

Decoding Stock Returns: The Role of Earnings, Macro, and Sentiment

Final Recommendation

Prepared and Presented by

Date: 19 February 2025

Business Objectives and Traceability

- How do stock price movements before earnings announcements predict post-announcement stock price movement?
- How do key financials released on earnings dates (e.g. earnings surprise, revenue, profit margins) predict post-announcement stock price movement?
- How do macroeconomic conditions before/on earnings announcements predict postannouncement stock price movement or earnings outcomes?
- What role does news sentiment play in stock price movements around earnings announcements?
- Can earnings-related data predict macroeconomic factors (e.g. inflation, GDP) over the next 3, 6, or 12 months?
- How do stock price trends post-earnings relate to long-term performance predictions?

Signposting Our Journey So Far

• FMP

•FRED

Y-Finance

Data Wrangling and

Preprocessing

News Sentiment AnalysisPre-Announcement Stock

Price Momentum

- Post Announcement Stock Price Momentum
- Consolidated Financial Ratios - BS, IS and CF
- Macros Seasonally Adjusted Rate of Changes

Exploratory Data Analysis and Sentiment Analysis using NLP

- Multiple Linear Regression
- TextBlob and FinBert for Sentiment Analysis using NLP
- Logistic Regression
- Correlation Heatmaps

Feature Engineering and Predictive Modelling

- Labelling andClassification
- Random Forest Classifier
- HyperparameterRandomisedSearchCV
- Classification Reports

Signal Generation and Evaluation

- Signal Generation Buy/Hold/Sell
- Signal Evaluation Confusion Matrices

Trading Strategy Simulation

- Long & Short Position Classification using Predicted Signals
- Generate Trade Returns, Drawdowns, Cumulative Returns

Phase 1 - Lead Up to Initial Pitch and Recommendation

Phase 2 – Scope for Final Pitch and Presentation

EDA Insights Summary

Stock Price Momentum

Weak correlation exists between price returns in the 2-5 days windows before and after Earnings Announcements.

No significant correlation detected for price movements beyond the 5-days window

Earnings Data

EPS Surprise and Revenue Surprise have significant Impact on 2 days / 5 days Returns post announcement

Macroeconomic Indicators

Real GDP Growth, UST Yield changes had a stronger correlation amongst macroeconomic indicators

Sentiment Analysis

News Sentiment has a negative drift on 5 days return post announcement.

Negative news sentiment leads to a drop on 2-3 days return post news publishing, however it neutralises thereafter

.

Trading Strategy and Model Design

GOAL

- Capture >5% stock price moves in 2 or 5 days after earnings
- Based on financial metrics, macro data & sentiment analysis

TRADING SIGNALS

- Buy → Expected returns > +5%
- Sell → Expected returns < -5%
- Hold → Expected returns within ±5%

MODEL SPECIFICATIONS

- Algorithm: Random Forest Classifier
- Data: 2005-2024 historical data
- Tuning: RandomizedSearchCV optimization
- Features: Pre-earnings indicators
 - Financial metrics
 - Macro indicators
 - News sentiment scores

EXECUTION RULES

Recommends Position based on Predicted Trading Signals:

Long for Buy Signal

Short for Sell Signal

No Action for Hold Signal

AAPL trading strategy overview

Model performance

• The dataset covers 81 earnings announcement events

• Recall: 49/81 events provide a trading opportunity (manually labelled as Long or Short):

Long: 30/32 identified

Short: 12/17 identified

Precision: The model generates **51** signals:

Long: 30/36 are correct

Short: 12/15 are correct

Trading Strategy Simulation Results (AAPL)

Confusion matrix

Strategy evaluation:

Metrics:

Average Return per Deal: 6.5%

Maximum Drawdown: -14.8%

Total Cumulative Return: >20x (over 51 five-day periods)

Methodology:

Return is calculated based on close prices over the analysed time window

No Stock-exchange or intermediary commissions are considered

GOOGL trading strategy overview

Model performance

- The dataset covers 80 earnings announcement events
- Recall: 41/80 events provide a trading opportunity (manually labelled as Long or Short):

Long: 21/24 identified

Short: 16/17 identified

Precision: The model generates **39** signals:

Long: 21/21 are correct

Short: 16/18 are correct

Trading Strategy Simulation Results (GOOGL)

Confusion matrix

Strategy evaluation:

Metrics:

Average Return per Deal: 8.0%

Maximum Drawdown: 0.0%

Total Cumulative Return: >20x (over 39 two-day periods)

Methodology:

Return is calculated based on close prices over the analysed time window

No Stock-exchange or intermediary commissions are considered

NVDA trading strategy overview

Model performance

The dataset covers 36 earnings announcement events

 Recall: 20/36 events provide a trading opportunity (manually labelled as Long or Short):

Long: 14/14 identified

Short: 2/6 identified

Precision: The model generates 18 signals:

Long: 14/16 are correct

Short: 2/2 are correct

Trading Strategy Simulation Results (NVDA)

Confusion matrix

Strategy evaluation:

Metrics:

Average Return per Deal: 12.7%

Maximum Drawdown: -6.9%

Total Cumulative Return: c.700% (over 39 two-day periods)

Methodology:

Return is calculated based on close prices over the analysed time window

No Stock-exchange or intermediary commissions are considered

Feature Importance Observations and Insights

Macros

Earnings

FinMetrics

Key Observations and Insights

- 1. Earnings and Revenue Suprises have a consistent predictive power across all 3 Stocks
- 2. Finmetrics such as profitability and cashflow play a more significant role for B2B stocks such as GOOGL and NVDA than a B2C focused business such as AAPL
- 3. Macros such as Tr. Yields, FedDebt and Real GDP growth play a more significant role for B2C stock such as AAPL

Note: Spurious Feature importance (coincidental data patterns), commonly observed in high-dimensional, small sample datasets is noticed in the feature importance. The features have been retained to improve predictive power.

Q&A and Feedback

Earnings Announcement – Event Study

Objective:

To evaluate whether earnings surprises provide predictive insights into price movements after earnings announcements

Approach:

To examine the relationship over different post-announcement windows, both for individual tickers and in aggregate

Raw data:

- Source: Financial Modelling Prep API (Earnings Surprises)

- Period covered: 2000 - 2024

Pre-processing:

- Extreme outliers
- Negative and small Net Profit Margins (< 5%)

Relationship Between EPS Surprise and post-announcement Return by ticker (2000 - 2024)

Initial observations:

- 1. Most EPS surprises are positive.
- 2. Post-earnings announcement returns generally align with the direction of the EPS surprise.

Earnings Announcement – Event Study

Distribution of post-announcement cumulative returns

Pearson correlation analysis: EPS surprise vs. 2-day post-announcement equity return (2000 - 2024)

Derived features:

- EPS Surprise Percentage
- Standardised EPS Surprise Score
- QoQ Change in EPS Surprise
- Pre-Earnings Return / ROC
- Coefficient of Variation of Closing Prices

Key Insight:

EPS Surprise and Revenue Surprise have significant Impact on 2 days / 5 days Returns post announcement

Macro Economic Indicators

Macro Economic Indicators — GDP, Inflation, Unemployment, federal Debt, US Treasury Yield 10Y

Correlation Heatmap between Macro indicators and Stock Returns and Earnings

Company	Macro Economic Factor	
Apple	Real GDP, Federal Debt	
Google	Real GDP, Inflation, UST Yield 10Y	
Nvidia	Real GDP, Inflation, UST Yield 10Y	

Macro Economic Indicators

Macro Economic Indicators considered: GDP, Inflation, Unemployment, federal Debt, US Treasury Yield 10Y Analysis Time Period: 2000 - 2024

Correlation Heatmap between Macro indicators, Revenue to Stock Returns

- 0.5

- 0.0

Revenue has a higher impact on Returns than macro-economic conditions as these are high-growth companies. Real GDP Growth, UST Yield changes had a stronger correlation amongst macro economic indicators

News Sentiment Analysis Framework

Dataset Overview:

NY Times Articles: 1474 (provided by Vantage Data)

Time period: 2019 – 2024

Post-Initial Cleanup: 1423 Articles [51 removed]

Article Classification Workflow (Rule Based Classification Pipeline):

Keyword	Company_value	Macro_value
Apple Inc	Apple	
Apple TV	Apple	
Google Inc	Google	
Alphabet Inc	Google	
NVIDIA Corporation	Nvidia	
Artificial Intelligence		Tech-Al
ChatGPT		Tech-Al
Cloud Computing		Tech-Macro
Computer Chips		Tech-Macro
Microsoft Corp		Tech-Macro
Coronavirus (2019-nCoV)		Market-Macro
Corporate Taxes		Market-Macro
Economic Conditions and Trends		Market-Macro
Elections		Market-Macro

Pipeline Features:

- Customizable, Easy to maintain/update
- Expandable to dedicated keywords
- Independent of ML / Al limitations

Sentiment Scoring:

- Abstract, Main (extracted from metadata) and Lead Paragraph considered for analysis.
- ProsusAl's FinBERT and TextBlob utilized for sentiment evaluation
- Multiple composite scores evaluated and finalized on:

Sentiment Score(Article) =
$$F(Main)$$
 or $F(Abstract)$
 $F(Text) = Finbert_{positive} - Finbert_{negative}$

News Sentiment Analysis – Event Study

Event Study – What role does news sentiment play in stock

nrice movements?

Event Study: Avg Cumulative Returns by Stock news sentiment (AAPL)

Event Study: Avg Cumulative Returns by Macro news sentiment (AAPL)

METHODOLOGY:

- 5-day pre/post publishing event window analysis (Returns and Trade volume)
- Stock Sentiment: Company-specific news
- Macro Sentiment: Non-Company news

APPLE FINDINGS:

- Negative news: -0.5% dip, recovers by day 3
- Positive/Neutral news: +1% drift over 5 days
- Resilient to macro news impact

News Sentiment Analysis – Event Study

Event Study – What role does news sentiment play in stock

Event Study: Avg Cumulative Returns by Stock news sentiment (GOOGL)

Event Study: Avg Cumulative Returns by Stock news sentiment (NVDA)

GOOGLE FINDINGS:

- Most stable to sentiment among peers.
- Returns stay within 1% for neutral/ positive news.
- Acts as safe-haven during macro uncertainty (negative news)

NVIDIA FINDINGS:

- Highest sentiment sensitivity
- Impact lasts 2-3 days post-event
- Larger fluctuations than peers (± 2-3%)
- Strong positive reaction to macro negativity

Earnings Announcement Event Study and Sentiment Effect

Apple: Stock Returns behaviour around earnings returns with Company and Macro sentiment

Pre Vs Post Earnings Sentiment Analysis with 5-Day Returns - AAPL

Pre-Announcement Sentiment Trends:

- Pre-earnings company sentiment (blue dots) tends to be optimistically biased and it is very rare to see negative pre-earnings sentiment.
- High pre-earnings sentiment doesn't reliably predict positive returns

Post-Announcement Sentiment Trends:

- Company Sentiment (purple dots) 5 days post earnings announcement is mostly seen to go down compared to preearnings sentiment.
- This reinforces the optimistic bias seen in the pre-earnings sentiments.

Positive Return

Negative Return

Company Pre-Earnings

Company Post-Earnings

Earnings Announcement Event Study and Sentiment Effect

Google: Stock Returns behaviour around earnings returns with Company and Macro sentiment

Pre-Announcement Sentiment Trend:

- Consistently optimistic (0.3-0.8)
- · Better sentiment data than Apple.

Post-Announcement Sentiment Trends:

- Regular downward sentiment shifts
- Major drops below -0.50 in several quarters
- Notable disappointment in 2022-Q3 (-0.90)

Insight:

 Pattern of high pre-earnings optimism followed by post-earnings disappointment

Key Insight #3:

News Sentiment has a negative drift on 5 days return post announcement.

Negative news sentiment leads to a drop on 2-3 days return post news publishing, however it neutralises thereafter

Macro Economic Indicators – Appendix 1 [Apple]

AAPL

Macro Economic Indicators – Appendix 2 [Google]

GOOGL

Macro Economic Indicators – Appendix 3 [NVIDIA]

NVDA

Sentiment – Rule based Classification Flow – Appendix 4

Pipeline flow:


```
keywords df = pd.read csv('sentiment keywords.csv')
keywords df = keywords df.fillna('').astype(str)
# Categorize function to get Company and Macro values
def categorize(row, keywords df, columns, value column):
    categories = set()
    for col in columns:
        # Convert row value to string and handle NaN/None
        row value = str(row[col]) if pd.notna(row[col]) else "
        for keyword, value in zip(keywords_df['keyword'], keywords_df[value_column]):
           # Skip empty keywords or values
           if keyword and value and keyword in row value:
                categories.add(value)
    return ' and '.join(sorted(categories)) if categories else 'Other'
# Apply the modified function
VP_SD['Company'] = VP_SD.apply(lambda row: categorize(row, keywords_df, ['org_1', 'org_2', 'org_3'], 'Company_value'), axis=1)
VP_SD['Market'] = VP_SD.apply(lambda row: categorize(row, keywords df, ['subject 1', 'subject 2', 'subject 3', 'org 1', 'org 2', 'org 3'], 'Macro_value'), axis=1)
```

Pipeline Evaluation:

- 1. The current logic is rule-based and will classify any new article, if the keywords are present (data schema remains the same).
- 2. The keywords have been custom-picked based on a manual review for each classification section. For a pipeline to be able to classify articles for any organisation, the keywords section would have to be expanded into a separate database that can be referred against
 - This would require more articles to get a more exhaustive set of keywords or the source's data dictionary could have an exhaustive set available already.
- 3. This approach gives us the customisability that would not be available if we go by ML / AI based classifications