Math 342 Tutorial May 28, 2025

Question 1. Prove that if a and b are different integers, then there exist infinitely many positive integers a such that a+n and b+n are coprime. [Hint: Consider linear combinations of a0 and a1 are different integers.]

Assume that a < b, and let n = (b-a)k + (1-a). We have that n > 0 for large enough k. Now a + n = (b-a)k + 1 and b + n = (b-a)(k+1) + 1, hence a + n, b + n > 0. If we had $d \mid a+n$, b+n, we would have $d \mid a-b$ and so $d \mid 1$ since $d \mid a+n$. Thus, d = 1 and (a+n, b+n) = 1.

Here is an additional solution pointed out by several in the class. Let p be a prime greater than b, and write n=p-b>0. Since a < b, we have a+n < b+n=p. As p is prime, (a+n, b+n)=1. Since there are infinitely many primes greater than b, there are infinitely many n satisfying the requirement. This solution is valid here because we only asked for infinitely many such n. If instead we were required to provide a closed form solution for each n, then we would need to provide something like the first solution.

Question 2. Prove that every integer > 6 can be represented as a sum of two integers > 1 which are coprime. [Hint. Consider the three cases $n = 4k \pm 1$, n = 4k, and n = 4k + 2 separately, and write the summands in terms of k].

The easy case is if n>6 is odd, for then n=2+(n-2) and clearly (2,n-2)=1. Next, consider the case n=4k. Then n=(2k+1)+(2k-1) where certainly (2k+1,2k-1)=1 and 2k+1>2k-1>1 as k>1. Finally, consider the case n=4k+2. We have that 4k+2=(2k+3)+(2k-1). If $d\mid 2k+3,2k-1$, then $d\mid (2k+3)-(2k-1)=4$. Since d must be odd, we have that d=1. Observe further that 2k+3>2k-1>1 as k>1.

Question 3. An integer n is *powerful* if, whenever a prime p divides n, p^2 divides n. Show that every powerful integer n can be written as the product of a perfect square and a perfect cube.

The exponents in the nonredundant prime power factorization of a are all at least 2. If a is a square, we're done as we can write $a=u^21^3$. Therefore, assume a is not a perfect square. Let p_1, \ldots, p_k be the primes appearing with even exponent, and let q_1, \ldots, q_l be the primes with odd exponent. Since the odd exponents are at least 3, we can write

$$a = p_1^{2e_1} \cdots p_k^{e_k} q_1^{2f_1 + 3} \cdots q_l^{2f_l + 3} \quad \text{for } e_i, \, f_i \geqq 0.$$

But then

$$a = (p_1^{e_1} \cdots p_k^{e_k} q_1^{f_1} \cdots q_l^{f_l})^2 (q_1 \cdots q_l)^3$$

as required.

Question 4. Show that $(a, b) \mid [a, b]$. When does (a, b) = [a, b]?

We have $(a, b) \mid a$ and $a \mid [a, b]$, hence $(a, b) \mid [a, b]$. Let $a = p_1^{r_1} \cdots p_k^{r_k}$ and $b = p_1^{s_1} \cdots p_k^{s_k}$. Then (a, b) = [a, b] if and only if $\min\{r_i, s_i\} = \max\{r_i, s_i\}$. If $r_i < s_i$, then $\max\{r_i, s_i\} = s_i \neq r_i = \min\{r_i, s_i\}$ which contradicts our assumption that $\max\{r_I, s_i\} = \min\{r_i, s_i\}$. Thus, $r_i \geq s_i$. Similarly, however, $s_i < r_i$ cannot happen. We are left with $r_i = s_i$ which shows that a = b.

Question 5. Show that if a, b, c > 0, then

$$(a, b, c)[ab, ac, bc] = abc = (ab, ac, bc)[a, b, c].$$

Let ab, c have prime factorizations $a = p_1^{r_1} \cdots p_k^{r_k}, b = p_1^{s_1} \cdots p_k^{s_k}, c = p_1^{t_1} \cdots p_k^{t_k}$. Then $p_i^{r_i + s_i + t_i} \| abc$, but $p_i^{\min\{r_i, s_i, t_i\}} \| (a, b, c)$ and $p_i^{r_i + s_i + t_i - \min\{r_i, s_i, t_i\}} \| [ab, ac, bc]$, and $p_i^{r_i + s_i + t_i - \min\{r_i, s_i, t_i\}} p_i^{\min\{r_i, s_i, t_i\}} = p^{r_i + s_i + t_i}$. Therefore, (a, b, c)[ab, ac, bc] = abc. One may similarly show that [a, b, c](ab, ac, bc) = abc.

Question 6. An arithmetic function $f: \mathbb{N} \to \mathbb{C}$ is multiplicative if f(mn) = f(m)f(n) whenever (m, n) = 1. The summatory function F of an arithmetic function $f: \mathbb{N} \to \mathbb{C}$ is defined as $F(x) = \sum_{d|x} f(d)$. The number of divisors functions is defined as $\tau(x) = \#\{d: d \mid x\}$. (a) Show that every summatory function of a multiplicative function is multiplicative. (b) Show the number of divisors function is multiplicative. (c) If $n = p_1^{e_1} \cdots p_k^{e_k}$, show that $\tau(n) = (e_1 + 1) \cdots (e_k + 1)$. (d) Prove that for every positive integer k, the set of all positive integers n whose number of positive integer divisors is divisible by k contains an infinite arithmetic progression. [Hint: Consider a progression defined by a linear combination of consecutive powers of 2, and use part (c).]

(a) Let m, n > 0 be such that (m, n) = 1. Thus, every divisor d of mn can be written as d = d'd'' where $d' \mid m$ and $d'' \mid n$ with (d', d'') = 1. Observe, therefore, that

$$F(mn) = \sum_{\substack{d \mid mn \\ d'' \mid n}} f(d) = \sum_{\substack{d' \mid m \\ d'' \mid n}} f(d'd'') = \sum_{\substack{d' \mid m \\ d'' \mid n}} f(d') f(d'') = \sum_{\substack{d' \mid m \\ d'' \mid n}} f(d') \sum_{\substack{d' \mid m \\ d'' \mid n}} f(d'') = F(m)F(n).$$

We have shown that F is multiplicative.

- (b) Let id(x)=1 be the constant function which maps every integer x to 1. Certainly, id is multiplicative. Observe $\tau(a)=\sum_{d\mid x}id(x)=\sum_{d\mid x}1=\#\{d:d\mid x\}$. From part (a), we have that τ is therefore multiplicative.
- (c) Consider the prime power p^e , $e \ge 0$. The divisors of p^e are $1, p, \ldots, p^e$. So, p^e has e+1 divisors. Writing $n=p_1^{e_1}\cdots p_k^{e_k}$, and from part (b), we see that

$$\tau(n) = \tau(p_1^{e_1}) \cdots \tau(p_k^{e_k}) = (e_1 + 1) \cdots (e_k + 1).$$

(d) We consider the infinite progression $2^k n + 2^{k-1}$ for $n \ge 0$. We can write the general term as $2^{k-1}(2n+1)$ where obviously $2^{k-1}\|2^{k-1}(2n+1)$. From parts (b) and (c) above, $\tau(2^k n + 2^{k-1}) = \tau(2^{k-1})\tau(2n+1) = k\tau(2n+1)$. We have, therefore, an infinite progression satisfying the required property.

Question 7. Prove that there exists infinitely many triplets of positive integers x, y, z for which the numbers x(x+1), y(y+1), z(z+1) form an increasing arithmetic progression. [Hint: write y and z as increasing linear functions of x.]

Let
$$x>0$$
 be arbitrary, and define $y=5x+2$ and $z=7x+3$. Then
$$y(y+1)-x(x+1)=z(z+1)-y(y+1)=24x^224x++6>0\quad\text{since }x>0.$$

Question 8. Prove that for every even n > 6 there exist primes p and q such that (n - p, n - q) = 1.

It suffices to take p=3 and q=5. If n>6 is even, the we have $n-1 \ge 6$ and p < q < n-1. The numbers n-p=n-3 and n-q=n-5 as consecutive odd numbers, are relatively prime.

Question 9. (a) Prove that for every three consecutive odd integers, one must be divisible by 3. [Hint. Write n = 2k + 1 and consider the possible cases for $k \pmod{3}$.] (b) Find all primes which can be represented as both a sum and difference of primes.

- (a) Let k be an arbitrary integer, and consider the consecutive integers 2k + 1, 2k + 3, and 2k + 5. If $k \equiv 0 \pmod{3}$, then $2k + 3 \equiv 0 \pmod{3}$. If $k \equiv 1 \pmod{3}$, then $2k + 1 \equiv 0 \pmod{3}$. If $k \equiv 2 \pmod{3}$, then $2k + 5 \equiv 0 \pmod{3}$. In every case, we have that one of 2k + 1, 2k + 3, and 2k + 5 is divisible by 3. Since k was arbitrary, the result follows.
- (b) Suppose that r is an arbitrary prime that can be represented simultaneously as a sum and difference of two pairs of prime numbers. Certainly, $r \neq 2$, hence r > 2 must be odd. Therefore, one of the primes from each pair of representing primes must be even, i.e., we have that r = p + 2 = q 2 for some odd primes p, q. But then p, p, p are three consecutive odd prime. From part (a), p, p, p = p = p = p = p are three consecutive odd primes so that p = p is the only solution.

Question 10. Find all integer solutions x, y of the equation $2x^3 + xy - 7 = 0$ and prove that this equation has infinitely many solutions in positive rationals. [Hint: Use the possible values for x in the first part to infer a possible form for x in the second part.]

Since $x(2x^2 + y) = 7$, we have that $x = \pm 1, \pm 7$. Upon substituting these values for x, we find that y = 5, -97, -9, -99 as the possible values for y.

Let n > 5 be arbitrary, and let x = 7/n so that $y = \frac{n-98}{n^2}$. These are rational and positive solutions to $2x^3 + xy - 7 = 0$.

Question 11. An astronomer knows that a satellite orbits the Earth in a period that is an exact multiple of 1 hour that is less than 1 day. If the astronomer notes that the satellite completes 11 orbits in an interval that starts when a 24-hour clock reads 0 hours and ends when the clock reads 17 hours, how long is the orbital period of the satellite?

This is equivalent to finding solutions to $11x \equiv 17 \pmod{24}$. By Theorem 4.11, there is a unique solution given by $x \equiv 19 \pmod{24}$. So the satellite orbits the Earth every 19 hours.

Question 12. (a) Let p be an odd prime. Show the congruence $x^2 \equiv 1 \pmod{p^k}$ has exactly two incongruent solutions, namely, $x \equiv \pm 1 \pmod{p^k}$. (b) Show that the congruence $x^2 \equiv 1 \pmod{2^k}$ has exactly four incongruent solutions, namely, $x \equiv \pm 1 \pm (1 - 2^{k-1}) \pmod{2^k}$, when k > 2. Show there is one when k = 1 and two when k = 2.

- (a) If $x^2 \equiv 1 \pmod{p^k}$, then $x^2 1 = (x 1)(x + 1) \equiv 0 \pmod{p^k}$. Therefore, $p^k \mid (x + 1)(x 1)$. Since (x + 1) (x 1) = 2 and p is odd, we have that p can divide at most one of x + 1 and x 1. Therefore, either $p^k \mid x + 1$ or $p^k \mid x 1$. In particular, $p \equiv \pm 1 \pmod{p^k}$.
- (b) As in (a), we have $2^k \mid (x+1)(x-1)$. Since (x+1)-(x-1)=2, we have either $2^{k-1} \mid x+1$ and $2 \mid x-1$, or we have $2^{k-1} \mid x-1$ and $2 \mid x+1$. Hence, $x=t2^{k-1}\pm 1$, where $t\in \mathbf{Z}$. Modulo 2^k , there are four solutions given by t=0 or 1, i.e., $x\equiv \pm 1$ or $\pm (1+2^{k-1})$ (mod 2^k). When k=1, the only solution is $x\equiv 1 \pmod 2$. When k=2, the only solutions are $x\equiv \pm 1 \pmod 4$.