SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Reyes, Gregory R Yarpough, Patrice O Bradley, Daniel W Krawczynski, Krzysztof Z

Tam, Albert Ery, Kirk E

- (ii) TITLE OF INVENTION: DNA Sequences of Enterically Transmitted Non-A/Non-B Hepatitis Viral Agent
- (iii) NUMBER OF SEQUENCES: 20
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Dehlinger & Associates
 - (B) STREET: 350 Cambridge Avenue, Suite 250
 - (I) CITY: Palo Alto
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94306
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/128,275
 - (B) FILING DATE: 03-AUG-1998
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/279,823
 - (B) FILING DATE: 25-JUL-1994
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/681,078
 - (B) FILING DATE: 05-APR-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/505,888
 - (B) FILING DATE: 05-APR-1990
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/420,921
 - (B) FILING DATE: 13-OCT-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/367,486
 - (B) FILING DATE: 16-JUN-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/336,672
 - (B) FILING DATE: 11-APR-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/208,997
 - (B) FILING DATE: 17-JUN-1988

(7:ii)	ATTORNEY/AGENT INFORMATION:	
	(A) NAME: Petitnory, Joanne R.	
	(B) REGISTRATION NUMBER: 42,995	
	(C) FEFERENCE/DOCFET NUMBER: 4600-0183.24	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (650) 324-0880
- (B) TELEFAX: (650) 324-0960

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1295 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 1.33 kb EcoRI insert of ET1.1, forward sequence
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1293
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 2..1294
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 3..1295

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AGACCTGTCC	CTGTTGCAGC	TGTTCTACCA	CCCTGCCCCG	AGCTCGAACA	GGGCCTTCTC	60
TACCTGCCCC	AGGAGCTCAC	CACCTGTGAT	AGTGTCGTAA	CATTTGAATT	AACAGACATT	120
GTGCACTGCC	GCATGGCCGC	CCCGAGCCAG	CGCAAGGCCG	TGCTGTCCAC	ACTCGTGGGC	180
CGCTACGGCG	GTCGCACAAA	GCTCTACAAT	GCTTCCCACT	CTGATGTTCG	CGACTCTCTC	240
GCCCGTTTTA	TOCCGGCCAT	TGGCCCCGTA	CAGGTIACAA	CTTGTGAATT	GTACGAGCTA	300
GTGGAGGCCA	TGGTCGAGAA	GGGCCAGGAT	GGCTCCGCCG	TCCTTGAGCT	TGATCTTTGC	360
AACCGTGACG	TGTCCAGGAT	CACCTTCTTC	CAGAAAGAIT	GTAACAAGTT	CACCACAGGT	420
GAGACCATTG	CCCATGGTAA	AGTGGGCCAG	GGCATCTCGG	CCTGGAGCAA	GACCTTCTGC	480
GCCCTCTTTG						540
GGTGTGTTTT	ACGGTGATGC	CTTTGATGAC	ACCGTCTTCT	CGGCGGCTGT	GGCCGCAGCA	600

222222222	maamama.	23 1 T 23 2 D D D D				
MAGGCA I CCA	. louisilisA	GAATGAUTTT	TCTGAGTTTG	ACTOCACCCA	GAATAACTTT	660
TCTCTGGGTC	TAGAGTGTGC	TATTAT GGAG	GAGTGTGGGA	TGCCGCAGTG	GCTCATCCGC	720
CTGTATCACC	TTATAAGGTC	TGCGTGGATC	TTGCAGGCCC	CGAAGGAGTC	TCTGCGAGGG	780
TTTTGGAAGA	AACACTCCGG	TGAGCCCGGC	ACTCTTCTAT	GGAATACTGT	CTGGAATATG	840
GCCGTTATTA	CCCACTGTTA	TGACTTCCGC	GATTTTCAGG	TGGCTGCCTT	TAAAGGTGAT	900
GATTCGATAG	TGCTTTGCAG	TGAGTATOGT	CAGAGTCCAG	GAGCTGCTGT	CCTGATCGCC	960
GGCTGTGGCT	TGAAGTTGAA	GGTAGATTTC	CGCCCGATCG	GTTTGTATGC	AGGTGTTGTG	1020
STGGCCCCCG	GCCTTGGCGC	GCTCCCTGAT	GTTGTGCGCT	TCGCCGGCCG	GCTTACCGAG	1080
AAGAATTGGG	GCCCTGGCCC	TGAGCGGGCG	GAGCAGCTCC	GCCTCGCTGT	TAGTGATTTC	1140
CTCCGCAAGC	TCACGAATGT	AGCTCAGATG	TGTGTGGATG	TTGTTTCCCG	TGTTTATGGG	1200
GTTTCCCCTG	GACTCGTTCA	TAACCTGATT	GGCATGCTAC	AGGCTGTTGC	TGATGGCAAG	1260
GCACATTTCA	CTGAGTCAGT	AAAACCAGTG	CTCGA			1295

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 431 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Arg Pro Val Pro Val Ala Ala Val Leu Pro Pro Cys Pro Glu Leu Glu
 1 5 10 15
- Gln Gly Leu Leu Tyr Leu Pro Gln Glu Leu Thr Thr Cys Asp Ser Val $20 \\ 20 \\ 25 \\ 30$
- Val Thr Phe Glu Leu Thr Asp Ile Val His Cys Arg Met Ala Ala Pro 35 40 45
- Ser Gln Arg Lys Ala Val Leu Ser Thr Leu Val Gly Arg Tyr Gly Gly 50 55 60
- Arg Thr Lys Leu Tyr Asn Ala Ser His Ser Asp Val Arg Asp Ser Leu 65 70 75 80
- Ala Arg Phe Ile Pro Ala Ile Gly Pro Val Gln Val Thr Thr Cys Glu 85 90 95
- Leu Tyr Glu Leu Val Glu Ala Met Val Glu Lys Gly Gl
n Asp Gly Ser 100 $$ 105 $$ 110
- Ala Val Leu Glu Leu Asp Leu Cys Asn Arg Asp Val Ser Arg Ile Thr 115
- Phe Phe Gln Lys Asp Cys Asn Lys Phe Thr Thr Gly Glu Thr Ile Ala 130 135

His Gly Lys Val Gly Gln Gly He Ser Ala Trp Ser Lys Thr Phe Cys 145 150 160 Ala Leu Phe Gly Pro Trp Phe Arg Ala Ile Glu Lys Ala Ile Leu Ala 165 Leu Leu Pro Gln Gly Val Phe Tyr Gly Asp Ala Phe Asp Asp Thr Val 180 185 190 Phe Ser Ala Ala Val Ala Ala Ala Lys Ala Ser Met Val Phe Glu Asn Asp Phe Ser Glu Phe Asp Ser Thr Gln Asn Asn Phe Ser Leu Gly Leu Glu Cys Ala Ile Met Glu Glu Cys Gly Met Pro Gln Trp Leu Ile Arg Leu Tyr His Leu Ile Arg Ser Ala Trp Ile Leu Gln Ala Pro Lys Glu 245 250 255 Ser Leu Arg Gly Phe Trp Lys Lys His Ser Gly Glu Pro Gly Thr Leu Leu Trp Asn Thr Val Trp Asn Met Ala Val Ile Thr His Cys Tyr Asp Phe Arg Asp Phe Gln Val Ala Ala Phe Lys Gly Asp Asp Ser Ile Val Leu Cys Ser Glu Tyr Arg Gln Ser Pro Gly Ala Ala Val Leu Ile Ala Gly Cys Gly Leu Lys Leu Lys Val Asp Phe Arg Pro Ile Gly Leu Tyr 325 330 335 Ala Gly Val Val Val Ala Pro Gly Leu Gly Ala Leu Pro Asp Val Val Arg Phe Ala Gly Arg Leu Thr Glu Lys Asn Trp Gly Pro Gly Pro Glu 360 Arg Ala Glu Gln Leu Arg Leu Ala Val Ser Asp Phe Leu Arg Lys Leu Thr Asn Val Ala Gln Met Cys Val Asp Val Val Ser Arg Val Tyr Gly 390 Val Ser Pro Gly Leu Val His Asn Leu Ile Gly Met Leu Gln Ala Val Ala Asp Gly Lys Ala His Phe Thr Glu Ser Val Lys Pro Val Leu 420 425

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(U) IUPULUGY: linear	
(ii) MOLECULE TYPE: DNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: linker - top (5') sequence	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GGAATTCGCG GCCGCTCG	13
(2) INFORMATION FOR SEC ID NO:4:	
(i) SEQUENCE CHAPACTERISTICS: A: LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MCLECULE TYPE: DNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: linker - bottom (3') sequence</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CGAGCGGCCG CGAATTCCTT	20
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1295 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: 1.33 kb EcoRI insert of ET1.1,</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TCGAGCACTG GTTTTACTGA CTCAGTGAAA TGTGCCTTGC CATCAGCAAC AGCCTGTAGC	60
ATGCCAATCA GGTTATGAAC GAGTCCAGGG GAAACCCCAT AAACACGGGA AACAACATCC	120

ACACACATO	GAGCTACAT:	CGTGAGCTTC	G CGGAGGAAAT	' CASTAASAGO	GAGGCGGAGC	180
TGdTddgdd	C GCTCAGGGCC	AGGGCCCA	A TTOTTOTOGG	TAAGCCGGCC	GGCGAAGCGC	240
ACAACATCAC	3 GGAGCGCGC	: AAGGCCGGGC	G GCCACCACAA	CACCTGCATA	CAAACCGATC	300
GGGCGGAAAT	AACTTOLATE	CTTCAAGCCA	A CAGCCGGCGA	TCAGGACAGC	AGCTCCTGGA	360
CTCTGACGAI	ACTICACTICA	. AAGCACTATO	GAATCATCAC	CTTTAAAGGC	AGCCACCTGA	420
AAATCGCGGA	AGT CATAACA	. GTGGGTAATA	ACGGCCATAT	TCCAGACAGT	ATTCCATAGA	430
AGAGTGCCGG	GCTCACCGGA	GTGTTTCTTC	CAAAACCCTC	GCAGAGACTC	CTTCGGGGCC	540
TGCAAGAICO	ACGCAGACOT	TATAAGGTGA	. TACAGGCGGA	TGAGCCACTG	CGGCATCCCA	600
CACTCCTCCA	. TAATAGCACA	CTCTAGACCC	AGAGAAAAGT	TATTCTGGGT	GGAGTCAAAC	660
TCAGAAAAGT	CATTOTCAAA	CACCATGGAT	GCCTTTGCTG	CGGCCACAGC	CGCCGAGAAG	720
ACGGTGTCAT	CAAAGGCATC	ACCGTAAAAC	ACACCCTGAG	GGAGCAGGGC	CAGAATAGCC	780
TTSTSAATAG	CGCGGAACCA	AGGGCCAAAG	AGGGCGCAGA	AGGTCTTGCT	CCAGGCIGAG	840
ATGCCCT 3GC	CCACTTTACC	AT GGGCAATG	GTCTCACCTG	TGGTGAACTT	GTTACAATCT	900
TTCTGGAAGA	AGGTGATCCT	GGACACGTCA	CGGTTGCAAA	GATCAAGCTC	AAGGAC GG JG	960
GAGCCATCCT	GGCCCTTCTC	GACCATGGCC	TCCACTAGCT	CGTACAATTC	ACAAGTTGTA	1020
ACCTGTACGG	GGCCAATGGC	CGGGATAAAA	CGGGCGAGAG	AGTCGCGAAC	ATCAGAGTGG	1080
GAAGCATTGT	AGAGCTTTGT	GCGACCGCCG	TAGCGGCCCA	CGAGTGTGGA	CAGCACGGCC	1140
TTGCGCTGGC	TCGGGGCGGC	CATGCGGCAG	TGCACAATGT	CTGTTAATTC	AAATGTTACG	1200
ACACTATCAC	AGGTGGTGAG	CTCCTGGGGC	AGGTAGAGAA	GGCCCTGTTC	GAGCTCGGGG	1260
CAGGGTGGTA	GAACAGCTGC	AACAGGGACA	GGTCT			1295

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7195 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (C) INDIVIDUAL ISOLATE: HEV Burma strain
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 28..5106

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 5147..7126

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 5106..5474

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AGGCAGACCA CATATGTGGT CGATGCC	CATG SAGGCCCATC ASTITATIAA GGCTCCTGGC 60
ATCACTACTS CTATTGAGCA GGCTGCT	CTA GCAGCGGCCA ACTOTGCCCT GGCGAATGCT 120
GTGGTAGTTA GGCCTTTIOT OTOTOAC	CAG DABATTGAGA TOOTCATTAA COTAATGCAA 130
COTOGODAGO PTGTTTTCCG CCCCGAG	GTT TTOTGSAATO ATCCCATCCA GOGTGTCATC 240
CATAACSAGO TGGAGGTTTA CTGCCGC	GCC CGCTCCGGCC GCTGTCTTGA AATTGGCGCC 3:00
CATCCCCGCT CAATAAATGA TAATCCT	AAT GTGGTCCACC GCTGCTTCCT CCGCCCTGTT 360
GGGCGTGATG TTCAGCGCTG GTATACTC	GCT 300ACTCGCG GGCCGGCTGC TAATTGCCGG 420
CONTRODGOSC TGCGGGGGGT TCCCGGCT	GCT GACCGCACTT ACTGCCTCSA CGGGTTTTCT 480
GGCTGTAACT TTCCCGCCGA GACTGCC	ATC GCCCTCTACT CCCTTCATGA TATGTCACCA 540
TOTGATGTOG COGAGGCCAT GTTCCGCC	CAT GGTATGACGC GGCTCTATGC CGCCCTCCAT 600
CTTCCGCCTG AGGTCCTGCT GCCCCCTC	GGC ACATATCGCA CCGCATCGTA TTTGCTAATT 660
CATGACGGTA GGCGCGTTGT GGTGACGT	FAT GAGGGTGATA CTAGTGCTGG TTACAACCAC 720
GATGTCTCCA ACTTGCGCTC CTGGATTA	AGA ACCACCAAGG TTACCGGAGA CCATCCCCTC 780
GTTATCGAGC GGGTTAGGGC CATTGGCT	GC CACTTTGTTC TCTTGCTCAC GGCAGCCCCG 840
GAGCCATCAC CTATGCCTTA TGTTCCTT	TAC CCCCGGTCTA CCGAGGTCTA TGTCCGATCG 900
ATCTTCGGCC CGGGTGGCAC CCCTTCCT	TTA TTCCCAACCT CATGCTCCAC TAAGTCGACC 960
TTCCATGCTG TCCCTGCCCA TATTTGGG	GAC CGTCTTATGC TGTTCGGGGC CACCTTGGAT 1020
GACCAAGCCT TTTGCTGCTC CCGTTTAA	TG ACCTACCTTC GCGGCATTAG CTACAAGGTC 1080
ACTGTTGGTA CCCTTGTGGC TAATGAAG	GC TGGAATGCCT CTGAGGACGC CCTCACAGCT 1140
GTTATCACTG COGCCTACCT TACCATTT	GC CACCAGOGGT ATCTCCGCAC CCAGGCTATA 1200
TOCAAGGGA TOCSTCGTCT GGAACGGG	AG CATGCCCAGA AGTTTATAAC ACGCCTCTAC 1260
AGCTGGCTCT TCGAGAAGTC CGGCCGTG	AT TACATCOOTG GCCGTCAGTT GGAGTTCTAC 1320
GCCCAGTGCA GGCGCTGGCT CTCCGCCG	GC TTTCATCTTG ATCCACGGGT GTTGGTTTTT 1330
GADGAGTOGG COCCOTTGOGA TTGTAGGAG	CC GOSATOOGTA AGGCGOTOTO AAAGTTTTGC 144)
TECTTOATGA AGTGGCTTGE TOAGGAGTG	GC ACCTGCTTCC TTCAGCCTGC AGAAGGCGCC 150)
GTCGGCGACO AGGGTCATGA TAATGAAGC	CC TATGAGGGGT CCGATGTTGA CCCTGCTGAG 1560

TOOGDOATT	A GTGACATAI	O TGGGTOOTA	T GTOGT 136T	3 30A0T6000	T CORRECTE	1620
TADDAGGOD	DO TOGATOTOS	C CGOTGAGAT	T GTGGGTGGC	3 033360560	T GACCGCCACA	1680
GTAAAGGTO	T CCCAGGTCG	A TGGGCGGAT	C GATTGCGAG	A CCCTTCTT3	G TAACAAAACC	1740
TTTCGCACG	T CGTTCGTTG	A CGGGGGGGT	C TTAGAGACC	A ATGGCCCAG	A GOGICACAAT	1800
CTCTCCTTC	G ATGCCAGTC	A GAGCACTAT	G GCCGCTGGC	C CTTTCAGTC	r caddiatecc	1860
GCCTCTGCA	G CTGGGCTGG	A GGTGCGCTA	r grigginged	G GGCTTGACC	A TOBGGGGTT	1920
TTTGCCCCC	G GIGITICAC	C COGGTCAGC	C CCCGGCGAG	G TTACCGCCT	CTGCTCTGCC	1980
CTATACAGG	T TTAACCSTS.	A GGCCCAGCG	C CATTOGOTGA	A TOGGTAACT:	T ATGGTTCCAT	2040
CCTGAGGGA	C TCATTGGCC	I JIIOGOOOC	G TTTT-OGCCCC	G GGCATGTTTC	G GGAGTOGGOT	2100
AATCCATTC	T GIGGGGAGA	G CACACTTTA	O ACCCETACT	Pagidagaga:	TGATGODGTC	2140
TCTAGTCCAC	G ODOGGOOTGA	A CTTAGGTTTT	T ATGT ITGAGO	CTTCTATACC	TAGTAGGGCC	2220
GCCADGCCTA	A DOOT GEOGE	OCATOTACCO	COCCOTGCAC	COGGACOCTTO	COCTOCTOC	2230
TOTECCO	G CGCTTGCTGA	A GOOGGOTTOT	: GGCGOTADOG	COGGGGCCC	GGCCATAACT	2340
CACCAGACGC	G CCCGGCACCC	G COGCCTGCTC	TTCACCTACC	CGGATGGCTC	TAAGGTATTC	2400
GCCGGCTCGC	TGTTCGAGTC	GACATGCACG	TGGCTCGTTA	ACGCGTCTAA	TGTTGACCAC	2460
CGCCCTGGCG	GCGGGCTTTC	CCATGCATTT	TACCAAAGGT	ACCCCGCCCC	CTTTGATGCT	2520
GCCTCTTTTG	TGATGCGCGA	. CGGCGCGGCC	GCGTACACAC	TAACCCCCCG	GCCAATAATT	2580
CACGCTGTCG	CCCCTGATTA	TAGGTTGGAA	CATAACCCAA	AGAGGCTTGA	GGCTGCTTAT	2640
CGGGAAACTT	GCTCCCGCCT	CGGCACCGCT	GCATACCCGC	TCCTCGGGAC	CGGCATATAC	2700
CAGGTGCCGA	. TCGGCCCCAG	TTTTGACGCC	TGGGAGCGGA	ACCACCGCCC	CGGGGATGAG	2760
TTGTACCTTC	CTGAGCTTGC	TGCCAGATGG	TTTGAGGCCA	ATAGGCCGAC	CCGCCCGACT	2820
CTCACTATAA	CTGAGGATGT	TGCACGGACA	GCGAATCTGG	CCATCGAGCT	TGACTCAGCC	2380
			CGGGTCACCC			2940
					CGATGTGGAC	
					CTTTGCTGCT	
TTTACCCCC	ATACTGCCGC	CAGAGTCACC	CAGGGGGGG	GGGTFGTCAT	TGATGAGGCT	312)
					CGTCCACCTT	
					CGTCCCCGCC	
ATCAGGCCCG	ACTTAGGCCC	CACCTCCTGG	TGGCATGTTA	CCCATCGCTG	GCCTGCGGAT	330)
GTATG DGAGD	TCATCCGTGG	TGCATACCCC	ATGATCCAGA	CCACTAGCOG	GGTTCTCCGT	3360
TOSTIGITAT	GGGGTGAGCC	TGCCGTJGGG	CAGAAACTAG	TGTTCACCCA	GGCGGCCAAG	342)

CAACCECCC	O DOGGETOAG	T BADBGTDCAD	: BAGGGGGAG	G GOGOTACOT	A CACGGAGACC	3480
ACTATTATT	G CCACAGCAG	A TOCCCGGGGC	CTTATTOAG	T CGTOTOGGG	O TOATGOCATT	3540
GTTGCTCTG	A CGCGCCACAC	C TGAGAAGTGC	GTCATCATT	G ACGCACIAG	G COTGOTTOGO	3600
GAGGTGGGCA	A TOTOOGATGO	C AATOGTTAAT	AACTTTTTC	C TOGOTGGTS	G CGAAATTGGT	3660
CACCAGOSCO	CATCASTTA	TCCCCGT33C	AACCCTGACC	G CCAATGTTG	A CACCCTGGOT	3720
GCCTTCCCG	COTOTTGCCA	A GATTAGTGCC	TTCCATCAGT	TGGCTGAGG	A GOTTGGOCAC	3730
AGACCTGTCC	CONTRACTOR	TGTTCTACCA	cccrccccc	S AGCTCGAACA	A GGGGGTTGTG	3340
TACOTGCCC	C AGGAGUTOAC	CACOTGTGAT	AGTGT DGTAP	CATTTBAAT	T AACAGACAIT	3 300
GT SCACT 500	C GCATGGCCGC	COCGAGCCAG	DGCAA 3 3C CG	T GCT GTC DAG	ACTOBIGESC	3360
CGCTACGGCC	GTOGOADAAA	. GOTOTACAAT	GOTTOGOADT	CTGATGTTS	G CGACTOTO	4020
GCCCGTTTTA	TODOGGODAT	' TGGDDCCGTA	CAGGTTACAA	. OTTGTGAATI	GTACGAGCTA	4080
GTGGAGGCCA	TGGTCGAGAA	. GGG-CCAGGAT	GGCTCCGCCG	TOOTTGAGOT	TGATOTTTGC	4140
AACCGTGACG	TGTCCAGGAT	CACOTTOTTO	CAGAAAGATT	GTAACAAGTT	CACCACAGGT	4200
GAGACCATTG	CCCATGGTAA	AGTGGGCCAG	GGCATCTCGG	CCTGGAGCAA	GACOTTOTGC	4260
GCCCTCTTTG	GCCCTTGGTT	CCGCGCTATT	GAGAAGGCTA	TTCTJGCCCT	GCTCCCTCAG	4320
GGTGTGTTTT	ACGGTGATGC	CTTTGATGAC	ACCGTCTTCT	CGGCGGCTGT	GGCTGCAGCA	4380
AAGGCATCCA	TGGTGTTTGA	GAATGACTTT	TCTGAGTTTG	ACTCCACCCA	GAATAACTTT	4440
TCTCTGGGTC	TAGAGTGTGC	TATTATGGAG	GAGTGTGGGA	TGCCGCAGTG	GCTCATCCGC	4500
CTGTATCACC	TTATAAGGTC	TGCGTGGATC	TTGCAGGCCC	CGAAGGAGTC	TOTGCGAGGG	4560
TTTTGGAAGA	AACACTCCGG	TGAGCCCGGC	ACTCTTCTAT	GGAATACTGT	CTGGAATATG	4620
GCCGTTATTA	CCCACTGTTA	TGACTTCCGC	GATTTTCAGG	TGGCTGCCTT	TAAAGGTGAT	4680
GATTCGATAG	TGCTTTGCAG	TGAGTATCGT	CAGAGTCCAG	GAGCTGCTGT	CCTGATCGCC	4740
GGCTGTGGCT	TGAAGTTGAA	GGTAGATTTC	CGCCCGATCG	GTTTGTATGC	AGGTGTTGTG	4300
GTGGCCCCCG	GCCTTGGCGC	GCTCCCTGAT	GTTGTGCGCT	TOSCOSGOOS	GCTTACCGAG	4360
AAGAATTGGG	GCCCTGGCCC	TGAGCGGGGG	GAGCAGCTCC	GCCTCGCTGT	TAGTGATTIC	4920
CTCCGCAAGC	TJAJGAATST	AGCTCAGATG	TGTGTGGATG	TTGTTTCCCG	TGTTTATGGG	4930
GTTTCCCCTG	GACTCGTTCA	TAACCTGATT	GGCATGCTAC	AGGCTGTTGC	TGATGGCAAG	5040
GCAJATTTJA	CTGAGTCAGT	AAAACCAGTG	CTCGACTTGA	CAAATTCAAT	CTTGTGTCGG	5100
GTGGAATGAA	TAACATGTOT	TTTGCTGCGC	CCATGGGTTC	GUGACCATGC	GCCCTCGGCC	5150
TATTTTGTTG	CTGCTCCTCA	TGTTTTTGCC	PAT GCTGCCC	GIGICACCIC	CCGGTCAGCC	5220
GTCTGGCCGC	CGTC3TG3GC	GGCGCAGCGG .	CGGTTCCGGC	GGTGGTTTCT	GGGGTGACCG	5280

SGTIGATTOT CAGCCCTTOG CAACOCCCTA TATTCATCCA ACCAACCCCT TOGCCCCCGA	5340
TETCACCECT SCHEDEGGG CTEGACCTOS TETTCECCAA CCCECCGAC CACTOGGCTO	5400
CGCTTGGCGT GACCAGGCCC AGCGCCCGC CGTTGCCTCA CGTCGTAGAC CTACCACAGC	5460
TGGGGCCGCG CCGCTAACCG CGGTCGCTCC GGCCCATGAC ACCCCGCCAG TGCCTGATGT	5520
CBACICOCGO GGOGCCATST TGOGGOGGCA GTATAACOTA TCAACATCTO COCTTACOTO	5580
TTCCGTGGCC ACCGGCACTA ACCTGGTTCT TTATGCCGCC CCTCTTAGTC CGCTTTTACC	5640
COTTCAGGAC GGCACCAATA CCCATATAAT GGCCACGGAA GCTTCTAATT ATGCCCAGTA	5700
COGRETTED CONTROL TO STEED TO SETTACE COCCARTESTS TO SECURITA	5760
CGCCATCTCC ATCTCATTCT GGCCACAGAC CACCACCACC CCGACGTCCG TTGATATGAA	5820
TECAATAACC TOGACGGATG FIGSTATITT ASTOCAGODO GGCATAGCOT CIGAGCTTOT	5880
GATCCCAAGT GAGCGCCTAC ACTATCGTAA CCAAGGCTGG CGCTCCGTCG AGACCTCTGG	5940
GGTGGCTGAG GAGGAGGCTA COTCTGGTTT TGTTATGCTT TGCATACATG GCTCACTOGT	6000
AAATTOOTAT ACTAATACAC OCTATACOGG TGCCCTCGGG CTGTTGGACT TTGCCCTTGA	6060
GCTTGAGTTT CGCAACCTTA CCCCCGGTAA CACCAATACG CGGGTCTCCC GTTATTCCAG	6120
CACTGCTCGC CACCGCCTTC GTCGCGGTGC GGACGGGACT GCCGAGCTCA CCACCACGGC	6180
TGCTACCCGC TTTATGAAGG ACCTCTATTT TACTAGTACT AATGGTGTCG GTGAGATCGG	6240
CCGCGGGATA GCCCTCACCC TGTTCAACCT TGCTGACACT CTGCTTGGCG GCCTGCCGAC	6300
AGAATTGATT TCGTCGGCTG GTGGCCAGCT GTTCTACTCC CGTCCCGTTG TCTCAGCCAA	6360
TGGCGAGCCG ACTGTTAAGT TGTATACATC TGTAGAGAAT GCTCAGCAGG ATAAGGGTAT	6420
TGCAATCCCG CATGACATTG ACCTCGGAGA ATCTCGTGTG GTTATTCAGG ATTATGATAA	6480
CCAACATGAA CAAGATCGGC CGACGCCTTC TOCAGCCCCA TCGCGCCCTT TCTCTGTCCT	6540
TCGAGCTAAT GATGTGCTTT GGCTCTCTCT CACCGCTGCC GAGTATGACC AGTCCACTTA	6600
TGSCTCTTCG ACTGGCCCAG TTTATGTTTC TGACTCTGTG ACCTTGGTTA ATGTTGCGAC	6660
CG3CGC3CAG GCCGTTGCCC GGTCGCTCGA TTGGACCAAG GTCACACTTG ACGGTCGCCC	6720
COTOTOCACO ATOCAGOAGT ACTOGAAGAO OTTOTTTSTO CTGCCGOTCO GOGGTAAGOT	6780
CTSTTTSTGG GAGGCAGGCA CAACTAAAGG CGGGTAGGST TATAATTATA ACASSACTGS	6840
TAGOGACCAA CTGCTTGTCG AGAATGCCGC CGGGCACCGG GTCGCTATTT CCACTTACAC	6900
CACTAGOCTS GGTGCTSGTC COGTCTCCAT TTCTSCGGTT GCCCTTTTAG CCCCCCACTC	6960
TGCGCTAGCA TTGCTTGAGG ATACCTTGGA CTACOCTGGC CGCGCCCATA CTTTTGATGA	7020
TTTCTGCCCA GAGTGCCCCC CCCTTGGCCT TCAGGGCTGC GCTTTCCAGT CTACTGTCGC	7080
TGAGCTTCAG CGCCTTAAGA TGAAGGTGGG TAAAACTCGG GAGTTGTAGT TTATTTGCTT	7140

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1693 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
- Met Glu Ala His Gln Phe Ile Lys Ala Pro Gly Ile Thr Thr Ala Ile
 1 5 10 15
- Glu Gln Ala Ala Leu Ala Ala Ala Asn Ser Ala Leu Ala Asn Ala Val 20 25 30
- Val Val Arg Pro Phe Leu Ser His Gln Gln Ile Glu Ile Leu Ile Asn 35 40 45
- Leu Met Gln Pro Arg Gln Leu Val Phe Arg Pro Glu Val Phe Trp Asn 50 55 60
- His Pro Ile Gln Arg Val Ile His Asn Glu Leu Glu Leu Tyr Cys Arg 65 70 75 80
- Ala Arg Ser Gly Arg Cys Leu Glu Ile Gly Ala His Pro Arg Ser Ile 85 90 95
- Asn Asp Asn Pro Asn Val Val His Arg Cys Phe Leu Arg Pro Val Gly 100 105 110
- Arg Asp Val Gln Arg Trp Tyr Thr Ala Pro Thr Arg Gly Pro Ala Ala 115 120 125
- Asn Cys Arg Arg Ser Ala Leu Arg Gly Leu Pro Ala Ala Asp Arg Thr 130 135 140
- Tyr Cys Leu Asp Gly Phe Ser Gly Cys Asn Phe Pro Ala Glu Thr Gly 145 150 155 160
- Ile Ala Leu Tyr Ser Leu His Asp Met Ser Pro Ser Asp Val Ala Glu 165 170 175
- Ala Met Phe Arg His Gly Met Thr Arg Leu Tyr Ala Ala Leu His Leu 180 190
- Pro Pro Glu Val Leu Leu Pro Pro Gly Thr Tyr Arg Thr Ala Ser Tyr 195 200 205
- Leu Leu Ile His Asp Gly Arg Arg Val Val Val Thr Tyr Glu Gly Asp 210 215 220
- Thr Ser Ala Gly Tyr Asn His Asp Val Ser Asn Leu Arg Ser Trp Ile 225 230 235 240
- Arg Thr Thr Lys Val Thr Gly Asp His Pro Leu Val Ile Glu Arg Val

245 250 255

Arş	, Ala	ı Ile	G17 260	r Cys	His	: Phe	√al	Leu 265	l Let	ı Lev	: Thr	: Ala	Ala 270		Glu
Pro	s Ser	275	Met	: Pro	Tyr	'Val	Pro 280		Pro	Arg	Ser	Thr 285		: Val	Tyr
Val	Arg 290	Ser	Tle	: Phe	Gly	Pro 295	Gly	Gly	Thr	: Pro	Ser 300		Phe	Pro	Thr
Ser 305	Cys	Ser	Thr	. Lys	Ser 310	Thr	Phe	His	Ala	Val 315		Ala	His	Ile	Trp 320
Asp	Arg	Leu	Met	Leu 325	Phe	Gly	Ala	Thr	Leu 330		Asp	Gln	Ala	Phe 335	Cys
Cys	Ser	Arg	Leu 340	Met	Thr	Tyr	Leu	Arg 345	Gly	·Ile	Ser	Tyr	Lys 350	Val	Thr
Val	Gly	Thr 355	Leu	Val	Ala	Asn	Glu 360	Gly	Trp	Asn	Ala	Ser 365	Glu	Asp	Ala
Leu	Thr 370	Ala	Val	Ile	Thr	Ala 375	Ala	Tyr	Leu	Thr	Ile 380	Cys	His	Gln	Arg
Tyr 385	Leu	Arg	Thr	Gln	Ala 390	Ile	Ser	Lys	Gly	Met 395	Arg	Arg	Leu	Glu	Arg 400
Glu	His	Ala	Gln	Lys 405	Phe	Ile	Thr	Arg	Leu 410	Tyr	Ser	Trp	Leu	Phe 415	Glu
Lys	Ser	Gly	Arg 420	Asp	Tyr	Ile	Pro	Gly 425	Arg	Gln	Leu	Glu	Phe 430	Tyr	Ala
Gln	Cys	Arg 435	Arg	Trp	Leu	Ser	Ala 440	Gly	Phe	His	Leu	Asp 445	Pro	Arg	Val
Leu	Val 450	Phe	Asp	Glu	Ser	Ala 455	Pro	Cys	His	Cys	Arg 460	Thr	Ala	Ile	Arg
Lys 465	Ala	Leu	Ser	Lys	Phe 470	Cys	Cys	Phe	Met	Lys 475	Trp	Leu	Gly	Gln	Glu 480
Cys	Thr	Cys	Phe	Leu 485	Gln	Pro	Ala	Glu	Gly 490	Ala	Val	Gly	Asp	Gln 495	Gly
His	Asp	Asn	Glu 500	Ala	Tyr	Glu	Gly	Ser 505	Asp	Val	Asp	Pro	Ala 510	Glu	Ser
Ala	Ile	Ser 515	Asp	Ile	Ser	Gly	Ser 520	Tyr	Val	Val	Pro	Gly 525	Thr	Ala	Leu
Gln	Pro 530	Leu	Tyr	Gln		Leu 535	Asp	Leu	Pro	Ala	Glu 540	Ile	Val	Ala	Arg
Ala 545	Gly	Arg	Leu		Ala 550	Thr	Val	Lys	Val	Ser 555	Gln	Val	Asp	Gly	Arg 560
Ile	Asp	Cys	Glu	Thr 565	Leu	Leu	Gly	Asn	Lys 570	Thr	Phe	Arg	Thr	Ser 575	Phe

Val Asp Gly Ala Val Leu Glu Thr Ash Gly Pro Glu Arg His Ash Leu Ser Phe Asp Ala Ser Gln Ser Thr Met Ala Ala Gly Pro Phe Ser Leu 595 600 605 Thr Tyr Ala Ala Ser Ala Ala Gly Leu Glu Val Arg Tyr Val Ala Ala 610 620 Gly Leu Asp His Arg Ala Val Phe Ala Pro Gly Val Ser Pro Arg Ser 625 630 635 640 Ala Pro Gly Glu Val Thr Ala Phe Cys Ser Ala Leu Tyr Arg Phe Asn Arg Glu Ala Gln Arg His Ser Leu Ile Gly Asn Leu Trp Phe His Pro 660 665 670 Glu Gly Leu Ile Gly Leu Phe Ala Pro Phe Ser Pro Gly His Val Trp Glu Ser Ala Asn Pro Phe Cys Gly Glu Ser Thr Leu Tyr Thr Arg Thr 690 695 700 Trp Ser Glu Val Asp Ala Val Ser Ser Pro Ala Arg Pro Asp Leu Gly Phe Met Ser Glu Pro Ser Ile Pro Ser Arg Ala Ala Thr Pro Thr Leu Ala Ala Pro Leu Pro Pro Pro Ala Pro Asp Pro Ser Pro Pro Pro Ser Ala Pro Ala Leu Ala Glu Pro Ala Ser Gly Ala Thr Ala Gly Ala Pro Ala Ile Thr His Gln Thr Ala Arg His Arg Arg Leu Leu Phe Thr Tyr Pro Asp Gly Ser Lys Val Phe Ala Gly Ser Leu Phe Glu Ser Thr Cys Thr Trp Leu Val Asn Ala Ser Asn Val Asp His Arg Pro Gly Gly Gly 810 Leu Cys His Ala Phe Tyr Gln Arg Tyr Pro Ala Ser Phe Asp Ala Ala Ser Phe Val Met Arg Asp Gly Ala Ala Ala Tyr Thr Leu Thr Pro Arg Pro Ile Ile His Ala Val Ala Pro Asp Tyr Arg Leu Glu His Asn Pro Lys Arg Leu Glu Ala Ala Tyr Arg Glu Thr Cys Ser Arg Leu Gly Thr 870 Ala Ala Tyr Pro Leu Gly Thr Gly Ile Tyr Gln Val Pro Ile Gly Pro Ser Phe Asp Ala Trp Glu Arg Asn His Arg Pro Gly Asp Glu Leu 905

Tyr Leu Pro Glu Leu Ala Ala Arg Trp Phe Glu Ala Ash Arg Pro Thr 915 925

Arg Pro Thr Leu Thr Ile Thr Glu Asp Val Ala Arg Thr Ala Ash Leu 930 940

Ala Ile Glu Leu Asp Ser Ala Thr Asp Val Gly Arg Ala Cys Ala Gly 945 950 955 960

Cys Arg Val Thr Pro Gly Val Val Gln Tyr Gln Phe Thr Ala Gly Val 965 970 975

Pro Gly Ser Gly Lys Ser Arg Ser Ile Thr Gln Ala Asp Val Asp Val 980 990

Val Val Val Pro Thr Arg Glu Leu Arg Asn Ala Trp Arg Arg Gly 995 1000 1005

Phe Ala Ala Phe Thr Pro His Thr Ala Ala Arg Val Thr Gln Gly Arg 1010 1015 1020

Arg Val Val Ile Asp Glu Ala Pro Ser Leu Pro Pro His Leu Leu Leu 1025 1030 1035 1040

Leu His Met Gln Arg Ala Ala Thr Val His Leu Leu Gly Asp Pro Asn 1045 1050 1055

Gln Ile Pro Ala Ile Asp Phe Glu His Ala Gly Leu Val Pro Ala Ile 1060 1065 1070

Arg Pro Asp Leu Gly Pro Thr Ser Trp Trp His Val Thr His Arg Trp 1075 1080 1085

Pro Ala Asp Val Cys Glu Leu Ile Arg Gly Ala Tyr Pro Met Ile Gln 1090 1095 1100

Thr Thr Ser Arg Val Leu Arg Ser Leu Phe Trp Gly Glu Pro Ala Val 1105 1110 1115 1120

Gly Gln Lys Leu Val Phe Thr Gln Ala Ala Lys Pro Ala Asn Pro Gly 1125 1130 1135

Ser Val Thr Val His Glu Ala Gln Gly Ala Thr Tyr Thr Glu Thr Thr 1140 1150

Ile Ile Ala Thr Ala Asp Ala Arg Gly Leu Ile Gln Ser Ser Arg Ala 1155 1160 1165

His Ala Ile Val Ala Leu Thr Arg His Thr Glu Lys Cys Val Ile Ile 1173 1175 1180

Asp Ala Pro Gly Leu Leu Arg Glu Val Gly Ile Ser Asp Ala Ile Val 1185 1190 1195 1200

Asn Asn Phe Phe Leu Ala Gly Gly Glu Ile Gly His Gln Arg Pro Ser 1205 1215

Val Ile Pro Arg Gly Asn Pro Asp Ala Asn Val Asp Thr Leu Ala Ala 1220 1230

Phe Pro Pro Ser Cys Gln Ile Ser Ala Phe His Gln Leu Ala Glu Glu

Leu Gly His Arg Pro Val Pro Val Ala Ala Val Leu Pro Pro Cys Pro 1250 1260

Glu Leu Glu Gln Gly Leu Leu Tyr Leu Pro Gln Glu Leu Thr Thr Cys 1265 1270 1280

Asp Ser Val Val Thr Phe Glu Leu Thr Asp Ile Val His Cys Arg Met 1285 1290 1295

Ala Ala Pro Ser Gln Arg Lys Ala Val Leu Ser Thr Leu Val Gly Arg 1300 1310

Tyr Gly Gly Arg Thr Lys Leu Tyr Asn Ala Ser His Ser Asp Val Arg 1315 1320 1325

Asp Ser Leu Ala Arg Phe Ile Pro Ala Ile Gly Pro Val Gln Val Thr 1330 1340

Thr Cys Glu Leu Tyr Glu Leu Val Glu Ala Met Val Glu Lys Gly Gln 1345 1350 1355 1360

Asp Gly Ser Ala Val Leu Glu Leu Asp Leu Cys Asn Arg Asp Val Ser 1365 1370 1375

Arg Ile Thr Phe Phe Gln Lys Asp Cys Asn Lys Phe Thr Thr Gly Glu 1380 1390

Thr Ile Ala His Gly Lys Val Gly Gln Gly Ile Ser Ala Trp Ser Lys 1395 1400 1405

Thr Phe Cys Ala Leu Phe Gly Pro Trp Phe Arg Ala Ile Glu Lys Ala 1410 1415 1420

Ile Leu Ala Leu Leu Pro Gln Gly Val Phe Tyr Gly Asp Ala Phe Asp 1425 1430 1435 1440

Asp Thr Val Phe Ser Ala Ala Val Ala Ala Ala Lys Ala Ser Met Val 1445 1450 1455

Phe Glu Asn Asp Phe Ser Glu Phe Asp Ser Thr Gln Asn Asn Phe Ser 1460 1465 1470

Leu Gly Leu Glu Cys Ala Ile Met Glu Glu Cys Gly Met Pro Gln Trp 1475 1480 1485

Leu Ile Arg Leu Tyr His Leu Ile Arg Ser Ala Trp Ile Leu Gln Ala 1490 1495 1500

Pro Lys Glu Ser Leu Arg Gly Phe Trp Lys Lys His Ser Gly Glu Pro 1505 1510 1520

Gly Thr Leu Leu Trp Asn Thr Val Trp Asn Met Ala Val Ile Thr His 1525 1530 1535

Cys Tyr Asp Phe Arg Asp Phe Gln Val Ala Ala Phe Lys Gly Asp Asp 1540 1550

Ser Ile Val Leu Cys Ser Glu Tyr Arg Gln Ser Pro Gly Ala Ala Val 1555 1560 1565 Leu Ile Ala Gly Cys Gly Leu Lys Leu Lys Val Asp Phe Arg Pro Ile 1570 1575 1580

Gly Leu Tyr Ala Gly Val Val Val Ala Pro Gly Leu Gly Ala Leu Pro 1585 1590 1595

Asp Val Val Arg Phe Ala Gly Arg Leu Thr Glu Lys Asn Trp Gly Pro 1605 1610 1615

Gly Pro Glu Arg Ala Glu Gln Leu Arg Leu Ala Val Ser Asp Phe Leu 1620 1630

Arg Lys Leu Thr Asn Val Ala Gln Met Cys Val Asp Val Val Ser Arg 1635 1640 1645

Val Tyr Gly Val Ser Pro Gly Leu Val His Asn Leu Ile Gly Met Leu 1650 1660

Gln Ala Val Ala Asp Gly Lys Ala His Phe Thr Glu Ser Val Lys Pro 1665 1670 1680

Val Leu Asp Leu Thr Asn Ser Ile Leu Cys Arg Val Glu 1685 1690

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 660 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Arg Pro Arg Pro Ile Leu Leu Leu Leu Leu Met Phe Leu Pro Met 1 5 10

Leu Pro Ala Pro Pro Pro Gly Gln Pro Ser Gly Arg Arg Arg Gly Arg 20 25 30

Arg Ser Gly Gly Ser Gly Gly Gly Phe Trp Gly Asp Arg Val Asp Ser 35 40 45

Gln Pro Phe Ala Ile Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Pro 50 55 60

Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ala Gln Arg Pro Ala Val 85 90 95

Ala Ser Arg Arg Pro Thr Thr Ala Gly Ala Ala Pro Leu Thr Ala 100 105 110

Val Ala Pro Ala His Asp Thr Pro Pro Val Pro Asp Val Asp Ser Arg 115 120 125

Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr 130 135 140

Ser Ser Val Ala Thr Gly Thr Ash Leu Val Leu Tyr Ala Ala Pro Leu 145 - 150 - 155 - 160 Ser Pro Leu Leu Pro Leu Gln Asp Gly Thr Ash Thr His Ile Met Ala 165 170 175 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Ala Arg Ala Thr Ile 180 185 190 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Sor 195 200 205 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln 245 250 255 Gly Trp Arg Ser Val Glu Thr Ser Gly Val Ala Glu Glu Glu Ala Thr Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Leu Val Asn Ser Tyr Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val Ser Arg Tyr Ser Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp Gly Thr Ala Glu Leu Thr Thr Thr Ala Ala Thr Arg Phe Met Lys Asp Leu Tyr Phe Thr Ser Thr Asn Gly Val Gly Glu Ile Gly Arg Gly Ile Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val Glu Asn Ala Gln Gln Asp Lys Gly Ile Ala Ile Pro His Asp Ile Asp Leu Gly Glu Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val 450 460

Let Arg Ala Asn Asp Val Let Trp Let Ser Let Thr Ala Ala Giu Tyr 465

Asp Gin Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr Val Ser Asp Ser Val Thr Let Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg 500

Ser Val Thr Let Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg 510

Ser Let Asp Trp Thr Lys Val Thr Let Asp Gly Arg Pro Let Ser Thr 520

Ile Gin Gin Tyr Ser Lys Thr Phe Phe Val Let Pro Let Arg Gly Lys 530

Let Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn 560

Tyr Asn Thr Thr Ala Ser Asp Gln Let Let Val Glu Asn Ala Ala Gly Pro 565

His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Let Gly Ala Gly Pro 595

Val Ser Ile Ser Ala Val Ala Val Let Ala Pro His Ser Ala Let Ala Gly Ser Sep Phe Cys Pro Glu Cys Arg Pro Let Gly Let Glo Glo Glo Glo Glo Glo Cys Ala Phe 625

Asp Phe Cys Pro Glu Cys Arg Pro Let Gly Let Lys Met Lys Val Gly Lys Gln Ser Thr Val Ala Glu Let Gln Arg Let Lys Met Lys Val Gly Lys Glo Glo Glo Cys Ala Phe 625

Thr Arg Glu Let Glo Cys Arg Pro Let Gly Let Lys Met Lys Val Gly Lys Glo Cys Arg Glu Let Glo Glo Cys Arg Glu Let Glo Glo Cys Arg Glo Let Cys Met Lys Val Gly Lys Glo Cys Arg Glo Let Glo Glo Cys Arg Glo Let Cys Met Lys Val Gly Lys Glo Cys Arg Glo Cys Arg Glo Let Cys Met Lys Val Gly Lys Glo Cys Arg Glo Cys Glo

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Asn Asn Met Ser Phe Ala Ala Pro Met Gly Ser Arg Pro Cys Ala

Leu Gly Leu Phe Cys Cys Cys Ser Ser Cys Phe Cys Leu Cys Cys Pro $20 \\ 20 \\ 25 \\ 30$

Arg His Arg Pro Val Ser Arg Leu Ala Ala Val Val Gly Gly Ala Ala 35 40 45

Ala Val Pro Ala Val Val Ser Gly Val Thr Gly Leu Ile Leu Ser Pro 50 60

Ser Gln Ser Pro Ile Phe Ile Gln Pro Thr Pro Ser Pro Pro Met Ser 65 73 83

Pro Leu Arg Pro Sly Leu Asp Leu Val Phe Ala Asn Pro Pro Asp His 35 90 95

Ser Ala Pro Leu Gly Val Thr Arg Pro Ser Ala Pro Pro Leu Pro His $100 \,$ 105 $110 \,$

Val Val Asp Leu Pro Gln Leu Gly Pro Arg Arg

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7171 base pairs

 - (B' TYPE: nucleic acid
 - (C; STRANDEDNESS: double
 - (E) TOPCLOGY: linear
 - (11) MOLECULE TYPE: DNA
 - (111) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: Composite Mexico strain
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GCCATGGAGG	G CCCACCAGTT	CATTAAGGCT	CCTGGCATCA	CTACTGCTAT	TGAGCAAGCA	б 0
GCTCTAGCAG	G CGGCCAACTC	CGCCCTTGCG	AATGCTGTGG	TGGTCCGGCC	TTTCCTTTCC	120
CATCAGCAGG	TTGAGATCCT	TATAAATCTC	ATGCAACCTC	GGCAGCTGGT	GTTTCGTCCT	180
GAGGTTTTT	GGAATCACCC	GATTCAACGT	GTTATACATA	ATGAGCTTGA	GCAGTATTGC	240
CGTGCTCGCT	CGGGTCGCTG	CCTTGAGATT	GGAGCCCACC	CACGCTCCAT	TAATGATAAT	300
CCTAATGTCC	CCATCGCTG	CTTTCTCCAC	CCCGTCGGCC	GGGATGTTCA	GCGCTGGTAC	360
ACAGCCCCGA	CTAGGGGACC	TGCGGCGAAC	TGTCGCCGCT	CGGCACTTCG	TGGTCTGCCA	420
CCAGCCGACC	GCACTTACTG	TTTTGATGGC	TTTGCCGGCT	GCCGTTTTGC	CGCCGAGACT	480
GGTGTGGCTC	TCTATTCTCT	CCATGACTTG	CAGCCGGCTG	ATGTTGCCGA	GGCGATGGCT	540
CGCCACGGCA	TGACCCGCCT	TTATGCAGCT	TTCCACTTGC	CTCCAGAGGT	GCTCCTGCCT	600
CCTGGCACCT	ACCGGACATC	ATCCTACTTG	CTGATCCACG	ATGGTAAGCG	CGCGGTTGTC	660
ACTTATGAGG	GTGACACTAG	CGCCGGTTAC	AATCATGATG	TTGCCACCCT	CCGCACATGG	720
ATCAGGACAA	CTAAGGTTGT	GGGTGAACAC	CCTTTGGTGA	TCGAGCGGGT	GCGGGGTATT	780
GGCTGTCACT	TTGTGTTGTT	GATCACTGCG	GCCCCTGAGC	CCTCCCCGAT	GCCCTACGTT	840
CCTTACCCGC	GTTCGACGGA	GGTCTATGTC	CGGTCTATCT	TTGGGCCCGG	CGGGTCCCCG	900

TCGCTGTTCC	CGACCGCTTC	TROTGTCAAN	FICCACTTTTC	ACGCCATCCC	CACGCACATC	960
TGGGACCGTC	o Tortgorom.	T FGGGCCACC	CTCGACGACC	AGGCCTTTTG	CTGCTCCAGG	1020
CTTATGACGI	ACCTTCGTG	G CATTAGOTAT	' AAGGTAACTG	TGGGTGGCCT	GGTCGCTAAT	1080
GAAGGCTGGA	A ATGCCACCGA	. GGATGOGOTO	ACTGCA STTA	TTACGGCGGC	TTACCTCACA	1140
ATATGTCATC	AGCGTTATTT	: GOGGADODAG	GCGATTTCTA	AGGGCATGOG	CCGGCTTGAG	1200
CTTGAACATG	G OT CAGAAATT	' TATTTCACGC	CTCTACAGCT	GGCTATTTGA	GAAGTCAGGT	1260
CGTGATTACA	. TOCCAGGCOG	DIAGCTICAG	TTCTACGCTC	AGTGCCGCCG	CTGGTTATCT	1320
300GGGTT 00	ATCTCGACCC	CUGCACITTA	GTTTTTGATG	AGTCAGTGCC	TTGTAGCTGC	1380
CGAACCACCA	. TOOG BOBGAT	CCCCGGAAAA	TTTTGJTGTT	TTATGAAGTG	GCTCGGTCAG	1440
BAGTGTTCTT	GTTTOCICCA	. GUCCGC JGAG	GGGCT 3GCGG	GOGACCAAGG	TCATGACAAT	1510
JAGGCCTATG	AAGGOT DTGA	TGTTGATACT	GCTGAGCCTG	CCACCCTAGA	CATTACAGGC	1560
TCATACATCG	TGGATGGTCG	GTOTOTGCAA	ACTGTCTATC	AAGCTCTCGA	CCTGCCAGCT	1620
GACCTGGTAG	CTCGCGCAGC	CCGACTGTCT	GCTACAGTTA	CTGTTACTGA	AACOTOTGGO	1680
CGTCTGGATT	GCCAAACAAT	GATOGGCAAT	AAGACTTTTC	TCACTACCTT	TGTTGATGGG	1740
GCACGCCTTG	AGGTTAACGG	GCCTGAGCAG	CTTAACCTCT	CTTTTGACAG	CCAGCAGTGT	1800
AGTATGGCAG	CCGGCCCGTT	TTGCCTCACC	TATGCTGCCG	TAGATGGCGG	GCTGGAAGTT	1860
CATTTTTCCA	CCGCTGGCCT	CGAGAGCCGT	GTTGTTTTCC	CCCCTGGTAA	TGCJCCGACT	1920
GCCCCGCCGA	GTGAGGTCAC	CGCCTTCTGC	TCAGCTCTTT	ATAGGCACAA	CCGGCAGAGC	1980
CAGCGCCAGT	CGGTTATTGG	TAGTTTGTGG	CTGCACCCTG	AAGGTTTGCT	CGGCCTGTTC	2040
CCGCCCTTTT	CACCCGGGCA	TGAGTGGCGG	TCTGCTAACC	CATTTTGCGG	CGAGAGCACG	2100
CTCTACACCC	GCACTTGGTC	CACAATTACA	GACACACCCT	TAACTGTCGG	GCTAATTTCC	2160
GGTCATTTGG	ATGCTGCTCC	CCACTCGGGG	GGGCCACCTG	CTACTGCCAC	AGGCCCTGCT	2220
GTAGGCTCGT	CTGACTSTCC	AGACCCTGAC	CCGCTACCTG	ATGTTACAGA	TGGCTCACGC	2280
CCCTCTGGGG	CCCGTCCGGC	TGGCCCCAAC	CCGAATGGCG	TTCCGCAGCG	CCGCTTACTA	2340
CACACCTACC	CTGACGGCGC	TAAGATCTAT	GTCGGCTCCA	TTTTTGAGTC	TGAGTGCACC	2400
TGGCTTGTCA	ACGCATITAA	CGCCGGCCAC	CGCCCTGGTG	GCGGGCTTIG	TCATGCTTTT	2460
TTTCAGGGTT	ACCCTGATTC	GTTTGACGCC	ACCAAGITTG	TGATGCGTGA	TGGTCTTGCC	2520
GOGTATACOO	TTACACOCCG	GCCGATCATT	CATECGETEG	CCCCCGACTA	TOGATTGGAA	2580
CATAACCCCA	AGAGGOTOGA	GGCTGCCTAC	CGCGAGACTT	gd gdddgddg	AGGCACTGCT	2640
GCCTATCCAC	TOTTAGGOGO	TGGCATTTAC	CAGGTGCCTG	TTAGTTTGAG	TTTTGATGCC	27CU
TGGGGGGA	ACCACCGCCC	GTTTGA DGAG	CTTTACCTAA	CAGAGCTGGC	GBOTOGGTGG	2760

_						
TTTBAATCC.	A ACCGCCCG	G TOAGOOCAC	G TTGAACATA	A OTGAGGATA	C CGCCCGTGCG	2820
300 A A00TG(G COCTGGAGO	T TGACTOCGG	g AGTGAAGTA	3 GCCGCGCAT	a maddagamam	2880
AAAGTCGAG	C CTGGCGTTG	I GOGGTATCA	G TTTACAGCC	G GTGTCCCCG	G OTOTIGGAAG	2940
TCAAAGTCC	G TGCAACAGG	C GGATGTGGA	GTTGTTGTT	G TGCCCACTC	G CGAGOTTCGG	3000
AACGCTTGG	C GGCGCCGGGG	G CTTTGCGGC	A ITCACTOCC	D ACACTICOGG	COGFGTCACT	3060
AGCGGCCGTA	A GGGTTGTCAT	r tgatsassco	C CONTIGER C	COCCACACACT	C GCTGCTTTTA	3120
CATATGCAGC	O GEGOTGOATO	C TGTGCACCTC	COTTGGGGACC	C CGAATCAGAI	ATACCECCCC ?	3130
GATTTTGAGO	A JACOGGTCT	GATT CCAGCA	SECCEEDATA	AGTTGGT000	GACTICATEG	3240
TGGCATGTCA	A DOCADOSTIC	G CCCTGCAGAT	: GMOT STGA 31	TAGTCCSTSC	G TGOTTACCCT	3300
AAAATCCAGA	A OTACAAGTAA	A GGTGCTCCGI	TOCOTETTS	: GGGGAGAGCC	AGCTGTCGGC	3356
CAGAAGCTAG	F TGTTCACACA	GGCTGCTAAG	GCCGCGCACC	COGGATCTAI	' AACGGTCCAT	3420
GAGGCC DAGG	GTGCCACTT	'TACCACTACA	ACTATAATTG	CAACTGCAGA	TGCCCGTGGC	3480
CTCATA CAGT	COTOCOGGG	TCACGCTATA	. GTT GCTCTCA	. CTA JGCATAC	TGAAAAATGT	3540
GTTATACTTG	ACTCTCCCGG	COTSTTGCST	GAGGTGGGTA	. TCTCAGATGC	CATTGTTAAT	3600
AATTTCTTCC	TTTCGGGTGG	CGAGGTTGGT	CATCAGAGAC	CATCGGTCAT	TCCGCGAGGC	3660
AACCCTGACC	GCAATGTTGA	CGTGCTTGCG	GCGTTTCCAC	CTTCATGCCA	AATAAGCGCC	3720
TTOCATCAGO	TTGCTGAGGA	GCTGGGCCAC	CGGCCGGCGC	CGGTGGCGGC	TGTGCTACCT	3780
CCCTGCCCTG	AGCTTGAGCA	GGGCCTTCTC	TATCTGCCAC	AGGAGCTAGC	CTCCTGTGAC	3840
AGTGTTGTGA	CATTTGAGCT	AACTGACATT	GTGCACTGCC	GCATGGCGGC	CCCTAGCCAA	3900
AGGAAAGCTG	TTTTGTCCAC	GCTGGTAGGC	CGGTATGGCA	GACGCACAAG	GCTTTATGAT	3960
GCGGGTCACA	CCGATGTCCG	CGCCTCCCTT	GCGCGCTTTA	TTCCCACTCT	CGGGCGGGTT	4020
ACTGCCACCA	CCTGTGAACT	CTTTGAGCTT	GTAGAGGCGA	TGGTGGAGAA	GGGCCAAGAC	4080
GGTTCAGCCG	TCCTCGAGTT	GGATTTGTGC	AGCCGAGATG	TCTCCCGCAT	AACCTTTTTC	4140
CAGAAGGATT	GTAACAAGTT	CACGACCGGC	GAGACAATTG	CGCATGGCAA	AGTCGGTCAG	4200
GGTATCTTCC	GCTGGAGTAA	GACGTTTTGT	GCCCTGTTTG	GCCCCTGGTT	COGTGOGATT	4250
GAGAAGGCTA	TTOTATOOOT	TTTACCACAA	GCTGTGTTCT	ACGGGGATGC	TTATGACGAC	4320
TCAGTATTCT	CTGCTGCCGT	GGCTGGCGCC	AGCCATGCCA	TGGTGTTTGA	AAATGATTTT	4380
TCTGAGTTTG	ACTCGACTCA	GAATAACTTT	TOCCTAGGTO	TTGAGTGCGC	CATTATGGAA	4440
GAGTGTGGTA	TGCCCCAGTG	GCTTGTCAGG	TTGTACCATG	COGTOOGGTO	GGCGT GGATC	4500
CTGCAGGCCC	CAAAAGAGTC	TTTGAGAGGG	TTCTGGAAGA	AGCATTCTGG	TGAGCOGGGC	456)
AGCTTGCTCT	GGAATACGGT	GT 3GAACAT 3	GCAATCATTG	COCATTGCTA	TGAGTTCCGG	4620

GACCTCCAGG	TTGCCGCCTT	CAAGGGGGAG	GACTCGGTCC	G TOOTOTOTA	3 TORATACOGO	4680
CAGAGCCCAG	: 003033 37 70	: GCTTATAGCA	. GGCTGTGGTT	TGAAGTTGAA	GGGTGACTTC	4740
CGGCGATTG	GGGTGTATGC	: OGGGGTTGTO	: GTCGCCCCGG	GGCTCGGGGC	COTACCOGAT	4800
BIBGITCGAT	TOGCOGGACG	GOTTTOGGAG	AAGAACT 3G3	GGCCTGATCC	D GGAGOGGGA	4850
GA GCAGCT CC	GCCTCGCCGT	GCAGGATTTC	CTCCGTAGGT	TAA-OGAAT 31	GGCCCAGATT	4 920
TGTGTTGAGG	TESTSTCTAG	AGTTTAC 3GG	GTTTCCCCGG	GTCTGGTTCA	TAACCTGATA	4980
330AT3CTCC	AGACTATTGG	TGATGGTAAG	GCGCATTTTA	CAGAGTOTGI	TAAGCCTATA	5040
CTTGACCTTA	CACACTCAAT	TAT 3CACCG3	TCTGAAT 3AA	TAACATGT 36	TTT 30TGCGC	5100
CCATGGGTTC	GCCACCATGC	GCCCTAGGCC	TOTTTTGCTG	TTGTTCCTCT	TGTTTCTGCC	5160
TATGTT3300	GOGACCGA	CCGGTCAGCC	STOTGGCCGC	CGICGTGG 30	GGC 3CAGC 3:3	5220
CGGTACCGGC	GGTGGTTTCT	GGGGTGACCG	GGTTGATTCT	CAGCCCTTCG	CAATCCCCTA	5280
TATTCATCCA	ACCAACCCCT	TTGCCCCAGA	CGTTGCCGCT	GCGTCCGGGT	CTGGACCTCG	5340
COTTOGCCAA	COAGCCCGGC	CAST TGGCTS	CACTTGGCGA	GATCAGGCCC	AGGGGGGCCTC	5400
CGCTGCCTCC	CGTCGCCGAC	CTGCCACAGC	CGGGGCTGCG	GCGCTGACGG	CTGTGGCGCC	5460
TGCCCATGAC	ACCTCACCCG	TCCCGGACGT	TGATTCTCGC	GGTGCAATTC	TACGCCGCCA	5520
GTATAATTTG	TCTACTTCAC	CCCTGACATC	CTCTGTGGCC	TCTGGCACTA	ATTTAGTCCT	5580
GTATGCAGCC	CCCCTTAATC	CGCCTCTGCC	GCTGCAGGAC	GGTACTAATA	CTCACATTAT	5640
GGCCACAGAG	GCCTCCAATT	ATGCACAGTA	CCGGGTTGCC	CGCGCTACTA	TCCGTTACCG	5700
GCCCCTAGTG	CCTAATGCAG	TTGGAGGCTA	TGCTATATCC	ATTTCTTTCT	GGCCTCAAAC	5760
AACCACAACC	CCTACATCTG	TTGACATGAA	TTCCATTACT	TCCACTGATG	TCAGGATTCT	5820
TGTTCAACCT	GGCATAGCAT	CTGAATTGGT	CATCCCAAGC	GAGCGCCTTC	ACTACCGCAA	5880
TCAAGGTTGG	CGCTCGGTTG	AGACATCTGG	TGTTGCTGAG	GAGGAAGCCA	CCTCCGGTCT	5940
TGTCATGTTA	TGCATACATG	GCTCTCCAGT	TAACTCCTAT	ACCAATACCC	CTTATACCGG	6000
TGCCCTTGGC	TTACTGGACT	TTGCCTTAGA	GCTTGAGTTT	CGCAATCTCA	CCACCTGTAA	6060
CACCAATACA	CGTGTGTCCC	GTTACTCCAG	CACTGCTCGT	CACTCCGCCC	GAGGGGCCGA	6120
CGGGACTGCG	GAGCTGACCA	CAACTGCAGC	CACCAGGTTC	ATGAAAGAIC	TCCACTTTAC	6180
CGGCCTTAAT	GGGGTAGGTG	AAGT-OGGCOG	CGGGATAGCT	CTAACATTAC	TTAACCTTGC	6240
TGACACGCTC	CTCGGCGGGC	TOCOGACAGA	ATTAATTTCG	TCGGCTGGCG	GGCAACTGTT	6300
TTATTCCCGC	CCSSTTGTCT	CAGCCAATGG	CGAGCCAACC	GTGAAGCTCT	ATACATCAGT	636)
GGAGAATGCT	CAGCAGGATA	AGGGTGTTGC	TATOCCCCAC	GATAICGATC	TTGGTGATTC	6420
GCGTGTGGTC	ATTIAGGATT	ATGACAACIA	GCATGAGCAG	GATOGGOOCA	CCCCGTCGCC	6490

_						
TGGGCCATCT	CGGCCTTTTT	CTGTTGTGGG	AGCAAATGAT	GTACTTTGGC	TGTCCCTCAC	6540
TGRAGCCGAG	TATGACCAGT	CCACTTACGG	GTCGTCAACT	GGCCCGGTTT	ATATOTOGGA	6600
CAGCGTGACT	TTGGTGAATG	TTGCGACTGG	CGCGCAGGCC	GTAGCCCGAT	CGCTTGACTG	6660
GTCCAAAGTC	ACCOTOGACG	GGCGGCCCCT	CCCGACTGTT	GAGCAATATT	CCAAGACATT	6720
CTTTGTGCTC	CCCCTTCGTG	GCAAGCTOTO	CTTTTGGGAG	GCCGGCACAA	CAAAAGCAGG	6780
TTAPECTTAT	AATTATAATA	CTACTGCTAG	TGACCAGATT	CTGATTGAAA	ATGCTGCCGG	5840
CTEERSTARCE	GCCATTTCAA	COTATACCAC	CAGGCTTGGG	GCCGGTCCGG	TOGGCATTTC	6900
T30330030G	STITTGGCTC	CACGOTOGGO	COTGGOTOTG	OT GGAGGATA	CTTTTGATTA	6960
T003333333	GC G CA CA CAT	TTGATGACTT	DIGCOCT GAA	TGCCGCGCTT	TAGGGGTTGGA	7020
GGGTTGTGCT	TTCCAGTCAA	CTGTCGCTGA	3-0T-0CAG DGC	CTTAAAGTTA	AGGTGGGTAA	7680
AACTCGGGAG	TTGTAGTTTA	TTTGGCTGTG	CCCACCTACT	TATATOTGOT	GATTTCCTTT	7140
ATTTCCTTTT	TOTOGGTOCO	GCGCTCCCTG	A			7171

+2+ INFORMATION FOR SEQ ID NO:11:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1575 base pairs

 - (B) TYPE: nucleic acid
 (C) STFANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: T: Mexican strain
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GTTGCGTGAG	GTGGGTATCT	CAGATGCCAT	TGTTAATAAT	TTCTTCCTTT	CGGGTGGCGA	60
GGTTGGTCAC	CAGAGACCAT	CGGTCATTCC	GCGAGGCAAC	COTGACOGCA	ATGTTGACGT	120
GCTTGCGGCG	TTTCCACCTT	CATGCCAAAT	AAGCGCCTTC	CATCAGCTTG	CTGAGGAGCT	180
GGGCCACCGG	CCGGCGCGG	TGGCGGCTGT	GCTACCTCCC	TGCCCTGAGC	TTGAGCAGGG	240
CCTTCTCTAT	CTGCCACAGG	AGCTAGCCTC	CTGTGACAGT	GTTGTGACAT	TTGAGCTAAC	300
TGACATTGTG	CACTGCGCA	TGGCGGCCCC	TAGCCAAAGG	AAAGCTGTTT	TGTCCACGCT	360
GGTAGGCCGG	TATGGCAGAC	GCACAAGGCT	TTATGATGCG	GGTCACACCG	ATGTCCGCGC	420
CTCCCTTGCG	CGCTTTATTC	CCACTCTCGG	GCGGGTTACT	GCCACCACCT	GTGAACTCTT	480
TGAGCTTGTA	GAGGCGATGG	TGGAJAAGGG	CCAAGACGGT	TCAGCCGTCC	TCGAGTTGGA	540

					AUAAGTTCAC	ō0.;
GACCGGCGA(3 ACAATTGCGC	ATGGCAAAGT	: CGGTCAGGGT	ATOTTOOGOT	GGAGTAAGAC	රි ර
CTTTTGTGCC	CTGTTTGGC	COTGGTTCCG	F TGCGATTGAG	AAGGCTATTC	TATCCCTTTT	720
ACCACAAGCT	GTGTTCTACE	GGGATGCTTA	TGACGACTCA	GTATTCTCTG	CTGCCGTGGC	780
TGGCGCCAGC	CATGCCATGG	TGTTTGAAAA	. TGATITTTCT	GAGTTTGACT	CGACTCAGAA	840
TAACTTTTCC	CTAGGTCTTG	AGTGCGCCAT	TATGGAAGAG	TGTGGTATGC	CCCAGTGGCT	900
TGTCAGGTTG	TACCAT SCCS	TCCGGTCGGC	GTGGATCCTG	CAGGCCCCAA	AAGAGTCTTT	960
GAGAGGGTTO	TGGAAGAASC	ATTOTGGTGA	GCCGGGCACG	TTGCTCTGGA	ATACGGTGTG	1020
GAACATGGCA	. ATCATT 3000	ATT GCTAT 3A	GTTCCGGGAC	CTCCAGGTTG	CCGCCTTCAA	1080
GGGCGACGAC	TOGGTOGTOD	TCTGTAGTGA	ATACCGCCAG	AGCCCAGGCG	CCGGTTCGCT	1140
TATAGCAGGC	TGTGGTTTGA	AGTTGAAGGC	TGACTTOCGG	CCGATTGGGC	TGTATGCCGG	1200
GGTTGTCGTC	30000039393	TOGGGGGCCCT	ACCOGATGTO	GTTCGATTCG	COGGACGGCT	1260
TTCGGAGAAG	AACTGGGGGC	CIGATCCGGA	GCGGGCAGAG	CAGOTOCGOC	TOGCOGTGCA	1320
GGATTTICTC	CGTAGGTTAA	CGAATGTGGC	CCAGATTTGT	GTTGAGGTGG	TGTCTAGAGT	1330
TTACGGGGTT	TOCCCGGGTC	TGGTTCATAA	CCTGATAGGC	ATGCTCCAGA	CTATTGGTGA	1440
TGGTAAGGCG	CATTTTACAG	AGTCTGTTAA	GCCTATACTT	GACCTTACAC	ACTCAATTAT	1500
GCACCGGTCT	GAATGAATAA	CATGTGGTTT	GCTGCGCCCA	TGGGTTCGCC	ACCATGCGCC	1560
CTAGGCCTCT	TTTGC					1575
(0)						

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 874 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: Tashkent strain
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CGGGCCCCGT	ACAGGTCACA	ACCTGTGAGT	TGTACGAGCT	AGTGGAGGCC	AIGGTCGAGA	60
AAGGCCAGGA	TGGGTCCGCC	GTOOTT SAGO	TOGATOTOTG	CAACOGTGAO	GTGTCCAGGA	120
TCACCTTTTT	CCAGAAAGAT	TGCAATAAGT	TCACCACGGG	AGAGACCATC	GCCCATGGTA	100

AAGTEGGCCA ESGCATTICG GCCTGGAGTA AGACCTTETG TGCCCTTTTC GGCCCCTGGT	240
TOOGTGOTAT TGAGAAGGOT ATTOTGGOOG TGOTGCOTCA GGGTGTGTTT TATGGGGATG	300
COTTIGATEA CACCETOTIC TOSECECETS IGEOCGCASC AAAGGOGTOC AIGGIGTITG	360
AGAATGACTT TTOTGAGTTT GACTOCACCO AGAATAATTT TTOCCTGGGC CTAGAGTGTG	420
CTATTATGGA GAAGTGTGGG ATGCCGAAGT GGCTCATCCG CTTGTACCAC CTTATAAGGT	480
CTGCGTGGAT CCTGCAGGCC CCGAAGGAGT CCCTGCGAGG GTGTTGGAAG AAACACTCCG	540
GTGAGCCGG CACTCTTCTA TGGAATACTG TCTGGAACAT GGCCGTTATC ACCCATTGTT	600
ACGATTTCOG CGATTTECAG STGECTGCCT TTAAAGGTGA TEATTCGATA GTECTTTECA	660
GTBABTACBS TCAGAGTBBA BEGEGGGTG TOOTGAITGC TEGOTGTGGC TTAAAGGTBA	720
AGGTGGGTTT COSTOCSATT GGTTTGTATG CAGGTGTTGT GGTGACCCCC GGCCTTGGCG	780
CGCTTCCCGA CGTCGTGCGC TTGTCCGGCC GGCTTACTGA GAAGAATTGG GGCCCTGGCC	840
CTGAGCGGGC GGAGCAGCTC CGCCTTGCTG TGCG	874
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 449 base pairs (B) TYPE: nucleic acid (C) STFANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(vi) OFIGINAL SOURCE:	
(C) INDIVIDUAL ISOLATE: Clone 406.4-2 cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2100	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
C GCC AAC CAG CCC GGC CAC TTG GCT CCA CTT GGC GAG ATC AGG CCC Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro 1 5	46
AGC GCC CCT CCG CTG CCT CCC GTC GCC GAD CTG CCA CAG CCG GGG CTG Ser Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu 20 25 30	94
CGG CGC TGACGGCTGT GGCGCCTGCC CATGACACCT CACCCGTCCC GGACGTTGAT Arg Arg	150
TCTCGCGGTG CAATTCTACG CCGCCAGTAT AATTTGTCTA CTTCACCCCT GACATCCTCT	210

GTG300T0TG GCACTAATTT AGT00TGTAT GCAGC00000 TTAAT00GCC TOTG00GCTG	270
CASCACCETA CTAATACTCA CATTATGGCC ACAGAGGCCT CCAATTATGC ACAGTACCGG	330
GTT 300030G CTACTAT90G TTACOGGCCO CTAGTGCCTA ATGCAGTTGG AGGCTATGCT	390
ATATCCATTT CTTTCTGGCC TCAAACAACC ACAACCCCTA CATCTGTTGA CATGAATTC	449
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro Ser 1 10 15	
Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu Arg	
Arg	
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA to mRNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: Clone 406.3-2</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 5130	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
GGAT ACT TTT GAT TAT CCG GGG CGG GCG CAC ACA TTT GAT GAC TTC TGC Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys 1 5 10 15	49
CCT GAA TGC CGC GCT TTA GGC CTC CAG GGT TGT GCT TTC CAG TCA ACT Pro Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr 20 25 30	97

GTC GCT GAG CTC CAG CGC CTT AAA GTT AAG GTT

Val Ala Glu Leu Gin Arg Leu Lys Val Lys Val 35 40

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (D) IOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 5 15

Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val\$20\$ \$25\$

Ala Glu Leu Gin Arg Leu Lys Val Lys Val
35 40

- (2) INFORMATION FOR SEQ ID NO:17:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 406.4-2 epitope Mexican strain
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro Ser 1 5 10 15

Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu Arg

Arg

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

- (ii. MOLECULE TYPE: peptide
- (111) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) OFIGINAL SOURCE:
 (C) INDIVIDUAL ISOLATE: 406.4-2 epitope Burma strain
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Ala Asn Pro Pro Asp His Ser Ala Pro Leu Gly Val Thr Arg Pro Ser 1 10 15

Ala Pro Pro Leu Pro His Val Val Asp Leu Pro Gln Leu Gly Pro Arg 20 25 30

Arg

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - $\langle A \rangle$ LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 406.3-2 epitope Mexican strain
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 10 15

Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val 20 25 30

Ala Glu Leu Gln Arg Leu Lys Val Lys Val

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(C) INDIVIDUAL ISCLATE: 406.3-2 epitope - Burma strain

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 $$ 10 $$ 15

Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val 20 25 30

Ala Glu Leu Gln Arg Leu Lys Met Lys Val 35 40