Конспект по курсу

Дискретный анализ

Contributors: Андрей Степанов Анастасия Торунова Лектор: Райгородский А.М.

МФТИ

Последнее обновление: 3 мая 2015 г.

Содержание

1	Числа Рамсея	2
2	Ещё более жаркая	4
3	Конструктивные нижние оценки чисел Рамсея	6
4	Двудольные числа Рамсея	7
5	Гиперграфовые числа Рамсея	8
6	Система представителей	9
7	Нижняя оценка для СОП	9
8	Размерность Вапника-Червоненкиса	10

1 Числа Рамсея

Определение 1.1. Число Рамсея R(s,t) для натуральных s и t — это минимальное натуральное число n, такое, что при любой реберной раскарске полного графа на n вершинах в два цвета, либо найдется полный подграф на s вершинах первого цвета, либо полный подграф на t вершинах второго цвета.

Определение 1.2 (Числа Рамсея, альтернативное определение). R(s,t) — минимальное такое n, что для любого графа на n вершинах в нем есть либо K_s клика, либо \overline{K}_t антиклика

Пример.

- 1. R(3,3)=6
- 2. R(1,t) = 1
- 3. R(2,t) = t

Утверждение 1.1.

$$(\frac{1}{4} + o(1))\frac{t^2}{\ln t} \le R(3, t) \le (1 + o(1))\frac{t^2}{\ln t}$$

3амечание. 1/4 была получена в 2013 году, а 1/162 — Кимом. Числа Рамсея были придуманы Рамсеем в 1930 году. В 1935 году Эрдеш и Секереш переоткрыли их в своей работе.

Утверждение 1.2.

$$R(3,t) \ge c \frac{t^2}{\ln^2 t}$$

Теорема 1.3.
$$R(s,t) \leq R(s-1,t) + R(s,t-1)$$

Доказательство. Обозначим $r_1 = R(s-1,t), r_2 = R(s,t-1), n = r_1 + r_2$. Положим также $\deg_+ v = \deg v, \deg_- v = n-1 - \deg_+ v$.

Рассмотрим граф G на n вершинах и произвольную вершину v этого графа. Ясно, что либо $\deg_+ v \geq r_1$, либо $\deg_- v \geq r_2$. В первом случае вершина v смежна с подграфом на r_1 вершинах, в котором есть либо \overline{K}_t (в этом случае все хорошо), либо K_{s-1} . Но тогда этот K_{s-1} вместе с вершиной v дает K_s и тоже все хорошо. Второй случай рассматривается аналогично.

Следствие.

$$R(s,t) \le \binom{s-1}{s+t-2}$$

Доказательство. Индукция по s+t: применяем рекурсивную формулу из прошлой теоремы, а также рекурсивную формулу для треугольника Паскаля.

Определение 1.3. Диагональные числа Рамсея – это числа R(s,s).

Следствие (из следствия).

$$R(s,s) \le {s-1 \choose s+s-2} \approx {4^s \over \sqrt{\pi s}}$$

Замечание. Самая сильная верхняя оценка, которую людям удалось доказать — это

$$\exists \gamma > 0 : R(s, s) \le 4^s \cdot e^{-\gamma \cdot \frac{\ln^2 s}{\ln \ln s}}$$

. Это сделал Конлон.

Теорема 1.4. Пусть дано s – натуральное. Найдем такое n, что

$$\binom{n}{s} \cdot 2^{1 - \binom{s}{2}} < 1$$

 $Tor \partial a \ R(s,s) > n$

Доказательство. Докажем эту задачу вероятностным методом. То, что нужно доказать, равносильно тому, что \exists раскраска ребер полного графа на n вершинах при которой нет одноцветной клики на s вершинах.

Рассмотрим вероятностное пространство $G(n,\frac{1}{2})$. Введем случайную величину ξ – количество одноцветных s-клик. Пусть ξ_S – другая индикаторная случайная величина, которая равна 1, если подграф S одноцветен. Тогда

$$P(\xi_S = 1) = 2 \cdot \left(\frac{1}{2}\right)^{\binom{s}{2}} = 2^{1 - \binom{s}{2}}$$

Но вследствие линейности математического ожидания:

$$\xi = \sum_{S,|S|=s} \xi_S$$

А значит,

$$E\xi = \sum_{S \mid S \mid = s} E\xi_S = \binom{n}{s} \cdot 2^{1 - \binom{s}{2}} < 1$$

А значит существует такая раскраска, что $\xi = 0$

Следствие.

$$R(s,s) \ge (1+o(1))\frac{s}{e\sqrt{2}}2^{s/2}$$

Доказательство. Положим $n=(1+f(s))\frac{s}{e\sqrt{2}}2^{s/2},$ где f(s)=o(1)

$$C_n^s \cdot 2^{1 - C_s^2} \le \frac{n^s}{s!} \cdot 2^{1 - \frac{s(s-1)}{2}} = (1 + f(s))^s \frac{s^s}{e^s 2^{s/2} s!} \cdot 2^{s^2/2} \cdot 2^{1 - s^2/2 + s/2}$$
$$= \frac{(1 + o(1))^s \cdot 2}{(1 + o(1))\sqrt{2\pi s}} < 1$$

при правильтном выборе f(s)

Теорема 1.5 (Эрдеша).

$$R(s,s) \ge (1+o(1))\frac{s}{e} \cdot 2^{s/2}$$

Теорема 1.6 (Спенсера).

$$R(s,s) \ge (1 + o(1)) \cdot \frac{s\sqrt{2}}{e} 2^{s/2}$$

Определение 1.4. Событие B не зависит от совокупности событий $A_1, \ldots, A_n,$ если

$$\forall J \subset \{1, \dots, n\} : P(A | \cap_{i \in J} A_i) = P(B)$$

Лемма 1.7 (симметричная локальная лемма Ловаса). Пусть A_1, \ldots, A_n – события. Путь дополнительно $\exists p: \forall i: P(A_i) \leq p$. Дополнительно предположим, что $\forall i: A_i$ не зависит от совокупности всех остальных событий, кроме не более чем d штук. Пусть также $ep(d+1) \leq 1$. Тогда $P(\cap_{i=1}^n A_i^c) > 0$

Доказательство теоремы Спенспера. Нам нужно доказать, что

$$P(\cap_{S,|S|=s}A_S)>0$$

. $P(A_s)=2^{1-C_s^2}=p$. Чему же равно d? A_S зависит от тех A_T , у которых $|S\cap T|\geq 2$. Тогда $d\leq C_s^2\cdot C_{n-2}^{s-2}$. Осталось доказать, что ep(d+1)<1.

$$\begin{split} ep(d+1) &= e \cdot 2^{1-C_s^2} \cdot (C_s^2 C_{n-2}^{s-2} - 1) = e(1+o(1)) 2^{1-C_s^2} C_s^2 C_{n-2}^{s-2} \\ &\leq e(1+o(1)) 2^{1-s^2/2+s/2} \cdot \frac{s^2}{2} \cdot \frac{n^{s-2}}{(s-2)!} = e(1+o(1)) 2^{1-s^2/2+s/2} \cdot \frac{s^4}{2} \cdot \frac{(1+o(1))^{s-2} 2^{s/2-1}}{e^{s-2}(s)!} s^{s-2} \cdot 2^{s^2/2-s} \\ &\qquad \qquad \frac{(1+o(1)) e s^{s+2} (1+o(1))^{s-2}}{e^{s-2} 2 (1+o(1)) \sqrt{2\pi s} \left(\frac{s}{e}\right)^s} \end{split}$$

Если взять $o(1) = -\frac{1}{\sqrt{s}}$, то все получится.

2 Ещё более жаркая

Определение 2.1. Пусть A_1,\ldots,A_n – события на некотором вероятностном пространстве. Ориентированный граф $G=(\{A_1,\ldots,A_n\},E)$ является орграфом этих зависимостей, если $\forall i\in\{1,\ldots,n\}:A_i$ не зависит от совокупности тех событий A_j для которых $(A_i,A_j)\not\in E$

Пример. Полный граф является орграфом зависимостей. Но это не интересный пример. Возьмем события A_1,A_2,A_3 которые независимы попарно, но зависимы в совокупности. Тогда из любой вершины этого графа должно выходить хотя бы одно ребро, в противном случае этот граф не будет являтся орграфом зависимостей. Тогда понятно, что в минимальном орграфе зависимостей для этого набора должно быть хотя бы 3 ребра.

Замечание. Если A_i, A_j зависимы, то в графе зависимостей обязаны быть ребра $(A_i, A_j), (A_j, A_i)$

Теорема 2.1 (Локальная лемма Ловаса). Пусть A_1, \ldots, A_n – события на каком-то вероятностном пространстве. G = (V, E) – такой орграф зависимостей, что

$$\exists x_1, \dots, x_n \in [0, 1) : \forall i : P(A_i) \le x_i \prod_{j:(A_i, A_j) \in E} (1 - x_j)$$

 $Tor \partial a$

$$P(\cap_{i=1}^{n} \overline{A}_i) \ge \prod_{i=1}^{n} (1 - x_i) > 0$$

Следствие (симметричная локальная лемма Ловаса). Пусть A_1, \ldots, A_n — события. Путь дополнительно $\exists p : \forall i : P(A_i) \leq p$. Дополнительно предположим, что $\forall i : A_i$ не зависит от совокупности всех остальных событий, кроме не более чем d штук. Пусть также $ep(d+1) \leq 1$. Тогда $P(\cap_{i=1}^n \overline{A}_i^c) > 0$

доказатель ство следствия. Рассмотрим G = (V, E), у которого A_i соедина ровно с теми "паразитами" которые мешают независимости.

Рассмотрим сначала дурацкий случай: d=0. В этом случае они независимы в совокупности. Тогда $P(\cap_{i=1}^n \overline{A}_i) = \prod_{i=1}^n (1-P(A_i)) \geq (1-p)^n \geq (1-\frac{1}{e})^n > 0$.

Пусть теперь d>0. Рассмотрим $x_1=\cdots=x_n=\frac{1}{d+1}$. Мы знаем, что $P(A_i)\leq p\leq \frac{1}{(d+1)e}$. Хочется доказать, что $P(A_i)\leq \frac{1}{d+1}\prod_{k:(A_i,A_k)\in E}(1-\frac{1}{d+1})$. Понятно, что $(1-\frac{1}{d+1})^d\geq \frac{1}{e}$. Но тогда симметричный случай доказан.

доказательство леммы Ловаса.

$$P(\bigcap_{i=1}^{n} \overline{A}_i) = P(\overline{A}_1) \cdot P(\overline{A}_2 | \overline{A}_1) \cdot \dots \cdot P(\overline{A}_n | \overline{A}_1 \cap \dots \cap \overline{A}_n)$$

= $(1 - P(A_1))(1 - P(A_1 | \overline{A}_2)) \cdot \dots \cdot (1 - P(A_n | \overline{A}_1 \cap \dots \cap \overline{A}_n))$

Лемма: $\forall i: \forall J \subset \{1, 2, \dots, n\} \setminus \{i\}: P(A_i | \cap_{j \in J} \overline{A}_j) \leq x_i$

База: $|J| = 0, P(A_i | \cap_{i \in \emptyset} \overline{A}_i) = P(A_i) \le x_i$

Переход: рассмотрим произвольное множество J:|J|=k+1. Представим $J=J_1\cup J_2$. Положим $J_1=\{j\in J: (A_i,A_j)\in E\},\, J_2=J\setminus J_1$.

Рассмотрим случай, когда $J_1=\emptyset$. Тогда $P(A_i|\cap_{j\in J}\overline{A}_j)=P(A_i|\cap_{j\in J_2}\overline{A}_j)=P(A_i|)\leq x_i$

Рассмотрим второй случай: $J_1 = \{j_1, \dots, j_r\}, r \geq 1$. Тогда

$$P(A_{i}|\cap_{j\in J}\overline{A}_{j}) = P(A_{i}|\cap_{j\in J_{1}}\overline{A}_{j}\cap\cap_{j\in J_{2}}\overline{A}_{j}) = \frac{P(A_{i}\cap\cap_{j\in J_{1}}\overline{A}_{j}|\cap_{j\in J_{2}}\overline{A}_{j})}{P(\cap_{j\in J_{1}}\overline{A}_{j}|\cap_{j\in J_{2}}\overline{A}_{j})}$$

$$\leq \frac{P(A_{i}|\cap_{j\in J_{2}}\overline{A}_{j})}{P(\cap_{j\in J_{1}}\overline{A}_{j}|\cap_{j\in J_{2}}\overline{A}_{j})} = \frac{P(A_{i})}{P(\cap_{j\in J_{1}}\overline{A}_{j}|\cap_{j\in J_{2}}\overline{A}_{j})} = \frac{P(A_{i})}{P(A_{j_{1}}|\cap\cdots)\cdot P(A_{j_{2}}|\cap\cdots)} = \frac{P(A_{i})}{P(A_{j_{1}}|\cap\cdots)\cdot P(A_{j_{2}}|\cap\cdots)} = \frac{P(A_{i}|\cap\cdots)\cdot P(A_{j_{2}}|\cap\cdots)}{P(A_{j_{2}}|\cap\cdots)} = \frac{P(A_{i}|\cap\cdots)\cdot P(A_{i}|\cap\cdots)}{P(A_{i}|\cap\cdots)} = \frac{P(A_{i}|\cap\cdots)}{P(A_{i}|\cap\cdots)} = \frac{P(A_{i}|\cap\cdots)}{P(A_{i}|\cap\cdots$$

Полезность несимметричного случая: R(3,t) > n. Берем случайную раскраску.

3 Конструктивные нижние оценки чисел Рамсея

Что значит снизу оценить число Рамсея?

Оценка $R(s,s)>n\Leftrightarrow$ существует граф G=(V,E), |V|=n, в котором нет K_s и \overline{K}_s , то есть $\omega(G)< s, \alpha(G)< s.$

Теорема 3.1 (Франкл, Уилсон, 1981). $\exists \varphi : \varphi(s) \to 0, \ npu \ s \to \infty \ npuчем,$ $\forall s : \exists G = (V, E) : \omega(G) < s, \alpha(G) < s, |V| \ge (e^{1/4} + \varphi(s))^{\frac{\ln^2 s}{\ln \ln s}}$

Доказательство. Пусть p — простое. Положим $m=p^3, k=p^2$. Пусть множество вершин $V=\{(x_1,\cdots,x_m): x_i\in\{0,1\}, x_1+\cdots+x_m=k\}$. А множество ребер $E=\{\{x,y\}: (x,y)\equiv 0 (\mod p)\}$. Отметим, что $n=|V|=\binom{p^3}{p^2}$

Лемма 3.2.

$$\alpha(G) \le \sum_{i=0}^{p-1} \binom{m}{i}$$

Доказательство. Рассмотрим произвольное независимое множество $W = \{x_1, \cdots, x_t\}$ вершин нашего графа $G, \ \forall i, j, i \neq j : (x_i, x_j) \not\equiv 0 \pmod{p}$. Сопоставим каждому x_i многочлен $F_{x_i} \in \mathbb{Z}_p[y_1, \cdots, y_m]$.

Положим $F_{x_i}(y) := \prod_{j=1}^{p-1} (j-(x_i,y))$. $F'_{x_i}(y)$ – многочлен F_{x_i} со срезанными коэфициентами в каждом одночлене. Докажем, что эти многочлены линейно независимы в \mathbb{Z}_p .

 $c_1F'_{x_1}+\cdots+c_tF'_{x_t}=0$. То есть $\forall y\in W: c_1F'_{x_1}+\cdots+c_tF'_{x_t}=0\mod p$. Возьмем, например $y=x_1$. Тогда $c_1F_{x_1}(x_1)'+\cdots+c_tF'_{x_t}(x_1)=F_{x_1}(x_1)+\cdots+F_{x_t}(x_1)$. Причем $F_{x_1}(x_1)\equiv 0\mod p$, а для $k\neq 1$ $F_{x_k}(x_1)\not\equiv 0\mod p$. Тогда $c_1\equiv 0\mod p$

Значит, все многочлены независимы. Но их не может быть больше $\sum_{i=0}^{p-1} \binom{m}{i}$

Лемма 3.3.

$$\omega(G) \leq \sum_{i=0}^{p} \binom{m}{i}$$

Доказательство. Рассмотрим произвольное множество вершин $W = \{x_1, \cdots, x_t\}$ в графе G, которое образует клику. То есть $\forall i, j, i \neq j : (x_i, x_j) \equiv 0 \mod p \Leftrightarrow (x_i, x_j) \in \{0, p, 2p, \cdots, p^2 - p\}$

Сопоставим каждому x_i многочлен $F_{x_i} \in \mathbb{Q}[y_1,\cdots,y_m]$ по следующему правилу $F_{x_i}=(x_i,x_j)((x_i,x_j)-p)((x_i,x_j)-2p)\cdots((x_i,x_j)-(p^2-p)).$ Опять

же срежем степени всех одночленов, получим F'_{x_i} . Докажем их линейную независимость

$$\forall y \in W : c_1 F_{x1}(y) + \dots c_t F_{x_t} = 0$$

 $F_{x_1}(x_1) \neq 0$, для i > 1: $F_{x_i}(x_1) = 0$ Значит, $c_1 = 0$. Аналогично для остальных c_i . Получили, что многочлены независимы. Значит, их не больше, чем $\sum_{i=0}^{p} {m \choose i}$

Обозначим $s = \sum_{i=0}^{p} {m \choose i} + 1$. Тогда из лемм следует, что $\alpha(G) < s, \omega(G) < s$

S. Докажем что
$$n$$
 как функция от s имеет вид $(e^{1/4}+o(1))^{\frac{\ln^2 s}{\ln \ln s}}$. $n=\binom{p^3}{p^2}=\frac{p^3(p^3-1)\cdots(p^3-p^2+1)}{(p^2)!}$ Понятно, что $p^3-i=p^{3(1+o(1))}$ Тогда $n=\frac{p^{3p^2(1+o(1))}}{(p^2)!},\;(p^2)!=p\sqrt{2\pi}\left(\frac{p^2}{e}\right)^{p^2}=p^{2p^2(1+o(1))},\;n=p^{p^2(1+o(1))},\;\binom{m}{p}=\frac{p^{3p(1+o(1))}}{p^{p(1+o(1))}},\;s\leq (p+1)p^{2p(1+o(1))}+1,\;s\geq p^{2p(1+o(1))},\;$ короче говря $s=p^{2p(1+o(1))}$. $\ln s=2p(1+o(1))\ln p,\;\ln^2 s=4p^2(1+o(1))\ln^2 p,\;\ln\ln s=\ln 2p+\ln(1+o(1))+\ln\ln p=(1+o(1))\ln p$

 $\frac{\ln^2 s}{\ln \ln s} = 4p^2 \ln p(1+o(1)), (e^{1/4}+o(1))^{4p^2 \ln p(1+o(1))} = e^{1/4 \cdot 4p^2 \ln p(1+o(1))(1+o(1))},$ $n = e^{p^2 \ln p(1+o(1))}$ Подбираем правильно o(1) которое в нашей власти и все получилось. Что делать для произвольного s: находим максимальное простое $p:s>s_0:=\sum_{i=0}^p {m\choose i}+1$. Ясно, что $R(s,s)\geq R(s_0,s_0)\geq (e^{1/4}+1)$ o(1)) $\frac{\ln^2 s_0}{\ln \ln s_0} \sim (e^{1/4} + o(1)) \frac{\ln^2 s}{\ln \ln s}$.

Двудольные числа Рамсея

Определение 4.1. b(k,k) — это минимальное такое l, что при любой раскраске ребёр $K_{l,l}$ в красный и синий цвета, найдется одноцветный $K_{k,k}$

Теорема 4.1.

$$b(k,k) \ge (1+o(1))\frac{2}{e}k2^{k/2}$$

Замечание. Берём случайную раскраску ребёр полного двудольного графа $K_{l,l}$. Рассматриваем случайную величину $\xi =$ число одноцветных $K_{k,k}$. $E\xi = \binom{l}{k}^2 \cdot 2^{1-k^2}$. Это матожидание отличается от аналогичного для чисел Рамсея совсем чуть-чуть

Теорема 4.2 (Конлон).

$$b(k,k) \leq (1+o(1))\log_2 k \cdot 2^{k+1}$$

Лемма 4.3. Пусть числа $m, n, r, s \in \mathbb{N}$ и $p \in [0, 1]$ таковы, что $(s-1)\binom{m}{r} < 1$ $n\binom{mp}{r}$. Пусть $G_{m,n}$ – любой подграф $K_{m,n}: \frac{|E(G_{m,n})|}{mn} \geq p$. Тогда в $G_{m,n}$ есть Доказательство. Предположим противное. Пусть в $G_{m,n}$ нет $K_{r,s}$.

Подсчитаем двумя разными способами число подграфов $K_{r,1}$ в графе $G_{m.n}.$

Первый способ соответствует предположению противного. $\binom{m}{r} \cdot (s-1)$ – максимальное количество $K_{r,1}$ в $G_{m,n}$ в виду сделанного нами предположения противного.

С другой стороны, обозначим d_1, \cdots, d_n – степени вершин графа $G_{m,n}$ в правой доле. Тогда количество таких $K_{r,1}$ – это $\binom{d_1}{r} + \cdots + \binom{d_n}{r} \geq \binom{\frac{d_1+\cdots+d_n}{r}}{r}$ По условию это больше либо равно $n\binom{pm}{r}$. Пришли к противоречию.

Мы знаем, что если
$$r^2=o(m)$$
, то $\binom{m}{r}\sim \frac{m^r}{r!}$, $\binom{mp}{r}\sim \frac{(mp)^r}{r!}$

Лемма 4.4 (Та же самая, только в асимптотическом виде). Пусть m=m(k), n=n(k), r=r(k), s=s(k). $p\in [0,1]$. Предположим, что $r^2=o(m), n>(s-1)\cdot p^{-r}(1+o(1))$. Пусть для каждого k $G_{m,n}$ – любой произвольный подграф $K_{m,n}$ такой, что $|E(G_{m,n})|\geq pmn$. Тогда в $G_{m,n}$ есть $K_{r,s}$

Докажем теорему Колона. Мы хотим доказать, что для $\varepsilon>0$ $b(k,k)\leq (1+\varepsilon)(\log_2 k)\cdot 2^{k+1}, k\geq k_0$ Обозначим $l=(1+\varepsilon)\cdot (\log_2 k)\cdot 2^{k+1}$. Это равносильно тому, что при любой раскраске рёбер графа $K_{l,l}$ в красный и синий цвета найдется одноцветный $K_{k,k}$. Зафиксируем произвольную раскраску. Назовём вершину красной, если её красная степень не меньше, чем синяя. В противном случая назовём её синей. Б.о.о считаем, что в правой доле красных хотя бы $\frac{l}{2}$. Возьмём из них первые $\frac{l}{2}$. Пусть $m(k)=l(k), n(k)=\frac{l(k)}{2}$. G(m,n) — это граф из красных рёбер. $p=\frac{1}{2}$. Положим $s(k)=k^2\log_2 k, r(k)=k-2\log_2 k$

$$\frac{1}{2} = (1+\varepsilon)(\log_2 k) \cdot 2^k > (k^2 \log_2 k - 1)2^{k-2\log_2 k}$$

Тогда из леммы следует, что при каждом $k \ge k_0$ в $G_{m,n}$ есть $K_{r,s}$ Рассмотрим $m=k^2\log_2 k,\ n=l-(k-2\log_2 k)$ Возьмём $G_{m,n}$ — из красных рёбер. $r=k,s=2\log_2 k,\ p=(\frac{l}{2}-k)/l=\frac{1}{2}-\frac{k}{l}$ После второго применения леммы победа

5 Гиперграфовые числа Рамсея

Определение 5.1. $R_k(l_1, \cdots, l_r)$ — минимальное такое n, что при любой раскраске рёбер полного k-однородного гиперграфа на n вершинах в r цветов найдется такое i и найдется такое l_i -элементное подмножество множества вершин, такое что все рёбра которые целиком содержатся в этом подмножетсве покрешены в i-цвет.

Несложно доказать, что $R_k(l_1, \dots, l_r) \leq R_{k-1}(R_k(l_1-1, \dots, l_r), \dots, R_k(l_1, \dots, l_r-1))$.

Теорема 5.1.
$$R_3(s,t) \leq 4^{4^{4^{4^4}}} s + t \ pas$$

Доказательство. Доказываем по индукции: $R_3(s,t) \leq R_2(R_3(s-1,t),R_3(s,t-1)) \leq R_2(4^{4^4},4^{4^4}) \leq (1+o(1))4^{4^{4^4}}$

Если использовать вероятностный метод, то: $\binom{n}{3} \cdot (\frac{1}{2})^{\binom{s}{3}} \cdot 2 \ge 2^{s^2/6} (1 + o(1))$ Короче, все плохо.

6 Система представителей

Определение 6.1. Рассмотрим k-однородный гиперграф $H = (\mathcal{R}_n, \mathcal{M})$, где $\mathcal{R}_n = \{1, \cdots, n\}$. Обозначим $|\mathcal{M}| = s$ Назовём системой общих представителей (СОП) для \mathcal{M} произвольное подмножество $S \subset \mathcal{R}_n$: $\forall M \in \mathcal{M} : M \cap S \neq \emptyset$

 $\tau(\mathcal{M}) = \min\{|S| : S - \text{СОП} \ \text{для} \ \mathcal{M}\}$

Утверждение 6.1. $\forall n, k, s : \forall \mathcal{M} : \tau(\mathcal{M}) \leq \min\{s, n-k+1\}$

Утверждение 6.2. $\forall n, k, s : \exists \mathcal{M} : \tau(\mathcal{M}) \geq \min\{s, \lceil \frac{n}{k} \rceil\}$

Теорема 6.3 (Эрдеш). $\forall n, k, s : \forall \mathcal{M} : \tau(\mathcal{M}) \leq \max\{\frac{n}{k}, \frac{n}{n} \ln \frac{sk}{n}\} + \frac{n}{k} + 1$

Доказательство. Пусть $s>>\frac{n}{k}$. В противном случае если, скажем $sleq\frac{n}{k}$, то $\tau(\mathcal{M})=s\leq\frac{n}{k}$. Другой плохой случай – это когда $\frac{n}{k}\ln\frac{sk}{n}\leq n$. Тогда $\tau(n)\leq n\leq\frac{n}{k}\ln\frac{sk}{n}$

Теперь у нас $s>\frac{n}{k}$ и кроме того $\frac{n}{k}\ln\frac{sk}{n}< n$. Теперь зафиксируем $\mathcal{M}=\{M_1,\cdots,M_s\}$. Пусть ν_1 — вершина, содержащаяся в самом большом количестве M_i . Пусть $\rho_i=\{j:\nu_i\in M_j\}$. Тогда $|\rho_1|\geq\frac{sk}{n}$. Удалим элемент ν_1 из рассмотрения (выкенем его из \mathcal{R}_n , также выкинем из \mathcal{M} все ρ_1). Пусть $s_1=|\mathcal{M}\setminus\rho_1|$, тогда $|\rho_2|\geq\frac{s_1k}{n-1}\leq\frac{s_1k}{n}$. Сделаем N шагов, чтобы $N=\lfloor\frac{n}{k}\ln\frac{sk}{n}\rfloor+1$. Осталось s_N ребер, причем $s_N=s_{N-1}-\rho_N\leq S_{N-1}-\frac{S_{N-1}k}{n}=S_{N-1}(1-\frac{k}{n})\leq\cdots\leq s(1-\frac{k}{n})^N\leq s(1-\frac{k}{n})^{\frac{n}{k}\ln\frac{sk}{n}}\leq se^{-\frac{k}{n}\cdot\frac{n}{k}\ln\frac{sk}{n}}=s\cdot\frac{n}{sk}=\frac{n}{k}$ Получили, что $\tau(\mathcal{M})\leq N+\frac{n}{k}\leq\frac{n}{k}\ln\frac{s}{n}+1+\frac{n}{k}$

7 Нижняя оценка для СОП

Теорема 7.1. Пусть $n \ge 16$. Пусть $k \le \frac{n}{16}$. Пусть $s: 4 \le \ln \frac{sk}{n} \le k$. Тогда $\exists M: \tau(M) \ge \frac{n}{32k} \ln \frac{sk}{n}$

 \mathcal{A} оказательство. Обозначим $m:=\lceil \frac{1}{2}\ln\frac{sk}{n}\rceil$. Ясно, что $m\geq 2$. Пусть $N_1^1,\cdots N_{\binom{2m}{m}}^1$ — все m-элементные подможества $\{1,\cdots,2m\}$. $\tau(\{N_1,\cdots\})=m+1$. Пусть $q:=\lceil\frac{2k}{m}\rceil$. Пусть теперь $N_1^2,\cdots,N_{\binom{2m}{m}}^2$ — все m-элементные подмножества $\{2m+1,\cdots,4m\}$. Аналогично определим N^3,\cdots,N^q . Пусть $M_1=N_1^1\cup N_1^2\cup\cdots\cup N_1^q$. Аналогично определим $M_2,\cdots,M_{\binom{2m}{m}}$. Пусть $\mathcal{M}_1=\{M_1,\cdots,M_{\binom{2m}{m}}\}$. Тогда $|M_i|=qm$. Заметим, что $\frac{2k}{m}\geq\frac{4k}{\frac{1}{2}\ln\frac{sk}{n}}\geq 4$. Кроме того, $q\geq\frac{k}{m}$. Тогда $qm\geq k$. $\tau(\mathcal{M}_1)=m+1>m\geq\frac{1}{4}\ln\frac{sk}{n}$. Пусть $t:=\lceil\frac{n}{2qm}\rceil$. Прододжжим эту конструкцию t раз. Получим множества $\mathcal{M}_1,\cdots,\mathcal{M}_t$. Теперь рассмотрим $\overline{\mathcal{M}}=\mathcal{M}_1\cup\mathcal{M}_2\cup\cdots\cup\mathcal{M}_t$. Тогда $\tau(\overline{\mathcal{M}})=t\tau(\mathcal{M}_1)\geq\frac{1}{4}t\ln\frac{sk}{n}\geq\frac{1}{4}\frac{n}{4qm}\ln\frac{sk}{n}\geq$

 $\frac{1}{16} \frac{n}{2k} \ln \frac{sk}{n} = \frac{1}{32} \frac{n}{k} \ln \frac{sk}{n}$. Посчитаем $|\overline{\mathcal{M}}| = t\binom{2m}{m} \le t2^{2m} \le t \cdot 2^{2\frac{1}{2} \ln \frac{sk}{n}} \le t\frac{sk}{n} \le \frac{sk}{n} \le \frac{n}{2qm} \frac{sk}{n} = \frac{sk}{2qm} \le \frac{sk}{2k} = \frac{s}{2}$. Каждое множество $M \in \overline{\mathcal{M}}$ при необходимости обрежем. К полученной совокупности добавим любые k-элементные множества так, чтобы итоговая совокупность \mathcal{M} , состояла ровно из s множеств. Понятно, что $\tau(\mathcal{M}) \ge \tau(\overline{\mathcal{M}})$. Конец.

Теорема 7.2. Пусть n,k,s,l таковы, что $\binom{n}{l} \cdot \binom{\binom{n}{k} - \binom{n-l}{k}}{s} \frac{1}{\binom{\binom{n}{k}}{s}} < 1$. Тогда $\exists M: \tau(M) > l$

Доказательство. Возьмём случайную M совокупность мощности s состоящую из k-элементных подмножеств $\{1,\cdots,n\}$. Всего таких совокупностей $\binom{n}{k}$. Рассмотрим $L_1,\cdots,L_{\binom{n}{l}}\subset\{1,\cdots,n\}$, причем $|L_i|=l$. Для каждого $i=\{1,\cdots,\binom{n}{l}\}$ определим события A_1,\cdots,A_i , заключающиеся в том, что L_i является СОП для M. Тогда $P(A_i)=\frac{\binom{\binom{n}{k}-\binom{n-l}{k}}{\binom{\binom{n}{k}}}}{\binom{\binom{n}{k}}{\binom{n}{k}}}$. Тогда $P(UA_i)\leq\binom{n}{l}P(A_1)\leq 1$. Тогда существует такая совокупномть M, у которой можность СОП >l.

Следствие. Пусть при $n \to \infty$, $k = k(n) \to \infty$, $s = s(n) \to \infty$, $\frac{sk}{n} \to \infty$. Пусть $k^2 = o(n)$, $\ln \ln k = o(\ln \frac{sk}{n})$, $\ln^2 \frac{sk}{n} = o(k)$. Тогда $\exists n_0 : \forall n \ge n_0 : \exists M : \tau(M) \ge \frac{n}{k} \ln \frac{sk}{n} - \frac{n}{k} \ln \ln \frac{sk}{n} - \frac{n}{k} \ln \ln k - \frac{n}{k} = (1 + o(1)) \frac{n}{k} \ln \frac{sk}{n}$

Доказательство. Проведем неформальное доказательство. $\binom{\binom{n}{k}-\binom{n-l}{k}}{s}$

 $R_n = \{1, 2, \cdots, n\}$. Нужно построить совокупность M, которая будет состоять из s k-элементных подмножеств, так, что $\tau(M) > l$. Допустим мы построили такую совокупность M: для любого множества L_j в R_n имеющего можность n-l. Найдется $M_i \in M$: $M_i \subset L_j$. Это очень похоже на СОП, только для множеств. Тогда конечно же, $\tau(M) > l$. Формализуем: пусть $L_1, \cdots, L_{\binom{n}{l}}$ – все (n-l)-элементные подмножества R_n . Нам нужна такая M, что $\forall j:\exists i: M_i \subset L_j$. Пусть $K_1, \cdots, K_{\binom{n}{k}}$ – все k-элементные подмножества R_n . Рассмотрим $R_{\binom{n}{k}} = \{1, \cdots, \binom{n}{l}\}$. Сопоставим $L_j \mapsto \Lambda_j = \{\nu: K_\nu \subset L_j\}$. $LL = \{\Lambda_1, \cdots, \Lambda_n\}$. $\tau := \tau(LL)$. Рассмотрим любую минимальную СОП $\sigma_1, \cdots, \sigma_\tau$ для LL. Рассмотрим $\overline{M} := \{K_{\sigma_1}, \cdots, K_{\sigma_\tau}\}$. Утверждение $\forall j: \exists i: K_{\sigma_i} \subset L_j$. Если $\tau(LL) \leq s$, тогда $\exists M: \tau(M) > l$

Теорема 7.3. Пусть $\max\{\frac{\binom{n}{k}}{\binom{n-l}{k}},\frac{\binom{n}{k}}{\binom{n-l}{k}}\ln(\cdots)\}-\cdots \leq s$. Тогда $\exists M: \tau(M)>l$.

8 Размерность Вапника-Червоненкиса

Пример. Задача. Пусть $S\subset \mathbb{R}^2$ – конечное множество, |S|=n. Будем пересекать множество со всевозможными треугольниками. $\mathcal{M}_S:=\{M\subset$

 $S:\exists \Delta\subset\mathbb{R}^2:\Delta\cap S=M\}$. Возьмём $arepsilon\in(0,1)$. Определим $\mathcal{M}_{S,arepsilon}:=\{M\subset S:arepsilon\Delta\subset\mathbb{R}^2:\Delta\cap S=M,|M|\geq arepsilon n\}$ Имеет место следующая теорема: $\forall n:\forall S:\forall arepsilon:\subset\mathbb{R}^2,|S|=n: au(\mathcal{M}_S)\leq rac{500}{arepsilon}\log_2rac{500}{arepsilon}$.

Рассмотрим обобщение. Рассмотрим пару (X, R), где X – какое-то множество, а R – совокупность каких-то подмножеств.

Пример. $(X,R) = (\mathbb{R}^n, H)$, где H – все открытые полупространства \mathbb{R}^n . В ML это часто называют ранжированным пространством.

Пусть $A\subset X$. Введем обозначение $Pr_AR:=\{r\cap A:r\in R\}$ – проекция R на A. (A,Pr_AR) – ранжированное подпространство. Скажем, что A дробится областями из R, если $Pr_AR=2^A.$ $VC(X,R):=\max\{m:\exists A\subset X:|A|=m,A$ дробится областями из $R\}$ – размерность Вапника-Червоненкиса. $VC(\mathbb{R}^n,H)=n+1$. Для начала n=1. Понятно, что любые 3 точки не дробятся. A 2 различные дробятся. Рассмотрим n=2. Любой невырожденный треугольник дробится. И треугольник с точкой внутри тоже дробится. В более общём случае множество не будет дробится, если существует два его подмножества, у которых линейные оболочки пересекаются.

Теорема 8.1 (Радона). Пусть $S \subset \mathbb{R}^n \colon |S| \ge n+2$. Тогда $\exists S_1 \cap S_2 = \emptyset \colon S = S_1 \cup S_2 \colon conv(S_1) \cap conv(S_2) \neq \emptyset$

Лемма 8.2. Пусть S=(X,R) – ранжированное пространство, причем $|X|=n\in\mathbb{N}.\ VC(X,R)=d.$ Тогда $R\leq g(n,d):=\sum_{i=0}^d \binom{n}{i}$

Доказательство. Докажем по индукции по (n,d). База: n=0. Тогда d=0. $|R| \leq 1 = g(0,0)$. Пусть d=0. Тогда n-любое, а $|R| \leq 1 = g(n,0)$. Шаг индукции. S=(X,R), VC(X,R)=d. Рассмотрим в S два подпространства. Возьмем $x \in X$. $S_1:=(X\setminus \{x\},R_1), S_2:=(X\setminus \{x\},R_2)$, где $R_1:=\{r\setminus \{x\},r\in R\},\ R_2:=\{r\in R:x\not\in r,r\cup \{x\}\in R\}$. Тогда $|R|=|R_1|+|R_2|$. Ясно, что $|R_1|\leq g(n-1,d)$. Докажем, что $|R_2|\leq g(n-1,d-1)$. Предположим, что $\exists A\subset X\setminus \{x\}, |A|=d$, A дробится R_2 . Если мы возьмём $A\cup \{x\}$, то его мощность — это d+1, причем A дробится R. Завершаем доказательство применением формулы господина Паскаля.

Следствие. Скажем, что S = (X, R). VC(S) = d. $A \subset X : |A| = n$. Torda $|Pr_AR| \leq g(n, d)$.

Доказательство. $VC(A, Pr_AR) \leq VC(X, R) \leq d$. Применяем предыдущую лемму.

Определение 8.1. Возьмём $h \geq 2$, (X,R) – ранжированное пространство. h-измельчением системы R назовём $R_h := \{r : \exists r_1, \cdots, r_h \in R : r = r_1 \cap r_2 \cap \cdots \cap r_h\}$. Например, H_3 содержит в себе все треугольники.

Лемма 8.3. Пусть $VC(X,R)=d\geq 2$. $h\geq 2$. Тогда $VC(X,R_h)\leq 2dh\log_2(dh)$

Доказательство. Пусть $A\subset X,\ |A|=n,\ A$ дробится с помощью R_h . Тогда $|Pr_AR|=2^n$. С другой стороны, $|Pr_AR|\leq g(n,d)\leq n^d$. Но $|Pr_AR_h|\leq n^{dh}$. То есть $2^n\leq n^{dh}$. То есть если $n^{dh}<2^n$, то A не может дробится. Но есть в качестве n взять $2dh\log_2(dh)$, то это неравенство будем выполнено, а значит $VC(X,R_h)\leq 2dh\log_2(dh)$

Пример. $VC(\mathbb{R}^2,H)=3$. Тогда $VC(\mathbb{R}^2,T_3)\leq VC(\mathbb{R}^2,H_3)\leq 18\log_29\leq 60$. То есть в нашем первом примере размерность Вапника-Червоненкиса ≤ 60 .

Определение 8.2. Пусть (X,R) — ранжированное пространство. $S\subset X$, $\varepsilon\in(0,1)$. Положим $M_{S,\varepsilon}:=\{M\subset S:\exists r\in R:r\cap S=M,|M|\geq\varepsilon|S|\}.$

Теорема 8.4. Пусть VC(X,R)=d. Тогда $\forall n: \forall S\subset X, |S|=n: \forall \varepsilon\in(0,1): \tau(M_{S,\varepsilon})\leq \frac{8d}{\varepsilon}\log_2(\frac{8d}{\varepsilon})$

Замечание. Если $VC(X,R)=\infty$, то $\forall m:\exists S\subset X, |S|=m:S$ дробится, то $\tau(\mathcal{M}_{S,\varepsilon})\sim m(1-\varepsilon)$