

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 04 May 2023 1 of 22

Sample Information

Patient Name: 王雪敏 Gender: Female ID No.: Y220536263 History No.: 27848164

Age: 51

Ordering Doctor: DOC1373L 陳三奇

Ordering REQ.: H46E9F7 Signing in Date: 2023/05/04

Path No.: M112-00087 **MP No.**: F23025

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S112-15073B Percentage of tumor cells: 50%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	3
Relevant Therapy Summary	4
Relevant Therapy Details	6
Clinical Trials Summary	15
Alert Details	17

Report Highlights 3 Relevant Biomarkers 9 Therapies Available

13 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding
ALK	None detected	NTRK1	None detected
BRAF	None detected	NTRK2	None detected
EGFR	EGFR exon 19 deletion, EGFR p.(T790M) c.2369C>T, EGFR p.(C797S) c.2389T>A	NTRK3	None detected
ERBB2	None detected	RET	None detected
KRAS	None detected	ROS1	None detected
MET	None detected		

2 of 22

Date: 04 May 2023

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR exon 19 deletion epidermal growth factor receptor Allele Frequency: 47.22%	bevacizumab* + erlotinib ² erlotinib + ramucirumab ¹ gefitinib* ² osimertinib ¹, ² atezolizumab + bevacizumab + chemotherapy gefitinib + chemotherapy	None	12
IA	EGFR p.(T790M) c.2369C>T epidermal growth factor receptor Allele Frequency: 12.20%	osimertinib ^{1, 2} atezolizumab + bevacizumab + chemotherapy	None	7
IIC	EGFR p.(C797S) c.2389T>A epidermal growth factor receptor Allele Frequency: 11.71%	None	None	4

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23. * Includes biosimilars/generics

🛕 Alerts informed by public data sources: 🧿 Contraindicated, 🏼 🛡 Resistance

EGFR p.(T790M) c.2369C>T

⊘ gefitinib*²

afatinib, dacomitinib, erlotinib, gefitinib

Public data sources included in alerts: FDA1, NCCN, EMA2, ESMO

Prevalent cancer biomarkers without relevant evidence based on included data sources

CTNNB1 p.(S33C) c.98C>G, CCND1 amplification

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
CTNNB1	p.(S33C)	c.98C>G	COSM5677	chr3:41266101	29.61%	NM_001904.4	missense	1999
EGFR	p.(E746_A750del)	c.2235_2249delGGA ATTAAGAGAAGC	COSM6223	chr7:55242464	47.22%	NM_005228.5	nonframeshift Deletion	1957
EGFR	p.(T790M)	c.2369C>T	COSM6240	chr7:55249071	12.20%	NM_005228.5	missense	2000
EGFR	p.(C797S)	c.2389T>A	COSM6493937	chr7:55249091	11.71%	NM_005228.5	missense	1998

Copy Number Variations

Gene	Locus	Copy Number
CCND1	chr11:69456942	28.28

Date: 04 May 2023

Biomarker Descriptions

CCND1 (cyclin D1)

Background: The CCND1 gene encodes the cyclin D1 protein, a member of the highly conserved D-cyclin family that also includes CCND2 and CCND3^{1,2,3}. D-type cyclins are known to regulate cell cycle progression by binding to and activating cyclin dependent kinases (CDKs), specifically CDK4 and CDK6, which leads to the phosphorylation and inactivation of the retinoblastoma (RB1) protein^{1,2}. Consequently, RB1 inactivation results in E2F transcription factor activation and cellular G1/S phase transition thereby resulting in cell cycle progression, a common event observed in tumorigenesis^{1,2,4}. Aberrations in the D-type cyclins have been observed to promote tumor progression suggesting an oncogenic role for CCND1^{3,5}.

Alterations and prevalence: Recurrent somatic alterations to CCND1, including mutations, amplifications, and chromosomal translocations, are observed in many cancer types. A common mechanism of these alterations is to increase the expression and nuclear localization of the cyclin D1 protein. Recurrent somatic mutations include missense mutations at codons T286 and P287 and c-terminal truncating mutations that are enriched in about 33% of uterine cancer, and missense mutations at Y44 that are enriched in about 50% of Mantle cell lymphoma (MCL)^{6,7,8,9}. These mutations block phosphorylation-dependent nuclear export and proteolysis^{10,11,12,13}. CCND1 is recurrently amplified in many cancer types, including up to 35% of esophageal cancer, 20-30% of head and neck cancer, and 10-20% of breast, squamous lung, and bladder cancers^{6,8,14}. MCL is genetically characterized by the t(11;14) (q13;q13) translocation, a rearrangement that juxtaposes CCND1 to the immunoglobulin heavy (lgH) chain gene. This rearrangement leads to constitutive expression of cyclin D1 and plays an important role in MCL pathogenesis^{15,16}.

<u>Potential relevance</u>: Currently, no therapies are approved for CCND1 aberrations. The t(11;14) translocation involving CCND1 can be used to help diagnose some lymphoma subtypes including non-gastric MALT lymphoma, splenic marginal cell lymphoma, and mantle cell lymphoma¹⁷.

CTNNB1 (catenin beta 1)

Background: The CTNNB1 gene encodes catenin beta-1 (β-catenin), an integral component of cadherin-based adherens junctions involved in maintaining adhesion and regulating the growth of epithelial cell layers 18 . CTNNB1 binds to the APC protein in the cytoplasm and also interacts with TCF and LEF transcription factors in the nucleus to regulate WNT signaling 19 . Steady state levels of CTNNB1 are regulated by ubiquitin-dependent proteolysis 20,21,22 .

Alterations and prevalence: Recurrent somatic mutations leading to CTNNB1 activation are common in cancer. The most prevalent alterations include missense mutations in exon 3 at codons S33, S37, T41, and S45 that block phosphorylation by GSK- β and inhibit CTNNB1 degradation^{23,24,25,26}. These activating mutations are observed in diverse solid tumors and have a prevalence of 20-30% in hepatocellular carcinoma, 20% of uterine carcinoma, and 15% of adrenocortical carcinoma^{6,7,8,27,28,29,30}.

<u>Potential relevance:</u> Currently, no therapies have been approved for CTNNB1 aberrations. CTNNB1 alterations have been proposed to promote cancer progression and limit the response to EGFR tyrosine kinase inhibitors in EGFR positive lung cancer³¹. Mutation of CTNNB1 is considered useful as an ancillary diagnostic biomarker for desmoid fibromatosis³².

EGFR (epidermal growth factor receptor)

<u>Background:</u> The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the ERBB/human epidermal growth factor receptor (HER) family. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4³³. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival^{34,35}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{6,8,36,37}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21³⁸. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer. A second group of less prevalent activating mutations include E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{39,40,41,42}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations⁴³. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V and are primarily observed in glioblastoma^{38,44}. Amplification of EGFR is observed in several cancer types including 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{6,8,14,37,44}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{45,46,47}.

Biomarker Descriptions (continued)

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib⁴⁸ (2004) and gefitinib⁴⁹ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations. Second-generation TKIs afatinib50 (2013) and dacomitinib51 (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{52,53,54,55}. However, in 2021, the irreversible tyrosine kinase inhibitor, mobocertinib⁵⁶was FDA approved for the treatment of NSCLC with EGFR exon 20 insertion mutations. Additionally, in 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)⁵⁷ and sunvozertinib⁵⁸, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance⁵⁹. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases³⁸. Third generation TKIs were developed to maintain sensitivity in the presence of T790M. Osimertinib⁶⁰ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance. In this case, resistance is associated with the C797S mutation and occurs in 22-44% of cases⁵⁹. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa⁶¹. T790M and C797S can occur in either cis or trans allelic orientation⁶¹. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs⁶¹. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{61,62}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs⁶¹. Fourth-generation TKIs are in development to overcome acquired C797S and T790M resistance mutations after osimertinib treatment. EGFR targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, amivantamab⁶³, targeting EGFR and MET was approved (2021) NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy quaratusugene ozeplasmid⁶⁴ in combination with osimertinib received a fast track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. BDTX-18965 was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutation.

Relevant Therapy Summary

EGFR exon 19 deletion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib	•	•	•	•	(III)
erlotinib + ramucirumab	•	•	×	•	×
bevacizumab + erlotinib	×	•	•	•	×
bevacizumab (Allergan) + erlotinib	×	×	•	×	×
bevacizumab (Celltrion) + erlotinib	×	×	•	×	×
bevacizumab (Mabxience) + erlotinib	×	×	•	×	×
bevacizumab (Pfizer) + erlotinib	×	×	•	×	×
bevacizumab (Samsung Bioepis) + erlotinib	×	×	•	×	×
bevacizumab (Stada) + erlotinib	×	×	•	×	×

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

• In this cancer type and other cancer types

X No evidence

EGFR exon 19 deletion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
gefitinib (Mylan)	×	×	•	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×	•	×
amivantamab, lazertinib, chemotherapy	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
patritumab deruxtecan	×	×	×	×	(III)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
BLU-945, osimertinib	×	×	×	×	(I/II)
sunvozertinib	×	×	×	×	(1/11)
BAY-2927088	×	×	×	×	(I)
lazertinib, amivantamab	×	×	×	×	(l)
telisotuzumab vedotin, osimertinib	×	×	×	×	(I)
TNO-155, nazartinib	×	×	×	×	(I)

EGFR p.(T790M) c.2369C>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib					×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
osimertinib, chemotherapy	×	×	×	×	(III)
atezolizumab, bevacizumab, chemotherapy	×	×	×	×	(/)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
BLU-945, osimertinib	×	×	×	×	(/)
sunvozertinib	×	×	×	×	(I/II)
lazertinib, amivantamab, chemotherapy	×	×	×	×	(I)
telisotuzumab vedotin, osimertinib	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 04 May 2023 6 of 22

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

EGFR p.(C/9/S) c.23891>A					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
atezolizumab, bevacizumab, chemotherapy	×	×	×	×	(II/III)
BLU-945, osimertinib	×	×	×	×	(/)
sunvozertinib	×	×	×	×	(/)
lazertinib, amivantamab, chemotherapy	×	×	×	×	(l)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Details

Current FDA Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

FDA information is current as of 2023-03-15. For the most up-to-date information, search www.fda.gov.

EGFR exon 19 deletion

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-03-22 Variant class: EGFR exon 19 deletion

Indications and usage:

CYRAMZA® is a human vascular endothelial growth factor receptor 2 (VEGFR2) antagonist indicated:

- as a single agent or in combination with paclitaxel, for treatment of advanced or metastatic gastric or gastro-esophageal junction adenocarcinoma with disease progression on or after prior fluoropyrimidine- or platinum-containing chemotherapy.
- in combination with erlotinib, for first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 (L858R) mutations.
- in combination with docetaxel, for treatment of metastatic non-small cell lung cancer with disease progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving CYRAMZA®.
- in combination with FOLFIRI, for the treatment of metastatic colorectal cancer with disease progression on or after prior therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine.
- as a single agent, for the treatment of hepatocellular carcinoma in patients who have an alpha fetoprotein of ≥400 ng/mL and have been treated with sorafenib.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125477s042lbl.pdf

Date: 04 May 2023 7 of 22

EGFR exon 19 deletion (continued)

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-10-21 Variant class: EGFR exon 19 deletion

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for:

- as adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test
- the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of adult patients with metastatic EGFR T790M mutation-positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s027lbl.pdf

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-10-21 Variant class: EGFR T790M mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for:

- as adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test
- the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of adult patients with metastatic EGFR T790M mutation-positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s027lbl.pdf

Date: 04 May 2023 8 of 22

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2023-03-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR exon 19 deletion + EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant classes: EGFR T790M mutation & EGFR exon 19 deletion

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Progression, Symptomatic, Asymptomatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

EGFR exon 19 deletion

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Biomarker discovered prior to first line therapy (First-line therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Non-squamous Cell; Advanced, Metastatic, Biomarker discovered prior to first line therapy (First-line therapy); Other recommended intervention
- Non-squamous Cell; Advanced, Metastatic, Biomarker discovered during first line therapy (First-line therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

Date: 04 May 2023 9 of 22

EGFR exon 19 deletion (continued)

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Biomarker discovered prior to first line therapy (First-line therapy); Other recommended intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Biomarker discovered during first line therapy (First-line therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases, Leptomeningeal Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2022]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Stage IB , Stage IIA, Stage IIB, Stage IIIA, Stage IIIB; Resected (Adjuvant therapy)
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Biomarker discovered during first line therapy (First-line therapy); Preferred intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Progression, Symptomatic, Asymptomatic (Subsequent therapy)
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Leptomeningeal Metastases, Progression (Subsequent therapy); Consider

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

Date: 04 May 2023 10 of 22

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic, Progression, Asymptomatic, Symptomatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Brain Metastases, Leptomeningeal Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 2.2022]

Date: 04 May 2023 11 of 22

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2023-03-15. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR exon 19 deletion

bevacizumab (Allergan) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2023-01-05

Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/mvasi-epar-product-information_en.pdf

bevacizumab (Celltrion) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2022-09-26

Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/vegzelma-epar-product-information_en.pdf

bevacizumab (Mabxience) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2022-12-15

Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/alymsys-epar-product-information_en.pdf

bevacizumab (Pfizer) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2023-01-05

Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/zirabev-epar-product-information_en.pdf

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2023-01-05

Variant class: FGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/onbevzi-epar-product-information_en.pdf

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2022-12-15

Variant class: EGFR exon 19 deletion

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/aybintio-epar-product-information_en.pdf\\$

Date: 04 May 2023 12 of 22

EGFR exon 19 deletion (continued)

bevacizumab (Stada) + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2023-01-05 Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/oyavas-epar-product-information_en.pdf

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-12-15 Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/abevmy-epar-product-information_en.pdf

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2023-01-05 Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdf

gefitinib (Mylan)

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-06-16 Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/gefitinib-mylan-epar-product-information_en.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-11-29 Variant class: EGFR exon 19 deletion

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-11-29 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf

Date: 04 May 2023 13 of 22

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2023-03-01. For the most up-to-date information, search www.esmo.org.

EGFR exon 19 deletion

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IB, Stage IIA, Stage IIB, Stage IIIA; Resected (Adjuvant therapy); ESMO-MCBS v1.1 score: A

Reference: ESMO Clinical Practice Guidelines - ESMO-Early-Stage and Locally Advanced (non-metastatic) Non-Small-Cell Lung Cancer [Ann Oncol (2017) 28 (suppl 4): iv1-iv21. (eUpdate: 01 September 2021, 04 May 2020)]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV; Advanced, Metastatic (First-line therapy); ESMO-MCBS v1.1 score: 4

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV; Advanced, Metastatic (First-line therapy); ESMO-MCBS v1.1 score: 2

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV; Advanced, Metastatic (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

Date: 04 May 2023 14 of 22

EGFR exon 19 deletion (continued)

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV; Advanced, Metastatic (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

atezolizumab + bevacizumab + carboplatin + paclitaxel

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR exon 19 deletion

ESMO Level of Evidence/Grade of Recommendation: III / B

Population segment (Line of therapy):

Stage IV; Progression, Advanced, Metastatic (Second-line therapy, Subsequent therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

EGFR p.(T790M) c.2369C>T

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV; Advanced, Metastatic (Second-line therapy, Subsequent therapy); ESMO-MCBS v1.1 score: 4

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

atezolizumab + bevacizumab + carboplatin + paclitaxel

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

ESMO Level of Evidence/Grade of Recommendation: III / B

Population segment (Line of therapy):

Stage IV; Progression, Advanced, Metastatic (Second-line therapy, Subsequent therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

15 of 22

Date: 04 May 2023

Clinical Trials in Taiwan region:

Clinical Trials Summary

EGFR exon 19 deletion + EGFR p.(T790M) c.2369C>T

NCT ID	Title	Phase
NCT04351555	A Phase III, Randomised, Controlled, Multi-center, 3-Arm Study of Neoadjuvant Osimertinib as Monotherapy or in Combination With Chemotherapy Versus Standard of Care Chemotherapy Alone for the Treatment of Patients With Epidermal Growth Factor Receptor Mutation Positive, Resectable Nonsmall Cell Lung Cancer	III
NCT03994393	A Phase II Trial of Durvalumab (MEDI4736) and Tremelimumab With Chemotherapy in Metastatic EGFR Mutant Non-squamous Non-small Cell Lung Cancer (NSCLC) Following Progression on EGFR Tyrosine Kinase Inhibitors (TKIs)	II
NCT02099058	A Multicenter, Phase I/Ib, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Tumors	1

EGFR p.(T790M) c.2369C>T + EGFR p.(C797S) c.2389T>A

NCT ID	Title	Phase
NCT04862780	A Phase I/II Study Targeting Acquired Resistance Mechanisms in Patients With EGFR Mutant Non-	1/11
	Small Cell Lung Cancer.	

EGFR exon 19 deletion

NCT ID	Title	Phase
NCT04988295	A Phase III, Open-Label, Randomized Study of Amivantamab and Lazertinib in Combination With Platinum-Based Chemotherapy Compared With Platinum-Based Chemotherapy in Patients With EGFR-Mutated Locally Advanced or Metastatic Non-Small Cell Lung Cancer After Osimertinib Failure	III
NCT05120349	A Phase III, Double-blind, Randomised, Placebo-Controlled, International Study to Assess the Efficacy and Safety of Adjuvant Osimertinib Versus Placebo in Participants With EGFR Mutation-positive Stage IA2-IA3 Non-small Cell Lung Cancer, Following Complete Tumour Resection	III
NCT05338970	HERTHENA-Lung02: Phase III, Randomized, Open-label Study of Patritumab Deruxtecan Versus Platinum-Based Chemotherapy in Metastatic or Locally Advanced Non-Small Cell Lung Cancer (NSCLC) With Epidermal Growth Factor Receptor (EGFRm) Mutation After Failure treatment with epidermal growth factor (EGFR) tyrosine kinase inhibitors (TKIs)	III
NCT03778229	A Phase II Study Assessing the Efficacy of Osimertinib in Combination With Savolitinib in Patients With EGFRm+ and MET+, Locally Advanced or Metastatic Non Small Cell Lung Cancer Who Have Progressed Following Treatment With Osimertinib.	II
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I
NCT04862780	A Phase I/II Study Targeting Acquired Resistance Mechanisms in Patients With EGFR Mutant Non-Small Cell Lung Cancer.	1/11
NCT05099172	An Open Label, First-in-human Study of BAY 2927088 in Participants With Advanced Non-small Cell Lung Cancer (NSCLC) Harboring an EGFR and/or HER2 Mutation	I
NCT03114319	An Open-label, Multi-center, Phase I, Dose Finding Study of Oral TNO155 in Adult Patients With Advanced Solid Tumors.	1

16 of 22

Date: 04 May 2023

Clinical Trials Summary (continued)

EGFR exon 19 deletion (continued)

NCT ID	Title	Phase
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) with EGFR or HER2 Mutation	1/11

EGFR p.(T790M) c.2369C>T

NCT ID	Title	Phase
NCT03178552	A Phase II/III Multicenter Study Evaluating the Efficacy and Safety of Multiple Targeted Therapies as Treatments for Patients With Advanced or Metastatic Non-Small Cell Lung Cancer (NSCLC) Harboring Actionable Somatic Mutations Detected in Blood (B-FAST: Blood-First Assay Screening Trial)	11/111
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) with EGFR or HER2 Mutation	1/11
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I

EGFR p.(C797S) c.2389T>A

NCT ID	Title	Phase
NCT03178552	A Phase II/III Multicenter Study Evaluating the Efficacy and Safety of Multiple Targeted Therapies as Treatments for Patients With Advanced or Metastatic Non-Small Cell Lung Cancer (NSCLC) Harboring Actionable Somatic Mutations Detected in Blood (B-FAST: Blood-First Assay Screening Trial)	11/111
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) with EGFR or HER2 Mutation	I/II
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I

Date: 04 May 2023 17 of 22

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

FDA information is current as of 2023-03-15. For the most up-to-date information, search www.fda.gov.

EGFR exon 19 deletion

patritumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR exon 19 deletion

Supporting Statement:

The FDA has granted Breakthrough Therapy Designation to a potential first-in-class HER3 directed antibody-drug conjugate, patritumab deruxtecan, for metastatic or locally advanced, EGFR-mutant non-small cell lung cancer.

Reference:

https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-status-to-patritumab-deruxtecan-for-egfr-metastaticnsclc

A osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

EGFR p.(T790M) c.2369C>T

A osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, guaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Date: 04 May 2023 18 of 22

EGFR p.(C797S) c.2389T>A

♠ osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Current NCCN Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

NCCN information is current as of 2023-03-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(T790M) c.2369C>T

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

Date: 04 May 2023 19 of 22

EGFR p.(T790M) c.2369C>T (continued)

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR T790M mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, dacomitinib, or afatinib."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

Current EMA Information

Ocontraindicated Not recommended Resistance Preakthrough A Fast Track

EMA information is current as of 2023-03-15. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR p.(T790M) c.2369C>T

gefitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-07-05 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/iressa-epar-product-information_en.pdf

gefitinib (Mylan)

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-06-16 Variant class: EGFR T790M mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/gefitinib-mylan-epar-product-information_en.pdf

Date: 04 May 2023

References

- 1. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- Koyama-Nasu et al. The critical role of cyclin D2 in cell cycle progression and tumorigenicity of glioblastoma stem cells. Oncogene. 2013 Aug 15;32(33):3840-5. PMID: 22964630
- 3. Ding et al. Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis. Cancer Med. 2019 Jun;8(6):2717-2729. PMID: 30950241
- 4. Bartek et al. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001 Feb 16;490(3):117-22. PMID: 11223026
- 5. Shan et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett. 2017 Oct;14(4):4517-4526. PMID: 28943959
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 7. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Beà et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc. Natl. Acad. Sci. U.S.A. 2013 Nov 5;110(45):18250-5. PMID: 24145436
- 10. Diehl et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998 Nov 15;12(22):3499-511. PMID: 9832503
- 11. Alt et al. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000 Dec 15:14(24):3102-14. PMID: 11124803
- 12. Moreno-Bueno et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene. 2003 Sep 4;22(38):6115-8. PMID: 12955092
- 13. Benzeno et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene. 2006 Oct 12;25(47):6291-303. PMID: 16732330
- 14. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 15. Kim et al. Nuclear cyclin D1: an oncogenic driver in human cancer. J. Cell. Physiol. 2009 Aug;220(2):292-6. PMID: 19415697
- 16. Jares et al. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat. Rev. Cancer. 2007 Oct;7(10):750-62. PMID: 17891190
- 17. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2023]
- 18. Valenta et al. The many faces and functions of β-catenin. EMBO J. 2012 Jun 13;31(12):2714-36. PMID: 22617422
- 19. Korinek et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997 Mar 21;275(5307):1784-7. PMID: 9065401
- 20. Aberle et al. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997 Jul 1;16(13):3797-804. PMID: 9233789
- 21. Winston et al. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999 Feb 1;13(3):270-83. PMID: 9990852
- 22. Kitagawa et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J. 1999 May 4;18(9):2401-10. PMID: 10228155
- 23. Liu et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002 Mar 22;108(6):837-47. PMID: 11955436
- 24. Miyoshi et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998 Jun 15;58(12):2524-7. PMID: 9635572
- 25. Gao et al. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget. 2018 Jan 12;9(4):5492-5508. PMID: 29435196
- 26. Morin et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997 Mar 21;275(5307):1787-90. PMID: 9065402
- 27. Schulze et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015 May;47(5):505-511. PMID: 25822088
- 28. Ahn et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014 Dec;60(6):1972-82. PMID: 24798001

Date: 04 May 2023

References (continued)

- 29. Harding et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2018 Oct 29. PMID: 30373752
- Soumerai et al. Clinical Utility of Prospective Molecular Characterization in Advanced Endometrial Cancer. Clin. Cancer Res. 2018 Dec 1;24(23):5939-5947. PMID: 30068706
- 31. Blakely et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 2017 Dec;49(12):1693-1704. PMID: 29106415
- 32. NCCN Guidelines® NCCN-Soft Tissue Sarcoma [Version 2.2022]
- 33. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 34. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 35. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 36. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 37. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 38. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 39. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 41. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 42. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 43. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 44. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 45. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 46. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 47. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 48. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 49. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 50. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 51. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 52. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 2.2023]
- 53. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 54. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 55. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- 56. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/215310s002lbl.pdf
- 57. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designation-cullinan-oncologys
- 58. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-in-patients-with-locally-advanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html

Date: 04 May 2023 22 of 22

References (continued)

- 59. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 60. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208065s027lbl.pdf
- 61. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 62. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 63. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761210s002lbl.pdf
- 64. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 65. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda