Integrate 1/z

$$\int_0^{2\pi} \frac{1}{z} dz$$

Examining the inverse function, let's first confirm that it is analytic by calculating the partial derivatives. We have

$$\frac{1}{z} = \frac{1}{x + iy}$$

One way to simplify is to multiply on top and bottom by z*:

$$= \frac{1}{x+iy} \frac{x-iy}{x-iy}$$
$$= \frac{x-iy}{x^2+y^2}$$

Thus

$$u = \frac{x}{x^2 + y^2}$$

$$u_x = \frac{(x^2 + y^2) - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$u_y = \frac{-2xy}{(x^2 + y^2)^2}$$

And

$$v = \frac{-y}{x^2 + y^2}$$

$$v_y = -\frac{(x^2 + y^2) - 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
$$v_x = \frac{2xy}{(x^2 + y^2)^2}$$

CRE are satisfied and the inverse of z is indeed analytic.

If we are on the unit circle, then

$$z = e^{i\theta}$$

$$dz = ie^{i\theta}d\theta$$

$$\int \frac{dz}{z} = \int e^{-i\theta} ie^{i\theta} d\theta = 2\pi i$$

If we're centered on the origin but we don't have a unit circle, there will be an R in both the numerator and the denominator, which cancel. The result is thus independent of the radius of the circle.

In general

$$\oint_C \frac{dz}{(z-z_0)^n} = \begin{cases} 0, & n \neq 1\\ 2\pi i, & n = 1 \end{cases}$$

We can also integrate the inverse function in terms of x and y:

$$\oint \frac{1}{z} dz = \oint \frac{dx + idy}{x + iy}$$

$$= \oint \frac{1}{x^2 + y^2} \left[x dx - y dy + ix dy + iy dx \right]$$

Suppose we go on a circle of radius R centered on the origin and parametrize in terms of θ . We obtain:

$$x = R\cos\theta$$
$$y = R\sin\theta$$

$$x^{2} + y^{2} = R^{2}$$
$$dx = -R\sin\theta \ d\theta$$
$$dy = R\cos\theta \ d\theta$$

We have for the integral

$$\oint \frac{1}{x^2 + y^2} \left[x \, dx - y \, dy + ix \, dy + iy \, dx \right]$$

$$= \int \frac{1}{R^2} \left[-R^2 \cos \theta \sin \theta \, d\theta + R^2 \sin \theta \cos \theta \, d\theta + iR^2 \cos^2 \theta \, d\theta + iR^2 \sin^2 \theta \, d\theta \right]$$

$$= \int \frac{1}{R^2} \left[iR^2 \cos^2 \theta \, d\theta + iR^2 \sin^2 \theta \, d\theta \right]$$

$$= \int i \cos^2 \theta \, d\theta + i \sin^2 \theta \, d\theta$$

$$= \int i \, d\theta = 2\pi i$$

Note that if we integrate the same function around a unit square, we run into problems. First let's do $[0, 0 \times 1, 1]$. We have

$$\int u \ dx - \int v \ dy + i \ \left[\int v \ dx + \int u \ dy \ \right]$$

Along C1, y = 0 and dy = 0 so:

$$\int \frac{x}{x^2 + y^2} \, dx + i \left[\int \frac{-y}{x^2 + y^2} \, dx \right]$$
$$= \int_0^1 \frac{1}{x} \, dx = \ln x \Big|_0^1$$

Since ln 0 is not defined, we can't do this.

Logarithms are tricky, no doubt. If the complex logarithm Logz is defined and differentiable along the curve (say the semicircle from -i to i), we can do this:

$$I = \int_{-i}^{i} \frac{1}{z} dz = Logz \Big|_{-i}^{i}$$

Recall that $z = re^{i\theta}$ with r = 1 so this is

$$= (\ln 1 + i \frac{\pi}{2}) - (\ln 1 + i \frac{-\pi}{2}) = 2i \frac{\pi}{2} = \pi i$$

For any value of r (except r=0), we get the same answer, since $\ln r - \ln r = 0$.

example

We can extend this to

$$\oint \frac{1}{z^2} dz$$

As before, on the unit circle

$$z = e^{i\theta}$$

$$dz = iz \ d\theta$$

so the integral is

$$\int_0^{2\pi} \frac{i}{z} d\theta = \int_0^{2\pi} i e^{-i\theta} d\theta$$

Now

$$\int e^{-i\theta} d\theta = -ie^{-i\theta}$$

so cancel $i \cdot -i$ and we have just

$$=e^{-i\theta}\Big|_{0}^{2\pi}$$

Evaluate the first term using Euler's formula:

$$e^{-2\pi i} = \cos -2\pi + i\sin -2\pi$$
$$= \cos 2\pi - i\sin 2\pi = 1$$

So the whole thing is zero.

In fact, for any negative integer power of z

$$\int z^{-n} dz$$

around the unit circle $z=e^{i\theta}$ we have

$$i \int e^{-i(n-1)\theta} d\theta$$

$$= \frac{1}{n-1} e^{-i(n-1)\theta} \Big|_{0}^{2\pi}$$

$$= \frac{1}{n-1} \left[(\cos 2(n-1)\pi - i \sin 2(n-1)\pi) - 1 \right]$$

$$= \frac{1}{n-1} \left[1 - 1 \right] = 0$$