Requset-level GPU Sharing on vLLM

Tao Li, Zhuoyuan Li, Chuanyi Liu

2024-11-27

Planning and Tracking List

Model
level

Task	Schedule	Task Owner	11.12 Status	Last Week Status	Current Status
Deploy serverlessLLM on k8s	11.4-8	Tao&Zhuoyu an	Complete	Complete	Complete
Profile key metrics of LLMs under different configurations	11.4-8	Chuanyi	Complete	Complete	Complete
Implement MPS on serverlessLLM	11.8-15	Chuanyi	On track	Complete	Complete
Dynamic resource allocation based on model popularity	11.15-20	Tao& Zhuoyuan	On track	Complete	Complete
Independent scheduling for prefill and decode phases	11.19-26	Chuanyi Liu	-	-	On track
Parameter-sharing for multiple requests of the same model	11.19-26	Tao& Zhuoyuan	-	-	Complete (vLLM)

Request level

Part 1: Parameter-sharing for multiple requests of the same model

Part I. I: GPU memory sharing among processes

Why Sharing Parameters?

- > Instances of one model reside on the same GPU
 - Scenario I: Multiple instances can utilize GPU better than single one
 - Scenario 2: Disaggregate prefill and decode phases (Part 2)

- > Multiple replicas of parameters bring about memory waste
 - Each redundant replica wastes space of ~GB

Underlying support: CUDA Runtime

- > Mechanism
 - *IpcMemHandle* from CUDA Runtime
 - Allows different processes to access the same memory
- > Usage
 - Owner: Expose an address as a handle handle = cudart.cudaIpcGetMemHandle(data_ptr1)
 - User: Read the handle and restore it to memory address
 data_ptr2 = cudart.cudaIpcOpenMemHandle(handle)

Underlying support: CUDA Runtime

> An example

Owner

```
data_ptr1 = tensor.data_ptr()

status, handle = cudart.cudalpcGetMemHandle(data_ptr1)

memory_handle_str1 =
 base64.b64encode(handle.reserved).decode('utf-8')

with open(memory_handle_file, 'w') as f:
 f.write(memory_handle_str)
```


User

```
with open(memory_handle_file, 'r') as f:
    cuda_memory_handle_b64 = f.read()

handle = cudart.cudalpcMemHandle_t()

handle.reserved = base64.b64decode(cuda_memory_handle_b64)

data_ptr2 =
    cudart.cudalpcOpenMemHandle(handle,cudart.cudalpcMemLazyEn ablePeerAccess)

tensor = torch_tensor_module.create_gpu_tensor
    (data_ptr2, dims, dtype)
```

Underlying support: CUDA Runtime

- > An example
 - Owner

```
data_ptr1 = tensor.data_ptr()

status, handle = cudart.cudalpcGetMemHandle(data_ptr1)

memory_handle_str1 =
base64.b64encode(handle.reserved).decode('utf-8')

with open(memory_handle_file, 'w') as f:
    f.write(memory_handle_str)
```

- > Python tensor is not fit for pointer
 - Create tensor with C++ and integrate into python as torch_tensor_module

User

(data_ptr2, dims, dtype)

```
with open(memory_handle_file, 'r') as f:
    cuda_memory_handle_b64 = f.read()

handle = cudart.cudalpcMemHandle_t()

handle.reserved = base64.b64decode(cuda_memory_handle_b64)

data_ptr2 =
    cudart.cudalpcOpenMemHandle(handle,cudart.cudalpcMemLazyEn ablePeerAccess)

tensor = torch tensor module.create gpu tensor
```

Part 1.2: Parameter-sharing on vLLM

Overview

- > Params-sharing daemon and Inference processes
- Inference processes share parameters but have a separate kv cache address space

Overview

- > Params-sharing daemon and Inference processes
- Inference processes share parameters but have a separate kv cache address space

Weights loader of vLLM

#linear.py
create_weights(...)
#loader.py
_initialize_model(...)
#vocab_parallel_embed
#ding.py
create_weights(...)
#ding.py
create_weights(...)

Weights loading

```
#loader.py
load_weights(weights)

# get initialized params
params_dict = dict(self.named_parameters(...))

# load weights

#loader.py
_get_all_weights(...)

# opt.py
load_weights(weights):
    # get initialized params
params_dict = dict(self.named_parameters(...))

# load weights
for name, loaded_weight in weights:
    weight_loader(...)
```

Weights loader of params-sharing daemon USTC, CHINA

> Save memory handles when loading the weights

```
#opt.py
load_weights(weights):
   # get initialized params
   params_dict = dict(self.named_parameters(...))
   # load weights
   for name, loaded_weight in weights:
      weight_loader(...)
      device_buffer_ptr = params_dict[name].data_ptr()
      err, ipc_mem_handle =
       cudart.cudaIpcGetMemHandle(device_buffer_ptr)
         handler_dict[name] = {
                                   "handler": ipc_mem_handle,
                                   "offset": offset,
                                   "dims": dims,
                                   "dtype": "float16"
```

PyTorch memory management and allocation ADSLAB

- > PyTorch memory management
 - At block granularity
 - cudart.cudaIpcGetMemHandle(data_ptr) returns block base address, not data address
- PyTorch memory allocation
 - Allocate 2MB for size less than IMB;
 - Allocate 20MB for size IMB ~ I0MB;
 - Allocate { size rounded up to a multiple of 2MB } MB for size >= 10MB

Record offset

- > Record the address of the handle: addr(handle)
- \triangleright offset = addr(data) addr(handle)

Weights loader of inference processes ADSLAB

> Weights initialization

```
weight = empty()
                                                                  #linear.py
                                  create_weights(...)
                                                                  def create_weights(...):
#loader.py
                                                                    weight =
_initialize_model(...)
                                                                    Parameter(torch.empty(sum(output_partition_sizes),
                                  #vocab_parallel_embed
                                                                     input_size_per_partition,dtype=params_dtype),
                                                                     requires_grad=False)
                                  #ding.py
                                  create_weights(...)
                                                                         weight <= empty()</pre>
                                  #linear.py
                                                                  create_weights(...)
                                                                  def create_weights(...):
#loader.py
                                                                     weight =Parameter()
_initialize_model(...)
                                  #vocab_parallel_embed
                                  #ding.py
                                  create_weights(...)
```

Weights loader of inference processes ADSLAB

> Weights loading: load weights from memory handles

```
#opt.py
load_weights(weights):
   # get initialized params
   params_dict = dict(self.named_parameters(...))
   # load weights
  for name, shared_weight in handles:
      # Gets memory pointers from handles
      err, devPtr = cudart.cudaIpcOpenMemHandle(
      shared_weight['handler'], cudart.cudaIpcMemLazyEnablePeerAccess)
      # Get weights by memory pointers
      params_dict[name].data =
          torch_tensor_module.create_gpu_tensor(devPtr +
          shared_weight["offset"], shared_weight['dims'],
          shared_weight['dtype'])
```

Part2: Prefill and decode phases disaggregating

Overview

- > Why do we need to disaggregate prefill and decode stages?
 - Address low GPU utilization caused by mismatched resource demands
 - Leverage GPU Sharing to further raise resource utilization

- ➤ Challenges
 - How to combine prefill-decode disaggregation with MPS?
 - How to disaggregate prefill and decode stages in vLLM?

Disaggregate prefill and decode

➤ Architecture of Muxserve[1]

Disaggregate prefill and decode

> Current idea

- Launch two subprocesses for prefilling and decoding to utilize MPS for each request

 More flexible dynamic allocation
- Do not maintain a unified KV cache, decoding process shares memory with prefilling process or deepcopy
 Fine-grained memory management
- Write our own LLMEngine atop vLLM

 To combine with vLLM

>TODO

- Implement the schduling algorithm for prefill and decode stages
- Share KV cache between prefill and decode processes

Planning and Tracking List

Task	Schedule	Task Owner
Implement prefill-decode disaggregated instances	11.26-12.03	Chuanyi
Independent scheduling policy for prefill and decode phases	11.26-12.03	Тао
Implement parameter-sharing on serverlessLLM	11.26-12.03	Zhuoyuan

