GICR_VPENDBASER, Virtual Redistributor LPI Pending Table Base Address Register

The GICR VPENDBASER characteristics are:

Purpose

Specifies the base address of the memory that holds the virtual LPI Pending table for the currently scheduled virtual machine.

Configuration

There are no configuration notes.

Attributes

GICR VPENDBASER is a 64-bit register.

Field descriptions

When FEAT GICv4p1 is implemented:

	63	62	61	60	59	58	57565554535251504948	4746454443424140393837363534
	Valid [Doorbell	PendingLast	Dirty	VGrp0En	VGrp1En		RES0
	-				RES0			vPEID
ľ	31	30	29	28	27	26	25242322212019181716	151413121110 9 8 7 6 5 4 3 2

Valid, bit [63]

This bit controls whether a vPE is scheduled:

Valid	Meaning
0b0	The virtual LPI Pending table is
	not valid. No vPE is scheduled.
0b1	The virtual LPI Pending table is
	valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement FEAT_GICv4 is unpredictable.

Note

Software can determine whether a PE supports FEAT_GICv3 or FEAT_GICv4 by reading ID AA64PFR0 EL1.

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid, when GICR_VPENDBASER.Valid==1 is unpredictable.

Setting GICR_VPENDBASER.Valid to 1 is unpredictable if GICR_VPROPBASER.Valid == 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Doorbell, bit [62]

When GICR_VPENDBASER. Valid is written from 1 to 0, this bit controls whether a default doorbell interrupt is requested for the descheduled vPE.

Doorbell	Meaning		
0b0	No default doorbell		
	requested.		
0b1	Default doorbell requested.		

When GICR_VPENDBASER. Valid is written from 1 to 0, if there are outstanding enabled pending interrupts then this bit is treated as 0.

When GICR_VPENDBASER.Valid is written from 1 to 0, if GICR_VPENDBASER.PendingLast is written as 1 then this bit is treated as 0.

When GICR_VPENDBASER.Valid == 1, reads return an unknown value.

The reset behavior of this field is:

• On a GIC reset, this field resets to an unknown value.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid is written from 1 to 0 and is otherwise unknown.

PendingLast	Meaning
000	There are no pending and enabled interrupts for the last scheduled vPE.
0b1	There is at least one pending and enabled interrupt for the last scheduled vPE.

When the GICR_VPENDBASER. Valid bit is written from 0 to 1, this bit is res1.

When GICR_VPENDBASER.Valid is written from 1 to 0, if GICR_VPENDBASER.PendingLast is written as 1, then this bit is set to an unknown value.

The reset behavior of this field is:

• On a GIC reset, this field resets to an unknown value.

Dirty, bit [60] When GICR_VPENDBASER.Valid == 0:

Read-only. Indicates whether a de-scheduling operation is in progress.

Dirty	Meaning
0b0	No de-scheduling operation in
	progess.
0b1	De-scheduling operation in
	progess.

Writing 1 to GICR_VPENDBASER.Valid is unpredictable while GICR_VPENDBASER.Dirty == 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

When GICR_VPENDBASER.Valid == 1:

Read-only. Reports whether the Virtual Pending table has been parsed.

Dirty	Meaning
0b0	Parsing of the Virtual Pending
	Table is complete.
0b1	Parsing of the Virtual Pending
	Table has not completed.

Writing 0 to GICR_VPENDBASER.Valid is unpredictable while GICR VPENDBASER.Dirty == 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Otherwise:

Reserved, unknown.

VGrp0En, bit [59]

Enable virtual Group 0 interrupts.

VGrp0En	Meaning
0b0	Forwarding of virtual Group
	0 interrupts disabled.
0b1	Forwarding of virtual Group
	0 interrupts enabled.

Writing a new value to VGrp0En while GICR VPENDBASER.Valid==1 is constrained unpredictable:

- The update is ignored.
- The update is ignored for all purposes other than a direct read of the register.
- The virtual group enable is updated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an unknown value.

VGrp1En, bit [58]

Enable virtual Group 1 interrupts.

VGrp1En	Meaning
0b0	Forwarding of virtual Group 1 interrupts disabled.
0b1	Forwarding of virtual Group 1 interrupts enabled.

Writing a new value to VGrp1En while GICR VPENDBASER. Valid==1 is constrained unpredictable:

The update is ignored.

- The update is ignored for all purposes other than a direct
- read of the register.
- The virtual group enable is updated.

The reset behavior of this field is:

• On a GIC reset, this field resets to an unknown value.

Bits [57:16]

Reserved, res0.

vPEID, bits [15:0]

When GICR VPENDBASER. Valid == 1, ID of scheduled vPE.

When GICR_VPENDBASER.Valid == 1, if GICR_VPENDBASER.vPEID is set to a value greater than the configured vPEID width, the behavior of this field is constrained unpredictable:

- GICR_VPENDBASER.vPEID is treated as having an unknown valid value for all purposes other than a direct read of the register.
- GICR_VPENDBASER.Valid is treated as being set to 0 for all purposes other than a direct read of the register.

Writing a new value to vPEID while GICR_VPENDBASER.Valid == 1 is constrained unpredictable:

- The update is ignored.
- The update is ignored for all purposes other than a direct read of the register.
- The new value is used.

The size of this field is implementation defined, and is specified by the <u>GICD_TYPER2</u>.VIL and <u>GICD_TYPER2</u>.VID fields, unimplemented bits are res0.

When FEAT_GICv4 is implemented:

63	62	61	60	59	58 57 56 55545352	51504948	4746454	4 43 42 4	41 40 3	39 3837	3635343	332
Valid	IDAI	PendingLas	stDirty	RESC	OuterCachRES0		Pl	nysical_	Addre	ess		
			Physic	al_Ad	ldress		RES0	Sharek	nbiety	ache	RES0	
31	30	29	28	27	26 25 24 23222120	19181716	1514131	2 11 10	9 8	7 6 5	4 3 2	1 0

Valid, bit [63]

This bit controls whether the virtual LPI Pending table is valid.

Valid	Meaning
0b0	The virtual LPI Pending table is
	not valid. No vPE is scheduled.
0b1	The virtual LPI Pending table is
	valid. A vPE is scheduled.

Setting GICR_VPENDBASER.Valid == 1 when the associated CPU interface does not implement FEAT_GICv4 is unpredictable.

Note

Software can determine whether a PE supports FEAT_GICv3 or FEAT_GICv4 by reading ID AA64PFR0 EL1.

Writing a new value to any bit of GICR_VPENDBASER, other than GICR_VPENDBASER.Valid, when GICR_VPENDBASER.Valid==1 is unpredictable.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

IDAI, bit [62]

Implementation Defined Area Invalid. Indicates whether the implementation defined area in the virtual LPI Pending table is valid.

IDAI	Meaning
0d0	The implementation defined area is valid.
0b1	The implementation defined area is invalid and all pending interrupt information is held in the architecturally defined part of the virtual LPI Pending table.

For more information, see 'LPI Pending tables' and 'Virtual LPI Configuration tables and virtual LPI Pending tables' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

PendingLast, bit [61]

Indicates whether there are pending and enabled interrupts for the last scheduled vPE.

This value is set by the implementation when GICR_VPENDBASER.Valid has been written from 1 to 0 and is otherwise unknown.

PendingLast	Meaning
0d0	There are no pending
	and enabled interrupts
	for the last scheduled
	vPE.
0b1	There is at least one
	pending interrupt for the
	last scheduled vPE. It is
	implementation defined
	whether this bit is set
	when the only pending
	interrupts for the last
	scheduled vPE are not
	enabled.
	Arm deprecates setting
	PendingLast to 1 when
	the only pending
	interrupts for the last
	scheduled virtual
	machine are not enabled.

When the GICR_VPENDBASER. Valid bit is written from 0 to 1, this bit is res1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Dirty, bit [60] When GICR VPENDBASER.Valid == 0:

Indicates whether a de-scheduling operation is in progress.

This field is read-only.

Dirty	Meaning
0b0	No de-scheduling operation in
	process.
0b1	De-scheduling operation in
	process.

Writing 1 to GICR_VPENDBASER.Valid is unpredictable while GICR_VPENDBASER.Dirty==1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

When GICR_VPENDBASER.Valid == 1 and GICR_TYPER.Dirty == 1:

This field is read-only. Reports whether the Virtual Pending table has been parsed.

Dirty	Meaning
0d0	Parsing of the Virtual Pending
	Table has completed.
0b1	Parsing of the Virtual Pending
	Table has not completed.

Writing 1 to GICR_VPENDBASER.Valid is unpredictable while GICR VPENDBASER.Dirty == 1.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Otherwise:

This field is read-only. This fields is unknown.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bit [59]

Reserved, res0.

OuterCache, bits [58:56]

Indicates the Outer Cacheability attributes of accesses to virtual LPI Pending tables of vPEs targeting this Redistributor.

OuterCache	Meaning
00000	Memory type defined in InnerCache field. For Normal memory, Outer
0b001	Cacheability is the same as Inner Cacheability. Normal Outer Noncacheable.

0b010	Normal Outer Cacheable Read-allocate, Write- through.
0b011	Normal Outer Cacheable Read-allocate, Write-back.
0b100	Normal Outer Cacheable Write-allocate, Write- through.
0b101	Normal Outer Cacheable Write-allocate, Write- back.
0b110	Normal Outer Cacheable Read-allocate, Write- allocate, Write-through.
0b111	Normal Outer Cacheable Read-allocate, Write- allocate, Write-back.

It is implementation defined whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of resident and non-resident vPEs.

If the OuterCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same Redistributor are different, behavior is unpredictable.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

Bits [55:52]

Reserved, res0.

Physical_Address, bits [51:16]

Bits [51:16] of the physical address containing the virtual LPI Pending table.

In implementations supporting fewer than 52 bits of physical address, unimplemented upper bits are res0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

Bits [15:12]

Reserved, res0.

Shareability, bits [11:10]

Indicates the Shareability attributes of accesses to the virtual LPI Pending table.

Shareability	Meaning
0b00	Non-shareable.
0b01	Inner Shareable.
0b10	Outer Shareable.
0b11	Reserved. Treated as 0b00.

It is implementation defined whether this field has a fixed value or can be programmed by software. Implementing this field with a fixed value is deprecated.

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of resident and non-resident vPEs.

If the Shareability attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same Redistributor are different, behavior is unpredictable.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

InnerCache, bits [9:7]

Indicates the Inner Cacheability attributes of accesses to the virtual LPI Pending table.

InnerCache	Meaning
0b000	Device-nGnRnE.
0b001	Normal Inner Non- cacheable.
0b010	Normal Inner Cacheable Read-allocate, Write- through.
0b011	Normal Inner Cacheable Read-allocate, Write-back.
0b100	Normal Inner Cacheable Write-allocate, Write-through.

0b101	Normal Inner Cacheable Write-allocate, Write- back.	
0b110	Normal Inner Cacheable Read-allocate, Write- allocate, Write-through.	
0b111	Normal Inner Cacheable Read-allocate, Write- allocate, Write-back.	

The Cacheability, Outer Cacheability and Shareability fields are used for accesses to the virtual LPI Pending table of resident and non-resident vPEs.

If the InnerCacheabilty attribute of the virtual LPI Pending tables that are associated with vPEs targeting the same Redistributor are different, behavior is unpredictable.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

Bits [6:0]

Reserved, res0.

Accessing GICR_VPENDBASER

The effect of a write to this register is not guaranteed to be visible throughout the affinity hierarchy, as indicated by <u>GICR_CTLR</u>.RWP == 0.

GICR_VPENDBASER can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance
GIC Redistributor	_	0x0078	GICR_VPENDBASER

Accesses on this interface are RW.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

Copyright © 2010-2023 Arm Limited or it	s affiliates. All rights reserved. This document is Non-Confidential.