Introduction to NLP (CS7.401)

Spring 2023,

IIIT Hyderabad

Assignment 2 Report

Ву

Padam Prakash

2021201071

Methodology:

• Extracted the dataset:

		w	- 1	x	g	f	Tense	Degree	Poss	Туре	Person	type	Gender	Case	Number	Mood
S	i															
1	1	what	what	PRON	0	root	_	_	_	Int,Rel	_	Int,Rel	_	_	_	_
	2	is	be	AUX	1	cop	Pres	_	_	_	3	_	-	_	Sing	Ind
	3	the	the	DET	4	det	_	_	_	Art	_	Art	_	_	_	-
	4	cost	cost	NOUN	1	nsubj	-	-	-	-	-	-	-	-	Sing	-
	5	of	of	ADP	7	case	-	-	-	-	-	-	-	-	-	-
	6	a	a	DET	7	det	_	-	_	Art	-	Art	-	-	-	-
	7	round	round	NOUN	4	nmod	-	-	_	_	-	-	-	-	Sing	_
	8	trip	trip	NOUN	7	compound	-	-	-	-	-	-	-	-	Sing	-
	9	flight	flight	NOUN	7	nmod	-	-	-	-	-	-	-	-	Sing	-
	10	from	from	ADP	11	case	-	-	_	-	-	_	-	-	-	-
	11	pittsburgh	Pittsburgh	PROPN	9	nmod	_	_	_	_	-	_	-	-	Sing	_
	12	to	to	ADP	13	case	_	_	_	_	_	_	-	_	_	_
	13	atlanta	Atlanta	PROPN	9	nmod	-	-	-	-	-	-	-	-	Sing	-
	14	beginning	begin	VERB	9	nmod	Pres	-	-	-	-	-	-	-	-	-
	15	on	on	ADP	16	case	-	-	-	-	-	-	-	-	-	-
	16	april	April	NOUN	14	nmod	-	-	-	-	-	-	-	-	Sing	-
	17	twenty	twenty	NUM	16	nummod	-	-	_	Card	-	Card	-	-	_	-
	18	fifth	five	ADJ	17	compound	-	Pos	-	Ord	-	Ord	-	-	_	-
	19	and	and	CCONJ	20	CC	-	-	-	-	-	-	-	-	_	-
	20	returning	return	VERB	14	conj	Pres	-	-	-	-	-	-	-	_	-
	21	on	on	ADP	22	case	-	-	-	-	-	-	-	-	_	-
	22	may	May	NOUN	20	nmod	-	-	_	-	-	-	-	-	Sing	-
	23	sixth	six	ADJ	22	amod	-	Pos	_	Ord	-	Ord	-	-	_	-
2	1	now	now	ADV	3	advmod	-	Pos	-	-	-	-	-	-	_	-
	2	i	- 1	PRON	3	nsubj	-	-	-	Prs	1	Prs	-	Nom	Sing	-
	3	need	need	VERB	0	root	Pres	-	_	_	-	-	-	-	-	Ind
	4	а	а	DET	5	det	-	-	-	Art	-	Art	-	-	-	-
	5	flight	flight	NOUN	3	obj	_	_	_	_	-	_	-	_	Sing	-
	6	leaving	leave	VERB	5	acl	Pres									

- Combine the Train, Test and VAlidation to create vocabulary
- Add more words in the vocabulary from glove embedding.
- Create model using LSTM
- Train model on different hyperparameters

Effect of hyperparameter tuning in POS tagging using LSTM

Effect of Embedding size:

For Glove Embedding:

According to the <u>paper</u>, accuracy of the model increases as we increase the dimension of embedding and this effect diminishes after a certain number. Similar results we observed here. As we increase the dimension of embedding accuracy slightly improves.

Effect of dropout:

Dropout is a regularization technique that is commonly used in neural networks, including LSTM networks, to prevent overfitting. It works by randomly dropping out (setting to zero) some fraction of the input units (neurons) during training, which forces the network to learn more robust features and reduces its dependence on any one input feature.

Here we observe that adding a little Dropout helps the model for better accuracy. This is because POS tagging models often have a large number of input features (such as word embeddings, previous tags, etc.), which can lead to overfitting if not properly regularized. But adding more dropouts might make the model underfit. Although here the model accuracy slightly improved as we increased the dropout from 0.2 to 0.8.

Effect of LSTM Node:

Increasing the number of LSTM nodes in the model generally increases its capacity to capture more complex relationships between words and their corresponding POS tags, leading to better accuracy. However, increasing the number of nodes also increases the complexity of the model, which can lead to overfitting on the training data and poor generalization to new data. Here we observe that Accuracy almost remains the same as we change the LSTM nodes from 128 to 64.

Effect of learning rate:

If the learning rate is set too high, the model may overshoot the optimal parameters and fail to converge to the global minimum of the loss function. This can result in unstable training and poor performance on the validation set.

On the other hand, if the learning rate is set too low, the model may converge very slowly, which can result in longer training times and suboptimal performance. Here we observe that changing the learning rate from 0.001 to 0.0001 makes the model take slightly more time and accuracy almost remains the same.

Effect of Number of layers:

Generally, adding more LSTM layers to a POS tagging model improves its ability to capture complex patterns and dependencies in the input data, leading to better performance on the task. However, this improvement may decrease after a certain number of layers, as adding too many layers can make the model more prone to overfitting and result in higher computational cost. Here we observe that accuracy increases slightly as we change the number of LSTM layers from 1 to 2.

Details of all the models

Model 1:

Embedding size	300
Dropout	0.2
LSTM Nodes	128
Learning rate	0.001
Number of layers	1

Embedding size	300
----------------	-----

Dropout	0.2
LSTM Nodes	128
Learning rate	0.001
Number of layers	2

Embedding size	300
Dropout	0.2
LSTM Nodes	128
Learning rate	0.0001
Number of layers	1

Embedding size	300
Dropout	0.2
LSTM Nodes	128
Learning rate	0.0001
Number of layers	2

Embedding size	300
Dropout	0.2
LSTM Nodes	64
Learning rate	0.001
Number of layers	1

Embedding size	300
Dropout	0.2
LSTM Nodes	64

Learning rate	0.001
Number of layers	2

206/206 [====	precision		====] - 3s f1-score	4ms/step support
propn verb num det adv	0.99 0.99 0.90 0.98 0.87	0.99 0.98 0.91 0.89 0.77	0.99 0.98 0.90 0.93 0.82	18901 8396 1928 6710 1025
pron cconj noun aux adj adp intj part	0.87 1.00 0.98 0.98 0.90 0.99 1.00 0.97	0.97 1.00 0.99 0.98 0.91 1.00 0.98 0.95	0.92 1.00 0.99 0.98 0.90 0.99 0.99	5162 1594 14647 3374 3092 18228 455 904
accuracy macro avg weighted avg	0.96 0.97	0.95 0.97	0.97 0.95 0.97	84416 84416 84416

Embedding size	300
Dropout	0.2
LSTM Nodes	64

Learning rate	0.0001
Number of layers	1

Model 8

Embedding size	300
Dropout	0.2
LSTM Nodes	64
Learning rate	0.0001
Number of layers	2

206/206 [====			=====] - 3s	4ms/step
	precision	recall	f1-score	support
propn	0.99	1.00	0.99	18901
verb	0.98	0.99	0.98	8396
num	0.90	0.94	0.92	1928
det	0.97	0.89	0.93	6710
adv	0.93	0.91	0.92	1025
pron	0.87	0.97	0.92	5162
cconj	1.00	0.99	0.99	1594
noun	0.99	0.99	0.99	14647
aux	1.00	0.97	0.98	3374
adj	0.91	0.90	0.90	3092
adp	1.00	1.00	1.00	18228
intj	1.00	1.00	1.00	455
part	0.99	0.94	0.96	904
accuracy			0.98	84416
macro avq	0.96	0.96	0.96	84416
weighted avg	0.98	0.98	0.98	84416
, ,				

Embedding size	300
Dropout	0.8
LSTM Nodes	128
Learning rate	0.001
Number of layers	1

Model 10

Embedding size	300
Dropout	0.8
LSTM Nodes	128
Learning rate	0.001
Number of layers	2

206/206 [====			====] - 3s	5ms/step
	precision	recall	f1-score	support
	•			
propn	0.99	0.99	0.99	18901
verb	0.99	0.98	0.98	8396
num	0.92	0.94	0.93	1928
det	0.98	0.90	0.94	6710
adv	0.97	0.78	0.86	1025
pron	0.88	0.97	0.92	5162
cconj	1.00	1.00	1.00	1594
noun	0.98	0.99	0.99	14647
aux	0.98	0.97	0.98	3374
adj	0.92	0.94	0.93	3092
adp	1.00	1.00	1.00	18228
intj	1.00	1.00	1.00	455
part	0.97	0.95	0.96	904
accuracy			0.98	84416
macro avg	0.97	0.96	0.96	84416
weighted avg	0.98	0.98	0.98	84416

Embedding size	300
Dropout	8.0

LSTM Nodes	128
Learning rate	0.0001
Number of layers	1

Embedding size	300
Dropout	8.0

LSTM Nodes	128
Learning rate	0.0001
Number of layers	2

Embedding size	300
Dropout	0.8
LSTM Nodes	64
Learning rate	0.001
Number of layers	1

Embedding size	300
Dropout	8.0
LSTM Nodes	64
Learning rate	0.001
Number of layers	2

Embedding size	300
Dropout	8.0
LSTM Nodes	64
Learning rate	0.0001
Number of layers	1

Embedding size	300
Dropout	0.8
LSTM Nodes	64
Learning rate	0.0001
Number of layers	2

Embedding size	128
Dropout	0.2
LSTM Nodes	128
Learning rate	0.001
Number of layers	1

Embedding size	128
Dropout	0.2
LSTM Nodes	128
Learning rate	0.001
Number of layers	2

Embedding size	128
Dropout	0.2
LSTM Nodes	128
Learning rate	0.0001
Number of layers	1

Embedding size	128
Dropout	0.2
LSTM Nodes	128
Learning rate	0.0001
Number of layers	2

Embedding size	128
Dropout	0.2
LSTM Nodes	64
Learning rate	0.001
Number of layers	1

Embedding size	128
Dropout	0.2
LSTM Nodes	64
Learning rate	0.001
Number of layers	2

Embedding size	128
Dropout	0.2
LSTM Nodes	64
Learning rate	0.0001
Number of layers	1

Embedding size	128
Dropout	0.2
LSTM Nodes	64
Learning rate	0.0001
Number of layers	2

Embedding size	128
Dropout	0.8
LSTM Nodes	128
Learning rate	0.001
Number of layers	1

Embedding size	128
Dropout	0.8
LSTM Nodes	128
Learning rate	0.001
Number of layers	2

Embedding size	128
Dropout	0.8
LSTM Nodes	128
Learning rate	0.0001
Number of layers	1

Embedding size	128
Dropout	0.8
LSTM Nodes	128
Learning rate	0.0001
Number of layers	2

Embedding size	128
Dropout	8.0
LSTM Nodes	64
Learning rate	0.001
Number of layers	1

Embedding size	128
Dropout	0.8
LSTM Nodes	64
Learning rate	0.001
Number of layers	2

Embedding size	128
Dropout	8.0
LSTM Nodes	64
Learning rate	0.0001
Number of layers	1

Embedding size	128
Dropout	0.8
LSTM Nodes	64
Learning rate	0.0001
Number of layers	2

