1. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-3}{-4x-6} + 6 = \frac{-9}{12x+18}$$

- A. $x_1 \in [-2.75, -0.75]$ and $x_2 \in [-2.25, -0.25]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [0.25, 3.25]$
- D. $x \in [-1.75, 0.25]$
- E. $x_1 \in [-2.75, -0.75]$ and $x_2 \in [0.25, 2.25]$
- 2. Determine the domain of the function below.

$$f(x) = \frac{4}{20x^2 - 35x + 15}$$

- A. All Real numbers except x = a, where $a \in [11.91, 12.78]$
- B. All Real numbers.
- C. All Real numbers except x = a and x = b, where $a \in [0.31, 0.96]$ and $b \in [0.94, 1.52]$
- D. All Real numbers except x = a, where $a \in [0.31, 0.96]$
- E. All Real numbers except x=a and x=b, where $a\in[11.91,12.78]$ and $b\in[24.72,25.13]$
- 3. Choose the equation of the function graphed below.

A.
$$f(x) = \frac{1}{(x+3)^2} + 1$$

B.
$$f(x) = \frac{-1}{x-3} + 1$$

C.
$$f(x) = \frac{-1}{(x-3)^2} + 1$$

D.
$$f(x) = \frac{1}{x+3} + 1$$

E. None of the above

4. Choose the equation of the function graphed below.

A.
$$f(x) = \frac{1}{(x-1)^2} - 3$$

B.
$$f(x) = \frac{-1}{(x+1)^2} - 3$$

C.
$$f(x) = \frac{1}{x-1} - 3$$

D.
$$f(x) = \frac{-1}{x+1} - 3$$

- E. None of the above
- 5. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{7x}{-6x+6} + \frac{-3x^2}{36x^2 - 78x + 42} = \frac{5}{-6x+7}$$

A.
$$x_1 \in [0.55, 0.62]$$
 and $x_2 \in [0.69, 1.07]$

B.
$$x \in [1.16, 1.18]$$

C.
$$x_1 \in [0.55, 0.62]$$
 and $x_2 \in [1.07, 1.48]$

D.
$$x \in [1.17, 1.34]$$

- E. All solutions lead to invalid or complex values in the equation.
- 6. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-9}{-6x-2} + 6 = \frac{-2}{-54x-18}$$

A.
$$x_1 \in [-1.4, -0.1]$$
 and $x_2 \in [-0.9, -0.3]$

B.
$$x \in [-1.58, 1.42]$$

C.
$$x \in [-0.2, 1.3]$$

D.
$$x_1 \in [-1.4, -0.1]$$
 and $x_2 \in [-0.5, 0.9]$

E. All solutions lead to invalid or complex values in the equation.

7. Determine the domain of the function below.

$$f(x) = \frac{4}{25x^2 + 45x + 20}$$

- A. All Real numbers except x = a and x = b, where $a \in [-25.34, -24.97]$ and b = [-20.13, -19.86]
- B. All Real numbers except x = a, where $a \in [-25.34, -24.97]$
- C. All Real numbers except x=a and x=b, where $a\in[-1.15,-0.85]$ and $b\in[-0.87,-0.58]$
- D. All Real numbers except x = a, where $a \in [-1.15, -0.85]$
- E. All Real numbers.

8. Choose the graph of the equation below.

$$f(x) = \frac{1}{x-3} + 1$$

E. None of the above.

В.

9. Choose the graph of the equation below.

A.

C.

D.

В.

- E. None of the above.
- 10. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-3x}{-5x+2} + \frac{-3x^2}{30x^2 - 27x + 6} = \frac{-3}{-6x+3}$$

- A. $x \in [1.22, 1.51]$
- B. $x_1 \in [0.25, 0.37]$ and $x_2 \in [1.15, 2.13]$
- C. $x_1 \in [0.25, 0.37]$ and $x_2 \in [-1.09, 0.72]$
- D. All solutions lead to invalid or complex values in the equation.
- E. $x \in [0.37, 0.71]$