit string SEED of length at least 160 bits, if the elliptic curve was randomly generated in accordance with Section F.3.3;
- c. Two field elements a and b in F_q which define the equation of the elliptic curve E: $y^2 = x^3 + ax + b$;
- d. Two field elements x_P and y_P in F_q which define a point $P = (x_P, y_P)$ of prime order on E (note that $P \neq \emptyset$);
- e. The order *n* of the point *P* (it must be the case that $n > 2^{160}$); and
- f. The cofactor $h = \#E(F_a)/n$.

Section F.3.2 specifies the method that shall be used for generating an elliptic curve E over F_p and the point P of order n.

5.1.1.b. Elliptic curve parameter validation over F_p

The following conditions shall be verified by the generator of the system parameters. These conditions may alternately be verified by a user of the system parameters.

- a. Verify that q = p is an odd prime number. (Use one of the primality tests in Sections F.2.1 and F.2.3.)
- b. Verify that a, b, x_P and y_P are integers in the interval [0, p-1].
- c. If the elliptic curve was randomly generated in accordance with Section F.3.3, verify that SEED is a bit string of length at least 160 bits, and that *a* and *b* were suitably derived from SEED. (See Section F.3.4.b.)
- d. Verify that $(4a^3 + 27b^2) \ 0 \ (\text{mod } p)$.
- e. Verify that $y_P^2 \equiv x_P^3 + ax_P + b \pmod{p}$.
- f. Verify that *n* is prime and that $n > 2^{160}$. (See Sections F.2.1 and F.2.3.)
- g. Verify that nP = 0. (See Section G.3.2.)
- h. If $n > 4\sqrt{p}$ then compute $h' = \lfloor (\sqrt{p} + 1)^2 / n \rfloor$, and verify that h = 1
 - h'.
- i. Verify that the MOV and Anomalous conditions hold. (See Section F.1.)

If any of the above verifications fail, then reject the elliptic curve parameters. Notes:

- 1. The cofactor *h* is not used in ECDSA, but is included here for compatibility with ANSI X9.63 where it is needed.
- 2. Step h of Section 5.1.1.b (and also step h of Section 5.1.2.b) verifies that the value of the cofactor h is correct in the case that $n > 4\sqrt{q}$. In the case that $n \le 4\sqrt{q}$, there are efficient methods for verifying the cofactor h, but these methods are not described here for the following reason: elliptic curves used in practice usually have $n \ge q$, and hence the condition $n > 4\sqrt{q}$ will be satisfied.

5.1.2. Elliptic Curve Parameters and their Validation Over F_{2m}

5.1.2.a. Elliptic curve parameters over F_{2m}

Elliptic curve parameters over F_{2m} shall consist of the following parameters:

- a. A field size $q = 2^m$ which defines the underlying finite field F_q , an indication of the basis used to represent the elements of the field (TPB, PPB or ONB), and a reduction polynomial of degree m over F_2 if the basis used is a TPB or PPB;
- b. (Optional) A bit string SEED of length at least 160 bits, if the elliptic curve was randomly generated in accordance with Section F.3.3;
- c. Two field elements a and b in F_q which define the equation of the elliptic curve E: $y^2 + xy = x^3 + ax^2 + b$;
- d. Two field elements x_P and y_P in F_q which define a point $P = (x_P, y_P)$ of prime order on E (note that $P \neq \emptyset$);
- e. The order *n* of the point *P* (it must be the case that $n > 2^{160}$); and
- f. The cofactor $h = \#E(F_a)/n$.

Section F.3.2 specifies the method that shall be used for generating an elliptic curve E over F_{2^m} and the point P of order n.

5.1.2.b. Elliptic curve parameter validation over F_{2m}

The following conditions shall be verified by the generator of the system parameters. These conditions may alternately be verified by a user of the system parameters.

- a. Verify that $q = 2^m$ for some m. If the basis used is a TPB, verify that the reduction polynomial is a trinomial and is irreducible over F_2 (see Table E-2 or Section G.2.4). If the basis used is a PPB, verify that an irreducible trinomial of degree m does not exist, and that the reduction polynomial is a pentanomial and is irreducible over F_2 (see Table E-3 or Section G.2.4). If the basis used is an ONB, verify that an optimal normal basis exists for F_{2m} (see Table E-1 or Section G.1.8).
- b. Verify that a, b, x_P and y_P are bit strings of length m bits.
- c. If the elliptic curve was randomly generated in accordance with F.3.3, verify that SEED is a bit string of length at least 160 bits, and that *b* was suitably derived from SEED. (See Section F.3.4.a.)
- d. Verify that $b \neq 0$.
- e. Verify that $y_P^2 + x_P y_P = x_P^3 + a x_P^2 + b \text{ in } F_{2^m}$.
- f. Verify that *n* is prime and that $n > 2^{160}$. (See Sections F.2.1 and F.2.3.)
- g. Verify that nP = 0. (See Section G.3.2.)
- h. If $n > 4\sqrt{q}$ then compute $h' = \left[(\sqrt{q} + 1)^2 / n \right]$, and verify that h = h'.
- i. Verify that the MOV and Anomalous conditions hold. (See Section F.1.)

If any of the above verifications fail, then reject the elliptic curve parameters.

5.2. Key Generation and Validation

5.2.1. Key Generation

Given particular elliptic curve parameters, an elliptic curve key pair shall be generated by performing the following operations:

1. Select a statistically unique and unpredictable integer d in the interval [1,n-1]. It is acceptable to use a random or pseudorandom number. If a pseudorandom number is used, it shall be generated using one of the procedures of Secton F.4. If a pseudorandom number is used, optional information to store with the private key are the seed values and the particular pseudorandom generation method used. Storing this optional information helps allow auditing of the key generation process.

If a pseudorandom generation method is used, the seed values used in the generation of d may be determined by internal means, be supplied by the caller, or both—this is an implementation choice. In all cases, the seed values have the same security requirements as the private key value. That is, they must be protected from unauthorized disclosure and be unpredictable.

- 2. Compute the point $Q = (x_Q, y_Q) = dP$. (See Section G.3.2.)
- 3. The key pair is (Q, d), where Q is the public key, and d is the private key.

5.2.2. Key Validation

Given particular elliptic curve parameters and a public key Q, the public key may be verified as follows.

- 1. Verify that Q is not the point at infinity o.
- 2. Verify that x_Q and y_Q are elements in the field F_q , where x_Q and y_Q are the x and y coordinates of Q, respectively. (That is, verify that x_Q and y_Q are integers in the interval [0, p-1] in the case that q=p is an odd prime, or that x_Q and y_Q are bit strings of length m bits in the case that $q=2^m$.)
- 3. If q = p is an odd prime, verify that $y_Q^2 \equiv x_Q^3 + ax_Q + b \pmod{p}$. If $q = 2^m$, verify that $y_Q^2 + x_Q y_Q = x_Q^3 + ax_Q^2 + b$ in F_{2^m} .

4. Verify that $nQ = \emptyset$. (See Section G.3.2.)

If any one of the above verifications fail, then reject the public key.

Note: If there is more than one public key available, it may also be checked that no two public keys are the same.

5.3. Signature Generation

This section describes the ECDSA signature generation process.

The signature generation process consists of message digesting, elliptic curve computations, and modular computations.

The input to the signature process is:

- 1. the message, M, of an arbitrary length, which is represented by a bit string.
- 2. elliptic curve parameters: q, a, b, $P = (x_P, y_P)$, and n.
- 3. an elliptic curve private key, d.

5.3.1. Message Digesting

Compute the hash value e = H(M) using the hash function SHA-1 as specified in ANSI X9.30-1993, Part 2. e is represented as an integer with a length of 160 bits.

5.3.2. Elliptic Curve Computations

- 1. Select a statistically unique and unpredictable integer k in the interval [1,n-1]. It is acceptable to use a random or pseudorandom number. If a pseudorandom number is used, it shall be generated using one of the procedures of Section F.4.
 - (a) If a pseudorandom generation method is used, the seed values used in the generation of k may either be determined by internal means, be supplied by the caller, or both—this is an implementation choice. In all cases, the seed values have the same security requirements as the private key value. That is, they must be protected from unauthorized disclosure and be unpredictable.
 - (b) If the implementation allows a seed supplied by the caller, then the physical security of the device is of utmost importance. This is because if an adversary gained access to the signature generation device and were able to generate a signature with a seed of its choice for the per-message secret k, then the adversary could easily recover the private key.
- 2. Compute the elliptic curve point $(x_1, y_1) = kP$. (See Section G.3.2.)
- 3. Convert the field element x_1 to an integer \overline{x}_1 , as described in Section 4.3.3.
- 4. Set $r = \overline{x}_1 \mod n$.
- 5. If r = 0, then go to step 1.

5.3.3. Modular Computations

- 1. Compute $s = k^{-1}(e + dr) \mod n$. (See Section G.1.2. for one method to compute $k^{-1} \mod n$.)
- 2. If s = 0, then go to step 1 of Section 5.3.2.

5.3.4. The Signature

The signature for M shall be the two integers, r and s, as computed in Sections 5.3.2 and 5.3.3.

Note: As an optional security check (to guard against malicious or non-malicious errors in the signature generation process), the signer may verify that (r, s) is indeed a valid signature for message M using the signature verification process described in Section 5.4.

5.4. Signature Verification

This section describes the ECDSA signature verification process.

The signature verification process consists of message digesting, elliptic curve computations, and signature checking.

The input to the signature verification process is:

- 1. the received message, M', represented as a bit string.
- 2. the received signature for M, represented as the two integers, r' and s'.
- 3. elliptic curve parameters: q, a, b, $P = (x_P, y_P)$, and n.
- 4. an elliptic curve public key, Q.

5.4.1. Message Digesting

Compute the hash value e = H(M') using the hash function SHA-1 as specified in ANSI X9.30-1993, Part 2. e is represented as an integer with a length of 160 bits.

5.4.2. Elliptic Curve Computations

- 1. If r is not an integer in the interval [1, n-1], then reject the signature.
- 2. If s' is not an integer in the interval [1, n-1], then reject the signature.
- 3. Compute $c = (s')^{-1} \mod n$. (See Section G.1.2.)
- 4. Compute $u_1 = ec \mod n$ and $u_2 = r'c \mod n$.
- 5. Compute the elliptic curve point $(x_1, y_1) = u_1P + u_2Q$ (see Section G.3.2). (If $u_1P + u_2Q$ is the point at infinity, then reject the signature.)

5.4.3. Signature Checking

- 1. Convert the field element x_1 to an integer \overline{x}_1 , as described in Section 4.3.3.
- 2. Compute $v = \overline{x}_1 \mod n$.
- 3. If r' = v, then the signature is verified, and the verifier has a high level of confidence that the received message was sent by the party holding the secret key d corresponding to Q.

If *r*'does not equal *v*, then the message may have been modified, the message may have been incorrectly signed by the signatory, or the message may have been signed by an impostor. The message shall be considered invalid.

6. ASN.1 Syntax

This section provides the syntax for elliptic curve parameters and keys according to Abstract Syntax Notation One (ASN.1). While it is not required that elliptic curve parameters and keys be represented with ASN.1 syntax, if they are so represented, then their syntax shall be as defined here. These ASN.1 definitions shall be encoded using Distinguished Encoding Rules (DER).

The object identifier ansi-X9.62 represents the root of the tree containing all object identifiers defined in this Standard, and has the following value:

```
ansi-X9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10045 }
```

6.1. Syntax for Finite Field Identification

This section provides the abstract syntax definitions for the finite fields defined in this Standard.

A finite field shall be identified by a value of type FieldID:

```
FieldID { FIELD-ID:IOSet } ::= SEQUENCE {
   fieldType   FIELD-ID.&id({IOSet}),
   parameters  FIELD-ID.&Type({IOSet}{@fieldType})   OPTIONAL
}
FieldTypes FIELD-ID ::= {
```

```
{ Prime-p IDENTIFIED BY prime-field } |
    { Characteristic-two IDENTIFIED BY characteristic-two-field },
    ...
}

FIELD-ID ::= TYPE-IDENTIFIER

Note:
```

FieldID is a parameterized type composed of two components, fieldType and parameters. These components are specified by the fields &id and &Type, which form a template for defining sets of information objects, instances of the class FIELD-ID. This class is based on the useful information object class TYPE-IDENTIFIER, described in X.681 Annex A. In an instance of FieldID, "fieldType" will contain an object identifier value that uniquely identifies the type contained in "parameters". The effect of referencing "fieldType" in both components of the fieldID sequence is to tightly bind the object identifier and its type.

The information object set FieldTypes is used as the single parameter in a reference to type FieldID. FieldTypes contains two objects followed by the extension marker ("..."). Each object, which represents a finite field, contains a unique object identifier and its associated type. The values of these objects define all of the valid values that may appear in an instance of fieldID. The extension marker allows backward compatibility with future versions of this standard which may define objects to represent additional kinds of finite fields.

The object identifier id-fieldType represents the root of a tree containing the object identifiers of each field type. It has the following value:

```
id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }
The object identifiers prime-field and characteristic-two-field name the two kinds of
fields defined in this Standard. They have the following values:
prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }
Prime-p ::= INTEGER
                        -- Field size p
Characteristic-two ::= SEQUENCE {
                                                          -- Field size 2^m
                        INTEGER,
   m
   basis
                        CHARACTERISTIC-TWO.&id({BasisTypes}),
                        CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis})
   parameters
}
BasisTypes CHARACTERISTIC-TWO::= {
   { NULL
                   IDENTIFIED BY onBasis } |
   { Trinomial
                   IDENTIFIED BY tpBasis } |
   { Pentanomial IDENTIFIED BY ppBasis },
}
Trinomial ::= INTEGER
Pentanomial ::= SEQUENCE {
   k1 INTEGER,
```

```
k2
        INTEGER,
   k3
        INTEGER
}
CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER
The object identifier id-characteristic-two-basis represents the root of a tree containing the
object identifiers for each type of basis for the characteristic-two finite fields. It has the following value:
id-characteristic-two-basis OBJECT IDENTIFIER ::= {
                                 characteristic-two-field basisType(3) }
The object identifiers on Basis, tpBasis and ppBasis name the three kinds of basis for
characteristic-two finite fields defined in this Standard. They have the following values:
onBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }
Notes:
               For the finite field F_p, where p is an odd prime, the parameter p is specified by a value of
       1.
               type Prime-p.
       2.
               For the finite field F_{2m}, the components of Characteristic-two are:
```

- m: degree of the field.
- basis: the type of representation used (ONB, TPB, or PPB).
- 3. For a trinomial basis representation of F_{2^m} , Trinomial specifies the integer k where $x^m + x^k + 1$ is the reduction polynomial.
- 4. For a pentanomial basis representation of F_{2^m} , the components k1, k2, and k3 of Pentanomial specify the integers k_1 , k_2 , and k_3 , respectively, where $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ is the reduction polynomial.

6.2. Syntax for Finite Field Elements and Elliptic Curve Points

A finite field element shall be represented by a value of type FieldElement:

```
FieldElement ::= OCTET STRING
```

The value of FieldElement shall be the octet string representation of a field element following the conversion routine in Section 4.3.1.

An elliptic curve point shall be represented by a value of type ECPoint:

```
ECPoint ::= OCTET STRING
```

The value of ECPoint shall be the octet string representation of an elliptic curve point following the conversion routine in Section 4.4.2.a.

6.3. Syntax for Elliptic Curve Parameters

This section provides syntax for representing elliptic curve parameters.

Elliptic curve parameters shall be represented by a value of type ECParameters:

```
ECParameters ::= SEQUENCE {
    version INTEGER { ecpVer1(1) } (ecpVer1),
    fieldID FieldID { {FieldTypes} },
    curve Curve,
    base ECPoint,
    order INTEGER,
    cofactor INTEGER,
    ... }
```

```
Curve ::= SEQUENCE {
    a FieldElement,
    b FieldElement,
    seed BIT STRING OPTIONAL }
```

The components of type ECParameters have the following meanings:

- version specifies the version number of the elliptic curve parameters. It shall have the value 1 for this version of the Standard. The notation above creates an INTEGER named ecpVer1 and gives it a value of one. It is used to constrain version to a single value.
- fieldID identifies the finite field over which the elliptic curve is defined. Finite fields are represented by values of the parameterized type FieldID, constrained to the values of the objects defined in the information object set FieldTypes.
- curve specifies the coefficients *a* and *b* of the elliptic curve *E*. Each coefficient shall be represented as a value of type FieldElement, an OCTET STRING. seed is an optional parameter used to derive the coefficients of a randomly generated elliptic curve.
- base specifies the base point *P* on the elliptic curve. The base point shall be represented as a value of type ECPoint, an OCTET STRING.
- order specifies the order *n* of the base point.
- cofactor is the integer $h = \#E(F_a)/n$.

6.4. Syntax for Public Keys

This section provides the syntax for the public keys defined in this Standard.

A public key may be represented in a variety of ways using ASN.1 syntax. When a public key is represented as the X.509 type SubjectPublicKeyInfo, then the public key shall have the following syntax:

```
SubjectPublicKeyInfo ::= SEQUENCE {
                     AlgorithmIdentifier {{ECPKAlgorithms}},
   algorithm
   subjectPublicKey BIT STRING
}
AlgorithmIdentifier { ALGORITHM: IOSet } ::= SEQUENCE {
   algorithm
               ALGORITHM.&id({IOSet}),
  parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL
}
ECPKAlgorithms ALGORITHM ::= {
   ecPublicKeyAlgorithm,
   . . .
}
ecPublicKeyAlgorithm ALGORITHM ::= { ECParameters IDENTIFIED BY id-
ecPublicKey }
ALGORITHM ::= TYPE-IDENTIFIER
id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
id-publicKeyType OBJECT IDENTIFIER ::= { ansi-X9-62 keyType (2) }
```

Note:

1. The object identifier id-publicKeyType represents the tree containing the object identifiers for each public key. It has the following value:

```
id-public-key-type OBJECT IDENTIFIER ::= {ansi-X9.62 2}
```

The elliptic curve public key (an ECPoint which is an OCTET STRING) is mapped to a subjectPublicKey (a BIT STRING) as follows: the most significant bit of the OCTET STRING becomes the most significant bit of the BIT STRING, etc.; the least significant bit of the OCTET STRING becomes the least significant bit of the BIT STRING.

7. References

Elliptic curve cryptosystems were first proposed in 1985 independently by Neil Koblitz [22] and Victor Miller [30]. Since then, much research has been done towards improving the efficiency of these systems and evaluating their security. For a summary of this work, consult [28]. A description of a hardware implementation of an elliptic curve cryptosystem can be found in [7].

Three references on the theory of finite fields are the books of McEliece [27], Lidl and Niederreiter [26] and Jungnickel [20]. Lidl and Niederreiter's book [26] contains introductory material on polynomial and normal bases. The article [6] discusses methods which efficiently perform arithmetic operations in finite fields of characteristic 2. A hardware implementation of arithmetic in such fields which exploits the properties of optimal normal bases is described in [8].

The NIST Digital Signature Algorithm (DSA) is described in [4] and [33]. The Secure Hash Algorithm (SHA-1) is described in [5] and [32]. Abstract Syntax Notation One (ASN.1), Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER) are described in [13], [16] [18] and [19] respectively.

- 1. ANSI X3.92-1981, Data Encryption Algorithm.
- 2. ANSI X9.9-1986 (revised), Financial Institution Message Authentication (Wholesale).
- 3. ANSI X9.17-1985, Financial Institution Key Management (Wholesale).
- 4. ANSI X9.30-1995, Part 1: Public key cryptography using irreversible algorithms for the financial services industry: The Digital Signature Algorithm (Revised).
- 5. ANSI X9.30-1993, Part 2: Public key cryptography using irreversible algorithms for the financial services industry: The Secure Hash Algorithm 1 (SHA-1) (Revised).
- 6. G. AGNEW, T. BETH, R. MULLIN AND S. VANSTONE, Arithmetic operations in $GF(2^m)$, Journal of Cryptology, **6** (1993), 3-13.
- 7. G. AGNEW, R. MULLIN AND S. VANSTONE, An implementation of elliptic curve cryptosystems over F_2 155, IEEE Journal on Selected Areas in Communications, **11** (1993), 804-813.
- 8. G. AGNEW, R. MULLIN, I. ONYSZCHUK AND S. VANSTONE, *An implementation for a fast public-key cryptosystem*, Journal of Cryptology, **3** (1991), 63-79.
- 9. M. BLAZE, W. DIFFIE, R. RIVEST, B. SCHNEIER, T. SHIMOMURA, E. THOMPSON, AND M. WIENER, Minimal key lengths for symmetric ciphers to provide adequate commercial security, January 1996.
- 10. E. BRICKELL, D. GORDON, K. MCCURLEY AND D. WILSON, *Fast Exponentiation with precomputation*, *Advances in Cryptology EUROCRYPT* '92 Lecture Notes in Computer Science, **658** (1993), Springer-Verlag, 200-207.
- 11. T. ELGAMAL, *A public key cryptosystem and a signature scheme based on discrete logarithms*, IEEE Transactions on Information Theory, **31** (1985), 469-472.
- 12. IEEE P1363, Standard for Public-Key Cryptography, draft standard, 1997.
- 13. ITU-T Recommendation X.680 (1994), Information Technology Abstract Syntax Notation One (ASN.1): Specification of Basic Notation (equivalent to ISO/IEC 8824-1:1995).

- 14. ITU-T Recommendation X.680 (1994), Amendment 1 (1995), *Information Technology Abstract Syntax Notation One (ASN.*1): *Specification of Basic Notation Amendment* 1: *Rules of Extensibility* (equivalent to ISO/IEC 8824-1: Amd.1: 1995).
- 15. ITU-T Recommendation X.680 (1994), Corr.1 (1995), *Information Technology Abstract Syntax Notation One* (ASN.1): Specification of Basic Notation Technical Corrigendum 1 (equivalent to ISO/IEC 8824-1: Corr.1: 1995).
- 16. ITU-T Recommendation X.681 (1994), Information Technology Abstract Syntax Notation One (ASN.1): Information Object Specification (equivalent to ISO/IEC 8824-2: 1995).
- 17. ITU-T Recommendation X.681 (1994), Amendment 1 (1995), Information Technology Abstract Syntax Notation One (ASN.1): Information Object Specification Amendment 1: Rules of Extensibility (equivalent to ISO/IEC 8824-2: Amd.1: 1995).
- 18. ITU-T Recommendation X.682 (1994), *Information Technology Abstract Syntax Notation One (ASN.*1): *Constraint Specification* (equivalent to ISO/IEC 8824-3: 1995).
- 19. ITU-T Recommendation X.690 (1994), Information Technology ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) (equivalent to ISO/IEC 8825-1: 1995).
- 20. D. JUNGNICKEL, *Finite Fields: Structure and Arithmetics*, B.I.-Wissenschaftsverlag, Mannheim, 1993.
- 21. D. KNUTH, *The Art of Computer Programming*, volume 2, 2nd edition, 1981.
- 22. N. KOBLITZ, *Elliptic curve cryptosystems*, Mathematics of Computation, **48** (1987), 203-209.
- 23. N. KOBLITZ, *A Course in Number Theory and Cryptography*, Springer-Verlag, 2nd edition, 1994.
- 24. R. LERCIER, Finding good random elliptic curves for cryptosystems defined over F_{2ⁿ}, Advances in Cryptography EUROCRYPT '97, Lecture Notes in Computer Science, **1233** (1997), Springer-Verlag, 379-392.
- 25. R. LERCIER AND F. MORAIN, Counting the number of points on elliptic curves over finite fields: strategies and performances, Advances in Cryptology EUROCRYPT '95, Lecture Notes in Computer Science, **921** (1995), Springer-Verlag, 79-94.
- 26. R. LIDL AND H. NIEDERREITER, *Finite Fields*, Cambridge University Press, 1987.
- 27. R.J. McEliece, *Finite Fields for Computer Scientists and Engineers*, Kluwer Academic Publishers, 1987.
- 28. A. MENEZES, *Elliptic Curve Public Key Cryptosystems*, Kluwer Academic Publishers, 1993.
- 29. A. MENEZES, T. OKAMOTO AND S. VANSTONE, *Reducing elliptic curve logarithms to logarithms in a finite field*, IEEE Transactions on Information Theory, **39** (1993), 1639-1646.
- 30. V. MILLER, *Uses of elliptic curves in cryptography*, *Advances in Cryptology CRYPTO* '85, Lecture Notes in Computer Science, **218** (1986), Springer-Verlag, 417-426.
- 31. R. MULLIN, I. ONYSZCHUK, S. VANSTONE AND R. WILSON, *Optimal normal bases in* $GF(p^n)$, Discrete Applied Mathematics, **22** (1988/89), 149-161.
- 32. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, Secure Hash Standard (SHS), FIPS Publication 180, May 1993.
- 33. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, *Digital Signature Standard*, FIPS Publication 186, 1993.
- 34. A. ODLYZKO, *The Future of Integer Factorization*, Cryptobytes, volume 1, number 2, summer 1995, 5-12.

- 35. P. VAN OORSCHOT AND M. WIENER, *Parallel Collision Search With Application To Hash Functions And Discrete Logarithms*, in Proceedings of the 2nd ACM Conference on Computer and Communications Security, Fairfax, Virginia, November 2-4, 1994, 210-218.
- 36. J. POLLARD, *Monte Carlo methods for index computation mod p*, Mathematics of Computation, **32** (1978), 918-924.
- 37. R. SCHOOF, *Elliptic curves over finite fields and the computation of square roots mod p*, Mathematics of Computation, **44** (1985), 483-494.
- 38. T. SATOH AND K. ARAKI, Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, preprint, 1997.
- 39. N. SMART, Posting to sci.math.research, September 30 1977.
- 40. S. VAUDENAY, *Hidden collisions on DSS*, *Advances in Cryptology CRYPTO* '96, Lecture Notes in Computer Science, **1109** (1996), Springer-Verlag, 83-88.

Appendix A An Overview of Elliptic Curve Systems [Informative]

Many public-key cryptographic systems are based on exponentiation operations in large finite mathematical groups. The cryptographic strength of these systems is derived from the believed computational intractability of computing logarithms in these groups. The most common groups are the multiplicative groups of Z_p (the integers modulo a prime p) and F_{2^m} (characteristic 2 finite fields). The primary advantages of these groups are their rich theory, easily understood structure, and straightforward implementation. However, they are not the only groups that have the requisite properties. In particular, the mathematical structures known as elliptic curves have the requisite mathematical properties, a rich theory, and are especially amenable to efficient implementation in hardware or software.

The algebraic system defined on the points of an elliptic curve provides an alternate means to implement the ElGamal and ElGamal-like public-key encryption and signature protocols. These protocols are described in the literature in the algebraic system Z_p , the integers modulo p, where p is a prime. For example, the Digital Signature Algorithm (DSA) defined in X9.30-1-1994 is an ElGamal-like signature scheme defined over Z_p . The same protocol for signing can be defined over the points on an elliptic curve.

Elliptic curve systems as applied to ElGamal protocols were first proposed in 1985 independently by Neil Koblitz from the University of Washington, and Victor Miller, who was then at IBM, Yorktown Heights. The security of the cryptosystems using elliptic curves hinges on the intractability of the discrete logarithm problem in the algebraic system. Unlike the case of the discrete logarithm problem in finite fields, or the problem of factoring integers, there is no subexponential-time algorithm known for the elliptic curve discrete logarithm problem. The best algorithm known to date takes fully exponential time.

The primary advantage of elliptic curve systems is their apparent high cryptographic strength relative to the key size. The attractiveness of the elliptic curve cryptosystems may increase relative to other public-key cryptosystems, as computing power improvements force an increase in the key size. The significantly shorter key sizes may result in shorter certificates and system parameters. These potential advantages manifest themselves in many ways, including:

- storage efficiencies,
- bandwidth savings, and
- * computational efficiencies.

The computational efficiencies may lead in turn to:

- higher speeds,
- * lower power consumption, and
- * code size reductions.

The computational efficiencies available with the use of these implementations, combined with the efficiencies of elliptic curves in general, are particularly beneficial in applications where bandwidth, processing capacity, power availability or storage are constrained. Such applications include wireless communications, handheld computing, broadcast communications and smart card applications.

Associated with any finite field F_q there are on the order of q different elliptic curves that can be formed and used for the cryptosystems. Thus, for a fixed finite field with q elements and with a large value of q, there are many choices for the elliptic curve group. Since each elliptic curve operation requires a number of more basic operations in the underlying finite field F_q , a finite field may be selected with a very efficient software or hardware implementation, and there remain an enormous number of choices for the elliptic curve.

This Standard describes the implementation of a signature algorithm which uses elliptic curves over a finite field F_q , where q is either a prime number or equal to 2^m for some positive integer m.

Appendix B The Elliptic Curve Analog of the DSA (ECDSA) [Informative]

The elliptic curve algorithm (ECDSA) described in this Standard is the elliptic curve analog of a discrete logarithm algorithm that is usually described in the setting of F_p^* (also denoted Z_p^*), the multiplicative group of the integers modulo a prime. The following tables show the correspondence between the elements and operations of the group F_p^* and the elliptic curve group $E(F_q)$.

Table B-1: DSA and ECDSA Group Information		
Group	F_{ρ}^*	$E(F_q)$
Group elements	The set of integers {1, 2,, p - 1}	Points (x,y) which satisfy the defining equation of the elliptic curve, plus the point at infinity \emptyset .
Group operation	Multiplication modulo p	Addition of points
Notation	Elements: g , h Multiplication: $g \times h$ Exponentiation: g^a	Elements: P, Q Addition: P + Q Multiple of a point (also called scalar multiplication): aP
Discrete logarithm problem	Given $g \in F_p^*$ and $h = g^a \mod p$, find the integer a .	Given $P \in E(\mathbf{F}_q)$ and $Q = aP$, find the integer a .

Table B-2: DSA and ECDSA Notation		
DSA	ECDSA	
Notation	Notation	
q	n	
g	P	
x	d	
у	Q	

Table B-3: DSA and ECDSA Setup		
DSA Setup	ECDSA Setup	
1. p and q are primes, q divides p - 1.	1. E is an elliptic curve defined over the field F_q .	
2. g is an element of order q in F_p *.	2. P is a point of prime order n in $E(\mathbf{F}_q)$.	
3. The group used is:	3. The group used is:	
$\{g^0, g^1, g^2,, g^{q-1}\}.$	$\{ O, P, 2P,, (n-1)P \}.$	

Table B-4: DSA and ECDSA Key Generation		
DSA Key Generation	ECDSA Key Generation	
 Select a random integer x in the interval [1, q - 1]. Compute y = g^x mod p. 	1. Select a statistically unique and unpredictable integer <i>d</i> in the interval [1, <i>n</i> - 1].	
3. The private key is <i>x</i>.4. The public key is <i>y</i>.	 Compute Q = dP. The private key is d. The public key is Q. 	

Table B-5: DSA and ECDSA Signature Generation							
DSA Signature Generation	ECDSA Signature						
-	Generation						
 Select a random integer k in the interval [1, q-1]. Compute g^k mod p. 	1. Select a statistically unique and unpredictable integer <i>k</i> in the interval [1, <i>n</i> -1].						
3. Compute $r = (g^k \mod p) \mod q$.	2. Compute $kP = (x_1, y_1)$.						
4. Compute $e = H(M)$.	3. Compute $r = x_1 \mod n$.						
5. Compute $s = k^{-1}(e + xr) \mod q$.	4. Compute $e = H(M)$.						
6. The signature for M is (r, s) .	5. Compute $s = k^{-1}(e + dr) \mod n$.						
	6. The signature for M is (r, s) .						

Table B-6: DSA and ECDSA Signature Verification							
DSA Signature Verification			ECDSA Signature Verification				
1. C	Compute $e = H(M)$.	1.	Compute $e = H(M)$.				
2. C	Compute $s^{-1} \mod q$.	2.	Compute $s^{-1} \mod n$.				
3. C	Compute $u_1 = es^{-1} \mod q$.	3.	Compute $u_1 = es^{-1} \mod n$.				
4. C	Compute $u_2 = rs^{-1} \mod q$.	4.	Compute $u_2 = rs^{-1} \mod n$.				
5. C	Compute $v' = g^{u_1} y^{u_2} \mod p$.	5.	Compute $u_1P + u_2Q = (x_1, y_1)$.				
6. C	Compute $v = v \mod q$.	6.	Compute $v = x_1 \mod n$.				
7. A	Accept the signature if $v = r$.	7.	Accept the signature if $v = r$.				

Appendix C Mathematical Background [Informative]

C.1. The Finite Field F_p

Let p be a prime number. The finite field F_p is comprised of the set of integers

$$\{0,1,2,...,p-1\}$$

with the following arithmetic operations:

- * Addition: If $a, b \in F_p$, then a + b = r, where r is the remainder when the integer a + b is divided by $p, r \in [0, p-1]$. This is known as addition modulo $p \pmod{p}$.
- * *Multiplication*: If $a, b \in F_p$, then ab = s, where s is the remainder when the integer ab is divided by $p, s \in [0, p-1]$. This is known as multiplication modulo $p \pmod{p}$.

Let F_p^* denote all the non-zero elements in F_p . In F_p , there exists at least one element g such that any non-zero element of F_p can be expressed as a power of g. Such an element g is called a *generator* (or *primitive element*) of F_p^* . That is

$$F_p^* = \{g^i : 0 \le i \le p - 2\}.$$

The multiplicative inverse of $a = g^i \in F_p^*$, where $0 \le i \le p - 2$, is:

$$a^{-1} = g^{p-1-i}$$
.

Example 1: The finite field F_2

 $F_2 = \{0, 1\}$. The addition and multiplication tables for F_2 are:

+	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

Example 2: The finite field F_{23}

 $F_{23} = \{0,1,2,...,22\}$. Examples of the arithmetic operations in F_{23} are:

 $12 + 20 = 32 \mod 23 = 9$, since the remainder is 9 when 32 is divided by 23.

 $8 \cdot 9 = 72 \mod 23 = 3$, since the remainder is 3 when 72 is divided by 23.

The element 5 is a generator of F_{23}^* . The powers of 5 modulo 23 are:

$$5^{0} = 1$$
 $5^{1} = 5$ $5^{2} = 2$ $5^{3} = 10$ $5^{4} = 4$ $5^{5} = 20$ $5^{6} = 8$ $5^{7} = 17$ $5^{8} = 16$ $5^{9} = 11$ $5^{10} = 9$ $5^{11} = 22$ $5^{12} = 18$ $5^{13} = 21$ $5^{14} = 13$ $5^{15} = 19$ $5^{16} = 3$ $5^{17} = 15$ $5^{18} = 6$ $5^{19} = 7$ $5^{20} = 12$ $5^{21} = 14$ $5^{22} = 1$.

C.2. The Finite Field F_{2m}

There are many ways to construct a finite field with 2^m elements. The field F_{2^m} can be viewed as a vector space of dimension m over F_2 . That is, there exists m elements $\alpha_0, \alpha_1, \ldots, \alpha_{m-1}$ in F_{2^m} such that each element $\alpha \in F_{2^m}$ can be uniquely written in the form:

$$\alpha = a_0 \alpha_0 + a_1 \alpha_1 + ... + a_{m-1} \alpha_{m-1}$$
, where $a_i \in \{0,1\}$.

Such a set $\{\alpha_0, \alpha_1, ..., \alpha_{m-1}\}$ of elements is called a *basis* of F_{2^m} over F_2 . Given such a basis, we can represent a field element α as the binary vector $(a_0, a_1, ..., a_{m-1})$. Addition of field elements is performed by bitwise XOR-ing the vector representations.

There are many different bases of F_{2^m} over F_2 . Some bases lead to more efficient software and/or hardware implementations of the arithmetic in F_{2^m} than other bases. In this section, three kinds of bases are discussed. Section C.2.1 introduces *polynomial bases* which use polynomial addition, multiplication, division and

remainder. Section C.2.2 introduces special kinds of polynomial bases called *trinomial* and *pentanomial* bases. Section C.2.3 introduces *normal* bases. Section C.2.4 introduces special kinds of normal bases called *optimal* normal bases (ONB).

C.2.1. Polynomial Bases

Let $f(x) = x^m + f_{m-1}x^{m-1} + ... + f_2x^2 + f_1x + f_0$ (where $f_i \in F_2$ for i = 0, ..., m-1) be an irreducible polynomial of degree m over F_2 , i.e., f(x) cannot be factored into two polynomials over F_2 , each of degree less than m. f(x) is called the *reduction polynomial*. The *finite field* F_{2^m} is comprised of all polynomials over F_2 of degree less than m.

$$F_{2^m} = \{a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_1x + a_0 : a_i \in \{0,1\}\}.$$

The field element $(a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + ... + a_1x + a_0)$ is usually denoted by the binary string $(a_{m-1}...a_1a_0)$ of length m, so that

$$F_{2^m} = \{(a_{m-1}... a_1 a_0): a_i \in \{0,1\}\}.$$

Thus the elements of F_{2^m} can be represented by the set of all binary strings of length m. The multiplicative identity element (1) is represented by the bit string (00...01), while the zero element is represented by the bit string of all 0's.

Field elements are added and multiplied as follows:

C.2.1.a. Field addition

$$(a_{m-1}...a_1a_0) + (b_{m-1}...b_1b_0) = (c_{m-1}...c_1c_0)$$

where $c_i = a_i \oplus b_i$. That is, field addition is performed componentwise.

C.2.1.b. Field multiplication

$$(a_{m-1}...a_1a_0) \cdot (b_{m-1}...b_1b_0) = (r_{m-1}...r_1r_0),$$
 where the polynomial $(r_{m-1}x^{m-1}+...+r_1x+r_0)$ is the remainder when the polynomial $(a_{m-1}x^{m-1}+...+a_1x+a_0) \cdot (b_{m-1}x^{m-1}+...+b_1x+b_0)$ is divided by $f(x)$ over F_2 .

This method of representing F_{2^m} is called a *polynomial basis representation*, and $\{1, x, x^2, ..., x^{m-1}\}$ is called a *polynomial basis* of F_{2^m} over F_2 .

Note that F_{2^m} contains exactly 2^m elements. Let $F_{2^m}^*$ denote the set of all non-zero elements in F_{2^m} . There exists at least one element g in F_{2^m} such that any non-zero element of F_{2^m} can be expressed as a power of g. Such an element g is called a *generator* (or *primitive element*) of F_{2^m} . That is $F_{2^m}^* = \{g^i : 0 \le i \le 2^m - 2\}.$

The multiplicative inverse of $a = g^i \in F_{2^m}^*$, where $0 \le i \le 2^m - 2$, is: $a^{-1} = g^{2^m - 1 - i}$.

Example 3: The finite field F_{24} using a polynomial basis representation

Take $f(x) = x^4 + x + 1$ over F_2 ; it can be verified that f(x) is irreducible over F_2 . Then the elements of F_{24} are:

As examples of field arithmetic, we have:

(1101) + (1001) = (0100), and
(1101) • (1001) = (1111) since

$$(x^3 + x^2 + 1)(x^3 + 1) = x^6 + x^5 + x^2 + 1$$

$$= (x^4 + x + 1)(x^2 + x) + (x^3 + x^2 + x + 1)$$

$$= x^3 + x^2 + x + 1 \mod f(x).$$

 $= x^3 + x^2 + x + 1 \mod f(x).$ i.e., $x^3 + x^2 + x + 1$ is the remainder when $(x^3 + x^2 + 1) \bullet (x^3 + 1)$ is divided by f(x).

The multiplicative identity is (0001).

 F_{2}^{*} can be generated by one element, $\alpha = x$. The powers of α are:

$$\begin{array}{llll} \alpha^0 = (0001) & \alpha^1 = (0010) & \alpha^2 = (0100) & \alpha^3 = (1000) \\ \alpha^4 = (0011) & \alpha^5 = (0110) & \alpha^6 = (1100) & \alpha^7 = (1011) \\ \alpha^8 = (0101) & \alpha^9 = (1010) & \alpha^{10} = (0111) & \alpha^{11} = (1110) \\ \alpha^{12} = (1111) & \alpha^{13} = (1101) & \alpha^{14} = (1001). \end{array}$$

C.2.2. Trinomial and Pentanomial Bases

A trinomial basis (TPB) and a pentanomial basis (PPB) are special types of polynomial bases. A trinomial over F_2 is a polynomial of the form $x^m + x^k + 1$, where $1 \le k \le m$ -1. A pentanomial over F_2 is a polynomial of the form $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, where $1 \le k_1 < k_2 < k_3 \le m$ -1.

A trinomial basis representation of F_{2^m} is a polynomial basis representation determined by an irreducible trinomial $f(x) = x^m + x^k + 1$ of degree m over F_2 . Such trinomials only exist for certain values of m. Example 3 above is an example of a trinomial basis representation of the finite field F_{2^4} .

A *pentanomial basis* representation of F_{2^m} is a polynomial basis representation determined by an irreducible pentanomial $f(x) = x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, of degree m over F_2 . Such pentanomials exist for all values of $m \ge 4$.

C.2.3. Normal Bases

A *normal basis* of F_{2^m} over F_2 is a basis of the form:

$$\{\beta, \beta^2, \beta^{2^2}, ..., \beta^{2^{m-1}}\},\$$

where $\beta \in F_{2^m}$.

Such a basis always exists. Given any element $\alpha \in F_{2^m}$, we can write $\alpha = \sum_{i=0}^{m-1} a_i \, \beta^{2^i}$, where $a_i \in \{0,1\}$.

This field element α is denoted by the binary string $(a_0a_1a_2...a_{m-1})$ of length m, so that $F_{2^m} = \{(a_0a_1...a_{m-1}) : a_i \in \{0,1\}\}.$

Note that, by convention, the ordering of bits is different from that of a polynomial basis representation (Section C.2.1).

The multiplicative identity element (1) is represented by the bit string of all 1's (11...11), while the zero element is represented by the bit string of all 0's.

Since squaring is a linear operator in F_{2m} , we have:

$$\alpha^2 = \sum_{i=0}^{m-1} a_i^2 (\beta^2^i)^2 = \sum_{i=0}^{m-1} a_i \beta^2^{i+1} = \sum_{i=0}^{m-1} a_{i-1} \beta^2^i = (a_{m-1}a_0...a_{m-2}),$$

with indices reduced modulo m. Hence a normal basis representation of F_{2^m} is advantageous because squaring a field element can then be accomplished by a simple rotation of the vector representation, an operation that is easily implemented in hardware.

C.2.4. Optimal Normal Bases

In Example 3, the field F_{2^4} was described using polynomial multiplication, division and remainders. An optimal normal basis representation, as defined in Section 4.1.4, may also be used to construct the field F_{2^4} . Note that a Type I ONB does indeed exist for F_{2^4} .

Example 4: The finite field F_{24} using an optimal normal basis representation

As in Example 3, the elements of F_{24} are the binary 4-tuples:

$$(0000)$$
 (0001) (0010) (0011) (0100) (0101) (0110) (0111) (1000) (1001) (1010) (1011) (1100) (1101) (1111) .

Field elements are added and multiplied as follows:

C.2.4.a. Field addition:

 $(a_0a_1a_2a_3) + (b_0b_1b_2b_3) = (c_0c_1c_2c_3)$

where $c_i = a_i \oplus b_i$.

In other words, field addition is performed by simply XORing the vector representation.

C.2.4.b. Field multiplication:

The setup for multiplication is done as follows. See Section 4.1.4 for a description of the steps that are performed.

1. $f(x) = x^4 + x^3 + x^2 + x + 1$.

2. Since
$$x \mod f(x) = x$$
,
 $x^2 \mod f(x) = x^2$,
 $x^4 \mod f(x) = x^3 + x^2 + x + 1$,
 $x^8 \mod f(x) = x^3$,

the matrix *A* is computed as:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

3. The inverse of *A* is:

$$A^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

4. The matrix *T* is computed as:

$$T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

5. The λ_{ij} terms which are 1 are: λ_{02} , λ_{12} , λ_{13} , λ_{20} , λ_{21} , λ_{31} and λ_{33} .

For this particular example, multiplication is defined to be:

 $(a_0a_1a_2a_3) \cdot (b_0b_1b_2b_3) = (c_0c_1c_2c_3)$, where

 $c_0 = a_0b_2 \oplus a_1(b_2 \oplus b_3) \oplus a_2(b_0 \oplus b_1) \oplus a_3(b_1 \oplus b_3)$

 $c_1 = a_1b_3 \oplus a_2(b_3 \oplus b_0) \oplus a_3(b_1 \oplus b_2) \oplus a_0(b_2 \oplus b_0)$

 $c_2 = a_2b_0 \oplus a_3(b_0 \oplus b_1) \oplus a_0(b_2 \oplus b_3) \oplus a_1(b_3 \oplus b_1)$

 $c_3 = a_3b_1 \oplus a_0(b_1 \oplus b_2) \oplus a_1(b_3 \oplus b_0) \oplus a_2(b_0 \oplus b_2).$

With these definitions of addition and multiplication, the 16 binary 4-tuples form a field.

Notes:

- 1. When an ONB is used, the multiplicative identity in F_{2^4} is (1111). (In Example 3, when a polynomial basis was used, it was (0001).)
- 2. Referring to the equations in step 5 above, note that:

$$(a_0a_1a_2a_3) \cdot (a_0a_1a_2a_3) = (a_0a_1a_2a_3)^2 = (a_3a_0a_1a_2),$$

so the square of a field element is simply a right cyclic shift of its vector representation.

- 3. The formula for c_1 in the multiplication can be obtained by adding a 1 to each subscript in the formula for c_0 (where the subscripts are reduced modulo 4). The formula for c_2 can be obtained by adding 2 to each subscript in the formula for c_0 and reducing the subscripts modulo 4. The formula for c_3 can likewise be obtained.
- 4. From the preceding remark we see that a circuit to compute c_0 from $(a_0a_1a_2a_3)$ and $(b_0b_1b_2b_3)$ can be used to compute c_1 by applying $(a_1a_2a_3a_0)$ and $(b_1b_2b_3b_0)$ to the circuit. Similarly, c_2 and c_3 can be computed by shifting the input vectors to the left.

As an example of how to compute in this representation of F_{24} , we have

(1001) • (1101) =
$$(c_0c_1c_2c_3)$$

where:
 $c_0 = (1)(0) \oplus (0)(0 \oplus 1) \oplus 0$

$$c_0 = (1)(0) \oplus (0)(0 \oplus 1) \oplus (0)(1 \oplus 1) \oplus (1)(1 \oplus 1) = 0$$

$$c_1 = (0)(1) \oplus (0)(1 \oplus 1) \oplus (1)(1 \oplus 0) \oplus (1)(0 \oplus 1) = 0$$

$$c_2 = (0)(1) \oplus (1)(1 \oplus 1) \oplus (1)(0 \oplus 1) \oplus (0)(1 \oplus 1) = 1$$

$$c_3 = (1)(1) \oplus (1)(1 \oplus 0) \oplus (0)(1 \oplus 1) \oplus (0)(1 \oplus 0) = 0.$$

That is,

Also,

$$(1010)^{10} = (1010)^2 \cdot (1010)^8$$

 $= (0101) \cdot (0101)$

 $(1001) \cdot (1101) = (0010).$

$$=$$
 (1010),

and

$$(1101)^9 = (1101) \cdot (1101)^8$$

= $(1101) \cdot (1011)$
= (0001) .

In this representation, F_{2}^{*4} can be generated by the powers of $\alpha = (1100)$:

This method of representing F_{24} is called an *optimal normal basis representation*.

C.3. Elliptic Curves over F_p

Let p > 3 be a prime number. Let $a, b \in F_p$ be such that $4a^3 + 27b^2 \neq 0$ in F_p . An elliptic curve $E(F_p)$ over F_p defined by the parameters a and b is the set of solutions (x, y), $x, y \in F_p$, to the equation: $y^2 = x^3 + ax + ax$ b, together with an extra point \mathcal{O}_i , the *point at infinity*. The number of points in $E(F_p)$ is denoted by $\#E(F_p)$. The Hasse Theorem tells us that

$$p + 1 - 2\sqrt{p} \le \#E(F_p) \le p + 1 + 2\sqrt{p}$$
.

The set of points $E(F_n)$ forms a group with the following addition rules:

- (i) 0 + 0 = 0.
- (ii) (x, y) + 0 = 0 + (x, y) = (x, y) for all $(x, y) \in E(F_p)$.
- (iii) $(x, y) + (x, -y) = \emptyset$ for all $(x, y) \in E(F_p)$ (i.e., the negative of the point (x, y) is -(x, y) = (x, -y)).
- (iv) (Rule for adding two distinct points that are not inverses of each other)

Let: $(x_1, y_1) \in E(F_p)$ and $(x_2, y_2) \in E(F_p)$ be two points such that $x_1 \neq x_2$. Then $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$, where:

$$x_3 = \lambda^2 - x_1 - x_2$$
, $y_3 = \lambda (x_1 - x_3) - y_1$ and $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$.

(v) (Rule for doubling a point)

Let $(x_1, y_1) \in E(F_p)$ be a point with $y_1 \neq 0$.

Then $2(x_1, y_1) = (x_3, y_3)$, where:

$$x_3 = \lambda^2 - 2x_1$$
, $y_3 = \lambda (x_1 - x_3) - y_1$, and $\lambda = \frac{3x_1^2 + a}{2y_1}$.

The group $E(F_p)$ is *abelian*, which means that $P_1 + P_2 = P_2 + P_1$ for all points P_1 and P_2 in $E(F_p)$. The curve is said to be *supersingular* if $\#E(F_p) = p + 1$; otherwise it is *non-supersingular*. Only non-supersingular curves shall be in compliance with this standard (see Appendix D).

Example 5: An elliptic curve over F_{23}

Let $y^2 = x^3 + x + 1$ be an equation over F_{23} . Here a = 1 and b = 1. Then the solutions over F_{23} to the equation of the elliptic curve are:

- (0,1) (0,22) (1,7) (1,16) (3,10) (3,13) (4,0) (5,4) (5,19)
- (6,4) (6,19) (7,11) (7,12) (9,7) (9,16) (11,3) (11,20) (12,4)
- (12,19) (13,7) (13,16) (17,3) (17,20) (18,3) (18,20) (19,5) (19,18).

The solutions were obtained by trial and error. The group $E(F_{23})$ has 28 points (including the point at infinity \mathcal{O}). The following are examples of the group operation.

1. Let $P_1 = (3,10)$, $P_2 = (9,7)$, $P_1 + P_2 = (x_3, y_3)$. Compute

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 10}{9 - 3} = \frac{-3}{6} = \frac{-1}{2} = 11 \in F_{23},$$

$$x_3 = \lambda^2 - x_1 - x_2 = 11^2 - 3 - 9 = 6 - 3 - 9 = -6 = 17,$$

$$y_3 = \lambda(x_1 - x_3) - y_1 = 11(3 - 17) - 10 = 11(9) - 10 = 89 = 20.$$
The formula $x_1 = x_2 - x_1 = 11(3 - 17) - 10 = 11(9) - 10 = 89 = 20.$

Therefore $P_1 + P_2 = (17, 20)$.

2. Let $P_1 = (3, 10), 2P_1 = (x_3, y_3)$. Compute

$$\lambda = \frac{3x_1^2 + a}{2y_1} = \frac{3(3^2) + 1}{20} = \frac{5}{20} = \frac{1}{4} = 6,$$

$$x_3 = \lambda^2 - 2x_1 = 6^2 - 6 = 30 = 7,$$

$$y_3 = \lambda(x_1 - x_3) - y_1 = 6(3 - 7) - 10 = -24 - 10 = -11 = 12.$$
Therefore $2P_1 = (7, 12)$.

C.4. Elliptic Curves over F_{2m}

A non-supersingular *elliptic curve* $E(F_{2^m})$ over F_{2^m} defined by the parameters $a, b \in F_{2^m}, b \neq 0$, is the set of solutions $(x, y), x \in F_{2^m}, y \in F_{2^m}$, to the equation $y^2 + xy = x^3 + ax^2 + b$ together with an extra point \mathcal{O} , the *point at infinity*. The number of points in $E(F_{2^m})$ is denoted by $\#E(F_{2^m})$. The Hasse Theorem tells us that

$$q+1-2\sqrt{q} \le \#E(F_{2^m}) \le q+1+2\sqrt{q}$$
,

where $q = 2^m$. Furthermore, $\#E(F_{2^m})$ is even.

The set of points $E(F_{2^m})$ forms a group with the following addition rules:

- (i) O + O = O.
- (ii) (x, y) + 0 = 0 + (x, y) = (x, y) for all $(x, y) \in E(F_{2^m})$.
- (iii) $(x, y) + (x, x + y) = \emptyset$ for all $(x, y) \in E(F_{2^m})$ (i.e., the negative of the point (x, y) is -(x, y) = (x, x + y)).
- (iv) (Rule for adding two distinct points that are not inverses of each other)

Let $(x_1, y_1) \in E(F_{2^m})$ and $(x_2, y_2) \in E(F_{2^m})$ be two points such that $x_1 \neq x_2$. Then $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$, where:

$$x_3 = \lambda^2 + \lambda + x_1 + x_2 + a$$
, $y_3 = \lambda(x_1 + x_3) + x_3 + y_1$, and $\lambda = \frac{y_1 + y_2}{x_1 + x_2}$.

(v) (Rule for doubling a point)

Let $(x_1, y_1) \in E(F_{2^m})$ be a point with $x_1 \neq 0$. Then $2(x_1, y_1) = (x_3, y_3)$, where

$$x_3 = \lambda^2 + \lambda + a$$
, $y_3 = x_1^2 + (\lambda + 1) x_3$, and $\lambda = x_1 + \frac{y_1}{x_1}$.

The group $E(F_{2^m})$ is abelian, which means that $P_1 + P_2 = P_2 + P_1$ for all points P_1 and P_2 in $E(F_{2^m})$.

We now give two examples of elliptic curves over F_{24} . Example 6 uses a trinomial basis representation for the field, and Example 7 uses an optimal normal basis representation.

Example 6: An elliptic curve over F_{2^4} . A trinomial basis representation is used for the elements of F_{2^4} .

Consider the field F_{24} generated by the root $\alpha = x$ of the irreducible polynomial:

$$f(x) = x^4 + x + 1$$
.

(See Example 3.) The powers of α are:

Consider the non-supersingular elliptic curve over F_{2^4} with defining equation:

$$v^2 + xv = x^3 + \alpha^4 x^2 + 1$$
.

Here, $a = \alpha^4$ and b = 1. The notation for this equation can be expressed as follows, since the multiplicative identity is (0001):

$$(0001) y^2 + (0001) xy = (0001) x^3 + (0011) x^2 + (0001).$$

Then the solutions over F_{24} to the equation of the elliptic curve are:

$$(0,1) \quad (1,\alpha^6) \quad (1,\alpha^{13}) \quad (\alpha^3,\alpha^8) \quad (\alpha^3,\alpha^{13}) \quad (\alpha^5,\alpha^3) \quad (\alpha^5,\alpha^{11}) \\ (\alpha^6,\alpha^8) \quad (\alpha^6,\alpha^{14}) \quad (\alpha^9,\alpha^{10}) \quad (\alpha^9,\alpha^{13}) \quad (\alpha^{10},\alpha^1) \quad (\alpha^{10},\alpha^8) \quad (\alpha^{12},0) \quad (\alpha^{12},\alpha^{12}).$$

The group $E(F_{2^4})$ has 16 points (including the point at infinity \mathcal{O}). The following are examples of the group operation.

1. Let
$$P_1 = (x_1, y_1) = (\alpha^6, \alpha^8)$$
, $P_2 = (x_2, y_2) = (\alpha^3, \alpha^{13})$, and $P_1 + P_2 = (x_3, y_3)$. Then:

$$\lambda = \frac{y_1 + y_2}{x_1 + x_2} = \frac{\alpha^8 + \alpha^{13}}{\alpha^6 + \alpha^3} = \alpha,$$

$$x_3 = \lambda^2 + \lambda + x_1 + x_2 + a = \alpha^2 + \alpha + \alpha^6 + \alpha^3 + \alpha^4 = 1,$$

$$y_3 = \lambda(x_1 + x_3) + x_3 + y_1 = \alpha(\alpha^6 + 1) + 1 + \alpha^8 = \alpha^{13}.$$
2. If $2P_1 = (x_2, y_2)$, then:

2. If $2P_1 = (x_3, y_3)$, then:

$$\lambda = x_1 + \frac{y_1}{x_1} = \alpha^6 + \frac{\alpha^8}{\alpha^6} = \alpha^3,$$

$$x_3 = \lambda^2 + \lambda + a = \alpha^6 + \alpha^3 + \alpha^4 = \alpha^{10},$$

$$y_3 = x_1^2 + (\lambda + 1)x_3 = \alpha^{12} + (\alpha^3 + 1)\alpha^{10} = \alpha^8.$$

An elliptic curve over F_{24} . An optimal normal basis representation is used for the Example 7: elements of F_{24} .

Consider the field F_{74} given by the optimal normal basis representation in Example 4. That is, the elements of F_{24} are the set of all binary 4-tuples with multiplication given by the formulae in Section 4.1.4.b. Recall that $\alpha = (1100)$ is a generator for the non-zero elements, and (1111) is the multiplicative identity. The powers of α are:

Consider the non-supersingular curve over F_{24} defined by the equation

$$E: y^2 + xy = x^3 + \alpha^3$$
.

Here, a = 0 and $b = \alpha^3$. The notation for this equation can be expressed as follows since the multiplicative identity is (1111):

$$(1111) y^2 + (1111) xy = (1111) x^3 + (0100).$$

The solutions over F_{24} to the elliptic curve equation are:

Since there are 19 solutions to the equation in F_{24} , the group $E(F_{24})$ has 19 + 1 = 20 elements (including the point at infinity). This group turns out to be a cyclic group of order 20. If we take $G = (\alpha^3, \alpha^5)$ and use the addition formulae, we find that:

$1G = (\alpha^3, \alpha^5)$	$2 G = (\alpha^4, \alpha^3)$	$3 G = (\alpha^{13}, \alpha^2)$	$4 G = (\alpha, 0)$	$5 G = (\alpha^{12}, \alpha^8)$
$6 G = (\alpha^8, \alpha^3)$	$7 G = (\alpha^{11}, 0)$	$8 G = (\alpha^5, \alpha^{11})$	$9 G = (\alpha^6, 0)$	10 $G = (0, \alpha^9)$
$11 G = (\alpha^6, \alpha^6)$	$12 G = (\alpha^5, \alpha^3)$	13 $G = (\alpha^{11}, \alpha^{11})$	14 $G = (\alpha^8, \alpha^{13})$	$15 G = (\alpha^{12}, \alpha^9)$
$16~G=(\alpha,\alpha)$	17 $G = (\alpha^{13}, \alpha^{14})$	$18 G = (\alpha^4, \alpha^7)$	19 $G = (\alpha^3, \alpha^{11})$	20 G = 0 .

Appendix D Security Considerations [Informative]

This appendix is provided as initial guidance for implementers of this Standard. This information should be expected to change over time. Implementers should review the current state-of-the-art in attacks on elliptic curve systems at the time of implementation.

The best attacks known on the elliptic curve discrete logarithm problem, which is the basis for the security of elliptic curve systems, are summarized. Estimates of security levels for elliptic curve parameters of various sizes are provided.

Notation

E denotes an elliptic curve over the finite field F_q . $P \in E(F_q)$ is a point of order n, where n is a prime number and $n > 2^{160}$.

D.1. The Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) is the following: given E, P and $Q \in E$, determine the integer l, $0 \le l \le n$ -1, such that Q = lP, provided that such an integer exists.

The best general algorithm known to date for ECDLP is the Pollard- ρ method [36] which takes about $\sqrt{\pi} \ n \ / \ 2$ steps, where each step is an elliptic curve addition. The Pollard- ρ method can be parallelized (see [35]) so that if m processors are used, then the expected number of steps by each processor before a single discrete logarithm is obtained is $(\sqrt{\pi} \ n \ / \ 2) \ / m$.

The special classes of elliptic curves, called *supersingular curves*, have been prohibited in this Standard by the requirement of the MOV condition (see Section F.1.1). These curves have been prohibited because there is a method for efficiently reducing the discrete logarithm problem in these curves to the discrete logarithm problem in a finite field.

Also, the special class of elliptic curves called F_q -anomalous curves have been prohibited by the requirement of the Anomalous condition (see Section F.1.2) because there is an efficient algorithm for computing discrete logarithms in $E(F_q)$ where E is an anomalous curve over F_q (i.e. $\#E(F_q) = q$).

To guard against existing attacks on ECDLP, one should select an elliptic curve E over F_a such that:

- 1. The order $\#E(F_q)$ is divisible by a large prime $n > 2^{\hat{1}60}$;
- 2. The MOV condition (Section F.1.1) holds; and
- 3. The Anomalous condition (Section F.1.2) holds.

Furthermore, to guard against possible future attacks against special classes of non-supersingular curves, it is prudent to select an elliptic curve at random. Section F.3.3 describes a method for selecting an elliptic curve *verifiably* at random.

D.2. Software Attacks

Assume that a 1 MIPS (Million Instructions Per Second) machine can perform $4x10^4$ elliptic curve additions per second. (This estimate is indeed high — an ASIC (Application Specific Integrated Circuit) built for performing elliptic curve operations over the field F_2^{155} has a 40 MHz clock-rate and can perform roughly 40,000 elliptic additions per second.) Then, the number of elliptic curve additions that can be performed by a 1 MIPS machine in one year is

$$(4 \times 10^4) \cdot (60 \times 60 \times 24 \times 365) \approx 2^{40}$$
.

Table D-1 shows the computing power required to compute a single discrete logarithm for various values of n. As an example, if 10,000 computers each rated at 1,000 MIPS are available, and $n \approx 2^{160}$, then an elliptic curve discrete logarithm can be computed in 96,000 years.

Odlyzko [34] has estimated that if 0.1% of the world's computing power were available for one year to work on a collaborative effort to break some challenge cipher, then the computing power available would be 10^8 MIPS years in 2004 and 10^{10} to 10^{11} MIPS years in 2014.

Field size (in bits)	Size of <i>n</i> (in bits)	$\sqrt{\pi n/2}$	MIPS years
163	160	280	9.6 x 10 ¹¹
191	186	2^{93}	7.9×10^{15}
239	234	2^{117}	1.3×10^{23}
359	354	2^{177}	1.5×10^{41}
431	426	2^{213}	1.0×10^{52}

Table D-1: Computing power required to compute elliptic curve logarithms with the Pollard- ρ method.

To put the numbers in Table D-1 into some perspective, Table D-2 (due to Odlyzko [34]) shows the computing power required to factor integers with 1995 versions of the general number field sieve.

Size of integer to be factored	MIPS years
(in bits)	
512	3 x 10 ⁴
768	2×10^{8}
1024	3×10^{11}
1280	1×10^{14}
1536	3×10^{16}
2048	3 x 10 ²⁰

Table D-2: Computing power required to factor integers using the general number field sieve.

D.3. Hardware Attacks

A more promising attack (for well-funded attackers) on elliptic curve systems would be to build special-purpose hardware for a parallel search. Van Oorschot and Wiener [35] provide a detailed study of such a possibility. In their 1994 study, they estimated that if $n \approx 10^{36} \approx 2^{120}$, then a machine with m = 325,000 processors that could be built for about \$10 million would compute a single discrete logarithm in about 35 days.

It must be emphasized that these estimates were made for specific elliptic curve parameters having $n \approx 10^{36} \approx 2^{120}$. This Standard mandates that the parameter n should satisfy $n > 2^{160} \approx 10^{48}$.

and hence the hardware attacks are infeasible.

D.4. Key Length Considerations

It should be noted that for the software and hardware attacks described above, the computation of a single elliptic curve discrete logarithm has the effect of revealing a *single* user's private key. The same effort must be repeated in order to determine another user's private key.

In [9], Blaze et al. report on the minimum key lengths required for secure symmetric-key encryption schemes (such as DES and IDEA). Their report provides the following conclusion:

To provide adequate protection against the most serious threats — well-funded commercial enterprises or government intelligence agencies — keys used to protect data today should be at least 75 bits long. To protect information adequately for the next 20 years in the face of expected advances in computing power, keys in newly-deployed systems should be at least 90 bits long.

Extrapolating these conclusions to the case of elliptic curves, we see that n should be at least 150 bits for short-term security, and at least 180 bits for medium-term security. This extrapolation is justified by the following considerations:

- 1. Exhaustive search through a k-bit symmetric-key cipher takes about the same time as the Pollard- ρ algorithm applied to an elliptic curve having a 2k-bit parameter n.
- 2. Both exhaustive search with a symmetric-key cipher and the Pollard- ρ algorithm can be parallelized with a linear speedup.
- 3. A basic operation with elliptic curves (addition of two points) is computationally more expensive than a basic operation in a symmetric-key cipher (encryption of one block).
- 4. In both symmetric-key ciphers and elliptic curve systems, a "break" has the same effect: it recovers a single private key.

D.5. Vaudenay's Attack

Vaudenay [40] presented some attacks on the DSA where an adversary can forge one signature if she can select the system parameters. One attack relies on the fact that the DSA signature hash function is actually SHA-1 mod q, not merely SHA-1. In ECDSA, Vaudenay's attack is thwarted because $n > 2^{160}$.

D.6. System Parameter Generation Decisions

There are several decisions to make during system parameter generation (besides the key size) that affects security. These are as follows:

- 1. Whether to use a probabilistic or deterministic primality test. If using a probabilistic test, what number of individual tests T to be used. The Standard specifies that when using a probabilistic test, $T \ge 50$. If T = 50 then the chance that a probable prime output by this test is actually composite is less than 2^{-100} . This is a very remote possibility. If additional assurance is desired, a larger value for T may be specified or a deterministic primality test run.
- 2. Whether to use the canonical seeded hash (Section F.3.3) to determine the elliptic curve parameters (a and b). For the DSA, there is the possibility that a particularly poor choice of system parameters could lead to an attack. To address this, the DSA requires the use of a canonical seeded hash to generate the system parameters p and q, as this provides an assurance that p and q were generated arbitrarily. The analogous attack on the ECDSA does not apply, and there are no known poor choices for system parameters that are not already excluded by this Standard. The use of a specific elliptic curve may allow performance improvements over the use of an arbitrary elliptic curve. For these reasons, this Standard allows both the choice of a particular elliptic curve or the generation of an arbitrary curve through the use of a canonical seeded hash function. One may desire to use an arbitrary curve when security considerations are so preeminent that the possible performance impact is not a factor in the decision.
- 3. How large the MOV threshold B (see Section F.1) should be. The MOV threshold B is a positive integer B such that taking discrete logarithms over F_{qB} is at least as difficult as taking elliptic curve discrete logarithms over F_q . For this Standard, $B \ge 20$. For example, for an elliptic curve over $F_{2^{191}}$, this means that all elliptic curves that are able to be mapped into finite fields with an order up to around 2^{3800} are eliminated from consideration. The value B = 20 is a conservative choice, and is sufficient to ensure resistance against the reduction attack.
- 4. What values to use for l_{max} and r_{min} when determining n, the order of the distinguished point P (see Section F.3.2). The value r_{min} is the minimum value that is appropriate for n, the order of the distinguished point P in the system parameters. For this Standard, $r_{min} > 2^{160}$. For example, if the order of the underlying field is 2^{191} , an appropriate value for r_{min} is $\approx 2^{185}$. When the order of the underlying field is larger, a larger r_{min} and therefore a larger n is appropriate. Mitigating the choice

is the fact that finding a curve satisfying stricter requirements will take longer. The trial division bound l_{max} is the maximum size of all prime factors of the cofactor h. In this Standard, the order of an elliptic curve will be a number u such that u = hn, where n is a large prime factor (and the order of the distinguished point P) and h is a number whose prime factors are all less than l_{max} . For example, if the order of the underlying field is 2^{191} and r_{min} is 2^{185} , then an appropriate value for l_{max} is 255.

D.7. Repeated Cryptovariables

If two users are using the same system parameters and somehow generate identical private key d values, then either could impersonate the other. As the private key d is a value between 1 and n-1 (inclusive) and nis required to be greater than 2¹⁶⁰, a duplicate private key is only expected to happen by chance (due to the birthday phenomenon) after about 2⁸⁰ key pairs have been generated. As 2⁸⁰ is over 1 million million million million, this is not expected to happen. However, it is possible that a private key might repeat due to a hardware or software error or a poorly-seeded pseudorandom number generator. If this occurred, the public key O for the two users would also repeat. To address the possibility of error, a service that a Certificate Authority may choose to provide for users with high security requirements is to monitor public keys to ensure that there are no duplicates. If a duplicate public key is detected, then both parties should separately be told to revoke their current public key, determine if there has been an error, try to determine the cause of the error, decide what corrective action to take (if any), and regenerate new key pairs. The possibility of a per-message secret k value repeating during signature generation may also be a concern. A k value has the same numeric and security constraints as a private key. If a k value repeats for two different messages, then the r value in the signature will also repeat and it is then possible for an adversary with access to both signatures to recover the associated private key. As with the private key, this event should never occur except by chance. One way to address the possibility of an otherwise undetected hardware or software error or a poorly-seeded pseudorandom number generator is for a system intended for users with high security requirements to maintain a list of r values previously output by signature generation so that it can detect if an r value ever repeats. If a repeated r value is detected, the associated signature should not be output and a possible error indicated. The owner of the system should try to determine what happened and what corrective action to take, including whether to continue to operate the system.

D.8. Attacks on the Hash Function

This standard specifies the use of the Secure Hash Algorithm Revision 1 (SHA-1). If SHA-1 is broken, this Standard should not be used as it is currently written.

D.9. Security Non-Considerations

There are several choices that may be made in this Standard that do not affect security. Other considerations, such as performance or bandwidth, may be used to determine the requirements of an implementation.

- 1. The choice of basis representation for the finite field F_{2^m} is not a security consideration. That is, polynomial bases and optimal normal bases are equally secure. In fact, because an appropriate matrix multiplication transforms one representation into the other (see Section G.2.3), a valid implementation choice to meet a specific output basis requirement is to use one basis internally to do the calculations and then transform the results into the other basis by using the proper change-of-basis matrix.
- 2. The choice of the base point *P* is not a security consideration as long as it has a large prime order as required by this Standard. That is, for a given elliptic curve, there are many equally-secure possibilities for the distinguished point *P*.
- The representation of a point in a compressed or uncompressed form is not a security consideration.

Appendix E Tables of Trinomials, Pentanomials, and Optimal Normal Bases [Informative]

E.1. Table of Fields F_{2m} which have an ONB

Tab	Table E-1: Values of m , $160 \le m \le 2000$, for which the field F_{2^m} has an ONB over F_2 .										
162*	293	429	585	741	873	1041	1218	1359	1530*	1746*	1900*
172*	299	431	586*	743	876*	1043	1223	1370	1533	1749	1901
173	303	438	593	746	879	1049	1228*	1372*	1539	1755	1906*
174	306	441	606	749	882*	1055	1229	1380*	1541	1758	1923
178*	309	442*	611	755	891	1060*	1233	1394	1548*	1763	1925
179	316*	443	612*	756*	893	1065	1236*	1398	1559	1766	1926
180*	323	453	614	761	906*	1070	1238	1401	1570*	1769	1930*
183	326	460*	615	765	911	1090*	1251	1409	1583	1773	1931
186	329	466*	618+	771	923	1103	1258*	1418	1593	1778	1938
189	330	470	629	772*	930	1106	1265	1421	1601	1779	1948*
191	338	473	638	774	933	1108*	1269	1425	1618*	1785	1953
194	346*	483	639	779	935	1110	1271	1426*	1620*	1786*	1955
196*	348*	490*	641	783	938	1116*	1274	1430	1626	1790	1958
209	350	491	645	785	939	1118	1275	1439	1636*	1791	1959
210+	354	495	650	786*	940*	1119	1276*	1443	1649	1806	1961
221	359	508*	651	791	946*	1121	1278	1450*	1653	1811	1965
226*	371	509	652*	796*	950	1122*	1282*	1451	1659	1818	1972*
230	372*	515	653	803	953	1133	1289	1452*	1661	1821	1973
231	375	519	658*	809	965	1134	1290*	1454	1666*	1829	1978*
233	378+	522*	659	810	974	1146	1295	1463	1668*	1835	1983
239	386	530	660*	818	975	1154	1300*	1469	1673	1838	1986*
243	388*	531	676*	820*	986	1155	1306*	1478	1679	1845	1994
245	393	540*	683	826*	989	1166	1310	1481	1685	1850	1996*
251	398	543	686	828*	993	1169	1323	1482*	1692*	1854	
254	410	545	690	831	998	1170*	1329	1492*	1703	1859	
261	411	546*	700*	833	1013	1178	1331	1498*	1706	1860*	
268*	413	554	708*	834	1014	1185	1338	1499	1730	1863	
270	414	556*	713	846	1018*	1186*	1341	1505	1732*	1866+	
273	418*	558	719	852*	1019	1194	1346	1509	1733	1876*	
278	419	561	723	858*	1026	1199	1349	1511	1734	1883	
281	420*	562*	725	866	1031	1211	1353	1518	1740*	1889	
292*	426	575	726	870	1034	1212*	1355	1522*	1745	1898	
11											

^{*} indicates the existence of a type I ONB; + indicates the existence of both a type I and a type II ONB; otherwise there exists only a type II ONB.

E.2. Irreducible Trinomials Over F₂

		Tal	ole E-2:	Irreduci	ble trino	mials <i>x</i>	$x^m + x^k +$	-1 over	F_2 .		
For eac	h <i>m</i> , 160		609, for							s, the tal	ble
lists the	e smalles	t k for v	which x^m	$+ x^{k} + 1$	is irredu	cible o	ver F_2 .			_	
m	k	m	k	m	k	m	k	m	k	m	k
161	18	236	5	308	15	383	90	458	203	527	47
162	27	238	73	310	93	385	6	460	19	529	42
166	37	239	36	313	79	386	83	462	73	532	1
167	6	241	70	314	15	388	159	463	93	534	161
169	34	242	95	316	63	390	9	465	31	537	94
170	11	244	111	318	45	391	28	468	27	538	195
172	1	247	82	319	36	393	7	470	9	540	9
174	13	249	35	321	31	394	135	471	1	543	16
175	6	250	103	322	67	396	25	473	200	545	122
177	8	252	15	324	51	399	26	474	191	550	193
178	31	253	46	327	34	401	152	476	9	551	135
180	3	255	52	329	50	402	171	478	121	553	39
182	81	257	12	330	99	404	65	479	104	556	153
183	56	258	71	332	89	406	141	481	138	558	73
185	24	260	15	333	2	407	71	484	105	559	34
186	11	263	93	337	55	409	87	486	81	561	71
191	9	265	42	340	45	412	147	487	94	564	163
193	15	266	47	342	125	414	13	489	83	566	153
194	87	268	25	343	75	415	102	490	219	567	28
196	3	270	53	345	22	417	107	492	7	569	77
198	9	271	58	346	63	418	199	494	17	570	67
199	34	273	23	348	103	420	7	495	76	574	13
201	14	274	67	350	53	422	149	497	78	575	146
202	55	276	63	351	34	423	25	498	155	577	25
204	27	278	5	353	69	425	12	500	27	580	237
207	43	279	5	354	99	426	63	503	3	582	85
209	6	281	93	358	57	428	105	505	156	583	130
210	7	282	35	359	68	431	120	506	23	585	88
212	105	284	53	362	63	433	33	508	9	588	35
214	73	286	69	364	9	436	165	510	69	590	93
215	23	287	71	366	29	438	65	511	10	593	86
217	45	289	21	367	21	439	49	513	26	594	19
218	11	292	37	369	91	441	7	514	67	596	273
220	7	294	33	370	139	444	81	516	21	599	30
223	33	295	48	372	111	446	105	518	33	601	201
225	32	297	5	375	16	447	73	519	79	602	215
228	113	300	5	377	41	449	134	521	32	604	105
231	26	302	41	378	43	450	47	522	39	606	165
233	74	303	1	380	47	455	38	524	167	607	105
234	31	305	102	382	81	457	16	526	97	609	31

610 127 684 209 754 19 833 149 903 35 988 1 612 81 686 197 756 45 834 15 905 117 990 1 614 45 687 13 758 233 838 61 906 123 991 615 211 689 14 759 98 839 54 908 143 993 617 200 690 79 761 3 841 144 911 204 994 2 618 295 692 299 762 83 842 47 913 91 996 620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999	Table E-2.a: Irreducible trinomials $x^m + x^k + 1$ over F_2 .											
m k m									of degre	ee <i>m</i> exis	sts, the t	able
610 127 684 209 754 19 833 149 903 35 988 1 612 81 686 197 756 45 834 15 905 117 990 1 614 45 687 13 758 233 838 61 906 123 991 615 211 689 14 759 98 839 54 908 143 993 617 200 690 79 761 3 841 144 911 204 994 2 618 295 692 299 762 83 842 47 913 91 996 620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999	lists th	i	t k for y	i	$+ x^{k} + 1$	ii	icible o					
612 81 686 197 756 45 834 15 905 117 990 1 614 45 687 13 758 233 838 61 906 123 991 615 211 689 14 759 98 839 54 908 143 993 617 200 690 79 761 3 841 144 911 204 994 2 618 295 692 299 762 83 842 47 913 91 996 620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999 623 68 697 267 772 7 846 105 919 36 1001												k
614 45 687 13 758 233 838 61 906 123 991 615 211 689 14 759 98 839 54 908 143 993 617 200 690 79 761 3 841 144 911 204 994 2 618 295 692 299 762 83 842 47 913 91 996 620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999 623 68 697 267 772 7 846 105 919 36 1001 625 133 698 215 774 185 847 136 921 221 1007 626<		ļ									988	121
615 211 689 14 759 98 839 54 908 143 993 617 200 690 79 761 3 841 144 911 204 994 2 618 295 692 299 762 83 842 47 913 91 996 620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999 623 68 697 267 772 7 846 105 919 36 1001 625 133 698 215 774 185 847 136 921 221 1007 626 251 700 75 775 93 849 253 924 31 1009 628									905			161
617 200 690 79 761 3 841 144 911 204 994 2 618 295 692 299 762 83 842 47 913 91 996 620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999 623 68 697 267 772 7 846 105 919 36 1001 625 133 698 215 774 185 847 136 921 221 1007 626 251 700 75 775 93 849 253 924 31 1009 628 223 702 37 777 29 850 111 926 365 1010 6	614	45	687	13	758	233	838	61	906	123	991	39
618 295 692 299 762 83 842 47 913 91 996 620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999 623 68 697 267 772 7 846 105 919 36 1001 625 133 698 215 774 185 847 136 921 221 1007 626 251 700 75 775 93 849 253 924 31 1009 628 223 702 37 777 29 850 111 926 365 1010 631 307 705 17 778 375 852 159 927 403 1012 1 <t< td=""><td>615</td><td>211</td><td>689</td><td></td><td>759</td><td></td><td>839</td><td>54</td><td>908</td><td>143</td><td>993</td><td>62</td></t<>	615	211	689		759		839	54	908	143	993	62
620 9 694 169 767 168 844 105 916 183 998 1 622 297 695 177 769 120 845 2 918 77 999 623 68 697 267 772 7 846 105 919 36 1001 625 133 698 215 774 185 847 136 921 221 1007 626 251 700 75 775 93 849 253 924 31 1009 628 223 702 37 777 29 850 111 926 365 1010 631 307 705 17 778 375 852 159 927 403 1012 1 633 101 708 15 780 13 855 29 930 31 1014 3	617	200	690	79	761	3	841	144	911	204	994	223
622 297 695 177 769 120 845 2 918 77 999 623 68 697 267 772 7 846 105 919 36 1001 625 133 698 215 774 185 847 136 921 221 1007 626 251 700 75 775 93 849 253 924 31 1009 628 223 702 37 777 29 850 111 926 365 1010 631 307 705 17 778 375 852 159 927 403 1012 1 633 101 708 15 780 13 855 29 930 31 1014 3	618	295	692	299	762	83	842	47	913	91	996	65
623 68 697 267 772 7 846 105 919 36 1001 625 133 698 215 774 185 847 136 921 221 1007 626 251 700 75 775 93 849 253 924 31 1009 628 223 702 37 777 29 850 111 926 365 1010 631 307 705 17 778 375 852 159 927 403 1012 1 633 101 708 15 780 13 855 29 930 31 1014 3	620	9	694	169	767	168	844	105	916	183	998	101
625 133 698 215 774 185 847 136 921 221 1007 626 251 700 75 775 93 849 253 924 31 1009 628 223 702 37 777 29 850 111 926 365 1010 631 307 705 17 778 375 852 159 927 403 1012 1 633 101 708 15 780 13 855 29 930 31 1014 3	622	297	695	177	769	120	845	2	918	77	999	59
626 251 700 75 775 93 849 253 924 31 1009 628 223 702 37 777 29 850 111 926 365 1010 631 307 705 17 778 375 852 159 927 403 1012 1 633 101 708 15 780 13 855 29 930 31 1014 3	623	68	697	267	772	7	846	105	919	36	1001	17
628 223 702 37 777 29 850 111 926 365 1010 631 307 705 17 778 375 852 159 927 403 1012 13 633 101 708 15 780 13 855 29 930 31 1014 33	625	133	698	215	774	185	847	136	921	221	1007	75
631 307 705 17 778 375 852 159 927 403 1012 1 633 101 708 15 780 13 855 29 930 31 1014 3	626	251	700	75	775	93	849	253	924	31	1009	55
633 101 708 15 780 13 855 29 930 31 1014 3	628	223	702	37	777	29	850	111	926	365	1010	99
	631	307	705	17	778	375	852	159	927	403	1012	115
	633	101	708	15	780	13	855	29	930	31	1014	385
[634 39 711 92 782 329 857 119 932 177 1015 1	634	39	711	92	782	329	857	119	932	177	1015	186
636 217 713 41 783 68 858 207 935 417 1020 1	636	217	713	41	783	68	858	207	935	417	1020	135
639 16 714 23 785 92 860 35 937 217 1022 3	639	16	714	23	785	92	860	35	937	217	1022	317
641 11 716 183 791 30 861 14 938 207 1023	641	11	716	183	791	30	861	14	938	207	1023	7
642 119 718 165 793 253 862 349 942 45 1025 2	642	119	718	165	793	253	862	349	942	45	1025	294
646 249 719 150 794 143 865 1 943 24 1026	646	249	719	150	794	143	865	1	943	24	1026	35
647 5 721 9 798 53 866 75 945 77 1028 1	647	5	721	9	798	53	866	75	945	77	1028	119
649 37 722 231 799 25 868 145 948 189 1029	649	37	722	231	799	25	868	145	948	189	1029	98
650 3 724 207 801 217 870 301 951 260 1030	650	3	724	207	801	217	870	301	951	260	1030	93
651 14 726 5 804 75 871 378 953 168 1031	651	14	726	5	804	75	871	378	953	168	1031	68
652 93 727 180 806 21 873 352 954 131 1033	652	93	727	180	806	21	873	352	954	131	1033	108
654 33 729 58 807 7 876 149 956 305 1034	654	33	729	58	807	7	876	149	956	305	1034	75
655 88 730 147 809 15 879 11 959 143 1036 4	655	88	730	147	809	15	879	11	959	143	1036	411
657 38 732 343 810 159 881 78 961 18 1039	657	38	732	343	810	159	881	78	961	18	1039	21
	658	55	735		812	29	882	99	964	103	1041	412
												439
662 21 738 347 815 333 887 147 967 36 1044	662	21	738	347	815	333	887	147	967	36	1044	41
663 107 740 135 817 52 889 127 969 31 1047	663	107	740	135	817	52	889	127	969	31	1047	10
665 33 742 85 818 119 890 183 972 7 1049 1	665	33	742	85	818	119	890	183	972	7	1049	141
										19		159
		ļ									1052	291
												105
673 28 748 19 825 38 897 113 982 177 1055		ļ										24
												198
679 66 751 18 828 189 900 1 985 222 1058		ļ										27
								_				439

Table E-2.b: Irreducible trinomials $x^m + x^k + 1$ over F_2 . For each m, $1061 \le m \le 1516$, for which an irreducible trinomial of degree m exists, the table lists the smallest k for which $x^m + x^k + 1$ is irreducible over F_2 .

lists the	e smanes	st <i>k</i> for v	vnich x	+x+1	is irred	ucible o	ver F_2 .				
m	k	m	k	m	k	m	k	m	k	m	k
1062	49	1140	141	1212	203	1287	470	1366	1	1441	322
1063	168	1142	357	1214	257	1289	99	1367	134	1442	395
1065	463	1145	277	1215	302	1294	201	1369	88	1444	595
1071	7	1146	131	1217	393	1295	38	1372	181	1446	421
1078	361	1148	23	1218	91	1297	198	1374	609	1447	195
1079	230	1151	90	1220	413	1298	399	1375	52	1449	13
1081	24	1153	241	1223	255	1300	75	1377	100	1452	315
1082	407	1154	75	1225	234	1302	77	1380	183	1454	297
1084	189	1156	307	1226	167	1305	326	1383	130	1455	52
1085	62	1158	245	1228	27	1306	39	1385	12	1457	314
1086	189	1159	66	1230	433	1308	495	1386	219	1458	243
1087	112	1161	365	1231	105	1310	333	1388	11	1460	185
1089	91	1164	19	1233	151	1311	476	1390	129	1463	575
1090	79	1166	189	1234	427	1313	164	1391	3	1465	39
1092	23	1167	133	1236	49	1314	19	1393	300	1466	311
1094	57	1169	114	1238	153	1319	129	1396	97	1468	181
1095	139	1170	27	1239	4	1321	52	1398	601	1470	49
1097	14	1174	133	1241	54	1324	337	1399	55	1471	25
1098	83	1175	476	1242	203	1326	397	1401	92	1473	77
1100	35	1177	16	1246	25	1327	277	1402	127	1476	21
1102	117	1178	375	1247	14	1329	73	1404	81	1478	69
1103	65	1180	25	1249	187	1332	95	1407	47	1479	49
1105	21	1182	77	1252	97	1334	617	1409	194	1481	32
1106	195	1183	87	1255	589	1335	392	1410	383	1482	411
1108	327	1185	134	1257	289	1337	75	1412	125	1486	85
1110	417	1186	171	1260	21	1338	315	1414	429	1487	140
1111	13	1188	75	1263	77	1340	125	1415	282	1489	252
1113	107	1190	233	1265	119	1343	348	1417	342	1490	279
1116	59	1191	196	1266	7	1345	553	1420	33	1492	307
1119	283	1193	173	1268	345	1348	553	1422	49	1495	94
1121	62	1196	281	1270	333	1350	237	1423	15	1497	49
1122	427	1198	405	1271	17	1351	39		28	1500	25
1126	105	1199	114	1273	168	1353	371	1426	103	1503	80
1127	27	1201	171	1276	217	1354	255	1428	27	1505	246
1129	103	1202	287	1278	189	1356	131	1430	33	1508	599
1130	551	1204	43	1279	216	1358	117	1431	17	1510	189
1134	129	1206	513	1281	229	1359	98	1433	387	1511	278
1135	9	1207	273	1282	231	1361	56	1434	363	1513	399
1137	277	1209	118	1284	223	1362	655	1436	83	1514	299
1138	31	1210	243	1286	153	1364	239	1438	357	1516	277

Table E-2.c: Irreducible trinomials $x^m + x^k + 1$ over F_2 .											
For eac	ch <i>m</i> . 15						trinomia			ists, the	table
11					is irredu			υ		,	
m	k	m	k	m	k	m	k^{-}	m	k	m	k
1518	69	1590	169	1673	90	1756	99	1838	53	1927	25
1519	220	1591	15	1674	755	1759	165	1839	836	1929	31
1521	229	1593	568	1376	363	1764	105	1841	66	1932	277
1524	27	1596	3	1678	129	1767	250	1844	339	1934	413
1526	473	1599	643	1679	20	1769	327	1846	901	1935	103
1527	373	1601	548	1681	135	1770	279	1847	180	1937	231
1529	60	1602	783	1687	31	1772	371	1849	49	1938	747
1530	207	1604	317	1689	758	1774	117	1854	885	1940	113
1534	225	1606	153	1692	359	1775	486	1855	39	1943	11
1535	404	1607	87	1694	501	1777	217	1857	688	1945	91
1537	46	1609	231	1695	29	1778	635	1860	13	1946	51
1540	75	1612	771	1697	201	1780	457	1862	149	1948	603
1542	365	1615	103	1698	459	1782	57	1863	260	1950	9
1543	445	1617	182	1700	225	1783	439	1865	53	1951	121
1545	44	1618	211	1703	161	1785	214	1866	11	1953	17
1548	63	1620	27	1705	52	1788	819	1870	121	1956	279
1550	189	1623	17	1708	93	1790	593	1871	261	1958	89
1551	557	1625	69	1710	201	1791	190	1873	199	1959	371
1553	252	1628	603	1711	178	1793	114	1878	253	1961	771
1554	99	1630	741	1713	250	1798	69	1879	174	1962	99
1556	65	1631	668	1716	221	1799	312	1881	370	1964	21
1558	9	1633	147	1719	113	1801	502	1884	669	1966	801
1559	119	1634	227	1721	300	1802	843	1886	833	1967	26
1561	339	1636	37	1722	39	1804	747	1887	353	1969	175
1562	95	1638	173	1724	261	1806	101	1889	29	1974	165
1564	7	1639	427	1726	753	1807	123	1890	371	1975	841
1566	77	1641	287	1729	94	1809	521	1895	873	1977	238
1567	127	1642	231	1734	461	1810	171	1900	235	1980	33
1569	319	1647	310	1735	418	1814	545	1902	733	1983	113
1570	667	1649	434	1737	403	1815	163	1903	778	1985	311
1572	501	1650	579	1738	267	1817	479	1905	344	1986	891
1575	17	1652	45	1740	259	1818	495	1906	931	1988	555
1577	341	1655	53	1742	869	1820	11	1908	945	1990	133
1578	731	1657	16	1743	173	1823	684	1911	67	1991	546
1580	647	1660	37	1745	369	1825	9	1913	462	1993	103
1582	121	1663	99	1746	255	1828	273	1918	477	1994	15
1583	20	1665	176	1748	567	1830	381	1919	105	1996	307
1585	574	1666	271	1750	457	1831	51	1921	468	1999	367
1586	399	1668	459	1751	482	1833	518	1924	327		
1588	85	1671	202	1753	775	1836	243	1926	357		

E.3. Irreducible Pentanomials Over F_2

Table E-3: Irreducible pentanomials $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ over F_2 . For each m, $160 \le m \le 488$, for which an irreducible trinomial of degree m does not exist, a triple of exponents k_1 , k_2 , k_3 is given for which the pentanomial $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, is irreducible over F_2 .

F_2 .							
m	k or	m	k or	m	k or	m	k or
	(k_1, k_2, k_3)		(k_1, k_2, k_3)		(k_1, k_2, k_3)		(k_1, k_2, k_3)
160	1, 2, 117	243	1, 2, 17	326	1, 2, 67	410	1, 2, 16
163	1, 2, 8	245	1, 2, 37	328	1, 2, 51	411	1, 2, 50
164	1, 2, 49	246	1, 2, 11	331	1, 2, 134	413	1, 2, 33
165	1, 2, 25	248	1, 2, 243	334	1, 2, 5	416	1, 3, 76
168	1, 2, 65	251	1, 2, 45	335	1, 2, 250	419	1, 2, 129
171	1, 3, 42	254	1, 2, 7	336	1, 2, 77	421	1, 2, 81
173	1, 2, 10	256	1, 2, 155	338	1, 2, 112	424	1, 2, 177
176	1, 2, 43	259	1, 2, 254	339	1, 2, 26	427	1, 2, 245
179	1, 2, 4	261	1, 2, 74	341	1, 2, 57	429	1, 2, 14
181	1, 2, 89	262	1, 2, 207	344	1, 2, 7	430	1, 2, 263
184	1, 2, 81	264	1, 2, 169	347	1, 2, 96	432	1, 2, 103
187	1, 2, 20	267	1, 2, 29	349	1, 2, 186	434	1, 2, 64
188	1, 2, 60	269	1, 2, 117	352	1, 2, 263	435	1, 2, 166
189	1, 2, 49	272	1, 3, 56	355	1, 2, 138	437	1, 2, 6
190	1, 2, 47	275	1, 2, 28	356	1, 2, 69	440	1, 2, 37
192	1, 2, 7	277	1, 2, 33	357	1, 2, 28	442	1, 2, 32
195	1, 2, 37	280	1, 2, 113	360	1, 2, 49	443	1, 2, 57
197	1, 2, 21	283	1, 2, 200	361	1, 2, 44	445	1, 2, 225
200	1, 2, 81	285	1, 2, 77	363	1, 2, 38	448	1, 3, 83
203	1, 2, 45	288	1, 2, 191	365	1, 2, 109	451	1, 2, 33
205	1, 2, 21	290	1, 2, 70	368	1, 2, 85	452	1, 2, 10
206	1, 2, 63	291	1, 2, 76	371	1, 2, 156	453	1, 2, 88
208	1, 2, 83	293	1, 3, 154	373	1, 3, 172	454	1, 2, 195
211	1, 2, 165	296	1, 2, 123	374	1, 2, 109	456	1, 2, 275
213	1, 2, 62	298	1, 2, 78	376	1, 2, 77	459	1, 2, 332
216	1, 2, 107	299	1, 2, 21	379	1, 2, 222	461	1, 2, 247
219	1, 2, 65	301	1, 2, 26	381	1, 2, 5	464	1, 2, 310
221	1, 2, 18	304	1, 2, 11	384	1, 2, 299	466	1, 2, 78
222	1, 2, 73	306	1, 2, 106	387	1, 2, 146	467	1, 2, 210
224	1, 2, 159	307	1, 2, 93	389	1, 2, 159	469	1, 2, 149
226	1, 2, 30	309	1, 2, 26	392	1, 2, 145	472	1, 2, 33
227	1, 2, 21	311	1, 3, 155	395	1, 2, 333	475	1, 2, 68
229	1, 2, 21	312	1, 2, 83	397	1, 2, 125	477	1, 2, 121
230	1, 2, 13	315	1, 2, 142	398	1, 3, 23	480	1, 2, 149
232	1, 2, 23	317	1, 3, 68	400	1, 2, 245	482	1, 2, 13
235	1, 2, 45	320	1, 2, 7	403	1, 2, 80	483	1, 2, 352
237	1, 2, 104	323	1, 2, 21	405	1, 2, 38	485	1, 2, 70
240	1, 3, 49	325	1, 2, 53	408	1, 2, 323	488	1, 2, 123
<u> </u>	, , , -		, , , -		, , -		, , -

Table E-3.a: Irreducible pentanomials $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ over F_2 . For each m, $490 \le m \le 811$, for which an irreducible trinomial of degree m does not exist, a triple of exponents k_1 , k_2 , k_3 is given for which the pentanomial $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, is irreducible over F_2 .

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ			T				
491 1, 2, 270 571 1, 2, 408 653 1, 2, 37 734 1, 2, 67 493 1, 2, 171 572 1, 2, 238 656 1, 2, 39 736 1, 2, 359 496 1, 3, 52 573 1, 2, 220 659 1, 2, 25 739 1, 2, 60 499 1, 2, 174 576 1, 3, 52 661 1, 2, 107 744 1, 2, 34 501 1, 2, 332 578 1, 2, 138 664 1, 2, 100 747 1, 2, 158 502 1, 2, 99 579 1, 3, 526 666 1, 2, 100 747 1, 2, 158 504 1, 3, 148 581 1, 2, 138 667 1, 2, 161 749 1, 2, 357 507 1, 2, 26 584 1, 2, 361 669 1, 2, 161 749 1, 2, 357 509 1, 2, 94 586 1, 2, 136 667 1, 2, 161 749 1, 2, 357 512 1, 2, 51 587 1, 2, 130 674 1, 2, 22	m	k or	m		m	k or	m	k or
493 1, 2, 171 572 1, 2, 238 656 1, 2, 39 736 1, 2, 359 496 1, 3, 52 573 1, 2, 220 659 1, 2, 25 739 1, 2, 60 499 1, 2, 174 576 1, 3, 52 661 1, 2, 80 741 1, 2, 34 501 1, 2, 332 578 1, 2, 138 664 1, 2, 100 747 1, 2, 34 502 1, 2, 99 579 1, 3, 526 666 1, 2, 100 747 1, 2, 158 504 1, 3, 148 581 1, 2, 138 667 1, 2, 161 749 1, 2, 357 507 1, 2, 26 584 1, 2, 361 669 1, 2, 314 752 1, 2, 129 509 1, 2, 294 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 36 675 1, 2, 214	401		571		652		724	
496 1, 3, 52 573 1, 2, 220 659 1, 2, 25 739 1, 2, 60 499 1, 2, 174 576 1, 3, 52 661 1, 2, 80 741 1, 2, 34 501 1, 2, 332 578 1, 2, 138 664 1, 2, 177 744 1, 2, 347 502 1, 2, 99 579 1, 3, 526 666 1, 2, 161 749 1, 2, 357 504 1, 3, 148 581 1, 2, 38 667 1, 2, 161 749 1, 2, 357 507 1, 2, 26 584 1, 2, 361 669 1, 2, 314 752 1, 2, 129 509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 512 1, 2, 51 587 1, 2, 130 674 1, 2, 221 757 1, 2, 359 515 1, 2, 231 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 247								
499 1, 2, 174 576 1, 3, 52 661 1, 2, 80 741 1, 2, 34 501 1, 2, 332 578 1, 2, 138 664 1, 2, 177 744 1, 2, 347 502 1, 2, 99 579 1, 3, 526 666 1, 2, 100 747 1, 2, 158 504 1, 3, 148 581 1, 2, 138 667 1, 2, 161 749 509 1, 2, 26 584 1, 2, 361 669 1, 2, 314 752 1, 2, 129 509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 512 1, 2, 51 587 1, 2, 130 674 1, 2, 22 757 1, 2, 359 515 1, 2, 33 591 1, 2, 38 677 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1,								
501 1, 2, 332 578 1, 2, 138 664 1, 2, 177 744 1, 2, 347 502 1, 2, 99 579 1, 3, 526 666 1, 2, 100 747 1, 2, 158 504 1, 3, 148 581 1, 2, 138 667 1, 2, 161 749 1, 2, 357 507 1, 2, 26 584 1, 2, 361 669 1, 2, 141 752 1, 2, 129 509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 512 1, 2, 51 587 1, 2, 130 674 1, 2, 22 757 1, 2, 359 515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 214 760 1, 2, 17 520 1, 2, 291 592 1, 2, 44 678 1, 2, 91 765 1, 2, 137 525 1, 2, 91 595 1, 2, 94 680 1, 2, 91	l							
502 1, 2, 99 579 1, 3, 526 666 1, 2, 100 747 1, 2, 158 504 1, 3, 148 581 1, 2, 138 667 1, 2, 161 749 1, 2, 357 507 1, 2, 26 584 1, 2, 361 669 1, 2, 314 752 1, 2, 129 509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 512 1, 2, 51 587 1, 2, 136 674 1, 2, 22 757 1, 2, 359 515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 13 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 <td< td=""><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>	1			1				
504 1, 3, 148 581 1, 2, 138 667 1, 2, 161 749 1, 2, 357 507 1, 2, 26 584 1, 2, 361 669 1, 2, 314 752 1, 2, 129 509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 512 1, 2, 51 587 1, 2, 365 675 1, 2, 22 757 1, 2, 335 515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153	l							
507 1, 2, 26 584 1, 2, 361 669 1, 2, 314 752 1, 2, 129 509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 512 1, 2, 51 587 1, 2, 130 674 1, 2, 22 757 1, 2, 359 515 1, 2, 33 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770								, ,
509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159 512 1, 2, 51 587 1, 2, 130 674 1, 2, 22 757 1, 2, 359 515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 153 768 1, 2, 137 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771	1							
512 1, 2, 51 587 1, 2, 130 674 1, 2, 22 757 1, 2, 359 515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 452 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 37 605 1, 2, 31 691 1, 2, 242 773<	1							
515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17 517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 13 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 77	l -							
517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17 520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 13 608 1, 2, 312 691 1, 2, 242 773 1, 2, 75 535 1, 2, 143 608 1, 2, 213 696 1, 2, 242 773 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 77	l -							
520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12 523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 78	l -							
523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137 525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 7	l -			1				
525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280 528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 299 541 1, 2, 36 616 1, 2, 494 703 1, 2, 143 786 1, 2, 118 544 1, 2, 87 621 1, 2, 177 704 1, 2, 277 <	1	, ,		· · · · · · · · · · · · · · · · · · ·		, ,		
528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115 530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 8 624 1, 2, 77 704 1, 2, 27 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453 531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27	1							
531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86 533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 <t< td=""><td>li l</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	l i l	1						
533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73 535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 <td< td=""><td>1</td><td>· · · · · ·</td><td></td><td>1 1</td><td></td><td></td><td></td><td></td></td<>	1	· · · · · ·		1 1				
535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51 536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 <td< td=""><td>l-</td><td></td><td></td><td>, , ,</td><td></td><td></td><td></td><td></td></td<>	l -			, , ,				
536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456 539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 64 715 1, 3, 458	1							
539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209 541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 7	1							
541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59 542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 7	1							
542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118 544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1							
544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189 546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 <td< td=""><td>l-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	l -							
546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375 547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 <t< td=""><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5 548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51								
548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111 549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69								
549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403 552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175	l 					, ,		
552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137 554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175								
554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36 555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175	l 							
555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193 557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175		1						
557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463 560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175						1		
560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102 562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175								
562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208 563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175								
563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453 565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175								
565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175								
				1				

Table E-3.b: Irreducible pentanomials $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ over F_2 . For each m, $812 \le m \le 1131$, for which an irreducible trinomial of degree m does not exist, a triple of exponents k_1 , k_2 , k_3 is given for which the pentanomial $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, is irreducible over F_2 .

m	k or	m	k or	m	k or	m	k or
	(k_1, k_2, k_3)		(k_1, k_2, k_3)		(k_1, k_2, k_3)		(k_1, k_2, k_3)
813	1, 2, 802	901	1, 2, 581	973	1, 2, 113	1053	1, 2, 290
816	1, 3, 51	904	1, 3, 60	974	1, 2, 211	1056	1, 2, 11
819	1, 2, 149	907	1, 3, 26	976	1, 2, 285	1059	1, 3, 6
821	1, 2, 177	909	1, 3, 168	978	1, 2, 376	1061	1, 2, 166
824	1, 2, 495	910	1, 2, 357	980	1, 2, 316	1064	1, 2, 946
827	1, 2, 189	912	1, 2, 569	981	1, 2, 383	1066	1, 2, 258
829	1, 2, 560	914	1, 2, 4	984	1, 2, 349	1067	1, 2, 69
830	1, 2, 241	915	1, 2, 89	987	1, 3, 142	1068	1, 2, 223
832	1, 2, 39	917	1, 2, 22	989	1, 2, 105	1069	1, 2, 146
835	1, 2, 350	920	1, 3, 517	992	1, 2, 585	1070	1, 3, 94
836	1, 2, 606	922	1, 2, 24	995	1, 3, 242	1072	1, 2, 443
837	1, 2, 365	923	1, 2, 142	997	1, 2, 453	1073	1, 3, 235
840	1, 2, 341	925	1, 2, 308	1000	1, 3, 68	1074	1, 2, 395
843	1, 2, 322	928	1, 2, 33	1002	1, 2, 266	1075	1, 2, 92
848	1, 2, 225	929	1, 2, 36	1003	1, 2, 410	1076	1, 2, 22
851	1, 2, 442	931	1, 2, 72	1004	1, 2, 96	1077	1, 2, 521
853	1, 2, 461	933	1, 2, 527	1005	1, 2, 41	1080	1, 2, 151
854	1, 2, 79	934	1, 3, 800	1006	1, 2, 63	1083	1, 2, 538
856	1, 2, 842	936	1, 3, 27	1008	1, 2, 703	1088	1, 2, 531
859	1, 2, 594	939	1, 2, 142	1011	1, 2, 17	1091	1, 2, 82
863	1, 2, 90	940	1, 2, 204	1013	1, 2, 180	1093	1, 2, 173
864	1, 2, 607	941	1, 2, 573	1016	1, 2, 49	1096	1, 2, 351
867	1, 2, 380	944	1, 2, 487	1017	1, 2, 746	1099	1, 2, 464
869	1, 2, 82	946	1, 3, 83	1018	1, 2, 27	1101	1, 2, 14
872	1, 2, 691	947	1, 2, 400	1019	1, 2, 96	1104	1, 2, 259
874	1, 2, 110	949	1, 2, 417	1021	1, 2, 5	1107	1, 2, 176
875	1, 2, 66	950	1, 2, 859	1024	1, 2, 515	1109	1, 2, 501
877	1, 2, 140	952	1, 3, 311	1027	1, 2, 378	1112	1, 2, 1045
878	1, 2, 343	955	1, 2, 606	1032	1, 2, 901	1114	1, 2, 345
880	1, 3, 221	957	1, 2, 158	1035	1, 2, 76	1115	1, 2, 268
883	1, 2, 488	958	1, 2, 191	1037	1, 2, 981	1117	1, 2, 149
885	1, 2, 707	960	1, 2, 491	1038	1, 2, 41	1118	1, 2, 475
886	1, 2, 227	962	1, 2, 18	1040	1, 2, 429	1120	1, 3, 386
888	1, 2, 97	963	1, 2, 145	1043	1, 3, 869	1123	1, 2, 641
891	1, 2, 364	965	1, 2, 213	1045	1, 2, 378	1124	1, 2, 156
893	1, 2, 13	968	1, 2, 21	1046	1, 2, 39	1125	1, 2, 206
896	1, 2, 19	970	1, 2, 260	1048	1, 3, 172	1128	1, 3, 7
899	1, 3, 898	971	1, 2, 6	1051	1, 3, 354	1131	1, 2, 188

Table E-3.c: Irreducible pentanomials $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ over F_2 . For each m, $1131 \le m \le 1456$, for which an irreducible trinomial of degree m does not exist, a triple of exponents k_1 , k_2 , k_3 is given for which the pentanomial $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, is irreducible over F_2 .

m	k or						
	(k_1, k_2, k_3)						
1132	1, 2, 20	1219	1, 2, 225	1296	1, 2, 379	1376	1, 2, 1201
1133	1, 2, 667	1221	1, 2, 101	1299	1, 2, 172	1378	1, 2, 362
1136	1, 2, 177	1222	1, 2, 215	1301	1, 2, 297	1379	1, 2, 400
1139	1, 2, 45	1224	1, 2, 157	1303	1, 2, 306	1381	1, 2, 56
1141	1 2 134	1227	1, 2, 361	1304	1, 3, 574	1382	1, 3, 58
1143	1, 2, 7	1229	1, 2, 627	1307	1, 2, 157	1384	1, 2, 1131
1144	1, 2, 431	1232	1, 2, 225	1309	1, 2, 789	1387	1, 2, 33
1147	1, 2, 390	1235	1, 2, 642	1312	1, 2, 1265	1389	1, 2, 41
1149	1, 2, 221	1237	1, 2, 150	1315	1, 2, 270	1392	1, 2, 485
1150	1, 2, 63	1240	1, 2, 567	1316	1, 2, 12	1394	1, 2, 30
1152	1, 2, 971	1243	1, 2, 758	1317	1, 2, 254	1395	1, 2, 233
1155	1, 2, 94	1244	1, 2, 126	1318	1, 3, 94	1397	1, 2, 397
1157	1, 2, 105	1245	1, 2, 212	1320	1, 2, 835	1400	1, 2, 493
1160	1, 2, 889	1248	1, 2, 1201	1322	1, 2, 538	1403	1, 2, 717
1162	1, 2, 288	1250	1, 2, 37	1323	1, 2, 1198	1405	1, 2, 558
1163	1, 2, 33	1251	1, 2, 1004	1325	1, 2, 526	1406	1, 2, 13
1165	1, 2, 494	1253	1, 2, 141	1328	1, 2, 507	1408	1, 3, 45
1168	1, 2, 473	1254	1, 2, 697	1330	1, 2, 609	1411	1, 2, 200
1171	1, 2, 396	1256	1, 2, 171	1331	1, 2, 289	1413	1, 2, 101
1172	1, 2, 426	1258	1, 2, 503	1333	1, 2, 276	1416	1, 3, 231
1173	1, 2, 673	1259	1, 2, 192	1336	1, 2, 815	1418	1, 2, 283
1176	1, 2, 19	1261	1, 2, 14	1339	1, 2, 284	1419	1, 2, 592
1179	1, 2, 640	1262	1, 2, 793	1341	1, 2, 53	1421	1, 2, 30
1181	1, 2, 82	1264	1, 2, 285	1342	1, 2, 477	1424	1, 2, 507
1184	1, 2, 1177	1267	1, 2, 197	1344	1, 2, 469	1427	1, 2, 900
1187	1, 2, 438	1269	1, 2, 484	1346	1, 2, 57	1429	1, 2, 149
1189	1, 2, 102	1272	1, 2, 223	1347	1, 2, 61	1432	1, 2, 251
1192	1, 3, 831	1274	1, 2, 486	1349	1, 2, 40	1435	1, 2, 126
1194	1, 2, 317	1275	1, 2, 25	1352	1, 2, 583	1437	1, 2, 545
1195	1, 2, 293	1277	1, 2, 451	1355	1, 2, 117	1439	1, 2, 535
1197	1, 2, 269	1280	1, 2, 843	1357	1, 2, 495	1440	1, 3, 1023
1200	1, 3, 739	1283	1, 2, 70	1360	1, 2, 393	1443	1, 2, 413
1203	1, 2, 226	1285	1, 2, 564	1363	1, 2, 852	1445	1, 2, 214
1205	1, 2, 4	1288	1, 2, 215	1365	1, 2, 329	1448	1, 3, 212
1208	1, 2, 915	1290	1, 2, 422	1368	1, 2, 41	1450	1, 2, 155
1211	1, 2, 373	1291	1, 2, 245	1370	1, 2, 108	1451	1, 2, 193
1213	1, 2, 245	1292	1, 2, 78	1371	1, 2, 145	1453	1, 2, 348
1216	1, 2, 155	1293	1, 2, 26	1373	1, 2, 613	1456	1, 2, 1011

Table E-3.d: Irreducible pentanomials $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ over F_2 . For each m, $1458 \le m \le 1761$, for which an irreducible trinomial of degree m does not exist, a triple of exponents k_1 , k_2 , k_3 is given for which the pentanomial $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, is irreducible over F_2 .

m	k or						
	(k_1, k_2, k_3)						
1459	1, 2, 1032	1536	1, 2, 881	1619	1, 2, 289	1690	1, 2, 200
1461	1, 2, 446	1538	1, 2, 6	1621	1, 2, 1577	1691	1, 2, 556
1462	1, 2, 165	1539	1, 2, 80	1622	1, 2, 1341	1693	1, 2, 137
1464	1, 2, 275	1541	1, 2, 4	1624	1, 2, 1095	1696	1, 2, 737
1467	1, 2, 113	1544	1, 2, 99	1626	1, 2, 191	1699	1, 2, 405
1469	1, 2, 775	1546	1, 2, 810	1627	1, 2, 189	1701	1, 2, 568
1472	1, 2, 613	1547	1, 2, 493	1629	1, 2, 397	1702	1, 2, 245
1474	1, 2, 59	1549	1, 2, 426	1632	1, 2, 211	1704	1, 3, 55
1475	1, 2, 208	1552	1, 2, 83	1635	1, 2, 113	1706	1, 2, 574
1477	1, 2, 1325	1555	1, 2, 254	1637	1, 2, 234	1707	1, 2, 221
1480	1, 2, 285	1557	1, 2, 20	1640	1, 2, 715	1709	1, 2, 201
1483	1, 2, 1077	1560	1, 2, 11	1643	1, 2, 760	1712	1, 2, 445
1484	1, 2, 61	1563	1, 2, 41	1644	1, 2, 236	1714	1, 2, 191
1485	1, 2, 655	1565	1, 2, 18	1645	1, 2, 938	1715	1, 2, 612
1488	1, 2, 463	1568	1, 2, 133	1646	1, 2, 435	1717	1, 2, 881
1491	1, 2, 544	1571	1, 2, 21	1648	1, 2, 77	1718	1, 2, 535
1493	1, 2, 378	1573	1, 2, 461	1651	1, 2, 873	1720	1, 2, 525
1494	1, 2, 731	1574	1, 2, 331	1653	1, 2, 82	1723	1, 2, 137
1496	1, 2, 181	1576	1, 2, 147	1654	1, 3, 201	1725	1, 2, 623
1498	1, 2, 416	1579	1, 2, 374	1656	1, 2, 361	1727	1, 2, 22
1499	1, 2, 477	1581	1, 2, 160	1658	1, 2, 552	1728	1, 2, 545
1501	1, 2, 60	1584	1, 2, 895	1659	1, 2, 374	1730	1, 2, 316
1502	1, 2, 111	1587	1, 2, 433	1661	1, 2, 84	1731	1, 2, 925
1504	1, 2, 207	1589	1, 2, 882	1662	1, 3, 958	1732	1, 2, 75
1506	1, 2, 533	1592	1, 2, 223	1664	1, 2, 399	1733	1, 2, 285
1507	1, 2, 900	1594	1, 2, 971	1667	1, 2, 1020	1736	1, 2, 435
1509	1, 2, 209	1595	1, 2, 18	1669	1, 2, 425	1739	1, 2, 409
1512	1, 2, 1121	1597	1, 2, 42	1670	1, 2, 19	1741	1, 3, 226
1515	1, 2, 712	1598	1, 2, 385	1672	1, 2, 405	1744	1, 2, 35
1517	1, 2, 568	1600	1, 2, 57	1675	1, 2, 77	1747	1, 2, 93
1520	1, 2, 81	1603	1, 2, 917	1677	1, 2, 844	1749	1, 2, 236
1522	1, 2, 47	1605	1, 2, 46	1680	1, 2, 1549	1752	1, 2, 559
1523	1, 2, 240	1608	1, 2, 271	1682	1, 2, 354	1754	1, 2, 75
1525	1, 2, 102	1610	1, 2, 250	1683	1, 2, 1348	1755	1, 2, 316
1528	1, 2, 923	1611	1, 2, 58	1684	1, 2, 474	1757	1, 2, 21
1531	1, 2, 1125	1613	1, 2, 48	1685	1, 2, 493	1758	1, 2, 221
1532	1, 2, 466	1614	1, 2, 1489	1686	1, 2, 887	1760	1, 3, 1612
1533	1, 2, 763	1616	1, 2, 139	1688	1, 2, 921	1761	1, 2, 131

Table E-3.e: Irreducible pentanomials $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$ over F_2 . For each m, 1761 $\leq m \leq$ 2000, for which an irreducible trinomial of degree m does not exist, a triple of exponents k_1 , k_2 , k_3 is given for which the pentanomial $x^m + x^{k_3} + x^{k_2} + x^{k_1} + 1$, is irreducible over F_2 .

m	k or						
	(k_1, k_2, k_3)						
1762	1, 2, 318	1826	1, 2, 298	1883	1, 2, 1062	1941	1, 2, 1133
1763	1, 2, 345	1827	1, 2, 154	1885	1, 2, 813	1942	1, 2, 147
1765	1, 2, 165	1829	1, 2, 162	1888	1, 2, 923	1944	1, 2, 617
1766	1, 2, 1029	1832	1, 3, 1078	1891	1, 2, 1766	1947	1, 2, 1162
1768	1, 2, 1403	1834	1, 2, 210	1892	1, 3, 497	1949	1, 2, 621
1771	1, 2, 297	1835	1, 2, 288	1893	1, 2, 461	1952	1, 3, 65
1773	1, 2, 50	1837	1, 2, 200	1894	1, 3, 215	1954	1, 2, 1226
1776	1, 2, 17	1840	1, 2 195	1896	1, 2, 451	1955	1, 2, 109
1779	1, 3, 1068	1842	1, 2, 799	1897	1, 2, 324	1957	1, 2, 17
1781	1, 2, 18	1843	1, 2, 872	1898	1, 2, 613	1960	1, 2, 939
1784	1, 2, 1489	1845	1, 2, 526	1899	1, 2, 485	1963	1, 2, 1137
1786	1, 2, 614	1848	1, 2, 871	1901	1, 2, 330	1965	1, 2, 364
1787	1, 2, 457	1850	1, 2, 79	1904	1, 2, 337	1968	1, 3, 922
1789	1, 2, 80	1851	1, 2, 250	1907	1, 2, 45	1970	1, 2, 388
1792	1, 2, 341	1852	1, 2, 339	1909	1, 2, 225	1971	1, 2, 100
1794	1, 2, 95	1853	1, 2, 705	1910	1, 3, 365	1972	1, 2, 474
1795	1, 2, 89	1856	1, 2, 585	1912	1, 2, 599	1973	1, 2, 438
1796	1, 2, 829	1858	1, 2, 1368	1914	1, 2, 544	1976	1, 3, 1160
1797	1, 2, 80	1859	1, 2, 120	1915	1, 2, 473	1978	1, 2, 158
1800	1, 2, 1013	1861	1, 2, 509	1916	1, 2, 502	1979	1, 2, 369
1803	1, 2, 248	1864	1, 2, 1379	1917	1, 2, 485	1981	1, 2, 96
1805	1, 2, 82	1867	1, 2, 117	1920	1, 2, 67	1982	1, 2, 1027
1808	1, 2, 25	1868	1, 2, 250	1922	1, 2, 36	1984	1, 2, 129
1811	1, 2, 117	1869	1, 2, 617	1923	1, 4, 40	1987	1, 2, 80
1812	1, 2, 758	1872	1, 3, 60	1925	1, 2, 576	1989	1, 2, 719
1813	1, 3, 884	1874	1, 2, 70	1928	1, 2, 763	1992	1, 2, 1241
1816	1, 2, 887	1875	1, 2, 412	1930	1, 2, 155	1995	1, 2, 37
1819	1, 2, 116	1876	1, 2, 122	1931	1, 2, 648	1997	1, 2, 835
1821	1, 2, 326	1877	1, 2, 796	1933	1, 2, 971	1998	1, 3, 1290
1822	1, 3, 31	1880	1, 2, 1647	1936	1, 2, 117	2000	1, 2, 981
1824	1, 2, 821	1882	1, 2, 128	1939	1, 2, 5		

E.4. Table of Fields F_{2m} which Have Both an ONB and a TPB over F_{2m}

Table E-4: Values of m , $160 \le m \le 2000$, for which the field F_{2^m} has both an ONB and a											
TPB over F_2 .											
162	292	431	606	743	858	1034	1170	1306	1492	1703	1926
172	303	438	612	746	866	1041	1178	1310	1505	1734	1938
174	316	441	614	756	870	1049	1185	1329	1511	1740	1948
178	329	460	615	761	873	1055	1186	1338	1518	1745	1953
180	330	470	618	772	876	1060	1199	1353	1530	1746	1958
183	346	473	639	774	879	1065	1212	1359	1548	1769	1959
186	348	490	641	783	882	1090	1218	1372	1559	1778	1961
191	350	495	650	785	906	1103	1223	1380	1570	1785	1983
194	354	508	651	791	911	1106	1228	1398	1583	1790	1986
196	359	519	652	809	930	1108	1233	1401	1593	1791	1994
209	372	522	658	810	935	1110	1236	1409	1601	1806	1996
210	375	540	660	818	938	1116	1238	1425	1618	1818	
231	378	543	676	820	953	1119	1265	1426	1620	1838	
233	386	545	686	826	975	1121	1271	1430	1636	1854	
239	388	556	690	828	986	1122	1276	1452	1649	1860	
268	393	558	700	831	993	1134	1278	1454	1666	1863	
270	414	561	708	833	998	1146	1282	1463	1668	1866	
273	418	575	713	834	1014	1154	1289	1478	1673	1889	
278	420	585	719	846	1026	1166	1295	1481	1679	1900	
281	426	593	726	852	1031	1169	1300	1482	1692	1906	

Appendix F Normative Number-Theoretic Algorithms [Normative]

F.1. Avoiding Cryptographically Weak Curves

Two conditions, the *MOV condition* and the *Anomalous condition*, are described to ensure that a particular elliptic curve is not vulnerable to two known attacks on special instances of the elliptic curve discrete logarithm problem.

F.1.1. The MOV Condition

The reduction attack of Menezes, Okamoto and Vanstone [29] reduces the discrete logarithm problem in an elliptic curve over F_q to the discrete logarithm in the finite field F_{qB} for some $B \ge 1$. The attack is only practical if B is small; this is not the case for most elliptic curves. The MOV condition ensures that an elliptic curve is not vulnerable to this reduction attack.

Before performing the algorithm, it is necessary to select an MOV threshold. This is a positive integer B such that taking discrete logarithms over F_qB is at least as difficult as taking elliptic discrete logarithms over F_q . For this Standard, a value $B \ge 20$ is required. Selecting $B \ge 20$ also limits the selection of curves to nonsupersingular curves (see Section D.1). This algorithm is used in elliptic curve parameter validation (see Section 5.1) and elliptic curve parameter generation (see Section F.3.2).

Input: An MOV threshold B, a prime-power q, and a prime n. (n is a prime divisor of $\#E(F_q)$, where E is an elliptic curve defined over F_{q} .)

Output: The message "True" if the MOV condition is satisfied for an elliptic curve over F_q with a base point of order n; the message "False" otherwise.

- 1. Set t = 1.
- 2. For i from 1 to B do
 - 2.1. Set $t = t \cdot q \mod n$.
 - 2.2. If t = 1, then output "False" and stop.
- 3. Output "True".

F.1.2. The Anomalous Condition

Smart [39] and Satoh and Araki [38] showed that the elliptic curve discrete logarithm problem in anomalous curves can be efficiently solved. An elliptic curve E defined over F_q is said to be F_q -anomalous if $\#E(F_q) = q$. The Anomalous condition checks that $\#E(F_q) \neq q$; this ensures that an elliptic curve is not vulnerable to the Anomalous attack.

Input: An elliptic curve *E* defined over F_q , and the order $u = \#E(F_q)$.

Output: The message "True" if the Anomalous condition is satisfied for E over F_q ; the message "False" otherwise.

1. If u = q then output "False"; otherwise output "True".

F.2. Primality

F.2.1. A Probabilistic Primality Test

If n is a large positive integer, the following probabilistic algorithm (the *Miller-Rabin test*) [21, p.379] will determine whether n is prime or composite, with an arbitrarily small probability of error. This algorithm is used in elliptic curve parameter validation (see Section 5.1), in elliptic curve parameter generation (see Section F.3.2), and in checking for near primality (see Section F.2.2).

Input: A large odd integer n, and a positive integer T.

Output: The message "probable prime" or "composite".

- 1. Compute *v* and an odd value for *w* such that $n 1 = 2^v w$.
- 2. For j from 1 to T do
 - 2.1. Choose random a in the interval [2, n-1].
 - 2.2. Set $b = a^w \mod n$.
 - 2.3. If b = 1 or n 1, go to Step 2.6.

- 2.4. For *i* from 1 to v 1 do
 - 2.4.1 Set $b = b^2 \mod n$.
 - 2.4.2 If b = n 1, go to Step 2.6.
 - 2.4.3 If b = 1, output "composite" and stop.
 - 2.4.4 Next *i*.
- 2.5. Output "composite" and stop.
- 2.6. Next *j*.
- 3. Output "probable prime".

If the algorithm outputs "composite", then n is a composite integer. The probability that the algorithm outputs "probable prime" when n is a composite integer is less than 2^{-2T} . Thus, the probability of an error can be made negligible by taking a large enough value for T. For this Standard, a value of $T \ge 50$ shall be used. If a deterministic test is needed, see Section F.2.3.

F.2.2. Checking for Near Primality

Given a trial division bound l_{max} , a positive integer h is said to be l_{max} -smooth if every prime divisor of h is at most l_{max} . Given a positive integer r_{min} , the positive integer u is said to be nearly prime if u = hn for some probable prime value of n such that $n \ge r_{min}$ and some l_{max} -smooth integer n. The following algorithm checks for near primality. The algorithm is used in elliptic curve parameter generation (see Section F.3.2).

Input: Positive integers u, l_{max} , and r_{min} .

Output: If *u* is nearly prime, a probable prime $n \ge r_{min}$ and a l_{max} -smooth integer *h* such that u = hn. If *u* is not nearly prime, the message "not nearly prime".

- 1. Set n = u, h = 1.
- 2. For l from 2 to l_{max} do
 - 2.1. If l is composite, then go to Step 2.3.
 - 2.2. While (l divides n)
 - 2.2.1 Set n = n / l and $h = h \cdot l$.
 - 2.2.2 If $n < r_{min}$, then output "not nearly prime" and stop.
 - 2.3. Next *l*.
- 3. If *n* is probably prime (see Section F.2.1), then output *h* and *n* and stop.
- 4. Output "not nearly prime".

F.2.3. A Deterministic Primality Test

An application of elliptic curves is the devising of algorithms for *proving* the primality of an integer *p* which is deemed "prime" by the probabilistic test of Section F.2.1. If a deterministic primality test is desired, the test referenced in this section shall be used. The *Goldwasser-Kilian-Atkin (GKA) algorithm* produces a *primality certificate*: a collection

$$C = \{C_1, ..., C_s\}$$

in which each component C_i consists of positive integers:

$$C_i = (p_i, r_i, a_i, b_i, x_i, y_i),$$

where:

For all i, (x_i, y_i) is a point of order r_i on the elliptic curve:

$$y^2 = x^3 + a_i x + b_i \pmod{p_i},$$

*
$$\sqrt{r_i} > \sqrt[4]{p_i} + 1$$
 for all i ,

- $p_1 = n$
- * $p_{i+1} = r_i \text{ for } 1 \le i < s,$
- $r_s < l_{max}^2$
- r_s is proved prime by trial division.

If a primality certificate exists for n, then n is prime by the following theorem. THEOREM (Goldwasser-Kilian):

Let p and r be positive integers greater than 3 with $\sqrt{r} > \sqrt[4]{p} + 1$. Let a, b, x, and y be integers (mod p) such that (x, y) is a point of order r on the elliptic curve:

 $y^2 = x^3 + ax + b \pmod{p}.$

Then p is prime if r is prime.

The GKA algorithm is specified in IEEE P1363 [12].

F.3. Elliptic Curve Algorithms

F.3.1. Finding a Point of Large Prime Order

If the order $\#E(F_q) = u$ of an elliptic curve E is nearly prime, the following algorithm efficiently produces a random point on E whose order is the large prime factor n of u = hn. The algorithm is used in elliptic curve parameter generation (see Section F.3.2).

Input: A prime n, a positive integer h not divisible by n, and an elliptic curve E over the field F_q with $\#E(F_q) = u$.

Output: If u = hn, a point P on E of order n. If not, the message "wrong order".

- 1. Generate a random point G (not O) on E. (See Section G.3.1.)
- 2. Set P = hG.
- 3. If P = 0, then go to Step 1.
- 4. Set O = nP.
- 5. If $Q \neq \emptyset$, then output "wrong order" and stop.
- 6. Output *P*.

F.3.2. Selecting an Appropriate Curve and Point

Given a field size q, a lower bound r_{min} for the point order, and a trial division bound l_{max} , the following procedure shall be used for choosing a curve and arbitrary point. The algorithm is used to generate elliptic curve parameters (see Sections 5.1.1.a and 5.1.2.a).

Input: A field size q, lower bound r_{min} , and trial division bound l_{max} . (See the notes below for guidance on selecting r_{min} and l_{max} .)

Output: Field elements $a, b \in F_q$ which define an elliptic curve over F_q , a point P of prime order $n \ge r_{min}$ on the curve, and the cofactor $h = \#E(F_q)/n$.

1. If it is desired that an elliptic curve be generated verifiably at random, then select parameters (SEED, a, b) using the technique specified in Section F.3.3.a in the case that $q = 2^m$, or the technique specified in Section F.3.3.b in the case that q = p is an odd prime. Compute the order u of the curve defined by a and b (see Note 5 below).

Otherwise, use any alternative technique to select $a, b \in F_q$ which define an elliptic curve of known order u. (See Note 6 for one such technique.)

2. In the case that q is a prime, verify that $(4a^3 + 27b^2)$ 0 (mod p).

The curve equation for E is:

$$y^2 = x^3 + ax + b.$$

- In the case that $q = 2^m$, verify that $b \ne 0$. The curve equation for E is: $y^2 + xy = x^3 + ax^2 + b$.
- 3. Test u for near primality using the technique defined in Section F.2.2. If the result is "not nearly prime", then go to Step 1. Otherwise, u = hn where h is l_{max} -smooth and $n \ge r_{min}$ is probably prime.
- 4. Check the MOV condition (see Section F.1.1) with inputs $B \ge 20$, q, and n. If the result is "False", then go to Step 1.

Check the Anomalous condition (see Section F.1.2). If the result is "False", then go to Step 1.

- 5. Find a point *P* on *E* of order *n*. (See Section F.3.1.)
- 6. Output the curve E, the point P, the order n, and the cofactor h.

Notes: 1. r_{min} shall be selected so that $r_{min} > 2^{160}$. The security level can be increased by selecting a larger r_{min} (e.g. $r_{min} > 2^{200}$).

- 2. If q is prime, then the order u of an elliptic curve E over F_q satisfies $q+1-2\sqrt{q} \le u \le q+1+2\sqrt{q}$. Hence for a given q, r_{min} should be $\leq q+1-2\sqrt{q}$.
- 3. If $q = 2^m$, then the order u of an elliptic curve E over F_q satisfies $q + 1 2\sqrt{q} \le u \le q + 1 + 2\sqrt{q}$, and u is even. Hence for a given q, r_{min} should be $\leq (q + 1 2\sqrt{q})/2$.
- 4. l_{max} is typically a small integer (e.g. $l_{max} = 255$).
- 5. The order $\#E(F_q)$ can be computed by using Schoof's algorithm [37]. Although the basic algorithm is quite inefficient, several dramatic improvements and extensions of this method have been discovered in recent years. Currently, it is feasible to compute orders of elliptic curves over F_p where p is as large as 10^{499} , and orders of elliptic curves over F_{2^m} where m is as large as 1300. Cryptographically suitable elliptic curves over fields as large as F_2^{196} can be randomly generated in about 5 hours on a workstation (see [24] and [25]).
- 6. One technique for selecting an elliptic curve of known order is to use the Weil Theorem which states the following. Let E be an elliptic curve defined over F_q , and let $t = q + 1 \#E(F_q)$. Let α and β be the complex numbers that satisfy $T^2 tT + q = (T \alpha)(T \beta)$. Then $\#E(F_q k) = q^k + 1 \alpha^k \beta^k$ for all $k \ge 1$.

The Weil Theorem can be used to select a curve over F_{2^m} when m is divisible by a small number l as follows. First select a random elliptic curve E: $y^2 + xy = x^3 + ax^2 + b$, $b \ne 0$, where $a, b \in F_2^l$. Note that since l divides m, F_2^l is contained in F_2^m . Compute $\#E(F_2^l)$; this can easily be done exhaustively since l is small. Then compute $\#E(F_2^m)$ using the Weil Theorem with $q = 2^l$ and k = m/l.

Section H.4 and Section H.5 presents sample elliptic curves over a 192-bit prime field, a 239-bit prime field, and the fields F_2 163, F_2 176, F_2 191, F_2 208, F_2 239, F_2 272, F_2 304, F_2 359, F_2 368 and F_2 431 which may be used to ensure the correct implementation of this Standard.

F.3.3. Selecting an Elliptic Curve Verifiably at Random

In order to verify that a given elliptic curve was indeed generated at random, the defining parameters of the elliptic curve are defined to be outputs of the hash function SHA-1 (as specified in ANSI X9.30-1993). The input (SEED) to SHA-1 then serves as proof (under the assumption that SHA-1 cannot be inverted) that the parameters were indeed generated at random. (See Section F.3.4.) The algorithms in this section are used in Section F.3.2.

F.3.3.a. Elliptic curves over F_{2m}

Input: A field size $q = 2^m$.

Output: A bit string SEED and field elements $a, b \in F_{2^m}$ which define an elliptic curve over F_{2^m} .

Let t = m, $s = \lfloor (t-1)/160 \rfloor$, and $h = t - 160 \cdot s$.

- 1. Choose an arbitrary bit string SEED of bit length at least 160 bits. Let g be the length of SEED in bits.
- 2. Compute H = SHA-1(SEED), and let b_0 denote the bit string of length h bits obtained by taking the h rightmost bits of H.
- 3. For i from 1 to s do:

Compute $b_i = SHA-1((SEED + i) \mod 2^g)$.

4. Let b be the field element obtained by the concatenation of $b_0, b_1, ..., b_s$ as follows:

$$b = b_0 \parallel b_1 \parallel ... \parallel b_s$$
.

5. If b = 0, then go to step 1.

- 6. Let a be an arbitrary element in F_{2^m} .
- 7. The elliptic curve chosen over F_{2^m} is

$$E: y^2 + xy = x^3 + ax^2 + b.$$

8. Output (SEED, *a*, *b*).

F.3.3.b. Elliptic curves over F_p

Input: A prime field size p.

Output: A bit string SEED and field elements $a, b \in F_p$ which define an elliptic curve over F_p .

Let
$$t = \lceil \log_2 p \rceil$$
, $s = \lfloor (t-1)/160 \rfloor$, and $h = t - 160 \cdot s$.

- 1. Choose an arbitrary bit string SEED of bit length at least 160 bits. Let *g* be the length of SEED in bits.
- 2. Compute H = SHA-1(SEED), and let c_0 denote the bit string of length h bits obtained by taking the h rightmost bits of H.
- 3. Let W_0 denote the bit string of length h bits obtained by setting the leftmost bit of c_0 to 0. (This ensures that r < p.)
- 4. For i from 1 to s do:

Compute $W_i = SHA-1((SEED + i) \mod 2^g)$.

5. Let W be the bit string obtained by the concatenation of $W_0, W_1, ..., W_s$ as follows:

$$W = W_0 \parallel W_1 \parallel ... \parallel W_s$$
.

6. Let w_1, w_2, \ldots, w_t be the bits of W from leftmost to rightmost. Let r be the integer

$$r=\sum_{i=1}^t w_i\,2^{t-i}.$$

- 7. Choose integers $a, b \in F_p$ such that $r \cdot b^2 \equiv a^3 \pmod{p}$. (It is not necessary that a and b be chosen at random. For example, one may choose a = r and b = r.)
- 8. If $4a^3+27b^2 \equiv 0 \pmod{p}$, then go to step 1.
- 9. The elliptic curve chosen over F_n is

$$E: y^2 = x^3 + ax + b.$$

10. Output (SEED, *a*, *b*).

F.3.4. Verifying that an Elliptic Curve was Generated at Random

The technique specified in this section verifies that the defining parameters of an elliptic curve were indeed selected using the method specified in Section F.3.3.

F.3.4.a. Elliptic curves over F_{2m}

Input: A bit string SEED and a field element $b \in F_{2^m}$

Output: Acceptance or rejection of the input parameters.

Let
$$t = m$$
, $s = \lfloor (t-1)/160 \rfloor$, and $h = t - 160 \cdot s$.

- 1. Compute H = SHA-1(SEED), and let b_0 denote the bit string of length h bits obtained by taking the h rightmost bits of H.
- 2. For i from 1 to s do:

Compute $b_i = SHA-1((SEED + i) \mod 2^g)$.

3. Let b' be the field element obtained by the concatenation of $b_0, b_1, ..., b_s$ as follows:

$$b' = b_0 || b_1 || ... || b_s$$
.

4. If b = b' then accept; otherwise reject.

F.3.4.b. Elliptic curves over F_p

Input: A bit string SEED and field elements $a, b \in F_p$

Output: Acceptance or rejection of the input parameters.

Let
$$t = \lceil \log_2 p \rceil$$
, $s = \lfloor (t-1)/160 \rfloor$, and $h = t - 160 \cdot s$.

- 1. Compute H = SHA-1(SEED) and let c_0 denote the bit string of length h bits obtained by taking the h rightmost bits of H.
- 2. Let W_0 denote the bit string of length h bits obtained by setting the leftmost bit of c_0 to 0.
- 3. For i from 1 to s do:

Compute $W_i = SHA-1((SEED + i) \mod 2^g)$.

4. Let W' be the bit string obtained by the concatenation of $W_0, W_1, ..., W_s$ as follows:

$$W' = W_0 \parallel W_1 \parallel ... \parallel W_s$$
.

5. Let w_1, w_2, \ldots, w_t be the bits of W from leftmost to rightmost. Let r' be the integer

$$r' = \sum_{i=1}^{t} w_i 2^{t-i}$$
.

6. If $r' \cdot b^2 \equiv a^3 \pmod{p}$ then accept; otherwise reject.

F.4. Pseudorandom Number Generation

Any implementation of the ECDSA requires the ability to generate random or pseudorandom integers. Such numbers are used to derive a user's private key, d, and a user's per-message secret number k. These randomly or pseudorandomly generated integers are selected to be between 2 and n-2 inclusive, where n is a prime number. If pseudorandom numbers are desired, they shall be generated by the techniques given in this section.

F.4.1. Algorithm Derived from FIPS 186

The algorithm described in this section employs a one-way function G(t, c), where t is 160 bits, c is b bits $(160 \le b \le 512)$, and G(t, c) is 160 bits. One way to construct G is via the Secure Hash Algorithm (SHA-1), as defined in ANSI X9.30 Part 2. A second method for constructing G is to use the Data Encryption Algorithm (DEA) as specified in ANSI X9.32. The construction of G by these techniques is described in Sections F.4.1.a and F.4.1.b, respectively.

In the algorithm specified below, a secret b-bit seed-key XKEY is used. If G is constructed via SHA-1 as defined in Section F.4.1.a, then b shall be between 160 and 512. If DEA is used to construct G as defined in Section F.4.1.b, then b shall be equal to 160. The algorithm optionally allows the use of a user provided input.

Input: A prime number n, positive integer l, and integer $b(160 \le b \le 512)$.

Output: *l* pseudorandom integers k_1, k_2, \ldots, k_l in the interval [1, n-1].

- 1. Let $s = \lfloor \log_2 n \rfloor + 1$ and $f = \lceil s/160 \rceil$.
- 2. Choose a new, secret value for the seed-key, XKEY. (XKEY is of length b bits.)
- 3. In hexadecimal notation let

t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0.

This is the initial value for $H_0 \parallel H_1 \parallel H_2 \parallel H_3 \parallel H_4$ in SHA-1.

- 4. For *i* from 1 to *l* do the following:
 - 4.1. For j from 1 to f do the following:
 - (a) $XSEED_{i,j} = optional user input.$
 - (b) $XVAL = (XKEY + XSEED_{i,i}) \bmod 2^{b}.$
 - (c) $x_i = G(t, XVAL).$
 - (d) $XKEY = (1 + XKEY + x_i) \mod 2^b.$
 - 4.2. Set $k_i = ((x_1 || x_2 || \dots || x_f) \mod (n-1))$.
 - 4.3. If $k_i = 0$, then set $k_i = n 1$.

1. Output (k_1, k_2, \ldots, k_l) .

F.4.1.a. Constructing the Function G from the SHA-1

G(t,c) may be constructed using steps (a)-(e) in Section 3.3 of ANSI X9.30 Part 2. Before executing these steps, $\{H_i\}$ and M_1 must be initialized as follows:

1. Initialize the $\{H_i\}$ by dividing the 160-bit value t into five 32-bit segments as follows:

$$t = t_0 \parallel t_1 \parallel t_2 \parallel t_3 \parallel t_4$$
.

Then $H_j = t_j$ for j = 0 through 4.

2. There will be only one message block, M_1 , which is initialized as follows:

$$M_1 = c \parallel 0^{512-b}$$
.

(The first b bits of M_1 contain c, and the remaining (512-b) bits are set to zero.) Then steps (a) through (e) of Section 3.3 of ANSI X9.30 Part 2 are executed, and G(t,c) is

the 160-bit string represented by the five words: $H_0 \parallel H_1 \parallel H_2 \parallel H_3 \parallel H_4$

at the end of step (e).

F.4.1.b. Constructing the Function G from the DEA

G(t, c) may be constructed using the DEA (Data Encryption Algorithm) as specified in ANSI X3.92.

Let $a \oplus b$ denote the bitwise exclusive-or of bit strings a and b, and let $a \parallel b$ denote the concatenation of bit strings. If b1 is a 32-bit string, then b1' denotes the 24 least significant bits of b1.

In the following, $DEA_K(A)$ represents ordinary DEA encryption of the 64-bit block A using the 56-bit key K. Now suppose t and c are each 160 bits. To compute G(t,c):

Step 1: Write:

 $t = t_1 \parallel t_2 \parallel t_3 \parallel t_4 \parallel t_5$

 $c = c_1 \parallel c_2 \parallel c_3 \parallel c_4 \parallel c_5.$

In the above, t_i and c_i are each 32 bits in length.

Step 2: For i from 1 to 5 do:

 $x_i = t_i \oplus c_i$.

Step 3: For i from 1 to 5 do:

 $b1 = c_{((i+3) \bmod 5) + 1}$

 $b2 = c_{((i+2) \bmod 5) + 1}$

 $a1 = x_i$

 $a2 = x_{(i \mod 5) + 1} \oplus x_{((i+3) \mod 5) + 1}$

 $y_{i,1} \parallel y_{i,2} = DEA_{b1' \parallel b2}(a1 \parallel a2)$ where $y_{i,1}$ and $y_{i,2}$ are each 32 bits in length.

Step 4: For i from 1 to 5 do:

 $z_i = y_{i,1} \oplus y_{((i+1) \mod 5)+1,2} \oplus y_{((i+2) \mod 5)+1,1}.$

Step 5: Let $G(t,c) = z_1 || z_2 || z_3 || z_4 || z_5$.

F.4.2 Algorithm from ANSI X9.17

The technique in this section is from Appendix C of ANSI X9.17, "Financial Institution Key Management (Wholesale)".

Let $ede^*X(Y)$ represent the DEA multiple encryption of Y under the key *X. Let *K be a DEA key pair reserved only for the generation of pseudorandom numbers, let V be a 64-bit seed value which is also kept secret, and let \oplus be the exclusive-or operator. Let DT be a date/time vector which is updated on each iteration. I is an intermediate value. A 64-bit vector R is generated as follows:

I = ede * K(DT)

 $R = ede * K(I \oplus V)$

and a new *V* is generated by $V = ede * K(R \oplus I)$.

Successive values of R may be concatenated to produce a pseudorandom number of the desired length.

Appendix G Informative Number-Theoretic Algorithms [Informative]

G.1. Finite Fields and Modular Arithmetic

G.1.1. Exponentiation in a Finite Field

If a is a positive integer and g is an element of the field F_q , then *exponentiation* is the process of computing g^a . Exponentiation can be performed efficiently by the *binary method* outlined below. The algorithm is used in Sections G.1.2 and G.1.4.

Input: A positive integer a, a field F_a , and a field element g.

Output: g^a .

- 1. Set $e = a \mod (q 1)$. If e = 0, then output 1.
- 2. Let $e = e_r e_{r-1} ... e_1 e_0$ be the binary representation of e, where the most significant bit e_r of e is 1.
- 3. Set x = g.
- 4. For i from r 1 downto 0 do
 - 4.1. Set $x = x^2$.
 - 4.2. If $e_i = 1$, then set x = gx.
- 5. Output x.

There are several variations of this method which can be used to speed up the computations. One such method which requires some precomputations is described in [21]. See also Knuth [21, pp. 441-466].

G.1.2. Inversion in a Finite Field

If $g \neq 0$ is an element of the field F_q , then the *inverse* g^{-1} is the field element c such that gc = 1. The inverse can be found efficiently by exponentiation since $c = g^{q-2}$. Note that if q is prime and g is an integer satisfying $1 \leq g \leq q - 1$, then g^{-1} is the integer c, $1 \leq g \leq q - 1$, such that $gc \equiv 1 \pmod{q}$. The algorithm is used in Sections 5.3.3 and 5.4.2.

Input: A field F_q , and a non-zero element $g \in F_q$.

Output: The inverse g^{-1} .

- 1. Compute $c = g^{q-2}$ (see Section G.1.1).
- 2. Output c.

An even more efficient method is the extended Euclidean Algorithm [21, p. 325].

G.1.3. Generating Lucas Sequences

Let P and Q be nonzero integers. The Lucas sequences U_k and V_k for P, Q are defined by

$$U_0 = 0$$
, $U_1 = 1$, and $U_k = PU_{k-1} - QU_{k-2}$ for $k \ge 2$.
 $V_0 = 2$, $V_1 = P$, and $V_k = PV_{k-1} - QV_{k-2}$ for $k \ge 2$.

This recursion is adequate for computing U_k and V_k for small values of k. The following algorithm can be used to efficiently compute U_k and V_k modulo an odd prime p for large values of k. The algorithm is used in Section G.1.4.

Input: An odd prime p, integers P and Q, and a positive integer k.

Output: $U_k \mod p$ and $V_k \mod p$

- 1. Set $\Delta = P^2 4Q$.
- 2. Let $k = k_r k_{r-1} ... k_1 k_0$ be the binary representation of k, where the leftmost bit k_r of k is 1.
- 3. Set U = 1, V = P.
- 4. For i from r 1 downto 0 do

4.1. Set
$$(U,V) = (UV \mod p, \frac{(V^2 + \Delta U^2)}{2} \mod p)$$
.

4.2. If
$$k_i = 1$$
 then set $(U,V) = (\frac{(PU+V)}{2} \mod p, \frac{(PV+\Delta U)}{2} \mod p)$.

5. Output U and V.

G.1.4. Finding Square Roots Modulo a Prime

Let p be an odd prime, and let g be an integer with $0 \le g < p$. A square root (mod p) of g is an integer y with $0 \le y < p$ and

$$y^2 \equiv g \pmod{p}$$
.

If g = 0, then there is one square root (mod p), namely y = 0. If $g \ne 0$, then g has either 0 or 2 square roots (mod p). If y is one square root, then the other is p - y.

The following algorithm determine whether g has square roots (mod p) and, if so, compute one. The algorithm is used in Sections 4.4.1.a and G.3.1.

Input: An odd prime p, and an integer g with 0 < g < p.

Output: A square root (mod p) of g if one exists; otherwise, the message "no square roots exist." ALGORITHM 1: $for p \equiv 3 \pmod{4}$, that is p = 4u + 3 for some positive integer u.

- 1. Compute $y = g^{u+1} \pmod{p}$ via Section G.1.1.
- 2. Compute $z = y^2 \mod p$.
- 3. If z = g, then output y. Otherwise output the message "no square roots exist."

ALGORITHM 2: for $p \equiv 5 \pmod{8}$, that is p = 8u + 5 for some positive integer u.

- 1. Compute $\gamma = (2g)^u \mod p$ via Section G.1.1.
- 2. Compute $i = 2g\gamma^2 \mod p$.
- 3. Compute $y = g\gamma(i 1) \mod p$.
- 4. Compute $z = y^2 \mod p$.
- 5. If z = g, then output y. Otherwise output the message "no square roots exist."

ALGORITHM 3: for $p \equiv 1 \pmod{4}$, that is p = 4u + 1 for some positive integer u.

- 1. Set $Q \leftarrow g$.
- 2. Generate random *P* with $0 \le P < p$.
- 3. Using Section G.1.3, compute the Lucas sequence elements

$$U = U_{2k+1} \mod p$$
, $V = V_{2k+1} \mod p$

- 4. If $V^2 \equiv 4Q \pmod{p}$ then output $y = V/2 \mod p$ and stop.
- 5. If $U \pm 1 \pmod{p}$ then output the message "no square roots exist" and stop.
- 6. Go to Step 2.

G.1.5. Trace and Half-Trace Functions

If α is an element of F_{2m} , the *trace* of α is:

$$Tr(\alpha) = \alpha + \alpha^2 + \alpha^{2^2} + ... + \alpha^{2^{m-1}}$$

The value of $Tr(\alpha)$ is 0 for half the elements of F_{2^m} , and 1 for the other half.

The trace can be computed as follows. The methods are used in Section G.1.6.

Normal basis representation used for elements of F_{2^m} :

If
$$\alpha$$
 has representation ($\alpha_0 \alpha_1 ... \alpha_{m-1}$), then

$$Tr(\alpha) = \alpha_0 \oplus \alpha_1 \oplus ... \oplus \alpha_{m-1}.$$

Polynomial basis representation used for elements of F_{2m} :

- 1. Set $T = \alpha$.
- 2. For i from 1 to m 1 do

2.1.
$$T = T^2 + \alpha$$
.

3. Output T.

If m is odd, the *half-trace* of α is

$$\alpha + \alpha^{2} + \alpha^{2} + \dots + \alpha^{2^{m-1}}$$
.

If F_{2^m} is represented by a polynomial basis, the half-trace can be computed efficiently as follows. The method is used in Section G.1.6.

- 1. Set $T = \alpha$.
- 2. For *i* from 1 to (m 1)/2 do
 - 2.1. $T = T^2$.
 - 2.2. $T = T^2 + \alpha$.
- 3. Output *T*.

G.1.6. Solving Quadratic Equations over F_{2m}

If β is an element of F_{2^m} , then the equation:

$$z^2 + z = \beta$$

has 2 - 2T solutions over F_{2^m} , where $T = Tr(\beta)$. Thus, there are either 0 or 2 solutions.

If $\beta = 0$, then the solutions are 0 and 1. If $\beta \neq 0$ and z is a solution, then the other solution is z + 1.

The following algorithms determine whether a solution z exists for a given β , and if so, computes one. The algorithms are used in point compression (see Section 4.4.1.b) and in Section G.3.1.

Input: A field F_{2^m} along with a basis for representing its elements; and an element $\beta \neq 0$.

Output: An element z for which $z^2 + z = \beta$ if any exist; otherwise the message "no solutions exist".

ALGORITHM 1: for normal basis representation.

- 1. Let $(\beta_0 \beta_1...\beta_{m-1})$ be the representation of β .
- 2. Set $z_0 = 0$.
- 3. For *i* from 1 to *m*-1 do

3.1. Set
$$z_i = z_{i-1} \oplus \beta_i$$
.

- 4. Set $z = (z_0 z_1...z_{m-1})$.
- 5. Compute $\gamma = z^2 + z$.
- 6. If $\gamma = \beta$ then output z. Otherwise output the message "no solutions exist".

ALGORITHM 2: for polynomial basis representation, with m odd.

- 1. Compute $z = \text{half-trace of } \beta \text{ via Section G.1.5.}$
- 2. Compute $\gamma = z^2 + z$.
- 3. If $\gamma = \beta$ then output z. Otherwise output the message "no solutions exist".

 $ALGORITHM\ 3:\ works\ in\ any\ polynomial\ basis.$

- 1. Choose a random $\tau \in F_{2^m}$
- 2. Set z = 0 and $w = \beta$.
- 3. For i from 1 to m 1 do
 - 3.1. Set $z = z^2 + w^2 \tau$.
 - 3.2. Set $w = w^2 + \beta$.
- 4. If $w \neq 0$ then output the message "no solutions exist" and stop.
- 5. Compute $\gamma = z^2 + z$.
- 6. If $\gamma = 0$ then go to Step 1.
- 7. Output *z*.

G.1.7. Checking the Order of an Integer Modulo a Prime

Let p be a prime and let g satisfy 1 < g < p. The *order* of g modulo p is the smallest positive integer k such that $g^k \equiv 1 \pmod{p}$. The following algorithm tests whether or not g has order k modulo p. The algorithm is used in Section G.1.8.

Input: A prime p, a positive integer k, and an integer g with 1 < g < p.

Output: "True" if g has order k modulo p, and "False" otherwise.

- 1. Determine the prime divisors of k.
- 2. If $g^k = 1 \pmod{p}$, then output "False" and stop.
- 3. For each prime l dividing k do
 - 3.1. If $g^{kl} \equiv 1 \pmod{p}$, then output "False" and stop.
- 4. Output "True".

G.1.8. Checking the Existence of an Optimal Normal Basis

The following algorithm determines whether an optimal normal basis of Type I or Type II (or both) exists for F_{2m} .

Input: A positive integer m > 1.

Output: A message "Type I only", "Type II only", "Both Types", or "Neither Type".

- 1. Set T_1 = "False" and T_2 = "False".
- 2. If $m \equiv 2$ or 4 (mod 8) and p = m + 1 is prime, then
 - 2.1. Test (using the technique defined in Section G.1.7) whether 2 has order p-1 modulo p. Let T_1 be the output of this test ("True" or "False").
- 3. If $m \equiv 1$ or 2 (mod 4) and p = 2m + 1 is prime, then
 - 3.1. Test (using the technique defined in Section G.1.7) whether 2 has order p 1 modulo p. Let T_2 be the output of this test ("True" or "False").
- 4. If $m \equiv 3 \pmod{4}$ and p = 2m + 1 is prime, then:
 - 4.1. Test (using the technique defined in Section G.1.7) whether 2 has order (p-1)/2 modulo p. Let T_2 be the output of this test ("True" or "False").
- 5. If T_1 ="True" and T_2 = "True" then output "Both Types".
 - 5.1. If T_1 ="True" and T_2 = "False" then output "Type I only".
 - 5.2. If T_1 ="False" and T_2 = "True" then output "Type II only".
 - 5.3. If T_1 ="False" and T_2 = "False" then output "Neither Type".

G.2. Polynomials over a Finite Field

G.2.1. GCD's over a Finite Field

If f(t) and $g(t) \neq 0$ are two polynomials with coefficients in the field F_q , then there is a unique monic polynomial d(t) of largest degree which divides both f(t) and g(t). The polynomial d(t) is called the *greatest common divisor* or gcd of f(t) and g(t). The following algorithm (the Euclidean algorithm) computes the gcd of two polynomials. The algorithm is used in Section G.2.2.

Input: A finite field F_q and two polynomials f(t), $g(t) \neq 0$ over F_q .

Output: $d(t) = \gcd(f(t), g(t)).$

- 1. Set a(t) = f(t), b(t) = g(t).
- 2. While $b(t) \neq 0$
 - 2.1. Set c(t) = the remainder when a(t) is divided by b(t).
 - 2.2. Set a(t) = b(t).
 - 2.3. Set b(t) = c(t).
- 3. Let α be the leading coefficient of a(t) and output $\alpha^{-1}a(t)$.

G.2.2. Finding a Root in F_{2m} of an Irreducible Binary Polynomial

If f(t) is an irreducible polynomial (mod 2) of degree m, then f(t) has m distinct roots in the field F_{2^m} . A random root can be found efficiently using the following algorithm. The algorithm is used in Section G.2.3.

Input: An irreducible polynomial f(t) of degree m over F_2 , and a field F_{2m} .

Output: A random root of f(t) in F_{2^m} .

- 1. Set g(t) = f(t).
- 2. While deg(g) > 1
 - 2.1. Choose random $u \in F_{2^m}$.
 - 2.2. Set c(t) = ut.
 - 2.3. For *i* from 1 to m 1 do 2.3.1. $c(t) = (c(t)^2 + ut) \mod g(t)$.
 - 2.4. Set $h(t) = \gcd(c(t), g(t))$.
 - 2.5. If h(t) is constant or deg(g) = deg(h), then go to step 2.1.
 - 2.6. If $2\deg(h) > \deg(g)$, then set g(t) = g(t) / h(t); else g(t) = h(t).
- 3. Output g(0).

G.2.3. Change of Basis

Given a field F_{2^m} and two (polynomial or normal) bases B_1 and B_2 for the field over F_2 , the following algorithm allows conversion between bases B_1 and B_2 .

- 1. Let f(t) be the field polynomial of B_2 . That is,
 - 1.1. If B_2 is a polynomial basis, let f(t) be the (irreducible) reduction polynomial of degree m over F_2 .
 - 1.2. If B_2 is a Type I optimal normal basis (see Section G.1.8), let:

$$f(t) = t^m + t^{m-1} + t^{m-2} + ... + t + 1.$$

1.3. If B_2 is a Type II optimal normal basis (see Section G.1.8), let:

$$f(t) = \sum_{\substack{0 \le j \le m \\ m-j\underline{\pi} \ m+j}} t^j$$

where the notation $a \underline{\pi} b$ means that in the binary representations

$$a = \sum u_i 2^i, b = \sum w_i 2^i,$$

we have $u_i \le w_i$ for all i. (These polynomials can also be calculated using the recursion from Section 4.1.4.a.)

- 2. Let γ be a root of f(t) computed with respect to B_1 . (γ can be computed using the technique defined in Section G.2.2.)
- 3. Let Γ be the matrix:

$$\Gamma = \begin{bmatrix} \gamma_{0,0} & \gamma_{0,1} & \Lambda & \gamma_{0,m-1} \\ \gamma_{1,0} & \gamma_{1,1} & \Lambda & \gamma_{1,m-1} \\ M & M & O & M \\ \gamma_{m-1,0} & \gamma_{m-1,1} & K & \gamma_{m-1,m-1} \end{bmatrix},$$

where the entries $\gamma_{i,j}$ are defined as follows:

3.1. If B_2 is a polynomial basis, then:

$$\begin{aligned} 1 &= (\gamma_{0,0} \, \gamma_{0,1} \, \dots \, \gamma_{0,m-1}) \\ \gamma &= (\gamma_{1,0} \, \gamma_{1,1} \, \dots \, \gamma_{1,m-1}) \\ \gamma^2 &= (\gamma_{2,0} \, \gamma_{2,1} \, \dots \, \gamma_{2,m-1}) \end{aligned}$$

•

$$\gamma^{m-1} = (\gamma_{m-1,0} \; \gamma_{m-1,1} \; ... \; \gamma_{m-1,m-1})$$

with respect to B_1 . (The entries $\gamma_{i,j}$ are computed by repeated multiplication by γ .)

3.2. If B_2 is an optimal normal basis, then:

$$\gamma = (\gamma_{0,0} \gamma_{0,1} \dots \gamma_{0,m-1})
\gamma^2 = (\gamma_{1,0} \gamma_{1,1} \dots \gamma_{1,m-1})
\gamma^4 = (\gamma_{2,0} \gamma_{2,1} \dots \gamma_{2,m-1})$$

•

$$\gamma^{2^{m-1}} = (\gamma_{m-1,0} \ \gamma_{m-1,1} \ \dots \ \gamma_{m-1,m-1}$$

with respect to B_1 . (The entries $\gamma_{i,j}$ are computed by repeated squaring of γ .)

4. If an element has representation ($\beta_0\beta_1...\beta_{m-1}$) with respect to B_2 , then its representation with respect to B_1 is

$$(\alpha_0 \alpha_1 ... \alpha_{m-1}) = (\beta_0 \beta_1 ... \beta_{m-1}) \Gamma.$$

If an element has representation $(\alpha_0\alpha_1...\alpha_{m-1})$ with respect to B_1 , then its representation with respect to B_2 is

$$(\beta_0 \beta_1 ... \beta_{m-1}) = (\alpha_0 \alpha_1 ... \alpha_{m-1}) \Gamma^{-1}.$$

Example: Suppose that B_1 is the polynomial basis (mod $t^4 + t + 1$), and B_2 is the Type I optimal normal basis for F_{24} .

Then: $f(t) = t^4 + t^3 + t^2 + t + 1$, and a root is given by $\gamma = (1100)$ with respect to B_1 . Then:

$$\gamma = (1100)$$

$$\gamma^2 = (1111)$$

$$\gamma^4 = (1010)$$

$$\gamma^{8} = (1000),$$

so that:

$$\Gamma = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

and:

$$\Gamma^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

If $\lambda = (1001)$ with respect to B_2 , then its representation with respect to B_1 is: $(0100) = (1001) \Gamma$.

If $\lambda = (1011)$ with respect to B_1 , then its representation with respect to B_2 is:

$$(1101) = (1011) \Gamma^{-1}$$
.

G.2.4. Checking Polynomials over F_2 for Irreducibility

If f(x) is a polynomial with coefficients in the field F_2 , then f(x) can be tested efficiently for irreducibility using the following algorithm. The algorithm is used in Section 5.1.2.b.

Input: A polynomial f(x) with coefficients in F_2 .

Output: The message "True" if f(x) is irreducible over F_2 ; the message "False" otherwise.

- 1. Set d = degree of f(x).
- 2. Set u(x) = x.
- 3. For *i* from 1 to $\lfloor d/2 \rfloor$ do
 - 3.1. Set $u(x) = u(x)^2 \mod f(x)$.
 - 3.2. Set $g(x) = \gcd(u(x) + x, f(x))$.
 - 3.3. If $g(x) \neq 1$ then output "False" and stop.
- 4. Output "True".

G.3. Elliptic Curve Algorithms

G.3.1. Finding a Point on an Elliptic Curve

The following algorithms provide an efficient method for finding a random point (other than o) on a given elliptic curve over a finite field. These algorithms are used in Sections F.3.1 and F.3.2.

Case I: Curves over F_p

Input: A prime p and the parameters a and b of an elliptic curve E over F_p .

Output: A randomly generated point (other than \mathcal{O}) on E.

- 1. Choose a random integer x with $0 \le x < p$.
- 2. Set $\alpha = x^3 + ax + b \mod p$.
- 3. If $\alpha = 0$ then output (x, 0) and stop.
- 4. Apply the appropriate algorithm from Section G.1.4 to look for a square root (mod p) of α .
- 5. If the output of Step 4 is "no square roots exist," then go to Step 1. Otherwise the output of Step 4 is an integer y with 0 < y < p such that $y^2 \equiv \alpha \pmod{p}$.
- 6. Output (x, y).

Case II: Curves over F_{2^m} .

Input: A field F_{2^m} and the parameters a and b of an elliptic curve E over F_{2^m} .

Output: A randomly generated point (other than \mathcal{O}) on E.

- 1. Choose a random element x in F_{2^m} .
- 2. If x = 0, then output $(0, b^{2^{m-1}})$ and stop.
- 3. Set $\alpha = x^3 + ax^2 + b$.
- 4. If $\alpha = 0$, then output (x, 0) and stop.
- 5. Set $\beta = x^{-2} \alpha$.
- 6. Apply the appropriate algorithm from Section G.1.6 to look for an element z for which $z^2 + z = \beta$.
- 7. If the output of Step 6 is "no solutions exist," then go to Step 1. Otherwise the output of Step 6 is a solution z.
- 8. Set y = xz.
- 9. Output (x, y).

G.3.2. Computing a Multiple of an Elliptic Curve Point

If *k* is a positive integer and *P* is an elliptic curve point, then *kP* is the point obtained by adding together *k* copies of *P*. This computation can be performed efficiently by the *addition-subtraction method* outlined below. These algorithms are used, for example, in Sections 5.1.1, 5.1.2, 5.3, and 5.4.

Input: A positive integer k and an elliptic curve point P.

Output: The elliptic curve point kP.

- 1. Set $e = k \mod n$, where n is the order of P. (If n is unknown, then set e = k instead.)
- 2. Let $h_r h_{r-1} \dots h_1 h_0$ be the binary representation of 3e, where the leftmost bit h_r is 1.
- 3. Let $e_r e_{r-1} ... e_1 e_0$ be the binary representation of e.
- 4. Set Q = P.
- 5. For i from r 1 down to 1 do
 - 5.1. Set Q = 2Q.
 - 5.2. If $h_i = 1$ and $e_i = 0$, then set Q = Q + P.
 - 5.3. If $h_i = 0$ and $e_i = 1$, then set Q = Q P.
- 6. Output Q.

Note: To subtract the point (x, y), just add the point (x, -y) (for the field F_p) or (x, x + y) (for the field F_{2m}).

There are several variations of this method which can be used to speed up the computations. One such method which requires some precomputations is described in [10]. See also Knuth [21, pages 441-466].

Appendix H Examples of ECDSA and Sample Curves [Informative]

This appendix contains 5 parts.

- Section H.1 presents examples of data conversion methods.
 - * Section H.2 presents 2 examples of ECDSA over the field F_{2m} . ³
 - Section H.3 presents 2 examples of ECDSA over the field F_p , where p is odd prime;
- Section H.4 presents sample elliptic curves over the field F_{2^m} with system parameters for m = 163, 176, 191, 208, 239, 272, 304, 359, 368 and 431.
- * Section H.5 presents sample elliptic curves over field F_p with system parameters for 192-bit, 239-bit, and 256-bit primes.

The sample curves in Sections H.4 and H.5 may be used in an implementation of this Standard.

H.1. Examples of Data Conversion Methods

The following are examples of the data conversion techniques that shall be used in this Standard (See Figure 1). **Example of Integer-to-Octet-String Conversion.** (See Section 4.2.1.)

Input: x = 123456789, k=4

Output: M = 075BCD15

Example of Octet-String-to-Integer Conversion. (See Section 4.2.2.)

Input: M = 0003ABF1CD

Output: x = 61600205

Example of Field-Element-to-Octet-String Conversion. (See Section 4.3.1.)

(i) **Input:** $\alpha = 94311$, q = 104729 (an odd prime).

Output: S = 017067 (l=3).

Output: S = 01B6EF37EDF1 (l=6).

Example of Octet-String-to-Field-Element Conversion. (See Section 4.3.2.)

(i) **Input:** S = 01E74E (l=3), q = 224737(an odd prime).

Output: $\alpha = 124750$.

(ii) **Input:** S = 0117B2939ACC (l=6), $q=2^{41}$.

Output: $\alpha = 1000101111011001010010011110011011011001100$.

Example of Field-Element-to-Integer Conversion. (See Section 4.3.3.)

(i) **Input:** $\alpha = 136567$, q = 287117, (an odd prime).

Output: x = 136567.

Output: x = 2191548508078.

³ The curves in Sections H.4.1, H.4.3, H.4.5, H.4.8 and H.4.10 were generated using a software package by R. Lercier and F. Morain that is described in [25].

Example of Point-to-Octet-String Conversion. (See Section 4.4.2.a.)

(i) **Input:**

p = 6277101735386680763835789423207666416083908700390324961279

The curve is E: $y^2 = x^3 + ax + b$ where

- a = 627710173538668076383578942320766641608390870039032496 1276
- *b* = 245515554600894381774029391519745178476910805816119123

The point is $P=(x_1, y_1)$, where

- $\mathbf{x}_1 = 602046282375688656758213480587526111916698976636884684$ 818
- $y_1 = 174050332293622031404857552280219410364023488927386650$

Output: (compressed form)

PO = 03 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012

Output: (uncompressed form)

PO =	04	188DA80E	B03090F6	7CBF20EB	43A18800	F4FF0AFD
	82FF1012	07192B95	FFC8DA78	631011ED	6B24CDD5	73F977A1
	1E794811					

Output: (hybrid form)

PO = 07 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

(ii) **Input:** $q=2^{191}$

The field $F_{2^{191}}$ is generated by the irreducible polynomial

The curve is $E: y^2+xy=x^3+ax^2+b$ over $F_{2^{191}}$, where

a = 2866537B 67675263 6A68F565 54E12640 276B649E F7526267

b = 2E45EF57 1F00786F 67B0081B 9495A3D9 5462F5DE 0AA185EC

The point is $P=(x_1, y_1)$, where

Output: (compressed form)

PO = 02 36B3DAF8 A23206F9 C4F299D7 B21A9C36 9137F2C8 4AE1AA0D

Output: (uncompressed form)

PO = 04 36B3DAF8 A23206F9 C4F299D7 B21A9C36 9137F2C8 4AE1AA0D 765BE734 33B3F95E 332932E7 0EA245CA 2418EA0E F98018FB

Output: (hybrid)

PO = 06 36B3DAF8 A23206F9 C4F299D7 B21A9C36 9137F2C8 4AE1AAOD 765BE734 33B3F95E 332932E7 0EA245CA 2418EA0E F98018FB

Example of Octet-String-to-Point Conversion. (See Section 4.4.2.b.)

(i) **Input:**

p = 627710173538668076383578942320766641608390870039032496

The curve is $E: y^2 = x^3 + ax + b$ where

a = 627710173538668076383578942320766641608390870039032496
1276

b = 500540239228939020355206947077111708486189930780145699 0547

The octet string is

03 EEA2BAE7 E1497842 F2DE7769 CFE9C989 C072AD69 6F48034A

Output: The point is $P=(x_1, y_1)$, where

 $\mathbf{x}_1 = 585132946672357462312202397807238119109556708125177439$ 9306

 $y_1 = 248770162588122869126980888053509393860107091126477828$

(ii) **Input:** $q=2^{191}$

The field $F_{2^{191}}$ is generated by the irreducible polynomial

The curve is $E: y^2+xy=x^3+ax^2+b$ over $F_{2^{19}}$, where

a =	40102877	4D7777C7	B7666D13	66EA4320	71274F89	FF01E718			
b =	0620048D	28BCBD03	B6249C99	182B7C8C	D19700C3	62C46A01			
The octet string is									
PO =	02	3809B2B7 C9E3BF10	CC1B28CC	5A87926A	AD83FD28	789E81E2			

Output: The point is $P=(x_1, y_1)$, where

H.2. Examples of ECDSA over the Field F_{2m}

H.2.1. An Example With m = 191 (trinomial basis)

- a. Elliptic Curve Parameter Setup
- 1. The field $F_{2^{191}}$ is generated by the irreducible polynomial

	f =	80000000	00000000	00000000	00000000	00000000	00000201
2.	The cur	ve is $E: y^2 + xy$	$=x^3+ax^2+b$ ove	er F_2^{191} , where)		
	seed =	4E13CA54	2744D696	E6768756	1517552F	279A8C84	
	a =	2866537B	67675263	6A68F565	54E12640	276B649E	F7526267

- b = 2E45EF57 1F00786F 67B0081B 9495A3D9 5462F5DE 0AA185EC
- 3. Generating point *P* (without point compression)

	_	_			
04	36B3DAF8	A23206F9	C4F299D7	B21A9C36	9137F2C8
4AE1AA0D	765BE734	33B3F95E	332932E7	0EA245CA	2418EA0E
F98018FB					

P has prime order

n = 156927543384667019095894735580335045883120559545163053 3029

h = 2

b. Key Generation

d = 127555219111321230001203043918714616464614664646674949 4799

 $Q = dP = (x_O, y_O)$ (without point compression)

04	5DE37E75	6BD55D72	E3768CB3	96FFEB96	2614DEA4
CE28A2E7	55C0E0E0	2F5FB132	CAF416EF	85B229BB	B8E13520
03125BA1					

c. Signature Generation

M = "abc"

1. Message digesting

SHA-1 is applied to *M* to get

e = SHA-1(M) = 968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. select a k in the interval [2,n-2]
 - k = 154272556521652398578923695626526526523567581194940404 0041
- b. compute $R = kP = (x_1, y_1)$

 $x_1 = 438E5A11$ FB55E4C6 5471DCD4 9E266142 A3BDF2BF 9D5772D5

 $y_1 = 2AD603A0$ 5BD1D177 649F9167 E6F475B7 E2FF590C 85AF15DA

- c. convert x_1 to an integer \overline{x}_1
 - \overline{x}_1 = 165646981701154173431466964073025487882844318698669706
- d. set $r = \overline{x}_1 \mod n$.

r = 87194383164871543355722284926904419997237591535066528048

e. $r \neq 0$, OK.

3. Modular computation

- a. compute $s = k^{-1}(e + dr) \mod n$.
 - s = 308992691965804947361541664549085895292153777025772063598
- b. $s \neq 0$, OK.

4. Signature formatting

The signature is the two integers r and s.

- r = 87194383164871543355722284926904419997237591535066528048
- s = 308992691965804947361541664549085895292153777025772063 598

d. Signature verification

1. Message digesting

SHA-1 is applied to M' to get e=SHA-1(M')=968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. r' is in interval [1, n-1], OK
- b. s' is in interval [1, n-1], OK.

- c. compute $c = (s')^{-1} \mod n$
 - c = 952933666850866331568782284754801289889992082635386177
- d. compute $u_1 = ec \mod n$ and $u_2 = r'c \mod n$
 - $u_1 = 124888640715470785402243451608406250330179237436099440$ 0066
 - $u_2 = 52701738097753401216822246601619984961197114165275346$ 4154
- e. compute $(x_1, y_1) = u_1 P + u_2 Q$

	(1/ / 1/	-~				
$u_1P =$	1A045B0C	26AF1735	9163E9B2	BF1AA57C	5475C320	78ABE159
	53ECA58F	AE7A4958	783E8173	CF1CA173	EAC47049	DCA02345
$u_2Q =$	015CF19F	E8485BED	8520CA06	BD7FA967	A2CE0B30	4FFCF0F5
	314770FA	4484962A	EC673905	4A6652BC	07607D93	CAC79921
$u_1P + u_2$	$_{2}Q=(x_{1},y_{1})$					
		EDEE HAGE	F 471 DOD 4	000000140	A3BDF2BF	00077000
$x_1 =$	438E5A11	FB55E4C6	5471DCD4	9E266142	A3BDF ZBF	9D5772D5
<i>y</i> ₁ =	2AD603A0	5BD1D177	649F9167	E6F475B7	E2FF590C	85AF15DA

3. Signature check

- a. convert x_1 to an integer \overline{x}_1
 - \overline{x}_1 = 165646981701154173431466964073025487882844318698669706 1077
- b. compute $v = \overline{x}_1 \mod n$.
 - v = 87194383164871543355722284926904419997237591535066528048
- c. v = r'. OK

H.2.2. An Example With m = 239 (trinomial basis)

- a. Elliptic Curve Parameter Setup
- 1. The field $F_{2^{239}}$ is generated by the irreducible polynomial

f =	8000	00000000	00000000	00000000	00000000	00000000
	00000010	00000001				

2. The curve is $E: y^2+xy=x^3+ax^2+b$ over $F_{2^{239}}$, where

seed =	: D34B9A4D	696E6768	75615175	CA71B920	BFEFB05D	
a =	3201 87757812	0857077C 5778AC76	5431123A	46B80890	6756F543	423E8D27
b =	7904 1FC383C4	08F2EEDA 22AA8C16	F392B012	EDEFB339	2F30F432	7C0CA3F3

3. Generating point *P* (without point compression)

04 57927098 FA932E7C 0A96D3FD 5B706EF7 E5F5C156 E16B7E7C 86038552 E91D61D8 EE5077C3 3FECF6F1 A16B268D E469C3C7 744EA9A9 71649FC7 A9616305

P has prime order

n = 220855883097298041197912187592864814557886993776713230936715041207411783

h = 4

b. Key Generation

d = 145642755521911534651321230007534120304391871461646461 466464667494947990

 $Q = dP = (x_0, y_0)$ (without point compression)

5894609C CECF9A92 04 533F630D E713A958 E96C97CC B8F5ABB5 A688A238 DEED6DC2 D9D0C94E BFB7D526 BA6A6176 4175B99C B6011E20 47F9F067 293F57F5

c. Signature Generation

M = "abc"

1. Message digesting

SHA-1 is applied to *M* to get

e = SHA-1(M) = 968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. select a k in the interval [2, n-2]
 - k = 171278725565216523967285789236956265265265235675811949404040041670216363
- b. compute $R = kP = (x_1, y_1)$

 $x_1 = 6321$ 0D71EF6C 10157C0D 1053DFF9 3EB8F028 1E3F9DA2 DEB377A8 1BDAE8D5

 $y_1 = 5EAF$ D217370E 12036519 CAD381A1 FC38234F 61870DB2 2C1E410A C1F183F0

- c. convert x_1 to an integer \overline{x}_1
 - \overline{x}_1 = 684163982502313735578754902817629056302479132816981482 452601000544626901
- d. set $r = \overline{x}_1 \mod n$.

r = 21596333210419611985018340039034612628818151486841789642455876922391552

e. $r \neq 0$, OK.

3. Modular computation

a. compute $s = k^{-1}(e + dr) \mod n$.

s = 197030374000731686738334997654997227052849804072198819

102649413465737174

b. $s \neq 0$, OK.

4. Signature formatting

The signature is the two integers r and s.

- r = 21596333210419611985018340039034612628818151486841789642455876922391552
- s = 197030374000731686738334997654997227052849804072198819102649413465737174

d. Signature verification

1. Message digesting

SHA-1 is applied to M' to get e=SHA-1(M')=968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. r' is in interval [1, n-1], OK
- b. *s* ′ is in interval [1, *n*-1], OK.
- c. compute $c=(s')^{-1} \mod n$
 - c = 431396620921664668890077637965697612042893607943599260 03383145535744433
- d. compute $u_1 = ec \mod n$ and $u_2 = r'c \mod n$
 - $u_1 = 105375096144033333985559550644017212889091653305446724$ 555949472922658998
 - u_2 = 215828469521640156896840216715465581571744240077746044 580128914744769962
- e. compute $(x_1, y_1) = u_1 P + u_2 Q$

_						
$u_1P =$	12C9 00F84CA8	F6F4C153 C5C89FCA	014AD6E5	04B3036B	B47FFD7B	D42B820A
	78EA DE80774C	1205C486 A4C23D05	3D0CA5DE	16FF6324	51CAA41C	EE66B628
$u_2Q =$	5C9B 426551DB	A4416EAD E4C43157	A45057F6	4ADF29FE	B2A6C8D5	7546CEA5
	39B0 309E58BC	51282C27 F5030C06	D6A55E19	CCEDA153	7C02D812	43E65DF8
$u_1P + u$	$q_2 Q = (x_1, y_1)$					
<i>x</i> ₁ =	6321 DEB377A8	0D71EF6C 1BDAE8D5	10157C0D	1053DFF9	3EB8F028	1E3F9DA2
<i>y</i> ₁ =	5EAF 2C1E410A	D217370E C1F183F0	12036519	CAD381A1	FC38234F	61870DB2
	$u_2Q =$ $u_1P + u_1x_1 =$	$00F84CA8$ $78EA$ $DE80774C$ $u_2Q = 5C9B$ $426551DB$ $39B0$ $309E58BC$ $u_1P + u_2Q = (x_1, y_1)$ $x_1 = 6321$ $DEB377A8$ $y_1 = 5EAF$	$00F84CA8 C5C89FCA$ $78EA 1205C486$ $DE80774C A4C23D05$ $u_2Q = 5C9B A4416EAD$ $426551DB E4C43157$ $39B0 51282C27$ $309E58BC F5030C06$ $u_1P + u_2Q = (x_1, y_1)$ $x_1 = 6321 0D71EF6C$ $DEB377A8 1BDAE8D5$ $y_1 = 5EAF D217370E$	$00F84CA8 C5C89FCA$ $78EA 1205C486 3D0CA5DE$ $DE80774C A4C23D05$ $u_2Q = $	$00F84CA8 C5C89FCA$ $78EA 1205C486 3D0CA5DE 16FF6324$ $DE80774C A4C23D05$ $u_2Q = $	$00F84CA8 C5C89FCA$ $78EA 1205C486 3D0CA5DE 16FF6324 51CAA41C$ $DE80774C A4C23D05$ $u_2Q = $

3. Signature check

- a. convert x_1 to an integer \overline{x}_1
 - \overline{x}_1 = 684163982502313735578754902817629056302479132816981482 452601000544626901
- b. compute $v = \overline{x}_1 \mod n$.
 - v = 21596333210419611985018340039034612628818151486841789642455876922391552
- c. v = r'. OK

H.3. Examples of ECDSA over the Field F_p

H.3.1. An Example With a 192-bit Prime p

- a. Elliptic Curve Parameter Setup
- 1. The field F_n is generated by the prime
 - p = 627710173538668076383578942320766641608390870039032496 1279
- 2. The curve is $E: y^2 = x^3 + ax + b$ over F_n , where

seed =	3045AE6F	C8422F64	ED579528	D38120EA	E12196D5

$$r = 3099D2BB$$
 BFCB2538 542DCD5F B078B6EF 5F3D6FE2 C745DE65

- b = 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1
- 3. Generating point *P* (with point compression)

P has prime order

n = 627710173538668076383578942317605901376719477318284228 4081

h = 1

b. Key Generation

d = 651056770906015076056810763456358567190100156695615665 659

$$Q = dP = (x_0, y_0)$$
 (with point compression)

02 62B12D60 690CDCF3 30BABAB6 E69763B4 71F994DD 702D16A5

c. Signature Generation

M = "abc"

1. Message digesting

SHA-1 is applied to *M* to get

e = SHA-1(M) = 968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. select a k in the interval [2, n-2]
- b. compute $R = kP = (x_1, y_1)$

$$x_1 = 88505238$$
 0FF147B7 34C330C4 3D39B2C4 A89F29B0 F749FEAD

$$y_1 = 9CF9FA1C$$
 BEFEFB91 7747A3BB 29C072B9 289C2547 884FD835

- c. convert x_1 to an integer \overline{x}_1
 - \overline{x}_1 = 334240353640598172939348833469460041559688182686935167 7613
- d. set $r = \overline{x}_1 \mod n$.
 - r = 3342403536405981729393488334694600415596881826869351677613
- e. $r \neq 0$, OK.

3. Modular computation

- a. compute $s = k^{-1}(e + dr) \mod n$.
 - s = 573582232888815525468389499789757195156855364289202998 2342
- b. $s \neq 0$, OK.

4. Signature formatting

The signature is the two integers r and s.

- r = 3342403536405981729393488334694600415596881826869351677613
- s = 5735822328888155254683894997897571951568553642892029982342

d. Signature verification

1. Message digesting

SHA-1 is applied to M ′ to get e=SHA-1(M′)=968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. r' is in interval [1, n-1], OK
- b. s' is in interval [1, n-1], OK.
- c. compute $c = (s')^{-1} \mod n$
 - c = 325096440447252682513051649045234621774918970404962904

2861

- d. compute $u_1 = ec \mod n$ and $u_2 = r'c \mod n$
 - $u_1 = 256369740918943418519473613457973101536649249639218976$ 0599
 - $u_2 = 626664381334861796718647771023578584913640632333878222$ 0568
- e. compute $(x_1, y_1) = u_1 P + u_2 Q$

Compan	u_1, y_1, \dots	1 11/2				
$u_1P =$	DD9734E5	159253EB	0B09A049	2E12CBA8	7084C11B	AC674D82
	804F5FDC	638946FA	6660E851	E10542C1	134D4348	2956B50E
$u_2Q =$	48893A3F	98EBA955	7660BE10	14BBD7D2	42326A1C	DA7CF246
	114A3118	867D4032	247416C4	A2BA3E83	076B6F8C	B666667A
$u_1P + u_2$	$_{2}Q=(x_{1},y_{1})$					
<i>x</i> ₁ =	88505238	0FF147B7	34C330C4	3D39B2C4	A89F29B0	F749FEAD
<i>y</i> ₁ =	9CF9FA1C	BEFEFB91	7747A3BB	29C072B9	289C2547	884FD835

3. Signature check

- a. convert x_1 to an integer \overline{x}_1
 - \overline{x}_1 = 334240353640598172939348833469460041559688182686935167 7613
- b. compute $v = \overline{x}_1 \mod n$.
 - *v* = 334240353640598172939348833469460041559688182686935167 7613
- c. v = r'. OK

H.3.2. An Example With a 239-bit Prime p

- a. Elliptic Curve Parameter Setup
- 1. The field F_p is generated by the prime
 - p = 883423532389192164791648750360308885314476597252960362792450860609699839
- 2. The curve is $E: y^2 = x^3 + ax + b$ over F_p , where

seed =	E43BB460	F0B80CC0	C0B07579	8E948060	F8321B7D	
r =	28B8 0957D6EF	5EC1ECC1 E78D3783	9EFE769E	B741A6D1	BA29476A	A5A8F261
a =	7FFF 00007FFF	FFFFFFF FFFFFFC	FFFFFFFF	FFFF7FFF	FFFFFFFF	80000000
b =	6B01 37796185	6C3BDCF1 C2942C0A	8941D0D6	54921475	CA71A9DB	2FB27D1D

3. Generating point *P* (with point compression)

020FFA 963CDCA8 816CCC33 B8642BED F905C3D3 58573D3F 27FBBD3B 3CB9AAAF

P has prime order

n = 883423532389192164791648750360308884807550341691627752275345424702807307

h = 1

b. Key Generation

d = 876300101507107567501066130761671078357010671067781776 716671676178726717

 $Q = dP = (x_Q, y_Q)$ (with point compression)

025B6D C53BC61A 2548FFB0 F671472D E6C9521A 9D2D2534 E65ABFCB D5FE0C70

c. Signature Generation

M = "abc"

1. Message digesting

SHA-1 is applied to *M* to get

e=SHA-1(M)= 968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. select a k in the interval [2, n-2]
 - k = 700000017569056646655505781757157107570501575775705779575555657156756655
- b. compute $R = kP = (x_1, y_1)$

 $x_1 = 2CB7$ F36803EB B9C427C5 8D8265F1 1FC50847 47133078 FC279DE8 74FBECB0

 $y_1 = 20C0$ 8272B9E6 C92B518A 5AC5EB28 35BE0102 809D77E6 9304A6F7 C522B47B

- c. convert x_1 to an integer \overline{x}_1
 - \overline{x}_1 = 3086361431751678114926225473006680188549593787585317781 47462058306432176
- d. set $r = \overline{x}_1 \mod n$.

r = 308636143175167811492622547300668018854959378758531778147462058306432176

e. $r \neq 0$, OK.

3. Modular computation

a. compute $s = k^{-1}(e + dr) \mod n$.

s = 323813553209797357708078776831250505931891051755007842781978505179448783 b. $s \neq 0$, OK.

4. Signature formatting

The signature is the two integers r and s.

- r = 308636143175167811492622547300668018854959378758531778147462058306432176
- s = 323813553209797357708078776831250505931891051755007842781978505179448783

d. Signature verification

1. Message digesting

SHA-1 is applied to M' to get e = SHA-1(M') = 968236873715988614170569073515315707566766479517

2. Elliptic curve computation

- a. r' is in interval [1, n-1], OK
- b. s' is in interval [1, n-1], OK.
- c. compute $c=(s')^{-1} \mod n$
 - c = 8318434183329783904630100218433505818924808486364081047 06147767766249764
- d. compute $u_1 = ec \mod n$ and $u_2 = r'c \mod n$
 - $u_1 = 1240649650520141946221593380973875629547881176383835030$ 89995672152118745
 - u_2 = 8113637361407544654075443412683824214386872140938978502 39246340491822539
- e. compute $(x_1, y_1) = u_1 P + u_2 Q$

I	. (. 1) / 1)	122				
$u_1P =$	64C4 E4B7ED99	29FAF03D 37F62D1F	C1707700	D2011D43	9836B4C7	12DCFFD8
	6580 004aa596	DE1A6ECE 60800F48	DFD78353	8C7C9D83	98BAE8B5	A697EEFD
$u_2Q =$	3DCA 523B7994	0CAFD86C AFC92D9D	59DDD9FC	251A2073	9F698451	68F5922E
	5532 AFFE63AC	B0A717E9 1F5BC8FE	45EED3D8	AD1C26AB	37907E94	2833CD22
$u_1P + u$	$_2Q = (x_1, y_1)$					
<i>x</i> ₁ =	2CB7 FC279DE8	F36803EB 74FBECB0	B9C427C5	8D8265F1	1FC50847	47133078
<i>y</i> ₁ =	20C0 9304A6F7	8272B9E6 C522B47B	C92B518A	5AC5EB28	35BE0102	809D77E6

3. Signature check

a. convert x_1 to an integer \overline{x}_1

 \overline{x}_1 = 3086361431751678114926225473006680188549593787585317781 47462058306432176

b. compute $v = \overline{x}_1 \mod n$.

v = 308636143175167811492622547300668018854959378758531778147462058306432176

c. v = r'. OK

H.4. Sample Elliptic Curves over the Field F_{2m}

This section presents sample curves over various fields F_{2^m} which may be used to ensure the correct implementation of this Standard.

The curves over the fields $F_{2^{163}}$, $F_{2^{191}}$, $F_{2^{239}}$ and $F_{2^{359}}$ were generated verifiably at random using the method described in Section F.3.3.a.

The curves over the fields F_2^{176} , F_2^{208} , F_2^{272} , F_2^{304} and F_2^{368} were generated using the Weil Theorem (see Note 6 in Section F.3.2).

The curve over the field $F_{2^{431}}$ was generated at random (but not using the method described in Section F.3.3.a).

H.4.1. 3 Examples With m = 163

Elliptic Curve Parameter Setup (pentanomial basis)

1. The field F_2^{163} is generated by the irreducible pentanomial

2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{163}}$

Example 1.

seed = D2C01	FB15	760860DE	F1EEF4D6	96E67687	56151754	
a =	07	2546B543	5234A422	E0789675	F432C894	35DE5242
b =	00	C9517D06	D5240D3C	FF38C74B	20B6CD4D	6F9DD4D9
Generating po	oint <i>P</i> (with point con AF699895	npression) 46103D79	329FCC3D	74880F33	BBE803CB
Order of P $n =$	04	00000000	00000000	0001E60F	C8821CC7	4DAEAFC1
h = 02						

Example 2.

seed = 538	14C05	0D44D696	E6768756	1517580C	A4E29FFD	
a =	01	08B39E77	C4B108BE	D981ED0E	890E117C	511CF072
b =	06	67ACEB38	AF4E488C	407433FF	AE4F1C81	1638DF20

	Generating point P (with point compression)									
		0300	24266E4E	B5106D0A	964D92C4	860E2671	DB9B6CC5			
	Order of n =	? <i>P</i> 03	FFFFFFF	FFFFFFFF	FFFDF64D	E1151ADB	B78F10A7			
	h =	02								
Example 3.										
	seed =	50CBF1D9	5CA94D69	6E676875	615175F1	6A36A3B8				
	a =	07	A526C63D	3E25A256	A007699F	5447E32A	E456B50E			
	b =	03	F7061798	EB99E238	FD6F1BF9	5B48FEEB	4854252B			
	Generati	ng point P	(with point con	mpression)						
		0202	F9F87B7C	574D0BDE	CF8A22E6	524775F9	8CDEBDCB			
	Order of	P								
	n =	03	FFFFFFFF	FFFFFFFF	FFFE1AEE	140F110A	FF961309			
	h = 02	2								

H.4.2. Example With m = 176

Elliptic Curve Parameter Setup (pentanomial basis)

- 1. The field $F_{2^{176}}$ is generated by the irreducible pentanomial
- 2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over F_2^{176} .

Example 1.

seed = NO

a = E4E6 DB299506 5C407D9D 39B8D096 7B96704B A8E9C90B

b = 5DDA 470ABE64 14DE8EC1 33AE28E9 BBD7FCEC 0AE0FFF2

Generating point P (with point compression)

038D16 C2866798 B600F9F0 8BB4A8E8 60F3298C E04A5798

Order of P

n = 01 00925373 97ECA4F6 145799D6 2B0A19CE 06FE26AD

h = FF6E

H.4.3. 5 Examples With m = 191

- a. Elliptic Curve Parameter Setup (trinomial basis)
- 1. The field $F_{2^{191}}$ is generated by the irreducible trinomial

2. The curve is $E: y^2+xy = x^3+ax^2+b$ over $F_{2^{191}}$.

Exam	ple 1.
------	--------

	seed =	4E13CA54	2744D696	E6768756	1517552F	279A8C84			
	a =	2866537B	67675263	6A68F565	54E12640	276B649E	F7526267		
	b =	2E45EF57	1F00786F	67B0081B	9495A3D9	5462F5DE	0AA185EC		
	Generat	ing point <i>P</i> 02 4AE1AA0D	(with point con 36B3DAF8	npression) A23206F9	C4F299D7	B21A9C36	9137F2C8		
	Order of	f P							
	n =	40000000	00000000	00000000	04A20E90	C39067C8	93BBB9A5		
	h =	02							
Example 2.									
	seed =	0871EF2F	EF24D696	E6768756	151758BE	E0D95C15			
	a =	40102877	4D7777C7	B7666D13	66EA4320	71274F89	FF01E718		
	b =	0620048D	28BCBD03	B6249C99	182B7C8C	D19700C3	62C46A01		
	Generat	ing point P	(with point con	npression)					
	Concrat	02 C9E3BF10	3809B2B7	CC1B28CC	5A87926A	AD83FD28	789E81E2		
	Order o	f D							
	n =	20000000	00000000	00000000	50508CB8	9F652824	E06B8173		
	h =	04							
Examp	ole 3.								
	seed =	E053512D	C684D696	E6768756	15175067	AE786D1F			
	a =	6C010747	56099122	22105691	1C77D77E	77A777E7	E7E77FCB		
	<i>b</i> =	71FE1AF9	26CF8479	89EFEF8D	B459F663	94D90F32	AD3F15E8		
	Generat	ing point P	(with point con	npression)					
		03 38A926DD	375D4CE2	4FDE4344	89DE8746	E7178601	5009Е66Е		
	Order o	f P							
	n =	15555555	5555555	5555555	610C0B19	6812BFB6	288A3EA3		
	h =	06							
_									

b. Elliptic Curve Parameter Setup (optimal normal basis)

 2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{191}}$.

Example 4.

Lxamp	7.						
	seed =	A399387E	AE54D696	E6768756	151750E5	8B416D57	
	a =	65903E04	E1E49242	53E26A3C	9AC28C75	8BD8184A	3FB680E8
	b =	54678621	B190CFCE	282ADE21	9D5B3A06	5E3F4B3F	FDEBB29B
	Generat	ing point P	(with point com	npression)			
		02 B6DF994A	5A2C69A3	2E8638E5	1CCEFAAD	05350A97	8457CB5F
	Order of	f P					
	n =	40000000	00000000	00000000	9CF2D6E3	901DAC4C	32EEC65D
	h =	02					
Examp	ole 5.						
	seed =	2D88F7BC	545794D6	96E67687	56151759	73391555	
	a =	25F8D06C	97C82253	6D469CD5	170CDD7B	B9F500BD	6DB110FB
	b =	75FF570E	35CA94FB	3780C261	9D081C17	AA59FBD5	E591C1C4
	Generat	ing point P	(with point com	pression)			
	03 2A16910 471F3C68			8F6C4B19	9BE24213	857ABC9C	992EDFB2
	Order of	f P					
	n =	OFFFFFFF	777777	FFFFFFFF	EEB354B7	270B2992	B7818627

H.4.4. Example With m = 208

h =

08

Elliptic Curve Parameter Setup (pentanomial basis)

- 1. The field $F_{2^{208}}$ is generated by the irreducible pentanomial
- 2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{208}}$.

D1638F9E

Example 1.

seed = NO

Generating point P (with point compression)

			0289FD 1ED1A57A	FBE4ABE1	93DF9559	ECF07AC0	CE78554E	2784EB8C
		Order o	of D					
		n =	01 7E212F9D	01BAF95C	9723C57B	6C21DA2E	FF2D5ED5	88BDD571
		h =	FE48					
H.4.5	. 5 Exa a. 1.	Elliptio		239 Imeter Setup Perated by the i				
		f =	8000 00000010	00000000 00000001	00000000	00000000	00000000	00000000
	2.	The cu	rve is $E: y^2+x$	$xy = x^3 + ax^2 + b$	over $F_{2^{239}}$.			
	Exam	ole 1.						
		seed =	: D34B9A4D	696E6768	75615175	CA71B920	BFEFB05D	
		a =	3201 87757812	0857077C 5778AC76	5431123A	46B80890	6756F543	423E8D27
		b =	7904 1FC383C4	08F2EEDA 22AA8C16	F392B012	EDEFB339	2F30F432	7C0CA3F3
		Genera	ting point P (with point con	npression)			
			025792 7E7C8603	7098FA93 8552E91D	2E7C0A96	D3FD5B70	6EF7E5F5	C156E16B
		Order o	of P					
		n =	2000 4993F1CA	00000000 D666E447	00000000	00000000	000F4D42	FFE1492A
		h =	04					
	Exam	ole 2.						
		seed =	= 2AA6982F	DFA4D696	E6768756	15175D26	6727277D	
		a =	4230 266479B7	017757A7 5654E65F	67FAE423	98569B74	6325D453	13AF0766
		b =	5037 45722F03	EA654196 EACDB74B	CFF0CD82	B2C14A2F	CF2E3FF8	775285B5
		Genera	ting point P (with point con	npression)			
			0228F9 F5709F20	D04E9000 0C4CA205	69C8DC47	A08534FE	76D2B900	B7D7EF31
		Order o	of P					
		n =	1555 E3FCDF15	5555555 4624522D	5555555	5555555	553C6F28	85259C31

h = 06

Example 3.

seed =	= 9E076F4D	696E6768	75615175	E11E9FDD	77F92041					
a =	0123 87666D87	8774666A 66C66A9F	67766D66	76F778E6	76B66999	176666E6				
b =	6A94 41B8E441	1977BA9F 11DE1D40	6A435199	ACFC5106	7ED587F5	19C5ECB5				
Genera	Generating point <i>P</i> (with point compression)									
	0370F6 D539BF1B	E9D04D28 DE4E9C92	9C4E8991	3CE3530B	FDE90397	7D42B146				
Order o	of P									
n =	OCCC 3EF9888B	CCCCCCC 8A0E4CFF	acacaca	cacacaca	CCAC4912	D2D9DF90				
h =	0 <i>A</i>									

b. Elliptic Curve Parameter Setup (optimal normal basis)

1. The field F_2^{239} is generated by the irreducible polynomial

f =	D1010001	D1010000	00000001	D1010000	00000000	00000000
	00000001	D1010000				

2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{239}}$.

Example 4.

seed =	F851638C	FA4D696E	67687561	51755651	3841BFAC					
a =	182D BAECDE8B	D45F5D47 B3ADCE30	0239B898	3FEA47B8	B292641C	57F9BF84				
b =	147A A2A524BF	9C1D4C2C DE91EF28	E9BE5D34	EC02797F	76667EBA	D5A3F93F				
Generat	Generating point <i>P</i> (with point compression)									
	034912 FDEA0D72	AD657F1D 197C8104	1C6B32ED	B9942C95	E226B06F	B012CD40				
Order of	f <i>P</i>									
n =	2000 30931D0B	00000000 455AAE8B	00000000	00000000	00474F7E	69F42FE4				
h =	04									

Example 5.

seed =	2C04F44D	696E6768	75615175	C586B41F	6CA150C9	
a =	1ECF F94A3F36	1B9D28D8 124A486E	017505E1	7475D3DF	2982E243	CA5CB5E9

57250D1A 2E66CEF2 3AA0F25B 12388DE8 A10FF955 b =3EE2 4F90AFBA A9A08B6D Generating point P (with point compression) 021932 79FC543E 9F5F7119 189785B9 C60A249B E4820BAF 6C24BDFA 2813F8B8 Order of P1555 n = 5555555 5555555 5555555 558CF77A 5D0589D2 A9340D96 3B7AD703 h =06

H.4.6. Example With m = 272

Elliptic Curve Parameter Setup (pentanomial basis)

- The field $F_{2^{272}}$ is generated by the irreducible pentanomial 1.
 - f =010000 00000000 00000000 00000000 00000000 00000000 00000000 01000000 0000000B
- 2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{272}}$.

Example 1.

seed = NO

91F03B5F F49C4EDD a = 91A0 BA4AB2CC 220FB028 712D42BE 094DBACD 752B2C40 B586FB20 b =7167 EFC92BB2 E3CE7C8A AAFF34E1 2A9C5570 03D7C73A 6FAF003F 99F6CC84 82E540F7 Generating point P (with point compression) 026108 BABB2CEE BCF78705 8A056CBE 7723A289 0CFE622D E08A07AE 13EF0D10 D171DD8D Order of P n = 01 00FAF513 54E0E39E 4892DF6E 319C72C8 161603FA 45AA7B99 8A167B8F 1E629521

H.4.7. Example With m = 304

h =

FF06

Elliptic Curve Parameter Setup (pentanomial basis)

- 1. The field $F_{2^{304}}$ is generated by the irreducible pentanomial
 - 010000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000807 00000000
- The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{304}}$. 2.

Example 1.

seed = NO

FD0D 693149A1 18F651E6 DCE68020 85377E5F 882D1B51 a = 0B441600 74C12880 78365A03 96C8E681

<i>b</i> =	BDDB 4EFCF571	97E555A5 66B8C140	0A908E43 39601E55	B01C798E 827340BE	A5DAA678	8F1EA279
Genera	ting point P	(with point con	npression)			
	02197B	07845E9B	E2D96ADB	0F5F3C7F	2CFFBD7A	3EB8B6FE
	C35C7FD6	7F26DDF6	285A644F	740A2614		
Order o	.f D					
Order o	01 <i>P</i>					
n =	01	01D55657	2AABAC80	0101D556	572AABAC	8001022D
	5C91DD17	3F8FB561	DA689916	4443051D		
h =	FE2E					

H.4.8. Example With m = 359

Elliptic Curve Parameter Setup (trinomial basis)

- 1. The field F_2^{359} is generated by the irreducible trinomial
- 2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{359}}$.

Example 1.

) . 1.						
seed =	2B354920	B724D696	E6768756	1517585B	A1332DC6	
a =	56 56F19556	67676A65 A04616B5	4B20754F 67D223A5	356EA920 E05656FB	17D94656 549016A9	7C466755 6656A557
b =	24 5D8CA445	72E2D019 805D39BC	7C49363F 34562608	1FE7F5B6 9687742B	DB075D52 6329E706	B6947D13 80231988
Generat	ing point P	(with point con	npression)			
	033C 2E163ACE	258EF304 D4ED2401	7767E7ED DF9C6BDC	E0F1FDAA DE98E8E7	79DAEE38 07C07A22	41366A13 39B1B097
Order o	f <i>P</i>					
n =	01 6BC9FB8F	AF286BCA 6B85C556	1AF286BC 892C20A7	A1AF286B EB964FE7	CA1AF286 719E74F4	BCA1AF28 90758D3B
h =	4c					

H.4.9. Example With *m*= 368

Elliptic Curve Parameter Setup (pentanomial basis)

- 1. The field $F_{2^{368}}$ is generated by the irreducible pentanomial
- 2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{368}}$.

Example 1.

seed = NO

 a =
 E0D2
 EE250952
 06F5E2A4
 F9ED229F
 1F256E79
 A0E2B455

 970D8D0D
 865BD947
 78C576D6
 2F0AB751
 9CCD2A1A
 906AE30D

<i>b</i> =	FC12 3837A34E	17D4320A D50CB549	90452C76 17E1C211	0A58EDCD 2D84D164	30C8DD06 F444F8F7	9B3C3445 4786046A
	JOJ/AJIE	DJOCDJ47	17510211	20040104	r titror /	4700010A
Genera	ting point P	(with point con	npression)			
	021085	E2755381	DCCCE3C1	557AFA10	C2F0C0C2	825646C5
	B34A394C	BCFA8BC1	6B22E7E7	89E927BE	216F02E1	FB136A5F
Order o	of P					
Order o	11					
n =	01	0090512D	A9AF72B0	8349D98A	5DD4C7B0	532ECA51
	CE03E2D1	0F3B7AC5	79BD87E9	09AE40A6	F131E9CF	CE5BD967
h =	FF70					

H.4.10. Example With m = 431

Elliptic Curve Parameter Setup (trinomial basis)

1. The field $F_{2^{431}}$ is generated by the irreducible trinomial

f =	8000	00000000	00000000	00000000	00000000	00000000
	00000000	00000000	00000000	00000000	01000000	00000000
	00000000	00000001				

2. The curve is $E: y^2 + xy = x^3 + ax^2 + b$ over $F_{2^{431}}$.

Example 1.

seed = NO FC0E234C a = 1A82 7EF00DD6 AF046C6A 5D8A8539 5B236CC4 AD2CF32A DDF620B0 EB9906D0 0CADBDC9 957F6C6F EACD6154 68DF104D E296CD8F b =10D9 B4A3D904 7D8B1543 59ABFB1B 7F5485B0 4CEB8682 37DDC9DE DA982A67 9A5A919B 626D4E50 A8DD731B 107A9962 381FB5D8 07BF2618 Generating point *P* (with point compression) 02120F C05D3C67 A99DE161 D2F40926 22FECA70 1BE4F50F 4758714E 8A87BBF2 A658EF8C 21E7C5EF E965361F 6C2999C0 C247B0DB D70CE6B7 Order of Pn = 03 40340340 34034034 03403403 40340340 34034034 03403403 40340323 C313FAB5 0589703B 5EC68D35 87FEC60D 161CC149 ClAD4A91

H.5. Sample Elliptic Curves over the Field F_p

This section presents sample curves over 192-bit, 239-bit and 256-bit prime fields F_p which may be used to ensure the correct implementation of this Standard.

The curves were generated verifiably at random using the method described in Section F.3.3.b.

H.5.1. 3 Examples With a 192-bit Prime Elliptic Curve Parameter Setup

2760

h =

1. The field F_p is generated by the prime

p = 627710173538668076383578942320766641608390870039032496 1279

2. The curve is $E: y^2 = x^3 + ax + b$ over F_p .

Example 1.

	seed =	3045AE6F	C8422F64	ED579528	D38120EA	E12196D5	
	r =	3099D2BB	BFCB2538	542DCD5F	B078B6EF	5F3D6FE2	C745DE65
	a =	FFFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFE	FFFFFFFF	FFFFFFC
	b =	64210519	E59C80E7	0FA7E9AB	72243049	FEB8DEEC	C146B9B1
	Generat	ing point P	(with point con	npression)			
		03 82FF1012	188DA80E	B03090F6	7CBF20EB	43A18800	F4FF0AFD
	Order of	f <i>P</i>					
	n =	FFFFFFFF	FFFFFFFF	FFFFFFFF	99DEF836	146BC9B1	B4D22831
	h =	01					
Examp	ole 2.						
	seed =	31A92EE2	029FD10D	901B113E	990710F0	D21AC6B6	
	r =	15038D1D	2E1CAFEE	0299F301	1C1DC75B	3C2A86E1	35DB1E6B
	a =	FFFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFE	FFFFFFFF	FFFFFFC
	b =	CC22D6DF	B95C6B25	E49C0D63	64A4E598	0C393AA2	1668D953
	Generat	ing point P	(with point con	npression)			
		03 6F48034A	EEA2BAE7	E1497842	F2DE7769	CFE9C989	C072AD69
	Order of	f <i>P</i>					
	n =	FFFFFFFF	FFFFFFFF	FFFFFFE	5FB1A724	DC804186	48D8DD31
	h =	01					
Examp	ole 3.						
	seed =	C4696844	35DEB378	C4B65CA9	591E2A57	63059A2E	
	r =	25191F95	024D8395	46D9A337	5639A996	7D52F137	3BC4EE0B
	a =	FFFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFE	FFFFFFFF	FFFFFFC
	b =	22123DC2	395A05CA	A7423DAE	CCC94760	A7D46225	6BD56916

	02 228F1896	7D297781	00C65A1D	A1783716	588DCE2B	8B4AEE8E
Order o	f <i>P</i>					
n =	FFFFFFFF	FFFFFFFF	FFFFFFFF	7A62D031	C83F4294	F640EC13
h =	01					

H.5.2. 3 Examples With a 239-bit Prime Elliptic Curve Parameter Setup

- 1. The field F_p is generated by the prime
 - p = 883423532389192164791648750360308885314476597252960362 792450860609699839
- 2. The curve is $E: y^2 = x^3 + ax + b$ over F_p .

Example 1.

Examp	ole 1.						
	seed =	E43BB460	F0B80CC0	C0B07579	8E948060	F8321B7D	
	<i>r</i> =	28B8 0957D6EF	5EC1ECC1 E78D3783	9EFE769E	B741A6D1	BA29476A	A5A8F261
	a =	7FFF 00007FFF	FFFFFFFC FFFFFFFC	FFFFFFFF	FFFF7FFF	FFFFFFF	80000000
	<i>b</i> =	6B01 37796185	6C3BDCF1 C2942C0A	8941D0D6	54921475	CA71A9DB	2FB27D1D
	Generat	ing point P	(with point con	npression)			
		020FFA 27FBBD3B	963CDCA8 3CB9AAAF	816CCC33	B8642BED	F905C3D3	58573D3F
	Order o	f <i>P</i>					
	n =	7FFF FBD15226	FFFFFFF 88909D0B	FFFFFFFF	FFFF7FFF	FF9E5E9A	9F5D9071
	h =	01					
Examp	ole 2.						
	seed =	E8B40116	04095303	CA3B8099	982BE09F	CB9AE616	
	<i>r</i> =	1DF4 7A6BA76E	91E44E7C 86713D52	CAF4D1EA	D8A6B90D	AE09E0D3	3F2C6CFE
	a =	7FFF 00007FFF	FFFFFFF FFFFFFC	FFFFFFFF	FFFF7FFF	FFFFFFFF	80000000
	<i>b</i> =	617F 8C7AE84C	AB683257 8C832F2C	6CBBFED5	0D99F024	9C3FEE58	B94BA003
	Generat	ing point P	(with point con	npression)			
		0238AF 57A0EAFD	09D98727 87B830E7	705120C9	21BB5E9E	26296A3C	DCF2F357

	Order of P										
	n =	7FFF 14C03821	FFFFFFF BC582063	FFFFFFFF	FFFF8000	00CFA7E8	594377D4				
	h =	01									
Examp	Example 3.										
	seed =	7D737416	8FFE3471	B60A8576	86A19475	D3BFA2FF					
	r =	3A4F C2E49861	9DC9A6CE 8DC58330	FD5F9D11	93B9C996	8C202430	003C2819				
	a =	7FFF 00007FFF	FFFFFFF FFFFFFC	FFFFFFFF	FFFF7FFF	FFFFFFF	80000000				
	b =	2557 8717D9BA	05FA2A30 15AB6D3E	6654B1F4	CB03D6A7	50A30C25	0102D498				
	Generat	ing point P	(with point con	npression)							
		036768 F854B1C9	AE8E18BB 505FE95A	92CFCF00	5C949AA2	C6D94853	D0E660BB				
	Order of	f <i>P</i>									
	n =	7FFF 7C3C4321	FFFFFFF 46526551	FFFFFFFF	FFFF7FFF	FF975DEB	41B3A605				
	h =	01									

H.5.3. 1 Example With a 256-bit Prime Elliptic Curve Parameter Setup

- 1. The field F_p is generated by the prime
 - p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
- 2. The curve is $E: y^2 = x^3 + ax + b$ over F_p .

Example 1.

seed =	: C49D3608	86E70493	6A6678E1	139D26B7	819F7E90					
r =	7EFBA166 AF317768	2985BE94 0104FA0D	03CB055C	75D4F7E0	CE8D84A9	C5114ABC				
a =	FFFFFFFF FFFFFFFF	0000001 FFFFFFC	00000000	00000000	00000000	FFFFFFFF				
<i>b</i> =	5AC635D8 3BCE3C3E	AA3A93E7 27D2604B	B3EBBD55	769886BC	651D06B0	CC53B0F6				
Genera	Generating point $P = (x, y)$ (without point compression)									
<i>x</i> =	6B17D1F2 F4A13945	E12C4247 D898C296	F8BCE6E5	63A440F2	77037D81	2DEB33A0				

<i>y</i> =	4FE342E2 CBB64068	FE1A7F9B 37BF51F5	8EE7EB4A	7C0F9E16	2BCE3357	6B315ECE
Order	of P					
n =	FFFFFFF F3B9CAC2	00000000 FC632551	FFFFFFFF	FFFFFFFF	BCE6FAAD	A7179E84
h =	01					

Appendix I Small Example of the ECDSA [Informative]

I.1. System Setup

The underlying finite field is F_{23} , and the elliptic curve is $y^2 = x^3 + x + 1$, as described in Example 5 in Section C.3. The point $P = (x_P, y_P) = (13, 7)$ is selected. Since 7P = 0, the point P has order n = 7.

The system parameters (the public information) are:

- the field F_{23} ,
- the curve E,
- * the point P, and
- the order n = 7
- the cofactor h = 4.

I.2. Key Generation

Entity A performs the following operations.

- 1. A selects a random integer d = 3 in the interval [2, n 2] = [2, 5].
- 2. A computes the point Q = dP = 3(13, 7) = (17, 3).
- 3. A makes public the point Q.
- 4. A's private key is the integer d = 3.

I.3. Signature Generation for ECDSA

Entity A signs message M = 11100011010111100.

Suppose that the decimal representation of the hash value H(M) is e = 6.

Entity A:

- 1. selects a random integer k = 4 in the interval [2, n 2] = [2, 5].
- 2. computes:

$$(x_1, y_1)$$
 = kP
= $4(13, 7)$
= $(17, 20)$.

- 3. represents x_1 as the integer $\overline{x}_1 = 17$.
- 4. sets $r = \overline{x}_1 \mod n = 17 \mod 7 = 3$.
- 5. computes:

$$s = k^{-1}(e + dr) \mod n$$

= $4^{-1}(6 + 3 * 3) \mod 7$
= $2(15) \mod 7$
= 2

The signature on message M is (r, s) = (3, 2).

I.4. Signature Verification for ECDSA

Entity B verifies signature (r', s') = (3, 2) on M as follows.

Entity B:

- 1. looks up A's public key Q = (17, 3).
- 2. computes $\overline{e} = 7$, the decimal representation of H(M).

3. computes:

$$c = (s')^{-1} \mod n$$

= $2^{-1} \mod 7$
= 4.

4. computes

$$u_1 = ec \mod n$$

$$= 6 \cdot 4 \mod 7$$

$$= 3$$
and
$$u_2 = r'c \mod n$$

$$= 3 \cdot 4 \mod 7$$

$$= 5.$$

1. computes the point:

$$(x_1, y_1) = u_1P + u_2Q = 3P + 5Q = 3(13, 7) + 5(17, 3) = (17, 20).$$

- 6. represents x_1 as the integer $\overline{x}_1 = 17$.
- 7. computes $v = \overline{x}_1 \mod n = 17 \mod 7 = 3$.
- 8. accepts the signature since v = r' = 3.