

# 2.3 Simulação de sistemas dinâmicos com o Simulink

Prof. Dr. Sidney Bruce Shiki

E-mail: bruce@ufscar.br

Prof. Dr. Vitor Ramos Franco

e-mail: vrfranco@ufscar.br



UFSCar – Universidade Federal de São Carlos

DEMec – Departamento de Engenharia Mecânica



### uferen

### Conteúdo

- Introdução
- Visão sistêmica e Simulink
- Obtenção da resposta de sistemas dinâmicos
  - Métodos iterativos
    - > Sistemas de 1º e 2º ordem
  - Bloco *Transfer Fcn*
- Considerações Finais
- Exercícios



### Introdução

- Anteriormente, foi visto como se geram e como se visualizam sinais no Simulink;
- Aqui, uma relação entre esses sinais e o sistema é realizada:
  - Sinal gerado: será considerado como entrada no sistema dinâmico
  - Sistema dinâmico: tem a capacidade de modificar e/ou extrair informações da entrada
  - <u>Sinal de saída</u> (resposta do sistema): representa o efeito da entrada no sistema



### Introdução

- Sendo assim, o aluno aprenderá nesta aula a representar o sistema dinâmico no Simulink de, pelo menos, duas formas diferentes.
- É importante mencionar que, nos casos aqui estudados, o sistema LTI (*Linear Time Invariant*) é representado (modelagem matemática) por uma equação diferencial ordinária, cuja única variável independente é o tempo.
  - Desse modo, para se obter a resposta do sistema, basta aplicar a entrada e resolver a EDO.





### Visão sistêmica e Simulink

- Nessa seção, será apresentado como um sistema dinâmico é representado no Simulink
  - Novamente, a visão sistêmica se mostra importante.
- Considerando o caso mais simples (SISO) em diagrama de blocos:

$$q_i \longrightarrow SISTEMA \longrightarrow q_o$$

- A entrada  $\mathbf{q_i}$  é gerada e aplicada ao sistema, que por sua vez, responde sinal  $\mathbf{q_o}$  que é visualada



## ufisioa :

### Visão sistêmica e Simulink



- O sistema é representado pela Função de Transferência FT (modelo matemático): relação, na forma operacional, entre a saída  $\mathbf{q}_{o}$  e a entrada  $\mathbf{q}_{i}$ , considerando 3 condições:
  - Condições iniciais nulas
  - Todas as outras entradas nulas
  - Demais condições constantes

SISTEMA: 
$$G(s) = \frac{Q_o}{Q_i}(s)$$
 Operador de Laplace  $s = \sigma + i\omega$ 

## ufexen :

### Visão sistêmica e Simulink

# Entrada: $Q_i(s)$ Sistema $Q_i(s)$ Saída: $Q_o(s)$ $Q_o(s)$

Modelo: 
$$G(s) = \frac{Q_o}{Q_i}(s)$$
  $Q_o(s) = G(s)Q_i(s)$ 

A saída do bloco (sinal visualizado) é igual a multiplicação do "bloco" (modelo – FT) por sua entrada (sinal gerado)

### saída=(bloco)x(entrada)









### Visão sistêmica e Simulink



- Resolver a EDO nada mais é do que obter a resposta do sistema;
- A seguir, será apresentada a configuração necessária para a obtenção da resposta de sistemas de 1º e 2º ordem



- Uma vez que o aluno já está apto a gerar e visualizar sinais com o Simulink, o próximo passo é configurar o bloco que representa o sistema
  - Dois métodos distintos são apresentados para sistemas cujos modelos são representados por EDOs de 1º e 2º ordem



### Métodos iterativos – sistemas de 1º ordem

 Para obter a configuração de sistemas de 1º ordem, a derivação das equações partem da equação do movimento, ou seja, da EDO:

$$\tau \frac{dq_o(t)}{dt} + q_o(t) = q_i(t) \quad \text{de tempo [s]}$$

• Aplicando a TL em ambos os lados, tem-se:

$$\tau s Q_o(s) + Q_o(s) = Q_i(s)$$

• Isolando o termo que contém a maior derivada,

$$\tau s Q_o(s) = Q_i(s) - Q_o(s)$$
 Equação transcedental



### 4

### Obtenção da resposta de sistemas dinâmicos

### Métodos iterativos – sistemas de 1ª ordem

Isolando, agora, a saída, tem-se:

$$Q_o(s) = +\frac{1}{\tau} \frac{1}{s} Q_i(s) - \frac{1}{\tau} \frac{1}{s} Q_o(s)$$

- Note que, esta equação contém:
  - Uma soma;
  - Um ganho (multiplicação) comum
  - Um integrador comum
  - Uma variável que depende da outra (iteratividade)





### Métodos iterativos – sistemas de 1º ordem

• Uma vez que a saída a ser visualizada é  $q_{o}(t)$ , dada a entrada  $q_i(t)$ , a construção do modelo em diagrama de blocos pode ser iniciada.

Entrada 
$$Q_i(s)$$
  $Q_o(s)$  Saida

• Exercício 1: Crie um novo modelo em branco e arraste os blocos Step (Toolbox Sources) e o Scope (Sinks)



### d C

### Obtenção da resposta de sistemas dinâmicos

#### Métodos iterativos – sistemas de 1ª ordem

- Arraste, também, os outros elementos
  - Bloco Add (Math Operations);
  - Bloco Gain (Math Operations);
  - Bloco Integrator (Continuous).
- O próximo passo é organizar o fluxo de sinais de forma a representar a equação do movimento (EDO).

$$Q_o(s) = +\frac{1}{\tau} \frac{1}{s} Q_i(s) - \frac{1}{\tau} \frac{1}{s} Q_o(s)$$

- Por onde começar?





### Métodos iterativos – sistemas de 1º ordem

 Para facilitar o entendimento, pode-se rearranjar a equação de forma a evidenciar as operações envolvidas, da seguinte forma:

$$Q_o(s) = \frac{1}{\tau} \frac{1}{s} \left[ +Q_i(s) - Q_o(s) \right]$$

Fica evidente as entradas do bloco Add





### 

### Obtenção da resposta de sistemas dinâmicos

#### Métodos iterativos – sistemas de 1ª ordem

$$Q_o(s) = \left(\frac{1}{\tau} \frac{1}{s}\right] + Q_i(s) - Q_o(s)$$

- Ficam evidentes as multiplicações envolvendo o ganho e o integrador



- Qual a entrada e saída dessa operação?



para cada bloco, utilizase o conceito de entrada no bloco e saída no bloco.

saída=(bloco)x(entrada)



Lembrando: cada bloco é visto como um "sistema independente"

### 

### Obtenção da resposta de sistemas dinâmicos

#### Métodos iterativos – sistemas de 1ª ordem

$$Q_o(s) = \left(\frac{1}{\tau} \frac{1}{s}\right) \left[+Q_i(s) - Q_o(s)\right]$$
saída bloco entrada

Resultando em:



- O que é necessário para finalizar o processo?





#### Métodos iterativos – sistemas de 1ª ordem

 Basta, ligar os blocos, respeitando sempre o fluxo de sinais e as variáveis "repetidas", que dão origem ao processo iterativo.



Mesma variável!

Mesma conexão!





#### Métodos iterativos – sistemas de 1ª ordem



Finalizando (conectando a "mesma variável"):









#### Métodos iterativos – sistemas de 1ª ordem

• Exercício 2: Usando o método iterativo, obtenha a resposta de um sistema elétrico de 1º ordem com constante de tempo igual a 0,5s submetido a uma entrada que configura uma variação brusca de 5V, aplicada depois de 1 segundo de simulação.







#### Métodos iterativos – sistemas de 2ª ordem

Para obter a configuração de sistemas de 2º ordem, a derivação equação do movimento, ou seja, da EDO, será baseada na modelagem matemática de um sistema mecânico Massa-Mola-Amortecedor de 1GDL já apresentado anteriormente.





### Métodos iterativos – sistemas de 2ª ordem

 E equação do movimento para esse sistema é dada pela seguinte EDO:

$$m\frac{d^{2}y(t)}{dt^{2}} + B\frac{dy(t)}{dt} + y(t) = f(t)$$

Aplicando a TL em ambos os lados, tem-se:

$$ms^{2}Y(s) + BsY(s) + kY(s) = F(s)$$

• Isolando o termo que contém a maior derivada,

$$ms^{2}Y(s) = +F(s) - BsY(s) - kY(s)$$
 Equação transcedental



### Métodos iterativos – sistemas de 2ª ordem

Rearranjando:

$$Y(s) = \frac{1}{m} \frac{1}{s} \frac{1}{s} \left[ +F(s) - BsY(s) - kY(s) \right]$$

- Ficam evidentes então,
  - a multiplicação entre um ganho e dois integradores e
  - a soma (3 termos, sendo um positivo e dois negativos)
  - dois lações de iteratividade (tomar cuidado com o derivador s multiplicando BY(s) ).





### Métodos iterativos – sistemas de 2º ordem

 Dada essa equação, quais os blocos necessários para construção do diagrama?

$$Y(s) = \frac{1}{m} \frac{1}{s} \frac{1}{s} \left[ +F(s) - BsY(s) - kY(s) \right]$$

- Os mesmos, mas com quantidades e parâmetros diferentes.
- Exercício 3: monte o diagrama em Simulink para o sistema MMA apresentado.





#### Métodos iterativos – sistemas de 2ª ordem

Adicionando o primeiro laço de iteração:

U SCar



Adicionando o segundo laço de iteração:



#### **Bloco Transfer Fcn**

- Como a obtenção da resposta de sistemas dinâmicos (seja de 1º ordem, 2º ordem ou superiores) é amplamente consolidada na literatura, o bloco Transfer Fcn é utilizado com o intuito de facilitar:
  - a criação do sistema em si (modelo);
  - a visualização do modelo completo, eliminando laços de retroação, e deixando-o mais visualmente limpo.
  - a iteração entre diversos sistemas (e.g. sistemas de controle)





Engenharia,

### Obtenção da resposta de sistemas dinâmicos

#### **Bloco** *Transfer Fcn*





#### **Bloco** *Transfer Fcn*

• É importante mencionar/lembrar que um sistema dinâmico genérico sys pode ser criado no MATLAB com a utilização do seguinte comando:

#### em que:

- sys é o sistema que se deseja criar, representado por seu modelo, ou seja, por sua Função de Transferência (assume, no workspace, a classe *tf*);
- num é um vetor contendo os coeficientes do polinômio do numerador da FT e
- den é um vetor contendo os coeficientes do polinômio do denominador da FT .





#### **Bloco** *Transfer Fcn*

 O bloco Transfer Fcn é encontrado no toolbox Continuous



Representa um sistema dinâmico usando a Função de Transferência (FT) no domínio de Laplace.

|                                                           | 🚹 Function Block Parameters: Transfer Fcn                                                                                                                                                                       |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer Fcn                                              |                                                                                                                                                                                                                 |
| The numerator of<br>be a vector. The<br>specify the coeff | coefficient can be a vector or matrix expression. The denominator coefficient must output width equals the number of rows in the numerator coefficient. You should ficients in descending order of powers of s. |
| Parameters                                                |                                                                                                                                                                                                                 |
| Numerator coef                                            | ficients:                                                                                                                                                                                                       |
| [num(s)]                                                  |                                                                                                                                                                                                                 |
| Denominator co                                            | pefficients:                                                                                                                                                                                                    |
| [den(s)]                                                  |                                                                                                                                                                                                                 |
| Absolute tolerar                                          | nce:                                                                                                                                                                                                            |
| auto                                                      |                                                                                                                                                                                                                 |
| State Name: (e.                                           | g., 'position')                                                                                                                                                                                                 |
| li .                                                      |                                                                                                                                                                                                                 |
|                                                           |                                                                                                                                                                                                                 |
| 0                                                         | OK Cancel Help Apply                                                                                                                                                                                            |
|                                                           |                                                                                                                                                                                                                 |

A parametrização desse bloco é realizada indicando-se os coeficientes (vetor) dos polinômios do numerador e denominador da FT do sistema



### **Bloco** *Transfer Fcn*

 Exercício 4. Considere um sistema dinâmico representado pela seguinte EDO.

$$\tau \frac{dq_o(t)}{dt} + q_o(t) = q_i(t) \qquad \text{em que } \tau = 0.5s$$

• Usando o bloco *Transfer Fcn*, obtenha a resposta do sistema  $q_o(t)$  quando submetido a uma entrada degrau de amplitude 5V (aplicado depois de 1s de simulação);



## fsc<sub>a</sub>

### Obtenção da resposta de sistemas dinâmicos

#### **Bloco** *Transfer Fcn*

- Aplicando a TL em ambos os lados, tem-se:

$$\tau s Q_o(s) + Q_o(s) = Q_i(s)$$

- Rearranjando para colocar na forma de FT:

$$(\tau s + 1)Q_o(s) = Q_i(s)$$

- A FT torna-se então:

$$\frac{Q_o}{Q_i}(s) = \frac{1}{(\tau s + 1)} - \text{num} = [1]$$

$$- \text{den} = [\text{tau 1}]$$



- Resposta...



#### Bloco Transfer Fcn



| Transfer Fcn     Transfer Fcn                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer Fcn                                                                                                                                                                                                                                                      |
| The numerator coefficient can be a vector or matrix expression.<br>The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of s. |
| Parameters                                                                                                                                                                                                                                                        |
| Numerator coefficients:                                                                                                                                                                                                                                           |
| [1]                                                                                                                                                                                                                                                               |
| Denominator coefficients:                                                                                                                                                                                                                                         |
| [0.5 1]                                                                                                                                                                                                                                                           |
| Absolute tolerance:                                                                                                                                                                                                                                               |
| auto                                                                                                                                                                                                                                                              |
| State Name: (e.g., 'position')                                                                                                                                                                                                                                    |
| i i                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                   |
| OK Cancel Help Apply                                                                                                                                                                                                                                              |





#### **Bloco Transfer Fcn**

- Em seguida, compare os resultados dessa análise com os resultados obtidos usando o método iterativo (do exercício 2).
  - Para facilitar a comparação, primeiramente, realize a seleção dos blocos na modelagem via método iterativo.





### Bloco Transfer Fcn

 Então, clique com o botão direito e em seguida em: Create Subsystem from Selection, gerando a seguinte configuração:



- Note que, agora, ambas metodologias estão parecidas visualmente.
- Dê dois cliques no bloco Subsystem e note que a configuração via método iterativo está formada no interior do bloco.





#### **Bloco Transfer Fcn**

- Para realizar a comparação, então, utilize um multiplexador (Mux) de <u>sinais</u>.
- Resposta...



### 

### Obtenção da resposta de sistemas dinâmicos

### **Bloco** *Transfer Fcn*

 Exercício 5. Realize o mesmo procedimento do Exercício 4 para o sistema mecânico a seguir.





### Car

### Obtenção da resposta de sistemas dinâmicos

### Bloco Transfer Fcn

- Aplicando a TL em ambos os lados, tem-se:

$$ms^{2}Y(s) + BsY(s) + kY(s) = F(s)$$

- Rearranjando para colocar na forma de FT:

$$\left(ms^{2} + Bs + k\right)Y(s) = F(s)$$

- A FT torna-se então:

$$\frac{Y}{F}(s) = \frac{1}{\left(ms^2 + Bs + k\right)} - \text{num} = [1]$$
$$- \text{den} = [m \ B \ k]$$



Resposta...

## u SCan

### Obtenção da resposta de sistemas dinâmicos





### uferen

### **Considerações Finais**

- As configurações finais vão de encontro com a resposta da seguinte pergunta: Quando usa-se o método iterativo ao invés do bloco *Transfer* Fcn?
- Os seguintes pontos podem ser considerados:
  - Por mais fácil que seja, para se utilizar o bloco Transfer Fcn, é necessário (obrigatório) calcular a FT e obter, na forma de vetor, o numerador e denominador.





### **Considerações Finais**

- Isso pode ser complicado, ou mais trabalhoso, no caso de sistemas de mais de 1 grau de liberdade (aplicação da regra de Cramer e/ou outros métodos);
- Em contrapartida, apesar de ser mais trabalhoso de se construir, o método iterativo permite, de forma mais fácil e rápida, realizar o acoplamento entre os graus de liberdade.





### **Considerações Finais**

- O método iterativo é melhor visualizado na representação em Espaço de Estados
- Essa representação também configura uma modelagem de um sistema, no qual as matrizes respectivas (A,B,C,D) podem ser utilizadas como parâmetros para o bloco State-Space (toolbox Continuous).







### Perguntas?

