RECTAS EN R² Y R³

TRABAJO PRÁCTICO Nº 6

- 1. Hallar las ecuaciones: vectorial paramétrica, cartesiana paramétrica, simétrica, general, explícita, segmentaria y vectorial de las rectas que cumplen con las siguientes condiciones. Representar gráficamente.
 - a) Pasa por los puntos A(3,2) y B(1,-1)
 - b) Contiene al punto P(7,3) y es paralela a la recta $r: \frac{x+1}{-1} = \frac{y-2}{3}$
 - c) Pasa por el punto A(-2,4) y tiene pendiente igual a $-\frac{3}{2}$
 - d) Tiene la misma ordenada al origen que la recta r: 2x 3y + 6 = 0 y su vector normal es $\vec{n} = (1,2)$
 - e) Pasa por el punto P(4,-6) y es perpendicular a una recta paralela al vector $\vec{v}=(3,7)$
 - f) Pasa por el punto P(4,-3) y es paralela a la recta determinada por los puntos A(4,1) y B(2,-2)
 - g) Pasa por la intersección de las rectas $r: \frac{x}{-2} = \frac{y-1}{3}$ y $s: \overrightarrow{OP} = (3,-1) + \lambda(2,2)$, y es paralela al vector $\overrightarrow{u} = (1,2)$
- Verificar las gráficas de las rectas con GeoGebra: Sugerencia: Ingresar por la barra de entrada: un punto que pertenezca a la recta, su vector dirección y el comando Recta(<Punto>, <Vector director>).
- 2. Hallar las ecuaciones: vectorial paramétrica, cartesiana paramétrica y simétrica de las rectas que cumplen con las siguientes condiciones. Representar gráficamente.
 - a) Pasa por el punto A(1,-1,0) y es perpendicular a las rectas $l_1: \frac{x-2}{3} = \frac{y}{2} = \frac{z-1}{1}$ y $l_2: \frac{x}{-1} = \frac{y-2}{1} = \frac{z}{-2}$
 - b) Pasa por el punto P(1, -2, 0) y contiene al vector $\overrightarrow{v} = (4, -1, 5)$
 - c) Pasa por los puntos A(3,2,-1) y B(-1,1,4)
 - d) Es paralela a la recta $r: \overrightarrow{OP} = (0, 3, -1) + \lambda(2, 4, -5)$ y pasa por el punto P(3, -1, 2)
 - e) Pasa por el punto P(-4,2,5) y es paralela al eje OX
 - f) Contiene al punto P(1,-2,3) y pasa por la intersección de las rectas $l_1: \frac{x}{2} = \frac{y-3}{3} = \frac{z-1}{4}$ y $l_2: \frac{x}{-1} = \frac{y+2}{1} = \frac{z-1}{-2}$
 - g) Contiene al punto P(1,-2,-1), es perpendicular al vector $\overrightarrow{v}=(-2,1,1)$ y corta a la recta l: $\begin{cases} x=1+2\lambda\\ y=1+3\lambda\\ z=-1-2 \end{cases}$
- Verificar las gráficas de las rectas con GeoGebra: Sugerencia: Habilitar la Vista 3D. Ingresar por la barra de entrada: un punto que pertenezca a la recta, su vector dirección y el comando *Recta(<Punto>, <Vector director>)*.

- 3. Dada la recta de ecuación $l_1: \frac{x+2}{2} = y = \frac{z-1}{3}$
 - a) Abrir GeoGebra y activar la Vista 3D.
 - b) Ingresar la ecuación de la recta l_1 en su forma vectorial paramétrica: $X = (x_0, y_0, z_0) + \lambda(u_1, u_2, u_3)$ y su vector dirección: $u = (u_1, u_2, u_3)$.
 - c) Visualizar la recta y su vector dirección desde diferentes perspectivas.
 - d) Ingresar la ecuación de la siguiente recta l_2 : $\begin{cases} x=2-2\lambda\\ y=2-\lambda \ \text{y su vector dirección.} \end{cases}$
 - e) Visualizar las rectas, determinar si las mismas se cortan y, en caso afirmativo, encontrar las coordenadas del punto de intersección usando el comando *Interseca(objeto, objeto)*.
 - f) Verificar si las coordenadas del punto (hallado en el inciso e) satisface las ecuaciones de ambas rectas. Formular conclusiones.
 - g) Calcular el ángulo determinado por las rectas y el ángulo formado por los vectores direcciones, con el comando Ángulo(objeto, objeto). Sacar conclusiones.
 - h) Modificar el vector dirección de l_2 por el vector (-4,2,2). Determinar la posición relativa entre las rectas y entre los vectores direcciones. Obtener conclusiones.
 - i) Para todos los incisos hacer capturas de los gráficos.
- 4. a) Calcular el ángulo formado por las siguientes rectas, usando los vectores direcciones. Verificar los resultados usando las pendientes, cuando sea posible:

i.
$$l:\begin{cases} x = 1 - 2\lambda \\ y = 2 + 3\lambda \end{cases}$$
 y $r: \frac{x-1}{4} = \frac{y+2}{-1}$

ii.
$$l: \overrightarrow{OP} = (3,2) + \lambda(1,2)$$
 y $r: -2x + y + 4 = 0$

iii.
$$l: \overrightarrow{OP} = (5, 4, 0) + \lambda(-2, 3, -3)$$
 y $r: \begin{cases} x = 5 - \lambda \\ y = 4 + 5\lambda \\ z = \lambda \end{cases}$

b) Hallar el valor de k para que las rectas:

i.
$$l: \frac{x-2}{-1} = \frac{y}{2}$$
 y $r: \begin{cases} x = 1 + 2\lambda \\ y = 2 + k\lambda \end{cases}$ formen un ángulo de 45°

ii.
$$r:\begin{cases} x=1+\lambda \\ y=\sqrt{2}\lambda \end{cases}$$
 y $s:\begin{cases} x=\lambda \\ y=1+k\lambda \end{cases}$ formen un ángulo de 60° $z=1+\lambda$

5. Dadas las rectas representadas en el siguiente gráfico:

- a) Determinar la ecuación vectorial paramétrica, general y segmentaria de las rectas l_1 , l_2 y l_3 , respectivamente.
- b) Indicar cuáles son paralelas y cuáles son perpendiculares. Justificar.
- 6. Determinar cuáles de las siguientes rectas son paralelas y cuáles son perpendiculares.

$$l: \begin{cases} x = \frac{1}{2} - 6\lambda \\ y = 11 + 2\lambda \\ z = -1 + 4\lambda \end{cases} \qquad r: \frac{x-1}{5} = \frac{1-y}{2} = \frac{z-2}{3} \qquad s: \begin{cases} x = 2 + 3\lambda \\ y = -\lambda \\ z = -7 - 2\lambda \end{cases} \qquad t: x - 8 = y - 6 = 1 - z$$

- 7. Determinar el valor de **k** y **m**, según corresponda, para que:
 - a) Las rectas l: kx + (k-1)y 2(k+2) = 0 y r: 3kx (3k+1)y (5k+4) = 0:
 - i. Sean paralelas.
 - ii. Sean perpendiculares.
 - b) La recta 3x + ky 2 = 0 forme un ángulo de 60° con el eje 0X.
 - c) Las rectas l: kx + y 3 = 0 y r: mx + 5y 7 = 0 sean paralelas, sabiendo que la recta r pasa por el punto A(2,1).
- 8. Hallar el valor de m y n, según corresponda, para que las rectas sean:

i.
$$l: \begin{cases} x = 5 + 4\lambda \\ y = 3 + \lambda \\ z = -\lambda \end{cases}$$
 y $r: \frac{x}{m} = \frac{y-1}{3} = \frac{z+3}{n}$ sean paralelas.

ii.
$$s: \frac{x}{4} = \frac{y-1}{-2} = \frac{z}{2}$$
 y $t: x - 1 = \frac{y-m}{m-1} = \frac{z-3}{3}$ sean perpendiculares.

iii.
$$l: \frac{x-2}{m} = \frac{y-1}{m} = \frac{z+1}{\sqrt{2}}$$
 y $r: (x, y, z) = (-2, 2, 1) + \lambda(0, 0, m)$ formen un ángulo de 45°.

RECTAS EN R² Y R³

TRABAJO PRÁCTICO Nº 7

- 1. Utilizando haz de rectas hallar la ecuación de la recta que:
 - a) Pasa por el origen de coordenadas y tiene pendiente m = -2.
 - b) Pasa por el punto P(2,1) y es perpendicular a 2x + y 5 = 0.
 - c) Pasa por el punto A(-2,3) y por la intersección de las rectas l: x + 5y + 2 = 0 y s: 3x + 4y 5 = 0.
- 2. Sean los haces de las siguientes gráficas:

a)

b)

- i. Escribir la ecuación que representa a cada uno de los haces.
- ii. Determinar, en cada uno de los haces, la ecuación de la recta que pasa por el punto (-1,-2).

Verificar los resultados con GeoGebra: Sugerencia: Ingresar por la barra de entrada el punto (-1,-2) y las ecuaciones encontradas en el inciso i. Para los parámetros de dichas ecuaciones, crear un deslizador y desplazar el mismo para comprobar las ecuaciones del inciso ii.

- 3. En cada caso, hallar la ecuación del haz determinado por las rectas l y r, y la ecuación de la recta t de cada haz, según las condiciones indicadas.
 - a) l: y = 2x 3 y r: y = 3x 5, y la recta t pasa por el punto A(3,5)
 - b) l: 2x + y = 0 y r: 3x 2y = 0, y la recta t tiene pendiente $m = -\frac{2}{3}$
- 4. Calcular la distancia:
 - a) Del punto P(4,4) a la recta x + 2y 4 = 0
 - b) Entre las rectas l: x 2y 3 = 0 y r: -2x + 4y + 1 = 0

c) Del punto
$$P(2,0,-1)$$
 a la recta l :
$$\begin{cases} x=-1-2\lambda\\ y=2+\lambda\\ z=-1+3\lambda \end{cases}$$

c) Del punto
$$P(2,0,-1)$$
 a la recta $l:$
$$\begin{cases} x=-1-2\lambda\\y=2+\lambda\\z=-1+3\lambda \end{cases}$$
 d) Entre las rectas
$$l: \frac{-1-x}{2} = \frac{2y-4}{2} = \frac{z-1}{3} \quad y \quad r:$$

$$\begin{cases} x=-2\lambda\\y=-2+\lambda\\z=1+3\lambda \end{cases}$$

Verificar los resultados con GeoGebra: Sugerencia: Ingresar por barra de entrada las ecuaciones de las rectas y/o los puntos. Aplicar el comando Distancia.

- 5. Calcular el valor de *m* para que la distancia:
 - a) Del punto P(1,2) a la recta l: mx + 2y 2 = 0 sea igual a $\sqrt{2} [ul]$
 - b) Entre las rectas $\mathbf{l}: 4x + 3y 6 = 0$ y $\mathbf{r}: 4x + 3y + m = 0$ sea igual a 3 [ul]
 - c) Entre la recta $s: (x, y, z) = (1, 0, -1) + \lambda(-2, m, 1)$ y el punto A(3, -1, 1) sea igual a $\frac{\sqrt{45}}{\sqrt{6}}[ul]$
- 6. Resolver los siguientes problemas.
 - a) La recta l: 2x + y 4 = 0 es la mediatriz de un segmento que tiene un extremo en el punto (0,0). Encontrar las coordenadas del otro extremo.
 - b) Calcular el área del triángulo cuyos lados están sobre las rectas: r: y = -2, s: 2x + 13y - 6 = 0 y $t: \frac{x}{-3} + \frac{y}{2} = 1$.
 - c) La recta 2x + 4y 8 = 0 determina, al cortar a los ejes de coordenadas, un segmento MN. Hallar la ecuación vectorial paramétrica de la mediatriz del segmento MN.
 - d) Determinar si los puntos P(2, -3, 1), Q(5, 4, 4) y R(8, 11, -9) están alineados.
 - e) Determinar si los siguientes pares de rectas son secantes y, en caso afirmativo, encontrar las coordenadas del punto de intersección.

i.
$$l$$
:
$$\begin{cases} x = 1 + 2\lambda \\ y = 1 + 3\lambda \\ z = -1 + \lambda \end{cases}$$
 y r :
$$\begin{cases} x = -1 + \lambda \\ y = -2 + 4\lambda \\ z = -2 + 2\lambda \end{cases}$$

ii.
$$l: \begin{cases} x = 3 - 2\lambda \\ y = 4 - 2\lambda \end{cases}$$
 y $r: x = \frac{y}{2} = \frac{z}{3}$

- i. l: $\begin{cases} x = 1 + 2\lambda \\ y = 1 + 3\lambda \\ z = -1 + \lambda \end{cases}$ y r: $\begin{cases} x = -1 + \lambda \\ y = -2 + 4\lambda \\ z = -2 + 2\lambda \end{cases}$ ii. l: $\begin{cases} x = 3 2\lambda \\ y = 4 2\lambda \end{cases}$ y r: $x = \frac{y}{2} = \frac{z}{3}$ f) Dadas las rectas l: $\begin{cases} x = k + 2\lambda \\ y = \lambda \end{cases}$ y r: $\begin{cases} x = 1 + \mu \\ y = -1 + 2\mu \\ z = -\mu \end{cases}$
 - i. Determinar el valor de k para que las rectas resulten secantes.
 - ii. Para dicho valor de k, encontrar las coordenadas del punto de intersección.
- g) Dados el punto P(2,2,-2) y el vector $\overrightarrow{v}=(2,-1,3)$
 - i. Encontrar la ecuación simétrica de la recta r que pasa por el punto P y es paralela al vector \vec{v}
 - ii. Hallar la intersección de la recta r con los planos coordenados.
 - iii. Encontrar dos puntos de la recta r, distintos a los determinados en el inciso anterior.

- iv. Calcular el ángulo que forma la recta r con la recta l: $\begin{cases} x = 4 2\lambda \\ y = 3 + 2\lambda \\ z = -1 + 3\lambda \end{cases}$
- v. Calcular la distancia de la recta r al punto A(4,-1,3)

7. Demostrar que:

- a. La ecuación de la recta que pasa por dos puntos $P(x_1,y_1)$ y $Q(x_2,y_2)$ puede escribirse de la forma $\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}$
- b. Si una recta corta a los ejes en los puntos (a, 0) y (0, b), su ecuación es $\frac{x}{a} + \frac{y}{b} = 1$
- c. Si las rectas ax + by + c = 0 y cx + dy + e = 0 son perpendiculares, se verifica que ac + bd = 0
- 8. Plantear y resolver las siguientes situaciones problemáticas:
 - a. La distancia entre Palpalá y San Salvador de Jujuy es de $10 \, km$; la capital jujeña tiene como coordenadas (2,8) y la ciudad de Palpalá (m,2). Calcular m y encontrar la ecuación vectorial paramétrica de la recta que une ambas ciudades.
 - b. Un albañil debe construir una rampa para automóviles de un estacionamiento; sabiendo que la altura es de 3 metros y el largo es de 6 metros, determinar la inclinación de misma y encontrar la ecuación explícita de la recta que contiene la rampa.
 - c. Determinar la dirección (ecuación de la recta) con la cual debe ser lanzada rectilíneamente una partícula desde el punto P(-2,0,2) hacia la recta l: $\begin{cases} x=0 \\ y=-1+\lambda \\ z=-1-\lambda \end{cases}$ para que la alcance al cabo de dos segundos, siendo su velocidad $\sqrt{3} \, \frac{m}{s}$; y encontrar las coordenadas del punto de encuentro.

AUTOEVALUACIÓN DE TEORÍA

- 1. Responder Verdadero o Falso. NO justificar.
 - a) El ángulo entre dos rectas del plano se puede calcular usando pendientes.
 - b) La ecuación segmentaria de una recta en el espacio es $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

- 2. Completar con la respuesta que corresponda.
 - a) Sean las rectas $l_1: y = m_1x + b_1$ y $l_2: y = m_2x + b_2$, la condición necesaria y suficiente para que sean paralelas es: y para que sean perpendiculares es:
 - b) La ecuación del haz de rectas que pasa por la intersección de dos rectas dadas es:
 - c) Sea el punto $P_0(x_0,y_0,z_0)$ no perteneciente a la recta l y sean el punto $P_1(x_1,y_1,z_1) \in l$ y $\vec{u}=(u_1,u_2,u_3)$ su vector dirección, la ecuación vectorial de la distancia del punto P_0 a la recta *l* es:
- 3. Escribir, en el recuadro y con tinta, la letra correspondiente a la respuesta correcta. Si ninguna es, escribir N.
 - a) La ecuación de la recta que pasa por el punto $P_0(x_0, y_0, z_0)$ y es paralela a $\vec{u} = (u_1, 0, 0)$,

$$A) \begin{cases} y = y_0 \\ z = z_0 \end{cases}$$

A)
$$\begin{cases} y = y_0 \\ z = z_0 \end{cases}$$
 B) $\frac{x - x_0}{u_1} = \frac{y - y_0}{u_2} = \frac{z - z_0}{u_3}$ C) $\begin{cases} x = x_0 \\ y = y_0 \end{cases}$ D) $x = x_0$

$$C) \begin{cases} x = x_0 \\ y = y_0 \end{cases}$$

D)
$$x = x_0$$

b) La ecuación cartesiana de la distancia de un punto $P_0(x_0, y_0)$ a la recta l de ecuación Ax + By = 0, es:

A)
$$d(P_0, l) = \left| \frac{A_{x_0} + B_{y_0} + C}{\sqrt{A^2 + B^2}} \right|$$
 B) $d(P_0, l) = \left| \frac{C}{\sqrt{A^2 + B^2}} \right|$ C) $d(P_0, l) = \left| \frac{A_{x_0} + B_{y_0}}{\sqrt{A^2 + B^2}} \right|$ D) $d(P_0, l) = \left| \frac{x_0 + y_0 + C}{\sqrt{A^2 + B^2}} \right|$

B)
$$d(P_0, l) = \left| \frac{c}{\sqrt{A^2 + B^2}} \right|$$

C)
$$d(P_0, l) = \left| \frac{A_{x0} + B_{y0}}{\sqrt{A^2 + B^2}} \right|$$

D)
$$d(P_0, l) = \left| \frac{x_0 + y_0 + C}{\sqrt{A^2 + B^2}} \right|$$

AUTOEVALUACIÓN DE PRÁCTICA

- 1. Recuadrar con tinta, la letra correspondiente a las opciones correctas en cada uno de los enunciados.

 - No son perpendiculares В Son perpendiculares

- 2. Completar con la respuesta que corresponda. Las respuestas deben escribirse con tinta.
 - a) La ecuación general de la recta cuya pendiente es 4 y que pasa por el punto de intersección de las rectas y = -2x + 8 y 3x - 2y + 9 = 0, es:
 - b) El valor de k para que las rectas l: $\begin{cases} x = 2 + \lambda \\ y = 5 \end{cases} \quad y \quad r$: $\begin{cases} x = 3 + t \\ y = 1 + kt \end{cases}$ formen un ángulo de z = 2
 - c) La distancia de la recta 4x 3y + 1 = 0 al punto P es 4[ul]. Si la ordenada de P es 3, entonces su abscisa es:
- 3. Escribir, con tinta y en el recuadro, la letra correspondiente a la respuesta correcta. Si ninguna es, escribir una N.
 - a) Para que las rectas(2k-2)x-y+2k=0 y (k-1)x+(k+1)y-17=0 paralelas, el valor de k debe ser:

 A) k=1, k=-3/2 B) k=-1, k=-3/2 C) k=0 D) k=1, k=3/2

- b) La ecuación general de la recta que pasa por el punto A(3,-2) y que pertenece al haz de rectas x - 3y + 2 + k(x + 2y - 1) = 0, es:
 - A) $-\frac{9}{2}x 14y + \frac{15}{2} = 0$ B) $x 3y + \frac{15}{2} = 0$ C) $\frac{13}{2}x + 8y \frac{7}{2} = 0$ D) $\frac{11}{2}x + 11y \frac{11}{2} = 0$
- c) La ecuación de la recta que pasa por el punto P(1,1,2) y que es perpendicular al eje \overrightarrow{OZ} y a la recta $(x, y, z) = (-2,2,1) + \lambda(2,10,-1)$, es:
 - A) $\begin{cases} x = -1 + 2\lambda \\ y = -1 + 10\lambda \\ z = -2 \lambda \end{cases}$ B) $\frac{x+1}{2} = \frac{y-1}{10} = \frac{z-2}{1}$ C) $\begin{cases} x = 1 + 2\lambda \\ y = 1 + 10\lambda \\ z = 2 + \lambda \end{cases}$ D) $\frac{x-1}{2} = \frac{y-1}{10} = \frac{z-2}{-1}$