CS331-HW13-Lukang-Sun

December 2, 2021

p1. (see Figure 1.) $f_1(x,y) := ax^2 + by^2 + \sin(x), f_2(x,y) := cx^2 + dy^2 + \cos(y), f(x,y) = \frac{1}{2}f_1(x,y) + \frac{1}{2}f_2(x,y), \tau = 1$, the initial point $w_1^0 = w_2^0 = (1,1)$. In the four experiments, I choose (a,b,c,d) = (5,3,2,7), (50,3,2,70), (50,300,2,70), (50,300,200,7) respectively. The error is $E[||\nabla f(x)||^2]$. In these experiments, no matter what the value of (a,b,c,d) are, they all converge very fast(actually all take 2 steps till the error almost converges to 0).

p2.

Proof.

$$\nabla f(x) = Ax + b$$
, for any $x \in \mathbb{R}^n$,

SO

$$\nabla f(x) - \nabla f(y) = A(x - y).$$

p3. (see Figure 2.) $f_1(x,y) := ax^2 + by^2 + \sin(x), f_2(x,y) := cx^2 + dy^2 + \cos(y), f(x,y) = \frac{1}{2}f_1(x,y) + \frac{1}{2}f_2(x,y)$, the initial point $x^0 = (1,1)$. In the four experiments, I choose (a,b,c,d) = (5,3,2,7,), (5,3,20,7) respectively. The error is $\sqrt{f(x) - f(x^*)}$ and $||B_k - H_*^{-1}||^2_{F(H_*)}$ respectively, where $x^* = (-0.0199960017324,0)$. I want to test that: 1.Error $\sqrt{f(x) - f(x^*)}$ decreases exponentially, 2. Error $||B_k - H_*^{-1}||^2_{F(H_*)}$ decreases exponentially, 3. These errors' decreasing rate is independent of the condition number. I choose these problems because the theory predicts these results and I can verify these through experiments, actually the results verify the prediction.

Figure 1: The four pictures show the error with respect to the iteration number. Note the the first error is evaluated at point at x^1 instead of $x^0 = w_1^0 = w_2^0 = (1,1)$ in my experiments.

Figure 2: (a) and (b) show $\sqrt{f(x)-f(x^*)}$ converges exponentially fast with different (a,b,c,d), note there are some iteration steps that the error doesn't drop, this is because of the Monotonic option step. (c) and (d) show $||B_k-H_*^{-1}||_{F(H_*)}^2$ converges exponentially fast with different (a,b,c,d). $x^0=(1,1)$ in my experiments.