Bangladesh Army University of Science and Technology

Department of Computer Science and Engineering

Referred/Improvement/Backlog Examination, Winter 2018-2019

Course Code: PHY 1103 Time: 03 (Three) hours Level-1 Term-I Course Title: Physics Full Marks: 210

N.B.: (i) Answer any three questions from each PART (iii) Marks allotted are indicated in the margin

(ii) Use separate answer script for each PART (iv) Symbols bear their usual meanings

PART A

1.	a)	Define simple harmonic motion and discuss its characteristics.	02+06		
	b)	Calculate the total energy of a particle executing simple harmonic motion.	12		
	c)	1982 P. P. (1980, 4) profile 1982 (1980) and 1983 (1984) by 1984 (1983) (1982) (1982) (1984) (1984)			
	-)	Show that the time period of oscillation of a loaded spring is $T = 2\pi \sqrt{\frac{Mx}{mg}}$	10		
	d)	A scale of spring balance reading 0-10 kg is 0.25 m. A body suspended from the balance	05		
		oscillates with a frequency $\frac{10}{\pi}$ hertz. Calculate the mass of the body attached to the spring.			
2.	a)	Show that the energy of a progressive wave is given by, $E = 2\pi^2 \rho n^2 a^2 v$.	20		
	b)	A source of sound has frequency of 600 Hz and amplitude of 0.25 cm. What is the flow of energy across a square cm per second, if the velocity of sound in air is 332 m/s and the density of air is 0.00129 g/cm ³ ?	05		
	c)	What is stationary wave? Two similar waves moving in opposite directions meet at a place, find the value of the resultant motion.	03+07		
3.	a)	State uncertainty principle. Prove that, an electron cannot exist within the nucleus.	04+07		
	b)	Derive three-dimensional time-dependent Schrödinger equation.	17		
	c)	Prove that, a particle will not exist in a box if its energy is zero. Discuss the zero-point energy.	03+04		
4.	a)	What are the restrictions on conventional cell axes and axial angles of an unit cell in seven crystal system?	14		
	b)	Calculate the packing factor for body-centered cubic crystal structure.	11		
	c)	Derive an expression for Bragg's law for X-ray diffraction.	10		
PART B					
5.	a)	State and explain Coulomb's law of electrostatics. What are the limitations of the law?	08+02		
	b)	Deduce the relation, $E = \frac{\lambda}{2\pi\varepsilon_0 a}$.	15		
	c)	Derive an expression for drift velocity of electron.	10		
6.	a)	State and explain Faraday's laws of electromagnetic induction.	10		
	b)	Define self-inductance and mutual-inductance. Show that $M = \sqrt{L_1 L_2}$.	06+12		
	c)	A solenoid is 1 m long and 3 cm in mean diameter. It has 5 layers of winding of 850 turns each and carries a current of 5 amps. What is B at its centre? What is magnetic flux φ_B for a cross section of the solenoid at its centre?	07		

170

7.	a)	What do you mean by interference of light? Discuss the necessary conditions for interference of light.	04+08
	b)	Define fringe width. Prove that the distance between two successive fringes formed in Young's experiment is given by $\beta = \frac{\lambda D}{a}$.	18
	c)	Calculate the fringe width of interference pattern produced in Young's double slit experiment with two slit 10 ⁻³ m apart on a screen 1 m away.	05
8.	a)	What do you mean by diffraction of light? Distinguish between Fresnel's and Fraunhoffer's types of diffraction.	03+07
	b)	Discuss the intensity distribution of Fraunhoffer diffraction pattern obtained with a narrow slit illuminated by monochromatic light. Prove that, the width of the central maximum is inversely proportional to the slit width.	20
	c)	Write short notes on: LASER.	05

ごめ