אלגברה לינארית (2) תשע"ט 2018-2019 - סמסטר ב' - תרגיל 1

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף שם (פרטי ומשפחה) ומספר ת.ז. יש לציין כותרת ברורה בראש הדף הכוללת את שם הנחיות: כתבו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל־ 20.3.19 בשעה 21:00.

$$A^2+A+I_n=0$$
 כך ש־ $A\in M_{n\times n}(\mathbb{R})$ נתונה.

- A הוכיחו כי A הפיכה.
- $A^3=I_n$ (ב) הוכיחו כי
 - $\det A$ ג) חשבו את.
- . הפיכה. A+B כך ש־ $A+B^2$ הפיכה וגם A+B כך ש־ $A,B\in M_{n\times n}(\mathbb{F})$ הוכיחו (א). .2
- (ב) אינה A+B אינה הפיכה, אבל A+B כך ש־ $A,B\in M_{2 imes 2}(\mathbb{R})$ אינה הפיכה.
 - V בסיס ב $\left(ec{b}_{1}, ec{b}_{2}, ec{b}_{3}
 ight)$ ויהי וקטורי ממימד ממימד 3 מרחב וקטורי ממימד

$$(?T$$
 את אה מגדיר את הלינארי המוגדר על ידי אוני איז $\left\{egin{array}{l} T\left(ec{b}_1
ight)=rac{5}{6}ec{b}_1-rac{1}{3}ec{b}_2-rac{1}{2}ec{b}_3 \\ T\left(ec{b}_2
ight)=-rac{1}{6}ec{b}_1+rac{2}{3}ec{b}_2-rac{1}{2}ec{b}_3 \\ T\left(ec{b}_3
ight)=-rac{1}{6}ec{b}_1-rac{1}{3}ec{b}_2+rac{1}{2}ec{b}_3 \end{array}
ight.$ (מדוע זה מגדיר את $T\colon V o V$ יהי

- T הטלה. (א)
- $T=P_{U,W}$ בך ש־ W ו־ U (ב)

$$U=\left\{\left[egin{array}{cc} a & b \ 0 & 0 \end{array}
ight] \ | \ a,b\in\mathbb{R}
ight\} \quad , \quad W=\left\{\left[egin{array}{cc} -c & 0 \ c & d \end{array}
ight] \ | \ c,d\in\mathbb{R}
ight\} \ \ v=M_{2 imes2}(\mathbb{R})$$
 במרחב. 4

 $U\oplus W=V$ וש־ א תתי מרחבים של U וש־ עו הוכיחו (א)

$$z$$
 , y , z , z , z' , z' , z' , z' , z' הביעו את הביעו את $P_{U,W}\left(\left[egin{array}{cc} x & y \ z & t \end{array}
ight]
ight)=\left[egin{array}{cc} x' & y' \ z' & t' \end{array}
ight]$ בו לכל $x,y,z,t\in\mathbb{R}$

 $U\oplus W=V$ שלו כך שלו מרחבים עלו תתי מרחבים ויהיו ויהיו א מרחב וקטורי ויהיו U,W

. ודרו בתרגול פפי שהוגדרו במקביל בתרגול. $P_{W,U}\colon V o V$ ודרו בתרגול יהיו

- $P_{UW} \circ P_{WU} = 0$ (א) הוכיחו כי
- $.P_{U,W} + P_{W,U} = Id_V$ (ב) הוכיחו (ב)

יס הוכיחו
$$T\left(\left[egin{array}{c}x\\y\\z\end{array}
ight]
ight)=\left[egin{array}{c}x\\y\\-z\end{array}
ight]$$
 יהי $T\colon\mathbb{R}^3 o\mathbb{R}^3$ הוכיחו כי .6

- $\operatorname{Im} T = \mathbb{R}^3$, $\ker T = 0$ (א)
- $.ec{w}\in W=\mathrm{Span}\,\{ec{e_3}\}$ אס"ם $T\left(ec{w}
 ight)=-ec{w}$ ור $ec{u}\in U=\mathrm{Span}\,\{ec{e_1},ec{e_2}\}$ אם"ם $T\left(ec{u}
 ight)=ec{u}$ (ב)
 - $T \circ T = Id_{\mathbb{R}^3}$ (১)
- $U\oplus W=V$ פלו כך שלו כך תתי מרחבים שלו ויהיו ויהיו נוצר סופית) אויהיו לאו דווקא נוצר סופית) .7. יהי

 $R_{U,W}\left(ec{v}
ight) = ec{u} - ec{w}$ ונגדיר פונקציה $ec{w} \in W$ וי $ec{w} \in W$ נכתוב $ec{v} = ec{u} + ec{w}$ נכתוב $ec{v} \in V$ עם באופן הבא: עבור $ec{v} \in V$ באופן הבא: עבור $ec{v} \in V$ במקביל ל־ $ec{w}$. הוכיחו $ec{v} \in V$ נגדיר פונקציה שיקוף ביחס ל־ $ec{v} \in V$ במקביל ל־ $ec{v} \in V$.

- .אופרטור לינארי אופרטור $R_{U.W}$ (א)
- $ec{w}\in W$ לכל $R_{U,W}\left(ec{w}
 ight)=-ec{w}$ רכ $ec{u}\in U$ לכל לכל $R_{U,W}\left(ec{u}
 ight)=ec{u}$ (ב
 - $\operatorname{Im} R_{U,W} = V$, $\ker R_{U,W} = 0$ (x)
 - $R_{U,W} + R_{W,U} = 0$ (ד)
 - $.R_{U,W}\circ R_{U,W}=Id_{V}$ (a)
 - $R_{U,W} \circ R_{W,U} = -Id_V$ (1)

נגדיר
$$W=\{\,ec v\in V\ |\ T(ec v)=-ec v\,\}$$
 ור $U=\{\,ec v\in V\ |\ T(ec v)=ec v\,\}$ נגדיר

- .V ו־ W הם תתי מרחבים של U (א)
 - $.V=U\oplus W$ (১)
 - $T = R_{U,W}$ (۵)