|  | SRN |
|--|-----|
|--|-----|

UE18CS254



## PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

## END SEMESTER ASSESSMENT (ESA) B.TECH. IV SEMESTER-May 2020

## **UE18CS254- Theory of Computation**

Time: 3 Hours Answer All Questions Max Marks: 100

| 1 | а | Construct a DFA for the set of strings over alphabet {0,1,2} that do not have two consecutive identical symbols That is, strings of L are any string in {0,1,2}* such that there is no occurrence of 00, no occurrence of 11, and no occurrence of 22.                                                       |   |   |  |  |  |  |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--|--|--|--|
|   | b | For the given automata                                                                                                                                                                                                                                                                                       |   |   |  |  |  |  |
|   |   |                                                                                                                                                                                                                                                                                                              | а | b |  |  |  |  |
|   |   | →1                                                                                                                                                                                                                                                                                                           | 1 | 4 |  |  |  |  |
|   |   | 2                                                                                                                                                                                                                                                                                                            | 3 | 1 |  |  |  |  |
|   |   | *3                                                                                                                                                                                                                                                                                                           | 4 | 2 |  |  |  |  |
|   |   | *4                                                                                                                                                                                                                                                                                                           | 3 | 5 |  |  |  |  |
|   |   | 5                                                                                                                                                                                                                                                                                                            | 4 | 6 |  |  |  |  |
|   |   | 6                                                                                                                                                                                                                                                                                                            | 6 | 3 |  |  |  |  |
|   |   | 7                                                                                                                                                                                                                                                                                                            | 2 | 4 |  |  |  |  |
|   |   | 8                                                                                                                                                                                                                                                                                                            | 3 | 1 |  |  |  |  |
|   |   | <ul> <li>a) say which states are accessible and which or not</li> <li>b) list the equivalence classes of the collapsing relation ≈ defined as p≈q ⇔ ∀ x ε Σ* (δ (p,x) ε F ⇔ δ (q,x) ε F)</li> <li>c) give the automaton obtained by collapsing equivalent states and removing inaccessible states</li> </ul> |   |   |  |  |  |  |
|   | С | Give state diagram of NFA for the language 1*(001*)* with three states                                                                                                                                                                                                                                       |   |   |  |  |  |  |
|   | d | Convert the above NFA to DFA                                                                                                                                                                                                                                                                                 |   |   |  |  |  |  |
| 2 | а | <ol> <li>Write regular expressions for the following languages:</li> <li>Set of strings of a's and b's of that are of odd length</li> <li>Set of binary strings where the number of 0's is odd and whose number of 1's are even</li> <li>Set of binary strings which at least 3 0's</li> </ol>               |   |   |  |  |  |  |
|   | b | Convert the following automaton to regular expression:                                                                                                                                                                                                                                                       |   |   |  |  |  |  |

|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                   |          |          | SRN                                                               |   |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|----------|-------------------------------------------------------------------|---|--|--|
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                   | 0        | 1        |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  | → q0                                                              | q1       | q0       |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  | *q1                                                               | q2       | q1       |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  | *q2                                                               | q1       | q2       |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  | q3                                                                | q1       | q2       |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   | Write regular grammars for the following languages:              1. Set of binary strings not containing consecutive 0's             2. Set of strings of a's and b's with odd number of a's and exactly two b's |                                                                   |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   |   |  |  |
|   | d                                                                                                                                                                                                                 | Is the following language regular? Justify  L = a*a^b^b x                                                                                                                                                        |                                                                   |          |          |                                                                   | 2 |  |  |
|   |                                                                                                                                                                                                                   | $L = a^*a^nb^nb^*$ , $n \ge 0$                                                                                                                                                                                   |                                                                   |          |          |                                                                   |   |  |  |
| 3 | а                                                                                                                                                                                                                 | Constru                                                                                                                                                                                                          | ct a Cont                                                         | ext Fre  | ee Gran  | nmar for the language, L = $\{0^{i}1^{j}2^{k} \mid i+j \ge 2k \}$ | 6 |  |  |
|   | Draw a parse tree for the string "0001122".                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   |   |  |  |
|   | <ul> <li>b Construct PDA for the language L = {w ∈ {a, b}* : the first, middle, and last characters of w are identical}.</li> <li>c Convert the following CFG to PDA S → aA</li> <li>A → aABC   bB   a</li> </ul> |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   | 7 |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   | 7 |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   | $B \rightarrow b$                                                                                                                                                                                                | $\begin{array}{c} B \rightarrow b \\ C \rightarrow c \end{array}$ |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   | C→c                                                                                                                                                                                                              |                                                                   |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   | Show how aaabc is accepted.                                                                                                                                                                                      |                                                                   |          |          |                                                                   |   |  |  |
|   | 1                                                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   |   |  |  |
| 4 | а                                                                                                                                                                                                                 | Convert the following grammar to CNF.                                                                                                                                                                            |                                                                   |          |          |                                                                   | 6 |  |  |
|   |                                                                                                                                                                                                                   | $S \rightarrow AdS \mid AdB \mid \lambda$                                                                                                                                                                        |                                                                   |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   | $A \rightarrow aA$<br>$B \rightarrow bB$                                                                                                                                                                         | •                                                                 |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   | 7 |  |  |
|   | j j                                                                                                                                                                                                               |                                                                                                                                                                                                                  |                                                                   |          |          | <i>'</i>                                                          |   |  |  |
|   | S -> AS   SB   0<br>A -> BA   AS   1<br>B -> SB   BA   0                                                                                                                                                          |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   | Apply CYK algorithm to the above grammar and check whether the string 01100 belongs to language or not                                                                                                           |                                                                   |          |          |                                                                   |   |  |  |
|   |                                                                                                                                                                                                                   | 01100 8                                                                                                                                                                                                          | eiongs to                                                         | ıangu    | age or   | ΠΟΙ                                                               |   |  |  |
|   | С                                                                                                                                                                                                                 | Prove th                                                                                                                                                                                                         | nat the lai                                                       | nguage   | e is not | context free L = ${(ab)^n a^n b^n \mid n>0}$                      | 7 |  |  |
| 5 | а                                                                                                                                                                                                                 | Constru                                                                                                                                                                                                          | ıct a Turir                                                       | ng mac   | hine to  | separate a given string into two equal halves by                  | 8 |  |  |
|   |                                                                                                                                                                                                                   | finding t                                                                                                                                                                                                        | he midpo                                                          | int of t | he give  | n string and inserting a blank at that point.                     |   |  |  |
|   | b                                                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                   |          |          |                                                                   |   |  |  |

|                                                                                                                                                                                                           |                               | SRN                  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                           |                               |                      |  |  |  |  |  |  |
| Index First string Second string                                                                                                                                                                          |                               |                      |  |  |  |  |  |  |
| 1                                                                                                                                                                                                         | 00                            | 001                  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                         | 0101                          | 11                   |  |  |  |  |  |  |
| 3                                                                                                                                                                                                         | 101                           | 01                   |  |  |  |  |  |  |
| 4 01 010                                                                                                                                                                                                  |                               |                      |  |  |  |  |  |  |
| There is no Turing-machine algorithm to decide whether or not there is a solution to PCP. But you're smarter than a Turing machine. Figure it out for this instance.                                      |                               |                      |  |  |  |  |  |  |
| (a) Either give a sequence solution exists                                                                                                                                                                | of indexes that is a solution | on, or prove that no |  |  |  |  |  |  |
| (b) Does your ability to answer (a) imply that human beings are able to solve problems that Turing machines cannot solve? You assume you have answered correctly (a) even if you did not. Explain briefly |                               |                      |  |  |  |  |  |  |

Show that if a language L and its complement are recursively enumerable, then both are actually recursive.