MAPer: A Multi-scale Adaptive Personalized Model for Temporal Human Behavior Prediction

Sarah Masud Preum
John A. Stankovic
Yanjun Qi

Modeling Temporal Human Behavior

- Generation of human behavior data
 - Online behavior:

Motivation

- social media, search log
- Targeted advertising/ content sharing
- Personalized IR
- Offline behavior:
 - Sensors, smart devices
 - Predicting occupancy and energy usage
 - Anomaly detection in assisted living facilities

Factors Affecting Regular Temporal Behavior

- Temporal smoothness (lag)
 - Working from 3 pm to 4pm
 (and then continue after 4pm)
- Behavior rhythm (cycle)

Motivation

- Watching TV at every Saturday night
- Interaction among multiple activities
 - Working till late night delays sleep time

Results

Conclusion

- Factors vary over multi-scale temporal contexts
 - Hour of the day

Day of the week

Adaptive modeling

Contribution: <u>M</u>ulti-scale <u>A</u>daptive <u>Per</u>sonalized Model (MAPer)

Approach

- Extracts features from major temporal factors
- Encodes multi-scale temporal contexts to ensure adaptive learning
- A linear predictive model with explanatory power

Solution Overview

Creating Behavior Time Series

 Quantify behavior in the temporal domain as discrete behavior sample

Creating Behavior Sample Matrix

Lag and Cycle Features

Lag of order i at time y_t: y_{t-i}

$$\hat{y}_t \approx \sum_{i=1}^l \alpha_i \cdot y_{(t-i)}$$

Cycle of behavior time series

$$\hat{y}_t \approx \sum_{i=1}^l \alpha_i \cdot y_{(t-i)} + \sum_{j=1}^c \beta_j \cdot y_{(t-cj)}$$

Temporal Context Features

• Daily basis vector: \vec{B}_d

Example: Basis vector for hour 3

• Weekly basis vector: \vec{B}_{w}

Quantify the effect of temporal context on behavior

Example: Basis vector for Saturday

Features for a Single Activity

$$\hat{y}_{t}^{k} \approx \sum_{i=1}^{L_{k}} \alpha_{i}^{k} \cdot \hat{y}_{t-i}^{k} + \sum_{j=1}^{C_{k}} \beta_{j}^{k} \cdot \hat{y}_{t-c_{j}}^{k} + \cancel{V}^{k} \cdot (\vec{B}_{d}, \vec{B}_{w})$$
Lag Cycle Temporal Context

Only daily basis vector: \vec{B}_d

Daily scale Adaptive Personalized model (DAPer)

Only weekly basis vector: $\vec{B}_{_{\scriptscriptstyle W}}$

Weekly scale Adaptive Personalized model (WAPer)

Both \vec{B}_d and \vec{B}_w :

Multi-scale Adaptive Personalized model (MAPer)

Interaction Features for Multiple Activities

interaction

Related Works

- Time series prediction
 - Seasonal ARIMA (SARIMA) model
 - Does not consider temporal context of behavior
- Modeling online user behavior
 - Search query [K. Radnisky et al, WWW 2012; J. Yang et al, WSDM 2011]
 - Social media posts [F. Abel et al, UMAP 2011]
 - Focus on temporal pattern of user generated contents rather than actual user behavior
- Modeling offline user behavior
 - Computer vision and WSN: Sensing and recognizing different activities of daily living
 - Don't focus on predicting

Overview of Evaluation

- Predicting behavior intensity at a time interval as a regression problem
 - Performance metric: MSE, Pearson Correlation
- 4 real datasets
- Comparison with
 - Parametric and non parametric baselines
 - state-of-art SARIMA model
- Sensitivity analysis

Datasets

Online Behavior Data

Dataset	Span	# of users	Behavior sample
Twitter	5 months	1274	# of tweets /hour
Search log	3 months	1307	# of unique search queries /hour

Offline Behavior Data

Dataset	Span	# of resident	Behavior sample
ARAS	1 month	2	
HOLMES	3 months	1	Duration of activity/half hour

Baselines

Motivation

Moving average over both lag and cycle terms (MA)

$$\hat{y}_{t} = \frac{1}{2} \left(\frac{\sum_{i=1}^{l} y_{t-i}}{l} + \frac{\sum_{j=1}^{c} y_{(t-j*24)}}{c} \right)$$

Auto-regressive method with cycle feature (AR-C)

$$\hat{y}_t \approx \sum_{i=1}^l \alpha_i \cdot y_{(t-i)} + \sum_{j=1}^c \beta_j \cdot y_{(t-c_j)}$$

Comparing with Baselines

 On average, MAPer reduces MSE by 10% and increases Pearson correlation by 83%

Pearson Correlation

Comparing with State of Art

 On average, MAPer reduces MSE by 14% and increases Pearson Correlation by 44% than SARIMA

Effect of Temporal Context Features

Daily context is more useful than weekly context

	Pearson Correlation			Mean Square Error		
Dataset	DAPer	WAPer	MAPer	DAPer	WAPer	MAPer
Search log	0.33	0.21	0.34	0.041	0.044	0.041
Twitter	0.49	0.40	0.49	0.045	0.048	0.045
ARAS	0.78	0.68	0.78	0.016	0.019	0.016
HOLMES	0.58	0.33	0.58	0.0009	0.0009	0.0009

Effect of Interaction Features

Interaction features improves the performance

	Pearson	Correlation	Mean Square Error		
	ARAS	HOLMES	ARAS	HOLMES	
MAPer					
w/o Interaction	0.7169	0.385	0.0184	0.0009	
MAPer	0.782	0.583	0.016	0.0009	
%Improvement	9	51	15	-	

Results: Explanatory Power of MAPer

Quantify effect of different features

Motivation

Detecting user similarity more precisely

(b) MAPer model

Insights from results

Motivation

Experiment	Online Behavior	Offline Behavior	
Prediction	MAPer	MAPer with interation	
Personalization	✓	NA	
Adaptive Learning	✓	\checkmark	
Variation of temporal window length	Higher better	Varies for each activity: having snack vs sleep	
Variation of training set size	Lower better		
Variation of lag	No significant effect		

Concluding Remarks

- A personalized interpretable model for temporal behavior prediction
- Virtual and physical behavior
- Some regularity in behavior that conforms with hours of the day, day of the week

Thanks!

Backup

Dataset Deatails

Dataset	Total users considered	Span	Minimum days used	Filtered users	Format	Behavior sample
Twitter, CIKM 2009	120,689	5 months	>=120 days	1274	USER_ID, Text, Timestamp	# of tweets / hour
Microsoft AOL Search log	182,348	3 months	>=60 days	1307	USER_ID, Query, QueryTime, ItemRank, ClickURL	#of unique search queries /hour

Datasets: Activities of daily living (ADL)

- ARAS Smart home Data
 - 2 person resident with 27 labeled activities per person spanning over 1
 month
 - Sleeping, having breakfast/dinner/lunch, using internet, watching TV, reading, using phone, toileting
 - Format: {Day, activity name, start time, end time, resident ID}
 - Duration of an activity per half hour as behavior sample
- Predict health-relevant activities
 - Sleeping, having snack, breakfast, lunch, dinner

Comparing with State of Art

 On average, MAPer reduces MSE by 14% and increases Pearson Correlation by 44% than SARIMA

	Baselir	ne Methods	state-of-art		Multi-scale Adaptive Methods		% Improvement
Dataset	MA	AR-C	Global SARIMA	Local SARIMA	Global MAPer	Local MAPer	over state-of-art
Search log	0.046	0.045	0.065	0.048	0.045	0.041	14.6
Twitter	0.056	0.052	0.073	0.065	0.049	0.045	30.7
ARAS	0.032	0.017	0.042	0.011	0.018	0.016	-
HOLMES	0.021	0.001	0.082	0.001	0.001	0.0009	10

	Baselin	ne Methods	state-of-art		Multi-scale Adaptive Methods		% Improvement
Dataset	MA	AR-C	Global SARIMA	Local SARIMA	Global MAPer	Local MAPer	over state-of-art
Search log	0.180	0.165	0.098	0.479	0.228	0.337	-
Twitter	0.277	0.330	0.079	0.254	0.410	0.491	93.3
ARAS	0.239	0.384	0.204	0.7166	0.446	0.782	9
HOLMES	0.296	0.104	0.136	0.340	0.277	0.583	71.5

Effect of Personalization

Personalization improves the performance drastically

	Pearson C	orrelation	Mean Square Error					
	Search log	Twitter	Search log	Twitter				
Personalized	0.337	0.491	0.041	0.045				
Aggregated	0.127	0.192	0.114	0.064				
Improvement	2.65 times	2.56 times	64%	30%				

Table 5: Personalized models for each user significantly improve the prediction performance for both Twitter and search log datasets.

Sensitivity Analysis

Parameter	Range		
	Online Behavior	Offline Behavior	
Scale (hours)	1,2,4,6	1/2 ,1,2,4	
Training set size (weeks)	2,4,6,8	NA^6	
Lag (hours)	2,3,4,6,8	1/2,1,2,3,4	

Table 8: The range of different parameters used in experiments. The default values of parameters are shown in bold.

Effect of Varying Training Set Size

The most recent behavior data is more important

	Pearson Co	rrelation	Mean Square Error	
Methods	Search log	Twitter	Search log	Twitter
2 weeks	0.4	0.52	0.039	0.044
4 weeks	0.34	0.49	0.041	0.045
6 weeks	0.31	0.45	0.042	0.048
8 weeks	-	0.44	-	0.048
% Improvement	31	18	7	8

Table 9: Training set with more recent data results into better prediction.

Effect of Varying Temporal Window

	Pearson Co	rrelation	Mean Square Error	
Scale	Search log	Twitter	Search log	Twitter
1 hour	0.337	0.49	0.041	0.045
2 hours	0.38	0.45	0.022	0.0261
4 hours	0.427	0.49	0.011	0.0138
6 hours	0.431	0.50	0.008	0.0094
Improvement	27%	11%	5 times	4.7 times

Table 10: Varying temporal scale: larger scale results into better prediction performance for online behavior data.

Interactive Activities

Activity	Influential Activities
R1:sleep	brushing teeth, using internet,
	watching TV
R2:sleep	brushing teeth, watching TV,
	washing dishes
R1:snack	watching TV, using internet,
	talking on the phone
R2:snack	watching TV, having shower,
	using internet
R1:breakfast	preparing breakfast, using internet,
	watching TV
R1:lunch	preparing lunch, talking on the phone,
	watching TV
R1:dinner	talking on the phone, watching TV,
	preparing dinner

Table 6: Interaction among different activities of ARAS dataset: the left column contains the activities we want to predict and the right column contains the activities that interact with them.

Future work

- Forecast 1 step → forecast n steps
- Formulate as a multi-class classification problem
- Application level: Aggregating individual level models over a population/geographical region for predicting peak in web traffic

Distribution of Cycles

Dataset	Most frequent	2 nd most freq	3 rd most freq	others
Search log	7 Days (627)	14 Days (171)	2 hours (15) 1 hour (12)	1,6,8 days
Twitter	7 Days (575)	1 hour (181)	14 days (74)	2,3,20 hours

ADL dataset insights

Activity	Best method	Best scale	Potential reason
R1_sleep	I-MAPer	½ hour	Regular timing, all most all methods perform well
R2_sleep	I-MAPer	½ hour	
R1_snack	AR-C	2 hour	No temporal context, prediction performance low
R1_breakfast	I-MAPer	2 hour	
R1_lunch	AR-C	2 hour	No temporal context
R1_dinner	I-MAPer	2 hour	
R2_snack	I-MAPer	2 hour	

Variation of scale: individual activity from ADL data in terms of PC

- Sleep pattern of 1 quite regular (around 2pm-10am)
- Meal time varies, so relaxing the scale helps

	1⁄₂ hr	1 hr	2 hr	4 hr
R1_snack	-0.011	0.118	0.181	0.127
R1_sleep	0.939	0.910	0.904	0.902
R1_breakfast	0.495	0.223	0.675	0.631
R1_lunch	0.272	0.224	0.435	0.388
R1_dinner	0.228	0.102	0.503	0.490
R2_snack	0.292	0.333	0.507	0.581
R2_sleep	0.883	0.826	0.777	0.737

Variation of scale: individual activity from ADL data

• MSE

	1⁄₂ hr	1 hr	2 hr	4 hr
R1_snack	0.023	0.014	0.007	0.003
R1_sleep	0.025	0.043	0.037	0.029
R1_breakfast	0.011	0.015	0.004	0.002
R1_lunch	0.007	0.004	0.002	0.001
R1_dinner	0.007	0.005	0.001	0.001
R2_snack	0.017	0.009	0.005	0.002
R2_sleep	0.030	0.050	0.057	0.059

ARIMA model

- Forecast at time t =
- constant+

weighted sum of last p values of y+ AR Terms
weighted sum of last q forecast errors MA Terms

ARIMA(p,d,q)

$$y_{t} = \mu + (\phi_{1}y_{(t-1)} + \phi_{2}y_{(t-2)} + \dots + \phi_{p}y_{(t-p)})$$
$$+ (\theta_{1}e_{(t-1)} + \theta_{2}e_{(t-2)} + \dots + \theta_{q}e_{(t-q)})$$

ARIMA model

- ACF that dies out gradually and PACF that cuts off sharply after a few lags →AR signature
 - An AR series is usually positively autocorrelated at lag 1
- ACF that cuts off sharply after a few lags and PACF that dies out more gradually

 MA signature
 - An MA series is usually negatively autcorrelated at lag 1 (or even mildly overdifferenced)

ARIMA model

- Our model is seasonal ARIMA model (p,d,q)x(P,D,Q): (l,0,0)X(c,0,0)
- l: lag, c:cycle
- d=0, D=0: as we assumed the time series to be stationary
 - we did not perform any differencing

ARIMA forecasting equation

- Let Y denote the *original* series
- Let y denote the *differenced* (stationarized) series

o difference
$$(d=0)$$
: $y_t = Y_t$

rst difference
$$(d=1)$$
: $y_t = Y_t - Y_{t-1}$

econd difference (d=2):
$$y_t = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$$

= $Y_t - 2Y_{t-1} + Y_{t-2}$

lote that the second difference is not just the change relative to two eriods ago, i.e., it is *not* $Y_t - Y_{t-2}$. Rather, it is the change-in-the-change, which is a measure of local "acceleration" rather than trend.

Undifferencing the forecast

The differencing (if any) must be *reversed* to obtain a forecast for the original series:

If
$$d = 0$$
: $\hat{Y}_t = \hat{y}_t$

If
$$d = 1$$
: $\hat{Y}_t = \hat{y}_t + Y_{t-1}$

If
$$d = 2$$
: $\hat{Y}_t = \hat{y}_t + 2Y_{t-1} - Y_{t-2}$

Fortunately, your software will do all of this automatically!