Measuring Chaos

Andrew Wilson, Supervised by Dr. Anthony Quas

This research was supported by the Jamie Cassels Undergraduate Research Award

What is Chaos?

Roughly speaking, we say that a system is chaotic if it is sensitive to initial conditions. That is, in a deterministic system, if small changes are made to an input, we expect to see vastly different outputs.

A 'system' can roughly be thought of as a set of points and a map that moves those points around.

For example: air molecules in the atmosphere and the wind, or the position of the end of a double pendulum under the influence of gravity.

Stable and Unstable Manifolds

Computing Manifolds(?)/

Figure 1

Modelling Chaos: Dynamical Systems

In order to study chaos, we need models of the systems we would like to investigate. How can we abstract some of the previous examples in a way that can be studied mathematically?

Definition: A Dynamical System is a pair (X, T) where X is a set of points, and T is function from X to X.

Formalizing our first example from before, define

 $X = \{\text{air particles in the atmosphere}\}$

and T to map an air particle to its position after being acted on by the wind for one second.

The double pendulum system happens to be a well studied dynamical system. So much so, that the map T has been dubbed 'The Standard Map'. (Include Formula?). Below are some illustrations of the orbits of points under T.

textblock

textblock

textblock

Some Examples of Manifolds

Manifolds along the orbit of a periodic point.

Manifolds along chaotic point

Figure 2: Caption

Caption

textblock

References

large minimum degree, 2015, v3, arXiv:1503.08191.