

550 ms

650 ms

250 ms

150 ms

Input:
$$w[n]$$
 $w[n-1]$ $w[n-2]$ (from data); initial estimates $w_0 = (\omega_1, ..., \omega_6)$; $\dot{z}_0 = (z_1, ..., z_6)$ (threshold θ ; Find cluster with center w_c is closest to $w[n-1]$; Betrieve z_c , F and J 's for that cluster; w while $E > \theta$ do $w[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; $E(\dot{\omega}_0, \dot{z}_0) = ||\dot{w}[n] - w[n]||_2$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{\omega}_0, \dot{z}_0)$; e for $(-1, ..., 6]$ do $|\dot{w}[n] = f(w[n-1], w[n-2], \dot{w}[n]$ for $(-1, ..., 6]$ for $(-1, ..., 6]$

$$E[w;t,w(u),w(u,v)] = F[w;+0olw;]$$

$$E[w;+\Delta w] = F[w;+0olw;]$$

$$F[w;-\Delta w] = F[v;-0,olw;] - F[v;-0,olw;]$$

$$F[w;+0,olw;] - F[v;-0,olw;] - F[v;-0,olw;]$$

$$F[v;-0,olw;] - F[v;-0,olw;] - F[v;-0,olw;] - F[v;-0,olw;]$$

$$F[v;-0,olw;] - F[v;-0,olw;] - F[v;-0$$