Suppose $\varphi: Q \rightarrow H$ is a homomorphism with kernel K and image H'. Then $\overline{\psi}(aK) = \psi(a)$ is a well-defined isomorphism $\overline{\psi}: \overline{G}/K \longrightarrow H'$. In particular, $G/K \approx H'$.

Ex. $\varphi: \mathcal{Z}_{12} \longrightarrow \mathcal{Z}_{9}$ given by $\varphi(x) = 3x \mod 9$

$$G/K = \{cosets \ of \ k\}$$

$$= \left\{ \{0,3,6,9\}, \{1,4,7,10\}, \{2,5,6,11\} \right\}$$

$$= \{cosets \ of \ k\}$$

$$= \{cosets \ of \$$

Kis a normal subgroup, so we have a group operation on G/K.

Have a function $\overline{\varphi}: \mathcal{G}_K \longrightarrow H'$ given by $\overline{\varphi}(a+k) = \varphi(a)$.

· This is well-defined: 1+K=7+K. Is it the that $\varphi(1+K)=\overline{\varphi}(7+K)$? Is it the that $\varphi(1)=\varphi(7)$? Yes! [Recall: $\varphi(\alpha)=\varphi(b)$ Af $\alpha K=bK$]

q is bijective.

ē is an isomorphism, ic, it is operation-preserving as well.

$$ker \varphi = \{0,5\}$$

$$im \varphi = \{0,2,4,6,8\}$$

$$\begin{vmatrix} \frac{2}{9} \\ ker \varphi \end{vmatrix} = \frac{|\frac{2}{10}|}{|ker \varphi|} = \frac{10}{2} = 5$$

$$lim \varphi = 5$$

2. Z27 ⊕ Z3 → Zq ⊕ Zq Sujective homomorphism?

Suppose there did exist a runjective homomorphism e: 327€ 33→39€3.
Then e must be an isomorphism:

- [2,02] = 81, and [22,02] = 81, so & must be injective!
- Let $K = \ker \varphi$. Then we know that $\frac{32+9}{3}/K = \frac{32+9}{9}$ ond $\frac{32+9}{3}/K = \frac{32+9}{3}/K = \frac{32+9}{3}/K = \frac{32+9}{3}/K = \frac{32+9}{3}/K = \frac{31}{3}/K = \frac{31$

In 22+0.23, we have elements of order 27-eg, (1,0). But no element of 29-eg can have order 27-(a,b) will have order 1,3,0r9 (since 1,3,0r9) = [1,3,0r9]).

3. U(24)/U12(24)

 $U_{12}(24) = \{x \in U(24) \mid x \mod 12 = 1\}$ subgroup of U(24).

"quotient group" = factor group

Consider $\varphi: U(24) \longrightarrow U(12)$ given by $\psi(x) = x \mod 12$.

Then φ is surjective ξ ker $\varphi = U_{12}(24)$. so $U^{(24)}$ / $U_{12}(24) \Rightarrow U(12)$.

because every number reliprime to 12 is also reliprime to 21.