#### Joint Problem Session

April Camp 2022

## Problem 1 – Garden (IOI 2005)



### Garden: O(n^10)

Try every possible pair of rectangles

If both criteria hold, record their perimeters

FInally, take the smallest possible amongst these pairs

$$h^4 \times h^4 \times (n^2 + n^2) = O(n^{10})$$

## Garden: O(n^8)

Using prefix sum
$$O(n^2) \longrightarrow O(1) \text{ counting}$$

$$O(n^2) \text{ overhead}$$

Binary search on width of final rectangle because Kis fixed

$$O(n^4) \rightarrow O(n^3 \log n)$$

$$O(n^3)$$

# Garden: O(n^&)



## Garden: O(n^3)



X

### Problem 2 – Quality of Living (IOI 2010)

## QoL: $O(n^4)$

Calculating median for all subrectangles  $O(n^2)$  subrectangles  $O(n^2)$  calculating the median

$$\Rightarrow O(n^4)$$
 in total.

## QoL: O(n^3) \pu \

| DS to cal | culate median    |           |
|-----------|------------------|-----------|
| -> 2 Sets | " balanced sets" |           |
|           | Size=a           | O(log n)  |
| > Order   |                  | 0 (log n) |
|           | n-1 element?     |           |

## QoL: $O(n^2 \log n)$

Binary search the answer (is best median  $\leq n?$ )

- Prefix sum to count # elements > 2 in a subgrid
- YES it any subgrid exists with & half of elements set to 1



Looking for slightly less than half of elements greater and slightly more than half of elements