A structural account of composition methods in logic

Tomáš Jakl (j.w.w. Dan Marsden and Nihil Shah)

22 September 2022

Resources in Computation, UCL

Motivation

Our setting: $\mathcal{R}(\sigma) = \sigma$ -structures and their homomorphisms

Mostowski's theorem

$$A_1 \equiv_{FO} B_1$$
 and $A_2 \equiv_{FO} B_2$ implies $A_1 \times A_2 \equiv_{FO} B_1 \times B_2$

1

Motivation

Our setting: $\mathcal{R}(\sigma) = \sigma$ -structures and their homomorphisms

Mostowski's theorem

$$A_1 \equiv_{FO} B_1$$
 and $A_2 \equiv_{FO} B_2$ implies $A_1 \times A_2 \equiv_{FO} B_1 \times B_2$

Feferman-Vaught's theorem

$$A_1 \equiv_{FO} B_1 \ \text{ and } \ A_2 \equiv_{FO} B_2 \quad \text{implies} \quad A_1 \stackrel{.}{\cup} A_2 \equiv_{FO} B_1 \stackrel{.}{\cup} B_2$$

1

Motivation

Our setting: $\mathcal{R}(\sigma) = \sigma$ -structures and their homomorphisms

Mostowski's theorem

$$A_1 \equiv_{FO} B_1$$
 and $A_2 \equiv_{FO} B_2$ implies $A_1 \times A_2 \equiv_{FO} B_1 \times B_2$

Feferman-Vaught's theorem

$$A_1 \equiv_{FO} B_1$$
 and $A_2 \equiv_{FO} B_2$ implies $A_1 \stackrel{.}{\cup} A_2 \equiv_{FO} B_1 \stackrel{.}{\cup} B_2$:

For
$$\tau \subseteq \sigma$$
, reduct operation $\operatorname{fg}_{\tau} \colon \mathcal{R}(\sigma) \to \mathcal{R}(\tau)$
$$A \equiv_{FO(\sigma)} B \quad \text{implies} \quad \operatorname{fg}_{\tau}(A) \equiv_{FO(\tau)} \operatorname{fg}_{\tau}(B)$$

General statement

Given an operation

$$H: \mathcal{R}(\sigma_1) \times \cdots \times \mathcal{R}(\sigma_n) \to \mathcal{R}(\sigma_{n+1})$$

and logics

$$L_1$$
 in signature σ_1

:

$$L_{n+1}$$
 in signature σ_{n+1}

we wish to know if, for every A_1, \ldots, A_n and B_1, \ldots, B_n ,

$$A_i \equiv_{L_i} B_i \ (\forall i)$$
 implies $H(A_1, \ldots, A_n) \equiv_{L_{n+1}} H(B_1, \ldots, B_n)$.

Question

Is there a principal way to prove these theorems?

- Without knowing anything about the operation?
- Without knowing anything about the logic fragments?
- Without having to deal with syntax?

Positive existential Ehrenfeucht-Fraïssé games semantically

Proposition

The following are equivalent:

- Duplicator has a winning strategy in the k-round existential Ehrenfeucht–Fraissé game from A to B.
- $A \Rightarrow_{\exists^+ FO_k} B$, i.e. \forall positive existential φ of $qrank \leq k$,

$$A \models \varphi$$
 implies $B \models \varphi$ allowed: \exists, \land, \lor banned: \forall, \neg

• $A \Rightarrow_{\exists^+\mathbb{E}_k} B$, i.e. there exists a homomorphism $\mathbb{E}_k(A) \to B$.

Intuitively

 $\mathbb{E}_k(A) = a \ \sigma$ -structure of Spoiler's plays on $A \ \underline{in} \ k \ rounds$

The universe of $\mathbb{E}_k(A)$ is

$$\left\{ \begin{bmatrix} a_1,\dots,a_n \end{bmatrix} \mid a_i \in A, \ n \leq k \right\}$$
 and, for $w_1 = [a_{1,1},\dots,a_{1,n_1}], \dots, w_u = [a_{u,1},\dots,a_{u,n_u}],$
$$(w_1,\dots,w_u) \in R^{\mathbb{E}_k(A)} \iff (a_{1,n_1},\dots,a_{u,n_u}) \in R^A$$
 and $w_i \sqsubseteq w_j$ or $w_j \sqsubseteq w_i$ $(\forall i,j)$

The universe of $\mathbb{E}_k(A)$ is

$$\left\{ \left[a_1,\ldots,a_n \right] \; \middle| \; a_i \in A, \; n \leq k \right\}$$

and, for $w_1 = [a_{1,1}, \dots, a_{1,n_1}], \dots, w_u = [a_{u,1}, \dots, a_{u,n_u}],$

$$(w_1, \ldots, w_u) \in R^{\mathbb{E}_k(A)} \iff (a_{1,n_1}, \ldots, a_{u,n_u}) \in R^A$$

and $w_i \sqsubseteq w_j$ or $w_j \sqsubseteq w_i$ $(\forall i, j)$

Theorem

 $(\mathbb{E}_k, \varepsilon, \overline{(-)})$ is a comonad.

where

$$\varepsilon_A \colon \mathbb{E}_k(A) \to A, \quad [a_1, \ldots, a_n] \mapsto a_n$$

and

$$\overline{(-)}$$
: $(\mathbb{E}_k(A) \xrightarrow{f} B) \mapsto (\mathbb{E}_k(A) \xrightarrow{\overline{f}} \mathbb{E}_k(B))$

More game comonads

We have

$$A \Rightarrow_{\exists^{+}\mathbb{C}} B \iff A \Rightarrow_{\exists^{+}\mathcal{L}} B$$

for

- the E–F comonad \mathbb{E}_k and grank $\leq k$ fragment
- the Pebbling comonad \mathbb{P}_k and k-variable fragment
- ullet the modal comonad \mathbb{M}_k and modal depth $\leq k$ fragment
- the Pebble-Relation comonad \mathbb{PR}_k and the restricted conjunction k-variable fragment
- the Hella comonad ℍ_k and the generalised quantifier k-variable extension
- the guarded comonad \mathbb{G}_k and the k-guarded fragment

:

Positive existential fragments and FVM theorems

Test case: How can we prove this?

$$A \Rightarrow_{\exists^+ FO_k} B$$
 implies $fg_{\tau}(A) \Rightarrow_{\exists^+ FO_k} fg_{\tau}(B)$

i.e.

from
$$\mathbb{E}_k(A) \xrightarrow{f} B$$
 produce $\mathbb{E}_k(fg_{\tau}(A)) \xrightarrow{f'} fg_{\tau}(B)$

1

Positive existential fragments and FVM theorems

Test case: How can we prove this?

$$A \Rightarrow_{\exists^+ FO_k} B$$
 implies $fg_{\tau}(A) \Rightarrow_{\exists^+ FO_k} fg_{\tau}(B)$

i.e.

from
$$\mathbb{E}_k(A) \xrightarrow{f} B$$
 produce $\mathbb{E}_k(fg_{\tau}(A)) \xrightarrow{f'} fg_{\tau}(B)$

Observe, we have

$$\mathbb{E}_k(\mathrm{fg}_{\tau}(A)) \xrightarrow{\kappa_A} \mathrm{fg}_{\tau}(\mathbb{E}_k(A)), \quad w \mapsto w$$

Positive existential fragments and FVM theorems

Test case: How can we prove this?

$$A \Rightarrow_{\exists^+ FO_k} B$$
 implies $fg_{\tau}(A) \Rightarrow_{\exists^+ FO_k} fg_{\tau}(B)$

i.e.

from
$$\mathbb{E}_k(A) \xrightarrow{f} B$$
 produce $\mathbb{E}_k(fg_{\tau}(A)) \xrightarrow{f'} fg_{\tau}(B)$

Observe, we have

$$\mathbb{E}_k(\mathrm{fg}_{\tau}(A)) \xrightarrow{\kappa_A} \mathrm{fg}_{\tau}(\mathbb{E}_k(A)), \quad w \mapsto w$$

therefore

$$\mathbb{E}_{k}(\mathrm{fg}_{\tau}(A)) \xrightarrow{\kappa_{A}} \mathrm{fg}_{\tau}(\mathbb{E}_{k}(A)) \xrightarrow{\mathrm{fg}_{\tau}(f)} \mathrm{fg}_{\tau}(B)$$

Categorical positive existential FVM theorem

Theorem

Assume we have

- a functor $H: \mathcal{C}_1 \times \cdots \times \mathcal{C}_n \to \mathcal{C}_{n+1}$
- comonads $\mathbb{C}_1, \ldots, \mathbb{C}_{n+1}$ on $\mathcal{C}_1, \ldots, \mathcal{C}_{n+1}$
- and morphisms

$$\mathbb{C}_{n+1}(H(A_1,\ldots,A_n)) \stackrel{\kappa}{\longrightarrow} H(\mathbb{C}_1(A_1),\ldots,\mathbb{C}_n(A_n))$$

Then,

$$A_i \Rrightarrow_{\exists^+ \mathbb{C}_i} B_i$$
 for $i = 1, \dots, n$

implies

$$H(A_1,\ldots,A_n) \Rightarrow_{\exists^+\mathbb{C}_{n+1}} H(B_1,\ldots,B_n)$$

Counting logics and comonads

Proposition

For finite A, B, the following are equivalent:

- Duplicator has a winning strategy in the bijective k-round Ehrenfeucht-Fraissé game from A to B.
- $A \equiv_{\#FO_k} B$, i.e. \forall counting φ of $qrank \leq k$, $A \models \varphi$ if and only if $B \models \varphi$.
- $A \equiv_{\#\mathbb{E}_k} B$, i.e. there exist homomorphisms

$$\mathbb{E}_k(A) \xrightarrow{f} B$$
 and $\mathbb{E}_k(B) \xrightarrow{g} A$

s.t.
$$\mathbb{E}_k(A) \xrightarrow{\overline{f}} \mathbb{E}_k(B) \xrightarrow{\overline{g}} \mathbb{E}_k(A) = id$$

 $\mathbb{E}_k(B) \xrightarrow{\overline{g}} \mathbb{E}_k(A) \xrightarrow{\overline{f}} \mathbb{E}_k(B) = id$

using: $\exists^{\geq n} x$

Counting logics and FVM theorems

Why

$$A \equiv_{\#FO_k} B$$
 implies $fg_{\tau}(A) \equiv_{\#FO_k} fg_{\tau}(B)$?

I.e. given

$$\mathbb{E}_k(A) \xrightarrow{f} B$$
 and $\mathbb{E}_k(B) \xrightarrow{g} A$ s.t. $\overline{f} \circ \overline{g} = \mathrm{id}$ and $\overline{g} \circ \overline{f} = \mathrm{id}$

$$\mathbb{E}_k(\mathrm{fg}_\tau(A)) \xrightarrow{f'} \mathrm{fg}_\tau(B) \ \text{and} \ \mathbb{E}_k(\mathrm{fg}_\tau(B)) \xrightarrow{g'} \mathrm{fg}_\tau(A) \quad \text{s.t.} \quad \dots$$

Counting logics and FVM theorems

Why

$$A \equiv_{\#FO_k} B$$
 implies $fg_{\tau}(A) \equiv_{\#FO_k} fg_{\tau}(B)$?

I.e. given

$$\mathbb{E}_k(A) \xrightarrow{f} B$$
 and $\mathbb{E}_k(B) \xrightarrow{g} A$ s.t. $\overline{f} \circ \overline{g} = \operatorname{id}$ and $\overline{g} \circ \overline{f} = \operatorname{id}$

find

$$\mathbb{E}_k(fg_{\tau}(A)) \xrightarrow{f'} fg_{\tau}(B) \text{ and } \mathbb{E}_k(fg_{\tau}(B)) \xrightarrow{g'} fg_{\tau}(A) \text{ s.t. } \dots$$

recall

$$f' = \mathbb{E}_k(fg_{\tau}(A)) \xrightarrow{\kappa_A} fg_{\tau}(\mathbb{E}_k(A)) \xrightarrow{fg_{\tau}(f)} fg_{\tau}(B)$$
$$g' = \mathbb{E}_k(fg_{\tau}(B)) \xrightarrow{\kappa_B} fg_{\tau}(\mathbb{E}_k(B)) \xrightarrow{fg_{\tau}(g)} fg_{\tau}(A)$$

Will they do?

Counting logics and FVM theorems, II

κ is a **Kleisli law**:

$$\mathbb{E}_{k}(\operatorname{fg}_{\tau}(A)) \xrightarrow{\kappa} \operatorname{fg}_{\tau}(\mathbb{E}_{k}(A)) \qquad \mathbb{E}_{k}(\operatorname{fg}_{\tau}(A)) \xrightarrow{\kappa_{A}} \operatorname{fg}_{\tau}(\mathbb{E}_{k}(A))$$

$$\downarrow^{\operatorname{fg}_{\tau}(E_{k}(A))} \qquad \downarrow^{\operatorname{fg}_{\tau}(\overline{f})}$$

$$\operatorname{fg}_{\tau}(A) \qquad \mathbb{E}_{k}(\operatorname{fg}_{\tau}(B)) \xrightarrow{\kappa_{B}} \operatorname{fg}_{\tau}(\mathbb{E}_{k}(B))$$

Counting logics and FVM theorems, II

κ is a **Kleisli law**:

$$\mathbb{E}_{k}(\operatorname{fg}_{\tau}(A)) \xrightarrow{\kappa} \operatorname{fg}_{\tau}(\mathbb{E}_{k}(A)) \qquad \mathbb{E}_{k}(\operatorname{fg}_{\tau}(A)) \xrightarrow{\kappa_{A}} \operatorname{fg}_{\tau}(\mathbb{E}_{k}(A))$$

$$\downarrow^{\operatorname{fg}_{\tau}(\epsilon_{A_{i}})} \qquad \qquad \downarrow^{\operatorname{fg}_{\tau}(\bar{f})}$$

$$\operatorname{fg}_{\tau}(A) \qquad \mathbb{E}_{k}(\operatorname{fg}_{\tau}(B)) \xrightarrow{\kappa_{B}} \operatorname{fg}_{\tau}(\mathbb{E}_{k}(B))$$

Theorem

Assume we have a Kleisli law

$$\mathbb{C}_{n+1}(H(A_1,\ldots,A_n)) \to H(\mathbb{C}_1(A_1),\ldots,\mathbb{C}_n(A_n))$$

Then

$$A_i \equiv_{\#\mathbb{C}_i} B_i (\forall i)$$
 implies $H(A_1, \dots, A_n) \equiv_{\#\mathbb{C}_{n+1}} H(B_1, \dots, B_n)$

Full logics and comonads

Proposition

The following are equivalent:

- Duplicator has a winning strategy in the (weak) k-round Ehrenfeucht–Fraissé game from A to B.
- $A \equiv_{\mathrm{FO}_k^-} B$, i.e. \forall first-order φ of grank $\leq k$, $A \models \varphi$ implies $B \models \varphi$.
- $A \equiv_{\mathbb{E}_k} B$, i.e. there exist homomorphisms

$$R \xrightarrow{f} \mathbb{E}_k(A)$$
 $R \xrightarrow{g} \mathbb{E}_k(B)$ $R \xrightarrow{\rho} \mathbb{E}_k(R)$

such that

- ρ is an \mathbb{E}_k -coalgebra
- f,g are "open pathwise-embedding" \mathbb{E}_k -coalgebra morphisms

Full logics and FVM theorems

Theorem

Assume we have a Kleisli law κ , as earlier, that \mathbb{C}_{n+1} and H preserve embeddings, and any

$$P \xrightarrow{f} H(A_1, \dots, A_n)$$

$$\downarrow P \downarrow \qquad \qquad \downarrow H(\alpha_1, \dots, \alpha_n)$$

$$\mathbb{C}_{n+1}(P) \xrightarrow{\mathbb{C}_{n+1}(f)} \mathbb{C}_{n+1}H(A_1, \dots, A_n) \xrightarrow{\kappa} H(\mathbb{C}_1(A_1), \dots, \mathbb{C}_n(A_n))$$

where (P, π) is a path and (A_i, α_i) coalgebras, has a minimal decomposition through "subpaths" of (A_i, α_i) .

Then

$$A_i \equiv_{\mathbb{C}_i} B_i \, (\forall i) \quad \text{implies} \quad H(A_1, \dots, A_n) \equiv_{\mathbb{C}_{n+1}} H(B_1, \dots, B_n)$$

Extensions

Set σ^I to be σ with a fresh binary $I(\cdot, \cdot)$ and

$$\mathtt{t}^I \colon \mathcal{R}(\sigma) \to \mathcal{R}(\sigma^I)$$

interpreting I as equality. Then

$$A \equiv_{FO_k} B$$
 iff $t'(A) \equiv_{\mathbb{E}_k} t'(B)$

Extensions

Set σ^I to be σ with a fresh binary $I(\cdot, \cdot)$ and

$$\mathtt{t}^I \colon \mathcal{R}(\sigma) \to \mathcal{R}(\sigma^I)$$

interpreting I as equality. Then

$$A \equiv_{FO_k} B$$
 iff $t'(A) \equiv_{\mathbb{E}_k} t'(B)$

Observation 1

For FVM theorems, it is enough if

 $H: \mathcal{R}(\sigma_1) \times \cdots \times \mathcal{R}(\sigma_n) \to \mathcal{R}(\sigma_{n+1})$ commutes with t^I .

Extensions

Set σ^I to be σ with a fresh binary $I(\cdot, \cdot)$ and

$$\mathtt{t}^I \colon \mathcal{R}(\sigma) \to \mathcal{R}(\sigma^I)$$

interpreting I as equality. Then

$$A \equiv_{FO_k} B$$
 iff $t'(A) \equiv_{\mathbb{E}_k} t'(B)$

Observation 1

For FVM theorems, it is enough if

 $H: \mathcal{R}(\sigma_1) \times \cdots \times \mathcal{R}(\sigma_n) \to \mathcal{R}(\sigma_{n+1})$ commutes with t^I .

Observation 2

Not specific to t^I , the same holds for any $t: \mathcal{R}(\sigma) \to \mathcal{R}(\sigma^+)$.

Examples

- Logical equivalence in the restricted conjunction fragment of 3-variable counting logic implies cospectrality.
- Arbitrary coproducts and the k-variable resp. qrank $\leq k$ logics.
- Coproducts and FOL extended with connectivity relation.
- Products in any category where images of paths are paths
- Therefore, products for modal logics with global modalities.
- Coproducts and MSOL.

Thank you!

Remark for category-theorists

Our axioms of Kleisli laws equivalent to the usual ones, and generalise comonad morphisms.

With \mathbb{C}_{n+1} preserving embeddings and \mathcal{C}_{n+1} sufficiently complete H lifts to \widehat{H} :

$$\begin{array}{ccc} \mathcal{C}_1 \times \cdots \times \mathcal{C}_n & \stackrel{\mathcal{F}^{\mathbb{C}}}{\longrightarrow} \operatorname{CoAlg}(\mathbb{C}_1) \times \cdots \times \operatorname{CoAlg}(\mathbb{C}_n) \\ \downarrow & & & \downarrow \widehat{H} \\ \mathcal{C}_{n+1} & \stackrel{\mathcal{F}^{\mathbb{C}}_{n+1}}{\longrightarrow} \operatorname{CoAlg}(\mathbb{C}_{n+1}) \end{array}$$

The last assumption in the last FVM corresponds to the fact that \widehat{H} is a local relative right adjoint. (see Weber 2004, and e.g. Altenkirch et al 2010)