Sicherheit im Internet mit Public-Key-Kryptographie

Prof. Dr. Michael Helbig

- Kommunikation im Internet mit HTTP
- Public-Key-Kryptographie Allgemein
- Public-Key-Kryptographie RSA
- Sicherheit von RSA

- Kommunikation im Internet mit HTTP
- Public-Key-Kryptographie Allgemein
- Public-Key-Kryptographie RSA
- Sicherheit von RSA

Kommunikation mit HTTP

Response: Übertragung einer Seite/Daten

Sensible Daten

- Bestellung Online-Handel
- Online-Banking

• ...

• **Lösung:** Verschlüsselung → HTTP Secure

HTTPS = HTTP Secure

Was steckt hinter HTTPS?

- Informatik:
 - Zertifikate
 - Software

— ...

- Mathematik:
 - Public-Key-Kryptographie (PKC)

- Kommunikation im Internet mit HTTP
- Public-Key-Kryptographie Allgemein
- Public-Key-Kryptographie RSA
- Sicherheit von RSA

Public-Key? - Problemstellung

Schlüsselaustausch im Internet

Public-Key? - Lösung

Empfänger: öffentlicher & privater Schlüssel

- Kommunikation im Internet mit HTTP
- Public-Key-Kryptographie Allgemein
- Public-Key-Kryptographie RSA
- Sicherheit von RSA

PKC 1

- 1977: Rivest, Shamir, Adleman
- am weitesten verbreitete PKC-Methode
- Kongruenz/Modulo-Rechnung:
 - Def: Für a,b ∈ \mathbb{Z} : a ≡ b mod N : \Leftrightarrow a=b + kN k∈ \mathbb{Z}
 - Bsp "Uhrzeit":
 - $14 \equiv 2 \mod 12$, da $14=2+1\cdot 12$
 - $25 \equiv 1 \mod 12$, da $25=1+2\cdot12$

RSA

- Vorbereitung: Wähle
 - Primzahlen p, q
 - RSA-Modul N := pq
 - $-e, d \in \mathbb{Z}$, so dass $ed \equiv 1 \mod (p-1)(q-1)$
- Public Key: (N, e)
- Private Key: (N, d)
- Verschlüsselung: $M \mapsto C \equiv M^e \mod N$
- Entschlüsselung: $C \mapsto M \equiv C^d \mod N$

- Kommunikation im Internet mit HTTP
- Public-Key-Kryptographie Allgemein
- Public-Key-Kryptographie RSA
- Sicherheit von RSA

Sicherheit von RSA

beruht auf "Faktorisierungsproblem"

$$N = p \cdot q$$

Ist das sicher?

"Teste Teilbarkeit durch alle kleineren Primzahlen!"

"Naiver Test": RSA 128 bit

• $N \approx 2^{128} \approx 3.4 \cdot 10^{38} \approx$

340.282.366.920.938.463.463.374.607.431.770.000.000

- Test: Für alle Primzahlen 1 : <math>p teilt N?
- Wie viele solche Primzahlen gibt es? ca.

$$\frac{N}{\ln N} \approx 3.84 \cdot 10^{36} \approx$$

3.835.341.275.459.348.169.893.510.517.860.100.000

• Supercomputer: prüfe 10¹² Primzahlen pro Sekunde

Dauer "naiver Test"

121.617.874.031.562.000 Jahre

 Vergleich: Universum existiert 10 Milliarden Jahre (12-Mio.-fach!)

Bessere Faktorisierungen

- Algorithmen für spezielle Formen der Zahl N
- Allgemeine Methode: Zahlkörpersieb

- Was ist damit möglich?
- RSA Factoring Challenge
 - www.rsa.com
 - http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm

1999: RSA FC 512 bit

- $N \approx 2^{512} \approx 10^{155}$
- 300 Computer, 7,5 Monate
- 187 CPU-Jahre

10941738641570527421809707322040357612003732945449 20599091384213147634998428893478471799725789126733 24976257528997818337970765372440271467435315933543 33897

=

10263959282974110577205419657399167590071656780803 8066803341933521790711307779

*

10660348838016845482092722036001287867920795857598 9291522270608237193062808643

2009: RSA FC 768 bit

- $N \approx 2^{768} \approx 10^{232}$
- 660 Computer, 3 Jahre
- 2000 2.2GHz-CPU Jahre

12301866845301177551304949583849627207728535695953
34792197322452151726400507263657518745202199786469
38995647494277406384592519255732630345373154826850
79170261221429134616704292143116022212404792747377
94080665351419597459856902143413

=

33478071698956898786044169848212690817704794983713 76856891243138898288379387800228761471165253174308 7737814467999489

*

36746043666799590428244633799627952632279158164343 08764267603228381573966651127923337341714339681027 0092798736308917

Dann: Standard 1024 bit

• $N \approx 2^{1024} \approx 10^{309}$, z.B.

13506641086599522334960321627880596993888147560566
70275244851438515265106048595338339402871505719094
41798207282164471551373680419703964191743046496589
27425623934102086438320211037295872576235850964311
05640735015081875106765946292055636855294752135008
52879416377328533906109750544334999811150056977236
890927563

$$= p * q$$

Seit 2014: Empfehlung 2048 bit

224 138 297

Vielen Dank für Ihre Aufmerksamkeit!

Notabene: größte bekannte Primzahl

Zahl	Anzahl der <u>Dezimalziffern</u>	Jahr	Entdecker (genutzter Computer)
2 ¹⁷ -1	6	1588	<u>Cataldi</u>
2 ¹⁹ -1	6	1588	<u>Cataldi</u>
2 ³¹ –1	10	1772	<u>Euler</u>
•••	•••	•••	•••
2 ^{43.112.609} -1	12.978.189	2008	Smith, Woltman, Kurowski et al. (GIMPS, Core 2 Duo 2,4 GHz)
2 ^{57.885.161} -1	17.425.170	2013	Cooper, Woltman, Kurowski et al. (GIMPS)
2 ^{74.207.281} -1	22.338.618	2016	Cooper, Woltman, Kurowski et al. (GIMPS)

https://de.wikipedia.org/wiki/Primzahl#Gr.C3.B6.C3.9Fte bekannte Primzahl