Learning Sum-Product Networks

Martin Trapp

Probabilistic Machine Learning

 Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.

- Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.
- What are tractable probabilistic models?

- Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.
- What are tractable probabilistic models?
- A class of queries Q on a class of models M is tractable, iff for any query q ∈ Q and model m ∈ M the computational complexity is at most polynomial.

- Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.
- What are tractable probabilistic models?
- A class of queries Q on a class of models M is tractable, iff for any query q ∈ Q and model m ∈ M the computational complexity is at most polynomial.
- SPNs admit many probabilistic inference tasks, such as marginalisation, in linear time in their representation size.

Sum-Product Networks

- Sum-product networks (SPNs)¹ is a class of general-purpose probabilistic machine learning models that admit tractable probabilistic inference.
- SPNs are a sub-class of so-called tractable probabilistic models or probabilistic circuits.
- A class of queries Q on a class of models M is tractable, iff for any query q ∈ Q and model m ∈ M the computational complexity is at most polynomial.
- SPNs admit many probabilistic inference tasks, such as marginalisation, in linear time in their representation size.

¹H. Poon & P. Domingos: Sum-product networks: A new deep architecture. In UAI, 2011.

What is a Sum-Product Network?

- Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables.
- An SPN is a distribution over **X** defined as a 4-tuple $S = (G, \psi, w, \theta)$.
 - G is a computational graph.
 - ψ is a so-called scope function.
 - w denotes the set of sum-weights and θ the set of leaf node parameters.

This definition² is conceptually different to the original definitions as it disentangles the computational graph and the scope function.

²M. Trapp et al.: Bayesian Learning of Sum-Product Networks. In NeurIPS, 2019.

Computational Graph $\mathcal G$

 ${\cal G}$ is a rooted connected directed acyclic graph (DAG), containing: sum (S), product (P) and leaf nodes (L).

Figure 1: Example of a tree-shaped computational graph.

Leaves L in \mathcal{G}

Leaf nodes are input nodes with arbitrary distribution, e.g. Gaussian, Multinomial, variational autoencoder.

$$L(x) = p(x \mid \theta_L)$$

Product Nodes P in \mathcal{G}

Product nodes encode independence assumptions between sets of random variables.

Sum Nodes S in \mathcal{G}

Sum nodes³ replace independence with conditional independence within the network.

 $^{^3}$ We assume that $w_{S,C} \geq 0$.

Scope Function ψ

 ψ is a function assigning each node N in a sub-set of **X**,⁴ and has to fulfil the following properties:

- 1. If N is the root node, then $\psi(N) = X$.
- 2. If N is a sum or product, then $\psi(N) = \bigcup_{N' \in \mathbf{ch}(N)} \psi(N')$.
- 3. For each $S \in S$ we have $\forall N, N' \in \mathbf{ch}(S) \colon \psi(N) = \psi(N') \text{ (completeness) }^a$.
- 4. For each $P \in \mathbf{P}$ we have $\forall N, N' \in \mathbf{ch}(P) \colon \psi(N) \cap \psi(N') = \emptyset$ (decomposability).

^aComplete and decomposable SPNs are referred to as valid SPNs.

⁴This sub-set is often referred to as the scope of a node.

Example SPN $S = (G, \psi, w, \theta)$

After applying a scope function ψ on \mathcal{G} we obtain the SPN. Most structure learners learn both in an entangled way. Note that we define L(x) := 1 for every x if and only if $\psi(L) = \emptyset$.