Zusammenfassung Modellierung turbulenter Strömungen

Jan	Kröger
Jan	Niogei

8. September 2021

			-							•
In	h.	21	ts	\mathbf{v}	r7	$^{\circ}$	\sim	h	n	ıc
		п		ve		C 1	٠.			1.3

1	Statistische Beschreibung	2
	1.1 Mathematische Beschreibung turbulenter Strömungen	2

1

1 Statistische Beschreibung

1.1 Mathematische Beschreibung turbulenter Strömungen

Die Strömung wird bei der Betrachtung als Kontinuum über die Erhaltungsgleichungen beschrieben. Mit der Massenerhaltung:

$$\frac{D\rho}{Dt} + \rho \frac{\partial u_j}{\partial x_j} = \frac{\partial \rho}{\partial t} + \rho \frac{\partial u_j}{\partial x_j} + u_j \frac{\partial \rho}{\partial x_j} = 0$$
(1)

und der Impulserhaltung:

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ji}}{\partial x_j} + \rho f_i
= -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left(2\mu S_{ij} - \frac{2}{3}\mu \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) + \rho f_i$$
(2)

Unter der Annahme inkompressibler Strömung (Ma < 0,3) wird $\rightarrow \rho = konst$. Weiter wird keine Änderung der Temperatur angenommen und damit kann auch die Viskosität als Konstant angenommen werden. Es folgt damit für die Massenerhaltung:

$$\frac{\partial u_j}{\partial x_i} = 0 \tag{3}$$

und für die Impulserhaltung:

$$\rho \frac{Du_i}{Dt} = -\frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 u_i}{\partial x_i^2} + \rho f_i \tag{4}$$

Die Zeitliche Entwicklung der Strömung ist unter Angabe von Rand- und Anfangsbedingungen möglich. Damit folgt auch ein hoher Informationsgehalt aber auch ein hoher Rechenaufwand.