Instructor: Jessi Shaw

Parameter Estimation via the Method of Moments

Required definitions and equations:

Estimator	Description	Notes		
$m_1 = \frac{1}{n} \sum_{i=1}^n x_i$	1 st sample moment	This is the equation for the sample mean, \bar{x} .		
$m_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$	2 nd sample moment	The second sample moment is <u>sometimes</u> equal to the estimator for the sample variance. This is NOT always the case.		
$\mu_1 = E[X]$	1 st population moment	This equation is an estimator of the population mean.		
$\mu_2 = E[X^2]$	2 nd population moment	This equation is <u>sometimes</u> an estimator of the population variance. This is NOT always the case.		

Procedure:

- 1.) Calculate:
 - m_1
 - *m*₂
 - \bullet E[X]
 - $E[X^2]$
- 2.) Equate each sample moment with the associated population moment:

(e.g., set the first sample moment equal to the first population moment, the second sample moment to the second population moment, and so on.)

Sample Moments		Population Moments
m_1	=	μ_1
m_2	=	μ_2

Sample Moments		Population Moments
$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	II	E[X]
$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}$	=	$E[X^2]$

Parameter Estimation via the Method of Moments

Procedure (continued):

- 3.) Solve the system of equations for μ_1 and μ_2 in terms of x_i .
- 4.) When μ and μ_2 are "alone" on one side of their respective equations, top them off with a tilde and conclude that they are method of moments estimators:
 - $\widetilde{\mu_1}$ is a method of moments estimator for the first population moment, the population mean.
 - $\widetilde{\mu_2}$ is a method of moments estimator for the second population moment.