Lac gelé

* En redémontrant l'équation de la chaleur, on trouverait :

$$\frac{\partial^2 T}{\partial z^2} = \frac{\rho c_g}{\lambda} \frac{\partial T}{\partial t} \simeq 0$$

car $c_g \simeq 0$ dans le cadre de l'ARQS. On a alors :

$$T(z) = \frac{T_F - T_0(t)}{\xi(t)} z + T_0(t)$$

* Par conservation de l'énergie, la densité de flux thermique dans la glace $j_g(z,t) = -\lambda \frac{\partial T}{\partial z}$ est égale à la densité de flux thermique à l'interface j_a donné par la loi de Newton :

$$j_g(z=0,t) = j_a$$

$$\Rightarrow -\frac{\lambda}{\xi(t)}(T_F - T_0(t)) = -h(T_A - T_0(t))$$

On en déduit :

$$T_0(t) = \frac{T_F + \frac{h\xi(t)}{\lambda}T_A}{1 + \frac{h\xi(t)}{\lambda}}$$

* On considère un volume d'eau $dV = S \times dz$ se transformant en glace durant un temps dt. Comme le front de galce avance à la vitesse $\dot{\xi}$, on a $dz = \dot{\xi} dt$. Ce volume dégage une énergie $dQ = l_f \rho_g \dot{\xi} dt S$ lors de sa transformation, qui est évacuée à travers le flux thermique dans la glace $dQ = -S dt \times j_g(z = \xi, t)$. Le signe – correspond au fait que l'énergie est évacuée vers l'atmosphère, donc selon $-\vec{e}_z$.

On a alors:

$$\begin{split} &\frac{\lambda}{\xi(t)}(T_F-T_0(t)) = l_F \rho_g \dot{\xi}(t) \\ \Rightarrow &T_F - \frac{T_F + \frac{h\xi(t)}{\lambda}T_A}{1 + \frac{h\xi(t)}{\lambda}} = \frac{l_F \rho_g}{\lambda} \xi(t) \dot{\xi}(t) \\ \Rightarrow &\frac{h}{l_F \rho_g}(T_F-T_A) = \left(1 + \frac{h}{\lambda} \xi(t)\right) \dot{\xi}(t) \end{split}$$

On a donc:

$$\left(1 + \frac{\xi(t)}{l_0}\right)\xi(t) = v_0$$

Avec $l_0 = \frac{\lambda}{h}$ et $v_0 = \frac{h}{l_F \rho_g} (T_F - T_A)$. On peut vérifier l'homogénéité, qui est bien respectée. On remarque par ailleurs que $v_0 = \dot{\xi}(t=0)$, qui correspond à la vitesse d'avancée du front de glace au début de la glaciation.

- * $l_0=0,05m$ et de $v_0=1,27\cdot 10^{-6} {\rm m/s}$. On définit un temps caractéristique τ_0 comme tout simplement $\tau_0=l_0/V_0=39\cdot 10^3 {\rm s}$.
- * On intègre la relation précédente :

$$v_0 = \frac{l_0}{2} \frac{d}{dt} \left(1 + \frac{\xi(t)}{l_0} \right)^2$$
$$\Rightarrow \frac{2t}{\tau_0} = \left(1 + \frac{\xi(t)}{l_0} \right)^2 + C$$

En tenant compte des conditions initiales, $\xi(0) = 0$, on trouve C = -1. Donc, en résolvant l'équation du second degré et en prenant la racine positive, on obtient :

$$\xi(t) = l_0 \left(\sqrt{1 + \frac{2t}{\tau_0}} - 1 \right)$$

Et de même :

$$T_0(t) = T_A + \frac{T_F - T_A}{\sqrt{1 + \frac{2t}{\tau_0}}}$$

Pour qu'il y ait 5 cm de glace, soit une épaisseur $\xi(t) = l_0$, il faut un temps $t = \frac{3}{2}\tau_0 \simeq 59 \cdot 10^3$ s, soit environ 16h30. Cela montre bien que la vitesse de glaciation diminue, si elle se maintenait à v_0 , il faudrait un temps τ_0 pour geler ces 5cm, soit environ 11h.

Transfert thermique et entropie

▷ Il faut d'abord obtenir l'équation de la chaleur lorsqu'une source de chaleur est présente dans le volume. L'équation de conservation (qui n'en est plus une !) devient :

$$c\rho\frac{\partial T}{\partial t} = -\frac{\partial j}{\partial x} + p_{vol}$$

où $p_{vol}=\rho I^2/S^2$ est la puissance volumique dissipée par effet Joule. L'équation de la chaleur devient donc :

$$\frac{\partial T}{\partial t} = \frac{\lambda}{c\rho} \frac{\partial^2 T}{\partial x^2} + \frac{p_{vol}}{c\rho}$$

En régime permanent :

$$\lambda \frac{\partial^2 T}{\partial x^2} = -p_{vol}$$

En intégrant, on obtient :

$$T(x) = -\frac{p_{vol}x^2}{2\lambda} + Ax + B$$

Avec les CL $T(0) = T_1$ et $T(L) = T_2$, on trouve :

$$T(x) = \frac{p_{vol}}{2\lambda}x(L-x) + \frac{T_2 - T_1}{L}x + T_1$$

 \triangleright Il y a plusieurs façon de répondre à la question. Je préfère utiliser la condition où T'(L)=0, cad que la puissance électrique chauffe suffisament pour tordre la courbe de température de sorte à ce que la dérivée deviennent nulle en x=L (en considérant que $T_2>T_1$). Comme on a :

$$T'(x) = \frac{p_{vol}}{2\lambda}(L - 2x) + \frac{T_2 - T_1}{L}$$

La condition T'(L) = 0 donne alors :

$$p_{vol} = 2\lambda \frac{T_2 - T_1}{L^2}$$

 \triangleright On effectue un bilan d'entropie sur le système constitué d'une tranche de barre entre x et x+dx du barreau durant un temps dt:

$$dS = \delta s_e(x) - \delta s_e(x + dx) + \delta s_c$$

Il s'agit, pour l'entropie échangée, du même raisonnement que dans le cas d'une machine thermique avec deux sources extérieures, un échange d'netropie en x et un autre en x+dx. δs_c est l'entropie crée durant dt

En RP, dS = 0 et $\delta s_e(x) = \frac{\delta Q(x)}{T(x)} = Sdt \frac{j(x)}{T(x)}$. Alors :

$$\begin{split} Sdt \frac{j(x)}{T(x)} - Sdt \frac{j(x+dx)}{T(x+dx)} + \delta s_c &= 0 \\ \delta s_c &= -S\lambda dt \left(\frac{1}{T(x+dx)} \frac{\partial T}{\partial x} (x+dx) \right) + S\lambda dt \left(\frac{1}{T(x)} \frac{\partial T}{\partial x} (x) \right) \\ \frac{\delta s_c}{Sdxdt} &= -\lambda \frac{\partial}{\partial x} \left(\frac{1}{T(x)} \frac{\partial T}{\partial x} \right) = -\frac{\lambda}{T(x)} \frac{\partial^2 T}{\partial x^2} + \frac{\lambda}{T^2(x)} \left(\frac{\partial T}{\partial x} \right)^2 \end{split}$$

L'entropie crée par unité de volum eet de temps est donc :

$$\frac{s_{c,vol}}{dt} = \frac{\rho I^2}{S^2 T} + \frac{\lambda}{T^2(x)} \left(\frac{\partial T}{\partial x}\right)^2 > 0$$

Le premier terme correspond à l'entropie crée par effet Joule, le second par les transferts thermiques.

 \triangleright On peut réutiliser les résultats de la question précédente, pour I=0:

$$T(x) = \frac{T_2 - T_1}{L}x + T_1$$

 \triangleright Il y a plusieurs façon de calculer la température finale. Pour ma part, j'utilise la conservation de l'énergie thermique U de la barre lors de la transformation. Comme celle-ci est totalement isolée, on a : $U(t=0) = U_{\infty} = SL\mu cT_{\infty}$ où μ est la masse volumique de la barre. Or, l'énergie interne à t=0 est la somme de toutes les énergies internes du barreau d'épaisseurs dx:

$$U(t=0) = c\mu S \int_0^L dx T(x)$$
$$= c\mu S L \frac{T_1 + T_2}{2}$$

donc $T_{\infty} = \frac{T_1 + T_2}{2}$, on trouve bien que la température finale correspond à la moyenne des empératures extrêmes. Pour le calcul de l'entropie, on se base sur la variation d'entropie d'un solide lors d'une transformation d'une température à une autre. Plus précisément, un élément Sdx de la barre à l'abscisse x passe de la témprature T(x) à T_{∞} . Sa variation d'entropie est donc :

$$\Delta(\delta S) = \mu c S dx \ln\left(\frac{T_{\infty}}{T(x)}\right)$$

Donc pour l'ensemble de la barre :

$$\Delta S = -\mu c S \int_0^L dx \ln\left(\frac{T(x)}{T_{\infty}}\right)$$
$$= -\mu c S \frac{L}{T_2 - T_1} \int_{T_2}^{T_2} dT \ln\left(\frac{T}{T_{\infty}}\right)$$

Finalement:

$$\Delta S = Mc \left(1 + \frac{T_1}{T_2 - T_1} \ln \left(\frac{2T_1}{T_1 + T_2} \right) - \frac{T_2}{T_2 - T_1} \ln \left(\frac{2T_2}{T_1 + T_2} \right) \right)$$

Température dans une planète naine

- © La concentration de thorium est de $c=10\times 10^{-6}\times \mu=27 \mathrm{g.m^{-3}}$, soit une quantité $n=cN_A/M=7,00\times 10^{22}$ atomes de thorium par m³. La puissance peut être estimée par l'énergie ε d'une désintégration divisée par le temps de demi-vie τ (ce qui correspond peu ou prou à l'activité nucléaire, un facteur $\ln 2$ près), soit $P_r=\frac{\varepsilon n}{\tau}=8,90\times 10^{-8}~\mathrm{W.m^{-3}}$.
- \odot On effectue un bilan d'enthalpie entre r et r + dr:

$$r^{2}dr\sin\theta d\theta d\phi \times \mu c_{p} \times [T(r,t+dt) - T(r,t)] =$$

$$r^{2}\sin\theta d\theta d\phi \times j(r,t)dt - (r+dr)^{2}\sin\theta d\theta d\phi \times j(r+dr,t)dt + P_{r}dtr^{2}dr\sin\theta d\theta d\phi$$

On a donc:

$$r^{2}\mu c_{p}\times\frac{\partial T}{\partial t}(r,t)=\frac{\partial}{\partial r}\left(r^{2}j(r,t)\right)+r^{2}\times P_{r}$$

Et alors, avec la loi de Fourier $j=-\lambda \frac{\partial T}{\partial r}$:

$$\frac{\partial T}{\partial t} = \frac{D}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \kappa$$

Avec $\kappa = P_r/(\mu c_p)$ et de $D = \lambda/(\mu c_p)$.

- © Le temps caractéristique de diffusion thermique est estimé comme $\tau_d \simeq L^2/D = L^2 \mu c_p/\lambda = 6,09 \times 10^{15}$ s, soit 0,19 milliard d'années. C'est long mais toujours bien inférieur à 14 milliards d'années, qui est le temps caractéristique de décroissance radioactive du thorium. La planète a donc le temps d'être à tout instant thermalisée avec l'extérieur.
- \odot On peut donc estimer que le terme $\partial T/\partial t$ est nul. L'équation de diffusion devient :

$$\frac{D}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) = -\kappa$$

L'intégration fait apparaître deux constantes d'intégration, A et B:

$$T(r) = -\frac{\kappa}{6D}r^2 - \frac{A}{r} + B$$

La température étant définie en tout point de la planête, y compris en r = 0, on a nécessairement A = 0.

La planète perd de l'énergie thermique par rayonnement, qui part dans l'espace depuis sa surface. La puissance thermique associée à ce rayonnement suit la loi de Stefan-Boltzmann $\phi = \sigma T_s^4$, où ϕ est la puissance rayonnée par unité de surface à la surface de la planète, $\sigma = 5,67 \times 10^{-8}$ W.m⁻².K⁻⁴ une constante et T_s la température à la surface de l'astre.

© La loi de Stefan-Boltzmann donne une seconde CL : $j(r=R)=-\lambda \frac{\partial T}{\partial r}(r=R)=\sigma T^4(r=R)$. On a donc :

$$\lambda \frac{\kappa}{3D} R = \sigma \left(B - \frac{\kappa}{6D} R^2 \right)^4$$

et donc:

$$B = \sqrt[4]{\frac{P_r R}{3\sigma}} + \frac{\kappa}{6D} R^2$$

Finalement:

$$T(r) = \frac{\kappa}{6D} \left(R^2 - r^2 \right) + \sqrt[4]{\frac{P_r R}{3\sigma}}$$

 $\odot \ \ \mathrm{Pour} \ T(0) = \sqrt[4]{\frac{P_r R}{3\sigma}} + \tfrac{\kappa}{6D} R^2 \simeq 63 \ \mathrm{K} \ \mathrm{et} \ T(R) = \sqrt[4]{\frac{P_r R}{3\sigma}} \simeq 20 \ \mathrm{K}.$

Diffusion de particules dans un récipent en rotation

Cas statique : sédimentation

O La poussée d'Archimède est définie comme :

$$\vec{\pi} = \rho_s \frac{m}{\rho_p} g \vec{e}_z$$

Elle est égale au poids du volume de solvant déplacé et est opposée à la gravitation. Le bilan des forces devient en régime permanent, appléiqué sur une particule :

$$\vec{0} = \vec{\pi} - mg\vec{e}_z - 6\pi\eta a\vec{v}$$

La vitesse moyenne qui es résulte est donc :

$$\vec{v} = -\frac{mg}{6\pi\eta a} \left(1 - \frac{\rho_s}{\rho_p} \right) \vec{e}_z = -\frac{m^*g}{6\pi\eta a} \vec{e}_z$$

On trouve bien que la particule tombe (respectivement remonte) si sa masse volumique est supérieure à celle du solvant (respectivement inférieure). Le flux associé de particules est $\vec{j}_s = c \times \vec{v}$.

- \odot Si on regardait le phénomène sans diffusion, toutes les particules tomberaient au fond du récipient et s'agglutineraient. Or, au fur et à mesure qu'elles tombent, leur concentration c(z) augemente, générant un courant de diffusion $\vec{j}_D = -D \operatorname{grad}(c)$ opposé qui fait "remonter" les particules. Un équilibre s'établit.
- \odot On refait le bilan élémentaire du flux de particule sur un volume élémentaire, en ajoutant le courant \vec{j}_s . On trouve alors facilement :

$$\frac{\partial c}{\partial t} = -\operatorname{div}(\vec{j}_D + \vec{j}_s)$$

⊙ En régime permanent :

$$\operatorname{div}(\vec{j}_D + \vec{j}_s) = 0$$

Comme les flux ne sont que selon \vec{e}_z , en intégrant par rapport à z, on a $\vec{j}_D + \vec{j}_s = A$. En z = 0, au fond du récipient, le flux total est nécessairement nul car les particules ne peuvent pas traverser le récipient. Donc :

$$\vec{i}_D + \vec{i}_s = 0$$

Et alors:

$$c(z)\frac{m^*g}{6\pi\eta a} = -D\frac{\partial c}{\partial z}$$

$$c(z) + L\frac{\partial c}{\partial z} = 0$$

avec $L = \frac{6\pi\eta aD}{m^*g}$. Et donc :

$$c(z) = c_0 \exp\left[-\frac{z}{L}\right]$$

5

Cas dynamique

 \odot Même raisonnement que précédemment, en remplaçant la force du poids par la force centrifuge. Attention, il y a toujours une poussée d'Archimède! On trouve que $\vec{v} = \frac{m^* \omega^2 r}{6\pi \eta a} \vec{e}_r$. Les particules sont bien ramenées vers l'extérieurs si elles sont plus denses que le solvant. Le courant de particules associé est $j_c = c(r)\vec{v}$, la concentration ne dépendant que de r dans ce cas-là.

On trouve ensuite, avec un bilan en coordonnées cylindriques :

$$\frac{\partial c}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \left(D \frac{\partial c}{\partial r} - sr\omega^2 c(r) \right) \right)$$

avec $s = \frac{m^*}{6\pi\eta a}$.

 \odot Même raisonnement que précédemment, pour trouver que $D\frac{\partial c}{\partial r} - sr\omega^2 c(r) = 0$. On trouve alors que :

$$\frac{\partial c}{\partial r} = \frac{r}{L^2}c(r)$$

avec $L = \sqrt{s\omega^2/D}$. La solution est :

$$c(r) = c_0 \exp\left[\frac{r^2}{2L^2}\right]$$

Diffusion à contre-courant

Dans un tuyau de section S circule un solvant à la vitesse $-v_0\vec{e}_x$, où x est l'axe le long du tuyau. En x=0, on injecte à travers une petite ouverture un colorant dans le tuyau, avec un débit molaire n^* . On suppose que le colorant s'homogénéise immédiatement sur toute la section S du tuyau dès son injection en x=0. On remarque que, en plus de s'évacuer avec le solvant vers les x négatifs, le colorant remonte à contre-courant sur une longueur caractéristique L. Le coefficient de diffusion du colorant dans le solvant est noté D.

- \spadesuit Montrer que la concentration c de particules de colorant en aval de l'écoulement (x < 0) ne dépend de x et s'écrit $c = \frac{N_A n^*}{v_0 S}$, en notant N_A le nombre d'Avogadro. En déduire le flux de particule associé \vec{j}_c .
- \spadesuit Pourquoi la concentration c va dépendre de x en amont de l'écoulement (x < 0)? Quel est le flux de particule $\vec{j}_c(x)$ associé?
- \spadesuit En déduire une équation différentielle sur c(x). La résoudre, et en déduire la longueur L de remontée à contre-courant.

Evaporation de l'éther

▲ Le grand classique :

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

 \blacktriangle En RP, c(x = Ax + B). Avec les CL:

$$c(x) = \frac{P_{sat}}{RT} \frac{x}{h(t)}$$

6

- \blacktriangle On a $dN=\frac{\mu}{M}S(h(t+dt)-h(t).$ Mais aussi $dN=-j(x=h(t))S=\frac{P_{sat}}{RT}\frac{D}{h(t)}$
- \blacktriangle On en déduit l'équation :

$$h\dot{h} = \frac{DP_{sat}M}{R\mu}$$

 \blacktriangle En déduire un ordre de grandeur du temps d'évaporation de l'éther.