

DX-LR01 串口应用指导

版本: 2.0

日期: 2023-08-20

更新记录

版本	日期	说明	作者
V1.0	2022/12/11	初始版本	SML
V1.1	2023/05/12	优化指令	SML
V2.0	2023/08/20	优化空中速率等级	SML

联系我们

深圳大夏龙雀科技有限公司

邮箱: sales@szdx-smart.com 电话: 0755-2997 8125 网址: www.szdx-smart.com

地址:深圳市宝安区航城街道航空路华丰智谷 A1座 601

目录

1.			
	1.1.	串口基本参数	5 -
		模块默认射频基本参数	
	1.3.	传输模式和 AT 命令模式	5 -
2.		测试工具	
	2.1.	电脑端测试软件	6 -
3.		更用	
		模块测试最小系统	
		模块使用操作示例	
4.		AT 命令详解	
		命令格式说明	
		回应格式说明	
		AT 命令举例说明	
5.		令详解	
	5.1.	基础指令	
		5.1.1. 测试指令	
		5.1.2. 进入或退出 AT 命令模式	
		5.1.3. 查询配置信息	
		5.1.4. 设置\查询一串口波特率	
		5.1.5. 设置\查询一串口停止位	
		5.1.6. 设置\查询—串口校验位	
		5.1.7. 设置\查询—工作模式	13 -
		5.1.8. 设置\查询—功耗模式	
		5.1.9. 软件重启	· 15 -
		5.1.10. 恢复出厂设置	15 -
	5.2.	模块射频参数 (一键配置模块空中速率和通讯距离)	- 16 -
		5.2.1. 设置/查询 - 一键配置模块空中速率和通讯距离	· 16 -
	5.3.	模块射频参数配置 (通用配置)	· 16 -
		5.3.1. 设置\查询一工作信道	- 16 -
		5.3.2. 设置\查询—设备地址	· 17 -
		5.3.3. 设置\查询—发射功率	· 18 -
	5.4.	模块射频参数配置 (差异化配置)	· 18 -
		5.4.1. 查询一射频带宽	· 18 -
		5.4.2. 设置\查询一射频编码率	· 19 -
		5.4.3. 设置\查询—扩频因子	· 19 -
		5.4.4. 设置\查询—CRC 校验	- 20 -
		5.4.5. 设置\查询—Iq 信号翻转	- 20 -
	5.5.	错误码一览表	- 20 -
6	增值Ⅱ	R名 -	- 21 -

图片索引

冬	1	:	电脑端串口软件图	- 6	; ·	
冬	2	:	模块最小系统图	- 7	7	

1. 引言

DX-LR01 是一款低功耗 LoRa 模组,是深圳大夏龙雀科技有限公司为智能无线数据传输而打造,采用国产 ASR6601 SOC 芯片,芯片内部集成了 SUb 1GHz 的射频收发机、Arm China STAR-MC1 微处理器、内置 Flash 存储、SRAM。本模块支持 UART、I2C、I2S 等接口,支持 IO 口控制、ADC 采集,具有低功耗、高性能、远距离,组网等优点。适用于 IoT 领域的多种应用场景,例如智能表计、智能物流、智能建筑、智慧城市、智慧农业等诸多应用场景。

1.1. 串口基本参数

● 模块串口默认参数: 9600bps/8/n/1 (波特率/数据位/无校验/停止位)

1.2. 模块默认射频基本参数

模块工作模式:透明传输模块功耗模式:高时效模式

● 模块空中速率和通讯距离 LEVEL 档位: 0 档位

● 模块频段: 433MHz

● 模块地址:ffff

模块带宽: 125KHz模块扩频因子: SF12模块射频编码率: 4/6

● 模块空中速率配置: 244bit/s

● 模块 CRC 校验:不校验

模块前导码长度: 8模块 IQ 信号: 不翻转模块发射功率: 22dB

1.3. 传输模式和 AT 命令模式

● 传输模式:模块在上电后,即为传输模式,此时可以开始传输数据。

● AT 命令模式:在传输模式下,使用"+++"切换为 AT 命令模式,可以响应 AT 命令。如需进入

传输模式,需发送"+++"退出 AT 命令模式。

2. PC 端测试工具

2.1. 电脑端测试软件

电脑端测试软件请在资料包中下载安装 sscom5.13.1 电脑串口软件进行测试,串口软件界面如下图:

图 1: 电脑端串口软件图

3. 串口使用

3.1. 模块测试最小系统

图 2: 模块最小系统图

3.2. 模块使用操作示例

一、模块与模块透明传输

- 1、将两个 DX-LR01 模块接好串口和供电。
- 2、发送+++, 让模块进入 AT 命令模式。
- 3、使用 AT+MODEO 设置两个模块都处于透明传输模式。
- 4、使用 AT+LEVEL 配置两个 LR01 模块为相同的速率等级,例如:设置等级为 1,发送指令 AT+LEVEL=1。
 - (只有当两个模块的射频参数相同时才可以传输数据,如果是自己配置的参数,则可以使用AT+HELP 对比两个模块的基本射频参数是否相同)
- 5、将模块断电重启或者使用 AT+RESET 重启, 重启后指令生效。
- 6、一个模块发送数据,另一个模块即可收到数据。 (注: lora 是半双工的协议,所以一个时刻只能一个模块发送)

二、模块与模块定点传输

- 1、将两个DX-LR01模块接好串口和供电。
- 2、发送+++, 让模块进入 AT 命令模式。
- 3、使用 AT+MODE1 指令,将模块工作模式设置为定点传输模式。
- 4、使用 AT+LEVEL 指令配置 LR01 模块的速率等级并使其相同,例如:设置等级为 1,发送指令 AT+LEVEL=1。
 - (只有当两个模块的射频参数相同时才可以传输数据,如果是自己配置的参数,则可以使用 AT+HELP 对比两个模块的基本射频参数是否相同)
- 5、将模块断电重启或者使用 AT+RESET 重启, 重启后指令生效。
- 6、选择发送方式为 HEX 发送。
- 7、定点传输是在 lora 上做的一个私有协议,所以需要按照一定的数据传输格式才可以正常接收。传输格式说明如下:设备地址(16 进制,两字节)+信道(16 进制,1 字节)+数据(16 进制)指令使用: AT+MAC 指令,可以查询或者修改当前模块的设备地址

AT+CHANNDL 指令,可以查询或者修改当前模块的工作信道

举例:

接收模块的地址为 0001, 信道为 01; 发射模块发送数据为 aabbcc, 则发送数据内容为: 000101aabbcc (十六进制: 00 01 01 61 61 62 62 63 63)

三、模块与模块广播传输

- 1、将两个DX-LR01模块接好串口和供电。
- 2、发送+++, 让模块进入 AT 命令模式。
- 3、使用 AT+MODE2,将模块工作模式设置为广播传输模式。
- 4、使用 AT+LEVEL 指令配置两个 LR01 模块的速率等级并使其相同,例如:设置等级为 1,发送指令 AT+LEVEL=1。
 - (只有当两个模块的射频参数相同时才可以传输数据,如果是自己配置的参数,则可以使用 AT+HELP 对比两个模块的基本射频参数是否相同)
- 5、将模块断电重启或者使用 AT+RESET 重启, 重启后指令生效。
- 6、发送+++, 退出 AT 命令模式, 进入传输模式。
- 7、选择发送方式为 HEX 发送。
- 8、广播传输是在 lora 上做的一个私有协议,所以需要按照一定的数据传输格式才可以正常接收, 传输格式说明如下:信道(1字节,16进制)+数据(16进制) 指令使用:AT+CHANNDL 指令,可以查询或者修改当前模块的工作频率

举例:

接收模块信道为 01, 发射模块发送数据为 aabbcc, 则发送数据内容为: 01aabbcc (十六进制: 01 61 61 62 62 63 63)

4. 相关 AT 命令详解

4.1. 命令格式说明

AT+Command<param1, param2, param3> <CR><CF>

- 所有的指令以 AT 开头, < CR > < LF > 结束,在本文档中表现命令和响应的表格中,省略了 < CR > < LF > ,仅显示命令和响应。
- 所有 AT 命令字符都为英文大写。
- <>内为可选内容,如果命令中有多个参数,以逗号","隔开,实际命令中不包含尖括号。
- <CR>为回车字符\r, 十六进制为 0X0D。
- <LF>为换行字符\n, 十六进制为 0X0A。
- 指令执行成功,返回相应命令以 OK 结束,失败返回 EEROR=<>, "<>"内容为对应错误码 (请参考 5.5)。

4.2. 回应格式说明

+Indication<=param1, param2, param3><CR><CF>

- 回应指令以加号 "+" 开头, <CR> <CF>结束
- 等于 "="后面为回应参数
- 如果回应参数中有多个参数,会以逗号","隔开

4.3. AT 命令举例说明

举例: 修改 LoRa 设备波特率为 128000

发送: AT+BAUD9

返回: OK

5. AT 命令详解

5.1. 基础指令

5.1.1. 测试指令

功能	指令	响应	说明
测试	AT	OK	

5.1.2. 进入或退出 AT 命令模式

功能	指令	响应	说明
		Exit AT	Exit AT:退出 AT 命令模式
进入或退出 AT 命令模式	+++	或	Entry AT: 进入 AT 命令模式
		Entry AT	上电默认为传输模式

备注:

- 1、退出 AT 命令模式时会自动复位。
- 2、该指令掉电不保存。

5.1.3. 查询配置信息

功能	指令	响应	说明
		LoRa Parameter:	LoRa Parameter: LoRa 参数
		+VERSION = < version >	<version>:版本</version>
		MODE: <mode></mode>	<mode>:数据发送模式</mode>
		LEVEL: <level></level>	<level>:空中速率配置</level>
		SLEEP: <sleep></sleep>	<sleep>:功耗模式</sleep>
本海蜡油		Frequency: <frequency></frequency>	<frequency>:工作频率</frequency>
查询模块 基本配置	AT+HELP	MAC: <mac></mac>	<mac>:设备地址</mac>
基本癿直 信息	AITHELP	Bandwidth: <bandwidth></bandwidth>	<bandwidth>: 射频带宽</bandwidth>
旧心		Spreading Factor: < spreading factor >	<spreading factor="">:扩频因子</spreading>
		Coding rate: < coding rate >	<coding rate="">:射频编码率</coding>
		CRC: <crc></crc>	<crc>: CRC 校验</crc>
		Preamble: <preamble></preamble>	<preamble>: 前导码长度</preamble>
		IQ: <iq></iq>	<iq>: IQ 信号是否翻转</iq>
		Power: <power></power>	<power>:发射功率</power>
		=======================================	

举例:

查询模块基本信息

发送: AT+HELP

LoRa Parameter:

+VERSION=V1.0.0

MODE:0

LEVEL:0 >> 244.140625bps

SLEEP:2

Frequency:43300000hz >> 0

MAC:ffff

Bandwidth:0

Spreading Factor:12

Coding rate:2

CRC:0(false)

Preamble:8

IQ:0(false)

Power:22dBm

5.1.4. 设置\查询一串口波特率

功能	指令	响应	访	細
	AT+BAUD	+BAUD= <baud></baud>	<baud>波特</baud>	寺率对应序号
查询波特率			1: 1200	6: 38400
			2: 2400	7: 57600
			3: 4800	8: 115200
			4: 9600	9: 128000
设置波特率	AT+BAUD <baud></baud>	OK	5: 19200	
			默认值:	4(9600)

备注:

设置完该指令后需重启生效。

5.1.5. 设置\查询—串口停止位

功能	指令	响应	说明
查询串口停止位	AT+STOP	+STOP= <param/>	< param>序号
	7110F +310F = \para1117		0: 1 停止位
设置串口停止位	AT CTOD aparams	OK	1: 2 停止位
以且中口行止心	AT+STOP <param/>	UK	默认值: 0

备注:

设置完该指令后需重启生效。

5.1.6. 设置\查询—串口校验位

功能	指令	响应	说明	
			< param>序号	
查询串口校验位	AT+PARI	AT+PARI +PARI= <param/>	+PARI= <param/>	0: 无校验
			1: 奇校验	
设置串口校验位	AT+PARI <param/>	ОК	2: 偶校验	
			默认值: 0	

备注:

设置完该指令后需重启生效。

5.1.7. 设置\查询—工作模式

功能	指令	响应	说明
查询工作模式	AT+MODE	+MODE= <param/>	param: 0, 1, 2 0: 透明传输
设置工作模式	AT+MODE <param/>	+MODE= <param/> OK	1: 定点传输 2: 广播传输 默认设置: 0

备注:

- 1、设置完该指令后需重启生效。
- 2、透明传输数据格式:直接发送数据

- 3、定点传输数据格式:设备地址 (16 进制,两字节) + 信道编号 (16 进制,一字节) + 数据 (16 进制)
- 4、广播传输数据格式:信道编号 (16 进制,一字节) + 数据 (16 进制)

举例:

1、透明传输:

2、定点传输:

3、广播传输:

5.1.8. 设置\查询—功耗模式

功能	指令	响应	说明
			< param>序号
查询功耗模式	AT+SLEEP	+SLEEP= <param/>	0: 休眠模式
			1: 空中唤醒模式
设置功耗模式	AT+SLEEP <param/>	OK	2: 高时效模式
3,10,000	- P		默认值: 2

备注:

- 1. 休眠模式:该模式下,MCU 和射频都进入休眠状态。使用串口唤醒,即串口收到数据,模块自动唤醒。该模式不进行写入保存,每次进入休眠模式都需要使用指令进入。
- 2. 空中唤醒模式:
 - A、该模式下,模块以四秒为一个周期进行 CAD 检测(整体休眠时间为: 4s 减去 CAD 检测时间),如模块检测到数据,将会进入接收模式,接收完数据后,自动进入休眠。休眠期间射频休眠,MCU不休眠。
 - B、使用空中唤醒模式时,接收端和发送端都应处于空中唤醒模式,才可收发数据。
 - C、该模式可以进行写入保存。
- 3. 高时效模式:该模式下,模块一直处于接收状态,随时可以接收到其他设备的数据。当模块串口接收到主控的数据时,即切换成发射状态,将数据发射出去,发射完成后,切换回接收状态。

注: CAD 解释说明: LoRa CAD (Channel Activity Detection) 是 LoRa 网络中用于检测信道活动的一种技术。它用于判断指定的物理信道上是否存在活动(例如其他设备的传输),以帮助设备选择合适的发送时机和避免碰撞。

5.1.9. 软件重启

功能	指令	响应	说明
<i>协</i> , 一手户	AT+RESET	OK	
秋什里归	AI+RESEI	Power On	

5.1.10. 恢复出厂设置

功能	指令	响应	说明
恢复出厂设置	AT+DEFAULT	OK	
		Power On	

5.2. 模块射频参数 (一键配置模块空中速率和通讯距离)

5.2.1. 设置/查询 - 一键配置模块空中速率和通讯距离

功能	指令	响应	说明
查询模块参数	AT+LEVEL	+LEVEL = <param/>	<param/> : 0-7,
		•	空中速率和通讯距离配置,有八
设置模块参数	AT+LEVEL <param/>	ОК	个档位
5.—	AT TEVEL Parami		默认值: 0

备注:

- 1、可以根据自己的数据量和通讯距离选择不同的档位(数据量和距离可以参考下表)。空中字符速率越大,可发送的数据量越快。
- 2、该指令将射频带宽,射频编码率,扩频因子已经设置好了,可以直接使用。
- 3、发射设备与接收设备 LEVEL 档位需一致才可以收发数据。
- 4、设置完该指令后需重启生效。

注:下表为在编码率为 CR=4/6 的前提下,不同档位下的配置参数,以下户外距离(空旷可视距离)和市内距离,仅供参考,实际距离以实测为准。

LEVEL(档位)	SF(扩频因子)	BW(带宽 KHz)	空中字符速率(bit/s)	户外距离(Km)	市内距离(Km)
0	12	125	244	8.0	3.8
1	11	125	447	7.5	2.8
2	10	125	813	5.7	2.8
3	9	125	1464	5.3	2.7
4	8	125	2604	5.2	2.7
5	7	125	4557	5.0	2.7
6	6	125	7812	4.5	2.7
7	5	125	13020	4.1	2.5

5.3. 模块射频参数配置 (通用配置)

5.3.1. 设置\查询—工作信道

功能	指令	响应	说明
查询工作信道	AT+CHANNEL	+ CHANNEL= <param/>	param: 00-1E (十六进制)
设置工作信道	AT+CHANNEL	+CHANNEL= <param/>	以 433Mhz 为起始,以 1400Khz 増长
以且工IFID但	<param/>	OK	默认设置: 00

备注:

- 1、本模块设置了31个通用信道,如需更多可联系我司。
- 2、设置完该指令后需重启生效。
- 3、多个接收设备离发射设备距离过近时,有可能导致不同信道的接收设备都能接收到数据,所以要求发射设备和接收设备之间的距离尽量远。

注:下表为不同信道的工作频段对照,单位:Mhz。

信道	工作频段	信道	工作频段
00	433	10	455.4
01	434.4	11	456.8
02	435.8	12	458.2
03	437.2	13	459.6
04	438.6	14	461
05	440	15	462.4
06	441.4	16	463.8
07	442.8	17	465.2
08	444.2	18	466.6
09	445.6	19	468
0A	447	1A	469.4
OB	448.4	1B	470.8
0C	449.8	1C	472.2
0D	451.2	1D	473.6
0E	452.6	1E	475
0F	454		

5.3.2. 设置\查询—设备地址

功能	指令	响应	说明
查询设备地址	AT+MAC	+MAC= <param/> <param/>	param:

设置设备地址

+MAC=<param><param>
OK

十六进制,一个字节

默认设置: ffff

备注:

设置完该指令后需重启生效。

举例:

将模块地址设置为 0a01 发送: AT+MAC0a,01 返回: +MAC=0a01

OK

5.3.3. 设置\查询—发射功率

功能	指令	响应	说明
查询发射功率	AT+POWE	+POWE= <param/>	naram:0 22dP / III 軟粉/古\
设置发射功率	AT+POWE <param/>	+POWE= <param/> OK	— param: 0-22dB (取整数值) 默认设置: 22dB

备注:

设置完该指令后需重启生效。

举例:

将发射功率修改至 10dB

发送: AT+POWE10 返回: +POWE=10

OK

5.4. 模块射频参数配置 (差异化配置)

5.4.1. 查询—射频带宽

功能	指令	响应	说明
查询射频带宽	AT+BW	+BW= <param/>	<param/> : 0

0: 125K 默认值: 0

备注:

如需其他射频带宽,请联系我司。

5.4.2. 设置\查询—射频编码率

功能	指令	响应	说明
查询射频编码率	AT+CR	+CR= <param/>	<param/> : 1-4
			1: 4/5
			2: 4/6
设置射频编码率		+CR= <param/>	3: 4/7
	AT+CR <param/>	OK	4: 4/8
		OK	默认值: 2

备注:

设置完该指令后需重启生效。

5.4.3. 设置\查询—扩频因子

功能	指令	响应	说明
			<param/> : 5-12
			5: SF5
查询扩频因子	AT+SF	+SF= <param/>	6: SF6
		7: SF7	
			8: SF8
设置扩频因子 AT			9: SF9
		+SF= <param/>	10: SF10
	AT+SF <param/>	+3i = \paraiii> OK	11: SF11
		OK .	12: SF12
			默认值: 12

备注:

设置完该指令后需重启生效。

5.4.4. 设置\查询—CRC 校验

功能	指令	响应	说明
查询 CRC 校验	AT+CRC	AT+CRC +CRC= <param/>	<param/> : 0, 1
旦问 CNC 仪迹			0: 关闭 CRC 校验
设置 CRC 校验	AT : CDC : maram	ОК	1: 打开 CRC 校验
	AT+CRC <param/>		默认值: 0

备注:

设置完该指令后需重启生效。

5.4.5. 设置\查询—Iq 信号翻转

功能	指令	响应	说明
查询 Iq 信号是否翻	AT+IQ	+IQ = <param/>	<pre><param/>: 0, 1</pre>
转			0: Iq 信号不翻转
设置 lq 信号翻转	AT . IO . m a wa ma .	OV	1: Iq 信 号 翻转
	AT+IQ <param/>	OK	默认值: 0

备注:

- 1、设置完该指令后需重启生效。
- 2、IQ 解释说明: IQ 翻转是指在 LoRa 通信中,对接收到的 IQ 信号进行相位翻转操作。这个操作可以在解调之前或之后执行,用于改变信号的相位,从而实现不同的功能或优化性能。

5.5. 错误码一览表

EEROR=<>中错误码码的详细信息列举如下:

返回值	错误信息说明
101	参数长度错误
102	参数格式错误
103	参数数据异常
104	指令错误

6. 增值服务

为满足客户各种功能要求,我司可以提供以下技术增值服务:

- 模块程序定制,如: IO 功能口定制,AT 指令定制,广播包定制等。
- 模块 PCB 硬件定制,可定制成客户需要的硬件要求。
- 各种蓝牙方案定制,可以根据客户需要,定制全套蓝牙软硬件解决方案。
- 全套联网解决方案定制,可以根据客户需求,定制全套可联网,网关解决方案。

如有以上定制需求,请直接跟我司业务人员联系。