Multi-Source Domain Adaptation with Mixture of Experts

Jiang Guo, MIT, in EMNLP 2018

paper: https://www.aclweb.org/anthology/D18-1498.pdf

code: https://github.com/jiangfeng1124/transfer

任务定义

领域自适应: 将资源丰富的源领域中的知识迁移到资源匮乏的目标领域,提升目标领域的性能。

目标领域只有一个,传统领域自适应只有一个源领域。(Cross-lingual, bilingual)

多源的领域自适应:现实中有多个源领域的数据可以获得,由此进行互补地迁移学习。 (multilingual)

例子:

目标领域: kitchen (包含 pans, cookbooks, electronic devices)

源领域:分别对应的源领域 Cookware, Books, Electronics

相关工作

• 无监督领域自适应:目标领域没有标注数据

。 将不同领域对齐到同一空间,通过训练使得模型在目标领域泛化好

■ 优点: 简单

■ 缺点: 丢失了不同领域的特性, 甚至造成负迁移

■ ours: 通过MOE捕捉不同领域的特性

• 多源领域自适应: 关注不同源领域与目标领域之间的关系

。 同等看待

• 有监督地学习相似性度量,或者使用预先定义好的度量方法

■ domain2domain: 无监督地学习数据分布的相似性,然后对源领域进行加权,构造伪训练集

■ example2domain: 针对目标数据筛选训练数据、有监督的atten

■ ours: example2domain是否也能无监督

动机

- domain2domain粒度太粗,能否细粒度地度量example2domain:即point-to-set
 - 计算隐层表示的马氏距离:参数化的度量方式
- 目标领域资源匮乏,能否通过无监督的范式学习
 - o meta-training: K个源领域,每次拿一个作为目标领域,其他做源领域
- 同时学习模型和度量方式
 - 。 对抗训练: 使得鉴别器难以区分源领域和目标领域

Figure 1: Architecture of the MoE model. E is the encoder which maps an input x to a hidden representation E(x); F^{S_i} is the classifier on the i^{th} source domain; D is the critic that is only used during adversarial training. M is the metric learning component, which takes the encoding of x and source domains $(S_{1:K})$ as input and computes α .

MOE 后验概率

• 多个领域训练通过多任务,学习每个领域自己的分类器

$$\mathcal{L}_{mtl} = -\sum_{i=1}^{K} \sum_{j=1}^{|\mathcal{S}_i|} \log p^{\mathcal{S}_i}(y_j^{\mathcal{S}_i} | x_j^{\mathcal{S}_i})$$
 (4)

● 每个目标样本通过MOE学习后验概率

$$\begin{aligned} p_{moe}(y|x) &= \sum_{i=1}^{K} \alpha(x, \mathcal{S}_i) \cdot p^{\mathcal{S}_i}(y|x) \\ &= \sum_{i=1}^{K} \alpha(x, \mathcal{S}_i) \cdot \text{softmax} \big(\mathbf{W}^{\mathcal{S}_i} E(x)\big) \end{aligned}$$

 p^{S_i} 单隐层分类器, α 计算权重

• 通过meta-training无监督计算MOE loss

K个Source,一个作为meta-target,其余作为meta-sources,组成K个meta-training tasks。

$$\mathcal{L}_{moe} = -\sum_{i=1}^{K} \sum_{j=1}^{|\mathcal{S}_i|} \log p_{moe}(y_j^{\mathcal{S}_i} | x_j^{\mathcal{S}_i})$$

$$= -\sum_{i=1}^{K} \sum_{j=1}^{|\mathcal{S}_i|} \log \sum_{l=1, l \neq i}^{K} \alpha(x, \mathcal{S}_l) \cdot p^{\mathcal{S}_l}(y_j^{\mathcal{S}_i} | x_j^{\mathcal{S}_i})$$
(3)

对抗训练

meta-sources的label是meta-target取反,通过交叉熵训练二分类

距离度量

马氏距离计算目标样本到单个源领域的距离

$$d(x, \mathcal{S}) = \left(\left(E(x) - \mu^{\mathcal{S}} \right)^{\top} \mathbf{M}^{\mathcal{S}} \left(E(x) - \mu^{\mathcal{S}} \right) \right)^{\frac{1}{2}}$$

置信分数由马氏距离计算得出

$$e(x, S_i) = f(d(x, S_i))$$

然后Softmax归一化

$$\alpha(x, \mathcal{S}_i) = \frac{\exp\left(e(x, \mathcal{S}_i)\right)}{\sum_{i=1}^K \exp\left(e(x, \mathcal{S}_i)\right)}$$
(2)

熵正则化

$$H(\boldsymbol{\alpha}(x,\cdot)) = -\sum_{l=1}^{K} \alpha(x,\mathcal{S}_l) \cdot \log \alpha(x,\mathcal{S}_l)$$

$$\mathcal{R}_h = \sum_{i=1}^K \sum_{j=1}^{|\mathcal{S}_i|} H(\boldsymbol{\alpha}(x_j^{\mathcal{S}_i}, \cdot))$$
 (6)

联合训练

根据权重调整几个loss

$$\mathcal{L} = \lambda \cdot \mathcal{L}_{moe} + (1 - \lambda) \cdot \mathcal{L}_{mtl} + \gamma \cdot \mathcal{L}_{adv} + \eta \cdot \mathcal{R}_{h}$$

$$(7)$$

训练过程

```
Algorithm 1 Training Procedure
```

```
1: Input: multi-source domain data \mathcal{S} = \{\mathcal{S}_i\}_{i=1}^K, target domain data \mathcal{T}
 2: Hyper-parameters: mini-batch size m, coefficients for different losses: \lambda, \gamma and \eta
             Sample K source mini-batches \{(\mathbf{x}^{S_i}, \mathbf{y}^{S_i})\}_{i=1}^K from S and a target mini-batch \mathbf{x}^T from \mathcal{T}
 4:
 5:
             \mathcal{L}_{mtl}, \mathcal{L}_{moe}, \mathcal{L}_{adv}, \mathcal{R}_h \leftarrow 0
             for t = 1 to K do
 6:
                   Set meta-target as \mathcal{T}^{meta} \triangleq \tilde{\mathcal{S}}_t \triangleq (\mathbf{x}^{\mathcal{S}_t}, \mathbf{y}^{\mathcal{S}_t})
 7:
                   Set meta-sources as S^{meta} \triangleq \{\tilde{S}_i\}_{i=1,i\neq t}^K, where \tilde{S}_i \triangleq (\mathbf{x}^{S_i}, \mathbf{y}^{S_i})
Compute cross-entropy loss over \mathcal{T}^{meta}, and add to \mathcal{L}_{mtl}
 8:
 9:
                   Compute Mahalanobis metric \alpha(x, \mathcal{S}') for each x \in \mathcal{T}^{meta} and \mathcal{S}' \in \mathcal{S}^{meta}
                                                                                                                                                                  ⊳ Eq. (2)
10:
                   Compute MoE loss over (\mathcal{S}^{meta}, \mathcal{T}^{meta}) using \alpha, and add to \mathcal{L}_{moe}
                                                                                                                                                                  ⊳ Eq. (3)
                   Compute entropy of \alpha(x,\cdot) for each x \in \mathcal{T}^{meta}, and add to \mathcal{R}_h
                                                                                                                                                                  ⊳ Eq. (6)
12.
13:
             Compute MMD between \mathbf{x}^{\mathcal{T}} and \bigcup_{i=1}^{K} \mathbf{x}^{\mathcal{S}_i}, and add to \mathcal{L}_{adv}
                                                                                                                                                                  ⊳ Eq. (5)
14:
             Update parameters via backpropagating gradients of the total loss \mathcal{L}
                                                                                                                                                                  ⊳ Eq. (7)
16: until converge
```

实验结果

亚马逊商品评论数据集

- 四个源领域 Books (B), DVDs (D), Electronics (E), and Kitchen appliances (K)
- 每个源领域1000个正例 1000个负例,由Chen12采样得到Ziser17
- 交叉验证的范式进行meta-training

SETTING	Non-adversarial		ADVERSARIAL					
SETTING	best-SS	uni-MS	MoE	mSDA [†]	MDAN	best-SS-A	uni-MS-A	MoE-A
D,E,K–B	75.43	78.43	79.42	76.98	78.63	80.07	80.25	80.87
B,E,K-D	81.23	82.49	83.35	78.61	80.65	82.68	83.30	83.99
B,D,K-E	85.51	84.79*	86.62	81.98	85.34	86.32	85.96*	86.38
$_{\mathrm{B,D,E-K}}$	86.83	87.00	87.96	84.33	86.26	87.05	87.55	88.06
Average	82.25	83.18	84.34	80.48	82.72	84.03	84.27	84.83

Table 1: Multi-Source domain adaptation accuracy on Amazon dataset of CHEN12. * indicates negative transfer, i.e., the unified multi-source model underperforms the best single-source model. $mSDA^{\dagger}$ is not an adversarial approach, but utilizes unlabeled data from target domain.

SETTING	Non-adversarial			ADVERSARIAL		
DETTING	best-SS	uni-MS	MoE	best-SS-A	uni-MS-A	MoE-A
D,E,K–B	85.35	87.00	87.55	86.85	87.55	87.85
B,E,K-D	85.25	86.80	87.85	86.00	87.40	87.65
B,D,K-E	86.80	88.30	89.20	88.90	89.35	89.50
B,D,E–K	88.90	89.65	90.45	89.95	90.35	90.45
Average	86.58	87.94	88.76	87.93	88.66	88.86

Table 2: Multi-Source domain adaptation accuracy on Amazon dataset of ZISER17.

代码实现

训练集

train: 3个源领域

unl: 目标领域的训练 (用于对抗训练)

input: b x 5000

hidden: b x 500

1. MTL 交叉熵

ms_outpus: list x domain_nums 每个domain的batch分别经过对应二分类器,只计算对角线

out: b x 2

item	domian 1 cls	domian 1 cls	domian 1 cls
domian 1 batch	out		
domian 2 batch		*	
domian 3 batch			*

2. KLLoss 均方误差

source_alphas: list x domain_nums

使用hidden计算每个样本与所有domain的**马氏距离**,按列Softmax

size: domains x b

item	example 1	example 2	•••	example batch_szie
domian 1	alpha 1,1			
domian 2	alpha 1,2			
domian 3	alpha 1,1			

source_labels:每个样本对应的domain为1,其余为0

domain	example 1	example 2	•••	example batch_szie
domian 1	1	1		1
domian 2	0	0		0
domian 3	0	0		0

拟合alpha的分布,相当于attention,这里计算均方误差,不同于交叉熵只关注label为1的项。

3. HLOSS 计算权重的熵

$$H(X) = \sum_{x \in X} -p(x)logp(x)$$

对2的补充,熵越小,越趋近于one-hot。

例:

p(x1)	p(x2)	p(x3)	熵
1	0	0	0
1/2	1/4	1/4	3/2log2
1/3	1/3	1/3	log3

4. MOE NLLLoss

source_alphas: 3 x b

ms_outputs: $[b \times 2, b \times 2, b \times 2]$

遍历每个domain,每个类别乘权重。

5. Domain adversarial network

目标领域训练集的标签为真实标签,源领域训练集的标签是目标领域标签的**反**,使得模型区分源/目标领域。

实现: hidden通过二分类器。

测试

train: 3个源领域

test: 目标领域的测试

domain编码: 计算每个domain的正例, 负例, 所有数据的均值

参考文献

Related Works in Semi-supervised Domain Adaptation for Dependency Parsing, Zhenghua Li, SUDA, in ACL19