ЛЕКЦИЯ 16

СИМЕТРИЧНИ ПОЛИНОМИ

Определение. Казваме, че полиномът $f(x_1, x_2, ..., x_n)$ е симетричен, ако при всяко разместване на променливите той не се променя, т. е.

$$f(x_{i_1}, x_{i_2}, \dots x_{i_n}) = f(x_1, x_2, \dots, x_n)$$

за всяка пермутация (i_1, i_2, \ldots, i_n) на числата от 1 до n.

Тъй като всяко разместване на променливите може да се реализира на няколко етапа, като на всеки етап се разменят само две променливи, за да проверим че един полином е симетричен, достатъчно е да проверим, че той не се променя когато разменим местата на кои да е две променливи.

Нека K е комутативен пръстен и $f,g \in K[x_1,x_2,\ldots,x_n]$ са симетрични полиноми. Тогава очевидно $f+g,\,fg$ и -f също са симетрични полиноми. Следователно симетричните полиноми в $K[x_1,x_2,\ldots,x_n]$ образуват подпръстен.

Пример.

Полиномите $\sigma_1, \sigma_2, \ldots, \sigma_n$ са симетрични, защото когато разместваме променливите редът на техните събираемите се променя, но сумата им остава същата. Полиномите $\sigma_1, \sigma_2, \ldots, \sigma_n$ се наричат елементарни симетрични полиноми на променливите x_1, x_2, \ldots, x_n .

Ако $Ax_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}$ е едночлен, тогава $f(x_1,x_2,\dots,x_n)=A\sigma_1^{\alpha_1}\sigma_2^{\alpha_2}\dots\sigma_n^{\alpha_n}$ е симетричен полином на $x_1,\,x_2,\,\dots,\,x_n$, защото при произволно разместване на променливите $x_1,\,x_2,\,\dots,\,x_n$ полиномите $\sigma_1,\,\sigma_2,\,\dots,\,\sigma_n$ не се

променят. Следователно не се променя и $f(x_1, x_2, ..., x_n)$. По-общо, ако $g(x_1, x_2, ..., x_n)$ е произволен полином, тогава $f(x_1, x_2, ..., x_n) = g(\sigma_1, \sigma_2, ..., \sigma_n)$ е симетричен полином на $x_1, x_2, ..., x_n$, защото от всеки едночлен на g се получава симетричен полином на $x_1, x_2, ..., x_n$, а сумата на симетрични полиноми е също симетричен полином. Основната ни цел в тази лекция е да докажем, че с тази процедура може да бъде получен всеки симетричен полином.

Ще са ни необходими следните две леми.

Лема 1. Нека
$$Ax_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}$$
 е едночлен, $A\neq 0$. Тогава

гл.едночлен
$$(A\sigma_1^{\alpha_1}\sigma_2^{\alpha_2}\dots\sigma_n^{\alpha_n})=Ax_1^{\alpha_1+\dots\alpha_n}x_2^{\alpha_2+\dots\alpha_n}\dots x_{n-1}^{\alpha_{n-1}+\alpha_n}x_n^{\alpha_n}.$$

Доказателство:

Понеже гл. едночлен (fg) = (гл. едночлен (f)).(гл. едночлен (g)), имаме

гл.едночлен
$$(\sigma_1) = x_1 \Rightarrow$$
 гл. едночлен $(\sigma_1^{\alpha_1}) = x_1^{\alpha_1}$ гл.едночлен $(\sigma_2) = x_1 x_2 \Rightarrow$ гл. едночлен $(\sigma_2^{\alpha_2}) = (x_1 x_2)^{\alpha_2}$ гл.едночлен $(\sigma_n) = x_1 x_2 \dots x_n \Rightarrow$ гл. едночлен $(\sigma_n^{\alpha_n}) = (x_1 x_2 \dots x_n)^{\alpha_n}$

Понеже

гл.едночлен $(A\sigma_1^{\alpha_1}\sigma_2^{\alpha_2}\dots\sigma_n^{\alpha_n})=A$.гл.едночлен $(\sigma_1^{\alpha_1})\dots$ гл.едночлен $(\sigma_n^{\alpha_n}),$

от тези равенства получаваме

гл.едночлен
$$(A\sigma_1^{\alpha_1}\sigma_2^{\alpha_2}\dots\sigma_n^{\alpha_n}) = A.x_1^{\alpha_1}(x_1x_2)^{\alpha_2}\dots(x_1x_2\dots x_n)^{\alpha_n} = Ax_1^{\alpha_1+\dots\alpha_n}x_2^{\alpha_2+\dots\alpha_n}\dots x_{n-1}^{\alpha_{n-1}+\alpha_n}x_n^{\alpha_n}.$$

Лема 2. Нека $f(x_1, x_2, ..., x_n)$ е симетричен полином, който е ненулев u гл. едночлен $(f) = Ax_1^{\alpha_1}x_2^{\alpha_2}...x_n^{\alpha_n}$. Тогава $\alpha_1 \ge \alpha_2 \ge ... \ge \alpha_n$.

Доказателство:

Нека

$$f(x_1, x_2, \dots, x_n) = Ax_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} + \cdots$$

В $f(x_1, x_2, \ldots, x_n)$ разместваме x_1 и x_2 и получаваме

$$f(x_2, x_1, \dots, x_n) = Ax_2^{\alpha_1} x_1^{\alpha_2} \dots x_n^{\alpha_n} + \dots = Ax_1^{\alpha_2} x_2^{\alpha_1} \dots x_n^{\alpha_n} + \dots$$

Следователно $Ax_1^{\alpha_2}x_2^{\alpha_1}\dots x_n^{\alpha_n}$ е едночлен на $f(x_2,x_1,\dots,x_n)$. Понеже f е симетричен

$$f(x_2, x_1, \dots, x_n) = f(x_1, x_2, \dots, x_n).$$

Следователно $Ax_1^{\alpha_2}x_2^{\alpha_1}\dots x_n^{\alpha_n}$ е едночлен на $f(x_1,x_2,\dots,x_n)$. Този едночлен не може да е по-голям от главния едночлен $Ax_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}$. Поради това $\alpha_2\leq \alpha_1$.

Разместваме променливите x_2 и x_3 и получаваме

$$f(x_1, x_3, x_2, \dots, x_n) = Ax_1^{\alpha_1} x_3^{\alpha_2} x_2^{\alpha_3} \dots x_n^{\alpha_n} + \dots = Ax_1^{\alpha_1} x_2^{\alpha_3} x_3^{\alpha_2} \dots x_n^{\alpha_n} + \dots$$

Следователно $Ax_1^{\alpha_1}x_2^{\alpha_3}x_3^{\alpha_2}\dots x_n^{\alpha_n}$ е едночлен на $f(x_1,x_3,x_2,\dots,x_n)$. Понеже f е симетричен, то

$$f(x_1, x_3, x_2, \dots, x_n) = f(x_1, x_2, x_3, \dots, x_n)$$

Следователно $Ax_1^{\alpha_1}x_2^{\alpha_3}x_3^{\alpha_2}\dots x_n^{\alpha_n}$ е едночлен на $f(x_1,x_2,\dots,x_n)$. Този едночлен не може да е по-голям от главния едночлен $Ax_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}\dots x_n^{\alpha_n}$. Следователно $\alpha_3\leq\alpha_2$ и т. н.

Основният резултат за симетричните полиноми ни дава следната:

Теорема. Нека F е поле. Тогава за всеки симетричен полином $f(x_1, x_2, ..., x_n) \in F[x_1, x_2, ..., x_n]$ съществува полином $g(x_1, x_2, ..., x_n) \in F[x_1, x_2, ..., x_n]$ такъв, че $f(x_1, x_2, ..., x_n) = g(\sigma_1, \sigma_2, ..., \sigma_n)$.

Доказателство:

Ако $f(x_1, x_2, \ldots, x_n)$ е нулевият полином, тогава твърдението е очевидно $(g(x_1, x_2, \ldots, x_n)$ също е нулевият полином). Нека $f(x_1, x_2, \ldots, x_n)$ е ненулев и

$$f(x_1, x_2, \dots, x_n) = Ax_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \dots x_n^{\alpha_n} + \dots, \ A \neq 0,$$

където $Ax_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}\dots x_n^{\alpha_n}$ е главният едночлен на f. Разглеждаме

$$\varphi_1(x_1, x_2, \dots, x_n) = A\sigma_1^{\alpha_1 - \alpha_2} \sigma_2^{\alpha_2 - \alpha_3} \dots \sigma_{n-1}^{\alpha_{n-1} - \alpha_n} \sigma_n^{\alpha_n}.$$

От Лема 2 следва, че φ_1 е едночлен на $\sigma_1, \sigma_2, \ldots, \sigma_n$. Поради това φ_1 е симетричен полином на x_1, x_2, \ldots, x_n .

Съгласно Лема 1

гл. едночлен
$$(\varphi_1)$$
 = гл. едночлен (f) . $(*)$

Разглеждаме полинома $f_1=f-\varphi_1$. Ако f_1 е нулев полином, тогава $f=\varphi_1$ и теоремата е доказана. Ако f_1 е ненулев полином от (*) следва, че

гл. едночлен
$$(f_1)$$
 < гл. едночлен (f) .

Полиномът f_1 като разлика на два симетрични полинома също е симетричен полином. Нека

$$f_1(x_1, x_2, \dots, x_n) = Bx_1^{\beta_1} x_2^{\beta_2} \dots x_n^{\beta_n} + \cdots,$$

където $Bx_1^{\beta_1}x_2^{\beta_2}\dots x_n^{\beta_n}$ е главният едночлен на f_1 . Разглеждаме

$$\varphi_2(x_1, x_2, \dots, x_n) = B\sigma_1^{\beta_1 - \beta_2} \sigma_2^{\beta_2 - \beta_3} \dots \sigma_{n-1}^{\beta_{n-1} - \beta_n} \sigma_n^{\beta_n}.$$

Съгласно Лема 2, φ_2 е едночлен на $\sigma_1, \sigma_2, \ldots, \sigma_n$. Следователно φ_2 е симетричен полином на x_1, x_2, \ldots, x_n .

От Лема 1 следва, че

гл. едночлен
$$(\varphi_2)$$
 = гл. едночлен (f_1) . $(**)$

Разглеждаме $f_2 = f_1 - \varphi_2$. Ясно е, че f_2 е симетричен. Ако f_2 е ненулев полином от (**) става ясно, че главния едночлен на f_2 е по-малък от главния едночлен f_1 . За f_2 правим същите разсъждения както за f_1 и т. н. По този начин получаваме редицата от полиноми:

$$f_0 = f, f_1, f_2, f_3, \dots, f_k, \dots$$
 (#)

със следните свойства:

- (1) Ако $f_k \neq 0$, тогава съществува и f_{k+1} ;
- (2) всеки от тези полиноми е симетричен;
- (3) гл. едночлен (f_i) < гл. едночлен (f_{i-1}) ;
- (4) $f_i = f_{i-1} \varphi_i(x_1, x_2, \dots, x_n)$, където $\varphi_i(x_1, x_2, \dots, x_n)$ е едночлен на $\sigma_1, \sigma_2, \dots, \sigma_n$, който се определя от главния едночлен на f_{i-1} . По-точно, ако $Cx_1^{\gamma_1}x_2^{\gamma_2}\dots x_n^{\gamma_n}$ е главният едночлен на f_{i-1} тогава

$$\varphi_i(x_1, x_2, \dots, x_n) = C\sigma_1^{\gamma_1 - \gamma_2} \sigma_2^{\gamma_2 - \gamma_3} \dots \sigma_{n-1}^{\gamma_{n-1} - \gamma_n} \sigma_n^{\gamma_n}.$$

От (4) за тези полиноми имаме:

$$\begin{cases}
f_1 = f - \varphi_1 \\
f_2 = f_1 - \varphi_2 \\
\vdots \\
f_k = f_{k-1} - \varphi_k
\end{cases} \Rightarrow f = \varphi_1 + \varphi_2 + \dots + \varphi_k + f_k$$

От последното равенство става ясно, че ако някой полином f_k от (#) е нулев, тогава $f = \varphi_1 + \varphi_2 + \cdots + \varphi_k$. Понеже φ_i са едночлени на $\sigma_1, \sigma_2, \ldots, \sigma_n$ с коефициенти от полето F следва, че f е полином на $\sigma_1, \sigma_2, \ldots, \sigma_n$ с коефициенти от полето F и теоремата ще бъде доказана. Остава да докажем, че в (#) има нулев полином.

Да допуснем противното, т.е. че в (#) няма нулев полином.

Съгласно (1) редицата (#) е безкрайна. Нека $Cx_1^{\gamma_1}x_2^{\gamma_2}\dots x_n^{\gamma_n}$ е главен едночлен на някой полином от (#). Тогава съгласно (3), $Cx_1^{\gamma_1}x_2^{\gamma_2}\dots x_n^{\gamma_n}$ е по-малък от $Ax_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n}$. Поради това $\gamma_1\leq\alpha_1$. Понеже $Cx_1^{\gamma_1}x_2^{\gamma_2}\dots x_n^{\gamma_n}$ е главен едночлен на симетричен полином, съгласно Лема 2, $\gamma_1\geq\gamma_2\geq\dots\geq\gamma_n$ и следователно

$$\alpha_1 > \gamma_1 > \gamma_2 > \cdots > \gamma_n$$
.

И така, степените на променливите x_i в главните едночлени на полиномите от (#) образуват наредени n-орки цели числа, всяко от които принадлежи на интервала $[0,\alpha_1]$. Но от целите числа в този интервал можем да образуваме само краен брой различни наредени n-орки. Понеже (#) е безкрайна, правим извода, че съществуват два полинома в (#), главните едночлени на които са подобни. Това противоречи на (3). Теоремата е доказана.

Следствие. Нека F е поле, $f(x) \in F[x]$, ст. $f(x) \ge 1$. Нека полето E е разширение на F, над което f(x) се разлага на линейни множители, m. e.

$$f(x) = A(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n), \text{ kodemo } \alpha_1, \alpha_2, \dots, \alpha_n \in E.$$

Тогава, ако $\varphi(x_1, x_2, ..., x_n)$ е симетричен полином от $F[x_1, x_2, ..., x_n]$, е вярно, че $\varphi(\alpha_1, \alpha_2, ..., \alpha_n) \in F$.

Доказателство:

Нека $f(x) = a_0 + a_1 x + \dots + a_n x_n$, $a_n \neq 0$.

Съгласно Теоремата съществува $\psi(x_1, x_2, \dots, x_n) \in F[x_1, x_2, \dots, x_n]$, такъв че $\varphi(x_1, x_2, \dots, x_n) = \psi(\sigma_1, \sigma_2, \dots, \sigma_n)$. Тогава

$$\varphi(\alpha_1, \alpha_2, \dots, \alpha_n) = \psi(\alpha_1 + \dots + \alpha_n, \dots, \alpha_1 \dots \alpha_n).$$

От това равенство и формулите на Виет става ясно, че $\varphi(\alpha_1, \alpha_2, \dots, \alpha_n)$ се получава като в $\psi(x_1, x_2, \dots, x_n)$ заместим

$$x_1 = -\frac{a_{n-1}}{a_n},$$

$$x_2 = \frac{a_{n-2}}{a_n},$$

$$\dots$$

$$x_n = (-1)^n \frac{a_0}{a_n}.$$

Понеже $-\frac{a_{n-1}}{a_n}, \frac{a_{n-2}}{a_n}, \dots, (-1)^n \frac{a_0}{a_n} \in F$ и коефициентите на $\psi(x_1, x_2, \dots, x_n)$ са от полето F следва, че $\varphi(\alpha_1, \alpha_2, \dots, \alpha_n) \in F$.

Пример. Нека $f(x) \in \mathbb{R}[x]$, ст. $f(x) \geq 1$ и полето E е разширение на \mathbb{R} , над което

$$f(x) = A(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n),$$

където $\alpha_1, \alpha_2, \ldots, \alpha_n \in E$.

За всяко естествено число k полиномот $x_1^k + x_2^k + \cdots + x_n^k$, е симетричен. Поради това $\alpha_1^k + \alpha_2^k + \dots + \alpha_n^k \in \mathbb{R}$. Ако $f(x) \in \mathbb{Q}[x]$, тогава $\alpha_1^k + \alpha_2^k + \dots + \alpha_n^k \in \mathbb{Q}$.

Дискриминанта на полином

Нека F е поле и $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x], a_n \neq 0, n \geq 2$. Нека полето E е разширение на полето F и f(x) се разлага над E на линейни множители

$$f(x) = A(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n).$$

Дискриминанта на f(x) наричаме $D\big(f(x)\big)=a_n^{2n-2}\prod_{1\leq i< j\leq n}(\alpha_i-\alpha_j)^2.$

Ако $f(x) = ax^2 + bx + c$, $a \neq 0$, да се провери, че $D(f(x)) = b^2 - 4ac$.

Да разгледаме полинома
$$h(x_1,x_2,\ldots,x_n)=a_n^{2n-2}\prod_{1\leq i< j\leq n}(x_i-x_j)^2.$$

Тъй като $h(x_1, x_2, ..., x_n)$ е симетричен полином, съгласно основното следствие имаме

$$D(f(x)) = h(\alpha_1, \alpha_2, \dots, \alpha_n) \in F.$$

Поради това дискриминантата не зависи от разширението E и е дефинирана коректно.

Очевидно са верни следните:

Твърдение 1. Нека f(x) е полином и ст. $f(x) \geq 2$. Тогава f(x) има корен с кратност $\geq 2 \Leftrightarrow D(f(x)) = 0$.

Твърдение 2. *Нека* $f(x) \in \mathbb{R}[x]$ *u* ст. $f(x) \geq 2$. *Ако* D(f(x)) < 0, *тогава* f(x) има нереален корен.

От училище знаем, че ако $f(x) \in \mathbb{R}[x]$ и ст. f(x) = 2, корените на f(x)са реални само когато $D(f(x)) \ge 0$.

Задача 1. Нека f(x) е полином с реални коефициенти и ст. f(x) = 3. Корените на f(x) са реални $\Leftrightarrow D(f(x)) > 0$.

Задача 2. $B \mathbb{R}[x]$ да се намери полином от четвърта степен, дискриминантата на който да е положителна и всичките му корени да не са реални.