Projeto automação residencial

Ruan Flaneto Cartier

July 27, 2021

Contents

1	Motivação					
2 Objetivos						
3	Detalhamento do projeto					
	3.1	Lâmpa	adas			
			Descrição do circuito			
		3.1.2	Componentes utilizados (por lâmpada)			
	3.2	Contr	ole do ar condicionado			
		3.2.1	Descrição do hardware			
		3.2.2	I2C revisão			
	3.3	3.2.2 I2C revisão 3.2.2 Descrição do software 3.2.2				
		3.3.1	Criar servidor local/Aberto			
4	Cas	o de u				

1 Motivação

Um projeto de automação residencial foi demandado. Primeira coisa que vem em mente é poder controlar as lâmdas de casa individualemente. Assim, pretende-se usar um ESP8266 para cada ponto de interruptor de lâmpada para poder ter conexão com o computador central (raspberry pi). Temos disponíveis sensores piroelétricos, que são úteis para desligar as lâmpadas automaticamente na ausência de pessoas no cômodo.

2 Objetivos

Gerenciar o funcionamento das lâmpadas de casa, cujas ações de desligar ou ligar possam ser configuradas como automáticas (depende do sensor de presença) ou manuais (depende de comandos por smarthphone, sejam botões e/ou comandos de voz). Este gerenciamento também inclue a formação de relatórios sobre consumo elétrico (estimado) em cada dispositivo, apresentando as informações em histogramas e suas respectivas conclusões. Um objetivo secundário seria implementar o controle de ar condicionado, em que a diferença para a lâmpada seria o controle (malha aberta) de temperatura e o registro da mesma no relatório.

3 Detalhamento do projeto

3.1 Lâmpadas

3.1.1 Descrição do circuito

Um pequeno trafo recebe a energia da tomada, é retificada por uma ponte retificadora e então o módulo relé com o esp8266 controla o chaveamento da lâmpada. Não menos importante, o interruptor da tomada dever ser alimentado por um resistor, cujo estado é lido por uma porta digital. Quase esqueci dos sensores de presença. Devido ao espaço ocupado, novos interruptores devem ser comprados. Sendo assim, o μC precisará de 3 portas digitais para controlar os periféricos e mais talvez duas para poder programar em ISP. Pretendo não fazer placa de circuito impresso para simplificar o projeto e to no momento é impossível para mim imprimir sem uma impressora adequada.

3.1.2 Componentes utilizados (por lâmpada)

□ 1 Trafo de carregador;
□ 4 Diodos 1n4007;
□ 1 Capacitor eletrolítico (47uF);
□ 1 Capacitor cerâmico (100nF);
□ 1 Sensor piroelétrico
□ 1 Conjunto de interruptor; (Precisa comprar)
□ 1 Módulo de acionamento de relé por ESP8266 (figura 1)

O módulo de relé possui o esquemático como na figura ??

3.2 Controle do ar condicionado

3.2.1 Descrição do hardware

O computador principal se conecta ao controle do ar condicionado através dos barramentos de I2C do display e do microcontrolador. O primeiro barramento seria usado para o computador central identificar as configurações atuais do ar condicionado e o segundo serve para fazer alterações nas configurações. Para tanto é preciso fazer uma revisão sobre o protocolo e interpretar os dados lidos.

3.2.2 I2C revisão

Ao abrir o controle do ar condicionado foram encontrados os pinos 36,37,38 e 44 acessíveis ao usuário. Como mostrado na figura 3. Claramente eles servem para estabelecer comunicação i2c entre o chip e um computador externo.

Fui procurar circuitos de controle remoto que aplicam este microcontrolador e achei um resultado interessante, como na figura 4.

Logo fiquei na dúvida o que seria o VPP do pino 36, pesquisei no datasheet e achei este resultado (vide figura 5).

Depois disso notei que precisava rever um pouco sobre i2c e achei as seguintes figuras chave: TODO ...

3.3 Descrição do software

Os esp8266 das tomadas devem entrar em um ponto de acesso central e então ficar à espera de comandos. Ele age como escravo para responder aos comandos do computador central e também irá enviar mensagens durante a comutação do sensor piroelétrico (descobrir se não vai haver realimentação positiva com a lâmpada) Protocolo de comunicação: Tem que descobrir uma forma de protocolar as mensagens. O receptor vai ler a mensagem e vai decodificá-la. Após decodificar, vai executar a ação de desligar/ligar.

Procedimentos a serem utilizados na cpu principal:

- get state() # Retorna o estado atual lâmpada;
- turn(boolean state) # Pede para ligar/desligar a lâmpada
- get switch() # Retorna a posição do interruptor;

3.3.1 Criar servidor local/Aberto

 \bullet Conseguir externar o ip desse servidor

**

4 Caso de uso

Figure 1: Módulo relé com ESP01 utilizado

ESP-01 3 D3 LL4148 OF **ESP-01S** (rev 1)

Figure 2: Esquema do circuito do módulo com relé

Figure 4: Pinos i2c disponíveis ao usuário.

Figure 5: Pinos i2c disponíveis ao usuário.

Pin	Type	Description			
Programming Port					
V _{DD}	P	Programming Power (+3.3V)			
VPP	P	Programming High Voltage Power (+7.5V)			
GND	P	Ground			
SCK	- 1	Programming Clock input Pin			
SDA	I/O	Programming Data Pin			
Note: When P0.5, P0.6 a	and P0.7 ar	e used as test ports, I/O function is forbidden.			

Figure 6: Diagrama de caso de uso

