Numbers, Sequences and Series

Lecture Notes, T1 2023/24

Silvio Fanzon

3 Sep 2023

Table of contents

Welcome		3
	References	3
1	Numbers 1.1 Introduction	4
2	Sequences	5
3	Series	6
License Reuse		7
	Citation	7
Re	eferences	8

Welcome

These are the Lecture Notes of **Numbers**, **Sequences** & **Series 400297** for T1 2023 at the University of Hull. I will follow these lecture notes during the course. If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Up to date information about the course and homework will be published on the course webpage

silvio fanzon.com/blog/2023/NSS

Homework will also be released on the Hull Canvas webpage

can vas. hull. ac. uk/courses/67551

References

We will study the set of real numbers \mathbb{R} , and then sequences and series in \mathbb{R} . I will follow mainly the textbook by Bartle and Sherbert [2]. Other references that inspired these notes are the books by Abbott [1] and Rudin [3].

You are not expected to purchase any of the above books. These lecture notes will cover 100% of the topics you are expected to known in order to excel in the final exam.

1 Numbers

1.1 Introduction

The aim of this section is to rigorously introduce the set of real numbers \mathbb{R} . But what do we mean by real number anyways? To start our discussion, introduce the set of natural numbers (or non-negative integers)

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \dots\}$$

On this set we have a notion of sum of two numbers, denoted as usual by

$$n + m$$

for $n, m \in \mathbb{N}$. Here the symbol \in denotes that m and n belong to \mathbb{N} . For example 3+7 results in 10.

Question

Can the sum be inverted?sadl

2 Sequences

3 Series

License

Reuse

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Citation

For attribution, please cite this work as:

Fanzon, Silvio. (2023). Lecture Notes on Numbers, Sequences and Series. https://www.silviofanzon.com/2023-NSS-Notes/

BibTex citation:

```
@electronic{Fanzon-NSS-2023,
    author = {Fanzon, Silvio},
    title = {Lecture Notes on Numbers, Sequences and Series},
    url = {https://www.silviofanzon.com/2023-NSS-Notes/},
    year = {2023}}
```

References

- [1] S. Abbott. Understanding Analysis. Second Edition. Springer, 2015.
- [2] R. G. Bartle and D. R. Sherbert. *Introduction to Real Analysis*. Fourth Edition. Wiley, 2011.
- [3] W. Rudin. Principles of Mathematical Analysis. Third Edition. McGraw Hill, 1976.