Movimento curvilíneo

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

19 de outubro de 2022

Sumário

- Vetores velocidade e aceleração
- Movimento circular
- Composição de velocidades
- Apêndice

Introdução

Nas aulas anteriores, estudamos movimentos retilíneos, porém existem movimentos mais complexos que esse. Como exemplo podemos citar o movimento aleatório de uma abelha, ou de um barco tentando atravessar a margem de um Rio. Esta aula será dedicada a tais movimentos que já não são mais considerados como retilíneos

Movimento de uma abelha.

Movimento em uma rotatória.

Movimento de um barco.

Velocidade instantânea

Considere o movimento abelha ao longo de uma trajetória, como mostra a figura ao lado. A sua velocidade pode mudar de intensidade, direção e sentido, assim como mostra os vetores \vec{v}_1 , \vec{v}_2 , \vec{v}_3 e \vec{v}_4 . Entretanto, apesar de mudar ao longo do tempo, a direção de cada velocidade será sempre tangente a traietória.

Velocidade instantânea da abelha.

Aceleração instantânea

Uma análise parecida para a velocidade feita anteriormente, podemos dizer que a aceleração também pode mudar de intensidade, direção e sentido ao longo da trajetória. Além disso, a aceleração pode alterar a velocidade não somente sua intensidade, mas também a direcão e sentido. Um exemplo seria a aceleração centrípeta, que não altera a intensidade da velocidade do automóvel, mas altera a sua direção e sentido (veja a figura ao lado).

$$\vec{v}_1 = \vec{v}_2 = \vec{v}_3 = \cdots$$

 $\vec{v}_1 \neq \vec{v}_2 \neq \vec{v}_3 \neq \cdots$

Movimento circular em uma rotatória.

Corollary

Sempre que variar a direção do vetor velocidade de um objeto, este possuirá uma aceleração centrípeta. Sempre que variar o módulo do vetor velocidade de um objeto, este possuirá uma aceleração tangencial.

Velocidade instantânea da abelha.

Período

Dizemos que uma partícula está em movimento circular quando sua trajetória é uma circunferência. Neste movimento, o vetor velocidade tem módulo constante, entretanto a sua direção e sentido muda ao longo da trajetória.

Assim, o tempo que a partícula gasta para percorrer uma trajetória de uma circunferência completa é chamada de período do movimento (T). O espaço percorrido seria o comprimento C da circunferência, onde $C=2\pi R$, e R é o seu raio.

Direção e sentido da aceleração centrípeta e velocidade.

Prof. Flaviano W. Fernandes

Período e frequência

Como o movimento é uniforme o valor da velocidade será dado por

$$v=rac{ ext{espaço percorrido}}{ ext{período}}, \ v=rac{2\pi R}{T}.$$

Agora, definimos a frequência como o número de voltas completas realizadas pela partícula por segundo

Assim, podemos imaginar que a frequência é o inverso do período, ou seia.

frequência =
$$\frac{1}{\text{período}}$$
.

Corollary

A frequência f de um movimento circular é definida por

$$f = \frac{n \acute{u}mero \ de \ voltas \ efetuadas}{tempo \ gasto \ para \ efetu\'{a}-las}$$

Velocidade angular

Vamos supor que durante um intervalo de tempo Δt uma partícula realiza uma trajetória como mostra o arco azul da figura. A relação entre o ângulo descrito pela trajetória e o intervalo de tempo é denominado velocidade angular ω ,

$$\omega = \frac{\Delta \theta}{\Delta t}$$

 ω pode ser determinado com o ângulo medido em graus, porém é comum usar radianos, que seria o comprimento de um arco com o mesmo ângulo mas em uma circunferência de raio igual a 1.

Uma maneira de calcular a velocidade angular é considerar uma partícula efetuando uma volta completa em uma circunferência de raio 1, pois a sua velocidade angular será a mesma independente do raio da trajetória. Assim, o tempo gasto seria o período do movimento e o espaço percorrido o comprimento da circunferência $C=2\pi rad$,

$$\omega=rac{2\pi}{T}$$
 rad/s.

Além disso, no movimento circular, a velocidade é definida como $v=2\pi R/T$ (veja o slide anterior), ou

$$v = \left(\frac{2\pi}{T}\right)R, v = \omega R.$$

Corollary

Lembrando que no SI, a unidade de medida da velocidade angular é radiano por segundo (rad/s).

Aceleração centrípeta e velocidade tangencial

No movimento circular uniforme, consideramos que a aceleração tangencial é zero. Assim, a única aceleração que existe neste movimento é a aceleração centrípeta, e sua relação com a velocidade é dado por

$$a_c=rac{v^2}{R}.$$

A aceleração centrípeta não altera o módulo da velocidade, somente a sua direção e sentido. Isso acontece porque a sua direção é perpendicular a direção da velocidade.

Direção e sentido da aceleração centrípeta e da velocidade.

Velocidade resultante

Consideremos um barco tentando ir de uma margem a outra de um rio. Se não houver correntezas, o barco seguirá uma trajetória em linha reta, e será perpendicular ao rio. No entanto, se houver correnteza, ele seguirá uma trajetória em diagonal. Isso acontece porque a velocidade do barco observada por alquém na margem será a resultante das velocidades que ele possui, ou seja, a combinação da sua velocidade somado a velocidade da correnteza do rio.

Barco tentando atravessar um rio com correnteza.

Prof. Flaviano W. Fernandes

Independência das velocidades

Na figura ao lado podemos imaginar que o seu movimento será determinado pela sua velocidade resultante \vec{v}_{res} .

Corollary

Quando um objeto está animado, simultaneamente, por dois movimentos perpendiculares entre si, o deslocamento na direção de um deles é determinado apenas pela velocidade naquela direção.

Movimento resultante do barco no rio.

No caso de um lançamento oblíquo de um objeto, podemos considerar que o seu movimento resultante (que no caso é parabólico), é a combinação de dois movimentos perpendiculares:

- ✓ Um movimento em queda livre na vertical;
- Um movimento retilíneo e uniforme na horizontal.

Movimento balístico da bolinha azul.

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	K	κ
Lambda	٨	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ho
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)
- https://brasilescola.uol.com.br/fisica/ movimento-uniforme.htm
- https://br.freepik.com/fotos-premium/ rodovia-suburbana-no-final-da-noite-vestigios-de-farois-e-lan 20424758.htm

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.