COS-D419 Factor Analysis and Structural Equation Models 2023, Assignment 2

Rong Guang

2023-01-29

1 Exercise 2.1

Specify and test the hypothesis given on the page 1 of the lecture material.

Draw conclusions based on the χ^2 statistic and the CFI, TLI, RMSEA, and SRMR indices.

What can you say about the parameter estimates?

Visualize the model.

1.1 Read in the data set

Start by downloading the data file from Moodle to Project folder.

```
library(tidyverse)#data wrangling
library(readr)# read data into r
orig_data <- read_csv("ASC7INDM.CSV", show_col_types = FALSE)</pre>
```

1.2 Write functions

1.3 Subset the data set

Subset the variables for analysis and name it as sc (Self-concept).

```
# Select the variables for use
sc <- orig_data %>% dplyr::select(starts_with("SDQ2N")) # namming logic: sc = self-concept
```

1.4 Inspect the data

Have a quick overview of the data.

glimpse(sc)

```
## Rows: 265
## Columns: 16
## $ SDQ2N01 <dbl> 6, 6, 4, 5, 6, 5, 1, 2, 5, 4, 2, 5, 6, 4, 4, 6, 6, 6, 5, 6, 6, 6, 6
## $ SDQ2N13 <dbl> 5, 6, 6, 5, 5, 5, 6, 1, 5, 6, 6, 5, 6, 3, 5, 6, 6, 6, 4, 5, 5,~
## $ SDQ2N25 <dbl> 4, 6, 6, 5, 5, 5, 1, 6, 6, 3, 6, 6, 6, 5, 5, 6, 6, 6, 6, 5, 4,~
## $ SDQ2N37 <dbl> 6, 6, 2, 6, 4, 3, 6, 4, 6, 6, 6, 5, 5, 5, 4, 5, 6, 4, 4, 6, 6,~
## $ SDQ2N04 <dbl> 3, 6, 6, 5, 3, 3, 4, 4, 6, 6, 5, 6, 5, 4, 4, 4, 4, 6, 5, 5, 3,~
## $ SDQ2N16 <dbl> 4, 6, 4, 6, 4, 2, 6, 4, 6, 5, 6, 6, 5, 5, 5, 5, 6, 5, 4, 6, 6,~
## $ SDQ2N28 <dbl> 4, 6, 6, 5, 4, 4, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 6, 4, 2, 4, 4,~
## $ SDQ2N40 <dbl> 6, 6, 3, 6, 4, 4, 6, 6, 6, 6, 6, 6, 6, 5, 4, 4, 6, 6, 5, 5, 5, ~
## $ SDQ2N10 <dbl> 2, 5, 6, 5, 4, 4, 1, 6, 5, 4, 2, 6, 5, 5, 5, 3, 4, 6, 5, 4, 6,~
## $ SDQ2N22 <dbl> 6, 6, 5, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 3, 6,~
## $ SDQ2N34 <dbl> 1, 6, 4, 3, 5, 5, 1, 1, 5, 4, 5, 6, 5, 2, 5, 2, 3, 2, 1, 3, 3,~
## $ SDQ2N07 <dbl> 6, 6, 6, 6, 3, 4, 5, 3, 6, 5, 6, 6, 6, 6, 4, 4, 6, 6, 6, 6, 3,~
## $ SDQ2N31 <dbl> 6, 6, 3, 6, 4, 4, 6, 4, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 5, 5, 5, ~
## $ SDQ2N43 <dbl> 6, 6, 1, 5, 5, 4, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 5, ~
```

The data set includes 16 variables from 265 observations. All the variables are numeric. Next, I examined the unique values of each variables.

unique.levels(sc)

```
## [1] "Variable SDQ2N01 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N13 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N25 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N37 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N04 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N16 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N28 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N40 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N10 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N22 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N34 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N46 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N07 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N19 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N31 has values of 1,2,3,4,5,6"
## [1] "Variable SDQ2N43 has values of 1,2,3,4,5,6"
```

For each variable, the values distribute from 1 to 6.

2 Explore the data

2.1 Descriptive statistics

Table 1: Descriptive dtatistics of selected variables

	centralize	dispersion tendency				
	mean	median	sd	range	se	IQR
SDQ2N01	4.41	5	1.35	5	0.08	1
SDQ2N13	5.00	6	1.36	5	0.08	2
SDQ2N25	5.10	6	1.23	5	0.08	1
SDQ2N37	4.83	5	1.14	5	0.07	2
SDQ2N04	4.52	5	1.40	5	0.09	2
SDQ2N16	4.65	5	1.24	5	0.08	2
SDQ2N28	4.69	5	1.33	5	0.08	2
SDQ2N40	4.98	5	1.36	5	0.08	1
SDQ2N10	4.62	5	1.15	5	0.07	1
SDQ2N22	5.38	6	1.09	5	0.07	1
SDQ2N34	3.89	4	1.70	5	0.10	3
SDQ2N46	5.27	6	1.30	5	0.08	1
SDQ2N07	4.32	5	1.78	5	0.11	3
SDQ2N19	4.54	5	1.69	5	0.10	2
SDQ2N31	4.74	5	1.57	5	0.10	2
SDQ2N43	4.98	5	1.40	5	0.09	1

```
#sc.ds %>%
# tab_df(digits = 2,
# alternate.rows = T,
# title = "Table 1. Descriptive dtatistics of selected variables",
# CSS = list(css.centralign='text-align: right;'))
```

2.2 Visualization

2.2.1 Histogram

```
#plot it
sc %>%
 pivot_longer(everything()) %>% #longer format
  ggplot(aes(x = value)) + #x axis used variable "value" (a default of pivot)
  geom_histogram(binwidth = 1,
                 aes(y = ..density..), #match ys of density and histogram plots
                 color = "black", #my favorite border color
                 fill = "#9999CC")+ # I heard this is a beautiful color
  geom_density(fill = "pink",
               alpha = 0.25)+ #adjust the aesthetics for density plot
  facet_wrap(~name, scales = "free" #wrap by name variable
            ) + #use the label I set above
  theme(panel.grid.major = element blank(), #qet rid of the qrids
       panel.grid.minor = element_blank(),
       panel.background = element_rect(fill = "white", #adjust the background
                                        color = "black"),
       strip.background = element_rect(color = "black", #adjust the strips aes
                                       fill = "steelblue"),
       strip.text = element_text(size =8,
                                  color = "white"), #adjust the strip text
       axis.title.x = element_text(size = 3), #adjust the x text
       axis.title.y = element_text(size = 3), # adjust the y text
       plot.title = element_text(size = 12, face = "bold"))+ #adjust the title
  labs(title = "Fig. 2.1.2.1 Distribution of variables", #title it
```

SDQ2N04 SDQ2N01 SDQ2N07 SDQ2N10 8.0 0.4 0.3 0.6 -0.3 0.4 0.2 0.4 -0.2 0.2 0.1 0.2 0.1 0.0 0.0 0.0 0.0 SDQ2N13 SDQ2N16 SDQ2N19 SDQ2N22 1.25 -1.00 -0.75 -0.50 -0.25 -0.00 -0.4 0.4 0.3 0.3 0.4 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0 density SDQ2N25 SDQ2N34 SDQ2N28 SDQ2N31 0.20 -0.15 -0.10 -0.05 -0.00 -0.4 **-**0.3 **-**0.2 **-**0.75 0.3 0.50 0.2 0.25 0.1 0.1 0.00 0.0 0.0 2 SDQ2N40 SDQ2N37 SDQ2N43 SDQ2N46 1.00 -0.75 -0.50 -0.25 -0.00 -0.4 **-**0.3 **-**0.2 **-**0.75 0.75 0.50 0.50 0.25 0.25 0.1 0.00 0.00

Fig. 2.1.2.1 Distribution of variables

library(GGally)