Engineering Simulation done in NTUA's cloud enabled Computer Center

The system administrator's perspective

Christodoulos Fragoudakis chfrag@central.ntua.gr

NTUA - Computer Center central@central.ntua.gr

23 May 2013

NTUA's Computer Center

- ► Founded in 1978. Hosted one of the first computer systems in Greece: The *Control Data Cyber 171/8* (1978–1992).
- During 1978–2010: from punch cards and ASCII terminals to Silicon Graphics systems and stand alone servers.
- ► The storage was unified in 2003 using *SGI* technology.
- ► Today:

A brief history

- ▶ 29 SUN Blades with a total of 568 cores and 2.2 TB of RAM.
- ▶ Unified NAS and SAN storage of *EMC* and *Fujitsu*.
- Central procurement of specialized software for engineers (ANSYS, SIMULIA, MSC, etc).

NTUA's Computer Center

Administration challenges and the Direct Access vision

- 4 admins vs 10000+ potential users.
- As we administrer serious hardware and software infrastructure we should establish IAAS and SAAS services.
- Ultimate goal: Maximum infrastructure utilization with minimal administrative overhead.
- Regardless of location each and every NTUA member should have *Direct Access* to the CC's facilities and services.
- Direct Access should be as simple as possible: using a standard web browser.

Our approach to IAAS and SAAS

- NTUA CC's facilities are integrated into a common environment: the Central Cloud:
 - Computing Power
 - Specialized software for engineers
 - General purspose software
 - Central storage
- Personalized and secure access to the Cloud environment through the *Central CloudFront* page.
- ▶ Automatic *Load Balancing* between the computing nodes.
- ► Increase the computing power by just adding blades and the storage capacity by just adding hard disks.

A bird's eye view of the implemented architecture

The user's experience: transparent technical details

http://cloudfront.central.ntua.gr

The Webtop

Programming courses

Mathematical Software

Engineering Simulation Packages

ANSYS Workbench

ANSYS Design Modeler

ANSYS CFX Preprocessor

ANSYS CFX Solver

ANSYS CFX Post Processor

ANSYS CFX Post Processor

Cloud Storage

Moving/Coping files to/from Cloud Storage

Minimization of local administrative burden

- Preparation for Philonnet seminars:
 - the traditional way: install ANSYS on each and every computer in the lab during non-working hours.
 - the Central Cloud way: install ANSYS on the Cloud only once during working hours.
 - Obsolete hardware in NTUA's labs are at least capable to connect to the Central Cloud. Thin Client technology could be incorporated.

Economy of Scale

- Economy of scale:
 - ► If NTUA provides to each newcomer a very limited version of a certain commercial mathematical package:

▶ On the contrary, if 250 network licenses for the *FULL* package are incorporated into the Central Cloud the cost is:

$$40.000$$
 € initially and 10.000 € per year

► The package will be available for **EVERY NTUA member**.

Special advandages for NTUA schools and faculty members

- Faculty members or schools can utilize the Central Cloud's infrastructure by plugging their own blades or disks in the available empty slots:
 - Low cost: no chassis, power supplies, networking, etc.
 - Zero administration.
 - Security: behind enterprise class firewalls.
 - UPS, Power Generator, Air Conditioning.
 - Guaranteed dedicated usage.

Problem: Users fight each other for resources

Need for a batch job system

- ► The demand usually exceeds resources.
- Provide different queues for different types of jobs (serial, parallel, . . .).
- Attempt to keep load on machines as high as possible.
- Try to schedule submitted jobs by evaluating the needed resources.
- Users should provide as much information as possible (memory, wall clock time, . . .).

Grid Engine

What it is and what it does

- ► A set of computer hosts that work together with a single point of access.
 - Accepts jobs from the outside world. Jobs are users requests for computer resources.
 - Puts jobs in a holding area until the jobs can be run.
 - Sends jobs from the holding area to the an execution device.
 - Manages running jobs.
 - Logs the record of job execution when the jobs are finished
- A GUI front end of SGE, namely Qmon is available in Central CloudFront.

Launching Qmon and submiting a script

Grid Engine ANSYS CFX example

```
#!/bin/bash
#$ -S /bin/bash
#$ -M chfrag@central.ntua.gr
#$ -m bae
#$ -1 h_rt=24:00:00m h_vmem=16
#$ cfx5solve -def file.def -double
-start-method "MPICH Local Parallel"
-part 16 -size 2 -sizepar 2
```

due to Joannis Karathanassis

- CFX parallel (MPICH) job.
- Double precission.
- 16 processors.
- Heavy job (doubles allocated memory).
- Wall clock limit of 1 day.
- Maximum total memory of 1G.
- Sending email upon starting, aborting and finishing.

Grid Engine

Suggested usage

- What you need to know:
 - Don't worry about queues or specific machines.
 - All you need to do when submitting a job is describe the resources your job will need to run successfully.
 - ► Grid Engine will take care of the rest.

My observation: NTUA's researchers are having a hard time defining the required resources for their jobs. Most of the times they just want to "click solve".

Recent acknowledgments

In "International Journal of Thermal Sciences":

I.K. Karathanassis, E. Papanicolaou, V. Belessiotis, G.C. Bergeles, Three-dimensional flow effects on forced convection heat transfer in a channel with stepwise-varying width, 2013.

In "International Journal of Heat and Mass Transfer":

▶ I.K. Karathanassis, E. Papanicolaou, V. Belessiotis, G.C. Bergeles, Effect of secondary flows due to buoyancy and contraction on heat transfer in a two-section plate-fin heat sink, 2013.

Thank you!

Christodoulos Fragoudakis chfrag@central.ntua.gr

NTUA - Computer Center central@central.ntua.gr

+30 210 772 3392