Problem

Show that the following problem is NP-complete. You are given a set of states $Q = \{q_0, q_1, \dots, q_l\}$ and a collection of pairs $\{(s_1, r_1), \dots, (s_k, r_k)\}$ where the s_i are distinct strings over $\Sigma = \{0, 1\}$, and the r_i are (not necessarily distinct) members of Q. Determine whether a DFA $M = (Q, \Sigma, ?, q_0, F)$ exists where $?(q_0, s_i) = r_i$ for each i. Here, ?(q, s) is the state that M enters after reading s, starting at state s.

(Note that F is irrelevant here.)

Step-by-step solution

Step 1 of 2

Correct DFA which satisfy C constraints and in polynomial time Π can be guessed by Non Deterministic Turing Machine iff such DFA available or exist.

For showing that problem is NP complete reduce it to polynomial time.

Consider the formula $F = \bigwedge_{j=1}^m R_j$ where $R_j = (s_j \lor t_j \lor u_j)$ and construction some constraints C and Π .

- $C = \{c_T, c_F, c_1, c_2\}$ are states.
- · Creating pair $(\varepsilon, c_F)_{\mathrm{in}}$ $\Pi_{\mathrm{for enforcing}}$ c_F as starting state.
- Every variable s belongs to F will create the pairs $\left(s\overline{s},c_{\tau}\right)$ and $\left(\overline{ss},c_{\tau}\right)$.
- Every clause R_j in formula F will have pair in Π that is $(s\#_s, c_1)$ and $(\overline{s}\#_s, c_2)$ that enforces that when reading s and \overline{s} , DFA must be in different state.
- $\text{- Choose any } s \text{ in } F \text{ . Now for } \forall \text{ variable } t \text{ create other three points in } \Pi_{\pm} \underbrace{\left(s\overline{s}t, c_{T}\right)}_{,} \underbrace{\left(s\#_{s}t, c_{1}\right)}_{,} \underbrace{\left(\overline{s}\#_{s}t, c_{2}\right)}_{,} \underbrace{\left(\overline$

Comment

Step 2 of 2

F is satisfiable iff there is some DFA that satisfy C and R. Reduction is taking some polynomial time therefore given problem is NP-complete.

Comment