REAL ANALYSIS QUALIFYING EXAM OCTOBER 22, 1982

You have three hours to solve as many of the following ten problems as you can.

1. a) Define Lebesgue outer measure λ on \mathbb{R} .

Without assuming any properties of $\ \lambda$ other than your definition, prove that

- b) $\lambda([0,1]) = 1$ and
- c) there exists a closed set $F \subset [0,1]$ such that F contains no rational number and $\lambda(F) > 1/2$.
- 2. Let $(E_n)_{n=1}^{\infty}$ be a sequence of Lebesgue measurable subsets

of [0,1] such that $\overline{\lim}_{n\to\infty}\lambda(E_n)=1$ and let $0<\epsilon<1$.

Prove that there exists a subsequence $(E_n)^\infty$ for which $\lambda (\bigcap_{k=1}^\infty E_n) > 1 - \epsilon$.

3. Let (X,A,μ) be a measure space with $\mu(X)=1$. Define $\log 0=-\infty$ and $\log \infty=\infty$. Let $f:X\to [0,\infty]$ be A-measurable. Prove that if the integral on the left is defined, then

$$\int (\log f(x)) d\mu(x) \leq \log (\int f(x) d\mu(x))$$

and that equality obtains if and only if f is μ - a.e. equal to a constant. [Hint: Check that $\log t \le t - 1$ and put $t = f(x)/\int f d\mu$.]

4. Let $f \in L_1(\mathbb{R})$. Define $\phi \colon \mathbb{R} \to \mathbb{C}$ by $\phi(t) = \int_{-\infty}^{\infty} \frac{f(x)}{1 + x^2 + 2} dx.$

Prove that

- a) $\lim_{|t|\to\infty} |\phi(t)| = 0$.
- b) ϕ is differentiable at each t $\epsilon \, \mathbb{R}$, and
- c) $\phi'(t) = -2t \int_{-\infty}^{\infty} \frac{x^2 f(x)}{(1 + x^2 t^2)^2} dx$

5. Let $(f_n)_1^{\infty}$ be a sequence in L_1 on a measure space (X,A,μ) . Suppose that $f=\lim_n f_n$ exists a.e. on X and that

$$\left|\left|f_{n}\right|\right|_{1} \leq C$$
 and $\int_{X} \log\left|f_{n}\right| d\mu \geq -C$ $(n = 1, 2, ...)$

where C is a finite constant. Prove that both f and $\log |f|$ belong to L₁.

Suggestion: Apply Fatou's Lemma to $(|f_n|)_1^\infty$ and $(g_n)_1^\infty$, where $g_n = |f_n| - \log |f_n|$.

- 6. a) State Fubini's Theorem.
 - b) Let f,g ϵ L₁(\mathbb{R}). Prove that the formula $h(x) = \int_{-\infty}^{\infty} f(xy)g(y)\sin y \,dy$

defines a function h at almost every $x \in \mathbb{R}$ and that h $\in L_1(\mathbb{R})$. [You may presume that the function $(x,y) \to f(xy)$ is measurable.]

7. Let (X,A,μ) be a measure space, and let ϕ be a real-valued measurable function on X. Define

$$v(B) = \mu(\phi^{-1}(B)) \quad (B \in B),$$

where $\ensuremath{\mathtt{B}}$ denotes the $\ensuremath{\sigma}\text{-algebra}$ of all Borel sets in $\ensuremath{\mathtt{R}}.$ Prove the following:

- a) v is a measure on (\mathbb{R}, B) .
- b) If f is a non-negative, simple, Borel function on \mathbb{R} , then

$$\int_{\mathbb{R}} f \ d\nu = \int_{X} f \circ \phi \ d\mu.$$

- c) The above formula holds for all non-negative Borel functions f on R.
- 8. Let μ be a regular Borel measure on the plane \mathbb{R}^2 . Define ν on the Borel sets \mathcal{B} of \mathbb{R} by

$$v(A) = \mu(A \times \mathbb{R})$$
.

Prove that there exists a mapping $B \to f_B$ of B into $L_1^+(\nu)$ such that

- a) $\mu(A \chi B) = \int_A f_B dv$ and
- b) $f_{B_1} + f_{B_2} = f_{B_1 \cup B_2} + f_{B_1 \cap B_2}$ whenever A,B,B₁,B₂ ϵ B.

9. Prove that if $f: \mathbb{R} \to \mathbb{C}$ is continuous with f(x + 1) = f(x) for all $x \in \mathbb{R}$ and if $\xi \in \mathbb{R}$ is irrational, then

$$\lim_{n\to\infty} \frac{1}{n} \sum_{j=0}^{n-1} f(j\xi) = \int_{0}^{1} f(x) dx.$$

[Hint: Show first that the set $\, F \,$ of all $\, f \,$ for which the conclusion obtains is a linear space that contains all $\, f \,$ of the form

$$f(x) = e^{2\pi i kx}$$
 (k $\varepsilon \mathbb{Z}$).]

10. Prove that $f \in L_1(\mathbb{R})$ implies $\hat{f} \in C_0(\mathbb{R})$, where $\hat{f}(t) = \int_{-\infty}^{\infty} f(x) e^{itx} dx$ (t $\in \mathbb{R}$).

[Suggestions: (i) Consider the case where f is the characteristic function of a bounded interval. (ii) Use the fact that the step functions (in $L_1(\mathbb{R})$) are dense in $L_1(\mathbb{R})$.]