

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2002-252014
(43)Date of publication of application : 06.09.2002

(51)Int.CI. H01M 8/04
H01M 8/00
H02J 7/00
// H01M 8/10

(21)Application number : 2001-299792 (71)Applicant : CASIO COMPUT CO LTD
(22)Date of filing : 28.09.2001 (72)Inventor : SHIOTANI MASAHIRO

(30)Priority
Priority number : 2000388398 Priority date : 21.12.2000 Priority country : JP

(54) POWER SUPPLY SYSTEM

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a power supply system which can excellently operate apparatus by applying it like a general-purpose chemistry battery to an existing device equipped with a function to urge a display of battery residual quantity, exchange of a battery, and charging, by detecting a fall of output voltage of a battery.

SOLUTION: The power supply system has a fuel pack 20A, in which a fuel FL for power generation is enclosed, and a power generation module 10A, which outputs electric power, which consists of predetermined output voltage, based on the fuel FL for power generation supplied from this fuel pack 20A. The power generation module 10A is constituted with a main power generation part 12, which generates the above electric power using the fuel FL for power generation supplied from fuel pack 20A, a residual quantity detection part 16, which detects the residual quantity of the fuel FL for power generation which remains in the fuel pack 20A, and an operation control part 13, which controls the output voltage from the main power generation part 12 to have at least a characteristic that is equivalent to the general-purpose chemistry battery, based on the residual quantity of the fuel FL for power generation.

Best Available Copy

LEGAL STATUS

[Date of request for examination] 07.10.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2002-252014

(P2002-252014A)

(43) 公開日 平成14年9月6日 (2002.9.6)

(51) Int.Cl. ⁷	識別記号	F I	テマコード(参考)
H 01 M 8/04		H 01 M 8/04	P 5G003
			Z 5H026
8/00		8/00	A 5H027
			Z
H 02 J 7/00	3 0 3	H 02 J 7/00	3 0 3 E
審査請求	未請求	請求項の数19	OL (全52頁) 最終頁に続く

(21) 出願番号 特願2001-299792(P2001-299792)
(22) 出願日 平成13年9月28日 (2001.9.28)
(31) 優先権主張番号 特願2000-388398(P2000-388398)
(32) 優先日 平成12年12月21日 (2000.12.21)
(33) 優先権主張国 日本 (JP)

(71) 出願人 000001443
カシオ計算機株式会社
東京都渋谷区本町1丁目6番2号
(72) 発明者 塩谷 雅治
東京都青梅市今井3-10-6 カシオ計算
機株式会社青梅事業所内
(74) 代理人 100096699
弁理士 鹿嶋 英實
F ターム(参考) 5G003 AA05 BA01 DA04
5H026 AA06
5H027 AA06 BA01 KK00 MM08 MM26

(54) 【発明の名称】 電源システム

(57) 【要約】

【課題】 電池の出力電圧の低下を検出して、電池残量の表示や電池の交換、充電を促す機能を備えた既存のデバイスに対して、汎用の化学電池と同様に適用して、良好に機器を動作させることができる電源システムを提供する。

【解決手段】 電源システムは、発電用燃料F Lが封入された燃料パック20Aと、該燃料パック20Aから供給される発電用燃料F Lに基づいて、所定の出力電圧からなる電力を出力する発電モジュール10Aと、を有し、発電モジュール10Aは、燃料パック20Aから供給される発電用燃料F Lを用いて、上記電力を生成する主発電部12と、燃料パック20Aに残存する発電用燃料F Lの残量を検出する残量検出部16と、少なくとも、発電用燃料F Lの残量に基づいて、主発電部12からの出力電圧が、汎用の化学電池と同等の特性を有するよう制御する動作制御部13と、を備えている。

1

【特許請求の範囲】

【請求項1】 発電用燃料が封入された燃料封入部と、該燃料封入部から供給される前記発電用燃料を用いて電力を発生する発電モジュールと、を備え、前記発電モジュールは、経時的に出力電圧が変化することを特徴とする電源システム。

【請求項2】 前記発電モジュールは、各種汎用の化学電池のうちの1種における経時的な電圧変化傾向に対応した出力電圧特性に基づいて、前記電力を発生することを特徴とする請求項1記載の電源システム。

【請求項3】 前記発電モジュールは、前記発電用燃料を用いて所定の負荷を駆動するための第1の電力を発生する第1の電源手段と、少なくとも、前記第1の電源手段を動作制御するための第2の電力を常時出力する第2の電源手段と、前記第2の電力により動作し、少なくとも、前記第1の電源手段における動作状態を制御するシステム制御手段と、を具備していることを特徴とする請求項1又は2記載の電源システム。

【請求項4】 前記システム制御手段は、少なくとも、前記第1の電源手段の動作状態を制御して、第1の電力の発生量を調整する出力制御部と、少なくとも、燃料封入部に封入された発電用燃料の残量に応じて、出力制御部を制御し、第1の電源手段により生成される第1の電力の発生量を制御する動作制御部と、を備えていることを特徴とする請求項3記載の電源システム。

【請求項5】 前記電源システムは、前記燃料封入部に封入された前記発電用燃料の残量を検出して、該残量に関する検出情報を前記動作制御部に出力する残量検出手段を備えていることを特徴とする請求項4記載の電源システム。

【請求項6】 前記動作制御部は、前記燃料封入部における前記発電用燃料の残量と前記第1の電源手段により生成される前記第1の電力の電圧成分との相関関係を規定した相関テーブルを備え、前記動作制御部からの前記検出信号に基づいて、前記相関テーブルを参照することにより、前記第1の電源手段における動作状態を調整するための制御信号を前記出力制御部に出力することを特徴とする請求項5記載の電源システム。

【請求項7】 前記相関テーブルは、前記発電用燃料の残量の減少に伴って、前記第1の電源手段により生成される前記第1の電力の電圧成分が一義的に低下する相関関係を有していることを特徴とする請求項6記載の電源システム。

【請求項8】 前記出力制御部は、前記動作制御手段からの前記制御信号に基づいて、前記第1の電源手段への前記発電用燃料の供給量を制御することにより、前記第1の電源手段により生成される前記第1の電力の電圧成

2

分を調整することを特徴とする請求項6又は7記載の電源システム。

【請求項9】 前記第1の電源手段及び前記第2の電源手段は、前記発電用燃料を用いた電気化学反応により、前記第1の電力及び第2の電力を発生する燃料電池であることを特徴とする請求項3乃至8のいずれかに記載の電源システム。

【請求項10】 前記第1の電源手段は、前記燃料封入部から供給される前記発電用燃料を用いた電気化学反応により、前記第1の電力を発生する燃料電池であることを特徴とする請求項3乃至8のいずれかに記載の電源システム。

【請求項11】 前記第1の電源手段は、前記発電用燃料を改質して、特定の成分を抽出する燃料改質器と、該特定の成分が供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料改質型の燃料電池であることを特徴とする請求項9又は10記載の電源システム。

【請求項12】 前記第2の電源手段は、電力の蓄積が可能な蓄電装置であることを特徴とする請求項3乃至8のいずれかに記載の電源システム。

【請求項13】 前記第2の電源手段を構成する蓄電装置は、繰り返し充放電が可能な電気化学的な二次電池であることを特徴とする請求項12記載の電源システム。

【請求項14】 前記第2の電源手段を構成する蓄電装置は、繰り返し電荷の蓄積、放出が可能なコンデンサであることを特徴とする請求項12記載の電源システム。

【請求項15】 前記第2の電源手段は、前記燃料電池又は前記発電装置から出力される電力を蓄積する蓄電装置を備え、該蓄電装置に蓄積された前記電力を前記第2の電力として、前記第1の電源手段又は前記出力制御部の少なくともいずれか一方に出力することを特徴とする請求項4乃至8のいずれかに記載の電源システム。

【請求項16】 前記電源システムは、前記燃料封入部及び前記電源モジュールからなる物理的外形形状が、前記各種汎用の化学電池のうちの1種と同等の形状及び寸法を有していることを特徴とする請求項2記載の電源システム。

【請求項17】 前記電源システムは、前記第1の電源手段から出力される前記第1の電力により駆動する前記負荷に対して、着脱可能に構成されていることを特徴とする請求項3乃至16のいずれかに記載の電源システム。

【請求項18】 前記電源システムは、前記第1の電源手段から出力される前記第1の電力により駆動する前記負荷に対して、少なくとも前記燃料封入部が着脱可能に構成されていることを特徴とする請求項3乃至17のいずれかに記載の電源システム。

【請求項19】 前記電源システムは、前記発電モジュールに対して、前記燃料封入部が、着脱可能に構成され

50

ていることを特徴とする請求項3乃至18のいずれかに記載の電源システム。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、電源システムに関し、特に、汎用の化学電池との互換が可能な電源システムに関する。

【0002】

【従来の技術】従来、民生用や産業用のあらゆる分野において、様々な化学電池が使用されている。例えば、アルカリ乾電池やマンガン乾電池等の一次電池は、時計やカメラ、玩具、携帯型の音響機器等に多用されており、我が国に限らず、世界的な観点から最も生産数量が多く、安価かつ入手が容易という特徴を有している。

【0003】一方、ニッケル・カドミウム蓄電池やニッケル・水素蓄電池、リチウムイオン電池等の二次電池は、近年普及が著しい携帯電話や携帯情報端末(PDA)、デジタルビデオカメラやデジタルスチルカメラ等の携帯機器に多用されており、繰り返し充放電ができることから経済性に優れた特徴を有している。また、二次電池のうち、鉛蓄電池は、車両や船舶の起動用電源、あるいは、産業設備や医療設備における非常用電源等として利用されている。

【0004】ところで、近年、環境問題やエネルギー問題への関心の高まりに伴い、上述したような化学電池の使用後の廃棄に関する問題やエネルギー変換効率の問題がクローズアップされている。特に、一次電池においては、上述したように、製品価格が安価で入手が容易なうえ、電源として利用する機器が多種多様で、しかも、基本的に一度放電されると電池容量を回復することができない、一回限りの利用(いわゆる、使い捨て)しかできないため、年間の廃棄量が数百万トンに上っている。ここで、化学電池全体では、リサイクルにより回収される比率は、概ね20%程度に過ぎず、残りの80%程度が自然界に投棄、又は、埋め立て処理されている、とする統計資料もあり、このような未回収の電池に含まれる水銀やインジウム等の重金属による環境破壊や、自然環境の美観の悪化が懸念されている。

【0005】また、エネルギー資源の利用効率の観点から上記化学電池を検証すると、一次電池においては、放電可能エネルギーの概ね300倍のエネルギーを使用して生産されているため、エネルギー利用効率が1%にも満たない。これに対して、繰り返し充放電が可能で経済性に優れた二次電池であっても、家庭用電源(コンセント)等から充電を行う場合、発電所における発電効率や送電損失等により、エネルギー利用効率が概ね12%程度にまで低下してしまうため、必ずしもエネルギー資源の有効利用が図られているとは言えなかった。

【0006】そこで、近年、環境への影響(負担)が少なく、かつ、例えは、30~40%程度の極めて高いエ

ネルギー利用効率を実現することができる燃料電池をはじめとする各種の新たな電源システムや発電システム(以下、「電源システム」と総称する)が注目され、車両用の駆動電源や家庭用のコジェネレーションシステム等への適用を目的として、あるいは、上述したような化学電池の代替えを目的として、実用化のための研究、開発が盛んに行われている。なお、燃料電池をはじめとする各種の電源システムの具体的な構成等については、発明の詳細な説明において詳述する。

【0007】

【発明が解決しようとする課題】しかしながら、今後、燃料電池等のエネルギー利用効率が高い電源システムを小型軽量化して、可搬型又は携帯型のポータブル電源として利用し、かつ、上述したような化学電池の代替え(互換品)として適用する場合には、次に示すような問題点を有している。

【0008】すなわち、化学電池を動作電源とする既存の携帯機器(特に、近年普及が著しい携帯電話や携帯情報端末)等においては、電池の消耗状態を検知して随時電池残量を表示する機能や、電池の出力電圧が所定の下限値になった場合に、電池の交換や充電を促すアラームやメッセージ等を通知する機能(以下、便宜的に「残量通知機能」と総称する)を備えたものが多い。

【0009】具体的には、一般的な化学電池における出力電圧の経時的な変化傾向(起電力特性)は、図42に示すように、放電に伴う時間の経過とともに、起電力特性 S_p が劣化して出力電圧が徐々に低下することが知られているので、この出力電圧の変化を検出して定期的又は継続的に電池残量や機器の駆動可能推定時間を表示したり、携帯機器等において動作が正常に行われる電圧範囲(動作保証電圧範囲)を下回る出力電圧に達した場合に、機器の利用者に電池の交換や充電等を促す通知(残量通知 I_p)を行っている。

【0010】これに対して、燃料電池をはじめとするエネルギー利用効率が高い電源システムのほとんどは、基本的に所定の燃料を用いた発電装置であるので、図43に示すように、電源システムの出力電圧特性(起電力特性) S_f は、放電に伴う時間の経過(すなわち、燃料の残量)に関わりなく、発電部に供給される燃料の量等に基づいて任意に設定される。したがって、携帯機器等の仕様上、安定的な動作を実現することができる理想的な一定電圧 V_i が出力されるように設計されており、燃料がなくなること(燃料切れ)により、電源システムにおける発電動作が停止して出力電圧 V_i が0Vに瞬時に変化する。

【0011】そのため、このような起電力特性 S_f を有する電源システム(燃料電池等)を、既存の携帯機器等の電源としてそのまま適用した場合、放電に伴う時間の経過による出力電圧の低下を検出することができないため、上述したような残量通知機能を全く利用することができ

できなくなるという問題を有している。また、今後、燃料電池をはじめとする電源システムを化学電池の代替えとして携帯機器等の電源に利用する場合には、燃料の残量を直接検出して、燃料の充填、補充や電源システム自身の交換を促すための機能や構成を、機器側に新たに備える必要があるため、携帯機器等における電源部周辺の構成の大幅な設計変更が必要となり、製品コストの上昇等を招くという問題を有していた。

【0012】そこで、本発明は、上述した問題点に鑑み、電池の出力電圧の低下を検出して、電池残量の表示や電池の交換、充電を促す機能を備えた携帯機器等の既存のデバイスに対して、汎用の化学電池と同様に、そのまま電源として適用することができ、良好に機器を動作させることができるとする電源システムを提供することを目的とする。

【0013】

【課題を解決するための手段】本発明に係る電源システムは、発電用燃料が封入された燃料封入部と、該燃料封入部から供給される前記発電用燃料を用いて電力を発生する発電モジュールと、を備え、前記発電モジュールは、経時的に出力電圧が変化することを特徴としている。

【0014】すなわち、燃料封入部（燃料パック）に充填、封入された液体又は気体からなる発電用燃料、又は、該発電用燃料から供給される特定の成分（例えば、水素）を用いて発電を行う発電モジュール（発電器）を備えたポータブル型の電源システムにおいて、該発電による出力電圧特性（起電力特性）が、汎用の化学電池、すなわち、日本国内外で市販、あるいは、機器に付属して流通、販売される一次電池又は二次電池のうちの1種における経時的な電圧の変化傾向に応じた出力電圧となるように、発電モジュールにおける発電状態が制御される。

【0015】これにより、汎用の化学電池等の電圧変化傾向に応じた出力電圧特性を有するポータブル電源を実現することができるので、既存の携帯機器等の電源としてそのまま使用した場合であっても、この出力電圧の変化を検出して電池残量や機器の駆動可能推定時間を表示したり、電池の交換や充電等を促す機能を支障なく利用することができ、化学電池に対する互換性を高めた電源システムを提供することができる。

【0016】このような特徴を実現するために、本発明に係る電源システムは、発電モジュールが、前記発電用燃料を用いて所定の負荷を駆動するための第1の電力を発生する第1の電源手段と、少なくとも、前記第1の電源手段を動作制御するための第2の電力を常時出力する第2の電源手段と、前記第2の電力により動作し、少なくとも、前記第1の電源手段における動作状態を制御するシステム制御手段と、を具備しているものであってもよい。

【0017】ここで、システム制御手段は、少なくとも、第1の電源手段の動作状態を制御して、第1の電力の発生量を調整する出力制御部と、少なくとも、燃料封入部に封入された発電用燃料の残量に応じて、出力制御部を制御し、第1の電源手段により生成される第1の電力の発生量を制御する動作制御部と、を備えた構成を有し、さらに、電源システムは、燃料封入部に封入された発電用燃料の残量を検出して、該残量に関する検出情報を動作制御部に出力する残量検出手段と、を備えた構成を有している。

【0018】すなわち、第2の発電手段により生成される第2の電力に基づいてシステム制御手段（出力制御部、システム制御手段）が駆動され、燃料封入部に残存する発電用燃料の量（残量）に応じて、第1の発電手段における第1の電力の発生量（発電状態）が制御される。これにより、電源システムの外部から燃料等の供給を受けることなく、発電モジュールにより自立的に発電状態を制御して、発電用燃料の残量に応じた所定の電力を発生、出力することができる。

【0019】この場合、システム制御手段（動作制御部）による第1の発電手段における発電状態の制御は、汎用の化学電池における経時的な電圧変化傾向、例えば、時間の経過に伴って出力電圧が一義的に低下する傾向に対応して、発電用燃料の残量と出力電圧（第1の電力の電圧成分）との相関関係を予め規定した相関テーブルに基づいて実行されるものであってもよい。なお、第1の発電手段における発電状態の具体的な制御方法は、上記相関テーブルに基づいて、第1の電源手段への前記発電用燃料の供給量を制御することにより調整される。

【0020】これによれば、燃料封入部における発電用燃料の残量に基づいて、該相関テーブルを参照し、発電部の燃料極への発電用燃料の供給量を調整することにより、簡易に出力電圧を設定制御することができるので、汎用の化学電池と同様の出力電圧特性を有し、電気的特性上、互換が可能な電源システムを提供することができる。

【0021】上記電源システムにおいて、より好ましい態様は、第1の電源手段及び第2の電源手段が、共に燃料封入部から供給される発電用燃料を用いた電気化学反応により、第1の電力及び第2の電力を発生する燃料電池を有している構成である。これにより、汎用の化学電池に比較して、極めてエネルギー利用効率の高い燃料電池を用いて、電源システムの動作電力及び負荷の駆動電力を生成することができるとともに、汎用の化学電池における経時的な電圧変化傾向と同様の出力電圧特性を有する電源システムを実現することができるので、既存の携帯機器等における残量通知機能等を良好に利用することができるとともに、化石燃料等のエネルギー資源の消費量を削減して有効な利用を図ることができる。

【0022】また、上記電源システムにおいて、第1の

電源手段のみを上記燃料電池により構成したものであつてもよい。この場合、第1の電源手段は、発電用燃料を改質して、特定の成分を抽出する燃料改質器と、該特定の成分が供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料改質型の燃料電池としての構成を適用することが好ましい。このような燃料改質型の燃料電池を適用した構成によれば、燃料電池に供給される発電用燃料の量を制御することにより、第1の電源手段により生成される第1の電力の量を簡易に制御することができるとともに、発電用燃料の有する化学エネルギーから極めて高いエネルギー変換効率で電力を生成することができる電源システムを実現することができる。

【0023】なお、上記電源システムにおいて、第1の電源手段に適用可能な構成としては、上記燃料電池の他に、燃料封入部から供給される発電用燃料の燃焼反応により生じる圧力エネルギーに基づいて、第1の電力を発生する発電装置（ガス燃焼タービン、ロータリーエンジン、スターリングエンジン、パルス燃焼エンジン等と、電磁誘導や圧電変換の原理を用いた発電器との組み合わせ）や、発電用燃料の燃焼反応により生じる熱エネルギーによる高温と電源システム内外の他の領域における定温との温度差に基づいて、熱電変換により電力を発生する発電装置（温度差発電器）、発電用燃料を用いた熱音響効果による外力発生効果に基づいて、電力を発生する発電装置（熱音響効果発電器）、発電用燃料を用いた電磁流体発電により電力を発生する発電装置（電磁流体力学発電器）等であつてもよい。

【0024】また、上記電源システムにおいて、第2の電源手段のみを上記燃料電池により構成したものであつてもよい。この場合、第2の電源手段は、発電用燃料が直接的に供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料直接供給型の燃料電池としての構成を適用することが好ましい。このような燃料直接供給型の燃料電池を適用した構成によれば、簡易な構成の燃料電池に燃料封入部から発電用燃料を供給するだけで、自立的かつ継続的に高いエネルギー変換効率で所定の電力（第2の電力）を生成してシステム制御手段に動作電力として供給することができるので、特別な操作を必要とすることなく、発電用燃料の残量に応じた電圧成分を有する第1の電力を出力することができ、汎用の化学電池と同等の電気的特性を有しつつ、取り扱いが簡易な電源システムを提供することができるとともに、第2の電源手段の規模を小型化することができる。

【0025】なお、上記電源システムにおいて、第2の電源手段に適用可能な構成としては、上記燃料電池の他に、燃料封入部に封入された液体燃料からなる発電用燃料の気化反応又は高圧気体燃料における封入圧力により生じる圧力エネルギーに基づいて、第2の電力を発生する発電装置（ガスタービン、ロータリーエンジン等と、電磁誘導や圧電変換の原理を用いた発電器との組み合わ

せ）や、電源システムの周辺と内部における温度差、又は、発電用燃料を用いた触媒燃焼反応により生じる熱エネルギーによる高温と電源システム内外の他の領域における定温との温度差、もしくは、燃料封入部に封入され、液化された前記発電用燃料の気化反応により吸収される熱エネルギーによる低温と前記電源システム内外の他の領域における定温との温度差等に基づいて、熱電変換により電力を発生する発電装置（温度差発電器）、発電用燃料を用いた生物化学的反応に基づいて、前記第2の電力を発生する発電装置（生物電池）、発電用燃料の流体移動により生じる振動エネルギーに基づいて、前記第2の電力を発生する発電装置（振動発電器）、電源システムの外部から入射する光エネルギーに基づいて、光電変換により前記第2の電力を発生する発電装置（太陽電池）、電力の蓄積、放出が可能な蓄電装置（二次電池、コンデンサ等）等であつてもよい。

【0026】したがって、本発明に係る電源システムにおいては、第1及び第2の電源手段として、発電用燃料を用いて高いエネルギー変換効率で第1及び第2の電力を生成することができ、かつ、小型化や微細化が可能な構成を有する発電装置や蓄電装置の中から、電源システムの外形形状や電気的特性等に応じて適宜組み合わせた任意の構成を適用することができる。

【0027】ここで、第1の電源手段又は出力制御部の少なくともいずれか一方は、第2の発電手段から直接出力される第2の電力に基づいて、又は、上記燃料電池又は発電装置から出力される電力を蓄積する蓄電装置から放出された電力（第2の電力）に基づいて動作するものであつてもよい。これによれば、第2の電源手段により生成される電力の駆動電力特性に応じて、第2の電源手段から直接供給される電力、又は、蓄電装置に蓄積され、駆動電力特性が高められた電力を起動電力として用いて、第1の電源手段を良好に起動して第1の電力を生成する発電動作に移行することができる。

【0028】また、上記電源システムに適用される発電用燃料は、少なくとも、水素を主成分とする、又は、水素からなる液体燃料又は液化燃料又は気体燃料、具体的には、メタノールやエタノール、ブタノール等のアルコール系の液体燃料や、ジメチルエーテルやイソブタン、天然ガス等の炭化水素からなる液化燃料、あるいは、水素ガス等の気体燃料であって、特に、燃料封入部から発電モジュールに供給される際の常温、常圧等の所定の環境条件の下で気体状態にあるものを良好に適用することができる。これにより、第1及び第2の電源手段における発電動作において、高いエネルギー変換効率で電力を生成することができるとともに、この発電動作に伴って電力以外に生成される副生成物を比較的簡易な処理で無毒化や難燃化することができ、自然環境等への影響を大幅に抑制することができる。

【0029】さらに、上記電源システムは、燃料封入部

及び電源モジュールを組み合わせた物理的外形形状が、汎用の化学電池のうちの任意の1種と同等の形状及び寸法を有するように構成されているものであってもよく、これによれば、上記電気的特性のみならず、外形形状においても、汎用の化学電池との互換性を有することになるので、極めてエネルギー変換効率の高い電源システムを既存の化学電池の市場に支障なく普及させることができる。なお、本発明に係る電源システムは、燃料封入部及び電源モジュールを組み合わせた電源システム全体の外形形状を汎用の化学電池と同等の形状及び寸法とする場合に限らず、燃料封入部のみを汎用の化学電池と同等の形状及び寸法に構成するものであってもよい。

【0030】ここで、上記電源システムは、第1の電源手段から出力される第1の電力により駆動する負荷に対して、システム全体が着脱可能な構成、又は、該負荷に対して、少なくとも燃料封入部が着脱可能な構成、もしくは、発電モジュールに対して、燃料封入部が着脱可能な構成を有していることが好ましい。これによれば、燃料封入部に封入された発電用燃料がなくなったときや少なくなったときに、燃料封入部を発電モジュールから取り外して新たな燃料封入部に交換、あるいは、燃料封入部に発電用燃料を注入して補充することができるので、発電モジュールを継続的に利用することができるとともに、電源システム全体又は燃料封入部をあたかも汎用の化学電池のように簡便に使用することができる。また、燃料封入部の交換や回収が可能となるので、電源システム自体の廃棄量を削減することができる。

【0031】

【発明の実施の形態】以下、本発明に係る電池システムの実施の形態について、図面を参照しながら説明する。まず、本発明に係る電源システムが適用される全体の概要について、図面を参照して説明する。図1は、本発明に係る電源システムの適用形態を示す概念図である。

【0032】本発明に係る電源システム1は、例えば、図1(a)、(b)に示すように、特定の電気・電子機器のほか、汎用の一次電池や二次電池により動作する既存の電気・電子機器(図1では、情報携帯端末を示す:以下、「デバイス」と総称する)DVCに対して、その全体もしくは一部が任意に装着及び取り外し(矢印P1参照)が可能であるとともに、該電源システム1の全体もしくはその一部が単独で携帯が可能なように構成され、かつ、電源システム1の所定の位置(例えば、後述するように、汎用の一次電池や二次電池と同等の位置)にプラス(+)極及びマイナス(-)極からなる電極が設けられた構成を有している。

【0033】次に、本発明に係る電池システムの基本構成について説明する。図2は、本発明に係る電源システムの基本構成を示すブロック図である。本発明に係る電源システム1は、図2(a)に示すように、大別して、液体燃料又は液化燃料又は気体燃料からなる発電用燃料

F Lが封入された燃料パック(燃料封入部)20と、少なくとも、該燃料パック20から供給される発電用燃料F Lに基づいて、上記デバイスDVCの駆動状態(負荷状態)に対応した電力E Gを発生(発電)する発電モジュール10と、燃料パック20及び発電モジュール10相互を物理的に結合するとともに、燃料パック20に封入された発電用燃料F Lを発電モジュール10に供給する燃料送出経路等を備えたインターフェース部(以下、「I/F部」と略記する)30と、を有し、各構成が相互に、もしくは、任意の形態で分離(着脱)可能に、あるいは、一体的に構成されている。ここで、I/F部30は、図2(a)に示したように、上記燃料パック20及び発電モジュール10と独立した構成を有しているものであってもよいし、図2(b)、(c)に示すように、上記燃料パック20又は発電モジュール10のいずれかと一体的に、あるいは、燃料パック20又は発電モジュール10の双方に分割して構成されているものであってもよい。

【0034】以下、各ブロックの構成について、具体的に説明する。

[第1の実施形態]

(A) 発電モジュール10

図3は、本発明に係る電源システムに適用される発電モジュールの第1の実施形態を示すブロック図である。

【0035】図3に示すように、本実施形態に係る発電モジュール10Aは、大別して、I/F部30を介して燃料パック20から供給される発電用燃料を用いて、所定の電力(第2の電力)を、常時、自立的に発生して、少なくとも、電源システム1に接続されるデバイスDVCに内蔵され、負荷LD(デバイスDVCの各種機能を有する素子又はモジュール)の駆動制御を行うコントローラCNTの駆動電力(コントローラ電力)、及び、発電モジュール10A内に設けられた後述する動作制御部13の動作電力として出力する副電源部(第2の電源手段)11と、副電源部11から供給される電力により動作し、電源システム1全体の動作状態を制御する動作制御部13と、I/F部30を介して燃料パック20から供給される発電用燃料又は該発電用燃料から抽出された特定の燃料成分を用いて、所定の電力(第1の電力)を

発生して、少なくとも、電源システム1に接続されるデバイスDVCの各種機能(負荷LD)を駆動する負荷駆動電力として出力する主発電部(第1の電源手段)12と、動作制御部13からの動作制御信号に基づいて、少なくとも、主発電部12への発電用燃料の供給量を制御する出力制御部14と、動作制御部13からの動作制御信号に基づいて、少なくとも、主発電部12を待機状態から発電可能な動作状態に移行(起動)するように制御する起動制御部15と、を有して構成されている。ここで、本実施形態に係る動作制御部13、出力制御部14及び起動制御部15は、本発明におけるシステム制御手

段を構成する。

【0036】また、発電モジュール10Aは、発電モジュール10A内又はI/F部30A内もしくは燃料パック20EAのいずれか（ここでは、発電モジュール10A内）に、燃料パック20Aに残存する発電用燃料FLの量（残量）を検出し、その残量検出信号を上記動作制御部13に出力する残量検出部16が設けられた構成を有している。すなわち、本実施形態に係る電源システム1は、システムの外部（発電モジュール10A、燃料パック20及びI/F部30以外）からの燃料供給や制御に依存することなく、電源システム1に接続されるデバイスDVCに対して、所定の電力（負荷駆動電力）を出力可能なように構成されている。

【0037】<副電源部11>本実施形態に係る発電モジュールに適用される副電源部11は、図3に示したように、燃料パック20から供給される発電用燃料FLが有する物理的又は化学的エネルギー等を用いて、電源システム1の起動動作に必要な所定の電力（第2の電力）を、常時、自立的に発生する構成を有している。そして、この電力は、大別して、デバイスDVCに内蔵され、その駆動状態を制御するコントローラの駆動電力（コントローラ電力）、並びに、発電モジュール10A全体の動作状態を制御する動作制御部13及び燃料パック20Aに封入された発電用燃料FLの残量を検出する残量検出部16の動作電力として常時供給される電力E1と、発電モジュール10Aの起動時に、少なくとも、出力制御部14（構成によっては、主発電部12を含む）及び起動制御部15、残量検出部16に対して、起動電力（電圧・電流）として供給される電力E2からなる。なお、残量検出部16の動作電力となる電力は、常時供給されるもののほか、起動制御部15による発電モジュール10Aの起動時以降に供給されるように構成されていてもよい。

【0038】副電源部11の具体的な構成としては、例えば、燃料パック20から供給される発電用燃料FLを用いた電気化学反応によるもの（燃料電池）や触媒燃焼反応等に伴う熱エネルギーによるもの（温度差発電）を良好に適用することができるほか、燃料パック20に封入された発電用燃料FLの封入圧力や燃料の気化によって生じるガス圧力を用いて発電器を回転させて電力を発生する力学的なエネルギー変換作用等によるもの（ガスタービン発電等）、また、発電用燃料FLを栄養源とする微生物等による代謝（光合成、呼吸等）により生じる電子を捕獲し、直接電力へと変換するもの（生物化学発電）

【0042】一方、空気極112に空気（酸素O₂）が供給されると、次の化学反応式（2）に示すように、触媒反応により負荷114を経由した電子（e⁻）とイオ

【0043】このような一連の電気化学反応（化学反応

*電）、上記封入圧力やガス圧力に基づく発電用燃料FLの流体エネルギーにより生じる振動エネルギーを電磁誘導の原理を利用して電力に変換するもの（振動発電）、二次電池（充電池）やコンデンサ等の電力蓄積手段単体からの放電によるもの、さらには、上述した発電を行う各構成により生成された電力を、電力蓄積手段（二次電池やコンデンサ等）に蓄積して放出（放電）させるようにしたもの等を適用することができる。

【0039】以下に、各々の具体例について、図面を参照して簡単に説明する。

（副電源部の第1の構成例）図4は、本実施形態に係る電源モジュールに適用可能な副電源部の第1の構成例を示す概略構成図である。ここでは、上述した電源システムの構成（図3）を適宜参照しながら説明する。第1の構成例においては、副電源部の具体例として、燃料パック20から直接供給される発電用燃料FLを用い、電気化学反応により電力（第2の電力）を発生する燃料直接供給方式を採用した固体高分子型の燃料電池の構成を有している。

【0040】図4に示すように、本構成例に係る副電源部11Aは、概略、所定の触媒微粒子が付着した炭素電極からなる燃料極（カソード）111と、所定の触媒微粒子が付着した炭素電極からなる空気極（アノード）112と、燃料極111と空気極112の間に介装されたイオン導電膜（交換膜）113と、を有して構成されている。ここで、燃料極111には、燃料パック20に封入された発電用燃料（例えば、メタノール等のアルコール類及び水）が直接供給され、一方、空気極112には大気中の酸素ガス（O₂）が供給される。

【0041】この副電源部（燃料電池）11Aにおける電気化学反応の一例は、具体的には、メタノール（CH₃OH）及び水（H₂O）が燃料極111に直接供給されると、次の化学反応式（1）に示すように、触媒反応により電子（e⁻）が分離して水素イオン（プロトン；H⁺）が発生し、イオン導電膜113を介して空気極112側に通過するとともに、燃料極111を構成する炭素電極により電子（e⁻）が取り出されて負荷114（電源システム内外の所定の構成；ここでは、デバイスDVCのコントローラCNT、動作制御部13、主発電部12、出力制御部14等）に供給される。なお、この触媒反応により生成される水素イオン以外の微量の二酸化炭素（CO₂）は、例えば、燃料極111側から大気中に排出される。

※導電膜113を通過した水素イオン（H⁺）と空気中の酸素ガス（O₂）が反応して水（H₂O）が生成される。

式（1）及び（2）は、概ね室温程度の比較的低温の

13

環境下で進行する。ここで、空気極112で発生する副生成物である水(H_2O)を回収し、燃料極111側に必要量を供給することにより、上記化学反応式(1)に示した触媒反応の原料物質として再利用することができるとともに、燃料パック20に予め備蓄(封入)される水(H_2O)の量を大幅に減らすことができるので、燃料パック20の容積を大幅に縮小しつつ、副電源部11を長時間、継続的に動作させて、所定の電力を供給することが可能となる。なお、空気極112で発生する水(H_2O)等の副生成物を回収、再利用する副生成物回収手段の構成については、主発電部12における同様の構成と併せて後述する。

【0044】このような構成を有する燃料電池を副電源部に適用することにより、他の方式(例えば、後述する燃料改質型の燃料電池)に比較して周辺構成を必要としないので、副電源部11Aの構成を簡素化かつ小型化することができるとともに、例えば、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30に設けられた燃料輸送管を介して毛細管現象により所定量の発電用燃料が副電源部11A(燃料極111)に自動的に送入されて、上記化学反応式(1)及び(2)に基づく、発電動作を開始、継続することができる。

【0045】したがって、燃料パック20からの発電用燃料の供給が継続する限り、副電源部11Aにより所定の電力が常時、自立的に生成され、デバイスDVCのコントローラ電力並びに動作制御部13及び残量検出部16の動作電力、さらには、主発電部12又は出力制御部14に対する起動電力として供給することができる。また、上述したような燃料電池においては、発電用燃料から電気化学反応を利用して直接電力を発生しているので、極めて高い発電効率を実現することができ、エネルギー資源の有効利用や副電源部を含む発電モジュールの小型化を図ることができるとともに、振動や騒音がないので、汎用の一次電池や二次電池と同様に、広範な機器への利用が可能となる。

【0046】なお、本構成例における燃料電池においては、燃料パック20から供給される発電用燃料としてメタノールを適用した場合についてのみ示したが、本発明はこれに限定されるものではなく、少なくとも、水素元素を少なくとも有する液体燃料、液化燃料、及び気体燃料のいずれかであればよい。具体的には、上述したメタノールやエタノール、ブタノール等のアルコール系の液体燃料や、ジメチルエーテルやイソブタン、天然ガス(CNG)等の炭化水素からなる液化燃料、あるいは、水素ガス等の気体燃料であって、特に、燃料パック20から副電源部11Aに供給される際の常温、常圧等の所定の環境条件の下で気体状態にあるものを良好に適用することができる。

【0047】(副電源部の第2の構成例)図5は、本実

14

施形態に係る電源モジュールに適用可能な副電源部の第2の構成例を示す概略構成図である。第2の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料が有する圧力エネルギー(封入圧力やガス圧力)により圧力駆動機関(ガスタービン)を駆動し、その駆動エネルギーを電力に変換する発電装置としての構成を有している。

【0048】図5(a)、(b)に示すように、本構成例に係る副電源部11Bは、概略、複数の羽根が円周の所定の方向に沿って湾曲しつつ、略放射状に配列され、かつ、自在に回転が可能なように構成された可動羽根122aと、可動羽根122aの回転中心に直結され、周知の電磁誘導あるいは圧電変換の原理に基づいて、可動羽根122aの回転エネルギーを電力に変換する発電器125と、複数の羽根が可動羽根122aの外周側に沿って、可動羽根122aとは逆方向に湾曲しつつ、略放射状に配列され、かつ、可動羽根122aに対して相対的に固定された固定羽根122bと、可動羽根122aと固定羽根122bとからなるガスタービン122への気化された発電用燃料(燃料ガス)の供給を制御する吸気制御部123と、ガスタービン122通過後の発電用燃料の排出を制御する排気制御部124と、を有して構成されている。ここで、ガスタービン122、吸気制御部123及び排気制御部124からなる副電源部11Bの構成は、半導体製造技術等により蓄積された微細加工技術をはじめとする、いわゆる、マイクロマシン製造技術を適用することにより、例えば、単一のシリコンチップ121上の微小空間に集積化して形成することができる。なお、図5(a)においては、ガスタービン122の構成を明確にするために、可動羽根122a及び固定羽根122bが便宜的に露出するように示した。

【0049】このような副電源部11Bにおいて、例えば、図5(b)に示すように、吸気制御部123を介してガスタービン122の固定羽根122b側から可動羽根122a側に、燃料パック20内に封入された液体燃料が気化した高圧の燃料ガスを吸入(矢印P2参照)することにより、固定羽根122bの湾曲方向に沿って燃料ガスの渦流が生じ、該渦流によって、可動羽根122aが所定の方向に回転して、発電器125を駆動する。これにより、燃料ガスが有する圧力エネルギーがガスタービン122及び発電器125を介して電力に変換される。

【0050】すなわち、本構成例に係る副電源部11Bに適用される発電用燃料は、少なくとも、吸気制御部123が開放されてガスタービン122に吸入される際に高圧気体の状態で吸入され、また、排気制御部124が開放されてガスタービン122内の気体が、気圧の低い方、例えば、常圧である外気に向けて排出されることに伴って生じる圧力差に基づく気体の流動により、可動羽根122aを所定の方向に所定の回転速度(又は、回転

数)で回転させ、発電器125において所定の電力を発生する。

【0051】そして、可動羽根122aの回転に寄与し、圧力が低下した(圧力エネルギーが消費された)燃料ガスは、排気制御部124を介して副電源部11Bの外部に排出される。なお、図3に示した発電モジュール10Aにおいては、副電源部11から排出された燃料ガス(排出ガス)をそのまま電源システム1の外部に排出する構成を示したが、本発明はこれに限定されるものではなく、後述する実施形態に示すように、主発電部12における発電用燃料として再度利用する構成を有するものであってもよい。

【0052】したがって、本構成例に係る副電源部11Bにおいては、燃料パック20から供給される発電用燃料(燃料ガス)FLは、必ずしも燃焼性(あるいは、可燃性)を有している必要はなく、特に、電力の生成に利用された燃料ガスを、そのまま電源システム1の外部に排出する構成にあっては、発電用燃料FLを排出ガスとして排出することを考慮すれば、不燃性又は難燃性を有し、さらに、毒性がない方が望ましい。なお、発電用燃料が燃焼性又は毒性がある成分を含む物質からなる場合は、排出ガスを外部に排出する前に難燃化や無毒化する処理が必要となることはいうまでもない。

【0053】なお、本構成例に係る副電源部11Bのように、燃料ガスの圧力エネルギーに基づいて、電力を発生する構成においては、燃料ガスが副電源部11B(ガスタービン122)内を通過するのみで、上述した燃料電池における電気化学反応のように、副生成物(水等)が発生することができないので、発電用燃料として不燃性又は難燃性であって、毒性がない物質を適用する場合や、燃焼性又は毒性を有する物質であっても、電源システム1の外部に排出する前に難燃化や無毒化する処理を行う構成を有している場合には、排出ガスを回収する手段を備える必要はない。

【0054】このような構成を有する発電装置を副電源部に適用することにより、上述した第1の構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30を介して高圧の発電用燃料(燃料ガス)FLが副電源部11B

(ガスタービン122)に自動的に送入されて、上記発電動作を開始、継続することができ、さらに、発電用燃料FLの供給が継続する限り、副電源部11Bにより所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。

【0055】(副電源部の第3の構成例)図6は、本実施形態に係る電源モジュールに適用可能な副電源部の第3の構成例を示す概略構成図である。第3の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料FLが有する圧力エネルギー(封入圧力やガス圧力)により圧力駆動機関(ロータリーエン

ジン)を駆動し、その駆動エネルギーを電力に変換する発電装置としての構成を有している。

【0056】図6に示すように、第3の構成例に係る副電源部11Cは、外周が概略、楕円型の作動空間131aを有するハウジング131と、作動空間131aの内壁に沿って中心軸133の周囲を回転する略三角形状の断面を有するローター132と、中心軸133に直結された発電器(図示を省略)と、を有して構成されている。ここで、副電源部11Cの構成は、上述した各構成例と同様に、マイクロマシン製造技術を適用することにより、例えば、ミリメートルオーダーの微小空間に集積化して形成することができる。

【0057】このような構成を有する副電源部11Cにおいて、吸気口134aからほぼ常温に保たれている作動空間131a内に液体の状態の燃料を封入すると、燃料が気化膨張するとともに、排気口134b側を低圧、例えば、常圧に制御することにより、作動空間131aの内壁とローター132により形成される各作動室間に気圧差が生じ、図6(a)~(c)に示すように、気化した燃料ガスが吸入口134aから排気口134b方向に流動することにより、燃料ガスの圧力によりローター132がその内周を中心軸133の外周に沿うように回転する(矢印P3)。これにより、燃料ガスが有する圧力エネルギーが中心軸133の回転エネルギーに変換されて、該中心軸133に接続された発電器により電力に変換される。

【0058】ここで、本構成例に適用される発電器は、上述した第2の構成例と同様に、電磁誘導や圧電変換等の周知の原理を用いた発電器を良好に適用することができる。また、本構成例においても、燃料ガスの圧力エネルギーに基づいて、電力を発生する構成を有しているので、燃料ガスは副電源部11C(ハウジング131内の作動空間131a)内を通過するのみで、電力が生成されるので、発電用燃料として必ずしも燃焼性(あるいは、可燃性)を有している必要はなく、少なくとも、副電源部11Cに供給される際の常温、常圧等の所定の環境条件の下で、気化して所定の体積に膨張されるような高圧の燃料ガスとなる物質であれば良好に適用することができる。

【0059】したがって、このような構成を有する発電装置を副電源部に適用することにより、上述した各構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30を介して高圧の発電用燃料(燃料ガス)FLが副電源部11C(作動空間131a)に自動的に送入されて、上記発電動作を開始、継続することができ、さらに、発電用燃料FLの供給が継続する限り、副電源部11Cにより所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。

【0060】(副電源部の第4の構成例)図7は、本実

施形態に係る電源モジュールに適用可能な副電源部の第4の構成例を示す概略構成図である。第4の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料FLの触媒燃焼反応に基づいて熱エネルギーを発生することにより生じる温度差を利用した熱電変換発電により電力を発生する発電装置としての構成を有している。

【0061】図7(a)に示すように、第4の構成例に係る副電源部11Dは、概略、発電用燃料FLを触媒燃焼させて熱エネルギーを発生させる触媒燃焼部141と、概ね一定の温度を保持する定温部142と、触媒燃焼部141を第1の温度端、定温部142を第2の温度端として、該第1及び第2の温度端間に接続された熱電変換素子143と、を備えた温度差発電器の構成を有している。ここで、熱電変換素子143は、図7(b)に示すように、2種類の半導体又は金属(以下、便宜的に「金属等」という)MA、MBの端部相互が接合(例えば、金属等MAの両端部に、各々金属等MBが接合)され、各接合部N1、N2が上記触媒燃焼部141(第1の温度端)及び定温部142(第2の温度端)に各々接続された構成を有している。また、定温部142は、例えば、電源システム1が装着されるデバイスDVCに設けられた開口部等を介して、常時外気に晒され、略一定の温度を保持するように構成されている。なお、図7に示した温度差発電器からなる副電源部11Dの構成は、上述した各構成例と同様に、マイクロマシン製造技術を適用することにより、微小空間に集積化して形成することができる。

【0062】このような構成を有する副電源部11Dにおいて、図7(c)に示すように、燃料パック20に封入された発電用燃料(燃焼ガス)FLがI/F部30を介して、触媒燃焼部141に供給されると、触媒燃焼反応により発熱して、触媒燃焼部141(第1の温度端)の温度が上昇する。一方、定温部142の温度は、ほぼ一定に保持されるように構成されているので、触媒燃焼部141と定温部142との間には温度差が発生する。そして、この温度差に基づいて、熱電変換素子143におけるゼーベック効果により、所定の起電力が発生して電力が生成される。

【0063】具体的には、第1の温度端(接合部N1)における温度をTa、第2の温度端(接合部N2)における温度をTb(<Ta)と規定した場合、該温度Ta、Tb間の差が微小である場合には、図7(b)に示した出力端子Oa、Ob間に、 $V_{ab} = S_{ab} \times (Ta - Tb)$ の電圧が生じる。ここで、 S_{ab} は、金属等MA、MBの相対ゼーベック係数である。

【0064】したがって、このような構成を有する発電装置を副電源部に適用することにより、上述した各構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30

を介して発電用燃料(液体燃料又は液化燃料又は気体燃料)が副電源部11D(触媒燃焼部141)に自動的に送入され、触媒燃焼反応に伴う熱エネルギーが発生し、上記温度差発電器による発電動作を開始、継続することができ、さらに、発電用燃料FLの供給が継続する限り、副電源部11Dにより所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。

【0065】なお、本構成例においては、触媒燃焼部141と定温部142における温度差に基づいて、ゼーベック効果により電力を発生する温度差発電器について説明したが、本発明は、これに限定されるものではなく、金属の加熱により金属表面から自由電子が放出される熱電子放出現象に基づいて、電力を発生する構成を有するものであってもよい。

【0066】(副電源部の第5の構成例)図8は、本実施形態に係る電源モジュールに適用可能な副電源部の第5の構成例を示す概略構成図である。第5の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料(液体燃料)FLが気化反応に基づいて熱エネルギーを吸収することにより生じる温度差を利用した熱電変換発電により電力を発生する発電装置としての構成を有している。

【0067】図8(a)に示すように、第5の構成例に係る副電源部11Eは、概略、発電用燃料(特に、液化燃料)FLを気化させた場合に熱エネルギーを吸収することにより実現される冷熱を保持する冷熱保持部151と、概ね一定の温度を保持する定温部152と、冷熱保持部151を第1の温度端、定温部152を第2の温度端として、第1及び第2の温度端間に接続された熱電変換素子153と、を備えた温度差発電器の構成を有している。ここで、熱電変換素子153は、上述した第4の構成例(図7(b)参照)に示したものと同等の構成を有している。また、定温部152は、電源システム1内外の他の領域に接触又は晒されることにより、略一定の温度を保持するように構成されている。なお、図8に示した温度差発電器からなる副電源部11Eの構成も、上述した各構成例と同様に、微小空間に集積化して形成される。

【0068】このような構成を有する副電源部11Eにおいて、図8(b)に示すように、例えば、燃料パック20に所定の圧力条件で封入された発電用燃料(液化燃料)FLがI/F部30を介して、副電源部11Eに供給され、常温、常圧等の所定の環境条件に移行することにより、発電用燃料FLが気化し、その際、周囲から熱エネルギーを吸収して、冷熱保持部151の温度が低下する。一方、定温部152の温度は、ほぼ一定に保持されるように構成されているので、冷熱保持部151と定温部152との間には温度差が発生する。そして、この温度差に基づいて、熱電変換素子153におけるゼーベ

ック効果により、上述した第4の構成例に示したものと同様に、所定の起電力が発生して電力が生成される。

【0069】したがって、このような構成を有する発電装置を副電源部に適用することにより、上述した各構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30を介して発電用燃料(液化燃料)FLが副電源部11Eに自動的に送入されて、気化反応により熱エネルギーが吸収されて冷熱が生じ、上記温度差発電器による発電動作を開始、継続することができ、さらに、発電用燃料FLの供給が継続する限り、副電源部11Eにより所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。なお、本構成例においては、冷熱保持部151と定温部152における温度差に基づいて、ゼーベック効果により電力を発生する温度差発電器について説明したが、本発明は、これに限定されるものではなく、熱電子放出現象に基づいて、電力を発生する構成を有するものであってもよい。

【0070】(副電源部の第6の構成例)図9は、本実施形態に係る電源モジュールに適用可能な副電源部の第6の構成例を示す概略構成図である。第6の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料に対する生物化学的な反応を利用して電力を発生する発電装置としての構成を有している。

【0071】図9に示すように、第6の構成例に係る副電源部11Fは、概略、発電用燃料を栄養源として成育する微生物や生体触媒(以下、便宜的に「微生物等」という)BIOが貯蔵された生体培養槽161と、該生体培養槽161内に設けられた陽極側電極161a及び陰極側電極161bと、を備えた構成を有している。このような構成において、燃料パック20からI/F部30を介して発電用燃料FLを供給することにより、上記生体培養槽161内で微生物等BIOによる呼吸等の代謝等(生物化学的反応)が生じて電子(e-)が生成される。そして、この電子を陽極側電極161aにより捕獲することにより、出力端子Oa、Obから所定の電力が得られる。

【0072】したがって、このような構成を有する発電装置を副電源部に適用することにより、上述した各構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30を介して微生物等BIOの栄養源となる発電用燃料FLが副電源部11F(生体培養槽161)に自動的に送入されて、微生物等BIOの生物化学的な反応による発電動作が開始され、さらに、発電用燃料の供給が継続する限り、所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。なお、上記生物化学的反応において、微生物等BIOによる光合成を利用して電力の生成を行う場合にあっては、例えば、電源システム1が装着されるデバイスDVCに

設けられた開口部等を介して、外光が入射するように構成することにより、所定の電力を常時自立的に生成して供給することができる。

【0073】(副電源部の第7の構成例)図10は、本実施形態に係る電源モジュールに適用可能な副電源部の第7の構成例を示す概略構成図である。第7の構成例においては、副電源部の具体例として、燃料パック20から供給される発電用燃料の流体移動により生じる振動エネルギーを電力に変換する発電装置としての構成を有している。

【0074】図10(a)に示すように、第7の構成例に係る副電源部11Gは、概略、液体又は気体からなる発電用燃料が所定方向に移動することにより、少なくとも一端側が振動可能のように構成され、その振動端171aに電磁コイル173が設けられた振動子171と、電磁コイル173に対向して永久磁石174が設けられ、発電用燃料の移動に対して振動を生じない固定子172と、を備えた振動発電器としての構成を有している。このような構成において、図10(b)に示すように、燃料パック20からI/F部30を介して発電用燃料FLを供給することにより、発電用燃料FLの流動方向に対して概ね直交する方向(図中、矢印P4)に、固定子172に対して振動子171(振動端171a)が所定の振動数で振動を生じる。この振動により永久磁石174と電磁コイル173間の相対位置に変化が生じることにより、電磁誘導が発生して、電磁コイル173を通じて所定の電力が得られる。

【0075】したがって、このような構成を有する発電装置を副電源部に適用することにより、上述した各構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30を介して流体としての発電用燃料FLが副電源部11Gに自動的に送入されて、流体移動に伴う振動子171の振動エネルギーの変換による発電動作が開始され、さらに、発電用燃料FLの供給が継続する限り、所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。

【0076】なお、上述した各構成例は、発電モジュール10Aに適用される副電源部11の一例を示したに過ぎず、本発明に係る電源システムの構成を何ら限定するものではない。要するに、本発明に適用される副電源部11は、燃料パック20に封入された液体燃料又は液化燃料又は気体燃料が直接的に供給されることにより、副電源部11内部で電気化学反応や電磁誘導、発熱、吸熱反応に伴う温度差等、エネルギーの変換作用に基づいて電力を発生することができるものであれば、他の構成を有するものであってもよく、例えば、ガスタービンやロータリーエンジン以外のガス圧力駆動エンジンと電磁誘導や圧電変換による発電器とを組み合わせたものであってもよいし、次に示すように、上述した各副電源部11

21

と同等の発電装置に付加して、電力蓄積手段（蓄電装置）を備え、副電源部11により発電された電力（第2の電力）の一部を蓄電した後、電源システム1（主発電部12）の起動時に、主発電部12又は出力制御部14に対して起動電力として供給するように構成したものも適用することもできる。

【0077】（副電源部の第8の構成例）図11

（a）、図11（b）は、本実施形態に係る電源モジュールに適用可能な副電源部の第8の構成例を示す概略構成図である。図11（a）に示すように、第8の構成例に係る副電源部11Hは、概略、燃料パック20に封入された発電用燃料（液体燃料又は液化燃料又は気体燃料）FLがI/F部30に設けられた燃料輸送管を介して毛細管現象により直接的に供給されることにより自立的に電力（第2の電力）を発生することができる発電装置（例えば、上述した各構成例に示した副電源部）181と、該発電装置181により生成された電力の一部を蓄積する2次電池又はコンデンサ等からなる電荷蓄積部182と、動作制御部13からの動作制御信号に基づいて、電荷蓄積部182への電力の蓄積、放出を切り換える設定するスイッチ183と、を備えた構成を有している。

【0078】このような構成において、燃料パックからの発電用燃料の供給が持続している間、常時駆動している発電装置181により生成された電力は、デバイスDVCのコントローラ電力及び動作制御部13の動作電力として出力されるとともに、その一部がスイッチ183を介して電荷蓄積部182に蓄積される。そして、例えば、動作制御部13が、デバイスDVCのコントローラCNTから出力される、負荷LDがオフ状態から起動してオン状態に切り替わる負荷駆動情報を端子部184を介して受け取り、デバイスDVC（負荷LD）の駆動を検出した場合には、動作制御部13から出力される動作制御信号に基づいて、スイッチ183の接続状態が切り替わり、電荷蓄積部182に蓄積されていた電力が主発電部12又は出力制御部14に対して起動電力として供給される。

【0079】したがって、このような構成を有する副電源部によれば、発電装置181により単位時間当たりに生成される電力を駆動電力特性の低いもの（微弱な電力）に設定した場合であっても、電荷蓄積部182に蓄積された電力を瞬時に放出することにより、主発電部12又は出力制御部14に対して、十分に駆動電力特性が高い電力を供給することができる。よって、発電装置181の発電能力を十分小さいものに設定することができる、副電源部11の構成を小型化することができる。

【0080】また、図11（b）に示すように発電装置181を省略して予めチャージアップされた電荷蓄積部182のみを副電源部として構成するようにしてもよ

22

い。電荷蓄積部182は、コントローラCNTへのコントローラ電力及び負荷LDへの負荷駆動電力を供給する機能を有する。負荷LDでの負荷駆動電力の消費に伴い電荷蓄積部182の電荷蓄積量が所定の量まで減衰することを動作制御部13が検知したら、電荷蓄積部182と、出力制御部14及び主発電部12との間で起動制御部として機能するスイッチ183が閉じて、電荷蓄積部182が出力制御部14及び主発電部12に駆動電力を供給する。次いで、駆動開始した出力制御部14が主発電部12に燃料等を供給し、主発電部12は発電して電荷蓄積部182をチャージアップさせる。そして、動作制御部13からの動作制御信号に基づいてスイッチ183を切り替えると、電荷蓄積部182で蓄積された電荷が負荷駆動電力として負荷LDに出力される。電荷蓄積部182で蓄積された電荷になれば主発電部12の発電は停止する。このような構造にすれば、デバイスDVCのコントローラCNTから負荷駆動情報を得ることなしに電荷蓄積部182の電荷の蓄積状態のみで主発電部12が発電及び発電の停止を行うので、端子部184及び起動制御部15が不要となり、デバイスDVCもコントローラCNTから負荷駆動情報を提供する構造でなくてもよい。

【0081】上記実施形態では、スイッチ182は電荷蓄積部182から主発電部12及び出力制御部14への電力供給並びに主発電部12から電荷蓄積部182への電荷の蓄積と、電荷蓄積部182から負荷LDへの負荷駆動電力の供給と、に切り替えたが、電荷蓄積部182から主発電部12及び出力制御部14への電力供給並びに主発電部12から電荷蓄積部182への電荷の蓄積と、主発電部12から負荷LDへの負荷駆動電力の直接供給と、に切り替えてよい。

【0082】<主発電部12>本実施形態に係る発電モジュールに適用される主発電部12は、図3に示したように、動作制御部13による起動制御に基づいて、燃料パック20から供給される発電用燃料FLが有する物理的又は化学的エネルギー等を用いて、デバイスDVC（負荷LD）を駆動するために必要な所定の電力（第1の電力）を発生する構成を有している。主発電部12の具体的な構成としては、例えば、燃料パック20から供給される発電用燃料FLを用いた電気化学反応によるもの（燃料電池）や、燃焼反応に伴う熱エネルギーによるもの（温度差発電）、燃焼反応等に伴う圧力エネルギーを用いて発電器を回転させて電力を発生する力学的なエネルギー変換作用等によるもの（内燃、外燃機関発電）、また、発電用燃料FLの流体エネルギーや熱エネルギーを電磁誘導の原理等を利用して電力に変換するもの（電磁流体力学発電、熱音響効果発電等）等、種々の形態を適用することができる。

【0083】ここで、主発電部12により生成される電力（第1の電力）は、デバイスDVC全体の各種機能

(負荷LD)の駆動を行う主電源であるため、駆動電力11により生成され、デバイスDVCのコントローラ電力や動作制御部13、残量検出部16の動作電力等となる電力(第2の電力)とはその性質を異にする。

【0084】以下に、各々の具体例について、図面を参考して簡単に説明する。

(主発電部の第1の構成例) 図12は、本実施形態に係る電源モジュールに適用可能な主発電部の第1の構成例を示す概略構成図であり、図13は、本構成例に係る主発電部に適用される燃料改質部における水素生成過程を示す概念図である。ここでは、上述した電源システムの構成(図3)を適宜参照しながら説明する。第1の構成例においては、主発電部の具体例として、燃料パック20から出力制御部14を介して供給される発電用燃料FLを用い、電気化学反応により電力を発生する燃料改質方式を採用した固体高分子型の燃料電池の構成を有している。

【0085】図12に示すように、主発電部12Aは、大別して、燃料パック20から供給される発電用燃料FLに対して所定の改質反応を利用して、発電用燃料FLに含有される所定の燃料成分(水素)を抽出する燃料改質部(燃料改質器)210aと、燃料改質部210aにより抽出された燃料成分を利用して電気化学反応によ

【0086】ここで、図13(b)に示すように、水蒸気改質反応において副生成物として生成される一酸化炭素(CO)を除去するための選択酸化触媒部210cを燃料改質部210aの後段に付設して、水性シフト反応(CO)を二酸化炭素(CO₂)及び水素(H₂)に変

【0087】さらに、選択酸化反応過程において、水性シフト反応により二酸化炭素(CO₂)と水素(H₂)に変換されなかった一酸化炭素(CO)に対して酸素★

上記一連の燃料改質反応により生成される水素以外の微量の生成物(主に、二酸化炭素)は、発電モジュール10Aに設けられた排出孔(図示を省略; 具体構成例において後述する)を介して、大気中に排出される。なお、このような機能を有する燃料改質部の具体的な構成については、他の構成とともに、後述する具体構成例について詳しく説明する。

【0088】燃料電池本体210bは、図12に示すように、上述した副電源部11に適用される燃料直接供給方式の燃料電池と同様に、概略、例えば、白金やパラジウム、さらには白金・ルテニウム等の触媒微粒子が付着した炭素電極からなる燃料極(カソード)211と、白金等の触媒微粒子が付着した炭素電極からなる空気極(アノード)212と、燃料極211と空気極212の

*り、負荷214(負荷LD)を駆動するための所定の電力(第1の電力)を発生する燃料電池本体210bと、を有して構成されている。

【0089】燃料改質部210aは、図13(a)に示すように、概略、燃料パック20から出力制御部14を介して供給される発電用燃料FLに対して、蒸発及び水蒸気改質反応からなる各過程を介して、燃料成分を抽出し、燃料電池本体210bに供給する。例えば、メタノール(CH₃OH)及び水(H₂O)を発電用燃料FLとして、水素ガス(H₂)を生成する場合にあっては、まず、蒸発過程において、液体燃料であるメタノール及び水をヒータで概ね100℃以上に加熱することにより、メタノール(CH₃OH)及び水(H₂O)を気化させる。

【0090】次いで、水蒸気改質反応過程においては、上記気化したメタノール(CH₃OH)及び水(H₂O)をヒータで概ね300℃若しくはそれ以上の温度に加熱することにより、49.4 kJ/molの熱エネルギーを吸熱して、次の化学反応式(3)に示すように、水素(H₂)と微量の二酸化炭素(CO₂)が生成される。なお、この水蒸気改質反応においては、水素(H₂)と二酸化炭素(CO₂)以外に副生成物として微量の一酸化炭素(CO)が生成される場合がある。

CH₃OH + H₂O → 3H₂ + CO₂ ··· (3)
※換して、有害物質の排出を抑止するように構成してもよい。具体的には、水性シフト反応過程において、一酸化炭素(CO)に対して水(水蒸気; H₂O)を反応させることにより40.2 kJ/molの熱エネルギーを発熱して、次の化学反応式(4)に示すように、二酸化炭素(CO₂)と水素(H₂)が生成される。

CO + H₂O → CO₂ + H₂ ··· (4)
★(O₂)を反応させることにより283.5 kJ/molの熱エネルギーを発熱して、次の化学反応式(5)に示すように、二酸化炭素(CO₂)が生成される。

CO + (1/2)O₂ → CO₂ ··· (5)
間に介装されたフィルム状のイオン導電膜(交換膜)213と、を有して構成されている。ここで、燃料極211には、後述する出力制御部14により供給量が制御された発電用燃料FLから、上記燃料改質部210aにより抽出された水素ガス(H₂)が供給され、一方、空気極212には大気中の酸素ガス(O₂)が供給される。これにより、以下に示す電気化学反応により発電が行われ、負荷214(デバイスDVCの負荷LD)に対して所定の駆動電力(電圧・電流)となる電力が供給される。

【0091】本構成例に係る主発電部12における電気化学反応の一例は、具体的には、燃料極211に水素ガス(H₂)が供給されると、次の化学反応式(6)に示すように、燃料極211における触媒反応により電子

発生する構成を適用した場合について説明したが、本実施形態に係る発電モジュールにおいては、副電源部が燃料パック20に封入された発電用燃料FLを用いることなく、所定の電力を常時、自立的に発生する構成を有している。

【0206】具体的には、図23に示すように、本実施形態に係る発電モジュール10Cは、上述した第1の実施形態(図3参照)と同様の構成及び機能を有する主発電部12と、動作制御部13と、出力制御部14と、起動制御部15と、残量検出部16と、を備えるとともに、燃料パック20に封入された発電用燃料FLを用いることなく、所定の電力(第2の電力)を常時、自立的に発生する副電源部11を備えた構成を有している。副電源部11の具体的な構成としては、例えば、電源システム1の周辺環境における温度差に基づく熱電変換によるもの(温度差発電)のほか、電源システム1の外部から入射する光エネルギーに基づく光電変換によるもの(太陽光発電)等を良好に適用することができる。

【0207】以下に、本実施形態に係る副電源部の具体例を図面を参照して簡単に説明する。

(第1の構成例) 図24は、本実施形態に係る電源モジュールに適用可能な副電源部の第1の構成例を示す概略構成図である。第1の構成例においては、副電源部の具体例として、電源システム1内外の周辺環境における温度差を利用して熱電変換発電により電力を発生する発電装置としての構成を有している。

【0208】図24(a)に示すように、第1の構成例に係る副電源部11Sは、例えば、電源システム1の一端側に設けられた第1の温度保持部311と、電源システム1の他端側に設けられた第2の温度保持部312と、第1の温度保持部311側に一端側が接続されるとともに、第2の温度保持部312側に他端側が接続された熱電変換素子313と、を備えた温度差発電器の構成を有している。ここで、第1及び第2の温度保持部311、312は、電源システム1内外の周辺環境の温度状態に応じて、その保持する熱量が随時変化するように構成されているとともに、第1及び第2の温度保持部311、312における温度が相互に異なるように、配置位置が設定されている。

【0209】具体的には、例えば、第1及び第2の温度保持部311、312のいずれか一方が、電源システム1が装着されるデバイスDVCに設けられた開口部等

(図示を省略)を介して、常時外気に晒され、定温に保持されるようにした構成を適用することができる。また、熱電変換素子313は、上述した第1の実施形態における第4の構成例(図7(b)参照)に示したものと同等の構成を有している。なお、本構成例においても、温度差発電器からなる副電源部11Sの構成は、上述した実施形態に示した構成と同様に、マイクロマシン製造技術を適用することにより、微小空間に集積化して形成

することができる。

【0210】このような構成を有する副電源部11Sにおいて、図24(b)に示すように、電源システム1の周辺環境における温度分布の偏りに伴って、第1及び第2の温度保持部311、312間に温度勾配が生じることにより、熱電変換素子313におけるゼーベック効果により、該温度勾配による熱エネルギーに応じた起電力が発生して電力が生成される。

【0211】したがって、このような構成を有する発電装置を副電源部に適用することにより、電源システム1の周辺環境において温度分布の偏りが存在する限り、副電源部11Sにより所定の電力が常時、自立的に生成され、電源システム1内外の各構成に供給することができる。また、この構成によれば、燃料パック20に封入された発電用燃料FLの全てを主発電部12における電力(第1の電力)の生成に利用することができるので、発電用燃料FLの効率的な消費を実現することができるとともに、負荷駆動電力としての電力を長期にわたってデバイスDVCに供給することができる。なお、本構成例においては、周辺環境における温度分布の偏りに対して、ゼーベック効果により電力を発生する温度差発電器について説明したが、本発明は、これに限定されるものではなく、金属の加熱により金属表面から自由電子が放出される熱電子放出現象に基づいて、電力を発生する構成を有するものであってもよい。

【0212】(非燃料型副電源部の第2の構成例) 図25は、本実施形態に係る電源モジュールに適用可能な副電源部の第2の構成例を示す概略構成図である。第2の構成例においては、副電源部の具体例として、電源システム1の外部から入射する光エネルギーを利用して光電変換発電により電力を発生する発電装置としての構成を有している。

【0213】図25(a)に示すように、第1の構成例に係る副電源部11Tは、例えば、p型半導体321とn型半導体322を接合させた周知の光電変換セル(太陽電池)を備えた構成を有している。このような光電変換セルに所定の波長の光(光エネルギー)LTが照射されると、光起電力効果によりp-n接合部323付近において電子-正孔対が発生し、光電変換セル内の電界によって分極した電子(-)がn型半導体322に、また、正孔(+)がp型半導体321に拡散(ドリフト)してp型半導体321及びn型半導体322の各々に設けられた電極間(出力端子Oe、Of間)に起電力が発生して電力が生成される。

【0214】ここで、一般に、既存のデバイスにおける電池(又は、電源ユニット)の収納スペースは、デバイスの背面側等の光エネルギー(具体的には、太陽光や照明光)が入射しにくい位置に配置されており、デバイス内部に完全に収納する構成を有していたりするため、副電源部に対して光が十分に入射しない可能性がある。

そこで、本構成例に係る副電源部11Tを適用した電源システム1を、デバイスDVCに装着する場合にあっては、図25(b)に示すように、少なくとも、副電源部11T又は発電モジュール10C部分に外光LTの入射が可能なように、デバイスDVCに予め開口部(又は、光透過部)HLを設けた構成や、デバイスDVCの筐体を透明もしくは半透明の光透過性の部材により構成することにより、副電源部11Tにおいて所定の電力を発生するために必要な最低限の光エネルギー(所定の波長の光)が入射するような構成を適用する必要がある。

【0215】したがって、このような構成を有する発電装置を副電源部に適用することにより、デバイスDVCを屋外や屋内等の所定の光エネルギーが入射する環境の下で使用する限り、副電源部11Tにより所定の電力が常時、自立的に生成され、電源システム1内外の各構成に供給することができる。また、この構成によれば、燃料パック20に封入された発電用燃料FLの全てを主発電部12における電力(第1の電力)の生成に利用することができるので、発電用燃料FLの効率的な消費を実現することができる。なお、本構成例においては、図25(a)において、光電変換セル(太陽電池)の最も基本的な構成のみを示したが、本発明は、これに限定されるものではなく、より発電効率の高い他の構成や原理に基づくものを適用するものであってもよい。

【0216】<副生成物回収手段>次に、上述した各実施形態に係る電源システムに適用可能な副生成物回収手段について、図面を参照して説明する。図26は、本発明に係る電源システムに適用可能な副生成物回収手段の一実施例を示すブロック図である。ここで、上述した各実施形態と同等の構成については、同一の符号を付して、その説明を簡略化又は省略する。

【0217】上述した各実施形態において、主発電部12や副電源部11として、燃料パック20に封入された発電用燃料FLを用いて、電気化学反応や燃焼反応等により所定の電力を発生する構成(上記各構成例に示した主発電部や副電源部)を適用した場合にあっては、電力以外に副生成物が排出される場合がある。このような副生成物の中には、自然界に排出されることにより環境汚染の原因となる物質や、電源システムが装着されているデバイスの動作不良の原因となる物質を含む場合もあるため、このような副生成物の排出を極力抑制する必要性から、以下に示すような副生成物回収手段を備えた構成を適用することが好ましい。

【0218】本発明に係る電源システムに適用可能な副生成物回収手段は、図26に示すように、上述した各実施形態と同等の構成及び機能を有する発電モジュール10D、燃料パック20D及びI/F部30Dにおいて、例えば、発電モジュール10D内に、主発電部12における電力の発生に際して生成される副生成物の全部又はその一部の成分を回収する分離回収部17が設けられて

いるとともに、燃料パック20D内に、上記回収された副生成物を固定的に保持する回収保持部21が設けられた構成を有している。なお、ここでは、主発電部12において生成される副生成物を回収する場合についてのみ詳しく述べるが、副電源部11に対しても同様に適用が可能であることはいうまでもない。

【0219】分離回収部17は、上述した各構成例に示した構成を有し、燃料パック20Dから供給される発電用燃料FLを用いた電気化学反応や燃焼反応等により、少なくとも、電源システム1が装着されたデバイスDVCに対して、負荷駆動電力(電圧・電流)となる電力を発生する主発電部12(副電源部11を含むものであってもよい)において、該電力の発生の際に生成される副生成物、もしくは、該副生成物のうち特定の成分を分離して、I/F部30Dに設けられた副生成物回収経路を介して、燃料パック20D内に設けられた回収保持部21に送出する。

【0220】なお、上述した各構成例を適用した主発電部12(副電源部11を含むものであってもよい)において、電力を発生する際に生成される副生成物としては、水(H₂O)や窒素酸化物(NO_x)、硫黄酸化物(SO_x)等があり、これらの全て、又は、その一部、もしくは、特定の成分のみが分離回収部17により回収されて副生成物回収経路に送出される。なお、回収された副生成物が液体状態の場合には、例えば、副生成物回収経路の内径を連続的に変化するように形成することにより、毛細管現象を利用して分離回収部17から回収保持部21へ副生成物を自動的に送出することができる。

【0221】また、回収保持部21は、燃料パック20Dの内部、又は、その一部に設けられ、燃料パック20Dが発電モジュール10Dに結合された状態においてのみ、上記分離回収部17により回収された副生成物の送入、保持が可能となるように構成されている。すなわち、燃料パック20Dが発電モジュール10Dに対して着脱可能に構成された電源システムにおいては、燃料パック20Dが発電モジュール10Dから分離された状態で、回収、保持された副生成物又は特定の成分が燃料パック20Dの外部に漏出もしくは排出されないように、回収保持部21に固定的又は不可逆的に保持されるよう構成されている。

【0222】ここで、上述したように、主発電部12における電力の生成により、水(H₂O)や窒素酸化物(NO_x)、硫黄酸化物(SO_x)が副生成物として生成される場合にあっては、水(H₂O)は常温常圧下で液体状態であるので、副生成物回収経路を介して、回収保持部21に良好に送出されるが、窒素酸化物(NO_x)や硫黄酸化物(SO_x)等のように、気化点が常圧で概ね常温未満であり、気体状態にある副生成物の場合には、体積が膨大になり、予め設定された回収保持部21の容積を超過する可能性があるので、分離回収部1

7内及び回収保持部21内の気圧を高くすることにより、回収された副生成物を液化して当該体積を縮小して回収保持部21に保持されるように構成してもよい。

【0223】したがって、回収保持部21の具体的な構成としては、上記回収された副生成物や特定の成分を不可逆的に吸収、吸着固定、定着等することができる構成、例えば、回収保持部21内に吸収ポリマーが充填された構成や、上述した燃料パック20に備えられた燃料漏出防止手段と同様に、回収保持部21の内部圧力やバネ等の物理的な圧力等により閉止する制御弁等の回収物漏出防止手段を備えた構成を良好に適用することができる。

【0224】そして、このような構成を有する副生成物回収手段を備えた電源システムにおいて、図12に示したような燃料改質方式の燃料電池を主発電部12Aに適用した場合にあっては、燃料改質部210aにおける水蒸気改質反応、水性シフト反応及び選択酸化反応（化学反応式（1）～（3））に伴って、水素ガス（H₂）とともに生成される二酸化炭素（CO₂）、及び、燃料電池本体210bにおける電気化学反応（化学反応式

（6）、（7））に伴って、電力（第1の電力）の発生とともに生成される水（H₂O）が、副生成物として主発電部12から排出されることになるが、二酸化炭素（CO₂）の排出量は極めて微量であり、デバイスへの影響もほとんどないため、非回収物質として電源システム外に排出され、一方、水（H₂O）等が分離回収部17により回収されて、例えば、毛細管現象等を利用して副生成物回収経路を介して、燃料パック20D内の回収保持部21に送出され、不可逆的に保持される。

【0225】ここで、主発電部12（燃料電池本体）における電気化学反応（化学反応式（2）、（3））は、概ね60～80℃程度で進行するため、主発電部12において生成される水（H₂O）は、ほぼ水蒸気（気体）の状態で排出される。そこで、分離回収部17は、例えば、主発電部12から排出される水蒸気を冷却することにより、あるいは、圧力を加えることにより、水（H₂O）の成分のみを液化して、他の気体成分から分離することにより回収する。

【0226】なお、本実施例においては、少なくとも、主発電部12の構成として燃料改質方式の燃料電池を適用し、発電用燃料としてメタノール（CH₃OH）を適用した場合を示したため、電力の発生に伴う副生成物の大半が水（H₂O）であって、その他、微量の二酸化炭素（CO₂）を電源システム外に排出することにより、分離回収部17における特定の成分（すなわち、水）の分離、回収を比較的簡単に実現することができるが、発電用燃料としてメタノール以外の物質を適用した場合や、主発電部12として燃料電池以外の構成を適用した場合には、水（H₂O）とともに、例えば、比較的大量の二酸化炭素（CO₂）や窒素酸化物（NO_x）、硫黄

酸化物（SO_x）等が生成される場合もある。このような場合には、分離回収部17において上述した分離方法により、例えば、液体である水と、その他の大量に生成される特定の気体成分（二酸化炭素等）を分離した後、燃料パック20D内に設けられた單一又は複数の回収保持部21に、合一又は個別に保持するようにしてよい。

【0227】このように、本実施例に係る副生成物回収手段を適用した電源システムによれば、発電モジュール10Dにより電力を発生する際に生成される副生成物のうち、少なくとも1成分が燃料パック20D内に設けられた回収保持部21に不可逆的に保持されることにより、電源システム外部への排出又は漏出が抑制されるので、副生成物（例えば、水）によるデバイスDVCの動作不良や劣化等の発生を防止することができるとともに、副生成物を保持した燃料パック20Dを回収することにより、該副生成物を自然環境に負担を与えない方法で適切に処理して、副生成物（例えば、二酸化炭素）による自然環境の汚染や地球温暖化等を防止することができる。

【0228】なお、上述したような分離回収方法により回収された副生成物は、以下に示すような保持動作により回収保持部内に不可逆的に保持される。図27は、本実施例に係る副生成物回収手段による副生成物の保持動作を示す概略図である。ここで、上述した各実施形態と同等の構成については、同一の符号を付して、その説明を簡略化又は省略する。

【0229】図27（a）に示すように、本実施例に係る燃料パック20Dは、一定の容積を有し、例えば、メタノール等の発電用燃料FLが封入、充填された燃料封入空間22Aと、分離回収部17から送出される水等の副生成物が保持される回収保持空間22Bと、後述するように、回収保持空間22Bの容積を相対的に可変し、回収保持空間22Bを燃料封入空間22Aから隔離する回収袋23と、燃料封入空間22Aに封入された発電用燃料FLを出力制御部14に供給する燃料供給弁24Aと、分離回収部17から送出される副生成物を回収保持空間22Bに取り込むための副生成物取込弁24Bと、を有して構成されている。

【0230】ここで、燃料供給弁24A及び副生成物取込弁24Bは、上述したように、いずれも、燃料パック20DがI/F部30Dを介して発電モジュール10Dに結合された状態でのみ、発電用燃料FLの供給や副生成物の取り込みが可能となるように、例えば、燃料パック20D内部の発電用燃料FLや副生成物の圧力やバネ等の物理的な圧力等により閉止する制御弁の機能を備えた構成を有している。なお、上述したように、副生成物取込弁24Bに制御弁の機能を設ける替わりに、回収保持空間22Bに吸収（吸水）ポリマー等を充填した構成を有するものであってもよい。

【0231】このような構成を有する燃料パック20Dにおいて、図27(a)に示すように、燃料封入空間22Aに封入された発電用燃料が燃料供給弁24Aを介して発電モジュール10D(主発電部12、副電源部11)に供給されることにより、所定の電力を発生する動作が実行されるとともに、上記分離回収部17により電力の発生に伴って生成された副生成物のうち、特定の成分(例えば、水)のみが分離、回収されて、副生成物回収経路及び副生成物取込弁24Bを介して回収保持空間22Bに取込、保持される。

【0232】これにより、図27(b)、(c)に示すように、燃料封入空間22Aに封入された発電用燃料FLの容積が減少するとともに、相対的に、回収保持空間22Bに保持される特定の成分又は物質の容積が増大する。このとき、回収保持空間22Bに吸収ポリマー等を充填した構成を適用することにより、回収され、取り込まれた副生成物の実質的な容積に比較して、より大きな容積を有するように回収保持空間22Bの容積を制御することができる。

【0233】したがって、燃料封入空間22Aと22Bの関係は、発電モジュール10における電力の発生(発電)動作に伴って、単に、相対的に増減するだけでなく、回収保持空間22Bに保持された副生成物の量に応じて、図27(b)に示すように、所定の圧力で回収袋23を外方に押圧することにより、燃料封入空間22Aに封入された発電用燃料FLに圧力が印加されることになるので、発電モジュール10Dへの発電用燃料FLの供給を適切に行うことができ、図27(c)に示すように、回収保持空間22Bに保持される副生成物により、燃料封入空間22Aに封入された発電用燃料FLをほぼ完全になくなるまで供給することができる。

【0234】なお、本実施例においては、発電モジュール10Dに付設された分離回収部17により分離、回収した副生成物の全て又は一部を回収して燃料パック20D内に保持するとともに、非回収物質を電源システム1外に排出する場合について説明したが、回収された副生成物(例えば、水)の全部又は一部を発電モジュール10D(特に、主発電部12、副電源部11)における電力の発生の際の燃料成分として再利用する構成を有するものであってもよい。

【0235】具体的には、主発電部12(副電源部11を含むものであってもよい)として、燃料電池からなる発電装置を適用した構成にあっては、水が副生成物の一部として生成されるが、上述したように、燃料改質方式の燃料電池においては、発電用燃料の水蒸気改質反応等において水を必要とするので、図26中、点線矢印で示すように、回収された副生成物のうち、水の一部を主発電部12に供給して、これらの反応に再利用するように構成することができる。これによれば、水蒸気改質反応等のために発電用燃料FLとともに燃料パック20Dに

予め封入しておく水の量、また、回収保持部21に保持される副生成物(水)の量を削減することができるので、一定の容量の燃料パック20Dに対してより多くの発電用燃料FLを封入することができ、電源システムとしての電力供給能力の向上を図ることができる。

【0236】<燃料安定化手段>次に、上述した各実施形態に係る電源システムに適用可能な燃料安定化手段について、図面を参照して説明する。図28は、本発明に係る電源システムに適用可能な燃料安定化手段の一実施例を示すブロック図である。ここで、上述した各実施形態と同等の構成については、同一の符号を付して、その説明を簡略化又は省略する。

【0237】本発明に係る電源システムに適用可能な燃料安定化手段は、図28に示すように、上述した各実施形態と同等の構成及び機能を有する発電モジュール10F、燃料パック20F及びI/F部30Fにおいて、I/F部30F又は燃料パック20Fのいずれか(ここでは、燃料パック20F)に、燃料パック20Fに封入された発電用燃料FLの封入状態(温度、圧力等)を検知して、該封入状態が所定のしきい値を超過した場合に、燃料パック20Fから発電モジュール10F(副電源部11、主発電部12)への発電用燃料FLの供給を停止する供給制御弁25と、燃料パック20F内の発電用燃料FLの封入状態(温度、圧力等)を検知して、該封入状態を所定の安定化状態に制御する圧力制御弁26が設けられた構成を有している。

【0238】供給制御弁25は、燃料パック20Fに封入された発電用燃料FLの温度が所定のしきい値を超過して上昇することにより自動的に作動して、燃料送出経路への発電用燃料FLの送出を遮断する。具体的には、発電用燃料FLの温度の上昇に伴って燃料パック20F内の圧力が上昇することにより、弁が閉じる制御弁を良好に適用することができる。また、圧力制御弁26は、燃料パック20Fに封入された発電用燃料FLの温度の上昇に伴って、燃料パック20F内の圧力が所定のしきい値を超過して上昇することにより自動的に作動して、燃料パック20F内の圧力を低下させる。具体的には、燃料パック20F内の圧力が上昇することにより、弁が開く圧力開放弁(リリース弁)を良好に適用することができる。

【0239】これにより、例えば、電源システムをデバイスDVCに装着した状態で、発電モジュール10Fにおける電力の生成やデバイスの負荷の駆動に伴う発熱等により、燃料パック20F内の温度や圧力が上昇した場合には、自動的に発電用燃料FLの供給停止動作、圧力開放動作が行われるので、発電用燃料FLの封入状態を安定化することができる。

【0240】そして、上述した電源システムの全体動作(図20参照)において、電源システムを起動動作する場合に、動作制御部13は、事前に供給制御弁25の動

61

作状態、すなわち、燃料パック20Fからの発電用燃料FLの供給状態を参照し、発電用燃料FLが正常に供給されているか否かを判断した後、当該動作を実行する。ここで、上述した燃料安定化手段（特に、圧力制御弁26）による発電用燃料FLの封入状態の安定化動作にも関わらず、発電用燃料FLの供給遮断が検出された場合には、動作制御部13は、デバイスDVCに内蔵されたコントローラCNTに対して、発電用燃料FLの封入異常にに関する情報を出力して、デバイスDVCの使用者に通知する。

【0241】また、上述した電源システムの全体動作（図20参照）において、電源システムの定常動作（ファードバック制御）を継続する場合に、動作制御部13は、供給制御弁25の動作状態、すなわち、燃料パック20Fからの発電用燃料FLの供給状態を逐次参照し、燃料安定化手段（特に、圧力制御弁26）による安定化動作にも関わらず、発電用燃料FLの供給遮断が検出された場合、もしくは、デバイスDVCへの負荷駆動電力の急激な低下を負荷駆動情報として受け取った場合は、動作制御部13は、発電用燃料FLの封入異常にに関する情報をデバイスDVCに内蔵されたコントローラCNTに対して出力して、デバイスDVCの使用者に通知する。

【0242】これにより、燃料パック20F内の発電用燃料FLの封入条件（温度、圧力等）の異常に起因する発電用燃料FLの変質や発電モジュール10Fにおける動作異常（例えば、出力電圧不良）、燃料パック20Fから電源システム1外部への発電用燃料FLの漏出等の発生を迅速に検出して、燃焼性を有する発電用燃料FLの安全性を確保した信頼性の高い電源システムを提供することができる。

【0243】<外形形状>次に、本発明に係る電源システムに適用可能な外形形状について、図面を参照して説明する。図29は、本発明に係る電源システムに適用可能な外形形状の具体例を示す概略構成図であり、図30は、本発明に係る電源システムに適用される外形形状と、汎用の化学電池の外形形状との対応関係を示す概念図である。

【0244】上述したような構成を有する電源システムにおいて、燃料パック20をI/F部30を介して発電モジュール10に結合した状態、又は、これらを一体的に構成した状態における外形形状は、例えば、図29に示すように、JIS規格に則った汎用の化学電池に多用されている円形電池41、42、43や、特殊形状の電池（非円形電池）44、45、46の規格に則って、これらのいずれかと同等の外形形状及び寸法を有するように形成されるとともに、上述した発電モジュール10の副電源部11又は主発電部12により生成される電力（第1及び第2の電力）が、図29に示す各電池形状の正極（+）及び負極（-）の電極端子を介して出力さ

62

れるように構成されている。

【0245】具体的には、例えば、燃料電池を適用した主発電部（図12参照）においては、燃料電池本体210bの燃料極211が負極端子に、また、空気極212が正極端子に電気的に接続された構成を有している。また、ガス燃焼エンジンやロータリーエンジン等の内燃、外燃機関と電磁誘導等を利用した発電器（図14乃至図16参照）とを組み合わせた構成や、温度差発電器やMHD発電器を適用した主発電部（図17、図18参照）においては、各々の発電器の出力端子が正極端子及び負極端子に電気的に接続された構成を有している。

【0246】ここで、円形電池41、42、43は、具体的には、市販のマンガン乾電池やアルカリ乾電池、ニッケル・カドミウム電池、リチウム電池等に最も多用され、対応する機器も多いシリンドラ型（円柱型：図29(a)）や、腕時計等に利用されるボタン型（図29(b)）、カメラや電子手帳等に利用されるコイン型（図29(c)）等の外形形状を有している。

【0247】一方、非円形電池44、45、46は、具体的には、コンパクトカメラやデジタルスチルカメラ等、使用する機器の形状等に対応して個別に設計（カスタマイズ）された特殊形状（図29(d)）や、携帯音響機器や携帯電話等の小型薄型化に対応した角形（図29(e)）、平型（図29(f)）等の外形形状を有している。

【0248】なお、上述したように、本発明に係る電源システムに搭載される発電モジュール10の各構成は、既存のマイクロマシン製造技術を適用することにより、例えば、ミリメートルオーダー乃至ミクロンオーダーにマイクロチップ化、あるいは、マイクロプラント化することができる。また、発電モジュール10の主発電部12として、例えば、高いエネルギー利用効率を実現することができる燃料電池やガス燃焼タービン等を適用することにより、既存の化学電池と同等（又は、それ以上）の電池容量を実現するために必要となる発電用燃料の量を比較的の少量に抑制することができる。

【0249】したがって、本実施形態に係る電源システムにおいて、図29に示した既存の電池形状を良好に実現することができ、例えば、図30(a)、(b)に示すように、燃料パック20を発電モジュール10に結合した状態、又は、両者を一体的に構成した状態における外形寸法（例えば、長さLa、直径Da）が、図30(c)に示すような汎用の化学電池47の外形寸法（例えば、長さLp、直径Dp）と略同等になるように構成することができる。

【0250】なお、図30においては、本発明に係る電源システムの着脱構造（結合関係）と外観形状との関係を概念的に示したものにすぎず、具体的な電極構造等を考慮したものではない。本発明に係る電源システムに各電池形状を適用した場合の、発電モジュール10及び燃

料パック20の着脱構造と、電極構造との関係については、後述する実施例において詳しく説明する。

【0251】また、図29に示した外形形状はいずれも、JIS規格に則って市販、又は、デバイスに付属して流通、販売されている化学電池の一例であって、本発明の適用が可能な構成例のごく一部を示したものに過ぎない。すなわち、本発明に係る電源システムに適用可能な外形形状は、上記具体例以外であってもよく、例えば、世界各国で流通、販売されている化学電池、あるいは、将来実用化が予定されている化学電池の形状に合致し、さらには、電気的特性をも合致するように設計することができることはいうまでもない。

【0252】次いで、本発明に係る電源システムに上述した各電池形状を適用した場合の発電モジュール10及び燃料パック20の着脱構造と、電極構造との関係について、図面を参照して詳しく説明する。

(着脱構造の第1の実施例) 図31(a)～図31(d)及び図31(e)～図31(h)は、それぞれ本発明の第1の実施例に係る電源システムの燃料パック及びホルダー部を上方向、前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図32は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略する。

【0253】図31(a)～図31(d)及び図31(e)～図31(h)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック51と、該燃料パックが着脱可能に構成されたホルダー部52と、を備えて構成されている。ここで、燃料パック51は、上述した各実施形態と同等の構成及び機能を有しているので、その説明を省略する。

【0254】ホルダー部52は、上述した各実施形態と同等の構成を有する発電モジュール10Xが収納され、正極端子EL(+)が設けられた発電部52aと燃料パック51との間に介在するI/F部として機能し、大別して、負極端子EL(-)が設けられた対向部52bと、発電部52aと対向部52bを連結するとともに、発電部52aと負極端子EL(-)を電気的に接続する連結部52cと、を有して構成されている。ここで、発電部52a、対向部52b及び連結部52cにより囲まれた貫通した空間SP1が、上記燃料パック51を結合した際の収納位置となる。さらに、ホルダー部52は、対向部52bの当接部分の周囲にバネ材等の弾性を有し、中央に孔を有する凸部52dと、凸部52dの孔及び発電モジュール10の副生成物供給経路17aを連結する副生成物回収経路52eと、を備えている。

【0255】このような構成を有する電源システムにおいて、図32(a)に示すように、発電部、対向部及び連結部により構成される空間SP1に対して、燃料パッ

ク51の燃料供給弁24A(詳しくは、図39において後述する)が設けられた燃料送出口(一端側)51aをホルダー部52に当接させて支点とし、燃料パック51の他端側51bを旋回させて押し込むことにより(図中、矢印P9)、図32(b)に示すように、該燃料パック51の底部(他端側)51bが対向部52bに当接して、燃料パック51が空間SP1に収納される。このとき、燃料送出経路となる燃料送出管52f(詳しくは、図39において後述する)が、バネで姿勢が固定されている燃料供給弁24Aを押し下げることにより燃料パック51の漏出防止機能を解除して、燃料パック51に封入された発電用燃料F1が毛細管52g(詳しくは、図39において後述する)内及び燃料送出管52f内での表面張力により自動的に搬送されて、発電モジュール10Xに供給される。

【0256】ここで、電源システムは、燃料パック51が空間SP1に収納され、ホルダー部52に結合された状態において、例えば、上述した円柱形状の汎用の化学電池(図29(a)、図30(c)参照)と略同等の外形形状及び寸法を有するように構成されている。また、このとき、燃料パック51が空間SP1に正常に収納された状態で、燃料パック51の燃料送出口51aが発電部52a側の燃料送出経路に良好に当接して接続するよう、燃料パック51の他端側51bを適当な力で押圧するとともに、燃料パック51がホルダー部52から不意に脱落することを防止するために、燃料パック51の他端側51bと対向部52bの当接部分が適当な押圧力で係合するように構成されていることが望ましい。

【0257】具体的には、図32(a)、(b)に示すように、例えば、副生成物である水等を回収するために燃料パック51の他端側51bに形成された副生成物取込弁24Bが配置された凹部と、対向部52bの当接部分の周囲にバネ材等の弾性を有する凸部52dとの間での係合機構を適用することができる。このとき、凸部52dに押し上げられることで副生成物取込弁24Bが閉じた状態から開いた状態になるとともに、副生成物回収経路52eと連結するため(図31(e)参照；詳しくは、図39において後述する)、副生成物回収経路52eを経由して送出される副生成物が、燃料パック51内に設けられた回収袋23(図27参照)に回収可能となる。

【0258】これにより、上述した全体動作(図20参照)において説明したように、副電源部11において、自立的に電力(第2の電力)が生成されて、少なくとも、発電モジュール10内の動作制御部13に動作電力が供給される。また、本実施形態に係る電源システムが所定のデバイスDVCに装着されることにより、副電源部11により生成された電力の一部が発電部52aに設けられた正極端子EL(+)及び対向部52bに設けられた負極端子EL(-)を介して、デバイスDVCに内

蔵されたコントローラC N Tに駆動電力として供給される(初期動作)。

【0259】したがって、汎用の化学電池と同様に簡単に取り扱うことができ、汎用の化学電池と同一又は同等の外形形状及び寸法(ここでは、円柱形状)を有するとともに、同一又は同等の電気的特性を有する電力を供給することができる完全互換の電源システムを実現することができるので、既存の携帯機器等のデバイスに対して、汎用の化学電池と全く同様に、動作電力として適用することができる。

【0260】特に、本実施例に係る電源システムにおいて、発電モジュールとして燃料電池を備えた構成を適用し、かつ、発電部62a(発電モジュール10X)に対して着脱可能に構成された燃料パック51として、上述した分解性プラスチック等の材料を適用することにより、環境への影響(負担)を抑制しつつ、高いエネルギー利用効率を実現することができるので、既存の化学電池の投棄や埋め立て処理による環境問題やエネルギー資源の有効利用の問題等を良好に解決することができる。また、本実施例に係る電源システムによれば、燃料パック51が収納されるホルダー部52側の空間S P 1が、貫通形状を有しているので、燃料パック51の対向する側面部を持持しながらホルダー部52に着脱することにより、燃料パック51の着脱を簡易かつ確実に行うことができる。

【0261】(着脱構造の第2の実施例)図33(a)～図33(c)は、それぞれ本発明の第2の実施例に係る電源システムの燃料パックを前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図33

(d)～図31(g)は、それぞれ本発明に係る電源システムのホルダー部を上方向、前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図34は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略する。

【0262】図33(a)～図33(g)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック61と、該燃料パック61が着脱可能に構成されたホルダー部62と、を備えて構成されている。ここで、燃料パック61は、上述した各実施形態と同等の構成及び機能を有しているので、その説明を省略する。

【0263】ホルダー部62は、大別して、発電モジュール10Xが収納され、正極端子E L (+)が設けられた発電部62aと、負極端子E L (-)が設けられた対向部62bと、発電部62aと対向部62bを連結するとともに、発電部62aと負極端子E L (-)を電気的に接続する連結部62cと、を有して構成されている。ここで、発電部62a、対向部62b及び連結部62c

により囲まれた凹状の空間S P 2が、上記燃料パック61を結合した際の収納位置となる。

【0264】このような構成を有する電源システムにおいて、図34(a)に示すように、発電部62a、対向部62b及び連結部62cにより構成される空間S P 2に対して、燃料パック61の燃料送出口61aを発電部62a側の燃料送出経路に当接させつつ、燃料パック61を嵌合させることにより(図中、矢印P10)、図34(b)に示すように、燃料パック61が空間S P 2に収納されるとともに、燃料パック61の漏出防止機能が解除されて、燃料パック61に封入された発電用燃料F Lが燃料送出経路を介して、発電部62aに内蔵された発電モジュール10Xに供給される。

【0265】ここで、電源システムは、上述した第1の実施例と同様に、燃料パック61が空間S P 2に収納され、ホルダー部62に結合された状態において、例えば、上述した円柱形状の汎用の化学電池(図29

(a)、図30(c)参照)と略同等の形状及び寸法を有するように構成されている。また、このとき、燃料パック61が空間S P 2に正常に収納された状態で、燃料パック61がホルダー部62から不用意に脱落することを防止するために、燃料パック61の外形形状がホルダー部62の空間S P 2の内部形状に係合する構成を有することが望ましい。

【0266】これにより、上述した第1の実施例と同様に、汎用の化学電池と同様に簡単に取り扱うことができ、かつ、汎用の化学電池と同一又は同等の外形形状及び電気的特性を有する完全互換型のポータブル型の電源システムを実現することができる。また、発電モジュールに適用する発電装置の構成や着脱可能な燃料パックの構成材料を適切に選択することにより、環境への影響を大幅に抑制して、既存の化学電池の投棄や埋め立て処理による環境問題やエネルギー資源の有効利用の問題等を良好に解決することができる。

【0267】(着脱構造の第3の実施例)図35(a)～図35(c)は、それぞれ本発明の第3の実施例に係る電源システムの燃料パックを前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図35

(d)～図35(f)は、それぞれ本発明に係る電源システムのホルダー部を前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図36(a)～図36(c)は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略する。

【0268】図35(a)～図35(f)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック71と、該燃料パック71が複数本収納可能に構成されたホルダー部72と、を備えて構成されている。ここで、燃料パック71は、上

述した各実施形態と同等の構成及び機能を有するとともに、特に、その外形形状が汎用の化学電池、例えば、単3型マンガン電池等と同等の形状及び寸法を有するように構成されている。

【0269】ホルダー部72は、大別して、発電モジュール10Xが収納され、同一端面に正極端子EL(+)及び負極端子EL(-)が設けられた発電部72aと、発電部72aとの間に空間SP3を有するように設けられた上部カバー72bと、空間SP3への燃料パック71の収納、取り出しを可能とするとともに、空間SP3内に収納された燃料パック71を押圧固定する開閉カバー72cと、を有して構成されている。

【0270】このような構成を有する電源システムにおいて、図36(a)に示すように、ホルダー部72の開閉カバー72cを開状態として空間SP3の一面側を開放状態として、複数本(ここでは、2本)の燃料パック71を同一の向きに挿入した後、図36(b)、(c)に示すように、開閉カバー72cを閉状態とすることにより、燃料パック71が空間SP3に収納されるとともに、開閉カバー72cが燃料パック71の他端側71bを押圧して、燃料パック71の燃料送出口71aを発電部72a側の燃料送出経路(I/F部;図示を省略)に当接させることにより、燃料パック71の漏出防止機能が解除されて、燃料パック71に封入された発電用燃料FLが燃料送出経路を介して、発電部72aに内蔵された発電モジュール10Xに供給される。ここで、本実施例に係る電源システムは、燃料パック71が空間SP3に収納され、ホルダー部72に結合された状態において、例えば、上述した特殊形状の化学電池(図29(d)参照)と略同等の外形形状及び寸法を有するように構成されている。

【0271】これにより、既存の特殊形状の化学電池と同一又は同等の外形形状及び電気的特性を有する完全互換型のポータブル型の電源システムを実現することができるとともに、発電モジュールに適用する発電装置の構成や着脱可能な燃料パックの構成材料を適切に選択することにより、環境への影響を大幅に抑制して、既存の化学電池の投棄や埋め立て処理による環境問題やエネルギー資源の有効利用の問題等を良好に解決することができる。また、本実施例においては、燃料パックが汎用の化学電池と同等の外形形状及び寸法を有するように構成されているので、汎用の化学電池を電池ホルダーに収納した後、デバイスに装着するような構成を有する電源システムと略同様に、簡易な使用形態の電源システムを提供することができる。

【0272】(第4の実施例)図37(a)～図37(c)は、それぞれ本発明の第4の実施例に係る電源システムの燃料パックを前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図37(d)～図31(f)は、それぞれ本発明に係る電源システムのホル

ダ一部を上方向、横方向、前方向から見た外形形状を示す概略構成図であり、図38は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略する。

【0273】図37(a)～図37(f)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック81と、該燃料パック81が複数本収納可能に構成されたホルダー部82と、を備えて構成されている。ここで、燃料パック81は、上述した第3の実施例と同様に、その外形形状が汎用の化学電池と同等の形状及び寸法を有するように構成されている。ホルダー部82は、大別して、発電モジュール10Xが収納され、同一端面に正極端子EL(+)及び負極端子EL(-)が設けられた発電部82aと、発電部82aと対向する面を有する対向部82bと、発電部82aと対向部82bを連結するベース部82cと、をして構成されている。ここで、発電部82a、対向部82b及びベース部82cにより囲まれた凹状の空間SP4が、上記燃料パック81を結合した際の収納位置となる。

【0274】このような構成を有する電源システムにおいて、図38(a)に示すように、発電部82a、対向部82b及びベース部82cにより構成される空間SP4に対して、燃料パック81の燃料送出口(一端側)81aを発電部82a側の燃料送出経路(I/F部;図示を省略)に当接させて支点とし、燃料パック81の他端側81bを旋回させて押し込むことにより(図中、矢印P11)、図38(b)に示すように、該燃料パック81の他端側81bが対向部82bに当接して固定され、複数本(ここでは、2本)の燃料パック81が空間SP4に同一の向きに収納される。このとき、燃料パック81の漏出防止機能が解除されて、燃料パック81に封入された発電用燃料FLが燃料送出経路を介して、発電部82aに内蔵された発電モジュール10Xに供給される。

【0275】ここで、電源システムは、燃料パック81が空間SP4に収納され、ホルダー部82に結合された状態において、例えば、上述した特殊形状の化学電池(図29(d)参照)と略同等の外形形状及び寸法を有するように構成されている。また、このとき、燃料パック81が空間SP4に正常に収納された状態で、燃料パック81の燃料送出口81aが発電部82a側の燃料送出経路に良好に当接して接続するとともに、燃料パック81がホルダー部82から不用意に脱落することを防止するために、上述した第1の実施例と同様に、図38(a)、(b)に示すように、燃料パック81の他端側81bと対向部82bの当接部分が適当な押圧力で係合するように構成されている。これにより、上述した第3

69

の実施例と同様の作用効果を有する電源システムを実現することができる。なお、ホルダー部62、72、82には、いずれもホルダー部52の燃料送出管52fとともに、いずれも副生成物回収経路52eと同等の副生成物回収経路が設けられている。

【0276】(具体的構成例) 次に、上述した各実施形態(各構成例を含む)のいずれかを適用した電源システム全体の具体構成例について、図面を参照して説明する。図39は、本発明に係る電源システム全体の具体的構成例を示す要部概略構成図である。また、図40は、本具体構成例に適用される燃料改質部の一構成例を示す概略図であり、図41は、本具体構成例に適用される燃料改質部の他の構成例を示す概略図である。ここでは、主発電部12として燃料改質方式の燃料電池が適用されているものとする。また、上述した各実施形態及び各構成例を適宜参照し、同等の構成については、同一の符号を付して、その説明を簡略化する。

【0277】図39に示すように、本具体構成例に係る電源システム1Aは、図2に示したように、発電モジュール10と燃料パック20がI/F部30を介して着脱可能に構成され、全体として図29(a)又は図30に示したように円柱形状からなる外形形状を有している。また、これらの構成(特に、発電モジュール10)が、マイクロマシン製造技術等を用いて微小空間に構成され、汎用の化学電池と同等の外形寸法を有するように構成されている。

【0278】発電モジュール10は、概略、円柱形状の円周側面に沿って延在し、相互に分離して積層形成された燃料電池からなる主発電部12と、主発電部12を駆動するための電力を供給する副電源部11(図示を省略)と、円柱状の発電モジュール10内部に、深さ及び幅がそれぞれ500μm以下の燃料流路が接続されるよう積層形成された水蒸気改質反応ユニット210A

(燃料改質部210a; 詳しくは後述する)と選択酸化反応ユニット210C(選択酸化触媒部210c)と、発電モジュール10内部にマイクロチップ化されて収納された動作制御部13及び起動制御部15等を搭載したコントロールチップ90と、発電モジュール10の円柱側面から上記主発電部12の空気極212(図12参照)まで貫通し、外部の空気を取り入れる複数の通気孔(スリット)14cと、上記空気極212側において生成される副生成物(水等)を液化(凝結、凝縮)して分離回収する分離回収部17と、回収した副生成物の一部を水蒸気改質反応ユニット210Aに供給する副生成物供給経路17aと、円柱上面から上記主発電部12の空気極まで貫通し、少なくとも、主発電部の燃料極側や水蒸気改質反応ユニット210A、選択酸化反応ユニット210Cにおいて生成され、非回収物質である副生成物(二酸化炭素等)を発電モジュールの外部に排出する排

10

20

30

40

50

70

出孔14dと、を備えて構成されている。

【0279】燃料パック20(51、61、71、81)は、概略、図26に示した構成と同様に、主発電部12に供給される発電用燃料FLが充填、封入される燃料封入空間22Aと、上記分離回収部17により回収された副生成物(水)を固定的に保持する回収保持空間22B(回収保持部21)と、発電モジュール10との境界にあって、発電用燃料FLの漏出を防止する燃料供給弁24A(燃料漏出防止手段)と、回収保持された副生成物(回収物)の漏出を防止する副生成物取込弁24B(回収物漏出防止手段)と、を有して構成されている。ここで、燃料パック20は、上述したような分解性プラスチックにより形成されている。

【0280】このような構成を有する燃料パック20を、発電モジュール10及びI/F部30と結合すると、燃料送出管52fがバネで姿勢が固定されている燃料供給弁24Aを押し下げて燃料パック51の漏出防止機能を解除して、燃料パック51に封入された発電用燃料FLが毛細管52g内及び燃料送出管52f内での表面張力により発電モジュール10(水蒸気改質反応ユニット210A等)まで自動的に搬送される。

【0281】また、I/F部30は、燃料パック20に封入された発電用燃料FLを主発電部12や必要に応じて副電源部11に供給する燃料送出管52fと、上記主発電部12において生成され、分離回収部17により回収された副生成物(水)の全部又は一部を、燃料パック20に送出する副生成物回収経路52eと、を有して構成されている。なお、図示を省略したが、発電モジュール10又は燃料パック20もしくはI/F部30には、図3、図28に示したように、燃料パック20の燃料封入空間22Aに封入された発電用燃料FLの残量を検出する残量検出手段(残量検出部16)や、発電用燃料FLの封入状態を安定化させる燃料安定化手段(供給制御弁25、圧力制御弁26等)が設けられた構成を有している。

【0282】ここで、本具体構成例に係る電源システムに適用される水蒸気改質反応ユニット210Aの構成は、例えば、図40に示すように、シリコン等の微小基板201の一面側に、半導体製造技術等の微細加工技術を用いて、所定の溝形状及び所定の平面パターンを有するように設けられた燃料吐出部202a、水吐出部202b、燃料気化部203a、水気化部203b、混合部203c、改質反応流路204、水素ガス排気部205と、上記改質反応流路204の形成領域に対応する領域であって、例えば、微小基板201の他面側に設けられた薄膜ヒータ206と、を備えて構成されている。

【0283】燃料吐出部202a及び水吐出部202bは、上述したような水蒸気改質反応における原料物質となる発電用燃料及び水を、例えば、所定の単位量ごとに液状粒として流路内に吐出する流体吐出機構を有してい

る。したがって、燃料吐出部 202a 及び水吐出部 202b における発電用燃料又は水の吐出量に基づいて、例えば、上記化学反応式 (3) 式に示した水蒸気改質反応の進行状態が制御されることになるため（詳しくは、後述する薄膜ヒータ 206 からの熱量も密接に関連する）、燃料吐出部 202a 及び水吐出部 202b は、上述した出力制御部 14（燃料制御部 14a）における燃料供給量の調整機能の一部を担う構成を有している。

【0284】燃料気化部 203a 及び水気化部 203b は、それぞれ発電用燃料及び水の沸点等の揮発条件に応じて加熱されるヒータであって、これらのヒータは、副電源部 11 からの電力で駆動される出力制御部 14 によって、燃料吐出部 202a 及び水吐出部 202b から液状粒として吐出された発電用燃料又は水を、図 13

(a) に示した蒸発過程のように所定の温度に加熱して気化させることにより燃料流路の内圧を所定の圧力に設定するように制御され、燃料ガスの流路と水蒸気の流路とが連結された混合部 203c において、燃料ガスと水蒸気が混合するようになっている。

【0285】改質反応流路 204 及び薄膜ヒータ 206 は、上記混合部 203c において生成された混合ガスを改質反応流路 204 に導入し、改質反応流路 204 の内壁面に付着形成された銅-錫 (Cu-Zn) 系の触媒（図示を省略）、及び、改質反応流路 204 の形成領域に対応して設けられた薄膜ヒータ 206 から、改質反応流路 204 に供給される所定の熱エネルギーに基づいて、図 13 (a) 及び上記化学反応式 (3) に示した水蒸気改質反応を生じさせて、水素ガス (H₂) を生成する（水蒸気改質反応過程）。

【0286】水素ガス排気部 205 は、改質反応流路 204 において生成された水素ガスと一酸化炭素との混合ガスを排出して、選択酸化反応ユニット 210C における水性シフト反応過程及び選択酸化反応過程を介して、一酸化炭素 (CO) を除去した後、主発電部 12 を構成する燃料電池の燃料極に供給する。これにより、主発電部 12 において、上記化学反応式 (6) 及び (7) に基づく一連の電気化学反応が生じて、所定の電力が生成される。

【0287】このような構成を有する電源システムにおいて、上述した全体動作（初期動作、起動動作、定常動作、停止動作）に則して、例えば、I/F 部 30 を介して発電モジュール 10 に燃料パック 20 が結合されると、燃料供給弁 24A（燃料漏出防止手段）による漏出防止機能が解除されて、燃料パック 20 の燃料封入空間 22A に封入された発電用燃料（例えば、メタノール）FL が、燃料送出経路 31 を介して直接副電源部 11 を構成する燃料電池の燃料極に供給されて、第 2 の電力が生成される。この電力は、コントロールチップ 90 に搭載された動作制御部 13 に動作電力として供給されるとともに、電源システム 1A が図示を省略した正極端子及

10

20

30

40

50

び負極端子を介して電気的に接続されたデバイス DVC（図示を省略）に内蔵されたコントローラ CNT に駆動電力として供給される。

【0288】そして、動作制御部 13 が上記コントローラ CNT からデバイス DVC の負荷 LD の駆動状態に関する情報を受け取ると、起動制御部 15 に動作制御信号を出力して、副電源部 11 により生成される電力の一部を用いて、水蒸気改質反応ユニット 210A の薄膜ヒータ 206 を加熱するとともに、所定量の発電用燃料及び水を水蒸気改質反応ユニット 210A の改質反応流路 204 に吐出する。これにより、上述した化学反応式 (3) ~ (5) に示した水蒸気改質反応及び選択酸化反応により、水素ガス (H₂) 及び二酸化炭素 (CO₂) が生成され、水素ガス (H₂) は、主発電部 12 を構成する燃料電池の燃料極に供給されて第 1 の電力が生成され、デバイス DVC の負荷 LD に負荷駆動電力として供給されるとともに、二酸化炭素 (CO₂) は、例えば、発電モジュール 10 の上面に設けられた排出孔 14d を介して発電モジュール 10（電源システム 1A）の外部に排出される。

【0289】また、主発電部 12 における発電動作に際して生成される副生成物（水蒸気等の気体）は、分離回収部 17 において、冷却されて液化されることにより、水とそれ以外の気体成分とに分離し、水のみを回収して一部を副生成物供給経路 17a を介して、上記水蒸気改質反応ユニット 210A に供給するとともに、それ以外の水を副生成物回収経路を介して、燃料パック 20 内の回収保持空間 22B に不可逆的に保持される。

【0290】したがって、本具体構成例に係る電源システム 1A によれば、電源システム 1A の外部から燃料の補給を受けることなく、駆動される負荷（デバイス DVC）の駆動状態及び発電用燃料 FL の残量に応じた適切な電力（第 1 の電力）を自立的に出力することができるので、汎用の化学電池と同等の電気的特性及び簡易な取り扱いを実現しつつ、高いエネルギー変換効率で発電動作を行うことができるとともに、少なくとも燃料パック 20 の自然界への投棄、埋め立て等に対して、環境への負担が少ないポータブル型の電源システムを実現することができる。

【0291】なお、本具体構成例においては、主発電部 12 や水蒸気改質反応ユニット 210A 等において生成され、回収された副生成物（水）の一部を水蒸気改質反応ユニット 210A に供給して再利用する構成を示したが、このような構成を適用しない電源システムにおいては、燃料パック 20 に発電用燃料（メタノール等）とともに封入された水を利用して、水蒸気改質反応ユニット 210A における水蒸気改質反応を実行する。

【0292】したがって、このように予め水が混合して封入された発電用燃料を用いて発電動作を行う場合にあっては、図 41 に示すように、水蒸気改質反応ユニット

73

210Aの構成として、微小基板201の一面側に、燃料吐出部202、燃料気化部203、改質反応流路204及び水素ガス排気部205のみからなる单一の流路が形成された構成を適用することができる。

【0293】

【発明の効果】以上説明したように、本発明によれば、燃料封入部（燃料パック）に充填、封入された液体又は気体からなる発電用燃料、又は、該発電用燃料から供給される特定の成分（例えば、水素）を用いて発電を行う発電モジュール（発電器）を備えたポータブル型の電源システムにおいて、該発電による出力電圧特性（起電力特性）が、汎用の化学電池、すなわち、日本国内外で市販、あるいは、機器に付属して流通、販売される一次電池又は二次電池のうちの1種における経時的な電圧の変化傾向に応じた出力電圧となるように、発電モジュールにおける発電状態が制御される。

【0294】これにより、汎用の化学電池等の電圧変化傾向に応じた出力電圧特性を有するポータブル電源を実現することができるので、既存の携帯機器等の電源としてそのまま使用した場合であっても、この出力電圧の変化を検出して電池残量や機器の駆動可能推定時間を表示したり、電池の交換や充電等を促す機能を支障なく利用することができ、化学電池に対する互換性を高めた電源システムを提供することができる。

【0295】このような特徴を実現するために、第2の発電手段により生成される第2の電力に基づいてシステム制御手段（出力制御部、システム制御手段）が駆動され、燃料封入部に残存する発電用燃料の量（残量）に応じて、第1の発電手段における第1の電力の発生量（発電状態）が制御されるように構成することにより、電源システムの外部から燃料等の供給を受けることなく、発電モジュールにより自立的に発電状態を制御して、発電用燃料の残量に応じた所定の電力を発生、出力することができる。

【0296】この場合、システム制御手段（動作制御部）による第1の発電手段における発電状態の制御は、汎用の化学電池における経時的な電圧変化傾向、例えば、時間の経過に伴って出力電圧が一義的に低下する傾向に対応して、発電用燃料の残量と出力電圧（第1の電力の電圧成分）との相関関係を予め規定した相関テーブルに基づいて実行されるものであってもよく、これによれば、燃料封入部における発電用燃料の残量に基づいて、該相関テーブルを参照し、発電部の燃料極への発電用燃料の供給量を調整することにより、簡易に出力電圧を設定制御することができるので、汎用の化学電池と同様の出力電圧特性を有し、電気的特性上、互換が可能な電源システムを提供することができる。

【0297】上記電源システムにおいて、より好ましい態様は、第1の電源手段及び第2の電源手段が、共に燃料封入部から供給される発電用燃料を用いた電気化学反

74

応により、第1の電力及び第2の電力を発生する燃料電池を有している構成であり、これにより、汎用の化学電池に比較して、極めてエネルギー利用効率の高い燃料電池を用いて、電源システムの動作電力及び負荷の駆動電力を生成することができるとともに、汎用の化学電池における経時的な電圧変化傾向と同様の出力電圧特性を有する電源システムを実現することができるので、既存の携帯機器等における残量通知機能等を良好に利用することができるとともに、化石燃料等のエネルギー資源の消費量を削減して有効な利用を図ることができる。

10

【0298】また、上記電源システムにおいて、第1の電源手段のみを上記燃料電池により構成したものであってもよく、この場合、第1の電源手段は、発電用燃料を改質して、特定の成分を抽出する燃料改質器と、該特定の成分が供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料改質型の燃料電池としての構成を適用するが好ましい。このような燃料改質型の燃料電池を適用した構成によれば、燃料電池に供給される発電用燃料の量を制御することにより、第1の電源手段により生成される第1の電力の量を簡易に制御することができるとともに、発電用燃料の有する化学エネルギーから極めて高いエネルギー変換効率で電力を生成することができる電源システムを実現することができる。

20

【0299】また、上記電源システムにおいて、第2の電源手段のみを上記燃料電池により構成したものであってもよく、この場合、第2の電源手段は、発電用燃料が直接的に供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料直接供給型の燃料電池としての構成を適用するが好ましい。このような燃料直接供給型の燃料電池を適用した構成によれば、簡易な構成の燃料電池に燃料封入部から発電用燃料を供給するだけで、自立的かつ継続的に高いエネルギー変換効率で所定の電力（第2の電力）を生成してシステム制御手段に動作電力として供給することができるので、特別な操作を必要とすることなく、発電用燃料の残量に応じた電圧成分を有する第1の電力を出力することができ、汎用の化学電池と同等の電気的特性を有しつつ、取り扱いが簡易な電源システムを提供することができるとともに、第2の電源手段の規模を小型化することができる。

30

【0300】なお、上記電源システムにおいて、第1及び第2の電源手段としては、上述した燃料電池の他、発電用燃料を用いて高いエネルギー変換効率で第1及び第2の電力を生成することができ、かつ、小型化や微細化が可能な構成を有する種々の発電装置や蓄電装置の中から、電源システムの外形形状や電気的特性等に応じて適宜組み合わせた任意の構成を適用することができる。

40

【0301】また、上記電源システムに適用される発電用燃料は、少なくとも、水素を主成分とする、又は、水素からなる液体燃料又は液化燃料又は気体燃料、具体的には、メタノールやエタノール、ブタノール等のアルコ

50

ール系の液体燃料や、ジメチルエーテルやイソブタン、天然ガス等の炭化水素からなる液化燃料、あるいは、水素ガス等の気体燃料であって、特に、燃料封入部から発電モジュールに供給される際の常温、常圧等の所定の環境条件の下で気体状態にあるものを良好に適用することができるので、第1及び第2の電源手段における発電動作において、高いエネルギー変換効率で電力を生成することができるとともに、この発電動作に伴って電力以外に生成される副生成物を比較的簡易な処理で無毒化や難燃化することができ、自然環境等への影響を大幅に抑制することができる。

【0302】さらに、上記電源システムは、燃料封入部及び電源モジュールを組み合わせた物理的外形形状が、汎用の化学電池のうちの任意の1種と同等の形状及び寸法を有するように構成されているものであってもよく、これによれば、上記電気的特性のみならず、外形形状においても、汎用の化学電池との互換性を有することになるので、極めてエネルギー変換効率の高い電源システムを既存の化学電池の市場に支障なく普及させることができる。

【0303】ここで、上記電源システムは、第1の電源手段から出力される第1の電力により駆動する負荷に対して、システム全体が着脱可能な構成、又は、該負荷に対して、少なくとも燃料封入部が着脱可能な構成、もしくは、発電モジュールに対して、燃料封入部が着脱可能な構成を有していることが好ましい。これによれば、燃料封入部に封入された発電用燃料がなくなったときや少なくなったときに、燃料封入部を発電モジュールから取り外して新たな燃料封入部に交換、あるいは、燃料封入部に発電用燃料を注入して補充することができるので、発電モジュールを継続的に利用することができるとともに、電源システム全体又は燃料封入部をあたかも汎用の化学電池のように簡便に使用することができる。また、燃料封入部の交換や回収が可能となるので、電源システム自体の廃棄量を削減することができる。

【図面の簡単な説明】

【図1】本発明に係る電源システムの適用形態を示す概念図である。

【図2】本発明に係る電源システムの基本構成を示すブロック図である。

【図3】本発明に係る電源システムに適用される発電モジュールの第1の実施形態を示すブロック図である。

【図4】本実施形態に係る電源モジュールに適用可能な副電源部の第1の構成例を示す概略構成図である。

【図5】本実施形態に係る電源モジュールに適用可能な副電源部の第2の構成例を示す概略構成図である。

【図6】本実施形態に係る電源モジュールに適用可能な副電源部の第3の構成例を示す概略構成図である。

【図7】本実施形態に係る電源モジュールに適用可能な副電源部の第4の構成例を示す概略構成図である。

【図8】本実施形態に係る電源モジュールに適用可能な副電源部の第5の構成例を示す概略構成図である。

【図9】本実施形態に係る電源モジュールに適用可能な副電源部の第6の構成例を示す概略構成図である。

【図10】本実施形態に係る電源モジュールに適用可能な副電源部の第7の構成例を示す概略構成図である。

【図11】本実施形態に係る電源モジュールに適用可能な副電源部の第8の構成例を示す概略構成図である。

10 【図12】本実施形態に係る電源モジュールに適用可能な主発電部の第1の構成例を示す概略構成図である。

【図13】本構成例に係る主発電部に適用される燃料改質部における水素生成過程を示す概念図である。

【図14】本実施形態に係る電源モジュールに適用可能な主発電部の第2の構成例を示す概略構成図である。

【図15】本実施形態に係る電源モジュールに適用可能な主発電部の第3の構成例を示す概略構成図である。

【図16】本実施形態に係る電源モジュールに適用可能な主発電部の第4の構成例を示す概略構成図である。

20 【図17】本実施形態に係る電源モジュールに適用可能な主発電部の第5の構成例を示す概略構成図である。

【図18】本実施形態に係る電源モジュールに適用可能な主発電部の第6の構成例を示す概略構成図である。

【図19】本発明に係る電源システムに適用される発電モジュールの一実施形態の他の例の要部構成を示すブロック図である。

【図20】電源システムの概略動作を示すフローチャートである。

【図21】本実施形態に係る電源システムの出力電圧の経時変化を示す特性図である。

30 【図22】本発明に係る電源システムに適用される発電モジュールの第2の実施形態を示すブロック図である。

【図23】本発明に係る電源システムに適用される発電モジュールの第3の実施形態を示すブロック図である。

【図24】本実施形態に係る電源モジュールに適用可能な副電源部の第1の構成例を示す概略構成図である。

【図25】本実施形態に係る電源モジュールに適用可能な副電源部の第2の構成例を示す概略構成図である。

【図26】本発明に係る電源システムに適用可能な副生成物回収手段の一実施例を示すブロック図である。

40 【図27】本実施例に係る副生成物回収手段による副生成物の保持動作を示す概略図である。

【図28】本発明に係る電源システムに適用可能な燃料安定化手段の一実施例を示すブロック図である。

【図29】本発明に係る電源システムに適用可能な外形形状の具体例を示す概略構成図である。

【図30】本発明に係る電源システムに適用される外形形状と、汎用の化学電池の外形形状との対応関係を示す概念図である。

50 【図31】本発明に係る電源システムに既存の化学電池の外形形状を適用した場合の第1の実施例を示す概略構

成図である。

【図32】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図33】本発明に係る電源システムに既存の化学電池の外形形状を適用した場合の第2の実施例を示す概略構成図である。

【図34】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図35】本発明に係る電源システムに既存の化学電池の外形形状を適用した場合の第3の実施例を示す概略構成図である。

【図36】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図37】本発明に係る電源システムに既存の化学電池の外形形状を適用した場合の第4の実施例を示す概略構成図である。

【図38】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図39】本発明に係る電源システム全体の具体的構成例を示す要部概略構成図である。

* 【図40】本具体構成例に適用される燃料改質部の一構成例を示す概略図である。

【図41】本具体構成例に適用される燃料改質部の他の構成例を示す概略図である。

【図42】汎用の化学電池における出力電圧の経時的な変化傾向(起電力特性)を示す図である。

【図43】従来技術における燃料電池における起電力特性を示す図である。

【符号の説明】

10	1	電源システム
10、 10A~10F	発電モジュール	
11、 11A~11H	副電源部	
12、 12A~12F	主発電部	
13	動作制御部	
14	出力制御部	
15	起動制御部	
16	残量検出部	
17	分離回収部	
20、 20D~20F	燃料パック	
30、 30D~30F	I/F部	
DVC	デバイス	
LD	負荷	
CNT	コントローラ	

*

【図1】

【図2】

【図32】

【図3】

【図4】

【図6】

【図5】

【図8】

【図7】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

(a)

(b)

【図17】

【図18】

(c)

(d)

【図19】

【図20】

【図24】

[図21]

【図25】

[图 22]

[図3-4]

【图 4-1】

【図23】

【図39】

【図26】

【図27】

【図29】

【図28】

【図30】

【図43】

【図31】

【図33】

【図35】

【図36】

【図37】

【図38】

【図40】

【図42】

フロントページの続き

(51) Int. Cl. 7
// H 01 M 8/10

識別記号

F I
H 01 M 8/10

テマコート (参考)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.