L2: Curve fitting and probability theory

EECS 545: Machine Learning Benjamin Kuipers Winter 2009

Regression

Given a set of observations: $\mathbf{x} = \{ x_1 \dots x_N \}$ And corresponding target values: $\mathbf{t} = \{ t_1 \dots t_N \}$

We want to learn a function y(x)=t to predict future values.

Handwritten digits: x_i = images; t_i = digits Linear regression: x_i = Real; t_i = Real Classification: x_i = features; t_i = {true, false}

Example Handwritten Digit

Modeling data with uncertainty

Best-fitting line:

$$t = y(x) = w_0 + w_1 x$$

Stochastic model:

$$t = y(x) + \varepsilon$$

$$\varepsilon \sim N(0, \sigma^2)$$

Values of the random variable:

$$\varepsilon_i = t_i - y(x_i)$$

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
$\widetilde{w_9^{\star}}$				125201.43

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01
w_9^{\star}	125201.43	72.68	0.01

Where do we want to go?

We want to know our level of certainty. To do that, we need probability theory.

Probability Theory

Apples and Oranges

Probability Theory

Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Probability Theory

Sum Rule

$$p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$$
$$= \sum_{i=1}^{L} p(X = x_i, Y = y_j)$$

Product Rule

$$\begin{array}{lcl} p(X=x_i,Y=y_j) & = & \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N} \\ & = & p(Y=y_j|X=x_i)p(X=x_i) \end{array}$$

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior ∝ likelihood × prior

Probability Densities $p(x \in (a,b)) = \int_a^b p(x) \, \mathrm{d}x$ $P(z) = \int_{-\infty}^{z} p(x) \, \mathrm{d}x$ $\int_{-\infty}^{\infty} p(x) dx = 1$ $p(x) \geqslant 0$

Transformed Densities

Expectations

$$\mathbb{E}[f] = \sum p(x)f(x)$$

$$\mathbb{E}[f] = \sum_x p(x) f(x) \qquad \qquad \mathbb{E}[f] = \int p(x) f(x) \, \mathrm{d}x$$

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

Variances and Covariances

$$\text{var}[f] = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])^2 \right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

$$\begin{array}{rcl} \operatorname{cov}[x,y] & = & \mathbb{E}_{x,y} \left[\left\{ x - \mathbb{E}[x] \right\} \left\{ y - \mathbb{E}[y] \right\} \right] \\ & = & \mathbb{E}_{x,y} [xy] - \mathbb{E}[x] \mathbb{E}[y] \end{array}$$

$$\begin{aligned} \cos[\mathbf{x}, \mathbf{y}] &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \} \right] \\ &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbf{x} \mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \end{aligned}$$

But what are probabilities?

This is a deep philosophical question!

Frequentists: Probabilities are frequencies of outcomes, over repeated experiments.

Bayesians: Probabilities are expressions of degrees of belief.

There's only one consistent set of axioms.

But the two interpretations lead to very different ways to reason with probabilities.

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$
$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior ∝ likelihood × prior

The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

$$\mathcal{N}(x|\mu,\sigma^2) > 0$$

$$\int_{-\infty}^{\infty} \mathcal{N}(x|\mu,\sigma^2) \, \mathrm{d}x = 1$$

Gaussian Mean and Variance

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu, \sigma^2\right) x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) x^2 \, \mathrm{d}x = \mu^2 + \sigma^2$$

$$\mathrm{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu})\right\}$$

Gaussian Parameter Estimation

Maximum (Log) Likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2} - \frac{N}{2}\ln\sigma^{2} - \frac{N}{2}\ln(2\pi)$$

$$\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 $\sigma_{\text{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2$

Curve Fitting Re-visited

Maximum Likelihood

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n, \mathbf{w}), \beta^{-1}\right)$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2}_{\beta E(\mathbf{w})} + \underbrace{\frac{N}{2} \ln \beta - \frac{N}{2} \ln (2\pi)}_{\beta E(\mathbf{w})}$$

Determine \mathbf{w}_{ML} by minimizing sum-of-squares error, $E(\mathbf{w})$

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}_{\mathrm{ML}}) - t_n \right\}^2$$

Predictive Distribution

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, eta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), eta_{\mathrm{ML}}^{-1}\right)$$

MAP: A Step towards Bayes

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

Specify a prior distribution $p(\mathbf{w}|\alpha)$ over the weight vector \mathbf{w} .

Gaussian with mean = 0, covariance = α^{-1} I. Now compute posterior = likelihood * prior:

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

MAP: A Step towards Bayes

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine $w_{\rm MAP}$ by minimizing regularized sum-of-squares error, $\widetilde{E}(\mathbf{w})$

Where have we gotten, so far?

Least-squares curve fitting is equivalent to Maximum likelihood parameter values,

assuming Gaussian noise distribution.

Regularization is equivalent to

Maximum posterior parameter values, assuming Gaussian prior on parameters.

Fully Bayesian curve fitting introduces new ideas (wait for Section 3.3).

Bayesian Curve Fitting

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) \, d\mathbf{w} = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

$$m(x) = \beta \phi(x)^{\mathrm{T}} \mathbf{S} \sum_{n=1}^{N} \phi(x_n) t_n$$
 $s^2(x) = \beta^{-1} + \phi(x)^{\mathrm{T}} \mathbf{S} \phi(x)$

$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^{\mathrm{T}} \qquad \phi(x_n) = \left(x_n^0, \dots, x_n^M\right)^{\mathrm{T}}$$

Bayesian Predictive Distribution

Next

The Curse of Dimensionality

Decision Theory

Information Theory