KEYPOINT SUMMARY

Note: This summary is neither exhaustive nor formal. It is meant to give the intuition behind the mathmatical concepts, and extract core idea for essential proofs.

I. CARDINALITY

- 1. A is a set, $\overline{\overline{A}}$ denote the cardinality of A.
 - $\overline{\overline{A}} = \overline{\overline{B}}$ if there exists a bijection $A \sim B$.
 - $\overline{A} \leq \overline{\overline{B}}$ if there exists an injection $A \hookrightarrow B$.
 - $\overline{\emptyset} = 0, \overline{\overline{\{1, 2, \dots, n\}}} = n, \overline{\overline{\mathbb{N}}} = d, \overline{\overline{\mathbb{R}}} = c.$
- 2. Schröder-Bernstein Theorem:
 - $A \hookrightarrow B, B \hookrightarrow A \Rightarrow A \sim B$
 - $\overline{\overline{A}} < \overline{\overline{B}}, \overline{\overline{B}} < \overline{\overline{\overline{A}}} \Rightarrow \overline{\overline{\overline{A}}} = \overline{\overline{\overline{B}}}$
- 3. A is finite/denumerable/countable:

$$\left. \begin{array}{c} A \sim \emptyset \\ A \sim \{1,2,\ldots,n\} \end{array} \right\} \text{finite} \\ A \sim N \qquad \text{denumerable} \end{array} \right\} \text{countable}$$

Otherwise, A is uncountable.

- 4. Important results on cardinality of sets:
 - $\cdot \mathbb{N}^k \sim \mathbb{N}$ Proof. Consider $f(n_1, \dots, n_k) = p_1^{n_1} \cdots p_k^{n_k}$.
 - Proof. Code $\mathbb{N}^{\mathbb{N}}$ into binary strings and show it is uncountable. Consider $f(n_1, n_2, \dots) = \frac{1}{10^{n_1}} + \frac{1}{10^{n_1+n_2}} + \dots$
 - $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$ $Proof. \ \mathcal{P}(\mathbb{N}) \to \mathbb{R}: \ (n_1, n_2, n_3, \dots) \to 0.b_1b_2b_3 \dots$ $\mathbb{R} \to \mathcal{P}(\mathbb{Q}): \ \{a \in \mathbb{Q}: a < x, x \in \mathbb{R}\}.$
 - $\mathbb{R} \times \mathbb{R} \sim R, \, \mathbb{R}^k \sim \mathbb{R}$ Proof. $(0.a_1a_2..., 0.b_1b_2...) \rightarrow (0.a_1b_1a_2b_2...)$.
 - · The set of all real valued functions on $[0,1] \sim 2^c$ Proof. Note $A \hookrightarrow \mathcal{P}([0,1] \times \mathbb{R})$.
 - · A is any set, $\overline{\overline{A}} < \overline{\overline{\mathcal{P}(A)}}$.

 Proof. Clearly there exists $f: A \hookrightarrow \mathcal{P}(A)$. But f cannot be surjective. Consider $X = \{a \in A : a \notin f(a)\}$.
 - \cdot The union of a countable family of countable sets is countable.
 - · The union of a cardinality c family of sets each with cardinality c has cardinality c.

Proof. Consider $\{A_{\alpha}\}_{{\alpha}\in S}$. There exists a bijection $f_{\alpha}:A_{\alpha}\leftrightarrow \mathbb{R}$. Define $f:A\hookrightarrow S\times \mathbb{R}$ as $f(x)=(\alpha,f_{\alpha}(x))$ where $x\in A_{\alpha}$.

II. VECTOR SPACES

- 1. A vector space (linear space) over \mathbb{R} is a set V with two operations addition and scalar multiplication such that
 - (a) u + v = v + u
 - (b) (u+v) + w = u + (v+w)
 - (c) $\exists 0 \in V, 0 + v = v$
 - (d) $(\alpha + \beta)u = \alpha u + \beta u$ $\alpha(u + v) = \alpha u + \alpha v$
 - (e) $(\alpha\beta)u = \alpha(\beta u)$
 - (f) 1u = u

where $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$.

- A vector space is a space closed under addition and scalar multiplication, i.e. it is a space that allows linear operations.
- · A set of vectors $\{v_1, v_2, \dots, v_n\}$ in V is called linearly independent if $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$ $\Rightarrow a_1 = a_2 = \dots = a_n = 0$.
- 2. A normed vector space is a vector space V over $\mathbb R$ with a function $\|\cdot\|:V\to\mathbb R$ such that
 - (a) $||u|| \ge 0$, ||u|| = 0 iff u = 0
 - (b) $\|\alpha u\| = |\alpha| \|u\|$
 - (c) $||u + v|| \le ||u|| + ||v||$
 - · A normed vector space is a vector space where the length of vectors can be measured.
 - · Euclidean norm: $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$
 - · Infinity norm: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
 - p-norm: $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}$ Proof. Minkowski's inequality: $(\sum_k^n |x_k + y_k|^p)^{\frac{1}{p}} \le (\sum_k^n |x_k|^p)^{\frac{1}{p}} + (\sum_k^n |y_k|^p)^{\frac{1}{p}}$
 - $\begin{array}{l} \cdot \text{ If } 1 \leq p \leq q \leq \infty, \text{ then } \|x\|_p \geq \|x\|_q. \\ \textit{Proof. Normalize } x \text{ to } \frac{x}{\|x\|_p} \text{ so that } \|x\|_p = 1. \text{ Then it is easy to see } \|x\|_q \leq 1 \text{ because for each element } |x_i|^q \leq |x_i|^p. \end{array}$
- 3. An inner product space is a vector space V over \mathbb{R} with a function $\cdot: V \times V \to \mathbb{R}$ such that
 - (a) $u \cdot u \ge 0$, $u \cdot u = 0$ iff u = 0
 - (b) $u \cdot v = v \cdot u$
 - (c) $(u+v) \cdot w = u \cdot w + v \cdot w$
 - (d) $(\alpha u) \cdot v = \alpha(u \cdot v)$
 - · Angle θ between u, v: $u \cdot v = \cos \theta \|u\| \|v\|$.
 - · u, v are orthogonal if $u \cdot v = 0$.
 - · Every inner product space is a normed space if define $\|u\| = (u \cdot u)^{\frac{1}{2}}$ as the norm.
 - $\frac{\text{Cauchy-Schwarz Inequality: } |u \cdot v| \leq ||u|| \, ||v||}{Proof. \ f(\lambda) = (u \lambda v) \cdot (u \lambda v) \geq 0, \, \forall \lambda. } \\ \text{Substitute in } \lambda = \frac{u \cdot v}{||v||^2}.$

III. METRIC SPACES

- 1. A metric space (X, d) is a set X together with a function $d: X \times X \to \mathbb{R}$ such that
 - (a) $d(x,y) \ge 0, d = 0 \text{ iff } x = y$
 - (b) d(y, x) = d(x, y)
 - (c) $d(x,y) \le d(x,z) + d(z,y)$
 - · A metric space is a set for which distances between all members of the set are defined.
 - · Any normed space $(V, \|\cdot\|)$ is a metric space.
- 2. Suppose (X, d) is a metric space, and $S \subset X$. (S, d_S) is a metric subspace if we define $d_S(x, y) = d(x, y)$ for $x, y \in S$.
 - $\cdot \ \forall a \in S, B_r^S(a) = S \cap B_r^X(a)$
 - · A is open in $S \Leftrightarrow A = S \cap U$, U is open in X; A is closed in $S \Leftrightarrow A = S \cap C$, C is closed in X.

Proof. A open in $S \Rightarrow A = \bigcup_{x \in A} B_{r_x}^S(x) = \bigcup_{x \in A} (S \cap B_{r_x}(x)) = S \cap (\bigcup_{x \in A} B_{r_x}(x))$. Thus $U = \bigcup_{x \in A} B_{r_x}(x)$.

3. Limit and Isolated Points

- · x is a limit point in A if every $B_r(x)$ contains points of A other than x.
- $\cdot x$ is a limit point iff $\exists (x_n) \subset A$ and $x_n \to x$.
- · x is a isolated point if $\exists r$ such that $B_r(x) \cap A = \{x\}$.
- 4. Interior, Exterior and Boundary
 - $\cdot x \in \operatorname{int} A \text{ if } \exists r(B_r(x) \subset A)$
 - $x \in \operatorname{ext} A \text{ if } \exists r(B_r(x) \subset A^C)$
 - $\cdot \operatorname{ext} A = \operatorname{int} A^C, \operatorname{int} A = \operatorname{ext} A^C$
 - $x \in \partial A$ (boundary of A) if any $B_r(x)$ contains both points of A and points of A^C .
 - $\cdot X = \operatorname{int} A \cup \operatorname{ext} A \cup \partial A$
- 5. Open Sets
 - · A is open if A = int A.
 - $A ext{ is open} \Rightarrow A = \bigcup_{x \in A} B_{r_x}(x)$
 - · If A_i are open, $\bigcap_{i=1}^k A_i$ is open; If A_i are open, $\bigcup_{i \in I} A_i$ is open.
 - · int A is open; ext A is open.
- 6. Closed Sets
 - · A is closed if A^C is open.
 - · A is closed iff $\overline{A} = A$.
 - \cdot A is closed iff A contains all its limit points.
 - $A \subset R^k$ is closed iff A is complete.
 - · If B_i are closed, $\bigcup_{i=1}^k B_i$ is closed; If B_i are closed, $\bigcap_{i \in I} B_i$ is closed.
 - · Closure of a set is closed.
 - · Closed does *not* imply bounded.
- 7. Closure
 - $\cdot \overline{A} = A \cup \{ \text{limit point of } A \}$
 - $\cdot \overline{A} = \operatorname{int} A \cup \partial A$
 - $\cdot \ \overline{A} = A \cup \partial A$
 - $\cdot \overline{A} = (\operatorname{ext} A)^C$
 - $x \in \overline{A}$ iff every $B_r(x)$ contains a point of A.
 - $\cdot x \in \overline{A}$ iff there exists $(x_n) \subset A$ with $x_n \to x$.

IV. SEQUENCES AND CONVERGENCE

- 1. (x_n) converges to x if $\forall \epsilon, \exists N, [\forall n > N \Rightarrow d(x, x_n) < \epsilon]$.
- 2. (x_n) is Cauchy if $\forall \epsilon, \exists N, [\forall m, n > N \Rightarrow d(x_m, x_n) < \epsilon]$.
 - Every convergent/Cauchy sequence is bounded. *Proof.* convergence \Rightarrow (x_n) is bounded after some N, left only finite elements.
 - \mathbb{R}^k : sequence (x_n) converges $\Leftrightarrow (x_n)$ is Cauchy.
 - · X: sequence (x_n) converges $\not=\Rightarrow (x_n)$ is Cauchy.
- 3. A metric space is <u>complete</u> if every Cauchy sequence converges in itself.
 - $\cdot S \subset \mathbb{R}^k$ is complete *iff* it is closed.
- 4. Monotone Convergence Theorem: if a sequence is increasing (decreasing) and bounded by a supremum (infimum), it will converge to the supremum (infimum).

Proof. Let $c = \sup_n \{a_n\}$. $\forall \epsilon > 0, \exists N \text{ s.t. } c - \epsilon < a_N \le a_n \le c, \forall n > N$. As $\epsilon \to 0$, $a_n \to c$.

5. Banach Fixed-Point Theorem: If (X,d) is a complete metric space, and $f: X \to X$ is a contraction, i.e. $\exists \lambda \in [0,1)$ such that $d(f(x),f(y)) \leq \lambda d(x,y)$, then there exists a unique fixed point f(x) = x.

Proof. First show (x_n) is Cauchy, then prove $d(x, f(x)) \to 0$.

V. SEQUENCES AND COMPACTNESS

1. Bolzano-Weierstrass Theorem: Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Proof. Geometric intuition: if a sequence in \mathbb{R}^k is bounded, we can always trap it in a whatever small subspace. Construct a convergent subsequence by trapping it a smaller and smaller subspace.

- 2. A metric space is (sequentially) <u>compact</u> if every sequence has a convergent subsequence.
 - \mathbb{R}^k : compact \Leftrightarrow closed, bounded (Beine-Borel Thm)
 - · X: compact $\not = \Rightarrow$ closed, bounded.

Proof. Consider X = C[0,1]. $\overline{B_1(0)} \subset X$ is closed and bounded, but *not* compact.

· Compactness is sort of a topological generalization of finiteness. For example, if a set A is finite then every function $f:A\to\mathbb{R}$ is bounded and has max/min. If A is compact, the every *continuous* function $f:A\to\mathbb{R}$ is bounded and has max/min.

VI. LIMITS AND CONTINUITY

- 1. Let $f: X \to Y$. The following are equivalent:
 - (a) $\lim_{x\to a} f(x) = b$;
 - (b) $x_n \to a \Rightarrow f(x_n) \to b$;
 - (c) $x \in B_{\delta}^X(a) \setminus \{a\} \Rightarrow f(x) \in B_{\epsilon}^Y(b)$.

Proof. (ii) \Rightarrow (iii): Suppose the opposite. Let $x_n \in B_{1/n}^X(a)$, then $x_n \to a$ and $f(x_n) \to b$, but by assumption $\exists \epsilon$ s.t. $f(x_n) \notin B_{\epsilon}^Y(b)$. contradiction. (iii) \Rightarrow (ii): Suppose $x_n \to a$. (iii) $\Rightarrow \forall \epsilon \exists \delta \exists x_n \in B_{\delta}^X(a) \Rightarrow f(x_n) \in B_{\epsilon}^Y(b) \Rightarrow f(x_n) \to b$.

- 2. $f: X \to Y$ is <u>continuous</u> at $a \in X$ if a is an isolated point, or $\lim_{x \to a} f(x) = f(a)$.
 - · Every function is continuous at isolated points.
 - · Intuitively, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output.
- 3. Quantitative Meansures of Continuity
 - $f: X \to Y$ is Lipschitz continuous if there exists a constant M such that $d_Y(f(x_1), f(x_2)) \le M d_X(x_1, x_2)$. M is called the Lipschitz constant.
 - If $f:(a,b)\to\mathbb{R}$ is differentiable and f is bounded then f is Lipschitz continuous. This follows from the mean value theorem: if $|f(\xi)| \le L$ for all $\xi \in (a,b)$ then $|f(x)-f(y)| \le |f(\xi)||x-y| \le L|x-y|$ for all $x,y \in (a,b)$.
 - If f is Lipschitz continuous and differentiable at x then f(x) is bounded by the Lipschitz constant.
 - $f: X \to Y$ is <u>Hölder continuous</u> with exponent $\alpha \in (0,1]$ if there exists a constant M such that $d_Y(f(x_1), f(x_2)) \leq M \left[d_X(x_1, x_2) \right]^{\alpha}$.
- 4. Continuity and Compactness: $f: X \to Y$ is continuous, if $K \subset X$ is compact, then f(K) is compact in Y.

Proof. $\forall (y_n) \subset f(K), \exists (x_n) : f(x_n) = y_n. K \text{ compact } \Rightarrow \exists (x_{n_j}) \to x; f \text{ continuous } \Rightarrow f(x_{n_j}) \to f(x) \Rightarrow y_{n_j} \to f(x).$

Cor. Continuous function on a compact set is bounded.

5. Extreme Value Theorem: Each continuous function on a compact set attains its maximum and minimum.

Proof. K compact $\Rightarrow f(K)$ compact $\Rightarrow f(K)$ closed and bounded \Rightarrow exist least upper bound γ and $\gamma \in f(K)$ (take a sequence approaching γ and extract its convergent subsequence). Therefore, $\exists x_0 \in K \text{ s.t. } \gamma = f(x_0)$.

- 6. Continuity and Open Sets: The following statements are equivalent:
 - (a) $f: X \to Y$ is continuous on X;
 - (b) $f^{-1}(E)$ is open whenever E is an open set in Y;
 - (c) $f^{-1}(E)$ is closed whenever E is a closed set in Y.

Proof. f continuous $\Rightarrow \forall \epsilon \exists \delta \ f(B_{\delta}(x)) \subset B_{\epsilon}(f(x)) \subset E$ $\Rightarrow B_{\delta}(x) \subset f^{-1}(E)$. On the other hand, $f^{-1}(B_{\epsilon}(f(x)))$ is an open set $\Rightarrow \exists B_{\delta}(x) \subset f^{-1}(B_{\epsilon}(f(x))) \Rightarrow f(B_{\delta}(x)) \subset$ $B_{\epsilon}(f(x)) \Rightarrow f$ is continuous.

Note. Continuous functions do not necessarily map open sets to open sets, or closed sets to closed sets.

Cor. If $f: X \to \mathbb{R}$ is continuous, $\{x: f(x) < 0\}$ is open.

- 7. The function $f: X \to Y$ is uniformly continuous if for each $\epsilon > 0$ there exists $\delta > 0$ such that $d(x, x') < \delta \Rightarrow d(f(x), f(x')) < \epsilon$, for all $x, x' \in X$.
 - · In general continuity, δ depends on both ϵ and x.
 - · In uniform continuity, δ depends only on ϵ , not on x.
 - · If f is continuous and X is compact, then f is uniformly continuous.

- · A continuous real-valued functions defined on closed and bounded subset of \mathbb{R}^n is uniformly continuous.
- · If f is Lipschitz continuous then it is uniformly continuous. The converse is not true, for example, $f(x) = \sqrt{|x|}$ is uniformly continuous but not Lipschitz.
- 8. Uniform continuity and Cauchy sequences: If $f: X \to \overline{Y}$ is uniformly continuous, then (x_n) is Cauchy in $X \Rightarrow (f(x_n))$ is Cauchy in Y. If f is only continuous, $(f(x_n))$ may not converge (consider $f(x) = \frac{1}{x}$ on $(0, \infty)$).
- 9. Continuous Extension Theorem: If $f:A\to Y$ is uniformly continuous, then f can be uniquely extended to \overline{A} maintaining the uniform continuity. $\overline{f}(x)$ on the boundary of A can be unambiguously defined by $\lim_{n\to\infty} f(x_n)$ for $x\in\partial A$ with $(x_n)\subset A$ and $x_n\to x$.

VII. CONVERGENCE OF FUNCTIONS

- 1. Let S be a set and (Y, ρ) a metric space. A sequence of functions $f_n: S \to Y$ converges to a function $f: S \to Y$ pointwise if for each $x \in S$ and any $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $n > N \implies \rho(f_n(x), f(x)) < \epsilon$. (Note: N depends on both x and ϵ)
- 2. A sequence $f_n: S \to Y$ converge uniformly to a function $f: S \to Y$ if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $n > N \Longrightarrow \rho(f_n(x), f(x)) < \epsilon, \forall x \in S$. (Note: convergence is uniform with respect to x. N depends only on ϵ , not on x)
 - · Uniform convergence $\not = \Rightarrow$ Pointwise convergence
 - · (f_n) converging to f uniformly is equivalent to $f_n \to f$ in uniform metric: $d_u(f_n, f) = \sup_{x \in S} \rho(f_n(x), f(x))$.
- 3. A sequence (f_n) is uniformly Cauchy if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, such that $m, n > N \implies \rho(f_m(x), f_n(x)) < \epsilon, \forall x \in S$.
 - \cdot (f_n) is uniformly Cauchy if and only if it is Cauchy in uniform metric.
- 4. Theorem: Let $\mathcal{F} = \{f | f : S \to Y\}$. If (Y, ρ) is complete, then every Cauchy sequence $(f_n) \subset \mathcal{F}$ converges uniformly to some $f \in \mathcal{F}$, i.e. \mathcal{F} is complete.

 Proof. Let (f_n) be Cauchy $\Rightarrow \sup |f_m(x) f_n(x)| < \epsilon$ $\Rightarrow |f_m(x) f_n(x)| < \epsilon, \forall x \Rightarrow \forall x, (f_n(x))$ is Cauchy in Y.

 Y is complete $\Rightarrow f_n(x) \to f(x) \in Y$. $\rho(f_m(x), f(x)) \leq \rho(f_m(x), f_n(x)) + \rho(f_n(x), f(x))$. Let $n \to \infty$, we have $\rho(f_m(x), f(x)) \leq \epsilon, \forall x$. i.e. $f_m \to f$ uniformly.
- 5. Theorem: Suppose (f_n) is a sequence of continuous functions from X to Y. Suppose $f_n \to f$ uniformly. Then f is also continuous (uniform limits of continuous functions are continuous).

Proof. $f_n \to f$ uniformly $\Rightarrow \rho(f_n(x), f(x)) < \epsilon$. f_n continuous $\Rightarrow d(x, x_0) < \delta \Rightarrow \rho(f_n(x), f_n(x_0)) < \epsilon$. $\rho(f(x), f(x_0)) \leq \rho(f(x), f_n(x)) + \rho(f_n(x), f_n(x_0)) + \rho(f_n(x_0), f(x_0)) < 3\epsilon$. Therefore f is continuous at x_0 .

- 6. Corollary: Let $C_b(X,Y)$ be the set of continuous and bounded functions from X to Y. If (Y,ρ) is complete, then $C_b(X,Y)$ is a complete metric space when equipped with the uniform metric.
- 7. Suppose $f_n \to f$ uniformly, then
 - $\int_a^b f_n(x)dx \to \int_a^b f(x)dx$ uniformly;
 - $\int_a^x f_n(t)dt \to \int_a^x f(t)dt$ uniformly;

- · $\lim_{n\to\infty} \int_a^b f_n(x)dx = \int_a^b \lim_{n\to\infty} f_n(x)dx;$
- · The limit of differentiable may not be differentiable.

VIII. COMPACTNESS

- 1. A metric space (X, d) is sequentially compact if every sequence in X has a convergent subsequence.
- 2. A space K is compact if every open cover of K ($K \subset \bigcup_{i \in I} U_i$) has a finite subcover ($K \subset \bigcup_{i=1}^N U_i$).
- If (X, d) is a metric space, K ⊂ X is compact iff K is sequentially compact. This is not true in general topological space.
- 4. Consequences of compactness:
 - $\cdot K \text{ compact} \Rightarrow K \text{ is closed and bounded};$
 - · In \mathbb{R}^n , K is compact \Leftrightarrow K is closed and bounded;
 - · A closed subset of a compact space is compact; Proof. Let $A \subset X$ be closed. Let $\{U_i\}$ cover A. Then $(\cup_i U_i) \cup (X \setminus A)$ is an open cover for X. There exists finite subcover $(\cup_{i=1}^N U_i) \cup (X \setminus A)$. Then $\cup_{i=1}^N U_i$ is a finite subcover for A.
 - $f: X \to Y$ being continuous, if $K \subset X$ is compact, then f(K) is compact in Y;

 Proof. Let $\{U_i\}$ cover f(K). Then $f^{-1}(\cup U_i) = \cup f^{-1}(U_i)$ cover K. K is compact $\Rightarrow \exists$ finite subcover $\cup_{i=1}^N f^{-1}(U_i)$. Then $\cup_{i=1}^N U_i$ is a finite subsover for f(K).
 - $f: X \to Y$ being continuous, if $K \subset X$ is compact, then f is uniformly continuous on K;

Proof. f is continuous $\Rightarrow \forall \epsilon > 0$, $\forall x \in X$, $\exists \delta_x > 0$ such that $|x - x'| < \delta_x \Rightarrow |f(x) - f(x')| < \epsilon$. $\cup_{x \in X} B(x, \delta_x)$ cover X, X is compact, there exists finite subcover. Let $\delta = \min\{\delta_{x_1}, \ldots, \delta_{x_n}\}$. Then there exists a δ independent of x.

- $f: X \to Y$ being continuous, if $K \subset X$ is compact, then f achieves its maximum and minimum on K.
- 5. A set X is totally bounded if for any δ , there exist finitely many points $x_1, \ldots, x_N \in X$ such that $X \subset \bigcup_{i=1}^N B_{\delta}(x_i)$.
 - · Totally boundedness $\not = \Rightarrow$ boundedness.
 - · A subset E in \mathbb{R}^n is totally bounded iff E is bounded.
 - · A subset of a metric space is totally bounded iff its closure is totally bounded.
- 6. Theorem: A space X is compact if and only if it is complete and totally bounded.

Proof. (\Rightarrow) $\{B_{\delta}(x)\}_{x\in X}$ cover $X\Rightarrow$ finite subcover \Rightarrow totally bounded. (\Leftarrow) Let $(x_n)\subset X$. Cover X with finite many balls of radius 1. There must be a subsequence $(x_n^1)\subset (x_n)$ trapped in of one these balls, i.e. $(x_n^1)\subset B_1$. Cover X with finite many balls of radius $\frac{1}{2}$, then $\exists (x_n^2)\subset B_{\frac{1}{2}}$. Keep going, $(x_n^3)\subset B_{\frac{1}{3}},\ldots$ Let $y_k=x_k^k$. Then (y_n) is Cauchy, by completeness, (y_n) is a convergent subsequence of (x_n) .

7. Let $\mathcal{F} \subset C(X,Y)$ (continuous functions from X to Y) \mathcal{F} is uniformly equicontinuous if $\forall \epsilon > 0$, $\exists \delta > 0$, such that $\overline{d(x,x')} < \delta \Rightarrow \rho(f(x),f(x')) < \epsilon$, $\forall x,x' \in X$, $\forall f \in \mathcal{F}$. (The same δ holds for all $x \in X$ and all $f \in \mathcal{F}$)

- · Uniformly continuity is usually shown by showing the family of functions $\mathcal F$ is Lipschitz with the same constant for all $f\in\mathcal F$; or every f is Holder continuous with the same α and the same Holder constant.
- 8. Arzela-Ascoli theorem: $\mathcal{F} \subset C(X, \mathbb{R}^n)$ is compact iff X is compact and \mathcal{F} is closed, bounded and uniformly equicontinuous.

Proof.

- · Uniform equicontinuous $\Rightarrow d(x,y) < \delta \Rightarrow |f(x)-f(y)| < \epsilon$;
- · X totally bounded $\Rightarrow \exists x_1, \dots x_n, |x x_i| < \delta$, and this implies $|f(x) f(x_i)| < \epsilon$;
- $|f(X)| \le K \text{ totally bounded} \Rightarrow \exists y_1 \dots y_m, |f(x) y_i| < \epsilon;$
- · Construct discrete function $\alpha: \{x_1 \dots x_n\} \to \{y_1 \dots y_m\}$ (there are at most m^n such α);
- · Find g_{α} for each α such that $|g_{\alpha}(x_i) \alpha(x_i)| < \epsilon$;
- · For any $f \in \mathcal{F}$, choose the α such that $|f(x_i) \alpha(x_i)| < \epsilon$ and the corresponding g_{α} , then choose x_i such that $|x x_i| < \delta$, then we have $|f(x) g_{\alpha}(x)| \le |f(x) f(x_i)| + |f(x_i) \alpha(x_i)| + |\alpha(x_i) g_{\alpha}(x_i)| + |g_{\alpha}(x_i) g_{\alpha}(x)|$;
- · So all $f \in \mathcal{F}$ are within the balls of finitely many g_{α} .

IX. CONNECTEDNESS

- 1. A space X is connected if there do not exist nonempty open sets U,V such that $U\cap V=\emptyset$ and $X=U\cup V$.
 - · Equivalently, X is connected if there do not exist nonempty closed sets U,V such that $U\cap V=\emptyset$ and $X=U\cup V$.
 - · X is connected if and only if the only subset of X that are both open and closed are \emptyset and X.
 - · If A is connected, then A is connected.
 - · Let $A_1, A_2,...$ be connected, if $A_i \cap A_{i+1} \neq \emptyset$, then $\bigcup_{i=1}^{\infty} A_i$ is connected.
- 2. A space X is path connected if $\forall a, b \in X$, there exists a continuous function $f: [0,1] \to X$ such that f(0) = a, f(1) = b.
 - Path connected \Rightarrow connected. The converse if not true, counter-example: $X = \{(x,y) : y = \sin \frac{1}{x}\} \cup \{(0,y) : -1 \le y \le 1\}$ is connected but not path-connected.
- 3. Connectedness in \mathbb{R}^n :
 - · $S \subset \mathbb{R}$ is connected iff it is an interval.
 - $U(\text{open}) \subset \mathbb{R}^n$ is connected iff it is path-connected.
- 4. <u>Theorem</u>: The continuous image of a connected set is connected.

Proof. Let $f: X \to Y$ be continuous. Suppose f(X) is not connected. Then $\exists E \subset f(X)$ that is both open and closed. $\exists E', E'' \subset Y$ s.t. $E = E' \cap f(X)$, $E = E'' \cap f(X)$. Then we have $f^{-1}(E) = f^{-1}(E') = f^{-1}(E'') \neq \emptyset$ which is also both open and closed $\Rightarrow X$ is not connected — contradiction.

5. Corollary (Intermediate value theorem) Suppose X is connected, $f: X \to \mathbb{R}$ is continuous. Let $x, y \in X$, f(x) = a, f(y) = b, a < b. Then for any $c \in (a, b)$, $\exists z \in X$, such that f(z) = c.

Proof. f(X) is connected because f is continuous. $f(X) \subset \mathbb{R}$, so it is an interval. It then follows $c \in f(X)$ for any $c \in (a,b)$.

X. APPLICATION: DIFFERENTIAL EQUATIONS

1. Assume U (open) $\subset \mathbb{R} \times \mathbb{R}^n$, and $f: U \to \mathbb{R}^n$ is continuous. The problem of the form

$$\begin{cases} \frac{d\boldsymbol{x}}{dt} = f(t, \boldsymbol{x}) \\ \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \end{cases}$$

is called an initial value problem (IVP). A <u>solution</u> to an IVP is a function $\boldsymbol{x}: I \to \mathbb{R}^n$ for some open interval I containing (t_0, \boldsymbol{x}_0) such that \boldsymbol{x} solves the differential equation and the initial condition.

 \cdot Solving the IVP is equivalent to solving the integral equation:

$$\boldsymbol{x}(t) = t_0 + \int_{t_0}^t f(s, \boldsymbol{x}(s)) ds$$

2. <u>Peano's existence theorem</u>: Assume f is continuous on $U \subset \mathbb{R} \times \mathbb{R}$. Let $(t_0, x_0) \subset U$. Then there exists h > 0 such that the IVP has a C^1 solution for $t \in [t_0 - h, t_0 + h]$.

Proof.

- Let $A_{h,k}(t_0, x_0) = \{(t, x) : |t t_0| \le h, |x x_0| \le k\}.$
- · $A_{h,k}$ is a compact $\Rightarrow f$ is bounded, $|f(t,x)| \leq M$.
- · Let $h \leq \frac{k}{M}$.
- · Approximate x(t) at t_0 with

$$x_n(t) = \begin{cases} x_0 + (t - t_0) f(t_0, x_0) \\ \text{for } t \in [t_0, t_0 + \frac{h}{n}] \\ x_n(t_0 + \frac{h}{n}) + (t - (t_0 + \frac{h}{n})) f(t_0 + \frac{h}{n}, x_n(t_0 + \frac{h}{n})) \\ \text{for } t \in [t_0 + \frac{h}{n}, t_0 + \frac{2h}{n}] \\ \vdots \\ x_n(t_0 + i\frac{h}{n}) + (t - (t_0 + i\frac{h}{n})) f(t_0 + i\frac{h}{n}, x_n(t_0 + i\frac{h}{n})) \\ \text{for } t \in [t_0 + i\frac{h}{n}, t_0 + (i + 1)\frac{h}{n}] \\ \vdots \\ \vdots \end{cases}$$

- $\cdot |\frac{d}{dt}x_n(t)| = |f(\cdot)| \le M$, so x_n is Lipschitz on $A_{h,k}$ with constant M.
- \cdot (x_n) is a sequence of closed, bounded and uniformly equicontinuous functions. Therefore (x_n) is a compact subset of $C[t_0-h,t_0+h]$. There exists (x_{n_j}) such that $x_{n_j} \to x$.
- \cdot x is the solution to the IVP problem.
- 3. Assume $f: U(\subset \mathbb{R} \times \mathbb{R}) \to \mathbb{R}$ is continuous. f is locally Lipschitz with respect to x if for every $A_{h,k}(t_0,x_0) \subset U$, there exists K such that

$$|f(t,x_1) - f(t,x_2)| \le K|x_1 - x_2|$$

for all $(t, x_1), (t, x_2) \in A_{h,k}(t_0, x_0)$.

- 4. Local uniqueness: Assume f is continuous on $U \subset \mathbb{R} \times \mathbb{R}$ and locally Lipschitz with respect to x. Let $(t_0, x_0) \subset U$. Then there exists h > 0 such that the IVP has a unique C^1 solution for $t \in [t_0 h, t_0 + h]$.
 - Define $A_{h,k}(t_0, x_0) = \{(t, x) : |t t_0| \le h, |x x_0| \le k\}.$
 - $A_{h,k}$ is a compact $\Rightarrow f$ is bounded, $|f(t,x)| \leq M$.
 - f is locally Lipschitz on $A_{h,k}(t_0, x_0)$, so $\exists K$ s.t. $|f(t, x_1) f(t, x_2)| \le K|x_1 x_2|$, for all $x_1, x_2 \in A_{h,k}$.
 - · Assume $h \le \min \left\{ \frac{k}{M}, \frac{1}{2K} \right\}$.
 - · Define $C^*[t_0-h,t_0+h] = C[t_0-h,t_0+h] \cap \{x: |x(t)-x_0| \le k\}$. $C^*[t_0-h,t_0+h]$ can be shown to be a complete space.
 - · Define $T: C^*[t_0 h, t_0 + h] \to C^*[t_0 h, t_0 + h]$

$$(Tx)(t) = x_0 + \int_{t_0}^t f(s, x(s))ds$$

- · Show T is a contraction: $|(Tx_1)(t) (Tx_2)(t)| \le \int_{t_0}^t |f(s, x_1(s)) f(s, x_2(s))| ds \le K \int_{t_0}^t |x_1(s) x_2(s)| ds \le K d(x_1, x_2)h \le \frac{1}{2} d(x_1, x_2).$
- · T has a fixed point, which is the solution to the IVP for $t \in [t_0 h, t_0 + h]$.

Usually we show the solution exists on $[t_0 - h, t_0 + h]$ and then show it can be <u>extended</u> beyond this scope. *Proof.*

· Go back by $\frac{h}{2}$. Consider the IVP:

$$\begin{cases} y' = f(t, y) \\ y(t_0 + \frac{h}{2}) = x(t_0 + \frac{h}{2}) \end{cases}$$

- · Solution exists on $[t_0 \frac{h}{2}, t_0 + \frac{3}{2}h]$.
- · x and y overlap on $[t_0 \frac{h}{2}, t_0 + h]$. By uniqueness of the solution, x and y must coincide.
- · Solution x can be extended to $[t_0 h, t_0 + \frac{3}{2}h]$.
- · Iterate the argument until reach the boundary of U.