

Universidade do Minho

Escola de Ciências

Departamento de Matemática
e Aplicações

Cálculo

Engenharia e Gestão de Sistemas de Informação

2013-2014

Condição necessária de convergência duma série

Se $\sum_{n\in\mathbb{N}} a_n$ é uma série convergente então a sucessão $(a_n)_{n\in\mathbb{N}}$ converge para zero.

Séries geométricas

Se $a, r \in \mathbb{R}$ então a série geométrica $\sum_{n \in \mathbb{N}_0} a r^n$

- 1. é convergente se a = 0 ou se |r| < 1, e a sua soma é $\frac{a}{1-r}$;
- 2. é divergente se $a \neq 0$ e $|r| \geq 1$.

Séries alternadas – critério de Leibniz

Seja $\sum_{n\in\mathbb{N}} (-1)^n a_n$ uma série alternada (isto é, $a_n \geq 0, \forall n \in \mathbb{N}$).

Se $(a_n)_{n\in\mathbb{N}}$ é decrescente e converge para zero então a série é convergente.

Séries de termos positivos - critério de d'Alembert (ou da razão)

Seja $(a_n)_{n\in\mathbb{N}}$ a uma sucessão de termos positivos tal que $\lim_n \frac{a_{n+1}}{a_n} = \alpha$.

- 1. Se $\alpha < 1$, então $\sum_{n \in \mathbb{N}} a_n$ é convergente.
- 2. Se $\alpha=1$, nada se conclui sobre a convergência da série $\sum_{n\in\mathbb{N}}a_n$.
- 3. Se $\alpha > 1$, então $\sum_{n \in \mathbb{N}} a_n$ é divergente.

Séries de termos não negativos - critério de Cauchy (ou da raiz)

Seja $(a_n)_{n\in\mathbb{N}}$ a uma sucessão de termos não negativos tal que $\lim_{n} \sqrt[n]{a_n} = \alpha$.

- 1. Se $\alpha < 1$, então $\sum_{n \in \mathbb{N}} a_n$ é convergente.
- 2. Se $\alpha=1$, nada se conclui sobre a convergência da série $\sum_{n\in\mathbb{N}}a_n$.
- 3. Se $\alpha > 1$, então $\sum_{n \in \mathbb{N}} a_n$ é divergente.

Sejam $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ sucessões e $\lambda\in\mathbb{R}$.

Se $\sum_{n\in\mathbb{N}} a_n$ e $\sum_{n\in\mathbb{N}} b_n$ convergem então $\sum_{n\in\mathbb{N}} (a_n+b_n)$ e $\sum_{n\in\mathbb{N}} \lambda a_n$ também convergem e

$$\sum_{n\in\mathbb{N}}(a_n+b_n)=\left(\sum_{n\in\mathbb{N}}a_n\right)+\left(\sum_{n\in\mathbb{N}}b_n\right),\qquad \sum_{n\in\mathbb{N}}\lambda a_n=\lambda\sum_{n\in\mathbb{N}}a_n.$$