ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Изучение спектров атома водорода и молекулы йода

Работу выполнил: Шурыгин Антон группа Б01-909

Долгопрудный, 2021

Содержание

1	Teo	ретическая часть	3
	1.1	Спектр водорода	3
	1.2	Спектр йода	4
2	Экс	спериментальная установка	5
3	Ход	ц работы и обработка данных	6
4	Вы	вод	11

Цель работы: исследовать сериальные закономерости в оптическом спектре водорода; спектр поглощения паров йода в видимой области.

1 Теоретическая часть

1.1 Спектр водорода

Атом водорода является простейшей квантовой системой, для которой уравнение Шрёдингера может быть решено точно. Это также верно для водородноподобных атомов, то есть атомов с одним электроном на внешней оболочке. Из решения уравнения Шрёдингера следует, что внешний электрон в таких атомах обладает дискретным энергетическим спектром:

$$E_{n} = -\frac{m_{e}(Ze^{2})^{2}}{2\hbar^{2}} \frac{1}{n^{2}},$$
 (1)

где п есть номер энергетического уровня, Z есть зарядовое число ядра рассматриваемого атома, которое в случае атома водорода равно 1. При переходе электрона с n-го на m-й уровень излучается фотон с энергией

$$E_{\gamma}=E_{n}-E_{m}=\frac{m_{\varepsilon}e^{2}}{2\hbar^{2}}Z^{2}\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right). \tag{2}$$

Длина волны соответствующего излучения $\lambda_{n,m}$ связана с номерами уровней следующим соотношением:

$$\lambda_{n,m}^{-1} = \frac{m_e e^2}{4\pi \hbar^3 c} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right) = RyZ^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right), \tag{3}$$

где $Ry = \frac{m_e e^2}{4\pi h^3 c}$ есть постоянная Ридберга.

В данной работе будет исследоваться серия Бальмера атома водорода, в которой электроны совершают переходы с некоторого уровня п на уровень $\mathfrak{m}=2.$

Рис. 1 : электронные и электронно-колебательные уровни двух-атомной молекулы

1.2 Спектр йода

В первом приближении энергия молекулы может быть представлена в виде:

$$E = E_e + E_o + E_r, \tag{4}$$

где E_e — энергия электронных уровней, E_o — энергия колебательных уровней, E_r — энергия вращательных уровней.

В настоящей работе рассматриваются оптические переходы, то есть переходы, связанные с излучением фотонов в видимом диапазоне длин волн. Они соответсвтуют переходам между различными электронными состояниями. При этом также происходят изменения вращательного и колебательного состояний, однако в реальности ввиду малости характерных энергий вращательные переходы ненаблюдаемы.

Более конкретно, изучаются переходы из колебательного состояния с номером \mathfrak{n}_1 освновного электронного уровня с энергией E_1 в колебательное состояние с номером \mathfrak{n}_2 на электронный уровень с энергией E_2 . Энергия таких переходов описывается формулой:

$$h\nu_{n_1,n_2}=(E_2-E_1)+h\nu_2(n_2+\frac{1}{2})-h\nu_1(n_1+\frac{1}{2}), \tag{5}$$

где ν_1 и ν_2 суть энергии колебательных квантов на электронных уровнях с энергиями E_1 и E_2 .

При достаточно больших квантовых числах n_1 и n_2 колебательные уровни переходят в непрерывный спектр, что соответствует диссоциации молекулы. Наименьшая энергия, которую нужно сообщить молекуле в нижайшем колебательном состоянии, чтобы она диссоциировала, называется энергией диссоциации.

В данной работе определяются энергии диссоциации на первых двух электронных уровнях.

2 Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стеклянный-призменный монохроматор-спектрометр УМ-2, предназначенный для спектральных исследований.

Рис. 2 Устройство монохроматора УМ-2

В работе спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания, питаемой от блока питания.

Рис. 3 Схема экспериментальной установки для изучения спектра поглощения паров йода

3 Ход работы и обработка данных

Калибровка спектрометра была выполнена по спектрам ртути и неона. По ртути следует калиброваться в коротковолновой части спектра, а по неону — в средней и длинноволновой.

Измерим положения трёх линий водорода из серии Бальмера — $H_{\alpha}, H_{\beta}, H_{\gamma}$. Линии H_{δ} и более коротковолновые пронаблюдать не удалось ввиду их слабой интенсивности. Получили соответствующие показания спектрометра:

 $H_\alpha:(2792\pm 5)$

 $H_{\beta}:(1814\pm5)$

 $H_{\gamma}:(1172\pm5)$

Проградуируем спектрометр, для чего используем спектры неоновой и ртутной лампы, длины волн спектральных линий которых известны.

Получаем приближение полиноном второй степени:

$$f(x) = 0,0007x^2 - 1,1725x + 4444$$

λ, A	θ, дел	σ_{θ} , дел
7032	2942	5
6929	2914	5
6717	2850	5
6678	2830	5
6599	2804	5
6533	2782	5
6507	2770	5
6402	2735	5 5
6383	2724	5
6334	2708	5 5
6305	2696	
6267	2682	5
6217	2664	5
6164	2638	5
6143	2638	5
6096	2614	5
6074	2602	5 5
6030	2584	
5976	2558	5 5
5945	2548	5
5882	2516	5
5852	2498	5
5401	2242	5

Таблица 1 : калибровка для неона

λ, A	θ, дел	σ_{θ} , дел
5790	2456	5
5461	2282	5
4395	1866	5
4046	1202	5

Таблица 2 : калибровка для ртути

Рис. 4 : градуировка спектрометра

С учётом градуировки спектрометра получаем следующие длины волн для водорода:

$$H_{\alpha}=(650\pm15)$$
 нм

$$H_{\beta}=(486\pm20)$$
 нм

$$H_{\gamma}=(430\pm25)$$
 нм

Для каждой линии определим константу Ридберга по формуле (3), учитывая, что $\mathfrak{m}=2,\ \mathsf{Z}=1,$ а также, что:

- ullet для линии $H_{lpha} \Rightarrow n=3$
- ullet для линии $H_{eta} \Rightarrow n=4$
- ullet для линии $H_{\gamma} \Rightarrow n = 5$

Получаем следующие значения константы Ридберга:

$$\begin{split} \mathrm{Ry}_{\alpha} &= (1.115 \pm 0.04) \cdot 10^{-2} \ \mathrm{hm}^{-1} \\ \mathrm{Ry}_{\beta} &= (1.10 \pm 0.05) \cdot 10^{-2} \ \mathrm{hm}^{-1} \\ \mathrm{Ry}_{\gamma} &= (1.11 \pm 0.06) \cdot 10^{-2} \ \mathrm{hm}^{-1} \end{split}$$

Возьмем среднее среди полученных значений константы Ридберга и определим её экспериментально полученное значение:

$$Ry_F = (1.10 \pm 0.05) \cdot 10^{-2} \text{ mm}^{-1}$$

Полученное значение вполне совпадает с табличным значением в пределах погрешности:

$$Ry = 1.097 \cdot 10^{-2} \text{ нм}^{-1}$$

Запишем показания спектрометра для следующих переходов в молекуле йода:

- $\theta_{1,0}$ переход из первого колебательного уровня основного состояния в нулевой колебательный уровень возбуждённого состояния
- $\theta_{1,5}$ переход из первого колебательного уровня основного состояния в пятый колебательный уровень возбуждённого состояния
- θ_g переход из нулевого колебательного уровня основного состояния в область непрерывного спектра возбуждённого состояния

Получаем следующие данные:

$$\theta_{1,0} = (2700 \pm 5),$$
 $\theta_{1,5} = (2620 \pm 5),$
 $\theta_{a} = (2000 \pm 5)$

откуда находим соответствующие длины волн:

$$\lambda_{1,0} = (620 \pm 30)$$
 нм, $\lambda_{1,5} = (610 \pm 30)$ нм, $\lambda_g = (510 \pm 30)$ нм.

Определим энергию колебательного кванта возбуждённого состояния молекулы по формуле:

$$hv_2 = \frac{hv_{1,5} - hv_{0,5}}{5}.$$

Итого:

$$h\nu_2 = (1.0 \pm 0.2) \cdot 10^{-2} \text{ pB}$$

Вычислим:

- ullet энергию электронного перехода $\Delta E=E_2-E_1$
- энергию диссоциации D₁ в основном состоянии
- энергию диссоциации D2 в возбуждённом состоянии

При условии, что известны энергия колебательного кванта основного состояния есть $h\nu_1=0,027$ эВ, энергия возбуждения, то есть энергия перехода атома из области непрерывного спектра основного состояния в область непрерывного спектра возбуждённого состояния, равна $E_A=0.94$ эВ.

Имеем систему уравнений:

$$\begin{cases} D_1 + E_A = h\nu_g, \\ h\nu_g = D_2 + \Delta E, \\ h\nu_{1,0} = \Delta E + h\nu_2 - \frac{3}{2}h\nu_1, \\ h\nu_{1,5} = \Delta E + \frac{11}{2}h\nu_2 - \frac{3}{2}h\nu_1. \end{cases}$$

Из неё находим все необходимые величины:

$$\Delta E = (2.0 \pm 0.1) \text{ aB}$$

$$D_1 = (1.5 \pm 0.1) \text{ aB}$$

$$D_2 = (0.42 \pm 0.1) \text{ aB}$$

4 Вывод

В работе исследовались сериальные закономерности в оптическом спектре водорода и спектр поглощения паров йода в видимой области.

Была построена градуировочная кривая по данным спектрам неона и ртути. Затем получены длины волн линий $H_{\alpha},\, H_{\beta}$ и H_{γ} серии Бальмера:

$$H_{\alpha} = (650 \pm 15)$$
 нм $H_{\beta} = (486 \pm 20)$ нм $H_{\gamma} = (430 \pm 25)$ нм

Вычислена постоянная Ридберга:

$$\mathrm{Ry_p} = (1.10 \pm 0.05) \cdot 10^{-2} \; \mathrm{mm}^{-1}$$

В пределах погрешности экспериментальное значение в пределах погрешности совпадает с теоретическим:

$$Ry_t = 1.097 \cdot 10^{-2} \text{ mm}^{-1}$$

Получены длины волн, соответствующие некоторым электронноколебательным переходам из основного состояния в возбуждённое. Вычислены энергия колебательного кванта возбуждённого состояния молекулы,

$$h\nu_2 = (1.0 \pm 0.2) \cdot 10^{-2} \text{ pB}$$

Энергия электронного перехода:

$$\Delta E = (2.0 \pm 0.1)$$
 эВ

Энергии диссоциации молекулы в основном и в возбуждённом состояниях:

$$D_1=(1.5\pm0.1)$$
 эВ

$$D_2 = (0.42 \pm 0.1)$$
 эВ