Mostafa Sabri

Lecture 18

5.4 Eigenvectors and Linear Transformations

Eigenvectors of Linear Transformations

A scalar λ is an eigenvalue of a linear map $T: V \to V$ if there exists $\mathbf{x} \neq \mathbf{0}$ such that $T(\mathbf{x}) = \lambda \mathbf{x}$. We call \mathbf{x} an eigenvector of T corresponding to λ .

e.g. In the vector space of bounded infinite sequences $\mathbf{x} = (x_1, x_2, x_3, \dots)$, let $T(\mathbf{x}) = (x_2, x_3, x_4, \dots)$. Then $T(\mathbf{x}) = \lambda \mathbf{x} \iff x_{j+1} = \lambda x_j \ \forall j \iff \mathbf{x} = x_1(1, \lambda, \lambda^2, \dots)$. This \mathbf{x} is a bounded sequence iff $|\lambda| \leq 1$. So this linear map has infinitely many eigenvalues.

e.g. For V = C[0, 1], let (Tf)(x) = xf(x). Then T has no eigenvalues: $Tf = \lambda f \iff (x - \lambda)f(x) = 0 \ \forall x \iff f(x) = 0 \ \forall x \neq \lambda \iff f = 0 \ \text{as } f \text{ is continuous.}$

The matrix of T in different bases (Extra)

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the map T(x, y) = (3x - y, x + 2y). Find the matrix of T relative to the bases $\mathcal{B} = \{(1, 1), (1, -1)\}$ and $\mathcal{S} = \{(1, 0), (0, 1)\}$.

Let \mathcal{B} and \mathcal{B}' be two bases for V. Let $T:V\to V$ be linear. If

- 1. A is the matrix of T relative to \mathcal{B} , i.e. $[T(\mathbf{v})]_{\mathcal{B}} = A[\mathbf{v}]_{\mathcal{B}}$,
- 2. A' is the matrix of T relative to \mathcal{B}' , i.e. $[T(\mathbf{v})]_{\mathcal{B}'} = A'[\mathbf{v}]_{\mathcal{B}'}$
- 3. *P* is the transition matrix from \mathcal{B}' to \mathcal{B}

Then $A' = P^{-1}AP$.

The matrix of T in different bases (Extra)

- 1. Find the matrix of $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (2x + 3y, 4y 5x) relative to $\mathcal{B}' = \{(1, 1), (1, -1)\}.$
- 2. Recall the transition matrix from \mathcal{B} to \mathcal{B}' if $\mathcal{B} = \{(1, 2), (3, 4)\}, \ \mathcal{B}' = \{(1, 1), (2, 0)\}$ is $P^{-1} = \begin{bmatrix} 2 & 4 \\ \frac{-1}{2} & \frac{-1}{2} \end{bmatrix}$. Suppose T has matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ relative to \mathcal{B} . Find the matrix of T relative to \mathcal{B}' .

Diagonalization and Linear Transformations

Thm: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ a linear map. If the standard matrix A of T is diagonalizable, then the eigenvectors of A form a basis \mathcal{B} such that the matrix of T relative to \mathcal{B} is diagonal.

<u>Proof.</u> We showed in Lec17 that if A is diagonalizable, then its eigenvectors form a basis $\mathcal{B} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$. Let M be the matrix of T relative to \mathcal{B} . Then $M = \begin{bmatrix} [T(\mathbf{p}_1)]_{\mathcal{B}} & \cdots & [T(\mathbf{p}_n]_{\mathcal{B}}] = [A\mathbf{p}_1]_{\mathcal{B}} & \cdots & [A\mathbf{p}_n]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} \lambda_1 [\mathbf{p}_1]_{\mathcal{B}} & \cdots & \lambda_n [\mathbf{p}_n]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} \lambda_1 [\mathbf{e}_1]_{\mathcal{B}} & \cdots & \lambda_n [\mathbf{e}_n]_{\mathcal{B}} \end{bmatrix} = D.$

Let T(x, y, z) = (x + y + z, 2y - z, 3z). Is there a basis \mathcal{B} of \mathbb{R}^3 such that the matrix of T relative to \mathcal{B} is diagonal ?