Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Nadesh Ramanathan, John Wickerson, George Constantinides.

> Presented by Akshay Gopalakrishnan

> > February 17, 2022

Who are they?

Scheduling
Weakly
Consistent C
Programs for
Reconfigurable
Hardware

Presented by Akshay Gopalakrishnan

Motivating Examples Example 1 Example 2

Example 2
Problem

SC Dependencie New Scheduling Rel-Acq Dependencies New Scheduling

Evaluation
MP Example
Pros/Cons

Yann Herklotz -PhD student supervised by John Wickerson, Imperial College London. John Wickerson -Lecturer at Dept of Electrical and Electronic Engineering, Imperial College George
Constantinides Professor of
Digital
Computation,
Imperial College
London.

int r0=0, r1=0, r2=0; r0=y+y+y+y+y;

r1=x;

r2=x/a:

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivatir Examples

Example 1

B 11

SC Dependency

New Schedulin

Rel-Acq Dependencies New Scheduli

Evaluation

MP Example Pros/Cons

1	2	3	4	5	6	7	 36	

ld y									
	ld y								
	ld y								
	ld y	Z							
	ld y	Z							
		ld							
		ld	Х						
ld x									
		divide							

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivatin

Example 1

Example

Probler

SC Dependen

New Scheduli

Dependencies

Evaluation

Evaluation

MP Exampl Pros/Cons

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Concurrent scheduling of Block 1 and 2

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Concurrent scheduling of Block 1 and 2

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivatin

Example 1

Problen

SC Dependenc

Rel-Acq Dependencies

Evaluation

MP Example Pros/Cons int r0=0,r1=0,r2=0;
r0=y+y+y+y+y;
r1=x;
r2=x/a;

x=1:

 $assert(r1 = 1 \Rightarrow r2 \neq 0)$

G Fails.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | ... | 36 |

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Masirosina

схатріє

Example :

Problem

Dononde

SC Depende

D. I. A.

Dependencie

New Schedulin

Evaluation

MP Exampl Pros/Cons

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

x=a/3;y=1;

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Concurrent scheduling of Block 1 and 2

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Concurrent scheduling of Block 1 and 2

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Example 2

x=a/3; y=1;

int r0=0, r1=0;r0=v;if(r0==1) r1=x;

 $assert(r0 = 1 \Rightarrow r1 = 1)$

> Fails

1	2	3	4	5	 35	36

Data Dependencies: non-aliasing

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Dependency

$$E_{\text{intra-iter}} = \{(v,v', \) \mid sb(v,v') \land sloc(v,v') \land \\ (v \in V_{\text{st}} \lor v' \in V_{\text{st}})\}$$

$$E_{\text{inter-iter}} = \{(v, v', \boxed{1} \mid sloc(v, v') \land (v \in V_{\text{st}} \lor v' \in V_{\text{st}})\}.$$

Iteration distance.

Adding WW—WR—RW—RR Dependancies

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivating

Example :

Problen

SC Dependencies New Scheduling

Rel-Acq Dependencies New Schedulii

Evaluatio

MP Example Pros/Cons

$$E_{\mathrm{sc}\ddagger} = \{ (v, v', 0) \mid sb(v, v') \land v \in V_{\mathrm{sc}} \}$$

$$E_{\mathrm{sc}\ddagger} = \{ (v, v', 0) \mid sb(v, v') \land v' \in V_{\mathrm{sc}} \}$$

$$(x=a/3; Sc)$$
 $y=1; Sc$

Final Dependency Expression

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivating

Example 1

Problem

SC Dependencies

New Scheduling

Dependencies

Evaluation

MP Eyampla

viP Example Pros/Cons

Example

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivating Examples

Example 1 Example 2

Depender

SC Dependencie

Rel-Acq Dependencies

Evaluation

MP Example Pros/Cons Without pipelining

19	t Ite	n	2nd iter					
1 2	3 4	5 6	7 8	9 10	11 12			
ld⊝ x			ld x					
	ldy			ld y				
		ld z			ld z			
	1 2	1 2 3 4	1 2 3 4 5 6 ld x ld y	1 2 3 4 5 6 7 8 ld x ld y	1 2 3 4 5 6 7 8 9 10 1d x Id x Id x			

With pipelining

		Cycle:	1	2	3	4	5	6	7	8	9	10
	r1=x;		ld,	- x			ldg	×				
Sc	r2=ld(&y,);			ldz	т			ld,	⊋ у		
ربي	r0=z;						ld	- Z			ld	Z

Weakening: Adding Release-Acquire Dependencies

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivating Examples

Example 1

Problem

SC Dependenci

Rel-Acq

Dependencies New Schedulin

Evaluation

MP Example Pros/Cons

Adding RR Dependency

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Rel-Aca Dependencies

$$\begin{split} \mathbf{V}_{\text{QL}} &= \mathbf{V}_{\text{SC}} \mathbf{U} \ \mathbf{V}_{\text{REL}} \ \mathbf{U} \ \mathbf{V}_{\text{ACQ}} \\ E_{\text{RAR}} &= \{ (v, v', 0) \mid sb(v, v') \land \boxed{sloc(v, v')} \land \\ v \in V_{\text{at}} \cap V_{\text{ld}} \land \boxed{v' \in V_{\text{at}} \cap V_{\text{ld}}} \}. \end{split}$$

Final Dependency Expression

Scheduling
Weakly
Consistent C
Programs for
Reconfigurable
Hardware

Presented by Akshay Gopalakrishnan

Motivating

Example 1

Example 1
Example 2

Problen

SC Dependent

Rel-Acq Dependencies

ivew scriedulii

Evaluation

Pros/Cons

Example

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivating Examples

Example 1 Example 2

Problei

SC Dependenci

Rel-Acq Depende

New Scheduling

MP Evample

MP Example Pros/Cons

Without pipelining

		1st iter				2nd iter				
	Cycle:	1	2	3	4	5	6	7	8	
	r1=x;	ld _{na} x				ld _{na} x				
ľ	r2=ld(&y,ACQ);	ld;	асо У			ld,	AÇQ Y			
ζ	r3-z;			ld,	na Z			ld,	na Z	

With pipelining

	Cycle:	1	2	3	4	5	6
	r1=x;	ld,	na X	ld	na X		
\mathbf{r}	r2=ld(&y,ACQ);	ld _A	со У	ld,	со У		
1	r3=z;			ld	na Z	ldn	a Z

Message Passing Algorithm

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

```
MP Example
```

```
atomic_int flag1 = 0, ..., flagN = 0;
                            int data<sub>1</sub> = 0, ..., data<sub>N</sub> = 0;
               in for (i=0; i<ITER; i++) {
                                               2.1 for (i=0; i<ITER; i++)
                                                                                 20 = YACE
                   if(ld(&flag_1,ACO)==0){
                                                   if(ld(&flag_1,ACO)==1
x=0.13
                    data<sub>1</sub>++;
                                                    data<sub>1</sub>++;
                    st(&flag1,1,REL);
                                                    st(&flag1,0,REL);
                                                                                  N times
                   if(ld(&flag_N,ACO)==0){
                                                   if(ld(&flag_N,ACO)==1){
N times
                    datav++:
                                                    datav++:
                    st(&flagN, 1, REL);
                                                    st(&flagN, 0, REL);
               1.10
                                               2.10
               1.11
                                               2.11
```

A two-threaded message-passing example with acquire-release semantics on N independent channels.

Impact of Modified Scheduling

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

MP Example

Resource Usage

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

MP Example

Positives

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivating Examples

Example 1
Example 2

Problen

SC Dependenc

Rel-Acq Dependencies

Evaluation

MP Example
Pros/Cons

- New scheduling for programs with atomics. (La (St)
- Do not require locks/notion of critical section for Hardware design.
- Efficient and correct scheduling

Pending Work

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

Presented by Akshay Gopalakrishnan

Motivating Examples

Example 1

Problem

SC Dependenc

Rel-Acq Dependencies

Evaluation

MP Example Pros/Cons Compare-And-Swop
Test-And-Set
1

- Does not support Atomic Read-Modify-Write instructions.
- Addressing other potential transformations (eg: Elimination, Introduction, Inlining, etc) for efficient scheduling.

Thank you

Scheduling Weakly Consistent C Programs for Reconfigurable Hardware

- John's Blog
- Previous Work
- Testing+Verification

Questions?