

9.6

Chain rule

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial u}$$
$$\frac{\partial w}{\partial v} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial v}.$$

9.7 Grad.

$$\operatorname{grad} f = \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right] = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}.$$

$$D_{\mathbf{b}}f = \frac{df}{ds} = \mathbf{b} \cdot \operatorname{grad} f$$

$$(|\mathbf{b}| = 1).$$

$$D_{\mathbf{a}}f = \frac{df}{ds} = \frac{1}{|\mathbf{a}|} \mathbf{a} \cdot \operatorname{grad} f.$$

$$\nabla^2 = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\mathbf{p} = \frac{k}{r^3} \mathbf{r}$$
 (Coulomb's law⁶).

All vectors of the form $\mathbf{a} = [a_1, a_2, a_3] = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ constitute the **real** vector space R^3 with componentwise vector addition

(1)
$$[a_1, a_2, a_3] + [b_1, b_2, b_3] = [a_1 + b_1, a_2 + b_2, a_3 + b_3]$$

and componentwise scalar multiplication (c a scalar, a real number)

(2)
$$c[a_1, a_2, a_3] = [ca_1, ca_2, ca_3]$$
 (Sec. 9.1).

For instance, the *resultant* of forces \mathbf{a} and \mathbf{b} is the sum $\mathbf{a} + \mathbf{b}$.

The inner product or dot product of two vectors is defined by

(3)
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \gamma = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 (Sec. 9.2)

where γ is the angle between **a** and **b**. This gives for the **norm** or **length** $|\mathbf{a}|$ of **a**

(4)
$$|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

as well as a formula for γ . If $\mathbf{a} \cdot \mathbf{b} = 0$, we call \mathbf{a} and \mathbf{b} orthogonal. The dot product is suggested by the *work* $W = \mathbf{p} \cdot \mathbf{d}$ done by a force \mathbf{p} in a displacement \mathbf{d} .

The vector product or cross product $\mathbf{v} = \mathbf{a} \times \mathbf{b}$ is a vector of length

(5)
$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin \gamma$$
 (Sec. 9.3)

and perpendicular to both **a** and **b** such that **a**, **b**, **v** form a *right-handed* triple. In terms of components with respect to right-handed coordinates,

(6)
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 (Sec. 9.3).

The vector product is suggested, for instance, by moments of forces or by rotations. CAUTION! This multiplication is *anti*commutative, $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$, and is *not* associative.

An (oblique) box with edges **a**, **b**, **c** has volume equal to the absolute value of the scalar triple product

(7)
$$(\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.$$

Sections 9.4–9.9 extend differential calculus to vector functions

$$\mathbf{v}(t) = [v_1(t), v_2(t), v_3(t)] = v_1(t)\mathbf{i} + v_2(t)\mathbf{j} + v_3(t)\mathbf{k}$$

and to vector functions of more than one variable (see below). The derivative of $\mathbf{v}(t)$ is

(8)
$$\mathbf{v}' = \frac{d\mathbf{v}}{dt} = \lim_{\Delta t \to 0} \frac{\mathbf{v}(t + \Delta t) - \mathbf{v}(t)}{\Delta t} = [v_1', v_2', v_3'] = v_1'\mathbf{i} + v_2'\mathbf{j} + v_3'\mathbf{k}.$$

Differentiation rules are as in calculus. They imply (Sec. 9.4)

$$(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}', \qquad (\mathbf{u} \times \mathbf{v})' = \mathbf{u}' \times \mathbf{v} + \mathbf{u} \times \mathbf{v}'.$$

Curves *C* in space represented by the position vector $\mathbf{r}(t)$ have $\mathbf{r}'(t)$ as a **tangent vector** (the **velocity** in mechanics when *t* is time), $\mathbf{r}'(s)$ (*s* arc length, Sec. 9.5) as the *unit tangent vector*, and $|\mathbf{r}''(s)| = \kappa$ as the *curvature* (the *acceleration* in mechanics).

Vector functions v $(x, y, z) = [v_1(x, y, z), v_2(x, y, z), v_3(x, y, z)]$ represent vector fields in space. Partial derivatives with respect to the Cartesian coordinates x, y, z are obtained componentwise, for instance,

$$\frac{\partial \mathbf{v}}{\partial x} = \left[\frac{\partial v_1}{\partial x}, \frac{\partial v_2}{\partial x}, \frac{\partial v_3}{\partial x} \right] = \frac{\partial v_1}{\partial x} \mathbf{i} + \frac{\partial v_2}{\partial x} \mathbf{j} + \frac{\partial v_3}{\partial x} \mathbf{k}$$
 (Sec. 9.6).

The **gradient** of a scalar function f is

(9)
$$\operatorname{grad} f = \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right]$$
 (Sec. 9.7).

The directional derivative of f in the direction of a vector \mathbf{a} is

(10)
$$D_{\mathbf{a}}f = \frac{df}{ds} = \frac{1}{|\mathbf{a}|} \mathbf{a} \cdot \nabla f \qquad (Sec. 9.7).$$

The **divergence** of a vector function \mathbf{v} is

(11)
$$\operatorname{div} \mathbf{v} = \nabla \cdot \mathbf{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}.$$
 (Sec. 9.8).

The curl of v is

(12)
$$\operatorname{curl} \mathbf{v} = \nabla \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (Sec. 9.9)

or minus the determinant if the coordinates are left-handed. Some basic formulas for grad, div, curl are (Secs. 9.7–9.9)

(13)
$$\nabla(fg) = f\nabla g + g\nabla f$$
$$\nabla(f/g) = (1/g^2)(g\nabla f - f\nabla g)$$

(14)
$$\operatorname{div}(f\mathbf{v}) = f\operatorname{div}\mathbf{v} + \mathbf{v} \cdot \nabla f$$
$$\operatorname{div}(f\nabla g) = f\nabla^2 g + \nabla f \cdot \nabla g$$

(15)
$$\nabla^2 f = \operatorname{div}(\nabla f)$$

$$\nabla^2 (fg) = g \nabla^2 f + 2 \nabla f \cdot \nabla g + f \nabla^2 g$$

(16)
$$\operatorname{curl}(f\mathbf{v}) = \nabla f \times \mathbf{v} + f \operatorname{curl} \mathbf{v}$$
$$\operatorname{div}(\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot \operatorname{curl} \mathbf{u} - \mathbf{u} \cdot \operatorname{curl} \mathbf{v}$$

$$\operatorname{curl}(\nabla f) = \mathbf{0}$$

$$\operatorname{div}(\operatorname{curl} \mathbf{v}) = 0.$$

For grad, div, curl, and ∇^2 in curvilinear coordinates see App. A3.4.