Opgave 242

October 31, 2016

Opgave 242 Lad $f:]a, \infty[$ og $g:]b, \infty[$ være to reelle funktioner, således $g(x) \in]a, \infty[$ for $x \in]b, \infty[$. Bevis, at hvis $g(x) \to \infty$ for $x \to \infty$ og $f(x) \to c$ for $x \to \infty$, så gælder $f(g(x)) \to c$ for $x \to \infty$ (uanset om $c \in \mathbb{R}$ eller $c = \pm \infty$)

Proof. Begge funktioner er defineret i nærheden af ∞ , hvilket betyder, at der eksisterer et positivt R, som opfylder, at et $x \in \mathbb{R}$ er større end dette R, som er indeholdt i definitionsmængden for f eller f. Skrevet med kvantorer:

$$\exists R_1 > 0 : \{ x \in \mathbb{R} \mid x > R_1 \} \subseteq D_f \tag{1}$$

og

$$\exists R_2 > 0 : \{ y \in \mathbb{R} \mid x > R_2 \} \subseteq D_g \tag{2}$$

Da $f(x) \to c$ for $x \to \infty$, så gælder:

$$\forall \varepsilon > 0 \exists M > 0 : x > M \Rightarrow |f(x) - c| < \varepsilon \tag{3}$$

Ved at bruge samme M fås:

$$\exists N > 0 : y > N \Rightarrow g(y) > M \tag{4}$$

Det skal altså vises, at:

$$\forall \varepsilon > 0 \exists M > 0 : g(y) > M \Rightarrow |f(g(x)) - c| < \varepsilon \tag{5}$$

Lad $\varepsilon > 0$ være givet. Da $g(x) \subseteq D_f$, fås altså $f(g(x)) : D_g \to V_f$. Der kan altså findes et M, som afparerer dette ε , og dertil kan der findes et N, som

opfylder at g(y) > M.

Substituér $x \mod g(y)$ i ligning (3), og deraf fås:

$$\forall \varepsilon > 0 \exists N > 0 : y > N \Rightarrow |f(g(y)) - c| < \varepsilon \tag{6}$$

Dermed er tilfældet for de reelle tal bevist, og næst skal det bevises for $c=\pm\infty$ Lad $K\in\mathbb{R}$ være givet. Det vides at $g(y)\to\infty$ for $y\to\infty$. Så gælder det ifølge definition 4.18 at:

$$\forall M > 0 \exists N > 0 : y > N \Rightarrow g(y) > M \tag{7}$$

Det vides også, at $f(x) \to \infty$ for $x \to \infty$, hvilket vil sige:

$$\exists M > 0 : x > M \Rightarrow f(x) > K \tag{8}$$

Når:

$$x > N \Rightarrow g(y) > M \Rightarrow f(g(y)) > K$$
 (9)