

Spring 2021 SKKU Biostats and Big data

Lecture 20 Paired *t*-test

Review: Key Points

Chapter 24: Comparing Groups

- Var(X Y) = Var(X) + Var(Y)
- $SD(X Y) = \sqrt{SD^2(X) + SD^2(Y)} = \sqrt{Var(X) + Var(Y)}$
- Confidence interval for the difference between two proportions: $(\hat{p}_1 \hat{p}_2) \pm z^* \times SE(\hat{p}_1 \hat{p}_2)$

•
$$SE(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$$

- Z-test for the difference between two proportions: $z = \frac{(\hat{p}_1 \hat{p}_2) 0}{SE_{pooled}(\hat{p}_1 \hat{p}_2)}$
- Confidence interval for the difference between two means: $(\bar{y}_1 \bar{y}_2) \pm ME$, where $ME = t_{df}^* \times SE(\bar{y}_1 \bar{y}_2)$

•
$$SE(\bar{y}_1 - \bar{y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

• Two-sample t-test,
$$t = \frac{(\bar{y}_1 - \bar{y}_2) - \Delta_0}{SE(\bar{y}_1 - \bar{y}_2)}$$

Paired data

- The example from the textbook: Speed-skating
- Inner lane vs. outer lane
- Question: Is there a difference between two lanes?

Inner Lane		Outer Lane	
Name	Time	Name	Time
OLTEAN Daniela	129.24	(no competitor)	
ZHANG Xiaolei	125.75	NEMOTO Nami	122.34
ABRAMOVA Yekaterina	121.63	LAMB Maria	122.12
REMPEL Shannon	122.24	NOH Seon Yeong	123.35
LEE Ju-Youn	120.85	TIMMER Marianne	120.45
ROKITA Anna Natalia	122.19	MARRA Adelia	123.07
YAKSHINA Valentina	122.15	OPITZ Lucille	122.75
BJELKEVIK Hedvig	122.16	HAUGLI Maren	121.22
ISHINO Eriko	121.85	WOJCICKA Katarzyna	119.96
RANEY Catherine	121.17	BJELKEVIK Annette	121.03
OTSU Hiromi	124.77	LOBYSHEVA Yekaterina	118.87
SIMIONATO Chiara	118.76	JI Jia	121.85
ANSCHUETZ THOMS Daniela	119.74	WANG Fei	120.13
BARYSHEVA Varvara	121.60	van DEUTEKOM Paulien	120.15
GROENEWOLD Renate	119.33	GROVES Kristina	116.74
RODRIGUEZ Jennifer	119.30	NESBITT Christine	119.15
FRIESINGER Anni	117.31	KLASSEN Cindy	115.27
WUST Ireen	116.90	TABATA Maki	120.77

Paired *t*-test

- Two-sample *t*-test?
 - NO. The races are run in pairs, so the columns are not independent.
- Instead, we should focus on the difference between each pair.
 - It's not a problem, paired data provides an opportunity!
 - We need to take advantage of the paired data structure.
- "Paired" *t*-test:
 - Use *pairwise* differences!
 - Ignore original two columns
 - One-sample *t*-test on the pairwise differences

Skating Pair	Inner Time	Outer Time	Inner – Outer
1	129.24		•
2	125.75	122.34	3.41
3	121.63	122.12	-0.49
4	122.24	123.35	-1.11
5	120.85	120.45	0.40
6	122.19	123.07	-0.88
7	122.15	122.75	-0.60
8	122.16	121.22	0.94
9	121.85	119.96	1.89
10	121.17	121.03	0.14
11	124.77	118.87	5.90
12	118.76	121.85	-3.09
13	119.74	120.13	-0.39
14	121.60	120.15	1.45
15	119.33	116.74	2.59
16	119.30	119.15	0.15
17	117.31	115.27	2.04
18	116.90	120.77	-3.87

Assumptions and conditions

- Paired data assumption
 - You should not use methods for paired data on independent data.
 - Or methods for independent data (e.g., two-sample t-test) should not be used on paired data.
- Independence assumption
 - The differences for pairs should be independent of each other.
 - Conditions
 - Randomization condition
 - 10% condition
- Normal population assumption
 - The population of differences should follows a Normal model.
 - Each group doesn't need to follow a Normal model.

Steps of paired *t*-test

- H_0 : $\mu_d = \Delta_0$ (usually, $\Delta_0 = 0$)
- $t_{n-1} = \frac{\bar{d} \Delta_0}{SE(\bar{d})}$
- df = n 1
- $SE(\bar{d}) = \frac{s_d}{\sqrt{n}}$

Confidence intervals for matched pairs

- $\bar{d} \pm t_{n-1}^* \times SE(\bar{d})$
- $SE(\bar{d}) = \frac{s_d}{\sqrt{n}}$

Quiz 20-1

https://forms.gle/Bv8dkGXtSceDHK478

Example of paired t-test: Speed skating

H_o: Neither lane offered an advantage:

$$\mu_d = 0.$$

H_A: The mean difference is different from zero:

$$\mu_d \neq 0$$
.

Skating Pair	Inner Time	Outer Time	Inner – Outer
1	129.24		•
2	125.75	122.34	3.41
3	121.63	122.12	-0.49
4	122.24	123.35	-1.11
5	120.85	120.45	0.40
6	122.19	123.07	-0.88
7	122.15	122.75	-0.60
8	122.16	121.22	0.94
9	121.85	119.96	1.89
10	121.17	121.03	0.14
11	124.77	118.87	5.90
12	118.76	121.85	-3.09
13	119.74	120.13	-0.39
14	121.60	120.15	1.45
15	119.33	116.74	2.59
16	119.30	119.15	0.15
17	117.31	115.27	2.04
18	116.90	120.77	-3.87

- ✓ Independence Assumption: Each race is independent of the others, so the differences are mutually independent.
- ✓ Paired Data Assumption: The data are paired because racers compete in pairs.
- ✓ Randomization Condition: Skaters are assigned to lanes at random. Repeating the experiment with different pairings and lane assignments would give randomly different values.
- ✓ Nearly Normal Condition: The histogram of the differences is unimodal and symmetric:

The conditions are met, so I'll use a Student's t-model with (n-1) = 16 degrees of freedom, and perform a **paired t-test**.

The data give

$$\frac{n}{d} = 17 \, \mathrm{pairs}$$

 $\frac{1}{d} = 0.499 \, \mathrm{seconds}$
 $s_d = 2.333 \, \mathrm{seconds}$.

I estimate the standard deviation of \overline{d} using

$$SE(\overline{d}) = \frac{s_d}{\sqrt{n}} = \frac{2.333}{\sqrt{17}} = 0.5658$$

$$So t_{16} = \frac{\overline{d} - 0}{SE(\overline{d})} = \frac{0.499}{0.5658} = 0.882$$

$$P$$
-value = $2P(t_{16} > 0.882) = 0.39$

Example of confidence intervals

Wife's Age	Husband's Age	Difference (husband – wife)
43	49	6
28	25	-3
30	40	10
57	52	-5
52	58	6
27	32	5
52	43	-9
:	:	:

Ages of husbands and wives from 170 couples

- Paired Data Assumption: The data are paired because they are on members of married couples.
- ✓ Independence Assumption: The data are from a randomized survey, so couples should be independent of each other.
- ▼ Randomization Condition: These couples were randomly sampled.
- ✓ 10% Condition: The sample is less than 10% of the population of married couples in Britain.
- ✓ Nearly Normal Condition: The histogram of the husband – wife differences is unimodal and symmetric:

The conditions are met, so I can use a Student's t-model with (n-1)=169 degrees of freedom and find a **paired t-interval**.

$$\underline{n} = 170$$
 couples $\overline{d} = 2.2$ years $s_d = 4.1$ years

I estimate the standard error of \overline{d} as

$$SE(\overline{d}) = \frac{s_d}{\sqrt{n}} = \frac{4.1}{\sqrt{170}} = 0.31 \text{ years.}$$

The df for the t-model is n-1=169.

The 95% critical value for t_{169} (from the table) is 1.97.

The margin of error is

$$ME = t_{169}^* \times SE(\overline{d}) = 1.97(0.31) = 0.61$$

So the 95% confidence interval is

$$2.2 \pm 0.6$$
 years,

or an interval of (1.6, 2.8) years.

I am 95% confident that British husbands are, on average, 1.6 to 2.8 years older than their wives.

Hands-on

Steps of paired *t*-test

•
$$H_0$$
: $\mu_d = \Delta_0$ (usually, $\Delta_0 = 0$)

•
$$t_{n-1} = \frac{\bar{d} - \Delta_0}{SE(\bar{d})}$$

•
$$df = n - 1$$

•
$$SE(\bar{d}) = \frac{s_d}{\sqrt{n}}$$

Confidence intervals for matched pairs

•
$$\bar{d} \pm t_{n-1}^* \times SE(\bar{d})$$

•
$$SE(\bar{d}) = \frac{s_d}{\sqrt{n}}$$

$$n = 20$$
$$(\sqrt{20} = 4.47)$$

$$\bar{d} = 3$$

$$s_d = 4.5538$$

$$SE(\bar{d}) = t_{19} =$$

$$P(t_{19}>) =$$

$$t_{19}^* \times SE(\bar{d}) =$$
 $t_{19}^* = 2.093$

$$t_{19}^* = 2.093$$

0.0083

2.1312

ans =

>> tinv(0.975,19)*ste(d)

Effect size

- Speed skating example again.. Though the test failed to reject the null hypothesis, is it really okay?
- If we calculate the 95% confidence interval of the difference, it's $-0.70 < \mu_d < 1.70$ seconds.
 - Examining the confidence interval is a good way to get a sense for the size of the effect.
 - Is 1.7 seconds okay?
 - What if the gap between Gold and Silver medals is smaller than this?

Non-parametric test: Sign test

- Distribution-free methods again!
 - For the pairs with negative differences, record 0's
 - For the pairs with positive differences, record 1's
 - Ignore the pairs with difference = 0
 - Then, test the associated proportion p = 0.5 using a z-test

Quiz 20-2

https://forms.gle/XFYEzztuH9NomM2A6

Key Points

Chapter 25: Paired Samples and Blocks

- Paired t-test: use pairwise differences, and then one-sample t-test on the pairwise differences
 - H_0 : $\mu_d=\Delta_0$ (usually, $\Delta_0=0$), $t_{n-1}=\frac{\bar{d}-\Delta_0}{SE(\bar{d})}$, df=n-1, $SE(\bar{d})=\frac{S_d}{\sqrt{n}}$
- Confidence interval: $\bar{d} \pm t_{n-1}^* \times SE(\bar{d})$
- Nonparametric sign test:
 - Record 0 for the pairs with negative differences, record 1 for the pairs with positive differences
 - and ignore the pairs with difference = 0
 - Then, test the associated proportion p = 0.5 using a z-test

