Mathematik I Einführung in die Matrizenrechnung

Prof. Dr. Doris Bohnet Sommersemester 2020

Zeitplan Vorlesung

		Datum	Bemerkung	Inhalt
Grund- lagen			Selbststudium	Grundlagen: Mengen
			Selbststudium	Grundlagen: Relationen
			Selbststudium	Grundlagen: Abbildungen
Zahlen- theorie	1	22.04.	Einmalig Mi.	Wiederholung & Zusammenfassung Selbststudium
	2	27.04.		Zahlentheorie I
	3	28.04.		Zahlentheorie II
Algebra	4	04.05.		Gruppen
	5	11.05.		Ringe, Körper
	6	12.05.		Kryptographie
	7	18.05.		Vektorräume
Lineare Algebra	8	25.05.		Lineare Gleichungssysteme: Gauß-Algorithmus
	9	26.05.		Lineare Gleichungssysteme: Lösungstheorie
		01.06.	Pfingstmontag	
	10	08.06.		Matrizen I: Definition, Rechenregeln
	11	09.06.		Matrizen II: Inverse, Determinanten

Lernziele

- Begriffe kennen:
 - ✓ Matrix: Einheitsmatrix, symmetrische Matrix, Diagonalmatrix, Dreiecksmatrix, reguläre Matrix
- Rechenregeln für Matrizen beherrschen

Wiederholung: Lineares Gleichungssystem, Rang und lineare Unabhängigkeit

Kahoot-Fragen

1) Vektoren
$$u_3v_1\omega$$
 : $\omega = 2u-\sigma$ $\sigma = D$ $2u-v-\omega = 0$
 $= D$ $u_1v_1\omega$ sind linear abhangig.

2)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ \hline 0 & 5 & 7 \end{pmatrix}$$
 in Zeilenskufenform $vg(A) = 2 = \# Nicht - Nullzeilen$

3)
$$A = \begin{pmatrix} 2 & 1 & 1 \\ -2 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
 $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

4)
$$\begin{pmatrix} 2 & 1 & 1 \\ -2 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
 $\underbrace{\mathbb{I} + 2}_{1} \subset \text{kein Gaups - Schritt}$

08.06.2020

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 13

Wiederholung

5)
$$(A1b) = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$
 $rg(A) = 3 = rg(A1b) = \#$ Unbehombe

 $\Rightarrow a = xistiat = aine$
 $a = xistiat = aine$
 $\Rightarrow a = xistiat$

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 13

Matrix - Beispiel

Lineauer Gleich ungssystem
$$3x_1 + 1 \cdot x_2 + 3x_3 = 10$$

$$-x_1 + 0 \cdot x_2 + 2x_3 = 0$$

$$\Delta = \begin{pmatrix} 3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \end{pmatrix}$$

Matrix: Definition

Eine $m \times n$ —Matrix ist eine Anordnung von Zahlen in m Zeilen und n Spalten.

Die **Elemente** oder **Komponenten** einer Matrix werden durch Doppelindizes gekennzeichnet:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Dabei bezeichnet a_{ij} das Element von A in der i-ten Zeile und j-ten Spalte.

$$A = \begin{pmatrix} 3 & 7 & \pi \\ 0 & 1 & 0 \\ -7 & \sqrt{2} & 1 \end{pmatrix} \qquad \alpha_{32} = \sqrt{2}$$

Rechnen mit Matrizen: Transponieren

$$A = \begin{pmatrix} 3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$
1. File wird

2 and Spaller vertauschen

$$A^{t} = \begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 3 & 2 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix}$$

08.06.2020

Rechnen mit Matrizen: Transponieren

Eine $(m \times n)$ —Matrix A wird transponiert, indem man Zeilen mit Spalten vertauscht. Die transponierte Matrix von A bezeichnet man als A^t .

$$A^{t} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}^{t} = \begin{pmatrix} a_{11} & \dots & a_{m1} \\ \vdots & \dots & \vdots \\ a_{1n} & \dots & a_{mn} \end{pmatrix}$$

Die Matrix A^t hat dann die Dimension $(\underline{n} \times \underline{m})$.

Spezielle Matrizen

Eine Matrix, deren Einträge unterhalb der Diagonalen alle Null sind, heißt obere Dreiecksmatrix.

Eine Matrix heißt quadratisch, wenn die Anzahl ihrer Zeilen gleich die Anzahl ihrer Spalten ist.

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \quad 2 \times 2$$

Eine Matrix heißt Diagonalmatrix, wenn sie quadratisch ist und alle Einträge bis auf diejenigen auf der

- Eine Matrix heißt **Einheitsmatrix**, wenn sie eine <u>Diagonalmatrix</u> ist und alle ihre Einträge gleich Eins sind. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- Eine Matrix A heißt **symmetrisch**, wenn sie quadratisch ist und ihre Zeilen gleich ihrer Spalten sind, d.h.

$$A^t = A.$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 3 \end{pmatrix} \qquad A^{\dagger} = A$$

$$A^{t} = A$$

Rechnen mit Matrizen: Addieren/Subtrahieren

BSP:
$$\begin{pmatrix} 3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & -1 & 2 \\ 3 & 5 & 0 \end{pmatrix} = \begin{pmatrix} 3+0 & 1-1 & 3+2 \\ -1+3 & 0+5 & 2+0 \end{pmatrix}$$

2 × 3

2 × 3

2 × 3

(3 1 3) + (1 0) + (2) = (3 0 5)

(1 2) = (3 0 5)

(1 2) = (3 0 5)

(2 5 2)

NULL-PLATEIX

INVELSES Element du Addition: $\begin{pmatrix} 3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

inverses Element du Addition: $\begin{pmatrix} 3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix} + \begin{pmatrix} -3 & -1 & -3 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

A — A

Mathematik 1 - Prof. Dr. Doris Bohnet - Vorlesung 13

08.06.2020

Rechnen mit Matrizen: Addieren/ Subtrahieren

Zwei $(m \times n)$ – Matrizen A, B werden addiert (bzw. subtrahiert), indem man ihre Elemente miteinander addiert (bzw. subtrahiert) werden.

$$A + B = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \dots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Damit man Matrizen addieren kann, müssen sie dieselbe Zeilen- und Spaltenanzahl besitzen!

Es gilt:

$$A+B=B+A$$

$$A+(B+C)=(A+B)+C$$

$$(A+B)^t=A^t+B^t$$
to man takiv
a ssorialiv

Rechnen mit Matrizen: Multiplikation

Rechnen mit Matrizen: Multiplikation

Eine $(m \times n)$ —Matrix A multipliziert man mit einer $(n \times k)$ —Matrix B, indem man die Skalarprodukte von jeder Zeile von A mit den Spalten von B bildet. Das Produkt ist eine $(m \times k)$ -Matrix $A \cdot B$, deren Eintrag in Zeile i und Spalte j gerade das Skalarprodukt der Zeile i von A mit Spalte j von B ist.

$$A \cdot B = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1k} \\ \vdots & \dots & \vdots \\ b_{n1} & \dots & b_{nk} \end{pmatrix} = \begin{pmatrix} c_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + \dots + a_{1n} \cdot b_{n1} & \dots \\ \vdots & \dots & \vdots \\ c_{m1} = a_{m1} \cdot b_{m1} + a_{m2} \cdot b_{m2} + \dots + a_{mn} \cdot b_{mn} & \dots \end{pmatrix}$$

Es gilt:

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$
 associative
 $A \cdot (B + C) = A \cdot B + A \cdot C$ dishibutive
 $(A \cdot B)^t = B^t \cdot A^t$

Die Anzahl der Spalten von A muss gleich der Anzahl der Zeilen von B sein!

Die Matrizenmultiplikation ist in der Regel nicht kommunikativ: $A\cdot B \neq B\cdot A$

Beispiele

Aufgaben:

1. Welche Produkte für
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & -1 \\ -4 & 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 2 & 1 \\ -1 & 0 & 4 \end{pmatrix}$ sind definiert?
 AB, BA, A^tB, AB^t .

A.B:
$$(3 \times 3) \cdot (2 \times 3)$$

B.A: $(2 \times 3) \cdot (3 \times 3) = 2 \times 8$
A.B: $(3 \times 3) \cdot (2 \times 3)$
A.B: $(3 \times 3) \cdot (3 \times 2) = 3 \times 2$

Beispiele

Aufgaben:

2. Berechnen Sie das Produkt von $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ -3 & -6 \end{pmatrix}$.

$$A \cdot B = \begin{pmatrix} 3 - 4 \cdot 1 & 2 \\ 6 & 2 & (-34 - 6) \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 + 1 \cdot (-3) & 3 \cdot 2 + 1 \cdot (-6) \\ 6 \cdot 1 + 2 \cdot (-3) & 6 \cdot 2 + 2 \cdot (-6) \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$Sa47 \text{ ron}$$

$$Nullprodulpt$$

$$B A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ -3 & -6 & 6 & 2 \end{pmatrix} = \begin{pmatrix} 15 & 5 \\ -45 & -15 \end{pmatrix}$$

$$Mo \text{ histen } \nabla$$

Beispiele

Aufgaben:

3. Berechnen Sie das Produkt $A \cdot B$ und $B \cdot A$ von $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Inverse einer Matrix

Gibt es zu jeder Matrix eine inverse Matrix (bzgl. Der Multiplikation)?

Multiplikation von Motiten

o neutrales Element den Hultiplikation: Einheitsmatrix

o neutrales Element den Hultiplikation: Einheitsmatrix

$$\begin{pmatrix} 3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$

o inverses Element den Hultiplikation: geht nur für quadrat. Hahrten gesucht X :
$$\begin{pmatrix} 3 & 1 \\ -1 & 0 \end{pmatrix} X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X (2 \times 2) - \text{Matrix}$$

Inverse einer Matrix - Definition

Sei A eine quadratische $\underline{n \times n}$ —Matrix. Wenn es eine Matrix X gibt, so dass

$$A \cdot X = X \cdot A = \widehat{E}$$
 Einheitsmatix

gilt, dann heißt X das **Inverse von** A und man schreibt A^{-1} .

Wenn eine Matrix A eine Inverse besitzt, dann heißt A invertierbar oder regulär, andernfalls singulär.

Wann ist eine Matrix invertierbar, d.h. wann existiert das Inverse einer Matrix?