IME-UERJ: Lista 1 de Teoria dos Grafos

Prof. Igor Machado Coelho

Data: 11/05/2015

Grafos, Subgrafos, Conectividade e Árvores

- 1. Mostre que se G e H tem a mesma família de graus, isto é, a família $\{\delta(v):v\in V(G)\}$ é igual à família $\{\delta(v):v\in V(H)\}$, não necessariamente $G\cong H$.
- 2. Mostre que há onze grafos simples não-isomorfos que possuem 4 vértices.
- 3. O k-cubo (Q_k) é um grafo simples cujos vértices são k-uplas ordenadas 0's e 1's, e tal que dois vértices são adjacentes se e somente se diferem em exatamente uma coordenada. Desenhe o Q_1 , Q_2 , Q_3 e calcule o número de vértices e arestas de um Q_k .
- 4. Mostre que $\delta(G) \leq 2m/n \leq \Delta(G)$.
- 5. Marque V ou F, respectivamente, com justificativa e contra-exemplos:
 - (a) G e seu complemento não podem ser ambos desconexos.
 - (b) Se G é um grafo bipartido d-regular e (X, Y) consiste em uma partição em conjuntos independentes para V, então |X| = |Y|.
- 6. Mostre que quaisquer dois caminhos mais longos num grafo conexo possuem um vértice em comum.
- 7. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem mutuamente, ou três não se conhecem mutuamente.
- 8. Um grafo é autocomplementar se G e seu complemento são isomorfos. Mostre que se G é autocomplementar, então |V|=4k ou |V|=4k+1 para algum inteiro não-negativo.
- 9. Mostre que, em qualquer grupo de duas ou mais pessoas, há sempre duas com exatamente o mesmo número de conhecidos dentro do grupo.
- 10. Quantas árvores geradoras possuem os seguintes grafos:
 - (a) Um grafo conexo e acíclico
 - (b) Um grafo acíclico
 - (c) Um C_n
- 11. Mostre que uma árvore com exatamente dois vértices de grau um é um caminho
- 12. Mostre que se T é uma árvore geradora de G e $xy \in E(G)$, mas $xy \notin E(T)$, então T acrescido da aresta xy possui um único ciclo
- 13. Dado um grafo G = (V, E), e um par $u, v \in V$ a distância d(u, v) entre $u \in v \in +\infty$ se $u \in v$ pertencem a diferentes componentes conexas ou o comprimento (número de arestas) do menor caminho em G que liga u até v. Se $u \in v$ pertencem à mesma geodésica de u até v é um menor caminho em G que liga u até v. O diâmetro de G é o comprimento máximo de uma geodésica de G, ou o comprimento de sua maior geodésica, ou o valor $d = \max_{u,v \in V} d(u,v)$. Dê os valores do diâmetro de K_n , $K_{n1,n2}$, C_n , S_n (estrela), Q_n (hipercubo), P_n (caminho) e W_n (roda).
- 14. Dê todas árvores não isomorfas com 7 vértices