"Don't Bother Me. I'm Socializing!": A Breakpoint-Based Smartphone Notification System

Ross Bullock, Keerti Kosana, Eric Paulz, and Bhavik Suthar

Authors

Chunjong Park Junsung Lim Juho Kim Sung-Ju Lee Dongman Lee

School of Computing, KAIST Daejeon, Republic of Korea

Introduction

- Notifications on mobile devices distract users from in-person social interactions
 - A preliminary survey conducted on n=224
- Activating silent mode, turning off notifications, and not bringing smartphones are ineffective.
- A breakpoint-based notification system was implemented to defer notifications until an opportune moment
- A breakpoint is described as a unit of time in between two adjacent actions.
- Four types of breakpoints :
 - o a long Silence
 - o a user leaving the table (Movement)
 - o others using smartphones (*Use*),
 - a user left Alone.

Continued...

- SCAN (Social Context-Aware smartphone Notification System) defers smartphone notifications until a breakpoint during a social interaction.
 - Mobile application that detects social context using built-in sensors
 - Microphone, step detector, IMU, Bluetooth Low Energy (BLE)
- Reduces number of disruptions in a conversation by 54.1%
- Accurately classifies breakpoints
 - Precision of 92.0%
 - Recall = 82.5%

Design & Methodology

Preliminary Study: Online Survey (n=224)

- How does smartphone use affect social interactions?
 - Q1: Do people think smartphone use distracts the conversation?
 - <u>Q2</u>: Do people control or change their smartphone use depending on who they are with?
 - <u>O3</u>: What causes people to use smartphones during a social meal?

Reasons using the smartphone	% of respondents	
Receiving a call	73.7	
Replying to an incoming message	73.2	
Looking at the notification	69.2	
Using apps to help the conversation	65.2	
Checking the time	58.0	
Sending a message	43.8	
Using apps due to notifications	35.7	
Using apps for other reasons	37.5	
Placing a call	29.9	
Table 1 Activities causing the smartphone		

Design & Methodology cont.

Video Experiment (n=73)

 Participants asked to watch recorded social interactions and identify viable 'breakpoints'.

Situation	% of participants	
Alone	98.6	
Someone leaving the table	90.4	
Friends using smartphones	84.4	
A long silence	70.8	
A short silence	63.1	
Eating	47.2	
Talking to the waiter	46.6	
Conversation	24.2	

Table 2. Situations selected by video experiment participants as viable breakpoints during a casual social interaction.

Design & Methodology cont.

SCAN Prototype

- Built for Android 5.0 and up
- Identifies four types of breakpoints
 - Silence
 - Moving
 - Alone
 - Use

Figure 2. SCAN system architecture. It consists of three main components and leverages built-in smartphone sensors to detect social context.

Controlled Experiment

Objectives

- 1. Investigate the existence and distribution of breakpoints.
- 2. Measure the breakpoint detection accuracy of SCAN.
- 3. Evaluate whether SCAN reduces interruptions caused by notifications.
- 4. Understand participants' perception of notification management.

Participants

- Ten groups of three friends, all composed of different combinations of age and sex.
- All participants were undergraduate and graduate students.

Controlled Experiment cont.

Setting

- Japanese restaurant near campus to provide a realistic dining setting.
- Collected video recordings of each group to observe how they interacted.

Timeline

Figure 5. A timeline structure of the experiment. The first five minute is used to allow the participants to get used to the experiment environment. A sequence of mode is alternated for each experiment.

Results

- Breakpoint Distribution (Cohen's k = 0.85)
 - Evaluates the accuracy of SCAN's detection by comparing results with ground truth.
- Breakpoint Detection Accuracy
 - Evaluates if SCAN correctly classify breakpoint from the social context.

	Breakpoint Occurrence		Breakpoint Duration (sec.)			
-	Frequency	Ratio	Mean	SD	Min	Max
USE	168	48.28 %	53.43	129.47	1	962
SILENCE	162	46.55 %	13.18	6.47	6	35
MOVING	9	2.59 %	101.78	52.86	49	215
ALONE	9	2.59 %	89.89	51.23	34	198

Figure 6. A cumulative distribution of breakpoint intervals.

Results cont.

- Reduced Interruption
 - Evaluetes SCAN by obtaining the number of reduced interruptions from the total number of interruption of the the baseline.
 - P > 0.05 and Cohen's d = 0.12

Interface Condition	# Noti. Received	# Noti. Alarmed	Avg. Noti. Deferred	Avg. Time Deferred (seconds)
SCAN	399	183	2.18	51
Baseline	451	451	N/A	N/A

- Changed in Smartphone use and Conversation duration.
 - Smartphone use p > 0.05 and Cohen's d = 0.34
 - Conversation Duration p > 0.05 and Cohen's d = 0.35
 - Participants using smartphone during the interaction.

Critique

Good

- Well structured experiment
- Started broad and then narrowed scope
- Research idea is relevant in today's society; the idea of a system that delays notifications while socializing is occurring could be very helpful
- Categories presented (silence, moving, alone, use) offer organization and priority, can be easily recognized using sensors, microphones, or other equipment

Bad

- The study mostly focused on a single age group (20s)
- SCAN is evaluated for only a short period of time
- More profound mechanism for group detection
- Faulty technology, equipment; could pick up other signals
- Only used one setting; no research done in situations other than dining

QUESTIONS?