CS4004/CS4504: FORMAL VERIFICATION

Lectures 14: Hoare Logic

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

LAST LECTURE

Prove the following Hoare triples:

$$\rightarrow$$
 (|y > 0|) $x := y + 1$ (|x > 0|)

$$\rightarrow$$
 (|x \ge y|) x := x - y (|x \ge 0|)

$$\rightarrow$$
 $(x \ge y) x := x - y; y := -x (y \le 0)$

→ Swap without temp:

$$((x = x_0) \land (y = y_0)) x := y - x; y := y - x; x := x + y ((x := y_0) \land (y = x_0))$$

 \rightarrow (|T|) if x < 2 then x := 2 else x := x ($x \ge 2$)

$$\frac{(|F \land B|) C_1 (|G|) \quad (|F \land \neg B|) C_2 (|G|)}{(|F|) \text{ if } B \text{ then } C_1 \text{ else } C_2 (|G|)} \text{ COND}$$

$$\frac{(|F|) C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP} \qquad \frac{\vdash_{AR} F' \to F \quad (|F|) C (|G|) \quad \vdash_{AR} G \to G'}{(|F'|) C (|G'|)} \text{ IMPL}$$

Because of the rule for sequencing commands:

$$\frac{ (|F|) \ C_1 \ (|\eta|) \qquad (|\eta|) \ C_2 \ (|G|) }{ (|F|) \ C_1; \ C_2 \ (|G|) } \ {\sf COMP}$$

we often have to "invent" precodition η such that:

$$(|\eta???|) C_2 (|F|)$$

We need to find the weakest precondition η .

Definition

 η_1 weaker than η_2 whenever $\vdash_{AR} \eta_2 \rightarrow \eta_1$.

- \rightarrow it is harder to prove (η_1) C_2 (G) than it is to prove (η_2) C_2 (G)
 - $\rightarrow~$ we assume a weaker property for the starting state of \mathcal{C}_2
 - \rightarrow Therorem: if $(|\eta_1|)$ C_2 (|G|) then it follows $(|\eta_2|)$ C_2 (|G|) (by IMPL)
- \rightarrow but it is easier to prove (F) C_1 ($|\eta_1|$) than (F) C_1 ($|\eta_2|$)
 - $\rightarrow~$ we need to prove a weaker property for the ending state of \mathcal{C}_1

Proof technique: start from the post condition of the program and work backwards through the code. Find the weakest precondition of each of the commands.

$$\frac{(|F \land B|) C_1 (|G|) \quad (|F \land \neg B|) C_2 (|G|)}{(|F|) \text{ if } B \text{ then } C_1 \text{ else } C_2 (|G|)} \text{ COND}$$

$$\frac{(|F|) C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F'|) C_1 (|G'|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F'|) C_1 (|G'|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F'|) C_1 (|G'|)} \text{ COMP}$$

Proof technique: start from the post condition of the program and work backwards through the code. Find the weakest precondition of each of the commands.

→ Assignment:
$$(|η?|) x := E(|G|)$$

set $η = G[E/x]$

$$\frac{(|F \land B|) C_1 (|G|) \quad (|F \land B|) C_2 (|G|)}{(|F|) \text{ if } B \text{ then } C_1 \text{ else } C_2 (|G|)} \text{ COND}$$

$$\frac{(|F|) C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F'|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F'|) C_1 (|G'|)} \text{ IMPL}$$

Proof technique: start from the post condition of the program and work backwards through the code. Find the weakest precondition of each of the commands.

- → Assignment: $(\eta?) \times := E(G)$ set $\eta = G[E/X]$
- ⇒ Composition: $(\eta?)$ C_1 ; C_2 (G) find weakest precondition $(\eta_1?)$ C_2 (G) then find weakest precondition $(\eta?)$ C_1 (η_1)

$$\frac{(|F \land B|) C_1 (|G|) (|F \land \neg B|) C_2 (|G|)}{(|F|) \text{ if } B \text{ then } C_1 \text{ else } C_2 (|G|)} \text{ COND}$$

$$\frac{(|F|) C_1 (|\eta|) (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) (|\eta|) C_2 (|G|)}{(|F'|) C (|G'|)} \text{ COMP}$$

Proof technique: start from the post condition of the program and work backwards through the code. Find the weakest precondition of each of the commands.

- \rightarrow Assignment: (η?) x := E (|G|) set η = G[E/X]
- → Composition: ($|\eta$?) C_1 ; C_2 (|G|) find weakest precondition ($|\eta_1$?) C_2 (|G|) then find weakest precondition ($|\eta$?) C_1 ($|\eta_1|$)
- ⇒ Conditional: (η ?) if B then C_1 else C_2 (G) find weakest precondition (η_1 ?) C_1 (G) find weakest precondition (η_2 ?) C_2 (G) set $\eta = (B \rightarrow \eta_1) \land (\neg B \rightarrow \eta_2)$

$$\frac{(|F \land B|) C_1 (|G|) (|F \land \neg B|) C_2 (|G|)}{(|F|) \text{ if } B \text{ then } C_1 \text{ else } C_2 (|G|)} \text{ COND}$$

$$\frac{(|F|) C_1 (|\eta|) (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP}$$

$$\frac{|F| C_1 (|\eta|) (|\eta|) C_2 (|G|)}{(|F'|) C (|G'|)} \text{ COMP}$$

Proof technique: start from the post condition of the program and work backwards through the code. Find the weakest precondition of each of the commands.

For some program C, to prove

 \rightarrow find the weakest precondition η from C and G

$$(\eta) \in (G)$$

→ prove

$$\vdash_{\mathsf{AR}} \mathbf{F} \to \eta$$

Prove the following Hoare triples:

$$\rightarrow$$
 (|y > 0|) $x := y + 1 (|x > 0|)$

$$\rightarrow$$
 (|x \ge y|) x := x - y (|x \ge 0|)

$$\rightarrow$$
 $(x \ge y) x := x - y; y := -x (y \le 0)$

→ Swap without temp:

$$((x = x_0) \land (y = y_0)) x := y - x; y := y - x; x := x + y ((x := y_0) \land (y = x_0))$$

 \rightarrow (|T|) if x < 2 then x := 2 else x := x ($x \ge 2$)

$$\frac{(|F \land B|) C_1 (|G|) \quad (|F \land \neg B|) C_2 (|G|)}{(|F|) \text{ if } B \text{ then } C_1 \text{ else } C_2 (|G|)} \text{ COND}$$

$$\frac{(|F|) C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP} \qquad \frac{\vdash_{AR} F' \to F \quad (|F|) C (|G|) \quad \vdash_{AR} G \to G'}{(|F'|) C (|G'|)} \text{ IMPL}$$

PROOF RULE: WHILE (PARTIAL CORRECTNESS)

$$\frac{ (|G \wedge B|) \ C \ (|G|)}{ (|G|) \ \text{while} \ B \ \{C\} \ (|G \wedge \neg B|)} \ \text{While}$$

We have to solve a recursive equation: we need a *G* that holds before and after *C*, and therefore before and after the entire while loop.

G is the invariant of the loop.

- \rightarrow G holds before and after every iteration of the loop.
- **G** usually has to be **imagined** (requires intuition).

Prove that $\vdash_{par} (x > 0)$ Fact1 (y = x!) when Fact1 is the program:

```
v := 1;
z := 0;
while (z != x)  {
        z := z + 1;
       y := y * z;
                     \frac{(\lceil F/X \rceil) \times := E (\lceil G \rceil)}{(\lceil G \rceil E/X \rceil) \times := E (\lceil G \rceil)} ASG \qquad \frac{(\lceil F \land B \rceil) C_1 (\lceil G \rceil)}{(\lceil F \rceil) \text{ if } B \text{ then } C_1 \text{ else } C_2 (\lceil G \rceil)} COND
  \frac{ \left( |F| \right) \; C_1 \; \left( |\eta| \right) \quad \left( |\eta| \right) \; C_2 \; \left( |G| \right) }{ \left( |F| \right) \; C_1 \; \left( |G| \right) } \; \; COMP \qquad \frac{ \; \vdash_{\mathsf{AR}} \; F' \; \rightarrow \; F \qquad \left( |F| \right) \; C \; \left( |G| \right) }{ \left( |F'| \right) \; C \; \left( |G'| \right) } \; \; \mathsf{IMPL}
```

$$\frac{ (\textit{G} \land \textit{B}) \ \textit{C} \ (\textit{G}) }{ (\textit{G}) \ \text{while} \ \textit{B} \ \{\textit{C}\} \ (\textit{G} \land \neg \textit{B}) } \ \text{WHILE}$$

SOLUTION (FACT1)

```
(x > 0)
                                                     implied
(|\top|)
(1 = 0!)
                                                     implied
    y := 1;
(y = 0!)
                                                        ASG
    z := 0;
(y = z!)
                                                        ASG
    while(z != x){
((y = z!) \land (z \neq x))
                                                      WHILE
(y * (z + 1) = z! * (z + 1))
                                                     implied
(y * (z + 1) = (z + 1)!)
                                                     implied
      z := z + 1;
                                                        Asg
(|y * z = z!|)
      y := y * z;
(y = z!)
                                                        ASG
((y = z!) \land \neg(x \neq z))
                                                      WHILE
(y = x!)
                                                     implied
```

Prove that $\vdash_{par} ((x = x_0) \land (x \ge 0))$ Fact2 $(y = x_0!)$ when Fact2 is the program:

$$\frac{(|F \wedge B|) C_1 (|G|) \quad (|F \wedge \neg B|) C_2 (|G|)}{(|F|) \text{ if } B \text{ then } C_1 \text{ else } C_2 (|G|)} \text{ COND}$$

$$\frac{(|F|) C_1 (|\eta|) \quad (|\eta|) C_2 (|G|)}{(|F|) C_1; C_2 (|G|)} \text{ COMP} \qquad \frac{|-|A|R}{|F|} \frac{|F'| + |F|}{|F|} C (|G|) \quad |-|A|R} \frac{|F| + |F|}{|F|} C (|G|) \qquad |-|A|R} \frac{|F| + |F|}{|F|} C (|G|) \qquad |-|A|R} C \rightarrow C C MP$$

$$\frac{(|G \wedge B|) C (|G|)}{(|G|) \text{ while } B \{C\} (|G \wedge \neg B|)} \text{ While}$$