

ME400 CAPSTONE DESIGN

Advisor: Prof. Junho Oh

Teaching Assistance: Kangkyu Lee, Jaesung Oh (in HuboLab)

20140344 Yejun Yang 20140870 Bomi Lee 20150027 Jiwon Kang 20150589 Jaeseong Lee

20140931 Simeneh S.Gulelat 20150629 Haewoo Lee 20160259 Jeongsoo Park

TABLE OF CONTENTS

PROBLEM

- 1. AIM
- 2. PROBLEM DEFINITION

SYSTEM

- 1. CONCEPT DEVELOPMENT
- 2. PICK-UP SYSTEM
- 3. DUMPING SYSTEM
- 4. VISION RECOGNITION
- 5. SOFTWARE
- 6. ELSE

CONCLUSION

- 1. DISCUSSION
- 2. FUTURE PLAN

PROBLEM

AIM

To pick the three blue balls using vision recognition and turn back to the starting point and dump the balls into the basket

PROBLEM DEFINITION

- 1. Detect the ball and distinguish the color
- 2. Set the optimum route
- 3. Move the bot with desired route
- 4. Pick up the ball and store the ball*3
- 5. Return to the basket
- 6. Drop the balls

PROBLEM DEFINITION

- 1. Detect the ball and distinguish the color
- 2. Set the optimum route
- 3. Move the bot with desired route
- 4. Pick up the ball and store the ball*3
- 5. Return to the basket
- 6. Drop the balls

SYSTEM

SYSTEM DEFINITION

DESIGN CONCEPT DESIGN **ANALYSIS** PLAN CONCEPT SOLUTION **SELECTION PROBLEM**

CONCEPT GENERATION

Valve Swipping Roller

ANALYSIS

	Weight	Datum (Roller)	Cage	Valve	Robot arm	Swipping	Suction
Time	25	0	0	-1	-1	0	0
Weight (Volume)	20	0	0	1	-1	0	-1
Cost	8	0	0	0	-1	0	-1
Complexity	6	0	0	-1	-1	0	-1
Uncertainty	6	0	1	1	-1	0	0
Energy efficiency	15	0	1	1	-1	0	-1
Durability	5	0	-1	-1	-1	0	0
Accuracy	15	0	0	1	1	0	-1
Total	100	0	16	20	-70	0	-64

PUGH'S DECISION MATRIX METHOD

CONCEPT SELECTION

EXPERIMENTAL ANALYSIS

PROBLEM

If the ball is off the center, it requires lots of time and force to pick up:(

SOLUTION

DESIGN PLAN

SYSTEM PICK-UP MECHANISM

PICK-UP MECHANISM

SYSTEM DUMPING MECHANISM

DUMPING MECHANISM

Bottom view

Side view

DESIGN OVERVIEW

Motor2
Tighten or loosen the wire

DESIGN OVERVIEW

of near blue ball

Side view

SYSTEM VISION RECOGNITION

COLOR DETECTION

COORDINATION SETTING

Catch the ball

Canny Edge-Detection Algorithm

Get the contour of the ----coordinate of the -----distance and the contour

Self-made code for alternative of the Hough Transform

Compare to get angle

**Problem:

Hough transform is not stable and requires fine tuning for several parameters

ALTERNATIVE LOCALISATION METHOD

Solution

Use least squares method to minimize:

$$u = \sum_{i=1}^{N} [(x_i - A)^2 + (y_i - B)^2 - R^2]^2 = \min$$

subjected to constraints $\frac{\partial u}{\partial A} = \frac{\partial u}{\partial B} = \frac{\partial u}{\partial R} = 0.$

$$\frac{\partial u}{\partial A} = \frac{\partial u}{\partial B} = \frac{\partial u}{\partial R} = 0.$$

assuming $C = R^2 - A^2 - B^2$

We solve

$$\begin{pmatrix} 2\Sigma x_i & 2\Sigma y_i & N \\ 2\Sigma x_i^2 & 2\Sigma x_i y_i & \Sigma x_i \\ 2\Sigma x_i y_i & 2\Sigma y_i^2 & \Sigma y_i \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} \Sigma (x_i^2 + y_i^2) \\ \Sigma (x_i^3 + x_i y_i^2) \\ \Sigma (x_i^2 y_i + y_i^3) \end{pmatrix}$$

Center (A, B) and radius R obtained from N points!

SYSTEM SOFTWARE

LABVIEW

ROS

SYSTEM ELSE

HEAT TRANSFER

Passive Cooling

Active Cooling (Fan)

Oil Immersion Cooling

Pros	Most affordable Easy to maintain	Heat sink + Heat Pipe + Fan → Proper price & performance	High thermal conductivity (kair = 0.026W/mK, koil = 0.018W/mK)
Cons	Performance may be low	Bulky	Hard to maintain (Leakage,)

VIBRATION REDUCTION

1) Vibration reduction for cameras –gimbal : device to minimize movements of cameras

- 2) Vibration reduction for motors
 - -ball bearings
 - -buffer

CONCLUSION

DISCUSSION

1. We take lots of time to pick and bring the balls.

Why?

Picking system, moving system cannot operate simultaneously.

2. Ball might stuck under the picking box.

Why?

We don't have any mechanism that remove red ball that might stuck under the box

Why?

One for picking system, one for mapping.

4. There are many uncertainties.

Why?

We have to set optimum values with lots of experiments and calculations.

FUTURE PLAN

- Getting the distance of all the balls at the same time
- Finding the way to distinguish the ball of the same color when they are overlapped
- Finding the way to deal with the reflection on the ball

- Integrating the subsystem that we are constructing
- Locating the coordinate using transforming based on the data from RPliadar and webcam

OpenCV

ROS

Labview

- Testing the speed and the direction of the wheel by connecting with motors controlled by Labview
- Connecting controller with Labview

Solidworks

- Making pick-up part and the main body
- Deciding the materials and the optimum gap between wires
- Based on the bot made, analyze the vibration and heat flow

Thank you for listening

APPENDIX

APPENDIX - BUDGET

- Dynamixel string loosening part
- Acrylic panel car body, pickup part
- Aluminum profile car structure
- Ball screw and linear guide vertical translating the picking up part
- String fishing line
- Web cam for delicate control
- Micro5pin USB