dr hab. inż. inż. Mirosław Łątka mgr inż. Klaudia Kozłowska Metody numeryczne Semestr zimowy 2019/20

Laboratorium 1 Błędy w obliczeniach numerycznych

Wszystkie zadania należy wykonać w języku Java.

1. Rozwinięcie Maclaurina funkcji wykładniczej opisane jest wzorem:

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n,$$

gdzie n to liczba naturalna. W praktyce zastępuje się je sumą częściową:

$$e^x \cong 1 + x + \frac{1}{2!}x^2 + \dots + \frac{1}{N!}x^N$$

gdzie N to liczba naturalna.

- a) Oblicz błędy ε_t i ε_a dla sześciu pierwszych sum częściowych (od N=1 do N=6) i x=0.5.
- b) Przeprowadź analogiczne obliczenia dla *x*=10 i *x*=-10 (*N*=30). Dokonaj analizy błędów obliczeń.
- c) Napisz funkcję, która oblicza sumę częściową dla podanego argumentu i błędu ϵ_s . Obliczenia prowadzone są tak długo jak $\epsilon_a > \epsilon_s$.
- 2. Oblicz e^{-10} na dwa sposoby:

$$e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{3!} + \cdots$$

oraz

$$e^{-x} = \frac{1}{e^x} = \frac{1}{1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots}$$

dla N=20. Porównaj błąd względny procentowy ε_t dla tych dwóch obliczeń.

3. Szereg

$$f(n) = \sum_{i=1}^{n} \frac{1}{i^4}$$

dąży do wartości $\pi^4/90$ gdy n dąży do nieskończoności. Oblicz sumę częściową dodając kolejne wyrazy od i=1 do n=10000. Powtórz obliczenia sumując w odwrotnej kolejności. Porównaj wyniki (błąd względny procentowy ε_t).

4. Podstawową własnością liczb rzeczywistych jest prawo rozdzielności:

$$(x + y)z = xz + yz.$$

W zadaniu należy sprawdzić, czy liczby zmiennoprzecinkowe zachowują to prawo. Napisz program, w którym 1000 razy wylosujesz liczby *x*, *y* i *z* z zakresu (0,1) i sprawdzisz, czy prawo zostało spełnione (czy obie strony równania są równe). Sprawdź w ilu przypadkach prawo zostało zachowane a w ilu nie. Wyświetl w konsoli każdy zestaw liczb *x*, *y* i *z*, który doprowadził do niepoprawnego wyniku.

Powtórz to zadanie dla:

a) prawa łączności

$$(x+y)+z=x+(y+z),$$

b) prawa przemienności

$$x + y = y + x$$
.

Error Definitions True error	E_t = true value - approximation
True percent relative error	$\varepsilon_t = \frac{\text{true value} - \text{approximation}}{\text{true value}} 100\%$
Approximate percent relative error	$ \varepsilon_{a} = \frac{\text{present approximation} - \text{previous approximation}}{\text{present approximation}} 100\% $
Stopping criterion	Terminate computation when
	$arepsilon_a < arepsilon_s$
	where ε_s is the desired percent relative error