





Dr. Sanjay Saxena



AKASH PARIDA ANIMESH PADHY TANUJ MANUPRIT XALXO B420005 B420007 B420056







### **Problem Statement**

It is difficult to identify heart disease of several contributory risk factors such as diabetes, high blood pressure, high cholesterol, abnormal pulse rate and many other factors.

Diagnosing heart disease is a difficult task, but it can be made more effective by providing automated predictions about a patient's heart condition, enabling more targeted treatment.

A machine learning approach to predict the presence of cardiovascular diseases in patients based on major health data.







### **Motivation**



QoS

Ensuring high accuracy and reliability, our machine learning model for heart disease prediction provides trustworthy and precise results.



### **Diagnosing**

Diagnosing patients correctly by employing appropriate computer based information and decision support system







# **Background of Work**





- Heart disease: a prevalent and serious global health condition.
- Importance of early detection and accurate prediction for improved patient outcomes.
- Machine learning techniques revolutionizing healthcare.
- Widely used for developing predictive models across medical conditions, including heart disease.

#### **Heart Disease Prediction Web Application**

- Heart disease prediction web application for risk assessment.
- User-friendly interface empowering individuals to assess their heart disease risk.
- Utilizes machine learning models trained on historical data.
- Considers various risk factors: age, gender, blood pressure, cholesterol levels, lifestyle habits.











- Flask, a lightweight and versatile Python web framework, facilitates the development of interactive heart disease prediction web applications.
- Flask web application integrates with the underlying machine learning model.
- Predictions and recommendations personalized based on user data.
- Users can input health information, interact with the machine learning model, and receive personalized predictions or recommendations for proactive heart health management.







# **Model Development**



### **Data Collection:**

Dataset with 14 attributes is collected from Kaggle

### **Data Preprocessing:**

Detected and addressed any missing values in the dataset by employing imputation or dropping.

Standardized and rescaled the features by using methods such as standardization or min-max scaling to ensure their uniform magnitude.

### **Model Selection & Training:**

Selected ML model is trained using the preprocessed dataset. Our goal was to optimize the model's parameters in order to minimize prediction error. To achieve this, we employed techniques such as gradient descent or optimization algorithms.

### **Model Evaluation:**

Calculated performance metrics such as accuracy, precision, recall, F1 score, or area under the ROC curve (AUC-ROC) to assess how well the model predicts heart disease.



# **Model Deployment**



### **Dataset**



### **KAGGLE**

an online community of data scientists and machine learning engineers

### **UCI DATASETS**

With 14 health attributes

## FINAL DATASET

300+ observations





### **Data Set Description**

| Data element | Description                                        | Type             | Range                                                                           | Remarks                                                        |  |  |
|--------------|----------------------------------------------------|------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Age          | -                                                  | Numª             | 29-77                                                                           | Average is 54.37                                               |  |  |
| Sex          | -                                                  | Bib              | 0: Female<br>1: Male                                                            | 32% Female<br>68% Male                                         |  |  |
| Ср           | Chest pain level                                   | Nom <sup>c</sup> | 0/1/2/3 0: Asymptotic 2: non-anginal pain 3: Typical angina                     | Majority have 0 pain                                           |  |  |
| Trestbps     | Rest blood pressure                                | Num              | 94-200                                                                          | Average is 131.6                                               |  |  |
| Chol         | Cholesterol level                                  | Num              | 126-564                                                                         | Average is 246.3                                               |  |  |
| Fbs          | Fasting blood sugar level                          | Bi               | 0: Level below 120<br>1: Level above 120                                        |                                                                |  |  |
| Restecg      | Resting electrocardiographic results               | Nom              | 0/1/2 0: Showing probable or definite left ventricular hypertrophy. 2: Abnormal | -                                                              |  |  |
| Thalach      | Maximum heart rate achieved                        | Num              | 71-202                                                                          |                                                                |  |  |
| Exang        | Exercise induced angina                            | Bi               | 0: None<br>1: Produced                                                          | -                                                              |  |  |
| Oldpeak      | ST depression induced by exercise relative to rest | Num              | 0-6.2                                                                           | Right skewed data, majority of population is between 0 and 0.5 |  |  |
| Slope        | The slope of the peak exercise ST segment          | Nom              | 0: Unsloping<br>1: Flat<br>2: Down-sloping                                      | -                                                              |  |  |
| Ca           | Number of major vessels                            | Nom              | 0/1/2/3/4                                                                       |                                                                |  |  |
| Thal         | Defect type                                        | Nom              | 1: Fixed defect<br>2: Normal<br>3: Reversable defect                            | There is one outlier of category 0                             |  |  |
| Target       | Diagnosis of heart disease                         | Bi               | 0: No disease<br>1: Disease                                                     | -                                                              |  |  |









# **Correlation Analysis**



#### Visualizing Relationships between Features and Target Variable









# **Working Environment**



#### **Programming Language:**

Python - a versatile language for data analysis, machine learning, and web development.

#### **Machine Learning Libraries:**

Utilizing popular Python libraries like scikit-learn and pandas for training and evaluating the model.

#### **Dependencies:**

Managing project dependencies using a package manager like pip, including Flask, numpy, Gunicorn, scikit-learn, and pandas

#### **Development Environment:**

Utilizing Visual Studio Code for coding, debugging, and project management.

# Web Framework:

Flask - a lightweight and flexible Python web framework for building web applications.

#### HTML/CSS:

Creating the user interface with HTML for structure and CSS for styling.

#### JavaScript:

Enhancing interactivity and responsiveness on the web pages.

#### **Deployment:**

Deploying the web application on a cloud platform, such as Render.





# **Home Page**









### Interacting with the Heart Disease Prediction Model



| FOR MEALTHY MEART |                           | Γ0                                              | D M                     |                                            | Home About |  |
|-------------------|---------------------------|-------------------------------------------------|-------------------------|--------------------------------------------|------------|--|
|                   |                           |                                                 | R M<br>uctions          |                                            |            |  |
|                   | Age                       |                                                 | Sex                     |                                            |            |  |
|                   | Enter you age  Chest Pain | D                                               | Choose                  | ·                                          |            |  |
|                   | Enter chestpain level     | Rest blood pres                                 |                         | Cholesterol level  Enter Cholesterol level |            |  |
|                   | Fasting blood sugar level | Fasting blood sugar level                       |                         | Resting electrocardiographic results       |            |  |
|                   | Enter fasting blood sugar | level                                           | Exercise induced angina |                                            |            |  |
|                   | Thalach                   |                                                 |                         |                                            |            |  |
|                   | Max Heart Rate during ph  | Max Heart Rate during physical activity         |                         | Chest pain and discomfort during exercise  |            |  |
|                   | Oldpeak                   |                                                 | Slope                   |                                            |            |  |
|                   | depression induced by ex  | depression induced by exercise relative to rest |                         | The slope of the peak exercise ST segment  |            |  |
|                   | Ca                        |                                                 | Thal                    |                                            |            |  |
|                   | Number of major vessels   |                                                 |                         |                                            |            |  |





# **Capturing User Data**







# Visualization of Output







# Discussions, Evaluating the Performance



- The proposed system was evaluated using the Logistic Regression machine learning technique.
- Logistic Regression is known for its interpretability and efficiency in classification tasks.
- With an accuracy of 80%, the Logistic Regression model demonstrated excellent performance in predicting outcomes or classifications for the given data.







### **Future Enhancements**



- In the future, we can further enhance the accuracy of Logistic Regression by applying a genetic algorithm to reduce the amount of data required and obtain an optimal subset of attributes for predicting heart disease.
- This automation of heart disease prediction utilizes real-time data obtained from healthcare organizations and agencies, making use of big data.
- By utilizing this data, real-time investigations of patients can be conducted









Our work focuses on utilizing specific health measurements to predict the presence of heart disease in patients. Through the application of advanced machine learning techniques, we aim to enhance early detection of heart disease.



