NAME:

INESTERN REGION

2000

MATHEMATICS

3 UNIT (Additional) and 3/4 UNIT (Common)

TRIAL HSC EXAMINATION

TIME ALLOWED: 2 hours

plus 5 minutes reading time

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question.
- Marks may be deducted for careless or badly arranged work.
- Start each question on a new page.
- Approved calculators may be used.
- Standard Integrals are supplied at the end of this examination paper.

QUESTION	MARK
7	
2	
3	
4	
5	
6	
7	
TOTAL	

QUESTION 1.

Start a new page.

Marks

(a) Simplify
$$\frac{1+a^{-1}}{1+a^{-3}}$$
.

2

(b) If
$$y = \sec x$$

4

(i) prove
$$\frac{dy}{dx} = \sec x \tan x$$

(ii) find
$$\frac{d^2y}{dx^2}$$

(c) Find
$$\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$$

2

(d) Use the substitution
$$u = 1 + x^3$$
 to evaluate
$$\int_0^1 x^2 (1 + x^3)^3 dx$$

2

(e) Find the exact value of
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin x}{1 - \cos x} dx$$

2

QUESTION 2.

Start a new page.

Marks

(a) If
$$\frac{dy}{dx} = 1 + y$$
, and when $x = 0$, $y = 2$; show that $y = 3e^x - 1$

(Hint examine $\frac{dx}{dy}$)

- (b) In the expansion of $\left(t^3 + \frac{1}{t}\right)^7$, does the expression contain a constant term? Justify your answer.
- 2

3

(c) The circles intersect at P and Q

RQS is a straight line. **TR** and **TS** are tangents.

Prove that TSPR is a cyclic quadrilateral

The graph of y = f(x) is shown.

5

- i. Is the function *odd*, even or neither? Justify for your answer.
- ii. Using the points indicated on the graph, state between which points;
 - a. f(x) is decreasing and the curve is concave up.
 - b. f(x) < 0 and f''(x) < 0
- iii. Sketch the graph of y = f'(x).

Label the corresponding points A to I on your graph

QUESTION 3.

Start a new page.

Marks

(a) (i) In how many ways can the letters of the word MONSTERS be arranged if the S, S and T occur together.

4

(ii) A jury of seven is to be formed from 6 males and 4 females. If the jury is chosen at random, find the *probability* that it will contain a majority of females.

(b)

3

A pole is seen from the two points A and B. The angle of elevation from A is 58° . If $\angle CAB = 52^{\circ}$ and $\angle ABC = 34^{\circ}$, and A and B are 100m apart, find;

- (i) how far A is from the foot of the pole, to the nearest metre.
- (ii) the height of the pole, correct to 1 decimal place.

5

- (c) Given the function $f(x) = 1 \tan x$ for the domain $0 \le x \le \frac{\pi}{4}$
 - (i) Sketch the graph of y = f(x)
 - (ii) Prove that the area of the region enclosed by the graph of y = f(x) and the coordinate axes is

$$\frac{\pi - \ln 4}{4}$$
 units²

(iii) The region in (ii) makes a revolution about the x - axis. Find the volume of the solid so formed.

QUESTION 4.

Start a new page.

Marks

3

(a)

In $\triangle OAB$, OA = OB = a which is a constant.

 $\angle AOB = x$ radians, where x is the variable. PQ is a circular arc, centre O and radius r.

If the area of $\triangle OAB$ is twice that of the sector OPQ,

- (i) express r^2 in terms of a and x
- (ii) find r when $\angle AOB$ is a right angle, in terms of π and a.
- (b) The polynomial $P(x) = 6x^3 7x^2 + ax + b$ has a zero at x = -1 and the remaining zeros are reciprocals $(\alpha, \frac{1}{\alpha})$
 - (i) by examining the product of the three roots determine the value of b and hence of a.
 - (ii) find all the zeros of P(x)
- (c) Prove by Mathematical Induction, that for all positive integers n

4

5

$$\sum_{r=1}^{n} r(r+1) = \frac{n(n+1)(n+2)}{3}$$

QUESTION 5.

Start'a new page.

Marks

(a) If the two lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$ meet at an angle of 45°, prove that;

3

$$m_1 m_2 = m_1 - m_2 - 1$$

or

$$m_1 m_2 = m_2 - m_1 - 1$$

(b) A metal cube has sides of x cm and volume V cm³. The cube is cooling so that the length of its sides are *decreasing* at a rate of 0.075 cm/min.

5

(i) Write an expression for this rate of change.

Find the rate of change in its volume, when

- (ii) the sides are 4 cm long.
- (iii) the total surface area is 100 cm²
- (c) A sky-diver opens his parachute when falling at $30~\text{ms}^{-1}$. Thereafter his acceleration is given by

4

$$\frac{dv}{dt} = k(6-v)$$
 where k is a constant.

- (i) Show that this condition is satisfied when $v = 6 + Ae^{-kt}$ and find the value of A.
- (ii) One second after opening his chute, his velocity has fallen to 10.7 ms^{-1} . Find the value of k correct to two decimal places.
- (iii) Find his velocity, correct to one decimal place, 2 seconds after his chute is opened.

QUESTION 6.

Start a new page.

Marks

(a) The equation $\sin x = x^2 - 10$ has a root close to $x = \pi$.

2

Use one application of *Newton's Method* to give a better approximation, correct to 4 decimal places.

(b) A particle is x cm from an origin on a line after t seconds, where

6

 $x = a\cos nt + b\sin nt$

- (i) Prove that, at position x, its acceleration is $-n^2x$ ms⁻². What does this prove about the nature of the motion?
- (ii) If, at position x, its velocity is v ms⁻¹, prove that $v^2 + n^2 x^2$ remains constant throughout the motion.
- (iii) What is the amplitude of the motion?
- (c) By equating the coefficients of x^n in the identical expressions

4

$$(1+x)^{2n}$$
 and $(1+x)^{n}(1+x)^{n}$

prove that

$$\binom{2n}{n} = \binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2$$

QUESTION 7.

Start a new page.

Marks

(a) A projectile is fired horizontally with speed $v \text{ ms}^{-1}$ from a point h m above horizontal ground.

5

- (i) Prove that it will reach the ground after $\sqrt{\frac{2h}{g}}$ seconds.
- (ii) If it does so at an angle of 60° to the horizontal, prove that

$$3v^2 = 2gh$$

$$hint \frac{dy}{dx} = \tan 120^0$$

(b) Given $y = \log_e(e^x \sin^2 x)$

4

(i) Show $\frac{dy}{dx} = 1 + 2 \cot x$

(ii) Prove that the equation of the normal at $x = \frac{\pi}{2}$ is given by $x + y = \pi$

(c) Let $y = \sin^{-1} x$.

(i) Show
$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$$

3

(ii) Hence evaluate $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$