INF01 118

Técnicas Digitais para Computação

Minimização de Funções Booleanas

Aula 10

1. Mapas de Karnaugh com 2 variáveis

- Diagrama onde cada célula corresponde a um mintermo
- Exemplo com 2 variáveis

X	Y	F
0	0	m0
0	1	m1
1	0	m2
1	1	m3

- Representação de uma função como soma de mintermos
- Cada célula recebe valor 1 ou 0, conforme valor da função para aquele mintermo

• Exemplo:
$$\mathbf{F} = \Sigma \mathbf{m}(1,2,3) = \mathbf{X}\overline{\mathbf{Y}} + \mathbf{X}\mathbf{Y} + \overline{\mathbf{X}}\mathbf{Y}$$

- Células => mintermos
- Regiões retangulares => termos-produto

$$F = X\overline{Y} + \overline{X}Y + XY = \overline{X}Y + X(\overline{Y} + Y) = \overline{X}Y + X = (X + \overline{X})(X + Y) = X + Y$$

Portanto:

F = soma de mintermos

ou

F = soma de termos-produto que cobrem a região

cada mintermo tem que ser coberto por pelo menos 1 termo

2. Mapas de Karnaugh com 3 variáveis

YZ	00	01	11	10
0	m0	m1	m3	m2
1	m4	m5	m7	m6

Concatenar bit da linha com bits da coluna para identificar mintermo

- Mintermos não seguem a ordem crescente
 - => útil para simplificação
- 2 células vizinhas (adjacentes): mintermos diferem por uma variável

Técnicas Digitais

• Atenção: vizinhança através das bordas

$$m0 \longleftrightarrow m2$$
 $m4 \longleftrightarrow m6$

YZ	00	01	11	10
0	m0	m1	m3	m2
1	m4	m5	m7	m6

• Soma de 2 mintermos adjacentes pode ser simplificada eliminando-se a variável que difere nos mintermos

$$m5 + m7 = X\overline{Y}Z + XYZ = XZ(\overline{Y} + Y) = XZ$$
 É o que há de comum entre os mintermos = região do mapa

- Portanto: região com 2 células adjacentes célula isolada
- => termo com 2 literais
 - => mintermo com 3 literais

• Exemplo de simplificação

$$F = \Sigma m(2,3,4,5)$$

$$F = \overline{X}Y + X\overline{Y}$$

• Exemplo de simplificação

$$F = \Sigma m(3,4,6,7)$$

$$\mathbf{F} = \mathbf{YZ} + \mathbf{X\overline{Z}}$$

• Soma de 4 mintermos adjacentes também pode ser simplificada

- Portanto: região com 4 células adjacentes => termo com 1 literal
- Exemplo de simplificação

$$F = \Sigma m(0,2,4,5,6)$$

Solução 1:
$$F = \overline{Z} + X\overline{Y}Z$$
 (não otimizada)

Solução 2 (com redundância) : $\mathbf{F} = \mathbf{Z} + \mathbf{X}\mathbf{Y}$ ou seja, mintermo m4 coberto pelos 2 termos quando $\mathbf{X}=\mathbf{1}$, $\mathbf{Y}=\mathbf{0}$, $\mathbf{Z}=\mathbf{0}$

• Situações onde existem 2 soluções mínimas possíveis

$$F = \Sigma m(1,3,4,5,6)$$

Solução 1:
$$\mathbf{F} = \overline{\mathbf{X}}\mathbf{Z} + \mathbf{X}\overline{\mathbf{Z}} + \mathbf{X}\overline{\mathbf{Y}}$$

Solução 2:
$$\mathbf{F} = \overline{\mathbf{X}}\mathbf{Z} + \mathbf{X}\overline{\mathbf{Z}} + \overline{\mathbf{Y}}\mathbf{Z}$$

2 alternativas para cobrir o mintermo $X\overline{Y}Z$

3. Mapas de Karnaugh com 4 variáveis

$\setminus YZ$					
WX \	00	01	11	10	
00	m0	m1	m3	m2	
01	m4	m5	m7	m6	
11	m12	m13	m15	m14	
10	m8	m9	m11	m10	

Concatenar bits da linha com bits da coluna para identificar mintermos

• Notar adjacências através das bordas

$$m0 \longleftrightarrow m8$$
 $m0 \longleftrightarrow m2$
 $m1 \longleftrightarrow m9$ $m4 \longleftrightarrow m6$

célula isolada

região com 2 células

região com 4 células

região com 8 células

termo com 4 literais

termo com 3 literais

termo com 2 literais

termo com 1 literal

• Exemplo de simplificação

• Exemplo de simplificação partindo de uma soma-de-produtos qualquer (não de uma soma de mintermos)

3 literais: regiões com 2 células

$$\mathbf{F} = \overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{B}}\overline{\mathbf{D}} + \overline{\mathbf{A}}\mathbf{C}\overline{\mathbf{D}}$$

4. Implicantes Primos

- Implicante Primo = termo-produto obtido considerando-se o maior número possível de células adjacentes
- Se mintermo é coberto por um único implicante primo =>

IMPLICANTE PRIMO ESSENCIAL

Exemplo

Implicantes Primos

Implicantes Primos Essenciais

 $\overline{X}Z$ $X\overline{Z}$

Obtenção dos implicantes primos

Mintermo isolado

se não for contido numa região com 2 mintermos adjacentes

Região com 2 termos adjacentes

se não for contida numa região com 4 mintermos adjacentes

• Obtenção dos implicantes primos essenciais

Verificar cada mintermo com 1

se for coberto só por 1 implicante primo, então este é implicante primo essencial

- Algoritmo para obtenção da expressão simplificada para a função
 - 1. Obter implicantes primos
 - 2. Obter implicantes primos essenciais
 - 3. Expressão = soma lógica dos implicantes primos essenciais

+

outros implicantes primos necessários para cobrir outros mintermos

 $F = \Sigma m (0,5,10,11,12,13,15)$

6 implicantes primos

• Tabela de Cobertura

falta cobrir só m15 - pode-se escolher p4 ou p5

$$\mathbf{F} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\mathbf{D} + \overline{\mathbf{B}}\overline{\mathbf{C}}\mathbf{D} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{C}}\overline{\mathbf{C}} + \mathbf{C}\overline{\mathbf{C}} + \mathbf$$

Exercicio 1:

• Simplifique o mapa de karnaugh, indique os implicates primos essenciais e extraia a função por soma de produtos.

CD)			
AB \	00	01	11	10
00	1	1	0	1
01	0	1	1	0
11	0	1	1	0
10	1	0	0	1

Exercicio 1:

• Simplifique o mapa de karnaugh, indique os implicates primos essenciais e extraia a função por soma de produtos.

Exercício 2:

• Vamos tentar agora fazer uma extração por produto de somas. Isso que dizer que teremos que simplificar os maxitermos (valem 0).

CD)			
AB	00	01	11	10
00	1	1	0	0
01	0	0	1	0
11	0	0	1	0
10	0	0	0	0

Exercício 2:

• Vamos tentar agora fazer uma extração por produto de somas. Isso que dizer que teremos que simplificar os maxitermos (valem 0).

$$F(A,B,C,D) = (B+\overline{C}) \cdot (\overline{B}+D).$$

$$(\overline{A}+C) \cdot (\overline{B}+C)$$

Exercício 2:

• E se tivessemos extraido os mintermos para a soma de produto.

$$F(A,B,C,D) = (\overline{A}.\overline{B}.\overline{C}) + (B.C.D)$$

Logo ela é equivalente a, $F(A,B,C,D) = (B+\overline{C}) \cdot (\overline{B}+D).$

$$(\overline{A}+C) \cdot (\overline{B}+C)$$