Для последовательности  $x_n$ :  $y_n=\sup(x_n,x_{n+1}\ldots), z_n=\inf(x_n,x_{n+1}\ldots).$  Тогда  $z_n\leq x_n\leq y_n$   $y_n\downarrow,z_n\uparrow$ 

$$\overline{\lim} x_n := \lim y_n \quad \underline{\lim} x_n := \lim z_n$$

Теорема 0.1. Техническое описание верхнего предела.

1. 
$$\overline{\lim} x_n = +\infty \Leftrightarrow x_n$$
 — неогр. сверху

2. 
$$\overline{\lim} x_n = -\infty \Leftrightarrow x_n \to -\infty$$

3. 
$$\overline{\lim} x_n = l \in \mathbb{R} \Leftrightarrow$$
аи b:

(a) 
$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ x_n < l + \varepsilon$$

(b)  $\forall \varepsilon > 0$  для бесконечного множества номеров  $n: l-\varepsilon < x_n$ 

Доказательство. 1. Очевидно, т.к.  $y_n = \sup(x_n, x_{n+1} \dots) = +\infty \Leftrightarrow x_n$  — неогр. сверху

2. "
$$\Rightarrow$$
"  $x_n \leq y_n \to -\infty$ 

"
$$\Leftarrow$$
"  $\forall A \exists N \ \forall n > N \ y_n \leq A, x_n \leq A$ 

3. "
$$\Rightarrow$$
" (a)  $y_n \to l \quad \forall \varepsilon > 0 \ \exists N \ \forall n > N \quad x_n \leq y_n < l + \varepsilon$ 

- (b) Берём  $\varepsilon>0$ , предположим противное :  $\exists$  конечное мн-во  $n:l-\varepsilon< x_n$   $]n_0$  максимальный номер, такой что  $l-\varepsilon< x_{n_0}$ , тогда  $y_{n_0}\le l-\varepsilon$ , но  $y_n\downarrow\Rightarrow \lim y_n\le l-\varepsilon$
- " $\Leftarrow$ "  $\forall \varepsilon > 0 \ \exists N \ \forall n > N$   $x_n < l + \varepsilon \Rightarrow y_n \leq l + \varepsilon$ , но в  $x_n, x_{n+1} \dots \exists x_i : l \varepsilon < x_i \Rightarrow y_n = \sup(x_n, x_{n+1} \dots) > l \varepsilon$ . Итого  $l + \varepsilon \geq y_n > l \varepsilon \Rightarrow l = \lim y_n = \overline{\lim} x_n$

Теорема 0.2.

$$\exists \lim x_n \in \overline{\mathbb{R}} \Leftrightarrow \overline{\lim} x_n = \underline{\lim} x_n$$

Доказательство. " $\Rightarrow$ " 1.  $\lim x_n = +\infty \Rightarrow \overline{\lim} x_n = \lim y_n \ge \lim x_n = +\infty$ 

- 2.  $\lim x_n = -\infty$  аналогично
- 3.  $\lim x_n = l \in \mathbb{R}$  очевидно из технического описания предела, пункт 3.

" $\Leftarrow$ "  $\varliminf x_n \leftarrow z_n \le x_n \le y_n \to \varlimsup x_n$ , по теореме о городовых  $\exists \lim x_n = \varlimsup x_n$ 

Определение.  $n_k: n_1 < n_2 < n_3 < \dots$   $\lim_{k \to +\infty} x_{n_k}$  — частичный предел

Теорема 0.3. О характеризации верхнего предела как частичного.

1.  $\forall l$  — частичный пр.  $x_n \underline{\lim} x_n \leq l \leq \overline{\lim} x_n$ 

M3137y2019

Лекция 9

2. 
$$\exists (n_k): x_{n_k} \to \overline{\lim} x_n \ \exists m_k: x_{m_k} \to \underline{\lim} x_n$$

Доказательство. 1.  $x_{n_k} \to l$   $\underline{\lim} x_n \leftarrow z_{n_k} \le x_{n_k} \le y_{n_k} \to \overline{\lim} x_n \Rightarrow \underline{\lim} x_n \le l \le \overline{\lim} x_n$ 

- 2. (a)  $\overline{\lim} x_n = +\infty \Leftrightarrow x_n$  неогр сверху  $\Rightarrow$  можно выбрать  $x_{n_1} < x_{n_2} < \dots x_n \to +\infty$ 
  - (b)  $\overline{\lim} x_n = -\infty$  тривиально.

(c) 
$$\overline{\lim} x_n = l \in \mathbb{R} \ \exists x_{n_k} : l - \frac{1}{k} < x_{n_k} < l + \frac{1}{k}$$

Пример. 1.  $\overline{\lim} \sin n = 1, \underline{\lim} \sin n = -1$ 

2.  $\forall l \in [-1,1]$ — частичный передел последовательности  $\sin n$ 

Доказательство. 1. Тривиально

$$2. \ n_k := \arcsin l + 2\pi k$$

Кроме того, можно составить  $n_k \in \mathbb{N}$ .

## 1 Простейшие свойства рядов

Определение.  $a_1+a_2+\ldots,\sum\limits_{i=1}^{+\infty}a_i$  — числовой ряд ( $a_i\in\mathbb{R}$ )

Определение.  $\forall N \in \mathbb{N} \quad S_n := \sum\limits_{i=1}^n a_i$  — частичная сумма

Определение. Если  $\exists \lim_{N \to +\infty} S_n = S \in \mathbb{R}$ , ряд сходится, иначе ряд расходится.

Пример.  $x \in \mathbb{R}$ 

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

$$e^x = \sum_{k=0}^{N} \frac{x^k}{k!} + \frac{e^{\Theta}}{(N+1)!} x^{N+1}$$

$$\sum_{n=0}^{+\infty} \frac{2^n}{n!} = e^2$$

M3137y2019

Пример.

$$\sum_{n=1}^{+\infty} \frac{1}{n^k}, k \in N, p = -k$$

$$\sum_{n=1}^{+\infty} n^p = \frac{N^{p+1}}{p+1} + \frac{N^p}{2} + \frac{1}{2} + \frac{1}{2} \int_1^N (x^p)''\{x\} (1-\{x\}) = \frac{N^{p+1}}{p+1} + \frac{N^p}{2} + \frac{1}{2} + \mathcal{O}(\max(1, N^{p-1}))$$

- p > -1 расходится
- p = -1 расходится
- p < -1 сходится

Определение.  $\sum\limits_{k=N}^{+\infty}a_k-N$ -й остаток ряда

Свойства:

1. 
$$\sum a_n, \sum b_n$$
 сходятся,  $c_n:=a_n+b_n$ . Тогда  $\sum c_n$  сходится

2. 
$$\sum a_n$$
 — сходится,  $\lambda \in \mathbb{R}$ . Тогда  $\sum \lambda a_n$  сходится и  $\sum \lambda a_n = \lambda \sum a_n$ 

3. (a) 
$$\sum a_n - \operatorname{сходится} \Rightarrow$$
 любой остаток сходится

(b) остаток сходится 
$$\Rightarrow \sum a_n$$
 сходится

(c) 
$$r_N = \sum_{n \geq N} a_n$$
,  $\sum a_n$  сходится  $\Leftrightarrow r_N \xrightarrow[N \to +\infty]{} 0$ 

Доказательство. (a) ?m-й остаток,  $N \ge m : \sum_{n=1}^N a_n = \sum_{n=1}^{m-1} a_n + \sum_{n=m}^N a_n$ 

- (b) Аналогично.
- (с) "⇐" Тривиально.

"\Rightarrow" 
$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{m-1} a_n + r_m \xrightarrow{m \to +\infty} \sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} a_n + r_{+\infty} \Rightarrow r_N \to 0$$

Лемма 1. Необходимое условие сходимости:

$$\sum a_n \operatorname{cxodumcs} \Rightarrow a_n \to 0$$

Доказательство. Тривиально.  $a_n = S_n - S_{n-1} \to 0$ 

Обратное неверно, например  $\sum \frac{1}{n^p}$  расходится,  $p \in (0,1]$ 

Теорема 1.1. Критерий сходимости ряда Больцано-Коши:

$$\sum a_n \ \text{сходится} \ \Leftrightarrow \forall \varepsilon > 0 \ \exists N \ \forall k > N \ \forall m \in \mathbb{N} \quad |a_{k+1} + a_{k+2} + \ldots + a_{k+m}| < \varepsilon$$

М3137у2019 Лекция 9

Доказательство. Тривиально.

Докажем расходимость  $\sum \frac{1}{n}$  по критерию Больцано-Коши.

$$m := k \quad \frac{1}{k+1} + \frac{1}{k+2} + \ldots + \frac{1}{2k} > k \frac{1}{2k} = \frac{1}{2}$$
 
$$\exists \varepsilon = \frac{1}{2} \ \forall N \ \exists k > N \ \exists m := k \quad |a_{k+1} + a_{k+2} + \ldots + a_{k+k}| \ge \varepsilon$$

Теорема 1.2. Признак сравнения.

 $a_k, b_k \ge 0$ 

- 1.  $\forall k \ a_k \leq b_k$ , или  $\exists c > 0 \ \forall k \ a_k \leq cb_k$ . Тогда  $\sum b_k$  cx.  $\Rightarrow \sum a_k$  cx.,  $\sum a_k$  pacx.  $\Rightarrow \sum b_k$  pacx.
- 2.  $\exists \lim rac{a_k}{b_k} = l \in [0, +\infty]$ . Тогда при

 $0 < l < +\infty$ :  $\sum a_k \operatorname{cx.} \Leftrightarrow \sum b_k \operatorname{cx.}$ 

 $l=0: \sum b_k \operatorname{cx.} \Rightarrow \sum a_k \operatorname{cx.}, \sum a_k \operatorname{pacx.} \Rightarrow \sum b_k \operatorname{pacx.}$ 

 $l = +\infty$ :  $\sum a_k \operatorname{cx.} \Rightarrow \sum b_k \operatorname{cx.}, \sum b_k \operatorname{pacx.} \Rightarrow \sum a_k \operatorname{pacx.}$ 

Доказательство.

**Пемма 2.**  $a_n \ge 0$   $\sum a_n$  сходится  $\Leftrightarrow S_n$  ограничено сверху.

Доказательство.  $\exists$  кон.  $\lim S_n \Leftrightarrow S_n$  ограничено сверху.

- 1.  $S_n^{(a)} \leq S_n^{(b)}; \ S_n^{(b)}$  огр.  $\Rightarrow S_n^{(a)}$  огр., по леммме  $a_n$  сходится. Аналогично расходимость.
- 2. (a)  $0 < l < +\infty$  : Для  $\varepsilon = \frac{l}{2} \ \exists N \ \forall n > N \ \frac{1}{2} lb_n < a_n < \frac{3}{2} lb_n$ , дальше по 1 пункту.
  - (b)  $l=0: \forall \varepsilon>0 \ \exists N \ \forall n>N \ \frac{a_n}{b_n}<\varepsilon \Rightarrow a_n<\varepsilon b_n \Rightarrow$  по 1 пункту.
  - (c)  $l=+\infty: \forall \varepsilon>0 \ \exists N \ \forall n>N \ \frac{a_n}{b_n}>\varepsilon \Rightarrow a_n>b_n \varepsilon \Rightarrow$  по 1 пункту.

Пример. 1.

$$\sum_{n=1}^{+\infty} \frac{n^3 + 14n + 1}{n^5 + n^4 + \sqrt{n}} = \sum_{n=1}^{+\infty} a_n$$

 $a_n \sim \frac{n^3}{n^5} = \frac{1}{n^2}, 2 > 1 \Rightarrow$  ряд сходится.

M3137y2019 Лекция 9