A library of antiassociative magmas of small order

0.5.1

26 September 2025

Kamil Zabielski

Ryszard Mazurek

Kamil Zabielski

Address: Department of Theoretical Computer Science

Białystok University of Technology

Wiejska 45A 15-325 Białystok

Poland

Ryszard Mazurek

Address: Department of Theoretical Computer Science

Białystok University of Technology

Wiejska 45A 15-325 Białystok

Poland

Copyright

© 2024 by Kamil Zabielski

smallantimagmas package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its documentation provided by GAP users and developers.

Contents

1	smallantimagmas automatic generated documentation		
	1.1	smallantimagmas automatic generated documentation of properties	4
	1.2	smallantimagmas automatic generated documentation of attributes	7
	1.3	smallantimagmas automatic generated documentation of global functions	9
	1.4	smallantimagmas automatic generated documentation of methods	12
Ind	dex		14

Chapter 1

smallantimagmas automatic generated documentation

1.1 smallantimagmas automatic generated documentation of properties

1.1.1 IsAntiassociative (for IsMagma)

```
Example

gap> IsAntiassociative(OneSmallGroup(16));

false

gap> IsAntiassociative(OneSmallAntimagma(2));

true

gap> IsAntiassociative(OneSmallAntimagma(3));

true
```

1.1.2 IsLeftCyclic (for IsMagma)

1.1.3 IsRightCyclic (for IsMagma)

1.1.4 IsLeftDistributive (for IsMagma)

```
gap> List(AllSmallAntimagmas(3), M -> IsLeftDistributive(M) );
[ true, false, false, false, false, false, false, false, true ]
```

1.1.5 IsRightDistributive (for IsMagma)

1.1.6 IsLeftCancellative (for IsMagma)

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> Display( MultiplicationTable(M) );
[ [ 2, 1 ],
       [ 2, 1 ] ]
gap> IsRightCancellative(M);
false
gap> IsLeftCancellative(M);
true
gap> List(AllSmallAntimagmas(2), M -> IsLeftCancellative(M));
[ true, false ]
```

1.1.7 IsRightCancellative (for IsMagma)

```
gap> List(AllSmallAntimagmas(2), M -> IsRightCancellative(M));
[ false, true ]
```

1.1.8 IsCancellative (for IsMagma)

1.1.9 IsLeftFPFInducted (for IsMagma)

```
Example

gap> Display( MultiplicationTable( SmallAntimagma(2, 2) ));

[ [ 2, 2 ],
       [ 1, 1 ] ]

gap> IsLeftFPFInducted( SmallAntimagma(2, 2) );
```

1.1.10 IsRightFPFInducted (for IsMagma)

true

```
gap> Display( MultiplicationTable( SmallAntimagma(2, 1) ) );
[ [ 2, 1 ],
      [ 2, 1 ] ]
gap> IsRightFPFInducted( SmallAntimagma(2, 1) );
true
```

1.1.11 IsLeftDerangementInducted (for IsMagma)

```
gap> M := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> IsLeftFPFInducted(M);
true
gap> IsRightFPFInducted(M);
false
gap> IsRightDerangementInducted(M);
false
```

1.1.12 IsRightDerangementInducted (for IsMagma)

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> IsLeftFPFInducted(M);
false
```

```
gap> IsRightFPFInducted(M);
true
gap> IsRightDerangementInducted(M);
true
```

1.1.13 IsLeftAlternative (for IsMagma)

1.1.14 IsRightAlternative (for IsMagma)

1.2 smallantimagmas automatic generated documentation of attributes

1.2.1 AssociativityIndex (for IsMagma)

```
\triangleright AssociativityIndex(M) (attribute)
```

identifies associativity index of M.

```
gap> OneSmallAntimagma(2);
  <magma with 2 generators>
  gap> AssociativityIndex(OneSmallAntimagma(2));
  0
  gap> OneSmallGroup(4);
  <pc group of size 4 with 2 generators>
  gap> AssociativityIndex(OneSmallGroup(4));
  64
  gap> AssociativityIndex(OneSmallGroup(4)) = 4 ^ 3;
  true
```

1.2.2 DiagonalOfMultiplicationTable (for IsMagma)

```
{\hspace{0.25cm}\triangleright\hspace{0.25cm}} \begin{array}{c} {\tt DiagonalOfMultiplicationTable(\textit{M})} \\ \\ \end{array} \hspace{0.25cm} ({\tt attribute})
```

computes diaognal of multiplication table of M.

```
gap> List(AllSmallAntimagmas(3), M -> DiagonalOfMultiplicationTable((M)));
[ [ 2, 1, 1 ], [ 2, 1, 1 ],
        [ 2, 3, 2 ], [ 2, 1, 1 ],
```

```
[ 2, 1, 1 ], [ 2, 1, 2 ],
       [ 2, 3, 2 ], [ 2, 1, 2 ],
       [ 2, 3, 1 ], [ 2, 3, 1 ]
       ]
```

1.2.3 CommutativityIndex (for IsMagma)

(attribute)

identifies commutativity index of M.

____Example _____

1.2.4 AnticommutativityIndex (for IsMagma)

▷ AnticommutativityIndex(M)

(attribute)

calculates anticommutativity index of M.

_ Example _____

1.2.5 SquaresIndex (for IsMagma)

▷ SquaresIndex(M)

(attribute)

computes squares index of M so the order of $\{m^2 | m \in M\}$.

```
Example

gap> List(AllSmallAntimagmas(2), M -> List(M, m -> m * m));

[ [ m2, m1 ], [ m2, m1 ] ]

gap> List(AllSmallAntimagmas(2), M -> SquaresIndex(M));

[ 2, 2 ]

gap> List(AllSmallAntimagmas(3), M -> SquaresIndex(M));

[ 2, 2, 2, 2, 2, 2, 2, 3, 3 ]
```

1.2.6 IdSmallAntimagma (for IsMagma)

▷ IdSmallAntimagma(M)

(attribute)

identifies class of antiassociative magma M.

```
gap> IsAntiassociative(OneSmallGroup(16));
false
gap> IsAntiassociative(OneSmallAntimagma(2));
true
gap> IsAntiassociative(OneSmallAntimagma(3));
true
```

1.2.7 LeftOrder (for IsExtLElement)

▷ LeftOrder([m])

(attribute)

returns a left order of element m.

1.2.8 RightOrder (for IsExtRElement)

RightOrder([m])
 (attribute)

returns a right order of element m.

1.2.9 LeftOrdersOfElements (for IsMagma)

▷ LeftOrdersOfElements([m])

returns a left order of element m.

1.2.10 RightOrdersOfElements (for IsMagma)

RightOrdersOfElements([m])
 (attribute)

returns a left order of element m.

1.3 smallantimagmas automatic generated documentation of global functions

1.3.1 AllSubmagmas

▷ AllSubmagmas(M) (function)

builds a collection of non-isomorphic submagmas of M.

```
Example

gap> AllSmallAntimagmas(2);

[ <magma with 2 generators>, <magma with 2 generators> ]

gap> List(AllSmallAntimagmas(2), M -> AllSubmagmas(M));

[ [ <magma with 1 generator> ], [ <magma with 1 generator> ] ]
```

1.3.2 MagmaIsomorphismInvariantsMatch

▷ MagmaIsomorphismInvariantsMatch(M)

(function)

(attribute)

computes isomorphism invariants of M.

1.3.3 IsMagmaIsomorphic

▷ IsMagmaIsomorphic(M, N)

(function)

identifies whether magmas M, N are isomorphic.

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> T := MagmaByMultiplicationTable([ [2, 1], [2, 1] ]);
<magma with 2 generators>
gap> IsMagmaIsomorphic(M, M);
true
gap> IsMagmaIsomorphic(M, T);
true
gap> IsMagmaIsomorphic(M, N);
false
```

1.3.4 IsMagmaAntiisomorphic

▷ IsMagmaAntiisomorphic([M, N])

(function)

identifies whether magmas M, N are antiisomorphic.

```
gap> N := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> IsMagmaAntiisomorphic(M, M);
false
gap> IsMagmaAntiisomorphic(M, N);
true
gap> IsMagmaAntiisomorphic(M, TransposedMagma(M));
true
```

1.3.5 TransposedMagma

▷ TransposedMagma([M])

(function)

generates transposed magma M.

```
gap> M := SmallAntimagma(2, 1);
  <magma with 2 generators>
  gap> IsMagmaAntiisomorphic(M, TransposedMagma(M));
  true
  gap> IsMagmaIsomorphic(M, TransposedMagma(TransposedMagma(M)));
  true
```

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> Display(MultiplicationTable(M));
[ [ 2, 1 ],
       [ 2, 1 ] ]
gap> Display(MultiplicationTable(TransposedMagma(M)));
[ [ 2, 2 ],
       [ 1, 1 ] ]
```

1.3.6 LeftPower

1.3.7 RightPower

```
⊳ RightPower([m, k]) (function)
returns a right k-power of element m.
```

1.3.8 AllSmallAntimagmas

```
\triangleright AllSmallAntimagmas(n) (function)
```

returns all antiassociative magmas of specified size n (a number)

1.3.9 NrSmallAntimagmas

```
\triangleright NrSmallAntimagmas(n) (function)
```

counts number of antiassociative magmas of specified size n (a number).

```
gap> NrSmallAntimagmas(2);
2
gap> NrSmallAntimagmas(3);
10
gap> NrSmallAntimagmas(4);
17780
```

1.3.10 SmallAntimagma

```
\triangleright SmallAntimagma(n, i) (function)
```

returns antiassociative magma of id [n, i].

```
gap> SmallAntimagma(2, 1);

<magma with 2 generators>
gap> SmallAntimagma(4, 5);

<magma with 4 generators>
```

1.3.11 OneSmallAntimagma

▷ OneSmallAntimagma(n)

(function)

returns a random antiassociative magma of size n.

```
gap> OneSmallAntimagma(2);
<magma with 2 generators>

gap> OneSmallAntimagma(3);
<magma with 3 generators>
```

1.3.12 ReallyAllSmallAntimagmas

⊳ ReallyAllSmallAntimagmas(n)

(function)

returns really-all antiassociative magmas, isomorphic, of specified size n (a number)

```
gap> ReallyAllSmallAntimagmas(2);
[ <magma with 2 generators>, <magma with 2 generators>]
```

1.3.13 ReallyNrSmallAntimagmas

(function)

counts number of antiassociative magmas of specified size n (a number)

```
gap> ReallyNrSmallAntimagmas(3);
52
```

1.4 smallantimagmas automatic generated documentation of methods

1.4.1 MagmaIsomorphism (for IsMagma, IsMagma)

```
▷ MagmaIsomorphism(M, N)
```

(operation)

computes an isomoprhism between magmas M, N.

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := MagmaByMultiplicationTable([ [2, 1], [2, 1] ]);
<magma with 2 generators>
gap> MagmaIsomorphism(M, N);
<general mapping: Domain([ m1, m2 ]) -> Domain([ m1, m2 ]) >
```

1.4.2 MagmaAntiisomorphism (for IsMagma, IsMagma)

ightharpoonup MagmaAntiisomorphism(M, N)

(operation)

creates an antiisomoprhism between magmas M, N.

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> MagmaAntiisomorphism(M, N);
<mapping: Domain([ m1, m2 ]) -> Domain([ m1, m2 ]) >
```

Index

AllSmallAntimagmas, 11	for IsMagma, 6		
AllSubmagmas, 9	IsRightDistributive		
AnticommutativityIndex	for IsMagma, 5		
for IsMagma, 8	IsRightFPFInducted		
AssociativityIndex	for IsMagma, 6		
for IsMagma, 7			
	LeftOrder		
${\tt CommutativityIndex}$	for IsExtLElement, 9		
for IsMagma, 8	${\tt LeftOrdersOfElements}$		
DiagonalOfMultiplicationTable	for IsMagma, 9		
for IsMagma, 7	LeftPower, 11		
for isiviagina, /	License, 2		
IdSmallAntimagma			
for IsMagma, 8	MagmaAntiisomorphism		
IsAntiassociative	for IsMagma, IsMagma, 13		
for IsMagma, 4	MagmaIsomorphism		
IsCancellative	for IsMagma, IsMagma, 12		
for IsMagma, 5	${ t MagmaIsomorphismInvariantsMatch}, 9$		
IsLeftAlternative	NrSmallAntimagmas, 11		
for IsMagma, 7	WISMGIIM VIMAGMAS, II		
IsLeftCancellative	OneSmallAntimagma, 12		
for IsMagma, 5	-		
IsLeftCyclic	Really All Small Antimagmas, 12		
for IsMagma, 4	ReallyNrSmallAntimagmas, 12		
IsLeftDerangementInducted	RightOrder		
for IsMagma, 6	for IsExtRElement, 9		
IsLeftDistributive	$ ext{RightOrdersOfElements}$		
for IsMagma, 4	for IsMagma, 9		
IsLeftFPFInducted	RightPower, 11		
for IsMagma, 6	0 774 12		
IsMagmaAntiisomorphic, 10	SmallAntimagma, 12 SquaresIndex		
IsMagmaIsomorphic, 10			
IsRightAlternative	for IsMagma, 8		
for IsMagma, 7	TransposedMagma, 10		
IsRightCancellative	Transpostantagma, 10		
for IsMagma, 5			
IsRightCyclic			
for IsMagma, 4			
IsRightDerangementInducted			