Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

31 Lecture 31 Jul 16th 2018

31.1 Factorizations in Integral Domains (Continued)

31.1.1 *Irreducibles and Primes (Continued)*

66 Note

Recall that if R is an integral domain and $a, b \in R$, we say that $a \mid b$ if $\exists c \in R$ such that b = ca.

Also, recall the definition of associativity.

Definition (Associativity)

If $a \mid b$ and $b \mid a$, then we say that a is associative to b, and denote $a \sim b$ if and only if $\exists u \in R$, which is a unit, such that a = ub, and we have $\langle a \rangle = \langle b \rangle$.

Definition 54 (Irreducible)

Let R be an integral domain. We say $p \in R$ is irreducible if $p \neq 0$ is not a unit, and $p = ab \in R$, then either a or b is a unit. An element that is not irreducible is reducible.

Example 31.1.1

Let $R = \mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ and $p = 1 + \sqrt{-5}$. We want to show that p is an irreducible in R. Note that for $z = m + n\sqrt{-5} \in$

R, the **norm** of z is defined to be

$$N(z) = (m + n\sqrt{-5})(m - n\sqrt{-5}) = m^2 + 5n^2 \in \mathbb{N} \cup \{0\}$$

*Note that*¹

$$N(xy) = N(x)N(y).$$

Now suppose that $p = ab \in R$ *. Then*

$$6 = N(p) = N(a)N(b).$$

However, since $N(z) = m^2 + 5n^2$ for some $m, n \in \mathbb{Z}$, we must have that $N(z) \neq 2$, 3. Thus, we have either N(a) = 1 or N(b) = 1, which in turn implies that $a = \pm 1$ and $b = \pm 1$, which implies that a or b is a unit. Therefore, p is irreducible.

• Proposition 92 (Properties of Irreducibles)

Let R be an integral domain. Let $0 \neq p \in R$. TFAE:

- 1. p is irreducible;
- 2. $d \mid p \implies d \sim 1 \veebar d \sim p$;
- 3. $p \sim ab \in R \implies p \sim a \veebar p \sim b$;
- 4. $p = ab \in R \implies p \sim a \vee p \sim b$.

Consequently, if $p \sim q$, we have p is irreducible if and only if q is irreducible.

Proof

- (1) \Longrightarrow (2): $d \mid p \Longrightarrow \exists c \in R \quad dc = p$. $d \text{ is a unit } \Longrightarrow d \sim 1 \square$; $d \text{ is not a unit } \Longrightarrow c \text{ is a unit } \because p \text{ is irreducible}$
 - d is not a unit \implies c is a unit \because p is irreducible $\implies \exists c^{-1} \in R \quad cc^{-1} = 1 \implies d = pc^{-1} \implies d \sim p$.
- (2) \Longrightarrow (3): $p \sim ab \Longrightarrow \exists c, c^{-1} \in R \ cc^{-1} = 1 \ p = cab$ Suppose $p \not\sim a$. $a \mid cab \Longrightarrow a \mid p \stackrel{(2)}{\Longrightarrow} a \sim 1 \Longrightarrow ca \ is \ a \ unit \Longrightarrow p \sim b$.
- (3) \Longrightarrow (4): 1 is a unit and so $p=ab \Longrightarrow p \sim ab$, and the result follows from (3).

Proof

Let $x = m + n\sqrt{-5}$ and $y = a + b\sqrt{-5}$. Note that

$$N(x) = m^2 + 5n^2.$$

Then

N(x)N(b)

 $= m^2a^2 + 25n^2b^2 + 5(n^2a^2 + m^2b^2).$

and since

 $xy = ma - 5nb + \sqrt{-5}(na + mb),$

we have

N(xy)

 $= (ma - 5nb)^2 + 5(na + mb)^2$

 $= m^2a^2 + 25n^2b^2 + 5(n^2a^2 + m^2b^2)$

(4)
$$\implies$$
 (1): \because (4) $p = ab \implies p \sim a \veebar p \sim b$.
WLOG $p \sim a \implies \exists c, c^{-1} \in R \ cc^{-1} = 1 \ p = ac \implies ac = ab$
Note $a \neq 0 \because p \neq 0 \land p \sim a$.

Then by lacktriangledown Proposition 73, $c = b \implies b$ is a unit $\implies p$ is irreducible.

By (3) and (1),
$$p \sim q \iff p$$
, q are irreducibles. \square

Definition 55 (Prime)

Let R be an integral domain and $p \in R$. We say p is prime in R if $p \neq 0$ is not a unit, and if $p \mid ab \in R \implies p \mid a \vee p \mid b$.

66 Note

If $p \sim q$, then p is prime \iff q is prime. This is a clear result, since $p \sim q \implies p | q \wedge q | p$, and if p is prime, then $q | p | ab \implies$ $q \mid p \mid a \leq q \mid p \mid b$.

Also, by induction, if p is prime and

$$p \mid a_1 a_2 ..., a_n$$
,

then $p \mid a_i$ for some $1 \leq i \leq n$.

• Proposition 93 (Primes are Irreducible)

Let R be an integral domain and $p \in R$. p is prime \implies p is irreducible.

Proof

∴ p is prime
$$p = ab \implies p \mid a \lor p \mid b$$
.

WLOG $p \mid a \implies \exists d \in R \quad dp = a$
 $\implies a = dp = dab = adb$ ∴ R is commutative

∴ $a \ne 0$ and R is an integral domain, by \clubsuit Proposition 73, $1 = db \implies b$ is a unit (with d being its multiplicative inverse).

∴ p is irreducible.

The converse of • Proposition 93 is false.

Example 31.1.2

Recall from Example 31.1.1 that $1 + \sqrt{-5}$ is irredubile in $\mathbb{Z}[\sqrt{-5}]$. Recall that for $d = m + n\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$, we defined the norm as

$$N(d) = m^2 + 5n^2 \in \mathbb{N} \cup \{0\}.$$

Before proceeding further, note that

$$2 \cdot 3 = 6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = p(1 - \sqrt{-5}).$$

Suppose p is prime, which then $p \mid 2 \cdot 3 \implies p \mid 2 \stackrel{\vee}{=} p \mid 3$. Suppose $p \mid 2 \implies \exists q \in \mathbb{Z}[\sqrt{-5}] \quad 2 = pq$. It follows that

$$4 = N(2) = N(p)N(q) = 6N(q)$$

which is impossible. Similarly, $p \mid 3 \implies \exists r \in R \quad 3 = rp \implies$

$$9 = N(3) = N(r)N(p) = 6N(r)$$

is also impossible. Therefore, p is not prime.

31.1.2 Ascending Chain Condition

Definition 56 (Ascengding Chain Condition on Principal Ideals (ACCP))

An integral domain R is said to satisfy the ascending chain condition on principal ideals (ACCP) if for any ascending chain

$$\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \dots$$

of principal ideals in R, $\exists n \in \mathbb{N}$ such that

$$\langle a_n \rangle = \langle a_{n+1} \rangle = \dots$$

Example 31.1.3

Z satisfies ACCP.

$$a_2 | a_1, a_3 | a_2, \dots$$

Taking the absolute value of each of the a_i 's, we have that

$$|a_1| \ge |a_2| \ge |a_3| \ge \dots$$

Since each of the $|a_i| \ge 0$ is an integer, there must be some $n \in \mathbb{N}$ where

$$|a_n| = |a_{n+1}| = \dots$$

This implies that $a_{i+1} = \pm a_i$ for $i \ge n$. Therefore, we have that

$$\langle a_i \rangle = \langle a_{i+1} \rangle$$
 for $i \geq n$,

thus showing that the ACCP is satisfied.

■ Theorem 94 (Factorization on an Integral Domain Satisfying ACCP)

Let R be an integral domain that satisfies ACCP. Let $0 \neq a \in R$ be a non-unit. Then a is a product of irreducible elements of R.

Proof

Suppose to the contrary that a is not a product of irreducible elements of R. Then a itself must not be irreducible. By \bullet Proposition 92, $\exists x_1 \in R$ such that

$$a = x_1 a_1$$
 $a \nsim x_1 \wedge a \nsim a_1$.

Note that at least one of x_1 or a_1 is not a product of irreducible elements, for otherwise a would be a product of irreducible elements. WLOG, suppose a_1 is not a product of irreducible elements. Then \bullet Proposition 92 $\implies \exists x_2 \in R$

$$a_1 = x_2 a_2$$
 $a_1 \not\sim x_2 \wedge a \not\sim a_2$.

We can continue this argument infinitely so, in which we will then get an ascending chain of principal ideals

$$\langle a \rangle \subseteq \langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \dots$$

180 Lecture 31 Jul 16th 2018 - Factorizations in Integral Domains (Continued)

However, since

$$a \not\sim a_1 \not\sim a_2 \not\sim \dots$$

• Proposition 91 implies that

$$\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \dots$$

which contradicts the assumption that R satisfies ACCP. Therefore, all non-unit $0 \neq a \in R$ is a product of irreducible elements of R.