Table of Contents

NOTE-TAKING TIPSv	MODULE 8
MODULE 1 The Nature of Science	Energy Sources and the Environment115 1 Fossil Fuels
MODULE 2 Motion 19 1 Describing Motion 20 2 Velocity and Momentum 25 3 Acceleration 29	137 1 The Nature of Waves
MODULE 3 Forces and Newton's Laws 35 1 Forces 36 2 Newton's Laws of Motion 41 3 Using Newton's Laws 46	Sound 155 1 The Nature of Sound 156 2 Properties of Sound 160 3 Music 165 4 Using Sound 169
MODULE 451Work and Energy511 Work and Machines522 Describing Energy573 Conservation of Energy62	MODULE 11 Electromagnetic Waves
MODULE 5 Thermal Energy	MODULE 12 Light
MODULE 6 85 Electricity 85 1 Electric Charge 86 2 Electric Current 92 3 More Complex Circuits 97	Mirrors and Lenses 207 1 Mirrors 208 2 Lenses 214 3 Optical Instruments 215 MODULE 14
MODULE 7 Magnetism and Its Uses	Solids, Liquids, and Gases

Table of Contents

MODULE 15	MODULE 21
Classification of Matter	Solutions3331 How Solutions Form3342 Concentration and Solubility3383 Particles in Solution3424 Dissolving Without Water346
Periodic Table 251 1 Structure of the Atom 252 2 Masses of Atoms 257 3 The Periodic Table 262 MODULE 17	MODULE 22 Acids, Bases, and Salts
Elements and Their Properties 267 1 Metals 268 2 Nonmetals 272 3 Mixed Groups 276	MODULE 23 Organic Compounds
MODULE 18 Chemical Bonds	3 Petroleum—A Source of Organic Compounds
MODULE 19 Chemical Reactions	2 Versatile Materials390 3 Polymers and Composites394
MODULE 20 Radioactivity and Nuclear Reactions 317 1 The Nucleus	

Applications328

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in science. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clearly and concisely as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	and	+
such as	i.e.	approximately	≈
with	w/	therefore	∴ .
without	w/o	versus	VS

- Use a symbol such as a star (★) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- **Don't** write every word. Concentrate on the main ideas and concepts.
- **Don't** use someone else's notes. They may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

1 The Nature of Science

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned		
WHALIKHOW	what I want to I ma Out	What i Leamed		

The Nature of Science

1 The Methods of Science

REVIEW VOCABULARY investigation	Recall the definition of the Review Vocabulary term. investigation
NEW VOCABULARY	Use your book to define each term.
scientific methods	scientific methods
hypothesis	hypothesis
experiment	
variable	ava avias ant
dependent variable	experiment
independent variable	
constant	variable
control	dependent variable
bias	
model	independent variable
theory	maepenaem variable
scientific law	
	constant
	control
	bias
	model
	theory
	scientific law

1 The Methods of Science (continued)

Main Categories of Science

- Life science = study of life
- Earth science = study of Earth and space
- Physical science = study of matter and energy

Scientific Methods

- · State the problem
- Gather information
- Form a hypothesis
- Test the hypothesis
- · Analyze data
- Draw conclusions

Identify the three main	categories	of science.	Summarize the topi	С
studied in each categor	у.			

- 1.
- _____
- **Get It? Identify** What is the first step in a scientific investigation, and what form does it usually take?

Sequence the scientific methods in the most typical order. The first step has been completed for you.

- **1.** State the problem **4.**
- 2. 5.
- 3. 6.

Get It? Identify What is the purpose of a control in an experiment?

Summarize the steps a scientist might take to determine if a new drug works in cancer patients.

Organize the advantages and disadvantages of a pilot flying a real airplane and flying a simulator.

	Advantages	Disadvantages
Real airplane		
Simulator		

Scientific Theories and Laws

- Scientific laws are descriptions of what happens in nature and seems to always be true
- Scientific theories are explanations based on many observations and investigations

 $\textbf{Distinguish} \ \ \text{between a scientific theory and a scientific law}.$

Copyright © McGraw-Hill Educatic

1 The Methods of Science (continued)

		Complete the followi	ng paragraph about the	limitations of science.
		Science	explain or solve eve	erything. A scientist has
		to make sure his or he	er guesses can be	and
		Science cannot answ	er questions about	and
		For example, a(n)	of people's opir	nions about such
		questions would not	prove that the opinions a	re true for everyone.
	HECK YOUR PROGRE Define Summarize the s scientific methods.		arry out an investigation	using
2.	Explain what a law is, wh	nat a theory is, and why	a theory cannot become	a law.
3.	Analyze What is the deposit volume of a gas change:		•	w the
4.	•	ta: minute 1: 65 breaths; 71 breaths; minute 5: 62	how many breaths a squi minute 2: 73 breaths; m breaths. Calculate the av	inute

Copyright © McGraw-Hill Education

The Nature of Science

2 Standards of Measurement

REVIEW	
VOCABULAR	Y

measurement

NEW VOCABULARY

standard

SI

volume

matter

mass

density

Recall the definition of the Review Vocabulary term.

measurement

Use your book to define each term.

standard

SI

volume

matter

mass

density

Summarize why measurement standards are necessary.

Complete the table of SI base units used to measure various quantities.

Quantity Measured	Unit	Symbol
Time		S
	kilogram	
		K
	candela	
Length		
	mole	
		Α

SI (International System of Units)

- From French "Systeme Internationale d'Unites"
- 7 base units: m, kg, s, A,
 K, mol, cd
- Units can be modified by prefixes: milli-, kilo-, etc.
- Derived units come from two or more base units

2 Standards of Measurement (continued)

Get It? Calculate How many meters is 1 km? How many grams is 1 dg?

Create an example of a real-world object that could be appropriately measured using each of these units of length.

meter

kilometer

millimeter

micrometer

Volume

- Amount of space occupied by an object
- For a rectangular solid, volume = length × width × height

Organize the steps for finding the volume of a rectangular solid by listing them below.

Complete the table below. Place an X in the appropriate box to indicate the type of each measurement unit.

Measurement	SI Unit	Derived Unit
gram per centimeter cubed (g/cm ³)		
milliampere (mA)		
liter (L)		
cubic meter (m ³)		
kilogram (kg)		

2 Standards of Measurement (continued)

Mass and Density

- Mass is a measurement of the quantity of matter
- Density is mass per unit volume. D = m/V

Temperature

- In Celsius, 0°C is the freezing point of water and 100°C is the boiling point of water.
- In Fahrenheit, 32°F is the freezing point of water and 212°F is the boiling point of water.
- On the Kelvin scale, 0 K is absolute zero.
- Temp in kelvins equals temp in °C plus 273.
- Temp in °C equals temp in kelvins minus 273.

different n	nasses.	ojects that na	ave about the	same volun	ne but

Model three thermometers: one with a Fahrenheit scale, one with a Kelvin scale, and one with a Celsius scale. Label each to include the boiling and freezing points of water.

system of measurement in the United States from the US customary

opyright © McGraw-Hill Education

system to the International System of units.

2 Standards of Measurement (continued)

CHECK YOUR PROGRESS

- **7. Explain** why it is important to have exact standards of measurement.
- **8. Make a Table** Organize the following measurements from smallest to largest and include the multiplying factor for each: kilometer, nanometer, centimeter, meter, and micrometer.

Measurement	Multiplying factor

- 9. Explain why density is a derived unit.
- **10. Math Connection** Make the following conversions: 27°C to kelvins, 20 dg to milligrams, and 3 m to decimeters.

11. Math Connection What is the density of an unknown metal that has a mass of 158 g and a volume of 20 mL? Use **Table 4** from your textbook to identify this metal.

The Nature of Science

3 Communicating with Graphs

REVIEW VOCABULARY

data

NEW VOCABULARY graph

Recall the definition of the Review Vocabulary term.

data

Use your book to define the New Vocabulary term.

graph

Draw and label a simple example of each of the three types of graphs described in this lesson.

Line Graphs

- Show how 2 variables are related or how a variable changes over time.
- Vertical axis = dependent variable
- Horizontal axis = independent variable

Evaluate the effectiveness of two fertilizers on plant growth by plotting the following data on a line graph. Be sure to label each axis.

Week	Type A	Type B
1	2 cm	2 cm
2	7 cm	9 cm
3	15 cm	19 cm
4	20 cm	24 cm

Bar Graphs

 Used for data that doesn't change continuously, e.g. data collected by counting.

3 Communicating with Graphs (continued)

Get It? Describe possible data where using a bar graph would be better than using a line graph.

Identify the features of the bar graph in **Figure 16** in your textbook by completing the table below.

Feature	Description	Feature	Description
Label of <i>x</i> -axis		Maximum bar height	
Label of <i>y</i> -axis		Minimum bar height	
Horizontal scale		Maximum class size	
Vertical scale		Minimum class size	

h -

· Also called pie charts

Circle Graphs

- Show how a whole is divided into parts
- Data is often in percentages that add up to 100%

Analyze the circle graph in **Figure 17** in your textbook to complete the second column in the table below. Then use the formula provided in the table to complete the third column. Remember to use the decimal form of the percent of whole in the formula when finding angle of slice. The first one has been done for you.

Heating Fuel	Percent of Whole	Angle of Slice [percent of whole \times 360° = angle of slice]
Gas	50	$0.50 \times 360^{\circ} = 180^{\circ}$
Steam		
Coal		
Electric		
Other		

3 Communicating with Graphs (continued)

Complete the paragraph below. graph is used to show how a certain quantity is into parts. The circle represents the and the segments represent the of the whole. The segments are usually given as of the whole. **CHECK YOUR PROGRESS** 12. Identify the kind of graph that would best show the results of a survey of 144 people where 75 ride a bus, 45 drive cars, 15 carpool, and 9 walk to work. **13.** State which type of variable is plotted on the x-axis and which type is plotted on the y-axis. 14. Compare and Contrast How are line, bar, and circle graphs similar? How are they different? **15. Explain** why the points in a line graph can be connected. 16. Math Connection In a survey, it was reported that 56 out of 245 people would rather drink orange juice than coffee in the morning. Calculate what percentage of a circle graph orange-juice drinkers would occupy.

The Nature of Science

4 Science and Technology

REVIEW VOCABULARY

industrialized

VOCABULARY

technology society

What is technology?

 The application of scientific knowledge to help people or society

4 types of technology

- · Objects
- Methods or techniques
- · Knowledge or skills
- Systems

Recall the definition of the Review Vocabulary term.

industrialized

Use your book to define each term.

technology

society

Compare and contrast science and technology.

Organize information about types of technology by completing the concept web. Provide two examples of each type of technology.

Objects 1.		Methods or Techniques 1.
2.	Types of Technology	2.
Knowledge or Skills 1.		Systems 1.
2.		2.

Copyright © McGraw-Hill Education

Get It? Identify another example of a technological system. Explain why it fits into this category.
Create your own real-world example of how the application of a scientific discovery has helped create a new technology.
Get It? Compare and contrast the technological needs of developing countries and industrialized countries.

Copyright © McGraw-Hill Educatic

Summarize the focus of technological solutions in developing countries and industrialized countries.

Social Forces that Shape Technology

- The values of individuals and society influence the development of technology.
- People support technologies by buying things, by donating to organizations that support research, and by voting.

Complete the concept web to identify the social forces that shape technology.

Summarize how social forces shape technology.

Economic Forces that Shape Technology

- Many factors influence how money is spent on developing technology.
- The federal government, private foundations, and private industries all support research and development.

Organize information about economic forces that shape technology by completing the concept web.

Summarize the types of issues involved in developing technology responsibly by completing the table.

Type of Issue	Description of Issue	Example
Environmental	how technology affects plants, animals, and ecosystems	
Moral	what is right and wrong	
Ethical		Testing should not be done on people against their will.

CHECK YOUR PROGRESS

17.	Classify the types of technology, and give at least two examples of each type.
18.	Explain why the types of technology valued can vary.
19.	Describe how private citizens have a voice in which projects the federal government will fund.
20.	Evaluate Would cell phone technology be of use in a developing country? Explain your answer.
21.	Math Connection In 2010, the Department of Defense's overall budget was approximately \$534 billion. In the same year, the Department of Defense budgeted \$79.1 billion for research, development, tests, and evaluations. What percentage of the budget does this represent?

2 Motion

ENCOUNTER THE PHENOMENON

Irite the Encounter the Phenomenon question for this module.		

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Motion

1 Describing Motion

REVIEW VOCABULARY meter	Recall the definition of the Review Vocabulary term. meter
NEW VOCABULARY motion displacement	Use your book to define each term.
speed	displacement

Draw a winding path that covers a distance of 70 miles and finishes with a displacement 20 miles southwest of the starting point. Label your diagram with the distance and direction traveled.

Adding Displacements

Summarize the rules for adding displacements.

- **1.** You can _____ displacements that are in the same direction.
- **2.** You can _____ displacements that are in opposite directions.
- **3.** You cannot directly add together displacements that are not in the ______ direction or in _____ directions.

Get It? Determine the total displacement of a dog that runs 15 m north, 6 m south, then 8 m north.

Speed Equation

Analyze the formula for speed by looking at the diagram and filling in the prompts.

Put your finger over the s on the diagram. Now write

the formula for speed.

Put your finger over the *d* on the diagram. Write the formula to find distance when you know speed and time.

Prove to yourself that these formulas are correct by checking the units.

speed (units of or) =
$$\frac{\text{distance (units of or)}}{\text{time (units of or)}}$$

Note that the units always turn out the same on both sides of the equation.

Get It? Identify two common ways of expressing a changing speed.

Get It? Identify how to calculate average speed.

Get It? Identify two examples of motion in which an object's instantaneous speed changes.

Distance-Time Graph

Create a graph to show the progress of a runner who runs a 1-kilometer race in 3 minutes. The runner gets off to a fast start, runs the middle of the race at a more moderate pace, and then sprints to the finish.

Graphing Checklist:

- title
- scale on x-axis
- units on x-axis
- label on x-axis
- scale on y-axis
- units on y-axis
- label on y-axis

CHECK YOUR PROGRESS

Describe the trip from your home to school using the words <i>position</i> , <i>distance</i> , <i>displacement</i> , and <i>speed</i> .
Explain whether an object's displacement could be greater than the distance the object travels.
Describe the motion represented by a horizontal line on a distance-time graph.
Describe the difference between average speed and constant speed.
Explain During a trip, can a car's instantaneous speed ever be greater than its average speed? Explain.
Math Connection Michiko walked a distance of 1.60 km in 30 min. Find her average speed in m/s.
Math Connection A car travels at a constant speed of 30.0 m/s for 0.80 h. Find the total distance traveled in km.

Motion

2 Velocity and Momentum

REVIEW VOCABULARY speed	Recall the definition of the Review Vocabulary term. Speed
NEW VOCABULARY	Use your book to define each term.
velocity momentum	velocity
	momentum

2 Velocity and Momentum (continued)

nd speed are d	ifferent.
re the same spo	eed but different
a result of the	slow motion of
ation of	ranges,
_ eruptions. As	a result of the slow
	Ocean is getting
Ocean is gettir	
	e the same spen a result of the ation of eruptions. As

Relative Motion

2 Velocity and Momentum (continued)

Momentum

Analyze the property of momentum in words and with an equation. Include units and identify all variables.

Get It? Explain whether momentum is a vector.

Predict why momentum is a property of moving objects, but not of stationary objects.

Copyright © McGraw-Hill Education

2 Velocity and Momentum (continued)

CHECK YOUR PROGRESS

6.	Describe a car's velocity as it goes around a track at a constant speed.
7.	Explain why streets and highways have speed limits rather than velocity limits.
8.	Identify For each of the following news stories, determine whether the object's speed or velocity is given: the world record for the hundred-meter dash is about 10 m/s; the wind is 30 km/h from the northwest; a 200,000 kg train was traveling north at 70 km/h when it derailed; a car was issued a ticket for traveling at 140 km/h on the interstate.
€.	Describe You are walking toward the back of a bus that is moving forward with a constant velocity. Describe your motion relative to the frame of reference of the bus and relative to the frame of reference of a point on the ground.
Ο.	Math Connection What is the momentum of a 100-kg football player running north at a speed of 4 m/s?
1.	Math Connection Compare the momenta of a 6,300-kg elephant walking 0.11 m/s and a 50-kg dolphin swimming 10.4 m/s.

Motion

3 Acceleration

REVIEW
VOCABULARY
velocity

NEW VOCABULARY
acceleration
centripetal acceleration

Recall the definition of the Review Vocabulary term. Velocity	
Use your book to define each term.	
acceleration	
centripetal acceleration	
·	

3 Acceleration (continued)

Get It? Identify three ways that an object can accelerate.

Speed-Time Graphs

Synthesize Create a graph titled "Speed Changing Over Time" to show the acceleration of a car.

- Include a label with units for each axis.
- Draw a line on the graph to show how the speed of the car changes with time.
- Include parts of your graph that represent the car speeding up, slowing down, and moving at a constant speed. Label each part.

Compare the results of applying the acceleration equation in the following two cases: (1) an object that goes from 0 to 10 m/s in 4 s, and (2) then goes from 10 m/s to 30 m/s in 8 s.

(1)
$$a = (v_f - v_i)/t$$

=_____=

(2)
$$a = (v_f - v_i)/t$$

=_____=

3 Acceleration (continued)

Analyze why the	e SI unit of acceleration is m/s ² .
	in why you cannot use the acceleration equation for hanges direction.

Create a top view of an object moving in a circle at constant speed, such as a ball on a string. Show at least two positions of the object. At each position, draw an arrow for the object's velocity and another arrow for the centripetal acceleration of the object.

Projectile Motion

Model a ball thrown horizontally. Sketch the path of the ball and draw arrows showing its horizontal and vertical velocity at three points along the path. Vary the length of your arrows to show the magnitude of the velocities.

3 Acceleration (continued)

25.	Describe the acceleration of your bicycle as you ride it from your home to the store.
26.	Determine the change in velocity of a car that starts at rest and has a final velocity of 20 m/s north.
27.	Analyze the motion of an object that has an acceleration of 0 m/s ² .
28.	Compare Suppose a car is accelerating so that its speed is increasing. First, describe the line that you would plot on a speed-time graph for the motion of the car. Then describe the line that you would plot on a distance-time graph.
29.	Math Connection A ball is dropped from a cliff and has an acceleration of 9.8 m/s ² . How long will it take the ball to reach a speed of 24.5 m/s?
30.	Math Connection A sprinter leaves the starting blocks with an acceleration of 4.5 m/s^2 . What is the sprinter's speed 2 s later?

3 Forces and Newton's Laws

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Forces and Newton's Laws

1 Forces

REVIEW VOCABULARY mass	Recall the definition of the Review Vocabulary term. Mass
NEW VOCABULARY	Use your book to define each term.
force	force
net force	
friction	net force
gravity	nei torce
field	
weight	friction
	gravity
	field
	weight

Model an apple hanging from a tree and a falling apple. Include arrows with labels to show all forces acting on the apples.

Hanging Apple

Falling Apple

Analyze the forces acting on the apple in each drawing and how they combine to form the net force.

Complete the concept map, using the information in your book.

Get It? Describe the source of friction.

Fill in the blanks to complete the concept of friction.

The amount of friction between two ______ depends on the _____ of surfaces and the _____ pressing the surfaces together. Rougher surfaces have more bumps and can form

, increasing the amount of friction.

 $\label{eq:Summarize} \textbf{Summarize} \text{ the law of universal gravitation in a complete sentence}.$

Write the definitions of weight and mass in the boxes.

Copyright © McGraw-Hill Education

Find your weight on other planets by multiplying the gravitational field strength and your mass ($F_g = mg$).

Planetary body	Your mass (<i>m</i>) in kg	Gravitational field strength (<i>g</i>) in N/kg	Your weight (<i>Fg</i>) in N
Sun		275	
Mercury		3.70	
Venus		8.87	
Earth		9.81	
Mars		3.71	
Jupiter		24.8	
Saturn		10.4	
Uranus		8.69	
Neptune		11.2	

Get It? Explain why gravity is called a long-range force.

4.	Describe two forces that would change the motion of a bicycle traveling along a road.
5.	Explain Can there be forces acting on an object if the object is at rest? Must there be an unbalanced force acting on a moving object? Explain your answers.
6.	Explain Why does coating surfaces with oil reduce friction between the surfaces?
7.	Distinguish between the mass of an object and the object's weight.
8.	Predict Suppose Earth's mass increased but Earth's diameter did not change. Describe how the gravitational force between Earth and an object on its surface would change.
9.	Math Connection On Earth, what is the weight of a large-screen TV that has a mass of 75 kg?
Ο.	Math Connection Two students push on a box in the same direction, and one student pushes in the opposite direction. What is the net force on the box if each student pushes with a force of 50 N?

Forces and Newton's Laws

2 Newton's Laws of Motion

REVIEW VOCABULARY acceleration	Recall the definition of the Review Vocabulary term. acceleration
NEW VOCABULARY Newton's first law of motion inertia	Use your book to define each term. Newton's first law of motion
Newton's second law of motion Newton's third law of motion	inertia Newton's second law of motion Newton's third law of motion

2 Newton's Laws of Motion (continued)

Summarize Newton's first law of motion by telling how an object in motion's inertia is changed and how an object at rest is affected.	
An object in motion	
An object at rest	
Model a rock being thrown at a wall and a car crashing into the wall.	
Predict which object will do more damage, and support your answer by using the concept of inertia.	
Analyze the forces on a hockey puck sinking through water. Draw a force diagram for the puck in the water.	

Copyright © McGraw-Hill Educatio

2 Newton's Laws of Motion (continued)

Summarize Newton's second law of motion in your own words.

Complete the concept map with the 3 physical properties of an object that are related by Newton's second law of motion.

Get It? Identify You apply a force of 2 N to a toy car and to a real car. Which car has the greater acceleration?

Organize the 3 variables related by Newton's second law in the table. Show equations to find each variable if you know the values of the other two variables.

Newton's Second Law of Motion		
Unknown Variable	Known Variables	Equations
Acceleration		
Net force		
Mass		

2 Newton's Laws of Motion (continued)

$\mathbf{\circ}$	ILON TOON THOONEDO
17.	Determine whether the inertia of an object changes as the object's velocity changes.
18.	Explain why an object with a smaller mass has a larger acceleration than an object with a larger mass if the same force acts on each.
19.	Identify You push a book across a table. The book moves at a constant speed, but you do not move. Identify all of the forces on you. Then, identify all of the forces on the book.
20	Math Connection A student pushes on a 5-kg box with a force of 20 N forward. The force of sliding friction is 10 N backward. What is the acceleration of the box?
21.	Math Connection You push yourself on a skateboard with a force of 30 N east and accelerate at $0.5~\text{m/s}^2$ east. Find the mass of the skateboard if your mass is $58~\text{kg}$.

Forces and Newton's Laws

3 Using Newton's Laws

Recall the definition of the Review Vocabulary term. momentum
Use your book to define each term. air resistance
terminal velocity
free fall
law of conservation of momentum

Copyright © McGraw-Hill Education

3 Using Newton's Laws (continued)

Analyze the effects on a passenger riding in a car traveling at 50 km/h that collides head-on with a solid object.

Without Restraints	With Safety Belts and Air Bags
	f a parachutist with an open chute to e parachutist with a closed chute.
Get It? Explain why some obje	cts fall faster than others.
Get It? Explain why some obje	cts fall faster than others.
Distinguish between an object t	that is truly weightless and an objec
Distinguish between an object t	that is truly weightless and an objec
Distinguish between an object t	that is truly weightless and an objec
	that is truly weightless and an objec

3 Using Newton's Laws (continued)

Create a top view of an object moving in a circle at constant speed, such as a ball on a string. Show at least two positions of the object. At each position, draw an arrow for the object's velocity and another arrow for the centripetal acceleration of the object.

Calculate the force that is needed to propel a rocket into space if the rocket has a mass of 12,000 kg and it takes the rocket 10 min to reach 11 km/s, the escape velocity for Earth's gravity. (Hint: use the formula F = ma).

Fill in the information below as you make your calculations.

Mass in kg	
Initial velocity in m/s	
Final velocity in m/s	
Time in s	
Force in N	

3 Using Newton's Laws (continued)

22.	Describe Use Newton's laws to describe how inertia, gravity, and air resistance affect sky divers as they fall, open their parachutes, and reach terminal velocity.
23.	Discuss the advantages of wearing a safety belt when riding in a vehicle.
24.	Explain why planets orbit the Sun instead of traveling off into space.
25.	Describe what happens to the momentum of two billiard balls that collide.
26.	Explain how a rocket can move through outer space where there is no matter for it to push on.

Copyright © McGraw-Hill Education

3 Using Newton's Laws (continued)

CHECK YOUR PROGRESS (CONTINUED)

- **27. Predict** Suppose you are standing on a scale in an elevator that is accelerating upward. Will the scale read your weight as larger or smaller than the weight it reads when you are stationary? Explain.
- **28. Math Connection** A fuel-filled rocket is at rest. It burns its fuel and expels hot gas. The gas has a momentum of 1500 kg·m/s backward. What is the momentum of the rocket?

4 Work and Energy

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

,		
K What I Know	W What I Want to Find Out	L What I Learned
WHALIKHOW	what I want to I ma Out	What i Leamed

Work and Energy

1 Work and Machines

REVIEW VOCABULARY force	Recall the definition of the Review Vocabulary term. force
NEW VOCABULARY	Use your book to define each term.
work	work
machine	
simple machine	machine
compound machine	muomie
efficiency	
mechanical advantage	simple machine
	compound machine
	efficiency
	mechanical advantage

Create three sketches showing the following situations involving work. A force is doing A force is not doing A force is not doing work because there work. work because the is no motion. force does not point in the direction of the motion. Get It? Describe the work done on an object when the force on that object and the motion of that object are perpendicular. Get It? Identify at least two simple machines that can be found at a playground.

Complete the concept map relating simple and compound machines.

Sketch a nail and a screw. Explain which one uses less force and why.

Get It? Compare You use a ramp (an inclined plane) to help load a heavy crate into a truck. How does the work you put into this simple machine compare with the work you get out of the machine?

Copyright © McGraw-Hill Educa

Evaluate the efficiency of two identical-looking lifts. Lift A can raise a 5-newton weight 4 meters in 3 seconds. Lift B can raise a 10-newton weight 3 meters in 3 seconds. The input work for each lift is 40 joules. (1 joule = 1 newton-meter.) Fill in the missing numbers below.

What do you know?

	Lift A	Lift B
Weight (newtons)		
Distance (meters)	4	
Time (seconds)	3	3
Input work (W _{in})	40 J	40 J
Output work (W _{out})		
Efficiency (%) = $W_{\text{out}} \div W_{\text{in}} \times 100$		

Identify how each machine changes the way work is done so as to be useful.

Bicycle

Ax blade

Car jack

Contrast the scientific definition of <i>work</i> with its everyday meaning.
Compare the output force with the input force for a machine that has a mechanical advantage that is greater than one.
Describe how lubricating a machine affects the output work from that machine. How would the input and output forces be affected?
Math Connection If you push a book 1.5 m across a table using a constant force of 10.0 N, how much work do you do on the book?
Math Connection What is the efficiency of a ramp if the input work is 96 J and the output work is 24 J?

Work and Energy

2 Describing Energy

REVIEW VOCABULARY

work

NEW VOCABULARY
energy
system
kinetic energy
potential energy
elastic potential energy
chemical potential energy
gravitational potential
energy

Recall the definition of the Review Vocabulary term. Work	
Use your book to define each term.	
energy	
system	
kinetic energy	
potential energy	
elastic potential energy	
chemical potential energy	
gravitational potential energy	

2 Describing Energy (continued)

Get It? Identify What limits the speed at which the ball will leave the racket?

Get It? Identify three different forms of energy.

Create an analogy to show how energy is like water.

Complete the formula for the kinetic energy equation of a moving object. Use *mass* (*kg*), *speed* (*m*/*s*), and *kinetic energy* (*joules*) in your equation.

word equation:

$$=\frac{1}{2} \times$$

symbol equation:

2 Describing Energy (continued)

Get It? Explain how a book can have energy even if it is not moving.		
Identify at least eight familiar items that involve energy. Group items by the form of energy they are associated with.		
Kinetic	Potential	
Get It? Describe how the elastic changes as a person jumps on it.	potential energy of a trampoline	
Analyze the types of potential ene competing in each of these athleticarchery		
sprinting		
platform diving		

Complete the concept map by entering each term or phrase in the appropriate location.

- chemical
- mgh
- energy
- potential energy
- gravitational
- $\frac{1}{2}$ mass \times velocity²

2 Describing Energy (continued)

Describe a change caused by kinetic energy as well as a change that involves potential energy.
Infer whether a system can have kinetic energy and potential energy at the same time.
Differentiate elastic potential energy and chemical potential energy.
Compare The different molecules that make up the air in a room have, on average, the same kinetic energy. How does the speed of the different molecules that make up the air depend on their masses?
Math Connection A 0.06-kg ball is moving at 5.0 m/s. How large is the kinetic energy from this motion?
Math Connection A 0.50-kg apple is 2.0 m above the reference level. What is the GPE of the apple-Earth system?

Work and Energy

3 Conservation of Energy

REVIEW /OCABULARY riction	Recall the definition of the Review Vocabulary term. friction
NEW VOCABULARY	Use your book to define each term.
aw of conservation of energy	law of conservation of energy
nechanical energy power	mechanical energy
	power

3 Conservation of Energy (continued)

Set It?	
	ne energy transformations when a fast-moving roller coas s ride and comes to a stop. Give three possibilities.
•	
•	
	drawing of an apple falling from a tree. Label where: energy is low and gravitational potential energy is high
kinetic kinetic	
kinetic kinetic	energy is low and gravitational potential energy is high energy is high and gravitational potential energy is low

Compare and contrast the mechanical energy of a ball thrown as a projectile with the mechanical energy of a swing in motion.

Alike	Different

Copyright © McGraw-Hill Education

3 Conservation of Energy (continued)

	Apply the law of conservation of energy and describe the energy transformations that occur as you coast down a long hill on a bicycle and then apply the brakes to make the bike stop at the bottom.
	Identify whether each of the following is a form of mechanical energy: elastic potential energy, chemical potential energy, gravitational potential energy.
	Explain how friction affects the mechanical energy of a system.
I	Compare A roller coaster is at the top of a hill and rolls to the top of a lower hill. If mechanical energy is constant, then on the top of which hill is the kinetic energy from the roller coaster's motion greater?
	Math Connection Approximately how much electrical energy does a 5-W lightbulb convert to radiant and thermal energy in one hour?
	Math Connection The mechanical energy of a bicycle at the top of a hill is 6,000 J. The bicycle stops at the bottom of the hill by applying the brakes. If the gravitational potential energy of the bicycle-Earth system is 2,000 J at the bottom of the hill, how much mechanical energy was converted into thermal energy?

5 Thermal Energy

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.				
	_			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Thermal Energy

1 Temperature, Thermal Energy, and Heat

VOCABULARY	Recall the definition of the Review Vocabulary term.
kinetic energy	kinetic energy
NEW VOCABULARY	Use your book to define each term.
termperature	temperature
thermal energy	
heat	thermal energy
specific heat	
	heat
	specific heat

Compare the motion of the atoms or molecules that make up a hot object to the atoms or molecules that make up a cold object.				
Analyze how each of the three activities, potential, or total thermal er				
Actions that increase thermal energy	Explanation			
raise the temperature of the object				
pull atoms or molecules that attract one another farther apart				
add mass to the object, without changing its temperature				
Get It? Explain the difference be energy.	tween temperature and thermal			
Model the flow of heat from a hot of flow and some particles in the hot a	-			

Get I	t? Define specific heat.
-	are and contrast what happens in a metal to what happens to of water when each is heated.
casser	ate the amount of thermal energy lost from a 0.5-kg glass role dish when it is placed in water. The dish's temperature es from 110°C to 50°C.
Hints:	1. Start by writing the equation for the change in thermal energy of an object.
	2. Find the specific heat for glass in the table in your book.

Sequence steps to use a calorimeter to find the specific heat of a material. Include steps for measurement and steps for calculation. 2. 3. 4. Describe three or four processes in nature or daily life that depend on the high specific heat of water.

CHECK YOUR PROGRESS

•	Describe how the motions of the particles that make up an object change when the object's temperature increases.
	Describe the energy transfer when you touch a block of ice with your hand.
•	Infer When one object heats another, does the temperature increase of one object always equal the temperature decrease of the other object? Explain.
	Explain why water is often used as a coolant.
•	Explain whether the following statement is true: For any two objects, the one with the higher temperature always has more thermal energy.
	Estimate the change in the thermal energy of water in a pond with a mass of 1000 kg and a specific heat of 4200 J/(kg·°C) if the water cools by 1°C.
•	Calculate the specific heat of a metal if 0.3 kg of the metal absorb 9000 J of heat as the metal warms by 10°C.

Thermal Energy

2 Conduction, Convection, and Radiation

VOCABULARY	Recall the definition of the Review Vocabulary term. density
density	density
NEW VOCABULARY	Use your book to define each term.
conduction	conduction
convection	
radiation	
thermal insulator	convection
	radiation
	thermal insulator

Compare and contrast conduction, convection, and radiation by completing the table.

Description	Sketch	Sketch
Conduction:		
Convection:		
Radiation:		

Copyright © McGraw-Hill Educa

Get It?	Explain how convection and density are related.
Get It?	Contrast conduction with convection.
	Identify two different animal adaptations for controlling the of thermal energy.

Organize the energy-controlling features of some animals in the following table. Write the feature and describe its role in helping the animal control thermal energy.

Animal	Feature	Role
Antarctic fur seal		
Emperor penguin		
Desert spiny lizard	scaly skin	reflects Sun's rays

Get It? Explain why insulation is just as important in hot climates as it is in cold climates. Analyze how the vacuum between the inner and outer walls of a thermos bottle limits energy loss through conduction and convection.	Get It? Explain he good thermal insula	ow trapped air makes a material, such as fleece itor.
	=	
List the methods you use to control the flow of thermal energy to and	List the methods vo	u use to control the flow of thermal energy to an
from your body. Explain the purpose of each method.		

CHECK YOUR PROGRESS

\mathbf{c}	ECK TOOKT KOOKESS				
11.	Identify which method of thermal energy transfer would be fastest through a vacuum, which would be fastest through a gas, and which would be fastest through a solid.				
12.	Explain why the air temperature near the ceiling of a room tends to be warmer than the air temperature near the floor.				
13.	Predict whether plastic foam, which contains pockets of air, would be a good thermal conductor or a good thermal insulator.				
14.	Infer Several days after a snowfall, the roofs of some homes on a street have almost no snow on them, while the roofs of other homes are still snow-covered. Give one reason, related to home insulation, that might cause this difference.				
15.	Calculate Solar Radiation Averaged over a year in the central United States, radiation from the Sun transfers about 200 W to each square meter of Earth's surface. If a house is 10 m long by 10 m wide, how much solar energy falls on the house each second?				

Copyright © McGraw-Hill I

Thermal Energy

3 Using Thermal Energy

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. mechanical energy
mechanical energy	Theoriamout energy
VOCABULARY	Write the correct vocabulary term in the left column for each definition below.
	a heating system that absorbs radiant energy from the Sun
	the study of the relationship among thermal energy, heat, and work
	states that the increase in thermal energy of a system equals the work done on the system plus the thermal energy transferred to the system if the mechanical energy of the system is constant
	states that it is impossible for thermal energy to transfer from a cool object to a warmer object unless work is done
	a device that transforms thermal energy into mechanical energy
	a heat engine that burns fuel in internal chambers

Copyright © McGraw-Hill Education

3 Using Thermal Energy (continued)

Get It? Identify the energy transformation that occurs in an electric heating system.

Compare and contrast radiator-based, electric, and forced-air heating systems for buildings.

System Type	Source of Thermal Energy	How Thermal Energy Is Transported	How Thermal Energy Spreads
radiator-based			
electric			
forced-air			

Get It? Describe the function of a solar collector.

Sequence how solar collectors work.

- l. _____
- 2.
- 3. _____
- **1.** ______

3 Using Thermal Energy (continued)

Complete the equation that expresses the first law of thermodynamics.

Get It? Identify two ways to increase the temperature of a system.

Contrast the characteristics of a non-isolated system and an isolated system.

Sequence the four strokes of a standard automobile in their functional order. Fill in the other columns to describe what happens during each stroke.

Name of Stroke	Which valves are open?	What are the gases doing?	Piston movement (up/down)	Power generated? (yes/no)

Copyright © McGraw-Hill Education

3 Using Thermal Energy (continued)

Summarize the steps a refrigerator takes to transfer heat by filling in the blanks with words from the word bank. Some words may be used more than once.

colder gas heat liquid warmer work

Explain why electric generators do not convert mechanical energy into electrical energy with 100% efficiency.

Analyze A refrigerator is a device that causes heat to flow from a cool object (such as a pitcher of water) to a warm object (the air in the kitchen). Explain why this does not violate the second law of thermodynamics.

16. Describe a device that transforms thermal energy into another useful form.

3 Using Thermal Energy (continued)

CHECK YOUR PROGRESS

17 .	Explain how the thermal energy of an isolated system changes with time if the
	mechanical energy of that system is constant.

- **18. Compare and contrast** an active solar heating system with a radiator system.
- **19. Predict** whether energy will ever spontaneously transfer from a cold pot of water to a hot stove.
- **20. Diagram** how the thermal energy of the coolant changes as the coolant flows through the refrigerator.

3 Using Thermal Energy (continued)

CHECK YOUR PROGRESS (CONTINUED)

- **21. Predict** Suppose you vigorously shake a bottle of fruit juice. Predict how the temperature of the juice will change. Explain your reasoning.
- **22.** Calculate Change in Thermal Energy Suppose you push down on the handle of a bicycle pump with a force of 20 N. The handle moves 0.3 m, and there is no heat between the pump and its surroundings. What is the change in thermal energy of the bicycle pump?

6 Electricity

ENCOUNTER THE PHENOMENON

Vrite the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Electricity

1 Electric Charge

REVIEW VOCABULARY gravity

NEW VOCABULARY

static electricity

law of conservation of charge

electric field

conductor

insulator

charging by contact

charging by induction

electroscope

gravity
Use your book to define each term.
static electricity
law of conservation of charge
electric field
conductor
insulator
charging by contact
charging by induction
electroscope

Recall the definition of the Review Vocabulary term.

Model charges and electric fields of two items that have just been removed from a clothes dryer.

Get It? Explain why the arrows point away from positive charges and toward negative charges in electric field diagrams.

Unlike gravita	ational forces, electric for	ces can be either
attractive or	Opposite cha	ges
each other, and like o	charges	each other. The
strength of the electr	ric force between two ch	arges depends on the
of	charge as well as the	between
charges.		
Get It? Compare to	he strength of electric fo strength of gravitational	ces between protons
Get It? Compare to	he strength of electric fo	ces between protons

Compare the strengths of electric forces and gravitational forces by completing the table.

Where	Which is stronger—electric force or gravitational force?
Between electrons and protons in an atom	
Between hydrogen and oxygen in water	
Between you and Earth	
Between Earth and the sun	

Get It?	Get It? Contrast conductors with insulators.		sulators.
List 5 co	nductors and 5 insulat	tors in tl	he spaces below.
	Conductors		Insulators
		_	
		_	
		_	
Get It?	Contrast charging by	/ contac	ct with charging by induction.
Get It?	Describe What is light	htning?	

contact or ch	Identify the type of charging that occurs in each event as charging by contact or charging by induction. Then describe how the charges move.		
You feel a tingling sensation during a thunderstorm.			
A lightning ro	od moves excess charges to Earth's surface.		
Get It? Exp	Plain the purpose of grounding.		
Get It? Ide	ntify the purpose of an electroscope.		
detect a char	e events that occur when an electroscope is used to ge on an object. Write numbers from 1 to 4 to the left of show the correct sequence.		
	The leaves repel each other and spread apart.		
	A charged object touches the knob.		
	Both leaves become positively (or negatively) charged.		
	Electrons travel up (or down) the rod.		

CHECK YOUR PROGRESS

1.	Predict what would happen if you touched the knob of a positively charged electroscope with a negatively charged object. Explain your prediction.				
2.	Compare and contrast electric force with gravitational force.				
3.	Differentiate between conductors and insulators.				
4.	Explain how electrically neutral objects can become charged even though charge cannot be created or destroyed.				
5.	Infer Humid air is a better electrical conductor than dry air. Explain why you are more likely to receive a shock after walking across a carpet when the air is dry than when the air is humid.				
6.	Math Connection A 0.020-kg balloon is charged by rubbing and then stuck to the ceiling. If the strength of Earth's gravity on an object is 9.8 N/kg, how large is the electric force on the balloon?				

Electricity

2 Electric Current

REVIEW VOCABULARY SI

NEW VOCABULARY

electric current
voltage difference
electric circuit
resistance

Ohm's law

Recall the definition of the Review Vocabulary term.		
SI		
Use your book to define each term.		
electric current		
voltage difference		
electric circuit		
resistance		
Ohm's law		

Copyright © McGraw-Hill Education

2 Electric Current (continued)

Create a drawing of an electric circuit that has a battery powering a digital clock. Show the direction of electron flow, and describe the movement of the electrons in the circuit.

Get It? Contrast the direction of current with the direction of electron flow.

2 Electric Current (continued)

Describe the components of each type of battery. In your own words, explain how it works.

Battery Type	Components	How It Works
Dry-cell battery		
Wet-cell battery		

Get It? Contrast a dry-cell battery with a wet-cell battery.

Copyright © McGraw-Hill Education

2 Electric Current (continued)

Express the three equations that come from Ohm's law.

Unknown value	Known values	Equation
Current	Voltage difference Resistance	
Resistance		
Voltage difference		

Contrast direct current and alternating current.	

Copyright © McGraw-Hill Educa

2 Electric Current (continued)

CHECK YOUR PROGRESS

0.	Compare and contrast a current through a circuit with a static discharge.
1.	Compare and contrast the cause of a flow of water in a pipe and the cause of a flow of electrons in a wire.
2.	Explain how a carbon-zinc dry cell produces a voltage difference between the positive and negative terminals.
3.	Identify two ways to increase the current in a simple circuit.
4.	Explain how the resistance of the heating element in an electric heater changes as it gets hotter, transferring thermal energy to the heater's surroundings at a faster and faster rate.
5.	Math Connection Calculate the voltage difference in a circuit that has a resistance of 24 Ω if the current is 0.50 A.

Electricity

3 More Complex Circuits

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. Power
power	
NEW VOCABULARY	Use your book to define each term.
series circuit	series circuit
parallel circuit	
electrical power	parallel circuit
	electrical power

Compare and contrast fuses and circuit breakers.

Similarities	Differences

3 More Complex Circuits (continued)

Device	Converts electri	cal energy to
•	ons that come from the o	definition of electrical
Oower. Unknown value	Known values	definition of electrical Equation
Oower. Unknown value		
Unknown value Electrical power	Known values Current	
Express three equation bower. Unknown value Electrical power Current Voltage difference	Known values Current	

3 More Complex Circuits (continued)

CHECK YOUR PROGRESS

24.	Compare series circuits with parallel circuits.
25.	Explain what determines the current in each branch of a parallel circuit.
26.	Infer whether a circuit breaker should be connected in parallel to the circuit that it is protecting.
27.	Relate A parallel circuit with four branches is connected to a battery. Explain how the amount of current from the battery is related to the amount of current in the branches of the circuit.
28.	Math Connection Calculate the current into a desktop computer plugged into a 120-V outlet if the power used is 180 W.
29.	Math Connection A circuit breaker trips when the current in the circuit reaches 15 A. If the voltage is 120 V, how much power is being used when the breaker is tripped?
30.	Math Connection Estimate the monthly cost of using a 700-W refrigerator that runs for 10 h a day if the cost per kWh is \$0.20.

7 Magnetism and Its Uses

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.	

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Magnetism and Its Uses

1 Magnetism

REVIEW VOCABULARY electric field

NEW VOCABULARY
magnetism
magnetic field
magnetic pole

magnetic domain

Recall the definition of the Review Vocabulary term.
electric field
Use your book to define each term.
magnetism
magnetic field
magnetic pole
magnetic domain

Copyright © McGraw-Hill Education

1 Magnetism (continued)

Organize important facts about magnets by completing the outline.
Magnets
A. Magnetic force
1.
2.
3.
<u> </u>
B. Magnetic field
1.
2
3
C. Magnetic poles
1.
2
3.
4
a
b
D. Compass
1.
2
3
E. Earth as a magnet
1.
2.
3 .

1 Magnetism (continued)

Get It? Explain why the atoms of magnetic materials behave like small magnets.

Classify each metal as magnetic or nonmagnetic.

aluminum cobalt copper gold iron mercury nickel silver

Model a close-up of the magnetic domains of the cross sections of an iron rod in each of these situations.

Identify the poles of a magnet before and after it is sliced into three pieces.

1 Magnetism (continued)

CHECK YOUR PROGRESS

1.	Explain Why does a magnet exert a force on another magnet when the two magnets are not in contact?				
2.	Describe the magnetic field when two unlike magnetic poles are close together. Draw a diagram to illustrate your answer.				
3.	Describe how a compass needle moves when it is placed in a magnetic field.				
4.	Explain why only certain materials are magnetic.				
5.	Explain how heating a bar magnet would change its magnetic field.				
6.	Explain Use the magnetic domain model to explain why a magnet sticks to a refrigerator door.				
7.	Math Connection Magnetic domains have an average volume of 0.0001 mm ³ . If a magnet has dimensions of 50 mm by 10 mm by 4 mm, how many domains does the magnet contain?				

Magnetism and Its Uses

2 Electricity and Magnetism

REVIEW Recall the definition of the Review Vocabulary term. **VOCABULARY** electric current electric current Use your book to define each term. **NEW VOCABULARY** electromagnetic force electromagnetic force electromagnetism solenoid electromagnetism electromagnet galvanometer solenoid electric motor electromagnet galvanometer electric motor

Evaluate the magnetic fields that surround two identical pieces of wire carrying the same electric current. One wire is straight, and the other wire is coiled into a solenoid.
Get It? Explain how the strength of the magnetic field around a wire can be increased.
Get It? Compare and contrast permanent magnets and electromagnets.

amount	current	direction	electromagnet
magnetic field	repelled	reproduces	voltage
The CD player pr	oduces a		
		an electric	in
the electromagn	et next to the sp	eaker cone.	
The CD contains current and its		t changes the	of
The changing ele		=	_
The electromagn		o or	by the
The moving	vil	orates the speak	er cone and
	the sound reco	orded on the CD.	
Get It? Summar produce sound.	ize how a stered	o speaker uses a	n electromagnet t

Model and label a galvanometer and describe	e how it works.
Sequence the steps an electric motor uses to energy to mechanical energy. Make a sketch	_
1.	
2.	
2	
3.	

CHECK YOUR PROGRESS

3.	Explain what happens when a magnet is placed near a current-carrying wire.
) .	Infer A bar magnet is repelled when an electromagnet is brought close to it. Describe how the bar magnet would have moved if the current in the electromagnet had been reversed.
Ο.	Define the term <i>electromagnetic force</i> . Give an example of a machine that uses this force.
1.	Describe two ways that you could increase the strength of the magnetic field produced by an electromagnet.
2.	Explain how a simple electric motor transforms electrical energy into mechanical energy.
3.	Predict How would an electromagnet's magnetic field change if the iron core were replaced by an aluminum core?
4.	Math Connection The magnetic field around a current-carrying wire at a distance of 1 cm is twice as strong as at 2 cm. How does the field strength at 0.5 cm compare to the field strength at 1 cm?

Magnetism and Its Uses

3 Producing Electric Current

REVIEW Recall the definition of the Review Vocabulary term. **VOCABULARY** voltage difference voltage difference Use your book to define each term. **NEW VOCABULARY** electromagnetic induction electromagnetic induction generator turbine generator direct current (DC) alternating current (AC) turbine transformer direct current (DC) alternating current (AC) transformer

Get It? Define the term electromagnetic induction.

Copyright © McGraw-Hill Educati

Copyright © McGraw-Hill Education

3 Producing Electric Current (continued)

Predict three electrical devices in your home that will stop working in a power failure, and which devices will continue to work. Describe the two types of current used by these devices.

	Works	Doesn't Work
Devices		
Description of Current		

Compare the two types of transformers using a Venn diagram. List at least two pieces of information in each category.

Analyze why a transformer is needed to provide power to your home with the correct voltage.

3 Producing Electric Current (continued)

CHECK YOUR PROGRESS

Explain why a magnet sitting next to a wire does not induce a current in the wire.
Define the term <i>electromagnetic induction</i> , and explain how a generator uses electromagnetic induction.
Describe the difference between the current from a battery and the current from an electric socket.
Summarize the steps involved when a transformer changes the voltage of an alternating current.
Explain Why is the output voltage from a transformer zero if the current in the primary coil is a direct current?
Math Connection A transformer has 1000 turns of wire in the primary coil and 50 turns in the secondary coil. If the input voltage is 2400 V, what is the output voltage?

8 Energy Sources and the Environment

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomer	enon question for this module.	

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned		
WHALIKHOW	what I want to I ma Out	What i Leamed		

Energy Sources and the Environment

1 Fossil Fuels

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. chemical potential energy	
chemical potential energy		
VOCABULARY	Write the correct vocabulary term in the left column for each definition below.	
	any fuel formed by the decay of ancient plants and animals	
	a liquid fuel that is a mixture of hydrocarbons formed by decayed organisms	
	a resource that cannot be replaced by natural processes as quickly as it is used	

Copyright © McGraw-Hill Education

1 Fossil Fuels (continued)

Analyze the two g statements.	raphs in Figur e	e 2 in your te	xtbook to complete the
More energy is use	ed for	in t	he United States than
			about 12 percent less
	of our energy i	needs. Solar/	as together supply geothermal, wind, and 6 percent of our energy
needs.	supplie	s nearly 9 pe	rcent of energy needs
in the United State from burning			energy used comes , and
Estimate the ratio three types of ene	0,		ood to each of the other xtbook.
Get It? Explain I separated.	now chemical (compounds ir	n petroleum are
Get It? Identify that are made of p	•		that you use every day

Get It? Describe how coal forms.

Complete the following table to compare natural gas and coal.

Fuel	Description of Fuel	Main Use or Uses	Environmental Impact
Natural Gas			
Coal			

Get It? Identify three examples of nonrenewable resources.

Copyright © McGraw-Hill Education

1 Fossil Fuels (continued)

burned in power plants is transported to where it can be used as electrical energy.		
Complete the sente	nces below.	
Because fossil fuels	are	resources, their supply is
	s the human popu	
de	emands	, reserves are
		the remaining
		ason to reduce the use of fossi
uels is that they rele	ease	into the environment whe
ourned, which contri	butes to	
Summarize the type	s and uses of fos	sil fuels by completing the
Summarize the type diagram.		
• •	Three Types of	
• •		
• •		
• •		
• •		
• •	Three Types of	Fossil Fuels
• •		Fossil Fuels
• •	Three Types of	Fossil Fuels
• •	Three Types of	Fossil Fuels
• •	Three Types of	Fossil Fuels
• •	Three Types of	Fossil Fuels
• •	Three Types of	Fossil Fuels

1 Fossil Fuels (continued)

CHECK YOUR PROGRESS

1.	Describe the advantages and disadvantages of using fossil fuels to generate electricity.
2.	Explain how you use energy resources daily.
3.	Describe how fossil fuels are formed.
4.	Explain the law of conservation of energy as it applies to the burning of fossil fuels.
5.	Explain Why are fossil fuels considered to be a nonrenewable resource?
6.	Math Connection According to the graph in Figure 8 (in your book), by how many parts per million did the concentration of atmospheric carbon dioxide increase from 1958 to 2010?
7.	Math Connection Use a Graph According to the graph in Figure 3 (in your book), about how much more energy is released by burning 1 g of natural gas compared to burning 1 g of wood?

Energy Sources and the Environment

2 Nuclear Energy

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. generator	
generator		
VOCABULARY	Write the correct vocabulary term in the left column for each definition below.	
	process in which atomic nuclei combine at very high temperatures, resulting in a small amount of mass being converted to a large amount of thermal energy	
	process in which a small amount of mass energy is converted into a tremendous amount of thermal energy by splitting nuclei	
	system that generates electricity from controlled nuclear reactions	
	any radioactive by-product of the use of radioactive materials	

Identify three advantages and three disadvantages of using fusion.

Disadvantages
1.
2.
3.

Analyze nuclear energy use by filling in the correct numeral for each statement.

_____ number of power plants in the United States

percent of energy consumed in the United States
that is produced from nuclear power

Describe the four common parts of all nuclear reactors.

1.

2.

3.

4.

Sequence a uranium nuclear fission reaction by completing the flow chart below. The first step has been done for you.

1. A neutron hits the nucleus of a U-235 atom.

2.

3.

Model and label the control rods in a nuclear reactor. Use arrows to show how the rods would be moved to slow the reaction. Get It? Explain how a nuclear chain reaction is controlled in a nuclear reactor. Predict what would happen if the control rods were completely removed from a nuclear reaction. **Complete** the graphic organizer to explain how nuclear fission produces electricity. A coolant is pumped through the reactor.

Get It? current.	Explain how nuclear power plants produce an electric
Get It?	Describe the formation of spent fuel.
Get It?	Identify industries that produce low-level waste.
	Describe What are the differences between low-level and el nuclear wastes?
Compare	e and contrast nuclear fusion and nuclear fission.

CHECK YOUR PROGRESS

8.	Compare and contrast the advantages and disadvantages of nuclear power plants and those that burn fossil fuels.
9.	Describe nuclear fission and how the chain reaction in a nuclear reactor is controlled.
10.	Describe nuclear fusion and the problems associated with using nuclear fusion reactions as an energy source.
11.	Explain why a chain reaction occurs when uranium-235 undergoes fission.
12.	Classify A research project produced 10 g of nuclear waste with a short half-life. How would you classify this waste, and how would it be disposed?
13.	Math Connection Naturally occurring uranium contains 0.72 percent of the isotope uranium-235. What is the mass of uranium-235 in 2,000 kg of naturally occurring uranium?

Copyright © McGraw-Hill Education

Energy Sources and the Environment

3 Renewable Energy Resources

REVIEW
VOCABULARY
radiant energy

vocabulary
renewable resource
photovoltaic cell
hydroelectricity
geothermal energy
biomass

Recall the definition of the Review Vocabulary term.		
radiant energy		
Use your book to define each term.		
renewable resource		
photovoltaic cell		
hydroelectricity		
geothermal energy		
biomass		

3 Renewable Energy Resources (continued)

Summarize the need for alternative energy resources.
Complete the statements to make them true.
The solar energy reaching the United States in one year is
equal to times the energy used in the United States
in one year. When sunlight strikes a solar cell, flow
through a circuit. Conversion of solar energy to electrical energy by
solar cells is only about percent efficient. In a
parabolic trough, sunlight is focused on a tube that contains a
fluid. The heated fluid produces,
which turns a turbine to generate an
Get It? Explain how the structure and materials of solar cells
enables them to transform radiant energy into electrical energy.

3 Renewable Energy Resources (continued)

Sequence the steps in the production of hydroelectric energy. The first step has been completed for you.

Water flows through tunnels near the base of a dam.

Complete the table comparing information about tides, wind, and geothermal energy resources.

	Tides	Wind	Geothermal
availability of the resource			
effect on plants and animals			
pollution created			

Identify two alternative fuels.

Evaluate one renewable energy resource that you think is promising as a way to supply our future energy needs. Support your choice.

3 Renewable Energy Resources (continued)

CHECK YOUR PROGRESS

	IECK TOOK TROOKESS		
14.	1. Explain the need to develop and use alternative energy sources.		
15.	Describe three ways that solar energy can be used.		
16.	Explain how the generation of electricity by hydroelectric, tidal, and wind sources are similar to each other.		
17.	Infer why geothermal energy is unlikely to become a major energy source.		
18.	Analyze On what single energy source do most energy alternatives depend, either directly or indirectly?		
19.	Math Connection A house uses solar cells that generate 1.5 kW of electrical power to supply some of its energy needs. If the solar panels supply the house with 40 percent of the power it needs, how much power does the house use?		

Copyright © McGraw-Hill Education

Energy Sources and the Environment

4 Environmental Impacts

REVIEW Recall the definition of the Review Vocabulary term. **VOCABULARY** temperature temperature Use your book to define each term. **VOCABULARY** population population carrying capacity pollutant carrying capacity hazardous waste photochemical smog acid precipitation pollutant hazardous waste photochemical smog acid precipitation

Copyright © McGraw-Hill Education

4 Environmental Impacts (continued)

Model population growth of modern humans by creating a graph on the grid provided below. First, use **Figure 25** in your textbook to complete the facts given in these five sentences.

- **1.** Human population was ______ in the year 1700.
- 2. Human population first reached 1 billion in the year
- 3. In 1960, the human population was ______
- **4.** Human population reached 6.8 billion in ______.
- **5.** The population is expected to reach ______ by 2050.

Define carrying capacity. Hypothesize about some factors that threaten carrying capacity and things humans could do to increase our carrying capacity.

Carrying Capacity			
Definition Limits Ways to increase it		Ways to increase it	

4 Environmental Impacts (continued)

Complete the chart to show how some of your daily activities consume resources and affect the environment.

How My Activities Affect the Environment	
Activity	Effect on Environment

Organize information about land usage in the outline. Two examples have been filled in for you.

Land Uses and Their Environmental Problems

- **A.** Agriculture
 - 1.
 - 2. Increases soil erosion.
- **B.** Forest resource use
 - 1.
 - 2.
- C. Urban Development
 - **1.** Paving stops water from soaking into soil, causing flooding.
 - 2.
- **D.** Waste
 - 1.
 - 2.

Copyright © McGraw-Hill Education

4 Environmental Impacts (continued)

Summarize the effects of each source of water pollution by completing the chart.

Sources of Water Pollution and Their Effects	
Source	Effects
Sediment	
Metals	
Oil and gasoline	
Human waste/ sewage	

Get It? List the sources of land, water, and air pollution.

Sequence steps in the formation of smog.

1.	
2.	
3.	
4.	

4 Environmental Impacts (continued)

Create an original drawing in the box to show how acid rain forms. Add labels to your drawing to identify what it shows. **Complete** the graphic organizer about reducing air pollution. Ways to Reduce Air Pollution Infer Why would setting the thermostat in your home at a lower temperature in winter and a higher temperature in summer help reduce air pollution?

4 Environmental Impacts (continued)

CHECK YOUR PROGRESS

20.	Discuss what you can do to lessen your environmental impact on natural resources such as land, water, and air.
21.	Describe how urban development can increase flooding.
22.	Infer the effect of deforestation on the carrying capacity of the Amazon rain forest.
23.	Identify three pollutants released into the air when fossil fuels are burned.
24.	Infer Southern Florida is home to many dairy and sugarcane farms. Everglades National Park, including its shallow river system, is also located there. What kinds of pollutants might affect plants and animals in the Everglades?
25.	Math Connection A decrease of one unit on the pH scale means a solution is ten times more acidic. A decrease of two units means the solution is 100 times more acidic. How much more acidic is acid precipitation (pH = 4.0) than pure water (pH = 7.0)?

9 Introduction to Waves

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.		

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K	W	L
What I Know	What I Want to Find Out	What I Learned

Introduction to Waves

1 The Nature of Waves

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term.
matter	matter
NEW VOCABULARY	Use your book to define each term.
wave	wave
medium	
mechanical wave	medium
transverse wave	mealum
longitudinal wave	
	mechanical wave
	transverse wave
	longitudinal wave

Copyright © McGraw-Hill Education

1 The Nature of Waves (continued)

Model energy transfer in waves.

- Draw a sketch of a pebble being dropped in the water and creating waves.
- Draw arrows to show the direction of the energy that is being transferred by the waves.

Analyze what happens when waves come into contact with a boat. Explain why they do not move the boat to a different position.

Get It? Identify what waves carry.

Complete the graphic organizer about waves.

Get It? Describe the connection between a medium and a mechanical wave.

Get It? Compare the direction that a transverse wave travels with the direction that matter in that wave vibrates.

1 The Nature of Waves (continued)

Compare and contrast the 2 types of mechanical waves.			
Draw an example of each wave.			
 Use arrows to show the direction each wave travels and how transverse and longitudinal waves each move the medium. 			
Get It? Describe how sound waves travel through solids.			

1 The Nature of Waves (continued)

1. Describe the motion of an unanchored rowboat when a water wave passes. Does the wave move the boat forward?			
2.	Contrast how you would move a spring to make a transverse wave with how you would move a spring to make a longitudinal wave.		
3.	Identify evidence that seismic waves transfer energy without transferring matter.		
4.	Identify a mechanical wave that is also a longitudinal wave.		
5.	Describe how the world would be different if all waves were mechanical waves.		
6.	Math Connection The average speed of sound in water is 1500 m/s. How long would it take a sound wave to travel 9000 m in water?		

Introduction to Waves

2 Wave Properties

REVIEW

vibration

NEW VOCABULARY

crest

trough

compression

rarefaction

wavelength

frequency

period

amplitude

Recall the definition of the Review Vocabulary term. Vibration		
Use your book to define each term.		
crest		
trough		
40000Voccion		
compression		
rarefaction		
wavelength		
frequency		
n aria d		
period		
amplitude		

2 Wave Properties (continued)

Get It? Describe how wavelength is defined for transverse waves and for longitudinal waves. Get It? Describe how the wavelength and the frequency of a wave are related. Complete the flow chart to help you understand the relationship between frequency and wavelength. When the frequency the wavelength of of a wave the wave increases,

2 Wave Properties (continued)

Evaluate the speed of an ocean wave that has a wavelength of 4.0 m and a frequency of 400 Hz.

 $f = \underline{\hspace{1cm}} \qquad \lambda = \underline{\hspace{1cm}$

Get It? Identify Based on the equation, how would the wavelength of a wave be affected if the speed of the wave doubles but the frequency of the wave stays the same?

Compare two longitudinal waves by drawing them. One wave should have more energy than the other. Label the energy of each wave.

Identify how the amplitude of a transverse wave is measured. Make a sketch to show your answer.

Copyright © McGraw-Hill Education

2 Wave Properties (continued)

11.	Identify a wave that speeds up when it passes from air to water as well as one that slows down.		
12.	Describe the difference between a longitudinal wave with a large amplitude and one with a small amplitude.		
13.	Describe how the wavelength of a wave changes if the wave slows down but its frequency does not change.		
14.	Explain how the frequency of a wave changes when the period of the wave increases.		
15.	Explain You make a transverse wave by shaking the end of a long rope up and down. Explain how you would shake the end of the rope to make the wavelength shorter.		
16.	Math Connection Calculate the frequency of a water wave that has a wavelength of 0.5 m and a speed of 4 m/s.		
17.	Math Connection An FM radio station broadcasts radio waves with a frequency of 96,000,000 Hz. What is the speed of these radio waves if they have a wavelength of 3.1 m?		

Introduction to Waves

3 The Behavior of Waves

REVIEW VOCABULARY perpendicular	Recall the definition of the Review Vocabulary term. perpendicular
NEW VOCABULARY	Use your book to define each term.
refraction	refraction
diffraction	
interference	diffraction
standing wave	antracion
node	
resonance	interference
	standing wave
	node
	resonance

Summarize the law of reflection by completing the sentence below.			
The angle of is equal to			
Create a diagram showing a flashlight shining on a mirror. Label your diagram with the terms given.			
 angle of incidence 	 reflected beam 		
 angle of reflection 	 the normal 		
 incident beam 			
Summarize why a spoon pl be crooked. Make a sketch	aced in a clear glass of water appears to to help you explain.		

diffraction of a wave.
Get It? Compare the diffraction of FM radio waves with the diffraction of AM radio waves.

Complete the table describing the 2 types of interference.

Interference	Interference
Cause:	Cause:
Result:	Result:

Get It? Describe the effects of constructive interference and destructive interference on the amplitude of a wave.
Summarize what causes a standing wave to form.
Analyze why an opera singer singing a high note into a microphone can cause a nearby glass of water to shatter.

Copyright © McGraw-Hill Educat

18.	Describe the path that light waves take when you see your image in a mirror.			
19.	Compare the loudness of sound waves that constructively interfere with the loudness of sound waves that destructively interfere.			
20.	Describe how one tuning fork's vibrations can cause another tuning fork to vibrate.			
21.	Infer Sound waves often bend around columns in large concert halls. Is this a result of refraction or diffraction?			
22.	Model Suppose the speed of light was greater in water than in air. Draw a diagram to show whether an object under water would seem deeper or closer to the surface than it actually is.			
23.	Math Connection The angle between a flashlight beam that strikes a mirror and the reflected beam is 80 degrees. What is the angle of incidence?			

10 Sound

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.		

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Sound

1 The Nature of Sound

REVIEW VOCABULARY amplify	Recall the definition of the Review Vocabulary term. amplify
NEW VOCABULARY eardrum	Use your book to define each term. eardrum
cochlea	cochlea

Copyright © McGraw-Hill Education

1 The Nature of Sound (continued)

Complete the diagram showing what vibrates to produce each sound on the right.

Sequence the steps involved in creating a sound wave from a speaker. The steps are written in scrambled order on the left. Write the steps in the correct order in the boxes on the right.

The air molecules collide with other air molecules.	1.
A speaker moves outward.	2.
A rarefaction forms behind the compression.	3.
A compression forms.	4.
Energy is transferred from the speaker to these air molecules.	5.
The speaker collides with nearby air molecules.	6.
The speaker moves inward.	7.

Organize Place the words liquid, solid, and gas on the continuum below. Describe how close particles are to each other in each phase.

sound travels slowest		sound travels fastest		
				¬
	-			
	_			

1 The Nature of Sound (continued)

Get It? Identify two reasons why sounds usually travel faster through solids than through gases. Compare the speed of the sound of a child yelling outside when it is 10°C to the speed of the same sound when it is 30°C. Create your own sketch of an ear. Label the following parts and describe what each part of the ear does to enable you to hear. anvil eardrum outer ear cochlea • middle ear hammer ear canal stirrup • inner ear Get It? Identify what makes the eardrum vibrate.

1 The Nature of Sound (continued)

\sim	ILON TOOM THOOMEOU
1.	Explain how sound travels from your vocal cords to your friend's ears when you talk.
2.	Summarize the physical reasons that sound waves travel at different speeds through different mediums.
2	Explain why sound speeds up when temperature increases.
Э.	Explain wity sound speeds up when temperature increases.
4.	Describe each section of the human ear and its role in hearing.
5.	Hypothesize Form a hypothesis to explain why some people hear a ringing in their ears (tinnitus) in the absence of sound.
6.	Math Connection Using Table 1 from your textbook, calculate how long it takes a sound wave to travel 1.0 km through air when the temperature is 0.0°C.
7.	Math Connection How long does it take the same wave to travel 1.0 km in air at 20.0°C?

Sound

2 Properties of Sound

REVIEW VOCABULARY frequency	Recall the definition of the Review Vocabulary term. frequency
NEW VOCABULARY	Use your book to define each term.
intensity	intensity
loudness	·
decibel	
pitch	loudness
Doppler effect	decibel
	pitch
	Doppler effect

2 Properties of Sound (continued)

of intensity and a high level of intensity. Label a rarefaction and a compression in each drawing. Low Intensity High Intensity Compare the energy and travel distance of high-intensity sound waves and low-intensity sound waves. Get It? Relate intensity and loudness. **Complete** the following paragraph to summarize loudness. The perception of sound intensity is ____ Loud sounds come from sound waves that have ______ intensity . When these sound waves reach your ear, they cause your ______ to vibrate more than sound waves with intensity.

Create density drawings of particles in sound waves with a low level

2 Properties of Sound (continued)

Identify the following key characteristics of sound intensity.				
units of sound intensity				
level of faintest sound h	umans can hear			
sustained sound level th	nat damages human he	aring		
short-duration sound lev	vel that can cause pain			
Complete the following paragraph to summarize pitch. Pitch is how or a sound seems to be. Pitch depends primarily on the of sound waves. High- pitched sounds are caused by sound waves with frequencies. Low-pitched sounds are caused by sound waves with frequencies. A human teenager with typical hearing can hear sounds with frequencies from about to about Organize information about the Doppler effect in the following table.				
Motion of source relative to observer	Toward	Away from		
Compressions are	closer together			
Frequency is				
Pitch is				
Get It? Describe the [Doppler effect.			

2 Properties of Sound (continued)

3.	Determine which will change if you turn up a radio's volume: wave velocity, intensity, pitch, frequency, wavelength, loudness. Explain.
•	Identify the range of human hearing in decibels and the level at which sound can damage human ears.
Э.	Compare and contrast frequency and pitch.
l.	Draw and label a diagram that explains the Doppler effect.

12. Explain why a passing car would exhibit a greater sound frequency change when it moves at 30 m/s than when it moves at 12 m/s.

13. Math Connection Using the musical scale in **Figure 9**, make a table showing how many wavelengths will pass you in one minute for each note. What is the relationship between frequency and the number of wavelengths per minute?

Note	Frequency	Wavelengths per minute
С		
D		
E		
F		
G		
А		
В		
С		

Sound

3 Music

REVIEW VOCABULARY resonance	Recall the definition of the Review Vocabulary term. resonance
NEW VOCABULARY music sound quality overtone resonator	Use your book to define each term. music sound quality
	overtone resonator

3 Music (continued)

Get It?	Explain the difference between music and noise.		
Get It?	Compare sound qu	uality and pitch.	
	ize the relationship ng the paragraph b	between overtones and sour elow.	nd quality by
	an instrument, the _	its own sound quality. When of the note yo The instrument also vibrates a	u hear is the
frequenc	cies called cies are uality of the note de	. These are vibrations of the fundamental frequence on the relative	whose ency. The

Copyright © McGraw-Hill Education

3 Music (continued)

Complete the table showing the different types of musical instruments and how they produce sound.

Type of Instrument	How is sound produced?	What is the resonator?	Examples
Strings			
Woodwinds and brass			
Percussion			

Explain what beats are and how their frequency is calculated.

3 Music (continued)

CI.	ILCK TOOK TROOKESS
14.	Compare and contrast music and noise.
15.	Explain how two instruments could be used to produce a pulsing sound, and identify the name for this pulsing sound.
16.	Describe how a flute, violin, and drum each produce sound.
17.	Explain how two musical notes that have the same pitch and volume could sound very different from each other.
18.	Math Connection A guitar string vibrates with a frequency of 440 Hz. When a second string is played at the same time, two beats per second are heard. What are the possible frequencies of vibration of the second string?

Sound

4 Using Sound

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term.
echo	20110
NEW VOCABULARY	Use your book to define each term.
acoustics	acoustics
echolocation	echolocation
sonar	
ultrasound	
	sonar

ultrasound

4 Using Sound (continued)

reverberation. List three materials or ways to reduce reverberation. **Factors that Affect Ways to Reduce** Reverberation Reverberation Draw a diagram of a bat using echolocation to identify an insect. Be sure to include the sound waves being sent from the bat and reflecting to the bat from the insect. Get It? Describe how sonar detects underwater objects.

Summarize three characteristics of a room that can affect

Copyright © McGraw-Hill Education

4 Using Sound (continued)

Identify four uses of sonar.

Organize information about the uses of ultrasound in medicine by completing the concept map.

4 Using Sound (continued)

19.	Describe at least three different ways that people use sound.
20.	Describe some differences between a gym and a concert hall that might affect the amount of reverberation in each.
21.	Compare and contrast echolocation and sonar.
22.	Explain how ultrasonic imaging works.
23.	Apply How might sonar technology be useful in locating deposits of oil and minerals?
24.	Math Connection Sound travels at about 1500 m/s in seawater. How far will an undersea sonar pulse travel in 46 s?
25.	Math Connection How long will it take for an undersea sonar pulse to travel 3 km?

11 Electromagnetic Waves

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Electromagnetic Waves

1 What are electromagnetic waves?

VOCABULARY	Recall the definition of the Review Vocabulary term. magnetic field
magnetic field	
NEW VOCABULARY	Use your book to define each term.
electromagnetic wave	electromagnetic wave
photon	
	photon

1 What are electromagnetic waves? (continued)

Get It? Identify What produces waves, and what do waves carry?

Compare sound and water waves with electromagnetic waves by completing the Venn diagram. Place each characteristic in the correct place in the diagram.

- carry energy from one place to another
- do not require matter to transfer energy
- must move through matter
- transfer energy between vibrating electric and magnetic fields
- transfer energy from particle to particle
- produced by vibrations

Complete the information about electric and magnetic fields.

1 What are electromagnetic waves? (continued)

wave that travels through space. 1. The changing electric field 2. 3. Model an electromagnetic wave with a 1-m wavelength. Beneath this, create a second wave whose wavelength is shorter than the first one. **Analyze** which wave above has a greater frequency. Get It? Describe the relationship between the temperature of a material and the dominant wavelength the material emits. Get It? Identify What determines whether sparks are ejected from a metal when light shines on it?

Sequence steps as vibrating electric and magnetic fields become a

1 What are electromagnetic waves? (continued)

Summarize and model waves and particles by completing the paragraph.
All, not only electrons, can behave like
When waves of particles pass through two slits, they will form
Create a drawing of the pattern that forms after electrons pass through two slits.

1 What are electromagnetic waves? (continued)

CHECK YOUR PROGRESS

l.	Infer Would a vibrating proton produce an electromagnetic wave? Would a vibrating neutron? Explain.
2.	Compare the frequency of an electromagnetic wave with the frequency of the vibrating charge that produces the wave.
3.	Describe how electromagnetic waves transfer energy to matter.
1.	Explain how an electromagnetic wave can travel through space that contains no matter.
5.	Explain Would a stationary electron produce an electromagnetic wave? Would a stationary magnet? Explain.
5.	Math Connection How many minutes does it take an electromagnetic wave to travel from the Sun to Earth (150,000,000 km)?

Electromagnetic Waves

2 The Electromagnetic Spectrum

REVIEW VOCABULARY radiation	Recall the definition of the Review Vocabulary term. radiation
NEW VOCABULARY	Use your book to define each term.
radio wave	radio wave
microwave	
infrared wave	microwave
visible light	morowave
ultraviolet wave	
X-ray	infrared wave
gamma ray	
	visible light
	ultraviolet wave
	X-ray
	gamma ray

2 The Electromagnetic Spectrum (continued)

Organize electromagnetic waves based on their different frequencies.

Waves with Lower Frequency Than Visible Light	Waves with Higher Frequency Than Visible Light
1.	1.
2.	2.
3.	3.

Get It? Describe the differences between microwaves and radio waves.

Get It? Describe the steps by which a microwave oven heats food.

Get It? Compare the effects on matter caused by the absorption of electromagnetic radiation of different wavelengths.

Copyright © McGraw-Hill Education

2 The Electromagnetic Spectrum (continued)

Identify the key features of some electromagnetic waves by filling in the table below.

Wave	Feature	
radio		
	cause water molecules to rotate and heat up	
infrared		
	short-wavelength waves that can cause sunburn	

Compare the advantages and disadvantages to humans of ultraviolet waves by filling in the blanks in the following graphic organizer.

Analyze how chlorofluorocarbons affect Earth's ozone layer and why this is a concern to scientists.

Copyright © McGraw-Hill Education

2 The Electromagnetic Spectrum (continued)

Summarize the difference completing the following		ctromagne	tic waves by
Radio waves are			
		. Waves th	at are less than
30 cm, called	, make	it possible	to
Some	are used for	finding the	ocation of planes,
boats, and cars by a	method called		Some
electromagnetic way	ves can be dange	rous.	have very
short wavelengths.	Both	and	can kill
Thi	s is useful in trea	ting	, but doctors
must be careful not	to kill healthy ce	ls as well. S	Special detectors use
	to make images	of objects	based on the waves
they emit. Near the	(of the frequ	ency range,
mal	kes it nossible for	rus to	

2 The Electromagnetic Spectrum (continued)

CHECK YOUR PROGRESS

7.	7. Compare and contrast the properties and uses of radio waves, infrared waves, and ultraviolet waves.		
8.	Explain A mug of tea is heated in a microwave oven. Explain why the tea gets hotter than the mug.		
9.	Identify the beneficial effects and the harmful effects of human exposure to ultraviolet waves.		
10.	Name three objects in a home that produce electromagnetic waves, and describe how the electromagnetic waves are used.		
	-		
11.	Explain How could infrared imaging be used to find a lost hiker?		
12.	Math Connection Use scientific notation to express the range of wavelengths corresponding to visible light, ultraviolet waves, and X-rays.		
13.	Math Connection A nanometer, abbreviated nm, equals one-billionth of a meter, or 10 ⁻⁹ m. Express the range of wavelengths corresponding to visible light, ultraviolet waves, and X-rays in nanometers.		

Electromagnetic Waves

3 Radio Communication

REVIEW VOCABULARY amplitude	Recall the definition of the Review Vocabulary term. amplitude
·	
NEW VOCABULARY carrier wave modulation	Use your book to define each term. carrier Wave
analog signal	
digital signal	modulation
transceiver	
Global Positioning System (GPS)	analog signal
	digital signal
	transceiver
	Global Positioning System (GPS)

3 Radio Communication (continued)

Compare AM and FM radio transmission by completing the organizer **Radio Transmission** AM radio stations FM radio stations broadcast information broadcast information by by

Get It? Compare and contrast AM and FM radio signals.

Get It? Describe how a radio signal's strength changes as you move away from the tower.

Complete the flowchart below to describe the transmission of television signals.

Before 2009, TV signals were _______ signals, which changed smoothly.

Information about the video images was sent by ______ waves.

Beginning in 2009, all TV signals became ______ signals.

Digital signals are either ______, like a light switch.

Because of the switch to digital signals, complex digital modulation allows more information to be carried on a ______.

Organize what you have learned about telephones by completing the table below.

Туре	Features	Advantage	Disadvantage
Corded	stays in one	sends/receives	must use in one
	place	consistent signal	place
		not joined to the base	
Pager			
			tower needed

3 Radio Communication (continued)

Create a sketch to show how a satellite telephone system works.

- Use arrows to show the path of the signal.
- Include the sender, a satellite, and the receiver in your sketch.

3 Radio Communication (continued)

CHECK YOUR PROGRESS

Identify and describe the steps that a radio station uses to broadcast sounds to your radio receiver.			
Explain the difference between AM and FM radio. Make a sketch of how a carrier wave is modulated in AM and FM radio signals.			
Describe what happens to your signal when you are talking on a cell phone and you travel from one cell to another cell.			
Describe some of the uses of the Global Positioning System. Why might emergency vehicles be equipped with GPS receivers?			
Explain Why do cordless telephones stop working when you move too far from the base unit?			
Math Connection A TV screen is composed of many points of light called pixels. A standard TV has 480 pixels horizontally and 360 pixels vertically. A high-definition TV has 1920 horizontal and 1080 vertical pixels. What is the ratio of the number of pixels in a high-definition TV to the number in a standard TV?			

12 Light

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.		

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Light

1 The Behavior of Light

REVIEW VOCABULARY visible light	Recall the definition of the Review Vocabulary term. Visible light
NEW VOCABULARY	Use your book to define each term.
opaque	opaque
translucent	
transparent	translucent
index of refraction	Tansiacem
mirage	
	transparent
	index of refraction
	mirage

1 The Behavior of Light (continued)

Summarize each term below. Then give three examples of a material that has the same light-transmitting properties.

Opaque:

Examples:

Translucent:

Examples:

Transparent:

Examples:

Model a light wave that hits a plane mirror at a 25° angle and reflects. Use a protractor to accurately draw and label the angles.

- the angle of incidence
- the angle of reflection
- the normal

Get It? Identify some objects that produce regular reflections and some objects that produce diffuse reflections.

1 The Behavior of Light (continued)

Analyze a spoon resting in a glass of water. Explain how you can tell water has a larger index of refraction than air.			
Get It? Identify when refraction occurs.			
Evaluate how a prism separates white light by completing the statements.			
A triangular prism light twice—once when it the			
prism and again when it the prism and reenters the			
wavelengths of light are refracted than			
shorter wavelengths, so light is bent the least.			
Because of the different amounts of, the different colors are when they emerge from the prism.			
Get It? Predict which color of light you would expect to bend the most.			
Summarize the reflection and refraction of mirages.			

1 The Behavior of Light (continued)

CHECK YOUR PROGRESS

1.	Describe two ways that you could direct a light wave around a corner.
2.	Predict how rubbing a mirror with sandpaper will affect how the mirror reflects light.
3.	Identify what an object's index of refraction indicates.
4.	Explain what happens to white light when it passes through a prism.
5.	Decide whether the lens of your eye, your fingernails, your skin, and your tooth are opaque, translucent, or transparent. Explain.
6.	Math Connection A light ray strikes a mirror at an angle of 42° from the surface of the mirror. What angle does the reflected ray make with the normal?
7.	Math Connection A ray of light hits a mirror at 27° from the normal. What is the angle between the reflected ray and the normal?

Light

2 Light and Color

REVIEW VOCABULARY wavelength	Recall the definition of the Review Vocabulary term. Wavelength
NEW VOCABULARY	Use your book to define each term.
filter	filter
pigment	
	pigment

2 Light and Color (continued)

Complete the graphic organizer about black and white color reflection.

Get It? Explain why a white object is white.

Model Figures A, B, and C represent children's building blocks. Fill in the table below to show how each block reflects and absorbs light. Part of the table has been filled in for you.

Color(s)	Block A	Block B	Block C
Reflected			
Absorbed	orange, yellow, green, blue, indigo, violet		

2 Light and Color (continued)

Get It? Identify the colors of light detected by each type of cone cell.

Complete the following information about filters.

A filter is a _____ material that transmits ____ but ___ all others. The name of the color of a ____ is the color of the ____ that it ____ .

Distinguish between the colors that blocks A (red), B (orange), and C (green) would look through a red filter. Label each block according to the color that it would appear.

Organize information about how colors mix.

Science Notebook • Light

2 Light and Color (continued)

CHECK YOUR PROGRESS

8. Explain why a white fence appears to be white. In your answer, include the colors of light that your eye detects, and tell how your brain interprets those colors. 9. Identify what color would be seen if equal amounts of red light and green light were mixed. **10.** Compare and contrast the primary colors of light and the primary pigment colors. 11. Describe how your eyes detect color. 12. Predict Light reflected from an object passes through a green filter, then a red filter, and finally a blue filter. What color will the object appear to be? 13. Math Connection In the human eye, there are about 120,000,000 rods. If 90,000,000 rods trigger at once, what percent of the total number of rods are triggered? 14. Math Connection The wavelengths of a color are measured in nanometers (nm), which is 0.00000001 meters (one-billionth of a meter). Find the wavelength in meters of a light wave that has a wavelength of 690 nm.

Light

3 Producing Light

REVIE	W		
VOCA	BU	LA	RY

thermal energy

NEW VOCABULARY

incandescent light

fluorescent light

coherent light

incoherent light

Recall the definition of the Review Vocabulary term.	
thermal energy	
Use your book to define each term.	
incandescent light	
fluorescent light	
coherent light	
incoherent light	

3 Producing Light (continued)

Distinguish between an incandescent bulb and a fluorescent bulb by placing the following characteristics with the correct type of bulb in the concept map.

- contains a filament
- gives off about 90 percent of its energy as heat
- · contains electrodes at each end
- uses less energy to produce the same amount of light
- · emits ultraviolet radiation
- · filled with a gas
- generates light by heating a piece of metal until it glows

Compare and contrast fluorescent lights with neon lights.

Similarity: _		
Difference:		

Get It? Identify what causes the color in a neon light.

3 Producing Light (continued)

Classify which type of light is being described below.

Type of Lighting	Description
	very bright light, long-lasting bulbs
	focuses light on small areas, used to send information in pulses
	outdoor lighting with a yellow-orange glow

Model coherent and incoherent light waves with side-by-side sketches.

L		

Evaluate uses of coherent and incoherent light and explain the suitability of each type of light to its purpose.

Analyze three reasons lasers are useful to surgeons.

2.

3.

3 Producing Light (continued)

CHECK YOUR PROGRESS

15.	Compare and contrast the two main types of bulbs found in your home. Explain how they produce light.
16.	Discuss the advantages of using a fluorescent bulb instead of an incandescent bulb.
17.	Describe the difference between coherent and incoherent light.
18.	Describe the processes used to produce light in a laser.
19.	Identify several uses of lasers.
20.	Apply Which type of lighting device would you use for each of the following needs: an economical light source in a manufacturing plant, an eye-catching sign that will be visible at night, and a baseball stadium? Explain.
21.	Math Connection A 25-W fluorescent light emits 5.0 J of thermal energy each
	second. What is the efficiency of the fluorescent light?
22.	Math Connection If 90 percent of the energy emitted by incandescent bulbs is thermal energy, how much thermal energy is emitted by a 60-W bulb each second?

Light

4 Using Light

REVIEW VOCABULARY

interference

NEW VOCABULARY

linearly polarized light holography total internal reflection optical scanner

Recall the definition of the Review Vocabulary term.		
interference		
Use your book to define each term.		
linearly polarized light		
holography		
total internal reflection		
optical scanner		

4 Using Light (continued)

Create a diagram that shows how polarized glass filters light. Be sure to include both vertically polarized and horizontally polarized light.

Compare a hologram with an ordinary photo by placing the following characteristics in the correct place in the Venn diagram.

- · easily copied
- not easily copied
- produces flat image
- produces realistic image
- records brightness of light
- records direction of light
- three dimensional
- · two dimensional
- · uses laser light
- · uses visible light

Get It? Describe how holographic images are produced.

4 Using Light (continued)

Model how light travels between mediums, then how internal reflection happens if the light is at more than the critical angle. Use the information and figure in your book to help you.
Get It? Identify when total internal reflection occurs.
Analyze the steps in using total internal reflection to transmit light along an optical fiber.
1.
2.
3.
Summarize how an optical scanner works.

4 Using Light (continued)

CHECK YOUR PROGRESS

23.	Discuss how optical fibers are used to transmit telephone conversations.
24.	Contrast polarized and unpolarized light.
25.	Describe how a hologram is made.
26.	Identify all the conditions that are necessary for total internal reflection to occur.
27.	Investigate On a sunny day, you are looking at the surface of a lake through polarized sunglasses. How could you use your sunglasses to tell if the light reflected from the lake is polarized?
28.	Math Connection An optical fiber has a diameter of 0.3 mm. How many fibers would be needed to form a cable with a square cross section if the cross section was 1.5 cm on a side?

13 Mirrors and Lenses

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.		

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned	
WHALIKHOW	what I want to I ma Out	What i Leamed	

Mirrors and Lenses

1 Mirrors

REVIEW VOCABULARY reflection	Recall the definition of the Review Vocabulary term. reflection
NEW VOCABULARY	
plane mirror	Use your book to define each term.
virtual image	plane mirror
concave mirror	1
optical axis	
focal point	virtual image
focal length	
real image	concave mirror
convex mirror	
	optical axis
	focal point
	focal length
	real image

convex mirror

Get It? Define What is a plane mirror? Get It? Describe the steps that allow you to see your face in a plane mirror.	Get It?	Identify two ways to imagine light coming from a source.
	Get It?	Define What is a plane mirror?

Sequence the steps in the path that light rays take when a girl sees her image in a plane mirror. The steps are written in scrambled order on the right. Rewrite them in the correct order in the boxes. Use the figure in your book to help you.

Some of the light rays strike

Get It? Explain Why does your reflected image in a plane mirror appear to be behind the mirror?

Copyright © McGraw-Hill Education

Distinguish between a real and a virtual image. If it helps you to explain, draw a sketch below your sentences.

Get It? Describe the relationship between the focal point and the focal length for a concave mirror.

Predict the distance between an object and a concave mirror for each resulting image. Each distance should be a number relative to the mirror's focal length.

• a bright beam of light

- real, upside down, and larger than object
- virtual, upright, and larger than object
- real, upside down, and smaller than object

Get It? Describe the image formed by a convex mirror.

Analyze v	vhy the image formed by a convex mirror is always virtual.
	Evaluate What are the benefits and drawbacks of using irrors on automobiles instead of plane mirrors?
Get It?	Identify which mirrors form only virtual images.

Copyright © McGraw-Hill Education

1 Mirrors (continued)

CHECK YOUR PROGRESS

1.	Diagram how both concave mirrors and convex mirrors form images.				
2.	Identify at least one example of a plane mirror, one example of a concave mirror, and one example of a convex mirror.				
3.	Describe the image of an object that is 38 cm from a concave mirror that has a focal length of 10 cm.				
4.	Infer whether a virtual image can be photographed.				
5.	Describe An object is less than one focal length from a concave mirror. How does the size of the image change as the object gets closer to the mirror?				
6.	Math Connection If you stand 2 m away from a plane mirror, how far away does your reflection appear to be from you?				

Mirrors and Lenses

2 Lenses

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. †ransparen†
transparent	
NEW VOCABULARY	
convex lens	Use your book to define each term.
concave lens	convex lens
cornea	
retina	concave lens
	cornea
	retina

2 Lenses (continued)

Complete the concept map about convex lenses. Use the figures in your book to help you. Fill in the map using the following hints.

- 1. At what distance should the object be from the lens?
- 2. Draw a sketch of the object, lens, and image.
- **3.** Is the image real or virtual?
- 4. Is the image reduced or enlarged?
- **5.** Is the image upright or inverted (upside down)?

Predict what will happen to the image produced by a concave lens as the lens gets flatter and flatter—more like a flat piece of glass.

2 Lenses (continued)

Get It? Describe the function of the	retina.
Sequence the steps that occur in hum eye through the cornea. Unscramble to correct order in the boxes.	_
1. The cornea bends light rays to bring them together.	The light goes through th pupil.
2.	The optic nerve sends electrical signals to the brain.
3.	The lens behind the pupil brings light rays together.
4.	 The light rays form an image on the retina.
4.	The cornea bends light rays to bring them
5.	together.The retina changes the image into electrical
	signals.

Copyright © McGraw-Hill Education

2 Lenses (continued)

Organize information on common vision problems.

Problem	Vision Good For	Cause	Image Location	Eyeglass Lens Shape
Nearsighted				
Farsighted				
Astigmatism				

2 Lenses (continued)

CHECK YOUR PROGRESS

7. Sketch light rays as they pass through a convex lens and then through a concave lens.

8.	Compare the image of an object less than one focal length from a convex lens w	vith
	the image of an object more than two focal lengths from the lens.	

9.	Describe	the	image	formed	by a	concave	lens.

- **10. Explain** how lenses are used to correct vision problems.
- **11. Describe** If image formation by a convex lens is similar to that by a concave mirror, describe the image formed by a light source placed at the focal point of a convex lens.

12. Math Connection If you looked through a convex lens with a focal length of 15 cm and saw a real, upside down, enlarged image, what is the maximum distance between the lens and the object?

Mirrors and Lenses

3 Optical Instruments

REVIEW
VOCABULARY
refraction

NEW VOCABULARY
refracting telescope
reflecting telescope
microscope

Recall the definition of the Review Vocabulary term.		
refraction		
Use your book to define each term.		
refracting telescope		
reflecting telescope		
microscope		

Copyright © McGraw-Hill Education

3 Optical Instruments (continued)

Evaluate a telescope design that magnifies objects but does not gather more light than the naked eye. Summarize challenges to building a large refracting telescope to be used on Earth. 2. **Sequence** the steps that occur in a reflecting telescope after light enters one end of the telescope. The steps are written in scrambled order at right. Write them in the correct order in the boxes. The light rays start to come together. The convex lens in the

The plane mirror reflects the light toward the eyepiece.

The convex lens in the eyepiece magnifies the image.

A real image of the object forms.

The light rays hit a plane mirror.

The light reflects off of a concave mirror at the other end.

The plane mirror reflects the light toward the eyepiece.

3 Optical Instruments (continued)

Get It? Identify the interactions of waves and matter that allow reflecting telescopes to function.

Get It? Explain why a space telescope is able to produce clearer images than telescopes on Earth.

Get It? Compare the image formed by the objective lens of a microscope with the image formed by the eyepiece lens.

Compare the objective lens and the eyepiece lens of a simple microscope by completing the Venn diagram with the phrases in the bank.

- Convex lens
- Enlarged image
- Distance from object to lens is less than one focal length
- Real image
- Virtual image
- Distance from object to lens is between one and two focal lengths

Copyright © McGraw-Hill E

Compare the parts of a camera with the parts of an eye that serve the same function by completing each sentence.				
The shutter of a camera is like the	of an eye because they			
The lens of a camera is like the	of an eye because they			
The image sensor is like the	of an eye because they			

3 Optical Instruments (continued)

3 Optical Instruments (continued)

CHECK YOUR PROGRESS

	Identify the advantage to making the objective lens larger in a refracting telescope.
14.	Describe the image formed by the objective lens in a microscope.
15.	Explain why the largest telescopes are reflecting telescopes instead of refracting telescopes.
16.	Explain which optical instrument—a telescope, a microscope, or a camera—forms images in a way most like your eye.
17.	Math Connection Suppose the objective lens in a microscope forms an image that is 100 times the size of an object. The eyepiece lens magnifies this image 10 times. What is the total magnification?

14 Solids, Liquids, and Gases

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned		
WHALIKHOW	what I want to I ma Out	What i Leamed		

Solids, Liquids, and Gases

1 Matter and Thermal Energy

REVIEW VOCABULARY kinetic energy	Recall the definition of the Review Vocabulary term. kinetic energy
NEW VOCABULARY kinetic theory	Use your book to define each term. kinetic theory
melting point heat of fusion	
boiling point heat of vaporization sublimation	melting point
plasma thermal expansion	heat of fusion
	boiling point
	heat of vaporization
	sublimation
	plasma
	thermal expansion

Copyright © McGraw-Hill Education

1 Matter and Thermal Energy (continued)

Complete the outline as you read about the states of matter.

State	s of Matter
A.	Solid
1.	Example:
	Particle kinetic energy:
	Particle behavior:
4.	Other fact(s):
В.	Liquid
1.	Example:
2.	Particle kinetic energy:
3.	Particle behavior:
4.	Other fact(s):
C.	Gas
1.	Example:
2.	Particle kinetic energy:
3.	Particle behavior:
4.	Other fact(s):

D. Plasma

1. Example:

2. Particle kinetic energy:

3. Particle behavior:

4. Other fact(s):

Sequence the kinetic energy, temperature, and density of most solids, liquids, and gases. Use 1 to represent the lowest amount and 3 to represent the highest.

	Solid	Liquid	Gas
Kinetic energy			
Temperature			
Density			

1 Matter and Thermal Energy (continued)

CHECK YOUR PROGRESS

- 1. **Describe** the movement of the particles in solids, liquids, and gases.
- 2. State the basic assumptions of the kinetic theory.
- **3. Describe,** in terms of kinetic theory, how the particles of a substance behave at its melting point.
- **4. Describe,** in terms of kinetic theory, how the particles of a substance behave at its boiling point.
- 5. Infer How would the heating curve for glass be different from the heating curve for water?
- **6. Math Connection** Using the graph in **Figure 7,** describe the energy changes that are occurring when water goes from –15°C to 120°C.

7. Math Connection The melting point of acetic acid is 17°C, and the boiling point is 118°C. Draw a graph similar to the graph in **Figure 7** showing the phase changes for acetic acid. Clearly mark the three phases, the boiling point, and the melting point on the graph.

Solids, Liquids, and Gases

2 Properties of Fluids

REVIEW VOCABULARY density	Recall the definition of the Review Vocabulary term. density
NEW VOCABULARY buoyancy pressure viscosity	Use your book to define each term. buογαηςγ
	pressure viscosity

2 Properties of Fluids (continued)

Get It? Infer why rocks sink and rubber balls float in water.							
plastic fo	e the buoya bam. Each be forces act	olock has t	he same	e volume	e. Make	sketches	that
Get It?	Explain w	hy a steel	block si	nks but	a steel s	ship floats	5.

2 Properties of Fluids (continued)

Organize the physical properties of two identical pieces of foil formed into different shapes. One piece of foil is crumpled tightly into a ball. The other is folded into a box that is open on top. What happens when both pieces are dropped into a container of water? Use the terms below to complete the Venn diagram.

- floats
- mass
- · foil and air displace water
- · more volume displaced
- higher density
- only foil displaces water
- · less volume displaced
- sinks
- lower density
- · weight

Summarize Pascal's principle in your own words. Include two examples of objects that work because of Pascal's principle, other than those given in your book.

Examples:

1

2.

2 Properties of Fluids (continued)

Get It? Descri fluid increases.	be how the pressure changes as the velocity of a
Explain how Beloperate.	rnoulli's principle makes the hose-end sprayer
	ationship between viscosity and temperature that is e saying "as slow as molasses in January".
Infer Use Berno lift a roof from a	pulli's principle to explain how a hurricane wind might house.

Copyright © McGraw-Hill Education

2 Properties of Fluids (continued)

CHECK YOUR PROGRESS

13.	Describe how fluids exert forces on objects.
14.	Explain why a steel boat floats on water but a steel block does not.
5.	Explain why squeezing a plastic mustard bottle forces mustard out the top.
6.	Describe, using Bernoulli's principle, how roofs are lifted off buildings in tornados.
7.	Infer If you blow up a balloon, tie it off, and release it, it will fall to the floor. Why does it fall instead of float? Explain what would happen if the balloon contained helium instead of air.
8.	Math Connection The density of water is 1.0 g/cm ³ . How many kilograms of water does a submerged 120-cm ³ block displace. Recall that 1.0 kg weighs 9.8 N on Earth. What is the buoyant force on the block?
9.	Math Connection To lift an object weight 21,000 N, how much force is needed on a piston with an area of 0.060 m ² if the platform being lifted has an area of 3.0 m ² ?

Solids, Liquids, and Gases

3 Behavior of Gases

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. †emperature		
temperature			
NEW VOCABULARY	Use your book to define each term.		
Boyle's law	Boyle's law		
Charles's law			
	Charles's law		

3 Behavior of Gases (continued)

Get It?	Describe what happens to weather balloons as they rise.
-	the different pressures that result as you add air to and as you add air to a steel tank.
Get It?	Explain the relationship between pressure and volume.
	Show how to write the Boyle's law equation when it is the final pressure of a gas.

Copyright © McGraw-Hill Education

3 Behavior of Gases (continued)

Get It? Explain the relationship between the temperature and volume of a gas.

Model the relationship between temperature and pressure of a gas when the volume is constant. Make one drawing for each of two temperatures.

High Temperature

Distinguish between the key features of Charles's law and Boyles's law.

	Charles's Law	Boyle's Law
Constant Property		
Varying Properties		
Type of Variance		
Formula		

Get It? Describe How does the kinetic theory of matter explain Charles's law?

3 Behavior of Gases (continued)

CHECK YOUR PROGRESS

redict, using Boyle's law, what will happen to a balloon that an ocean diver takes o a pressure of 202 kPa.
redict what would happen to the volume of a gas if the pressure on that gas were oubled and then the absolute temperature of the gas were doubled.
lath Connection A helium balloon has a volume of 2.00 L at 101 kPa. As the alloon rises the pressure drops to 97.0 kPa. What is the new volume?

15 Classification of Matter

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.		
	_	

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Classification of Matter

1 Composition of Matter

REVIEW VOCABULARY

property (of a substance or material)

VOCABULARY

substance

element

compound

heterogeneous mixture

suspension

colloid

Tyndall effect

homogeneous mixture

solution

Recall the definition of the Review Vocabulary term.		
Use the terms	on the left to fill in t	the blanks in the sentences.
		if all the atoms in the
substance are t	the same.	
	is a substance fixed proportion.	e in which two or more elements are
Α	contair	ns two or more substances blended
evenly through		
Α	is a mix	xture in which different materials
remain distinct.	,	
	is another terr so small to see with	m for a homogeneous mixture. It a microscope.
	, which is a heter	when light passes through a ogeneous mixture with particles
visible under a	microscope but no	t heavy enough to settle.
	is a heteroger see particles settle.	neous mixture containing a liquid in

Classify each substance as an element or a compound.

calcium chalk hydrogen salt water carbon chlorine mercury sodium zinc carbon copper oxygen sugar

dioxide

Elements	Compounds

Get It? Compare How are elements and compounds related?

Organize information about mixtures in the outline below.

- I. Mixtures
 - **A.** Heterogeneous mixtures

1

2.

3.

- 4. Examples:
- **B.** Homogeneous mixtures

1.

2.

3

4. Examples:

C. Colloids			
l			
2.			
3.			
4. Examples:			

Compare and contrast colloids, solutions, and suspensions. Write the characteristics of each in the table.

	colloids	solutions	suspensions
particles			
appearance			

Classify each substance as a solution, a colloid, or a suspension. Write each name in one of the boxes below.

herbed salad	paint	pulpy orange juice	tea
dressing			
milk	perfume	smoke	vinegar

colloids	suspensions	solutions

CHECK YOUR PROGRESS

1.	Distinguish a substance from a mixture. Give two examples of each.
2.	Compare and Contrast How is a compound similar to a homogeneous mixture? How is it different?
3.	Identify three elements and three compounds. How are they similar? How are they different?

Copyright © McGraw-Hill Education

CHECK YOUR PROGRESS

4. Summarize Make a table that compares the properties of suspensions, colloids, and solutions.

- **5. Infer** Why do the words "Shake well before using" indicate that the fruit juice in a carton is a suspension? Why are these words not used on a milk container?
- **6. Math Connection** The weather report this morning stated there is a thick fog in your town. Visibility is less than 500 feet. How many kilometers in front of your vehicle can you see?

Classification of Matter

2 Properties of Matter

REVIEW VOCABULARY boiling point	Recall the definition of the Review Vocabulary term.
VOCABULARY	Read the definitions below, then write the key term for each one in the left column.
	a characteristic that can be observed without changing the substance
	a change in size, shape, or state of matter
	a change of a substance or substances into another substance or other substances
	a characteristic that indicates whether a substance can change to another substance
	the separation of substances in a mixture using evaporation
	the mass of all substances before a chemical change equals the mass of all substances after the change

Copyright © McGraw-Hill Education

2 Properties of Matter (continued)

Distinguish between the materials listed below. Identify a unique physical property for each one that does not describe the other materials in this group.

Material	Unique physical property
rubber	
applesauce	
marble	
copper	

Describe how freezing could be used to remove sugar from a mixture of sugar and water.

Get It? Describe how you could use physical properties to separate sand from sugar.

Get It? Infer Does a change in state mean that a new substance has formed? Explain.

Get It? Explain why the density of an unknown substance in a mixture can be used to identify the substance.

2 Properties of Matter (continued)

Identify four properties of a substance that can be used to identify the substance.	
Get It? Define What is a chemic	cal change?
Organize five kinds of physical changes.	anges and five kinds of chemical
Physical Changes Identify chemical and physical cha	Chemical Changes
Physical Changes	Chemical Changes
i ilysicai Changes	Chemical Changes

2 Properties of Matter (continued)

Get It? Determine Is weathering a physical change or a chemical change?
Describe how the law of conservation of mass could be useful for investigating chemical changes.
Describe some ways that industry and agriculture use physical properties to separate substances.

Copyright © McGraw-Hill Education

2 Properties of Matter (continued)

	Explain why evaporation of water is a physical change and not a chemical change.
10.	Identify four physical properties that describe a liquid. Identify a chemical property.
11.	Explain how the law of conservation of mass applies to chemical changes.
12.	Determine Does the law of conservation of mass apply to physical changes? How could you test this for melting ice? For the distillation of water?
13.	Math Connection Bismuth and fluorine react to form bismuth fluoride. If 417.96 g of bismuth reacts completely with 113.99 g of fluorine, how many grams of bismuth fluoride are formed?

16 Properties of Atoms and the Periodic Table

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.	

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Properties of Atoms and the Periodic Table

1 Structure of the Atom

REVIEW VOCABULARY element	Recall the definition of the Review Vocabulary term. element
NEW VOCABULARY atom nucleus	Use your book to define each term.
proton neutron electron	nucleus
quark electron cloud	proton
	electron
	quark electron cloud

opyright @ mcolant i iiii Eaacat

Copyright © McGraw-Hill Education

1 Structure of the Atom (continued)

Identify some of the elements and their symbols by filling in the table. Reference a periodic table to help you.

Symbol	Name
Pt	
	tungsten
Rn	
	iodine
В	
	lithium
Cu	
	cesium
Ni	
	lead
Es	
	helium

Get It? Identify the three types of subatomic particles.

Draw a diagram showing how the parts of an atom are related.

atom proton nucleus electron cloud neutron quark

1 Structure of the Atom (continued)

Summarize key ideas about quarks.

Theories about Quarks	Finding Quarks
Detecting Quarks	Sixth Quark

Get It? Explain the difference between a scaled-up model and a scaled-down model.

Copyright © McGraw-Hill Education

Copyright © McGraw-Hill Education

1 Structure of the Atom (continued)

Create a time line of the changes that have occurred in modeling the atomic structure since the 1800s. Sketch and label each model.

Get It? Explain the difference between the Bohr model and the electron cloud model.

1 Structure of the Atom (continued)

1.	Identify the names, charges, and locations of three types of subatomic particles that make up an atom.
2.	Identify the chemical symbols for the elements carbon, aluminum, hydrogen, oxygen, and sodium.
3.	Describe how quarks were discovered.
4.	Describe how a rotating electric fan could function as a model of the atom. Explain how the rotating fan is unlike an atom.
5.	Math Connection A proton's mass is estimated to be 1.6726×10^{-24} g, and the
	mass of an electron is estimated to be 9.1093×10^{-28} g. How many times larger is the mass of a proton compared to the mass of an electron?

Properties of Atoms and the Periodic Table

2 Masses of Atoms

REVIEW VOCABULARY mass	Recall the definition of the Review Vocabulary term. mass
NEW VOCABULARY atomic number	Use your book to define each term. atomic number
mass number	
average atomic mass	mass number
	isotope
	average atomic mass

Sopvright © McGraw-Hill Education

2 Masses of Atoms (continued)

Organize the information on atomic mass to complete the outline. **Atomic Mass A.** Nucleus of atom 2. **B.** Atomic mass unit **C.** Protons **D.** Mass number

2 Masses of Atoms (continued)

Get It? Compare the following isotopes of chlorine in terms of mass number, number of protons, and number of neutrons: chlorine-35 and chlorine-37.

Get It? Define average atomic mass and explain how it is calculated.

Analyze how you would determine which isotope of an element is the most abundant if you know the element's average atomic mass.

2 Masses of Atoms (continued)

6.	Determine the mass number and the atomic number of a chlorine atom that has 17 protons and 18 neutrons.
7.	Explain how the isotopes of an element are alike and how they are different.
8.	Explain why the atomic mass of an element is a weighted average mass.
9.	Calculate the number of neutrons in potassium-40.
10.	Explain Chlorine has an average atomic mass of 35.45 amu. The two naturally occurring isotopes of chlorine are chlorine-35 and chlorine-37. Do most chlorine atoms contain 18 neutrons or 20 neutrons? Why?
11.	Math Connection Use the information in Table 3 to determine the mass in kilograms of each subatomic particle.

Properties of Atoms and the Periodic Table

3 The Periodic Table

REVIEW VOCABULARY chemical property	Recall the definition of the Review Vocabulary term. chemical property
NEW VOCABULARY periodic table period	Use your book to define each term. periodic table
group electron dot diagram	period
	group
	electron dot diagram

Copyright © McGraw-Hill Education

3 The Periodic Table (continued)

Get It? Explain how Mendeleev was able to predict the properties of elements that had not yet been discovered.

Get It? Explain how Mendeleev organized his periodic table.

Get It? Describe how Moseley altered the arrangement of elements on the periodic table and how the change improved the table.

Compare Mendeleev's early periodic table to that of today by completing the Venn diagram.

3 The Periodic Table (continued)

Sequence the energy levels in the electron cloud diagram and write the maximum number of electrons that can be contained in each level.

Analyze how electron dot diagrams show similarities between elements within a group.

opyngrit @ McGraw-Fill Eddcado

Copyright © McGraw-Hill Education

3 The Periodic Table (continued)

Classify the regions of the periodic table as metals, nonmetals, or metalloids.

- Shade the regions on the blank periodic table.
- Label each region and write its characteristics.

3 The Periodic Table (continued)

I2.	Relate Use the periodic table to find the name, atomic number, atomic mass, and the number of outermost electrons for each of the following elements: N, P, As, and Sb.
13.	Provide the symbol, the group number, and the period of each of the following elements: nitrogen, sodium, iodine, and mercury.
 4 .	Classify each of the following elements as a metal, a nonmetal, or a metalloid and give the full name of each element: K, Si, and S.
5.	Explain The Mendeleev and Moseley periodic charts had gaps for undiscovered elements. Why do you think the chart used by Moseley was more accurate at predicting where new elements would be placed?
6.	Math Connection Construct a circle graph showing the percentage of elements classified as metals, metalloids, and nonmetals. Use markers or colored pencils to distinguish clearly between each section on the graph.

17 Elements and Their Properties

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

W W			
K What I Know	W What I Want to Find Out	L What I Learned	
WHALIKHOW	what I want to I ma Out	What i Leamed	

Elements and Their Properties

1 Metals

REVIEW VOCABULARY group	Recall the definition of the Review Vocabulary term. group
NEW VOCABULARY	Use your book to define each term.
ductile	ductile
malleable	
metal	malleable
metallic bonding	maneable
radioactive element	
transition element	metal
	metallic bonding
	radioactive element
	transition element

Copyright © McGraw-Hill Education

1 Metals (continued)

	Met	als	
•	Physical Properties		
•		nding	
	1.	Ionic Bonding	
	2.	Metallic Bonding	
		? Explain how knowledge of the properties of alkali meta predict how they will react and how they should be stored	
is:	ed to		
JS(ed to	? Explain how the interactions of electric charges at the	

1 Metals (continued)

Get It? Compare the alkali and alkaline earth metals.

Use the Venn diagram.

Get It? Explain why gold's relative softness makes it a good choice for jewelry.

Get It? Explain why the first row of inner transition elements is called the lanthanide series.

Sequence the steps used to extract metal from Earth's crust.

2.

3.

l.

1 Metals (continued)

1.	Describe how to test a sample of an element to see if it is a metal.
2.	Compare and contrast the uses of the iron triad and the use of the coinage metals.
3.	Classify the following as alkali metals, alkaline earth metals, transition elements, or inner transition elements: calcium, gold, iron, magnesium, plutonium, potassium, sodium, and uranium.
4.	Discuss how metallic bonding accounts for the common properties of metals.
5.	Determine Suppose you discovered a new element with 120 protons and 2 electrons in its outer level. In what group does this new element belong? What properties would you expect it to have?
6.	Math Connection Pennies used to made of copper and zinc and had a mass of 3.1 g. Today, pennies are made of copper-plated zinc and have a mass of 2.5 g. A new penny's mass is what percent of an old penny's mass?

Elements and Their Properties

2 Nonmetals

REVIEW VOCABULARY sublimation	Recall the definition of the Review Vocabulary term. sublimation
NEW VOCABULARY diatomic molecule nonmetal	Use your book to define each term. diatomic molecule
	nonmetal

2 Nonmetals (continued)

Organize the physical and bonding properties of nonmetals by completing the concept map.

Classify hydrogen as a Group 1 metal and as a nonmetal. In the table below, list the reasons it could be placed in each group of the periodic table.

Group 1 Metal	Nonmetal

2 Nonmetals (continued)

Complete the graphic organizer with facts about halogens.

Halogens are the			
highly reactive and have			
They become		when they g	ain an electron from
a metal. The res	ulting comp	ound is a	. Halogens
can also share e	lectrons to	form	compounds.
Fluorine			
Fluorine			
Chlorine			
Bromine			
lodine			
Astatine			
Get It? Name sor	ne uses of c	hlorine and bro	mine compounds.
Distinguish the not	ole gases fro	m other eleme	nts by writing their
characteristics and	-		
Noble gases are	e isolated	. Th	ey are stable because
			. Helium is
dense than air but o			
			will cause the noble
	Neon an	ıd	are used for brightly
colored signs.			

2 Nonmetals (continued)

7.	Explain how nonmetals are different from solid metals.		
8.	Describe two ways in which nonmetals combine with other elements.		
9.	Identify the nometal in these compounds: MgO, NaH, AlBr ₃ , and FeS.		
Ю.	Identify some common uses for the halogen compounds.		
I1.	Explain why the noble gases are unreactive.		
12.	Describe How can you tell that a gas is a halogen?		
13.	Math Connection If a chlorine atom has a mass of 35.5 atomic mass units and a sodium atom has a mass of 23.0 atomic mass units, what is the mass of one NaCl unit?		

Elements and Their Properties

3 Mixed Groups

REVIEW VOCABULARY substance	Recall the definition of the Review Vocabulary term. substance
NEW VOCABULARY allotrope metalloid semiconductor transuranium element	Use your book to define each term. allotrope metalloid
	semiconductor transuranium element

3 Mixed Groups (continued)

Summarize the characteristics of metalloids.				
Complete the graphic organizer with f	Complete the graphic organizer with facts about the Boron Group.			
Characteristics and Uses				
Aluminum Boron				
Organize the proporties and uses of the Carbon Croup in the				

Organize the properties and uses of the Carbon Group in the chart below.

	Properties	Uses
Carbon		
Silicon		
Germanium		
Tin and Lead		

3 Mixed Groups (continued)

Get It? Define the term *allotrope*.

Compare the nitrogen and oxygen groups. List three characteristics these two groups have in common.

- 1.
- 2. _____

Classify these elements as nonmetal, metalloid, or metal. Use the periodic table in your book to help you.

arsenic selenium _____ antimony tellurium

bismuth polonium

Get It? Explain why bismuth is used in fire-sprinkler heads.

Use the diagram to model how scientists produce americium.

Copyright © McGraw-Hill Education

3 Mixed Groups (continued)

14.	Explain why groups 14 and 15 are better representatives of mixed groups than groups 13 and 16.
15.	Define the term <i>semiconductor</i> and give an example of a metalloid that is used to make semiconductors.
16.	Compare and contrast natural elements and synthetic elements.
17.	Describe the differences and similarities between metals, nonmetals, and metalloids.
18.	Explain Graphite and diamond are made of the element carbon. Explain why graphite is a lubricant and diamond is the hardest gem known.
19.	Math Connection An isotope of copernicium has 112 protons and 173 neutrons. How many particles are in the nucleus of the atom?

18 Chemical Bonds

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Chemical Bonds

1 Stability in Bonding

VOCABULARY	compound
compound	Сотроина
NEW VOCABULARY chemical formula chemical bond	Use your book to define each term. chemical formula
	chemical bond

1 Stability in Bonding (continued)

Compare copper sulfate with the elements that form copper sulfate. Get It? Interpret What does a chemical formula show you? Complete the graphic organizer. Use Table 1 in your textbook for information. one unit of silicon dioxide contains and _ atoms one atom of of_ Get It? Explain why the noble gases are unusually stable.

Copyright © McGraw-Hill Education

1 Stability in Bonding (continued)

our answer. Us	e the exam	iples of ele	ctron do	t diagrams	in your
ook for help.					
reate electron	_	ms for sodi	ium and (chlorine. E	xplain how
our arome coll	ld bocomo	more stabl	0		
otn atoms cou	ld become	more stabl	e.		
om atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
oth atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
our atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
oin atoms cou	ld become	more stabl	e.		
OUI ALOMS COU	ld become	more stabl	e.		
OUII ALOMS COU	ld become	more stabl	e.		
				S.	
Complete the st	atements a	bout chemi	cal bond:		
Complete the st When at	atements a	bout chemi	cal bonds		
Tomplete the st When at	atements a oms of diffe , or	bout chemi erent eleme	cal bond: ents electro	ns, an attra	action forms

1 Stability in Bonding (continued)

CHECK YOUR PROGRESS

1.	Explain why some elements are stable on their own, while others are more stable in compounds.
2.	Compare and contrast the properties of potassium (K) and iodine (I) with the compound KI.
3.	Identify what the electron dot diagram tells you about bonding.
4.	Explain why electric forces are essential to forming compounds.

Copyright © McGraw-Hill Education

Copyright © McGraw-Hill Edu

1 Stability in Bonding (continued)

CHECK YOUR PROGRESS

5.	Describe why chemical bonding occurs. Give two examples of how bonds can form.				
6.	Interpret The label on a box of cleanser states that it contains CH_3COOH . What elements are in this compound? How many atoms of each element can be found in a unit of CH_3COOH ?				
7.	Math Connection Given that the molecular mass of magnesium hydroxide (Mg(OH) ₂) is 58.32 amu and the atomic mass of an atom of oxygen is 15.999 amu, what percentage of this compound is oxygen?				

Chemical Bonds

2 Types of Bonds

Recall the definition of the Review Vocabulary term. **REVIEW VOCABULARY** atom atom Write the correct vocabulary term in the left column for each **NEW VOCABULARY** definition below. a charged particle that has either more or fewer electrons than it has protons the force of attraction between a positive ion and a negative ion in an ionic compound the force of attraction between two atoms that share electrons the neutral particle that forms when atoms share electrons a covalent bond in which the electrons are shared equally a covalent bond in which electrons are shared unequally a molecule that has a slightly positive end and a slightly negative end a molecule that shares electrons equally and does not have oppositely charged ends

2 Types of Bonds (continued)

Complete the steps in the formation of a potassium ion. 1. An atom of potassium has _____ in its _____ energy level. **2.** A potassium atom ______ one electron in its outer energy level when it combines with an iodine atom. **3.** The potassium atom is now an ___ **4.** The potassium ion has a charge of _____ **5.** The symbol for a potassium ion is _____ Analyze Why are Group 14 elements much more likely to share electrons than transfer electrons? Get It? Explain What part of an ion's symbol indicates its charge? Get It? Explain why an atom of iodine tends to react to gain one electron.

Compare ionic and covalent bonds in the Venn diagram below with at least six facts.

Get It? Describe the atoms involved in a nonpolar bond.

Evaluate Your friend says that nonpolar molecules cannot contain polar bonds. Do you agree? Support your answer.

Copyright © McGr

2 Types of Bonds (continued)

CHECK YOUR PROGRESS

equals zero.

Compare and contrast ionic and covalent bonds.
Determine the type of bonding in CaO and in SO ₂ .
Name the type of particle formed by covalent bonds.
Identify the following substances as having polar or nonpolar molecules: HBr, Cl_2 , and $\mathrm{H}_2\mathrm{O}$.
Predict From the given symbols, choose two elements that are likely to form an ionic bond: O, Ne, S, Ca, and K. Next, select two elements that would likely form a covalent bond. Explain your predictions.
Covalent bond. Explain your predictions.

launches. Show that the sum of the positive and negative charges in a unit of Al_2O_3

Chemical Bonds

3 Writing Formulas and Naming Compounds

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term.
ion	
NEW VOCABULARY	Use your book to define each term.
oxidation number	oxidation number
binary compound	
polyatomic ion	
hydrate	binary compound
	polyatomic ion
	hydrate

3 Writing Formulas and Naming Compounds (continued)

Complete the table below for sodium and chlorine. Use the periodic table in your book.

Element	Oxidation Number	Positive or negative charge on ion formed?
sodium		
chlorine		

Get It? Determine the oxidation numbers for each of the ions in the ionic compound calcium bromide, $CaBr_2$.

Get It? Determine the oxidation number of lead in the ion lead(IV).

Summarize the three steps in writing a formula for an ionic compound by completing the graphic organizer below.

1.

2.

3.

Copyright © McGraw-Hill Education

3 Writing Formulas and Naming Compounds (continued)

Organize the steps for finding the formula for ammonium sulfate by completing the questions and answers below. Look at Table 4 in your textbook for help.			
Question: What is the positive ion and its charge?			
Answer:			
Question: What is the negative ion and its charge? Answer:			
, will well.			
Question: How can the charges be balanced to make the compound neutral?			
Answer:			
Question: What is the formula? Answer:			
Get It? Determine What is the name of Na ₂ CO ₃ ?			
Get It? Write the name of the compound S_2O_3 .			

Copyright © McGraw-Hill Educ

3 Writing Formulas and Naming Compounds (continued)

Analyze the following covalent compounds. Write the name for each compound in the right column. Use **Table 6** in your book for help. In the final row, write the formula and name of a binary covalent compound of your choice.

Formula	Name
N ₂ O ₅ SF ₆	
SF ₆	
CCI ₄	
Cl ₂ O	
СО	
IF ₇	

Summarize what you know about hydrates by filling in the blanks below.

Α	has water chemically attached to its		
atoms and written into its _	The		
can be removed from the crystals by them.			
The form of the compound without water is described as			
. The formula CaSO ₄ • 2H ₂ O is named			
Its common name is			
The form of this hydrate is calcium sulfate.			

3 Writing Formulas and Naming Compounds (continued)

CHECK YOUR PROGRESS

20.	Predict formulas for the following compounds: potassium iodide, phosphorus pentachloride, magnesium hydroxide, aluminum sulfate, dichlorine heptoxide, and calcium nitrate trihydrate.
21.	Write the names of these compounds: Al_2O_3 , $Ba(ClO_3)_2$, SO_2 , NH_4Cl , PCl_3 , and $Mg_3(PO_4)_2 \cdot 4H_2O$.
22.	Determine the oxidation number of each atom in the following compounds: sodium chloride and iron(II) oxide.
23.	Explain whether sodium and potassium will react to form a bond with each other.
24.	Math Connection The overall charge on the polyatomic sulfate ion is $2-$. Its formula is SO_4^{2-} . If the oxygen ion has a $2-$ oxidation number, determine the oxidation number of sulfur in this polyatomic ion.

19 Chemical Reactions

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.		

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned		
WHALIKHOW	what I want to I ma Out	What i Leamed		

Chemical Reactions

1 Chemical Changes

REVIEW VOCABULARY chemical formula	Recall the definition of the Review Vocabulary term. chemical formula
NEW VOCABULARY chemical reaction reactants	Use your book to define each term. chemical reaction
products chemical equation coefficient	reactants products
balanced chemical equation mole	chemical equation
molar mass	coefficient
	mole
	molar mass

Summarize the contributions of Lavoisier by completing the paragraph.

The French chemist Antoine _______ discovered the law of _____ of ____ . This law states that the total mass of the ______ always equals the total mass of the _____ . Another way to say this is that mass is neither nor _____ in a chemical reaction.

Get It? Explain the law of conservation of mass.

Identify the reactants and the products in the following chemical equations.

Chemical Equation	Reactant(s)	Product(s)
$Zn + S \rightarrow ZnS$		
AgNO ₃ + NaCl → AgCl + NaNO ₃		
$C_{12}H_{22}O_{11} \rightarrow 12C + 11H_2O$		
$CaCO_3 + 2HCI \rightarrow H_2O + CO_2 + CaCl_2$		

Complete the following chemical equation and its translation.

Magnesium	oxygen
	magnesium oxide
and	energy.

Complete the table of symbols used in chemical equations.

Symbol	Meaning
	produces or yields
+	
(s)	
	liquid
(g)	
	aqueous (substance is dissolved in water)
<u>heat</u>	The reactants are
<u>light</u>	
	An electric current is applied to the reactants.

Get It? Summarize Describe the role of coefficients in a chemical equation.

Get It? Summarize How can you tell whether a chemical equation is balanced or not?

Copyright @ McGlaw-Hill Eddcatio

Complete the table below. The number of atoms for each element on the left side of the equation has been filled in for you. Fill in the number of atoms for the right side of the equation.

Number and Kinds of Atoms

	BaCl ₂ -	⊦ H ₂ SO ₄ −	→ BaSO ₄ -	+ HCI
Ba	1			
CI	2			
Н		2		
S		1		
0		4		

Evaluate whether the equation above is balanced. Does every element have the same number of atoms on each side of the equation? If not, which ones are not equal?

Determine what coefficient could be added to balance the equation from the table. Write the balanced equation below.

Identify coefficients that balance each equation. Leave a blank space if no coefficient is needed.

1.
$$P(s) + Q_2(g) \rightarrow P_4O_{10}(s)$$

2.
$$KCIO_3(s) \rightarrow KCI(s) + O_2(g)$$

3.
$$H_2O(I) \rightarrow H_2(g) + O_2(g)$$

4.
$$CH_4(s) + CO_2(g) \rightarrow CO_2(g) + H_2O(g)$$

5.
$$Al_2O_3(s) \rightarrow Al(s) + O_2(g)$$

6. MgSO₄(aq) + KCl(aq)
$$\rightarrow$$
 MgCl₂(s) + K₂SO₄(aq)

CHECK YOUR PROGRESS

5. Identify the reactants and the products in the following chemical equation:

$$Cd(NO_3)_2(aq) + H_2S(g) \rightarrow CdS(s) + 2HNO_3(aq)$$

6. Explain the importance of the law of conservation of mass.

- **7. Explain** why oxygen gas must be written as O_2 in a chemical equation.
- **8. Explain** why the sum of the coefficients on the reactant side of a balanced equation does not have to equal the sum of the coefficients on the product side of the equation.
- **9. Math Connection** Balance the following equation: $Fe(s) + Cl_2(g) \rightarrow FeCl_3(s)$.
- **10. Math Connection** Calculate how many moles are in 125 g of water (H_2O) .
- **11. Math Connection** Calculate the mass of 3.000 mol of calcium (Ca).

Chemical Reactions

2 Classifying Chemical Reactions

NEW VOCABULARY
combustion reaction
synthesis reaction
decomposition reaction
single-displacement
reaction
double-displacement
reaction
precipitate
oxidation
reduction

REVIEW

VOCABULARY

states of matter	
Use your book to define each term.	
combustion reaction	
synthesis reaction	
decomposition reaction	
single-displacement reaction	
double-displacement reaction	
precipitate	
r.oo.t	
avidation	
oxidation	
reduction	

Recall the definition of the Review Vocabulary term.

2 Classifying Chemical Reactions (continued)

Describe each type of chemical reaction in words. Give the general form if it exists and an example for each.

Combustion reaction	Description:
	Example:
	Description:
Synthesis reaction	General form:
	Example:
	Description:
Decomposition reaction	General form:
	Example:
Single-	Description:
displacement	General form:
reaction	Example:
Double- displacement reaction	Description:
	General form:
	Example:
Oxidation- reduction reaction	Description:

Get It? Summarize Describe what happens in a single-displacement reaction.

Copyright © McGraw-Hill Education

2 Classifying Chemical Reactions (continued

Classify each of the following reactions by writing what type of reaction it is in the space to the right.

Reaction	Type of reaction
$NiCl \rightarrow Ni + Cl_2$	
$2LiBr + PbNO_3 \rightarrow PbBr_2 + 2LiNO_3$	
Fe + 2HCl → FeCl ₂ + H ₂	
$H_2 + Cl_2 \rightarrow 2HCl$	

Model a synthesis reaction and a decomposition reaction using the following 3 substances in chemical equations.

 ${\sf CaO} \qquad \qquad {\sf H_2O} \qquad \qquad {\sf Ca(OH)_2}$

Synthesis reaction:

Decomposition reaction:

Interpret the activity series (**Figure 10** in your textbook) to decide which metal will replace the other in a displacement reaction.

Metal 1	Metal 2	Which would replace the other?
calcium	lead	
tin	zinc	
copper	aluminum	
gold	silver	

Get It? Classify What kind of reaction produces a precipitate?

2 Classifying Chemical Reactions (continued)

CHECK YOUR PROGRESS

12. Characterize each reaction by determining its reaction type.

a. $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(aq)$

b. $Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$

c. $C_{10}H_8(I) + 12O_2(g) \rightarrow 10CO_2(g) + 4H_2O(g)$

d. $NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl(s)$

e. $NH_4NO_3(s) \rightarrow N_2O(g) + 2H_2O(g)$

13. Describe what happens in a combustion reaction.

14. Compare and contrast synthesis reactions and decomposition reactions.

- **15. Determine,** using **Figure 10** from your textbook, if zinc will displace gold in a chemical reaction, and explain why or why not.
- **16. Describe** one possible economic impact of redox reactions. How might that impact be lessened?

Copyright © McGraw-Hill Educat

2 Classifying Chemical Reactions (continued)

CHECK YOUR PROGRESS (CONTINUED)

17. Math Connection The following chemical reaction is balanced, but the coefficients used are larger than necessary. Rewrite this balanced equation using the smallest coefficients possible.

$$9Fe(s) + 12H_2O(I) \rightarrow 3Fe_3O_4(s) + 12H_2(g)$$

18. Math Connection Sulfur trioxide (SO_3), a pollutant released by coal-burning plants, can react with water (H_2O) in the atmosphere to produce sulfuric acid (H_2SO_4). Write the balanced equation for this reaction.

Chemical Reactions

3 Chemical Reactions and Energy

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term.
	chemical bond
chemical bond	
NEW VOCABULARY	Use your book to define each term.
exergonic reaction	exergonic reaction
exothermic reaction	
endergonic reaction	avalla arasia rassaltina
endothermic reaction	exothermic reaction
	endergonic reaction
	endothermic reaction

Copyright © McGraw-Hill Education

3 Chemical Reactions and Energy (continued)

Complete the following passage about energy in chemical reactions. All exothermic reactions are , but not all exergonic reactions are reactions reactions give off thermal energy, and give off any type of energy. All reactions are endergonic, but not all reactions are endothermic. reactions absorb thermal energy, and _____ reactions absorb any type of energy. **Model** the relationships between exergonic, exothermic, endergonic, and endothermic reactions by completing the Venn diagram below. The first step has been done for you. Exothermic Get It? Infer Why is a log fire considered to be an exothermic reaction?

Classify each of the following processes as endergonic or exergonic.

combustion of fossil fuels glow sticks
dissolving salt in water photosynthesis
dynamite explosions rusting iron

electroplating firefly light

separating aluminum from its ore

Exergonic	Endergonic

Compare and contrast the conservation of mass and the conservation of energy in the equation below. Fill in the Venn diagram using phrases from the bank below the equation.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) + energy$$

The equation is balanced.

Energy is not created or

destroyed.

New compounds are created. Atoms on the left are the same

as atoms on the right.

Light is a product.

Matter is not created or

destroyed.

Chemical energy is released

as thermal energy.

3 Chemical Reactions and Energy (continued)

CHECK YOUR PROGRESS

20.	Explain why the total amount of energy does not decrease in an exergonic chemical reaction.
21.	Explain how a reaction could be endergonic but not endothermic.
22.	Classify the reaction that makes a firefly glow in terms of energy input and output.
23.	Apply To develop a product that warms people's hands, would you use an exothermic or endothermic reaction? Why?

19. Classify the chemical reaction photosynthesis as endergonic or exergonic. Explain.

- **24. Math Connection** If an endothermic reaction begins at 26°C and decreases by 2°C per minute, how long will it take to reach 0°C?
- **25. Math Connection** Create a graph of the data in question 24. After 5 minutes, what is the temperature of the reaction?

Chemical Reactions

4 Reaction Rates and Equilibrium

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. Pressure
pressure	
NEW VOCABULARY	Use your book to define each term.
reaction rate	reaction rate
collision model	collision model
catalyst	catalyst
inhibitor	<i>σ</i> αταίγ51
reversible reaction	
equilibrium	inhibitor
Le Châtelier's principle	reversible reaction
	equilibrium
	Le Châtelier's principle

Copyright © McGraw-Hill Education

4 Reaction Rates and Equilibrium (continued)

Complete the table to show how each of the factors in the table can either speed up or slow down a reaction.

Factor	Speed up a reaction by	Slow down a reaction by
Temperature	increasing temperature.	
Concentration		decreasing concentration of the reactants.
Pressure	increasing pressure of a gas.	
Volume	decreasing the volume of a gas.	
Surface area		decreasing surface area of reactants.
Catalyst		removing the catalyst.
Inhibitor	removing an inhibitor.	

Get It? Use the collision model to explain the effect of increased temperature on reaction rates.

Get It? Use the collision model to predict how the reaction rate changes over time as a magnesium ribbon reacts with HCl in a dilute HCl solution.

Get It? Compare and contrast catalysts and inhibitors in how they affect reaction rates.

Organize information about the roles of catalysts and inhibitors in chemical reactions. Fill in the Venn diagram with examples and phrases from the list below.

speed up reactions slow down reactions not used up in the reaction food preservatives enzymes in the body used in auto industry used to make polymers

4 Reaction Rates and Equilibrium (continued)

Get It? Contrast the forward and reverse reactions in a reversible reaction.

List the reactants and products of the following reversible reaction.

$$2KCIO_3(s) \rightleftharpoons 2KCI(s) + 3O_2(g)$$

	Reactant(s)	Product(s)
Forward reaction		
Reverse reaction		

Complete the following statement.

The state in which forward and reverse reactions balance each other because they take place at equal ______ is called ______. For a chemical reaction in equilibrium, the net amounts of reactants and products remain _____.

Determine how each of the following stresses will affect the equilibrium of the Haber process, shown in the equation below. Place an X in the appropriate column of the table for each stress.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + energy$$

Stress	Shifts equilibrium left	Shifts equilibrium right
Decrease concentration of NH ₃ by removing NH ₃ as it forms		
Decrease volume/increase pressure		
Increase temperature		

4 Reaction Rates and Equilibrium (continued)

CHECK YOUR PROGRESS

26. List four ways to change the rate of a chemical reaction.

27. Describe two ways in which you might state the rate of a chemical reaction.

28. Explain what must happen in order for two molecules to react.

29. Compare and contrast chemical and physical equilibrium.

30. Apply Describe two ways you could influence the following equilibrium to produce more ethanal (CH₃CHO). Use Le Châtelier's principle to explain why each of your methods would produce the desired result.

$$C_2H_2(g) + H_2O(g) \rightleftharpoons CH_3CHO(g) + energy$$

31. Math Connection For the reaction described in question 30, the concentration of CH_3CHO is found to increase from 0.0300 mol/L to 0.0500 mol/L in 42.5 seconds. Express the average rate of the reaction in mol CH_3CHO produced/L·s.

20 Radioactivity and Nuclear Reactions

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Radioactivity and Nuclear Reactions

1 The Nucleus

REVIEW VOCABULARY electric force	Recall the definition of the Review Vocabulary term. electric force
NEW VOCABULARY strong force radioactivity	Use your book to define each term. strong force
,	radioactivity

1 The Nucleus (continued)

Describe the nucleus. Discuss its size and what makes it up.
Get It? Define atomic number.
Get It? Identify the force that produces the attraction between protons and neutrons.
Get It? Compare the strong force between two protons that are very close together with the electromagnetic force between the same two protons.

1 The Nucleus (continued)

Compare and contrast the strong force and the electrical force in the nuclei of atoms. Describe each force for a small and a large nucleus.

Nucleus Size	Strong Force	Electrical Force	Comparison: Total Effect
small			
large			

Get It? Explain why, in a large nucleus, the strong force holding a proton in place is about the same as for a small nucleus but the electric force on the proton is greater.

Copyright © McGraw-Hill Education

1 The Nucleus (continued)

CHECK YOUR PROGRESS

I.	Compare the properties of the strong force to the properties of the electromagnetic force.
2.	Compare the forces in a small nucleus to the forces in a large nucleus.
3.	Explain why large nuclei tend to be radioactive.
١.	Explain whether you would expect helium-6 to be radioactive or stable.
5.	Math Connection What is the approximate ratio of neutrons to protons in a nucleus of radon-222?

Radioactivity and Nuclear Reactions

2 Nuclear Decays and Reactions

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term.
gamma ray	gamma ray
NEW VOCABULARY	Use your book to define each term.
alpha particle	alpha particle
beta particle	
transmutation	beta particle
chain reaction	
	transmutation
	chain reaction

	Nuclear Radiation		
	Alpha	Beta	Gamma
Symbol			γ
Composition			
Cause		weak force causes a neutron to decay into a proton plus a beta particle	
Charge			none
Mass	extremely massive compared with other radiations		
Speed		faster than alpha	
Penetration			
Can be stopped by	sheet of paper		

Copyright © McGraw-Hill Education

Get It? Identify the components of an alpha particle. Get It? Identify the changes in the nucleus that result from transmutation caused by alpha decay and explain how they affect the total number of protons and neutrons. **Summarize** the process of nuclear fission of uranium. this produces nucleus is so a neutron collides with unstable that it splits into several nucleus nucleus Some mass is lost because Get It? Explain why the extremely high temperatures found in the centers of stars are needed for fusion to occur in stars.

Get It? Compare the masses before and after a nuclear fusion reaction. **Summarize** the energy requirements of nuclear fusion. what must be overcome: this is in order to: ___ type of energy that can do it: this type of energy increases with: common places to find enough energy: _ **Define** Einstein's mass-energy equation in words and then write the formula. Words: (joules) = _____ (kg) [_ (m/s)]Formula: Get It? Explain why the mass-energy relationship can be observed in nuclear changes but not in chemical changes.

CHECK YOUR PROGRESS

	Contrast the energy that can be released during a nuclear fission reaction with the energy that can be released during a nuclear fusion reaction.
9.	Contrast alpha particles, beta particles, and gamma rays.
10.	Explain why mass-energy equivalence is not apparent for chemical reactions.
11.	Explain why high temperatures are needed for fusion reactions to occur but not for fission reactions to occur.
12.	Math Connection In a chain reaction, two additional fissions occur for each nucleus that is split. If one nucleus is split in the first step of the reaction, how many nuclei will have been split after the fifth step?

Radioactivity and Nuclear Reactions

3 Radiation Technologies and Applications

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. electric current
electric current	Electric current
NEW VOCABULARY	Use your book to define each term.
	•••• , •••••••••••••
tracer	tracer
half-life	
	half-life

Copyright © McGraw-Hill Education

3 Radiation Technologies and Applications (continued)

Describe now a Gerger C	
Geiger Counter:	
	f background radiation that occur in nature. st percentage to least percentage.
В	Background Radiation
Source	Percent of Total Radiation
Inside the body	
	11%
Rocks and soil	
Get It? Describe a med	dical use for iodine-131.
	background radiation absorbed by the body.
2	
3	

Complete the table to illustrate the half-life of a radioactive isotope.

Number of Half-lives	Fraction of Parent Nuclei Remaining	Fraction of Daughter Nuclei Formed
0	1	0
1		
2		
3		

3 Radiation Technologies and Applications (continued)

CHECK YOUR PROGRESS

13. Explain how half-life would help determine which isotopes might be useful for a medical test.		
14.	Describe what happens when beta particles pass through a Geiger counter.	
15.	Explain why background radiation can never be completely eliminated.	
16.	Explain Why is an archeologist unable to use carbon-14 to accurately date the age of a skeleton that is millions of years old?	
17 .	Math Connection What is the percentage of radioactive nuclei left after 3 half-lives pass?	
18.	Math Connection If the half-life of iodine-131 is 8 days, how much of a 5.0-g sample is left after 32 days?	

Copyright © McGraw-Hill Education

21 Solutions

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.				

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned		
WHALIKHOW	what I want to I ma Out	What i Leamed		

Solutions

1 How Solutions Form

REVIEW VOCABULARY polar molecule	Recall the definition of the Review Vocabulary term. Polar molecule
NEW VOCABULARY alloy solute solvent	Use your book to define each term. alloy solute
	solvent

1 How Solutions Form (continued)

Create an example of a gas, liquid, and solid phase of a solution in the boxes below. Label the solute and solvent in each box. Use the figures in your book for help. Sequence a three-step process of dissolving a polar solid in a polar liquid. Step 1. Step 2. Step 3. Get It? Explain How do you know which substance is the solute in a solution?

1 How Solutions Form (continued)

Define one charact		_	a gas in a liquid and one lid in a solid.
Dissolving gas	in a liquid: _		
Dissolving a sc	olid in a solid:	:	
Get It? Ident liquid.	t ify where a s	solid actuall	y dissolves when placed in a
Organize how speed up the r	-		temperature are used to
_	the Rate of Diving		Stirring:
Temper	ature:		Crystal Size:

1 How Solutions Form (continued)

CHECK YOUR PROGRESS

- **4. Summarize** possible ways in which phases of matter could combine to form a solution.
- 5. Draw a diagram that shows how a solid dissolves in a liquid.

6. Describe how stirring, surface area, and temperature affect the rate of dissolving.

7. Explain Amalgams are sometimes used in tooth fillings and are made of mercury. Explain why an amalgam is a solution.

- **8. Math Connection** Calculate the surface area of a rectangular solid with dimensions l = 2 cm, w = 1 cm, and h = 0.5 cm.
- **9. Math Connection** If the length of the rectangle in question 8 is increased by 10%, by what percentage will the surface increase?

Solutions

2 Concentration and Solubility

REVIEW VOCABULARY solution	Recall the definition of the Review Vocabulary term.
NEW VOCABULARY concentration saturated solution solubility supersaturated solution	Use your book to define each term. concentration
unsaturated solution	saturated solution solubility
	supersaturated solution unsaturated solution

2 Concentration and Solubility (continued)

Get It? Explain What is solubility?
Identify four items that you might buy in concentrated form but would dilute before using them. Accept all reasonable responses.
1
2
3
4
Synthesize Suppose you and a friend are making iced tea using identical glasses. You both use the same amount of water, and the water temperature is the same in both glasses. Explain how you can tell who added more ice tea mix to the glass.
Get It? Explain how the temperature of a liquid solvent affects the solubility of a compound.
Organize Name and define the three types of solutions discussed in your book.
Types of Solutions

2 Concentration and Solubility (continued)

Analyze the graph titled Temperature Effects on Solubility in your book. Then list the four substances from least soluble to most soluble at 70°C. 2. _ **Get It? Explain** why the term *unsaturated* is not a precise term. **Complete** the graphic organizer about the solubility of gases. Increasing the increases pressure of a gas over a liquid increases Cooling the liquid **Evaluate** why many people prefer to store carbonated beverages in the refrigerator.

2 Concentration and Solubility (continued)

CHECK YOUR PROGRESS

Contrast What is the difference between solubility and concentration?
Compare and contrast the difference between relative and precise concentrations. Give examples.
Explain Do all solutes dissolve to the same extent in the same solvent? How do you know?
Identify the type of solution that you have if solute continues to dissolve as you add more.
Explain how keeping a carbonated beverage capped and refrigerated helps keep it from going flat.
Math Connection By volume, orange drink is ten percent each of orange juice and corn syrup. A 1.5-L can of the drink costs \$0.05. A 1.5-L can of orange juice is \$1.49, and 1.5 L of corn syrup is \$1.69. Per serving, does it cost less to make your own
corn syrup. A 1.5-L can of the drink costs \$0.05. A 1.5-L can of orange juice is \$1.49, and 1.5 L of corn syrup is \$1.69. Per serving, does it cost less to make your own orange drink or to buy it?

Solutions

3 Particles in Solution

REVIEW VOCABULARY ion	Recall the definition of the Review Vocabulary term. substance
VOCABULARY dissociation electrolyte ionization	Use your book to define each term. dissociation
nonelectrolyte	electrolyte
	ionization
	nonelectrolyte

Copyright © McGraw-Hill Education

3 Particles in Solution (continued)

Complete the table by describing the current that can be conducted by each type of solution. Give an example for each.

Туре	Description of Current	Example
strong electrolytes		
weak electrolytes		
nonelectrolytes		

Model the ionization process of hydrogen chloride, as shown in your book. Label the positive ion and negative ions in your drawing.

Cot It2	Name a the true v	مصمنا بامم المطاع مربد	of alastralistas forms
Get it:	Name the two w	avs that solutions	of electrolytes form.

Summarize in your own words how ionic solutions form.

Ionization:

Dissociation:

3 Particles in Solution (continued)

	ween dissociation and	nat are the differences and ionization?
Organize the e	effects of solute particle	es by completing the organizer.
	The effect that a s the freezing point point of a solvent.	or boiling
Dep	ends on	Does not depend on
Get It? Desc pure solvent		eze affect the vapor pressure o
ynthesize wh ummer and ir	-	nt to a car's radiator in both the

3 Particles in Solution (continued)

CHECK YOUR PROGRESS

16.	Explain how the concentration of a solute in a solution influences its boiling point and freezing point.			
17.	Identify what kinds of solute particles are present in water solutions of electrolytes and nonelectrolytes.			
18.	Determine whether ionization or dissociation has taken place if calcium phosphate $(Ca_3(Po_4)_2)$ breaks into Ca^{2+} and PO_4^{3-} .			
19.	Explain People often put salt on ice that forms on sidewalks and driveways during the wintertime. The salt helps melt the ice, forming a saltwater solution. Explain why this solution resists refreezing.			
20.	Math Connection Use the data points (0, 12), (10,8), (20, 4), and (30, 0) to graph the effect of a solute on the freezing point of a solvent. Label the <i>x-axis Solute (g)</i> and the <i>y-axis Freezing point (degrees Celsius)</i> . Find the slope of the line that you graph.			

Solutions

VIEW	Recall the definition of the Review Vocabulary term.
OCABULARY ar molecule	polar molecule

Copyright © McGraw-Hill Education

4 Dissolving Without Water (continued)

Describe Fill in the blanks to describe nonpolar solutes.			
The molecules have no se	eparate positive and negative areas,		
	water molecules and do		
not in water.			
Classify four nonpolar materials y	ou may find around your home		
1	3		
2.	4		
_			
Summarize information about use	oful nonnolar moloculos		
Summanze information about use	and nonpolar molecules.		
I. Drawbacks of Nonpolar Solve	ents		
A			
~	. <u> </u>		
II. How Soap Works			
A			
В			
5.			
C			
Get It? Summarize Why is soap	o required to clean oily dirt?		
Summarize Wily is soup	Trequired to clean only ant.		
Classify Vitamins A, B, C, D, E, ar water solute.	nd K as being either fat soluble or		
Fat soluble:			
Water soluble:			
Cat II2 a construction			
Get It? Restate Why is it neces vitamins more quickly than fat-sol	•		
vitaminis more quickly than lat-sor	asic vitarinis:		

4 Dissolving Without Water (continued)

CHECK YOUR PROGRESS

21.	Explain how a polar solvent dissolves a polar solute and how a nonpolar solvent dissolves a nonpolar solute.			
22.	Describe polar and nonpolar molecules.			
23.	Explain how one solute can dissolve in both polar and nonpolar solvents.			
24.	Draw a diagram to explain how soap cleans your hands.			
25.	Describe What might happen to your skin if you washed too often?			
26.	Math Connection If 60 mg of vitamin C in a multivitamin provides only 75 percent of the recommended daily dosage for children, how much is recommended?			
27.	Math Connection To get the recommended dose of vitamin C, approximately how much fresh orange juice must you drink? (Refer to Table 3 in your book)			

22 Acids, Bases, and Salts

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.		

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned	
WHALIKHOW	what I want to I ma Out	What i Leamed	

Acids, Bases, and Salts

1 Acids and Bases

REVIEW VOCABULARY electrolyte	Recall the definition of the Review Vocabulary term. electrolyte
NEW VOCABULARY	Use your book to define each term.
hydronium ion	
indicator	hydronium ion
hydroxide ion base	
	indicator
	hydroxide ion
	base

Copyright © McGraw-Hill Education

1 Acids and Bases (continued)

Organize information about acids using the table below.

cids
Four Common Properties:
Four Uses of Acids:
important for industry.
ions are associated with both acids

1 Acids and Bases (continued)

Identify a fact or example about bases on each line.

Create one review question dealing with the ionization of acids and one review question dealing with the dissociation of bases. Give answers to your two questions.

- **1.** Question:

 Answer:
- 2. Question:

 Answer:

1 Acids and Bases (continued)

iappens at	mmonia molecule and a water molecule. Show what uring dissociation.
Get It? E	xplain how ammonia reacts in a water solution.
	w ammonia can be a base even though it does not H.
Analyze ho contain —O	

1 Acids and Bases (continued)

CHECK YOUR PROGRESS

1.	Describe how an acidic solution forms when HCl is mixed in water and how a basic solution forms when NaOH is mixed in water.
2.	Explain what an indicator is.
3.	Write the formulas of three important acids and three important bases and describe their uses.
4.	Compare and contrast how NH ₃ and Ca(OH) ₂ form OH ⁻ ions in water.
5.	Apply A friend asks you to get something from the kitchen, but he uses chemical formulas to ask for it. He asks for a drink which does not contain H_2CO_3 , but does have $H_2C_6H_6O_6$. What might he be asking for?
6.	

Acids, Bases, and Salts

2 Strength of Acids and Bases

REVIEW VOCABULARY ionization	Recall the definition of the Review Vocabulary term.
NEW VOCABULARY	Use your book to define each term.
strong acid	strong acid
weak acid	
strong base	
weak base	weak acid
рН	
buffer	strong base
	weak base
	pH
	buffer

2 Strength of Acids and Bases (continued)

Analyze information about strong and weak acids and bases.

	Equation for Dissociation	Arrow Directions Demonstrate
Weak acid		
Weak base		
Strong acid		
Strong base		

Evaluate why acids are able to conduct electricity. Then describe which types of acids are better conductors and why.

Contrast the terms *weak* and *dilute* as they describe acids and bases.

Weak	Dilute

Copyright © McGraw-Hill Education

Copyright © McGraw-Hill Education

2 Strength of Acids and Bases (continued)

Describe what the particles of an acid or base would look like with each combination of characteristics listed below.

	Concentrated	Dilute
Weak	There are many particles, but not all are dissociated ions.	
Strong		

Model a pH scale from 0 to 14. Then complete the following:

- Circle and label a neutral pH.
- Use arrows to show which direction indicates more acidic and which direction indicates more basic.
- Circle and label the pH level with the highest concentration of H⁺ ions and the pH level with the lowest concentration of H⁺ ions.

Analyze how buffers allow you to eat acidic and basic foods without changing your blood pH.

Get It? Explain what buffers are and how they are important for health.

Copyright © McG

2 Strength of Acids and Bases (continued)

CHECK YOUR PROGRESS

7.	Compare and contrast a dilute solution of a strong acid and a concentrated solution of a weak acid.
8.	Describe two techniques used to measure the pH of a solution.
9.	Explain how electricity can be conducted by acids and bases.
Ο.	Relate pH values of 9.1, 1.2, and 5.7 to hydronium and hydroxide ion concentration and characterize each as basic, acidic, or very acidic.
•	Explain The proper pH range for a swimming pool is between 7.2 and 7.8. Most pools use two substances, Na ₂ CO ₃ and HCl, to maintain this range. How would you adjust the pH if you found it was 8.2? 6.9?
2.	Math Connection To determine the difference in pH strength, calculate 10 ⁿ , where n is the difference between pHs. How much more acidic is a solution of pH 2.4 than a solution of pH 4.4?

Acids, Bases, and Salts

3 Salts

REVIEW VOCABULARY nonpolar molecule	Recall the definition of the Review Vocabulary term. nonpolar molecule
NEW VOCABULARY	Use your book to define each term.
neutralization	neutralization
salt	
titration	salt
soap	Juli
	titration
	soap

Identify the acid, base, salt, and water in the neutralization reaction below.

$$\text{HCI} + \text{NaHCO}_3 \rightarrow \text{NaCI} + \text{CO}_2 + \text{H}_2\text{O}$$

Complete the graphic organizer describing the formation of a salt.

negative ions from an acid + salt

Sequence the steps used to find the concentration of an acid solution by titration. The last step has been completed for you.

Use the volume of base used, the known concentration of the base, and the volume of the acid to calculate the concentration of the acid.

Compare and contrast characteristics of soaps and detergents in the Venn diagram below.

- contain a sulfonic acid group
- have carboxylic acid group
- have long hydrocarbon chains
- insoluble in hard water

- may cause excess foam
- · used for cleaning
- make soap scum

Get It? Explain why soaps must have polar and nonpolar ends.

Get It? E	xplain W	/hat is soap	scum?		
Explain the		ship betwee	n deterge	nts, soap sc	um, and
				neutralizatio kitchen bas	on works using e.

Copyright @ mcOlaw i mil Eddedig

CHECK YOUR PROGRESS

13. Write the balanced chemical equation for one neutralization reaction. In your equation, which reactant contributed the salt's positive ion? Which one contributed the salt's negative ion?

- **15.** Compare and contrast the composition of detergents and soaps.
- **16. Predict** Give the names and formulas of the salts formed in the following neutralizations: sulfuric acid and calcium hydroxide, nitric acid and potassium hydroxide, and carbonic acid and aluminum hydroxide.

17. Math Connection In the following reaction, how many molecules of HCl are needed to produce four molecules of H_2O ?

$$2HCI(aq) + Ca(OH)_2(aq) \rightarrow CaCI_2(aq) + 2H_2O(I)$$

23 Organic Compounds

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.				

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

K What I Know	W What I Want to Find Out	L What I Learned

Organic Compounds

1 Simple Organic Compounds

REVIEW VOCABULARY covalent bond	Recall the definition of the Review Vocabulary term. covalent bond
VOCABULARY organic compound	Use your book to define each term. organic compound
hydrocarbon	
saturated hydrocarbon unsaturated hydrocarbon	hydrocarbon
isomers	
benzene	saturated hydrocarbon
	unsaturated hydrocarbon
	isomers
	benzene

Copyright © McGraw-Hill Education

1 Simple Organic Compounds (continued)

Compare organic and inorganic compounds. Give examples of each type.

Organic	Inorganic

Get It? Explain why the element carbon can form so many different organic compounds.

Complete the concept map by describing how carbon can form so many organic compounds through bonding and arrangement.

Reasons that carbon can form many organic compounds

Get It? State the number of carbon atoms and hydrogen atoms in each molecule in **Figure 4** (in your textbook).

1 Simple Organic Compounds (continued)

this section. Name the hydrocarbon and explain why it is a hydrocarbon on the lines below.	

Create Draw the structural formula for one of the hydrocarbons in

Complete the graphic organizer about isomers.

Get It? Explain why propane and cyclopropane are not isomers, even though both have three carbon atoms and neither has double or triple bonds.

Identify the type or types of bonds between the carbon atoms in each hydrocarbon. Make a sketch of each molecule. Then categorize each hydrocarbon as saturated or unsaturated.

Hydrocarbon	Type(s) of Bond	Sketch	Saturated or Unsaturated
Ethene			
Ethyne			
Propane			
Propene			

1 Simple Organic Compounds (continued)

CHECK YOUR PROGRESS

1.	Define the term <i>organic compounds</i> and explain how they got this name.
2.	Classify each of the following compounds as organic or inorganic: C_4H_{10} , H_2O , FeO, CH_3COOH , and CaS .
3.	Compare and contrast ethane, ethene, and ethyne.
4.	Explain the term <i>saturated</i> in relation to hydrocarbons. What are these compounds saturated with?

1 Simple Organic Compounds (continued)

CHECK YOUR PROGRESS

- **5. Describe** how boiling and melting points generally vary as branching in hydrocarbon isomers increases.
- **6. Analyze** Cyclobutane is a cyclic, saturated hydrocarbon containing four carbon atoms. Draw its structural formula. Are cyclobutane and butane isomers? Explain.

7. Math Connection Adding one double bond to octane (C_8H_{18}) makes the hydrocarbon octene (C_8H_{16}). Write the formulas for adding one, two, and three more double bonds to octane. What is the decrease in the number of hydrogen atoms for each double bond added?

Organic Compounds

2 Substituted Hydrocarbons

REVIEW VOCABULARY acid	Recall the definition of the Review Vocabulary term.
VOCABULARY substituted hydrocarbon	Use your book to define each term. substituted hydrocarbon
alcohol	
ester	
amine	
aromatic compound	alcohol
	ester
	amine
	aromatic compound

2 Substituted Hydrocarbons (continued)

Compare substi	tuted hydrocarbons using the t	table below.
	Llavy and they formed?	Evenules
A - -	How are they formed?	Examples
Alcohols		
Organic Acids		
Esters		
Amines		
et It? Evolui	n why organic acids are consid	lared substituted
ydrocarbons.	I willy organic acids are consic	ierea sabsiliatea
dentify five ele	ments other than carbon, hydro	ogen and ovvgen the
	hydrocarbons.	ogen, and oxygen the
•		
··		
l		
3. 		

2 Substituted Hydrocarbons (continued)

igures in your book to help	you. Use a highlighter to identify ne name and chemical formula for the
Complete the table about ar	romatic compounds.
Definition	Properties
Structure found in all aromatic compounds	Examples
	entry about some organic compounds e aromatic compound, one alcohol, and

2 Substituted Hydrocarbons (continued)

CHECK YOUR PROGRESS

•	Classify each of the following as a hydrocarbon or a substituted hydrocarbon: ethyne, tetrachloroethene, ethanol, benzene, propane, and acetic acid.
	Identify the structure that is present in all aromatic compounds.
•	Explain why chemists might want to prepare substituted hydrocarbons. Give two examples of possible substitutions.
	Identify possible uses for each of the following types of substituted hydrocarbons: alcohols, esters, and halocarbons.
	Explain Chloroethane (C_2H_5CI) can be used as a spray-on anesthetic for localized injuries. How does chloroethane fit the definition of a substituted hydrocarbon? Diagram its structure.
•	Math Connection The odor of mercaptans can be detected in concentrations as low as 0.5 parts per million. Express this concentration as a percent.

Organic Compounds

3 Petroleum—A Source of Organic Compounds

VOCABULARY	Recall the definition of the Review Vocabulary term. condense	
condense		
VOCABULARY	Write the correct vocabulary term in the left column for each definition below.	
	a small molecule that forms a link in a polymer chain	
	a very large molecule made from small molecules that link together	
	a process that uses heat or chemicals to break long polymer chains into monomer fragments	

3 Petroleum—A Source of Organic Compounds (continued)

Define the terms *fraction* and *distill*. Use a dictionary to help you. Then describe what fractional distillation does to petroleum. **Sequence** the steps in fractional distillation until the first fraction is separated. One step has been completed for you. 1. 2. 3. The hydrocarbons start to turn into vapor. The vapors rise up inside the tower. 4. 5. **Model** a fractionating tower. Use the figure in your book for help. Next to the tower, draw an arrow from the bottom to the top. Along the arrow, show where the highest-boiling fractions, middle-boiling fractions, and lowest-boiling fractions condense.

3 Petroleum—A Source of Organic Compounds (continued)

Get It? Compare the masses of compounds collected at the top of the tower to those collected at the bottom. Organize information about the uses of petroleum compounds. In the middle column of boxes, describe the fractions. In the right column, tell what each fraction is used to make. lightest fractions; do not condense kerosene, jet fuel, **Uses for Petroleum** diesel oil Get It? Explain how polymers are similar to paper chains. Model a polymer if one paper clip is a monomer. Describe at least one benefit and one challenge associated with depolymerization. **Benefit** Challenge

Copyright © McGraw-Hill Education

3 Petroleum—A Source of Organic Compounds (continued)

CHECK YOUR PROGRESS

- **14. Identify** several items around your home that are made from organic compounds obtained from crude oil.
- **15.** Name some of the fuels obtained from crude oil by fractional distillation.
- **16. Describe** the process of fractional distillation.

- **17. Explain** why polymers made from the same monomer can have physical properties that vary greatly.
- **18. Describe** why depolymerization can be an expensive process.
- **19. Predict** Based on the names of the polymers in this lesson, what do you think the polymer made from the monomer terpene is called?
- **20. Math Connection** If the mass of a monomer is 105 amu, find the mass of a polymer containing 122 monomers.

Organic Compounds

4 Biological Compounds

REVIEW VOCABULARY	Recall the definition of the Review Vocabulary term. base
base	
VOCABULARY	Use your book to define each term.
protein	protein
carbohydrate	
lipid	carbohydrate
nucleic acid	- Car buryanare
deoxyribonucleic acid (DNA)	
nucleotide	lipid
	nucleic acid
	deoxyribonucleic acid (DNA)
	nucleotide

4 Biological Compounds (continued)

Compare and contrast biological polymers to other polymers.

Similarities	Differences

Complete the graphic organizer about protein monomers.

Get It? Explain what happens when you eat foods containing protein.

Get It? Describe the difference between sugars and starches.

Copyright © McGraw-Hill Educati

Copyright © McGraw-Hill Education

4 Biological Compounds (continued)

organizer al	oout carbohy	/drates.		
Carbohydrates contain 3 elements:				
	,	and		
		provid	e a	
	quick bu	urst of energ	gy.	
can be		_		
in the				
		-		
2		3		
Contrast saturated, monounsaturated, and polyunsaturated fats and oils.				
Monoun	saturated	Polyunsati	urated fats	
Get It? Compare and contrast the structure and properties of unsaturated fats and saturated fats.				
	can be in the Monoun	quick but can be Common by digest (fruit sugar (blood seed) Contrast the structure	can be contrast the structure and propert	

4 Biological Compounds (continued)

Organize information ab	oout DNA using the table below.
	DNA
Purpose	Structure
Where found	Practical use
Get It? Identify the th	ree components of a nucleotide.
	d change your diet to consume less saturated ou might replace in your diet and why.

4 Biological Compounds (continued)

CHECK YOUR PROGRESS

21.	Name the monomers that make up the following biological polymers: proteins, nucleic acids, and starches.
22.	Identify where your body gets the compounds that it needs to build proteins.
23.	Describe the function of DNA.
24.	Explain the difference between saturated and unsaturated fats and oils.
25.	Explain Whole milk contains about 4 percent butterfat. Explain why you might choose milk containing 2 percent fat.
26.	Math Connection You have read that your body is about 15 percent protein. Calculate the mass of protein in your body in kilograms.

24 New Materials Through Chemistry

ENCOUNTER THE PHENOMENON

Write the Encounter the Phenomenon question for this module.			

Use the "What I Know" column to list the things you know about the Encounter the Phenomenon question. Then list the questions you have about the Encounter the Phenomenon question in the "What I Want to Find Out" column. As you read the module, fill in the "What I Learned" column.

	•••	
K What I Know	W What I Want to Find Out	L What I Learned
WHALIKHOW	what I want to I ma Out	What i Leamed

New Materials Through Chemistry

1 Alloys

REVIEW VOCABULARY alloy	Recall the definition of the Review Vocabulary term.
NEW VOCABULARY conductivity	Use your book to define each term. conductivity
luster	
	luster

Copyright © McGraw-Hill Education

1 Alloys (continued)

Identify four advantages alloys may have over pure elements.
1
2
3
4
Create a journal entry. Imagine you are a jewelry maker or metal worker in ancient or modern times. Write two paragraphs or draw a cartoon strip to tell about your day working with metals. Discuss the metals' ductility, luster, malleability, and conductivity.
Get It? Describe how bronze was discovered.
Get It? List five examples of items that you know have metallic properties.
Get It? Compare and contrast the properties of gold-copper alloys that are mostly gold with those that are mostly copper.
Get It? Explain why steel is an important alloy.

1 Alloys (continued)

Classify each alloy below as containing copper, tin, both, or neither.

bronze gold for a ring solder tooth fillings brass pewter sterling silver wrought iron

Organize the properties, uses, and examples of metals and alloys.

Uses	Important Properties	Examples
Jewelry		
Drill bit		stainless steel
		copper
		steel
	low melting point	lead and tin
	malleability	
Aircraft		

1 Alloys (continued)

CHECK YOUR PROGRESS

<u> </u>	ILON TOON THOONED
1.	List the metallic properties of alloys.
_	
2.	Identify three different alloys in your home. Describe how each alloy is used and why the properties of the alloy make it suitable for that application.
2	Describe the importance of steel.
Э.	Describe the importance of steel.
4.	Identify two medical uses of alloys. Describe the desired characteristics in implements made from medical alloys.
5.	Describe If you were designing a skyscraper in an earthquake zone, what properties would the structural materials need?
6.	Math Connection 14-karat gold is 58 percent gold and 42 percent copper. Calculate the actual amount of gold in a 65-g, 14-karat gold chain.
7.	Math Connection If a 7.6-g sample of copper can be hammered into a 2-cm \times 2-cm

Copyright © McGraw-Hill Education

New Materials Through Chemistry

2 Versatile Materials

REVIEW VOCABULARY semiconductor	Recall the definition of the Review Vocabulary term. semiconductor
NEW VOCABULARY ceramics doping integrated circuit	Use your book to define each term. ceramics
	doping integrated circuit

Sold And Control of the Control

Copyright © McGraw-Hill Education

2 Versatile Materials (continued)

Complete the information about the history of ceramic materials by filling in the blanks.

16,000 BC Pieces of ______ from this time have been found.

BC The first _____, called _____, was built.

BC Walls of towns and homes were made of ______ baked in the Sun. _____ was first used to make cups and bottles.

BC _____ invented _____. Some of their structures are still standing today.

Organize materials used to make ceramics in the Venn diagram.

Get It? Summarize the steps involved in making ceramics.

Get It? Explain why ceramics make ideal tableware.

Get It? Explain why ceramics are appropriate for medical applications.

2 Versatile Materials (continued)

Model the effect of heating on before and after firing.	ceramics by drawing ceramic structure
Before	After
Get It? Define the term semi	conductor.
Model an n-type semiconductoby side.	or and a p-type semiconductor side
	miconductors. Explain exactly why the w) can only travel in one direction

2 Versatile Materials (continued)

CHECK YOUR PROGRESS

8.	Describe the electrical conductivities of traditional ceramics, modern ceramics, and semiconductors.
9.	List five uses of ceramic materials. What properties make ceramics good choices for these applications?
10.	Describe how modern ceramics are different from traditional ceramics.
11.	Explain how the function of semiconductors is determined by the electrons and electrical forces between atoms.
12.	Describe Computers have changed the way businesses operate. If you operated a distribution center for a manufacturer, how would you use computers to assist you?
13.	Math Connection Ceramic A forms when heated to 1400°C and has a density of 5.3 g/cm ³ . Ceramic B forms at a temperature 675°C cooler and is four times as dense. What temperature is required to form Ceramic B and what is its density?
14.	Math Connection A developmental ceramic is designed to be 35 percent silica and 65 percent sulfur. If a researcher needs 75 g of this materials, how many grams of each component will she need?

New Materials Through Chemistry

3 Polymers and Composites

REVIEW VOCABULARY polymer	Recall the definition of the Review Vocabulary term. Polymer
NEW VOCABULARY composite synthetic	Use your book to define each term. composite
	synthetic

Copyright © McGraw-Hill Education

3 Polymers and Composites (continued)

	٨	Polyethylene:		
	В.	i olyetilylerie.		
		Polyethylene:		
	D.	Polystyrene:		devices.
I.	Exa	amples of Natural Pol	ymers	
		,		,
II.	Us	eful Properties of Plas	stics	
				,
				,
V.	Syı	nthetic fibers and thin	ngs that are made t	from them.
	Α.	Nylon:		
		Polyurethane:		
		Polyester:		
		Aramids: Fireproof:		
	٥.	Bulletproof:		
	۸ ما	haaii saa and Thair I la		
V.		hesives and Their Us		
	_		,	J
	В.			
	C.		: seal buildings to	prevent heat loss
	D.	Orthodontics: attach		ond after being
		exposed to		
Ί.	Su	rface Coatings and El	astic Polymers	
	A.		: used to protec	t wood
	В.		: contain synthe	tic polymers
	C.		· used in	_, shoe soles,

Organize information about polymers in the outline. Fill in the blanks.

3 Polymers and Composites (continued)

_	two creatures that produce polymer-like substances and a modern material that copied these natural wonders.
•	
Set It?	Identify five uses of adhesives.
i reate a	a concept map to describe fiberglass.
Set It?	Identify the advantages of using composite materials.

3 Polymers and Composites (continued)

CHECK YOUR PROGRESS

 17. Explain the difference between natural and synthetic polymers and give an example of each. 18. Explain what a composite material is and give three examples of items that are made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 		LCK TOOK T KOOKESS						
 18. Explain what a composite material is and give three examples of items that are made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 	15.							
 17. Explain the difference between natural and synthetic polymers and give an example of each. 18. Explain what a composite material is and give three examples of items that are made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 								
 18. Explain what a composite material is and give three examples of items that are made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 	16.	Identify four uses of synthetic polymers.						
 18. Explain what a composite material is and give three examples of items that are made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 								
 made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 	17.							
 made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 								
 made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 								
 made from composites. 19. Describe You are designing a new material for use in an airplane body. What properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What 								
properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What	18.							
properties should the material have? 20. Math Connection A telecommunications company launches 10,000-kg satellites. A new satellite made from composites promises to reduce that mass by 25%. What								
A new satellite made from composites promises to reduce that mass by 25%. What	19.							
	20.	A new satellite made from composites promises to reduce that mass by 25%. What						

Copyright © McGraw-Hill Education