

Implementación de un laboratorio de electrónica de bajo coste enfocado al aprendizaje justo a tiempo en el marco del aula invertida

1º Ingeniería Informática: Sistemas y Circuitos Electrónicos. Cristina Martínez Ruedas (cristina.martinez@uco.es)

¡VAMOS!

El transistor bipolar npn

El transistor bipolar

DC Load

El transistor bipolar

El transistor bipolar pnp

NIVERSIDAD

ÓRDOBA

Apartado 1: Identificar terminales

Apartado 2: Medir con polímetro el parámetro B

Para las terminales de un transistor

Para medir la beta del transitor

Apartado 2: Medir con polímetro el parámetro β

CÓRDOBA

Apartado 3:

Práctica 4: Resapo divisor de tensión

El módulo de fuente de alimentación se puede utilizar como un generador de corriente contínua con un potenciometro

Apartado 3:

Apartado 5, 6 y 7: medir VCE e IC. Comparar con los valores teóricos. Calcular la potencia disipada en el transistor y la potencia transferida a

la carga

	CALCULADO		MEDIDO			POTENCIA (mW)		ZONA DE
V _{BB} (V)	V _{CE} (V)	I _c (mA)	V _{CE} (V)	V _{RC} (V)	I _C (mA)	TRANSISTOR (P=V _{CE} *I _C)	CARGA (P=I _C ^{2*} R _C)	ZONA DE TRABAJO
0,5								
1,5								
10								

Apartado 5, 6 y 7:

OJO: En el minuito 4:26, tengo que medir CE y deben caer 5V. Pero lo que mido por error es BE, poer eso no cae nada, pues está en corte. Medid vosotros CE.

Implementación de un laboratorio de electrónica de bajo coste enfocado al aprendizaje justo a tiempo en el marco del aula invertida

1º Ingeniería Informática: Sistemas y Circuitos Electrónicos. Cristina Martínez Ruedas (cristina.martinez@uco.es)

¡VAMOS!