1 Stochastic Gradient Method: A Simple Case

Given a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ with domain \mathbb{R}^n whose minimum we seek to find, we could use the gradient descent algorithm

$$\theta_{k+1} = \theta_k - \eta \nabla f(\theta_k),$$

with fixed step size $\eta > 0$, starting from an initial condition $\theta_0 \in \mathbb{R}^n$. As we have seen, of course, there is no guarantee that this algorithm converges, and even if it does it may only converge to a local minimum of the function.

One issue with the gradient descent algorithm is the complexity of computing the gradient at each time step. If the function could be decomposed as a summation of multiple functions

$$f(\theta) = \sum_{l=1}^{m} f_l(\theta),$$

for each of which the gradient is easily computable, then we can use the *stochastic gradient* method. For instance, the squared-error-loss function which shows up in the least squares problem is well-suited for minimization with the stochastic gradient method. Here our problem is

$$\min_{\theta \in \mathbb{R}^n} \frac{1}{2} ||X\theta - y||_2^2 = \frac{1}{2} \sum_{i=1}^m (x_i^\top \theta - y_i)^2,$$

where x_i^{\top} is the *i*th row of $X \in \mathbb{R}^{m \times n}$, and $y \in \mathbb{R}^m$ (recall that the rows of X are the transposes of the *feature vectors* and the entries of y are the corresponding *responses*). We can write this objective function as

$$f(\theta) = \sum_{i=1}^{m} f_i(\theta),$$

with

$$f_i(\theta) := \frac{1}{2} (x_i^{\top} \theta - y_i)^2, \text{ for } i = 1, \dots, m.$$

Then the stochastic gradient method gives the update rule

$$\theta_{k+1} = \theta_k - \eta_k \nabla f_{s[k]}(\theta_k),$$

where η_k is the step size (also called the learning rate) at time $k \in \mathbb{N}$, and $s[k] \in \{1, \dots, m\}$ is the index of the component function chosen at time k in order to decide the update. The value of s[k] is usually chosen by drawing a number at random from the set $\{1, \dots, m\}$, or by randomly shuffling this set and going over it sequentially in cyclic order.

- (a) Assume $\{x_i\}_{i=1}^m$ is a set of mutually orthogonal vectors. Find a fixed step size η so that the stochastic gradient method converges to a solution of the least squares problem.
- (b) If we no longer assume $\{x_i\}_{i=1}^m$ is orthogonal, can we still find a fixed step size small enough that the stochastic gradient method converges?

2 Convexity and strong convexity

In this question we will explore the concept of *strong convexity*, which is one the of standard conditions on convex function under which many convergence theorems about algorithms are proved.

- (a) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with domain dom(f). Note that requiring that f is differentiable automatically implies that we are assuming that dom(f) is an open set.
 - i. Show that f is convex iff it holds that dom(f) is a convex set and for all $x, y \in dom(f)$ we have

$$\left(\nabla f(y) - \nabla f(x)\right)^{T} (y - x) \ge 0. \tag{1}$$

Remark: When a function $g: \mathbb{R}^n \to \mathbb{R}^n$ satisfies the condition $(g(y) - g(x))^T (y - x) \ge 0$ for all $x, y \in \text{dom}(g)$, we say that that g is *monotone*. Note that this is consistent with the use of the term "monotone" to refer to a function $g: \mathbb{R} \to \mathbb{R}$ that is monotonically increasing (although one often uses the term in this case to also apply to a function $g: \mathbb{R} \to \mathbb{R}$ that is monotonically decreasing). Thus the condition in (1) is saying that ∇f is monotone.

ii. Recall that a function $f: \mathbb{R}^n \to \mathbb{R}$ with domain $\operatorname{dom}(f)$ is said to be strictly convex if $\operatorname{dom}(f)$ is a convex set and for all $x \neq y \in \operatorname{dom}(f)$ and $\lambda \in (0,1)$ we have

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

Show that f is strictly convex iff it holds that dom(f) is a convex set and for all $x \neq y \in dom(f)$ we have

$$\left(\nabla f(y) - \nabla f(x)\right)^{T} (y - x) > 0. \tag{2}$$

Remark: When a function $g: \mathbb{R}^n \to \mathbb{R}^n$ satisfies the condition $(g(y) - g(x))^T (y - x) > 0$ for all $x \neq y \in \text{dom}(g)$ we say that that g is *strictly monotone*.

Example: Let $A \in \mathbb{S}^n$. Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ given by $f(x) := \frac{1}{2}x^T Ax$, with $dom(f) = \mathbb{R}^n$. Then $\nabla f(x) = Ax$ and $\nabla^2 f(x) = A$.

Thus, f is convex iff A is positive semidefinite. f is strictly convex iff A is positive definite. For $x, y \in \mathbb{R}^n$ we have

$$(\nabla f(y) - \nabla f(x))^T (y - x) = (y - x)^T A^T (y - x) = (y - x)^T A (y - x).$$

This expression nonnegative for all $x, y \in \mathbb{R}^n$ iff A is positive semidefinite. It is positive for all $x \neq y \in \mathbb{R}^n$ iff A is positive definite.

Thus this example is consistent with the results that have been been proved in this part of the question.

Example: It is important to realize that strict convexity of a function does not imply that its Hessian needs to be positive definite everywhere. For example, consider $f: \mathbb{R} \to \mathbb{R}$, with domain \mathbb{R} , given by $f(x) = x^4$. Then $f'(x) = 4x^3$ and $f''(x) = 12x^2$. Note that f''(0) = 0. Nevertheless, f is strictly convex. This can be checked from the definition, or by observing that for all $x \neq y \in \mathbb{R}$ we have

$$(f'(y) - f'(x))(y - x) = 4(y^3 - x^3)(y - x) > 0.$$

(b) Let m > 0. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *m-strongly convex* if the function

$$h(x) := f(x) - \frac{m}{2} ||x||_2^2,$$

with dom(h) := dom(f), is convex.

Remark: Suppose f is twice differentiable. Then the convexity of h is equivalent to requiring that $\lambda_{\min}(\nabla^2 f(x)) \geq m$ for all $x \in \text{dom}(f)$. Thus having this property and a convex domain is an equivalent characterization of m-strong convexity for twice differentiable functions.

Example: Let $A \in \mathbb{S}^n$. Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ given by $f(x) := \frac{1}{2}x^TAx$, with $dom(f) = \mathbb{R}^n$. Then $\nabla f(x) = Ax$ and $\nabla^2 f(x) = A$.

For $x, y \in \mathbb{R}^n$ we have

$$(\nabla f(y) - \nabla f(x))^T (y - x) = (y - x)^T A^T (y - x) = (y - x)^T A (y - x).$$

Thus, in this example, f is m-strongly convex iff $\lambda_{\min}(A) \geq m$.

i. Show that $f: \mathbb{R}^n \to \mathbb{R}$ is m-strongly convex iff for all $x, y \in \text{dom}(f)$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \frac{m}{2}\lambda(1 - \lambda)\|x - y\|_2^2.$$
 (3)

ii. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with domain dom(f) (note that this means dom(f) must be an open set). Given m > 0, show that f is m-strongly convex iff it holds that dom(f) is a convex set and for all $x, y \in dom(f)$ we have

$$(\nabla f(y) - \nabla f(x))^{T} (y - x) \ge m \|x - y\|_{2}^{2}. \tag{4}$$

Remark: When a function $g: \mathbb{R}^n \to \mathbb{R}^n$ satisfies the condition $(g(y) - g(x))^T (y - x) > m \|x - y\|^2$ for all $x, y \in \text{dom}(g)$ we say that that g is *strongly monotone* or *coercive* (confusingly, the term "coercive" is also used in a different sense, which we will encounter later). Thus the condition in (4) is saying that ∇f is strongly monotone.

Addendum (optional):

We give a complete proof for the second sub-part of the first part of this question. This will show up in the solutions document.

3 Convexity and smoothness

In this question we will explore the concept of *L-smoothness*, which is another one of the standard conditions on convex function under which many convergence theorems about algorithms are proved.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with domain dom(f) (note that this means dom(f) must be an open set). Given L > 0, f is said to be L-smoooth if for all $x, y \in dom(f)$ we have

$$\|\nabla f(y) - \nabla f(x)\|_2 \le L\|x - y\|_2. \tag{5}$$

(a) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with domain dom(f) that is L-smooth for some L > 0. Show that we have

$$(\nabla f(y) - \nabla f(x))^{T} (y - x) \le L \|y - x\|_{2}^{2}, \tag{6}$$

for all $x, y \in dom(f)$.

(b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with domain dom(f). Assume that dom(f) is a convex set. Show that f satisfies (6) for all $x, y \in dom(f)$ iff the function

$$h(x) := \frac{L}{2} ||x||_2^2 - f(x),$$

with dom(h) := dom(f) is a convex function.

(c) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Assume that dom(f) is a convex set Show that f that satisfies (6) for all $x, y \in dom(f)$ iff it satisfies

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{L}{2} ||y - x||_{2}^{2}, \tag{7}$$

for all $x, y \in \text{dom}(f)$.

Example: Let $A \in \mathbb{S}^n$. Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ given by $f(x) := \frac{1}{2}x^TAx$, with $dom(f) = \mathbb{R}^n$. Then $\nabla f(x) = Ax$ and $\nabla^2 f(x) = A$.

For $x, y \in \mathbb{R}^n$ we have

$$(\nabla f(y) - \nabla f(x))^{T} (y - x) = (y - x)^{T} A^{T} (y - x) = (y - x)^{T} A (y - x).$$

Thus f is L-smooth iff $\lambda_{\max}(A) \leq L$. Note that

$$\frac{L}{2}||x||_2^2 - \frac{1}{2}x^T A x = \frac{1}{2}x^T (LI - A)x$$

defines a convex function iff $L \ge \lambda_{\max}(A)$.

Remark: Let $g: \mathbb{R}^n \to \mathbb{R}^m$ with domain dom(g), and let L > 0. Then g is said to be *Lipschitz with Lipschitz constant* L if we have

$$||g(y) - g(x)||_2 \le L||y - x||_2,$$

for all $x, y \in \text{dom}(g)$. Thus a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies (6) precisely when $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$, with $\text{dom}(\nabla f) := \text{dom}(f)$, is Lipschitz with Lipschitz constant L.

Remark: If $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable then the convexity of $\frac{L}{2} ||x||_2^2 - f(x)$ is equivalent to requiring that dom(f) be a convex set and $\lambda_{\max}(\nabla^2 f(x)) \leq L$ for all $x \in \text{dom}(f)$. Thus this is an equivalent characterization of L-smoothness for twice differentiable functions.