

Universidade Federal de Roraima Departamento de Ciência da Computação Análise de Algoritmos

DISCIPLINA: Análise de Algoritmos - DCC606

1ª Lista Prazo de Entrega: 30/06/2016

ALUNO(A):NOTA:

ATENÇÃO: Descrever as soluções com o máximo de detalhes possível, no caso de programas inclusive a forma como os testes foram feitos. Todos os artefatos (relatório, código fonte de programas, e outros) gerados para este trabalho devem ser adicionados em um repositório no site github.com. Para as questões que requisitarem a escrita/implementação de programas devem ser feitas na linguagem de programação C e deve ser apresentado: o modo de compilar/executar o programa; a linha de comando para executar o programa; e um exemplo de entrada/saída do programa.

 $[QUEST\tilde{A}O-01]$ Para cada afirmação, indique se a mesma é falsa ou verdadeira, justificando sua resposta:

(A)
$$n + (\log n) = \Theta(n)$$

(B)
$$n^2 = o(n^3)$$

(C)
$$(n+1)^2 = O(2n^2)$$

(D) Se
$$f(n) = n - 300$$
 então $f(n) \in \Omega(300n)$ e $f(n) \in O(300n)$

 $[QUEST ilde{A}O-02]$ Para o problema de ordenação: especificar o problema (descrição, instância, entrada, saída, objetivo), dar um exemplo gráfico e citar o limite inferior (LI) e superior (LS) do problema.

 $[QUEST\tilde{A}O-03]$ Obtenha a função de custo e a complexidade de tempo para os códigos presentados abaixo:

(A)

```
1.VerificaAlgo (n: int);
2.    i, j, k, l: int;
3.    para l := 1 TO 10.000 faça
4.        para i := 1 TO n-5 faça
5.        para j := i+2 TO n/2 faça
6.        para k := 1 TO n faça
7.        {Inspecione elemento}
```


Universidade Federal de Roraima Departamento de Ciência da Computação Análise de Algoritmos

(B)

(C)

(D)

```
1. Hanoi(n, Origem, Destino, Auxiliar){
2. se n > 0{
3. Hanoi(n-1,Origem, Auxiliar, Destino)
4. move o disco da Origem para o Destino
5. Hanoi(n-1, Auxiliar, Destino, Origem)
6. }
7.}
```

[QUESTÃO – 04] Descreva a técnica de divisão e conquista. Implemente um algoritmo utilizando divisão e conquista para encontrar o maior e o menor elemento em uma lista.

[QUESTÃO – 05] Implemente os algoritmos de ordenação: Insertion Sort; QuickSort; e MergeSort. Apresente as complexidades dos algoritmos. Apresente um estudo empírico para analisar o tempo de execução dos algoritmos. Cada algoritmo de ordenação deve ser executado com entradas de diferentes tamanhos: 100, 500, 5000, 10000 e 30000. Também se deve utilizar diferentes configurações para cada tamanho de entrada para a ordenação: números aleatório; em ordem crescente; e em ordem decrescente. Crie um gráfico de linhas para cada configuração de entrada com os tempos de ordenação para comparar os algoritmos, onde cada linha do gráfico irá representar um algoritmo.

Universidade Federal de Roraima Departamento de Ciência da Computação Análise de Algoritmos

 $[{\rm QUEST\tilde{A}O}-06]$ Descreva os passos para ordenação de um vetor usando o algoritmo Quick Sort.

[QUESTÃO - 07] Descreva as regras de balanceamento em uma árvore vermelho e preto (red and black). Adicionalmente, apresente de forma gráfica a inserção dos seguintes valores em uma árvore vermelho e preto: 11; 7; 8; 14; 4; 15; 1; 2; 5.

[QUESTÃO – 08] Implemente a operação de inserção da árvore AVL e árvore vermelho e preto. Apresente um estudo empírico para obter custos de inserção na medida em que o número de elementos da árvore aumenta. Gere gráficos para mostrar o custo médio de inserção para tamanhos distintos de N (exemplo: de 10 a 1000000). Apresente uma análise de comparação entre árvore AVL e árvore vermelho e preto em relação ao tempo de execução. Adicionalmente, apresente a complexidade da operação de inserção da árvore AVL e árvore vermelho e preto.

[QUESTÃO EXTRA] Pesquise e apresente a relação entre a série harmônica e a escala musical.

