Problem 1.

Exercise Set 7.1

28. Student C tries to define a function $h: \mathbb{Q} \to \mathbb{Q}$ by the rule $h\left(\frac{m}{n}\right) = \frac{m^2}{n}$, for all integers m and n with $n \neq 0$. Student D claims that h is not well defined. Justify student D's claim. $\frac{1}{3} = \frac{2}{6} \Rightarrow h\left(\frac{1}{3}\right) = h\left(\frac{2}{6}\right)$

$$\frac{1}{3} = \frac{2}{6} \Rightarrow h\left(\frac{1}{3}\right) = h\left(\frac{2}{6}\right)$$

$$\left(h\left(\frac{1}{3}\right) = \frac{1}{3}\right) \neq \left(h\left(\frac{2}{6}\right) = \frac{4}{6} = \frac{2}{3}\right)$$
Contradiction, therefore h is not well defined.

Problem 2.

Exercise Set 7.1

35. $F(A \cap B) \subseteq F(A) \cap F(B)$ **Proof:** Suppose $y \in F(A \cap B)$. **Prove** $y \in F(A) \cap F(B)$:

y = F(x) for some $x \in A \cap B$.

 $x \in A$ by definition of intersection, therefore $y \in F(A)$.

 $x \in B$ by definition of intersection, therefore $y \in F(B)$.

 $y \in F(A)$ and $y \in F(B)$, therefore $y \in F(A) \cap F(B)$.

Proof done.

Problem 3.

Exercise Set 7.1

41. For all subsets C and D of Y, $F^{-1}(C-D) = F^{-1}(C) - F^{-1}(D).$ **Proof:**

> **Part 1:** $F^{-1}(C-D) \subseteq F^{-1}(C) - F^{-1}(D)$ Suppose $x \in F^{-1}(C-D)$. **Prove** $x \in F^{-1}(C) - F^{-1}(D)$: $F(x) \in C - D$, therefore $F(x) \in C$ and $F(x) \notin D$. $x \in F^{-1}(C)$ and $x \notin F^{-1}(D)$, therefore $x \in F^{-1}(C) - F^{-1}(D)$. Proof done.

Part 2: $F^{-1}(C) - F^{-1}(D) \subseteq F^{-1}(C - D)$ Suppose $x \in F^{-1}(C) - F^{-1}(D)$. **Prove** $x \in F^{-1}(C - D)$: $x \in F^{-1}(C)$ and $x \notin F^{-1}(D)$, therefore $F(x) \in C$ and $F(x) \notin D$. $F(x) \in C - D$, therefore $x \in F^{-1}(C - D)$. Proof done.

1

Both parts proven, therefore $F^{-1}(C-D) = F^{-1}(C) - F^{-1}(D)$.

Problem 4.

Exercise Set 7.1

43. Given a set S and a subset A, the characteristic function of A, denoted χ_A , is the function defined from S to $\mathbb Z$ with the property that for all $u \in S$,

$$\chi_A(u) = \begin{cases} 1 & \text{if } u \in A \\ 0 & \text{if } u \notin A \end{cases}$$
$$A \subseteq S, B \subseteq S, u \in S.$$

(a) $\chi_{A \cap B}(u) = \chi_A(u) \cdot \chi_B(u)$

Case 1: $u \notin A$ and $u \notin B$	Case 2: $u \notin A$ and $u \in B$
$\chi_{A \cap B}(u) = 0$	$\chi_{A \cap B}(u) = 0$
$(\chi_A(u) = 0) \cdot (\chi_B(u) = 0) = 0$	$(\chi_A(u) = 0) \cdot (\chi_B(u) = 1) = 0$
$\chi_{A \cap B}(u) = \chi_A(u) \cdot \chi_B(u)$	$\chi_{A \cap B}(u) = \chi_A(u) \cdot \chi_B(u)$
Proof done.	Proof done.
Case 3: $u \in A$ and $u \notin B$	Case 4: $u \in A$ and $u \in B$
$\chi_{A \cap B}(u) = 0$	$\chi_{A \cap B}(u) = 1$
$(\chi_A(u) = 1) \cdot (\chi_B(u) = 0) = 0$	$(\chi_A(u) = 1) \cdot (\chi_B(u) = 1) = 1$
$\chi_{A \cap B}(u) = \chi_A(u) \cdot \chi_B(u)$	$\chi_{A\cap B}(u) = \chi_A(u) \cdot \chi_B(u)$
Proof done.	Proof done.

 $\chi_{A \cap B}(u) = \chi_A(u) \cdot \chi_B(u)$ is true in all cases.

(b) $\chi_{A \cup B}(u) = \chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u)$

Case 1: $u \notin A$ and $u \notin B$	Case 2: $u \notin A$ and $u \in B$
$\chi_{A \cup B}(u) = 0$	$\chi_{A \cup B}(u) = 1$
$\chi_A(u) = 0, \chi_B(u) = 0$	$\chi_A(u) = 0, \chi_B(u) = 1$
$\chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u) = 0$	$\chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u) = 1$
$\chi_{A \cap B}(u) = \chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u)$	$\chi_{A \cap B}(u) = \chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u)$
Proof done.	Proof done.
Case 3: $u \in A$ and $u \notin B$	Case 4: $u \in A$ and $u \in B$
$\chi_{A \cup B}(u) = 0$	$\chi_{A \cup B}(u) = 1$
$\chi_A(u) = 1, \chi_B(u) = 0$	$\chi_A(u) = 1, \chi_B(u) = 1$
$\chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u) = 1$	$\chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u) = 1$
$\chi_{A \cap B}(u) = \chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u)$	$\chi_{A \cap B}(u) = \chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u)$
Proof done.	Proof done.

 $\chi_{A\cap B}(u) = \chi_A(u) + \chi_B(u) - \chi_A(u) \cdot \chi_B(u)$ is true in all cases.

Problem 5.

Exercise Set 7.2

- 23. Define $H: \mathbb{R}^2 \to \mathbb{R}^2$ as follows: H(x,y) = (x+1,2-y) for all $(x,y) \in \mathbb{R}^2$.
 - (a) Is H one-to-one? Suppose (x_1, y_1) and $(x_2, y_2) \in \mathbb{R}^2$ and $H(x_1, y_1) = H(x_2, y_2)$. H is one-to-one if $x_1 = x_2$ and $y_1 = y_2$. $(x_1 + 1, 2 - y_1) = (x_2 + 1, 2 - y_2)$ $x_1 + 1 = x_2 + 1$ $2 - y_1 = 2 - y_2$ $x_1 = x_2$ $y_1 = y_2$ H is one-to-one.
 - (b) Is H onto? Suppose $(a, b) \in \mathbb{R}^2$. H is onto if there exists $(x, y) \in \mathbb{R}^2$ where H(x, y) = (a, b). (x + 1, 2 - y) = (a, b) $(x, y) = (a - 1, 2 - b) \in \mathbb{R}^2$ H(x, y) = H(a - 1, 2 - b) = ((a - 1) + 1, 2 - (2 - b))= (a, b)

Problem 6.

Exercise Set 7.2

H is onto.

29. Prove that all real numbers a, b, and x with b and x positive and $b \neq 1$, $\log_b(x^a) = a \log_b x$. $\log_b(x^a) = a \log_b x$ $\exp_b(\log_b(x^a)) = \exp_b(a \log_b x)$ $x^a = (\exp_b(\log_b x))^a$ $x^a = x^a$

Problem 7.

Exercise Set 7.3

11. H and H^{-1} are both defined from $\mathbb{R} - \{1\}$ to $\mathbb{R} - \{1\}$ by the formula $H(x) = H^{-1}(x) = \frac{x+1}{x-1}$, for all $x \in \mathbb{R} - \{1\}$. $H(x) = H^{-1}(x)$ therefore $(H \circ H^{-1})(x) = (H^{-1} \circ H)(x) = (H \circ H)(x)$. $(H \circ H)(x) = \frac{\frac{x+1}{x-1} + 1}{\frac{x+1}{x-1} - 1}$ $= \frac{\frac{x+1}{x-1} + \frac{x-1}{x-1}}{\frac{x+1}{x-1} - \frac{x-1}{x-1}}$ $= \frac{2x}{x-1}$ $= \frac{2x}{x-1} \cdot \frac{x-1}{2}$

Both compositions produce the identity function.

Problem 8.

Exercise Set 7.3

27. Let $f: X \to Y$ and $g: Y \to Z$. Is the following property true or false? For all subsets C in Z, $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$? Let h(x) = g(f(x)). h(x) = g(f(x)) $g^{-1}(h(x)) = f(x)$ $f^{-1}(g^{-1}(h(x))) = x$ $h^{-1}(x) = (f^{-1} \circ g^{-1})(x)$ because $h^{-1}(h(x)) = x$. $(g \circ f)^{-1}(C) \stackrel{?}{=} f^{-1}(g^{-1}(C))$ $(g(f(x)))^{-1}(C) \stackrel{?}{=} (f^{-1} \circ g^{-1})(C))$ $h^{-1}(C) = h^{-1}(C)$ Property is true.

Problem 9.

Exercise Set 7.4

12. Let a and b be real numbers with a < b, and suppose that $W = \{x \in \mathbb{R} \mid a < x < b\}$. Prove that S and W have the same cardinality.

$$S = (0,1) \text{ and } W = (a,b).$$
 Let $F(x) = \frac{x-a}{b-a}$.
When $x \in W$, $a < x < b$.
 $F(a) < F(x) < F(b) \Rightarrow 0 < F(x) < 1$.
 $F(W) = S$, therefore $F: W \to S$.

Injective	Surjective
Suppose x_1 and $x_2 \in \mathbb{R}$ and $F(x_1) = F(x_2)$.	Suppose $y \in S$.
F is one-to-one if $x_1 = x_2$.	F is onto if there exists $x \in W$ where $F(x) = y$.
$F(x_1) = F(x_2)$	$\frac{x-a}{b-a} = y$
$\frac{x_1 - a}{b - a} = \frac{x_2 - a}{b - a}$	
	x = y(b-a) + a
$x_1 - a = x_2 - a$	0 < y < 1
$x_1 = x_2$	0 < y(b-a) < b-a
F is one-to-one.	a < y(b-a) + a < b
	a < x < b
	$x \in W$
	$F(y(b-a) + a) = \frac{(y(b-a) + a) - a}{b-a}$
	$=\frac{y(b-a)}{b-a}$
	=y
	F is onto.

 $F:W\to S$ and is one-to-one and onto, therefore W and S have the same cardinality.

Problem 10.

Exercise Set 7.4

20. Give two examples of functions from $\mathbb Z$ to $\mathbb Z$ that are one-to-one but not onto.

21. Give two examples of functions from \mathbb{Z} to \mathbb{Z} that are onto but not one-to-one.

$$f(x) = \begin{cases} |x|/2 & \text{if } x \text{ is even} \\ -(|x|+1)/2 & \text{if } x \text{ is odd} \end{cases}$$

