











# Nanocrystalline Mg-based hydrides for energy storage



Fermín Cuevas\* and Michel Latroche

ICMPE/CNRS, Thiais, France



\*cuevas@icmpe.cnrs.fr www.icmpe.cnrs.fr



#### Nanostructured materials for solid state hydrogen storage



#### **COST Action MP1103**

Action Chair: Amelia Montone (ENEA, Italy)

#### Research aim:

Develop innovative nanostructured materials that meet the targets for practical Solid State Hydrogen Storage (SSHS) for their adequate implementation in stationary and mobile energy storage applications

Participants: 26 Countries, ~ 250 members





#### Organisation: four working groups

WG1: Synthesis of novel materials with optimized properties
Group Leader: Fermín Cuevas (CNRS, France)



WG2: High resolution and high sensitivity characterization of atomic level structure and of microstructural features

Group Leader: Sara Blas (Belgium)



WG3: Characterization of hydrogen storage properties both at the

laboratory level and at the scale of prototype tanks

Group Leader: Martin Dornheim (HZG, Germany)

WG4: Computational modeling of processes relevant to SSHS

Group Leader: Tejs Vegge (Denmark)



#### Management of Synthesis WG: architecture - based



Task 1: Nanostructured bulk materials.

Leader: Torben Jensen

(Aarhus University, Denmark)





Task 2: Thin films. Leader: Bernard Dam

(Delft University of Technology, Netherlands)





Task 3: Nanoparticles and core-shell structures. Leader: Kondo-Francois Aguey-Zinsou (University of New South Wales, Australia)





Task 4: Porous and nanoscaffold hybrid materials.
Leader: Michael Hirscher
(Max Planck Institute for Intelligent Systems, Germany)





#### Outline

- Introduction: Mg for solid-state hydrogen storage
- Synthesis: Reactive ball milling under hydrogen
- \* Applications:
  - > MgH2-TiH2 for solid-state hydrogen storage
  - $\rightarrow$  Mg<sub>2</sub>TMH<sub>x</sub> (TM = Fe, Co, Ni) for Li-ion batteries
- Conclusions





#### Universal material requirements for energy storage

- Reversibility under operating conditions
- High specific and volumetric energy densities
- Fast loading and unloading kinetics
- Long cycle life
- Environmentally friendly
- Safety
- Low-cost





#### Magnesium for solid-state hydrogen storage



#### Advantages

Abundant, low-cost, light-weight

Simple hydrogen reaction

$$Mg_{(s)} + H_{2(g)} \leftrightarrow MgH_{2(s)}$$

#### The Elements According to Relative Abundance



High storage capacity: 7.6 wt.% H, 109 gH2/L



#### Drawbacks

Too stable hydride for RT applications :  $P_{eq,H_2}$  = 1 atm at 280 °C

Slow sorption kinetics





#### Applications: Ni-MH electrochemical storage

- Negative electrode of Ni-MH battery  $Mg + xH_2O + xe^- 
  ightharpoonup MgH_x + xOH^-$
- ✓ Kinetics enhancement: Ti-incorporation in Mg lattice transition from bct-rutile (MgH₂) to fcc-fluorite (TiH₂) structure







Vermeulen et al., J. Mater. Chem., 2008, 18, 3680

#### Applications: hydrogen sensors

Solid-gaz hydrogen absorption induces a metal to semiconductor transition

$$Mg$$
 (metallic) +  $H_2 \Leftrightarrow MgH_2$  (semiconductor)

√ Kinetics enhancement: thin film technology, Ti-incorporation, Pd coverage





Slaman et al., Sens. Actuators B, 2007, 123, 538



#### Applications: hydrogen storage for grid regulation

Principle: regulation of electricity generation from intermittent sources









#### Hydrogen storage: Mg-based nanohydride





Composite: MgH<sub>2</sub> + graphite



Compressed composite







Garrier et al., Int. J. Hydrogen Energy, 2013, 38, 9766

✓ Kinetics enhancement: nanostructuration by milling, additives, temperature



# Reactive ball milling (RBM) under hydrogen





### Ball milling: the planetary principle

- Eccentrically vials rotating in opposite direction to the supporting disk.
- The planetary movement generates balls take-off.
- Balls collide between them and with vial walls, crashing by friction and impact the powders inside the vial.





#### Ball milling: nanostructuration

Repeated solid state fragmentation and cold welding

Synthesis of nanocomposites: Ni-superalloys / oxide

1970. J. Benjamin, Met. Trans. 1 (1970) 2943



Fracture: fresh surfaces, size-reduction



Welding: solid-state reactions, mixing



D.R. Maurice and T.H. Courtney: Metall. Trans. A, 1990, vol. 25A, pp. 147-157



#### RBM under hydrogen: fast synthesis of nanohydrides

> Fracture on milling



Generation of fresh surfaces

⇒ Clean solid-gas interface



Hydrogen absorption



Hydrogen embrittlement



Particle size refinement



TiH<sub>2</sub> - nanohydride



#### RBM under hydrogen: Evicomagnetics commercial device





 $Pi(H_2) = 150 \text{ atm}$ 

Vial volume: 200 ml

Monitoring of P and T

H<sub>2</sub> in

P,T sensors



5. Doppiu et al. J. Alloys Comp. 427 (2007) 204

MgH2-TiH2 nanocomposites for solid-state hydrogen storage





# Mg-Ti system and binary metal hydrides

Mg-Ti: an immiscible system











D (300 K) 
$$\sim 10^{-12}$$
 cm<sup>2</sup> s<sup>-1</sup>

Rutile-type structure

D (300 K) 
$$\sim 10^{-7}$$
 cm<sup>2</sup>s<sup>-1</sup>

Fluorite-type structure





# Synthesis of $(1-y)MgH_2-yTiH_2$ nanocomposites

Evicomagnetics commercial vial: In-situ monitoring of P and T







Vial: hardened 55

Vial volume: 200 ml

Milling device: Fritsch P4

Disk speed: 400 rpm

Vial speed: - 800rpm vs. disk

Balls: SS,  $\varnothing$  = 12 mm

m<sub>metal powder</sub>: 5 g

m<sub>Balls: powder</sub> = 60:1



19/44

#### In-situ absorption curves



- Fast nanocomposite synthesis (< 1h)</li>
- Two steps: consecutive formation of TiH2 and MgH2 phases



# MgH2-TiH2 powder morphology: SEM analysis

- Reactants: Mg (< 800 μm), Ti (< 150 μm)</li>
- Product: Micrometric-size agglomerates of nanoparticles









# MgH2-TiH2 microstructure: TEM analysis

#### BF-mode



 $0.7MgH_2-0.3TiH_2$ 

DF-mode (TiH<sub>2</sub> - selection)

- Homogeneous mixing of MgH<sub>2</sub> and TiH<sub>2</sub> phases at nanoscale
- TiH<sub>2</sub> grain size: ~ 10 nm





#### Hydrogen storage properties

Comparative study between

 $MgH_2$  (y = 0) and 0.7 $MgH_2$ -0.3 $TiH_2$  (y = 0.3)





#### H-thermodynamics



- Only hydrogen from MgH<sub>2</sub> phase is reversibly stored
- No significant changes in Mg-H thermodynamics





#### Hydrogen cycling at constant pressure (0.4 MPa): HPDSC



Good reversibility for Ti-containing sample



#### Hydrogen cycling at constant pressure (0.4 MPa): HPDSC







#### Hindering of MgH<sub>2</sub> grain coarsening by TiH<sub>2</sub> inclusions







TiH<sub>2</sub> phase limits grain coarsening of Mg phase





### Grain coarsening: Zener pinning effect



Limited grain growth:

$$< L_c >_{\text{max}} = k \frac{r}{f}$$

r = radius of inclusions

f = volume fraction of inclusions





#### MgH2-TiH2 nanocomposites: fast and cycling-stable kinetics





 $Mg_2TMH_x$  (TM = Fe, Co, Ni) nanohydrides for Li-ion batteries





#### Classical Li-ion batteries: insertion reactions



Negative electrode: graphite ( $\text{Li}_{x}C_{6} \rightarrow 6C + x \text{Li}^{+} + x e^{-}$ )

Positive electrode: lamellar oxides ( $Li_{1-x}MO_2 + xLi^+ + xe^- \rightarrow LiMO_2$ )



#### Graphite substitution by conversion electrodes

$$MA_{x(s)} + x Li^{+} + xe^{-} \leftarrow M_{(s)} + xLiA_{(s)}$$
  
 $A = 0, S, N, P, F...$ 



... and hydrides!





Oumellal et al. Nature Materials 7 (2008) 916





### Ball-milled MgH2

$$MgH_2$$
 (s) + 2 Li<sup>+</sup> + 2e<sup>-</sup>  $\longrightarrow$   $Mg$  (s) + 2 LiH (s)



Capacity: 2038 mAh/g

Reversibility: 75 %

Slow kinetics

Poor cycle life

Oumellal et al. Nature Materials 7 (2008) 916



#### Challenges

$$MgH_2$$
 (s) + 2 Li<sup>+</sup> + 2e<sup>-</sup>  $\longrightarrow$   $Mg$  (s) + 2 LiH (s)

Reversibility concerns (slow kinetics and poor cycle-life) due to:

Long-range mass transport at RT of Mg, Li and H species Reversible breaking and forming of Mg-H and Li-H bonds Strong volume changes within the electrode ( $\Delta V/V = 83\%$ ) Low electrical conductivity of MgH<sub>2</sub> and LiH phases





#### Looking for better systems: Mg2TMHx compounds

Why are they good candidates?

Good theoretical capacities



• Transition metals (TM) may create an intrinsic electronic percolation network





# $Mg_2TM$ (TM = Fe, Co, Ni) hydrides: synthesis & properties

Complex hydrides: Covalent TM - H bonding (molecular complex)
 Ionic Mg<sup>2+</sup> - [TMH<sub>x</sub>]<sup>4-</sup> bonding

| Compound                         | H/M  | Cm       | Cv                  | $T_{dec}$ |
|----------------------------------|------|----------|---------------------|-----------|
|                                  |      | (wt.% H) | (g <sub>H</sub> /l) | (°C)      |
| MgH₂                             | 2    | 7.66     | 108                 | 280       |
| Mg₂FeH <sub>6</sub>              | 2    | 5.47     | 150                 | 290       |
| Mg <sub>2</sub> CoH <sub>5</sub> | 1.67 | 4.48     | 126                 | 320       |
| Mg <sub>2</sub> NiH <sub>4</sub> | 1.34 | 3.62     | 98                  | 255       |



• Classical synthesis: sintering at high pressure and temperature

$$2Mg(s)+Fe(s)+3H_2(g) \xrightarrow{90 \text{ bar, } 450^{\circ}C} Mg_2FeH_6(s)$$





### Synthesis by reactive ball milling



Fast compound formation as compared to the classical sintering route





#### Crystallographic studies of end products





| Reactants | Phases                           | 5.G.                 | Crystallite size |
|-----------|----------------------------------|----------------------|------------------|
| Mg        | β- <b>Mg</b> H <sub>2</sub>      | P4 <sub>2</sub> /mnm | 5 ± 1 nm         |
|           | $\gamma$ -MgH <sub>2</sub>       | Pbcn                 | 3 ± 1 nm         |
| 2Mg+Fe    | Mg₂FeH <sub>6</sub>              | Fm-3 m               | 8 ± 1 nm         |
| 2Mg+Co    | Mg <sub>2</sub> CoH <sub>5</sub> | P4/mnm               | 8 ± 1 nm         |
| 2Mg+Ni    | Mg <sub>2</sub> NiH <sub>4</sub> | C2/c                 | 9 ± 1 nm         |



### Electrochemical discharge (galvanostatic mode)

#### Swagelok half-cells

- Li



+ Mg<sub>2</sub>TMH<sub>X</sub>

Electrolyte: LP-30 EC-DMC / 1M LiPF<sub>6</sub>

Rate: 0.1 Li/h







#### Mg<sub>2</sub>FeH<sub>6</sub>: In-situ XRD studies (GITT on discharge)



Two-phase transformation: Nano-Mg<sub>2</sub>FeH<sub>6</sub>  $\stackrel{+ 6 \text{ Li}^+ + 6 \text{ e}^-}{\longrightarrow}$  Amph.-2Mg,Fe (+ 6 LiH)

#### Mg<sub>2</sub>FeH<sub>6</sub>: EXAFS studies



#### XANES spectra (Fe-K-edge)



**EXAFS** refinement



Change of Fe-oxydation state:  $Fe^{2+} \rightarrow Fe^{0}$ 

Formation of amorphous Fe

Discharged state: Amorphous Fe and Mg domains + LiH





#### Conclusions

- Nanostructured Mg-based hydrides are efficient materials for energy storage
- $\clubsuit$  They can be easily and rapidly synthetized in bulk form by reactive ball milling under  $H_2$  atmosphere
- ❖ They are excellent materials for reversible hydrogen storage at moderate temperatures and promising candidates for negative electrodes of Li-ion batteries





# Acknowledgements



- > Junxian Zhang
- > Marine Ponthieu
- > Karine Provost
- > Valérie Paul-Boncour



José Francisco Fernández



- **> Warda Zaïdi**
- > Jean-Pierre Bonnet
- > Luc Aymard



> Laetitia Laversenne



> Stéphanie Belin







# COST MP1103 workshop « Solid state hydrogen storage: links between academia and industry », Nantes, France. 12 May 2014





# IDHEA: International Discussion on Hydrogen Energy and Applications, Nantes, France. 12-14 May 2014







# Thank you for your attention!!!

#### References:

- F. Cuevas et al., Phys. Chem. Chem. Phys. 14 (2012) 1200
- J. Huot et al., Prog. Mater. Sci. 58 (2013) 30
- M. Ponthieu et al., J. Phys. Chem. C 117 (2013) 18851
- W. Zaïdi et al., Int. J. Hydrogen Energy 38 (2013) 4798
- J. Zhang et al., J. Mater. Chem. A 1 (2013) 4706



